FWER

	True H _i s	False H _i s	Total
Accepted H_i s	U	T	M-R
Rejected H_i s	V	S	R
Total	m_0	$m-m_0$	m

Familywise (type I) error rate:

$$FWER = P(V > 0)$$

Controlling FWER at level α :

$$FWER = P(V > 0) \le \alpha$$

How?

FWER

Familywise (type I) error rate:

$$FWER = P(V > 0)$$

introlling FWFR at level α :

$$FWER = P(V > 0) \le \alpha$$

How?

 $\alpha_1, \dots, \alpha_m$ – significance levels for H_1, \dots, H_m

We have to select them to ensure FWER $\leq \alpha$.

Bonferroni correction

Bonferroni method:

$$\alpha_1 = \dots = \alpha_m = \frac{\alpha}{m}$$

Comparing α_i and p_i is the same as comparing original α and adjusted p-value

$$\tilde{p}_i = \min(1, mp_i)$$

 H_i is rejected when $\tilde{p}_i \leq \alpha$.

Bonferroni correction

Theorem. If H_i is rejected when $p_i \leq \alpha/m$, then FWER $\leq \alpha$.

Proof.

$$\begin{aligned} \text{FWER} &= P(V > 0) = P\left(\bigcup_{i \in M_0} \left\{ p_i \le \frac{\alpha}{m} \right\} \right) \le \\ &\le \sum_{i \in M_0} P\left(p_i \le \frac{\alpha}{m} \right) \le \\ &\le \sum_{i \in M_0} \frac{\alpha}{m} = \frac{m_0}{m} \alpha \le \alpha \end{aligned}$$

50 samples from N(1,1), 150 samples from N(0,1), n=20 H_i : $\mathbb{E}X_i = 0$, H'_i : $\mathbb{E}X_i \neq 0$, one sample t-test

No corrections:

	True H_i s	False H _i s	Total
Accepted H_i s	143	0	143
Rejected <i>H</i> _i s	7	50	57
Total	150	50	200

Bonferroni correction:

	True H_i s	False H_i s	Total
Accepted H_i s	150	19	169
Rejected <i>H</i> _i s	0	31	31
Total	150	50	200

Can we do better?

Bonferroni method:

$$\alpha_1 = \dots = \alpha_m = \frac{\alpha}{m}$$

A more powerful method is possible if we allow α_i s to vary.

Step-down methods

Sorted p-values:

$$p_{(1)} \leq \cdots \leq p_{(m)}$$

 $H_{(1)}, \dots, H_{(m)}$ – corresponding hypotheses

Step-down procedure:

- 1. If $p_{(1)} > \alpha_1$, accept $H_{(1)}, \dots, H_{(m)}$ and stop; otherwise reject $H_{(1)}$ and continue
- 2. If $p_{(2)} > \alpha_2$, accept $H_{(2)}, \dots, H_{(m)}$ and stop; otherwise reject $H_{(2)}$ and continue
- 3. ...

Holm's method

Holm's method – a step-down procedure with

$$\alpha_1 = \frac{\alpha}{m}, \alpha_2 = \frac{\alpha}{m-1}, \dots, \alpha_i = \frac{\alpha}{m-i+1}, \dots, \alpha_m = \alpha$$

Adjusted p-values:

$$\tilde{p}_{(i)} = \min\left(1, \max\left((m-i+1)p_{(i)}, \tilde{p}_{(i-1)}\right)\right)$$

• FWER $\leq \alpha$ is guaranteed

No corrections:

	True H_i s	False H _i s	Total
Accepted H_i s	143	0	143
Rejected <i>H</i> _i s	7	50	57
Total	150	50	200

Bonferroni correction:

	True H _i s	False H _i s	Total
Accepted H_i s	150	19	169
Rejected <i>H</i> _i s	0	31	31
Total	150	50	200

Holm's method:

	True H _i s	False H _i s	Total
Accepted H_i s	150	18	168
Rejected <i>H</i> _i s	0	32	32
Total	150	50	200

Bonferroni correction:

	True H _i s	False H _i s	Total
Accepted H_i s	150	19	169
Rejected <i>H</i> _i s	0	31	31
Total	150	50	200

Holm's method:

	True <i>H</i> _i s	False H _i s	Total
Accepted H_i s	150	18	168
Rejected H_i s	0	32	32
Total	150	50	200

Takeaways about FWER

Control FWER if it's very important not to make ANY type I error

 Use Holm's method instead of Bonferroni to reject more hypotheses FOR FREE