SEQUENCE LISTING

<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 1
<211> 4706
<212> DNA
<213> Rattus Norvegicus
<220>
<400> HARE CDNA

TCTTTACCAA GTCTACTCAC CCGTCTGGAG CAGATGCCCG ACTATTCCAT TTTCCGAGGT 60 #ACATTATTC ATTACAACCT GGCAAGTGCA ATCGAGTCTG CAGATGCTTA TACTGTGTTC 120 STGCCAAACA ATGAAGCCAT CGAAAACTAT ATCAGGGAGA AGAAAGCCAC ATCTCTAAAG 180 SAAGATATTC TACGGTACCA TGTGGTCCTG GGGGAAAAGC TCCTGAAGAA TGACTTGCAT 240 AACGGCATGC ACCGAGAGAC CATGCTGGGG TTCTCCTACC TCCTTGCCTT CTTTCTCCGC 300 ATGACCAGC TGTATGTAAA TGAAGCTCCA ATAAACTACA CCAATGTGGC CACTGATAAA 360 GAGTGATCC ATGGTCTGGA GAAAGTTCTG GAAATTCAGA AGAACAGATG TGACAATAAT 420 GACACCATTA TTGTGAGAGG GGAGTGTGGA AAGTGTTCCC AGCAAGCCCC CTGCCCACTC 480 GAGACAAAAC CACTTAGAGA GACGAGGAAA TGCATCTATT CCATCTACTT CATGGGGAAG 540 AGATCCGTAT TCATCGGGTG CCAGCCACAG TGTGTGAGAA CCATCATTAC AAGAGCCTGC 600 TGGCTGGCTT CTTTGGCCCA CAATGCCAAG CCTGCCCCGG GAGAGGTCAA AATGTGTGCT 660 CTGGGAACGG CTTCTGTCTG GGACGGTGTG AATGGCACTG GCACGTGCCA GTGCGGGCTG 720 GGCTTCAATG GGACAGCCTG TGAAACCTGC ACTGAGGGGA AGTATGGTAT CCACTGCGAC 780 CAAGCATGCT CTTGTGTCCA TGGGAGATGT AGCCAAGGAC CCTTGGGAGA CGGCTCCTGT 840 GACTGTGACG TCGGCTGGCG AGGAGTGAAG TGTGACATGG AGATCACCAC AGACAACTGC 900

AACGGGACCT	GTCACACCAG	TGCCAACTGC	CTTCTGGATC	CAGACGGCAA	AGCCTCGTGC	960
AAATGTGCGG	CAGGATTCCG	AGGGAATGGA	ACGGTCTGCA	CAGCCATCAA	TGCCTGTGAG	1020
ACCAGCAATG	GAGGATGTTC	TACAAAGGCC	GACTGTAAAA	GAACCACCCC	AGGAAACCGG	1080
GTGTGTGTGT	GCAAGGCAGG	CTATACCGGC	GACGGCATCG	TGTGCCTTGA	AATCAACCCG	1140
TGTTTGGAGA	ACCATGGTGG	CTGTGACAGA	AATGCAGAGT	GCACACAGAC	AGGGCCCAAC	1200
CAGGCCGTCT	GTAACTGCTT	GCCGAAGTAC	ACTGGAGATG	GAAAGGTCTG	CTCGCTTATC	1260
AATGTCTGCC	TAACGAACAA	TGGCGGCTGC	AGTCCATTTG	CCTTCTGCAA	CTACACTGAG	1320
CAAGATCAAA	GGATATGTAC	CTGCAAGCCA	GACTACACGG	GTGATGGAAT	CGTCTGCCGG	1380
GGCAGCATCT	ACGGGGAGCT	TCCCAAGAAC	CCTTCGACGT	CCCAGTACTT	CTTCCAGTTG	1440
CAGGAGCATG	CTGTCCGAGA	GCTTGCTGGA	CCTGGCCCCT	TCACCGTGTT	CGCGCCTTTG	1500
TCTAGCTCCT	TCAATCATGA	GCCCCGGATT	AAAGACTGGG	ATCAGCAGGG	CCTCATGTCC	1560
CAGGTTCTTC	GCTATCACGT	GGTGGGCTGC	CAGCAGCTGC	TGTTGGACAA	CCTAAAAGTG	1620
ACCACAAGTG	CCACGACCCT	CCAAGGAGAG	CCAGTTTCCA	TCTCTGTCTC	TCAGGACACT	1680
=GTGTTCATAA	ACAATGAGGC	GAAGGTCCTG	TCCAGTGACA	TCATCAGCAC	CAATGGCGTC	1740
ATCCACGTTA	TAGACAAGTT	GCTGTCTCCC	AAAAACTTGC	TTATCACCCC	CAAAGATGCC	1800
TTGGGCAGGG	TTCTGCAAAA	TCTTACTACA	GTGGCAGCAA	ACCACGGATA	TACCAAATTC	1820
AGCAAGTTGA	TACAGGACTC	AGGCTTGCTG	TCAGTCATCA	CTGACTCCAT	CCACACCCCA	1920
GTCACTGTCT	TCTGGCCTAC	GGACAAAGCC	CTGGAAGCCT	TGCCCCCAGA	GCAGCAGGAC	1980
TTCCTGTTCA	ATCAAGACAA	CAAGGACAAG	CTGAAGTCTT	ACCTGAAGTT	CCACGTGATC	2040
CGAGACTCCA	AGGCTTTAGC	TTCAGACCTC	CCCAGGTCTG	CTTCCTGGAA	GACCCTGCAA	2100
GGCTCAGAGC	TGAGTGTGAG	GTGTGGAACT	GGCAGTGACA	TCGGTGAGCT	CTTTCTAAAC	2160
GAACAAATGT	GCAGATTCAT	ACACCGGGGA	CTCTTGTTTG	ACGTGGGTGT	GGCCTATGGC	2220
ATTGACTGCC	TACTCATGAA	TCCTACCCTA	GGTGGCCGAT	GTGACACTTT	TACTACCTTC	2280
GATATTCCGG	GGGAGTGCGG	AAGTTGCATT	TTCACTCCCA	AATGCCCACT	GAAGAGCAAG	2340

