Math, Problem Set #3, Spectral Theory

Name: Benjamin Lim

- Solutions **4.2** The matrix $D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$. Solving $det(D - \lambda I) = 0$, we get $\lambda^3 = 0$ and see that the only eigenvalue is 0. Solving $(D - \lambda I)x = 0$, we see that the eigenspace consists of all vectors of the form $\begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix}$, where $k \in \mathbb{R}$. The eigenvalue 0 has algebraic multiplicity 3, and geometric multiplicity is 1 because the eigenspace is spanned by 1 nonzero eigenvector.
- **4.4i** Let x be an arbitrary nonzero eigenvector, and lambda be its eigenvalue. First note that $x^H A x = x^H = \lambda x^H x$. Then note that $x^H A x = x^H A^H x = (Ax)^H x =$ $(\lambda x)^H x = x^H \lambda^H x = \lambda^H x^H x$. Since $x \neq 0$, it follows that $\lambda = \lambda^H$. Because the hermitian conjugate of a scalar is simply its conjugate and the scalar equals its conjugate, it follows that the eigenvalue λ is a real number.
- **4.4ii** Let x be an arbitrary nonzero eigenvector, and λ be its eigenvalue. First note that $\langle Ax, x \rangle = \langle \lambda x, x \rangle = \bar{\lambda} \langle x, x \rangle$. Then note that $\langle Ax, x \rangle = \langle x, A^H x \rangle = \langle x, -Ax \rangle = \langle x, -Ax \rangle$ $\langle x, -\lambda x \rangle = -\lambda \langle x, x \rangle$. Since x is nonzero, we know that $= \bar{\lambda} = \lambda$ for any arbitrary eigenvalue λ . This can only be true if λ is purely imaginary with no real component.
- 4.6 We want to prove that the diagonal entries of any triangular matrix are its eigenvalues. Without loss of generality, suppose that the $n \times n$ matrix A is upper triangular, with entries a_{ij} . To find the eigenvalues, we need to set the determinant of the follow-

This reduces to the characteristic polynomial equation $(a_{1,1}-\lambda)(a_{2,2}-\lambda)\cdots(a_{n-2,n-2}-\lambda)$

$$\lambda) det \begin{pmatrix} d_{n-1,n-1} - \lambda & d_{n-1,n} \\ 0 & d_{n,n} \end{pmatrix}) = (a_{1,1} - \lambda)(a_{2,2} - \lambda) \cdot \dots \cdot (a_{n-2,n-2} - \lambda)(a_{n-1,n-1} - \lambda)$$

 λ) $(a_{n,n} - \lambda) = 0$ because the 0's in the lower diagonal nullify the off-diagonal terms at each step. It is then easy to see that the roots to the equation above (eignevalues) are simply $a_{1,1}, a_{2,2}, ..., a_{n,n}$ which are the diagonal terms of the matrix A.

4.8i To show that S is a basis for V, we have to show that the functions in S are linearly independent. That is, $a_1 sinx + a_2 cosx + a_3 sin(2x) + a_4 cos(2x) = 0$ only if $a_1 = a_2 = a_3 = a_4 = 0$. To solve for the coefficients, we let $x = 0, \frac{\pi}{2}, \frac{\pi}{3}, \pi$ to get 4 equations to solve for the 4 unknowns. This results in the 4 equations:

$$a_1 - a_4 = 0$$

$$a_2 + a_4 = 0$$

$$a_4 - a_2 = 0$$

 $\frac{\sqrt{3}}{2}a_1 - 0.5a_2 + \frac{\sqrt{3}}{2}a_3 + 0.5a_4 = 0$. Solving these, we obtain $a_2 = a_4 = a_1 = a_3 = 0$. Therefore, the elements of the set S are linearly independent. Since V is also the span of the set S, it follows that S forms a basis for V.

