Ecological inference from functional traits ECCB 2018 Workshop

Brad Duthie

15 June 2018

What are functional traits?

► **Trait**: Any "morphological, physiological, phenological, or behavioural characteristic measured at the individual level"¹.

¹Brousseau, P-M, et al. (2018). J. Anim. Ecol. In press.

What are functional traits?

- ► **Trait**: Any "morphological, physiological, phenological, or behavioural characteristic measured at the individual level"¹.
- ► Functional trait: Traits that are related to an organism's performance (response traits) or an ecological process (effect traits)¹

¹Brousseau, P-M, et al. (2018). J. Anim. Ecol. In press.

What are functional traits?

- ► **Trait**: Any "morphological, physiological, phenological, or behavioural characteristic measured at the individual level"¹.
- ► Functional trait: Traits that are related to an organism's performance (response traits) or an ecological process (effect traits)¹
 - ► **Response trait**: Relate to the performance of an organism (growth, survival, reproduction)
 - ► **Effect trait**: Relate to an ecological process (pollination, decomposition)

¹Brousseau, P-M, et al. (2018). J. Anim. Ecol. In press.

Soft and hard traits

Functional traits lie on a continuum from "soft" to "hard"²

- ▶ **Soft**: Easily measured but distal to vital rates
- ► **Hard**: Indicative of physiology and directly associated with vital rates

²Paine, CET, et al. (2018). Func. Ecol. In press.

Soft and hard traits

Functional traits lie on a continuum from "soft" to "hard"²

- ▶ **Soft**: Easily measured but distal to vital rates
- ► **Hard**: Indicative of physiology and directly associated with vital rates

Insect soft and hard traits:

Vital rate	Soft trait	Hard trait
Survival	Ovigeny index	Lifespan
Growth	Body size	Ingestion rate
Fecundity	Abdominal mass	Egg load

²Paine, CET, et al. (2018). Func. Ecol. In press.

Functional traits in community ecology

Measure community parameter values experimentally³

- ightharpoonup Species' intrinsic growth rates (r)
- Species' interaction coefficients (α_{ij})

Use r and α_{ij} to calculate niche overlap (ρ) and average fitness difference between species i and j (κ_j/κ_i)

³Kraft, NJB, et al. (2015). PNAS 201413650.

Functional traits in community ecology

Measure community parameter values experimentally³

- ► Species' intrinsic growth rates (r)
- ▶ Species' interaction coefficients (α_{ij})

Use r and α_{ij} to calculate niche overlap (ρ) and average fitness difference between species i and j (κ_j/κ_i)

Predict community dynamics from functional traits

- ▶ Correlate multi-dimensional functional trait values with ρ and κ_i/κ_i)
- ► Correlate response trait values with effect traits

Use knowledge of functional traits and community dynamics to inform conservation goals.

³Kraft, NJB, et al. (2015). PNAS 201413650.

- Quantify stabilising niche and average fitness differences between 10 species of Sepsidae
- Predict species distributions from multiple dimensions of fly traits
- Predict dung decomposition from fly traits and species composition

²Paine, CET, et al. (2018). Func. Ecol. In press.

Tim Paine

ConFooBio

LEVERHULME TRUST _____

Key definitions

Trait: Any "morphological, physiological, phenological, or behavioural characteristic measured at the individual level"².

Functional trait: Traits that are related to an organism's performance (*response traits*) or an ecological process (*effect traits*)¹

Response trait: Relate to the performance of an organism (growth, survival, reproduction)

Effect trait: Relate to an ecological process (pollination, decomposition)

Soft trait: Easily measured but distal to vital rates²

Hard trait: Indicative of physiology and directly associated with vital rates²

¹Brousseau, P-M, et al. (2018). J. Anim. Ecol. In press.

²Paine, CET, et al. (2018). Func. Ecol. In press.

Niche overlap and competition

Definition of niche overlap (ρ) and stabilising niche difference $(1-\rho)^3$:

$$(1-\rho) = 1 - \sqrt{\frac{\alpha_{ij}\alpha_{ji}}{\alpha_{jj}\alpha_{ii}}}$$

Definition of average fitness difference between species i and j (κ_i/κ_i) :

$$\frac{\kappa_j}{\kappa_i} = \frac{r_j}{r_i} \sqrt{\frac{\alpha_{ij}\alpha_{ii}}{\alpha_{jj}\alpha_{ji}}}$$

Note in the above that, by definition, $\kappa_i > \kappa_i$.

³Kraft, NJB, et al. (2015). PNAS 201413650.