Results

Stefan Reifberger

September 26, 2024

The following tables show the results of the experiment. They are to be read as follows:

- D: Number of decoder layers.
- E: Number of encoder layers.
- M: Mean value range of epochs.
- MD: 95% confidence interval distance between means.
- Bold text: The best value for given epochs or the current model performs better for the range of epochs up to the 95% confidence intervals of the difference of means not overlapping.

Model	Ep.: 1	5	M 1-5	MD 1-5	M 40-50	MD 40-50
LSTM, D=1	.829	.513	.661	.000	.274	.000
LSTM, $D=2$.808	.675	.750	$.089^{\pm .042}$.385	$.111^{\pm .017}$
LSTM, D=3	.812	.519	.653	$008^{\pm.008}$.340	$.066^{\pm .006}$
LSTM, D=4	.899	.682	.760	$.099^{\pm .027}$.382	$.108^{\pm .008}$
TrFo, D=1	.635	.251	.365	.000	.145	.000
TrFo, D=2	.465	.220	.303	$061^{\pm .034}$.138	$008^{\pm .002}$
TrFo, D=3	.441	.187	.273	$092^{\pm.032}$.134	$011^{\pm .001}$
TrFo, D=4	.429	.175	.254	$110^{\pm .030}$.129	$017^{\pm .001}$

Model	Ep.: 1	5	M 1-5	MD 1-5	M 40-50	MD 40-50
LSTM, D=1	.731	.793	.783	.000	.894	.000
LSTM, $D=2$.745	.794	.760	$023^{\pm.018}$.856	$038^{\pm.010}$
LSTM, D=3	.729	.826	.794	$.011^{\pm .010}$.870	$025^{\pm.015}$
LSTM, D=4	.724	.763	.753	$030^{\pm .017}$.840	$054^{\pm.017}$
TrFo, D=1	.733	.909	.860	.000	.942	.000
TrFo, D=2	.833	.941	.896	$.036^{\pm .022}$.944	$.002^{\pm .012}$
TrFo, D=3	.839	.941	.908	$.048^{\pm .023}$.946	$.004^{\pm .011}$
TrFo, D=4	.844	.929	.911	$.051^{\pm .022}$.939	$003^{\pm.013}$

Figure 1: Test data results for varying number of decoder layers with one encoder layer.

Model	Ep.: 1	5	M 1-5	MD 1-5	M 40–50	MD 40-50
LSTM, E=1	.812	.519	.653	.000	.340	.000
LSTM, E=2	.803	.502	.658	$.005^{\pm .010}$.320	$020^{\pm .003}$
LSTM, E=3	.904	.879	.890	$.237^{\pm .064}$.418	$.078^{\pm .024}$
TrFo, E=1	.441	.187	.273	.000	.134	.000
TrFo, E=2	.522	.189	.290	$.017^{\pm .020}$.126	$008^{\pm.001}$
TrFo, E=3	.606	.181	.302	$.029^{\pm .042}$.122	$012^{\pm .001}$

Model	Ep.: 1	5	M 1-5	MD 1-5	M 40-50	MD 40-50
LSTM, E=1	.729	.826	.794	.000	.870	.000
LSTM, E=2	.748	.817	.774	$020^{\pm .014}$.880	$.010^{\pm .010}$
LSTM, E=3	.694	.733	.728	$066^{\pm .014}$.836	$034^{\pm.012}$
TrFo, E=1	.839	.941	.908	.000	.946	.000
TrFo, E=2	.841	.919	.896	$012^{\pm .005}$.952	$.005^{\pm .008}$
TrFo, E=3	.774	.927	.897	$011^{\pm.019}$.954	$.008^{\pm .016}$

(b) Test accuracy results.

Figure 2: LSTM and Transformer results for different numbers of encoder layers, with decoder layers fixed to one.

Model	Ep.: 1	5	M 1–5	MD 1-5	M 40-50	MD 40-50
TrFo 1H, E=1	.449	.230	.313	.000	.144	.000
TrFo 2H, E=2	.437	.216	.292	$020^{\pm .005}$.138	$006^{\pm .001}$
TrFo 4H, E=3	.441	.187	.273	$040^{\pm.011}$.134	$010^{\pm .001}$
TrFo 8H, E=3	.507	.181	.277	$-,035^{\pm.029}$.127	$017^{\pm .001}$

(a) Test loss results.

