Matemática combinatória e aplicações em criptografia

Thais Bardini Idalino

Departamento de Informática e Estatística Universidade Federal de Santa Catarina

Combinatorial Group Testing

Combinatorial Group Testing

Combinatorial Group Testing

New testing strategy can speed up COVID-19 test results for healthcare workers

In The Journal of Molecular Diagnostics investigators share a new methodology for testing pooled samples that maximizes the proportion of samples resolved after a single round of testing

Peer-Reviewed Publication

ELSEVIER

Philadelphia, April 26, 2021 - Fast turnaround of COVID-19 test results for healthcare workers is critical. Investigators have now developed a COVID-19 testing strategy that maximizes the proportion of negative results after a single round of testing, allowing prompt notification of results. The method also reduces the need for increasingly limited test reagents, as fewer additional tests are required. Their strategy is described in *The Journal of Molecular Diagnostics*, published by Elsevier.

Diagnostics jmdjournal.org

Check for updates

19 test results for h

Molecular Diagnostics investigators share a nat maximizes the proportion of samples re-

nature > scientific reports > articles > article

Article Open access | Published: 26 July 2023

Adaptive group testing strategy for infectious diseases sting strategy can sk using social contact graph partitions

Jingyi Zhang [™] & Lenwood S. Heath

Scientific Reports 13, Article number: 12102 (2023) | Cite this article

1581 Accesses 2 Citations Metrics

A Nonadaptive Combinatorial Group Testing **Strategy to Facilitate Health Care Worker** Screening during the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Outbreak

John H. McDermott,*† Duncan Stoddard,‡ Peter J. Woolf,§ Jamie M. Ellingford,*† David Gokhale,*† Algy Taylor,* Leigh A.M. Demain, * William G. Newman, * † and Graeme Black* †

From the Manchester Centre for Genomic Medicine, * St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution and Genomic Sciences, T School of Biological Sciences, University of Manchester, Manchester, United Kingdom; DS Analytics and Machine Learning Ltd., London, United Kingdom; and Origami Assays, Ann Arbor, Michigan

26, 2021 - Fast VID-19 test results for 's is critical. Investigators ed a COVID-19 testing mizes the proportion of

negative results after a single round of testing, allowing prompt notification of results. The method also reduces the need asingly limited test reagents, as lditional tests are required. Their is described in The Journal of r Diagnostics, published by Elsevier.

blication

325 Negative

Group testing performance evaluation for SARS-CoV-2 massive scale screening and testing

Ozkan Ufuk Nalbantoglu ^{1,2,⊠}

▶ Author information ▶ Article notes ▶ Copyright and License information

PMCID: PMC7330001 PMID: 32615934

METHODS article

Front. Public Health, 17 August 2021 Sec. Infectious Diseases: Epidemiology and Prevention Volume 9 - 2021 | https://doi.org/10.3389/fpubh.2021.583377

Group Testing for SARS-CoV-2 Allows for Up to 10-Fold Efficiency Increase Across Realistic Scenarios and Testing Strategies Updated

Dennis Elbrächter^{5‡} David S. Fischer⁶ Julius Berner^{5‡}

1 - CFF(4, 6)

e assim por diante..

Nenhum elemento é *coberto* por qualquer outro

1 - CFF(4, 6)

Em quaisquer 2 colunas, precisamos encontrar uma "matriz identidade" 2x2

1 - CFF(4, 6)

	1	2	3	4	5	6
Teste 1	1	1	1	0	0	0
Teste 2	1	0	0	1	1	0
Teste 3	0	1	0	1	0	1
Teste 4	0	0	1	0	1	1

Em quaisquer 2 colunas, precisamos encontrar uma "matriz identidade" 2x2

1 - CFF(4, 6)

	1	2	3	4	5	6
Teste 1	1	1	1	0	0	0
Teste 2	1	0	0	1	1	0
Teste 3	0	1	0	1	0	1
Teste 4	0	0	1	0	1	1

Em quaisquer 2 colunas, precisamos encontrar uma "matriz identidade" 2x2

1 - CFF(4, 6)

Em quaisquer 2 colunas, precisamos encontrar uma "matriz identidade" 2x2

$$\binom{6}{2} = 15$$

1 - CFF(4, 6)

Essa não é uma 2-CFF!

