ОЧКИ СОЛНЦЕЗАЩИТНЫЕ

Общие технические требования

Издание официальное

E3 12—2000/392

Предисловие

1 РАЗРАБОТАН Государственным унитарным предприятием «Центр нормативно-информационных систем» («ТКС-оптика ГОИ») с участием рабочей группы Технического комитета по стандартизации ТК 296 «Оптика и оптические приборы»

ВНЕСЕН Главным управлением технической политики в области стандартизации Госстандарта России

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 30 ноября 2001 г. № 499-ст
- 3 Настоящий стандарт в части 3.9-3.11, 4.2-4.4, 4.6 соответствует европейскому стандарту ЕН 1836-97 «Индивидуальная защита глаз. Противосолнечные очки и фильтры общего назначения»
 - 4 ВВЕДЕН ВПЕРВЫЕ

ГОСТ Р 51831—2001

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Определения	1
4 Технические требования к фильтрам солнцезащитных очков	3
5 Требования к готовым солнцезащитным очкам	4
6 Маркировка	5
Приложение A Спектральные функции для расчета светового коэффициента пропускания $\tau_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	6
Приложение Б Спектральные функции для расчета коэффициента пропускания в ультрафиоле-	
товой области спектра т _{SUV}	6
Приложение В Спектральные функции для расчета коэффициента пропускания в инфракрасной	
области спектра τ_{SIR}	7

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОЧКИ СОЛНЦЕЗАЩИТНЫЕ

Общие технические требования

Sun glasses. General technical requirements

Дата введения 2003—01—01

1 Область применения

Настоящий стандарт распространяется на очки с фильтрами нулевой номинальной оптической силы из органических и неорганических материалов, предназначенные для защиты от солнечного излучения, выпускаемые на территории Российской Федерации и ввозимые из-за рубежа, и устанавливает требования к их физическим (механическим, оптическим и другим) характеристикам.

Стандарт не распространяется на очки, предназначенные для защиты от солнечного излучения по предписанию врача, на очки, применяемые в промышленности, на очки с тонированными фильтрами, а также на горнолыжные маски.

Требования настоящего стандарта являются обязательными.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.332—78 Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения

ГОСТ 7721—89 Источники света для измерений цвета. Типы. Технические требования. Маркировка

ГОСТ 18491—90 Оправы корригирующих очков. Общие технические требования и методы испытаний

ГОСТ 26148—84 Фотометрия. Термины и определения

ГОСТ Р 51044—97 Линзы очковые. Общие технические условия

3 Определения

В настоящем стандарте применяют следующие термины и определения:

- 3.1 очки солнцезащитные: Средство индивидуальной защиты глаз, предназначенное для ослабления воздействующего на глаза солнечного излучения.
- 3.2 фильтр солнцезащитных очков: Оптический элемент средства индивидуальной защиты глаз, позволяющий видеть.
- 3.3 фотохромный фильтр: Фильтр солнцезащитных очков, коэффициент пропускания которого в видимой области спектра обратимо изменяется под воздействием ультрафиолетового излучения.
- 3.4 фотохромный фильтр в просветленном состоянии: Фотохромный фильтр, который в данный достаточно продолжительный промежуток времени имеет максимальное пропускание.
- 3.5 фотохромный фильтр в затемненном состоянии: Фотохромный фильтр, который в данный достаточно продолжительный промежуток времени имеет минимальное пропускание.
- 3.6 градиентный фильтр: Фильтр, коэффициент пропускания которого изменяется вдоль какой-либо оси на поверхности фильтра.
- 3.7 коэффициент пропускания τ (спектральный коэффициент пропускания $\tau_{(\lambda)}$): По ГОСТ 26148.

3.8 относительная спектральная световая эффективность монохроматического излучения для дневного зрения $V_{(\lambda)}$: Отношение двух потоков излучения с длинами волн $\lambda_{\rm m}$ и λ , вызывающих в точно определенных фотометрических условиях зрительные ощущения одинаковой силы; при этом длину волны $\lambda_{\rm m}$ выбирают таким образом, чтобы максимальное значение этого отношения было равно единице.

