

Анализ графов и разреженная линейная алгебра в экосистеме RISC-V

Рабочая группа "Развитие экосистемы ПО на RISC-V"

Семён Григорьев

Санкт-Петербургский Государственный Университет

30 мая 2025

Онас

Мат-Mex СПбГУ, лаборатория YADRO СПбГУ

- Семён Григорьев (s.v.grigoriev@spbu.ru)
- Владимир Кутуев (vladimir.kutuev@gmail.com)
- Родион Суворов
- Анастасия Мигунова

План доклада

- Линейная алгебра, графы, GraphBLAS
- Реализации и примеры использования GraphBLAS
- SuiteSparse:GraphBLAS на RISC-V
- Направления работ, выводы

Линейная алгебра и анализ графов

- Анализ больших графов: графовые БД, анализ кода, поиск уязвимостей, анализ трафика, анализ транзакции, банковская аналитика, социальные сети...
 - Важна производительность
 - Разнообразные алгоритмы

Линейная алгебра и анализ графов

- Анализ больших графов: графовые БД, анализ кода, поиск уязвимостей, анализ трафика, анализ транзакции, банковская аналитика, социальные сети...
 - Важна производительность
 - Разнообразные алгоритмы
- Путь к унифицированной параллельной обработке графов

Линейная алгебра и анализ графов

- Анализ больших графов: графовые БД, анализ кода, поиск уязвимостей, анализ трафика, анализ транзакции, банковская аналитика, социальные сети...
 - Важна производительность
 - Разнообразные алгоритмы
- Путь к унифицированной параллельной обработке графов
 - ▶ Граф ⇔ матрица смежности
- Высокопроизводительная линейная алгебра для анализа графов
 - Обобщённая: матрицы и вектора параметризованы типом элемента, операции над ними могут быть заданы пользователем
 - **Разреженная**: специализированные структуры для хранения матриц и векторов, специализированные алгоритмы для их обработки
 - ▶ В том числе, с использованием графических ускорителей, ПЛИС

GraphBLAS⁴

- АРІ для создания алгоритмов анализа графов на основе разреженной обобщённой линейной алгебры
 - Различные операции над матрицами и векторами (разреженными)
 - ▶ Параметризация алгебраическими структурами: полукольцами, моноидами и т.д.

https://graphblas.org/docs/GraphBLAS_API_C_v2.1.0.pdf

²https://graphblas.org/GraphBLAS-Pointers/

³https://zenodo.org/record/4318870/files/graphblas-introduction.pdf

⁴https://graphblas.org/

GraphBLAS⁴

- АРІ для создания алгоритмов анализа графов на основе разреженной обобщённой линейной алгебры
 - Различные операции над матрицами и векторами (разреженными)
 - ▶ Параметризация алгебраическими структурами: полукольцами, моноидами и т.д.
- Позволяет выражать различные алгоритмы
 - ▶ Обход в ширину, поиск кратчайших путей, достижимость, . . .
 - ▶ Подсчёт треугольников, PageRank, остовные деревья, . . .
 - Кластеризация, . . .
 - **•** ...

https://graphblas.org/docs/GraphBLAS_API_C_v2.1.0.pdf

²https://graphblas.org/GraphBLAS-Pointers/

³https://zenodo.org/record/4318870/files/graphblas-introduction.pdf

⁴https://graphblas.org/

GraphBLAS⁴

- АРІ для создания алгоритмов анализа графов на основе разреженной обобщённой линейной алгебры
 - Различные операции над матрицами и векторами (разреженными)
 - ▶ Параметризация алгебраическими структурами: полукольцами, моноидами и т.д.
- Позволяет выражать различные алгоритмы
 - ▶ Обход в ширину, поиск кратчайших путей, достижимость, . . .
 - ▶ Подсчёт треугольников, PageRank, остовные деревья, . . .
 - Кластеризация, . . .
- Подробнее
 - ▶ The GraphBLAS C API Specification¹
 - ► GraphBLAS Pointers²
 - ► Introduction to GraphBLAS³

¹https://graphblas.org/docs/GraphBLAS_API_C_v2.1.0.pdf

²https://graphblas.org/GraphBLAS-Pointers/

https://zenodo.org/record/4318870/files/graphblas-introduction.pdf

⁴https://graphblas.org/

Реализации GraphBLAS-подобных API

- SuiteSparse:GraphBLAS⁵: <u>эталон</u> на чистом С
- Huawei's GraphBLAS⁶: частичная реализация на C++
- CombBLAS⁷: распределённая, частичная реализация на C++
- GraphBLAST⁸: поддержка GPGPU, Cuda C, частичная реализация
- Spla⁹: поддержка GPGPU, OpenCL C, частичная реализация
- Обёртки для различных языков: Python, Rust, ...
- Экспериментальные реализации от IBM, Postgres, . . .
- . . .

