Obliczenia Naukowe

Lista 1 Mateusz Kościelniak nr indeksu: 244973

Zadanie 1

Opis problemu

Powtórzenie zadania 5 z listy 1 polegającego na mnożeniu wektorów różnymi algorytmami po modyfikacji wektorów.

Rozwiązanie

Do rozwiązania zastosowałem algorytmy mnożenia zaimplementowane przeze mnie w 5 zadaniu listy 1. Modyfikacji uległy jedynie wektory w taki oto sposób, że z wektora x=[2.718281828, -3.141592654,1.414213562,0.5772156649,0.3010299957] usunąłem ze składowych czwartej i piątej po jedną ostatnią cyfrę dziesiętną, w ten sposób powstał wektor

x' = [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995].

Wyniki

Tabela, z wynikami przed zmianą wektorów (x, y) i po zmianie (x', y).

algorytm	m x, y x', y						
	Float32						
1	-0.4999443	-0.4999443					
2	-0.4543457	-0.4543457					
3	-0.5	-0.5					
4	-0.5	-0.5					
	Float64						
1	1.0251881368296672e-10	-0.004296342739891585					
2	-1.5643308870494366e-10	-0.004296342998713953					
3	0.0	-0.004296342842280865					
4	0.0	-0.004296342842280865					

Wnioski

Możemy zauważyć, że dla arytmetyki Float32 błędy obliczeń, są takie same dla wektora oryginalnego i po zmianie, jest to spowodowane tym, że precyzja arytmetyki jest za mała aby uwzględnić wprowadzoną zmianę., tzn. usunięcie najmniej znaczących cyfr składowych wektora x nie zmieniło sposobu zapisu liczby w arytmetyce Float32. W arytmetyce Float64 wyniki zmieniły się, ponieważ ma ona większą precyzję. Dane były dobrane w ten sposób, abyśmy mogli zobaczyć, jak duże znaczenie ma dobór precyzji arytmetyki, w implementacji

algorytmów. Widać tutaj również, że niewielkie zmiany powodują względnie duże odkształcenia wyników, co świadczy o tym, że zadanie jest źle uwarunkowane.

Zadanie 2

• Opis problemu

Narysowanie wykres funkcji $f(x)=e^x\ln(1+e^{-x})$ w dwóch dowolnych programach do wizualizacji. Następnie policzenie granicy funkcji $\lim_{x\to\infty}f(x)$, po czym porównanie wykres funkcji z policzoną granicą.

Rozwiązanie

Wykresy funkcji narywałem w programie Gnuplot oraz w języku Julia za pomocą biblioteki Plotly dla wszystkich typów zmiennopozycyjnych. Granicę funkcji obliczyłem analitycznie oraz za pomocą biblioteki SymPy w języku Julia.

Wyniki

Gnuplot:

Plotly:

Granica obliczona za pomocą SymPy: 1.0

Granica obliczona analitycznie:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^{x} \ln(1 + e^{-x}) = \lim_{x \to \infty} \frac{\ln(1 + e^{-x})}{e^{-x}} \stackrel{H}{=} \lim_{x \to \infty} \frac{\frac{1}{1 + e^{x}} \cdot (-e^{-x})}{-e^{-x}} = \lim_{x \to \infty} \frac{1}{1 + e^{x}} = 1$$

Wnioski

Granice obliczone iteracyjnie oraz za pomocą biblioteki SymPy są równe i wynoszą dokładnie jeden. Patrząc na wykresy możemy zauważyć, że do pewnego momentu funkcja faktycznie zdaje się zbiegać do jedynki, lecz po pewnym czasie pojawiają się duże niedokładności, im mniej dokładna precyzja tym dzieje się to szybciej. Błędy te wynikają z mnożenia logarytmu naturalnego którego wartość jest bardzo mała przez bardzo dużą względem niego liczbę e^x . Powodem zbiegania funkcji f do zera dla większych wartości x jest to, że $\ln(1+e^{-x})\approx 0$ spowodowane jest to tym, że funkcja e^{-x} bardzo szybko zbiega do zera. W tym zadaniu małe zmiany danych spowodowały duże odchylenia od poprawnego wyniku, co oznacza, że jest ono źle uwarunkowane.

