## JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 9月 8日

出 願 番 Application Number:

特願2003-315323

[ST. 10/C]:

[JP2003-315323]

出 願 人 Applicant(s):

シャープ株式会社

WIPO

PCT

REG'D. 2 9 OCT 2004

PRIORITY

COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年10月14日



DEST AVAILABLE COPY

【書類名】 特許願 【整理番号】 03J03349

【提出日】平成15年 9月 8日【あて先】特許庁長官 殿【国際特許分類】G06K 19/07<br/>H04B 1/59

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

【氏名】 萬羽 修

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

【氏名】 福崎 恵

【特許出願人】

【識別番号】 000005049

【氏名又は名称】 シャープ株式会社

【代理人】

【識別番号】 100091096

【弁理士】

【氏名又は名称】 平木 祐輔

【手数料の表示】

【予納台帳番号】 015244 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0208702



#### 【請求項1】

アンテナコイルと、ICモジュールと、バッテリとを有し、前記アンテナコイルで受けた電波により電力と通信情報を受ける非接触ICシステムであって、

前記アンテナコイルを介して供給される電力を検出する電力検出手段と、

前記電力検出手段の検出結果に基づいて前記ICモジュールの駆動電源を制御する制御 手段と

を備えることを特徴とする非接触ICシステム。

#### 【請求項2】

アンテナコイルと、ICモジュールと、バッテリとを有し、前記アンテナコイルで受けた電波により電力と通信情報を受ける非接触ICシステムであって、

前記ICモジュールに通電するためのスイッチと、

前記スイッチの状態変化に応じて前記ICモジュールの駆動電源を制御する制御手段とを備えることを特徴とする非接触ICシステム。

#### 【請求項3】

さらに、前記ICモジュールの通信状態を検出する通信状態検出手段を備え、

前記制御手段は、前記通信状態検出手段の検出結果に基づいて前記ICモジュールの駆動電源を制御することを特徴とする請求項1又は2に記載の非接触ICシステム。

#### 【請求項4】

さらに、前記ICモジュールに通電するためのスイッチを備え、

前記制御手段は、前記スイッチの状態変化に応じて前記ICモジュールの駆動電源を制御することを特徴とする請求項1記載の非接触ICシステム。

#### 【請求項5】

前記アンテナコイル及び前記ICモジュールからなるインタフェースと、

前記インタフェースからの情報により各種制御を行う中央演算処理器とを備え、

前記中央演算処理器は、前記制御手段の駆動電源制御を実行することを特徴とする請求項1又は2に記載の非接触ICシステム。

#### 【請求項6】

前記バッテリは、前記ICモジュールに所定の駆動電源を供給するレギュレータを備えることを特徴とする請求項1又は2に記載の非接触ICシステム。

#### 【請求項7】

前記ICモジュールは、ICカードリーダ・ライタとの間で電磁波を媒体として電力と通信情報を受けることを特徴とする請求項1乃至6のいずれか一項に記載の非接触ICシステム。

#### 【請求項8】

非接触ICモジュールを搭載した携帯端末において、

前記請求項1乃至7のいずれか一項に記載の非接触ICシステムを備えることを特徴とする携帯端末。

#### 【書類名】明細書

【発明の名称】非接触ICシステム及び携帯端末

#### 【技術分野】

### [0001]

本発明は、電磁波を媒体としてデータの送受信を行う非接触ICシステム及び携帯端末に関し、特に、携帯電話などの端末に非接触ICモジュールを搭載した非接触ICシステムに関する。

#### 【背景技術】

#### [0002]

ICモジュールを搭載したICカードは、磁気カードに比較して格段に高いセキュリティを実現できることから、近年、急速に普及しつつある。特に、電波を介した電磁誘導等によるデータ伝送を用いた非接触型ICカードは、ICモジュールが露出していないため、塵埃の多い環境下でも、高信頼性を保ちながら、動作する利点がある。

#### [0003]

非接触ICカードはICカードリーダ・ライタにより発せられる電波をアンテナコイルによる電磁誘導で電力供給に利用し動作するものである。非接触ICカードは、電波という媒体を介して電力供給を受ける関係で常時安定な電力を受けられるとは限らない。安定した電力供給を図るために二次電池あるいはコンデンサやバッテリなどの外部電源を装備する非接触ICカード又は非接触ICシステムがすでに提案されている。

