Sistemas de Visão e Percepção Industrial

3-Processamento a Médio Nível

Descritores de Regiões

Sumário

- 1 Problemática e Conceitos
- Propriedades Geométricas
- 3 Descritores de Histogramas
- 4 Momentos de Imagens

2

Referências

- Gonzalez, Cap. 11
- Burger, Cap. 11
- Sonka, Cap. 6
- Davies, Cap. 6

3

Problemática e Conceitos

Problemática

- Obtida a segmentação de objetos face ao fundo, como representar ou descrever esses objetos?
- E quais as técnicas de reconhecimento desses objetos?
- Os objetos em causa são do tipo:
 - Regiões
 - ou ...
 - Contornos
- .. e são o resultado de operações de segmentação como:
 - binarização, deteção de arestas, crescimento de regiões por conectividade, . . .

Definições iniciais

- Regiões (blobs)
 - Conjuntos de pixels com determinado grau de conectividade (normalmente 4 ou 8).
 - Resultam em geral de um processo que começa numa binarização.
 - Em matlab podem separar-se e distinguir-se com o operador bwlabel()
- Contornos ou fronteiras (contours, boundaries)
 - Conjunto de pixels que possuem pelo menos um vizinho que não está incluido no grupo (pertence ao fundo).
 - Podem ser fechados ou abertos.
 - Resultam em geral de um processo de deteção de "arestas".
 - Em matlab também se podem separar com o operador bwlabel() ...
 - ... mas a obtenção de coordenadas dos pixels de contorno faz-se com bwboundaries().

Diferenças de representações

- Por regiões (representação do interior)
 - Quando o objetivo principal é o estudo de propriedades internas (cor, textura, . . .)
 - Usa-se a máscara (blob) enquando imagem binária:
 - para fazer a análise de propriedades e/ou
 - 2 para servir de "extrator" da região completa da imagem original (cinzento ou a cores).
- Por contornos (representação do exterior)
 - Quando o objetivo principal é o estudo da forma
 - Nesse caso pode-se utilizar a imagem
 - como uma máscara binária apenas do contorno ...
 - 2 mas o mais versátil é usar as coordenadas dos pixels de um contorno para fazer operações analíticas com base nessas mesmas coordenadas.
- Mas, muitas vezes, o estudo usa os dois tipos ou combinações
 - procurando descritores imunes a variações de luz, escala, rotação, translação, etc...

Descritores de regiões – abordagens

- Obtenção de propriedades geométricas várias
- Descrição de textura
 - Técnicas estatísticas (em especial no seu histograma)
 - Análise espectral (não abordado agora)
- Momentos invariantes de imagens

Propriedades Geométricas

Propriedades geométricas de uma região – 1

- Área
 - Número total de pixels da região (Algumas aplicações podem usar uma variante por causa dos pixels de fronteira)
- Centróide
 - Coordenadas do centro de massa
- Bounding Box (caixa limite)
 - O menor retângulo que contém a região
- Convex hull (casca convexa)
 - O menor polígono convexo que contém a região
- Diâmetro equivalente
 - Diâmetro do círculo com a mesma área da região
- Perímetro (P)
 - Duas definições (uma rigorosa e outra aproximada):
 - Comprimento em pixels do contorno externo (múltiplos de 1 e $\sqrt{2}$)
 - Número de pixels do contorno externo.

Propriedades geométricas de uma região – 2

- Fator de forma ou circularidade (circularity)
 - $\bullet \ ff = \frac{4\pi A}{P^2} {\sf Detalhado\ adiante}$
- Número de Euler
 - Número de objetos menos o número de buracos N_b nos objetos (para regiões de um só objecto = $1-N_b$)
- Extremos
 - Coordenadas dos pontos extremos (8 pontos)

- Elipse envolvente (aquela que tem momento de segunda ordem igual ao da região)
 - Eixo maior
 - Eixo menor
 - Orientação (com a horizontal)
 - Excentricidade

Propriedades geométricas de uma região – 3

- Solidez (Solidity)
 - Proporção de pixels no convex hull com os pixels da região, ou seja Area/ConvexArea.
- Extensão (Extent)
 - Razão entre o número de pixels na região e o total de pixels da bounding box (Area/Area da bounding box).
- Propriedades de Feret (MaxFeretProperties, MinFeretProperties)
 - Diâmetros entre pontos antípodas na fronteira numa dada direção medida entre os dois planos paralelos que delimitam o objecto na perpendicular a essa direção

Propriedades de Feret

- Reportam-se a:
 - Diâmetros
 - Ângulos do diâmetro
 - Coordenadas dos pontos envolvidos
- Madições diâmetros máximos e mínimos

Propriedades geométricas – ilustração parcial

• Algumas propriedades calculadas pelo regionpropos() do Matlab

Algumas propriedades/descritores do objeto

- Propriedades da imagem/região obtidas no Matlab
 - Código exemplo:

```
A=imread('region2.png');
B=imbinarize(A,0.5);
L=bwlabel(B);
S=regionprops(L,'All');
```


- Area = 116876
- Centroid = [409.9256 292.7733]
- BoundingBox = [109.5000 32.5000 593 490]
- Subarrayldx = {[1x490 double] [1x593 double]}
- MajorAxisLength = 583.2621
- MinorAxisLength = 349.9109
- Eccentricity = 0.8001
- Orientation = -25.7859
- ConvexHull = [69x2 double]
 - ConvexImage = [490x593 logical]
- ConvexArea = 171110
- Circularity = 0.4058
- Image = [490×593 logical]
- FilledImage = [490×593 logical]
- FilledArea = 124580
- EulerNumber = -2
- Extrema = [8x2 double]
- EquivDiameter = 385.7605
- Solidity = 0.683
- Extent = 0.4022
- PixelldxList = [116876x1 double]
 - PixelList = [116876x2 double]
- Perimeter = 1902.5

Exemplo em Matlab

- Carregar a imagem 'region2.png'
- Binarizar a 50%
- Obter as regiões (bwlabel)
- Obter as propriedades do(s) objeto(s) (regionprops)
- Identificar no objeto os seguintes elementos:
 - Centróide
 - Retângulo envolvente (BoundingBox)
 - O polígono envolvente convexo (ConvexHull)
 - Os pontos extremos (Extrema)

Ver mais detalhes em http://www.mathworks.com/help/images/ref/regionprops.html

Exercício Exemplo

- Usar a figura da esquerda para caracterizar os objetos, e assim determinar automaticamente quantos alicates há na outra figura.
- Recorrer a propriedades de regiões:
 - Há diversas possibilidades: explorar as seguintes sugestões: área, número de Euler, solidez (*solidity*)

Examplo de Procedimentos de resolução - 1

- Tentar isolar o alicate, descobrindo propriedades repetíveis noutras imagens.
- Carregar a imagem "tools.png"
- Isolar os objetos...
 - Grandes (mais de 4000 pixels, por exemplo) ...
 - ullet ... E sem furos (número de Euler > 0)
- Dos objetos que passarem o critério anterior, isolar o objeto com menor solidez (solidity) – relação de preenchimento da área com a região convexa envolvente

Procedimentos - 1a)

Operações matlab de base

```
A=im2double(imread('tools.png')); B=imbinarize(A,0.5);
[L n]=bwlabel(B);
s=regionprops(L, 'Area', 'EulerNumber');
```

- Isolar os objetos...
 - Grandes (mais de 4000 pixels)
 - idxA = find([s.Area] > 4000); %area > 4000
 - .. E sem furos (número de Euler > 0)
 - idxE = find([s.EulerNumber] > 0); % No holes
- Combinar e representar

```
C=( ismember(L,idxA) & ismember(L, idxE) );
imshow(C); title('Objects A>4000 & EulerNumber>0');
```

Procedimentos - 1b)

• Dos objetos que passaram os dois critérios anteriores, isolar o que tem a menor solidez de todas.

```
[L, n]=bwlabel(C);
s=regionprops(L, 'Solidity');
idxX = find([s.Solidity]== min([s.Solidity] ));
D=(L==idxX);
```


Procedimentos de resolução - 2

- Aplicar os mesmos critérios à imagem 2 ("tools2.png")
 - Mas usar tolerância de $\pm 1\%$ na *solidity* uma vez que se esperam múltiplos objetos que podem não ser rigorosamente iguais!
- Isolar esses objetos.
- Contar quantos são.
- Determinar as suas orientações e observar potenciais ambiguidades...