Zadanie 3

Opis problem

Rozwiązanie równania liniowego Ax = b dla macierzy współczynników $A \in \mathbb{R}^{n \times n}$ i wektora prawych stron $b \in \mathbb{R}^n$ macierz A generowałem na 2 sposoby:

- (a) $A = H_n$, macierz Hilberta stopnia n,
- (b) $A = R_n$, macierz losowa stopnia n, z zadanym współczynnikiem uwarunkowania.

Układ równanie należało rozwiązać za pomocą eliminacji Gaussa $x=A\setminus b$, oraz metodą inwersji $x=A^{-1}b$. Eksperyment dla macierzy Hilberta miał być przeprowadzony dla rosnącego stopnia macierzy w moim przypadku był to przedział $n\in[1,\dots,20]$, a dla losowej macierzy $n\in[5,10,20]$, natomiast współczynników uwarunkowania $c\in[1,10,10^3,10^7,10^{12},10^{16}]$.

Rozwiązanie

Do rozwiązania użyłem dwóch gotowych funkcji: hilb(n) - generująca macierz Hilberta stopnia n, matcond(n,c) - generująca losową macierz stopnia n z określonym współczynnikiem uwarunkowania c. Do tego zaimplementowałem funkcje obliczające wyniki sposobami (a) oraz (b), oraz funkcje obliczającą błąd względny dwóch wektorów.

Wyniki

Macierz Hilberta							
Rozmiar	Rząd	Wskaźnik	Błąd względny				
		uwarunkowania	Gauss	Inwersja			
1	1	1.0	0.0	0.0			
2	2	19.281470067903967	5.661048867003676e-16	1.1240151438116956e-15			
3	3	524.056777586062	8.118051169482656e-15	1.7907430486334138e-14			
4	4	15513.738738929262	3.349632515431573e-13	2.268815452633455e-13			
5	5	476607.2502421033	2.8186181571329407e-13	3.654697861370179e-12			
6	6	1.495105864172721e7	2.344229118278564e-10	2.1526924552188031e-10			
7	7	4.753673559839011e8	7.410208490784287e-9	1.1004084486340423e-8			
8	8	1.525757550554701e10	3.736355234341925e-7	3.044718586687223e-7			
9	9	4.931538348163301e11	1.0485260733621061e-5	5.958958489267314e-6			
10	10	1.6025337742793652e13	0.0001902892061817039	0.00023929944568637062			
11	10	5.219813567997335e14	0.004840612082131825	0.006720407723584139			
12	11	1.6546640506383568e16	0.0515312199356675	0.06988898126789012			
13	11	2.376786926717726e18	0.8773261344142039	1.5119571944035046			
14	11	2.44167173619644e17	3.934776094572252	5.840670521642857			
15	12	2.4022870188034854e17	35.372359774035836	31.13950131676681			
16	12	7.301849062715712e17	5.345783450414308	4.99917180206163			
17	12	4.7507771590947725e17	14.381303216697646	15.299960220214384			
18	12	1.0621139181205069e18	5.454180864329791	6.942728611787584			
19	13	4.215819618491786e18	7.007414463759739	16.272559569359128			
20	13	2.365121119732083e18	11.373002753850809	16.695512931170512			

Macierz Losowa						
Rozmiar	Rząd	Wskaźnik	Błąd względny			
	uwarunkowania		Gauss	Inwersja		
5	5	1	1.1102230246251565e-16	1.3136335981433191e-16		
5	5	10	1.1102230246251565e-16	3.2177320244274193e-16		
5	5	1e3	3.056934131323098e-14	1.863859131820406e-14		
5	5	1e7	8.205813707143464e-11	1.1615464381382779e-10		
5	5	1e12	1.5154988962728898e-5	1.6939848669805186e-5		
5	4	1e16	0.6437376422550746	0.5924331280500919		
10	10	1	1.0532500405730103e-16	3.1985215122904827e-16		
10	10	10	1.5303368297126222e-16	3.861916815434371e-16		
10	10	1e3	3.0001176165852964e-14	3.159927608870659e-14		
10	10	1e7	1.4589602351368174e-10	1.145392960955392e-10		
10	10	1e12	1.488824482916849e-5	1.4135325027271759e-5		
10	9	1e16	0.37223274592498873	0.34120442420893987		
20	20	1	4.996003610813204e-16	5.644695297351525e-16		
20	20	10	3.130356458463198e-16	4.631107411915238e-16		
20	20	1e3	9.049237113845489e-15	1.0539519733670682e-14		
20	20	1e7	2.7793630321991436e-10	2.5191068677521605e-10		
20	20	1e12	7.03479600994331e-6	7.73016210320465e-6		
20	19	1e16	1.1617186238663233	1.2316767106091768		

