4.2.1

HANDBOOK ON EXCURSION SETS

CONTENTS

1	Prili	riliminary calculations 2								
	1.1	Differentiation under the integral sign	2							
	1.2	Functions	2							
		1.2.1 Gamma function: Γ	2							
		1.2.2 Error function: erf	2							
	1.3	Lipschitz-Killing curvatures (LKC)	2							
		1.3.1 For a regular shapes in 1,2 and 3 dimensions	2							
	1.4	Volume of the unit ball	3							
	1.5	Probabilistic Hermite polynomials	3							
	1.6	Flag coefficients	3							
	1.7	Second spectral moment	3							
2	Gau	Gaussian Minkowsky functionals 3								
	2.1	Preliminary	3							
		2.1.1 Gaussian measure: $\gamma^k(\mathcal{H})$	3							
		2.1.2 Tube Taylor expansion	4							
	2.2		4							
			4							
		2.2.2 Application to one-dimensional cumulative hitting set: $k = 1$ and $\mathcal{H} = (-\infty \ \kappa] \ \dots \ \dots$	5							
	2.3	GMFs for Gaussian related Random Fields	6							
		2.3.1 Log-normal distribution	6							
3	Exp	ectation Formula	9							
	3.1	Gaussian distribution	9							
		3.1.1 General case	9							
		3.1.2 One dimension	9							
		3.1.3 Two dimensions	0							
		3.1.4 Three dimensions	1							
4	Size	effect 1	2							
	4.1	One dimensional case	2							
4.2 Two dimensional case		Two dimensional case	2							

12

1 PRILIMINARY CALCULATIONS

1.1 Differentiation under the integral sign

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a(x)}^{b(x)} f(x,t)dt \right) = f(x,b(x))b'(x) - f(x,a(x))a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t)dt$$
 (1)

1.2 Functions

1.2.1 Gamma function: Γ

$$\Gamma: z \to \int_0^\infty t^{z-1} e^{-t} dt \tag{2}$$

1.2.2 Error function: erf

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \tag{3}$$

1.3 Lipschitz-Killing curvatures (LKC)

1.3.1 For a regular shapes in 1,2 and 3 dimensions

For a cube
$$\mathcal{M}_N = \prod_{j=1}^N [0 \ a], \ \mathcal{L}_j(\mathcal{M}_N) = \begin{pmatrix} N \\ j \end{pmatrix} a^j$$
 (4)

For a parallelepiped
$$\mathcal{P}_N = \prod_{i=1}^N [0 \ a_i], \ \mathcal{L}_j(\mathcal{M}_N) = \dots$$
 (5)

N	LKC	Value	Meaning
1	$\mathscr{L}_0(\mathcal{M})$	1	Euler Characteristic
1	$\mathscr{L}_1(\mathcal{M})$	a	Length of the segment
2	$\mathscr{L}_0(\mathcal{M})$	1	Euler Characteristic
2	$\mathscr{L}_1(\mathcal{M})$	2a	Half the boundary length
2	$\mathscr{L}_2(\mathcal{M})$	a^2	Surface area
3	$\mathscr{L}_0(\mathcal{M})$	1	Euler Characteristic
3	$\mathscr{L}_1(\mathcal{M})$	3a	Twice the caliper diameter
3	$\mathscr{L}_2(\mathcal{M})$	$3a^2$	Half the surface area
3	$\mathscr{L}_3(\mathcal{M})$	a^3	Volume
3	$\mathscr{L}_0(\mathcal{P})$	1	Euler Characteristic
3	$\mathscr{L}_1(\mathcal{P})$	$a_1 + a_2 + a_3$	Twice the caliper diameter
3	$\mathscr{L}_2(\mathcal{P})$	$a_1a_2 + a_1a_3 + a_2a_3$	Half the surface area
3	$\mathscr{L}_3(\mathcal{P})$	$a_1 a_2 a_3$	Volume

