Practice on stresses and static admissibility

Let us consider the continuum body Ω in its present configuration where

$$\Omega = \{ 0 \le x_1 \le a; 0 \le x_2 \le b; 0 \le x_3 \le b; \}$$
 (1)

and $\partial\Omega$ is boundaries of the domain Ω .

Question 1: What are the surface tractions over the boundary $\partial\Omega$ when the stress state is $\underline{\sigma} = a(\underline{e}_3 \times \underline{e}_3)$?

Figure 1: Parallelepiped subjected to $\underline{\sigma} = a(\underline{e}_3 \times \underline{e}_3)$.

Answer 1: $\underline{\underline{\sigma}} = a(\underline{e}_3 \times \underline{e}_3)$ has a physical meaning that uniform traction of magnitude a about the axis 3. Normal surface traction over surfaces with normal \underline{e}_3 . In this case, a is uniform to a pressure with unit Pa or MPa (see Fig. 1).

Question 2: What are the surface tractions over the boundary $\partial\Omega$ when the stress state is $\underline{\sigma}(\underline{x}) = \tau(\underline{e}_1 \otimes \underline{e}_3 + \underline{e}_3 \otimes \underline{e}_1)$?

Answer 2: $\underline{\underline{\sigma}}(\underline{x}) = \tau(\underline{e}_1 \otimes \underline{e}_3 + \underline{e}_3 \otimes \underline{e}_1)$ has a physical meaning that shear tractions over the surfaces with normals \underline{e}_1 and \underline{e}_3 . Fig. 2 shows a parallelepiped under shear stress.

Figure 2: Parallelepiped subjected to $\underline{\underline{\sigma}}(\underline{x}) = \tau(\underline{e}_1 \otimes \underline{e}_3 + \underline{e}_3 \otimes \underline{e}_1)$.