My Favourite Open Problem in Database Theory

(and a few other things)

Piotr Ostropolski-Nalewaja

October 15, 2025

Institute of Computer Science, University of Wrocław

Part One: the Few Other Things

Computer Science

Computer Science

I like to think that working on

Computer Science

I like to think that working on

 ${\footnotesize \ \ \, }^{(\text{theoretical})} \quad Computer \ Science$

I like to think that working on

(theoretical) Computer Science

splits into:

I like to think that working on

(theoretical) Computer Science

splits into:

Theory Building

I like to think that working on

(theoretical) Computer Science

splits into:

Theory Building

Problem Solving

I like to think that working on

(theoretical) Computer Science

splits into:

Theory Building (finding creative explanations)

Problem Solving

I like to think that working on

(theoretical) Computer Science

splits into:

Theory Building

(finding creative explanations)

Problem Solving

(finding interesting solutions)

Decision Problems

David Hilbert the father of mathematical logic

David Hilbert the father of mathematical logic

David Hilbert

the father of mathematical logic

Decision problem:

Does there exists an algorithm that considers an inputted statement and answers "yes" or "no" according to whether it is universally valid?

David Hilbert

the father of mathematical logic

No

Decision problem:

Does there exists an algorithm that considers an inputted statement and answers "yes" or "no" according to whether it is universally valid?

David Hilbert
the father of mathematical logic

Decision problem:

Does there exists an algorithm that considers an inputted statement and answers "yes" or "no" according to whether it is universally valid?

Alan Turing the father of computer science

VО

David Hilbert

the father of mathematical logic

Decision problem:

Does there exists an algorithm that considers an inputted statement and answers "yes" or "no" according to whether it is universally valid?

Alan Turing

the father of computer science

No

Halting problem:

Can one write a program deciding whether the input's program execution halts?

Hilbert's 10th problem

Hilbert's 10th problem

Can one write a program deciding:

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$
 or

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$
 or $xyz + 5x^7 - 2y^2 + 3 = 0$

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$
 or $xyz + 5x^7 - 2y^2 + 3 = 0$ or ...

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$
 or $xyz + 5x^7 - 2y^2 + 3 = 0$ or ...

whether the equation has an integer solution?

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$
 or $xyz + 5x^7 - 2y^2 + 3 = 0$ or ...

whether the equation has an integer solution?

Also undecidable!

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$
 or $xyz + 5x^7 - 2y^2 + 3 = 0$ or ...

whether the equation has an integer solution?

Also undecidable! Why?

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$
 or $xyz + 5x^7 - 2y^2 + 3 = 0$ or ...

whether the equation has an integer solution?

Also undecidable! Why? Reductions!

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$
 or $xyz + 5x^7 - 2y^2 + 3 = 0$ or ...

whether the equation has an integer solution?

Also undecidable! Why? Reductions!

If we could have such a program, then we would be able to make an algorithm deciding halting problem!

Part Two: The Problem

My favourite database theory problem

My favourite database theory problem

Query Containment Problem

Query Containment Problem

Given two queries Q_s and Q_b does it hold for every database \mathcal{D} :

Query Containment Problem

Given two queries Q_s and Q_b does it hold for every database \mathcal{D} :

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D})$$
?

Query Containment Problem

Given two queries Q_s and Q_b does it hold for every database \mathcal{D} :

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D})$$
?

Can one *decide* query containment problem?

4

Query Containment Problem

Given two queries Q_s and Q_b does it hold for every database \mathcal{D} :

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D})$$
?

Can one decide query containment problem?

What kind of query? What is a database in this context?

Л

$$C_3(x,y,z) = E(x,y) \wedge E(y,z) \wedge E(z,x)$$

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

 $M(x, z) = \exists y \, \text{Mother}(x, y) \wedge \text{Mother}(y, z)$

$$C_3(x,y,z) = E(x,y) \wedge E(y,z) \wedge E(z,x)$$

$$M(x,z) = \exists y \, \text{Mother}(x,y) \wedge \text{Mother}(y,z)$$

$$V = \exists x,y,z \, E(x,y) \wedge E(x,z)$$

Conjunctive Queries (by example)

$$C_3(x,y,z) = E(x,y) \wedge E(y,z) \wedge E(z,x)$$

$$M(x,z) = \exists y \, \text{Mother}(x,y) \wedge \text{Mother}(y,z)$$

$$V = \exists x,y,z \, E(x,y) \wedge E(x,z)$$

 $\mathsf{CQs}\ \mathsf{are}\ \mathsf{the}\ \mathsf{select}\text{-}\mathsf{join}\text{-}\mathsf{project}\ \mathsf{fragment}\ \mathsf{of}\ \mathsf{SQL}$

