Regresja liniowa

Regresja liniowa to tworzenie modeli przedstawiających wielkość, której wartość chcemy przewidzieć (zmienna zależna) jako kombinację liniową predyktorów (zmiennych zależnych).

Struktura modelu ma postać

$$\tilde{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n$$

lub w formie macierzowej

$$\tilde{\mathbf{y}} = [1 \ \mathbf{X}] \boldsymbol{\beta}$$

gdzie wektor wartości zmiennych zależnych jest przewidywany na podstawie macierzy danych i wektora współczynników β

Współczynnik β_0

w nomentkalturze anglojęzycznej jest nazywany *intercept* ponieważ jest to punkt przecięcia się z osią y gdy wszystkie predyktory są równe 0.

Aby wyznaczyć parametry modelu liniowego potrzebujemy wektora danych uczących, tj. znanych nam wartości zmiennej zależnej y

oraz odpowiadająxcej mu macierzy predyktorów X

. Macierz predyktorów nosi nazwę *design matrix*, i bardzo użytyeczne do jej wyznaczenia (w oparciu o dane w forme dataframe) jest pakiet <u>patsy</u>, a w szczególności funkcja dmatrices.

Model regresyjny ma mocne umocowanie statystyczne, jednak w ramach zajęć będziemy traktować go machinistycznie jak jedną z metod uczenia maszynowego. Do tworzenia takich modeli służy klasa LinearRegression

Do analizy regresji liniowej wykorzystywać będziemy pakiet scikit-learn oraz zawarte w nim klasy, głównie w modułach linear model, metrics oraz model selection.

Dane uczące i dane testowe

Zazwyczaj rozwiązując problem nie mamy dostępu do dodatkowych danych testowych uzupełniających nasze dane uczące. Dlatego też, popularną praktyką jest podzielenie posiadanego zbioru danych w sposób losowy na dwa zbiory: uczący i testowy. Do tego służy funkcja train test split z modułu model selection.

Zadanie 1

Na podstawie danych zawartych w pliku SCORES.csv wykonaj i oceń regresję liniową, gdzie Twoją daną niezależną (predyktorem) będą godziny poświęcone na przygotowanie, a wynikową uzyskane punkty. Wykonanie zadania powinno składać się z następujących kroków:

- 1. Zaimportowanie niezbędnych bibliotek w szczególności tych tworzących modele liniowe z "scikit-learn", a także biblioteki do operacji na danych oraz tworzenia wykresów.
- 2. Odczytaj dane z pliku SCORES.csv. Pomocne w interpretacji danych sa metody: head(), describe(), shape.
- 3. Wykonaj wstępny wykres uzyskanych danych (typu "scatter")
- 4. Dokonaj podziału danych na zbiory danych niezależnych (wejściowe, X) oraz zaleznych (wyjściowe, y) dla swojego modelu, a następnie podziel zbiór na dane testowe i treningowe (30%)
- 5. Utwróz model regresji liniowej za pomocą sklearn.
- 6. Wypisz i przeanalizuj wyliczone wskaźniki dla modelu: coef oraz intercept. Czym one są i do czego służą?
- 7. Wykorzystając stworozny model dokonaj predykcji dla części testowej X. Porównaj wynik (y_pred) z posiadanymi danymi (y_test).
- 8. Wykonaj wykres konfrontujący dane testowe (X_test, y_test; typu "scatter") oraz predykcje (X_test, y_pred; linia prosta)
- 9. Dokonai walidacii uzvskanych predykcii wykorzystujac metryki: średni bład bezwzgledny (Mean Absolute

Error), błąd średniokwadratowy (Mean Squared Error) oraz pierwiastek błędu średniokwadratowego (Root Mean Squared Error).

Następnie utworzony skrypt wykorzystaj na danych zawartych w SBP.csv, gdzie predyktorem będzie wiek, a wynikiem ciśnienie (SBP). Czy uzyskane wyniki z modelu są równie zadowalające?

```
In [3]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as skl
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, mean_absolute_error
import math
```

```
In [4]:
```

```
df = pd.read_csv(r'SCORES.csv')
df.head()
```

Out[4]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

In [5]:

```
df.describe()
```

Out[5]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

In [6]:

```
plt.scatter(df['Hours'], df['Scores'])
plt.xlabel('Hours')
plt.ylabel('Scores')
```