4.8ii Noting that $D(sinx) = cosx = [0\ 1\ 0\ 0],$

$$D(cosx) = -sinx = [-1\ 0\ 0\ 0],$$

$$D(sin2x) = 2cos2x = [0\ 0\ 0\ 2],$$

$$D(\cos 2x) - 2\sin 2x = [0\ 0\ -2\ 0]$$

, the matrix representation of D with respect to the basis $[sinx\ cosx\ sin2x\ cos2x]$ is

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{bmatrix}.$$

4.8iii Let the subspaces be $U = \{sinx, cosx\}$ and $W = \{sin2x, cos2x\}$. Then, U and W are complementary subspaces because for any basis $\{u_1, u_2\}$ of U and $\{w_1, w_2\}$ of W, $\{u_1, u_2, w_1, w_2\}$ forms a basis for the space spanned by $V = \{sinx, cosx, sin2x, cos2x\}$. Moreover, U and W are D-invariant because $D(U) = \{cosx, -sinx\} \subset U$ and $D(W) = \{2\cos 2x, -2\sin 2x\} \subset W.$

4.13 The matrix A can be diagonalized as $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.4 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$, where $P = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$ whose columns are the eigenvectors of A, and the matrix in the middle

is a diagonal matrix with the eigenvalues of A as its diagonal entries, and the matrix on the right is P^{-1} .

4.15 Suppose $(\lambda_i)_{i=1}^n$ are eigenvalues of a semisimple matrix A. Then A is diagonalizable and can be rewritten as $A = PDP^{-1}$. Then, $f(A) = a_0I + a_1A + ... + a_nA^n = a_0I + a_$ $a_0I + a_1PDP^{-1} + \ldots + a_nPD^nP^{-1} = P(a_0I + a_1D + a_2D^2 + \ldots + a_nD^n)P^{-1} = P\left[a_0 + a_1\lambda_1 + \ldots + a_n\lambda_1^n \right]$ $a_0 + a_1\lambda_n + \ldots + a_n\lambda_n^n$ $a_0 + a_1\lambda_n + \ldots + a_n\lambda_n^n$ tries of D are just the eigenvalues $\lambda_i, i \in \{1, 2, \ldots, n\}$ of A. As such, we have diag-

onalized f(A), and so the diagonal entries of the resulting matrix in the middle are the eigenvalues of f(A), where $f(\lambda_i) = a_0 + a_1\lambda_1 + ... + a_n\lambda_n$, as desired.

4.16 i and ii By diagonalization, we can rewrite $A^k = PD^kP^{-1} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.4 \end{bmatrix}^{\binom{n}{k}} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} =$

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1^k & 0 \\ 0 & 0.4^k \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 2 & -0.4^k \\ 1^k & 0.4^k \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} + \frac{1}{3}0.4^k & \frac{2}{3} - \frac{2}{3}0.4^k \\ \frac{1}{3} - \frac{1}{3}0.4^k & \frac{1}{3} + \frac{2}{3}0.4^k \end{bmatrix}.$$
Then, $B = \lim_{k \to \infty} A^k = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$. Then, $A^k - \bar{A} = \begin{bmatrix} \frac{1}{3}0.4^k & -\frac{2}{3}0.4^k \\ -\frac{1}{3}0.4^k & \frac{2}{3}0.4^k \end{bmatrix}$. The norms are as follows:

$$||A||_1 = \frac{2}{3}0.4^k, ||A||_2 = 0.4^k, ||A||_F = \sqrt{tr(A^H A)} = \sqrt{tr\left[\frac{1}{9}0.4^{2k} + \frac{1}{9}0.4^{2k} & 0\\ 0 & \frac{4}{9}0.4^{2k} + \frac{4}{9}0.4^{2k}\right]} = \sqrt{tr\left[\frac{1}{9}0.4^{2k} + \frac{1}{9}0.4^{2k} + \frac{4}{9}0.4^{2k}\right]}$$

 $\sqrt{\frac{10}{9}0.4^{2k}}$, all of which evidently converge to 0. Therefore, the choice of norm does not matter.