Wnioski

Patrząc na dwie powyższe tabele, można zauważyć, że niezależnie od innych wartości wzrost wskaźnika uwarunkowania macierzy jest bezpośrednio powiązany ze wzrostem błędu względnego wyniku, możemy wysnuć wnioski, że w rozwiązywaniu układów liniowych z macierzami, decydujący wpływ na poprawność wyniku ma wskaźnik uwarunkowania macierzy. Rozważając wyniki w tabeli pierwszej widzimy, że macierz Hilberta, jest bardzo niewygodna w obliczeniach, ponieważ jej wskaźnik uwarunkowania rośnie wraz z rzędem macierzy, co za tym idzie dla macierzy dużych rzędów spada precyzja obliczeń, sposobem na zwiększenie dokładności wyniku jest zastosowanie metody eliminacji Gaussa, gdyż generuje ona znacznie mniejsze błędy niż metoda inwersji.

Zadanie 4

Opis problemu

Obliczenie miejsc zerowych wielomianu Wilkinsona P(x) przy użyciu funkcji roots() z pakietu Polynomials w języku Julia. Następnie, na podstawie obliczonych pierwiastków obliczenie wartości funkcji, tj. $|P(z_k)|$, $|p(z_k)|$, $|z_k-k|$, gdzie z_k to k-ty pierwiastek oraz

$$p(x) = (x-20)(x-19)(x-18)(x-17)(x-16)(x-15)(x-14)(x-13)(x-12)(x-11)$$

$$(x-10)(x-9)(x-8)(x-7)(x-6)(x-5)(x-4)(x-3)(x-2)(x-1)$$

 $P(x) = x^{20} - 210 \, x^{19} + 20615 \, x^{18} - 1256850 \, x^{17} + 53327946 \, x^{16} - 1672280820 \, x^{15} \\ + 40171771630 \, x^{14} - 756111184500 \, x^{13} + 11310276995381 \, x^{12} - 135585182899530 \, x^{11} \\ + 1307535010540395 \, x^{10} - 10142299865511450 \, x^9 + 63030812099294896 \, x^8 - \\ 311333643161390640 \, x^7 + 1206647803780373360 \, x^6 - 3599979517947607200 \, x^5 \\ 8037811822645051776 \, x^4 - 12870931245150988800 \, x^3 + 13803759753640704000 \, x^2 \\ 8752948036761600000 \, x + 2432902008176640000$

Następnie należało zmienić współczynnik -210 wielomianu P(x) na $-210-2^{-23}$ po czym powtórzyć eksperyment.

Rozwiązanie

Za pomocą pakietu Polynomials zaimplementowałem eksperyment.

Wyniki

(1) Tabela przed zmianą współczynnika.

