Practical Meta-analysis in R

Saskia le Cessie Katerina Papadimitropoulou

5 April 2018

R and R-studio

- ▶ R is a programming language, originally 'written' in 1992 by Ross Ihaka and Robert Gentleman (yes, "R" stems from the first letter of their first names), inspired by another programming language called S.
- ► Throughout this practical you'll be encouraged to use R-studio. R-studio is a free, open-source "Integrated Development Environment" (IDE) for R (for Windows, Mac and Linux).
- Installing R-studio requires only two steps:
 - Download and install "base R" from the R project website: https://cloud.r-project.org/.
 - Download and install R-studio from the R-studio website https://www.rstudio.com/products/rstudio/download/.

Install and load libraries

```
# load libraries
install.packages(c("foreign", "metafor", "meta"))

library(foreign)
library(metafor)
library(meta)

# set your working directory
setwd("D:/Meta-analysis course LUMC")
```

EXERCISE I - Diuretic dataset

```
# Load the dataset
diuretic = read.dta("diuretic.dta")
# Take a look at the data
View(diuretic)
```

- There are two ways to calculate the (log) odds ratios
 - Manually; fist calculating the number of healthy subjects (without pre-eclampsia)
 - Using "escalc" function in R

EXERCISE I - Perform the MA

```
res1 = rma(yi, vi, data = diuretic, method = "FE",
   measure = "OR")
res1
##
## Fixed-Effects Model (k = 9)
##
## Test for Heterogeneity:
## Q(df = 8) = 27.2649, p-val = 0.0006
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3980 0.0893 -4.4548 <.0001 -0.5731 -0.2229 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
```

Forestplot - Fixed effects analysis

	Treated		Con	trol		
Study	pet+	ht	pec+	hc		Odds Ratio [95% CI]
Fallis	6	32	18	22		0.23 [0.08, 0.67]
Cuadros	12	999	35	725		0.25 [0.13, 0.48]
Menzies	14	43	24	24		0.33 [0.14, 0.74]
Flowers	21	364	17	117		0.40 [0.20, 0.78]
Landesman	138	1232	175	1161	⊢	0.74 [0.59, 0.94]
Kraus	15	491	20	504		0.77 [0.39, 1.52]
Weseley	14	117	14	122		1.04 [0.48, 2.28]
Campbell	65	88	40	62	→	1.14 [0.69, 1.91]
Tervila	6	102	2	101	-	2.97 [0.59, 15.07]
FE Model					+	0.67 [0.56, 0.80]
					· · · · · · · · · · · · · · · · · · ·	
					0.05 0.25 1 4	
					Odds Ratio (log scale)	

Random effects meta-analysis

```
res2 = rma(yi, vi, data = diuretic, method = "REML",
    measure = "OR") # default
```

Many iterarive and non-iterative approaches to estimate τ^2 :

$$Y_i = \theta + \theta_i + \epsilon_i$$

$$\theta_i \sim N(0, \tau^2)$$

$$\epsilon_i \sim N(0, V_i)$$

- DL: DerSimonian-Laird (most commonly used)
- ► EB: Empirical Bayes
- ► HE: Hedges
- ► Hs: Hunter-Schmidt
- ML: Maximum-likelihood
- ▶ REML: Restricted maximum-likelihood (default)
- SJ: Sidik-Jonkman

EXERCISE II - Streptokinase dataset

Odds ratio as outcome - using function "metabin" from package meta

Cumulative meta-analysis

```
res4 = metacum(res1, sortvar = year, pooled = "random")
forest(res4)
```


EXERCISE III - cholesterol dataset

Fixed effects meta-analysis - Forestplot

Random effects meta-analysis

```
##
## Random-Effects Model (k = 28; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0313 (SE =
## tau (square root of estimated tau^2 value): 0.1770
## I^2 (total heterogeneity / total variability): 47.24%
## H^2 (total variability / sampling variability): 1.90
##
## Test for Heterogeneity:
## Q(df = 27) = 49.6904, p-val = 0.0049
##
## Model Results:
##
## estimate
                se zval pval ci.lb ci.ub
## -0.2128 0.0567 -3.7530 0.0002 -0.3240 -0.1017
##
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
## Signif. codes:
```

Forestplot with prediction interval

```
forest(res2, atransf = exp, slab = chol$trialname,
    addcred = TRUE, col = c("blue", "red"))
```


Meta-regression

Cholesterol level reduction as covariate

Meta-analytic Scatterplot

Observed outcomes (ORs) vs individual studies plotted against cholreduc

Funnelplot