Conjunctive Queries (by example)

$$C_3(x,y,z) = E(x,y) \wedge E(y,z) \wedge E(z,x)$$

$$M(x,z) = \exists y \, \text{Mother}(x,y) \wedge \text{Mother}(y,z)$$

$$V = \exists x,y,z \, E(x,y) \wedge E(x,z)$$

CQs are the select-join-project fragment of SQL

Unions of CQs

Conjunctive Queries (by example)

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

 $M(x, z) = \exists y \text{ Mother}(x, y) \wedge \text{ Mother}(y, z)$
 $V = \exists x, y, z E(x, y) \wedge E(x, z)$

CQs are the select-join-project fragment of SQL

Unions of CQs

$$Q(x) = Black(x) \lor While(x)$$

Conjunctive Queries (by example)

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

 $M(x, z) = \exists y \, Mother(x, y) \wedge Mother(y, z)$
 $V = \exists x, y, z \, E(x, y) \wedge E(x, z)$

CQs are the select-join-project fragment of SQL

Unions of CQs

$$Q(x) = Black(x) \lor While(x)$$

 $P = V \lor \exists x, z M(x, z)$

$$\mathsf{Vee} = \exists x, y, z \; \mathsf{E}(x, y) \; \land \; \mathsf{E}(x, z)$$

$$\mathsf{Vee} = \exists x, y, z \; \mathsf{E}(x,y) \; \wedge \; \mathsf{E}(x,z) \qquad \mathsf{Tri} = \exists x, y, z \; \mathsf{E}(x,y) \wedge \mathsf{E}(y,z) \wedge \mathsf{E}(z,x)$$

$$\mathsf{Vee} = \exists x, y, z \; \mathsf{E}(x, y) \; \land \; \mathsf{E}(x, z) \qquad \mathsf{Tri} = \exists x, y, z \; \mathsf{E}(x, y) \; \land \; \mathsf{E}(y, z) \; \land \; \mathsf{E}(z, x)$$

$$\mathsf{Vee} = \exists x, y, z \; \mathsf{E}(x, y) \; \land \; \mathsf{E}(x, z) \qquad \mathsf{Tri} = \exists x, y, z \; \mathsf{E}(x, y) \; \land \; \mathsf{E}(y, z) \; \land \; \mathsf{E}(z, x)$$

bag semantics

6

Set Semantics

Set Semantics

CQ Containment:

Set Semantics

CQ Containment: Closed and decidable

Set Semantics

CQ Containment: Closed and decidable

(Existence of homomorphism from one query to the other)

Set Semantics

CQ Containment: Closed and decidable

(Existence of homomorphism from one query to the other)

UCQ Containment:

Set Semantics

CQ Containment: Closed and decidable

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and decidable

Set Semantics

CQ Containment: Closed and decidable

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and decidable

(Same but generalized criterion)

Set Semantics

CQ Containment: Closed and decidable

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and decidable

(Same but generalized criterion)

Bag Semantics

Set Semantics

CQ Containment: Closed and decidable

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and decidable

(Same but generalized criterion)

Bag Semantics

CQ Containment:

Set Semantics

CQ Containment: Closed and decidable

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and decidable

(Same but generalized criterion)

Bag Semantics

CQ Containment: Still open after 30 years!

Set Semantics

CQ Containment: Closed and decidable

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and decidable

(Same but generalized criterion)

Bag Semantics

CQ Containment: Still open after 30 years!

UCQ Containment:

Set Semantics

CQ Containment: Closed and decidable

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and decidable

(Same but generalized criterion)

Bag Semantics

CQ Containment: Still open after 30 years!

UCQ Containment: Closed and undecidable

$$\textit{Q}_{s} = \exists z \; \texttt{X}(\textit{z}) \land \texttt{X}(\textit{z}) \; \lor \; \texttt{Y}(\textit{z}) \land \texttt{Y}(\textit{z}) \land \texttt{Y}(\textit{z})$$

$$Q_{s} = \exists z \ X(z) \land X(z) \lor Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor X(z) \land Y(z)$$

$$Q_{s} = \exists z \ X(z) \land X(z) \lor Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}}{\cdot} \mathcal{D}_{2} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}$$

$$Q_{s} = \exists z \ X(z) \land X(z) \lor \ Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor \ X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}}{\cdot} \mathcal{D}_{2} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1		
\mathcal{D}_2		

