MTHSTAT 564/564G/764—Time Series Analysis Spring 2024 Problem Solving Set 2

Please think about the following problems from the textbook in advance of our problem solving sessions on them:

Problem Solving 2

- 1. Suppose $\mathbb{E}[X] = 8$, Var(X) = 3, $\mathbb{E}[Y] = 0$, Var(Y) = 2, and Corr(X, Y) = 0.5.
 - (a) Find Var(X + Y).
 - (b) Find Cov(X, X + Y).
 - (c) Find Corr(X + Y, X Y).
- 2. If X and Y are dependent, but Var(X) = Var(Y), find Cov(X + Y, X Y).
- 3. Let X have a distribution with mean μ and variance σ^2 , and let $Y_t = X$ for all t.
 - (a) Show that $\{Y_t\}$ is strictly and weakly stationary.
 - (b) Find the autocovariance function for $\{Y_t\}$.
 - (c) Sketch a "typical" time series plot of Y_t .
- 4. Suppose $Y_t = 5 + 2t + X_t$, where $\{X_t\}$ is a zero-mean stationary series with autocovariance function γ_k .
 - (a) Find the mean function for $\{Y_t\}$.
 - (b) Find the autocovariance function for $\{Y_t\}$.
 - (c) Is $\{Y_t\}$ stationary? Why or why not?
- 5. Let $\{X_t\}$ be a stationary time series, and define

$$Y_t = \begin{cases} X_t & \text{if } t \text{ is odd} \\ X_t + 3 & \text{if } t \text{ is even.} \end{cases}$$

- (a) Show that $Cov(Y_t, Y_{t-k})$ is free of t for all lags k.
- (b) Is $\{Y_t\}$ stationary? Why or why not?