1 - CFF(4, 6)

1 - CFF(4, 6)

Essa não é uma 2-CFF!

	1	2	3	4	5	6	7	8	9	10	11	12
Teste 1	1			1			1			1		
Teste 2	1				1			1			1	
Teste 3	1					1			1			1
Teste 4		1		1					1		1	
Teste 5		1			1		1					1
Teste 6		1				1		1		1		
Teste 7			1	1				1				1
Teste 8			1		1				1	1		
Teste 9			1			1	1				1	

2 - CFF(9, 12)

2 - CFF(9, 12)

2 - CFF(9, 12)

	1	2	3	4	5	6	7	8	9	10	11	12
Teste 1	1			1			1			1		
Teste 2	1				1			1			1	
Teste 3	1					1			1			1
Teste 4		1		1					1		1	
Teste 5		1			1		1					1
Teste 6		1				1		1		1		
Teste 7			1	1				1				1
Teste 8			1		1				1	1		
Teste 9			1			1	1				1	
L												

2 - CFF(9, 12)

Teste 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
reste z =	1
	1
Teste 3 1 1 1	
Teste 4 1 1 1 1 1	
Teste 5 1 1 1 1	1
Teste 6 1 1 1 1	
Teste 7 1 1 1 1	1
Teste 8 1 1 1 1 1	
Teste 9 1 1 1 1 1	

2 - CFF(9, 12)

Em quaisquer 3 colunas, precisamos encontrar uma "matriz identidade" 3x3

$$\binom{12}{3} = 220$$

	1	2	3	4	5	6	7	8	9	10	11	12
Teste 1	1			1			1			1		
Teste 2	1				1			1			1	
Teste 3	1					1			1			1
Teste 4		1		1					1		1	
Teste 5		1			1		1					1
Teste 6		1				1		1		1		
Teste 7			1	1				1				1
Teste 8			1		1				1	1		
Teste 9			1			1	1				1	

2 - CFF(9, 12)

Em quaisquer d+1 colunas, precisamos encontrar uma "matriz identidade" (d+1)x(d+1)

d - CFF(t, n)

$X = \{1,2,3,4\}$
$B_1 = \{1,2\}$
$B_2 = \{1,3\}$
$B_3 = \{1,4\}$
$B_4 = \{2,3\}$
$B_5 = \{2,4\}$
$B_6 = \{3,4\}$

	\boldsymbol{B}_1		B_3	B_4	B_5	B_6
1	1	1	1	0	0	0
2	1	0	0	1	1	0
3	0	1	0	1	0	1
4	0	0	1	0	1	1

1 - CFF(4, 6)

Definição: Seja d um inteiro positivo. Uma d-cover-free family, chamada de d-CFF(t,n), é uma coleção de subconjuntos $\mathscr{B}=\{B_1,B_2,\ldots,B_n\}$ de um conjunto $X=\{1,2,\ldots,t\}$ tal que para quaisquer d+1 subconjuntos $B_{i_0},B_{i_1},\ldots,B_{i_d}\in\mathscr{B}$, nós temos que:

$$\left|B_{i_0} - \left(\bigcup_{j=1}^d B_{i_j}\right)\right| \geq 1.$$

Nenhum elemento é *coberto* pela união de quaisquer outros *d* elementos.