k	\mathbf{z}_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	0.999999999999771	512.0	2560.0	2.3314683517128287e-15
2	.999999999967497	29696.0	13312.0	3.2502889268926083e-12
3	2.999999999866293	52736.0	20992.0	1.337068233908667e-10
4	4.000000011019143	681472.0	943616.0	1.1019142931445458e-8
5	4.999999748927312	5.4272e6	6.1952e6	2.510726879734193e-7
6	6.000003401569265	1.6007168e7	1.7334272e7	3.4015692653710516e-6
7	6.999966502694603	7.9131648e7	8.123904e7	3.349730539703444e-5
8	8.000248650417012	6.33514496e8	6.377088e8	0.0002486504170118309
9	8.99863071666689	1.982439424e9	1.988410368e9	0.0013692833331102605
10	10.005643046417331	7.538121216e9	7.548366848e9	0.005643046417331377
11	10.9832728819987	2.1405586432e10	2.1419172352e10	0.016727118001300667
12	12.039704742162508	5.8907896832e10	5.8929570816e10	0.039704742162507856
13	12.93541042916589	1.39891236352e11	1.3992241664e11	0.06458957083411043
14	14.086351318967639	3.61559837184e11	3.6160536064e11	0.08635131896763859
15	14.916551086146429	7.63436727296e11	7.63491395072e11	0.08344891385357123
16	16.056101927823747	1.876228873728e12	1.87629699072e12	0.05610192782374668
17	16.970222485080672	3.779840352256e12	3.779930002432e12	0.029777514919327785
18	18.009738396580197	7.442458112e12	7.442565720576e12	0.009738396580196707
19	18.99796473418517	1.4829895143936e13	1.4830035581952e13	0.002035265814829046
20	20.000189920314238	2.1896970131456e13	2.1897133972992e13	0.00018992031423792355

(2) Tabela po zmianie współczynnika.

k	\mathbf{Z}_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	1.000000000000076 + 0.0im	8704.0	6656.0	7.593925488436071e-14
2	1.999999999888531 + 0.0im	71680.0	55296.0	1.1146861211841497e-11
3	3.0000000005321574 + 0.0im	437760.0	345600.0	5.321574292338482e-10
4	3.9999999854321384 + 0.0im	2.80576e6	2.543616e6	1.4567861583714148e-8
5	5.000000238159716 + 0.0im	1.2812288e7	1.0252288e7	2.3815971594842722e-7
6	6.000002465516928 + 0.0im	5.4333952e7	6.712832e6	2.4655169283960277e-6
7	6.999740236517096 + 0.0im	2.20200448e8	1.124918272e9	0.00025976348290424056
8	8.006972846450305 + 0.0im	6.87242752e8	1.6825628672e10	0.006972846450304715
9	8.91828053511307 + 0.0im	2.498716672e9	1.32950144e11	0.08171946488693038
10	10.095261779402826 - 0.6421736837273344im	7.598338633861671e9	1.4764995155822578e12	0.6492009293638812
11	10.095261779402826 + 0.6421736837273344im	7.598338633861671e9	1.4764995155822578e12	1.1094765828449358
12	11.793382133721813 - 1.652045904899795im	3.452258377627477e10	3.291714323165595e13	1.6649163986703759
13	11.793382133721813 + 1.652045904899795im	3.452258377627477e10	3.291714323165595e13	2.045771821860372
14	13.992264932675088 - 2.5187943499538363im	2.6583092531771655e11	9.54413167881884e14	2.518806226891201
15	13.992264932675088 + 2.5187943499538363im	2.6583092531771655e11	9.54413167881884e14	2.712905258809403
16	16.730710830243574 - 2.812619231321066im	1.1578526902243865e12	2.7419531000493124e16	2.9059878282319693
17	16.730710830243574 + 2.812619231321066im	1.1578526902243865e12	2.7419531000493124e16	2.8254811267012934
18	19.502430503477196 - 1.9403277005007826im	7.179830058009144e12	4.2523425870966515e17	2.454010799305781
19	19.502430503477196 + 1.9403277005007826im	7.179830058009144e12	4.2523425870966515e17	2.0043223284080343
20	20.84690345245782 + 0.0im	1.241963999488e13	1.3743413755555942e18	0.8469034524578198

Wnioski

Wartości obydwóch wielomianów dla otrzymanych miejsc zerowych, są bardzo dalekie od poprawnego wyniku czyli zera (dla ostatniego pierwiastka różnica wynosi aż 10^{13}), mimo że miejsca zerowe obliczone za pomocą funkcji roots() niewiele różnią się od rzeczywistych pierwiastków, jest to spowodowane ograniczeniami arytmetyki. Patrząc na tabelę (2) możemy również zauważyć, że po zmianie jednego ze współczynników o zaledwie $2^{(-23)}$, co intuicyjnie nie powinno spowodować dużych zmian, funkcja roots() zwróciła pierwiastki zespolone, a wyniki jeszcze bardziej odbiegały od zera a odnosząc się już do samego wielomianu obliczanego w tym zadaniu, mimo że pierwiastki z funkcji roots() niewiele różnią się od rzeczywistych to wysokie potęgi w wielomianie powodują mnożenie tego błędu, co w rezultacie np. dla x^{20} daje kolosalną różnicę, po tym widać, że zadanie jest źle uwarunkowane.

