### Checklist per l'esame di Fisica 3

Edoardo Gabrielli

7 gennaio 2020

| Indice 2.a.9                                                 |               |        |  |  |  |
|--------------------------------------------------------------|---------------|--------|--|--|--|
|                                                              |               | 2.a.10 |  |  |  |
| 1 Prerequisiti                                               | 1             | 2.a.12 |  |  |  |
|                                                              |               | 2.a.13 |  |  |  |
| a Domande a                                                  | 1             | 2.a.14 |  |  |  |
| 1.a.1                                                        | $\frac{1}{1}$ | 2.a.15 |  |  |  |
| 1.a.3                                                        | 1             | 2.a.16 |  |  |  |
| 1.a.4                                                        | 1             | 2.a.17 |  |  |  |
| 1.a.5                                                        | 1             | 2.a.19 |  |  |  |
| 1.a.6                                                        | 2             | 2.a.20 |  |  |  |
| 1.a.7                                                        | 2             | 2.a.21 |  |  |  |
| 1.a.8                                                        | 2             | 2.a.22 |  |  |  |
| 1.a.9                                                        | 2             | 2.a.23 |  |  |  |
| 1.a.10                                                       | $\frac{2}{2}$ | 2.a.24 |  |  |  |
| 1.a.12                                                       | $\frac{2}{2}$ | 2.a.25 |  |  |  |
| 1.a.13                                                       | 3             | 2.a.27 |  |  |  |
| 1.a.14                                                       | 3             | 2.a.28 |  |  |  |
| 1.a.15                                                       | 3             | 2.a.29 |  |  |  |
| 1.a.16                                                       | 3             | 2.a.30 |  |  |  |
| 1.a.17                                                       | 3             | 2.a.31 |  |  |  |
| 1.a.18                                                       | 3             | 2.a.32 |  |  |  |
| 1.a.19                                                       | 3             | 2.a.33 |  |  |  |
| 1.a.20                                                       | $\frac{4}{4}$ | 2.a.34 |  |  |  |
| 1.a.22                                                       | 4             | 2.a.35 |  |  |  |
| 1.a.23                                                       | 4             | 2.a.37 |  |  |  |
| 1.a.24                                                       | 4             |        |  |  |  |
| 1.a.25                                                       | 4 k           |        |  |  |  |
| 1.a.26                                                       | 4             | 2.b.1  |  |  |  |
| 1.a.27                                                       | 5             | 2.b.2  |  |  |  |
| 1.a.28                                                       | 5<br>5        | 2.b.4  |  |  |  |
| 1.a.30                                                       | 5<br>5        | 2.b.5  |  |  |  |
| 1.a.31                                                       | 5             | 2.b.6  |  |  |  |
| 1.a.32                                                       | 6             | 2.b.7  |  |  |  |
| 1.a.33                                                       | 6             | 2.b.8  |  |  |  |
| 1.a.34                                                       | 6             | 2.b.9  |  |  |  |
| 1.a.35                                                       | 6             | 2.b.10 |  |  |  |
| 1.a.36                                                       | $\frac{6}{7}$ | 2.b.12 |  |  |  |
| 1.a.37                                                       | 7             | 2.b.13 |  |  |  |
| 1.a.39                                                       | 7             | 2.b.14 |  |  |  |
| 1.a.40                                                       | 7             | 2.b.15 |  |  |  |
| 1.a.41                                                       | 7             | 2.b.16 |  |  |  |
|                                                              |               | 2.b.17 |  |  |  |
| 2 Indonino della mataria tramita                             |               | 2.b.18 |  |  |  |
| 2 Indagine della materia tramite<br>collisioni e decadimenti | 7             | 2.b.20 |  |  |  |
| comploin e decadimenti                                       | •             | 2.b.21 |  |  |  |
| a Domande a                                                  | 7             | 2.b.22 |  |  |  |
| 2.a.1                                                        | 7             | 2.b.23 |  |  |  |
| 2.a.2                                                        | 8             | 2.b.24 |  |  |  |
| 2.a.3                                                        | 8             | 2.b.25 |  |  |  |
| 2.a.4                                                        | 9<br>9        | 2.b.26 |  |  |  |
| 2.a.6                                                        | 9<br>10       | 2.b.28 |  |  |  |
| 2.a.7                                                        | 10            | 2.b.29 |  |  |  |
| 2.a.8                                                        | 11            | 2.b.30 |  |  |  |
|                                                              |               |        |  |  |  |

|      | $egin{array}{llllllllllllllllllllllllllllllllllll$  | netismo classico e acce-<br>icelle | -<br>38 |
|------|-----------------------------------------------------|------------------------------------|---------|
|      | b.33                                                |                                    | 38      |
| 2.b. | b.34                                                |                                    |         |
| 2.b. | b.35                                                |                                    | 39      |
| 2.b. | b.36                                                | diazione-materia                   | 39      |
| 2.b. | b.37                                                | mazione-materia                    | 39      |
| 2.b. | b.38                                                | elta                               | 39      |
|      | nco delle figure                                    |                                    | 0       |
| 1    | Assobimento e diffusione e.m. di un sistema         |                                    |         |
| 2    | Dipolo magnetico oscillante                         |                                    |         |
| 3    | Spettro di energia dell'elettrone.                  |                                    |         |
| 4    | Esempio di Dalitz Plot                              |                                    | 21      |
| 5    | Spira immersa nel campo di onda e.m                 |                                    | 22      |
| 6    | Andamento delle sezioni d'urto della Bright-Wiegner |                                    | 31      |
| 7    | Dimensioni atomiche tipiche                         |                                    | 33      |
| 8    | Schema dello scattering Rutherford                  |                                    | 33      |

#### Parte 1

### Prerequisiti

#### a Domande a

#### 1.a.1 Definire le quantità $\beta$ e $\gamma$ per le trasformazioni di Lorentz.

Presi due sistemi di riferimento inerziali O ed O' si ha che  $\beta$  è la velocità del sistema O' rispetto ad O (in unità di c) mentre:

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}.$$

#### 1.a.2 Definire il prodotto scalare di due 4-vettori.

Presi  $x^{\mu} = (x^0, \mathbf{x})$  e  $y^{\mu} = (y^0, \mathbf{y})$  si definisce il loro prodotto come  $x^{\mu}y_{\nu}$  come:

$$x^{\mu}y_{\nu} = x^0y^0 - \boldsymbol{x} \cdot \boldsymbol{y}.$$

#### 1.a.3 Definire il modulo di un 4-vettore.

Se  $x^{\mu}$  è un 4-vettore il suo modulo è definito secondo la metrica:

$$|x|^2 = x^\mu x_\mu.$$

Dato che il tensore metrico non è definito positivo il modulo di un 4-vettore può esser positivo, negativo o nullo.

#### 1.a.4 Scrivere le trasformazioni di Lorentz per il boost lungo un asse (asse x).

Per un boost lungo l'asse x si ha:

$$\begin{cases} ct' = \gamma(ct - \beta x) \\ x' = \gamma(x - \beta ct) \\ y' = y \\ z' = z \end{cases}$$

o in forma matriciale:

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$

### 1.a.5 Definire le derivate in 4-dimensioni, la quadridivergenza, il differenziale di uno scalare di Lorentz, l'operatore di D'Alembert.

Si definisce gli operatori  $\partial^{\mu}$  e  $\partial_{\mu}$  come:

$$\partial^{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\nabla\right), \quad \partial_{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right).$$

Preso un generico campo tensoriale, la sua 4-divergenza (rispetto a qualche indice) è la contrazione tra l'operatore  $\partial^{\mu}$  e l'indice stesso (se ques'ultimo è covariante) oppure tra l'operatore  $\partial_{mu}$  e l'indice stesso (se quest'ultimo è controvariante). Ad esempio preso il campo vettoriale  $v^{\mu} \equiv (v^0, \mathbf{v})$  la sua 4-divergenza sarà:

$$\partial_{\mu}v^{\mu} = \frac{1}{c}\frac{\partial v^{0}}{\partial t} + \nabla v.$$

Se invece  $\phi$  è un invariante di Lorentz il suo differenziale è:

$$d\phi = dx^{\mu}\partial_{\mu}\phi = \frac{\partial\phi}{\partial t}dt + (d\boldsymbol{x}\cdot\nabla)\phi.$$

L'operatore di D'Alembert invece è:

$$\Box = \partial_{\mu} \partial^{\mu} = \frac{1}{c^2} \frac{\partial^2}{\partial t^2}.$$

1

### 1.a.6 Definire il tempo proprio e dare la relazione (differenzale) fra tempo proprio e tempo nel sistema in cui si osserva il moto.

Si sa che l'intervallo  $ds^2$  è uno scalare di Lorentz, inoltre per un sistema solidale (o tangente) si ha  $dx^{\mu} = (cd\tau, 0)$  con  $d\tau$  il tempo proprio infinitesimo. Si ha quindi:

$$c^{2}d\tau^{2} = c^{2}d\tau^{2} - |dx|^{2} = c^{2}dt^{2} - |\mathbf{v}|^{2}dt^{2} \implies d\tau = \frac{dt}{\gamma}.$$

#### 1.a.7 Dare la definizione di invariante di Lorentz.

Un invariante di Lorentz è una grandezza che viene lasciata invariata dalle trasformazioni di Lorentz: è uguale in tutti i sistemi di riferimento inerziali.

## 1.a.8 Definire la 4-velocità ed il 4-impulso di un punto materiale di massa m, esprimere le loro unità di misura nei sistemi MKS e $\hbar=c=1$ , dimoststrare che il loro modulo è costante.

In MKS la 4-velocità ed il 4-impulso sono rispettivamente:

$$u^{\mu} = \frac{dx^{\mu}}{d\tau} = (\gamma c, \gamma v) \left(\frac{[m]}{[s]}\right), \qquad p^{\mu} = mu^{\mu} \left(\frac{[kg] \cdot [m]}{[s]}\right).$$

Mentre in unità di  $\hbar=c=1$  si ha che  $u^{\mu}$  è adimensionale mentre  $p^{\mu}$  di misura in kg. Dimostriamo che il modulo di questi due è costante:

$$u^{\mu}u_{\mu} = \gamma^2 \left(c^2 - \boldsymbol{v}^2\right) = c^2$$
$$p^{\mu}p_{\mu} = mc^2$$

#### 1.a.9 Enunciare la legge di conservazione del 4-impulso.

Per un sistema isolato (ovvero non sottoposto a forze esterne) il 4-impulso totale si conserva nel tempo.

### 1.a.10 Dare la definizione di 4-vettore covariante e controvariante; definire un tensore covariante di rango 2 e la sua traccia.

Un tensore covariante è il prodotto tensoriale di due quadrivettori covarianti. Di conseguenza un tensore covariante  $F_{\mu\nu}$  trasforma sotto trasformazioni di Lorentz come:

$$F'_{\mu\nu} = \Lambda^{\alpha}_{\mu} \Lambda^{\beta}_{\nu} F_{\alpha\beta}.$$

La traccia di F è

$$F^{\mu}_{\mu} = g^{\mu\nu} F_{\mu\nu}$$

#### 1.a.11 Definire il tensore metrico $g_{\mu\nu}$

Il tensore metrico si definisce come:  $g_{\mu\nu} = \text{diag}(1, -1, -1, -1)$ 

#### 1.a.12

Tensore antisimmetrico di rango 2] Dare la definizione di tensore antisimmetrico di rango 2 ed indicare quali dei suoi elementi siano le componenti di un vettore polare e quali quelle di un vettore assiale tridimensionale. Un tensore antisimmetrico  $F^{\mu\nu}$  di rango 2 è un tensore che cambia segno sotto scambio di indici:

$$F^{\mu\nu} = -F^{\nu\mu}$$

Nel caso particolare in cui  $F^{\mu\nu}$  è della forma:

$$F^{\mu\nu} = \begin{pmatrix} 0 & v_x & v_y & v_z \\ -v_x & 0 & -w_z & w_y \\ -v_y & w_z & 0 & -w_x \\ -v_z & -w_y & w_x & 0 \end{pmatrix}$$

Allora il vettore  $\boldsymbol{v}$  è polare (invariante sotto parità) mentre il vettore  $\boldsymbol{w}$  è assiale ("contro" variante sotto parità: cambia segno).

2

#### 1.a.13 Definire quando una legge è scritta in modo relativisticamente covariante.

Una legge fisica è scritta in modo relativisticamente covariante se è una uguaglianza tra due oggetti che trasformano allo stesso modo sotto cambi di sistema di riferimento, ossia se i due oggetti hanno gli stessi indici covarianti e controvarianti.

#### 1.a.14 Enunciare o ricavare la legge relativistica di composizione delle velocità.

Supponiamo di avere un corpo puntiforme e siano v e v' le sue velocità nei sistemi inerziali O e O'. Se  $w = w\hat{x}$  è la velocità di O' rispetto ad O allora si ha

$$v_x' = \frac{v_x - w}{1 - v_x w/c^2} \qquad v_y' = \frac{v_y}{\gamma \left( 1 - v_x w/c^2 \right)} \qquad v_z' = \frac{v_z}{\gamma \left( 1 - v_x w/c^2 \right)}$$

$$con \gamma = \frac{1}{\sqrt{1 - w^2/c^2}}$$

### 1.a.15 Dimostrare che il modulo di un 4-vettore ed il prodotto di due 4-vettori sono invarianti di Lorentz.

È sufficiente dimostrare che il prodotto di due 4-vettori è invariante:

$$x^{\prime\mu}y_{\mu}^{\prime} = \Lambda_{\alpha}^{\mu}g_{\mu\beta}\Lambda_{\gamma}^{\beta}x^{\alpha}y^{\gamma}.$$

Inoltre il gruppo di Lorentz può esser definito come il gruppo che lascia invariato la metrica di Minkowsky, quindi:

$$\Lambda^{\mu}_{\alpha}g_{\mu\beta}\Lambda^{\beta}_{\gamma} = g_{\alpha\gamma} \implies x'^{\mu}y'_{\mu} = x^{\mu}y_{\mu}$$

#### 1.a.16 Spiegare il paradosso dei gemelli.

Consideriamo i gemelli Bob e Alice. Supponiamo che la prima rimanga sulla terra (supposta sistema inerziale) e che Bob parta per una stella lontana a velocità costante. Per Alice l'orologio di Bob è rallentato dunque lei pensa che al ritorno di Bob ella sarà più giovane di lui.

Dal punto di vista di Bob è invece l'orologio di Alice ad essere rallentato (che nel suo sistema si allontana da lei alla velocità della nave) quindi pensa in maniera opposta ad Alice: crede che sarà lui il più giovane al suo ritorno.

Il paradosso nasce dalla erroneità della seconda affermazione (quella fatta da Bob): il sistema di Bob non può essere inerziale perchè dovrà necessariamente accelerare per tornare indietro. Quindi al ritorno Bob è più vecchio di Alice e, facendo un diagramma di Minkowsky, si vede che l'invecchiamento di Bob è tutto dovuto alla fase di accelerazione e decelerazione della nave.

#### 1.a.17 Dimostrare che l'operatore di D'Alembert è un invariante di Lorentz.

Se si considera l'operatore di D'Alembert come il prodotto di quadrivettori allora la dimostrazione è già stata effettuata nel punto (1.a.15).

#### 1.a.18 Dimostrare che la 4-accelerazione e la 4-velocità sono perpendicolari.

Visto che  $u^{\mu}u_{\mu}=c^2$  possiamo derivare a destra e sinistra rispetto al tempo proprio ottenendo:

$$0 = \frac{\mathrm{d}u^{\mu}u_{\mu}}{\mathrm{d}\tau} = u^{\mu}a_{\mu} + a^{\mu}u_{\mu} = 2u^{\mu}a_{\mu}$$

Da quest'ultima relazione si evince che 4-velocità e 4-accelerazione sono perpendicolari.

#### 1.a.19 Quanto valgono in MKS e in CGS le costanti: c, $\epsilon_0$ , $\mu_0$ , $e^2/4\pi$ , $\hbar$ ?

In MKS si ha:

$$c = 3 \cdot 10^8 \text{ m/s}$$

$$\epsilon_0 = 8.854 \cdot 10^{-12} \text{ F/m}$$

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}$$

$$\frac{e^2}{4\pi} = 2.04 \cdot 10^{-39} \text{ C}^2$$

$$\hbar = 1.05 \cdot 10^{-34} \quad J \cdot s$$

In CGS invece:

$$c = 3 \cdot 10^{10} \quad \text{cm/s}$$
 
$$\epsilon_0 = \frac{1}{4\pi}$$
 
$$\mu_0 = \frac{4\pi}{c^2}$$
 
$$\frac{e^2}{4\pi} = 1.83 \cdot 10^{-20} \quad esu^2 \quad (\text{con 1 esu} = 1 \text{ Am/c} = 10^{-8} \text{ cm/c})$$
 
$$\hbar = 1.05 \cdot 10^{-27} \quad \text{erg} \cdot \text{s}$$

#### 1.a.20 Quanto vale entro il 5% la costante $\hbar c$ in eV-nm e in MeV-fm?

La costante  $\hbar c$  vale:

$$\hbar c = 197~\mathrm{eV/nm} = 197~\mathrm{MeV/fm}$$

#### 1.a.21

Categorie di fotoni] Spiegare la differenza tra le seguenti categorie di fotoni: infrarossi - visibili - ultravioletti - raggi  $\chi$  - raggi  $\gamma$ . La differenza tra le categorie sta nella energia (o equivalentemente nella frequenza):

| Fotoni         | Frequenza [Hz]                      | Energia [eV]               |
|----------------|-------------------------------------|----------------------------|
| infrarosso     | $5 \cdot 10^{11} - 4 \cdot 10^{14}$ | $2 \cdot 10^{-3} \sim 1.5$ |
| visibile       | $4 \cdot 10^{14} - 8 \cdot 10^{14}$ | $1.5 \sim 3$               |
| ultravioletto  | $8 \cdot 10^{14} - 3 \cdot 10^{17}$ | $3 \sim 10^3$              |
| raggi X        | $3 \cdot 10^{17} - 5 \cdot 10^{19}$ | $10^3 \sim 2 \cdot 10^5$   |
| raggi $\gamma$ | $\geq 5 \cdot 10^{19}$              | $\ge 10^5$                 |

#### 1.a.22 Quanto vale la massa del fotone?

Il fotone ha massa nulla.

