Codifica binaria dell'Informazione Aritmetica del Calcolatore

Significati e simboli

Codifica dell'informazione

- Rappresentare (codificare) le informazioni
 - -con un insieme limitato di simboli (detto *alfabeto* \mathcal{A})
 - -in modo non ambiguo (algoritmi di traduzione tra codifiche)
- Esempio: numeri interi
 - -Codifica decimale (**dec**, in base dieci)

$$-\mathcal{A} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, |\mathcal{A}| = dieci$$

- "sette" : 7_{dec}
- "ventitre" : 23_{dec}
- "centotrentotto": 138_{dec.}
- -Notazione posizionale
 - dalla cifra più significativa a quella meno significativa
 - ogni cifra corrisponde a una diversa potenza di dieci

Numeri naturali

 Notazione posizionale: permette di rappresentare un qualsiasi numero naturale (intero non negativo) nel modo seguente:

la sequenza di **cifre c**_i:

$$C_n$$
 C_{n-1} ... C_1

rappresenta in **base B** \geq 2 il valore:

$$c_n \times B^{n-1} + c_{n-1} \times B^{n-2} + ... + c_1 \times B^0$$

avendosi: $c_i \in \{0, 1, 2, ..., B-1\}$ per ogni $1 \le i \le n$

- La notazione decimale tradizionale è di tipo posizionale (ovviamente con B = dieci)
- Esistono notazioni non posizionali
 - -Ad esempio i numeri romani: II IV VI XV XX VV

Numeri naturali in varie basi

Base generica: B

$$-\mathcal{A} = \{ \dots \}$$
, con $|\mathcal{A}| = B$, sequenze di n simboli (cifre)

$$-c_n c_{n-1} \dots c_2 c_1 = c_n \times B^{n-1} + \dots + c_2 \times B^1 + c_1 \times B^0$$

- -Con n cifre rappresentiamo Bⁿ numeri: da 0 a Bⁿ-1
- "ventinove" in varie basi

$$-B = \text{otto} \qquad \mathcal{A} = \{0,1,2,3,4,5,6,7\} \qquad 29_{10} = 35_8$$

$$-B = \text{cinque} \qquad \mathcal{A} = \{0,1,2,3,4\} \qquad 29_{10} = 104_5$$

$$-B = \text{tre} \qquad \mathcal{A} = \{0,1,2\} \qquad 29_{10} = 1002_3$$

$$-B = \text{sedici} \qquad \mathcal{A} = \{0,1,...,8,9,A,B,C,D,E,F\} \qquad 29_{10} = 1D_{16}$$

- Codifiche notevoli
 - -Esadecimale (sedici), ottale (otto), binaria (due)

Codifica binaria

- Usata dal calcolatore per tutte le informazioni
 - $-B = due, A = \{0, 1\}$
 - -BIT (crasi di "BInary digIT"):
 - unità elementare di informazione
 - -Dispositivi che assumono due stati
 - Ad esempio due valori di tensione V_A e V_B
- Numeri binari naturali:

la sequenza di **bit b**_i (cifre binarie):

$$b_n \ b_{n-1} \dots b_1 \quad con \ b_i \in \{0, 1\}$$

rappresenta in base 2 il valore:

$$b_n \times 2^{n-1} + b_{n-1} \times 2^{n-2} + \dots + b_1 \times 2^0$$

Numeri binari naturali (bin)

- Con n bit codifichiamo 2ⁿ numeri: da 0 a 2ⁿ-1
- Con 1 Byte (cioè una sequenza di 8 bit):
 - $-00000000_{\text{bin}} = 0_{\text{dec}}$
 - $-00001000_{\text{bin}} = 1 \times 2^3 = 8_{\text{dec}}$
 - $-00101011_{bin} = 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 43_{dec}$
 - $-11111111_{\text{bin}} = \Sigma_{\text{n} = 1,2,3,4,5,6,7,8} \ 1 \times 2^{\text{n}-1} = 255_{\text{dec}}$
- Conversione bin → dec e dec → bin
 - $-\text{bin}\rightarrow \text{dec}$: 11101_{bin} = $\Sigma_i b_i 2^i = 2^4 + 2^3 + 2^2 + 2^0 = 29_{\text{dec}}$
 - -dec→bin: *metodo dei resti*

Conversione dec → bin

Si calcolano i resti delle divisioni per due

In pratica basta:

- 1. Decidere se il numero è pari (resto 0) oppure dispari (resto 1), e annotare il resto
- 2. Dimezzare il numero (trascurando il resto)
- 3. Ripartire dal punto 1. fino a ottenere 1 oppure 0 come risultato della divisione

Ecco un esempio, per quanto modesto, di algoritmo

si ottiene 1: fine

 $19_{dec} = 10011_{bin}$

Metodo dei resti

29: 2 = 14 (1)
14: 2 = 7 (0)
7: 2 = 3 (1)
3: 2 = 1 (1)
1: 2 = **0** (1)

$$29_{dec} = 11101_{bin}$$

$$76_{dec} = 1001100_{bin}$$

N.B. Il metodo funziona con tutte le basi! $29_{10}=45_6=32_9=27_{11}=21_{14}=10_{29}$

Conversioni rapide bin → dec

• In binario si definisce una *notazione abbreviata*, sulla falsariga del sistema metrico-decimale:

K =
$$2^{10}$$
 = $1.024 \approx 10^3$ (Kilo)

M = 2^{20} = $1.048.576 \approx 10^6$ (Mega)

G = 2^{30} = $1.073.741.824 \approx 10^9$ (Giga)

T = 2^{40} = $1.099.511.627.776 \approx 10^{12}$ (Tera)

• È curioso (benché *non* sia casuale) come K, M, G e T in base 2 abbiano valori molto prossimi ai corrispondenti simboli del sistema metrico decimale, tipico delle scienze fisiche e dell'ingegneria

Ma allora...

- Diventa molto facile e quindi *rapido* calcolare il valore *decimale approssimato* delle *potenze di 2*, anche se hanno esponente grande
- Infatti basta:
 - Tenere a mente l'elenco dei valori esatti delle prime dieci potenze di 2 [1,2,4,8,16,32,64,128,256,512]
 - Scomporre in modo additivo l'esponente in contributi di valore 10, 20, 30 o 40, "leggendoli" come successioni di simboli K, M, G oppure T

Primo esempio

Tieni ben presente che:

$$2^{0}=1$$
, $2^{1}=2$, $2^{2}=4$, $2^{3}=8$, $2^{4}=16$, $2^{5}=32$, $2^{6}=64$, $2^{7}=128$, $2^{8}=256$, $2^{9}=512$

 E ora dimmi in un secondo (e non metterci di più) quanto vale, approssimativamente, 2¹⁷

```
risposta: "128 mila" infatti 2^{17} = 2^{7+10} = 2^7 \times 2^{10} = 128 \text{ K} in realtà, 2^{17} vale un po' di più (ma poco) reale = 131.072, errore = 1–128.000/131.072 \approx 2,3 %
```

Altri esempi

- $2^{24} = 2^{4+20} = 16$ M, leggi "16 milioni"
- $2^{35} = 2^{5+30} = 32$ G, leggi "32 miliardi"
- $2^{48} = 2^{8+40} = 256$ T, leggi "256 bilioni", o anche = $2^{8+10+30} = 256$ K G, leggi "256 mila miliardi"
- 2⁵² = 4 K T, leggi "4 mila bilioni", o anche = 4 M G, leggi "4 milioni di miliardi"
- N.B.: l'approssimazione è sempre per difetto
 -ma "regge" (err<10%) anche su valori molto grandi

Al contrario... (dec → bin)

- Si osservi come $10^3 = 1000 \approx 1024 = 2^{10}$, con errore = 1 1000/1024 = 2,3 %
- Pertanto, preso un intero n, si ha:

$$10^n = (10^3)^{n/3} \approx (2^{10})^{n/3} = 2^{10 \times n/3}$$

Dimmi subito quanto vale (circa) in base 2:

```
10<sup>9</sup> risposta: circa 2^{10 \times 9/3} = 2^{30} con errore: 1 - 2^{30}/10^9 \approx -7.3\% (approx. eccesso) 10^{10} risposta: circa 2^{10 \times 10/3} \approx 2^{33} con errore: 1 - 2^{33}/10^{10} \approx 14.1\% (approx. difetto)
```

• L'approssimazione è per eccesso o per difetto

Aumento e riduzione dei bit in bin

· Aumento dei bit

 premettendo in modo progressivo un bit 0 a sinistra, il valore del numero non muta

```
4_{dec} = 100_{bin} = 0100_{bin} = 00100_{bin} = ... 000000000100_{bin}

5_{dec} = 101_{bin} = 0101_{bin} = 00101_{bin} = ... 000000000101_{bin}
```

• Riduzione dei bit

–cancellando in modo progressivo un bit 0 a sinistra, il valore del numero non muta, ma bisogna arrestarsi quando si trova un bit 1!

$$7_{dec}$$
 = 00111_{bin} = 0111_{bin} = 111_{bin} STOP!
 2_{dec} = 00010_{bin} = 0010_{bin} = 010_{bin} = 10_{bin} STOP!

Numeri interi in modulo e segno (m&s)

- Numeri binari interi (positivi e negativi) in modulo e segno (m&s)
 - -il primo bit a sinistra rappresenta il segno del numero (bit di segno), i bit rimanenti rappresentano il valore
 - 0 per il segno positivo
 - 1 per il segno negativo
- Esempi con n = 9 (8 bit + un bit per il segno)
 - $-000000000_{\text{m&s}} = +0 =$
 - $-000001000_{\text{m&s}} = +1 \times 2^3 = 8_{\text{dec}}$
 - $-100001000_{\text{m&s}} = -1 \times 2^3 = -8_{\text{dec}}$
 - ... e così via ...

Osservazioni sul m&s

- Il bit di segno è applicato al numero rappresentato, ma non fa propriamente parte del numero in quanto tale
 - -il bit di segno non ha significato numerico
- Distaccando il bit di segno, i bit rimanenti rappresentano il valore assoluto del numero
 - -che è intrinsecamente positivo

Il complemento a 2 (C₂)

- Numeri interi in complemento a 2: il C₂ è un sistema binario, ma il primo bit (quello a sinistra, il più significativo) ha peso negativo, mentre tutti gli altri bit hanno peso positivo
- La sequenza di bit:

$$b_n b_{n-1} \dots b_1$$

rappresenta in C₂ il valore:

$$-b_n \times 2^{n-1} + b_{n-1} \times 2^{n-2} + \dots + b_1 \times 2^0$$

Il bit più a sinistra è ancora chiamato bit di segno

Numeri a tre bit in C₂

•
$$000_{C2} = -0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 0_{dec}$$

•
$$001_{C2} = -0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1_{dec}$$

•
$$010_{C2} = -0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 2_{dec}$$

•
$$011_{C2} = -0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 2 + 1 = 3_{dec}$$

•
$$100_{C2} = -1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = -4_{dec}$$

•
$$101_{C2} = -1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = -4 + 1 = -3_{dec}$$

•
$$110_{C2} = -1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = -4 + 2 = -2_{dec}$$

•
$$111_{C2} = -1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = -4 + 2 + 1 = -1_{dec}$$

N.B.: in base al bit di segno lo zero è considerato positivo

Interi relativi in m&s e in C₂

Se usiamo 1 Byte: da -128 a 127

Invertire un numero in C₂

- L'inverso additivo (o opposto) –N di un numero N rappresentato in C₂ si ottiene:
 - Invertendo (negando) ogni bit del numero
 - Sommando 1 alla posizione meno significativa
- Esempio:

$$01011_{C2} = 1 \times 2^{3} + 1 \times 2^{1} + 1 \times 2^{0} = 8 + 2 + 1 = 11_{dec}$$

$$10100 + 1 = 10101_{C2} = -1 \times 2^{4} + 1 \times 2^{2} + 1 \times 2^{0} = -16 + 4 + 1 = -11_{dec}$$

- Si provi a invertire $11011_{C2} = -5_{dec}$
- Si verifichi che con due applicazioni dell'algoritmo si riottiene il numero iniziale [–(–N) = N] e che lo zero in C2 è (correttamente) opposto di se stesso [–0 = 0]