#### [0004]

非接触 I Cカードへの電源の供給に関しては、例えば特許文献 1 において二次電池あるいはコンデンサとアンテナコイルを介して供給される電力を受けて二次電池あるいはコンデンサに充電する充電回路とを備えた非接触 I Cカードが開示されている。また、特許文献 2 においてアンテナコイルを介して供給される電力とバッテリなどの外部電源をシームレスに切替えできる半導体集積回路が開示されている。

【特許文献1】特開2000-90220号公報

【特許文献2】特開2003-36427号公報

#### 【発明の開示】

【発明が解決しようとする課題】

#### [0005]

しかしながらこのような従来の非接触ICカードにあっては、以下のような問題点があった。

二次電池あるいはコンデンサを充電するシステムを備えた非接触ICシステムを微弱あるいは不安定な電波のもとで安定動作させるためには、二次電池又はコンデンサが充電されている必要がある。バッテリなどの外部電源から常時電力供給することで常時安定動作させることは可能であるがバッテリの電力消費が増大する。また、アンテナコイルを介して供給される電力とバッテリなどの外部電源からの電力をシームレスに切替える半導体集積回路が提案されているが携帯電話などの携帯端末で非接触ICシステムの電源制御を行う具体的な実現手段は明らかにされていない。

#### [0006]

本発明は、このような課題に鑑みてなされたものであって、電波を介した電磁誘導による電力供給が微弱あるいは不安定であっても安定した通信を行える非接触ICシステム及び携帯端末を提供することを目的とする。

#### 【課題を解決するための手段】

#### [0007]

本発明のICカードシステムは、アンテナコイルと、ICモジュールと、バッテリとを有し、前記アンテナコイルで受けた電波により電力と通信情報を受ける非接触ICシステムであって、前記アンテナコイルを介して供給される電力を検出する電力検出手段と、前記電力検出手段の検出結果に基づいて前記ICモジュールの駆動電源を制御する制御手段とを備えることを特徴としている。

#### [0008]

本発明のICカードシステムは、アンテナコイルと、ICモジュールと、バッテリとを有し、前記アンテナコイルで受けた電波により電力と通信情報を受ける非接触ICシステムであって、前記ICモジュールに通電するためのスイッチと、前記スイッチの状態変化に応じて前記ICモジュールの駆動電源を制御する制御手段とを備えることを特徴としている。

#### [0009]

さらに、より好ましくは、前記ICモジュールの通信状態を検出する通信状態検出手段を備え、前記制御手段は、前記通信状態検出手段の検出結果に基づいて前記ICモジュールの駆動電源を制御する。

さらに、前記ICモジュールに通電するためのスイッチを備え、前記制御手段は、前記 スイッチの状態変化に応じて前記ICモジュールの駆動電源を制御するものであってもよ い。

#### [0010]

また、前記アンテナコイル及び前記ICモジュールからなるインタフェースと、前記インタフェースからの情報により各種制御を行う中央演算処理器とを備え、前記中央演算処理器は、前記制御手段の駆動電源制御を実行するものであってもよい。

前記バッテリは、前記ICモジュールに所定の駆動電源を供給するレギュレータを備えることが好ましい。

#### [0011]

また、より好ましい具体的な態様として、前記ICモジュールは、ICカードリーダ・ライタとの間で電磁波を媒体として電力と通信情報を受けるものである。

また、本発明の携帯端末は、非接触 I C モジュールを搭載した携帯端末において、前記請求項1乃至4のいずれか一項に記載の非接触 I C システムを備えることを特徴としている。

## 【発明の効果】

#### [0012]

以上、詳述したように、本発明によれば、電力供給を通信期間に限定でき、バッテリの 電力消費を最小限に抑えることができる。また、電波を介した電磁誘導による電力供給が 微弱あるいは不安定であっても安定した通信を行うことができる。

