MA 523: Homework 7

Carlos Salinas

October 31, 2016

CARLOS SALINAS PROBLEM 7.1

Problem 7.1

Solve the Dirichlet problem for the Laplace equation in \mathbb{R}^2

$$\begin{cases} \Delta u = 0 & \text{in } 1 < |x| < 2, \\ u = x_1 & \text{on } |x| = 1, \\ u = 1 + x_1 x_2 & \text{on } |x| = 2. \end{cases}$$

(Hint: Use Laurent series.)

SOLUTION.

CARLOS SALINAS PROBLEM 7.2

Problem 7.2

Let Ω be a bounded domain with a C^1 boundary, $g \in C^2(\partial \Omega)$ and $f \in C(\bar{\Omega})$. Consider the so called *Neumann problem*

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = g & \text{on } \partial \Omega,
\end{cases}$$
(*)

where ν is the outer normal on $\partial\Omega$. Show that the solution of (??) in $C^2(\Omega) \cap C^1(\bar{\Omega})$ is unique up to a constant; i.e., if u_1 and u_2 are both solutions of (??), then $u_2 = u_1 + \text{const.}$ in Ω . (*Hint:* Look at the proof of the uniqueness for the Dirichlet problem by Energy methods [E, 2.2.5a].)

Solution.

CARLOS SALINAS PROBLEM 7.3

Problem 7.3

Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f & \text{in } \mathbb{R}^n \times (0, \infty), \\ u = g & \text{on } \mathbb{R}^n \times \{ t = 0 \}, \end{cases}$$

where $c \in \mathbb{R}$.

(*Hint:* Rewrite the problem in terms of $v(x,t) := e^{ct}u(x,t)$.)

SOLUTION.