Pêndulo gravítico simples

Disciplina: Física Geral I 16/10/2017

Alexandra Correia, nº40188

Mafalda Rosa, nº40021

Petersen Figueira, nº39022

Yaroslav Kolodiy, nº39859

1. **Objetivos:** determinar a aceleração gravítica, usando o pêndulo gravítico simples.

2. <u>Introdução:</u> (Conforme o protocolo anexado)

3. Material:

- Suporte do pêndulo;

- Pêndulo simples;

- Cronómetro (Alcance: 30s e resolução: 10 -1s);

- Fita Métrica (Alcance: 3m e resolução: 10⁻³ m);

- Transferidor (Alcance: 180° e resolução: 1°);

- Régua (Alcance: 0,5m e resolução: 10⁻³ m);

- Papel milimétrico;

- Lápis.

4. Procedimento: (Conforme o protocolo anexado), exceto a obtenção de dados a qual foi dividida por vários grupos, grupo 1 (~50; ~60), grupo 2 (~70; ~80), grupo 3 (~90; ~100), grupo 4 (~110; ~120).

5. **Dados:**

L = comprimento do fio (expresso em metros)

t₁₀= intervalo de tempo de 10 oscilações (expresso em segundos)

T²= quadrado do período (expresso em segundos quadrados)

$$\mathsf{T}^2 = \left(\frac{t_{10}}{10}\right)^2$$

	L (x10 ⁻² m)	t ₁₀ (s)	T ² (s ²)
~50	50,1	12,7	1,61
	49,9	12,9	1,66
	50,0	12,8	1,64
	50,0	12,7	1,61
	50,0	12,8	1,64
	50,1	12,9	1,66
	50,0	12,9	1,66
	49,9	12,7	1,61
	50,1	12,7	1,61
	49,9	12,9	1,66
~60	60,1	15,5	2,40
	60,0	15,4	2,37
	60,2	15,4	2,37
	60,1	15,6	2,43
	60,0	15,6	2,43
	59,9	15,6	2,43
	60,1	15,5	2,40
	60,1	15,5	2,40
	60,0	15,6	2,43
	59,9	15,6	2,43
~70	70,0	16,9	2,86
	69,8	16,9	2,86
	69,9	16,8	2,82

	69,9	16,6	2,76
	70,0	16,7	2,79
	70,0	16,5	2,72
	70,0	17,0	2,89
	70,1	16,8	2,82
	70,0	17,0	2,89
	70,0	16,8	2,82
~80	79,8	17,9	3,20
	80,0	17,8	3,17
	80,0	17,9	3,20
	79,9	17,9	3,20
	80,1	18,0	3,24
	80,2	18,0	3,24
	80,0	18,0	3,24
	80,1	18,0	3,24
	80,0	17,9	3,20
	79,9	18,0	3,24
~90	93,0	19,0	3,61
	93,0	19,4	3,76
	93,0	19,2	3,69
	93,0	19,3	3,72
	93,3	19,3	3,72
	93,1	19,4	3,76
	93,2	19,0	3,61
	93,2	19,5	3,80
	93,3	19,5	3,80
	93,2	19,3	3,72
~100	102,4	20,1	4,04
	102,5	20,1	4,04
	102,6	20,2	4,08
	102,5	20,1	4,04
	102,4	20,0	4,00
	102,3	20,2	4,08
	102,4	20,3	4,12
	102,5	20,3	4,12
	102,5	20,3	4,12
	102,4	20,5	4,20
~110	110,0	21,0	4,41
	110,0	21,0	4,41
	110,0	21,0	4,41
	110,0	21,0	4,41
	110,0	21,1	4,45
	110,0	21,1	4,45
	110,0	21,0	4,41

	110,0	21,0	4,41
	110,0	21,0	4,41
	110,0	21,0	4,41
~120	120,0	21,9	4,80
	120,0	21,9	4,80
	120,0	21,8	4,75
	120,0	21,9	4,80
	120,0	22,1	4,88
	120,0	21,9	4,80
	120,0	22,2	4,93
	120,0	21,8	4,75
	120,0	22,0	4,84
	120,0	22,0	4,84

Representação gráfica dos resultados experimentais (Em anexo está o mesmo gráfico em papel milimétrico.)

Tratamento de dados e resultados:

1º
$$T=2\pi\sqrt{\frac{L}{g}}$$

2º
$$T^2 = \frac{4\pi}{a}I$$

3º
$$m = \frac{4\pi^2}{g}$$
, $g = \frac{4\pi^2}{m}$

Segundo o gráfico realizado no excel:

5º A equação da reta linear obtida é y=0,0398x.

Como m=0,0398 s²/cm e $\frac{4\pi^2}{0.0398}$ =g, então g=991,92 cm/s², ou seja, g=9,9 m/s².

Agora de acordo com o gráfico do papel milimétrico afixado nos anexos:

6º Escolhemos 2 pontos do gráfico feito em para milimétrico que coincidissem com a regressão linear, para podermos descobrir o declive da respetiva reta: $P_1(0;0)$ $P_2(120;4,8)$

$$\frac{\Delta y}{\Delta x} = \frac{4.8}{120} = 0.04 = m$$

y=mx ⇔y=0,04x ⇔T²=0,04L

$$0.04 = \frac{4\pi^2}{g}$$
, $g = \frac{4\pi^2}{0.04} = 986.96$ cm/s², ou seja, $g = 9.9$ m/s².

Comentários críticos:

Tendo em conta os resultados apresentados no gráfico anterior, podemos verificar que possivelmente houve uma anomalia na apresentação dos resultados do grupo 1, nomeadamente, quando o L (comprimento do fio) tem ~50cm, ou seja ~0,5m. Dado esta anomalia a regressão linear apresentada no gráfico não interseta com esses valores experimentais.

5

Bibliografia:

Protocolo da atividade experimental nº1 "Pêndulo gravítico simples".