 Π р и м е ч а н и е — Значения $V(\lambda)$ в диапазоне длин волн от 380 до 780 нм соответствуют установленным в ГОСТ 8.332.

3.9 **световой коэффициент пропускания** τ_{v} **:** Значение τ_{v} , определяемое по формуле

$$\tau_{v} = \frac{\int_{380}^{780} \Phi_{\lambda}^{D65} (\lambda) \tau (\lambda) V(\lambda) d\lambda}{\int_{380}^{780} \Phi_{\lambda}^{D65} (\lambda) V(\lambda) d\lambda},$$
(1)

где $\Phi_{\lambda}^{\text{D65}}\left(\lambda\right)$ — относительное спектральное распределение потока излучения стандартного источника излучения D_{65} .

Примечания

- 1 Значения спектральной функции произведения Φ_{λ}^{D65} и $V(\lambda)$ для расчетов светового коэффициента пропускания τ_{ν} приведены в таблице A.1 приложения A.
- 2 Значения относительного спектрального распределения потока излучения Φ_{λ}^{D65} (λ) стандартного источника излучения D_{65} установлены в ГОСТ 7721.
- 3.10 коэффициент пропускания в ультрафиолетовой области спектра солнечного излучения τ_{SUV} : Значение τ_{SUV} в участках спектрального диапазона от 280 до 315 нм (УФ-В) и от 315 до 380 нм (УФ-А) для τ_{SUVB} и τ_{SUVA} соответственно вычисляют по формулам

$$\tau_{\text{SUVB}} = \frac{\int_{280}^{315} \tau(\lambda) E_{S\lambda}(\lambda) W(\lambda) d\lambda}{\int_{280}^{315} E_{S\lambda}(\lambda) W(\lambda) d\lambda},$$
(2)

$$\tau_{\text{SUVA}} = \frac{\int_{315}^{380} \tau(\lambda) E_{S\lambda}(\lambda) W(\lambda) d\lambda}{\int_{315}^{380} E_{S\lambda}(\lambda) W(\lambda) d\lambda},$$
(3)

где $E_{S\!\lambda}\left(\lambda\right)$ — спектральная плотность энергетической облученности в ультрафиолетовой области спектра;

 $W(\lambda)$ — спектральная эффективность воздействия ультрафиолетового излучения на глаз человека.

 Π р и м е ч а н и е — Значения $E_{S\lambda}$ (λ) и $W(\lambda)$ приведены в таблице Б.1 приложения Б.

3.11 коэффициент пропускания в инфракрасной области спектра солнечного излучения τ_{SIR} : Значение τ_{SIR} , определяемое по формуле

$$\tau_{\rm SIR} = \frac{\int_{780}^{2000} \tau (\lambda) E_{S\lambda} (\lambda) d\lambda}{\int_{780}^{2000} E_{S\lambda} (\lambda) d\lambda},\tag{4}$$

где $\lambda_1 = 780$ нм, $\lambda_2 = 2000$ нм — границы спектрального диапазона;

 $E_{S\lambda}(\lambda)$ — распределение спектральной плотности энергетической облученности в инфракрасной области спектра, $\mathrm{Bt}\cdot\mathrm{M}^{-3}$.

П р и м е ч а н и е — Значения $E_{\mathfrak{N}}$ (λ) приведены в таблице В.1 приложения В.

- 3.12 **спектральная эффективность воздействия солнечного излучения:** Функция, характеризующая зависимость от длины волны воздействия солнечного излучения на глаз.
- 3.13 **геометрический центр:** Точка поверхности фильтра солнцезащитных очков, являющаяся центром окружности, в которую вписывается фильтр.
- 3.14 призматическое действие: Отклонение светового луча при прохождении через заданную точку на фильтре солнцезащитных очков от первоначального направления.
- 3.15 **коэффициент пропускания фотохромного фильтра:** Значение, зависящее, в определенных пределах, от энергии ультрафиолетового излучения, проходящего через фильтр, и температуры.