Fator de forma ou circularidade

- $ff = \frac{4\pi A}{P^2} \Rightarrow = 1$ para círculos; < 1 para outros casos.
- Quadrado

•
$$A = L^2$$
; $P = 4L$

•
$$ff = \frac{4\pi L^2}{16L^2} = \frac{4\pi}{16} \approx 0.785$$

Triângulo

•
$$A = \frac{\sqrt{3}L^2}{4}$$
; $P = 3L$

•
$$ff = \frac{4\pi\sqrt{3}L^2}{9L^2} = \frac{\pi\sqrt{3}}{9} \approx 0.605$$

• Nas versões recentes de Matlab o regionprops() dá esta propriedade diretamente.

Exercício para aplicar o fator de forma

• Obter as máscaras de todos os triângulos na imagem dada abaixo

Elementos de resolução do exercício

Imagem D

```
A=imread('traffic_signs.jpg');
B=rgb2gray(A);
C = \min(B);
subplot(1,2,1), imshow(A);
D=imfill(C, 'holes');
D=imclose(D, ones(3));
[L, num]=bwlabel(D);
s=regionprops(L,'All');
%P=[s.Perimeter]; A=[s.Area];
%ff=4*pi*A./P./P; %Early versions
ff=[s.Circularity];
idx = find(ff < 0.7);
TRI= (ismember(L,idx));
subplot(1,2,2), imshow(TRI);
```

Descritores de Histogramas

Momentos de histogramas

- Traduzem propriedades estatísticas do histograma
- Definição do momento de n-ésima ordem de um histograma:

$$\mu_n = \sum_{i=0}^{L-1} (i-m)^n h(i)$$

- L número de níveis de cinzento (em geral 256)
- *i* nível de intensidade
- h(i) valor normalizado ([0;1]) do histograma para intensidade i
- m intensidade média da imagem dada por:

$$m = \sum_{i=0}^{L-1} i \cdot h(i)$$

• NB. Os momentos de um histograma não são a mesma coisa que os momentos de imagem descritos adiante.

Termos estatísticos e seu significado

Momento de segunda ordem do histograma:

$$\mu_2 = \sum_{i=0}^{L-1} (i-m)^2 h(i) = \sigma^2$$

• A (raiz quadrada da) variância da imagem traduz o contraste médio:

$$\sigma = \sqrt{\mu_2}$$

27

Exemplos do contraste médio (σ)

Suavidade (smoothness)

A expressão:

$$R = \frac{\sigma^2}{1 + \sigma^2} = 1 - \frac{1}{1 + \sigma^2}$$

- Mede a suavidade relativa da intensidade na região.
- ullet R é zero para uma região de intensidade constante.
- R aproxima-se de 1 para regiões com grandes excursões dos valores das suas intensidades.
- Na prática esta medida é usada normalizada na gama [0;1] divindindo-a por $(L-1)^2$

29

Terceiro momento do histograma

A expressão:

$$\mu_3 = \sum_{i=0}^{L-1} (i-m)^3 h(i)$$

- Mede a assimetria do histograma.
- É zero para histogramas simétricos.
- Positivo para histogramas desviados para a direita (em relação à média)
- Negativo para histogramas desviados para a esquerda
- ullet Também se costuma normalizar divindindo-o por $(L-1)^2$

Exemplos do terceiro momento do histograma

Uniformidade

A expressão

$$U = \sum_{i=0}^{L-1} h^2(i)$$

- Mede a uniformidade do histograma
- É máximo quando todos os níveis de cinzento estão em igual número.
- Decresce para zero com a variação dos níveis de cinzento no histograma.

32

Entropia

Medida de aleatoriedade na distribuição de intensidades no histograma:

$$H = -\sum_{i=0}^{L-1} h(i) \log_2 h(i)$$

- Pode ser usada para caracterizar a textura da imagem.
- Em matlab calcula-se com a função entropy().

Momentos de Imagens

Momentos de uma imagem ou região

• Momento de ordem (p+q) de uma imagem genérica

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$

• Em imagens binárias $\{0, 1\}$ a expressão simplifica-se admitindo que (x,y) estão restritos à região $\{1\}$:

$$m_{pq} = \sum_{x \in \{1\}} \sum_{y \in \{1\}} x^p y^q$$

• O momento de ordem zero de uma região R (de pixels com valor 1) é a sua área com (x,y) restritos a essa região:

$$m_{00} = \sum_{x \in \{1\}} \sum_{y \in \{1\}} 1$$

35

Momentos Centrais

São definidos em torno da média:

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^p (y - \bar{y})^q f(x, y)$$

onde se tem:

$$\bar{x} = \frac{m_{10}}{m_{00}} \qquad \qquad \bar{y} = \frac{m_{01}}{m_{00}}$$

E também:

$$m_{10} = \sum_{x} \sum_{y} x \cdot f(x, y) \qquad m_{01} = \sum_{x} \sum_{y} y \cdot f(x, y)$$

Qual a relação com o centróide...?

