

Mensuration I Ex 20.4 Q13

Answer:

```
We have,
```

```
(i) P is the midpoint of AD.
```

Thus AP = PD = 25 cm and AB = CD = 20 cm

From the figure, we observed that,

Area of Δ APB = Area of Δ PDC

Area of \triangle APB = $\frac{1}{2}$ x AB x AP

 $=\frac{1}{2}$ x 20 cm x 25 cm = 250 cm²

Area of \triangle PDC = Area of \triangle APB = 250 cm²

Area of $\triangle RPQ = \frac{1}{2}x$ Base x Height

 $=\frac{1}{2}$ x 25 cm x 10 cm = 125 cm²

Hence,

Sum of the three triangles = $(250 + 250 + 125) \text{ cm}^2$

 $= 625 \text{ cm}^2$

(ii) Area of the rectangle $ABCD = 50 \text{ cm x } 20 \text{ cm} = 1000 \text{ cm}^2$

Area of the rectangle - Sum of the areas of three triangles (There is a mistake in the question; it

should be area of three triangles) $= (1000 - 625) \text{ cm}^2 = 375 \text{ cm}^2$

Mensuration I Ex 20.4 Q14

Answer:

We have,

Join CE, which intersect AD at point E.

Here, AE = ED = BC = 25 m and EC = AB = 30 m

Area of the rectangle ABCE = AB x BC

$$= 30 \text{ m} \times 25 \text{ m}$$

$$= 750 \text{ m}^2$$

Area of
$$\triangle$$
 CED = $\frac{1}{2}$ x EC x ED
= $\frac{1}{2}$ x 30 m x 25 m
= 375 m²

Hence,

Area of the quadrilateral ABCD =
$$(750 + 375) \text{ m}^2$$

= 1125 m^2

Mensuration I Ex 20.4 Q15

Answer:

Join BE.

Area of the rectangle BCDE = CD x DE

 $= 10 \text{ cm x } 12 \text{ cm} = 120 \text{ cm}^2$

Area of
$$\triangle ABE = \frac{1}{2} \times BE \times \text{ height of the triangle}$$

= $\frac{1}{2} \times 10 \text{ cm} \times (20 - 12) \text{ cm}$
= $\frac{1}{2} \times 10 \text{ cm} \times 8 \text{ cm} = 40 \text{ cm}^2$

Hence,

Area of the pentagon $ABCDE = (120 + 40) \text{ cm}^2 = 160 \text{ cm}^2$

********* END ********