Review: number systems

Z. Jerry Shi
Department of Computer Science and Engineering
University of Connecticut

CSE3666: Introduction to Computer Architecture

Outline

•	Binary numbers	n	2^n
	Binary to decimal	2	4
	Decimal to binary	3	8
•	Hexadecimal numbers	4	16
	Hexadecimal to decimal	5	32
	Decimal to hexadecimal	6	64
	Decimal to nexadecimal	7	128
		8	256
		9	512
0	01101110 =	10	1024
		11	2048
0	xCOFFEE =	12	4096

Decimal number

- We are familiar with decimal numbers
 - The radix is 10
- There are ten digits: 0, 1, 2, ..., 8, 9

Example: 3 6 6 6

$$3666 = 3 \times 10^{3} + 6 \times 10^{2} + 6 \times 10^{1} + 6 \times 10^{0}$$
$$= 3000 + 600 + 60 + 6$$

In this example, each 6 carries different values.

Each time a digit moves to left by one place, the value is increased by 10.

Does the radix have to be 10?

Binary numbers

- If the radix is 2, we have binary numbers
 - We only needs two digits, 0 and 1
 - Each digit is also called a bit (a binary digit)

Given a sequence of bits:

$$b_{n-1} b_{n-2} \dots b_2 b_1 b_0$$

The value is

$$b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + \dots + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0$$

 b_{n-1} is the most significant bit (MSB). b_0 is the least significant bit (LSB).

Example

• Convert a binary number to a decimal number

11010101

128	64	32	16	8	4	2	1
b7	b6	b5	b4	b3	b2	b1	b0
1	1	0	1	0	1	0	1

← Weights

The answer is:

$$1 \times 2^7 + 1 \times 2^6 + 1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0$$

= $128 + 64 + 16 + 4 + 1$
= 213

Decimal to binary

- Convert decimal number 78 to a binary number.
- Human method

78

Bits we need to figure out

We start from b0. What is the value of b0?

Decimal to binary - 2

78

128	64	32	16	8	4	2	1
b7	b6	b5	b4	b3	b2	b1	b0
							0

The right most bit is 0 because 78 is even, or when 78 is divided by 2, the remainder is 0

$$78 = 39 * 2 + 0$$

How about the rest of the bits?

Decimal to binary: Complete steps

We repeat on the quotient we get, until it is 0.

Number	Quotient // 2	Remainder % 2	Expression
78	39	0	78 = 39 * 2 + 0
39	19	1	39 = 19 * 2 + 1
19	9	1	19 = 9 * 2 + 1
9	4	1	•••
4	2	0	
2	1	0	
1	0	1	

The answer is 0b 100 1110.

Hexadecimal

- The radix is 16
 - There are 16 digits: 0-9, and a f

Hex digits	0-9	a	b	C	d	e	f
Decimal value	0-9	10	11	12	13	14	15

Use 0x or a subscript of 16 to indicate hexadecimal numbers
 0xABCD or ABCD₁₆

Conversion between hexadecimal and decimal

The method is similar to the conversion between binary and decimal The difference: the radix is 16

Example: hex to decimal

Convert 0x368A to a decimal number

Another method, which is commonly used in computer programs

$$(((3 \times 16) + 6) \times 16 + 8) \times 16 + 10 = 13962$$

Example: decimal to hex

Convert 846 to a hexadecimal number

We divide the number by 16, repeatedly

Number	Quotient // 16	Remainder % 16	Expression
846	52	14	846 = 52 * 16 + 14
52	3	4	52 = 3 * 16 + 4
3	0	3	3 = 0 * 16

So 846 = 0x34E.

The lowest digit is 0xE (14) and the highest is 3.

Number in other radices

• The methods are similar to what we have learned for binary and hexadecimal numbers.

Octal numbers (radix is 8)

$$72_8 = 7 \times 8 + 2 = 58$$

Ternary numbers (radix is 3)

$$121_3 = 1 \times 3^2 + 2 \times 3 + 1 = 16$$

Exercises:

Convert 58 back to an octal number and 16 back to a ternary number.

Exercise

- Convert a hexadecimal number to a decimal number
- Convert a hexadecimal number to a decimal number

Randomly pick a number.

Exercises:

Binary Numbers (zhijieshi.github.io)

Config: select the number of bits and uncheck "bits are signed".