Deep Learning (CS324)

4. Optimisation and regularisation*

Prof. Jianguo Zhang SUSTech

Gradient descent

 We've already learned how gradient descent works...

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_{w^{(t)}} L$$

Gradient descent

...but actually there are many versions of it!

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_{w^{(t)}} L$$

...but actually there are many versions of it!

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_{w^{(t)}} L$$

 If we compute the gradient on the full training set we are doing batch gradient descent

$$\nabla_{w^{(t)}} L = \frac{1}{m} \sum_{i=1}^{m} \nabla_{w^{(t)}} L(w; x_i, y_i)$$

...but actually there are many versions of it!

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_{w^{(t)}} L$$

 If we compute the gradient on the full training set we are doing batch gradient descent

$$\nabla_{w^{(t)}} L = \sum_{i=1}^{m} \nabla_{w^{(t)}} L(w; x_i, y_i)$$

m training samples (*xi*, *yi*)

...but actually there are many versions of it!

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_{w^{(t)}} L$$

 If we compute the gradient on the full training set we are doing batch gradient descent

$$\nabla_{w^{(t)}} L = \frac{1}{m} \sum_{i=1}^{m} \nabla_{w^{(t)}} L(w; x_i, y_i)$$

But note that this is just a sample gradient, an estimate that is likely to be different from the true gradient if we knew the real data distribution

...but actually there are many versions of it!

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_{w^{(t)}} L$$

 If we compute the gradient on the full training set we are doing batch gradient descent

$$\nabla_{w^{(t)}} L = \frac{1}{m} \sum_{i=1}^{m} \nabla_{w^{(t)}} L(w; x_i, y_i)$$

In practice we compute the loss as the average loss over all the training samples and then we compute the gradient of this number wrt *w*

$$L = \frac{1}{m} \sum_{i=1}^{m} L(x_i, y_i)$$

Batch GD: advantages

- Acceleration techniques based on second order derivatives (Hessian) can be used
- We can measure not only the gradient but also the curvature of the loss function
- It's possible to do a simple theoretical analysis of the convergence rate

Batch GD: disadvantages

- Datasets can be too large for a complete gradient computation to be feasible
- Loss surfaces are highly non-convex and high dimensional

Stochastic gradient descent

- An alternative is to compute the gradient and use it to update the weights as we input the training samples one by one
- This is called Stochastic Gradient Descent (SGD)
- Instead of doing...

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_{w^{(t)}} L$$

Stochastic gradient descent

- An alternative is to compute the gradient and use it to update the weights as we input the training samples one by one
- This is called Stochastic Gradient Descent (SGD)
- We do... $w^{(t+1)} = w^{(t)} \eta_t \nabla_{w^{(t)}} L(w; x_i, y_i)$

Stochastic gradient descent

- An alternative is to compute the gradient and use it to update the weights as we input the training samples one by one
- This is called Stochastic Gradient Descent (SGD)
- We do... $w^{(t+1)} = w^{(t)} \eta_t \nabla_{w^{(t)}} L(w; x_i, y_i)$
 - Choose an initial vector of parameters w and learning rate η .
 - · Repeat until an approximate minimum is obtained:
 - Randomly shuffle examples in the training set.
 - For i = 1, 2, ..., n, do:

$$ullet w := w - \eta
abla Q_i(w).$$

Source: https://www.bogotobogo.com/python/scikit-learn/scikit-learn_batch-gradient-descent-versus-stochastic-gradient-gra

SGD: advantages

- Faster than gradient descent
 - Start improving from first sample rather than waiting; also, there may be redundant when considering whole training data
- Randomness helps to avoid overfitting, which in turn can improve the accuracy
- Suitable for datasets that change over time

SGD: disadvantages

- Mostly, it's an approximation of an approximation so it's bound to be imperfect
 - But in practice this is not a problem, in fact it's an advantage (noise helps against overfitting)
- The main problem is that with samples of size 1 we can't take advantage of massive parallelism...

