PORTFOLIO.

K

신동우 포트폴리오

PROFILE

Name 신동우 (1998.10.03)

CONTACTS

Phone 010.6309.9824

E-mail doungwoosin@naver.com

Notion

EDUCATION

2023 동의대학교 컴퓨터공학과 졸업

2017 동의대학교 입학

2017 부산 성지고등학교 졸업

SKILLS

Python

SQL

Tensorflow

Pandas

ACTIVITIES

2022 Intel Al 개발 교육 과정 1기 (수료)

2022 Intel Al Global Impact Festival 2022

2022 부산 디지털 덴티스트리 데이터톤 대회

2024 LG Aimers 교육 및 해커톤 대회

2024 KPI 도출 비즈니스 전략 아이디어 경진대회

AWARDS

2022 Intel Al Global Impact Festival 2022

Country/Reigon winner Award

2022 부산 디지털 덴티스트리 데이터톤 대회

대상

CONTENTS.

01

personalized food warning system

image Classification

02

튼튼하니, 튼튼한 이

image Detection

03

MQL 고객정보를 활용한 고객영업 전환 예측 프로그램

정답셋 기반

04

E-commerce Data KPI 도출 및 전략 아이디어 제시

01 personalied food warning system

02 튼튼하니, 튼튼한 이

03 MQL 고객정보를 활용한 고객영업 전환 예측 프로그램

04 E-commerce Data KPI 도출 및 전략 아이디어 제시

personalized food warning system

(Image classification)

PROJECT_01

인텔 AI 국제 대회

Intel Al Global Impact Festival 2022

국제 2등 수상

한국 대표

Country / Reigon Winner

작업기간 2022. 08. 15. ~ 2022. 08. 25.

참여인원 총 4명

역할 데이터 전처리 및 모델 학습

1. Set problem scope Vegan populaiton of USA The world religion population native protein invested capital and deal coun Fewer Than 1 In 25 Americans Have A Food Allergy 2018-2019 FOOD ALLERGY STUDY ERCENTAGE OF STUDENTS WITH Prevalence of common documented adverse reactions to food FOOD ALLERGIES BY REGION # 35.3% pearouts 11.6% shellfish # E3% pluten CO Edit eggs die Elle fab 17 All seams 4.7% wheat Bronchospasm/wheezing 2.9% 2.0 sey Shortness of breath 1.7% 0.4% mustard Nausea 1.3% V. Littadies Headache 1.3% statista 🗷 Source: The Journal of Allergy and Clinical Immunolegy

Labeling and purifying collected data

```
batch_size = 32
ing_height = 200
ing_width = 200
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=256,
  image_size=(img_height, img_width),
  batch_size=batch_size)
Found 8574 files belonging to 18 classes.
Using 6860 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
  validation_split=0.2,
  subset="validation",
  seed=256,
  image_size=(img_height, img_width),
  batch_size=batch_size)
Found 8574 files belonging to 18 classes.
Using 1714 files for validation.
```

Recall labeled data using a matplotlib

```
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
    for i in range(9):
        ax = plt.subplot(3, 3, i + 1)
        plt.instow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")

ANDER - PLANTAGE

ANDER - PLANTAGE
```

4. Test

```
| test_dir = "banana.jpeg" | test_dir = pathlib.Path(test_dir) | 73]: test_dir = pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.Pathlib.
```

- Explanation

When I entered a picture of banana that was not included in the training data into the model, it was 100% accurate because it was banana.

* Currently, a prototype has been created to accurately distinguish food *

01 personalied food warning system

02 튼튼하니, 튼튼한 이

03 MQL 고객정보를 활용한 고객영업 전환 예측 프로그램

04 E-commerce Data KPI 도출 및 전략 아이디어 제시

튼튼하니, 튼튼한 이

(Image Detection)

PROJECT_02

튼튼하니, 튼튼한 이

부산 디지털 덴티스트리 데이터톤 대회

인사이트 도출

대상 수상

작업기간 2022. 09.28. ~ 2022. 09.30.

참여인원 총 4명

역할 데이터 분석 및 모델 학습

확장성이높은 의료분야

코드

Results

그렇다면 어떤 코드를 사용할까? Precision & Recall rate

프로젝트를 활용한 서비스 **확장 가능성**

딥러닝과 빅데이터를 활용한 치주질환 관리 플랫폼 기술 개발

치의학 의료 데이터 인공지능 의료기기 개발 가능

증상, 질병 이미지로 전문 자료를 검색 및 환자에게 가장 적합한 치료법 제시 가능

다양한 이미지 인식 및 영상 인식 등을 이용한 새로운 형태의 서비스 출시

01 personalied food warning system

02 튼튼하니, 튼튼한 이

03 MQL 고객정보를 활용한 고객영업 전환 예측 프로그램

04 E-commerce Data KPI 도출 및 전략 아이디어 제시

MQL 고객정보를 활용한 고객영업 전환 예측 (정답셋 기반)

MQL 고객정보를 활용한 고객영업전환 예측

고객지수 산츨

영업전환 수 UP

#고객 맞춤형 서비스 제공

작업기간 2022.02.13. ~ 2022.02.26

참여인원 총 4명

작업 기여도 데이터 요구사항 정의 및 분석

데이터 소개

개인 정보(회사/직급 등), 구매요청 정보(제품/예산/니즈/기한) 및 영업사원, 마케팅 활동 정보등이 포함

Table data

고객이 직접 작성한 요청 메시지 (영어)

we need Air Ventilation Solution ASAP for our new building...