$X = \{1,2,,9\}$		\boldsymbol{B}_1	B_2	1
$B_1 \cup B_2 = \{1,2,3,4,5,6\}$	1	1		
$B_3 - (B_1 \cup B_2) = \{7,8,9\}$	2	1		
$B_4 - (B_1 \cup B_2) = \{7\}$				
$B_5 - (B_1 \cup B_2) = \{8\}$	3	1		
$B_6 - (B_1 \cup B_2) = \{9\}$	4		1	
$B_7 - (B_1 \cup B_2) = \{9\}$				
$B_8 - (B_1 \cup B_2) = \{7\}$	5		1	
$B_9 - (B_1 \cup B_2) = \{8\}$			4	
$B_{10} - (B_1 \cup B_2) = \{8\}$	6		T	
$B_{11} - (B_1 \cup B_2) = \{9\}$	7			
$B_{12} - (B_1 \cup B_2) = \{7\}$	/			
	8			

\boldsymbol{B}_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}
1			1			1			1		
1				1			1			1	
1					1			1			1
	1		1					1		1	
	1			1		1					1
	1				1		1		1		
		1	1				1				1
		1		1				1	1		
		1			1	1				1	

Estamos realmente economizando testes?

Construindo CFFs

1	1	1	0	0	0
1	0	0	1	1	0
0	1	0	1	0	1
0	0	1	0	1	1

- Para dados d e n, queremos uma d CFF(t, n) com o menor t possível
- Quando d=1 a construção de Sperner nos dá um t que cresce como $\log_2 n$ quando $n \to \infty$;
- Para $d \ge 2$, o melhor **lower bound** de t para uma d-CFF(t, n) é dado por

$$t \ge c \frac{d^2}{\log d} \log n$$

 Construções baseadas em polinômios, códigos de correção de erros, algoritmos probabilísticos, SAT solvers, etc.

Construção de Sperner

$$d=1$$

• Dado *n*, escolha o menor valor *t* tal que

$$n \le \binom{t}{\lfloor t/2 \rfloor}$$

- Considere $X = \{1, 2, ..., t\}$
- Liste todos os subconjuntos de X de cardinalidade $\lfloor t/2 \rfloor$

Construção de Sperner

$$d=1$$

Se n = 6, o menor t seria 4, já que

$$6 = \binom{4}{2}$$

Se n = 100, t = 9

$$100 \le \binom{9}{4}$$

Se n = 1500, t = 13

$$1500 \le \binom{13}{6}$$

$$X = \{1,2,3,4\}$$
 B_1 B_2 B_3 B_4 B_5 B_6
 $B_1 = \{1,2\}$ 1 1 1 0 0 0
 $B_2 = \{1,3\}$ 2 1 0 0 1 1 0
 $B_3 = \{1,4\}$ 3 0 1 0 1 0 1
 $B_4 = \{2,3\}$ 4 0 0 1 0 1 1
 $B_6 = \{3,4\}$

$$1 - CFF(4, 6)$$

Construção de polinômios

 $d \ge 1$

	0	1	2	x	x + 1	x+2	2x	2x+1	2x + 2
(0,0)	1	0	0	1	0	0	1	0	0
(0, 1)	0	1	0	0	1	0	0	1	0
(0, 2)	0	0	1	0	0	1	0	0	1
(1,0)	1	0	0	0	0	1	0	1	0
(1, 1)	0	1	0	1	0	0	0	0	1
(1, 2)	0	0	1	0	1	0	1	0	0
(2,0)	1	0	0	0	$\sqrt{1}$	0	0	0	1
(2,1)	0	1	0	0	/ 0	1	1	0	0
(2, 2)	0	0	1	1	0	0	0	1	0
					7				
					f(1) = 2				

Construção de polinômios

 $d \ge 1$

Theorem (E, F, F 1985*): Seja q uma potência de primo e k um inteiro positivo. Se

 $q \ge dk + 1$ então existe uma d-CFF (q^2, q^{k+1}) .

Polinômios de grau até k cujos coeficientes estão em um conjunto especial \mathbb{F}_q

$$q = 3, k = 1$$

$$\mathbb{F}_{3} = \mathbb{Z}_{3} = \{0,1,2\}$$

$$d \le \frac{q-1}{k} = 2$$
2-CFF(9,9)

^{*} P. Erdős, P. Frankl and Z. Furedi, Families of finite sets in which no set is covered by the union of r others, Israel J. Math., 51 (1985), 79–89.

E as aplicações em criptografia?

