# Factorial Experiment Design on Key Factors Affecting BMI

Zichen Gong

1005682469

## Materials and Methods

## Experimental Design and Data

| Factor | Column Name                |
|--------|----------------------------|
| Α      | Kidney Disease (Yes/No)    |
| В      | Smoking (Yes/No)           |
| С      | Alcohol Drinking (Yes/No)  |
| D      | Physical Activity (Yes/No) |
| Е      | Sleep Time (Numerical)     |

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 1$$

$$A^{\alpha_1}B^{\alpha_2}$$
  $C^{\alpha_3}$   $D^{\alpha_4}$   $E^{\alpha_5}$ =ABCDE

$$L = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + \alpha_5 x_5$$
  
=  $x_1 + x_2 + x_3 + x_4 + x_5$ 

High Level:  $x_i = 1$ 

Low Level:  $x_i = 0$ 

Block 1:  $L \mod(2) = 0$ 

Block 2:  $L \mod(2) = 1$ 

2<sup>5</sup> factorial experiment design with highest order confounding and 2 blocks

|    | А  | В  | С  | D  | Е  | BMI   | block |
|----|----|----|----|----|----|-------|-------|
| 1  | -1 | -1 | -1 | -1 | -1 | 37.23 | 1     |
| 2  | -1 | -1 | -1 | -1 | 1  | 32.92 | 2     |
| 3  | -1 | -1 | -1 | 1  | -1 | 36.58 | 2     |
| 4  | -1 | -1 | -1 | 1  | 1  | 34.46 | 1     |
| 5  | -1 | -1 | 1  | -1 | -1 | 29.29 | 2     |
| 6  | -1 | -1 | 1  | -1 | 1  | 28.19 | 1     |
| 7  | -1 | -1 | 1  | 1  | -1 | 34.95 | 1     |
| 8  | -1 | -1 | 1  | 1  | 1  | 24.85 | 2     |
| 9  | -1 | 1  | -1 | -1 | -1 | 25.06 | 2     |
| 10 | -1 | 1  | -1 | -1 | 1  | 23.89 | 1     |
| 11 | -1 | 1  | -1 | 1  | -1 | 23.4  | 1     |
| 12 | -1 | 1  | -1 | 1  | 1  | 21.79 | 2     |
| 13 | -1 | 1  | 1  | -1 | -1 | 35.43 | 1     |
| 14 | -1 | 1  | 1  | -1 | 1  | 35.26 | 2     |
| 15 | -1 | 1  | 1  | 1  | -1 | 28.13 | 2     |
| 16 | -1 | 1  | 1  | 1  | 1  | 27.12 | 1     |
| 17 | 1  | -1 | -1 | -1 | -1 | 31.64 | 2     |
| 18 | 1  | -1 | -1 | -1 | 1  | 33.91 | 1     |
| 19 | 1  | -1 | -1 | 1  | -1 | 30.13 | 1     |
| 20 | 1  | -1 | -1 | 1  | 1  | 20.25 | 2     |
| 21 | 1  | -1 | 1  | -1 | -1 | 48.42 | 1     |
| 22 | 1  | -1 | 1  | -1 | 1  | 38.01 | 2     |
| 23 | 1  | -1 | 1  | 1  | -1 | 26.16 | 2     |
| 24 | 1  | -1 | 1  | 1  | 1  | 27.71 | 1     |
| 25 | 1  | 1  | -1 | -1 | -1 | 31.09 | 1     |
| 26 | 1  | 1  | -1 | -1 | 1  | 31.31 | 2     |
| 27 | 1  | 1  | -1 | 1  | -1 | 23.69 | 2     |
| 28 | 1  | 1  | -1 | 1  | 1  | 33.45 | 1     |
| 29 | 1  | 1  | 1  | -1 | -1 | 31.57 | 2     |
| 30 | 1  | 1  | 1  | -1 | 1  | 19.67 | 1     |
| 31 | 1  | 1  | 1  | 1  | -1 | 49.57 | 1     |
| 32 | 1  | 1  | 1  | 1  | 1  | 29.57 | 2     |

