BRUSHLESS DC

EASTERN AIR DEVICES, INC.

1 Progress Drive Dover, New Hampshire 03820-5449 USA (603) 742-3330 • FAX (603) 742-9080 web:www.eadmotors.com EAD: The company that gives you high-performance solutions.

Since 1942, Eastern Air Devices has been manufacturing high-performance rotating products for industry. Our company has broad experience in designing and producing motors, blowers, and fans that meet extremely precise engineering requirements. We are capable of solving difficult design problems involving motion technology.

Experienced, Responsive Application Support:

EAD has developed a team of experienced, highly trained applications engineers available to help you solve your application problems. With knowledge and experience in a wide range of motors and motion control technologies, EAD engineers can help you define your application needs and select the appropriate motor technology.

Wide Range of Products:

EAD has decades of experience in the design and manufacture of a variety of motor technologies. Our expertise in stepping motors, linear actuators, brushless servo motors, and AC motors has made us industry's choice for motion control products.

Fast Response on Optimized Designs:

EAD is unique in the motion control industry for our ability to deliver customized prototypes quickly. EAD maintains a stock of complete motors and motor components on popular frame sizes, which allows us to deliver optimized motors almost as easily as catalog standards.

Commitment to Quality:

Commitment to world class quality drives EAD operations. EAD uses Statistical Process Control (SPC) in our operations to guarantee consistant quality product. EAD's reputation for quality has been a cornerstone of our business for over 50 years - <u>just ask our customers!</u>

World Class Manufacturing:

EAD excels at customized mechanical design and optimized windings. Our 40,000 sq ft machine shop is equipped with the latest in CNC machine technology making us the market leader in supplying custom mechanical features on all our motors. Our in-house stator winding capability allows us to optimize windings to any amplifier. Ask EAD engineering how our world class manufacturing can help us solve your problems.

EAD Brushless Servo Motors:

- NEMA standard size 17, 23, 34 and 42 mechanical designs
- Optical Encoders Optional
- High Speed, Smooth Operation
- Cost Effective Designs for OEM Applications
- Industry Standard, 3-phase Designs
- Windings Available to Match Any Servo-amplifier
- Output Power to 1000 Watts (peak)
- Available with Custom Shafts, End Caps, Cables and Connectors

Table of Contents:

Size 17	2-3
Size 23	
Size 34	
Size 42	8-9
Encode	r s 10
Special	Features11
39 Fram	e 12
Miniatur	re Motors

Size 17 Brushless DC Servo Motor

PARAMETER	SYMBOL	UNITS	DB17CDB				DB17EDB				DB17GDB			
Cont. Stall Torque ¹	T _c	oz-in N-m			7.5 .05				8 .06			1	0 07	
Peak Torque ²	T _P	oz-in N-m			18 .13				26 .18			3		
Motor Constant	K _M	oz-in/√watt N-m/√watt			.9 013				2.5 017		3.1 0.022			
Elec. Time Constant	$ au_{\scriptscriptstyle E}$	msec		0.	.22			0.	24			0.3	29	
Mech. Time Constant	$ au_{\scriptscriptstyle M}$	msec		9.	.09		6.64					5.	14	
Rotor Inertia	J	oz-in-sec² gm-cm²			0028 9.8		.00035 24.7				.00042 29.7			
Thermal Resistance	R _{TH}	°C/watt		6	6.0		5.8					5.	.6	
Weight	W	oz Kg			9 .25		11 0.31				13 0.36			
Motor Length	L	inch mm			.13 8.7		1.38 35.1					1.0 41		
Number of Poles					8				8		8			
WINDI	ING DATA		-10	-11	-12	-13	-10	-11	-12	-13	-10	-11	-12	-13
Design Voltage	V	volts	24	48	90	160	24	48	90	160	24	48	90	160
Cont. Stall Current ¹	I _c	amperes	1.44	0.70	0.37	0.20	1.5	0.8	0.4	0.2	1.7	0.8	0.4	0.2
Peak Current ²	I _P	amperes	3.6	1.9	1.1	.64	4.4	2.34	1.37	.8	4.7	2.6	1.5	.88
Voltage Constant ± 10)% K _ε	V/kRPM V/rad/sec	3.70 0.035	3.70 6.84 12.20 20.71			4.36 0.042	8.21 0.078	14.05 0.134	24.03 0.230	5.18 0.049	9.47 0.090	16.64 0.159	27.73 0.265
Torque Constant ± 109	% K _т	oz-in/amp N-m/amp	5.0 0.035				5.9 0.042	11.1 0.078	19 0.134	32.5 0.229	7.0 0.049	12.8 0.090	22.5 0.159	37.5 0.265
Resistance ± 10%	R _M	Ohms	6.9 23.7 75.4 217.0			5.8	19.4	57.8	169.0	5.1	17.1	52.7	146.3	
Inductance ± 30%³	L _M	mH	1.28					4.72	13.83	40.46	1.50	5.03	15.53	43.12