⁵https://github.com/DrTimothyAldenDavis/GraphBLAS

⁶https://gitee.com/CSL-ALP/graphblas

⁷https://github.com/PASSIONLab/CombBLAS

⁸https://github.com/gunrock/graphblast

⁹https://github.com/SparseLinearAlgebra/spla

SuiteStarse¹⁰

NetworkX
FalkorDB (Redisoraph)
Open3d
FD-SLAM
Eigen
Matlab
6NU Octave
SAGE

SuiteSparse на RISC-V

Кросс-сборка и тестирование 16

• Было

- ► Alpine linux + chroot¹¹
- Сборка и тестирование в эмуляторе $(qemu)^{12}$
- ▶ Продолжительность workflow в GitHub CI: 2 часа 20 минут

¹¹До недавнего времени не было RISC-V

¹²Не для всех компонент

¹³Для всех компонент

¹⁴Позже выяснилось, что про них знали и ошибка в GCC а не в SuiteSparse

¹⁵https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/955#discussion_r2103092266

¹⁶ Соответствующий реквекст: https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/949

Кросс-сборка и тестирование 16

• Было

- ► Alpine linux + chroot¹¹
- Сборка и тестирование в эмуляторе $(qemu)^{12}$
- ▶ Продолжительность workflow в GitHub CI: 2 часа 20 минут

• Стало

- ▶ Кросс-тулчейн + MultiArch
- \blacktriangleright Кросс-сборка и тестирование в эмуляторе (qemu-user) 13
- ▶ Продолжительность workflow в GitHub CI: 40 минут
- ▶ Выявлены и локализованы ошибки под х390s и ppc64le¹⁴

¹¹До недавнего времени не было RISC-V

¹²Не для всех компонент

¹³Для всех компонент

¹⁴Позже выяснилось, что про них знали и ошибка в GCC а не в SuiteSparse

¹⁵https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/955#discussion_r2103092266

¹⁶ Соответствующий реквекст: https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/949

Кросс-сборка и тестирование 16

• Было

- ► Alpine linux + chroot¹¹
- Сборка и тестирование в эмуляторе $(qemu)^{12}$
- ▶ Продолжительность workflow в GitHub CI: 2 часа 20 минут

• Стало

- ▶ Кросс-тулчейн + MultiArch
- \blacktriangleright Кросс-сборка и тестирование в эмуляторе (qemu-user) 13
- ▶ Продолжительность workflow в GitHub CI: 40 минут
- ▶ Выявлены и локализованы ошибки под х390s и ppc64le¹⁴
- ullet Предложенное нами решение для кросс-сборки начали использовать в GNU Octave 15

¹¹До недавнего времени не было RISC-V

¹²Не для всех компонент

¹³Для всех компонент

¹⁴Позже выяснилось, что про них знали и ошибка в GCC а не в SuiteSparse

¹⁵https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/955#discussion_r2103092266

¹⁶ Соответствующий реквекст: https://github.com/DrTimothyAldenDavis/SuiteSparse/pull/949

Векторизация¹⁸

- Используется AVX и Neon
 - ▶ В явном виде в очень ограниченном количестве функций
- Много кода написано так, будто авторы полагаются на автоматическую векторизацию компилятором
- Определение доступных расширений при компиляции и во время исполнения 17

¹⁷сри features и JIT

¹⁸Соответвтующая серия реквестов в GraphBLAS:

