MEDICAL INSURANCE COST

GAMMA DISTRIBUTION

CALVIN JANITRA

NATHANAEL JUNICO ODI PERDANA

Agenda

01	Konsep Distribusi Gamma
02	Dataset Overview
03	Penentuan Jenis Distribusi
04	Pemilihan Model
05	Hasil & Evaluasi

Pengertian

Distribusi Gamma adalah distribusi probabilitas kontinu yang sangat fleksibel untuk memodelkan variabel acak positif yang skewed (miring).

Sifat-Sifat Distribusi Gamma

- 1. Hanya bernilai kontinu positif (x > 0): Data tidak boleh bernilai negatif.
- 2. Bersifat right-skewed (miring ke kanan/ekor panjang ke kanan).
- 3. Varians meningkat seiring bertambahnya rata-rata (ada heteroskedastisitas).

Kapan menggunakan Distribusi Gamma?

- 1. Biaya (medical cost, insurance claims)
- 2. Waktu tunggu (waiting time) untuk terjadinya kejadian tertentu.
- 3. Curah hujan (rainfall).
- 4. Lifetime data (waktu sampai kegagalan).

Kurva Distribusi Gamma

Persamaan Rumus PDF (Probability Density Function):

$$f(x;lpha,eta)=rac{eta^lpha}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$$

- $f(x;\alpha,\beta)$: fungsi kepadatan probabilitas dari distribusi Gamma. Nilai ini memberikan densitas probabilitas pada titik x untuk parameter α dan β .
- x: variabel acak kontinu yang dimodelkan oleh distribusi Gamma di mana nilai x harus positif (x>0)
- α (alpha): parameter bentuk (shape parameter).
- β (beta): parameter laju (rate parameter).
- $\Gamma(\alpha)$: fungsi Gamma yang merupakan generalisasi dari faktorial untuk bilangan real dan kompleks.
- e: bilangan Euler atau bilangan natural (2,71828...)

Persamaan Rumus CDF (Cumulative Distribution Function):

$$F(x;k, heta) = rac{1}{\Gamma(k)} \gamma\left(k,rac{x}{ heta}
ight)$$

- **f**(**x**;**k**,θ): fungsi distribusi kumulatif (CDF).
- x: nilai acak yang diamati.
- k: parameter bentuk (shape parameter).
- θ (theta): skala penyebaran (scale parameter).
- γ: integral dari fungsi gamma, tapi hanya dari 0 sampai x/θ, bukan sampai ∞.
- $\Gamma(\alpha)$: fungsi gamma yang merupakan generalisasi dari faktorial untuk bilangan real dan kompleks.

Perbedaan PDF dan CDF:

Aspek	PDF	CDF
Apa?	Kepadatan probabilitas di sekitar \boldsymbol{x}	Probabilitas kumulatif sampai \boldsymbol{x}
Range	Bisa > 1 (bukan probabilitas langsung)	Selalu antara 0 – 1
Interpretasi	Seberapa sering nilai tertentu relatif muncul	Seberapa banyak data di bawah nilai tertentu
Visual	Kurva berbentuk lonceng/skewed	Kurva naik monoton dari 0 → 1

Dataset Overview

	age	sex	bmi	children	smoker	region	charges	
0	19	female	27.900	0	yes	southwest	16884.92400	
1	18	male	33.770	1	no	southeast	1725.55230	
2	28	male	33.000	3	no	southeast	4449.46200	
3	33	male	22.705	0	no	northwest	21984.47061	
4	32	male	28.880	0	no	northwest	3866.85520	
1333	50	male	30.970	3	no	northwest	10600.54830	
1334	18	female	31.920	0	no	northeast	2205.98080	
1335	18	female	36.850	0	no	southeast	1629.83350	
1336	21	female	25.800	0	no	southwest	2007.94500	
1337	61	female	29.070	0	yes	northwest	29141.36030	
1338 rows × 7 columns								

01 Age: Umur Pelanggan

02 Sex: Jenis Kelamin

03 BMI: Body Mass Index

O4 Children: Jumlah tanggungan anak.

O5 Smoker: Status perokok (yes / no).

Region: wilayah tempat tinggal (southeast, southwest, dll).

O7 Charges: Total biaya asuransi kesehatan yang dibebankan.

