7405

E2:243 TEST II

(November 15, 2019)

(2PM -4PM)

Name: CPARSH SR No.: 16664

Sequence Number: 5

Answer All Questions

(Maximum Marks:100)

I) In the following, in each question only one alternative is correct. Tick $(\sqrt{})$ the correct alternative: (Correct Answer 2 Mark/Wrong Answer -0.5 Mark/Not Attempted

0 Mark) (Total: 20 Marks)

Let $\{E_n\}$ be any sequence of events in a probability space (Ω, \mathcal{B}, P) such that $P(E_n) = \frac{1}{n^2}$. Then according to Borel-Cantelli Lemma,

(a) $P(\limsup_{n\to\infty} \frac{\mathbf{x}_n}{n}) = 1$

5 p(En) Lo

(b) $P(\liminf_{n \to \infty} \mathcal{K}_n) = 1$ (c) $P(\liminf_{n \to \infty} \mathcal{K}_n) = 0$ (d) $P(\limsup_{n \to \infty} \mathcal{K}_n) = 0$

2. A student has to decide whether to register for the course on probability theory or Linear Algebra. If she takes Linear Algebra, she will pass with probability $\frac{2}{3}$; if she takes probability, she will pass with probability $\frac{3}{4}$. She make her decision to choose the course based on a fair coin toss. The probability that she passed the probability course is

3. A company sells CDs in packs of 10. The Cds are defective with probability 0.01. Each CD is defective or not independently of other CDs. A customer gets his/her money back only if more than one CD in a

ple P (at least 2)

1

pack is defective. The probability that the customer gets his/her money back is

(a)
$$(0.99)^{10} + \{10 \times (0.01) \times (0.99)^9\}$$

(b) $1 - [(0.99)^{10} + \{10 \times (0.01) \times (0.99)^9\}]$
(c) $0.99 \times (0.01) + 0.99 \times (0.01)^2$
(d) $1 - \{0.99 \times (0.01) + 0.99 \times (0.01)^2\}$

Let $\{A, B, C\}$ be an independent collection of events in a probability space (Ω, \mathcal{B}, P) such that P(A) = P(B) = P(C) = 0.3. Then p(a) forms) - remained (second) (second $P(A \cup B \cup C) =$

a)
$$(0.3)^3$$

c) $1 - (0.7)^3$

a)
$$(0.3)^3$$
 b) $(0.7)^3$ c) $1 - (0.7)^3$ d) $1 - (0.3)^3$

5. If a real valued random variable X is $\sim Uni[-10, 10]$ its cdf is given by

(a)
$$F_x(x) = \begin{cases} 0 & \text{for } x < 0 \\ \frac{x+10}{20} & \text{for } 0 \le x \le 10 \\ 1 & \text{for } x > 10 \end{cases}$$

(c)
$$F_x(x) = \begin{cases} 0 & \text{for } x < 0 \\ \frac{x - 10}{20} & \text{for } 0 \le x \le 10 \\ 1 & \text{for } x > 10 \end{cases}$$

(d)
$$F_x(x) = \begin{cases} 0 & \text{for } x < -10 \\ \frac{x-10}{20} & \text{for } -10 \le x \le 10 \\ 1 & \text{for } x > 10 \end{cases}$$

6. If X is a real valued random variable with finite variance, then Var(X+Var(X))=

a)
$$(Var(X))^2$$

 $(Var(Y))^2 + Var(X)^2$

a)
$$(Var(X))^2$$

c) $(Var(X))^2 + Var(X)$
d) $Var(X) + Var(Var(X))$

 \times 7. Let X and Y be two real valued random variables on a probability space (Ω, \mathcal{B}, P) with joint cdf given by

$$F_{XY}(x,y) = \begin{cases} 0 & \text{if } x \text{ or/and } y < 0 \\ x(1-e^{-4y}) & \text{if } 0 \le x \le 1 \text{ and } y \ge 0 \\ 1-e^{-4y} & \text{if } x > 1 \text{ and } y > 0 \end{cases}$$

$$\text{robablity that } Y > 4 \text{ is given by}$$

$$e^{-16} \qquad b) e^{-16} \qquad c) (1-e^{-4}) \qquad d \text{ none of these}$$

$$\text{and } Y \text{ are continuous real valued random variables with cdf } F_X(x)$$

$$\text{and } Y \text{ are continuous real valued random variables with cdf } F_X(x) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) = 1 \text{ is int odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } F_X(x,y) \text{ then } P(X < x | Y > y) \text{ is into odf } P(X < x | Y > y) \text{ is into odf } P(X < x | Y > y) \text{ is into odf } P(X < x | Y > y) \text{ is into odf } P(X < x | Y > y) \text{ is into odf } P(X < x | Y > y) \text{ is into odf } P(X < x | Y > y) \text{ into odf } P(X < x | Y > y) \text{ into odf } P(X < x | Y > y) \text{ into odf } P(X < x | Y > y) \text{ into odf } P(X < x | Y > y) \text{ into odf } P(X < x | Y > y) \text{ into odf } P(X < x | Y > y) \text{ into odf } P(X < x | Y > y) \text{ into odf } P(X < x | Y > y$$

The Probablity that Y > 4 is given by

a)
$$1 - e^{-16}$$

b)
$$e^{-16}$$

c)
$$(1-e^{-4})$$

8. If X and Y are continuous real valued random variables with cdf $F_X(x)$ and $F_{Y}(y)$ respectively and joint cdf $F_{XY}(x,y)$ then P(X < x|Y > y) =