Out[6]:

```
Text(0, 0.5, 'Scores')
```

```
90 -
80 -
70 -
```

```
S 60 - S 50 - 40 - 30 - 20 - 1 2 3 4 5 6 7 8 9 Hours
```

In [7]:

```
X_train, X_test, y_train, y_test = train_test_split(df[['Hours']], df[['Scores']], test_
size=0.3, random_state=42)
reg = linear_model.LinearRegression()
reg.fit(X_train, y_train)
print("Coefficients: \n", reg.coef_)
print("Intercept: \n", reg.intercept_)
```

Coefficients: [[9.71054094]] Intercept: [2.79419668]

In [8]:

```
y_pred = reg.predict(X_test)
plt.scatter(X_test, y_test, color="black")
plt.plot(X_test, y_pred, color="blue", linewidth=3)
```

Out[8]:

[<matplotlib.lines.Line2D at 0x1e6b2000220>]

In [9]:

```
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error: %.2f" % mse)
print("Root mean squared error: %.2f" % math.sqrt(mse))
print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred))
```

Mean squared error: 23.62 Root mean squared error: 4.86 Mean absolute error: 4.50

Regresja dla SBP.csv

```
In [10]:
```

```
df = pd.read_csv(r'SBP.csv')
df.head()
```

```
Out[10]:
```

```
SBP
  Age
    60
       117
    61
       120
       145
    74
    57
       129
       132
    63
In [11]:
plt.scatter(df['Age'], df['SBP'])
plt.xlabel('Age')
plt.ylabel('SBP')
Out[11]:
Text(0, 0.5, 'SBP')
  160
  150
  140
  130
  120
  110
        55
                60
                       65
                               70
                                      75
In [12]:
X_train, X_test, y_train, y_test = train_test_split(df[['Age']], df[['SBP']], test_size=
0.3, random state=42)
reg = linear model.LinearRegression()
reg.fit(X_train, y_train)
print("Coefficients: \n", reg.coef_)
print("Intercept: \n", reg.intercept_)
Coefficients:
 [[1.44882707]]
Intercept:
 [36.17936475]
In [13]:
y_pred = reg.predict(X test)
plt.scatter(X_test, y_test, color="black")
plt.plot(X_test, y_pred, color="blue", linewidth=3)
Out[13]:
[<matplotlib.lines.Line2D at 0x1e6b20cffd0>]
145
140
```

135

130

125

```
60 62 64 66 68 70 72 74 76
```

In [14]:

```
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error: %.2f" % mse)
print("Root mean squared error: %.2f" % math.sqrt(mse))
print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred))
```

Mean squared error: 63.49 Root mean squared error: 7.97 Mean absolute error: 7.18

Zadanie 2

Na podstawie danych zawartych w pliku PETROL.csv wykonaj i oceń regresję liniową. Jako daną zależną wykorzystaj zużycie paliwa, a pozostałe - jako predyktory. Wykonanie zadania powinno składać się z kroków podobnych do tych z zadania poprzedniego.

Czy uzyskane wyniki predykcji modelu są dobre? Co mogło mieć pozytywny/negatywny wpływ na taki wynik?

```
In [15]:
```

```
df = pd.read_csv(r'Petrol.csv')
print(df.shape)
df.head()
```

(48, 5)

Out[15]:

Podatek_paliwowy Sredni_przychod Utwardzone_autostrady Procent_ludnosci_z_prawem_jazdy Zuzycie_paliwa O 9.0 3571 1976 541 0.525 4092 1250 0.572 524 9.0 2 1586 561 9.0 3865 0.580 3 7.5 4870 2351 0.529 414 8.0 4399 431 0.544 410

```
In [16]:
```

```
X_train, X_test, y_train, y_test = train_test_split(df[['Podatek_paliwowy', 'Sredni_przy
chod', 'Utwardzone_autostrady', 'Procent_ludnosci_z_prawem_jazdy']], df[['Zuzycie_paliwa'
]], test_size=0.3, random_state=42)
reg = linear_model.LinearRegression()
reg.fit(X_train, y_train)
print("Coefficients: \n", reg.coef_)
print("Intercept: \n", reg.intercept_)
```

```
Coefficients:

[[-3.99336011e+01 -4.53815410e-02 -4.95597538e-03 1.03711642e+03]]

Intercept:

[513.1398382]
```

In [17]:

```
y_pred = reg.predict(X_test)
```

In [18]:

```
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error: %.2f" % mse)
print("Root mean squared error: %.2f" % math.sqrt(mse))
print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred))
```

Mean squared error: 8076.67 Root mean squared error: 89.87 Mean absolute error: 63.03

Regresja logistyczna

Naturalnym rozwojem modeli linowych, są uogólnione modele liniowe (generalized linear models).

