## Lec 21: Boosting II

Ailin Zhang

# **Agenda**

- Basic idea
- Weak learner example: classification tree
- L2 boosting
- AdaBoost
- Gradient Boosting
- Extreme Gradient Boosting (XGB)
- Connection to other models

Gradient Boosting and XGB are more flexible and admit any type of loss.

## Exponential loss is the upper bound for 0/1 loss



Loss functions for classification. The horizontal axis is  $m_i = y_i X_i^{\top} \beta$ . The vertical axis is  $L(y_i, X_i^{\top} \beta)$ .

Ailin Zhang Lec 21: Boosting II 3 / 15

# **Adaboost Convergence Analysis**

$$\epsilon = b/s = rac{\sum_{y_i 
eq h(x_i)} w_i}{\sum_i w_i}$$
, and  $Z_t = (1 - \epsilon_t) e^{-eta} + \epsilon_t e^{eta} \geq 2 \sqrt{\epsilon_t (1 - \epsilon_t)}$ 

If we perform variable change  $\gamma_t = \frac{1}{2} - \epsilon_t$ 

$$Z_t = \sqrt{1 - 4\gamma_t^2} \leq \exp(-2\gamma_t^2)$$

Therefore, after t steps, the error rate of the strong classifier is bounded by:

$$Error(H) = \frac{1}{n} \sum_{i=1}^{n} 1(f(x_i) \neq y_i)) \le \frac{1}{n} \sum_{i=1}^{n} \exp(-f(x_i)y_i) \le \frac{1}{n} \prod_{t=1}^{T} Z_t \le \frac{1}{n} \exp(-2 \sum_{i=1}^{n} \gamma_t^2)$$

It is clear that each step the upper bound of the error decrease exponentially. A weak classifier with small error rate will lead to faster descent.

Ailin Zhang Lec 21: Boosting II 4 / 15

## **Adaboost Summary**

- The objective of Adaboost is to minimize an upper bound of the classification error
- It takes a stepwise minimization scheme and it may not be optimal due to the greedy pursuit. When we calculate the parameter for the t-th weak classifier, we do not change the weights of the previous weak classifiers.
- We should stop AdaBoost if all the weak classifiers have error rate 0.5. This will eventually happen as we update the weights.

#### Adaboost to RealBoost

- In Adaboost, each weak classifier h(x) is defined as a 1D binary function.
- We may extend h(x) to a more general form  $h(x; \theta)$ ; with  $\theta$  being a vector of B parameter (B is the number of bins that we choose to approximate an arbitrary 1D function)

#### Relation between Adaboost and probabilities

- Consider a more general minimization problem:  $min_f \{\sum_{i=1}^n L(y_i, f(x_i))\}$ , for any loss function L.
- The gradient boosting algorithm solves this problem by iteratively changing f(x).
  - Take any given prediction (candidate for minimization) and call it  $\hat{f}(x)$ .
  - In L2 boosting, for example, the idea is to iterate over  $\hat{f}(x)$ , letting your new guess for what the minimizer is be  $\hat{f}(x) + \beta h(x)$ , where h(x) is a weak-learner
  - With gradient boosting, we start by asking the question "what if we could change  $\hat{f}(x)$  by any amount  $\Delta f(x)$ ?". What would be the ideal amount we should use?
  - To minimize the objective function, we would like to let  $(\Delta f_i)_{i=1...n} \propto -\left(\frac{\partial L}{\partial f_i}\right)_{i=1...n}$

Ailin Zhang Lec 21: Boosting II 8 / 15

- with the gradient being evaluated at  $\hat{f}(x_i)$ , so that at each iteration we could get closer to solving our problem. We can let  $\tilde{y}_i = -\frac{\partial L}{\partial f_i}|_{\hat{f}(x_i)}$ .
- The gradient boosting algorithm relies on weak-learners, just as adaboost and L2 boosting do. We would like to use the gradient, but we are restricted to weak learners here (for example, tree stumps).
- Therefore, we need to find at every iteration weak learners h, so that  $h(x_i) \propto \tilde{y}_i$ . This is done using a simple heuristic. We choose  $\beta$  and h by minimizing a squared-loss problem:

$$min\left\{\sum_{i=1}^n(\tilde{y}_i-\beta h(x_i))^2\right\}$$

 Not provably best or mathematically optimal. Instead, they are just ideas that somebody thought sounded good, implemented, then found to work in practice acceptably well

Ailin Zhang Lec 21: Boosting II 9 / 15

- By solving the problem above, we then obtain h that is aligned to the negative of the gradient at the current  $\hat{f}(x)$ .
- Note that the loss we want to minimize is actually L, which may not be squared loss. Then, to choose the actuall  $\beta$  we will use, we look for  $\beta = argmin_{\beta} \sum_{i=1}^{n} L(y_i, \hat{f}_i + \beta h(x_i))$ .
- $\beta$  here represents the step-size at the current iteration. By repeating this procedure, using the heuristic above to find the weak-learner best aligned with the gradient, and then solving for the step-size  $\beta$ , we can get closer and closer to finding the solution to the minimization problem posed above.

Question: How to initialize?

