UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea _____

CHESTIONAR DE CONCURS

Numărul legitimației de bancă

Numele

Prenumele tatălui

Prenumele

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1A

VARIANTA **F**

- 1. Câte soluții distincte are ecuația $\overline{z} = z^2$, $z \in \mathbb{C}$? (8 pct.) a) 5; b) 3; c) 1; d) O infinitate; e) 6; f) 4.
- 2. Să se calculeze $\lim_{x\to 0} \frac{1}{x^4} \int_0^x t^2 \cdot e^{-t^2} \cdot \sin t \, dt$. (8 pct.)

a)
$$\infty$$
; b) $\frac{\sin 1}{e}$; c) $\frac{1}{4}$; d) 0; e) $\frac{1}{e}$; f) 1.

3. Să se calculeze aria mărginită de dreptele x = 0, x = 1, axa Ox și de graficul funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^2 + 1}$. (8 pct.)

a)
$$\ln 2$$
; b) $\frac{1}{2}$; c) 1; d) $\frac{\pi}{4}$; e) $2 \ln 2$; f) $\frac{1}{2} \ln 2$.

- **4.** Câte soluții în $\mathbb{Z} \times \mathbb{Z}$ are ecuația $x^4 x^3y 8y^4 = 0$? (6 pct.)
 - a) Patru; b) Trei; c) Două; d) Nici una; e) Una; f) O infinitate.
- 5. Să se calculeze f'(2) pentru funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=x^x-2^x-x^2$. (6 pct.)
 - a) 4(1+ln2); b)-4; c) 4; d) 2ln2; e) 4ln2; f) 0.
- 6. Se cer cea mai mică și cea mai mare valoare pentru funcția $f:[0,3] \to \mathbb{R}$, $f(x) = x^2 2x 5$. (6 pct.)

7. Se cere domeniul maxim de definiție al funcției $f: D \to \mathbb{R}$, $f(x) = \ln(1+3x)$. (4 pct.)

a)
$$\left(-\frac{1}{3},\infty\right)$$
; b) $\left(e,\infty\right)$; c) $\left(1,\infty\right)$; d) $\left(0,\infty\right)$; e) $\left(3,\infty\right)$; f) $\left(-3,\infty\right)$.

8. Câte matrice de forma $X = \begin{pmatrix} x & y \\ y & x \end{pmatrix}$ verifică relația $X^2 = I_2$; $x, y \in \mathbb{R}$? (4 pct.)

9. Fie $a \ge 0$, $b \ge 0$ astfel încât $\sqrt{a} + \sqrt{b} = \sqrt{a+b}$. Atunci (4 pct.)

a)
$$a = 0$$
, $b = 0$; b) $a > 1$; c) $a < b$; d) $a = 0$ sau $b = 0$; e) $a^2 + b^2 = 1$; f) $ab = 1$.

10. Ecuația tangentei la graficul funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^3}{3} - 3x^2 + 5x + 2$ în punctul de inflexiune este (4 pct.)

a)
$$y = 4x - 9$$
; b) $y = 4x + 13$; c) $y = -4x + 13$; d) $y = -4x + 11$; e) $y = -4x$; f) $y = -1$.

11. Să se calculeze $x^2 + y$ dacă $2^x - 3y = 0$, $3^x - 2y = 0$ cu $x, y \in \mathbb{R}$. (4 pct.)

a)
$$\frac{5}{6}$$
; b) 6; c) $\frac{7}{6}$; d) $\frac{1}{6}$; e) -6; f) $\frac{11}{6}$.

12. Să se determine abscisele punctelor de extrem local ale funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 - 4x^3$. (4 pct.)

- 13. Să se rezolve ecuația $3^{x+1} = 9^{\sqrt{x}}$. (4 pct.)
 - a) -1; b) 0 și 1; c) 1; d) 0; e) Nu are soluții; f) 4.
- 14. Să se calculeze valoarea expresiei $E = \frac{x_2 + x_3}{x_1} + \frac{x_1 + x_3}{x_2} + \frac{x_1 + x_2}{x_3}$, unde x_1, x_2, x_3 sunt soluțiile ecuației $x^3 6x^2 + x + 2 = 0$. (4 pct.)

a) 1; b) 3; c)
$$-6$$
; d) 0; e) -1 ; f) -3 .

15. Să se determine $m \in \mathbb{R}$ dacă sistemul 2x + my = 0, 3x + 2y = 0 admite numai soluția nulă. (4 pct.)

a)
$$m = \frac{3}{4}$$
; b) $m = -\frac{3}{4}$; c) $m \neq \frac{4}{3}$; d) $m \neq 0$; e) $m = \frac{4}{3}$; f) $m = 3$.

16. Să se rezolve inecuatia $\sqrt{-x-2} - \sqrt[3]{x+5} < 3$. (4 pct.)

a)
$$x \in (-\infty, -6]$$
; b) $(-6, -2)$; c) $(-5, -2)$; d) $[-6, -5]$; e) $x \in (-\infty, -2]$; f) $x \in (-6, -2]$.

17. Numerele x, 2x+3, x+2 sunt termenii unei progresii aritmetice, în ordinea scrisă. Să se determine rația progresiei. (4 pct.)

a) 3; b)
$$-2$$
; c) -1 ; d) $x+3$; e) 1; f) 2.

- 18. Se cere limita $\lim_{x\to\infty} \left(\sqrt{x+\sqrt{x}} \sqrt{x} \right)$. (4 pct.)
 - a) 1; b) $\frac{1}{2}$; c) Nu există; d) ∞ ; e) 0; f) 2.