Ich przewodnią ideą jest to, że zamiast reprezentować zmienną zależną jako kombinację liniową niezależnych, staramy się stworzyć model liniowy pewnej funkcji zmiennej zależnej.

$$f(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

wymaga się, aby funkcja ta była odwracalna, dzięki czemu

$$y = f^{-1}(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)$$

Takie przekształcenie stosujemy wtedy, gdy zbiór wartości zmiennej zależnej nie jest całym zbiorem liczb rzeczywistych tylko jest w jakiś sposób ograniczony. Na przykład do przedziału [0,1]

- , do wartości dodatnich lub wartości całkowitych. W tens posób można wybrać funkcję $\,f\,$
- , której dziedziną jest zbiór wartości y

zaś obrazem jest zbiór liczb rzeczywistych.

Jedną z takich funkcji jest tzw. funkcja logistyczna, która odpowiada zbiorowi [0,1] przez co często jest wykorzystywana do analizy prawdopodobieństwa przynależności do danej klasy, lub też inaczej jako klasyfikator.

W takiej sytuacji zmienne zależne powinny przyjmować wyłącznie wartości $\,0\,$

i 1

co odpowiada temu czy dany punkt należy do interesującej klasy. Model logistyczny poznwala na określenie estymaty prawdopodobieństwa, czy punkt należy czy nie do danej klasy.

Do tworzenia modeli logistycznyc służy klasa: LogisticRegression

Zadanie 3

Na podstawie danych zawartych w pliku HEART.csv wykonaj i oceń regresję logistyczną, gdzie Twoją daną zależną jest kolumna "num". Wykonanie zadania powinno składać się z następujących kroków:

- 1. Zaimportowanie niezbędnych bibliotek w szczególności tych tworzących modele liniowe z "scikit-learn", a także biblioteki do operacji na danych oraz tworzenia wykresów.
- 2. Odczytanie danych z pliku HEART.csv. Pomocne w interpretacji danych są metody: head(), describe(), shape.
- 3. Przetworzenie danych, tj: oznaczenie braku danych ("?") na NaN, usunięcię kolumn zawierających zbyt dużo brakujących danych (3 kolumny), usunięcie wierszy z brakującymi wartościami.
- 4. Zakoduj niezależne zmienne kategorialne np: jako wartości "dummy", za pomoca metody get_dummies(). Zmienne kategorialne to takie, które reprezentuja przynależność do kategorii. W przypadku naszych odfiltrowanych danych będą to kolumny: cp, restecg, fbs, sex, exang. Jako, że trzy ostatnie już zapisane są w formie 0 i 1 tylko cp i restecg wymagają tej operacji.
- 5. Dokonaj podziału danych na zbiory danych niezależnych (wejściowe, X) oraz zależnych (wyjściowe, y) dla swojego modelu, a następnie podziel zbiór na dane testowe i treningowe (20%).
- 6. Utwróz model regresji logistycznej.
- 7. Oceń wynik za pomocą dostępnych metryk (np: metody związane z modelem czy classification_report() z sklearn)