#### 【発明を実施するための最良の形態】

#### [0013]

以下、添付図面を参照しながら本発明の好適な非接触ICシステム及び携帯端末の実施の形態について詳細に説明する。

#### [0014]

#### 第1の実施の形態

図1は、本発明の第1の実施の形態に係る非接触ICシステムが適用される携帯端末の構成を示す図であり、図1(a)はその正面図、図1(b)はその背面図である。非接触ICモジュールを搭載した携帯電話などの通信端末に適用した例である。

図1において、100は携帯電話(携帯端末)であり、1は携帯電話100に内蔵された非接触ICシステムを示す。

#### [0015]

通常の非接触ICカードは、二次電池やバッテリなどの外部電源を持たず、アンテナコイルを介した電磁誘導による電力をICモジュールの駆動電源として使用する。これに対して、本非接触ICシステム1は、携帯電話100のバッテリによる電力を駆動電源として使用し、電磁誘導による電力は主にICモジュールの電源制御の判定材料として使用する。

#### [0016]

図2は、上記非接触ICシステム1の構成を示すブロック図である。

図2において、1は非接触ICシステム、2はICカードリーダ・ライタである。



#### [0017]

中央演算処理器 1 3 は、CPUと該CPUにより実行されるプログラムやデータを記憶するROM・RAM・EEPROM (electrically erasable programmable ROM) 等からなるマイクロコンピュータにより構成され、アンテナコイル 1 1 を介して供給される電力の検出結果及びICモジュール 1 2 の通信状態に応じてICモジュール 1 2 の駆動電源を制御する。中央演算処理器 1 3 は、非接触 ICシステム 1 における各種制御を実行するシステム専用の中央演算処理器として構成されていてもよいが、携帯電話のCPU等からなる制御部が、駆動電源制御プログラムとして兼用・実行する態様でもよい。また、プロセッサ等を用いずにタイマによるシーケンシャル制御を行う電子回路でもよい。

#### [0018]

スイッチ18は、プッシュボタンのような物理的なスイッチ、及び/又は携帯電話100のメニューあるいはオプション設定のようなソフトウェア的なスイッチで構成する。

#### [0019]

非接触 I C システム 1 は、 I C モジュール 1 2 、中央演算処理器 1 3 、レギュレータ 1 4 、電圧検出回路 1 5 及びスイッチ 1 8 が、相互にバス 1 7 を介して接続されている。

また、アンテナコイル11とICモジュール12は、インタフェース(I/F)を形成し、中央演算処理器13は、このインタフェースからの情報により各種制御を行うとともに、後述する駆動電源制御を実行する。

#### [0020]

以下、上述のように構成された非接触ICシステムの動作を説明する。まず、非接触ICシステム1とICカードリーダ・ライタ2との間の電力検出動作について簡単に説明する。

#### [0021]

ICカードリーダ・ライタ2によって発せられた電波は、アンテナコイル11を介してICモジュール12に到達する。この時、アンテナコイル11の電磁誘導によってICモジュール12の電磁誘導起電圧が上昇し、電圧検出回路15は、この電磁誘導起電圧上昇による電圧変動を検出する。電圧検出回路15により検出された電圧変動は、バス17を介して中央演算処理器13に通知される。電圧検出回路15は、電磁誘導による電力を検出する検出手段を構成する。

#### [0022]

また、ICカードリーダ・ライタ2によって発せられた電波は、アンテナコイル11を介してICモジュール12に到達する。この電波に通信波が含まれているとき、ICモジュール12は、アンテナコイル11を介してICカードリーダ・ライタ2と通信を行う。ICモジュール12が検出した通信開始又は通信終了信号は、バス17を介して中央演算処理器13に通知される。このようにして、ICモジュール12の通信状態が検出される

#### [0023]

中央演算処理器13は、上記検出結果に応じてバス17を介してレギュレータ14を制御し、ICモジュール12への駆動電源ON/OFFを行う。中央演算処理器13は、ICモジュール12の駆動電源を制御する手段を構成する。

