Fundamental Principle of Counting

Equinumerousness

Equinumerousness

Definition 1

Let A and B be sets. To say that A is equinumerous to B (denoted $A \approx B$) means that there exists a bijection from A to B.

Examples.

- The sets $\{1,2\}$ and $\{\pi,e\}$ are equinumerous because the function f on $\{1,2\}$ defined by $f(1)=\pi$ and f(2)=e is a bijection from $\{1,2\}$ to $\{\pi,e\}$.
- The set \mathbb{Z} is equinumerous to the set of all even integers $B = \{2k : k \in \mathbb{Z}\}$ because the function $g : \mathbb{Z} \to B$ defined by g(n) = 2n is a bijection.

Equinumerousness (cont')

Proposition 1

Equinumerousness is reflexive, symmetric, and transitive. In other words:

- **1** (Reflexivity) For each set A, we have A is equinumerous to A.
- **2** (Symmetry) For all sets A and B, if A is equinumerous to B, then B is equinumerous to A.
- **3** (Transitivity) For all sets A, B, and C, if A is equinumerous to B and B is equinumerous to C, then A is equinumerous to C.

Number of Elements and Equinumerousness

Definition 2

Let A be a set and let $n \in \omega$. To say that A has n elements means that A is equinumerous to $\{1, \ldots, n\}$.

- A set has 0 elements iff it is empty.
- Saying that A is an n-element set is synonymous to saying that A has n
 elements.

n-element Sets

Proposition 2

Let A be a set and let $n \in \omega$. Then the following are equivalent.

- $oldsymbol{0}$ A has n elements.
- 2 There exist distinct objects a_1, \ldots, a_n such that $A = \{a_1, \ldots, a_n\}$.

Proof. Suppose A has n elements. Then there is a bijection f from $\{1,\ldots,n\}$ to A. Let $a_k=f(k)$ for $k=1,\ldots,n$. Since f is a surjection from $\{1,\ldots,n\}$ to A, we have $A=\{a_1,\ldots,a_n\}$. Since f is an injection, the objects a_1,\ldots,a_n are distinct.

Conversely, suppose there exist distinct objects a_1,\ldots,a_n such that $A=\{a_1,\ldots,a_n\}$. Then $A=\mathrm{Rng}(f)$ where f is a function on $\{1,\ldots,n\}$ defined by $f(k)=a_k$. Since a_1,\ldots,a_n are distinct, f is injective, so f is a bijection from $\{1,\ldots,n\}$ to A, so A has n elements.

Finite and Infinite Sets

Definition 3

Let A be a set.

- To say that A is finite means that there exists $n \in \omega$ such that A has n elements.
- To say that *A* is infinite means that *A* is not finite.

Preliminary Lemmas

Comparing the Sizes of Sets

Lemma A

Let A and B be sets. Suppose that A is equinumerous to B.

- **1** If $s \notin A$ and $t \notin B$, then $A \cup \{s\}$ is equinumerous to $B \cup \{t\}$.
- **2** If $s \in A$ and $t \in B$, then $A \setminus \{s\}$ is equinumerous to $B \setminus \{t\}$.

Comparing the Sizes of Sets (cont')

Lemma B

For all $m,n\in \omega$, if $\{1,\ldots,m\}$ is equinumerous to $\{1,\ldots,n\}$, then m=n.

Key Results

Uniqueness of the Number of Elements

Theorem 4

The number of elements in a finite set is uniquely determined.

• According to the theorem, for each finite set A, there is a unique $n \in \omega$ such that A has n elements; we write $\overline{\overline{A}}$ for the unique n. The notation $\overline{\overline{A}}$ is read the number of elements in A or the cardinality of A.

Subsets of a Finite Set is Finite

Theorem 5

A subset of a finite set is finite and has at most as many elements as the whole set.

A precise rephrase of the theorem is: For each $n \in \omega$,

for each set B, if B has n elements, then for each $A \subseteq B$, A is finite and $\overline{A} \leqslant n$.

Thus one can prove this using induction.

Rigidity Property of Finite Sets

Theorem 6

A finite set cannot be equinumerous to a proper subset of itself.

Proof. Let B be a finite set and let A be a proper subset of B. We wish to show that B is not equinumerous to A. Suppose B is equinumerous to A. Since B is finite, B has n elements for some $n \in \omega$. Since B is equinumerous to A, A also has n elements. Since A is a proper subset of A, $B \setminus A$ is not empty. Let $b \in B \setminus A$ and let $C = A \cup \{b\}$. Then $C \subseteq B$ and C has n+1 elements. Hence by Theorem 13.30, $n+1 \leqslant n$. But n+1 > n. Thus we have reached a contradiction. Therefore B must not be equinumerous to A.