Quiz 7

(1) Quiz 7: Complex roots of unity and linear group actions

ESSAY marked out of 1.0 penalty 0.10 HTML editor

Consider the (multiplicative) group of n-th complex roots of unity

$$U_n(\mathbb{C}) = \{ z \in \mathbb{C} \mid z^n = 1 \}$$

and let μ_n be the first complex root of unity. Notice that $U_n(\mathbb{C}) = \langle \mu_n \rangle$.

- (a) (Complex roots of unity and Galois groups) Consider the map $\mathbb{C} \to \mathbb{C}$ given by $z \mapsto z^i$. We can restrict this map to $U_n(\mathbb{C})$ and below you will study the properties of this "power map" on the group $U_n(\mathbb{C})$.
 - i. Let S be the set of group homomorphism $U_n(\mathbb{C}) \to U_n(\mathbb{C})$. Show that the map $z \mapsto z^i$ is in S. (So you need to show that the image is contained in $U_n(\mathbb{C})$ and that this is a group homomorphism). We will call α_i the map $\alpha_i : U_n(\mathbb{C}) \to U_n(\mathbb{C})$ given by $z \mapsto z^i$.
 - ii. Consider $\alpha_i, \alpha_j \in S$. Show that S is closed under composition of maps.
 - iii. Show that α_i is a group automorphism if and only if i and n are coprime.
 - iv. Consider the set G of automorphisms of $U_n(\mathbb{C})$, so G is the subset of the elements of S that have inverses under function composition. Show that G is a group by showing $G \cong \mathbb{Z}_n^*$.
 - v. Consider μ_8 , the first complex 8th root of unity. Factor t^8-1 completely over $\mathbb Q$ and find the 8th cyclotomic polynomial.
 - vi. Describe the Galois group of $\mathbb{Q}(\mu_8):\mathbb{Q}$.
 - vii. Prove/disprove. For any n the Galois group of $\mathbb{Q}(\mu_n)$: \mathbb{Q} is cyclic.
- (b) (Actions) In the following questions, for ease of notation, we are dropping the index n so $\mu = \mu_n$. Consider the action of the group $U_n(\mathbb{C}) = \langle \mu \rangle$ on the vector space \mathbb{C}^2 given by

$$\mu \cdot (x, y) = (\mu \, x, \overline{\mu} \, y),$$

where the operation on the entries of the vector is multiplication of complex numbers.

- i. Assuming that this is an action, find the vector $\mu^i \cdot (x, y)$.
- ii. Find three vectors in the orbit of (1,1).
- iii. Assuming that this action is a linear action, so that the action of each group element is a linear transformation, find a matrix that represents the map given by the action of μ . So give a matrix for the linear map

$$(x,y) \mapsto (\mu x, \overline{\mu} y).$$

- iv. If the matrix A represents the action of μ , which matrix would represent the action of μ^i ?
- v. Define the action of μ on the polynomial ring $\mathbb{C}[x,y]$ given by

$$\mu \cdot x = \mu \, x, \ \mu \cdot y = \overline{\mu} \, y$$

and extend the action to all polynomials by prescribing that $\mu \cdot p(x,y) = p(\mu \cdot x, \mu \cdot y) = p(\mu \cdot x, \overline{\mu} \cdot y)$. Study the orbit of p(x,y) = xy.

vi. Find at least one element in the stabilizer of p(x,y) = xy.

Information for graders:

Total of marks: 1