THE KAC-WANG-YAN ALGEBRA WITH NEGATIVE INTEGRAL CENTRAL CHARGE

ANDREW R. LINSHAW

ABSTRACT. The Lie algebra \mathcal{D} of regular differential operators on the circle has a universal central extension $\hat{\mathcal{D}}$. The invariant subalgebra $\hat{\mathcal{D}}^+$ under an involution preserving the principal gradation was introduced by Kac-Wang-Yan. The vacuum $\hat{\mathcal{D}}^+$ -module with central charge $c \in \mathbb{C}$, and its irreducible quotient \mathcal{V}_c , possess vertex algebra structures. We prove that for every integer n>0, \mathcal{V}_{-n} is a \mathcal{W} -algebra of type $\mathcal{W}(2,4,6,\ldots,2n^2+4n)$. This is a formal consequence of Weyl's first and second fundamental theorems of invariant theory for the symplectic group Sp_{2n} . Our result implies that invariant subalgebras of the $\beta\gamma$ -system of rank n under arbitrary reductive group actions are strongly finitely generated.

CONTENTS

1.	Introduction	1
2.	Vertex algebras	4
3.	Category \mathcal{R}	6
4.	The vertex algebra $\mathcal{W}_{1+\infty,c}$	7
5.	The vertex algebra \mathcal{V}_c	8
6.	The case of negative integral central charge	9
7.	The structure of the ideal \mathcal{I}_{-n}	12
8.	Normal ordering and quantum corrections	14
9.	A closed formula for R_I	17
10.	Representation theory of V_{-n}	23
11.	Invariant subalgebras of $\mathcal{S}(V)$ under arbitrary reductive groups	24
References		28

1. Introduction

Let $\mathcal D$ denote the Lie algebra of regular differential operators on the circle. It has a universal central extension $\hat{\mathcal D}=\mathcal D\oplus\mathbb C\kappa$ which was introduced by Kac-Peterson in [KP]. Although $\hat{\mathcal D}$ admits a principal $\mathbb Z$ -gradation and triangular decomposition, its representation theory is nontrivial because the graded pieces are all infinite-dimensional. The important problem of constructing and classifying the *quasi-finite* irreducible, highest-weight representations (i.e., those with finite-dimensional graded pieces) was solved by Kac-Radul in

Key words and phrases. invariant theory; vertex algebra; reductive group action; orbifold construction; strong finite generation; *W*-algebra.

[KRI]. In [FKRW], the representation theory of $\hat{\mathcal{D}}$ was developed by Frenkel-Kac-Radul-Wang from the point of view of vertex algebras. For each $c \in \mathbb{C}$, $\hat{\mathcal{D}}$ admits a module \mathcal{M}_c called the *vacuum module*, which is a vertex algebra freely generated by fields J^l of weight l+1, for $l\geq 0$. The highest-weight representations of $\hat{\mathcal{D}}$ are in one-to-one correspondence with the highest-weight representations of \mathcal{M}_c . The irreducible quotient of \mathcal{M}_c by its maximal graded, proper $\hat{\mathcal{D}}$ -submodule is a simple vertex algebra, and is often denoted by $\mathcal{W}_{1+\infty,c}$. These algebras have been studied extensively in both the physics and mathematics literature and they play an important role the theory of integrable systems. For generic values of c, \mathcal{M}_c is irreducible, so $\mathcal{W}_{1+\infty,c}\cong \mathcal{M}_c$, but when c is an integer, \mathcal{M}_c is reducible, and the structure and representation theory of $\mathcal{W}_{1+\infty,c}$ are nontrivial.

In [KWY], it was shown that there are two anti-involutions σ_{\pm} of $\hat{\mathcal{D}}$ (up to conjugation) which preserve the principal \mathbb{Z} -gradation. The invariant Lie subalgebras under these involutions are denoted by $\hat{\mathcal{D}}^{\pm}$, and the authors regard $\hat{\mathcal{D}}^{+}$ as the more fundamental of these two subalgebras. For each $c \in \mathbb{C}$, $\hat{\mathcal{D}}^{+}$ admits a vacuum module \mathcal{M}_{c}^{+} which is a vertex subalgebra of \mathcal{M}_{c} , and is freely generated by fields W^{2k+1} of weight 2k+2, for $k \geq 0$. The unique irreducible quotient of \mathcal{M}_{c}^{+} is denoted by \mathcal{V}_{c} in [KWY], and we shall refer to \mathcal{V}_{c} as the *Kac-Wang-Yan algebra* in this paper. Let π_{c} denote the projection $\mathcal{M}_{c}^{+} \to \mathcal{V}_{c}$, whose kernel \mathcal{I}_{c} is the maximal proper graded $\hat{\mathcal{D}}^{+}$ -submodule of \mathcal{M}_{c}^{+} , and let $w^{2k+1} = \pi_{c}(W^{2k+1})$. Generically \mathcal{M}_{c}^{+} is irreducible, but when c is an integer or a half-integer, \mathcal{M}_{c}^{+} is reducible, and the structure and representation theory of \mathcal{V}_{c} are nontrivial.

When c is a positive integer n or a positive half-integer n+1/2 the structures of both \mathcal{V}_n and $\mathcal{V}_{n+1/2}$ are well understood. By Theorem 14.2 of [KWY], the \mathcal{W} -algebra \mathcal{WD}_n of central charge n decomposes as the direct sum of \mathcal{V}_n and an irreducible, highest-weight \mathcal{V}_n -module. A consequence is that \mathcal{V}_n has a minimal strong generating set

$$\{w^1, w^3, w^5, \dots, w^{2n-3}\},\$$

and is therefore a W-algebra of type $W(2,4,6,\ldots,2n-2)$. Similarly, by Theorem 14.4 of [KWY] the W-superalgebra $W\mathcal{B}(0,n)$ of central charge n-1/2 is the direct sum of $V_{n+1/2}$ and an irreducible, highest-weight $V_{n+1/2}$ -module. This implies that $V_{n+1/2}$ is a W-algebra of type $W(2,4,6,\ldots,2n)$.

In the case where n is a negative integer, it is an open problem to determine the structure of \mathcal{V}_{-n} and $\mathcal{V}_{-n+1/2}$, and to find a minimal strong generating set; see Remark 14.6 of [KWY]. In this paper we focus on \mathcal{V}_{-n} , and our starting point is a remarkable free field realization of \mathcal{V}_{-n} as the Sp_{2n} -invariant subalgebra of the vertex algebra $\mathcal{F}^{\otimes -n}$, which is just the $\beta\gamma$ -system of rank n [KWY]. In order to be consistent with the notation in [LI] and [LII], we shall denote $\mathcal{F}^{\otimes -n}$ by $\mathcal{S}(V)$, where V is the vector space \mathbb{C}^n . The isomorphism $\mathcal{V}_{-n} \cong \mathcal{S}(V)^{Sp_{2n}}$ indicates that the structure of \mathcal{V}_{-n} is deeply connected to classical invariant theory. The action of Sp_{2n} on $\mathcal{S}(V)$ is analogous to the action of Sp_{2n} on the Weyl algebra $\mathcal{D}(V)$, and Sp_{2n} is the full automorphism group of $\mathcal{S}(V)$. Moreover, $\mathcal{S}(V)$ admits an Sp_{2n} -invariant filtration such that the associated graded object $gr(\mathcal{S}(V))$ is isomorphic to $Sym \bigoplus_{k\geq 0} U_k$ as a commutative ring, where each U_k is a copy of the standard Sp_{2n} -representation \mathbb{C}^{2n} . As a vector space, \mathcal{V}_{-n} is isomorphic to $R = (Sym \bigoplus_{k\geq 0} U_k)^{Sp_{2n}}$, and we have isomorphisms of commutative rings

$$\operatorname{gr}(\mathcal{V}_{-n}) \cong \operatorname{gr}(\mathcal{S}(V)^{Sp_{2n}}) \cong \operatorname{gr}(\mathcal{S}(V))^{Sp_{2n}} \cong R.$$

In this sense, we regard V_{-n} as a *deformation* of the classical invariant ring R.

By Weyl's first and second fundamental theorems of invariant theory for the standard representation of Sp_{2n} , R is generated by quadratics $\{q_{a,b}|\ 0 \le a < b\}$, and the ideal of relations among the $q_{a,b}$'s is generated by Pfaffians of degree n+1. We obtain a corresponding strong generating set $\{\omega_{a,b}|\ 0 \le a < b\}$ for \mathcal{V}_{-n} , as well as a generating set for the ideal of relations among the $\omega_{a,b}$'s, which correspond to the Pfaffians with suitable quantum corrections. This generating set is related to $\{\partial^k w^{2m+1}|k,m\ge 0\}$ by a linear change of variables. The relation of minimal weight among the generators occurs at weight $2(n+1)^2$, and corresponds to a singular vector $P_0 \in \mathcal{I}_{-n} \subset \mathcal{M}_{-n}^+$. In fact, we shall see that P_0 generates \mathcal{I}_{-n} as a vertex algebra ideal. This is analogous to Theorem 4.4 of [LI], which states that the maximal proper graded $\hat{\mathcal{D}}$ -submodule of \mathcal{M}_{-n} is generated as a vertex algebra ideal by a singular vector of weight $(n+1)^2$.

The technical heart of this paper is a detailed analysis of the quantum corrections of the above classical relations. We will prove that the relation in \mathcal{V}_{-n} of minimal weight is of the form

(1.1)
$$w^{2n^2+4n+1} = Q(w^1, w^3, w^5, \dots, w^{2n^2+4n-1}),$$

where Q is a normally ordered polynomial in $w^1, w^3, w^5, \dots, w^{2n^2+4n-1}$ and their derivatives. We call (1.1) a *decoupling relation*, and by applying the operator $w^3 \circ_1$ repeatedly, it is easy to construct higher decoupling relations

$$w^{2m+1} = Q_m(w^1, w^3, w^5, \dots, w^{2n^2+4n-1})$$

for all $m > n^2 + 2n$. This shows that $\{w^1, w^3, w^5, \dots, w^{2n^2 + 4n - 1}\}$ is a minimal strong generating set for \mathcal{V}_{-n} , and in particular \mathcal{V}_{-n} is a \mathcal{W} -algebra of type $\mathcal{W}(2,4,6,\dots,2n^2+4n)$. This generalizes a theorem of de Boer-Feher-Honecker in the case n=1 (see Section 1 of [BFH]), and is analogous to Theorem 4.16 of [LI], which states that $\mathcal{W}_{1+\infty,-n}$ is a \mathcal{W} -algebra of type $\mathcal{W}(1,2,3,\dots,n^2+2n)$.

Given a simple, finite-dimensional Lie algebra \mathfrak{g} , let $V_k(\mathfrak{g})$ denote the corresponding irreducible affine vertex algebra at level k. By Theorem 14.5 of [KWY], \mathcal{V}_{-n} is isomorphic to the Sp_{2n} -invariant subalgebra $V_{-1/2}(\mathfrak{sp}_{2n})^{Sp_{2n}}$, which was denoted by $\mathcal{W}(C_n^{(1)}/C_n,-1)$ in [KWY]. It is known (see Equation 2.4 of [BFH]) that the commutant of the diagonal $V_{m-1/2}(\mathfrak{sp}_{2n})$ inside $V_m(\mathfrak{sp}_{2n}) \otimes V_{-1/2}(\mathfrak{sp}_{2n})$, is a deformation of $V_{-1/2}(\mathfrak{sp}_{2n})^{Sp_{2n}}$, and

$$V_{-1/2}(\mathfrak{sp}_{2n})^{Sp_{2n}} \cong \lim_{m \to \infty} \mathsf{Com}(V_{m-1/2}(\mathfrak{sp}_{2n}), V_m(\mathfrak{sp}_{2n}) \otimes V_{-1/2}(\mathfrak{sp}_{2n})).$$

This commutant was conjectured by Blumenhagen-Eholzer-Honecker-Hornfeck-Hubel (see Table 7 of [B-H]) to be a deformable W-algebra of type $W(2,4,6,\ldots,2n^2+4n)$, so our result was anticipated in the physics literature as early as 1995^1 .

The representation theory of \mathcal{V}_{-n} is governed by its Zhu algebra, which is a commutative algebra on generators $a^1, a^3, a^5, \ldots, a^{2n^2+4n-1}$ corresponding to the generators of \mathcal{V}_{-n} . The irreducible, admissible $\mathbb{Z}_{\geq 0}$ -graded \mathcal{V}_{-n} -modules are therefore all highest-weight modules, and are parametrized by the points in the variety $\operatorname{Spec}(A(\mathcal{V}_{-n}))$, which is a subvariety of \mathbb{C}^{n^2+2n} . By Theorem 13.2 of [KWY], Sp_{2n} and \mathcal{V}_{-n} form a dual reductive pair in the sense that the $\beta\gamma$ -system $\mathcal{S}(V)$ of rank n admits a decomposition

(1.2)
$$S(V) \cong \bigoplus_{\nu \in H} L(\nu) \otimes M^{\nu},$$

¹I thank T. Creutzig for pointing this out to me.

where H indexes the irreducible, finite-dimensional representations $L(\nu)$ of Sp_{2n} , and the M^{ν} 's are inequivalent, irreducible, highest-weight \mathcal{V}_{-n} -modules. The modules M^{ν} appearing in this decomposition have an integrality property, and they correspond to certain rational points on $\operatorname{Spec}(A(\mathcal{V}_{-n}))$.

Our result on the structure of \mathcal{V}_{-n} is the missing ingredient in our program of studying invariant subalgebras of the $\beta\gamma$ -system under arbitrary reductive group actions [LII]. Recall that a vertex algebra \mathcal{A} is called *strongly finitely generated* if there exists a finite set of generators such that the collection of iterated Wick products of the generators and their derivatives spans \mathcal{A} . This property has many important consequences, and in particular implies that the Zhu algebra of \mathcal{A} is finitely generated. In recent work [LII][LIV], we have investigated the strong finite generation of invariant vertex algebras \mathcal{A}^G , where \mathcal{A} is a free field or affine vertex algebra and G is a reductive group of automorphisms of \mathcal{A} . This is an analogue of Hilbert's theorem on the finite generation of classical invariant rings. It is a subtle and essentially "quantum" phenomenon that is generally destroyed by passing to the classical limit before taking invariants. Often, \mathcal{A} admits a G-invariant filtration for which $\operatorname{gr}(\mathcal{A})$ is a commutative algebra with a derivation, and the classical limit $\operatorname{gr}(\mathcal{A}^G)$ is isomorphic to $(\operatorname{gr}(\mathcal{A}))^G$ as a commutative algebra. Unlike \mathcal{A}^G , $\operatorname{gr}(\mathcal{A}^G)$ is generally not finitely generated as a vertex algebra, and a presentation will require both infinitely many generators and infinitely many relations.

Isolated examples of this phenomenon have been known for many years (see for example [BFH][EFH][DN][FKRW][KWY]), although the first general results of this kind were obtained in [LII], in the case where \mathcal{A} is the $\beta\gamma$ -system $\mathcal{S}(V)$ of rank n, and G is a subgroup of GL_n . By a theorem of Kac-Radul [KRII] $\mathcal{S}(V)^{GL_n} \cong \mathcal{W}_{1+\infty,-n}$, and for any reductive $G \subset GL_n$, the structure of $\mathcal{S}(V)^G$ is governed by $\mathcal{W}_{1+\infty,-n}$ in the sense that $\mathcal{S}(V)^G$ decomposes as a direct sum of irreducible, highest-weight $\mathcal{W}_{1+\infty,-n}$ -modules. Using this decomposition together the description of $\mathcal{W}_{1+\infty,-n}$ as a \mathcal{W} -algebra of type $\mathcal{W}(1,2,3,\ldots,n^2+2n)$, we showed that $\mathcal{S}(V)^G$ is strongly finitely generated.

