

Description

The VSM30N02 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =20V,I_D =30A

 $R_{DS(ON)}$ <12m Ω @ V_{GS} =10V (Typ:10.5m Ω)

 $R_{DS(ON)}$ <13m Ω @ V_{GS} =4.5V (Typ:11m Ω)

 $R_{DS(ON)}$ <18m Ω @ V_{GS} =2.5V (Typ:14m Ω)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Load switching
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM30N02-TC	VSM30N02	TO-220C	-	-	-

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	20	V	
Gate-Source Voltage	V _G s	±12	V	
Drain Current-Continuous	I _D	30	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	21	Α	
Pulsed Drain Current	I _{DM}	100	Α	
Maximum Power Dissipation	P _D	40	W	
Single pulse avalanche energy (Note 5)	E _{AS}	150	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{θJC}	3.8	°C/W
---	------------------	-----	------

Electrical Characteristics (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						•
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	0.5	0.7	1.2	V
		V _{GS} =10V, I _D =20A	-	10.5	12	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A	-	11	13	mΩ
		V _{GS} =2.5V, I _D =20A	-	14	18	mΩ
Forward Transconductance	g Fs	V _{DS} =5V,I _D =20A	10	-	-	S
Dynamic Characteristics (Note4)						•
Input Capacitance	C _{lss}	., ,,,,,		1544		PF
Output Capacitance	C _{oss}	$V_{DS}=10V, V_{GS}=0V,$		210.1		PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz		201.4		PF
Switching Characteristics (Note 4)						•
Turn-on Delay Time	t _{d(on)}	V _{GS} =10V,V _{DS} =10V	-	4.5	-	nS
Turn-on Rise Time	t _r		-	9.2	-	nS
Turn-Off Delay Time	t _{d(off)}	R _L =0. 5 Ω ,R _{GEN} =3 Ω	-	18.7	-	nS
Turn-Off Fall Time	t _f		-	3.3	-	nS
Total Gate Charge	Qg			23.5		nC
Gate-Source Charge	Q _{gs}	V _{GS} =4.5V,V _{DS} =10V,I _D =20A		2.8		nC
Gate-Drain Charge	Q _{gd}			5.75		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	30	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 20A		18	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	9.5	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=10V,V_G=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance