Aufgabe 1. (2 Punkte) Man finde eine Basis von im(A) und ker(A), wobei

$$A = \begin{pmatrix} 1 & 1 & 2 & 4 & 1 \\ 1 & 2 & 1 & 2 & 1 \\ 2 & 2 & 2 & 1 & 2 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \in \mathcal{M}_{4,5}(\mathbb{R}).$$

Aufgabe 2. (2 Punkte) Man finde eine Basis von im(B) und ker(B), wobei

$$B = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 2 & -1 & 1 \end{pmatrix} \in \mathcal{M}_{3,6}(\mathbb{R}).$$

Aufgabe 3. (2 Punkte) Man berechne C^{-1} , wobei

$$C = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \in \mathcal{M}_{3,3}(\mathbb{R}).$$

Aufgabe 4. (4 Punkte) Sei $\phi_t : \mathbb{R}^3 \to \mathbb{R}^3$ eine \mathbb{R} -lineare Abbildung, in Abhängigkeit von einem Parameter $t \in \mathbb{R}$. Die darstellende Matrix von ϕ_t sei bezüglich der kanonischen Basis \mathcal{B}_3 gegeben durch:

$$M_t := \mathcal{M}_{\mathcal{B}_3,\mathcal{B}_3}(\phi_t) = \begin{pmatrix} -t & 1 & -t \\ -t - t^2 & 1 + t & 1 - 2t - t^2 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_{3,3}(\mathbb{R}).$$

- (i) Bestimmen Sie den Rang von M_t .
- (ii) Bestimmen Sie eine Basis von $\ker(\phi_t)$.
- (iii) Zeigen Sie: Die in (ii) gefundene Basis ergänzt mit den Vektoren $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ -t \\ 1 \end{pmatrix}$ bildet eine Basis \mathcal{C} von \mathbb{R}^3 .
- (iv) Geben Sie die darstellende Matrix $\mathcal{M}_{\mathcal{C},\mathcal{C}}(\phi_t)$ von ϕ_t bezüglich der Basis \mathcal{C} an.

* Aufgabe 5. (5 Punkte) Es sei $M \in \mathcal{M}_{n,n}(\mathbb{R})$ sodass $M^2 = -E_n$, wobei E_n die Einheitsmatrix ist. Man zeige: n ist gerade.