### 1.a.23 Quanto valgono, entro il 5%, la carica elettrica dell'elettrone e del protone (in MKSA)?

La carica dell'elettrone vale

$$e = -1.602 \cdot 10^{-19}$$
 C

mentre quella del protone vale l'opposto.

#### 1.a.24 Quanto vale, entro il 5\%, la costante di struttura fine $(\alpha)$ ?

$$\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} = 7.29 \cdot 10^{-3} \approx \frac{1}{137}$$

### 1.a.25 Quanto valgono, entro il 10%, la massa dell'elettrone e del protone (in MKS e in ${\rm MeV}/c^2$ )?

$$m_e = 0.511 \text{ MeV}/c^2 = 9.11 \cdot 10^{-31} \text{ kg}$$
  
 $m_p = 938 \text{ MeV}/c^2 = 1.67 \cdot 10^{-27} \text{ kg}$ 

#### 1.a.26

 $m_e, m_p, m_n$ ] Dire se la differenza fra la massa del neutrone e la somma della massa del protone e dell'elettrone sia: 1 MeV; 10 MeV; 100 MeV oppure negativa.

$$m_n - (m_n + m_e) \approx 1 \text{ MeV}$$

### 1.a.27 Quanto è l'ordine di grandezza dell'energia media di legame di un elettrone all'interno di un atomo?

L'energia di legame di un elettrone all'interno di un atomo varia tra 1 e 100 eV, tale energia è tendenzialmente più vicina ad 1 eV.

#### 1.a.28 Spiegare la differenza fra ottica fisica ed ottica geometrica

L'ottica geometrica studia i fenomeni ottici assumendo che la luce si propaghi mediante raggi rettilinei (riflessione, rifrazione).

L'ottica fisica è la branca dell'ottica che studia i fenomeni in cue emerge la natura ondulatoria della luce (interferenza, diffrazione).

Nel limite in cui le dimensioni lineari deglio oggetti studiati siano molto maggiori della lunghezza d'onda della luce incidente l'ottica fisica è approssimata sempre meglio dall'ottica geometrica .

### 1.a.29 Esprimere tutte le relazioni fra campo elettrico, magnetico direzione di propagazione di un'onda e.m. piana.

I campi ed il vettore d'onda formano una terna ortogonale; in particolare si ha (in CGS):

$$\boldsymbol{B} = \hat{k} \wedge \boldsymbol{E} \qquad \boldsymbol{E} = \boldsymbol{B} \wedge \overline{k}$$

In particolare i cambi sono trasversali, ovvero:

$$\hat{k} \cdot \mathbf{E} = 0$$
  $\hat{k} \cdot \mathbf{B} = 0$ 

#### 1.a.30 Dare la definizione di onda piana elettromagnetica monocromatica e delle seguenti quantita': ampiezza, frequenza angolare, vettore d'onda, frequenza, periodo, lunghezza d'onda. Scrivere le relazioni esistenti fra le grandezze sopra definite.

Un onda piana monocromatica è un onda le cui componenti dei campi sono della forma

$$f(\mathbf{r},t) = f_0 e^{i\mathbf{k}\cdot\mathbf{r} - i\omega t}$$

L'ampiezza è il modulo dei campi,  $\omega$  è la frequenza angolare,  $\boldsymbol{k}$  è il vettore d'onda,  $f=\omega/2\pi$  è la frequenza, T=1/f è il periodo,  $\lambda=2\pi/|\boldsymbol{k}|$  è la lunghezza d'onda. Nel vuoto si ha la relazione  $\omega=kc$ .

### 1.a.31 Definire la relazione di dispersione, la velocità di fase e la velocità di gruppo per un'onda e.m. e spiegarne il loro significato fisico.

Dalle equazioni di Maxwell in MKS

$$\nabla \boldsymbol{E} = \frac{\rho}{\epsilon_0} \qquad \nabla \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \qquad \nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J} + \mu_0 \epsilon_0 \frac{\partial \boldsymbol{E}}{\partial t}$$

si ricava che, per campi monocromatici:

$$\nabla^{2} \mathbf{E} - \frac{\epsilon(\omega) \mu(\omega) \omega^{2}}{c^{2}} \mathbf{E} = 0$$

$$\nabla^{2} \boldsymbol{B} - \frac{\epsilon(\omega) \mu(\omega) \omega^{2}}{c^{2}} \boldsymbol{B} = 0$$

Quindi esplicitando anche il laplaciano delle equazioni si trova la relazione funzionale che lega  $\omega$  a k: la relazione di dispersione

$$c^{2}k^{2} = \epsilon(\omega) \mu(\omega) \omega^{2}$$

La velocità di gruppo e di fase possono allora essere definite come

$$v_f = \frac{\omega}{k}$$
  $v_g = \frac{\partial \omega}{\partial k}$ 

La prima rappresenta la velocità con cui si propaga la fase dell'onda mentre la seconda quella con cui si propaga l'inviluppo del pacchetto.

#### 1.a.32 Definire la polarizzazione di un'onda e.m.

La polarizzazione di un'onda EM è la direzione in cui oscilla il campo elettrico. Questa può essere lineare (se la direzione di oscillazione non varia nel tempo) , circolare o ellittica.

1.a.33 In un sistema Oxyz scrivere l'espressione del campo elettrico e del campo magnetico di un'onda e.m. piana monocromatica, polarizzata linearmente lungo y e che si propaga lungo x, sia utilizzando il formalismo reale, sia utilizzando il formalismo complesso complesso.

In CGS:

$$\mathbf{E} = E_0 \hat{y} e^{ikx - i\omega t} = E_0 \hat{y} \cos(kx - \omega t)$$

$$\mathbf{B} = E_0 \hat{z} e^{ikx - i\omega t} = E_0 \hat{z} \cos(kx - \omega t)$$

#### 1.a.34 Enunciare e spiegare il principio di Huygens.

Ogni elemento di un fronte d'onda si può considerare come sorgente secondaria di onde sferiche in fase con l'onda primaria e di ampiezza proporzionale all'ampiezza dell'onda primaria e all'area dell'elemento di fronte d'onda.

La distribuzione angolare di ampiezza è data dal fattore di obliquità:

$$f(\theta) = \frac{1 + \cos(\theta)}{2}$$

### 1.a.35 Definire e calcolare l'impedenza del vuoto, e chiarire il suo significato fisico.

Consideriamo un'onda e.m. monocromatica polarizzata linearmente che propaga (nel vuoto) nella direzione  $\hat{z}$ , i campi saranno in MKS:

$$\mathbf{E} = E_0 \hat{x} \cos(\omega t - kz)$$
  $\mathbf{B} = \frac{E_0}{c} \hat{y} \cos(\omega t - kz)$ 

Da cui il vettore di Poynting:

$$S = \frac{E_0^2}{c\mu_0}\cos^2(\omega t - kz) = \sqrt{\frac{\mu_0}{\epsilon_0}}E_0^2\cos^2(\omega t - kz)$$

Nell'ultima espressione il termine sotto radice ha le dimensioni di  $\sqrt{\frac{H}{F}}=\Omega$ : è una resistenza.

$$Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \approx 120\pi \ \Omega$$

Questa è chiamata impedenza del vuoto e rappresenta la resistività  $\rho$  superficiale di un materiale cheassorbe senza riflettere le onde e.m. piane (tipicamente nella regione di microonde:  $\sim 3 \rm{GHz} < f < \sim 300 \rm{GHz})$ 

1.a.36 Definire - in CGS e in MKSA - per un sistema di cariche e correnti elettriche: momento di dipolo elettrico; momento di quadrupolo elettrico; momento di dipolo magnetico.

$$egin{aligned} oldsymbol{p} &= \int 
ho\left(oldsymbol{r}
ight) d^3 r \ & \mathbb{Q} &= \int 
ho\left(r
ight) \left(3oldsymbol{r}\otimesoldsymbol{r} - r^2\mathbb{I}
ight) d^3 r \ & oldsymbol{m} &= rac{1}{2[c]} \int oldsymbol{r}\wedgeoldsymbol{J}\left(oldsymbol{r}
ight) d^3 r \end{aligned}$$

Dove  $\rho$  e J sono le densità di carica e di corrente, le quantità tra parentesi [] sono quelle da aggiungere per il sistema CGS.

6

### 1.a.37 Calcolare, a partire dalle EDM, la velocità delle onde elettromagnetiche in un mezzo omogeneo, lineare ed isotropo.

In un mezzo così descritto vale la relazione:

$$\nabla^{2} \mathbf{E} - \frac{\epsilon(\omega) \mu(\omega) \omega^{2}}{c^{2}} \mathbf{E} = 0$$

Quindi la velocità di fase cercata è (considerando la relazione di dispersione trovata sopra):

$$v_f = \frac{\omega}{k} = \frac{c}{\sqrt{\epsilon \mu}}$$

### 1.a.38 Esprimere la densita' di energia di un'onda e.m. piana in funzione dei campi elettrico e/o magnetico.

In unità MKS:

$$u = \frac{1}{2} \left( \boldsymbol{E} \boldsymbol{D} + \boldsymbol{B} \boldsymbol{H} \right) = \epsilon |\boldsymbol{E}|^2$$

In CGS invece:

$$u = \frac{\boldsymbol{E}\boldsymbol{D} + \boldsymbol{B}\boldsymbol{H}}{8\pi} = \frac{\epsilon}{4\pi} |\boldsymbol{E}|^2$$

1.a.39 Dare la definizione ed esprimere il vettore di Poynting di un'onda e.m. piana in funzione del campo elettrico e/o magnetico.

$$\boldsymbol{S} = \frac{c}{[4\pi]} \boldsymbol{E} \wedge \boldsymbol{H} = \frac{c}{[4\pi]} Z_0 E_0^2 \hat{k}$$

Le quantità in [] indicano i pezzi da aggiungere in CGS.

### 1.a.40 Esprimere la pressione (di radiazione) che un campo e.m. esercita su una superficie piana.

Supponendo la superficie perfettamente riflettente si ottiene:

$$p = \frac{2I}{c}$$
.

con  $I = \langle S \rangle$  è l'intensità dell'onda.

### 1.a.41 Dare la definizione di interferenza e diffrazione; di interferenza costruttiva e distruttiva.

L'interferenza è un fenomeno in cui le intensità di due onde coerenti non si sommano linearmente. La diffrazione è un fenomeno in cui un fascio di radiazione si allarga (emette onde sferiche) dopo aver superato una fenditura o un ostacolo.

#### Parte 2

## Indagine della materia tramite collisioni e decadimenti

#### a Domande a

2.a.1 Descrivere qualitativamente il fenomeno dell'assorbimento, il fenomeno della diffusione elastica ed il fenomeno della diffusione inelastica di un'onda e.m. su un sistema.

Schematizzando il sistema come una scatola su cui facciamo incidere onde e.m. e osservando la radiazione emessa dall'oggetto pssiamo distinguere tre fenomeni:



Figura 1: Assobimento e diffusione e.m. di un sistema

Una parte della potenza irraggiata dall'onda sorgente può essere assorbita dall'oggetto (quindi dissipata con qualche meccanismo interno): fenomeno dell'assorbimento.

Una parte della potenza dell'onda incidente può essere diffusa sempre con la medesima frequenza: fenomeno della diffusione elastica.

Una parte della potenza dell'onda incidente può essere diffusa con frequenze differenti dalla incidente stessa: fenomeno della diffusione inelastica.

Un esempio di sistema di questo tipo è l'atomo in cui l'onda incidente eccita gli elettroni che, accelerando, possono irraggiare e dare luogo ai tre fenomeni citati.

## 2.a.2 Per un'onda e.m. monocromatica che incide su un bersaglio (per esempio un circuito o un atomo) definire le sezioni d'urto: di assorbimento, elastica differenziale, totale elastica; inelastica differenziale; inelastica totale; totale.

• Sezione d'urto di assorbimento:

$$\sigma_{abs} = \frac{\langle P_{abs} \rangle}{\langle |S_{in}| \rangle}$$

• Sezione d'urto elastica:

$$\sigma_{el} = \frac{\langle P_{el} \rangle}{\langle |S_{in}| \rangle}$$

$$\frac{\mathrm{d}\sigma_{el}}{\mathrm{d}\Omega} = R^2 \frac{\langle |S_{el}\left(\theta,\phi\right)| \rangle}{\langle |S_{in}| \rangle}$$

• Sezione d'urto inelastica: per ogni frequenza angolare  $\omega_i$  a cui avviene la diffusione si ha:

$$\sigma_{\omega_i} = \frac{\langle P_{\omega_i} \rangle}{\langle |S_{in}| \rangle}$$

$$\frac{\mathrm{d}\sigma_{\omega_{i}}}{\mathrm{d}\Omega} = R^{2} \frac{\langle |S_{\omega_{i}}(\theta, \phi)| \rangle}{\langle |S_{in}| \rangle}$$

• Sezione d'urto totale:

$$\sigma_{tot} = \sigma_{abs} + \sigma_{el} + \sum_{n=i} \sigma_{\omega_i}$$

Da notare che l'unità di misura della sezione d'urto è quella di un'area.

### 2.a.3 Definire la ampiezza di scattering per un'onda e.m. monocromatica che incide su un bersaglio fisso (per esempio un circuito o un atomo).

Per uno stato finale del sistema (con l'onda diffusa generata dal bersaglio) a grandi distanze il campo elettrico può esser scritto come il prodotto di un'onda sferica e di un termine che tenga conto della dinamicha del processo:

$$\boldsymbol{E}_{f} = \boldsymbol{f}\left(\boldsymbol{\theta}, \boldsymbol{\varphi}\right) \frac{e^{-i(\omega_{f}t - k_{f}R + \boldsymbol{\phi})}}{R}$$

Con  $\omega_f$  frequenza uscente,  $k_f$  vettore d'onda uscente,  $\phi$  fase.

L'ampiezza di scattering f è quindi l'ampiezza dell'onda sferica riemessa dall'oggetto scatterante (che interagisce con un'onda piana monocromatica). Questa è legata alla sezione d'urto differenziale dalla relazione:

$$\frac{\mathrm{d}\sigma_{\omega_f}}{\mathrm{d}\Omega} = \frac{\left| \boldsymbol{f}\left(\boldsymbol{\theta}, \varphi\right) \right|^2}{\left| \boldsymbol{E_0} \right|^2}$$

#### 2.a.4 Descrivere la situazione in cui la legge

$$P = \frac{2}{3c^3}\ddot{p_e}^2 + \frac{1}{180c^5}\ddot{Q_{ij}}^2 + \frac{2}{3c^3}\ddot{p_m}^2$$

(espressa in CGS) è applicabile e spiegare il significato e l'unità di misura di ogni grandezza fisica ivi indicata; trascrivere poi l'espressione in MKSA.

P è la potenza irraggiata da un sistema in cui sono presenti un dipolo elettrico (1), un quadrupolo magnetico (2) ed un dipolo magnetico (3):

1. Dipolo elettrico:

$$P_1^{CGS}=rac{2}{3c^3}\ddot{m{p}}_{el}^2 \qquad P_1^{MKS}=k_0rac{2}{3c^3}\ddot{m{p}}_{el}^2 \ m{p}_e=\sum_{cariche}qm{r}$$

con

2. Quadrupolo elettrico:

$$\begin{split} P_2^{CGS} &= \frac{1}{180c^5} \overset{\cdots}{Q_{ij}}^2 \qquad P_2^{MKS} = k_0 \frac{1}{180c^5} \overset{\cdots}{Q_{ij}}^2 \\ \mathbb{Q} &= \sum_{cariche} q \left( 3 \boldsymbol{r} \wedge \boldsymbol{r} - \boldsymbol{r}^2 \mathbb{I} \right) \end{split}$$

con

con

3. dipolo magnetico:

$$P_3^{CGS} = rac{2}{3c^5}\ddot{m{p}}_m^2 \qquad P_3^{MKS} = k_0rac{2}{3c^3}\ddot{m{p}}_m^2 \ p_m = rac{1}{2[c]}\sum_{cariche}qm{r}\wedgem{v}$$

Queste sono applicabili se le dimensioni caratteristiche dell'oggetto che emette sono molto più piccole della lunghezza d'onda incidente.

### 2.a.5 Scrivere la distribuzione angolare della radiazione di dipolo elettrico e di dipolo magnetico nel caso non relativistico.



Figura 2: Dipolo magnetico oscillante.

