数据挖掘和大数据分析

Outline |

Assignment1

- 1.1 ① What is data mining?
 - 2 Is it a simple transformation or application of technology developed from databases, statistics, machine learning, and pattern recognition?

Assignment2

1.4 Present an example where data mining is crucial to the success of a business.

Did you install Python and Orange3 successfully?

Yes

>>> import orange

No

ンフフ

DATA ANALYTICS:

DATA MINING AND BIG DATA

Data

tor mation

Definition

"Data are pieces of information that represent the qualitative or quantitative attributes of a variable or set of variables. Data are often viewed as the lowest level of abstraction from which information and knowledge are derived."

Data Types

- Continuous, Binary
- Discrete, String
- Symbolic

* Storage

PhysicalLogical

ogical C/b/E

Major Issues

- Transformation
- Errors and Corruption

In the following statement, which one is wrong about the unit of computer storage capacity? ()

- A 1KB < 1MB < 1GB
- Basic Unit is Byte Byte Shit Full bit
- A Chinese Character needs a Byte Storage Space 2 Byte
- A byte can hold a English Character

What is Big Data?

- * Big data is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making." Gartner

Big Data (3V)

The Most Significant feature of Big Data is ()

- A Large Data Scale
- **Diverse Data Types**
- Fast Data Processing

Big Data Talents need to have () and other core knowledge as a whole.

- A
- **Mathematics and Statistics**

- P
- **Computer related knowledge**
- С
- Marxist philosophy knowledge
- D
- Market management knowledge
- E
- Knowledge in specific business areas

提交

DATA ANALYTICS:

DATA MINING AND BIG DATA

Statics Basic Knowledge

Statics Basic Knowledge

- The parameter μ in this definition is the $1 \underline{mean}$
- or expectation of the distribution (and also its 2 median and
- ③ <u>mode</u>).
- The parameter σ is its ① **standard deviation**;
- its 2 <u>variance</u> is therefore σ^2 .

Normal distribution


```
0.8
```

```
f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
```


Please coding the task in 6 minutes.

A

Yes

B

No

Poisson Distribution

Please coding the task in 6 minutes.

Assignment

- ✓ Two point distribution
- ✓ Binomial distribution
- Geometric distribution
- Poisson distribution
 - Coding

- ✓ Uniform distribution
- ✓ Exponential distribution
- **Normal distribution**

Formula Figure

Maximum likelihood estimation

Normal distribution is rational, how to estimate the parameters?

$$\mu^{mle} = \underset{(0)=(0,7)}{arg \, max} \, p(x_1, x_2, ... x_N \mid \mu, \sigma^2)$$

$$f(0)=(0,7) + f(0) = (0,7) + f(0) = (0,7)$$

Maximum likelihood estimation

$$\mu^{mle} = \underset{\mu}{arg \ max} p(x_1, x_2, ... x_N \mid \mu, \sigma^2)$$

$$\underset{\mu}{arg \ max} \sum_{i=1}^{N} p(x_i \mid \mu, \sigma^2)$$

$$\underset{\mu}{arg \ max} \sum_{i=1}^{N} log_o p(x_i \mid \mu, \sigma^2)$$

$$\underset{\mu}{arg \ max} \frac{1}{\sqrt{2\pi} \ \sigma} \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$\underset{\mu}{arg \ min} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$\frac{\partial}{\partial \mu} \sum_{i=1}^{N} (x_i - \mu)^2 = -\sum_{i=1}^{N} 2(x_i - \mu)$$

Thus
$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

https://mlln.cn/2019/01/24/%E6%95%B0%E5% AD%A6%E5%B0%8F%E7%99%BD%E7%94% A8python%E5%81%9A%E6%9E%81%E5%A4 %A7%E4%BC%BC%E7%84%B6%E4%BC%B0 %E8%AE%A1MLE/

DM Lab2

Q: Probability of Occurrence of Statistical First Digit

Note: given a positive integer n, the probability of the first digit appearing in the

factorial corresponding to all numbers from 1 to n is counted. Then, we can

calculate the probability that the first digit is 2, and the probability that the first

digit is 3, so we can get a "nine point distribution".
$$2 = 2 + 2 + 3 = 0$$
 $2 = 2 + 3 = 0$
 $2 = 2 + 3 = 0$
 $3 = 2 + 3 = 0$
 $3 = 2 + 3 = 0$

Please coding the task in 15 minutes.

B No


```
def first_num(x):
    while(x>=10):
        x=x/7/10
    return x
|def main():
    n = 1
    m = first num(n) - 1
         frequency[m] +=
     print(frequency)
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    plt.plot(x, frequency, 'r-', 1w=2)
     plt. plot (x, frequency, 'go', markersize=8)
     plt. xticks(x)
     plt.grid(True)
     plt.show()
```


- Statistic & DM Example Question
- * Suppose we believe that certain groups of evildoers are meeting occasionally in hotels to plot doing evil.
- * We want to find (unrelated) people who have stayed at the same hotel on the same two days.

- Statistic & DM Example Conditions
- **₹10**⁹ people being tracked.
- **1000** days.
- **№ 10**⁵ hotels.
- * Each person stays in a hotel 1% of the time (10 days out of 1000).

Will the data mining detect anything suspicious?

Statistic & DM Example - Calculations

S The same of the

- p at same hotel q at same hotel
 - * Probability that given persons p_and q will be at the same hotel on given day d:
 - 1/100 × 1/100 × 10⁻⁵ × 10⁻⁹.
 - * Probability that p and q will be at the same hotel on given days d_1 and d_2 :
 - $10^{-9} \times 10^{-9} = 10^{-18}$.
 - * Pairs of days:

$$\binom{n}{n} = \frac{n \times (n-1) \times (n-m+1)}{m!}$$

Same hotel

$$\frac{(2)}{(1)^3} = \frac{(0)^3 \times (0)^3 \times (0$$

Statistic & DM Example - Calculations

- Probability that p and q will be at the same hotel on same two days:
 - $5 \times 10^5 \times 10^{-18} \in 5 \times 10^{-13}$.
- * Pairs of people: $\frac{2}{109} = \frac{109 \times (109)}{2!} = 0.5 \times 10^{18} = 5 \times 10^{17}$
- Expected number of "suspicious" pairs of people:
 - $5 \times 10^{17} \times \underline{5 \times 10^{-13}} = 250,000.$

Statistic & DM Example - Calculations

- * Suppose there are (say) 10 pairs of evil-doers who definitely stayed at the same hotel twice.
- Analysts have to sift through 250,010 candidates to find the 10 real cases.
 - But how can we improve the scheme?

Data Mining Moral

When looking for a property

E.g. "two people stayed at the same hotel twice", make sure that the property does not allow so many possibilities that random data will surely produce facts "of interest."

Data Mining Moral

Rhine Paradox At

He devised (something like) an experiment

where subjects were asked to guess 10

hidden cards — red or blue

He discovered that almost 1 in 1000 had

ESP they were able to get all 10 right!

Data Mining Moral

He told these people they had ESP and called them in for another test of the same type.

- Alas, he discovered that almost all of them had lost their ESP.
- ❖ What did he conclude?
 - ???

贵在坚持!