Introduction to Root Locus Design

In this section we will engage in a short exploration of compensator design in the time domain with a look at root-locus design of a velocity-feedback compensator for a simple "double integrator" system. This serves as an introduction to the topic of phase lead compensation which is used to improve transient performance and relative stability.

Gain compensation

First design example (Satellite Attitude Control). The system may be represented in block diagram form as shown in Figure 1. (Simulink model: <u>satellite.slx (satellite.slx)</u>)

Satellite Attitude Control

Figure 1 Satellite control with gain modulated torque

For this system the plant transfer function is

$$G(s) = \frac{1}{s^2}$$

Feedback:

$$H(s) = 1$$

Controller:

$$D(s) = K$$

The root locus equation is:

$$1 + KG(s)H(s) = 0$$

with root locus parameter = K.

Defining the problem in Matlab

```
In [1]:
```

```
G = tf(1,conv([1,0],[1,0]));
H = tf(1,1);
Go = G*H
```

Go =

1 --s^2

Continuous-time transfer function.

Note: The root locus gain K is implied in Matlab (it does not need to be defined)

In [2]:

rlocus(Go),title('Root locus diagram for gain modulated satellite attitude contr
ol')

Pick off an arbitrary gain

```
In [3]:
```

```
[K]=rlocfind(Go,3/4j)
```

K =

0.5625

Closed-loop transfer function

In [9]:

Gc =

Continuous-time transfer function.

$$G_c(s) = \frac{0.5625}{s^s + 0.5625}$$

In [5]:

step(Gc,45),title('Step response for closed-loop system with K=sqrt(3)/2')

With velocity feedback,

The block diagram becomes that shown in Figure 2 (Simulink model: velfb.slx (velfb.slx)).

The root locus equation is

$$1 + \frac{KK_T(s + 1/K_T)}{s^2} = 0$$

where KK_T is the root locus gain.

Satellite Attitude Control with velocity (or rate) feedback

Figure 2 System with velocity feedback

```
In [6]:
```

```
Kt = 0.5;
Go2=tf(Kt*[1, 1/Kt],[1,0,0]);
rlocus(Go2),title('Root locus of system with velocity feedback')
```


Closed-loop step response

$$G_o(s) = \frac{1}{s} \times \frac{K/s}{1 + (KK_T)/s}$$

$$G_o(s) = \frac{K}{s(s + KK_T)}$$

$$G_c(s) = \frac{K}{s^2 + KK_T s + K}$$

In [7]:

```
Integrator=tf(1,[1,0]);
G1=feedback(K*Integrator,Kt)*Integrator;
Gc2=feedback(G1,1)
```

Gc2 =

Continuous-time transfer function.

In [8]:

step(Gc2),title('Step response for velocity feedback (rate) compensated system')