#### [0024]

図3は、非接触 I Cシステム 1 の電源制御動作を示す制御シーケンス図である。

まず、アンテナコイル11に微弱な電力搬送波が検出される。ほどなくアンテナコイル11で電磁誘導が発生する。電磁誘導による交流は、ICモジュール12内の電源回路22で整流され、電磁誘導起電圧として電圧検出回路15へ出力される。電圧検出回路15は、電圧変動を検出して中央演算処理器13に通知する。中央演算処理器13は、ICモジュール12への電源供給の準備としてタイマを始動させる(ステップ201)。その後、レギュレータ14を制御してICモジュール12への電源供給を開始する(ステップ202)。

#### [0025]

ICモジュール12は、電源供給を受けた後、ICカードリーダ・ライタ2と通信を開始する。ICモジュール12では、通信開始を中央演算処理器13に通知する。中央演算処理器13は、通信開始を受けてタイマの設定時間をリセットする(ステップ203)。ICモジュール12は、ICカードリーダ・ライタ2との通信が終了した時点で通信終了を中央演算処理器13に通知する。中央演算処理器13は、通信終了を受けてタイマの設定時間をリセットする(ステップ204)。

#### [0026]

タイマがタイムアウトした時点で中央演算処理器13はタイマを停止させる(ステップ205)。中央演算処理器13は、タイマのタイムアウトを受けてレギュレータ14を制御してICモジュール12への電源供給を終了する(ステップ206)。タイマは電源供給終了と電力搬送波の誤検出と通信異常と通信終了直後の通信再開を処理するために使用するものである。

#### [0027]

上記ステップ201の後、一定時間経ってもICモジュール12から通信開始の通知が無い場合には、電力搬送波の誤検出としてステップ205が実行され、ICモジュール12へ電源供給を終了する。また、上記ステップ203の後、一定時間経ってもICモジュール12から通信終了の通知が無い場合は通信異常としてステップ205が実行され、ICモジュール12へ電源供給を終了する。

#### [0028]

ステップ204の後は通信が再開される可能性を考慮して一定時間通信状態を監視する。また、ステップ206でICモジュール12への電源供給を終了した直後に電圧検出回路15が電圧変動を検出しないように一定時間電圧変動検出を無視する。ステップ201、ステップ203、ステップ204で設定するタイマの設定時間はそれぞれ適当に設定する。

#### [0029]

以上説明したように、本実施の形態に係る非接触ICシステム1は、携帯電話100の 筐体内に搭載され、アンテナコイル11、アンテナコイル11で受けた電波により電力と 通信情報を受けるICモジュール12、システム全体の制御を行うとともにICモジュー ル12の駆動電源を制御する中央演算処理器13、駆動電源をICモジュール12に供給 するレギュレータ14、アンテナコイル11を介して供給される電力を検出する電圧検出 回路15、バッテリ16、バス17、及びスイッチ18を備え、中央演算処理器13は、 アンテナコイル11を介して供給される電力の検出結果及びICモジュール12の通信状態に応じてICモジュール12の駆動電源を制御するので、電波を介した電磁誘導による 電力供給が微弱あるいは不安定であっても安定した通信を行うことができる。

#### [0030]

すなわち、ICモジュールへ常時電力供給する従来の非接触ICカードでは、通信を行っていない期間もバッテリの電力を消費してしまうが、本実施の形態の非接触ICシステム1は、アンテナコイル11の電磁誘導による電力とICモジュール12の通信とを中央演算処理器13が監視し、ICモジュール12への電力供給を制御しているため、電力供給を通信期間に限定することができる。そのため、バッテリの電力消費を最小限に抑えることができる。

#### [0031]



#### [0032]

## 第2の実施の形態

図4は、本発明の第2の実施の形態に係る非接触ICシステムの電源制御動作を示す制 御シーケンス図である。図3と同一制御シーケンスを行うステップには同一番号を付して 重複部分の説明を省略する。また、本実施の形態の非接触ICシステムのハード的構成は 、図2と同様である。

#### [0033]

第1の実施の形態では、ステップ201を実行する要因として電圧検出回路15の電圧 変動検出を挙げていたが、本実施の形態は図4に示すようにスイッチ18の状態変化検出 としている。

