4 102

1. $E := \{\{0\}, \{0, 1\}, \{0, 2\}, \{0, 3\}, \{0, 2, 3\}, \{0, 1, 2, 3\}\}$ gesucht: Algebra \mathcal{A} auf $A := \{0, 1, 2, 3\}$, sodass $\forall M \in E : M$ ist Unteralgebra von A

$$\mathcal{A} = (A, w_1, w_2, w_3) \text{ (Typ } (0,2,2))$$

$$w_1 : A^0 \to A \quad w_2 : A^3 \qquad \to A \quad w_3 : A^3 \to A$$

$$() \mapsto 0 \quad (a, b, c) \quad \mapsto \begin{cases} 2 & \text{, falls } \{a, b, c\} = \{0, 1, 3\} \\ a & \text{, sonst} \end{cases} \quad (a, b, c) \mapsto \begin{cases} 3 & \text{, falls } \{a, b, c\} = \{0, 1, 2\} \\ a & \text{, sonst} \end{cases}$$

$$\mathcal{P}(A) = \{ \qquad \emptyset, \quad w_1! \qquad \{0\}, \qquad \{1\}, \quad w_1! \qquad \{2\}, \quad w_1! \\ \{3\}, \quad w_1! \qquad \{0, 1\}, \qquad \{0, 2\}, \qquad \{0, 3\}, \\ \{1, 2\}, \quad w_1! \qquad \{1, 3\}, \quad w_1! \qquad \{2, 3\}, \quad w_1! \qquad \{0, 1, 2\}, \quad w_3! \\ \{0, 1, 3\}, \quad w_2! \qquad \{0, 2, 3\}, \qquad \{1, 2, 3\}, \quad w_1! \qquad \{0, 1, 2, 3\} \end{cases} \}$$

Wobei $w_i!$ bedeutet, dass die Menge nicht unter w_i abgeschlossen ist.

2. Ist 1. für beliebiges $E \subseteq \mathcal{P}(A)$ lösbar?

Nein, z.B. für $E = \emptyset$ gibt es keine Algebra $\mathcal{A} = (A, (w_i)_{i \in I})$ ohne Unteralgebren, da A immer eine Unteralgebra von sich selbst ist!

3. **gesucht:** Kriterium / Algorithmus um entscheiden zu können ob für gegebenes, endliches A und $E \subseteq \mathcal{P}(A)$ eine Algebra $\mathcal{A} = (A, w_1, w_2, ...)$ existiert mit $Sub(\mathcal{A}) = E$.

Algorithmus (A ... Menge, E ... gewünschte Unteralgebren) for $(P \in \mathcal{P}(A) \setminus E)$ { (1) $C:=\bigcap_{B\in E, P\subseteq B}B$; (2)if $(C \setminus P = \emptyset)$ { (3)(4)raise Error("nicht lösbar"); (5)} else { $w_P:A^{|P|}\to A, (x_1,...,x_{|P|})\mapsto \begin{cases} y\in C\setminus P & \text{, falls }\{x_1,...,x_{|P|}\}=P\\ x_1 & \text{, sonst} \end{cases}$ (6)(7)füge w_P zur Algebra hinzu; (8)} } (9)

Jede Operation w erreicht (für unsere Zwecke), dass wenn $x_1,...,x_n$ in einer Unteralgbra U liegen, dass dann auch $y=w(x_1,...,x_n)\in U$ sein muss.

Damit ein $P \in \mathcal{P}(A) \setminus E$ nicht in $Sub(\mathcal{A})$ liegt muss also ein w_P garantieren, dass wenn $P \subseteq U \Longrightarrow \exists y \notin P : y \in U$. Natürlich muss das y so gewählt werden, dass $\forall B \in E : P \subset B \Longrightarrow y \in B$, da sonst $B \notin Sub(\mathcal{A})$. $\Longrightarrow y \in (\bigcap_{B \in E, P \subseteq B} B)$.

Falls aber $\left(\bigcap_{B\in E,P\subseteq B}B\right)=\emptyset$ kann nach der Überlegung von oben keine Lösung existieren. Sonst garantiert die Operation wie in (6) beschrieben, dass $P\notin Sub(\mathcal{A})$ für alle $P\notin E$ (wegen der Schleife in (1)). Für $Q\in E$ hat keine der Funktionen $(w_P)_{P\in\mathcal{P}(A)\backslash E}$ einen Effekt, da immer entweder gilt

• $P \subseteq Q$ und somit

$$\forall q_1,...,q_{|P|} \in Q: w_P(q_1,...,q_{|P|}) = \begin{cases} y & \text{, falls } \{q_1,...,q_{|P|}\} = P \\ q_1 & \text{, sonst} \end{cases}$$

Da $Q \in E$ und $P \subseteq Q$ gilt nach Konstruktion, dass $y \in Q$ und $q_1 \in Q$ sowieso.

• $P \setminus Q \neq \emptyset$ und somit $\exists p \in P \setminus Q$ damit kann nicht der Fall $\{q1,...,q_{|P|}\} = P$ eintreten. Also gilt

$$\forall q_1, ..., q_{|P|} \in Q : w_P(q_1, ..., q_{|P|}) = q_1 \in Q.$$

In beiden Fällen gilt also, dass Q bezüglich allen $(w_P)_{P \in \mathcal{P}(A) \setminus E}$ abgeschlossen ist.