Sulla base della notazione di figura si ha:

MKSA I campi e la potenza irraggiata si scrivono come:

Dipolo magnetico:

$$\boldsymbol{E} = -k_0 \frac{\ddot{\boldsymbol{p}}_m \left(t_{rit}\right) \wedge \hat{r}}{|\boldsymbol{r}| \, c^3} \qquad \boldsymbol{B} = k_0 \frac{\left(\ddot{\boldsymbol{p}}_m \left(t_{rit}\right) \wedge \hat{r}\right) \wedge \hat{r}}{|\boldsymbol{r}| \, c^3}$$
$$P_m = \frac{\left|\ddot{\boldsymbol{p}}_m\right|^2}{6\pi\epsilon_0 c^5} \qquad \frac{\mathrm{d}P_m}{\mathrm{d}\Omega} = \frac{\mathrm{d}P_m}{\mathrm{d}\cos\alpha \, \mathrm{d}\beta} = \frac{1}{16\pi^2\epsilon_0 c^5} \ddot{\boldsymbol{p}}_m^2(t_{rit}) \sin^2\alpha$$

Dipolo elettrico:

$$\boldsymbol{E} = k_0 \frac{\left(\ddot{\boldsymbol{p}}_e\left(t_{rit}\right) \wedge \hat{r}\right) \wedge \hat{r}}{\left|\boldsymbol{r}\right| c^2} \qquad \boldsymbol{B} = k_0 \frac{\ddot{\boldsymbol{p}}_e\left(t_{rit}\right) \wedge \hat{r}}{\left|\boldsymbol{r}\right| c^2}$$
$$P_e = \frac{\left|\ddot{\boldsymbol{p}}_e\right|^2}{6\pi\epsilon_0 c^3} \qquad \frac{\mathrm{d}P_e}{\mathrm{d}\Omega} = \frac{\mathrm{d}P_e}{\mathrm{d}\cos\alpha\ \mathrm{d}\beta} = \frac{1}{16\pi^2\epsilon_0 c^3} \ddot{\boldsymbol{p}}_e^2(t_{rit}) \sin^2\alpha$$

CGS I campi e la potenza irraggiata si scrivono come:

Dipolo magnetico:

$$\boldsymbol{E} = -\frac{\ddot{\boldsymbol{p}}_{m}\left(t_{rit}\right) \wedge \hat{r}}{\left|\boldsymbol{r}\right| c^{2}} \qquad \boldsymbol{B} = \frac{\left(\ddot{\boldsymbol{p}}_{m}\left(t_{rit}\right) \wedge \hat{r}\right) \wedge \hat{r}}{\left|\boldsymbol{r}\right| c^{2}}$$
$$P_{m} = \frac{2}{3} \frac{\left|\ddot{\boldsymbol{p}}_{m}\right|^{2}}{c^{3}} \qquad \frac{\mathrm{d}P_{m}}{\mathrm{d}\Omega} = \frac{\mathrm{d}P_{m}}{\mathrm{d}\cos\alpha \ \mathrm{d}\beta} = \frac{1}{4\pi c^{3}} \ddot{\boldsymbol{p}}_{m}^{2}(t_{rit}) \sin^{2}\alpha$$

Dipolo elettrico:

$$\begin{split} \boldsymbol{E} &= \frac{\left(\ddot{\boldsymbol{p}}_{e}\left(t_{rit}\right) \wedge \hat{r}\right) \wedge \hat{r}}{\left|\boldsymbol{r}\right| \, c^{2}} \qquad \boldsymbol{B} &= \frac{\ddot{\boldsymbol{p}}_{e}\left(t_{rit}\right) \wedge \hat{r}}{\left|\boldsymbol{r}\right| \, c^{2}} \\ P_{e} &= \frac{2}{3} \frac{\left|\ddot{\boldsymbol{p}}_{e}\right|^{2}}{c^{3}} \qquad \frac{\mathrm{d}P_{e}}{\mathrm{d}\Omega} = \frac{\mathrm{d}P_{e}}{\mathrm{d}\cos\alpha \, \mathrm{d}\beta} = \frac{1}{4\pi c^{3}} \ddot{\boldsymbol{p}}_{e}^{2}(t_{rit}) \sin^{2}\alpha \end{split}$$

Si potrebbe fare una verifica con:

$$P = \int \frac{\mathrm{d}P}{\mathrm{d}\Omega} \mathrm{d}\Omega$$

### 2.a.6 Definire la "resistenza di irraggiamento" di un circuito elettrico a una maglia e fornire un esempio.

Nota la corrente (I) che scorre nel circuito la resistenza di irraggiamento è la resistenza dovuta alla dissipazione per irraggiamento:

$$R_{irr} = \frac{P_{irr}}{I^2}$$

Ad esempio per un circuito planare si ha (CGS):

$$m = IS\hat{n}/c \implies R_{irr} = \frac{2}{3} \frac{S^2 \omega^4}{c^5}$$

### 2.a.7 Definire urto elastico ed urto inelastico fra due particelle; fornire poi almeno un esempio di reazione elastica ed una inelastica fra:

- 1. un fotone ed un atomo
- 2. due particelle cariche
- 3. un protone ed un nucleo.

Un urto è elastico se la natura delle particelle non varia nell'urto stesso, ovvero se per ogni costituente

$$p_i^{\mu} p_{i,\mu} = m_i^2$$

è costante nel tempo. Urti di questo tipo sono della forma:

$$a + b \implies a + b$$

In tutti gli altri casi l'urto è anaelastico e si hanno situazion del tipo:

$$a + b \implies \sum_{i} p_{i}$$

Diamo adesso esempi di reazioni:

#### Fotone e Atomo

• Elastico: Scattering Thomson.

$$\gamma + H \implies \gamma + H$$

• Inelastico: Effetto Compton.

$$\gamma + A \implies \gamma + e^- + A^+$$

#### Due particelle cariche

• Elastico:

$$p + p \implies p + p$$

• Inelastico: Produzione del bosone di Higs

$$p + p \Longrightarrow H + \dots$$

#### Protone e Nucleo

• Elastico:

da trovare ancora...

• Inelastico: Reazione degli alchimisti

$$p + {}^{198}_{80}\text{Hg}_{118} \implies p + p + {}^{197}_{79}\text{Au}_{118}^{-}$$

- 2.a.8 Dire quali fra le seguenti grandezze si conservano sempre nei processi di urto in cui avvengano interazioni elettromagnetiche e/o forti, ma non deboli.
  - 1. carica elettrica. Si conserva.
  - 2. numero barionico. Si conserva.
  - 3. numero leptonico elettronico. Si conserva.
  - 4. numero leptonico muonico. Si conserva.
  - 5. numero di elettroni. Si conserva.
  - 6. differenza fra il numero di elettroni ed il numero di positroni. Si conserva.
  - 7. **numero di protoni.** Si conserva.
  - 8. differenza fra il numero di protoni ed il numero di antiprotoni. Si conserva.
- 2.a.9 Dire quali fra le seguenti grandezze si conservano sempre nei processi di urto in cui avvengano esclusivamente interazioni forti: Fornire almeno un esempio per ogni situazione in cui vi sia una grandezza non conservata.
  - 1. carica elettrica. Si conserva.
  - 2. numero barionico. Si conserva.
  - 3. numero leptonico elettronico. Non si conserva:

$$e^+ + e^- \implies \pi^+ + \pi^-$$

- 4. numero leptonico muonico. Non si conserva: stessa di sopra.
- 5. **numero di elettroni.** Non si conserva: sempre quella.
- 6. differenza fra il numero di elettroni ed il numero di positroni. Si conserva. (sicuro?)
- 7. numero di protoni. Non si conserva.
- 8. differenza fra il numero di protoni ed il numero di antiprotoni. Ma che ne so...

### 2.a.10 Dire quali fra le seguenti grandezze si conservano sempre nei processi di urto in cui avvengano interazioni deboli.

- 1. carica elettrica. si conserva.
- 2. numero barionico. si conserva.
- 3. numero leptonico elettronico. non si conserva.

$$\mu^- \implies e^- + \gamma$$

- 4. numero leptonico muonico. Non si conserva, stessa interazione di sopra.
- 5. numero di elettroni. Non si conserva: Decadimento del Neutrone.

$$n \implies p + e^- + \overline{\nu}_e$$

6. differenza fra il numero di elettroni ed il numero di positroni. Non si conserva: Decadimento  $\beta^+$ 

$$_{Z}^{A}X_{N} \implies _{Z-1}^{A}Y_{N+1}^{+} + e^{-} + \bar{\nu}_{e}$$

7. **numero di protoni.** Non si conserva: Decadimento  $\beta^-$ 

$$_{Z}^{A}X_{N} \implies _{Z-1}^{A}Y_{N+1}^{-} + e^{+} + \bar{\nu}_{e}$$

8. differenza fra il numero di protoni ed il numero di antiprotoni. Non si conserva: Decadimento  $\beta^-$ 

### 2.a.11 Definire i processi esclusivi e inclusivi, il Q-valore di un processo e i processi esotermici o endotermici.

Un processo si dice esclusivo se in esso viene misurato il 4-impulso di tutti i prodotti. Un processo si dice inclusivo se in esso vengono misurati solo i 4-impulsi di alcuni prodotti. Il Q-valore di un processo è definito come:

$$Q = (m_i - m_f) c^2 = T_f - T_i$$

Un processo è esotermico se Q > 0, endoterimo altrimenti.

- 2.a.12 Definire la sezione d'urto nei seguenti tre casi, e dimostrare come da ognuno di essi si possano dedurre gli altri due:
  - 1. Particelle incidenti su un unico bersaglio [dati:  $j_{\text{incidenti}}; N_f$ ]
  - 2. Sottile fascio di particelle incidenti su una lastra contenente i bersagli [dati:  $\Phi_{incidenti}$ ,  $\hat{\sigma}_{bersagli}$ ,  $N_f$ ]
  - 3. Urti nel volume fra particelle di due specie diverse e differenti concentrazioni [dati:  $N_{eventi}$  per unità di tempo, concentrazione delle particelle interagenti,  $v_{rel}$  (si ipotizza che la tutte le particelle di una specie abbiano la stessa velocità)]
- Con  $\rho$  densità di eventi,  $\hat{\sigma}$  densità superficiale di eventi, j densità di corrente,  $N_f$  frequenza di eventi osservati (o numero di eventi per unità di tempo),  $\Phi$  flusso di particelle.

Nel primo caso si ha:

$$\sigma = \frac{1}{|\boldsymbol{j}|} \frac{\mathrm{d}N_f}{\mathrm{d}t}$$

Nel secondo invece:

$$\sigma = \frac{1}{n_s \Phi} \frac{\mathrm{d}N_f}{\mathrm{d}t}$$

Nel terzo:

$$\sigma = \frac{1}{n_1 n_2 v_{rel}} \frac{\mathrm{d} n_f}{\mathrm{d} t}$$

Nell'ultimo la sezione d'urto dipende dalla velocità relativa. Inoltre se si ha la funzione di distrubuzione per la velocità relativa:

$$\frac{\mathrm{d}N_{f}}{\mathrm{d}t} = n_{1}n_{2} \int_{0}^{\infty} \sigma\left(v_{rel}\right) f\left(v_{rel}\right) dv_{rel}$$

Per passare dal primo al secondo caso basta osservare che:

$$\Phi = |\mathbf{j}| S, \qquad N_f^{(2)} = n_s S N_F^{(1)}$$

Con S area del bersaglio. Se mi metto in un sistema in cui una delle particelle è ferma, è evidente mostrare l'equivalenza tra il caso (2) e (3).

### 2.a.13 Per gli urti fra due particelle definire le sezioni d'urto: elastica, inclusiva, esclusiva, totale.

Consideriamo la reazione:

$$a + b \implies p_1 + p_2 + \ldots + p_n$$

e sia  $f_i(E_i)$  la distrubuzione di probabilità dell'energia del prodotto i-esimo. La sezione d'urto inclusiva di tale prodotto è:

$$\sigma_i = \int_{E_{i,min}}^{E_{i,max}} f(E_i) dE_i$$

Se invece si considera la distribuzione degli impulsi di tutte le particelle finali:  $f(P_1, ..., P_n)$  si ha una sezione d'urto esclusiva:

$$\sigma_e = \int f(P_1, \dots P_n) \prod_{i=1}^n d^4 P_i$$

La sezione d'urto elastica è la sezione d'urto reltiva as un urto elastico, la sezione d'urto anaelastica è la sezione d'urto relativa ad un urto anaelastico.

# 2.a.14 Calcolare la probabilità di interazione per una particella che incide su una lamina sottile [dati: $\sigma$ processo, $N_{bersagli}$ per unità superficie]. Che significato avrebbe una probabilità maggiore di uno? Quest'ultima risposta dipende dalle tipologie degli urti?

La probabilità di interazione è:  $P = N\sigma$ . Se questa è maggiore di 1 significa che è venuta meno l'approssimazione di lamina sottile. In ogni caso questa non dipende dal tipo di interzaione.

## 2.a.15 Indicare le condizioni per cui la forza di reazione radiativa per una particella (di massa m e carica unitaria) $F_{rad} = m\tau \dot{a}$ è da considerarsi valida ed utilizzabile.

Si ritiene necessario, per indicare le approssimazioni, ricavare la forza in questione. La forza di radiazione può essere defita come la forza il cui lavoro è responsabile della perdita di energia per irraggiamento noto nella formula di Larmor (CGS):

$$\int_{t_1}^{t_2} \boldsymbol{F}_{rad} \cdot \boldsymbol{v} dt = -\frac{2}{3} \frac{e^2}{c^3} \int_{t_1}^{t_2} \dot{\boldsymbol{v}}^2$$

Posso scrivere:

$$\dot{\boldsymbol{v}} = \frac{\mathrm{d}\left(\dot{\boldsymbol{v}}\dot{\boldsymbol{v}}\right)}{\mathrm{d}t} - \dot{\boldsymbol{v}}\ddot{\boldsymbol{v}}$$

Inserendo nel secondo membro della equazione si ha:

$$\int_{t_1}^{t_2} \boldsymbol{F_{rad}} \cdot \boldsymbol{v} dt = -\left. \frac{2}{3} \frac{e^2}{c^3} \boldsymbol{v} \cdot \dot{\boldsymbol{v}} \right|_{t_1}^{t_2} + \left. \frac{2}{3} \frac{e^2}{c^3} \int_{t_1}^{t_2} \boldsymbol{v} \cdot \ddot{\boldsymbol{v}} dt$$

Se il moto è periodico di ha:

$$\int_{t_1}^{t_2} \left( \boldsymbol{F}_{rad} - \frac{2}{3} \frac{e^2}{c^3} \ddot{\boldsymbol{v}} \right) \cdot \boldsymbol{v} dt = 0$$

Poiche velocità e accelerazione sono ortogonali in tal caso, abbiamo quindi un candidato per la  $F_{rad}$ .

$$\boldsymbol{F}_{rad} = \frac{2}{3} \frac{e^2}{c^3} \ddot{\boldsymbol{v}}.$$

che in MKSA si scrive come:

$$\boldsymbol{F}_{rad} = \frac{q^2}{6\pi\epsilon_0 c^3} \boldsymbol{\ddot{x}} = m_e \frac{q^2}{6\pi\epsilon_0 c^3} \boldsymbol{\ddot{x}} = m_e \frac{2}{3} \frac{r_e}{c} \boldsymbol{\ddot{x}} = m_e \tau \boldsymbol{\ddot{x}}.$$

Possiamo quindi dare una stima dei valori tipici di questa forza:

$$r_e = \frac{q^2}{4\pi\epsilon_0 m_e c^2} = 2.82 fm \implies \tau = \frac{2}{3} \frac{r_e}{c} = 6.2 \cdot 10^{-24} s.$$

Tenendo conto della forza viscosa che agisce classicamente sull'elettrone

$$\mathbf{F}_{visc} = -\beta \dot{\mathbf{x}} = -m_e \Gamma' \dot{\mathbf{x}}$$

con valori tipici:  $\Gamma' \sim 10^{10} \ s^{-1}$ .

Infine ipotizzando anche una forza "elastica" attrattiva nucleare con valore tipoco  $\omega_0 \sim 10^{14} - 10^{16}$  otteniamo la relazione:

$$\Gamma' \ll \omega_0 \ll \frac{1}{\tau}.$$

Questo conto sarà utile per la Domanda 2.b.12.

### 2.a.16 Spiegare il significato e indicare l'unità di misura di ogni grandezza fisica nelle seguenti leggi:

$$(1) \to \frac{\mathbf{d}\sigma_{el}}{\mathbf{d}\Omega} = r_e^2 L(\omega) \sin^2(\alpha) \qquad (2) \to \frac{\mathbf{d}\sigma_{el}}{\mathbf{d}\Omega} = r_e^2 L(\omega) \frac{1 + \cos^2(\alpha)}{2}$$

$$(3) \to \sigma_{el} = \sigma_{Th} L(\omega) \qquad (4) \to \sigma_{tot} = 4\pi r_e c \frac{\omega^2 \Gamma}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{tot}}$$

con

$$L(\omega) = \frac{\omega^4}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_{tot}}$$
  $\sigma_{Th} = \frac{8}{3} \pi r_e^2 = 0.66 \text{ barn}$ 

### inerenti l'interazione di un'onda e.m. piana e monocromatica su un elettrone legato elasticamente.

L'equazione (1) è la sezione d'urto differenziale per l'interazione tra l'elettrone ed un onda polarizzata linearmente. Può essere ottenuta dalla equazione del moto dell'elettrone legato elasticamente soggetto alle forze della domanda precedente (di richiamo, di attrito viscoso e radiazione radiativa) immerso nel campo di una onda e.m. piana monocromatica (vedi Domanda 2.b.12):

$$\boldsymbol{x} = \frac{e\boldsymbol{E_0}}{m_e} \frac{1}{\omega_0^2 - \omega^2 - i\omega\Gamma' - i\tau\omega^2} = \frac{eE_0}{m_e} \frac{1}{\omega_0^2 - \omega^2 - i\omega\Gamma_{tot}}.$$

In cui si definiscono

$$\Gamma_{tot} = \Gamma' + \Gamma \frac{\omega^2}{\omega_0^2} \qquad \Gamma = \omega_0^2 \tau \quad \text{ con } \tau \text{ quello ottenuto nella domanda precedente}$$

Quindi basta adesso ricordare che la distribuzione angolare di potenza irraggiata da un dipolo oscillante  $p = p_0 e^{-i\omega t}$  è:

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega} = \frac{\omega^4 \left| \boldsymbol{p}_0 \right|^2}{4\pi c^3} \sin^2\left(\alpha\right).$$

Quindi inserendo  $|\mathbf{p}_0| = |e\mathbf{x}|$  e dividendo per il vettore di Poynting incidente si ha la tesi (1).

