

AffectNet Paper Summary and Training Result

Jiaming Nie

June 13, 2018

1 AffectNet Paper 模型

AffectNet的原paper利用了三种模型对人脸表进行进行建模分类,具体是三种:

Table 1: AffectNet 中几种分类与回归模型

Categorical Model	分类模型,根据不同表情图片与标签进行分类
Dimensional Model	纬度模型,基于不同表情的Arousal(情绪的强烈程
	度)和Valence(情绪的正负倾向),以上两个数值均为连续
	的。
Facial Action Coding System (FACS)	
	作,并不直接给出表情的分类。 用Action Unit来表
	示。AU6和AU12可能均表示高兴。

2 模型Baseline

2.1 Categorical Model Baseline

数据集本身并不均衡,对于不均衡的数据集,采取以下几种方式:

- Imbalanced learning
- Down-Sampling 下采样
- Up-Sampling 上采样
- Weighted-Loss 加权损失

Weighted-Loss的处理方法 在数据集中,根据不同样本所占的相对比例对损失函数进行修改,使得模型输出结果更贴近于真实情况。当模型对占比较少的样本预测错误时,对网络的反馈会更大,对模型的修正效果会更好。

Weighted-Loss function定义:

$$E = -\sum_{i=1}^{K} H_{l,i} log(\hat{p}_i)$$

$$\tag{1}$$

在公式1中,相关系数的定义如下:

- $H_{l,i}$ 第l行第i类的偏振系数(penalization factor)
- K 总的类数 (number of classes)
- \hat{p}_i 预测的softmax输出值,区间[0,1]

重新定义的Weighted-Loss Function为:

$$E = log(\sum_{j} (exp(x_j))) \sum_{i} H_{l,i} - \sum_{i} H_{l,i} x_i$$
 (2)

当矩阵H是单位矩阵I时,加权损失函数和标准的交叉损失函数相同。 具体的定义如下:

$$H_{i,j} = \begin{cases} f_i/f_{min} \\ 0 \end{cases} \tag{3}$$

 f_i : 第i个类的总数, f_{min} 是数据集个数最少类的样本数。

所用的CNN是AlexNet,并且数据在处理前,对图片进行256×256的crop,并在数据增强阶段进行224×224的random crop。

训练的参数:

• Epoch: 20

• Batch Size: 256

• Learning Rate: 0.01 (每隔10000次叠代下降10%)

• Momentum: 0.9

2.1.1 不同模型下的结果

如图1中所示,对于Original和skew-normalized下,top-1和top-2 F1 score的结果. 加权损失的表现是最好的.

TABLE 7
F1-Scores of four different approaches of training AlexNet

	Imbalanced				Down-Sampling				Up-Sampling				Weighted-Loss			
	To	Top-1 Top-2		Top-1		To	Top-2		Top-1		Top-2		Top-1		p-2	
	Orig*	Norm*	Orig	Norm	Orig	Norm	Orig	Norm	Orig	Norm	Orig	Norm	Orig	Norm	Orig	Norm
Neutral	0.63	0.49	0.82	0.66	0.58	0.49	0.78	0.70	0.61	0.50	0.81	0.64	0.57	0.52	0.81	0.77
Нарру	0.88	0.65	0.95	0.80	0.85	0.68	0.92	0.85	0.85	0.71	0.95	0.80	0.82	0.73	0.92	0.88
Sad	0.63	0.60	0.84	0.81	0.64	0.60	0.81	0.78	0.6	0.57	0.81	0.77	0.63	0.61	0.83	0.81
Surprise	0.61	0.64	0.84	0.86	0.53	0.63	0.75	0.83	0.57	0.66	0.80	0.81	0.51	0.63	0.77	0.86
Fear	0.52	0.54	0.78	0.79	0.54	0.57	0.80	0.82	0.56	0.58	0.75	0.76	0.56	0.66	0.79	0.86
Disgust	0.52	0.55	0.76	0.78	0.53	0.64	0.74	0.81	0.53	0.59	0.70	0.72	0.48	0.66	0.69	0.83
Anger	0.65	0.59	0.83	0.80	0.62	0.60	0.79	0.78	0.63	0.59	0.81	0.77	0.60	0.60	0.81	0.81
Contempt	0.08	0.08	0.49	0.49	0.22	0.32	0.60	0.70	0.15	0.18	0.42	0.42	0.27	0.59	0.58	0.79
*Orig and No	*Orig and Norm stand for Original and skew-Normalized, respectively.															

Figure 1: Top 2 F1-score

直接对数据集进行训练,样本较少的表交叉较差,采取了加权损失函数之后,F1 score有所提高。

2.1.2 加权损失函数下Confusion Matrix

由图1可得出,加权损失函下,总体F-score的表现较好,测试集的Confusion Matrix的结果如下:

2.1.3 几种不同的评判标准

以下几种标准均用于二分类模型,此处是将正确分类的结果总结为第1类,错误的结果第二类,在准确率的基础上对Baseline的结果进行评测。

TABLE 8
Confusion Matrix of Weighted-Loss Approach on the Test Set

			Predicted											
		NE	HA	SA	SU	FE	DI	AN	CO					
	NE	53.3	2.8	9.8	8.7	1.7	2.5	10.4	10.9					
	HA	4.5	72.8	1.1	6.0	0.6	1.7	1.0	12.2					
-	SA	13.0	1.3	61.7	3.6	5.8	4.4	9.2	1.2					
t f	SU	3.4	1.2	1.7	69.9	18.9	1.7	2.8	0.5					
Actual	FE	1.5	1.5	4.6	13.5	70.4	4.2	4.3	0.2					
	DI	2.0	2.2	5.8	3.3	6.2	68.6	10.6	1.3					
	AN	6.2	1.2	5.0	3.2	5.8	11.1	65.8	1.9					
	CO	16.2	13.1	3.5	3.1	0.5	4.3	5.7	53.8					