Conversione dec \rightarrow C₂

- Se D_{dec} ≥ 0:
 - -Converti D_{dec} in binario naturale.
 - -Premetti il bit 0 alla sequenza di bit ottenuta.
 - -Esempio: $154_{dec} \Rightarrow 10011010_{bin} \Rightarrow 010011010_{C2}$
- Se D_{dec} < 0:
 - -Trascura il segno e converti D_{dec} in binario naturale
 - -Premetti il bit 0 alla sequenza di bit ottenuta
 - Calcola l'opposto del numero così ottenuto, secondo la procedura di inversione in C₂
 - -Esempio: -154_{dec} ⇒ 154_{dec} ⇒ 10011010_{bin} ⇒ 010011010_{bin} ⇒ 101100101 + 1 ⇒ 101100110_{C2}

Aumento e riduzione dei bit in C₂

• *Estensione* del segno:

 replicando in modo progressivo il bit di segno a sinistra, il valore del numero non muta

```
4 = 0100 = 00100 = 00000100 = ... (indefinitamente)

-5 = 1011 = 11011 = 11111011 = ... (indefinitamente)
```

• Contrazione del segno:

- -cancellando in modo progressivo il bit di segno a sinistra, il valore del numero non muta
- -purché il bit di segno non abbia a invertirsi!

```
7 = 000111 = 00111 = 0111 stop! (111 è < 0)
-3 = 111101 = 11101 = 1101 = 101 stop! (01 è > 0)
```

Osservazioni sul C₂

- Il segno è incorporato nel numero rappresentato in C₂, non è semplicemente applicato (come in m&s)
- Il bit più significativo *rivela* il segno: 0 per numero positivo, 1 per numero negativo (il numero zero è considerato positivo), ma...
- NON si può distaccare il bit più significativo e dire che i bit rimanenti rappresentano il valore assoluto del numero
 - questo è ancora vero, però, se il numero è positivo

Intervalli di rappresentazione

- Binario naturale a n ≥ 1 bit: [0, 2ⁿ)
- Modulo e segno a n ≥ 2 bit: (-2ⁿ⁻¹, 2ⁿ⁻¹)
- C_2 a $n \ge 2$ bit: $[-2^{n-1}, 2^{n-1})$
 - -In modulo e segno, il numero zero ha due rappresentazioni equivalenti (00..0, 10..0)
 - -L'intervallo del C_2 è *asimmetrico* (-2^{n-1} è compreso, 2^{n-1} è escluso); poco male ...

Operazioni – Numeri binari naturali

Algoritmo di "addizione a propagazione dei riporti" È l'algoritmo decimale elementare, adattato alla base 2

Pesi	7	6	5	4	3	2	1	0		
Riporto			1	1	1					
Addendo 1	0	1	0	0	1	1	0	1	+	77 _{dec}
Addendo 2	1	0	0	1	1	1	0	0	=	156 _{dec}
Somma	1	1	1	0	1	0	0	1		233 _{dec}

addizione naturale (a 8 bit)

Operazioni – Numeri binari naturali

overflow (o trabocco)

addizione naturale con overflow

Riporto e overflow (addizione naturale)

- Si ha overflow quando il risultato corretto dell'addizione eccede il potere di rappresentazione dei bit a disposizione
 - -8 bit nell'esempio precedente
- Nell'addizione tra numeri binari naturali si ha overflow ogni volta che si genera un riporto addizionando i bit della colonna più significativa (riporto "perduto")

Operazioni – Numeri in C₂

Pesi	7	6	5	4	3	2	1	0		
Riporto			1	1	1					
Addendo 1	0	1	0	0	1	1	0	1	+	77_{dec}
Addendo 2	1	0	0	1	1	1	0	0	=	-100 _{dec}
Somma	1	1	1	0	1	0	0	1		-23 _{dec}

addizione algebrica (a 8 bit)
L'algoritmo è identico a quello naturale (come se il primo bit non avesse peso negativo)

Operazioni – Numeri in C₂ ancora overflow

risultato negativo!

addizione algebrica con overflow

Riporto e overflow in C₂ (addizione algebrica)

- Si ha overflow quando il risultato corretto dell'addizione eccede il potere di rappresentazione dei bit a disposizione
 - La definizione di overflow non cambia
- Si può avere overflow senza "riporto perduto"
 - Capita quando da due addendi positivi otteniamo un risultato negativo, come nell'esempio precedente
- Si può avere un "riporto perduto" senza overflow
 - -Può essere un innocuo effetto collaterale
 - –Capita quando due addendi discordi generano un risultato positivo (si provi a sommare +12 e -7)

Rilevare l'overflow in C₂

- Se gli addendi sono tra loro discordi (di segno diverso) non si verifica mai
- Se gli addendi sono tra loro concordi, si verifica se e solo se il risultato è discorde
 - -addendi positivi ma risultato negativo
 - -addendi negativi ma risultato positivo
- Criterio di controllo facile da applicare!