Aplicações em Criptografia

Fault-tolerant Digital Signatures

- Fault-tolerant digital signatures
 - Idalino, Moura, Custodio, Panario (2015), Idalino, Moura, Adams, (2019)
- Fault-tolerance in aggregation of signatures
 - Zaverucha, Stinson (2010). Idalino (2015). Hartung, Kaidel, Koch, Koch, Rupp (2016). Idalino, Moura (2018, 2021)
- Fault-tolerance in batch verification
 - Pastuszak, Pieprzyk (2000). Zaverucha, Stinson (2009).

Post-quantum one-time and multiple-times signature schemes

• Pieprzyk, Wang, Xing (2003). Zaverucha and Stinson, (2011). Kalach and Safavi-Naini (2016).

Key distribution

- Key distribution patterns
 - Mitchell and Piper (1988)
- Broadcast authentication
 - Safavi-Naini and Wang (1998) . Ling, Wang, Xing (2007).
- Broadcast encryption
 - Gafni, Staddon, Yin (1999). D'Arco and Stinson (2003)
- Traitor Tracing
 - Stinson and Wei (1998). Tonien and Safavi-Naini (2006)
- E muitas outras...

Mais detalhes:

- Autenticidade e integridade de documentos eletrônicos
- Usam um par de chaves criptográficas

Chave secreta Verificação da assinatura Chave pública Função de hash Cifragem Hash

ميريير.

Chave secreta Verificação da assinatura Chave pública Função de hash Cifragem Hash

Chave secreta Verificação da assinatura Chave pública Função de hash Cifragem Hash

E se as modificações importam?

E se as modificações importam?

- Um formulário assinado por uma instituição mas preenchido por outra pessoa
- Um documento assinado, com seções privadas que precisam ser escondidas
- Uma grande base de dados assinada, com algumas poucas modificações/erros

$$h_1 = \operatorname{Hash}(m_1)$$

$$h_2 = \operatorname{Hash}(m_2)$$

$$h_3 = \operatorname{Hash}(m_3)$$

$$h_4 = \operatorname{Hash}(m_4)$$

$$h_5 = \operatorname{Hash}(m_5)$$

$$h_6 = \operatorname{Hash}(m_6)$$

Assinatura

Hash(h₁ | h₂ | h₃)

Hash(h₁ | h₄ | h₅)

Hash(h₂ | h₄ | h₆)

Hash(h₃ | h₅ | h₆)

d-CFF

m_1	m_2	m_3	m_4	1115	m ₆
1	1	1	0	0	0
1	0	0	1	1	0
0	1	0	1	0	1
0	0	1	0	1	1

Assinatura

- É possível garantir integridade parcial de dados assinados usando d-CFFs
 - as assinaturas aumentam um pouco (~t hashes a mais)
- É possível escolher o *n* e *d* para ter uma maior precisão na localização das modificações
- É importante considerar questões práticas*
 - como dividir um documento em blocos?
 - como a escolha da CFF afeta o tempo de geração/verificação da assinatura?

^{*} Practical algorithms and parameters for modification-tolerant signature scheme. Anthony B. Kamers, Paola de O. Abel, Thaís B. Idalino, Gustavo Zambonin, Jean E. Martina. SBSeg 2024

Voltando às assinaturas digitais clássicas

O que acontece se tivermos milhares de assinaturas?

Agregação de assinaturas

Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Advances in Cryptology – EUROCRYPT 2003. Lecture Notes in Computer Science, vol. 2656, pp. 416–432 (2003)

Agregação de assinaturas

Agregação de assinaturas

- Dadas *n* assinaturas, usamos uma *d*-CFF(t,n) para gerar *t* agregações
- Verificamos apenas t assinaturas e conseguimos identificar até d documentos modificados

Resumindo

- Matemática combinatória vai além do que vimos em INE5403
- Existem diversas sub-áreas de pesquisa dentro do assunto
- Diversos problemas interessantes podem se beneficiar de técnicas combinatórias
- Aplicações são uma boa fonte de inspiração na criação de novos objetos matemáticos

1	1	1	0	0	0	
1	0	0	1	1	0	
0	1	0	1	0	1	
0	0	1	0	1	1	

Obrigada!

Thaís Bardini Idalino thais.bardini@ufsc.br