Best Available Copy

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-294403

(43) Date of publication of application: 09.10.2002

(51)Int.CI.

C22C 38/00

C21D 8/10 C22C 38/04

C22C 38/58

(21)Application number: 2001-094704

(71)Applicant: KAWASAKI STEEL CORP

(22) Date of filing:

29.03.2001

(72)Inventor: TOYOOKA TAKAAKI

KAWABATA YOSHIKAZU

NISHIMORI MASANORI

YORIFUJI AKIRA ITAYA MOTOAKI

OKABE YOSHITOMO

ARAYA MASATOSHI

(54) STEEL TUBE WITH HIGH STRENGTH AND HIGH WORKABILITY AND PRODUCTION METHOD THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electric resistance welded steel tube with high strength and high workability together with the production method for the same.

SOLUTION: An electric resistance welded steel tube is subjected to diameter reduction rolling at the preferable reduction rate of 30% or more and in the temperature zone of 600°C or more that may cause the microstructure to change into a structure mainly consisting of a ferrite, in order to change the cementite in the steel tube into a spheroidized one of 0.1 µm or more in the average diameter. The steel tube so processed is then heated up at the rate of 10°C or more per second to the temperature zone of 800-1100°C, at which it is

maintained for 30 seconds or less. After that, it is cooled down at the rate of 3°C or more per second to the temperature of 500°C or less. Alternatively, the steel tube having the

microstructure comprising the spheroidized cementite with an average grain diameter of 0.1 μ m or more is subjected to the heat treatment described above and is subsequently subjected to the diameter reduction rolling stated above and cooled down under the above condition. Thereby, the steel tube having the high (r) value of 1.2 or more and including a residual γ (gamma) phase is obtained.

CLAIMS

[Claim(s)]

[Claim 1] A ferrite phase is made into a subject, it has the organization which contains a retained austenite phase more than 2.5 % at the rate of the volume, and an r value is 1.2. The high intensity and quantity workability steel pipe characterized by being above.

[Claim 2] The high intensity and the quantity workability steel pipe according to claim 1 characterized by having the presentation which consists of the remainder Fe and an unescapable impurity by mass % including C:0.05-0.3 %, Si:0.2 - 2.0 %, and Mn:0.5 - 3.0 %.

[Claim 3] The high intensity and the quantity workability steel pipe according to claim 2 which is further characterized by containing one sort chosen from from by mass % the inside below Cr:2.0 %, below Mo:2.0 %, below W:2.0 %, below nickel:2.0 %, below Cu:2.0 %, below Ti:1.0 %, below Nb:1.0 %, and below V:1.0 %, or two sorts or more in addition to said presentation.

[Claim 4] About a steel pipe, a cementite is mean particle diameter 0.1. With the heating rate of 10 degrees C/s or more after the organization more than 600 ** does diameter reduction rolling in the temperature region which is a ferrite subject so that it may become a balling-up cementite more than mum It heats to the temperature of the range of 800-1100 degrees C, holds 30 or less s to this temperature, and, subsequently is the cooling rate of 3 degrees C/s or more. The manufacture approach of of the high intensity and the quantity workability steel pipe characterized by cooling to 500 degrees C or less.

[Claim 5] A cementite is mean particle diameter 0.1. The steel pipe which has the organization which is a balling-up cementite more than mum With the heating rate of 10 degrees C/s or more It heats to the temperature of the range of 800-1100 degrees C. It continues, after holding 30 or less s to this temperature. Diameter reduction rolling is carried out in the temperature region whose organization 600 degrees C or more is a ferrite subject, and, subsequently it is the cooling rate of 3 degrees C/s or more. The manufacture approach of of the high intensity and the quantity workability steel pipe characterized by cooling to 500 degrees C or less.

[Claim 6] The manufacture approach of of a high intensity and a quantity workability steel pipe according to claim 4 or 5 that said steel pipe is characterized by having the presentation which it becomes from Remainder Fe and an unescapable impurity C:0.05-0.3 % and Si:0.2 -2.0% by mass % including Mn:0.5 - 3.0 %.

[Claim 7] The manufacture approach of the high intensity and the quantity workability steel pipe according to claim 6 which is further characterized by containing one sort chosen from from by mass % the inside below Cr:2.0 %, below Mo:2.0 %, below W:2.0 %, below nickel:2.0 %, below Cu:2.0 %, below Ti:1.0 %, below Nb:1.0 %, and below V:1.0 %, or two sorts or more in addition to said presentation.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-294403 (P2002-294403A)

(43)公開日 平成14年10月9日(2002.10.9)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
C 2 2 C 38/00	301	C 2 2 C 38/00	301Z 4K032
C21D 8/10		C 2 1 D 8/10	Α
C 2 2 C 38/04		C 2 2 C 38/04	
38/58		38/58	
		審查請求 未請	情求 請求項の数7 OL (全 11 頁)
(21)出願番号	特顧2001-94704(P2001-94704)	(1.5)	001258
			有製鉄株式会社
(22)出廣日	平成13年3月29日(2001.3.29)		《県神戸市中央区北本町通1丁目1番28
		号	
		(72)発明者 豊岡	8 高明
		愛知	四八年四十四十四十四十四十四十四十四十四十四十四十四十四十四十四十四十四十四十四
		鉄模	k式会社知多製造所内
		(72)発明者 河道	良和
		愛知	0県半田市川崎町1丁目1番地 川崎製
		鉄树	村式会社知多製造所内
		(74)代理人 100	099531
		弁理	吐 小林 英一
			最終頁に続く

(54) 【発明の名称】 高強度・高加工性鋼管およびその製造方法

(57)【要約】

【課題】 高強度・高加工性電経鋼管およびその製造方法を提供する。

【解決手段】 電縫鋼管を、セメンタイトが平均粒径0.1 μm以上の球状化セメンタイトとなるように、600 ℃以上の、フェライトを主体とする組織となる温度域で、好ましくは30%以上の縮径率で、縮径圧延したのち、10 ℃/ s以上の加熱速度で 800~1100℃の範囲の温度に加熱し、該温度に30 s以下保持し、ついで3 ℃/ s以上の冷却速度で 500℃以下まで冷却する。セメンタイトが平均粒径0.1μm以上の球状セメンタイトである組織を有する電縫鋼管に、上記した熱処理を施したのち、引き続き、上記した縮径圧延を施し、冷却する。これにより、1.2以上という高いr値を有し、残留 γ 相を含む鋼管となる。

【特許請求の範囲】

【請求項1】 フェライト相を主体とし、残留オーステナイト相を体積率で2.5%以上含有する組織を有し、r値が1.2以上であることを特徴とする高強度・高加工性 鋼管、

【請求項2】 質量%で、C:0.05~0.3 %、Si:0.2~2.0 %、Mn:0.5~3.0 %を含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とする請求項1に記載の高強度・高加工性鋼管。

【請求項3】 前記組成に加えてさらに、質量%で、Cr:2.0 %以下、Mo:2.0 %以下、W:2.0 %以下、Ni:2.0 %以下、Cu:2.0 %以下、Ti:1.0 %以下、Nb:1.0 %以下、V:1.0 %以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項2に記載の高強度・高加工性鋼管。

【請求項4】 鋼管を、セメンタイトが平均粒径0.1 μm以上の球状化セメンタイトとなるように、600 ℃以上の、粗織がフェライト主体である温度域で縮径圧延したのち、10℃/s以上の加熱速度で800~1100℃の範囲の温度に加熱し、該温度に30 s以下保持し、ついで3℃/s以上の冷却速度で500℃以下まで冷却することを特徴とする高強度・高加工性鋼管の製造方法。

【請求項5】 セメンタイトが平均粒径0.1 μm以上の球状化セメンタイトである組織を有する鋼管を、10℃/s以上の加熱速度で800~1100℃の範囲の温度に加熱し、該温度に30s以下保持した後、引き続き600℃以上の、組織がフェライト主体である温度域で縮径圧延し、ついで3℃/s以上の冷却速度で500℃以下まで冷却することを特徴とする高強度・高加工性鋼管の製造方法。【請求項6】 前記鋼管が、質量%で、C:0.05~0.3%、Si:0.2~2.0%、M:0.5~3.0%を含み、残部eおよび不可避的不純物からなる組成を有することを特徴とする請求項4または5に記載の高強度・高加工性鋼管の製造方法。

【請求項7】 前記組成に加えてさらに、質量%で、C r:2.0 %以下、Mo:2.0 %以下、W:2.0 %以下、N i:2.0 %以下、Cu:2.0 %以下、Ti:1.0 %以下、N b:1.0 %以下、V:1.0 %以下のうちから選ばれた1 種または2種以上を含有することを特徴とする請求項6 に記載の高強度・高加工性鋼管の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高強度鋼管に係り、とくに高強度鋼管の加工性改善に関する。

[0002]

【従来の技術】近年、自動車部品の成形に、ハイドロフォーミングの適用が増加しており、それに伴い、ハイドロフォーミング性(以下、液圧成形性、ハイドロフォーニング性(以下、液圧成形性、ハイドロフォーム加工性ともいう)に優れた鋼管が要望されている。ことなど鋼管製造設備上の問題がある。鋼管の製造においのような要望に対し、例えば、特開2000-219933号公報 50 ては、熱延板や冷延板で行われているような急冷と保持

には、液圧成形性に優れた高強度鋼管が提案されている。特開2000-219933号公報に記載された高強度鋼管は、C:0.05~0.3 %、Si:0.5~3.0 %、M:0.5~2.5 %含み、2.5 体積%以上の残留オーステナイト(ア)相を有し、残留オーステナイト相中のC濃度が平均値の5倍以上であり、引張強度と伸びの積が15000MPa

%以上の特性を有する鋼管であり、TRIP鋼と同様の

製造方法で製造できるとしている。

【0003】また、特開平6-41689 号公報には、Cr: 7.5~25%含有するフェライト系ステンレス鋼の帯鋼から連続的にロール成形によって製造される加工性に優れた高Cr含有電縫鋼管が開示されている。この鋼管は、帯鋼の段階で圧延方向のランクフォード値(r値)が1.2以上、圧延方向に直交する方向のランクフォード値が1.5以上の帯鋼を使用することを特徴としており、曲げ加工に際し、減肉や破断を起こしにくいとされる。

【0004】また、特開平10-175027号公報には、管軸 方向のr値が管周方向のr値より大であるハイドロフォ ーム加工用金属管が開示されている。この金属管は、使 用する金属板として、r値が大きい方向を管軸方向とな るように板取して製造するとしている。

[0005]

【発明が解決しようとする課題】しかしながら、最近の自動車部品の形状は一層複雑化しており、特開2000-219933号公報、特開平6-41689号公報、特開平10-175027号公報に記載された鋼管が示す程度の加工性では、必ずしも十分なハイドロフォーム加工を実施することができないという問題があった。

【0006】例えば、特開2000-219933号公報に記載された残留ヶ相を有する鋼管では、単純なハイドロフォーム加工では良好な加工性を示すものの、予成形として曲げ加工を行うと、必ずしも良好なハイドロフォーミング性が得られないという問題がある。これは、残留ヶ相を有する鋼管のr値が小さいため、曲げ加工時、曲げの外側と内側の肉厚差が大きくなり、ハイドロフォーム加工時に、曲げ外側の減肉部分に変形が集中して割れに至るためである。