For an *arbitrary* reductive group G of automorphisms of $\mathcal{S}(V)$, the structure of $\mathcal{S}(V)^G$ is governed by \mathcal{V}_{-n} rather than $\mathcal{W}_{1+\infty,-n}$, since $G \subset Sp_{2n}$. It is easy to show using (1.2) that $\mathcal{S}(V)^G$ decomposes as a direct sum of irreducible, highest-weight \mathcal{V}_{-n} -modules. Using our result that \mathcal{V}_{-n} is a \mathcal{W} -algebra of type $\mathcal{W}(2,4,6,\ldots,2n^2+4n)$, we will show that $\mathcal{S}(V)^G$ is strongly finitely generated. Our proof is essentially constructive, and it completes the study initiated in [LII] of the invariant subalgebras of the $\beta\gamma$ -system.

2. Vertex algebras

In this section, we define vertex algebras, which have been discussed from various different points of view in the literature [B][FBZ][FHL][FLM][K][LiI][LZ]. We will follow the formalism developed in [LZ] and partly in [LiI]. Let $V = V_0 \oplus V_1$ be a super vector space over \mathbb{C} , and let z, w be formal variables. By QO(V), we mean the space of all linear maps

$$V \to V((z)) := \{ \sum_{n \in \mathbb{Z}} v(n) z^{-n-1} | v(n) \in V, \ v(n) = 0 \text{ for } n >> 0 \}.$$

Each element $a \in \mathrm{QO}(V)$ can be uniquely represented as a power series

$$a = a(z) := \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in \mathrm{End}(V)[[z,z^{-1}]].$$

We refer to a(n) as the nth Fourier mode of a(z). Each $a \in QO(V)$ is of the shape $a = a_0 + a_1$ where $a_i : V_j \to V_{i+j}(z)$ for $i, j \in \mathbb{Z}/2\mathbb{Z}$, and we write $|a_i| = i$.

On QO(V) there is a set of nonassociative bilinear operations \circ_n , indexed by $n \in \mathbb{Z}$, which we call the nth circle products. For homogeneous $a, b \in QO(V)$, they are defined by

$$a(w) \circ_n b(w) = \text{Res}_z a(z)b(w) \ \iota_{|z| > |w|}(z-w)^n - (-1)^{|a||b|} \text{Res}_z b(w)a(z) \ \iota_{|w| > |z|}(z-w)^n.$$

Here $\iota_{|z|>|w|}f(z,w)\in\mathbb{C}[[z,z^{-1},w,w^{-1}]]$ denotes the power series expansion of a rational function f in the region |z|>|w|. We usually omit the symbol $\iota_{|z|>|w|}$ and just write $(z-w)^{-1}$ to mean the expansion in the region |z|>|w|, and write $-(w-z)^{-1}$ to mean the expansion in |w|>|z|. It is easy to check that $a(w)\circ_n b(w)$ above is a well-defined element of QO(V).

The nonnegative circle products are connected through the *operator product expansion* (OPE) formula. For $a, b \in QO(V)$, we have

(2.1)
$$a(z)b(w) = \sum_{n\geq 0} a(w) \circ_n b(w) (z-w)^{-n-1} + : a(z)b(w) :,$$

which is often written as $a(z)b(w)\sim \sum_{n\geq 0}a(w)\circ_n b(w)~(z-w)^{-n-1}$, where \sim means equal modulo the term

$$: a(z)b(w) := a(z)_{-}b(w) + (-1)^{|a||b|}b(w)a(z)_{+}.$$

Here $a(z)_- = \sum_{n < 0} a(n)z^{-n-1}$ and $a(z)_+ = \sum_{n \geq 0} a(n)z^{-n-1}$. Note that : a(w)b(w): is a well-defined element of QO(V). It is called the *Wick product* of a and b, and it coincides with $a \circ_{-1} b$. The other negative circle products are related to this by

$$n! \ a(z) \circ_{-n-1} b(z) = : (\partial^n a(z))b(z) : ,$$

where ∂ denotes the formal differentiation operator $\frac{d}{dz}$. For $a_1(z), \ldots, a_k(z) \in QO(V)$, the k-fold iterated Wick product is defined to be

$$(2.2) : a_1(z)a_2(z)\cdots a_k(z) := : a_1(z)b(z) :,$$

where $b(z)=:a_2(z)\cdots a_k(z):$. We often omit the formal variable z when no confusion can arise.

The set $\mathrm{QO}(V)$ is a nonassociative algebra with the operations \circ_n , which satisfy $1 \circ_n a = \delta_{n,-1}a$ for all n, and $a \circ_n 1 = \delta_{n,-1}a$ for $n \geq -1$. In particular, 1 behaves as a unit with respect to \circ_{-1} . A linear subspace $\mathcal{A} \subset \mathrm{QO}(V)$ containing 1 which is closed under the circle products will be called a *quantum operator algebra* (QOA). Note that \mathcal{A} is closed under ∂ since $\partial a = a \circ_{-2} 1$. Many formal algebraic notions are immediately clear: a homomorphism is just a linear map that sends 1 to 1 and preserves all circle products; a module over \mathcal{A} is a vector space M equipped with a homomorphism $\mathcal{A} \to \mathrm{QO}(M)$, etc. A subset $S = \{a_i | i \in I\}$ of \mathcal{A} is said to generate \mathcal{A} if every element $a \in \mathcal{A}$ can be written as a linear combination of nonassociative words in the letters a_i , o_n , for $i \in I$ and $n \in \mathbb{Z}$. We say that S strongly generates \mathcal{A} if every $a \in \mathcal{A}$ can be written as a linear combination of words in the letters a_i , o_n for n < 0. Equivalently, \mathcal{A} is spanned by the collection $\{: \partial^{k_1} a_{i_1}(z) \cdots \partial^{k_m} a_{i_m}(z) : |i_1, \ldots, i_m \in I, k_1, \ldots, k_m \geq 0\}$.

We say that $a, b \in QO(V)$ quantum commute if $(z - w)^N[a(z), b(w)] = 0$ for some $N \ge 0$. Here [,] denotes the super bracket. This condition implies that $a \circ_n b = 0$ for $n \ge N$, so (2.1) becomes a finite sum. A commutative quantum operator algebra (CQOA) is a QOA whose elements pairwise quantum commute. Finally, the notion of a CQOA is equivalent to the notion of a vertex algebra. Every CQOA \mathcal{A} is itself a faithful \mathcal{A} -module, called the *left regular module*. Define

$$\rho: \mathcal{A} \to QO(\mathcal{A}), \quad a \mapsto \hat{a}, \quad \hat{a}(\zeta)b = \sum_{n \in \mathbb{Z}} (a \circ_n b) \zeta^{-n-1}.$$

Then ρ is an injective QOA homomorphism, and the quadruple of structures $(\mathcal{A}, \rho, 1, \partial)$ is a vertex algebra in the sense of [FLM]. Conversely, if $(V, Y, \mathbf{1}, D)$ is a vertex algebra, the collection $Y(V) \subset \mathrm{QO}(V)$ is a CQOA. We will refer to a CQOA simply as a vertex algebra throughout the rest of this paper.

3. CATEGORY \mathcal{R}

Let \mathcal{R} be the category of vertex algebras \mathcal{A} equipped with a $\mathbb{Z}_{>0}$ -filtration

(3.1)
$$\mathcal{A}_{(0)} \subset \mathcal{A}_{(1)} \subset \mathcal{A}_{(2)} \subset \cdots, \qquad \mathcal{A} = \bigcup_{k \geq 0} \mathcal{A}_{(k)}$$

such that $A_{(0)} = \mathbb{C}$, and for all $a \in A_{(k)}$, $b \in A_{(l)}$, we have

$$(3.2) a \circ_n b \in \mathcal{A}_{(k+l)}, for n < 0,$$

$$(3.3) a \circ_n b \in \mathcal{A}_{(k+l-1)}, for n \ge 0.$$

Elements $a(z) \in \mathcal{A}_{(d)} \setminus \mathcal{A}_{(d-1)}$ are said to have degree d.

Filtrations on vertex algebras satisfying (3.2)-(3.3) were introduced in [LiII], and are known as *good increasing filtrations*. Setting $\mathcal{A}_{(-1)} = \{0\}$, the associated graded object $\operatorname{gr}(\mathcal{A}) = \bigoplus_{k \geq 0} \mathcal{A}_{(k)}/\mathcal{A}_{(k-1)}$ is a $\mathbb{Z}_{\geq 0}$ -graded associative, (super)commutative algebra with a unit 1 under a product induced by the Wick product on \mathcal{A} . In general, there is no natural linear map $\mathcal{A} \to \operatorname{gr}(\mathcal{A})$, but for each $r \geq 1$ we have the projection

(3.4)
$$\phi_r: \mathcal{A}_{(r)} \to \mathcal{A}_{(r)}/\mathcal{A}_{(r-1)} \subset \operatorname{gr}(\mathcal{A}).$$

Moreover, gr(A) has a derivation ∂ of degree zero (induced by the operator $\partial = \frac{d}{dz}$ on A), and for each $a \in A_{(d)}$ and $n \geq 0$, the operator $a \circ_n$ on A induces a derivation of degree d - k on gr(A), which we denote by a(n). Here

$$k = \sup\{j \ge 1 | \mathcal{A}_{(r)} \circ_n \mathcal{A}_{(s)} \subset \mathcal{A}_{(r+s-j)}, \forall r, s, n \ge 0\},\$$

as in [LL]. Finally, these derivations give $\text{gr}(\mathcal{A})$ the structure of a vertex Poisson algebra.

The assignment $\mathcal{A} \mapsto \operatorname{gr}(\mathcal{A})$ is a functor from \mathcal{R} to the category of $\mathbb{Z}_{\geq 0}$ -graded (super)commutative rings with a differential ∂ of degree 0, which we will call ∂ -rings. A ∂ -ring is the same thing as an *abelian* vertex algebra, that is, a vertex algebra \mathcal{V} in which [a(z),b(w)]=0 for all $a,b\in\mathcal{V}$. A ∂ -ring A is said to be generated by a subset $\{a_i|i\in I\}$ if $\{\partial^k a_i|i\in I,k\geq 0\}$ generates A as a graded ring. The key feature of \mathcal{R} is the following reconstruction property [LL]:

Lemma 3.1. Let \mathcal{A} be a vertex algebra in \mathcal{R} and let $\{a_i|i\in I\}$ be a set of generators for $gr(\mathcal{A})$ as a ∂ -ring, where a_i is homogeneous of degree d_i . If $a_i(z)\in \mathcal{A}_{(d_i)}$ are vertex operators such that $\phi_{d_i}(a_i(z))=a_i$, then \mathcal{A} is strongly generated as a vertex algebra by $\{a_i(z)|i\in I\}$.

As shown in [LI], there is a similar reconstruction property for kernels of surjective morphisms in \mathcal{R} . Let $f: \mathcal{A} \to \mathcal{B}$ be a morphism in \mathcal{R} with kernel \mathcal{J} , such that f maps $\mathcal{A}_{(k)}$ onto $\mathcal{B}_{(k)}$ for all $k \geq 0$. The kernel \mathcal{J} of the induced map $gr(f): gr(\mathcal{A}) \to gr(\mathcal{B})$ is

a homogeneous ∂ -ideal (i.e., $\partial J \subset J$). A set $\{a_i | i \in I\}$ such that a_i is homogeneous of degree d_i is said to generate J as a ∂ -ideal if $\{\partial^k a_i | i \in I, k \geq 0\}$ generates J as an ideal.

Lemma 3.2. Let $\{a_i|i \in I\}$ be a generating set for J as a ∂ -ideal, where a_i is homogeneous of degree d_i . Then there exist vertex operators $a_i(z) \in \mathcal{A}_{(d_i)}$ with $\phi_{d_i}(a_i(z)) = a_i$, such that $\{a_i(z)|i \in I\}$ generates \mathcal{J} as a vertex algebra ideal.

4. The vertex algebra $W_{1+\infty,c}$

Let \mathcal{D} be the Lie algebra of regular differential operators on the circle, with coordinate t. A standard basis for \mathcal{D} is

$$J_k^l = -t^{l+k} (\partial_t)^l, \quad k \in \mathbb{Z}, \quad l \in \mathbb{Z}_{\geq 0},$$

where $\partial_t = \frac{d}{dt}$. \mathcal{D} has a 2-cocycle given by

(4.1)
$$\Psi\left(f(t)(\partial_t)^m, g(t)(\partial_t)^n\right) = \frac{m!n!}{(m+n+1)!} \operatorname{Res}_{t=0} f^{(n+1)}(t) g^{(m)}(t) dt,$$

and a corresponding central extension $\hat{\mathcal{D}} = \mathcal{D} \oplus \mathbb{C}\kappa$, which was first studied by Kac-Peterson in [KP]. $\hat{\mathcal{D}}$ has a \mathbb{Z} -grading $\hat{\mathcal{D}} = \bigoplus_{j \in \mathbb{Z}} \hat{\mathcal{D}}_j$ by weight, given by

$$\operatorname{wt}(J_k^l) = k, \quad \operatorname{wt}(\kappa) = 0,$$

and a triangular decomposition $\hat{\mathcal{D}} = \hat{\mathcal{D}}_+ \oplus \hat{\mathcal{D}}_0 \oplus \hat{\mathcal{D}}_-$, where $\hat{\mathcal{D}}_\pm = \bigoplus_{j \in \pm \mathbb{N}} \hat{\mathcal{D}}_j$ and $\hat{\mathcal{D}}_0 = \mathcal{D}_0 \oplus \mathbb{C}\kappa$. For a fixed $c \in \mathbb{C}$ and $\lambda \in \mathcal{D}_0^*$, define the Verma module with central charge c over $\hat{\mathcal{D}}$ by

$$\mathcal{M}_c(\hat{\mathcal{D}}, \lambda) = U(\hat{\mathcal{D}}) \otimes_{U(\hat{\mathcal{D}}_0 \oplus \hat{\mathcal{D}}_+)} \mathbf{C}_{\lambda},$$

where C_{λ} is the one-dimensional $\hat{\mathcal{D}}_0 \oplus \hat{\mathcal{D}}_+$ -module on which κ acts by multiplication by c and $h \in \hat{\mathcal{D}}_0$ acts by multiplication by $\lambda(h)$, and $\hat{\mathcal{D}}_+$ acts by zero. Let \mathcal{P} be the parabolic subalgebra of \mathcal{D} consisting of differential operators which extend to all of \mathbb{C} , which has a basis $\{J_k^l | l \geq 0, l+k \geq 0\}$. The cocycle Ψ vanishes on \mathcal{P} , so \mathcal{P} may be regarded as a subalgebra of $\hat{\mathcal{D}}$, and $\hat{\mathcal{D}}_0 \oplus \hat{\mathcal{D}}_+ \subset \hat{\mathcal{P}}$, where $\hat{\mathcal{P}} = \mathcal{P} \oplus \mathbb{C}\kappa$. The induced $\hat{\mathcal{D}}$ -module

$$\mathcal{M}_c = U(\hat{\mathcal{D}}) \otimes_{U(\hat{\mathcal{P}})} \mathbf{C}_0$$

is then a quotient of $\mathcal{M}_c(\hat{\mathcal{D}}, 0)$, and is known as the *vacuum* $\hat{\mathcal{D}}$ -module of central charge c. \mathcal{M}_c has the structure of a vertex algebra which is generated by fields

$$J^{l}(z) = \sum_{k \in \mathbb{Z}} J_{k}^{l} z^{-k-l-1}, \quad l \ge 0$$

of weight l+1. The modes J_k^l represent $\hat{\mathcal{D}}$ on \mathcal{M}_c , and as in [LI], we rewrite these fields in the form

$$J^{l}(z) = \sum_{k \in \mathbb{Z}} J^{l}(k) z^{-k-1},$$

where $J^l(k)=J^l_{k-l}$. In fact, \mathcal{M}_c is *freely* generated by $\{J^l(z)|\ l\geq 0\}$; the set of iterated Wick products

$$: \partial^{i_1} J^{l_1}(z) \cdots \partial^{i_r} J^{l_r}(z) :,$$

such that $l_1 \leq \cdots \leq l_r$ and $i_a \leq i_b$ if $l_a = l_b$, forms a basis for \mathcal{M}_c .