NOTE: Motors are available with different windings and mechanical modifications to meet specific applications, contact the factory for technical and engineering assistance.

³Inductance bridge measurement method @ 1kHz.

¹Continuous rating based on 25°C ambient temperature, winding temperature rise of 100°C and motor mounted to a 6x6x1/4 inch aluminum heat sink.

²10 second at 25°C ambient, 100°C winding temperature.

COMMUTATION TABLE												
SEN	SOR OUT	PUT	DRI\	/ER OUT	PUT							
S1	S2	S3	ØΑ	ØВ	øс							
YEL	GRY	GRN	BLU	WHT	BRN							
CCW	ROTA	TION F	ACING	LEAD	END							
0	0	1	Х	HI	LO							
0	1	1	Н	Х	LO							
0	1	0	Н	LO	Х							
1	1	0	Х	LO	HI							
1	0	0	LO	Х	HI							
1	0	1	LO	H	Х							
	CW RC	OTATIO	N LEAI	D END								
0	1	0	LO	HI	Х							
0	1	1	LO	Х	HI							
0	0	1	Х	LO	HI							
1	0	1	НІ	LO	Х							
1	0	0	Н	Х	LO							
1	1	0	Х	HI	LO							

- No Brushes or Commutator
- Ball Bearing Construction
- Dynamically Balanced Rotors
- Low Audible and Magnetic Noise
- High Speed Operation
- Compatible With All Three-Phase Brushless DC Motor Amplifiers

Typical Applications

Centrifuges Gyroscopes
Bar Code Readers Conveyors
Film Transport Paper Feed
Machine Tools X-Y Positioning
Robotics Light Industrial

Semiconductor Equipment

NEMA 23 Brushless DC Servo Motor

PARAMETER	SYMBO	UNITS	DA23DBB				DA23GBB				DA23JBB				
Cont. Stall Torque ¹	T _c	oz-in N-m			22 .16				10 .28			5 0.:	3 37		
Peak Torque ²	T _P	oz-in N-m			30 .56				50 .06			19 1.3	90 34		
Motor Constant	K _M	oz-in/√watt N-m/√watt			.6 032				7.5 053			9.0			
Elec. Time Constant	$ au_{\scriptscriptstyle E}$	msec		1.	.14			1.	.14			1.0	66		
Mech. Time Constant	$\tau_{\scriptscriptstyle M}$	msec		9.	.72			5.	.72			5.3	39		
Rotor Inertia	J	oz-in-sec² gm-cm²		0.00286 202.0				.00470 331.9				.00	715 4.9		
Thermal Resistance	R _{TH}	°C/watt		4.	.12			3.	.86			3.	70		
Weight	W	oz Kg		21 0.59				31 0.87				47 1.32			
Motor Length	L	inch mm			.25 7.2		3.00 76.2					4.0	00 1.6		
Number of Poles					4		4				4				
WINDI	ING DAT	A	-10	-11	-12	-13	-10	-11	-12	-13	-10	-11	-12	-13	
Design Voltage	٧	volts	24	48	90	160	24	48	90	160	24	48	90	160	
Cont. Stall Current ¹	I _c	amperes	3.3	2.0	1.2	0.8	4.9	2.7	1.6	0.9	6.5	3.6	2.0	1.2	
Peak Current	I _P	amperes	10	6.7	4.0	2.6	18.5	10.7	6.6	4.1	25.3	14.4	8.5	5.4	
Voltage Constant ± 10)% K _E	V/kRPM V/rad/sec	5.48 0.052	5.48 9.13 15.34 23.37			6.12 0.058	10.60 0.101	17.13 0.164	27.73 0.265	5.70 0.054	9.98 0.095	17.10 0.163	27.07 0.259	
Torque Constant ± 10	% K _⊤	oz-in/amp N-m/amp	7.41 12.34 20.74 31.60 0.052 0.087 0.146 0.223			8.27 0.058	14.34 0.101	23.16 0.164	37.50 0.265	7.71 0.054	13.49 0.095	23.12 0.163	36.60 0.258		
Resistance ± 10%²	R _M	Ohms	1.4 4.6 11.7 29.5			0.80	2.0	5.1	13	0.39	1.2	3.1	7.9		
Inductance ± 30% ³	L _M	mH	1.64					2.26	5.80	14.8	0.65	1.98	5.12	13.1	