Figure 2: 测试集 Confusion Matrix, 在加权损失函数下

- F1 Score
- Cohen's Kappa 评判分类准确性,区间[0,1]
- Krippendorfs Alpha 评判分类准确性,区间[0,1]
- Area under the ROC curve (AUC) 区间[0,1]低于0.6说明模型效果很差
- Area under the Precision-Recall curve (AUC-PR),区间[0,1]

TABLE 9
Evaluation Metrics and Comparison of CNN baselines, SVM and MS Cognitive on Categorical Model of Affect.

				SVM		MS Cognitive						
	Imbalanced		Down-Sampling		Up-Sampling		Weighted-Loss		3 4 141		Wio Cognitive	
	Orig	Norm	Orig Norm		Orig	Norm	Orig	Norm	Orig	Norm	Orig	Norm
Accuracy	0.72	0.54	0.68	0.58	0.68	0.57	0.64	0.63	0.60	0.37	0.68	0.48
F ₁ -Score	0.57	0.52	0.56	0.57	0.56	0.55	0.55	0.62	0.37	0.31	0.51	0.45
Kappa	0.53	0.46	0.51	0.51	0.52	0.49	0.5	0.57	0.32	0.25	0.46	0.40
Alpha	0.52	0.45	0.51	0.51	0.51	0.48	0.5	0.57	0.31	0.22	0.46	0.37
AUC	0.85	0.80	0.82	0.85	0.82	0.84	0.86	0.86	0.77	0.70	0.83	0.77
AUCPR	0.56	0.55	0.54	0.57	0.55	0.56	0.58	0.64	0.39	0.37	0.52	0.50

Figure 3: Baseline的不同评判标准

2.2 Dimensional Model Baseline

针对表情的维度模型中,另一种是基于Arousal(情绪的强烈程度)和Valence(情绪的正负倾向)。

AlexNet作为回归模型,最后的全连接被替代为仅含有一个神经元的线性回归层。 输出数值的范围在[-1,1]之间。所采取的损失函数为欧式距离。损失函数定义如下:

$$E = \frac{1}{2N} \sum_{N}^{n=1} \|\hat{y}_n - y_n\|_2^2$$
 (4)

在回归模型中,图片被剪切为256×256。回归模型的相关参数:

• Epoch: 16

• Batch Size: 256

• Learning Rate: 0.001

• Momentum: 0.9

2.2.1 评判标准

• RMSE Root Mean Square Error

• CORR Pearson's Correlation Coefficient

• Concordance Correlation Coefficient (CCC)

具体结果见于图4中。其中同时给了基于支持向量机的回归模型。AlexNet的结果优于SVR。

CNN (AlexNet) **SVR** Valence Arousal Valence Arousal RMSE 0.394 0.4020.4940.400CORR 0.602 0.5390.4290.360SAGR 0.7280.670 0.6190.748CCC 0.5410.3400.4500.199

Figure 4: Baseline的不同评判标准

3 ResNet18 Training Result (Using Keras)

基于resnet模型训练结果如下(增加了Batch Normalization层,在每次卷积之后): 一些参数:

• Epoch: 30

• batch size: 16

• Learning Rate: 0.01

• L2 Regularizer: 0.0001 (1e-4)

• Optimizer: Adam

模型在训练集和验证集的结果如下:

测试集的结果:

Loss: 1.67 Accuracy: 71.2%

Figure 5: ReseNet34 结果,增加了BN层

4 其他结果

4.1 Paper Result

目前只查到一篇report,作者对8分类和3分类,RGB和灰度图像进行了训练。

三分类是将表情几种分类为Positive,nagative和neutral. http://lup.lub.lu.se/luur/download?func=download

4.1.1 8分类, 验证集

Figure 6: ReseNet34 结果,增加了BN层

4.1.2 8分类和3分类,验证集

模型为BKVGG12,结果为8分类和3分类,灰度和RGB。

Figure 7: ReseNet34 结果,增加了BN层

4.1.3 Confusion Matrix

Confusion Matrix:

Ground truth	Prediction	Neutral	Happiness	Sadness	Surprise	Fear	Disgust	Anger	Contempt
Neutral		0.734	0.15	0.05	0.02	0.012	0	0.034	0
Happiness		0.052	0.944	0	0.004	0	0	0	0
Sadness		0.384	0.094	0.412	0.014	0.028	0.002	0.066	0
Surprise		0.344	0.228	0.044	0.252	0.106	0.002	0.024	0
Fear		0.25	0.078	0.104	0.1	0.362	0.014	0.092	0
Disgust		0.252	0.166	0.106	0.03	0.016	0.136	0.294	0
Anger		0.356	0.068	0.062	0.016	0.024	0.016	0.458	0
Contempt		0.284	0.636	0.02	0.002	0.	0.008	0.048	0.002

Figure 8: 3/8分类,灰度和RGB

4.2 中文网络

查到一篇博客,使用AlexNet,训练集的准确度为70%,验证集38%. resource: https://blog.csdn.net/ZWX2445205419/article/details/79086288

5 总结

从不同的训练结果来看,Happiness和Neutral模型识别的能力比较高。 Disgust, Contempt和Disgust三种表情分类识别能力较弱。