A weight-homogeneous element $\omega \in \mathcal{M}_c$ is called a *singular vector* if $J^l \circ_k \omega = 0$ for all $k > l \geq 0$. The maximal proper $\hat{\mathcal{D}}$ -submodule \mathcal{I}_c is the vertex algebra ideal generated by all singular vectors $\omega \neq 1$, and the unique irreducible quotient $\mathcal{M}_c/\mathcal{I}_c$ is often denoted by $\mathcal{W}_{1+\infty,c}$ in the literature. For $c \notin \mathbb{Z}$, \mathcal{M}_c is irreducible, so $\mathcal{W}_{1+\infty,c} = \mathcal{M}_c$, but for $n \in \mathbb{Z}$, \mathcal{M}_n is reducible. For $n \geq 1$, $\mathcal{W}_{1+\infty,n}$ is known to be isomorphic to $\mathcal{W}(\mathfrak{gl}_n)$ with central charge n [FKRW]. In [W] it was shown that $\mathcal{W}_{1+\infty,-1}$ is isomorphic to $\mathcal{W}(\mathfrak{gl}_n)$ of central charge -2, and in particular has generators in weights 1, 2, 3. This result was generalized in [LI]; for all $n \geq 1$, $\mathcal{W}_{1+\infty,-n}$ has a minimal strong generating set consisting of a field in each weight $1, 2, 3, \ldots, n^2 + 2n$.

5. The vertex algebra \mathcal{V}_c

The Lie algebra \mathcal{D} has an anti-involution $\sigma_{+,-1}$, and the fixed point subalgebra \mathcal{D}^+ has generators

$$W_k^m = -\frac{1}{2} \left(t^{k+m} (\partial_t)^m + (-1)^{m+1} (\partial_t)^m t^{k+m} \right), \quad k \in \mathbb{Z}, \quad m \in 1 + 2\mathbb{Z}_{\geq 0}.$$

Note that $\{W_k^1|k\in\mathbb{Z}\}$ spans a copy of the Virasoro Lie algebra. We use the same notation Ψ to denote the restriction of the cocycle Ψ to \mathcal{D}^+ . Let $\hat{\mathcal{D}}^+$ be the corresponding central extension of \mathcal{D}^+ , which is clearly a subalgebra of $\hat{\mathcal{D}}$. Let $\mathcal{P}^+ = \mathcal{P} \cap \mathcal{D}^+$, which is a subalgebra of $\hat{\mathcal{D}}^+$ since Ψ vanishes on \mathcal{P}^+ . Clearly

$$\mathcal{P}^+ = \{ W_k^m | m + k \ge 0, \ k \in \mathbb{Z}, \ m \in 1 + 2\mathbb{Z}_{\ge 0} \}.$$

The induced $\hat{\mathcal{D}}^+$ -module

$$\mathcal{M}_c^+ = U(\hat{\mathcal{D}}^+) \otimes_{U(\hat{\mathcal{D}}^+)} \mathbf{C}_0$$

is known as the *vacuum* $\hat{\mathcal{D}}^+$ -module of central charge c. \mathcal{M}_c^+ has the structure of a vertex algebra which is generated by fields

$$W^{m}(z) = \sum_{k \in \mathbb{Z}} W_{k}^{m} z^{-k-m-1}, \quad m \in 1 + 2\mathbb{Z}_{\geq 0}$$

of weight m+1. The modes W_k^m represent $\hat{\mathcal{D}}^+$ on \mathcal{M}_c^+ , and as usual, we rewrite these fields in the form

$$W^m(z) = \sum_{k \in \mathbb{Z}} W^m(k) z^{-k-1},$$

where $W^m(k) = W^m_{k-m}$. Clearly \mathcal{M}^+_c is a vertex subalgebra of \mathcal{M}_c , and \mathcal{M}^+_c is freely generated by $\{W^m(z) | m \in 1 + 2\mathbb{Z}_{\geq 0}\}$; the set of iterated Wick products

such that $m_1 \leq \cdots \leq m_r$ and $i_a \leq i_b$ if $m_a = m_b$, forms a basis for \mathcal{M}_c^+ .

Define a filtration

$$(\mathcal{M}_c^+)_{(0)} \subset (\mathcal{M}_c^+)_{(1)} \subset \cdots$$

on \mathcal{M}_c^+ as follows: for $k \geq 0$, $(\mathcal{M}_c^+)_{(2k)}$ is the span of monomials of the form (5.1), for $r \leq k$, and $(\mathcal{M}_c^+)_{(2k+1)} = (\mathcal{M}_c^+)_{(2k)}$. In particular, each W^m and its derivatives has degree 2. Equipped with this filtration, \mathcal{M}_c^+ lies in the category \mathcal{R} , and $\operatorname{gr}(\mathcal{M}_c^+)$ is the polynomial algebra $\mathbb{C}[\partial^k W^{2m+1}|\ k,m\geq 0]$. Each element $W^{2m+1}(k)\in\mathcal{P}^+$ for $k,m\geq 0$ gives rise to a derivation of degree zero on $\operatorname{gr}(\mathcal{M}_c^+)$ coming from the vertex Poisson algebra structure, and this action of \mathcal{P}^+ on $\operatorname{gr}(\mathcal{M}_c^+)$ is independent of c.

Lemma 5.1. For each $c \in \mathbb{C}$, \mathcal{M}_c^+ is generated as a vertex algebra by W^3 .

Proof. First, $W^1 = \frac{1}{360} W^3 \circ_5 W^3$, so W^1 lies in the subalgebra $\langle W^3 \rangle$ generated by W^3 . Next, an OPE calculation shows that for all m > 0,

(5.2)
$$W^3 \circ_1 W^{2m+1} \equiv -(2m+2)W^{2m+3},$$

modulo a linear combination of terms of the form $\partial^{2k}W^{2m+3-2k}$ for $1 \leq k \leq m+1$. It follows by induction on m that each $W^{2m+1} \in \langle W^3 \rangle$.

In particular, \mathcal{M}_c^+ is a finitely generated vertex algebra. However, \mathcal{M}_c^+ is not *strongly* generated by any finite set of vertex operators. This follows from the fact that $\operatorname{gr}(\mathcal{M}_c^+)$ is the polynomial algebra with generators $\partial^k W^{2m+1}$ for $k,m\geq 0$, which implies that there are no normally ordered polynomial relations in \mathcal{M}_c^+ . A weight-homogeneous element $\omega\in\mathcal{M}_c^+$ is called a *singular vector* if $W^{2m+1}\circ_k\omega=0$ for all $m\geq 0$ and k>2m+1. The maximal proper $\hat{\mathcal{D}}^+$ -submodule \mathcal{I}_c is the vertex algebra ideal generated by all singular vectors $\omega\neq 1$, and the Kac-Wang-Yan algebra \mathcal{V}_c is the unique irreducible quotient $\mathcal{M}_c^+/\mathcal{I}_c$. We denote the projection $\mathcal{M}_c^+\to\mathcal{V}_c$ by π_c , and we use the notation

(5.3)
$$w^{2m+1} = \pi_c(W^{2m+1}), \quad m \ge 0,$$

in order to distinguish between $W^{m+1} \in \mathcal{M}_c^+$ and its image in \mathcal{V}_c . Clearly \mathcal{V}_c is generated as a vertex algebra by w^3 , but there may now be normally ordered polynomial relations among $\{w^{2m+1}|m\geq 0\}$ and their derivatives.

Recall that \mathcal{M}_c^+ is reducible if and only if c is an integer or a half-integer. In the case where c is a positive integer n or a positive half-integer n+1/2, it follows from Theorems 14.2 and 14.4 of [KWY] that \mathcal{V}_n and $\mathcal{V}_{n+1/2}$ are \mathcal{W} -algebras of types $\mathcal{W}(2,4,6,\ldots,2n-2)$ and $\mathcal{W}(2,4,6,\ldots,2n)$, respectively. However, finding a minimal strong generating set for \mathcal{V}_c when c is a negative integer or half-integer is an open problem; see Remark 14.6 of [KWY].

6. THE CASE OF NEGATIVE INTEGRAL CENTRAL CHARGE

For each integer $n \geq 1$, \mathcal{V}_{-n} admits a free field realization as the Sp_{2n} -invariant subalgebras of the $\beta\gamma$ -system $\mathcal{S}(V)$ for $V=\mathbb{C}^n$, by Corollary 13.1 of [KWY]. This indicates that the structure of \mathcal{V}_{-n} is deeply connected to the invariant theory of the symplectic group. The $\beta\gamma$ -system $\mathcal{S}(V)$, or algebra of chiral differential operators on V, was introduced in [FMS]. It is the unique even vertex algebra with generators β^x , $\gamma^{x'}$ for $x \in V$, $x' \in V^*$, which satisfy the OPE relations

$$\beta^{x}(z)\gamma^{x'}(w) \sim \langle x', x \rangle (z-w)^{-1}, \qquad \gamma^{x'}(z)\beta^{x}(w) \sim -\langle x', x \rangle (z-w)^{-1},$$

$$\beta^{x}(z)\beta^{y}(w) \sim 0, \qquad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0.$$
(6.1)

There is a one-parameter family of conformal structures

(6.2)
$$L_{\lambda} = \lambda \sum_{i=1}^{n} : \beta^{x_i} \partial \gamma^{x'_i} : +(\lambda - 1) \sum_{i=1}^{n} : \partial \beta^{x_i} \gamma^{x'_i} :$$

of central charge $n(12\lambda^2-12\lambda+2)$, under which β^x and $\gamma^{x'}$ are primary of conformal weights λ and $1-\lambda$, respectively. Here $\{x_1,\ldots,x_n\}$ is a basis for V and $\{x'_1,\ldots,x'_n\}$ is the dual basis for V^* . For $\lambda\neq\frac{1}{2}$, the group of automorphisms of $\mathcal{S}(V)$ preserving L_λ is

 GL_n , and the vector spaces $\{\beta^x|x\in V\}$ and $\{\gamma^{x'}|x'\in V^*\}$ transform as copies of V and V^* , respectively. For $\lambda=\frac{1}{2}$, the group of conformal automorphisms is augmented to Sp_{2n} , which is the *full* automorphism group of S(V), and $\{\beta^x,\gamma^{x'}|x\in V,\ x'\in V^*\}$ is a copy of the standard Sp_{2n} -module \mathbb{C}^{2n} . For the rest of this paper, S(V) will be equipped with the conformal structure $L_{1/2}$.

There is a basis of S(V) consisting of the normally ordered monomials

In this notation, $I_k=(i_1^k,\ldots,i_{r_k}^k)$ and $J_k=(j_1^k,\ldots,j_{s_k}^k)$ are lists of integers satisfying $0\leq i_1^k\leq\cdots\leq i_{r_k}^k$ and $0\leq j_1^k\leq\cdots\leq j_{s_k}^k$, and

$$\partial^{I_k}\beta^{x_k} = : \partial^{i_1^k}\beta^{x_k} \cdots \partial^{i_{r_k}^k}\beta^{x_k} :, \qquad \partial^{J_k}\gamma^{x_k'} = : \partial^{j_1^k}\gamma^{x_k'} \cdots \partial^{j_{s_k}^k}\gamma^{x_k'} : .$$

We have a $\mathbb{Z}_{>0}$ -grading

(6.4)
$$S(V) = \bigoplus_{d>0} S(V)^{(d)},$$

where $S(V)^{(d)}$ is spanned by monomials of the form (6.3) of total degree $d = \sum_{k=1}^{n} r_k + s_k$. Finally, we define the filtration $S(V)_{(d)} = \bigoplus_{i=0}^{d} S(V)^{(i)}$. This filtration satisfies (3.2) and (3.3), and we have

(6.5)
$$\operatorname{gr}(\mathcal{S}(V)) \cong \operatorname{Sym} \bigoplus_{k>0} U_k,$$

where U_k is the copy of the standard 2n-dimensional irreducible Sp_{2n} -module spanned by $\{\beta_k^x, \gamma_k^{x'} | x \in V, x' \in V^*\}$. In this notation, β_k^x and $\gamma_k^{x'}$ are the images of $\partial^k \beta^x(z)$ and $\partial^k \gamma^{x'}(z)$ in gr(S(V)) under the projection $\phi_1 : S(V)_{(1)} \to S(V)_{(1)}/S(V)_{(0)}$.

Theorem 6.1. (*Kac-Wang-Yan*) There is an isomorphism $\mathcal{V}_{-n} \to \mathcal{S}(V)^{Sp_{2n}}$ given by

(6.6)
$$w^m \mapsto \frac{1}{2} \sum_{i=1}^n \left(: \beta^{x_i} \partial^m \gamma^{x'_i} : - : \partial^m \beta^{x_i} \gamma^{x'_i} : \right), \qquad m \in 1 + 2\mathbb{Z}_{\geq 0}.$$

This map preserves conformal weight and is a morphism in the category \mathcal{R} . Since the action of Sp_{2n} on $\mathcal{S}(V)$ preserves the grading (6.4), \mathcal{V}_{-n} is a graded subalgebra of $\mathcal{S}(V)$. We write

(6.7)
$$\mathcal{V}_{-n} = \bigoplus_{d \ge 0} (\mathcal{V}_{-n})^{(d)}, \qquad (\mathcal{V}_{-n})^{(d)} = \mathcal{V}_{-n} \cap \mathcal{S}(V)^{(d)},$$

and define the corresponding filtration by $(\mathcal{V}_{-n})_{(d)} = \bigoplus_{i=0}^{d} (\mathcal{V}_{-n})^{(i)}$.

The identification $\mathcal{V}_{-n} \cong \mathcal{S}(V)^{Sp_{2n}}$ suggests an alternative strong generating set for \mathcal{V}_{-n} coming from classical invariant theory. Since the action of Sp_{2n} on $\mathcal{S}(V)$ preserves the filtration, we have

(6.8)
$$\operatorname{gr}(\mathcal{V}_{-n}) \cong \operatorname{gr}(\mathcal{S}(V)^{Sp_{2n}}) \cong \operatorname{gr}(\mathcal{S}(V))^{Sp_{2n}} \cong (\operatorname{Sym} \bigoplus_{k>0} U_k)^{Sp_{2n}}.$$

The generators and relations for $(\operatorname{Sym} \bigoplus_{k\geq 0} U_k)^{Sp_{2n}}$ are given by Weyl's first and second fundamental theorems of invariant theory for the standard representation of Sp_{2n} [We].

Theorem 6.2. (Weyl) For $k \geq 0$, let U_k be the copy of the standard Sp_{2n} -module \mathbb{C}^{2n} with symplectic basis $\{x_{i,k},y_{i,k}|\ i=1,\ldots,n\}$. The invariant ring $(Sym \bigoplus_{k\geq 0} U_k)^{Sp_{2n}}$ is generated by the quadratics

(6.9)
$$q_{a,b} = \frac{1}{2} \sum_{i=1}^{n} (x_{i,a} y_{i,b} - x_{i,b} y_{i,a}), \quad 0 \le a < b.$$

For a>b, define $q_{a,b}=-q_{b,a}$, and let $\{Q_{a,b}|\ a,b\geq 0\}$ be commuting indeterminates satisfying $Q_{a,b}=-Q_{b,a}$ and no other algebraic relations. The kernel I_n of the homomorphism

(6.10)
$$\mathbb{C}[Q_{a,b}] \to (Sym \bigoplus_{k>0} U_k)^{Sp_{2n}}, \qquad Q_{a,b} \mapsto q_{a,b},$$

is generated by the degree n+1 Pfaffians p_I , which are indexed by lists $I=(i_0,\ldots,i_{2n+1})$ of integers satisfying

$$(6.11) 0 \le i_0 < \dots < i_{2n+1}.$$

For n = 1 and $I = (i_0, i_1, i_2, i_3)$, we have

$$p_I = q_{i_0,i_1}q_{i_2,i_3} - q_{i_0,i_2}q_{i_1,i_3} + q_{i_0,i_3}q_{i_1,i_2},$$

and for n > 1 they are defined inductively by

(6.12)
$$p_I = \sum_{r=1}^{2n+1} (-1)^{r+1} q_{i_0, i_r} p_{I_r},$$

where $I_r = (i_1, \dots, \widehat{i_r}, \dots, i_{2n+1})$ is obtained from I by omitting i_0 and i_r .

