Construction of Electronic System

- 8.1 电压比较器(Comparator)
- 8.2 非正弦波发生电路(Nonsinusoidal Oscillator)
- 8.3 信号转换电路 (Signal Converter)
- 8.4 正弦波振荡电路(Oscillator)

8.1 电压比较器(Comparator)

一、集成运放的非线性工作区

非线性工作区: 开环或者只引入正反馈

非线性工作区特点:

$$u_{P}>u_{N}$$
 $u_{O}=+U_{OM}$
 $u_{P} $u_{O}=-U_{OM}$$

二、电压比较器的传输特性及种类

• 电压比较器的传输特性: $u_0 = f(u_I)$

传输特性的三要素

•输出比较结果 U_{OH} (高电平), U_{OL} (低电平)

• 阈值电压 U_{T} (转折电压)

 u_{Γ} 变化经过 U_{Γ} 时, u_{Ω} 的跃变方向

• 电压比较器的种类: 单限 滞回 窗口

 $u_{\rm O}$

 $U_{
m OH}$

跃变

方向

输出比

较结果

阈值

电压

三、单限电压比较器

1. 过零比较器

1) 分析三要素

- $u_{\rm I} > 0$, $U_{\rm OL} = -U_{\rm OM}$ $u_{\rm I} < 0$, $U_{\rm OH} = +U_{\rm OM}$
- ・阈值电压 U_{T} =0
- $oldsymbol{u}_{ ext{I}}$ 由小往大变化经过 $U_{ ext{T}}$ 时, $u_{ ext{O}}$ 由+ $U_{ ext{OM}}$ 变为- $U_{ ext{OM}}$
- 2) 根据三要素画电压传输特性 问题: 当u_I从同相端输入时, 电压传输特性?

2. 一般单限比较器

问题: 当u_I从同相端输

入时, 电压传输特性?

分析三要素方法:

- 1) 求出 U_{OH} , U_{OL} 主要分析限幅电路;
- 2) 利用虚断分别求出 u_+ 、 u_- , 令 u_+ = u_- ,求出 U_T ;
- 3) 分析 $u_I > U_T$ 和 $u_I < U_T$ 时 u_O 的值,从而确定传输特性方向。

$$u_{\rm O} = \pm U_{\rm Z}$$

$$u_{-} = u_{1}$$
 $u_{+} = \frac{R_{2}}{R_{1} + R_{2}} U_{\text{REF}}$

$$U_{\mathrm{T}} = \frac{R_{2}}{R_{1} + R_{2}} U_{\mathrm{REF}}$$

$$u_{\rm I} < U_{\rm T}$$
 $u_{-} < u_{+}$ $u_{\rm O} = +U_{\rm Z}$
 $u_{\rm I} > U_{\rm T}$ $u_{-} > u_{+}$ $u_{\rm O} = -U_{\rm Z}$

四、滞回比较器(Schmitt Trigger)

引入了正反馈

1. 分析三要素

$$u_{O} = \pm U_{Z}$$

$$u_{L} = u_{I} \quad u_{+} = \frac{R_{1}}{R_{1} + R_{2}} u_{O}$$

$$\pm U_{T} = \pm \frac{R_{1}}{R_{1} + R_{2}} U_{Z}$$

$$u_{\rm I} < -U_{\rm T}$$
 $u_{-} < u_{+}$ $u_{\rm O} = +U_{\rm Z}$ $u_{\rm I} > +U_{\rm T}$ $u_{-} > u_{+}$ $u_{\rm O} = -U_{\rm Z}$ $-U_{\rm T} < u_{\rm I} < +U_{\rm T}$ 时 $u_{\rm O}$ 值不确定