Mini-batch gradient descent

- So why not using more than 1 data sample to compute the gradient, but less than the entire training set?
- This is called mini-batch gradient descent

$$w^{(t+1)} = w^{(t)} - \frac{\eta_t}{|B|} \sum_{b \in B} \nabla_{w^{(t)}} L(w; b)$$

- where B is a sample of the data
- More general version of stochastic gradient descent (so often called SGD)

Mini-batch gradient descent

```
Require: Learning rate schedule \epsilon_1, \epsilon_2, \dots

Require: Initial parameter \boldsymbol{\theta}

k \leftarrow 1

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.
```

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Algorithm 8.1 Stochastic gradient descent (SGD) update

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon_k \hat{\boldsymbol{g}}$

 $k \leftarrow k + 1$

end while

SGD vs GD

- SGD works well when the data changes over time, while GD is biased toward "past" samples
- SGD can choose samples with maximum information content
- SGD can also choose samples that generated the largest errors in the previous epoch, to yield larger gradients and thus faster learning

SGD vs GD

- SGD works well when the data changes over time, while GD is biased toward "past" samples
- SGD can choose samples with maximum information content
- SGD can also choose samples that generated the largest errors in the previous epoch, to yield larger gradients and thus faster learning
- ...but how many samples? Hyper-parameter, trial & error; usually as many as the GPU fits

SGD vs GD

- SGD works well when the data changes over time, while GD is biased toward "past" samples
- SGD can choose samples with maximum information content
- SGD can also choose samples that generated the largest errors in the previous epoch, to yield larger gradients and thus faster learning
- ...but how many samples? Hyper-parameter, trial & error: usually as many as the GPU fits. https://blog.paperspace.com/intra-to-optimization-in-deep-learning-gradient-desc

III-conditioning

$$f(oldsymbol{x}) pprox f(oldsymbol{x}^{(0)}) + (oldsymbol{x} - oldsymbol{x}^{(0)})^{ op} oldsymbol{g} + rac{1}{2} (oldsymbol{x} - oldsymbol{x}^{(0)})^{ op} oldsymbol{H} (oldsymbol{x} - oldsymbol{x}^{(0)})$$
 $f(oldsymbol{x}^{(0)} - \epsilon oldsymbol{g}) pprox f(oldsymbol{x}^{(0)}) - \epsilon oldsymbol{g}^{ op} oldsymbol{g} + rac{1}{2} \epsilon^2 oldsymbol{g}^{ op} oldsymbol{H} oldsymbol{g}.$

- Local minima
- Plateaus, saddle points, and other flat regions

III-conditioning

$$f(oldsymbol{x}) pprox f(oldsymbol{x}^{(0)}) + (oldsymbol{x} - oldsymbol{x}^{(0)})^{ op} oldsymbol{g} + rac{1}{2} (oldsymbol{x} - oldsymbol{x}^{(0)})^{ op} oldsymbol{H} (oldsymbol{x} - oldsymbol{x}^{(0)})$$
 $f(oldsymbol{x}^{(0)} - \epsilon oldsymbol{g}) pprox f(oldsymbol{x}^{(0)}) - \epsilon oldsymbol{g}^{ op} oldsymbol{g} + rac{1}{2} \epsilon^2 oldsymbol{g}^{ op} oldsymbol{H} oldsymbol{g}.$

- Local minima
- Plateaus, saddle points, and other flat regions
- Cliffs and exploding gradients

See https://www.cs.umd.edu/~tomg/projects/landscapes/
for more cool visualisations

Momentum

- Analogy with physical momentum
- Keep taking into account past gradients but let their contribution decay exponentially with time
- This is performed through a velocity parameter which accumulates the value of previous gradients
- This dampens oscillations, yielding a more robust gradients which in turn leads to faster convergence

SGD with momentum

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α

Require: Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v}

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$.

Apply update: $\theta \leftarrow \theta + v$.

end while

SGD with momentum

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α

Require: Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v}

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$.

