Cyclic Higgs bundles and minimal surfaces in pseudo-hyperbolic spaces

(Joint Seminar on Teich and Related Topics 2022-9-19)

Xin Nie (Yau Center of Southeast University)

The pseudo-hyperbolic space $\mathbb{H}^{p,q}$ (hyperboloid model):

$$\mathbb{H}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \mid \langle x, x \rangle = -1 \},$$

The pseudo-hyperbolic space $\mathbb{H}^{p,q}$ (hyperboloid model):

$$\mathbb{H}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \mid \langle x, x \rangle = -1 \},$$

The pseudo-hyperbolic space $\mathbb{H}^{p,q}$ (hyperboloid model):

$$\mathbb{H}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \mid \langle x, x \rangle = -1 \},$$

with the metric restricted from $\mathbb{R}^{p,q+1}$.

▶ $\mathbb{H}^{p,q}$ is a pseudo-Riemannian manifold of constant sectional curvature -1;

The pseudo-hyperbolic space $\mathbb{H}^{p,q}$ (hyperboloid model):

$$\mathbb{H}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \mid \langle x, x \rangle = -1 \},$$

- ▶ $\mathbb{H}^{p,q}$ is a pseudo-Riemannian manifold of constant sectional curvature -1;
- ▶ diffeomorphic to $\mathbb{B}^p \times \mathbb{S}^q$;

The pseudo-hyperbolic space $\mathbb{H}^{p,q}$ (hyperboloid model):

$$\mathbb{H}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \mid \langle x, x \rangle = -1 \},$$

- ▶ $\mathbb{H}^{p,q}$ is a pseudo-Riemannian manifold of constant sectional curvature -1;
- ▶ diffeomorphic to $\mathbb{B}^p \times \mathbb{S}^q$;
- ► Isom($\mathbb{H}^{p,q}$) = O(p,q+1);

The pseudo-hyperbolic space $\mathbb{H}^{p,q}$ (hyperboloid model):

$$\mathbb{H}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \mid \langle x, x \rangle = -1 \},$$

- ▶ $\mathbb{H}^{p,q}$ is a pseudo-Riemannian manifold of constant sectional curvature -1;
- ▶ diffeomorphic to $\mathbb{B}^p \times \mathbb{S}^q$;
- ► Isom($\mathbb{H}^{p,q}$) = O(p, q + 1); not connected, subgroups:

$$SO(p,q+1)$$
 $\stackrel{1:2}{\subset} O(p,q+1)$ orientation-preserving isom.

The pseudo-hyperbolic space $\mathbb{H}^{p,q}$ (hyperboloid model):

$$\mathbb{H}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \mid \langle x, x \rangle = -1 \},$$

with the metric restricted from $\mathbb{R}^{p,q+1}$.

- $ightharpoonup \mathbb{H}^{p,q}$ is a pseudo-Riemannian manifold of constant sectional curvature -1:
- ightharpoonup diffeomorphic to $\mathbb{B}^p \times \mathbb{S}^q$;
- ► Isom($\mathbb{H}^{p,q}$) = O(p,q+1); not connected, subgroups:

$$SO_0(p,q+1)$$
 \subset $SO(p,q+1)$ \subset $CO(p,q+1)$ \subset $CO(p,q+1)$ orientation-preserving isom.

orient.-preserving isom. acting trivially on homology

The pseudo-hyperbolic space $\mathbb{H}^{p,q}$ (hyperboloid model):

$$\mathbb{H}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \mid \langle x, x \rangle = -1 \},$$

with the metric restricted from $\mathbb{R}^{p,q+1}$.

- ▶ $\mathbb{H}^{p,q}$ is a pseudo-Riemannian manifold of constant sectional curvature -1;
- ▶ diffeomorphic to $\mathbb{B}^p \times \mathbb{S}^q$;
- ► Isom($\mathbb{H}^{p,q}$) = O(p, q + 1); not connected, subgroups:

$$\underbrace{\mathsf{SO}_0(p,q+1)}_{\text{orient--preserving isom.}} \quad \overset{1:2}{\subset} \quad \underbrace{\mathsf{SO}(p,q+1)}_{\text{orientation-preserving isom.}} \quad \overset{1:2}{\subset} \quad \mathsf{O}(p,q+1)$$

▶ $\mathbf{S}_{p,q} := \{\text{timelike totally geodesic } q\text{-spheres}\}$

The pseudo-hyperbolic space $\mathbb{H}^{p,q}$ (hyperboloid model):

$$\mathbb{H}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \mid \langle x, x \rangle = -1 \},$$

with the metric restricted from $\mathbb{R}^{p,q+1}$.

- ▶ $\mathbb{H}^{p,q}$ is a pseudo-Riemannian manifold of constant sectional curvature -1;
- ▶ diffeomorphic to $\mathbb{B}^p \times \mathbb{S}^q$;
- ► Isom($\mathbb{H}^{p,q}$) = O(p,q+1); not connected, subgroups:

$$\underbrace{\mathsf{SO}_0(p,q+1)}_{\text{orient--preserving isom.}} \quad \overset{1:2}{\subset} \quad \underbrace{\mathsf{SO}(p,q+1)}_{\text{orientation-preserving isom.}} \quad \overset{1:2}{\subset} \quad \mathsf{O}(p,q+1)$$

▶ $\mathbf{S}_{p,q} := \{ \text{timelike totally geodesic } q \text{-spheres} \}$ $= \mathrm{SO}_0(p,q+1)/(\mathrm{SO}(p) \times \mathrm{SO}(q+1)) \cong \mathbf{S}_{q+1,p-1}$ (Riemannian symmetric space of nonpositive curvature)

Example. $\mathbb{H}^{2,1}$ = anti-de Sitter (adS) space.

Example. $\mathbb{H}^{2,1}=$ anti-de Sitter (adS) space. Projectivized picture in the affine plane $\mathbb{R}^{2,1}\cong\{x_4=1\}\subset\mathbb{R}^{2,2}$:

Example. $\mathbb{H}^{2,1}$ = anti-de Sitter (adS) space.

Projectivized picture in the affine plane $\mathbb{R}^{2,1}\cong\{x_4=1\}\subset\mathbb{R}^{2,2}$:

Example. $\mathbb{H}^{2,1}$ = anti-de Sitter (adS) space.

Projectivized picture in the affine plane $\mathbb{R}^{2,1} \cong \{x_4 = 1\} \subset \mathbb{R}^{2,2}$:

Example. $\mathbb{H}^{2,1}$ = anti-de Sitter (adS) space.

Projectivized picture in the affine plane $\mathbb{R}^{2,1} \cong \{x_4 = 1\} \subset \mathbb{R}^{2,2}$:

 $\blacktriangleright \ SO_0(2,2) \cong PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$

Example. $\mathbb{H}^{2,1}$ = anti-de Sitter (adS) space.

Projectivized picture in the affine plane $\mathbb{R}^{2,1} \cong \{x_4 = 1\} \subset \mathbb{R}^{2,2}$:

- $\blacktriangleright \ SO_0(2,2) \cong PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$
- $$\begin{split} & \quad \textbf{S}_{2,1} = \{ \text{timelike closed geodesics} \} \\ & = SO_0(2,2)/(SO(2) \times SO(2)) = \mathbb{H}^2 \times \mathbb{H}^2. \end{split}$$

Example. $\mathbb{H}^{2,1}$ = anti-de Sitter (adS) space.

Projectivized picture in the affine plane $\mathbb{R}^{2,1} \cong \{x_4 = 1\} \subset \mathbb{R}^{2,2}$:

- $\blacktriangleright \ SO_0(2,2) \cong PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$
- ► $\mathbf{S}_{2,1} = \{\text{timelike closed geodesics}\}\$ = $SO_0(2,2)/(SO(2) \times SO(2)) = \mathbb{H}^2 \times \mathbb{H}^2.$

All the other $SO_0(p, q + 1)$'s $(p, q \ge 2)$ are simple Lie groups.

Minimal submanifold = submanifold Σ whose 2nd f.f. $II \in C^{\infty}(\operatorname{Sym}^2\mathsf{T}^*\Sigma \otimes \mathsf{N})$ has zero trace (w.r.t. 1st f.f.)

Minimal submanifold = submanifold Σ whose 2nd f.f.

 $I\!I \in C^{\infty}(\operatorname{Sym}^2T^*\Sigma \otimes N)$ has zero trace (w.r.t. 1st f.f.)

= submanifold whose volume is stationary w.r.t. compactly supported variations

Minimal submanifold = submanifold Σ whose 2nd f.f.

 $I\!I \in C^{\infty}(Sym^2T^*\Sigma \otimes N)$ has zero trace (w.r.t. 1st f.f.)

= submanifold whose volume is stationary w.r.t. compactly supported variations (critical point for the volume functional).

Minimal submanifold = submanifold Σ whose 2nd f.f.

 $I\!I \in C^{\infty}(\operatorname{Sym}^2T^*\Sigma \otimes N)$ has zero trace (w.r.t. 1st f.f.)

= submanifold whose volume is stationary w.r.t. compactly supported variations (critical point for the volume functional).

Maximality Theorem

Let Σ be a spacelike minimal submanifold with timelike normal bundle in a pseudo-Riemannian manifold M of negative sectional curvature.

Minimal submanifold = submanifold Σ whose 2nd f.f.

 $I\!I \in C^{\infty}(\operatorname{Sym}^2T^*\Sigma \otimes N)$ has zero trace (w.r.t. 1st f.f.)

= submanifold whose volume is stationary w.r.t. compactly supported variations (critical point for the volume functional).

Maximality Theorem

Let Σ be a spacelike minimal submanifold with timelike normal bundle in a pseudo-Riemannian manifold M of negative sectional curvature. Then any nonzero, compactly supported, normal deformation of Σ locally decreases the volume.

Minimal submanifold = submanifold Σ whose 2nd f.f.

 $I\!\!I \in C^{\infty}(\operatorname{Sym}^2\mathsf{T}^*\Sigma \otimes \mathsf{N})$ has zero trace (w.r.t. 1st f.f.)

= submanifold whose volume is stationary w.r.t. compactly supported variations (critical point for the volume functional).

Maximality Theorem

Let Σ be a spacelike minimal submanifold with timelike normal bundle in a pseudo-Riemannian manifold M of negative sectional curvature. Then any nonzero, compactly supported, normal deformation of Σ locally decreases the volume.

 \Rightarrow Spacelike minimal surfaces in $\mathbb{H}^{2,q}$ are called maximal surfaces.