- By solving the problem above, we then obtain h that is aligned to the negative of the gradient at the current  $\hat{f}(x)$ .
- Note that the loss we want to minimize is actually L, which may not be squared loss. Then, to choose the actuall  $\beta$  we will use, we look for  $\beta = argmin_{\beta} \sum_{i=1}^{n} L(y_i, \hat{f}_i + \beta h(x_i))$ .
- $\beta$  here represents the step-size at the current iteration. By repeating this procedure, using the heuristic above to find the weak-learner best aligned with the gradient, and then solving for the step-size  $\beta$ , we can get closer and closer to finding the solution to the minimization problem posed above.

Question: How to initialize?

A typical choice for the initial  $\hat{f}(x)$  would be a constant value  $\gamma$ , such that  $\gamma = \operatorname{argmin}_{\gamma} \{ \sum_{i=1}^{n} L(y_i, \gamma) \}.$ 

Ailin Zhang Lec 21: Boosting II 10 / 15

## **Algorithm**

Suppose we want to minimize a general loss:

$$\min \sum_{i=1}^n L(y_i, f_i).$$

Then gradient boosting consists of the following steps

- Step 1: Set  $f_0(x_i) = \frac{1}{n} \sum_{i=1}^{n} y_i$ , m = 1.
- Step 2: Compute residuals  $y_i^m = y_i f_{m-1}(x_i)$ .
- Step 3: Choose  $h^*$  by minimizing  $\sum_{i=1}^n (y_i^m \beta h(x_i))^2$ , and set  $h_m = h^*$ .
- Step 4: Reestimate  $\beta$  by  $\beta^* = \arg\min_{\beta} \sum_{i=1}^n L(y_i, f)$
- Step 5:  $m \leftarrow m + 1$ ; repeat Step 2.

## **XGB** - Extreme Gradient Boosting

 XGB is a boosting algorithm that relies on the Newton-Rhapson method.

# **XGB** - Extreme Gradient Boosting

- XGB is a boosting algorithm that relies on the Newton-Rhapson method.
- Consider a second-order aproximation for any loss function at a given point  $\hat{\theta}$ . We can write it as  $L(\theta) = L(\hat{\theta}) + L'(\hat{\theta})(\theta \hat{\theta}) + \frac{1}{2}L''(\hat{\theta})(\theta \hat{\theta})^2$ .
- ullet Then, an approximation for the total loss, around the current  $\hat{f}(x)$  is:

$$\sum_{i=1}^{n} \left\{ L(y_{i}, \hat{f}(x_{i})) + L'(y_{i}, \hat{f}(x_{i})) \Delta f(x_{i}) + \frac{1}{2}L''(y_{i}, \hat{f}(x_{i})) \Delta f(x_{i})^{2} \right\}.$$

• The central question XGB tries to answer is what are the  $\Delta f(x_i)$  that we need to pick at every step.

# **XGB** - Extreme Gradient Boosting

- Let  $\hat{f}(x_i) = \hat{f}_i$ ,  $g_i = L'(y_i, \hat{f}_i)$  and  $a_i = L''(y_i, \hat{f}_i)$ . And assume we want to use weak learners (trees) as the  $\Delta f_i$ . Then, at every iteration, we want to find  $T(x) = \sum_{m=1}^{M} c_m 1(x \in R_m)$  that minimizes  $\sum_{i=1}^{n} g_i T(x_i) + \frac{1}{2} a_i T(x_i)^2$ .
- This is equal to  $\sum_{m=1}^{M} c_m \sum_{i:x_i \in R_m} g_i + \frac{1}{2} c_m^2 \sum_{i:x_i \in R_m} a_i$ . Let  $\sum_{i:x_i\in R_m}g_i=G_m$ , and  $\sum_{i:x_i\in R_m}a_i=A_m$ .
- To find the  $c_m$  for m=1...M, M, and the regions  $R_m$  that minimize  $\sum_{i=1}^{M} c_m G_m + \frac{1}{2} c_m^2 A_m$ .

# **XGB** - Extreme Gradient Boosting (Regularization)

• Also, in XGB, we explicitly penalize excess complexity, adding a penalty of the type  $\gamma M + \frac{1}{2} \lambda \sum_{m=1}^{M} c_m^2$  to this problem (at each iteration). For any given M, the solution for each  $c_m$  is independent than that of the others. So we can find  $c_m$  by fixing M and solving:

$$c_m = argmin\{c_mG_m + \frac{1}{2}c_m^2(A_m + \lambda)\}$$

# **XGB** - Extreme Gradient Boosting (Computation)

• Taking the derivative and setting it to 0, we get:

$$G_m + c_m(A_m + \lambda) = 0$$
  

$$\Rightarrow c_m = -\frac{G_m}{A_m + \lambda}$$

• Plugging this into the last objective function mentioned above, we get that at the optimal, this function takes the value  $G_{pp}^{2} + G_{pp}^{2} - G_{pp}^{2}$ 

$$-\frac{G_m^2}{A_m+\lambda}+\frac{G_m^2}{2(A_m+\lambda)}=\frac{-G_m^2}{2(A_m+\lambda)}.$$

• At each iteration, we grow a tree to minimize  $\sum_{m=1}^{M} -\frac{1}{2} \frac{G_m^2}{A_m + \lambda} + \gamma M$ .