Under the identification (6.8), the generators $q_{a,b}$ correspond to strong generators

(6.13)
$$\omega_{a,b} = \frac{1}{2} \sum_{i=1}^{n} \left(: \partial^{a} \beta^{x_{i}} \partial^{b} \gamma^{x'_{i}} : - : \partial^{b} \beta^{x_{i}} \partial^{a} \gamma^{x'_{i}} : \right), \qquad 0 \le a < b,$$

of \mathcal{V}_{-n} , satisfying $\phi_2(\omega_{a,b})=q_{a,b}$. In this notation, we have

(6.14)
$$w^{2m+1} = \omega_{0,2m+1}, \qquad m \ge 0.$$

Note that the $\omega_{a,b}$'s are *not* the same as the fields denoted by $\omega_{a,b}$ in [LI]. For each $m \ge 0$, let A_m denote the vector space with basis $\{\omega_{a,b} | a+b=m\}$. For $m \ge 0$, we have

$$\dim(A_{2m}) = m, \quad \dim(A_{2m+1}) = m+1.$$

Moreover, $\partial(A_m) \subset A_{m+1}$, and we have

(6.15)
$$\dim(A_{2m+1}/\partial(A_{2m})) = 1, \quad \dim(A_{2m}/\partial(A_{2m-1})) = 0.$$

Hence A_1 is spanned by w^1 and for m > 0, A_{2m+1} has a decomposition

$$(6.16) A_{2m+1} = \partial(A_{2m}) \oplus \langle w^{2m+1} \rangle = \partial^2(A_{2m-1}) \oplus \langle w^{2m+1} \rangle,$$

where $\langle w^{2m+1} \rangle$ is the linear span of w^{2m+1} . Similarly, A_2 is spanned by ∂w^1 and for m > 0, A_{2m+2} has a decomposition

(6.17)
$$A_{2m+2} = \partial^2(A_{2m}) \oplus \langle \partial w^{2m+1} \rangle = \partial^3(A_{2m-1}) \oplus \langle \partial w^{2m+1} \rangle.$$

It is easy to see that $\{\partial^{2i}w^{2m+1-2i}|\ 0\leq i\leq m\}$ and $\{\partial^{2i+1}w^{2m+1-2i}|\ 0\leq i\leq m\}$ are bases of A_{2m+1} and A_{2m+2} , respectively. For a+b=2m+1 and c+d=2m+2, $\omega_{a,b}\in A_{2m+1}$ and $\omega_{c,d}\in A_{2m+2}$ can be expressed uniquely in the form

(6.18)
$$\omega_{a,b} = \sum_{i=0}^{m} \lambda_i \partial^{2i} w^{2m+1-2i}, \qquad \omega_{c,d} = \sum_{i=0}^{m} \mu_i \partial^{2i+1} w^{2m+1-2i}$$

for constants λ_i , μ_i , $i=0,\ldots,m$. Hence $\{\partial^k w^{2m+1}|\ k,m\geq 0\}$ and $\{\omega_{a,b}|\ 0\leq a< b\}$ are related by a linear change of variables, and it will be convenient to pass back and forth between these sets. Using (6.18), which holds in \mathcal{V}_{-n} for all n, we can define an alternative strong generating set $\{\Omega_{a,b}|\ 0\leq a< b\}$ for \mathcal{M}_{-n}^+ by the same formula: for a+b=2m+1 and c+d=2m+2,

$$\Omega_{a,b} = \sum_{i=0}^{m} \lambda_i \partial^{2i} W^{2m+1-2i}, \quad \Omega_{c,d} = \sum_{i=0}^{m} \mu_i \partial^{2i+1} W^{2m+1-2i}.$$

Clearly $\pi_{-n}(\Omega_{a,b}) = \omega_{a,b}$. We will use the same notation A_m to denote the linear span of $\{\Omega_{a,b}|\ a+b=m\}$, when no confusion can arise.

7. The structure of the ideal \mathcal{I}_{-n}

Recall that the projection $\pi_{-n}: \mathcal{M}_{-n}^+ \to \mathcal{V}_{-n}$ with kernel \mathcal{I}_{-n} sending $\Omega_{a,b} \mapsto \omega_{a,b}$ is a morphism in the category \mathcal{R} . Under the identifications

$$\operatorname{gr}(\mathcal{M}_{-n}^+) \cong \mathbb{C}[Q_{a,b}], \quad \operatorname{gr}(\mathcal{V}_{-n}) \cong (\operatorname{Sym} \bigoplus_{k \geq 0} U_k)^{Sp_{2n}} \cong \mathbb{C}[q_{a,b}]/I_n,$$

 $gr(\pi_{-n})$ is just the quotient map (6.10).

Lemma 7.1. For each $I = (i_0, i_1, \dots, i_{2n+1})$, there exists a unique vertex operator

(7.1)
$$P_I \in (\mathcal{M}_{-n}^+)_{(2n+2)} \cap \mathcal{I}_{-n}$$

of weight $n+1+\sum_{a=0}^{2n+1}i_a$, satisfying

$$\phi_{2n+2}(P_I) = p_I.$$

These elements generate \mathcal{I}_{-n} as a vertex algebra ideal.

Proof. Clearly π_{-n} maps each filtered piece $(\mathcal{M}_{-n}^+)_{(k)}$ onto $(\mathcal{V}_{-n})_{(k)}$, so the hypotheses of Lemma 3.2 are satisfied. Since $I_n = \operatorname{Ker}(\operatorname{gr}(\pi_{-n}))$ is generated by the Pfaffians p_I , we can apply Lemma 3.2 to find $P_I \in (\mathcal{M}_{-n}^+)_{(2n+2)} \cap \mathcal{I}_{-n}$ satisfying $\phi_{2n+2}(P_I) = p_I$, such that $\{P_I\}$ generates \mathcal{I}_{-n} . If P_I' also satisfies (7.2), we would have $P_I - P_I' \in (\mathcal{M}_{-n}^+)_{(2n)} \cap \mathcal{I}_{-n}$. Since there are no relations in \mathcal{V}_{-n} of degree less than 2n+2, we have $P_I - P_I' = 0$.

Let $\langle P_I \rangle$ denote the vector space with basis $\{P_I\}$ where I satisfies (6.11). We have $\langle P_I \rangle = (\mathcal{M}_{-n}^+)_{(2n+2)} \cap \mathcal{I}_{-n}$, and clearly $\langle P_I \rangle$ is a module over the Lie algebra $\mathcal{P}^+ \subset \hat{\mathcal{D}}^+$ generated by $\{W^{2m+1}(k) | m, k \geq 0\}$, since \mathcal{P}^+ preserves both the filtration on \mathcal{M}_{-n}^+ and the ideal \mathcal{I}_{-n} . It will be convenient to work in the basis

$$\{\Omega_{a,b}(a+b-w)|\ 0 \le a < b,\ a+b-w \ge 0\}$$

for \mathcal{P}^+ . Note that $\Omega_{a,b}(a+b-w)$ is homogeneous of weight w. The action of \mathcal{P}^+ by derivations of degree zero on $\operatorname{gr}(\mathcal{M}_{-n}^+)$ coming from the vertex Poisson algebra structure

is independent of n, and is specified by the action of \mathcal{P}^+ on the generators $\Omega_{l,m}$. We compute

(7.3)
$$\Omega_{a,b}(a+b-w)(\Omega_{l,m}) = \lambda_{a,b,w,l}(\Omega_{l+w,m}) + \lambda_{a,b,w,m}(\Omega_{l,m+w}),$$

where

(7.4)
$$\lambda_{a,b,w,l} = \begin{cases} (-1)^{b+1} \frac{(b+l)!}{2(l+w-a)!} - (-1)^{a+1} \frac{(a+l)!}{2(l+w-b)!} & l+w-a \ge 0\\ 0 & l+w-a < 0 \end{cases}$$

The action of \mathcal{P}^+ on $\langle P_I \rangle$ is by "weighted derivation" in the following sense. Given $I = (i_0, \dots, i_{2n+1})$ and $p = \Omega_{a,b}(a+b-w) \in \mathcal{P}^+$, we have

(7.5)
$$p(P_I) = \sum_{r=0}^{2n+1} \lambda_r P_{I^r},$$

for lists $I^r = (i_0, \dots, i_{r-1}, i_r + w, i_{r+1}, \dots, i_{2n+1})$, and constants λ_r . If $i_r + w = i_s$ for some $s = 1, \dots, 2n+1$ we have $\lambda_r = 0$, and otherwise $\lambda_r = (-1)^k \lambda_{a,b,w,i_r}$, where k is the number of transpositions required to transform I^r into an increasing list, as in (6.11).

For each $n \ge 1$, there is a distinguished element $P_0 \in \langle P_I \rangle$, defined by

$$P_0 = P_I, \quad I = (0, 1, \dots, 2n + 1).$$

It is the unique element of \mathcal{I}_{-n} of minimal weight $2(n+1)^2$, and hence is a singular vector in \mathcal{M}_{-n}^+ .

Theorem 7.2. P_0 generates \mathcal{I}_{-n} as a vertex algebra ideal.

We need a preliminary result in order to prove this statement. For simplicity of notation, we take n=1, but the result we are going to prove holds for any n. In this case, $\mathcal{S}=\mathcal{S}(V)$ is generated by β,γ . Recall from (6.5) that β_j and γ_j denote the images of $\partial^j\beta$ and $\partial^j\gamma$ in $\operatorname{gr}(\mathcal{S})$, respectively. Let $W\subset\operatorname{gr}(\mathcal{S})$ be the vector space with basis $\{\beta_j,\gamma_j|\ j\geq 0\}$, and for each $m\geq 0$, let W_m be the subspace with basis $\{\beta_j,\gamma_j|\ 0\leq j\leq m\}$. Let $\phi:W\to W$ be a linear map of weight $w\geq 1$, such that

(7.6)
$$\phi(\beta_j) = c_j \beta_{j+w}, \quad \phi(\gamma) = c_j \gamma_{j+w}$$

for constants $c_j \in \mathbb{C}$. For example, the restriction of $w^{2k+1}(2k+1-w)$ to W is such a map for $2k+1-w \geq 0$.

Lemma 7.3. Fix $w \ge 1$ and $m \ge 0$, and let ϕ be a linear map satisfying (7.6). Then the restriction $\phi\big|_{W_m}$ can be expressed uniquely as a linear combination of the operators $w^{2k+1}(2k+1-w)\big|_{W_m}$ for $0 \le 2k+1-w \le 2m+1$.

Proof. Suppose first that w is even, and let $k_j = j + \frac{w}{2}$, for $j = 0, \ldots, m$. In this notation, we need to show that $\phi|_{W_m}$ can be expressed uniquely as a linear combination of the operators $w^{2k_j+1}(2j+1)|_{W_m}$ for $j = 0, \ldots, m$. We calculate

$$(7.7) w^{2k_j+1}(2j+1)(\beta_i) = \lambda_{0,2k_j+1,w,i}(\beta_{i+w}), w^{2k_j+1}(2j+1)(\gamma_i) = \lambda_{0,2k_j+1,w,i}(\gamma_{i+w}),$$

where $\lambda_{0,2k_j+1,w,i}$ is given by (7.4). Let M^w be the $(m+1)\times (m+1)$ matrix with entries $M^w_{i,j}=\lambda_{0,2k_j+1,w,i}$, for $i,j=0,\ldots,m$. Let $\mathbf{c}\in\mathbb{C}^{m+1}$ be the column vector whose transpose is (c_0,\ldots,c_m) . Given an arbitrary linear combination

$$\psi = t_0 w^{2k_0+1}(1) + t_1 w^{2k_1+1}(3) + \dots + t_m w^{2k_m+1}(2m+1)$$

of the operators $w^{2k_j+1}(2j+1)$ for $0 \le j \le m$, let \mathbf{t} be the column vector whose transpose is (t_0,\ldots,t_m) . Note that $\phi\big|_{W_m}=\psi\big|_{W_m}$ precisely when $M^w\mathbf{t}=\mathbf{c}$, so in order to prove the claim, it suffices to show that M^w is invertible. But this is clear from the fact that each 2×2 minor

$$\begin{bmatrix} M_{i,j}^w & M_{i,j+1}^w \\ M_{i+1,j}^w & M_{i+1,j+1}^w \end{bmatrix}$$

has positive determinant. Finally, if w is odd, the same argument shows that for $k_j = j + \frac{1}{2}(w-1)$, $j = 0, \ldots, m$, ϕ can be expressed uniquely as a linear combination of the operators $w^{2k_j+1}(2j)$.

Since (7.7) holds for all $n \geq 1$ with β_i and γ_i replaced with β_i^x and $\gamma_i^{x'}$, it follows that the statement of Lemma 7.3 holds for any n. More precisely, let $W \subset \operatorname{gr}(\mathcal{S}(V))$ be the vector space with basis $\{\beta_j^{x_i}, \gamma_j^{x'_i} | i=1,\ldots,n,\ j\geq 0\}$, and let $W_m \subset W$ be the subspace with basis $\{\beta_j^{x_i}, \gamma_j^{x'_i} | i=1,\ldots,n,\ 0\leq j\leq m\}$. Let $\phi:W\to W$ be a linear map of weight $w\geq 1$ taking

(7.8)
$$\beta_j^{x_i} \mapsto c_j \beta_{j+w}^{x_i}, \quad \gamma_j^{x_i'} \mapsto c_j \gamma_{j+w}^{x_i'}, \quad i = 1, \dots, n,$$

where c_j is independent of i. Then $\phi\big|_{W_m}$ can be expressed uniquely as a linear combination of $w^{2k+1}(2k+1-w)\big|_{W_m}$ for $0 \le 2k+1-w \le 2m+1$.

Proof of Theorem 7.2. Since \mathcal{I}_{-n} is generated by $\langle P_I \rangle$ as a vertex algebra ideal, it suffices to show that $\langle P_I \rangle$ is generated by P_0 as a module over \mathcal{P}^+ . Let \mathcal{I}'_{-n} denote the ideal in \mathcal{M}^+_{-n} generated by P_0 , and let $\langle P_I \rangle [k]$, $\mathcal{I}_{-n}[k]$, and $\mathcal{I}'_{-n}[k]$ denote the homogeneous subspaces of weight k. Note that these spaces are all trivial for $k < 2(n+1)^2$, and all are spanned by P_0 for $k = 2(n+1)^2$.

We proceed by induction on k for $k>2(n+1)^2$, so assume that $\mathcal{I}_{-n}[m-1]=\mathcal{I}'_{-n}[m-1]$. Fix $I=(i_0,i_1,\ldots,i_{2n+1})$ such that P_I has weight $m=n+1+\sum_{k=0}^{2n+1}i_k$. Since $m>2(n+1)^2$, there is some k for which $i_k>k$. Let k be the first element where this happens, and let $I'=(i_0,\ldots,i_{k-1},i_k-1,i_{k+1},\ldots,i_{2n+1})$. Since $i_{k-1}=k-1$, we have $i_k-1>i_{k-1}$, so $P_{I'}\neq 0$. By Lemma 7.3, we can find $p\in\mathcal{P}^+$ such that

$$p(\beta_r^{x_i}) = c_r \beta_{r+1}^{x_i}, \quad p(\gamma_r^{x_i'}) = c_r \gamma_{r+1}^{x_i}$$

where $c_r = 1$ for $r = i_k - 1$ and $c_r = 0$ for all other $r \leq i_{2n+1}$. It is immediate from the weighted derivation property (7.5) that $p(P_{I'}) = P_I$. Therefore $P_I \in \mathcal{I}'_{-n}$.

