NTIN071 A&G: Tutorial 12 – Intro to complexity theory

Teaching goals: The student is able to

- give formal definitions of TIME(f(n)) and SPACE(f(n))
- define the complexity classes P, NP (both verifier and NTM-based), co-NP
- define polynomial-time reductions, NP-hardness, NP-completeness
- design polynomial-time reductions between problems
- decide whether complexity classes are closed under various operations

IN-CLASS PROBLEMS

Problem 1. Show that the problems CLIQUE, INDEPENDENT-SET, and VERTEX-COVER defined below are polynomial-time inter-reducible.

CLIQUE

In: A graph G = (V, E) and an integer $k \ge 0$.

Q: Does G contain (as a subgraph) the complete graph (clique) on at least k vertices?

INDEPENDENT-SET

In: A graph G = (V, E) and an integer k > 0.

Q: Does G contain an independent set of size at least k, i.e., $S \subseteq V$, $|S| \ge k$ with no edge connecting a pair of vertices from S?

VERTEX-COVER

In: A graph G = (V, E) and an integer $k \ge 0$.

Q: Does G have a vertex cover of size at most k, i.e., $S \subseteq V$, $|S| \le k$ containing at least one vertex from every edge?

Problem 2. Use the well-known fact that Hamiltonian-cycle is NP-complete to show that oriented-hamiltonian-cycle, (s,t)-hamiltonian-path, and Hamiltonian-path are NP-complete as well.

HAMILTONIAN-CYCLE

In: An (unoriented) graph G = (V, E).

Q: Does G contain a Hamiltonian cycle, i.e., a cycle containing every vertex?

ORIENTED-HAMILTONIAN-CYCLE

In: An oriented graph G = (V, E).

Q: Does G contain an oriented Hamiltonian cycle, i.e., an oriented cycle containing every vertex?

(s,t)-HAMILTONIAN-PATH

In: An (unoriented) graph G = (V, E) and a pair of vertices $s, t \in V$.

Q: Does G contain a Hamiltonian path from s to t, i.e., a path that starts in s, ends in t, and visits every vertex exactly once?

HAMILTONIAN-PATH

In: An (unoriented) graph G = (V, E).

Q: Does G contain a Hamiltonian path, i.e., a path that visits every vertex exactly once?

Problem 3. Show that the class P is closed under union, intersection, and complement.

Problem 4. Show that the class NP is closed under union and intersection.

EXTRA PRACTICE AND THINKING

Problem 5. Show that VERTEX-COVER is polynomial-time reducible to DOMINATING-SET.

DOMINATING-SET

In: A graph G = (V, E) and an integer $k \ge 0$.

Q: Does G contain a set of vertices $S \subseteq V$ of size at most k such that every $v \in V \setminus S$ has a neighbor in S?

Problem 6. Show that HAMILTONIAN-CYCLE is polynomial-time reducible to TRAVELING-SALESPERSON.

TRAVELING-SALESPERSON

IN: A list of cities $C = \{c_1, \ldots, c_n\}$, distances $d(c_i, c_j) \in \mathbb{N}$ between each pair of cities, and $D \in \mathbb{N}$.

Q: Is there a route of length at most D that visits every city exactly once and returns to the origin city?

Problem 7. Show that HAMILTONIAN-CYCLE is polynomial-time reducible to SAT.

Problem 8. Show that GRAPH-COLORING is NP-complete.

GRAPH-COLORING

In: A graph G = (V, E) and $k \in \mathbb{N}$.

Q: Can we color vertices of G with at most k colors so that there are no monochromatic edges?

Problem 9. Show that the class P is closed under iteration. That is, if $L \in P$, then L^* is also in P. (Hint: Design a table-filling algorithm where T[i,j] = 1 iff $a_i \dots a_j \in L^*$.)