Задача 8-1

Распространенный в природе оксид неметалла $\bf A$ имеет огромное практическое значение и широко используется в хозяйстве. Юный химик проанализировал оксид $\bf A$ и установил, что массовая доля $\bf A$ в этом оксиде составляет 46 $\pm 2\%$. Известно, что указанный оксид не реагирует с водой, а элемент $\bf A$ находится в 14-й группе Периодической системы элементов.

- 1. Установите формулу оксида. Ответ подтвердите соответствующими расчетами.
- 2. Напишите по одному уравнению реакции этого оксида с металлом, неметаллом, кислотой и солью. Укажите, где используются эти реакции.

Решение

1. Формулу оксида неметалла в общем виде можно записать как A_2O_n или $AO_{0.5n}$, где n — валентность неметалла. Установим формулу оксида A.

$$\frac{\omega(O)}{M(O)}$$
 : $\frac{\omega(A)}{M(A)} = \frac{100-46}{16}$: $\frac{46}{M(A)} = 3.375$: $\frac{46}{M(A)} = 0.5n$. Отсюда:

$$M(A) = \frac{0.5 \cdot 46}{3.375} \cdot n = 6.815 \cdot n$$
.

Для n = 4 получаем M(A) = 27.3. С учетом погрешности анализа $\frac{2}{46} \cdot 27.3 = 1.2$ можно записать, что молярная масса A должна находиться в интервале (27.3 \pm 1.2) г/моль или от 26.1 до 28.5 г/моль. Этим условиям соответствует кремний (28.1 г/моль). Формула оксида SiO_2 .

2. Возможные реакции:

```
2Mg + SiO_2 = 2MgO + Si (получение кремния); 
2C + SiO_2 = 2CO + Si или 3C + SiO_2 = 2CO + SiC (получение карборунда); 
4HF + SiO_2 = 2H_2O + SiF_4 (травление стекла); 
CaCO_3 + SiO_2 = CaSiO_3 + CO_2 (производство стекла).
```

Разбалловка:

За установление формулы оксида (из них 5 б за расчеты)	9 б
За уравнения реакций по 3 б	12 б
За применение реакций по 1 б	4 б
	Итого 25 баллов