43. Complete Metric Spaces

definitions

Top13 Paracompactness, Complete Metric Spaces

KYB

Thrn, it's a Fact ${\bf mathrnfact@gmail.com}$

June 10, 2020

41. Paracompactness

Theorems and definitions Exercises

43. Complete Metric Spaces Theorems and definitions Exercises

A collection \mathcal{A} of subsets of X is said to be locally finite in X if every point of X has a neighborhood that intersects only finitely many elements of \mathcal{A} .

Definition

Let \mathcal{A} be a collection of subsets of X. A collection \mathcal{B} of subsets of X is said to be a refinement of \mathcal{A} if for each element B of \mathcal{B} , there is an element A of \mathcal{A} containing B.

Definition (Paracompact)

X is paracompact if every open covering $\mathcal A$ of X has a locally finite open refinement $\mathcal B$ that covers X.

Tutoring Topology

Paracompactnes

Theorems and definitions

Exercises

43. Complete Metric Spaces

Theorem (41.1)

Every paracompact Hausdorff space X is normal.

Theorem (41.2)

Every closed subspace of a paracompact space is paracompact.

Note

- ▶ A paracompact subspace of a Hausdorff space X need not be closed in X.
- ▶ A subspace of a paracompact space need not be paracompact.

Lemma (41.3)

Let X be regular. TFAE:

Every open covering of X has a refinement that is:

- (1) An open covering of X and countably locally finite.
- (2) A covering of X and locally finite.
- (3) A closed covering of X and locally finite.
- (4) An open covering of X and locally finite.

Theorem (41.4)

Every metrizable space is paracompact.

Theorem (41.4)

Every regular Lindelöf space is paracompact.

Note

- ▶ The product of two paracompact spaces need not be paracompact.
- $\blacktriangleright \ \mathbb{R}^{\omega}$ is paracompact in both the product and uniform topologies.
- ▶ It is not known whether \mathbb{R}^{ω} is paracompact in the box topology.
- ▶ The product space \mathbb{R}^{J} is not paracompact if J is uncountable.

- 1. $supp(\phi_{\alpha}) \subset U_{\alpha}$ for each α
- 2. $\{\operatorname{supp}(\phi_{\alpha})\}\$ is locally finite
- 3. $\sum \phi_{\alpha}(\mathbf{x}) = 1$ for each \mathbf{x} .

Lemma (41.6 Shrinking lemma)

Let X be a paracompact Hausdorff space; let $\{U_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of open sets covering X. Then there exists a locally finite indexed family $\{V_{\alpha}\}_{{\alpha}\in J}$ of open sets covering X such that $\bar{V_{\alpha}}\subset U_{\alpha}$ for each α .

Theorem (41.7)

Let X be a paracompact Hausdorff space; let $\{U_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of open sets covering X. Then there exists a partition of unity on X dominated by $\{U_{\alpha}\}$.

Paracompactness Theorems and definitions

Exercises

43. Complete Metric Spaces

> definitions Exercises

Partitions of unity are most often used in mathematics to "patch together" functions that are defined locally so as to obtain a function that is defined globally.

Theorem (41.8)

Let X be a paracompact Hausdorff space; let \mathcal{C} be a collection of subsets of X; for each $C \in \mathcal{C}$, let ϵ_C be a positive number. If \mathcal{C} is locally finite, there is a continuous function $f: X \to \mathbb{R}$ such that f(x) > 0 for all x, and $f(x) \leq \epsilon_C$ for $x \in C$.

Proof.

In
$$\mathbb{R},\,\mathcal{A}=\{(-\infty,n):n\in\mathbb{Z}\}.$$

1. Paracompactnes

Pheorems and lefinitions

Exercises

43. Complete Metric Spaces

Ex41.2(a)

Show that the product of a paracompact space and a compact space is paracompact.

Proof

Main idea: Given open cover \mathcal{A} , find refinement $\{U_{\alpha} \times V_{\alpha,i} : i = 1, \dots, n_{\alpha}\}$ where $\bigcup V_{\alpha,i} = Y$.

Step1

Fix $x \in X$. Then we can find A_{α} 's in \mathcal{A} such that $\{x\} \times Y \subset \bigcup A_{\alpha}$. The trick is that

we can find $U_{\alpha} \subset X, V_{\alpha} \subset Y$ such that $\{x\} \times Y \subset \bigcup U_{\alpha} \times V_{\alpha}$ and $U_{\alpha} \times V_{\alpha} \subset A_{\alpha}$ for some $A_{\alpha} \in \mathcal{A}$.