Apply update: $\theta \leftarrow \theta + v$.

end while

Typical values are 0.5, 0.9, or 0.99. Usually it starts at a low value that is then raised with time

Momentum

20 10 0 -10-20-30-30 -20 -100 10 20

Without momentum

With momentum

Nesterov momentum

 Just like standard momentum, but use the future gradient (which results in better convergence)

```
Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum
```

```
Require: Learning rate \epsilon, momentum parameter \alpha

Require: Initial parameter \boldsymbol{\theta}, initial velocity \boldsymbol{v}

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding labels \boldsymbol{y}^{(i)}.

Apply interim update: \tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}.

Compute gradient (at interim point): \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)}).

Compute velocity update: \boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}.

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}.

end while
```

Adaptive learning rates

- Learning rate hard to set as it significantly affects the model performance
 - Loss function can change in very different ways in different directions
 - Momentum helps, but it's yet another hyper parameter
- We can try to learn individual learning rates for each parameter and automatically adapt them

Delta-bar-delta

- One the first heuristics (1988) to adapt individual learning rates during training
- If the sign of the partial derivative of the loss with respect to a given model parameter remains the same, then the learning rate should increase
- If it changes, the learning rate should decrease
- Works only with batch gradient descent (can you guess why?)

AdaGrad

- Adapt learning rates of model parameters by scaling them inversely proportional to the square root of the sum of all the past squared values of the gradient
- Learning rate of parameters with large (small) value of partial derivative of loss decreases (increases)
 - Faster progress in gently sloped directions
- But <u>long history</u> of gradients can slow things down

AdaGrad

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ϵ

Require: Initial parameter θ

Require: Small constant δ , perhaps 10^{-7} , for numerical stability

Initialize gradient accumulation variable r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$

Accumulate squared gradient: $r \leftarrow r + g \odot g$.

Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot g$. (Division and square root applied element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$.

end while

RMSprop

- RMSprop is an (unpublished) modification of AdaGrad that accumulates past gradients using an exponential moving average*
- While AdaGrad is designed to work well for convex functions, RMSprop works better in non-convex settings (typical of deep learning)

^{*}https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average

RMSprop

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ϵ , decay rate ρ

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small

numbers

Initialize accumulation variables r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$

Accumulate squared gradient: $r \leftarrow \rho r + (1 - \rho)g \odot g$.

Compute parameter update: $\Delta \boldsymbol{\theta} = -\frac{\epsilon}{\sqrt{\delta + \boldsymbol{r}}} \odot \boldsymbol{g}$. $(\frac{1}{\sqrt{\delta + \boldsymbol{r}}} \text{ applied element-wise})$

Apply update: $\theta \leftarrow \theta + \Delta \theta$.

end while

Adam

- Best understood as a way of combining RMSprop with SGD + momentum
- Uses square gradients to scale learning rate like RMSprop + moving average of gradient for momentum
- Turns out to be fairly robust to choice of hyperparameters

Adam

Algorithm 8.7 The Adam algorithm **Require:** Step size ϵ (Suggested default: 0.001) **Require:** Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1). (Suggested defaults: 0.9 and 0.999 respectively) **Require:** Small constant δ used for numerical stabilization (Suggested default: 10^{-8}) **Require:** Initial parameters θ Initialize 1st and 2nd moment variables s = 0, r = 0Initialize time step t=0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\}$ with corresponding targets $y^{(i)}$. Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ $t \leftarrow t + 1$ Update biased first moment estimate: $\mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1) \mathbf{g}$ Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$ Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$ Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-\hat{r}}$ Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise) Apply update: $\theta \leftarrow \theta + \Delta \theta$ end while

What's the optimal optimiser?

- There's still not a generally accepted answer to this question, unfortunately
- For a visualisation of different optimisers seeking the minimise various landscapes see the excellent visualisations at https://github.com/Jaewan-Yun/optimizer-visualization
- See also http://ruder.io/optimizing-gradient-descent/ for a good summary of the different

Also Optimise 65g Available om/intro-to-optimization-momentum-rmsprop-ad

Second order optimisation

- The methods seen so far rely only on firstorder information (gradient)
- Using second-order information (Hessian) can help to improve convergence
- Based on Newton's method

$$J(oldsymbol{ heta}) pprox J(oldsymbol{ heta}_0) + (oldsymbol{ heta} - oldsymbol{ heta}_0)^ op
abla_{oldsymbol{ heta}} J(oldsymbol{ heta}_0) + rac{1}{2} (oldsymbol{ heta} - oldsymbol{ heta}_0)^ op oldsymbol{H} (oldsymbol{ heta} - oldsymbol{ heta}_0).$$
 $oldsymbol{ heta}^* = oldsymbol{ heta}_0 - oldsymbol{H}^{-1}
abla_{oldsymbol{ heta}} J(oldsymbol{ heta}_0)$