Proof. 2nd variation formula of volume for minimal submanifolds

Proof. 2nd variation formula of volume for minimal submanifolds $(\xi \in C^{\infty}(\Sigma, \mathbb{N})$ variational vector field):

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\bigg|_{t=0} vol(\Sigma_t) = \int_{\Sigma} \mathrm{Tr}_g\left(\langle \nabla^\mathsf{N}_{\bullet}\xi, \nabla^\mathsf{N}_{\bullet}\xi \rangle - \langle A_{\xi}(\bullet), A_{\xi}(\bullet) \rangle - \langle R_M(\bullet, \xi)\xi, \bullet \rangle\right) \mathrm{d}vol_g$$

```
• = slot for tangent vector, g = 1st fundamental form, \nabla^{N} = \text{normal connection}, A_{\xi} = \text{shape operator associated to } \xi, R_{M} = \text{curvature tensor of } M.
```

Proof. 2nd variation formula of volume for minimal submanifolds $(\xi \in C^{\infty}(\Sigma, \mathbb{N})$ variational vector field):

$$\frac{\mathsf{d}^2}{\mathsf{d}t^2}\bigg|_{t=0} vol(\Sigma_t) = \int_{\Sigma} \operatorname{Tr}_g\left(\underbrace{\langle \nabla^{\mathsf{N}}_{\bullet}\xi, \nabla^{\mathsf{N}}_{\bullet}\xi \rangle}_{\leq 0} - \langle A_{\xi}(\bullet), A_{\xi}(\bullet) \rangle - \langle R_M(\bullet, \xi)\xi, \bullet \rangle\right) \mathsf{d}vol_g$$

```
• = slot for tangent vector, g = 1st fundamental form, \nabla^{N} = \text{normal connection}, A_{\xi} = \text{shape operator associated to } \xi, R_{M} = \text{curvature tensor of } M.
```

Proof. 2nd variation formula of volume for minimal submanifolds $(\xi \in C^{\infty}(\Sigma, \mathbb{N}))$ variational vector field):

$$\frac{\mathsf{d}^2}{\mathsf{d}t^2}\bigg|_{t=0}^{\text{normal vector}} \underbrace{\operatorname{Vol}(\Sigma_t) = \int_{\Sigma} \operatorname{Tr}_g\left(\langle \nabla^{\mathsf{N}}_{\bullet}\xi, \nabla^{\mathsf{N}}_{\bullet}\xi \rangle - \langle \underbrace{A_{\xi}(\bullet), A_{\xi}(\bullet)}\rangle - \langle R_M(\bullet, \xi)\xi, \bullet \rangle\right) \mathsf{d}vol_g}_{\leq 0}$$

```
• = slot for tangent vector, g = 1st fundamental form, \nabla^{N} = \text{normal connection}, A_{\xi} = \text{shape operator associated to } \xi, R_{M} = \text{curvature tensor of } M.
```

Proof. 2nd variation formula of volume for minimal submanifolds $(\xi \in C^{\infty}(\Sigma, \mathbb{N}))$ variational vector field):

$$\frac{\mathsf{d}^2}{\mathsf{d}t^2} \bigg|_{t=0}^{\text{normal vector}} \underbrace{\nabla l(\Sigma_t)}_{t=0} = \int_{\Sigma} \mathrm{Tr}_g\left(\langle \nabla^{\mathsf{N}}_{\bullet}\xi, \nabla^{\mathsf{N}}_{\bullet}\xi \rangle - \langle \underbrace{A_{\xi}(\bullet), A_{\xi}(\bullet)}\rangle - \langle \underbrace{R_M(\bullet, \xi)\xi, \bullet}\rangle\right) \mathsf{d}vol_g$$

```
• = slot for tangent vector, g = 1st fundamental form, \nabla^{N} = \text{normal connection}, A_{\xi} = \text{shape operator associated to } \xi, R_{M} = \text{curvature tensor of } M.
```

Proof. 2nd variation formula of volume for minimal submanifolds $(\xi \in C^{\infty}(\Sigma, \mathbb{N}))$ variational vector field):

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \bigg|_{t=0}^{vol(\Sigma_t)} = \int_{\Sigma} \mathrm{Tr}_g \left(\underbrace{\langle \nabla^{\mathsf{N}}_{\bullet} \xi, \nabla^{\mathsf{N}}_{\bullet} \xi \rangle}_{\leq 0} - \underbrace{\langle A_{\xi}(\bullet), A_{\xi}(\bullet) \rangle}_{\text{because}} - \underbrace{\langle R_{\mathsf{M}}(\bullet, \xi) \xi, \bullet \rangle}_{\geq 0, \text{ strict on } \{\xi \neq 0\}} \right) \mathrm{d}vol_g$$

$$\bullet = \text{slot for tangent vector,}$$

$$\bullet = \text{slot for tangent vector,}$$

• = slot for tangent vector, g = 1st fundamental form, $\nabla^{N} =$ normal connection, $A_{\xi} =$ shape operator associated to ξ , $R_{M} =$ curvature tensor of M.

Proof. 2nd variation formula of volume for minimal submanifolds $(\xi \in C^{\infty}(\Sigma, \mathbb{N}))$ variational vector field):

$$\frac{\mathsf{d}^2}{\mathsf{d}t^2} \bigg|_{t=0}^{\text{normal vector}} = \int_{\Sigma} \operatorname{Tr}_g \left(\langle \nabla^{\mathsf{N}}_{\bullet} \xi, \nabla^{\mathsf{N}}_{\bullet} \xi \rangle - \langle A_{\xi}(\bullet), A_{\xi}(\bullet) \rangle - \langle R_M(\bullet, \xi) \xi, \bullet \rangle \right) \mathsf{d}vol_g$$

$$< 0 \qquad \qquad \geq 0 \qquad \geq 0, \text{ strict on } \{\xi \neq 0\}$$

• = slot for tangent vector,

g = 1st fundamental form,

 ∇^{N} = normal connection,

 A_{ξ} = shape operator associated to ξ ,

 R_M = curvature tensor of M.

because
$$K(v \wedge \xi) = \frac{\langle R_M(v, \xi)\xi, v \rangle}{\langle v, v \rangle \langle \xi, \xi \rangle - \langle v, \xi \rangle^2}$$

Spacelike surface $\Sigma\subset\mathbb{H}^{2,q}\leadsto \mathsf{Gauss}\;\mathsf{map}\;\psi:\Sigma\to \mathbf{S}_{2,q}$

Theorem (analogue for Gauss map of minimal surfaces in \mathbb{R}^3)

If Σ is maximal, then ψ is a conformal minimal immersion.

Spacelike surface $\Sigma \subset \mathbb{H}^{2,q} \leadsto \operatorname{Gauss\; map} \psi : \Sigma \to \mathbf{S}_{2,q}$

Theorem (analogue for Gauss map of minimal surfaces in \mathbb{R}^3)

If Σ is maximal, then ψ is a conformal minimal immersion.

Example. Maximal surface in $\mathbb{H}^{2,1}$ \rightsquigarrow conformal minimal immersion $\psi: \Sigma \to \mathbf{S}_{2,1} = \mathbb{H}^2 \times \mathbb{H}^2$

Theorem (analogue for Gauss map of minimal surfaces in \mathbb{R}^3)

If Σ is maximal, then ψ is a conformal minimal immersion.

Example. Maximal surface in $\mathbb{H}^{2,1}$ \leadsto conformal minimal immersion $\psi: \Sigma \to \mathbf{S}_{2,1} = \mathbb{H}^2 \times \mathbb{H}^2$ \leadsto pair of harmonic maps $\psi_+, \psi_-: \Sigma \to \mathbb{H}^2$ with opposite Hopf differentials.

Applications in (higher) Teichmüler theory

▶ (Mess 2007, Bonsante-Schlenker 2010) Closed maximal surfaces in some partial quotients of $\mathbb{H}^{2,1}$ ("globally hyperbolic spacetimes", analogue of quasi-Fuchsian convex cores) are useful for studying pairs of Fuchsian representations $\pi_1(S_g) \to \mathrm{PSL}(2,\mathbb{R})$ (e.g. new proof and extensions of Thurston's Earthquake Theorem).

- ▶ (Mess 2007, Bonsante-Schlenker 2010) Closed maximal surfaces in some partial quotients of $\mathbb{H}^{2,1}$ ("globally hyperbolic spacetimes", analogue of quasi-Fuchsian convex cores) are useful for studying pairs of Fuchsian representations $\pi_1(S_g) \to \mathrm{PSL}(2,\mathbb{R})$ (e.g. new proof and extensions of Thurston's Earthquake Theorem).
- (Collier-Tholozan-Toulisse 2019) Closed maximal surfaces in some partial quotients of $\mathbb{H}^{2,q}$ are useful for studying maximal representations $\pi_1(S_g) \to SO_0(2,q+1)$.

- ▶ (Mess 2007, Bonsante-Schlenker 2010) Closed maximal surfaces in some partial quotients of $\mathbb{H}^{2,1}$ ("globally hyperbolic spacetimes", analogue of quasi-Fuchsian convex cores) are useful for studying pairs of Fuchsian representations $\pi_1(S_g) \to \mathrm{PSL}(2,\mathbb{R})$ (e.g. new proof and extensions of Thurston's Earthquake Theorem).
- ▶ (Collier-Tholozan-Toulisse 2019) Closed maximal surfaces in some partial quotients of $\mathbb{H}^{2,q}$ are useful for studying maximal representations $\pi_1(S_g) \to SO_0(2, q+1)$.

What about minimal surfaces in $\mathbb{H}^{p,q}$, p > 2?

- ▶ (Mess 2007, Bonsante-Schlenker 2010) Closed maximal surfaces in some partial quotients of $\mathbb{H}^{2,1}$ ("globally hyperbolic spacetimes", analogue of quasi-Fuchsian convex cores) are useful for studying pairs of Fuchsian representations $\pi_1(S_g) \to \mathrm{PSL}(2,\mathbb{R})$ (e.g. new proof and extensions of Thurston's Earthquake Theorem).
- ▶ (Collier-Tholozan-Toulisse 2019) Closed maximal surfaces in some partial quotients of $\mathbb{H}^{2,q}$ are useful for studying maximal representations $\pi_1(S_g) \to SO_0(2, q+1)$.

What about minimal surfaces in $\mathbb{H}^{p,q}$, p > 2?

 Not maximal (critical point of area functional, but not local maximum/minimum);

- ▶ (Mess 2007, Bonsante-Schlenker 2010) Closed maximal surfaces in some partial quotients of $\mathbb{H}^{2,1}$ ("globally hyperbolic spacetimes", analogue of quasi-Fuchsian convex cores) are useful for studying pairs of Fuchsian representations $\pi_1(S_g) \to \mathrm{PSL}(2,\mathbb{R})$ (e.g. new proof and extensions of Thurston's Earthquake Theorem).
- ▶ (Collier-Tholozan-Toulisse 2019) Closed maximal surfaces in some partial quotients of $\mathbb{H}^{2,q}$ are useful for studying maximal representations $\pi_1(S_g) \to SO_0(2, q+1)$.

What about minimal surfaces in $\mathbb{H}^{p,q}$, p > 2?

- Not maximal (critical point of area functional, but not local maximum/minimum);
- ▶ No obvious notion of Gauss map to $S_{p,q}$.

▶ Introduce a special type of spacelike minimal surfaces Σ ("*A-surfaces*") in $\mathbb{H}^{n,n}$ with n even or $\mathbb{H}^{n+1,n-1}$ with n odd, related to cyclic SO₀(n, n+1)-Higgs bundles.

- ▶ Introduce a special type of spacelike minimal surfaces Σ ("*A-surfaces*") in $\mathbb{H}^{n,n}$ with n even or $\mathbb{H}^{n+1,n-1}$ with n odd, related to cyclic SO₀(n, n+1)-Higgs bundles.
- ► Have a good notion of Gauss map $\Sigma \to \mathbf{S}_{n,n}$ or $\mathbf{S}_{n+1,n-1}$ (recovers the minimal mapping from the Higgs bundle).

- ▶ Introduce a special type of spacelike minimal surfaces Σ ("*A-surfaces*") in $\mathbb{H}^{n,n}$ with n even or $\mathbb{H}^{n+1,n-1}$ with n odd, related to cyclic SO₀(n, n+1)-Higgs bundles.
- ► Have a good notion of Gauss map $\Sigma \to \mathbf{S}_{n,n}$ or $\mathbf{S}_{n+1,n-1}$ (recovers the minimal mapping from the Higgs bundle).
- ▶ *Key Theorem.* Normal bundle of Σ has orthogonal splitting $N = N^+ \oplus N^-$ (spacelike/timelike parts). Under some conditions, any compactly supported deformation of Σ along N^+ (resp. N^-) increases (resp. decreases) the area.

- ▶ Introduce a special type of spacelike minimal surfaces Σ ("*A-surfaces*") in $\mathbb{H}^{n,n}$ with n even or $\mathbb{H}^{n+1,n-1}$ with n odd, related to cyclic SO₀(n, n+1)-Higgs bundles.
- ► Have a good notion of Gauss map $\Sigma \to \mathbf{S}_{n,n}$ or $\mathbf{S}_{n+1,n-1}$ (recovers the minimal mapping from the Higgs bundle).
- ▶ *Key Theorem.* Normal bundle of Σ has orthogonal splitting $N = N^+ \oplus N^-$ (spacelike/timelike parts). Under some conditions, any compactly supported deformation of Σ along N^+ (resp. N^-) increases (resp. decreases) the area.
- ► Corollary. Infinitesimally rigid.

- ▶ Introduce a special type of spacelike minimal surfaces Σ ("*A-surfaces*") in $\mathbb{H}^{n,n}$ with n even or $\mathbb{H}^{n+1,n-1}$ with n odd, related to cyclic SO₀(n, n+1)-Higgs bundles.
- ► Have a good notion of Gauss map $\Sigma \to \mathbf{S}_{n,n}$ or $\mathbf{S}_{n+1,n-1}$ (recovers the minimal mapping from the Higgs bundle).
- ▶ *Key Theorem.* Normal bundle of Σ has orthogonal splitting $N = N^+ \oplus N^-$ (spacelike/timelike parts). Under some conditions, any compactly supported deformation of Σ along N^+ (resp. N^-) increases (resp. decreases) the area.
- ► Corollary. Infinitesimally rigid.
- New proof of Labourie Immersion Theorem (\Rightarrow Labourie Conjecture for rank 2 groups) for $SO_0(n, n + 1)$ & generalization to Collier's components.

Frenet frame: Given curve $t \mapsto \gamma(t) \in \mathbb{E}^n$, if $\gamma'(t), \gamma''(t), \cdots, \gamma^{(n)}(t)$ are linearly independent for all t,

Frenet frame: Given curve $t \mapsto \gamma(t) \in \mathbb{E}^n$, if $\gamma'(t), \gamma''(t), \cdots, \gamma^{(n)}(t)$ are linearly independent for all t, then $\exists !$ orthonormal moving frame $(e_1(t), \cdots, e_n(t))$ such that

• $e_1 = \gamma'(t)/\|\gamma'(t)\|$ is the unit tangent;

Frenet frame: Given curve $t \mapsto \gamma(t) \in \mathbb{E}^n$, if $\gamma'(t), \gamma''(t), \cdots, \gamma^{(n)}(t)$ are linearly independent for all t, then $\exists !$ orthonormal moving frame $(e_1(t), \cdots, e_n(t))$ such that

• $e_1 = \gamma'(t)/\|\gamma'(t)\|$ is the unit tangent;

$$(e'_{1}(t), \dots, e'_{n}(t)) = (e_{1}(t), \dots, e_{n}(t)) \begin{pmatrix} 0 & -\kappa_{2} \\ \kappa_{2} & 0 & -\kappa_{3} \\ & \kappa_{3} & 0 & \ddots \\ & & \ddots & \ddots & -\kappa_{n} \\ & & & \kappa_{n} & 0 \end{pmatrix}.$$

Frenet frame: Given curve $t \mapsto \gamma(t) \in \mathbb{E}^n$, if $\gamma'(t), \gamma''(t), \cdots, \gamma^{(n)}(t)$ are linearly independent for all t, then $\exists !$ orthonormal moving frame $(e_1(t), \cdots, e_n(t))$ such that

- $e_1 = \gamma'(t)/\|\gamma'(t)\|$ is the unit tangent;
- $(e'_1(t), \dots, e'_n(t)) = (e_1(t), \dots, e_n(t)) \begin{pmatrix} 0 & -\kappa_2 \\ \kappa_2 & 0 & -\kappa_3 \\ & \kappa_3 & 0 & \ddots \\ & & \ddots & \ddots & -\kappa_n \\ & & & \kappa_n & 0 \end{pmatrix}.$

Frenet frame: Given curve $t \mapsto \gamma(t) \in \mathbb{E}^n$, if $\gamma'(t), \gamma''(t), \cdots, \gamma^{(n)}(t)$ are linearly independent for all t, then $\exists !$ orthonormal moving frame $(e_1(t), \cdots, e_n(t))$ such that

- $e_1 = \gamma'(t)/\|\gamma'(t)\|$ is the unit tangent;
- $(e'_1(t), \dots, e'_n(t)) = (e_1(t), \dots, e_n(t)) \begin{pmatrix} 0 & -\kappa_2 \\ \kappa_2 & 0 & -\kappa_3 \\ & \kappa_3 & 0 & \ddots \\ & & \ddots & \ddots & -\kappa_n \\ & & & \kappa_n & 0 \end{pmatrix}.$

 $\kappa_2, \dots, \kappa_n$ are complete intrinsic invariants of the curve (n = 3: curvature & torsion)

Frenet frame: Given curve $t \mapsto \gamma(t) \in \mathbb{E}^n$, if $\gamma'(t), \gamma''(t), \cdots, \gamma^{(n)}(t)$ are linearly independent for all t, then $\exists !$ orthonormal moving frame $(e_1(t), \cdots, e_n(t))$ such that

• $e_1 = \gamma'(t)/\|\gamma'(t)\|$ is the unit tangent;

$$(e'_1(t), \dots, e'_n(t)) = (e_1(t), \dots, e_n(t)) \begin{pmatrix} 0 & -\kappa_2 \\ \kappa_2 & 0 & -\kappa_3 \\ & \kappa_3 & 0 & \ddots \\ & & \ddots & \ddots & -\kappa_n \\ & & & \kappa_n & 0 \end{pmatrix}.$$

 $\kappa_2, \dots, \kappa_n$ are complete intrinsic invariants of the curve (n-3) curvature & torcion)

(n = 3: curvature & torsion)

Theorem (Chern 1970)

Theorem (Chern 1970)

For any minimal 2-sphere $S \subset \mathbb{S}^{2n}$ not in any \mathbb{S}^{2n-1} ,

Theorem (Chern 1970)

For any minimal 2-sphere $S \subset \mathbb{S}^{2n}$ not in any \mathbb{S}^{2n-1} , $\exists !$ orthogonal splitting $T\mathbb{S}^{2n}|_{S} = L_1 \oplus \cdots \oplus L_n$ s.t.

(a) every L_i has rank 2; $L_1 = \mathsf{T}S$;

Theorem (Chern 1970)

For any minimal 2-sphere $S \subset \mathbb{S}^{2n}$ not in any \mathbb{S}^{2n-1} , $\exists !$ orthogonal splitting $T\mathbb{S}^{2n}|_{S} = L_1 \oplus \cdots \oplus L_n$ s.t.

- (a) every L_i has rank 2; $L_1 = TS$;
- (b) the Levi-Civita connection ∇ on $\mathsf{TS}^{2n}|_S$ decomposes as

$$\nabla = \begin{pmatrix} \nabla_1 & -\alpha_2^* \\ \alpha_2 & \nabla_2 & -\alpha_3^* \\ & \alpha_3 & \nabla_3 & \ddots \\ & & \ddots & \ddots & -\alpha_n^* \\ & & & \alpha_n & \nabla_n \end{pmatrix};$$

Theorem (Chern 1970)

For any minimal 2-sphere $S \subset \mathbb{S}^{2n}$ not in any \mathbb{S}^{2n-1} , $\exists !$ orthogonal splitting $T\mathbb{S}^{2n}|_S = L_1 \oplus \cdots \oplus L_n$ s.t.

- (a) every L_i has rank 2; $L_1 = TS$;
- (b) the Levi-Civita connection ∇ on $TS^{2n}|_S$ decomposes as

$$\nabla = \begin{pmatrix} \nabla_1 & -\alpha_2^* \\ \alpha_2 & \nabla_2 & -\alpha_3^* \\ & \alpha_3 & \nabla_3 & \ddots \\ & & \ddots & \ddots & -\alpha_n^* \\ & & & \alpha_n & \nabla_n \end{pmatrix};$$

(c) each $\alpha_i \in \Omega^1(S, \operatorname{Hom}(L_{i-1}, L_i))$ is conformal (i.e. any $\alpha_i(x)v: L_{i-1}|_x \to L_i|_x$ is a conformal linear map of Euclidean planes).

Idea of proof. Find L_2 as the image of the 2nd fundamental form, use the fact that any holomorphic k-differential on \mathbb{CP}^1 vanishes to show that α_2 is conformal (a famous idea of Hopf);

Idea of proof. Find L_2 as the image of the 2nd fundamental form, use the fact that any holomorphic k-differential on \mathbb{CP}^1 vanishes to show that α_2 is conformal (a famous idea of Hopf); find L_3, L_4, \cdots and show the conformality of $\alpha_3, \alpha_4, \cdots$ inductively in the same way.

Idea of proof. Find L_2 as the image of the 2nd fundamental form, use the fact that any holomorphic k-differential on \mathbb{CP}^1 vanishes to show that α_2 is conformal (a famous idea of Hopf); find L_3, L_4, \cdots and show the conformality of $\alpha_3, \alpha_4, \cdots$ inductively in the same way.

