Wydział	Imię i nazwisko)	Rok	Grupa	Zespół
	1. Paweł Szewo	zuk			
WFiIS	2. Ihnatsi Yern	nakovich	II	03	03
PRACOWNIA	Temat		Nr ćwiczenia		
FIZYCZNA					
WFiIS AGH	Zależność okresu drgań wahadła od amplitudy			02	
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA
21.03.2022	28.03.2022				

Zależność okresu drgań wahadła od amplitudy

Ćwiczenie nr 02

Paweł Szewczuk

Ihnatsi Yermakovich

1	Cel ćwiczenia	2
2	Wstęp teoretyczny 2.1 Zależność okresu drgań wahadła od amplitudy 2.2 Funkcja rozkładu błędu pomiaru czasu	2 2 3
3	Przyrządy pomiarowe	3
4	Przebieg ćwiczenia	3
5		4 4 4 4 5
6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6 6 6 7 7 7 8
7	Wnjoski	Q

1 Cel ćwiczenia

Celem laboratorium było zapoznanie się z ruchem drgającym i jego parametrami, wyznaczenie zależności okresu drgań od amplitudy w przypadku układu zbliżonego do wahadła matematycznego oraz zbadanie funkcji gęstości prawdopodobieństwa dla przypadkowych błędów.

2 Wstęp teoretyczny

2.1 Zależność okresu drgań wahadła od amplitudy

Ruchem harmonicznym nazywamy ruch, gdzie wychylenie jest sinusoidalną funkcją czasu, z takim ruchem mamy do czynienia, gdy siła zwrotna jest proporcjonalna do wychylenia.

Ruch wahadła jest harmoniczny jedynie dla małych wychyleń, dla których słuszne jest przybliżenie $\sin \theta = \theta$, wtedy ruch wahadła można opisać za pomocą równania:

$$I\frac{d^2\theta}{dt^2} = -mga\theta\tag{1}$$

Dla ruchu harmonicznego okres drgań nie zależy od amplitudy, jest to związane z tym, że równanie (1) jest równaniem liniowym jednorodnym. Dla takich równań obowiązuje twierdzenie, że jeżeli funkcja $\theta(t) = \cos(\omega t + \phi)$ jest rozwiązaniem równania, to rozwiązaniem jest również jej iloczyn przez stałą, $\theta(t) = A \cos(\omega t + \phi)$, gdzie stała A jest amplitudą drgań. Postać funkcji $\theta(t) = \cos(\omega t + \phi)$ i jej paramenty pozostają więc niezmienione.

Dla dużych wychyleń przybliżenie $\sin \theta = \theta$ nie jest już słuszne, a równanie (1) staje się jednorodnym równaniem różniczkowym nieliniowym, dlatego że niewiadoma $\theta(t)$ jest wtedy argumentem funkcji sinus.

W układach nieliniowych powstający ruch pozostaje ruchem okresowym, ale nie jest harmoniczny, dodatkowo okres ruchu staje się zależny od amplitudy drgań układu.

Rozwiązanie równania dla przypadku wahadła nieliniowego istnieje w postaci analitycznej, opartej o metodę rozwijania funkcji w szereg. Za jego pomocą jesteśmy w stanie wyrazić okres drgań wahadła w funkcji maksymalnej amplitudy drgań θ_m jako nieskończony szereg:

$$T = T_0 \left[1 + \left(\frac{1}{2}\right)^2 \sin^2 \frac{\theta_m}{2} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \sin^4 \frac{\theta_m}{4} + \dots \right]$$
 (2)

Stała T_0 oznacza wartość ukresu drgań dla małych kątów wychylenia równą $2\pi\sqrt{\frac{l}{g}}$

Przez rozwiniecie funkcji sinus w szereg potegowy wzór (2) można przekształcić do postaci:

$$T = T_0 \left[1 + \frac{1}{16} \theta_m^2 + \frac{11}{3072} \theta_m^4 + \dots \right]$$
 (3)

Gdzie kąt maksymalnego wychylenia θ_m wyrażony jest w radianach.