8. NORMAL ORDERING AND QUANTUM CORRECTIONS

Given a homogeneous polynomial $p \in \operatorname{gr}(\mathcal{M}_{-n}^+) \cong \mathbb{C}[Q_{a,b}]$ of degree k in the variables $Q_{a,b}$, a normal ordering of p will be a choice of normally ordered polynomial $P \in (\mathcal{M}_{-n}^+)_{(2k)}$, obtained by replacing $Q_{a,b}$ by $\Omega_{a,b}$, and replacing ordinary products with iterated Wick products of the form (2.2). Of course P is not unique, but for any choice of P we have $\phi_{2k}(P) = p$. For the rest of this section, P^{2k} , E^{2k} , F^{2k} , etc., will denote elements of $(\mathcal{M}_{-n}^+)_{(2k)}$ which are homogeneous, normally ordered polynomials of degree k in the vertex operators $\Omega_{a,b}$.

Let $P_I^{2n+2} \in (\mathcal{M}_{-n}^+)_{(2n+2)}$ be some normal ordering of p_I , so that $\phi_{2n+2}(P_I^{2n+2}) = p_I$. Then

$$\pi_{-n}(P_I^{2n+2}) \in (\mathcal{V}_{-n})_{(2n)},$$

and $\phi_{2n}(\pi_{-n}(P_I^{2n+2})) \in \operatorname{gr}(\mathcal{V}_{-n})$ can be expressed uniquely as a polynomial of degree n in the variables $q_{a,b}$. Choose some normal ordering of the corresponding polynomial in the variables $\Omega_{a,b}$, and call this vertex operator $-P_I^{2n}$. Then $P_I^{2n+2}+P_I^{2n}$ has the property that

$$\phi_{2n+2}(P_I^{2n+2} + P_I^{2n}) = p_I, \qquad \pi_{-n}(P_I^{2n+2} + P_I^{2n}) \in (\mathcal{V}_{-n})_{(2n-2)}.$$

Continuing this process, we arrive at a vertex operator $\sum_{k=1}^{n+1} P_I^{2k}$ in the kernel of π_{-n} , such that $\phi_{2n+2}(\sum_{k=1}^{n+1} P_I^{2k}) = p_I$. By Lemma 7.1, must have

(8.1)
$$P_I = \sum_{k=1}^{n+1} P_I^{2k}.$$

In this decomposition, the term P_I^2 lies in the space A_m spanned by $\{\Omega_{a,b}|\ a+b=m\}$, for $m=n+\sum_{a=0}^{2n+1}i_a$. By (6.16), for all odd integers $m\geq 1$ we have a natural projection

$$\operatorname{pr}_m:A_m\to\langle W^m\rangle.$$

For all $I=(i_0,i_1,\ldots,i_{2n+1})$ such that $m=n+\sum_{a=0}^{2n+1}i_a$ is odd, define the *remainder*

$$(8.2) R_I = \operatorname{pr}_m(P_I^2).$$

Lemma 8.1. Fix $P_I \in \mathcal{I}_{-n}$ with $I = (i_0, i_1, \dots, i_{2n+1})$ and $m = n + \sum_{a=0}^{2n+1} i_a$ odd, as above. Suppose that $P_I = \sum_{k=1}^{n+1} P_I^{2k}$ and $P_I = \sum_{k=1}^{n+1} \tilde{P}_I^{2k}$ are two different decompositions of P_I of the form (8.1). Then

$$P_I^2 - \tilde{P}_I^2 \in \partial^2(A_{m-2}).$$

In particular, R_I is independent of the choice of decomposition of P_I .

Proof. Since \mathcal{M}_{-n}^+ is a vertex subalgebra of \mathcal{M}_{-n} and the generators of \mathcal{M}_{-n}^+ are linear combinations of the generators of \mathcal{M}_{-n} and their derivatives, this is an immediate consequence of Lemma 4.7 of [LI].

Lemma 8.2. Let R_0 denote the remainder of the element P_0 . The condition $R_0 \neq 0$ is equivalent to the existence of a decoupling relation in \mathcal{V}_{-n} of the form

(8.3)
$$w^{2n^2+4n+1} = Q(w^1, w^3, w^5, \dots, w^{2n^2+4n-1}).$$

where Q is a normally ordered polynomial in $w^1, w^3, w^5, \ldots, w^{2n^2+4n-1}$ and their derivatives.

Proof. Let $P_0 = \sum_{k=1}^{n+1} P_0^{2k}$ be a decomposition of P_0 of the form (8.1). If $R_0 \neq 0$, we have $P_0^2 = \lambda W^{2n^2+4n+1} + \partial^2 \omega$ for some $\lambda \neq 0$ and $\omega \in A_{2n^2+4n-1}$. Since P_0 has weight $2(n+1)^2$ and P_0^{2k} has degree k in the variables W^{2m+1} and their derivatives, P_0^{2k} must depend only on $W^1, W^3, W^5, \ldots, W^{2n^2+4n-1}$ and their derivatives, for $2 \leq k \leq n+1$. It follows that $\frac{1}{\lambda} P_0$ has the form

(8.4)
$$W^{2n^2+4n+1} - Q(W^1, W^3, W^5, \dots, W^{2n^2+4n-1}).$$

Applying the projection $\pi_{-n}: \mathcal{M}_{-n}^+ \to \mathcal{V}_{-n}$ yields the result, since $\pi_{-n}(P_0) = 0$. The converse follows from the fact that P_0 is the unique element of \mathcal{I}_{-n} of weight $2(n+1)^2$, up to scalar multiples.

Lemma 8.3. Suppose that $R_0 \neq 0$. Then there exist higher decoupling relations

(8.5)
$$w^{2m+1} = Q_m(w^1, w^3, w^5, \dots, w^{2n^2+4n-1})$$

for all $m \ge n^2 + 2n$, where Q_m is a normally ordered polynomial in $w^1, w^3, w^5, \dots, w^{2n^2+4n-1}$, and their derivatives. It follows that $\{w^1, w^3, w^5, \dots, w^{2n^2+4n-1}\}$ is a minimal strong generating set for \mathcal{V}_{-n} .

Proof. It suffices to find elements

$$W^{2m+1} - Q_m(W^1, W^3, W^5, \dots, W^{2n^2+4n-1}) \in \mathcal{I}_{-n},$$

so we assume inductively that Q_l exists for $n^2 + 2n \le l < m$. Choose a decomposition

$$Q_{m-1} = \sum_{k=1}^{d} Q_{m-1}^{2k},$$

where Q_{m-1}^{2k} is a homogeneous normally ordered polynomial of degree k in the vertex operators $W^1, W^3, W^5, \dots, W^{2n^2+4n-1}$ and their derivatives. In particular,

$$Q_{m-1}^2 = \sum_{i=0}^{n^2+2n-1} c_i \partial^{2m-2i-2} W^{2i+1},$$

for constants $c_0, \ldots, c_{n^2+2n-1}$. We apply the operator $W^3 \circ_1 \in \mathcal{P}^+$, which raises the weight by two. By (5.2), we have

$$W^{3} \circ_{1} W^{2m-1} = -2mW^{2m+1} + \sum_{k=1}^{m} \lambda_{k} \partial^{2k} W^{2m+1-2k},$$

for constants λ_k . Since Q_l exists for $n^2 + 2n \le l < m$, whenever $2m + 1 - 2k > 2n^2 + 4n - 1$, we can use the element

$$\partial^{2k} \left(W^{2m+1-2k} - Q_{m-k}(W^1, W^3, W^5, \dots, W^{2n^2+4n-1}) \right) \in \mathcal{I}_{-n}$$

to express $\partial^{2k} W^{2m+1-2k}$ as a normally ordered polynomial in $W^1, W^3, W^5, \dots, W^{2n^2+4n-1}$ and their derivatives, modulo \mathcal{I}_{-n} .

Moreover, $W^3 \circ_1 \left(\sum_{k=1}^d Q_{m-1}^{2k}\right)$ can be expressed in the form $\sum_{k=1}^d E^{2k}$, where each E^{2k} is a normally ordered polynomial in $W^1, W^3, W^5, \ldots, W^{2n^2+4n+1}$ and their derivatives. If W^{2n^2+4n+1} or its derivatives appear in E^{2k} , we can use the element (8.4) in \mathcal{I}_{-n} to eliminate W^{2n^2+4n+1} and any of its derivatives, modulo \mathcal{I}_{-n} . Hence

$$W^3 \circ_1 \left(\sum_{k=1}^d Q_{m-1}^{2k} \right)$$

can be expressed modulo \mathcal{I}_{-n} in the form $\sum_{k=1}^{d'} F^{2k}$, where $d' \geq d$, and F^{2k} is a normally ordered polynomial in $W^1, W^3, W^5, \dots, W^{2n^2+4n-1}$ and their derivatives. It follows that

$$-\frac{1}{2m}W^3 \circ_1 \left(W^{2m-1} - Q_{m-1}(W^1, W^3, W^5, \dots, W^{2n^2+4n-1}) \right)$$

can be expressed as an element of \mathcal{I}_{-n} of the desired form.

9. A CLOSED FORMULA FOR R_I

We shall find a closed formula for R_I for any $I=(i_0,i_1,\ldots,i_{2n+1})$ such that $\operatorname{wt}(P_I)=n+1+\sum_{a=0}^{2n+1}i_a$ is even, and it will be clear from our formula that $R_0\neq 0$. We introduce the notation

(9.1)
$$R_I = R_n(I)W^m, \qquad m = n + \sum_{a=0}^{2n+1} i_a$$

so that $R_n(I)$ denotes the coefficient of W^m in $\operatorname{pr}_m(P_I^2)$. For n=1 and $I=(i_0,i_1,i_2,i_3)$ the following formula is easy to obtain using the fact $\operatorname{pr}_m(\Omega_{a,b})=(-1)^mW^m$ for m=a+b.

$$(9.2) R_1(I) = \frac{1}{4} \left(\frac{(-1)^{i_0+i_2} - (-1)^{2i_0+i_1+i_2} - (-1)^{i_0+i_3} + (-1)^{2i_0+i_1+i_3}}{1 + i_0 + i_1} \right)$$

$$+ \frac{-(-1)^{i_0+i_1} + (-1)^{2i_0+i_1+i_2} + (-1)^{i_0+i_3} - (-1)^{2i_0+i_2+i_3}}{1 + i_0 + i_2}$$

$$+ \frac{(-1)^{i_0+i_1} - (-1)^{i_0+i_2} - (-1)^{2i_0+i_1+i_3} + (-1)^{2i_0+i_2+i_3}}{1 + i_0 + i_3}$$

$$+ \frac{-(-1)^{i_0+2i_1+i_2} + (-1)^{i_0+i_1+2i_2} - (-1)^{i_1+i_3} + (-1)^{i_2+i_3}}{1 + i_1 + i_2}$$

$$+ \frac{(-1)^{i_1+i_2} + (-1)^{i_0+2i_1+i_3} - (-1)^{i_2+i_3} - (-1)^{i_0+i_1+2i_3}}{1 + i_1 + i_3}$$

$$+ \frac{-(-1)^{i_1+i_2} + (-1)^{i_1+i_3} - (-1)^{i_0+2i_2+i_3} + (-1)^{i_0+i_2+2i_3}}{1 + i_2 + i_3} \right).$$

Before we can find a closed formula for $R_n(I)$ for all n, we will find a *recursive* formula for $R_n(I)$ in terms of the expressions $R_{n-1}(J)$, so we will assume that $R_{n-1}(J)$ has been defined for all J. Recall first that S(V) is a graded algebra with $\mathbb{Z}_{\geq 0}$ grading (6.4), which specifies a linear isomorphism

$$S(V) \cong \operatorname{Sym} \bigoplus_{k>0} U_k, \quad U_k \cong \mathbb{C}^{2n}.$$

Since V_{-n} is a graded subalgebra of S(V), we obtain an isomorphism of graded vector spaces

$$(9.3) i_{-n}: \mathcal{V}_{-n} \to (\operatorname{Sym} \bigoplus_{k \ge 0} U_k)^{Sp_{2n}}.$$

Let $p \in (\operatorname{Sym} \bigoplus_{k \geq 0} U_k)^{Sp_{2n}}$ be a homogeneous polynomial of degree 2d, and let $f = (i_{-n})^{-1}(p) \in (\mathcal{V}_{-n})^{(2d)}$ be the corresponding homogeneous vertex operator. Let $F \in (\mathcal{M}_{-n}^+)_{(2d)}$ be a vertex operator satisfying $\pi_{-n}(F) = f$, where $\pi_{-n} : \mathcal{M}_{-n}^+ \to \mathcal{V}_{-n}$ is the projection. We can write $F = \sum_{k=1}^d F^{2k}$, where F^{2k} is a normally ordered polynomial of degree k in the vertex operators $\Omega_{a,b}$.

Next, let \tilde{V} be the vector space \mathbb{C}^{n+1} , and let

$$\tilde{q}_{a,b} \in (\operatorname{Sym} \bigoplus_{k>0} \tilde{U}_k)^{Sp_{2n+2}} \cong \operatorname{gr}(\mathcal{S}(\tilde{V})^{Sp_{2n+2}}) \cong \operatorname{gr}(\mathcal{V}_{-n-1})$$

be the generator given by (6.9), where $\tilde{U}_k \cong \mathbb{C}^{2n+2}$. Let \tilde{p} be the polynomial of degree 2d obtained from p by replacing each $q_{a,b}$ with $\tilde{q}_{a,b}$, and let $\tilde{f}=(i_{-n-1})^{-1}(\tilde{p})\in (\mathcal{V}_{-n-1})^{(2d)}$ be the corresponding homogeneous vertex operator. Finally, let $\tilde{F}^{2k}\in\mathcal{M}_{-n-1}^+$ be the vertex operator obtained from F^{2k} by replacing each $\Omega_{a,b}$ with the corresponding vertex operator $\tilde{\Omega}_{a,b}\in\mathcal{M}_{-n-1}^+$, and let $\tilde{F}=\sum_{i=1}^d \tilde{F}^{2k}$.

Lemma 9.1. Fix $n \ge 1$, and let P_I be an element of \mathcal{I}_{-n} given by Lemma 7.1. There exists a decomposition $P_I = \sum_{k=1}^{n+1} P_I^{2k}$ of the form (8.1) such that the corresponding vertex operator

$$\tilde{P}_I = \sum_{k=1}^{n+1} \tilde{P}_I^{2k} \in \mathcal{M}_{-n-1}^+$$

has the property that $\pi_{-n-1}(\tilde{P}_I)$ lies in the homogeneous subspace $(\mathcal{V}_{-n-1})^{(2n+2)}$ of degree 2n+2.