Możesz również spróbować ustandaryzować dane (np. poprzez skalowanie) po podziale na zbiory treningowy i testowy.

```
In [110]:
```

```
from sklearn.linear_model import LogisticRegression
from numpy import nan
from sklearn.utils.validation import column_or_1d
```

```
In [79]:
df = pd.read csv(r'HEART.csv')
df.head()
Out[79]:
       sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal num
                               0
                                                                       ?
                                                                            ?
0
   28
         1
             2
                    130
                        132
                                       2
                                             185
                                                     0
                                                            0.0
                                                                    ?
                                                                                 0
    29
         1
             2
                    120
                         243
                               0
                                             160
                                                     0
                                                            0.0
                                                                   ?
                                                                       ?
                                                                            ?
                                                                                 0
             2
                    140
                           ?
                               0
                                                     0
                                                                       ?
                                                                            ?
2
    29
                                             170
                                                            0.0
                                                                                 0
3
    30
         0 1
                    170
                        237
                               0
                                             170
                                                     0
                                                            0.0
                                                                   ?
                                                                       ?
                                                                            6
                                                                                 0
                                       1
    31
         0 2
                    100
                         219
                                             150
                                                     0
                                                                       ?
                                                                            ?
                                                                                 0
                               0
                                                            0.0
In [80]:
df.describe()
Out[80]:
                                          oldpeak
                                                       num
             age
                        sex
                                   ср
count 294.000000 294.000000 294.000000 294.000000
        47.826531
                   0.724490
                              2.982993
                                         0.586054
                                                    0.360544
 mean
        7.811812
  std
                   0.447533
                              0.965117
                                         0.908648
                                                    0.480977
       28.000000
                   0.000000
                              1.000000
                                         0.000000
                                                    0.000000
  min
 25%
        42.000000
                   0.000000
                              2.000000
                                         0.000000
                                                    0.000000
 50%
        49.000000
                   1.000000
                              3.000000
                                         0.000000
                                                    0.000000
 75%
        54.000000
                   1.000000
                              4.000000
                                         1.000000
                                                    1.000000
  max 66.000000
                   1.000000
                              4.000000
                                         5.000000
                                                    1.000000
In [81]:
df.shape
Out[81]:
(294, 14)
In [82]:
df.replace('?', nan, inplace=True)
In [83]:
df.isnull().sum()
Out[83]:
age
                   0
sex
                   0
                   0
ср
trestbps
                   1
chol
                  23
                   8
fbs
restecg
                   1
                   1
thalach
exang
                   1
                   0
oldpeak
slope
                 190
                 291
са
                 266
thal
```

from sklearn.metrics import classification_report

```
0
num
dtype: int64
In [84]:
df.drop(['slope','ca','thal'], axis=1, inplace=True)
In [85]:
df.shape
df.isnull().sum()
Out[85]:
             0
age
             Ω
sex
             \cap
ср
             1
trestbps
            23
chol
fbs
             8
             1
restecq
thalach
             1
exang
             0
oldpeak
num
             0
dtype: int64
In [86]:
for column in df:
   index del = df[column].index[df[column].isnull()]
   df.drop(index del, axis=0, inplace=True)
In [94]:
df.columns
Out[94]:
dtype='object')
In [95]:
X train, X test, y train, y test = train test split(df[['age', 'sex', 'cp', 'trestbps',
'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak']], df[['num ']], test_size
=0.2, random state=42)
In [101]:
print(y_train, X_train)
    num
241
            1
73
            0
17
            0
60
            0
283
            1
. .
21
            0
215
            1
79
            0
123
            0
119
            0
[208 rows x 1 columns]
                         age sex cp trestbps chol fbs restecg thalach exang oldpeak
241 54 1 3 120 237
                                           150
                                                      1.5
                                     0
                                                  1
                             0
73
     45
         0 4
                    132 297
                             0
                                      0
                                           144
                                                   0
                                                         0.0
          1 3
                    112 340
17
                                      0
     36
                              0
                                           184
                                                   0
                                                         1.0
         0 2
                    120 201
60
                                      0
     43
                               0
                                           165
                                                   0
                                                         0.0
          1 4
                    160 291
                                                         3.0
283
     47
                               0
                                      1
                                           158
                                                   1
```

```
. .
                       . . .
                                                . . .
                                                               . . .
21 37 0 3
215 52 1 4
79 46 1 2
123 52 0 2
                                      0 0 0 0
                                               142 0
120 1
165
                      130 211 0
                                                               0.0
                                                             2.0
                      130 225 0
                                               165 1
148 0
120 0
                      140 275 0
                                               165
                                                             0.0
                      120 210 0
                                                             0.0
                                       0
119 51 0 3
                      150 200 0
                                                               0.5
[208 rows x 10 columns]
In [107]:
logRegr = LogisticRegression(max iter=10000)
In [108]:
logRegr.fit(X_train, column_or_1d(y_train))
Out[108]:
LogisticRegression(max iter=10000)
In [109]:
y_pred = logRegr.predict(X test)
In [114]:
print(classification_report(y_test, y_pred))
              precision recall f1-score
                                              support
           0
                   0.90
                             0.85
                                       0.88
                                                   33
```

0.77

0.84 0.85 0.85

0.85

0.85

0.81

0.85

0.84

0.85

20

53

53

53

1

accuracy

macro avg

weighted avg