For surfaces not homeomorphic to \mathbb{S}^2 :

Idea of proof. Find L_2 as the image of the 2nd fundamental form, use the fact that any holomorphic k-differential on \mathbb{CP}^1 vanishes to show that α_2 is conformal (a famous idea of Hopf); find L_3, L_4, \cdots and show the conformality of $\alpha_3, \alpha_4, \cdots$ inductively in the same way.

For surfaces not homeomorphic to \mathbb{S}^2 :

Definition

A superminimal surface in a Riemannian manifold M^{2n} is a minimal surface Σ with an orthogonal splitting $TM|_{\Sigma} = L_1 \oplus \cdots \oplus L_n$ satisfying conditions (a), (b), (c).

Idea of proof. Find L_2 as the image of the 2nd fundamental form, use the fact that any holomorphic k-differential on \mathbb{CP}^1 vanishes to show that α_2 is conformal (a famous idea of Hopf); find L_3, L_4, \cdots and show the conformality of $\alpha_3, \alpha_4, \cdots$ inductively in the same way.

For surfaces not homeomorphic to \mathbb{S}^2 :

Definition

A superminimal surface in a Riemannian manifold M^{2n} is a minimal surface Σ with an orthogonal splitting $TM|_{\Sigma} = L_1 \oplus \cdots \oplus L_n$ satisfying conditions (a), (b), (c). Cond.(c) relaxed s.t. only $\alpha_2, \cdots, \alpha_{n-1}$ are assumed conformal (no

Cond.(c) relaxed s.t. only $\alpha_2, \dots, \alpha_{n-1}$ are assumed conformal (no assumption on α_n) \Rightarrow quasi-superminimal surface.

Idea of proof. Find L_2 as the image of the 2nd fundamental form, use the fact that any holomorphic k-differential on \mathbb{CP}^1 vanishes to show that α_2 is conformal (a famous idea of Hopf); find L_3, L_4, \cdots and show the conformality of $\alpha_3, \alpha_4, \cdots$ inductively in the same way.

For surfaces not homeomorphic to \mathbb{S}^2 :

Definition

A superminimal surface in a Riemannian manifold M^{2n} is a minimal surface Σ with an orthogonal splitting $TM|_{\Sigma} = L_1 \oplus \cdots \oplus L_n$ satisfying conditions (a), (b), (c).

Cond.(c) relaxed s.t. only $\alpha_2, \dots, \alpha_{n-1}$ are assumed conformal (no assumption on α_n) \Rightarrow quasi-superminimal surface.

Still makes sense for *pseudo-Riemannian* M if every L_i is (positive or negative) definite.

Definition

When M is pseudo-Riemannian, Σ is called an A-surface if it is quasi-superminimal and L_i is positive (resp. negative) definite for all i odd (resp. even) (alternating space-/time-likeness).

Definition

When M is pseudo-Riemannian, Σ is called an A-surface if it is quasi-superminimal and L_i is positive (resp. negative) definite for all i odd (resp. even) (alternating space-/time-likeness).

Definition

When M is pseudo-Riemannian, Σ is called an A-surface if it is quasi-superminimal and L_i is positive (resp. negative) definite for all i odd (resp. even) (alternating space-/time-likeness).

 \Rightarrow (p,q) = (n,n) (resp. (n+1,n-1)) when n is even (resp. odd).

Definition

When M is pseudo-Riemannian, Σ is called an A-surface if it is quasi-superminimal and L_i is positive (resp. negative) definite for all i odd (resp. even) (alternating space-/time-likeness).

Definition

When M is pseudo-Riemannian, Σ is called an A-surface if it is quasi-superminimal and L_i is positive (resp. negative) definite for all i odd (resp. even) (alternating space-/time-likeness).

$$\Rightarrow$$
 $(p,q) = (n,n)$ (resp. $(n+1,n-1)$) when n is even (resp. odd).

Gauss map $\psi: \Sigma \to \mathbf{S}_{p,q}$ of an A-surface $\Sigma \subset \mathbb{H}^{p,q}$:

Definition

When M is pseudo-Riemannian, Σ is called an A-surface if it is quasi-superminimal and L_i is positive (resp. negative) definite for all i odd (resp. even) (alternating space-/time-likeness).

$$\Rightarrow$$
 $(p,q) = (n,n)$ (resp. $(n+1,n-1)$) when n is even (resp. odd).

$$L_1 \oplus L_2 \oplus L_3 \oplus L_4$$
 $L_1 \oplus L_2 \oplus L_3 \oplus L_4 \oplus L_5$

Gauss map $\psi : \Sigma \to \mathbf{S}_{p,q}$ of an A-surface $\Sigma \subset \mathbb{H}^{p,q}$: $\psi(x) := \text{totally geodesic } q\text{-sphere generated by } (L_2 \oplus L_4 \oplus \cdots)|_x$.

Definition

When M is pseudo-Riemannian, Σ is called an A-surface if it is quasi-superminimal and L_i is positive (resp. negative) definite for all i odd (resp. even) (alternating space-/time-likeness).

$$\Rightarrow$$
 $(p,q) = (n,n)$ (resp. $(n+1,n-1)$) when n is even (resp. odd).

$$L_1 \oplus L_2 \oplus L_3 \oplus L_4$$
 $L_1 \oplus L_2 \oplus L_3 \oplus L_4 \oplus L_5$

Gauss map $\psi : \Sigma \to \mathbf{S}_{p,q}$ of an A-surface $\Sigma \subset \mathbb{H}^{p,q}$: $\psi(x) := \text{totally geodesic } q\text{-sphere generated by } (L_2 \oplus L_4 \oplus \cdots)|_x$.

Infinitesimal rigidity

Generalization of Maximality Theorem:

Min-Max Theorem (N. 2022)

Given A-surface $\Sigma \subset \mathbb{H}^{p,q}$ with $\mathsf{T}\mathbb{H}^{p,q}|_{\Sigma} = L_1 \oplus \cdots \oplus L_n \ (L_1 = \mathsf{T}\Sigma)$.

Infinitesimal rigidity

Generalization of Maximality Theorem:

Min-Max Theorem (N. 2022)

Given A-surface $\Sigma \subset \mathbb{H}^{p,q}$ with $\mathsf{T}\mathbb{H}^{p,q}|_{\Sigma} = L_1 \oplus \cdots \oplus L_n$ ($L_1 = \mathsf{T}\Sigma$). Suppose that each of L_2, \cdots, L_n , viewed as a hermitian holomorphic line bundle, has *semi*-negative Chern form (no assumption on L_1).

Infinitesimal rigidity

Generalization of Maximality Theorem:

Min-Max Theorem (N. 2022)

Given A-surface $\Sigma \subset \mathbb{H}^{p,q}$ with $\mathsf{T}\mathbb{H}^{p,q}|_{\Sigma} = L_1 \oplus \cdots \oplus L_n$ ($L_1 = \mathsf{T}\Sigma$). Suppose that each of L_2, \cdots, L_n , viewed as a hermitian holomorphic line bundle, has *semi*-negative Chern form (no assumption on L_1). Then any nonzero, compactly supported deformation of Σ along $\mathsf{N}^+ := L_3 \oplus L_5 \oplus \cdots$ (resp. $\mathsf{N}^- := L_2 \oplus L_4 \oplus \cdots$) locally increases (resp. decreases) the area.

Generalization of Maximality Theorem:

Min-Max Theorem (N. 2022)

Given A-surface $\Sigma \subset \mathbb{H}^{p,q}$ with $\mathsf{T}\mathbb{H}^{p,q}|_{\Sigma} = L_1 \oplus \cdots \oplus L_n$ ($L_1 = \mathsf{T}\Sigma$). Suppose that each of L_2, \cdots, L_n , viewed as a hermitian holomorphic line bundle, has *semi*-negative Chern form (no assumption on L_1). Then any nonzero, compactly supported deformation of Σ along $\mathsf{N}^+ := L_3 \oplus L_5 \oplus \cdots$ (resp. $\mathsf{N}^- := L_2 \oplus L_4 \oplus \cdots$) locally increases (resp. decreases) the area.

Remark. Cannot expect such property from minimal surfaces in $\mathbb{H}^p \subset \mathbb{H}^{p,q}$ (unless Σ is totally geodesic or close to t.g.).

Generalization of Maximality Theorem:

Min-Max Theorem (N. 2022)

Given A-surface $\Sigma \subset \mathbb{H}^{p,q}$ with $\mathsf{T}\mathbb{H}^{p,q}|_{\Sigma} = L_1 \oplus \cdots \oplus L_n$ ($L_1 = \mathsf{T}\Sigma$). Suppose that each of L_2, \cdots, L_n , viewed as a hermitian holomorphic line bundle, has *semi*-negative Chern form (no assumption on L_1). Then any nonzero, compactly supported deformation of Σ along $\mathsf{N}^+ := L_3 \oplus L_5 \oplus \cdots$ (resp. $\mathsf{N}^- := L_2 \oplus L_4 \oplus \cdots$) locally increases (resp. decreases) the area.

Remark. Cannot expect such property from minimal surfaces in $\mathbb{H}^p \subset \mathbb{H}^{p,q}$ (unless Σ is totally geodesic or close to t.g.). What is different for A-surfaces: the 2nd fundamental form $\operatorname{Sym}^2 T\Sigma = \operatorname{Sym}^2 L_1 \to \mathbb{N}$ takes values in L_2 , which is timelike (A-surfaces have "timelike osculation").

Recall: Any minimal submanifold Σ has a Jacobi operator

 $L_\Sigma: C^\infty(\Sigma, \mathsf{N}) \to C^\infty(\Sigma, \mathsf{N}) \; (L_\Sigma = \Delta^\mathsf{N} + 0 \text{th order part})$

 $\it Recall:$ Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 th \ order \ part)$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

- if very Σ_t is minimal, then $L_{\Sigma}\xi = 0$.

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

- if very Σ_t is minimal, then $L_{\Sigma}\xi = 0$.

So those ξ with $L_{\Sigma}\xi = 0$ are call Jacobi fields and can be viewed as the infinitesimal deformations of Σ .

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, N)$,

- if very Σ_t is minimal, then $L_{\Sigma}\xi = 0$.

So those ξ with $L_{\Sigma}\xi=0$ are call Jacobi fields and can be viewed as the infinitesimal deformations of Σ .

Corollary of Min-Max Theorem (Infinitesimal Rigidity)

Under the same assumption, $\boldsymbol{\Sigma}$ does not have any nonzero compactly supported Jacobi field.

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

- if very Σ_t is minimal, then $L_{\Sigma}\xi = 0$.

So those ξ with $L_{\Sigma}\xi = 0$ are call Jacobi fields and can be viewed as the infinitesimal deformations of Σ .