	CCAAAGGGCG	TGAAGAAGAA	GTGTATCTAC	AACCCGTTAC	CTTTCAGGAG	GAACGTGGAA	2400
	GGCTGCCAGA	ACCTGTGCAC	CGTGGTGATC	CAAACCCCCA	GGTGCTGCCA	TGGTTACTTC	2460
	ATGCCAGACT	GTCAGGCCTG	CCCTGGAGGA	CCAGATACAC	CGTGTAACAA	CCGGGGCATG	2520
	TGCCGCGATC	TGTACACACC	CATGGGACAG	TGCCTATGCC	ACACCGGCTT	CAACGGGACA	2580
	GCCTGCGAGC	TCTGCTGGCA	TGGGAGATTT	GGGCCTGACT	GTCAGCCCCG	CAGCTGCTCC	2640
	GAGCATGGAC	AGTGTGATGA	GGGGATCACA	GGCTCCGGGG	AGTGCCTCTG	TGAAACAGGG	2700
	TGGACAGCCG	CTTCGTGTGA	CACTCCCACA	GCTGTATTCG	CAGTGTGCAC	ACCTGCTTGC	2760
	TCCGTGCACG	CCACCTGTAC	GGAGAACAAC	ACGTGTGTGT	GTAACTTGAA	CTACGAAGGT	2820
	GACGGGATCA	CATGCACAGT	CGTGGACTTC	TGCAAACAGA	ACAACGGGGG	CTGTGCGAAG	2880
The state	GTCGCTAAGT	GCTCCCAGAA	AGGCACCCAA	GTCTCTTGCA	GCTGCAAGAA	AGGCTACAAG	2940
Harle series	GGGGATGGCT	ACAGCTGCAT	AGAGATAGAC	CCCTGTGCAG	ACGGTGTCAA	CGGGGGATGC	3000
Ī	CATGAGCACG	CCACCTGCAG	GATGACGGGC	CCAGGCAAGC	ATAAGTGTGA	ATGTAAAAGT	3060
	CACTATGTCG	GGGACGGAGT	GGACTGTGAG	CCTGAGCAGC	TGCCGCTCGA	CCGTTGCTTA	3120
	T CAGGACAACG	GACAGTGCCA	CCCAGATGCC	AGCTGTGCAG	ACCTCTACTT	CCAGGACACG	3180
	ACCGTAGGAG	TATTCCATCT	ACGCTCCCCA	CTGGGCCAGT	ACAAACTGAC	ATTTGACAAA	3240
			AGAAGCTGCG				3300
	GCCCAGAAGG	CCAAGTATCA	CCTGTGCTCG	GCCGGCTGGC	TGGAGAGTGG	GCGGGTTGCC	3360
	TACCCGACTA	CGTATGCCTC	TCAGAAGTGT	GGTGCAAACG	TTGTTGGGAT	CGTAGACTAC	3420
	GGATCCAGGG	CCAACAAGAG	TGAAATGTGG	GATGTCTTCT	GTTACCGGAT	GAAAGATGTG	3480
	AACTGCACCT	GCAAGGCAGG	CTATGTGGGA	GATGGCTTCT	CGTGCAGTGG	GAACCTGCTG	3540
	CAGGTCCTCA	TGTCCTTCCC	CTCGCTCACA	AACTTCCTGA	CAGAGGTGCT	GGCTTTTTCC	3600
	AAGAGCTCAG	CCCGAGGACA	GGCATTTTTG	AAACACCTGA	CTGACCTGTC	CATCCGTGGC	3660
	ACCCTGTTTG	TGCCACAGAA	CAGTGGGCTA	CCGGGAAATA	AGAGCCTGTC	TGGCCGGGAC	3720
	ATTGAGCACC	ACCTCACTAA	TGTCAACGTC	TCCTTTTACA	ATGACCTTGT	CAATGGTACC	3780

TTTCTGAGGA	CTATGCTGGG	AAGCCAACTG	CTCATTACCT	TCAGCCAGGA	CCAGCTCCAC	3840
CAAGAGACCA	GGTTTGTGGA	TGGAAGATCC	ATTCTGCAGT	GGGACATCAT	CGCCGCCAAT	3900
GGAATCCTCC	ATATTATTTC	TGAACCTTTG	AGAGCTCCTC	CCACGGCAGC	AACGGCTGCC	3960
CACTCTGGCC	TGGGGACAGG	TATATTCTGT	GCCGTCGTCC	TGGTCACTGG	TGCGATTGCT	4020
CTGGCAGCTT	ACTCTTACTT	CCGGCTAAAG	CAGCGAACCA	CTGGTTTCCA	GCGTTTTGAT	4080
CAGAAGAGGA	CATTGATGTC	TTGGCTTTTG	GCAAGCAGCA	GCCCAAGAAT	ATCGCAAACC	4140
CTCTGTATGA	GACCTCAGCG	CCGGCACCCC	CAGAGTCCTC	CTGTGACCCC	TTCACAGACC	4200
CTGGAGAACA	GGATCTGGAG	GACAGCGACC	CTCTGGGGGC	ACTGCGGTCC	TGACATGAGA	4260
	CAACCACAGT					4320
ATCAGTTGTT	TTAAAGAATG	ACAACACTCA	TAAGCCAGCC	ATACCTCACC	CTTCTGGTTA	4380
ATCTGGGATT						4440
TCTCCTCTGAG	CCTATACCGT	GGTTCTCTCA	CTTCCATATG	GTGCTTGGTC	TGTTCTGCCC	4500
and the second s	CCACAAACTG					4560
CGGGGCTTCA	CCTCTTATGT	TCTGTATTCC	AGTACCCAGA	AGTACCTGCC	ACACATGTGT	4620
G CTCAATAAA	TGTTTTGGGA	АСААААТААА	GAAGGCACTG	TGTACCTAGA	AGGTGTCAAA	4680
CTATGAAAGC	AAAAAAAAA	AAAAA				4706

<110> Weigel et al.

<120> Identification of Hyaluronan Receptor for Endocytosis

<130> 5820.603

<140> Not Yet Assigned

<141> Herewith

<160> 57

<170> WordPerfect 8.0 *Software*

<210> 2

<211> 1431

<212> PRT

<213> Rattus norvegicus

<220>

<400> HARE protein

Ser Leu Pro Ser Leu Leu Thr Arg Leu Glu Gln Met Pro Asp Tyr Ser Iso Phe Arg 10 🟂ly Tyr Iso Iso His Tyr Asn Leu Ala Ser Ala Iso Glu Ser Ala Asp Ala Tyr Thr 30 25 😰 al Phe Val Pro Asn Asn Glu Ala Iso Glu Asn Tyr Iso Arg Glu Lys Lys Ala 55 40 45 50 Gly Thr Glu Asp Iso Leu Arg Tyr His Val Val Leu Ser Leu Lys 70 65 60 His Asn Gly Met His Arg Glu Thr Met Leu Leu Lys Asn Asp Leu Lys N 80 85 75 U 汽 Leu Gly Phe Ser Tyr Leu Leu Ala Phe Phe Leu Arg Asn Asp Gln Leu Tyr Val Asn 105 100 Glu Ala Pro Iso Asn Tyr Thr Asn Val Ala Thr Asp Lys Gly Val Iso His Gly Leu 120 125 110 115 Glu Lys Val Leu Glu Iso Gln Lys Asn Arg Cys Asp Asn Asn Asp Thr Iso Iso Val 130 135 140 145 Arg Gly Glu Cys Gly Lys Cys Ser Gln Gln Ala Pro Cys Pro Leu Glu Thr Lys Pro 160 150 155 Leu Arg Glu Thr Arg Lys Cys Iso Tyr Ser Iso Tyr Phe Met Gly Lys Arg Ser Val 170 175 180 165