1.4 VOLUME OF THE UNIT BALL

$$\omega_{N} = \frac{\pi^{N/2}}{\Gamma(1+N/2)}$$

$$(6)$$

$$\omega_{0} = 1$$

$$\omega_{1} = 2$$

$$\omega_{2} = \pi$$

$$\omega_{3} = 4\pi/3$$

$$\dots$$

1.5 PROBABILISTIC HERMITE POLYNOMIALS

$$\mathcal{H}_{n} = (-1)^{n} e^{x^{2}/2} \frac{d^{n}}{dx^{n}} e^{-x^{2}/2}$$
(8)
$$\mathcal{H}_{1}(x) = x$$

$$\mathcal{H}_{2}(x) = x^{2} - 1$$

$$\mathcal{H}_{3}(x) = x^{3} - 3$$

1.6 FLAG COEFFICIENTS

$$\begin{bmatrix} n \\ j \end{bmatrix} = \begin{pmatrix} n \\ j \end{pmatrix} \frac{\omega_n}{\omega_{n-j}\omega_j}$$

$$(10)$$

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 1 \\ 1 \\ 3/2 \\ 2 \end{bmatrix}$$

$$(2)$$

$$2 \begin{vmatrix} 1 \\ 1 \\ 1/2 \\ 2 \begin{vmatrix} 2 \\ 2 \\ 1 \\ 3/2 \\ 3 \end{vmatrix}$$

$$(3)$$

$$3 \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}$$

$$3 \begin{vmatrix} 2 \\ 2 \end{vmatrix}$$

1.7 SECOND SPECTRAL MOMENT

$$\lambda_2 = \mathbb{V}\left\{\frac{\partial g(\boldsymbol{x})}{\partial x_i}\right\} = \frac{\mathrm{d}^2 \mathcal{C}(h)}{\mathrm{d}h^2} \tag{12}$$

Covariance	Parameter	λ_2	(13)
Gaussian		$2\sigma^2/L^2$	(13)

2 GAUSSIAN MINKOWSKY FUNCTIONALS

2.1 Preliminary

2.1.1 Gaussian measure: $\gamma^k(\mathcal{H})$

$$\gamma^{k}(\mathcal{H}) = P\{\boldsymbol{X} \in \mathcal{H}\} = \frac{1}{\sigma^{k}(2\pi)^{k/2}} \int_{\mathcal{H}} e^{-\|\boldsymbol{x} - \boldsymbol{\mu}\|^{2}/2\sigma^{2}} d\boldsymbol{x}$$
(14)

2.1.2 Tube Taylor expansion

$$\gamma^{k}(\mathsf{tube}(\mathcal{H},\rho)) = \sum_{j=0}^{\infty} \frac{\rho^{j}}{j!} \mathcal{M}_{j}^{\gamma^{k}}(\mathcal{H})$$
 (15)

2.2 GMFs for Gaussian distribution

2.2.1 Application to one-dimensional tail hitting set: k = 1 and $\mathcal{H} = [\kappa \infty)$

Tail probability \bar{F} :

$$\gamma^{1}([\kappa \infty)) = P\{X \ge \kappa\} = \frac{1}{\sigma\sqrt{2\pi}} \int_{\kappa}^{\infty} e^{-(x-\mu)^{2}/2\sigma^{2}} dx = \bar{F}(\kappa)$$
 (16)

Error function erf:

$$\gamma^{1}([\kappa \infty)) = \bar{F}(\kappa) = \frac{1}{\sigma\sqrt{2\pi}} \int_{\frac{\kappa-\mu}{\sigma\sqrt{2}}}^{\infty} e^{-t^{2}} \sqrt{2}\sigma dt = \frac{1}{\sqrt{\pi}} \int_{\frac{\kappa-\mu}{\sigma\sqrt{2}}}^{\infty} e^{-t^{2}} dt$$

$$= \frac{1}{\sqrt{\pi}} \left[\int_{0}^{\infty} e^{-t^{2}} dt - \int_{0}^{\frac{\kappa-\mu}{\sigma\sqrt{2}}} e^{-t^{2}} dt \right]$$

$$= \frac{1}{\sqrt{\pi}} \left[\frac{\sqrt{\pi}}{2} - \frac{\sqrt{\pi}}{2} \operatorname{erf}\left(\frac{\kappa-\mu}{\sigma\sqrt{2}}\right) \right]$$

$$= \frac{1}{2} \left(1 - \operatorname{erf}\left(\frac{\kappa-\mu}{\sigma\sqrt{2}}\right) \right)$$

