

Polygon Cutting

Time limit: 2000 ms Memory limit: 256 MB

You are given a strictly convex polygon with N vertices and M diagonals of this polygon. These diagonals don't intersect in the interior of the polygon and cut the polygon into M+1 pieces. Your task is to choose some set of pieces S so that the total area of pieces in S is maximized and no two pieces inside S share an edge. Output double the total area of that set.

Standard input

The first line contains two integers N and M. The next N lines contain descriptions of vertices of the polygon in clockwise order. The i-th of these lines contains two numbers x_i , y_i that are the coordinates of the i-th vertex. The next M lines contain descriptions of the diagonals. The i-th of these lines contains two integers u_i , v_i which represent a diagonal between vertices u_i and v_i .

Standard output

Output one line with double the total area of the bigger set in an optimal split of the polygon pieces.

Constraints and notes

- $3 \le N \le 1000000$,
- $1 \le M \le 1000000$,
- $|x_i|, |y_i| \leq 10^9$

Input	Output
4 1	147
-9 4	
4 9	
9 4	
10 0	
2 4	
4 1	252
4 9	
4 -9	
-8 -6	
-10 0	
2 4	
4 1	40
3 4	
5 0	
4 -3	
-5 0	
2 4	