【0007】さらに、残留ヶ相を有する鋼管の製造方法としては、残留ヶ相を有する鋼板を円筒状に成形しシー40 ム溶接して電縫鋼管とする単純な方法が考えられるが、この方法では、加工歪が大きく、造管中に鋼板の残留ヶ相が加工誘起変態して残留ヶ相が減少し十分な加工性が得られない。また、特開2000-219933号公報に開示されているような、造管後さらに熱処理して残留ヶ相を生成させる方法では、熱処理時の冷却が、その形状から鋼管外面からしか実施できないことや、また鋼管上側と鋼管下側とで冷却水を均一に当てることが難しく、鋼管全体で均一な冷却となるように制御することが困難であることなど鋼管製造設備上の問題がある。鋼管の製造においては、熱死板や冷が板で行われているような急冷と保持

を組み合わせた冷却方法(例えば、特開昭63-195221号公報参照)を適用することは実生産設備上問題がある。【0008】一方、特開平10-175027号公報等に記載された、r値が大きい鋼管では、鋼管の軸方向の圧縮を伴うハイドロフォーム加工では、良好なハイドロフォーム加工性を有するものの、軸押しがない場合には十分なハイドロフォーム加工性を示さない。これは、従来の高r値鋼管は、r値が高い鋼板を用いて製造されており、使用する鋼板が極低炭素のIF鋼に限られているために、マルテンサイト相や残留γ相などの第二相を利用できず、均一伸びが小さいためであると考えられる。

【0009】本発明は、上記した従来技術の問題を解決し、引張強さTS:400MPa以上の高強度を有し、長手方向のr値が1.2以上と高く、高強度で加工性に優れた高強度・高加工性鋼管およびその製造方法を提供することを目的とする。

[0010]

【課題を解決するための手段】本発明者らは、上記した 課題を達成するために、まず、電縫鋼管の r 値を向上さ せる方法について鋭意検討した。その結果、電縫鋼管 を、600 ℃以上でかつ、該電縫鋼管の組織がフェライト 主体である温度(温間)で、縮径率:30%以上の縮径圧 延(温間縮径圧延)を行うことにより、長手方向の r 値 が著しく向上することを見いだした。また、さらにこの 方法によれば、電縫鋼管の素材である帯鋼の組成、 r 値 に関係なく、高い r 値を有する電縫鋼管(以下、単に鋼 管ともいう)が得られることが判明した。

【0011】本発明者らは、上記した温度での温間縮径 圧延が、帯鋼の組成に関係なく、高いr値を有する鋼管 が得られることに着目し、さらにこの方法を、残留 r相 30 を形成できる程度に比較的多量のCを含有する鋼管に適 用すれば、高 r値でかつ適正量の残留 r 相を含有し、加 工性が顕著に向上した鋼管とすることができることを思 い至った。

【0012】そこで、本発明者らは、広い範囲で圧延温度を変化した温間縮径圧延を施して高r値化した鋼管に、各種の熱処理を施して、鋼管の加工性を調査し最適な熱処理条件を検討した。その結果、縮径圧延の温度を調整して、圧延後のミクロ組織(微細組織)を、セメンタイトが平均直径で約0.1~1μm程度の球状化セメンタイトである組織としたうえで、10℃/s以上の加熱速度で850~1100℃の範囲の温度まで加熱し、該温度で1~30s保持することにより、3℃/s程度の冷却速度でも残留 r 相が生成して加工性がさらに向上することを確認した。

【0013】また、本発明者らは、焼鈍などにより温間 縮径圧延前に、鋼管のミクロ組織を、セメンタイトが平 均直径0.1~10μmの球状化セメンタイトである組織と したうえで、10℃/s以上の加熱速度で850~1100℃の 範囲の温度に加熱した後、その温度に1~30 s間保持

し、引き続き600 ℃以上で、かつ組織がフェライト主体 である温度で縮径圧延したのち、3℃/s以上の冷却速 度で冷却することによっても、高r値で残留で相を有す る加工性に優れた鋼管を製造できることを見いだした。 【0014】本発明は、上記した知見に基づいて、さら に検討を加えて完成されたものである。 すなわち、第1 の本発明は、フェライト相を主体とし、残留オーステナ イト相を体積率で2.5 %以上含有する組織を有し、r値 が1.2 以上であることを特徴とする高強度・高加工性鋼 10 管であり、また、第1の本発明では、前記鋼管が、質量 %で、C:0.05~0.3 %、Si:0.2 ~2.0 %、Mn:0.5 ~3.0 %を含み、残部Feおよび不可避的不純物からなる 組成を有することが好ましく、また、第1の本発明で は、前記組成に加えてさらに、質量%で、Cr: 2.0 %以 下、Mo: 2.0 %以下、W: 2.0 %以下、Ni: 2.0 %以 下、Cu: 2.0 %以下、Ti: 1.0 %以下、Nb: 1.0 %以 下、V:1.0 %以下のうちから選ばれた1種または2種 以上を含有することが好ましい。

【0015】また、第2の本発明は、鋼管を、セメンタ 20 イトが平均粒径0.1 μm以上の球状化セメンタイトとな るように、600 ℃以上の、組織がフェライト主体である 温度域で、好ましくは30%以上の縮径率で、縮径圧延し たのち、10℃/s以上の加熱速度で 800~1100℃の範囲 の温度に加熱し、該温度に30 s以下保持し、ついで3℃ /s以上の冷却速度で 500℃以下まで冷却することを特 徴とする高強度・高加工性鋼管の製造方法である。

【0016】また、第3の本発明は、セメンタイトが平均粒径0.1 μm以上の球状化セメンタイトである組織を有する鋼管を、10℃/s以上の加熱速度で 800~1100℃の範囲の温度に加熱し、該温度に30 s以下保持した後、引き続き 600℃以上の、組織がフェライト主体である温度域で、好ましくは30%以上の縮径率で、縮径圧延し、ついで3℃/s以上の冷却速度で 500℃以下まで冷却することを特徴とする高強度・高加工性電縫鋼管の製造方法である。

【0017】また、第2の本発明および第3の本発明では、前記鋼管が、質量%で、 $C:0.05\sim0.3$ %、 $Si:0.2\sim2.0$ %、 $M:0.5\sim3.0$ %を含み、残部Feおよび不可避的不純物からなる組成を有することが好ましく、また、前記組成に加えてさらに、質量%で、Cr:2.0%以下、Mo:2.0%以下、W:2.0%以下、Ni:2.0%以下、Cu:2.0%以下、Ti:1.0%以下、Nb:1.0%以下、V:1.0%以下のうちから選ばれた1種または2種以上を含有することが好ましい。

[0018]

【発明の実施の形態】第1の本発明である鋼管は、フェライト相を主体とし、残留ヶ相を体積率で2.5 %以上含有する組織を有し、r値が1.2 以上であることを特徴とする高強度・高加工性鋼管である。本発明でいう、「フェライト相を主体とする」組織とは、フェライト相を50

て説明する。

%以上含有する組織を意味する。

【0019】残留ア量が2.5 体積%未満では、均一伸び が少なく、加工性が低下する。このため、本発明では、 加工性向上のため、組織中に含有される残留ア量は2.5 体積%以上に限定した。なお、20体積%を超えて含有す ると、高強度が得にくくなるため、残留ヶ量は20体積% 以下とするのが望ましい。また、本発明の鋼管は、鋼管 長手方向の r 値が1.2 以上を有する鋼管である。残留 r 相を含む従来の鋼管における r値は、高々1.0 程度であ 上になることにより、従来の鋼管に比して、曲げ加工性 が著しく向上する。

【0020】本発明の鋼管は、上記した組織と、さらに 質量%で、C:0.05~0.3 %、Si:0.2 ~2.0 %、Mn: 0.5 ~3.0 %を含み、残部Feおよび不可避的不純物から なる組成を有することが好ましい。また、前記組成に加 えてさらに、質量%で、Cr: 2.0 %以下、Mo: 2.0 %以 下、W: 2.0 %以下、Ni: 2.0 %以下、Cu: 2.0 %以 下、Ti:1.0%以下、Nb:1.0%以下、V:1.0%以下 のうちから選ばれた1種または2種以上を含有してもよ 20

【0021】つぎに、本発明の鋼管の組成限定理由につ いて説明する。なお、以下、質量%は単に、%で記す。 $C: 0.05 \sim 0.3 \%$

Cは、強度を増加させる元素であり、所望の強度に応じ て含有されるが、さらにヶ相に濃化して、それを残留さ せるために必要な元素である。残留ヶ相を生成させるた めには、少なくとも0.05%以上含有することが好まし い. 一方、0.3 %を超えて含有しても、生成する残留で 量が飽和してそれ以上の加工性の向上が認められない。 このため、本発明では、Cは0.05~0.3 %の範囲に限定 することが好ましい。

[0022] Si : 0.2 \sim 2.0 %

Siは、炭化物の生成を抑制して残留ヶ相を生じやすくす るために有効な元素である。このような効果は、0.2% 以上の含有で認められる。一方、2.0 %を超えて含有し ても、上記した効果が飽和するうえ、かえって加工性が 低下する。このため、Siは0.2~2.0%の範囲に限定す ることが好ましい。

[0023] Mn: 0.5 \sim 3.0 %

Mnは、 γ 相からフェライト(α)相への変態温度を低下 させ残留で相を生じやすくする有効な元素である。この ような効果は、0.5 %以上の含有で認められる。一方、 3.0 %を超えて含有しても、上記した効果が飽和するう え、かえって加工性が低下する。このため、Mnは0.5~ 3.0 %の範囲に限定することが好ましい。

【0024】Cr: 2.0 %以下、Mo: 2.0 %以下、W: 2. 0 %以下、Ni: 2.0 %以下、Cu: 2.0 %以下、Ti: 1.0 %以下、Nb: 1.0 %以下、V: 1.0 %以下のうちから選 ばれた1種または2種以上

Cr、Mo、W、Ni、Cu、Ti、Nb、Vは、いずれも、鋼の強 度を向上させる作用を有する有効な元素であり、必要に 応じて選択して含有することができる。このような効果 は、Cr: 0.1 %以上、Mo: 0.1 %以上、W: 0.1 %以 上、Ni: 0.1 %以上、Cu: 0.1 %以上、Ti: 0.01%以 上、Nb: 0.01%以上、V: 0.01%以上、それぞれ含有す ることにより顕著となる。一方、Cr: 2.0 %、Mo: 2.0 %、W: 2.0%、Ni: 2.0 %、Cu: 2.0 %、Ti: 1.0 %、Nb: 1.0 %、V: 1.0 %を超えてそれぞれ含有して る。鋼管長手方向のr値が1.2 以上、好ましくは1.6 以 10 も効果が飽和し、含有量に見合う効果が期待できなくな り、経済的に不利となる。このため、Cr: 2.0 %以下、 Mo: 2.0 %以下、W: 2.0 %以下、Ni: 2.0 %以下、C u: 2.0 %以下、Ti: 1.0 %以下、Nb: 1.0 %以下、 V:1.0 %以下にそれぞれ限定することが好ましい。 【0025】上記した成分以外の残部は、Feおよび不可 避的不純物からなる。不可避的不純物としては、A1:0. 1 %以下、P:0.1 %以下、S:0.1 %以下、N:0.01 %以下、O:0.01%以下が許容できる。つぎに、第2の 本発明である、高強度・高加工性鋼管の製造方法につい