Phe Iso Gly Cys Gln Pro Gln Cys Val Arg Thr Iso Iso Thr Arg Ala Cys Trp Leu Ala Ser Leu Ala His Asn Ala Lys Pro Ala Pro Gly Glu Val Lys Met Cys Ala Leu Gly Thr Ala Ser Val Trp Asp Gly Val Asn Gly Thr Gly Thr Cys Gln Cys Gly Leu Gly Phe Asn Gly Thr Ala Cys Glu Thr Cys Thr Glu Gly Lys Tyr Gly Iso His Cys Asp Gln Ala Cys Ser Cys Val His Gly Arg Cys Ser Gln Gly Pro Leu Gly Asp Gly Ser Cys Asp Cys Asp Val Gly Trp Arg Gly Val Lys Cys Asp Met Glu Iso Thr Thr Asp Asn Cys Asn Gly Thr Cys His Thr Ser Ala Asn Cys Leu Leu Asp Pro Asp Gly 🚉 ys Ala Ser Cys Lys Cys Ala Ala Gly Phe Arg Gly Asn Gly Thr Val Cys Thr Ala fli 🗓 so Asn Ala Cys Glu Thr Ser Asn Gly Gly Cys Ser Thr Lys Ala Asp Cys Lys Arg ₹Thr Thr Pro Gly Asn Arg Val Cys Val Cys Lys Ala Gly Tyr Thr Gly Asp Gly Iso 🔍 al Cys Leu Glu Iso Asn Pro Cys Leu Glu Asn His Gly Gly Cys Asp Arg Asn Ala Glu Cys Thr Gln Thr Gly Pro Asn Gln Ala Val Cys Asn Cys Leu Pro Lys Tyr Thr Gly Asp Gly Lys Val Cys Ser Leu Iso Asn Val Cys Leu Thr Asn Asn Gly Gly Cys Ser Pro Phe Ala Phe Cys Asn Tyr Thr Glu Gln Asp Gln Arg Iso Cys Thr Cys Lys Pro Asp Tyr Thr Gly Asp Gly Iso Val Cys Arg Gly Ser Iso Tyr Gly Glu Leu Pro Lys Asn Pro Ser Thr Ser Gln Tyr Phe Phe Gln Leu Gln Glu His Ala Val Arg Glu

Leu Ala Gly Pro Gly Pro Phe Thr Val Phe Ala Pro Leu Ser Ser Phe Asn His Glu Pro Arg Iso Lys Asp Trp Asp Gln Gln Gly Leu Met Ser Gln Val Leu Arg Tyr His Val Val Gly Cys Gln Gln Leu Leu Leu Asp Asn Leu Lys Val Thr Thr Ser Ala Thr Thr Leu Gln Gly Glu Pro Val Ser Iso Ser Val Ser Gln Asp Thr Val Phe Iso Asn Asn Glu Ala Lys Val Leu Ser Ser Asp Iso Iso Ser Thr Asn Gly Val Iso His Val Iso Asp Lys Leu Leu Ser Pro Lys Asn Leu Leu Iso Thr Pro Lys Asp Ala Leu Gly Arq Val Leu Gln Asn Leu Thr Thr Val Ala Ala Asn His Gly Tyr Thr Lys Phe 🕵er Lys Leu Iso Gln Asp Ser Gly Leu Leu Ser Val Iso Thr Asp Ser Iso His Thr ΠJ 🗐ro Val Thr Val Phe Trp Pro Thr Asp Lys Ala Leu Glu Ala Leu Pro Pro Glu Gln 40 ≡Gln Asp Phe Leu Phe Asn Gln Asp Asn Lys Asp Lys Leu Lys Ser Tyr Leu Lys Phe - jac His Val Iso Arg Asp Ser Lys Ala Leu Ala Ser Asp Leu Pro Arg Ser Ala Ser Trp Lys Thr Leu Gln Gly Ser Glu Leu Ser Val Arg Cys Gly Thr Gly Ser Asp Iso Gly Glu Leu Phe Leu Asn Glu Gln Met Cys Arg Phe Iso His Arg Gly Leu Leu Phe Asp Val Gly Val Ala Tyr Gly Iso Asp Cys Leu Leu Met Asn Pro Thr Leu Gly Gly Arg Cys Asp Thr Phe Thr Thr Phe Asp Iso Pro Gly Glu Cys Gly Ser Cys Iso Phe Thr Pro Lys Cys Pro Leu Lys Ser Lys Pro Lys Gly Val Lys Lys Lys Cys Iso Tyr Asn

Pro Leu Pro Phe Arg Arg Asn Val Glu Gly Cys Gln Asn Leu Cys Thr Val Val Iso Gln Thr Pro Arg Cys Cys His Gly Tyr Phe Met Pro Asp Cys Gln Ala Cys Pro Gly Gly Pro Asp Thr Pro Cys Asn Asn Arg Gly Met Cys Arg Asp Leu Tyr Thr Pro Met Gly Gln Cys Leu Cys His Thr Gly Phe Asn Gly Thr Ala Cys Glu Leu Cys Trp His Gly Arg Phe Gly Pro Asp Cys Gln Pro Arg Ser Cys Ser Glu His Gly Gln Cys Asp Glu Gly Iso Thr Gly Ser Gly Glu Cys Leu Cys Glu Thr Gly Trp Thr Ala Ala Ser Cys Asp Thr Pro Thr Ala Val Phe Ala Val Cys Thr Pro Ala Cys Ser Val His Ala thr Cys Thr Glu Asn Asn Thr Cys Val Cys Asn Leu Asn Tyr Glu Gly Asp Gly Iso **\$25** T. 雪hr Cys Thr Val Val Asp Phe Cys Lys Gln Asn Asn Gly Gly Cys Ala Lys Val Ala •Lys Cys Ser Gln Lys Gly Thr Gln Val Ser Cys Ser Cys Lys Lys Gly Tyr Lys Gly Ţ 📆 sp Gly Tyr Ser Cys Iso Glu Iso Asp Pro Cys Ala Asp Gly Val Asn Gly Gly Cys His Glu His Ala Thr Cys Arg Met Thr Gly Pro Gly Lys His Lys Cys Glu Cys Lys Ser His Tyr Val Gly Asp Gly Val Asp Cys Glu Pro Glu Gln Leu Pro Leu Asp Arg Cys Leu Gln Asp Asn Gly Gln Cys His Pro Asp Ala Ser Cys Ala Asp Leu Tyr Phe Gln Asp Thr Thr Val Gly Val Phe His Leu Arg Ser Pro Leu Gly Gln Tyr Lys Leu Thr Phe Asp Lys Ala Lys Glu Ala Cys Ala Lys Glu Ala Ala Thr Iso Ala Thr Tyr

