

Calculations of atomic multiplets across the periodic table Master's Thesis

14 October 2014 | Qian Zhang Prof. Dr. Erik Koch |

German Research School for Simulation Sciences RWTH Aachen University

Outline

- Introduction
- The one-electron problem
- 3 The many-electron problem (mean-field approximation)
- 4 Construction of multiplet states
- 5 Spin-orbit coupling
- 6 Conclusion

Imagine our solar system...

(Image from NASA)

$\mathbf{F} = m\mathbf{a}$

Mercury: $\mathbf{r}_1(t)$

 $\mathbf{r}_2(t)$ Venus:

 $\mathbf{r}_3(t)$ Earth:

 $\mathbf{r}_4(t)$ Mars:

Imagine our solar system...

(Image from NASA)

 $\mathbf{F} = m\mathbf{a}$

Mercury: $\mathbf{r}_1(t)$

Venus: $\mathbf{r}_2(t)$

Earth: $\mathbf{r}_3(t)$

Mars: $\mathbf{r}_4(t)$

:

Analytical solution: X

Numerical solution: <

Scaling down to 10⁻¹⁰ meters...

$$H\Psi = E\Psi$$

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$
Many-electron wave function

Many-electron wave function

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$$

(Image from Wikipedia)

Scaling down to 10⁻¹⁰ meters...

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

Many-electron wave function

$$\Psi(\textbf{r}_1,\textbf{r}_2,\ldots,\textbf{r}_N)$$

Analytical solution: X Numerical solution: X

Scaling down to 10⁻¹⁰ meters...

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

Many-electron wave function

$$\Psi(\textbf{r}_1,\textbf{r}_2,\ldots,\textbf{r}_N)$$

Analytical solution: X Numerical solution: X

Approximations!

For
$$N=1$$

$$\left[-\frac{1}{2}\nabla^2+V(r)\right]\varphi=E\varphi$$

Separation of variables:

$$\varphi(r, \theta, \phi) = R(r)Y(\theta, \phi)$$

Angular part $Y(\theta, \phi)$ Easy, spherical harmonics Radial part R(r) Difficult, our task

Angular equation

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} = -I(I+1)Y$$

Angular equation

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y}{\partial\phi^2} = -I(I+1)Y$$

$$Spherical harmonics: Y_{Im}(\theta,\phi)$$

$$I = 0, 1, \dots \qquad m = -I, \dots, I$$

Define
$$u(r) \equiv rR(r)$$
, radial equation

$$\left[-\frac{1}{2} \frac{d^2 u}{dr^2} + \left[V(r) + \frac{l(l+1)}{2r^2} \right] u = Eu$$

where
$$V(r) = -Z/r$$

Define $u(r) \equiv rR(r)$, radial equation

$$\boxed{-\frac{1}{2}\frac{d^2u}{dr^2} + \left[V(r) + \frac{l(l+1)}{2r^2}\right]u = Eu}$$

where V(r) = -Z/r

Logarithmic grid

Construct a logarithmic grid, $0 < r_0 < \cdots < r_{n-1} < \infty$, where

$$r_i = \frac{1}{Z}e^{x_i}$$

 r_0 r_{n-1}

and x is a uniformly distributed grid

$$x_i = x_0 + i\Delta x$$

Logarithmic grid

Rescale $\tilde{u} \equiv u/\sqrt{r}$, the transformed radial equation

$$-\frac{1}{2}\frac{d^{2}\tilde{u}}{dx^{2}} + \left[r^{2}V(r) + \frac{1}{2}\left(I + \frac{1}{2}\right)^{2}\right]\tilde{u} = r^{2}E\tilde{u}$$

$$\tilde{\textit{u}}_{i\pm 1} = \frac{(2 - \frac{5\Delta x^2}{3} \textit{k}_i^2) \tilde{\textit{u}}_i - (1 + \frac{\Delta x^2}{6} \textit{k}_{i\pm 1}^2) \tilde{\textit{u}}_{i\mp 1}}{1 + \frac{\Delta x^2}{6} \textit{k}_{i\pm 1}^2}$$

$$\tilde{u}_{i\pm 1} = \frac{(2 - \frac{5\Delta x^2}{3} k_i^2) \tilde{u}_i - (1 + \frac{\Delta x^2}{6} k_{i\mp 1}^2) \tilde{u}_{i\mp 1}}{1 + \frac{\Delta x^2}{6} k_{i\pm 1}^2}$$

