CS 170

Collaborators: NONE

4 Recurrence Relations

(a) T(n) = 4T(n/4) + 32n

$$T(n) = 4T\left(\frac{n}{4}\right) + 32n$$

$$= 4\left[4 \cdot T\left(\frac{n}{4}\right) + 32 \cdot \frac{n}{4}\right] + 32n$$

$$= 4^2 \cdot T\left(\frac{n}{4^2}\right) + 2 \times 32n$$

$$= 4^2\left[4 \cdot T\left(\frac{n}{4^3}\right) + 32 \cdot \frac{n}{4^2}\right] + 2 \times 32n$$

$$= 4^3 \cdot T\left(\frac{n}{4^3}\right) + 3 \times 32n$$

$$= \cdots$$

$$= 4^{\log_4 n} \cdot T(1) + \log_4 n \cdot 32n$$

$$= n \cdot T(1) + \log_4 n \cdot 32n$$

So, $T(n) = \Theta(n \cdot \log n)$.

(b) $T(n) = 4T(n/3) + n^2$

This recurrence relationship is equivalent to

$$T(n) - \frac{9}{5}n^2 = 4\left[T\left(\frac{n}{3}\right) - \frac{9}{5}\cdot\left(\frac{n}{3}\right)^2\right].$$

So,

$$T(n) - \frac{9}{5}n^2 = 4^{\log_3 n} \left[T(1) - \frac{9}{5} \cdot (1)^2 \right] = n^{\log_3 4} \left[T(1) - \frac{9}{5} \cdot (1)^2 \right].$$

Since $\log_3 4 < 2$, $T(n) = \Theta(n^2)$.

(c) T(n) = T(3n/5) + T(4n/5) (We have T(1) = 1)

Let a and b are the lower bound and the upper bound of the range of $T(n)/n^2$ when $1 \le n \le 4$. That is,

$$an^2 \leqslant T(n) \leqslant bn^2, \forall n \in [1, 4].$$

We can prove by induction that for all integer $k \ge 2$:

$$an^2 \leqslant T(n) \leqslant bn^2, \forall n \in [1, k],$$
 (1)

Here we can let n be a general real number.

The base case is just the definition of a and b. Assuming that (1) holds for (k-1), where $k \ge 5$, let's consider the case for k. We just need to consider $n \in (k-1,k]$. Since $k \ge 5$, $3n/5 < 4n/5 \le k-1$, so

$$a \cdot \left(\frac{3n}{5}\right)^2 \leqslant T\left(\frac{3n}{5}\right) \leqslant b \cdot \left(\frac{3n}{5}\right)^2$$
, and $a \cdot \left(\frac{4n}{5}\right)^2 \leqslant T\left(\frac{4n}{5}\right) \leqslant b \cdot \left(\frac{4n}{5}\right)^2$

So

$$an^2 = a \cdot \left[\left(\frac{3n}{5} \right)^2 + \left(\frac{4n}{5} \right)^2 \right] \leqslant T(n) = T\left(\frac{3n}{5} \right) + T\left(\frac{4n}{5} \right) \leqslant b \cdot \left[\left(\frac{3n}{5} \right)^2 + \left(\frac{4n}{5} \right)^2 \right] = bn^2$$

As a result, $T(n) = \Theta(n^2)$.

In Between Functions **5**

 $f(n)=n^{\ln n}$ is a function that satisfies both these properties. For a given c>0, when $n>e^c$, $\ln n>c$, so $f(n)=n^{\ln n}>n^c$. That is, $f(n)=\Omega(n^c)$. In addition, for a given $\alpha>1$, there exists M>0, s.t. when n>M, $\log_{\alpha}n^{\ln n}=n^{-1}$ $\ln n \cdot \log_{\alpha} n < n$. So,

$$n^{\ln n} < \alpha^n, \forall n > M.$$

That is, $f(n) = \mathcal{O}(\alpha^n)$.

6 Sequences

(a) For $i \ge k$,

$$\begin{pmatrix} A_i \\ A_{i-1} \\ \vdots \\ A_{i-k+1} \end{pmatrix} = \begin{pmatrix} b_1 & b_2 & \cdots & b_k \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} A_{i-1} \\ A_{i-2} \\ \vdots \\ A_{i-k} \end{pmatrix}.$$

Let

$$\mathbf{B} = \left(\begin{array}{cccc} b_1 & b_2 & \cdots & b_k \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \cdots & 0 \end{array} \right).$$

To compute A_n , we just need to raise **B** to the power n-k+1. Our algorithm breaks into 2 steps: computing \mathbf{B}^{n-k+1} and computing $\mathbf{B}^{n-k+1} \cdot (A_{k-1}, A_{k-2}, \dots, A_0)^{\mathrm{T}}$.