4.16 iii Using Theorem 4.3.12, we know $f(x) = 3+5x+x^3$, so $f(0.4) = 3+2+(0.4)^3 = 5+(0.4)^3$.

4.18 Let x be an eigenvector of A^T . We first claim that the eigenvalues of A and A^T are equal. To see why, note that the characteristic equation for A and A^T are $det(A - \lambda I) = 0$ and $det(A^T - \lambda I) = 0$, but $(A^T - \lambda I) = (A - \lambda I)^T$. Therefore, if we let $Q = (A - \lambda I)$, the two equations reduce to det(Q) = 0 and $det(Q)^T = 0$. By Theorem 2.8.21, we know that for all matrices Q, $det(Q) = det(Q^T)$. Therefore, the characteristic equations are equal and have the same roots. Therefore, both A and A^T have the same eigenvalues. Let λ be an eigenvalue of A. Then, we know $A^Tx = \lambda x$ by our earlier claim. Taking the transpose of both sides, we obtain $x^TA = \lambda x^T$, as desired.

4.20 Since A is Hermitian, $A = A^H$. Since A is orthonormally similar to B, there exists U such that $B = U^H A U$. $B^H = (U^H A U)^H = U^H A^H U = U^H A U = B$.

4.24i We aim to show that $\rho = \rho^H$ because this is true if and only if ρ is a real number. We know $A = A^H$. Then, $\rho = \frac{\langle x, Ax \rangle}{\|x\|^2} = \frac{\langle x, A^H x \rangle}{\|x\|^2} = (\frac{x^H A^H x}{x^H x})^H = (\frac{\langle x, Ax \rangle}{\|x\|^2})^H = \rho^H$.

4.24ii We aim to show that $-\rho = \rho^H$ because this is true if and only if ρ is an imag-

inary number. We know $A=A^H$. Then, $-\rho=-\frac{\langle x,Ax\rangle}{\|x\|^2}=\frac{\langle x,-A^Hx\rangle}{\|x\|^2}=-(\frac{x^HA^Hx}{x^Hx})^H=-(\frac{\langle x,Ax\rangle}{\|x\|^2})^H=-\rho^H$.

4.25i Suppose A is a normal matrix with eigenvalues $(\lambda_1, ..., \lambda_n)$ and orthonormal eigenvectors $(x_1, ..., x_n)$ which forms an eigenbasis for the space. We know that I is an identity matrix if and only if Ix = x for any vector $x \in \mathbb{F}$. Since we have an eigenbasis, x can be rewritten as $x = \alpha_n x_1 + ... + \alpha_n x_n$. Then, $(x_1 x_1^H + ... + x_n x_n^H)x = (x_1 x_1^H + ... + x_n x_n^H)\alpha_n x_1 + ... + \alpha_n x_n = (\alpha_1 x_1 x_1^H x_1 + ... + \alpha_n x_n x_n^H x_n) = \alpha_n x_1 + ... + \alpha_n x_n$ because the vectors are orthonormal so $x_j^H x_i = 0 \forall j \neq i$ and $x_j^H x_i = 1 \forall j = i$.

4.25ii Because $(x_1x_1^H + ... + x_nx_n^H) = I$, we can write $A = A(x_1x_1^H + ... + x_nx_n^H) = (Ax_1x_1^H + ... + Ax_nx_n^H) = (\lambda_1x_1x_1^H + ... + \lambda_nx_nx_n^H)$, as desired.