Proof. The argument is the same as the proof of Corollary 4.14 of [LI], and is omitted. \Box

Recall that the Pfaffian p_I has an expansion

$$p_I = \sum_{r=1}^{2n+1} (-1)^{r+1} q_{i_0, i_r} p_{I_r},$$

where $I_r = (i_1, \dots, \widehat{i_r}, \dots, i_{2n+1})$ is obtained from I by omitting i_0 and i_r . Let $P_{I_r} \in \mathcal{M}_{-n+1}^+$ be the vertex operator corresponding to p_{I_r} . By Lemma 9.1, there exists a decomposition

$$P_{I_r} = \sum_{i=1}^{n} P_{I_r}^{2i}$$

such that the corresponding element $\tilde{P}_{I_r} = \sum_{i=1}^n \tilde{P}_{I_r}^{2i} \in \mathcal{M}_{-n}^+$ has the property that $\pi_{-n}(\tilde{P}_{I_r})$ lies in the homogeneous subspace $(\mathcal{V}_{-n})^{(2n)}$ of degree 2n. We have

(9.4)
$$\sum_{r=1}^{2n+1} (-1)^{r+1} : \Omega_{i_0,i_r} \tilde{P}_{I_r} := \sum_{r=1}^{2n+1} \sum_{i=1}^{n} (-1)^{r+1} : \Omega_{i_0,i_r} \tilde{P}_{I_r}^{2i} :.$$

The right hand side of (9.4) consists of normally ordered monomials of degree at least 2 in the vertex operators $\Omega_{a,b}$, and hence contributes nothing to $R_n(I)$. Since $\pi_{-n}(\tilde{P}_{I_r})$ is homogeneous of degree 2n, $\pi_{-n}(:\Omega_{i_0,i_r}\tilde{P}_{I_r}:)$ consists of a piece of degree 2n+2 and a piece of degree 2n coming from all double contractions of Ω_{i_0,i_r} with terms in \tilde{P}_{I_r} , which lower the degree by two. The component of

$$\pi_{-n} \left(\sum_{r=1}^{2n+1} (-1)^{r+1} : \Omega_{i_0, i_r} \tilde{P}_{I_r} : \right) \in \mathcal{V}_{-n}$$

in degree 2n+2 must cancel since this sum corresponds to the classical Pfaffian p_I , which is a relation among the variables $q_{a,b}$. The component of : $\Omega_{i_0,i_r}\tilde{P}_{I_r}$: in degree 2n is

(9.5)
$$S_r = \frac{1}{2} \left((-1)^{i_0} \sum_a \frac{\tilde{P}_{I_{r,a}}}{i_0 + i_a + 1} + (-1)^{i_r + 1} \sum_a \frac{\tilde{P}_{I_{r,a}}}{i_r + i_a + 1} \right)$$

In this notation, for $a \in \{i_0, \dots, i_{2n+1}\} \setminus \{i_0, i_r\}$, $I_{r,a}$ is obtained from $I_r = (i_1, \dots, \widehat{i_r}, \dots, i_{2n+1})$ by replacing i_a with $i_a + i_0 + i_r + 1$. It follows that

(9.6)
$$\pi_{-n} \left(\sum_{r=1}^{2n+1} (-1)^{r+1} : \Omega_{i_0, i_r} \tilde{P}_{I_r} : \right) = \pi_{-n} \left(\sum_{r=1}^{2n+1} (-1)^{r+1} S_r \right).$$

Combining (9.4) and (9.6), we can regard

$$\sum_{r=1}^{2n+1} \sum_{i=1}^{n} (-1)^{r+1} : \Omega_{i_0, i_r} \tilde{P}_{I_r}^{2i} : -\sum_{r=0}^{n} (-1)^{r+1} S_r$$

as a decomposition of P_I of the form $P_I = \sum_{k=1}^{n+1} P_I^{2k}$ where the leading term $P_I^{2n+2} = \sum_{r=0}^{2n+1} (-1)^{r+1} : \Omega_{i_0,i_r} \tilde{P}_{I_r}^{2n}$.. It follows that $R_n(I)$ is the negative of the sum of the terms $R_{n-1}(J)$ corresponding to each \tilde{P}_J appearing in $\sum_{r=0}^{2n+1} (-1)^{r+1} S_r$. We obtain the following recursive formula:

$$(9.7) R_n(I) = -\frac{1}{2} \sum_{r=1}^{2n+1} (-1)^{r+1} \left((-1)^{i_0} \sum_{a} \frac{R_{n-1}(I_{r,a})}{i_0 + i_a + 1} + (-1)^{i_r + 1} \sum_{a} \frac{R_{n-1}(I_{r,a})}{i_r + i_a + 1} \right).$$

To find a closed formula for $R_n(I)$, we begin with the case n=1. It follows from (9.2) that $R_1(I)=0$ unless $I=(i_0,i_1,i_2,i_3)$ contains two even and two odd elements. By permuting i_0,i_1,i_2,i_3 if necessary, we may assume that $i_k\equiv k \mod 2$. In this case, (9.2) simplifies as follows:

(9.8)
$$R_1(I) = \frac{(2+i_0+i_1+i_2+i_3)(i_0-i_2)(i_1-i_3)}{(1+i_0+i_1)(1+i_1+i_2)(1+i_0+i_3)(1+i_2+i_3)}.$$

It is clear by induction on n that $R_n(I)=0$ unless $I=(i_0,\ldots,i_{2n+1})$ is "balanced" in the sense that it has n+1 even elements and n+1 odd elements. From now on, we assume this is the case, and we change our notation slightly. We write $I=(i_0,j_0,i_1,j_1,\ldots,i_n,j_n)$, where i_0,\ldots,i_n are even and j_0,\ldots,j_n are odd. For later use, we record one more obvious symmetry: for $I=(i_0,j_0,i_1,j_1,\ldots,i_n,j_n)$ with i_0,\ldots,i_n even and j_0,\ldots,j_n odd, we have

(9.9)
$$R_n(I) = (-1)^{n+1} R_n(I'), \quad I' = (j_0, i_0, j_1, i_1, \dots, j_n, i_n).$$

Fix $I=(i_0,j_0,i_1,j_1,\ldots,i_{n-1},j_{n-1})$ with i_0,i_1,\ldots,i_{n-1} even and j_0,j_1,\ldots,j_{n-1} odd. For each even integer $x\geq 0$, set $I_x=(i_0,j_0,i_1,j_1,\ldots,i_{n-1},j_{n-1},x,x+1)$. We regard $R_n(I_x)$ as a rational function of x. By applying the recursive formula (9.7) k times, we can express $R_n(I_x)$ as a linear combination of terms of the form $R_m(K)$ where m=n-k and $K=(k_0,k_1,\ldots,k_{2m+1})$. Each entry of K is a constant plus a linear combination of entries from I_x , and at most two entries of K depend on K. Let K0 denote the vector space spanned by elements K1 with these properties. Using (9.7), we can express K1 as a linear

combination of elements in V_{m-1} . A term $R_{m-1}(K_{r,a})$ in this decomposition will be called *x-active* if either k_0 , k_r , or k_a depends on x. Define linear maps

(9.10)
$$f_m: V_m \to V_{m-1}, \quad g_m: V_m \to V_{m-1}$$

as follows: $f_m(R_m(K))$ is the sum of the terms which are not x-active, and $g_m(R_m(K))$ is the sum of the terms which are x-active. Finally, define the *constant term map*

(9.11)
$$h_m: V_m \to \mathbb{Q}, \qquad h_m(R_m(K)) = \lim_{r \to \infty} R_m(K).$$

Lemma 9.2. For all $n \geq 2$, and all $I = (i_0, j_0, i_1, j_1, \dots, i_{n-1}, j_{n-1})$ with i_0, \dots, i_{n-1} even and j_0, \dots, j_{n-1} odd, we have

(9.12)
$$h_n(R_n(I_x)) = \frac{n}{n + \sum_{k=0}^{n-1} i_k + j_k} R_{n-1}(I).$$

Proof. For n = 2 this is an easy calculation, so we may proceed by induction on n. In fact, it will be convenient to prove the following auxiliary formula at the same time:

(9.13)
$$h_{n-1}(g_n(R_n(I_x))) = \frac{1}{n + \sum_{k=0}^{n-1} i_k + j_k} R_{n-1}(I).$$

For n = 2 this can be checked by direct calculation, so we assume both (9.12) and (9.13) for n - 1. Each term appearing in $f_n(R_n(I_x))$ is of the form

$$R_{n-1}(K)$$
, $K = (k_0, k_1, \dots, k_{2n-3}, x, x+1)$, $n-1 + \sum_{t=0}^{2n-3} k_t = n + \sum_{k=0}^{n-1} i_k + j_k$.

By our inductive hypothesis that (9.12) holds for n-1, we have

(9.14)
$$h_{n-1}(f_n(R_n(I_x))) = \frac{n-1}{n + \sum_{k=0}^{n-1} i_k + j_k} R_{n-1}(I).$$

Next, it is easy to check that

$$h_{n-2}(g_{n-1}(f_n(R_n(I_x)))) = h_{n-2}(f_{n-1}(g_n(R_n(I_x)))).$$

Also, we have

$$g_{n-1}(g_n(R_n(I_x))) = 0,$$

since all terms in this expression cancel pairwise. Therefore

$$h_{n-1}(g_n(R_n(I_x))) = h_{n-2}(f_{n-1}(g_n(R_n(I_x)))) + h_{n-2}(g_{n-1}(g_n(R_n(I_x))))$$

= $h_{n-2}(f_{n-1}(g_n(R_n(I_x)))) = h_{n-2}(g_{n-1}(f_n(R_n(I_x)))).$

Moreover, by applying the induction hypothesis that (9.13) holds for n-1, it follows that

$$(9.15) h_{n-1}(g_n(R_n(I_x))) = h_{n-2}(g_{n-1}(f_n(R_n(I_x)))) = \frac{1}{n + \sum_{k=0}^{n-1} i_k + j_k} R_{n-1}(I).$$

Since $h_n(R_n(I_x) = h_{n-1}(f_n(R_n(I_x))) + h_{n-1}(g_n(R_n(I_x)))$, the claim follows from (9.14) and (9.15).

Theorem 9.3. Suppose that $I = (i_0, j_0, i_1, j_1, \dots, i_n, j_n)$ is a list of nonnegative integers such that i_0, \dots, i_n are even and j_0, \dots, j_n are odd, as above. Then the following closed formula holds:

(9.16)
$$R_n(I) = \frac{n! \left(n + 1 + \sum_{k=0}^n i_k + j_k\right) \left(\prod_{0 \le k < l \le n} (i_k - i_l)(j_k - j_l)\right)}{\prod_{0 \le k < n, \ 0 < l \le n} (1 + i_k + j_l)}.$$

Proof. As we shall see, this formula is more or less forced upon us by the symmetries of the Pfaffians, which are inherited by the numbers $R_n(I)$. We assume that (9.16) holds for n-1 and all $K=(k_0,l_0,k_1,l_1,\ldots,k_{n-1},l_{n-1})$ with k_i even and l_i odd, and we proceed by induction on n. In particular, each term of the form $R_{n-1}(K)$ is a rational function in the entries of K, where the denominator has degree n^2 and the numerator has degree n^2-n+1 . Hence the total degree of $R_{n-1}(K)$ is -n+1.

Using (9.7), we may expand $R_n(I)$ as a rational function of $i_0, j_0, i_1, j_1, \dots, i_n, j_n$. Each term appearing in (9.7) has degree -n, so $R_n(I)$ has degree at most -n. The denominator of each such term is clearly a product of factors of the form

$$1 + i_k + j_l$$
, $1 + i_k + i_l$, $1 + j_k + j_l$, $2 + i_0 + i_k + i_l$, $2 + i_0 + j_k + i_l$, $2 + i_0 + j_k + j_l$.

As a rational function of $i_0, j_0, i_1, j_1, \dots, i_n, j_n$, the denominator of $R_n(I)$ is therefore the product of a subset of these terms. Moreover, $R_n(I)$ has the following symmetry; for every interchange of i_k and i_l , we pick up a sign, and for every interchange of j_k and j_l we pick up a sign. These permutations must have the effect of permuting the factors in the denominator up to a sign, and permuting the factors of the numerator up to a sign.

From this symmetry, it is clear that none of the expressions

$$2 + i_0 + i_k + i_l$$
, $2 + i_0 + j_k + i_l$, $2 + i_0 + j_k + j_l$

can appear. Moreover, each term $R_{n-1}(I_{r,a})$ appearing in (9.7) with i_a and i_r both even must vanish, since $I_{r,a}$ will then contain n-2 even elements and n+2 odd elements. Hence none of the factors $1+i_k+i_l$ can appear in the denominator of $R_n(I)$. By (9.9), the factors $1+j_k+j_l$ also cannot appear, so the denominator of $R_n(I)$ can contain only a subset of expressions of the form $1+i_k+j_l$. By symmetry, it must contain *all* such expressions, so the denominator is precisely

$$\prod_{0 \le k \le n, \ 0 \le l \le n} (1 + i_k + j_l),$$

and therefore has leading degree $(n+1)^2$. Since $R_n(I)$ picks up a sign under permutation of i_k and i_l , and under permutation of j_k and j_l , the numerator must be divisible by

$$\prod_{0 \le k < l \le n} (i_k - i_l)(j_k - j_l),$$

which is homogeneous of degree $n^2 + n$. Since the denominator has degree $(n + 1)^2$, the total degree of $R_n(I)$ is at least -n - 1.

We have already seen that the total degree of $R_n(I)$ is at most -n, so there is room for at most one more linear factor in the numerator. By symmetry, this factor must be invariant under all permutations of i_0, \ldots, i_n and all permutations of j_0, \ldots, j_n , so it is of the form

$$a_n \left(\sum_{k=0}^n i_k \right) + b_n \left(\sum_{k=0}^n j_k \right) + c_n,$$

where a_n, b_n, c_n are constants which depend on n but not on I. The additional symmetry (9.9) shows that $a_n = b_n$, so this can be rewritten in the form

$$a_n \left(\sum_{k=0}^n i_k + j_k \right) + c_n.$$

In order to complete the proof of Theorem 9.3, it suffices to show that

$$(9.17) a_n = n!, c_n = (n+1)!.$$

By our inductive assumption, $a_{n-1}=(n-1)!$. Fix $K=(k_0,l_0,k_1,l_1,\ldots,k_{n-1},l_{n-1})$ with k_r even and l_r odd. As in Lemma 9.2, for each even integer $x\geq 0$, set

$$K_x = (k_0, l_0, k_1, l_1, \dots, k_{n-1}, l_{n-1}, x, x + 1).$$

The highest power of x appearing in the numerator of $R_n(K_x)$ is x^{2n+1} , and the coefficient of x^{2n+1} in the numerator is

$$2a_n \prod_{0 \le r < s \le n} (k_r - k_s)(l_r - l_s).$$

Similarly, the highest power of x appearing in the denominator of $R_n(K_x)$ is also x^{2n+1} , and the coefficient of x^{2n+1} is

$$2 \prod_{0 \le r < n, \ 0 \le s < n} (1 + k_r + l_s).$$

Therefore

$$h_n(R_n(K_x)) = \lim_{x \to \infty} R_n(K_x) = \frac{a_n \prod_{0 \le r < s < n} (k_r - k_s)(l_r - l_s)}{\prod_{0 < r < n, \ 0 < s < n} (1 + k_r + l_s)}.$$

By our inductive assumption, we have

$$R_{n-1}(K) = \frac{(n-1)!(n+\sum_{r=0}^{n-1}k_r+l_r)\prod_{0\leq r< s< n}(k_r-k_s)(l_r-l_s)}{\prod_{0\leq r< n,\ 0\leq s< n}(1+k_r+l_s)}.$$

Therefore by (9.12), we have

$$h_n(R_n(K_x)) = \left(\frac{n}{n + \sum_{r=0}^{n-1} k_r + l_r}\right) \frac{(n-1)!(n + \sum_{r=0}^{n-1} k_r + l_r) \prod_{0 \le r < s < n} (k_r - k_s)(l_r - l_s)}{\prod_{0 \le r < n, \ 0 \le s < n} (1 + k_r + l_s)}.$$

This proves that $a_n = n!$.

Finally, we need to show that $c_n=(n+1)!$. Let $I=(i_0,j_0,i_1,j_1,\ldots,i_n,j_n)$ as above. Since $a_n=n!$, it suffices to show that the numerator of $R_n(I)$ is divisible by $n+1+\sum_{k=0}^n i_k+j_k$. But this is clear from (9.7), since by inductive assumption, the numerator of each term of the form $R_{n-1}(I_{r,a})$ is divisible by $n+1+\sum_{k=0}^n i_k+j_k$.

Theorem 9.4. For all $n \ge 1$, V_{-n} has a minimal strong generating set $\{w^1, w^3, w^5, \dots, w^{2n^2+4n-1}\}$, and is therefore a W-algebra of type $W(2, 4, 6, \dots, 2n^2 + 4n)$.