Tube expansion:

$$\gamma^{1}(\mathsf{tube}([\kappa \infty), \rho)) = \gamma^{1}([\kappa - \rho \infty)) = \bar{F}(\kappa - \rho) = \sum_{i=0}^{\infty} \frac{(-\rho)^{j}}{j!} \frac{\mathsf{d}^{j} \bar{F}(\kappa)}{\mathsf{d} \kappa^{j}}$$
(18)

Identification:

• Notations:

Tail hitting set:
$$\bar{\mathcal{H}}^{\text{ID}} = [\kappa \infty)$$
 (19a)

Variable substitution:
$$\tilde{\kappa} \leftarrow \frac{\kappa - \mu}{\sigma}$$
 (19b)

• For i = 0:

$$\mathcal{M}_0^{\gamma^1}(\bar{\mathcal{H}}^{\text{ID}}) = \bar{F}(\kappa) \tag{20}$$

• For j > 0:

$$\mathcal{M}_{j}^{\gamma^{1}}(\bar{\mathcal{H}}^{\text{ID}}) = (-1)^{j} \frac{\mathbf{d}^{j} \bar{F}(\kappa)}{\mathbf{d}\kappa^{j}} = \frac{e^{-(\kappa - \mu)^{2}/2\sigma^{2}}}{\sigma^{j}\sqrt{2\pi}} \mathcal{H}_{j-1}((\kappa - \mu)/\sigma)$$
(21)

• First values:

$$\mathcal{M}_{0}^{\gamma^{1}}(\bar{\mathcal{H}}^{\text{ID}}) = \frac{1}{2} \left(1 - \operatorname{erf} \left(\frac{\tilde{\kappa}}{\sqrt{2}} \right) \right)
\mathcal{M}_{1}^{\gamma^{1}}(\bar{\mathcal{H}}^{\text{ID}}) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\tilde{\kappa}^{2}/2}
\mathcal{M}_{2}^{\gamma^{1}}(\bar{\mathcal{H}}^{\text{ID}}) = \frac{1}{\sigma^{2}\sqrt{2\pi}} \tilde{\kappa} e^{-\tilde{\kappa}^{2}/2}
\mathcal{M}_{3}^{\gamma^{1}}(\bar{\mathcal{H}}^{\text{ID}}) = \frac{1}{\sigma^{3}\sqrt{2\pi}} (\tilde{\kappa}^{2} - 1) e^{-\tilde{\kappa}^{2}/2}
\mathcal{M}_{4}^{\gamma^{1}}(\bar{\mathcal{H}}^{\text{ID}}) = \frac{1}{\sigma^{4}\sqrt{2\pi}} (\tilde{\kappa}^{3} - 3\tilde{\kappa}) e^{-\tilde{\kappa}^{2}/2}$$
(22)

• Derivatives:

$$\forall j, \ \frac{\mathrm{d}\mathscr{M}_{j}^{\gamma^{1}}}{\mathrm{d}\kappa}(\bar{\mathcal{H}}^{\text{\tiny ID}}) = (-1)^{j} \frac{\mathrm{d}^{j+1} \bar{F}(\kappa)}{\mathrm{d}\kappa^{j+1}} = -\mathscr{M}_{j+1}^{\gamma^{1}}(\bar{\mathcal{H}}^{\text{\tiny ID}})$$
 (23)

2.2.2 Application to one-dimensional cumulative hitting set: k = 1 and $\mathcal{H} = (-\infty \ \kappa]$ Cumulative probability F:

$$\gamma^{1}((-\infty \kappa]) = P\{X \le \kappa\} = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\kappa} e^{-(x-\mu)^{2}/2\sigma^{2}} dx = F(\kappa)$$
 (24)

Error function erf:

$$\gamma^{1}((-\infty \kappa]) = F(\kappa) = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{\kappa - \mu}{\sigma \sqrt{2}}\right) \right)$$
 (25)

Tube expension:

$$\gamma^{1}(\text{tube}((-\infty \kappa], \rho)) = \gamma^{1}((-\infty \kappa + \rho]) = F(\kappa + \rho) = \sum_{j=0}^{\infty} \frac{\rho^{j}}{j!} \frac{d^{j} F(\kappa)}{d\kappa^{j}}$$
 (26)