$$Q_{s} = \exists z \ X(z) \land X(z) \lor Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}}{\cdot} \mathcal{D}_{2} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$3^2 + 1^3$	
\mathcal{D}_2		

$$Q_{s} = \exists z \ X(z) \land X(z) \lor Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}}{\cdot} \mathcal{D}_{2} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$3^2 + 1^3$	2 · 3 · 1
\mathcal{D}_2		

$$Q_{s} = \exists z \ X(z) \land X(z) \lor Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}}{\cdot} \mathcal{D}_{2} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$3^2 + 1^3$	$2 \cdot 3 \cdot 1$
\mathcal{D}_2	$2^2 + 2^3$	

$$Q_{s} = \exists z \ X(z) \land X(z) \lor Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}}{\cdot} \mathcal{D}_{2} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$3^2 + 1^3$	2 · 3 · 1
$\overline{\mathcal{D}_2}$	$2^2 + 2^3$	2 · 2 · 2

$$Q_{s} = \exists z \ X(z) \land X(z) \lor Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}}{\cdot} \mathcal{D}_{2} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}$$

$$egin{array}{c|c|c} Q(\mathcal{D}) & Q_b & Q_s \ \hline \mathcal{D}_1 & 3^2 + 1^3 & 2 \cdot 3 \cdot 1 \ \hline \mathcal{D}_2 & 2^2 + 2^3 & 2 \cdot 2 \cdot 2 \end{array}$$

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D})$$

8

$$Q_{s} = \exists z \ X(z) \land X(z) \lor Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}}{\cdot} \mathcal{D}_{2} \quad \overset{\mathbf{X}}{\cdot} \overset{\mathbf{Y}}{\cdot} \overset{\mathbf{Y}$$

$$\begin{array}{c|cccc} Q(\mathcal{D}) & Q_b & Q_s \\ \hline \mathcal{D}_1 & 3^2 + 1^3 & 2 \cdot 3 \cdot 1 \\ \hline \mathcal{D}_2 & 2^2 + 2^3 & 2 \cdot 2 \cdot 2 \end{array}$$

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D}) \iff$$

$$Q_{s} = \exists z \ X(z) \land X(z) \lor \ Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor \ X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{X}{\cdot} \overset{X}{\cdot} \overset{Y}{\cdot} \overset{Y}{\cdot} \mathcal{D}_{2} \quad \overset{X}{\cdot} \overset{X}{\cdot} \overset{Y}{\cdot} \overset{Y}{\cdot}$$

$$egin{array}{c|c|c} Q(\mathcal{D}) & Q_b & Q_s \\ \hline \mathcal{D}_1 & 3^2 + 1^3 & 2 \cdot 3 \cdot 1 \\ \hline \mathcal{D}_2 & 2^2 + 2^3 & 2 \cdot 2 \cdot 2 \\ \hline \end{array}$$

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D}) \iff 2xy \le x^2 + y^3$$

$$Q_{s} = \exists z \ X(z) \land X(z) \lor \ Y(z) \land Y(z) \land Y(z)$$

$$Q_{b} = \exists z \ X(z) \land Y(z) \lor \ X(z) \land Y(z)$$

$$\mathcal{D}_{1} \quad \overset{X}{\cdot} \overset{X}{\cdot} \overset{Y}{\cdot} \overset{Y}{\cdot} \mathcal{D}_{2} \quad \overset{X}{\cdot} \overset{X}{\cdot} \overset{Y}{\cdot} \overset{Y}{\cdot}$$

$$egin{array}{c|c|c} Q(\mathcal{D}) & Q_b & Q_s \\ \hline \mathcal{D}_1 & 3^2 + 1^3 & 2 \cdot 3 \cdot 1 \\ \hline \mathcal{D}_2 & 2^2 + 2^3 & 2 \cdot 2 \cdot 2 \\ \hline \end{array}$$

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D}) \iff 2xy \le x^2 + y^3$$

Reduction from a variant of Hilbert's 10th problem!

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input:

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

Question:

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

Question: Does the following hold for every database \mathcal{D} ?

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

Question: Does the following hold for every database \mathcal{D} ?

$$(1+\varepsilon)\cdot Q_s(\mathcal{D}) \leq Q_b(\mathcal{D})$$

g

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

Question: Does the following hold for every database \mathcal{D} ?

$$(1+\varepsilon)\cdot Q_s(\mathcal{D}) \leq Q_b(\mathcal{D})$$

Bag Semantics Query Containment: The CQ vs. UCQ Case and Other Stories Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja

Principles of Database System (PODS 2026)

Thank you!