평가 지표

모델링

정답셋 기반 예측 알고리즘 모델 개발

고객 Lead 정보

Feature engineering

전처리 및 지도 학습 기반 가공변수 생성 ML/DL 모델 학습

Model Evaluation

결측치 처리

: 결측치가 있는 컬럼에 대해서 삭제하거나 특정 값으로 채우기

인코딩

: 범주형 변수에 대해서 인코딩을 통해 수치로 변환

가공변수 생성

: 주요 feature를 파악하고 비즈니스 도메인 지식을 활용하여 다양한 파생 변수 생성

이진 분류 모델 생성

Model

training

: 주어진 데이터에 적합한 ML/DL 알고리즘을 활용하고, 모델의 예측 성능을 향상시킬 수 있는 다양한 방법론을 적용

텍스트 마이닝

: 자연어처리 과정을 통해 고객이 작성한 메시지 정보에서 유의미한 정보를 추출하여 예측 과정에 활용

프로젝트 결과

데이터 정제를 바탕으로 이진분류 모델을 사용한 결과

DecisionTreeClassifier আৰ জ্বাসান্তাল: ('max_depth': 15) RandomForestClassifier আৰ জ্বাসান্তাল: ('max_depth': 30, 'n_estimators': 180) Ensemble Accuracy: 0.9676222596964587 Ensemble Precision: 0.7909002904162633 Ensemble Recall: 0.8294416243654822 Ensemble F1 Score: 0.8897125867195242 Model 1 교차 경증 정학도 평균: 0.9739865301845826 Model 2 교차 경증 정학도 평균: 0.9672742481126682 Model 3 교차 검증 정확도 평균: 0.9834888563046264 Model 4 교차 경증 정학도 평균: 0.9788884681701982 Model 5 교차 경증 정학도 평균: 0.9838437483942309 True学 明측된 개수: 1833

> 기존 True로 예측된 개수: 50 현재 True로 예측된 개수: 1000

비즈니스 전략 수립

01 personalied food warning system

02 튼튼하니, 튼튼한 이

03 MQL 고객정보를 활용한 고객영업 전환 예측 프로그램

04 E-commerce Data KPI 도출 및 전략 아이디어 제시

E-commerce Data KPI 도출 전략 아이디어 제시

PROJECT_04

E-commerce 데이터 분석

마케팅 전략 아이디어

KPI 도출

만족도 시계열 예측

작업기간 2022. 04. ~ 2022. 04.

참여인원 총 1명

작업 기여도 데이터 분석 및 KPI 및 전략 아이디어 제시

고객 만족도 조사 데이터 전처리 과정

1. 결측치를 확인해줍니다.

isnal_value = master_product_08596.isnull().sum()
print(isnal_value)

Customer_id Order_id Product_category_name Price Freight_value Order_item_id Payment_type Review_id Review_score Review_creation_date dtype: int64

제품 개선

■ 품질 향상 집중

■ SNS 유튜브를 활용 광고

접근성

ismal_value = master_product_08596_copy.ismull().sum() print(isnal_value) Customer_id Order_id Product_category_name Price Freight_value Order_item_id Payment_type Review_id

Review score Review_creation_date dtyne: int64

国际区间间别 基朴

이를 위해서 capy() 테서드를 사용하여 복사본을 만들고, 해당 복사본을 수정고, 다시 원본 데이터로 불러왔습니다.

master_product_08596_copy!'Review_id'].fillna('unknown', implace=True) # Review_id 習習 语名特置 'unknown'으로 印刷 master_product_08596_copy!'Review_score'].fillna(0, implace=True) # Review_score 回母 通常期間 80至 印刷

master_product_08596_copy['Review_creation_date'].fillna['0000-00-00 00:00:00', implace=True]

master_product_08596_copy = master_product_08596.copy()

결측치: 특정값으로 대체 이유: 리뷰를 쓰는 사람도 있는 반면, 안 쓰는 사람도 존재.

master_product	_08596.head()	데이터 전처리 완료							
Customer_id	Order_id	Product_category_name	Price	Freight_value	Order_item_id	Payment_type	Review_id	Review_score	Review_creation_dat
STOMER_76205	ORDER_19931	bed_bath_table	74.0	23.32	1	credit_card	REVIEW_50349	5.0	2019-07-
STOMER_36954	ORDER_87547	bed_bath_table	74.0	23.32	1	credit_card	REVIEW_77181	4.0	2019-06-
ISTOMER_71470	ORDER_27319	bed_bath_table	74.0	23.32	1	credit_card	REVIEW_78269	5.0	2018-05-
ISTOMER_71470	ORDER_27319	bed_bath_table	74.0	23.32	2	credit_card	REVIEW_78269	5.0	2018-05-
STOMER_06519	ORDER_68790	bed_bath_table	74.0	23.32	1	credit_card	unknown	0.0	N

.....

날짜별 고객 만족도(평균) 시각화

- 1. 고객 만족도 조사
- 1.1 날짜별 고객만족도 점수를 통한 고객만족도 측정 결과
- 1.2 kpi 도출 아이디어 전략
- 1.1 날짜별 삼품 고객만족도 점수를 통한 고객만족도(평균값) 측정 결과