Zadanie 5

Opis problemu

Zbadanie równania rekurencyjnego opisującego wzrost populacji w postaci:

$$p_{n+1} = p_n + rp_n(1 - p_n), dlan = 0, 1, ...,$$

gdzie r jest pewną stałą, poprzez przeprowadzenie dwóch eksperymentów (wspólne dane początkowe to p_0 =0.01 i r=3):

- (1) Wykonanie w Float32 40 iteracji algorytmu realizującego równanie i porównanie wyników z algorytmem po modyfikacji, polegającej na tym, że w 10 iteracji obcinamy liczbę do 3 pierwszych miejsc po przecinku.
- (2) Wykonanie 40 iteracji algorytmu realizującego równanie dla arytmetyki Float32 oraz Float64.

Rozwiązanie

Do rozwiązania tego równania zastosowałem algorytm iteracyjny, funkcja nadpisuje p na podstawie jego wcześniejszej wartości wg wzoru:

$$p = p + r * p * (T(1.0) - p)$$

gdzie T-precyzja arytmetyki, po czym zapisuje kolejne wartości p do tablicy. Po wykonaniu czterdziestu przejść zwracana jest tablica z rezultatami. Funkcja na wejściu przyjmuje dwie wartości:

T – jako precyzja arytmetyki,

cut – jako numer iteracji w której mamy uciąć liczbę, w praktyce algorytm z modyfikacja ma tą wartość ustawioną na 10, a bez mofyfikacji powinna być ona wyższa niż liczba iteracji

• Wyniki

Eksperyment 1				
Iteracja	Bez obcięcia	Z obcięciem		
1	0.0397	0.0397		
2	0.154072	0.154072		
3	0.545073	0.545073		
4	1.28898	1.28898		
5	0.171519	0.171519		
6	0.597819	0.597819		
7	1.31911	1.31911		
8	0.0562732	0.0562732		
9	0.215593	0.215593		
10	0.722931	0.722		
11	1.32384	1.32415		
12	0.037717	0.0364884		
13	0.1466	0.141959		
14	0.521926	0.50738		
15	1.27048	1.25722		
16	0.239548	0.287085		
17	0.786043	0.901085		
18	1.29058	1.16848		
19	0.165525	0.577893		
20	0.579904	1.30969		
21	1.31075	0.0928922		
22	0.0888042	0.345682		
23	0.331558	1.02424		
24	0.996441	0.949758		
25	1.00708	1.09291		
26	0.985689	0.788281		
27	1.02801	1.28896		
28	0.941629	0.171575		
29	1.10652	0.597986		
30	0.752921	1.31918		
31	1.31101	0.0560039		
32	0.0877831	0.214606		
33	0.328015	0.720258		
34	0.989278	1.32472		
35	1.0211	0.0342414		
36	0.956467	0.133448		
37	1.08138	0.480368		
38	0.817368	1.22921		
39	1.2652	0.383962		
40	0.258605	1.09357		

	Eksperyment 2					
Iteracja	Float32	Float64				
1	0.0397	0.0397				
2	0.154072	0.154072				
3	0.545073	0.545073				
4	1.28898	1.28898				
5	0.171519	0.171519				
6	0.597819	0.597819				
7	1.31911	1.31911				
8	0.0562732	0.0562716				
9	0.215593	0.215587				
10	0.722931	0.722914				
11	1.32384	1.32384				
12	0.037717	0.0376953				
13	0.1466	0.146518				
14	0.521926	0.521671				
15	1.27048	1.27026				
16	0.239548	0.240352				
17	0.786043	0.788101				
18	1.29058	1.28909				
19	0.165525	0.171085				
20	0.579904	0.596529				
21	1.31075	1.31858				
22	0.0888042	0.0583776				
23	0.331558	0.223287				
24	0.996441	0.743576				
25	1.00708	1.31559				
26	0.985689	0.0700353				
27	1.02801	0.265426				
28	0.941629	0.850352				
29	1.10652	1.23211				
30	0.752921	0.374146				
31	1.31101	1.07663				
32	0.0877831	0.829126				
33	0.328015	1.25415				
34	0.989278	0.297907				
35	1.0211	0.925382				
36	0.956467	1.13253				
37	1.08138	0.682241				
38	0.817368	1.33261				
39	1.2652	0.00290916				
40	0.258605	0.0116112				

