

Réalisez un traitement dans un environnement Big Data sur le Cloud -Synthèse

Sommaire

```
1 - Rappel de la problématique
    1.1 - Use case
    1.2 - Données
    1.3 - Big Data : les 4 Vs
2 - Choix technologiques
   2.1 – Cloud provider
    2.2 - Architecture & outils
    2.3 - Considérations RGPD
3 – Proof of Concept
    3.1 - Test en local
            3.1.2 - Environnement & contraintes
            3.2.2 - Résultats
    3.2 - Déploiement dans AWS Cloud
            3.2.1 – Paramétrage
            3.2.2 - Monitoring
            3.2.3 - Résultats
```


1 - Rappel de la problématique 1.1 - Use case

- Moteur de classification d'images de fruits
 - Machine learning classification supervisée
- ❖ Usage grand public
 - Considérations RGPD
- ❖ Dans une application mobile
 - > Choix du modèle usage memoire, batterie & vitesse de calcul

1 - Rappel de la problématique 1,2 - Données

- ❖ Modèle inputs:
 - Non structurées (Images .jpg)
 - > Large volumétrie de départ (94,110 images)
 - > Forte croissance anticipée (contributions utilisateurs via application mobile)
- ❖ Modèle outputs:
 - > Semi-structurées (résultats modèle .parquet)
 - Structurées (résultats ACP .csv)

1 - Rappel de la problématique 1.3 - Big data : les 4 V Variété Vélocité Valeur Volume Véracité BIG DATA Les 4 V + Variabilité + Visualisation

Image credits: https://www.nexsoftsys.com/services/big-data-services.html

2 - Choix technologiques

Contraintes:

- Grand volume (à terme) de données non-, semi- et structurées
 - > object storage élastique (ni file, ni block storage adaptés)
- Machine learning classification supervisée
 - > capacités de calcul distribué et élastique (complexité / volume / rapidité)
- Solution connectée, interfaçable, économe en mémoire & évolutive
 - > distribuable rapidement vers une application mobile
 - accompagnée d'un catalogue de services full-stack
 - ➤ Solution intégrée => Cloud

2 - Choix technologiques2.1 - Cloud provider

Cloud provider			Google Cloud	uvo	Azure
Service category	Service type	Google Clou product	Google Cloud product description	AWS offering	Azure offering
Storage	Object storage	Cloud Storage	Store any amount of data and retr as often as you'd like, using Googl Cloud's object storage offering.		Storage
Compute	Core compute	Compute Engine	Accelerate your digital transformation with high-performance VMs.	Amazon Elastic Compute Cloud (EC2)	Azure Virtual Machines
Data analytics	Data Di processing	pr	eploy open-source data and analytics rocessing services (Apache Hadoop, pache Spark, etc.) with improved fficiency and security.	Amazon Elastic MapReduce (EMR), AWS Batch, AWS Glue	Azure Data Lake Analytics, HDInsight

Source: https://cloud.google.com/docs/get-started/aws-azure-gcp-service-comparison 7

2 - Choix technologiques2.2 - Architecture & outils

Model results

PCA results

AWS Cloud IAM A Role Encryption Encryption Access policies Internet gateway Availability Zone eu-west-3 Europe (Paris) Virtual private cloud (VPC) **EMR** S3 storage Cluster EMR cluster logs EC2 L\UVY Worker nodes (Images **EMR Studio** Spark Master node Config Jupyter Notebook Bootstrap ्रीतहार्वनग्र Data Py Spark Notebooks Enterprise gateway

Root user

2 - Choix technologiques

2.3 - Considérations RGPD

- * Définit les règles de collecte, traitement & conservation des données personnelles des citoyens Européens:
 - > Pas de données personnelles dans le jeu de données test...
 - ...mais on ne peut exclure leur présence à l'avenir (métadonnées des photos)
- Mesures de précaution:
 - Sécurisation : traitement dans un Virtual Private Cloud (VPC) sur AWS EMR
 - > Accès, rectification & droit à l'oubli: AWS S3
 - Confidentialité : gestion des accès via AWS IAM
 - <u>Localisation</u>: AZ => eu-west-3 Europe (Paris)

3.1 - Test en local

3.1.1 - Environnement & contraintes

- Distribution Anaconda
- Jupyter Notebooks / Python 3 kernel
- Environnement Windows: ajustements du code
 - os.environ['PYSPARK_PYTHON'] = sys.executable
 - os.environ['PYSPARK_DRIVER_PYTHON'] =
 sys.executable
 - Utilisation de FindSpark
 - > Installation de Hadoop 3.0.0 dll et Winutils
 - Model.predict avec verbose=0 (utf-8 encoding errors)
 - > Voir notes detaillées dans le code