W ćwiczeniu sprawdza się doświadczalnie zależność okresu T od amplitudy drgań θ_m , gdyż zmiana okresu jest niewielka, więc wygodnie jest przedstawiać wyniki doświadczalne jako względną zmianę okresu $\frac{T-T_0}{T_0}$, którą możemy porównać z zależnością teoretyczną:

$$\frac{T - T_0}{T_0} = \frac{1}{16}\theta_m^2 + \frac{11}{3072}\theta_m^4 \tag{4}$$

Gdzie wartość T_0 wyznaczamy przez pomiar okresu dla małych wychyleń.

2.2 Funkcja rozkładu błędu pomiaru czasu

Średnia arytmetyczna n-elementowego zbioru wartości x_i opisana jest wzorem:

$$\overline{x} = \frac{1}{n} \sum x_i \tag{5}$$

Wariancję takiego zbioru opisuje:

$$s_x^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1} \tag{6}$$

Odchylenie standardowe średniej to pierwiastek z wariancji:

$$s_x = \sqrt{s_x^2} \tag{7}$$

Rozkład normalny to jeden z najważniejszych rozkładów prawdopodobieństwa, którego wykres ma charakterystyczny kształt dzwonu, oznaczany jest jako $N(\mu, \sigma)$ lub $N(\mu, \sigma^2)$. Funkcja gęstości prawdopodobieństwa dla tego rozkładu jest przykładem funkcji Gaussa i jest opisana wzorem:

$$f_{\mu, \sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(x-\mu)^2}{2\sigma}\right)$$
 (8)

Funkcję tę możemy przybliżyć dla znanego nam zbioru wartości korzystając z odpowiednich estymatorów, wówczas powstała na wykresie krzywa zwana jest przeskalowaną funkcja Gaussa i jest opisana wzorem:

$$f^*(x) = n\Delta x \frac{1}{s_x \sqrt{2\pi}} exp\left(-\frac{(x-\overline{x})^2}{2s_x^2}\right)$$
(9)

Reguła Trzech Sigma dla danego rozkładu normalnego $N(\mu, \sigma)$ oznacza, że w przedziale $[\mu - 3\sigma, \mu + 3\sigma]$ znajduje się w 99.7% wszystkich obserwacji, dzięki tej regule możemy łatwo zlokalizować obserwacje odstające.

3 Przyrządy pomiarowe

- Wahadło podobne do wahadła matematycznego
- Stoper

4 Przebieg ćwiczenia

Na początku wykonaliśmy sześć serii pomiarów dla kąta wychylenia 3° mierząc za każdym razem czas czterdziestu okresów, aby otrzymać pomiar T_0 .

Kolejnym krokiem było sprawdzenie okresu drgań wahadła dla większych kątów wychylenia, czyli zakresu od 5° do 60° . Sprawdziliśmy jak zmienia się ten okres oraz jak zmniejsza się kąt po 40 okresach drgań.

Na koniec wykonaliśmy 100 pomiarów czasu dla małej liczby okresów drgań i amplitudzie wychylenia równej 3° , aby sprawdzić rozkład wyników okresu.

5 Wyniki

5.1 Badanie zależności okresu drgań wahadła od amplitudy

5.1.1 Pomiar okresu T_0 dla stałej amplitudy

Liczba okresów m	T_i [s]	Okres T [s]
40	51,53	1,2883
40	51,46	1,2865
40	51,65	1,2913
40	51,56	1,2890
40	51,47	1,2868
40	51,63	1,2908

Tabela 1: Pomiar okresu T_0 (dla małej amplitudy drgań)

Wyniki są zebrane dla wychylenia $\theta \approx 3^\circ$

5.1.2 Pomiar okresu T dla zmiennej amplitudy

$\theta_m^{(1)} [^{\circ}]$	$\theta_m^{(2)} [^{\circ}]$	$\theta_m = \left(\theta_m^{(1)} + \theta_m^{(2)}\right) / 2 \ [^{\circ}]$	mT [s]	T [s]	$\left(T - \overline{T_0}\right) / \overline{T_0}$
5	4,00	4,500	51,69	1,29225	0,0026769
10	8,25	9,125	51,53	1,28825	-0,0004268
15	12,80	13,900	51,85	1,29625	0,0057806
20	17,70	18,850	51,9	1,2975	0,0067505
25	22,00	23,500	52,03	1,30075	0,0092722
30	26,80	28,400	52,33	1,30825	0,0150916
40	35,90	37,950	52,95	1,32375	0,0271182
50	44,85	47,425	53,81	1,34525	0,0438004
60	52,50	56,250	54,68	1,367	0,0606766

