Universidad de la República - Facultad de Ingeniería - IMERL: Geometría y Álgebra Lineal II

Segundo parcial - de 2017. Duración: 3:30			
No. Parcial	Apellido y nombre	Cédula	Firma
Verdadero-Falso			
Determinar en cada caso si las siguientes proposiciones son Verdaderas o Falsas			
1. Sea $T:V\to V,\ \Bbbk=\mathbb{C},$ tal que $T^*=T^{2017}.$ Entonces T es diagonalizable.			
2. Sea $T:\mathbb{R}^2\to\mathbb{R}^2$ la simetría respecto a la recta $y=x$. Entonces T es ortogonal y autoadjunta.			
3. Sea $T: V \to V$, $\mathcal{B} = \{v_1, \dots, v_n\}$ base ortonormal $y T(v_i) = v_i , \forall i = 1, \dots, n$. Entonces $ T(v) = v \forall v \in V$.			
4. Sea $T: V \to V$, $\mathbb{k} = \mathbb{C}$, T unitaria, \mathcal{B} base ortonormal de V , entonces $ \det(\mathcal{B}[T]\mathcal{B}) = 1$.			
5. Si $T:V\to V,$ $\Bbbk=\mathbb{C},$ T unitario y autoadjunto, entonces $T=Id.$			
Poner V o F en \square . Si contesta bien 2 puntos, si contesta mal -1 puntos y si no contesta 0 puntos.			
Ejercicos M-O			
1. Sea $T:V\to V$, $\Bbbk=\mathbb{C}$, tal que $\langle T(v),v\rangle=\langle v,T(v)\rangle,\ \forall v\in V.$ Entonces: Indicar la opción correcta.			
$a) \ T = T^*.$			
b) T^* es unitaria.			
c) T es invertible.			
d) Ninguna de las opciones anteriores.			
2. Sea la forma cuadrática $Q: \mathbb{R}^3 \to \mathbb{R}$ tal que $Q(x,y,z) = ax^2 - ay^2 - az^2 + 2xy + 4xz$. Indicar la opción correcta:			
a) $\forall a \geq \sqrt{5}$, es definida negativa.			
b) Existe un único valor de $a \in \mathbb{R}$ tal que Q es semidefinida positiva.			
c) Para todo $a \in \mathbb{R}$ se cumple que Q es indefinida.			
$d)$ Existe un único valor de $a\in\mathbb{R}$ tal que Q es semidefinida negativa. $\hfill \square$			

Marcar con una cruz la opción correcta en \square . Si contesta bien 10 puntos, si contesta mal -2 puntos y si no contesta 0 puntos.

Ejercicios de Desarrollo

Ejercicio 1 (15 puntos)

- 1. Sea V un espacio vectorial con producto interno, $S \subset V$ un subespacio. Definir Proyección Ortogonal P_S .(3 puntos)
- 2. Sea $V = \mathbb{R}^3$, $S = \{(x, y, z) : x + y z = 0\}$.
 - a) Hallar P_S .(3 puntos)
 - b) Hallar P_S^* .(3 puntos)
 - c) ¿Es P_S ortogonal? Justificar.(3 puntos)
 - d) Sea $T = P_{S^{\perp}} \circ P_S$. Hallar T^* .(3 puntos)

Ejercicio 2(15 puntos)

Sea $T: V \to V$ unitaria $(\mathbb{k} = \mathbb{C})$.

- 1. Probar que si $S\subset V$ es un subespacio que cumple que $T(S)\subset S$ entonces $T(S^\perp)\subset S^\perp.(6$ puntos)
- 2. Probar que existe una base ortonormal de V formada por vectores propios. (9 puntos)