对外经贸大学金融学院研究生课程 期末论文

基于机器学习算法的 多因子组合策略实证分析

课程名称:	<u>高频交易与对冲套利</u>
任课教师:	严渝军、曹诗男
学期:	2018 年春季学期
姓 名:	张瑞、胡雨缦
专 业:	金融
培养层次:	博士 硕士(科硕) √ 硕士(专硕)

日期: 2018年7月6日

对外经济贸易大学 **研究生课程期末论文评阅表**

课程名和	尔: <u>高</u>	<u>频交易与对</u>	冲套利	课程性质	:选修课				
论文题目:基于机器学习的多因子组合策略实证分析									
学号: <u>201720210557、201720210659</u> 姓名: <u>张瑞、胡雨缦</u>									
培养层》	培养层次:(√)硕士/()博士								
学院: 金融学院 专业: 金融 完成日期: 2018 年 7 月 6 日									
选题要求	选题要求: (请任课教师说明学生应围绕哪些领域、方面写作)								
<i>♣₩</i> . Ж .	15	\ 	/\	^					
子致安汉	₹:	_ 字	分分数:	分					
评分要	℟:								
指标项*	论文选题	论文观点	论文材料	文字水平	论文格式与框架	总分			
分数									
仑文评语	:								
				任课教	师签字:				
					年	月日			

*指标项可根据课程需要,由任课教师进行调整。评语不限字数,具有针对性即可

目录

—、	模型	型理论	1
	1.	单因子计算	1
		Beta	1
		Momentum	1
		Size	1
		Earnings	1
		Volatility	1
		• Growth	2
		Value	2
		Leverage	2
		Liquidity	2
	2. 🛭	因子数据处理	3
		2.1 去极值	3
		2.2 标准化	3
		2.3 中性化	3
	3. 🛭	因子组合:	3
(_	2) 实	只证分析	4
	1. 🕏	实证数据	4
	2.	实证结果	4

一、模型理论

1. 单因子计算

本文选用 Barra 报告中提到的风格因子,具体计算方法如下:

Beta

$$r_t - r_{ft} = \alpha + \beta R_t + e_t$$

- (1) R_t : wind 全 A 指数收益率; r_t : 个股收益率; r_{ft} : 无风险收益率,设置为 3%
- (2) 时间窗口:过去 252 天涨跌幅日数据,设置 63 天半衰期,即回归时每 63 天前的数据权重是当前天的一半。

Momentum

RSTR =
$$\sum_{t=L}^{T+L} w_t [\ln(1+r_t) - \ln(1+r_{ft})]$$

 r_t :个股收益率; r_{ft} :无风险收益率; w_t :是半衰期为 126 天的权重,与 Beta 的半衰期计算方法相同。

时间窗口:T=504 个交易日,L=21 个交易日 (滞后)。

Size

总市值取对数。(wind 中有对数市值这一因子)

Earnings

0.68*EPIBS+0.11*ETOP+0.21*CETOP

- (1) EPIBS=est_eps / p, est_eps 为 wind 一致预期每股收益(一年)。
- (2) ETOP=earnings_ttm / mkt_freeshares, 过去 12 个月个股净利润除以当前市值。
- (3) CETOP=Cash_earnings/p,使用现金净流量除以股票价格。

Volatility

0.74*DASTD+0.16*CMRA+0.1*HSIGMA

- (1) DASTD = $(\sum_{t=1}^{T} w_t * (r_t \mu(r))^2)^{1/2}$, 过去 252 天,半衰期为 42。
- (2) $CMRA = max\{Z(T)\} min\{Z(T)\}, T = 1, \dots, 12$

其中,
$$Z(T) = \sum_{t=1}^{T} [\ln(1+r_t) - \ln(1+r_{ft})]$$
, 月收益数据

 $HSIGMA=std(e_t)$, e_t 为计算 Beta 所得。

Growth

0.47*SGRO+0.24*EGRO+0.18*EGIBS+0.11*EGIBS S

- (1) SGRO:过去5年企业营业总收入复合增长率。
- (2) EGRO:过去5年企业归属母公司净利润复合增长率。
- (3) EGIB:未来3年企业一致预期净利润增长率。
- (4) EGIB_S:未来1年企业一致预期净利润增长率。

Value

Common_equity / current_market_capitalization

企业总权益除以当前市值

Leverage

0.38*MLEV+0.35*DTOA+0.27*BLEV

- (1) MLEV=(ME+LD)/ME, ME 表示企业当前总市值,LD 为长期负债,使用非流动负债合计数据。
 - (2) DTOA=TD/TA, TD 表示总负债, TA 表示总资产。
 - (3) BLEV=(BE+LD)/BE, BE 表示企业账面价值, LD 表示长期负债

