MAC 1147 TEST IIIA FALL 2010

- A. Sign your scantron sheet in the white area on the back in ink.
- B. Write and code in the spaces indicated:
 - 1) Name (last name, first initial, middle initial)
 - 2) UF ID number
 - 3) Discussion section number
- C. Under "special codes" code in the test ID numbers 3, 1.
 - 1 2 4 5 6 7 8 9 0
 - 2 3 4 5 6 7 8 9 0
- D. At the top right of your answer sheet, for "Test Form Code" encode A.
 - B C D E
- E. While taking the test, please keep your answer sheet covered or turned over at all times.
- F. This test consists of 7 three-point multiple choice questions, 8 five-point multiple choice questions, and four pages of partial credit questions worth 25 points. The time allowed is 90 minutes.

G. WHEN YOU ARE FINISHED:

- 1) Before turning in your test check for <u>transcribing errors</u>. Any mistakes you leave in are there to stay.
- 2) You must turn in your scantron and tear off sheets to your discussion leader. Be prepared to show your picture I.D. with a legible signature.
- 3) The answers will be posted after the exam on the web www.math.ufl.edu/~huang/MAC1147.html.

NOTE: Be sure to bubble the answers to questions 1-15 on your scantron.

Part I: 3 points each

- 1. Evaluate: $\sin\left(-\frac{4\pi}{3}\right) =$
- a. $-\frac{1}{2}$ b. $\frac{1}{2}$ c. $-\frac{\sqrt{3}}{2}$
- d. $\frac{\sqrt{3}}{2}$
- 2. Which of the following angles does <u>not</u> lie in quadrant II?
 - a. -200°
- b. $\frac{7\pi}{8}$
- c. 3 radians
- **3.** Which of the following functions is <u>not</u> even?
 - a. $x \cos x$
- b. $\cos x$
- c. tan(|x|)
- d. $x \sin x$
- **4.** Find the range of the function $f(x) = e^{-x+1} + 3$.
 - a. $(1,\infty)$
- b. $(-1, \infty)$
- c. $(3, \infty)$ d. $(-3, \infty)$

- **5.** Evaluate: $\log_{\frac{1}{8}} \frac{1}{4} =$
 - a. $-\frac{2}{3}$ b. $\frac{2}{3}$
- d. 2
- **6.** (Bonus!) Which of the following numbers is negative?
 - a. $\log_2 5$
- b. $\log_{\frac{1}{2}} 5$
- c. log 5
- $d. \ln 5$

- 7. (Bonus!) The system of linear equations $\begin{cases} y = x 2 \\ \frac{1}{5}x + \frac{1}{5}y = \frac{2}{5} \end{cases}$ has
 - a. no solution
- b. one solution
- c. infinitely many solutions

Part II: 5 points each

8. If x > 0 and y > 0, which of the following statements is/are correct?

P.
$$e^{4 \ln x} = 4x$$

$$Q. \log(2x^3) = 3\log(2x)$$

$$R. \ \frac{\log x}{\log y} = \log(x - y)$$

a. none

- b. P and Q only
- c. Q and R only

- d. Q and R only
- e. P, Q and R
- 9. Find the domain of $\log_5(2x^2 + 7x 4)$.
 - a. $(-\infty, \infty)$ b. $(0, \infty)$

c. $\left(\frac{1}{2}, \infty\right)$

- d. $\left(-4, \frac{1}{2}\right)$ e. $\left(-\infty, -4\right) \cup \left(\frac{1}{2}, \infty\right)$
- 10. The number of bacteria in a culture is increasing exponentially. After 2 hours, there are 150 bacteria, and after 6 hours, there are 1350 bacteria. How many bacteria are there initially?
 - a. 25 bacteria
- b. 50 bacteria
- c. 75 bacteria

