Choosing a Student Model for a Real World Application

Jiří Řihák, Radek Pelánek,

Masaryk University Brno

Research group, Masaryk university Brno

matmat.cz

matmat.cz

- online, free, without ads
- basic arithmetic $+, -, \times, \div$
- 150 000 answers, 2 000 items
- adaptive practice
- importance of response time

Response Time

correct answer to 3×5

Response Time

correct answer to 3×5 in **2** seconds

Response Time

correct answer to 3×5 in **14** seconds

Adaptability

- selection of question targeting 75% success rate
- model based on logistic function Rash model
- parameters difficulties of items and skills of learners
- domain model several skills per learner
- online estimation of parameters Elo rating system
- use of response time

Which aspects of student modeling are most important?

Too complicated?

• Item average - no skill

- Item average no skill
- Basic model one global skill

- Item average no skill
- Basic model one global skill
- Concepts model 5 skills

- Item average no skill
- Basic model one global skill
- Concepts model 5 skills
- Hierarchical model

Response Times

- classic response:
 - \bullet r=0 wrong answer
 - r = 1 correct answer
- use of response time:
 - \bullet r=0 wrong answer
 - ullet $r \in [0,1]$ correct answer

Response Times

- no time
- threshold time
- exponential time
- linear time

Wrong Answers

- many missing answers skips
- long sequences of missing answers
 - adults trying system
 - gaming system
- simple model extension:
 - probability of missing next answer
 - based on number of previous missing answers

Overview

Three aspects of student modeling

- 4 domain models
- 4 response times uses
- with and without utilization of missing answers

Prediction Accuracy

Prediction Accuracy - Time

Comparing models with different time utilization

- models are trained to predict different absolute values
- direct comparison of RMSE is not possible
- AUC use only relative order of prediction
 - linear time use is the best

Estimated Parameters - Difficulties

Correlations of Estimated Parameters

Estimated Parameters

Estimated Parameters - Stability

Conclusion

- response time use have larger impact that domain modeling
- large improvement over baseline does not mean usefulness for more complex models
- incorporation of different aspects of student modeling may be more important than detailed modeling of one particular aspect

