MCMT Homework 5

Shun Zhang

Exercise 5.1

From Exercise 3.1, we know that π is fully supported, i.e., $\pi(x) > 0$ for all x. Assume that $\delta_x P^t$ converges to π for some t > 1. Then $\delta_x P^t = \delta_x P^{t+1} = \pi$ by the definition of stationary distribution.

Because π is fully supported, $\pi(x) > 0$. So $\delta_x P^t(x) = \delta_x P^{t+1}(x) > 0$. This means that $P^t(x,x) > 0$ and $P^{t+1}(x,x) > 0$. So $t,t+1 \in T(x)$. But $\gcd(t,t+1) = 1$. So T(x) = 1. This controdicts with the fact that T(x) > 1.

Exercise 5.2

For arbitrary $x, y \in \tilde{\Omega}$, by its definition, $\tilde{P}^t(x, y) > 0$ for some $t \geq 1$. So \tilde{P} is irreducible.

For arbitrary $x \in \tilde{\Omega}$, we know $x \in \Omega$. Because P has the period of d, $P^d(x,x) > 0$ by definition. Because $\tilde{P} = P^d$, $\tilde{P}(x,x) > 0$. So $1 \in T(x)$ in terms of \tilde{P} . So \tilde{P} has the period of 1, and is aperiodic.