- Asn Gln Leu Ser Tyr Ala Gln Lys Ala Lys Tyr His Leu Cys Ser Ala Gly Trp Leu 1100 1105 1110
- Glu Ser Gly Arg Val Ala Tyr Pro Thr Thr Tyr Ala Ser Gln Lys Cys Gly Ala Asn 1115 1120 1125 1130
- Val Val Gly Iso Val Asp Tyr Gly Ser Arg Ala Asn Lys Ser Glu Met Trp Asp Val 1135 1140 1145 1150
- Phe Cys Tyr Arg Met Lys Asp Val Asn Cys Thr Cys Lys Ala Gly Tyr Val Gly Asp 1155 1160 1165 1170
- Gly Phe Ser Cys Ser Gly Asn Leu Leu Gln Val Leu Met Ser Phe Pro Ser Leu Thr 1175 1180 1185 1190
- Asn Phe Leu Thr Glu Val Leu Ala Phe Ser Lys Ser Ser Ala Arg Gly Gln Ala Phe 1195 1200 1205
- Leu Lys His Leu Thr Asp Leu Ser Iso Arg Gly Thr Leu Phe Val Pro Gln Asn Ser 1210 1225
- Gly Leu Pro Gly Asn Lys Ser Leu Ser Gly Arg Asp Iso Glu His His Leu Thr Asn 1235 1240 1245
- Wal Asn Val Ser Phe Tyr Asn Asp Leu Val Asn Gly Thr Phe Leu Arg Thr Met Leu
 1250 1265
- Gly Ser Gln Leu Leu Iso Thr Phe Ser Gln Asp Gln Leu His Gln Glu Thr Arg Phe 1270 1275 1280 1285
- Wal Asp Gly Arg Ser Iso Leu Gln Trp Asp Iso Iso Ala Ala Asn Gly Iso Leu His 1290 1295 1300
 - Iso Iso Ser Glu Pro Leu Arg Ala Pro Pro Thr Ala Ala Thr Ala Ala His Ser Gly
 1305 1310 1315 1320
 - Leu Gly Thr Gly Iso Phe Cys Ala Val Val Leu Val Thr Gly Ala Iso Ala Leu Ala 1325 1330 1335 1340
 - Ala Tyr Ser Tyr Phe Arg Leu Lys Gln Arg Thr Thr Gly Phe Gln Arg Phe Asp Gln 1345 1350 1350 1360
 - Lys Arg Thr Leu Met Ser Trp Leu Leu Ala Ser Ser Ser Pro Arg Iso Ser Gln Thr 1365 1370 1375 1380
 - Leu Cys Met Arg Pro Gln Arg Arg His Pro Gln Ser Pro Pro Val Thr Pro Ser Gln 1385 1390 1395

Thr Leu Glu Asn Arg Iso Trp Arg Thr Ala Thr Leu Trp Gly His Cys Gly Pro Asp 1400 1405 1410 1415

Met Arg Ser Gln Gln Ala Thr Thr Val Thr Val Pro Arg 1420 1425 1430

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 3
<211> 20
<212> DNA
<213> Rattus norvegicus
<220>
<400> Primer 208F
```

CCNTTYACNG TNTTYGCICC

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 4
<211> 21
<212> DNA
<213> Rattus norvegicus
<220>
<400> Primer GSP-GT81R
```

GGCATACGTA GTCGGGTAGG C

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 5
<211> 24
<212> DNA
<213> Homo sapiens
<220>
<400> Primer BAB1F
```

TCAATATAAT CTGGCGAATG CAAT

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 6
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<400> Primer 8R
```

GGTGCCAGCT GAAGAGTACA A

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 7
<211> 24
<212> DNA
<213> Homo sapiens
<220>
<400> Primer HSP2R
```

AGTTCCGAAT GGGCAGGTCA GCTC

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 8
<211> 6
<212> PRT
<213> Rattus norvegicus
<220>
<400> HARE peptide GT-68

Pro Leu Gly Gln Tyr Lys
1 5
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 9
<211> 10
<212> PRT
<213> Rattus norvegicus
<220>
<400> HARE Peptide GT-81
Ala Tyr Pro Thr Thr Tyr Ala Ser Gln Lys
                5
                                     10
```

```
V1 DSMFEGEO. OFFCGE
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 10
<211> 16
<212> PRT
<213> Rattus norvegicus
<220>
<400> HARE peptide GT-123
Val Leu Gln Asp Leu Thr Thr Val Ala Ala Asn His Gly Tyr Thr Lys
1 5 10 15

In the control of the
```

```
<110> Weigel et al.
       <120> Identification of Hyaluronan Receptor for Endocytosis
        <130> 5820.603
       <140> Not Yet Assigned
        <141> Herewith
        <160> 57
       <170> WordPerfect 8.0 *Software*
        <210> 11
       <211> 18
       <212> PRT
      <213> Rattus norvegicus
      <220>
      <400> HARE peptide GT-139
      Gln Leu Tyr Val Asn Glu Ala Pro Iso Asp Tyr Thr Asn Val Ala Thr Asp Lys
                                                                                                                                                                                                                                                                          10
                                                                                                                                                                                                                                                                                                                                                                                                                           15
Dye reside of the control of the con
```

```
<110> Weigel et al.
       <120> Identification of Hyaluronan Receptor for Endocytosis
       <130> 5820.603
       <140> Not Yet Assigned
       <141> Herewith
       <160> 57
       <170> WordPerfect 8.0 *Software*
       <210> 12
       <211> 22
       <212> PRT
     <213> Rattus norvegicus
      <220>
      <400> HARE peptide GT-208
     Leu Ala Gly Pro Gly Pro Phe Thr Val Phe Ala Pro Leu Ser Ser Phe Asn His
     1
                                                                                                                                                                                                                                                              10
                                                                                                                                                                                                                                                                                                                                                                                                       15
  ar{\mathbf{G}}lu Pro Arg
  20
The first could find the first first
```

```
<110> Weigel et al.
 <120> Identification of Hyaluronan Receptor for Endocytosis
 <130> 5820.603
 <140> Not Yet Assigned
 <141> Herewith
 <160> 57
 <170> WordPerfect 8.0 *Software*
 <210> 13
 <211> 12
 <212> PRT
 <213> Rattus norvegicus
 <220>
 <400> HARE peptide 1
Asp Iso Leu Arg Tyr His Val Val Leu Gly Glu Lys
oskese . Ithes
```

```
/< V1 COMFROND OFFICE
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 14
<211> 6
<212> PRT
<213> Rattus norvegicus
<220>
<400> HARE peptide 3

Val Leu Glu Iso Gln Lys
1 5
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 15
<211> 17
<212> PRT
<213> Rattus norvegicus
<220>
<400> HARE peptide 5
```

Leu Glu Ala Leu Pro Glu Gln Gln Asp Phe Leu Phe Asn Gln Asp Asn Lys 1 5 10 15

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 16
<211> 20
<212> DNA
<213> Rattus norvegicus
<220>
<400> Primer 123R
```

TAICCRTGRT TNGCNGCNAC

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 17
<211> 20
<212> DNA
<213> Rattus norvegicus
<220>
<400> Primer 123F
```

GTNGCNGCNA AYCAYGGITA

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 18
<211> 20
<212> DNA
<213> Rattus norvegicus
<220>
<400> Primer 81R
```

GCRTAIGTNG TNGGRTANGC

<110> Weigel et al. <120> Identification of Hyaluronan Receptor for Endocytosis <130> 5820.603 <140> Not Yet Assigned <141> Herewith <160> 57 <170> WordPerfect 8.0 *Software* <210> 19 <211> 21 <212> DNA <213> Rattus norvegicus <220> <400> Primer GSP-1R

CTCCAAACAC GGGTTGATTT C

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 20
<211> 21
<212> DNA
<213> Rattus norvegicus
<220>
<400> Primer GSP-2R
```

TGGGGTGGTT CTTTTACAGT C

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 21
<211> 30
<212> DNA
<213> Rattus norvegicus
<220>
<400> Primer GSP-5F (EcoRI)
```

TGGTGGAATT CTTTACCAAG TCTACTCACC

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 22
<211> 21
<212> DNA
<213> Rattus norvegicus
<220>
<400> Primer GSP-1R (AsnI)
```

CTCCAAACAC GGATTAATTT C

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 23
<211> 21
<212> DNA
<213> Rattus norvegicus
<220>
<400> Primer GSP-1F (AsnI)
```

GAAATTAATC CGTGTTTGGA G

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 24
<211> 4576
<212> DNA
<213> Homo sapiens
<220>
<400> HARE cDNA
```

