THE CAMBRIDGE HANDBOOK OF PHYSICS FORMULAS

This page intentionally left blank

The Cambridge Handbook of Physics Formulas

The Cambridge Handbook of Physics Formulas is a quick-reference aid for students and professionals in the physical sciences and engineering. It contains more than 2000 of the most useful formulas and equations found in undergraduate physics courses, covering mathematics, dynamics and mechanics, quantum physics, thermodynamics, solid state physics, electromagnetism, optics, and astrophysics. An exhaustive index allows the required formulas to be located swiftly and simply, and the unique tabular format crisply identifies all the variables involved.

The Cambridge Handbook of Physics Formulas comprehensively covers the major topics explored in undergraduate physics courses. It is designed to be a compact, portable, reference book suitable for everyday work, problem solving, or exam revision. All students and professionals in physics, applied mathematics, engineering, and other physical sciences will want to have this essential reference book within easy reach.

Graham Woan is a senior lecturer in the Department of Physics and Astronomy at the University of Glasgow. Prior to this he taught physics at the University of Cambridge where he also received his degree in Natural Sciences, specialising in physics, and his PhD, in radio astronomy. His research interests range widely with a special focus on low-frequency radio astronomy. His publications span journals as diverse as Astronomy & Astrophysics, Geophysical Research Letters, Advances in Space Science, the Journal of Navigation and Emergency Prehospital Medicine. He was co-developer of the revolutionary CURSOR radio positioning system, which uses existing broadcast transmitters to determine position, and he is the designer of the Glasgow Millennium Sundial.

The Cambridge Handbook of Physics Formulas

2003 Edition

GRAHAM WOAN

Department of Physics & Astronomy University of Glasgow

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York www.cambridge.org

Information on this title: www.cambridge.org/9780521573498

© Cambridge University Press 2000

This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published in print format 2000

```
ISBN-13 978-0-511-07589-6 eBook (EBL)
ISBN-10 0-511-07589-8 eBook (EBL)
ISBN-13 978-0-521-57349-8 hardback
ISBN-10 0-521-57349-1 hardback
ISBN-13 978-0-521-57507-2 paperback
ISBN-10 0-521-57507-9 paperback
```

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

How to use this book 1 Units, constants, and conversions	1
1 Units constants and conversions	_
1 Chits, constants, and conversions	3
 1.1 Introduction, 3 • 1.2 SI units, 4 • 1.3 Physical constants, 6 • 1.4 Converting between units, 10 • 1.5 Dimensions, 16 • 1.6 Miscellaneous, 18 	
2 Mathematics	19
 2.1 Notation, 19 • 2.2 Vectors and matrices, 20 • 2.3 Series, summations, and progressions, 27 • 2.4 Complex variables, 30 • 2.5 Trigonometric and hyperbolic formulas, 32 • 2.6 Mensuration, 35 • 2.7 Differentiation, 40 • 2.8 Integration, 44 • 2.9 Special functions and polynomials, 46 • 2.10 Roots of quadratic and cubic equations, 50 • 2.11 Fourier series and transforms, 52 • 2.12 Laplace transforms, 55 • 2.13 Probability and statistics, 57 • 2.14 Numerical methods, 60 	
3 Dynamics and mechanics	63
3.1 Introduction, 63 • 3.2 Frames of reference, 64 • 3.3 Gravitation, 66 • 3.4 Particle motion, 68 • 3.5 Rigid body dynamics, 74 • 3.6 Oscillating systems, 78 • 3.7 Generalised dynamics, 79 • 3.8 Elasticity, 80 • 3.9 Fluid dynamics, 84	63
 3.1 Introduction, 63 • 3.2 Frames of reference, 64 • 3.3 Gravitation, 66 • 3.4 Particle motion, 68 • 3.5 Rigid body dynamics, 74 • 3.6 Oscillating systems, 78 • 3.7 Generalised dynamics, 79 • 3.8 Elasticity, 80 • 3.9 Fluid 	63 89
3.1 Introduction, 63 • 3.2 Frames of reference, 64 • 3.3 Gravitation, 66 • 3.4 Particle motion, 68 • 3.5 Rigid body dynamics, 74 • 3.6 Oscillating systems, 78 • 3.7 Generalised dynamics, 79 • 3.8 Elasticity, 80 • 3.9 Fluid dynamics, 84	
3.1 Introduction, 63 • 3.2 Frames of reference, 64 • 3.3 Gravitation, 66 • 3.4 Particle motion, 68 • 3.5 Rigid body dynamics, 74 • 3.6 Oscillating systems, 78 • 3.7 Generalised dynamics, 79 • 3.8 Elasticity, 80 • 3.9 Fluid dynamics, 84 4 Quantum physics 4.1 Introduction, 89 • 4.2 Quantum definitions, 90 • 4.3 Wave mechanics, 92 • 4.4 Hydrogenic atoms, 95 • 4.5 Angular momentum, 98	

6	Solid state physics	123
	6.1 Introduction, 123 • 6.2 Periodic table, 124 • 6.3 Crystalline structure, 126 • 6.4 Lattice dynamics, 129 • 6.5 Electrons in solids, 132	
7	Electromagnetism	135
	7.1 Introduction, 135 • 7.2 Static fields, 136 • 7.3 Electromagnetic fields (general), 139 • 7.4 Fields associated with media, 142 • 7.5 Force, torque, and energy, 145 • 7.6 LCR circuits, 147 • 7.7 Transmission lines and waveguides, 150 • 7.8 Waves in and out of media, 152 • 7.9 Plasma physics, 156	
8	Optics	161
	 8.1 Introduction, 161 • 8.2 Interference, 162 • 8.3 Fraunhofer diffraction, 164 • 8.4 Fresnel diffraction, 166 • 8.5 Geometrical optics, 168 • 8.6 Polarisation, 170 • 8.7 Coherence (scalar theory), 172 • 8.8 Line radiation, 173 	
9	Astrophysics	175
	 9.1 Introduction, 175 • 9.2 Solar system data, 176 • 9.3 Coordinate transformations (astronomical), 177 • 9.4 Observational astrophysics, 179 • 9.5 Stellar evolution, 181 • 9.6 Cosmology, 184 	
Inc	lex	187

Preface

In A Brief History of Time, Stephen Hawking relates that he was warned against including equations in the book because "each equation... would halve the sales." Despite this dire prediction there is, for a scientific audience, some attraction in doing the exact opposite.

The reader should not be misled by this exercise. Although the equations and formulas contained here underpin a good deal of physical science they are useless unless the reader understands them. Learning physics is not about remembering equations, it is about appreciating the natural structures they express. Although its format should help make some topics clearer, this book is not designed to teach new physics; there are many excellent textbooks to help with that. It is intended to be useful rather than pedagogically complete, so that students can use it for revision and for structuring their knowledge once they understand the physics. More advanced users will benefit from having a compact, internally consistent, source of equations that can quickly deliver the relationship they require in a format that avoids the need to sift through pages of rubric.

Some difficult decisions have had to be made to achieve this. First, to be short the book only includes ideas that can be expressed succinctly in equations, without resorting to lengthy explanation. A small number of important topics are therefore absent. For example, Liouville's theorem can be algebraically succinct ($\dot{\varrho}=0$) but is meaningless unless $\dot{\varrho}$ is thoroughly (and carefully) explained. Anyone who already understands what $\dot{\varrho}$ represents will probably not need reminding that it equals zero. Second, empirical equations with numerical coefficients have been largely omitted, as have topics significantly more advanced than are found at undergraduate level. There are simply too many of these to be sensibly and confidently edited into a short handbook. Third, physical data are largely absent, although a periodic table, tables of physical constants, and data on the solar system are all included. Just a sighting of the marvellous (but dimensionally misnamed) *CRC Handbook of Chemistry and Physics* should be enough to convince the reader that a good science data book is thick.

Inevitably there is personal choice in what should or should not be included, and you may feel that an equation that meets the above criteria is missing. If this is the case, I would be delighted to hear from you so it can be considered for a subsequent edition. Contact details are at the end of this preface. Likewise, if you spot an error or an inconsistency then please let me know and I will post an erratum on the web page.

Acknowledgments This venture is founded on the generosity of colleagues in Glasgow and Cambridge whose inputs have strongly influenced the final product. The expertise of Dave Clarke, Declan Diver, Peter Duffett-Smith, Wolf-Gerrit Früh, Martin Hendry, Rico Ignace, David Ireland, John Simmons, and Harry Ward have been central to its production, as have the linguistic skills of Katie Lowe. I would also like to thank Richard Barrett, Matthew Cartmell, Steve Gull, Martin Hendry, Jim Hough, Darren McDonald, and Ken Riley who all agreed to field-test the book and gave invaluable feedback.

My greatest thanks though are to John Shakeshaft who, with remarkable knowledge and skill, worked through the entire manuscript more than once during its production and whose legendary red pen hovered over (or descended upon) every equation in the book. What errors remain are, of course, my own, but I take comfort from the fact that without John they would be much more numerous.

Contact information A website containing up-to-date information on this handbook and contact details can be found through the Cambridge University Press web pages at us.cambridge.org (North America) or uk.cambridge.org (United Kingdom), or directly at radio.astro.gla.ac.uk/hbhome.html.

Production notes This book was typeset by the author in \LaTeX 2 ε using the CUP Times fonts. The software packages used were WinEdt, MiKTEX, Mayura Draw, Gnuplot, Ghostscript, Ghostview, and Maple V.

Comments on the 2002 edition I am grateful to all those who have suggested improvements, in particular Martin Hendry, Wolfgang Jitschin, and Joseph Katz. Although this edition contains only minor revisions to the original its production was also an opportunity to update the physical constants and periodic table entries and to reflect recent developments in cosmology.

How to use this book

The format is largely self-explanatory, but a few comments may be helpful. Although it is very tempting to flick through the pages to find what you are looking for, the best starting point is the index. I have tried to make this as extensive as possible, and many equations are indexed more than once. Equations are listed both with their equation number (in square brackets) and the page on which they can be found. The equations themselves are grouped into self-contained and boxed "panels" on the pages. Each panel represents a separate topic, and you will find descriptions of all the variables used at the right-hand side of the panel, usually adjacent to the first equation in which they are used. You should therefore not need to stray outside the panel to understand the notation. Both the panel as a whole and its individual entries may have footnotes, shown below the panel. Be aware of these, as they contain important additional information and conditions relevant to the topic.

Although the panels are self-contained they may use concepts defined elsewhere in the handbook. Often these are cross-referenced, but again the index will help you to locate them if necessary. Notations and definitions are uniform over subject areas unless stated otherwise.

Chapter 1 Units, constants, and conversions

1.1 Introduction

The determination of physical constants and the definition of the units with which they are measured is a specialised and, to many, hidden branch of science.

A quantity with dimensions is one whose value must be expressed relative to one or more standard units. In the spirit of the rest of the book, this section is based around the International System of units (SI). This system uses seven base units¹ (the number is somewhat arbitrary), such as the kilogram and the second, and defines their magnitudes in terms of physical laws or, in the case of the kilogram, an object called the "international prototype of the kilogram" kept in Paris. For convenience there are also a number of derived standards, such as the volt, which are defined as set combinations of the basic seven. Most of the physical observables we regard as being in some sense fundamental, such as the charge on an electron, are now known to a relative standard uncertainty,² u_r , of less than 10^{-7} . The least well determined is the Newtonian constant of gravitation, presently standing at a rather lamentable u_r of 1.5×10^{-3} , and the best is the Rydberg constant ($u_r = 7.6 \times 10^{-12}$). The dimensionless electron g-factor, representing twice the magnetic moment of an electron measured in Bohr magnetons, is now known to a relative uncertainty of only 4.1×10^{-12} .

No matter which base units are used, physical quantities are expressed as the product of a numerical value and a unit. These two components have more-or-less equal standing and can be manipulated by following the usual rules of algebra. So, if $1 \cdot \text{eV} = 160.218 \times 10^{-21} \cdot \text{J}$ then $1 \cdot \text{J} = [1/(160.218 \times 10^{-21})] \cdot \text{eV}$. A measurement of energy, U, with joule as the unit has a numerical value of U/J. The same measurement with electron volt as the unit has a numerical value of $U/\text{eV} = (U/\text{J}) \cdot (\text{J/eV})$ and so on.

²The relative standard uncertainty in x is defined as the estimated standard deviation in x divided by the modulus of x ($x \neq 0$).

¹The **metre** is the length of the path travelled by light in vacuum during a time interval of $1/299\,792\,458$ of a second. The **kilogram** is the unit of mass; it is equal to the mass of the international prototype of the kilogram. The **second** is the duration of $9\,192\,631\,770$ periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom. The **ampere** is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length. The **kelvin**, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. The **mole** is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is "mol." When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles. The **candela** is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

1.2 SI units

SI base units

physical quantity	name	symbol
length	$metre^a$	m
mass	kilogram	kg
time interval	second	s
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

^aOr "meter".

SI derived units

SI delived dilits			
physical quantity	пате	symbol	equivalent units
catalytic activity	katal	kat	$ m mols^{-1}$
electric capacitance	farad	F	$\mathrm{C}\mathrm{V}^{-1}$
electric charge	coulomb	C	As
electric conductance	siemens	S	Ω^{-1}
electric potential difference	volt	V	${ m J}{ m C}^{-1}$
electric resistance	ohm	Ω	${ m VA^{-1}}$
energy, work, heat	joule	J	Nm
force	newton	N	${ m mkgs^{-2}}$
frequency	hertz	Hz	s^{-1}
illuminance	lux	1x	${\rm cd}{\rm sr}{\rm m}^{-2}$
inductance	henry	H	$V A^{-1} s$
luminous flux	lumen	lm	cd sr
magnetic flux	weber	Wb	V s
magnetic flux density	tesla	T	$\mathrm{V}\mathrm{s}\mathrm{m}^{-2}$
plane angle	radian	rad	${ m m}{ m m}^{-1}$
power, radiant flux	watt	W	$\mathrm{J}\mathrm{s}^{-1}$
pressure, stress	pascal	Pa	${ m Nm^{-2}}$
radiation absorbed dose	gray	Gy	$\mathrm{Jkg^{-1}}$
radiation dose equivalent ^a	sievert	Sv	$[Jkg^{-1}]$
radioactive activity	becquerel	Bq	s^{-1}
solid angle	steradian	sr	$\mathrm{m^2m^{-2}}$
temperature ^b	degree Celsius	°C	K

^aTo distinguish it from the gray, units of J kg⁻¹ should not be used for the sievert in practice. ^bThe Celsius temperature, $T_{\rm C}$, is defined from the temperature in kelvin, $T_{\rm K}$, by $T_{\rm C} = T_{\rm K} - 273.15$.

SI prefixes^a

factor	prefix	symbol	factor	prefix	symbol
10 ²⁴	yotta	Y	10^{-24}	yocto	y
10^{21}	zetta	Z	10^{-21}	zepto	Z
1018	exa	E	10^{-18}	atto	a
10 ¹⁵	peta	P	10^{-15}	femto	f
10 ¹²	tera	T	10^{-12}	pico	p
10 ⁹	giga	G	10^{-9}	nano	n
106	mega	M	10^{-6}	micro	μ
10^{3}	kilo	k	10^{-3}	milli	m
10^{2}	hecto	h	10^{-2}	centi	c
10 ¹	$deca^b$	da	10^{-1}	deci	d

^aThe kilogram is the only SI unit with a prefix embedded in its name and symbol. For mass, the unit name "gram" and unit symbol "g" should be used with these prefixes, hence 10⁻⁶ kg can be written as 1 mg. Otherwise, any prefix can be applied to any SI unit. ^bOr "deka".

Recognised non-SI units

physical quantity	пате	symbol	SI value
area	barn	b	$10^{-28} \mathrm{m}^2$
energy	electron volt	eV	$\simeq 1.60218 \times 10^{-19} \mathrm{J}$
length	ångström	Å	$10^{-10}\mathrm{m}$
	fermi ^a	fm	$10^{-15} \mathrm{m}$
	micron ^a	μm	$10^{-6} \mathrm{m}$
plane angle	degree	0	$(\pi/180)$ rad
	arcminute	′	$(\pi/10800){\rm rad}$
	arcsecond	″	$(\pi/648000)\mathrm{rad}$
pressure	bar	bar	$10^5 \mathrm{N} \mathrm{m}^{-2}$
time	minute	min	60 s
	hour	h	3 600 s
	day	d	86 400 s
mass	unified atomic mass unit	u	$\simeq 1.66054 \times 10^{-27} \mathrm{kg}$
	tonne ^{a,b}	t	$10^3 \mathrm{kg}$
volume	$litre^c$	1, L	$10^{-3} \mathrm{m}^3$

^aThese are non-SI names for SI quantities.

bOr "metric ton."

^cOr "liter". The symbol "l" should be avoided.

1.3 Physical constants

The following 1998 CODATA recommended values for the fundamental physical constants can also be found on the Web at physics.nist.gov/constants. Detailed background information is available in *Reviews of Modern Physics*, Vol. 72, No. 2, pp. 351–495, April 2000.

The digits in parentheses represent the 1σ uncertainty in the previous two quoted digits. For example, $G = (6.673 \pm 0.010) \times 10^{-11} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{s}^{-2}$. It is important to note that the uncertainties for many of the listed quantities are correlated, so that the uncertainty in any expression using them in combination cannot necessarily be computed from the data presented. Suitable covariance values are available in the above references.

Summary of physical constants

speed of light in vacuum ^a	c	2.997 924 58	$\times 10^8 \mathrm{ms^{-1}}$
permeability of vacuum ^b	μ_0	4π	$\times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
		=12.566370614	$\times 10^{-7} \mathrm{H m^{-1}}$
permittivity of vacuum	ϵ_0	$1/(\mu_0 c^2)$	$\mathrm{F}\mathrm{m}^{-1}$
		=8.854 187 817	$\times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
constant of gravitation ^c	G	6.673(10)	$\times 10^{-11} \mathrm{m^3 kg^{-1} s^{-2}}$
Planck constant	h	6.626 068 76(52)	$\times 10^{-34} \mathrm{Js}$
$h/(2\pi)$	\hbar	1.054 571 596(82)	$\times 10^{-34} \mathrm{Js}$
elementary charge	e	1.602 176 462(63)	$\times 10^{-19} \mathrm{C}$
magnetic flux quantum, $h/(2e)$	Φ_0	2.067 833 636(81)	$\times 10^{-15} \mathrm{Wb}$
electron volt	eV	1.602 176 462(63)	$\times 10^{-19} \mathrm{J}$
electron mass	$m_{\rm e}$	9.109 381 88(72)	$\times 10^{-31} \text{ kg}$
proton mass	$m_{ m p}$	1.672 621 58(13)	$\times 10^{-27} \mathrm{kg}$
proton/electron mass ratio	$m_{\rm p}/m_{\rm e}$	1836.1526675(39)	
unified atomic mass unit	u	1.660 538 73(13)	$\times 10^{-27} \mathrm{kg}$
fine-structure constant, $\mu_0 ce^2/(2h)$	α	7.297 352 533(27)	$\times 10^{-3}$
inverse	$1/\alpha$	137.035 999 76(50)	
Rydberg constant, $m_e c\alpha^2/(2h)$	R_{∞}	1.097 373 156 854 9(83)	$\times 10^7 \mathrm{m}^{-1}$
Avogadro constant	$N_{ m A}$	6.022 141 99(47)	$\times 10^{23} \mathrm{mol}^{-1}$
Faraday constant, $N_A e$	\boldsymbol{F}	9.648 534 15(39)	$\times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
molar gas constant	R	8.314 472(15)	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
Boltzmann constant, R/N_A	k	1.380 650 3(24)	$ imes 10^{-23} \mathrm{J K^{-1}}$
Stefan–Boltzmann constant, $\pi^2 k^4/(60\hbar^3 c^2)$	σ	5.670 400(40)	$\times 10^{-8} \: W \: m^{-2} \: K^{-4}$
Bohr magneton, $e\hbar/(2m_e)$	$\mu_{ m B}$	9.274 008 99(37)	$\times 10^{-24} \mathrm{J}\mathrm{T}^{-1}$

^aBy definition, the speed of light is exact.

^bAlso exact, by definition. Alternative units are NA⁻².

 $^{^{}c}$ The standard acceleration due to gravity, g, is defined as exactly $9.80665\,\mathrm{m\,s^{-2}}$.

General constants

General constants			
speed of light in vacuum	С	2.997 924 58	$\times 10^{8} \mathrm{m s^{-1}}$
permeability of vacuum	μ_0	4π	$\times 10^{-7} \mathrm{H m^{-1}}$
		=12.566370614	$\times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
permittivity of vacuum	ϵ_0	$1/(\mu_0 c^2)$	$\mathrm{F}\mathrm{m}^{-1}$
		=8.854 187 817	$\times 10^{-12} \mathrm{F m^{-1}}$
impedance of free space	Z_0	$\mu_0 c$	Ω
		=376.730 313 461	Ω
constant of gravitation	G	6.673(10)	$\times 10^{-11} \mathrm{m^3 kg^{-1} s^{-2}}$
Planck constant	h	6.626 068 76(52)	$\times 10^{-34} \mathrm{Js}$
in eV s		4.135 667 27(16)	$\times 10^{-15} \mathrm{eV} \mathrm{s}$
$h/(2\pi)$	\hbar	1.054 571 596(82)	$\times 10^{-34} \mathrm{Js}$
in eV s		6.582 118 89(26)	$\times 10^{-16} \mathrm{eV} \mathrm{s}$
Planck mass, $(\hbar c/G)^{1/2}$	$m_{ m Pl}$	2.1767(16)	$\times 10^{-8} \mathrm{kg}$
Planck length, $\hbar/(m_{\rm Pl}c) = (\hbar G/c^3)^{1/2}$	$l_{ m Pl}$	1.6160(12)	$\times 10^{-35} \mathrm{m}$
Planck time, $l_{\rm Pl}/c = (\hbar G/c^5)^{1/2}$	$t_{ m Pl}$	5.390 6(40)	$\times 10^{-44} \mathrm{s}$
elementary charge	e	1.602 176 462(63)	$\times 10^{-19} \mathrm{C}$
magnetic flux quantum, $h/(2e)$	Φ_0	2.067 833 636(81)	$\times 10^{-15} \mathrm{Wb}$
Josephson frequency/voltage ratio	2e/h	4.835 978 98(19)	$ imes 10^{14} Hz V^{-1}$
Bohr magneton, $e\hbar/(2m_e)$	$\mu_{ m B}$	9.274 008 99(37)	$ imes 10^{-24} \mathrm{J} \mathrm{T}^{-1}$
in eV T^{-1}		5.788 381 749(43)	$\times 10^{-5} \mathrm{eV} \mathrm{T}^{-1}$
$\mu_{ m B}/k$		0.671 713 1(12)	${\rm K} {\rm T}^{-1}$
nuclear magneton, $e\hbar/(2m_p)$	$\mu_{ m N}$	5.050 783 17(20)	$ imes 10^{-27} \mathrm{J} \mathrm{T}^{-1}$
in eV T^{-1}		3.152 451 238(24)	$\times 10^{-8} \mathrm{eV} \ \mathrm{T}^{-1}$
$\mu_{ m N}/k$		3.658 263 8(64)	$\times 10^{-4} \mathrm{K} \mathrm{T}^{-1}$
Zeeman splitting constant	$\mu_{\rm B}/(hc)$	46.686 452 1(19)	${ m m}^{-1}~{ m T}^{-1}$

Atomic constants^a

fine-structure constant, $\mu_0 ce^2/(2h)$	α	7.297 352 533(27)	$\times 10^{-3}$
inverse	$1/\alpha$	137.035 999 76(50)	
Rydberg constant, $m_e c\alpha^2/(2h)$	R_{∞}	1.097 373 156 854 9(83)	$\times 10^7 \mathrm{m}^{-1}$
$R_{\infty}c$		3.289 841 960 368(25)	$\times 10^{15}\mathrm{Hz}$
$R_{\infty}hc$		2.179 871 90(17)	$\times 10^{-18} \mathrm{J}$
$R_{\infty}hc/e$		13.605 691 72(53)	eV
Bohr radius ^b , $\alpha/(4\pi R_{\infty})$	a_0	5.291 772 083(19)	$\times 10^{-11} \mathrm{m}$

^aSee also the Bohr model on page 95.

 $[^]b\mathrm{Fixed}$ nucleus.

Electron constants

electron mass	m_{e}	9.109 381 88(72)	$\times 10^{-31} \mathrm{kg}$
in MeV		0.510 998 902(21)	MeV
electron/proton mass ratio	$m_{\rm e}/m_{\rm p}$	5.446 170 232(12)	$\times 10^{-4}$
electron charge	-e	-1.602176462(63)	$\times 10^{-19} { m C}$
electron specific charge	$-e/m_{\rm e}$	-1.758820174(71)	$\times 10^{11} \mathrm{Ckg}^{-1}$
electron molar mass, $N_{\rm A}m_{\rm e}$	$M_{ m e}$	5.485 799 110(12)	$\times 10^{-7} \mathrm{kg}\mathrm{mol}^{-1}$
Compton wavelength, $h/(m_e c)$	$\lambda_{ m C}$	2.426 310 215(18)	$\times 10^{-12} \mathrm{m}$
classical electron radius, $\alpha^2 a_0$	$r_{ m e}$	2.817 940 285(31)	$\times 10^{-15} \mathrm{m}$
Thomson cross section, $(8\pi/3)r_e^2$	$\sigma_{ m T}$	6.652 458 54(15)	$\times 10^{-29} \mathrm{m}^2$
electron magnetic moment	$\mu_{ m e}$	-9.28476362(37)	$ imes 10^{-24} \mathrm{J} \mathrm{T}^{-1}$
in Bohr magnetons, μ_e/μ_B		-1.0011596521869	(41)
in nuclear magnetons, $\mu_{\rm e}/\mu_{ m N}$		-1838.2819660(39)	
electron gyromagnetic ratio, $2 \mu_e /\hbar$	γ_{e}	1.760 859 794(71)	$\times 10^{11} \mathrm{s}^{-1} \mathrm{T}^{-1}$
electron g-factor, $2\mu_e/\mu_B$	$g_{ m e}$	-2.002 319 304 3737(82)

Proton constants

1 Toton constants			
proton mass	$m_{ m p}$	1.672 621 58(13)	$\times 10^{-27} \mathrm{kg}$
in MeV		938.271 998(38)	MeV
proton/electron mass ratio	$m_{ m p}/m_{ m e}$	1 836.152 667 5(39)	
proton charge	e	1.602 176 462(63)	$\times 10^{-19} \mathrm{C}$
proton specific charge	$e/m_{\rm p}$	9.578 834 08(38)	$\times 10^7 \mathrm{Ckg^{-1}}$
proton molar mass, $N_{\rm A}m_{\rm p}$	$M_{ m p}$	1.007 276 466 88(13)	$\times 10^{-3} \mathrm{kg}\mathrm{mol}^{-1}$
proton Compton wavelength, $h/(m_p c)$	$\lambda_{\mathrm{C,p}}$	1.321 409 847(10)	$\times 10^{-15} \mathrm{m}$
proton magnetic moment	$\mu_{ m p}$	1.410 606 633(58)	$\times 10^{-26} \mathrm{J}\mathrm{T}^{-1}$
in Bohr magnetons, μ_p/μ_B		1.521 032 203(15)	$\times 10^{-3}$
in nuclear magnetons, $\mu_{\rm p}/\mu_{\rm N}$		2.792 847 337(29)	
proton gyromagnetic ratio, $2\mu_p/\hbar$	$\gamma_{\mathbf{p}}$	2.675 222 12(11)	$\times 10^{8} \mathrm{s}^{-1} \mathrm{T}^{-1}$

Neutron constants

1 (cution constants			
neutron mass	$m_{\rm n}$	1.674 927 16(13)	$\times 10^{-27} \mathrm{kg}$
in MeV		939.565 330(38)	MeV
neutron/electron mass ratio	$m_{\rm n}/m_{\rm e}$	1 838.683 655 0(40)	
neutron/proton mass ratio	$m_{ m n}/m_{ m p}$	1.001 378 418 87(58)	
neutron molar mass, $N_{\rm A}m_{\rm n}$	$M_{\rm n}$	1.008 664 915 78(55)	$\times 10^{-3} \mathrm{kg}\mathrm{mol}^{-1}$
neutron Compton wavelength, $h/(m_n c)$	$\lambda_{\mathrm{C},n}$	1.319 590 898(10)	$\times 10^{-15} \mathrm{m}$
neutron magnetic moment	$\mu_{ m n}$	-9.662 364 0(23)	$ imes 10^{-27} \mathrm{J} \mathrm{T}^{-1}$
in Bohr magnetons	$\mu_{ m n}/\mu_{ m B}$	-1.041 875 63(25)	$\times 10^{-3}$
in nuclear magnetons	$\mu_{\rm n}/\mu_{\rm N}$	-1.913 042 72(45)	
neutron gyromagnetic ratio, $2 \mu_n /\hbar$	$\gamma_{\rm n}$	1.832 471 88(44)	$\times 10^{8} \mathrm{s}^{-1} \mathrm{T}^{-1}$

Muon and tau constants

muon mass	m_{μ}	1.883 531 09(16)	$\times 10^{-28} \mathrm{kg}$
in MeV		105.658 356 8(52)	MeV
tau mass	$m_{ au}$	3.167 88(52)	$\times 10^{-27} \mathrm{kg}$
in MeV		1.777 05(29)	$\times 10^3 \mathrm{MeV}$
muon/electron mass ratio	$m_{\mu}/m_{\rm e}$	206.768 262(30)	
muon charge	-e	-1.602176462(63)	$\times 10^{-19} \mathrm{C}$
muon magnetic moment	μ_{μ}	-4.49044813(22)	$\times 10^{-26} \mathrm{J}\mathrm{T}^{-1}$
in Bohr magnetons, $\mu_{\mu}/\mu_{\rm B}$		4.841 970 85(15)	$\times 10^{-3}$
in nuclear magnetons, μ_{μ}/μ_{N}		8.890 597 70(27)	
muon g-factor	g_{μ}	-2.0023318320(13)	

Bulk physical constants

Avogadro constant	N_{A}	6.022 141 99(47)	$\times 10^{23} \text{mol}^{-1}$
atomic mass constant ^a	$m_{\rm u}$	1.660 538 73(13)	$\times 10^{-27} \mathrm{kg}$
in MeV		931.494 013(37)	MeV
Faraday constant	\boldsymbol{F}	9.648 534 15(39)	$\times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
molar gas constant	R	8.314 472(15)	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
Boltzmann constant, $R/N_{\rm A}$	k	1.380 650 3(24)	$\times 10^{-23} \mathrm{J K^{-1}}$
in eV K ⁻¹		8.617 342(15)	$\times 10^{-5} eV K^{-1}$
molar volume (ideal gas at stp) b	V_{m}	22.413 996(39)	$\times 10^{-3} \text{m}^3 \text{mol}^{-1}$
Stefan–Boltzmann constant, $\pi^2 k^4/(60\hbar^3 c^2)$	σ	5.670 400(40)	$ imes 10^{-8}~{ m W}~{ m m}^{-2}~{ m K}^{-4}$
Wien's displacement law constant, $b = \lambda_m T$	b	2.897 768 6(51)	$\times 10^{-3}$ m K

Mathematical constants

pi (π)	3.141 592 653 589 793 238 462 643 383 279
exponential constant (e)	2.718 281 828 459 045 235 360 287 471 352
Catalan's constant	0.915 965 594 177 219 015 054 603 514 932
Euler's constant ^a (γ)	0.577 215 664 901 532 860 606 512 090 082
Feigenbaum's constant (α)	2.502 907 875 095 892 822 283 902 873 218
Feigenbaum's constant (δ)	4.669 201 609 102 990 671 853 203 820 466
Gibbs constant	1.851 937 051 982 466 170 361 053 370 157
golden mean	1.618 033 988 749 894 848 204 586 834 370
Madelung constant ^b	1.747 564 594 633 182 190 636 212 035 544

^aSee also Equation (2.119).

 $a = mass of {}^{12}C/12$. Alternative nomenclature for the unified atomic mass unit, u. $b = mass of {}^{12}C/12$. Alternative nomenclature for the unified atomic mass unit, u. $b = mass of {}^{12}C/12$. Alternative nomenclature for the unified atomic mass unit, u. $b = mass of {}^{12}C/12$. Alternative nomenclature for the unified atomic mass unit, u.

^cSee also page 121.

^bNaCl structure.

1.4 Converting between units

The following table lists common (and not so common) measures of physical quantities. The numerical values given are the SI equivalent of one unit measure of the non-SI unit. Hence 1 astronomical unit equals 149.5979×10^9 m. Those entries identified with a "*" in the second column represent exact conversions; so 1 abampere equals exactly 10.0 A. Note that individual entries in this list are not recorded in the index, and that values are "international" unless otherwise stated.

There is a separate section on temperature conversions after this table.

unit name	value in SI i	units
abampere	10.0*	A
abcoulomb	10.0*	C
abfarad	1.0^{*}	$\times 10^9 \mathrm{F}$
abhenry	1.0^{*}	$\times 10^{-9} {\rm H}$
abmho	1.0^{*}	$\times 10^9 \mathrm{S}$
abohm	1.0^{*}	$ imes 10^{-9} \Omega$
abvolt	10.0^{*}	$\times 10^{-9} \mathrm{V}$
acre	4.046 856	$\times 10^3 \mathrm{m}^2$
amagat (at stp)	44.614774	$ m molm^{-3}$
ampere hour	3.6*	$\times 10^3 \mathrm{C}$
ångström	100.0^{*}	$\times 10^{-12} \mathrm{m}$
apostilb	1.0*	${ m lm}{ m m}^{-2}$
arcminute	290.888 2	$\times 10^{-6} \mathrm{rad}$
arcsecond	4.848 137	$\times 10^{-6} \mathrm{rad}$
are	100.0*	m^2
astronomical unit	149.5979	$\times 10^9 \mathrm{m}$
atmosphere (standard)	101.3250*	$\times 10^3 \mathrm{Pa}$
atomic mass unit	1.660 540	$\times 10^{-27} \mathrm{kg}$
bar	100.0*	$\times 10^3 \mathrm{Pa}$
barn	100.0^{*}	$\times 10^{-30} \mathrm{m}^2$
baromil	750.1	$\times 10^{-6} \mathrm{m}$
barrel (UK)	163.6592	$\times 10^{-3} \mathrm{m}^3$
barrel (US dry)	115.627 1	$\times 10^{-3} \text{m}^3$
barrel (US liquid)	119.2405	$\times 10^{-3} \text{m}^3$
barrel (US oil)	158.9873	$\times 10^{-3} \mathrm{m}^3$
baud	1.0^{*}	s^{-1}
bayre	100.0*	$\times 10^{-3} \mathrm{Pa}$
biot	10.0	A
bolt (US)	36.576*	m
brewster	1.0^{*}	$\times 10^{-12} \mathrm{m^2 N^{-1}}$
British thermal unit	1.055 056	$\times 10^3 \mathrm{J}$
bushel (UK)	36.36 872	$\times 10^{-3} \mathrm{m}^3$
bushel (US)	35.23 907	$\times 10^{-3} \mathrm{m}^3$
butt (UK)	477.3394	$\times 10^{-3} \mathrm{m}^3$
cable (US)	219.456*	m
calorie	4.1868^*	J
	COL	ntinued on next page

l wait name	value in SI ı	unita
unit name candle power (spherical)	4π	lm
carat (metric)	200.0*	$\times 10^{-6} \mathrm{kg}$
cental	45.359 237	•
	43.339 237 1.0*	$\frac{\mathrm{kg}}{\mathrm{m}^2}$
centare		$^{\mathrm{m}^{2}}$ $\times 10^{3} \mathrm{Pa}$
centimetre of Hg (0 °C)	1.333 222	
centimetre of H ₂ O (4°C)	98.060 616	Pa
chain (engineers')	30.48*	m
chain (US)	20.1168*	m
Chu	1.899 101	$\times 10^{3} \mathrm{J}$
clusec	1.333 224	$\times 10^{-6} \text{W}$
cord	3.624 556	m^3
cubit	457.2*	$\times 10^{-3} \text{m}$
cumec	1.0*	$m^3 s^{-1}$
cup (US)	236.588 2	$\times 10^{-6} \mathrm{m}^3$
curie	37.0*	$\times 10^9 \mathrm{Bq}$
darcy	986.9233	$\times 10^{-15} \mathrm{m}^2$
day	86.4*	$\times 10^3$ s
day (sidereal)	86.16409	$\times 10^3 \mathrm{s}$
debye	3.335 641	$\times 10^{-30} \text{C} \text{m}$
degree (angle)	17.453 29	$\times 10^{-3} \mathrm{rad}$
denier	111.1111	$\times 10^{-9} \mathrm{kg} \mathrm{m}^{-1}$
digit	19.05*	$\times 10^{-3} \mathrm{m}$
dioptre	1.0*	m^{-1}
Dobson unit	10.0*	$\times 10^{-6} \mathrm{m}$
dram (avoirdupois)	1.771 845	$\times 10^{-3} \mathrm{kg}$
dyne	10.0*	$\times 10^{-6} \mathrm{N}$
dyne centimetres	100.0*	$\times 10^{-9} \mathrm{J}$
electron volt	160.2177	$\times 10^{-21} \mathrm{J}$
ell	1.143*	m
em	4.233 333	$\times 10^{-3} \mathrm{m}$
emu of capacitance	1.0*	$\times 10^9 \mathrm{F}$
emu of current	10.0*	A
emu of electric potential	10.0*	$\times 10^{-9} \text{ V}$
emu of inductance	1.0*	$\times 10^{-9} \text{H}$
emu of resistance	1.0*	$\times 10^{-9} \Omega$
Eötvös unit	1.0*	$\times 10^{-9} \mathrm{m}\mathrm{s}^{-2}\mathrm{m}^{-1}$
esu of capacitance	1.112650	$\times 10^{-12} \mathrm{F}$
esu of current	333.564 1	$\times 10^{-12} \mathrm{A}$
esu of electric potential	299.792 5	V
esu of inductance	898.7552	$\times 10^9 \mathrm{H}$
esu of resistance	898.7552	$\times 10^9 \Omega$
erg	100.0*	$\times 10^{-9} \text{J}$
faraday	96.4853	$\times 10^3 \mathrm{C}$
fathom	1.828 804	m
fermi	1.0*	$\times 10^{-15} \mathrm{m}$
Finsen unit	10.0*	$\times 10^{-6} \mathrm{W m^{-2}}$
firkin (UK)	40.91481	$\times 10^{-3} \mathrm{m}^3$
()		ntinued on next page
I	301	Page

unit name	value in SI ı	mits
firkin (US)	34.068 71	
fluid ounce (UK)	28.413 08	$\times 10^{-6} \mathrm{m}^3$
fluid ounce (US)	29.573 53	$\times 10^{-6} \mathrm{m}^3$
foot	304.8*	$\times 10^{-3} \mathrm{m}$
foot (US survey)	304.8006	$\times 10^{-3} \mathrm{m}$
foot of water (4°C)	2.988 887	$\times 10^3 \mathrm{Pa}$
footcandle	10.763 91	lx
footlambert	3.426 259	$cd m^{-2}$
footpoundal	42.140 11	$\times 10^{-3} \mathrm{J}$
footpounds (force)	1.355 818	J
fresnel	1.0*	$\times 10^{12} \mathrm{Hz}$
funal	1.0*	$\times 10^3 \mathrm{N}$
furlong	201.168*	m
	9.806 65*	$m s^{-2}$
g (standard acceleration)	9.800 03 10.0*	$\times 10^{-3} \mathrm{ms^{-2}}$
gal	4.546 09*	$\times 10^{-3} \mathrm{m}^{3}$
gallon (UK)		$\times 10^{-3} \mathrm{m}^3$
gallon (US liquid)	3.785 412	$\times 10^{-9} \mathrm{T}$
gamma	1.0* 100.0*	$\times 10^{-6} \mathrm{T}$
gauss	795.774 <i>7</i>	$\times 10^{-3}$ A turn
gilbert	142.0654	$\times 10^{-6} \mathrm{m}^3$
gill (UK)	118.2941	$\times 10^{-6} \mathrm{m}^3$
gill (US)		
gon	$\pi/200^*$ 15.707 96	rad ×10 ⁻³ rad
grade		$\times 10^{-6} \mathrm{kg}$
grain	64.798 91*	
gram	1.0*	$\times 10^{-3} \mathrm{kg}$
gram-rad	100.0*	$J kg^{-1}$
gray	1.0*	$\rm Jkg^{-1}$
hand	101.6*	$\times 10^{-3} \mathrm{m}$
hartree	4.359 748	$\times 10^{-18} \text{J}$
hectare	10.0*	$\times 10^3 \mathrm{m}^2$
hefner	902	$\times 10^{-3} \mathrm{cd}$
hogshead	238.6697	$\times 10^{-3} \mathrm{m}^3$
horsepower (boiler)	9.809 50	$\times 10^3 \mathrm{W}$
horsepower (electric)	746*	W
horsepower (metric)	735.4988	W
horsepower (UK)	745.6999	W
hour	3.6*	$\times 10^3$ s
hour (sidereal)	3.590 170	$\times 10^3$ s
Hubble time	440	$\times 10^{15} \mathrm{s}$
Hubble distance	130	$\times 10^{24} \mathrm{m}$
hundredweight (UK long)	50.802 35	kg
hundredweight (US short)	45.359 24	kg
inch	25.4*	$\times 10^{-3}\mathrm{m}$
inch of mercury (0 °C)	3.386 389	$\times 10^3 \mathrm{Pa}$
inch of water (4°C)	249.0740	Pa
jansky	10.0*	$\times 10^{-27} \mathrm{W m^{-2} Hz^{-1}}$
janoky		ntinued on next page
I	COL	illiaca on next page

unit name jar	value in SI ı 10/9*	inits ×10 ⁻⁹ F
	•	m^{-1}
kayser	100.0*	$\times 10^3 \mathrm{J}$
kilocalorie	4.186 8* 9.806 65*	×10° J N
kilogram-force		$\times 10^6 \mathrm{J}$
kilowatt hour	3.6* 514.444 4	$\times 10^{-3} \mathrm{m s^{-1}}$
knot (international)		
lambert	$10/\pi^*$	$\times 10^{3} \text{ cd m}^{-2}$
langley	41.84*	$\times 10^3 \mathrm{J}\mathrm{m}^{-2}$
langmuir	133.3224	$\times 10^{-6} \mathrm{Pa} \mathrm{s}$
league (nautical, int.)	5.556*	$\times 10^3 \mathrm{m}$
league (nautical, UK)	5.559 552	$\times 10^3 \mathrm{m}$
league (statute)	4.828 032	$\times 10^3 \mathrm{m}$
light year	9.460 73*	$\times 10^{15} \mathrm{m}$
ligne	2.256*	$\times 10^{-3} \mathrm{m}$
line	2.116 667	$\times 10^{-3} \text{m}$
line (magnetic flux)	10.0*	$\times 10^{-9} \mathrm{Wb}$
link (engineers')	304.8*	$\times 10^{-3}$ m
link (US)	201.1680	$\times 10^{-3} \mathrm{m}$
litre	1.0*	$\times 10^{-3} \text{m}^3$
lumen (at 555 nm)	1.470 588	$\times 10^{-3} \mathrm{W}$
maxwell	10.0*	$\times 10^{-9} \mathrm{Wb}$
mho	1.0*	S
micron	1.0^{*}	$\times 10^{-6} \mathrm{m}$
mil (length)	25.4*	$\times 10^{-6} \mathrm{m}$
mil (volume)	1.0^{*}	$\times 10^{-6} \mathrm{m}^3$
mile (international)	1.609 344*	$\times 10^3 \mathrm{m}$
mile (nautical, int.)	1.852*	$\times 10^3 \mathrm{m}$
mile (nautical, UK)	1.853 184*	$\times 10^3 \mathrm{m}$
mile per hour	447.04*	$\times 10^{-3} \mathrm{m s^{-1}}$
milliard	1.0^{*}	$\times 10^9 \mathrm{m}^3$
millibar	100.0*	Pa
millimetre of Hg (0 °C)	133.3224	Pa
minim (UK)	59.193 90	$\times 10^{-9} \mathrm{m}^3$
minim (US)	61.611 51	$\times 10^{-9} \text{m}^3$
minute (angle)	290.888 2	$\times 10^{-6}$ rad
minute	60.0*	S
minute (sidereal)	59.836 17	S
month (lunar)	2.551 444	$\times 10^6 \mathrm{s}$
nit	1.0*	${\rm cd}{\rm m}^{-2}$
noggin (UK)	142.0654	$\times 10^{-6} \mathrm{m}^3$
oersted	$1000/(4\pi)^*$	$\mathrm{A}\mathrm{m}^{-1}$
ounce (avoirdupois)	28.349 52	$\times 10^{-3} \mathrm{kg}$
ounce (UK fluid)	28.413 07	$\times 10^{-6} \text{m}^3$
ounce (US fluid)	29.573 53	$\times 10^{-6} \mathrm{m}^3$
pace	762.0*	$\times 10^{-3} \mathrm{m}$
parsec	30.85678	$\times 10^{15} \mathrm{m}$
Parsec		ntinued on next page
I	con	

l wait name	value in SI ı	mita
unit name	9.092 18*	$\times 10^{-3} \mathrm{m}^3$
peck (UK)		$\times 10^{-3} \mathrm{m}^3$
peck (US)	8.809 768	$\times 10^{-3} \mathrm{kg}$
pennyweight (troy)	1.555 174	•
perch	5.029 2*	m
phot	10.0*	$\times 10^{3} lx$
pica (printers')	4.217 518	$\times 10^{-3} \mathrm{m}$
pint (UK)	568.261 2	$\times 10^{-6} \mathrm{m}^3$
pint (US dry)	550.610 5	$\times 10^{-6} \mathrm{m}^3$
pint (US liquid)	473.1765	$\times 10^{-6} \mathrm{m}^3$
point (printers')	351.459 8*	$\times 10^{-6} \text{m}$
poise	100.0^{*}	$\times 10^{-3} \mathrm{Pa} \mathrm{s}$
pole	5.029 2*	m
poncelot	980.665*	W
pottle	2.273 045	$\times 10^{-3} \mathrm{m}^3$
pound (avoirdupois)	453.5924	$\times 10^{-3} \mathrm{kg}$
poundal	138.2550	$\times 10^{-3} \mathrm{N}$
pound-force	4.448 222	N
promaxwell	1.0^{*}	Wb
psi	6.894 757	$\times 10^3 \mathrm{Pa}$
puncheon (UK)	317.9746	$\times 10^{-3} \mathrm{m}^3$
quad	1.055 056	$\times 10^{18} \mathrm{J}$
quart (UK)	1.136 522	$\times 10^{-3} \mathrm{m}^3$
quart (US dry)	1.101 221	$\times 10^{-3} \mathrm{m}^3$
quart (US liquid)	946.3529	$\times 10^{-6} \mathrm{m}^3$
1 = :	100.0*	
quintal (metric)		kg
rad	10.0*	$\times 10^{-3} \mathrm{Gy}$
rayleigh	$10/(4\pi)$	$\times 10^9 \mathrm{s}^{-1} \mathrm{m}^{-2} \mathrm{sr}^{-1}$
rem	10.0*	$\times 10^{-3} \mathrm{Sv}$
REN	$1/4000^*$	S
reyn	689.5	$\times 10^3 \mathrm{Pa} \mathrm{s}$
rhe	10.0^{*}	$Pa^{-1} s^{-1}$
rod	5.029 2*	m
roentgen	258.0	$\times 10^{-6} \mathrm{C kg^{-1}}$
rood (UK)	1.011714	$\times 10^3 \mathrm{m}^2$
rope (UK)	6.096^*	m
rutherford	1.0^{*}	$\times 10^6 \mathrm{Bq}$
rydberg	2.179 874	$\times 10^{-18} {\rm J}$
scruple	1.295 978	$\times 10^{-3} \mathrm{kg}$
seam	290.949 8	$\times 10^{-3} \mathrm{m}^3$
second (angle)	4.848 137	$\times 10^{-6}$ rad
second (angle) second (sidereal)	997.2696	$\times 10^{-3} \mathrm{s}$
shake	100.0*	$\times 10^{-10} \mathrm{s}$
shed	100.0*	$\times 10^{-54} \text{ m}^2$
J	14.593 90	
slug		kg
square degree	$(\pi/180)^{2*}$	sr ~10-12 A
statampere	333.564 1	$\times 10^{-12} \mathrm{A}$
statcoulomb	333.564 1	$\times 10^{-12} \mathrm{C}$
		ntinued on next page

unit name	value in SI	units
statfarad	1.112 650	$\times 10^{-12} \mathrm{F}$
stathenry	898.7552	$\times 10^9 \mathrm{H}$
statmho	1.112 650	$\times 10^{-12} \mathrm{S}$
statohm	898.7552	$\times 10^9 \Omega$
statvolt	299.7925	V
stere	1.0*	m^3
sthéne	1.0*	$\times 10^3 \mathrm{N}$
stilb	10.0*	$\times 10^3$ cd m ⁻²
stokes	100.0*	$\times 10^{-6} \mathrm{m^2 s^{-1}}$
stone	6.350 293	kg
tablespoon (UK)	14.206 53	$\times 10^{-6} \text{m}^3$
tablespoon (US)	14.78676	$\times 10^{-6} \mathrm{m}^3$
teaspoon (UK)	4.735 513	$\times 10^{-6} \mathrm{m}^3$
teaspoon (US)	4.928 922	$\times 10^{-6} \mathrm{m}^3$
tex	1.0^{*}	$\times 10^{-6} \mathrm{kg} \mathrm{m}^{-1}$
therm (EEC)	105.506*	$\times 10^6 \mathrm{J}$
therm (US)	105.4804^{*}	$\times 10^6 \mathrm{J}$
thermie	4.185 407	$\times 10^6 \mathrm{J}$
thou	25.4*	$\times 10^{-6} \mathrm{m}$
tog	100.0*	$\times 10^{-3} \mathrm{W}^{-1} \mathrm{m}^2 \mathrm{K}$
ton (of TNT)	4.184*	$\times 10^9 \mathrm{J}$
ton (UK long)	1.016047	$\times 10^3 \mathrm{kg}$
ton (US short)	907.1847	kg
tonne (metric ton)	1.0^{*}	$\times 10^3 \mathrm{kg}$
torr	133.3224	Pa
townsend	1.0^{*}	$\times 10^{-21} \text{ V m}^2$
troy dram	3.887 935	$\times 10^{-3} \mathrm{kg}$
troy ounce	31.103 48	$\times 10^{-3} \mathrm{kg}$
troy pound	373.241 7	$\times 10^{-3} \mathrm{kg}$
tun	954.6789	$\times 10^{-3} \mathrm{m}^3$
XU	100.209	$\times 10^{-15} \mathrm{m}$
yard	914.4*	$\times 10^{-3} \mathrm{m}$
year (365 days)	31.536*	$\times 10^6 \mathrm{s}$
year (sidereal)	31.558 15	$\times 10^6 \mathrm{s}$
year (tropical)	31.55693	$\times 10^6 \mathrm{s}$

Temperature conversions

From degrees	$T_{\rm K} = T_{\rm C} + 273.15$	(1.1)	T _K temperature kelvin	in
Celsius ^a	$T_{K} = T_{C} + 273.13$	(1.1)	T _C temperature °Celsius	in
From degrees Fahrenheit	$T_{\rm K} = \frac{T_{\rm F} - 32}{1.8} + 273.15$	(1.2)	T _F temperature or Fahrenheit	in
From degrees Rankine	$T_{\rm K} = \frac{T_{\rm R}}{1.8}$	(1.3)	T _R temperature of Rankine	in

^aThe term "centigrade" is not used in SI, to avoid confusion with " 10^{-2} of a degree".

1.5 Dimensions

The following table lists the dimensions of common physical quantities, together with their conventional symbols and the SI units in which they are usually quoted. The dimensional basis used is length (L), mass (M), time (T), electric current (I), temperature (Θ) , amount of substance (N), and luminous intensity (J).

physical quantity	symbol	dimensions	SI units
acceleration	a	$L \; T^{-2}$	${ m ms^{-2}}$
action	S	$L^2 \; M \; T^{-1}$	Js
angular momentum	$m{L},~m{J}$		$\mathrm{m^2kgs^{-1}}$
angular speed	ω	T^{-1}	$\rm rads^{-1}$
area	A, S	L^2	m^2
Avogadro constant	$N_{ m A}$	N^{-1}	mol^{-1}
bending moment	$oldsymbol{G}_{ ext{b}}$	$L^2 \; M \; T^{-2}$	Nm
Bohr magneton	$\mu_{ m B}$	L^2I	$ m JT^{-1}$
Boltzmann constant	k, k_{B}	$L^2 \; M \; T^{-2} \; \Theta^{-1}$	$ m JK^{-1}$
bulk modulus	K	$L^{-1}\;M\;T^{-2}$	Pa
capacitance	C	$L^{-2}\;M^{-1}\;T^4\;I^2$	F
charge (electric)	q	ΤΙ	C
charge density	$\hat{ ho}$	$L^{-3} T I$	$\mathrm{C}\mathrm{m}^{-3}$
conductance	\overline{G}	$L^{-2}\;M^{-1}\;T^3\;I^2$	S
conductivity	σ	$L^{-3}\;M^{-1}\;T^3\;I^2$	${ m Sm^{-1}}$
couple	G, T	$L^2 \; M \; T^{-2}$	Nm
current	I, i	1	A
current density	J, j	$L^{-2}I$	$\mathrm{A}\mathrm{m}^{-2}$
density	ρ	$L^{-3}\;M$	${ m kg}{ m m}^{-3}$
electric displacement	\boldsymbol{D}	$L^{-2} T I$	$\mathrm{C}\mathrm{m}^{-2}$
electric field strength	\boldsymbol{E}	${\sf L} \; {\sf M} \; {\sf T}^{-3} \; {\sf I}^{-1}$	${ m V}~{ m m}^{-1}$
electric polarisability	α	$M^{-1} T^4 I^2$	$C m^2 V^{-1}$
electric polarisation	P	$L^{-2} T I$	$\mathrm{C}\mathrm{m}^{-2}$
electric potential difference	V	$L^2 M T^{-3} I^{-1}$	V
energy	E, U	$L^2 \; M \; T^{-2}$	J
energy density	и	$L^{-1}\;M\;T^{-2}$	$\mathrm{J}\mathrm{m}^{-3}$
entropy	S	$L^2 \; M \; T^{-2} \; \Theta^{-1}$	$\mathrm{J}\mathrm{K}^{-1}$
Faraday constant	\boldsymbol{F}	$T \;I \;N^{-1}$	$C \text{mol}^{-1}$
force	$\boldsymbol{\mathit{F}}$	$L\;M\;T^{-2}$	N
frequency	v, f	T^{-1}	Hz
gravitational constant	G	$L^3 \; M^{-1} \; T^{-2}$	$m^3 kg^{-1} s^{-2}$
Hall coefficient	$R_{ m H}$	$L^3 \; T^{-1} \; I^{-1}$	${\rm m}^3{\rm C}^{-1}$
Hamiltonian	H	$L^2\;M\;T^{-2}$	J
heat capacity	C	$L^2 \; M \; T^{-2} \; \Theta^{-1}$	$ m JK^{-1}$
Hubble constant ¹	H	T^{-1}	s^{-1}
illuminance	$E_{ m v}$	$L^{-2} J$	lx
impedance	$Z^{'}$	$L^2 \; M \; T^{-3} \; I^{-2}$	Ω
		continued of	on next page

 $^{^1}$ The Hubble constant is almost universally quoted in units of km s $^{-1}$ Mpc $^{-1}$. There are about 3.1×10^{19} kilometres in a megaparsec.

physical quantity	symbol	dimensions	SI units
impulse	Ĭ	$L\;M\;T^{-1}$	Ns
inductance	L	$L^2 \; M \; T^{-2} \; I^{-2}$	Н
irradiance	$E_{ m e}$	$M\;T^{-3}$	${ m W}~{ m m}^{-2}$
Lagrangian	L	$L^2\;M\;T^{-2}$	J
length	L, l	L	m
luminous intensity	$I_{ m v}$	J	cd
magnetic dipole moment	<i>m</i> , μ	L^2I	$A m^2$
magnetic field strength	H	$L^{-1}I$	$\mathrm{A}\mathrm{m}^{-1}$
magnetic flux	Φ	$L^2 \; M \; T^{-2} \; I^{-1}$	Wb
magnetic flux density	В	M T $^{-2}$ I $^{-1}$	T
magnetic vector potential	$\stackrel{-}{A}$	L M $T^{-2} I^{-1}$	$\mathrm{Wb}\mathrm{m}^{-1}$
magnetisation	M	$L^{-1}I$	$A m^{-1}$
mass	m, M	M	kg
mobility	μ	$M^{-1}\;T^2\;I$	$m^2 V^{-1} s^{-1}$
molar gas constant	R	$L^2 M T^{-2} \Theta^{-1} N^{-1}$	$\rm J mol^{-1} K^{-1}$
moment of inertia	I	L^2 M	kg m ²
momentum	p	$L\;M\;T^{-1}$	$kg m s^{-1}$
number density	n	L^{-3}	m^{-3}
permeability	μ	L M T $^{-2}$ I $^{-2}$	$\mathrm{H}\mathrm{m}^{-1}$
permittivity	ϵ	$L^{-3}\ M^{-1}\ T^4\ I^2$	$\mathrm{F}\mathrm{m}^{-1}$
Planck constant	h	$L^2 \; M \; T^{-1}$	Js
power	P	$L^2 \; M \; T^{-3}$	W
Poynting vector	\boldsymbol{S}	$M\;T^{-3}$	${ m W}{ m m}^{-2}$
pressure	p, P	$L^{-1}\;M\;T^{-2}$	Pa
radiant intensity	I_{e}	$L^2\;M\;T^{-3}$	$\mathrm{W}\mathrm{sr}^{-1}$
resistance	R	$L^2 M T^{-3} I^{-2}$	Ω
Rydberg constant	R_{∞}	L^{-1}	m^{-1}
shear modulus	μ , G	$L^{-1}\;M\;T^{-2}$	Pa
specific heat capacity	c	$L^2 T^{-2} \Theta^{-1}$	$\rm Jkg^{-1}K^{-1}$
speed	u, v, c	L T ⁻¹	$\mathrm{m}\mathrm{s}^{-1}$
Stefan-Boltzmann constant	σ	$M T^{-3} \Theta^{-4}$	${ m W}{ m m}^{-2}{ m K}^{-4}$
stress	σ , τ	$L^{-1} M T^{-2}$	Pa
surface tension	σ , γ	$M\;T^{-2}$	${ m Nm^{-1}}$
temperature	T	Θ	K
thermal conductivity	λ	L M T $^{-3}$ Θ^{-1}	${ m W}{ m m}^{-1}{ m K}^{-1}$
time	t	T	S
velocity	v, u	L T ⁻¹	$\mathrm{m}\mathrm{s}^{-1}$
viscosity (dynamic)	η , μ	$L^{-1} M T^{-1}$	Pas
viscosity (kinematic)	ν	$L^2 T^{-1}$	$m^2 s^{-1}$
volume	V, v	L ³	m^3
wavevector	k	L^{-1}	m^{-1}
weight	W	L M T ⁻²	N
work	W	$L^2 M T^{-2}$	J
Young modulus	E	$L^{-1}\;M\;T^{-2}$	Pa

1.6 Miscellaneous

Greek alphabet

A	α		alpha	N	v		nu
В	β		beta	Ξ	ξ		xi
Γ	γ		gamma	0	0		omicron
Δ	δ		delta	П	π	$\boldsymbol{\varpi}$	pi
E	ϵ	3	epsilon	P	ρ	ϱ	rho
Z	ζ		zeta	Σ	σ	ς	sigma
H	η		eta	T	τ		tau
Θ	θ	θ	theta	Υ	υ		upsilon
I	ı		iota	Φ	ϕ	φ	phi
K	к		kappa	X	χ		chi
Λ	λ		lambda	Ψ	ψ		psi
M	μ		mu	Ω	ω		omega

Pi (π) to 1 000 decimal places

3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

e to 1000 decimal places

2.7182818284 5904523536 0287471352 6624977572 4709369995 9574966967 6277240766 3035354759 4571382178 5251664274
2746639193 2003059921 8174135966 2904357290 0334295260 5956307381 3232862794 3490763233 8298807531 9525101901
1573834187 9307021540 8914993488 4167509244 7614606680 8226480016 8477411853 7423454424 3710753907 7744992069
5517027618 3860626133 1384583000 7520449338 2656029760 6737113200 7093287091 2744374704 7230696977 2093101416
9283681902 5515108657 4637721112 5238978442 5056953696 7707854499 6996794686 4454905987 9316368892 3009879312
7736178215 4249992295 7635148220 8269895193 6680331825 2886939849 6465105820 9392398294 8879332036 2509443117
3012381970 6841614039 7019837679 3206832823 7646480429 5311802328 7825098194 5581530175 6717361332 0698112509
9618188159 3041690351 5988885193 4580727386 6738589422 8792284998 9208680582 5749279610 4841984443 6346324496
8487560233 6248270419 7862320900 2160990235 3043699418 4914631409 3431738143 6405462531 5209618369 0888707016
7683964243 7814059271 4563549061 3031072085 1038375051 0115747704 1718986106 8739696552 1267154688 9570350354

Chapter 2 Mathematics

2.1 Notation

Mathematics is, of course, a vast subject, and so here we concentrate on those mathematical methods and relationships that are most often applied in the physical sciences and engineering.

Although there is a high degree of consistency in accepted mathematical notation, there is some variation. For example the spherical harmonics, Y_l^m , can be written Y_{lm} , and there is some freedom with their signs. In general, the conventions chosen here follow common practice as closely as possible, whilst maintaining consistency with the rest of the handbook.

In particular:

scalars	а	general vectors	а
unit vectors	â	scalar product	$a \cdot b$
vector cross-product	$a \times b$	gradient operator	∇
Laplacian operator	∇^2	derivative	$\frac{\mathrm{d}f}{\mathrm{d}x}$ etc.
partial derivatives	$\frac{\partial f}{\partial x}$ etc.	derivative of r with respect to t	r
nth derivative	$\frac{\mathrm{d}^n f}{\mathrm{d} x^n}$	closed loop integral	$\oint_L \mathrm{d}l$
closed surface integral	$\oint_S ds$	matrix	\mathbf{A} or a_{ij}
mean value (of x)	$\langle x \rangle$	binomial coefficient	$\binom{n}{r}$
factorial	!	unit imaginary ($\mathbf{i}^2 = -1$)	i
exponential constant	e	modulus (of x)	x
natural logarithm	ln	log to base 10	log_{10}

Mathematics **20**

2.2 **Vectors and matrices**

Vector algebra

Scalar product ^a	$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a} \boldsymbol{b} \cos\theta$	(2.1)
Vector product ^b	$\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta \hat{\mathbf{n}} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$	(2.2)
	$a \cdot b = b \cdot a$	(2.3)
	$a \times b = -b \times a$	(2.4)
Product rules	$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$	(2.5)
	$a \times (b+c) = (a \times b) + (a \times c)$	(2.6)
Lagrange's identity	$(a \times b) \cdot (c \times d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c)$	(2.7)
Scalar triple	$(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$	(2.8)
product	$= (b \times c) \cdot a = (c \times a) \cdot b$	(2.9)
	=volume of parallelepiped	(2.10)
Vector triple	$(a \times b) \times c = (a \cdot c)b - (b \cdot c)a$	(2.11)
product	$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$	(2.12)
	$a' = (b \times c) / [(a \times b) \cdot c]$	(2.13)
D 1 1	$b' = (c \times a) / [(a \times b) \cdot c]$	(2.14)
Reciprocal vectors	$c' = (a \times b) / [(a \times b) \cdot c]$	(2.15)
	$(\mathbf{a}' \cdot \mathbf{a}) = (\mathbf{b}' \cdot \mathbf{b}) = (\mathbf{c}' \cdot \mathbf{c}) = 1$	(2.16)
Vector \boldsymbol{a} with respect to a nonorthogonal basis $\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}^c$	$\boldsymbol{a} = (\boldsymbol{e}_1' \cdot \boldsymbol{a})\boldsymbol{e}_1 + (\boldsymbol{e}_2' \cdot \boldsymbol{a})\boldsymbol{e}_2 + (\boldsymbol{e}_3' \cdot \boldsymbol{a})\boldsymbol{e}_3$	(2.17)

^aAlso known as the "dot product" or the "inner product." b Also known as the "cross-product." \hat{n} is a unit vector making a right-handed set with a and b.

^cThe prime (') denotes a reciprocal vector.

Common three-dimensional coordinate systems

^aIn an orthogonal coordinate system (parameterised by coordinates q_1, q_2, q_3), the differential line element dl is obtained from $(dl)^2 = (h_1 dq_1)^2 + (h_2 dq_2)^2 + (h_3 dq_3)^2$.

Gradient

Rectangular coordinates	$\nabla f = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{y} + \frac{\partial f}{\partial z}\hat{z}$	(2.25)	f	scalar field unit vector
Cylindrical coordinates	$\nabla f = \frac{\partial f}{\partial \rho} \hat{\boldsymbol{\rho}} + \frac{1}{r} \frac{\partial f}{\partial \phi} \hat{\boldsymbol{\phi}} + \frac{\partial f}{\partial z} \hat{\boldsymbol{z}}$	(2.26)	ρ	distance from the z axis
Spherical polar coordinates	$\nabla f = \frac{\partial f}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\hat{\phi}$	(2.27)		
General orthogonal coordinates	$\nabla f = \frac{\hat{\mathbf{q}}_1}{h_1} \frac{\partial f}{\partial q_1} + \frac{\hat{\mathbf{q}}_2}{h_2} \frac{\partial f}{\partial q_2} + \frac{\hat{\mathbf{q}}_3}{h_3} \frac{\partial f}{\partial q_3}$	(2.28)	q _i h _i	basis metric elements

22 Mathematics

Divergence

Rectangular coordinates	$\nabla \cdot A = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$	(2.29)	A A_i	vector field ith component of A
Cylindrical coordinates	$\nabla \cdot A = \frac{1}{\rho} \frac{\partial (\rho A_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$	(2.30)	ρ	distance from the z axis
Spherical polar coordinates	$\nabla \cdot A = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (A_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta}$	$\frac{\partial A_{\phi}}{\partial \phi} $ (2.31)		
General orthogonal coordinates	$\nabla \cdot \mathbf{A} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q_1} (A_1 h_2 h_3) + \frac{\partial}{\partial q_2} (A_2 h_3 h_1) + \frac{\partial}{\partial q_3} (A_3 h_1 h_2) \right]$	(2.32)	q_i h_i	basis metric elements

Curl

Rectangular coordinates	$ abla imes A = egin{array}{cccc} \hat{m{x}} & \hat{m{y}} & \hat{m{z}} \ \partial/\partial x & \partial/\partial y & \partial/\partial z \ A_x & A_y & A_z \ \end{array}$	(2.33)	\hat{A} unit vector \hat{A} vector field \hat{A}_i ith component of \hat{A}
Cylindrical coordinates	$ abla \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	(2.34)	ρ distance from the z axis
Spherical polar coordinates	$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{\mathbf{r}}/(r^2 \sin \theta) & \hat{\boldsymbol{\theta}}/(r \sin \theta) & \hat{\boldsymbol{\phi}}/r \\ \partial/\partial r & \partial/\partial \theta & \partial/\partial \phi \\ A_r & rA_\theta & rA_\phi \sin \theta \end{vmatrix}$	(2.35)	
General orthogonal coordinates	$\nabla \times \mathbf{A} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} \hat{\mathbf{q}}_1 h_1 & \hat{\mathbf{q}}_2 h_2 & \hat{\mathbf{q}}_3 h_3 \\ \partial / \partial q_1 & \partial / \partial q_2 & \partial / \partial q_3 \\ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{vmatrix}$	(2.36)	q_i basis h_i metric elements

Radial forms^a

$\nabla r = \frac{r}{r}$	(2.37)	$\nabla(1/r) = \frac{-r}{r^3}$	(2.41)
$\nabla \cdot \mathbf{r} = 3$	(2.38)	$\nabla \cdot (\mathbf{r}/r^2) = \frac{1}{r^2}$	(2.42)
$\nabla r^2 = 2r$ $\nabla \cdot (r\mathbf{r}) = 4r$	(2.39) (2.40)	$\nabla(1/r^2) = \frac{-2r}{r^4}$ $\nabla \cdot (r/r^3) = 4\pi \delta(r)$	(2.43) (2.44)

¹ Note that the curl of any purely radial function is zero. $\delta(\mathbf{r})$ is the Dirac delta function.

Laplacian (scalar)

Rectangular coordinates	$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} $ (2.45)	f scalar field
Cylindrical coordinates	$\nabla^2 f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2} $ (2.46)	ρ distance from the z axis
Spherical polar coordinates	$\nabla^{2} f = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial f}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}} $ (2.47)	
General orthogonal coordinates	$\nabla^{2} f = \frac{1}{h_{1} h_{2} h_{3}} \left[\frac{\partial}{\partial q_{1}} \left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial f}{\partial q_{1}} \right) + \frac{\partial}{\partial q_{2}} \left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial f}{\partial q_{2}} \right) + \frac{\partial}{\partial q_{3}} \left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial f}{\partial q_{3}} \right) \right] $ (2.48)	q_i basis h_i metric elements

Differential operator identities

$$\nabla(fg) \equiv f \nabla g + g \nabla f$$

$$\nabla \cdot (fA) \equiv f \nabla \cdot A + A \cdot \nabla f$$

$$\nabla \times (fA) \equiv f \nabla \times A + (\nabla f) \times A$$

$$\nabla (A \cdot B) \equiv A \times (\nabla \times B) + (A \cdot \nabla) B + B \times (\nabla \times A) + (B \cdot \nabla) A$$

$$\nabla \cdot (A \times B) \equiv B \cdot (\nabla \times A) - A \cdot (\nabla \times B)$$

$$\nabla \times (A \times B) \equiv A(\nabla \cdot B) - B(\nabla \cdot A) + (B \cdot \nabla) A - (A \cdot \nabla) B$$

$$\nabla \times (A \times B) \equiv A(\nabla \cdot B) - B(\nabla \cdot A) + (B \cdot \nabla) A - (A \cdot \nabla) B$$

$$\nabla \cdot (\nabla f) \equiv \nabla^2 f \equiv \triangle f$$

$$\nabla \times (\nabla f) \equiv 0$$

$$\nabla \times (\nabla f) \equiv 0$$

$$\nabla \times (\nabla A) \equiv 0$$

$$\nabla \cdot (\nabla A) \equiv 0$$

$$\nabla \cdot (\nabla A) \equiv \nabla (\nabla A) - \nabla^2 A$$

$$(2.59)$$

$$(2.51)$$

$$(2.54)$$

$$A, B \quad \text{vector fields}$$

$$(2.55)$$

$$(2.55)$$

$$(2.56)$$

$$(2.57)$$

$$(2.58)$$

Vector integral transformations

Gauss's (Divergence) theorem	$\int_{V} (\nabla \cdot \mathbf{A}) \mathrm{d}V = \oint_{S_{c}} \mathbf{A} \cdot \mathrm{d}\mathbf{s}$	(2.59)	$\begin{vmatrix} A \\ dV \\ S_c \\ V \end{vmatrix}$	vector field volume element closed surface volume enclosed
Stokes's theorem	$\int_{S} (\nabla \times A) \cdot ds = \oint_{L} A \cdot dI$	(2.60)	S ds L dl	surface surface element loop bounding <i>S</i> line element
Green's first theorem	$ \oint_{S} (f \nabla g) \cdot ds = \int_{V} \nabla \cdot (f \nabla g) dV $ $ = \int_{V} [f \nabla^{2} g + (\nabla f) \cdot (\nabla g)] dV $	(2.61) (2.62)	f,g	scalar fields
Green's second theorem	$\oint_{S} [f(\nabla g) - g(\nabla f)] \cdot ds = \int_{V} (f \nabla^{2} g - g \nabla^{2} f) ds$	$dV \qquad (2.63)$		

24 Mathematics

Matrix algebra^a

Matrix definition	$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$	(2.64)	A m by n matrix a_{ij} matrix elements
Matrix addition	$\mathbf{C} = \mathbf{A} + \mathbf{B} \text{if} c_{ij} = a_{ij} + b_{ij}$	(2.65)	
Matrix	$\mathbf{C} = \mathbf{AB} \text{if} c_{ij} = a_{ik} b_{kj}$	(2.66)	
multiplication	(AB)C = A(BC)	(2.67)	
manipheadon	A(B+C) = AB + AC	(2.68)	
T h	$\tilde{a}_{ij} = a_{ji}$	(2.69)	\tilde{a}_{ij} transpose matrix
Transpose matrix ^b	$(\widetilde{AB}N) = \widetilde{N}\widetilde{B}\widetilde{A}$	(2.70)	(sometimes a_{ij}^{T} , or a'_{ij})
Adjoint matrix	$\mathbf{A}^\dagger = \tilde{\mathbf{A}}^*$	(2.71)	* complex conjugate (of each component)
(definition 1) ^c	$(\mathbf{A}\mathbf{B}\mathbf{N})^{\dagger} = \mathbf{N}^{\dagger}\mathbf{B}^{\dagger}\mathbf{A}^{\dagger}$	(2.72)	† adjoint (or Hermitian conjugate)
Hermitian matrix ^d	$\mathbf{H}^{\dagger} = \mathbf{H}$	(2.73)	H Hermitian (or self-adjoint) matrix
examples:		'	
$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_1 \\ a_{21} & a_{22} & a_2 \\ a_{21} & a_{22} & a_2 \end{pmatrix}$	$\mathbf{B} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{21} & b_{22} \end{pmatrix}$	b_{13}	
$\mathbf{A} = \begin{bmatrix} a_{21} & a_{22} & a_2 \end{bmatrix}$	$\mathbf{B} = \begin{bmatrix} b_{21} & b_{22} \end{bmatrix}$	b_{23}	
a_{31} a_{32} a_{33}	b_{31} b_{32}	b_{33}	
$/a_{11} a_{21} a_3$	$(a_{11}+b_{11})$	$a_{12} + b_{12}$	$a_{13} + b_{13}$
$\tilde{\mathbf{A}} = \begin{pmatrix} a_{11} & a_{21} & a_3 \\ a_{12} & a_{22} & a_3 \end{pmatrix}$	$ \mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} \\ a_{21} + b_{21} \end{pmatrix} $	$a_{22} + b_{22}$	$a_{23}+b_{23}$

$$\mathbf{AB} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} & a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} & a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} \end{pmatrix}$$

^aTerms are implicitly summed over repeated suffices; hence $a_{ik}b_{kj}$ equals $\sum_k a_{ik}b_{kj}$.