Rappresentazione ottale ed esadecimale

- Ottale o in base otto (oct):
 - -Si usano solo le cifre 0-7

$$534_{\text{oct}} = 5_{\text{oct}} \times 8_{\text{dec}}^2 + 3_{\text{oct}} \times 8_{\text{dec}}^1 + 4_{\text{oct}} \times 8_{\text{dec}}^0 = 348_{\text{dec}}$$

- Esadecimale o in base sedici (hex):
 - -Si usano le cifre 0-9 e le lettere A-F per i valori 10-15

$$B7F_{hex} = B_{hex} \times 16_{dec}^{2} + 7_{hex} \times 16_{dec}^{1} + F_{hex} \times 16_{dec}^{0} =$$

$$= 11_{dec} \times 16_{dec}^{2} + 7_{dec} \times 16_{dec}^{1} + 15_{dec} \times 16_{dec}^{0} = 2943_{dec}^{1}$$

 Entrambe queste basi sono facili da convertire in binario, e viceversa

Conversioni hex \rightarrow bin e oct \rightarrow bin

• Converti: $010011110101011011_{bin} =$

• Converti: A7B40C_{hex}

```
A_{hex} 7_{hex} B_{hex} 4_{hex} 0_{hex} C_{hex} = 10_{dec} 7_{dec} 11_{dec} 4_{dec} 0_{dec} 12_{dec} = 1010_{bin} 0111_{bin} 1011_{bin} 0100_{bin} 0000_{bin} 1100_{bin} = 10100111101101101000001100_{bin}
```

- Si provi a convertire anche
 - oct \rightarrow bin, dec \rightarrow hex, dec \rightarrow oct

Numeri frazionari in virgola fissa

• 0,1011_{bin} (in binario)

$$0,1011_{bin} = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} = 1/2 + 1/8 + 1/16 =$$

= $0,5 + 0,125 + 0,0625 = 0,6875_{dec}$

• Si può rappresentare un numero frazionario in *virgola fissa* (o *fixed point*) nel modo seguente:

$$19,6875_{dec} = 10011,1011_{virgola\ fissa}$$

poiché si ha:

$$19_{dec} = 10011_{bin}$$
 e $0.6875_{dec} = 0.1011_{bin}$

proporzione fissa:

5 bit per la parte intera, 4 bit per quella frazionaria

 Avremo 2º diversi valori codificati, e avremo 2⁴ valori tra 0 e 1, 2⁴ valori tra 1 e 2, ... e così via, con tutti i valori distribuiti su un asse a distanze regolari

Numeri frazionari in virgola fissa

- La sequenza di bit rappresentante un numero frazionario consta di due parti di lunghezza prefissata
 - Il numero di bit a sinistra e a destra della virgola è stabilito a priori, anche se alcuni bit restassero nulli
- È un sistema di rappresentazione semplice, ma poco flessibile, e può condurre a sprechi di bit
 - Per rappresentare in virgola fissa numeri molto grandi (o molto precisi) occorrono molti bit
 - La precisione nell'intorno dell'origine e lontano dall'origine è la stessa
 - Anche se su numeri molto grandi in valore assoluto la parte frazionaria può non essere particolarmente significativa

Numeri frazionari in virgola mobile

 La rappresentazione in virgola mobile (o floating point) è usata spesso in base 10 (si chiama allora notazione scientifica):

```
0.137 \times 10^8 notazione scientifica per intendere 13.700.000_{\text{dec}}
```

La rappresentazione si basa sulla relazione

$$R_{\text{virgola mobile}} = M \times B^{E}$$
 [attenzione: non (MxB)^E]

- In binario, si utilizzano m ≥ 1 bit per la mantissa M
 e n ≥ 1 bit per l'esponente E
 - -mantissa: un numero frazionario (tra -1 e +1)
 - -la base B non è rappresentata (è implicita)
 - -in totale si usano m + n bit

