Estudio Comparativo de los Programas de Modelos de Red de Poros OpenPNM y PoreFlow para la Caracterización de Medios Porosos

Edgar G. Martínez-Mendoza¹, Martín A. Díaz-Viera²

Posgrado en Ciencias de la Tierra, Instituto Mexicano del Petróleo (IMP)

edgar.g.martinez@hotmail.com¹, mdiazv@imp.mx²

Resumen

En este trabajo se presenta la comparación de los programas de código abierto OpenPNM y PoreFlow para la generación de modelos de red de poros, los cuales se emplean dentro de una metodología sistemática para la caracterización de medios porosos a escala de poro. Siguiendo la metodología aquí presentada, se modela flujo y desplazamiento inmiscible a escala de poro con el propósito de predecir permeabilidad absoluta y curva de presiones capilares, las cuales son regularmente obtenidas a partir de pruebas de laboratorio y/o correlaciones experimentales. El flujo de trabajo comienza con la selección de una imagen micro-CT de una caliza, de libre acceso, que es similar a una muestra de roca empleada en una prueba experimental de drene primario. A partir de esta información, se generan redes de poros con los programas bajo análisis, considerando las características estructurales del medio reportadas en los datos de libre acceso. Posteriormente, para simular flujo y drene primario, se toman en cuenta las mismas condiciones de la prueba de laboratorio. Finalmente, permeabilidad y presiones capilares son estimadas. La comparación de los programas y sus resultados permiten evaluar las etapas de la metodología. En general, el presente análisis muestra la importancia de considerar una metodología con un enfoque sistemático para la caracterización de medios porosos a escala de poro.

Objetivos

- 1. Bajo una metodología sistemática, comparar los alcances de dos programas de código abierto para modelos de red de poros.
- 2. Mostrar la importancia de considerar una metodología con un enfoque sistemático para la caracterización de medios porosos a escala de poro.

Introducción

Modelo de Red de Poros (MRP): Técnica que discretiza un medio poroso, con el fin de estudiar la influencia de la morfología del medio en diferentes fenómenos.

Principales características:

- El espacio poroso se representa mediante una red
- Se asignan propiedades de conectividad y geométricas
- Predicciones de propiedades considerablemente más rápidas que las mediciones directas
- Puede emplear pequeñas muestras de recortes y fragmentos de núcleos
- El espacio poroso se representa por entes geométricos
- Conociendo el espacio poroso, se pueden estudiar diferentes fenómenos

Figura 1: Poros y gargantas en una imagen micro-CT Figura 2: Representación de un fenómeno mediante un MRP. de una arenisca.

Elementos que conforman un MRP

Las partes fundamentales de un MRP son la estructura del medio y los modelos de los fenómenos físicos. Con el fin de entender mejor el modelo en general, se proponen cinco elementos.

Figura 3: Elementos fundamentales para counstituir un MRP.

Software para MRP: OpenPNM y PoreFlow

Cuadro 1: Principales características de los programas para MRP.

	OpenPNM	Poreflow	
Grupo	Porous Materials Engineering and Analysis Lab	Petroleum Engineering & Rock Mechanics Group	
	Dr. Jeff Gostick/University of Waterloo	Dr. Martin Blunt/Imperial College London	
Lenguaje	Python 3.4	C++	
Multiplataforma	✓	\checkmark	
Código abierto	\checkmark	\odot	
Licencia	MIT		

Cuadro 2: Procesos de estudio de los programas para MRP.

	Flujo	Drene	Imbibición	Transporte, calor, Ohm	Redes irregulares
OpenPNM	\checkmark	\checkmark		\checkmark	\checkmark
Poreflow	\checkmark	\checkmark	\checkmark		\checkmark

Drene Flujo

	OpenPNM	Poreflow		OpenPNM	Poreflow
Modelo	Hag-Poi	Hag-Poi	Entrampamiento	\checkmark	\checkmark
WIOGCIO	1145 1 01	Tiug Toi	Modelo Pc	Young-Laplace	Varios
Conductancia	Cilindros	Cil, rect y tri	heta	Constante e igual	Distribución
			Procesos	Drene1	Drene1, Imbibición1,

Caso de Estudio

Se emplea la información disponible de una arenisca Fontainebleau (Berg and Held, obtenida por imágenes Micro-CT. La muestra tiene una porosidad de 8%.

mado de Berg(2016).

Figura 4: Imágen micro-CT de la muestra Fontainbleau. To- Figura 5: MRP para la muestra Fontaibleau a partir de Open-PNM y Paraview.

Fases

■ Aceite y salmuera \Longrightarrow Drene

■ Aceite \Longrightarrow Flujo

Fase invasora (no mojante): Aceite Fase defensora (mojante): Salmuera

Cuadro 3: Propiedades de los fluidos.

Propiedad	Aceite	Salmuera	Unidad
Viscosidad	1.39x10-3	1.05x10-3	kg/m.s
Tensión interfacial	0.0)30	N/m
Ángulo de contacto	5	5	Grados

Cuadro 5: Drene primario en los MRP.

0.339

Resultados

El flujo de mercurio fue a lo largo del eje x. Los poros entrada conforman una condición de frontera de 0.2 [MPa]; el conjunto de poros salida constituyen una frontera de 0.1 [MPa].

Cuadro 4: Características de los MRP.

V	Propiedad	OpenPNM	Poreflow
	k [mD]	102.49	27.73
	$Pc_{\text{máx}}$ [Pa]	13900	48302
i	S_{avin}	0.328	0.339

lov
8
1
tri
tri
5
)

Saturación de agua

Figura 6: Presión en el MRP de OpenPNM al término Figura 7: Comparación de la curva de P_c entre Opende la simulación. PNM (Azul) y Poreflow (Rojo).

Conclusiones

La geometría de los poros y gargantas influye en gran medida tanto en flujo como en drene. En flujo, el valor de k difiere casi tres veces; en drene, la curva obtenida por Poreflow está por arriba de la de OpenPNM. Esto último indica que las representaciones de las gargantas en Poreflow poseen un diámetro menor que en OpenPNM. A pesar de estas diferencias, en drene, la forma de la curva de P_c es similar, lo cual refleja la topología del medio bajo estudio. La metodología sistemática permitió identificar las diferencias y consideraciones de cada implementación computacional, así como sus repercusiones en los modelos de flujo y drene.

Referencias

Berg, C. F. and Held, R. (2016). Fundamental Transport Property Relations in Porous Media Incorporating Detailed Pore Structure Description. *Transport in Porous Media*, 112(2):467–487.

Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A., Day, H., Spellacy, B., Sharqawy, M. H., Bazylak, A., Burns, A., Lehnert, W., and Putz, A. (2016). OpenPNM: A Pore Network Modeling Package. Computing in Science and Engineering, 18(4):60–74.

Martínez-Mendoza, E. G. (2016). Modelos de red de poros para la obtención de propiedades efectivas de flujo y transporte en yacimientos petroleros. Licenciatura, Universidad Nacional Autónoma de México.

Pore Scale Modelling, Imperial College London (2017). http://www.imperial.ac.uk/earth-science/research/researchgroups/perm/research/pore-scale-modelling/, 10 de noviembre de 2017.