Formula sheet exam TTT4234 Space Technology I, December 8th, 2014

<u>Useful and not so useful formulas and constants (not all are necessary for solving the problems):</u>

The speed of light = $3 \cdot 10^8 \text{m/s}$

Gravitational acceleration at sea level = 9.81m/s²

 $\mu = 3.986 \cdot 10^5 \text{ km}^3/\text{s}^2$

 $F = m \cdot a$

 $F = \Delta p/\Delta t$

F= GMm/r²

 $F = mv^2/r$

 $G = 6.67 \cdot 10^{-11} Nm^2/kg^2$

 $M = 5.98 \cdot 10^{24} kg$

 $R_E = 6370 \text{km}$

X in deciBel (dB): $X_{dB} = 10log_{10}(X_{lin})$

The semi major axis in an ellipsoid = $\frac{1}{2}$ (R_a+R_p)

$$e = (R_a - R_p) / (R_a + R_p) = c/a$$

 $\Delta v = v_e \cdot ln (M_i/M_f)$

$$v = \sqrt{\mu(2/r - 1/a)}$$

Boltzmann's constant $k = 1.38 \times 10^{-23} \text{ J/K}$

The sunlight needs about 8 minutes to travel the distance from the Sun to Earth.

$$T^2 = 4\pi^2 a^3/\mu$$

 $R=2.44*\lambda*h/D$

$$S/N = (EIRP/L_0) * (G_r / N_0B) * 1/L_a$$

$$G = \eta \times 4\pi A / \lambda^2$$

 $L_0=(4\pi d/\lambda)^2$

 $E_k = mv^2/2$