^bSee also Equation (2.85).

^cOr "Hermitian conjugate matrix." The term "adjoint" is used in quantum physics for the transpose conjugate of a matrix and in linear algebra for the transpose matrix of its cofactors. These definitions are not compatible, but both are widely used [cf. Equation (2.80)].

^dHermitian matrices must also be square (see next table).

Square matrices^a

I				·
Trace	$\operatorname{tr} \mathbf{A} = a_{ii}$	(2.74)	A	square matrix matrix elements
Trace	tr(AB) = tr(BA)	(2.75)	a_{ij} a_{ii}	implicitly $=\sum_{i} a_{ii}$
	$\det \mathbf{A} = \epsilon_{ijk\dots} a_{1i} a_{2i} a_{3k} \dots$	(2.76)	tr	trace
Determinant ^b	$=(-1)^{i+1}a_{i1}M_{i1}$	(2.77)	det	determinant (or A)
	$=a_{i1}C_{i1}$	(2.78)	M_{ij}	•
	$\det(\mathbf{AB}\mathbf{N}) = \det\mathbf{A}\det\mathbf{B}\det\mathbf{N}$	(2.79)	C_{ij}	cofactor of the element a_{ij}
Adjoint matrix (definition 2) ^c	$\operatorname{adj} \mathbf{A} = \tilde{C}_{ij} = C_{ji}$	(2.80)	adj ~	adjoint (sometimes written Â) transpose
Inverse matrix	$a_{ij}^{-1} = \frac{C_{ji}}{\det \mathbf{A}} = \frac{\operatorname{adj} \mathbf{A}}{\det \mathbf{A}}$	(2.81)		
$(\det \mathbf{A} \neq 0)$	$AA^{-1} = 1$	(2.82)	1	unit matrix
	$(ABN)^{-1} = N^{-1}B^{-1}A^{-1}$	(2.83)		
Orthogonality	$a_{ij}a_{ik} = \delta_{jk}$	(2.84)	δ_{jk}	Kronecker delta (=1
condition	i.e., $\tilde{\mathbf{A}} = \mathbf{A}^{-1}$	(2.85)		if $i = j$, = 0 otherwise)
G	If $\mathbf{A} = \tilde{\mathbf{A}}$, A is symmetric	(2.86)		
Symmetry	If $\mathbf{A} = -\tilde{\mathbf{A}}$, A is antisymmetric	(2.87)		
Unitary matrix	$\mathbf{U}^{\dagger} = \mathbf{U}^{-1}$	(2.88)	U †	unitary matrix Hermitian conjugate
examples:				
$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$				
$\operatorname{tr} \mathbf{A} = a_{11} + a_{22} + a_{33}$ $\operatorname{tr} \mathbf{B} = b_{11} + b_{22}$				
$\det \mathbf{A} = a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{21} a_{12} a_{33} + a_{21} a_{13} a_{32} + a_{31} a_{12} a_{23} - a_{31} a_{13} a_{22}$				
$\det \mathbf{B} = b_{11} b_{22} - b_{11} b_{22} - b_{12} b_{13} b_{13} - b_{13} b_{13} b_{13} - b_{13} b_{13} b_{13} - b_{13} b_{13} b_{13} b_{13} - b_{13} $	$b_{12}b_{21}$			
$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \left(-\frac{1}{1} \right)$	$a_{22}a_{33} - a_{23}a_{32} - a_{12}a_{33} + a_{13}a_{32}$	$a_{12}a_{23}-a_1$	$_3a_{22}$	
	$a_{21}a_{33} + a_{23}a_{31}$ $a_{11}a_{33} - a_{13}a_{31}$ $-a_{13}a_{31}$	$a_{11}a_{23} + a_1$	$_{3}a_{21}$	
dotA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\mathbf{B}^{-1} = \frac{1}{\det \mathbf{B}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} b_{22} & -b_{12} \\ b_{21} & b_{11} \end{pmatrix}$			

^aTerms are implicitly summed over repeated suffices; hence $a_{ik}b_{kj}$ equals $\sum_k a_{ik}b_{kj}$.

 $^{{}^{}b}\epsilon_{ijk...}$ is defined as the natural extension of Equation (2.443) to *n*-dimensions (see page 50). M_{ij} is the determinant of the matrix **A** with the *i*th row and the *j*th column deleted. The cofactor $C_{ij} = (-1)^{i+j}M_{ij}$.

^cOr "adjugate matrix." See the footnote to Equation (2.71) for a discussion of the term "adjoint."

26 Mathematics

Commutators

Commutator definition	[A,B] = AB - BA = -[B,A]	(2.89)	[·,·] commutator
Adjoint	$[\mathbf{A},\mathbf{B}]^\dagger = [\mathbf{B}^\dagger,\mathbf{A}^\dagger]$	(2.90)	† adjoint
Distribution	[A+B,C] = [A,C] + [B,C]	(2.91)	
Association	[AB,C] = A[B,C] + [A,C]B	(2.92)	
Jacobi identity	[A,[B,C]] = [B,[A,C]] - [C,[A,B]]	(2.93)	

Pauli matrices

Pauli matrices	$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}$ $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad 1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	(2.94)	σ_i Pauli spin matrices $1 2 \times 2 \text{ unit matrix}$ $i i^2 = -1$
Anticommuta- tion	$\boldsymbol{\sigma}_i \boldsymbol{\sigma}_j + \boldsymbol{\sigma}_j \boldsymbol{\sigma}_i = 2\delta_{ij} 1$	(2.95)	δ_{ij} Kronecker delta
Cyclic permutation	$\boldsymbol{\sigma}_i \boldsymbol{\sigma}_j = \mathbf{i} \boldsymbol{\sigma}_k$ $(\boldsymbol{\sigma}_i)^2 = 1$	(2.96) (2.97)	

Rotation matrices^a

Rotation about x_1	$\mathbf{R}_{1}(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix} $ (2.98)	$\mathbf{R}_i(\theta)$ matrix for rotation about the <i>i</i> th axis θ rotation angle				
Rotation about x_2	$\mathbf{R}_{2}(\theta) = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} $ (2.99)					
Rotation about x_3	$\mathbf{R}_{3}(\theta) = \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} $ (2.100)	$\begin{array}{ll} \alpha & \text{rotation about } x_3 \\ \beta & \text{rotation about } x_2' \\ \gamma & \text{rotation about } x_3'' \end{array}$				
Euler angles $\mathbf{R} \text{rotation matrix}$ $\mathbf{R}(\alpha, \beta, \gamma) = \begin{pmatrix} \cos \gamma \cos \beta \cos \alpha - \sin \gamma \sin \alpha & \cos \gamma \cos \beta \sin \alpha + \sin \gamma \cos \alpha & -\cos \gamma \sin \beta \\ -\sin \gamma \cos \beta \cos \alpha - \cos \gamma \sin \alpha & -\sin \gamma \cos \beta \sin \alpha + \cos \gamma \cos \alpha & \sin \gamma \sin \beta \\ \sin \beta \cos \alpha & \sin \beta \sin \alpha & \cos \beta \end{pmatrix}$ (2.101)						

^aAngles are in the right-handed sense for rotation of axes, or the left-handed sense for rotation of vectors. i.e., a vector \mathbf{v} is given a right-handed rotation of θ about the x_3 -axis using $\mathbf{R}_3(-\theta)\mathbf{v}\mapsto\mathbf{v}'$. Conventionally, $x_1\equiv x,\ x_2\equiv y,$ and $x_3\equiv z.$

2.3 Series, summations, and progressions

Progressions and summations

riogressions and	u summations			
Arithmetic progression	$S_n = a + (a+d) + (a+2d) + \cdots + [a+(n-1)d] = \frac{n}{2} [2a+(n-1)d] = \frac{n}{2} (a+l)$	(2.102) (2.103) (2.104)	n S_n a d l	number of terms sum of <i>n</i> successive terms first term common difference last term
Geometric progression	$S_n = a + ar + ar^2 + \dots + ar^{n-1}$ $= a \frac{1 - r^n}{1 - r}$ $S_{\infty} = \frac{a}{1 - r} (r < 1)$	(2.105) (2.106) (2.107)	r	common ratio
Arithmetic mean	$\langle x \rangle_{\mathbf{a}} = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$	(2.108)	$\langle . \rangle_a$	arithmetic mean
Geometric mean	$\langle x \rangle_{g} = (x_1 x_2 x_3 \dots x_n)^{1/n}$	(2.109)	$\langle . \rangle_{\rm g}$	geometric mean
Harmonic mean	$\langle x \rangle_{\rm h} = n \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right)^{-1}$	(2.110)	$\langle . \rangle_{ m h}$	harmonic mean
Relative mean magnitudes	$\langle x \rangle_a \ge \langle x \rangle_g \ge \langle x \rangle_h$ if $x_i > 0$ for all i	(2.111)		
	$\sum_{i=1}^{n} i = \frac{n}{2}(n+1)$	(2.112)		
	$\sum_{i=1}^{n} i^2 = \frac{n}{6}(n+1)(2n+1)$	(2.113)		
	$\sum_{i=1}^{n} i^3 = \frac{n^2}{4} (n+1)^2$	(2.114)		
Summation formulas	$\sum_{i=1}^{n} i^4 = \frac{n}{30}(n+1)(2n+1)(3n^2+3n-1)$	(2.115)	i	dummy integer
	$\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$	(2.116)		
	$\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{2i-1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$	(2.117)		
	$\sum_{i=1}^{\infty} \frac{1}{i^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6}$	(2.118)		
Euler's constant ^a	$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right)$	(2.119)	γ	Euler's constant

 $a_{\gamma} \simeq 0.577215664...$

Power series

Binomial series ^a	$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$	(2.120)
Binomial coefficient ^b	${}^{n}C_{r} \equiv {n \choose r} \equiv \frac{n!}{r!(n-r)!}$	(2.121)
Binomial theorem	$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$	(2.122)
Taylor series (about a) ^{c}	$f(a+x) = f(a) + xf^{(1)}(a) + \frac{x^2}{2!}f^{(2)}(a) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(a) + \dots$	(2.123)
Taylor series (3-D)	$f(\boldsymbol{a}+\boldsymbol{x}) = f(\boldsymbol{a}) + (\boldsymbol{x}\cdot\nabla)f _{\boldsymbol{a}} + \frac{(\boldsymbol{x}\cdot\nabla)^2}{2!}f _{\boldsymbol{a}} + \frac{(\boldsymbol{x}\cdot\nabla)^3}{3!}f _{\boldsymbol{a}} + \cdots$	(2.124)
Maclaurin series	$f(x) = f(0) + xf^{(1)}(0) + \frac{x^2}{2!}f^{(2)}(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \dots$	(2.125)

all n is a positive integer the series terminates and is valid for all x. Otherwise the (infinite) series is convergent for |x| < 1.

Limits

$n^{c}x^{n} \to 0$ as $n \to \infty$ if $ x < 1$ (for any fixed c)	(2.126)
$x^n/n! \to 0$ as $n \to \infty$ (for any fixed x)	(2.127)
$(1+x/n)^n \to e^x$ as $n \to \infty$	(2.128)
$x \ln x \to 0$ as $x \to 0$	(2.129)
$\frac{\sin x}{x} \to 1 \text{as} x \to 0$	(2.130)
If $f(a) = g(a) = 0$ or ∞ then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f^{(1)}(a)}{g^{(1)}(a)}$ (l'Hôpital's rule)	(2.131)

^bThe coefficient of x^r in the binomial series.

 $[^]c x f^{(n)}(a)$ is x times the nth derivative of the function f(x) with respect to x evaluated at a, taken as well behaved around a. $(x \cdot \nabla)^n f|_a$ is its extension to three dimensions.

Series expansions

Series expansi	Olis		
$\exp(x)$	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	(2.132)	(for all x)
ln(1+x)	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	(2.133)	$(-1 < x \le 1)$
$\ln\left(\frac{1+x}{1-x}\right)$	$2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots\right)$	(2.134)	(x < 1)
$\cos(x)$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	(2.135)	(for all x)
$\sin(x)$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	(2.136)	(for all x)
tan(x)	$x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} \cdots$	(2.137)	$(x < \pi/2)$
sec(x)	$1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \cdots$	(2.138)	$(x < \pi/2)$
$\csc(x)$	$\frac{1}{x} + \frac{x}{6} + \frac{7x^3}{360} + \frac{31x^5}{15120} + \cdots$	(2.139)	$(x < \pi)$
$\cot(x)$	$\frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \cdots$	(2.140)	$(x < \pi)$
$\arcsin(x)^a$	$x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} \cdots$	(2.141)	(x < 1)
	$\left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right)$		$(x \le 1)$
$\arctan(x)^b$	$\begin{cases} \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots \end{cases}$	(2.142)	(x>1)
	$\left(-\frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots\right)$		(x < -1)
$\cosh(x)$	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$	(2.143)	(for all x)
sinh(x)	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$	(2.144)	(for all x)
tanh(x)	$x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \cdots$	(2.145)	$(x < \pi/2)$
apropos(x) = \pi/2 or	$csin(x)$. Note that $arcsin(x) \equiv sin^{-1}(x)$ etc.		

 $a \arccos(x) = \pi/2 - \arcsin(x)$. Note that $\arcsin(x) \equiv \sin^{-1}(x)$ etc. $a \arccos(x) = \pi/2 - \arctan(x)$.

Inequalities

Triangle	$ a_1 - a_2 \le a_1 + a_2 \le a_1 + a_2 $;	(2.146)
inequality	$\left \sum_{i=1}^n a_i\right \le \sum_{i=1}^n a_i $	(2.147)
	if $a_1 \ge a_2 \ge a_3 \ge \dots \ge a_n$	(2.148)
Chebyshev	and $b_1 \ge b_2 \ge b_3 \ge \dots \ge b_n$	(2.149)
inequality	then $n \sum_{i=1}^{n} a_i b_i \ge \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} b_i\right)$	(2.150)
Cauchy inequality	$\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}$	(2.151)
Schwarz inequality	$\left[\int_{a}^{b} f(x)g(x) dx \right]^{2} \le \int_{a}^{b} [f(x)]^{2} dx \int_{a}^{b} [g(x)]^{2} dx$	(2.152)

Complex variables

Complex numbers

Cartesian form	$z = x + \mathbf{i}y$	(2.153)	z i x,y	complex variable $i^2 = -1$ real variables
Polar form	$z = re^{i\theta} = r(\cos\theta + i\sin\theta)$	(2.154)	$rac{r}{ heta}$	amplitude (real) phase (real)
Modulus ^a	$ z = r = (x^2 + y^2)^{1/2}$ $ z_1 \cdot z_2 = z_1 \cdot z_2 $	(2.155) (2.156)	z	modulus of z
Argument	$\theta = \arg z = \arctan \frac{y}{x}$ $\arg(z_1 z_2) = \arg z_1 + \arg z_2$	(2.157) (2.158)	arg <i>z</i>	argument of z
Complex conjugate	$z^* = x - iy = re^{-i\theta}$ $arg(z^*) = -argz$ $z \cdot z^* = z ^2$	(2.159) (2.160) (2.161)	z*	complex conjugate of $z = re^{i\theta}$
Logarithm ^b	$\ln z = \ln r + \mathbf{i}(\theta + 2\pi n)$	(2.162)	n	integer

^aOr "magnitude."

^bThe principal value of $\ln z$ is given by n=0 and $-\pi < \theta \le \pi$.

Complex analysis^a

Cauchy– Riemann equations ^b	if $f(z) = u(x, y) + iv(x, y)$ then $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$	(2.163) (2.164)	z complex variable \mathbf{i} $\mathbf{i}^2 = -1$ x,y real variables f(z) function of zu,v real functions
Cauchy– Goursat theorem ^c	$\oint_c f(z) \mathrm{d}z = 0$	(2.165)	
Cauchy integral	$f(z_0) = \frac{1}{2\pi \mathbf{i}} \oint_c \frac{f(z)}{z - z_0} dz$	(2.166)	n th derivative a_n Laurent coefficients
formula ^d	$f^{(n)}(z_0) = \frac{n!}{2\pi \mathbf{i}} \oint_c \frac{f(z)}{(z - z_0)^{n+1}} dz$	(2.167)	a_{-1} residue of $f(z)$ at z_0 z' dummy variable
Laurent	$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$	(2.168)	y c_2
expansion ^e	where $a_n = \frac{1}{2\pi i} \oint_c \frac{f(z')}{(z' - z_0)^{n+1}} dz'$	(2.169)	$\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\right) \right)} \right) \end{array} \right) \\ \end{array} \right) \end{array} \right) \end{array} \right) \end{array} \right) \end{array} \right) \right) \right)$
Residue theorem	$\oint_c f(z) \mathrm{d}z = 2\pi \mathbf{i} \sum \text{enclosed residues}$	(2.170)	x -

^aClosed contour integrals are taken in the counterclockwise sense, once.

^bNecessary condition for f(z) to be analytic at a given point. ^cIf f(z) is analytic within and on a simple closed curve c. Sometimes called "Cauchy's theorem."

^dIf f(z) is analytic within and on a simple closed curve c, encircling z_0 .

eOf f(z), (analytic) in the annular region between concentric circles, c_1 and c_2 , centred on z_0 . c is any closed curve in this region encircling z_0 .

2.5 Trigonometric and hyperbolic formulas

Trigonometric relationships

$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$		(2.171)
(4 p=: 4: p	(2.172)

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \qquad (2.172)$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \tag{2.173}$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B) \right]$$
 (2.174)

$$\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$$
 (2.175)

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$
 (2.176)

$$\cos^2 A + \sin^2 A = 1 \tag{2.177}$$

$$\sec^2 A - \tan^2 A = 1 \tag{2.178}$$

$$\csc^2 A - \cot^2 A = 1 \tag{2.179}$$

$$\sin 2A = 2\sin A \cos A \tag{2.180}$$

$$\cos 2A = \cos^2 A - \sin^2 A \tag{2.181}$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A} \tag{2.182}$$

$$\sin 3A = 3\sin A - 4\sin^3 A \tag{2.183}$$

$$\cos 3A = 4\cos^3 A - 3\cos A \tag{2.184}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2} \tag{2.186}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} \tag{2.187}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$
 (2.188)

$$\sin^2 A = \frac{1}{2}(1 - \cos 2A) \tag{2.190}$$

$$\cos^3 A = \frac{1}{4} (3\cos A + \cos 3A) \tag{2.191}$$

$$\sin^3 A = \frac{1}{4} (3\sin A - \sin 3A) \tag{2.192}$$

Hyperbolic relationships^a

Hyperbolic relationships ^a	
$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$	(2.193)
$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$	(2.194)
$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$	(2.195)
$\cosh x \cosh y = \frac{1}{2} \left[\cosh(x+y) + \cosh(x-y) \right]$	(2.196)
$\sinh x \cosh y = \frac{1}{2} \left[\sinh(x+y) + \sinh(x-y) \right]$	(2.197)
$\sinh x \sinh y = \frac{1}{2} \left[\cosh(x+y) - \cosh(x-y) \right]$	(2.198)
$\cosh^2 x - \sinh^2 x = 1$	(2.199)
$\operatorname{sech}^2 x + \tanh^2 x = 1$	(2.200)
$\coth^2 x - \operatorname{csch}^2 x = 1$	(2.201)
$\sinh 2x = 2\sinh x \cosh x$	(2.202)
$\cosh 2x = \cosh^2 x + \sinh^2 x$	(2.203)
$\tanh 2x = \frac{2\tanh x}{1 + \tanh^2 x}$	(2.204)
$\sinh 3x = 3\sinh x + 4\sinh^3 x$	(2.205)
$\cosh 3x = 4\cosh^3 x - 3\cosh x$	(2.206)
$\sinh x + \sinh y = 2\sinh \frac{x+y}{2} \cosh \frac{x-y}{2}$	(2.207)
$\sinh x - \sinh y = 2\cosh \frac{x+y}{2} \sinh \frac{x-y}{2}$	(2.208)
$\cosh x + \cosh y = 2\cosh \frac{x+y}{2} \cosh \frac{x-y}{2}$	(2.209)
$\cosh x - \cosh y = 2\sinh \frac{x+y}{2} \sinh \frac{x-y}{2}$	(2.210)
$\cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$	(2.211)
$\sinh^2 x = \frac{1}{2}(\cosh 2x - 1)$	(2.212)
1	

(2.213)

(2.214)

 $\cosh^3 x = \frac{1}{4} (3\cosh x + \cosh 3x)$

 $\sinh^3 x = \frac{1}{4}(\sinh 3x - 3\sinh x)$

a These can be derived from trigonometric relationships by using the substitutions $\cos x$ → $\cosh x$ and $\sin x$ → $i\sinh x$.

Trigonometric and hyperbolic definitions

de Moivre's theorem	$(\cos x + \mathbf{i}\sin x)^n =$	$e^{\mathbf{i}nx} = \cos nx + \mathbf{i}\sin nx$	(2.215)
$\cos x = \frac{1}{2} \left(e^{\mathbf{i}x} + e^{-\mathbf{i}x} \right)$	(2.216)	$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right)$	(2.217)
$\sin x = \frac{1}{2\mathbf{i}} \left(e^{\mathbf{i}x} - e^{-\mathbf{i}x} \right)$	(2.218)	$\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right)$	(2.219)
$\tan x = \frac{\sin x}{\cos x}$	(2.220)	$ tanh x = \frac{\sinh x}{\cosh x} $	(2.221)
$\cos \mathbf{i} x = \cosh x$	(2.222)	$\cosh \mathbf{i} x = \cos x$	(2.223)
$\sin \mathbf{i} x = \mathbf{i} \sinh x$	(2.224)	$\sinh \mathbf{i}x = \mathbf{i}\sin x$	(2.225)
$\cot x = (\tan x)^{-1}$	(2.226)	$\coth x = (\tanh x)^{-1}$	(2.227)
$\sec x = (\cos x)^{-1}$	(2.228)	$\operatorname{sech} x = (\cosh x)^{-1}$	(2.229)
$\csc x = (\sin x)^{-1}$	(2.230)	$\operatorname{csch} x = (\sinh x)^{-1}$	(2.231)

Inverse trigonometric functions^a

$\arcsin x = \arctan \left[\frac{x}{(1 - x^2)^{1/2}} \right]$	(2.232)
$\arccos x = \arctan\left[\frac{(1-x^2)^{1/2}}{x}\right]$	(2.233)
$\operatorname{arccsc} x = \arctan\left[\frac{1}{(x^2 - 1)^{1/2}}\right]$	(2.234)
$\operatorname{arcsec} x = \arctan\left[(x^2 - 1)^{1/2}\right]$	(2.235)
$\operatorname{arccot} x = \arctan\left(\frac{1}{x}\right)$	(2.236)
$\arccos x = \frac{\pi}{2} - \arcsin x$	(2.237)

aValid in the angle range $0 \le \theta \le \pi/2$. Note that $\arcsin x \equiv \sin^{-1} x$ etc.

35

Inverse hyperbolic functions

$$\arcsin h x \equiv \sinh^{-1} x = \ln \left[x + (x^2 + 1)^{1/2} \right] \quad (2.238) \quad \text{for all } x$$

$$\arcsin h x \equiv \cosh^{-1} x = \ln \left[x + (x^2 + 1)^{1/2} \right] \quad (2.239)$$

$$\arctan h x \equiv \tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad (2.240) \quad |x| < 1$$

$$\operatorname{arcoth} x \equiv \coth^{-1} x = \frac{1}{2} \ln \left(\frac{x + 1}{x - 1} \right) \quad (2.241) \quad |x| > 1$$

$$\operatorname{arsech} x \equiv \operatorname{sech}^{-1} x = \ln \left[\frac{1}{x} + \frac{(1 - x^2)^{1/2}}{x} \right] \quad (2.242)$$

$$\operatorname{arcsch} x \equiv \operatorname{csch}^{-1} x = \ln \left[\frac{1}{x} + \frac{(1 + x^2)^{1/2}}{x} \right] \quad (2.243)$$

2.6 Mensuration

Moiré fringes^a

Parallel pattern	$d_{\mathbf{M}} = \left \frac{1}{d_1} - \frac{1}{d_2} \right ^{-1}$	(2.244)	$d_{\rm M}$ Moiré fringe spacing $d_{1,2}$ grating spacings	
Rotational pattern ^b	$d_{\rm M} = \frac{d}{2 \sin(\theta/2) }$	(2.245)		

^bFrom identical gratings, spacing d, with a relative rotation θ .

Plane triangles

Sine formula ^a	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	(2.246)
	$a^2 = b^2 + c^2 - 2bc\cos A$	(2.247)
Cosine formulas	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	(2.248)
	$a = b\cos C + c\cos B$	(2.249)
Tangent formula	$\tan\frac{A-B}{2} = \frac{a-b}{a+b}\cot\frac{C}{2}$	(2.250)
	area $=\frac{1}{2}ab\sin C$	(2.251)
Area	$=\frac{a^2}{2}\frac{\sin B \sin C}{\sin A}$	(2.252)
	$= [s(s-a)(s-b)(s-c)]^{1/2}$	(2.253)
	where $s = \frac{1}{2}(a+b+c)$	(2.254)

Spherical triangles^a

Sine formula	$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$	(2.255)
Cosine formulas	$\cos a = \cos b \cos c + \sin b \sin c \cos A$ $\cos A = -\cos B \cos C + \sin B \sin C \cos a$	(2.256) (2.257)
Analogue formula	$\sin a \cos B = \cos b \sin c - \sin b \cos c \cos A$	(2.258)
Four-parts formula	$\cos a \cos C = \sin a \cot b - \sin C \cot B$	(2.259)
Area ^b	$E = A + B + C - \pi$	(2.260)

aThe diameter of the circumscribed circle equals $a/\sin A$.

^aOn a unit sphere.
^bAlso called the "spherical excess."

Perimeter, area, and volume

i erimeter, area, and	, ordine			
Perimeter of circle	$P = 2\pi r$	(2.261)	P r	perimeter radius
Area of circle	$A = \pi r^2$	(2.262)	A	area
Surface area of sphere ^a	$A = 4\pi R^2$	(2.263)	R	sphere radius
Volume of sphere	$V = \frac{4}{3}\pi R^3$	(2.264)	V	volume
Perimeter of ellipse ^b	$P = 4a \operatorname{E}(\pi/2, e)$ $\simeq 2\pi \left(\frac{a^2 + b^2}{2}\right)^{1/2}$	(2.265)	a b E	semi-major axis semi-minor axis elliptic integral of the second kind (p. 45) eccentricity $(=1-b^2/a^2)$
Area of ellipse	$A = \pi ab$	(2.267)		(10/4)
Volume of ellipsoid ^c	$V = 4\pi \frac{abc}{3}$	(2.268)	с	third semi-axis
Surface area of cylinder	$A = 2\pi r(h+r)$	(2.269)	h	height
Volume of cylinder	$V = \pi r^2 h$	(2.270)		
Area of circular cone ^d	$A = \pi r l$	(2.271)	l	slant height
Volume of cone or pyramid	$V = A_b h/3$	(2.272)	A_{b}	base area
Surface area of torus	$A = \pi^2 (r_1 + r_2)(r_2 - r_1)$	(2.273)	r_1 r_2	inner radius outer radius
Volume of torus	$V = \frac{\pi^2}{4} (r_2^2 - r_1^2)(r_2 - r_1)$	(2.274)		
Area d of spherical cap, depth d	$A = 2\pi Rd$	(2.275)	d	cap depth
Volume of spherical cap, depth d	$V = \pi d^2 \left(R - \frac{d}{3} \right)$	(2.276)	Ω z α	solid angle distance from centre half-angle subtended
Solid angle of a circle from a point on its	$\Omega = 2\pi \left[1 - \frac{z}{(z^2 + r^2)^{1/2}} \right]$	(2.277)		r
axis, z from centre aSphere defined by $x^2 + v^2 + z^2 = 0$	$=2\pi(1-\cos\alpha)$	(2.278)		Z

^aSphere defined by $x^2 + y^2 + z^2 = R^2$. ^bThe approximation is exact when e = 0 and $e \simeq 0.91$, giving a maximum error of 11% at e = 1. ^cEllipsoid defined by $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. ^dCurved surface only.

Conic sections

ellipse

equation $y^2 = 4ax$

parabola

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

parametric $x = t^2/(4a)$ form y = t

 $\begin{aligned}
 x &= a \cos t \\
 y &= b \sin t
 \end{aligned}$

 $x = \pm a \cosh t$ $y = b \sinh t$

hyperbola

foci (a,0)

 $(\pm\sqrt{a^2-b^2},0)$

 $(\pm\sqrt{a^2+b^2},0)$

eccentricity e=1

 $e = \frac{\sqrt{a^2 - b^2}}{a}$

 $e = \frac{\sqrt{a^2 + b^2}}{a}$

directrices x = -a

 $x = \pm \frac{a}{e}$

 $x = \pm \frac{a}{e}$

Platonic solids^a

solid (faces,edges,vertices)	volume	surface area	circumradius	inradius
tetrahedron (4,6,4)	$\frac{a^3\sqrt{2}}{12}$	$a^2\sqrt{3}$	$\frac{a\sqrt{6}}{4}$	$\frac{a\sqrt{6}}{12}$
cube (6,12,8)	a^3	$6a^2$	$\frac{a\sqrt{3}}{2}$	$\frac{a}{2}$
octahedron (8,12,6)	$\frac{a^3\sqrt{2}}{3}$	$2a^2\sqrt{3}$	$\frac{a}{\sqrt{2}}$	$\frac{a}{\sqrt{6}}$
dodecahedron (12,30,20)	$\frac{a^3(15+7\sqrt{5})}{4}$	$3a^2\sqrt{5(5+2\sqrt{5})}$	$\frac{a}{4}\sqrt{3}(1+\sqrt{5})$	$\frac{a}{4}\sqrt{\frac{50+22\sqrt{5}}{5}}$
icosahedron (20,30,12)	$\frac{5a^3(3+\sqrt{5})}{12}$	$5a^2\sqrt{3}$	$\frac{a}{4}\sqrt{2(5+\sqrt{5})}$	$\frac{a}{4}\left(\sqrt{3}+\sqrt{\frac{5}{3}}\right)$

^aOf side a. Both regular and irregular polyhedra follow the Euler relation, faces – edges + vertices = 2.

Curve measure

Length of plane curve	$l = \int_{a}^{b} \left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)^{2} \right]^{1/2} \mathrm{d}x$	(2.279)	$\begin{bmatrix} a \\ b \\ y(x) \\ l \end{bmatrix}$	start point end point plane curve length
Surface of revolution	$A = 2\pi \int_{a}^{b} y \left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)^{2} \right]^{1/2} \mathrm{d}x$	(2.280)	A	surface area
Volume of revolution	$V = \pi \int_{a}^{b} y^{2} \mathrm{d}x$	(2.281)	V	volume
Radius of curvature	$\rho = \left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{3/2} \left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right)^{-1}$	(2.282)	ρ	radius of curvature

Differential geometry^a

Differential geometry			
Unit tangent	$\hat{\tau} = \frac{\dot{r}}{ \dot{r} } = \frac{\dot{r}}{v}$	(2.283)	$egin{array}{cccc} oldsymbol{ au} & angent \\ oldsymbol{r} & ext{curve parameterised by } oldsymbol{r}(t) \\ v & \dot{oldsymbol{r}}(t) \end{array}$
Unit principal normal	$\hat{\boldsymbol{n}} = \frac{\ddot{\boldsymbol{r}} - \dot{\boldsymbol{v}}\hat{\boldsymbol{\tau}}}{ \ddot{\boldsymbol{r}} - \dot{\boldsymbol{v}}\hat{\boldsymbol{\tau}} }$	(2.284)	n principal normal
Unit binormal	$\hat{\boldsymbol{b}} = \hat{\boldsymbol{\tau}} \times \hat{\boldsymbol{n}}$	(2.285)	b binormal
Curvature	$\kappa = \frac{ \dot{\mathbf{r}} \times \ddot{\mathbf{r}} }{ \dot{\mathbf{r}} ^3}$	(2.286)	κ curvature
Radius of curvature	$\rho = \frac{1}{\kappa}$	(2.287)	ho radius of curvature
Torsion	$\lambda = \frac{\dot{\mathbf{r}} \cdot (\ddot{\mathbf{r}} \times \ddot{\mathbf{r}})}{ \dot{\mathbf{r}} \times \ddot{\mathbf{r}} ^2}$	(2.288)	λ torsion
			ĥ
	$\dot{\hat{\tau}} = \kappa v \hat{\boldsymbol{n}}$	(2.289)	osculating plane
Frenet's formulas	$\dot{\hat{\pmb{n}}} = -\kappa v \hat{\pmb{\tau}} + \lambda v \hat{\pmb{b}}$	(2.290)	normal plane î
	$\dot{\hat{\boldsymbol{b}}} = -\lambda v \hat{\boldsymbol{n}}$	(2.291)	\hat{b} rectifying plane
a			origin

^aFor a continuous curve in three dimensions, traced by the position vector r(t).

2.7 Differentiation

Derivatives (general)

	•			
Power	$\frac{\mathrm{d}}{\mathrm{d}x}(u^n) = nu^{n-1} \frac{\mathrm{d}u}{\mathrm{d}x}$	(2.292)	n	power index
Product	$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$	(2.293)	u,v	functions of <i>x</i>
Quotient	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u}{v} \right) = \frac{1}{v} \frac{\mathrm{d}u}{\mathrm{d}x} - \frac{u}{v^2} \frac{\mathrm{d}v}{\mathrm{d}x}$	(2.294)		
Function of a function ^a	$\frac{\mathrm{d}}{\mathrm{d}x}[f(u)] = \frac{\mathrm{d}}{\mathrm{d}u}[f(u)] \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$	(2.295)	f(u)	function of $u(x)$
Leibniz theorem	$\frac{\mathrm{d}^n}{\mathrm{d}x^n}[uv] = \binom{n}{0}v\frac{\mathrm{d}^n u}{\mathrm{d}x^n} + \binom{n}{1}\frac{\mathrm{d}v}{\mathrm{d}x}\frac{\mathrm{d}^{n-1}u}{\mathrm{d}x^{n-1}} + \cdots$ $+ \binom{n}{k}\frac{\mathrm{d}^k v}{\mathrm{d}x^k}\frac{\mathrm{d}^{n-k}u}{\mathrm{d}x^{n-k}} + \cdots + \binom{n}{n}u\frac{\mathrm{d}^n v}{\mathrm{d}x^n}$	(2.296)	$\binom{n}{k}$	binomial coefficient
Differentiation under the integral	$\frac{\mathrm{d}}{\mathrm{d}q} \left[\int_{p}^{q} f(x) \mathrm{d}x \right] = f(q) (p \text{ constant})$	(2.297)		
sign	$\frac{\mathrm{d}}{\mathrm{d}p} \left[\int_{p}^{q} f(x) \mathrm{d}x \right] = -f(p) (q \text{ constant})$	(2.298)		
General integral	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\int_{u(x)}^{v(x)} f(t) \mathrm{d}t \right] = f(v) \frac{\mathrm{d}v}{\mathrm{d}x} - f(u) \frac{\mathrm{d}u}{\mathrm{d}x}$	(2.299)		
Logarithm	$\frac{\mathrm{d}}{\mathrm{d}x}(\log_b ax) = (x\ln b)^{-1}$	(2.300)	b a	log base constant
Exponential	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^{ax}) = a\mathrm{e}^{ax}$	(2.301)		
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{-1}$	(2.302)		
Inverse functions	$\frac{\mathrm{d}^2 x}{\mathrm{d}y^2} = -\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{-3}$	(2.303)		
"The "chain rule."	$\frac{\mathrm{d}^3 x}{\mathrm{d}y^3} = \left[3 \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right)^2 - \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} \right] \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)^{-5}$	(2.304)		

^aThe "chain rule."

${\bf Trigonometric} \ \ {\bf derivatives}^a$

$\frac{\mathrm{d}}{\mathrm{d}x}(\sin ax) = a\cos ax$	(2.305)	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos ax) = -a\sin ax$	(2.306)
$\frac{\mathrm{d}}{\mathrm{d}x}(\tan ax) = a\sec^2 ax$	(2.307)	$\frac{\mathrm{d}}{\mathrm{d}x}(\csc ax) = -a\csc ax \cdot \cot ax$	(2.308)
$\frac{\mathrm{d}}{\mathrm{d}x}(\sec ax) = a\sec ax \cdot \tan ax$	(2.309)	$\frac{\mathrm{d}}{\mathrm{d}x}(\cot ax) = -a\csc^2 ax$	(2.310)
$\frac{d}{dx}(\arcsin ax) = a(1 - a^2x^2)^{-1/2}$	(2.311)	$\frac{d}{dx}(\arccos ax) = -a(1 - a^2x^2)^{-1/2}$	(2.312)
$\frac{\mathrm{d}}{\mathrm{d}x}(\arctan ax) = a(1+a^2x^2)^{-1}$	(2.313)	$\frac{d}{dx}(\arccos ax) = -\frac{a}{ ax }(a^2x^2 - 1)^{-1/2}$	(2.314)
$\frac{d}{dx}(\arccos ax) = \frac{a}{ ax }(a^2x^2 - 1)^{-1/2}$	(2.315)	$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{arccot} ax) = -a(a^2x^2 + 1)^{-1}$	(2.316)

^aa is a constant.

${\bf Hyperbolic} \ \ {\bf derivatives}^a$

$\frac{\mathrm{d}}{\mathrm{d}x}(\sinh ax) = a\cosh ax$	(2.317)	$\frac{\mathrm{d}}{\mathrm{d}x}(\cosh ax) = a \sinh ax$	(2.318)
$\frac{\mathrm{d}}{\mathrm{d}x}(\tanh ax) = a \operatorname{sech}^2 ax$	(2.319)	$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{csch} ax) = -a\operatorname{csch} ax \cdot \operatorname{coth} ax$	(2.320)
$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{sech}ax) = -a\mathrm{sech}ax\cdot\tanh ax$	(2.321)	$\frac{\mathrm{d}}{\mathrm{d}x}(\coth ax) = -a \operatorname{csch}^2 ax$	(2.322)
$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{arsinh} ax) = a(a^2x^2 + 1)^{-1/2}$	(2.323)	$\frac{d}{dx}(\operatorname{arcosh} ax) = a(a^2x^2 - 1)^{-1/2}$	(2.324)
$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{artanh} ax) = a(1 - a^2x^2)^{-1}$	(2.325)	$\frac{d}{dx}(\operatorname{arcsch} ax) = -\frac{a}{ ax }(1 + a^2x^2)^{-1/2}$	(2.326)
$\frac{\mathrm{d}x}{\mathrm{d}x}(\operatorname{arsech} ax) = -\frac{a}{ ax }(1 - a^2x^2)^{-1}$	(2.327)	$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{arcoth} ax) = a(1 - a^2x^2)^{-1}$	(2.328)
a is a constant.			

^aa is a constant.

Partial derivatives

			
Total differential	$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz $ (2.329)	f	f(x,y,z)
Reciprocity	$\frac{\partial g}{\partial x}\Big _{y}\frac{\partial x}{\partial y}\Big _{g}\frac{\partial y}{\partial g}\Big _{x} = -1 \tag{2.330}$	g	g(x,y)
Chain rule	$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u} $ (2.331)		
Jacobian	$J = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} $ (2.332)	J u v w	Jacobian $u(x,y,z)$ $v(x,y,z)$ $w(x,y,z)$
Change of variable	$\int_{V} f(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{V'} f(u,v,w) J \mathrm{d}u \mathrm{d}v \mathrm{d}w $ (2.333)	V V'	volume in (x, y, z) volume in (u, v, w) mapped to by V
Euler– Lagrange equation	if $I = \int_{a}^{b} F(x, y, y') dx$ then $\delta I = 0$ when $\frac{\partial F}{\partial y} = \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right)$ (2.334)	y' a,t	dy/dx fixed end points

Stationary points^a

^aOf a function f(x,y) at the point (x_0,y_0) . Note that at, for example, a quartic minimum $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = 0$.

Differential equations

Laplace	$\nabla^2 f = 0$	(2.339)	f	f(x,y,z)
Diffusion ^a	$\frac{\partial f}{\partial t} = D\nabla^2 f$	(2.340)	D	diffusion coefficient
Helmholtz	$\nabla^2 f + \alpha^2 f = 0$	(2.341)	α	constant
Wave	$\nabla^2 f = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}$	(2.342)	c	wave speed
Legendre	$\frac{\mathrm{d}}{\mathrm{d}x}\left[(1-x^2)\frac{\mathrm{d}y}{\mathrm{d}x}\right] + l(l+1)y = 0$	(2.343)	l	integer
Associated Legendre	$\frac{\mathrm{d}}{\mathrm{d}x}\left[(1-x^2)\frac{\mathrm{d}y}{\mathrm{d}x}\right] + \left[l(l+1) - \frac{m^2}{1-x^2}\right]y = 0$	(2.344)	m	integer
Bessel	$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - m^{2})y = 0$	(2.345)		
Hermite	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2x \frac{\mathrm{d}y}{\mathrm{d}x} + 2\alpha y = 0$	(2.346)		
Laguerre	$x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1-x)\frac{\mathrm{d}y}{\mathrm{d}x} + \alpha y = 0$	(2.347)		
Associated Laguerre	$x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1+k-x)\frac{\mathrm{d}y}{\mathrm{d}x} + \alpha y = 0$	(2.348)	k	integer
Chebyshev	$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + n^2y = 0$	(2.349)	n	integer
Euler (or Cauchy)	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + ax \frac{\mathrm{d}y}{\mathrm{d}x} + by = f(x)$	(2.350)	a,b	constants
Bernoulli	$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)y^a$	(2.351)	p,q	functions of x
Airy	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = xy$	(2.352)		

^aAlso known as the "conduction equation." For thermal conduction, $f \equiv T$ and D, the thermal diffusivity, $\equiv \kappa \equiv \lambda/(\rho c_p)$, where T is the temperature distribution, λ the thermal conductivity, ρ the density, and c_p the specific heat capacity of the material.

2.8 Integration

Standard forms^a

$$\int u \, dv = [uv] - \int v \, du \qquad (2.353) \quad \int uv \, dx = v \int u \, dx - \int \left(\int u \, dx \right) \frac{dv}{dx} \, dx \quad (2.354)$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1) \qquad (2.355) \quad \int \frac{1}{x} dx = \ln|x|$$
 (2.356)

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$
 (2.357)
$$\int x e^{ax} dx = e^{ax} \left(\frac{x}{a} - \frac{1}{a^2} \right)$$
 (2.358)

$$\int \ln ax \, dx = x(\ln ax - 1) \qquad (2.359) \quad \int \frac{f'(x)}{f(x)} \, dx = \ln f(x) \qquad (2.360)$$

$$\int x \ln ax \, dx = \frac{x^2}{2} \left(\ln ax - \frac{1}{2} \right) \quad (2.361) \quad \int b^{ax} \, dx = \frac{b^{ax}}{a \ln b} \qquad (b > 0)$$
 (2.362)

$$\int \frac{1}{a+bx} dx = \frac{1}{b} \ln(a+bx) \qquad (2.363) \quad \int \frac{1}{x(a+bx)} dx = -\frac{1}{a} \ln \frac{a+bx}{x}$$
 (2.364)

$$\int \frac{1}{(a+bx)^2} dx = \frac{-1}{b(a+bx)}$$
 (2.365)
$$\int \frac{1}{a^2 + b^2 x^2} dx = \frac{1}{ab} \arctan\left(\frac{bx}{a}\right)$$
 (2.366)

$$\int \frac{1}{x(x^n + a)} dx = \frac{1}{an} \ln \left| \frac{x^n}{x^n + a} \right| \quad (2.367) \qquad \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| \quad (2.368)$$

$$\int \frac{x}{x^2 \pm a^2} \, dx = \frac{1}{2} \ln|x^2 \pm a^2| \qquad (2.369) \quad \int \frac{x}{(x^2 \pm a^2)^n} \, dx = \frac{-1}{2(n-1)(x^2 \pm a^2)^{n-1}}$$
 (2.370)

$$\int \frac{1}{(a^2 - x^2)^{1/2}} dx = \arcsin\left(\frac{x}{a}\right) \quad (2.371) \quad \int \frac{1}{(x^2 \pm a^2)^{1/2}} dx = \ln|x + (x^2 \pm a^2)^{1/2}| \quad (2.372)$$

$$\int \frac{x}{(x^2 + a^2)^{1/2}} dx = (x^2 \pm a^2)^{1/2} \quad (2.373) \quad \int \frac{1}{x(x^2 - a^2)^{1/2}} dx = \frac{1}{a} \operatorname{arcsec}\left(\frac{x}{a}\right)$$
 (2.374)

a and b are non-zero constants.

Trigonometric and hyperbolic integrals

$$\int \sin x \, dx = -\cos x \qquad (2.375) \quad \int \sinh x \, dx = \cosh x \qquad (2.376)$$

$$\int \cos x \, dx = \sin x \qquad (2.377) \quad \int \cosh x \, dx = \sinh x \qquad (2.378)$$

$$\int \tan x \, dx = -\ln|\cos x| \qquad (2.379) \quad \int \tanh x \, dx = \ln(\cosh x) \qquad (2.380)$$

$$\int \csc x \, dx = \ln\left|\tan\frac{x}{2}\right| \qquad (2.381) \quad \int \operatorname{csch} x \, dx = \ln\left|\tanh\frac{x}{2}\right| \qquad (2.382)$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| \qquad (2.383) \quad \int \operatorname{sech} x \, dx = 2\arctan(e^x) \qquad (2.384)$$

$$\int \cot x \, dx = \ln|\sin x| \qquad (2.385) \quad \int \coth x \, dx = \ln|\sinh x| \qquad (2.386)$$

$$\int \sin mx \cdot \sin nx \, dx = \frac{\sin(m-n)x}{2(m-n)} - \frac{\sin(m+n)x}{2(m+n)} \quad (m^2 \neq n^2) \qquad (2.387)$$

$$\int \sin mx \cdot \cos nx \, dx = -\frac{\cos(m-n)x}{2(m-n)} - \frac{\cos(m+n)x}{2(m+n)} \quad (m^2 \neq n^2) \qquad (2.388)$$

$$\int \cos mx \cdot \cos nx \, dx = \frac{\sin(m-n)x}{2(m-n)} + \frac{\sin(m+n)x}{2(m+n)} \quad (m^2 \neq n^2) \qquad (2.389)$$

Named integrals

Error function	$\operatorname{erf}(x) = \frac{2}{\pi^{1/2}} \int_0^x \exp(-t^2) dt$	(2.390)
Complementary error function	$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\pi^{1/2}} \int_{x}^{\infty} \exp(-t^2) dt$	(2.391)
Fresnel integrals ^a	$C(x) = \int_0^x \cos \frac{\pi t^2}{2} dt$; $S(x) = \int_0^x \sin \frac{\pi t^2}{2} dt$	(2.392)
Tresher integrals	$C(x) + \mathbf{i} S(x) = \frac{1+\mathbf{i}}{2} \operatorname{erf} \left[\frac{\pi^{1/2}}{2} (1-\mathbf{i})x \right]$	(2.393)
Exponential integral	$Ei(x) = \int_{-\infty}^{x} \frac{e^t}{t} dt (x > 0)$	(2.394)
Gamma function	$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt (x > 0)$	(2.395)
Elliptic integrals	$F(\phi,k) = \int_0^{\phi} \frac{1}{(1-k^2\sin^2\theta)^{1/2}} d\theta$ (first kind)	(2.396)
(trigonometric form)	$E(\phi,k) = \int_0^{\phi} (1 - k^2 \sin^2 \theta)^{1/2} d\theta (second kind)$	(2.397)

^aSee also page 167.

Definite integrals

$$\int_0^\infty e^{-ax^2} dx = \frac{1}{2} \left(\frac{\pi}{a} \right)^{1/2} \quad (a > 0)$$
 (2.398)

$$\int_0^\infty x e^{-ax^2} dx = \frac{1}{2a} \quad (a > 0)$$
 (2.399)

$$\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \quad (a > 0; n = 0, 1, 2, ...)$$
 (2.400)

$$\int_{-\infty}^{\infty} \exp(2bx - ax^2) \, dx = \left(\frac{\pi}{a}\right)^{1/2} \exp\left(\frac{b^2}{a}\right) \quad (a > 0)$$
 (2.401)

$$\int_0^\infty x^n e^{-ax^2} dx = \begin{cases} 1 \cdot 3 \cdot 5 \cdot \dots \cdot (n-1)(2a)^{-(n+1)/2} (\pi/2)^{1/2} & n > 0 \text{ and even} \\ 2 \cdot 4 \cdot 6 \cdot \dots \cdot (n-1)(2a)^{-(n+1)/2} & n > 1 \text{ and odd} \end{cases}$$
 (2.402)

$$\int_0^1 x^p (1-x)^q \, \mathrm{d}x = \frac{p! q!}{(p+q+1)!} \quad (p,q \text{ integers} > 0)$$
 (2.403)

$$\int_0^\infty \cos(ax^2) \, \mathrm{d}x = \int_0^\infty \sin(ax^2) \, \mathrm{d}x = \frac{1}{2} \left(\frac{\pi}{2a}\right)^{1/2} \quad (a > 0)$$
 (2.404)

$$\int_0^\infty \frac{\sin x}{x} \, dx = \int_0^\infty \frac{\sin^2 x}{x^2} \, dx = \frac{\pi}{2}$$
 (2.405)

$$\int_0^\infty \frac{1}{(1+x)x^a} \, \mathrm{d}x = \frac{\pi}{\sin a\pi} \quad (0 < a < 1)$$
 (2.406)

2.9 Special functions and polynomials

Gamma function

Definition	$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt [\Re(z) > 0]$	(2.407)
	$n! = \Gamma(n+1) = n\Gamma(n)$ $(n = 0, 1, 2,)$	(2.408)
Relations	$\Gamma(1/2) = \pi^{1/2}$	(2.409)
	$ \begin{pmatrix} z \\ w \end{pmatrix} = \frac{z!}{w!(z-w)!} = \frac{\Gamma(z+1)}{\Gamma(w+1)\Gamma(z-w+1)} $	(2.410)
Stirling's formulas	$\Gamma(z) \simeq e^{-z} z^{z-(1/2)} (2\pi)^{1/2} \left(1 + \frac{1}{12z} + \frac{1}{288z^2} - \cdots \right)$	(2.411)
(for $ z , n \gg 1$)	$n! \simeq n^{n+(1/2)} e^{-n} (2\pi)^{1/2}$	(2.412)
	$\ln(n!) \simeq n \ln n - n$	(2.413)

Bessel functions

Series	$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-x^2/4)^k}{k!\Gamma(\nu+k+1)}$	(2.414)]
expansion	$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos(\pi\nu) - J_{-\nu}(x)}{\sin(\pi\nu)}$	(2.415)	1
Approximations			
$J_{\nu}(x) \simeq \begin{cases} \frac{1}{\Gamma(\nu+1)} \left(\frac{x}{2}\right) \\ \left(\frac{2}{\pi x}\right)^{1/2} c \end{cases}$	$\int_{0}^{v} (0 \le x \ll v)$ $\cos\left(x - \frac{1}{2}v\pi - \frac{\pi}{4}\right) (x \gg v)$	(2.416)	(
$Y_{\nu}(x) \simeq \begin{cases} \frac{-\Gamma(\nu)}{\pi} \left(\frac{x}{2}\right) \\ \left(\frac{2}{\pi x}\right)^{1/2} s \end{cases}$	$\sin\left(x - \frac{1}{2}\nu\pi - \frac{\pi}{4}\right) (x \gg \nu)$	(2.417)	
Modified Bessel	$I_{\nu}(x) = (-\mathbf{i})^{\nu} J_{\nu}(\mathbf{i}x)$	(2.418)	1
functions	$K_{\nu}(x) = \frac{\pi}{2} \mathbf{i}^{\nu+1} [J_{\nu}(\mathbf{i}x) + \mathbf{i} Y_{\nu}(\mathbf{i}x)]$	(2.419)	1
Spherical Bessel function	$j_{\nu}(x) = \left(\frac{\pi}{2x}\right)^{1/2} J_{\nu + \frac{1}{2}}(x)$	(2.420)	j

- $J_{\nu}(x)$ Bessel function of the first kind
- $Y_{\nu}(x)$ Bessel function of the second kind
- $\Gamma(v)$ Gamma function v order $(v \ge 0)$

- $I_{\nu}(x)$ modified Bessel function of the first kind
- $K_{\nu}(x)$ modified Bessel function of the second kind
- $j_{\nu}(x)$ spherical Bessel function of the first kind [similarly for $y_{\nu}(x)$]

Legendre polynomials^a

Legendre equation	$(1-x^2)\frac{d^2P_l(x)}{dx^2} - 2x\frac{dP_l(x)}{dx} + l(l+1)P_l(x)$	0 = 0 (2.421)	P_l	Legendre polynomials order $(l \ge 0)$
Rodrigues' formula	$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$	(2.422)		
Recurrence relation	$(l+1)P_{l+1}(x) = (2l+1)xP_l(x) - lP_{l-1}(x)$	(2.423)		
Orthogonality	$\int_{-1}^{1} P_{l}(x) P_{l'}(x) \mathrm{d}x = \frac{2}{2l+1} \delta_{ll'}$	(2.424)	$\delta_{ll'}$	Kronecker delta
Explicit form	$P_l(x) = 2^{-l} \sum_{m=0}^{l/2} (-1)^m \binom{l}{m} \binom{2l-2m}{l} x^{l-2m}$	(2.425)	$\binom{l}{m}$	binomial coefficients
			k	wavenumber
Expansion of	$\exp(\mathbf{i}kz) = \exp(\mathbf{i}kr\cos\theta)$	(2.426)	Z	propagation axis $z = r\cos\theta$
plane wave	$=\sum_{l=0}(2l+1)\mathbf{i}^l j_l(kr)P_l(\cos\theta)$	(2.427)	Ĵι	spherical Bessel function of the first kind (order <i>l</i>)
$P_0(x) = 1$	$P_2(x) = (3x^2 - 1)/2$ $P_4(x) =$	$=(35x^4-36)$	$0x^{2} +$	-3)/8
$P_1(x) = x$	$P_3(x) = (5x^3 - 3x)/2$ $P_5(x) =$	$=(63x^5-76$	$0x^{3} +$	-15x)/8

Associated Legendre functions^a

Associated Legendre equation	$\frac{\mathrm{d}}{\mathrm{d}x} \left[(1-x^2) \frac{\mathrm{d}P_l^m(x)}{\mathrm{d}x} \right] + \left[l(l+1) - \frac{m^2}{1-x^2} \right] P$	$Q_l^m(x) = 0$ (2.428)	P_l^m	associated Legendre functions
From	$P_l^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x), 0 \le m \le l$	(2.429)	P_l	Legendre
Legendre polynomials	$P_l^{-m}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(x)$	(2.430)	·	polynomials
	$P_{m+1}^{m}(x) = x(2m+1)P_{m}^{m}(x)$	(2.431)		
Recurrence relations	$P_m^m(x) = (-1)^m (2m-1)!! (1-x^2)^{m/2}$	(2.432)	!!	$5!! = 5 \cdot 3 \cdot 1$ etc.
Telations	$(l-m+1)P_{l+1}^{m}(x) = (2l+1)xP_{l}^{m}(x) - (l+m)I$	$P_{l-1}^{m}(x)$ (2.433)		
Orthogonality	$\int_{-1}^{1} P_{l}^{m}(x) P_{l'}^{m}(x) dx = \frac{(l+m)!}{(l-m)!} \frac{2}{2l+1} \delta_{ll'}$	(2.434)	$\delta_{ll'}$	Kronecker delta
$P_0^0(x) = 1$	$P_1^0(x) = x$	$P_1^1(x) = -$	(1-	$(x^2)^{1/2}$
$P_2^0(x) = (3x^2 - 1)$	$P_2^1(x) = -3x(1-x^2)^{1/2}$	$P_2^2(x) = 3$	1-x	z ²)

 $^{{}^{}a}$ Of the first kind. $P_{l}^{m}(x)$ can be defined with a $(-1)^{m}$ factor in Equation (2.429) as well as Equation (2.430).

Spherical harmonics

•			
Differential equation	$\left[\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \phi^2} \right] Y_l^m + l(l+1) Y_l^m = 0 $ (2.435)	Y_l^m	spherical harmonics
Definition ^a	$Y_{l}^{m}(\theta,\phi) = (-1)^{m} \left[\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!} \right]^{1/2} P_{l}^{m}(\cos\theta) e^{im\phi} $ (2.436)	P_l^m	associated Legendre functions
Orthogonality	$\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} Y_{l}^{m*}(\theta,\phi) Y_{l'}^{m'}(\theta,\phi) \sin\theta d\theta d\phi = \delta_{mm'} \delta_{ll'} (2.437)$	Y^* $\delta_{ll'}$	complex conjugate Kronecker delta
Laplace series	$f(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_l^m(\theta,\phi) $ (2.438)	f	continuous function
	where $a_{lm} = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} Y_l^{m*}(\theta,\phi) f(\theta,\phi) \sin\theta d\theta d\phi$ (2.439)		
Solution to Laplace equation	if $\nabla^2 \psi(r,\theta,\phi) = 0$, then $\psi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_l^m(\theta,\phi) \cdot \left[a_{lm} r^l + b_{lm} r^{-(l+1)} \right] $ (2.440)	ψ a,b	continuous function constants
$Y_0^0(\theta,\phi) = \sqrt{\frac{4}{4}}$	γ γ π		
$Y_1^{\pm 1}(\theta,\phi) = \mp \sqrt{1}$	$\frac{\sqrt{3}}{8\pi}\sin\theta e^{\pm i\phi} \qquad Y_2^0(\theta,\phi) = \sqrt{\frac{5}{4\pi}} \left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right)$)	
$Y_2^{\pm 1}(\theta,\phi) = \mp $	$\frac{\sqrt{\frac{15}{8\pi}}\sin\theta\cos\theta\mathrm{e}^{\pm\mathrm{i}\phi}}{Y_2^{\pm2}(\theta,\phi)} = \sqrt{\frac{15}{32\pi}}\sin^2\theta\mathrm{e}^{\pm2\mathrm{i}\phi}$		
$Y_3^0(\theta,\phi) = \frac{1}{2}$	$\frac{7}{4\pi}(5\cos^2\theta - 3)\cos\theta \qquad Y_3^{\pm 1}(\theta, \phi) = \mp \frac{1}{4}\sqrt{\frac{21}{4\pi}}\sin\theta(5\cos^2\theta)$	$\theta - 1$	$e^{\pm i\phi}$
$Y_3^{\pm 2}(\theta,\phi) = \frac{1}{4}\sqrt{}$	$\frac{\sqrt{105}}{2\pi}\sin^2\theta\cos\theta\mathrm{e}^{\pm2\mathrm{i}\phi} \qquad \qquad Y_3^{\pm3}(\theta,\phi) = \mp\frac{1}{4}\sqrt{\frac{35}{4\pi}}\sin^3\theta\mathrm{e}^{\pm3\mathrm{i}\phi}$		

^aDefined for $-l \le m \le l$, using the sign convention of the Condon–Shortley phase. Other sign conventions are possible.

Delta functions

Delta functions				
Kronecker delta	$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ $\delta_{ii} = 3$	(2.441) (2.442)	δ_{ij} $i, j, k, .$	Kronecker delta indices (= 1,2 or 3)
Three- dimensional Levi–Civita	$\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1$ $\epsilon_{132} = \epsilon_{213} = \epsilon_{321} = -1$ all other $\epsilon_{ijk} = 0$	(2.443)		Levi–Civita symbol
symbol	$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$	(2.444)	ϵ_{ijk}	(see also page 25)
(permutation	$\delta_{ij}\epsilon_{ijk} = 0$	(2.445)		
tensor) ^a	$\epsilon_{ilm}\epsilon_{jlm} = 2\delta_{ij}$	(2.446)		
	$\epsilon_{ijk}\epsilon_{ijk} = 6$	(2.447)		
	$\int_{a}^{b} \delta(x) \mathrm{d}x = \begin{cases} 1 & \text{if } a < 0 < b \\ 0 & \text{otherwise} \end{cases}$	(2.448)		
Dirac delta	$\int_a^b f(x)\delta(x-x_0)\mathrm{d}x = f(x_0)$	(2.449)	$\delta(x)$	Dirac delta function
function	$\delta(x-x_0)f(x) = \delta(x-x_0)f(x_0)$	(2.450)	f(x)	smooth function of x
	$\delta(-x) = \delta(x)$	(2.451)	a,b	constants
	$\delta(ax) = a ^{-1}\delta(x) (a \neq 0)$	(2.452)		
	$\delta(x) \simeq n\pi^{-1/2} e^{-n^2 x^2} (n \gg 1)$	(2.453)		

^aThe general symbol $\epsilon_{ijk...}$ is defined to be +1 for even permutations of the suffices, -1 for odd permutations, and 0 if a suffix is repeated. The sequence (1,2,3,...,n) is taken to be even. Swapping adjacent suffices an odd (or even) number of times gives an odd (or even) permutation.

2.10 Roots of quadratic and cubic equations

Quadratic equations

Equation	$ax^2 + bx + c = 0 \qquad (a \neq 0)$	(2.454)	x variable a,b,c real constants
Solutions	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	(2.455)	x_1, x_2 quadratic roots
	$=\frac{-2c}{b\pm\sqrt{b^2-4ac}}$	(2.456)	
Solution	$x_1 + x_2 = -b/a$	(2.457)	
combinations	$x_1x_2 = c/a$	(2.458)	

Cubic equations

Equation	$ax^3 + bx^2 + cx + d = 0 (a \neq 0)$	(2.459)	x a,b,c,d	variable real constants
	$p = \frac{1}{3} \left(\frac{3c}{a} - \frac{b^2}{a^2} \right)$	(2.460)		
Intermediate definitions	$q = \frac{1}{27} \left(\frac{2b^3}{a^3} - \frac{9bc}{a^2} + \frac{27d}{a} \right)$	(2.461)	D	discriminant
	$D = \left(\frac{p}{3}\right)^3 + \left(\frac{q}{2}\right)^2$	(2.462)		
ICD> 0 -1	1.0	O -1 1-C		

If $D \ge 0$, also define:

$$u = \left(\frac{-q}{2} + D^{1/2}\right)^{1/3} \tag{2.463}$$

$$v = \left(\frac{-q}{2} - D^{1/2}\right)^{1/3} \tag{2.464}$$

$$y_1 = u + v (2.465$$

$$y_{2,3} = \frac{-(u+v)}{2} \pm i \frac{u-v}{2} 3^{1/2}$$
 (2.466)

1 real, 2 complex roots

(if D = 0: 3 real roots, at least 2 equal)

If D < 0, also define:

(2.463)
$$\phi = \arccos\left[\frac{-q}{2}\left(\frac{|p|}{3}\right)^{-3/2}\right]$$
 (2.467)

(2.464)
$$y_1 = 2\left(\frac{|p|}{3}\right)^{1/2}\cos\frac{\phi}{3}$$
 (2.468)

(2.466)
$$y_{2,3} = -2\left(\frac{|p|}{3}\right)^{1/2}\cos\frac{\phi \pm \pi}{3}$$
 (2.469)

3 distinct real roots

Solutions ^a	$x_n = y_n - \frac{b}{3a}$	(2.470)	x_n cubic roots $(n=1,2,3)$
Solution combinations	$x_1 + x_2 + x_3 = -b/a$ $x_1x_2 + x_1x_3 + x_2x_3 = c/a$ $x_1x_2x_3 = -d/a$	(2.471) (2.472) (2.473)	

 $[\]overline{a}_{y_n}$ are solutions to the reduced equation $y^3 + py + q = 0$.

2.11 Fourier series and transforms

Fourier series

Real form	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$ $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$ $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$	(2.474) (2.475) (2.476)	$f(x)$ a_n,b_n	periodic function, period 2L Fourier coefficients
Complex	$f(x) = \sum_{n = -\infty}^{\infty} c_n \exp\left(\frac{\mathbf{i} n\pi x}{L}\right)$	(2.477)	c_n	complex Fourier
form	$c_n = \frac{1}{2L} \int_{-L}^{L} f(x) \exp\left(\frac{-\mathbf{i} n\pi x}{L}\right) dx$	(2.477)		coefficient
Parseval's	$\frac{1}{2L} \int_{-L}^{L} f(x) ^2 dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$	(2.479)		4
theorem	$=\sum_{n=-\infty}^{\infty} c_n ^2$	(2.480)		modulus

Fourier transform^a

Definition 1	$F(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x s} dx$	(2.481)	f(x)	function of x
Definition 1	$f(x) = \int_{-\infty}^{\infty} F(s) e^{2\pi i x s} ds$	(2.482)	F(s)	Fourier transform of $f(x)$
Definition 2	$F(s) = \int_{-\infty}^{\infty} f(x) e^{-ixs} dx$	(2.483)		
Definition 2	$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s) e^{ixs} ds$	(2.484)		
Definition 3	$F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ixs} dx$	(2.485)		
Demintion 3	$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{ixs} ds$	(2.486)		

^aAll three (and more) definitions are used, but definition 1 is probably the best.

Fourier transform theorems^a

Tourier transi	orm theorems			
Convolution	$f(x) * g(x) = \int_{-\infty}^{\infty} f(u)g(x-u) du$	(2.487)	f,g	general functions convolution
Convolution rules	f * g = g * f f * (g * h) = (f * g) * h	(2.488) (2.489)	f g	$f(x) \rightleftharpoons F(s)$ $g(x) \rightleftharpoons G(s)$
Convolution theorem	$f(x)g(x) \rightleftharpoons F(s) * G(s)$	(2.490)	=	Fourier transform relation
Autocorrela- tion	$f^*(x) \star f(x) = \int_{-\infty}^{\infty} f^*(u - x) f(u) \mathrm{d}u$	(2.491)	* f*	correlation complex conjugate of f
Wiener- Khintchine theorem	$f^*(x) \star f(x) \rightleftharpoons F(s) ^2$	(2.492)		
Cross- correlation	$f^*(x) \star g(x) = \int_{-\infty}^{\infty} f^*(u - x)g(u) du$	(2.493)		
Correlation theorem	$h(x) \star j(x) \rightleftharpoons H(s)J^*(s)$	(2.494)	h, j H J	real functions $H(s) \rightleftharpoons h(x)$ $J(s) \rightleftharpoons j(x)$
Parseval's relation ^b	$\int_{-\infty}^{\infty} f(x)g^*(x) dx = \int_{-\infty}^{\infty} F(s)G^*(s) ds$	(2.495)		
Parseval's theorem ^c	$\int_{-\infty}^{\infty} f(x) ^2 dx = \int_{-\infty}^{\infty} F(s) ^2 ds$	(2.496)		
Derivatives	$\frac{\mathrm{d}f(x)}{\mathrm{d}x} \rightleftharpoons 2\pi \mathbf{i} s F(s)$ $d \qquad \qquad df(x) \qquad dg(x)$	(2.497)		
	$\frac{\mathrm{d}}{\mathrm{d}x}[f(x) * g(x)] = \frac{\mathrm{d}f(x)}{\mathrm{d}x} * g(x) = \frac{\mathrm{d}g(x)}{\mathrm{d}x} * f(x)$ or transform as $F(x) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x s} \mathrm{d}x$	(2.498)		

^aDefining the Fourier transform as $F(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x s} dx$.

^bAlso called the "power theorem."

^cAlso called "Rayleigh's theorem."

Fourier symmetry relationships

f(x)	\rightleftharpoons	F(s)	definitions
even	\rightleftharpoons	even	real: $f(x) = f^*(x)$
odd	\rightleftharpoons	odd	imaginary: $f(x) = -f^*(x)$
real, even	\rightleftharpoons	real, even	even: $f(x) = f(-x)$
real, odd	\rightleftharpoons	imaginary, odd	odd: $f(x) = -f(-x)$
imaginary, even	\rightleftharpoons	imaginary, even	Hermitian: $f(x) = f^*(-x)$
complex, even	\rightleftharpoons	complex, even	anti-Hermitian: $f(x) = -f^*(-x)$
complex, odd	\rightleftharpoons	complex, odd	
real, asymmetric	\rightleftharpoons	complex, Hermitian	
imaginary, asymmetric	\rightleftharpoons	complex, anti-Hermitian	

Fourier transform pairs^a

$$f(x) \rightleftharpoons F(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i s x} dx$$
 (2.499)

$$f(ax) \rightleftharpoons \frac{1}{|a|}F(s/a) \quad (a \neq 0, \text{ real})$$
 (2.500)

$$f(x-a) \rightleftharpoons e^{-2\pi i a s} F(s)$$
 (a real) (2.501)

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}f(x) \quad \rightleftharpoons \quad (2\pi \mathbf{i}s)^n F(s) \tag{2.502}$$

$$\delta(x) \quad \rightleftharpoons \quad 1 \tag{2.503}$$

$$\delta(x-a) \quad \rightleftharpoons \quad e^{-2\pi i as} \tag{2.504}$$

$$e^{-a|x|} \rightleftharpoons \frac{2a}{a^2 + 4\pi^2 s^2} \quad (a > 0)$$
 (2.505)
 $xe^{-a|x|} \rightleftharpoons \frac{8i\pi as}{(a^2 + 4\pi^2 s^2)^2} \quad (a > 0)$ (2.506)

$$xe^{-a|x|} \rightleftharpoons \frac{8i\pi as}{(a^2 + 4\pi^2s^2)^2} \quad (a > 0)$$
 (2.506)

$$e^{-x^2/a^2} \Rightarrow a\sqrt{\pi}e^{-\pi^2a^2s^2}$$
 (2.507)

$$\sin ax \implies \frac{1}{2\mathbf{i}} \left[\delta \left(s - \frac{a}{2\pi} \right) - \delta \left(s + \frac{a}{2\pi} \right) \right]$$
 (2.508)

$$\cos ax \quad \rightleftharpoons \quad \frac{1}{2} \left[\delta \left(s - \frac{a}{2\pi} \right) + \delta \left(s + \frac{a}{2\pi} \right) \right] \tag{2.509}$$

$$\sum_{m=-\infty}^{\infty} \delta(x - ma) \quad \rightleftharpoons \quad \frac{1}{a} \sum_{n=-\infty}^{\infty} \delta\left(s - \frac{n}{a}\right) \tag{2.510}$$

$$f(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases} \quad \text{("step")} \quad \rightleftharpoons \quad \frac{1}{2}\delta(s) - \frac{\mathbf{i}}{2\pi s}$$
 (2.511)

$$f(x) = \begin{cases} 1 & |x| \le a \\ 0 & |x| > a \end{cases}$$
 ("top hat") $\Rightarrow \frac{\sin 2\pi as}{\pi s} = 2a \operatorname{sinc} 2as$ (2.512)

$$f(x) = \begin{cases} \left(1 - \frac{|x|}{a}\right) & |x| \le a \\ 0 & |x| > a \end{cases}$$
 ("triangle") $\rightleftharpoons \frac{1}{2\pi^2 a s^2} (1 - \cos 2\pi a s) = a \operatorname{sinc}^2 a s$ (2.513)

^aEquation (2.499) defines the Fourier transform used for these pairs. Note that $\sin cx \equiv (\sin \pi x)/(\pi x)$.

2.12 Laplace transforms

Laplace transform theorems

Definition ^a	$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st} dt$	(2.514)	$\mathscr{L}\{\}$	Laplace transform
Convolution ^b	$F(s) \cdot G(s) = \mathcal{L}\left\{ \int_0^\infty f(t-z)g(z) \mathrm{d}z \right\}$ $= \mathcal{L}\left\{ f(t) * g(t) \right\}$	(2.515) (2.516)		$\mathcal{L}{f(t)}$ $\mathcal{L}{g(t)}$ convolution
Inverse ^c	$f(t) = \frac{1}{2\pi \mathbf{i}} \int_{\gamma - \mathbf{i}\infty}^{\gamma + \mathbf{i}\infty} e^{st} F(s) ds$ $= \sum_{s} \text{residues} (\text{for } t > 0)$	(2.517) (2.518)	γ	constant
Transform of derivative	$\mathcal{L}\left\{\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}\right\} = s^n \mathcal{L}\left\{f(t)\right\} - \sum_{r=0}^{n-1} s^{n-r-1} \frac{\mathrm{d}^r f(t)}{\mathrm{d}t^r}$	$\frac{t}{t}\Big _{t=0}$ (2.519)	n	integer > 0
Derivative of transform	$\frac{\mathrm{d}^n F(s)}{\mathrm{d} s^n} = \mathcal{L}\{(-t)^n f(t)\}$	(2.520)		
Substitution	$F(s-a) = \mathcal{L}\{e^{at}f(t)\}\$	(2.521)	а	constant
Translation	$e^{-as}F(s) = \mathcal{L}\{u(t-a)f(t-a)\}$ where $u(t) = \begin{cases} 0 & (t < 0) \\ 1 & (t > 0) \end{cases}$	(2.522) (2.523)	u(t)	unit step function

^aIf $|e^{-s_0t}f(t)|$ is finite for sufficiently large t, the Laplace transform exists for $s > s_0$.

