TECHNIQUES ALGORITHMIQUES ET PROGRAMMATION

Test de contrôle continu 1h20 - aucun document autorisé

IMPORTANT : Les étudiants bénéficiant d'un 1/3-temps n'ont pas à faire les 3 dernières questions. Solution. Total des points : 34 points, 1/3-temps : 25 points et maximum de la moyenne si autres questions traitées.

Question 1. Donnez le tas résultant de l'insertion dans un tas minimum supposé vide au départ des

Tas minimum de caractères alphabétiques

0 lettres du mot algorithme ajoutées une par une en le lisant de gauche à droite. On trie les lett elon l'ordre alphabétique. Par exemple : g <r et="" m="">e.</r>						

SOLUTION. 5 points

Question 2. Appliquer trois fois l'opération de dépilement (pop) au tas de la question précédente. Donner le tas obtenu après l'exécution de chacune des opérations.

Solution. 3 points (avec question suivante)

Question 3. Quelles sont dans l'ordre les trois lettres ainsi supprimées?

SOLUTION. a, e, g

Algorithme A*

On considère le graphe valué suivant, ainsi que les deux heuristiques h_1 et h_2 estimant la distance entre un sommet donné et la cible t:

	(s,t)	(a,t)	(b,t)	(c,t)	(d,t)	(e,t)
h_1	3	3	2	3	1	2
h_2	3	3	2	5	1	0

On considère un plus court chemin C entre x et t. En itérant la monotonie sur chaque arête de C, on obtient $h(x,t) \leq \sum_{e \in E(C)} \omega(e) + h(t,t) = \text{dist}_G(x,t)$, étant sous-entendu que h(t,t) = 0.

Question 5. Est-ce l'heuristique h_2 est monotone? Justifiez.

SOLUTION. 2 points

 $h_2(c,t) = 5$ mais $\operatorname{dist}_G(c,t) = 3$. Donc h_2 ne sous-estime pas la distance à t. Par la question précédente, elle n'est donc pas monotone.

Question 6. Appliquez l'algorithme A^* vu en cours sur le graphe ci-dessus entre s et t en utilisant l'heuristique h_1 . Indiquez dans la table ci-dessous dans quel ordre les sommets sont extraits de Q la première fois en donnant à chaque fois parent[u], coût[u] et score[u] au moment où u est sélectionné dans Q.

Q	s	
parent	上	
coût	0	
score	3	

Donnez le chemin de s à t ainsi construit ainsi que son coût.

SOLUTION. 2 points

Q	s	d	c	e	t
parent	上	s	s	c	e
coût	0	2	1	2	4
score	3	3	4	4	4

SOLUTION. 1 point

Avec $h_1: s \to c \to e \to t$, et $\operatorname{coût}[t] = 4$.

Question 7. Même question en utilisant l'heuristique h_2 .

Q	s	
parent	上	
coût	0	
score	3	

Donnez le chemin de s à t ainsi construit ainsi que son coût.

SOLUTION. 2 points

Q	s	d	e	c	a	b	t
parent	上	s	d	s	c	a	b
coût	0	2	5	1	2	3	5
score	3	3	5	6	5	5	5

SOLUTION. 1 point

Avec $h_2: s \to c \to a \to b \to t$, et coût[t] = 5.

MST et voyageur de commerce

On considère un ensemble de 10 points $P = \{p_0, p_1, \dots, p_9\}$ placés sur une grille rectangulaire comme ci-dessous. La distance entre deux points de P est la distance dîte de Manhattan, c'est-à-dire

la longueur d'un plus court chemin qui suit la grille. Plus précisément, la distance entre les points $a = (x_a, y_a)$ et $b = (x_b, y_b)$ est $d(a, b) = |x_a - x_b| + |y_a - y_b|$. Par exemple, $d(p_0, p_1) = |0 - 3| + |12 - 17| = 8$. Notez bien que toutes les distances sont entières.

Question 8. Calculer un arbre T de poids minimum couvrant P, le poids de chaque arête $p_i - p_j$ correspondant à sa longueur, c'est-à-dire à $d(p_i, p_j)$. Vous devez dessiner votre solution directement sur la grille.

SOLUTION. 4 points

L'arbre, qui est unique, est l'union des deux chemins suivants : $p_1 - p_0 - p_2 - p_3 - p_4 - p_6 - p_5 - p_8$ et $p_7 - p_6 - p_9$.

Question 9. Donner le poids total de l'arbre T. (Vous devez expliciter la somme des poids.)

SOLUTION. 1 point

Poids de
$$T: 8+7+3+4+11+7+10+12+9=71$$
.

Question 10. Donner la tournée obtenue à partir d'un parcours en profondeur depuis la racine p_0 l'arbre T. S'il y a un choix, votre parcours devra choisir le point voisin ayant le plus petit indice. Pour cela vous devez donner l'ordre de visite des points (incluant le point de retour), ainsi que la longueur de la tournée obtenue. (Vous devez expliciter la somme des distances.)

Tournée : $p_0 \to p_1 \to p_2 \to p_3 \to p_4 \to p_6 \to p_5 \to p_8 \to p_7 \to p_9 \to p_0$ Longueur: 8 + 9 + 3 + 4 + 11 + 7 + 10 + 21 + 13 + 26 = 112. Question 11. Proposer une tournée de longueur inférieure, en précisant l'ordre de visite des points et sa longueur. (Vous devez expliciter la somme des distances.) SOLUTION. 2 points En inversant les deux derniers points, $p_7 \leftrightarrow p_9$, on obtient : Tournée : $p_0 \rightarrow p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow p_4 \rightarrow p_6 \rightarrow p_5 \rightarrow p_8 \rightarrow p_9 \rightarrow p_7 \rightarrow p_0$ Longueur: 112 - (21 + 26) + 10 + 29 = 104. Question 12. Proposer une tournée obtenue par l'algorithme glouton en partant du point p₄. (Donner l'ordre et la longueur de la tournée en explicitant la somme des distances.)

SOLUTION. 3 points

Tournée : $p_4 \to p_3 \to p_2 \to p_0 \to p_1 \to p_5 \to p_6 \to p_9 \to p_8 \to p_7 \to p_4$ Longueur: 4+3+7+8+11+7+9+10+21+17=98.