L'equazione (2) è la sezione d'urto differenziale con l'onda incidente non polarizzata: bisogna in questo caso mediare su tutte le possibili polarizzazioni dell'onda incidente ottendendo il fattore finale. l'espressione (3) si ottinene integrando sull'angolo solido la (1) o la (2).

infine la (4) è la sezione d'urto totale definita come:

$$\sigma_{tot} = \frac{e \left\langle \dot{\boldsymbol{x}} \boldsymbol{E} \right\rangle}{\left\langle \boldsymbol{S_{in}} \right\rangle}.$$

Possiamo notare anche che:

$$\frac{\sigma_{el}}{\sigma_{tot}} = \frac{1}{1 + \Gamma'/\left(\omega^2 \tau\right)}.$$

Che tende all'unità quando non c'è dissipazione.

### 2.a.17 Discutere qualitativamente le osservazioni sperimentali dello scattering di Rutherford.

Inviando un fascio di particelle  $\alpha$  su una lamina d'oro si osserva che circa 1 particella su 8000 viene deviata a grandi angoli o rimbalza. Queste osservazioni non sono spiegabili con il modello a panettone di Thomson ma si spiegano bene con il modello di Bhor.

$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \right|_{Ruth} = \frac{1}{\left(4\pi\epsilon_0 \sin^2\left(\frac{\theta}{2}\right)\right)^2} \left(\frac{zZe^2}{4T}\right)^2.$$

Si deduce facilmente che le particelle più energetiche sono più penetranti, le particelle più cariche vengono maggiormente deflesse.

#### 2.a.18 Spiegare la differenza fra lo scattering Rutherford e lo scattering Mott.

Lo Scattering Mott:

$$\left.\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right|_{Mott} = \left.\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right|_{Ruth} \left(1-\beta^2\sin^2\left(\frac{\theta}{2}\right)\right).$$

Tiene conto dello spin degli elettroni e degli effetti relativistici che questi hanno nel loro moto.

### 2.a.19 Spiegare il significato di tutti i termini delle seguenti espressioni delle sezioni d'urto differenziali Rutherford e Mott:

$$\begin{split} \frac{\mathbf{d}\sigma}{\mathbf{d}\Omega}\bigg|_{Ruth} &= \left(\frac{zZe^2}{4\pi\epsilon_0}\right)^2 \left(\frac{1}{4T}\right)^2 \frac{1}{\sin^4\left(\theta/2\right)} \\ \frac{\mathbf{d}\sigma}{\mathbf{d}\Omega}\bigg|_{Mott} &= \frac{\mathbf{d}\sigma}{\mathbf{d}\Omega}\bigg|_{Ruth} \left(1 - \beta^2 \sin^2\theta/2\right) \qquad \mathbf{con} \ T \to \frac{pV}{2} \end{split}$$

Sono tutti termini di banale comprensione, ricordiamo però che  $\theta$  è l'angolo di scatterig: l'angolo tra la direzione iniziale della particella e quello finale.

### 2.a.20 Dare la definizione operativa di raggio nucleare mediante lo scattering di Rutherford

Fissando un angolo di scatternig  $\hat{\theta} = 60^o$  si ha che per energie maggiori di  $T_{soglia} \approx 30 MeV$  divena importante l'interzione forte con il nucleo: si ha un discostamento dalla legge che lega la sezione d'urto Rutherford a T. Quindi possiamo ipotizzare che la distanza minima che si ottiene in questo caso sia una buona stima del raggio nucleare.

$$d \approx \frac{zZe^2}{4\pi\epsilon_0 T_{soglia}} \implies R = \frac{d}{2} \left( 1 + \frac{1}{\sin\left(\frac{\hat{\theta}}{2}\right)} \right).$$

È necessario notare che R è la distanza tra i nuclei degli atomi coinvolti nello scattering, non il nucleo dell'atomo (che vorremmo definire), è quindi necessario incidere con particelle il cui nucleo sia di dimensioni attese molto inferirori rispetto a quelle del nucleo in esame per dare una buona stima del raggio di quest'ultimo (ipotesi verificata nel caso di particelle  $\alpha$  su Piombo, ad esempio).

## 2.a.21 Definire le quantità che in un nucleo usualmente si indicano con A, Z, N (simbologia ${}_Z^A X_N$ ). Dare la definizione di nuclei isotopi, isobari, isotoni, stabili, instabili.

A è il numero di nucleoni (protoni e neutroni), Z è il numero di protoni, N è il numero di neutroni. Due nuclei sono:

- Isotopi: hanno lo stesso Z.
- Isobari: hanno lo stesso A.
- Isotoni hanno lo stesso N.
- Instabili: hanno vita media finita.
- Stabili: hanno vita media "infinita".

2.a.22 Dopo avere definito l'unità di massa atomica e avere dato il suo valore in  $\text{MeV}/c^2$ , definire l'energia di legame (B) di un atomo ed il "difetto di massa" ( $\Delta$ ) di un atomo.

1 u.m.a. = 
$$\frac{1}{12}m\binom{12}{6}C_6$$
 = 931.49 MeV/ $c^2$ .

La B è l'energia necessaria per separare un nucleone L'energia di legame B di un nucleo X con A nucleoni e Z protoni è:

$$B(A, Z) = Z(m_p + m_e - m_u) - N(m_n - m_u) - \Delta_{A, Z} = 7.29 \text{MeV} \cdot Z + 8.07 \text{MeV} \cdot N - \Delta_{A, Z}.$$

Dove

$$m_u = 1 \text{ u.m.a.}$$
  $m_p = 938.2 \text{ MeV}/c^2$   $m_e = 0.511 \text{ MeV}/c^2$ 

Il difetto di massa è invece:

$$\Delta = m_x - \frac{A}{12}m\left({}_6^{12}C_6\right) = m_x - Am_u.$$

E lo si pio trovare nelle tabelle in rete.

Il difetto di massa è particolarmente utile per ricavare il Q-valore: è immediato esprimere la massa del nucleo coinvolto in una interazione mediante tale quantita e l'unità di massa atomica  $m_u$ .

2.a.23 Enunciare la formula semiempirica B=B(A,Z) ed indicare i suoi termini che sono spiegati dal modello a goccia. Spiegare le ipotesi su cui tale modello è basato e fornire l'ordine di grandezza dell'energia media di legame di un nucleone all'interno di un nucleo.

Nel modello a goccia si ha in prima approssimazione (per nuclei abbastanza grandi) una energia di legame proporzionale al numero di nucleoni e quindi al volume del nucleo stesso:

$$B_1(A, Z) = a_V A$$
 Termine correttivo di volume.

In seconda approssimazione possiamo considerare che i nucleoni che si trovano sulla superficie del nucleo non sono circondati da altri nucleoni, vi sarà allora un termine correttivo superficiale:

$$B_2(A, Z) = a_S A^{2/3}$$
 Termine correttivo di superficie.

Poi possiamo aggiungere una ulteriore correzione per tener conto della repulsione columbiana tra i nucleoni carichi (Z tiene conto della carica, A tiene conto del raggio):

$$B_{3}\left( A,Z\right) =a_{S}\frac{Z^{2}}{A^{2/3}}\qquad \text{Termine correttivo Columbiano}.$$

Si hanno infine altri termini correttivi che tengono di conto di effetti quantistici e del principio di Pauli:

$$B(A, Z) = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} + a_{sym} \frac{(Z - N)^2}{A} + \delta_{pair}.$$

Il modello in considerazione è quello "A Goccia", l'ipotesi di questo è che il nucleo di numero atomico Z e peso atomico A occupi un volume sferico di raggio:

$$R = r_0 A^{1/3} + r_{skin} \approx \left(1.25 A^{1/3} + 2.0\right) fm.$$

Il modello prevede che l'energia di legame tra due nucleoni sia dell'ordine di  $\sim 2.2$  MeV, ovvero la differenza tra la massa del deutone e la somma delle masse del protone e neutrone.

2.a.24 Definire i decadimenti  $\alpha$ ,  $\beta$ ,  $\gamma$  e il decadimento tramite cattura elettronica in un nucleo. Calcolare il Q-valore per il decadimento  $\beta+$ ,  $\beta-$ , e per la cattura elettronica a partire dal difetto di massa delle specie coinvolte.

Decadimento  $\alpha$ 

$$^{\rm A}_{\rm Z} X_{\rm N} \longrightarrow ^{\rm A-4}_{\rm Z-2} Y_{\rm N-2}^{2-} + \alpha \qquad {\rm con} \ \alpha \ {\rm nucleo} \ {\rm di} \ ^4 {\rm He}^{2+}$$

Decadimento  $\beta$ +

$${}_{Z}^{A}X_{N} \longrightarrow {}_{Z-1}^{A}Y_{N+1}^{-} + e^{+} + \nu_{e}.$$

in cui si ha la transizione:

$$p \longrightarrow n + e^+ + \overline{\nu}_e$$
.

Il Q-valore del decadimento è :  $Q = \Delta_{A,Z} - \Delta_{A,Z-1} - 2m_e$ 

Il Q-valore della reazione è:  $Q = m_p - m_n - m_e = -1.804 \text{MeV}.$ 

Decadimento  $\beta$ -

$$_{\rm Z}^{\rm A} {\rm X}_{\rm N} \longrightarrow _{\rm Z+1}^{\rm A} {\rm Y}_{\rm N-1}^{+} + {\rm e}^{-} + \overline{\nu}_{e}.$$

in cui si ha la transizione:

$$n \longrightarrow p + e^- + \nu_e$$
.

Il Q-valore del decadimento è :  $Q=\Delta_{A,Z}-\Delta_{A,Z+1}$ Il Q-valore della reazione di transizione è:  $Q=m_n-m_p-m_e=0.782 {\rm MeV}.$ 

#### Cattura elettronica

$$_{\rm Z}^{\rm A}$$
X<sub>N</sub>  $\longrightarrow _{\rm Z-1}^{\rm A}$ Y<sub>N+1</sub> +  $\nu_e$   $Q = \Delta_{A,Z} - \Delta_{A,Z-1}$ .

in cui si ha:

$$p + e \longrightarrow n + \nu_e$$
.

#### 2.a.25 Come si e' arrivati alla conclusione che nel decadimento beta deve essere emessa una particella neutra non rivelata?

Il problema in questione risale al 1934 (con Pauli che ipotizza l'esistenza della particella), venne formalizzato successivamente da Fermi e da Bhor.

Ciò che destava sgomento era lo spettro di emissione dell'elettrone. Spieghiamo a grandi linee il problema: All'inzio si pensava che avvenisse il processo

$$n \longrightarrow p + e^{-}$$
.

In cui sicuramente si hanno le relazioni (di qui in avanti c = 1)

$$m_e (0.511 \text{ MeV}) \ll m_p (938.3 \text{ MeV}) \approx m_n (939.6 \text{ MeV}).$$

Conviene quindi ipotizzare che il neutrone si trovi inizialmente fermo, in tal caso anche il protone viene praticamente creato fermo. Per la conservazione dell'energia:

$$m_n = E_p + E_e.$$

con

$$E_p = \sqrt{m_p^2 + p_p^2}$$
  $E_e = \sqrt{m_e^2 + p_e^2}$ .

Se si trascura il rinculo del protone, come ipotizzato sopra:

$$m_n \approx m_p + \sqrt{m_e^2 + p_e^2}$$
.

Quest'ultima relazione fissa l'impulso e l'energia dell'elettrone, quindi ci aspettiamo che lo spettro di quest'ultimo abbia un unico picco, invece sperimentalmente si ottengono curve del tipo:



Figura 3: Spettro di energia dell'elettrone.

Tale grafico mostra uno spettro completo che parte da energie nulle fino ad arrivare ad annullarsi di nuovo a  $\sim 5.5~m_e$ .

Per spiegarlo è quindi necessario ipotizzare che vi sia un'altra particella tra i prodotti che è appunto il neutrino.

### 2.a.26 Spiegare perchè, sebbene il neutrone libero sia instabile, esso non possa decadere quando è all'interno di taluni nuclei.

Affinchè il neutrone in un nucleo possa dacadere è necessario che

$$Q = \sum_{in} M_k - \sum_{fin} M_k > 0.$$

Questo in alcuni nuclei può non essere verificato, ad esempio:

#### Stabilità del Deuterio

$$_{1}^{2}H_{1}\longrightarrow _{1}^{1}H_{0}+p+e^{-}+\overline{\nu }_{e}.$$

con:

$$n \longrightarrow p + e^- + \overline{\nu}_e$$
.

si ha che la reazione non avviene perchè:

$$Q = \Delta_{2,1} - 2\Delta_{1,0} = (13.136 - 14.578) \text{ MeV} = -1.442 \text{ MeV}.$$

### 2.a.27 Quali particelle incidenti e di quale energia si utilizzano per misurare i fattori di forma nucleari?

Si usano in genere Scattering elastici, in particolare la particella adatta è l'elettrone, ad esempio:

$$e^- + p \longrightarrow e^- + p$$
 Per misurare il fattore di forma e.m. del protone..

#### QUESTO NON TORNA MOLTO—

Per quanto riguarda l'energia del protone dobbiamo tener di conto di che lunghezza vogliamo ispezionare: Per sondare oggetti di dimensioni caratteristiche del fm è necessario sondare con:

$$p = \frac{2\pi\hbar c}{r} = \frac{1240 \text{ MeV} \cdot \text{fm}}{1 \text{ fm}} = 1240 \text{ MeV}.$$

## 2.a.28 Dare le definizioni di: larghezza, vita media, semivita (o tempo di dimezzamento), rapporto di decadimento ("Branching fraction" o "Branching ratio") per il decadimento di una particella.

Se N è il numero di particelle non ancora decadute la vita media è definita da:

$$\dot{N} = -\frac{N}{\tau}.$$

La larghezza è:

$$\Gamma = 1/\tau$$
.

Mentre il tempo di dimezzamento è

$$T = \tau \ln(2)$$
.

In fine il rapporto di decadimento di un "canale" è il rapporto tra i decadimentii di quel canale ed il numero totale di decadimenti.

### 2.a.29 Quali sono gli ordini di grandezza tipici delle sezioni d'urto delle interazioni forti e delle interazioni deboli?

Per le interazioni forti si hanno sezioni d'urto dell'ordine di 10-100 mb, per le interazioni deboli invece 1 fb.

### 2.a.30 Quali sono, approssimativamente, gli ordini di grandezza delle vite medie dovute ad interazioni deboli, elettromagnetiche, forti?

- Interazioni deboli: dai 15 minuti per il decadimento  $\beta$  del neutrone fino a  $10^{-8}$  del decadimento del  $\pi$  carico.
- Interazioni eletromagnetiche: tempi tipici sono dell'ordine di  $10^{-16}$  s.
- Interazione forte: tempi tipici sono  $10^{-23}$  s.

### 2.a.31 Spiegare la cinematica di un decadimento $\gamma$ nucleare e spiegare qualitativamente l'effetto Mossbauer.

**Definizione di decadimento**  $\gamma$ . I decadimenti  $\gamma$  sono delle transizioni fra uno stato eccitato di un nucleo ed uno stato di energia inferiore con l'emissione di un fotone (raggi X: 10 keV-1 MeV). Considerando la reazione:

$${}^{57}_{26} {
m F}^*_e \longrightarrow [{
m T}_{1/2} = 97.7 \ {
m ns}] \, {}^{57}_{26} {
m F}_e + \gamma (\, 14.4 \ {
m keV} \,).$$

- ullet M: la massa dello stato fondamentale del nucleo.
- $M^* = M + E_0$ : la massa dello stato eccitato.
- $E_{\gamma}$ : l'energia del fotone nel laboratorio.

La quantità di moto del fotone nel centro di massa (e quindi anche dell'atomo di  $F_e$ ):

$$E_{\gamma} = P_{cm}^{\gamma}$$
.

Quindi si ha anche che dalla conservazione dell'energia:

$$E_{in} = M^* = M + E_0 = E_{fin} = \sqrt{M^2 + E_{\gamma}^2} + E_{\gamma}.$$

Possiamo quindi ricavare  $E_{\gamma}$  in funzione di tutto il resto:

$$E_{\gamma} = \frac{E_0 (E_0 + 2M)}{2 (E_0 + M)}.$$

Essendo la massa del  ${}^{57}_{26}{\rm F}_e=53.05~{\rm GeV}$  ed  $E_0=14.4~{\rm keV}$  possiamo approssimare:

$$E_{\gamma} \approx E_0 - \frac{E_0^2}{2M}.$$

Quindi l'energia persa è:

$$\Delta E_{\gamma} \approx -\frac{E_0^2}{2M} \implies \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx -\frac{E_0}{2M}.$$

Essendo  $E_0 \approx E_{\gamma}$ . Nel caso in esame si ha:

$$|\Delta E_{\gamma}| \approx 1.9 meV \implies \left|\frac{\Delta E_{\gamma}}{E_{\gamma}}\right| \approx 1.3 \cdot 10^{-7}.$$

Quest'ultima è molto maggiore di:

$$\frac{\Gamma}{E_0} = 3.2 \cdot 10^{-13}.$$

Quindi sarà difficile che un fotone partito dal decadimento riesca ad eccitare un nuovo atomo di  $F_e$  poichè il fotone è emesso in un range di energia molto grande rispetto alla larghezza del processo.