Momentos invariantes de imagem - 1

- São momentos de imagens (ou de objetos) especiais insensíveis à translação, mudança de escala, reflexão e rotação.
- \bullet São baseados nos momentos centrais normalizados de ordem (p+q) dados por:

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}} \qquad p, q = 0, 1, 2, \dots$$

onde se tem

$$\gamma = \frac{p+q}{2} + 1$$
 $p+q = 2, 3, \dots$

37

Momentos invariantes de imagem - 2

 Os 7 momentos de Hu (insensíveis à translação, mudança de escala, reflexão e rotação).

$$\varphi_{1} = \eta_{20} + \eta_{02}$$

$$\varphi_{2} = (\eta_{20} - \eta_{02})^{2} + 4\eta_{11}^{2}$$

$$\varphi_{3} = (\eta_{30} - 3\eta_{12})^{2} + (3\eta_{21} - \eta_{03})^{2}$$

$$\varphi_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}$$

$$\varphi_{5} = \dots \qquad \varphi_{6} = \dots \qquad \varphi_{7} = \dots$$

Ver literatura...

Momentos invariantes de imagem - 3

- O objecto base é (a) e os restantes são transformações como indicado na tabela.
- Nota-se uma invariância (aproximada) com variações na orientação, escala e outras transformações...

in Theodoridis et al.

Momentos de Hu	0º (a)	Escala (b)	180º (d)	15º (f)	Reflexo (c)	90º (e)
φ_1	93.13	91.76	93.13	94.28	93.13	93.13
$arphi_2$	58.13	56.60	58.13	58.59	58.13	58.13
$arphi_3$	26.70	25.06	26.70	27.00	26.70	26.70
$arphi_4$	15.92	14.78	15.92	15.83	15.92	15.92
$arphi_5$	3.24	2.80	3.24	3.22	3.24	3.24
$arphi_6$	10.70	9.71	10.70	10.57	10.70	10.70
φ_7	0.53	0.46	0.53	0.56	-0.53	0.53

Outro exemplo de momentos invariantes

Invariant (log)	Original	Half Size	Mirrored	Rotated 2°	Rotated 45°
ϕ_1	6.600	6.600	6.600	6.600	6.600
ϕ_2	16.410	16.408	16.410	16.410	16.410
ϕ_3	23.972	23.958	23.972	23.978	23.973
ϕ_4	23.888	23.882	23.888	23.888	23.888
ϕ_5	49.200	49.258	49.200	49.200	49.198
ϕ_6	32.102	32.094	32.102	32.102	32.102
ϕ_7	47.953	47.933	47.850	47.953	47.954

a b c

FIGURE 11.23

(a) Original, padded image. (b) Half size image.

(c) Mirrored image. (d) Image rotated by 2°. (e) Image rotated

(e) Image rotated 45°. The zero padding in (a) through (d) was

padding in (a) through (d) was done to make the images consistent in size with (e) for viewing purposes only.

TABLE 11.4

The seven moment invariants of the images in Figs. 11.23(a) through (e). Note the use of the magnitude of the log in the first column.

Outro exemplo de momentos invariantes

b =2.983

=2.074

φ_=4.674

1.75 (28%) (152%)

1.31 (25%) (36%)

6.17 (32%) (392%)

 Exemplo com duas imagens diferentes, mas de natureza semelhante, e as variações dos momentos de Hu entre os dois originais e as diversas transformações.

 Note-se que as variações para com o original estranho são em geral muito grandes (segunda coluna percentual) e, portanto, não há risco de confundir objetos, mesmo quando são parecidos (mas não iguais!)

2.97 (0%) (282%)

2.07 (0%) (17%)

4.63 (1%) (269%)

2.98 (0%) (283%)

2.07 (0%) (17%)

-4.67 (200%) (473%)

3 03 (1%) (288%)

2.09 (0%) (17%)

4.95 (6%) (295%)

4.19 (0%) (41%)

2.98 (0%) (283%)

2.07 (0%) (17%)

4.67 (0%) (273%)