(a)
$$\frac{F_X(x)}{1 - F_Y(y)}$$

(b)
$$\frac{F_Y(y)}{1 - F_Y(x)}$$

(d)
$$\frac{F_{X}(x) - F_{XY}(x, y)}{1 - F_{Y}(y)}$$

$$F_{Y}(y) - F_{XY}(x, y)$$

$$F_{Y}(y)$$

- 9. Consider the following two statements:
 - I) cov(X + Y, Z) = cov(X, Z) + cov(Y, Z)for any three real valued random variables X, Y, Z on a probability space (Ω, \mathcal{B}, P)
 - II) $cov(\alpha X, \bullet \beta Y) = \alpha \beta cov(X, Y)$ for any two real valued random variables on a probability space (Ω, \mathcal{B}, P) and for any two real numbers α and β

Then

- (a) Both (I) and (II) are TRUE
- (b) (I) is FALSE and (II) is TRUE
- (c) (I) is TRUE and (II) is FALSE
- (d) Both (I) and (II) are FALSE
- 10. Consider the two discrete real valued random variables whose joint pmf is as given below:

	Y = -1	Y = 0	Y = 1	
X = 0	1/3	0	1/3	2
X = 1	0	$\frac{1}{3}$	0	7
the following t	two statemen	nts:	1	

Consider

(I) X and Y are independent

- (a) Both (I) and (II) are TRUE
- (b) Both (I) and (II) are FALSE

(II) cov(X,Y) = 0

4

Var(3X+2) = Var(-3X+4)

8. If a sequence $\{X_n\}$ of continuous real valued random variables converges in distribution to the real valued random variable X then Xmust also be a continuous real valued random variable

9. Let X, Y, Z be three identically distributed real valued random variables and let X_n be the sequence defined as

$$X_n = \begin{cases} X & \text{for } n = 3k, (k = 1, 2, 3, \cdots) \\ Y & \text{for } n = 3k + 1, (k = 1, 2, 3, \cdots) \\ Z & \text{for } n = 3k + 2, (k = 1, 2, 3, \cdots) \end{cases}$$

Then
$$X_n \stackrel{d}{\longrightarrow} X$$
, $X_n \stackrel{d}{\longrightarrow} Y$ and $X_n \stackrel{d}{\longrightarrow} Z$

10. If $X_n \sim Exp(\lambda)$ random variables then
$$\frac{X_1 + X_2 + \dots + X_n}{n} \stackrel{p}{\longrightarrow} \lambda$$

III) In the following FILL IN THE BLANKS WITH APPROPRIATE ANSWERS:

(Correct Answer 3 Marks/Wrong Answer or Not attempted 0 Mark) (Total: 15 Marks)

1. DESE appoints two committees C_1 and C_2 to interview candidates who have applied for PhD admission and a candidate can opt to be interviewed by only one of the committees. The probability that an applicant A chooses Committee C_2 is 0.4. The probability that the candidate A gets selected if he appears before committee C_1 is 0.5 and if he appears before committee C_2 is 0.3. Then the

Probability that A gets selected =

IV) In the following give reasons for your answers and show the (Write the answers in the space provided below each question)

1. Let X and Y be independent discrete real valued random variables defined on a probability space (Ω, \mathcal{B}, P) with joint pmf matrix given

artially as be	Y = -1	Y = 0	Y = 1	Marginal
X = -2	0.09	0.15	.06	0.3
X = -1	.015	0.125	.05	.25
X = 0	. 075	.125	.05	*15
X = 1	.06/	, 10	0.04	.2 /
Marginal	0.3	6.5	.2/	1

Answer the following:

- (a) Fill in the other entries in the above joint pmf matrix
- (b) Verify that E(XY) = E(X)E(Y)
- (c) Find E(X|Y=1)

(7+3+2=12 Marks)

- (a) What is the pmf of N, the number of times the office sends the
- (b) The company wants to limit the number of times the office has to send the same message. It has a goal of $P(N \le 3) \ge 0.95$. What is the minimum value of p necessary to achieve the goal?

(5+5=10 Marks)

- 3. Consider independent trials consisting of rolling a pair of fair dice over and over. Answer the following:
 - (a) Find the probability that event F that the sum of the numbers showing up on the two dice in the first roll is 5
 - (b) Find the probability of the event G that the sum of the numbers showing up on the two dice in the first roll is 7
 - (e) Find the probability of the event H that the sum of the numbers showing up on the two dice in the first roll is neither 5 nor 7
 - (d) Let E be the event that a sum of 5 shows up before a sum of 7 does. Is P(E|H) = P(E)?
 - \checkmark e) Find P(E)

(2+2+2+2+2=10 Marks)

- 4. The average time of getting connected to a telephone line is 15 seconds and the standard deviation is 3 seconds. Find the estimate (using Chebychev inequality) that the connecting time is between 12 and 20. (6 Marks)
- 5. Let X_n be the sequence of real valued random variables defined on the sample space $\Omega = [0, 1]$, (The event space is the Borel sets and the probability of an interval is its length), defined as shown in the figure below:

Using the respective definitions answer the following:

- (a) Does the sequence converge in distribution to 0?
- (b) Does the sequence converge in probability to 0?
- (c) Does the sequence converge almost surely to 0?

$$n-1 \rightarrow 1$$

Scanned by CamScanner

2 40s it conveys in pubasients; it sollins Also we can that MENE for which 1×1-×1<6 ie P(west | 1x,-x176)=0 Yes sequence converges almost soully byond which ar for every w we can find the N for which ROB Xn(w) = X(w) X(w)z { o otherwise Xylw) as X(w)