NOTE:

Motors are available with different windings and mechanical modifications to meet specific applications, contact the factory for technical and engineering assistance.

³Inductance bridge measurement method @ 1kHz.

¹Continuous rating based on 25°C ambient temperature, winding temperature rise of 100°C and motor mounted to a 6x6x1/4 inch aluminum heat sink.

²10 second at 25°C ambient, 100°C winding temperature.

COMMUTATION TABLE												
SEN	SOR OUT	PUT	DRI\	/ER OUT	PUT							
S1	S2	S3	ØΑ	ØВ	øс							
YEL	GRY	GRN	BLU	WHT	BRN							
CCM	ROTA	TION F	ACING LEAD END									
0	0	1	Х	HI	LO							
0	1	1	НІ	Х	LO							
0	1	0	HI	LO	Х							
1	1	0	Х	LO	HI							
1	0	0	LO	Х	HI							
1	0	1	LO	HI	Х							
	CW RC	OTATIO	N LEAI	D END								
0	1	0	LO	HI	Х							
0	1	1	LO	Х	HI							
0	0	1	Х	LO	HI							
1	0	1	HI	LO	Х							
1	0	0	HI	Х	LO							
1	1	0	Х	HI	LO							

- · No Brushes or Commutator
- Ball Bearing Construction
- Dynamically Balanced Rotors
- Low Audible and Magnetic Noise
- High Speed Operation
- Compatible With All Three-Phase Brushless DC Motor Amplifiers