Proof. Specializing (9.16) to the case I = (0, 1, ..., 2n + 1) yields

$$R_n(I) = \frac{2(n!)(n+1)^2 \prod_{0 \le k < l \le n} (k-l)^2}{\prod_{0 \le k \le n, \ 0 \le l \le n} (1+k+l)}.$$

In particular, $R_0 = R_n(I)W^{2n^2+4n+1} \neq 0$, so the claim follows from Lemma 8.3.

10. Representation theory of \mathcal{V}_{-n}

The basic tool in studying the representation theory of vertex algebras is the *Zhu functor*, which was introduced by Zhu in [Z]. Given a vertex algebra \mathcal{W} with weight grading $\mathcal{W} = \bigoplus_{n \in \mathbb{Z}} \mathcal{W}_n$, this functor attaches to \mathcal{W} an associative algebra $A(\mathcal{W})$, together with a surjective linear map $\pi_{\text{Zhu}} : \mathcal{W} \to A(\mathcal{W})$. For $a \in \mathcal{W}_m$ and $b \in \mathcal{W}$, define

(10.1)
$$a * b = \operatorname{Res}_{z} \left(a(z) \frac{(z+1)^{m}}{z} b \right),$$

and extend * by linearity to a bilinear operation $W \otimes W \to W$. Let O(W) denote the subspace of W spanned by elements of the form

(10.2)
$$a \circ b = \operatorname{Res}_{z} \left(a(z) \frac{(z+1)^{m}}{z^{2}} b \right)$$

where $a \in \mathcal{W}_m$, and let $A(\mathcal{W})$ be the quotient $\mathcal{W}/O(\mathcal{W})$, with projection $\pi_{\mathsf{Zhu}} : \mathcal{W} \to A(\mathcal{W})$. Then $O(\mathcal{W})$ is a two-sided ideal in \mathcal{W} under the product *, and $(A(\mathcal{W}), *)$ is a unital, associative algebra. The assignment $\mathcal{W} \mapsto A(\mathcal{W})$ is functorial, and if \mathcal{I} is a vertex algebra ideal of \mathcal{W} , we have $A(\mathcal{W}/\mathcal{I}) \cong A(\mathcal{W})/I$, where $I = \pi_{\mathsf{Zhu}}(\mathcal{I})$. A well-known formula asserts that for all $a \in \mathcal{W}_m$ and $b \in \mathcal{W}$,

(10.3)
$$a*b-b*a \equiv \operatorname{Res}_{z}(1+z)^{m-1}a(z)b \mod O(\mathcal{W}).$$

A $\mathbb{Z}_{\geq 0}$ -graded module $M=\bigoplus_{n\geq 0}M_n$ over \mathcal{W} is called *admissible* if for every $a\in \mathcal{W}_m$, $a(n)M_k\subset M_{m+k-n-1}$, for all $n\in \mathbb{Z}$. Given $a\in \mathcal{W}_m$, a(m-1) acts on each M_k . The subspace M_0 is then a module over $A(\mathcal{W})$ with action $[a]\mapsto a(m-1)\in \operatorname{End}(M_0)$. In fact, $M\mapsto M_0$ provides a one-to-one correspondence between irreducible, admissible \mathcal{W} -modules and irreducible $A(\mathcal{W})$ -modules. If $A(\mathcal{W})$ is a commutative algebra, all its irreducible modules are one-dimensional, and the corresponding \mathcal{W} -modules $M=\bigoplus_{n\geq 0}M_n$ are cyclic and generated by any nonzero $v\in M_0$. Accordingly, we call such a module a *highest-weight module* for \mathcal{W} , and we call v a *highest-weight vector*.

Let \mathcal{W} be a vertex algebra which is strongly generated by elements α_i of weights w_i , for i in some index set I. Then $A(\mathcal{W})$ is generated by $\{a_i = \pi_{\mathsf{Zhu}}(\alpha_i(z)) | i \in I\}$. Moreover, $A(\mathcal{W})$ inherits a filtration (but not a grading) by weight.

Theorem 10.1. For all $n \geq 1$, $A(V_{-n})$ is a commutative algebra, so all irreducible, admissible V_{-n} -modules are highest-weight modules.

Proof. It suffices to show that $[a_i, a_j] = 0$ for all $i, j = 1, 3, 5, \dots, 2n^2 + 4n - 1$. This is clear from the fact $A(\mathcal{W}_{1+\infty,-n})$ is abelian, and the generators w^{2m+1} of \mathcal{V}_{-n} are linear combinations of the generators of $\mathcal{W}_{1+\infty,-n}$ and their derivatives.

The same argument shows that $A(\mathcal{M}_{-n}^+)$ is abelian. Since \mathcal{M}_{-n}^+ is freely generated by W^1, W^3, W^5, \ldots it follows that $A(\mathcal{M}_{-n}^+)$ is the polynomial algebra $\mathbb{C}[A^1, A^3, A^5, \cdots]$, where $A^{2m+1} = \pi_{\mathsf{Zhu}}(W^{2m+1})$. Moreover, $A(\mathcal{V}_{-n}) \cong \mathbb{C}[a^1, a^3, a^5, \ldots]/I_{-n}$, where $I_{-n} = \pi_{\mathsf{Zhu}}(\mathcal{I}_{-n})$, and we have a commutative diagram

(10.4)
$$\begin{array}{cccc} \mathcal{M}_{-n}^{+} & \stackrel{\pi_{-n}}{\to} & \mathcal{V}_{-n} \\ \downarrow_{\pi_{\mathrm{Zhu}}} & & \downarrow_{\pi_{\mathrm{Zhu}}} & . \\ A(\mathcal{M}_{-n}^{+}) & \stackrel{A(\pi_{-n})}{\to} & A(\mathcal{V}_{-n}) \end{array}$$

Since $A(V_{-n})$ is generated by $\{a^1, a^3, a^5, \dots, a^{2n^2+4n-1}\}$,

$$A(\mathcal{V}_{-n}) \cong \mathbb{C}[a^1, a^3, a^5, \dots, a^{2n^2+4n-1}]/I_{-n},$$

where I_{-n} is now regarded as an ideal inside $\mathbb{C}[a^1, a^3, a^5, \dots, a^{2n^2+4n-1}]$. The corresponding variety $V(I_{-n}) \subset \mathbb{C}^{n^2+2n}$ then parametrizes the irreducible, admissible modules over \mathcal{V}_{-n} . The problem of classifying these modules is equivalent to describing I_{-n} .

11. Invariant subalgebras of $\mathcal{S}(V)$ under arbitrary reductive groups

In this section, we study $S(V)^G$ for a general reductive group $G \subset Sp_{2n}$. By Theorem 13.2 of [KWY], S(V) has a decomposition of the form

(11.1)
$$S(V) \cong \bigoplus_{\nu \in H} L(\nu) \otimes M^{\nu},$$

where H indexes the irreducible, finite-dimensional representations $L(\nu)$ of Sp_{2n} , and the M^{ν} 's are inequivalent, irreducible, highest-weight \mathcal{V}_{-n} -modules. The modules M^{ν} appearing in (11.1) have an integrality property; the eigenvalues of $\{w^{2m+1}(2m+1)|\ m\geq 0\}$ on the highest-weight vectors f_{ν} are all integers. These modules therefore correspond to certain rational points on the variety $V(I_{-n})$. Using a classical theorem of Weyl, we show that $\mathcal{S}(V)^G$ has an (infinite) strong generating set that lives in the direct sum of finitely many of the modules M^{ν} . An easy consequence is that $\mathcal{S}(V)^G$ is finitely generated as a vertex algebra. The strong finite generation of $\mathcal{S}(V)^G$ takes more work, and our proof is essentially constructive. The key step is to show that the modules M^{ν} appearing in (11.1) have a certain finiteness property. Together with the finite generation of $\mathcal{S}(V)^G$ and the fact that \mathcal{V}_{-n} is of type $\mathcal{W}(2,4,6,\ldots,2n^2+4n)$, this is enough to prove the result.

Theorem 11.1. For any reductive group G of automorphisms of S(V), $S(V)^G$ is finitely generated as a vertex algebra.

Proof. Recall that $S(V) \cong \operatorname{gr}(S(V))$ as linear spaces, and

$$\operatorname{gr}(\mathcal{S}(V)^G) \cong (\operatorname{gr}(\mathcal{S}(V))^G \cong (\operatorname{Sym} \bigoplus_{k>0} U_k)^G = R$$

as commutative algebras, where $U_k \cong \mathbb{C}^{2n}$ as Sp_{2n} -modules. For all $p \geq 0$, there is an action of GL_p on $\bigoplus_{k=0}^{p-1} U_k$ which commutes with the action of G. The natural inclusions $GL_p \hookrightarrow GL_q$ for p < q sending

$$M \to \begin{bmatrix} M & 0 \\ 0 & I_{q-p} \end{bmatrix}$$

induce an action of $GL_{\infty}=\lim_{p\to\infty}GL_p$ on $\bigoplus_{k\geq 0}U_k$. We obtain an action of GL_{∞} on $\mathrm{Sym}\bigoplus_{k\geq 0}U_k$ by algebra automorphisms, which commutes with the action of G. Hence GL_{∞} acts on R as well. By a basic theorem of Weyl, R is generated by the set of translates under GL_{∞} of any set of generators for $(\mathrm{Sym}\bigoplus_{k=0}^{2n-1}U_k)^G$ [We]. Since G is reductive, $(\mathrm{Sym}\bigoplus_{k=0}^{2n-1}U_k)^G$ is finitely generated, so it contains homogeneous elements f_1,\ldots,f_k such that $\{\sigma f_i | i=1,\ldots,k,\ \sigma\in GL_{\infty}\}$ generates R. By Lemma 3.1, the set

$$\{(\sigma f_i)(z) \in \mathcal{S}(V)^G | i = 1, \dots, k, \ \sigma \in GL_{\infty}\},$$

where $(\sigma f_i)(z)$ correspond to σf_i under the linear isomorphism $\mathcal{S}(V)^G \cong \operatorname{gr}(\mathcal{S}(V)^G) \cong R$, is a strong generating set for $\mathcal{S}(V)^G$.

In the decomposition (11.1) of S(V) as a bimodule over Sp_{2n} and \mathcal{V}_{-n} , the Sp_{2n} -isotypic component of S(V) of type $L(\nu)$ is isomorphic to $L(\nu) \otimes M^{\nu}$. Each $L(\nu)$ is a module over $G \subset Sp_{2n}$, and since G is reductive, it has a decomposition $L(\nu) = \bigoplus_{\mu \in H^{\nu}} L(\nu)_{\mu}$. Here μ runs over a finite set H^{ν} of irreducible, finite-dimensional representations $L(\nu)_{\mu}$ of G, possibly with multiplicity. We thus obtain a refinement of (11.1):

(11.2)
$$S(V) \cong \bigoplus_{\nu \in H} \bigoplus_{\mu \in H^{\nu}} L(\nu)_{\mu} \otimes M^{\nu}.$$

Let $f_1(z), \ldots, f_k(z) \in \mathcal{S}(V)^G$ correspond to f_1, \ldots, f_k under the linear isomorphism $\mathcal{S}(V)^G \cong \operatorname{gr}(\mathcal{S}(V)^G) \cong R$. Clearly $f_1(z), \ldots, f_k(z)$ must live in a finite direct sum

(11.3)
$$\bigoplus_{j=1}^{r} L(\nu_j) \otimes M^{\nu_j}$$

of the modules appearing in (11.1). By enlarging the collection $f_1(z),\ldots,f_k(z)$ if necessary, we may assume without loss of generality that each $f_i(z)$ lives in a single representation of the form $L(\nu_j)\otimes M^{\nu_j}$. Moreover, we may assume that $f_i(z)$ lives in a trivial G-submodule $L(\nu_j)_{\mu_0}\otimes M^{\nu_j}$, where μ_0 denotes the trivial, one-dimensional G-module. (In particular, $L(\nu_j)_{\mu_0}$ is one-dimensional). Since the actions of GL_∞ and Sp_{2n} on S(V) commute, we may assume that $(\sigma f_i)(z)\in L(\nu_j)_{\mu_0}\otimes M^{\nu_j}$ for all $\sigma\in GL_\infty$. Since $S(V)^G$ is strongly generated by the set $\{(\sigma f_i)(z)|\ i=1,\ldots,k,\ \sigma\in GL_\infty\}$, and each M^{ν_j} is an irreducible \mathcal{V}_{-n} -module, $S(V)^G$ is generated as an algebra over \mathcal{V}_{-n} by $f_1(z),\ldots,f_k(z)$. Finally, since \mathcal{V}_{-n} is generated by w^3 as a vertex algebra, we conclude that $S(V)^G$ is finitely generated. \square

Next, we need a fact about representations of associative algebras which can be found in [LII]. Let A be an associative \mathbb{C} -algebra (not necessarily unital), and let W be a linear representation of A, via an algebra homomorphism $\rho:A\to \operatorname{End}(W)$. Regarding A as a Lie algebra with commutator as bracket, let $\rho_{Lie}:A\to\operatorname{End}(W)$ denote the map ρ , regarded now as a Lie algebra homomorphism. There is an induced algebra homomorphism $U(A)\to\operatorname{End}(W)$, where U(A) denotes the universal enveloping algebra of A. Given elements $a,b\in A$, we denote the product in U(A) by a*b to distinguish it from $ab\in A$. Given a monomial $\mu=a_1*\dots**a_r\in U(A)$, let $\tilde{\mu}=a_1\dots**a_r$ be the corresponding element of A. Let $U(A)_+$ denote the augmentation ideal (i. e., the ideal generated by A), regarded as an associative algebra with no unit. The map $U(A)_+\to A$ sending $\mu\mapsto\tilde{\mu}$ is then an algebra homomorphism which makes the diagram

(11.4)
$$\begin{array}{c} U(A)_{+} \\ \downarrow & \searrow \\ A & \rightarrow & \operatorname{End}(W) \end{array}$$

commute. Let $\operatorname{Sym}(W)$ denote the symmetric algebra of W, whose dth graded component is denoted by $\operatorname{Sym}^d(W)$. Clearly ρ_{Lie} (but not ρ) can be extended to a Lie algebra homomorphism $\hat{\rho}_{Lie}: A \to \operatorname{End}(\operatorname{Sym}(W))$, where $\hat{\rho}_{Lie}(a)$ acts by derivation on each $\operatorname{Sym}^d(W)$:

$$\hat{\rho}_{Lie}(a)(w_1 \cdots w_d) = \sum_{i=1}^d w_1 \cdots \hat{\rho}_{Lie}(a)(w_i) \cdots w_d.$$

This extends to an algebra homomorphism $U(A) \to \operatorname{End}(\operatorname{Sym}(W))$ which we also denote by $\hat{\rho}_{Lie}$, but there is no commutative diagram like (11.4) because the map $A \to \operatorname{End}(\operatorname{Sym}(W))$ is not a map of associative algebras. In particular, the restrictions of $\hat{\rho}_{Lie}(\mu)$

and $\hat{\rho}_{Lie}(\tilde{\mu})$ to $\operatorname{Sym}^d(W)$ are generally not the same for d > 1. The following result appears as Lemma 3 of [LII].

Lemma 11.2. Given $\mu \in U(A)$ and $d \ge 1$, define a linear map $\Phi^d_\mu \in End(Sym^d(W))$ by

(11.5)
$$\Phi_{\mu}^{d} = \hat{\rho}_{Lie}(\mu) \big|_{Sym^{d}(W)}.$$

Let E denote the subspace of $End(Sym^d(W))$ spanned by $\{\Phi_{\mu}^d | \mu \in U(A)\}$. Note that E has a filtration

$$E_1 \subset E_2 \subset \cdots, \qquad E = \bigcup_{r>1} E_r,$$

where E_r is spanned by $\{\Phi^d_{\mu}|\ \mu\in U(A),\ deg(\mu)\leq r\}$. Then $E=E_d$.

