Développements limités, asymptotiques, équivalents, limites

Q Divers exercices dont l'objectif est de tester l'aisance dans le maniement des relations de comparaison : choisir le bon ordre d'un développement limité ou asymptotique, directement prendre un équivalent quand c'est possible (et quand ce n'est pas possible de le faire directement, y parvenir après un développement limité), lever une forme indéterminée, etc.

Remarque sur la programmation des corrigés. L'ordre des développements limités et asymptotiques est parfois un cran plus loin que nécessaire, à cause de défauts de programmation.

Exercice 1. Déterminer la limite, quand $n \to +\infty$, de:

$$\rightarrow$$
 page 10

$$u_n = \left(\frac{2\cos\left(\frac{1}{n}\right)}{n} + e^{\frac{1}{n}}\right)^{-2n}.$$

De plus, si cette limite est un réel ℓ , donner un équivalent asymptotique simple de $u_n - \ell$ quand $n \to +\infty$.

Exercice 2. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 10

$$f(x) = \cos\left(\frac{-x^2 - 1}{x^4 - x^3 - 3x^2 - x - 3}\right) \times \frac{-2x^3 + x^2 + 1}{-2x}.$$

Exercice 3. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$\rightarrow$$
 page 11

$$f(x) = \frac{\ln(\sin(2x))}{\ln(\cosh(3x) - 1)} \times \frac{\ln(\ln(3x + 1) + 1)}{\ln(\sinh(x) + 1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 4. Donner un équivalent asymptotique de la suite $(u_n)_{n\geqslant 1}$, définie par :

$$\rightarrow$$
 page 11

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad u_n = \frac{6}{n} - \frac{3}{4} n \sinh\left(\frac{1}{n}\right) + \frac{11}{18} n \ln\left(\frac{3}{n} + 1\right) - \frac{13}{12} e^{\frac{3}{n}}.$$

Exercice 5. Donner un équivalent simple, quand $x \to +\infty$, de s

$$\rightarrow$$
 page 11

$$g(x) = \frac{-3x^2e^x \ln(x+1)^2 + x^2e^{(2x)} \ln(x+1) - x \ln(x+1)^3}{-5x^4e^{(-x)} \ln(x) + x \ln(x)^4 + 2x^2 \ln(x)^2 + x^3 + x^2 \ln(x)}.$$

Exercice 6. Donner un équivalent simple, quand $x \to +\infty$, de

$$\rightarrow$$
 page 12

$$g(x) = \frac{-x^3 \ln{(x+1)^3} - x^2 e^{(2\,x)} \ln{(x+1)^2} - 2\,x \ln{(x+1)^4} - 12\,e^{(3\,x)} \ln{(x+1)^3}}{-6\,x^4 \ln{(x)^2} + 6\,x \ln{(x)^4} + x e^{(-2\,x)} - x e^{(-5\,x)}}.$$

Exercice 7. Donner un équivalent asymptotique de la suite $(u_n)_{n\geqslant 1}$, définie par :

$$\rightarrow$$
 page 12

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad u_n = -\frac{1}{8n} + \frac{1}{92} n \sinh\left(\frac{2}{n}\right) + \frac{7}{184} \sinh\left(\frac{3}{n}\right) - \frac{1}{46} n \ln\left(\frac{1}{n} + 1\right).$$

Exercice 8. Calculer:
$$\lim_{x\to 0^{+}}\frac{\sinh\left(8\,x\right)-\sinh\left(9\,x\right)}{\ln\left(x+1\right)}.$$

$$\rightarrow$$
 page 12

Exercice 9. Déterminer des réels a, b, c et d tels que :

$$\rightarrow$$
 page 13

$$\ln\left(\frac{28e^{\frac{1}{n}}}{n} + \sinh\left(\frac{1}{n}\right) + 1\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 10. Déterminer des réels a, b et c tels que :

$$\frac{1}{n} - \frac{5}{2(n+3)} - \frac{2}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 11. Déterminer des réels a, b et c tels que :

 $\frac{3}{n} - \frac{1}{n+3} - \frac{7}{5(n-4)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$

Exercice 12. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\left(2\,xe^x + \ln{(x+1)} + 1\right)^{\frac{9}{2}}} = a + bx + cx^2 + dx^3 + \mathop{o}_{x \to 0}\left(x^3\right).$$

Exercice 13. Calculer: $\lim_{x\to 0^+} \left(\frac{1}{\cos\left(\frac{3}{5}\arctan\left(x\right)\right)-1} + \frac{50}{9x^2} \right)$.

Exercice 14. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{x^2 e^{(3\,x)} \ln{(x+1)} - 2\,x^2 e^{(4\,x)} - 5\,x e^{(3\,x)}}{-x^5 + x^2 \ln{(x)} - x e^{(-x)} \ln{(x)} + 2\,e^{(-2\,x)} \ln{(x)}}.$$

Exercice 15. Donner un équivalent asymptotique simple, quand $n \to +\infty$, de:

$$\sqrt{n^2 + 10} - \sqrt[3]{n^3 - 1},$$

et calculer sa limite éventuelle.

Exercice 16. Déterminer la limite, quand $n \to +\infty$, de:

$$u_n = \left(n\ln\left(\frac{1}{n} + 1\right) - \frac{3\cos\left(\frac{1}{n}\right)}{n}\right)^{-n}.$$

De plus, si cette limite est un réel ℓ , donner un équivalent asymptotique simple de $u_n - \ell$ quand $n \to +\infty$.

Exercice 17. Déterminer des réels a, b, c et d tels que :

$$\ln\left(\arctan\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 18. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(\cosh\left(3\,x\right) - 1\right)} \times \frac{\ln\left(\ln\left(3\,x + 1\right) + 1\right)}{\ln\left(\cosh\left(3\,x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 19. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{31\sin(x) + \sinh(x) + 1} = a + bx + cx^2 + dx^3 + \mathop{o}_{x \to 0}(x^3).$$

Exercice 20. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{-11 x^{2} e^{x} \ln(x+1)^{2} - x^{3} e^{x} - 2 x^{2} \ln(x+1) - \ln(x+1)^{2}}{-x^{3} e^{(-2x)} + 5 x^{2} e^{(-4x)} - x \ln(x)^{2} - 4 x}.$$

 \rightarrow page 14

 \rightarrow page 13

 \rightarrow page 14

 \rightarrow page 14

 \rightarrow page 15

 \rightarrow page 15

 \rightarrow page 16

 \rightarrow page 16

 \rightarrow page 16

Exercice 21. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{-11 x^4 e^{(2x)} - x^2 \ln(x+1)^2 - 14 x e^{(3x)}}{x^6 + e^{(-x)} \ln(x)^4 + 2 x^3 e^{(-3x)} - x e^{(-x)} \ln(x)}.$$

Exercice 22. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln\left(\sinh\left(4\,x\right)\right)}{\ln\left(\cosh\left(3\,x\right) - 1\right)} \times \frac{\ln\left(\sin\left(x\right) + 1\right)}{\ln\left(\cos\left(2\,x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 23. Déterminer la limite, quand $n \to +\infty$, de:

$$u_n = \left(\cos\left(\frac{1}{n}\right) + 4\sin\left(\frac{1}{n}\right)\right)^{\sqrt{n}}.$$

De plus, si cette limite est un réel ℓ , donner un équivalent asymptotique simple de $u_n - \ell$ quand $n \to +\infty$.

Exercice 24. Déterminer des réels a, b, c et d tels que :

$$e^{(2x\cos(x)-3\ln(x+1))} = a + bx + cx^2 + dx^3 + \mathop{o}_{x\to 0}(x^3).$$

Exercice 25. Déterminer des réels a, b et c tels que:

$$-\frac{2}{n} + \frac{1}{n+1} + \frac{1}{4(n-3)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 26. Donner un équivalent asymptotique simple, quand $n \to +\infty$, de:

$$\sqrt[3]{n^3 - 1} - \sqrt[3]{n^3 - 3n^2 - n + 2},$$

et calculer sa limite éventuelle.

Exercice 27. Donner un équivalent asymptotique de la suite $(u_n)_{n\geqslant 1}$, définie par :

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad u_n = -\frac{1}{7\,n} - 3\,\cosh\left(\frac{2}{n}\right) + \frac{65}{63}\,n\sin\left(\frac{3}{n}\right) - \frac{2}{63}\,n\ln\left(\frac{3}{n} + 1\right).$$

Exercice 28. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de :

$$f(x) = \arctan\left(\frac{-x^4 + 30\,x^3 - x^2 + 2\,x + 3}{x^4 - x^3 + 584\,x^2 + 3\,x}\right) \times \frac{9\,x^4 + x^2 - 3\,x}{3\,x^3 + 6\,x^2 + 3}.$$

Exercice 29. Déterminer des réels a, b et c tels que :

$$-\frac{1}{2n} + \frac{1}{3(n+2)} - \frac{1}{8(n-4)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 30. Déterminer des réels a, b et c tels que:

$$-\frac{1}{4n} - \frac{2}{n+4} - \frac{1}{n-2} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 31. Déterminer la limite, quand $n \to +\infty$, de:

 \rightarrow page 21

 \rightarrow page 17

 \rightarrow page 17

 \rightarrow page 18

 \rightarrow page 18

 \rightarrow page 19

 \rightarrow page 19

 \rightarrow page 19

 \rightarrow page 20

 \rightarrow page 20

$$u_n = \left(n \arctan\left(\frac{1}{n}\right) + \frac{5e^{\frac{1}{n}}}{n}\right)^n.$$

De plus, si cette limite est un réel ℓ , donner un équivalent asymptotique simple de $u_n - \ell$ quand $n \to +\infty$.

Exercice 32. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\left(-\frac{\cos(\frac{1}{n})}{n} - \ln(\frac{1}{n} + 1) + 1\right)^{\frac{3}{2}}} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 33. Donner un équivalent asymptotique de la suite $(u_n)_{n\geqslant 1}$, définie par :

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad u_n = -\frac{1}{n} + \frac{1}{6} n \arctan\left(\frac{3}{n}\right) - \frac{1}{2} e^{\frac{2}{n}} + \frac{2}{3} \ln\left(\frac{3}{n} + 1\right).$$

Exercice 34. Donner un équivalent asymptotique simple, quand $n \to +\infty$, de:

$$\sqrt[3]{n^{18}+4n^9} - \sqrt{n^{12}+n^8+22n^4}$$

et calculer sa limite éventuelle.

Exercice 35. Déterminer des réels a, b et c tels que :

$$-\frac{4}{n} + \frac{11}{n+2} + \frac{5}{2(n-2)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 36. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \sin\left(\frac{-x^2 - x - 3}{-x + 3}\right) \times \frac{x^4 + x^3 + x^2 - x}{x - 102}.$$

Exercice 37. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{-2 x^5 \ln{(x+1)} + x^2 e^{(2 x)} \ln{(x+1)}^2 + e^x \ln{(x+1)} + 2 e^{(6 x)}}{4 x^2 e^{(-4 x)} + x e^{(-3 x)} \ln{(x)} + 13 e^{(-2 x)} \ln{(x)}^2}.$$

Exercice 38. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \arctan\left(\frac{9\,x^3 + 19\,x^2 + 6\,x + 1}{-2\,x + 353}\right) \times \frac{-x^3 + 6\,x^2 + x - 1}{x - 1}.$$

Exercice 39. Déterminer des réels a, b et c tels que :

$$-\frac{1}{2n} - \frac{2}{n+2} + \frac{1}{2(n-1)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 40. Calculer: $\lim_{x\to 0^+} \frac{\cosh(5x) - \cosh(3x)}{\sinh(x)}$.

Exercice 41. Calculer:
$$\lim_{x\to 0^+} \left(-\frac{1}{6x} + \frac{1}{\tan(3\sin(2x))} \right)$$
.

Exercice 42. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 22

 \rightarrow page 21

 \rightarrow page 22

 \rightarrow page 22

 \rightarrow page 23

 \rightarrow page 23

 \rightarrow page 23

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 24

$$f(x) = \frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(-\cos\left(4\,x\right) + 1\right)} \times \frac{\ln\left(\sinh\left(3\,x\right) + 1\right)}{\ln\left(\arctan\left(x\right) + 1\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 43. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$\rightarrow$$
 page 25

$$f(x) = \frac{\ln(\sinh(3x))}{\ln(\sin(4x))} \times \frac{\ln(\ln(3x+1)+1)}{\ln(\arctan(x)+1)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 44. Calculer:
$$\lim_{x\to 0^+} \frac{\sin(6x) - \sin(3x)}{\arctan(3x)}$$
.

 \rightarrow page 25

Exercice 45. Donner un équivalent simple, quand $x \to +\infty$, de:

$$\rightarrow$$
 page 25

$$g(x) = \frac{-x^3 e^{(3\,x)} - x^3 \ln{(x+1)} + x e^{(2\,x)} \ln{(x+1)}^2 - 3\,\ln{(x+1)}^3}{-e^{(-x)} \ln{(x)}^5 + x \ln{(x)}^3 + 11\,x e^{(-5\,x)}}.$$

Exercice 46. Calculer:
$$\lim_{x\to 0^+} \frac{\cosh(9\,x) - \cosh(2\,x)}{e^{(5\,x)} - 1}$$
.

 \rightarrow page 26

Exercice 47. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 26

$$f(x) = \frac{\ln\left(\ln\left(3\,x+1\right)\right)}{\ln\left(e^{(3\,x)}-1\right)} \times \frac{\ln\left(\sinh\left(x\right)+1\right)}{\ln\left(\cosh\left(2\,x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

 \rightarrow page 26

Exercice 48. Donner un équivalent simple quand
$$x \to +\infty$$
, et quand $x \to 0^+$, de:
$$f(x) = \sin\left(\frac{7x^2}{x^3 + x^2 + 3x - 3}\right) \times \frac{3x^4 + 14x^3 + x^2 + x - 1}{2x^2 - 9x + 2}.$$

Exercice 49. Donner un équivalent simple quand
$$x \to +\infty$$
, et quand $x \to 0^+$, de:

 \rightarrow page 27

$$f(x) = \arctan\left(\frac{-3x - 3}{x^4 + x^3 - x^2 + 3x + 1}\right) \times \frac{-3x^4 + 3x^3 + 3x^2 - 1}{x^4 + x^3 + x^2}.$$

Exercice 50. Donner un équivalent asymptotique simple, quand $n \to +\infty$, de:

 \rightarrow page 27

$$\sqrt{n^6 - n^4 + n^2 - 1} - \sqrt[3]{n^9 - n^6 - 21 \, n^3 - 1}$$

et calculer sa limite éventuelle.

 \rightarrow page 27

Exercice 51. Déterminer un équivalent asymptotique simple, quand
$$x \to 0$$
, de:

$$f(x) = \frac{\ln\left(\ln\left(2\,x+1\right)\right)}{\ln\left(-\cos\left(3\,x\right)+1\right)} \times \frac{\ln\left(\arctan\left(x\right)+1\right)}{\ln\left(\cosh\left(x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 52. Déterminer des réels a, b, c et d tels que:

$$\ln\left(-\frac{4\cos\left(\frac{1}{n}\right)}{n} - 11\arctan\left(\frac{1}{n}\right) + 1\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Exercice 53. Calculer: $\lim_{x\to 0^+} \left(\frac{1}{\cos\left(\frac{1}{5}\sin\left(\frac{5}{2}x\right)\right) - 1} + \frac{8}{x^2} \right)$.

 \rightarrow page 28

Exercice 54. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 29

$$f(x) = \cos\left(\frac{-2x}{3x^3 + x^2 - x - 1}\right) \times \frac{3x^2 - x + 3}{4x^4 + x^2 - 2x - 32}.$$

Exercice 55. Calculer: $\lim_{x\to 0^+} \frac{\sin(6x) - \sin(4x)}{e^{(6x)} - 1}$.

 \rightarrow page 29

Exercice 56. Donner un équivalent asymptotique simple, quand $n \to +\infty$, de:

 \rightarrow page 29

$$\sqrt[3]{n^3 - 1} - \sqrt[3]{n^3 + n^2 + 3},$$

- et calculer sa limite éventuelle.
- **Exercice 57.** Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$\rightarrow$$
 page 29

$$f(x) = \sin\left(\frac{-15x^4 - x^3 - x + 1}{-7x^4 - x^3 + x^2}\right) \times \frac{-2x - 1}{x + 1}.$$

Exercice 58. Donner un équivalent asymptotique simple, quand $n \to +\infty$, de:

 \rightarrow page 30

$$\sqrt[3]{n^3+1} - \sqrt[3]{n^3+n^2-13n-1}$$
.

- et calculer sa limite éventuelle.
- **Exercice 59.** Donner un équivalent asymptotique simple, quand $n \to +\infty$, de:

 \rightarrow page 30

$$\sqrt[3]{n^{18} + n^9 - 3} - \sqrt{n^{12} - n^8 - n^4 - 7},$$

- et calculer sa limite éventuelle.
- Exercice 60. Calculer: $\lim_{x\to 0^+} \frac{\cos(6x) \cos(3x)}{\tan(6x)}.$

 \rightarrow page 30

Exercice 61. Donner un équivalent asymptotique de la suite $(u_n)_{n\geqslant 1}$, définie par :

 \rightarrow page 31

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad u_n = \frac{1}{2n} - \arctan\left(\frac{3}{n}\right) + \frac{5}{4}e^{\frac{2}{n}} - \frac{5}{4}\cos\left(\frac{1}{n}\right).$$

Exercice 62. Déterminer des réels a, b et c tels que :

 \rightarrow page 31

$$\frac{1}{3n} - \frac{1}{n+1} + \frac{1}{16(n-2)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 63. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 31

$$f(x) = \sin\left(\frac{14x^4 - 2x^3 - x^2 - x + 2}{-x + 1}\right) \times \frac{4x + 1}{-4x^3 - x^2 - 21x - 14}.$$

Exercice 64. Déterminer la limite, quand $n \to +\infty$, de:

$$u_n = \left(-\frac{8\cos\left(\frac{1}{n}\right)}{n} + \cosh\left(\frac{1}{n}\right)\right)^{-3n^2}.$$

De plus, si cette limite est un réel ℓ , donner un équivalent asymptotique simple de $u_n - \ell$ quand $n \to +\infty$.

Exercice 65. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{x^3 e^x \ln(x+1)^2 - x e^x \ln(x+1)^4 - x \ln(x+1)^3 + 4x \ln(x+1)}{-32 x^3 \ln(x)^2 + x^2 \ln(x)^2 + x^2 + 3e^{(-4x)}}.$$

Exercice 66. Déterminer des réels a, b, c et d tels que :

$$\ln\left(\frac{\arctan\left(x\right)}{x} + \sin\left(x\right)\right) = a + bx + cx^{2} + dx^{3} + \mathop{o}_{x\to 0}\left(x^{3}\right).$$

Exercice 67. Donner un équivalent simple, quand $x \to +\infty$, de:

$$g(x) = \frac{-x^3 e^{(2\,x)} - x e^x + 12}{-e^{(-2\,x)} \ln{(x)}^4 - 7\,x^3 e^{(-3\,x)} - x^2 e^{(-2\,x)} + 124\,x e^{(-x)} \ln{(x)}}.$$

Exercice 68. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

$$f(x) = \frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(e^{(3\,x)} - 1\right)} \times \frac{\ln\left(\sinh\left(2\,x\right) + 1\right)}{\ln\left(\cosh\left(3\,x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 69. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

$$f(x) = \arctan\left(\frac{-2x+1}{-x+1}\right) \times \frac{-2x^2 - 22x - 1}{x^4 - 6x^3 + x + 1}.$$

Exercice 70. Déterminer des réels a, b et c tels que:

$$\frac{4}{3n} - \frac{2}{n+4} - \frac{13}{5(n-3)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 71. Calculer: $\lim_{x\to 0^+} \frac{\tan(x) - \tan(8x)}{e^{(2x)} - 1}.$

Exercice 72. Calculer:
$$\lim_{x\to 0^+} \left(\frac{1}{5x} - \frac{1}{\tan(5\sinh(x))}\right)$$
.

Exercice 73. Donner un équivalent asymptotique de la suite $(u_n)_{n\geqslant 1}$, définie par :

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad u_n = -\frac{1}{n} - \sinh\left(\frac{2}{n}\right) - 6n\ln\left(\frac{1}{n} + 1\right) + 2n\arctan\left(\frac{3}{n}\right).$$

Exercice 74. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de :

$$f(x) = \arctan\left(\frac{2x^3 + x^2 + x}{-4x^4 + 2x^3 - 4x^2 - 1}\right) \times \frac{-2x^2 - 2x}{-x^2 - 5x - 1}.$$

Exercice 75. Calculer:
$$\lim_{x\to 0^+} \left(\frac{1}{\cos\left(\frac{3}{4}\arctan\left(x\right)\right)-1} + \frac{32}{9x^2} \right)$$
.

Exercice 76. Donner un équivalent asymptotique de la suite $(u_n)_{n\geqslant 1}$, définie par :

 \rightarrow page 32

 \rightarrow page 33

 \rightarrow page 32

 \rightarrow page 33

 \rightarrow page 34

 \rightarrow page 34

 \rightarrow page 34

 \rightarrow page 34

 \rightarrow page 35

 \rightarrow page 35

 \rightarrow page 36

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad u_n = -\frac{1}{n} + \frac{1}{2} \sinh\left(\frac{2}{n}\right) + \frac{1}{2} n \sinh\left(\frac{2}{n}\right) - \cos\left(\frac{2}{n}\right).$$

Exercice 77. Déterminer des réels a, b, c et d tels que :

 \rightarrow page 36

$$\left(-\frac{20\cos\left(\frac{1}{n}\right)}{n} - 3\ln\left(\frac{1}{n} + 1\right) + 1\right)^{\frac{1}{3}} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Exercice 78. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 37

$$f(x) = \frac{\ln\left(\sinh\left(4\,x\right)\right)}{\ln\left(\sin\left(3\,x\right)\right)} \times \frac{\ln\left(\sin\left(3\,x\right) + 1\right)}{\ln\left(\cosh\left(x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 79. Calculer: $\lim_{x\to 0^+} \left(\frac{1}{\tan(4\cosh(4x)-4)} - \frac{1}{32x^2} \right)$.

 \rightarrow page 37

Exercice 80. Calculer: $\lim_{x\to 0^+} \frac{\ln(2x+1) - \ln(x+1)}{\cos(3x) - 1}$.

