Nama: Ketut Satria Wibisana

NIM: 1103213148

LAPORAN ANALISIS

1. Kernel Size (3x3, 5x5, 7x7)

- 3x3 Kernel: Biasanya memberikan representasi yang lebih detail dan dapat menangkap fitur lokal dengan lebih baik. Ini sering digunakan dalam arsitektur CNN modern seperti VGG dan ResNet.
- 5x5 Kernel: Lebih besar dari 3x3, jadi dapat menangkap fitur yang lebih luas dalam satu langkah. Namun, ini juga dapat mengurangi resolusi gambar lebih cepat.
- 7x7 Kernel: Lebih besar lagi, yang dapat menangkap fitur yang sangat luas tetapi juga mengurangi resolusi gambar lebih cepat dan mungkin mengurangi kemampuan untuk menangkap fitur lokal dengan detail.

2. Pooling (MaxPooling dan AvgPooling)

- MaxPooling: Menyaring fitur dengan memilih nilai maksimum dalam jendela tertentu. Ini efektif untuk mengekstrak fitur yang paling signifikan dan mengurangi dimensi.
- AvgPooling: Mengambil rata-rata nilai dalam jendela tertentu. Ini dapat mengurangi noise tetapi mungkin tidak mengekstrak fitur yang paling signifikan sebaik MaxPooling.

3. Epoch (5, 50, 100, 250, 350)

- 5 Epochs: Sangat sedikit, mungkin tidak cukup untuk melatih model dengan baik dan dapat menghasilkan underfitting.
- 50 Epochs: Lebih baik, tetapi masih mungkin tidak cukup untuk mencapai akurasi optimal.
- 100 Epochs: Umumnya cukup untuk melatih model dengan baik dan mencapai akurasi yang baik.
- 250 Epochs: Sangat baik dan mungkin mencapai akurasi yang tinggi, tetapi membutuhkan waktu komputasi yang lebih lama.
- 350 Epochs: Sangat banyak, mungkin mencapai akurasi yang tinggi tetapi berisiko overfitting.

4. Optimizer (SGD, RMSprop, Adam)

- SGD (Stochastic Gradient Descent): Metode dasar yang efektif tetapi membutuhkan penyesuaian learning rate yang tepat.

- RMSprop: Memperbarui learning rate secara adaptif untuk setiap parameter, yang dapat membantu konvergensi yang lebih cepat.
- Adam (Adaptive Moment Estimation): Menggabungkan momentum dan RMSprop, biasanya memberikan konvergensi yang cepat dan stabil.

Perkiraan Hasil:

Berdasarkan konfigurasi yang kita gunakan, berikut adalah perkiraan hasil yang mungkin:

1. Kernel Size:

- 3x3: Akurasi yang baik dengan detail fitur yang baik.
- 5x5: Akurasi yang baik dengan fitur yang lebih luas, tetapi mungkin sedikit lebih rendah dibandingkan 3x3.
- 7x7: Akurasi yang lebih rendah karena kurangnya detail fitur lokal, tetapi mungkin lebih cepat dalam menangkap fitur luas.

2. Pooling:

- MaxPooling: Akurasi yang lebih tinggi karena mengekstrak fitur yang paling signifikan.
- AvgPooling: Akurasi yang lebih rendah tetapi lebih stabil, mungkin lebih baik untuk kasus tertentu.

3. Epoch:

- 5: Akurasi yang sangat rendah karena underfitting.
- 50: Akurasi yang cukup baik, tetapi mungkin belum optimal.
- 100: Akurasi yang baik dan umumnya cukup untuk mencapai performa yang baik.
- 250: Akurasi yang tinggi, mungkin mencapai performa optimal.
- 350: Akurasi yang tinggi, tetapi berisiko overfitting.

4. Optimizer:

- SGD: Akurasi yang baik dengan penyesuaian learning rate yang tepat.
- RMSprop: Akurasi yang baik dengan konvergensi yang lebih cepat.
- Adam: Akurasi yang tinggi dan konvergensi yang stabil.

Analisis:

- Kernel Size: 3x3 umumnya memberikan akurasi yang lebih tinggi dibandingkan 5x5 dan 7x7 karena menangkap fitur lokal dengan lebih baik.
- Pooling: MaxPooling biasanya memberikan akurasi yang lebih tinggi dibandingkan AvgPooling karena mengekstrak fitur yang paling signifikan.
- Epoch: 100 dan 250 epoch umumnya memberikan akurasi yang baik, dengan 250 epoch cenderung memberikan akurasi yang lebih tinggi tetapi berisiko overfitting.
- Optimizer: Adam biasanya memberikan akurasi yang tinggi dan konvergensi yang stabil.

Kesimpulan:

Dari eksperimen ini, kita dapat mengekstrak beberapa kesimpulan:

- Kernel Size: 3x3 biasanya memberikan performa terbaik.
- Pooling: MaxPooling biasanya memberikan akurasi yang lebih tinggi.
- Epoch: 100 atau 250 epoch umumnya memberikan performa yang baik, dengan 250 epoch cenderung memberikan akurasi yang lebih tinggi.
- Optimizer: Adam biasanya memberikan performa terbaik.

Anda dapat menggunakan hasil eksperimen ini untuk menyesuaikan model dan mencari konfigurasi terbaik untuk dataset Cifar10 dan FashionMNIST.