> 【0026】第2の本発明では、好ましくは上記した組 成の鋼管を、600 ℃以上で、かつ組織がフェライト主体 である温度域で縮径圧延する。なお、本発明でいう、 「組織がフェライト主体である温度」とは、フェライト が体積率で50%以上である組織となる温度を意味する。 すなわち、フェライト単独、あるいは体積率で50%以上 のフェライトと第二相とが混在する温度域を意味し、も ちろん、第二相としてオーステナイトを含んでも良い。 この温度は、鋼管の組成等によって決まる温度であり、 30 実験的に決定すれば良いが、およそ900 ℃以下である。 【0027】鋼管に、600 ℃以上で、かつ組織がフェラ イト主体である温度で縮径圧延を施すことにより、r値 1.2 以上の高r値鋼管となる。なお、鋼管のr値は、縮 径圧延の圧延温度、あるいはさらに縮径率に影響され る。鋼管のr値と、縮径圧延の圧延温度(縮径圧延出側 温度)との関係を図1に示す。図1から、少なくとも縮 径圧延の出側温度が600 ℃以上であれば、r値1.2以上 が十分確保できることがわかる。しかし、縮径圧延の温 度が、フェライト主体の組織でなくなる温度(図1では 40 880 ℃)を超えると、r値が1.2 以下に低下する。

【0028】鋼管のr値と、縮径率との関係を図2に示 す。図2から、縮径率を30%以上とすることにより、r 値1.2 以上が十分確保できることがわかる。このような ことから、本発明では、600 ℃以上で、かつ組織がフェ ライト主体である温度で、好ましくは縮径率30%以上 で、縮径圧延を行うことが好ましい。なお、本発明でい う、縮径率(%)は、((縮径前の鋼管直径)ー(縮径 後の鋼管直径)/(縮径前の鋼管直径)}×100 (%) で定義される値をいうものとする。

50 【0029】なお、上記した高r値化の効果は、600℃

向上する。

7

以上で、かつ組織がフェライト主体である温度で縮径圧 延することで得られるのであって、その前の鋼管の履歴 はとくに限定されるものではない。例えば、縮径圧延前 にオーステナイト相を主体とする組織となる高温で圧延 しても何ら問題はないのである。また、縮径圧延を潤滑 剤を供給する潤滑圧延としてもよい。潤滑圧延とするこ とにより、疵の発生が抑制できるとともに、鋼管の外面 側表層の剪断ひずみの発生を抑制でき、高r値化にも有 利となる。

【0030】鋼管を、600 ℃以上で、かつ組織がフェラ 10 イト主体である温度で縮径圧延を行うことにより、r値 1.2 以上の高r値鋼管となる機構について、本発明者らは次のように考えている。600 ℃以上で、かつ組織がフェライト主体である温度で、好ましくは縮径率:30%以上で縮径圧延することにより、鋼管長手方向に<110 > 軸が、半径方向に<111 >~<110 >軸が、半径方向に<111 >~<110 >軸が平行な、理想的な圧延集合組織が形成され、さらに、回復、再結晶して、この集合組織がさらに発達するためである。

【0031】この圧延集合組織の発達は、加工歪みによって結晶を回転させるため駆動力が大きく、薄鋼板で高 20 r値を得るために利用している再結晶集合組織の場合とは異なり、第二相や固溶炭素量の影響を受けにくい。その結果、薄鋼板では困難であった熱延鋼板、デュアルフェーズ鋼等の高張力鋼、および、低炭素鋼、中炭素鋼、高炭素鋼を素材とした電縫鋼管でも高r値が得られたと考えられる。

【0032】また、縮径圧延を600 ℃未満の低温で行うと、高r値が得られない理由は、低温では加工硬化が大きくて理想的な結晶回転が起こらず、また温度が低くて十分な回復、再結晶が生じないためである。また、冷間 30 で縮径圧延した後、再結晶焼鈍する方法では、高r値が得られない理由は、冷延、再結晶では第二相や固溶炭素の影響で集合組織が発達しないためと考えられる。

【0033】なお、薄鋼板の熱間圧延をフェライト域で行う、高 r 値鋼板の製造方法が知られている。しかし、このフェライト域圧延の方法は、C、N量を低減し、Ti、Nb等のスタビライズ元素を添加した鋼を低温域で熱間圧延し、さらに再結晶させることが特徴であり、本発明の縮径圧延とは異なる方法である。実際、薄鋼板の熱延を本発明のような温度で行うと、高 r 値化の効果は得40られないばかりか、r 値が著しく低下する。これは、縮径圧延では圧下の方向が円周方向であるのに対し、板圧延では板厚方向であるために、r 値が逆に低下するためである。

【0034】また、第2の本発明では、セメンタイトが 平均粒径0.1 μm以上の球状化セメンタイトとなるよう に、縮径圧延を行うことが好ましい。セメンタイトの球 状化は、鋼管の組成に応じて、縮径圧延の温度、好まし くはさらに縮径率を、本発明の縮径圧延条件の範囲内で 調整することにより達成できる。第2の本発明では ト 記したように、鋼管を、600 ℃以上で、かつ組織がフェライト主体である温度域内で、縮径圧延温度を調整して縮径圧延を行い、鋼管のミクロ組織をセメンタイトが平均粒径0.1 μm以上、好ましくは10μm以下の球状化セメンタイトとなる組織とした後、10℃/s以上の加熱速度で800~1100℃の範囲の温度に加熱し、該温度に30s以下保持し、ついで3℃/s以上の冷却速度で500℃以下まで冷却する熱処理を施す。これにより、残留γ相が体積率で2.5 %以上形成され、鋼管の均一伸びが著しく

【0035】熱処理前のセメンタイトを適切な大きさの球状化セメンタイトとしておくことが残留ヶ相を適正量生成させるために重要となる。残留ヶ量に及ぼす球状化セメンタイト平均粒径の影響を図3に示す。図3から、残留ヶ量を2.5 体積%以上とするためには、球状化セメンタイトの平均粒径を0.1 μm以上とする必要があることがわかる。なお、球状化セメンタイトの平均粒径が10μmを超えると、炭化物の溶解が遅くなりすぎて、適正量の残留ヶ相を生成するために必要とするC量が不足する。このため、球状化セメンタイトの平均粒径は10μm以下とすることが好ましい。

【0036】上記したような温間縮径圧延により、セメンタイトを上記した粒径の球状化セメンタイトとした組織を有する鋼管を、ついで10℃/s以上の加熱速度で80~1100℃の範囲の温度に加熱し、30 s以下保持する。生成する残留γ量と加熱速度との関係を図4に示す。図4から、残留γ量を2.5 体積%以上生成させるためには、10℃/s以上の加熱速度とすることが好ましいことがわかる。加熱速度が10℃/s未満では、拡散するCが多くなるため、生成する残留γ量が少なくなる。なお、加熱速度の上限は特に限定する必要はなく、加熱装置の能力により決定される。

【0037】生成する残留ヶ量と熱処理の各加熱温度における保持時間との関係を図5に示す。加熱温度が800 で未満では生成する残留ヶ量が少なく、加熱保持時間が 30sを超えると、加熱温度が800 ℃でも生成する残留ヶ 量が減少する。このため、加熱保持時間を30s以下に限 定することが好ましい。なお、保持時間を零(保持せず)としても何ら問題はない。

- 0 【0038】第2の本発明では、800~1100℃の範囲の 温度に加熱し、30s以下保持(あるいは保持せず)した のち、3℃/s以上の冷却速度で500℃以下まで冷却す る。残留ヶ量は、加熱保持後の冷却速度によっても多少 影響される。残留ヶ量と冷却速度との関係を図6に示 す。図6から、残留ヶ相の生成量は、冷却速度が極端に 遅く、3℃/s未満となる場合には、2.5 %以上の残留 ヶ量を安定して確保することが難しくなる。このため、 加熱保持後の冷却速度は3℃/s以上に限定することが 好ましい。
- 調整することにより達成できる。第2の本発明では、上 50 【0039】また、冷却停止温度が 500℃を超えると、

その後に $\gamma \rightarrow \alpha$ 変態が生じ、残留 γ 量が低減する。この ため、冷却停止温度を 500℃以下に限定することが好ま しい。なお、熱処理の加熱温度が1100℃を超えて高すぎ たり、保持時間が30sを超えて長すぎると、フェライト を主体とする組織がア単相に変態し、縮径圧延で得られ た高r値な集合組織を再びランダムにしてしまう。その ため、本発明の熱処理は、上記した加熱速度、加熱温 度、保持時間の範囲に限定することが好ましい。なお、 熱処理の加熱温度、保持時間は、上記した本発明の範囲 内で、鋼管の組成と加熱速度によって決まるフェライト を主体とする組織を維持できる条件に制御する必要があ

【0040】また、第2の本発明における熱処理では、 従来の残留ヶ相を有する鋼材で必要とされていた400 ℃ 程度で数min 間保持するという処理を必要とせず、冷却 制御が困難な鋼管でも容易に本発明の熱処理を適用する ことできる。第2の本発明における熱処理により、残留 rが生成される機構について、本発明者らは、以下のよ うに考えている。

【0041】残留ァ相を生成させるためには、ァ相のC 20 濃度を1%以上にする必要がある。そのために、本発明 では、
r相とセメンタイト相のCの分配を利用する。
す なわち、セメンタイトを含む鋼を加熱すると、セメンタ イトの周囲に γ 相が生成し始める。この時の γ 相のC濃 度は、Fe-C二元状態図から予想されるように、例えば 850 ℃で約1%となる。このようにCが濃化したァ相は 熱的に安定であるために、比較的遅い速度で冷却して も、室温まで残留する。ただし、加熱速度が遅い場合や 加熱時間が長くなると、Cが拡散するため、十分なC濃 度が得られない。そのため、本発明では、急速加熱、短 30 時間保持としている。

【0042】また、セメンタイトの形状がベイナイト中 の炭化物のように微細な場合や、パーライトのようにラ メラ状の場合は、極めて短時間の加熱で溶解するため、 加熱速度や保持時間の制御が難しくなる。そのため、本 発明のようにセメンタイトを、平均粒径0.1 μm以上、 好ましくは10μm 以下の球状化セメンタイトとしておく ことが重要となる。

【0043】これに対し、特開昭63-195221号公報に記 載されているような従来の方法では、γ相とα相のCの 40 分配を利用している。すなわち、 $(\alpha+r)$ 二相域に加 熱し、r相に第一回目のC濃化をさせた後、さらに、40 0 ℃程度の温度まで急冷、保持して、7相に第二回目の C濃化をさせる。この方法における第一回目の(α+ γ) 二相域でのγ相のC濃度は、例えばFe-C二元状態 図から予想されるように、高々0.8 %程度であり、熱的 に十分安定ではない。そのため、第二回目のC濃化をさ せる温度まで急冷しなければならず、さらに、第二回目 のC濃化では、γ相のC濃化と炭化物の析出が競合する ために、保持温度、時間を極めて狭い範囲で制御しなけ 50 た。鋼管の円周方向垂直断面部から採取した試験片を、

ればならないなど、鋼管では困難な冷却制御が必要とな る。また、特開昭63-195221号公報に記載された技術で は、炭化物の析出を抑制するSiを多量に添加しなければ ならないという問題もあり、加工性を低下させる要因に もなっている。

10

【0044】第3の本発明では、第2の本発明における 縮径圧延に代えて、焼鈍などを利用して、鋼管の組織 を、セメンタイトが平均粒径0.1 μm以上の球状化セメ ンタイトである組織とする。このような球状セメンタイ 10 ト組織を有する鋼管に、第2の本発明と同様に、10℃/ s以上の加熱速度で 800~1100℃の範囲の温度に加熱 し、該温度に30s以下保持する熱処理を施す。そして、 引き続き 600℃以上の、フェライトを主体とする組織と なる温度域で、好ましくは30%以上の縮径率で、縮径圧 延し、ついで3℃/s以上の冷却速度で500℃以下まで 冷却する。このような製造方法でも、第2の本発明と同 様に、残留ヶ相を有する高r値鋼管を製造できる。

