Manual de Uso – Aplicación Runge-Kutta

Integrantes:

- Juan David Buendia Loyo
- Carlos David Páez Ferreira
- María Fernanda Toloza Buitrago

Enunciados

El programa que se desarrolló en Python para esta temática cumple con la solución adecuada para los ejercicios propuestos en cada uno de los ejecutables individuales.

RK4:

$$\#dy/dt = y - t^2 + 1 \text{ Test } 1$$

$$\#dy/dt = 2 - e^{4t - 2y} Test 2$$

• RK4-SegundaOpcion:

$$\# dy/dx = x^2 - 3y Test1$$

$$\#dy/dx = y - x^2 + 1 F$$

RK4_Aplicaciones1:

Caso práctico de aplicación de Runge-Kutta de O(h)=4

Usando la ley de enfriamiento de Newton, se puede predecir la temperatura de un cuerpo al ser enfriado por convección para sistemas con Bi<0.1 (Número de Biot)

$$T(t)$$
 $pCpV[dT/dt] = -hA(T-Tinf)$ $T(0) = Tinc$

Los datos son para una pieza metálica de acero del tamaño de una moneda enfriada con aire

RK4_Aplicaciones2:

Caso práctico de aplicación de Runge-Kutta de O(h)=4 para un sistema de ecuaciones Oscilador Amortiguado:

Para una masa en un resorte con un amortiguador se tiene la siguiente ecuación utilizando las leyes de Newton

$$x(t) v(t)=[dx/dt](t)$$

$$m[d^2x/dt^2] + c[dx/dt] + kx = 0$$

-> ma+cv+kx = 0 (masa*aceleracion + fuerza de amortiguamiento + ley de Hooke)

$$x(0)$$
=xinc $v(0)$ =vinc

Ejecución

Para correr los programas por medio de un IDE, depende del IDE en cuestión, a continuación, se va mostrar un ejemplo de cómo sería la ejecución con el IDE PyCharm:

Para instalar paquetes de Python se presiona Alt + Shift + F, donde se desplegará el siguiente menú y se da en el botón + para añadir.

Donde se desplegará la siguiente pantalla.

Una vez desplegada se busca el nombre de los paquetes a instalar y se selecciona "Install Package"

Una vez instalados los paquetes necesarios, se procede a hacer lo siguiente.

Se da clic en la pestaña de File o Archivo

Aquí se escoge la carpeta del código "Código RK"

Después se abre el archivo que se desea ejecutar y se da clic derecho, donde se va a desplegar el siguiente menú

Seleccionada la opción Run el programa procederá a correr y dependiendo del programa mostrará los resultados, ya sea en la consola de Python o la pestaña de Plots

```
PyDev console: starting.

Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 21:26:53) [MSC v.1916 32 bit (Intel)] on win32

>>> runfile('C:/Users/Juan Buendia/PycharmProjects/pythonProject/RK2.py', wdir='C:/Users/Juan Buendia/PycharmProjects/
```


Para correr los programas por CMD hay que asegurarse de lo siguiente:

- 1. Python está instalado.
- 2. Los módulos numpy y matplotlib se encuentran instalados.

Una vez comprobado esto, se navega a la carpeta donde se encuentren los archivos .py del proyecto.

Para ejecutar una aplicación de Python se escribe el siguiente comando:

python nombre_archivo.py

Composición

El proyecto esta compuesto por los siguientes archivos:

- RK2.py
- RK4.py
- RK4-SegundaOpcion.py
- RK4_Aplicaciones1.py
- RK4_Aplicaciones2.py

Por tanto, los comandos para ejecutar cada uno de estos serían los siguientes:

- python RK2.py
- python RK4.py
- python RK4-SegundaOpcion.py
- python RK4_Aplicaciones1.py
- python RK4_Aplicaciones2.py

Resultados

```
Programa
            RK4.py
                                        siguiente
                                                    resultado
                      muestra
                                 el
Método RK4
0 ---> 0.5
0.2 ---> 0.82929333333333334
0.4 ---> 1.2140762106666667
0.60000000000000001 ---> 1.6489220170416001
0.8 ---> 2.1272026849479437
1.0 ---> 2.6408226927287517
1.2000000000000000 ---> 3.1798941702322305
1.40000000000000001 ---> 3.7323400728549796
1.6 ---> 4.283409498318405
1.8 ---> 4.815085694579433
2.0 ---> 5.305363000692653
Método RK4
0 ---> 1
0.05 ---> 0.95694677392746
0.1 ---> 0.9257948263487807
0.150000000000000002 ---> 0.9039969357034371
0.2 ---> 0.889504715869562
0.25 ---> 0.8806746618725458
0.30000000000000004 ---> 0.8761915626139058
0.350000000000000003 ---> 0.8750061005394635
0.4 ---> 0.8762840376594968
0.45 ---> 0.8793648614932423
0.5 ---> 0.8837281524572481
0.55 ---> 0.8889662516042581
Ი ᲙᲠᲠᲠᲠᲠᲠᲠᲠᲠᲠᲠᲠᲠ ..... Მ ᲓᲓᲐᲥᲙᲔᲠᲙᲥᲔᲜᲓᲐᲐᲔᲓ
```

Programa RK4-SegundaOpcion.py muestra el siguiente resultado

Programa RK4_Aplicaciones1.py muestra el siguiente resultado

Programa RK4_Aplicaciones2.py muestra los siguientes resultados