Uji Korelasi

Uji Normalitas

AGE

```
Kolom: age
KS Statistic = 0.0790, p-value = 0.0000

→ Data tidak berdistribusi normal (tolak H0).
```

Uji Normalitas

BMI

```
Kolom: bmi
KS Statistic = 0.0261, p-value = 0.3145

→ Data berdistribusi normal (gagal tolak H0).
```

Uji Normalitas

CHARGES

```
Kolom: charges
KS Statistic = 0.1885, p-value = 0.0000

→ Data tidak berdistribusi normal (tolak H0).
```

Looking For Gamma Distribution

Kolom Numerikal:

children

charges

■ 0000 000

Looking For Gamma Distribution

Kolom Numerikal Kontinu:

1. Data bernilai kontinu positif > 0

Uji Skewness

200

175

150

125

වී ₁₀₀

age Skewness: 0.055610083072599126 bmi Skewness: 0.28372857291709386 charges Skewness: 1.5141797118745743

Pengujian Distribusi Gamma

Uji Heteroskedastisitas

Uji Breusch-Pagan: LM Statistic: 104.4443 LM-Test p-value: 0.0000 F Statistic: 14.0657 F-Test p-value: 0.0000 Kesimpulan: Terdapat bukti heteroskedastisitas (p-value < 0.05).

Pemilihan Model untuk Distribusi Gamma

Pemilihan Model untuk Distribusi Gamma Regresi

Train Test Split

Dilakukan split data untuk train 70% dan test 30%.

Library Model

```
import statsmodels.formula.api as smf

model = smf.glm(
   formula="charges ~ age + bmi + smoker + children + sex + region",
   data=train_df,
   family=sm.families.Gamma(sm.families.links.log())
).fit()
```

Hasil Model

Dep. Variable:	ch	arges	No. Observatio	ns:	936	
Model:		GLM	Df Residuals:		927	
Model Family:		Gamma	Df Model:		8	
Link Function:		log	Scale:		0.46874	
Method:		IRLS	Log-Likelihood	l:	-9325.8	
Date:	Fri, 26 Sep	2025	Deviance:		241.83	
Time:	09:	57:06	Pearson chi2:		435.	
No. Iterations:		19	Pseudo R-squ.	(CS):	0.6748	
Covariance Type: nonrobust						
	coef	std e			[0.025 	0.975
Intercept	7.4034	0.1		0.000	7.140	7.66
smoker[T.yes] sex[T.male]	1.4963 -0.0587	0.0 0.0		0.000 0.191	1.388 -0.147	1.60 0.02
	-0.0634	0.0		0.316		0.06
region[T.southeast]	-0.1358	0.0		0.035	-0.262	-0.01
region[T.southwest]	-0.1415	0.0	64 -2.205	0.027	-0.267	-0.01
age	0.0285	0.0	02 17.823	0.000	0.025	0.03
bmi	0.0142	0.0	04 3.639	0.000	0.007	0.02
children	0.0758	0.0	19 4.091	0.000	0.039	0.11

Evaluasi pada Test Set:

MAE: 4020.38

R2: 0.66

RMSE: 7104.76

Persamaan Model (Log-Link)

```
log(E[charges]) = 7.4034 +
1.4963*smoker[T.yes] +
-0.1358*region[T.southeast] +
-0.1415*region[T.southwest] +
0.0285*age + 0.0142*bmi +
0.0758*children
```

Features Importance

Pemilihan Model untuk Distribusi Gamma

Klasifikasi

Train Test Split

Dilakukan split data untuk train 70% dan test 30%.

Library Model

```
lr_pipeline = Pipeline(steps=[
    ('pre', preprocessor),
    ('clf', LogisticRegression(max_iter=2000,
class_weight='balanced', random_state=42))
])
```

Hasil Model

Confusion Matrix

Evaluation

=== Logistic	Regression	<pre>(class_weight='balanced') ===</pre>			
	precision	recall	f1-score	support	
High	1.0000	0.6269	0.7706	134	
Low	0.9023	0.8955	0.8989	134	
Medium	0.7081	0.9776	0.8213	134	
accuracy			0.8333	402	
macro avg	0.8701	0.8333	0.8303	402	
weighted avg	0.8701	0.8333	0.8303	402	

Thank you

"Gamma tells the story of time: sometimes short, sometimes long, but always positive." - ChatGPT