Wnioski

Analizując tabele możemy zauważyć, że obcięcie pewnej liczby cyfr znaczących, wyraźnie wpływa na wyniki dalszych obliczeń, w przypadku pierwszego eksperymentu obcięcie wykonujemy umyślnie i następuje w 10 iteracji dalej wyniki znacznie się różnią, w eksperymencie drugim obcięcie wynika z zastosowanych arytmetyk różniących się długością przechowywanych mantys, różnice wyników nie są na początku widoczne, lecz niedokładność arytmetyki Float32 w stosunku do Float64, powoduje nawarstwianie się błędu, ponieważ każda kolejna wartość zależy od poprzedniej, co od pewnego momentu również skutkuje rozbieżnością wyników. Widzimy tutaj zjawisko czułej zależności od warunków początkowych oraz sprzężenia zwrotnego. To zadanie pokazuje, że bardzo mały błąd, poprzez kolejne kroki obliczeń może się nawarstwiać i całkowicie popsuć końcowy wynik, co za tym idzie np. modelowanie komputerowe z racji ograniczonej precyzji przechowywania liczb w komputerze może nie do końca odzwierciedlać rzeczywistość którą chcemy zasymulować, możemy z tym walczyć dopierając dokładniejszą arytmetykę, lecz zawsze ilość cyfr przechowywanych w komputerze będzie skończona.

Zadanie 6

Opis problemu

Zbadanie zachowania równania rekurencyjnego:

$$x_{n+1} = x_n^2 + c$$
 dla $n = 0,1,...$

gdzie c jest pewną stałą, dla danych:

С	-2	-2	-2	-1	-1	-1	-1
<i>x</i> ₀	1	2	1.9999999999999	1	-2	0.75	0.25

Należało wykonać 40 iteracji ciągu, dla każdego pakietu danych i narysować wykresy.

Rozwiązanie

Zaimplementowałem równanie rekurencyjne metodą iteracyjną, wpisując do tablicy kolejne wygenerowanego ciągu, na ich podstawie narysowałem wykresy, wszystko zostało policzone w arytmetyce Float64.