Corollary of Min-Max Theorem (Infinitesimal Rigidity)

Under the same assumption, $\boldsymbol{\Sigma}$ does not have any nonzero compactly supported Jacobi field.

Proof. A-surface Σ NOT inf. rigid $\Rightarrow \exists \xi = \xi_- + \xi_- \not\equiv 0$ with $L_\Sigma \xi = 0$.

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

- if very Σ_t is minimal, then $L_{\Sigma}\xi = 0$.

So those ξ with $L_{\Sigma}\xi = 0$ are call Jacobi fields and can be viewed as the infinitesimal deformations of Σ .

Corollary of Min-Max Theorem (Infinitesimal Rigidity)

Under the same assumption, Σ does not have any nonzero compactly supported Jacobi field.

Proof. A-surface
$$\Sigma$$
 NOT inf. rigid $\Rightarrow \exists \xi = \xi_- + \xi_- \not\equiv 0$ with $L_\Sigma \xi = 0$. $\Rightarrow \langle L_\Sigma \xi, \xi_+ \rangle = 0$, $\langle L_\Sigma \xi, \xi_- \rangle = 0$

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

- if very Σ_t is minimal, then $L_{\Sigma}\xi = 0$.

So those ξ with $L_{\Sigma}\xi = 0$ are call Jacobi fields and can be viewed as the infinitesimal deformations of Σ .

Corollary of Min-Max Theorem (Infinitesimal Rigidity)

Under the same assumption, Σ does not have any nonzero compactly supported Jacobi field.

Proof. A-surface
$$\Sigma$$
 NOT inf. rigid $\Rightarrow \exists \xi = \xi_- + \xi_- \not\equiv 0$ with $L_\Sigma \xi = 0$. $\Rightarrow \langle L_\Sigma \xi, \xi_+ \rangle = 0$, $\langle L_\Sigma \xi, \xi_- \rangle = 0$ $\Rightarrow \langle L_\Sigma \xi_+, \xi_+ \rangle = -\langle L_\Sigma \xi_-, \xi_+ \rangle$, $\langle L_\Sigma \xi_-, \xi_- \rangle = -\langle L_\Sigma \xi_+, \xi_- \rangle$

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

- if very Σ_t is minimal, then $L_{\Sigma}\xi = 0$.

So those ξ with $L_{\Sigma}\xi = 0$ are call Jacobi fields and can be viewed as the infinitesimal deformations of Σ .

Corollary of Min-Max Theorem (Infinitesimal Rigidity)

Under the same assumption, Σ does not have any nonzero compactly supported Jacobi field.

Proof. A-surface
$$\Sigma$$
 NOT inf. rigid $\Rightarrow \exists \xi = \xi_- + \xi_- \not\equiv 0$ with $L_\Sigma \xi = 0$. $\Rightarrow \langle L_\Sigma \xi, \xi_+ \rangle = 0$, $\langle L_\Sigma \xi, \xi_- \rangle = 0$ $\Rightarrow \langle L_\Sigma \xi_+, \xi_+ \rangle = -\langle L_\Sigma \xi_-, \xi_+ \rangle$ $= -\langle L_\Sigma \xi_+, \xi_- \rangle$

Min-Max Thm. \Rightarrow integral <0, >0, resp.

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

- $\qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t^2}\Big|_{t=0}vol(\Sigma_t) = -\int_{\Sigma}\langle L_{\Sigma}\xi,\xi\rangle,$
- if very Σ_t is minimal, then $L_{\Sigma}\xi = 0$.

So those ξ with $L_{\Sigma}\xi = 0$ are call Jacobi fields and can be viewed as the infinitesimal deformations of Σ .

Corollary of Min-Max Theorem (Infinitesimal Rigidity)

Under the same assumption, $\boldsymbol{\Sigma}$ does not have any nonzero compactly supported Jacobi field.

Proof. A-surface
$$\Sigma$$
 NOT inf. rigid $\Rightarrow \exists \xi = \xi_- + \xi_- \not\equiv 0$ with $L_\Sigma \xi = 0$. $\Rightarrow \langle L_\Sigma \xi, \xi_+ \rangle = 0$, $\langle L_\Sigma \xi, \xi_- \rangle = 0$ $\Rightarrow \langle L_\Sigma \xi_+, \xi_+ \rangle = (-\langle L_\Sigma \xi_-, \xi_+ \rangle) \langle L_\Sigma \xi_-, \xi_- \rangle = (-\langle L_\Sigma \xi_+, \xi_- \rangle)$ integrals are equal because Min-Max Thm. \Rightarrow integral <0 , >0 , resp. L_Σ is self-adjoint

Recall: Any minimal submanifold Σ has a Jacobi operator

$$L_{\Sigma}: C^{\infty}(\Sigma, \mathbb{N}) \to C^{\infty}(\Sigma, \mathbb{N}) \ (L_{\Sigma} = \Delta^{\mathbb{N}} + 0 \text{th order part})$$

s.t. \forall deformation (Σ_t) with variational vector field $\xi \in C^{\infty}(\Sigma, \mathbb{N})$,

- $\qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t^2}\Big|_{t=0}vol(\Sigma_t) = -\int_{\Sigma}\langle L_{\Sigma}\xi,\xi\rangle,$
- if very Σ_t is minimal, then $L_{\Sigma}\xi = 0$.

So those ξ with $L_{\Sigma}\xi = 0$ are call Jacobi fields and can be viewed as the infinitesimal deformations of Σ .

Corollary of Min-Max Theorem (Infinitesimal Rigidity)

Under the same assumption, $\boldsymbol{\Sigma}$ does not have any nonzero compactly supported Jacobi field.

Proof. A-surface
$$\Sigma$$
 NOT inf. rigid $\Rightarrow \exists \xi = \xi_- + \xi_- \not\equiv 0$ with $L_\Sigma \xi = 0$. $\Rightarrow \langle L_\Sigma \xi, \xi_+ \rangle = 0$, $\langle L_\Sigma \xi, \xi_- \rangle = 0$ $\Rightarrow \langle L_\Sigma \xi_+, \xi_+ \rangle = (-\langle L_\Sigma \xi_-, \xi_+ \rangle) (\langle L_\Sigma \xi_-, \xi_- \rangle) = (-\langle L_\Sigma \xi_+, \xi_- \rangle)$ contradiction! integrals are equal because Min-Max Thm. \Rightarrow integral <0 , >0 , resp. L_Σ is self-adjoint

Remark. This is an infinite-dimensional generalization of the linear-algebraic fact "if $A=\begin{pmatrix}A_+&**&A_-\end{pmatrix}$ is symmetric and the blocks A_+ and A_- are positive/negative definite resp., then $\det(A)\neq 0$ "

Remark. This is an infinite-dimensional generalization of the linear-algebraic fact "if $A = \begin{pmatrix} A_+ & * \\ * & A_- \end{pmatrix}$ is symmetric and the blocks A_+ and A_- are positive/negative definite resp., then $\det(A) \neq 0$ " (saddle-type critical points are non-degenerate).

A Higgs bundle on a closed Riemann surface Σ is a pair (E, Φ) where

- *E* is a holomorphic vector bundle on Σ ;
- $\Phi \in H^0(\Sigma, K_{\Sigma} \otimes \text{End}(E))$ (End(*E*)-valued holomorphic 1-form).

A Higgs bundle on a closed Riemann surface Σ is a pair (E, Φ) where

- E is a holomorphic vector bundle on Σ ;
- $\Phi \in H^0(\Sigma, K_{\Sigma} \otimes \text{End}(E))$ (End(*E*)-valued holomorphic 1-form).

Given a complex reductive group $G_{\mathbb{C}}$ (e.g. $SL(n,\mathbb{C})$), replace E by a holomorphic principal $G_{\mathbb{C}}$ -bundle $\leadsto G_{\mathbb{C}}$ -Higgs bundle.

A Higgs bundle on a closed Riemann surface Σ is a pair (E, Φ) where

- *E* is a holomorphic vector bundle on Σ ;
- $\Phi \in H^0(\Sigma, K_{\Sigma} \otimes \text{End}(E))$ (End(*E*)-valued holomorphic 1-form).

Given a complex reductive group $G_{\mathbb{C}}$ (e.g. $SL(n,\mathbb{C})$), replace E by a holomorphic principal $G_{\mathbb{C}}$ -bundle $\leadsto G_{\mathbb{C}}$ -Higgs bundle.

Given a real semisimple Lie group G (e.g. $SL(n, \mathbb{R})$), $G_{\mathbb{C}}$ -Higgs bundle ($G_{\mathbb{C}}$ = complexification of G) + some extra structure $\hookrightarrow G$ -Higgs bundle.

(Part of) nonabelian Hodge correspondence: $\deg(E) = 0$ and (E, Φ) is stable $\Rightarrow \exists !$ hermitian metric h on E satisfying $F_{\nabla^h} + [\Phi, \Phi^{*_h}] = 0$;

(Part of) nonabelian Hodge correspondence: $\deg(E) = 0 \text{ and } (E, \Phi) \text{ is stable}$ $\Rightarrow \exists ! \text{ hermitian metric } h \text{ on } E \text{ satisfying } F_{\nabla^h} + [\Phi, \Phi^{*_h}] = 0;$ the connection $D = \nabla^h + \Phi + \Phi^{*_h}$ is flat.

```
(Part\ of)\ nonabelian\ Hodge\ correspondence: \deg(E)=0\ \mathrm{and}\ (E,\Phi)\ \mathrm{is}\ \mathrm{stable} \Rightarrow\exists!\ \mathrm{hermitian}\ \mathrm{metric}\ h\ \mathrm{on}\ E\ \mathrm{satisfying}\ F_{\nabla^h}+[\Phi,\Phi^{*_h}]=0; the connection D=\nabla^h+\Phi+\Phi^{*_h} is flat. (harmonic metric, Hitchin equation, Hitchin connection)
```

```
(Part of) nonabelian Hodge correspondence: \deg(E) = 0 \text{ and } (E,\Phi) \text{ is stable} \\ \Rightarrow \exists ! \text{ hermitian metric } h \text{ on } E \text{ satisfying } F_{\nabla^h} + [\Phi,\Phi^{*_h}] = 0; \\ \text{the connection } D = \nabla^h + \Phi + \Phi^{*_h} \text{ is flat.} \\ \text{(harmonic metric, Hitchin equation, Hitchin connection)} \\ \Rightarrow \text{Give representation } \rho : \pi_1(\Sigma) \to \text{GL}(n,\mathbb{C}) \text{ and}
```

 ρ -equivariant harmonic map $f: \widetilde{\Sigma} \to \operatorname{GL}(n, \mathbb{C})/\operatorname{U}(n)$.

```
(Part of) nonabelian Hodge correspondence: \deg(E) = 0 \text{ and } (E,\Phi) \text{ is stable} \\ \Rightarrow \exists ! \text{ hermitian metric } h \text{ on } E \text{ satisfying } F_{\nabla^h} + [\Phi,\Phi^{*_h}] = 0; \\ \text{the connection } D = \nabla^h + \Phi + \Phi^{*_h} \text{ is flat.} \\ \text{(harmonic metric, Hitchin equation, Hitchin connection)} \\ \Rightarrow \text{Give representation } \rho : \pi_1(\Sigma) \to \text{GL}(n,\mathbb{C}) \text{ and}
```

 ρ -equivariant harmonic map $f: \widetilde{\Sigma} \to \operatorname{GL}(n, \mathbb{C})/\operatorname{U}(n)$.