 \rightarrow page 37

Exercice 81. Déterminer la limite, quand $n \to +\infty$, de:

 \rightarrow page 38

$$u_n = \left(n \sinh\left(\frac{1}{n}\right) + \sin\left(\frac{1}{n}\right)\right)^{-n}.$$

De plus, si cette limite est un réel ℓ , donner un équivalent asymptotique simple de $u_n - \ell$ quand $n \to +\infty$.

Exercice 82. Déterminer des réels a, b et c tels que :

 \rightarrow page 38

$$-\frac{13}{n} + \frac{15}{n+2} + \frac{1}{n-2} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 83. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 38

$$f(x) = \frac{\ln\left(\arctan\left(3\,x\right)\right)}{\ln\left(e^{(4\,x)} - 1\right)} \times \frac{\ln\left(\arctan\left(3\,x\right) + 1\right)}{\ln\left(\cos\left(x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 84. Calculer: $\lim_{x\to 0^+} \left(\frac{1}{x} + \frac{1}{e^{(-\sinh(x))} - 1}\right)$.

 \rightarrow page 39

Exercice 85. Donner un équivalent simple, quand $x \to +\infty$, de:

 \rightarrow page 39

$$g(x) = \frac{-x^6 - x^3 e^x - 20 e^{(3x)} \ln(x+1)^3 - x \ln(x+1)^2}{2 e^{(-x)} \ln(x)^5 - 14 \ln(x)^5 + x^2 \ln(x) - 11 e^{(-3x)}}$$

Exercice 86. Donner un équivalent simple quand $x \to +\infty$, et quand $x \to 0^+$, de:

 \rightarrow page 39

$$f(x) = \sin\left(\frac{-x^4 - x^3 + 2}{x^3 + 61x + 1}\right) \times \frac{-x^3 - x + 2}{x + 2}.$$

Exercice 87. Calculer: $\lim_{x \to 0^+} \left(\frac{1}{e^{(\cos(x)-1)} - 1} + \frac{2}{x^2} \right)$.

Exercice 88. Déterminer des réels a, b, c et d tels que :

$$\ln(\cosh(x) + 2\sin(x)) = a + bx + cx^{2} + dx^{3} + \mathop{o}_{x \to 0}(x^{3}).$$

Exercice 89. Calculer:
$$\lim_{x\to 0^+} \left(\frac{12}{5x} + \frac{1}{e^{\left(-\frac{1}{3}\tan\left(\frac{5}{4}x\right)\right)} - 1} \right)$$
.

 \rightarrow page 41

 \rightarrow page 40

Exercice 90. Déterminer un équivalent asymptotique simple, quand $x \to 0$, de:

 \rightarrow page 41

 \rightarrow page 41

$$f(x) = \frac{\ln\left(\sin\left(4\,x\right)\right)}{\ln\left(\ln\left(2\,x+1\right)\right)} \times \frac{\ln\left(\ln\left(x+1\right)+1\right)}{\ln\left(\cos\left(3\,x\right)\right)},$$

et en déduire la limite éventuelle quand $x \to 0^+$.

Exercice 91. Déterminer des réels a, b, c et d tels que :

$$\ln (7 \sin (x) - \sinh (x) + 1) = a + bx + cx^{2} + dx^{3} + \underset{x \to 0}{o} (x^{3}).$$

Exercice 92. Calculer:
$$\lim_{x\to 0^+} \left(\frac{15}{8x} - \frac{1}{\sin\left(\frac{2}{3}\sinh\left(\frac{4}{5}x\right)\right)} \right)$$
.

 \rightarrow page 42

 \rightarrow page 42

 \rightarrow page 43

Exercice 93. Déterminer des réels a, b, c et d tels que :

$$\left(n\arctan\left(\frac{1}{n}\right) - 2\sin\left(\frac{1}{n}\right)\right)^{\frac{5}{2}} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Exercice 94. Donner un équivalent asymptotique simple, quand $n \to +\infty$, de:

$$\sqrt[3]{n^3 + n^2 - n - 1} - \sqrt{n^2 - 2},$$

et calculer sa limite éventuelle.

Exercice 95. Calculer:
$$\lim_{x\to 0^+} \left(\frac{3}{16x} + \frac{1}{e^{\left(-\frac{4}{3}\tan(4x)\right)} - 1} \right)$$
.

 \rightarrow page 43

Exercice 96. Donner un équivalent asymptotique de la suite $(u_n)_{n\geqslant 1}$, définie par :

$$\rightarrow$$
 page 43

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad u_n = \frac{2}{n} - 8 \arctan\left(\frac{2}{n}\right) + 7e^{\frac{2}{n}} - 7 \cosh\left(\frac{2}{n}\right).$$

Exercice 97. Calculer:
$$\lim_{x\to 0^+} \left(-\frac{5}{x} + \frac{1}{\arctan\left(\frac{1}{5}\sinh\left(x\right)\right)} \right)$$
.

 \rightarrow page 43

Exercice 98. Déterminer des réels a, b et c tels que :

$$\rightarrow$$
 page 44

$$\frac{1}{57\,n} - \frac{1}{n+2} - \frac{1}{n-1} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

Exercice 99. Calculer:
$$\lim_{x\to 0^+} \left(\frac{1}{\cos\left(\frac{3}{2}\sinh(4x)\right) - 1} + \frac{1}{18x^2} \right)$$
.

 \rightarrow page 44

Exercice 100. Déterminer des réels a, b et c tels que :

$$\rightarrow$$
 page 44

$$-\frac{1}{n} - \frac{12}{n+3} - \frac{7}{8\left(n-1\right)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Corrigé 1. Lorsqu'on élève un nombre dépendant de n à une puissance dépendant de n, il est recommandé de tout mettre sous forme exponentielle pour éviter les généralisations hâtives.

 \leftarrow page 1

Pour tout n au voisinage de $+\infty$, on a : $u_n = \exp\left(-2\,n\ln\left(\frac{2\,\cos\left(\frac{1}{n}\right)}{n} + e^{\frac{1}{n}}\right)\right)$. Faisons le développement asymptotique de l'argument de l'exponentielle (à au moins deux termes, pour récupérer l'éventuel équivalent asymptotique de $u_n - \ell$ ensuite ; c'est inutilement précis si seule la limite nous intéresse). on a :

$$\cos\left(x\right) = 1 + \mathop{o}_{x \to 0}\left(x\right),\,$$

et:

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \underset{x \to 0}{o}(x^{2})$$
.

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\frac{2\cos\left(\frac{1}{n}\right)}{n} + e^{\frac{1}{n}} = 1 + \frac{3}{n} + \frac{1}{2n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right).$$

En composant ceci avec le développement limité de $x \mapsto \ln(1+x)$ en 0 à l'ordre 2 (ou 3 : vérifiez bien ce que fait la machine, je me suis emmêlé les pinceaux dans la programmation) :

$$-2n\ln\left(\frac{2\cos\left(\frac{1}{n}\right)}{n} + e^{\frac{1}{n}}\right) = -2n\left[\left(\frac{3}{n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) - \frac{1}{2}\left(\frac{3}{n} + o\left(\frac{1}{n}\right)\right)^2 + o\left(\frac{1}{n^2}\right)\right]$$
$$= \frac{8}{n} - 6 + o\left(\frac{1}{n}\right) \sim -6.$$

On en déduit : $\lim_{n \to +\infty} -2n \ln \left(\frac{2 \cos \left(\frac{1}{n} \right)}{n} + e^{\frac{1}{n}} \right) = -6$, puis : $\lim_{n \to +\infty} u_n = e^{(-6)}$ par continuité en -6 de l'exponentielle.

De plus, reprenant les calculs ci-dessus

$$u_n - e^{(-6)} = e^{(-6)} \left(\exp\left(\frac{8}{n} + o_{n \to +\infty} \left(\frac{1}{n}\right) \right) - 1 \right) \underset{n \to +\infty}{\sim} \frac{8 e^{(-6)}}{n}$$

(on utilise la formule: $e^u - 1 \sim u$, en ne retenant que le terme prépondérant).

Corrigé 2. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 1

$$\frac{-x^2-1}{x^4-x^3-3\,x^2-x-3} \underset{x\to +\infty}{\sim} \frac{-x^2}{x^4} \underset{x\to +\infty}{\sim} -\frac{1}{x^2} \underset{x\to +\infty}{\longrightarrow} 0, \quad \frac{-2\,x^3+x^2+1}{-2\,x} \underset{x\to +\infty}{\sim} \frac{-2\,x^3}{-2\,x} \underset{x\to +\infty}{\sim} x^2.$$

Par composition de limites: $\lim_{x \to +\infty} \cos \left(\frac{-x^2 - 1}{x^4 - x^3 - 3 \, x^2 - x - 3} \right) = \cos(0) = 1 \neq 0$, et donc: $\cos \left(\frac{-x^2 - 1}{x^4 - x^3 - 3 \, x^2 - x - 3} \right) \underset{x \to +\infty}{\sim} 1$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} 1 \times (x^2) \underset{x \to +\infty}{\sim} x^2.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-x^2-1}{x^4-x^3-3\,x^2-x-3} \underset{x\to 0^+}{\sim} \frac{-1}{-3} \underset{x\to 0^+}{\sim} \frac{1}{3} \underset{x\to 0}{\longrightarrow} \frac{1}{3}, \quad \frac{-2\,x^3+x^2+1}{-2\,x} \underset{x\to 0}{\sim} \frac{1}{-2\,x} \underset{x\to 0}{\sim} -\frac{1}{2\,x}.$$

Par composition de limites : $\lim_{x\to 0^+}\cos\left(\frac{-x^2-1}{x^4-x^3-3\,x^2-x-3}\right)=\cos\left(\frac{1}{3}\right)\neq 0$, et donc :

$$\cos\left(\frac{-x^2-1}{x^4-x^3-3\,x^2-x-3}\right) \underset{x\to 0^+}{\sim} \cos\left(\frac{1}{3}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{\cos\left(\frac{1}{3}\right)}{2x}$$
, et: $f(x) \underset{x \to +\infty}{\sim} x^2$.

Corrigé 3. Commençons par la deuxième fraction. On a $\ln(3x+1)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\sinh(x)+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(3x+1)+1) \underset{x\to 0}{\sim} \ln(3x+1)$, et : $\ln(\sinh(x)+1) \underset{x\to 0}{\sim} \sinh(x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\sinh(u) \underset{u\to 0}{\sim} u$, où l'on prend u=3x dans le premier développement limité, impliquent :

$$\frac{\ln\left(\ln\left(3\,x+1\right)+1\right)}{\ln\left(\sinh\left(x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(3\,x+1\right)}{\sinh\left(x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{x} \underset{x\to 0}{\sim} 3.$$

Passons à la première fraction. On a: $\sin(x) = x + o_{x\to 0}(x)$, et: $\cosh(x) = 1 + \frac{1}{2}x^2 + o_{x\to 0}(x^2)$. Par conséquent:

$$\frac{\ln\left(\sin\left(2\,x\right)\right)}{\ln\left(\cosh\left(3\,x\right)-1\right)} = \frac{\ln(2\,x + \mathop{o}_{x \to 0}\left(x\right)}{\ln(\frac{9}{2}\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right))} = \frac{\ln((2\,x)(1 + \mathop{o}_{x \to 0}\left(1\right)))}{\ln((\frac{9}{2}\,x^2)(1 + \mathop{o}_{x \to 0}\left(1\right)))} = \frac{\ln(2) + \ln\left(x\right) + \ln\left(1 + \mathop{o}_{x \to 0}\left(1\right)\right)}{\ln(\frac{9}{2}) + 2\ln\left(x\right) + \ln\left(1 + \mathop{o}_{x \to 0}\left(1\right)\right)} \underset{x \to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)}$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times 3 = \frac{3}{2},$$

et en outre: $\lim_{x \to 0^+} f(x) = \frac{3}{2}$.

Corrigé 4. Composons les développements limités en 0 de $x\mapsto \frac{\sinh{(x)}}{x}, x\mapsto \frac{\ln{(x+1)}}{x}$ et $x\mapsto e^x$ avec $\frac{1}{n}$ (quand $n\to +\infty$, on a $\frac{1}{n}\to 0$). Notons que si l'on fait nos développements à un ordre strictement inférieur à 2, alors tous les termes se compensent et il ne reste plus que le terme d'erreur (faire *vraiment* le calcul pour s'en convaincre!). Nous le faisons donc à l'ordre 2 dans ce qui suit. On a :

$$\sinh\left(x\right) = x + \frac{1}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \quad \ln\left(x+1\right) = x - \frac{1}{2}\,x^2 + \frac{1}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right) \quad \text{ et: } \quad e^x = 1 + x + \frac{1}{2}\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right).$$

Par conséquent:

$$\begin{split} &\frac{6}{n} - \frac{3}{4} n \sinh\left(\frac{1}{n}\right) + \frac{11}{18} n \ln\left(\frac{3}{n} + 1\right) - \frac{13}{12} e^{\frac{3}{n}} \\ &= \frac{6}{n} - \frac{3}{4} \left(1 + \frac{1}{6 n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2}\right)\right) + \frac{11}{6} \left(1 - \frac{3}{2 n} + \frac{3}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2}\right)\right) - \frac{13}{12} \left(1 + \frac{3}{n} + \frac{9}{2 n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2}\right)\right) \\ &= \frac{1}{2 n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2}\right) \mathop{\sim}_{n \to +\infty} \frac{1}{2 n^2}, \end{split}$$

d'où le résultat.

Corrigé 5. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = o(v(x)).

Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

 \leftarrow page 1

$$x \ln (x+1)^3 \ll x^2 e^x \ln (x+1)^2 \ll x^2 e^{(2x)} \ln (x+1)$$

et:

$$x^4 e^{(-x)} \ln(x) \ll x \ln(x)^4 \ll x^2 \ln(x) \ll x^2 \ln(x)^2 \ll x^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-3x^{2}e^{x}\ln(x+1)^{2} + x^{2}e^{(2x)}\ln(x+1) - x\ln(x+1)^{3} \sim x^{2}e^{(2x)}\ln(x+1).$$

De même: $-5 x^4 e^{(-x)} \ln(x) + x \ln(x)^4 + 2 x^2 \ln(x)^2 + x^3 + x^2 \ln(x) \underset{x \to +\infty}{\sim} x^3$.

De plus, on a
$$\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$$
 (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \xrightarrow[x \to +\infty]{} 1$ car $\ln\left(1 + \frac{1}{x}\right) \xrightarrow[x \to +\infty]{} 0$

et $\ln(x) \xrightarrow[x \to +\infty]{} +\infty$), ce qui simplifie le premier équivalent. On conclut :

$$g(x) \mathop{\sim}_{x \to +\infty} \frac{x^2 e^{(2\,x)} \ln{(x)}}{x^3} \mathop{\sim}_{x \to +\infty} \frac{e^{(2\,x)} \ln{(x)}}{x}.$$

Corrigé 6. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire : u(x) = o(v(x)). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

 $x \ln (x+1)^4 \ll x^3 \ln (x+1)^3 \ll x^2 e^{(2x)} \ln (x+1)^2 \ll e^{(3x)} \ln (x+1)^3$

et:

$$xe^{(-5x)} \ll xe^{(-2x)} \ll x \ln(x)^4 \ll x^4 \ln(x)^2$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte »: c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$-x^{3} \ln(x+1)^{3} - x^{2} e^{(2x)} \ln(x+1)^{2} - 2x \ln(x+1)^{4} - 12e^{(3x)} \ln(x+1)^{3} \sim \underset{x \to +\infty}{\sim} -12e^{(3x)} \ln(x+1)^{3}$$
.

De même: $-6x^4 \ln(x)^2 + 6x \ln(x)^4 + xe^{(-2x)} - xe^{(-5x)} \underset{x \to +\infty}{\sim} -6x^4 \ln(x)^2$. De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \underset{x \to +\infty}{\longrightarrow} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty$), ce qui simplifie le premier équivalent. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-12 e^{(3 x)} \ln(x)^3}{-6 x^4 \ln(x)^2} \underset{x \to +\infty}{\sim} \frac{2 e^{(3 x)} \ln(x)}{x^4}.$$

Corrigé 7. Composons les développements limités en 0 de $x\mapsto \frac{\sinh{(x)}}{x}, x\mapsto \sinh{(x)}$ et $x\mapsto \frac{\ln{(x+1)}}{x}$ avec $\frac{1}{n}$ (quand $n \to +\infty$, on a $\frac{1}{n} \to 0$). Notons que si l'on fait nos développements à un ordre strictement inférieur à 2, alors tous les termes se compensent et il ne reste plus que le terme d'erreur (faire *vraiment* le calcul pour s'en convaincre!). Nous le faisons donc à l'ordre 2 dans ce qui suit.

$$\sinh \left(x \right) = x + \frac{1}{6} \, x^3 + \mathop{o}\limits_{x \to 0} \left(x^3 \right), \quad \sinh \left(x \right) = x + \mathop{o}\limits_{x \to 0} \left(x^2 \right) \quad \text{ et : } \quad \ln \left(x + 1 \right) = x - \frac{1}{2} \, x^2 + \frac{1}{3} \, x^3 + \mathop{o}\limits_{x \to 0} \left(x^3 \right).$$

Par conséquent:

$$\begin{split} &-\frac{1}{8\,n} + \frac{1}{92}\,n\sinh\left(\frac{2}{n}\right) + \frac{7}{184}\,\sinh\left(\frac{3}{n}\right) - \frac{1}{46}\,n\ln\left(\frac{1}{n} + 1\right) \\ &= -\frac{1}{8\,n} + \frac{1}{46}\left(1 + \frac{2}{3\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) + \frac{7}{184}\left(\frac{3}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) - \frac{1}{46}\left(1 - \frac{1}{2\,n} + \frac{1}{3\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) \\ &= \frac{1}{138\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right) \mathop{\sim}_{n \to +\infty} \frac{1}{138\,n^2}, \end{split}$$

d'où le résultat.

Corrigé 8. Au voisinage de 0, on a : $\sinh(x) = x + \underset{x \to 0}{o}(x)$, et : $\ln(x+1) = x + \underset{x \to 0}{o}(x)$. On en déduit :

 \leftarrow page 1

$$\frac{\sinh{(8\,x)} - \sinh{(9\,x)}}{\ln{(x+1)}} = \frac{\left(8\,x + \mathop{o}_{x \to 0}(x)\right) - \left(9\,x + \mathop{o}_{x \to 0}(x)\right)}{x + \mathop{o}_{x \to 0}(x)} = \frac{-x + \mathop{o}_{x \to 0}(x)}{x + \mathop{o}_{x \to 0}(x)} \underset{x \to 0}{\sim} \frac{-x}{x} = -1.$$

Par conséquent :
$$\lim_{x \to 0^+} \frac{\sinh(8x) - \sinh(9x)}{\ln(x+1)} = -1.$$

Corrigé 9. On a:

 \leftarrow page 1

$$e^x = 1 + x + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2)$$
, et: $\sinh(x) = x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3)$.

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$28\frac{e^{\frac{1}{n}}}{n} + \sinh\left(\frac{1}{n}\right) + 1 = 28\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{2n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{n} + \frac{1}{6n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$
$$= 1 + \frac{29}{n} + \frac{28}{n^2} + \frac{85}{6n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x\mapsto \ln{(x+1)}$ en 0 à l'ordre 3 :

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} & \ln\left(\frac{28\,e^{\frac{1}{n}}}{n} + \sinh\left(\frac{1}{n}\right) + 1\right) \\ & = \left(\frac{29}{n} + \frac{28}{n^2} + \frac{85}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{2}\left(\frac{29}{n} + \frac{28}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right)^2 + \frac{1}{3}\left(\frac{29}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ & = \left(\frac{29}{n} + \frac{28}{n^2} + \frac{85}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{2}\left(\frac{841}{n^2} + \frac{1624}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{3}\left(\frac{24389}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ & = \frac{29}{n} - \frac{785}{2\,n^2} + \frac{43991}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 10. On écrit:

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{n} - \frac{5}{2\left(n+3\right)} - \frac{2}{n-3} &= \frac{1}{n} - \frac{5}{2} \left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) - 2 \left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) \\ &= -\frac{7}{2\,n} + \frac{3}{2\,n^2} - \frac{81}{2\,n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right). \end{split}$$

Corrigé 11. On écrit :

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\frac{3}{n} - \frac{1}{n+3} - \frac{7}{5(n-4)} = \frac{3}{n} - 1\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) - \frac{7}{5}\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= \frac{3}{5n} - \frac{13}{5n^2} - \frac{157}{5n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

 \leftarrow page 2

Corrigé 12. On a:

 $\leftarrow \text{page 2}$

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3), \quad \text{et:} \quad xe^x = x + x^2 + \frac{1}{2}x^3 + \mathop{o}_{x\to 0}(x^3).$$

On en déduit :

$$\ln(x+1) + 2xe^x = \left(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x \to 0}(x^3)\right) + 2\left(x + x^2 + \frac{1}{2}x^3 + \mathop{o}_{x \to 0}(x^3)\right)$$
$$= 3x + \frac{3}{2}x^2 + \frac{4}{3}x^3 + \mathop{o}_{x \to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{(x+1)^{\frac{9}{2}}}$ en 0 à l'ordre 3:

$$\frac{1}{(x+1)^{\frac{9}{2}}} = 1 - \frac{9}{2}x + \frac{99}{8}x^2 - \frac{429}{16}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} &\frac{1}{\left(2\,xe^x+\ln\left(x+1\right)+1\right)^{\frac{9}{2}}}\\ &=1-\frac{9}{2}\left(3\,x+\frac{3}{2}\,x^2+\frac{4}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{99}{8}\left(3\,x+\frac{3}{2}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2-\frac{429}{16}\left(3\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1-\frac{9}{2}\left(3\,x+\frac{3}{2}\,x^2+\frac{4}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{99}{8}\left(9\,x^2+9\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{429}{16}\left(27\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1-\frac{27}{2}\,x+\frac{837}{8}\,x^2-\frac{9897}{16}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 13. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\operatorname{arctan}(x) = x - \frac{1}{3} x^3 + \underset{x \to 0}{o} (x^4)$. On compose ce développement limité avec celui de $x \mapsto \cos(x)$, ce qui est licite puisque $-\frac{3}{5} \arctan(x) \xrightarrow[x \to 0]{} 0$, et on obtient:

 \leftarrow page 2

$$\cos\left(\frac{3}{5}\arctan\left(x\right)\right) = 1 - \frac{1}{2}\left(-\frac{1}{3}x^3 + x + \underset{x \to 0}{o}\left(x^3\right)\right)^2 + \frac{1}{24}\left(x + \underset{x \to 0}{o}\left(x\right)\right)^4 + \underset{x \to 0}{o}\left(x^4\right)$$
$$= 1 - \frac{9}{50}x^2 + \frac{627}{5000}x^4 + \underset{x \to 0}{o}\left(x^4\right).$$