Typical Applications

Centrifuges
Bar Code Readers
Film Transport
Machine Tools
Robotics

Gyroscopes Conveyors Paper Feed X-Y Positioning Light Industrial

Semiconductor Equipment

NEMA 34 Brushless DC Servo Motor

PARAMETER :	SYMBOL	UNITS	DA34DBB				DA34FBB				DA34HBB			
Cont. Stall Torque ¹	T _c	oz-in N-m			63 .44				05 .74				55 09	
Peak Torque ²	$T_{_{P}}$	oz-in N-m			90 .34				35 .37				30 09	
Motor Constant	K _M	oz-in/√watt N-m/√watt			0.0 070				3.2 092).5 37	
Elec. Time Constant	$ au_{\scriptscriptstyle E}$	msec		1	.23			1.	.40			1.	00	
Mech. Time Constant	$ au_{\scriptscriptstyle M}$	msec		6	.75			4	.47			6.	00	
Rotor Inertia	J	oz-in-sec² gm-cm²			0913 I4.8		0.0139 981.6				0.0193 1363.0			
Thermal Resistance	R _{TH}	°C/watt		2	.66		1.98					1.	79	
Weight	W	oz Kg			18 .34		63 1.76				89 2.49			
Motor Length	L	inch mm			.15 0.0		3.70 94.0						70 9.4	
Number of Poles					4		4				4			
WINDI	NG DATA	A	-10	-11	-12	-13	-10	-11	-12	-13	-10	-11	-12	-13
Design Voltage	V	volts	24	48	90	160	36	48	90	160	36	48	90	160
Cont. Stall Current ¹	I _c	amperes	5.8	3.5	2.2	1.3	6.8	6.0	3.3	1.9	6.8	6.0	3.9	2.3
Peak Current ²	I _P	amperes	17.2	10.7	7.5	4.6	21.8	20.0	11.6	7.4	23.7	21.8	14.1	9.3
Voltage Constant ± 10	% K _E	V/kRPM V/rad/sec	8.37 0.080	8.37 13.54 19.50 31.42			11.69 0.112	12.86 0.123	22.21 0.212	35.07 0.335	18.38 0.176	20.23 0.193	31.25 0.298	47.80 0.456
Torque Constant ± 10%	% K _⊤	oz-in/amp N-m/amp	11.32 18.31 26.37 42.49 0.080 0.129 0.186 0.300			15.81 0.112	17.39 0.123	30.04 0.212	47.43 0.335	24.86 0.176	27.35 0.193	42.26 0.298	64.64 0.456	
Resistance ± 10%	R _M	Ohms	0.8 2.0 4.1 10.3			0.7	0.9	2.8	5.6	1.6	2.0	5.0	10.0	
Inductance ± 30% ³	L _M	mH	0.94	0.94 2.56 4.96 12.95				1.32	3.22	8.24	1.56	2.12	4.59	10.32

NOTE: Motors are available with different windings and mechanical modifications to meet specific applications, contact the factory for technical and engineering assistance.

³Inductance bridge measurement method @ 1kHz.

¹Continuous rating based on 25°C ambient temperature, winding temperature rise of 100°C and motor mounted to a 6x6x1/4 inch aluminum heat sink.

²10 second at 25°C ambient, 100°C winding temperature.

	6000		· ·		1					
							DA3	4FB	B-[]
	5000					_				
70	4000		7							-
Speed	₹ 3000		\exists	//	-11	-13			-	_
0)	2000			-10					\perp	
	1000	CONTI	NUOUS L							
	1000			INI	ERMITTE	NT				
	0			L						
	(0 5	0 10	00 1	50 20	00 2	50 30	оо з	50	400
					Tor	que				
						-in				

COMMUTATION TABLE												
SEN	SOR OUT	PUT	DRI\	/ER OUT	PUT							
S1	S2	S3	ØΑ	ØВ	øс							
YEL	GRY	GRN	BLU	WHT	BRN							
CCW	ROTA	TION F	FACING LEAD END									
0	0	1	Х	HI	LO							
0	1	1	HI	Х	LO							
0	1	0	HI	LO	Х							
1	1	0	Х	LO	HI							
1	0	0	LO	Х	HI							
1	0	1	LO	Н	Х							
	CW RC	OTATIO	N LEAI	D END								
0	1	0	LO	HI	Х							
0	1	1	LO	Х	HI							
0	0	1	Х	LO	HI							
1	0	1	HI LO		Х							
1	0	0	Ξ	Х	LO							
1	1	0	Х	HI	LO							

	6000		Г	T	1	ГТ				_
						lL	DA3	4HB	B-[]
	5000									\exists
Ð	4000									
Speed	3000		A			<u> </u>			_	_
Ω, _r			1			-13				
	2000			-11	2.12					\dashv
	1000			-10						
		CONTINU	Jous	INTERMIT	TENT					
	0									
	(0 10	00 20	00 30	00 40	00 50	00 60	00 7	00	800
					Tor	que				
					oz	-in				

- No Brushes or Commutator
- Ball Bearing Construction
- Dynamically Balanced Rotors
- Low Audible and Magnetic Noise
- High Speed Operation
- Compatible With All Three-Phase Brushless DC Motor Amplifiers