ATTCAATATA	ATCTGGCGAA	TGCAATTGAG	GCTGCCGATG	CCTACACAGT	GTTTGCTCCA	60
AACAACAATG			GAGAAGAAAG	TCTTGTCTCT	AGAGGAGGAC	120
GTCCTCCGGT	ATCATGTGGT	CCTGGAGGAG	AAACTCCTGA	AGAATGACCT	GCACAATGGC	180
ATGCATCGTG	AGACCATGCT	GGGTTTCTCC	TATTTCCTTA	GCTTCTTTCT	CCATAATGAC	240
CAGCTCTATG	TAAATGAGGC	TCCAATAAAC	TACACCAATG	TAGCCACTGA	TAAGGGAGTG	300
TATCCATGGCT	TGGGAAAAGT	TCTGGAAATT	CAGAAGAACA	GATGTGATAA	TAATGACACT	360
ACTATTATAC	GAGGAAGATG	TAGGACATGC	TCCTCAGAGC	TGACCTGCCC	ATTCGGAACT	420
AAATCTCTAG		GAGGAGATGC	ATCTATACCT	CCTATTTCAT	GGGAAGACGA	480
ACCCTGTTTA	TTGGGTGCCA	GCCAAAATGT	GTGAGAACCG	TCATTACGAG	AGAATGCTGT	540
UGCCGGCTTCT	TTGGCCCCCA	ATGCCAGCCC	TGTCCAGGGA	ATGCCCAGAA	TGTCTGCTTT	600
_GGTAATGGCA		TGGAGTGAAT	GGCACAGGTG	TGTGTGAGTG	TGGGGAGGC	660
_a TTCAGCGGCA	CAGCCTGCGA	GACCTGCACC	GAGGGCAAGT	ACGGCATCCA	CTGTGACCAA	720
_GCATGTTCTT	GTGTCCATGG	GAGATGCAAC	CAAGGACCCT	TGGGAGATGG	CTCCTGTGAC	780
#TGTGATGTTG		AGTGCATTGT	GACAATGCAA	CCACAGAAGA	CAACTGCAAT	840
GGGACATGCC		CAACTGCCTC	ACCAACTCAG	ATGGTACAGC	TTCATGCAAG	900
TGTGCAGCAG	GATTCCAAGG	AAACGGGACC	ATCTGCACAG	CAATCAATGC	CTGTGAGATC	960
AGCAATGGAG	GTTGCTCTGC	CAAGGCTGAC	TGTAAGAGAA	CCACCCCAGG	AAGGCGAGTG	1020
FGCACGTGCA		CACGGGTGAT	GGCATTGTGT	GCCTGGAAAT	CAACCCGTGT	1080
	ATGGTGGCTG	TGACAAGAAT	GCGGAGTGCA	CACAGACAGG	ACCCAACCAG	1140
	ACTGTTTGCC	AGCATACACT	GGAGATGGAA	AGGTCTGCAC	ACTCATCAAT	1200
	CTAAAAATGG	CGGCTGTAGT	GAATTTGCCA	TCTGCAACCA	CACTGGGCAA	1260
GTAGAAAGGA	CTTGTACTTG	CAAGCCAAAC	TACATTGGAG	ATGGATTTAC	CTGCCGCGGC	1320
	AGGAGCTTCC	CAAGAACCCG	AAAACTTCCC	AGTATTTCTT	CCAGTTGCAG	1380
GAGCATTTCG	TGAAAGATCT	GGTCGGCCCA	GGCCCCTTCA		ACCTTTATCT	1440
	ATGAGGAAGC	TCGGGTTAAA	GACTGGGACA	AATACGGTTT	AATGCCCCAG	1500
	ACCATGTGGT	CGCCTGCCAC	CAGCTGCTTC	TGGAAAACCT	GAAATTGATC	1560
TCAAATGCTA		AGGAGAGCCA	ATAGTCATCT	CCGTCTCTCA	GAGCACGGTG	1620
TATATAAACA	ATAAGGCTAA	GATCATATCC	AGTGATATCA	TCAGTACTAA	TGGGATTGTT	1680
	ACAAATTGCT	ATCTCCCAAA	AATTTGCTTA	TCACTCCCAA	AGACAACTCT	1740
	TGCAAAATCT	TACGACTTTG	GCAACAAACA	ATGGCTACAT	CAAATTTAGC	1800
	AGGACTCAGG	TTTGCTGAGT			CACCCCAGTC	1860
ACTCTCTTCT	GGCCCACCGA	CCAAGCCCTC	CATGCCCTAC	CTGCTGAACA	ACAGGACTTC	1920