^bAlso known as the "faltung (or folding) theorem." c Also known as the "Bromwich integral." γ is chosen so that the singularities in F(s) are left of the integral line.

Laplace transform pairs

$$f(t) \Longrightarrow F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_0^\infty f(t)e^{-st} dt$$
 (2.524)

$$\delta(t) \Longrightarrow 1 \tag{2.525}$$

$$1 \Longrightarrow 1/s \qquad (s > 0) \tag{2.526}$$

$$t^n \Longrightarrow \frac{n!}{s^{n+1}} \qquad (s > 0, n > -1) \tag{2.527}$$

$$t^{1/2} \Longrightarrow \sqrt{\frac{\pi}{4s^3}} \tag{2.528}$$

$$t^{-1/2} \Longrightarrow \sqrt{\frac{\pi}{s}} \tag{2.529}$$

$$e^{at} \Longrightarrow \frac{1}{s-a} \qquad (s > a) \tag{2.530}$$

$$te^{at} \Longrightarrow \frac{1}{(s-a)^2}$$
 $(s>a)$ (2.531)

$$(1-at)e^{-at} \Longrightarrow \frac{s}{(s+a)^2}$$
 (2.532)

$$t^2 e^{-at} \Longrightarrow \frac{2}{(s+a)^3} \tag{2.533}$$

$$\sin at \Longrightarrow \frac{a}{s^2 + a^2} \qquad (s > 0) \tag{2.534}$$

$$\cos at \Longrightarrow \frac{s}{s^2 + a^2} \qquad (s > 0) \tag{2.535}$$

$$\sinh at \Longrightarrow \frac{a}{s^2 - a^2} \qquad (s > a)$$
(2.536)

$$\cosh at \Longrightarrow \frac{s}{s^2 - a^2} \qquad (s > a) \tag{2.537}$$

$$e^{-bt}\sin at \Longrightarrow \frac{a}{(s+b)^2 + a^2} \tag{2.538}$$

$$e^{-bt}\cos at \Longrightarrow \frac{s+b}{(s+b)^2 + a^2} \tag{2.539}$$

$$e^{-at}f(t) \Longrightarrow F(s+a)$$
 (2.540)

2.13 Probability and statistics

Discrete statistics

Mean	$\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i$	(2.541)	x_i N $\langle \cdot \rangle$	data series series length mean value
Variance ^a	$var[x] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \langle x \rangle)^2$	(2.542)	var[·]	unbiased variance
Standard deviation	$\sigma[x] = (\text{var}[x])^{1/2}$	(2.543)	σ	standard deviation
Skewness	skew[x] = $\frac{N}{(N-1)(N-2)} \sum_{i=1}^{N} \left(\frac{x_i - \langle x \rangle}{\sigma} \right)^3$	(2.544)		
Kurtosis	$\operatorname{kurt}[x] \simeq \left[\frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \langle x \rangle}{\sigma} \right)^4 \right] - 3$	(2.545)		
Correlation coefficient ^b	$r = \frac{\sum_{i=1}^{N} (x_i - \langle x \rangle)(y_i - \langle y \rangle)}{\sqrt{\sum_{i=1}^{N} (x_i - \langle x \rangle)^2} \sqrt{\sum_{i=1}^{N} (y_i - \langle y \rangle)^2}}$	(2.546)	x,y	data series to correlate correlation coefficient

a If $\langle x \rangle$ is derived from the data, $\{x_i\}$, the relation is as shown. If $\langle x \rangle$ is known independently, then an unbiased estimate is obtained by dividing the right-hand side by N rather than N-1.

Discrete probability distributions

distribution	pr(x)	mean	variance	domain			
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(x=0,1,\ldots,n)$	(2.547)	(n)	binomial coefficient
Geometric	$(1-p)^{x-1}p$	1/p	$(1-p)/p^2$	(x=1,2,3,)	(2.548)		
Poisson	$\lambda^x \exp(-\lambda)/x!$	λ	λ	(x=0,1,2,)	(2.549)		

^bAlso known as "Pearson's r."

Continuous probability distributions

distribution	pr(x)	mean	variance	domain	
Uniform	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$(a \le x \le b)$	(2.550)
Exponential	$\lambda \exp(-\lambda x)$	$1/\lambda$	$1/\lambda^2$	$(x \ge 0)$	(2.551)
Normal/ Gaussian	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$	μ	σ^2	$(-\infty < x < \infty)$	(2.552)
Chi-squared ^a	$\frac{e^{-x/2}x^{(r/2)-1}}{2^{r/2}\Gamma(r/2)}$	r	2r	$(x \ge 0)$	(2.553)
Rayleigh	$\frac{x}{\sigma^2} \exp\left(\frac{-x^2}{2\sigma^2}\right)$	$\sigma\sqrt{\pi/2}$	$2\sigma^2\left(1-\frac{\pi}{4}\right)$	$(x \ge 0)$	(2.554)
Cauchy/ Lorentzian	$\frac{a}{\pi(a^2+x^2)}$	(none)	(none)	$(-\infty < x < \infty)$	(2.555)

^aWith r degrees of freedom. Γ is the gamma function.

Multivariate normal distribution

Density function	$\operatorname{pr}(x) = \frac{\exp\left[-\frac{1}{2}(x-\mu)\mathbf{C}^{-1}(x-\mu$	$\frac{-\boldsymbol{\mu})^T}{\sqrt{2}}$ (2.556)	pr k C x μ	probability density number of dimensions covariance matrix variable (k dimensional) vector of means
Mean	$\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_k)$	(2.557)	T $\det \mu_i$	transpose determinant mean of <i>i</i> th variable
Covariance	$\mathbf{C} = \sigma_{ij} = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$	(2.558)	σ_{ij}	components of C
Correlation coefficient	$r = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$	(2.559)	r	correlation coefficient
Box–Muller transformation	$x_1 = (-2\ln y_1)^{1/2} \cos 2\pi y_2$ $x_2 = (-2\ln y_1)^{1/2} \sin 2\pi y_2$	(2.560) (2.561)	x _i y _i	normally distributed deviates deviates distributed uniformly between 0 and 1

Random walk

	1 / "2	\	X	displacement after N steps (can be positive or negative)
One- dimensional	$pr(x) = \frac{1}{(2\pi N l^2)^{1/2}} \exp\left(\frac{-x^2}{2N l^2}\right)^{1/2}$		pr(x)	probability density of x $(\int_{-\infty}^{\infty} \operatorname{pr}(x) dx = 1)$
		(2.562)	N	number of steps
			l	step length (all equal)
rms displacement	$x_{\rm rms} = N^{1/2}l$	(2.563)	x _{rms}	root-mean-squared displacement from start point
Three-	$\operatorname{pr}(r) = \left(\frac{a}{\pi^{1/2}}\right)^3 \exp(-a^2 r^2)$	(2.564)	r	radial distance from start point
dimensional	where $a = \left(\frac{3}{2Nl^2}\right)^{1/2}$		pr(r)	probability density of r $(\int_0^\infty 4\pi r^2 \operatorname{pr}(r) dr = 1)$
	$(2Nl^2)$		а	(most probable distance) ⁻¹
Mean distance	$\langle r \rangle = \left(\frac{8}{3\pi}\right)^{1/2} N^{1/2} l$	(2.565)	$\langle r \rangle$	mean distance from start point
rms distance	$r_{\rm rms} = N^{1/2}l$	(2.566)	$r_{ m rms}$	root-mean-squared distance from start point

Bayesian inference

Conditional probability	$pr(x) = \int pr(x y')pr(y') dy'$	(2.567)	pr(x) probability (density) of $xpr(x y')$ conditional probability of $xgiven y'$
Joint probability	$\operatorname{pr}(x,y) = \operatorname{pr}(x)\operatorname{pr}(y x)$	(2.568)	pr(x,y) joint probability of x and y
Bayes' theorem ^a	$pr(y x) = \frac{pr(x y) pr(y)}{pr(x)}$	(2.569)	

^aIn this expression, pr(y|x) is known as the posterior probability, pr(x|y) the likelihood, and pr(y) the prior probability.

2.14 **Numerical methods**

Straight-line fitting^a

Data	$(\{x_i\},\{y_i\})$ n points	(2.570)
Weights ^b	$\{w_i\}$	(2.571)
Model	y = mx + c	(2.572)
Residuals	$d_i = y_i - mx_i - c$	(2.573)
Weighted centre	$(\overline{x},\overline{y}) = \frac{1}{\sum w_i} \left(\sum w_i x_i, \sum w_i y_i \right)$	
Contro		(2.574)
Weighted moment	$D = \sum w_i (x_i - \overline{x})^2$	(2.575)
Gradient	$m = \frac{1}{D} \sum w_i(x_i - \overline{x}) y_i$	(2.576)
Gradient	$var[m] \simeq \frac{1}{D} \frac{\sum w_i d_i^2}{n-2}$	(2.577)
.	$c = \overline{y} - m\overline{x}$	(2.578)
Intercept	$\operatorname{var}[c] \simeq \left(\frac{1}{\sum w_i} + \frac{\overline{x}^2}{D}\right) \frac{\sum w_i d_i^2}{n-2}$	(2.579)

Time series analysis^a

Discrete convolution	$(r \star s)_j = \sum_{k=-(M/2)+1}^{M/2} s_{j-k} r_k$	(2.580)	r_i response function s_i time series M response function duration
Bartlett (triangular) window	$w_j = 1 - \left \frac{j - N/2}{N/2} \right $	(2.581)	w_j windowing function N length of time series
Welch (quadratic) window	$w_j = 1 - \left[\frac{j - N/2}{N/2}\right]^2$	(2.582)	1 Welch Hamming 0.8 W 0.6
Hanning window	$w_j = \frac{1}{2} \left[1 - \cos\left(\frac{2\pi j}{N}\right) \right]$	(2.583)	0.4 0.2 Hanning
Hamming window	$w_j = 0.54 - 0.46\cos\left(\frac{2\pi j}{N}\right)$	(2.584)	0 0.2 0.4 0.6 0.8 1 j/N

The time series runs from j=0...(N-1), and the windowing functions peak at j=N/2.

^aLeast-squares fit of data to y = mx + c. Errors on y-values only. ^bIf the errors on y_i are uncorrelated, then $w_i = 1/\text{var}[y_i]$.

subintervals

Numerical integration

Simpson's rule^a

$$\int_{x_0}^{x_N} f(x) dx \simeq \frac{h}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + \cdots + 4f_{N-1} + f_N)$$
 (2.586)

Numerical differentiation^a

$$\frac{\mathrm{d}f}{\mathrm{d}x} \simeq \frac{1}{12h} \left[-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h) \right]$$

$$\sim \frac{1}{2h} \left[f(x+h) - f(x-h) \right]$$
(2.587)

$$\frac{\mathrm{d}^2 f}{\mathrm{d}x^2} \simeq \frac{1}{12h^2} \left[-f(x+2h) + 16f(x+h) - 30f(x) + 16f(x-h) - f(x-2h) \right] \tag{2.589}$$

$$\sim \frac{1}{h^2} \left[f(x+h) - 2f(x) + f(x-h) \right] \tag{2.590}$$

$$\frac{\mathrm{d}^3 f}{\mathrm{d}x^3} \sim \frac{1}{2h^3} \left[f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h) \right] \tag{2.591}$$

^aDerivatives of f(x) at x. h is a small interval in x.

Relations containing " \simeq " are $O(h^4)$; those containing " \sim " are $O(h^2)$.

Numerical solutions to f(x) = 0

Secant method	$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$	(2.592)	f x_n	function of x $f(x_{\infty}) = 0$
Newton-Raphson method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	(2.593)	f'	= df/dx

^aN must be even. Simpson's rule is exact for quadratics and cubics.

Numerical solutions to ordinary differential equations^a

	if	$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$	(2.594)
Euler's method	and	$h = x_{n+1} - x_n$	(2.595)
	then	$y_{n+1} = y_n + hf(x_n, y_n) + O(h^2)$	(2.596)
	if	$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$	(2.597)
	and	$h = x_{n+1} - x_n$	(2.598)
Runge-Kutta		$k_1 = hf(x_n, y_n)$	(2.599)
method		$k_2 = hf(x_n + h/2, y_n + k_1/2)$	(2.600)
(fourth-order)		$k_3 = hf(x_n + h/2, y_n + k_2/2)$	(2.601)
		$k_4 = hf(x_n + h, y_n + k_3)$	(2.602)
	then	$y_{n+1} = y_n + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} + O(h^5)$	(2.603)

^aOrdinary differential equations (ODEs) of the form $\frac{dy}{dx} = f(x,y)$. Higher order equations should be reduced to a set of coupled first-order equations and solved in parallel.

Chapter 3 Dynamics and mechanics

3.1 Introduction

Unusually in physics, there is no pithy phrase that sums up the study of *dynamics* (the way in which forces produce motion), *kinematics* (the motion of matter), *mechanics* (the study of the forces and the motion they produce), and *statics* (the way forces combine to produce equilibrium). We will take the phrase *dynamics and mechanics* to encompass all the above, although it clearly does not!

To some extent this is because the equations governing the motion of matter include some of our oldest insights into the physical world and are consequentially steeped in tradition. One of the more delightful, or for some annoying, facets of this is the occasional use of arcane vocabulary in the description of motion. The epitome must be what Goldstein¹ calls "the jabberwockian sounding statement" the polhode rolls without slipping on the herpolhode lying in the invariable plane, describing "Poinsot's construction" – a method of visualising the free motion of a spinning rigid body. Despite this, dynamics and mechanics, including fluid mechanics, is arguably the most practically applicable of all the branches of physics.

Moreover, and in common with electromagnetism, the study of dynamics and mechanics has spawned a good deal of mathematical apparatus that has found uses in other fields. Most notably, the ideas behind the generalised dynamics of Lagrange and Hamilton lie behind much of quantum mechanics.

3.2 Frames of reference

Galilean transformations

Time and position ^a	r = r' + vt $t = t'$	(3.1) (3.2)	r , r ' v t,t'	position in frames <i>S</i> and <i>S'</i> velocity of <i>S'</i> in <i>S</i> time in <i>S</i> and <i>S'</i>	
Velocity	u=u'+v	(3.3)	u,u'	velocity in frames S and S'	
Momentum	p = p' + mv	(3.4)	p , p ' m	particle momentum in frames S and S' particle mass	
Angular momentum	$\boldsymbol{J} = \boldsymbol{J}' + m\boldsymbol{r}' \times \boldsymbol{v} + \boldsymbol{v} \times \boldsymbol{p}' t$	(3.5)	$oldsymbol{J},oldsymbol{J}'$	angular momentum in frames S and S'	
Kinetic energy	$T = T' + m\mathbf{u}' \cdot \mathbf{v} + \frac{1}{2}mv^2$	(3.6)	T,T'	kinetic energy in frames S and S'	

S S' m

Lorentz (spacetime) transformations^a

Lorentz factor $\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$ (3)	3.7) $\begin{bmatrix} \gamma \\ v \\ c \end{bmatrix}$	Lorentz factor velocity of S' in S speed of light	
y = y'; y' = y (3) $z = z'; z' = z (3)$	3.8) x,x 3.9) 10) t,t'	S and S' (similarly for y and z)	$\begin{array}{c c} S & S' \\ \hline & v \\ \hline & x & x' \end{array}$
Differential four-vector ^b $ dX = (c dt, -dx, -dy, -dz) $ (3.	12) X	spacetime four-vector	

 $[\]overline{a}$ For frames S and S' coincident at t=0 in relative motion along x. See page 141 for the transformations of electromagnetic quantities.

Velocity transformations^a

Velocity
$$u_{x} = \frac{u'_{x} + v}{1 + u'_{x}v/c^{2}}; \qquad u'_{x} = \frac{u_{x} - v}{1 - u_{x}v/c^{2}} \qquad (3.13)$$

$$u_{y} = \frac{u'_{y}}{\gamma(1 + u'_{x}v/c^{2})}; \qquad u'_{y} = \frac{u_{y}}{\gamma(1 - u_{x}v/c^{2})} \qquad (3.14)$$

$$u_{z} = \frac{u'_{z}}{\gamma(1 + u'_{x}v/c^{2})}; \qquad u'_{z} = \frac{u_{z}}{\gamma(1 - u_{x}v/c^{2})} \qquad (3.15)$$

$$u_{z} = \frac{u'_{z}}{\gamma(1 + u'_{x}v/c^{2})}; \qquad u'_{z} = \frac{u_{z}}{\gamma(1 - u_{x}v/c^{2})} \qquad (3.15)$$

 $[\]overline{{}^a}$ Frames coincide at t=0.

^bCovariant components, using the (1,-1,-1,-1) signature.

^aFor frames S and S' coincident at t=0 in relative motion along x.

Momentum and energy transformations^a

Momentum and energy	y		γ	Lorentz factor $= [1 - (v/c)^2]^{-1}$
$p_{x} = \gamma(p'_{x} + vE'/c^{2});$ $p_{y} = p'_{y};$ $p_{z} = p'_{z};$ $E = \gamma(E' + vp'_{x});$ $E^{2} - p^{2}c^{2} = E'^{2} - p^{2}c^{2}$	$p'_{x} = \gamma(p_{x} - vE/c^{2})$ $p'_{y} = p_{y}$ $p'_{z} = p_{z}$ $E' = \gamma(E - vp_{x})$ $p'^{2}c^{2} = m_{0}^{2}c^{4}$	(3.16) (3.17) (3.18) (3.19) (3.20)	$\begin{vmatrix} v \\ c \\ p_x, p'_x \end{vmatrix}$ E, E' m_0	velocity of S' speed of light x components momentum in S' (sim. for y energy in S ar (rest) mass
	$\frac{(E/c,-p_x,-p_y,-p_z)}{(E/c,-p_x,-p_y,-p_z)}$	(3.21)	р Р	total momentum four-vector

^{-1/2} in Ss of n S and and z) and S'tum in S

Propagation of light^a

Doppler effect	$\frac{v'}{v} = \gamma \left(1 + \frac{v}{c} \cos \alpha \right)$	(3.22)	v frequency received in Sv' frequency emitted in $S'\alpha arrival angle in S$	$\begin{bmatrix} y & c \\ y & \alpha \end{bmatrix}$
Aberration ^b	$\cos \theta = \frac{\cos \theta' + v/c}{1 + (v/c)\cos \theta'}$ $\cos \theta' = \frac{\cos \theta - v/c}{1 - (v/c)\cos \theta}$	(3.23)	$ \begin{aligned} \gamma & \text{Lorentz factor} \\ &= [1 - (v/c)^2]^{-1/2} \\ v & \text{velocity of } S' \text{ in } S \\ c & \text{speed of light} \\ \theta, \theta' & \text{emission angle of light} \\ & \text{in } S \text{ and } S' \end{aligned} $	$ \begin{array}{c c} & x \\ S & S' \\ y & y' \\ \hline & \theta' & C \\ \hline & x & x' \end{array} $
Relativistic beaming ^c	$P(\theta) = \frac{\sin \theta}{2\gamma^2 [1 - (v/c)\cos \theta]^2}$	(3.25)	$P(\theta)$ angular distribution of photons in S	

Four-vectors^a

Covariant and contravariant components	O	$x_1 = -x^1$ $x_3 = -x^3$	(3.26)	x_i	covariant vector components contravariant components
Scalar product	$x^i y_i = x^0 y_i$	$0 + x^1 y_1 + x^2 y_2 + x^3 y_3$	(3.27)		
Lorentz transform	nations			x^i ,	c' ⁱ four-vector components in frames S and S'
$x^{0} = \gamma \left[x^{\prime 0} + (v/c)\right]$ $x^{1} = \gamma \left[x^{\prime 1} + (v/c)\right]$, =,	$x'^{0} = \gamma [x^{0} - (v/c)x^{1}]$ $x'^{1} = \gamma [x^{1} - (v/c)x^{0}]$	1	γ	Lorentz factor = $[1 - (v/c)^2]^{-1/2}$ velocity of S' in S
$x^2 = x'^2;$		$x'^3 = x^3$	(3.30)	c	speed of light

For frames S and S', coincident at t=0 in relative motion along the (1) direction. Note that the (1,-1,-1,-1)signature used here is common in special relativity, whereas (-1,1,1,1) is often used in connection with general relativity (page 67).

^aFor frames S and S' coincident at t=0 in relative motion along x.

 $^{{}^{}b}$ Covariant components, using the (1,-1,-1,-1) signature.

^aFor frames S and S' coincident at t=0 in relative motion along x.

 $[^]b$ Light travelling in the opposite sense has a propagation angle of $\pi + \theta$ radians.

^cAngular distribution of photons from a source, isotropic and stationary in S'. $\int_0^{\pi} P(\theta) d\theta = 1$.

Rotating frames

Vector transformation	$\left[\frac{\mathrm{d}A}{\mathrm{d}t}\right]_{S} = \left[\frac{\mathrm{d}A}{\mathrm{d}t}\right]_{S'} + \omega \times A$	(3.31)	A any vector S stationary frame S' rotating frame ω angular velocity of S' in S	
Acceleration	$\dot{\mathbf{v}} = \dot{\mathbf{v}}' + 2\boldsymbol{\omega} \times \mathbf{v}' + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}')$	(3.32)	v, v' accelerations in S and S' v' velocity in S' r' position in S'	
Coriolis force	$F'_{\rm cor} = -2m\omega \times v'$	(3.33)	F'_{cor} coriolis force m particle mass	ω F'_{cen}
Centrifugal force	$F'_{\text{cen}} = -m\omega \times (\omega \times r')$ $= +m\omega^2 r'_{\perp}$	(3.34) (3.35)	F'_{cen} centrifugal force r'_{\perp} perpendicular to particle from rotation axis	
Motion	$m\ddot{x} = F_x + 2m\omega_{\rm e}(\dot{y}\sin\lambda - \dot{z}\cos\lambda)$	(3.36)	F_i nongravitational force λ latitude	$\omega_{\rm e}$
relative to Earth	$m\ddot{y} = F_y - 2m\omega_e \dot{x} \sin \lambda$ $m\ddot{z} = F_z - mg + 2m\omega_e \dot{x} \cos \lambda$	(3.37) (3.38)	z local vertical axis y northerly axis x easterly axis	λ
Foucault's pendulum ^a	$\Omega_{\rm f} = -\omega_{\rm e} \sin \lambda$	(3.39)	$Ω_f$ pendulum's rate of turn $ω_e$ Earth's spin rate	

 $[\]omega_{\rm e}$ Ear aThe sign is such as to make the rotation clockwise in the northern hemisphere.

3.3 Gravitation

Newtonian gravitation

Newton's law of gravitation	$\boldsymbol{F}_{1} = \frac{Gm_{1}m_{2}}{r_{12}^{2}}\hat{\boldsymbol{r}}_{12}$	(3.40)	$m_{1,2}$ masses F_1 force on m_1 (=- F_2) r_{12} vector from m_1 to m_2 ^ unit vector
Newtonian field equations ^a	$\mathbf{g} = -\nabla \phi$ $\nabla^2 \phi = -\nabla \cdot \mathbf{g} = 4\pi G \rho$	(3.41) (3.42)	$egin{array}{ll} G & ext{constant of gravitation} \\ m{g} & ext{gravitational field strength} \\ \phi & ext{gravitational potential} \\ ho & ext{mass density} \\ \end{array}$
Fields from an isolated uniform sphere,	$g(r) = \begin{cases} -\frac{GM}{r^2} \hat{r} & (r > a) \\ -\frac{GMr}{a^3} \hat{r} & (r < a) \end{cases}$	(3.43)	r vector from sphere centre M mass of sphere a radius of sphere
mass M, r from the centre	$\phi(r) = \begin{cases} -\frac{GM}{r} & (r > a) \\ \frac{GM}{2a^3} (r^2 - 3a^2) & (r < a) \end{cases}$	(3.44)	M r

^aThe gravitational force on a mass m is mg.

General relativity^a

General Telativit	•			
Line element	$\mathrm{d}s^2 = g_{\mu\nu}\mathrm{d}x^\mu\mathrm{d}x^\nu = -\mathrm{d}\tau^2$	(3.45)	ds $d\tau$ $g_{\mu\nu}$	invariant interval proper time interval metric tensor
Christoffel	$\Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2} g^{\alpha\delta} (g_{\delta\beta,\gamma} + g_{\delta\gamma,\beta} - g_{\beta\gamma,\delta})$	(3.46)	dx^{μ} $\Gamma^{\alpha}_{\beta\gamma}$	differential of x^{μ} Christoffel symbols partial diff. w.r.t. x^{α}
symbols and	$\phi_{;\gamma} = \phi_{,\gamma} \equiv \partial \phi / \partial x^{\gamma}$	(3.47)	,α ;α	covariant diff. w.r.t. x^{α}
covariant differentiation	$A^{\alpha}_{;\gamma} = A^{\alpha}_{,\gamma} + \Gamma^{\alpha}_{\beta\gamma} A^{\beta}$	(3.48)	φ	scalar
differentiation	$B_{\alpha;\gamma} = B_{\alpha;\gamma} - \Gamma^{\beta}_{\alpha\gamma} B_{\beta}$	(3.49)	A^{α} B_{α}	contravariant vector covariant vector
	$R^{\alpha}_{\beta\gamma\delta} = \Gamma^{\alpha}_{\mu\gamma} \Gamma^{\mu}_{\beta\delta} - \Gamma^{\alpha}_{\mu\delta} \Gamma^{\mu}_{\beta\gamma}$	(2.50)		
	$+\Gamma^{lpha}_{eta\delta,\gamma} -\Gamma^{lpha}_{eta\gamma,\delta}$	(3.50)	Dα	D:
Riemann tensor	$B_{\mu;\alpha;\beta} - B_{\mu;\beta;\alpha} = R^{\gamma}_{\mu\alpha\beta} B_{\gamma}$	(3.51)	$R^{\alpha}_{\beta\gamma\delta}$	Riemann tensor
	$R_{lphaeta\gamma\delta} = -R_{lphaeta\delta\gamma}$; $R_{etalpha\gamma\delta} = -R_{lphaeta\gamma\delta}$	(3.52)		
	$R_{\alpha\beta\gamma\delta} + R_{\alpha\delta\beta\gamma} + R_{\alpha\gamma\delta\beta} = 0$	(3.53)		
Geodesic	$\frac{\mathrm{D}v^{\mu}}{\mathrm{D}\lambda} = 0$	(3.54)	v^{μ}	tangent vector $(= dx^{\mu}/d\lambda)$
equation	where $\frac{\mathrm{D}A^{\mu}}{\mathrm{D}\lambda} \equiv \frac{\mathrm{d}A^{\mu}}{\mathrm{d}\lambda} + \Gamma^{\mu}_{\alpha\beta}A^{\alpha}v^{\beta}$	(3.55)	λ	affine parameter (e.g., τ for material particles)
Geodesic deviation	$\frac{\mathrm{D}^2 \xi^{\mu}}{\mathrm{D} \lambda^2} = -R^{\mu}_{\ \alpha\beta\gamma} v^{\alpha} \xi^{\beta} v^{\gamma}$	(3.56)	ξ^{μ}	geodesic deviation
Ricci tensor	$R_{\alpha\beta} \equiv R^{\sigma}_{\ \alpha\sigma\beta} = g^{\sigma\delta} R_{\delta\alpha\sigma\beta} = R_{\beta\alpha}$	(3.57)	$R_{\alpha\beta}$	Ricci tensor
Einstein tensor	$G^{\mu\nu} = R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R$	(3.58)	$G^{\mu u}$ R	Einstein tensor Ricci scalar (= $g^{\mu\nu}R_{\mu\nu}$)
Einstein's field equations	$G^{\mu\nu} = 8\pi T^{\mu\nu}$	(3.59)	$T^{\mu \nu}$ p	stress-energy tensor pressure (in rest frame)
Perfect fluid	$T^{\mu\nu} = (p+\rho)u^{\mu}u^{\nu} + pg^{\mu\nu}$	(3.60)	ρu^{v}	density (in rest frame) fluid four-velocity
Schwarzschild	$ds^2 = -\left(1 - \frac{2M}{r}\right) dt^2 + \left(1 - \frac{2M}{r}\right)$	$\int_{}^{-1} dr^2$	M	spherically symmetric mass (see page 183)
solution (exterior)	$+r^2(\mathrm{d}\theta^2+\sin^2\theta\mathrm{d}\phi^2)$	(3.61)	(r,θ,ϕ)	spherical polar coords.
Kerr solution (ou	tside a spinning black hole)			
$ds^2 = -\frac{\Delta - a^2 s}{a^2}$	$\frac{\sin^2\theta}{\theta} dt^2 - 2a \frac{2Mr \sin^2\theta}{\rho^2} dt d\phi$		J	angular momentum (along z)
<u> </u>	$^{2}\Lambda\sin^{2}\theta$		а	$\equiv J/M$
$+\frac{(r+a)-a}{\varrho^2}$	$\frac{e^2 \Delta \sin^2 \theta}{\sin^2 \theta} \sin^2 \theta d\phi^2 + \frac{\varrho^2}{\Delta} dr^2 + \varrho^2 d\theta^2$	(3.62)	$\begin{array}{ c c } \Delta \\ \varrho^2 \end{array}$	$\equiv J/M$ $\equiv r^2 - 2Mr + a^2$ $\equiv r^2 + a^2 \cos^2 \theta$

^aGeneral relativity conventionally uses the (-1,1,1,1) metric signature and "geometrized units" in which G=1 and c=1. Thus, $1 \log = 7.425 \times 10^{-28} \,\mathrm{m}$ etc. Contravariant indices are written as superscripts and covariant indices as subscripts. Note also that ds^2 means $(ds)^2$ etc.

3.4 Particle motion

Dynamics definitions^a

Newtonian force	$F = m\ddot{r} = \dot{p}$	(3.63)	F m r	force mass of particle particle position vector
Momentum	$p = m\dot{r}$	(3.64)	p	momentum
Kinetic energy	$T = \frac{1}{2}mv^2$	(3.65)	T v	kinetic energy particle velocity
Angular momentum	$J = r \times p$	(3.66)	J	angular momentum
Couple (or torque)	$G = r \times F$	(3.67)	G	couple
Centre of mass (ensemble of N particles)	$\boldsymbol{R}_0 = \frac{\sum_{i=1}^N m_i \boldsymbol{r}_i}{\sum_{i=1}^N m_i}$	(3.68)	$egin{aligned} oldsymbol{R}_0 \ m_i \ oldsymbol{r}_i \end{aligned}$	position vector of centre of mass mass of <i>i</i> th particle position vector of <i>i</i> th particle

^aIn the Newtonian limit, $v \ll c$, assuming m is constant.

Relativistic dynamics^a

Lorentz factor	$\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$	(3.69)	γ v c	Lorentz factor particle velocity speed of light
Momentum	$\boldsymbol{p} = \gamma m_0 \boldsymbol{v}$	(3.70)	$p m_0$	relativistic momentum particle (rest) mass
Force	$F = \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t}$	(3.71)	F t	force on particle time
Rest energy	$E_{\rm r} = m_0 c^2$	(3.72)	$E_{\rm r}$	particle rest energy
Kinetic energy	$T = m_0 c^2 (\gamma - 1)$	(3.73)	T	relativistic kinetic energy
Total energy	$E = \gamma m_0 c^2$ = $(p^2 c^2 + m_0^2 c^4)^{1/2}$	(3.74) (3.75)	E	total energy (= $E_r + T$)

alt is now common to regard mass as a Lorentz invariant property and to drop the term "rest mass." The symbol m_0 is used here to avoid confusion with the idea of "relativistic mass" (= γm_0) used by some authors.

Constant acceleration

$v = u + at$ $v^{2} = u^{2} + 2as$ $s = ut + \frac{1}{2}at^{2}$ $s = \frac{u + v}{2}t$	(3.76) (3.77) (3.78) (3.79)	 u initial velocity v final velocity t time s distance travelled a acceleration
--	--------------------------------------	--

69

Reduced mass (of two interacting bodies)

Ballistics^a

$v = v_0 \cos \alpha \hat{x} + (v_0 \sin \alpha - gt)\hat{j}$	I	v_0 v	initial velocity velocity at t
	` ′	α g	elevation angle gravitational acceleration
$y = x \tan \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$	(3.88)	r t	unit vector time
$a = \frac{v_0^2}{2g} \sin^2 \alpha$	(3.89)	h	maximum height
$=\frac{v_0^2}{g}\sin 2\alpha$	(3.90)	l	range
	$v^{2} = v_{0}^{2} - 2gy$ $v = x \tan \alpha - \frac{gx^{2}}{2v_{0}^{2} \cos^{2} \alpha}$ $v = \frac{v_{0}^{2}}{2g} \sin^{2} \alpha$ $v = \frac{v_{0}^{2}}{2g} \sin^{2} \alpha$ $v = \frac{v_{0}^{2}}{g} \sin^{2} \alpha$	$v = x \tan \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha} $ (3.88) $u = \frac{v_0^2}{2g} \sin^2 \alpha $ (3.89) $u = \frac{v_0^2}{g} \sin 2\alpha $ (3.90)	$v^{2} = v_{0}^{2} - 2gy $ $v = x \tan \alpha - \frac{gx^{2}}{2v_{0}^{2} \cos^{2} \alpha} $ $u = \frac{v_{0}^{2}}{2g} \sin^{2} \alpha $ (3.86) α β α

^aIgnoring the curvature and rotation of the Earth and frictional losses. g is assumed constant.

Rocketry

Escape velocity ^a Specific impulse	$v_{\rm esc} = \left(\frac{2GM}{r}\right)^{1/2}$ $I_{\rm sp} = \frac{u}{g}$	(3.91)	$v_{\rm esc}$ escape velocity G constant of gravitation M mass of central body r central body radius $I_{\rm sp}$ specific impulse u effective exhaust velocity
Exhaust velocity (into a vacuum)	$u = \left[\frac{2\gamma RT_{\rm c}}{(\gamma - 1)\mu}\right]^{1/2}$	(3.93)	$egin{array}{lll} g & { m acceleration \ due \ to \ gravity} \\ R & { m molar \ gas \ constant} \\ \gamma & { m ratio \ of \ heat \ capacities} \\ T_{ m c} & { m combustion \ temperature} \\ \mu & { m effective \ molecular \ mass \ of \ exhaust \ gas} \\ \end{array}$
Rocket equation $(g=0)$	$\Delta v = u \ln \left(\frac{M_{\rm i}}{M_{\rm f}} \right) \equiv u \ln \mathcal{M}$	(3.94)	Δv rocket velocity increment $M_{\rm i}$ pre-burn rocket mass $M_{\rm f}$ post-burn rocket mass $\mathcal M$ mass ratio
Multistage rocket	$\Delta v = \sum_{i=1}^{N} u_i \ln \mathcal{M}_i$	(3.95)	N number of stages M_i mass ratio for <i>i</i> th burn u_i exhaust velocity of <i>i</i> th burn
In a constant gravitational field	$\Delta v = u \ln \mathcal{M} - gt \cos \theta$	(3.96)	t burn time θ rocket zenith angle
Hohmann cotangential transfer ^b	$\Delta v_{ah} = \left(\frac{GM}{r_a}\right)^{1/2} \left[\left(\frac{2r_b}{r_a + r_b}\right)^{1/2} \right]$ $\Delta v_{hb} = \left(\frac{GM}{r_b}\right)^{1/2} \left[1 - \left(\frac{2r_a}{r_a + r_b}\right)^{1/2} \right]$	(3.97)	Δv_{ah} velocity increment, a to h Δv_{hb} velocity increment, h to b r_a radius of inner orbit r_b radius of outer orbit transfer ellipse, h
	$\Delta v_{hb} = \left(\frac{1}{r_b}\right) \left[1 - \left(\frac{1}{r_a + r_b}\right)\right]$	(3.98)	

^aFrom the surface of a spherically symmetric, nonrotating body, mass M.

^bTransfer between coplanar, circular orbits a and b, via ellipse h with a minimal expenditure of energy.

3.4 Particle motion 71

Gravitationally bound orbital motion^a

	ound ordinal motion		
Potential energy of interaction	$U(r) = -\frac{GMm}{r} \equiv -\frac{\alpha}{r}$	(3.99)	$U(r)$ potential energy G constant of gravitation M central mass m orbiting mass $(\ll M)$ α GMm (for gravitation)
Total energy	$E = -\frac{\alpha}{r} + \frac{J^2}{2mr^2} = -\frac{\alpha}{2a}$	(3.100)	E total energy (constant) J total angular momentum (constant)
Virial theorem $(1/r \text{ potential})$	$E = \langle U \rangle / 2 = -\langle T \rangle$ $\langle U \rangle = -2\langle T \rangle$	(3.101) (3.102)	T kinetic energy $\langle \cdot \rangle$ mean value
Orbital equation (Kepler's 1st	$\frac{r_0}{r} = 1 + e\cos\phi, \text{or}$ $r = \frac{a(1 - e^2)}{1 + e\cos\phi}$	(3.103)	r_0 semi-latus-rectum r distance of m from M e eccentricity
law)	$r = \frac{1 + e\cos\phi}{1 + e\cos\phi}$	(3.104)	ϕ phase (true anomaly)
Rate of sweeping area (Kepler's 2nd law)	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{J}{2m} = \text{constant}$	(3.105)	A area swept out by radius vector (total area = πab)
Semi-major axis	$a = \frac{r_0}{1 - e^2} = \frac{\alpha}{2 E }$	(3.106)	a semi-major axis b semi-minor axis
Semi-minor axis	$b = \frac{r_0}{(1 - e^2)^{1/2}} = \frac{J}{(2m E)^{1/2}}$	(3.107)	$\frac{2a}{A}$
Eccentricity ^b	$e = \left(1 + \frac{2EJ^2}{m\alpha^2}\right)^{1/2} = \left(1 - \frac{b^2}{a^2}\right)^{1/2}$	(3.108)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Semi-latus- rectum	$r_0 = \frac{J^2}{m\alpha} = \frac{b^2}{a} = a(1 - e^2)$	(3.109)	2b ae r _{min}
Pericentre	$r_{\min} = \frac{r_0}{1 + e} = a(1 - e)$	(3.110)	r_{\min} pericentre distance
Apocentre	$r_{\text{max}} = \frac{r_0}{1 - e} = a(1 + e)$	(3.111)	$r_{\rm max}$ apocentre distance
Speed	$v^2 = GM\left(\frac{2}{r} - \frac{1}{a}\right)$	(3.112)	v orbital speed
Period (Kepler's 3rd law)	$P = \pi \alpha \left(\frac{m}{2 E ^3}\right)^{1/2} = 2\pi a^{3/2} \left(\frac{m}{\alpha}\right)^{1/2}$	(3.113)	P orbital period
For an inverse-square	law of attraction between two isolated bodi	,	onrelativistic limit. If m is not $\ll M$

^a For an inverse-square law of attraction between two isolated bodies in the nonrelativistic limit. If m is not $\ll M$, then the equations are valid with the substitutions $m \to \mu = Mm/(M+m)$ and $M \to (M+m)$ and with r taken as the body separation. The distance of mass m from the centre of mass is then $r\mu/m$ (see earlier table on Reduced mass). Other orbital dimensions scale similarly, and the two orbits have the same eccentricity.

^bNote that if the total energy, E, is <0 then e <1 and the orbit is an ellipse (a circle if e =0). If E =0, then e =1 and the orbit is a parabola. If E >0 then e >1 and the orbit becomes a hyperbola (see *Rutherford scattering* on next page).

Rutherford scattering^a

^aNonrelativistic treatment for an inverse-square force law and a fixed scattering centre. Similar scattering results from either an attractive or repulsive force. See also *Conic sections* on page 38.

^bThe correct branch can be chosen by inspection.

^cAlso the focal points of the hyperbola.

^dn is the number of particles per second passing through unit area perpendicular to the beam.

Inelastic collisions^a

^aAlong the line of centres, $v_1, v_2 \ll c$.

Oblique elastic collisions^a

^aCollision between two perfectly elastic spheres: m_2 initially at rest, velocities $\ll c$.

^bIn zero momentum frame.

3.5 Rigid body dynamics

Moment of inertia tensor

Moment of inertia tensor ^a	$I_{ij} = \int (r^2 \delta_{ij} - x_i x_j) \mathrm{d}m$	(3.136)	$r r^2 = x^2 + y^2 + z^2$ $\delta_{ij} Kronecker delta$
$\int \int (y)$	$\int xy dm \qquad -\int xy dm \qquad -\int xz dm$ $\int xy dm \qquad \int (x^2 + z^2) dm \qquad -\int yz dm$ $\int xz dm \qquad -\int yz dm \qquad \int (x^2 + y^2) dm$)	I moment of inertia tensor
I = -	$\int xy dm$ $\int (x^2 + z^2) dm$ $- \int yz dm$		dm mass element
\ -	$\int xz dm \qquad -\int yz dm \qquad \int (x^2 + y^2) dm$	(3.137)	x_i position vector of dm
		(3.137)	I_{ij} components of I
D 11.1	$I_{12} = I_{12}^{\star} - ma_1 a_2$	(3.138)	I_{ij}^{\star} tensor with respect to centre of mass
Parallel axis	$I_{11} = I_{11}^{\star} + m(a_2^2 + a_3^2)$	(3.139)	a_i, \boldsymbol{a} position vector of
theorem	$I_{ij} = I_{ij}^{\star} + m(\boldsymbol{a} ^2 \delta_{ij} - a_i a_j)$	(3.140)	centre of mass m mass of body
Angular momentum	$J=$ l ω	(3.141)	J angular momentum ω angular velocity
Rotational kinetic energy	$T = \frac{1}{2}\boldsymbol{\omega} \cdot \boldsymbol{J} = \frac{1}{2} I_{ij} \omega_i \omega_j$	(3.142)	T kinetic energy

 $^{{}^{}a}I_{ii}$ are the moments of inertia of the body. I_{ij} ($i \neq j$) are its products of inertia. The integrals are over the body volume.

Principal axes

Principal moment of inertia tensor	$\mathbf{I}' = \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{pmatrix}$	(3.143)	 I' principal moment of inertia tensor I_i principal moments of inertia
Angular momentum	$\boldsymbol{J} = (I_1 \omega_1, I_2 \omega_2, I_3 \omega_3)$	(3.144)	J angular momentum ω_i components of ω along principal axes
Rotational kinetic energy	$T = \frac{1}{2}(I_1\omega_1^2 + I_2\omega_2^2 + I_3\omega_3^2)$	(3.145)	T kinetic energy
Moment of	$T = T(\omega_1, \omega_2, \omega_3)$	(3.146)	
inertia ellipsoid ^a	$J_i = \frac{\partial T}{\partial \omega_i}$ (J is \perp ellipsoid surface)	(3.147)	I_3
Perpendicular axis theorem	$I_1 + I_2 \begin{cases} \geq I_3 & \text{generally} \\ = I_3 & \text{flat lamina } \perp \text{ to 3-axis} \end{cases}$	(3.148)	I_1 lamina
Symmetries	$I_1 \neq I_2 \neq I_3$ asymmetric top $I_1 = I_2 \neq I_3$ symmetric top $I_1 = I_2 = I_3$ spherical top	(3.149)	

^aThe ellipsoid is defined by the surface of constant T.

Moments of inertia^a

Moments of inertia"			
Thin rod, length l	$I_1 = I_2 = \frac{ml^2}{12}$ $I_3 \simeq 0$	(3.150) (3.151)	I_3 I_1 I_2
Solid sphere, radius r	$I_1 = I_2 = I_3 = \frac{2}{5}mr^2$	(3.152)	I_3
Spherical shell, radius r	$I_1 = I_2 = I_3 = \frac{2}{3}mr^2$	(3.153)	
Solid cylinder, radius r ,	$I_1 = I_2 = \frac{m}{4} \left(r^2 + \frac{l^2}{3} \right)$	(3.154)	I_1 I_3
length l	$I_3 = \frac{1}{2}mr^2$	(3.155)	
	$I_1 = m(b^2 + c^2)/12$	(3.156)	I_1
Solid cuboid, sides <i>a</i> , <i>b</i> , <i>c</i>	$I_2 = m(c^2 + a^2)/12$	(3.157)	I_3
, , , ,	$I_3 = m(a^2 + b^2)/12$	(3.158)	
Solid circular cone, base	$I_1 = I_2 = \frac{3}{20}m\left(r^2 + \frac{h^2}{4}\right)$	(3.159)	$\begin{bmatrix} c \\ I_3 \end{bmatrix} \begin{bmatrix} b \\ I_3 \end{bmatrix}$
radius r , height h^b	$I_3 = \frac{3}{10}mr^2$	(3.160)	$I_3 I_2$ $I_1 \overline{r}$
	$I_1 = m(b^2 + c^2)/5$	(3.161)	I_3
Solid ellipsoid, semi-axes	$I_2 = m(c^2 + a^2)/5$	(3.162)	$\begin{bmatrix} a_1 & c \\ b \end{bmatrix}$
a,b,c	$I_3 = m(a^2 + b^2)/5$	(3.163)	I_1
	$I_1 = mb^2/4$	(3.164)	I_2 I_1
Elliptical lamina,	$I_2 = ma^2/4$	(3.165)	$\left(\begin{array}{c} I_3 & a \end{array}\right)^{-1}$
semi-axes a,b	$I_3 = m(a^2 + b^2)/4$	(3.166)	I_2
D: 1 1'	$I_1 = I_2 = mr^2/4$	(3.167)	$r \stackrel{12}{\underset{I_3}{\longleftarrow}} I_1$
Disk, radius r	$I_3 = mr^2/2$	(3.168)	a
Triangular plate ^c	$I_3 = \frac{m}{36}(a^2 + b^2 + c^2)$	(3.169)	$b I_3 \circ c$

^aWith respect to principal axes for bodies of mass m and uniform density. The radius of gyration is defined as $k = (I/m)^{1/2}$.

 $^{^{}b}$ Origin of axes is at the centre of mass (h/4 above the base).

^cAround an axis through the centre of mass and perpendicular to the plane of the plate.

Centres of mass

Solid hemisphere, radius r	d = 3r/8 from sphere centre	(3.170)
Hemispherical shell, radius r	d=r/2 from sphere centre	(3.171)
Sector of disk, radius r , angle 2θ	$d = \frac{2}{3}r\frac{\sin\theta}{\theta}$ from disk centre	(3.172)
Arc of circle, radius r , angle 2θ	$d = r \frac{\sin \theta}{\theta}$ from circle centre	(3.173)
Arbitrary triangular lamina, height h^a	d = h/3 perpendicular from base	(3.174)
Solid cone or pyramid, height h	d = h/4 perpendicular from base	(3.175)
Spherical cap, height h,	solid: $d = \frac{3}{4} \frac{(2r-h)^2}{3r-h}$ from sphere centre	(3.176)
sphere radius r	shell: $d=r-h/2$ from sphere centre	(3.177)
Semi-elliptical lamina, height <i>h</i>	$d = \frac{4h}{3\pi}$ from base	(3.178)

ah is the perpendicular distance between the base and apex of the triangle.

Pendulums

Simple pendulum	$P = 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{\theta_0^2}{16} + \dots \right) (3.179)$	P period g gravitational acceleration l length θ_0 maximum angular displacement	
Conical pendulum	$P = 2\pi \left(\frac{l\cos\alpha}{g}\right)^{1/2} \tag{3.180}$	α cone half-angle	
Torsional pendulum ^a	$P = 2\pi \left(\frac{lI_0}{C}\right)^{1/2} \tag{3.181}$	I ₀ moment of inertia of bob C torsional rigidity of wire (see page 81)	l l I_0
Compound pendulum ^b	$P \simeq 2\pi \left[\frac{1}{mga} (ma^2 + I_1 \cos^2 \gamma_1 + I_2 \cos^2 \gamma_2 + I_3 \cos^2 \gamma_3) \right]^{1/2} $ (3.182)	 a distance of rotation axis from centre of mass m mass of body I_i principal moments of inertia γ_i angles between rotation axis and principal axes 	I_1 I_2 I_1
Equal double pendulum ^c	$P \simeq 2\pi \left[\frac{l}{(2 \pm \sqrt{2})g} \right]^{1/2}$ (3.183)		l m

^aAssuming the bob is supported parallel to a principal rotation axis. ^bI.e., an arbitrary triaxial rigid body.

^cFor very small oscillations (two eigenmodes).

Tops and gyroscopes

^aComponents are with respect to the principal axes, rotating with the body.

^bThe body frequency is the angular velocity (with respect to principal axes) of ω around the 3-axis. The space frequency is the angular velocity of the 3-axis around J, i.e., the angular velocity at which the body cone moves around the space cone.

 $^{^{}c}J$ close to 3-axis. If $\Omega_{\rm b}^2$ < 0, the body tumbles.

3.6 Oscillating systems

Free oscillations

Differential equation	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\gamma \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = 0$	(3.196)	$\begin{bmatrix} x \\ t \\ \gamma \\ \omega_0 \end{bmatrix}$	oscillating variable time damping factor (per unit mass) undamped angular frequency
Underdamped solution $(\gamma < \omega_0)$	$x = Ae^{-\gamma t}\cos(\omega t + \phi)$ where $\omega = (\omega_0^2 - \gamma^2)^{1/2}$	(3.197) (3.198)	A ϕ ω	amplitude constant phase constant angular eigenfrequency
Critically damped solution $(\gamma = \omega_0)$	$x = \mathrm{e}^{-\gamma t} (A_1 + A_2 t)$	(3.199)	A_i	amplitude constants
Overdamped solution $(\gamma > \omega_0)$	$x = e^{-\gamma t} (A_1 e^{qt} + A_2 e^{-qt})$ where $q = (\gamma^2 - \omega_0^2)^{1/2}$	(3.200) (3.201)		
Logarithmic decrement ^a	$\Delta = \ln \frac{a_n}{a_{n+1}} = \frac{2\pi\gamma}{\omega}$	(3.202)	$\begin{bmatrix} \Delta \\ a_n \end{bmatrix}$	logarithmic decrement nth displacement maximum
Quality factor	$Q = \frac{\omega_0}{2\gamma} \left[\simeq \frac{\pi}{\Delta} \text{if} Q \gg 1 \right]$	(3.203)	Q	quality factor

 $[\]overline{a}$ The decrement is usually the ratio of successive displacement maxima but is sometimes taken as the ratio of successive displacement extrema, reducing Δ by a factor of 2. Logarithms are sometimes taken to base 10, introducing a further factor of $\log_{10} e$.

Forced oscillations

Differential	12 1		X	oscillating variable
Differential	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\gamma \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = F_0 \mathrm{e}^{\mathrm{i}\omega_{\mathrm{f}}t}$	(3.204)	t	time
equation	dt^2 dt dt	(8.28.)	γ	damping factor (per unit mass)
	$x = Ae^{i(\omega_f t - \phi)}$, where	(3.205)	ω_0	undamped angular frequency
Steady-	$A = F_0 [(\omega_0^2 - \omega_f^2)^2 + (2\gamma \omega_f)^2]^{-1/2}$	(3.206)	F_0	mass)
state	$\simeq \frac{F_0/(2\omega_0)}{[(\omega_0 - \omega_f)^2 + \gamma^2]^{1/2}} (\gamma \ll \omega_f)$	(3.207)	ω_{f}	forcing angular frequency
solution ^a	[(**0 **1) * /]			umpirtude
	$\tan \phi = \frac{2\gamma \omega_{\rm f}}{\omega_0^2 - \omega_{\rm f}^2}$	(3.208)	ϕ	phase lag of response behind driving force
Amplitude resonance ^b	$\omega_{\rm ar}^2 = \omega_0^2 - 2\gamma^2$	(3.209)	ω_{ar}	amplitude resonant forcing angular frequency
Velocity resonance ^c	$\omega_{\rm vr} = \omega_0$	(3.210)	$\omega_{ m vr}$	velocity resonant forcing angular frequency
Quality factor	$Q = \frac{\omega_0}{2\gamma}$	(3.211)	Q	quality factor
Impedance	$Z = 2\gamma + \mathbf{i} \frac{\omega_{\rm f}^2 - \omega_0^2}{\omega_{\rm f}}$	(3.212)	Z	impedance (per unit mass)

^aExcluding the free oscillation terms.

^bForcing frequency for maximum displacement.

^cForcing frequency for maximum velocity. Note $\phi = \pi/2$ at this frequency.

3.7 Generalised dynamics

Lagrangian dynamics

Action	$S = \int_{t_1}^{t_2} L(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) \mathrm{d}t$	(3.213)	S action ($\delta S = 0$ for the motion) q generalised coordinates \dot{q} generalised velocities
Euler–Lagrange equation	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$	(3.214)	L Lagrangian t time m mass
Lagrangian of particle in external field	$L = \frac{1}{2}mv^2 - U(\mathbf{r}, t)$ $= T - U$	(3.215) (3.216)	·
Relativistic Lagrangian of a charged particle	$L = -\frac{m_0 c^2}{\gamma} - e(\phi - A \cdot v)$	(3.217)	m_0 (rest) mass γ Lorentz factor $+e$ positive charge ϕ electric potential A magnetic vector potential
Generalised momenta	$p_i = \frac{\partial L}{\partial \dot{q}_i}$	(3.218)	p_i generalised momenta

Hamiltonian dynamics

Hamiltonian	$H = \sum_{i} p_{i} \dot{q}_{i} - L$	(3.219)	L Lagrangian p_i generalised momenta \dot{q}_i generalised velocities
Hamilton's equations	$\dot{q}_i = \frac{\partial H}{\partial p_i}; \qquad \dot{p}_i = -\frac{\partial H}{\partial q_i}$	(3.220)	H Hamiltonian q_i generalised coordinates
Hamiltonian of particle in external field	$H = \frac{1}{2}mv^2 + U(\mathbf{r}, t)$ $= T + U$	(3.221) (3.222)	v particle speed r position vector U potential energy T kinetic energy
Relativistic Hamiltonian of a charged particle	$H = (m_0^2 c^4 + \mathbf{p} - e\mathbf{A} ^2 c^2)^{1/2} + e\phi$	(3.223)	m_0 (rest) mass c speed of light $+e$ positive charge ϕ electric potential A vector potential
Poisson brackets	$[f,g] = \sum_{i} \left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right)$ $[q_{i},g] = \frac{\partial g}{\partial p_{i}}, \qquad [p_{i},g] = -\frac{\partial g}{\partial q_{i}}$	(3.224)	 p particle momentum t time f,g arbitrary functions
	$[H,g] = 0 \text{if} \frac{\partial g}{\partial t} = 0, \frac{dg}{dt} = 0$	(3.226)	[·,·] Poisson bracket (also see Commutators on page 26)
Hamilton– Jacobi equation	$\frac{\partial S}{\partial t} + H\left(q_i, \frac{\partial S}{\partial q_i}, t\right) = 0$	(3.227)	S action

3.8 Elasticity

Elasticity definitions (simple)^a

Stress	$\tau = F/A$	(3.228)	τ <i>F</i> <i>A</i>	stress applied force cross-sectional area
Strain	$e = \delta l/l$	(3.229)	e δl l	strain change in length length
Young modulus (Hooke's law)	$E = \tau/e = \text{constant}$			Young modulus
Poisson ratio ^b	$\sigma = -\frac{\delta w/w}{\delta l/l}$	(3.231)	σ δw w	Poisson ratio change in width width

Elasticity definitions (general)

Stress tensor ^a	$\tau_{ij} = \frac{\text{force } \parallel i \text{ direction}}{\text{area } \perp j \text{ direction}}$	(3.232)	$ au_{ij}$	stress tensor $(\tau_{ij} = \tau_{ji})$
Strain tensor	$e_{kl} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right)$	(3.233)	e_{kl} u_k x_k	strain tensor $(e_{kl} = e_{lk})$ displacement \parallel to x_k coordinate system
Elastic modulus	$\tau_{ij} = \lambda_{ijkl} e_{kl}$	(3.234)	λ_{ijkl}	elastic modulus
Elastic energy ^b	$U = \frac{1}{2}\lambda_{ijkl}e_{ij}e_{kl}$	(3.235)	U	potential energy
Volume strain (dilatation)	$e_{\rm v} = \frac{\delta V}{V} = e_{11} + e_{22} + e_{33}$	(3.236)	$egin{array}{c} e_{ m v} \ \delta V \ V \end{array}$	volume strain change in volume volume
Shear strain	$e_{kl} = \underbrace{(e_{kl} - \frac{1}{3}e_{v}\delta_{kl})}_{\text{pure shear}} + \underbrace{\frac{1}{3}e_{v}\delta_{kl}}_{\text{dilatation}}$	(3.237)	δ_{kl}	Kronecker delta
Hydrostatic compression	$\tau_{ij} = -p\delta_{ij}$	(3.238)	p	hydrostatic pressure

These apply to a thin wire under longitudinal stress.

^bSolids obeying Hooke's law are restricted by thermodynamics to $-1 \le \sigma \le 1/2$, but none are known with $\sigma < 0$. Non-Hookean materials can show $\sigma > 1/2$.

 $^{{}^{}b}$ are normal stresses, τ_{ij} ($i \neq j$) are torsional stresses.

Isotropic elastic solids

Lamé coefficients	$\mu = \frac{E}{2(1+\sigma)}$	(3.239)	μ, λ Lamé coefficients E Young modulus
	$\lambda = \frac{E\sigma}{(1+\sigma)(1-2\sigma)}$	(3.240)	σ Poisson ratio
Longitudinal modulus ^a	$M_{\rm I} = \frac{E(1-\sigma)}{(1+\sigma)(1-2\sigma)} = \lambda + 2\mu$	(3.241)	M ₁ longitudinal elastic modulus
D: 1: 1	$e_{ii} = \frac{1}{E} \left[\tau_{ii} - \sigma(\tau_{jj} + \tau_{kk}) \right]$	(3.242)	e_{ii} strain in <i>i</i> direction τ_{ii} stress in <i>i</i> direction
Diagonalised equations ^b	$\tau_{ii} = M_1 \left[e_{ii} + \frac{\sigma}{1 - \sigma} (e_{jj} + e_{kk}) \right]$	(3.243)	e strain tensort stress tensor
	$\mathbf{t} = 2\mu\mathbf{e} + \lambda1\operatorname{tr}(\mathbf{e})$	(3.244)	1 unit matrix tr(·) trace
Bulk modulus	$K = \frac{E}{3(1 - 2\sigma)} = \lambda + \frac{2}{3}\mu$	(3.245)	K bulk modulus K_T isothermal bulk
(compression modulus)	$\frac{1}{K_T} = -\frac{1}{V} \frac{\partial V}{\partial p} \Big _T$	(3.246)	V volume
modurus)	$-p = Ke_{v}$	(3.247)	p pressure T temperature
Shear modulus (rigidity modulus)	$\mu = \frac{E}{2(1+\sigma)}$	(3.248)	$e_{\rm v}$ volume strain μ shear modulus
	$\tau_{\mathrm{T}} = \mu \theta_{\mathrm{sh}}$	(3.249)	$ au_{\mathrm{T}}$ transverse stress $ heta_{\mathrm{sh}}$ shear strain
Young modulus	$E = \frac{9\mu K}{\mu + 3K}$	(3.250)	$\tau_{\rm T}$
Poisson ratio	$\sigma = \frac{3K - 2\mu}{2(3K + \mu)}$	(3.251)	
aIn an extended medium			

^aIn an extended medium.

Torsion

Torsional rigidity (for a homogeneous rod)	$G = C \frac{\phi}{l}$	(3.252)
Thin circular cylinder	$C = 2\pi a^3 \mu t$	(3.253)
Thick circular cylinder	$C = \frac{1}{2}\mu\pi(a_2^4 - a_1^4)$	(3.254)
Arbitrary thin-walled tube	$C = \frac{4A^2\mu t}{P}$	(3.255)
Long flat ribbon	$C = \frac{1}{3}\mu w t^3$	(3.256)

G twisting couple
C torsional rigidity

l rod length ϕ twist angle in

 $\begin{array}{c} \text{length } l \\ a & \text{radius} \end{array}$

t wall thickness μ shear modulus

 a_1 inner radius a_2 outer radius

cross-sectional area

P perimeter

w cross-sectional width

^bAxes aligned along eigenvectors of the stress and strain tensors.

Bending beams^a

Bending	$G_{\rm b} = \frac{E}{R_{\rm c}} \int \xi^2 \mathrm{d}s$	(3.257)
moment	$=\frac{EI}{R_{\rm c}}$	(3.258)

Light beam,
horizontal at
$$x = 0$$
, weight $y = \frac{W}{2EI} \left(l - \frac{x}{3} \right) x^2$ (3.259)

Heavy beam
$$EI \frac{d^4 y}{dx^4} = w(x)$$
 (3.260)

Euler strut failure
$$F_{\rm c} = \begin{cases} \pi^2 EI/l^2 & \text{(free ends)} \\ 4\pi^2 EI/l^2 & \text{(fixed ends)} \\ \pi^2 EI/(4l^2) & \text{(1 free end)} \end{cases}$$
 (3.261

- moment of area
- displacement from horizontal
- W end-weight
- beam length
- x distance along beam
 - beam weight per unit length

l strut length

speed of transverse wave

 $v = (u/a)^{1/2}$

Elastic wave velocities^a

	$v_{\rm t} = (\mu/\rho)^{1/2}$	(3.262)	v_1	speed of longitudinal wave
In an infinite	$v_{\rm l} = (M_{\rm l}/\rho)^{1/2}$	(3.263)	μ	shear modulus
isotropic solid ^b	$\frac{v_{\rm l}}{v_{\rm t}} = \left(\frac{2 - 2\sigma}{1 - 2\sigma}\right)^{1/2}$	(3.264)	$ ho M_{ m l}$	density longitudinal modulus $\left(=\frac{E(1-\sigma)}{(1+\sigma)(1-2\sigma)}\right)$
In a fluid	$v_{\rm l}\!=\!(K/\rho)^{1/2}$	(3.265)	K	bulk modulus
On a thin plate (wave	travelling along x, plate the	in in z)	$v_1^{(i)}$	speed of longitudinal wave (displacement $ i $)
	$v_{1}^{(x)} = \left[\frac{E}{\rho(1-\sigma^{2})}\right]^{1/2}$ $v_{t}^{(y)} = (\mu/\rho)^{1/2}$	(3.266)	$v_{t}^{(i)}$	speed of transverse wave (displacement $ i $)
k , z	$v_{\rm t}^{(y)} = (\mu/\rho)^{1/2}$	(3.267)	E σ	Young modulus Poisson ratio
y	$v_{\rm t}^{(z)} = k \left[\frac{Et^2}{12\rho(1-\sigma^2)} \right]^{1/2}$	(3.268)	k t	wavenumber $(=2\pi/\lambda)$ plate thickness (in $z, t \ll \lambda$)
	$v_{\rm l}=(E/\rho)^{1/2}$	(3.269)		
In a thin circular	$v_{\phi} = (\mu/\rho)^{1/2}$	(3.270)	v_{ϕ}	torsional wave velocity
rod	$v_{i} = \frac{ka}{L} \left(\frac{E}{L}\right)^{1/2}$	(3.271)	а	rod radius ($\ll \lambda$)

^aWaves that produce "bending" are generally dispersive. Wave (phase) speeds are quoted throughout.

G_b bending momentE Young modulus

The radius of curvature is approximated by $1/R_c \simeq d^2 y/dx^2$.

^bTransverse waves are also known as shear waves, or S-waves. Longitudinal waves are also known as pressure waves, or P-waves.

Waves in strings and springs^a

In a spring	$v_{\rm l} = (\kappa l/\rho_l)^{1/2}$	(3.272)	v_1 κ l ρ_l	speed of longitudinal wave spring constant ^b spring length mass per unit length ^c
On a stretched string	$v_{\rm t} = (T/\rho_l)^{1/2}$	(3.273)	$v_{ m t}$ T	speed of transverse wave tension
On a stretched sheet	$v_{\rm t} = (\tau/\rho_{\rm A})^{1/2}$	(3.274)	$ au_{ m A}$	tension per unit width mass per unit area

^aWave amplitude assumed ≪ wavelength.

Propagation of elastic waves

Acoustic impedance	$Z = \frac{\text{force}}{\text{response velocity}} = \frac{F}{\dot{u}}$ $= (E'\rho)^{1/2}$	(3.275)	Z impedance F stress force u strain displacement
Wave velocity/ impedance relation	if $v = \left(\frac{E'}{\rho}\right)^{1/2}$ then $Z = (E'\rho)^{1/2} = \rho v$		E' elastic modulus ρ density v wave phase velocity
Mean energy density (nondispersive waves)	$\mathcal{U} = \frac{1}{2}E'k^2u_0^2$ $= \frac{1}{2}\rho\omega^2u_0^2$ $P = \mathcal{U}v$	(3.279) (3.280) (3.281)	
Normal coefficients ^a	$r = \frac{u_{\rm r}}{u_{\rm i}} = -\frac{\tau_{\rm r}}{\tau_{\rm i}} = \frac{Z_1 - Z_2}{Z_1 + Z_2}$ $t = \frac{2Z_1}{Z_1 + Z_2}$	(3.282)	r reflection coefficient t transmission coefficient τ stress
Snell's law ^b	$\frac{\sin \theta_{i}}{v_{i}} = \frac{\sin \theta_{r}}{v_{r}} = \frac{\sin \theta_{t}}{v_{t}}$ Implitudes. Because these reflection and training the second	(3.284)	θ_{i} angle of incidence θ_{r} angle of reflection θ_{t} angle of refraction

^aFor stress and strain amplitudes. Because these reflection and transmission coefficients are usually defined in terms of displacement, *u*, rather than stress, there are differences between these coefficients and their equivalents defined in electromagnetism [see Equation (7.179) and page 154].

^bIn the sense $\kappa = \text{force/extension}$.

^cMeasured along the axis of the spring.

^bAngles defined from the normal to the interface. An incident plane pressure wave will generally excite both shear and pressure waves in reflection and transmission. Use the velocity appropriate for the wave type.

3.9 Fluid dynamics

Ideal fluids^a

Continuity ^b	$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$	(3.285)	ρ v t	density fluid velocity field time
Kelvin circulation	$\Gamma = \oint \mathbf{v} \cdot d\mathbf{l} = \text{constant}$ $= \int_{\Omega} \boldsymbol{\omega} \cdot d\mathbf{s}$	(3.286)	Γ d <i>l</i> ds	circulation loop element element of surface bounded by loop
Euler's equation ^c	$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\frac{\nabla p}{\rho} + \mathbf{g}$ or $\frac{\partial}{\partial t} (\nabla \times \mathbf{v}) = \nabla \times [\mathbf{v} \times (\nabla \times \mathbf{v})]$	(3.288)	$\begin{bmatrix} \boldsymbol{\omega} \\ p \\ \boldsymbol{g} \\ (\boldsymbol{v} \cdot \nabla) \end{bmatrix}$	vorticity $(= \nabla \times v)$ pressure gravitational field strength advective operator
Bernoulli's equation (incompressible flow)	$\frac{1}{2}\rho v^2 + p + \rho gz = \text{constant}$	(3.290)	z	altitude
Bernoulli's equation (compressible adiabatic flow) ^d	$\frac{1}{2}v^2 + \frac{\gamma}{\gamma - 1}\frac{p}{\rho} + gz = \text{constant}$ $= \frac{1}{2}v^2 + c_pT + gz$	(3.291)	γ c_p T	ratio of specific heat capacities (c_p/c_V) specific heat capacity at constant pressure temperature
Hydrostatics	$\nabla p = \rho g$	(3.293)		
Adiabatic lapse rate (ideal gas)	$\frac{\mathrm{d}T}{\mathrm{d}z} = -\frac{g}{c_p}$	(3.294)		

^aNo thermal conductivity or viscosity.

Potential flow^a

Velocity potential	$\mathbf{v} = \nabla \phi$ $\nabla^2 \phi = 0$	(3.295) (3.296)	$oldsymbol{v}$ velocity $oldsymbol{\phi}$ velocity potential
Vorticity condition	$\boldsymbol{\omega} = \nabla \times \boldsymbol{v} = 0$	(3.297)	 ω vorticity F drag force on moving sphere
Drag force on a sphere ^b	$\boldsymbol{F} = -\frac{2}{3}\pi\rho a^3 \boldsymbol{u} = -\frac{1}{2}M_{\rm d}\boldsymbol{u}$	(3.298)	$egin{aligned} a & \text{sphere radius} \\ m{\dot{u}} & \text{sphere acceleration} \\ ho & \text{fluid density} \\ M_{\mathrm{d}} & \text{displaced fluid mass} \end{aligned}$

^aFor incompressible fluids.

^bTrue generally.

^cThe second form of Euler's equation applies to incompressible flow only.

^dEquation (3.292) is true only for an ideal gas.

^bThe effect of this drag force is to give the sphere an additional effective mass equal to half the mass of fluid displaced.

Viscous flow (incompressible)^a

Fluid stress	$\tau_{ij} = -p\delta_{ij} + \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$	(3.299)	$ \begin{array}{c} \tau_{ij} \\ p \\ \eta \\ v_i \\ \delta_{ij} \end{array} $	fluid stress tensor hydrostatic pressure shear viscosity velocity along <i>i</i> axis Kronecker delta
Navier–Stokes equation ^b	$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\frac{\nabla p}{\rho} - \frac{\eta}{\rho} \nabla \times \omega + \mathbf{g}$ $= -\frac{\nabla p}{\rho} + \frac{\eta}{\rho} \nabla^2 \mathbf{v} + \mathbf{g}$	(3.300) (3.301)	υ ω g ρ	fluid velocity field vorticity gravitational acceleration density
Kinematic viscosity	$v = \eta/\rho$	(3.302)	v	kinematic viscosity

 $[\]overline{{}^{a}\text{I.e.}, \nabla \cdot \boldsymbol{v} = 0, \, \eta \neq 0.}$

Laminar viscous flow

Between parallel plates	$v_z(y) = \frac{1}{2\eta} y(h - y) \frac{\partial p}{\partial z} $ (3.303)	$\begin{bmatrix} v_z \\ z \\ y \end{bmatrix}$	flow velocity direction of flow distance from plate shear viscosity pressure	$h \frac{z}{y}$
Along a circular pipe ^a	$v_z(r) = \frac{1}{4\eta} (a^2 - r^2) \frac{\partial p}{\partial z} $ (3.304) $Q = \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\pi a^4}{8\eta} \frac{\partial p}{\partial z} $ (3.305)	r a V	distance from pipe axis pipe radius volume	
Circulating between concentric rotating cylinders ^b	$G_z = \frac{4\pi\eta a_1^2 a_2^2}{a_2^2 - a_1^2} (\omega_2 - \omega_1)$ (3.306)	G_z ω_i	axial couple between cylinders per unit length angular velocity of <i>i</i> th cylinder	a_1 a_2
Along an annular pipe	$Q = \frac{\pi}{8\eta} \frac{\partial p}{\partial z} \left[a_2^4 - a_1^4 - \frac{(a_2^2 - a_1^2)^2}{\ln(a_2/a_1)} \right] $ (3.307)	$\begin{bmatrix} a_1 \\ a_2 \\ Q \end{bmatrix}$	inner radius outer radius volume discharge rate	ω_2

^aPoiseuille flow.

\mathbf{Drag}^a

On a sphere (Stokes's law)	$F = 6\pi a \eta v$	(3.308)	F a	drag force radius
On a disk, broadside to flow	$F = 16a\eta v$	(3.309)	υ η	velocity shear viscosity
On a disk, edge on to flow	$F = 32a\eta v/3$	(3.310)		

^aFor Reynolds numbers $\ll 1$.

^bNeglecting bulk (second) viscosity.

^bCouette flow.

Characteristic numbers

Reynolds number	$Re = \frac{\rho UL}{\eta} = \frac{\text{inertial force}}{\text{viscous force}}$	(3.311)	Re Reynolds number ρ density U characteristic velocity L characteristic scale-length η shear viscosity
Froude number ^a	$F = \frac{U^2}{Lg} = \frac{\text{inertial force}}{\text{gravitational force}}$	(3.312)	F Froude number g gravitational acceleration
Strouhal number ^b	$S = \frac{U\tau}{L} = \frac{\text{evolution scale}}{\text{physical scale}}$	(3.313)	S Strouhal number τ characteristic timescale
Prandtl number	$P = \frac{\eta c_p}{\lambda} = \frac{\text{momentum transport}}{\text{heat transport}}$	(3.314)	P Prandtl number c_p Specific heat capacity at constant pressure λ thermal conductivity
Mach number	$M = \frac{U}{c} = \frac{\text{speed}}{\text{sound speed}}$	(3.315)	M Mach number c sound speed
Rossby number	$Ro = \frac{U}{\Omega L} = \frac{\text{inertial force}}{\text{Coriolis force}}$	(3.316)	Ro Rossby number Ω angular velocity

^aSometimes the square root of this expression. L is usually the fluid depth.

