ROBUST PSEUDO-MARKETS FOR REUSABLE PUBLIC RESOURCES

EC 2023

SID BANERJEE, **GIANNIS FIKIORIS**, ÉVA TARDOS

CORNELL UNIVERSITY

 \blacksquare *n* agents

- n agents
- T rounds

- n agents
- T rounds
- Indivisible reusable resource

- n agents
- T rounds
- Indivisible reusable resource
- Time sensitive demands

- n agents
- T rounds
- Indivisible reusable resource
- Time sensitive demands
- Cannot charge money

- n agents
- T rounds
- Indivisible reusable resource
- Time sensitive demands
- Cannot charge money
- Scientific Research:
 - ► Telescope
 - Gene sequencer
 - Computing cluster

- n agents
- T rounds
- Indivisible reusable resource
- Time sensitive demands
- Cannot charge money
- Scientific Research:
 - ► Telescope
 - Gene sequencer
 - Computing cluster
- Simulate market with artificial currency

Agent *i* on round *t*:

■ Duration $K_i[t]$

- Duration $K_i[t]$
- Per-round value V_i[t]

- Duration $K_i[t]$
- \blacksquare Per-round value $V_i[t]$
- Non-preemptive

- Duration $K_i[t]$
- \blacksquare Per-round value $V_i[t]$
- Non-preemptive

- Duration $K_i[t]$
- \blacksquare Per-round value $V_i[t]$
- Non-preemptive

- Duration $K_i[t]$
- \blacksquare Per-round value $V_i[t]$
- Non-preemptive

- Duration $K_i[t]$
- \blacksquare Per-round value $V_i[t]$
- Non-preemptive

- Duration $K_i[t]$
- Per-round value $V_i[t]$
- Non-preemptive

Agent *i* on round *t*:

- Duration $K_i[t]$
- \blacksquare Per-round value $V_i[t]$
- Non-preemptive

■ Bayesian setting: (V_i[t], K_i[t]) ~ F_i

■ Incomparable values: social welfare is ill-defined

- Incomparable values: social welfare is ill-defined
- Individual agent benchmark (fairness)

- Incomparable values: social welfare is ill-defined
- Individual agent benchmark (fairness)
- Agent *i* has fair share $\alpha_i \in (0, 1)$

- Incomparable values: social welfare is ill-defined
- Individual agent benchmark (fairness)
- Agent *i* has fair share $\alpha_i \in (0, 1)$
- For single round demands where

$$V_i[t] = 1 \quad \text{w.p. } 1$$

cannot expect total utility T

- Incomparable values: social welfare is ill-defined
- Individual agent benchmark (fairness)
- Agent *i* has fair share $\alpha_i \in (0, 1)$
- For single round demands where

$$V_i[t] = 1 \quad \text{w.p. } 1$$

cannot expect total utility T

For single round demands where

$$V_i[t] = 1$$
 w.p. α_i

can hope for total utility $\approx \alpha_i T$

Individual agent guarantee

Defined in [Gorokh-Banerjee-Iyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

Individual agent guarantee

- Simplified setting:
 - ► Agent *i* is alone
 - ▶ Win at most α_i fraction of the rounds

Defined in [Gorokh-Banerjee-Iyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

Individual agent guarantee

- Simplified setting:
 - ► Agent *i* is alone
 - ▶ Win at most α_i fraction of the rounds
 - Policy $\pi_i(V_i[t], K_i[t])$

Defined in [Gorokh-Banerjee-Iyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

Individual agent guarantee

- Simplified setting:
 - ► Agent *i* is alone
 - ▶ Win at most α_i fraction of the rounds
 - Policy $\pi_i(V_i[t], K_i[t])$
 - ► Ideal utility v_i^* : expected per-round utility under π_i^*

Defined in [Gorokh-Banerjee-Iyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

Individual agent guarantee

- Simplified setting:
 - ► Agent *i* is alone
 - ightharpoonup Win at most α_i fraction of the rounds
 - Policy $\pi_i(V_i[t], K_i[t])$
 - ► Ideal utility v_i^* : expected per-round utility under π_i^*
- Independent of other agents

Defined in [Gorokh-Banerjee-Iyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

Individual agent guarantee

- Simplified setting:
 - ► Agent *i* is alone
 - ightharpoonup Win at most α_i fraction of the rounds
 - Policy $\pi_i(V_i[t], K_i[t])$
 - ► Ideal utility v_i^* : expected per-round utility under π_i^*
- Independent of other agents

Theorem - Ideal Utility Calculation

 v_i^{\star} and π_i^{\star} can be computed by an LP.