Config:

- ♦ findspark==2.0.1
- ❖ numpy==1.26.4
- ◆ pandas==2.2.2
- pillow==9.2.0
- ◆ pyarrow==10.0.1
- ◆ pyspark==3.5.1
- ❖ scipy==1.13.1
- tensorflow==2.17.0
- + Hadoop 3.0.0 dll & winutils

3 - Proof of Concept 3.1 - Test en local 3.1.2 - Résultats

Dossier Results => 20 fichiers parquet de résultats du modèle + 1 fichier"_SUCCESS"

- Dossier PCA_Results => 1 fichier parquet de résultats de l'ACP + 1 objet "_SUCCESS"
- Dossier du notebook => 1 fichier csv de résultats de l'ACP+ 1 graph png

Date modified

24/08/2024 18:56

24/08/2024 18:56

24/08/2024 18:55

24/08/2024 18:55

24/08/2024 18:55

24/08/2024 18:55

24/08/2024 18:55

PARQUET File

PARQUET File

PARQUET File

PARQUET File

PARQUET File

PARQUET File

OC-DS > PROJET 9 > data > Results Loca

part-00019-77dec008-7e7c-42d5-95eb-22e5953c56f1-c000.snappy.parquet

part-00018-77dec008-7e7c-42d5-95eb-22e5953c56f1-c000.snappy.parquet part-00017-77dec008-7e7c-42d5-95eb-22e5953c56f1-c000.snappy.parquet

part-00016-77dec008-7e7c-42d5-95eb-22e5953c56f1-c000.snappy.parquet

part-00015-77dec008-7e7c-42d5-95eb-22e5953c56f1-c000.snappy.parquet

part-00014-77dec008-7e7c-42d5-95eb-22e5953c56f1-c000.snappy.parquet

part-00013-77dec008-7e7c-42d5-95eb-22e5953c56f1-c000.snappy.parguet

part-00012-77dec008-7e7c-42d5-95eb-22e5953c56f1-c000.snappy.parquet

part-00011-77dec008-7e7c-42d5-95eb-22e5953c56f1-c000.snappy.parquet

→ O Search Results_Local

15 KB

16 KB

16 KB

16 KB

20 KB

21 KB

18 KB

17 KB

3.2 - Déploiement dans AWS Cloud

Source: https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html

3.2 - Déploiement dans AWS Cloud3.2.1 - Paramétrage


```
▼ Software settings Info
Override the default configurations for specific applications on your clus

● Enter configuration

1▼ [
2▼ {
3     "Classification": "jupyter-s3-conf",
4▼    "Properties": {
5         "s3.persistence.bucket": "ocds-p9-data",
6         "s3.persistence.enabled": "true"
7          }
8      }
9     ]
```

Bootstrap:

```
#! /bin/bash
sudo python3 -m pip install pandas
sudo python3 -m pip install tensorflow
sudo python3 -m pip install pillow
sudo python3 -m pip install pyarrow
sudo python3 -m pip install aws-hadoop
sudo python3 -m pip install fsspec
sudo python3 -m pip install s3fs
sudo python3 -m pip install matplotlib==3.5.2
```


3.2 - Déploiement dans AWS Cloud3.2.2 - Monitoring

Spark History Server UI:

3.2 - Déploiement dans AWS Cloud 3.2.3 - Résultats

\$ S3 bucket - dossier Results_Cloud => 20 objets parquet + 1 objet "_SUCCESS"

S3 bucket => 1 fichier csv de résultats de l'ACP

Optimisations coût & performance possibles

- Intégration avec outils du catalogue AWS (Amplify / Glue / Sagemaker / CloudFront / Step Functions / Macie)
 - > solution full-stack pipeline données & traitements entièrement automatisés, détection automatique des données personnelles etc...
- Changement d'AZ en Europe
 - Dublin cher que Paris sur EC2
- Optimisation du storage S3
 - supprimer les photos une fois traitées ou archive S3 Glacier (- cher que S3 standard)
- Spot purchase instances EC2
 - > jusqu'à 90% cher que On-Demand
- Choix des machines du cluster Compute Optimised (classe c) + rapides
 - > au lieu de Memory Optimised (classe m)
- * Auto-scaling, voire même migration vers EMR Serverless
 - gestion automatisée des clusters

