Jointly Detecting and Separating Singing Voice: A Multi-Task Approach

Daniel Stoller¹. Sebastian Ewert^{2*}. Simon Dixon¹

¹Centre for Digital Music Queen Mary University of London

> ²Spotify London

I VA ICA 05.07.2018

^{*}Work was conducted at Queen Mary University of London

Introduction

- Main task: Separate vocals from music pieces
- Applications: Karaoke generation, singer identification, voice analysis...

- Difficult task, small multi-track datasets ⇒ Overfitting
- Give model more knowledge:
 - Regularization (e.g. weight decay)

- Difficult task, small multi-track datasets ⇒ Overfitting
- Give model more knowledge:
 - Knowledge-driven (e.g. KAM [4])

- Difficult task, small multi-track datasets ⇒ Overfitting
- Give model more knowledge:
 - Informed source separation [2]

- Difficult task, small multi-track datasets ⇒ Overfitting
- Give model more knowledge:
 - Integrate information from related tasks/datasets

Goal

- Which other tasks could help?
- Vocal activity detection is promising:
 - Knowing vocal activity improves vocal separation [1]
 - Vocal detection networks learn a form of separation: [5]

Using additional non-vocal sections

- U-Net adaptation [3] as separator, MSE loss
- Sample instrumental sections also from SVD databases
- ⇒ Diversifies instrumental training data

Song B SVD Database

Results

Performance decrease

Results

Performance increase

Results

Performance decrease

Results

Performance decrease

Dataset bias?

Dataset bias

Analysis

Introduction and motivation

Key idea: Predict both audio and label

Introduction and motivation

Key idea: Predict both audio and label

$$L_{\text{MTL}} = \alpha L_{\text{MSE}} + (1 - \alpha) L_{\text{CE}}$$

Introduction and motivation

Key idea: Predict both audio and label

$$L_{\text{MTL}} = \alpha L_{\text{MSE}} + (1 - \alpha) L_{\text{CE}}$$

Robust to dataset bias and label accuracy

Introduction and motivation

Key idea: Predict both audio and label

$$L_{\text{MTL}} = \alpha L_{\text{MSE}} + (1 - \alpha) L_{\text{CE}}$$

Can train with vocal sections from SVD data

Introduction and motivation

Key idea: Predict both audio and label

$$L_{\text{MTL}} = \alpha L_{\text{MSE}} + (1 - \alpha) L_{\text{CE}}$$

Needs only mixture at test time

Introduction and motivation

Key idea: Predict both audio and label

$$L_{\rm MTL} = \alpha L_{\rm MSE} + (1-\alpha) L_{\rm CE}$$

Solves two tasks at once

Experimental setup

Model architecture and dataset

DSD100 as SVS, Jamendo as SVD training data

Experimental setup

Evaluation metrics: AU-ROC, MSE, SDR

- AU-ROC for SVD
- MSE and SDR/SIR/SAR for separation
 - SDR gives log(0) for non-vocal sections ($\approx 10\%$)
 - ⇒ Also measure RMS of vocal estimates for non-vocal sections

Results

Single-task vs. multi-task model

		Metric								
					Vocals			Accompaniment		
		AU-ROC	MSE	Non-voc. RMS	SDR	SIR	SAR	SDR	SIR	SAR
Model	SVD	0.9239	-	-	-	-	-	-	-	-
	SVS	-	0.01865	0.0194	2.83	5.27	6.88	6.71	14.75	13.25
	Ours	0.9250	0.01755	0.0155	2.86	5.56	6.23	6.69	13.24	14.11

Table: Comparing SVS and SVD baseline with our approach

Results

Qualitative comparison

Summary

- Current SotA methods only use multi-track data
- Our approach also uses SVD databases
- Improved separation and detection performance
- Future work: Larger datasets, more related tasks

T.-S. Chan, T.-C. Yeh, Z.-C. Fan, H.-W. Chen, L. Su, Y.-H. Yang, and R. Jang.

Vocal activity informed singing voice separation with the ikala dataset. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pages 718–722. IEEE, 2015.

S. Ewert, B. Pardo, M. Müller, and M. D. Plumbley. Score-informed source separation for musical audio recordings: An overview.

IEEE Signal Processing Magazine, 31(3):116–124, 2014.

A. Jansson, E. J. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and T. Weyde.

Singing voice separation with deep U-Net convolutional networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 323-332, 2017.

A. Liutkus, D. Fitzgerald, and Z. Rafii. Scalable audio separation with light kernel additive modelling. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 76–80. IEEE, 2015.

J. Schlüter.

Learning to pinpoint singing voice from weakly labeled examples. In *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, pages 44–50, 2016.