INFO-F-302

Informatique Fondamentale Logique du premier ordre

Prof. Emmanuel Filiot

Exercice 1

- 1. Soit un langage $\mathcal{L} = (p,q,r,s,t,f,g)$ où p,q sont des prédicats unaires, r,s,t sont des prédicats binaires, et f,g sont des fonctions unaires. Modélisez en logique du premier ordre les propriétés suivantes :
 - (a) La relation r modélise une fonction.
 - (b) le prédicat s contient le produit cartésien de p et q.
 - (c) le prédicat t est égal au produit cartésien de q et p.
 - (d) La fonction f est surjective.
 - (e) La fonction g est injective.
- 2. Soit un langage $\mathcal{L} = (p, f, g)$ où p est un prédicat binaire, f une fonctions binaire, et soit une formule φ de \mathcal{L} telle que $\varphi \equiv \exists y \cdot p(z, f(x, y))$. La formule φ est-elle vraie dans la structure \mathcal{M} , en utilisant la valuation \mathcal{V} ?

(a)
$$\mathcal{M} = (D \equiv \mathbb{N}, p \equiv \leq, f \equiv +) \text{ et } \mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$$

(b)
$$\mathcal{M} = (D \equiv \mathbb{Z}, p \equiv <, f \equiv +) \text{ et } \mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$$

(c)
$$\mathcal{M} = (D \equiv \mathbb{N}, p \equiv \leq, f \equiv \times) \text{ et } \mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$$

(d)
$$\mathcal{M} = (D \equiv \mathbb{Z}, p \equiv -, f \equiv \times) \text{ et } \mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$$

(e)
$$\mathcal{M} = (D \equiv \mathbb{Z}_6, p \equiv -, f \equiv \times)$$
 et $\mathcal{V} \equiv (x \mapsto 5, z \mapsto 3)$

(f)
$$\mathcal{M} = (D \equiv \mathbb{N}, p \equiv \leq, f \equiv \times)$$
 et $\mathcal{V} \equiv (x \mapsto 2, z \mapsto 4)$

(g)
$$\mathcal{M} = (D \equiv \mathbb{Z}, p \equiv \leq, f \equiv \times)$$
 et $\mathcal{V} \equiv (x \mapsto 2, z \mapsto 4)$

- 3. Trouver un modèle non vide avec le moins d'éléments possibles qui satisfait la formule :
 - (a) $\exists x \exists y \exists z \cdot x \neq y \land y \neq z$
 - (b) $\forall x \cdot [f(x) \neq x]$
 - (c) $\forall x \cdot [f(x) \neq x] \land \exists x \forall y \cdot [f(y) \neq x]$
 - (d) $\forall x \cdot [f(x) \neq x] \land \forall x \forall y \forall z \cdot [(f(x) = z \land f(y) = z) \rightarrow x = y]$
 - (e) $\forall x \cdot [f(x) \neq x] \land \exists x \forall y \cdot [f(y) \neq x] \land \forall x \forall y \forall z \cdot [(f(x) = z \land f(y) = z) \rightarrow x = y]$

Exercice 2 On s'intéresse à l'ensemble des entiers \mathbb{N} , muni de la fonction unaire "successeur" s telle que s(n) = n + 1.

1

1. Donnez une formule φ_0 ouverte sur la variable x qui est validée si et seulement si x vaut 0. Attention, la constante 0 ne fait pas partie du vocabulaire.

Rosp pel;

- · \x]y : >c>y
 - · faux ofs N: 2220 J'aifférence ob
 - · Unids Z
- . Jy x>y

! of clo seno

· om; si x = s

. man 17 36 = 3

Jelifférence el'interprétate

· Hoc 3 & P(51,5) P predict binsine

- · vnai ds M 80 p; 5
- · Sams 11 11 11 11 11 17

(b) 5 control px y
(51,y) or 5

4 sc, y [p(sc) 1 9(5)] -> s (se, y)

(C) t= 9xp: r = 9xp it 9xp = t

 $\forall x,y [q(x) \land p(y)] \rightarrow t(x,y) + contrast qxp$ $\land f(x,y) \rightarrow [q(x) \land p(y)] \qquad qxp contrast t$

(d) Hy 3 oc J(21) = y

ict on peut écrin J(21) = y can fest une

Jon(t'=) volum MAII

P(21) -> prédicat -> renvoie bodien -> prosty

(2) Yxy y (21) = g(y) ~> 3c=g

2)

 $(0) \exists y p(z, f(x,y)) p; \leq f; t x: 5 z: 3$

. 3 y 5 < 5 ty -> Umi

- Y g 3 ≤ S + y - > Urai Si p: 7,? -> Joux

(b) Dans \mathbb{Z} p: $\leq f:t \times is \times z:3$ $\exists 5 3 \leq 5 \leq 5 \leq V$

$$\forall y 3 \leq Sfy \times yz-2$$

Sipin ? \sqrt{X}

$$(C)$$
 $+$ (C) $+$ (C)

· Unoci quand x = 0?

7 5 5 t1 = 0 X

· Vosi queha sc fo

39 9+1=5 V

3 5 5+1-7 V

· 79 S(9) = 1c Po!

that s(g) x sc

Jz; f. (z) 1 x + z = y

cerians chardong = 1, y (S

p(x): + si x est pain

L si si impair

i(x); This impair

I 11 " pain

For Policy 1 place of pair

 $\Lambda \forall x p(x) \rightarrow i(s(x))$

· Si west pain, not impain

1 i(si) -> p(s(si))

se me peut pas être poir et impui

 $\Lambda \forall x p(x) \leftarrow \gamma \tau(x)$

- 2. Soient p et i deux prédicats unaires. Donnez une formule qui garantit que p(n) est vrai exactement pour les n pairs, et i(n) exactement pour les n impairs.
- 3. Soit d une fonction unaire. Donnez une formule qui garantit que d(n) = 2n pour tout n.
- 4. On cherche à réinventer les symboles +, \times , et \geqslant . Seraient-ce des prédicats? Des fonctions? De quelle arité? Donner une formule pour garantir leur bon fonctionnement.

Exercice 3 On s'intéresse maintenant au modèle qui contient à la fois les entiers et les listes d'entiers strictement positifs. Les entiers sont identifiés par le prédicat N(x), et on peut appliquer sur eux le vocabulaire de l'Exercice 2 $(s,0,p,i,d,+,\times,\geqslant)$. Les listes sont identifiés par le prédicat L(x), et on peut appliquer sur elles la fonction e(x,y) qui retourne le $y^{\text{ème}}$ élément de x. Par convention si x n'a pas de $y^{\text{ème}}$ élément, e(x,y)=0.

- On veut "typer" la fonction e et s'assurer qu'elle renvoie toujours un entier. Donner la formule qui doit être vraie dans ce cas.
- On veut s'assurer que si une liste a n éléments, alors tous les e(x,y) avec y>n valent 0. Donner la formule qui doit être vraie dans ce cas.

On s'intéresse maintenant à la conjecture de Syracuse. Soit une valeur n. On génère une liste de valeurs comme suit.

- Si n est pair, la prochaine valeur est n/2
- Si n est impair, la prochaine valeur est 3n + 1

On s'arrête si on atteint 1. Par exemple, pour une valeur initiale de 13, la séquence serait :

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

La conjecture de Syracuse dit que : quelque soit la valeur de départ, on atteint toujours 1.

Exprimer la conjecture de Syracuse en logique du premier ordre à l'aide de fonctions et prédicats de votre choix.

Exercice 4 Soit un langage $\mathcal{L} = (t)$, où t est un prédicat binaire.

- 1. Modélisez en logique du premier ordre que t est une relation transitive (φ_1) et totale (φ_2) .
- 2. Soit un graphe non-dirigé G, et \mathcal{M}_G la structure définie par G où le domaine est l'ensemble des nœuds de G et t la présence d'un chemin entre deux nœuds. Est-ce que \mathcal{M}_G est un modèle pour la propriété de transitivité sur t? Sinon donnez un contre-exemple.
- 3. Est-ce qu'on a $\mathcal{M}_G \models \varphi_2$? Sinon donnez un contre-exemple.
- 4. Soit un graphe non-dirigé G tel que $\mathcal{M}_G \not\models (\neg \varphi_1 \lor \neg \varphi_2)$, que pouvez-vous dire de G?
- 5. Construire φ sur \mathcal{L} telle que $\mathcal{M}_G \models \varphi$:
 - (a) Si et seulement si G possède un élément qui est un successeur de tous les autres nœuds.
 - (b) Si et seulement si G possède une clique de taille k.

Exercice 5 Soit le langage $\mathcal{L}=(p)$, où p est un prédicat binaire. Ecrire une formule φ telle que si $\mathcal{M}\models\varphi$, alors le domaine de \mathcal{M} est infini. Si c'est le cas, montrer que $\mathbb{N}\models\varphi$ pour une certaine interprétation de p.