Tabela 2: Pomiar zależności okresu od amplitudy

Wyniki są zebrane dla m=40 okresów drgań

5.2 Badanie funkcji rozkładu błędu pomiaru czasu

Т	T	
Lp	mT_i	T_i
1	2,67	1,335
2	2,64	1,320
3	2,61	1,305
4	2,58	1,290
5	2,64	1,320
6	2,77	1,385
7	2,52	1,260
8	2,61	1,305
9	2,64	1,320
10	2,58	1,290
11	2,64	1,320
12	2,58	1,290
13	2,61	1,305
14	2,63	1,315
15	2,65	1,325
16	2,59	1,295
17	2,64	1,320
18	2,63	1,315
19	2,55	1,275
20	2,67	1,335
21	2,70	1,350
22	2,61	1,305
23	2,77	1,385
24	2,69	1,345
25	2,63	1,315
26	2,58	1,290
27	2,65	1,325
28	2,67	1,335
29	2,60	1,300
30	2,61	1,305
31	2,64	1,320
32	2,67	1,335
33	2,56	1,280
34	2,62	1,310

Lp	mT_i	T_i
35	2,61	1,305
36	2,55	1,275
37	2,58	1,290
38	2,55	1,275
39	2,65	1,325
40	2,65	1,325
41	2,67	1,335
42	2,61	1,305
43	2,63	1,315
44	2,61	1,305
45	2,73	1,365
46	2,67	1,335
47	2,59	1,295
48	2,58	1,290
49	2,68	1,340
50	2,63	1,315
51	2,46	1,230
52	2,61	1,305
53	2,48	1,240
54	2,58	1,290
55	2,58	1,290
56	2,63	1,315
57	2,58	1,290
58	2,48	1,240
59	2,59	1,295
60	2,51	1,255
61	2,54	1,270
62	2,63	1,315
63	2,53	1,265
64	2,66	1,330
65	2,58	1,290
66	2,53	1,265
67	2,63	1,315
68	2,51	1,255

Lp	mT_i	T_i
69	2,75	1,375
70	2,55	1,275
71	2,64	1,320
72	2,58	1,290
73	2,61	1,305
74	2,48	1,240
75	2,59	1,295
76	2,60	1,300
77	2,48	1,240
78	2,63	1,315
79	2,53	1,265
80	2,59	1,295
81	2,53	1,265
82	2,63	1,315
83	2,53	1,265
84	2,48	1,240
85	2,63	1,315
86	2,53	1,265
87	2,45	1,225
88	2,53	1,265
89	2,60	1,300
90	2,61	1,305
91	2,56	1,280
92	2,56	1,280
93	2,53	1,265
94	2,51	1,255
95	2,63	1,315
96	2,53	1,265
97	2,68	1,340
98	2,53	1,265
99	2,68	1,340
100	2,48	1,240

Tabela 3: Pomiar okresu T_i przy m=2 (dla małej amplitudy drgań)

Wyniki są zebrane dla wychylenia $\theta\approx 3^\circ$

6 Opracowanie wyników

6.1 Opracowanie zależności okresu drgań wahadła od amplitudy

6.1.1 Średni okres wahadła T_0

Opracowanie zacznijmy od obliczenia średniej wartości T_0 :

$$\overline{T_0} = \frac{\sum_{i=1}^{n} T_{0_i}}{n} = 1,2888 \text{ (s)}$$
(10)

6.1.2 Niepewność pomiaru okresu wahadła T_0

Miarą niepewności pojedynczego pomiaru jest odchylenie standardowe pomiarów σ , które estymowane jest przez wielkość zdefiniowaną wzorem:

$$\sigma_{T_0} = \sqrt{\frac{\sum_{i=1}^{n} (T_{0_i} - \overline{T_0})^2}{n-1}} = 0,001981 \quad (s)$$
(11)