Model	Ep.: 1	5	M 1-5	MD 1-5	M 40-50	MD 40-50
TrFo 1H	.850	.928	.894	.000	.941	.000
TrFo 2H	.875	.931	.896	$.002^{\pm .012}$.948	$.007^{\pm .008}$
TrFo 4H	.839	.941	.908	$.015^{\pm .017}$.946	$.005^{\pm .010}$
TrFo 8H	.803	.953	.900	$.002^{\pm .020}$.950	$.008^{\pm .010}$

Figure 3: Transformer results for different numbers of attention heads.

Model	Ep.: 1	5	M 1–5	MD 1-5	M 40-50	MD 40-50
TrFo 1H, E=1	.449	.230	.313	.000	.144	.000
TrFo 2H, E=2	.437	.216	.292	$020^{\pm .005}$.138	$006^{\pm.001}$
TrFo 4H, E=3	.441	.187	.273	$040^{\pm.011}$.134	$010^{\pm .001}$
TrFo 8H, E=3	.507	.181	.277	$-,035^{\pm.029}$.127	$017^{\pm .001}$

Model	Ep.: 1	5	M 1-5	MD 1-5	M 40-50	MD 40-50
TrFo 1H	.850	.928	.894	.000	.941	.000
TrFo 2H	.875	.931	.896	$.002^{\pm .012}$.948	$.007^{\pm .008}$
TrFo 4H	.839	.941	.908	$.015^{\pm .017}$		$.005^{\pm .010}$
TrFo 8H	.803	.953	.900	$.002^{\pm .020}$.950	$.008^{\pm .010}$

(b) Test accuracy results.

Figure 4: Transformer results for different numbers of attention heads.

Model	Ep.: 1	5	M 1–5	MD 1-5		MD 40-50
LSTM/TrFo, D=1	.829/. 635	.513/. 251		$.296^{\pm .041}$	1 /	
LSTM/TrFo, D=2	.808/. 465	.675/.220	.750/. 303	$.447^{\pm .033}$.385/.138	
LSTM/TrFo, D=3	.812/. 441	.519/. 187	.653/. 273	$.380^{\pm .025}$.340/. 134	
LSTM/TrFo, D=4	.899/. 429	.682/.175	.760/. 254	$.506^{\pm .012}$.382/. 129	$.254^{\pm .005}$

(a) Test loss results.

Model	Ep.: 1	5	M 1–5	MD 1-5	M 40-50	MD 40-50
LSTM/TrFo, D=1	.731/.733	.793/. 909	.783/. 860	$077^{\pm .028}$.894/. 942	$048^{\pm.011}$
LSTM/TrFo, D=2	.745/.833	.794/. 941	.760/. 896	$137^{\pm.018}$.856/. 944	$088^{\pm.010}$
LSTM/TrFo, D=3	.729/.839	.826/. 941	.794/. 908	$114^{\pm .008}$.870/. 946	$077^{\pm.011}$
LSTM/TrFo, D=4	.724/.844	.763/.929	.753/. 911	$159^{\pm.016}$.840/. 939	$099^{\pm.015}$

Figure 5: LSTM and Transformer results compared for different numbers of decoder layers, with encoder layers fixed to one.

Model	Ep.: 1	5		MD 1-5		MD 40-50
LSTM/TrFo, E=1	.812/. 441	.519/. 187	.653/. 273	$.380^{\pm .025}$.340/. 134	$.206^{\pm .002}$
LSTM/TrFo, E=2	.803/. 522	.502/.189	.658/. 290		.320/. 126	$.195^{\pm .004}$
LSTM/TrFo, E=3	.904/. 606	.879/. 181	.890/. 302	$.588^{\pm .092}$.418/.122	$.296^{\pm .024}$

Model	Ep.: 1	5	M 1-5	MD 1-5	M 40-50	MD 40-50
LSTM/TrFo, E=1						
LSTM/TrFo, E=2						
LSTM/TrFo, E=3	.694/. 774	.733/. 927	.728/. 897	$169^{\pm.030}$.836/. 954	$118^{\pm.017}$

Figure 6: LSTM and Transformer results compared for different numbers of encoder layers, with decoder layers fixed to three.