• 다음 내용을 위해 필수적으로 알아야 하는 것들

input data

Input Data

nueral net 이라는 것은 연결되어있는 구조이다.

이것의 인풋이 input data 이걸 어떻게 숫자로 converting 하는 과정이 필요하다.

Output / Class / Label

Training / Learning

training 당연한게 있음 optimizer 을 통해서 잘 모델링 할 수 있도록 weight 를 살짝씩 바꾸어서 training 해가는 과정

Dataset

training data

validation data

test data

이런걸 만드는 일련의 과정에는 절대 관여해서는 안된다.

만약에 가지고 있는 데이터가 작다고 생각한다면 validation data 를 사용하는 것이 아깝다고 느껴질수도 있다. 이런 경우는 어떻게 해야할까?

이런 경우에는 cross - validation 을 사용한다.

Input

젤 직관적이다.

Basic single layer network 1 2 W Weight

b

Bias

어떤 n dimension 에서 n dimension 으로 가는 뭔가를 찾는 것

여기에다가 3가지 숫자 각각이 activation function 이 작동 레이어를 여러개 쌓을때 중요

Basic single layer network

(Neural) Network

activation function 의 필요

Multi-Layer Perceptron

이런거에 다시 행렬을 곱하고 하는게 중요..

dense layer 뭐시기 저시기

none linearlity 를 주기 위해서

sigmoid thanh relu softplus

Multi-Layer Perceptron

Activation Function

epoch

epoch 은 내가 전체 데이터를 한번 다 사용했을때의 단위이다.

만약 2000만개의 데이터가 존재한다고 한다면 이게 다 업데이트 될 때 그게 1 epoch 인것임

batch size

한번에 2000만개를 다 돌릴 수는 없으므로 일반적으로 배치 사이즈 만큼의 mini batch learning 을 한다.

batch size 는 한번 gradient를 계산할때 사용하는 데이터의 숫자이다.

iteration 은 통과한 수이다.

cost function

우리가 원하는 것 같다고 하더라도 cost function 은 다를 수 있다.

• mnist

MNIST (Mixed National Institute of Standards and Technology)

0	1	a	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	A	3	4	5	6	9	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0		S	3	4	5	6	7	8	9