Identification:

Notations:

Tail hitting set:
$$\mathcal{H}^{\text{ID}} = (-\infty \, \kappa]$$
 (27a)

Variable substitution:
$$\tilde{\kappa} \leftarrow \frac{\kappa - \mu}{\sigma}$$
 (27b)

• For j = 0:

$$\mathcal{M}_0^{\gamma^1}(\mathcal{H}^{\text{\tiny ID}}) = F(\kappa) \tag{28}$$

• For j > 0:

$$\mathcal{M}_{j}^{\gamma^{1}}(\mathcal{H}^{\text{\tiny ID}}) = \frac{\mathrm{d}^{j} F(\kappa)}{\mathrm{d}\kappa^{j}} = (-1)^{j+1} \frac{e^{-(\kappa-\mu)^{2}/2\sigma^{2}}}{\sigma^{j}\sqrt{2\pi}} \mathcal{H}_{j-1}((\kappa-\mu)/\sigma)$$
(29)

• First values:

$$\mathcal{M}_{0}^{\gamma^{1}}(\mathcal{H}^{\text{ID}}) = \frac{1}{2} \left(1 - \operatorname{erf} \left(\frac{\tilde{\kappa}}{\sqrt{2}} \right) \right)
\mathcal{M}_{1}^{\gamma^{1}}(\mathcal{H}^{\text{ID}}) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\tilde{\kappa}^{2}/2}
\mathcal{M}_{2}^{\gamma^{1}}(\mathcal{H}^{\text{ID}}) = \frac{-1}{\sigma^{2}\sqrt{2\pi}} \tilde{\kappa} e^{-\tilde{\kappa}^{2}/2}
\mathcal{M}_{3}^{\gamma^{1}}(\mathcal{H}^{\text{ID}}) = \frac{1}{\sigma^{3}\sqrt{2\pi}} (\tilde{\kappa}^{2} - 1) e^{-\tilde{\kappa}^{2}/2}
\mathcal{M}_{4}^{\gamma^{1}}(\mathcal{H}^{\text{ID}}) = \frac{-1}{\sigma^{4}\sqrt{2\pi}} (\tilde{\kappa}^{3} - 3\tilde{\kappa}) e^{-\tilde{\kappa}^{2}/2}$$
(30)

Figure 1: First 4 GMF for $\sigma^2 = 2$

• Derivatives:

$$\forall j, \ \frac{\mathrm{d}\mathscr{M}_{j}^{\gamma^{1}}}{\mathrm{d}\kappa}(\mathcal{H}^{\text{\tiny ID}}) = \frac{\mathrm{d}^{j+1}F(\kappa)}{\mathrm{d}\kappa^{j+1}} = \mathscr{M}_{j+1}^{\gamma^{1}}(\mathcal{H}^{\text{\tiny ID}})$$
(31)

2.3 GMFs for Gaussian related Random Fields

$$g_r: \Omega \times \mathbf{R}^N \xrightarrow{\mathbf{g}} \mathbf{R}^k \xrightarrow{S} \mathbf{R}$$
 (32)

$$P\{g_r \in \mathcal{H}\} = P\{S(g) \in \mathcal{H}\} = P\{g \in S^{-1}(\mathcal{H})\} = \gamma^k(S^{-1}(\mathcal{H}))$$
 (33)

2.3.1 Log-normal distribution

$$k = 1$$
 , $S = \exp$ and $S^{-1} = \ln$ (34)

$$\begin{vmatrix}
\mu &= \ln(\mu_{\rm ln}) - \frac{1}{2}\ln(1 + \sigma_{\rm ln}^2/\mu_{\rm ln}^2) \\
\sigma^2 &= \ln(1 + \sigma_{\rm ln}^2/\mu_{\rm ln}^2)
\end{vmatrix}$$
(35)

• Notations:

Log tail hitting set:
$$\bar{\mathcal{H}}_{ln}^{\text{ID}} = [\ln(\kappa) \infty)$$
 (36a)

Log cumulative hitting set:
$$\mathcal{H}_{\ln}^{\text{ID}} = (-\infty \ln(\kappa)]$$
 (36b)