OMOMMONNO						
CTGTTCAAC	C AAGACAACAA	A GGACAAGCTO	G AAGGAGTATI	TGAAGTTTCA	TGTGATACGA	1980
GATGCCAAGC	TITITAGCTG1	' GGATCTTCCC	C ACATCCACTO	G CCTGGAAGAC	CCTGCAAGGT	2040
	GTGTGAAATG		C AGGGACATCO	GTGACCTCTT	TCTGAATGGC	2100
CAAACCTGCA	GAATTGTGCA	GCGGGAGCTC	TTGTTTGACC	TGGGTGTGGC	CTACGGCATT	2160
GACTGTCTGC		CACCCTGGGG	G GGCCGCTGTG	ACACCTTTAC	TACTTTCGAT	2220
GCCTCGGGG	AGTGTGGGAG	CTGTGTCAAI	ACTCCCAGCT	' GCCCAAGGTG	GAGTAAACCA	2280
AAGGGTGTGA	AGCAGAAGTG	TCTCTACAAC	CTGCCCTTCA	AGAGGAACCT	GGAAGGCTGC	2340
CGGGAGCGGT	' GCAGCCTGGT	' GATACAGATC	CCCAGGTGCT	' GCAAGGGCTA	CTTCGGGCGA	2400
GACTGTCAGG	CCTGCCCTGG	AGGACCAGAT	GCCCCGTGTA	ATAACCGGGG	TGTCTGCCTT	2460
GATCAGTACT	' CGGCCACCGG	AGAGTGTAAA	TGCAACACCG	GCTTCAATGG	GACGGCGTGT	2520
GAGATGTGCT	' GGCCGGGGAG	ATTTGGGCCT	' GATTGTCTGC	CCTGTGGCTG	CTCAGACCAC	2580
GGACAGTGCG	ATGATGGCAT	CACGGGCTCC	GGGCAGTGCC	TCTGTGAAAC	GGGGTGGACA	2640
GGCCCCTCGT	' GTGACACTCA	GGCAGTTTTG	CCTGCAGTGT			2700
	GTAAGGAGAA				AGGTGACGGA	2760
	CAGTTGTGGA				AAAGGTGGCC	2820
AGATGCTCCC	AGAAGGGCAC	GAAGGTCTCC	TGCAGCTGCC	AGAAGGGATA		2880
GGGCACAGCT	GCACAGAGAT	AGACCCCTGT	GCAGACGGCC		GTGTCACGAG	2940
CACGCCACCT				GTGAGTGTAA	AAGTCACTAT	3000
GTCGGAGATG	GGCTGAACTG	TGAGCCGGAG	CAGCTGCCCA		CTTACAGGAC	3060
AATGGGCAGT	GCCATGCAGA	CGCCAAATGT	GTCGACCTCC	ACTTCCAGGA	TACCACTGTT	3120
≟GGGGTGTTCC	ATCTACGCTC	CCCACTGGGC		TGACCTTTGA		3180
	CCAACGAAGC			ACCAGCTCTC	CTATGCCCAG	3240
L AAGGCCAAGT		CTCAGCAGGC		CCGGGCGGGT		3300
TACAGCCTTCG	CCTCCCAGAA			GGATAGTGGA		3360
			TTCTGCTATC		TGTGAACTGC	3420
ACCTGCAAGG	TGGGCTATGT	GGGAGATGGC		GTGGGAACCT	GCTGCAGGTC	3480
CTGATGTCCT	TCCCCTCACT		CTGACGGAAG	TGCTGGCCTA	TTCCAACAGC	3540
TCAGCTCGAG		TCTAGAACAC		TGTCCATCCG		3600
TTTGTGCCAC	AGAACAGTGG			TGTCTGGGCG	GGACATCGAG	3660
CACCACCTCG	CCAATGTCAG	CATGTTTTTC	TACAATGACC			3720
CAAACGAGGC	TGGGAAGCAA			AGGACCCACT	CCAACCGACG	3780
GAGACCAGGT	TTGTTGATGG	AAGAGCCATT	CTGCAGTGGG	ACATCTTTGC	CTCCAATGGG	3840
ATCATTCATG	TCATTTCCAG	GCCTTTAAAA	GCACCCCCTG	CCCCCGTGAC	CTTGACCCAC	3900
ACTGGCTTGG	GAGCAGGGAT	CTTCTTTGCC	ATCATCCTGG	TGACTGGGGC	TGTTGCCTTG	3960
GCTGCTTACT	CCTACTTTCG	GATAAACCGG	AGAACAATCG	GCTTCCAGCA	TTTTCACTCC	4020
GAAGAGGACA	TTAATGTTGC	AGCTCTTGGC	AAGCAGCAGC	CTGAGAATAT	CTCGAACCCC	4020
TTGTATGAGA	GCACAACCTC	AGCTCCCCCA	GAACCTTCCT	ACGACCCCTT	CACCCACTCT	4140
GAAGAACGGC	AGCTTGAGGG	CAATGACCCC	TTGAGGACAC	TGTGAGGGCC	TCCACCCCAC	4200
ATGCCAGCCA	TCACTCACTG	CCACCTGGGC	CATCAACTGT	GAATTCTCAG	CACCACTTCC	4200
CTTTTAGGAA	CGTAAAGTCC	TTTAAGCACT	CAGAAGCCAT	ACCTCATCTC	TCTCCCTCAT	
CTGGGGGTTG	TTTCTGTGGG	TGAGAGATGT	GTTGCTGTGC	CCACCCAGTA	CACCTTCCTC	4320
CTCTGACCCT	TTGGCTCTTC	TTCCTTTGTA	CTCTTCAGCT	GGCACCTGCT		4380
CTACATGATG	GGTAACTGTG	ATCTTTCTTC	CCTGTTAGAT	TGTAACCCTC	CCTCTTCTGCC	4440
TCCCAGCCCC	TAGCCCAGTG	CCTGACACAG	GAACTGTGCA	CAATAAACCIC	TTATCCAACA	4500
GAAACAAAGT	CAACAG	- 3 - 01 101 101 10	011101010CA	CHAINAGGI	LIMIGGAACA	4560 4576
	-					4576

- <110> Weigel et al.
- <120> Identification of Hyaluronan Receptor for Endocytosis
- <130> 5820.603
- <140> Not Yet Assigned
- <141> Herewith
- <160> 57
- <170> WordPerfect 8.0 *Software*
- <210> 25
- <211> 1394
- <212> PRT
- <213> Homo sapiens
- <220>
- <400> HARE amino acid sequence
- Iso Gln Tyr Asn Leu Ala Asn Ala Iso Glu Ala Ala Asp Ala Tyr Thr Val Phe Ala 1 10 Pro Asn Asn Asn Ala Iso Glu Asn Tyr Iso Arg Glu Lys Lys Val Leu Ser Leu Glu 25 30 35

 Glu Asp Val Leu Arg Tyr His Val Val Leu Glu Glu Lys Leu Leu Lys Asn Asp Leu 40 40 45 50 55 His Asn Gly Met His Arg Glu Thr Met Leu Gly Phe Ser Tyr Phe Leu Ser Phe Phe 60 65 70 75
 Leu His Asn Asp Gln Leu Tyr Val Asn Glu Ala Pro Iso Asn Tyr Thr Asn Val Ala L Pos 80 85 90 95 Thr Asp Lys Gly Val Iso His Gly Leu Gly Lys Val Leu Glu Iso Gln Lys Asn Arg 100 105 110 Cys Asp Asn Asp Thr Thr Iso Iso Arg Gly Arg Cys Arg Thr Cys Ser Ser Glu 115 120 Leu Thr Cys Pro Phe Gly Thr Lys Ser Leu Gly Asn Glu Lys Arg Arg Cys Iso Tyr 135 140 145 Thr Ser Tyr Phe Met Gly Arg Arg Thr Leu Phe Iso Gly Cys Gln Pro Lys Cys Val 155 160 165 170 Arg Thr Val Iso Thr Arg Glu Cys Cys Ala Gly Phe Phe Gly Pro Gln Cys Gln Pro 175 180 185 190

Cys Pro Gly Asn Ala Gln Asn Val Cys Phe Gly Asn Gly Iso Cys Leu Asp Gly Val Asn Gly Thr Gly Val Cys Glu Cys Gly Glu Gly Phe Ser Gly Thr Ala Cys Glu Thr Cys Thr Glu Gly Lys Tyr Gly Iso His Cys Asp Gln Ala Cys Ser Cys Val His Gly Arg Cys Asn Gln Gly Pro Leu Gly Asp Gly Ser Cys Asp Cys Asp Val Gly Trp Arg Gly Val His Cys Asp Asn Ala Thr Thr Glu Asp Asn Cys Asn Gly Thr Cys His Thr Ser Ala Asn Cys Leu Thr Asn Ser Asp Gly Thr Ala Ser Cys Lys Cys Ala Ala Gly Phe Gln Gly Asn Gly Thr Iso Cys Thr Ala Iso Asn Ala Cys Glu Iso Ser Asn Gly ŭ Gly Cys Ser Ala Lys Ala Asp Cys Lys Arg Thr Thr Pro Gly Arg Arg Val Cys Thr Cys Lys Ala Gly Tyr Thr Gly Asp Gly Iso Val Cys Leu Glu Iso Asn Pro Cys Leu Glu Asn His Gly Gly Cys Asp Lys Asn Ala Glu Cys Thr Gln Thr Gly Pro Asn Gln Ŧ Ala Ala Cys Asn Cys Leu Pro Ala Tyr Thr Gly Asp Gly Lys Val Cys Thr Leu Iso Asn Val Cys Leu Thr Lys Asn Gly Gly Cys Ser Glu Phe Ala Iso Cys Asn His Thr Gly Gln Val Glu Arg Thr Cys Thr Cys Lys Pro Asn Tyr Iso Gly Asp Gly Phe Thr Cys Arg Gly Ser Iso Tyr Gln Glu Leu Pro Lys Asn Pro Lys Thr Ser Gln Tyr Phe Phe Gln Leu Gln Glu His Phe Val Lys Asp Leu Val Gly Pro Gly Pro Phe Thr Val Phe Ala Pro Leu Ser Ala Ala Phe Asp Glu Glu Ala Arg Val Lys Asp Trp Asp Lys