Liquidity

0.35*STOM + 0.35*STOQ + 0.3*STOA

- (1) STOM = $\ln \sum_{t=1}^{21} (V_t/S_t)$, V_t 表示当日成交量, S_t 表示流通股本。
- (2) STOQ = $\ln \left(\frac{1}{T} \sum_{t=1}^{T} \exp(STOM_t) \right)$, 其中 T=3 个月。
- (3) STOA = $\ln(\frac{1}{T}\sum_{t=1}^{T}\exp(STOM_t))$, 其中 T=12 个月

2. 因子数据处理

检验前需对因子数据进行一些处理,主要包括:去极值、标准化、中性化。以上处理以日横截面数据为单位进行。

2.1 去极值

本文中因子去极值采用 MAD 法,该方法是针对均值标准差方法的改进,把均值和标准差替换成稳健统计量。样本均值用样本中位数代替,样本标准差用样本 MAD (Median Absolute Deviation)代替:

$$md = median(x_i, i = 1,2 \cdots n)$$

$$MAD = median(|x_i - md|, i = 1,2 \cdots n)$$

$$MAD_e = 1.483 * MAD$$

通常把偏离中位数三倍MAD。一上的数据为异常值。

2.2 标准化

本文采用传统的均值标准差方法进行因子值标准化

2.3 中性化

本文主要考虑了市值中性和行业中性。具体操作即将因子值对市值、行业哑变量回归,所得残差作为因子风险暴露。

3. 因子组合:

单个弱学习器的预测能力有限,如何将多个弱学习器组合成一个强学习器,这是学习器集成需要探讨的问题。集成学习算法有两大种类,Bagging 系列(并行方法)和Boosting 系列(串行方法)。

使用 lightgbm 模型 (基于梯度提升决策树 GBDT), 对以上因子及因子收益率进行学习。

模型训练集:2007年1月1日起的因子数据

模型测试集:2009年1月1日至今

选择从 2007 年开始的两年数据进行滚动学习, 经测试, 使用全量数据进行学习, 即例如, 在 2015 年采用 07-14 年数据进行学习, 效果优于 2 年滚动学习。

模型调整频率:5天

调参采用主观形式,优化目标选择 binary error 即分类误差,据观察,算法可在迭代约 50 次后收敛,为防止过拟合,树深度设为 4。

由于标签提取采用了未来 5 天平均收益率,为避免使用未来信息,模型预测从训练集+6 的日期开始预测。

(二) 实证分析

1. 实证数据

使用 Boosting 集成学习分类器,最终在每 5 天可以产生对全部个股上涨或下跌的预测值,即在每 5 天将因子池中所有因子合成为一个"因子"。接下来,我们对该模型合成的这个"因子"(即个股下期收益预测值)进行回测,回测模型构建方法如下:

1.股票池: 中证 500 股票池, 剔除 ST 股票 (包括摘帽 60 日以内的股票), 剔除每个截面期下一交易日停牌的股票, 剔除上市 3 个月以内的股票。

2.回测区间:2009-01-01 至 2018-06-05。

3.换仓期:每5个交易日核算因子值,并在下个交易日按当日 vwap 价格换仓。

4.数据处理方法:将 Boosting 集成学习模型的预测值视作单因子,因子值为空的股票不参与分层。

5.分层方法:在每个中证 500 一级行业内部对所有个股按因子大小进行排序,每个行业内均分成 N 个分层组合,为 N 等分行业内个股权重累加值,行业间权重配比与基准组合(我们使用中证 500)相同,也即行业中性。

6. 评价方法:回测年化收益率、夏普比率、最大回撤等。

2. 实证结果

表 1 模型回测各统计指标数据

年化收益	最大回撤	波动率	夏普比率	换手率
14. 510%	9.769%	6.878%	2.10965	71. 16953

图 1 模型月频收益统计

图 2 模型分年度收益统计

图 3 模型超额收益累计净值曲线

从分年度收益来看, 2015 年超额收益极为显著, 且波动极低, 在一定程度上验证了该模型的有效性。但与此同时, 2017 和 18 年模型明显失效, 超额收益均为负, 也说明模型在 A 股的局限性, 无法适应所有市场清况。该情形的出现可能与 A 股结构调整有关。

在接下来的研究中, 我们将对 2017、18 年模型选股进行具体分析, 观察模型失效原因。我们可进一步优化算法, 通过因子特征工程处理, 剔除明显无用的冗余因子等方法, 尝试提高模型的兼容性。