

Computer Architecture Homework 1

Parham Alvani February 19, 2015

powered by \LaTeX

Contents

1	Problem 1	2
2	Problem 2	2
3	Problem 3	3
4	Problem 4	3
5	Problem 5	1

1 Problem 1

2 Problem 2

1

2 According to following diagram:

• Average Memory Access Time, the exact formula

$$t_1 + (1 - h_1) * [t_2 + (1 - h_2) * [\ldots]]$$
 (1)

• Average Memory Access Time, an approximate formula

$$h_1 * t_1 + (1 - h_1)[h_2 * t_2 + (1 - h_2) * [\dots]]$$
 (2)

3

4

 $\mathbf{5}$

3 Problem 3

The following is the average memory access time equiation for memory with 3 level:

$$\bar{T} = h_1 * t_1 + (1 - h_1) * h_2 * t_2 + (1 - h_1) * (1 - h_2) * h_3 * t_3$$
 (3)

Substituting 1ns for t_1 , 0.9 for h_1 , 10ns for t_2 , 0.5 for h_2 , 1000ns for t_3 and 1 for h_3 in (3) gives us:

$$\bar{T} = 0.9 * 1 + (1 - 0.9) * 0.5 * 10 + (1 - 0.9) * (1 - 0.5) * 1000$$

$$= 0.9 + 0.1 * 0.5 * 10 + 0.1 * 0.5 * 1000$$

$$= 0.9 + 0.5 * 10 + 0.5 * 1000$$

$$= 0.9 + 5 + 500.00$$

$$= 505.9ns$$

4 Problem 4

The following is the avrage memory access time equiation for memory with 4 level:

$$\bar{T} = h_1 * t_1 + (1 - h_1) * h_2 * t_2 + (1 - h_1) * (1 - h_2) * h_3 * t_3 + (1 - h_1) * (1 - h_2) * (1 - h_3) * h_4 * t_4$$

$$\tag{4}$$

Substituting 1ns for t_1 , 0.9 for h_1 , 10ns for t_2 , 0.5 for h_2 , 8s for t_3 , 0.63 for h_3 , 1000ns for t_4 , 1 for h_3 , in (4) gives us:

$$\bar{T} = 0.9 * 1 + (1 - 0.9) * 0.5 * 10 + (1 - 0.9) * (1 - 0.5) * 0.63 * 8 + (1 - 0.9) * (1 - 0.5) * (1 - 0.63) * 1000$$

$$= 0.9 * 1 + 0.1 * 0.5 * 10 + 0.1 * 0.5 * 0.63 * 8 + 0.1 * 0.5 * 0.37 * 1000$$

$$= 0.90 + 0.50 * 10 + 0.31 * 8 + 0.18 * 1000$$

$$= 0.90 + 5.00 + 2.48 + 180.00$$

$$= 188.38ns$$

5 Problem 5

- ${\bf 1} \quad \text{Adrress bits} = 14 \text{ bits}, \qquad \text{Length} = 2 \text{ bytes}, \qquad \text{Width} = 2^{14} \text{ words}, \\ \text{The smallest unit available} = 16 \text{ bits}.$
- **2** Adrress bits = 15 bits, Length = 2 bytes, Width = 2^{15} words, The smallest unit available = 16 bits.
- **3** Adrress bits = 15 bits, Length = 1 bytes, Width = 2^{15} words, The smallest unit available = 8 bits.
- **4** Adrress bits = 13 bits, Length = 4 bytes, Width = 2^{13} words, The smallest unit available = 32 bits.