Predicting Closing Stock Exchange Prices on the NYSE & NASDAQ

Matthew Griswold, Andrew Mekhail, Michal Michael, Shelley Mitchell, Dhaval Patel

Big Question

Based on a given set of variables, can machine learning predict whether a stock exchange index will close higher or lower than previous close?

Applicability

Project Background

Dataset

We utilized two datasets from Kaggle (please see link below)

https://www.kaggle.com/mattiuzc/stock-exchange-data

Columns

The two CSVs were cross referenced by the Index to allow for more detail.

- indexProcessed.csv -Stock Exchange Index, Date, Open, High, Low, Close, Adj Close, Volume
- indexInfo.csv Region, Exchange, Index, Currency

Technology

We used 3 main technologies for different aspects of the project:

- SQL Postgres database
- Python data preparation and machine learning
- Tableau data visualization

Exploratory Analysis

These charts show the overall distribution of Up Vs. Down since 1966

NYSE and NASDAQ - Up/Down from 1966-2021

NYSE - Up/Down from 1966-2021

New York Stock Exchange and NASDAQ Over Time

This dashboard shows the importance of our exploration into the NYSE and NASDAQ data. We can see that over time people are buying indicies more and the average high is increasing.

ER Diagram

We started with 2 tables from Kaggle:

- indexInfo
- indexProcessed

We created 2 tables:

 Nasdaq & NYA - This was done by using a left Join on the "indexProcessed" and "indexInfo" table with a filter by index

We exported 2 tables back to SQL:

 NASDAQ_cleaned & NYA_cleaned - These tables are copied of the Nasdaq and NYA tables with new column names for data cleansing purposes

	Name	Туре	Explanation	NYA	NASDAQ
V A R I A B L E S	Index	Object	Index name (Eg: NYA, IXIC)	√	√
	Date	Datetime	Date in question	√	√
	Open	Float64	Opening value of the Index on the date	√	√
	High	Float64	High value of the Index on the date	√	√
	Low	Float64	Low value of the Index on the date	√	√
	Close	Float64	Closing value of the Index on the date	\checkmark	√
	Adj Close	Float64	Adjusted Closing value of the Index on the date	√	√
	Volume	Int64	Volume traded of the Index on the date	√	√
	CloseUSD	Float64	Closing value of the Index on the date in USD	√	√
	Region	Object	Region where Index is located	√	√
	Exchange	Object	Full name (Eg: New York Stock Exchange)	√	✓
	Currency	Object	Currency index is traded in	√	√

Data Cleansing & Wrangling

Dropped NaN/ Nulls

Added previous day's High, Low, Close to today's row

Added Delta and Target Columns

- Delta: % gain or loss based on Close price
- Target: Determine
 Up/Down Trend based
 on Delta

Machine Learning Models

Supervised Machine Learning Models Used:

- Logistic Regression
- Balanced Random Forest Classifier
- SMOTE oversampling
- Undersampling
- Decision Tree Model

Machine Learning Preparation:

We decided on the following **Features** for the model:

- Open
- PrevHigh
- PrevLow
- PrevClose

We tried to predict the **Target**: whether or not the index closed higher or lower than the previous day.

Logistic Regression

NYSE

NASDAQ

Accuracy: 0.85

Accuracy: 0.62

Drawback: Assumes linearity between dependent and independent variables

Success: Solid baseline!

Decision Tree Model

NYSE

NASDAQ

Accuracy: 0.76 Precision: 0.76

F1: 0.76

Accuracy: 0.63 Precision: 0.63

F1: 0.63

Drawback: Sensitive to small changes in data

Success: Visually intuitive and efficient!

Balanced Random Forest Classifier

NYSE

NASDAQ

Accuracy: 0.77 Precision: 0.77

F1: 0.77

Accuracy: 0.64 Precision: 0.64

F1: 0.64

Drawback: Value gained from additional samples drops off over time

Success: Handles linear and non-linear relationships well!

SMOTE Oversampling

NYSE

NASDAQ

Accuracy: 0.87 Precision: 0.88

F1: 0.87

Accuracy: 0.78 Precision: 0.78

F1: 0.78

Drawback: Overfitting more likely

Success: Doesn't lose any information!

Undersampling

NYSE

NASDAQ

Accuracy: 0.87 Precision: 0.87

F1: 0.87

Accuracy: 0.77 Precision: 0.78

F1: 0.78

Drawback: Potentially discarding useful data

Success: Helps against skewing towards the majority class!

Machine Learning Model Results and Score Trends

Tableau

Results

It was better at predicting for the NYSE than NASDAQ

The model was more accurate at predicting **higher** closings than it was at predicting **lower** closings

SMOTE Oversampling and Undersampling had the highest accuracy, precision, and F1 scores

Accuracy was better when resampled

What We Would Do Differently

Zoom in on a particular stock or industry to see if there will be an accuracy improvement

Look up existing machine learning progress/accuracy with stock predictions

Use a different model such as one that predicts continuous variables

Recommendations for Future Analysis

Predict closing price

Account for time series

Run model with different stock exchanges

Predict closing direction for individual stocks

