# 3 - D

#### **COORDINATES OF A POINT IN SPACE:**

In two dimensional geometry, magnitude of x & y coordinates are perpendicular distances from y & x axis respectively.

But in case of three dimensional geometry it is understood in different way.





**Remark:** The sign of the coordinates of a point determine the octant in which the point lies. The following table shows the signs of the coordinates in eight octants.

| Octants     |   |    |     |    |   |    |     |      |
|-------------|---|----|-----|----|---|----|-----|------|
|             | I | II | III | IV | V | VI | VII | VIII |
| Coordinates |   |    |     |    |   |    |     |      |
| х           | + | -  | _   | +  | + | -  | -   | +    |
| У           | + | +  | _   | 7_ | + | +  | _   | Ī    |
| Z           | + | +  | +   | +  | - | -  | -   | Ī    |





### **DISTANCE FORMULA:**

The distance between two points A  $(x_1, y_1, z_1)$  and B  $(x_2, y_2, z_2)$  is given by

AB = 
$$\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$$

## SECTION FORMULA:

Let  $P(x_1, y_1, z_1)$  and  $Q(x_2, y_2, z_2)$  be two points and let R(x, y, z) divide PQ in the ratio  $m_1 : m_2$ . Then co-ordinates

of R(x, y, z) = 
$$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}, \frac{m_1z_2 + m_2z_1}{m_1 + m_2}\right)$$

$$\begin{cases} \begin{cases} \begin{cases}$$



Find the locus of the point which move such that its distance from x-axis is  $\frac{1}{2}$  of its distance from zy-plane.

$$P(\langle \beta, \gamma \rangle)$$

$$\sqrt{\beta^{2}+\gamma^{2}} = \frac{1}{2} |d|$$

$$4(\beta^{2}+\gamma^{2}) = \lambda^{2} \Rightarrow \chi^{2} - 4y^{2} - 4z^{2} = 0. \text{ Ams}$$

### **DIRECTION COSINES OF VECTOR:**

Let  $\vec{a} = a_1 i + a_2 j + a_3 k$  the angles which this vector makes with the +ve directions OX, OY & OZ are called

Direction Angles & their cosine are called the direction cosine hence if  $\alpha$ ,  $\beta$ ,  $\gamma$  are the direction angles then the d.c's are

$$\cos \alpha = \frac{a_1}{|\vec{a}|}, \cos \beta = \frac{a_2}{|\vec{a}|}, \cos \gamma = \frac{a_3}{|\vec{a}|}$$

 $\cos\alpha$ ,  $\cos\beta$ ,  $\cos\gamma$  are popularly denoted by  $\ell$ , m and n.



### Note:

(i) 
$$\ell^{2} + \mathbf{m}^{2} + \mathbf{n}^{2} = \mathbf{1} \quad \Rightarrow \quad \cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1$$
$$\Rightarrow \quad \sin^{2}\alpha + \sin^{2}\beta + \sin^{2}\gamma = 2$$

(ii) Components of the unit vector denotes the dc's of the vector :  $\hat{a} = \ell \hat{i} + m\hat{j} + n\hat{k}$ 



D.C's of the vector 
$$2\hat{j}-2\hat{j}+\hat{k}$$
 are  $\frac{2}{3},-\frac{2}{3},\frac{1}{3}$ 

There exists a vector with direction angles  $\alpha=30^\circ$  and  $\beta=30^\circ$ 

$$\cos^2 x + \cos^2 \beta + \cos^2 \gamma = 1$$

$$\left(\frac{13}{3}\right)^2 + \left(\frac{13}{3}\right)^2 + \cos^2 \gamma = 1$$

$$\left(\frac{\sqrt{3}}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2} + (\omega_{x}^{2})^{2} = 1$$

$$\cos \gamma = -ve \Rightarrow \text{This is not possible}$$

$$\left(\frac{\text{False}}{2}\right)$$

origin)

( $\sqrt{3}|x|$ ) =  $\beta^2 + \gamma^2$   $3\pi^2 - y^2 - z^2 = 0$ .

Locus of all such points (P) will be a lone Concentric with x - axis.