Fluid waves

Sound waves	$v_{p} = \left(\frac{K}{\rho}\right)^{1/2} = \left(\frac{\mathrm{d}p}{\mathrm{d}\rho}\right)^{1/2}$	(3.317)	v_p wave (phase) speed K bulk modulus p pressure ρ density
In an ideal gas (adiabatic conditions) ^a	$v_{\rm p} = \left(\frac{\gamma RT}{\mu}\right)^{1/2} = \left(\frac{\gamma p}{\rho}\right)^{1/2}$	(3.318)	γ ratio of heat capacities R molar gas constant T (absolute) temperature μ mean molecular mass
Gravity waves on a liquid surface ^b	$\omega^{2} = gk \tanh kh$ $v_{g} \simeq \begin{cases} \frac{1}{2} \left(\frac{g}{k}\right)^{1/2} & (h \gg \lambda) \\ (gh)^{1/2} & (h \ll \lambda) \end{cases}$	(3.319)	$v_{\rm g}$ group speed of wave h liquid depth λ wavelength k wavenumber k gravitational acceleration k angular frequency
Capillary waves (ripples) ^c	$\omega^2 = \frac{\sigma k^3}{\rho}$	(3.321)	σ surface tension
Capillary–gravity waves $(h \gg \lambda)$	$\omega^2 = gk + \frac{\sigma k^3}{\rho}$	(3.322)	

and If the waves are isothermal rather than adiabatic then $v_{\rm p}=(p/\rho)^{1/2}$. By Amplitude & wavelength. In the limit $k^2\gg g\rho/\sigma$.

^bSometimes the reciprocal of this expression.

Doppler effect^a

Source at rest, observer moving at <i>u</i>	$\frac{v'}{v} = 1 - \frac{ \boldsymbol{u} }{v_{\rm p}} \cos \theta$	(3.323)	v',v" observed frequency v emitted frequency v _p wave (phase) speed in fluid
Observer at rest, source moving at <i>u</i>	$\frac{v''}{v} = \frac{1}{1 - \frac{ \boldsymbol{u} }{v_{p}} \cos \theta}$	(3.324)	u velocity θ angle between wavevector, k , and u

Wave speeds

Phase speed	$v_{\rm p} = \frac{\omega}{k} = v\lambda$	(3.325)	$v_{\rm p}$ phase speed v frequency ω angular frequency (= $2\pi v$) λ wavelength k wavenumber (= $2\pi/\lambda$)
Group speed	$v_{g} = \frac{d\omega}{dk}$ $= v_{p} - \lambda \frac{dv_{p}}{d\lambda}$	(3.326) (3.327)	$v_{ m g}$ group speed

Shocks

Mach wedge ^a	$\sin \theta_{\rm w} = \frac{v_{\rm p}}{v_{\rm b}}$	(3.328)	$egin{array}{c} heta_{ m w} \ v_{ m p} \ v_{ m b} \end{array}$	wedge semi-angle wave (phase) speed body speed
Kelvin wedge ^b	$\lambda_{K} = \frac{4\pi v_{b}^{2}}{3g}$ $\theta_{w} = \arcsin(1/3) = 19^{\circ}.5$	(3.329) (3.330)	λ_{K}	characteristic wavelength gravitational acceleration
Spherical adiabatic shock ^c	$r \simeq \left(\frac{Et^2}{\rho_0}\right)^{1/5}$	(3.331)	$\begin{bmatrix} r \\ E \\ t \\ \rho_0 \end{bmatrix}$	shock radius energy release time density of undisturbed medium
Rankine– Hugoniot shock	$\frac{p_2}{p_1} = \frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1}$ $\frac{v_1}{v_2} = \frac{\rho_2}{\rho_1} = \frac{\gamma + 1}{(\gamma - 1) + 2/M_1^2}$	(3.332)	1 2 p v T	upstream values downstream values pressure velocity
relations ^d	$\frac{T_2}{T_1} = \frac{[2\gamma M_1^2 - (\gamma - 1)][2 + (\gamma - 1)M_1^2]}{(\gamma + 1)^2 M_1^2}$	(3.334)	ρ γ Μ	temperature density ratio of specific heats Mach number

^aApproximating the wake generated by supersonic motion of a body in a nondispersive medium.

^aFor plane waves in a stationary fluid.

^bFor gravity waves, e.g., in the wake of a boat. Note that the wedge semi-angle is independent of v_b .

^cSedov–Taylor relation.

^dSolutions for a steady, normal shock, in the frame moving with the shock front. If $\gamma = 5/3$ then $v_1/v_2 \le 4$.

Surface tension

Definition	$\sigma_{lv} = \frac{\text{surface energy}}{\text{area}}$ $= \frac{\text{surface tension}}{\text{length}}$	(3.335) (3.336)	$\sigma_{ m lv}$	surface tension (liquid/vapour interface)
Laplace's formula ^a	$\Delta p = \sigma_{\rm lv} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$	(3.337)	$egin{array}{c} \Delta p \\ R_i \end{array}$	pressure difference over surface principal radii of curvature
Capillary constant	$c_{\rm c} = \left(\frac{2\sigma_{\rm lv}}{g\rho}\right)^{1/2}$	(3.338)	$c_{\rm c}$ ρ g	capillary constant liquid density gravitational acceleration
Capillary rise (circular tube)	$h = \frac{2\sigma_{\rm lv}\cos\theta}{\rho g a}$	(3.339)	$\begin{bmatrix} h \\ \theta \\ a \end{bmatrix}$	rise height contact angle tube radius
Contact angle	$\cos\theta = \frac{\sigma_{\rm wv} - \sigma_{\rm wl}}{\sigma_{\rm lv}}$	(3.340)	$\sigma_{ m wv}$ $\sigma_{ m wl}$	wall/vapour surface tension wall/liquid surface tension

Chapter 4 Quantum physics

4.1 Introduction

Quantum ideas occupy such a pivotal position in physics that different notations and algebras appropriate to each field have been developed. In the spirit of this book, only those formulas that are commonly present in undergraduate courses and that can be simply presented in tabular form are included here. For example, much of the detail of atomic spectroscopy and of specific perturbation analyses has been omitted, as have ideas from the somewhat specialised field of quantum electrodynamics. Traditionally, quantum physics is understood through standard "toy" problems, such as the potential step and the one-dimensional harmonic oscillator, and these are reproduced here. Operators are distinguished from observables using the "hat" notation, so that the momentum observable, p_x , has the operator $\hat{p}_x = -i\hbar\partial/\partial x$.

For clarity, many relations that can be generalised to three dimensions in an obvious way have been stated in their one-dimensional form, and wavefunctions are implicitly taken as normalised functions of space and time unless otherwise stated. With the exception of the last panel, all equations should be taken as nonrelativistic, so that "total energy" is the sum of potential and kinetic energies, excluding the rest mass energy.

90 Quantum physics

4.2 Quantum definitions

Quantum uncertainty relations

De Broglie relation	$p = \frac{h}{\lambda}$ $p = \hbar k$	(4.1) (4.2)	p, p h h λ	particle momentum Planck constant $h/(2\pi)$ de Broglie wavelength
Planck–Einstein relation	$E = hv = \hbar\omega$	(4.3)	k E v ω	de Broglie wavevector energy frequency angular frequency $(=2\pi v)$
Dispersion ^a	$(\Delta a)^2 = \langle (a - \langle a \rangle)^2 \rangle$ = $\langle a^2 \rangle - \langle a \rangle^2$	(4.4) (4.5)	$\begin{vmatrix} a,b \\ \langle \cdot \rangle \\ (\Delta a)^2 \end{vmatrix}$	observables ^{b} expectation value dispersion of a
General uncertainty relation	$(\Delta a)^2 (\Delta b)^2 \ge \frac{1}{4} \langle \mathbf{i}[\hat{a}, \hat{b}] \rangle^2$	(4.6)	â [·,·]	operator for observable <i>a</i> commutator (see page 26)
Momentum–position uncertainty relation ^c	$\Delta p \Delta x \ge \frac{\hbar}{2}$	(4.7)	x	particle position
Energy-time uncertainty relation	$\Delta E \Delta t \ge \frac{\hbar}{2}$	(4.8)	t	time
Number–phase uncertainty relation	$\Delta n \Delta \phi \ge \frac{1}{2}$	(4.9)	n ϕ	number of photons wave phase

^aDispersion in quantum physics corresponds to variance in statistics.

Wavefunctions

Probability density	$\operatorname{pr}(x,t) \mathrm{d}x = \psi(x,t) ^2 \mathrm{d}x$	(4.10)	pr probability density ψ wavefunction
Probability	$j(x) = \frac{\hbar}{2im} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right)$	(4.11)	j,j probability density current \hbar (Planck constant)/ (2π) x position coordinate
density	$\mathbf{j} = \frac{\hbar}{2\mathbf{i}m} \left[\psi^*(\mathbf{r}) \nabla \psi(\mathbf{r}) - \psi(\mathbf{r}) \nabla \psi^*(\mathbf{r}) \right]$	(4.12)	\hat{p} momentum operator
current ^a	$=\frac{1}{m}\Re(\psi^*\hat{\boldsymbol{p}}\psi)$	(4.13)	m particle mass \Re real part of t time
Continuity equation	$\nabla \cdot \boldsymbol{j} = -\frac{\partial}{\partial t} (\psi \psi^*)$	(4.14)	
Schrödinger equation	$\hat{H}\psi = \mathbf{i}\hbar \frac{\partial \psi}{\partial t}$	(4.15)	H Hamiltonian
Particle stationary states ^b	$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial x^2} + V(x)\psi(x) = E\psi(x)$	(4.16)	V potential energy E total energy

^aFor particles. In three dimensions, suitable units would be particles m⁻²s⁻¹.

^bAn observable is a directly measurable parameter of a system.

^cAlso known as the "Heisenberg uncertainty relation."

^bTime-independent Schrödinger equation for a particle, in one dimension.

Operators

Hermitian conjugate operator	$\int (\hat{a}\phi)^* \psi dx = \int \phi^* \hat{a}\psi dx$	(4.17)	\hat{a} Hermitian conjugate operator ψ, ϕ normalisable functions
Position operator	$\hat{x^n} = x^n$	(4.18)	* complex conjugate x,y position coordinates
Momentum operator	$\hat{p_x^n} = \frac{\hbar^n}{\mathbf{i}^n} \frac{\partial^n}{\partial x^n}$	(4.19)	$ n arbitrary integer \ge 1 $ $ p_x momentum coordinate $
Kinetic energy operator	$\hat{T} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$	(4.20)	T kinetic energy \hbar (Planck constant)/(2 π) m particle mass
Hamiltonian operator	$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$	(4.21)	H Hamiltonian V potential energy
Angular momentum	$\hat{L}_z = \hat{x}\hat{p_y} - \hat{y}\hat{p_x}$	(4.22)	L_z angular momentum along z axis (sim. x and y)
operators	$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$	(4.23)	L total angular momentum
Parity operator	$\hat{P}\psi(\mathbf{r}) = \psi(-\mathbf{r})$	(4.24)	\hat{P} parity operator r position vector

Expectation value

Expectation value ^a	$\langle a \rangle = \langle \hat{a} \rangle = \int \Psi^* \hat{a} \Psi dx$ $= \langle \Psi \hat{a} \Psi \rangle$	(4.25) (4.26)	$\langle a \rangle$ expectation value of a \hat{a} operator for a Ψ (spatial) wavefunction x (spatial) coordinate
Time dependence	$rac{\mathrm{d}}{\mathrm{d}t}\langle\hat{a} angle=rac{\mathrm{i}}{\hbar}\langle[\hat{H},\hat{a}] angle+\left\langlerac{\partial\hat{a}}{\partial t} ight angle$	(4.27)	$ \begin{array}{ccc} t & \text{time} \\ \hbar & (\text{Planck constant})/(2\pi) \end{array} $
Relation to eigenfunctions	if $\hat{a}\psi_n = a_n \psi_n$ and $\Psi = \sum c_n \psi_n$ then $\langle a \rangle = \sum c_n ^2 a_n$	(4.28)	ψ_n eigenfunctions of \hat{a} a_n eigenvalues n dummy index c_n probability amplitudes
Ehrenfest's theorem	$m\frac{\mathrm{d}}{\mathrm{d}t}\langle \mathbf{r}\rangle = \langle \mathbf{p}\rangle$ $\frac{\mathrm{d}}{\mathrm{d}t}\langle \mathbf{p}\rangle = -\langle \nabla V\rangle$	(4.29) (4.30)	 m particle mass r position vector p momentum V potential energy

^aEquation (4.26) uses the Dirac "bra-ket" notation for integrals involving operators. The presence of vertical bars distinguishes this use of angled brackets from that on the left-hand side of the equations. Note that $\langle a \rangle$ and $\langle \hat{a} \rangle$ are taken as equivalent.

92 Quantum physics

Dirac notation

Matrix element ^a	$a_{nm} = \int \psi_n^* \hat{a} \psi_m dx$ $= \langle n \hat{a} m \rangle$	(4.31) (4.32)	a_{nm}	eigenvector indices matrix element basis states operator spatial coordinate
Bra vector	bra state vector = $\langle n $	(4.33)	\(\cdot \)	bra
Ket vector	$ket state vector = m\rangle$	(4.34)	$ \cdot\rangle$	ket
Scalar product	$\langle n m\rangle = \int \psi_n^* \psi_m \mathrm{d}x$	(4.35)		
Expectation	if $\Psi = \sum_{n} c_{n} \psi_{n}$ then $\langle a \rangle = \sum_{n} \sum_{n} c_{n}^{*} c_{m} a_{nm}$	(4.36)	Ψ c_n	wavefunction probability amplitudes
	m - n			

^aThe Dirac bracket, $\langle n|\hat{a}|m\rangle$, can also be written $\langle \psi_n|\hat{a}|\psi_m\rangle$.

4.3 Wave mechanics

Potential step^a

	incident particle V_0 I	11	\overrightarrow{x}
Potential function	$V(x) = \begin{cases} 0 & (x < 0) \\ V_0 & (x \ge 0) \end{cases}$	(4.38)	V particle potential energy V_0 step height \hbar (Planck constant)/ (2π)
Wavenumbers	$\hbar^2 k^2 = 2mE$ $(x < 0)$ $\hbar^2 q^2 = 2m(E - V_0)$ $(x > 0)$	(4.39) (4.40)	k,q particle wavenumbers m particle mass E total particle energy
Amplitude reflection coefficient	$r = \frac{k - q}{k + q}$	(4.41)	r amplitude reflection coefficient
Amplitude transmission coefficient	$t = \frac{2k}{k+q}$	(4.42)	t amplitude transmission coefficient
Probability currents ^b	$j_{I} = \frac{\hbar k}{m} (1 - r ^{2})$ $j_{II} = \frac{\hbar q}{m} t ^{2}$	(4.43) (4.44)	j_1 particle flux in zone I j_{11} particle flux in zone II

^aOne-dimensional interaction with an incident particle of total energy E = KE + V. If $E < V_0$ then q is imaginary and $|r|^2 = 1$, 1/|q| is then a measure of the tunnelling depth.

^bParticle flux with the sign of increasing x.

93

Potential well^a

	incident particle $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(x) $ \begin{array}{c} a & \text{III} \\ \hline & -V \end{array} $	<i>x</i> /0
Potential function	$V(x) = \begin{cases} 0 & (x > a) \\ -V_0 & (x \le a) \end{cases}$	(4.45)	V particle potential energy V_0 well depth \hbar (Planck constant)/ (2π) $2a$ well width
Wavenumbers	$\hbar^2 k^2 = 2mE$ $(x > a)$ $\hbar^2 q^2 = 2m(E + V_0)$ $(x < a)$	(4.46) (4.47)	k,q particle wavenumbers m particle mass E total particle energy
Amplitude reflection coefficient	$r = \frac{ie^{-2ika}(q^2 - k^2)\sin 2qa}{2kq\cos 2qa - i(q^2 + k^2)\sin 2qa}$	(4.48)	r amplitude reflection coefficient
Amplitude transmission coefficient	$t = \frac{2kqe^{-2\mathbf{i}ka}}{2kq\cos 2qa - \mathbf{i}(q^2 + k^2)\sin 2qa}$	(4.49)	t amplitude transmission coefficient
Probability currents ^b	$j_{I} = \frac{\hbar k}{m} (1 - r ^2)$ $j_{III} = \frac{\hbar k}{m} t ^2$	(4.50) (4.51)	j_1 particle flux in zone I j_{111} particle flux in zone III
Ramsauer effect ^c	$E_n = -V_0 + \frac{n^2 \hbar^2 \pi^2}{8ma^2}$	(4.52)	$n integer > 0$ $E_n Ramsauer energy$
Bound states $(V_0 < E < 0)^d$	$\tan qa = \begin{cases} k /q & \text{even parity} \\ -q/ k & \text{odd parity} \end{cases}$ $q^2 - k ^2 = 2mV_0/\hbar^2$	(4.53) (4.54)	

^aOne-dimensional interaction with an incident particle of total energy E = KE + V > 0.

 $[^]b$ Particle flux in the sense of increasing x.

^cIncident energy for which $2qa = n\pi$, |r| = 0, and |t| = 1.

^dWhen E < 0, k is purely imaginary. |k| and q are obtained by solving these implicit equations.

94 Quantum physics

Barrier tunnelling^a

	incident particle $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X	
Potential function	$V(x) = \begin{cases} 0 & (x > a) \\ V_0 & (x \le a) \end{cases} $ (4.55)	$\begin{pmatrix} V \\ V_0 \\ \hbar \\ 2a \end{pmatrix}$	particle potential energy well depth (Planck constant)/ (2π) barrier width
Wavenumber and tunnelling constant	$ \hbar^2 k^2 = 2mE $ (x > a) (4.56) $ \hbar^2 \kappa^2 = 2m(V_0 - E) (x < a) $ (4.56)	, ,	incident wavenumber tunnelling constant particle mass total energy ($< V_0$)
Amplitude reflection coefficient	$r = \frac{-\mathbf{i}e^{-2\mathbf{i}ka}(k^2 + \kappa^2)\sinh 2\kappa a}{2k\kappa\cosh 2\kappa a - \mathbf{i}(k^2 - \kappa^2)\sinh 2\kappa a} $ (4.58)	r)	amplitude reflection coefficient
Amplitude transmission coefficient	$t = \frac{2k\kappa e^{-2ika}}{2k\kappa \cosh 2\kappa a - \mathbf{i}(k^2 - \kappa^2)\sinh 2\kappa a} $ (4.59)) t	amplitude transmission coefficient
Tunnelling probability	$ t ^{2} = \frac{4k^{2}\kappa^{2}}{(k^{2} + \kappa^{2})^{2}\sinh^{2}2\kappa a + 4k^{2}\kappa^{2}} $ $\simeq \frac{16k^{2}\kappa^{2}}{(k^{2} + \kappa^{2})^{2}}\exp(-4\kappa a) (t ^{2} \ll 1) $ (4.60)	$ t ^2$	tunnelling probability
Probability currents ^b	$j_{I} = \frac{\hbar k}{m} (1 - r ^{2}) $ $j_{III} = \frac{\hbar k}{m} t ^{2} $ (4.62)	J _I	particle flux in zone I particle flux in zone III

^aBy a particle of total energy E = KE + V, through a one-dimensional rectangular potential barrier height $V_0 > E$.

^bParticle flux in the sense of increasing x.

Particle in a rectangular box^a

Eigen- functions	$\Psi_{lmn} = \left(\frac{8}{abc}\right)^{1/2} \sin\frac{l\pi x}{a} \sin\frac{m\pi y}{b} \sin\frac{n\pi z}{c} $ (4.64)	Ψ_{lmn} a,b,c l,m,n	eigenfunctions box dimensions integers ≥ 1
Energy levels	$E_{lmn} = \frac{h^2}{8M} \left(\frac{l^2}{a^2} + \frac{m^2}{b^2} + \frac{n^2}{c^2} \right) $ (4.65)	E_{lmn} h M	energy Planck constant particle mass
Density of states	$\rho(E) dE = \frac{4\pi}{h^3} (2M^3 E)^{1/2} dE $ (4.66)	$\rho(E)$	density of states (per unit volume)

Harmonic oscillator

Schrödinger equation	$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi_n}{\partial x^2} + \frac{1}{2}m\omega^2 x^2 \psi_n = E_n \psi_n$	(4.67)	h m ψ_n x	(Planck constant)/ (2π) mass n th eigenfunction displacement
Energy levels ^a	$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$	(4.68)	n ω E_n	integer ≥ 0 angular frequency total energy in <i>n</i> th state
Eigen- functions	$\psi_n = \frac{H_n(x/a) \exp[-x^2/(2a^2)]}{(n! 2^n a \pi^{1/2})^{1/2}}$ where $a = \left(\frac{\hbar}{m\omega}\right)^{1/2}$	(4.69)	H_n	Hermite polynomials
Hermite polynomials	$H_0(y) = 1$, $H_1(y) = 2y$, $H_2(y) = 4y$ $H_{n+1}(y) = 2yH_n(y) - 2nH_{n-1}(y)$		y	dummy variable

 $[\]overline{{}^{a}E_{0}}$ is the zero-point energy of the oscillator.

4.4 Hydrogenic atoms

Bohr model^a

Quantisation condition	$\mu r_n^2 \Omega = n\hbar$	(4.71)	n nth orbit radius n orbital angular speed n principal quantum number n
Bohr radius	$a_0 = \frac{\epsilon_0 h^2}{\pi m_e e^2} = \frac{\alpha}{4\pi R_\infty} \simeq 52.9 \mathrm{pm}$	(4.72)	a_0 Bohr radius μ reduced mass ($\simeq m_e$) $-e$ electronic charge
Orbit radius	$r_n = \frac{n^2}{Z} a_0 \frac{m_e}{\mu}$	(4.73)	Z atomic number h Planck constant $\hbar h/(2\pi)$
Total energy	$E_n = -\frac{\mu e^4 Z^2}{8\epsilon_0^2 h^2 n^2} = -R_{\infty} h c \frac{\mu}{m_e} \frac{Z^2}{n^2}$	(4.74)	E_n total energy of <i>n</i> th orbit ϵ_0 permittivity of free space m_e electron mass
Fine structure constant	$\alpha = \frac{\mu_0 c e^2}{2h} = \frac{e^2}{4\pi\epsilon_0 \hbar c} \simeq \frac{1}{137}$	(4.75)	α fine structure constant μ_0 permeability of free space
Hartree energy	$E_{\rm H} = \frac{\hbar^2}{m_{\rm e} a_0^2} \simeq 4.36 \times 10^{-18} \rm J$	(4.76)	$E_{\rm H}$ Hartree energy
Rydberg constant	$R_{\infty} = \frac{m_{\rm e}c\alpha^2}{2h} = \frac{m_{\rm e}e^4}{8h^3\epsilon_0^2c} = \frac{E_{\rm H}}{2hc}$	(4.77)	R_{∞} Rydberg constant c speed of light
Rydberg's formula ^b	$\frac{1}{\lambda_{mn}} = R_{\infty} \frac{\mu}{m_{\rm e}} Z^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$		λ_{mn} photon wavelength m integer $> n$

^a Because the Bohr model is strictly a two-body problem, the equations use reduced mass, $\mu = m_{\rm e} m_{\rm nuc}/(m_{\rm e} + m_{\rm nuc}) \simeq m_{\rm e}$, where $m_{\rm nuc}$ is the nuclear mass, throughout. The orbit radius is therefore the electron–nucleus distance.

 $[^]b$ Wavelength of the spectral line corresponding to electron transitions between orbits m and n.

96 Quantum physics

Hydrogenlike atoms – Schrödinger solution^a

Schrödinger equation

$$-\frac{\hbar^2}{2\mu}\nabla^2\Psi_{nlm} - \frac{Ze^2}{4\pi\epsilon_0 r}\Psi_{nlm} = E_n\Psi_{nlm} \quad \text{with} \quad \mu = \frac{m_e m_{\text{nuc}}}{m_e + m_{\text{nuc}}}$$
(4.79)

Eigenfunctions

$$\Psi_{nlm}(r,\theta,\phi) = \left[\frac{(n-l-1)!}{2n(n+l)!} \right]^{1/2} \left(\frac{2}{an} \right)^{3/2} x^l e^{-x/2} L_{n-l-1}^{2l+1}(x) Y_l^m(\theta,\phi)$$
 (4.80)

with
$$a = \frac{m_e}{\mu} \frac{a_0}{Z}$$
, $x = \frac{2r}{an}$, and $L_{n-l-1}^{2l+1}(x) = \sum_{k=0}^{n-l-1} \frac{(l+n)!(-x)^k}{(2l+1+k)!(n-l-1-k)!k!}$

Total energy	$E_n = -\frac{\mu e^4 Z^2}{8\epsilon_0^2 h^2 n^2}$	(4.81)	E_n total energy ϵ_0 permittivity of free space
Radial expectation values	$\langle r \rangle = \frac{a}{2} [3n^2 - l(l+1)]$ $\langle r^2 \rangle = \frac{a^2 n^2}{2} [5n^2 + 1 - 3l(l+1)]$	(4.82) (4.83)	h Planck constant m_e mass of electron \hbar $h/2\pi$ μ reduced mass ($\simeq m_e$)
	$\langle 1/r \rangle = \frac{1}{an^2}$ $\langle 1/r^2 \rangle = \frac{2}{(2l+1)n^3 a^2}$	(4.84) (4.85)	$m_{ m nuc}$ mass of nucleus Ψ_{nlm} eigenfunctions Ze charge of nucleus $-e$ electronic charge
Allowed quantum numbers and selection rules ^b	$n = 1,2,3,$ $l = 0,1,2,,(n-1)$ $m = 0,\pm 1,\pm 2,,\pm l$ $\Delta n \neq 0$ $\Delta l = \pm 1$ $\Delta m = 0 \text{ or } \pm 1$	(4.86) (4.87) (4.88) (4.89) (4.90) (4.91)	$L_p^q \qquad \text{associated Laguerre} \\ \qquad \text{polynomials}^c \\ a \qquad \text{classical orbit radius, } n = 1 \\ r \qquad \text{electron-nucleus separation} \\ Y_l^m \qquad \text{spherical harmonics} \\ a_0 \qquad \text{Bohr radius} = \frac{\epsilon_0 h^2}{\pi m_e e^2}$

$$\begin{split} \Psi_{100} &= \frac{a^{-3/2}}{\pi^{1/2}} \mathrm{e}^{-r/a} \\ \Psi_{210} &= \frac{a^{-3/2}}{4(2\pi)^{1/2}} \frac{r}{a} \mathrm{e}^{-r/2a} \mathrm{cos}\theta \\ \Psi_{210} &= \frac{a^{-3/2}}{4(2\pi)^{1/2}} \frac{r}{a} \mathrm{e}^{-r/2a} \mathrm{cos}\theta \\ \Psi_{300} &= \frac{a^{-3/2}}{81(3\pi)^{1/2}} \left(27 - 18\frac{r}{a} + 2\frac{r^2}{a^2} \right) \mathrm{e}^{-r/3a} \\ \Psi_{311} &= \mp \frac{a^{-3/2}}{81\pi^{1/2}} \left(6 - \frac{r}{a} \right) \frac{r}{a} \mathrm{e}^{-r/3a} \mathrm{cos}\theta \\ \Psi_{3121} &= \pm \frac{a^{-3/2}}{81\pi^{1/2}} \left(6 - \frac{r}{a} \right) \frac{r}{a} \mathrm{e}^{-r/3a} \mathrm{sin}\theta \mathrm{e}^{\pm \mathrm{i}\phi} \\ \Psi_{3221} &= \pm \frac{a^{-3/2}}{81\pi^{1/2}} \frac{r^2}{a^2} \mathrm{e}^{-r/3a} \mathrm{sin}\theta \mathrm{cos}\theta \mathrm{e}^{\pm \mathrm{i}\phi} \\ \Psi_{3222} &= \frac{a^{-3/2}}{162\pi^{1/2}} \frac{r^2}{a^2} \mathrm{e}^{-r/3a} \mathrm{sin}^2\theta \mathrm{e}^{\pm 2\mathrm{i}\phi} \end{split}$$

^aFor a single bound electron in a perfect nuclear Coulomb potential (nonrelativistic and spin-free).

^bFor dipole transitions between orbitals.

^cThe sign and indexing definitions for this function vary. This form is appropriate to Equation (4.80).

Orbital angular dependence

^aSee page 49 for the definition of spherical harmonics.

98 Quantum physics

4.5 Angular momentum

Orbital angular momentum

	$\hat{L} = r \times \hat{p}$ $\hat{h} (\hat{\partial} \hat{\partial})$	(4.101)	L	angular momentum
	$\hat{L}_z = \frac{\hbar}{\mathbf{i}} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$	(4.102)	p r	linear momentum position vector
Angular momentum operators	$=rac{\hbar}{\mathbf{i}}rac{\partial}{\partial\phi}$	(4.103)	xyz	Cartesian coordinates
operators	$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$	(4.104)	,	spherical polar coordinates
	$=-\hbar^2\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]$	(4.105)	ħ	(Planck constant)/ (2π)
	$\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$	(4.106)	$\hat{L_{+}}$	ladder operators
Ladder operators	$=\hbar \mathrm{e}^{\pm \mathrm{i}\phi}\left(\mathrm{i}\cot\theta\frac{\partial}{\partial\phi}\pm\frac{\partial}{\partial\theta}\right)$	(4.107)	$Y_l^{m_l}$	spherical harmonics
	$\hat{L}_{\pm}Y_{l}^{m_{l}} = \hbar[l(l+1) - m_{l}(m_{l} \pm 1)]^{1/2}Y_{l}^{m_{l} \pm 1}$	(4.108)	l,m_l	integers
	$\hat{L}^2 Y_l^{m_l} = l(l+1)\hbar^2 Y_l^{m_l} \qquad (l \ge 0)$	(4.109)		
Eigen- functions and eigenvalues	$\hat{L}_z Y_l^{m_l} = m_l \hbar Y_l^{m_l} \qquad (m_l \le l)$	(4.110)		
	$\hat{L}_z[\hat{L_{\pm}}Y_l^{m_l}(\theta,\phi)] = (m_l \pm 1)\hbar \hat{L_{\pm}}Y_l^{m_l}(\theta,\phi)$	(4.111)		
	l-multiplicity = $(2l+1)$	(4.112)		

Angular momentum commutation relations a

$ \begin{aligned} $	Conservation of angular momentum ^b	$[\hat{H},\hat{L}_z]=0$	$(4.113) \begin{array}{c c} p & \text{momer} \\ H & \text{Hamilt} \end{array}$	
$[\hat{L}^2, \hat{L}_x] = [\hat{L}^2, \hat{L}_y] = [\hat{L}^2, \hat{L}_z] = 0$ (4.127)	$[\hat{L}_z, y] = -\mathbf{i}\hbar x$ $[\hat{L}_z, z] = 0$ $[\hat{L}_z, \hat{p}_x] = \mathbf{i}\hbar \hat{p}_y$ $[\hat{L}_z, \hat{p}_y] = -\mathbf{i}\hbar \hat{p}_x$ $[\hat{L}_z, \hat{p}_z] = 0$	(4.115) (4.116) (4.117) (4.118) (4.119)	$[\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y$ $[\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x$ $[\hat{L}_+, \hat{L}_z] = -\hbar \hat{L}_+$ $[\hat{L}, \hat{L}_z] = \hbar \hat{L}$ $[\hat{L}_+, \hat{L}] = 2\hbar \hat{L}_z$ $[\hat{L}^2, \hat{L}_+] = 0$	(4.121) (4.122) (4.123) (4.124) (4.125)

^aThe commutation of a and b is defined as [a,b] = ab - ba (see page 26). Similar expressions hold for S and J.

^bFor motion under a central force.

Clebsch-Gordan coefficients^a

^aOr "Wigner coefficients," using the Condon–Shortley sign convention. Note that a square root is assumed over all coefficient digits, so that "-3/10" corresponds to $-\sqrt{3/10}$. Also for clarity, only values of $m_j \ge 0$ are listed here. The coefficients for $m_j < 0$ can be obtained from the symmetry relation $\langle j, -m_j | l_1, -m_1; l_2, -m_2 \rangle = (-1)^{l_1+l_2-j} \langle j, m_j | l_1, m_1; l_2, m_2 \rangle$.

100 Quantum physics

Angular momentum addition^a

Total angular momentum	$J = L + S$ $\hat{J}_z = \hat{L}_z + \hat{S}_z$ $\hat{J}^2 = \hat{L}^2 + \hat{S}^2 + 2\widehat{L \cdot S}$ $\hat{J}_z \psi_{j,m_j} = m_j \hbar \psi_{j,m_j}$ $\hat{J}^2 \psi_{j,m_j} = j(j+1)\hbar^2 \psi_{j,m_j}$ $j\text{-multiplicity} = (2l+1)(2s+1)$	(4.128) (4.129) (4.130) (4.131) (4.132) (4.133)	J,J total angular momentum L,L orbital angular momentum S,S spin angular momentum ψ eigenfunctions m_j magnetic quantum number $ m_j \leq j$ j $(l+s) \geq j \geq l-s $
Mutually commuting sets	$\{L^{2}, S^{2}, J^{2}, J_{z}, \boldsymbol{L} \cdot \boldsymbol{S}\}\$ $\{L^{2}, S^{2}, L_{z}, S_{z}, J_{z}\}$	(4.134) (4.135)	{} set of mutually commuting observables
Clebsch– Gordan coefficients ^b	$ j,m_j\rangle = \sum_{\substack{m_l,m_s\\m_s+m_l=m_j}} \langle j,m_j l,m_l;s,m_s\rangle l,m_l$	$ m_l\rangle s,m_s\rangle$ (4.136)	$ \cdot\rangle$ eigenstates $\langle\cdot \cdot\rangle$ Clebsch–Gordan coefficients

^aSumming spin and orbital angular momenta as examples, eigenstates $|s,m_s\rangle$ and $|l,m_l\rangle$.

Magnetic moments

Bohr magneton	$\mu_{\rm B} = \frac{e\hbar}{2m_{\rm e}}$	(4.137)	—е ћ	Bohr magneton electronic charge (Planck constant)/ (2π) electron mass
Gyromagnetic ratio ^a	$\gamma = \frac{\text{orbital magnetic moment}}{\text{orbital angular momentum}}$	(4.138)	γ .	gyromagnetic ratio
Electron orbital gyromagnetic ratio	$\gamma_{e} = \frac{-\mu_{B}}{\hbar}$ $= \frac{-e}{2m_{e}}$	(4.139) (4.140)	γe	electron gyromagnetic ratio
Spin magnetic moment of an electron ^b	$\mu_{e,z} = -g_e \mu_B m_s$ $= \pm g_e \gamma_e \frac{\hbar}{2}$ $= \pm \frac{g_e e^{\hbar}}{4m_e}$	(4.141) (4.142) (4.143)	g _e	z component of spin magnetic moment electron g-factor ($\simeq 2.002$) spin quantum number ($\pm 1/2$)
Landé g-factor ^c	$\mu_{J} = g_{J} \sqrt{J(J+1)} \mu_{B}$ $\mu_{J,z} = -g_{J} \mu_{B} m_{J}$ $g_{J} = 1 + \frac{J(J+1) + S(S+1) - L(D+1)}{2J(J+1)}$	$ \begin{array}{c} (4.144) \\ (4.145) \\ ($	$\mu_{J,z}$ m_J J,L,S	total magnetic moment z component of μ_J magnetic quantum number total, orbital, and spin quantum numbers Landé g-factor

^aOr "magnetogyric ratio."

^bOr "Wigner coefficients." Assuming no L-S interaction.

^bThe electron g-factor equals exactly 2 in Dirac theory. The modification $g_e = 2 + \alpha/\pi + ...$, where α is the fine structure constant, comes from quantum electrodynamics.

^cRelating the spin + orbital angular momenta of an electron to its total magnetic moment, assuming g_e = 2.

Quantum paramagnetism

 $^{^{}a}$ Of an ensemble of atoms in thermal equilibrium at temperature T, each with total angular momentum quantum number J.

102 Quantum physics

4.6 Perturbation theory

Time-independent perturbation theory

Unperturbed states	$\hat{H}_0 \psi_n = E_n \psi_n$ $(\psi_n \text{ nondegenerate})$	(4.152)	\hat{H}_0 unperturbed Hamiltonian ψ_n eigenfunctions of \hat{H}_0 E_n eigenvalues of \hat{H}_0 n integer ≥ 0
Perturbed Hamiltonian	$\hat{H} = \hat{H}_0 + \hat{H}'$	(4.153)	\hat{H} perturbed Hamiltonian \hat{H}' perturbation ($\ll \hat{H}_0$)
Perturbed eigenvalues ^a	$E'_{k} = E_{k} + \langle \psi_{k} \hat{H}' \psi_{k} \rangle$ $+ \sum_{n \neq k} \frac{ \langle \psi_{k} \hat{H}' \psi_{n} \rangle ^{2}}{E_{k} - E_{n}} + \dots$	(4.154)	E_k' perturbed eigenvalue ($\simeq E_k$) $\langle \rangle$ Dirac bracket
Perturbed eigen-functions ^b	$\psi_k' = \psi_k + \sum_{n \neq k} \frac{\langle \psi_k \hat{H}' \psi_n \rangle}{E_k - E_n} \psi_n + \dots$	(4.155)	ψ_k' perturbed eigenfunction $(\simeq \psi_k)$

^aTo second order.

Time-dependent perturbation theory

Unperturbed stationary states	$\hat{H}_0 \psi_n = E_n \psi_n$	(4.156)	\hat{H}_0 ψ_n E_n n	unperturbed Hamiltonian eigenfunctions of \hat{H}_0 eigenvalues of \hat{H}_0 integer ≥ 0
Perturbed Hamiltonian	$\hat{H}(t) = \hat{H}_0 + \hat{H}'(t)$	(4.157)	$ \begin{vmatrix} \hat{H} \\ \hat{H}'(t) \\ t \end{vmatrix} $	perturbed Hamiltonian perturbation ($\ll \hat{H}_0$) time
Schrödinger equation	$[\hat{H}_0 + \hat{H}'(t)]\Psi(t) = i\hbar \frac{\partial \Psi(t)}{\partial t}$ $\Psi(t=0) = \psi_0$	(4.158) (4.159)	$egin{array}{c} \Psi \ \psi_0 \ \hbar \end{array}$	wavefunction initial state (Planck constant)/ (2π)
Perturbed wave-function ^a	$\Psi(t) = \sum_{n} c_n(t) \psi_n \exp(-\mathbf{i}E_n t/\hbar)$ where	(4.160)	c_n	probability amplitudes
$c_n = \frac{-1}{\hbar} \int_0^{\pi} \langle \psi_n \rangle$	$ \hat{H}'(t') \psi_0\rangle \exp[\mathbf{i}(E_n-E_0)t'/\hbar] dt'$	(4.161)		
Fermi's golden rule	$\Gamma_{i\to f} = \frac{2\pi}{\hbar} \langle \psi_f \hat{H}' \psi_i \rangle ^2 \rho(E_f)$	(4.162)	$ \Gamma_{i \to f} $ $ \rho(E_f) $	transition probability per unit time from state i to state f density of final states

^aTo first order.

 $[^]b\mathrm{To}$ first order.

4.7 High energy and nuclear physics

Nuclear decay

Nuclear decay law	$N(t) = N(0)e^{-\lambda t}$	(4.163)	N(t) number of nuclei remaining after time t
Half-life and mean life	$T_{1/2} = \frac{\ln 2}{\lambda}$ $\langle T \rangle = 1/\lambda$	(4.164) (4.165)	λ decay constant $T_{1/2}$ half-life $\langle T angle$ mean lifetime
$N_1(t) = N_1(0)e^{-t}$ $N_2(t) = N_2(0)e^{-t}$	$1 \rightarrow 2 \rightarrow 3 \text{ (species 3 stable)}$ $-\lambda_1 t$ $-\lambda_2 t + \frac{N_1(0)\lambda_1(e^{-\lambda_1 t} - e^{-\lambda_2 t})}{\lambda_2 - \lambda_1}$ $= N_2(0)(1 - e^{-\lambda_2 t}) + N_1(0)\left(1 + \frac{\lambda_1 e^{-\lambda_2 t}}{2}\right)$		N ₂ population of species 3
Geiger's law ^a	$v^3 = a(R - x)$	(4.169)	v velocity of α particlex distance from sourcea constant
Geiger–Nuttall rule	$\log \lambda = b + c \log R$	(4.170)	R range b, c constants for each series α , β , and γ

^aFor α particles in air (empirical).

Nuclear binding energy

Liquid drop model ^a	N number of neutrons A mass number $(=N+Z)$
$B = a_{\rm v}A - a_{\rm s}A^{2/3} - a_{\rm c}\frac{Z^2}{A^{1/3}} - a_{\rm a}\frac{(N-Z)^2}{A} + \delta(A) $ (4.171)	B semi-empirical binding energy Z number of protons a_v volume term ($\sim 15.8 \text{MeV}$)
$\delta(A) \simeq \begin{cases} +a_{\rm p}A^{-3/4} & Z, N \text{ both even} \\ -a_{\rm p}A^{-3/4} & Z, N \text{ both odd} \\ 0 & \text{otherwise} \end{cases} $ (4.172)	a_s surface term ($\sim 18.0 \text{MeV}$)
Semi-empirical mass formula $M(Z,A) = ZM_H + Nm_n - B$ (4.173)	$M(Z,A)$ atomic mass $M_{\rm H}$ mass of hydrogen atom $m_{\rm n}$ neutron mass

^aCoefficient values are empirical and approximate.

104 Quantum physics

Nuclear collisions

			I
Breit–Wigner	$\sigma(E) = \frac{\pi}{k^2} g \frac{\Gamma_{ab} \Gamma_c}{(E - E_0)^2 + \Gamma^2/4}$	(4.174)	$\sigma(E) \text{ cross-section for } a+b \to c$ $k \text{ incoming wavenumber}$
formula ^a	27.4		g spin factor
Tormula	$g = \frac{2J+1}{(2s_a+1)(2s_b+1)}$	(4.175)	E total energy (PE + KE)
	$(2s_a+1)(2s_b+1)$		E_0 resonant energy
			Γ width of resonant state R
Total width	$\Gamma = \Gamma_{ab} + \Gamma_c$	(4.176)	Γ_{ab} partial width into $a+b$
			Γ_c partial width into c
			τ resonance lifetime
Resonance lifetime	$ au = rac{\hbar}{\Gamma}$	(4.177)	J total angular momentum quantum number of R
			$s_{a,b}$ spins of a and b
	$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left \frac{2\mu}{\hbar^2} \int_0^\infty \frac{\sin Kr}{Kr} V(r) r^2 \mathrm{d}r \right $.2	$\frac{d\sigma}{d\Omega}$ differential collision cross-section
Born scattering		r 2	μ reduced mass
formula ^b	$\mathrm{d}\Omega = \int_0^2 \int_0^2 Kr^{r} Kr^{r}$	"	$K = \mathbf{k}_{\rm in} - \mathbf{k}_{\rm out} $ (see footnote)
		(4.178)	r radial distance
			V(r) potential energy of interaction
Mott scattering for	ormula ^c		
1		2 7 1 7	\hbar (Planck constant)/ 2π
$\frac{d\sigma}{d\sigma} = \left(\frac{\alpha}{2}\right)^2$	$\csc^4\frac{\chi}{2} + \sec^4\frac{\chi}{2} + \frac{A\cos\left(\frac{\alpha}{\hbar v}\ln\tan\frac{\alpha}{2}\right)}{\sin^2\frac{\chi}{2}\cos^2\frac{\kappa}{2}}$	$\frac{1^2 \frac{\lambda}{2}}{2}$	α/r scattering potential energy γ scattering angle
$\int d\Omega \left(4E \right) $	$2 2 \sin^2\frac{\chi}{2}\cos\frac{\chi}{2}$	2	χ scattering angle
	-	$(4.\overline{1}79)$	v closing velocity
$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \simeq \left(\frac{\alpha}{2E}\right)^{2/2}$	$\frac{4 - 3\sin^2\chi}{\sin^4\chi} (A = -1, \alpha \ll v\hbar)$	(4.180)	A = 2 for spin-zero particles, $=-1$ for spin-half particles

^aFor the reaction $a+b \leftrightarrow R \rightarrow c$ in the centre of mass frame.

Relativistic wave equations^a

Klein–Gordon equation (massive, spin zero particles)	$(\nabla^2 - m^2)\psi = \frac{\partial^2 \psi}{\partial t^2}$	(4.181)	ψ wavefunction m particle mass t time
Weyl equations (massless, spin 1/2 particles)	$\frac{\partial \boldsymbol{\psi}}{\partial t} = \pm \left(\boldsymbol{\sigma}_x \frac{\partial \boldsymbol{\psi}}{\partial x} + \boldsymbol{\sigma}_y \frac{\partial \boldsymbol{\psi}}{\partial y} + \boldsymbol{\sigma}_z \frac{\partial \boldsymbol{\psi}}{\partial z} \right)$	(4.182)	ψ spinor wavefunction σ_i Pauli spin matrices (see page 26)
Dirac equation (massive, spin 1/2 particles)	$(\mathbf{i}\gamma^{\mu}\partial\mu - m)\psi = 0$ where $\partial\mu = \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ $(\gamma^{0})^{2} = 1_{4}; (\gamma^{1})^{2} = (\gamma^{2})^{2} = (\gamma^{3})^{2} = -1_{4}$	(4.183) (4.184)	$i i^{2} = -1$ $\gamma^{\mu} \text{ Dirac matrices:}$ $\gamma^{0} = \begin{pmatrix} 1_{2} & 0 \\ 0 & -1_{2} \end{pmatrix}$ $\gamma^{i} = \begin{pmatrix} 0 & \sigma_{i} \\ -1_{2} & 0 \end{pmatrix}$
	$(\gamma^{5})^{5} = 1_{4}; (\gamma^{5})^{5} = (\gamma^{5})^{5} = (\gamma^{5})^{5} = -1_{4}$	(4.185)	$1_n \ n \times n \text{ unit matrix}$

^aWritten in natural units, with $c = \hbar = 1$.

 $[^]b$ For a central field. The Born approximation holds when the potential energy of scattering, V, is much less than the total kinetic energy. K is the magnitude of the change in the particle's wavevector due to scattering.

^cFor identical particles undergoing Coulomb scattering in the centre of mass frame. Nonidentical particles obey the Rutherford scattering formula (page 72).

Chapter 5 Thermodynamics

5.1 Introduction

The term *thermodynamics* is used here loosely and includes classical thermodynamics, statistical thermodynamics, thermal physics, and radiation processes. Notation in these subjects can be confusing and the conventions used here are those found in the majority of modern treatments. In particular:

- The internal energy of a system is defined in terms of the heat supplied to the system plus the work done on the system, that is, dU = dQ + dW.
- The lowercase symbol p is used for pressure. Probability density functions are denoted by pr(x) and microstate probabilities by p_i .
- With the exception of *specific intensity*, quantities are taken as specific if they refer to unit mass and are distinguished from the extensive equivalent by using lowercase. Hence *specific volume*, v, equals V/m, where V is the volume of gas and m its mass. Also, the *specific heat capacity* of a gas at constant pressure is $c_p = C_p/m$, where C_p is the heat capacity of mass m of gas. Molar values take a subscript "m" (e.g., V_m for molar volume) and remain in upper case.
- The component held constant during a partial differentiation is shown after a vertical bar; hence $\frac{\partial V}{\partial p}\Big|_T$ is the partial differential of volume with respect to pressure, holding temperature constant.

The thermal properties of solids are dealt with more explicitly in the section on solid state physics (page 123). Note that in solid state literature *specific heat capacity* is often taken to mean heat capacity per unit volume.

5.2 Classical thermodynamics

Thermodynamic laws

Thermodynamic temperature ^a	$T \propto \lim_{p \to 0} (pV)$	(5.1)	T thermodynamic temperature V volume of a fixed mass of gas p gas pressure
Kelvin temperature scale	$T/K = 273.16 \frac{\lim_{p \to 0} (pV)_T}{\lim_{p \to 0} (pV)_{tr}}$	(5.2)	K kelvin unit tr temperature of the triple point of water
First law ^b	$\mathrm{d}U = \mathrm{d}Q + \mathrm{d}W$	(5.3)	dU change in internal energy dW work done on system dQ heat supplied to system
Entropy ^c	$\mathrm{d}S = \frac{\mathrm{d}Q_{\mathrm{rev}}}{T} \ge \frac{\mathrm{d}Q}{T}$	(5.4)	S experimental entropy T temperature rev reversible change

^aAs determined with a gas thermometer. The idea of temperature is associated with the zeroth law of thermodynamics: If two systems are in thermal equilibrium with a third, they are also in thermal equilibrium with each other.

Thermodynamic work^a

Hydrostatic pressure	dW = -p dV	(5.5)	p (hydrostatic) pressure dV volume change
Surface tension	$dW = \gamma dA$	(5.6)	dW work done on the system γ surface tension dA change in area
Electric field	$\mathbf{d}^{T}W = \mathbf{E} \cdot \mathbf{d}\mathbf{p}$	(5.7)	E electric field dp induced electric dipole moment
Magnetic field	$dW = \mathbf{B} \cdot d\mathbf{m}$	(5.8)	B magnetic flux densitydm induced magnetic dipole moment
Electric current	$dW = \Delta \phi dq$	(5.9)	$\Delta\phi$ potential difference d q charge moved

^aThe sources of electric and magnetic fields are taken as being outside the thermodynamic system on which they are working.

^bThe d notation represents a differential change in a quantity that is not a function of state of the system.

^cAssociated with the second law of thermodynamics: No process is possible with the sole effect of completely converting heat into work (Kelvin statement).

Cycle efficiencies (thermodynamic)^a

Heat engine	$\eta = \frac{\text{work extracted}}{\text{heat input}} \le \frac{T_{\text{h}} - T_{\text{l}}}{T_{\text{h}}}$	(5.10)	η efficiency $T_{\rm h}$ higher temperature $T_{\rm l}$ lower temperature
Refrigerator	$ \eta = \frac{\text{heat extracted}}{\text{work done}} \le \frac{T_{\text{l}}}{T_{\text{h}} - T_{\text{l}}} $	(5.11)	
Heat pump	$ \eta = \frac{\text{heat supplied}}{\text{work done}} \le \frac{T_{\text{h}}}{T_{\text{h}} - T_{\text{l}}} $	(5.12)	
Otto cycle ^b	$ \eta = \frac{\text{work extracted}}{\text{heat input}} = 1 - \left(\frac{V_2}{V_1}\right)^{\gamma - 1} $	(5.13)	$\frac{V_1}{V_2}$ compression ratio γ ratio of heat capacities (assumed constant)

^aThe equalities are for reversible cycles, such as Carnot cycles, operating between temperatures T_h and T_l . ^bIdealised reversible "petrol" (heat) engine.

Heat capacities

Constant volume	$C_V = \frac{dQ}{dT}\Big _V = \frac{\partial U}{\partial T}\Big _V = T\frac{\partial S}{\partial T}\Big _V$	(5.14)	C_V heat capacity, V constant Q heat T temperature V volume U internal energy
Constant pressure	$C_p = \frac{dQ}{dT}\Big _p = \frac{\partial H}{\partial T}\Big _p = T\frac{\partial S}{\partial T}\Big _p$		H enthalpy
Difference in heat capacities	$C_{p} - C_{V} = \left(\frac{\partial U}{\partial V}\Big _{T} + p\right) \frac{\partial V}{\partial T}\Big _{p}$ $= \frac{VT\beta_{p}^{2}}{\kappa_{T}}$	(5.16) (5.17)	β_p isobaric expansivity κ_T isothermal compressibility
Ratio of heat capacities	$\gamma = \frac{C_p}{C_V} = \frac{\kappa_T}{\kappa_S}$	(5.18)	u motio of heat commution

Thermodynamic coefficients

Isobaric expansivity ^a	$\beta_p = \frac{1}{V} \frac{\partial V}{\partial T} \Big _p$	(5.19)	β_p isobaric expansivity V volume T temperature
Isothermal compressibility	$\kappa_T = -\frac{1}{V} \frac{\partial V}{\partial p} \Big _T$	(5.20)	κ_T isothermal compressibility p pressure
Adiabatic compressibility	$\kappa_S = -\frac{1}{V} \frac{\partial V}{\partial p} \Big _S$	(5.21)	κ_S adiabatic compressibility
Isothermal bulk modulus	$K_T = \frac{1}{\kappa_T} = -V \frac{\partial p}{\partial V} \Big _T$	(5.22)	K_T isothermal bulk modulus
Adiabatic bulk modulus	$K_S = \frac{1}{\kappa_S} = -V \frac{\partial p}{\partial V} \Big _S$	(5.23)	K_S adiabatic bulk modulus

^aAlso called "cubic expansivity" or "volume expansivity." The linear expansivity is $\alpha_p = \beta_p/3$.

Expansion processes

$(n/T)_{\perp}$	η Joule coefficient
$\left. \frac{\partial P}{\partial T} \right _{V}$ (5.24)	T temperature
	p pressure
-p (5.25)	U internal energy
1) (C_V heat capacity, V constant
$(T/T)_{\parallel}$	μ Joule–Kelvin coefficient
$\left \frac{1}{T} \right _{n}$ (5.26)	V volume
	, voidille
(5.27)	H enthalpy
(5.27)	C_p heat capacity, p constant
9	$ \frac{\partial T}{\partial r} _{V} $ $ \frac{(5.25)}{\partial T} _{p} $ $ \frac{(5.26)}{\partial r} $

^aExpansion with no change in internal energy.

Thermodynamic potentials a

Internal energy	$dU = T dS - p dV + \mu dN$	(5.28)	U Τ S μ N	internal energy temperature entropy chemical potential number of particles
Enthalpy	$H = U + pV$ $dH = T dS + V dp + \mu dN$	(5.29) (5.30)	H p V	enthalpy pressure volume
Helmholtz free energy ^b	$F = U - TS$ $dF = -S dT - p dV + \mu dN$	(5.31) (5.32)	F	Helmholtz free energy
Gibbs free energy ^c	$G = U - TS + pV$ $= F + pV = H - TS$ $dG = -S dT + V dp + \mu dN$	(5.33) (5.34) (5.35)	G	Gibbs free energy
Grand potential	$\Phi = F - \mu N$ $d\Phi = -S dT - p dV - N d\mu$	(5.36) (5.37)	Φ	grand potential
Gibbs-Duhem relation	$-S\mathrm{d}T + V\mathrm{d}p - N\mathrm{d}\mu = 0$	(5.38)		
Availability	$A = U - T_0 S + p_0 V$ $dA = (T - T_0) dS - (p - p_0) dV$	(5.39) (5.40)	A T_0 p_0	availability temperature of surroundings pressure of surroundings

a dN=0 for a closed system.

^bExpansion with no change in enthalpy. Also known as a "Joule-Thomson expansion" or "throttling" process.

^bSometimes called the "work function." ^cSometimes called the "thermodynamic potential."

Maxwell's relations

	∂T ∂n ∂n		U	internal energy
Maxwell 1	$\frac{\partial T}{\partial V}\Big _{S} = -\frac{\partial p}{\partial S}\Big _{V} \left(= \frac{\partial^{2} U}{\partial S \partial V} \right)$	(5.41)	T	temperature
	01 18 03 11 (0301)		V	volume
	$\partial T \mid \ \ \ \partial V \mid \ \ \ \left(\ \ \ \partial^2 H \right)$		H	enthalpy
Maxwell 2	$\frac{\partial T}{\partial p}\Big _{S} = \frac{\partial V}{\partial S}\Big _{p} \left(=\frac{\partial^{2} H}{\partial p \partial S}\right)$	(5.42)	S	entropy
	$Op \mid S OS \mid_{P} \langle OpOS \rangle$		p	pressure
Maxwell 3	$\frac{\partial p}{\partial T}\Big _{V} = \frac{\partial S}{\partial V}\Big _{T} \left(= \frac{\partial^{2} F}{\partial T \partial V} \right)$	(5.43)	F	Helmholtz free energy
Maxwell 4	$\left. \frac{\partial V}{\partial T} \right _{p} = -\frac{\partial S}{\partial p} \right _{T} \left(= \frac{\partial^{2} G}{\partial p \partial T} \right)$	(5.44)	G	Gibbs free energy

Gibbs-Helmholtz equations

$\partial(E/T)$		F	Helmholtz free energy
$U = -T^2 \frac{\partial (F/T)}{\partial T} \Big _{V}$	(5.45)	U	internal energy
		G	Gibbs free energy
$G = -V^2 \frac{\partial (F/V)}{\partial V} \Big _{T}$	(5.46)	H	enthalpy
		T	temperature
$H = -T^2 \frac{\partial (G/T)}{\partial T} \Big _{p}$	(5.47)	p	pressure
OT = p		V	volume

Phase transitions

Heat absorbed	$L = T(S_2 - S_1)$	(5.48)	L T S	(latent) heat absorbed $(1 \rightarrow 2)$ temperature of phase change entropy
Clausius-Clapeyron equation ^a	$\frac{dp}{dT} = \frac{S_2 - S_1}{V_2 - V_1} = \frac{L}{T(V_2 - V_1)}$	(5.49) (5.50)	p V 1,2	pressure volume phase states
Coexistence curve ^b	$p(T) \propto \exp\left(\frac{-L}{RT}\right)$	(5.51)	R	molar gas constant
Ehrenfest's equation ^c	$\frac{dp}{dT} = \frac{\beta_{p2} - \beta_{p1}}{\kappa_{T2} - \kappa_{T1}} = \frac{1}{VT} \frac{C_{p2} - C_{p1}}{\beta_{p2} - \beta_{p1}}$	(5.52) (5.53)	β_p κ_T C_p	isobaric expansivity isothermal compressibility heat capacity (<i>p</i> constant)
Gibbs's phase rule	P+F=C+2	(5.54)	P F C	number of phases in equilibrium number of degrees of freedom number of components

^aPhase boundary gradient for a first-order transition. Equation (5.50) is sometimes called the "Clapeyron equation." ^b For $V_2 \gg V_1$, e.g., if phase 1 is a liquid and phase 2 a vapour. ^c For a second-order phase transition.

5.3 Gas laws

Ideal gas

Joule's law	U = U(T)	(5.55)	U internal energy T temperature
Boyle's law	$pV _T = \text{constant}$	(5.56)	p pressure V volume
Equation of state (Ideal gas law)	pV = nRT	(5.57)	n number of moles R molar gas constant
Adiabatic equations	$pV^{\gamma} = \text{constant}$ $TV^{(\gamma-1)} = \text{constant}$ $T^{\gamma}p^{(1-\gamma)} = \text{constant}$ $\Delta W = \frac{1}{\gamma - 1}(p_2V_2 - p_1V_1)$	(5.58) (5.59) (5.60) (5.61)	γ ratio of heat capacities (C_p/C_V) ΔW work done on system
Internal energy	$U = \frac{nRT}{\gamma - 1}$	(5.62)	
Reversible isothermal expansion	$\Delta Q = nRT \ln(V_2/V_1)$	(5.63)	ΔQ heat supplied to system 1,2 initial and final states
Joule expansion ^a	$\Delta S = nR \ln(V_2/V_1)$	(5.64)	ΔS change in entropy of the system

[&]quot;Since $\Delta Q = 0$ for a Joule expansion, ΔS is due entirely to irreversibility. Because entropy is a function of state it has the same value as for the reversible isothermal expansion, where $\Delta S = \Delta Q/T$.

Virial expansion

Virial expansion	$pV = RT\left(1 + \frac{B_2(T)}{V} + \frac{B_3(T)}{V^2} + \cdots\right)$	(5.65)	$egin{array}{c} p \ V \ R \ T \ B_i \ \end{array}$	volume molar gas constant temperature virial coefficients
Boyle temperature	$B_2(T_{\rm B})=0$	(5.66)	T_{B}	Boyle temperature

111

Van der Waals gas

Equation of state	$\left(p + \frac{a}{V_{\rm m}^2}\right)(V_{\rm m} - b) = RT$	(5.67)	p pressure $V_{\rm m}$ molar volume R molar gas constant T temperature a,b van der Waals' constants
Critical point	$T_{c} = 8a/(27Rb)$ $p_{c} = a/(27b^{2})$ $V_{mc} = 3b$	(5.69) (5.70)	$p_{\rm c}$ critical pressure $V_{\rm mc}$ critical molar volume
Reduced equation of state	$\left(p_{\rm r} + \frac{3}{V_{\rm r}^2}\right) (3V_{\rm r} - 1) = 8T_{\rm r}$	(5.71)	$egin{array}{ll} p_{ m r} &= p/p_{ m c} \ V_{ m r} &= V_{ m m}/V_{ m mc} \ T_{ m r} &= T/T_{ m c} \end{array}$

Dieterici gas

Equation of state	$p = \frac{RT}{V_{\rm m} - b'} \exp\left(\frac{-a'}{RTV_{\rm m}}\right)$	T	pressure molar volume molar gas constant temperature ' Dieterici's constants
Critical point	$T_{\rm c} = a'/(4Rb')$ $p_{\rm c} = a'/(4b'^2e^2)$ $V_{\rm mc} = 2b'$	$ \begin{array}{c cc} (5.73) & T_{c} \\ (5.74) & p_{c} \\ (5.75) & v_{mc} \\ e \end{array} $	critical temperature critical pressure critical molar volume = 2.71828
Reduced equation of state	$p_{\rm r} = \frac{T_{\rm r}}{2V_{\rm r} - 1} \exp\left(2 - \frac{2}{V_{\rm r} T_{\rm r}}\right)$	$(5.76) \begin{array}{c} p_{\rm r} \\ V_{\rm r} \\ T_{\rm r} \end{array}$	$= p/p_{c}$ $= V_{m}/V_{mc}$ $= T/T_{c}$

C

5.4 Kinetic theory

Monatomic gas

			•
Pressure	$p = \frac{1}{3} nm \langle c^2 \rangle$	(5.77)	p pressure n number density $= N/V$ m particle mass $\langle c^2 \rangle$ mean squared particle
			velocity V volume
Equation of state of an ideal	pV = NkT	(5.78)	k Boltzmann constant
gas		()	N number of particles T temperature
Internal energy	$U = \frac{3}{2}NkT = \frac{N}{2}m\langle c^2 \rangle$	(5.79)	· ·
	$C_V = \frac{3}{2}Nk$	(5.80)	
Heat capacities	$C_p = C_V + Nk = \frac{5}{2}Nk$	(5.81)	C_V heat capacity, constant V C_p heat capacity, constant p
	$\gamma = \frac{C_p}{C_V} = \frac{5}{3}$	(5.82)	γ ratio of heat capacities
Entropy (Sackur–	$\lceil (mkT)^{3/2} \rceil$		S entropy
Tetrode equation) ^a	$S = Nk \ln \left[\left(\frac{mkT}{2\pi\hbar^2} \right)^{3/2} e^{5/2} \frac{V}{N} \right]$	(5.83)	$ \hbar = (Planck constant)/(2\pi) $ $ e = 2.71828 $
	, 3/2		

^aFor the uncondensed gas. The factor $\left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2}$ is the quantum concentration of the particles, n_Q . Their thermal de Broglie wavelength, λ_T , approximately equals $n_Q^{-1/3}$.

Maxwell-Boltzmann distribution^a

			pr	probability density
Particle speed	$\operatorname{pr}(c) \mathrm{d}c = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(\frac{-mc^2}{2kT}\right) 4\pi c^2 \mathrm{d}c$	c	m	particle mass
distribution	$pr(c) dc = \left(\frac{2\pi kT}{2\pi kT}\right)^{-4\pi c} dc$	C	k	Boltzmann constant
distribution	·	(5.84)	T	temperature
		,	с	particle speed
Particle energy distribution	$\operatorname{pr}(E) dE = \frac{2E^{1/2}}{\pi^{1/2}(kT)^{3/2}} \exp\left(\frac{-E}{kT}\right) dE$	(5.85)	Ε	particle kinetic energy $(=mc^2/2)$
Mean speed	$\langle c \rangle = \left(\frac{8kT}{\pi m}\right)^{1/2}$	(5.86)	$\langle c \rangle$	mean speed
rms speed	$c_{\rm rms} = \left(\frac{3kT}{m}\right)^{1/2} = \left(\frac{3\pi}{8}\right)^{1/2} \langle c \rangle \tag{c}$	(5.87)	$c_{ m rms}$	root mean squared speed
Most probable speed	$\hat{c} = \left(\frac{2kT}{m}\right)^{1/2} = \left(\frac{\pi}{4}\right)^{1/2} \langle c \rangle$	(5.88)	ĉ	most probable speed

^aProbability density functions normalised so that $\int_0^\infty \operatorname{pr}(x) dx = 1$.

Transport properties

Mean free path ^a	$l = \frac{1}{\sqrt{2\pi}d^2n}$	(5.89)	l d n	mean free path molecular diameter particle number density
Survival equation ^b	$\operatorname{pr}(x) = \exp(-x/l)$	(5.90)	pr x	probability linear distance
Flux through a plane ^c	$J = \frac{1}{4}n\langle c \rangle$	(5.91)	J $\langle c \rangle$	molecular flux mean molecular speed
Self-diffusion	$J = -D\nabla n$	(5.92)		
(Fick's law of diffusion) ^d	where $D \simeq \frac{2}{3} l \langle c \rangle$	(5.93)	D	diffusion coefficient
	$H = -\lambda \nabla T$	(5.94)	H λ	heat flux per unit area thermal conductivity
Thermal conductivity ^d	$\nabla^2 T = \frac{1}{D} \frac{\partial T}{\partial t}$	(5.95)	T ρ	temperature density
	for monatomic gas $\lambda \simeq \frac{5}{4} \rho l \langle c \rangle c_V$	(5.96)	c_V	specific heat capacity, V constant
Viscosity ^d	$\eta \simeq \frac{1}{2} \rho l \langle c \rangle$	(5.97)	η x	dynamic viscosity displacement of sphere in x direction after time t
Brownian motion (of a sphere)	$\langle x^2 \rangle = \frac{kTt}{3\pi\eta a}$	(5.98)	k t a	Boltzmann constant time interval sphere radius
Free molecular flow (Knudsen flow) ^e	$\frac{\mathrm{d}M}{\mathrm{d}t} = \frac{4R_{\rm p}^3}{3L} \left(\frac{2\pi m}{k}\right)^{1/2} \left(\frac{p_1}{T_1^{1/2}} - \frac{p_2}{T_2^{1/2}}\right)$	(5.99)	$\frac{\mathrm{d}M}{\mathrm{d}t}$ R_p L m	mass flow rate pipe radius pipe length particle mass pressure

^aFor a perfect gas of hard, spherical particles with a Maxwell–Boltzmann speed distribution.

Gas equipartition

Classical	1, 7	(5.100)	$E_{\rm q}$	energy per quadratic degree of freedom
equipartition ^a	$E_{\rm q} = \frac{1}{2}kT$	(5.100)	k	Boltzmann constant
			T	temperature
	1 1	/- /- /	C_V	heat capacity, V constant
	$C_V = \frac{1}{2}fNk = \frac{1}{2}fnR$	(5.101)	C_p	heat capacity, p constant
Ideal gas heat	2		N	number of molecules
capacities	$C_p = Nk\left(1 + \frac{f}{2}\right)$	(5.102)	f	number of degrees of freedom
capacities			n	number of moles
	$\gamma = \frac{C_p}{C_V} = 1 + \frac{2}{f}$	(5.103)	R	molar gas constant
	C_V f	` /	γ	ratio of heat capacities

aSystem in thermal equilibrium at temperature T.

^bProbability of travelling distance x without a collision.

 $[^]c$ From the side where the number density is n, assuming an isotropic velocity distribution. Also known as "collision number."

^dSimplistic kinetic theory yields numerical coefficients of 1/3 for D, λ and η .

^eThrough a pipe from end 1 to end 2, assuming $R_p \ll l$ (i.e., at very low pressure).

Statistical thermodynamics 5.5

Statistical entropy

Boltzmann formula ^a	$S = k \ln W$ $\simeq k \ln g(E)$	(5.104) (5.105)	S entropy k Boltzmann constant W number of accessible microstates $g(E)$ density of microstates with energy E
Gibbs entropy ^b	$S = -k \sum_{i} p_{i} \ln p_{i}$	(5.106)	$\sum_{i} \text{ sum over microstates} $ $p_{i} \text{ probability that the system is in microstate } i$
N two-level systems	$W = \frac{N!}{(N-n)!n!}$	(5.107)	N number of systems n number in upper state
N harmonic oscillators	$W = \frac{(Q+N-1)!}{Q!(N-1)!}$	(5.108)	Q total number of energy quanta available

^aSometimes called "configurational entropy." Equation (5.105) is true only for large systems. ^bSometimes called "canonical entropy."

Ensemble probabilities

Microcanonical ensemble ^a	$p_i = \frac{1}{W}$	(5.109)	 p_i probability that the system is in microstate i W number of accessible microstates
Partition function ^b	$Z = \sum_{i} \mathrm{e}^{-\beta E_{i}}$	(5.110)	Z partition function \sum_{i} sum over microstates $\beta = 1/(kT)$ E_{i} energy of microstate i
Canonical ensemble (Boltzmann distribution) ^c	$p_i = \frac{1}{Z} e^{-\beta E_i}$	(5.111)	k Boltzmann constant T temperature
Grand partition function	$\Xi = \sum_{i} e^{-\beta(E_i - \mu N_i)}$	(5.112)	Ξ grand partition function μ chemical potential N_i number of particles in microstate i
Grand canonical ensemble (Gibbs distribution) ^d	$p_i = \frac{1}{\Xi} e^{-\beta(E_i - \mu N_i)}$	(5.113)	

^aEnergy fixed.

^bAlso called "sum over states."

^cTemperature fixed.

^dTemperature fixed. Exchange of both heat and particles with a reservoir.

Macroscopic thermodynamic variables

Helmholtz free energy	$F = -kT \ln Z$	(5.114)	F k T Z	Helmholtz free energy Boltzmann constant temperature partition function
Grand potential	$\Phi = -kT\ln\Xi$	(5.115)	Φ Ξ	grand potential grand partition function
Internal energy	$U = F + TS = -\frac{\partial \ln Z}{\partial \beta} \Big _{V,N}$	(5.116)	U β	internal energy $= 1/(kT)$
Entropy	$S = -\frac{\partial F}{\partial T}\Big _{V,N} = \frac{\partial (kT \ln Z)}{\partial T}\Big _{V,N}$	(5.117)	S N	entropy number of particles
Pressure	$p = -\frac{\partial F}{\partial V}\Big _{T,N} = \frac{\partial (kT \ln Z)}{\partial V}\Big _{T,N}$	(5.118)	p	pressure
Chemical potential	$\mu = \frac{\partial F}{\partial N} \Big _{V,T} = -\frac{\partial (kT \ln Z)}{\partial N} \Big _{V,T}$	(5.119)	μ	chemical potential

Identical particles

^aFor bosons. $f_i \ge 0$.

^bFor fermions. $0 \le f_i \le 1$.

^cFor noninteracting particles. At low temperatures, $\mu \simeq \epsilon_{\rm F}$.

Population densities^a

Boltzmann excitation equation	$\frac{n_{mj}}{n_{lj}} = \frac{g_{mj}}{g_{lj}} \exp\left[\frac{-(\chi_{mj} - \chi_{lj})}{kT}\right]$ $= \frac{g_{mj}}{g_{lj}} \exp\left(\frac{-hv_{lm}}{kT}\right)$	(5.124) (5.125)	n_{ij} number density of atoms in excitation level i of ionisation state j (j =0 if not ionised) g_{ij} level degeneracy χ_{ij} excitation energy relative to the ground state
Partition	$Z_j(T) = \sum_{i} g_{ij} \exp\left(\frac{-\chi_{ij}}{kT}\right)$	(5.126)	v _{ij} photon transition frequency h Planck constant
function	$\frac{n_{ij}}{N_j} = \frac{g_{ij}}{Z_j(T)} \exp\left(\frac{-\chi_{ij}}{kT}\right)$	(5.127)	k Boltzmann constant T temperature
Saha equation	2		Z_j partition function for ionisation state j
$n_{ij} = n_{0,j+1} n_e \frac{g}{g_{0,j}}$	$\frac{g_{ij}}{j+1}\frac{h^3}{2}(2\pi m_{\rm e}kT)^{-3/2}\exp\left(\frac{\chi_{Ij}-\chi_{ij}}{kT}\right)$	(5.128)	N_j total number density in ionisation state j
Saha equation	(ion populations)		n _e electron number density
N: Z:($T) h^3$		$m_{\rm e}$ electron mass
$\frac{N_{j+1}}{N_{j+1}} = n_e \frac{Z_j(z_j)}{Z_{j+1}}$	$\frac{T}{(T)}\frac{h^3}{2}(2\pi m_{\rm e}kT)^{-3/2}\exp\left(\frac{\chi_{Ij}}{kT}\right)$	(5.129)	$ \chi_{Ij} $ ionisation energy of atom in ionisation state j

^aAll equations apply only under conditions of local thermodynamic equilibrium (LTE). In atoms with no magnetic splitting, the degeneracy of a level with total angular momentum quantum number J is $g_{ij} = 2J + 1$.