- d. 100 bacteria
- e. 125 bacteria

11. Find the inverse of $f(x) = \log(-x+4) - 1$.

a.
$$f^{-1}(x) = -10^{x-4} + 1$$

b.
$$f^{-1}(x) = 10^{x-4} + 1$$

c.
$$f^{-1}(x) = 10^{x+1} - 4$$

d.
$$f^{-1}(x) = 10^{x+1} + 4$$

e.
$$f^{-1}(x) = -10^{x+1} + 4$$

12. A deposit of \$1000 is made to a mutual fund. Find the time in years required for the investment to double at an annual interest rate of 6% compounded monthly.

a.
$$\frac{\ln(2)}{12 \cdot \ln(1.005)}$$
 years

b.
$$\frac{\ln(2)}{\ln(1.005)}$$
 years

c.
$$\frac{\ln(2)}{12 \cdot \ln(1.06)}$$
 years

d.
$$\frac{\ln(2)}{\ln(1.06)}$$
 years

e.
$$\frac{\ln(2000)}{1.06 \cdot \ln(1000)}$$
 years

13. Solve: $\log(x) + \log(x+3) = 1$

a.
$$\left\{ \frac{7}{2} \right\}$$

b.
$$\left\{ \frac{-3 + \sqrt{13}}{2} \right\}$$

c.
$$\{-5, 2\}$$

d.
$$\{-5\}$$

14. Solve: $9^x + 3^x = \ln(e^6)$

a.
$$\{\log_3 2\}$$

a.
$$\{\log_3 2\}$$
 b. $\{-1, \log_3 2\}$

c.
$$\{-2,3\}$$

d.
$$\{-3, 2\}$$

- 15. A pulley has a diameter of 20 cm. It takes 5 seconds for 50 cm of belt to go around the pulley. Find the angular speed of the pulley in radians per minute.
 - a. 1 rad/min
- b. 30 rad/min
- c. 60 rad/min

- d. $\frac{30}{\pi}$ rad/min
- e. $\frac{60}{\pi}$ rad/min

Be sure to work on the free response problems on the next four pages.

MAC 1147 TEST IIIA PART II FALL 2010

Sect #		Name				et villij.
UF ID		Signature _				
<u>S</u>	HOW ALL W	ORK TO R	ECEIVE	E FULL (CREDIT.	
1. Assume t	he x , y and z	are all posit	ive real 1	numbers.		
a) Use C 3.	hange of Base	Formula to	write lo	$g_9 x$ as a	$\log \operatorname{arithm}$	with bas
					. Salati	
		,		$\log_9 x =$	=	
b) Write	$\log_9 x - 2\log_3$	$y - \frac{1}{3}\log_3 z$		gera (1900) Gerafia		
as a si	ingle logarithm	n with base	3.			,

2. Given the function $f(x) = 1 + \log_2(-x - 2)$.

a) To find the graph y = f(x), we will use the parent function $y = \log_2 x$ to do the transformations in the following order:

1) horizontal shift: shift left/right (circle one) ____ unit(s)

2) reflection: reflect across the ____-axis.

3) vertical shift: shift up/down (circle one) ____ unit(s)

b) The reference point (1,0) is on the graph of the parent function. Therefore, the new reference point (after transformations) _____ is on the graph of y = f(x).

c) Find the equation of the vertical asymptote _____

d) Find the x-intercept: x =_____

e) Sketch the graph of f and label the new reference point, x-intercept and any asymptotes.

3. Solve the inequality and write your answer in interval notation:

a)
$$x^4 > 9x^2$$

b) $\frac{2}{x+1} \ge \frac{1}{x-2}$

4. A motorboat traveled 24 miles downstream, with the current, in 3 hours. The return trip upstream, against the current, covered only $\frac{3}{4}$ of this distance, took 4 hours. Assume that the speed of the boat is x mph and the speed of the current is y mph and both remained constant. Use a system of equations to solve for x and y.

 $x = \underline{\hspace{1cm}}, y = \underline{\hspace{1cm}}$