В настоящем стандарте установлены два различных значения коэффициентов пропускания фотохромного фильтра: τ_0 и τ_1 (τ_0 — коэффициент пропускания фотохромного фильтра в просветленном состоянии при температуре 23 °C после предусмотренной релаксации; τ_l — коэффициент пропускания фотохромного фильтра в затемненном состоянии при температуре 23 °C после 15-минутной экспозиции излучением, имитирующим средние условия наружной облученности).

4 Технические требования к фильтрам солнцезащитных очков

4.1 Классификация

- 4.1.1 Фильтры классифицируют по характеру пропускания солнечного излучения:
- а) равномерно окрашенные фильтры (в массе);
- б) градиентные фильтры;
- в) фотохромные фильтры.

4.2 Требования к пропусканию фильтров

4.2.1 Фильтры солнцезащитных очков подразделяют на пять категорий в зависимости от значения светового коэффициента пропускания τ_{v} .

Значения коэффициентов пропускания фильтров солнцезащитных очков в зависимости от их категорий должны соответствовать приведенным в таблице 1.

Таблица 1

Категория фильтра солнце- защитных очков	Степень окраски	Диапазон значений светового коэффициента пропускания τ_{v} , отн. ед., для диапазона длины волны от 380 до 780 нм	Наибольшее значение спектрального коэффициента пропускания τ (λ) в ультрафиолетовой области спектра для диапазона длины волны		Наибольшее значение спектрального коэффициента пропускания $\tau(\lambda)$
			280—315 нм	315—380 нм	в инфракрасной области спектра для диапазона длины волны 780—2000 нм
0	Прозрачный	Св. 0,8			
1	Слабоокрашенный	Св. 0,4 до 0,8 включ.	0.1	$ au_{ m V}$	
2	Среднеокрашенный	Св. 0,18 до 0,43 включ.	$0,1 \tau_{\rm v}$		$ au_{ m V}$
3	Темный	Св. 0,08 до 0,18 включ.		0,5 τ _ν	
4	Очень темный	Св. 0,03 до 0,08 включ.		0,5 tv	

4.2.1.1 Категория «0» установлена только для:

- фотохромных фильтров в просветленном состоянии;
- градиентных фильтров с коэффициентом пропускания в геометрическом центре более 80 %;
- фильтров, предназначенных для защиты от излучения в конкретной области солнечного спектра, световой коэффициент пропускания которых более 80 %.

ГОСТ Р 51831—2001

- 4.2.1.2 Допускается взаимное наложение категорий 0, 1, 2 и 3 по значениям коэффициентов пропускания не более ± 2 %.
- 4.2.1.3 При определении светового коэффициента пропускания и категории градиентных фильтров используют значение τ_{v} в геометрическом центре.

4.3 Общие требования к коэффициенту пропускания

- 4.3.1 Однородность светового коэффициента пропускания по поверхности очкового стекла
- 4.3.1.1 Разность световых коэффициентов пропускания между любыми двумя точками фильтра внутри круга диаметром 40 мм с центром в геометрическом центре (за исключением краевой зоны 5 мм) должно быть не более 10~% большего значения, граничного для данной категории; для фильтров категории 4 не более 20~%.
- 4.3.1.2 Для градиентных фильтров требование однородности $\tau_{\rm v}$ должно выполняться вдоль линии, перпендикулярной к направлению градиента пропускания.
- 4.3.1.3 Для фильтров в очковой оправе требование однородности τ_{v} должно выполняться вдоль линии, параллельной линии, соединяющей геометрические центры проемов очковой оправы.
- 4.3.1.4 Для фильтров в очковой оправе разность световых коэффициентов пропускания в геометрических центрах правого и левого фильтров должна быть не более 10 % наибольшего значения коэффициента пропускания.
 - 4.3.2 Особые требования по пропусканию отдельных типов фильтров
- 4.3.2.1 Категорию фотохромного фильтра определяют по значению коэффициента пропускания в просветленном состоянии τ_0 и в затемненном состоянии τ_1 после 15-минутной экспозиции солнечным излучением или его имитатором.