Tyr Gly Leu Met Pro Gln Val Leu Arg Tyr His Val Val Ala Cys His Gln Leu Leu Leu Glu Asn Leu Lys Leu Iso Ser Asn Ala Thr Ser Leu Gln Gly Glu Pro Iso Val Iso Ser Val Ser Gln Ser Thr Val Tyr Iso Asn Asn Lys Ala Lys Iso Iso Ser Ser Asp Iso Iso Ser Thr Asn Gly Iso Val His Iso Iso Asp Lys Leu Leu Ser Pro Lys Asn Leu Leu Iso Thr Pro Lys Asp Asn Ser Gly Arg Iso Leu Gln Asn Leu Thr Thr Leu Ala Thr Asn Asn Gly Tyr Iso Lys Phe Ser Asn Leu Iso Gln Asp Ser Gly Leu Leu Ser Val Iso Thr Asp Pro Iso His Thr Pro Val Thr Leu Phe Trp Pro Thr Asp Gln Ala Leu His Ala Leu Pro Ala Glu Gln Gln Asp Phe Leu Phe Asn Gln Asp Asn <u>-</u> Ť Lys Asp Lys Leu Lys Glu Tyr Leu Lys Phe His Val Iso Arg Asp Ala Lys Val Leu ∉Ala Val Asp Leu Pro Thr Ser Thr Ala Trp Lys Thr Leu Gln Gly Ser Glu Leu Ser 🎁 al Lys Cys Gly Ala Gly Arg Asp Iso Gly Asp Leu Phe Leu Asn Gly Gln Thr Cys 85 Arg Iso Val Gln Arg Glu Leu Leu Phe Asp Leu Gly Val Ala Tyr Gly Iso Asp Cys Leu Leu Iso Asp Pro Thr Leu Gly Gly Arg Cys Asp Thr Phe Thr Thr Phe Asp Ala Ser Gly Glu Cys Gly Ser Cys Val Asn Thr Pro Ser Cys Pro Arg Trp Ser Lys Pro Lys Gly Val Lys Gln Lys Cys Leu Tyr Asn Leu Pro Phe Lys Arg Asn Leu Glu Gly Cys Arg Glu Arg Cys Ser Leu Val Iso Gln Iso Pro Arg Cys Cys Lys Gly Tyr Phe

Gly Arg Asp Cys Gln Ala Cys Pro Gly Gly Pro Asp Ala Pro Cys Asn Asn Arg Gly Val Cys Leu Asp Gln Tyr Ser Ala Thr Gly Glu Cys Lys Cys Asn Thr Gly Phe Asn Gly Thr Ala Cys Glu Met Cys Trp Pro Gly Arg Phe Gly Pro Asp Cys Leu Pro Cys Gly Cys Ser Asp His Gly Gln Cys Asp Asp Gly Iso Thr Gly Ser Gly Gln Cys Leu Cys Glu Thr Gly Trp Thr Gly Pro Ser Cys Asp Thr Gln Ala Val Leu Pro Ala Val Cys Thr Pro Pro Cys Ser Ala His Ala Thr Cys Lys Glu Asn Asn Thr Cys Glu Cys Asn Leu Asp Tyr Glu Gly Asp Gly Iso Thr Cys Thr Val Val Asp Phe Cys Lys Gln O Asp Asn Gly Gly Cys Ala Lys Val Ala Arg Cys Ser Gln Lys Gly Thr Lys Val Ser īŪ Eys Ser Cys Gln Lys Gly Tyr Lys Gly Asp Gly His Ser Cys Thr Glu Iso Asp Pro Cys Ala Asp Gly Leu Asn Gly Gly Cys His Glu His Ala Thr Cys Lys Met Thr Gly Fro Gly Lys His Lys Cys Glu Cys Lys Ser His Tyr Val Gly Asp Gly Leu Asn Cys Glu Pro Glu Gln Leu Pro Iso Asp Arg Cys Leu Gln Asp Asn Gly Gln Cys His Ala Asp Ala Lys Cys Val Asp Leu His Phe Gln Asp Thr Thr Val Gly Val Phe His Leu Arg Ser Pro Leu Gly Gln Tyr Lys Leu Thr Phe Asp Lys Ala Arg Glu Ala Cys Ala Asn Glu Ala Ala Thr Met Ala Thr Tyr Asn Gln Leu Ser Tyr Ala Gln Lys Ala Lys Tyr His Leu Cys Ser Ala Gly Trp Leu Glu Thr Gly Arg Val Ala Tyr Pro Thr Ala

Phe Ala Ser Gln Asn Cys Gly Ser Gly Val Val Gly Iso Val Asp Tyr Gly Pro Arg

Pro Asn Lys Ser Glu Met Trp Asp Val Phe Cys Tyr Arg Met Lys Asp Val Asn Cys

Thr Cys Lys Val Gly Tyr Val Gly Asp Gly Phe Ser Cys Ser Gly Asn Leu Leu Gln

Val Leu Met Ser Phe Pro Ser Leu Thr Asn Phe Leu Thr Glu Val Leu Ala Tyr Ser

Asn Ser Ser Ala Arg Gly Arg Ala Phe Leu Glu His Leu Thr Asp Leu Ser Iso Arg

Gly Thr Leu Phe Val Pro Gln Asn Ser Gly Leu Gly Glu Asn Glu Thr Leu Ser Gly

Arg Asp Iso Glu His His Leu Ala Asn Val Ser Met Phe Phe Tyr Asn Asp Leu Val

Asn Gly Thr Thr Leu Gln Thr Arg Leu Gly Ser Lys Leu Leu Iso Thr Ala Ser Gln

Asp Pro Leu Gln Pro Thr Glu Thr Arg Phe Val Asp Gly Arg Ala Iso Leu Gln Trp
1260 1265 1270

Asp Iso Phe Ala Ser Asn Gly Iso Iso His Val Iso Ser Arg Pro Leu Lys Ala Pro 1275 1280 1285 1290

Tro Ala Pro Val Thr Leu Thr His Thr Gly Leu Gly Ala Gly Iso Phe Phe Ala Iso 1295 1300 1305 1310

Iso Leu Val Thr Gly Ala Val Ala Leu Ala Ala Tyr Ser Tyr Phe Arg Iso Asn Arg

Arg Thr Iso Gly Phe Gln His Phe Glu Ser Glu Glu Asp Iso Asn Val Ala Ala Leu

Gly Lys Gln Gln Pro Glu Asn Iso Ser Asn Pro Leu Tyr Glu Ser Thr Thr Ser Ala

Pro Pro Glu Pro Ser Tyr Asp Pro Phe Thr Asp Ser Glu Glu Arg Gln Leu Glu Gly

Asn Asp Pro Leu Arg Thr Leu

		_	,
		<	•
		<	
			ì
		<	
		•	
i	=	Ť	r
	=	Н	
	7	Ā	
į	l	÷	
=	- :	æ	
Ę	ì	Ē	
•		~	
=	Ξ.	=	
	=		
ï	į	Ē	
	-	-	
	Ē	7	
,	-	-	
		ã	
	<u>.</u>	Ë	
1	-	ξ,	
:	=	ë	
-			
=	×	z.	
		ā	
	=	_	
-	I I III HOLD II	=	
	=		
Ī	i	8	
	=	Ŧ	
	F	=	