Second order optimisation

Based on Newton's method

$$J(oldsymbol{ heta}) pprox J(oldsymbol{ heta}_0) + (oldsymbol{ heta} - oldsymbol{ heta}_0)^ op
abla_{oldsymbol{ heta}} J(oldsymbol{ heta}_0) + rac{1}{2} (oldsymbol{ heta} - oldsymbol{ heta}_0)^ op oldsymbol{H} (oldsymbol{ heta} - oldsymbol{ heta}_0).$$

- If J is locally quadratic (H is positive definite)
 then we can jump directly to the minimum
- Otherwise, iterate steps 1) quadratic approximation & 2) update parameters
- However if H has negative eigenvalues we may end up moving in the wrong direction

Second order optimisation

We need to modify the Hessian

$$J(\boldsymbol{\theta}) pprox J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0).$$

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \left[H\left(f(\boldsymbol{\theta}_0)\right) + \alpha \boldsymbol{I}\right]^{-1} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}_0)$$

- But when curvature is very high we may need to increase alpha to the point that diagonal dominates and method becomes standard gradient descent with small step size
- Also, inverting the Hessian is expensive
 - $O(k^3)$ where k is the number of parameters

Regularisation

- Deep networks can have millions of parameters, often more than the size of the training dat, which can lead to overfitting!
 - Need to regularise the loss function

$$w^* = \operatorname{argmin} \sum_{x,y} L(w_{1,\dots,L}; x, y) + \lambda \Omega(\theta)$$

- Possible methods include L1 regularisation, L2 regularisation, and Dropout
- The goal is to reduce the model capacity

L1 regularisation

- L1 regularisation enforces sparse weights, i.e., more weights become 0 (i.e., delete connections)
- Performs feature selection (which features of the input data should we retain?)

$$w^* = \operatorname{argmin} \sum_{x,y} L(w_{1,\dots,L}; x, y) + \lambda \sum_{l} |w_{l}|$$

Why sparse?

<u>nedium.com/mlreview/l1-norm-regularization-and-sparsity-explained-for-dummies-5b0e4l</u>

L1 regularisation

- L1 regularisation enforces sparse weights, i.e., more weights become 0 (i.e., delete connections)
- Performs feature selection (which features of the input data should we retain?)

$$w^* = \operatorname{argmin} \sum_{x,y} L(w_{1,\dots,L}; x, y) + \lambda \sum_{l} |w_{l}|$$

$$w_l = w_l - \lambda \eta \frac{w_l}{|w_l|} - \eta \nabla_w L$$

Sign function (+1 or -1)

L2 regularisation

- Most popular type of regression, drives weights closer to the origin
- Nice analytical form (can derive and thus compute gradient)
- Usually lambda is 10⁻¹ or 10⁻²

$$w^* = \operatorname{argmin} \sum_{x,y} L(w_{1,\dots,L}; x, y) + \frac{\lambda}{2} \sum_{l} ||w_l||_2^2$$

L2 regularisation

- Most popular type of regression, drives weights closer to the origin
- Nice analytical form (can derive and thus compute gradient)
- Usually lambda is 10⁻¹ or 10⁻²

$$w^* = \operatorname{argmin} \sum_{x,y} L(w_{1,\dots,L}; x, y) + \frac{\lambda}{2} \sum_{l} ||w_l||_2^2$$

$$w_l = (1 - \lambda \eta) w_l - \eta_t \nabla_{w_l} L$$

The gradient descent step changes to this Note the "weight decay"

L2 regularisation

- Most popular type of regression, drives weights closer to the origin
- Nice analytical form (can derive and thus compute gradient)
- Usually lambda is 10⁻¹ or 10⁻²

$$w^* = \operatorname{argmin} \sum_{x,y} L(w_{1,\dots,L}; x, y) + \frac{\lambda}{2} \sum_{l} ||w_l||_2^2$$

$$w_l = (1 - \lambda \eta) w_l - \eta_t \nabla_{w_l} L$$

Practically what happens is that we decrease the weight on features that have low covariance with the output target (i.e., less important features)

Dataset augmentation

- Instead of reducing the capacity of the model, another way to reduce overfitting is to have more training data!
- This approach is particularly easy to apply on object recognition tasks, where we can take input data and generate transformed version of it that simulate real-world scenarios (e.g., occlusion, rotation, etc.)