Defined in [Gorokh-Banerjee-lyer, EC'21] for single round demands, related to [Kalai-Smorodinsky, Econometrica'75]

First-Price Pseudo-Auction with Multi-Round Reserves

First-Price Pseudo-Auction with Multi-Round Reserves

First-Price Pseudo-Auction with Multi-Round Reserves

Input: fair shares $\alpha_1, \ldots, \alpha_n$ and reserve price r

1. Agent *i* gets $\alpha_i T$ credits

First-Price Pseudo-Auction with Multi-Round Reserves

- 1. Agent *i* gets $\alpha_i T$ credits
- 2. Every round t: first-price auction with multi-round reserve r

First-Price Pseudo-Auction with Multi-Round Reserves

- 1. Agent *i* gets $\alpha_i T$ credits
- 2. Every round t: first-price auction with multi-round reserve r
 - Collect desired durations and per-round bids

First-Price Pseudo-Auction with Multi-Round Reserves

- 1. Agent *i* gets $\alpha_i T$ credits
- 2. Every round t: first-price auction with multi-round reserve r
 - Collect desired durations and per-round bids
 - Highest valid per-round bid wins

MECHANISM

First-Price Pseudo-Auction with Multi-Round Reserves

Input: fair shares $\alpha_1, \ldots, \alpha_n$ and reserve price r

- 1. Agent *i* gets $\alpha_i T$ credits
- 2. Every round t: first-price auction with multi-round reserve r
 - Collect desired durations and per-round bids
 - Highest valid per-round bid wins
 - Multi-round bids must be at least reserve r

Robust Bidding Policy: follow π_i^{\star} and bid reserve price r

Robust Bidding Policy: follow π_i^{\star} and bid reserve price r

Theorem - Robust Guarantee

If $r \ge 1$ then even under adversarial competition agent i can guarantee expected utility

$$v_i^* T \min \left\{ \frac{1}{r}, 1 - \frac{1 - \alpha_i}{r} \right\} - O\left(\sqrt{T}\right)$$

Robust Bidding Policy: follow π_i^{\star} and bid reserve price r

Theorem - Robust Guarantee

If $r \ge 1$ then even under adversarial competition agent i can guarantee expected utility

$$v_i^* T \min \left\{ \frac{1}{r}, 1 - \frac{1 - \alpha_i}{r} \right\} - O\left(\sqrt{T}\right)$$

Maximized if r = 2:

$$\frac{\mathbf{v}_{i}^{\star}}{2}T-O\left(\sqrt{T}\right)$$

■ If r = 1 others block agent i

■ If r = 1 others block agent i

■ If r = 1 others block agent i

■ If r = 2 others win at most $\approx \frac{7}{2}$ rounds

■ If r = 1 others block agent i

■ If r = 2 others win at most $\approx \frac{T}{2}$ rounds

▶ If $K_i[t] = 1$ agent i wins α_i fraction of free rounds

■ If r = 1 others block agent i

■ If r = 2 others win at most $\approx \frac{7}{2}$ rounds

- ▶ If $K_i[t] = 1$ agent *i* wins α_i fraction of free rounds
- ▶ If $K_i[t] = 2$ rely on martingale argument

- Equal fair shares
- Identical distributions

- Equal fair shares
- Identical distributions
- Optimal social welfare ≤ *Tnv**

- Equal fair shares
- Identical distributions
- Optimal social welfare ≤ *Tnv**
- 2 bound on the PoA

Theorem - Optimality of mechanism

No mechanism can guarantee every agent *i* expected utility more than

$$V_i^{\star} T \left(\frac{1}{2} + O\left(\frac{1}{k_{\text{max}}}\right) \right)$$

as $n \to \infty$.

■ *n* identical agents with $\alpha_i = \frac{1}{n}$

- *n* identical agents with $\alpha_i = \frac{1}{n}$
- $(V_i[t], K_i[t]) = (1, k_{max})$ with small probability

- *n* identical agents with $\alpha_i = \frac{1}{n}$
- $(V_i[t], K_i[t]) = (1, k_{max})$ with small probability
- $\mathbf{v}_{i}^{\star} = \frac{1}{n} \implies Tn\mathbf{v}^{\star} = T$

- *n* identical agents with $\alpha_i = \frac{1}{n}$
- $(V_i[t], K_i[t]) = (1, k_{max})$ with small probability
- $\mathbf{v}_{i}^{\star} = \frac{1}{n} \implies Tn\mathbf{v}^{\star} = T$
- Social welfare at most $\frac{7}{2}$

SUMMARY

- Public reusable resource sharing
- Ideal utility: individual agent benchmark
- First-Price Pseudo-Auction with Multi-Round Reserves
- Robust Bidding Policy: guarantees half of total ideal utility
- No mechanism guarantees everyone more than half of total ideal utility