Для обоих состояний должны выполняться требования, приведенные в 4.2 и 4.3.

Отношение $\frac{\tau_0}{\tau_1}$ для фотохромных фильтров должно быть не менее 1,25.

4.4 Требования к оптической силе и призматическому действию фильтров

- 4.4.1 В зависимости от точности изготовления и показателей внешнего вида фильтры подразделяют на группы I и II.
- 4.4.2 Отклонения от нулевого значения оптической силы и призматическое действие фильтров I и II групп не должны превышать значений, указанных в таблице 2.

Таблица 2

Оптическая сила,	дптр, для группы	Призматическое действие, пдптр, для группы		
I	II	I	II	
±0,09	±0,12	0,2	0,2	

4.5 Требования к характеристикам и материалам

- 4.5.1 Характеристики фильтров солнцезащитных очков должны соответствовать требованиям ГОСТ Р 51044.
 - 4.5.2 Требования к материалу фильтров солнцезащитных очков по ГОСТ Р 51044.

4.6 Требования к стабильности коэффициента пропускания

- 4.6.1 Разность световых коэффициентов пропускания после экспозиции в течение 100 ч излучением, имитирующим средние условия наружной освещенности, должна быть не более:
 - $\pm 5 \%$ для фильтров категории 0;
 - $\pm 10 \%$ для фильтров категории 1;
 - ±20 % для фильтров других категорий.

5 Требования к готовым солнцезащитным очкам

5.1 Требования к конструкции

- 5.1.1 Оправы солнцезащитных очков не должны иметь выступов, острых углов и других дефектов, приводящих к дискомфорту или травмам при их использовании по назначению.
- 5.1.2 Оправы для солнцезащитных очков должны быть изготовлены в соответствии с требованиями ГОСТ 18491.

5.2 Требования к материалам

5.2.1 Солнцезащитные очки (оправы, фильтры солнцезащитных очков) должны быть изготовлены из материалов, прошедших токсикологические испытания в установленном порядке, и иметь гигиенический сертификат.

6 Маркировка

6.1 Солнцезащитные очки должны иметь маркировку, которая должна быть нанесена на оправу, упаковку или этикетку.

Допускается нанесение маркировки в любом сочетании, например на оправу и этикетку.

- 6.2 Маркировка должна содержать следующие сведения:
- наименование предприятия-изготовителя (или товарный знак);
- категорию фильтра солнцезащитных очков согласно таблице 1;
- тип фильтра солнцезащитных очков.
- 6.3 Фильтры солнцезащитных очков, не вставленные в оправу, должны иметь на упаковке или этикетке маркировку, содержащую:
 - название и адрес предприятия-изготовителя или поставщика;
 - категорию фильтра солнцезащитных очков;
 - инструкцию по хранению, уходу и чистке;
 - группу фильтра солнцезащитных очков (I или II).
- 6.4 Дополнительные сведения, предоставляемые предприятием-изготовителем или поставщиком солнцезащитных очков на этикетке, должны содержать следующие данные:
 - разъяснение маркировки;
 - положение геометрического центра;
 - номинальное значение светового коэффициента пропускания τ_v .

ПРИЛОЖЕНИЕ А (справочное)

Спектральные функции для расчета светового коэффициента пропускания $\tau_{_{\!\scriptscriptstyle V}}$

Таблица А.1

Длина волны λ, нм	$\Phi_{\lambda}^{D65}(\lambda) \ V(\lambda)$	Длина волны λ, нм	$\Phi_{\lambda}^{D65}(\lambda) \ V(\lambda)$
380	0	590	
390	0,0005	600	6,3540
400	0,0031	610	5,3740
410	0,0104	620	4,2648
420	0,0354	630	3,1619
430	0,0952	640	2,0889
440	0,2283	650	1,3861
450	0,4207	660	0,8100
460	0,6688	670	0,4629
470	0,9894	680	0,2492
480	1,5245	690	0,1260
490	2,1415	700	0,0541
500	3,3438	710	0,0278
510	5,1311	720	0,0148
520	7,0412	730	0,0058
530	8,7851	740	0,0033
540	9,4248	750	0,0006
550	9,7922	760	0,0004
560	9,4156	770	0
570	8,6754	780	0
580	7,8870	Сумма	100

