Dipartimento di Ingegneria dell'Informazione Ricerca Operativa (INFLT, ETELT) Anno accademico 2021/2022

Elaborato sull'utilizzo del risolutore Gurobi - Parte II

Suggerimenti

- 1. Per rispondere ai quesiti proposti, dovete sfruttare le conoscenze teoriche fino ad ora acquisite riguardanti la Programmazione Lineare e la Programmazione Lineare Intera.
- 2. Relativamente al codice che andrà scritto in Java:
 - 2.1 attenzione all'errore di macchina: potrebbe capitare che Gurobi vi calcoli un valore di una variabile pari a 0.999999999; ciò vuol dire che, nella realtà, il valore di quella variabile è pari a 1;
 - 2.2 approssimare ogni valore calcolato alla quarta cifra decimale per arrotondamento;
 - 2.3 ricordarsi che Gurobi definisce le variabili di surplus negative.

Istruzioni

- 1. Ogni risposta ai quesiti deve essere frutto di una o più linee di codice (non è consentito svolgere calcoli "a mente", su carta o tramite altri software e poi semplicemente stampare a video le risposte)
- 2. Potete utilizzare qualsiasi classe e metodo forniti dall'interfaccia Java di Gurobi (cfr. documentazione: https://www.gurobi.com/documentation/9.5/refman/index.html).
- 3. Il codice sorgente prodotto dovrà
 - consistere in una sola classe Java;
 - essere debitamente commentato, evidenziando, a grandi linee, le rispettive tre parti di codice che sono servite per rispondere ai tre quesiti;
 - stampare a video le risposte ai tre quesiti, secondo il formato descritto in Pagina 3.
- 4. Redigete una breve relazione (**non più di una pagina**) in formato pdf che riporti il modello risolto per il Quesito I, la descrizione della metodologia adottata per rispondere al Quesito II e le modifiche richieste nel Quesito III.
- 5. Non è possibile contattare il docente o gli assistenti per richieste relative alla parte teorica o alla stesura del codice, mentre è possibile chiedere eventuali chiarimenti inerenti alla consegna.

CONSEGNA

La consegna è da completare entro le 23:55 dell'8 Giugno 2022. Devono essere caricati in Comunità Didattica, tramite l'oggetto "Consegna elaborato Gurobi - Parte II", sia il codice sorgente Java prodotto che la relazione. L'elaborato del gruppo di chi non avesse caricato tutto il materiale richiesto entro il tempo limite sarà considerato insufficiente.

Quesiti

Nel file .txt allegato, rinominato con il nome del proprio gruppo, è contenuta una lista di parametri (cfr. quesito III) e la descrizione di un grafo G non orientato completo. In calce è riportato un esempio del contenuto di questo file.

- I Trovare la soluzione ottima per il Problema del Commesso Viaggiatore su G, riportando il valore della funzione obiettivo e il ciclo ottimo individuato.
 - **NB**: poiché si considera la versione simmetrica del problema (in cui la distanza da un qualsiasi nodo i a un qualsiasi nodo j è uguale alla distanza da j a i), nel file di testo si riporta solo un valore per ogni coppia di nodi.
- II Implementare una metodologia per verificare la presenza di un ulteriore ciclo ottimo di costo equivalente a quello riportato al punto I. Riportare quindi il ciclo trovato.
- III Apportare le opportune modifiche al modello utilizzato al punto I per includere le seguenti restrizioni:
 - a. il costo dei lati incidenti al vertice v sia al massimo il a% del costo totale del ciclo;
 - b. se il lato (b_1, b_2) viene percorso, il costo del ciclo ottimo sia inferiore a c;
 - c. il lato (d_1, d_2) sia percorribile se e solo se sono percorsi anche i lati (e_1, e_2) e (f_1, f_2) ;
 - d. nel caso in cui i lati (g_1, g_2) , (h_1, h_2) e (i_1, i_2) vengano tutti percorsi, si debba pagare un costo aggiuntivo pari a l.

Riportare il valore della funzione obiettivo e il ciclo ottimo di questo nuovo modello.

Esempio di file .txt

```
v = 2
a = 3 //vincolo a) il costo dei lati incidenti al vertice 2 sia al massimo il 3% del costo ...
(b1, b2) = (22, 5)
c = 323 //vincolo b) se il lato (22, 5) viene percorso, il costo del ciclo ottimo sia inferiore a 323
(d1, d2) = ...
...
Vertici 33 //il grafo ha 33 vertici
0 1 3 //il costo del lato 0-1 è 3
0 2 7 //costo del lato 0-2 è 7
0 3 8
...
1 3 8 //il costo del lato 1-3 è 8
1 4 5
...
31 32 2//il costo del lato 31-32 è 2
```

Esempio di output che il codice consegnato deve stampare a video:

```
GRUPPO <numero gruppo>
Componenti: <cognome componente 1> <eventuale cognome componente 2>

QUESITO I:
funzione obiettivo = <valore funzione obiettivo>
ciclo ottimo 1 = [0, ...,0]

QUESITO II:
ciclo ottimo 2 = [0, ...,0]

QUESITO III:
funzione obiettivo = <valore funzione obiettivo>
ciclo ottimo 3 = [0, ...,0]
```

 \mathbf{NB} : le risposte non stampate a video verranno considerate **in bianco** e quindi valutate negativamente.