Table 1: Table 1: Effect Estimates for the Blocked 2<sup>5</sup> Design

|                | Regression Coefficient | Effect Estimate | Sum of Squares | Percent Contribution |
|----------------|------------------------|-----------------|----------------|----------------------|
| (Intercept)    | 30.77                  | 61.54           | 23.81          | 1.60                 |
| A1             | 0.86                   | 1.72            | 62.44          | 4.21                 |
| B1             | -1.40                  | -2.79           | 58.05          | 3.91                 |
| C1             | 1.35                   | 2.69            | 52.74          | 3.55                 |
| D1             | -1.28                  | -2.57           | 112.43         | 7.57                 |
| E1             | -1.87                  | -3.75           | 32.16          | 2.17                 |
| A1:B1          | 1.00                   | 2.01            | 23.32          | 1.57                 |
| A1:C1          | 0.85                   | 1.71            | 55.60          | 3.74                 |
| B1:C1          | 1.32                   | 2.64            | 2.59           | 0.17                 |
| A1:D1          | -0.28                  | -0.57           | 71.88          | 4.84                 |
| B1:D1          | 1.50                   | 3.00            | 0.95           | 0.06                 |
| C1:D1          | 0.17                   | 0.35            | 8.82           | 0.59                 |
| A1:E1          | -0.53                  | -1.05           | 2.11           | 0.14                 |
| B1:E1          | 0.26                   | 0.51            | 66.99          | 4.51                 |
| C1:E1          | -1.45                  | -2.89           | 1.46           | 0.10                 |
| D1:E1          | -0.21                  | -0.43           | 149.82         | 10.09                |
| A1:B1:C1       | -2.16                  | -4.33           | 269.00         | 18.12                |
| A1:B1:D1       | 2.90                   | 5.80            | 21.16          | 1.42                 |
| A1:C1:D1       | 0.81                   | 1.63            | 43.80          | 2.95                 |
| B1:C1:D1       | 1.17                   | 2.34            | 11.42          | 0.77                 |
| A1:B1:E1       | -0.60                  | -1.19           | 49.90          | 3.36                 |
| A1:C1:E1       | -1.25                  | -2.50           | 36.68          | 2 17                 |
| B1:C1:E1       | -1.07                  | -2.14           | 2.73           | 0.18                 |
| A1:D1:E1       | 0.29                   | 0.58            | 1.60           | 0.11                 |
| B1:D1:E1       | 0.22                   | 0.45            | 0.82           | 0.06                 |
| C1:D1:E1       | -0.16                  | -0.32           | 126.64         | 8.53                 |
| A1:B1:C1:D1    | 1.99                   | 3.98            | 69.03          | 4.65                 |
| A1:B1:C1:E1    | -1.47                  | -2.94           | 0.48           | 0.03                 |
| A1:B1:D1:E1    | -0.12                  | -0.24           | 10.19          | 0.69                 |
| A1:C1:D1:E1    | 0.56                   | 1.13            | 29.95          | 2.02                 |
| B1:C1:D1:E1    | -0.97                  | -1.93           | 86.26          | 5.81                 |
| A1:B1:C1:D1:E1 | -1.64                  | -3.28           | 0.00           | 0.00                 |

## Statistical Analysis

$$\overline{BMI}_{block 1} - \overline{BMI}_{block 2}$$
  
= 32.41 - 29.13  
= 3.28

# Results and Discussion

Table 2: Analysis of Variance

#### Normal Plot for BMI



|           | Degree of Freedom | Sum of Squares | Mean Square | F Value    | P Value   |
|-----------|-------------------|----------------|-------------|------------|-----------|
| E         | 1                 | 112.425012     | 112.425012  | 4.4559795  | 0.0519755 |
| A         | 1                 | 23.805000      | 23.805000   | 0.9435142  | 0.3467795 |
| В         | 1                 | 62.440312      | 62.440312   | 2.4748296  | 0.1365338 |
| C         | 1                 | 58.050312      | 58.050312   | 2.3008314  | 0.1500949 |
| D         | 1                 | 52.736450      | 52.736450   | 2.0902158  | 0.1688145 |
| A:B       | 1                 | 32.160200      | 32.160200   | 1.2746736  | 0.2766250 |
| A:C       | 1                 | 23.324450      | 23.324450   | 0.9244675  | 0.3515490 |
| B:C       | 1                 | 55.598512      | 55.598512   | 2.2036540  | 0.1583934 |
| A:D       | 1                 | 2.587813       | 2.587813    | 0.1025683  | 0.7531870 |
| B:D       | 1                 | 71.880050      | 71.880050   | 2.8489748  | 0.1121087 |
| C:D       | 1                 | 0.952200       | 0.952200    | 0.0377406  | 0.8485715 |
| A:B:C     | 1                 | 149.818050     | 149.818050  | 5.9380572  | 0.0277506 |
| A:B:D     | 1                 | 269.004012     | 269.004012  | 10.6620078 | 0.0052174 |
| A:C:D     | 1                 | 21.157512      | 21.157512   | 0.8385807  | 0.3742907 |
| B:C:D     | 1                 | 43.804800      | 43.804800   | 1.7362088  | 0.2073914 |
| A:B:C:D   | 1                 | 126.643613     | 126.643613  | 5.0195355  | 0.0406275 |
| Residuals | 15                | 378.452187     | 25.230146   | NA         | NA        |





#### **Heterogeneity of Error Variances Check**



### References

- Are BMI charts different for men & women? (2019). Retrieved April 2, 2022, from https://gasparinutrition.com/blogs/fitness-facts/are-bmi-charts-different-for-men-women#:~:text=Recent%20studies%20have%20found%20that,21%20for%20women%20is%20healthy.
- Hadley Wickham, Romain Fran 鐵is, Lionel Henry and Kirill Müller (2022). dplyr: A Grammar of Data Manipulation. R
  package version 1.0.8. https://CRAN.R-project.org/package=dplyr (Last Accessed: April 3, 2022)
- How Much Sleep Do I Need? (2017). Retrieved April 2, 2022, from https://www.cdc.gov/sleep/about\_sleep/how\_much\_sleep.html
- John Fox and Sanford Weisberg (2019). An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA:
   Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (Last Accessed: April 3, 2022)
- Kaggle. (2022). *Personal Key Indicators of Heart Disease* [Data file]. Retrieved April 2, 2022, from https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing,
   Vienna, Austria. URL https://www.R-project.org/ (Last Accessed: April 3, 2022)
- Ulrike Gr"omping (2014). R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level Designs. Journal of Statistical Software, 56(1), 1-56. URL http://www.jstatsoft.org/v56/i01/ (Last Accessed: April 3, 2022)
- Yihui Xie (2021). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.37. (Last Accessed: April 3, 2022)