Odchylenie standardowe $\sigma_{\overline{T_0}}$ średniej arytmetycznej $\overline{T_0}$ jest \sqrt{n} razy mniejsze od odchylenia standardowego pojedynczego pomiaru, więc estymowane jest przez:

$$\sigma_{\overline{T_0}} = \sqrt{\frac{\sum_{i=1}^{n} (T_{0_i} - \overline{T_0})^2}{n(n-1)}} = \frac{\sigma_{T_0}}{\sqrt{n}} = 0,000809 (s)$$
(12)

6.1.3 Średnia wartość względnej zmiany okresu wahadła $\left(T-\overline{T_0}\right)/\overline{T_0}$

Średnią wartość względnej zmiany okresu wahadła obliczymy następująco:

$$\overline{\theta_m} = \frac{\sum_{i=1}^n \theta_{m_i}}{n} = 0,018971 \ (s) \tag{13}$$

6.1.4 Wykres zależności względnej zmiany okresu wahadła od średniej amplitudy

Na podstawie zebranych danych sporządzimy wykres zależności względnej zmiany okresu wahadła $(T-T_0)/T_0$ od średniej amplitudy $\overline{\theta_m} = \left(\theta_m^{(1)} + \theta_m^{(2)}\right)/2$:

Rysunek 1: Zależność względnej zmiany okresu wahadła od średniej amplitudy

Analizując powyższy wykres możemy z pewnością wnioskować o słuszności powyżej opisanej teorii, a w szczegolności wzoru:

$$\frac{T - T_0}{T_0} = \frac{1}{16}\theta_m^2 + \frac{11}{3072}\theta_m^4 \tag{14}$$

ze względu na bardzo podobny rozkład wyników zebranych na laboratorium a otrzymanych teoretycznie.

6.2 Badanie funkcji rozkładu błędu pomiaru czasu

6.2.1 Wartość średnia \overline{T}

Najpierw obliczymy wartość średnią \overline{T} następująco:

$$\overline{T} = \frac{\sum_{i=1}^{n} T_i}{n} = 1,29895 (s)$$
(15)

Teraz uzyskamy odchylenie standardowe pojedynczego pomiaru σ tak samo, jak w podpunkcie (6.1.2):

$$\sigma_T = \sqrt{\frac{\sum_{i=1}^n (T_i - \overline{T})^2}{n-1}} = 0,033031 \ (s)$$
 (16)

A później znajdziemy niepewność standardową dla średniej \overline{T} :

$$\sigma_T = \sqrt{\frac{\sum_{i=1}^{n} (T_i - \overline{T})^2}{n(n-1)}} = 0,002898 (s)$$
(17)

6.2.2 Histogram doświadczalny

Na podstawie otrzymanych wyników sporządzimy histogram pokazujący częstość występowania wartości okresu T_i z przedziału o szerokości $0.02\,s$:

Rysunek 2: Histogram doświadczalny rozkładu okresów drgań T_i

Analizując powyższy histogram doświadczalny możemy zauważyć pewny trend sugerujący, że nasza zmienna losowa T_i podlega rozkładowi Gaussa z parametrami: $\mu = 1,2989 \, \mathrm{s}$ i $\sigma = 0,033031 \, \mathrm{s}$.

Obliczyliśmy, że:

- Ilość wartości, które trafiły do przedziału: $[\overline{x} \sigma, \overline{x} + \sigma]$ jest równa 63.
- Ilość wartości, które trafiły do przedziału: $[\overline{x}-2\sigma,\ \overline{x}+2\sigma]$ jest równa 32.

Wynik jest bardzo bliski dla przewidywań teoretycznych dla rozkładu normalnego, gdzie 99,7% danych powinno mieścić się w przedziale $[\overline{x} - 3\sigma, \overline{x} + 3\sigma]$. W naszym przypadku wartość ta wyniosła 95%.

7 Wnioski

- Przeprowadzone pomiary potwierdzają zgodność teorii z doświadczeniem
- Niedokładność pomiarów wynika głównie z ograniczonej zdolności człowieka do natychmiastowej reakcji przy pomiarze czasu.
- Dopasowana krzywa Gaussa jest bliska otrzymanemu histogramowi, który przypomina histogram rozkładu normalnego.