

SSL VPN: What is that?

SSL as the central mechanism on which to base secure access

- → Site-to-site VPN
- → Secure service access service access
 - Loose interpretation of VPN
 - SSL (pseudo) VPN
- Tunneling based on TCP or UDP

Why Not IPsec VPN?

IPsec太复杂并且过于昂贵

- →IPsec too difficult and/or too expensive to use securely
 - Too many options to be configured and administered
- Operates in kernel space
 - → Failures potentially catastrophic
 - Installation difficult and risky
 - Concerns fade with maturity

Why SSL VPN

- - → Installation
 - Configuration
 - → Management

跟核心区域没有交互

- → Non-interference with kernel
- → Most widely used

Higher, more robust security

Compared to IPsec VPN

- No problem with NAT traversal
 - No authentication of IP header
 - → ESP (encapsulation securty payload) IPsec to be used
- → Packets dropped at a higher level L4判断是否丢弃数据包
 - → Critical with DOS attacks

Compared to PPTP

微软专用

- Initially proprietary (Microsoft)
- Initially weak security
 - → Fixed later

脆弱的安全性

- → GRE (generic routing encapsulation) tunneling
 - Possibly blocked by routers

使用的是GRE管道,很有可能会被路由器屏蔽

SSL (pseudo) VPN

IPsec直接连接网络,对整个主机,或子网开 VPN

- → IPsec VPNs connect networks
 - Or hosts to networks
- → SSL VPNs connect SSL只对,应用或者用户开VPN
 - Users to services
 - Application clients to application servers

Why SSL (pseudo) VPN

- → No client code is to be installed
 - Usable anywhere (kyosk)
- → Applications available through web browser
 - Deploying HTTPS
- Not a general security solution

不是一个普遍的安全解决方案(取决于应用的类型)

Specific solutions suitable to selected applications

In Summary

SSL VPNs have a good chance of working on any network scenario

- → TCP or UDP tunneling enable
 - → NAT traversal NMSTE
 - → Firewall traversal **防火場穿透**
 - 路由器穿透
 - Router traversal
- → SSL (pseudo) VPN enable universal client (web browser)

SSL VPN Flavors

- Web proxying
- Application translation
- Port forwarding
- → SSL'ed protocols
- Application proxying
- Network extension
 - → Site-to-site connectivity

Pseudo VPN

Proxying

代理

- →VPN Gateway downloads web pages through HTTP
- Ship them through HTTPS

Application Translation

- →Native protocol between VPN server and application server
 - → E.g., FTP, STMP, POP
- Application user interface as a web page
- →HTTP(S) between VPN server and client
- Not suitable for all applications
 - Look&feel might be lost

Application Translation

Mail server

Port Forwarding

端口映射:110到443

SSL-VPN - 14 © M. Baldi: see page 2

Port Forwarding

SSL-VPN - 15 © M. Baldi: see page 2

Port Forwarding

- → Works only with fixed port protocols 只能用于固定的端口协议
- Problems with address and port in application layer protocol

应用层协议中的地址和端口问题

- → SSL-VPN gateway must know application protocol to translate
- Application layer gateway (ALG)

SSL'ed Protocols

安全应用层协议

- → Secure application protocols
- Protocol-over-SSL
 - → E.g., POP-over-SSL, IMAPover-SSL, SMTP-over-SSL
- Client and server support required

POP-over-SSL

TCP port 995

Application Proxying

- Compatibility with older servers
- Client points at SSL-VPN gateway

SSL-VPN - 19 © M. Baldi: see page 2

Products and Vendors

- Open VPN (openvpn.net)
- → AEP
- →F5 Networks
- → NetScreen Technologies
- → Netilla
- → Nokia
- → Symantec
- Whale Communications

Main Issues

- →Interoperability
- → Implementation weaknesses
- → Availability of client on specific platforms 特定平台上客户机的可用性