5.6 Fluctuations and noise

Thermodynamic fluctuations^a

Fluctuation probability	$\operatorname{pr}(x) \propto \exp[S(x)/k]$ $\propto \exp\left[\frac{-A(x)}{kT}\right]$	(5.130) (5.131)	pr x S	probability density unconstrained variable entropy
	$\frac{\exp\left[-kT\right]}{k}$	(3.131)	A	availability
General variance	$\operatorname{var}[x] = kT \left[\frac{\partial^2 A(x)}{\partial x^2} \right]^{-1}$	(5.132)	var[·] k T	mean square deviation Boltzmann constant temperature
Temperature fluctuations	$\operatorname{var}[T] = kT \frac{\partial T}{\partial S} \Big _{V} = \frac{kT^{2}}{C_{V}}$	(5.133)	$V \\ C_V$	volume heat capacity, V constant
Volume fluctuations	$\operatorname{var}[V] = -kT \frac{\partial V}{\partial p} \Big _{T} = \kappa_T V k T$	(5.134)	$p \\ \kappa_T$	pressure isothermal compressibility
Entropy fluctuations	$\operatorname{var}[S] = kT \frac{\partial S}{\partial T} \Big _{p} = kC_{p}$	(5.135)	C_p	heat capacity, p constant
Pressure fluctuations	$\operatorname{var}[p] = -kT \frac{\partial p}{\partial V} \Big _{S} = \frac{K_{S}kT}{V}$	(5.136)	K_S	adiabatic bulk modulus
Density fluctuations	$var[n] = \frac{n^2}{V^2} var[V] = \frac{n^2}{V} \kappa_T k T$ The system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system whose mean temperature is fixed Only and the system of the system whose mean temperature is fixed Only and the system of	(5.137)		number density

^aIn part of a large system, whose mean temperature is fixed. Quantum effects are assumed negligible.

117

Noise

Nyquist's noise theorem	$dw = kT \cdot \beta \epsilon (e^{\beta \epsilon} - 1)^{-1} dv$ $= kT_{N} dv$ $\simeq kT dv (hv \ll kT)$	(5.138) (5.139) (5.140)	w exchangeable noise power k Boltzmann constant T temperature T_N noise temperature $\beta \epsilon = hv/(kT)$ v frequency h Planck constant
Johnson (thermal) noise voltage ^a	$v_{\rm rms} = (4k T_{\rm N} R \Delta v)^{1/2}$	(5.141)	$egin{array}{lll} v_{ m rms} & m rms \ noise \ voltage \\ R & m resistance \\ \Delta v & m bandwidth \end{array}$
Shot noise (electrical)	$I_{\rm rms} = (2eI_0\Delta v)^{1/2}$	(5.142)	$egin{array}{ll} I_{ m rms} & { m rms \ noise \ current} \ -e & { m electronic \ charge} \ I_0 & { m mean \ current} \ \end{array}$
Noise figure ^b	$f_{\rm dB} = 10\log_{10}\left(1 + \frac{T_{\rm N}}{T_0}\right)$	(5.143)	
Relative power	$G = 10\log_{10}\left(\frac{P_2}{P_1}\right)$	(5.144)	G decibel gain of P_2 over P_1 P_1, P_2 power levels

^aThermal voltage over an open-circuit resistance. ^bNoise figure can also be defined as $f = 1 + T_N/T_0$, when it is also called "noise factor."

Radiation processes 5.7

Radiometry^a

Radiant energy ^b	$Q_{\rm e} = \iiint L_{\rm e} \cos \theta \mathrm{d}A \mathrm{d}\Omega \mathrm{d}t \mathrm{J}$	(5.145)	$Q_{\rm e}$ radiant energy $L_{\rm e}$ radiance (generally a function of position and direction) θ angle between dir. of $d\Omega$ and normal to dA
Radiant flux ("radiant power")	$\Phi_{\rm e} = \frac{\partial Q_{\rm e}}{\partial t} \text{W}$	(5.146)	Ω solid angle A area t time
(radiant power)	$= \iint L_{\rm e} \cos \theta \mathrm{d}A \mathrm{d}\Omega$	(5.147)	Φ_{e} radiant flux
Radiant energy density ^c	$W_{\rm e} = \frac{\partial Q_{\rm e}}{\partial V} {\rm J m}^{-3}$	(5.148)	We radiant energy densitydV differential volume of propagation medium
Radiant exitance ^d	$M_{\rm e} = \frac{\partial \Phi_{\rm e}}{\partial A} \text{W m}^{-2}$	(5.149)	$M_{ m e}$ radiant exitance
	$= \int L_{\rm e} \cos\theta {\rm d}\Omega$	(5.150)	
Irradiance ^e	$E_{\rm e} = \frac{\partial \Phi_{\rm e}}{\partial A} \text{W m}^{-2}$	(5.151)	(normal) θ $d\Omega$
	$= \int L_{\rm e} \cos\theta {\rm d}\Omega$	(5.152)	dA ϕ y
Radiant intensity	$I_{\rm e} = \frac{\partial \Phi_{\rm e}}{\partial \Omega} \text{W sr}^{-1}$	(5.153)	E _e irradiance
,	$= \int L_{\rm e} \cos \theta \mathrm{d}A$	(5.154)	I _e radiant intensity
Radiance	$L_{\rm e} = \frac{1}{\cos \theta} \frac{\partial^2 \Phi_{\rm e}}{\mathrm{d}A \mathrm{d}\Omega} \mathrm{W m^{-2} sr^{-1}}$	(5.155)	
	$=\frac{1}{\cos\theta}\frac{\partial I_{\rm e}}{\partial A}$	(5.156)	
Radiometry is concerned	with the treatment of light as energy.		

¹Radiometry is concerned with the treatment of light as energy.

^bSometimes called "total energy." Note that we assume opaque radiant surfaces, so that $0 \le \theta \le \pi/2$.

^cThe instantaneous amount of radiant energy contained in a unit volume of propagation medium.

^dPower per unit area leaving a surface. For a perfectly diffusing surface, $M_e = \pi L_e$. ^ePower per unit area incident on a surface.

Photometry^a

Pnotometry			
Luminous energy ("total light")	$Q_{ m v} = \iiint L_{ m v} \cos heta { m d} A { m d} \Omega { m d} t { m lm s}$	(5.157)	$Q_{\rm V}$ luminous energy $L_{\rm V}$ luminance (generally a function of position and direction) θ angle between dir. of d Ω and normal to d A solid angle
Luminous flux	$\Phi_{\rm v} = \frac{\partial Q_{\rm v}}{\partial t} \text{lumen (lm)}$ $= \iint L_{\rm v} \cos \theta dA d\Omega$	(5.158) (5.159)	A area t time Φ_{v} luminous flux
Luminous density ^b	$W_{\rm v} = \frac{\partial Q_{\rm v}}{\partial V} \rm lmsm^{-3}$	(5.160)	$W_{\rm v}$ luminous density V volume
Luminous exitance ^c	$M_{\rm v} = \frac{\partial \Phi_{\rm v}}{\partial A} \text{lx} (\text{lm} \text{m}^{-2})$ $= \int L_{\rm v} \cos \theta d\Omega$	(5.161) (5.162)	$M_{\rm v}$ luminous exitance
Illuminance ("illumination") ^d	$E_{\rm v} = \frac{\partial \Phi_{\rm v}}{\partial A} \text{lm} \text{m}^{-2}$ $= \int L_{\rm v} \cos \theta d\Omega$	(5.163) (5.164)	$\begin{array}{c c} \text{(normal)} & \theta & d\Omega \\ \hline & & \\ & $
Luminous intensity ^e	$I_{v} = \frac{\partial \Phi_{v}}{\partial \Omega} \text{cd}$ $= \int L_{v} \cos \theta dA$	(5.165) (5.166)	$E_{\rm v}$ illuminance $I_{\rm v}$ luminous intensity
Luminance ("photometric brightness")	$L_{v} = \frac{1}{\cos \theta} \frac{\partial^{2} \Phi_{v}}{dA d\Omega} cd m^{-2}$ $= \frac{1}{\cos \theta} \frac{\partial I_{v}}{\partial A}$	(5.167) (5.168)	
Luminous efficacy	$K = \frac{\Phi_{\rm v}}{\Phi_{\rm e}} = \frac{L_{\rm v}}{L_{\rm e}} = \frac{I_{\rm v}}{I_{\rm e}} \text{lmW}^{-1}$	(5.169)	K luminous efficacy $L_{\rm e}$ radiance $\Phi_{\rm e}$ radiant flux $I_{\rm e}$ radiant intensity
Luminous efficiency	$V(\lambda) = \frac{K(\lambda)}{K_{\text{max}}}$ with the treatment of light as seen by the h	(5.170)	V luminous efficiency λ wavelength K_{\max} spectral maximum of $K(\lambda)$

Photometry is concerned with the treatment of light as seen by the human eye.

 $[^]b\mathrm{The}$ instantaneous amount of luminous energy contained in a unit volume of propagating medium.

^cLuminous emitted flux per unit area.

^dLuminous incident flux per unit area. The derived SI unit is the lux (lx). $1 \text{lx} = 1 \text{lm m}^{-2}$.

^eThe SI unit of luminous intensity is the candela (cd). $1 \text{cd} = 1 \text{lm sr}^{-1}$.

Radiative transfer^a

Flux density (through a plane)	$F_{v} = \int I_{v}(\theta, \phi) \cos \theta d\Omega \text{W m}^{-2} \text{Hz}^{-1}$	(5.171)	$(\text{normal}) = \begin{pmatrix} z \\ \theta \end{pmatrix} d\Omega$
Mean intensity ^b	$J_{\nu} = \frac{1}{4\pi} \int I_{\nu}(\theta, \phi) d\Omega \text{W m}^{-2} \text{Hz}^{-1}$	(5.172)	F_{ν} flux density I_{ν} specific intensity $(\text{Wm}^{-2}\text{Hz}^{-1}\text{sr}^{-1})$ J_{ν} mean intensity
Spectral energy density ^c	$u_{\nu} = \frac{1}{c} \int I_{\nu}(\theta, \phi) d\Omega \text{J m}^{-3} \text{Hz}^{-1}$	(5.173)	u_{ν} spectral energy density Ω solid angle θ angle between normal and direction of Ω
Specific emission coefficient	$j_{\nu} = \frac{\epsilon_{\nu}}{\rho} \text{Wkg}^{-1} \text{Hz}^{-1} \text{sr}^{-1}$	(5.174)	j_v specific emission coefficient ϵ_v emission coefficient $(Wm^{-3}Hz^{-1}sr^{-1})$ ρ density
Gas linear absorption coefficient $(\alpha_{\nu} \ll 1)$	$\alpha_{v} = n\sigma_{v} = \frac{1}{l_{v}}$ m ⁻¹	(5.175)	α_{v} linear absorption coefficient n particle number density σ_{v} particle cross section l_{v} mean free path
Opacity ^d	$ \kappa_{\nu} = \frac{\alpha_{\nu}}{\rho} \text{kg}^{-1} \text{m}^2 $	(5.176)	κ_{v} opacity
Optical depth	$\tau_{\nu} = \int \kappa_{\nu} \rho \mathrm{d}s$	(5.177)	τ_ν optical depth, or optical thicknessds line element
Transfer equation ^e	$\frac{1}{\rho} \frac{dI_{\nu}}{ds} = -\kappa_{\nu} I_{\nu} + j_{\nu}$ or $\frac{dI_{\nu}}{ds} = -\alpha_{\nu} I_{\nu} + \epsilon_{\nu}$	(5.178) (5.179)	
Kirchhoff's law ^f	$S_{v} \equiv rac{j_{v}}{\kappa_{v}} = rac{\epsilon_{v}}{lpha_{v}}$	(5.180)	S_{ν} source function
Emission from a homogeneous medium	$I_{\nu} = S_{\nu} (1 - e^{-\tau_{\nu}})$	(5.181)	

^aThe definitions of these quantities vary in the literature. Those presented here are common in meteorology and astrophysics. Note particularly that the ambiguous term *specific* is taken to mean "per unit frequency interval" in the case of specific intensity and "per unit mass per unit frequency interval" in the case of specific emission coefficient. ^bIn radio astronomy, flux density is usually taken as $S = 4\pi J_{\gamma}$.

^cAssuming a refractive index of 1.

^dOr "mass absorption coefficient."

^eOr "Schwarzschild's equation."

^fUnder conditions of local thermal equilibrium (LTE), the source function, S_{ν} , equals the Planck function, $B_{\nu}(T)$ [see Equation (5.182)].

Blackbody radiation

^aWith respect to the projected area of the surface. Surface brightness is also known simply as "brightness." "Specific intensity" is used for reception.

^bSometimes "Stefan's law." Exitance is the total radiated energy from unit area of the body per unit time.

Chapter 6 Solid state physics

6.1 Introduction

This section covers a few selected topics in solid state physics. There is no attempt to do more than scratch the surface of this vast field, although the basics of many undergraduate texts on the subject are covered. In addition a period table of elements, together with some of their physical properties, is displayed on the next two pages.

Periodic table (overleaf) Data for the periodic table of elements are taken from *Pure Appl. Chem.*, **71**, 1593–1607 (1999), from the 16th edition of Kaye and Laby *Tables of Physical and Chemical Constants* (Longman, 1995) and from the 74th edition of the CRC *Handbook of Chemistry and Physics* (CRC Press, 1993). Note that melting and boiling points have been converted to kelvins by adding 273.15 to the Celsius values listed in Kaye and Laby. The standard atomic masses reflect the relative isotopic abundances in samples found naturally on Earth, and the number of significant figures reflect the variations between samples. Elements with atomic masses shown in square brackets have no stable nuclides, and the values reflect the mass numbers of the longest-lived isotopes. Crystallographic data are based on the most common forms of the elements (the α -form, unless stated otherwise) stable under standard conditions. Densities are for the solid state. For full details and footnotes for each element, the reader is advised to consult the original texts.

Elements 110, 111, 112 and 114 are known to exist but their names are not yet permanent.

Solid state physics

6.2 Periodic table

	1	Ī							
	1.007 94						name	2	
1	1 H		atomic number <				relati	ve atomic m	ass (u)
	89 (β) 378 HEX 1.632 13.80 20.28	2	electron c	onfiguration -		Titanium 47.867 22 Ti	symb	ol	
	Lithium 6.941 3 Li	Beryllium 9.012 182 4 Be	dens	ity (kgm ⁻³)	45	[Ca]3d ² 508 295 EX 1.587	lattic	e constant, a	(fm)
2	[He]2s ¹ 533 (β) 351 BCC	[He]2s ² 1 846 229 HEX 1.568		crystal type		943 3 563	, , ,	angle in RHI in ORC & N	*
	453.65 1613	1 560 2 745	meltii	ng point (K) /			boilir	ng point (K)	
	Sodium 22.989 770 11 Na	Magnesium 24.305 0 12 Mg							
3	[Ne]3s ¹ 966 429 BCC	Ne]3s ² 1 738 321 HEX 1.624							
	370.8 1 153	923 1 363	3	4	5	6	7	8	9
	39.098 3	Calcium 40.078	Scandium 44.955 910	Titanium 47.867	Vanadium 50.941 5	Chromium 51.996 1	Manganese 54.938 049	Iron 55.845	Cobalt 58.933 200
4	19 K	20 Ca $_{[Ar]4s^2}$	21 Sc	22 Ti	$23 V$ [Ca] $3d^3$	24 Cr $_{[Ar]3d^54s^1}$	25 Mn [Ca]3d ⁵	26 Fe	27 Co
	862 532 BCC	1 530 559 FCC	2 992 331 HEX 1.592	4508 295 HEX 1.587	6 090 302 BCC	7 194 388 BCC	7473 891 FCC	7 873 287 BCC	8 800 (ε) 251 HEX 1.623
	336.5 1 033 Rubidium	1113 1757 Strontium	1 813 3 103 Yttrium	1 943 3 563 Zirconium	2 193 3 673 Niobium	2 180 2 943 Molybdenum	1 523 2 333 Technetium	1813 3133 Ruthenium	1 768 3 203 Rhodium
_	85.4678 37 Rb	87.62 38 Sr	88.905 85 39 Y	91.224 40 Zr	92.906 38 41 Nb	95.94 42 Mo	43 Tc	101.07 44 Ru	102.905 50 45 Rh
5	1 533 571 BCC	[Kr]5s ² 2 583 608 FCC	[Sr]4d ¹ 4 475 365 HEX 1.571	[Sr]4d ² 6 507 323 HEX 1.593	[Kr]4d ⁴ 5s ¹ 8 578 330 BCC	[Kr]4d ⁵ 5s ¹ 10 222 315 BCC	[Sr]4d ⁵ 11 496 274 HEX 1.604	[Kr]4d ⁷ 5s ¹ 12 360 270 HEX 1.582	[Kr]4d ⁸ 5s ¹ 12 420 380 FCC
	312.4 963.1	1050 1653	1 798 3 613	2123 4673	2750 4973	2896 4913	2433 4533	2 603 4 423	2 2 3 6 3 9 7 3
	Caesium 132.905 45 55 Cs	Barium 137.327 56 Ba	Lanthanides 57 - 71	Hafnium 178.49 72 Hf	Tantalum 180.9479 73 Ta	Tungsten 183.84 74 W	Rhenium 186.207 75 Re	Osmium 190.23 76 Os	Iridium 192.217 77 Ir
6	[Xe]6s ¹ 1 900 614 BCC	[Xe]6s ² 3 594 502 BCC		[Yb]5d ² 13 276 319 HEX 1.581	[Yb]5d ³ 16 670 330 BCC	[Yb]5d ⁴ 19 254 316 BCC	[Yb]5d ⁵ 21 023 276 HEX 1.615	[Yb]5d ⁶ 22 580 273 HEX 1.606	[Yb]5d ⁷ 22 550 384 FCC
	301.6 943.2	1001 2173		2 503 4 873	3 293 5 833	3 695 5 823	3 4 5 9 5 8 7 3	3 303 5 273	
	Francium [223] 87 Fr	Radium [226] 88 Ra	Actinides 89 - 103	[261] 104 R f	Dubnium [262] 105 Db	Seaborgium [263] 106 Sg	Bohrium [264] 107 Bh	Hassium [265] 108 Hs	Meitnerium [268] 109 Mt
7		[Rn]7s ² 5 000 515	250	[Ra] $5f^{14}6d^2$	[Ra] $5f^{14}6d^3$?	[Ra] $5f^{14}6d^4$?	[Ra]5f ¹⁴ 6d ⁵ ?	[Ra]5f ¹⁴ 6d ⁶ ?	[Ra]5f ¹⁴ 6d ⁷ ?
	300 923	BCC 973 1773							

	Lanth 138.9			rium .116	Praseod		Neody 144		Prome [14		Sama 150	irium 0.36
T =41. =!.1 =	57	La	58	Ce	59	Pr	60	Nd	61	Рm	62	Sm
Lanthanides	[Ba]	$5d^{1}$	[Ba]4	$f^{1}5d^{1}$	[Ba]	$4f^{3}$	[Ba]	$4f^{4}$	[Ba]	$4f^{5}$	[Ba]	$4f^{6}$
	6174	377	6711	(γ) 516	6779	367	7 000	366	7 220	365	7 5 3 6	363
	HEX	3.23	FCC		HEX	3.222	HEX	3.225	HEX	3.19	HEX	7.221
	1 193	3 7 3 3	1 073	3 693	1 204	3 783	1 289	3 343	1 415	3 573	1 443	2063
	Acti	nium	Tho	rium	Protac	tinium	Urar	nium	Neptu	ınium	Pluto	nium
	[22	27]	232.	038 1	231.0	3588	238.0)289	[23	37]	[24	14]
	89	Ac	90	Th	91	Pa	92	U	93	Np	94	Pu
Actinides	[Ra]	$6d^{1}$	[Ra	$]6d^{2}$	[Rn]5f ²	$6d^{1}7s^{2}$	[Rn]5f ³	$6d^{1}7s^{2}$	[Rn]5f ⁴	$6d^{1}7s^{2}$	[Rn]5	$f^{6}7s^{2}$
	10 060	531	11725		15 370	392	19 050		20 450	666	19 816	618
	FCC		FCC		TET	0.825	ORC	1.736 2.056	ORC	0.733 0.709	MCL	1.773 0.780
	1 323	3 473	2 0 2 3	5 0 6 3	1 843	4 2 7 3	1 405.3				913	3 503

								18
								Helium
								4.002 602 2 He
BCC bo	ody-centred c	ubic						1s ²
	mple cubic							120 356 HEX 1.631
	amond ce-centred cu	ibio	13	14	15	16	17	3-5 4.22
	exagonal	ioic	Boron	Carbon	Nitrogen	Oxygen	Fluorine 18.998 403 2	Neon
	onoclinic		10.811 5 B	12.0107 6 C	14.006 74 7 N	15.999 4 8 O	9 F	20.179 7 10 Ne
	rthorhombic		[Be]2p1	[Be]2p ²	[Be]2p ³	[Be]2p ⁴	[Be]2p ⁵	[Be]2p6
	nombohedral tragonal		2 466 1017 RHL 65°7'	2 266 357 DIA	1 035 (β) 405 HEX 1.631	1 460 (γ) 683 CUB	1 140 550 MCL 1.32 0.61	1 442 446 FCC
	iple point		2 348 4 273	4763 (t-pt)	63 77.35	54.36 90.19	53.55 85.05	
			Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
			26.981 538 13 Al	28.085 5 14 Si	30.973 761 15 P	32.066 16 S	35.452 7 17 Cl	39.948 18 Ar
			[Mg]3p ¹	$[Mg]3p^2$	[Mg]3p ³	[Mg]3p ⁴	[Mg]3p ⁵	[Mg]3p ⁶
			2 698 405 FCC	2 329 543 DIA	1 820 331 ORC 1.320 3.162	2 086 1 046 ORC 2.340 1.229	2 030 624 ORC 1.324 0.718	1 656 532 FCC
10	11	12	933.47 2793	1683 3533	317.3 550	388.47 717.82	172 239.1	83.81 87.30
Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
58.693 4 28 Ni	63.546 29 Cu	65.39 30 Z n	69.723 31 Ga	72.61 32 Ge	74.921 60 33 As	78.96 34 Se	79.904 35 Br	83.80 36 Kr
[Ca]3d ⁸	[Ar]3d ¹⁰ 4s ¹	[Ca]3d ¹⁰	[Zn]4p ¹	$[Zn]4p^2$	$[Zn]4p^3$	[Zn]4p ⁴	$[Zn]4p^5$	[Zn]4p ⁶
8 907 352 FCC	8 933 361 FCC	7135 266 HEX 1.856	5 905 452 ORC 1.001 1.695	5 3 2 3 5 6 6 DIA	5776 413 RHL 54°7'	4 808 (γ) 436 HEX 1.135	3 120 668 ORC 1.308 0.672	3 000 581 FCC
	1 357.8 2 833	692.68 1183	302.9 2473	1211 3103	883 (t-pt)	493 958	265.90 332.0	
Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine 126.904 47	Xenon
106.42 46 Pd	107.868 2 47 Ag	112.411 48 Cd	114.818 49 In	118.710 50 Sn	121.760 51 Sb	127.60 52 Te	53 I	131.29 54 Xe
[Kr]4d ¹⁰	[Pd]5s ¹	[Pd]5s ²	[Cd]5p ¹	[Cd]5p ²	[Cd]5p ³	[Cd]5p ⁴	[Cd]5p ⁵	[Cd]5p ⁶
11 995 389 FCC	10 500 409 FCC	8 647 298 HEX 1.886	7 290 325 TET 1.521	7 285 (β) 583 TET 0.546	6 692 451 RHL 57°7'	6 247 446 HEX 1.33	4953 727 ORC 1.347 0.659	3 560 635 FCC
1 828 3 233		594.2 1 043	429.75 2343	505.08 2893	903.8 1860	723 1 263	386.7 457	161.3 165.0
Platinum 195.078	Gold 196.966 55	Mercury 200.59	Thallium 204.383 3	Lead 207.2	Bismuth 208.980 38	Polonium [209]	Astatine [210]	Radon [222]
78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
[Xe]4f ¹⁴ 5d ⁹ 6s ¹ 21 450 392	[Xe]4f ¹⁴ 5d ¹⁰ 6s ¹ 19 281 408	[Yb]5d ¹⁰ 13 546 300	[Hg]6p ¹ 11 871 346	[Hg]6p ² 11 343 495	[Hg]6p ³ 9 803 475	[Hg]6p ⁴ 9 400 337	[Hg]6p ⁵	[Hg]6p ⁶
FCC 592	FCC 408	13 546 300 RHL 70°32′	11 871 346 HEX 1.598	FCC 493	RHL 57°14′	CUB 337		440
	1 337.3 3 123	234.32 629.9	577 1743	600.7 2023	544.59 1833	527 1 233	573 623	202 211
Ununnilium [271]	Unununium [272]	Ununbium [285]		Ununquadium [289]				
110 Uun		112 Uub		114 Uuq				
Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
151.964 63 Eu	157.25 64 Gd	158.925 34 65 Tb	162.50 66 Dy	164.93032 67 Ho	167.26 68 Er	168.934 21 69 Tm	173.04 70 Yb	174.967 71 Lu
[Ba]4f ⁷	$[Ba]4f^{7}5d^{1}$	[Ba]4f ⁹	[Ba]4f ¹⁰	[Ba]4f ¹¹	[Ba]4f ¹²	[Ba]4f ¹³	[Ba]4f ¹⁴	[Yb]5d ¹
5 248 458 BCC	7 870 363 HEX 1.591	8 267 361 HEX 1.580	8 531 359 HEX 1.573	8 797 358 HEX 1.570	9 044 356 HEX 1.570		6966 (β) 549 FCC	9 842 351 HEX 1.583
1095 1873		1633 3493	1 683 2 833	1743 2973	1803 3133		1097 1473	
Americium [243]	Curium [247]	Berkelium [247]	Californium	Einsteinium [252]	Fermium [257]	Mendelevium [258]	Nobelium [259]	Lawrencium
95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	[258] 101 Md	102 No	103 Lr
[Ra]5f ⁷	$[Rn]5f^{7}6d^{1}7s^{2}$	[Ra]5f ⁹	[Ra]5f ¹⁰	[Ra]5f ¹¹	[Ra]5f ¹²	[Ra]5f ¹³	[Ra]5f ¹⁴	[Ra] $5f^{14}7p^{1}$
13 670 347								
HEX 3.24 1 449 2 873	HEX 3.24	14 780 342 HEX 3.24 1 323		HEX 1 133	1 803	1 103	1 103	1 903

6.3 Crystalline structure

Bravais lattices

Volume of primitive cell	$V = (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}$	(6.1)	a,b,c V	primitive base vectors volume of primitive cell
	$a^* = 2\pi b \times c / [(a \times b) \cdot c]$ $b^* = 2\pi c \times a / [(a \times b) \cdot c]$	(6.2) (6.3)		
Reciprocal primitive base	$c^* = 2\pi a \times b / [(a \times b) \cdot c]$	(6.4)	a^*,b^*,c^*	reciprocal primitive base vectors
vectors ^a	$\mathbf{a} \cdot \mathbf{a}^* = \mathbf{b} \cdot \mathbf{b}^* = \mathbf{c} \cdot \mathbf{c}^* = 2\pi$	(6.5)		, , , , , , , , , , , , , , , , , , , ,
	$\mathbf{a} \cdot \mathbf{b}^* = \mathbf{a} \cdot \mathbf{c}^* = 0$ (etc.)	(6.6)		
Lattice vector	$\mathbf{R}_{uvw} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c}$	(6.7)	R_{uvw} u,v,w	lattice vector [uvw] integers
Reciprocal lattice	$G_{hkl} = ha^* + kb^* + lc^*$	(6.8)	G_{hkl}	reciprocal lattice vector [hkl]
vector	$\exp(\mathbf{i}G_{hkl}\cdot\boldsymbol{R}_{uvw})=1$	(6.9)	i	$\mathbf{i}^2 = -1$
Weiss zone equation ^b	hu + kv + lw = 0	(6.10)	(hkl)	Miller indices of plane ^c
Interplanar spacing (general)	$d_{hkl} = \frac{2\pi}{G_{hkl}}$	(6.11)	d_{hkl}	distance between (hkl) planes
Interplanar spacing (orthogonal basis)	$\frac{1}{d_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$	(6.12)	24	

 $[\]overline{}^{a}$ Note that this is 2π times the usual definition of a "reciprocal vector" (see page 20).

Weber symbols

Converting [uvw] to	$U = \frac{1}{3}(2u - v)$ $V = \frac{1}{3}(2v - u)$	(6.13) (6.14)	U,V,T,W u,v,w $[UVTW]$	Weber indices zone axis indices Weber symbol
	$T = -\frac{1}{3}(u+v)$ $W = w$	(6.15) (6.16)	[uvw]	zone axis symbol
Converting [UVTW] to	u = (U - T) $v = (V - T)$	(6.17) (6.18)		
[uvw]	w = W	(6.19)		
Zone law ^a	hU + kV + iT + lW = 0	(6.20)	(hkil)	Miller-Bravais indices

^aFor trigonal and hexagonal systems.

^bCondition for lattice vector [uvw] to be parallel to lattice plane (hkl) in an arbitrary Bravais lattice. ^cMiller indices are defined so that G_{hkl} is the shortest reciprocal lattice vector normal to the (hkl) planes.

Cubic lattices

Cubic luttices			
lattice	primitive (P)	body-centred (I)	face-centred (F)
lattice parameter	а	а	а
volume of conventional cell	a^3	a^3	a^3
lattice points per cell	1	2	4
1st nearest neighbours ^a	6	8	12
1st n.n. distance	а	$a\sqrt{3}/2$	$a/\sqrt{2}$
2nd nearest neighbours	12	6	6
2nd n.n. distance	$a\sqrt{2}$	а	а
packing fraction ^b	$\pi/6$	$\sqrt{3}\pi/8$	$\sqrt{2}\pi/6$
reciprocal lattice ^c	P	F	I
	$a_1 = a\hat{x}$	$a_1 = \frac{a}{2}(\hat{y} + \hat{z} - \hat{x})$	$\boldsymbol{a}_1 = \frac{a}{2}(\hat{\boldsymbol{y}} + \hat{\boldsymbol{z}})$
primitive base vectors ^d	$\mathbf{a}_2 = a\hat{\mathbf{y}}$	$\boldsymbol{a}_2 = \frac{a}{2}(\hat{\boldsymbol{z}} + \hat{\boldsymbol{x}} - \hat{\boldsymbol{y}})$	$a_2 = \frac{a}{2}(\hat{z} + \hat{x})$
	$a_3 = a\hat{z}$	$a_3 = \frac{a}{2}(\hat{x} + \hat{y} - \hat{z})$	$\boldsymbol{a}_3 = \frac{a}{2}(\hat{\boldsymbol{x}} + \hat{\boldsymbol{y}})$

^aOr "coordination number."

Crystal systems^a

system	symmetry	unit cell ^b	lattices ^c
triclinic	none	$a \neq b \neq c;$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	P
monoclinic	one diad [010]	$a \neq b \neq c;$ $\alpha = \gamma = 90^{\circ}, \ \beta \neq 90^{\circ}$	P, C
orthorhombic	three orthogonal diads	$a \neq b \neq c;$ $\alpha = \beta = \gamma = 90^{\circ}$	P, C, I, F
tetragonal	one tetrad [001]	$a = b \neq c;$ $\alpha = \beta = \gamma = 90^{\circ}$	P, I
trigonal ^d	one triad [111]	a = b = c; $\alpha = \beta = \gamma < 120^{\circ} \neq 90^{\circ}$	P, R
hexagonal	one hexad [001]	$a = b \neq c;$ $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	P
cubic	four triads $\ \langle 111 \rangle$	a = b = c; $\alpha = \beta = \gamma = 90^{\circ}$	P, F, I

^aThe symbol "≠" implies that equality is not required by the symmetry, but neither is it forbidden.

^bFor close-packed spheres. The maximum possible packing fraction for spheres is $\sqrt{2}\pi/6$.

^cThe lattice parameters for the reciprocal lattices of P, I, and F are $2\pi/a$, $4\pi/a$, and $4\pi/a$ respectively.

 $^{{}^{}d}\hat{x}$, \hat{y} , and \hat{z} are unit vectors.

^bThe cell axes are a, b, and c with α , β , and γ the angles between b:c, c:a, and a:b respectively.

^cThe lattice types are primitive (P), body-centred (I), all face-centred (F), side-centred (C), and rhombohedral primitive (R).

^dA primitive hexagonal unit cell, with a triad || [001], is generally preferred over this rhombohedral unit cell.

Dislocations and cracks

					- / /l'
Edge dislocation	$\hat{\boldsymbol{l}} \cdot \boldsymbol{b} = 0$	(6.21)	Î	unit vector line of dislocation	
distocation			b ,b	Burgers vector ^a	b/
Screw dislocation	$\hat{\boldsymbol{l}} \cdot \boldsymbol{b} = b$	(6.22)	U	dislocation energy per unit length	
			μ	shear modulus	<i>Î</i>
Screw	L2 D		R	outer cutoff for r	
dislocation	$U = \frac{\mu b^2}{4\pi} \ln \frac{R}{r_0}$	(6.23)	r_0	inner cutoff for r	b
energy per	4π r_0		L	critical crack length	
unit length ^b	$\sim \mu b^2$	(6.24)	α	surface energy per unit	
unit length				area	·-/ >
Critical crack	$\Delta_{\alpha}F$		E	Young modulus	
length ^c	$L = \frac{-40L}{-(1 - 2)^{-2}}$	(6.25)	σ	Poisson ratio	
Cligili	$\pi(1-\sigma^2)p_0^2$		p_0	applied widening stress	$oxed{L}$

^aThe Burgers vector is a Bravais lattice vector characterising the total relative slip were the dislocation to travel throughout the crystal.

Crystal diffraction

Laue equations	$a(\cos\alpha_1 - \cos\alpha_2) = h\lambda$ $b(\cos\beta_1 - \cos\beta_2) = k\lambda$ $c(\cos\gamma_1 - \cos\gamma_2) = l\lambda$	(6.26) (6.27) (6.28)	a,b,c $\alpha_1,\beta_1,\gamma_1$ $\alpha_2,\beta_2,\gamma_2$ h,k,l	lattice parameters angles between lattice base vectors and input wavevector angles between lattice base vectors and output wavevector integers (Laue indices)
Bragg's law ^a	$2k_{\rm in}.G + G ^2 = 0$	(6.29)	$egin{array}{c} \lambda \ oldsymbol{k}_{ m in} \ oldsymbol{G} \end{array}$	wavelength input wavevector reciprocal lattice vector
Atomic form factor	$f(\mathbf{G}) = \int_{\text{vol}} e^{-i\mathbf{G}\cdot\mathbf{r}} \rho(\mathbf{r}) d^3 r$	(6.30)	$ \begin{array}{c c} f(G) \\ r \\ \rho(r) \end{array} $	atomic form factor position vector atomic electron density
Structure factor ^b	$S(\mathbf{G}) = \sum_{j=1}^{n} f_j(\mathbf{G}) e^{-i\mathbf{G}\cdot\mathbf{d}_j}$	(6.31)	$S(G)$ n d_j	structure factor number of atoms in basis position of <i>j</i> th atom within basis
Scattered intensity ^c	$I(\mathbf{K}) \propto N^2 S(\mathbf{K}) ^2$	(6.32)	K I(K) N	change in wavevector $(=k_{\text{out}}-k_{\text{in}})$ scattered intensity number of lattice points illuminated
Debye– Waller factor ^d	$I_T = I_0 \exp\left[-\frac{1}{3}\langle u^2 \rangle \boldsymbol{G} ^2\right]$	(6.33)	$ \begin{vmatrix} I_T \\ I_0 \\ \langle u^2 \rangle \end{vmatrix} $	intensity at temperature <i>T</i> intensity from a lattice with no motion mean-squared thermal displacement of atoms

^aAlternatively, see Equation (8.32).

^bOr "tension." The energy per unit length of an edge dislocation is also $\sim \mu b^2$.

^cFor a crack cavity (long $\perp L$) within an isotropic medium. Under uniform stress p_0 , cracks $\geq L$ will grow and smaller cracks will shrink.

^bThe summation is over the atoms in the basis, i.e., the atomic motif repeating with the Bravais lattice.

^cThe Bragg condition makes **K** a reciprocal lattice vector, with $|k_{\rm in}| = |k_{\rm out}|$.

^dEffect of thermal vibrations.

6.4 Lattice dynamics

Phonon dispersion relations^a

^aAlong infinite linear atomic chains, considering simple harmonic nearest-neighbour interactions only. The shaded region of the dispersion relation is outside the first Brillouin zone of the reciprocal lattice.

^bIn the sense α = restoring force/relative displacement.

^cNote that the repeat distance for this chain is 2a, so that the first Brillouin zone extends to $|k| < \pi/(2a)$. The optic and acoustic branches are the + and - solutions respectively.

Debye theory

Mean energy per phonon mode ^a	$\langle E \rangle = \frac{1}{2}\hbar\omega + \frac{\hbar\omega}{\exp[\hbar\omega/(k_{\rm B}T)] - 1}$	(6.40)	$\langle E \rangle$ mean energy in a mode at ω \hbar (Planck constant)/(2 π) ω phonon angular frequency $k_{\rm B}$ Boltzmann constant T temperature
Debye frequency	$\omega_{\rm D} = v_{\rm s} (6\pi^2 N/V)^{1/3}$ where $\frac{3}{v_{\rm s}^3} = \frac{1}{v_{\rm i}^3} + \frac{2}{v_{\rm t}^3}$	(6.41) (6.42)	$\begin{array}{ccc} \omega_{\mathrm{D}} & \mathrm{Debye} \ (\mathrm{angular}) \ \mathrm{frequency} \\ v_{\mathrm{s}} & \mathrm{effective} \ \mathrm{sound} \ \mathrm{speed} \\ v_{\mathrm{l}} & \mathrm{longitudinal} \ \mathrm{phase} \ \mathrm{speed} \\ v_{\mathrm{t}} & \mathrm{transverse} \ \mathrm{phase} \ \mathrm{speed} \end{array}$
Debye temperature	$\theta_{\rm D} = \hbar \omega_{\rm D}/k_{\rm B}$	(6.43)	N number of atoms in crystal V crystal volume θ_{D} Debye temperature
Phonon density of states	$g(\omega) d\omega = \frac{3V\omega^2}{2\pi^2 v_s^3} d\omega$ (for $0 < \omega < \omega_D$, $g = 0$ otherwise)	(6.44)	$g(\omega)$ density of states at ω C_V heat capacity, V constant U thermal phonon energy within crystal $D(x)$ Debye function
Debye heat capacity	$C_V = 9Nk_{\rm B} \frac{T^3}{\theta_{\rm D}^3} \int_0^{\theta_{\rm D}/T} \frac{x^4 e^x}{(e^x - 1)^2} \mathrm{d}x$	(6.45)	$3Nk_{\rm B}$ $C_{\rm V}$
Dulong and Petit's law	$\simeq 3Nk_{\rm B} (T \gg \theta_{\rm D})$	(6.46)	
Debye T^3 law	$\simeq \frac{12\pi^4}{5} N k_{\rm B} \frac{T^3}{\theta_{\rm D}^3} (T \ll \theta_{\rm D})$	(6.47)	0 1 $T/\theta_{\rm D}$ 2
Internal thermal energy ^b	$U(T) = \frac{9N}{\omega_D^3} \int_0^{\omega_D} \frac{\hbar \omega^3}{\exp[\hbar \omega / (k_B T)] - \omega^3}$ where $D(x) = \frac{3}{x^3} \int_0^x \frac{y^3}{e^y - 1} dy$	$\frac{1}{1} d\omega \equiv 3$	$Nk_{\rm B}T {\rm D}(\theta_{\rm D}/T)$ (6.48)

 $[^]a$ Or any simple harmonic oscillator in thermal equilibrium at temperature T. b Neglecting zero-point energy.

Lattice forces (simple)

Van der Waals interaction ^a	$\phi(r) = -\frac{3}{4} \frac{\alpha_{\rm p}^2 \hbar \omega}{(4\pi\epsilon_0)^2 r^6}$	(6.50)	$\phi(r)$ two-particle potential energy r particle separation $\alpha_{\rm p}$ particle polarisability
Lennard–Jones 6-12 potential	$\phi(r) = -\frac{A}{r^6} + \frac{B}{r^{12}}$ $= 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$	(6.51) (6.52)	\hbar (Planck constant)/ (2π) ϵ_0 permittivity of free space ω angular frequency of polarised orbital
(molecular crystals)	$\sigma = (B/A)^{1/6}; \epsilon = A^2/(4B)$ $\phi_{\min} \text{at} r = \frac{2^{1/6}}{\sigma}$		A,B constants
De Boer parameter	$\Lambda = \frac{h}{\sigma(m\epsilon)^{1/2}}$	(6.54)	Λ de Boer parameterh Planck constantm particle mass
Coulomb interaction (ionic crystals)	$U_{\rm C} = -lpha_{ m M} rac{e^2}{4\pi\epsilon_0 r_0}$		$U_{\rm C}$ lattice Coulomb energy per ion pair $\alpha_{\rm M}$ Madelung constant $-e$ electronic charge r_0 nearest neighbour separation

^aLondon's formula for fluctuating dipole interactions, neglecting the propagation time between particles.

Lattice thermal expansion and conduction

Grüneisen parameter ^a	$\gamma = -\frac{\partial \ln \omega}{\partial \ln V}$	(6.56)	γ Grüneisen parameter ω normal mode frequency V volume
Linear expansivity ^b	$\alpha = \frac{1}{3K_T} \frac{\partial p}{\partial T} \Big _{V} = \frac{\gamma C_V}{3K_T V}$	(6.57)	α linear expansivity K_T isothermal bulk modulus p pressure T temperature C_V lattice heat capacity, constant V
Thermal conductivity of a phonon gas	$\lambda = \frac{1}{3} \frac{C_V}{V} v_{\rm s} l$	(6.58)	λ thermal conductivity v_s effective sound speed l phonon mean free path
Umklapp mean free path ^c	$l_{\rm u} \propto \exp(\theta_{\rm u}/T)$	(6.59)	$l_{\rm u}$ umklapp mean free path $\theta_{\rm u}$ umklapp temperature ($\sim \theta_{\rm D}/2$)

^aStrictly, the Grüneisen parameter is the mean of γ over all normal modes, weighted by the mode's contribution to C_V .

 $[^]b\mathrm{Or}$ "coefficient of thermal expansion," for an isotropically expanding crystal.

^cMean free path determined solely by "umklapp processes" – the scattering of phonons outside the first Brillouin zone.

6.5 Electrons in solids

Free electron transport properties

Current density	$J = -nev_{\mathrm{d}}$	(6.60)	J current density n free electron number density $-e$ electronic charge $v_{\rm d}$ mean electron drift velocity
Mean electron drift velocity	$v_{\rm d} = -\frac{e\tau}{m_{\rm e}}E$	(6.61)	$ au$ mean time between collisions (relaxation time) $m_{\rm e}$ electronic mass
d.c. electrical conductivity	$\sigma_0 = \frac{ne^2\tau}{m_e}$	(6.62)	E applied electric field σ_0 d.c. conductivity $(J = \sigma E)$
a.c. electrical conductivity ^a	$\sigma(\omega) = \frac{\sigma_0}{1 - \mathbf{i}\omega\tau}$	(6.63)	ω a.c. angular frequency $\sigma(\omega)$ a.c. conductivity
Thermal conductivity	$\lambda = \frac{1}{3} \frac{C_V}{V} \langle c^2 \rangle \tau$ $= \frac{\pi^2 n k_{\rm B}^2 \tau T}{3 m_{\rm e}} (T \ll 1)$	(6.64) $\ll T_{\rm F})$ (6.65)	C_V total electron heat capacity, V constant V volume $\langle c^2 \rangle$ mean square electron speed $k_{ m B}$ Boltzmann constant T temperature $T_{ m F}$ Fermi temperature
Wiedemann– Franz law ^b	$\frac{\lambda}{\sigma T} = L = \frac{\pi^2 k_{\rm B}^2}{3e^2}$	(6.66)	L Lorenz constant ($\simeq 2.45 \times 10^{-8} \mathrm{W}\Omega \mathrm{K}^{-2}$) λ thermal conductivity
	$R_{\rm H} = -\frac{1}{ne} = \frac{E_y}{J_x B_z}$	(6.67)	$R_{\rm H}$ Hall coefficient E_y Hall electric field J_x applied current density B_z magnetic flux density
Hall voltage (rectangular strip)	$V_{\rm H} = R_{\rm H} \frac{B_z I_x}{w}$	(6.68)	$V_{\rm H}$ Hall voltage $V_{\rm H}$ I_{x} applied current (= $J_{x} \times$ cross-sectional area) w strip thickness in z

^aFor an electric field varying as $e^{-i\omega t}$.

^bHolds for an arbitrary band structure.

^cThe charge on an electron is -e, where e is the elementary charge (approximately $+1.6 \times 10^{-19}$ C). The Hall coefficient is therefore a negative number when the dominant charge carriers are electrons.

6.5 Electrons in solids

Fermi gas

Electron density of states ^a	$g(E) = \frac{V}{2\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{1/2}$	(6.69)	E electron energy (>0) g(E) density of states V "gas" volume
	$g(E_{\rm F}) = \frac{3}{2} \frac{nV}{E_{\rm F}}$	(6.70)	$m_{\rm e}$ electronic mass \hbar (Planck constant)/ (2π)
Fermi wavenumber	$k_{\rm F} = (3\pi^2 n)^{1/3}$	(6.71)	k_F Fermi wavenumbern number of electrons per unit volume
Fermi velocity	$v_{\mathrm{F}} = \hbar k_{\mathrm{F}}/m_{\mathrm{e}}$	(6.72)	v _F Fermi velocity
Fermi energy $(T=0)$	$E_{\rm F} = \frac{\hbar^2 k_{\rm F}^2}{2m_{\rm e}} = \frac{\hbar^2}{2m_{\rm e}} (3\pi^2 n)^{2/3}$	(6.73)	$E_{ m F}$ Fermi energy
Fermi temperature	$T_{\rm F} = \frac{E_{\rm F}}{k_{\rm B}}$	(6.74)	$T_{\rm F}$ Fermi temperature $k_{\rm B}$ Boltzmann constant
Electron heat capacity ^b $(T \ll T_F)$	$C_{Ve} = \frac{\pi^2}{3} g(E_{\rm F}) k_{\rm B}^2 T$	(6.75)	C_{Ve} heat capacity per electron
	$=\frac{\pi^2 k_{\rm B}^2}{2E_{\rm F}}T$	(6.76)	T temperature
Total kinetic energy $(T=0)$	$U_0 = \frac{3}{5}nVE_{\rm F}$	(6.77)	U_0 total kinetic energy
Pauli	$M = \chi_{HP}H$	(6.78)	χ_{HP} Pauli magnetic susceptibilityH magnetic field strength
paramagnetism	$=\frac{3n}{2E_{\rm F}}\mu_0\mu_{\rm B}^2\boldsymbol{H}$	(6.79)	M magnetisation μ_0 permeability of free space μ_B Bohr magneton
Landau diamagnetism	$\chi_{HL} = -\frac{1}{3}\chi_{HP}$	(6.80)	χ _{HL} Landau magnetic susceptibility

^aThe density of states is often quoted per unit volume in real space (i.e., g(E)/V here).

Thermoelectricity

	1		E	electrochemical field ^b
Thermopower ^a	$\mathscr{E} = \frac{\mathbf{J}}{\mathbf{J}} + S_T \nabla T$	(6.81)	J	current density
	0		σ	electrical conductivity
			S_T	thermopower
Peltier effect	$\boldsymbol{H} = \Pi \boldsymbol{J} - \lambda \nabla T$	(6.82)	T	temperature
			H	heat flux per unit area
Kelvin relation	$\Pi = TS_T$	(6.83)	П	Peltier coefficient
Keiviii Telatioii	$\Pi = T S T$	(0.03)	λ	thermal conductivity

^aOr "absolute thermoelectric power."

^bEquation (6.75) holds for any density of states.

^bThe electrochemical field is the gradient of $(\mu/e) - \phi$, where μ is the chemical potential, -e the electronic charge, and ϕ the electrical potential.

Solid state physics

Band theory and semiconductors

Bloch's theorem	$\Psi(r+R) = \exp(\mathbf{i}\mathbf{k}\cdot\mathbf{R})\Psi(r)$	(6.84)	Ψ k R r	electron eigenstate Bloch wavevector lattice vector position vector electron velocity (for wavevector
Electron velocity	$\boldsymbol{v}_b(\boldsymbol{k}) = \frac{1}{\hbar} \nabla_{\boldsymbol{k}} E_b(\boldsymbol{k})$	(6.85)	b b $E_b(k)$	k) (Planck constant)/ 2π band index energy band
Effective mass tensor	$m_{ij} = \hbar^2 \left[\frac{\partial^2 E_b(\mathbf{k})}{\partial k_i \partial k_j} \right]^{-1}$	(6.86)	m_{ij} k_i	effective mass tensor components of k
Scalar effective mass ^a	$m^* = \hbar^2 \left[\frac{\partial^2 E_b(k)}{\partial k^2} \right]^{-1}$	(6.87)	m* k	scalar effective mass $= \mathbf{k} $
Mobility	$\mu = \frac{ \boldsymbol{v}_{\rm d} }{ \boldsymbol{E} } = \frac{eD}{k_{\rm B}T}$	(6.88)	$egin{array}{c} \mu & & & \\ v_{ m d} & & & \\ E & & & \\ -e & & D & \\ T & & & \end{array}$	particle mobility mean drift velocity applied electric field electronic charge diffusion coefficient temperature
Net current density	$\boldsymbol{J} = (n_{\rm e}\mu_{\rm e} + n_{\rm h}\mu_{\rm h})e\boldsymbol{E}$	(6.89)	J $n_{ m e,h}$ $\mu_{ m e,h}$	current density electron, hole, number densities electron, hole, mobilities
Semiconductor equation	$n_{\rm e}n_{\rm h} = \frac{(k_{\rm B}T)^3}{2(\pi\hbar^2)^3} (m_{\rm e}^* m_{\rm h}^*)^{3/2} {\rm e}^{-E_{\rm h}}$	$\frac{1}{(6.90)}$	$\begin{bmatrix} k_{\rm B} \\ E_{\rm g} \\ m_{\rm e,h}^* \end{bmatrix}$	Boltzmann constant band gap electron, hole, effective masses
p-n junction	$I = I_0 \left[\exp\left(\frac{eV}{k_B T}\right) - 1 \right]$ $I_0 = e n_i^2 A \left(\frac{D_e}{L_e N_a} + \frac{D_h}{L_h N_d}\right)$ $L_e = (D_e \tau_e)^{1/2}$ $L_h = (D_h \tau_h)^{1/2}$	(6.91) (6.92) (6.93) (6.94)	$egin{array}{cccccccccccccccccccccccccccccccccccc$	current saturation current bias voltage (+ for forward) intrinsic carrier concentration area of junction electron, hole, diffusion coefficients electron, hole, diffusion lengths electron, hole, recombination
			N _{a,d}	acceptor, donor, concentrations

aValid for regions of k-space in which $E_b(\mathbf{k})$ can be taken as independent of the direction of k.

Chapter 7 Electromagnetism

7.1 Introduction

The electromagnetic force is central to nearly every physical process around us and is a major component of classical physics. In fact, the development of electromagnetic theory in the nineteenth century gave us much mathematical machinery that we now apply quite generally in other fields, including potential theory, vector calculus, and the ideas of divergence and curl.

It is therefore not surprising that this section deals with a large array of physical quantities and their relationships. As usual, SI units are assumed throughout. In the past electromagnetism has suffered from the use of a variety of systems of units, including the cgs system in both its electrostatic (esu) and electromagnetic (emu) forms. The fog has now all but cleared, but some specialised areas of research still cling to these historical measures. Readers are advised to consult the section on unit conversion if they come across such exotica in the literature.

Equations cast in the rationalised units of SI can be readily converted to the once common Gaussian (unrationalised) units by using the following symbol transformations:

Equation conversion: SI to Gaussian units

$\epsilon_0 \mapsto 1/(4\pi)$	$\mu_0 \mapsto 4\pi/c^2$	$B \mapsto B/c$				
$\chi_E \mapsto 4\pi \chi_E$	$\chi_H \mapsto 4\pi \chi_H$	$H \mapsto cH/(4\pi)$				
$A \mapsto A/c$	$M \mapsto cM$	$D \mapsto D/(4\pi)$				
The quantities ρ , J , E , ϕ , σ , P , $\epsilon_{\rm r}$, and $\mu_{\rm r}$ are all unchanged.						

7.2 Static fields

Electrostatics

Electrostatic potential	$E = -\nabla \phi$	(7.1)	Ε φ	electric field electrostatic potential
Potential difference ^a	$\phi_a - \phi_b = \int_a^b \mathbf{E} \cdot d\mathbf{l} = -\int_b^a \mathbf{E}$	· d <i>l</i> (7.2)	ϕ_a ϕ_b $\mathrm{d} I$	potential at a potential at b line element
Poisson's Equation (free space)	$\nabla^2 \phi = -\frac{\rho}{\epsilon_0}$	(7.3)	$ ho \\ \epsilon_0$	charge density permittivity of free space
Point charge at r'	$\phi(\mathbf{r}) = \frac{q}{4\pi\epsilon_0 \mathbf{r} - \mathbf{r}' }$ $E(\mathbf{r}) = \frac{q(\mathbf{r} - \mathbf{r}')}{4\pi\epsilon_0 \mathbf{r} - \mathbf{r}' ^3}$	(7.4) (7.5)	q	point charge
Field from a charge distribution (free space) ^a Between points a and b alo	$E(r) = \frac{1}{4\pi\epsilon_0} \int_{\text{volume}} \frac{\rho(r')(r-r')}{ r-r' ^3} d\tau$	['] (7.6)	dτ' r '	volume element position vector of $d\tau'$

${\bf Magnetostatics}^a$

Magnetic scalar potential	$\boldsymbol{B} = -\mu_0 \nabla \phi_{\mathrm{m}}$	(7.7)	$\phi_{ m m}$	magnetic scalar potential magnetic flux density	
$\phi_{\rm m}$ in terms of the solid angle of a generating current loop	$\phi_{\rm m} = \frac{I\Omega}{4\pi}$	(7.8)	Ω <i>I</i>	loop solid angle current	
Biot-Savart law (the field from a line current)	$B(r) = \frac{\mu_0 I}{4\pi} \int_{\text{line}} \frac{\mathrm{d} I \times (r - r')}{ r - r' ^3}$	(7.9)	d <i>l</i>	line element in the direction of the current position vector of d <i>I</i>	
Ampère's law (differential form)	$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J}$	(7.10)	J μ_0	current density permeability of free space	
Ampère's law (integral form)	$ \oint \mathbf{B} \cdot \mathbf{d}\mathbf{l} = \mu_0 I_{\text{tot}} $	(7.11)	I_{tot}	total current through loop	
^a In free space.					

Between points a and b along a path l.

7.2 Static fields

Capacitance^a

_		
Of sphere, radius a	$C = 4\pi\epsilon_0\epsilon_{\rm r}a$	(7.12)
Of circular disk, radius a	$C = 8\epsilon_0 \epsilon_r a$	(7.13)
Of two spheres, radius a, in contact	$C = 8\pi\epsilon_0\epsilon_{\rm r}a\ln 2$	(7.14)
Of circular solid cylinder, radius <i>a</i> , length <i>l</i>	$C \simeq [8 + 4.1(l/a)^{0.76}] \epsilon_0 \epsilon_r a$	(7.15)
Of nearly spherical surface, area S	$C \simeq 3.139 \times 10^{-11} \epsilon_{\rm r} S^{1/2}$	(7.16)
Of cube, side a	$C \simeq 7.283 \times 10^{-11} \epsilon_{\rm r} a$	(7.17)
Between concentric spheres, radii $a < b$	$C = 4\pi\epsilon_0\epsilon_{\rm r}ab(b-a)^{-1}$	(7.18)
Between coaxial cylinders, radii $a < b$	$C = \frac{2\pi\epsilon_0\epsilon_r}{\ln(b/a)}$ per unit length	(7.19)
Between parallel cylinders,	$C = \frac{\pi \epsilon_0 \epsilon_r}{\operatorname{arcosh}(d/a)} \text{per unit length}$	(7.20)
separation 2d, radii a	$\simeq \frac{\pi \epsilon_0 \epsilon_{\rm r}}{\ln(2d/a)} (d \gg a)$	(7.21)
Between parallel, coaxial circular disks, separation <i>d</i> , radii <i>a</i>	$C \simeq \frac{\epsilon_0 \epsilon_r \pi a^2}{d} + \epsilon_0 \epsilon_r a [\ln(16\pi a/d) - 1]$	(7.22)

 $[\]overline{{}^a}$ For conductors, in an embedding medium of relative permittivity $\epsilon_{\rm r}$.

Inductance^a

Of <i>N</i> -turn solenoid (straight or toroidal), length l , area $A (\ll l^2)$	$L = \mu_0 N^2 A / l$	(7.23)
Of coaxial cylindrical tubes, radii a , b ($a < b$)	$L = \frac{\mu_0}{2\pi} \ln \frac{b}{a}$ per unit length	(7.24)
Of parallel wires, radii <i>a</i> , separation 2 <i>d</i>	$L \simeq \frac{\mu_0}{\pi} \ln \frac{2d}{a}$ per unit length, $(2d \gg a)$	(7.25)
Of wire of radius a bent in a loop of radius $b \gg a$	$L \simeq \mu_0 b \left(\ln \frac{8b}{a} - 2 \right)$	(7.26)

^aFor currents confined to the surfaces of perfect conductors in free space.

Electric fields^a

Uniformly charged sphere, radius <i>a</i> , charge <i>q</i>	$E(r) = \begin{cases} \frac{q}{4\pi\epsilon_0 a^3} r & (r < a) \\ \frac{q}{4\pi\epsilon_0 r^3} r & (r \ge a) \end{cases}$	(7.27)
Uniformly charged disk, radius a, charge q (on axis, z)	$\boldsymbol{E}(z) = \frac{q}{2\pi\epsilon_0 a^2} z \left(\frac{1}{ z } - \frac{1}{\sqrt{z^2 + a^2}} \right)$	(7.28)
Line charge, charge density λ per unit length	$E(r) = \frac{\lambda}{2\pi\epsilon_0 r^2} r$	(7.29)
Electric dipole, moment <i>p</i> (spherical polar	$E_r = \frac{p\cos\theta}{2\pi\epsilon_0 r^3}$	(7.30)
coordinates, θ angle between p and r)	$E_{\theta} = \frac{p \sin \theta}{4\pi \epsilon_0 r^3}$	(7.31)
Charge sheet, surface density σ	$E = \frac{\sigma}{2\epsilon_0}$	(7.32)

Magnetic fields^a

Uniform infinite solenoid, current <i>I</i> , <i>n</i> turns per unit length	$B = \begin{cases} \mu_0 nI & \text{inside (axial)} \\ 0 & \text{outside} \end{cases}$	(7.33)
Uniform cylinder of current <i>I</i> , radius <i>a</i>	$B(r) = \begin{cases} \mu_0 I r / (2\pi a^2) & r < a \\ \mu_0 I / (2\pi r) & r \ge a \end{cases}$	(7.34)
Magnetic dipole, moment $m (\theta \text{ angle between } m \text{ and } r)$	$B_r = \mu_0 \frac{m\cos\theta}{2\pi r^3}$ $B_\theta = \frac{\mu_0 m\sin\theta}{4\pi r^3}$	(7.35) (7.36)
Circular current loop of <i>N</i> turns, radius <i>a</i> , along axis, <i>z</i>	$B(z) = \frac{\mu_0 NI}{2} \frac{a^2}{(a^2 + z^2)^{3/2}}$	(7.37)
The axis, z, of a straight solenoid, n turns per unit length, current I	$B_{\text{axis}} = \frac{\mu_0 nI}{2} (\cos \alpha_1 - \cos \alpha_2)$	(7.38)

Image charges

Real charge, +q, at a distance:	image point	image charge
b from a conducting plane	-b	-q
b from a conducting sphere, radius a	a^2/b	-qa/b
b from a plane dielectric boundary:		
seen from free space	-b	$-q(\epsilon_{\rm r}-1)/(\epsilon_{\rm r}+1)$
seen from the dielectric	b	$+2q/(\epsilon_{\rm r}+1)$

^aFor $\epsilon_r = 1$ in the surrounding medium.

^aFor $\mu_r = 1$ in the surrounding medium.

7.3 Electromagnetic fields (general)

Field relationships

_				
Conservation of charge	$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t}$	(7.39)	$egin{array}{c} oldsymbol{J} & & & \\ oldsymbol{ ho} & & & \\ t & & & \end{array}$	current density charge density time
Magnetic vector potential	$B = \nabla \times A$	(7.40)	A	vector potential
Electric field from potentials	$\boldsymbol{E} = -\frac{\partial \boldsymbol{A}}{\partial t} - \nabla \phi$	(7.41)	ϕ	electrical potential
Coulomb gauge condition	$\nabla \cdot A = 0$	(7.42)		
Lorenz gauge condition	$\nabla \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t} = 0$	(7.43)	c	speed of light
Potential field	$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \frac{\rho}{\epsilon_0}$	(7.44)		dī'
equations ^a	$\frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} - \nabla^2 A = \mu_0 \mathbf{J}$	(7.45)		· ·
Expression for ϕ in terms of ρ^a	$\phi(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int_{\text{volume}} \frac{\rho(\mathbf{r}',t- \mathbf{r}-\mathbf{r}' /c)}{ \mathbf{r}-\mathbf{r}' } d\tau'$	(7.46)	$d\tau'$ r'	volume element position vector of $d\tau'$
Expression for A in terms of J^a	$A(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int_{\text{volume}} \frac{J(\mathbf{r}',t- \mathbf{r}-\mathbf{r}' /c)}{ \mathbf{r}-\mathbf{r}' } d\tau'$	(7.47)	μ_0	permeability of free space

^aAssumes the Lorenz gauge.

${\bf Li\'{e}nard-Wiechert~potentials}^a$

^aIn free space. The right-hand sides of these equations are evaluated at retarded times, i.e., at $t' = t - |\mathbf{r}'|/c$, where \mathbf{r}' is the vector from the charge to the observation point at time t'.

Maxwell's equations

\Box	oifferential form:			Integral form:	
	$\cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$	(7.50)		$\oint_{\text{closed surface}} E \cdot ds = \frac{1}{\epsilon_0} \int_{\text{volume}} \rho \ d\tau$	(7.51)
∇	$\cdot \mathbf{B} = 0$	(7.52)		$ \oint \mathbf{B} \cdot d\mathbf{s} = 0 $ closed surface	(7.53)
∇	$\times E = -\frac{\partial B}{\partial t}$	(7.54)		$ \oint_{\text{loop}} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt} $	(7.55)
∇	$\times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$	(7.56)		$\oint_{\text{loop}} \mathbf{B} \cdot d\mathbf{l} = \mu_0 \mathbf{I} + \mu_0 \epsilon_0 \int_{\text{surface}} \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{s}$	(7.57)
	Equation (7.51) is "Gauss	s's law"	ds	surface element	
	Equation (7.55) is "Farad	ay's law''	$\mathrm{d} \tau$	volume element	
E	electric field		d <i>l</i>	line element	
В	magnetic flux density		Φ	linked magnetic flux (= $\int \mathbf{B} \cdot d\mathbf{s}$)	
J	current density		I	linked current $(=\int \boldsymbol{J} \cdot d\boldsymbol{s})$	
ρ	charge density		t	time	

Maxwell's equations (using D and H)

Differential form:		Integral form:	
$\nabla \cdot \boldsymbol{D} = \rho_{\text{free}}$	(7.58)	$ \oint \mathbf{D} \cdot d\mathbf{s} = \int \rho_{\text{free}} d\tau $ closed surface volume	(7.59)
$\nabla \cdot \mathbf{B} = 0$	(7.60)	$ \oint \mathbf{B} \cdot d\mathbf{s} = 0 $ closed surface	(7.61)
$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$	(7.62)	$ \oint_{\text{loop}} \mathbf{E} \cdot \mathrm{d}\mathbf{l} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} $	(7.63)
$\nabla \times \boldsymbol{H} = \boldsymbol{J}_{\text{free}} + \frac{\partial \boldsymbol{D}}{\partial t}$	(7.64)	$\oint_{\text{loop}} \boldsymbol{H} \cdot d\boldsymbol{l} = I_{\text{free}} + \int_{\text{surface}} \frac{\partial \boldsymbol{D}}{\partial t} \cdot d\boldsymbol{s}$	(7.65)
D displacement field		E electric field	
$ ho_{\mathrm{free}}$ free charge density (in	the sense of	ds surface element	
$\rho = \rho_{\rm induced} + \rho_{\rm free})$		$d\tau$ volume element	
B magnetic flux density		d <i>I</i> line element	
H magnetic field strength		Φ linked magnetic flux $(=\int \mathbf{B} \cdot d\mathbf{s})$	
J_{free} free current density (in $J = J_{\text{induced}} + J_{\text{free}}$)	the sense of	I_{free} linked free current (= $\int \boldsymbol{J}_{\mathrm{free}} \cdot \mathrm{d}s$) t time	

7

Relativistic electrodynamics

	•			
			E	electric field
	$E_{\parallel}' = E_{\parallel}$	(7.66)	В	magnetic flux density
Lorentz transformation of	$E'_{\perp} = \gamma (E + v \times B)_{\perp}$	(7.67)	′	measured in frame moving at relative velocity v
electric and magnetic fields	$\boldsymbol{B}'_{\parallel} = \boldsymbol{B}_{\parallel}$	(7.68)	γ	Lorentz factor $= [1 - (v/c)^2]^{-1/2}$
	$\boldsymbol{B}_{\perp}' = \gamma (\boldsymbol{B} - \boldsymbol{v} \times \boldsymbol{E}/c^2)_{\perp}$	(7.69)		parallel to v
			\perp	perpendicular to v
Lorentz	$\rho' = \gamma(\rho - vJ_{\parallel}/c^2)$	(7.70)		
transformation of	$J_{\perp}' = J_{\perp}$	(7.71)	\boldsymbol{J}	current density
current and charge densities	$J'_{\parallel} = \gamma (J_{\parallel} - v\rho)$	(7.72)	ρ	charge density
Lorentz	$\phi' = \gamma(\phi - vA_{\parallel})$	(7.73)		
transformation of	$A'_{\perp} = A_{\perp}$	(7.74)	φ	electric potential
potential fields	$A'_{\parallel} = \gamma (A_{\parallel} - v\phi/c^2)$	(7.75)	A	magnetic vector potential
	$\mathbf{J} = (\rho c, \mathbf{J})$	(7.76)		
Four-vector fields ^a	$\underset{\sim}{A} = \left(\frac{\phi}{c}, A\right)$	(7.77)	J \tilde{A}	current density four-vector potential four-vector
Total votor morals	$\Box^2 = \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2}, -\nabla^2\right)$	(7.78)	$\stackrel{\sim}{\sim}$	D'Alembertian operator
	$\square^2 A = \mu_0 J$	(7.79)		

^aOther sign conventions are common here. See page 65 for a general definition of four-vectors.

Fields associated with media 7.4

Polarisation

1 Ulai isatiuli			
Definition of electric dipole moment	p = qa	(7.80)	$ \frac{\pm q}{a} $ end charges charge separation vector (from - to +)
Generalised electric dipole moment	$p = \int_{\text{volume}} r' \rho d\tau'$	(7.81)	p dipole moment ρ charge density $d\tau'$ volume element r' vector to $d\tau'$
Electric dipole potential	$\phi(\mathbf{r}) = \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\epsilon_0 r^3}$	(7.82)	ϕ dipole potential r vector from dipole ϵ_0 permittivity of free space
Dipole moment per unit volume (polarisation) ^a	P = np	(7.83)	P polarisationn number of dipoles per unit volume
Induced volume charge density	$\nabla \cdot \boldsymbol{P} = -\rho_{\mathrm{ind}}$	(7.84)	$ ho_{ m ind}$ volume charge density
Induced surface charge density	$\sigma_{\mathrm{ind}} = \boldsymbol{P} \cdot \hat{\boldsymbol{s}}$	(7.85)	$\sigma_{\rm ind}$ surface charge density \hat{s} unit normal to surface
Definition of electric displacement	$\boldsymbol{D} = \epsilon_0 \boldsymbol{E} + \boldsymbol{P}$	(7.86)	D electric displacementE electric field
Definition of electric susceptibility	$P = \epsilon_0 \chi_E E$	(7.87)	χ _E electrical susceptibility (may be a tensor)
Definition of relative permittivity ^b	$\epsilon_{\rm r} = 1 + \chi_E$ $\mathbf{D} = \epsilon_0 \epsilon_{\rm r} \mathbf{E}$ $= \epsilon \mathbf{E}$	(7.88) (7.89) (7.90)	$\epsilon_{ m r}$ relative permittivity ϵ permittivity
Atomic polarisability ^c	$p = \alpha E_{loc}$	(7.91)	$lpha$ polarisability $m{E}_{ m loc}$ local electric field
Depolarising fields	$\boldsymbol{E}_{\mathrm{d}} = -\frac{N_{\mathrm{d}}\boldsymbol{P}}{\epsilon_0}$	(7.92)	$E_{\rm d}$ depolarising field $N_{\rm d}$ depolarising factor =1/3 (sphere) =1 (thin slab \perp to P) =0 (thin slab \parallel to P) =1/2 (long circular cylinder, axis \perp to P)
Clausius–Mossotti equation ^d	$\frac{n\alpha}{3\epsilon_0} = \frac{\epsilon_r - 1}{\epsilon_r + 2}$	(7.93)	

^aAssuming dipoles are parallel. The equivalent of Equation (7.112) holds for a hot gas of electric dipoles.

^bRelative permittivity as defined here is for a linear isotropic medium.

^cThe polarisability of a conducting sphere radius a is $\alpha = 4\pi\epsilon_0 a^3$. The definition $\mathbf{p} = \alpha\epsilon_0 \mathbf{E}_{loc}$ is also used. ^dWith the substitution $\eta^2 = \epsilon_r$ [cf. Equation (7.195) with $\mu_r = 1$] this is also known as the "Lorentz–Lorenz formula."

Magnetisation

Magnetisation				
Definition of magnetic dipole moment	dm = I ds	(7.94)	d m I ds	dipole moment loop current loop area (right-hand sense with respect to loop current)
Generalised magnetic dipole moment	$m = \frac{1}{2} \int_{\text{volume}} r' \times J d\tau'$	(7.95)	$\begin{bmatrix} m \\ J \\ d\tau' \\ r' \end{bmatrix}$	dipole moment current density volume element vector to $d\tau'$
Magnetic dipole (scalar) potential	$\phi_{\rm m}(\mathbf{r}) = \frac{\mu_0 \mathbf{m} \cdot \mathbf{r}}{4\pi r^3}$	(7.96)	$\phi_{ m m}$ $m{r}$ μ_0	magnetic scalar potential vector from dipole permeability of free space
Dipole moment per unit volume (magnetisation) ^a	M = nm	(7.97)	M n	magnetisation number of dipoles per unit volume
Induced volume current density	$\boldsymbol{J}_{\mathrm{ind}} = \nabla \times \boldsymbol{M}$	(7.98)	$oldsymbol{J}_{ ext{ind}}$	volume current density (i.e., A m ⁻²)
Induced surface current density	$\boldsymbol{j}_{\mathrm{ind}} = \boldsymbol{M} \times \hat{\boldsymbol{s}}$	(7.99)	$oldsymbol{j}_{ ext{ind}}$	surface current density (i.e., A m ⁻¹) unit normal to surface
Definition of magnetic field strength, <i>H</i>	$\boldsymbol{B} = \mu_0(\boldsymbol{H} + \boldsymbol{M})$	(7.100)	B H	magnetic flux density magnetic field strength
	$M = \chi_H H$	(7.101)		
Definition of magnetic susceptibility	$= \frac{\chi_B \mathbf{B}}{\mu_0}$ $\chi_B = \frac{\chi_H}{1 + \chi_H}$	(7.102)	χн	magnetic susceptibility. χ_B is also used (both may
susceptionity	$\chi_B = \frac{\chi_H}{1 + \chi_H}$	(7.103)		be tensors)
	$\boldsymbol{B} = \mu_0 \mu_{\mathrm{r}} \boldsymbol{H}$	(7.104)		
Definition of relative	$=\mu \boldsymbol{H}$	(7.105)	$\mu_{\rm r}$	relative permeability
permeability ^b	$\mu_{\rm r} = 1 + \chi_H$	(7.106)	μ	permeability
^a Assuming all the dipoles are	$=\frac{1}{1-\chi_B}$	(7.107)		

 $^{^{}a}$ Assuming all the dipoles are parallel. See Equation (7.112) for a classical paramagnetic gas and page 101 for the quantum generalisation.

^bRelative permeability as defined here is for a linear isotropic medium.