On en tire d'une part: $\cos\left(\frac{3}{5}\arctan\left(x\right)\right)-1 \underset{x\to 0^+}{\sim} -\frac{9}{50}\,x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'on ne somme pas les équivalents!), et d'autre part:

$$\frac{1}{\cos\left(\frac{3}{5}\arctan\left(x\right)\right)-1}+\frac{50}{9\,x^2}=\frac{9\,x^2+50\left(-\frac{9}{50}\,x^2+\frac{627}{5000}\,x^4+\frac{o}{x\to 0}\left(x^4\right)\right)}{9\,x^2\left(\cos\left(\frac{3}{5}\arctan\left(x\right)\right)-1\right)}=\frac{\frac{627}{100}\,x^4+\frac{o}{x\to 0}\left(x^4\right)}{9\,x^2\left(\cos\left(\frac{3}{5}\arctan\left(x\right)\right)-1\right)}\underset{x\to 0^+}{\sim}\frac{\frac{627}{5000}\,x^4}{\frac{81}{50}\,x^4}=-\frac{209}{54}$$

On en déduit : $\lim_{x\to 0^+}\left(\frac{1}{\cos\left(\frac{3}{5}\arctan\left(x\right)\right)-1}+\frac{50}{9\,x^2}\right)=-\frac{209}{54}.$

Corrigé 14. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = o(v(x)). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

 \leftarrow page 2

$$xe^{(3x)} \ll x^2e^{(3x)}\ln(x+1) \ll x^2e^{(4x)}$$

et:

$$e^{(-2x)}\ln(x) \ll xe^{(-x)}\ln(x) \ll x^2\ln(x) \ll x^5$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à

comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$x^{2}e^{(3x)}\ln(x+1) - 2x^{2}e^{(4x)} - 5xe^{(3x)} \underset{x \to +\infty}{\sim} -2x^{2}e^{(4x)}.$$

De même: $-x^5 + x^2 \ln(x) - xe^{(-x)} \ln(x) + 2e^{(-2x)} \ln(x) \underset{x \to +\infty}{\sim} -x^5$. On conclut:

$$g(x) \mathop{\sim}_{x \to +\infty} \frac{-2 \, x^2 e^{(4 \, x)}}{-x^5} \mathop{\sim}_{x \to +\infty} \frac{2 \, e^{(4 \, x)}}{x^3}.$$

Corrigé 15. Pour tout n au voisinage de $+\infty$, on a:

 \leftarrow page 2

$$\sqrt{n^2 + 10} - \sqrt[3]{n^3 - 1} = \sqrt{n^2 \cdot \left(\frac{n^2 + 10}{n^2}\right)} - \sqrt[3]{n^3 \cdot \left(\frac{n^3 - 1}{n^3}\right)}$$

$$= n \times \sqrt{1 + \frac{10}{n^2}} - n \times \sqrt[3]{1 - \frac{1}{n^3}}$$

$$= n \left[\left(1 + \frac{1}{2} \left(\frac{10}{n^2}\right) + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right) - \left(1 + \frac{1}{3} \left(-\frac{1}{n^3}\right) + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right)\right) \right]$$

$$= n \left[\frac{5}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right) \right] = \frac{5}{n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{5}{n}.$$

Par conséquent : $\lim_{n \to +\infty} \left(\sqrt{n^2 + 10} - \sqrt[3]{n^3 - 1} \right) = 0.$

Corrigé 16. Lorsqu'on élève un nombre dépendant de n à une puissance dépendant de n, il est recommandé de tout mettre sous forme exponentielle pour éviter les généralisations hâtives.

 \leftarrow page 2

Pour tout n au voisinage de $+\infty$, on a: $u_n = \exp\left(-n\ln\left(-\frac{3\cos\left(\frac{1}{n}\right)}{n} + n\ln\left(\frac{1}{n} + 1\right)\right)\right)$. Faisons le développement asymptotique de l'argument de l'exponentielle (à au moins deux termes, pour récupérer l'éventuel équivalent asymptotique de $u_n - \ell$ ensuite; c'est inutilement précis si seule la limite nous intéresse). on a:

$$\cos\left(x\right) = 1 + \mathop{o}\limits_{x \to 0}\left(x\right),\,$$

et:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$n \ln \left(\frac{1}{n} + 1\right) - \frac{3 \cos \left(\frac{1}{n}\right)}{n} = 1 - \frac{7}{2n} + \frac{1}{3n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2}\right).$$

En composant ceci avec le développement limité de $x \mapsto \ln(1+x)$ en 0 à l'ordre 2 (ou 3 : vérifiez bien ce que fait la machine, je me suis emmêlé les pinceaux dans la programmation) :

$$-n\ln\left(n\ln\left(\frac{1}{n}+1\right) - \frac{3\cos\left(\frac{1}{n}\right)}{n}\right) = -n\left[\left(-\frac{7}{2n} + \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right)\right) - \frac{1}{2}\left(-\frac{7}{2n} + o\left(\frac{1}{n}\right)\right)^2 + o\left(\frac{1}{n^2}\right)\right]$$

$$= \frac{139}{24n} + \frac{7}{2} + o\left(\frac{1}{n}\right) \sim \frac{7}{n \to +\infty}$$

On en déduit : $\lim_{n \to +\infty} -n \ln \left(-\frac{3 \cos \left(\frac{1}{n}\right)}{n} + n \ln \left(\frac{1}{n} + 1\right) \right) = \frac{7}{2}$, puis : $\lim_{n \to +\infty} u_n = e^{\frac{7}{2}}$ par continuité en $\frac{7}{2}$ de l'exponentielle.

De plus, reprenant les calculs ci-dessus:

$$u_n - e^{\frac{7}{2}} = e^{\frac{7}{2}} \left(\exp\left(\frac{139}{24n} + o_{n \to +\infty}\left(\frac{1}{n}\right)\right) - 1 \right) \underset{n \to +\infty}{\sim} \frac{139 e^{\frac{7}{2}}}{24n}$$

(on utilise la formule: $e^u - 1 \sim u$, en ne retenant que le terme prépondérant).

Corrigé 17. On a:

$$\leftarrow$$
 page 2

$$\arctan(x) = x - \frac{1}{3}x^3 + o_{x \to 0}(x^3), \quad \text{et}: \quad \cos(x) = 1 - \frac{1}{2}x^2 + o_{x \to 0}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$\arctan\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right) = \left(\frac{1}{n} - \frac{1}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \left(1 - \frac{1}{2n^2} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= 1 + \frac{1}{n} - \frac{1}{2n^2} - \frac{1}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \ln(x+1)$ en 0 à l'ordre 3:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} & \ln \left(\arctan \left(\frac{1}{n} \right) + \cos \left(\frac{1}{n} \right) \right) \\ & = \left(\frac{1}{n} - \frac{1}{2 \, n^2} - \frac{1}{3 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(\frac{1}{n} - \frac{1}{2 \, n^2} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^2} \right) \right)^2 + \frac{1}{3} \left(\frac{1}{n} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^1} \right) \right)^3 + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \\ & = \left(\frac{1}{n} - \frac{1}{2 \, n^2} - \frac{1}{3 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(\frac{1}{n^2} - \frac{1}{n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) + \frac{1}{3} \left(\frac{1}{n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \\ & = \frac{1}{n} - \frac{1}{n^2} + \frac{1}{2 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right), \end{split}$$

d'où le résultat.

 $\begin{aligned} \textbf{Corrig\'e 18.} & \text{ Commençons par la deuxième fraction. On a } \ln\left(3\,x+1\right)+1 \underset{x\to 0}{\longrightarrow} 1 \text{ et } \cosh\left(3\,x\right) \underset{x\to 0}{\longrightarrow} 1. \text{ Donc, en vertu de } \\ \text{l'équivalent classique } \ln(u) \underset{u\to 1}{\sim} u-1, \text{ on a : } \ln\left(\ln\left(3\,x+1\right)+1\right) \underset{x\to 0}{\sim} \ln\left(3\,x+1\right), \text{ et : } \ln\left(\cosh\left(3\,x\right)\right) \underset{x\to 0}{\sim} \cosh\left(3\,x\right)-1. \\ \text{Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), } \ln\left(u+1\right) \underset{u\to 0}{\sim} u \text{ et } \cosh\left(u\right)-1 \underset{u\to 0}{\sim} \frac{1}{2}\,u^2, \text{ où l'on prend } u=3\,x, \text{ impliquent : } \end{aligned}$

$$\frac{\ln\left(\ln\left(3\,x+1\right)+1\right)}{\ln\left(\cosh\left(3\,x\right)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(3\,x+1\right)}{\cosh\left(3\,x\right)-1} \underset{x\to 0}{\sim} \frac{3\,x}{\frac{9}{2}\,x^2} \underset{x\to 0}{\sim} \frac{2}{3\,x}.$$

Passons à la première fraction. On a : $\sinh(x) = x + \underset{x \to 0}{o}(x)$, et : $\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2)$. Par conséquent :

$$\frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(\cosh\left(3\,x\right)-1\right)} = \frac{\ln(2\,x+\mathop{o}\limits_{x\to 0}(x)}{\ln(\frac{9}{2}\,x^2+\mathop{o}\limits_{x\to 0}(x^2))} = \frac{\ln((2\,x)(1+\mathop{o}\limits_{x\to 0}(1)))}{\ln((\frac{9}{2}\,x^2)(1+\mathop{o}\limits_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)}{\ln(\frac{9}{2})+2\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut :

$$f(x) \underset{x\to 0}{\sim} \frac{\ln(x)}{2\ln(x)} \times \frac{2}{3x} = \frac{1}{3x},$$

et en outre: $\lim_{x\to 0^+} f(x) = +\infty$.

Corrigé 19. On a:

 \leftarrow page 2

$$\sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et}: \quad \sinh(x) = x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On en déduit :

$$\begin{split} 31\sin{(x)} + \sinh{(x)} + 1 &= 31\left(x - \frac{1}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) + \left(1 + x + \frac{1}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) \\ &= 1 + 32\,x - 5\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{x+1}$ en 0 à l'ordre 3 :

$$\frac{1}{x+1} = 1 - x + x^2 - x^3 + \mathop{o}_{x \to 0} (x^3),$$

on a alors:

$$\begin{split} &\frac{1}{31\,\sin\left(x\right)+\sinh\left(x\right)+1}\\ &=1-\left(32\,x-5\,x^3+\mathop{o}\limits_{x\to0}\left(x^3\right)\right)+\left(32\,x+\mathop{o}\limits_{x\to0}\left(x^2\right)\right)^2-\left(32\,x+\mathop{o}\limits_{x\to0}\left(x\right)\right)^3+\mathop{o}\limits_{x\to0}\left(x^3\right)\\ &=1-\left(32\,x-5\,x^3+\mathop{o}\limits_{x\to0}\left(x^3\right)\right)+\left(1024\,x^2+\mathop{o}\limits_{x\to0}\left(x^3\right)\right)-\left(32768\,x^3+\mathop{o}\limits_{x\to0}\left(x^3\right)\right)+\mathop{o}\limits_{x\to0}\left(x^3\right)\\ &=1-32\,x+1024\,x^2-32763\,x^3+\mathop{o}\limits_{x\to0}\left(x^3\right), \end{split}$$

d'où le résultat.

$$\ln(x+1)^2 \ll x^2 \ln(x+1) \ll x^2 e^x \ln(x+1)^2 \ll x^3 e^x$$
,

et:

$$x^{2}e^{(-4x)} \ll x^{3}e^{(-2x)} \ll x \ll x \ln(x)^{2}$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-11 x^2 e^x \ln(x+1)^2 - x^3 e^x - 2 x^2 \ln(x+1) - \ln(x+1)^2 \sim x - x^3 e^x$$

De même: $-x^3 e^{(-2x)} + 5x^2 e^{(-4x)} - x \ln(x)^2 - 4x \underset{x \to +\infty}{\sim} -x \ln(x)^2$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-x^3 e^x}{-x \ln(x)^2} \underset{x \to +\infty}{\sim} \frac{x^2 e^x}{\ln(x)^2}.$$

Corrigé 21. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = constant constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance suivantes : <math>constant de prépondérance suivantes : constant de prépondérance su

$$x^{2} \ln (x+1)^{2} \ll x^{4} e^{(2x)} \ll x e^{(3x)}$$
.

et:

$$x^{3}e^{(-3x)} \ll e^{(-x)}\ln(x)^{4} \ll xe^{(-x)}\ln(x) \ll x^{6}$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-11 x^4 e^{(2x)} - x^2 \ln(x+1)^2 - 14 x e^{(3x)} \sim \underset{x \to +\infty}{\sim} -14 x e^{(3x)}.$$

De même: $x^6 + e^{(-x)} \ln(x)^4 + 2x^3 e^{(-3x)} - xe^{(-x)} \ln(x) \underset{x \to +\infty}{\sim} x^6$. On conclut:

$$g(x) \mathop{\sim}_{x \to +\infty} \frac{-14 \, x e^{(3 \, x)}}{x^6} \mathop{\sim}_{x \to +\infty} - \frac{14 \, e^{(3 \, x)}}{x^5}.$$

Corrigé 22. Commençons par la deuxième fraction. On a $\sin{(x)} + 1 \xrightarrow[x \to 0]{} 1$ et $\cos{(2\,x)} \xrightarrow[x \to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a : $\ln{(\sin{(x)} + 1)} \underset{x \to 0}{\sim} \sin{(x)}$, et : $\ln{(\cos{(2\,x)})} \underset{x \to 0}{\sim} \cos{(2\,x)} - 1$. Alors, nos

équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin{(u)} \underset{u \to 0}{\sim} u$ et $\cos{(u)} - 1 \underset{u \to 0}{\sim} -\frac{1}{2} u^2$, où l'on prend u = 2 x dans le second développement limité, impliquent :

$$\frac{\ln\left(\sin\left(x\right)+1\right)}{\ln\left(\cos\left(2\,x\right)\right)} \underset{x\to0}{\sim} \frac{\sin\left(x\right)}{\cos\left(2\,x\right)-1} \underset{x\to0}{\sim} \frac{x}{-2\,x^2} \underset{x\to0}{\sim} -\frac{1}{2\,x}.$$

Passons à la première fraction. On a: $\sinh(x) = x + o(x)$, et: $\cosh(x) = 1 + \frac{1}{2}x^2 + o(x^2)$. Par conséquent:

$$\frac{\ln\left(\sinh\left(4\,x\right)\right)}{\ln\left(\cosh\left(3\,x\right)-1\right)} = \frac{\ln(4\,x+\mathop{o}_{x\to 0}(x)}{\ln(\frac{9}{2}\,x^2+\mathop{o}_{x\to 0}(x^2))} = \frac{\ln((4\,x)(1+\mathop{o}_{x\to 0}(1)))}{\ln((\frac{9}{2}\,x^2)(1+\mathop{o}_{x\to 0}(1)))} = \frac{\ln(4)+\ln\left(x\right)+\ln(1+\mathop{o}_{x\to 0}(1)\right)}{\ln(\frac{9}{2})+2\ln\left(x\right)+\ln(1+\mathop{o}_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln{(x)}}{2\ln{(x)}} \times \left(-\frac{1}{2\,x}\right) = -\frac{1}{4\,x},$$

et en outre: $\lim_{x\to 0^+} f(x) = -\infty$.

Corrigé 23. Lorsqu'on élève un nombre dépendant de n à une puissance dépendant de n, il est recommandé de tout mettre sous forme exponentielle pour éviter les généralisations hâtives.

 $\leftarrow \text{page } 3$

 \leftarrow page 3

Pour tout n au voisinage de $+\infty$, on a : $u_n = \exp\left(\sqrt{n}\ln\left(4\sin\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right)\right)\right)$. Faisons le développement asymptotique de l'argument de l'exponentielle (à au moins deux termes, pour récupérer l'éventuel équivalent asymptotique de $u_n - \ell$ ensuite ; c'est inutilement précis si seule la limite nous intéresse). on a :

$$\sin\left(x\right) = x + \mathop{o}_{x \to 0}\left(x^2\right),\,$$

et:

$$\cos(x) = 1 - \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\cos\left(\frac{1}{n}\right) + 4\sin\left(\frac{1}{n}\right) = 1 + \frac{4}{n} - \frac{1}{2n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right).$$

En composant ceci avec le développement limité de $x \mapsto \ln(1+x)$ en 0 à l'ordre 2 (ou 3 : vérifiez bien ce que fait la machine, je me suis emmêlé les pinceaux dans la programmation) :

$$\begin{split} \sqrt{n} \ln \left(\cos \left(\frac{1}{n} \right) + 4 \sin \left(\frac{1}{n} \right) \right) &= \sqrt{n} \left[\left(\frac{4}{n} - \frac{1}{2 \, n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right) - \frac{1}{2} \left(\frac{4}{n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n} \right) \right)^2 + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right] \\ &= \frac{4}{\sqrt{n}} - \frac{17}{2 \, n^{\frac{3}{2}}} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^{\frac{3}{2}}} \right) \mathop{\sim}_{n \to +\infty} \frac{4}{\sqrt{n}}. \end{split}$$

On en déduit : $\lim_{n \to +\infty} \sqrt{n} \ln \left(4 \sin \left(\frac{1}{n} \right) + \cos \left(\frac{1}{n} \right) \right) = 0$, puis : $\lim_{n \to +\infty} u_n = 1$ par continuité en 0 de l'exponentielle.

De plus, reprenant les calculs ci-dessus:

$$u_n - 1 = \exp\left(\frac{4}{\sqrt{n}} - \frac{17}{2n^{\frac{3}{2}}} + o_{n \to +\infty}\left(\frac{1}{n^{\frac{3}{2}}}\right)\right) - 1 \underset{n \to +\infty}{\sim} \frac{4}{\sqrt{n}}$$

(on utilise la formule: $e^u - 1 \sim u$, en ne retenant que le terme prépondérant).

Corrigé 24. On a:

 $\cos(x) = 1 - \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2), \quad \text{et}: \quad \ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3).$

On en déduit:

$$2x\cos(x) - 3\ln(x+1) = 2\left(x - \frac{1}{2}x^3 + \mathop{o}_{x\to 0}(x^3)\right) - 3\left(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3)\right)$$
$$= -x + \frac{3}{2}x^2 - 2x^3 + \mathop{o}_{x\to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x \mapsto e^x$ en 0 à l'ordre 3:

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$e^{(2x\cos(x)-3\ln(x+1))}$$

$$= 1 + \left(-x + \frac{3}{2}x^2 - 2x^3 + \underset{x\to 0}{o}(x^3)\right) + \frac{1}{2}\left(-x + \frac{3}{2}x^2 + \underset{x\to 0}{o}(x^2)\right)^2 + \frac{1}{6}\left(-x + \underset{x\to 0}{o}(x)\right)^3 + \underset{x\to 0}{o}(x^3)$$

$$= 1 + \left(-x + \frac{3}{2}x^2 - 2x^3 + \underset{x\to 0}{o}(x^3)\right) + \frac{1}{2}\left(x^2 - 3x^3 + \underset{x\to 0}{o}(x^3)\right) + \frac{1}{6}\left(-x^3 + \underset{x\to 0}{o}(x^3)\right) + \underset{x\to 0}{o}(x^3)$$

$$= 1 - x + 2x^2 - \frac{11}{3}x^3 + \underset{x\to 0}{o}(x^3),$$

d'où le résultat.

Corrigé 25. On écrit :

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{aligned} -\frac{2}{n} + \frac{1}{n+1} + \frac{1}{4(n-3)} &= -\frac{2}{n} + 1\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \frac{1}{4}\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{3}{4n} - \frac{1}{4n^2} + \frac{13}{4n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right). \end{aligned}$$

Corrigé 26. Pour tout n au voisinage de $+\infty$, on a:

Par conséquent : $\lim_{n \to +\infty} \left(\sqrt[3]{n^3 - 1} - \sqrt[3]{n^3 - 3n^2 - n + 2} \right) = 1.$

Corrigé 27. Composons les développements limités en 0 de $x \mapsto \cosh(x)$, $x \mapsto \frac{\sin(x)}{x}$ et $x \mapsto \frac{\ln(x+1)}{x}$ avec $\frac{1}{n}$ (quand $n \to +\infty$, on a $\frac{1}{n} \to 0$). Notons que si l'on fait nos développements à un ordre strictement inférieur à 2, alors tous les termes se compensent et il ne reste plus que le terme d'erreur (faire *vraiment* le calcul pour s'en convaincre!). Nous le faisons donc à l'ordre 2 dans ce qui suit. On a :

$$\cosh\left(x\right) = 1 + \frac{1}{2}x^{2} + \underset{x \to 0}{o}\left(x^{2}\right), \quad \sin\left(x\right) = x - \frac{1}{6}x^{3} + \underset{x \to 0}{o}\left(x^{3}\right) \quad \text{ et : } \quad \ln\left(x+1\right) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} + \underset{x \to 0}{o}\left(x^{3}\right).$$

 \leftarrow page 3

 $\leftarrow \text{page } 3$

Par conséquent:

$$\begin{split} &-\frac{1}{7\,n}-3\,\cosh\left(\frac{2}{n}\right)+\frac{65}{63}\,n\sin\left(\frac{3}{n}\right)-\frac{2}{63}\,n\ln\left(\frac{3}{n}+1\right)\\ &=-\frac{1}{7\,n}-3\left(1+\frac{2}{n^2}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)+\frac{65}{21}\left(1-\frac{3}{2\,n^2}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)-\frac{2}{21}\left(1-\frac{3}{2\,n}+\frac{3}{n^2}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)\\ &=-\frac{153}{14\,n^2}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)\mathop{\sim}_{n\to+\infty}-\frac{153}{14\,n^2}, \end{split}$$

d'où le résultat.

Corrigé 28. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 $\leftarrow \text{page } 3$

$$\frac{-x^4 + 30\,x^3 - x^2 + 2\,x + 3}{x^4 - x^3 + 584\,x^2 + 3\,x} \underset{x \to +\infty}{\sim} \frac{-x^4}{x^4} \underset{x \to +\infty}{\sim} -1 \underset{x \to +\infty}{\longrightarrow} -1, \quad \frac{9\,x^4 + x^2 - 3\,x}{3\,x^3 + 6\,x^2 + 3} \underset{x \to +\infty}{\sim} \frac{9\,x^4}{3\,x^3} \underset{x \to +\infty}{\sim} 3\,x.$$

Par composition de limites : $\lim_{x \to +\infty} \arctan \left(\frac{-x^4 + 30 \, x^3 - x^2 + 2 \, x + 3}{x^4 - x^3 + 584 \, x^2 + 3 \, x} \right) = \arctan(-1) = -\frac{1}{4} \, \pi \neq 0$, et donc : $\arctan \left(\frac{-x^4 + 30 \, x^3 - x^2 + 2 \, x + 3}{x^4 - x^3 + 584 \, x^2 + 3 \, x} \right) \sim -\frac{1}{4} \, \pi$. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} -\frac{1}{4} \pi \times (3 x) \underset{x \to +\infty}{\sim} -\frac{3}{4} \pi x.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-x^4 + 30\,x^3 - x^2 + 2\,x + 3}{x^4 - x^3 + 584\,x^2 + 3\,x} \underset{x \to 0^+}{\sim} \frac{3}{3\,x} \underset{x \to 0^+}{\sim} \frac{1}{x} \underset{x \to 0}{\longrightarrow} +\infty, \quad \frac{9\,x^4 + x^2 - 3\,x}{3\,x^3 + 6\,x^2 + 3} \underset{x \to 0}{\sim} \frac{-3\,x}{3} \underset{x \to 0}{\sim} -x.$$

Par composition de limites: $\lim_{x\to 0^+}\arctan\left(\frac{-x^4+30\,x^3-x^2+2\,x+3}{x^4-x^3+584\,x^2+3\,x}\right) = \frac{1}{2}\,\pi \quad \neq \quad 0, \quad \text{et donc:}$ $\arctan\left(\frac{-x^4+30\,x^3-x^2+2\,x+3}{x^4-x^3+584\,x^2+3\,x}\right) \underset{x\to 0^+}{\sim} \frac{1}{2}\,\pi.$ On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{1}{2} \pi x$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{3}{4} \pi x$.

Corrigé 29. On écrit:

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{2\,n} + \frac{1}{3\,(n+2)} - \frac{1}{8\,(n-4)} &= -\frac{1}{2\,n} + \frac{1}{3}\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{8}\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{7}{24\,n} - \frac{7}{6\,n^2} - \frac{2}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 30. On écrit:

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2} \right) \right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$).

 \leftarrow page 3

On en déduit:

$$\begin{split} -\frac{1}{4\,n} - \frac{2}{n+4} - \frac{1}{n-2} &= -\frac{1}{4\,n} - 2\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{13}{4\,n} + \frac{6}{n^2} - \frac{36}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 31. Lorsqu'on élève un nombre dépendant de n à une puissance dépendant de n, il est recommandé de tout mettre sous forme exponentielle pour éviter les généralisations hâtives.

 \leftarrow page 3

Pour tout n au voisinage de $+\infty$, on a : $u_n = \exp\left(n\ln\left(\frac{5\,e^{\frac{1}{n}}}{n} + n\arctan\left(\frac{1}{n}\right)\right)\right)$. Faisons le développement asymptotique de l'argument de l'exponentielle (à au moins deux termes, pour récupérer l'éventuel équivalent asymptotique de $u_n - \ell$ ensuite ; c'est inutilement précis si seule la limite nous intéresse). on a :

$$e^x = 1 + x + o_{x \to 0}(x)$$
,

et:

$$\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$n \arctan\left(\frac{1}{n}\right) + \frac{5e^{\frac{1}{n}}}{n} = 1 + \frac{5}{n} + \frac{14}{3n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right).$$

En composant ceci avec le développement limité de $x \mapsto \ln(1+x)$ en 0 à l'ordre 2 (ou 3 : vérifiez bien ce que fait la machine, je me suis emmêlé les pinceaux dans la programmation) :

$$\begin{split} n\ln\left(n\arctan\left(\frac{1}{n}\right) + \frac{5\,e^{\frac{1}{n}}}{n}\right) &= n\left[\left(\frac{5}{n} + \frac{14}{3\,n^2} + \mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)\right) - \frac{1}{2}\left(\frac{5}{n} + \mathop{o}_{n\to+\infty}\left(\frac{1}{n}\right)\right)^2 + \mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)\right] \\ &= -\frac{47}{6\,n} + 5 + \mathop{o}_{n\to+\infty}\left(\frac{1}{n}\right) \mathop{\sim}_{n\to+\infty} 5. \end{split}$$

On en déduit : $\lim_{n \to +\infty} n \ln \left(\frac{5 e^{\frac{1}{n}}}{n} + n \arctan \left(\frac{1}{n} \right) \right) = 5$, puis : $\lim_{n \to +\infty} u_n = e^5$ par continuité en 5 de l'exponentielle.

De plus, reprenant les calculs ci-dessus :

$$u_n - e^5 = e^5 \left(\exp\left(-\frac{47}{6n} + o_{n \to +\infty}\left(\frac{1}{n}\right)\right) - 1 \right) \underset{n \to +\infty}{\sim} -\frac{47e^5}{6n}$$

(on utilise la formule : $e^u - 1 \sim u$, en ne retenant que le terme prépondérant).

Corrigé 32. On a:

 \leftarrow page 4

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et:} \quad x\cos(x) = x - \frac{1}{2}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$-\ln\left(\frac{1}{n}+1\right) - \frac{\cos\left(\frac{1}{n}\right)}{n} = -\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) - \left(\frac{1}{n} - \frac{1}{2n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= -\frac{2}{n} + \frac{1}{2n^2} + \frac{1}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{(x+1)^{\frac{3}{2}}}$ en 0 à l'ordre 3 :

$$\frac{1}{(x+1)^{\frac{3}{2}}} = 1 - \frac{3}{2}x + \frac{15}{8}x^2 - \frac{35}{16}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} &\frac{1}{\left(-\frac{\cos\left(\frac{1}{n}\right)}{n}-\ln\left(\frac{1}{n}+1\right)+1\right)^{\frac{3}{2}}} \\ &=1-\frac{3}{2}\left(-\frac{2}{n}+\frac{1}{2\,n^{2}}+\frac{1}{6\,n^{3}}+\underset{n\to+\infty}{o}\left(\frac{1}{n^{3}}\right)\right)+\frac{15}{8}\left(-\frac{2}{n}+\frac{1}{2\,n^{2}}+\underset{n\to+\infty}{o}\left(\frac{1}{n^{2}}\right)\right)^{2}-\frac{35}{16}\left(-\frac{2}{n}+\underset{n\to+\infty}{o}\left(\frac{1}{n^{1}}\right)\right)^{3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^{3}}\right) \\ &=1-\frac{3}{2}\left(-\frac{2}{n}+\frac{1}{2\,n^{2}}+\frac{1}{6\,n^{3}}+\underset{n\to+\infty}{o}\left(\frac{1}{n^{3}}\right)\right)+\frac{15}{8}\left(\frac{4}{n^{2}}-\frac{2}{n^{3}}+\underset{n\to+\infty}{o}\left(\frac{1}{n^{3}}\right)\right)-\frac{35}{16}\left(-\frac{8}{n^{3}}+\underset{n\to+\infty}{o}\left(\frac{1}{n^{3}}\right)\right)+\underset{n\to+\infty}{o}\left(\frac{1}{n^{3}}\right) \\ &=1+\frac{3}{n}+\frac{27}{4\,n^{2}}+\frac{27}{2\,n^{3}}+\underset{n\to+\infty}{o}\left(\frac{1}{n^{3}}\right), \end{split}$$

d'où le résultat.

Corrigé 33. Composons les développements limités en 0 de $x \mapsto \frac{\arctan(x)}{x}$, $x \mapsto e^x$ et $x \mapsto \ln(x+1)$ avec $\frac{1}{n}$ (quand $n \to +\infty$, on a $\frac{1}{n} \to 0$). Notons que si l'on fait nos développements à un ordre strictement inférieur à 2, alors tous les termes se compensent et il ne reste plus que le terme d'erreur (faire *vraiment* le calcul pour s'en convaincre!). Nous le faisons donc à l'ordre 2 dans ce qui suit.

$$\arctan\left(x\right) = x - \frac{1}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \quad e^x = 1 + x + \frac{1}{2}\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right) \quad \text{ et : } \quad \ln\left(x+1\right) = x - \frac{1}{2}\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right).$$

Par conséquent :

$$\begin{split} &-\frac{1}{n} + \frac{1}{6} \, n \arctan\left(\frac{3}{n}\right) - \frac{1}{2} \, e^{\frac{2}{n}} + \frac{2}{3} \, \ln\left(\frac{3}{n} + 1\right) \\ &= -\frac{1}{n} + \frac{1}{2} \left(1 - \frac{3}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) - \frac{1}{2} \left(1 + \frac{2}{n} + \frac{2}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) + \frac{2}{3} \left(\frac{3}{n} - \frac{9}{2 \, n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) \\ &= -\frac{11}{2 \, n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right) \mathop{\sim}_{n \to +\infty} - \frac{11}{2 \, n^2}, \end{split}$$

d'où le résultat.

Corrigé 34. Pour tout n au voisinage de $+\infty$, on a:

$$\begin{split} \sqrt[3]{n^{18}+4\,n^9} - \sqrt{n^{12}+n^8+22\,n^4} &= \sqrt[3]{n^{18}\cdot\left(\frac{n^{18}+4\,n^9}{n^{18}}\right)} - \sqrt{n^{12}\cdot\left(\frac{n^{12}+n^8+22\,n^4}{n^{12}}\right)} \\ &= n^6\times\sqrt[3]{1+\frac{4}{n^9}} - n^6\times\sqrt{1+\frac{1}{n^4}+\frac{22}{n^8}} \\ &= n^6\left[\left(1+\frac{1}{3}\left(\frac{4}{n^9}\right) + \mathop{o}_{n\to+\infty}\left(\frac{1}{n^9}\right)\right) \right. \\ &\left. - \left(1+\frac{1}{2}\left(\frac{1}{n^4}+\frac{22}{n^8}\right) + \mathop{o}_{n\to+\infty}\left(\frac{1}{n^4}\right)\right)\right] \\ &= n^6\left[-\frac{1}{2\,n^4} + \mathop{o}_{n\to+\infty}\left(\frac{1}{n^4}\right)\right] = -\frac{1}{2}\,n^2 + \mathop{o}_{n\to+\infty}\left(n^2\right) \mathop{\sim}_{n\to+\infty} -\frac{1}{2}\,n^2. \end{split}$$

Par conséquent : $\lim_{n\to+\infty} \left(\sqrt[3]{n^{18}+4\,n^9} - \sqrt{n^{12}+n^8+22\,n^4}\right) = -\infty.$

Corrigé 35. On écrit:

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{\pi}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2} \right) \right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$).

 \leftarrow page 4

On en déduit :

$$\begin{aligned} -\frac{4}{n} + \frac{11}{n+2} + \frac{5}{2(n-2)} &= -\frac{4}{n} + 11\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{5}{2}\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{19}{2n} - \frac{17}{n^2} + \frac{54}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{aligned}$$

Corrigé 36. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 4

$$\frac{x^4 + x^3 + x^2 - x}{x - 102} \underset{x \to +\infty}{\sim} \frac{x^4}{x} \underset{x \to +\infty}{\sim} x^3.$$

Attention à ne pas penser que $\sin\left(\frac{-x^2-x-3}{-x+3}\right) \underset{x\to +\infty}{\sim} \sin(x)$ sous prétexte que $\frac{-x^2-x-3}{-x+3} \underset{x\to +\infty}{\sim} x$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc:

$$f(x) \mathop{\sim}_{x \to +\infty} \sin \left(\frac{x^2 + x + 3}{x - 3} \right) \times \left(x^3 \right) \mathop{\sim}_{x \to +\infty} x^3 \sin \left(\frac{x^2 + x + 3}{x - 3} \right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-x^2 - x - 3}{-x + 3} \underset{x \to 0^+}{\sim} \frac{-3}{3} \underset{x \to 0^+}{\sim} -1 \underset{x \to 0}{\longrightarrow} -1, \quad \frac{x^4 + x^3 + x^2 - x}{x - 102} \underset{x \to 0}{\sim} \frac{-x}{-102} \underset{x \to 0}{\sim} \frac{1}{102} x.$$

Par composition de limites : $\lim_{x\to 0^+} \sin\left(\frac{-x^2-x-3}{-x+3}\right) = -\sin(1) \neq 0$, et donc :

$$\sin\left(\frac{-x^2-x-3}{-x+3}\right) \underset{x\to 0^+}{\sim} -\sin\left(1\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{1}{102} x \sin(1)$$
, et: $f(x) \underset{x \to +\infty}{\sim} x^3 \sin\left(\frac{x^2 + x + 3}{x - 3}\right)$.

Corrigé 37. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = constant constant of <math>constant constant constan

$$x^{5} \ln(x+1) \ll e^{x} \ln(x+1) \ll x^{2} e^{(2x)} \ln(x+1)^{2} \ll e^{(6x)}$$

et:

$$x^{2}e^{(-4x)} \ll xe^{(-3x)}\ln(x) \ll e^{(-2x)}\ln(x)^{2}$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-2x^{5}\ln(x+1) + x^{2}e^{(2x)}\ln(x+1)^{2} + e^{x}\ln(x+1) + 2e^{(6x)} \underset{x \to +\infty}{\sim} 2e^{(6x)}.$$

De même: $4x^2e^{(-4x)} + xe^{(-3x)}\ln(x) + 13e^{(-2x)}\ln(x)^2 \underset{x \to +\infty}{\sim} 13e^{(-2x)}\ln(x)^2$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{2 e^{(6 x)}}{13 e^{(-2 x)} \ln(x)^2} \underset{x \to +\infty}{\sim} \frac{2 e^{(8 x)}}{13 \ln(x)^2}.$$

Corrigé 38. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 $\leftarrow \text{page } 4$

$$\frac{9\,x^3+19\,x^2+6\,x+1}{-2\,x+353} \underset{x\to +\infty}{\sim} \frac{9\,x^3}{-2\,x} \underset{x\to +\infty}{\sim} -\frac{9}{2}\,x^2 \underset{x\to +\infty}{\longrightarrow} -\infty, \quad \frac{-x^3+6\,x^2+x-1}{x-1} \underset{x\to +\infty}{\sim} \frac{-x^3}{x} \underset{x\to +\infty}{\sim} -x^2.$$

Par composition de limites: $\lim_{x\to +\infty}\arctan\left(\frac{9\,x^3+19\,x^2+6\,x+1}{-2\,x+353}\right) = -\frac{1}{2}\,\pi \quad \neq \quad 0, \quad \text{et donc}:$ $\arctan\left(\frac{9\,x^3+19\,x^2+6\,x+1}{-2\,x+353}\right) \underset{x\to +\infty}{\sim} -\frac{1}{2}\,\pi. \text{ On a donc}:$

$$f(x) \underset{x \to +\infty}{\sim} -\frac{1}{2} \pi \times (-x^2) \underset{x \to +\infty}{\sim} \frac{1}{2} \pi x^2.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{9\,x^3 + 19\,x^2 + 6\,x + 1}{-2\,x + 353} \underset{x \to 0^+}{\sim} \frac{1}{353} \underset{x \to 0^+}{\sim} \frac{1}{353} \underset{x \to 0}{\longrightarrow} \frac{1}{353}, \quad \frac{-x^3 + 6\,x^2 + x - 1}{x - 1} \underset{x \to 0}{\sim} \frac{-1}{-1} \underset{x \to 0}{\sim} 1.$$

Par composition de limites : $\lim_{x\to 0^+} \arctan\left(\frac{9\,x^3+19\,x^2+6\,x+1}{-2\,x+353}\right) = \arctan\left(\frac{1}{353}\right) \neq 0$, et donc :

$$\arctan\left(\frac{9\,x^3+19\,x^2+6\,x+1}{-2\,x+353}\right) \underset{x\to 0^+}{\sim}\arctan\left(\frac{1}{353}\right).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \arctan\left(\frac{1}{353}\right), \text{ et: } f(x) \underset{x \to +\infty}{\sim} \frac{1}{2} \pi x^2.$$

Corrigé 39. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{2\,n} - \frac{2}{n+2} + \frac{1}{2\,(n-1)} &= -\frac{1}{2\,n} - 2\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{2}\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{2}{n} + \frac{9}{2\,n^2} - \frac{15}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 40. Au voisinage de 0, on a : $\cosh(x) = 1 + \frac{1}{2}x^2 + o_{x\to 0}(x^2)$, et : $\sinh(x) = x + o_{x\to 0}(x)$. On en déduit :

 \leftarrow page 4

 \leftarrow page 4

 \leftarrow page 4

$$\frac{\cosh\left(5\,x\right) - \cosh\left(3\,x\right)}{\sinh\left(x\right)} = \frac{\left(\frac{25}{2}\,x^2 + 1 + \mathop{o}_{x \to 0}\left(x^2\right)\right) - \left(\frac{9}{2}\,x^2 + 1 + \mathop{o}_{x \to 0}\left(x^2\right)\right)}{x + \mathop{o}_{x \to 0}\left(x\right)} = \frac{8\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right)}{x + \mathop{o}_{x \to 0}\left(x\right)} \underset{x \to 0}{\sim} \frac{8\,x^2}{x} = 8\,x.$$

Par conséquent: $\lim_{x\to 0^+} \frac{\cosh(5x) - \cosh(3x)}{\sinh(x)} = 0$

Corrigé 41. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sin(x) = x - \frac{1}{6}x^3 + o_{x\to 0}(x^3)$. On compose ce développement limité (où l'on remplace x par 2x) avec celui de $x\mapsto\tan(x)$, ce qui est licite puisque $3\sin(2x) \xrightarrow[x\to 0]{} 0$, et on obtient:

$$\tan (3 \sin (2 x)) = +\left(2 x - \frac{4}{3} x^3 + \underset{x \to 0}{o} (x^3)\right) + \frac{1}{3} \left(2 x + \underset{x \to 0}{o} (x)\right)^3 + \underset{x \to 0}{o} (x^3)$$
$$= 6 x + 68 x^3 + \underset{x \to 0}{o} (x^3).$$

On en tire d'une part : $\tan(3\sin(2x)) \sim 6x$ (utile pour la suite, mais insuffisant pour conclure puisqu'on ne somme pas les équivalents!), et d'autre part :

$$-\frac{1}{6x} + \frac{1}{\tan(3\sin(2x))} = \frac{6x - \left(6x + 68x^3 + o_{x\to 0}(x^3)\right)}{6x\tan(3\sin(2x))} = \frac{-68x^3 + o_{x\to 0}(x^3)}{6x\tan(3\sin(2x))} \sim \frac{-68x^3}{36x^2} = -\frac{17}{9}x.$$

On en déduit : $\lim_{x\to 0^+} \left(-\frac{1}{6x} + \frac{1}{\tan(3\sin(2x))} \right) = 0.$

Corrigé 42. Commençons par la deuxième fraction. On a $\sinh{(3\,x)}+1 \underset{x\to 0}{\longrightarrow} 1$ et $\arctan{(x)}+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln{(\sinh{(3\,x)}+1)} \underset{x\to 0}{\sim} \sinh{(3\,x)}$, et : $\ln{(\arctan{(x)}+1)} \underset{x\to 0}{\sim} \arctan{(x)}$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sinh{(u)} \underset{u\to 0}{\sim} u$ et $\arctan{(u)} \underset{u\to 0}{\sim} u$, où l'on prend $u=3\,x$ dans le premier développement limité, impliquent :

$$\frac{\ln\left(\sinh\left(3\,x\right)+1\right)}{\ln\left(\arctan\left(x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\sinh\left(3\,x\right)}{\arctan\left(x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{x} \underset{x\to 0}{\sim} 3.$$

Passons à la première fraction. On a : $\sinh(x) = x + o(x)$, et : $\cos(x) = 1 - \frac{1}{2}x^2 + o(x^2)$. Par conséquent :

$$\frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(-\cos\left(4\,x\right)+1\right)} = \frac{\ln(2\,x+\mathop{o}_{x\to 0}(x)}{\ln(8\,x^2+\mathop{o}_{x\to 0}(x^2))} = \frac{\ln((2\,x)(1+\mathop{o}_{x\to 0}(1)))}{\ln((8\,x^2)(1+\mathop{o}_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+\mathop{o}_{x\to 0}(1)\right)}{\ln(8)+2\ln\left(x\right)+\ln\left(1+\mathop{o}_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times 3 = \frac{3}{2},$$

et en outre: $\lim_{x\to 0^+} f(x) = \frac{3}{2}$.

Corrigé 43. Commençons par la deuxième fraction. On a $\ln(3\,x+1)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\arctan(x)+1 \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(3\,x+1)+1) \underset{x\to 0}{\sim} \ln(3\,x+1)$, et : $\ln(\arctan(x)+1) \underset{x\to 0}{\sim} \arctan(x)$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\arctan(u) \underset{u\to 0}{\sim} u$, où l'on prend $u=3\,x$ dans le premier développement limité, impliquent :

$$\frac{\ln\left(\ln\left(3\,x+1\right)+1\right)}{\ln\left(\arctan\left(x\right)+1\right)} \underset{x\to 0}{\sim} \frac{\ln\left(3\,x+1\right)}{\arctan\left(x\right)} \underset{x\to 0}{\sim} \frac{3\,x}{x} \underset{x\to 0}{\sim} 3.$$

Passons à la première fraction. On a: $\sinh(x) = x + o(x)$, et: $\sin(x) = x + o(x)$. Par conséquent:

$$\frac{\ln\left(\sinh\left(3\,x\right)\right)}{\ln\left(\sin\left(4\,x\right)\right)} = \frac{\ln(3\,x + \mathop{o}\limits_{x \to 0}(x)}{\ln(4\,x + \mathop{o}\limits_{x \to 0}(x))} = \frac{\ln((3\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))}{\ln((4\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))} = \frac{\ln(3) + \ln\left(x\right) + \ln(1 + \mathop{o}\limits_{x \to 0}(1)\right)}{\ln(4) + \ln\left(x\right) + \ln(1 + \mathop{o}\limits_{x \to 0}(1)\right)} \underset{x \to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times 3 = 3,$$

et en outre: $\lim_{x\to 0^+} f(x) = 3$.

