1. DISTRIBUCIONES BIDIMENSIONALES

Los N elementos de la población son clasificados según dos caracteres X e Y, cuyas modalidades las notamos respectivamente por x_i e y_j donde i varía desde 1 hasta p y j varía desde 1 hasta q.

 n_{ij} \rightarrow **Frecuencia absoluta**: número de individuos de la población que presentan la modalidad x_i de X y la modalidad y_i de Y.

Tabla de frecuencias absolutas de una variable bidimensional

_						suma
	(X/Y)	y_1	y_2	<i>y</i> ₃	 y_q	n_{i} .
	x_1	n_{11}	n_{12}	n_{13}	 n_{1q}	n_{1} .
	x_2	n_{21}	n_{22}	n_{23}	 n_{2q}	n_2 .
	x_3	n_{31}	n_{32}	n_{33}	 n_{3q}	n ₃ .
	•••				 	
	x_p	n_{pl}	n_{p2}	n_{p3}	 n_{pq}	n_p .
suma	$n_{\cdot j}$	$n_{\cdot 1}$	$n_{\cdot 2}$	$n_{\cdot 3}$	 $n_{\cdot q}$	n=N

Nota: el primer subíndice indica el número de fila y el segundo subíndice indica el número de columna

 $f_{ij} \rightarrow$ **Frecuencia relativa**: proporción de individuos de la población que presentan la modalidad x_i de X y la modalidad y_j de Y. Se obtiene dividiendo la frecuencia absoluta entre el número de elementos de la población (N).

Tabla de frecuencias relativas de una variable bidimensional

					suma
(X/Y)	y_1	y_2	<i>y</i> ₃	 y_q	n_{i} .
x_1	f_{11}	f_{12}	f_{13}	 f_{lq}	$f_{I\cdot}$
x_2	f_{21}	f_{22}	f_{23}	 f_{2q}	$f_{2\cdot}$
x_3	f_{31}	f_{32}	f_{33}	 f_{3q}	f_3 .
x_p	f_{pI}	f_{p2}	f_{p3}	 f_{pq}	$f_{p\cdot}$
$f_{\cdot i}$	f. ₁	f .2	f.3	 f.a	f=1

suma

2. DISTRIBUCIONES MARGINALES

Estas distribuciones nos indican cómo se distribuye una variable independientemente de los valores que tome la otra.

Distribución marginal de X:

X	n_{i} .
x_1	n_1 .
x_2	n_2 .
x_3	n_3 .
x_p	n_p .
suma	n=N

Distribución marginal de Y:

Y	n _{·j}
y_1	$n_{\cdot 1}$
y_2	$n_{\cdot 2}$
y 3	n .3
y_q	$n_{\cdot q}$
suma	n=N

Existe una única distribución marginal de X y una única distribución marginal de Y.

3. DISTRIBUCIONES CONDICIONADAS

Son distribuciones unidimensionales obtenidas a partir de las bidimensionales, manteniendo fijo un valor en una de las variables y considerando los valores que toma la otra con sus respectivas frecuencias

Distribución de X condicionada al valor y_i de Y:

$X Y=y_j$	$n_{i j}$
x_1	n_{1j}
x_2	n_{2j}
x_3	n_{3j}
•••	
x_p	n_{pj}
suma	$n_{\cdot j}$

Distribución de Y condicionada al valor x_i de X:

$Y X=x_i$	$n_{j i}$
y_1	n_{il}
y_2	n_{i2}
y 3	n_{i3}
y_q	n _{iq}
suma	n_{i} .

4. COVARIANZA

$$\sigma_{XY} = Cov(X, Y) = \frac{1}{N} \sum_{i=1}^{q} \sum_{i=1}^{p} (x_i - \overline{x})(y_j - \overline{y}) n_{ij} = \frac{1}{N} \sum_{i=1}^{q} \sum_{i=1}^{p} x_i y_j n_{ij} - \overline{xy}$$

5. INDEPENDENCIA ESTADÍSTICA

- Las variables X e Y se dicen **estadísticamente dependientes** cuando la variación de una influye en la distribución de frecuencias de la otra.
- Cuando las distribuciones condicionadas a cualquier valor de la otra variable sean iguales, diremos que las variables X e Y son estadísticamente **independientes**. Las variables son independientes si y solamente si ocurre que $f_{ij} = f_{i\cdot}f_{\cdot j}$ para cualquier pareja (i,j).
- Cuando las variables son independientes la covarianza vale 0 (siempre).
- Cuando la covarianza vale 0 las variables son incorreladas.

6. NUBE DE PUNTOS:

Se representan las observaciones en unos ejes cartesianos. Para cada individuo se tiene un punto con coordenadas (x_i, y_i) , que respresenta el valor observado en (X, Y).

Algunos ejemplos:

7. RECTAS DE REGRESIÓN:

Método de los **mínimos cuadrados**: se minimiza la suma de los residuos al cuadrado. Para predecir Y en función de X: Y = aX + b

Y X Variable dependiente: Y Variable independiente: X Recta de regresión: $Y = aX + b$	$X Y$ Variable dependiente: X Variable independiente: Y Recta de regresión: $X = \alpha Y + \beta$
$a = \frac{\sigma_{XY}}{\sigma_X^2} \qquad b = \overline{y} - \frac{\sigma_{XY}}{\sigma_X^2} \overline{x}$	$\alpha = \frac{\sigma_{XY}}{\sigma_Y^2} \qquad \beta = \overline{x} - \frac{\sigma_{XY}}{\sigma_Y^2} \overline{y}$

Posición relativa de las rectas de regresión:

Ambas rectas pasan por el punto (\bar{x}, \bar{y})

- Si las pendientes de las rectas no son iguales, las rectas se cortan en ese punto.
- Si las pendientes de las rectas son iguales, las rectas son coincidentes.

8. BONDAD DE AJUSTE