Paramagnetism and diamagnetism

Diamagnetic moment of an atom	$\boldsymbol{m} = -\frac{e^2}{6m_{\rm e}} Z \langle r^2 \rangle \boldsymbol{B}$	(7.108)	m $\langle r^2 \rangle$ Z B m_e $-e$	magnetic moment mean squared orbital radius (of all electrons) atomic number magnetic flux density electron mass electronic charge
Intrinsic electron magnetic moment ^a	$m \simeq -\frac{e}{2m_e} g J$	(7.109)	J g	total angular momentum Landé g-factor (=2 for spin, =1 for orbital momentum)
Langevin function	$\mathcal{L}(x) = \coth x - \frac{1}{x}$ $\simeq x/3 \qquad (x \lesssim 1)$	(7.110) (7.111)	$\mathscr{L}(x)$	Langevin function
Classical gas paramagnetism $(J \gg \hbar)$	$\langle M \rangle = n m_0 \mathcal{L} \left(\frac{m_0 B}{k T} \right)$	(7.112)	$\langle M \rangle$ m_0 n	apparent magnetisation magnitude of magnetic dipole moment dipole number density
Curie's law	$\chi_H = \frac{\mu_0 n m_0^2}{3kT}$	(7.113)	T k χ _H	temperature Boltzmann constant magnetic susceptibility
Curie–Weiss law	$\chi_H = \frac{\mu_0 n m_0^2}{3k(T - T_c)}$	(7.114)	μ_0 T_c	permeability of free space Curie temperature

^aSee also page 100.

Boundary conditions for E, D, B, and H^a

Parallel component of the electric field	E_{\parallel} continuous	(7.115)	component parallel to interface
Perpendicular component of the magnetic flux density	B_{\perp} continuous	(7.116)	⊥ component perpendicular to interface
Electric displacement ^b	$\hat{\boldsymbol{s}} \cdot (\boldsymbol{D}_2 - \boldsymbol{D}_1) = \sigma$	(7.117)	$D_{1,2}$ electrical displacements in media 1 & 2 \hat{s} unit normal to surface, directed $1 \rightarrow 2$ σ surface density of free charge
Magnetic field strength ^c	$\hat{s} \times (\boldsymbol{H}_2 - \boldsymbol{H}_1) = \boldsymbol{j}_s$	(7.118)	$H_{1,2}$ magnetic field strengths in media 1 & 2 j_s surface current per unit width

^aAt the plane surface between two uniform media.

^bIf $\sigma = 0$, then D_{\perp} is continuous.

^cIf $j_s = 0$ then H_{\parallel} is continuous.

7.5 Force, torque, and energy

Electromagnetic force and torque

Force between two static charges: Coulomb's law	$\boldsymbol{F}_2 = \frac{q_1 q_2}{4\pi\epsilon_0 r_{12}^2} \hat{\boldsymbol{r}}_{12}$	(7.119)	F_2 $q_{1,2}$ r_{12} ϵ_0	force on q_2 charges vector from 1 to 2 unit vector permittivity of free space
Force between two current-carrying elements	$\mathrm{d}\boldsymbol{F}_2 = \frac{\mu_0 I_1 I_2}{4\pi r_{12}^2} [\mathrm{d}\boldsymbol{I}_2 \times ($	$d\boldsymbol{l}_1 \times \hat{\boldsymbol{r}}_{12})] \tag{7.120}$	$\begin{bmatrix} d\mathbf{I}_{1,2} \\ \mathbf{I}_{1,2} \\ d\mathbf{F}_2 \\ \mu_0 \end{bmatrix}$	line elements currents flowing along dI_1 and dI_2 force on dI_2 permeability of free space
Force on a current-carrying element in a magnetic field	$\mathrm{d} \pmb{F} = I \mathrm{d} \pmb{l} \times \pmb{B}$	(7.121)	d <i>I F I B</i>	line element force current flowing along dI magnetic flux density
Force on a charge (Lorentz force)	$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$	(7.122)	E v	electric field charge velocity
Force on an electric dipole ^a	$F = (p \cdot \nabla)E$	(7.123)	p	electric dipole moment
Force on a magnetic dipole ^b	$F = (m \cdot \nabla)B$	(7.124)	m	magnetic dipole moment
Torque on an electric dipole	$G = p \times E$	(7.125)	G	torque
Torque on a magnetic dipole	$G = m \times B$	(7.126)		
Torque on a current loop	$G = I_{L} \oint_{\text{loop}} r \times (dI_{L} \times B)$	(7.127)	d <i>I</i> _L r I _L	line-element (of loop) position vector of dI_L current around loop

 $^{{}^{}a}F$ simplifies to $\nabla(p \cdot E)$ if p is intrinsic, $\nabla(pE/2)$ if p is induced by E and the medium is isotropic. ${}^{b}F$ simplifies to $\nabla(m \cdot B)$ if m is intrinsic, $\nabla(mB/2)$ if m is induced by B and the medium is isotropic.

Electromagnetic energy

Electromagnetic field energy density (in free space)	$u = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{2} \frac{B^2}{\mu_0}$	(7.128)	u E B	energy density electric field magnetic flux density
Energy density in media	$u = \frac{1}{2} (\boldsymbol{D} \cdot \boldsymbol{E} + \boldsymbol{B} \cdot \boldsymbol{H})$	(7.129)	$egin{array}{c} \epsilon_0 \\ \mu_0 \\ oldsymbol{D} \\ oldsymbol{H} \end{array}$	permittivity of free space permeability of free space electric displacement magnetic field strength
Energy flow (Poynting) vector	$N = E \times H$	(7.130)	c N	speed of light energy flow rate per unit area ⊥ to the flow direction
Mean flux density at a distance <i>r</i> from a short oscillating dipole	$\langle N \rangle = \frac{\omega^4 p_0^2 \sin^2 \theta}{32\pi^2 \epsilon_0 c^3 r^3} r$	(7.131)	 p₀ r θ ω 	amplitude of dipole moment vector from dipole (\gg wavelength) angle between p and r oscillation frequency
Total mean power from oscillating dipole ^a	$W = \frac{\omega^4 p_0^2 / 2}{6\pi \epsilon_0 c^3}$	(7.132)	W	total mean radiated power
Self-energy of a charge distribution	$U_{\text{tot}} = \frac{1}{2} \int_{\text{volume}} \phi(\mathbf{r}) \rho(\mathbf{r}) d\tau$	(7.133)	$egin{array}{c} U_{ m tot} \ { m d} au \ m{r} \ m{\phi} \ m{ ho} \end{array}$	total energy volume element position vector of $d\tau$ electrical potential charge density
Energy of an assembly of capacitors ^b	$U_{\text{tot}} = \frac{1}{2} \sum_{i} \sum_{j} C_{ij} V_{i} V_{j}$	(7.134)	V_i C_{ij}	potential of i th capacitor mutual capacitance between capacitors i and j
Energy of an assembly of inductors ^c	$U_{\text{tot}} = \frac{1}{2} \sum_{i} \sum_{j} L_{ij} I_{i} I_{j}$	(7.135)	L_{ij}	mutual inductance between inductors i and j
Intrinsic dipole in an electric field	$U_{\rm dip} = -\boldsymbol{p} \cdot \boldsymbol{E}$	(7.136)	$egin{array}{c} U_{ m dip} \ m{p} \end{array}$	energy of dipole electric dipole moment
Intrinsic dipole in a magnetic field	$U_{\rm dip} = -\boldsymbol{m} \cdot \boldsymbol{B}$	(7.137)	m	magnetic dipole moment
Hamiltonian of a charged particle in an EM field ^d	$H = \frac{ \boldsymbol{p_m} - q\boldsymbol{A} ^2}{2m} + q\boldsymbol{\phi}$	(7.138)	H pm q m A	Hamiltonian particle momentum particle charge particle mass magnetic vector potential

^aSometimes called "Larmor's formula." ${}^bC_{ii}$ is the self-capacitance of the *i*th body. Note that $C_{ij} = C_{ji}$. ${}^cL_{ii}$ is the self-inductance of the *i*th body. Note that $L_{ij} = L_{ji}$. d Newtonian limit, i.e., velocity $\ll c$.

7.6 LCR circuits

LCR definitions

LCIT delimitions			
Current	$I = \frac{\mathrm{d}Q}{\mathrm{d}t}$	(7.139)	I current Q charge
Ohm's law	V = IR	(7.140)	R resistance V potential difference over R I current through R
Ohm's law (field form)	$J = \sigma E$	(7.141)	$egin{array}{ll} J & ext{current density} \\ E & ext{electric field} \\ \sigma & ext{conductivity} \\ \end{array}$
Resistivity	$\rho = \frac{1}{\sigma} = \frac{RA}{l}$	(7.142)	 ρ resistivity A area of face (I is normal to face) l length
Capacitance	$C = \frac{Q}{V}$	(7.143)	C capacitance V potential difference across C
Current through capacitor	$I = C \frac{\mathrm{d}V}{\mathrm{d}t}$	(7.144)	I current through C t time
Self-inductance	$L = \frac{\Phi}{I}$	(7.145)	Φ total linked flux I current through inductor
Voltage across inductor	$V = -L \frac{\mathrm{d}I}{\mathrm{d}t}$	(7.146)	V potential difference over L
Mutual inductance	$L_{12} = \frac{\Phi_1}{I_2} = L_{21}$	(7.147)	Φ_1 total flux from loop 2 linked by loop 1 L_{12} mutual inductance I_2 current through loop 2
Coefficient of coupling	$ L_{12} = k\sqrt{L_1L_2}$	(7.148)	k coupling coefficient between L_1 and L_2 (≤ 1)
Linked magnetic flux through a coil	$\Phi = N\phi$	(7.149)	Φ linked flux N number of turns around ϕ ϕ flux through area of turns

7

Resonant LCR circuits

Resonant L	CR circuits		series
Phase resonant frequency ^a	$\omega_0^2 = \begin{cases} 1/LC & \text{(series)} \\ 1/LC - R^2/L^2 & \text{(parallel)} \end{cases} $ (7.150)	ω_0 resonant angular frequency ω inductance ω	R L C parallel
Tuning ^b	$\frac{\delta\omega}{\omega_0} = \frac{1}{Q} = \frac{R}{\omega_0 L} \tag{7.151}$	$\begin{array}{c} \delta\omega \text{half-power} \\ \text{bandwidth} \\ Q \text{quality} \\ \text{factor} \end{array}$	
Quality factor	$Q = 2\pi \frac{\text{stored energy}}{\text{energy lost per cycle}} $ (7.152))	

Energy in capacitors, inductors, and resistors

			U	stored energy
Energy stored in a	$U = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$	(7.152)	C	capacitance
capacitor	$U = \frac{1}{2}UV = \frac{1}{2}UV = \frac{1}{2}U$	(7.153)	Q	charge
			V	potential difference
Energy stored in an	1 1 1 Φ^2		L	inductance
inductor	$U = \frac{1}{2}LI^2 = \frac{1}{2}\Phi I = \frac{1}{2}\frac{\Phi^2}{I}$	(7.154)	Φ	linked magnetic flux
	2 2 2 L		I	current
Power dissipated in	V^2		W	nower dissinated
a resistor ^a (Joule's	$W = IV = I^2R = \frac{r}{R}$	(7.155)	D	power dissipated resistance
law)	K		Λ	resistance
	€0€r		τ	relaxation time
Relaxation time	$\tau = \frac{\epsilon_0 \epsilon_{\rm r}}{\sigma}$	(7.156)	ϵ_{r}	relative permittivity
	O .		σ	conductivity

^aThis is d.c., or instantaneous a.c., power.

Electrical impedance

Impedances in series	$\boldsymbol{Z}_{\mathrm{tot}} = \sum_{n} \boldsymbol{Z}_{n}$	(7.157)
Impedances in parallel	$\boldsymbol{Z}_{\text{tot}} = \left(\sum_{n} \boldsymbol{Z}_{n}^{-1}\right)^{-1}$	(7.158)
Impedance of capacitance	$\mathbf{Z}_{\mathrm{C}} = -\frac{\mathbf{i}}{\omega C}$	(7.159)
Impedance of inductance	$Z_{\rm L} = {\bf i}\omega L$	(7.160)
Impedance: Z	Capacitance: C	
Inductance: L	Resistance: $R = \text{Re}[Z]$	
Conductance: $G = 1/R$	Reactance: $X = \text{Im}[Z]$	
Admittance: $Y = 1/Z$	Susceptance: $S = 1/X$	

^aAt which the impedance is purely real. ^bAssuming the capacitor is purely reactive. If L and R are parallel, then $1/Q = \omega_0 L/R$.

Kirchhoff's laws

Current law	$\sum_{\text{node}} I_i = 0$	(7.161)	I_i	currents impinging on node
Voltage law	$\sum_{\text{loop}} V_i = 0$	(7.162)	V_i	potential differences around loop

Transformers^a

^aIdeal, with a coupling constant of 1 between loss-free windings.

Star-delta transformation

7.7 Transmission lines and waveguides

Transmission line relations

Transmission inic re	- CALLIOTES		
Loss-free transmission line equations	$\frac{\partial V}{\partial x} = -L \frac{\partial I}{\partial t}$ $\frac{\partial I}{\partial x} = -C \frac{\partial V}{\partial t}$	(7.170) (7.171)	 V potential difference across line I current in line L inductance per unit length C capacitance per unit length
Wave equation for a lossless transmission line	$\frac{1}{LC} \frac{\partial^2 V}{\partial x^2} = \frac{\partial^2 V}{\partial t^2}$ $\frac{1}{LC} \frac{\partial^2 I}{\partial x^2} = \frac{\partial^2 I}{\partial t^2}$	(7.172) (7.173)	x distance along line t time
Characteristic impedance of lossless line	$Z_{\rm c} = \sqrt{\frac{L}{C}}$	(7.174)	$Z_{\rm c}$ characteristic impedance
Characteristic impedance of lossy line	$\mathbf{Z}_{c} = \sqrt{\frac{R + \mathbf{i}\omega L}{G + \mathbf{i}\omega C}}$	(7.175)	R resistance per unit length of conductor G conductance per unit length of insulator ω angular frequency
Wave speed along a lossless line	$v_{\rm p} = v_{\rm g} = \frac{1}{\sqrt{LC}}$	(7.176)	$v_{\rm p}$ phase speed $v_{\rm g}$ group speed
Input impedance of a terminated lossless line	$Z_{\text{in}} = Z_{\text{c}} \frac{Z_{\text{t}} \cos kl - \mathbf{i} Z_{\text{c}} \sin kl}{Z_{\text{c}} \cos kl - \mathbf{i} Z_{\text{t}} \sin kl}$ $= Z_{\text{c}}^{2} / Z_{\text{t}} \text{if } l = \lambda/4$	(7.177) (7.178)	$m{Z}_{ m in}$ (complex) input impedance $m{Z}_{ m t}$ (complex) terminating impedance $m{k}$ wavenumber $(=2\pi/\lambda)$
Reflection coefficient from a terminated line	$r = \frac{Z_{\rm t} - Z_{\rm c}}{Z_{\rm t} + Z_{\rm c}}$	(7.179)	l distance from termination r (complex) voltage reflection coefficient
Line voltage standing wave ratio	$VSWR = \frac{1+ \boldsymbol{r} }{1- \boldsymbol{r} }$	(7.180)	

Transmission line impedances a

Coaxial line	$Z_{\rm c} = \sqrt{\frac{\mu}{4\pi^2 \epsilon}} \ln \frac{b}{a} \simeq \frac{60}{\sqrt{\epsilon_{\rm r}}} \ln \frac{b}{a}$	(7.181)	Z_{c} a b ϵ	characteristic impedance (Ω) radius of inner conductor radius of outer conductor permittivity (= $\epsilon_0\epsilon_r$)
Open wire feeder	$Z_{\rm c} = \sqrt{\frac{\mu}{\pi^2 \epsilon}} \ln \frac{l}{r} \simeq \frac{120}{\sqrt{\epsilon_{\rm r}}} \ln \frac{l}{r}$	(7.182)	μ r l	permeability (= $\mu_0\mu_r$) radius of wires distance between wires ($\gg r$)
Paired strip	$Z_{\rm c} = \sqrt{\frac{\mu}{\epsilon}} \frac{d}{w} \simeq \frac{377}{\sqrt{\epsilon_{\rm r}}} \frac{d}{w}$	(7.183)	d w	strip separation strip width $(\gg d)$
Microstrip line	$Z_{\rm c} \simeq \frac{377}{\sqrt{\epsilon_{\rm r}}[(w/h) + 2]}$	(7.184)	h	height above earth plane $(\ll w)$

^aFor lossless lines.

Waveguides^a

Waveguide equation	$k_{\rm g}^2 = \frac{\omega^2}{c^2} - \frac{m^2 \pi^2}{a^2} - \frac{n^2 \pi^2}{b^2}$	(7.185)	k _g ω a b m,n	wavenumber in guide angular frequency guide height guide width mode indices with respect to a and b (integers) speed of light
Guide cutoff frequency	$v_{\rm c} = c\sqrt{\left(\frac{m}{2a}\right)^2 + \left(\frac{n}{2b}\right)^2}$	(7.186)	ν _c ω _c	cutoff frequency $2\pi v_c$
Phase velocity above cutoff	$v_{\rm p} = \frac{c}{\sqrt{1 - (v_{\rm c}/v)^2}}$	(7.187)	$v_{ m p}$	phase velocity frequency
Group velocity above cutoff	$v_{\rm g} = c^2/v_{\rm p} = c\sqrt{1 - (v_{\rm c}/v)^2}$	(7.188)	$v_{ m g}$	group velocity
Wave impedances ^b	$Z_{\text{TM}} = Z_0 \sqrt{1 - (v_c/v)^2}$ $Z_{\text{TE}} = Z_0 / \sqrt{1 - (v_c/v)^2}$	(7.189) (7.190)	$egin{array}{c} Z_{ ext{TM}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	wave impedance for transverse magnetic modes wave impedance for transverse electric modes impedance of free space $(=\sqrt{\mu_0/\epsilon_0})$

Field solutions for TE_{mn} modes^c

$$B_{x} = \frac{\mathbf{i}k_{g}c^{2}}{\omega_{c}^{2}} \frac{\partial B_{z}}{\partial x} \qquad E_{x} = \frac{\mathbf{i}\omega c^{2}}{\omega_{c}^{2}} \frac{\partial B_{z}}{\partial y}$$

$$B_{y} = \frac{\mathbf{i}k_{g}c^{2}}{\omega_{c}^{2}} \frac{\partial B_{z}}{\partial y} \qquad E_{y} = \frac{-\mathbf{i}\omega c^{2}}{\omega_{c}^{2}} \frac{\partial B_{z}}{\partial x}$$

$$B_{z} = B_{0}\cos\frac{m\pi x}{a}\cos\frac{n\pi y}{b} \qquad E_{z} = 0$$

Field solutions for TM_{mn} modes^c

$$E_{x} = \frac{\mathbf{i}k_{g}c^{2}}{\omega_{c}^{2}} \frac{\partial E_{z}}{\partial x} \qquad B_{x} = \frac{-\mathbf{i}\omega}{\omega_{c}^{2}} \frac{\partial E_{z}}{\partial y}$$

$$E_{y} = \frac{\mathbf{i}k_{g}c^{2}}{\omega_{c}^{2}} \frac{\partial E_{z}}{\partial y} \qquad B_{y} = \frac{\mathbf{i}\omega}{\omega_{c}^{2}} \frac{\partial E_{z}}{\partial x}$$

$$E_{z} = E_{0} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \qquad B_{z} = 0$$

^aEquations are for lossless waveguides with rectangular cross sections and no dielectric.

^bThe ratio of the electric field to the magnetic field strength in the xy plane.

^cBoth TE and TM modes propagate in the z direction with a further factor of $\exp[i(k_g z - \omega t)]$ on all components. B_0 and E_0 are the amplitudes of the z components of magnetic flux density and electric field respectively.

7.8 Waves in and out of media

Waves in lossless media

Electric field	$\nabla^2 \mathbf{E} = \mu \epsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$	(7.193)	Ε μ ε	electric field permeability $(=\mu_0\mu_r)$ permittivity $(=\epsilon_0\epsilon_r)$
Magnetic field	$\nabla^2 \mathbf{B} = \mu \epsilon \frac{\partial^2 \mathbf{B}}{\partial t^2}$	(7.194)	B t	magnetic flux density time
Refractive index	$\eta = \sqrt{\epsilon_{ m r} \mu_{ m r}}$	(7.195)		
Wave speed	$v = \frac{1}{\sqrt{\mu\epsilon}} = \frac{c}{\eta}$	(7.196)	υ η c	wave phase speed refractive index speed of light
Impedance of free space	$Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \simeq 376.7\Omega$	(7.197)	Z_0	impedance of free space
Wave impedance	$Z = \frac{E}{H} = Z_0 \sqrt{\frac{\mu_{\rm r}}{\epsilon_{\rm r}}}$	(7.198)	Z H	wave impedance magnetic field strength

Radiation pressure^a

Radiation momentum density	$G = \frac{N}{c^2}$	(7.199)
Isotropic radiation	$p_{\rm n} = \frac{1}{3}u(1+R)$	(7.200)
Specular reflection	$p_{n} = u(1+R)\cos^{2}\theta_{i}$ $p_{t} = u(1-R)\sin\theta_{i}\cos\theta_{i}$	(7.201) (7.202)
From an extended source ^b	$p_{\rm n} = \frac{1+R}{c} \iint I_{\nu}(\theta, \phi) \cos \theta$	$\cos^2\theta \mathrm{d}\Omega \mathrm{d}v$ (7.203)
From a point source, c luminosity L	$p_{\rm n} = \frac{L(1+R)}{4\pi r^2 c}$	(7.204)

c speed of light $p_{\rm n}$ normal pressure u incident radiation energy density R (power) reflectance coefficient $p_{\rm t}$ tangential pressure $\theta_{\rm i}$ angle of incidence I_{ν} specific intensity ν frequency Ω solid angle

momentum density Poynting vector

distance from source

^aOn an opaque surface.

^bIn spherical polar coordinates. See page 120 for the meaning of specific intensity.

^cNormal to the plane.

Antennas

Sphe	erical polar geometry:	p ϕ	r	y
Field from a short	$E_r = \frac{1}{2\pi\epsilon_0} \left(\frac{[\dot{p}]}{r^2 c} + \frac{[p]}{r^3} \right) \cos\theta$	(7.205)	r θ	distance from dipole angle between <i>r</i> and
$(l \ll \lambda)$ electric dipole in free	$E_{\theta} = \frac{1}{4\pi\epsilon_0} \left(\frac{[\ddot{p}]}{rc^2} + \frac{[\dot{p}]}{r^2c} + \frac{[p]}{r^3} \right) \sin\theta$	(7.206)	[<i>p</i>]	p retarded dipole
space ^a	$B_{\phi} = \frac{\mu_0}{4\pi} \left(\frac{[\ddot{p}]}{rc} + \frac{[\dot{p}]}{r^2} \right) \sin \theta$	(7.207)	c	moment $[p] = p(t-r/c)$ speed of light
Radiation resistance of a short electric	$R = \frac{\omega^2 l^2}{6\pi\epsilon_0 c^3} = \frac{2\pi Z_0}{3} \left(\frac{l}{\lambda}\right)^2$	(7.208)	l ω	dipole length ($\ll \lambda$) angular frequency
dipole in free space	$\simeq 789 \left(\frac{l}{\lambda}\right)^2$ ohm	(7.209)	$\lambda \ Z_0$	wavelength impedance of free space
Beam solid angle	$\Omega_{\rm A} = \int_{4\pi} P_{\rm n}(\theta,\phi) \mathrm{d}\Omega$	(7.210)	$\Omega_{ m A}$ $P_{ m n}$ d Ω	beam solid angle normalised antenna power pattern $P_n(0,0) = 1$ differential solid angle
Forward power gain	$G(0) = \frac{4\pi}{\Omega_{\rm A}}$	(7.211)	G	antenna gain
Antenna effective area	$A_{ m e} = rac{\lambda^2}{\Omega_{ m A}}$	(7.212)	A_{e}	effective area
Power gain of a short dipole	$G(\theta) = \frac{3}{2}\sin^2\theta$	(7.213)		
Beam efficiency	$\text{efficiency} = \frac{\Omega_{M}}{\Omega_{A}}$	(7.214)	Ω_{M}	main lobe solid angle
Antenna temperature ^b	$T_{ m A}=rac{1}{\Omega_{ m A}}\int_{4\pi}T_{ m b}(heta,\phi)P_{ m n}(heta,\phi){ m d}\Omega$ pagate with a further phase factor equal to e	(7.215)	$T_{ m A}$ $T_{ m b}$	antenna temperature sky brightness temperature

^a All field components propagate with a further phase factor equal to $\exp{i(kr - \omega t)}$, where $k = 2\pi/\lambda$. ^b The brightness temperature of a source of specific intensity I_{ν} is $T_{\rm b} = \lambda^2 I_{\nu}/(2k_{\rm B})$.

Reflection, refraction, and transmission^a

parallel incidence

perpendicular incidence

- E electric field
- **B** magnetic flux density
- η_i refractive index on incident side
- η_t refractive index on transmitted side
- θ_i angle of incidence
- $\theta_{\rm r}$ angle of reflection
- θ_t angle of refraction

- Law of reflection
- $\theta_{\rm i} = \theta_{\rm r} \tag{7.216}$

Snell's lawb

 $\eta_{i} \sin \theta_{i} = \eta_{t} \sin \theta_{t} \tag{7.217}$

- Brewster's law
- $\tan \theta_{\rm B} = \eta_{\rm t}/\eta_{\rm i} \tag{7.218}$
- Brewster's angle of incidence for plane-polarised reflection $(r_{\parallel} = 0)$

Fresnel equations of reflection and refraction

$$r_{\parallel} = \frac{\sin 2\theta_{\rm i} - \sin 2\theta_{\rm t}}{\sin 2\theta_{\rm i} + \sin 2\theta_{\rm r}}$$

(7.219)

 $r_{\perp} = -\frac{\sin(\theta_{i} - \theta_{t})}{\sin(\theta_{i} + \theta_{t})}$ (7.223)

$$t_{\parallel} = \frac{4\cos\theta_{\rm i}\sin\theta_{\rm t}}{\sin2\theta_{\rm i} + \sin2\theta_{\rm t}}$$

 $(7.220) t_{\perp} = \frac{2\cos\theta_{\rm i}\sin\theta_{\rm t}}{\sin(\theta_{\rm i} + \theta_{\rm t})}$

(7.224)

$$R_{\parallel} = r_{\parallel}^2$$

 $(7.221) R_{\perp} = r_{\perp}^2$

(7.225)

$$T_{\parallel} = \frac{\eta_{\rm t} \cos \theta_{\rm t}}{\eta_{\rm i} \cos \theta_{\rm i}} t_{\parallel}^2$$

(7.222)

 $T_{\perp} = \frac{\eta_{\rm t} \cos \theta_{\rm t}}{\eta_{\rm t} \cos \theta_{\rm i}} t_{\perp}^2 \tag{7.226}$

Coefficients for normal incidence^c

$$R = \frac{(\eta_{\rm i} - \eta_{\rm t})^2}{(\eta_{\rm i} + \eta_{\rm t})^2}$$

(7.227)

$$r = \frac{\eta_{\rm i} - \eta_{\rm t}}{\eta_{\rm i} + \eta_{\rm t}}$$

(7.230)

$$T = \frac{4\eta_{\rm i}\eta_{\rm t}}{(\eta_{\rm i} + \eta_{\rm t})^2}$$

(7.228)

$$t = \frac{2\eta_{i}}{\eta_{i} + \eta_{t}}$$

(7.231)

$$R+T=1$$

(7.229)

-r-1

(7.232)

- | electric field parallel to the plane of incidence
- R (power) reflectance coefficient
- r amplitude reflection coefficient
- T (power) transmittance coefficient
- t amplitude transmission coefficient
- ^aFor the plane boundary between lossless dielectric media. All coefficients refer to the electric field component and whether it is parallel or perpendicular to the plane of incidence. Perpendicular components are out of the paper.
- b The incident wave suffers total internal reflection if $\frac{\eta_i}{\eta_i}\sin\theta_i > 1$. c I.e., $\theta_i = 0$. Use the diagram labelled "perpendicular incidence" for correct phases.

Propagation in conducting media^a

Electrical conductivity $(B=0)$	$\sigma = n_{\rm e}e\mu = \frac{n_{\rm e}e^2}{m_{\rm e}}\tau_{\rm c}$	(7.233)	σ electrical conductivity $n_{\rm e}$ electron number density $\tau_{\rm c}$ electron relaxation time μ electron mobility μ magnetic flux density
Refractive index of an ohmic conductor ^b	$\eta = (1+\mathbf{i}) \left(\frac{\sigma}{4\pi v \epsilon_0} \right)^{1/2}$	(7.234)	$m_{\rm e}$ electron mass $-e$ electronic charge η refractive index ϵ_0 permittivity of free space
Skin depth in an ohmic conductor	$\delta = (\mu_0 \sigma \pi v)^{-1/2}$	(7.235)	ν frequency δ skin depth μ_0 permeability of free space

Electron scattering processes^a

Rayleigh scattering cross section ^b	$\sigma_{\rm R} = \frac{\omega^4 \alpha^2}{6\pi \epsilon_0 c^4}$	(7.236)	σ_R Rayleigh cross section ω radiation angular frequency α particle polarisability ϵ_0 permittivity of free space
Thomson scattering cross section ^c	$\sigma_{\rm T} = \frac{8\pi}{3} \left(\frac{e^2}{4\pi\epsilon_0 m_{\rm e} c^2} \right)^2$ $= \frac{8\pi}{3} r_{\rm e}^2 \simeq 6.652 \times 10^{-29} {\rm r}$	(7.237) m ² (7.238)	$\sigma_{\rm T}$ Thomson cross section $m_{\rm e}$ electron (rest) mass $r_{\rm e}$ classical electron radius c speed of light
Inverse Compton scattering ^d	$P_{\rm tot} = \frac{4}{3} \sigma_{\rm T} c u_{\rm rad} \gamma^2 \left(\frac{v^2}{c^2}\right)$	(7.239)	P_{tot} electron energy loss rate u_{rad} radiation energy density γ Lorentz factor = $[1 - (v/c)^2]^{-1/2}$ v electron speed
Compton scattering ^e	$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$	(7.240)	1
$\begin{array}{c c} \lambda' & \lambda' \\ \lambda' & M_{\rm e} \\ \longrightarrow & \text{WWW} \end{array}$	$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$ $hv' = \frac{m_e c^2}{1 - \cos \theta + (1/\epsilon)}$ $\cot \phi = (1 + \epsilon) \tan \frac{\theta}{2}$	(7.241)	v,v' incident & scattered frequencies θ photon scattering angle $\frac{h}{m_e c}$ electron Compton wavelength $\varepsilon = hv/(m_e c^2)$
φ	$\cot \phi = (1+\varepsilon)\tan\frac{\sigma}{2}$	(7.242)	
Klein–Nishina cross section (for a free electron)	$\sigma_{\rm KN} = \frac{\pi r_{\rm e}^2}{\varepsilon} \left\{ \left[1 - \frac{2(\varepsilon + 1)}{\varepsilon^2} \right] \right.$ $\simeq \sigma_{\rm T} (\varepsilon \ll 1)$ $\simeq \frac{\pi r_{\rm e}^2}{\varepsilon} \left(\ln 2\varepsilon + \frac{1}{2} \right) (\varepsilon \ll 1)$		$\sigma_{\rm KN}$ Klein–Nishina cross section $+\frac{1}{2}+\frac{4}{\epsilon}-\frac{1}{2(2\epsilon+1)^2}$ (7.243) (7.244) (7.245)

^aFor Rutherford scattering see page 72.

^aAssuming a relative permeability, μ_r , of 1. ^bTaking the wave to have an $e^{-i\omega t}$ time dependence, and the low-frequency limit $(\sigma \gg 2\pi v \epsilon_0)$.

^bScattering by bound electrons.

^cScattering from free electrons, $\varepsilon \ll 1$.

^dElectron energy loss rate due to photon scattering in the Thomson limit ($\gamma hv \ll m_e c^2$).

^eFrom an electron at rest.

Cherenkov radiation

Cherenkov cone angle	$\sin\theta = \frac{c}{\eta v}$	(7.246)	θ cone semi-angle c (vacuum) speed of light $\eta(\omega)$ refractive index v particle velocity
Radiated power ^a	$P_{\text{tot}} = \frac{e^2 \mu_0}{4\pi} v \int_0^{\omega_c} \left[1 - \frac{c^2}{v^2 \eta^2(\omega)} \right] \omega d\omega$ where $\eta(\omega) \ge \frac{c}{v}$ for $0 < \omega < \omega_c$	(7.247)	P_{tot} total radiated power $-e$ electronic charge μ_0 free space permeability ω angular frequency ω_{c} cutoff frequency

^aFrom a point charge, e, travelling at speed v through a medium of refractive index $\eta(\omega)$.

7.9 Plasma physics

Warm plasmas

Landau length	$l_{\rm L} = \frac{e^2}{4\pi\epsilon_0 k_{\rm B} T_{\rm e}}$ \$\times 1.67 \times 10^{-5} T_{\text{e}}^{-1} m\$	(7.248) (7.249)	$l_{\rm L}$ Landau length -e electronic charge ϵ_0 permittivity of free space $k_{\rm B}$ Boltzmann constant $T_{\rm e}$ electron temperature (K)
Electron Debye length	$\lambda_{\mathrm{De}} = \left(\frac{\epsilon_0 k_{\mathrm{B}} T_{\mathrm{e}}}{n_{\mathrm{e}} e^2}\right)^{1/2}$ $\simeq 69 (T_{\mathrm{e}}/n_{\mathrm{e}})^{1/2} \mathrm{m}$	(7.250) (7.251)	λ_{De} electron Debye length n_{e} electron number density (m^{-3})
Debye screening ^a	$\phi(r) = \frac{q \exp(-2^{1/2} r / \lambda_{De})}{4\pi\epsilon_0 r}$	(7.252)	ϕ effective potential q point charge r distance from q
Debye number	$N_{\rm De} = \frac{4}{3}\pi n_{\rm e} \lambda_{\rm De}^3$	(7.253)	$N_{ m De}$ electron Debye number
Relaxation times $(B=0)^b$	$\tau_{e} = 3.44 \times 10^{5} \frac{T_{e}^{3/2}}{n_{e} \ln \Lambda} \text{s}$ $\tau_{i} = 2.09 \times 10^{7} \frac{T_{i}^{3/2}}{n_{e} \ln \Lambda} \left(\frac{m_{i}}{m_{p}}\right)^{1/2}$	(7.254) s (7.255)	$ au_{\rm e}$ electron relaxation time $ au_{\rm i}$ ion relaxation time $T_{\rm i}$ ion temperature (K) $ ext{ln}\Lambda$ Coulomb logarithm (typically 10 to 20) $ ext{}$ magnetic flux density
Characteristic electron thermal speed ^c	$v_{\text{te}} = \left(\frac{2k_{\text{B}}T_{\text{e}}}{m_{\text{e}}}\right)^{1/2}$ $\simeq 5.51 \times 10^{3} T_{\text{e}}^{1/2} \text{ms}^{-1}$	(7.256)	$v_{ m te}$ electron thermal speed $m_{ m e}$ electron mass

^aEffective (Yukawa) potential from a point charge q immersed in a plasma.

^bCollision times for electrons and *singly* ionised ions with Maxwellian speed distributions, $T_i \lesssim T_e$. The Spitzer conductivity can be calculated from Equation (7.233).

^cDefined so that the Maxwellian velocity distribution $\propto \exp(-v^2/v_{\rm te}^2)$. There are other definitions (see *Maxwell–Boltzmann distribution* on page 112).

Electromagnetic propagation in cold plasmas^a

- 1	ropugation in colu plasi			
Plasma frequency	$(2\pi v_{\rm p})^2 = \frac{n_{\rm e}e^2}{\epsilon_0 m_{\rm e}} = \omega_{\rm p}^2$ $v_{\rm p} \simeq 8.98 n_{\rm e}^{1/2}$ Hz	(7.258) (7.259)	$\omega_{\rm p}$ $n_{\rm e}$	plasma frequency plasma angular frequency electron number density (m ⁻³) electron mass
Plasma refractive index $(B=0)$	$ \eta = \left[1 - (v_{\rm p}/v)^2\right]^{1/2} $	(7.260)	ϵ_0 η	electronic charge permittivity of free space refractive index frequency
Plasma dispersion relation $(B=0)$	$c^2k^2 = \omega^2 - \omega_{\rm p}^2$	(7.261)	ω	wavenumber $(=2\pi/\lambda)$ angular frequency $(=2\pi/\nu)$ speed of light
Plasma phase velocity $(B=0)$	$v_{\phi} = c/\eta$	(7.262)	v_{ϕ}	phase velocity
Plasma group velocity $(B=0)$	$v_{g} = c\eta$ $v_{\phi}v_{g} = c^{2}$	(7.263) (7.264)	$v_{ m g}$	group velocity
Cyclotron (Larmor, or gyro-) frequency	$2\pi v_{\rm C} = \frac{qB}{m} = \omega_{\rm C}$ $v_{\rm Ce} \simeq 28 \times 10^9 B \text{Hz}$ $v_{\rm Cp} \simeq 15.2 \times 10^6 B \text{Hz}$	(7.265) (7.266) (7.267)	$\omega_{\rm C}$ $\nu_{\rm Ce}$ $\nu_{\rm Cp}$ q	cyclotron frequency cyclotron angular frequency electron $v_{\rm C}$ proton $v_{\rm C}$ particle charge magnetic flux density (T)
Larmor (cyclotron, or gyro-) radius	$r_{L} = \frac{v_{\perp}}{\omega_{C}} = v_{\perp} \frac{m}{qB}$ $r_{Le} = 5.69 \times 10^{-12} \left(\frac{v_{\perp}}{B}\right) \text{ m}$ $r_{Lp} = 10.4 \times 10^{-9} \left(\frac{v_{\perp}}{B}\right) \text{ m}$	(7.268) (7.269) (7.270)	m $r_{ m L}$ $r_{ m Le}$ $r_{ m Lp}$	particle mass (γm if relativistic) Larmor radius electron $r_{\rm L}$ proton $r_{\rm L}$ speed \perp to B (ms ⁻¹)
1		(7.271)		angle between wavefront normal (\hat{k}) and B
Faraday rotation ^c	$\Delta \psi = \underbrace{\frac{\mu_0 e^3}{8\pi^2 m_e^2 c}}_{2.63 \times 10^{-13}} \lambda^2 \int_{\text{line}} n_e \mathbf{B} \cdot d\mathbf{I}$ $= R\lambda^2$	(7.272)	λ d <i>l</i>	rotation angle wavelength $(=2\pi/k)$ line element in direction of wave propagation rotation measure

^aI.e., plasmas in which electromagnetic force terms dominate over thermal pressure terms. Also taking $\mu_r = 1$.

^bIn a collisionless electron plasma. The ordinary and extraordinary modes are the + and - roots of S^2 when $\theta_B = \pi/2$. When $\theta_B = 0$, these roots are the right and left circularly polarised modes respectively, using the optical convention for handedness.

^cIn a tenuous plasma, SI units throughout. $\Delta \psi$ is taken positive if **B** is directed towards the observer.

Magnetohydrodynamics^a

Sound speed	$v_{\rm s} = \left(\frac{\gamma p}{\rho}\right)^{1/2} = \left(\frac{2\gamma k_{\rm B}T}{m_{\rm p}}\right)^{1/2}$ $\simeq 166T^{1/2}{\rm ms}^{-1}$	(7.274) (7.275)	$egin{array}{c} v_{\mathrm{s}} & & & & & & & & & & & & & & & & & & $	sound (wave) speed ratio of heat capacities hydrostatic pressure plasma mass density Boltzmann constant temperature (K)
Alfvén speed	$v_{\rm A} = \frac{B}{(\mu_0 \rho)^{1/2}}$ $\simeq 2.18 \times 10^{16} B n_{\rm e}^{-1/2} \text{m s}^{-1}$	(7.276) (7.277)	$m_{ m p}$ $v_{ m A}$ B μ_0 $n_{ m e}$	proton mass Alfvén speed magnetic flux density (T) permeability of free space electron number density (m ⁻³)
Plasma beta	$\beta = \frac{2\mu_0 p}{B^2} = \frac{4\mu_0 n_{\rm e} k_{\rm B} T}{B^2} = \frac{2v_{\rm s}^2}{\gamma v_{\rm A}^2}$	(7.278)	β	plasma beta (ratio of hydrostatic to magnetic pressure)
Direct electrical conductivity	$\sigma_{\rm d} = \frac{n_{\rm e}^2 e^2 \sigma}{n_{\rm e}^2 e^2 + \sigma^2 B^2}$	(7.279)	$-e$ $\sigma_{ m d}$ σ	electronic charge direct conductivity conductivity $(B=0)$
Hall electrical conductivity	$\sigma_{\rm H} = \frac{\sigma B}{n_{\rm e} e} \sigma_{\rm d}$	(7.280)	$\sigma_{ m H}$	Hall conductivity
Generalised Ohm's law	$J = \sigma_{d}(E + v \times B) + \sigma_{H} \hat{B} \times (E + v \times B)$	(7.281)	J E v B	current density electric field plasma velocity field $= B/ B $
Pacietiva MHD a	quations (single-fluid model) ^b			
$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$	· · · · · · · · · · · · · · · · · · ·	(7.282)	μ_0 η	permeability of free space magnetic diffusivity $[=1/(\mu_0\sigma)]$ kinematic viscosity
	$+\frac{1}{3}v\nabla(\nabla\cdot\boldsymbol{v})+\boldsymbol{g}$	(7.283)	g	gravitational field strength
Shear Alfvénic dispersion relation ^c	$\omega = kv_{\rm A}\cos\theta_B$	(7.284)	$egin{array}{c} \omega & & & \\ \pmb{k} & & & \\ \theta_B & & & \end{array}$	angular frequency $(=2\pi v)$ wavevector $(k=2\pi/\lambda)$ angle between k and B
Magnetosonic dispersion relation ^d	$\omega^2 k^2 (v_s^2 + v_A^2) - \omega^4 = v_s^2 v_A^2 k^4 \cos^2 \theta_B$	(7.285)		

^aFor a warm, fully ionised, electrically neutral p^+/e^- plasma, $\mu_r = 1$. Relativistic and displacement current effects are assumed to be negligible and all oscillations are taken as being well below all resonance frequencies.

^bNeglecting bulk (second) viscosity.

^cNonresistive, inviscid flow.

^dNonresistive, inviscid flow. The greater and lesser solutions for ω^2 are the fast and slow magnetosonic waves respectively.

Synchrotron radiation

Power radiated	$P_{\text{tot}} = 2\sigma_{\text{T}} c u_{\text{mag}} \gamma^2 \left(\frac{v}{c}\right)^2 \sin^2 \theta$	(7.286)
by a single electron ^a	$\simeq 1.59 \times 10^{-14} B^2 \gamma^2 \left(\frac{v}{c}\right)^2 \sin^2 \theta$	W (7.287)
		(7.287)
averaged over pitch	$P_{\text{tot}} = \frac{4}{3}\sigma_{\text{T}}cu_{\text{mag}}\gamma^2 \left(\frac{v}{c}\right)^2$	(7.288)
angles	$\simeq 1.06 \times 10^{-14} B^2 \gamma^2 \left(\frac{v}{c}\right)^2 W$	(7.289)
Single electron	$P(v) = \frac{3^{1/2}e^3B\sin\theta}{4\pi\epsilon_0 cm_c}F(v/v_{\rm ch})$	(7.290)
emission	$4\pi\epsilon_0 cm_e$ $\simeq 2.34 \times 10^{-25} B \sin\theta F(v/v_{\rm ch})$	WHz^{-1}
spectrum ^b	$= 2.54 \times 10 \qquad B \text{Sin} OP (v/v_{\text{ch}})$	(7.291)
Characteristic	$v_{\rm ch} = \frac{3}{2} \gamma^2 \frac{eB}{2\pi m_{\rm e}} \sin \theta$	(7.292)
frequency	$\simeq 4.2 \times 10^{10} \gamma^2 B \sin \theta \text{Hz}$	(7.293)
Spectral	$F(x) = x \int_{x}^{\infty} K_{5/3}(y) \mathrm{d}y$	(7.294)
function	$\simeq \begin{cases} 2.15x^{1/3} & (x \ll 1) \\ 1.25x^{1/2}e^{-x} & (x \gg 1) \end{cases}$	(7.295)

В magnetic flux density speed of light P(v) emission spectrum frequency characteristic frequency electronic charge free space permittivity ϵ_0 electronic (rest) mass $m_{\rm e}$ spectral function $K_{5/3}$ modified Bessel fn. of the 2nd kind, order 5/3 1 F(x)

 1×2

3

 P_{tot} total radiated power σ_{T} Thomson cross section

Lorentz factor $= [1 - (v/c)^2]^{-1/2}$

pitch angle (angle between v and B)

 $u_{\rm mag}$ magnetic energy density = $B^2/(2\mu_0)$ v electron velocity ($\sim c$)

γ

 θ

0.5

^aThis expression also holds for cyclotron radiation ($v \ll c$).

^bI.e., total radiated power per unit frequency interval.

Bremsstrahlung^a

Single electron and ion^b

$$\frac{\mathrm{d}W}{\mathrm{d}\omega} = \frac{Z^2 e^6}{24\pi^4 \epsilon_0^3 c^3 m_{\mathrm{e}}^2} \frac{\omega^2}{\gamma^2 v^4} \left[\frac{1}{\gamma^2} K_0^2 \left(\frac{\omega b}{\gamma v} \right) + K_1^2 \left(\frac{\omega b}{\gamma v} \right) \right] \tag{7.296}$$

$$\simeq \frac{Z^2 e^6}{24\pi^4 \epsilon_0^3 c^3 m_e^2 b^2 v^2} \quad (\omega b \ll \gamma v) \tag{7.297}$$

Thermal bremsstrahlung radiation ($v \ll c$; Maxwellian distribution)

$$\frac{dP}{dVdv} = 6.8 \times 10^{-51} Z^2 T^{-1/2} n_i n_e g(v, T) \exp\left(\frac{-hv}{kT}\right) \quad \text{W m}^{-3} \text{Hz}^{-1}$$
 (7.298)

where
$$g(v,T) \simeq \begin{cases} 0.28[\ln(4.4 \times 10^{16} T^3 v^{-2} Z^{-2}) - 0.76] & (hv \ll kT \lesssim 10^5 kZ^2) \\ 0.55\ln(2.1 \times 10^{10} T v^{-1}) & (hv \ll 10^5 kZ^2 \lesssim kT) \\ (2.1 \times 10^{10} T v^{-1})^{-1/2} & (hv \gg kT) \end{cases}$$
 (7.299)

$$\frac{dP}{dV} \simeq 1.7 \times 10^{-40} Z^2 T^{1/2} n_i n_e \quad \text{W m}^{-3}$$
 (7.300)

ω	angular frequency (= $2\pi v$)	v	electron velocity	W	energy radiated
Z_e	ionic charge	K_i	modified Bessel functions of	T	electron temperature (K)
e	electronic charge		order i (see page 47)	$n{\rm i}$	ion number density (m ⁻³)
ϵ_0	permittivity of free space	γ	Lorentz factor = $[1-(v/c)^2]^{-1/2}$	n _e	electron number density (m ⁻³)
c	speed of light	P	power radiated	k	Boltzmann constant
me	electronic mass	V	volume	h	Planck constant
b	collision parameter ^c	ν	frequency (Hz)	g	Gaunt factor

^aClassical treatment. The ions are at rest, and all frequencies are above the plasma frequency.

^bThe spectrum is approximately flat at low frequencies and drops exponentially at frequencies $\gtrsim \gamma v/b$.

^cDistance of closest approach.

Chapter 8 Optics

8.1 Introduction

Any attempt to unify the notations and terminology of optics is doomed to failure. This is partly due to the long and illustrious history of the subject (a pedigree shared only with mechanics), which has allowed a variety of approaches to develop, and partly due to the disparate fields of physics to which its basic principles have been applied. Optical ideas find their way into most wave-based branches of physics, from quantum mechanics to radio propagation.

Nowhere is the lack of convention more apparent than in the study of polarisation, and so a cautionary note follows. The conventions used here can be taken largely from context, but the reader should be aware that alternative sign and handedness conventions do exist and are widely used. In particular we will take a circularly polarised wave as being right-handed if, for an observer looking *towards* the source, the electric field vector in a plane perpendicular to the line of sight rotates clockwise. This convention is often used in optics textbooks and has the conceptual advantage that the electric field orientation describes a right-hand corkscrew in space, with the direction of energy flow defining the screw direction. It is however opposite to the system widely used in radio engineering, where the handedness of a helical antenna generating or receiving the wave defines the handedness and is also in the opposite sense to the wave's own angular momentum vector.

162 Optics

8.2 Interference

Newton's rings^a

			r_n	radius of nth ring	
nth dark ring	$r_n^2 = nR\lambda_0$	(8.1)	n	integer (≥ 0)	/
			R	lens radius of curvature	, /
nth bright ring	$r_n^2 = \left(n + \frac{1}{2}\right) R \lambda_0$	(8.2)	λ_0	wavelength in external medium	

^aViewed in reflection.

Dielectric layers^a

^aFor normal incidence, assuming the quarter-wave condition. The media are also assumed lossless, with $\mu_r = 1$. ^bSee page 154 for the definition of R.

^c For a stack of N layer pairs, giving an overall refractive index sequence $\eta_1 \eta_a, \eta_b \eta_a ... \eta_a \eta_b \eta_3$ (see right-hand diagram). Each layer in the stack meets the quarter-wave condition with m = 1.

8.2 Interference 163

Fabry-Perot etalon^a

Fringe	$\Delta \phi = 2\arcsin(F^{-1/2})$	(8.18)
intensity profile	$\simeq 2F^{-1/2}$	(8.19)

 $=I_0A(\theta)$

Chromatic resolving	$\frac{\lambda_0}{\delta\lambda} \simeq \frac{R^{1/2}\pi n}{1-R} = n\mathscr{F}$	(8.20)
power	$\simeq \frac{2\mathscr{F}h\eta'}{\lambda_0} (\theta \ll 1)$	(8.21)

Free spectral
$$\delta \lambda_{\rm f} = \mathcal{F} \delta \lambda$$
 (8.22)
range^c $\delta v_{\rm f} = \frac{c}{2\eta' h}$ (8.23)

phase difference at half intensity point

Airy function

(8.17)

minimum resolvable wavelength difference

 $\delta \lambda_f$ wavelength free spectral range $\delta v_{\rm f}$ frequency free spectral range

^aNeglecting any effects due to surface coatings on the etalon. See also Lasers on page 174.

^bBetween adjacent rays. Highest order fringes are near the centre of the pattern.

^cAt near-normal incidence ($\theta \simeq 0$), the orders of two spectral components separated by $< \delta \lambda_f$ will not overlap.

164 **Optics**

8.3 Fraunhofer diffraction

Gratings^a

spacing

^aUnless stated otherwise, the illumination is normal to the grating.

^bTwo narrow slits separated by D.

^cThe condition is for Bragg reflection, with $\theta_n = \theta_i$.

distance of aperture from

observation point

aperture size

Aperture diffraction

^aThe Fraunhofer integral.

Fraunhofer

limit^e

 $L \gg \frac{(\Delta x)^2}{1}$

(8.44)

^bNote that $\operatorname{sinc} x = (\sin \pi x)/(\pi x)$.

^cThe central maximum is known as the "Airy disk."

^dThe "Rayleigh resolution criterion" states that two point sources of equal intensity can just be resolved with diffraction-limited optics if separated in angle by $1.22\lambda/D$.

^ePlane-wave illumination.

166 **Optics**

8.4 Fresnel diffraction

Kirchhoff's diffraction formula^a

^aAlso known as the "Fresnel-Kirchhoff formula." Diffraction by an obstacle coincident with the integration surface can be approximated by omitting that part of the surface from the integral. b The source amplitude at ρ is $\psi(\rho) = E_0 e^{ik\rho}/\rho$. The integral is taken over a surface enclosing the point P.

Fresnel zones

aI.e., the aperture-observer distance to be employed when the source is not at infinity.

3

Cornu spiral

Fresnel	$C(w) = \int_0^w \cos \frac{\pi t^2}{2} dt$	(8.51)
integrals ^a	$\int_{0}^{w} \pi t^{2}$	

$$S(w) = \int_0^w \sin \frac{\pi t^2}{2} dt$$
 (8.52)

$$CS(w) = C(w) + iS(w)$$
Cornu spiral (8.53)

$$CS(\pm\infty) = \pm \frac{1}{2}(1+\mathbf{i}) \tag{8.54}$$

$$\psi_P = \frac{\psi_0}{2^{1/2}} [CS(w) + \frac{1}{2} (1+i)]$$
 (8.55)

Edge diffraction where
$$w = y \left(\frac{2}{\lambda z}\right)^{1/2}$$
 (8.56)

Diffraction
$$\psi_P = \frac{\psi_0}{2^{1/2}} [CS(w_2) - CS(w_1)]$$
 (8.57)
from a long slit^b where $w_i = y_i \left(\frac{2}{\lambda z}\right)^{1/2}$ (8.58)

$$\psi_{P} = \frac{\psi_{0}}{2} [CS(v_{2}) - CS(v_{1})] \times \tag{8.59}$$
 Diffraction
$$[CS(w_{2}) - CS(w_{1})] \tag{8.60}$$
 from a rectangular where $v_{i} = x_{i} \left(\frac{2}{\lambda z}\right)^{1/2}$ (8.61)

and
$$w_i = y_i \left(\frac{2}{\lambda z}\right)^{1/2}$$
 (8.62)

CS Cornu spiral

v,w length along spiral

 ψ_P complex amplitude at P ψ_0 unobstructed amplitude

λ wavelength

z distance of P from aperture plane [see (8.48)]

y position of edge

 x_i positions of slit sides

positions of slit top/bottom

C Fresnel cosine integral

S Fresnel sine integral

^aSee also Equation (2.393) on page 45.

 $[^]b$ Slit long in x.

168 Optics

8.5 Geometrical optics

Lenses and mirrors^a

^aFormulas assume "Gaussian optics," i.e., all lenses are thin and all angles small. Light enters from the left.

^bA stationary optical path length has, to first order, a length identical to that of adjacent paths.

^cThe mirror is concave if R < 0, convex if R > 0.

^dOr "f-number," written f/2 if n=2 etc.

8

Prisms (dispersing)

^aAt minimum deviation.

Optical fibres

 $^{{}^{}a}$ Of a pulse with a given wavelength, caused by the range of incident angles up to $\theta_{\rm m}$. Sometimes called "intermodal dispersion" or "modal dispersion."

170 Optics

8.6 Polarisation

Elliptical polarisation^a

Polarisation angle ^b $\tan 2\alpha = \frac{2E_{0x}E_{0y}}{E_{0x}^2 - E_{0y}^2}\cos \delta$ (8.81) Ellipticity ^c $e = \frac{a - b}{a}$ (8.82)			
Ellipticity ^c $e = \frac{a-b}{a}$ (8.82)		$\boldsymbol{E} = (E_{0x}, E_{0y} e^{\mathbf{i}\delta}) e^{\mathbf{i}}$	$(kz-\omega t)$ (8.80)
		$\tan 2\alpha = \frac{2E_{0x}E_{0y}}{E_{0x}^2 - E_{0y}^2}$	$-\cos\delta$ (8.81)
Malus's law ^d $I(\theta) = I_0 \cos^2 \theta$ (8.83)	Ellipticity ^c	$e = \frac{a - b}{a}$	(8.82)
	Malus's law ^d	$I(\theta) = I_0 \cos^2 \theta$	(8.83)

E electric field k wavevector z propagation axis angular frequency × time E_{0x} x amplitude of **E** E_{0y} y amplitude of **E** relative phase of E_v with respect to E_x polarisation angle ellipticity semi-major axis semi-minor axis $I(\theta)$ transmitted intensity incident intensity I_0 θ polariser-analyser angle

electric field

E

Jones vectors and matrices

Nammaliand

Normalised electric field ^a	$\boldsymbol{E} = \begin{pmatrix} E_x \\ E_y \end{pmatrix}; \boldsymbol{E} = 1$	(8.84)	E_x x component of E E_y y component of E
Example vectors:	$E_x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $E_{45} =$ $E_r = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix}$ $E_{1} =$	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix}$	E_{45} 45° to x axis E_{r} right-hand circular E_{l} left-hand circular
Jones matrix	$E_{t} = \mathbf{A}E_{i}$	(8.85)	$egin{array}{ll} E_{ m t} & { m transmitted \ vector} \\ E_{ m i} & { m incident \ vector} \\ { m A} & { m Jones \ matrix} \\ \end{array}$
Example matrice	es:		
Linear polariser	$\ x\ $ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	Linear polariser	$y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
Linear polariser	at 45° $\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	Linear polariser a	$t - 45^{\circ} \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$
Right circular po	olariser $\frac{1}{2} \begin{pmatrix} 1 & \mathbf{i} \\ -\mathbf{i} & 1 \end{pmatrix}$	Left circular polar	riser $\frac{1}{2} \begin{pmatrix} 1 & -\mathbf{i} \\ \mathbf{i} & 1 \end{pmatrix}$
$\lambda/4$ plate (fast	$x) \qquad \qquad e^{\mathbf{i}\pi/4} \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{i} \end{pmatrix}$	$\lambda/4$ plate (fast $\pm x$	$e^{\mathbf{i}\pi/4} \begin{pmatrix} 1 & 0 \\ 0 & -\mathbf{i} \end{pmatrix}$

^aKnown as the "normalised Jones vector."

^aSee the introduction (page 161) for a discussion of sign and handedness conventions.

^bAngle between ellipse major axis and x axis. Sometimes the polarisation angle is defined as $\pi/2-\alpha$.

^cThis is one of several definitions for ellipticity.

^dTransmission through skewed polarisers for unpolarised incident light.

3

Stokes parameters^a

^aUsing the convention that right-handed circular polarisation corresponds to a clockwise rotation of the electric field in a given plane when looking towards the source. The propagation direction in the diagram is out of the plane. The parameters I, Q, U, and V are sometimes denoted s_0 , s_1 , s_2 , and s_3 , and other nomenclatures exist. There is no generally accepted definition – often the parameters are scaled to be dimensionless, with $s_0 = 1$, or to represent power flux through a plane \bot the beam, i.e., $I = (\langle E_x^2 \rangle + \langle E_y^2 \rangle)/Z_0$ etc., where Z_0 is the impedance of free space. ^bThe axial ratio is positive for right-handed polarisation and negative for left-handed polarisation using our definitions.

Optics Optics

8.7 Coherence (scalar theory)

Mutual coherence function	$\Gamma_{12}(\tau) = \langle \psi_1(t)\psi_2^*(t+\tau)\rangle$	(8.97)	Γ_{ij} mutual coherence function τ temporal interval ψ_i (complex) wave disturbance at spatial point i
Complex degree of coherence	$\gamma_{12}(\tau) = \frac{\langle \psi_1(t)\psi_2^*(t+\tau) \rangle}{[\langle \psi_1 ^2 \rangle \langle \psi_2 ^2 \rangle]^{1/2}}$ $= \frac{\Gamma_{12}(\tau)}{[\Gamma_{11}(0)\Gamma_{22}(0)]^{1/2}}$	(8.98) (8.99)	t time $\langle \cdot \rangle$ mean over time γ_{ij} complex degree of coherence * complex conjugate
Combined intensity ^a	$I_{\text{tot}} = I_1 + I_2 + 2(I_1 I_2)^{1/2} \Re \left[\gamma_{12}(\tau) \right]$	(8.100)	I_{tot} combined intensity I_i intensity of disturbance at point i \mathfrak{R} real part of
Fringe visibility	$V(\tau) = \frac{2(I_1 I_2)^{1/2}}{I_1 + I_2} \gamma_{12}(\tau) $	(8.101)	
if $ \gamma_{12}(\tau) $ is a constant:	$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$	(8.102)	I_{\max} max. combined intensity I_{\min} min. combined intensity
if $I_1 = I_2$:	$V(\tau) = \gamma_{12}(\tau) $	(8.103)	
Complex degree of temporal	$\gamma(\tau) = \frac{\langle \psi_1(t)\psi_1^*(t+\tau)\rangle}{\langle \psi_1(t)^2 \rangle}$	(8.104)	$\gamma(\tau)$ degree of temporal coherence $I(\omega)$ specific intensity
coherence ^b	$= \frac{\int I(\omega) e^{-i\omega\tau} d\omega}{\int I(\omega) d\omega}$	(8.105)	ω radiation angular frequency c speed of light
Coherence time and length	$\Delta \tau_{\rm c} = \frac{\Delta l_{\rm c}}{c} \sim \frac{1}{\Delta \nu}$	(8.106)	$\Delta \tau_c$ coherence time Δl_c coherence length $\Delta \nu$ spectral bandwidth
Complex degree	$\gamma(\boldsymbol{D}) = \frac{\langle \boldsymbol{\psi}_1 \boldsymbol{\psi}_2^* \rangle}{[\langle \boldsymbol{\psi}_1 ^2 \rangle \langle \boldsymbol{\psi}_2 ^2 \rangle]^{1/2}}$	(8.107)	 γ(D) degree of spatial coherence D spatial separation of points 1 and 2
of spatial coherence ^c	$= \frac{\int I(\hat{\mathbf{s}}) e^{ikD\cdot\hat{\mathbf{s}}} d\Omega}{\int I(\hat{\mathbf{s}}) d\Omega}$	(8.108)	$I(\hat{s})$ specific intensity of distant extended source in direction \hat{s} dΩ differential solid angle
Intensity correlation ^d	$\frac{\langle I_1 I_2 \rangle}{[\langle I_1 \rangle^2 \langle I_2 \rangle^2]^{1/2}} = 1 + \gamma^2(\boldsymbol{D})$	(8.109)	\hat{s} unit vector in the direction of $d\Omega$ k wavenumber
Speckle intensity distribution ^e	$\operatorname{pr}(I) = \frac{1}{\langle I \rangle} e^{-I/\langle I \rangle}$	(8.110)	pr probability density
Speckle size (coherence width)	$\Delta w_{\rm c} \simeq \frac{\lambda}{\alpha}$	(8.111)	Δw_c characteristic speckle size λ wavelength α source angular size as seen from the screen

^aFrom interfering the disturbances at points 1 and 2 with a relative delay τ .

^bOr "autocorrelation function."

^cBetween two points on a wavefront, separated by **D**. The integral is over the entire extended source.

 $[^]d$ For wave disturbances that have a Gaussian probability distribution in amplitude. This is "Gaussian light" such as from a thermal source.

^eAlso for Gaussian light.

3

8.8 Line radiation

Spectral line broadening

Natural broadening ^a	$I(\omega) = \frac{(2\pi\tau)^{-1}}{(2\tau)^{-2} + (\omega - \omega_0)^2}$	(8.112)	$I(\omega)$ normalised intensity ^b τ lifetime of excited state ω angular frequency (= $2\pi v$)
Natural half-width	$\Delta\omega = \frac{1}{2\tau}$	(8.113)	$\Delta\omega$ half-width at half-power ω_0 centre frequency
Collision broadening	$I(\omega) = \frac{(\pi \tau_{c})^{-1}}{(\tau_{c})^{-2} + (\omega - \omega_{0})^{2}}$	(8.114)	τ _c mean time between collisions p pressure
Collision and pressure half-width ^c	$\Delta\omega = \frac{1}{\tau_{\rm c}} = p\pi d^2 \left(\frac{\pi mkT}{16}\right)^{-1/2}$	(8.115)	T temperature c speed of light
Doppler broadening	$I(\omega) = \left(\frac{mc^2}{2kT\omega_0^2\pi}\right)^{1/2} \exp\left[-\frac{mc^2}{2kT}\right]^{1/2}$	$\left[\frac{\omega - \omega_0)^2}{\omega_0^2}\right] \tag{8.116}$	$I(\omega)$ $\Delta \omega$
Doppler half-width	$\Delta\omega = \omega_0 \left(\frac{2kT\ln 2}{mc^2}\right)^{1/2}$	(8.117)	ω_0

^aThe transition probability per unit time for the state is $=1/\tau$. In the classical limit of a damped oscillator, the e-folding time of the electric field is 2τ . Both the natural and collision profiles described here are Lorentzian.

Einstein coefficients^a

Absorption	$R_{12} = B_{12}I_{\nu}n_1$	(8.118)	R_{ij} transition rate, level $i \rightarrow j \text{ (m}^{-3} \text{ s}^{-1})$ B_{ij} Einstein B coefficients I_{ν} specific intensity of radiation field
Spontaneous emission	$R_{21} = A_{21}n_2$	(8.119)	A_{21} Einstein A coefficient n_i number density of atoms in quantum level $i \text{ (m}^{-3}\text{)}$
Stimulated emission	$R'_{21} = B_{21}I_{\nu}n_2$	(8.120)	
Coefficient ratios	$\frac{A_{21}}{B_{12}} = \frac{2hv^3}{c^2} \frac{g_1}{g_2}$ $\frac{B_{21}}{B_{12}} = \frac{g_1}{g_2}$	(8.121) (8.122)	 h Planck constant v frequency c speed of light g_i degeneracy of ith level

^aNote that the coefficients can also be defined in terms of spectral energy density, $u_v = 4\pi I_v/c$ rather than I_v . In this case $\frac{A_{21}}{B_{12}} = \frac{8\pi\hbar v^3}{c^3} \frac{g_1}{g_2}$. See also *Population densities* on page 116.

^bThe intensity spectra are normalised so that $\int I(\omega) d\omega = 1$, assuming $\Delta \omega / \omega_0 \ll 1$.

^cThe pressure-broadening relation combines Équations (5.78), (5.86) and (5.89) and assumes an otherwise perfect gas of finite-sized atoms. More accurate expressions are considerably more complicated.

174 Optics

Lasersa

[&]quot;Also see the Fabry-Perot etalon on page 163. Note that "cavity" refers to the empty cavity, with no lasing medium present.

 $[\]bar{b}$ The mode spacing equals the cavity free spectral range.

Chapter 9 Astrophysics

9.1 Introduction

Many of the formulas associated with astronomy and astrophysics are either too specialised for a general work such as this or are common to other fields and can therefore be found elsewhere in this book. The following section includes many of the relationships that fall into neither of these categories, including equations to convert between various astronomical coordinate systems and some basic formulas associated with cosmology.

Exceptionally, this section also includes data on the Sun, Earth, Moon, and planets. Observational astrophysics remains a largely inexact science, and parameters of these (and other) bodies are often used as approximate base units in measurements. For example, the masses of stars and galaxies are frequently quoted as multiples of the mass of the Sun $(1M_{\odot}=1.989\times10^{30}\,\mathrm{kg})$, extra-solar system planets in terms of the mass of Jupiter, and so on. Astronomers seem to find it particularly difficult to drop arcane units and conventions, resulting in a profusion of measures and nomenclatures throughout the subject. However, the convention of using suitable astronomical objects in this way is both useful and widely accepted.

176 Astrophysics

9.2 Solar system data

Solar data

equatorial radius	R_{\odot}	=	$6.960 \times 10^8 \mathrm{m}$	=	109.1 <i>R</i> ⊕
mass			$1.9891 \times 10^{30} \mathrm{kg}$	=	$3.32946 \times 10^5 M_{\oplus}$
polar moment of inertia	I_{\odot}	=	$5.7 \times 10^{46} \mathrm{kgm^2}$	=	$7.09 \times 10^{8} I_{\oplus}$
bolometric luminosity	L_{\odot}	=	$3.826 \times 10^{26} \mathrm{W}$		
effective surface temperature	T_{\odot}	=	5770K		
solar constant ^a			$1.368 \times 10^3 \mathrm{W}\mathrm{m}^{-2}$		
absolute magnitude	$M_{ m V}$	=	$+4.83;$ M_{bol}	=	+4.75
apparent magnitude	$m_{ m V}$	=	$-26.74;$ m_{bol}	=	-26.82

^aBolometric flux at a distance of 1 astronomical unit (AU).

Earth data

equatorial radius	R_{\oplus}	=	$6.37814 \times 10^6 \mathrm{m}$	=	$9.166 \times 10^{-3} R_{\odot}$
flattening ^a	f	=	0.00335364	=	1/298.183
mass	M_{\oplus}	=	$5.9742 \times 10^{24} \mathrm{kg}$	=	$3.0035 \times 10^{-6} M_{\odot}$
polar moment of inertia	I_{\oplus}	=	$8.037 \times 10^{37} \mathrm{kg}\mathrm{m}^2$	=	$1.41 \times 10^{-9} I_{\odot}$
orbital semi-major axis ^b	1AU	=	$1.495979 \times 10^{11} \mathrm{m}$	=	$214.9R_{\odot}$
mean orbital velocity			$2.979 \times 10^4 \mathrm{ms^{-1}}$		
equatorial surface gravity	$g_{ m e}$	=	$9.780327\mathrm{ms^{-2}}$	(inc	ludes rotation)
polar surface gravity	g_{p}	=	$9.832186\mathrm{ms^{-2}}$		
rotational angular velocity	ω_{e}	=	$7.292115 \times 10^{-5} \text{rad}$	s^{-1}	

af equals $(R_{\oplus} - R_{\text{polar}})/R_{\oplus}$. The mean radius of the Earth is $6.3710 \times 10^6 \, \text{m}$.

Moon data

equatorial radius	$R_{ m m}$	=	$1.7374 \times 10^6 \mathrm{m}$	=	$0.27240R_{\oplus}$
mass	$M_{ m m}$	=	$7.3483 \times 10^{22} \mathrm{kg}$	=	$1.230 \times 10^{-2} M_{\oplus}$
mean orbital radius ^a	$a_{\rm m}$	=	$3.84400 \times 10^8 \mathrm{m}$	=	$60.27R_{\oplus}$
mean orbital velocity			$1.03 \times 10^3 \mathrm{ms^{-1}}$		
orbital period (sidereal)			27.32166d		
equatorial surface gravity			$1.62\mathrm{ms^{-2}}$	=	$0.166g_{e}$

^aAbout the Earth.

Planetary data^a

	M/M_{\oplus}	R/R_{\oplus}	T(d)	P(yr)	a(AU)	M	mass
Mercury	0.055274	0.382 51	58.646	0.24085	0.387 10	R	equatorial radius
Venus ^b	0.81500	0.94883	243.018	0.615 228	0.723 35	T	rotational period
Earth	1	1	0.99727	1.000 04	1.00000	P	orbital period
Mars	0.10745	0.53260	1.025 96	1.88093	1.523 71	а	mean distance
Jupiter	317.85	11.209	0.413 54	11.8613	5.202 53	M_{\oplus}	$5.9742 \times 10^{24} \mathrm{kg}$
Saturn	95.159	9.449 1	0.44401	29.628 2	9.575 60	R_{\oplus}	$6.37814 \times 10^6 \mathrm{m}$
Uranus ^b	14.500	4.0073	0.718 33	84.7466	19.2934	1d	86400s
Neptune	17.204	3.8826	0.671 25	166.344	30.2459	1 yr	$3.15569 \times 10^7 \mathrm{s}$
Pluto ^b	0.00251	0.187 36	6.387 2	248.348	39.5090	1AU	$1.495979 \times 10^{11} \mathrm{m}$

^aUsing the osculating orbital elements for 1998. Note that P is the instantaneous orbital period, calculated from the planet's daily motion. The radii of gas giants are taken at 1 atmosphere pressure.

^bRetrograde rotation.

^bAbout the Sun.

9.3 Coordinate transformations (astronomical)

Time in astronomy

Julian day nun	nber ^a		JD	Julian day number
JD = D - 32075	5+1461*(Y+4800+(M-14)/12)/4		D	day of month number
$+367*(N_1)$	M-2-(M-14)/12*12)/12	Y	calendar year, e.g., 1963	
-3*((Y -	+4900+(M-14)/12)/100)/4	(9.1)	M	calendar month (Jan=1)
Modified			*	integer multiply
	MJD = JD - 2400000.5	(9.2)	MJD	integer divide modified Julian day number
Day of week	$W = (JD + 1) \mod 7$	(9.3)	W	day of week (0=Sunday, 1=Monday,)
			LCT	local civil time
Local civil I	LCT = UTC + TZC + DSC	(9.4)	UTC	coordinated universal time
time	·	,	TZC	time zone correction
			DSC	daylight saving correction
Julian centuries	$T = \frac{JD - 2451545.5}{36525}$	(9.5)	T	Julian centuries between 12 ^h UTC 1 Jan 2000 and 0 ^h UTC <i>D/M/Y</i>
Greenwich sidereal time	GMST = $6^{h}41^{m}50^{s}.54841$ + $8640184^{s}.812866T$ + $0^{s}.093104T^{2}$ - $0^{s}.0000062T^{3}$	(9.6)	GMST	Greenwich mean sidereal time at 0^h UTC $D/M/Y$ (for later times use $1s = 1.002738$ sidereal seconds)
Local			LST	local sidereal time
sidereal I	$LST = GMST + \frac{\lambda^{\circ}}{15^{\circ}}$	(9.7)	l LS1	geographic longitude,
time	starting at noon on the calendar day in que			degrees east of Greenwich

^aFor the Julian day starting at noon on the calendar day in question. The routine is designed around integer arithmetic with "truncation towards zero" (so that -5/3 = -1) and is valid for dates from the onset of the Gregorian calendar, 15 October 1582. *JD* represents the number of days since Greenwich mean noon 1 Jan 4713 BC. For reference, noon, 1 Jan 2000 = *JD*2451545 and was a Saturday (W = 6).