【0045】この第3の本発明における残留で相の生成 機構についても、本発明者らは温間縮径圧延後に熱処理 した場合と同様であると考えている。すなわち、球状化 セメンタイトを急速加熱した時に、生成するヶ相中のC 濃度が十分に高く、縮径圧延しても分解しない程度に安 定化したものになっていると考えられる。以上、説明し た本発明の製造方法では、出発鋼管の製造方法は特に限 定されない。通常公知の方法である、帯鋼を円筒状に成 形しシーム溶接して電縫鋼管とする電縫管の製造方法が 適用できる。使用する帯鋼は、熱延鋼板、冷延鋼板いず れも好適である。また、出発鋼管としてシームレス鋼管 を用いても何ら問題はない。

[0046]

【実施例】(実施例1)表1に示す化学成分の熱延鋼板 (板厚:2.6 皿)を円筒状に成形しシーム部を電縫溶接 して電縫鋼管とした。これら電縫鋼管に、表2に示す条 件で縮径圧延を施し、ついで表2に示す条件で熱処理を 施した。そして、得られた鋼管について、残留ヶ量測 定、および鋼管長手方向の引張試験を実施した。

【0047】残留ア量の測定は、鋼管の円周方向垂直断 面から採取した試験片について、X線回折を利用し、得 られたX線回折強度から検量線を用いて残留ヶ量に換算 した。また、鋼管長手方向の引張試験は、鋼管からJIS 12号Aの引張試験片を採取し、引張試験を実施し、引張 強さTS、伸びE1、一様伸び』E1を求めた。また、 r値は、JIS 12号Aの引張試験片を採取し、ゲージ長さ が2mmのひずみゲージを貼り付けた後、公称ひずみで6 ~7%の引張を行った時の長手方向の真歪み: elに対す る幅方向の真歪みeWを測定して、その傾きρから、r値 $=\rho/(-1-\rho)$ を計算した。

【0048】また、熱処理前の電縫鋼管の組織を走査電 子顕微鏡により観察し、セメンタイトの粒径を測定し

ナイタール液でエッチングして検鏡し、走査型電子顕微 *【0049】得られた結果を表2に示す。 鏡で10000 倍で100 個のセメンタイトを撮像したのち、 該写真を画像解析装置を用いて、球換算でセメンタイト の平均粒径を算出した。 【表1】

[0050] 【表1】

解权No.			化	学 成	分	(質量%)			T.EU OHSENTON
	С	Si	Min	P	S	Al	N	Cr	Ti	7xライト の体積が50% 未満となる温度
Α	0.11	1.0	1. 4	0. 01	0.005	0.02	0.003	0. 9	0.02	832
В	0.11	1.3	1.0	0.01	0.005	0.02	0. 003	0.3	-	820
С	0.05	1.6	1.7	0. 01	0.005	0.02	0.003	_	0.1	845
D	0.18	0. 2	1.4	0.01	0.005	0.02	0.003	-	0.04	787
E	0. 16	1.5	1.8	0. 01	0.005	0.02	0.003	-	0.02	796
F	0. 15	1.0	2.0	0.01	0.005	0.04	0.003			800

[0051]

※ ※【表2】

		_	,			_			<u> </u>	_	<u> </u>	1 3	表 4	_ 1		_							
年		比較例	比較例	本角明例	本路明例	本船明例	比较更	未免班的	米島原	本地田門	北敦衛	比較更	本発明例	本船頭側	本発明例	本知明例	比较例	本兜贝例	本部現例	本発明例	未验证例	本路四角	本発明例
2 ·	# # X	0	음	9.0	7.8	8.3	이	2.6	7.8	8.2	3	8	£.1	€.1	2.2	8.1	0.5	7.8	æ.	4.2	8.0	9	4.3
	ţ <u>.</u>	9.8	1.8	o.,	2.0	2.0	2.0	2.1	2.1	2.1	8.0	2.7	8.0	2.0	2.0	2.0	2.0	8.0	2.1	8,0	2.0	2.1	2.1
引服物性	м Т	28.8	80.8	38.1	88.8	87. 7	29.3	88.4	81.1	39.0	29.1	32. B	88. 5	35.6	82. 2	28.8	29.6	88.0	35.7	34.5	83.8	87.0	88. 6
9189	Egg Xe	14.1	14.8	16.8	17.6	18.4	14.0	16.0	11.1	18.5	14.8	15, 8	18.8	16, 8	17. 3	15.8	14, 4	17.9	17.0	16.0	16.6	17.8	16.5
	T S	617	808	818	209	309	809	909	989	888	909	109	919	109	919	802	909	919	809	119	869	109	699
	冷強い	-	-	7	1	~	7	Ł.	8	1	7	4	4	L	1	Ł	1	1	1	1	1	۵	1
無処理	保持時間	-	-	1	1	1	1	1	1	1	1	10	保持なし	1	10	80	90	保持なし	1	10	30	保存なし	-
*	祖籍を支付い	8	800	006	800	008	800	008	006	006	160	160	800	800	800	800	800	096	950	980	960	1100	1100
	位を設定している。	100	100	100	100	100	8	10	100	300	100	100	100	100	100	100	100	100	100	100	100	100	100
輸码圧延後偏臂	セメンタイト位任 (ロロ)	マルナンサイト	0.08	0.1	0.8	1.0	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
	總 衛 衛 事 光		60	80	60	60	60	80	80	90	90	90	90	80	90	60	99	99	90	09	ş	90	8
斑条件	圧解論 出急過度 で	なし	900	700	780	780	780	780	780	780	780	780	780	130	780	780	780	180	180	130	180	780	180
相径压延条件	田 大 高 記 で で	報経圧延なし	200	150	880	830	830	630	830	880	880	830	880	830	830	830	830	830	880	830	880	880	88
	加強な機能を		100	800	820	850	850	650	860	820	820	860	920	820	820	820	820	860	820	820	820	820	890
篇 2	í	٧	٧	¥	V	A	4	٧	٧	٧	٧	٧	4	٧	٧	4	٧	٧	۷	~	4	4	4
E:	£	7	8	8	~	20	•	1	8	۵	10	11	22	13	14	12	ä	=	쯢	2	2	2	22

13

* *【表3】

[0052] 【表 3 - 1]

無智	育板 (10)	L	輸程圧	延条件		验链圧延後無管		1	MAN E			319	特性		共保	(B #)
No.	no.	加熱 温度 で	圧延機 入例混放 ℃	圧延機 出側湿度	総位 径率 %	セメンタイト位任 (µm)	加熱 建度 C/。	加強産の	保持時間	治却 速度 ℃/。	T S EPa	uE1	E 1	r	体被外	
23	Α	850	880	600	60	0, 8	100	1100	8	7	615	15. 9	81, 6	2.1	8, 1	本発明例
24	A	850	880	600	80	0.8	100	1100	40	1	612	14, 6	29, 7	2, 1	0,0	比较例
25	A	850	880	700	60	0.8	100	900	保持なし	8	618	16. 8	84, 4	2, 0	4.0	本先明例
86	A	850	880	780	60	0.8	100	800	保持なし	5	601	16. 8	86. 6	2. 1	7, 2	本発明例
27	A	850	880	780	60	0.8	100	800	保持なし	12	608	19. 1	40. 8	2. 0	10. 2	本兒明例
28	٨	850	880	780	0	41711 + 4877411	100	800	1	7	817	18, 1	85, 6	0.8	7. 8	比較例
29	A	850	880	780	20	1.0	100	900	1	7	596	18.0	85. đ	1.0	7, 0	比較例
80	A	850	880	780	80	1.0	100	900	1	7	594	18, 0	85. 7	1. 2	1.8	本発明例
81	Λ	850	880	780	55	0,8	100	900	1	7	597	17.6	85. 8	1.9	7.2	本発明例
82	A	850	830	180	80	0.8	100	900	1	7	694	18, 2	88. 2	2. 4	7.8	本発明例
88	A	600	580	580	60	0. 9	100	900	1	Ť	614	18.0	87.8	1.0	7.0	比較例
84	A	1000	950	900	70	パータイト	100	800	1	T	608	14.4	80. 0	0.9	0.0	比较例
85	A	850	880	780	60	0.8		熱技	Q題なし		616	14.2	28. 6	0.7	0,0	比較例
86	В		粒器压力	なし		4付什 十英音 7	100	800	80	7	605	17.1	84. 9	2.1	5, 2	比較例
87	В	880	800	780	60	0, 8	100	800	60	7	610	19.9	41. 2	2, 0	10.6	本発明例
88	В	880	800	780	60	0.8		MAR.	5 3 4 t		598	14.5	29.6	2, 1	0,0	比較例
89	C	880	800	780	60	0, 8	100	900	1	7	809	12, 8	25.2	2. 0	4.1	本発明例
40	С	880	800	780	60	0. 8		熱	題なし		795	10. 2	21.4	2.1	0,0	比較例
41	D	880	800	780	60	0, 8	100	900	1	T	609	17.1	95. O	2.0	5. 2	本验明例
42	D	880	800	780	60	0.8		MA	3速なし		617	14.6	80.0	2.0	0,0	比較例
43	B	880	800	780	60	0.8	100	900	1	7	614	17.6	87. 6	2.0	11.8	本発明例
44	B	880	800	730	60	0, 8		M.A	は速なし		800	18.4	25. 8	2.0	0.0	比较例
45	P	880	800	780	60	0.8	100	800	1	5	620	18.0	87. 0	2.0	8.0	本発明例

【0053】本発明の鋼管は、いずれも、本発明の範囲 から外れた比較例の鋼管に比べて、高い量の残留で相を 含み、TS:590MPa以上の高強度と、1.2 以上の高いr 値を有する、高強度・高加工性鋼管となっている。

(実施例2)表1に示す化学成分の熱延鋼板(板厚:2. 6 ㎜)を円筒状に成形しシーム部を電縫溶接して電縫鋼 管とした。これら電縫鋼管に焼鈍を施し、表3に示す粒 30 【0055】 径の球状セメンタイトを有する組織の鋼管とした。な ※

※お、セメンタイトの平均粒径の測定は実施例1と同様と した。ついで、これら鋼管に、表3に示す条件で熱処理 を施し、引き続いて表3に示す縮径圧延を施した。得ら れた鋼管について、実施例1と同様に、残留ヶ量測定、 および鋼管長手方向の引張試験を実施した。