Then by the compactness of Y, we can fint U_i, V_i for $i = 1, \dots, n$ such that $\{x\} \times Y \subset \bigcup_{i=1}^{n} U_{i} \times V_{i}$. By the tube lemma, we can find $W_{x} \subset X$ such that

$$\{x\} \times Y \subset W_x \times Y \subset \bigcup_{i=1}^n U_i \times V_i$$

Step2

For each $x \in X$, we can find $\{W_x\}$ in Step1 that covers X. By the paracompactness, we can find a locally finite open refinement $\mathcal{B} = \{R_\alpha\}$ that covers X. Then for each x find open O_x that intersects only finitely many elements in \mathcal{B} . Now for each α , there is x_α such that $R_\alpha \subset W_{x_\alpha}$. Then define $\mathcal{C} = \{R_\alpha \times V_{x_\alpha,i}\}$

Step3

Claim) \mathcal{C} is a locally finite open refinement of \mathcal{A} .

- $\blacktriangleright \text{ (refinement) } R_{\alpha} \times V_{x_{\alpha},i} \subset W_{x_{\alpha}} \times V_{x_{\alpha},i} \subset U_{x_{\alpha},i} \times V_{x_{\alpha},i} \subset A_{x_{\alpha},i}$
- ▶ (open cover) Trivial.
- ▶ (locally finite)

Let $(x,y) \in X \times Y$. Then O_x intersects only finitely many R_{α} 's, say $R_{\alpha_1}, \cdots, R_{\alpha_k}$. Then $O_x \times Y$ is the desired open neighborhood.

Let $\{B_{\alpha}\}_{{\alpha}\in J}$ be a locally finite indexed family of subsets of the paracompact Hausdorff space X. Then there is a locally finite indexed

family $\{U_{\alpha}\}$ of open sets in X such that $B_{\alpha} \subset U_{\alpha}$ for each α .

4 D > 4 A > 4 E > 4 E > 9 Q P

Let (X, d) be a metric space. A sequence (x_n) of points of X is said to be a Cauchy sequence in (X, d) if it has the property that given $\epsilon > 0$, there is an integer N such that

$$d(x_n, x_m) < \epsilon$$

whenever
$$m, m \ge N$$

The metric space (X, d) is said to be complete if every Cauchy sequence in X converges.

Proof

Given $\epsilon>0$, choose N large enough that $d(x_n,x_m)<\epsilon/2$ for all $n,m\geq N$. Then choose an i large enough that $n_i\geq N$ and $d(x_{n_i},x)<\epsilon/2$. Than for $n\geq N$,

$$d(x_n,x) \leq d(x_n,x_{n_i}) + d(x_{n_i},x) < \epsilon.$$

Paracompactnes

Theorems and lefinitions

43. Complete

Paracompactnes

Theorems and definitions

Exercises

43. Complete Metric Spaces

Let (Y, d) be a metric space; let $\bar{d}(a, b) = \min\{d(a, b), 1\}$ be the standard bounded metric on Y derived from d. If $x = (x_{\alpha})_{\alpha \in J}$ and $x = (y_{\alpha})_{\alpha \in J}$ are points of Y^{J} , let

$$\bar{\rho}(x,y) = \sup \{\bar{d}(x_{\alpha},y_{\alpha}) : \alpha \in J\}.$$

Theorem (43.5)

If Y is complete d, then the space Y^{J} is complete in $\bar{\rho}$.

Definition

$$\mathcal{C}(X,Y) \subset Y^X$$

is the set of all continuous functions from X to Y.

$$\mathcal{B}(X,Y) \subset Y^X$$

is the set of all bounded functions from X to Y.

Let M be a Euclidean space (\mathbb{R}^n) or smooth n-manifold. Then we define \mathcal{C}^k be the set of all function f such that f has n th derivative $f^{(n)}$ and $f^{(n)}$ is continuous.

Then

$$\mathcal{C} = \mathcal{C}^{(0)} \supset \mathcal{C}^{(1)} \supset \cdots$$

Define $\mathcal{C}^{\infty} = \bigcap \mathcal{C}^n$ the set of all smooth functions.

Theorem (43.6)

X : top'l. (Y, d) metric.

- $ightharpoonup \mathcal{C}(X,Y)$ is closed in Y^X under $\bar{\rho}$.
- $\triangleright \mathcal{B}(X,Y)$ is closed in Y^X under $\bar{\rho}$.