Se invece prendo un blocco di atomi di ferro (o in gergo: nu bll pezz de ferragl) la massa che va al denominatore nelle equazioni sopra non è più quella del singolo atomo ma quella di tutto il blocco. Succede quindi che:

$$\Delta E_{\gamma} \ll \Gamma$$
.

Si può quindi avere un effetto coerente se il fotone che esce urta contro un altro atomo di ferro: Effetto Mosbauer.

### 2.a.32 Quante sono le variabili indipendenti nello stato finale di una reazione in cui due particelle collidono ed N particelle sono prodotte?

Sia il processo di decadimento:

$$a + b \longrightarrow p_1 + p_2 + \ldots + p_n$$
.

Si ha che il numero di osservabili indipendenti è dato da le variabili ed i vincoli in gioco:

- $\bullet$  n 4-impulsi  $\implies$  4n variabili
- ulletn vincoli dovuti alla massa delle singole particelle:  $m_i^2 = P_{0,i}^2 {\boldsymbol P}_i^2$
- 4 vincoli per la conservazione impulso-energia:  $P_{in} = \sum_{i} P_{i}$

quindi le variabili indipendenti sono 3n - 4.

## 2.a.33 Quante sono le variabili indipendenti nello stato finale di una reazione in cui una particella decade in due particelle? Quali implicazioni avremmo se la particella che decade avesse un momento angolare nullo?

Le variabili indipendenti sono 3\*2 - 4 = 2, se la particella ha spin nullo allora si ha una isotropia spaziale che ci permette di integrare l'espressione per il decadimento a due corpi:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega_1} = f_{dec}\left(\Omega_1\right) \frac{P_{cm}}{4M}.$$

sull'angolo solido:

$$\Gamma = f_{dec} \frac{P_{cm}}{4M} 4\pi.$$

#### 2.a.34 Definire le variabili utilizzate nel "Dalitz plot".

Le variabili del Dalitz plot sono:

- $s_{12}$ : il quadrato della massa invariante delle particelle 1 e 2
- $\bullet \ s_{23}$ : il quadrato della massa invariante delle particelle 2 e 3

## 2.a.35 Quante sono le variabili indipendenti nello stato finale di una reazione in cui una particella decade in tre particelle? Quali implicazioni avremmo se la particella che decade avesse un momento angolare nullo?

Le variabili indipendenti sono 3\*3-4=5.

La larghezza di decadimento si può esprimere come:

$$\Gamma = \int f_{dec}\left(s_{12}, s_{23}, \alpha, \beta, \gamma\right) dL_{p}.$$

Con  $\alpha, \beta, \gamma$  angoli di eulero.

Se la particella ha momento angolare nullo allora lo stato iniziale non ha una direzione privilegiata, quindi  $f_{dec}$  non dipende dagli angoli di Eulero e si può integrare su questi ultimi:

$$d\Gamma = f_{dec}\left(s_{12}, s_{23}\right) \frac{ds_{12}ds_{23}}{32s} \int_{0}^{2\pi} d\alpha \int_{-1}^{1} d\cos\beta \int_{0}^{2\pi} d\gamma = \frac{\pi^{2}}{4s} f_{dec}\left(s_{12}, s_{23}\right) ds_{12}ds_{23}.$$

## 2.a.36 Definire la funzione di distribuzione esclusiva dei 4-impulsi delle particelle emergenti dopo la collisione di due particelle (oppure dopo il decadimento di una particella).

Per la collisione di due particelle si ha:

$$d\sigma = f_{urto}\left(P_1 \dots P_n\right) dL_p = f_{urto}\left(P_1 \dots P_n\right) \frac{\mathrm{d}^3 \boldsymbol{P}_1}{2E_1} \dots \frac{\mathrm{d}^3 \boldsymbol{P}_n}{2E_n} \delta^4 \left(P_{in} - \sum_i P_i\right).$$

con  $\sigma$  sezione d'urto del processo,  $f_{urto}$  probabilità di misurare la sezione d'urto  $d\sigma$  in un intorno di  $P_1 \dots P_n$  (contenente tutte le informazioni dinamiche del processo) e  $dL_p$  è l'elemento infinitesimo dello spazio delle fasi.

### 2.a.37 Spiegare il metodo della 'massa invariante' per identificare una particella instabile e misurarne la sua massa.

Il metodo della massa invariante è un metodo utile ad individuare particelle instabili tramite l'analisi del Dalitz Plot.

Ricominciamo dall'inizio: per il decadimento a 3 corpi si hanno 3n-4=5 variabili indipendenti, mettendosi nel sistema del centro di massa (dove il decadimento avviene in un piano) si possono scegliere gli angoli di eulero come 3 delle 5 variabili, le altre due sono aribitrarie. È stata però adottata la convenzione di scegliere come variabili quelle che andranno a comporre il Dalitz Plot definite come:

Massa inv. di 1 e 2: 
$$\implies s_{12} = (P_1 + P_2)^2 = (P_{in} - P_3)^2 = s + m_3^2 - 2\sqrt{s}E_3.$$

Massa inv. di 2 e 3: 
$$\implies s_{23} = (P_2 + P_3)^2 = (P_{in} - P_1)^2 = s + m_1^2 - 2\sqrt{s}E_1$$
.

Può essere infine utile definire anche (non è variabile del Dalitz):

Massa inv. di 1 e 3: 
$$\implies s_{13} = (P_1 + P_3)^2 = (P_{in} - P_2)^2 = s + m_2^2 - 2\sqrt{s}E_2.$$

Nelle relazioni  $\sqrt{s}$  è l'energia nel centro di massa del sistema. si può notare che tutte e tre le quantità sopra sono vincolate:

1 e 2 ferme 
$$\implies$$
  $(m_1 + m_2)^2 \le s_{12} \le (\sqrt{s} - m_3)^2 \iff 3$  ferma.

1 e 3 ferme 
$$\implies$$
  $(m_1 + m_3)^2 \le s_{13} \le (\sqrt{s} - m_2)^2 \iff 2$  ferma.

$$2 \text{ e } 3 \text{ ferme} \implies (m_2 + m_3)^2 \le s_{23} \le (\sqrt{s} - m_1)^2 \iff 1 \text{ ferma}$$

Possiamo quindi interpolare le prime 3 relazioni:

$$s_{12} + s_{13} + s_{23} = 3s + m_1^2 + m_2^2 + m_3^2 - s\sqrt{s}(E_1 + E_2 + E_3) = s + m_1^2 + m_2^2 + m_3^2$$

E aggiungendo il vincolo su  $s_{13}$ :

$$m_1^2 + m_2^2 + 2m_2\sqrt{s} \le (s_{12} + s_{23}) \le s + m_2^2 - 2m_1m_3.$$

Quindi la distribuzione di particelle finali è vincolata a stare in una porzione dello spazio delle fasi di forma rettangolare:



Figura 4: Esempio di Dalitz Plot.

Adesso manca di osservare che nelle variabili scelte l'elemento infinitesimo dello spazio delle fasi di può scrivere come:

$$dL_p = \frac{1}{32s} ds_{12} ds_{23} d\alpha d(\cos(\beta)) d\gamma.$$

Questo risultato mostra che lo spazio delle fasi è uniformemente popolato nella zona permessa (piatto) se si utilizzano le variabili descritte.

Venendo al dunque si ha che, sperimentalmente, quando questo spazio non è uniformemente popolato si può dedurre che vi sia un processo intermedio non previsto: un decadimento a due corpi in cui uno dei prodotti decade a sua volta in cue corpi, si hanno allora degli addensamenti nello spazio delle fasi in zone che ci indicano la massa invariante della particella instabile (dal decadimento a due). Questo è il metodo della massa invariante.

#### b Domande b

2.b.1 Calcolare la "resistenza di irraggiamento" di un circuito elettrico quadrato di lato L, piccolo rispetto alla lunghezza d'onda  $\lambda$  della radiazione monocromatica incidente, se il circuito è puramente resistivo con resistenza R. Calcolare anche la sezione d'urto di assorbimento e la sezione d'urto elastica se l'onda incidente ha campo magnetico perpendicolare al piano del circuito e di modulo massimo  $B_0$ .

Nomi a parte il problema è schematizzato in Figura:



Figura 5: Spira immersa nel campo di onda e.m.

Calcolo della resistenza di irraggiamento. I campi ed il vettore di Poynting dell'onda sono:

$$E = E_x \hat{i} = E_0 \cos(\omega t - kz) \hat{i}.$$

$$B = B_y \hat{j} = B_0 \cos(\omega t - kz) \hat{j}.$$

$$S_{in} = \frac{E_0^2}{Z_0} \cos(\omega t - kz) \hat{k}.$$

Sia I(t) la corrente che scorre nel circuito; possiamo sfruttare le ipotesi di dimensioni piccole (rispetto a  $\lambda$ ) per dire che tale corrente è uniforme in tutta la spira. Trascurando anche autoinduttanza e capacità parassite possiamo affermare che il circuito ha momento di dipolo nullo. Non vale lo stesso per il momento di dipolo magnetico:

$$\boldsymbol{p}_{m}=I\left( t\right) l^{2}\hat{j}.$$

Adesso aggiungendo le ipotesi di perfetta monocromaticita dell'onda incidente e di nessuna perdita di energia per irraggiamento del circuito si calcola la corrente I(t) applicando Faraday:

$$\varepsilon\left(t\right) = -\frac{\mathrm{d}\Phi\left(\boldsymbol{B}\right)}{\mathrm{d}t} = R_{load}I\left(t\right).$$

Mettiamo quindi in mezzo la geometria del circuito:

$$I\left(t\right) = \frac{\varepsilon\left(t\right)}{R_{load}} = -\frac{1}{R_{load}} \frac{\mathrm{d}\Phi\left(\boldsymbol{B}\right)}{\mathrm{d}t} = -\frac{1}{R_{load}} \frac{\mathrm{d}}{\mathrm{d}t} \left[ \int_{-l/2}^{l/2} B_0 \cos\left(\omega t - kz\right) l dz \right] = \frac{\omega l^2 B_0 \sin\left(\omega t\right)}{R_{load}} \frac{\sin\left(kl/2\right)}{kl/2}.$$

Agginungendo l'approssimazione:

$$\frac{kl}{2} = \frac{\pi l}{\lambda} \ll 1 \implies I\left(t\right) = \frac{\omega l^2 B_0 \sin\left(\omega t\right)}{R_{load}}.$$

Possiamo allora calcolare la potenza irraggiata:

$$P_{el} = \frac{\left|\vec{\boldsymbol{p}_m}\right|^2}{6\pi\epsilon_0 c^5} = \frac{\ddot{I}^2\left(t\right)l^4}{6\pi\epsilon_0 c^5}.$$

Se si effettua un bilancio energetico del circuito:

$$\varepsilon I = R_{load}I^2 + P_{el} = R_{load}I^2 + \frac{l^4}{6\pi\epsilon_0 c^5}\ddot{I}^2.$$

Nel caso in analisi la f.e.m. è armonica

$$\varepsilon = \varepsilon_0 \sin(\omega t)$$
 con  $\varepsilon_0 = \omega l^2 B_0$ 

Quindi la soluzione stazionaria per la corrente sarà anch'essa armonica:  $I = I_0 \sin{(\omega t)}$ , in conclusione:

$$\varepsilon I = R_{load} I^2 + \frac{\omega^4 l^4}{6\pi\epsilon_0 c^5} \implies \varepsilon = (R_{load} + R_{irr}) I.$$

Dove è stata definita la resistenza di irraggiamento (dipendente dalla frequenza):

$$R_{irr} = \frac{\omega^4 l^4}{6\pi\epsilon_0 c^5}.$$

Espressa in funzione della lunghezza d'onda:

$$R_{irr} = \omega^4 \frac{l^4}{6\pi\epsilon c^5} = \left(\frac{2\pi c}{\lambda}\right)^4 \frac{l^4 \sqrt{\mu_0 \epsilon_0}}{6\pi\epsilon_0 c^4} = \frac{8}{3}\pi^3 Z_0 \left(\frac{l}{\lambda}\right)^4 = 31.1 \text{ k}\Omega \left(\frac{l}{\lambda}\right)^4.$$

Calcolo delle sezioni d'urto. Notando che

$$I(t) = \frac{\varepsilon(t)}{(R_{load} + R_{irr})}.$$

Possiamo ottenere la potenza assorbita e la potenza "elastica":

$$P_{abs} = R_{load}I^2 = \frac{R_{load}}{\left(R_{load} + R_{irr}\right)^2} \varepsilon^2.$$

$$P_{el} = R_{irr}I^2 = \frac{R_{load}}{\left(R_{load} + R_{irr}\right)^2}\varepsilon^2.$$

Quindi la potenza trasferita al carico è massima per  $R_{load} = R_{irr}$ . Adesso basta mediare il vettore di Poynting per concludere:

$$\langle |m{S}_{in}| 
angle = rac{m{E}_0^2}{2Z_0}.$$

llora le sezioni d'urto sono:

$$\sigma_{abs} = \frac{4\pi^2}{\lambda^2} l^4 Z_0 \frac{R_{load}}{(R_{load} + R_{irr})^2}.$$

$$\sigma_{irr} = \frac{4\pi^2}{\lambda^2} l^4 Z_0 \frac{R_{irr}}{(R_{load} + R_{irr})^2}.$$

$$\sigma_{tot} = \sigma_{irr} + \sigma_{load} = \frac{4\pi^2}{\lambda^2} l^4 Z_0 \frac{Z_0}{(R_{load} + R_{irr})^2}.$$

2.b.2 Utilizzando le apposite tabelle che forniscono le masse dei nuclei, determinare il Q-valore o l'energia di soglia dei seguenti processi, valutando l'eventuale ruolo della interazione coulombiana nello stato iniziale:

1. 
$$p + 40Ar \implies p + 39Ar + n$$

2. 
$$p + 14N \implies X + n$$

3. 
$$p + 16O \implies X + n$$

$$4. n + 14N \implies 14C + p$$

5. 
$$4\text{He} + 14\text{N} \implies 17\text{O} + \text{p}$$

$$6. 2H + 3H \implies 4He + n$$

7. 
$$2H + 2H \implies 4He + \gamma$$

8. 
$$p + 198Hg \implies 197Au + p + p$$

Partiamo con un pò di teoria:

$$Q = \sum M_{in} - \sum M_{fin}.$$

Se il Q-valore è positivo allora la reazione avviene in modo spontaneo: l'energia di soglia è nulla.

Se il Q-valore è negativo allora l'energia di soglia è maggiore di zero e dipende dalla carica del proiettile. Se la particella proiettile è neutra allora l'energia di soglia è il modulo del Q-valore, altrimenti è necessario calcolare l'energia necessaria a vincere l'interazione columbiana per arrivare al nucleo (essendo le interazioni sopra scritte tutte forti) nel sistema del laboratorio.

Per effettuare il calcolo sfruttiamo la conservazione dell'energia e della quantità di moto non relativistiche in una dimensione, chiariamo la notazione:

- R: raggio del nucleo colpito
- $m_{prt}$ : massa del proiettile.
- v<sub>0</sub>: velocità iniziale del proiettile.
- T: energia cinetica iniziale del proiettile.
- Z: protoni del nucleo colpito.
- M: massa del nucleo colpito.
- d: distanza in cui i nuclei si urtano definita dalla somma dei raggi delle due particelle coinvolte:

$$d = R + r_{prt} \approx \left(1.25A^{1/3} + r_{skin} + r_{prt}\right) \text{ fm} = \left(1.25A^{1/3} + 2 + r_{prt}\right) \text{ fm}.$$

Facendo il conto:

$$\begin{cases} m_{prt} \mathbf{v}_0 = (m_p + M) V_{cm} \\ T \ge \frac{1}{2} (m_{prt} + M) V_{cm} + \frac{Ze^2}{4\pi\epsilon_0 d} \\ T = \frac{1}{2} m_{prt} \mathbf{v}_0^2 \end{cases}$$

Quindi sviluppando per T si ottinene l'energia cinetica necessaria per la reazione:

$$T \ge \left(1 + \frac{m_{prt}}{M}\right) \frac{Ze^2}{4\pi\epsilon_0 d} = T_{\min}.$$

e per l'energia di soglia dobbiamo soltanto sommare il modulo del Q-valore:

$$E_{\text{soglia}} = T_{\min} + |Q|$$
.

In questo modo possiamo risolvere tutte le interazioni elencate.