## [0034]

すなわち、中央演算処理器13は、スイッチ18の変化を監視しており、スイッチ18 の変化を検出すると、ステップS201で中央演算処理器13は、ICモジュール12へ の電源供給の準備としてタイマを始動させる。その後、レギュレータ14を制御してIC モジュール12への電源供給を開始する(ステップ202)。以降の電源制御動作は、第 1の実施の形態と同様である。

#### [0035]

第2の実施の形態よれば、本非接触ICシステムを利用するユーザは、ICカードリー ダ・ライタ2との通信を事前に察知することができるため、ユーザは通信を行う前にスイ ッチ18の状態を変化させることができる。これにより、電波を受ける前にICモジュー ルへ電源が供給されるため、電波受信後すぐに通信を行うことができ、通信時間を短縮す ることができる。

#### [0036]

なお、上記各実施の形態に係る非接触ICシステムでは、携帯電話100の筐体内に内 蔵した例であるが、非接触ICシステムであればどのような携帯端末に用いてもよい。上 記非接触ICシステム10の端末である電子装置としては、例えば、携帯電話機/PHS (Personal Handy-Phone System) の携帯通信端末のほか、ノート型パーソナルコンピュ ータ、PDA (Personal Digital Assistants) 等の携帯情報端末に適用可能である。

#### [0037]

また、上記各実施の形態では、端末の筺体内に搭載される例について説明したが、端末 装置等の一部に非接触ICシステム機能として組み込まれたものであってもよい。あるい は、非接触ICカードとして構成され、端末装置に装着後は、バッテリやICモジュール の駆動電源制御機能を該端末装置に依存する態様であってもよい。この場合は、バッテリ は端末装置のバッテリと共用され、ICモジュールの駆動電源制御機能は端末装置の制御 部が実行することになる。いずれにしても非接触ICシステムが携帯端末に搭載されてい るためバッテリや中央演算処理器等が携帯端末装置と共用できるので部品点数の増大がな く低コストで、容易に実施することができる。

## [0038]

また、上記各実施の形態では、非接触ICシステムの名称を用いているが、これは説明 の便宜上であり、例えば電力供給装置、電源制御装置等でもよく、また、非接触ICシス テムがJRのEOカードのような非接触ICカードであってもよい。

#### [0039]

さらに、上記非接触ICシステムを構成するICモジュール、電圧検出回路、レギュレ ータ等の種類、数など、タイマセット/リセット例などは上述した各実施の形態に限られ ない。

#### 【図面の簡単な説明】

- [0040]
  - 【図1】本発明の第1の実施の形態に係る非接触ICシステムが適用される携帯端末の構成を示す図である。
  - 【図2】本実施の形態の非接触ICシステムの構成を示すブロック図である。
  - 【図3】本実施の形態の非接触ICシステムの電源制御動作を示す制御シーケンス図である。
  - 【図4】本発明の第2の実施の形態に係る非接触ICシステムの電源制御動作を示す 制御シーケンス図である。

#### 【符号の説明】

- [0041]
- 1 非接触ICシステム
- 2 ICカードリーダ・ライタ
- 11 アンテナコイル
- 12 ICモジュール
- 13 中央演算処理器(制御手段,通信状態検出手段)
- 14 レギュレータ
- 15 電圧検出回路(電力検出手段)
- 16 バッテリ
- 17 バス
- 18 スイッチ
- 21 制御回路
- 22 電源回路
- 23 通信回路
- 100 携带電話(携帯端末)









## 【図3】







【要約】

【課題】 電波を介した電磁誘導による電力供給が微弱あるいは不安定であっても安定した通信を行える非接触 I C システム及び携帯端末を提供する。

【選択図】 図3

特願2003-315323

出願人履歴情報

識別番号

[000005049]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住所

大阪府大阪市阿倍野区長池町22番22号

氏 名

シャープ株式会社

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| ☐ BLACK BORDERS                                         |
|---------------------------------------------------------|
| ☐ TMAGE CUT OFF AT TOP, BOTTOM OR SIDES                 |
| FADED TEXT OR DRAWING                                   |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                    |
| ☐ SKEWED/SLANTED IMAGES                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| ☐ GRAY SCALE DOCUMENTS                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| П отнер.                                                |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.