【0054】得られた結果を表3に示す。

【表4】

•	_
	-

		_										_	_					_		_	_	-		_	_
	r F			比較例	比较别	本點明然	本発明例	本知明例	比較例	本點明例	本船哨例	本発明例	北京年	本的明例	本郊明例	本発明例	比较例	本细组例	比较例	本购明例	比较例	本部項例	比较利	本的記憶	比较的
a K	7 °	新社	×	0'0	0'0	8.0	7,1	8, 2	870	2.5	₹.8	8.8	9	4.1	8,1	6.0	읚	8.4	0.0	4.1	9	5.1	양	9.2	0'0
		4		8.1	2.0	2.1	2.1	2.1	8.0	2.1	2, 1	2.0	2.1	8.1	2.1	2, 1	2, 1	2.1	8.1	3.0	2.0	8.0	2.1	0	2.0
THE WAY	# L	M	×	89.8	80.1	82.8	81.8	87. 1	29. 4	82.0	88.8	87.4	8.08	84.8	87.7	84. 7	31.6	89.8	8 '68	7 '02	25. 7	84, 6	29. 4	85. 5	25.5
1 2	<u> </u>	LB1	×	14.6	14.6	16.1	17.8	18.4	14.0	15.8	11.7	18.6	14, 8	16.0	18.6	17.1	16.2	19, 4	14. 2	14.1	12.1	17.8	14.6	16.9	12.8
		48	IP.	919	619	869	609	690	618	810	604	202	269	601	612	919	616	601	808	808	191	100	900	807	TP
		最優	2/0	4	J.	4	ı	b	4	ı ı	1	4	à	å		- 1	ı	L	1	9	9	10	10	10	10
		海油	×	99	99	99	09	09	09	00	99	28	09	09	09	09	09	\$	09	09	09	09	09	09	60
22.11.20.03		田和金田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	မှ	084	099	100	180	081	084	084	180	180	920	780	780	780	180	180	180	130	180	180	180	780	730
		开热器 入金谱系	Q	680	100	750	880	880	830	880	880	880	140	880	880	680	830	800	800	800	800	800	800	800	800
		ななる国	•	1	1	1	1	1	1	1	1	1	10	10	1	保持なし	9	1	1	1	1	1	1	1	1
200	E CHOM	を記録を記述し	ဌ	008	006	008	006	006	006	900	008	800	150	800	920	1100	1150	900	006	800	008	900	006	006	900
L		加速機能	e/2	100	100	100	100	100	8	10	100	800	100	100	100	100	100	100	100	001	100	100	001	100	100
*		カメンタイト教師	(mm)	476-21	0,08	0.1	9.0	1.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	175-2	8.0	0.03	0.8	0,01	0.8	14-71
19	į .			٧	٧	Y	A	A	٧	٧	٧	٧	٧	A	٧	A	٧	Ø	Ð	C	၁	Q	Ω	B	æ
1	:	£		8-1	2-2	2-8	8- 4	2- 5	2- B	2- 7	8 -3	6 -2	2-10	2-11	2-18	2-18	2-14	2-15	3-16	2-17	2-18	2-19	2-20	2-21	3-22

【0056】本発明の鋼管は、実施例1と同様に、いずれも、本発明の範囲から外れた比較例の鋼管に比べて高い残留ア量を有し、TS:590MPa以上の高強度と、1.2以上の高いr値を有する、高強度・高加工性鋼管となっている。

[0057]

【発明の効果】以上、詳述したように、本発明によれば、高強度・高加工性鋼管が安価でかつ容易に製造でき、ハイドロフォーム加工をはじめ、各種の加工に際し、加工限界が著しく向上し、複雑な部品が簡単に成形できるようになるという、産業上格段の効果を奏する。また、本発明によれば、高い加工性を備えた高強度鋼板となり、部品の軽量化が図れるという効果もある。

*【図面の簡単な説明】

【図1】 r値と縮径圧延出側温度との関係を示すグラフである。

【図2】 r値と縮径圧延縮径率との関係を示すグラフである。

40 【図3】残留 γ 量と熱処理前のセメンタイト平均粒径との関係を示すグラフである。

【図4】残留γ量と熱処理における加熱速度との関係を 示すグラフである。

【図5】残留γ量と熱処理における加熱保持時間との関係を示すグラフである。

【図6】残留ヶ量と熱処理における冷却速度との関係を 示すグラフである。

フロントページの続き

(72)発明者 西森 正徳 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内

(72)発明者 依藤 章 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 板谷 元晶 愛知県半田市川崎町1丁目1番地 川崎製

(72)発明者 岡部 能知 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内

鉄株式会社知多製造所内

(11)

特開2002-294403

(72)発明者 荒谷 昌利

愛知県半田市川崎町1丁目1番地 川崎製

鉄株式会社知多製造所内

Fターム(参考) 4KO32 AAO4 AAO5 AA11 AA12 AA14

AA15 AA16 AA17 AA19 AA20

AA22 AA23 AA24 AA31 AA32

AA35 AA36 AA37 BA03 CB02

CC02 CD02 CD03 CF03 CG02

CH01 CH05 CH06 CJ02 CJ03

CK03

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to a high intensity steel pipe, especially relates to the workability improvement of a high intensity steel pipe. [0002]

[Description of the Prior Art] In recent years, application of hydroforming is increasing to shaping of autoparts and the steel pipe which was excellent at hydroforming nature (henceforth hydraulic-forming nature and hydro form workability) is demanded in connection with it. As opposed to such a request, the high intensity steel pipe excellent in hydraulic-forming nature is proposed by JP,2000-219933,A. the high intensity steel pipe indicated by JP,2000-219933,A -- C:0.05-0.3 %, Si:0.5 - 3.0 %, and Mn:0.5 - 2.5 % -- containing -- 2.5 It is the steel pipe with which it has a retained austenite (gamma) phase more than volume %, and C concentration in a retained austenite phase is 5 or more times of the average, and the product of tensile strength and elongation has a property beyond 15000MPa%, and it is supposed that it can manufacture by the same manufacture approach as TRIP steel.

[0003] Moreover, the high Cr content electroseamed steel pipe excellent in the workability continuously manufactured by roll forming from the band steel of the ferritic stainless steel contained Cr:7.5 to 25% is indicated by JP,6-41689,A. For this steel pipe, the Lankford value (r value) of a rolling direction is 1.2 in the phase of band steel. The Lankford value of the direction which intersects perpendicularly with a rolling direction is 1.5 above. It is characterized by using the above band steel, and let thinning and fracture be piles on the occasion of bending at a lifting.

[0004] Moreover, the metallic conduit for hydro form processing whose r value of the direction of a tube axis is size from the r value of a tubing hoop direction is indicated by JP,10-175027,A. This metallic conduit supposes that Itadori is carried out and the direction where an r value is large is manufactured as a metal plate to be used so that it may become the direction of a tube axis.

[Problem(s) to be Solved by the Invention] However, the configuration of the latest autoparts was complicated further and there was a problem that sufficient hydro form processing could not necessarily be carried out, in the workability which is extent which the steel pipe indicated by JP,2000-219933,A, JP,6-41689,A, and JP,10-175027,A shows.

[0006] For example, with the steel pipe which has the residual gamma-phase indicated by JP,2000-219933,A, by simple hydro form processing, although good workability is shown, when bending is performed as preforming, there is a problem that good hydroforming nature is not necessarily obtained. Since this has the small r value of a steel pipe which has residual gamma-phase, it is for the thick difference of the outside of bending and the inside becoming large, and deformation concentrating on the thinning part of a bending outside at the time of hydro form processing at the time of bending, and resulting in a crack.

[0007] Furthermore, although the simple approach of fabricating the steel plate which has residual gamma-phase in the shape of a cylinder, it carrying out seam welding as the manufacture approach of a steel pipe of having residual gamma-phase, and using as an electroseamed steel pipe can be considered, by this approach, processing distortion is large, the residual gamma-phase of a steel plate carries out strain induced transformation during tubulation, residual gamma-phase decreases, and sufficient workability is not acquired. Moreover, by the approach of heat-treating further after tubulation which is indicated by JP,2000-219933,A, and making residual gamma-phase generating, it is difficult that cooling at the time of heat treatment can carry out only from steel pipe external surface from the configuration, or to put cooling water in a steel pipe top and the steel pipe bottom to homogeneity again, and there are problems on a steel pipe manufacturing facility -- it is difficult to control to become uniform cooling with the whole steel pipe. In manufacture of a steel pipe, applying the cooling approach (for example, referring to JP,63-195221,A) which combined quenching which is performed with the hotrolling plate or the cold-rolled plate, and maintenance has a real production-facility top problem.

[0008] On the other hand, with the steel pipe with a large r value indicated by JP,10-175027,A etc., by hydro form processing accompanied by compression of the shaft orientations of a steel pipe, although it has good hydro form workability, when there is no axial push, sufficient hydro form workability is not shown. Since the steel plate which the r value is manufactured using the high steel plate, and uses the conventional high r value steel pipe is restricted to IF steel of super-low carbon, this cannot use the second phase, such as a martensitic phase and residual gamma-phase, but it is thought that it is because uniform elongation is small.

[0009] This invention solves the problem of the above-mentioned conventional technique, and has the high intensity beyond tensile strength TS:400MPa, and the r value of a longitudinal direction is 1.2. It is as high as the above and aims at offering the high intensity and the quantity workability steel pipe which was excellent in workability with high intensity, and its manufacture approach.

[Means for Solving the Problem] this invention persons examined wholeheartedly how to raise the r value of an electroseamed steel pipe first, in order to attain the above-mentioned technical problem. Consequently, it found out that the r value of a longitudinal direction improved remarkably by performing diameter reduction rolling beyond rate:of diameter reduction30% (** diameter reduction rolling) at the temperature (between **) whose organization of this electroseamed steel pipe it is more than 600 ** about an electroseamed steel pipe, and is a ferrite subject. Furthermore, according to this approach, it became clear that the electroseamed steel pipe (only henceforth a steel pipe) which has a high r value was obtained regardless of the presentation of the band steel which is the material of an electroseamed steel pipe, and an r value.

[0011] When applying to the steel pipe containing comparatively a lot of C to extent which can form residual gamma-phase for this approach further paying attention to the steel pipe which has a high r value regardless of ** diameter reduction rolling at the above-mentioned temperature in the presentation of band steel being obtained, this invention persons are high r values, and contained the residual gamma-phase of a proper amount, and realized that it could consider as the steel pipe whose workability improved notably.

[0012] Then, this invention persons performed various kinds of heat treatments to the steel pipe which performed and formed into the high r value ** diameter reduction rolling which changed rolling temperature in the large range, investigated the workability of a steel pipe to it, and examined the optimal heat treatment conditions to it. Consequently, the temperature of diameter reduction rolling is adjusted and a cementite is abbreviation at an average diameter about the microstructure after rolling (detailed organization). After considering as the organization which is an about 0.1-1-micrometer balling-up cementite It checked that residual gamma-phase generated 3 degrees C/at least about s cooling rate, and its workability improved further by heating to the temperature of the range of 850-1100 degrees C with the heating rate of 10 degrees C/s or more, and holding for 1 to 30s at this temperature. [0013] Moreover, after a cementite considers the microstructure of a steel pipe as the organization which is the balling-up cementite which is the average diameter of 0.1-10 micrometers before ** diameter reduction rolling by annealing etc., this invention persons After heating to the temperature of the range of 850-1100 degrees C with the heating rate of 10 degrees C/s or more, it holds between 1-30s to the temperature. Succeedingly above 600 ** And after the organization did diameter reduction rolling at the temperature which is a ferrite subject, it found out that the steel pipe excellent in the workability which has residual gamma-phase by the high r value could be manufactured also by cooling with the cooling rate of 3 degrees C/s or more.

[0014] Based on the above-mentioned knowledge, this invention adds examination further and is completed. Namely, the 1st this invention makes a ferrite phase a subject, and it has the organization which contains a retained austenite phase more than 2.5 % at the rate of the volume. An r value is 1.2. They are the high intensity and the quantity workability steel pipe characterized by being above. In the 1st this invention Said steel pipe by mass % C:0.05-0.3 %, Si:0.2 - 2.0 %, It is desirable to have the presentation which consists of the remainder Fe and an unescapable impurity including Mn:0.5 - 3.0 %. In the 1st this invention It adds to said presentation. By mass % further Below Cr:2.0 % and below

Mo:2.0 % W: It is desirable to contain one sort chosen from from the inside below 2.0 %, below nickel:2.0 %, below Cu:2.0 %, below Ti:1.0 %, below Nb:1.0 %, and below V:1.0 % or two sorts or more.