Enlarge your Dataset

Source: https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971

Early stopping

 Simple idea: to avoid overfitting, stop training when validation set error starts increasing, even if training error is still decreasing

Dropout

- During training, randomly "deactivate" some units according to a probability p
- At test time, use all units with activations weighted by p
- Advantages include:
 - Faster training
 - Less overfitting
 - Units become more robust

Ensemble of subnetworks

In each epoch we randomly "deactivate" some units, effectively training a different subnetwork of the base network

Other common practices

 Apart from choosing the optimisation scheme and applying regularisations, there are other standard practices we can use to initialise the parameters of the networks and pre-process the input data

- Deep learning training is iterative and strongly depends on the initialisation point (i.e., how we initialise the parameters of the network)
- Important principle: weight asymmetricity
 - Why? Because if 2 units share the same activation, same weights, and same inputs, they will be updated in the same way (no learning)
 - So, don't give same value to all weights (e.g.,
 0)
 - Sample weights from Gaussian or uniform

- But, be careful:
 - Large weights will have strong symmetrybreaking effect and help to propagate strong signal during forward and backward propagation
 - However they may also cause exploding values, saturation of units
 - But we also don't want small weights...
 - Also, we want to maintain the same variance for input and output (because outputs are 56 inputs of next layer)

Uniform distribution initialisation (tanh)

$$W_{ij} \sim U\left(-\sqrt{\left(\frac{6}{m+n}\right)}, \sqrt{\left(\frac{6}{m+n}\right)}\right)$$

Xavier initialisation (tanh)

$$W_{ij} \sim N\left(0, \sqrt{\frac{1}{m}}\right)$$

Where *m* is the number of inputs and *n* is the number of outputs of the layer

Uniform distribution initialisation (sigmoid)

$$W_{ij} \sim U\left(-4\sqrt{\left(\frac{6}{m+n}\right)}, 4\sqrt{\left(\frac{6}{m+n}\right)}\right)$$

ReLU initialisation

$$W_{ij} \sim N\left(0, \sqrt{\frac{2}{m}}\right)$$

Where *m* is the number of inputs and *n* is the number of outputs of the layer

Activation functions are usually centred around zero

Activation functions are usually centred around

Not the sigmoid : (...

- Activation functions are usually centred around zero
- This is a good thing because it helps us to avoid saturation, which leads to vanishing gradients
- At the same time, we like one-sided saturations
 More bed this berg https://bloppaperspace.com/varishing-gradients-activation-functions
 noise

- Subtract mean so that training data is centred around zero as well
 - Otherwise may cause vanishing gradients
- Scale inputs to have similar diagonal covariances
 - Otherwise input samples with very different covariances can generate very different gradients and make the gradient update harder

Unit normalisation

 When input variables are normally distributed, subtract mean and divide by standard

Source: http://cs231n.github.io/neural-networks-2/

- Two important principles. The distribution of the data fed to the layers of a network should be:
 - zero-centred
 - constant through time and data (minibatches)

- Two important principles. The distribution of the data fed to the layers of a network should be:
 - zero-centred (done)
 - constant through time and data (minibatches)
- We already took care of the first point, but what about the second one?

- Two important principles. The distribution of the data fed to the layers of a network should be:
 - zero-centred (done)
 - constant through time and data (minibatches)
- We already took care of the first point, but what about the second one?
 - Normalise the activations of each layer!

$$egin{aligned} oldsymbol{Z} = & oldsymbol{X} oldsymbol{W} \ oldsymbol{ ilde{Z}} = & oldsymbol{Z} - rac{1}{m} \sum_{i=1}^m oldsymbol{Z}_{i,:} \ oldsymbol{\hat{Z}} = & rac{ ilde{Z}}{\sqrt{\epsilon + rac{1}{m} \sum_{i=1}^m ilde{Z}_{i,:}^2}} \ oldsymbol{H} = & \max\{0, oldsymbol{\gamma} \hat{Z} + oldsymbol{eta}\} \end{aligned}$$

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" loffe and Szegedy 2015

"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" loffe and Szegedy 2015

Summary

- Gradient descent and variants
- Momentum and learning rate
- Regularisation
- Parameters initialisation
- Input normalisation
- Batch normalisation