Horizon coordinates^a

Hour angle	$H = LST - \alpha$	(9.8)	LST H	local sidereal time (local) hour angle
			α	right ascension
Equatorial	$\sin a = \sin \delta \sin \phi + \cos \delta \cos \phi \cos H$	(9.9)	δ	declination
to horizon	$-\cos\delta\sin H$		а	altitude
to norizon	$\tan A \equiv \frac{-\cos\delta\sin H}{\sin\delta\cos\phi - \sin\phi\cos\delta\cos H}$	(9.10)	A	azimuth (E from N)
	σπο σου φ		ϕ	observer's latitude
Horizon to	$\sin \delta = \sin a \sin \phi + \cos a \cos \phi \cos A$	(9.11)		$\frac{+}{-}$ A, H
equatorial	$\tan H \equiv \frac{-\cos a \sin A}{\sin a \cos \phi - \sin \phi \cos a \cos A}$	(9.12)		<u>-</u> +

^aConversions between horizon or alt-azimuth coordinates, (a,A), and celestial equatorial coordinates, (δ,α) . There are a number of conventions for defining azimuth. For example, it is sometimes taken as the angle west from south rather than east from north. The quadrants for A and H can be obtained from the signs of the numerators and denominators in Equations (9.10) and (9.12) (see diagram).

178 Astrophysics

Ecliptic coordinates^a

Obliquity of the ecliptic	$\varepsilon = 23^{\circ}26'21''.45 - 46''.815 T$ $-0''.0006 T^{2}$ $+0''.00181 T^{3}$	(9.13)	ε	mean ecliptic obliquity Julian centuries since J2000.0 ^b
Equatorial to ecliptic	$\sin \beta = \sin \delta \cos \varepsilon - \cos \delta \sin \varepsilon \sin \alpha$ $\tan \lambda \equiv \frac{\sin \alpha \cos \varepsilon + \tan \delta \sin \varepsilon}{\cos \alpha}$	(9.14) (9.15)	$\begin{bmatrix} \alpha \\ \delta \\ \lambda \\ \beta \end{bmatrix}$	right ascension declination ecliptic longitude ecliptic latitude
Ecliptic to equatorial	$\sin \delta = \sin \beta \cos \varepsilon + \cos \beta \sin \varepsilon \sin \lambda$ $\tan \alpha \equiv \frac{\sin \lambda \cos \varepsilon - \tan \beta \sin \varepsilon}{\cos \lambda}$	(9.16) (9.17)		+ + + + + + + + + + + + + + + + + + +

^aConversions between ecliptic, (β, λ) , and celestial equatorial, (δ, α) , coordinates. β is positive above the ecliptic and λ increases eastwards. The quadrants for λ and α can be obtained from the signs of the numerators and denominators in Equations (9.15) and (9.17) (see diagram).

^bSee Equation (9.5).

Galactic coordinates^a

Galactic frame	$\alpha_{g} = 192^{\circ}15'$ $\delta_{g} = 27^{\circ}24'$ $l_{g} = 33^{\circ}$	(9.18) (9.19) (9.20)	$\alpha_{ m g}$ $\delta_{ m g}$	right ascension of north galactic pole declination of north galactic pole
Equatorial to galactic	$\sin b = \cos \delta \cos \delta_{g} \cos(\alpha - \alpha_{g}) + \sin \delta \sin \delta_{g}$ $\tan(l - l_{g}) \equiv \frac{\tan \delta \cos \delta_{g} - \cos(\alpha - \alpha_{g}) \sin \delta_{g}}{\sin(\alpha - \alpha_{g})}$	(9.21) (9.22)	$l_{ m g}$	ascending node of galactic plane on equator
Galactic to	$\sin\delta = \cos b \cos \delta_{\rm g} \sin(l - l_{\rm g}) + \sin b \sin \delta_{\rm g}$	(9.23)	δ	declination right ascension
equatorial	$\tan(\alpha - \alpha_{\rm g}) \equiv \frac{\cos(l - l_{\rm g})}{\tan b \cos \delta_{\rm g} - \sin \delta_{\rm g} \sin(l - l_{\rm g})}$	(9.24)	b l	galactic latitude galactic longitude

^aConversions between galactic, (b,l), and celestial equatorial, (δ,α) , coordinates. The galactic frame is defined at epoch B1950.0. The quadrants of l and α can be obtained from the signs of the numerators and denominators in Equations (9.22) and (9.24).

Precession of equinoxes^a

In right ascension	$\alpha \simeq \alpha_0 + (3^{\mathrm{s}}.075 + 1^{\mathrm{s}}.336\sin\alpha_0\tan\delta_0)N$	(9.25)	$egin{array}{c} lpha \ lpha_0 \ N \end{array}$	right ascension of date right ascension at J2000.0 number of years since J2000.0
In declination	$\delta \simeq \delta_0 + (20''.043\cos\alpha_0)N$	(9.26)	$\delta \ \delta_0$	declination of date declination at J2000.0

^aRight ascension in hours, minutes, and seconds; declination in degrees, arcminutes, and arcseconds. These equations are valid for several hundred years each side of J2000.0.

9.4 Observational astrophysics

Astronomical magnitudes

Apparent magnitude	$m_1 - m_2 = -2.5 \log_{10} \frac{F_1}{F_2}$	(9.27)	m_i F_i	apparent magnitude of object <i>i</i> energy flux from object <i>i</i>
Distance modulus ^a	$m - M = 5\log_{10} D - 5$ = $-5\log_{10} p - 5$	(9.28) (9.29)	$ \begin{array}{c c} M \\ m-M \\ D \\ p \end{array} $	absolute magnitude distance modulus distance to object (parsec) annual parallax (arcsec)
Luminosity– magnitude relation	$M_{\text{bol}} = 4.75 - 2.5 \log_{10} \frac{L}{L_{\odot}}$ $L \simeq 3.04 \times 10^{(28 - 0.4 M_{\text{bol}})}$	(9.30) (9.31)	$M_{ m bol}$ L L_{\odot}	bolometric absolute magnitude luminosity (W) solar luminosity (3.826 \times 10 ²⁶ W)
Flux- magnitude relation	$F_{\text{bol}} \simeq 2.559 \times 10^{-(8+0.4m_{\text{bol}})}$	(9.32)	F_{bol} m_{bol}	bolometric flux (Wm ⁻²) bolometric apparent magnitude
Bolometric correction	$BC = m_{\text{bol}} - m_{\text{V}}$ $= M_{\text{bol}} - M_{\text{V}}$	(9.33) (9.34)	BC $m_{ m V}$ $M_{ m V}$	bolometric correction V -band apparent magnitude V -band absolute magnitude
Colour index ^b	$B - V = m_{\rm B} - m_{\rm V}$ $U - B = m_{\rm U} - m_{\rm B}$	(9.35) (9.36)	B - V $U - B$	observed $B-V$ colour index observed $U-B$ colour index
Colour excess ^c	$E = (B - V) - (B - V)_0$	(9.37)	$ \begin{array}{ c c } E \\ (B-V)_0 \end{array} $	B-V colour excess intrinsic $B-V$ colour index

^aNeglecting extinction.

Photometric wavelengths

Mean wavelength	$\lambda_0 = \frac{\int \lambda R(\lambda) \mathrm{d}\lambda}{\int R(\lambda) \mathrm{d}\lambda}$	(9.38)	λ_0 mean wavelength λ wavelength R system spectral response
Isophotal wavelength	$F(\lambda_{i}) = \frac{\int F(\lambda)R(\lambda) d\lambda}{\int R(\lambda) d\lambda}$	(9.39)	$F(\lambda)$ flux density of source (in terms of wavelength) λ_i isophotal wavelength
Effective wavelength	$\lambda_{\text{eff}} = \frac{\int \lambda F(\lambda) R(\lambda) d\lambda}{\int F(\lambda) R(\lambda) d\lambda}$	(9.40)	λ_{eff} effective wavelength

^bUsing the *UBV* magnitude system. The bands are centred around 365 nm (*U*), 440 nm (*B*), and 550 nm (*V*).

^cThe U-B colour excess is defined similarly.

180 Astrophysics

Planetary bodies

	$D_{\rm AU} = \frac{4+3\times 2^n}{10}$	(9.41)	D _{AU}	planetary orbital radius (AU) index: Mercury = $-\infty$, Venus = 0, Earth = 1, Mars = 2, Ceres = 3, Jupiter=4,
Roche limit	$R \gtrsim \left(\frac{100M}{9\pi\rho}\right)^{1/3}$ $\gtrsim 2.46R_0$ (if densities equal)	(9.42) (9.43)	$egin{array}{c} R & M & & & \\ \rho & & R_0 & & & \end{array}$	satellite orbital radius central mass satellite density central body radius
Synodic period ^b	$\frac{1}{S} = \left \frac{1}{P} - \frac{1}{P_{\oplus}} \right $	(9.44)	$egin{array}{c} S \\ P \\ P_{\oplus} \end{array}$	synodic period planetary orbital period Earth's orbital period

^aAlso known as the "Titius-Bode rule." Note that the asteroid Ceres is counted as a planet in this scheme. The relationship breaks down for Neptune and Pluto.

^bOf a planet.

Distance indicators

Hubble law	$v = H_0 d$	(9.45)	$\begin{vmatrix} v \\ H_0 \end{vmatrix}$	cosmological recession velocity Hubble parameter (present epoch)
Trabble law	Tubble law 5 ==0 (2.1.1)		d	(proper) distance
A 1			D_{pc}	distance (parsec)
Annual parallax	$D_{\rm pc} = p^{-1}$	(9.46)	p	annual parallax ($\pm p$ arcsec from mean)
	$\langle L \rangle$	(0.45)	$\langle L \rangle$	mean cepheid luminosity
Cepheid	$\log_{10} \frac{\langle L \rangle}{L_{\odot}} \simeq 1.15 \log_{10} P_{\rm d} + 2.47$	(9.47)	L_{\odot}	Solar luminosity
variables ^a	$M_{\rm V} \simeq -2.76\log_{10} P_{\rm d} - 1.40$	(9.48)	$P_{\rm d}$	pulsation period (days)
	21. 22. 810 d	(*****)	$M_{ m V}$	absolute visual magnitude
	,		$M_{ m I}$	I-band absolute magnitude
Tully–Fisher relation ^b	$M_{\rm I} \simeq -7.68 \log_{10} \left(\frac{2v_{\rm rot}}{\sin i} \right) - 2.58$	8	$v_{ m rot}$	observed maximum rotation velocity (kms ⁻¹)
Telation	((9.49)	i	galactic inclination (90° when edge-on)
			θ	ring angular radius
Finetein rings	$\theta^2 = \frac{4GM}{c^2} \left(\frac{d_s - d_1}{d_s d_1} \right)$	(9.50)	M	lens mass
Einstein rings	$\theta^{2} \equiv \frac{1}{c^{2}} \left(\frac{1}{d_{s}d_{1}} \right)$	(9.30)	$d_{\rm s}$	distance from observer to source
			d_1	distance from observer to lens
			T	apparent CMBR temperature
Sunyaev-	$\Delta T = \int n_{o}kT_{o}\sigma_{T}$		d <i>l</i>	path element through cloud
Zel'dovich	$\frac{\Delta T}{T} = -2 \int \frac{n_{\rm e} k T_{\rm e} \sigma_{\rm T}}{m_{\rm e} c^2} \mathrm{d}l$	(9.51)	R	cloud radius
effect ^c	$I J m_{\rm e}c$		ne	electron number density
			k	Boltzmann constant
for a			$T_{\rm e}$	electron temperature
homogeneous	$\frac{\Delta T}{T} = -\frac{4Rn_{\rm e}kT_{\rm e}\sigma_{\rm T}}{m_{\rm e}c^2}$	(9.52)	$\sigma_{ m T}$	Thomson cross section
sphere	$T = \frac{1}{m_{\rm e}c^2}$	(3.32)	me	electron mass
Spriore			c	speed of light

^aPeriod-luminosity relation for classical Cepheids. Uncertainty in M_V is ± 0.27 (Madore & Freedman, 1991, Publications of the Astronomical Society of the Pacific, 103, 933).

^bGalaxy rotation velocity—magnitude relation in the infrared *I* waveband, centred at 0.90 μm. The coefficients depend on waveband and galaxy type (see Giovanelli *et al.*, 1997, The Astronomical Journal, **113**, 1).

^cScattering of the cosmic microwave background radiation (CMBR) by a cloud of electrons, seen as a temperature decrement, ΔT , in the Rayleigh–Jeans limit ($\lambda \gg 1$ mm).

Stellar evolution 9.5

Evolutionary timescales

Free-fall	(2- \ 1/2		$ au_{ m ff}$ free-fall timescale
timescale ^a	$\tau_{\rm ff} = \left(\frac{3\pi}{32G\rho_0}\right)^{1/2}$	(9.53)	G constant of gravitation
timescale	$(32G\rho_0)$	` ,	ρ_0 initial mass density
	II		τ_{KH} Kelvin-Helmholtz timescale
Kelvin–Helmholtz	$ au_{ m KH} = rac{-U_{ m g}}{L}$ $\simeq rac{GM^2}{R_0L}$	(9.54)	Ug gravitational potential energy
timescale			M body's mass
timescale		(9.55)	R ₀ body's initial radius
	K_0L	, ,	L body's luminosity

^aFor the gravitational collapse of a uniform sphere.

Star formation

Jeans length ^a	$\lambda_{\rm J} = \left(\frac{\pi}{G\rho} \frac{\mathrm{d}p}{\mathrm{d}\rho}\right)^{1/2}$	(9.56)	$\lambda_{\rm J}$ Jeans length G constant of gravitation ρ cloud mass density p pressure
Jeans mass	$M_{ m J}=rac{\pi}{6} ho\lambda_{ m J}^3$	(9.57)	$M_{ m J}$ (spherical) Jeans mass
Eddington limiting luminosity ^b	$L_{\rm E} = \frac{4\pi G M m_{\rm p} c}{\sigma_{\rm T}}$ $\simeq 1.26 \times 10^{31} \frac{M}{M_{\odot}} W$		$L_{\rm E}$ Eddington luminosity M stellar mass M_{\odot} solar mass $m_{\rm p}$ proton mass c speed of light $\sigma_{\rm T}$ Thomson cross section

Stellar theory^a

Conservation of mass	$\frac{\mathrm{d}M_r}{\mathrm{d}r} = 4\pi\rho r^2$	(9.60)	r radial distance M_r mass interior to r ρ mass density
Hydrostatic equilibrium	$\frac{\mathrm{d}p}{\mathrm{d}r} = \frac{-G\rho M_r}{r^2}$	(9.61)	p pressureG constant of gravitation
Energy release	$\frac{\mathrm{d}L_r}{\mathrm{d}r} = 4\pi\rho r^2 \epsilon$	(9.62)	L_r luminosity interior to r ϵ power generated per unit mass
Radiative transport	$\frac{\mathrm{d}T}{\mathrm{d}r} = \frac{-3}{16\sigma} \frac{\langle \kappa \rangle \rho}{T^3} \frac{L_r}{4\pi r^2}$	(9.63)	T temperature $σ$ Stefan–Boltzmann constant $\langle κ \rangle$ mean opacity
Convective transport	$\frac{\mathrm{d}T}{\mathrm{d}r} = \frac{\gamma - 1}{\gamma} \frac{T}{p} \frac{\mathrm{d}p}{\mathrm{d}r}$	(9.64)	γ ratio of heat capacities, c_p/c_V

For stars in static equilibrium with adiabatic convection. Note that ρ is a function of r. κ and ϵ are functions of temperature and composition.

^aNote that $(dp/d\rho)^{1/2}$ is the sound speed in the cloud. ^bAssuming the opacity is mostly from Thomson scattering.

182 Astrophysics

Stellar fusion processes^a

PP I chain	PP II chain	PP III chain
$p^+ + p^+ \rightarrow {}_1^2H + e^+ + v_e$	$p^+ + p^+ \rightarrow {}_1^2H + e^+ + v_e$	$p^+ + p^+ \rightarrow {}_1^2H + e^+ + v_e$
$^{2}_{1}H + p^{+} \rightarrow ^{3}_{2}He + \gamma$	${}^{2}_{1}H + p^{+} \rightarrow {}^{3}_{2}He + \gamma$	
${}_{2}^{3}\text{He} + {}_{2}^{3}\text{He} \rightarrow {}_{2}^{4}\text{He} + 2p^{+}$	$^{3}_{2}$ He $+^{4}_{2}$ He $\rightarrow ^{7}_{4}$ Be $+\gamma$	$^{3}_{2}\text{He} + ^{4}_{2}\text{He} \rightarrow ^{7}_{4}\text{Be} + \gamma$
	${}^{7}_{4}\text{Be} + \text{e}^{-} \rightarrow {}^{7}_{3}\text{Li} + v_{\text{e}}$	$^{7}_{4}\text{Be} + \text{p}^{+} \rightarrow ^{8}_{5}\text{B} + \gamma$
	$^{7}_{3}\text{Li} + \text{p}^{+} \rightarrow 2^{4}_{2}\text{He}$	${}_{5}^{8}B \rightarrow {}_{4}^{8}Be + e^{+} + v_{e}$
		$^{8}_{4}\text{Be} \rightarrow 2^{4}_{2}\text{He}$
CNO cycle	triple-α process	
$^{12}_{6}\text{C} + \text{p}^{+} \rightarrow ^{13}_{7}\text{N} + \gamma$	$^{4}_{2}\text{He} + ^{4}_{2}\text{He} \rightleftharpoons ^{8}_{4}\text{Be} + \gamma$	γ photon
$^{13}_{7}N \rightarrow ^{13}_{6}C + e^{+} + v_{e}$	$^{8}_{4}\text{Be} + ^{4}_{2}\text{He} \rightleftharpoons ^{12}_{6}\text{C}^{*}$	p^+ proton
$^{13}_{6}\text{C} + \text{p}^{+} \rightarrow ^{14}_{7}\text{N} + \gamma$	${}^{12}_{6}\text{C}^* \rightarrow {}^{12}_{6}\text{C} + \gamma$	e ⁺ positron
$^{14}_{7}\text{N} + \text{p}^+ \rightarrow ^{15}_{8}\text{O} + \gamma$		e ⁻ electron
$^{15}_{8}O \rightarrow ^{15}_{7}N + e^{+} + v_{e}$		v _e electron neutrino
$^{15}_{7}\text{N} + \text{p}^+ \rightarrow ^{12}_{6}\text{C} + ^{4}_{2}\text{He}$		

^aAll species are taken as fully ionised.

Pulsars

Braking index	$\dot{\omega} \propto -\omega^n$ $n = 2 - \frac{P\ddot{P}}{\dot{P}^2}$	(9.65) (9.66)	
Characteristic age ^a	$T = \frac{1}{n-1} \frac{P}{\dot{P}}$	(9.67)	T characteristic age L luminosity μ_0 permeability of free space c speed of light
Magnetic dipole radiation	$L = \frac{\mu_0 \ddot{m} ^2 \sin^2 \theta}{6\pi c^3}$ $= \frac{2\pi R^6 B_{\rm p}^2 \omega^4 \sin^2 \theta}{3c^3 \mu_0}$	(9.68) (9.69)	m pulsar magnetic dipole moment R pulsar radius $B_{\rm p}$ magnetic flux density at magnetic pole θ angle between magnetic and rotational axes
Dispersion measure	$DM = \int_{0}^{D} n_{e} dl$	(9.70)	DM dispersion measure D path length to pulsar dl path element n _e electron number density
Dispersion ^b	$\frac{d\tau}{dv} = \frac{-e^2}{4\pi^2 \epsilon_0 m_e c v^3} DM$ $\Delta \tau = \frac{e^2}{8\pi^2 \epsilon_0 m_e c} \left(\frac{1}{v_1^2} - \frac{1}{v_2^2}\right) DM$	(9.71) (9.72)	$ au$ pulse arrival time Δau difference in pulse arrival time v_i observing frequencies m_e electron mass

^aAssuming $n \neq 1$ and that the pulsar has already slowed significantly. Usually n is assumed to be 3 (magnetic dipole radiation), giving $T = P/(2\dot{P})$.

^bThe pulse arrives first at the higher observing frequency.

9.5 Stellar evolution 183

Compact objects and black holes

Schwarzschild radius	$r_{\rm s} = \frac{2GM}{c^2} \simeq 3\frac{M}{M_{\odot}} {\rm km}$	(9.73)	G M c	Schwarzschild radius constant of gravitation mass of body speed of light solar mass
Gravitational redshift	$\frac{v_{\infty}}{v_r} = \left(1 - \frac{2GM}{rc^2}\right)^{1/2}$	(9.74)	v_{∞}	distance from mass centre frequency at infinity frequency at r
Gravitational wave radiation ^a	$L_{\rm g} = \frac{32}{5} \frac{G^4}{c^5} \frac{m_1^2 m_2^2 (m_1 + m_2)}{a^5}$	(9.75)	a	orbiting masses mass separation gravitational luminosity
Rate of change of orbital period	$\dot{P} = -\frac{96}{5} (4\pi^2)^{4/3} \frac{G^{5/3}}{c^5} \frac{m_1 m_2 P^{-5/3}}{(m_1 + m_2)^{1/3}}$	(9.76)	P	orbital period
Neutron star degeneracy pressure (nonrelativistic)	$p = \frac{(3\pi^2)^{2/3}}{5} \frac{\hbar^2}{m_{\rm n}} \left(\frac{\rho}{m_{\rm n}}\right)^{5/3} = \frac{2}{3}u$	(9.77)	\hbar $m_{\rm n}$	pressure (Planck constant)/ (2π) neutron mass density
Relativistic ^b	$p = \frac{\hbar c (3\pi^2)^{1/3}}{4} \left(\frac{\rho}{m_{\rm n}}\right)^{4/3} = \frac{1}{3}u$	(9.78)	и	energy density
Chandrasekhar mass ^c	$M_{\rm Ch} \simeq 1.46 M_{\odot}$	(9.79)	$M_{ m Ch}$	Chandrasekhar mass
Maximum black hole angular momentum	$J_{\rm m} = \frac{GM^2}{c}$	(9.80)		maximum angular momentum
Black hole evaporation time	$ au_{ m e} \sim rac{M^3}{M_{\odot}^3} imes 10^{66} { m yr}$	(9.81)	$ au_{ m e}$	evaporation time
Black hole temperature	$T = \frac{\hbar c^3}{8\pi GMk} \simeq 10^{-7} \frac{M_{\odot}}{M} \text{K}$	(9.82)		temperature Boltzmann constant

^aFrom two bodies, m_1 and m_2 , in circular orbits about their centre of mass. Note that the frequency of the radiation is twice the orbital frequency.

^bParticle velocities $\sim c$.

^cUpper limit to mass of a white dwarf.

184 Astrophysics

9.6 Cosmology

Cosmological model parameters

Hubble law	$v_r = Hd$	(9.83)	v_r H d	radial velocity Hubble parameter proper distance
Hubble parameter ^a	$H(t) = \frac{\dot{R}(t)}{R(t)}$ $H(z) = H_0 [\Omega_{m0} (1+z)^3 + \Omega_{\Lambda 0} + (1 - \Omega_{m0} - \Omega_{\Lambda 0})(1+z)^2]^{1/2}$	(9.84)	0 R t	present epoch cosmic scale factor cosmic time redshift
Redshift	$z = \frac{\lambda_{\text{obs}} - \lambda_{\text{em}}}{\lambda_{\text{em}}} = \frac{R_0}{R(t_{\text{em}})} - 1$	(9.86)	λ_{obs} λ_{em} t_{em}	observed wavelength emitted wavelength epoch of emission
Robertson– Walker metric ^b	$ds^{2} = c^{2} dt^{2} - R^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$	(9.87)	$\begin{vmatrix} ds \\ c \\ r, \theta, \phi \end{vmatrix}$	interval speed of light comoving spherical polar coordinates
Friedmann equations ^c	$\ddot{R} = -\frac{4\pi}{3}GR\left(\rho + 3\frac{p}{c^2}\right) + \frac{\Lambda R}{3}$ $\dot{R}^2 = \frac{8\pi}{3}G\rho R^2 - kc^2 + \frac{\Lambda R^2}{3}$	(9.88) (9.89)	k G p	curvature parameter constant of gravitation pressure cosmological constant
Critical density	$\rho_{\rm crit} = \frac{3H^2}{8\pi G}$	(9.90)	$ ho$ $ ho_{ m crit}$	(mass) density critical density
	$\Omega_{\rm m} = \frac{\rho}{\rho_{\rm crit}} = \frac{8\pi G \rho}{3H^2}$	(9.91)		
Density parameters	$\Omega_{\Lambda} = \frac{\Lambda}{3H^2}$	(9.92)	Ω_{m} Ω_{Λ}	matter density parameter lambda density parameter
	$ \Omega_k = -\frac{kc^2}{R^2H^2} \Omega_m + \Omega_\Lambda + \Omega_k = 1 $	(9.93) (9.94)	Ω_k	curvature density parameter
Deceleration parameter	$q_0 = -\frac{R_0\ddot{R}_0}{\dot{R}_0^2} = \frac{\Omega_{\rm m0}}{2} - \Omega_{\Lambda 0}$	(9.95)	q_0	deceleration parameter

^aOften called the Hubble "constant." At the present epoch, $60 \lesssim H_0 \lesssim 80 \,\mathrm{km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1} \equiv 100 h\,\mathrm{km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$, where h is a dimensionless scaling parameter. The Hubble time is $t_{\rm H} = 1/H_0$. Equation (9.85) assumes a matter dominated universe and mass conservation.

^bFor a homogeneous, isotropic universe, using the (-1,1,1,1) metric signature. r is scaled so that $k=0,\pm 1$. Note that $ds^2 \equiv (ds)^2$ etc.

 $[^]c\Lambda=0$ in a Friedmann universe. Note that the cosmological constant is sometimes defined as equalling the value used here divided by c^2 .

Look-back time	$t_{\rm lb}(z) = t_0 - t(z)$	(9.96)	$t_{lb}(z)$ light travel time from an object at redshift z t_0 present cosmic time t(z) cosmic time at z
Proper distance	$d_{p} = R_{0} \int_{0}^{r} \frac{dr}{(1 - kr^{2})^{1/2}} = cR_{0} \int_{t}^{t_{0}} \frac{dt}{R(t)}$	(9.97)	$d_{\rm p}$ proper distance R cosmic scale factor c speed of light 0 present epoch
Luminosity distance ^a	$d_{\rm L} = d_{\rm p}(1+z) = c(1+z) \int_0^z \frac{\mathrm{d}z}{H(z)}$	(9.98)	$d_{\rm L}$ luminosity distance z redshift $d_{\rm L}$ Hubble parameter $d_{\rm L}$
Flux density– redshift relation	$F(v) = \frac{L(v')}{4\pi d_{\rm L}^2(z)} \text{where} v' = (1+z)v$	(9.99)	F spectral flux density v frequency $L(v)$ spectral luminosity ^c
Angular diameter distance ^d	$d_{\rm a} = d_{\rm L}(1+z)^{-2}$	(9.100)	d _a angular diameter distance k curvature parameter

Assuming a flat universe (k=0). The apparent flux density of a source varies as d_L^{-2} .

Cosmological models^a

	$d_{\rm p} = \frac{2c}{H_0} [1 - (1+z)^{-1/2}]$	(9.101)	d_{p}	proper distance
Einstein – de	$H(z) = H_0(1+z)^{3/2}$	(9.102)	Н	Hubble parameter
Sitter model	$q_0 = 1/2$	(9.103)	0	present epoch
$(\Omega_k = 0,$	2	(0.404)	Z	redshift
$\Lambda = 0, p = 0$	$t(z) = \frac{2}{3H(z)}$	(9.104)	c	speed of light
and $\Omega_{m0} = 1$)	$\rho = (6\pi Gt^2)^{-1}$	(9.105)	q	deceleration parameter
	$R(t) = R_0 (t/t_0)^{2/3}$	(9.106)	t(z)	time at redshift z
Concordance	$d_{\rm p} = \frac{c}{H_0} \int_0^z \frac{\Omega_{\rm m0}^{-1/2} \mathrm{d}z'}{[(1+z')^3 - 1 + \Omega_{\rm m0}^{-1}]^{1/2}}$	(9.107)	R	cosmic scale factor
model $(\Omega_k = 0, \Lambda =$	$H(z) = H_0[\Omega_{\text{m0}}(1+z)^3 + (1-\Omega_{\text{m0}})]$	(9.108)	$\Omega_{ m m0}$	present mass density
$3(1-\Omega_{\rm m0})H_0^2$	$q_0 = 3\Omega_{\rm m0}/2 - 1$	(9.109)	_	parameter
p=0 and	$2 \qquad \qquad [(1-O_{ma})^{1/2}]$	` ′	G	constant of gravitation
$\Omega_{\rm m0}$ < 1)	$t(z) = \frac{z}{3H_0} (1 - \Omega_{\text{m0}})^{-1/2} \operatorname{arsinh} \left \frac{(1 - 2 z_{\text{m0}})^3}{(1 + z)^{3/2}} \right $	(9.110)	ρ	mass density
$\Omega_{\mathrm{m}0}$ < 1)	$t(z) = \frac{2}{3H_0} (1 - \Omega_{\text{m0}})^{-1/2} \operatorname{arsinh} \left[\frac{(1 - \Omega_{\text{m0}})^{1/2}}{(1+z)^{3/2}} \right]$	(9.110)	ρ	0

^aCurrently popular.

 $[^]b$ See Equation (9.85).

 $^{^{}c}$ Defined as the output power of the body per unit frequency interval.

^dTrue for all k. The angular diameter of a source varies as d_a^{-1} .

Section headings are shown in boldface and panel labels in small caps. Equation numbers are contained within square brackets.

	Airy
\mathbf{A}	disk [8.40], 165
aberration (relativistic) [3.24], 65	function [8.17], 163
absolute magnitude [9.29], 179	resolution criterion [8.41], 165
absorption (Einstein coefficient) [8.118],	Airy's differential equation [2.352], 43
173	albedo [5.193], 121
absorption coefficient (linear) [5.175], 120	Alfvén speed [7.277], 158
accelerated point charge	Alfvén waves [7.284], 158
bremsstrahlung, 160	alt-azimuth coordinates, 177
Liénard–Wiechert potentials, 139	alternating tensor (ϵ_{iik}) [2.443], 50
oscillating [7.132], 146	altitude coordinate [9.9], 177
synchrotron, 159	Ampère's law [7.10], 136
acceleration	ampere (SI definition), 3
constant, 68	ampere (unit), 4
dimensions, 16	analogue formula [2.258], 36
due to gravity (value on Earth), 176	angle
in a rotating frame [3.32], 66	aberration [3.24], 65
acceptance angle (optical fibre) [8.77],	acceptance [8.77], 169
169	beam solid [7.210], 153
acoustic branch (phonon) [6.37], 129	Brewster's [7.218], 154
acoustic impedance [3.276], 83	Compton scattering [7.240], 155
action (definition) [3.213], 79	contact (surface tension) [3.340], 88
action (dimensions), 16	deviation [8.73], 169
addition of velocities	Euler [2.101], 26
Galilean [3.3], 64	Faraday rotation [7.273], 157
relativistic [3.15], 64	hour (coordinate) [9.8], 177
adiabatic	Kelvin wedge [3.330], 87
bulk modulus [5.23], 107	Mach wedge [3.328], 87
compressibility [5.21], 107	polarisation [8.81], 170
expansion (ideal gas) [5.58], 110	principal range (inverse trig.), 34
lapse rate [3.294], 84	refraction, 154
adjoint matrix	rotation, 26
definition 1 [2.71], 24	Rutherford scattering [3.116], 72
definition 2 [2.80], 25	separation [3.133], 73
adjugate matrix [2.80], 25	spherical excess [2.260], 36
admittance (definition), 148	units, 4, 5
advective operator [3.289], 84	ångström (unit), 5

angular diameter distance [9.100], 185	artanhx (definition) [2.240], 35
Angular momentum, 98	area
angular momentum	of circle [2.262], 37
conservation [4.113], 98	of cone [2.271], 37
definition [3.66], 68	of cylinder [2.269], 37
dimensions, 16	of ellipse [2.267], 37
eigenvalues [4.109] [4.109], 98	of plane triangle [2.254], 36
ladder operators [4.108], 98	of sphere [2.263], 37
operators	of spherical cap [2.275], 37
and other operators [4.23], 91	of torus [2.273], 37
definitions [4.105], 98	area (dimensions), 16
rigid body [3.141], 74	argument (of a complex number) [2.157],
Angular momentum addition, 100	30
ANGULAR MOMENTUM COMMUTATION RELA-	arithmetic mean [2.108], 27
TIONS, 98	arithmetic progression [2.104], 27
angular speed (dimensions), 16	associated Laguerre equation [2.348], 43
anomaly (true) [3.104], 71	associated Laguerre polynomials, 96
antenna	associated Legendre equation
beam efficiency [7.214], 153	and polynomial solutions [2.428], 48
effective area [7.212], 153	differential equation [2.344], 43
power gain [7.211], 153	Associated Legendre functions, 48
temperature [7.215], 153	astronomical constants, 176
Antennas, 153	Astronomical magnitudes, 179
anticommutation [2.95], 26	Astrophysics, 175–185
antihermitian symmetry, 53	asymmetric top [3.189], 77
antisymmetric matrix [2.87], 25	atomic
Aperture diffraction, 165	form factor [6.30], 128
aperture function [8.34], 165	mass unit, 6, 9
apocentre (of an orbit) [3.111], 71	numbers of elements, 124
apparent magnitude [9.27], 179	polarisability [7.91], 142
Appleton-Hartree formula [7.271], 157	weights of elements, 124
arc length [2.279], 39	Atomic constants, 7
arccosx	atto, 5
from arctan [2.233], 34	autocorrelation (Fourier) [2.491], 53
series expansion [2.141], 29	autocorrelation function [8.104], 172
$\operatorname{arcosh} x$ (definition) [2.239], 35	availability
arccot x (from arctan) [2.236], 34	and fluctuation probability [5.131],
arcothx (definition) [2.241], 35	116
arccsc x (from arctan) [2.234], 34	definition [5.40], 108
$\operatorname{arcsch} x$ (definition) [2.243], 35	Avogadro constant, 6, 9
arcminute (unit), 5	Avogadro constant (dimensions), 16
arcsecx (from arctan) [2.235], 34	azimuth coordinate [9.10], 177
arsechx (definition) [2.242], 35	n
arcsecond (unit), 5	В
arcsin x	Ballistics, 69
from arctan [2.232], 34	band index [6.85], 134
series expansion [2.141], 29	BAND THEORY AND SEMICONDUCTORS, 134
arsinh x (definition) [2.238], 35	bandwidth
arctan x (series expansion) [2.142], 29	and coherence time [8.106], 172

and Johnson noise [5.141], 117	Schwarzschild solution [3.61], 67
Doppler [8.117], 173	temperature [9.82], 183
natural [8.113], 173	blackbody
of a diffraction grating [8.30], 164	energy density [5.192], 121
of an LCR circuit [7.151], 148	spectral energy density [5.186], 121
of laser cavity [8.127], 174	spectrum [5.184], 121
Schawlow-Townes [8.128], 174	Blackbody radiation, 121
bar (unit), 5	Bloch's theorem [6.84], 134
barn (unit), 5	Bode's law [9.41], 180
Barrier Tunnelling, 94	body cone, 77
Bartlett window [2.581], 60	body frequency [3.187], 77
base vectors (crystallographic), 126	body-centred cubic structure, 127
basis vectors [2.17], 20	Bohr
Bayes' theorem [2.569], 59	energy [4.74], 95
Bayesian inference, 59	magneton (equation) [4.137], 100
bcc structure, 127	magneton (value), 6, 7
beam bowing under its own weight [3.260],	quantisation [4.71], 95
82	radius (equation) [4.72], 95
beam efficiency [7.214], 153	radius (value), 7
beam solid angle [7.210], 153	Bohr magneton (dimensions), 16
beam with end-weight [3.259], 82	Bohr Model, 95
beaming (relativistic) [3.25], 65	boiling points of elements, 124
becquerel (unit), 4	bolometric correction [9.34], 179
Bending beams, 82	Boltzmann
bending moment (dimensions), 16	constant, 6, 9
bending moment [3.258], 82	constant (dimensions), 16
bending waves [3.268], 82	distribution [5.111], 114
Bernoulli's differential equation [2.351],	entropy [5.105], 114
43	excitation equation [5.125], 116
Bernoulli's equation	Born collision formula [4.178], 104
compressible flow [3.292], 84	Bose condensation [5.123], 115
incompressible flow [3.290], 84	Bose-Einstein distribution [5.120], 115
Bessel equation [2.345], 43	boson statistics [5.120], 115
Bessel functions, 47	Boundary conditions for $\pmb{E}, \pmb{D}, \pmb{B}$, and
beta (in plasmas) [7.278], 158	H , 144
binomial	box (particle in a) [4.64], 94
coefficient [2.121], 28	Box Muller transformation [2.561], 58
distribution [2.547], 57	Boyle temperature [5.66], 110
series [2.120], 28	Boyle's law [5.56], 110
theorem [2.122], 28	bra vector [4.33], 92
binormal [2.285], 39	bra-ket notation, 91, 92
Biot-Savart law [7.9], 136	Bragg's reflection law
Biot-Fourier equation [5.95], 113	in crystals [6.29], 128
black hole	in optics [8.32], 164
evaporation time [9.81], 183	braking index (pulsar) [9.66], 182
Kerr solution [3.62], 67	Bravais lattices, 126
maximum angular momentum [9.80],	Breit-Wigner formula [4.174], 104
183	Bremsstrahlung, 160

bremsstrahlung

Schwarzschild radius [9.73], 183

single electron and ion [7.297], 160	constant [3.338], 88
thermal [7.300], 160	contact angle [3.340], 88
Brewster's law [7.218], 154	rise [3.339], 88
brightness (blackbody) [5.184], 121	waves [3.321], 86
Brillouin function [4.147], 101	capillary-gravity waves [3.322], 86
Bromwich integral [2.518], 55	cardioid [8.46], 166
Brownian motion [5.98], 113	Carnot cycles, 107
bubbles [3.337], 88	Cartesian coordinates, 21
bulk modulus	Catalan's constant (value), 9
adiabatic [5.23], 107	Cauchy
general [3.245], 81	differential equation [2.350], 43
isothermal [5.22], 107	distribution [2.555], 58
bulk modulus (dimensions), 16	inequality [2.151], 30
BULK PHYSICAL CONSTANTS, 9	integral formula [2.167], 31
Burgers vector [6.21], 128	Cauchy-Goursat theorem [2.165], 31
	Cauchy-Riemann conditions [2.164], 31
\mathbf{C}	cavity modes (laser) [8.124], 174
calculus of variations [2.334], 42	Celsius (unit), 4
candela, 119	Celsius conversion [1.1], 15
candela (SI definition), 3	centi, 5
candela (unit), 4	centigrade (avoidance of), 15
canonical	centre of mass
ensemble [5.111], 114	circular arc [3.173], 76
entropy [5.106], 114	cone [3.175], 76
equations [3.220], 79	definition [3.68], 68
momenta [3.218], 79	disk sector [3.172], 76
cap, see spherical cap	hemisphere [3.170], 76
Capacitance, 137	hemispherical shell [3.171], 76
capacitance	pyramid [3.175], 76
current through [7.144], 147	semi-ellipse [3.178], 76
definition [7.143], 147	spherical cap [3.177], 76
dimensions, 16	triangular lamina [3.174], 76
energy [7.153], 148	Centres of mass, 76
energy of an assembly [7.134], 146	centrifugal force [3.35], 66
impedance [7.159], 148	centripetal acceleration [3.32], 66
mutual [7.134], 146	cepheid variables [9.48], 180
capacitance of	Cerenkov, see Cherenkov
cube [7.17], 137	chain rule
cylinder [7.15], 137	function of a function [2.295], 40
cylinders (adjacent) [7.21], 137	partial derivatives [2.331], 42
cylinders (coaxial) [7.19], 137	Chandrasekhar mass [9.79], 183
disk [7.13], 137	change of variable [2.333], 42
disks (coaxial) [7.22], 137	Characteristic numbers, 86
nearly spherical surface [7.16], 137	charge
sphere [7.12], 137	conservation [7.39], 139
spheres (adjacent) [7.14], 137	dimensions, 16
spheres (adjacent) [7.14], 137 spheres (concentric) [7.18], 137	elementary, 6, 7
capacitor, see capacitance	force between two [7.119], 145
capillary	Hamiltonian [7.138], 146
cupiiiui y	

to mass ratio of electron, 8	coupling [7.148], 147
charge density	finesse [8.12], 163
dimensions, 16	reflectance [7.227], 154
free [7.57], 140	reflection [7.230], 154
induced [7.84], 142	restitution [3.127], 73
Lorentz transformation, 141	transmission [7.232], 154
charge distribution	transmittance [7.229], 154
electric field from [7.6], 136	coexistence curve [5.51], 109
energy of [7.133], 146	coherence
charge-sheet (electric field) [7.32], 138	length [8.106], 172
Chebyshev equation [2.349], 43	mutual [8.97], 172
Chebyshev inequality [2.150], 30	temporal [8.105], 172
chemical potential	time [8.106], 172
definition [5.28], 108	width [8.111], 172
from partition function [5.119], 115	Coherence (scalar theory), 172
•	• • • • • • • • • • • • • • • • • • • •
Cherenkov cone angle [7.246], 156	cold plasmas, 157 collision
CHERENKOV RADIATION, 156	
χ_E (electric susceptibility) [7.87], 142	broadening [8.114], 173
χ_H , χ_B (magnetic susceptibility) [7.103],	elastic, 73
143	inelastic, 73
chi-squared (χ^2) distribution [2.553], 58	number [5.91], 113
Christoffel symbols [3.49], 67	time (electron drift) [6.61], 132
circle	colour excess [9.37], 179
(arc of) centre of mass [3.173], 76	colour index [9.36], 179
area [2.262], 37	COMMON THREE-DIMENSIONAL COORDINATE
perimeter [2.261], 37	Systems, 21
circular aperture	commutator (in uncertainty relation) [4.6],
Fraunhofer diffraction [8.40], 165	90
Fresnel diffraction [8.50], 166	Commutators, 26
circular polarisation, 170	Compact objects and black holes, 183
circulation [3.287], 84	complementary error function [2.391], 45
civil time [9.4], 177	Complex analysis, 31
Clapeyron equation [5.50], 109	complex conjugate [2.159], 30
classical electron radius, 8	Complex numbers, 30
Classical thermodynamics, 106	complex numbers
Clausius–Mossotti equation [7.93], 142	argument [2.157], 30
Clausius-Clapeyron equation [5.49], 109	cartesian form [2.153], 30
CLEBSCH-GORDAN COEFFICIENTS, 99	conjugate [2.159], 30
Clebsch–Gordan coefficients (spin-orbit) [4.136],	logarithm [2.162], 30
100	modulus [2.155], 30
close-packed spheres, 127	polar form [2.154], 30
closure density (of the universe) [9.90],	Complex variables, 30
184	compound pendulum [3.182], 76
CNO cycle, 182	
coaxial cable	compressibility
	adiabatic [5.21], 107
capacitance [7.19], 137	isothermal [5.20], 107
inductance [7.24], 137	compression modulus, see bulk modulus
coaxial transmission line [7.181], 150	compression ratio [5.13], 107

Compton

coefficient of

scattering [7.240], 155	derivative [2.498], 53
wavelength (value), 8	discrete [2.580], 60
wavelength [7.240], 155	Laplace transform [2.516], 55
Concordance model, 185	rules [2.489], 53
conditional probability [2.567], 59	theorem [2.490], 53
conductance (definition), 148	coordinate systems, 21
conductance (dimensions), 16	coordinate transformations
conduction equation (and transport) [5.96],	astronomical, 177
113	Galilean, 64
conduction equation [2.340], 43	relativistic, 64
conductivity	rotating frames [3.31], 66
and resistivity [7.142], 147	Coordinate transformations (astronomical)
dimensions, 16	177
direct [7.279], 158	coordinates (generalised) [3.213], 79
electrical, of a plasma [7.233], 155	coordination number (cubic lattices), 127
free electron a.c. [6.63], 132	Coriolis force [3.33], 66
free electron d.c. [6.62], 132	Cornu spiral, 167
Hall [7.280], 158	Cornu spiral and Fresnel integrals [8.54]
conductor refractive index [7.234], 155	167
cone	correlation coefficient
centre of mass [3.175], 76	multinormal [2.559], 58
moment of inertia [3.160], 75	Pearson's r [2.546], 57
surface area [2.271], 37	correlation intensity [8.109], 172
volume [2.272], 37	correlation theorem [2.494], 53
configurational entropy [5.105], 114	cosx
Conic sections, 38	and Euler's formula [2.216], 34
conical pendulum [3.180], 76	series expansion [2.135], 29
conservation of	cosec, see csc
angular momentum [4.113], 98	cschx [2.231], 34
charge [7.39], 139	$\cosh x$
mass [3.285], 84	definition [2.217], 34
Constant acceleration, 68	series expansion [2.143], 29
constant of gravitation, 7	cosine formula
contact angle (surface tension) [3.340],	planar triangles [2.249], 36
88	spherical triangles [2.257], 36
continuity equation (quantum physics) [4.14],	cosmic scale factor [9.87], 184
90	cosmological constant [9.89], 184
continuity in fluids [3.285], 84	Cosmological distance measures, 185
CONTINUOUS PROBABILITY DISTRIBUTIONS,	Cosmological model parameters, 184
58	Cosmological models, 185
contravariant components	Cosmology, 184
in general relativity, 67	$\cos^{-1} x$, see $\arccos x$
in special relativity [3.26], 65	$\cot x$
convection (in a star) [9.64], 181	definition [2.226], 34
convergence and limits, 28	series expansion [2.140], 29
Conversion factors, 10	cothx [2.227], 34
Converting between units, 10	Couette flow [3.306], 85
convolution	coulomb (unit), 4
definition [2.487], 53	Coulomb gauge condition [7.42], 139

Coulomb logarithm [7.254], 156	Curie's law [7.113], 144	
Coulomb's law [7.119], 145	Curie–Weiss law [7.114], 144	
couple	Curl, 22	
definition [3.67], 68	curl	
dimensions, 16	cylindrical coordinates [2.34], 22	
electromagnetic, 145	general coordinates [2.36], 22	
for Couette flow [3.306], 85	of curl [2.57], 23	
on a current-loop [7.127], 145	rectangular coordinates [2.33], 22	
on a magnetic dipole [7.126], 145	spherical coordinates [2.35], 22	
on a rigid body, 77	current	
on an electric dipole [7.125], 145	dimensions, 16	
twisting [3.252], 81	electric [7.139], 147	
coupling coefficient [7.148], 147	law (Kirchhoff's) [7.161], 149	
covariance [2.558], 58	magnetic flux density from [7.11],	
covariant components [3.26], 65	136	
cracks (critical length) [6.25], 128	probability density [4.13], 90	
critical damping [3.199], 78	thermodynamic work [5.9], 106	
critical density (of the universe) [9.90],	transformation [7.165], 149	
184	current density	
critical frequency (synchrotron) [7.293],	dimensions, 16	
159	four-vector [7.76], 141	
critical point	free [7.63], 140	
Dieterici gas [5.75], 111	free electron [6.60], 132	
van der Waals gas [5.70], 111	hole [6.89], 134	
cross section	Lorentz transformation, 141	
absorption [5.175], 120	magnetic flux density [7.10], 136	
cross-correlation [2.493], 53	curvature	
cross-product [2.2], 20	in differential geomtry [2.286], 39	
cross-section	parameter (cosmic) [9.87], 184	
Breit-Wigner [4.174], 104	radius of	
Mott scattering [4.180], 104	and curvature [2.287], 39	
Rayleigh scattering [7.236], 155	plane curve [2.282], 39	
Rutherford scattering [3.124], 72	curve length (plane curve) [2.279], 39	
Thomson scattering [7.238], 155	Curve measure, 39	
Crystal diffraction, 128	Cycle efficiencies (thermodynamic), 107	
Crystal systems, 127	cyclic permutation [2.97], 26	
Crystalline structure, 126	cyclotron frequency [7.265], 157	
cscx	cylinder	
definition [2.230], 34	area [2.269], 37	
series expansion [2.139], 29	capacitance [7.15], 137	
cschx [2.231], 34	moment of inertia [3.155], 75	
cube	torsional rigidity [3.253], 81	
electrical capacitance [7.17], 137	volume [2.270], 37	
mensuration, 38	cylinders (adjacent)	
CUBIC EQUATIONS, 51	capacitance [7.21], 137	
cubic expansivity [5.19], 107	inductance [7.25], 137	
CUBIC LATTICES, 127	cylinders (coaxial)	
cubic system (crystallographic), 127	capacitance [7.19], 137	
Curie temperature [7.114], 144	inductance [7.24], 137	

cylindrical polar coordinates, 21	delta-star transformation, 149
D	densities of elements, 124
D	density (dimensions), 16
d orbitals [4.100], 97	density of states
D'Alembertian [7.78], 141	electron [6.70], 133
damped harmonic oscillator [3.196], 78	particle [4.66], 94
damping profile [8.112], 173	phonon [6.44], 130
day (unit), 5	density parameters [9.94], 184
day of week [9.3], 177	depolarising factors [7.92], 142
daylight saving time [9.4], 177	Derivatives (General), 40
de Boer parameter [6.54], 131	determinant [2.79], 25
de Broglie relation [4.2], 90	deviation (of a prism) [8.73], 169
de Broglie wavelength (thermal) [5.83], 112	diamagnetic moment (electron) [7.108], 144
de Moivre's theorem [2.214], 34	diamagnetic susceptibility (Landau) [6.80],
Debye	133
T^3 law [6.47], 130	Diamagnetism, 144
frequency [6.41], 130	Dielectric Layers, 162
function [6.49], 130	Dieterici gas, 111
heat capacity [6.45], 130	Dieterici gas law [5.72], 111
length [7.251], 156	Differential equations, 43
number [7.253], 156	differential equations (numerical solutions),
screening [7.252], 156	62
temperature [6.43], 130	Differential Geometry, 39
Debye theory, 130	Differential operator identities, 23
Debye-Waller factor [6.33], 128	differential scattering cross-section [3.124],
deca, 5	72
decay constant [4.163], 103	Differentiation, 40
decay law [4.163], 103	differentiation
deceleration parameter [9.95], 184	hyperbolic functions, 41
deci, 5	numerical, 61
decibel [5.144], 117	of a function of a function [2.295],
declination coordinate [9.11], 177	40
decrement (oscillating systems) [3.202],	of a log [2.300], 40
78	of a power [2.292], 40
Definite integrals, 46	of a product [2.293], 40
degeneracy pressure [9.77], 183	of a quotient [2.294], 40
degree (unit), 5	of exponential [2.301], 40
degree Celsius (unit), 4	of integral [2.299], 40
degree kelvin [5.2], 106	of inverse functions [2.304], 40
degree of freedom (and equipartition), 113	trigonometric functions, 41
degree of mutual coherence [8.99], 172	under integral sign [2.298], 40
degree of polarisation [8.96], 171	diffraction from
degree of temporal coherence, 172	N slits [8.25], 164
deka, 5	1 slit [8.37], 165
del operator, 21	2 slits [8.24], 164
del-squared operator, 23	circular aperture [8.40], 165
del-squared operator [2.55], 23	crystals, 128
Delta eliactions 50	infinite grating [8.26], 164

rectangular aperture [8.39], 165	disc, see disk
diffraction grating	discrete convolution, 60
finite [8.25], 164	DISCRETE PROBABILITY DISTRIBUTIONS, 57
general, 164	DISCRETE STATISTICS, 57
infinite [8.26], 164	disk
diffusion coefficient (semiconductor) [6.88],	Airy [8.40], 165
134	capacitance [7.13], 137
diffusion equation	centre of mass of sector [3.172], 76
differential equation [2.340], 43	coaxial capacitance [7.22], 137
Fick's first law [5.93], 113	drag in a fluid, 85
diffusion length (semiconductor) [6.94],	electric field [7.28], 138
134	moment of inertia [3.168], 75
diffusivity (magnetic) [7.282], 158	DISLOCATIONS AND CRACKS, 128
dilatation (volume strain) [3.236], 80	dispersion
Dimensions, 16	diffraction grating [8.31], 164
diode (semiconductor) [6.92], 134	in a plasma [7.261], 157
dioptre number [8.68], 168	in fluid waves, 86
dipole	in quantum physics [4.5], 90
antenna power	in waveguides [7.188], 151
flux [7.131], 146	intermodal (optical fibre) [8.79], 169
gain [7.213], 153	measure [9.70], 182
total [7.132], 146	of a prism [8.76], 169
electric field [7.31], 138	phonon (alternating springs) [6.39],
energy of	129
electric [7.136], 146	phonon (diatomic chain) [6.37], 129
magnetic [7.137], 146	phonon (monatomic chain) [6.34],
field from	129
magnetic [7.36], 138	pulsar [9.72], 182
moment (dimensions), 17	displacement, D [7.86], 142
moment of	DISTANCE INDICATORS, 180
electric [7.80], 142	Divergence, 22
magnetic [7.94], 143	divergence
potential	cylindrical coordinates [2.30], 22
electric [7.82], 142	general coordinates [2.30], 22
magnetic [7.95], 143	rectangular coordinates [2.32], 22
radiation	spherical coordinates [2.31], 22
field [7.207], 153	theorem [2.59], 23
magnetic [9.69], 182	dodecahedron, 38
radiation resistance [7.209], 153	Doppler beaming [3.25], 65
dipole moment per unit volume	
electric [7.83], 142 magnetic [7.97], 143	effect (non-relativistic), 87
	effect (relativistic) [3.22], 65
Dirac bracket, 92	line broadening [8.116], 173 width [8.117], 173
Dirac delta function [2.448], 50	· · · · · · · · · · · · · · · · · · ·
Dirac equation [4.183], 104	Doppler effect, 87
Dirac matrices [4.185], 104	dot product [2.1], 20
DIRAC NOTATION, 92	double factorial, 48
direct conductivity [7.279], 158	double pendulum [3.183], 76
directrix (of conic section), 38	Drag, 85

drag	modulus (longitudinal) [3.241], 81
on a disk to flow [3.310], 85	modulus [3.234], 80
on a disk \perp to flow [3.309], 85	potential energy [3.235], 80
on a sphere [3.308], 85	elastic scattering, 72
drift velocity (electron) [6.61], 132	Elastic wave velocities, 82
Dulong and Petit's law [6.46], 130	Elasticity, 80
Dynamics and Mechanics, 63–88	Elasticity definitions (general), 80
Dynamics definitions, 68	ELASTICITY DEFINITIONS (SIMPLE), 80
	electric current [7.139], 147
\mathbf{E}	electric dipole, see dipole
e (exponential constant), 9	electric displacement (dimensions), 16
e to 1 000 decimal places, 18	electric displacement, D [7.86], 142
Earth (motion relative to) [3.38], 66	electric field
Earth data, 176	around objects, 138
eccentricity	energy density [7.128], 146
of conic section, 38	static, 136
of orbit [3.108], 71	thermodynamic work [5.7], 106
of scattering hyperbola [3.120], 72	wave equation [7.193], 152
Ecliptic coordinates, 178	electric field from
ecliptic latitude [9.14], 178	A and ϕ [7.41], 139
ecliptic longitude [9.15], 178	charge distribution [7.6], 136
Eddington limit [9.59], 181	charge-sheet [7.32], 138
edge dislocation [6.21], 128	dipole [7.31], 138
effective	disk [7.28], 138
area (antenna) [7.212], 153	line charge [7.29], 138
distance (Fresnel diffraction) [8.48],	point charge [7.5], 136
166	sphere [7.27], 138
mass (in solids) [6.86], 134	waveguide [7.190], 151
wavelength [9.40], 179	wire [7.29], 138
efficiency	electric field strength (dimensions), 16
heat engine [5.10], 107	Electric fields, 138
heat pump [5.12], 107	electric polarisability (dimensions), 16
Otto cycle [5.13], 107	electric polarisation (dimensions), 16
refrigerator [5.11], 107	electric potential
Ehrenfest's equations [5.53], 109	from a charge density [7.46], 139
Ehrenfest's theorem [4.30], 91	Lorentz transformation [7.75], 141
eigenfunctions (quantum) [4.28], 91	of a moving charge [7.48], 139
Einstein	short dipole [7.82], 142
A coefficient [8.119], 173	electric potential difference (dimensions),
B coefficients [8.118], 173	16
diffusion equation [5.98], 113	electric susceptibility, χ_E [7.87], 142
field equation [3.59], 67	electrical conductivity, see conductivity
lens (rings) [9.50], 180	Electrical impedance, 148
tensor [3.58], 67	electrical permittivity, ϵ , $\epsilon_{\rm r}$ [7.90], 142
Einstein - de Sitter model, 185	electromagnet (magnetic flux density) [7.38],
Einstein coefficients, 173	138
elastic	electromagnetic
collisions, 73	boundary conditions, 144
media (isotropic), 81	constants, 7

fields, 139	the moment of inertia [3.147], 74
wave speed [7.196], 152	volume [2.268], 37
waves in media, 152	elliptic integrals [2.397], 45
electromagnetic coupling constant, see fine	elliptical orbit [3.104], 71
structure constant	Elliptical polarisation, 170
ELECTROMAGNETIC ENERGY, 146	elliptical polarisation [8.80], 170
Electromagnetic fields (general), 139	ellipticity [8.82], 170
ELECTROMAGNETIC FORCE AND TORQUE, 145	$E = mc^2$ [3.72], 68
ELECTROMAGNETIC PROPAGATION IN COLD	emission coefficient [5.174], 120
PLASMAS, 157	emission spectrum [7.291], 159
Electromagnetism, 135–160	emissivity [5.193], 121
electron	energy
charge, 6, 7	density
density of states [6.70], 133	blackbody [5.192], 121
diamagnetic moment [7.108], 144	dimensions, 16
drift velocity [6.61], 132	elastic wave [3.281], 83
g-factor [4.143], 100	electromagnetic [7.128], 146
gyromagnetic ratio (value), 8	radiant [5.148], 118
gyromagnetic ratio [4.140], 100	spectral [5.173], 120
heat capacity [6.76], 133	dimensions, 16
intrinsic magnetic moment [7.109],	dissipated in resistor [7.155], 148
144	distribution (Maxwellian) [5.85], 112
mass, 6	elastic [3.235], 80
radius (equation) [7.238], 155	electromagnetic, 146
radius (value), 8	equipartition [5.100], 113
scattering cross-section [7.238], 155	Fermi [5.122], 115
spin magnetic moment [4.143], 100	first law of thermodynamics [5.3],
thermal velocity [7.257], 156	106
velocity in conductors [6.85], 134	Galilean transformation [3.6], 64
ELECTRON CONSTANTS, 8	kinetic, see kinetic energy
ELECTRON SCATTERING PROCESSES, 155	Lorentz transformation [3.19], 65
electron volt (unit), 5	loss after collision [3.128], 73
electron volt (value), 6	mass relation [3.20], 65
Electrons in solids, 132	of capacitive assembly [7.134], 146
electrostatic potential [7.1], 136	of capacitor [7.153], 148
Electrostatics, 136	of charge distribution [7.133], 146
elementary charge, 6, 7	of electric dipole [7.136], 146
elements (periodic table of), 124	of inductive assembly [7.135], 146
ellipse, 38	of inductor [7.154], 148
(semi) centre of mass [3.178], 76	of magnetic dipole [7.137], 146
area [2.267], 37	of orbit [3.100], 71
moment of inertia [3.166], 75	potential, see potential energy
perimeter [2.266], 37	relativistic rest [3.72], 68
semi-latus-rectum [3.109], 71	rotational kinetic
semi-major axis [3.106], 71	rigid body [3.142], 74
semi-minor axis [3.107], 71	w.r.t. principal axes [3.145], 74
ellipsoid	thermodynamic work, 106
moment of inertia of solid [3.163],	ENERGY IN CAPACITORS, INDUCTORS, AND
75	resistors, 148

energy-time uncertainty relation [4.8], 90	calculus of variations [2.334], 42
Ensemble probabilities, 114	even functions, 53
enthalpy	Evolutionary timescales, 181
definition [5.30], 108	exa, 5
Joule-Kelvin expansion [5.27], 108	exhaust velocity (of a rocket) [3.93], 70
entropy	exitance
Boltzmann formula [5.105], 114	blackbody [5.191], 121
change in Joule expansion [5.64],	luminous [5.162], 119
110	radiant [5.150], 118
experimental [5.4], 106	$\exp(x)$ [2.132], 29
fluctuations [5.135], 116	expansion coefficient [5.19], 107
from partition function [5.117], 115	EXPANSION PROCESSES, 108
Gibbs formula [5.106], 114	expansivity [5.19], 107
of a monatomic gas [5.83], 112	EXPECTATION VALUE, 91
entropy (dimensions), 16	expectation value
ϵ , $\epsilon_{\rm r}$ (electrical permittivity) [7.90], 142	Dirac notation [4.37], 92
EQUATION CONVERSION: SI TO GAUSSIAN	from a wavefunction [4.25], 91
UNITS, 135	explosions [3.331], 87
equation of state	exponential
Dieterici gas [5.72], 111	distribution [2.551], 58
ideal gas [5.57], 110	integral [2.394], 45
monatomic gas [5.78], 112	series expansion [2.132], 29
van der Waals gas [5.67], 111	exponential constant (e), 9
equipartition theorem [5.100], 113	extraordinary modes [7.271], 157
error function [2.390], 45	extrema [2.335], 42
errors, 60	, , , , , , , , , , , , , , , , , , ,
escape velocity [3.91], 70	F
estimator	<i>f</i> -number [8.69], 168
kurtosis [2.545], 57	Fabry-Perot etalon
mean [2.541], 57	chromatic resolving power [8.21], 163
skewness [2.544], 57	free spectral range [8.23], 163
standard deviation [2.543], 57	fringe width [8.19], 163
variance [2.542], 57	transmitted intensity [8.17], 163
Euler	Fabry-Perot etalon, 163
angles [2.101], 26	face-centred cubic structure, 127
constant	factorial [2.409], 46
expression [2.119], 27	factorial (double), 48
value, 9	Fahrenheit conversion [1.2], 15
differential equation [2.350], 43	faltung theorem [2.516], 55
formula [2.216], 34	farad (unit), 4
relation, 38	Faraday constant, 6, 9
strut [3.261], 82	Faraday constant (dimensions), 16
Euler's equation (fluids) [3.289], 84	Faraday rotation [7.273], 157
Euler's equations (rigid bodies) [3.186],	Faraday's law [7.55], 140
77	fcc structure, 127
Euler's method (for ordinary differential	Feigenbaum's constants, 9
equations) [2.596], 62	femto, 5
Euler-Lagrange equation	Fermat's principle [8.63], 168
and Lagrangians [3.214], 79	Fermi
· · · · · · · · · · · · · · · · · · ·	1 (11111

energy [6.73], 133	flux density-redshift relation [9.99], 185
temperature [6.74], 133	flux linked [7.149], 147
velocity [6.72], 133	flux of molecules through a plane [5.91],
wavenumber [6.71], 133	113
fermi (unit), 5	flux-magnitude relation [9.32], 179
Fermi energy [5.122], 115	focal length [8.64], 168
Fermi gas, 133	focus (of conic section), 38
Fermi's golden rule [4.162], 102	force
Fermi-Dirac distribution [5.121], 115	and acoustic impedance [3.276], 83
fermion statistics [5.121], 115	and stress [3.228], 80
fibre optic	between two charges [7.119], 145
acceptance angle [8.77], 169	between two currents [7.120], 145
dispersion [8.79], 169	between two masses [3.40], 66
numerical aperture [8.78], 169	central [4.113], 98
Fick's first law [5.92], 113	centrifugal [3.35], 66
Fick's second law [5.95], 113	Coriolis [3.33], 66
field equations (gravitational) [3.42], 66	critical compression [3.261], 82
	definition [3.63], 68
FIELD RELATIONSHIPS, 139	
fields	dimensions, 16
depolarising [7.92], 142	electromagnetic, 145
electrochemical [6.81], 133	Newtonian [3.63], 68
electromagnetic, 139	on
gravitational, 66	charge in a field [7.122], 145
static <i>E</i> and <i>B</i> , 136	current in a field [7.121], 145
velocity [3.285], 84	electric dipole [7.123], 145
Fields associated with media, 142	magnetic dipole [7.124], 145
film reflectance [8.4], 162	sphere (potential flow) [3.298], 84
fine-structure constant	sphere (viscous drag) [3.308], 85
expression [4.75], 95	relativistic [3.71], 68
value, 6, 7	unit, 4
finesse (coefficient of) [8.12], 163	Force, torque, and energy, 145
finesse (Fabry-Perot etalon) [8.14], 163	Forced oscillations, 78
first law of thermodynamics [5.3], 106	form factor [6.30], 128
fitting straight-lines, 60	formula (the) [2.455], 50
fluctuating dipole interaction [6.50], 131	Foucault's pendulum [3.39], 66
fluctuation	four-parts formula [2.259], 36
of density [5.137], 116	four-scalar product [3.27], 65
of entropy [5.135], 116	four-vector
of pressure [5.136], 116	electromagnetic [7.79], 141
of temperature [5.133], 116	momentum [3.21], 65
of volume [5.134], 116	spacetime [3.12], 64
probability (thermodynamic) [5.131],	Four-vectors, 65
116	Fourier series
variance (general) [5.132], 116	complex form [2.478], 52
Fluctuations and noise, 116	real form [2.476], 52
Fluid dynamics, 84	Fourier series, 52
fluid stress [3.299], 85	Fourier series and transforms, 52
FLUID WAVES, 86	Fourier symmetry relationships, 53
I LUID WAYES, OU	TOOKIEK STWIMETKI KELAHUNSHIPS, JJ

Fourier transform

flux density [5.171], 120

cosine [2.509], 54	plane waves [8.45], 166
definition [2.482], 52	spherical waves [8.47], 166
derivatives	Friedmann equations [9.89], 184
and inverse [2.502], 54	fringe visibility [8.101], 172
general [2.498], 53	fringes (Moiré), 35
Gaussian [2.507], 54	Froude number [3.312], 86
Lorentzian [2.505], 54	
shah function [2.510], 54	\mathbf{G}
shift theorem [2.501], 54	g-factor
similarity theorem [2.500], 54	electron, 8
sine [2.508], 54	Landé [4.146], 100
step [2.511], 54	muon, 9
top hat [2.512], 54	gain in decibels [5.144], 117
triangle function [2.513], 54	galactic
Fourier transform, 52	coordinates [9.20], 178
Fourier transform pairs, 54	latitude [9.21], 178
Fourier transform theorems, 53	longitude [9.22], 178
Fourier's law [5.94], 113	GALACTIC COORDINATES, 178
Frames of reference, 64	Galilean transformation
Fraunhofer diffraction, 164	of angular momentum [3.5], 64
Fraunhofer integral [8.34], 165	of kinetic energy [3.6], 64
Fraunhofer limit [8.44], 165	of momentum [3.4], 64
free charge density [7.57], 140	of time and position [3.2], 64
free current density [7.63], 140	of velocity [3.3], 64
Free electron transport properties, 132	Galilean transformations, 64
free energy [5.32], 108	Gamma function, 46
free molecular flow [5.99], 113	gamma function
Free oscillations, 78	and other integrals [2.395], 45
free space impedance [7.197], 152	definition [2.407], 46
free spectral range	gas
Fabry Perot etalon [8.23], 163	adiabatic expansion [5.58], 110
laser cavity [8.124], 174	adiabatic lapse rate [3.294], 84
free-fall timescale [9.53], 181	constant, 6, 9, 86, 110
Frenet's formulas [2.291], 39	Dieterici, 111
frequency (dimensions), 16	Doppler broadened [8.116], 173
Fresnel diffraction	flow [3.292], 84
Cornu spiral [8.54], 167	giant (astronomical data), 176
edge [8.56], 167	ideal equation of state [5.57], 110
long slit [8.58], 167	ideal heat capacities, 113
rectangular aperture [8.62], 167	ideal, or perfect, 110
Fresnel diffraction, 166	internal energy (ideal) [5.62], 110
Fresnel Equations, 154	isothermal expansion [5.63], 110
Fresnel half-period zones [8.49], 166	linear absorption coefficient [5.175]
Fresnel integrals	120
and the Cornu spiral [8.52], 167	molecular flow [5.99], 113
definition [2.392], 45	monatomic, 112
in diffraction [8.54], 167	paramagnetism [7.112], 144
Fresnel zones, 166	pressure broadened [8.115], 173
Fresnel-Kirchhoff formula	speed of sound [3.318], 86

