实验成绩:	
教师:	

计算机组成原理 实验报告

姓	名:	
班	号:	
学	号.	

哈尔滨工业大学计算机硬件实验中心

2023年4月

实验四 控制器

4.1 微程序控制器实验

一、实验目的

二、实验预习

- 1、阅读实验指导书,然后回答问题。
 - (1) 微指令字长共 24 位,控制位顺序如表 4-1-1:

表 4-1-1 微指令格式

 23
 22
 21
 20
 19
 18-15
 14-12
 11-9
 8-6
 5-0

 M23
 M22
 WR
 RD
 IOM
 S3-S0
 A字段
 B字段
 C字段
 MA5-MA0

R 字段

		A	字段
14	13	12	选择
0	0	0	NOP
0	0	1	LDA
0	1	0	LDB
0	1	1	LDRO
1	0	0	保留
1	0	1	保留
1	1	0	保留

1 1 1 LDIR

	ט	1.	PX.
11	10	9	选择
0	0	0	NOP
0	0	1	ALU_B
0	1	0	RO_B
0	1	1	保留
1	0	0	保留
1	0	1	保留
1	1	0	保留
1	1	1	保留

	C 字段										
	8 7 6 选择										
	0	0	0	NOP							
	0	0	1	P<1>							
	0	1	0	保留							
	0	1	1	保留							
	1	0	0	保留							
	1	0	1	保留							
	1	1	0	保留							
I	1	1	1	保留							

其中 MA5...MA0 为 6 位的 () , A、B、C 为三个 () , 分别由三个控制位译码出多位。C 字段中的 P<1>为 ()。其功能是根据机器指令及相应微代码进行译码,使微程序转入相应的 () , 从而实现完成对指令的识别,并实现微程序的分支。

(2)本实验安排了四条机器指令,分别为 ADD(0000 0000)、IN(0010 0000)、OUT(0011 0000)和HLT(0101 0000)。括号中为各指令的二进制代码,指令格式如下,请补充说明部分。

助记符	机器指令码	说明
IN	0010 0000	()
ADD	0000 0000	()
OUT	0011 0000	()
HLT	0101 0000	()

实验中机器指令由()手动给出,其余单元的控制信号均由()自动产生。

(4) 将全部微程序按微指令格式变成二进制微代码,请对照表 4-1-2,结合四条机器指令,回答问题。

表 4-1-2 二进制微代码表

地址	十六进制	高五位	S3-S0	A 字段	B 字段	C字段	MA5-MA0
00	00 00 01	00000	0000	000	000	000	000001
01	00 70 70	00000	0000	111	000	001	110000
04	00 24 05	00000	0000	010	010	000	000101
05	04 B2 01	00000	1001	011	001	000	000001
30	00 14 04	00000	0000	001	010	000	000100
32	18 30 01	00011	0000	011	000	000	000001
33	28 04 01	00101	0000	000	010	000	000001
35	00 00 35	00000	0000	000	000	000	110101

写出连续执行四条机器指令(IN-ADD-OUT-HLT)程序的每条微指令的下地址执行顺序

$$000000 \! \to \! 000001 \! \to () \to () \to () \to 000001 \! \to () \to \! 000001 \! \to () \to \! 000001 \! \to ()$$

三、实验原始记录

(一) 本机运行

1、按照实验指导书的步骤完成操作,并填写表格。

表 4-1 程序运行过程

				- 1-1-7 4										
	7H HH		微指令											
机器 指令	机器 指令 码	地址	下地址	高五位	S3-S0	A 字	B 字	C 字	MA5- MA0					
	. 4					段	段	段						
		00												
IN	0010 0000	01	通过 P<1> 测试获得											
		30												
	0000													
ADD	0000													

OUT	0011 0000				
HLT	0101 0000				
ILI	0000				

通过 IN 单元输入的值为(),运行结束后,通过 OUT 单元输出的值为()

