

Matemática Aplicada

2. Cuestiones

2 puntos En cada una de las cuestiones siguientes, marca con una X la o las opciones correctas (no es necesario justificación). (Nota: responde sólo a 5) 1. Sea u_1 la m.a. de f en H_1 y u_2 la m.a. de f en H_2 (con $H_2 \subset H_1$). Sean $E_i = ||f - u_i|| \ i = 1, 2$ los errores cometidos; entonces, \square E_1 y E_2 no están relacionados; \square E_2 no es menor que E_1 ; \square E_1 y E_2 son iguales; ninguna de las afirmaciones anteriores es cierta. 2. la función a trozos, $f(x)=\left\{ \begin{array}{ll} 3x-1 & -1\leq x<0\\ \alpha x^3+3x-1 & 0\leq x<1\\ 3x^2 & 1\leq x<2 \end{array} \right.$ es un spline cúbico si $\alpha = 1$ \Box es un spline cúbico natural si $\alpha = 0$ \square es una función continua cualquiera que sea el valor de α ninguna de las anteriores afirmaciones es correcta. 3. Si calculamos el valor de \sqrt{e} usando el interpolante de Lagrange en los nodos $x_i := \{0,1\}$; entonces, el error cometido en valor absoluto es mayor que 0.5 es menor que 0.4 está entre 0.4 y 0.5 4. La m.a.m.c. continua y la m.a.m.c. continua con peso w(x) = 3 para f(x) son iguales. \neg Verdadero Falso 5. Si una matriz invertible, \mathbf{A} , admite descomposición del tipo $\mathbf{A} = \mathbf{U} \cdot \mathbf{L}$ siendo U triangular superior (con $u_{ii} = 1 \quad \forall i$) y L triangular inferior; entonces, dicha descomposición puede calcularse a partir de, la descomposición de Doolittle para A^t la descomposición de Crout para A^t \square la descomposición de Crout para A^{-1} la descomposición de Doolittle para A^{-1} 6. Toda matriz real de orden 3×3 , A, con valores propios $\lambda_i := -1, 2, 1$ cumple, su traza y determinante son iguales la matriz A^2 sólo tiene dos valores propios distintos. tiene discos de Gershgorin disjuntos las matrices A + I y A - I no tienen inversa

*

3