[0015] Moreover, for the 2nd this invention, a cementite is mean particle diameter 0.1 about a steel pipe. It is the temperature region whose organization more than 600 ** is a ferrite subject so that it may become a balling-up cementite more than mum. It is the heating rate of 10 degrees C/s or more after being 30% or more of rate of diameter reduction preferably and carrying out diameter reduction rolling. It heats to the temperature of the range of 800-1100 degrees C. It holds 30 or less s to this temperature, and, subsequently is the cooling rate of 3 degrees C/s or more. It is the manufacture approach of of the high intensity and the quantity workability steel pipe characterized by cooling to 500 degrees C or less. [0016] Moreover, for the 3rd this invention, a cementite is mean particle diameter 0.1. The steel pipe which has the organization which is a balling-up cementite more than mum With the heating rate of 10 degrees C/s or more It continues, after heating to the temperature of the range of 800-1100 degrees C and holding 30 or less s to this temperature. An organization 600 degrees C or more in the temperature region which is a ferrite subject It is 30% or more of rate of diameter reduction preferably, diameter reduction rolling is carried out, and, subsequently it is the cooling rate of 3 degrees C/s or more. It is the manufacture approach of of the high intensity and the quantity workability electroseamed steel pipe characterized by cooling to 500 degrees C or less.

[0017] moreover, in the 2nd this invention and 3rd this invention Said steel pipe by mass % C:0.05-0.3 %, Si:0.2 - 2.0 %, It is desirable to have the presentation which consists of the remainder Fe and an unescapable impurity including Mn:0.5 - 3.0 %, and it adds to said presentation. Further by mass % Cr: It is desirable to contain one sort chosen from from the inside below 2.0 %, below Mo:2.0 %, below W:2.0 %, below Cu:2.0 %, below Ti:1.0 %, below Nb:1.0 %, and below V:1.0 % or two sorts or more.

[0018]

[Embodiment of the Invention] The steel pipe which is the 1st this invention makes a ferrite phase a subject, and has the organization which contains residual gamma-phase more than 2.5 % at the rate of the volume, and an r value is 1.2. They are the high intensity and the quantity workability steel pipe characterized by being above. The organization as used in the field of this invention "which makes a ferrite phase a subject" means the organization which contains a ferrite phase 50% or more. [0019] The amount of residual gamma is 2.5. Under by volume %, there is little uniform elongation and workability falls. For this reason, the amount of residual gamma contained during an organization in this invention for the improvement in workability is 2.5. It limited more than volume %. In addition, if contained exceeding 20 volume %, since it will be hard coming to obtain high intensity, as for the amount of residual gamma, it is desirable to carry out to below 20 volume %. Moreover, for the steel pipe of this invention, the r value of a steel pipe longitudinal direction is 1.2. It is the steel pipe which has the above, the r value in the conventional steel pipe containing residual gamma-phase -- at most -- 1.0 It is extent. The r value of a steel pipe longitudinal direction is 1.2. It is 1.6 preferably above. It becomes above, As compared with the conventional steel pipe, bending workability improves remarkably.

[0020] As for the steel pipe of this invention, it is desirable to have the presentation which is mass % further and serves as the above-mentioned organization from Remainder Fe and an unescapable impurity including C:0.05-0.3 %, Si:0.2 - 2.0 %, and Mn:0.5 - 3.0 %. Moreover, in addition to said presentation, one sort chosen from from by mass % the inside below Cr:2.0 %, below Mo:2.0 %, below W:2.0 %, below nickel:2.0 %, below Cu:2.0 %, below Ti:1.0 %, below Nb:1.0 %, and below V:1.0 % or two sorts or more may be contained further.

[0021] Below, the reason for presentation limitation of the steel pipe of this invention is explained. In addition, % only describes mass % hereafter.

C:0.05 - 0.3 %C are an element to which reinforcement is made to increase, and although they are contained according to desired reinforcement, they are an element required in order to condense to gamma-phase further and to make it remain. with desirable in order to make residual gamma-phase

generate containing at least 0.05% or more On the other hand, even if contained exceeding 0.3 %, the amount of residual gamma to generate is saturated and improvement in the workability beyond it is not accepted. For this reason, as for C, in this invention, it is desirable to limit to the range of 0.05 - 0.3 %. [0022] Si: 0.2 - 2.0 %Si is an effective element in order to make residual gamma-phase easy to control generation of carbide and to produce. Such effectiveness is accepted by the content more than 0.2 %. Even if contained exceeding 2.0 %, in saturating the above-mentioned effectiveness on the other hand, workability falls on the contrary. For this reason, as for Si, it is desirable to limit to the range of 0.2 - 2.0 %.

[0023] Mn: 0.5 - 3.0 %Mn is the effective element which make residual gamma-phase easy to reduce the temperature of transformation from gamma-phase to a ferrite (alpha) phase, and to produce. Such effectiveness is accepted by the content more than 0.5 %. Even if contained exceeding 3.0 %, in saturating the above-mentioned effectiveness on the other hand, workability falls on the contrary. For this reason, as for Mn, it is desirable to limit to the range of 0.5 - 3.0 %.

[0024] Cr: Below 2.0 %, below Mo:2.0 %, and below W:2.0 % nickel: Below 2.0 %, below Cu:2.0 %, and below Ti:1.0 % Nb: It is the effective element which has one sort chosen from from the inside below 1.0 % and below V:1.0 %, or the operation which raises the reinforcement of steel by two or more sorts as for each of Cr, Mo, W, nickel, Cu, Ti, Nb(s), and V, and can choose and contain if needed. such effectiveness -- more than Cr:0.1 % -- more than Mo:0.1 % -- more than W:0.1 % -- more than nickel:0.1 % -- more than Cu:0.1 % -- more than Ti:0.01% and Nb: -- it becomes remarkable by containing, respectively V:0.01% or more 0.01% or more. Even if it contains Cr:2.0 %, Mo:2.0 %, and W:2.0% exceeding nickel:2.0 %, Cu:2.0 %, Ti:1.0 %, Nb:1.0 %, and V:1.0 %, respectively, effectiveness is saturated and it becomes impossible on the other hand, to expect the effectiveness of balancing a content. It becomes disadvantageous economically. For this reason, it is desirable to limit, respectively to below Cr:2.0 %, below Mo:2.0 %, below W:2.0 %, below nickel:2.0 %, below Cu:2.0 %, below Cu:2.0 %, below Ti:1.0 %, below Nb:1.0 %, and below V:1.0 %.

[0025] The remainders other than the above-mentioned component consist of Fe and an unescapable impurity. As an unescapable impurity, N:0.01% or less and O:0.01% or less are permissible below aluminum:0.1 %, below P:0.1 %, and below S:0.1 %. Below, the manufacture approach of of the high intensity and the quantity workability steel pipe which is the 2nd this invention is explained. [0026] In the 2nd this invention, diameter reduction rolling of the steel pipe of the presentation preferably described above is carried out in the temperature region whose organization it is more than 600 **, and is a ferrite subject. In addition, "the temperature whose organization is a ferrite subject" as used in the field of this invention means the temperature which serves as an organization whose ferrite is 50% or more at the rate of the volume. That is, you may mean the temperature region where 50% or more of a ferrite and the second phase are intermingled at ferrite independence or the rate of the volume, and, of course, an austenite may also be included as the second phase. It is temperature decided by the presentation of a steel pipe etc., and although what is necessary is just to determine this temperature experimentally, it is below 900 ** about.

[0027] It is an r value 1.2 by performing diameter reduction rolling to a steel pipe at the temperature whose organization it is more than 600 **, and is a ferrite subject. It becomes the above high r value steel pipe. In addition, the r value of a steel pipe is influenced by the rolling temperature of diameter reduction rolling, or the pan at the rate of diameter reduction. The relation between the r value of a steel pipe and the rolling temperature (diameter reduction rolling appearance side temperature) of diameter reduction rolling is shown in <u>drawing 1</u>. <u>Drawing 1</u> shows that 1.2 or more r values can secure enough if the appearance side temperature of diameter reduction rolling is more than 600 ** at least. However, an r value is 1.2 when the temperature of diameter reduction rolling exceeds the temperature (<u>drawing 1</u> 880 **) which stops being a ferrite subject's organization. It falls to below.

[0028] The r value of a steel pipe and relation with the rate of diameter reduction are shown in $\underline{\text{drawing}}$ $\underline{2}$. It is an r value 1.2 by making the rate of diameter reduction into 30% or more from $\underline{\text{drawing}}$ $\underline{2}$. It turns out that the above can secure enough. Since it is such, it is desirable to be 30% or more of rates of diameter reduction preferably, and to perform diameter reduction rolling in this invention, at the

temperature whose organization it is more than 600 **, and is a ferrite subject. In addition, the rate of diameter reduction as used in the field of this invention (%) is {(steel pipe diameter before diameter reduction) -(steel pipe diameter after diameter reduction)/(steel pipe diameter before diameter reduction)} x100. The value defined by (%) shall be said.

[0029] In addition, it is obtained by carrying out diameter reduction rolling at the temperature whose organization the effectiveness of the above-mentioned raise in an r value is more than 600 **, and is a ferrite subject, and especially the hysteresis of the steel pipe before that is not limited. For example, even if it rolls out at the elevated temperature which serves as an organization which makes an austenite phase a subject before diameter reduction rolling, it is satisfactory in any way. Moreover, it is good also as lubrication rolling which supplies lubricant for diameter reduction rolling. While being able to control generating of a crack by considering as lubrication rolling, generating of the shear strain of the external surface side surface of a steel pipe can be controlled, and it becomes advantageous also to a raise in an r value.

[0030] It is an r value 1.2 by performing diameter reduction rolling at the temperature whose organization it is more than 600 ** about a steel pipe, and is a ferrite subject, this invention persons consider the device used as the above high r value steel pipe as follows. 600 It is the temperature whose organization it is more than ** and is a ferrite subject, and is to form <110> shafts in a steel pipe longitudinal direction, to form in radial the ideal rolling texture where <111 - [>] <110> shaft is parallel, to recover and recrystallize further, and for this texture to progress further by carrying out diameter reduction rolling more than at rate:of diameter reduction30% preferably.

[0031] Since development of this rolling texture rotates a crystal by processing distortion, it is [driving force] large, and unlike the case of the recrystallization texture which uses in order to obtain a high r value with sheet steel, it is hard to be influenced of the second phase or a dissolution carbon content. Consequently, with sheet steel, it is thought that the high r value was obtained also with the electroseamed steel pipe made from high tensile steel, such as difficult hot rolled sheet steel and dual phase steel, and low-carbon steel, medium carbon steel, and high-carbon steel.

[0032] Moreover, when diameter reduction rolling is performed at the low temperature of under 600 **, the reason a high r value is not obtained is for crystal rotation large work hardening and ideal not to take place at low temperature, and for recovery low temperature and sufficient and recrystallization not to arise. Moreover, after carrying out diameter reduction rolling between the colds, by the approach of carrying out recrystallization annealing, the reason a high r value is not obtained is considered for texture not to progress under the effect of the second phase or dissolution carbon by cold-rolling and recrystallization.

[0033] In addition, the manufacture approach of the high r value steel plate which hot-rolls sheet steel in a ferrite region is learned. However, it is the description for the approach of this ferrite region rolling to reduce C and the amount of N, to hot-roll the steel which added stubbies rise elements, such as Ti and Nb, in a low-temperature region, and to make it recrystallize further, and diameter reduction rolling of this invention is a different approach. If sheet steel is hot-rolled at temperature like this invention, about [that the effectiveness of a raise in an r value is not acquired] and an r value will actually fall remarkably. This is for an r value to fall conversely to the direction of a draft being a circumferencial direction, since it is the direction of board thickness in a plate pressure total in diameter reduction rolling.

