

Machine Learning Overview

Topics

- Supervised Methods
- Unsupervised Methods
- ML Workflows
- Metrics

Supervised Methods

- You can observe
 - Set of data
 - Imagery, stock market, ...
 - Labels
 - Class (person, cat), price, etc.
 - Goal
 - ML(new input ; params) => predict value or class
- Techniques
 - Regression, support vector machines, neural networks, minimum risk Bayes decision classifier, decision trees and forests, probabilistic graphical models, perceptron, AND A BUNCH MORE

Example: Regression

- Dataset
 - x = one feature
 - y = output
- ML training
 - Find best line
 - Slope
 - Intercept
- ML testing
 - Provided a new input, can we predict its value?

Example: Support Vector Machine

- Dataset
 - x = features
 - y = class label
- ML training
 - Find hyperplane
- ML testing
 - Provided a new input, what class does it belong to?

Unsupervised Methods

- You can observe
 - Set of data
 - Images, cyber, ...
 - Labels
 - NOPE
 - Goal = identify structure
 - Clusters of people (with hats, without, ...), cats, etc.
- Techniques
 - K-means, fuzzy c-means, mean shift, DBSCAN, self organizing feature maps (SOFM), neural gas, neural networks, PGMs, AND A BUNCH MORE

Example: k-means

- Dataset
 - x = features
- ML
 - Group data into k different classes
 - Cluster centers
 - Error function
- Examples
 - Image segmentation
 - Anomaly detection and cybersecurity

• ...

Many Clustering Algorithms

Machine Learning Workflows

Machine Learning Workflows

Regression Metric

R-Squared (R²)

$$R^2 \equiv 1 - rac{SS_{
m res}}{SS_{
m tot}}.$$

- Coefficient of determination
- Adjusted R-Squared

$$ar{R}^2 = 1 - (1 - R^2) rac{n-1}{n-p-1} = R^2 - (1 - R^2) rac{p}{n-p-1}$$

- Always less than R^2
- R^2 can artificially increase with more explanatory variables (independent, predictors, input)
- Adj. R^2 only increases when the R^2 increase more than likely by random chance

Regression Validation

- Recall : Anscombe's quartet
- Need visualization of data to see that the regression has broken down or is not suitable
- Analysis of residuals (visual and numerical)
 - Random or not?
 - Varied with time?
- Additional Reading
 - https://en.wikipedia.org/wiki/Regression_validation

- Consider Two Class Problem (yes/no)
 - When true answer is yes and your model says yes, that is a True Positive
 - When true answer is **no** and your model says **no**, that is a True Negative
 - When true answer is yes and your model says no, that is a False Negative
 - When true answer is **no** and your model says **yes**,
 that is a False Positive

Confusion Matrix

	n=165	Predicted: NO	Predicted: YES	
	Actual: NO	TN = 50	FP = 10	60
	Actual: YES	FN = 5	TP = 100	105
,		55	110	

- Why a 90% "accurate" model is not always good enough
- My favorite professor's problem
 - Land mine detection algorithms for the US Army
 - Yes: It is a land mine
 - No: It is not a land mine

- Why a 90% "accurate" model is not always good enough
- My favorite professor's problem
 - Land mine detection algorithms for the US Army
 - Yes: It is a land mine
 - No: It is not a land mine
- What is the cost of a False Positive?

- Why a 90% "accurate" model is not always good enough
- My favorite professor's problem
 - Land mine detection algorithms for the US Army
 - Yes: It is a land mine
 - No: It is not a land mine
- What is the cost of a False Positive?
- What is the cost of a False Negative?

- Precision: (PPV) positive prediction value
 - How often is a predicted Yes value correct?
- Recall: (TPR) true positive rate
 - How many of the expected Yes are predicted yes?

n=165	Predicted: NO	Predicted: YES	
Actual:	TN 50	FD 40	
NO Actual:	TN = 50	FP = 10	60
YES	FN = 5	TP = 100	105
	55	110	

- F-score (or F_1 Score)
 - Measure of accuracy combining Precision and Recall

$$F_1 = 2 \cdot rac{ ext{PPV} \cdot ext{TPR}}{ ext{PPV} + ext{TPR}} = rac{2 ext{TP}}{2 ext{TP} + ext{FP} + ext{FN}}$$

n=165	Predicted: NO	Predicted: YES	
Actual:	NO	123	
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Clustering Metrics

- Cluster Validation
 - https://en.wikipedia.org/wiki/Cluster_analysis#Evaluation_and_assessment
- Distance metric driven
 - Ratios of points to centroids or cluster members
 - Euclidean vs Mahalanobis vs other
- Davies-Bouldin index: average ratio of cluster-tocluster size versus center distance
- Dunn index: ratio between the minimal inter-cluster distance to maximal intra-cluster distance
- Others

Conclusion

- Measures and analyses of machine learning models are critical before operationalizing
 - Fully understand the model
 - Measure the performances against expected and unexpected data
 - Weigh the consequences of erroneous responses

Questions?