Numeri frazionari in virgola mobile

Esempio

Supponiamo B=2, m=3 bit, n=3 bit, M ed E in binario naturale

$$M = 011_2$$
 ed $E = 010_2$

$$R_{virgola\ mobile} = 0.011 \times 2^{010} = (1/4 + 1/8) \times 2^2 = 3/8 \times 4 = 3/2 = 1.5_{dec}$$

Vantaggi della virgola mobile

- si possono rappresentare con pochi bit numeri molto grandi **oppure** molto precisi (cioè con molti decimali)
- Sull'asse dei valori i numeri rappresentabili si affollano nell'intorno dello zero, e sono sempre più sparsi al crescere del valore assoluto

ATTENZIONE! (i "pericoli" della virgola mobile)

Approssimazione

- $-0.375 \times 10^7 + 0.241 \times 10^3 = 0.3750241 \times 10^7 \approx 0.375 \times 10^7$
- Ma, in virgola mobile, se disponiamo di poche cifre per la mantissa:
 - $-0.375 \times 10^7 + 0.241 \times 10^3 = 0.375 \times 10^7$
 - del resto sarebbe <u>sbagliato</u> approssimare a 0,374 x 10⁷ o 0,376 x 10⁷
- Definiamo un ciclo che ripete la somma un milione di volte...
 - Inizia con $X = 0.375 \times 10^7$
 - Ripeti 1.000.000 di volte $X = X + 0.241 \times 10^3$ (incremento non intero)
 - Alla fine dovrebbe essere $X = 0.375 \times 10^7 + (0.241 \times 10^3 \times 10^6) \approx 0.245 \times 10^9$
- Ma, in virgola mobile...
 - Il contributo delle singole somme (una alla volta) si perde del tutto!
 - Il risultato resta 0,375 x 10⁷, sbagliato di due ordini di grandezza
 - Scrivendo programmi che trattano valori rappresentati in virgola mobile è necessario essere consapevoli dei limiti di rappresentazione
 - Lo stesso è vero con gli interi (rischio di overflow)

Aritmetica standard

- Quasi tutti i calcolatori oggi adottano lo standard aritmetico IEEE 754, che definisce:
 - I formati di rappresentazione binario naturale, C₂ e virgola mobile
 - Gli algoritmi di somma, sottrazione, prodotto, ecc, per tutti i formati previsti
 - I metodi di arrotondamento per numeri frazionari
 - Come trattare gli errori (overflow, divisione per 0, radice quadrata di numeri negativi, ...)
- Grazie a IEEE 754, i programmi sono trasportabili tra calcolatori diversi senza che cambino né i risultati né la precisione dei calcoli svolti dal programma stesso

Standard IEEE 754-1985

Bit destinati alla rappresentazione divisi in

- S E M
- un bit per il segno della mantissa parte S (0 = +, 1 = -)
- alcuni bit per l'esponente parte E
- altri bit per la mantissa (il suo valore assoluto) parte M
- Problema: il segno dell'esponente notazione "eccesso K"
 - si memorizza il valore dell'esponente aumentato di K
 - se k bit dedicati all'esponente, K = 24-4-4 2 (k-1)
 - es: k=8 si memorizza esponente aumentato di K=27-1=127
- valore memorizzato 0: esponente = -127;

255: esponente = 128;

132: esponente = 5

- Inoltre, Mantissa viene normalizzata:
 - scegliendo esponente opportuno, posta a un valore (binario) tra 1.00000... e 1.11111...
 - il valore 1 sempre presente può essere sottinteso ⇒ guadagno di un bit di precisione

Campo	Precisione	Precisione	Precisione
	singola	doppia	quadrupla
ampiezza	32	64	128
totale in bit			
di cui			
Segno	1	1	1
Esponente	8	11	15
Mantissa	23	52	111
massimo E	255	2047	32767
minimo E	0	0	0
K	127	1023	16383

Esempio

- Esempio di rappresentazione in precisione singola
- $X = 42.6875_{10} = 101010.1011_{-2} = 1.010101011_{-1} \times 2^{5}$
- Si ha

Proprietà fondamentale

- I circa 4 miliardi di configurazioni dei 32 bit usati consentono di coprire un campo di valori molto ampio grazie alla distribuzione non uniforme.
- Per numeri piccoli in valore assoluto valori rappresentati sono «fitti»,
- Per numeri grandi in valore assoluto valori rappresentati sono «diradati»
- Approssimativamente gli intervalli tra valori contigui sono
 - per valori di 10000 l'intervallo è di un millesimo
 - per valori di 10 milioni l'intervallo è di un'unità
 - per valori di 10 miliardi l'intervallo è di mille