[0034] Moreover, at the 2nd this invention, a cementite is mean particle diameter 0.1. It is desirable to perform diameter reduction rolling so that it may become a balling-up cementite more than mum. Balling-up of a cementite can attain the rate of diameter reduction further preferably according to the presentation of a steel pipe the temperature of diameter reduction rolling, and by adjusting within the limits of the diameter reduction rolled bar affair of this invention. In the 2nd this invention, as described above, a steel pipe within the temperature whose organization it is more than 600 **, and is a ferrite subject Diameter reduction rolling temperature is adjusted, diameter reduction rolling is performed, and a cementite is mean particle diameter 0.1 about the microstructure of a steel pipe. More than mum It is the heating rate of 10 degrees C/s or more after considering as the organization which becomes a

balling-up cementite 10 micrometers or less preferably. It heats to the temperature of the range of 800-1100 degrees C, holds 30 or less s to this temperature, and, subsequently is the cooling rate of 3 degrees C/s or more. Heat treatment cooled to 500 degrees C or less is performed. Thereby, residual gammaphase is formed more than 2.5 % at the rate of the volume, The uniform elongation of a steel pipe improves remarkably.

[0035] It becomes important in order for what the cementite before heat treatment is made into the balling-up cementite of suitable magnitude for to carry out proper amount generation of the residual gamma-phase. The effect of the balling-up cementite mean particle diameter exerted on the amount of residual gamma is shown in drawing 3. It is drawing 3 to the amount of residual gamma 2.5 In order to carry out to more than volume %, it is the mean particle diameter of a balling-up cementite 0.1 mum It turns out that it is necessary to consider as the above. In addition, the mean particle diameter of a balling-up cementite is 10 micrometers. If it exceeds, the dissolution of carbide will become slow too much, The amounts of C needed in order to generate the residual gamma-phase of a proper amount run short. For this reason, the mean particle diameter of a balling-up cementite is 10 micrometers. Considering as the following is desirable.

[0036] Subsequently it is the heating rate of 10 degrees C/s or more about the steel pipe which has the organization which considered as the balling-up cementite of the particle size which described the cementite above with ** diameter reduction rolling which was described above. It heats to the temperature of the range of 800-1100 degrees C, and holds 30 or less s. The relation of the amount of residual gamma and heating rate to generate is shown in drawing 4. It is drawing 4 R> 4 to the amount of residual gamma 2.5 In order to make it generate more than volume %, it turns out that it is desirable to consider as the heating rate of 10 degrees C/s or more. Since C which a heating rate diffuses in s in less than 10 degrees C /increases, the amount of residual gamma to generate decreases. In addition, it is not necessary to limit especially the upper limit of a heating rate, and it is determined by the capacity of heating apparatus.

[0037] The relation between the amount of residual gamma to generate and the holding time of whenever [each stoving temperature / of heat treatment] is shown in <u>drawing 5</u>. If there are few amounts of residual gamma which whenever [stoving temperature] generates under by 800 ** and the heating holding time exceeds 30s, the amount of residual gamma in which whenever [stoving temperature] also generates 800 ** will decrease. For this reason, it is desirable to limit the heating holding time to 30 or less s. In addition, it is satisfactory in any way also considering the holding time as zero (it does not hold).

[0038] With the cooling rate of 3 degrees C/s or more after heating to the temperature of the range of 800-1100 degrees C in the 2nd this invention and carrying out maintenance (or it does not hold) 30 or less s It cools to 500 degrees C or less. The amount of residual gamma is somewhat influenced also with the cooling rate after heating maintenance. The relation between the amount of residual gamma and a cooling rate is shown in drawing 6. When the residual gamma-phase amount of generation has an extremely slow cooling rate and is set to s from drawing 6 in less than 3 degrees C/, it becomes difficult for it to be stabilized and to secure the amount of residual gamma more than 2.5 %. For this reason, as for the cooling rate after heating maintenance, it is desirable to limit [s] in 3 degrees C /or more. [0039] Moreover, cooling-shut-down temperature If it exceeds 500 degrees C, a gamma->alpha transformation will arise after that and the amount of residual gamma will decrease. For this reason, cooling-shut-down temperature It is desirable to limit to 500 degrees C or less, in addition, whenever stoving temperature / of heat treatment was too high exceeding 1100 degrees C, or the organization which will make a ferrite a subject if the holding time is too long exceeding 30s metamorphosed into gamma single phase, and it was obtained with diameter reduction rolling -- high -- r value texture will be again made random. Therefore, as for heat treatment of this invention, limiting to the range of the holding time is [whenever / above-mentioned heating rate and stoving temperature] desirable. In addition, it is necessary to control the holding time within the limits of above-mentioned this invention whenever [stoving temperature / of heat treatment] on the conditions which can maintain the organization which makes a subject the ferrite decided by a presentation and heating rate of a steel pipe.

[0040] Moreover, it is Number min at 400 ** extent needed in heat treatment in the 2nd this invention with the steel materials which have the conventional residual gamma-phase. Processing in which it holds in between is not needed, but easily, a difficult steel pipe also applies heat treatment of this invention, and cooling control can carry out the thing of it. By heat treatment in the 2nd this invention, this invention persons consider as follows the device in which Residual gamma is generated.
[0041] In order to make residual gamma-phase generate, it is necessary to make gamma-phase C concentration 1% or more. Therefore, in this invention, distribution of C of gamma-phase and a cementite phase are used. That is, if the steel containing a cementite is heated, gamma-phase will begin to generate around a cementite. Gamma-phase C concentration at this time becomes about 1% by 850 ** so that it may be expected from a Fe-C binary-condition Fig. Thus, gamma-phase [to which C condensed] remains to a room temperature, even if it cools at a comparatively late rate, since it is thermally stable. However, if the case where a heating rate is slow, and heating time become long, since C will be spread, sufficient C concentration is not obtained. Therefore, in this invention, it is considering as rapid heating and short-time maintenance.

[0042] Moreover, since the configuration of a cementite dissolves with short-time heating extremely like the case of being detailed, and a pearlite, like the carbide in bainite in the case of-like [lamellae], control of a heating rate or the holding time becomes difficult. Therefore, it is mean particle diameter 0.1 about a cementite like this invention. It is 10 micrometers preferably more than mum. What is considered as the following balling-up cementites becomes important.

[0043] On the other hand, by the conventional approach which is indicated by JP,63-195221,A, distribution of C of gamma-phase and alpha phase are used. namely, a two phase region (alpha+gamma) -- heating -- gamma-phase -- first C -- after making it condense -- further -- up to the temperature of 400 ** extent -- quenching -- holding -- gamma-phase -- second C -- it is made to condense gamma-phase C concentration in the first two phase region (alpha+gamma) in this approach is expected for example, from a Fe-C binary-condition Fig. -- as -- at most -- it is 0.8 % extent and is not thermally stable enough. therefore, second C -- up to the temperature to condense -- it must quench -- further -- second C -- C gamma-phase in concentration -- in order that a deposit of concentration and carbide may compete, with a steel pipe, difficult cooling control is needed -- retention temperature and time amount must be controlled in the very narrow range. Moreover, with the technique indicated by JP,63-195221,A, there is also a problem that Si which controls a deposit of carbide must be added so much, and it has also become the factor which reduces workability.

[0044] In the 3rd this invention, it replaces with diameter reduction rolling in the 2nd this invention, annealing etc. is used, and a cementite is mean particle diameter 0.1 about the organization of a steel pipe. It considers as the organization which is a balling-up cementite more than mum. It is the heating rate of 10 degrees C/s or more like [the steel pipe which has such a spherical cementite organization] the 2nd this invention. It heats to the temperature of the range of 800-1100 degrees C, and heat treatment held 30 or less s to this temperature is performed. And it continues. It is 30% or more of rate of diameter reduction preferably, diameter reduction rolling is carried out in the temperature region which serves as an organization which makes a subject a ferrite 600 degrees C or more, and, subsequently it is the cooling rate of 3 degrees C/s or more. It cools to 500 degrees C or less. By such manufacture approach as well as the 2nd this invention, the high r value steel pipe which has residual gamma-phase can be manufactured.

[0045] this invention persons consider that the residual gamma-phase generation device in this 3rd this invention is also the same as that of the case where it heat-treats after ** diameter reduction rolling. That is, when rapid heating of the balling-up cementite is carried out, it is thought that it is what was stabilized to extent which is not decomposed even if C concentration in gamma-phase [to generate] is fully high and carries out diameter reduction rolling. As mentioned above, by the manufacture approach of explained this invention, especially the manufacture approach of a start steel pipe is not limited. Usually, the manufacture approach of the welded tube which fabricates band steel in the shape of a cylinder, carries out seam welding, and is used as an electroseamed steel pipe which is a well-known approach is applicable. the band steel to be used -- hot rolled sheet steel and cold rolled sheet steel -- all

are suitable. Moreover, even if it uses a seamless steel pipe as a start steel pipe, it is satisfactory in any way.

[0046]

[Example] (Example 1) The hot rolled sheet steel (board thickness: 2.6 mm) of the chemical entity shown in Table 1 was fabricated in the shape of a cylinder, electric resistance welding of the seam section was carried out, and it considered as the electroseamed steel pipe. Diameter reduction rolling was performed to these electroseamed steel pipes on the conditions shown in Table 2, and it heat-treated on the conditions subsequently to Table 2 shown. And the amount measurement of residual gamma and the tension test of a steel pipe longitudinal direction were carried out about the obtained steel pipe. [0047] About the test piece extracted from the circumferencial direction vertical section of a steel pipe, the X diffraction was used and measurement of the amount of residual gamma converted it into the amount of residual gamma using the calibration curve from the obtained X diffraction reinforcement. Moreover, the tension test of a steel pipe longitudinal direction extracted the JIS No. 12 test piece for tensile test of A from the steel pipe, carried out the tension test, and calculated tensile strength TS, elongation El, and uniform elongation U El. Moreover, true distortion of the longitudinal direction when performing 6 - 7% of **** by the nominal strain, after the r value's having extracted the JIS No. 12 the test piece for tensile test of A and sticking the strain gauge whose gage length is 2mm: R value =rho [from inclination rho]/(-1-rho) was calculated by having measured the true distortion eW of the cross direction to eL.

[0048] Moreover, it gazed at the organization of the electroseamed steel pipe before heat treatment with the scanning electron microscope, and the particle size of a cementite was measured. The speculum of the test piece extracted from the circumferencial direction vertical section section of a steel pipe is etched and carried out with NAITARU liquid, and it is 10000 with a scanning electron microscope. It is 100 at twice. After picturizing the cementite of an individual, the mean particle diameter of a cementite was computed for this photograph by ball conversion using image-analysis equipment.

[0049] The obtained result is shown in Table 2.