(二) 联机运行

(1) 观测数据通路图

打开 TDX-CMX 软件,在菜单上选择【实验】—【微控器实验】,打开本实验的数据通路图,也可以通过工具栏上的下拉框打开数据通路图。

操作方法同本机运行,仔细观察每条机器指令的执行过程,体会后续微地址被强置转换的过程,这是计算机识别和执行指令的根基。

按本机运行的顺序给出数据和指令,观察最后的运算结果是否正确。

(2) 观测微程序流图

打开数据通路图后,点击"【调试】—【微程序流图】",打开微程序流程图,操作方法同本机运行,跟踪显示每条机器指令的执行过程。

(三) 观测信号时序图

选	择观察信号					-		X
	□ ALU_B# □ IOW# □ ALU	□ LDA □ IOR# □ MAR	□ LDB □ SE5SE0 □ MCR	S3S0 R0_E# IR	□ Fc □ LDRO ☑ MC	□ Fz □ NMA □ IN	□ A □ RO □ OUT	□ B □ LDIR
					○ 全选		确定	取消

(1) 按实验指导书操作步骤,将得到的时序图记录如下:

四、思考题

机器指令 30H(即 OUT 指令)执行时,观察寄存器 R0 中的数据何时送入 OUT 单元? 受哪些信号影响?

4.2 CPU 与简单模型机设计实验

一、实验目的

二、实验预习

(1) 实验 4-2 在 4-1 微程序控制器实验的基础上增加了三个部件,一是(),另一个是(),还有就是(),因而在微指令中应增加相应的控制位,其微指令格式

如表 4-2-1 所示:

表 4-2-1 微指令格式

Γ	23	22	21	20	19	18-15	14-12	11-9	8-6	5-0
	M23	M22	WR	RD	IOM	S3-S0	A字段	B字段	C字段	MA5-MAO
					l l					

A	段	B 字段					C字段					
14 1	3]	12	选择	11	10	9	选择		8	7	6	选择
0 (0	0	NOP	0	0	0	NOP		0	0	0	NOP
0 (0	1	LDA	0	0	1	ALU_B		0	0	1	P<1>
0	1	0	LDB	0	1	0	RO_B		0	1	0	保留
0	1	1	LDRO	0	1	1	保留		0	1	1	保留
1 (0	0	保留	1	0	0	保留		1	0	0	保留
1 (0	1	LOAD	1	0	1	保留		1	0	1	LDPC
1 :	1	0	LDAR	1	1	0	PC_B		1	1	0	保留
1	1	1	LDIR	1	1	1	保留		1	1	1	保留

简述微指令与 4-1 中微指令控制位有哪些不同?

(2)设计一段机器程序,要求从 IN 单元读入一个数据,存于 R0,将 R0 和自身相加,结果存于 R0,再将 R0 的值送 OUT 单元显示。

根据要求可以得到如下程序, 地址和内容均为二进制数, 补充程序说明

地 址 内容		助记符	说 明		
00000000	00100000	; START: IN RO	()	
00000001	00000000	; ADD R0,R0	()	
00000010	00110000	; OUT RO	()	
00000011	11100000	; JMP START	()	
00000100	00000000	;	()	
00000101	01010000	; HLT	()	

(3)对照实验指导书二进制微代码表,结合上述机器程序 $(IN \to ADD \to OUT \to JMP \to HLT)$,写出执行机器程序时微指令下地址的变化情况(自行填写)(

三、实验原始记录

按照实验指导书的步骤完成操作,并填写表格。

表 4-1 程序运行过程

	农 1 在月 2 日 2 日									
		TH 88	微指令							
机器指令	MEM 地址	机器 指令 码	地址	下地址	高五 位	S3-S0	A 字 段	B 字 段	C 字 段	MA 5-M A0
			00							
IN	00	20	01	通过 P<1> 测试获得						
			30							
ADD	01	00								
OUT	02	30								
JMP addr	03 04	E0 00								
HLT	05	50								

通过 IN 单元输入的值为(),运行结束后,通过 OUT 单元输出的值为()

四、思考题

指导书给出的程序中,跳转到了 START, 即地址 00, 程序将循环执行前四条指令, 那么能否实现停机操作? 试通过改写程序代码完成停机(将机器指令列出即可, 不需要实现)。

实验成绩

~ · · · · · · · · · · · · · · · · · · ·				
预习 (2分)	操作(6分)	报告(2分)	实验成绩	备注
签字:	签字:	签字:		