Variable substitution:
$$\tilde{\kappa}_{ln} \leftarrow \frac{\ln(\kappa) - \mu}{\sigma}$$
 (36c)

• For
$$\mathcal{H} = \bar{\mathcal{H}}^{\text{\tiny ID}} = [\kappa \infty) \rightarrow S^{-1}(\mathcal{H}) = \bar{\mathcal{H}}^{\text{\tiny ID}}_{\ln} = [\ln(\kappa) \infty)$$

$$\mathcal{M}_{0}^{\gamma^{1}}(\bar{\mathcal{H}}_{\ln}^{\text{ID}}) = \frac{1}{2} \left(1 - \operatorname{erf} \left(\frac{\tilde{\kappa}_{\ln}}{\sqrt{2}} \right) \right) \\
\mathcal{M}_{1}^{\gamma^{1}}(\bar{\mathcal{H}}_{\ln}^{\text{ID}}) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\tilde{\kappa}_{\ln}^{2}/2} \\
\mathcal{M}_{2}^{\gamma^{1}}(\bar{\mathcal{H}}_{\ln}^{\text{ID}}) = \frac{1}{\sigma^{2}\sqrt{2\pi}} \tilde{\kappa}_{\ln} e^{-\tilde{\kappa}_{\ln}^{2}/2} \\
\mathcal{M}_{3}^{\gamma^{1}}(\bar{\mathcal{H}}_{\ln}^{\text{ID}}) = \frac{1}{\sigma^{3}\sqrt{2\pi}} (\tilde{\kappa}_{\ln}^{2} - 1) e^{-\tilde{\kappa}_{\ln}^{2}/2} \\
\mathcal{M}_{4}^{\gamma^{1}}(\bar{\mathcal{H}}_{\ln}^{\text{ID}}) = \frac{1}{\sigma^{4}\sqrt{2\pi}} (\tilde{\kappa}_{\ln}^{3} - 3\tilde{\kappa}_{\ln}) e^{-\tilde{\kappa}_{\ln}^{2}/2} \\
\dots$$
(37)

Derivatives:

Help:
$$\left(e^{-(\ln(x)-\mu)^{2}/2\sigma^{2}}\right)' = -\frac{1}{\sigma^{2}} \frac{\ln(x)-\mu}{x} e^{-(\ln(x)-\mu)^{2}/2\sigma^{2}}$$

$$\frac{d\mathcal{M}_{0}^{\gamma^{1}}(\bar{\mathcal{H}}_{\ln}^{1D})}{d\kappa} = \frac{-1}{\sigma^{2}\sqrt{2\pi}} \frac{1}{\kappa} e^{-(\ln(\kappa)-\mu)^{2}/2\sigma^{2}}$$

$$\frac{d\mathcal{M}_{1}^{\gamma^{1}}(\bar{\mathcal{H}}_{\ln}^{1D})}{d\kappa} = \frac{-1}{\sigma^{2}\sqrt{2\pi}} \frac{1}{\kappa} \frac{\ln(\kappa)-\mu}{\sigma} e^{-(\ln(\kappa)-\mu)^{2}/2\sigma^{2}}$$

$$\frac{d\mathcal{M}_{2}^{\gamma^{1}}(\bar{\mathcal{H}}_{\ln}^{1D})}{d\kappa} = \frac{-1}{\sigma^{3}\sqrt{2\pi}} \frac{1}{\kappa} \left[\frac{(\ln(\kappa)-\mu)^{2}}{\sigma^{2}} - 1 \right] e^{-(\ln(\kappa)-\mu)^{2}/2\sigma^{2}}$$

$$\frac{d\mathcal{M}_{3}^{\gamma^{1}}(\bar{\mathcal{H}}_{\ln}^{1D})}{d\kappa} = \frac{-1}{\sigma^{4}\sqrt{2\pi}} \frac{1}{\kappa} \left[\frac{(\ln(\kappa)-\mu)^{3}}{\sigma^{3}} - 3 \frac{(\ln(\kappa)-\mu)}{\sigma} \right] e^{-(\ln(\kappa)-\mu)^{2}/2\sigma^{2}}$$
(38)