4.27 Suppose A is positive definite and $\langle x, Ax \rangle \geq 0 \forall x \neq 0$. Let e_j be the jth standard basis vector. Since $x^T A x \geq 0$, it follows that $e^T A e \geq 0$. Then note that $e^T A e = 0 + ... + 0 + 1 \cdot a_{jj} + 0... + 0 = a_{jj} \geq 0$, where $a_j j$ is the jth diagonal entry of the matrix A. Positive definiteness also implies $A^H = A$, such that $a_{jj} = (e_j)^T A e_j = \langle e_j, A e_j \rangle = \langle A^H e_j, e_j \rangle = \langle A e_j, e_j \rangle = \overline{\langle e_j, A e_j \rangle} = \overline{\langle e_j \rangle}^T A e_j = \overline{\langle e_j \rangle}^T A$

4.28 Since A is positive semidefinite, $x^H A x \ge 0$. From 4.27, we know the diagonal elements of A and B are non-negative. Then it follows that $tr(AB) = \sum_{i=j}^n a_{ii}b_{jj} \ge 0$ as desired for the first inequality. For the second inequality, consider $tr(A)tr(B) = \sum_{i=1}^n a_{ii} \sum_{j=1}^n b_{jj} = \sum_{i=1}^n \sum_{j=1}^n a_{ii}b_{jj} = \sum_{i=1}^n \sum_{j\neq i}^n a_{ii}b_{jj} + \sum_{i=j}^n a_{ii}b_{jj} = \sum_{i=1}^n \sum_{j\neq i}^n a_{ii}b_{jj} + tr(AB) \ge tr(AB)$.

4.31i $||A||_2 = \sup_{x\neq 0} \frac{||Ax||_2}{||x||_2} = \sup_{x\neq 0} \frac{||U\Sigma V^H x||_2}{||x||_2} = \sup_{x\neq 0} \frac{||\Sigma V^H x||_2}{||VV^H x||_2}$ because U and V are orthonormal, such that ||U|| = 1 and $VV^H = I$. Letting $y = V^H x$, we obtain $\sup_{y\neq 0} \frac{||\Sigma y||_2}{||Vy||_2} = \sup_{y\neq 0} \left(\frac{\sum_{i=1}^r \sigma_i^2 |y_i|^2}{\sum_{i=1}^r |y_i|^2}\right)^{0.5}$, where σ_i are the singular values of A, decreasing in i, such that σ_i is the largest singular value. Therefore, taking the supremum with

respect to y gives us $y = (1 \ 0 \cdots 0)^T$, such that $||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_1$.

4.31ii Suppose A is invertible. Then A^{-1} exists. $||A^{-1}||_2 = \sup_{x \neq 0} \frac{||A^{-1}x||_2}{||x||_2} = \sup_{x \neq 0} \frac{||V\Sigma^{-1}U^Hx||}{||x||_2} = \sup_{x \neq 0} \frac{||V\Sigma^{-1}U^Hx||}{||x||_2} = \sup_{x \neq 0} \frac{||V\Sigma^{-1}y||}{||UU^Hx||} = \sup_{x \neq 0} \frac{||V\Sigma^{-1}y||}{||Uy||} = \sup_{y \neq 0} \left(\frac{\sum_{i=1}^r \sigma_i^{-2}|y_i|^2}{\sum_{i=1}^r |y_i|^2}\right)^{0.5}, \text{ where } \sigma_i \text{ are the singular values of } A, \text{ decreasing in } i, \text{ such that } \sigma_i \text{ is the largest singular value. Therefore, taking the supremum with respect to } y \text{ gives us } y = (1 \ 0 \ \cdots \ 0)^T, \text{ such that } ||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_1^{-1}.$

4.32i Suppose
$$U$$
 and V are orthonormal. Then, $||UAV||_F = \sqrt{tr[(UAV)^H UAV]} = \sqrt{tr[V^H A^H U^H UAV]} = \sqrt{tr[V^H A^H AV]} = \sqrt{tr[V^H A^H AV]} = \sqrt{tr[A^H AV]} = \sqrt{tr[A^H AV]} = ||A||_F.$

$$\mathbf{4.32ii} \ \|A\|_F = \|UAV\|_F = \|UU\Sigma V^H V\|_F = \|UU\Sigma\|_F = \sqrt{tr[(UU\Sigma)^H UU\Sigma]} = \sqrt{tr[\Sigma^H U^H U^H UU\Sigma]} = \sqrt{tr[\Sigma^H \Sigma]} = tr(\begin{bmatrix} \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_r^2 \end{bmatrix}) = \sqrt{\sigma_1^2 + \ldots + \sigma_n^2}.$$

