

Sheet 0 of 5

Code: DEE 4544

ASSIGNMENT (15%)

Faculty : ENGINEERING

Course : DIPLOMA ELECTRICAL AND ELECTRONICS ENGINEERING (ODL)

Module Title : DIGITAL ELECTRONICS

Date : 2nd MAY 2024

Instruction to candidates

1. Answer ALL the questions.

CO	Descriptions	Domain
CLO 2	Use DeMorgans Theorem to simplify a negated expression. (C3, PLO2)	C3
CLO 3	Formulate and employ a Karnaugh Map to reduce Boolean expressions and logic circuits to their simplest forms. (C2, PLO6)	C2

Do not open this question paper until instructed.

Figure 1

- a. List the types of gates used in the circuit shown in Figure 1. (3 Marks)
- b. Determine the number of input and output variables in the circuit (Figure 1). (4 Marks)
- c. Write the Boolean expression for Z in terms of A, B and C. (3 Marks)
- d. Convert the Boolean expression in (c) into Sum-of-products (SOP) form. (4 Marks)
- e. Construct the Truth Table for this circuit. (6 Marks)
- f. Simplify the Boolean expression in (c) using the K Map technique. (6 Marks)
- g. Sketch the simplified circuit based on question (f). (4 Marks)

(Total = 30 Marks)

a. Answer the question based on Figure 2.

Figure 2

Complete the truth table for the inputs that have been given.

(6 Marks)

		Inp	uts					
Α	В	С	D	E	F	G	Н	K
0	0	1	1	0	0			
0	1	1	1	0	1			
1	0	1	1	1	0			
1	1	1	1	1	1			

b. Figure 3 below shows a logic circuit.

Figure 3

Based on Figure 3, write a Boolean expression for D and B.

(4 Marks)

(Total = 10 Marks)

a. Represent the Boolean expression $Q = \overline{A}.\overline{B}$ as a logic circuit by drawing a diagram in the space below using only the following symbols: (4 Marks)

b. Use the following truth tables to demonstrate that $A + B = \overline{A} \cdot \overline{B}$ (10 Marks)

A	В	A+B
0	0	
0	1	
1	0	
1	1	

A	В	Ā	B	A.B	Ā.B
0	0				
0	1				
1	0				
1	1				

c. Simplify the following Boolean expressions:

i.
$$x = AB + A(B + C) + B(B + C)$$

(3 Marks)

ii.
$$x = \overline{(A + \overline{B}).(\overline{C} + D)}$$

(3 Marks)

a. Complete the Boolean function that corresponds to the following truth table.

	INPUT							
Α	В	С	Х					
0	0	0	0					
0	0	1	0					
0	1	0	0					
0	1	1	1					
1	0	0	0					
1	0	1	0					
1	1	0	1					
1	1	1	1					

$$X = \overline{A}.B.C +$$
 ____________(4 Marks)

The part to the right of the equal sign is known as the sum-of-product.

b. For the truth table above complete the Karnaugh Map (K-map) (4 Marks)

c. Simplify the Boolean expression by group(s) of 1's to produce an optimal SOP and write the simplified SOP Boolean expression. (6 Marks)

(Total = 14 Marks)

---- END OF PAPER ----

a) List logic gate

AND gate, NAND gate and NOR gate

b) Determine the injust & output voitable.

Input vortable: A, B and C Output variable: Z

U Write the boolean expression for Z in terms of A, B and

= (ABC) (Atc)

\$ d) Convert bodeon expression in (c) to sop form

e) K-map technique Construct the truth table for this circuit

n	P	1	AB	ABC	(ABC)1	P+4	(Atc)	Z= (ACK) '(A+C)'
0	0	0	0	0 /	11/	0	TI	1 A'5'C
0	Û	1	0	0		1	0	0
0	1	0	0	0	[1]	0		1 A'S C'
1	0	0	0	0	I	1	0	0
1	0	1	0	0	1	1	0	0
1	1	σ	1	0	1	1	0	Ö
1	1	1	1	1	0	1	0	0
0	1		a	0	1	1 1	0	0
(0 0 0 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0					

MAXAN MADE

0=	A"+B"
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 +B

A	18	A	B	AB	酒
0	0	T	1		0
d	i	1	O	0	1
1	0	0	1	0	1
11	1	0	5	0	(

or gate.

A			
X.	4	he a	
n	1	1	X
13			

A+B= AB 6)

A	B	A+B
0	G	0
0	1	1
1	0	1
1		

. (A	13	Ā	B	AB	$\overline{\overline{A}}\overline{\overline{B}}$
	0	O	1	1		0
	0	. 1	1	0	Ø	1
	1	0	0	1	O	,
	1	1	O	G	0	1

the following Simplify booken expression

Question 4

	In	ou.t	Output
A	B	C	X
0	0	0	0
0	0	1	O
0	1	0	0
σ	1	1	
l	0	0	0
1	0	1	0
1		0	ı
1	1	1	

A'BC

ABC/ ABC

X = A'BC+ ABC'+ ABC

62c)

M

X = BC + AB

From (a) X= A' BC + ABC' + ABC = A'B(+ AB(c'+c) = A'B(+ AB = B(A+A'C)

(Apply AtA'B=A+B)

= B(A+C) = BC +AB

X=BC+ AB