If (E, Φ) is *G*-Higgs bundle for real semisimple *G*

```
(Part of) nonabelian Hodge correspondence: \deg(E) = 0 and (E, \Phi) is stable \Rightarrow \exists ! hermitian metric h on E satisfying F_{\nabla^h} + [\Phi, \Phi^{*_h}] = 0; the connection D = \nabla^h + \Phi + \Phi^{*_h} is flat. (harmonic metric, Hitchin equation, Hitchin connection)
```

 \Rightarrow Give representation ρ : $\pi_1(\Sigma) \to \operatorname{GL}(n,\mathbb{C})$ and ρ -equivariant harmonic map $f: \widetilde{\Sigma} \to \operatorname{GL}(n,\mathbb{C})/\operatorname{U}(n)$.

If (E, Φ) is *G*-Higgs bundle for real semisimple $G \Rightarrow \rho$ has image in G; f has image in G/K.

Special case for today.

$$E = L_n^{-1} \oplus \cdots \oplus L_2^{-1} \oplus L_1^{-1} \oplus \mathcal{O} \oplus L_1 \oplus L_2 \oplus \cdots \oplus L_n$$

is a cyclic $SO_0(n, n + 1)$ -Higgs bundle

Special case for today.

is a cyclic $SO_0(n, n + 1)$ -Higgs bundle

Special case for today.

is a cyclic $SO_0(n, n + 1)$ -Higgs bundle (= "sub-cyclic" $SL(2n + 1, \mathbb{R})$ -Higgs bundle)

Properties.

▶ (Baraglia, Collier-Li) The harmonic metric h on $E = L_n^{-1} \oplus \cdots \oplus L_1^{-1} \oplus \mathcal{O} \oplus L_1 \oplus \cdots \oplus L_n$ has the form $h = h_n^{-1} \oplus \cdots \oplus h_1^{-1} \oplus 1 \oplus h_1 \oplus \cdots \oplus h_n$ for hermitian metric h_i on L_i .

Properties.

- ▶ (Baraglia, Collier-Li) The harmonic metric h on $E = L_n^{-1} \oplus \cdots \oplus L_1^{-1} \oplus \mathcal{O} \oplus L_1 \oplus \cdots \oplus L_n$ has the form $h = h_n^{-1} \oplus \cdots \oplus h_1^{-1} \oplus 1 \oplus h_1 \oplus \cdots \oplus h_n$ for hermitian metric h_i on L_i .
- ► The harmonic map $f: \widetilde{\Sigma} \to \mathbf{S}_{n,n} = \mathbf{S}_{n+1,n-1}$ is a conformal minimal immersion.

► If
$$L_1 = K_{\Sigma}^{-1}$$
, $\alpha_1 = 1 \in H^0(\Sigma, K_{\Sigma}L_1) = H^0(\Sigma, \mathcal{O})$,
 $L_2 = K_{\Sigma}^{-2}$, $\alpha_2 = 1 \in H^0(\Sigma, K_{\Sigma}L_1^{-1}L_2) = H^0(\Sigma, \mathcal{O})$,
 \cdots , $L_n = K_{\Sigma}^{-n}$, $\alpha_n = 1$

If
$$L_1 = K_{\Sigma}^{-1}$$
, $\alpha_1 = 1 \in H^0(\Sigma, K_{\Sigma}L_1) = H^0(\Sigma, \mathcal{O})$,
 $L_2 = K_{\Sigma}^{-2}$, $\alpha_2 = 1 \in H^0(\Sigma, K_{\Sigma}L_1^{-1}L_2) = H^0(\Sigma, \mathcal{O})$,
 \cdots , $L_n = K_{\Sigma}^{-n}$, $\alpha_n = 1 \Rightarrow \rho$ is in the Hitchin component
 $\text{Hit}(S_g, \text{SO}_0(n, n+1)) \subset \text{Hit}(S_g, \text{SL}(2n+1, \mathbb{R}))$.

- If $L_1 = K_{\Sigma}^{-1}$, $\alpha_1 = 1 \in H^0(\Sigma, K_{\Sigma}L_1) = H^0(\Sigma, \mathcal{O})$, $L_2 = K_{\Sigma}^{-2}$, $\alpha_2 = 1 \in H^0(\Sigma, K_{\Sigma}L_1^{-1}L_2) = H^0(\Sigma, \mathcal{O})$, \cdots , $L_n = K_{\Sigma}^{-n}$, $\alpha_n = 1 \Rightarrow \rho$ is in the Hitchin component $\text{Hit}(S_g, \text{SO}_0(n, n+1)) \subset \text{Hit}(S_g, \text{SL}(2n+1, \mathbb{R}))$.
- ▶ If moreover $n = 3 \Rightarrow \rho$ is in $\mathbf{Hit}(S_g, \mathbf{G}_2') \subset \mathbf{Hit}(S_g, \mathrm{SO}_0(3, 4))$.

- If $L_1 = K_{\Sigma}^{-1}$, $\alpha_1 = 1 \in H^0(\Sigma, K_{\Sigma}L_1) = H^0(\Sigma, \mathcal{O})$, $L_2 = K_{\Sigma}^{-2}$, $\alpha_2 = 1 \in H^0(\Sigma, K_{\Sigma}L_1^{-1}L_2) = H^0(\Sigma, \mathcal{O})$, \cdots , $L_n = K_{\Sigma}^{-n}$, $\alpha_n = 1 \Rightarrow \rho$ is in the Hitchin component $\text{Hit}(S_g, \text{SO}_0(n, n+1)) \subset \text{Hit}(S_g, \text{SL}(2n+1, \mathbb{R}))$.
- ▶ If moreover $n = 3 \Rightarrow \rho$ is in $Hit(S_g, G_2') \subset Hit(S_g, SO_0(3, 4))$.
- ▶ More generally, if $L_k = K_{\Sigma}^{-k}$ and $\alpha_k = 1$ for $k = 1, \dots, n-1$

- If $L_1 = K_{\Sigma}^{-1}$, $\alpha_1 = 1 \in H^0(\Sigma, K_{\Sigma}L_1) = H^0(\Sigma, \mathcal{O})$, $L_2 = K_{\Sigma}^{-2}$, $\alpha_2 = 1 \in H^0(\Sigma, K_{\Sigma}L_1^{-1}L_2) = H^0(\Sigma, \mathcal{O})$, \cdots , $L_n = K_{\Sigma}^{-n}$, $\alpha_n = 1 \Rightarrow \rho$ is in the Hitchin component $\mathbf{Hit}(S_{\mathcal{G}}, \mathrm{SO}_0(n, n+1)) \subset \mathbf{Hit}(S_{\mathcal{G}}, \mathrm{SL}(2n+1, \mathbb{R}))$.
- ▶ If moreover $n = 3 \Rightarrow \rho$ is in $Hit(S_g, G_2') \subset Hit(S_g, SO_0(3, 4))$.
- More generally, if $L_k = K_{\Sigma}^{-k}$ and $\alpha_k = 1$ for $k = 1, \dots, n-1$ ⇒ ρ is in a Collier component $\mathbf{Col}_d(S_g, \mathrm{SO}_0(n, n+1))$, $0 \le d \le (2g-2)n$

- If $L_1 = K_{\Sigma}^{-1}$, $\alpha_1 = 1 \in H^0(\Sigma, K_{\Sigma}L_1) = H^0(\Sigma, \mathcal{O})$, $L_2 = K_{\Sigma}^{-2}$, $\alpha_2 = 1 \in H^0(\Sigma, K_{\Sigma}L_1^{-1}L_2) = H^0(\Sigma, \mathcal{O})$, \cdots , $L_n = K_{\Sigma}^{-n}$, $\alpha_n = 1 \Rightarrow \rho$ is in the Hitchin component $\mathbf{Hit}(S_g, \mathrm{SO}_0(n, n+1)) \subset \mathbf{Hit}(S_g, \mathrm{SL}(2n+1, \mathbb{R}))$.
- ▶ If moreover $n = 3 \Rightarrow \rho$ is in $\mathbf{Hit}(S_g, \mathbf{G}_2') \subset \mathbf{Hit}(S_g, \mathrm{SO}_0(3, 4))$.
- More generally, if $L_k = K_{\Sigma}^{-k}$ and $\alpha_k = 1$ for $k = 1, \dots, n-1$ ⇒ ρ is in a Collier component Col_d(S_g , SO₀(n, n+1)), $0 \le d \le (2g-2)n$ (Col_d consists of Θ-positive Anosov SO₀(n, n+1)-representations;

Cyclic $SO_0(n, n + 1)$ -Higgs bundles

Sub-cases.

- If $L_1 = K_{\Sigma}^{-1}$, $\alpha_1 = 1 \in H^0(\Sigma, K_{\Sigma}L_1) = H^0(\Sigma, \mathcal{O})$, $L_2 = K_{\Sigma}^{-2}$, $\alpha_2 = 1 \in H^0(\Sigma, K_{\Sigma}L_1^{-1}L_2) = H^0(\Sigma, \mathcal{O})$, \cdots , $L_n = K_{\Sigma}^{-n}$, $\alpha_n = 1 \Rightarrow \rho$ is in the Hitchin component $\mathbf{Hit}(S_g, \mathrm{SO}_0(n, n+1)) \subset \mathbf{Hit}(S_g, \mathrm{SL}(2n+1, \mathbb{R}))$.
- ▶ If moreover $n = 3 \Rightarrow \rho$ is in $\mathbf{Hit}(S_g, \mathbf{G}_2') \subset \mathbf{Hit}(S_g, \mathrm{SO}_0(3, 4))$.
- More generally, if $L_k = K_{\Sigma}^{-k}$ and $\alpha_k = 1$ for $k = 1, \dots, n-1$ ⇒ ρ is in a Collier component Col_d(S_g , SO₀(n, n+1)), $0 \le d \le (2g-2)n$ (Col_d consists of Θ-positive Anosov SO₀(n, n+1)-representations; Col_{(2g-2)n} = Hit;

Cyclic $SO_0(n, n + 1)$ -Higgs bundles

Sub-cases.