Non solo numeri! codifica dei caratteri

- Nei calcolatori i caratteri vengono codificati mediante sequenze di n ≥ 1 bit, ognuna rappresentante un carattere distinto
 - Corrispondenza biunivoca tra numeri e caratteri
- Codice ASCII (American Standard Computer Interchange Interface): utilizza n=7 bit per 128 caratteri
- Il codice ASCII a 7 bit è pensato per la lingua inglese. Si può estendere a 8 bit per rappresentare il doppio dei caratteri
 - Si aggiungono così, ad esempio, le lettere con i vari gradi di accento (come À, Á, Â, Ã, Ä, Å, ecc), necessarie in molte lingue europee, e altri simboli speciali ancora

Alcuni simboli del codice ASCII

# (in base 10)	Codifica (7 bit)	Carattere (o simbolo)
0	0000000	<terminator></terminator>
9	0001001	<tabulation></tabulation>
10	0001010	<carriage return=""></carriage>
12	0001100	<sound bell=""></sound>
13	0001101	<end file="" of=""></end>
32	0100000	blank space
33	0100001	!
49	0110001	1
50	0110010	2
64	1000000	@
65	1000001	Α
66	1000010	В
97	1100000	а
98	1100001	b
126	1111110	~
127	1111111	

Rilevare gli errori

- Spesso, quando il codice ASCII a 7 bit è usato in un calcolatore avente parole di memoria da un Byte (o suoi multipli), l'ottavo bit del Byte memorizzante il carattere funziona come bit di parità
- Il bit di parità serve per *rilevare* eventuali *errori* che potrebbero avere alterato la sequenza di bit, purché siano errori di tipo abbastanza semplice

Bit di parità

 Si aggiunge un bit extra, in modo che il numero di bit uguali a 1 sia sempre pari:

```
1100101 (quattro bit 1) \Rightarrow 11001010 (quattro bit 1) 
0110111 (cinque bit 1) \Rightarrow 01101111 (sei bit 1)
```

- Se per errore un (solo) bit si *inverte*, il conteggio dei bit uguali a 1 dà valore *dispari*!
- Così si può rilevare l'esistenza di un errore da un bit (ma non localizzarne la posizione)
- Aggiungendo più bit extra (secondo schemi opportuni) si può anche localizzare l'errore.
- Il bit di parità non rileva gli errori da due bit; ma sono meno frequenti di quelli da un bit

Altre codifiche alfanumeriche

- Codifica ASCII esteso a 8 bit (256 parole di codice). È la più usata.
- Codifica FIELDATA (6 bit, 64 parole codificate)
 Semplice ma compatta, storica
- Codifica EBDC (8 bit, 256 parole codifiate) Usata per esempio nei nastri magnetici
- Codifiche ISO-X (rappresentano i sistemi di scrittura internazionali). P. es.: ISO-LATIN

Codifica di testi, immagini, suoni, ...

- Caratteri: sequenze di bit
 - -Codice ASCII: utilizza 7(8) bit: 128(256) caratteri
 - -1 Byte (l'8° bit può essere usato per la parità)
- Testi: sequenze di caratteri (cioè di bit)
- Immagini: sequenze di bit
 - -bitmap: sequenze di pixel (n bit, 2ⁿ colori)
 - -jpeg, gif, pcx, tiff, ...
- Suoni (musica): sequenze di bit
 - -wav, mid, mp3, ra, ...
- Filmati: immagini + suoni
 - -sequenze di ...? ... "rivoluzione" digitale

Dentro al calcolatore... Informazione e memoria

- Una parola di memoria è in grado di contenere una sequenza di n ≥ 1 bit
- Di solito si ha: n = 8, 16, 32 o 64 bit
- Una parola di memoria può dunque contenere gli elementi d'informazione seguenti:
 - –Un carattere (o anche più di uno)
 - -Un numero intero in binario naturale o in C₂
 - -Un numero frazionario in virgola mobile
 - -Alcuni bit della parola possono essere non usati
- Lo stesso può dirsi dei registri della CPU

Per esempio ...