[0050]

[Table 1] 【表1】

鋼板No.			化	学成	分	(質量%))			7.5/1 0/4944E00/
	С	Si	Mn	P	S	A1	N	Cr	Ti	7xライト の体積が50% 未満となる温度
A	0.11	1.0	1. 4	0. 01	0.005	0.02	0.003	0. 9	0. 02	832
В	0.11	1.3	1.0	0. 01	0.005	0.02	0.003	0.3	-	820
С	0.05	1.6	1.7	0. 01	0.005	0.02	0.003	_	0.1	845
D	0. 18	0. 2	1. 4	0.01	0.005	0. 02	0.003	-	0.04	787
E	0. 16	1.5	1.8	0.01	0.005	0.02	0.003	_	0.02	796
F	0. 15	1.0	2.0	0.01	0.005	0.04	0.003	_	_	800

[0051] [Table 2]

		_	_	_	<u> </u>		Г		_	_		_			_		_		_				_
釈		Œ.	£	本角明例	本细明的	本船明例	E	本的原因	未免班的	本的四四	壓	<u>F</u>	本船明的	本船明例	本强明例	本验明的	<u>s</u>	本発明例	本船馬的	本兔明例	未给员务	本知明例	大學四個
#		比較例	比较例	¥	*	¥	无数定	*	*	*	托数包	比較何	*	*	本界	*	比較例	*	*	本祭	*	未知	*
和 元	# # X	김	昂	8.0	7.8	8.3	0'0	8.6	7.8	8.3	0.0	70	4.1	4.1	5.2	8.1	0.5	1.8	6.8	4.8	8.0	9.0	4.2
	L.	9.8	1.8	8.0	2.0	2.0	2, 0	2.1	2.1	2.1	2.0	2.1	2.0	2.0	2.0	2.0	8.0	2,0	2.1	8.0	2.0	8.1	2.1
照物性	т . ж	28.8	80.8	88. 1	38.8	87.7	29.3	32. 4	87.1	39.0	29. 1	88. B	88.5	35.6	38, 2	28.8	29.6	88.0	85.7	84.5	88.8	87.0	88. 6
3.0	(K) %	14.1	14.2	15.8	17.6	18.4	14.0	16.0	19.9	18. 5	14.2	15.8	16.8	16, 8	17.8	15.8	14.4	17.9	17.0	18.0	15.6	17.8	16.5
	T S	619	808	818	269	309	609	909	989	298	909	109	919	607	616	209	909	614	808	617	869	607	599
	を を を を が と	-	1	7	4	۵	~	~	8	•	7	7	b	7	å.	4	4	٦	•-	7	1	7	7
MACE	保持時間。	-	-	1	1	1	1	1	1	1	1	10	保持なし	1	10	80	99	保持なし	1	10	30	保存なし	-
*	加 御 で で	88	800	800	800	800	800	800	800	006	150	150	800	800	800	800	800	920	950	096	096	1100	1100
	加速と機関。	100	100	100	100	100	8	10	100	300	100	100	100	100	100	100	100	100	100	100	100	100	81
帕径压延後偏管	セメンタイト粒径 (4m)	レガドンサイト	0,08	0.1	0.8	1.0	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
	被告 稿字》		8	80	80	90	80	80	80	90	80	90	60	80	60	60	99	60	60	60	80	90	90
医条件	田和 田 宮 記 で 記 成	125	009	700	180	730	780	180	780	180	780	780	730	730	180	780	730	780	780	730	780	780	780
相径压延条件	圧延備 入側強度 で	臨衛圧既な	700	150	830	830	880	830	830	830	830	880	830	880	880	830	880	830	830	830	880	830	880
	施度がいい。		100	800	850	850	850	820	850	820	880	820	860	820	820	880	820	850	860	860	820	820	850
養。	į	A	٧	Ą	Y	A	A	A	A	A	Ą	A	٧	A	¥	A	A	A	A	A	¥	V	٧
*	D &	1	8	8	4	В	8	7	8	8	10	11	13	18	7	16	16	17	18	18	20	27	23

[0052] [Table 3]

【表 2 - 2]

無管	侧板 No.		植経圧	延条件		總茲圧延後網管		1	MASS			313	特性		美智	催考
No	no.	加熱區度	で 大側温度 圧延機	任延機 出側温度 ℃	総館 径率 %	セメンタイト粒揺 (µm)	加熱 速度 C/s	加州温度	保持時間	冷却 速度 で/s	T S	nR1	E i	r	体被外	
23	A	850	880	600	60	0, 8	100	1100	8	7	616	15. 9	82.6	2, 1	8.1	本発明例
24	A	850	880	600	60	0. B	100	1100	40	7	612	14. 8	29. 7	2.1	0.0	比較例
25	A	850	880	700	60	0.8	100	900	保持なし	8	618	16. 3	84.4	2.0	4.0	本発明例
26	A	850	880	730	60	0.8	100	900	保持なし	5	601	18. 2	86.6	2. 1	7. 2	本動明例
27	A	850	880	780	60	0, 8	100	900	保持なし	12	608	19.1	40.8	2.0	10. 2	本発明例
28	A	850	880	780	0	41711 + 485×411	100	900	1	7	617	18, 1	85. 6	0.8	7.8	比較例
29	A	850	880	730	20	1.0	100	900	1	7	596	18.0	85. 6	1.0	7.0	比較例
80	A	850	880	730	80	1.0	100	900	1	7	594	18.0	85. 7	1, 2	7.8	本発明例
81	A	850	830	780	55	0.8	100	900	1	7	597	17.6	35, 8	1. 9	7. 2	本発明例
82	A	850	830	780	80	0. 8	100	900	1	7	594	18, 2	88, 2	2. 4	7.8	本発明例
88	A	600	580	580	60	0. 9	100	900	1	7	614	18, 0	37. 8	1.0	7.0	比較例
84	A	1000	<u>950</u>	900	70	パーライト	100	800	1	7	606	14.4	80. 0	0. 9	0.0	比較何
85	A	850	880	780	60	0. 8		無無	Q選なし		616	14. 2	28, 6	9. 7	0,0	比較例
86	В		箱径圧丸	低なし		4付什 十銭留 7	100	800	80	7	605	17.1	84. 9	2.1	5. 2	比較例
87	В	830	800	180	50	0. 8	100	800	60	7	610	19.9	41. 2	2.0	10.5	本発明例
88	В	880	800	780	60	0. 8		熱点	D型なし		596	14.5	29, 6	2. 1	0.0	比較例
89	_C	830	800	780	60	0. 8	100	800	1	7	809	12, 8	25. 2	2.0	4.1	本発明例
40	С	880	800	780	60	0. 8		熱多	処理なし		795	10, 2	21.4	2. 1	0,0	比較例
41	D	880	800	780	60	0, 8	100	900	8	7	609	17.1	85.0	2.0	5.2	本発明例
42	D	880	800	780	60	0.8		熱タ	5週なし		617	14.6	80.0	2.0	0.0	比較例
48	R	880	800	780	60	0.8	100	900	1	7	614	17. 6	87, 6	2, 0	11.8	本発明例
44	R	880	800	730	60	0.8		MA	塩塩なし		800	13.4	25. 8	2.0	0.0	比較例
45	F	880	800	780	60	0, 8	100	900	1	5	620	18. 0	87. 0	2.0	8, 0	本発明例

[0053] It compares with the steel pipe of the example of a comparison which separated from the range of this invention, and each steel pipe of this invention is residual gamma-phase [of a high amount] An implication, the high intensity beyond TS:590MPa, and 1.2 High intensity - which has the above high r value It is a quantity workability steel pipe.

(Example 2) The hot rolled sheet steel (board thickness: 2.6 mm) of the chemical entity shown in Table 1 was fabricated in the shape of a cylinder, electric resistance welding of the seam section was carried out, and it considered as the electroseamed steel pipe. Annealing is given to these electroseamed steel pipes, It considered as the steel pipe of the organization which has the spherical cementite of the particle size shown in Table 3. In addition, measurement of the mean particle diameter of a cementite was made to be the same as that of an example 1. Occasion, To these steel pipes, it heat-treated on the conditions shown in Table 3, and diameter reduction rolling shown succeedingly in Table 3 was performed. About the obtained steel pipe, the amount measurement of residual gamma and the tension test of a steel pipe longitudinal direction were carried out like the example 1.

[0054] The obtained result is shown in Table 3.

[0055]

[Table 4]

L	k					<u>\$</u>	至	聚		<u> </u>	墨	玄		K	底	K		至		季		£		氐	<u> </u>
	•			比较例	比較的	本路馬魚	本弱明例	本発明的	比較例	本點明例	本船頭倒	本學問例	比較例	未必用例	本路路面	本船期例	比较色	本路明例	比较例	本知明例	比较例	米部別包	比较例	本発明例	比較的
5			8	00	0,0	8.0	7.1	8.2	876	2. 5	7.8	8.8	0.0	4.1	8, 1	6.0	0.4	8.4	임	4.1	00	5, 1	0,0	9.2	임
		I		8.1	2.0	2.1	2.1	2.1	8.0	2, 1	2, 1	2.0	8.1	8.1	2.1	2, 1	2, 1	2.1	2.1	2.0	2.0	2.0	2.1	2.0	0.3
1	91銀行在	123	×	89.8	30, 1	82.8	87.8	87.9	89. €	82.0	86.8	† "28	8.68	84.8	87.7	34. 7	81.6	89.8	29.8	29.4	25. 7	84.6	29. 4	35. 6	25. 5
	6	uB1	*	14.6	14, 6	19.1	17.8	18.4	14.0	15.8	17.7	18.8	14, 8	16.0	18.6	17, 1	15, 2	19, 4	14.2	14.1	12.1	19.8	14.5	16.8	12.8
L		T S	Pa	615	619	888	609	590	618	619	904	289	269	601	612	614	615	100	909	808	197	601	909	807	794
		母性	C 2 2	b	Ł	L	L	b	l	Ł	L	Ł .	Ł	b	Ł	1	4	b	1	9	ç	10	10	10	10
Į,	超		# ×	99	09	09	09	09	09	09	09	99	09	80	60	60	99	8	60	9	60	60	60	90	60
T AYON	备金件路	田河路	1 1 1 1 1 1 1	780	680	100	130	780	180	780	780	180	650	780	780	780	180	780	780	180	180	780	780	780	T80
		世の報告		880	700	750	830	880	880	880	880	880	240	880	830	880	830	800	800	800	800	800	800	800	800
		保持時間		1	1	1	1	1	1	1	1	1	10	10	1	保持なし	40	1	1	1	1	1	1	1	1
201 mg 480		加熱極度	ဍ	006	006	006	006	006	008	008	008	800	150	008	920	1100	1160	006	800	800	800	800	800	006	900
		岩井	\$	100	100	100	100	100	8	10	100	300	100	100	100	100	100	100	100	100	100	100	100	100	100
8		セメンタイト勉強	(mm)	11-5-11	0, 08	0.1	0.8	1.0	0.8	0.8	8.0	0.8	0.8	0.8	6.8	0.8	0.8	0.8	パーライト	0.8	0,01	0.8	0,01	0.8	パーライト
B 45	ž.	!		Y	Y	A	A	A	٧	٧	٧	A	٧	A	٧	٧	٧	æ	æ	၁	၁	Ω	Α	8	띰
1	Ft	4		8-1	8 -8	2-8	2- 4	2- 5	2-8	2-7	2-8	2- 9	2-10	2-11	2-12	2-18	2-14	2-16	2-16	3-11	2-18	2-19	2-20	3-21	8-28

[0056] Like an example 1, all, the steel pipe of this invention has the high amount of residual gamma compared with the steel pipe of the example of a comparison which separated from the range of this invention, and is the high intensity beyond TS:590MPa, and 1.2. They are the high intensity and the quantity workability steel pipe which has the above high r value.

[0057]

[Effect of the Invention] As mentioned above, according to [as explained in full detail] this invention, it is high intensity -. A quantity workability steel pipe can manufacture cheaply easily, and begins hydro form processing, a working limit improves remarkably on the occasion of various kinds of processings, and marked effectiveness is done so on industry [say / that complicated components can fabricate now easily]. Moreover, according to this invention, it becomes the high intensity steel plate equipped with high workability, and is effective in the ability to attain lightweight-ization of components.

[Translation done.]

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

D DIACK DODDEDC

	BLACK BURDERS
	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
P	BLURED OR ILLEGIBLE TEXT OR DRAWING
0	SKEWED/SLANTED IMAGES
	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
Ö	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
a	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox