Total No. of Questions : 4]	Total	No.	of	Questions	:	4]
-----------------------------	--------------	-----	----	-----------	---	----

Р.	538	6	
_		U	

SEAT No.	:	

[Total No. of Pages : 3

[6186]-512

S.E. (Electronics/E&TC) ELECTRONIC CIRCUITS

(2019 Pattern) (Semester - III) (204181)

Time: 1 Hour]

[Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4.
- 2) Figures to the right indicate full marks.
- 3) Draw neat diagram wherever necessary.
- 4) Assume suitable data, if necessary.
- Q1) a) Draw & Explain drain characteristics of N-EMOSFET. Write drain current equation for the respective region? [5]
 - b) Explain any two non-ideal current voltage characteristics of MOSFET transistor. [5]
 - c) For the circuit diagram shown in Figure [1], calculate V_{DS} , I_{D} & V_{GS} .

 Assume: $R_1 = 10 \text{ M}\Omega$, $R_2 = 3.6 \text{ M}\Omega$, $R_D = 10 \text{K}$, Kn = 0.5 mA/V2, $V_{TN} = 1.5 \text{ V}$.

Figure [1]

OR

- Q2) a) Draw the common source E-MOSFET amplifier and explain frequency response with diagram. [5]
 - b) Explain construction and working of N-Type Enhancement MOSFET in details. [5]

P.T.O.

c) For the circuit shown in Figure [2]. Calculate I_{DQ} , V_{DSQ} and V_{DSQ} . Assume: $R_1 = 22 \text{ M}\Omega$, $R_D = 3 \text{ K}\Omega$, $R_2 = 18 \text{ M}\Omega$, $V_{TN} = 3 \text{ V}$, $R_S = 0.82 \text{ K}\Omega$, $R_1 = 0.12 \text{ mA/V}$, $R_2 = 10.48 \text{ V}$. [5]

- Q3) a) Explain advantages of negative feedback in amplifiers.
 - b) Explain effect of negative feedback on: [5]

[5]

- i) Input impedance
- ii) Output impedance
- iii) Gain
- iv) Bandwidth
- v) Gain stability
- c) Identify topology of feedback and determine AVf, Rif, Rof for the amplifier shown in Figure [3]. For the MOSFET gm = 2mA/V, rd = 40 K. [5]

[6186]-512

- OR Explain Barkhausen Criteria for sustained oscillations and draw the **Q4**) a) circuit diagram of RC phase shift oscillator. [5]
 - Draw the block diagram of Current Series topology and write the b) equation for Rif and Roft [5]

c)

Compare different types of feedback topologies with respect to different parameter. [5]

[6186]-512