Corollary 11.3. Let $f \in Sym^d(W)$, and let $M \subset Sym^d(W)$ be the cyclic U(A)-module generated by f. Then $\{\hat{\rho}_{Lie}(\mu)(f) | \mu \in U(A), \deg(\mu) \leq d\}$ spans M.

Recall the Lie algebra $\mathcal{P}^+ \subset \hat{\mathcal{D}}^+$ generated by the modes $\{w^{2m+1}(k)|\ m \geq 0,\ k \geq 0\}$. Note that \mathcal{P}^+ has a decomposition

$$\mathcal{P}^+ = \mathcal{P}^+_{<0} \oplus \mathcal{P}^+_0 \oplus \mathcal{P}^+_{>0},$$

where $\mathcal{P}^+_{<0}$, \mathcal{P}^+_0 , and $\mathcal{P}^+_{>0}$ are the Lie algebras spanned by $\{w^{2m+1}(k)|\ 0 \le k < 2m+1\}$, $\{w^{2m+1}(2m+1)\}$, and $\{w^{2m+1}(k)|\ k > 2m+1\}$, respectively. Clearly \mathcal{P}^+ preserves the filtration on \mathcal{V}_{-n} , so each element of \mathcal{P}^+ acts by a derivation of degree zero on $\operatorname{gr}(\mathcal{V}_{-n})$.

Let \mathcal{M} be an irreducible, highest-weight \mathcal{V}_{-n} -submodule of $\mathcal{S}(V)$ with generator f(z), and let \mathcal{M}' denote the \mathcal{P}^+ -submodule of \mathcal{M} generated by f(z). Since f(z) has minimal weight among elements of \mathcal{M} and $\mathcal{P}^+_{>0}$ lowers weight, f(z) is annihilated by $\mathcal{P}^+_{>0}$. Moreover, \mathcal{P}^+_0 acts diagonalizably on f(z), so f(z) generates a one-dimensional $\mathcal{P}^+_0 \oplus \mathcal{P}^+_{>0}$ -module. By the Poincare-Birkhoff-Witt theorem, \mathcal{M}' is a quotient of

$$U(\mathcal{P}^+) \otimes_{U(\mathcal{P}_0^+ \oplus \mathcal{P}_{>0}^+)} \mathbb{C}f(z),$$

and in particular is a cyclic $\mathcal{P}^+_{<0}$ -module with generator f(z). Suppose that f(z) has degree d, that is, $f(z) \in \mathcal{S}(V)_{(d)} \setminus \mathcal{S}(V)_{(d-1)}$. Since \mathcal{P}^+ preserves the filtration on $\mathcal{S}(V)$, and \mathcal{M} is irreducible, the nonzero elements of \mathcal{M}' lie in $\mathcal{S}(V)_{(d)} \setminus \mathcal{S}(V)_{(d-1)}$. Therefore, the projection $\mathcal{S}(V)_{(d)} \to \mathcal{S}(V)_{(d)}/\mathcal{S}(V)_{(d-1)} \subset \operatorname{gr}(\mathcal{S}(V))$ restricts to an isomorphism of \mathcal{P}^+ -modules

(11.6)
$$\mathcal{M}' \cong \operatorname{gr}(\mathcal{M}') \subset \operatorname{gr}(\mathcal{S}(V)).$$

By Corollary 11.3, we conclude that \mathcal{M}' is spanned by elements of the form

$$\{w^{2l_1+1}(k_1)\cdots w^{2l_r+1}(k_r)f(z)|\ w^{2l_i+1}(k_i)\in\mathcal{P}^+_{<0},\ r\leq d\}.$$

The next result is analogous to Lemma 7 of [LII], and the proof is almost identical.

Lemma 11.4. Let \mathcal{M} be an irreducible, highest-weight \mathcal{V}_{-n} -submodule of $\mathcal{S}(V)$ with highest-weight vector f(z) of degree d. Let \mathcal{M}' be the corresponding \mathcal{P}^+ -module generated by f(z), and let f be the image of f(z) in $gr(\mathcal{S}(V))$, which generates $M = gr(\mathcal{M}')$ as a \mathcal{P}^+ -module. Fix m so that $f \in Sym^d(W_m)$. Then \mathcal{M}' is spanned by

$$\{w^{2l_1+1}(k_1)\cdots w^{2l_r+1}(k_r)f(z)|\ w^{2l_i+1}(k_i)\in\mathcal{P}^+_{<0},\ r\leq d,\ 0\leq k_i\leq 2m+1\}.$$

As in [LII], we may order the elements $w^{2l+1}(k) \in \mathcal{P}^+_{<0}$ as follows: $w^{2l_1+1}(k_1) > w^{2l_2+1}(k_2)$ if $l_1 > l_2$, or $l_1 = l_2$ and $k_1 < k_2$. Then Lemma 11.4 can be strengthened as follows: \mathcal{M}' is spanned by elements of the form $w^{2l_1+1}(k_1) \cdots w^{2l_r+1}(k_r) f(z)$ with

(11.7)
$$w^{2l_i+1}(k_i) \in \mathcal{P}^+_{<0}, \quad r \le d, \quad 0 \le k_i \le 2m+1, \quad w^{2l_i+1}(k_1) \ge \cdots \ge w^{2l_r+1}(k_r).$$

We use the notation $\mathcal{V}_{-n}[k]$, $\mathcal{M}[k]$, and $\mathcal{M}'[k]$ to denote the homogeneous components of these spaces of conformal weight k. Define the Wick ideal $\mathcal{M}_{Wick} \subset \mathcal{M}$ to be the subspace spanned by elements of the form

$$: a(z)b(z):, \quad a(z) \in \bigoplus_{k>0} \mathcal{V}_{-n}[k], \quad b(z) \in \mathcal{M}.$$

Despite the choice of terminology, \mathcal{M}_{Wick} is not a vertex algebra ideal.

Lemma 11.5. Let \mathcal{M} be an irreducible, highest-weight \mathcal{V}_{-n} -submodule of $\mathcal{S}(V)$ with highest-weight vector f(z). Then any homogeneous element of \mathcal{M} of sufficiently high weight lies in the Wick ideal. In particular, $\mathcal{M}/\mathcal{M}_{Wick}$ is finite-dimensional.

Proof. It suffices to show that $\mathcal{M}'[k]$ lies in the Wick ideal for k >> 0, where \mathcal{M}' is the \mathcal{P}^+ -module generated by f(z). As usual, let d be the degree of f(z), and fix m so that $f \in \operatorname{Sym}^d(W_m)$. Recall that \mathcal{M}' is spanned by elements of the form $w^{2l_1+1}(k_1) \cdots w^{2l_r+1}(k_r) f(z)$ satisfying (11.7). Fix an element $\alpha(z)$ of this form of weight K >> 0. Since each operator $w^{2l_i+1}(k_i)$ has weight $2l_i+1-k_i$, $k_i \leq 2m+1$, and K >> 0, we may assume that $l_1 >> n^2+2n$. Then the decoupling relation (8.3) allows us to express $w^{2l_1+1}(z)$ as a normally ordered polynomial $Q_{l_1}(z)$ in the generators

(11.8)
$$\partial^t w^{2l+1}(z), \quad 0 \le l \le n^2 + 2n - 1, \quad t \ge 0.$$

We claim that for any weight-homogeneous, normally ordered polynomial Q(z) in the generators (11.8) of sufficiently high weight, any element $c(z) \in \mathcal{M}$, and any k satisfying $0 \le k \le 2m+1$, $Q(z) \circ_k c(z)$ lies in \mathcal{M}_{Wick} . Specializing this to the case $Q(z) = Q_{l_1}(z)$, $c(z) = w^{2l_2+1}(k_2) \cdots w^{2l_r+1}(k_r) f(z)$, and $k = k_1$, proves the lemma.

We may assume without loss of generality that Q(z) =: a(z)b(z): where $a(z) = \partial^t w^{2l+1}(z)$ for some $0 \le l \le n^2 + 2n - 1$. Suppressing the formal variable z, we have

(11.9)
$$Q \circ_k c = (:ab:) \circ_k c = \sum_{r>0} \frac{1}{r!} : (\partial^r a)(b \circ_{k+r} c) : + \sum_{r>0} b \circ_{k-r-1} (a \circ_r c),$$

by a well known vertex algebra identity. Suppose first that $b=\lambda 1$ for some constant λ . Then $Q=\lambda \partial^t w^{2l+1}$, and since $\operatorname{wt}(Q)>>0$, we have t>>0. Hence $Q\circ_k=\lambda(\partial^t w^{2l+1})\circ_k=0$ as an operator (since this operator vanishes whenever t>k). So we may assume without loss of generality that b is not a constant.

We proceed by induction on k. For k=0, each term appearing in (11.9) lies in \mathcal{M}_{Wick} , so there is nothing to prove. For k>0, the only terms appearing in (11.9) that need not lie in \mathcal{M}_{Wick} a priori, are those of the form $\sum_{r=0}^{k-1} b \circ_{k-r-1} (a \circ_r c)$. However, each of these terms is weight-homogeneous, and the weight of $a \circ_r c = \partial^t w^{2l+1} \circ_r c$ is bounded above by $\operatorname{wt}(c) + 2n^2 + 4n - 1$, since $\partial^t w^{2l+1} \circ_r c = 0$ for t>r. So we may still assume that $\operatorname{wt}(b) >> 0$. By our inductive assumption, all these terms then lie in \mathcal{M}_{Wick} .

Corollary 11.6. Let \mathcal{M} be an irreducible, highest-weight \mathcal{V}_{-n} -submodule of $\mathcal{S}(V)$. Given a subset $S \subset \mathcal{M}$, let $\mathcal{M}_S \subset \mathcal{M}$ denote the subspace spanned by elements of the form

:
$$\omega_1(z)\cdots\omega_t(z)\alpha(z)$$
:, $\omega_j(z)\in\mathcal{V}_{-n}$, $\alpha(z)\in S$.

There exists a finite set $S \subset \mathcal{M}$ such that $\mathcal{M} = \mathcal{M}_S$.

Theorem 11.7. For any reductive group G of automorphisms of S(V), $S(V)^G$ is strongly finitely generated.

Proof. By Theorem 11.1, we can find vertex operators $f_1(z),\ldots,f_k(z)$ such that the corresponding polynomials $f_1,\ldots,f_k\in\operatorname{gr}(\mathcal{S}(V))^G$, together with all GL_∞ translates of f_1,\ldots,f_k , generate the invariant ring $\operatorname{gr}(\mathcal{S}(V))^G$. As in the proof of Lemma 11.1, we may assume that each $f_i(z)$ lies in an irreducible, highest-weight \mathcal{V}_{-n} -module \mathcal{M}_i of the form $L(\nu)_{\mu_0}\otimes M^\nu$, where $L(\nu)_{\mu_0}$ is a trivial, one-dimensional G-module. Furthermore, we may assume without loss of generality that $f_1(z),\ldots,f_k(z)$ are highest-weight vectors for the action of \mathcal{V}_{-n} . Otherwise, we can replace these with the highest-weight vectors in the corresponding modules. For each \mathcal{M}_i , choose a finite set $S_i\subset\mathcal{M}_i$ such that $\mathcal{M}_i=(\mathcal{M}_i)_{S_i}$, using Corollary 11.6. Define

$$S = \{w^1, w^3, w^5, \dots, w^{2n^2+4n-1}\} \cup \left(\bigcup_{i=1}^k S_i\right).$$

Since $\{w^1, w^3, w^5, \dots, w^{2n^2+4n-1}\}$ strongly generates \mathcal{V}_{-n} , and the set $\bigcup_{i=1}^k \mathcal{M}_i$ strongly generates $\mathcal{S}(V)^G$, it is immediate that S is a strong, finite generating set for $\mathcal{S}(V)^G$. \square

REFERENCES

- [B-H] R. Blumenhagen, W. Eholzer, A. Honecker, K. Hornfeck, R. Hubel, *Coset realizations of unifying W-algebras*, Int. Jour. Mod. Phys. Lett. A10 (1995) 2367-2430.
- [BFH] J. de Boer, L. Feher, and A. Honecker, *A class of W-algebras with infinitely generated classical limit*, Nucl. Phys. B420 (1994), 409-445.
- [B] R. Borcherds, *Vertex operator algebras, Kac-Moody algebras and the monster*, Proc. Nat. Acad. Sci. USA 83 (1986) 3068-3071.
- [DN] C. Dong and K. Nagatomo, Classification of irreducible modules for the vertex operator algebra $M(1)^+$, J. Algebra 216 (1999) no. 1, 384-404.
- [EFH] W. Eholzer, L. Feher, and A. Honecker, *Ghost systems: a vertex algebra point of view*, Nucl. Phys. B518 (1998), no. 3, 669–688.
- [FBZ] E. Frenkel and D. Ben-Zvi, *Vertex Algebras and Algebraic Curves*, Math. Surveys and Monographs, Vol. 88, American Math. Soc., 2001.
- [FHL] I.B. Frenkel, Y.Z. Huang, and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64.
- [FKRW] E. Frenkel, V. Kac, A. Radul, and W. Wang, $W_{1+\infty}$ and $W(\mathfrak{gl}_N)$ with central charge N, Commun. Math. Phys. 170 (1995), 337-357.
- [FLM] I.B. Frenkel, J. Lepowsky, and A. Meurman, *Vertex Operator Algebras and the Monster*, Academic Press, New York, 1988.
- [FMS] D. Friedan, E. Martinec, S. Shenker, *Conformal invariance, supersymmetry and string theory*, Nucl. Phys. B271 (1986) 93-165.
- [K] V. Kac, Vertex Algebras for Beginners, University Lecture Series, Vol. 10. American Math. Soc., 1998.
- [KP] V. Kac and D. Peterson, *Spin and wedge representations of infinite-dimensional Lie algebras and groups*, Proc. Natl. Acad. Sci. USA 78 (1981), 3308-3312.
- [KRI] V. Kac and A. Radul, *Quasi-finite highest weight modules over the Lie algebra of differential operators on the circle*, Commun. Math. Phys. 157 (1993), 429-457.

- [KRII] V. Kac and A. Radul, Representation theory of the vertex algebra $W_{1+\infty}$, Transf. Groups, Vol 1 (1996) 41-70.
- [KWY] V. Kac, W. Wang, and C. Yan, *Quasifinite representations of classical Lie subalgebras of* $W_{1+\infty}$, Advances in Mathematics, vol. 139 (1), (1998) 59–140.
- [LiI] H. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143–195.
- [LiII] H. Li, Vertex algebras and vertex Poisson algebras, Commun. Contemp. Math. 6 (2004) 61-110.
- [LL] B. Lian and A. Linshaw, *Howe pairs in the theory of vertex algebras*, J. Algebra 317, 111-152 (2007).
- [LZ] B. Lian and G.J. Zuckerman, *Commutative quantum operator algebras*, J. Pure Appl. Algebra 100 (1995) no. 1-3, 117-139.
- [LI] A. Linshaw, *Invariant theory and the* $W_{1+\infty}$ *algebra with negative integral central charge*, J. Eur. Math. Soc. 13, no. 6 (2011) 1737-1768.
- [LII] A. Linshaw, A Hilbert theorem for vertex algebras, Transf. Groups, Vol. 15, No. 2 (2010), 427-448.
- [LIII] A. Linshaw, *Invariant theory and the Heisenberg vertex algebra*, Int. Math. Res. Notices, doi:10.1093/imrn/rnr171.
- [LIV] A. Linshaw, Invariant subalgebras of affine vertex algebras, arXiv:1011.2281.
- [W] W. Wang, $W_{1+\infty}$ algebra, W_3 algebra, and Friedan-Martinec-Shenker bosonization, Commun. Math. Phys. 195 (1998), 95–111.
- [We] H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton University Press, 1946.
- [Z] Y. Zhu, Modular invariants of characters of vertex operators, J. Amer. Math. Soc. 9 (1996) 237-302.

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY

E-mail address: linshaw@brandeis.edu