Typical Applications

Centrifuges
Bar Code Readers
Film Transport
Machine Tools
Robotics
Semiconductor Equipment

Gyroscopes Conveyors Paper Feed X-Y Positioning Light Industrial

NEMA 42 Brushless DC Servo Motor

PARAMETER :	SYMBOL	UNITS	DA42DBB					DA4	2FBB			DA42HBB			
Cont. Stall Torque ¹	T _c	oz-in N-m			23 .87				80 .27			20 1.	65 87		
Peak Torque ²	T _P	oz-in N-m			95 .79				10 .31			8 ⁴ 5.5			
Motor Constant	K _M	oz-in/√watt N-m/√watt			4.3 100				0.0 140			28 0.1			
Elec. Time Constant	$ au_{\scriptscriptstyle E}$	msec		1.	.07			1	.39			1.	70		
Mech. Time Constant	$\tau_{\scriptscriptstyle M}$	msec		2.	.08			1	.59			1.3	35		
Rotor Inertia	J	oz-in-sec² gm-cm²		0.00357 252.1				.00536 378.5				.00893 630.6			
Thermal Resistance	R _{TH}	°C/watt		1.33				1.20				.9	95		
Weight	W	oz Kg		230 6.44				255 7.14				300 8.40			
Motor Length	L	inch mm		-	.70 4.8		6.20 157.5					7.: 18:	20 2.9		
Number of Poles					4		4				4				
WINDI	NG DATA	\	-10	-11	-12	-13	-10	-11	-12	-13	-10	-11	-12	-13	
Design Voltage	V	volts	36	48	90	160	36	48	90	160	36	48	90	160	
Cont. Stall Current ¹	I _c	amperes	7.5	6.1	3.8	2.2	8.9	7.6	4.4	2.6	12.3	9.9	5.7	3.4	
Peak Current ²	I _P	amperes	24.7	20.6	13.0	7.7	32.2	27.1	15.8	9.8	38.7	31.3	19.1	12.1	
Voltage Constant ± 10	% K _E	V/kRPM V/rad/sec	11.98 0.114	11.98 14.42 22.85 38.53			14.12 0.135	16.86 0.161	28.77 0.275	46.81 0.447	16.27 0.155	20.11 0.192	33.13 0.316	52.58 0.502	
Torque Constant ± 109	% K _т	oz-in/amp N-m/amp	16.2 19.5 30.9 52.1 0.114 0.138 0.218 0.368			19.1 0.135	22.8 0.161	38.9 0.275	63.3 0.447	22.0 0.155	27.2 0.192	44.8 0.316	71.1 0.502		
Resistance ± 10%	R _M	Ohms	1.3 1.9 4.7 13.2			0.9	1.3	3.8	9.9	0.6	0.9	2.6	6.4		
Inductance ± 30% ³	L _M	mH	1.37					1.80	5.25	13.90	1.01	1.54	4.18	12.33	

NOTE: Motors are available with different windings and mechanical modifications to meet specific applications, contact the factory for technical and engineering assistance.

³Inductance bridge measurement method @ 1kHz.

 $^{^{1}}$ Continuous rating based on 25 $^{\circ}$ C ambient temperature, winding temperature rise of 100 $^{\circ}$ C and motor mounted to a 6x6x1/4 inch aluminum heat sink.

²10 second at 25°C ambient, 100°C winding temperature.

	4000						I	I	Ш,
							DA42	FBB-[
	3000		<i>/</i> -						
ed ≅ed	2000	\backslash	#	//	M				
Spe	2000				//	-11	-12 13		
	1000					-10			
	1000	CONTINU	IOUS		INTER	RMITTENT			\prod
	0								
) 10	00	20	00 30	00 40	00 50	00 60	00
						orque oz-in			