Corrigé 44. Au voisinage de 0, on a: $\sin(x) = x + \underset{x \to 0}{o}(x)$, et: $\arctan(x) = x + \underset{x \to 0}{o}(x)$. On en déduit:

$$\frac{\sin{(6\,x)} - \sin{(3\,x)}}{\arctan{(3\,x)}} = \frac{\left(6\,x + \mathop{o}_{x \to 0}(x)\right) - \left(3\,x + \mathop{o}_{x \to 0}(x)\right)}{3\,x + \mathop{o}_{x \to 0}(x)} = \frac{3\,x + \mathop{o}_{x \to 0}(x)}{3\,x + \mathop{o}_{x \to 0}(x)} \underset{x \to 0}{\sim} \frac{3\,x}{3\,x} = 1.$$

Par conséquent : $\lim_{x\to 0^+} \frac{\sin(6x) - \sin(3x)}{\arctan(3x)} = 1.$

Corrigé 45. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = 0 v(x) = 0 o v(x). Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$\ln(x+1)^3 \ll x^3 \ln(x+1) \ll xe^{(2x)} \ln(x+1)^2 \ll x^3 e^{(3x)}$$

 \leftarrow page 4

et:

$$xe^{(-5x)} \ll e^{(-x)} \ln(x)^5 \ll x \ln(x)^3$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte »: c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$-x^{3}e^{(3x)} - x^{3}\ln(x+1) + xe^{(2x)}\ln(x+1)^{2} - 3\ln(x+1)^{3} \underset{x \to +\infty}{\sim} -x^{3}e^{(3x)}.$$

De même: $-e^{(-x)} \ln (x)^5 + x \ln (x)^3 + 11 x e^{(-5x)} \sim_{x \to +\infty} x \ln (x)^3$. On conclut:

$$g(x) \underset{x \to +\infty}{\sim} \frac{-x^3 e^{(3 x)}}{x \ln(x)^3} \underset{x \to +\infty}{\sim} -\frac{x^2 e^{(3 x)}}{\ln(x)^3}.$$

Corrigé 46. Au voisinage de 0, on a : $\cosh(x) = 1 + \frac{1}{2}x^2 + o(x^2)$, et : $e^x = 1 + x + o(x)$. On en déduit :

 \leftarrow page 5

$$\frac{\cosh\left(9\,x\right) - \cosh\left(2\,x\right)}{e^{(5\,x)} - 1} = \frac{\left(\frac{81}{2}\,x^2 + 1 + \mathop{o}\limits_{x \to 0}\left(x^2\right)\right) - \left(2\,x^2 + 1 + \mathop{o}\limits_{x \to 0}\left(x^2\right)\right)}{5\,x + \mathop{o}\limits_{x \to 0}\left(x\right)} = \frac{\frac{77}{2}\,x^2 + \mathop{o}\limits_{x \to 0}\left(x^2\right)}{5\,x + \mathop{o}\limits_{x \to 0}\left(x\right)} \underset{x \to 0}{\sim} \frac{\frac{77}{2}\,x^2}{5\,x} = \frac{77}{10}\,x.$$

Par conséquent: $\lim_{x\to 0^+} \frac{\cosh(9x) - \cosh(2x)}{e^{(5x)} - 1} = 0$

Corrigé 47. Commençons par la deuxième fraction. On a $\sinh(x) + 1 \xrightarrow[x \to 0]{} 1$ et $\cosh(2x) \xrightarrow[x \to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a: $\ln(\sinh(x) + 1) \underset{x \to 0}{\sim} \sinh(x)$, et: $\ln(\cosh(2x)) \underset{x \to 0}{\sim} \cosh(2x) - 1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sinh(u) \underset{u \to 0}{\sim} u$ et $\cosh(u) - 1 \underset{u \to 0}{\sim} \frac{1}{2} u^2$, où l'on prend u = 2x dans le second développement limité, impliquent:

$$\frac{\ln\left(\sinh\left(x\right)+1\right)}{\ln\left(\cosh\left(2\,x\right)\right)} \underset{x\to0}{\sim} \frac{\sinh\left(x\right)}{\cosh\left(2\,x\right)-1} \underset{x\to0}{\sim} \frac{x}{2\,x^2} \underset{x\to0}{\sim} \frac{1}{2\,x}$$

Passons à la première fraction. On a : $\ln(x+1) = x + o_{x\to 0}(x)$, et : $e^x = 1 + x + o_{x\to 0}(x)$. Par conséquent :

$$\frac{\ln\left(\ln\left(3\,x\,+\,1\right)\right)}{\ln\left(e^{(3\,x)}\,-\,1\right)} = \frac{\ln(3\,x\,+\,o\atop_{x\,\to\,0}(x)}{\ln(3\,x\,+\,o\atop_{x\,\to\,0}(x))} = \frac{\ln((3\,x)(1\,+\,o\atop_{x\,\to\,0}(1)))}{\ln((3\,x)(1\,+\,o\atop_{x\,\to\,0}(1)))} = \frac{\ln(3)\,+\,\ln\left(x\right)\,+\,\ln\left(1\,+\,o\atop_{x\,\to\,0}(1)\right)}{\ln(3)\,+\,\ln\left(x\right)\,+\,\ln\left(1\,+\,o\atop_{x\,\to\,0}(1)\right)} \underset{\sim}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant ln(x) (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{1}{2x} = \frac{1}{2x},$$

et en outre: $\lim_{x\to 0^+} f(x) = +\infty$.

Corrigé 48. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} (x^{\beta})$. De cela, on déduit facilement:

 \leftarrow page 5

$$\frac{7\,x^2}{x^3+x^2+3\,x-3} \underset{x \to +\infty}{\sim} \frac{7\,x^2}{x^3} \underset{x \to +\infty}{\sim} \frac{7}{x} \underset{x \to +\infty}{\longrightarrow} 0, \quad \frac{3\,x^4+14\,x^3+x^2+x-1}{2\,x^2-9\,x+2} \underset{x \to +\infty}{\sim} \frac{3\,x^4}{2\,x^2} \underset{x \to +\infty}{\sim} \frac{3}{2}\,x^2.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent
$$\sin{(u)} \sim u$$
:
$$\sin{\left(\frac{7\,x^2}{x^3+x^2+3\,x-3}\right)} \sim \frac{7\,x^2}{x^3+x^2+3\,x-3} \sim \frac{7}{x^3+x^2+3\,x-3} \sim$$

$$f(x) \underset{x \to +\infty}{\sim} \frac{7}{x} \times \left(\frac{3}{2}x^2\right) \underset{x \to +\infty}{\sim} \frac{21}{2}x.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve

$$\frac{7\,x^2}{x^3+x^2+3\,x-3} \mathop{\sim}_{x\to 0^+} \frac{7\,x^2}{-3} \mathop{\sim}_{x\to 0^+} -\frac{7}{3}\,x^2 \mathop{\longrightarrow}_{x\to 0} 0, \quad \frac{3\,x^4+14\,x^3+x^2+x-1}{2\,x^2-9\,x+2} \mathop{\sim}_{x\to 0} \frac{-1}{2} \mathop{\sim}_{x\to 0} -\frac{1}{2}.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\sin(u) \sim u$:

$$\sin\left(\frac{7\,x^2}{x^3+x^2+3\,x-3}\right) \mathop{\sim}_{x\to 0^+} \frac{7\,x^2}{x^3+x^2+3\,x-3} \mathop{\sim}_{x\to 0^+} -\frac{7}{3}\,x^2.$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \frac{7}{6} x^2$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{21}{2} x$.

Corrigé 49. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 \leftarrow page 5

$$\frac{-3\,x-3}{x^4+x^3-x^2+3\,x+1} \underset{x \to +\infty}{\sim} \frac{-3\,x}{x^4} \underset{x \to +\infty}{\sim} -\frac{3}{x^3} \underset{x \to +\infty}{\longrightarrow} 0, \quad \frac{-3\,x^4+3\,x^3+3\,x^2-1}{x^4+x^3+x^2} \underset{x \to +\infty}{\sim} \frac{-3\,x^4}{x^4} \underset{x \to +\infty}{\sim} -3.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\operatorname{arctan}(u) \sim u$:

$$\arctan\left(\frac{-3\,x-3}{x^4+x^3-x^2+3\,x+1}\right) \underset{x\to +\infty}{\sim} \frac{-3\,x-3}{x^4+x^3-x^2+3\,x+1} \underset{x\to +\infty}{\sim} -\frac{3}{x^3}. \text{ On a donc:}$$

$$f(x) \underset{x \to +\infty}{\sim} -\frac{3}{x^3} \times (-3) \underset{x \to +\infty}{\sim} \frac{9}{x^3}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-3x-3}{x^4+x^3-x^2+3x+1} \underset{x\to 0^+}{\sim} \frac{-3}{1} \underset{x\to 0^+}{\sim} -3 \underset{x\to 0}{\longrightarrow} -3, \quad \frac{-3x^4+3x^3+3x^2-1}{x^4+x^3+x^2} \underset{x\to 0}{\sim} \frac{-1}{x^2} \underset{x\to 0}{\sim} -\frac{1}{x^2}.$$

Par composition de limites: $\lim_{x\to 0^+} \arctan\left(\frac{-3x-3}{x^4+x^3-x^2+3x+1}\right) = -\arctan(3) \neq 0$, et donc:

$$\arctan\left(\frac{-3x-3}{x^4+x^3-x^2+3x+1}\right) \underset{x\to 0^+}{\sim} -\arctan(3).$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} \frac{\arctan(3)}{x^2}$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{9}{x^3}$.

Corrigé 50. Pour tout n au voisinage de $+\infty$, on a:

 \leftarrow page 5

$$\begin{split} \sqrt{n^6 - n^4 + n^2 - 1} - \sqrt[3]{n^9 - n^6 - 21 \, n^3 - 1} &= \sqrt{n^6 \cdot \left(\frac{n^6 - n^4 + n^2 - 1}{n^6}\right)} - \sqrt[3]{n^9 \cdot \left(\frac{n^9 - n^6 - 21 \, n^3 - 1}{n^9}\right)} \\ &= n^3 \times \sqrt{1 - \frac{1}{n^2} + \frac{1}{n^4} - \frac{1}{n^6}} - n^3 \times \sqrt[3]{1 - \frac{1}{n^3} - \frac{21}{n^6} - \frac{1}{n^9}} \\ &= n^3 \left[\left(1 + \frac{1}{2} \left(-\frac{1}{n^2} + \frac{1}{n^4} - \frac{1}{n^6} \right) + o \left(\frac{1}{n^2}\right) \right) - \left(1 + \frac{1}{3} \left(-\frac{1}{n^3} - \frac{21}{n^6} - \frac{1}{n^9} \right) + o \left(\frac{1}{n^3}\right) \right) \right] \\ &= n^3 \left[-\frac{1}{2 \, n^2} + o \left(\frac{1}{n^2}\right) \right] = -\frac{1}{2} \, n + o \left(n\right) \underset{n \to +\infty}{\sim} -\frac{1}{2} \, n. \end{split}$$

Par conséquent : $\lim_{n \to +\infty} \left(\sqrt{n^6 - n^4 + n^2 - 1} - \sqrt[3]{n^9 - n^6 - 21 n^3 - 1} \right) = -\infty$.

Corrigé 51. Commençons par la deuxième fraction. On a $\arctan(x) + 1 \xrightarrow[x \to 0]{} 1$ et $\cosh(x) \xrightarrow[x \to 0]{} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u \to 1}{\sim} u - 1$, on a : $\ln(\arctan(x) + 1) \underset{x \to 0}{\sim} \arctan(x)$, et : $\ln(\cosh(x)) \underset{x \to 0}{\sim} \cosh(x) - 1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\arctan(u) \underset{u \to 0}{\sim} u$ et $\cosh(u) - 1 \underset{u \to 0}{\sim} \frac{1}{2} u^2$, impliquent :

$$\frac{\ln\left(\arctan\left(x\right)+1\right)}{\ln\left(\cosh\left(x\right)\right)} \mathop{\sim}\limits_{x\to 0} \frac{\arctan\left(x\right)}{\cosh\left(x\right)-1} \mathop{\sim}\limits_{x\to 0} \frac{x}{\frac{1}{2}\,x^2} \mathop{\sim}\limits_{x\to 0} \frac{2}{x}.$$

Passons à la première fraction. On a: $\ln(x+1) = x + o_{x\to 0}(x)$, et: $\cos(x) = 1 - \frac{1}{2}x^2 + o_{x\to 0}(x^2)$. Par conséquent:

$$\frac{\ln\left(\ln\left(2\,x+1\right)\right)}{\ln\left(-\cos\left(3\,x\right)+1\right)} = \frac{\ln(2\,x+\mathop{o}_{x\to 0}(x)}{\ln(\frac{9}{2}\,x^2+\mathop{o}_{x\to 0}(x^2))} = \frac{\ln((2\,x)(1+\mathop{o}_{x\to 0}(1)))}{\ln((\frac{9}{2}\,x^2)(1+\mathop{o}_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+\mathop{o}_{x\to 0}(1)\right)}{\ln(\frac{9}{2})+2\ln\left(x\right)+\ln\left(1+\mathop{o}_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{2\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{2 \ln(x)} \times \frac{2}{x} = \frac{1}{x},$$

et en outre: $\lim_{x\to 0^+} f(x) = +\infty$.

Corrigé 52. On a:

 $\cos(x) = 1 - \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2)$, et: $\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3)$.

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\begin{aligned} -4\frac{\cos\left(\frac{1}{n}\right)}{n} - 11\arctan\left(\frac{1}{n}\right) &= -4\left(\frac{1}{n} - \frac{1}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 11\left(\frac{1}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{15}{n} + \frac{17}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{aligned}$$

En combinant ce résultat avec le développement limité de $x \mapsto \ln(x+1)$ en 0 à l'ordre 3:

$$\ln{(x+1)} = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 + \mathop{o}_{x \to 0} \left(x^3 \right),$$

on a alors:

$$\begin{split} & \ln \left(-\frac{4 \, \cos \left(\frac{1}{n} \right)}{n} - 11 \, \arctan \left(\frac{1}{n} \right) + 1 \right) \\ & = \left(-\frac{15}{n} + \frac{17}{3 \, n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(-\frac{15}{n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right)^2 + \frac{1}{3} \left(-\frac{15}{n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^1} \right) \right)^3 + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \\ & = \left(-\frac{15}{n} + \frac{17}{3 \, n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(\frac{225}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) + \frac{1}{3} \left(-\frac{3375}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \\ & = -\frac{15}{n} - \frac{225}{2 \, n^2} - \frac{3358}{3 \, n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right), \end{split}$$

d'où le résultat.

Corrigé 53. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sin(x) = x - \frac{1}{6} x^3 + o_{x\to 0} (x^4)$. On compose ce développement limité (où l'on remplace x par $\frac{5}{2}x$) avec celui de $x\mapsto\cos(x)$, ce qui est licite puisque $\frac{1}{5}\sin\left(\frac{5}{2}x\right)\xrightarrow[x\to 0]{}0$, et on obtient:

 $\cos\left(\frac{1}{5}\sin\left(\frac{5}{2}x\right)\right) = 1 - \frac{1}{2}\left(-\frac{125}{48}x^3 + \frac{5}{2}x + \underset{x\to 0}{o}\left(x^3\right)\right)^2 + \frac{1}{24}\left(\frac{5}{2}x + \underset{x\to 0}{o}(x)\right)^4 + \underset{x\to 0}{o}\left(x^4\right)$ $= 1 - \frac{1}{8}x^2 + \frac{101}{384}x^4 + \underset{x\to 0}{o}\left(x^4\right).$

On en tire d'une part : $\cos\left(\frac{1}{5}\sin\left(\frac{5}{2}x\right)\right) - 1 \underset{x \to 0^+}{\sim} - \frac{1}{8}x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$\frac{1}{\cos\left(\frac{1}{5}\sin\left(\frac{5}{2}x\right)\right) - 1} + \frac{8}{x^2} = \frac{x^2 + 8\left(-\frac{1}{8}x^2 + \frac{101}{384}x^4 + \frac{o}{x \to 0}\left(x^4\right)\right)}{x^2\left(\cos\left(\frac{1}{5}\sin\left(\frac{5}{2}x\right)\right) - 1\right)} = \frac{\frac{101}{48}x^4 + \frac{o}{x \to 0}\left(x^4\right)}{x^2\left(\cos\left(\frac{1}{5}\sin\left(\frac{5}{2}x\right)\right) - 1\right)} \sim \frac{\frac{101}{384}x^4}{-\frac{1}{8}x^4} = -\frac{101}{6}.$$
On en déduit:
$$\lim_{x \to 0^+} \left(\frac{1}{\cos\left(\frac{1}{5}\sin\left(\frac{5}{2}x\right)\right) - 1} + \frac{8}{x^2}\right) = -\frac{101}{6}.$$

 \leftarrow page 5

Corrigé 54. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 $\leftarrow \text{page } 6$

$$\frac{-2\,x}{3\,x^3+x^2-x-1} \underset{x\to +\infty}{\sim} \frac{-2\,x}{3\,x^3} \underset{x\to +\infty}{\sim} -\frac{2}{3\,x^2} \underset{x\to +\infty}{\longrightarrow} 0, \quad \frac{3\,x^2-x+3}{4\,x^4+x^2-2\,x-32} \underset{x\to +\infty}{\sim} \frac{3\,x^2}{4\,x^4} \underset{x\to +\infty}{\sim} \frac{3}{4\,x^2}.$$

Par composition de limites: $\lim_{x\to +\infty}\cos\left(\frac{-2\,x}{3\,x^3+x^2-x-1}\right)=\cos(0)=1\neq 0$, et donc $\cos\left(\frac{-2\,x}{3\,x^3+x^2-x-1}\right) \sim 1$. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} 1 \times \left(\frac{3}{4x^2}\right) \underset{x \to +\infty}{\sim} \frac{3}{4x^2}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-2x}{3x^3 + x^2 - x - 1} \mathop{\sim}_{x \to 0^+} \frac{-2x}{-1} \mathop{\sim}_{x \to 0^+} 2x \mathop{\longrightarrow}_{x \to 0} 0, \quad \frac{3x^2 - x + 3}{4x^4 + x^2 - 2x - 32} \mathop{\sim}_{x \to 0} \frac{3}{-32} \mathop{\sim}_{x \to 0} -\frac{3}{32}.$$

Par composition de limites : $\lim_{x\to 0^+}\cos\left(\frac{-2\,x}{3\,x^3+x^2-x-1}\right)=\cos(0)=1\neq 0$, et donc :

$$\cos\left(\frac{-2x}{3x^3 + x^2 - x - 1}\right) \underset{x \to 0^+}{\sim} 1.$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{3}{32}$$
, et: $f(x) \underset{x \to +\infty}{\sim} \frac{3}{4 x^2}$.

Corrigé 55. Au voisinage de 0, on a: $\sin(x) = x + o_{x\to 0}(x)$, et: $e^x = 1 + x + o_{x\to 0}(x)$. On en déduit:

 \leftarrow page 6

$$\frac{\sin\left(6\,x\right) - \sin\left(4\,x\right)}{e^{(6\,x)} - 1} = \frac{\left(6\,x + \mathop{o}_{x \to 0}(x)\right) - \left(4\,x + \mathop{o}_{x \to 0}(x)\right)}{6\,x + \mathop{o}_{x \to 0}(x)} = \frac{2\,x + \mathop{o}_{x \to 0}(x)}{6\,x + \mathop{o}_{x \to 0}(x)} \underset{x \to 0}{\sim} \frac{2\,x}{6\,x} = \frac{1}{3}.$$

 $\text{Par cons\'equent} : \lim_{x \rightarrow 0^+} \frac{\sin\left(6\,x\right) - \sin\left(4\,x\right)}{e^{(6\,x)} - 1} = \frac{1}{3}.$

Corrigé 56. Pour tout n au voisinage de $+\infty$, on a:

 \leftarrow page 6

$$\sqrt[3]{n^3 - 1} - \sqrt[3]{n^3 + n^2 + 3} = \sqrt[3]{n^3 \cdot \left(\frac{n^3 - 1}{n^3}\right)} - \sqrt[3]{n^3 \cdot \left(\frac{n^3 + n^2 + 3}{n^3}\right)}$$

$$= n \times \sqrt[3]{1 - \frac{1}{n^3}} - n \times \sqrt[3]{1 + \frac{1}{n} + \frac{3}{n^3}}$$

$$= n \left[\left(1 + \frac{1}{3}\left(-\frac{1}{n^3}\right) + o \left(\frac{1}{n^3}\right)\right) - \left(1 + \frac{1}{3}\left(\frac{1}{n} + \frac{3}{n^3}\right) + o \left(\frac{1}{n^3}\right)\right) \right]$$

$$= n \left[-\frac{1}{3n} + o \left(\frac{1}{n}\right) \right] = -\frac{1}{3} + o \left(1\right) \underset{n \to +\infty}{\sim} -\frac{1}{3}.$$

Par conséquent: $\lim_{n \to +\infty} \left(\sqrt[3]{n^3 - 1} - \sqrt[3]{n^3 + n^2 + 3} \right) = -\frac{1}{3}.$

Corrigé 57. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

 $\frac{-15x^4 - x^3 - x + 1}{-7x^4 - x^3 + x^2} \underset{x \to +\infty}{\sim} \frac{-15x^4}{-7x^4} \underset{x \to +\infty}{\sim} \frac{15}{7} \underset{x \to +\infty}{\longrightarrow} \frac{15}{7}, \quad \frac{-2x - 1}{x + 1} \underset{x \to +\infty}{\sim} \frac{-2x}{x} \underset{x \to +\infty}{\sim} -2x$

 $\leftarrow \text{page } 6$

Par composition de limites: $\lim_{x\to +\infty} \sin\left(\frac{-15\,x^4-x^3-x+1}{-7\,x^4-x^3+x^2}\right) = \sin\left(\frac{15}{7}\right) \neq 0, \text{ et donc:}$ $\sin\left(\frac{-15\,x^4-x^3-x+1}{-7\,x^4-x^3+x^2}\right) \underset{x\to +\infty}{\sim} \sin\left(\frac{15}{7}\right). \text{ On a donc:}$

$$f(x) \underset{x \to +\infty}{\sim} \sin\left(\frac{15}{7}\right) \times (-2) \underset{x \to +\infty}{\sim} -2 \sin\left(\frac{15}{7}\right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{-2x-1}{x+1} \underset{x \to 0}{\sim} \frac{-1}{1} \underset{x \to 0}{\sim} -1.$$

ATTENTION à ne pas penser que $\sin\left(\frac{-15\,x^4-x^3-x+1}{-7\,x^4-x^3+x^2}\right) \underset{x\to 0^+}{\sim} \sin\left(\frac{1}{x^2}\right)$ sous prétexte que $\frac{-15\,x^4-x^3-x+1}{-7\,x^4-x^3+x^2} \underset{x\to 0^+}{\sim} \frac{1}{x^2}$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité.

On conclut:

$$f(x) \mathop{\sim}_{x \to 0^+} - \sin \left(\frac{15 \, x^4 + x^3 + x - 1}{7 \, x^4 + x^3 - x^2} \right), \ \text{et} \colon f(x) \mathop{\sim}_{x \to +\infty} - 2 \, \sin \left(\frac{15}{7} \right).$$

Corrigé 58. Pour tout n au voisinage de $+\infty$, on a:

$$\sqrt[3]{n^3 + 1} - \sqrt[3]{n^3 + n^2 - 13n - 1} = \sqrt[3]{n^3 \cdot \left(\frac{n^3 + 1}{n^3}\right)} - \sqrt[3]{n^3 \cdot \left(\frac{n^3 + n^2 - 13n - 1}{n^3}\right)}$$

$$= n \times \sqrt[3]{1 + \frac{1}{n^3}} - n \times \sqrt[3]{1 + \frac{1}{n} - \frac{13}{n^2} - \frac{1}{n^3}}$$

$$= n \left[\left(1 + \frac{1}{3}\left(\frac{1}{n^3}\right) + o \left(\frac{1}{n^3}\right)\right) - \left(1 + \frac{1}{3}\left(\frac{1}{n} - \frac{13}{n^2} - \frac{1}{n^3}\right) + o \left(\frac{1}{n}\right)\right) \right]$$

$$= n \left[-\frac{1}{3n} + o \left(\frac{1}{n}\right) \right] = -\frac{1}{3} + o \left(1\right) \underset{n \to +\infty}{\sim} -\frac{1}{3}.$$

 $\text{Par cons\'equent}: \lim_{n \to +\infty} \left(\sqrt[3]{n^3+1} - \sqrt[3]{n^3+n^2-13\,n-1}\right) = -\frac{1}{3}.$

Corrigé 59. Pour tout n au voisinage de $+\infty$, on a:

$$\begin{split} \sqrt[3]{n^{18} + n^9 - 3} - \sqrt{n^{12} - n^8 - n^4 - 7} &= \sqrt[3]{n^{18} \cdot \left(\frac{n^{18} + n^9 - 3}{n^{18}}\right)} - \sqrt{n^{12} \cdot \left(\frac{n^{12} - n^8 - n^4 - 7}{n^{12}}\right)} \\ &= n^6 \times \sqrt[3]{1 + \frac{1}{n^9} - \frac{3}{n^{18}}} - n^6 \times \sqrt{1 - \frac{1}{n^4} - \frac{1}{n^8} - \frac{7}{n^{12}}} \\ &= n^6 \left[\left(1 + \frac{1}{3} \left(\frac{1}{n^9} - \frac{3}{n^{18}}\right) + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^9}\right)\right) \right. \\ &- \left(1 + \frac{1}{2} \left(-\frac{1}{n^4} - \frac{1}{n^8} - \frac{7}{n^{12}}\right) + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^4}\right)\right) \right] \\ &= n^6 \left[\frac{1}{2 \cdot n^4} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^4}\right) \right] = \frac{1}{2} \cdot n^2 + \mathop{o}_{n \to +\infty} \left(n^2\right) \underset{n \to +\infty}{\sim} \frac{1}{2} \cdot n^2. \end{split}$$

Par conséquent: $\lim_{n \to +\infty} \left(\sqrt[3]{n^{18} + n^9 - 3} - \sqrt{n^{12} - n^8 - n^4 - 7} \right) = +\infty.$

Corrigé 60. Au voisinage de 0, on a : $\cos(x) = 1 - \frac{1}{2}x^2 + o_{x\to 0}(x^2)$, et : $\tan(x) = x + o_{x\to 0}(x)$. On en déduit :

 \leftarrow page 6

 \leftarrow page 6

$$\frac{\cos\left(6\,x\right) - \cos\left(3\,x\right)}{\tan\left(6\,x\right)} = \frac{\left(-18\,x^2 + 1 + \mathop{o}_{x \to 0}\left(x^2\right)\right) - \left(-\frac{9}{2}\,x^2 + 1 + \mathop{o}_{x \to 0}\left(x^2\right)\right)}{6\,x + \mathop{o}_{x \to 0}\left(x\right)} = \frac{-\frac{27}{2}\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right)}{6\,x + \mathop{o}_{x \to 0}\left(x\right)} \sim \frac{-\frac{27}{2}\,x^2}{6\,x} = -\frac{9}{4}\,x.$$

Par conséquent : $\lim_{x\to 0^+} \frac{\cos\left(6\,x\right) - \cos\left(3\,x\right)}{\tan\left(6\,x\right)} = 0.$

Corrigé 61. Composons les développements limités en 0 de $x \mapsto \arctan(x)$, $x \mapsto e^x$ et $x \mapsto \cos(x)$ avec $\frac{1}{n}$ (quand $n \to +\infty$, on a $\frac{1}{n} \to 0$). Notons que si l'on fait nos développements à un ordre strictement inférieur à 2, alors tous les termes se compensent et il ne reste plus que le terme d'erreur (faire *vraiment* le calcul pour s'en convaincre!). Nous le faisons donc à l'ordre 2 dans ce qui suit.

On a:

$$\arctan\left(x\right) = x + \mathop{o}_{x \to 0}\left(x^{2}\right), \quad e^{x} = 1 + x + \frac{1}{2}x^{2} + \mathop{o}_{x \to 0}\left(x^{2}\right) \quad \text{ et : } \quad \cos\left(x\right) = 1 - \frac{1}{2}x^{2} + \mathop{o}_{x \to 0}\left(x^{2}\right).$$

Par conséquent:

$$\begin{split} &\frac{1}{2\,n} - \arctan\left(\frac{3}{n}\right) + \frac{5}{4}\,e^{\frac{2}{n}} - \frac{5}{4}\,\cos\left(\frac{1}{n}\right) \\ &= \frac{1}{2\,n} - \left(\frac{3}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) + \frac{5}{4}\left(1 + \frac{2}{n} + \frac{2}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) - \frac{5}{4}\left(1 - \frac{1}{2\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) \\ &= \frac{25}{8\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right) \mathop{\sim}_{n \to +\infty}\frac{25}{8\,n^2}, \end{split}$$

d'où le résultat.

Corrigé 62. On écrit :

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{2}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2} \right) \right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{3\,n} - \frac{1}{n+1} + \frac{1}{16\,(n-2)} &= \frac{1}{3\,n} - 1\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{16}\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{29}{48\,n} + \frac{9}{8\,n^2} - \frac{3}{4\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 63. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

$$\frac{4x+1}{-4x^3-x^2-21x-14} \sim \frac{4x}{x\to +\infty} - \frac{1}{x^2}$$

ATTENTION à ne pas penser que $\sin\left(\frac{14\,x^4-2\,x^3-x^2-x+2}{-x+1}\right) \underset{x\to +\infty}{\sim} \sin\left(-14\,x^3\right)$ sous prétexte que $\frac{14\,x^4-2\,x^3-x^2-x+2}{-x+1} \underset{x\to +\infty}{\sim} -14\,x^3$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc :

$$f(x) \mathop{\sim}_{x \to +\infty} \sin \left(-\frac{14\,x^4 - 2\,x^3 - x^2 - x + 2}{x - 1} \right) \times \left(-\frac{1}{x^2} \right) \mathop{\sim}_{x \to +\infty} - \frac{\sin \left(-\frac{14\,x^4 - 2\,x^3 - x^2 - x + 2}{x - 1} \right)}{x^2}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{14\,x^4 - 2\,x^3 - x^2 - x + 2}{-x + 1} \mathop{\sim}_{x \to 0^+} \frac{2}{1} \mathop{\sim}_{x \to 0^+} 2 \mathop{\longrightarrow}_{x \to 0} 2, \quad \frac{4\,x + 1}{-4\,x^3 - x^2 - 21\,x - 14} \mathop{\sim}_{x \to 0} \frac{1}{-14} \mathop{\sim}_{x \to 0} - \frac{1}{14}.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{14x^4 - 2x^3 - x^2 - x + 2}{-x + 1}\right) = \sin(2) \neq 0$, et donc:

$$\sin\left(\frac{14x^4 - 2x^3 - x^2 - x + 2}{-x + 1}\right) \underset{x \to 0^+}{\sim} \sin(2).$$

 \leftarrow page 6

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} -\frac{1}{14} \sin(2)$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{\sin\left(-\frac{14x^{4} - 2x^{3} - x^{2} - x + 2}{x - 1}\right)}{x^{2}}$.

Corrigé 64. Lorsqu'on élève un nombre dépendant de n à une puissance dépendant de n, il est recommandé de tout mettre sous forme exponentielle pour éviter les généralisations hâtives.

 \leftarrow page 6

Pour tout n au voisinage de $+\infty$, on a: $u_n = \exp\left(-3n^2\ln\left(-\frac{8\cos\left(\frac{1}{n}\right)}{n} + \cosh\left(\frac{1}{n}\right)\right)\right)$. Faisons le développement asymptotique de l'argument de l'exponentielle (à au moins deux termes, pour récupérer l'éventuel équivalent asymptotique de $u_n - \ell$ ensuite; c'est inutilement précis si seule la limite nous intéresse). on a:

$$\cos\left(x\right) = 1 + \mathop{o}_{x \to 0}\left(x\right),\,$$

et:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$-\frac{8\cos\left(\frac{1}{n}\right)}{n} + \cosh\left(\frac{1}{n}\right) = 1 - \frac{8}{n} + \frac{1}{2n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right).$$

En composant ceci avec le développement limité de $x \mapsto \ln(1+x)$ en 0 à l'ordre 2 (ou 3 : vérifiez bien ce que fait la machine, je me suis emmêlé les pinceaux dans la programmation):

$$-3n^{2}\ln\left(-\frac{8\cos\left(\frac{1}{n}\right)}{n} + \cosh\left(\frac{1}{n}\right)\right) = -3n^{2}\left[\left(-\frac{8}{n} + \frac{1}{2n^{2}} + \underset{n \to +\infty}{o}\left(\frac{1}{n^{2}}\right)\right) - \frac{1}{2}\left(-\frac{8}{n} + \underset{n \to +\infty}{o}\left(\frac{1}{n}\right)\right)^{2} + \underset{n \to +\infty}{o}\left(\frac{1}{n^{2}}\right)\right]$$

$$= 24n + \frac{189}{2} + \underset{n \to +\infty}{o}\left(1\right) \underset{n \to +\infty}{\sim} 24n.$$

On en déduit : $\lim_{n \to +\infty} -3n^2 \ln \left(-\frac{8\cos\left(\frac{1}{n}\right)}{n} + \cosh\left(\frac{1}{n}\right) \right) = +\infty$, puis : $\lim_{n \to +\infty} u_n = +\infty$ par composition de limites.

Corrigé 65. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = v(x) $\underset{x\to +\infty}{o}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes :

$$x \ln(x+1) \ll x \ln(x+1)^3 \ll xe^x \ln(x+1)^4 \ll x^3 e^x \ln(x+1)^2$$

et:

$$e^{(-4x)} \ll x^2 \ll x^2 \ln(x)^2 \ll x^3 \ln(x)^2$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte »: c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$x^{3}e^{x} \ln(x+1)^{2} - xe^{x} \ln(x+1)^{4} - x \ln(x+1)^{3} + 4x \ln(x+1) \underset{x \to +\infty}{\sim} x^{3}e^{x} \ln(x+1)^{2}$$
.

De même: $-32 x^3 \ln(x)^2 + x^2 \ln(x)^2 + x^2 + 3 e^{(-4x)} \underset{x \to +\infty}{\sim} -32 x^3 \ln(x)^2$.

De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln\left(1 + \frac{1}{x}\right)}{\ln(x)} = 1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln(x)} \underset{x \to +\infty}{\longrightarrow} 1$ car $\ln\left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \xrightarrow[x \to +\infty]{} +\infty$), ce qui simplifie le premier équivalent. On conclut :

$$g(x) \underset{x \to +\infty}{\sim} \frac{x^3 e^x \ln(x)^2}{-32 x^3 \ln(x)^2} \underset{x \to +\infty}{\sim} -\frac{1}{32} e^x.$$

Corrigé 66. On a:

$$\sin\left(x\right) = x - \frac{1}{6}\,x^3 + \mathop{o}\limits_{x \to 0}\left(x^3\right), \quad \text{ et: } \quad \arctan\left(x\right) = x - \frac{1}{3}\,x^3 + \mathop{o}\limits_{x \to 0}\left(x^4\right).$$

On en déduit :

$$\sin(x) + \frac{\arctan(x)}{x} = \left(x - \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3)\right) + \left(1 - \frac{1}{3}x^2 + \mathop{o}_{x \to 0}(x^3)\right)$$
$$= 1 + x - \frac{1}{3}x^2 - \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \ln{(x+1)}$ en 0 à l'ordre 3 :

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} &\ln\left(\frac{\arctan\left(x\right)}{x} + \sin\left(x\right)\right) \\ &= \left(x - \frac{1}{3}\,x^2 - \frac{1}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) - \frac{1}{2}\left(x - \frac{1}{3}\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right)\right)^2 + \frac{1}{3}\left(x + \mathop{o}_{x \to 0}\left(x\right)\right)^3 + \mathop{o}_{x \to 0}\left(x^3\right) \\ &= \left(x - \frac{1}{3}\,x^2 - \frac{1}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) - \frac{1}{2}\left(x^2 - \frac{2}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) + \frac{1}{3}\left(x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) + \mathop{o}_{x \to 0}\left(x^3\right) \\ &= x - \frac{5}{6}\,x^2 + \frac{1}{2}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

$$1 \ll xe^x \ll x^3 e^{(2x)}.$$

et:

$$x^{3}e^{(-3x)} \ll e^{(-2x)} \ln(x)^{4} \ll x^{2}e^{(-2x)} \ll xe^{(-x)} \ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte » : c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit :

$$-x^3e^{(2x)} - xe^x + 12 \sim -x^3e^{(2x)}$$
.

De même: $-e^{(-2x)} \ln(x)^4 - 7x^3 e^{(-3x)} - x^2 e^{(-2x)} + 124xe^{(-x)} \ln(x) \underset{x \to +\infty}{\sim} 124xe^{(-x)} \ln(x)$. On conclut:

$$g(x) \mathop{\sim}_{x \to +\infty} \frac{-x^3 e^{(2\,x)}}{124\,x e^{(-x)} \ln{(x)}} \mathop{\sim}_{x \to +\infty} -\frac{x^2 e^{(3\,x)}}{124\,\ln{(x)}}.$$

Corrigé 68. Commençons par la deuxième fraction. On a $\sinh{(2\,x)}+1 \underset{x\to 0}{\longrightarrow} 1$ et $\cosh{(3\,x)} \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln{(\sinh{(2\,x)}+1)} \underset{x\to 0}{\sim} \sinh{(2\,x)}$, et : $\ln{(\cosh{(3\,x)})} \underset{x\to 0}{\sim} \cosh{(3\,x)}-1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sinh{(u)} \underset{u\to 0}{\sim} u$ et $\cosh{(u)}-1 \underset{u\to 0}{\sim} \frac{1}{2}\,u^2$, où l'on prend respectivement $u=2\,x$ et $u=3\,x$, impliquent :

$$\frac{\ln\left(\sinh\left(2\,x\right)+1\right)}{\ln\left(\cosh\left(3\,x\right)\right)} \underset{x\to 0}{\sim} \frac{\sinh\left(2\,x\right)}{\cosh\left(3\,x\right)-1} \underset{x\to 0}{\sim} \frac{2\,x}{\frac{9}{2}\,x^2} \underset{x\to 0}{\sim} \frac{4}{9\,x}.$$

Passons à la première fraction. On a: $\sinh(x) = x + o(x)$, et: $e^x = 1 + x + o(x)$. Par conséquent:

$$\frac{\ln\left(\sinh\left(2\,x\right)\right)}{\ln\left(e^{(3\,x)}-1\right)} = \frac{\ln(2\,x+\mathop{o}\limits_{x\to 0}(x)}{\ln(3\,x+\mathop{o}\limits_{x\to 0}(x))} = \frac{\ln((2\,x)(1+\mathop{o}\limits_{x\to 0}(1)))}{\ln((3\,x)(1+\mathop{o}\limits_{x\to 0}(1)))} = \frac{\ln(2)+\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)}{\ln(3)+\ln\left(x\right)+\ln\left(1+\mathop{o}\limits_{x\to 0}(1)\right)} \underset{x\to 0}{\sim} \frac{\ln\left(x\right)}{\ln\left(x\right)},$$

le dernier équivalent venant du fait que $\ln(2) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(2)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x\to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{4}{9x} = \frac{4}{9x},$$

et en outre: $\lim_{x\to 0^+} f(x) = +\infty$.

Corrigé 69. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} (x^{\beta})$. De cela, on déduit facilement :

 $\leftarrow \text{page } 7$

$$\frac{-2\,x+1}{-x+1} \underset{x \to +\infty}{\sim} \frac{-2\,x}{-x} \underset{x \to +\infty}{\sim} 2 \underset{x \to +\infty}{\longrightarrow} 2, \quad \frac{-2\,x^2-22\,x-1}{x^4-6\,x^3+x+1} \underset{x \to +\infty}{\sim} \frac{-2\,x^2}{x^4} \underset{x \to +\infty}{\sim} -\frac{2}{x^2}$$

Par composition de limites: $\lim_{x\to +\infty}\arctan\left(\frac{-2\,x+1}{-x+1}\right)=\arctan\left(2\right)\neq 0$, et donc: $\arctan\left(\frac{-2\,x+1}{-x+1}\right)\underset{x\to +\infty}{\sim}\arctan\left(2\right)$. On a donc:

$$f(x) \underset{x \to +\infty}{\sim} \arctan(2) \times \left(-\frac{2}{x^2}\right) \underset{x \to +\infty}{\sim} -\frac{2 \arctan(2)}{x^2}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-2\,x+1}{-x+1} \underset{x\to 0^+}{\sim} \frac{1}{1} \underset{x\to 0^+}{\sim} 1 \underset{x\to 0}{\longrightarrow} 1, \quad \frac{-2\,x^2-22\,x-1}{x^4-6\,x^3+x+1} \underset{x\to 0}{\sim} \frac{-1}{1} \underset{x\to 0}{\sim} -1.$$

Par composition de limites : $\lim_{x\to 0^+} \arctan\left(\frac{-2\,x+1}{-x+1}\right) = \arctan\left(1\right) = \frac{1}{4}\,\pi \neq 0$, et donc :

$$\arctan\left(\frac{-2x+1}{-x+1}\right) \underset{x\to 0^+}{\sim} \frac{1}{4}\pi.$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{1}{4} \pi$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{2 \arctan(2)}{x^2}$.

Corrigé 70. On écrit:

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{4}{3\,n} - \frac{2}{n+4} - \frac{13}{5\,(n-3)} &= \frac{4}{3\,n} - 2\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{13}{5}\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{49}{15\,n} + \frac{1}{5\,n^2} - \frac{277}{5\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 71. Au voisinage de 0, on a : $\tan(x) = x + o(x)$, et : $e^x = 1 + x + o(x)$. On en déduit :

 \leftarrow page 7

 \leftarrow page 7

$$\frac{\tan{(x)} - \tan{(8\,x)}}{e^{(2\,x)} - 1} = \frac{\left(x + \mathop{o}\limits_{x \to 0}(x)\right) - \left(8\,x + \mathop{o}\limits_{x \to 0}(x)\right)}{2\,x + \mathop{o}\limits_{x \to 0}(x)} = \frac{-7\,x + \mathop{o}\limits_{x \to 0}(x)}{2\,x + \mathop{o}\limits_{x \to 0}(x)} \underset{x \to 0}{\sim} \frac{-7\,x}{2\,x} = -\frac{7}{2}.$$

Par conséquent : $\lim_{x\to 0^+} \frac{\tan(x) - \tan(8x)}{e^{(2x)} - 1} = -\frac{7}{2}$.

Corrigé 72. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un déve-

← page 7

 \leftarrow page 7

 \leftarrow page 7

loppement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sinh(x) = x + \frac{1}{6}x^3 + o(x^3)$. On compose ce développement limité avec celui de $x \mapsto \tan(x)$, ce qui est licite puisque $-5 \sinh(x) \xrightarrow[x \to 0]{} 0$, et on obtient :

$$-\tan(5\sinh(x)) = +\left(x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3)\right) + \frac{1}{3}\left(x + \underset{x \to 0}{o}(x)\right)^3 + \underset{x \to 0}{o}(x^3)$$
$$= -5x - \frac{85}{2}x^3 + \underset{x \to 0}{o}(x^3).$$

On en tire d'une part : $-\tan(5\sinh(x)) \sim -5x$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$\frac{1}{5x} - \frac{1}{\tan(5\sinh(x))} = \frac{5x + \left(-5x - \frac{85}{2}x^3 + o\left(x^3\right)\right)}{-5x\tan(5\sinh(x))} = \frac{-\frac{85}{2}x^3 + o\left(x^3\right)}{-5x\tan(5\sinh(x))} \underset{x \to 0^+}{\sim} \frac{-\frac{85}{2}x^3}{-25x^2} = \frac{17}{10}x.$$

On en déduit : $\lim_{x\to 0^+} \left(\frac{1}{5x} - \frac{1}{\tan(5\sinh(x))} \right) = 0.$

Corrigé 73. Composons les développements limités en 0 de $x \mapsto \sinh(x)$, $x \mapsto \frac{\ln(x+1)}{x}$ et $x \mapsto \frac{\arctan(x)}{x}$ avec $\frac{1}{n}$ (quand $n \to +\infty$, on a $\frac{1}{n} \to 0$). Notons que si l'on fait nos développements à un ordre strictement inférieur à 2, alors tous les termes se compensent et il ne reste plus que le terme d'erreur (faire *vraiment* le calcul pour s'en convaincre!). Nous le faisons donc à l'ordre 2 dans ce qui suit.

$$\sinh\left(x\right) = x + \mathop{o}_{x \to 0}\left(x^2\right), \quad \ln\left(x+1\right) = x - \frac{1}{2}\,x^2 + \frac{1}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right) \quad \text{ et:} \quad \arctan\left(x\right) = x - \frac{1}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right).$$

Par conséquent:

$$\begin{split} &-\frac{1}{n}-\sinh\left(\frac{2}{n}\right)-6\,n\ln\left(\frac{1}{n}+1\right)+2\,n\arctan\left(\frac{3}{n}\right)\\ &=-\frac{1}{n}-\left(\frac{2}{n}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)-6\left(1-\frac{1}{2\,n}+\frac{1}{3\,n^2}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)+6\left(1-\frac{3}{n^2}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)\\ &=-\frac{20}{n^2}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)\mathop{\sim}\limits_{n\to+\infty}-\frac{20}{n^2}, \end{split}$$

d'où le résultat.

Corrigé 74. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} \left(x^{\beta} \right)$. De cela, on déduit facilement :

$$\frac{2\,x^3 + x^2 + x}{-4\,x^4 + 2\,x^3 - 4\,x^2 - 1} \underset{x \to +\infty}{\sim} \frac{2\,x^3}{-4\,x^4} \underset{x \to +\infty}{\sim} -\frac{1}{2\,x} \underset{x \to +\infty}{\longrightarrow} 0, \quad \frac{-2\,x^2 - 2\,x}{-x^2 - 5\,x - 1} \underset{x \to +\infty}{\sim} \frac{-2\,x^2}{-x^2} \underset{x \to +\infty}{\sim} 2.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent
$$\arctan\left(u\right) \underset{u \to 0}{\sim} u$$
: $\arctan\left(\frac{2\,x^3+x^2+x}{-4\,x^4+2\,x^3-4\,x^2-1}\right) \underset{x \to +\infty}{\sim} \frac{2\,x^3+x^2+x}{-4\,x^4+2\,x^3-4\,x^2-1} \underset{x \to +\infty}{\sim} -\frac{1}{2\,x}$. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} -\frac{1}{2\,x} \times (2) \underset{x \to +\infty}{\sim} -\frac{1}{x}.$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve:

$$\frac{2\,x^3+x^2+x}{-4\,x^4+2\,x^3-4\,x^2-1} \underset{x\to 0^+}{\sim} \frac{x}{-1} \underset{x\to 0^+}{\sim} -x \underset{x\to 0}{\longrightarrow} 0, \quad \frac{-2\,x^2-2\,x}{-x^2-5\,x-1} \underset{x\to 0}{\sim} \frac{-2\,x}{-1} \underset{x\to 0}{\sim} 2\,x.$$

Le fait que la première fraction rationnelle tende vers 0 autorise à écrire, en vertu de l'équivalent $\operatorname{arctan}(u) \sim u$:

$$\arctan\left(\frac{2\,x^3+x^2+x}{-4\,x^4+2\,x^3-4\,x^2-1}\right) \underset{x\to 0^+}{\sim} \frac{2\,x^3+x^2+x}{-4\,x^4+2\,x^3-4\,x^2-1} \underset{x\to 0^+}{\sim} -x.$$

On conclut:

$$f(x) \underset{x \to 0^+}{\sim} -2x^2$$
, et: $f(x) \underset{x \to +\infty}{\sim} -\frac{1}{x}$.

Corrigé 75. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\operatorname{arctan}(x) = x - \frac{1}{3} x^3 + o (x^4)$. On compose ce développement limité (où l'on remplace x par -x) avec celui de $x \mapsto \cos(x)$, ce qui est licite puisque $-\frac{3}{4} \arctan(x) \xrightarrow[x \to 0]{} 0$, et on obtient:

 \leftarrow page 7

 \leftarrow page 7

 \leftarrow page 8

$$\cos\left(\frac{3}{4}\arctan(x)\right) = 1 - \frac{1}{2}\left(\frac{1}{3}x^3 - x + \underset{x \to 0}{o}\left(x^3\right)\right)^2 + \frac{1}{24}\left(-x + \underset{x \to 0}{o}\left(x\right)\right)^4 + \underset{x \to 0}{o}\left(x^4\right)$$
$$= 1 - \frac{9}{32}x^2 + \frac{411}{2048}x^4 + \underset{x \to 0}{o}\left(x^4\right).$$

On en tire d'une part : $\cos\left(\frac{3}{4}\arctan\left(x\right)\right)-1 \underset{x\to 0^+}{\sim} -\frac{9}{32}x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$\frac{1}{\cos\left(\frac{3}{4}\arctan\left(x\right)\right)-1}+\frac{32}{9\,x^2}=\frac{9\,x^2+32\left(-\frac{9}{32}\,x^2+\frac{411}{2048}\,x^4+\frac{o}{o}\left(x^4\right)\right)}{9\,x^2\left(\cos\left(\frac{3}{4}\arctan\left(x\right)\right)-1\right)}=\frac{\frac{411}{64}\,x^4+\frac{o}{x\to 0}\left(x^4\right)}{9\,x^2\left(\cos\left(\frac{3}{4}\arctan\left(x\right)\right)-1\right)}\underset{x\to 0^+}{\sim}\frac{\frac{411}{2048}\,x^4}{-\frac{81}{32}\,x^4}=-\frac{137}{54}.$$

On en déduit : $\lim_{x \to 0^+} \left(\frac{1}{\cos(\frac{3}{4}\arctan(x)) - 1} + \frac{32}{9x^2} \right) = -\frac{137}{54}$.

Corrigé 76. Composons les développements limités en 0 de $x \mapsto \sinh(x)$, $x \mapsto \frac{\sinh(x)}{x}$ et $x \mapsto \cos(x)$ avec $\frac{1}{n}$ (quand $n \to +\infty$, on a $\frac{1}{n} \to 0$). Notons que si l'on fait nos développements à un ordre strictement inférieur à 2, alors tous les termes se compensent et il ne reste plus que le terme d'erreur (faire *vraiment* le calcul pour s'en convaincre!). Nous le faisons donc à l'ordre 2 dans ce qui suit.

$$\sinh\left(x\right) = x + \mathop{o}_{x \to 0}\left(x^2\right), \quad \sinh\left(x\right) = x + \frac{1}{6}x^3 + \mathop{o}_{x \to 0}\left(x^3\right) \quad \text{ et : } \quad \cos\left(x\right) = 1 - \frac{1}{2}x^2 + \mathop{o}_{x \to 0}\left(x^2\right).$$

Par conséquent:

$$\begin{split} &-\frac{1}{n}+\frac{1}{2}\sinh\left(\frac{2}{n}\right)+\frac{1}{2}n\sinh\left(\frac{2}{n}\right)-\cos\left(\frac{2}{n}\right)\\ &=-\frac{1}{n}+\frac{1}{2}\left(\frac{2}{n}+\underset{n\rightarrow+\infty}{o}\left(\frac{1}{n^2}\right)\right)+\left(1+\frac{2}{3n^2}+\underset{n\rightarrow+\infty}{o}\left(\frac{1}{n^2}\right)\right)-\left(1-\frac{2}{n^2}+\underset{n\rightarrow+\infty}{o}\left(\frac{1}{n^2}\right)\right)\\ &=\frac{8}{3n^2}+\underset{n\rightarrow+\infty}{o}\left(\frac{1}{n^2}\right)\underset{n\rightarrow+\infty}{\sim}\frac{8}{3n^2}, \end{split}$$

d'où le résultat.

Corrigé 77. On a:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3), \quad \text{et:} \quad x\cos(x) = x - \frac{1}{2}x^3 + \mathop{o}_{x\to 0}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\begin{split} -3\ln\left(\frac{1}{n}+1\right) - 20\frac{\cos\left(\frac{1}{n}\right)}{n} &= -3\left(\frac{1}{n} - \frac{1}{2\,n^2} + \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 20\left(\frac{1}{n} - \frac{1}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{23}{n} + \frac{3}{2\,n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x\mapsto (x+1)^{\frac{1}{3}}$ en 0 à l'ordre 3:

$$(x+1)^{\frac{1}{3}} = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} &\left(-\frac{20\,\cos\left(\frac{1}{n}\right)}{n}-3\,\ln\left(\frac{1}{n}+1\right)+1\right)^{\frac{1}{3}} \\ &=1+\frac{1}{3}\left(-\frac{23}{n}+\frac{3}{2\,n^2}+\frac{9}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)-\frac{1}{9}\left(-\frac{23}{n}+\frac{3}{2\,n^2}+\underset{n\to+\infty}{o}\left(\frac{1}{n^2}\right)\right)^2+\frac{5}{81}\left(-\frac{23}{n}+\underset{n\to+\infty}{o}\left(\frac{1}{n^1}\right)\right)^3+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right) \\ &=1+\frac{1}{3}\left(-\frac{23}{n}+\frac{3}{2\,n^2}+\frac{9}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)-\frac{1}{9}\left(\frac{529}{n^2}-\frac{69}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\frac{5}{81}\left(-\frac{12167}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right) \\ &=1-\frac{23}{3\,n}-\frac{1049}{18\,n^2}-\frac{59971}{81\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 78. Commençons par la deuxième fraction. On a $\sin{(3\,x)}+1 \underset{x\to 0}{\longrightarrow} 1$ et $\cosh{(x)} \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln{(\sin{(3\,x)}+1)} \underset{x\to 0}{\sim} \sin{(3\,x)}$, et : $\ln{(\cosh{(x)})} \underset{x\to 0}{\sim} \cosh{(x)}-1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\sin{(u)} \underset{u\to 0}{\sim} u$ et $\cosh{(u)}-1 \underset{u\to 0}{\sim} \frac{1}{2}u^2$, où l'on prend $u=3\,x$ dans le premier développement limité, impliquent :

$$\frac{\ln\left(\sin\left(3\,x\right)+1\right)}{\ln\left(\cosh\left(x\right)\right)} \underset{x\to0}{\sim} \frac{\sin\left(3\,x\right)}{\cosh\left(x\right)-1} \underset{x\to0}{\sim} \frac{3\,x}{\frac{1}{2}\,x^2} \underset{x\to0}{\sim} \frac{6}{x}.$$

Passons à la première fraction. On a: $\sinh(x) = x + o(x)$, et: $\sin(x) = x + o(x)$. Par conséquent :

$$\frac{\ln{(\sinh{(4\,x)})}}{\ln{(\sin{(3\,x)})}} = \frac{\ln{(4\,x} + \mathop{o}\limits_{x \to 0}(x)}{\ln{(3\,x} + \mathop{o}\limits_{x \to 0}(x))} = \frac{\ln{((4\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))}}{\ln{((3\,x)(1 + \mathop{o}\limits_{x \to 0}(1)))}} = \frac{\ln{(4)} + \ln{(x)} + \ln{(1 + \mathop{o}\limits_{x \to 0}(1))}}{\ln{(3)} + \ln{(x)} + \ln{(1 + \mathop{o}\limits_{x \to 0}(1))}} \underset{x \to 0}{\sim} \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)} + \ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}}$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \frac{6}{x} = \frac{6}{x},$$

et en outre: $\lim_{x\to 0^+} f(x) = +\infty$.

Corrigé 79. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord : $\cosh(x) = 1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + o_{x\to 0}(x^4)$. On compose ce développement limité (où l'on remplace x par 4x) avec celui de $x\mapsto \tan(x)$, ce qui est licite puisque $4\cosh(4x) - 4 \xrightarrow[x\to 0]{} 0$, et on obtient :

$$\tan (4 \cosh (4 x) - 4) = + \left(8 x^2 + \frac{32}{3} x^4 + \underset{x \to 0}{o} (x^4)\right) + \underset{x \to 0}{o} (x^4)$$
$$= 32 x^2 + \frac{128}{3} x^4 + \underset{x \to 0}{o} (x^4).$$

On en tire d'une part : $\tan (4 \cosh (4x) - 4) \sim 32 x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$\frac{1}{\tan\left(4\cosh\left(4x\right)-4\right)} - \frac{1}{32\,x^2} = \frac{32\,x^2 - \left(32\,x^2 + \frac{128}{3}\,x^4 + o\left(x^4\right)\right)}{32\,x^2\tan\left(4\cosh\left(4x\right) - 4\right)} = \frac{-\frac{128}{3}\,x^4 + o\left(x^4\right)}{32\,x^2\tan\left(4\cosh\left(4x\right) - 4\right)} \underset{x \to 0^+}{\sim} \frac{-\frac{128}{3}\,x^4}{1024\,x^4} = -\frac{1}{24}.$$

On en déduit : $\lim_{x\to 0^+}\left(\frac{1}{\tan\left(4\cosh\left(4\,x\right)-4\right)}-\frac{1}{32\,x^2}\right)=-\frac{1}{24}.$

Corrigé 80. Au voisinage de 0, on a: $\ln(x+1) = x + o(x)$, et: $\cos(x) = 1 - \frac{1}{2}x^2 + o(x^2)$. On en déduit:

 $\frac{\ln\left(2\,x+1\right)-\ln\left(x+1\right)}{\cos\left(3\,x\right)-1} = \frac{\left(2\,x+\mathop{o}_{x\to 0}\left(x\right)\right)-\left(x+\mathop{o}_{x\to 0}\left(x\right)\right)}{-\frac{9}{2}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)} = \frac{x+\mathop{o}_{x\to 0}\left(x\right)}{-\frac{9}{2}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)} \underset{x\to 0}{\sim} \frac{x}{-\frac{9}{2}\,x^2} = -\frac{2}{9\,x}.$

← page 8

 $\text{Par cons\'equent:} \lim_{x \to 0^+} \frac{\ln\left(2\,x+1\right) - \ln\left(x+1\right)}{\cos\left(3\,x\right) - 1} = -\infty.$

Corrigé 81. Lorsqu'on élève un nombre dépendant de n à une puissance dépendant de n, il est recommandé de tout mettre sous forme exponentielle pour éviter les généralisations hâtives.

 \leftarrow page 8

Pour tout n au voisinage de $+\infty$, on a: $u_n = \exp\left(-n\ln\left(\sin\left(\frac{1}{n}\right) + n\sinh\left(\frac{1}{n}\right)\right)\right)$. Faisons le développement asymptotique de l'argument de l'exponentielle (à au moins deux termes, pour récupérer l'éventuel équivalent asymptotique de $u_n - \ell$ ensuite; c'est inutilement précis si seule la limite nous intéresse). on a:

$$\sin\left(x\right) = x + \mathop{o}_{x \to 0}\left(x^2\right),\,$$

et:

$$\sinh(x) = x + \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$n \sinh\left(\frac{1}{n}\right) + \sin\left(\frac{1}{n}\right) = 1 + \frac{1}{n} + \frac{1}{6n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right).$$

En composant ceci avec le développement limité de $x \mapsto \ln(1+x)$ en 0 à l'ordre 2 (ou 3 : vérifiez bien ce que fait la machine, je me suis emmêlé les pinceaux dans la programmation) :

$$-n\ln\left(n\sinh\left(\frac{1}{n}\right) + \sin\left(\frac{1}{n}\right)\right) = -n\left[\left(\frac{1}{n} + \frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)\right) - \frac{1}{2}\left(\frac{1}{n} + o\left(\frac{1}{n}\right)\right)^2 + o\left(\frac{1}{n^2}\right)\right]$$

$$= \frac{1}{3n} - 1 + o\left(\frac{1}{n}\right) \sim -1.$$

On en déduit : $\lim_{n \to +\infty} -n \ln \left(\sin \left(\frac{1}{n} \right) + n \sinh \left(\frac{1}{n} \right) \right) = -1$, puis : $\lim_{n \to +\infty} u_n = e^{(-1)}$ par continuité en -1 de l'exponentielle.

De plus, reprenant les calculs ci-dessus:

$$u_n - e^{(-1)} = e^{(-1)} \left(\exp\left(\frac{1}{3n} + o_{n \to +\infty} \left(\frac{1}{n}\right) \right) - 1 \right) \underset{n \to +\infty}{\sim} \frac{e^{(-1)}}{3n}$$

(on utilise la formule : $e^u - 1 \underset{u \to 0}{\sim} u$, en ne retenant que le terme prépondérant).

Corrigé 82. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$-\frac{13}{n} + \frac{15}{n+2} + \frac{1}{n-2} = -\frac{13}{n} + 15\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + 1\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$

$$= \frac{3}{n} - \frac{28}{n^2} + \frac{64}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Corrigé 83. Commençons par la deuxième fraction. On a $\arctan{(3\,x)}+1 \underset{x\to 0}{\longrightarrow} 1$ et $\cos{(x)} \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln{(\arctan{(3\,x)}+1)} \underset{x\to 0}{\sim} \arctan{(3\,x)}$, et : $\ln{(\cos{(x)})} \underset{x\to 0}{\sim} \cos{(x)}-1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\arctan{(u)} \underset{u\to 0}{\sim} u$ et $\cos{(u)}-1 \underset{u\to 0}{\sim} -\frac{1}{2}u^2$, où l'on prend $u=3\,x$ dans le premier développement limité, impliquent :

$$\frac{\ln\left(\arctan\left(3\,x\right)+1\right)}{\ln\left(\cos\left(x\right)\right)} \underset{x\to0}{\sim} \frac{\arctan\left(3\,x\right)}{\cos\left(x\right)-1} \underset{x\to0}{\sim} \frac{3\,x}{-\frac{1}{2}\,x^2} \underset{x\to0}{\sim} -\frac{6}{x}.$$

← page 8

Passons à la première fraction. On a : $\arctan(x) = x + o(x)$, et : $e^x = 1 + x + o(x)$. Par conséquent :

$$\frac{\ln\left(\arctan\left(3\,x\right)\right)}{\ln\left(e^{(4\,x)}-1\right)} = \frac{\ln(3\,x+o_{x\to 0}(x))}{\ln(4\,x+o_{x\to 0}(x))} = \frac{\ln((3\,x)(1+o_{x\to 0}(1)))}{\ln((4\,x)(1+o_{x\to 0}(1)))} = \frac{\ln(3)+\ln(x)+\ln(1+o_{x\to 0}(1))}{\ln(4)+\ln(x)+\ln(1+o_{x\to 0}(1))} \underset{x\to 0}{\sim} \frac{\ln(x)}{\ln(x)},$$

le dernier équivalent venant du fait que $\ln(3) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(3)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut :

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \left(-\frac{6}{x}\right) = -\frac{6}{x},$$

et en outre: $\lim_{x\to 0^+} f(x) = -\infty$.

Corrigé 84. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sinh(x) = x + o(x^2)$. On compose ce développement limité (où l'on remplace x par -x) avec celui de $x \mapsto e^x$, ce qui est licite puisque $-\sinh(x) \xrightarrow[x \to 0]{} 0$, et on obtient:

 \leftarrow page 8

$$e^{(-\sinh(x))} = 1 + \left(-x + \underset{x \to 0}{o}\left(x^{2}\right)\right) + \frac{1}{2}\left(-x + \underset{x \to 0}{o}\left(x\right)\right)^{2} + \underset{x \to 0}{o}\left(x^{2}\right)$$
$$= 1 - x + \frac{1}{2}x^{2} + \underset{x \to 0}{o}\left(x^{2}\right).$$

On en tire d'une part : $e^{(-\sinh(x))} - 1 \sim x - x$ (utile pour la suite, mais insuffisant pour conclure puisqu'on ne SOMME PAS LES ÉQUIVALENTS!), et d'autre part:

$$\frac{1}{x} + \frac{1}{e^{(-\sinh(x))} - 1} = \frac{x + \left(-x + \frac{1}{2}x^2 + o\left(x^2\right)\right)}{x\left(e^{(-\sinh(x))} - 1\right)} = \frac{\frac{1}{2}x^2 + o\left(x^2\right)}{x\left(e^{(-\sinh(x))} - 1\right)} \sim \frac{\frac{1}{2}x^2}{x - o\left(x^2\right)} \sim \frac{\frac{1}{2}x^2}{x - o\left(x^2\right)} = -\frac{1}{2}.$$

On en déduit : $\lim_{x \to 0^+} \left(\frac{1}{x} + \frac{1}{e^{(-\sinh(x))} - 1} \right) = -\frac{1}{2}$.

Corrigé 85. Pour simplifier la rédaction, nous utiliserons la notation « $u(x) \ll v(x)$ » pour dire: u(x) = 4 $\underset{x\to +\infty}{o}(v(x))$. Grâce aux croissances comparées, nous avons les relations de prépondérance suivantes:

$$x \ln(x+1)^2 \ll x^6 \ll x^3 e^x \ll e^{(3x)} \ln(x+1)^3$$
,

et:

$$e^{(-3x)} \ll e^{(-x)} \ln(x)^5 \ll \ln(x)^5 \ll x^2 \ln(x)$$
.

Nous laissons le lecteur vérifier chaque relation de prépondérance en montrant que le quotient des termes à comparer tend vers zéro. On retiendra l'idée informelle que l'exponentielle « l'emporte »: c'est donc la plus « grande » exponentielle qui détermine la fonction prépondérante. S'il apparaît la même exponentielle dans deux termes à comparer, on utilise les puissances de x pour trancher, puisque le logarithme est négligeable devant elles, etc. On en déduit:

$$-x^6 - x^3 e^x - 20 e^{(3x)} \ln(x+1)^3 - x \ln(x+1)^2 \underset{x \to +\infty}{\sim} -20 e^{(3x)} \ln(x+1)^3$$
.

De même: $2e^{(-x)}\ln(x)^5 - 14\ln(x)^5 + x^2\ln(x) - 11e^{(-3x)} \underset{x \to +\infty}{\sim} x^2\ln(x)$. De plus, on a $\ln(x+1) \underset{x \to +\infty}{\sim} \ln(x)$ (en effet: $\frac{\ln(x+1)}{\ln(x)} = \frac{\ln(x) + \ln(1 + \frac{1}{x})}{\ln(x)} = 1 + \frac{\ln(1 + \frac{1}{x})}{\ln(x)} \underset{x \to +\infty}{\longrightarrow} 1$ car $\ln(1 + \frac{1}{x}) \underset{x \to +\infty}{\longrightarrow} 0$ et $\ln(x) \xrightarrow[x \to +\infty]{} +\infty$), ce qui simplifie le premier équivalent. On conclut :

$$g(x) \underset{x \to +\infty}{\sim} \frac{-20 e^{(3 x)} \ln(x)^3}{x^2 \ln(x)} \underset{x \to +\infty}{\sim} -\frac{20 e^{(3 x)} \ln(x)^2}{x^2}.$$

Corrigé 86. Rappelons-nous que si $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{o} (x^{\beta})$. De cela, on déduit facilement:

$$\frac{-x^3 - x + 2}{x + 2} \underset{x \to +\infty}{\sim} \frac{-x^3}{x} \underset{x \to +\infty}{\sim} -x^2.$$

ATTENTION à ne pas penser que $\sin\left(\frac{-x^4-x^3+2}{x^3+61\,x+1}\right) \underset{x\to+\infty}{\sim} \sin\left(-x\right)$ sous prétexte que $\frac{-x^4-x^3+2}{x^3+61\,x+1} \underset{x\to+\infty}{\sim} -x$. Nous savons que les équivalents se composent mal, l'exponentielle et le logarithme donnant des contre-exemples classiques. On ne peut pas simplifier cette quantité. On a donc :

$$f(x) \underset{x \to +\infty}{\sim} \sin\left(-\frac{x^4 + x^3 - 2}{x^3 + 61x + 1}\right) \times \left(-x^2\right) \underset{x \to +\infty}{\sim} -x^2 \sin\left(-\frac{x^4 + x^3 - 2}{x^3 + 61x + 1}\right).$$

Ensuite, au voisinage de 0, on raisonne de même, et on trouve :

$$\frac{-x^4 - x^3 + 2}{x^3 + 61 \cdot x + 1} \underset{x \to 0^+}{\sim} \frac{2}{1} \underset{x \to 0^+}{\sim} 2 \underset{x \to 0}{\longrightarrow} 2, \quad \frac{-x^3 - x + 2}{x + 2} \underset{x \to 0}{\sim} \frac{2}{2} \underset{x \to 0}{\sim} 1.$$

Par composition de limites: $\lim_{x\to 0^+} \sin\left(\frac{-x^4-x^3+2}{x^3+61\,x+1}\right) = \sin(2) \neq 0$, et donc:

$$\sin\left(\frac{-x^4 - x^3 + 2}{x^3 + 61x + 1}\right) \underset{x \to 0^+}{\sim} \sin(2).$$

On conclut:

$$f(x) \underset{x \to 0^{+}}{\sim} \sin(2)$$
, et: $f(x) \underset{x \to +\infty}{\sim} -x^{2} \sin\left(-\frac{x^{4} + x^{3} - 2}{x^{3} + 61 x + 1}\right)$.

Corrigé 87. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\cos{(x)} = 1 - \frac{1}{2} x^2 + \frac{1}{24} x^4 + \underset{x \to 0}{o} (x^4)$. On compose ce développement limité avec celui de $x \mapsto e^x$, ce qui est licite puisque $\cos{(x)} - 1 \underset{x \to 0}{\longrightarrow} 0$, et on obtient:

$$e^{(\cos(x)-1)} = 1 + \left(-\frac{1}{2}x^2 + \frac{1}{24}x^4 + \underset{x\to 0}{o}\left(x^4\right)\right) + \frac{1}{2}\left(-\frac{1}{2}x^2 + \underset{x\to 0}{o}\left(x^2\right)\right)^2 + \underset{x\to 0}{o}\left(x^4\right)$$
$$= 1 - \frac{1}{2}x^2 + \frac{1}{6}x^4 + o\left(x^4\right).$$

On en tire d'une part: $e^{(\cos(x)-1)} - 1 \sim \frac{1}{x\to 0^+} - \frac{1}{2} x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'on ne somme pas les équivalents!), et d'autre part:

$$\frac{1}{e^{(\cos(x)-1)}-1}+\frac{2}{x^2}=\frac{x^2+2\left(-\frac{1}{2}x^2+\frac{1}{6}x^4+o\left(x^4\right)\right)}{x^2\left(e^{(\cos(x)-1)}-1\right)}=\frac{\frac{1}{3}x^4+o\left(x^4\right)}{x^2\left(e^{(\cos(x)-1)}-1\right)}\underset{x\to 0^+}{\sim}\frac{\frac{1}{6}x^4}{-\frac{1}{2}x^4}=-\frac{2}{3}.$$

On en déduit : $\lim_{x \to 0^+} \left(\frac{1}{e^{(\cos(x)-1)} - 1} + \frac{2}{x^2} \right) = -\frac{2}{3}$.

Corrigé 88. On a:

$$\sin(x) = x - \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3), \quad \text{et}: \quad \cosh(x) = 1 + \frac{1}{2}x^2 + \mathop{o}_{x \to 0}(x^3).$$

On en déduit :

$$2\sin(x) + \cosh(x) = 2\left(x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3)\right) + \left(1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^3)\right)$$
$$= 1 + 2x + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \ln{(x+1)}$ en 0 à l'ordre 3 :

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} &\ln\left(\cosh\left(x\right)+2\sin\left(x\right)\right)\\ &=\left(2\,x+\frac{1}{2}\,x^2-\frac{1}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(2\,x+\frac{1}{2}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2+\frac{1}{3}\left(2\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=\left(2\,x+\frac{1}{2}\,x^2-\frac{1}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(4\,x^2+2\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{1}{3}\left(8\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=2\,x-\frac{3}{2}\,x^2+\frac{4}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

 \leftarrow page 8

d'où le résultat.

Corrigé 89. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\tan(x) = x + \underset{x\to 0}{o}(x^2)$. On compose ce développement limité (où l'on remplace x par $-\frac{5}{4}x$) avec celui de $x\mapsto e^x$, ce qui est licite puisque $-\frac{1}{3}\tan\left(\frac{5}{4}x\right)\underset{x\to 0}{\longrightarrow}0$, et on obtient:

 \leftarrow page 9

$$e^{\left(-\frac{1}{3}\tan\left(\frac{5}{4}x\right)\right)} = 1 + \left(-\frac{5}{4}x + \underset{x\to 0}{o}\left(x^2\right)\right) + \frac{1}{2}\left(-\frac{5}{4}x + \underset{x\to 0}{o}\left(x\right)\right)^2 + \underset{x\to 0}{o}\left(x^2\right)$$
$$= 1 - \frac{5}{12}x + \frac{25}{288}x^2 + \underset{x\to 0}{o}\left(x^2\right).$$

On en tire d'une part : $e^{\left(-\frac{1}{3}\tan\left(\frac{5}{4}x\right)\right)} - 1 \sim \frac{5}{12}x$ (utile pour la suite, mais insuffisant pour conclure puisqu'on ne somme pas les équivalents!), et d'autre part :

$$\frac{12}{5x} + \frac{1}{e^{\left(-\frac{1}{3}\tan\left(\frac{5}{4}x\right)\right)} - 1} = \frac{5x + 12\left(-\frac{5}{12}x + \frac{25}{288}x^2 + o\left(x^2\right)\right)}{5x\left(e^{\left(-\frac{1}{3}\tan\left(\frac{5}{4}x\right)\right)} - 1\right)} = \frac{\frac{25}{24}x^2 + o\left(x^2\right)}{5x\left(e^{\left(-\frac{1}{3}\tan\left(\frac{5}{4}x\right)\right)} - 1\right)} \sim \frac{\frac{25}{288}x^2}{-\frac{25}{12}x^2} = -\frac{1}{2}.$$

On en déduit : $\lim_{x \to 0^+} \left(\frac{12}{5x} + \frac{1}{e^{\left(-\frac{1}{3} \tan\left(\frac{5}{4}x\right)\right)} - 1} \right) = -\frac{1}{2}$.

Corrigé 90. Commençons par la deuxième fraction. On a $\ln(x+1)+1 \underset{x\to 0}{\longrightarrow} 1$ et $\cos(3x) \underset{x\to 0}{\longrightarrow} 1$. Donc, en vertu de l'équivalent classique $\ln(u) \underset{u\to 1}{\sim} u-1$, on a : $\ln(\ln(x+1)+1) \underset{x\to 0}{\sim} \ln(x+1)$, et : $\ln(\cos(3x)) \underset{x\to 0}{\sim} \cos(3x)-1$. Alors, nos équivalents de fonctions usuelles (qu'on retrouve au besoin avec un développement limité en 0 jusqu'au premier terme non nul), $\ln(u+1) \underset{u\to 0}{\sim} u$ et $\cos(u)-1 \underset{u\to 0}{\sim} -\frac{1}{2}u^2$, où l'on prend u=3x dans le second développement limité, impliquent :

$$\frac{\ln\left(\ln\left(x+1\right)+1\right)}{\ln\left(\cos\left(3\,x\right)\right)} \underset{x\to0}{\sim} \frac{\ln\left(x+1\right)}{\cos\left(3\,x\right)-1} \underset{x\to0}{\sim} \frac{x}{-\frac{9}{2}\,x^2} \underset{x\to0}{\sim} -\frac{2}{9\,x}.$$

Passons à la première fraction. On a : $\sin(x) = x + o(x)$, et : $\ln(x+1) = x + o(x)$. Par conséquent :

$$\frac{\ln{(\sin{(4\,x)})}}{\ln{(\ln{(2\,x+1)})}} = \frac{\ln{(4\,x+o_0\,(x)}}{\ln{(2\,x+o_0\,(x))}} = \frac{\ln{((4\,x)(1+o_0\,(1)))}}{\ln{((2\,x)(1+o_0\,(1)))}} = \frac{\ln{(4)} + \ln{(x)} + \ln{(1+o_0\,(1))}}{\ln{(2)} + \ln{(x)} + \ln{(1+o_0\,(1))}} \sim \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)} + \ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)} + \ln{(x)}} = \frac{\ln{(x)} + \ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)}} = \frac{\ln{(x)}}{\ln{(x)$$

le dernier équivalent venant du fait que $\ln(4) + \ln(1 + \underset{x \to 0}{o}(1)) \xrightarrow[x \to 0]{} \ln(4)$, donc a une limite finie et est négligeable devant $\ln(x)$ (qui a une limite infinie en 0); de même au dénominateur. On conclut:

$$f(x) \underset{x \to 0}{\sim} \frac{\ln(x)}{\ln(x)} \times \left(-\frac{2}{9x}\right) = -\frac{2}{9x},$$

et en outre: $\lim_{x\to 0^+} f(x) = -\infty$.

Corrigé 91. On a:

$$\sinh(x) = x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et:} \quad \sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On en déduit:

$$-\sinh(x) + 7\sin(x) = -\left(x + \frac{1}{6}x^3 + o_{x\to 0}(x^3)\right) + 7\left(x - \frac{1}{6}x^3 + o_{x\to 0}(x^3)\right)$$
$$= 6x - \frac{4}{3}x^3 + o_{x\to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x \mapsto \ln(x+1)$ en 0 à l'ordre 3:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3),$$

.

on a alors:

$$\begin{split} &\ln\left(7\,\sin\left(x\right)-\sinh\left(x\right)+1\right) \\ &= \left(6\,x-\frac{4}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(6\,x+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2+\frac{1}{3}\left(6\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right) \\ &= \left(6\,x-\frac{4}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(36\,x^2+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{1}{3}\left(216\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right) \\ &= 6\,x-18\,x^2+\frac{212}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 92. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sinh(x) = x + \frac{1}{6}x^3 + o(x^3)$. On compose ce développement limité (où l'on remplace x par $\frac{4}{5}x$) avec celui de $x \mapsto \sin(x)$, ce qui est licite puisque $-\frac{2}{3}\sinh(\frac{4}{5}x) \xrightarrow[x\to 0]{} 0$, et on obtient:

 $-\sin\left(\frac{2}{3}\sinh\left(\frac{4}{5}x\right)\right) = +\left(\frac{4}{5}x + \frac{32}{375}x^3 + o_{x\to 0}(x^3)\right) - \frac{1}{6}\left(\frac{4}{5}x + o_{x\to 0}(x)\right)^3 + o_{x\to 0}(x^3)$ $= -\frac{8}{15}x - \frac{64}{2025}x^3 + o_{x\to 0}(x^3).$

On en tire d'une part : $-\sin\left(\frac{2}{3}\sinh\left(\frac{4}{5}x\right)\right) \sim -\frac{8}{15}x$ (utile pour la suite, mais insuffisant pour conclure puisqu'on NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$\frac{15}{8x} - \frac{1}{\sin\left(\frac{2}{3}\sinh\left(\frac{4}{5}x\right)\right)} = \frac{8x + 15\left(-\frac{8}{15}x - \frac{64}{2025}x^3 + o\left(x^3\right)\right)}{-8x\sin\left(\frac{2}{3}\sinh\left(\frac{4}{5}x\right)\right)} = \frac{-\frac{64}{135}x^3 + o\left(x^3\right)}{-8x\sin\left(\frac{2}{3}\sinh\left(\frac{4}{5}x\right)\right)} \sim \frac{-\frac{64}{2025}x^3}{-\frac{64}{15}x^2} = \frac{1}{9}x.$$

On en déduit : $\lim_{x\to 0^+} \left(\frac{15}{8x} - \frac{1}{\sin\left(\frac{2}{3}\sinh\left(\frac{4}{5}x\right)\right)} \right) = 0.$

Corrigé 93. On a:

 $\sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et:} \quad \arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^4).$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$\begin{split} -2\sin\left(\frac{1}{n}\right) + n\arctan\left(\frac{1}{n}\right) &= -2\left(\frac{1}{n} - \frac{1}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 - \frac{1}{3\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= 1 - \frac{2}{n} - \frac{1}{3\,n^2} + \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x\mapsto (x+1)^{\frac{5}{2}}$ en 0 à l'ordre 3 :

$$(x+1)^{\frac{5}{2}} = 1 + \frac{5}{2}x + \frac{15}{8}x^2 + \frac{5}{16}x^3 + \underset{x\to 0}{o}(x^3),$$

on a alors:

$$\left(n \arctan\left(\frac{1}{n}\right) - 2 \sin\left(\frac{1}{n}\right) \right)^{\frac{5}{2}}$$

$$= 1 + \frac{5}{2} \left(-\frac{2}{n} - \frac{1}{3n^2} + \frac{1}{3n^3} + o \left(\frac{1}{n^3}\right) \right) + \frac{15}{8} \left(-\frac{2}{n} - \frac{1}{3n^2} + o \left(\frac{1}{n^2}\right) \right)^2 + \frac{5}{16} \left(-\frac{2}{n} + o \left(\frac{1}{n^1}\right) \right)^3 + o \left(\frac{1}{n^3}\right)$$

$$= 1 + \frac{5}{2} \left(-\frac{2}{n} - \frac{1}{3n^2} + \frac{1}{3n^3} + o \left(\frac{1}{n^3}\right) \right) + \frac{15}{8} \left(\frac{4}{n^2} + \frac{4}{3n^3} + o \left(\frac{1}{n^3}\right) \right) + \frac{5}{16} \left(-\frac{8}{n^3} + o \left(\frac{1}{n^3}\right) \right) + o \left(\frac{1}{n^3}\right)$$

$$= 1 - \frac{5}{n} + \frac{20}{3n^2} + \frac{5}{6n^3} + o \left(\frac{1}{n^3}\right),$$

d'où le résultat.

 \leftarrow page 9

Corrigé 94. Pour tout n au voisinage de $+\infty$, on a:

 \leftarrow page 9

Par conséquent : $\lim_{n \to +\infty} \left(\sqrt[3]{n^3 + n^2 - n - 1} - \sqrt{n^2 - 2} \right) = \frac{1}{3}$.

Corrigé 95. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\tan{(x)} = x + \underset{x \to 0}{o}{(x^2)}$. On compose ce développement limité (où l'on remplace x par 4x) avec celui de $x \mapsto e^x$, ce qui est licite puisque $-\frac{4}{3}$ $\tan{(4x)} \underset{x \to 0}{\longrightarrow} 0$, et on obtient:

 \leftarrow page 9

$$e^{\left(-\frac{4}{3}\tan(4x)\right)} = 1 + \left(4x + \underset{x\to 0}{o}\left(x^2\right)\right) + \frac{1}{2}\left(4x + \underset{x\to 0}{o}(x)\right)^2 + \underset{x\to 0}{o}\left(x^2\right)$$
$$= 1 - \frac{16}{3}x + \frac{128}{9}x^2 + \underset{x\to 0}{o}\left(x^2\right).$$

On en tire d'une part : $e^{\left(-\frac{4}{3}\tan(4x)\right)} - 1 \sim \frac{16}{x \to 0^+} - \frac{16}{3}x$ (utile pour la suite, mais insuffisant pour conclure puisqu'on ne somme pas les équivalents!), et d'autre part :

$$\frac{3}{16x} + \frac{1}{e^{\left(-\frac{4}{3}\tan(4x)\right)} - 1} = \frac{16x + 3\left(-\frac{16}{3}x + \frac{128}{9}x^2 + o\left(x^2\right)\right)}{16x\left(e^{\left(-\frac{4}{3}\tan(4x)\right)} - 1\right)} = \frac{\frac{128}{3}x^2 + o\left(x^2\right)}{16x\left(e^{\left(-\frac{4}{3}\tan(4x)\right)} - 1\right)} \underset{x \to 0^+}{\sim} \frac{\frac{128}{9}x^2}{-\frac{256}{3}x^2} = -\frac{1}{2}.$$

On en déduit : $\lim_{x\to 0^+}\left(\frac{3}{16\,x}+\frac{1}{e^{\left(-\frac{4}{3}\,\tan(4\,x)\right)}-1}\right)=-\frac{1}{2}.$

Corrigé 96. Composons les développements limités en 0 de $x \mapsto \arctan(x)$, $x \mapsto e^x$ et $x \mapsto \cosh(x)$ avec $\frac{1}{n}$ (quand $n \to +\infty$, on a $\frac{1}{n} \to 0$). Notons que si l'on fait nos développements à un ordre strictement inférieur à 3, alors tous les termes se compensent et il ne reste plus que le terme d'erreur (faire vraiment le calcul pour s'en convaincre!). Nous le faisons donc à l'ordre 3 dans ce qui suit. On a :

$$\arctan\left(x\right) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}\left(x^3\right), \quad e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \underset{x \to 0}{o}\left(x^3\right) \quad \text{ et : } \quad \cosh\left(x\right) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}\left(x^3\right).$$

Par conséquent

$$\begin{split} &\frac{2}{n} - 8 \arctan\left(\frac{2}{n}\right) + 7 \, e^{\frac{2}{n}} - 7 \, \cosh\left(\frac{2}{n}\right) \\ &= \frac{2}{n} - 8 \left(\frac{2}{n} - \frac{8}{3 \, n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 7 \left(1 + \frac{2}{n} + \frac{2}{n^2} + \frac{4}{3 \, n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 7 \left(1 + \frac{2}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{92}{3 \, n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \mathop{\sim}_{n \to +\infty} \frac{92}{3 \, n^3}, \end{split}$$

d'où le résultat.

Corrigé 97. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sinh(x) = x + \frac{1}{6}x^3 + o_{x\to 0}(x^3)$. On

compose ce développement limité avec celui de $x \mapsto \arctan(x)$, ce qui est licite puisque $\frac{1}{5} \sinh(x) \xrightarrow[x \to 0]{} 0$, et on obtient:

$$\arctan\left(\frac{1}{5}\sinh(x)\right) = +\left(x + \frac{1}{6}x^3 + \underset{x\to 0}{o}\left(x^3\right)\right) - \frac{1}{3}\left(x + \underset{x\to 0}{o}(x)\right)^3 + \underset{x\to 0}{o}\left(x^3\right)$$
$$= \frac{1}{5}x + \frac{23}{750}x^3 + \underset{x\to 0}{o}\left(x^3\right).$$

On en tire d'une part : $\arctan\left(\frac{1}{5}\sinh\left(x\right)\right) \underset{x\to 0^+}{\sim} \frac{1}{5}x$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$-\frac{5}{x} + \frac{1}{\arctan\left(\frac{1}{5}\sinh\left(x\right)\right)} = \frac{x - 5\left(\frac{1}{5}x + \frac{23}{750}x^3 + o\left(x^3\right)\right)}{x\arctan\left(\frac{1}{5}\sinh\left(x\right)\right)} = \frac{-\frac{23}{150}x^3 + o\left(x^3\right)}{x\arctan\left(\frac{1}{5}\sinh\left(x\right)\right)} \sim \frac{-\frac{23}{750}x^3}{\frac{1}{5}x^2} = -\frac{23}{30}x.$$

On en déduit : $\lim_{x\to 0^+} \left(-\frac{5}{x} + \frac{1}{\arctan\left(\frac{1}{5}\sinh\left(x\right)\right)} \right) = 0.$

Corrigé 98. On écrit:

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + o \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{57\,n} - \frac{1}{n+2} - \frac{1}{n-1} &= \frac{1}{57\,n} - 1\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{113}{57\,n} + \frac{1}{n^2} - \frac{5}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 99. Remarquons que nous avons une forme indéterminée. Nous levons l'indétermination avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sinh{(x)} = x + \frac{1}{6} \, x^3 + \underset{x \to 0}{o} \, \left(x^4\right)$. On compose ce développement limité (où l'on remplace x par $4\,x$) avec celui de $x \mapsto \cos{(x)}$, ce qui est licite puisque $-\frac{3}{2} \sinh{(4\,x)} \underset{x \to 0}{\longrightarrow} 0$, et on obtient:

$$\cos\left(\frac{3}{2}\sinh\left(4\,x\right)\right) = 1 - \frac{1}{2}\left(\frac{32}{3}\,x^3 + 4\,x + \underset{x \to 0}{o}\left(x^3\right)\right)^2 + \frac{1}{24}\left(4\,x + \underset{x \to 0}{o}\left(x\right)\right)^4 + \underset{x \to 0}{o}\left(x^4\right)$$
$$= 1 - 18\,x^2 - 42\,x^4 + \underset{x \to 0}{o}\left(x^4\right).$$

On en tire d'une part : $\cos\left(\frac{3}{2}\sinh\left(4\,x\right)\right) - 1 \underset{x \to 0^{+}}{\sim} - 18\,x^{2}$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$\frac{1}{\cos\left(\frac{3}{2}\sinh\left(4\,x\right)\right)-1}+\frac{1}{18\,x^2}=\frac{18\,x^2+\left(-18\,x^2-42\,x^4+\frac{o}{x\to0}\left(x^4\right)\right)}{18\,x^2\left(\cos\left(\frac{3}{2}\sinh\left(4\,x\right)\right)-1\right)}=\frac{-42\,x^4+\frac{o}{x\to0}\left(x^4\right)}{18\,x^2\left(\cos\left(\frac{3}{2}\sinh\left(4\,x\right)\right)-1\right)}\underset{x\to0^+}{\sim}\frac{-42\,x^4}{-324\,x^4}=\frac{7}{54}.$$

On en déduit : $\lim_{x \to 0^+} \left(\frac{1}{\cos(\frac{3}{2}\sinh(4x)) - 1} + \frac{1}{18x^2} \right) = \frac{7}{54}$.

Corrigé 100. On écrit:

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{2}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$).

 $\leftarrow \text{page } 9$

 \leftarrow page 9

On en déduit :

$$\begin{split} -\frac{1}{n} - \frac{12}{n+3} - \frac{7}{8\left(n-1\right)} &= -\frac{1}{n} - 12\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{7}{8}\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{111}{8\,n} + \frac{281}{8\,n^2} - \frac{871}{8\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$