### EG3029 Chemical Thermodynamics

Chemical Reaction Equilibrium

# Reaction Coordinate Single Reaction

General chemical reaction:

$$|\nu_1|A_1 + |\nu_2|A_2 + \cdots \rightarrow |\nu_3|A_3 + |\nu_4|A_4 + \cdots$$

 $v_i$  stoichiometric coefficient  $A_i$  chemical species

 Change in quantities as reaction progresses:

$$\frac{dn_1}{v_1} = \frac{dn_2}{v_2} = \frac{dn_3}{v_3} = \frac{dn_4}{v_4} = \cdots$$

• Reaction coordinate arepsilon

$$\frac{dn_i}{v_i} = d\varepsilon$$

$$dn_i = v_i d\varepsilon$$

Mole fractions of species

$$y_i = \frac{n_i}{n} = \frac{n_{i,0} + v_i \mathcal{E}}{n_0 + v \mathcal{E}}$$

### Reaction Coordinate Multireaction

Multireaction progress:

$$dn_i = \sum_j v_{i,j} d\varepsilon_j$$

Mole fractions of species:

$$y_i = \frac{n_{i,0} + \sum_{j} v_{i,j} \varepsilon_j}{n_0 + \sum_{j} v_j \varepsilon_j}$$

j reaction index

| Reaktion A[c                                         |                                                                                                                   |                    |                   |                  | A[cm,mol,s]           | b    | E/kJ⋅mol <sup>-1</sup> |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|------------------|-----------------------|------|------------------------|--|
|                                                      | 01 04.                                                                                                            | H <sub>2</sub> -CO | Oxidation         | <br>1            |                       |      |                        |  |
|                                                      | - 01. H <sub>2</sub> -O <sub>2</sub> -Reaktionen (HO <sub>2</sub> , H <sub>2</sub> O <sub>2</sub> ausgeschlossen) |                    |                   |                  |                       |      |                        |  |
| $O_2$                                                | +H _                                                                                                              | _                  | =OH               | +0               | 2.00.1014             | 0.0  | 70.3                   |  |
| $H_2$                                                | +0                                                                                                                |                    | =OH               | +H               | 5.06.1004             | 2.67 | 7 26.3                 |  |
| $H_2$                                                | +OH                                                                                                               |                    | =H <sub>2</sub> O | +H               | 1.00.1008             | 1.6  | 13.8                   |  |
| OH                                                   | +OH                                                                                                               |                    | $=H_2O$           | +0               | 1.50.1009             | 1.14 | 0.42                   |  |
| Н                                                    | +H                                                                                                                | +M*                | $=H_2$            | +M*              | 1.80·10 <sup>18</sup> | -1.0 | 0.00                   |  |
| 0                                                    | +0                                                                                                                | +M*                | $=O_2$            | +M*              | 2.90.1017             | -1.0 | 0.00                   |  |
| H                                                    | +OH                                                                                                               | +M*                | =H <sub>2</sub> O | +M*              | 2.20.1022             | -2.0 | 0.00                   |  |
| 02. HO <sub>2</sub> -Bildung/Verbrauch               |                                                                                                                   |                    |                   |                  |                       |      |                        |  |
| H                                                    | +O <sub>2</sub>                                                                                                   | +M*                | $=HO_2$           | +M*              | 2.30.1018             | -0.8 | 0.00                   |  |
| $HO_2$                                               | +H                                                                                                                |                    | =OH               | +OH              | 1.50.1014             | 0.0  | 4.20                   |  |
| $HO_2$                                               | +H                                                                                                                |                    | <b>≔</b> H₂       | $+O_2$           | 2.50·10 <sup>13</sup> | 0.0  | 2.90                   |  |
| $HO_2$                                               | +H                                                                                                                |                    | $=H_2O$           | +0               | 3.00·10 <sup>13</sup> | 0.0  | 7.20                   |  |
| $HO_2$                                               | +O                                                                                                                |                    | =OH               | $+O_2$           | 1.80·10 <sup>13</sup> | 0.0  | -1.70                  |  |
| $HO_2$                                               | +OH                                                                                                               |                    | $=H_2O$           | +O <sub>2</sub>  | 6.00·10 <sup>13</sup> | 0.0  | 0.00                   |  |
| 03. H <sub>2</sub> O <sub>2</sub> -Bildung/Verbrauch |                                                                                                                   |                    |                   |                  |                       |      |                        |  |
| $HO_2$                                               | +HO <sub>2</sub>                                                                                                  |                    | $=H_2O_2$         | $+O_2$           | 2.50.1011             | 0.0  | -5.20                  |  |
| ОН                                                   | +OH                                                                                                               | +M*                | $=H_2O_2$         | +M*              | 3.25.1022             | -2.0 | 0.00                   |  |
| $H_2O_2$                                             | •                                                                                                                 |                    | $=H_2$            | $+HO_2$          | 1.70·10 <sup>12</sup> | 0.0  | 15.7                   |  |
| $H_2O_2$                                             |                                                                                                                   |                    | $=H_2O$           | +OH              | 1.00·10 <sup>13</sup> | 0.0  | 15.0                   |  |
| $H_2O_2$                                             |                                                                                                                   |                    | =OH               | +HO <sub>2</sub> | 2.80·10 <sup>13</sup> | 0.0  | 26.8                   |  |
| $H_2O_2$                                             |                                                                                                                   |                    | $=H_2O$           | $+HO_2$          | 5.40·10 <sup>12</sup> | 0.0  | 4.20                   |  |
| 04. CO-Reaktionen                                    |                                                                                                                   |                    |                   |                  |                       |      |                        |  |
| CO                                                   | +OH                                                                                                               |                    | $=CO_2$           | +H               | 6.00·10 <sup>06</sup> | 1.5  | -3.10                  |  |
| CO                                                   | $+HO_2$                                                                                                           |                    | $=CO_2$           | +OH              | 1.50.1014             | 0.0  | 98.7                   |  |
| CO                                                   | +0                                                                                                                | +M*                | $=CO_2$           | +M*              | 7.10·10 <sup>13</sup> | 0.0  | -19.0                  |  |
| CO                                                   | +O <sub>2</sub>                                                                                                   |                    | $=CO_2$           | +0               | 2.50·10 <sup>12</sup> | 0.0  | 200.                   |  |