Guess would be: $\forall j \geq 0$,

$$\frac{\mathrm{d}\mathscr{M}_{j}^{\gamma^{1}}(\tilde{\mathcal{H}}_{\ln}^{\mathrm{ID}})}{\mathrm{d}\kappa} = \frac{-1}{\sigma^{j+1}\sqrt{2\pi}} \frac{1}{\kappa} \mathscr{H}_{j}(\tilde{\kappa}_{\ln}) e^{-\tilde{\kappa}_{\ln}^{2}/2}$$

• For
$$\mathcal{H} = [0 \ \kappa] \ \rightarrow \ S^{-1}(\mathcal{H}) = \mathcal{H}_{\ln}^{\text{\tiny ID}} = (-\infty \ \ln(\kappa)]$$

$$\mathcal{M}_{0}^{\gamma^{1}}(\mathcal{H}_{\ln}^{\text{ID}}) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{\tilde{\kappa}_{\ln}}{\sqrt{2}} \right) \right) \\
\mathcal{M}_{1}^{\gamma^{1}}(\mathcal{H}_{\ln}^{\text{ID}}) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\tilde{\kappa}_{\ln}^{2}/2} \\
\mathcal{M}_{2}^{\gamma^{1}}(\mathcal{H}_{\ln}^{\text{ID}}) = \frac{-1}{\sigma^{2}\sqrt{2\pi}} \tilde{\kappa}_{\ln} e^{-\tilde{\kappa}_{\ln}^{2}/2} \\
\mathcal{M}_{3}^{\gamma^{1}}(\mathcal{H}_{\ln}^{\text{ID}}) = \frac{1}{\sigma^{3}\sqrt{2\pi}} \left(\tilde{\kappa}_{\ln}^{2} - 1 \right) e^{-\tilde{\kappa}_{\ln}^{2}/2} \\
\mathcal{M}_{4}^{\gamma^{1}}(\mathcal{H}_{\ln}^{\text{ID}}) = \frac{-1}{\sigma^{4}\sqrt{2\pi}} \left(\tilde{\kappa}_{\ln}^{3} - 3\tilde{\kappa}_{\ln} \right) e^{-\tilde{\kappa}_{\ln}^{2}/2} \\
\dots$$
(39)

Derivatives:

Guess would be:
$$\forall j \geq 0$$
,
$$\frac{d\mathscr{M}_{j}^{\gamma^{1}}(\mathcal{H}_{\ln}^{\text{ID}})}{d\kappa} = \frac{(-1)^{j}}{\sigma^{j+1}\sqrt{2\pi}} \frac{1}{\kappa} \mathscr{H}_{j}(\tilde{\kappa}_{\ln}) e^{-\tilde{\kappa}_{\ln}^{2}/2}$$
(40)

3 EXPECTATION FORMULA

3.1 Gaussian distribution

3.1.1 General case

$$\mathbb{E}\left\{\mathcal{L}_{j}(\mathcal{E})\right\} = \sum_{i=0}^{N-j} \begin{bmatrix} i+j\\ i \end{bmatrix} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(\mathcal{M}) \mathcal{M}_{i}^{\gamma^{k}}(S^{-1}(\mathcal{H}))$$
(41)

Notations:

LKC of
$$\mathcal{M}$$
: $\mathcal{L}_j(\mathcal{M}) = \mathcal{L}_j^{\mathcal{M}}$ (42a)

LKC of
$$\mathcal{E}$$
: $\mathcal{L}_j(\mathcal{E}) = \mathcal{L}_j^{\mathcal{E}}$ (42b)

GMF of
$$S^{-1}(\mathcal{H})$$
: $\mathscr{M}_{j}^{\gamma^{k}}(S^{-1}(\mathcal{H})) = \mathscr{M}_{j}^{\gamma^{k}}$ (42c)

3.1.2 One dimension

$$\mathbb{E}\left\{\mathcal{L}_0^{\mathcal{E}}\right\} = \left(\frac{\lambda_2}{2\pi}\right)^{1/2} \mathcal{L}_1^{\mathcal{M}} \mathcal{M}_1^{\gamma^k} + \mathcal{L}_0^{\mathcal{M}} \mathcal{M}_0^{\gamma^k} \tag{43a}$$

$$\mathbb{E}\left\{\mathcal{L}_{1}^{\mathcal{E}}\right\} = \mathcal{L}_{1}^{\mathcal{M}} \mathcal{M}_{0}^{\gamma^{k}} \tag{43b}$$

Figure 2: Expectation of LKC for $a=100,\,\sigma^2=2$ and $\mathcal{H}=[\kappa\,\infty)$ in 1D.