2. 画电压传输特性

 $ullet u_{
m I}$ 从<- $U_{
m T}$ 逐渐增大到- $U_{
m T}$ < $u_{
m I}$ <+ $U_{
m T}$

则 u_0 保持+ U_Z 不变

$$u_{\rm O} = +U_{\rm Z}$$

 $ullet u_{
m I}$ 从>+ $U_{
m T}$ 逐渐减小到- $U_{
m T}$ < $u_{
m I}$ <+ $U_{
m T}$

则 u_0 保持- U_Z 不变

$$u_{\rm o} = -U_{\rm z}$$

结论:

- \Rightarrow 当 $u_{\rm I}$ <- $U_{\rm T}$ 或 $u_{\rm I}$ >+ $U_{\rm T}$ 时, $u_{\rm O}$ 值确定; 当- $U_{\rm T}$ < $u_{\rm I}$ <+ $U_{\rm T}$ 时, $u_{\rm O}$ 值保持不变;
- ho 设某一时刻 u_0 =+ U_Z ,则阈值为 U_T ; 反之 u_0 =- U_Z 时,则阈值为- U_T 。

讨论1: $R_1 = 50 \text{k} \Omega$, $R_2 = 100 \text{k}\Omega$, $\pm U_Z = \pm 9 \text{V}$

分析要领:看输入信号变化方向

五、窗口比较器

由两个单限比较器组成

$$U_{\mathrm{RH}}>U_{\mathrm{RL}}$$

1. 分析三要素

- $U_{\mathrm{T1}} = U_{\mathrm{RL}}$, $U_{\mathrm{T2}} = U_{\mathrm{RH}}$
- $U_{\mathrm{OH}} = +U_{\mathrm{Z}}$, $U_{\mathrm{OL}} \approx 0$

2. 电压传输特性分析

• 当*u*_I<*U*_{RL} 时

 \mathbf{D}_1 截止, \mathbf{D}_2 导通, $u_0 = +U_Z$

特殊电压比较器: 引入负反馈的电压比较器

特点:净输入电压为零,保护了输入级;

运放工作于线性区,提高了电压比较器翻转速度。

六、集成电压比较器

特点:

- 响应速度快, 传输延迟短
- 一般不需外加限幅电路就可直接驱动数字电路
- 开环增益低
- ・失调电压较大
- 共模抑制比小

性能指标:

- 供电电源
- 响应时间
- 失调电压及其温漂
- 静态电流
- 输出电流
- 输出电平范围
- 输入电压范围

六、集成电压比较器

分类:

- 按性能指标分:通用、低电压、高速、高精度、低功耗型
- · 按输出级电路结构分:推拉式(push-pull)、集电极(或漏极)开路输出、互补输出型

如 ADI: 高速高精度型 AD790 delay=45ns offset=250uV 高速型 ADCP566 delay=250ps offset=1mV

TI: 高速高精度型 TL3016 delay=7.6ns offset=0.5mV CMOS推拉式输出 TLC3702 delay=1.1us offset=5mV BJT推拉式输出 TL712 delay=25ns offset=5mV 集电极开路输出 LM393 delay=0.3us offset=3mV 漏极开路输出 TLC372 delay=200ns offset=5mV

七、电压比较器的应用举例

• 温控器

• 声光控灯

• 红外报警

• 心率测量

8.2 非正弦波发生电路 (Nonsinusoidal oscillator)

方波、矩形波、三角波、锯齿波

- 一、方波发生电路
 - 1. 基本电路 反相滞回比较器 + RC负反馈回路

- 1) 工作原理
- $egin{aligned} egin{aligned} eg$
 - 周而复始,产生方波

2) 波形分析

- 一阶RC电路的三要素法
 - 起始值 - $U_{
 m T}$
 - $t \to \infty$ 时稳态值 $U_{\mathrm{C}} \to +U_{\mathrm{Z}}$
 - 时间常数 R_3C

问题:如何调节方波幅值?如何调节周期?

$$U_{\rm T} = U_{\rm Z} + (-U_{\rm T} - U_{\rm Z})e^{-\frac{7}{R_3C}}$$

$$T = 2R_3C\ln(1 + \frac{2R_1}{R_2})$$