Elementary reactions in methane/air combustion. from Warnatz, Maas, Dibble, 'Combustion' (97)

### Reaction Equilibrium General

 In a closed system at constant T and P, the reaction equilibrium is reached when the total Gibbs energy attains its minimum value:

$$\left(dG^{t}\right)_{T,P}=0$$



# Reaction Equilibrium Equilibrium Constant

Criterion:

$$\sum_{i} \nu_{i} \mu_{i} = 0$$

• Equilibrium constant *K*:

$$\left(\prod_{i} \left(\frac{\hat{f}_{i}}{f_{i}^{\circ}}\right)^{v_{i}} = K = \exp\left(\frac{-\Delta G^{\circ}}{RT}\right)\right)$$

Standard heat of reaction:

$$\Delta H^{\circ} = -RT^{2} \frac{d\left(\Delta G^{\circ}/RT\right)}{dT}$$

Reaction Equilibrium Equilibrium Constant

- Temperature effects...
  - on equilibrium constant

$$\frac{d \ln K}{dT} = \frac{\Delta H^{\circ}}{RT^2}$$

on standard heat of reaction

$$\Delta H^{\circ} = \Delta H_0^{\circ} + R \int_{T_0}^{T} \frac{\Delta C_P^{\circ}}{R} dT$$



# Reaction Equilibrium Equilibrium Constant

- Composition effects...
  - in gas-phase reactions

$$\left(\prod_{i} (y_{i} \phi_{i})^{v_{i}} = K \cdot \left(\frac{P}{P^{\circ}}\right)^{-\nu}\right)$$

in liquid-phase reactions

$$\prod_{i} (y_{i} \gamma_{i})^{\nu_{i}} = K \cdot \exp \left( \frac{(P^{\circ} - P)}{RT} \sum_{i} (\nu_{i} V_{i}) \right)^{-\nu}$$

– Equilibrium conversion  $\varepsilon_e$ 

### Standard state for dilute aqueous solutions.



#### Phase Rule

 For a non-reacting multi-phase multi-component system:

$$F = 2 - \pi + N$$

F degrees of freedom

 $\pi$  number of phases

N number of chem. species

 For a multi-phase multi-component system in which r chemical reactions take place:

$$F = 2 - \pi + N - r$$

#### Multi-reaction Equilibrium

For a gas-phase system (ideal gas):

$$\left( \prod_{i} (y_i)^{v_{i,j}} = \left( \frac{P}{P^{\circ}} \right)^{-v_j} \cdot K_j \right)$$

Elemental material balance

$$\sum_{i} n_{i} a_{ik} = A_{k}$$

k element

*i* molecular species

A total number of atomic masses

*a* number of atoms

Standard Gibbs energy change:

$$\left(\Delta G_{f_i}^{\circ} + RT \ln \left(\frac{y_i \hat{\phi}_i P}{P^{\circ}}\right) + \sum_{k} \lambda_k a_{ik} = 0 \qquad (i = 1, 2, ..., N)\right)$$

#### Multi-reaction Equilibrium

Worked example: A bed of coal (carbon) in a coal gasifier is fed with steam and air, and produces a gas stream containing  $H_2$ , CO,  $O_2$ ,  $H_2O$ ,  $CO_2$ , and  $N_2$ . If the feed to the gasifier consists of 1 mol of steam and 2.38 mol of air, calculate the equilibrium composition of the gas stream at P = 20 bar for temperatures of 1000 and 1500 K.

|      | $\Delta oldsymbol{G^{\circ}_f}$ J mol $^{	ext{-}1}$ |          |                 |  |  |  |
|------|-----------------------------------------------------|----------|-----------------|--|--|--|
| T/K  | H <sub>2</sub> 0                                    | CO       | CO <sub>2</sub> |  |  |  |
| 1000 | -192,420                                            | -200,240 | -395,790        |  |  |  |
| 1500 | -164,310                                            | -243,740 | -396,160        |  |  |  |