- If $L_1 = K_{\Sigma}^{-1}$, $\alpha_1 = 1 \in H^0(\Sigma, K_{\Sigma}L_1) = H^0(\Sigma, \mathcal{O})$, $L_2 = K_{\Sigma}^{-2}$, $\alpha_2 = 1 \in H^0(\Sigma, K_{\Sigma}L_1^{-1}L_2) = H^0(\Sigma, \mathcal{O})$, \cdots , $L_n = K_{\Sigma}^{-n}$, $\alpha_n = 1 \Rightarrow \rho$ is in the Hitchin component $\text{Hit}(S_g, \text{SO}_0(n, n+1)) \subset \text{Hit}(S_g, \text{SL}(2n+1, \mathbb{R}))$.
- ▶ If moreover $n = 3 \Rightarrow \rho$ is in $\mathbf{Hit}(S_g, \mathbf{G}_2') \subset \mathbf{Hit}(S_g, \mathrm{SO}_0(3, 4))$.
- ▶ More generally, if $L_k = K_{\Sigma}^{-k}$ and $\alpha_k = 1$ for $k = 1, \dots, n-1$ ⇒ ρ is in a Collier component Col_d(S_g , SO₀(n, n+1)), $0 \le d \le (2g-2)n$ (Col_d consists of Θ-positive Anosov SO₀(n, n+1)-representations; Col_{(2g-2)n} = Hit; $n = 1 \leadsto$ the familiar components for SO₀(2, 1) = PSL($2, \mathbb{R}$).

Cyclic $SO_0(n, n + 1)$ -Higgs bundles

Sub-cases.

- If $L_1 = K_{\Sigma}^{-1}$, $\alpha_1 = 1 \in H^0(\Sigma, K_{\Sigma}L_1) = H^0(\Sigma, \mathcal{O})$, $L_2 = K_{\Sigma}^{-2}$, $\alpha_2 = 1 \in H^0(\Sigma, K_{\Sigma}L_1^{-1}L_2) = H^0(\Sigma, \mathcal{O})$, \cdots , $L_n = K_{\Sigma}^{-n}$, $\alpha_n = 1 \Rightarrow \rho$ is in the Hitchin component $\text{Hit}(S_g, \text{SO}_0(n, n+1)) \subset \text{Hit}(S_g, \text{SL}(2n+1, \mathbb{R}))$.
- ▶ If moreover $n = 3 \Rightarrow \rho$ is in $\mathbf{Hit}(S_g, \mathbf{G}_2') \subset \mathbf{Hit}(S_g, \mathbf{SO}_0(3, 4))$.
- ▶ More generally, if $L_k = K_{\Sigma}^{-k}$ and $\alpha_k = 1$ for $k = 1, \dots, n-1$ ⇒ ρ is in a Collier component Col_d(S_g , SO₀(n, n+1)), $0 \le d \le (2g-2)n$ (Col_d consists of Θ-positive Anosov SO₀(n, n+1)-representations; Col_{(2g-2)n} = Hit; $n = 1 \leadsto$ the familiar components for SO₀(2, 1) = PSL($2, \mathbb{R}$).

Theorem (N. 2022)

If $L_1 = K_{\Sigma}^{-1}$ and $\alpha_1 = 1$, Then $\exists !$ A-surface immersion $F : \widetilde{\Sigma} \to \mathbb{H}^{n,n}$ (if n is even) or $\mathbb{H}^{n+1,n-1}$ (if n is odd) such that f is the composition of F with the Gauss map of F.

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g. $SL(n, \mathbb{R})$, $n \geq 3$), the holonomy map

$$\Psi: \left\{ \begin{aligned} &\text{genus } g \text{ Riemann surfaces } w. \\ &\text{conformal } G\text{-Higgs bundles} \\ &\text{in Hitchin section} \end{aligned} \right\} / \sim \rightarrow \mathbf{Hit}(S_g, G)$$

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g. $SL(n, \mathbb{R})$, $n \geq 3$), the holonomy map

$$\Psi: \left\{ \begin{aligned} &\text{genus g Riemann surfaces w.} \\ &\text{conformal G-Higgs bundles} \\ &\text{in Hitchin section} \end{aligned} \right\} / \sim \rightarrow \mathbf{Hit}(S_g,G)$$

Labourie Conjecture: Ψ is injective

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g.

 $SL(n, \mathbb{R})$, $n \geq 3$), the holonomy map

$$\Psi: \left\{ \begin{aligned} &\text{genus g Riemann surfaces w.} \\ &\text{conformal G-Higgs bundles} \\ &\text{in Hitchin section} \end{aligned} \right\} / \sim \rightarrow \mathbf{Hit}(S_g,G)$$

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g.

 $SL(n, \mathbb{R})$, $n \ge 3$), the holonomy map

$$\Psi: \left\{ \begin{aligned} &\text{genus g Riemann surfaces w.} \\ &\text{conformal G-Higgs bundles} \\ &\text{in Hitchin section} \end{aligned} \right\} / \sim \rightarrow \mathbf{Hit}(S_g,G)$$

restricts to an immersion on the cyclic locus

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g.

 $SL(n, \mathbb{R})$, $n \ge 3$), the holonomy map

$$\Psi: \left\{ \begin{aligned} &\text{genus } g \text{ Riemann surfaces } w. \\ &\text{conformal } \underbrace{G\text{-Higgs bundles}}_{\text{holo. differentials}} \right\} / \sim \rightarrow \mathbf{Hit}(S_g, G) \\ &\underbrace{\text{in Hitchin section}}_{\text{holo. differentials}} \\ &(E, \Phi) \mapsto [\rho] \end{aligned} \right.$$

restricts to an immersion on the cyclic locus

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g.

 $SL(n, \mathbb{R})$, $n \ge 3$), the holonomy map

$$\Psi: \left\{ \begin{array}{c} \text{genus g Riemann surfaces w.} \\ \text{\underline{conformal}} \text{\underline{G-Higgs bundles}} \\ \text{\underline{in Hitchin section}} \\ \text{\underline{holo. quadratic diff. part} = 0} \end{array} \right\} / \sim \rightarrow \mathbf{Hit}(S_g, G)$$

restricts to an immersion on the cyclic locus

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g.

 $SL(n, \mathbb{R})$, $n \ge 3$), the holonomy map

not fixed

$$\Psi: \left\{ \begin{array}{l} \underline{\text{genus } g. \text{Riemann surfaces } w.} \\ \underline{\text{conformal } G\text{-Higgs bundles}} \\ \underline{\text{in Hitchin section}} \\ \underline{\text{holo. differentials}} \\ \underline{\text{holo. quadratic diff. part = 0}} \right. \left. (E, \Phi) \mapsto [\rho] \end{array} \right\}$$

restricts to an immersion on the cyclic locus

Labourie Immersion Theorem (2017) Given any split real semisimple Lie group G of rank ≥ 2 (e.g. $SL(n, \mathbb{R})$, $n \geq 3$), the holonomy map not fixed holo. quadratic diff. part =0 $(E,\Phi)\mapsto [ho]$ restricts to an immersion on the cyclic locus

Labourie Immersion Theorem (2017) Given any split real semisimple Lie group G of rank ≥ 2 (e.g. $SL(n, \mathbb{R})$, $n \ge 3$), the holonomy map not fixed MCG-equivariant $\Psi : \left\{ \begin{array}{l} \text{genus } g \text{ Riemann surfaces } w. \\ \text{conformal } G\text{-Higgs bundles} \\ \text{in Hitchin section} \\ \begin{array}{l} \text{constructed from} \\ \text{holo. differentials} \end{array} \right\} / \sim \right\} Hit(S_g, G)$ holo. quadratic diff. part =0 $(E, \Phi) \mapsto [\rho]$ restricts to an immersion on the cyclic locus

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g.

$$\Psi: \{ SL(n,\mathbb{R}), n \geq 3 \}$$
, the holonomy map not fixed genus g Riemann surfaces w . Conformal G -Higgs bundles in Hitchin section holo. differentials holo. quadratic diff. part =0 $(E,\Phi) \mapsto [\rho]$

restricts to an immersion on the cyclic locus (i.e. locus where only the highest holomorphic differential is nonzero).

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g.

 $SL(n, \mathbb{R})$, $n \ge 3$), the holonomy map

$$\Psi : \left\{ \begin{array}{l} \text{genus } g \text{ Riemann surfaces } w. \\ \text{conformal } G\text{-Higgs bundles} \\ \text{in Hitchin section} \\ \text{holo. quadratic diff. part } = 0 \end{array} \right. \left. \left(E, \Phi \right) \mapsto [\rho]$$

restricts to an immersion on the cyclic locus (i.e. locus where only the highest holomorphic differential is nonzero).

Labourie Conjecture: Ψ is injective (already known to be surjective).

Corollary (proof of Labourie Conjecture in rank 2)

If *G* has rank 2 (the whole domain of Ψ is cyclic), then Ψ is injective.

Labourie Immersion Theorem (2017)

Given any split real semisimple Lie group G of rank ≥ 2 (e.g.

$$SL(n, \mathbb{R})$$
, $n \ge 3$), the holonomy map

$$\Psi: \left\{ \begin{array}{l} \underset{\text{genus } g \text{ Riemann surfaces } w.}{\text{genus } g \text{ Riemann surfaces } w.} \\ \underset{\text{in Hitchin section } \\ \text{holo. differentials}}{\text{constructed from }} \right\} / \sim \right\} Hit(S_g, G)$$

restricts to an immersion on the cyclic locus (i.e. locus where only the highest holomorphic differential is nonzero).

Labourie Conjecture: Ψ is injective (already known to be surjective).

Corollary (proof of Labourie Conjecture in rank 2)

If *G* has rank 2 (the whole domain of Ψ is cyclic), then Ψ is injective.

Markovic, Markovic-Sagman-Smillie: disproved the conjecture for rank ≥ 3 .

► Given (E, Φ) in the domain of Ψ, consider the conformal minimal immersion $f : \widetilde{\Sigma} \to G/K$.

► Given (E, Φ) in the domain of Ψ , consider the conformal minimal immersion $f : \widetilde{\Sigma} \to G/K$.

Lemma

If the quotient closed minimal surface in $\rho(\pi_1(S_g))\setminus (G/K)$ given by f is infinitesimally rigid, then $d\Psi$ is nondegenerate at (E, Φ) .

▶ Given (E, Φ) in the domain of Ψ , consider the conformal minimal immersion $f : \widetilde{\Sigma} \to G/K$.

Lemma

If the quotient closed minimal surface in $\rho(\pi_1(S_g))\setminus (G/K)$ given by f is infinitesimally rigid, then $d\Psi$ is nondegenerate at (E, Φ) .

Proof sketch. If degenerate, then \exists path (E_t, Φ_t) s.t. (ρ_t) is stationary.

▶ Given (E, Φ) in the domain of Ψ , consider the conformal minimal immersion $f : \widetilde{\Sigma} \to G/K$.

