Heavy-Flavour Jet Tagging at LHCb Using Graph Neural Networks

Nate Grieser, Gabriella Pesticci

University of Cincinnati, CERN

2024 ML4Jets Workshop

05-11-2024

Motivation For HF Tagging

Jet Hadronization

- pp collisions at the LHC produce quarks and gluons which hadronize due to QCD confinement
- Longer lifetime of HF-jets creates secondary vertex

Goal:

 Classify jets originating from different HF quarks (b, c)

Leveraging Graph Neural Networks

GNN Advantages

- Variable number of nodes and edges
- Capture complex relationships to represent system

Message Passing:

- Node information aggregated from neighboring nodes
 - Learn features of neighbors

- 1 graph = 1 jet
- 1 node = 1 daughter
- Fully Connected edges

- Number of nodes vary between graphs
- Features: jet-level and daughter-level kinematics

Node Features

GitHub

Jet Features

- Top-level jet kinematics
- SV-tagger output variables

Daughter Features

Unique daughter kinematics

ATL-PHYS-PUB-2022-027

Jet Features	Daughter Features
Eta	E
Τq	Та
	ID
	pX
SV Tagging	pY
fdrMin	pΖ
ptSvrJet	Eta
nTrk	Phi
nTrkJet	Q
drSvrJet	IP
absQSum	IPCHI2
m	IPraw
mCor	NNe
fdChi2	NNk
ipChi2Sum	NNp
tau	NNpi
z	NNmu
pT	Chi2
	QoverP
	trackX
	trackY
	trackZ
	trackVX
	trackVY
	trackVZ
	CaloNeutralEcal
	CaloNeutralHcal2Ecal
	CaloNeutralE49
	CaloNeutralPrs

Sample Preparation and Definition

Dataset

- 1.2M fully reconstructed di-jet simulated events per flavour
 - Only leading jet used for graph
- 80:20 Training and validation split

Truth Matching

- Reco jet matched to truth jet
- Energy fraction of daughters used to select b/c/q

General Selection Requirements

20 GeV
$$< p_T < 50$$
 GeV $2.2 < \eta < 4.4$

Classifier Types

- b vs q
- c vs b

Truth Matching				
b Selection	c Selection	q Selection		
MC Match = 1	$MC\ Match = 1$	$MC\ Match = 1$		
MC Jet EfB > 0.6	MC Jet EfD > 0.6	MC Jet EfD < 0.6		
		MC Jet EfB < 0.6		

b vs. q Classifier Training

90 minutes NVIDIA GeForce RTX2080Ti

b vs. q Classifier Training

b vs. q Classifier Training

b vs. q Feature Ranking

Feature Ablation

- Remove one feature
 - \rightarrow Compare predictions

Feature	Importance
Jet0_SVtag_pt	2.151547
Jet0_PT	2.074978
Jet0_Daughters_IPCHI2	1.840426
Jet0_Daughters_trackVZ	1.508102
Jet0_Daughters_pZ	1.290995
Jet0_Daughters_E	1.178953
Jet0_SVtag_mCor	1.141651
Jet0_Daughters_NNmu	1.090061
Jet0_Daughters_pT	0.705798
Jet0_Daughters_CaloNeutralE49	0.560570
Jet0_Daughters_CaloNeutralEcal	0.482262
Jet0_Daughters_CaloNeutralHcal2Ecal	0.410697
Jet0_Daughters_CaloNeutralPrs	0.345381
Jet0_SVtag_ipChi2Sum	0.329392
Jet0_Daughters_QoverP	0.264155

Performance Results (WIP)

b Efficiency	q FPR
0.85	0.1938
0.80	0.1178
0.75	0.0685
0.70	0.0315
0.65	0.0130
0.60	0.0070
c Efficiency	b FPR
0.40	0.0559
0.30	0.0340
0.20	0.0175

Classifier Application

ightarrow Charm probability distribution, including tentative charm efficiency WPs

↓ Validating *p_T* dependence of performance

Conclusions and Prospects

Summary

- First GNN Jet Tagger developed for use at LHCb
- Application significantly broadens compared to SV-required taggers
- Unique access to PID information strengthens training at LHCb

Things to Come

- Development to expand to more classifiers (c vs. q, bc vs. q)
- ullet Develop calibration techniques o apply to analyses!

BACKUP

GNN Layers Using PyTorch Geometric

SAGEConv

- · Aggregates information from neighbors mean
- $\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_1 + \mathbf{W}_2 \cdot \text{mean}_{i \in \mathcal{N}(i)} \mathbf{x}_i$

LaverNorm

- Normalize inputs across all features independently
- $y = \frac{x E[x]}{\sqrt{Var[x] + \epsilon}} * \gamma + \beta$

ReLU

- · Introduces non-linearity
- $R(z) = \max(0, z)$

Dropout

- Zero elements with probability. p
- Scale by factor of $\frac{1}{1-n}$

Global Add Pooling

- · After convolutional layers, add outputs
- $\mathbf{r}_i = \sum_{n=1}^{N_i} \mathbf{x}_n$

Linear

- · Reduce dimensionality of outputs
- $v = xA^T + b$

Binary Cross Entropy Loss (with sigmoid layer)

- Computes difference between prediction and truth labels
- $\ell(x, y) = L = \{l_1, \dots, l_N\}^\mathsf{T}, l_n = -w_n[y_n \cdot \log \sigma(x_n) + (1 y_n) \cdot \log(1 \sigma(x_n))$

AdamW Optimizer

- · Minimizes loss function stochastic gradient descent
- · Separates weight decay from gradients

c vs. b Classifier Training

c vs. b Feature Ranking

Feature Ablation

- Remove one feature
 - \rightarrow Compare predictions

Feature	Importance
Jet0_SVtag_mCor	2.601232
Jet0_PT	1.903217
Jet0_SVtag_ipChi2Sum	1.661599
Jet0_SVtag_pt	1.386090
Jet0_Daughters_pT	1.234802
Jet0_Daughters_pZ	1.065050
Jet0_Daughters_NNmu	0.831524
Jet0_Daughters_E	0.825311
Jet0_Daughters_IPCHI2	0.812331
Jet0_SVtag_m	0.689729
Jet0_Daughters_trackVZ	0.589573
Jet0_SVtag_fdChi2	0.516657
Jet0_Daughters_CaloNeutralPrs	0.323624
Jet0_Daughters_CaloNeutralE49	0.301616
Jet0_Daughters_CaloNeutralHcal2Ecal	0.267001

Classifier Application – b vs. $q(P_b)$

