Luis Ruiz

Assignment 0

CPE 301 - 1001

0. PART 0

The assignment took me an overall 30 minutes to complete. I got a little bit carried away going through some features Atmel studio offered.

1. PART A

My design consists of three distinct integers greater than 30 but less than 60 being added up to produce a sum and determine if at any given time there was an overflow. I consider the integer values to be signed, therefore the sum must be between $-2^7 \dots (2^7 - 1)$ otherwise an overflow would occur because our MSB would be one $(0b1xxx_xxxx)$, hence it's a negative in 2s compliment. Once an overflow is detected it goes to a label Overflow, configures PortB bit position 4 to be an output while the rest to be inputs and after PortB bit position 4 will be assigned a high to output. The code then continues; however, this time I intentionally let add integers that sum produce a value less than 127. Thus when I sum up the signed integer values the overflow flag should never be set and should branch to the noOverflw label. Once at the noOverflw label it configure PortB bit position 2 to be an output and output a low.

PART B

```
;r17 = 50
       LDI r17, 50
       ADD r16, r17
                            ;r16 += r17 (r16 = 100 + 50)
       ;flag should set here and goto Overflw
       brvs Overflw ;if Overflow flag is set goto Overflw
;I intentionally add numbers that add
; and create a sum less than 127
back:
    LDI r16,31
                            ;r16 = 31
       LDI r17,32
                            ;r17 = 32
       ADD r16, r17
                            ;r16 += r17 (r16 = 31 + 32)
                            ;r17 = 33
       LDI r17, 33
                           ;r16 += r17 (r16 = 63 + 33)
      ADD r16, r17
       ;the overlow flag shoul be zero and go to noOverflw
                           ;if Overflow flag is not set goto NoOverflw
       brvc noOverflw
       rjmp end
Overflw:
       LDI r17, 0x10
                            ;r16 = 0b0000 0100
                            ;configure Port B bits input: 7:3 & 1:0, output: 2
       OUT DDRB, r17
       OUT PORTB, r17
                            ;turn PortB on
       rjmp back
noOverflw:
       LDI r16, 0x10
                            ;r16 = 0b0000 0100
       OUT DDRB, r16
                            ;configure Port B bits input: 7:3 & 1:0, output: 2
       LDI r16, 0x00
                            ;r16 = 0b0000 0000
       OUT PORTB, r16
```

PART C

end:nop

Overflow Occurred

data 0x0085

1/0

The running sum was being held by reg16 (0x10) which indicates a value of 150, it is pass the signed value of 127 thus an overflow

No Overflow Occurred

The overflow flag doesn't get set since r16 value is 112 and is less than 127 therefore PORTB bit position 3 outputs a low

PART D

URL Video of Design Assignment 0: https://youtu.be/yx41uX9qbLM

PART E

Status Register UIII SVIN Cycle Counter 23

Frequency 8.000 MHz Stop Watch 2.88 µs

Execution Time = $\frac{Cycle\ Counter}{Frequency} = \frac{23}{8.00MHz} \approx \frac{2.88\ \mu s}{1.00MHz}$