WynikiKolejne iteracje funkcji $x_{n+1}=x_n^2+c$ dla danych x_0 , c

				Dane poo	zątkowe	$[x_0, c]$	
n	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	[-2, 1]	[-2, 2]	[-2, 1.9999999999999]	[-1, 1]	[-1, -1]	[-1, 0.75]	[-1, .25]
1	-1.0	2.0	1.9999999999996	0.0	0.0	-0.4375	-0.9375
2	-1.0	2.0	1.999999999998401	-1.0	-1.0	-0.80859375	-0.12109375
3	-1.0	2.0	1.999999999993605	0.0	0.0	-0.3461761474609375	-0.9853363037109375
4	-1.0	2.0	1.99999999997442	-1.0	-1.0	-0.8801620749291033	-0.029112368589267135
5	-1.0	2.0	1.999999999897682	0.0	0.0	-0.2253147218564956	-0.9991524699951226
6	-1.0	2.0	1.999999999590727	-1.0	-1.0	-0.9492332761147301	-0.0016943417026455965
7	-1.0	2.0	1.99999999836291	0.0	0.0	-0.0989561875164966	-0.9999971292061947
8	-1.0	2.0	1.999999993451638	-1.0	-1.0	-0.9902076729521999	-5.741579369278327e-6
9	-1.0	2.0	1.9999999973806553	0.0	0.0	-0.01948876442658909	-0.999999999670343
10	-1.0	2.0	1.999999989522621	-1.0	-1.0	-0.999620188061125	-6.593148249578462e-11
11	-1.0	2.0	1.9999999580904841	0.0	0.0	-0.0007594796206411569	-1.0
12	-1.0	2.0	1.9999998323619383	-1.0	-1.0	-0.9999994231907058	0.0
13	-1.0	2.0	1.9999993294477814	0.0	0.0	-1.1536182557003727e-6	-1.0
14	-1.0	2.0	1.9999973177915749	-1.0	-1.0	-0.999999999986692	0.0
15	-1.0	2.0	1.9999892711734937	0.0	0.0	-2.6616486792363503e-12	-1.0
16	-1.0	2.0	1.9999570848090826	-1.0	-1.0	-1.0	0.0
17	-1.0	2.0	1.999828341078044	0.0	0.0	0.0	-1.0
18	-1.0	2.0	1.9993133937789613	-1.0	-1.0	-1.0	0.0
19	-1.0	2.0	1.9972540465439481	0.0	0.0	0.0	-1.0
20	-1.0	2.0	1.9890237264361752	-1.0	-1.0	-1.0	0.0
21	-1.0	2.0	1.9562153843260486	0.0	0.0	0.0	-1.0
22	-1.0	2.0	1.82677862987391	-1.0	-1.0	-1.0	0.0
23	-1.0	2.0	1.3371201625639997	0.0	0.0	0.0	-1.0
24	-1.0	2.0	-0.21210967086482313	-1.0	-1.0	-1.0	0.0
25	-1.0	2.0	-1.9550094875256163	0.0	0.0	0.0	-1.0
26	-1.0	2.0	1.822062096315173	-1.0	-1.0	-1.0	0.0
27	-1.0	2.0	1.319910282828443	0.0	0.0	0.0	-1.0
28	-1.0	2.0	-0.2578368452837396	-1.0	-1.0	-1.0	0.0
29	-1.0	2.0	-1.9335201612141288	0.0	0.0	0.0	-1.0
30	-1.0	2.0	1.7385002138215109	-1.0	-1.0	-1.0	0.0
31	-1.0	2.0	1.0223829934574389	0.0	0.0	0.0	-1.0
32	-1.0	2.0	-0.9547330146890065	-1.0	-1.0	-1.0	0.0
33	-1.0	2.0	-1.0884848706628412	0.0	0.0	0.0	-1.0
34	-1.0	2.0	-0.8152006863380978	-1.0	-1.0	-1.0	0.0
35	-1.0	2.0	-1.3354478409938944	0.0	0.0	0.0	-1.0
36	-1.0	2.0	-0.21657906398474625	-1.0	-1.0	-1.0	0.0
37	-1.0	2.0	-1.953093509043491	0.0	0.0	0.0	-1.0
38	-1.0	2.0	1.8145742550678174	-1.0	-1.0	-1.0	0.0
39	-1.0	2.0	1.2926797271549244	0.0	0.0	0.0	-1.0
			1			I	
40	-1.0	2.0	-0.3289791230026702	-1.0	-1.0	-1.0	0.0

Wnioski

Należy zwrócić uwagę, że to zadanie jest dosyć podobne do zadania 5, również tutaj mamy do czynienia ze zjawiskiem sprzężenia zwrotnego, choć z drugiej strony analizując kolejne tabele widzimy, że mamy tutaj do czynienia z całkiem stabilnym układem układem dla odpowiednich danych, czego nie można powiedzieć o zadaniu 5, tam bardziej pasowało by pojęcie chaosu deterministycznego. Stabilność układu określamy przez to jak jest on wrażliwy na zmianę danych początkowych. Układ wykazuje stabilność dla każdego typu danych oprócz (3), sprawdziłem również dla 100 iteracji co tylko utwierdziło mnie w przekonaniu, że dla tych danych układ nie wykazuje stabilności, chociaż różnica wartości x_0 dla zestawów (2) i (3) to tylko 0.00000000000001, widzimy dwa różne wykresy, błąd poprzez podnoszenie x_0 do kwadratu zwiększa się w kolejnych iteracjach, aż w końcu staję się na tyle duży, że wybija układ z pozycji równowagi.