Bachelor of Software Engineering - Game Programming

GD2P02 – Physics Programming

Penalty Methods and Springs

Overview

- Penalty Methods and Springs
 - Penalty Methods
 - Mass-Spring System
 - Blobs

Penalty Methods

- These are temporary springs for springy behaviour.
 - We create a set of constraints to represent a problem.
 - If the constraints are violated, an error is produced.
 - We use this error to add forces to the system in order to cancel the error and fix the constraint.

Example:

 An object moving downward penetrates the ground, the penetration depth can be used to apply an upward force to push the object out of the ground.

Penalty Methods: Example

- The penalty force will be pushing the object out.
 - F = ma = kx
 - a = kx/m

Fig 6: Applying a penalty force to resolve the penetration with the ground.

Penalty Methods: Example

- Example of rigid bodies with penalty springs:
- Penalty Method:
 - x = penetration depth * contact normal.
 - k = spring constant.

Fig 7: Penalty springs created to fix penetration between bodies.

Springs and Damping

 Let us assume two objects are tied together with a spring...

$$\mathbf{F} = -\mathbf{k}(|\mathbf{x}| - \mathbf{d}) - \mathbf{b}\mathbf{v}$$

- The equilibrium length (resting length): d
- Fully extended: $(|\mathbf{x}|-d) > 0$
- Fully compressed: $(|\mathbf{x}|-d) < 0$
- Damping: bv
 - b: the coefficient of damping
 - v : relative velocity between the ends of spring

Springs and cameras

 Use a spring to control the camera as it follows the player!

Fig 8: The game's camera attached to a spring, following the player avatar.

Springs and Bridges

 Anchor from a fixed point in space to the panels that make up the bridge.

Fig 9: Bridge made from spring.

Springs and User Interface Elements

A spring can be used to scale the buttons.

Fig 10: Asylum Runner (GDMAR09, 2009) main menu.

Mass-Spring System

- A system composed of masses connected by springs...
- Properties of the springs in the system:
 - The equilibrium length (resting length)
 - Maximum length: fully extended
 - Minimum length: fully compressed
 - Spring coefficient (k, and F = kx)

Blobs

Fig 13: http://media.gamingexcellence.com/screenshots/locoroco/12017.jpg

Fig 14: http://gamespot.com/gish/

Mass-Spring System: Blobs

- Blobs are deformable structures like soft bodies.
- Circular Spring Mass System...
 - Skin layers and structure
 - Outer circle, inner circle
 - Thickness of the skin
 - Central rigid body point
 - Strength of the springs
 - Number of segments in the structure effects the behaviour of the body.

Fig 11: Deformable blob constructed from spring-mass system.

Exercise 1: Springy Menu Interface

- Springy Menu Interface
 - Create a simple interface similar to Asylum Runner (GDMAR09, 2009).
 - Four menu options, one selected.
 - Allow the user to change between the selected menu option.
 - Movement between selected options causes scaling in a spring-like fashion.

Exercise 2: The Blob

- The Blob
 - Create a blob with the structure below
 - Central point, inner circle, outer circle.
 - Spring connections.
 - Min length (compression).
 - Max length (extension).
 - Bounce the blob off the edges of the window.
 - Apply force! (Start with gravity)
 - Render the wireframe to show the segments.

Summary

- Penalty Methods and Springs
 - Penalty Methods
 - Mass-Spring System
 - Blobs