Algorithm 1. Matrix Exponentiation

function matexp(\mathbf{B} , n)

Input: a $k \times k$ matrix \mathbf{B} , an integer number n

Output: \mathbf{B}^n

if n = 1: return **B** $\mathbf{C} = \text{matexp}(\mathbf{B}, \lfloor n/2 \rfloor)$ if n is even:

return ${f C}^2$

else:

return \mathbf{BC}^2

The correctness of this recursive algorithm is self-evident.

Since we compute all numbers mod 50, and k is a constant, the computation of \mathbb{C}^2 or \mathbf{BC}^2 takes some constant time C. So, the time for evaluate $\mathtt{matexp}(\mathbf{B}, n)$ is $T(n) \leq T(n/2) + C$. Therefore, $T(n) = \mathcal{O}(\log n)$. In addition, computing $\mathbf{B}^{n-k+1} \cdot (A_{k-1} \text{ costs})$ some constant time. As a result, A_n can be computed by this algorithm in $\mathcal{O}(\log n)$ time.

(b) Note that we only want the answer mod 50, we can design an look-up algorithm to get A_n in some constant time. Consider vector $(a_0, a_1, \dots, a_{k-1})^T$, where $a_i \in \{1, 2, \dots, 50\}$ $(i = 0, 1, \dots, k-1)$. Such vectors can only have 50k different possible values. For (50k+1) vectors $(A_0, A_1, \dots, A_{k-1})^T$, $(A_1, A_2, \dots, A_k)^T$, \dots , $(A_{50k}, A_{50k+1}, \dots, A_{51k-1})^T$, according to Pigeonhole principle, there exist two equal vectors $(A_r, A_{r+1}, \dots, A_{r+k-1})^T = (A_s, A_{s+1}, \dots, A_{s+k-1})^T$, where $0 \le r < s \le 50k$. Such vectors will repeat every (s-r) iterations, and A_n repeats as well. (s-r) depends on k, b_1, b_2, \dots, b_k , but not n.

Therefore, we can look A_n up by computing $(n-r) \mod (s-r)$.

Decimal to Binary

Let $a = \overline{a_{n-1} \cdots a_1 a_0} = a_{n-1} \cdot 10^{n-1} + \cdots + a_1 \cdot 10 + a_0 = a_h \cdot 10^{n/2-1} + a_l$, where $a_h = a_{n-1} \cdot 10^{n/2-1} + \dots + a_{1+n/2} \cdot 10 + a_{n/2}, \ a_l = a_{n/2-1} \cdot 10^{n/2-1} + \dots + a_1 \cdot 10 + a_0.$ The divide-and-conquer algorithm is:

Algorithm 2. Decimal to Binary

```
function to_binary(a)
```

```
Input: the decimal representation of an integer a=\overline{a_{n-1}\cdots a_1a_0}=
a_{n-1} \cdot 10^{n-1} + \dots + a_1 \cdot 10 + a_0 = a_h \cdot 10^{n/2-1} + a_l
Output: the binary representation of a
if n=0: return a_0's binary representation.
b_h = to\_binary(a_h)
b_l = \texttt{to\_binary}(a_l)
p = pow(1010_2, n/2)
return b_h \cdot p + b_l (using Karatsuba's algorithm)
```

To analyze its running time, we first claim that computing 10^n in binary takes $\mathcal{O}(n^{\log_2 3})$ time using Karatsuba's algorithm:

Algorithm 3. Binary Exponentiation

```
function pow(1010_2, n)
```

Input: a binary number 1010_2 (10 in decimal), an integer nOutput: $(1010_2)^n$ in binary

if k=0: return 1010_2 $y = pow(1010_2, |n/2|)$ if n is even:

return $y \cdot y$ (using Karatsuba's algorithm)

else:

return $1010_2 \cdot y \cdot y$ (using Karatsuba's algorithm)

The running time for Algorithm 3 is $T_3(n)$.

$$T_3(n) = T_3(n/2) + \mathcal{O}(n^{\log_2 3})$$
 (2)

From master theorem, we have $T_3(n) = \mathcal{O}(n^{\log_2 3})$.

Now, we come back to Algorithm 2. When calling to_binary, besides 2 recursive calling, we need to compute p and a multiplication and a addition, which takes $\mathcal{O}(n^{\log_2 3})$ time. So, the running time of Algorithm 2:

$$T_2(n) = 2T_2(n/2) + \mathcal{O}(n^{\log_2 3}).$$
 (3)

According to master theorem, $T_2 = \mathcal{O}(n^{\log_2 3})$.