(a)
$$E = -0.6$$

$$\tilde{u}_{i\pm 1} = \frac{(2 - \frac{5\Delta x^2}{3} k_i^2) \tilde{u}_i - (1 + \frac{\Delta x^2}{6} k_{i\mp 1}^2) \tilde{u}_{i\mp 1}}{1 + \frac{\Delta x^2}{6} k_{i\pm 1}^2}$$

(a) E = -0.6

(b)
$$E = -0.4$$

$$\tilde{\textit{u}}_{\textit{i}\pm 1} = \frac{(2 - \frac{5\Delta x^2}{3} \textit{k}_{\textit{i}}^2) \tilde{\textit{u}}_{\textit{i}} - (1 + \frac{\Delta x^2}{6} \textit{k}_{\textit{i}\mp 1}^2) \tilde{\textit{u}}_{\textit{i}\mp 1}}{1 + \frac{\Delta x^2}{6} \textit{k}_{\textit{i}\pm 1}^2}$$

(b)
$$E = -0.4$$

(c)
$$E = -0.5$$

Numerical and exact eigen-energy comparison

Elem	Orbital	Numerical	Exact	Abs Error	Rel Error
Н	1 <i>s</i>	-0.500000	-0.500000	0.000000	0.000000
С	1 <i>s</i>	-18.000002	-18.000000	0.000002	0.000000
	2 <i>s</i>	-4.499999	-4.500000	0.000001	0.000000
	2 <i>p</i>	-4.500001	-4.500000	0.000001	0.000000
Fe	1 <i>s</i>	-338.000032	-338.000000	0.000032	0.000000
	2 <i>s</i>	-84.499984	-84.500000	0.000016	0.000000
	2 <i>p</i>	-84.500012	-84.500000	0.000012	0.000000
	3 <i>s</i>	-37.555556	-37.555556	0.000000	0.000000
	3 <i>p</i>	-37.555556	-37.555556	0.000000	0.000000
	3 <i>d</i>	-37.555555	-37.555556	0.000001	0.000000
	4 <i>s</i>	-21.125000	-21.125000	0.000000	0.000000

One electron only!

The many-electron problem

Many-electron Schrödinger equation

$$\left\{ \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right\} \Psi = E \Psi$$

The many-electron problem

Many-electron Schrödinger equation

$$\left\{ \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right\} \Psi = E \Psi$$

- Analytical solution: X
- Numerical solution: X
- We use self-consistent field (SCF) approximation

The many-electron problem

Hartree ansatz

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \approx \varphi_1(\mathbf{r}_1) \varphi_2(\mathbf{r}_2) \dots \varphi_N(\mathbf{r}_N)$$

Mean-field approximation

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \underbrace{\sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}}_{\mathbf{r}_i - \mathbf{r}_j}$$

Trouble maker

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right] + \underbrace{V_{\text{Hartree}}(r)}_{\text{Hartree potential}}$$

Self-consistent iteration

Many-electron problem → Many one-electron problems

$$\boxed{-\frac{1}{2}\frac{d^2u_i}{dr^2} + \left[V_{\text{ext}}(r) + V_{\text{Hartree}}(r) + \frac{I(I+1)}{2r^2}\right]u_i = E_iu_i}$$

Self-consistent iteration

Many-electron problem → Many one-electron problems

$$-\frac{1}{2}\frac{d^2u_i}{dr^2} + \left[V_{\text{ext}}(r) + V_{\text{Hartree}}(r) + \frac{I(I+1)}{2r^2}\right]u_i = E_iu_i$$

Chicken or the egg problem!

JavaScript demonstration

www.cond-mat.de/sims/multiplet

Comparison to NIST results

Elem	Orbital	My results	NIST results	Abs Error	Rel Error
Н	1 <i>s</i> ¹	-0.233471	-0.233471	0.000000	0.000000
С	1 <i>s</i> ²	-9.947725	-9.947718	0.000007	0.000001
	2 <i>s</i> ²	-0.500866	-0.500866	0.000000	0.000000
	2 <i>p</i> ²	-0.199186	-0.199186	0.000000	0.000000
Fe	1 <i>s</i> ²	-254.225334	-254.225505	0.000171	0.000001
	2 <i>s</i> ²	-29.564863	-29.564860	0.000003	0.000000
	2 <i>p</i> ⁶	-25.551762	-25.551766	0.000004	0.000000
	3 <i>s</i> ²	-3.360622	-3.360621	0.000001	0.000000
	3 <i>p</i> ⁶	-2.187521	-2.187523	0.000002	0.000001
	3 <i>d</i> ⁶	-0.295047	-0.295049	0.000002	0.000007
	4 <i>s</i> ²	-0.197976	-0.197978	0.000002	0.000010

Many-electron, mean-field!

Comparison to NIST results

Elem	Orbital	My results	NIST results	Abs Error	Rel Error
Н	1 <i>s</i> ¹	-0.233471	-0.233471	0.000000	0.000000
C	1 <i>s</i> ²	-9.947725	-9.947718	0.000007	0.000001
	2 <i>s</i> ²	-0.500866	-0.500866	0.000000	0.000000
	2 <i>p</i> ²	-0.199186	-0.199186	0.000000	0.000000
Fe	1 <i>s</i> ²	-254.225334	-254.225505	0.000171	0.000001
	2 <i>s</i> ²	-29.564863	-29.564860	0.000003	0.000000
	2 <i>p</i> ⁶	-25.551762	-25.551766	0.000004	0.000000
	3 <i>s</i> ²	-3.360622	-3.360621	0.000001	0.000000
	3 <i>p</i> ⁶	-2.187521	-2.187523	0.000002	0.000001
	3 <i>d</i> ⁶	-0.295047	-0.295049	0.000002	0.000007
	4 <i>s</i> ²	-0.197976	-0.197978	0.000002	0.000010

Many-electron, mean-field!

Open shell problem

Imagine the following problem:

Open shell problem

Which configuration has the highest energy?

Open shell problem

Which configuration has the highest energy?

Revisit our trouble maker

$$H_U = \sum_{i < j}^N \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Second quantization

 $\delta = \{ n_4, l_4, m_4, \sigma_4 \}$

Coulomb repulsion matrix element

$$U_{\alpha\beta\gamma\delta} =$$

$$\delta_{\sigma_{1}\sigma_{4}}\delta_{\sigma_{2}\sigma_{3}}\int d^{3}r_{1}\int d^{3}r_{2}\,\overline{\varphi_{n_{1}l_{1}m_{1}}}(\boldsymbol{r}_{1})\overline{\varphi_{n_{2}l_{2}m_{2}}}(\boldsymbol{r}_{2})\frac{1}{|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}|}\varphi_{n_{3}l_{3}m_{3}}(\boldsymbol{r}_{2})\varphi_{n_{4}l_{4}m_{4}}(\boldsymbol{r}_{1})$$

Coulomb repulsion matrix element

$$\begin{aligned} &U_{\alpha\beta\gamma\delta} = \\ &\delta_{\sigma_{1}\sigma_{4}}\delta_{\sigma_{2}\sigma_{3}} \int d^{3}r_{1} \int d^{3}r_{2} \, \overline{\varphi_{n_{1}l_{1}m_{1}}}(\mathbf{r}_{1}) \overline{\varphi_{n_{2}l_{2}m_{2}}}(\mathbf{r}_{2}) \frac{1}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \varphi_{n_{3}l_{3}m_{3}}(\mathbf{r}_{2}) \varphi_{n_{4}l_{4}m_{4}}(\mathbf{r}_{1}) \end{aligned}$$

Multipole expansion

$$\frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} = \sum_{k=0}^{\infty} \underbrace{\frac{\mathbf{r}_<^k}{\mathbf{r}_>^{k+1}}}_{\text{Radial part}} \underbrace{\frac{4\pi}{2k+1}}_{\mu=-k} \underbrace{\sum_{\mu=-k}^k \underbrace{\overline{Y_{k\mu}}(\theta_1, \phi_1) Y_{k\mu}(\theta_2, \phi_2)}_{\text{Angular part}}$$

The radial part

$$R^{(k)}(n_1l_1,n_2l_2,n_3l_3,n_4l_4) = \int_0^\infty dr_1 \int_0^\infty dr_2 \, \overline{u_{n_1l_1}}(r_1) \overline{u_{n_2l_2}}(r_2) \frac{r_<^k}{r_>^{k+1}} \, u_{n_3l_3}(r_2) u_{n_4l_4}(r_1)$$

The angular part

$$A^{(k)}(I_1m_1,I_2m_2,I_3m_3,I_4m_4) =$$

$$\sum_{\mu=-k}^{k} \int_{0}^{2\pi} d\phi_{1} \int_{0}^{\pi} d\theta_{1} \sin \theta_{1} \overline{Y_{l_{1}m_{1}}}(\theta_{1}, \phi_{1}) \overline{Y_{k\mu}}(\theta_{1}, \phi_{1}) Y_{l_{4}m_{4}}(\theta_{1}, \phi_{1})$$

$$\int_{0}^{2\pi} d\phi_{1} \int_{0}^{\pi} d\theta_{1} \sin \theta_{1} \overline{Y_{l_{1}m_{1}}}(\theta_{1}, \phi_{1}) \overline{Y_{k\mu}}(\theta_{1}, \phi_{1}) Y_{l_{4}m_{4}}(\theta_{1}, \phi_{1})$$

$$\int_0^{2\pi} d\phi_2 \int_0^{\pi} d\theta_2 \sin \theta_2 \, \overline{Y_{l_2 m_2}}(\theta_2, \phi_2) Y_{k\mu}(\theta_2, \phi_2) Y_{l_3 m_3}(\theta_2, \phi_2)$$

The radial part

$$R^{(k)}(n_1l_1,n_2l_2,n_3l_3,n_4l_4) = \int_0^\infty dr_1 \int_0^\infty dr_2 \, \overline{u_{n_1l_1}}(r_1) \overline{u_{n_2l_2}}(r_2) \frac{r_<^k}{r_>^{k+1}} \, u_{n_3l_3}(r_2) u_{n_4l_4}(r_1)$$

The angular part

Slater-Condon parameters

$$A^{(k)}(l_1m_1, l_2m_2, l_3m_3, l_4m_4) =$$

$$\begin{split} \sum_{\mu=-k}^{k} \int_{0}^{2\pi} d\phi_{1} \int_{0}^{\pi} d\theta_{1} & \sin\theta_{1} \, \overline{Y_{l_{1}m_{1}}}(\theta_{1},\phi_{1}) \overline{Y_{k\mu}}(\theta_{1},\phi_{1}) Y_{l_{4}m_{4}}(\theta_{1},\phi_{1}) \\ & \int_{0}^{2\pi} d\phi_{2} \int_{0}^{\pi} d\theta_{2} & \sin\theta_{2} \, \overline{Y_{l_{2}m_{2}}}(\theta_{2},\phi_{2}) Y_{k\mu}(\theta_{2},\phi_{2}) Y_{l_{3}m_{3}}(\theta_{2},\phi_{2}) \end{split}$$

Gaunt coefficients

Setting up basis and Hamiltonian

Set up basis

110000⟩	101000⟩	100100⟩	100010⟩	100001⟩
011000⟩	010100⟩	010010⟩	010001⟩	001100⟩
001010>	001001⟩	000110>	000101⟩	000011⟩

Setting up basis and Hamiltonian

Set up Hamiltonian

$$\langle i|\, H_U\, |j
angle = \langle i|\, rac{1}{2} \sum_{lpha,eta,\gamma,\delta} U_{lphaeta\gamma\delta} c_lpha^\dagger c_eta^\dagger c_\gamma c_\delta\, |j
angle$$

Setting up basis and Hamiltonian

Set up Hamiltonian

$$\langle i|\, H_U\, |j
angle = \langle i|\, rac{1}{2} \sum_{lpha,eta,\gamma,\delta} U_{lphaeta\gamma\delta} c_lpha^\dagger c_eta^\dagger c_\gamma c_\delta\, |j
angle$$

Commutation relations

$$[H_U,\,\textbf{L}]=0 \qquad [H_U,\,\textbf{S}]=0$$

$$[H_U,\,L^2]=0 \qquad [H_U,\,S^2]=0 \qquad [H_U,\,S_z]=0$$
 We can represent an eigen-vector

$$|L, M_L, S, M_S\rangle$$

Commutation relations

$$[H_U, \mathbf{L}] = 0$$
 $[H_U, \mathbf{S}] = 0$ $[H_U, L^2] = 0$ $[H_U, L^2] = 0$ $[H_U, S^2] = 0$ $[H_U, S_z] = 0$

We can represent an eigen-vector

$$|L, M_L, S, M_S\rangle$$

Commutation relations

$$[H_U, L_{\pm}] = 0$$
 $[H_U, S_{\pm}] = 0$

Starting from a leading vector, we can construct subsequent vectors by applying ladder operators.

 M_L - M_S table

			M_S	
		-1	0	1
	2	0	1	0
	1	1	2	1
M_L	0	1	3	1
	-1	1	2	1
	-2	0	1	0

 $|1, 1, 1, 1\rangle$

 M_L - M_S table

 M_L - M_S table

			M_S	
		-1	0	1
	2	0	1	0
	1	0	1	0
M_L	0	0	2	0
	-1	0	1	0
	-2	0	1	0

 $|2, 2, 0, 0\rangle$

 M_L - M_S table

			M_S	
		-1	0	1
	2	0	1	0
	1	0	1	0
M_L	0	0	2	0
	-1	0	1	0
	-2	0	1	0

- $|2, 2, 0, 0\rangle$
- $|2, 1, 0, 0\rangle$
- $|2, 0, 0, 0\rangle$
- $|2, -1, 0, 0\rangle$ $|2, -2, 0, 0\rangle$

 M_L - M_S table

			M_S	
		-1	0	1
	2	0	0	0
	1	0	0	0
M_L	0	0	1	0
	-1	0	0	0
	-2	0	0	0

 $|0, 0, 0, 0\rangle$

Three groups of eigen-vectors

³ <i>P</i>	¹ D	¹ <i>S</i>
$ \begin{array}{ c c c c c c } \hline 1, & 1,1,-1\rangle & 1, & 1,1, & 0\rangle & 1, & 1,1, & 1\rangle \\ 1, & 0,1,-1\rangle & 1, & 0,1, & 0\rangle & 1, & 0,1, & 1\rangle \\ 1,-1,1,-1\rangle & 1,-1,1, & 0\rangle & 1,-1,1, & 1\rangle \\ \hline \end{array} $	$ 2, 0, 0, 0\rangle$	0, 0,0, 0⟩

Multiplet term symbol

In summary, our 15 eigen-vectors:

In summary, our 15 eigen-vectors:

	2, 2,0,	0>	=	$c_{1\downarrow}^{\dagger}c_{1\uparrow}^{\dagger} 0 angle$
	2, 1,0,	0>	=	$rac{1}{\sqrt{2}}\left(c_{1\downarrow}^{\dagger}c_{0\uparrow}^{\dagger}+c_{0\downarrow}^{\dagger}c_{1\uparrow}^{\dagger} ight)\ket{0}$
¹ D	2, 0,0,	0>	=	$rac{1}{\sqrt{6}}\left(c_{1\downarrow}^{\dagger}c_{-1\uparrow}^{\dagger}+2c_{0\downarrow}^{\dagger}c_{0\uparrow}^{\dagger}+c_{-1\downarrow}^{\dagger}c_{1\uparrow}^{\dagger} ight)\ket{0}$
	2, -1, 0,	0>	=	$rac{1}{\sqrt{2}}\left(c_{0\downarrow}^{\dagger}c_{-1\uparrow}^{\dagger}+c_{-1\downarrow}^{\dagger}c_{0\uparrow}^{\dagger} ight)\ket{0}$
	2, -2, 0,	0>	=	$c_{-1\downarrow}^{\dagger}c_{-1\uparrow}^{\dagger} 0 angle$
¹ S	0, 0,0,	0>	=	$rac{1}{\sqrt{3}}\left(c_{1\downarrow}^{\dagger}c_{-1\uparrow}^{\dagger}-c_{0\downarrow}^{\dagger}c_{0\uparrow}^{\dagger}+c_{-1\downarrow}^{\dagger}c_{1\uparrow}^{\dagger} ight)\ket{0}$

In summary, our 15 eigen-vectors:

	2, 2,0,	0>	=	$c_{1\downarrow}^{\dagger}c_{1\uparrow}^{\dagger} 0 angle$
	2, 1,0,	0>	=	$rac{1}{\sqrt{2}}\left(c_{1\downarrow}^{\dagger}c_{0\uparrow}^{\dagger}+c_{0\downarrow}^{\dagger}c_{1\uparrow}^{\dagger} ight)\ket{0}$
¹ D	2, 0,0,	0>	=	$rac{1}{\sqrt{6}}\left(c_{1\downarrow}^{\dagger}c_{-1\uparrow}^{\dagger}+2c_{0\downarrow}^{\dagger}c_{0\uparrow}^{\dagger}+c_{-1\downarrow}^{\dagger}c_{1\uparrow}^{\dagger} ight)\ket{0}$
	2,-1,0,	0>	=	$rac{1}{\sqrt{2}}\left(c_{0\downarrow}^{\dagger}c_{-1\uparrow}^{\dagger}+c_{-1\downarrow}^{\dagger}c_{0\uparrow}^{\dagger} ight)\ket{0}$
	2, -2, 0,	0>	=	$c_{-1\downarrow}^{\dagger}c_{-1\uparrow}^{\dagger} 0 angle$
¹ S	0, 0,0,	0>	=	$rac{1}{\sqrt{3}}\left(c_{1\downarrow}^{\dagger}c_{-1\uparrow}^{\dagger}-c_{0\downarrow}^{\dagger}c_{0\uparrow}^{\dagger}+c_{-1\downarrow}^{\dagger}c_{1\uparrow}^{\dagger} ight)\ket{0}$

Eigen-vector

 $|\mathbf{v}_n\rangle$

Eigen-vector

 $|\mathbf{v}_n\rangle$

Eigen-energy

 $E_n = \langle \mathbf{v}_n | H_U | \mathbf{v}_n \rangle$

Eigen-vector

 $|\mathbf{v}_n\rangle$

Eigen-energy

$$E_n = \langle \mathbf{v}_n | H_U | \mathbf{v}_n \rangle$$

Carbon atom p^2 orbital

¹S: 0.612081 (Hartree)

¹D: 0.529402 (Hartree)

³P: 0.474284 (Hartree)

Energy splitting

JavaScript demonstration

www.cond-mat.de/sims/multiplet

Spin-orbit coupling

Our original Hamiltonian

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

Spin-orbit coupling

Our original Hamiltonian

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

A magnetic force?

Spin-orbit coupling

The Hamiltonian with spin-orbit effect

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \underbrace{\sum_{i=1}^{N} \xi(r_i) \ell_i \cdot \mathbf{s}_i}_{\text{Weak}}$$

where,

$$\xi(r) = \frac{1}{2c^2} \frac{1}{r} \frac{dV}{dr}$$

In atomic units

$$\emph{c} \approx$$
 137.036 $\mathrm{a_0/t_0}$

Spin-orbit coupling within multiplet terms

Clebsch-Grodan transformation

$$|L, M_L, S, M_S\rangle \rightarrow |L, S, J, M_J\rangle$$

Multiplet split

$$^{2S+1}L_J$$
 with $J = L + S, L + S - 1, \dots, |L - S|$ $^3P \rightarrow ^3P_2, ^3P_1, ^3P_0$

Eigen-energies

$$E_{SO} = A(nl, LS) \frac{1}{2} [J(J+1) - L(L+1) - S(S+1)]$$

Spin-orbit coupling within multiplet terms

Spin-orbit coupling within multiplet terms

Spin-orbit coupling within entire shell

$$H_{SO} = \sum_{i=1}^{N} \xi(r_i) \boldsymbol{\ell}_i \cdot \mathbf{s}_i \longrightarrow H_{SO} = \sum_{\alpha,\beta} V_{\alpha\beta} c_{\alpha}^{\dagger} c_{\beta}$$
 $V_{\alpha\beta} = \langle \alpha | \xi(r) \boldsymbol{\ell} \cdot \mathbf{s} | \beta \rangle$

Spin-orbit coupling within entire shell

Spin-orbit coupling within entire shell

Conclusion

- We implemented Numerov's method with logarithmic grid to solve the one-electron problem and obtained very accurate solutions.
- We solved the many-electron problem using self-consistent field approximation.
- 3 Based on SCF calculation, we constructed atomic multiplet states, which are the many-electron eigen-states in atoms.
- 4 Finally we introduced the spin-orbit coupling, where we see the spectral lines further split into finer structures.

Thank You!

Special thanks to:

- Prof. Dr. Erik Koch
- Dr. Hermann Ulm
- German Research School for Simulation Sciences
- Forschungszentrum Jülich GmbH

Backup Materials

Numerov's method

Finite difference

$$\frac{d^2\tilde{u}}{dx^2} = \frac{\tilde{u}_{i+1} - 2\tilde{u}_i + \tilde{u}_{i-1}}{\Delta x^2} + \mathcal{O}(\Delta x^2)$$

Numerov's method

$$\frac{d^2\tilde{u}}{dx^2} = \frac{\tilde{u}_{i+1} - 2\tilde{u}_i + \tilde{u}_{i-1}}{\Delta x^2} - \frac{1}{12} \frac{\tilde{u}_{i+1}'' - 2\tilde{u}_i'' + \tilde{u}_{i-1}''}{\Delta x^2} \Delta x^2 + \mathcal{O}(\Delta x^4)$$

Use the original ODE

$$\tilde{u}_{i}^{''} = -2k_{i}^{2}\tilde{u}_{i}$$
 and $k_{i}^{2} \equiv r_{i}^{2}E - r_{i}^{2}V(r_{i}) - \frac{1}{2}(I + \frac{1}{2})^{2}$

3-point recursion!

$$\tilde{u}_{i\pm 1} = \frac{\left(2 - \frac{5\Delta x^2}{3}k_i^2\right)\tilde{u}_i - \left(1 + \frac{\Delta x^2}{6}k_{i\mp 1}^2\right)\tilde{u}_{i\mp 1}}{1 + \frac{\Delta x^2}{6}k_{i\pm 1}^2}$$

Slater-Condon parameters

$$\begin{split} R^{(k)}(n_1l_1,n_2l_2,n_3l_3,n_4l_4) &= \int_0^\infty dr_1 \int_0^\infty dr_2 \, \overline{u_{n_1l_1}}(r_1) \overline{u_{n_2l_2}}(r_2) \frac{r_<^k}{r_>^{k+1}} u_{n_3l_3}(r_2) u_{n_4l_4}(r_1) \\ \text{If } r_1 &\leq r_2, & r_< = r_1, \quad r_> = r_2 \\ \text{If } r_1 &> r_2, & r_< = r_2, \quad r_> = r_1 \\ R^{(k)}(n_1l_1,n_2l_2,n_3l_3,n_4l_4) &= & \int_0^\infty dr_1 \, \overline{u_{n_1l_1}}(r_1) u_{n_4l_4}(r_1) \left[\frac{1}{r_>^{k+1}} \int_0^{r_1} dr_2 \, r_>^k \overline{u_{n_2l_2}}(r_2) u_{n_3l_3}(r_2) \right] \end{split}$$

 $+r_1^k \int_{-\infty}^{\infty} dr_2 \frac{1}{r_2^{k+1}} \overline{u_{n_2 l_2}}(r_2) u_{n_3 l_3}(r_2)$

Gaunt coefficients

$$\begin{split} A^{(k)}(I_1m_1,I_2m_2,I_3m_3,I_4m_4) &= \\ &\sum_{\mu=-k}^k \int_0^{2\pi} d\phi_1 \int_0^{\pi} d\theta_1 \sin\theta_1 \, \overline{Y_{I_1m_1}}(\theta_1,\phi_1) \overline{Y_{k\mu}}(\theta_1,\phi_1) Y_{I_4m_4}(\theta_1,\phi_1) \\ &\int_0^{2\pi} d\phi_2 \int_0^{\pi} d\theta_2 \sin\theta_2 \, \overline{Y_{I_2m_2}}(\theta_2,\phi_2) Y_{k\mu}(\theta_2,\phi_2) Y_{l_3m_3}(\theta_2,\phi_2) \end{split}$$

Gaunt coefficients

$$g_{m_1 m_2}^{(k)} = \langle I_1 m_1 | k \mu | I_2 m_2 \rangle$$

Gaunt coefficients

Recursion relation

$$\langle l_{1}m_{1} | k\mu | l_{2}m_{2} \rangle =$$

$$a \langle l_{1} + 1, m_{1} | k - 1, \mu | l_{2}m_{2} \rangle + b \langle l_{1} - 1, m_{1} | k - 1, \mu | l_{2}m_{2} \rangle + c \langle l_{1}m_{1} | k - 2, \mu | l_{2}m_{2} \rangle$$

$$a = \sqrt{\frac{(2k+1)(2k-1)(l_{1}+m_{1}+1)(l_{1}-m_{1}+1)}{(k+\mu)(k-\mu)(2l_{1}+3)(2l_{1}+1)}}$$

$$b = \sqrt{\frac{(2k+1)(2k-1)(l_{1}+m_{1})(l_{1}-m_{1})}{(k+\mu)(k-\mu)(2l_{1}+1)(2l_{1}-1)}}$$

$$c = -\sqrt{\frac{(2k+1)(k+\mu-1)(k-\mu-1)}{(k+\mu)(k-\mu)(2k-3)}}$$

Base case

$$\langle I_1 m_1 | 00 | I_2 m_2 \rangle = \frac{1}{\sqrt{4\pi}} \delta_{I_1 I_2} \delta_{m_1 m_2}$$

Ladder operator techniques

Ladder operators

$$L_{\pm} |Im\rangle = \alpha_{Im}^{\pm} |I, m \pm 1\rangle$$

$$\alpha_{Im}^{+} = \sqrt{(I+m+1)(I-m)}$$

$$\alpha_{Im}^{-} = \sqrt{(I+m)(I-m+1)}$$

Express eigen-vectors in terms of our 15 basis vectors