<110>	Weigel et al.
<120>	Identification of Hyaluronan Receptor for Endocytosis
<130>	5820.603
<140>	Not Yet Assigned
<141>	Herewith
<160>	57
<170>	WordPerfect 8.0 *Software*
<210>	26
<211>	21
<212>	DNA
<213>	Homo sapiens
<220>	
<100×	Drimar RAR3F

TGAGGAAGC TCGGGTTAAA G

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 27
<211> 18
<212> PRT
<213> Rattus norvegicus
<220>
<400> HARE N-terminal peptide (major)
```

Ser Leu Pro Ser Leu Leu Thr Arg Leu Glu Gln Met Pro Asp Tyr Ser Iso Phe

5 10 15

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 28
<211> 17
<212> PRT
<213> Rattus norvegicus
<220>
<400> HARE N-terminal peptide (minor)
```

Xxx Xxx Val Iso His Gly Leu Glu Lys Val Xxx Xxx Iso Gln Lys Asn Arg
15

F
10

```
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 29
<211> 24
<212> DNA
<213> Homo sapiens
<220>
<400> Primer BAB4R

GATGTAGCCA TTGTTTGTTG CCAA

GATGTAGCA TTGTTGTTG CCAA

GA
```

<110> Weigel et al.

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 30
<211> 24
<212> DNA
<213> Homo sapiens
<220>
<400> Primer BAB6F
```

```
<110> Weigel et al.
 <120> Identification of Hyaluronan Receptor for Endocytosis
 <130> 5820.603
 <140> Not Yet Assigned
 <141> Herewith
 <160> 57
 <170> WordPerfect 8.0 *Software*
 <210> 32
 <211> 24
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> Primer BAB1OR
GGTGAGGCAG TTGGCGCTGG TATG
                                                                             24
THU WOLD FIND OF
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 33
<211> 24
<212> DNA
<213> Homo sapiens
<220>
<400> Primer HSP2F
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 34
<211> 24
<212> DNA
<213> Homo sapiens
<220>
<400> Primer BAB10F
```

TATACCAGCG CCAACTGCCT CACC

```
STTTAACCCG AGCTTCCTCA T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T

O

T
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 35
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<400> Primer HSP3R
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 36
<211> 24
<212> DNA
<213> Homo sapiens
<220>
<400> Primer BAB9F
```

CAAGTACGGC ATCCACTGTG ACCA

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 38
<211> 24
<212> DNA
<213> Homo sapiens
<220>
<400> Primer 5F
```

GGCTACTTCG GGCGAGACTG TCAG

24

```
<110> Weigel et al.
 <120> Identification of Hyaluronan Receptor for Endocytosis
 <130> 5820.603
 <140> Not Yet Assigned
 <141> Herewith
 <160> 57
 <170> WordPerfect 8.0 *Software*
 <210> 40
 <211> 21
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> Primer 8F
TTGTACTCTT CAGCTGGCAC C
                                                                         21
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 41
<211> 5
<212> PRT
<213> Homo sapiens
<220>
<400> HARE peptide PR1822

**Example Assigned

*
```

```
<110> Weigel et al.
 <120> Identification of Hyaluronan Receptor for Endocytosis
 <130> 5820.603
 <140> Not Yet Assigned
 <141> Herewith
 <160> 57
 <170> WordPerfect 8.0 *Software*
 <210> 43
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <220>
 <400> HARE peptide PR1825-1st
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 44
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<400> HARE peptide PR1825-2nd
```

```
<110> Weigel et al.
 <120> Identification of Hyaluronan Receptor for Endocytosis
 <130> 5820.603
 <140> Not Yet Assigned
 <141> Herewith
 <160> 57
 <170> WordPerfect 8.0 *Software*
 <210> 45
 <211> 23
 <212> PRT
 <213> Homo sapiens
 <220>
 <400> HARE peptide PR1826
Asp Leu Val Gly Pro Gly Pro Phe Thr Val Phe Ala Pro Leu Ser Ala Ala Phe Asp
                                                          15
                                      10
П
₽Glu Glu Ala Arg
120
```

```
A+Paso o+sol
```

```
<110> Weigel et al.
 <120> Identification of Hyaluronan Receptor for Endocytosis
 <130> 5820.603
 <140> Not Yet Assigned
 <141> Herewith
 <160> 57
 <170> WordPerfect 8.0 *Software*
 <210> 46
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <220>
 <400> PR1869 - 1st
☐

■ In Leu Thr Ser Pro Phe Gly Thr Lys
```

```
<110> Weigel et al.
             <120> Identification of Hyaluronan Receptor for Endocytosis
              <130> 5820.603
              <140> Not Yet Assigned
              <141> Herewith
              <160> 57
              <170> WordPerfect 8.0 *Software*
              <210> 47
              <211> 6
              <212> PRT
              <213> Homo sapiens
              <220>
              <400> HARE peptide PR1869 - 2nd
Met Pro Gln Val Leu Arg
5

Leu Arg
1

Leu Ar
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 50
<211> 7
<212> PRT
<213> Homo sapiens
<220>
<400> HARE peptide PR1872
```

Tal Iso His Gly Leu Gly Lys
5

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 51
<211> 6
<212> PRT
<213> Homo sapiens
<220>
<400> HARE tryptic peptide

Output

Graphys Gly Tyr Phe Gly Arg

From

Graphys Gly Tyr Phe Gly Arg

From

Graphys Gly Tyr Phe Gly Arg

Graphys Gly Tyr Phe
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 52
<211> 6
<212> PRT
<213> Homo sapiens
<220>
<400> HARE tryptic peptide

Output

Displays Phe His Val Iso Arg

Di
```

<120> Identification of Hyaluronan Receptor for Endocytosis

<110> Weigel et al.

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 54
<211> 10
<212> PRT
<213> Homo sapiens
<220>
<400> HARE tryptic peptide
```

```
<110> Weigel et al.
<120> Identification of Hyaluronan Receptor for Endocytosis
<130> 5820.603
<140> Not Yet Assigned
<141> Herewith
<160> 57
<170> WordPerfect 8.0 *Software*
<210> 55
<211> 11
<212> PRT
<213> Homo sapiens
<220>
<400> HARE tryptic peptide

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly Ser Glu Leu Ser Val Lys

The Leu Gln Gly
```

```
<110> Weigel et al.
         <120> Identification of Hyaluronan Receptor for Endocytosis
          <130> 5820.603
         <140> Not Yet Assigned
         <141> Herewith
          <160> 57
          <170> WordPerfect 8.0 *Software*
          <210> 56
          <211> 15
         <212> PRT
        <213> Homo sapiens
         <220>
        <400> HARE tryptic peptide
The phase of the second of the
```



```
<110> Weigel et al.
  <120> Identification of Hyaluronan Receptor for Endocytosis
  <130> 5820.603
  <140> Not Yet Assigned
  <141> Herewith
  <160> 57
  <170> WordPerfect 8.0 *Software*
  <210> 57
  <211> 10
  <212> PRT
  <213> Homo sapiens
  <220>
  <400> HARE tryptic peptide
Tys Tyr Gly Leu Met Pro Gln Val Leu Arg
5 10
```