Exam 2 (Spring 2022)

1. A design engineer tries the configuration in Figure 1 for a rectifier circuit. He uses identical diodes D_1 , D_2 , D_3 , D_4 that can be modeled with a constant voltage drop model with $\mathbf{V}_{D0} = 0.5 \text{V}$.

The sinusoidal input signal at v_{AC} is 120Vrms at 60Hz. $R_{LOAD} = 5K\Omega$

For his design

- (a) Plot the v_{OUT} vs. v_{IN} for the circuit. Clearly indicate the values of all significant points and slopes of all segments. Label all axes. [20 points] (b) For the given input [15 points]
 - (i) Draw the corresponding output voltage v_{OUT} vs. time.
 - (ii) Find the average value of the output voltage v_{OUT}.
 - (iii) Find the peak diode current in each diode.
- (c) What change can he do to his design to improve its performance. Explain your answer clearly. [5 points]

2. A designer has to build a regulator circuit as shown in Figure 2 using one of two types of diodes.

Given that **both types of diodes** have a voltage of 0.9V at 1mA current. For the diode **of TYPE A** the voltage changes by 0.1V/decade change in current while for the diode **of TYPE B** the voltage changes by 0.1V when the current through it doubles.

Do not assume the value for V_T.

The regulator needs to provide an output voltage v_{OUT} of 12V and be designed to have good performance for a load current range from no load to 8 mA.

- (i) Which type of diode should the designer pick for building a regulator that has good performance? Clearly explain the reasons for your choice and what performance you were optimizing for. [8]
- (ii) How many diodes of the type chosen in (i) would be in the string to obtain the required vout at nominal I_{supply} and no-load condition. [10]
- (iii) Draw the i-v curve of the diode chosen in (i). Mark the operating point at nominal supply and no load. Clearly label all axes and critical points on the graph. [8]
- (iv) What is the percentage change in the output when a 8mA load current is drawn from the regulator. [10]

Diode Rectifiers

1. A center-tapped transformer is used to configure a rectifier as shown in Figure 1 where identical diodes D_1 , D_2 , D_3 and D_4 are used. Assume that these diodes are **ideal**. The input v_{IN} is a sinusoidal input.

For each half cycle of the input (positive half (Fig. 1(a)) and negative half (Fig. 1(b)): (i) Find and indicate the state (ON or OFF) of the diodes. (ii)

Clearly mark the current flow in the circuit and clearly indicate the direction of the current *in the diodes and load resistors* RL1 and RL2.

(iii)If the input v_{IN} = 170sin2 π 60t is given to the circuit, draw the input v_{IN} and the corresponding outputs v_{OUT1} and v_{OUT2} across the loads.

- (iv) What is the average value of v_{OUT1} and v_{OUT2} .
- (v) What is the peak diode current in each diode
- (vi) what is the maximum reverse voltage seen by each diode.

Negative half cycle

Diode Regulator

- 1. A voltage regulator is shown in Figure 1 A supply current of I_{IN} =10mA is provided. The diodes D_{1a} , D_{1b} , D_{1c} , and D_{1d} have a 0.65V drop at a current of 1mA and their voltage changes by 0.1V/decade change in current.
 - (i) Draw the i-v curve for the diodes D_{1a.} Label axes and all relevant points. Clearly mark the operating points of the diodes on the graph.
 - (ii) What is the output voltage V_{OUT} obtained for the designs under no load conditions? **Clearly show the steps of your work**.
 - (iii) What is the load regulation (□Vo∪т/□IL) for a load current variation of 0mA to 4mA.

What is the percentage change in Vout