Interazione 1. Bisogna notare che  $40Ar = {}^{40}_{18}Ar$  (vedi tabelle con difetti di massa), quindi:

$$p + 40 Ar \longrightarrow p + 39 Ar + n.$$

$$Q = (m_p + 40m_u + \Delta_{40,18}) - (m_p + 39m_u + \Delta_{39,18} + m_n) = m_u + \Delta_{40,18} - \Delta_{39,18} - m_n.$$

Numericamente:

$$Q\approx (931.49+(-35.04)-(-33.24+939.57))\,\mathrm{Mev}\approx -8.3~\mathrm{MeV}\qquad \mathrm{Reazione~endotermica}.$$

Per il calcolo dell'energia di soglia applichiamo subito quando visto sopra:

$$E_{\text{soglia}} = \left(1 + \frac{m_p}{M_{40\text{Ar}}}\right) \frac{Ze^2}{4\pi\epsilon_0 d} + |Q| \quad \text{con } M_{40\text{Ar}} = 40m_u + \Delta_{40,18}.$$

si calcola la distanza minima d (il raggio del protone è circa 1.25 fm):

$$d \approx \left(1.25 \cdot \left(40\right)^{1/3} + 2 + r_{protone}\right) \text{fm} \approx 6.25 \text{ fm}.$$

Quindi l'energia di soglia (calcolo numerico approssimato a mente...):

$$E_{\text{soglia}} \approx 4 \text{ MeV} + 8 \text{ MeV} \approx 12 \text{ MeV}.$$

Analogamente per le altre reazioni.

2.b.3 Dimostrare la relazione fra la definizione della sezione d'urto elastica nel caso di fotoni incidenti su un unico bersaglio e la definizione di sezione d'urto elastica per un'onda e.m. monocromatica su un unico bersaglio.

Nel caso di onda monocromatica su un bersaglio si ha:

$$\sigma_{
m el} = rac{\langle P_{el} 
angle}{\langle |m{S}_{in}| 
angle}.$$

Mentre per un fascio di fotoni incidenti:

$$\sigma_{
m el} = rac{rac{{
m d}N_{el}}{{
m d}t}}{\left|oldsymbol{j}_{\gamma}
ight|}.$$

L'equivalenza delle due deriva dal fatto che se si moltiplica e si divide la seconda per  $\hbar\omega$ :

$$\sigma_{
m el} = rac{rac{{
m d}N_{el}}{{
m d}t}}{\left| oldsymbol{j}_{\gamma} 
ight|} = rac{rac{{
m d}N_{el}}{{
m d}t}\hbar\omega}{\left| oldsymbol{j}_{\gamma} 
ight|} rac{\langle P_{el} 
angle}{\langle \left| oldsymbol{S}_{in} 
ight| 
angle}.$$

2.b.4 Quale calcolo si deve effettuare per determinare il numero di eventi per unità di tempo e di volume che si producono negli urti fra particelle di due specie diverse e differenti concentrazioni le cui velocità relative sono distribuite con un funzione  $f(V_{rel})$ , normalizzata all'unità, e la cui sezione d'urto è  $\sigma(V_{rel})$ ?

Date due specie con densità volumica  $n_a$  e  $n_b$  che si scontrano e con densità di prodotti  $n_f$ , se la  $f(V_{\text{rel}})$  è normalizzata allora si ha:

$$\frac{\mathrm{d}n_{\mathrm{f}}}{\mathrm{d}t} = n_{a}n_{b} \int_{0}^{\infty} f\left(v_{rel}\right) \sigma_{\mathrm{f}}\left(v_{rel}\right) v_{rel} dv_{rel}.$$

Tipicamente la  $f(V_{rel})$  è gaussiana.

2.b.5 Calcolare l'attenuazione di un fascio di particelle incidenti su un materiale omogeneo e composto da atomi di una sola specie in funzione della profondità [dati: sezione d'urto del processo su ogni atomo del bersaglio, densità di massa del mezzo, numero atomico del mezzo].

Lamina sottile Data una lastra di materiale omogeneo definiamo alcune (tante, forse troppe) quantità utili: spessore  $\Delta x$ , densità  $\rho$ , area  $\Delta S$ , volume di lastra considerato V, sezione d'urto su ogni atomo bersaglio (totale)  $\sigma_{\rm tot}$ ,  $n_b$  la concentrazione di besagli nel materiale e  $n_a$  la concentrazione di particelle incidenti. Possiamo riscrivere queste in funzione delle quantità date dal testo e sfruttare qualche utile relazione.

Partiamo da  $n_b$ : definendo  $M_{\text{tot}}$  la massa totale di lastra nel volume,  $M_A$  la massa di una mole della sostanza del materiale in grammi,  $N_a$  il numero di avogadro si ha:

$$V \cdot n_b = N_{\rm tot} = \frac{M_{\rm tot}}{M_A} N_a \implies n_b = \frac{N_{\rm tot}}{V} = \frac{\rho}{M_A} N_a.$$

La probabilità di interazione nel volume considerato è definita da:

$$P_{\rm int} = n_b \cdot \sigma_{\rm tot} \Delta x = \frac{\rho N_a}{M_A} \sigma_{\rm tot} \Delta x.$$

A questo punto si vede come è definita la profondità di penetrazione (essendo la  $P_{\rm int}$  adimensionale):

$$\mathcal{L} = \frac{M_A}{\rho N_a \sigma_{\text{tot}}}.$$

quindi l'attenuazione è data dalla frazione di particelle che riescono a passare, quantità che si può ricavare come il complementare della probabilità di interagire: la probabilità di passare.

$$A = 1 - \frac{\Delta x}{\mathcal{L}}$$
 Nel caso di lamina sottile.

Quanto visto fin'ora funziona finche la lamina si può considerare sottile:  $\Delta x < \mathcal{L}$ , se questa approssimazione viene meno è necessario rivedere alcuni conti.

Materiale generico Possiamo pensare ad un materiale generico come la sovrapposizione di tante lamine sottili di diversa superficie. Si può quindi vedere la probabilità di interazione come una funzione della posizione  $P_{\text{int}}(x)$ , quindi anche la stessa attenuazione sarà funzione della posizione A(x). Calcoliamo l'attenuazione alla posizione  $x + \Delta x$ , dobbiamo utilizzare le regole delle probabilità combinate:

$$A(x + \Delta x) = A(x) A(\Delta x) = A(x) (1 - P_{\text{int}}(\Delta x)) = A(x) \left(1 - \frac{\Delta x}{\mathcal{L}}\right).$$

Applicando il rapporto incrementale risulta quindi evidente che il risultato sarà esponenziale ( cosa che goffamente sapevamo già dal momento che si applicano le proprietà della probabilità di eventi ripetuti).

$$\frac{A_{\mathrm{int}}\left(x + \Delta x\right) - A_{\mathrm{int}}\left(x\right)}{\Delta x} = -\frac{A\left(x\right)}{L}.$$

Facendo tentere  $\Delta x$  a zero:

$$\dot{A} = -\frac{A}{\mathcal{L}} \implies A(x) = e^{-x/\mathcal{L}}$$
 Materiale generico.

2.b.6 Calcolare l'attenuazione di un fascio di particelle incidenti su un materiale omogeneo e composto da atomi di diverse specie in funzione della profondità [dati: sezione d'urto del processo su ogni atomo del bersaglio, densità di massa del mezzo, numeri atomici, composizione chimica del mezzo]

Lamina sottile Essendo nota la composizione chimica del mezzo è noto anche la percentuale di atomi che compongono il materiale:

Composizione del mezzo: 
$$X_{a_1}^{(1)} \dots X_{a_N}^{(N)}$$
.

Con  $X^i$  specie atomica,  $a_j$  pedice che indica la composizione chimica nella formula del composto (per non appesantire si trascurano le formule con simboli ripetuti tipo  $CH_3COOH$ ). Si può quindi ragionare come se avessimo N copie del nostro materiale ognuno interamente composto da una singola specie preservando le densità  $\rho_i$  che sono presenti nel materiale originale, successivamente si applica il principio di sovrapposizione sommando tutte le attenuazioni e normalizzando sulle N specie:

$$A_i = 1 - \frac{\Delta x}{\mathcal{L}_i} \implies A_{\text{tot}} = \frac{\sum_{n=1}^{N} A_n}{N} = 1 - \sum_{n=1}^{N} \frac{\Delta x}{N \mathcal{L}_n}.$$

con la penetrazione definita a partire dalla densità e dalla massa molare delle singole specie:

$$\mathcal{L}_i = \frac{M_A^{(i)}}{\rho_i N_a \sigma_{\text{tot}}}.$$

Materiale generico Con passaggi del tutto analoghi alla domanda precedente si arriva alla conlcusione:

$$A_{\text{tot}} = \frac{\sum_{n=1}^{N} e^{-x/\mathcal{L}_n}}{N}.$$

26

- 2.b.7 Effettuare una stima numerica della sezione d'urto totale forte per i seguenti urti:
  - 1. p + 40Ar
  - 2. n + 14N
  - 3.4 He + 14 N
  - 4.2H + 3H

Se si considera solo la sezione d'urto forte non c'è bisogno di preoccuparsi di interazioni elettrodeboli: si suppone che l'energia sia sufficiente da poter trascurare questo tipo di interazioni. Il calcolo si riduce alla stima della superficie di possibile impatto tra i due oggetti assunti come sferici:

$$\sigma_{\rm strong} \approx \pi \left( R_1 + R_2 \right)^2$$
.

Con  $R_1$  e  $R_2$  raggi delle particelle interagenti. Per tutti gli atomi in gioco ho scelto di considerare sempre  $r_{\rm skin}$ .

Interazione 1.

$$\sigma_1 \approx \pi \left( r_p + R_{40\text{Ar}} \right)^2 \approx \pi (1.25 \cdot (40)^{1/3} + 2 + 1.25)^2 \text{ fm}^2 \approx \pi \cdot (6.25)^2 \text{ fm}^2$$

Quindi

$$\sigma_1 \approx \pi \cdot 39 \text{ fm}^2 \approx 120 \text{ fm}^2 = 1.2 \text{b}$$

Interazione 2.  $\sigma_2 \approx 1.23b$ 

Interazione 3.  $\sigma_3 \approx 2.54b$ 

Interazione 4.  $\sigma_4 \approx 1.7$ b

2.b.8 Calcolare l'energia che dovrebbe avere un protone che incide su un protone fermo per ottenere una energia nel centro di massa pari a quella di LHC (14TeV).

Sia E l'energia del protone nel laboratorio, si ha:

$$E_{\rm cm}^2 = (E_{lab})^2 - \mathbf{P}_{\rm lab}^2 = (E + m_p)^2 - (E^2 - m_p^2) = 2m_p^2 + 2m_p E.$$

Quindi l'energia necessaria è circa  $E=10^6~{\rm TeV}$ 

2.b.9 Calcolare l'energia di degli elettroni/positroni per innescare la reazione:

$$e^+ + e^- \Longrightarrow p + \overline{p}$$

in cui i due leptoni collidono con 3-impulsi opposti e di modulo diverso.

Se  $E_1$  e  $E_2$  sono le energie dei due leptoni si ha

$$(E_1 + E_2)^2 - \left(\sqrt{E_1^2 - m_e^2} - \sqrt{E_2^2 - m_e^2}\right) \ge 4m_p^2.$$

L'energia di soglia si ottinene studiando la funzione nelle due variabili sopra, da lì si evince che il minimo si ha per  $E_1 = E_2$ , quindi:

$$E_{\min} = m_p$$
.

### 2.b.10 Calcolare l'energia di soglia nel laboratorio per le seguenti reazioni (la seconda particella è inizialmente ferma):

1. 
$$\gamma + {}^{16}O \implies e^{+} + e^{-} + {}^{16}O$$

2. 
$$\gamma + e^- \implies e^- + e^+ + e^-$$

3. 
$$p + p \implies p + p + p + \overline{p}$$

**4.** 
$$p + {}^{16}O \implies p + p + \bar{p} + {}^{16}O$$

5. 
$$e^+ + e^- \implies p + \overline{p}$$

6. 
$$e^- + p \implies n + \nu_e$$

7. 
$$\overline{\nu_e} + p \implies n + e^+$$

Per tali calcoli è necessaria una generalizzazione della risposta al quesito precedente, è infatti richiesto che:

$$\left(\sum_i P_{i,\text{in}}\right)^2 \ge \left(\sum_i m_{i,\text{fin}}\right)^2.$$

Adesso si può sfruttare il fatto che i reagenti sono soltanto due e che il secondo è sempre a riposo (generalizzazione della domanda 2.b.8):

$$E_1 \geq \frac{1}{2m_2} \left\lceil \left( \sum_i m_{i, \mathrm{fin}} \right)^2 - \left( m_1^2 + m_2^2 \right) \right\rceil.$$

E adesso si tratta solo di infilare dentro i numeri.

### 2.b.11 Calcolare la probabilità che un neutrino interagisca nell'attraversare la Terra lungo un diametro.

Nota: sia assuma che l'energia del neutrino sia tale che la sezione d'urto totale su un singolo nucleone sia 1 fb.

Si assume per il calcolo  $\rho_{\rm T} \approx 5.5 {\rm g/cm^3}$ .

Possiamo ipotizzare una bassa probabilità di interazione per il neutrino, è quindi possibile assumere la terra come una lamina sottile (con immenso piacere dei terrapiattisti) e calcolare la probabilità cercata come:

$$P_{\rm int} = n\sigma d \approx 4.2 \cdot 10^{-5}$$
.

Con  $d \approx 12.76 \cdot 10^3$  km raggio terrestre e  $n \approx \frac{\rho_{^{\rm T}N_A}}{M_{\rm Si}} \approx 3.3 \cdot 10^{-24} {\rm cm}^{-3}$  densità media della terra (composta principalmente da Silicio).

# 2.b.12 Dimostrare che un elettrone (non relativistico) soggetto ad una forza elastica di richiamo, ad una forza di attrito viscoso ed alla forza di reazione radiativa, nel campo di un'onda e.m. piana polarizzata linearmente oscilla con la legge:

$$m{x} = rac{em{E_0}}{m_e} rac{1}{\omega_0^2 - \omega^2 - i\omega\Gamma_{tot}} e^{-i\omega t}$$
 con  $\Gamma_{tot} = \Gamma' + \Gamma rac{\omega^2}{\omega_0^2}$ 

Facendo riferimento ai risultati delle Domande 2.a.15, 2.a.16 si prosegue con il calcolo. L'equazione di moto dell'elettrone in questo caso è (considerando anche la  $F_{\rm rad}$ ):

$$m_e \ddot{\boldsymbol{x}} = q \boldsymbol{E_0} e^{-i\omega t} - m_e \tau \ddot{\boldsymbol{x}} - m_e \Gamma' \dot{\boldsymbol{x}}.$$

Spostando l'incognita vettoriale a destra si ha:

$$-\tau \ddot{x} + \ddot{x} + \Gamma' \dot{x} + \omega_0^2 x = \frac{q \mathbf{E_0}}{m_e} e^{-i\omega t}.$$

28

Cercando la soluzione stazionaria  $\mathbf{x} = \mathbf{x}_0 e^{-i\omega t}$  si ha:

$$-\tau \left(-i\omega\right)^{3} \boldsymbol{x}_{0} e^{-i\omega t} + \left(-i\omega\right) \Gamma' \boldsymbol{x}_{0} e^{-i\omega t} + \omega_{0}^{2} \boldsymbol{x}_{0} e^{-i\omega t} = \frac{q\boldsymbol{E}_{0}}{m_{-}} e^{-i\omega t}.$$

Quindi:

$$oldsymbol{x}_0 = rac{q oldsymbol{E}_0/m_e}{\omega_0^2 - \omega^2 - i\omega\Gamma' - i au\omega^2}.$$

È quindi utile definire  $\Gamma_{\rm tot}=\Gamma'+\tau\omega^2=\Gamma'+\Gamma\frac{\omega^2}{\omega_0^2}$  per giungere alla conclusione:

$$m{x} = rac{q m{E}_0}{m_e} rac{e^{-i\omega t}}{\omega_0^2 - \omega^2 - i\omega \Gamma_{
m tot}}.$$

### 2.b.13 Dimostrare che la sezione d'urto differenziale elastica per un'onda e.m. piana e monocromatica su un elettrone legato elasticamente vale

$$\frac{\mathbf{d}\sigma_{el}}{\mathbf{d}\Omega} = r_e^2 L\left(\omega\right) \sin^2\left(\alpha\right)$$

### con $\alpha$ angolo fra la direzione di osservazione e direzione di polarizzazione (lineare) dell'onda.

La risposta al quesito è stata prematuramente scritta alla Domanda 2.a.16 facendo uso del risultato ottenuto nella Domanda 2.b.12. Si riaccenna solo al fatto che è stata definita  $L(\omega)$  come:

$$L\left(\omega\right) = \frac{\omega^4}{\left(\omega_0^2 - \omega^2\right)^2 + \omega^2 \Gamma_{tot}}$$

Vediamo di dimostrare quanto scritto, sopra abbiamo ottenuto:

$$x = rac{qE_0}{m_e} rac{e^{-i\omega t}}{\omega_0^2 - \omega^2 - i\omega\Gamma_{
m tot}}.$$

Calcoliamo il vettore di Poynting (mediato nel tempo) associato alla potenza irraggiata dall'elettrone: Esplicitando l'espressione del .. in funzione della variabile  $\alpha$  del problema si ha:

$$\boldsymbol{E}_{\mathrm{dip}} = k_0 \frac{(e\ddot{\boldsymbol{x}} \wedge \hat{r}) \wedge \hat{r}}{|\boldsymbol{r}| c^2}.$$

$$\left\langle \boldsymbol{S}_{\mathrm{el}}\right\rangle = \left\langle \boldsymbol{E} \wedge \boldsymbol{H}\right\rangle = \left\langle \frac{\left|\boldsymbol{E}_{\mathrm{dip}}\right|^{2}}{c\mu_{0}}\right\rangle = k_{0}^{2} \frac{\left|e\ddot{\boldsymbol{x}}\right|^{2} \sin^{2}\left(\alpha\right)}{c^{4}r^{2}\mu_{0}} = \frac{1}{32\pi^{2}\epsilon_{0}} \frac{\left|e\ddot{\boldsymbol{x}}_{0}\right|^{2} \sin^{2}\left(\alpha\right)}{c^{3}r^{2}} \hat{r}.$$