Figure 3: Expectation of LKC for a=100, $\mu=0.5$, $\sigma^2=2$, $L_c=0.5$, and $\mathcal{H}=[0~\kappa]$ (log-normal distribution with cumulative hitting set) in 1D. Experimental results are calculated over 1~000 realizations.

3.1.3 Two dimensions

$$\mathbb{E}\left\{\mathcal{L}_{0}^{\mathcal{E}}\right\} = \frac{\lambda_{2}}{2\pi}\mathcal{L}_{2}^{\mathcal{M}}\mathcal{M}_{2}^{\gamma^{k}} + \sqrt{\frac{\lambda_{2}}{2\pi}}\mathcal{L}_{1}^{\mathcal{M}}\mathcal{M}_{1}^{\gamma^{k}} + \mathcal{L}_{0}^{\mathcal{M}}\mathcal{M}_{0}^{\gamma^{k}}$$
(44a)

$$\mathbb{E}\left\{\mathcal{L}_{1}^{\mathcal{E}}\right\} = \sqrt{\frac{\lambda_{2}\pi}{8}} \mathcal{L}_{2}^{\mathcal{M}} \mathcal{M}_{1}^{\gamma^{k}} + \mathcal{L}_{1}^{\mathcal{M}} \mathcal{M}_{0}^{\gamma^{k}} \tag{44b}$$

$$\mathbb{E}\left\{\mathcal{L}_{2}^{\mathcal{E}}\right\} = \mathcal{L}_{2}^{\mathcal{M}} \mathcal{M}_{0}^{\gamma^{k}} \tag{44c}$$

Figure 4: Expectation of LKC for a=100, $\mu=0.0$, $\sigma^2=2$, $L_c=5$, and $\mathcal{H}=[\kappa\infty)$ (gaussian distribution with tail hitting set) in 2D. Experimental results are calculated over $1\,000$ realizations.

Figure 5: Expectation of LKC for a=100, $\mu=0.0$, $\sigma^2=2$, $L_c=5$, and $\mathcal{H}=[0\ \kappa]$ (lognormal distribution with cumulative hitting set) in 2D. Experimental results are calculated over 1 000 realizations.

3.1.4 Three dimensions

$$\mathbb{E}\left\{\mathcal{L}_0^{\mathcal{E}}\right\} = \tag{45a}$$

$$\mathbb{E}\left\{\mathcal{L}_{1}^{\mathcal{E}}\right\} = \tag{45b}$$

$$\mathbb{E}\left\{\mathscr{L}_{2}^{\mathcal{E}}\right\} = \tag{45c}$$

$$\mathbb{E}\left\{\mathcal{L}_{3}^{\mathcal{E}}\right\} = \mathcal{L}_{3}^{\mathcal{M}} \mathcal{M}_{0}^{\gamma^{k}} \tag{45d}$$

Figure 6: Expectation of LKC for $\mathcal{P}=100\times20\times20$, $\mu=0.0$, $\sigma^2=2$, $L_c=2$, and $\mathcal{H}=[\kappa\infty)$ (gaussian distribution with tail hitting set) in 3D. Experimental results are calculated over 100 realizations.

Figure 7: .

4 Size effect

4.1 ONE DIMENSIONAL CASE

Figure 8: Size Effect: variations around $\mu_{ln}=10$, $\sigma_{ln}^2=10$ and q=1% in 1D.

4.2 Two dimensional case

4.2.1 Behavior of the Euler characteristic for different specimen sizes

9(a) Small sizes

Direct percolation. The first (and only) $\kappa(\chi==q)$ correspond to the probability q of percolation. There is only one disconnected element in the excursion set.

9(b) Medium sizes

9(c) Large sizes

Figure 9: Euler characteristic for different specimen sizes a for $\mu_{\rm ln}=0.5$, $\sigma_{\rm ln}^2=2$, $L_c=1$, and $\mathcal{H}=[0~\kappa]$ (lognormal distribution with cumulative hitting set) in a 2D.