Lemma

If the quotient closed minimal surface in $\rho(\pi_1(S_g))\setminus (G/K)$ given by f is infinitesimally rigid, then $d\Psi$ is nondegenerate at (E, Φ) .

Proof sketch. If degenerate, then \exists path (E_t, Φ_t) s.t. (ρ_t) is stationary.

▶ Given (E, Φ) in the domain of Ψ , consider the conformal minimal immersion $f : \widetilde{\Sigma} \to G/K$.

Lemma

If the quotient closed minimal surface in $\rho(\pi_1(S_g))\setminus (G/K)$ given by f is infinitesimally rigid, then $d\Psi$ is nondegenerate at (E, Φ) .

Proof sketch. If degenerate, then \exists path (E_t, Φ_t) s.t. (ρ_t) is stationary. Equivariance: $f_t(\gamma.x) = \rho_t(\gamma)f_t(x)$

► Given (E, Φ) in the domain of Ψ, consider the conformal minimal immersion $f : \widetilde{\Sigma} \to G/K$.

Lemma

If the quotient closed minimal surface in $\rho(\pi_1(S_g))\setminus (G/K)$ given by f is infinitesimally rigid, then $d\Psi$ is nondegenerate at (E, Φ) .

Proof sketch. If degenerate, then \exists path (E_t, Φ_t) s.t. (ρ_t) is stationary. Equivariance:

$$f_t(\gamma.x) = \rho_t(\gamma)f_t(x) \Rightarrow \dot{f}_0(\gamma.x) = \dot{\rho}_0(\gamma)f_0(x) + \rho_0(\gamma)\dot{f}_0(x)$$

► Given (E, Φ) in the domain of Ψ, consider the conformal minimal immersion $f : \widetilde{\Sigma} \to G/K$.

Lemma

If the quotient closed minimal surface in $\rho(\pi_1(S_g))\setminus (G/K)$ given by f is infinitesimally rigid, then $d\Psi$ is nondegenerate at (E, Φ) .

Proof sketch. If degenerate, then \exists path (E_t, Φ_t) s.t. (ρ_t) is stationary. Equivariance:

$$f_t(\gamma.x) = \rho_t(\gamma)f_t(x) \Rightarrow \dot{f}_0(\gamma.x) = \dot{p}_0(\gamma)f_0(x) + \rho_0(\gamma)\dot{f}_0(x)$$

▶ Given (E, Φ) in the domain of Ψ , consider the conformal minimal immersion $f : \widetilde{\Sigma} \to G/K$.

Lemma

If the quotient closed minimal surface in $\rho(\pi_1(S_g))\setminus (G/K)$ given by f is infinitesimally rigid, then $d\Psi$ is nondegenerate at (E, Φ) .

Proof sketch. If degenerate, then \exists path (E_t, Φ_t) s.t. (ρ_t) is stationary. Equivariance:

$$f_t(\gamma.x) = \rho_t(\gamma)f_t(x) \Rightarrow \dot{f}_0(\gamma.x) = \dot{p}_0(\gamma)f_0(x) + \rho_0(\gamma)\dot{f}_0(x)$$

This means \dot{f}_0 is a Jacobi field on the quotient minimal surface, contradicting rigidity.

▶ Given (E, Φ) in the domain of Ψ , consider the conformal minimal immersion $f : \widetilde{\Sigma} \to G/K$.

Lemma

If the quotient closed minimal surface in $\rho(\pi_1(S_g))\setminus (G/K)$ given by f is infinitesimally rigid, then $d\Psi$ is nondegenerate at (E, Φ) .

Proof sketch. If degenerate, then \exists path (E_t, Φ_t) s.t. (ρ_t) is stationary. Equivariance:

$$f_t(\gamma.x) = \rho_t(\gamma)f_t(x) \Rightarrow \dot{f}_0(\gamma.x) = \dot{p}_0(\gamma)f_0(x) + \rho_0(\gamma)\dot{f}_0(x)$$

This means \dot{f}_0 is a Jacobi field on the quotient minimal surface, contradicting rigidity.

▶ However, nobody knows how to show such a rigidity result...

• ... nevertheless, one can replace *f* by some other surfaces with nice rigidity property and apply the same strategy:

- ... nevertheless, one can replace *f* by some other surfaces with nice rigidity property and apply the same strategy:
 - (Labourie 2007, Loftin 2004) hyperbolic affine spheres in R³
 → LIT for SL(3, R);

- ... nevertheless, one can replace f by some other surfaces with nice rigidity property and apply the same strategy:
 - (Labourie 2007, Loftin 2004) hyperbolic affine spheres in R³
 → LIT for SL(3, R);

- ... nevertheless, one can replace f by some other surfaces with nice rigidity property and apply the same strategy:
 - (Labourie 2007, Loftin 2004) hyperbolic affine spheres in R³
 → LIT for SL(3, R);

- ... nevertheless, one can replace f by some other surfaces with nice rigidity property and apply the same strategy:
 - (Labourie 2007, Loftin 2004) hyperbolic affine spheres in R³
 → LIT for SL(3, R);
 - (Labourie 2017) cyclic surfaces on some homogeneous space of G_C
 → LIT for any rank 2 split G;

 - (N. 2022) A-surfaces \rightsquigarrow LIT for Collier's component $\mathbf{Col}_d(S_g, SO_0(n, n+1))$ with $d \neq 0$

- ... nevertheless, one can replace f by some other surfaces with nice rigidity property and apply the same strategy:
 - (Labourie 2007, Loftin 2004) hyperbolic affine spheres in R³
 → LIT for SL(3, R);
 - (Labourie 2017) cyclic surfaces on some homogeneous space of G_C
 → LIT for any rank 2 split G;

 - (N. 2022) A-surfaces
 → LIT for Collier's component
 Col_d(S_g, SO₀(n, n + 1)) with d ≠ 0
 (⇒ new proof of Labourie Conjecture for G'₂).

- ... nevertheless, one can replace f by some other surfaces with nice rigidity property and apply the same strategy:
 - (Labourie 2007, Loftin 2004) hyperbolic affine spheres in R³
 → LIT for SL(3, R);
 - (Labourie 2017) cyclic surfaces on some homogeneous space of G_C
 → LIT for any rank 2 split G;

 - (N. 2022) A-surfaces
 → LIT for Collier's component
 Col_d(S_g, SO₀(n, n + 1)) with d ≠ 0
 (⇒ new proof of Labourie Conjecture for G'₂).

- ... nevertheless, one can replace f by some other surfaces with nice rigidity property and apply the same strategy:
 - (Labourie 2007, Loftin 2004) hyperbolic affine spheres in R³
 → LIT for SL(3, R);
 - (Labourie 2017) cyclic surfaces on some homogeneous space of G_C
 → LIT for any rank 2 split G;
 - (Collier-Tholozan-Toulisse 2019) maximal surfaces in ℍ^{2,n}

 ⇒ generalization of Labourie Conjecture to maximal representations in SO₀(2, n + 1)
 - (N. 2022) A-surfaces
 → LIT for Collier's component
 Col_d(S_g, SO₀(n, n + 1)) with d ≠ 0
 (⇒ new proof of Labourie Conjecture for G'₂).

Remark. The Min-Max Theorem requires a negativity assumption on some Chern forms.

- ... nevertheless, one can replace f by some other surfaces with nice rigidity property and apply the same strategy:
 - (Labourie 2007, Loftin 2004) hyperbolic affine spheres in R³
 → LIT for SL(3, R);
 - (Labourie 2017) cyclic surfaces on some homogeneous space of G_C
 → LIT for any rank 2 split G;
 - (Collier-Tholozan-Toulisse 2019) maximal surfaces in ℍ^{2,n}

 ⇒ generalization of Labourie Conjecture to maximal representations in SO₀(2, n + 1)
 - (N. 2022) A-surfaces
 → LIT for Collier's component
 Col_d(S_g, SO₀(n, n + 1)) with d ≠ 0
 (⇒ new proof of Labourie Conjecture for G'₂).

Remark. The Min-Max Theorem requires a negativity assumption on some Chern forms. In the above application, this is guaranteed by:

Lemma (Dai-Li, N.)

Let h_1, \dots, h_n be hermitian metrics on holo. line bundles L_1, \dots, L_n over a closed Riemann surface solving the Hitchin eqn. for

$$E = L_n^{-1} \oplus \cdots \oplus L_2^{-1} \oplus L_1^{-1} \oplus \mathcal{O} \oplus L_1 \oplus L_2 \oplus \cdots \oplus L_n,$$

Suppose $(\alpha_1) \prec (\alpha_2) \prec \cdots \prec (\alpha_{n-1}) \prec \min\{(\alpha_n), (\beta)\}$. Then $\partial_{z\bar{z}}^2 h_i \leq 0$ for $i = 2, \cdots, n$, with strict inequality except at the obvious zeros of $\partial_{z\bar{z}}^2 h_i$.

Lemma (Dai-Li, N.)

Let h_1, \dots, h_n be hermitian metrics on holo. line bundles L_1, \dots, L_n over a closed Riemann surface solving the Hitchin eqn. for

$$E = L_n^{-1} \oplus \cdots \oplus L_2^{-1} \oplus L_1^{-1} \oplus \mathcal{O} \oplus L_1 \oplus L_2 \oplus \cdots \oplus L_n,$$

divisor of $lpha_1$

Suppose $(\alpha_1) \prec (\alpha_2) \prec \cdots \prec (\alpha_{n-1}) \prec \min\{(\alpha_n), (\beta)\}$. Then $\partial_{z\overline{z}}^2 h_i \leq 0$ for $i = 2, \dots, n$, with strict inequality except at the obvious zeros of $\partial_{z\overline{z}}^2 h_i$.

Lemma (Dai-Li, N.)

divisor of α_1

Let h_1, \dots, h_n be hermitian metrics on holo. line bundles L_1, \dots, L_n over a closed Riemann surface solving the Hitchin eqn. for

$$E = L_n^{-1} \oplus \cdots \oplus L_2^{-1} \oplus L_1^{-1} \oplus \mathcal{O} \oplus L_1 \oplus L_2 \oplus \cdots \oplus L_n,$$

Suppose (α_1) $(\alpha_2) \prec \cdots \prec (\alpha_{n-1}) \prec \min\{(\alpha_n), (\beta)\}$. Then $\partial_{z\bar{z}}^2 h_i \leq 0$ for $i=2,\cdots,n$, with strict inequality except at the obvious zeros of $\partial_{z\bar{z}}^2 h_i$.

Lemma (Dai-Li, N.)

Let h_1, \dots, h_n be hermitian metrics on holo. line bundles L_1, \dots, L_n over a closed Riemann surface solving the Hitchin eqn. for

 $i = 2, \cdots, n$, with strict inequality except at the obvious zeros of $\partial_{z\bar{z}}^2 h_i$.

Thank you for your attention!