Che in CGS risulta più elegante:

$$\langle \boldsymbol{S}_{\mathrm{el}} \rangle = \frac{1}{8\pi} \frac{\left| e \ddot{\boldsymbol{x}}_{0} \right|^{2} \sin^{2}\left(\alpha\right)}{c^{3} r^{2}} \hat{r}.$$

Dividendo questo vettore per il vettore di poynting iniziale (da qui in poi CGS per semplicità) si ottiene l'espressione cercata:

$$\frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}\Omega} = \frac{\left\langle \boldsymbol{S}_{\mathrm{el}} \right\rangle \cdot r^{2}\hat{r}}{\frac{c}{8\pi}\left|E_{0}\right|^{2}} = \frac{\omega^{4}e^{4}}{c^{4}m_{e}^{2}} \frac{\sin^{2}\left(\alpha\right)}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \omega^{2}\Gamma_{\mathrm{tot}}^{2}} = r_{e}^{2} \frac{\omega^{4}\sin^{2}\left(\alpha\right)}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \omega^{2}\Gamma_{\mathrm{tot}}^{2}}.$$

Dove è necessario riconoscere il raggio classico in CGS:

$$r_e^{(\text{CGS})} = \frac{e^2}{c^2 m_e}.$$

Va da se che in MKSA:

$$\frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}\Omega} = \left(\frac{k_0 e^2}{m_e c^2}\right)^2 \frac{\omega^4 \sin^2\left(\alpha\right)}{\left(\omega_0^2 - \omega^2\right)^2 + \omega^2 \Gamma_{\mathrm{tot}}^2}.$$

### 2.b.14 Dimostrare che la sezione d'urto Thomson vale $\sigma_{Th} = \frac{8}{3}\pi r_e^2 = 0.66$ barn.

Si può arrivare allo Scattering Thompson riscrivendo l'equazione di moto dell'elettrone e trascurando la pressione di radiazione di cui si è invece fatto uso nelle precedenti domande:

$$m_e \ddot{\boldsymbol{x}} = e \boldsymbol{E}_0 e^{-i\omega t}.$$

La potenza irraggiata di dipolo sarà quindi:

$$P_{\rm irr} = k_0 \frac{e^2 |\ddot{x}|^2}{3c^3}.$$

Sviluppando i conti e ricordando la definizione di sezione d'urto si arriva banalmente a:

$$\sigma_{\rm Th} = \frac{8}{3}\pi r_e^2.$$

Ricordando ancora che il Raggio classico dell'elettrone è:  $r_e = k_0 \frac{e^2}{m_e c^2} \approx 2.82$  fm.

#### 2.b.15 Dimostrare che la sezione d'urto elastica per un'onda e.m. piana e monocromatica su un elettrone legato elasticamente vale:

$$\sigma_{el} = \sigma_{Th} L\left(\omega\right)$$

È in pratica richiesto di trovare la Funzione di Brieght-Wiegner. Visto che abbiamo la sezione differenziale tuttavia è sufficiente integrarla su tutti gli angoli. Ci si riduce allora al calcolo dell'integrale:

$$\int \sin^2\left(\alpha\right) d\Omega = \int \frac{1 + \cos^2\left(\alpha\right)}{2} d\Omega = 2\pi + \frac{1}{2} 2\pi \int_0^{2\pi} \cos^2\left(\alpha\right) \sin\left(\alpha\right) d\alpha = \frac{8}{3}\pi.$$

Tutto il resto esce indisturbato dall'integrale sull'angolo solido, da cui la tesi.

### 2.b.16 Dimostrare che la sezione d'urto totale per un'onda e.m. piana e monocromatica su un elettrone legato elasticamente vale:

$$\sigma_{\text{tot}} = 4\pi r_e c L(\omega)$$

Abbiamo gia risolto l'equazione del moto:

$$\boldsymbol{x} = \frac{e\boldsymbol{E}_0}{m} \frac{e^{-i\omega t}}{\omega_0^2 - \omega^2 - i\omega\Gamma_{\text{tot}}}.$$

Si tratta quindi solo di ricordare che la potenza totale dissipata può essere espressa come:

$$P_{\text{tot}} = \langle \boldsymbol{v} \cdot \boldsymbol{F} \rangle = \langle \dot{\boldsymbol{x}} \cdot q \boldsymbol{E} \rangle = \langle e \dot{\boldsymbol{x}} \cdot \boldsymbol{E} \rangle = \frac{1}{2} q \mathcal{R} e \left\{ \dot{\boldsymbol{x}} \cdot \boldsymbol{E}^* \right\}.$$

Quindi:

$$P_{\text{tot}} = \frac{q^2 \omega^2 \left| \boldsymbol{E}_0 \right|^2 \Gamma_{\text{tot}}}{2m \left( \left( \omega_0^2 - \omega^2 \right)^2 + \omega^2 \Gamma_{\text{tot}}^2 \right)}.$$

Resta adesso da dividere per il vettore di Poynting incidente.

$$\sigma_{\mathrm{tot}} = \frac{P_{\mathrm{tot}}}{\left\langle \left| \mathbf{S}_{\mathrm{in}} \right| \right\rangle} = 4\pi r_{e} c L\left(\omega\right).$$

Per completezza si scrive anche:

$$\sigma_{\rm abs} = \sigma_{\rm tot} - \sigma_{\rm el} = 4\pi r_e \omega^2 L(\omega) \left[ e \Gamma_{\rm tot} - \frac{2}{3} r_e \omega^2 \right].$$

30



Figura 6: Andamento delle sezioni d'urto della Bright-Wiegner

Nella figura si mostra come vanno le sezioni d'urto, è necessario notare che, per un rendering più fedele, sarebbero serviti più punti plottati (la funzione non ha raggiunto il massimo atteso). Per pigrizia è stato testato che arrivasse al massimo ma non è stata riportata l'immagine; insomma fidarsi o provare per credere.

2.b.17 Dimostrare che la sezione d'urto elastica per un'onda e.m. piana e monocromatica su un elettrone legato elasticamente in prossimità di una risonanza stretta (specificare il criterio) si può approssimare con una curva lorentziana

$$\sigma_{el} = \sigma_{Th} \frac{\omega_0^2/4}{(\omega_0 - \omega)^2 + \frac{(\Gamma' + \Gamma)^2}{4}}$$

La B-W si approssima con una lorenziana in un intorno (dell'ordine della larghezza  $\Gamma + \Gamma'$ ) di  $\omega_0$ :  $\omega \approx \omega_0$ . La risonanza è stretta se la larghezza a metà altezza è molto inferiore alla frequenza di risonanza:  $\Gamma + \Gamma' \ll \omega_0$ . Passiamo alle approssimazioni allora:

$$\begin{split} \sigma_{\rm el} &= \sigma_{\rm Th} \frac{\omega^4}{\left(\omega_0 - \omega\right)^2 \left(\omega_0 + \omega\right)^2 + \omega^2 \left(\Gamma + \Gamma' \frac{\omega^2}{\omega_0^2}\right)^2} \approx \\ &\approx \sigma_{\rm Th} \frac{\omega_0^4}{4\omega_0^2 \left(\omega_0 - \omega\right)^2 + \left(\Gamma + \Gamma'\right)^2 \omega_0^2} \approx \\ &\approx \sigma_{\rm Th} \frac{\omega_0^4 / 4}{\left(\omega - \omega_0\right)^2 + \left(\frac{\Gamma + \Gamma'}{2}\right)^2}. \end{split}$$

2.b.18 Dimostrare che per un'onda e.m. piana e monocromatica su un elettrone legato elasticamente le sezioni d'urto al picco valgono:

$$\sigma_{el} = \frac{3\lambda_0^2}{2\pi} \left(\frac{\Gamma}{\Gamma + \Gamma'}\right)^2$$

$$\sigma_{TOT} = \frac{3\lambda_0^2}{2\pi} \frac{\Gamma}{\Gamma + \Gamma'} \qquad \mathbf{Con} \ \lambda_0 = \frac{2\pi c}{\omega_0}$$

$$\sigma_{inel} = \frac{3\lambda_0^2}{2\pi} \frac{\Gamma\Gamma'}{(\Gamma + \Gamma')^2}$$

Accettanto il fatto che tutte le tre sezioni d'urto hanno un massimo per  $\omega = \omega_0$  basta prendere le sezioni d'urto e sbatterci dentro  $\omega = \omega_0$ .

2.b.19 Dimostrare che un elettrone (moto non relativistico) soggetto ad una forza elastica di richiamo, ad una forza di attrito viscoso ed alla forza di reazione radiativa, se viene lasciato libero di oscillare da una posizione iniziale perde energia con una 1 legge esponenziale in cui la costante tempo vale  $\frac{1}{\Gamma'+\Gamma}$ . Come si chiama questa costante tempo? Quale sarebbe la costante tempo con cui, invece, si smorza l'ampiezza delle oscillazioni?

Riprendiamo l'equazione di moto dell'elettrone, tuttavia adesso togliamo la forzante dovuta all'onda incidente.

$$-\tau \ddot{\mathbf{x}} + \ddot{\mathbf{x}} + \Gamma' \dot{\mathbf{x}} + \omega_0^2 \mathbf{x} = 0.$$

Adesso è necessario ricordare le relazioni tra i vari parametri in gioco:

$$\Gamma' \ll \omega_0 \ll \frac{1}{\tau}, \qquad \Gamma \ll \omega_0.$$

La prima è una questione puramente di grandezze fisicamente tipiche, la seconda deriva dalla prima  $(\omega_0 \tau \ll 1)$  e dal fatto che  $\Gamma = \tau \omega_0^2 \ll 1 \cdot \omega_0$ .

È quindi ragionevole cercare una soluzione oscillante e smorzante con smorzamento debole rispetto alla pulsazione:

$$\mathbf{x} = \mathbf{x}_0 e^{-i(\omega_0 - i\gamma/2)t} = \mathbf{x}_0 e^{-i\omega_0 t} e^{-\gamma t/2}, \qquad \gamma \ll \omega_0.$$

Adesso la festa è nel sostituire questa soluzione nella equazione buttando via i termini trascurabili:

$$-\tau \left(-i \left(\omega_0 - i \gamma / 2\right)\right)^3 + \left(-i \left(\omega_0 - i \gamma / 2\right)\right)^2 - \left(-i \left(\omega_0 - i \gamma / 2\right)\right) \Gamma' - \omega_0^2 = 0.$$

Sostituendo  $\tau = \Gamma/\omega_0^2$ :

$$-i\frac{\Gamma}{\omega_0^2}\left(\omega_0^3 - \frac{3}{2}i\gamma\omega_0^2 + \ldots\right) - \left(\omega_0^2 - i\gamma\omega_0 + \ldots\right) + \left(-i\Gamma'\omega_0 - \frac{1}{2}\gamma\Gamma'\right) + \omega_0^2 \approx 0.$$

Sempre sulla base delle approssimazioni sopra è possibile notare che i termini reali sono trascurabili (raggruppare alcuni  $\Gamma$  o  $\Gamma'$  nei punti giusti per vederlo), ci si riduce alla forma:

$$-i\Gamma\omega_0 - \frac{3}{2}\Gamma\gamma - i\Gamma'\omega_0 + i\gamma\omega_0 - \frac{1}{2}\gamma\Gamma' \approx 0 \implies -\Gamma\omega_0 - \Gamma'\omega_0 + \gamma\omega_0 \approx 0.$$

Che ci porta alla conclusione:

$$\gamma \approx \Gamma + \Gamma$$
.

Quindi l'ampiezza delle oscilazioni è smorzata con una costante tempo data da:

$$m{x} = \ldots \cdot e^{-t/ au_{
m osc}} \qquad {
m con} \qquad au_{osc} = rac{2}{\gamma} = rac{2}{\Gamma + \Gamma'}.$$

Se consideriamo invece l'andamento della energia è necessario tener conto del fatto che essa è quadratica nella velocità (cinetica) e nella posizione (potenziale):

$$E = E_0 e^{-\gamma t} \quad \Longrightarrow \quad \tau_{\rm energia} = \frac{1}{\gamma} = \frac{1}{\Gamma + \Gamma'}.$$

In tutto questo macello il risultato importante è uno: la larghezza totale di uno stato risonante è il reciproco della sua vita media, risonanza stretta = particella longeva e viceversa.

## 2.b.20 Calcolare la relazione tra parametro d'impatto (b) e angolo di scattering $(\theta)$ nel caso di scattering di Rutherford (Coulombiano) e di scattering su sfera rigida.

Prima di iniziare con questi argomenti è bene dare una rilucidatà ad alcune grandezze tipiche in esame: le dimensioni atomiche.



Figura 7: Dimensioni atomiche tipiche

Veniamo quindi agli scattering discussi, la situazione è modellizzata in Figura 8:



Figura 8: Schema dello scattering Rutherford.

Per tutte le seguenti affermazioni viene considerto il centro scatterante come fisso (con massa molto maggiore del proiettile).

Interazione Columbiana. Inizialmente la particella ha una velocità  $v_0$  che per la conservazione dell'energia e per simmetria deve essere uguale a quella finale  $v_f$ :

$$|\boldsymbol{v}_0| = |\boldsymbol{v}_f|$$
.

Si può trovare la variazione di impulso dopo interazione:

$$\Delta p = \left|\Delta \boldsymbol{p}\right| = \sqrt{\left(m\boldsymbol{v}_f - m\boldsymbol{v}_0\right)^2} = m\sqrt{v_0^2 + v_0^2 - 2v_0^2\cos\left(\theta\right)} = 2mv_0\sin\left(\frac{\theta}{2}\right).$$

È utile anche ricordare la relazione che lega  $\mu$  (angolo di riferimento che giace sul piano perpendicolare alla  $v_0$ ) all'elemento infinitesimo di sezione d'urto:

$$d\sigma = bdbd\mu$$
.

Essendoci qua una simmetria sotto rotazioni attorno all'asse  $\hat{v}_0$  possiamo integrare sull'angolo  $\mu$  della relazione:

$$d\sigma = 2\pi bdb.$$

Altra relazione differenziale che ci è utile adesso è:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mu} = bdb.$$

La sezione d'urto differenziale si può scrivere allora in funzione di  $b\left(\theta\right)$  :

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma}{\mathrm{d}\mu\mathrm{d}\cos\left(\theta\right)} = \frac{b\mathrm{d}b}{\mathrm{d}\cos\left(\theta\right)} = -\frac{b\mathrm{d}b}{\sin\left(\theta\right)d\theta}.$$

Consideriamo adesso la variabile  $\varphi$  nella Figura 8 indice della posizione angolare dell'oggetto durante l'interazione, è definita appunto tra:

 $\varphi_{\min} = -\frac{\pi - \theta}{2} \le \varphi \le \frac{\pi - \theta}{2} = \varphi_{\max}.$ 

Possiaom giocarci la conservazione del momento angolare durante il processo sfruttando la variabile sopra definita come cordinata polare.

$$L_z = m (\mathbf{r} \wedge \mathbf{v})_z = m [\mathbf{r} (\dot{r} \hat{r} + r \dot{\varphi} \hat{\varphi})] = mr^2 \dot{\varphi}.$$

Quindi considerando anche il momento angolare iniziale abbiamo una prima relazione per parametrizzare il differenziale nel tempo:

$$mv_0b = mr^2 \frac{\mathrm{d}\varphi}{\mathrm{d}t} \Longrightarrow dt = \frac{r^2}{bv_0}d\varphi.$$

Perche parametrizzare il tempo? Perche ci è utile per relazionare la variabile b a  $\theta$ ! Infatti la variazione di impulso calcolata sopra può essere scritta come:

$$|\Delta \boldsymbol{p}| = \int_{-\infty}^{\infty} |\boldsymbol{F}_{\perp}| dt = \int_{-\infty}^{\infty} |\boldsymbol{F}| \cos(\varphi) dt.$$

La forza citata è quella columbiana tra i due corpi:

$$|\mathbf{F}| = \frac{zZe^2}{4\pi\epsilon_0 r^2}.$$

Mettiamo tutto nell'integrale (compreso il dt):

$$|\Delta \boldsymbol{p}| = \int_{\varphi_{\min}}^{\varphi_{\max}} \frac{zZe^2}{4\pi\epsilon_0 br^2} \frac{\cos\left(\varphi\right)}{b} \frac{r^2}{v_0} d\varphi = \frac{zZe^2}{2\pi\epsilon_0 bv_0} \cos\left(\frac{\theta}{2}\right).$$

Senza mollare eliminiamo il  $|\Delta p|$  ricavato all'inizio:

$$2mv_0\sin\left(\frac{\theta}{2}\right) = \frac{zZe^2}{2\pi\epsilon_0bv_0}\cos\left(\frac{\theta}{2}\right).$$

E le nostre fatiche vengono ripagate perche abbiamo la prima risposta:

$$b\left(\theta\right) = \frac{zZe^2}{4\pi\epsilon_0 m v_0^2} \cot\left(\frac{\theta}{2}\right).$$

È quindi possibile definire anche una minima distanza di urto centrale d quando la cotangente è unitaria:

$$d = \frac{zZe^2}{4\pi\epsilon_0 m v_0^2} = \frac{zZ\left(\alpha\hbar c\right)}{T} \approx zZ\frac{1.44[\text{MeV}]}{T[\text{MeV}]}[\text{fm}] \qquad \Longrightarrow \qquad b\left(\theta\right) = d\cot\left(\frac{\theta}{2}\right).$$

Apprezziamo la grandezza del risultato, siamo in grado di prevedere, note la carica e la massa del proiettile, la distanza ortogonale (b) tra i centri incidenti dal momento che scegliamo l'angolo di osservazione  $\theta_0$  (o meglio, tutto ciò che arriva all'osservatore è partito da una posizione con parametro di impatto noto). Si può infine trovare la sezione d'urto Rutherford differenziale come:

$$\frac{\mathrm{d}\theta}{\mathrm{d}\Omega} = -\frac{bdb}{\sin\left(\theta\right)d\theta} = -\frac{b}{2\cos\left(\frac{\theta}{2}\right)\sin\left(\frac{\theta}{2}\right)} \cdot \frac{d}{2}\left(\frac{d\left(\cot\left(\frac{\theta}{2}\right)\right)}{d\theta}\right) = \dots = \frac{d^2}{16\sin^4\left(\frac{\theta}{2}\right)}.$$

Interazione con sfera rigida In questo caso basta sfruttare alcune semplici considerazioni geometriche:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}b} = 2\pi b \qquad \text{con} \quad b < R.$$

A fare la differenza qua è la semplice definizione di  $\theta$ :

$$\frac{b}{R} = \sin\left(\frac{\pi - \theta}{2}\right) = \cos\left(\frac{\theta}{2}\right) \implies b = R\cos\left(\frac{\theta}{2}\right).$$

### 2.b.21 Calcolare la minima distanza fra le due particelle in uno scattering Rutherford.

Definiamo  $v_m$  come la velocità del proiettile nell'istante in cui ha raggiunto la distanza minima x. Sfruttando la conservazione dell'energia e del momento angolare si ottiene:

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv_f^2 + \frac{zZe^2}{4\pi\epsilon_0 x}.$$

$$mv_0b = mv_mx.$$

Si ricava  $v_m$  dalla seconda sostituendola nella prima, ne risulta una equazione del secondo grado per x:

$$x^2 - d \cdot x - b^2 = 0 \implies x = \frac{d}{2} \left( 1 + \frac{1}{\sin\left(\frac{\theta}{2}\right)} \right).$$

### 2.b.22 Calcolare l'energia minima affinché un protone possa avere una interazione forte "toccando" un nucleo di $^{12}C$ o di $^{28}Si$ .