[•] https://github.com/DrTimothyAldenDavis/GraphBLAS/pull/381

[•] https://github.com/DrTimothyAldenDavis/GraphBLAS/pull/422

[•] https://github.com/DrTimothyAldenDavis/GraphBLAS/pull/421

Векторизация¹⁸

- Используется AVX и Neon
 - ▶ В явном виде в очень ограниченном количестве функций
- Много кода написано так, будто авторы полагаются на автоматическую векторизацию компилятором
- Определение доступных расширений при компиляции и во время исполнения 17
- Мы поддержали RVV1.0 в умножении плотной матрицы на разреженную
 - ▶ Одна из немногих функций, векторизованных вручную с использованием AVX и Neon

¹⁷сри features и JIT

¹⁸Соответвтующая серия реквестов в GraphBLAS:

[•] https://github.com/DrTimothyAldenDavis/GraphBLAS/pull/381

[•] https://github.com/DrTimothyAldenDavis/GraphBLAS/pull/422

[•] https://github.com/DrTimothyAldenDavis/GraphBLAS/pull/421

Экспериментальное исследование

- SuiteSparse matrix collection: матрицы разных размеров и разной степени разреженности
- Оборудование
 - ► X86 64
 - ★ CPU: Intel Core i7-12700H 800MHz с векторами размером 1024 битов
 - ★ RAM: LPDDR4, 16GB
 - **★ Compiler**: GCC 14.2.0
 - RISC-V
 - *** SoC**: SPACEMIT K1/M1, Octa-core X60[™](RV64GCVB), RVA22, RVV1.0 1600MHz с векторами размером 2048 битов
 - * RAM: LPDDR4X, 16GB
 - **★ Compiler**: GCC 14.2.0 (cross)
- Сравнивали изменение величины среднего времени выполнения 400 запусков умножения матриц

Результаты экспериментального исследования 19

N∘	Matrix name	Rows	Nonzeros	AVX2	No	RVV	No RVV	AVX	RVV
		number		(ms.)	AVX2	(ms.)	(ms.)	speedup	speedup
					(ms.)			(%)	(%)
1	olafu	16146	515651	5327.7	6629.7	43080.7	52940.1	19.6	18.6
2	fd18	16428	63406	476.4	482.0	2212.6	2181.2	1.2	-1.4
3	sme3Da	12504	874887	4236.9	5124.9	32008.0	42763.8	17.3	25.2
4	stokes64	12546	74242	508.8	564.4	2629.7	2814.1	9.8	6.6
5	sinc12	7500	294986	632.6	864.0	5970.1	8593.8	26.8	30.5
6	fd12	7500	28462	90.4	92.3	484.1	555.3	2.0	12.8
7	bcsstk15	3948	60882	87.8	117.9	1271.5	1770.8	25.6	28.2
8	tols4000	4000	8784	17.1	18.2	184.0	203.5	5.9	9.6
9	ex36	3079	53843	28.5	41.0	574.2	584.8	30.5	1.8
10	iprob	3001	9000	25.2	34.7	279.3	344.9	27.5	19.0
11	MISKnowledgeMap	2427	28511	31.3	38.5	401.6	490.0	18.8	18.0
12	LeGresley_2508	2508	16727	10.4	12.1	106.5	97.7	14.3	-8.9
13	reorientation_2	1544	9408	5.6	9.8	117.9	125.4	42.7	6.0
14	netscience	1589	2742	1.5	2.8	31.4	28.5	47.0	-10.0
15	mcfe	765	24382	2.3	5.5	51.1	65.3	58.8	21.8
16	orbitRaising_3	761	3256	0.6	1.6	10.5	13.1	63.0	19.5

 $^{^{19}}$ Во всех экспериментах стандартное отклонение не превосходит 5%

Семён Григорьев (СПбГУ)