Therefore, if Y is complete, these spaces are complete in $\bar{\rho}$.

Paracompactness

Theorems and definitions

43. Complete Metric Spaces

$$\rho(f,g) = \sup\{d(f(x),g(x))|x \in X\}$$

For
$$f, g \in \mathcal{B}(X, Y)$$
, $\rho(\bar{f}, g) = \min \{ \rho(f, g), 1 \}$

Paracompactnes

Fheorems and lefinitions

Exercises

43. Complete Metric Spaces

Show that the metric space (X, d) is complete if and only if for every

 $\operatorname{diam} A_n \to 0$, the intersection of the sets A_n is nonempty.

Exercises

◆□▶ ◆□▶ ◆■▶ ◆■ ◆○○

$$d(f(x),f(y)) \leq \alpha d(x,y)$$

for all $x, y \in X$. Show that if f is a contraction of a complete metric space, then there is a unique point $x \in X$ such that f(x) = x.

Paracompactnes

Theorems and definitions

43. Complete

Define $e: X \times \mathcal{C}(X,Y) \to Y$ be the equation e(x,f) = f(x). We call e the evaluation map. Show that if d is a metric for Y and $\mathcal{C}(X,Y)$ has the corresponding uniform topology, then e is continuous.

Tutoring Topology

1. Paracompactnes

Theorems and lefinitions

43. Complet

Theorems and definitions Exercises

Ex43.9 Another completion

(X, d) :metric space. Let X be the set of all Cauchy sequences $x = (x_n)_n$. Define $x \sim y$ if $d(x_n, y_n) \to 0$. Let [x] be the equivalence class of x; let $Y = X / \sim$. Define a metric D on Y by

$$D([x],[y]) = \lim d(x_n,y_n)$$

Then Y is complete and there is an isometric imbedding $h: X \to Y$

In the set theory, there are two way to construct real number. One is 'Dedekind cut' and the other is 'completion'.

Show that \sim is an equivalence relation, and show that D is a well-defined metric

Tutoring Topology

Exercises

Paracompactnes

Theorems and lefinitions

Exercise

43. Complete Metric Spaces

Theorems an definitions Exercises

43. Complete Metric Space

Exercises

 (\mathbf{c})

Show that h(X) is dense in Y; indeed, given $x = (x_n)_n \in \tilde{X}$, show the $h(x_n)$ of point of Y converges to the point [x].

Exercises

43. Complete Metric Space

Exercises

4□ > 4個 > 4 = > 4 = > = 9 < ○</p>

Show that if A is a dense subset of a metric space (Z, ρ) , and if every

Cauchy sequence in A converges in Z, then Z is complete.

Show that (Y, D) is complete.

Tutoring Topology

Paracompactnes

Theorems and definitions

Exerci

43. Complete Metric Space

Theorems an definitions

Exercises

Topology KYB

Tutoring

;

Paracompactness
Theorems and

Exercises

43. Complete Metric Spaces

> definition Exercises

Let $h:X\to Y$ and $h':X\to Y'$ be isometric imbeddinfs of the metric space (X,d) in the complete metric spaces $\underline{(Y,D)}$ and $\underline{(Y',D')},$ respectively. Then there is an isometry of $(\overline{h(X)},D)$ with $(\overline{h;(X)},D')$ that equals $h'h^{-1}$ in the subspace h(X).

$$f(x) = \begin{cases} e^{-1/x} & x > 0\\ 0 & x \le 0 \end{cases}$$

Prove that f is smooth.

Tutoring Topology

Exercises

$$h(x) = \frac{f(r_2 - x)}{f(r_2 - x) + f(x - r_1)}.$$

Prove that h is smooth.

Paracompactnes

Theorems and definitions

Exercises

43. Complete Metric Spaces

Theorems and definitions

Exercises

Given any real number r_1 and r_2 such that $r_1 < r_2$, define $H: \mathbb{R}^n \to \mathbb{R}$ such that

$$H(x) = h(|x|).$$

Then

$$\begin{split} H &\equiv 1 &\quad \text{on } \overline{B}(0,r_1) \\ 0 &< H < 1 &\quad \text{for all } x \in B(0,r_2) - \overline{B}(0,r_1) \ . \\ H &\equiv 0 &\quad \text{on } \mathbb{R}^n - B(0,r_2) \end{split}$$

and H is smooth.