4.33 $LHS = ||A||_2 = \sigma_1$ by 31i.

$$\begin{array}{l} RHS = \sup_{\|x\|_2 = 1, \|y\|_2 = 1} |y^H A x| \\ = \sup_{\|x\|_2 = 1, \|y\|_2 = 1} |y^H U \Sigma V^H x| \\ = \sup_{\|a\|_2 = 1, \|b\|_2 = 1} |a^H U^H U \Sigma V^H V b| \text{ by rewriting } x = Ua \text{ and } y = vb. \text{ Note that } \|x\|_2 = \|Ua\|_2 = \|a\|_2 \text{ and } \|y\|_2 = \|Vb\|_2 = \|b\|_2 \text{ because } U \text{ and } V \text{ are orthonormal.} \\ = \sup_{\|a\|_2 = 1, \|b\|_2 = 1} |a^h \Sigma b| \\ = \sup_{\|a\|_2 = 1, \|b\|_2 = 1} |\sum_{i=1}^r a_i \sigma_i b_i|. \end{array}$$

To get the supremum with respect to a and b such that their 2-norms each equal one, we let $a = b = (1, 0, 0, ..., 0)^T$ because the maximum occurs when we put all the

weight on the largest eigenvalue,
$$\sigma_1$$
. Thus, $RHS = (1, 0, ..., 0)$ $\begin{bmatrix} \sigma_1^2 \\ & \ddots \\ & \sigma_r^2 \end{bmatrix}$ $(1, 0, ..., 0)^T = |\sigma_1| = \sigma_1 = ||A||_2 = LHS$.

4.36
$$A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$$
. Then, $A^H A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Then, the eigenvalues of A are i, but the singular value of A is 1, and the determinant is -1, which is nonzero.

4.38 $A^{\dagger} = V_1 \Sigma_1^{-1} U_1^H$ of the matrix $A = U_1 \Sigma_1 V_1^H$ where U_1 and V_1 are orthonormal:

i)
$$AA^{\dagger}A = U_1\Sigma_1V_1^HV_1\Sigma_1^{-1}U_1^HU_1\Sigma_1V_1^H = U_1\Sigma_1\Sigma_1^{-1}\Sigma_1V_1^H = U_1\Sigma_1V_1^H = A$$

ii)
$$A^{\dagger}AA^{\dagger} = V_1 \Sigma_1^{-1} U_1^H U_1 \Sigma_1 V_1^H V_1 \Sigma_1^{-1} U_1^H = V_1 \Sigma_1^{-1} \Sigma_1 \Sigma_1^{-1} U_1^H = V_1 \Sigma_1^{-1} U_1^H = A^{\dagger}$$

iii)
$$(AA^{\dagger})^H = (U_1\Sigma_1V_1^HV_1\Sigma_1^{-1}U_1^H)^H = (U_1\Sigma_1\Sigma_1^{-1}U_1^H)^H = U_1(\Sigma_1^{-1})^H(\Sigma_1)^HU_1^H = U_1(\Sigma_1^H)^{-1}(\Sigma_1)^HU_1^H = U_1\Sigma_1(\Sigma_1)^{-1}U_1^H = U_1\Sigma_1V_1^HV_1\Sigma_1^{-1}U_1^H = AA^{\dagger}.$$

iv)
$$(A^{\dagger}A)^H = (V_1\Sigma_1^{-1}U_1^HU_1\Sigma_1V_1^H)^H = (V_1\Sigma_1^{-1}\Sigma_1V_1^H)^H = V_1(\Sigma_1^{-1}\Sigma_1)^HV_1^H = V_1\Sigma_1^H(\Sigma_1^H)^{-1}V_1^H) = V_1\Sigma_1^{-1}\Sigma_1V_1^H = V_1\Sigma_1^{-1}U_1^HU_1\Sigma_1V_1^H = A^{\dagger}A.$$