È inanzitutto necessario per risolvere il problema di minimo considerare l'urto centrale: b=0. In tal caso l'angolo di scatternig è  $\theta=\pi$  e x=d dove d è la distanza tra i nuclei aventi raggio:

$$R = (1.25A^{1/3} + 2)$$
 fm.

L'energia minima è allora proprio l'energia potenziale necessaria ad arrivare alla distanza d:

$$E_{\min} = \frac{zZe^2}{4\pi\epsilon_0 \left(R_1 + R_2\right)}.$$

O molto più semplicemente (vista la fatica fatta in precedenza per definire d:

$$d = (R_1 + R_2) \approx zZ \frac{1.44 [\text{MeV}]}{T [\text{MeV}]} [\text{fm}] \implies T = zZ \frac{1.44}{(R_1 + R_2)} [\text{MeV}].$$

Mettendo i numeri si ha:

$$E_{\rm C} \approx 1.4 {\rm MeV}, \qquad E_{\rm Si} = 11.2 {\rm MeV}.$$

### 2.b.23 Discutere le differenze tra lo scattering di Rutherford (particelle $\alpha$ su nuclei) e lo scattering di elettroni su bersaglio puntiforme.

La differenza principale è che gli elettroni si muovono solitamente a velocità relativistiche, questo invalida i conti fatti prima. Nel caso discusso quindi è necessario tirare in ballo la sezione d'urto Mott.

## 2.b.24 Cercando i dati nelle apposite tabelle (reperibili sul web ) si indichino gli stati finali e si calcoli il Q-valore per i decadimenti delle seguenti specie instabili: ${}^8B, {}^{39}Ar, {}^7Be, {}^{64}Cu, {}^{76}Ge$ .

Per rispondere a questa domanda è necessario ricordarsi la natura dei Decadimenti ed avere sottomano il Nuclear Wallet Card.

#### Isotopo del Boro

$${}^{8}_{5}B_{3} \xrightarrow{\epsilon} {}^{8}_{4}Be_{4} \xrightarrow{\alpha} {}^{4}_{2}He_{2}^{2-}.$$

$$\Delta Q_{\epsilon} = \Delta_{A,Z} - \Delta_{A,Z-1} \approx 18 \text{ Mev}$$

$$\Delta Q_{\alpha} = (4m_{u} + \Delta_{A,Z-1}) - (\Delta_{A-4,Z-2} + 4m_{u} + \Delta_{\alpha}) \approx 0.1 \text{ MeV}.$$

Quindi l'energia complessiva del processo è

$$\Delta Q_{\epsilon} + \Delta Q_{\alpha} \approx 18.1 \text{ MeV}.$$

Notare che in questo caso particcolare i prodotti di decadimento  $\alpha$  e  ${}_{2}^{4}\mathrm{He}_{2}^{2-}$  hanno approssimativamente la stessa massa.

Isotopo dell'Argon

$$\label{eq:controller} \begin{array}{c} ^{39}_{18}\mathrm{Ar}_{21} \xrightarrow{\beta^-} ^{39}_{19}\mathrm{K}_{20}. \\ \\ \Delta Q_{\beta^-} = \Delta_{A,Z} - \Delta_{A,Z+1} = 0.57 \ \mathrm{MeV}. \end{array}$$

Isotopo del Berillio

$$\begin{array}{c} ^7_4{\rm Be}_3 \stackrel{\epsilon}{\longrightarrow} ^7_3{\rm Li}_4. \\ \\ \Delta Q_\epsilon = \Delta_{A,Z} - \Delta_{A,Z-1} \approx 1.861~{\rm MeV}. \end{array}$$

Isotopo del Rame Nelle tabelle sono indicate due possibilità, esaminiamo entrambe:

$$^{64}_{30}\mathrm{Zn}_{34} \xleftarrow{\beta^{-}}_{38.5\,\%} \quad ^{64}_{29}\mathrm{Cu}_{35} \quad \xrightarrow{\epsilon}_{61.5\,\%} ^{64}_{28}\mathrm{Ni}_{36}.$$

Senza essere ripetitivi (stesse cose viste sopra) si riportano i risultati:

$$\Delta Q_{\epsilon} = 1.67 \text{ MeV}.$$

$$\Delta Q_{\beta^-} = 0.68 \text{ MeV}.$$

Isotopo del Germanio

$$_{32}^{76} Ge_{44} \implies \tau_{1/2} \sim 2 \cdot 10^{21}.$$

Al gran sasso si studia il decadimento  $\beta^-\beta^-$  di Questo isotopo (nome in codice GERDA).

Nota: I conti della domanda sono stati fatti senza calcolatore per allenamento, siete fortemente invitati a fare lo stesso e riportare gli errori a chi ha accesso al source code.

2.b.25 Cercando i dati nelle apposite tabelle (reperibili sul web) si trovino i Q-valori per le reazioni

1. 
$$n + {}^{154}Gd \implies \gamma + {}^{155}Gd$$

2. 
$$n + {}^{155}Gd \implies \gamma + {}^{156}Gd$$

$$\Delta Q_1 = (m_n + 154m_u + \Delta_{154,64}) - (155m_u + \Delta_{154,64}) \approx \Delta_{154,64} - \Delta_{155,64} \approx -0.36 \text{ MeV}.$$
  
$$\Delta Q_2 = \dots \approx \Delta_{155,64} - \Delta_{156,64} \approx 0.465 \text{ MeV}.$$

2.b.26 Dimostrare che  $\frac{d^3p}{2E}$  è un invariante relativistico effettuando esplicitamente la trasformazione di Lorentz (si consideri il boost lungo un asse, per esempio l'asse x)

Facciamo questo boot lungo x:

$$\begin{split} \frac{\mathrm{d}^{3} \boldsymbol{P}'}{2E'} &= \frac{dP'_{x} dP'_{y} dP'_{z}}{2Ex'} = \\ &= \frac{\gamma d \left(P_{x} + \beta E\right) dP_{y} dP_{z}}{2\gamma \left(E + \beta P_{x}\right)} = \\ &= \frac{\left[dP_{x} + \beta d\sqrt{P_{x}^{2} + m^{2}}\right] dP_{y} dP_{z}}{2\left(E + \beta P_{x}\right)} = \\ &= \frac{\left(dP_{x} + \beta \frac{2P_{x} dP_{x}}{2\sqrt{P_{x}^{2} + m^{2}}}\right) dP_{y} dP_{z}}{2\left(E + \beta P_{x}\right)} = \\ &= \frac{\mathrm{d}^{3} \boldsymbol{P}}{2E}. \end{split}$$

#### 2.b.27 Dimostrare che

$$d^4P\delta\left(P^2 - m^2\right)\theta\left(P_0\right) = \frac{d^3\mathbf{P}}{2E}$$

e sfruttare questo risultato per semplificare la scrittura dell'elemento infinitesimo dello spazio dei 4-impulsi di N particelle emergenti dopo la collisione di due particelle (oppure dopo il decadimento di una particella).

È sufficiente rimembrare una delle proprietà della  $\delta$ :

$$\delta\left(f\left(x\right)\right) = \sum_{j} \frac{\delta\left(x - x_{j}\right)}{\left|\left[f'\left(x\right)\right]_{x = x_{j}}\right|}.$$

Da inserire opportunamente nella espressione a sinistra dell'uguale nella richiesta: dobbiamo ricordare che P è in realtà un quadrivettore.

$$\begin{split} d^{4}P\delta\left(P^{2}-m^{2}\right)\theta\left(P_{0}\right) = &d^{4}P\delta\left(\boldsymbol{P}^{2}-P_{0}^{2}-m^{2}\right)\theta\left(P_{0}\right) = \\ = &d^{4}P\theta\left(P_{0}\right)\left[\frac{\delta\left(P_{0}-E\right)}{\left|\left[2P_{0}\right]_{P_{0}=E}\right|} + \frac{\delta\left(P_{0}+E\right)}{\left|\left[2P_{0}\right]_{P_{0}=-E}\right|}\right] = \\ = &d^{4}P\frac{\delta\left(P_{0}-E\right)}{2E} = \frac{d^{3}\boldsymbol{P}}{2E}. \end{split}$$

Nota: Stiamo parlando di distribuzioni, la notazione leggera utilizzata nasconde significati matematici profondi e non scontati (vedi corso di metodi matematici per la fisica II).

- 2.b.28 Dimostrare che nel centro di massa l'elemento infinitesimo dello spazio dei 4-impulsi, nel caso di 2 sole particelle nello stato finale, si scrive come  $\frac{|p_{cm}}{4\sqrt{s}}d\Omega_{cm}$ .
- 2.b.29 Nel caso di 3 particelle nello stato finale di una reazione, dimostrare che fra il quadrato della massa invariante di due di esse e l'energia della terza (nel centro di massa) sussite una relazione lineare.
- 2.b.30 Come si trasforma una funzione di distribuzione del 3-impulso  $f(\mathbf{p}) d^3 \mathbf{p}$  di una particella per una trasformazione di Lorentz?
- 2.b.31 Come si trasforma una funzione di distribuzione nello spazio delle fasi

$$f(\boldsymbol{p}, \boldsymbol{r}) d^3 \boldsymbol{p} d^3 \boldsymbol{r}$$

- di una particella per una trasformazione di Lorentz?
- 2.b.32 Dimostrare che se la probabilità di decadimento di una particella per unità di tempo non dipende dal tempo, la probabilità di trovare la particella non decaduta al tempo t segue una legge esponenziale.
- 2.b.33 Dire quali fra le seguenti particelle sono soggette ad interazioni forti:  $p, \overline{p}$ ,  $\pi^+, \pi^-, \mu^+, \mu^-, e^+, e^-, \alpha$ , Nucleo di Azoto,  $\nu, \overline{\nu}$
- 2.b.34 Pioni neutri, di energia E nel sistema del laboratorio, decadono in due fotoni. La distribuzione è isotropa ne centro di massa. Si calcoli la distribuzione dell'energia di uno dei due fotoni nel laboratorio e gli angoli, rispetto alla direzione di volo del pione, dei due fotoni nel sistema del laboratorio in funzione dell'angolo nel sistema del centro di massa.
- 2.b.35 Calcolare la funzione di distribuzione in energia ed in angolo nel sistema del laboratorio di un fascio di neutrini o di muoni prodotto nel decadimento di pioni carichi di energia 14 GeV.
- 2.b.36 Qual e' l'andamento delle masse nucleari a parità di A in funzione di Z?
- 2.b.37 Dimostrare che in un tipico decadimento  $\alpha$ , la particella  $\alpha$  emerge con circa il 98% dell'energia disponibile.
- 2.b.38 Dimostrare che in un decadimento  $\beta$  la somma delle energie dell'elettrone e dell'antineutrino emessi é praticamente uguale al Q-valore della reazione.

#### Parte 3

### Elettromagnetismo classico e acceleratori di particelle

#### a Domande a

- 3.a.1 Dare la definizione di quadri-corrente e di quadri-potenziale del campo elettromagnetico.
- 3.a.2 Dare la definizione del tensore del campo elettromagnetico e scriverne le componenti.
- 3.a.3 Dare la definizione della "densità di energia" del campo elettromagnetico, del "vettore di Poynting" e del "tensore degli sforzi di Maxwell"
- 3.a.4 Scrivere le equazioni di Maxwell (sia quelle non omogenee che quelle omogenee) in forma covariante.
- 3.a.5 Scrivere l'equazione di continuità per la quadri-corrente in forma covariante (e verificarne la consistenza con le equazioni di Maxwell)
- 3.a.6 Dare la definizione di "gauge di Lorenz" e di "gauge di Coulomb".
- 3.a.7 Scrivere la legge di trasformazione di Lorentz del campo elettrico e del campo magnetico (distinguendo fra componenti parallele e componenti perpendicolari al "boost").
- 3.a.8 Dare la definizione del quadri-vettore "densità di forza di Lorentz".
- 3.a.9 Ricavare le espressioni dell'effetto Doppler relativistico (calcolo della frequenza e dell'angolo misurati dal rivelatore nel caso di moto relativo fra sorgente e rivelatore stesso).
- 3.a.10 Scrivere l'espressione per i potenziali ritardati (  $\phi$  ed A ) per una qualunque distribuzione di cariche (  $\rho$  ) e correnti ( j ).

3.a.11 Spiegare tutti i termini dell'espressione

$$\boldsymbol{E} = \left[ \frac{q}{R^2} \frac{\hat{n} - \boldsymbol{\beta}}{\gamma^2 (1 - \hat{n} \cdot \boldsymbol{\beta})^3} + \frac{q}{Rc} \frac{\hat{n} \wedge \left[ (\hat{n} - \boldsymbol{\beta}) \wedge \dot{\boldsymbol{\beta}} \right]}{(1 - \hat{n}\boldsymbol{\beta})^3} \right]_{t' = t - R/c}$$

per il campo elettrico generato da una carica puntiforme in moto arbitrario.

3.a.12 Dare la definizione di "solido di radiazione" e di "diagramma di radiazione" per una carica accelerata.

3.a.13 Quanto vale il campo magnetico generato da una carica puntiforme in moto arbitrario se è noto il campo elettrico?

3.a.14 Spiegare tutti i termi della espressione

$$\frac{\mathbf{d}I_{\omega}}{\mathbf{d}\Omega} = \frac{q^2}{4\pi^2 c} \left| \int \frac{\hat{n} \wedge \left[ (\hat{n} - \boldsymbol{\beta}) \wedge \dot{\boldsymbol{\beta}} \right] \right]}{\left( 1 - \hat{n} \boldsymbol{\beta} \right)^2} e^{i\omega \left( t' - \frac{\boldsymbol{r}' \cdot \hat{n}}{c} \right)} \right|^2$$

3.a.15 Una carica elettrica Q si muove con velocità costante (relativistica) di modulo V su una retta, a distanza b da tale retta si trova un osservatore che misura il campo elettrico e magnetico generato dalla carica. Quanto è l'ordine di grandezza del tempo in cui l'osservatore misura un campo elettrico che sia almeno la metà del campo elettrico massimo misurato?

3.a.16 Enunciare il principio di Babinet.

3.a.17 Definire il fattore di forma per un'onda che incide su su sistema.

3.a.18 Spiegare qualitativamente il funzionamento di un acceleratore elettrostatico.

3.a.19 Quali sono, approssimativamente, le energie per unità di lunghezza che attualmente si ottengono nell'accelerazione di protoni con la tecnica dei "drift tube"? E delle cavità superconduttrici?

3.a.20 Spiegare qualitativamente il funzionamento di un acceleratore lineare, indicando le differenze importanti fra l'accelerazione di elettroni e di protoni.

3.a.21 Spiegare qualitativamente il funzionamento di un acceleratore circolare, indicando le differenze importanti fra l'accelerazione di elettroni e di protoni.

3.a.22 Effettuare un disegno, qualitativo, del solido di radiazione per una carica in un acceleratore lineare o circolare.

- b Domande b
- c Interazione radiazione-materia
- a Domande a scelta