Результаты экспериментального исследования 19

Nº	Matrix name	Rows	Nonzeros	AVX2	No	RVV	No RVV	AVX	RVV
		number		(ms.)	AVX2	(ms.)	(ms.)	speedup	speedup
					(ms.)			(%)	(%)
1	olafu	16146	515651	5327.7	6629.7	43080.7	52940.1	19.6	18.6
2	fd18	16428	63406	476.4	482.0	2212.6	2181.2	1.2	-1.4
3	sme3Da	12504	874887	4236.9	5124.9	32008.0	42763.8	17.3	25.2
4	stokes64	12546	74242	508.8	564.4	2629.7	2814.1	9.8	6.6
5	sinc12	7500	294986	632.6	864.0	5970.1	8593.8	26.8	30.5
6	fd12	7500	28462	90.4	92.3	484.1	555.3	2.0	12.8
7	bcsstk15	3948	60882	87.8	117.9	1271.5	1770.8	25.6	28.2
8	tols4000	4000	8784	17.1	18.2	184.0	203.5	5.9	9.6
9	ex36	3079	53843	28.5	41.0	574.2	584.8	30.5	1.8
10	iprob	3001	9000	25.2	34.7	279.3	344.9	27.5	19.0
11	MISKnowledgeMap	2427	28511	31.3	38.5	401.6	490.0	18.8	18.0
12	LeGresley_2508	2508	16727	10.4	12.1	106.5	97.7	14.3	-8.9
13	reorientation_2	1544	9408	5.6	9.8	117.9	125.4	42.7	6.0
14	netscience	1589	2742	1.5	2.8	31.4	28.5	47.0	-10.0
15	mcfe	765	24382	2.3	5.5	51.1	65.3	58.8	21.8
16	orbitRaising_3	761	3256	0.6	1.6	10.5	13.1	63.0	19.5

 $^{^{19}}$ Во всех экспериментах стандартное отклонение не превосходит 5%

Результаты экспериментального исследования 19

Nº	Matrix name	Rows	Nonzeros	AVX2	No	RVV	No RVV	AVX	RVV
		number		(ms.)	AVX2	(ms.)	(ms.)	speedup	speedup
					(ms.)			(%)	(%)
1	olafu	16146	515651	5327.7	6629.7	43080.7	52940.1	19.6	18.6
2	fd18	16428	63406	476.4	482.0	2212.6	2181.2	1.2	-1.4
3	sme3Da	12504	874887	4236.9	5124.9	32008.0	42763.8	17.3	25.2
4	stokes64	12546	74242	508.8	564.4	2629.7	2814.1	9.8	6.6
5	sinc12	7500	294986	632.6	864.0	5970.1	8593.8	26.8	30.5
6	fd12	7500	28462	90.4	92.3	484.1	555.3	2.0	12.8
7	bcsstk15	3948	60882	87.8	117.9	1271.5	1770.8	25.6	28.2
8	tols4000	4000	8784	17.1	18.2	184.0	203.5	5.9	9.6
9	ex36	3079	53843	28.5	41.0	574.2	584.8	30.5	1.8
10	iprob	3001	9000	25.2	34.7	279.3	344.9	27.5	19.0
11	MISKnowledgeMap	2427	28511	31.3	38.5	401.6	490.0	18.8	18.0
12	LeGresley_2508	2508	16727	10.4	12.1	106.5	97.7	14.3	-8.9
13	reorientation_2	1544	9408	5.6	9.8	117.9	125.4	42.7	6.0
14	netscience	1589	2742	1.5	2.8	31.4	28.5	47.0	-10.0
15	mcfe	765	24382	2.3	5.5	51.1	65.3	58.8	21.8
16	orbitRaising_3	761	3256	0.6	1.6	10.5	13.1	63.0	19.5

 $^{^{19}}$ Во всех экспериментах стандартное отклонение не превосходит 5%

Семён Григорьев (СПбГУ)

Выводы

- SuiteSparse:GpaphBLAS (и SuiteSparse целиком) готов к использованию на RISC-V
 - ▶ Кросс-сборка есть
 - ▶ Тесты проходят
 - ▶ Нативно собирается

Выводы

- SuiteSparse:GpaphBLAS (и SuiteSparse целиком) готов к использованию на RISC-V
 - Кросс-сборка есть
 - Тесты проходят
 - Нативно собирается

- Есть простор для оптимизаций
 - ▶ Детальный анализ векторных расширений и их работы в конкретном случае
 - ▶ Изучение поддержки автоматической векторизации компилятором
 - Векторизуемость других функций

Возможные направления

- Анализ векторизации: что имеет смысл векторизовывать, какими средствами это лучше делать
- Сравнительный анализ на прикладных алгоритмах
- Исследование применимости матиричных расширений
- Исследование других реализации GraphBLAS и GraphBLAS-подобных решений
 - ▶ CombBLAS для распределённой аналитики
 - ► Spla поддержка RISC-V CPU и GPGPU (IMG, Vortex)