Van der Waals, 111 GAS EQUIPARTITION, 113 GAS EQUIPARTITION, 113 Gas laws, 110 gauge condition Coulomb [7, 42], 139 Lorenz [7, 43], 139 Gaunt factor [7, 299], 160 Gauss's law [7, 51], 140 lens formula [8, 64], 168 theorem [2, 591, 23 Gaussian electromagnetism, 135 Fourier transform of [2, 507], 54 integral [2, 398], 46 light [8, 110], 172 optics, 168 probability distribution k-dimensional [2, 556], 58 1-dimensional [2, 556], 58 1-dimensional [2, 552], 58 Geiger's law [4, 169], 103 Geiger-Nuttall rule [4, 170], 103 Geiger-Nuttall rule [4, 170], 103 Generalised dynamics, 79 generalised coordinates [3, 213], 79 Generalised dynamics, 79 generalised momentum [3, 218], 79 geodesic equation [3, 56], 67 geodesic equation [3, 54], 67 geodesic equation [2, 548], 57 mean [2, 109], 27 progression [2, 107], 27 Geometric distribution [2, 548], 57 mean [2, 109], 77 progression [2, 107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5, 113], 114 entropy [5, 106], 114 free energy [5, 35], 108 Gibbs's phase rule [5, 54], 109 Gibbs-Duhem relation [5, 38], 108 giga, 5 golden mean (value), 9 g		
Gas EQUIPARTITION, 113 Gas laws, 110 Gas laws, 110 Coulomb [7, 42], 139 Gaunt factor [7, 299], 160 Gauss's law [7, 51], 140 lens formula [8, 64], 168 theorem [2, 59], 23 Gaussian electromagnetism, 135 Fourier transform of [2, 507], 54 integral [2, 398], 46 light [8, 110], 172 optics, 168 probability distribution k-dimensional [2, 556], 58 1-dimensional [2, 556], 58 Geiger-Natull rule [4, 170], 103 Generalised dynamics, 79 generalised coordinates [3, 213], 79 Generalised dynamics, 79 generalised momentum [3, 218], 79 Generalised dynamics, 79 generalised momentum [3, 218], 79 Generalised dynamics, 79 generalised orordinates [2, 27], 21 gram (use in Sl), 5 grand canonical ensemble [5, 113], 114 grand partition function [5, 115], 114 grand partition function [5, 115], 114 grand potential definition [5, 37], 108 from grand partition function [5, 115], 115 grating dispersion [8, 31], 164 formula [8, 27], 108 from grand partition function [5, 115], 115 grating dispersion [8, 31], 164 formula [8, 27], 108 from grand partition function [5, 115], 115 grating dispersion [8, 31], 164 formula [8, 27], 108	temperature scale [5.1], 106	general coordinates [2.28], 21
Gas laws, 110 gauge condition Coulomb [7.42], 139 Lorenz [7.43], 139 Gaunt factor [7.299], 160 Gauses's law [7.51], 140 lens formula [8.64], 168 theorem [2.59], 23 Gaussian electromagnetism, 135 Fourier transform of [2.507], 54 integral [2.398], 46 light [8.110], 172 optics, 168 probability distribution k-dimensional [2.556], 58 1-dimensional [2.552], 58 Geiger-Nuttall rule [4.170], 103 Geiger-Nuttall rule [4.170], 103 Generalised dynamics, 79 generalised dynamics, 79 generalised dynamics, 79 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised coordinates [3.213], 79 Generalised optics, 168 Gibbs constant (value), 9 distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.38], 108 Gibbs's phase rule [5.41], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gram (use in SI), 5 grand canonical ensemble [5.113], 114 grand potential definition [5.37], 108 from grand partition function [5.115], 115 grating dispersion [8.31], 164 formula [8.27], 164 Fresolving power [8.30], 164 Gravitation, 66 gravitation, 66 gravitation, 66 gravitation, 66 gravitation, 66 gravitation, 67 Newtonian field equations [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.34], 66 waves (on a fluid surface) [3.320], 66 waves (on a fluid surface) [3.320], 67 Green's first theorem [2.62], 23 Green's first theorem [2.62], 23 Green's first theorem [2.62], 23 Green's first theorem [2.63], 23 Green's second theorem [2.63], 23 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gripory's series [2.1411, 29 gray byed [5.193], 121 group speed (wave) [3.3271, 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.266], 157 gyro-radius [7.268], 157 gyro-radius [7.268], 157 gyro-radius [7.268], 157 gyro-radius [7.268], 150	Van der Waals, 111	
gauge condition	Gas equipartition, 113	spherical coordinates [2.27], 21
Coulomb [7, 42], 139 Gaunt factor [7, 299], 160 Gauss's law [7, 51], 140 lens formula [8, 64], 168 theorem [2, 59], 23 Gaussian electromagnetism, 135 Fourier transform of [2, 507], 54 integral [2, 398], 46 light [8, 110], 172 optics, 168 probability distribution k-dimensional [2, 556], 58 l-dimensional [2, 556], 58 Geiger's law [4, 169], 103 Geiger-Nuttall rule [4, 170], 103 Geiger-Nuttall rule [4, 170], 103 Generalised domantics, 79 Generalised domantics, 79 generalised momentum [3, 218], 79 geodesic deviation [3, 56], 67 geodesic equation [3, 54], 67 geodesic equation [2, 548], 57 mean [2, 109], 27 progression [2, 107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5, 113], 114 entropy [5, 106], 114 free energy [5, 35], 108 Gibbs-Duhem relation [5, 38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4, 162], 102 GRADIENT, 21 gradiant partition function [5, 112], 114 grand potential definition [5, 37], 108 from grand partition function [5, 115], 114 grating dispersion [8, 31], 164 formula [8, 27], 164 resolving power [8, 30], 164 Gravitation, 66 gravitation, 66 gravitation, 66 gravitational collapse [9, 53], 181 constant, 6, 7, 16 lens [9, 50], 180 potential [3, 42], 66 redshift [9, 74], 183 wave radiation [9, 75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3, 38], 66 waves (on a fluid surface) [3, 320], 86 gray (unit), 4 GREEK ALPHABET, 18 Green's second theorem [2, 63], 23 Green's second theorem [2, 63], 23 Green's second theorem [2, 63], 23 Green's second theorem [2, 65], 177 Grigory's series [2, 1441, 29 greybody [5, 193], 121 group speed (wave) [3, 3271, 87 Grüneisen parameter [6, 56], 131 gyro-frequency [7, 266], 157 gyro-radius [7, 268], 157	Gas laws, 110	gram (use in SI), 5
Lorenz [7, 43], 139 Gaunt factor [7, 299], 160 Gauss's law [7, 51], 140 lens formula [8, 64], 168 theorem [2, 59], 23 Gaussian electromagnetism, 135 Fourier transform of [2, 507], 54 integral [2, 398], 46 light [8, 110], 172 optics, 168 probability distribution k-dimensional [2, 556], 58 1-dimensional [2, 556], 58 1-dimensional [2, 556], 58 1-dimensional [2, 556], 58 Geiger's law [4, 169], 103 Geiger-Nuttall rule [4, 170], 103 Generalised dynamics, 79 generalised coordinates [3, 213], 79 Generalised momentum [3, 218], 79 geodesic deviation [3, 56], 67 geometric distribution [2, 548], 57 mean [2, 109], 27 progression [2, 107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5, 38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4, 162], 102 Gradient Graphent [4, 138], 100 definition [5, 37], 108 from grand partition function [5, 315], 108 from grand partition function [5, 115], 115 grating dispersion [8, 31], 164 formula [8, 27], 164 resolving power [8, 30], 164 Gravitation, 66 gravitation, 66 gravitation, 66 gravitation and sphere [3, 44], 66 general relativity, 67 Newtonian field equations [3, 42], 66 gravitational collapse [9, 53], 181 constant, 6, 7, 16 lens [9, 50], 180 potential [3, 42], 66 redshift [9, 74], 183 wave radiation [9, 75], 183 Gravitational [3, 42], 66 redshift [9, 74], 183 wave radiation [9, 75], 183 Gravitational [1, 3, 42], 66 redshift [9, 50], 180 potential [4, 3, 42], 66 gravitational collapse [9, 53], 181 constant, 6, 7, 16 lens [9, 50], 180 potential dispersion [8, 31], 164 formula [8, 27], 164 resolving power [8, 30], 164 Gravitation, 66 gravitation field from a sphere [3, 44], 66 gravitation field from a sphere [3, 42], 66 gravitation field from a sphere [3, 42], 66 gravitation field from a sphere [3, 42], 66 gravitation field from a sphere [3, 44], 66 gravitation field from a sphere [3, 42], 66	gauge condition	grand canonical ensemble [5.113], 114
Gaunt factor [7.299], 160 Gauss's law [7.51], 140 lens formula [8.64], 168 theorem [2.59], 23 Gaussian electromagnetism, 135 Fourier transform of [2.507], 54 integral [2.398], 46 light [8.110], 172 optics, 168 probability distribution k-dimensional [2.556], 58 1-dimensional [2.552], 58 Geiger's law [4.169], 103 Geiger-Nuttall rule [4.170], 103 Generalised dynamics, 79 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs Constant (value), 9 distribution [5.313], 114 entropy [5.106], 114 free energy [5.35], 108 Green's second theorem [2.62], 23 Green's second theorem [2.63], 13	Coulomb [7.42], 139	grand partition function [5.112], 114
Gauss's law [7.51], 140 lens formula [8.64], 168 theorem [2.59], 23 Gaussian electromagnetism, 135 Fourier transform of [2.507], 54 integral [2.398], 46 light [8.110], 172 optics, 168 probability distribution k-dimensional [2.556], 58 1-dimensional [2.556], 58 1-dimensional [2.556], 58 Geiger's law [4.169], 103 Geiger-Nuttall rule [4.170], 103 Generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised coordinates [3.54], 67 geodesic equation [3.56], 67 geodesic equation [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometric distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs' sphase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 Gradbient [4.138], 100	Lorenz [7.43], 139	grand potential
law [7.51], 140 lens formula [8.64], 168 theorem [2.59], 23 Gaussian electromagnetism, 135 Fourier transform of [2.507], 54 integral [2.398], 46 light [8.110], 172 optics, 168 probability distribution k-dimensional [2.556], 58 1-dimensional [2.556], 58 Geiger's law [4.169], 103 Geiger-Nuttall rule [4.170], 103 Generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.54], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 Grandient 115 grating dispersion [8.31], 164 formula [8.27], 164 resolving power [8.30], 164 Gravitation, 66 gravitation field from a sphere [3.44], 66 general relativity, 67 Newtonian field equations [3.42], 66 reashift [9.74], 183 wave radiation [9.75], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 generalised dynamics, 79 progression [2.107], 27 Geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs Gravitation, 66 gravitation field from a sphere [3.44], 66 general relativity, 67 Newtonian, 71 Newtonian, 71 Newtonian field equations [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collap	Gaunt factor [7.299], 160	definition [5.37], 108
law [7.51], 140 lens formula [8.64], 168 theorem [2.59], 23 Gaussian electromagnetism, 135 Fourier transform of [2.507], 54 integral [2.398], 46 light [8.110], 172 optics, 168 probability distribution k-dimensional [2.556], 58 1-dimensional [2.556], 58 Geiger's law [4.169], 103 Geiger-Nuttall rule [4.170], 103 Generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.54], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 Grandient 115 grating dispersion [8.31], 164 formula [8.27], 164 resolving power [8.30], 164 Gravitation, 66 gravitation field from a sphere [3.44], 66 general relativity, 67 Newtonian field equations [3.42], 66 reashift [9.74], 183 wave radiation [9.75], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 generalised dynamics, 79 progression [2.107], 27 Geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs Gravitation, 66 gravitation field from a sphere [3.44], 66 general relativity, 67 Newtonian, 71 Newtonian, 71 Newtonian field equations [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collap	Gauss's	from grand partition function [5.115],
lens formula [8.64], 168 theorem [2.59], 23 Gaussian electromagnetism, 135 Fourier transform of [2.507], 54 integral [2.398], 46 light [8.110], 172 optics, 168 probability distribution k-dimensional [2.556], 58 1-dimensional [2.556], 58 1-dimensional [2.552], 58 Geiger's law [4.169], 103 GENERAL CONSTANTS, 7 Generalised dynamics, 79 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs Constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.351], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient grating dispersion [8.31], 164 resolving power [8.30], 164 Gravitation, [8.27], 164 resolving power [8.30], 164 Gravitation, [8.27], 164 resolving power [8.30], 164 Gravitation, 66 gravitation field from a sphere [3.44], 66 general relativity, 67 Newton's law [3.40], 66 Newtonian, 71 Newtonian field equations [3.42], 66 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 reachift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 gray (unit), 4 Green's first theorem [2.62], 23 Green's second theorem [2.63], 23 Green's first theorem [2.62], 23 Green's second theorem [2.63], 23 Green's second theorem [2.63], 23 Green's second theorem [2.63], 23 Green's second theorem [2.62], 23 Grien's second theorem [2.63], 23 Green's second theorem [2.63], 23 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grü	law [7.51], 140	
dispersion [8.31], 164 formula [8.27], 164 resolving power [8.30], 164 GRATINGS, 164 GRATINGS, 164 Gravitation, 66 gravitation field from a sphere [3.44], 66 general relativity, 67 Newton's law [3.40], 66 Newtonian, 71 Newtonian field equations [3.42], 66 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 potential [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 gray (unit), 4 GREEK ALPHABET, 18 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100		grating
Gaussian electromagnetism, 135 Fourier transform of [2.507], 54 integral [2.398], 46 light [8.110], 172 optics, 168 probability distribution k-dimensional [2.556], 58 1-dimensional [2.552], 58 Geiger's law [4.169], 103 GENERAL CONSTANTS, 7 GENERAL RELATIVITY, 67 generalised coordinates [3.213], 79 Generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs Constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden man (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient formula [8.27], 164 resolving power [8.30], 164 GRATINGS, 164 GRATINGS, 164 Gravitation, 66 gravitation field from a sphere [3.44], 66 gravitation field from a sphere [3.44], 66 gravitation field from a sphere [3.42], 66 Newtonian, 71 Newtonian field equations [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 gray (unit), 4 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.3227], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100		
electromagnetism, 135 Fourier transform of [2.507], 54 integral [2.398], 46 light [8.110], 172 optics, 168 probability distribution k-dimensional [2.556], 58 I-dimensional [2.552], 58 Geiger's law [4.169], 103 Geiger-Nuttall rule [4.170], 103 General relativity, 67 Generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 Geometrical optics, 168 Gibbs Constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs-Puhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient resolving power [8.30], 164 GRATINGS, 164 Gravitation, 66 gravitation field from a sphere [3.44], 66 gravitation field from a sphere [3.44], 66 gravitation, 66 gravitation field from a sphere [3.44], 66 general relativity, 67 Newtonian, 71 Newtonian field equations [3.42], 66 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 potential [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 gray (unit), 4 Green's first theorem [2.62], 23 Green's first theorem [2.62], 23 Green's first theorem [2.63], 23 Green's second theorem [2.63], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.268], 157 gyromagnetic ratio definition [4.138], 100	Gaussian	
Fourier transform of [2.507], 54 integral [2.398], 46 [ight [8.110], 172 optics, 168 probability distribution		
integral [2.398], 46 light [8.110], 172 optics, 168 probability distribution		
light [8.110], 172 optics, 168 probability distribution		· · · · · · · · · · · · · · · · · · ·
optics, 168 probability distribution **A-dimensional [2.556], 58 1-dimensional [2.552], 58 Geiger's law [4.169], 103 Geiger-Nuttall rule [4.170], 103 General relativity, 67 Generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic equation [3.56], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient field from a sphere [3.44], 66 general relativity, 67 Newton's law [3.40], 66 Newtonian, 71 Newtonian, 71 Newtonian field equations [3.42], 66 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 potential [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 gray (unit), 4 Green's first theorem [2.62], 23 Green's second theorem [2.63], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-radius [7.268], 157 gyro-radius [7.268], 157 gyromagnetic ratio definition [4.138], 100	· · · · · · · · · · · · · · · · · · ·	
probability distribution k -dimensional [2.556], 58 1-dimensional [2.552], 58 Newton's law [3.40], 66 Newton's law [3.40], 66 Newtonian, 71 Newtonian field equations [3.42], 66 Giger-Nuttall rule [4.170], 103 Geiger-Nuttall rule [4.170], 103 General Relativity, 67 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geodesic equation [3.54], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs's phase rule [5.54], 109 Gibbs'-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 Gradient $\frac{1}{2}$ gradient $\frac{1}{2}$ grean general relativity, 67 Newton's law [3.40], 66 Newtonian field equations [3.42], 66 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 potential [3.42], 66 redshift [9.75], 183 wave radiation [
k-dimensional [2.556], 58 1-dimensional [2.552], 58 1-dimensional [2.552], 58 Geiger's law [4.169], 103 General rule [4.170], 103 GENERAL CONSTANTS, 7 GENERAL RELATIVITY, 67 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 generalised equation [3.56], 67 geodesic equation [3.54], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 mean [2.109], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient Newton's law [3.40], 66 Newtonian, 71 Newtonian field equations [3.42], 66 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 potential [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 gray (unit), 4 Green's first theorem [2.62], 23 Greenvich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.561, 131 gyro-frequency [7.265], 157 gyroradius [7.268], 157 gyroradius [7.268], 157 gyroradius [7.268], 157 gyroraginetic ratio definition [4.138], 100	- ·	
1-dimensional [2.552], 58 Geiger's law [4.169], 103 Geiger-Nuttall rule [4.170], 103 GENERAL CONSTANTS, 7 GENERAL RELATIVITY, 67 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geodesic equation [3.56], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.36], 114 free energy [5.351], 108 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient Newtonian, 71 Newtonian field equations [3.42], 66 gravitational Collapse [9.53], 181 constant, 18 Geravitational Collapse [9.53], 181 constant, 18 Gravitational Collapse [9.53], 181 constant, 2, 16 lens [9.50], 180 Gravitational Collapse [9.53], 181 constant, 2, 180 Gravitational Collapse [9.53], 181 constant, 2, 180 Gravitational Collapse [9.53], 181 constant, 2, 19 Genstin, 2, 7, 16 lens [9.50], 180 Gravitational Collapse [9.53], 181 constant, 2, 19 Genstin, 2, 7, 16 lens [9.50], 180 Gravitational Collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gravitational collapse [9.53], 180 gravitational collapse [9.50], 180 Gravitational collapse [9.50], 18		•
Geiger's law [4.169], 103 Geiger-Nuttall rule [4.170], 103 GENERAL CONSTANTS, 7 GENERAL RELATIVITY, 67 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs-Duhem relation [5.38], 108 giga, 5 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient Newtonian field equations [3.42], 66 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional volue, 9 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 Gressional volue, 9 gravitational collapse [9.50], 180 Gressional volue, 9 gravitational collapse [9.50], 180 Greavitational costant, 6, 7, 16 lens [9.50], 180 Greavitational constant, 6, 7, 16 lens [9.50], 180 Greavitational constant, 6, 7, 16 lens [9.50], 180 Greavitational Gollapse [9.50], 180 Greavitational	· · · · · · · · · · · · · · · · · · ·	
Geiger-Nuttall rule [4.170], 103 GENERAL CONSTANTS, 7 GENERAL RELATIVITY, 67 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden mean (value), 9 golden mule (Fermi's) [4.162], 102 GRADIENT, 21 gravitational collapse [9.53], 181 constant, 6, 7, 16 lens [9.50], 180 potential [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 gray (unit), 4 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyror-radius [7.268], 157 gyrormagnetic ratio definition [4.138], 100	· · · · · · · · · · · · · · · · · · ·	
GENERAL CONSTANTS, 7 GENERAL RELATIVITY, 67 generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient constant, 6, 7, 16 lens [9.50], 180 potential [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 gray (unit), 4 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100	,	
Generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient constant, 6, 7, 16 lens [9.50], 180 potential [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 gray (unit), 4 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100	•	-
generalised coordinates [3.213], 79 Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 cree energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 Green's first theorem [2.62], 23 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-radius [7.268], 157 gyromagnetic ratio definition [4.138], 100	· · · · · · · · · · · · · · · · · · ·	*
Generalised dynamics, 79 generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geodesic equation [3.54], 67 geodesic equation [2.548], 57 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs Constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs-Helmholtz Equations, 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 Gradient potential [3.42], 66 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 Gray (unit), 4 Green's first theorem [2.62], 23 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 Gregory's series [2.141], 29 Gregory's series [2.141], 29 Grineisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100		
generalised momentum [3.218], 79 geodesic deviation [3.56], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 constant (value), 114 free energy [5.35], 108 Gibbs-Duhem relation [5.38], 108 Gibbs Gray (unit), 4 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 Gregory's series [2.141], 29 Grineisen parameter [6.56], 131 golden mean (value), 9 governation [4.138], 100 redshift [9.74], 183 wave radiation [9.75], 183 GRAVITATIONALLY BOUND ORBITAL MOTION, 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 Green's first theorem [2.62], 23 Green's second theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gribbs's phase rule [5.54], 109 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100	-	
geodesic deviation [3.56], 67 geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 Gray (unit), 4 GREEK ALPHABET, 18 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100		- · · · · · · · · · · · · · · · · · · ·
geodesic equation [3.54], 67 geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Duhem relation [5.38], 108 giag, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 Green's first theorem [2.62], 23 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 Gregory's series [2.141], 29 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100	-	
geometric distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Helmholtz equations, 109 Gibbs-Duhem relation [5.38], 108 giaq, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 Gradient 71 gravity and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 Greek Alphabet, 18 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100	-	
distribution [2.548], 57 mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs-Helmholtz equations, 109 Gibbs-Duhem relation [5.38], 108 gray (unit), 4 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29		
mean [2.109], 27 progression [2.107], 27 Geometrical optics, 168 Gibbs Gibbs Gibts Constant (value), 9 Gistribution [5.113], 114 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gibbs's phase rule [5.54], 109 GIBBS—HELMHOLTZ EQUATIONS, 109 Giga, 5 Giga, 5 Golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient and motion on Earth [3.38], 66 waves (on a fluid surface) [3.320], 86 Green's first theorem [2.62], 23 Green's second theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 Gregory's series [2.141], 29 Grineisen parameter [6.56], 131 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100	~	
progression [2.107], 27 Geometrical optics, 168 Gibbs Constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 GIBBS—HELMHOLTZ EQUATIONS, 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient waves (on a fluid surface) [3.320], 86 Gray (unit), 4 Green's first theorem [2.62], 23 Green's second theorem [2.63], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100		
Geometrical optics, 168 Gibbs Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Helmholtz equations, 109 Gibbs-Duhem relation [5.38], 108 gray (unit), 4 Green's first theorem [2.62], 23 Green's second theorem [2.63], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 Gribbs-Duhem relation [5.38], 108 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 golden mean (value), 9 gyro-frequency [7.265], 157 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gyromagnetic ratio definition [4.138], 100		/
Gibbs constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Helmholtz equations, 109 Gibbs-Duhem relation [5.38], 108 gray (unit), 4 Green's first theorem [2.62], 23 Green's second theorem [2.63], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 Gradient gray (unit), 4 Green's first theorem [2.62], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyro-radius [7.268], 157 gyromagnetic ratio definition [4.138], 100		
constant (value), 9 distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Gibbs's phase rule [5.54], 109 Gibbs-Helmholtz equations, 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 Gradient Green's first theorem [2.62], 23 Green's second theorem [2.63], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyro-radius [7.268], 157 gyromagnetic ratio definition [4.138], 100	<u>.</u>	
distribution [5.113], 114 entropy [5.106], 114 free energy [5.35], 108 Green's second theorem [2.63], 23 free energy [5.35], 108 Greenwich sidereal time [9.6], 177 Gibbs's phase rule [5.54], 109 GIBBS—HELMHOLTZ EQUATIONS, 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient Green's first theorem [2.62], 23 Green's second theorem [2.63], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyro-radius [7.268], 157 gyromagnetic ratio definition [4.138], 100		
entropy [5.106], 114 free energy [5.35], 108 Green's second theorem [2.63], 23 Greenwich sidereal time [9.6], 177 Gibbs's phase rule [5.54], 109 GIBBS—HELMHOLTZ EQUATIONS, 109 Gibbs-Duhem relation [5.38], 108 giga, 5 giga, 5 Grüneisen parameter [6.56], 131 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient Green's second theorem [2.63], 23 Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyromagnetic ratio definition [4.138], 100		
free energy [5.35], 108 Greenwich sidereal time [9.6], 177 Gibbs's phase rule [5.54], 109 GIBBS—HELMHOLTZ EQUATIONS, 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient Greenwich sidereal time [9.6], 177 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyro-radius [7.268], 157 gyromagnetic ratio definition [4.138], 100	· · · · · · · · · · · · · · · · · · ·	
Gibbs's phase rule [5.54], 109 Gregory's series [2.141], 29 Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient Gregory's series [2.141], 29 greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyro-radius [7.268], 157 gyromagnetic ratio definition [4.138], 100	**	
GIBBS—HELMHOLTZ EQUATIONS, 109 Gibbs-Duhem relation [5.38], 108 giga, 5 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient greybody [5.193], 121 group speed (wave) [3.327], 87 Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyro-radius [7.268], 157 gyromagnetic ratio definition [4.138], 100	free energy [5.35], 108	Greenwich sidereal time [9.6], 177
Gibbs-Duhem relation [5.38], 108 group speed (wave) [3.327], 87 giga, 5 Grüneisen parameter [6.56], 131 golden mean (value), 9 gyro-frequency [7.265], 157 golden rule (Fermi's) [4.162], 102 gyro-radius [7.268], 157 gyromagnetic ratio gradient definition [4.138], 100	Gibbs's phase rule [5.54], 109	Gregory's series [2.141], 29
giga, 5 Grüneisen parameter [6.56], 131 golden mean (value), 9 golden rule (Fermi's) [4.162], 102 GRADIENT, 21 gradient Grüneisen parameter [6.56], 131 gyro-frequency [7.265], 157 gyro-radius [7.268], 157 gyromagnetic ratio definition [4.138], 100	GIBBS-HELMHOLTZ EQUATIONS, 109	greybody [5.193], 121
golden mean (value), 9 gyro-frequency [7.265], 157 golden rule (Fermi's) [4.162], 102 gyro-radius [7.268], 157 GRADIENT, 21 gyromagnetic ratio gradient definition [4.138], 100	Gibbs-Duhem relation [5.38], 108	group speed (wave) [3.327], 87
golden rule (Fermi's) [4.162], 102 gyro-radius [7.268], 157 GRADIENT, 21 gyromagnetic ratio gradient definition [4.138], 100	giga, 5	Grüneisen parameter [6.56], 131
GRADIENT, 21 gyromagnetic ratio gradient definition [4.138], 100	golden mean (value), 9	gyro-frequency [7.265], 157
Gradient, 21 gyromagnetic ratio gradient definition [4.138], 100	golden rule (Fermi's) [4.162], 102	
gradient definition [4.138], 100		
		· ·
	cylindrical coordinates [2.26], 21	electron [4.140], 100

proton (value), 8	constant pressure [5.15], 107
gyroscopes, 77	constant volume [5.14], 107
gyroscopic	for f degrees of freedom, 113
limit [3.193], 77	ratio (γ) [5.18], 107
nutation [3.194], 77	heat conduction/diffusion equation
precession [3.191], 77	differential equation [2.340], 43
stability [3.192], 77	Fick's second law [5.96], 113
7 7	heat engine efficiency [5.10], 107
H	heat pump efficiency [5.12], 107
H (magnetic field strength) [7.100], 143	heavy beam [3.260], 82
half-life (nuclear decay) [4.164], 103	hectare, 12
half-period zones (Fresnel) [8.49], 166	hecto, 5
Hall	Heisenberg uncertainty relation [4.7], 90
coefficient (dimensions), 16	Helmholtz equation [2.341], 43
conductivity [7.280], 158	Helmholtz free energy
•	definition [5.32], 108
effect and coefficient [6.67], 132 voltage [6.68], 132	from partition function [5.114], 115
Hamilton's equations [3.220], 79	hemisphere (centre of mass) [3.170], 76
	hemispherical shell (centre of mass) [3.171]
Hamilton's principal function [3.213], 79	76
Hamilton-Jacobi equation [3.227], 79	henry (unit), 4
Hamiltonian	Hermite equation [2.346], 43
charged particle (Newtonian) [7.138],	Hermite polynomials [4.70], 95
146	Hermitian
charged particle [3.223], 79	conjugate operator [4.17], 91
definition [3.219], 79	matrix [2.73], 24
of a particle [3.222], 79	symmetry, 53
quantum mechanical [4.21], 91	Heron's formula [2.253], 36
Hamiltonian (dimensions), 16	herpolhode, 63, 77
Hamiltonian dynamics, 79	hertz (unit), 4
Hamming window [2.584], 60	Hertzian dipole [7.207], 153
Hanbury Brown and Twiss interferometry,	hexagonal system (crystallographic), 127
172	
Hanning window [2.583], 60	High energy and nuclear physics, 103
harmonic mean [2.110], 27	Hohmann cotangential transfer [3.98],
HARMONIC OSCILLATOR, 95	· -
harmonic oscillator	hole current density [6.89], 134
damped [3.196], 78	Hooke's law [3.230], 80
energy levels [4.68], 95	l'Hôpital's rule [2.131], 28
entropy [5.108], 114	Horizon coordinates, 177
forced [3.204], 78	hour (unit), 5
mean energy [6.40], 130	hour angle [9.8], 177 Hubble constant (dimensions), 16
Hartree energy [4.76], 95	* * * * * * * * * * * * * * * * * * * *
HEAT CAPACITIES, 107	Hubble constant [9.85], 184 Hubble law
heat capacity (dimensions), 16	
heat capacity in solids	as a distance indicator [9.45], 180
Debye [6.45], 130	in cosmology [9.83], 184
free electron [6.76], 133	hydrogen atom
heat capacity of a gas	eigenfunctions [4.80], 96
$C = C_{xx}$ [5 17] 107	energy [4.81], 96

Schrödinger equation [4.79], 96 Hydrogenic atoms , 95	paired strip transmission line [7.183], 150
Hydrogenlike atoms – Schrödinger so-	terminated transmission line [7.178], 150
LUTION, 96	
hydrostatic	waveguide TE modes [7.189], 151
compression [3.238], 80	· · · · · · · · · · · · · · · · · · ·
condition [3.293], 84	TM modes [7.188], 151
equilibrium (of a star) [9.61], 181	impedances
hyperbola, 38	in parallel [7.158], 148
Hyperbolic derivatives, 41	in series [7.157], 148
hyperbolic motion, 72	impulse (dimensions), 17
Hyperbolic relationships, 33	impulse (specific) [3.92], 70
т	incompressible flow, 84, 85
I	indefinite integrals, 44
I (Stokes parameter) [8.89], 171	induced charge density [7.84], 142
icosahedron, 38	Inductance, 137
Ideal fluids, 84	inductance
Ideal gas, 110	dimensions, 17
ideal gas	energy [7.154], 148
adiabatic equations [5.58], 110	energy of an assembly [7.135], 146
internal energy [5.62], 110	impedance [7.160], 148
isothermal reversible expansion [5.63],	mutual
110	definition [7.147], 147
law [5.57], 110	energy [7.135], 146
speed of sound [3.318], 86	self [7.145], 147
Identical particles, 115	voltage across [7.146], 147
illuminance (definition) [5.164], 119	inductance of
illuminance (dimensions), 16	cylinders (coaxial) [7.24], 137
Image charges, 138	solenoid [7.23], 137
impedance	wire loop [7.26], 137
acoustic [3.276], 83	wires (parallel) [7.25], 137
dimensions, 17	induction equation (MHD) [7.282], 158
electrical, 148	inductor, see inductance
transformation [7.166], 149	Inelastic collisions, 73
impedance of	Inequalities, 30
capacitor [7.159], 148	inertia tensor [3.136], 74
coaxial transmission line [7.181], 150	inner product [2.1], 20
electromagnetic wave [7.198], 152	Integration, 44
forced harmonic oscillator [3.212],	integration (numerical), 61
78	integration by parts [2.354], 44
free space	intensity
definition [7.197], 152	correlation [8.109], 172
value, 7	luminous [5.166], 119
inductor [7.160], 148	of interfering beams [8.100], 172
lossless transmission line [7.174], 150	radiant [5.154], 118
lossy transmission line [7.175], 150	specific [5.171], 120
microstrip line [7.184], 150	Interference, 162
open-wire transmission line [7.182],	interference and coherence [8.100], 172
150	intermodal dispersion (optical fibre) [8.79],

169	Julian centuries [9.5], 177
internal energy	Julian day number [9.1], 177
definition [5.28], 108	Jupiter data, 176
from partition function [5.116], 115	•
ideal gas [5.62], 110	K
Joule's law [5.55], 110	katal (unit), 4
monatomic gas [5.79], 112	Kelvin
interval (in general relativity) [3.45], 67	circulation theorem [3.287], 84
invariable plane, 63, 77	relation [6.83], 133
inverse Compton scattering [7.239], 155	temperature conversion, 15
Inverse hyperbolic functions, 35	temperature scale [5.2], 106
inverse Laplace transform [2.518], 55	wedge [3.330], 87
inverse matrix [2.83], 25	kelvin (SI definition), 3
inverse square law [3.99], 71	kelvin (unit), 4
Inverse trigonometric functions, 34	Kelvin-Helmholtz timescale [9.55], 181
ionic bonding [6.55], 131	Kepler's laws, 71
irradiance (definition) [5.152], 118	Kepler's problem, 71
irradiance (dimensions), 17	Kerr solution (in general relativity) [3.62],
isobaric expansivity [5.19], 107	67
isophotal wavelength [9.39], 179	ket vector [4.34], 92
isothermal bulk modulus [5.22], 107	kilo, 5
isothermal compressibility [5.20], 107	kilogram (SI definition), 3
Isotropic elastic solids, 81	kilogram (unit), 4
	kinematic viscosity [3.302], 85
J	kinematics, 63
Jacobi identity [2.93], 26	kinetic energy
Jacobian	definition [3.65], 68
definition [2.332], 42	for a rotating body [3.142], 74
in change of variable [2.333], 42	Galilean transformation [3.6], 64
Jeans length [9.56], 181	in the virial theorem [3.102], 71
Jeans mass [9.57], 181	loss after collision [3.128], 73
Johnson noise [5.141], 117	of a particle [3.216], 79
joint probability [2.568], 59	of monatomic gas [5.79], 112
Jones matrix [8.85], 170	operator (quantum) [4.20], 91
Jones vectors	relativistic [3.73], 68
definition [8.84], 170	w.r.t. principal axes [3.145], 74
examples [8.84], 170	Kinetic theory, 112
Jones vectors and matrices, 170	Kirchhoff's (radiation) law [5.180], 120
Josephson frequency-voltage ratio, 7	Kirchhoff's diffraction formula, 166
joule (unit), 4	Kirchhoff's laws, 149
Joule expansion (and Joule coefficient) [5.25],	Klein-Nishina cross section [7.243], 155
108	Klein-Gordon equation [4.181], 104
Joule expansion (entropy change) [5.64],	Knudsen flow [5.99], 113
110	Kronecker delta [2.442], 50
Joule's law (of internal energy) [5.55],	kurtosis estimator [2.545], 57
110	т
Joule's law (of power dissipation) [7.155],	L
148	ladder operators (angular momentum) [4.108],
Joule-Kelvin coefficient [5.27], 108	98

Lagrange's identity [2.7], 20	cavity line width [8.127], 174
Lagrangian (dimensions), 17	cavity modes [8.124], 174
Lagrangian dynamics, 79	cavity stability [8.123], 174
Lagrangian of	threshold condition [8.129], 174
charged particle [3.217], 79	LASERS, 174
particle [3.216], 79	latent heat [5.48], 109
two mutually attracting bodies [3.85],	lattice constants of elements, 124
69	Lattice dynamics, 129
Laguerre equation [2.347], 43	Lattice forces (SIMPLE), 131
Laguerre polynomials (associated), 96	lattice plane spacing [6.11], 126
Lamé coefficients [3.240], 81	LATTICE THERMAL EXPANSION AND CONDUC-
Laminar viscous flow, 85	TION, 131
Landé g-factor [4.146], 100	lattice vector [6.7], 126
Landau diamagnetic susceptibility [6.80],	latus-rectum [3.109], 71
133	Laue equations [6.28], 128
Landau length [7.249], 156	Laurent series [2.168], 31
Langevin function (from Brillouin fn) [4.147],	LCR circuits, 147
101	LCR definitions, 147
Langevin function [7.111], 144	least-squares fitting, 60
Laplace equation	Legendre equation
definition [2.339], 43	and polynomials [2.421], 47
solution in spherical harmonics [2.440],	definition [2.343], 43
49	Legendre Polynomials, 47
Laplace series [2.439], 49	Leibniz theorem [2.296], 40
Laplace transform	length (dimensions), 17
convolution [2.516], 55	Lennard-Jones 6-12 potential [6.52], 131
definition [2.514], 55	lens blooming [8.7], 162
derivative of transform [2.520], 55	Lenses and mirrors, 168
inverse [2.518], 55	lensmaker's formula [8.66], 168
of derivative [2.519], 55	Levi-Civita symbol (3-D) [2.443], 50
substitution [2.521], 55	l'Hôpital's rule [2.131], 28
translation [2.523], 55	Liénard–Wiechert Potentials, 139
Laplace transform pairs, 56	light (speed of), 6, 7
Laplace transform theorems, 55	Limits, 28
Laplace transforms, 55	line charge (electric field from) [7.29], 138
Laplace's formula (surface tension) [3.337],	line fitting, 60
88	Line radiation, 173
Laplacian	line shape
cylindrical coordinates [2.46], 23	collisional [8.114], 173
general coordinates [2.48], 23	Doppler [8.116], 173
rectangular coordinates [2.45], 23	natural [8.112], 173
spherical coordinates [2.47], 23	line width
Laplacian (scalar), 23	collisional/pressure [8.115], 173
lapse rate (adiabatic) [3.294], 84	Doppler broadened [8.117], 173
Larmor frequency [7.265], 157	laser cavity [8.127], 174
Larmor radius [7.268], 157	natural [8.113], 173
Larmor's formula [7.132], 146	Schawlow-Townes [8.128], 174
laser	linear absorption coefficient [5.175], 120
cavity Q [8.126], 174	linear expansivity (definition) [5.19], 107

linear expansivity (of a crystal) [6.57],	intensity (dimensions), 17 intensity [5.166], 119
linear regression, 60	lux (unit), 4
linked flux [7.149], 147	
liquid drop model [4.172], 103	\mathbf{M}
litre (unit), 5	Mach number [3.315], 86
local civil time [9.4], 177	Mach wedge [3.328], 87
local sidereal time [9.7], 177	Maclaurin series [2.125], 28
local thermodynamic equilibrium (LTE), 116, 120	Macroscopic thermodynamic variables, 115
ln(1+x) (series expansion) [2.133], 29	Madelung constant (value), 9
logarithm of complex numbers [2.162],	Madelung constant [6.55], 131
30	magnetic
logarithmic decrement [3.202], 78	diffusivity [7.282], 158
London's formula (interacting dipoles) [6.50],	flux quantum, 6, 7
131	monopoles (none) [7.52], 140
longitudinal elastic modulus [3.241], 81	permeability, μ , μ_r [7.107], 143
look-back time [9.96], 185	quantum number [4.131], 100
Lorentz	scalar potential [7.7], 136
broadening [8.112], 173	susceptibility, χ_H , χ_B [7.103], 143
contraction [3.8], 64	vector potential
factor (γ) [3.7], 64	definition [7.40], 139
force [7.122], 145	from J [7.47], 139
LORENTZ (SPACETIME) TRANSFORMATIONS, 64	of a moving charge [7.49], 139
Lorentz factor (dynamical) [3.69], 68	magnetic dipole, see dipole
Lorentz transformation	magnetic field
in electrodynamics, 141	around objects, 138
of four-vectors, 65	dimensions, 17
of momentum and energy, 65	energy density [7.128], 146
of time and position, 64	Lorentz transformation, 141
of velocity, 64	static, 136
Lorentz-Lorenz formula [7.93], 142	strength (H) [7.100], 143
Lorentzian distribution [2.555], 58	thermodynamic work [5.8], 106
Lorentzian (Fourier transform of) [2.505],	wave equation [7.194], 152
54	Magnetic fields, 138
Lorenz	magnetic flux (dimensions), 17
constant [6.66], 132	magnetic flux density (dimensions), 17
gauge condition [7.43], 139	magnetic flux density from
lumen (unit), 4	current [7.11], 136
luminance [5.168], 119	current density [7.10], 136
luminosity distance [9.98], 185	dipole [7.36], 138
luminosity–magnitude relation [9.31], 179	electromagnet [7.38], 138
luminous	line current (Biot–Savart law) [7.9],
density [5.160], 119	136
efficacy [5.169], 119	solenoid (finite) [7.38], 138
efficiency [5.170], 119	solenoid (infinite) [7.33], 138
energy [5.157], 119	uniform cylindrical current [7.34],
exitance [5.162], 119	138
flux [5.159], 119	waveguide [7.190], 151

wire [7.34], 138	and absorption coefficient [5.175],
wire loop [7.37], 138	120
Magnetic moments, 100	Maxwell-Boltzmann [5.89], 113
magnetic vector potential (dimensions), 17	mean intensity [5.172], 120
Magnetisation, 143	mean-life (nuclear decay) [4.165], 103
magnetisation	mega, 5
definition [7.97], 143	melting points of elements, 124
dimensions, 17	meniscus [3.339], 88
isolated spins [4.151], 101	Mensuration, 35
quantum paramagnetic [4.150], 101	Mercury data, 176
magnetogyric ratio [4.138], 100	method of images, 138
Magnetohydrodynamics, 158	metre (SI definition), 3
magnetosonic waves [7.285], 158	metre (unit), 4
Magnetostatics, 136	metric elements and coordinate systems,
magnification (longitudinal) [8.71], 168	21
magnification (transverse) [8.70], 168	MHD equations [7.283], 158
magnitude (astronomical)	micro, 5
-flux relation [9.32], 179	microcanonical ensemble [5.109], 114
-luminosity relation [9.31], 179	micron (unit), 5
absolute [9.29], 179	microstrip line (impedance) [7.184], 150
apparent [9.27], 179	Miller-Bravais indices [6.20], 126
major axis [3.106], 71	milli, 5
Malus's law [8.83], 170	minima [2.337], 42
Mars data, 176	minimum deviation (of a prism) [8.74],
mass (dimensions), 17	169
mass absorption coefficient [5.176], 120	minor axis [3.107], 71
mass ratio (of a rocket) [3.94], 70	minute (unit), 5
MATHEMATICAL CONSTANTS, 9	mirror formula [8.67], 168
Mathematics, 19–62	Miscellaneous, 18
matrices (square), 25	mobility (dimensions), 17
Matrix algebra, 24	mobility (in conductors) [6.88], 134
matrix element (quantum) [4.32], 92	modal dispersion (optical fibre) [8.79],
maxima [2.336], 42	169
Maxwell's equations, 140	modified Bessel functions [2.419], 47
Maxwell's equations (using \boldsymbol{D} and \boldsymbol{H}),	modified Julian day number [9.2], 177
140	modulus (of a complex number) [2.155],
Maxwell's relations, 109	30
Maxwell-Boltzmann distribution, 112	Moiré fringes, 35
Maxwell-Boltzmann distribution	molar gas constant (dimensions), 17
mean speed [5.86], 112	molar volume, 9
most probable speed [5.88], 112	mole (SI definition), 3
rms speed [5.87], 112	mole (unit), 4
speed distribution [5.84], 112	molecular flow [5.99], 113
mean	moment
arithmetic [2.108], 27	electric dipole [7.81], 142
geometric [2.109], 27	magnetic dipole [7.94], 143
harmonic [2.110], 27	magnetic dipole [7.95], 143
mean estimator [2.541], 57	moment of area [3.258], 82

moment of inertia

mean free path

cone [3.160], 75	inductance (energy) [7.135], 146
cylinder [3.155], 75	mutual coherence function [8.97], 172
dimensions, 17	,
disk [3.168], 75	N
ellipsoid [3.163], 75	nabla, 21
elliptical lamina [3.166], 75	Named integrals, 45
rectangular cuboid [3.158], 75	nano, 5
sphere [3.152], 75	natural broadening profile [8.112], 173
spherical shell [3.153], 75	natural line width [8.113], 173
thin rod [3.150], 75	Navier-Stokes equation [3.301], 85
triangular plate [3.169], 75	nearest neighbour distances, 127
two-body system [3.83], 69	Neptune data, 176
moment of inertia ellipsoid [3.147], 74	neutron
Moment of inertia tensor, 74	Compton wavelength, 8
moment of inertia tensor [3.136], 74	
Moments of inertia, 75	gyromagnetic ratio, 8
momentum	magnetic moment, 8
definition [3.64], 68	mass, 8
dimensions, 17	molar mass, 8
generalised [3.218], 79	Neutron constants, 8
relativistic [3.70], 68	neutron star degeneracy pressure [9.77],
MOMENTUM AND ENERGY TRANSFORMATIONS,	183
65	newton (unit), 4
Monatomic gas, 112	Newton's law of Gravitation [3.40], 66
monatomic gas	Newton's lens formula [8.65], 168
entropy [5.83], 112	Newton's rings, 162
equation of state [5.78], 112	Newton's rings [8.1], 162
heat capacity [5.82], 112	Newton-Raphson method [2.593], 61
internal energy [5.79], 112	Newtonian gravitation, 66
pressure [5.77], 112	noggin, 13
monoclinic system (crystallographic), 127	Noise, 117
Moon data, 176	noise
	figure [5.143], 117
motif [6.31], 128	Johnson [5.141], 117
motion under constant acceleration, 68 Mott scattering formula [4.180], 104	Nyquist's theorem [5.140], 117
· · · · · · · · · · · · · · · · · · ·	shot [5.142], 117
μ , μ_r (magnetic permeability) [7.107], 143	temperature [5.140], 117
multilayer films (in optics) [8.8], 162	normal (unit principal) [2.284], 39
multimode dispersion (optical fibre) [8.79],	normal distribution [2.552], 58
169	normal plane, 39
multiplicity (quantum)	Nuclear binding energy, 103
j [4.133], 100	Nuclear collisions, 104
l [4.112], 98	Nuclear decay, 103
multistage rocket [3.95], 70	nuclear decay law [4.163], 103
MULTIVARIATE NORMAL DISTRIBUTION, 58	nuclear magneton, 7
Muon and tau constants, 9	number density (dimensions), 17
muon physical constants, 9	numerical aperture (optical fibre) [8.78],
mutual 57 4243 146	169
capacitance [7.134], 146	Numerical differentiation, 61
inductance (definition) [7.147], 147	Numerical integration, 61

Numerical methods, 60 Numerical solutions to $f(x) = 0$, 61	orthorhombic system (crystallographic), 127 Oscillating systems, 78
Numerical solutions to ordinary dif-	osculating plane, 39
FERENTIAL EQUATIONS, 62	Otto cycle efficiency [5.13], 107
nutation [3.194], 77	overdamping [3.201], 78
Nyquist's theorem [5.140], 117	overdamping [0.201], 70
Typulot s theorem [o.110], 117	P
O	<i>p</i> orbitals [4.95], 97
Oblique elastic collisions, 73	P-waves [3.263], 82
obliquity factor (diffraction) [8.46], 166	packing fraction (of spheres), 127
obliquity of the ecliptic [9.13], 178	paired strip (impedance of) [7.183], 150
observable (quantum physics) [4.5], 90	parabola, 38
Observational astrophysics, 179	parabolic motion [3.88], 69
octahedron, 38	parallax (astronomical) [9.46], 180
odd functions, 53	parallel axis theorem [3.140], 74
ODEs (numerical solutions), 62	parallel impedances [7.158], 148
ohm (unit), 4	parallel wire feeder (inductance) [7.25],
Ohm's law (in MHD) [7.281], 158	137
Ohm's law [7.140], 147	paramagnetic susceptibility (Pauli) [6.79],
opacity [5.176], 120	133
open-wire transmission line [7.182], 150	paramagnetism (quantum), 101
operator	Paramagnetism and diamagnetism, 144
angular momentum	parity operator [4.24], 91
and other operators [4.23], 91	Parseval's relation [2.495], 53
definitions [4.105], 98	Parseval's theorem
Hamiltonian [4.21], 91	integral form [2.496], 53
kinetic energy [4.20], 91	series form [2.480], 52
momentum [4.19], 91	Partial derivatives, 42
parity [4.24], 91	partial widths (and total width) [4.176],
position [4.18], 91	104
time dependence [4.27], 91	Particle in a rectangular box, 94
Operators, 91	Particle motion, 68
optic branch (phonon) [6.37], 129	partition function
optical coating [8.8], 162	atomic [5.126], 116
optical depth [5.177], 120	definition [5.110], 114
Optical fibres, 169	macroscopic variables from, 115
optical path length [8.63], 168	pascal (unit), 4
Optics, 161–174	Pauli matrices, 26
Orbital angular dependence, 97	Pauli matrices [2.94], 26
Orbital angular momentum, 98	Pauli paramagnetic susceptibility [6.79],
orbital motion, 71	133
orbital radius (Bohr atom) [4.73], 95	Pauli spin matrices (and Weyl eqn.) [4.182]
order (in diffraction) [8.26], 164	104
ordinary modes [7.271], 157	Pearson's r [2.546], 57
orthogonal matrix [2.85], 25	Peltier effect [6.82], 133
orthogonality	pendulum
associated Legendre functions [2.434],	compound [3.182], 76
48	conical [3.180], 76

double [3.183], 76

Legendre polynomials [2.424], 47

simple [3.179], 76	plane polarisation, 170
torsional [3.181], 76	Plane triangles, 36
Pendulums, 76	plane wave expansion [2.427], 47
perfect gas, 110	Planetary bodies, 180
pericentre (of an orbit) [3.110], 71	Planetary data, 176
perimeter	plasma
of circle [2.261], 37	beta [7.278], 158
of ellipse [2.266], 37	dispersion relation [7.261], 157
PERIMETER, AREA, AND VOLUME, 37	frequency [7.259], 157
period (of an orbit) [3.113], 71	group velocity [7.264], 157
Periodic table, 124	phase velocity [7.262], 157
permeability	refractive index [7.260], 157
dimensions, 17	Plasma physics, 156
magnetic [7.107], 143	PLATONIC SOLIDS, 38
of vacuum, 6, 7	Pluto data, 176
permittivity	p-n junction [6.92], 134
dimensions, 17	Poincaré sphere, 171
electrical [7.90], 142	point charge (electric field from) [7.5],
of vacuum, 6, 7	136
permutation tensor (ϵ_{ijk}) [2.443], 50	Poiseuille flow [3.305], 85
perpendicular axis theorem [3.148], 74	Poisson brackets [3.224], 79
Perturbation theory, 102	Poisson distribution [2.549], 57
peta, 5	Poisson ratio
petrol engine efficiency [5.13], 107	and elastic constants [3.251], 81
phase object (diffraction by weak) [8.43],	simple definition [3.231], 80
165	Poisson's equation [7.3], 136
phase rule (Gibbs's) [5.54], 109	polarisability [7.91], 142
phase speed (wave) [3.325], 87	Polarisation, 170
Phase transitions, 109	Polarisation, 142
Phonon dispersion relations, 129	polarisation (electrical, per unit volume)
phonon modes (mean energy) [6.40], 130	[7.83], 142
PHOTOMETRIC WAVELENGTHS, 179	polarisation (of radiation)
PHOTOMETRY, 119	angle [8.81], 170
photon energy [4.3], 90	axial ratio [8.88], 171
Physical constants, 6	degree of [8.96], 171
Pi (π) to 1000 decimal places, 18	elliptical [8.80], 170
Pi (π) , 9	ellipticity [8.82], 170
pico, 5	reflection law [7.218], 154
pipe (flow of fluid along) [3.305], 85	polarisers [8.85], 170
pipe (twisting of) [3.255], 81	polhode, 63, 77
pitch angle, 159	Population densities, 116
Planck	potential
constant, 6, 7	chemical [5.28], 108
constant (dimensions), 17	difference (and work) [5.9], 106
function [5.184], 121	difference (between points) [7.2], 136
length, 7	electrical [7.46], 139
mass, 7	electrostatic [7.1], 136
time, 7	energy (elastic) [3.235], 80
Planck-Einstein relation [4.3], 90	energy in Hamiltonian [3.222], 79

energy in Lagrangian [3.216], 79	deviation [8.73], 169
field equations [7.45], 139	dispersion [8.76], 169
four-vector [7.77], 141	minimum deviation [8.74], 169
grand [5.37], 108	transmission angle [8.72], 169
Liénard-Wiechert, 139	Prisms (dispersing), 169
Lorentz transformation [7.75], 141	probability
magnetic scalar [7.7], 136	conditional [2.567], 59
magnetic vector [7.40], 139	density current [4.13], 90
Rutherford scattering [3.114], 72	distributions
thermodynamic [5.35], 108	continuous, 58
velocity [3.296], 84	discrete, 57
POTENTIAL FLOW, 84	joint [2.568], 59
POTENTIAL STEP, 92	Probability and statistics, 57
POTENTIAL WELL, 93	product (derivative of) [2.293], 40
power (dimensions), 17	product (integral of) [2.354], 44
power gain	product of inertia [3.136], 74
antenna [7.211], 153	progression (arithmetic) [2.104], 27
short dipole [7.213], 153	progression (geometric) [2.107], 27
Power series, 28	Progressions and summations, 27
Power theorem [2.495], 53	projectiles, 69
Poynting vector (dimensions), 17	propagation in cold plasmas, 157
Poynting vector [7.130], 146	Propagation in conducting media, 155
pp (proton-proton) chain, 182	Propagation of elastic waves, 83
Prandtl number [3.314], 86	Propagation of light, 65
precession (gyroscopic) [3.191], 77	proper distance [9.97], 185
Precession of Equinoxes, 178	Proton constants, 8
pressure	proton mass, 6
broadening [8.115], 173	proton mass, o proton-proton chain, 182
critical [5.75], 111	pulsar
degeneracy [9.77], 183	braking index [9.66], 182
dimensions, 17	characteristic age [9.67], 182
fluctuations [5.136], 116	dispersion [9.72], 182
from partition function [5.118], 115	magnetic dipole radiation [9.69], 182
hydrostatic [3.238], 80	Pulsars, 182
in a monatomic gas [5.77], 112	pyramid (centre of mass) [3.175], 76
radiation, 152	pyramid (volume) [2.272], 37
thermodynamic work [5.5], 106	pyramia (vorame) [2.272], 37
waves [3.263], 82	0
primitive cell [6.1], 126	Q, see quality factor
primitive vectors (and lattice vectors) [6.7],	Q, see quanty factor Q (Stokes parameter) [8.90], 171
126	Quadratic equations, 50
primitive vectors (of cubic lattices), 127	quadrature, 61
Principal axes, 74	quadrature, or quadrature (integration), 44
principal moments of inertia [3.143], 74	quality factor
principal quantum number [4.71], 95	Fabry-Perot etalon [8.14], 163
principle of least action [3.213], 79	forced harmonic oscillator [3.211],
prism	78
determining refractive index [8.75],	
169	free harmonic oscillator [3.203], 78
107	laser cavity [8.126], 174

LCR circuits [7.152], 148	random walk
quantum concentration [5.83], 112	Brownian motion [5.98], 113
Quantum definitions, 90	one-dimensional [2.562], 59
Quantum paramagnetism, 101	three-dimensional [2.564], 59
Quantum physics, 89–104	range (of projectile) [3.90], 69
Quantum uncertainty relations, 90	Rankine conversion [1.3], 15
quarter-wave condition [8.3], 162	Rankine-Hugoniot shock relations [3.334],
quarter-wave plate [8.85], 170	87
quartic minimum, 42	Rayleigh
quartic illillillilli, 42	distribution [2.554], 58
R	resolution criterion [8.41], 165
	scattering [7.236], 155
RADIAL FORMS, 22	theorem [2.496], 53
radian (unit), 4	Rayleigh-Jeans law [5.187], 121
radiance [5.156], 118	· · · · · · · · · · · · · · · · · · ·
radiant	reactance (definition), 148
energy [5.145], 118	reciprocal
energy density [5.148], 118	lattice vector [6.8], 126
exitance [5.150], 118	matrix [2.83], 25
flux [5.147], 118	vectors [2.16], 20
intensity (dimensions), 17	reciprocity [2.330], 42
intensity [5.154], 118	RECOGNISED NON-SI UNITS, 5
radiation	rectangular aperture diffraction [8.39],
blackbody [5.184], 121	165
bremsstrahlung [7.297], 160	rectangular coordinates, 21
Cherenkov [7.247], 156	rectangular cuboid moment of inertia [3.158],
field of a dipole [7.207], 153	75
flux from dipole [7.131], 146	rectifying plane, 39
resistance [7.209], 153	recurrence relation
synchrotron [7.287], 159	associated Legendre functions [2.433],
RADIATION PRESSURE, 152	48
radiation pressure	Legendre polynomials [2.423], 47
extended source [7.203], 152	redshift
isotropic [7.200], 152	-flux density relation [9.99], 185
momentum density [7.199], 152	cosmological [9.86], 184
point source [7.204], 152	gravitational [9.74], 183
specular reflection [7.202], 152	REDUCED MASS (OF TWO INTERACTING BOD-
Radiation processes, 118	IES), 69
Radiative transfer, 120	reduced units (thermodynamics) [5.71],
radiative transfer equation [5.179], 120	111
radiative transport (in stars) [9.63], 181	reflectance coefficient
radioactivity, 103	and Fresnel equations [7.227], 154
RADIOMETRY, 118	dielectric film [8.4], 162
radius of curvature	dielectric multilayer [8.8], 162
definition [2.282], 39	reflection coefficient
in bending [3.258], 82	acoustic [3.283], 83
relation to curvature [2.287], 39	dielectric boundary [7.230], 154
radius of gyration (see footnote), 75	potential barrier [4.58], 94
Ramsauer effect [4.52], 93	potential step [4.41], 92
RANDOM WALK, 59	potential well [4.48], 93
THE POST TIME ST	

transmission line [7.179], 150	Riemann tensor [3.50], 67
reflection grating [8.29], 164	right ascension [9.8], 177
reflection law [7.216], 154	rigid body
REFLECTION, REFRACTION, AND TRANSMIS-	angular momentum [3.141], 74
SION, 154	kinetic energy [3.142], 74
refraction law (Snell's) [7.217], 154	Rigid body dynamics, 74
refractive index of	rigidity modulus [3.249], 81
dielectric medium [7.195], 152	ripples [3.321], 86
ohmic conductor [7.234], 155	rms (standard deviation) [2.543], 57
plasma [7.260], 157	Robertson-Walker metric [9.87], 184
refrigerator efficiency [5.11], 107	Roche limit [9.43], 180
regression (linear), 60	rocket equation [3.94], 70
relativistic beaming [3.25], 65	Rocketry, 70
relativistic doppler effect [3.22], 65	rod
RELATIVISTIC DYNAMICS, 68	bending, 82
RELATIVISTIC ELECTRODYNAMICS, 141	moment of inertia [3.150], 75
RELATIVISTIC WAVE EQUATIONS, 104	stretching [3.230], 80
relativity (general), 67	waves in [3.271], 82
relativity (general), 67 relativity (special), 64	Rodrigues' formula [2.422], 47
relaxation time	Roots of quadratic and cubic equations, 50
and electron drift [6.61], 132	Rossby number [3.316], 86
in a conductor [7.156], 148	· · · · · · · · · · · · · · · · · · ·
	rot (curl), 22
in plasmas, 156	ROTATING FRAMES, 66
residuals [2.572], 60	ROTATION MATRICES, 26
Residue theorem [2.170], 31	rotation measure [7.273], 157
residues (in complex analysis), 31	Runge Kutta method [2.603], 62
resistance	RUTHERFORD SCATTERING, 72
and impedance, 148	Rutherford scattering formula [3.124], 72
dimensions, 17	Rydberg constant, 6, 7
energy dissipated in [7.155], 148	and Bohr atom [4.77], 95
radiation [7.209], 153	dimensions, 17
resistivity [7.142], 147	Rydberg's formula [4.78], 95
resistor, see resistance	
resolving power	S
chromatic (of an etalon) [8.21], 163	s orbitals [4.92], 97
of a diffraction grating [8.30], 164	S-waves [3.262], 82
Rayleigh resolution criterion [8.41],	Sackur-Tetrode equation [5.83], 112
165	saddle point [2.338], 42
resonance	Saha equation (general) [5.128], 116
forced oscillator [3.209], 78	Saha equation (ionisation) [5.129], 116
resonance lifetime [4.177], 104	Saturn data, 176
resonant frequency (LCR) [7.150], 148	scalar effective mass [6.87], 134
RESONANT LCR CIRCUITS, 148	scalar product [2.1], 20
restitution (coefficient of) [3.127], 73	scalar triple product [2.10], 20
retarded time, 139	scale factor (cosmic) [9.87], 184
revolution (volume and surface of), 39	scattering
Reynolds number [3.311], 86	angle (Rutherford) [3.116], 72
ribbon (twisting of) [3.256], 81	Born approximation [4.178], 104
Ricci tensor [3.57], 67	Compton [7.240], 155

Compton [7.240], 155

crystal [6.32], 128	shear modulus (dimensions), 17
inverse Compton [7.239], 155	sheet of charge (electric field) [7.32], 138
Klein-Nishina [7.243], 155	shift theorem (Fourier transform) [2.501],
Mott (identical particles) [4.180], 104	54
potential (Rutherford) [3.114], 72	shock
processes (electron), 155	Rankine-Hugoniot conditions [3.334],
Rayleigh [7.236], 155	87
Rutherford [3.124], 72	spherical [3.331], 87
Thomson [7.238], 155	SHOCKS, 87
scattering cross-section, see cross-section	shot noise [5.142], 117
Schawlow-Townes line width [8.128], 174	SI base unit definitions, 3
Schrödinger equation [4.15], 90	SI BASE UNITS, 4
Schwarz inequality [2.152], 30	SI DERIVED UNITS, 4
Schwarzschild geometry (in GR) [3.61],	SI PREFIXES, 5
67	SI units, 4
Schwarzschild radius [9.73], 183	sidelobes (diffraction by 1-D slit) [8.38],
Schwarzschild's equation [5.179], 120	165
screw dislocation [6.22], 128	sidereal time [9.7], 177
secx	siemens (unit), 4
definition [2.228], 34	sievert (unit), 4
series expansion [2.138], 29	similarity theorem (Fourier transform) [2.500],
secant method (of root-finding) [2.592],	54
61	simple cubic structure, 127
sech x [2.229], 34	simple cubic structure, 127 simple harmonic oscillator, see harmonic
second (SI definition), 3	oscillator
second (time interval), 4	simple pendulum [3.179], 76
second moment of area [3.258], 82	Simpson's rule [2.586], 61
Sedov-Taylor shock relation [3.331], 87	$\sin x$
selection rules (dipole transition) [4.91],	and Euler's formula [2.218], 34
96	series expansion [2.136], 29
self-diffusion [5.93], 113	sinc function [2.512], 54
self-inductance [7.145], 147	sine formula
semi-ellipse (centre of mass) [3.178], 76	planar triangles [2.246], 36
semi-empirical mass formula [4.173], 103	spherical triangles [2.255], 36
semi-latus-rectum [3.109], 71	sinhx
semi-najor axis [3.106], 71	definition [2.219], 34
semi-miajor axis [3.100], 71	series expansion [2.144], 29
· · · · · · · · · · · · · · · · · · ·	$\sin^{-1} x$, see $\arccos x$
semiconductor diode [6.92], 134 semiconductor equation [6.90], 134	skew-symmetric matrix [2.87], 25
*	
Series expansions, 29 series impedances [7.157], 148	skewness estimator [2.544], 57
•	skin depth [7.235], 155
Series, summations, and progressions, 27	slit diffraction (Young's) [8.37], 165
shah function (Fourier transform of) [2.510],	slit diffraction (Young's) [8.24], 164
54	Snell's law (acoustics) [3.284], 83
shear	Snell's law (electromagnetism) [7.217], 154
modulus [3.249], 81	soap bubbles [3.337], 88
strain [3.237], 80	solar constant, 176
viscosity [3.299], 85	Solar parts data 176
waves [3, 262], 82	Solar system data, 176

solenoid	in a viscous fluid [3.308], 85
finite [7.38], 138	in potential flow [3.298], 84
infinite [7.33], 138	moment of inertia [3.152], 75
self inductance [7.23], 137	Poincaré, 171
solid angle (subtended by a circle) [2.278],	polarisability, 142
37	volume [2.264], 37
Solid state physics, 123–134	spherical Bessel function [2.420], 47
sound speed (in a plasma) [7.275], 158	spherical cap
sound, speed of [3.317], 86	area [2.275], 37
space cone, 77	centre of mass [3.177], 76
space frequency [3.188], 77	volume [2.276], 37
space impedance [7.197], 152	spherical excess [2.260], 36
spatial coherence [8.108], 172	SPHERICAL HARMONICS, 49
Special functions and polynomials, 46	spherical harmonics
special relativity, 64	definition [2.436], 49
specific	Laplace equation [2.440], 49
charge on electron, 8	orthogonality [2.437], 49
emission coefficient [5.174], 120	spherical polar coordinates, 21
heat capacity, see heat capacity	spherical shell (moment of inertia) [3.153],
definition, 105	75
dimensions, 17	spherical surface (capacitance of near) [7.16]
intensity (blackbody) [5.184], 121	137
intensity [5.171], 120	Spherical triangles, 36
specific impulse [3.92], 70	spin
speckle intensity distribution [8.110], 172	and total angular momentum [4.128],
speckle size [8.111], 172	100
spectral energy density	degeneracy, 115
blackbody [5.186], 121	electron magnetic moment [4.141],
definition [5.173], 120	100
spectral function (synchrotron) [7.295],	Pauli matrices, 26
159	spinning bodies, 77
Spectral line broadening, 173	spinors [4.182], 104
speed (dimensions), 17	Spitzer conductivity [7.254], 156
speed distribution (Maxwell-Boltzmann) [5.84],	spontaneous emission [8.119], 173
112	spring constant and wave velocity [3.272],
speed of light (equation) [7.196], 152	83
speed of light (value), 6	Square matrices, 25
speed of sound [3.317], 86	standard deviation estimator [2.543], 57
sphere	Standard forms, 44
area [2.263], 37	Star formation, 181
Brownian motion [5.98], 113	Star-delta transformation, 149
capacitance [7.12], 137	Static fields, 136
capacitance of adjacent [7.14], 137	statics, 63
capacitance of concentric [7.18], 137	Stationary points, 42
close-packed, 127	Statistical entropy, 114
collisions of, 73	Statistical thermodynamics, 114
electric field [7.27], 138	Stefan-Boltzmann constant, 9
geometry on a, 36	Stefan-Boltzmann constant (dimensions),
gravitation field from a [3.44], 66	17

Stefan-Boltzmann constant, 121	susceptibility
Stefan-Boltzmann law [5.191], 121	electric [7.87], 142
stellar aberration [3.24], 65	Landau diamagnetic [6.80], 133
Stellar evolution, 181	magnetic [7.103], 143
STELLAR FUSION PROCESSES, 182	Pauli paramagnetic [6.79], 133
Stellar theory, 181	symmetric matrix [2.86], 25
step function (Fourier transform of) [2.511],	symmetric top [3.188], 77
54	Synchrotron radiation, 159
steradian (unit), 4	synodic period [9.44], 180
stimulated emission [8.120], 173	
Stirling's formula [2.411], 46	T
STOKES PARAMETERS, 171	tan x
Stokes parameters [8.95], 171	definition [2.220], 34
Stokes's law [3.308], 85	series expansion [2.137], 29
Stokes's theorem [2.60], 23	tangent [2.283], 39
STRAIGHT-LINE FITTING, 60	tangent formula [2.250], 36
strain	tanhx
simple [3.229], 80	definition [2.221], 34
tensor [3.233], 80	series expansion [2.145], 29
volume [3.236], 80	$\tan^{-1} x$, see $\arctan x$
stress	tau physical constants, 9
dimensions, 17	Taylor series
in fluids [3.299], 85	one-dimensional [2.123], 28
simple [3.228], 80	three-dimensional [2.124], 28
tensor [3.232], 80	telegraphist's equations [7.171], 150
stress-energy tensor	temperature
and field equations [3.59], 67	antenna [7.215], 153
perfect fluid [3.60], 67	Celsius, 4
string (waves along a stretched) [3.273],	dimensions, 17
83	Kelvin scale [5.2], 106
Strouhal number [3.313], 86	thermodynamic [5.1], 106
structure factor [6.31], 128	Temperature conversions, 15
sum over states [5.110], 114	temporal coherence [8.105], 172
SUMMARY OF PHYSICAL CONSTANTS, 6	tensor
summation formulas [2.118], 27	Einstein [3.58], 67
Sun data, 176	electric susceptibility [7.87], 142
Sunyaev-Zel'dovich effect [9.51], 180	ϵ_{ijk} [2.443], 50
surface brightness (blackbody) [5.184],	fluid stress [3.299], 85
121	magnetic susceptibility [7.103], 143
surface of revolution [2.280], 39	moment of inertia [3.136], 74
Surface tension, 88	Ricci [3.57], 67
surface tension	Riemann [3.50], 67
Laplace's formula [3.337], 88	strain [3.233], 80
work done [5.6], 106	stress [3.232], 80
surface tension (dimensions), 17	tera, 5
surface waves [3.320], 86	tesla (unit), 4
survival equation (for mean free path) [5.90],	tetragonal system (crystallographic), 127
113	tetrahedron, 38
susceptance (definition), 148	thermal conductivity

diffusion equation [2.340], 43	torsional pendulum [3.181], 76
dimensions, 17	torsional rigidity [3.252], 81
free electron [6.65], 132	torus (surface area) [2.273], 37
phonon gas [6.58], 131	torus (volume) [2.274], 37
transport property [5.96], 113	total differential [2.329], 42
thermal de Broglie wavelength [5.83], 112	total internal reflection [7.217], 154
thermal diffusion [5.93], 113	total width (and partial widths) [4.176],
thermal diffusivity [2.340], 43	104
thermal noise [5.141], 117	trace [2.75], 25
thermal velocity (electron) [7.257], 156	trajectory (of projectile) [3.88], 69
Thermodynamic coefficients, 107	transfer equation [5.179], 120
THERMODYNAMIC FLUCTUATIONS, 116	Transformers, 149
Thermodynamic laws, 106	transmission coefficient
THERMODYNAMIC POTENTIALS, 108	Fresnel [7.232], 154
thermodynamic temperature [5.1], 106	potential barrier [4.59], 94
THERMODYNAMIC WORK, 106	potential step [4.42], 92
Thermodynamics, 105–121	potential well [4.49], 93
THERMOELECTRICITY, 133	transmission grating [8.27], 164
thermopower [6.81], 133	transmission line, 150
Thomson cross section, 8	coaxial [7.181], 150
Thomson scattering [7.238], 155	equations [7.171], 150
throttling process [5.27], 108	impedance
time (dimensions), 17	lossless [7.174], 150
time dilation [3.11], 64	lossy [7.175], 150
Time in astronomy, 177	input impedance [7.178], 150
Time series analysis, 60	open-wire [7.182], 150
Time-dependent perturbation theory, 102	paired strip [7.183], 150
TIME-INDEPENDENT PERTURBATION THEORY,	reflection coefficient [7.179], 150
102	vswr [7.180], 150
timescale	wave speed [7.176], 150
free-fall [9.53], 181	waves [7.173], 150
Kelvin-Helmholtz [9.55], 181	Transmission line impedances, 150
Titius-Bode rule [9.41], 180	Transmission line relations, 150
tonne (unit), 5	Transmission lines and waveguides, 150
top	transmittance coefficient [7.229], 154
asymmetric [3.189], 77	Transport properties, 113
symmetric [3.188], 77	transpose matrix [2.70], 24
symmetries [3.149], 74	trapezoidal rule [2.585], 61
top hat function (Fourier transform of)	triangle
[2.512], 54	area [2.254], 36
Tops and gyroscopes, 77	centre of mass [3.174], 76
torque, see couple	inequality [2.147], 30
Torsion, 81	plane, 36
torsion	spherical, 36
in a thick cylinder [3.254], 81	triangle function (Fourier transform of)
in a thin cylinder [3.253], 81	[2.513], 54
in an arbitrary ribbon [3.256], 81	triclinic system (crystallographic), 127
in an arbitrary tube [3.255], 81	trigonal system (crystallographic), 127
in differential geometry [2.288], 39	TRIGONOMETRIC AND HYPERBOLIC DEFINI-

TIONS, 34	velocity (dimensions), 17
Trigonometric and hyperbolic formulas, 32	velocity distribution (Maxwell-Boltzmann)
TRIGONOMETRIC AND HYPERBOLIC INTEGRALS,	[5.84], 112
45	velocity potential [3.296], 84
Trigonometric derivatives, 41	Velocity transformations, 64
Trigonometric relationships, 32	Venus data, 176
triple-α process, 182	virial coefficients [5.65], 110
true anomaly [3.104], 71	Virial expansion, 110
tube, see pipe	virial theorem [3.102], 71
Tully-Fisher relation [9.49], 180	vis-viva equation [3.112], 71
tunnelling (quantum mechanical), 94	viscosity
tunnelling probability [4.61], 94	dimensions, 17
turns ratio (of transformer) [7.163], 149	from kinetic theory [5.97], 113
two-level system (microstates of) [5.107],	kinematic [3.302], 85
114	shear [3.299], 85
111	viscous flow
U	between cylinders [3.306], 85
<i>U</i> (Stokes parameter) [8.92], 171	between plates [3.303], 85
UBV magnitude system [9.36], 179	through a circular pipe [3.305], 85
umklapp processes [6.59], 131	through an annular pipe [3.307], 85
uncertainty relation	Viscous flow (incompressible), 85
energy-time [4.8], 90	volt (unit), 4
general [4.6], 90	volt (unit), 4
momentum-position [4.7], 90	across an inductor [7.146], 147
number-phase [4.9], 90	bias [6.92], 134
underdamping [3.198], 78	Hall [6.68], 132
unified atomic mass unit, 5, 6	law (Kirchhoff's) [7.162], 149
uniform distribution [2.550], 58	standing wave ratio [7.180], 150
uniform to normal distribution transfor-	thermal noise [5.141], 117
mation, 58	transformation [7.164], 149
unitary matrix [2.88], 25	volume
units (conversion of SI to Gaussian), 135	dimensions, 17
Units, constants and conversions, 3–18	of cone [2.272], 37
universal time [9.4], 177	of cube, 38
Uranus data, 176	of cube, 38 of cylinder [2.270], 37
UTC [9.4], 177	of dodecahedron, 38
010 [3.4], 177	of ellipsoid [2.268], 37
\mathbf{V}	of icosahedron, 38
<i>V</i> (Stokes parameter) [8.94], 171	
van der Waals equation [5.67], 111	of octahedron, 38 of parallelepiped [2.10], 20
-	
Van der Waals Gas, 111 van der Waals interaction [6.50], 131	of pyramid [2.272], 37
	of revolution [2.281], 39
Van-Cittert Zernicke theorem [8.108], 172	of sphere [2.264], 37
variance estimator [2.542], 57	of spherical cap [2.276], 37
variations, calculus of [2.334], 42	of tetrahedron, 38
VECTOR ALGEBRA, 20	of torus [2.274], 37
VECTOR INTEGRAL TRANSFORMATIONS, 23	volume expansivity [5.19], 107
vector product [2.2], 20	volume strain [3.236], 80
vector triple product [2.12], 20	vorticity and Kelvin circulation [3.287],
Vectors and matrices, 20	

84	on a stretched sheet [3.274], 83
vorticity and potential flow [3.297], 84	on a stretched string [3.273], 83
vswr [7.180], 150	on a thin plate [3.268], 82
***	sound [3.317], 86
\mathbf{W}	surface (gravity) [3.320], 86
wakes [3.330], 87	transverse (shear) Alfvén [7.284], 158
Warm plasmas, 156	Waves in and out of media, 152
watt (unit), 4	Waves in lossless media, 152
wave equation [2.342], 43	Waves in strings and springs, 83
wave impedance	wavevector (dimensions), 17
acoustic [3.276], 83	weber (unit), 4
electromagnetic [7.198], 152	Weber Symbols, 126
in a waveguide [7.189], 151	weight (dimensions), 17
Wave mechanics, 92	Weiss constant [7.114], 144
Wave speeds, 87	Weiss zone equation [6.10], 126
wavefunction	Welch window [2.582], 60
and expectation value [4.25], 91	Weyl equation [4.182], 104
and probability density [4.10], 90	Wiedemann-Franz law [6.66], 132
diffracted in 1-D [8.34], 165	Wien's displacement law [5.189], 121
hydrogenic atom [4.91], 96	Wien's displacement law constant, 9
perturbed [4.160], 102	Wien's radiation law [5.188], 121
Wavefunctions, 90	Wiener-Khintchine theorem
waveguide	in Fourier transforms [2.492], 53
cut-off frequency [7.186], 151	in temporal coherence [8.105], 172
equation [7.185], 151	Wigner coefficients (spin-orbit) [4.136],
impedance	100
TE modes [7.189], 151	Wigner coefficients (table of), 99
TM modes [7.188], 151	windowing
TE_{mn} modes [7.190], 151	Bartlett [2.581], 60
TM _{mn} modes [7.192], 151	Hamming [2.584], 60
velocity	Hanning [2.583], 60
group [7.188], 151	Welch [2.582], 60
phase [7.187], 151	wire
Waveguides, 151	electric field [7.29], 138
wavelength	magnetic flux density [7.34], 138
Compton [7.240], 155	wire loop (inductance) [7.26], 137
de Broglie [4.2], 90	wire loop (magnetic flux density) [7.37],
photometric, 179	138
redshift [9.86], 184	wires (inductance of parallel) [7.25], 137
thermal de Broglie [5.83], 112	work (dimensions), 17
waves	(),
capillary [3.321], 86	X
electromagnetic, 152	X-ray diffraction, 128
in a spring [3.272], 83	A-ray diffraction, 128
in a thin rod [3.271], 82	Y
in bulk fluids [3.265], 82	-
in fluids, 86	yocto, 5
	yotta, 5
in infinite isotropic solids [3.264], 82	Young modulus

and Lamé coefficients [3.240], 81

magnetosonic [7.285], 158

and other elastic constants [3.250], 81 Hooke's law [3.230], 80 Young modulus (dimensions), 17 Young's slits [8.24], 164 Yukawa potential [7.252], 156

Z

Zeeman splitting constant, 7 zepto, 5 zero-point energy [4.68], 95 zetta, 5 zone law [6.20], 126