ПРИЛОЖЕНИЕ Б (справочное)

Спектральные функции для расчета коэффициента пропускания в ультрафиолетовой области спектра τ_{SUV} Т а б л и ц а $\,$ Б.1

Длина волны λ, нм	Спектральная плотность энергетической облученности солнечного излучения на уровне моря $E_{\rm S\lambda},~10^6~{\rm Br\cdot m}^{-3}$	Спектральная эффективность воздействия ультрафиолетового излучения $W(\lambda)$	Весовая функция $E_{\mathrm{S}\lambda}\cdot W(\lambda)$
280	0	0,88	0
285	0	0,77	0
290	0	0,64	0
295	$2,09\times10^{-4}$	0,64 0,54	0,0001
300	$8,10\times10^{-2}$	0,30	0,0243
305	1,91	0,060	0,115
310	11,0	0,015	0,165
315	30,0	0,003	0,090
320	54,0	0,0010	0,054
325	79,2	0,00050	0,040
330	101	0,00041	0,041
335	128	0,00034	0,044
340	151	0,00028	0,042
345	170	0,00024	0,041
350	188	0,00020	0,038
355	210	0,00016	0,034
360	233	0,00013	0,030
365	253	0,00011	0,028
370	279	0,000093	0,026
375	306	0,000077	0,024
380	336	0,000064	0,022

ПРИЛОЖЕНИЕ В (справочное)

Спектральные функции для расчета коэффициента пропускания в инфракрасной области спектра τ_{SIR}

Таблица В.1

	1	п		ii.	
Длина волны λ, нм	Спектральная плотность энергетической облученности солнечного излучения на уровне моря $E_{\rm S}\lambda$, $10^6~{\rm Bt\cdot m}^{-3}$	Длина волны λ, нм	Спектральная плотность энергетической облученности солнечного излучения на уровне моря $E_{\rm S}\lambda$, $106~{\rm Bt\cdot m}^{-3}$	Длина волны λ, нм	Спектральная плотность энергетической облученности солнечного излучения на уровне моря $E_{S\lambda}$, $106~{\rm Br\cdot m}^{-3}$
780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1110 1120 1130 1140 1150 1160 1170	907 923 857 698 801 863 858 839 813 798 614 517 480 375 258 169 278 487 584 633 645 643 640 6610 601 592 551 526 519 512 514 252 126 69,9 98,3 164 216 271 328	1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590	373 402 431 420 387 328 311 381 382 346 264 208 168 115 58,1 18,1 0,66 0 0 0 1,91 3,72 7,53 13,7 23,8 30,5 45,1 83,7 128 157 187 209 217 226 221 217 213 209 205	1610 1620 1630 1640 1650 1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000	198 194 189 184 173 163 159 145 139 132 124 115 105 97,1 80,2 58,9 38,8 18,4 5,7 0,92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7,705 2,34 3,68 5,30 17,7 31,7 37,7 22,6 1,58 2,66
1180 1190	346 344	1600	202		

УДК 681.738:006.354

OKC 11.040.70

П46

ОКП 94 4201

Ключевые слова: очки солнцезащитные, фильтры солнцезащитных очков, коэффициент пропускания, общие требования

Редактор *Т.А. Леонова*Технический редактор *О.Н. Власова*Корректор *В.Е. Нестерова*Компьютерная верстка *С.В. Рябовой*

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 04.01.2001. Подписано в печать 23.01.2002. Усл. печ. л. 1,40. Уч.-изд. л. 0,90. Тираж 239 экз. С 3586. Зак. 77.