	COMMUTATION TABLE												
SEN	SOR OUT	PUT	DRI\	/ER OUT	PUT								
S1	S2	S3	ØΑ	ØВ	øс								
YEL	GRY	GRN	BLU	WHT	BRN								
CCW	ROTA	TION F	ACING LEAD END										
0	0	1	Х	HI	LO								
0	1	1	HI	Х	LO								
0	1	0	HI	LO	Х								
1	1	0	Х	LO	HI								
1	0	0	LO	Х	НІ								
1	0	1	LO	HI	Х								
	CW RC	OTATIO	N LEA	D END									
0	1	0	LO	Н	Х								
0	1	1	LO	Х	HI								
0	0	1	Х	LO	HI								
1	0	1	HI	LO	Х								
1	0	0	HI	Х	LO								
1	1	0	Х	Н	LO								

- No Brushes or Commutator
- Ball Bearing Construction
- Dynamically Balanced Rotors
- Low Audible and Magnetic Noise
- High Speed Operation
- Compatible With All Three-Phase Brushless DC Motor Amplifiers

Typical Applications

Centrifuges
Bar Code Readers
Film Transport
Machine Tools
Robotics

Gyroscopes Conveyors Paper Feed X-Y Positioning Light Industrial

Semiconductor Equipment

Encoder Options and Specifications

Model E1 & E2

Models Lo Lo

Resolution: 500, 1000, 2000 (2.10 Dia.Only)

Accuracy: Incremental \pm 5 arc-min max.

Commutation ± 6 arc-min max.

Phasing:Incremental $90^{\circ} \pm 18^{\circ}$ elec.Symmetry:Incremental $120^{\circ} \pm 18^{\circ}$ elec.Power Requirements: $5 \text{ VDC} \pm 10\%$ at 120 mA max.

Output Signal: Line Driver ET7272

sink / source 40 mA max.

Frequency Response: 200 kHz max.

CCW ROTATION VIEWED FROM LEAD END
→ 180°e
CH. A
←→ 90°e
CH. B
★ 180°e
CH. Z
±1°m
CH. S1

CCW ROTATION VIEWED FROM LEAD END

Encoder Part Number Designation							
Encoder Dia	Line Count	P/N					
1.56"	500	E1					
	1000	E2					
2.10"	500	E3					
	1000	E4					
	2000	E5					

Shaft Modifications

Hollow Shaft

Size 34 Motor with Enclosed Rear End Cap and Connection Options

Size 39 Open Frame Brushless DC Motor

	Voltage	Max Speed	Rated Torque	Rated Speed	Rated Current	Peak Torque	Kt	Ke	Km
Motor Part Number	VDC	RPM	oz-in	RPM	Amps.	oz-in	<u>oz-in</u> Amp	Volt kRPM	<u>oz-in</u> √watt
DB39DFB-10	36	3200	60	2030	4.1	150	15.1	11.2	8.2
DB39DFB-11	48	3800	60	2600	3.7	150	17.1	12.6	8.2
DB39DFB-12	90	5500	58	4370	2.75	150	22.0	16.3	8.2
DB39DFB-13	130	6700	55	5650	2.2	150	25.8	19.1	8.2
DB39DFB-14	160	7200	54	6100	1.9	150	30.2	22.3	8.2

Miniature Brushless DC Motors for Precision Applications

- Precision Engineered for Demanding Applications
- High Speed Ball Bearing Construction Up to 20,000 RPM
- High Temperature, Class F Insulation
- Stainless Steel Shafts and Housings for Medical Applications
- Lightweight Aluminum Housings for Aircraft Applications
- Customized Mechanical Designs
- High Energy Rare Earth Magnets for Maximum Power Density

EAD offers a line of small, custom designed brushless DC motors for demanding applications. EAD has built a reputation for supplying the highest quality miniature brushless DC motors available. These motors are custom designed on an application specific basis to meet the most demanding application requirements. Lightweight aluminum housings and high energy rare earth magnets make these motors ideal for aircraft applications. Modified designs with stainless steel housings are ideal for medical, laboratory, and surgical applications.

Custom Designs Available in the Following Frame Sizes:

Frame Size	Diameter
Size 5	.5"
Size 10	1.0"
Size 15	1.5"
Size 18	1.8"

Contact EAD Engineering for Application Assistance

