A Simpler Model for Recovering Superpoly on Trivium

Stéphanie Delaune, Patrick Derbez, Arthur Gontier, Charles Prud'homme

March 14, 2023

Context

Cube attacks: Dinur and Shamir at EUROCRYPT 2009

Variant of higher-order differencial attack

Let f(x,v) a stream cipher: $(x \in \mathbb{F}_2^n, v \in \mathbb{F}_2^m)$

$$\sum_{C_I} f(x, v) = \sum_{C_I} \left(\mathbf{p}(\mathbf{x}, \mathbf{v}) \prod_{i \in I} (v_i) + q(x, v) \right) = \mathbf{p}(\mathbf{x}, \mathbf{v})$$

main goal: Recover the superpoly p.

Context

Division property: Todo at EUROCRYPT 2015 Retrieve partial information of a polynomial

Exact Division property: Hao *et al.* at EUROCRYPT 2020 Retrieve complete superpoly

Monomial prediction: Hu et al. ASIACRYPT 2020 Retrieve complete superpoly

Section summary

- Monomial propagation / Division property
- 2 Trivium as a graph
- Oubling patterns
- 4 Solver Strategy & Arity of the Cube

Definitions

Definition (ANF, Algbraic Normal Form)

is a unique form to describe a boolean function $f \in \mathbb{F}_2$.

$$f(x_1, \dots, x_n) = \sum_{u \in \mathbb{F}_2^n} \prod_{i|u_i=1} x_i = a_0 + a_1 x_1 + \dots + a_n x_n + a_{1,2} x_1 x_2 + \dots + a_{n-1,n} x_{n-1} x_n + \dots + a_{1,2,\dots,n} x_1 x_2 \dots x_n$$

The constants a fully define the function f and so do the set of chosen u.

Definition

Definition (Cube)

A cube is a set of chosen variables in the Initialisation Vector.

Definition (Superpoly)

A sub-part of the an ANF. Each monomial contain at least the cube.

Example

If the cube is $v_1v_2v_4$ and we find the monomials: $x_1v_1v_2v_4$, $x_1x_5v_1v_2v_4$ and $v_1v_2v_4$ then the superpoly is $x_1 + x_1x_5 + 1$

GOAL: GET THE SUPERPOLY

Retrieve superpoly: Monomial propagation

Example

$$(y_1, y_2) = f^{(1)}(x_1, x_2, x_3) = (x_1 + x_3, x_1x_2 + x_1),$$

 $(z_1, z_2) = f^{(2)}(y_1, y_2) = (y_1y_2, y_1 + y_2)$

Retrieve superpoly: Monomial propagation

Example

$$(y_1, y_2) = f^{(1)}(x_1, x_2, x_3) = (x_1 + x_3, x_1x_2 + x_1),$$

 $(z_1, z_2) = f^{(2)}(y_1, y_2) = (y_1y_2, y_1 + y_2)$

$$y_1 = \underline{x_1} + x_3$$
 $x_1 \to y_1$
 $y_2 = x_1x_2 + \underline{x_1}$ $x_1 \to y_2$
 $y_1y_2 = x_1x_2x_3 + x_1x_2 + x_1x_3 + x_1$ $x_1 \to y_1y_2$

Retrieve superpoly: Monomial propagation

Example

$$(y_1, y_2) = f^{(1)}(x_1, x_2, x_3) = (x_1 + x_3, x_1x_2 + x_1),$$

 $(z_1, z_2) = f^{(2)}(y_1, y_2) = (y_1y_2, y_1 + y_2)$

$$y_1 = \underline{x_1} + x_3$$
 $x_1 \to y_1$
 $y_2 = x_1x_2 + \underline{x_1}$ $x_1 \to y_2$
 $y_1y_2 = x_1x_2x_3 + x_1x_2 + x_1x_3 + x_1$ $x_1 \to y_1y_2$

$$z_1 = \underline{y_1 y_2} \qquad x_1 \to y_1 y_2 \to z_1$$

$$z_2 = y_1 + y_2 \qquad x_1 \to y_1 \to z_2, x_1 \to y_2 \to z_2$$

GOAL: FIND ODD TRAILS

Differences with Division property

Division property: Bitwise constraints (copy, and, xor)

Example (Division Property model)

```
\begin{array}{rcl} (x_{11},x_{12},x_{13}) & = & \operatorname{copy}(x_1) \\ y_1 & = & \operatorname{xor}(x_{11},x_3) \\ a & = & \operatorname{and}(x_{12},x_2) \\ y_2 & = & \operatorname{xor}(a,x_{13}) \\ (y_{11},y_{12}) & = & \operatorname{copy}(y_1) \\ (y_{21},y_{22}) & = & \operatorname{copy}(y_2) \\ z_1 & = & \operatorname{and}(y_{11},y_{21}) \\ z_2 & = & \operatorname{xor}(y_{12},y_{22}) \end{array}
```

Differences with Division property

Division property: Bitwise constraints (copy, and, xor)

Example (Division Property model)

$$\begin{array}{rcl} (x_{11},x_{12},x_{13}) & = & \mathsf{copy}(x_1) \\ y_1 & = & \mathsf{xor}(x_{11},x_3) \\ a & = & \mathsf{and}(x_{12},x_2) \\ y_2 & = & \mathsf{xor}(a,x_{13}) \\ (y_{11},y_{12}) & = & \mathsf{copy}(y_1) \\ (y_{21},y_{22}) & = & \mathsf{copy}(y_2) \\ z_1 & = & \mathsf{and}(y_{11},y_{21}) \\ z_2 & = & \mathsf{xor}(y_{12},y_{22}) \end{array}$$

Example (Graph-based model)

Contribution

- Graph model: simple and usable in MILP or CP
- Doubling patterns: reduce search space by cutting even trails
- Arity approximation: provide good solver strategy.
- \bullet Better, Faster: Half to 80% even trails cuts, 6 to 60 times faster.

Section summary

- 1 Monomial propagation / Division property
- 2 Trivium as a graph
- Oubling patterns
- 4 Solver Strategy & Arity of the Cube

Trivium

Three registers initialised with:

$$A = Key$$

$$\mathsf{B} = \mathsf{Cube}$$

$$\mathsf{C} = \mathsf{Consts}$$

Trivium

Three registers initialised with:

$$A = Key$$

$$B = Cube$$

$$C = Consts$$

Register update:

$$A \ \leftarrow \ A_{69} + C_{66} + C_{109}C_{110} + C_{111}, A_1, \ldots, A_{92}$$

$$\mathsf{B} \ \leftarrow \ \mathsf{B}_{78} + \mathsf{A}_{66} + \mathsf{A}_{91} \mathsf{A}_{92} + \mathsf{A}_{93}, \mathsf{B}_{1}, \ldots, \mathsf{B}_{83}$$

$$\mathsf{C} \ \leftarrow \ \mathsf{C}_{87} + \mathsf{B}_{69} + \mathsf{B}_{82} \mathsf{B}_{83} + \mathsf{B}_{84}, \mathsf{C}_1, \dots, \mathsf{C}_{110}$$

Trivium

Three registers initialised with:

$$A = Key$$

$$B = Cube$$

$$C = Consts$$

Register update:

$$\mathsf{A} \ \leftarrow \ \mathsf{A}_{69} + \mathsf{C}_{66} + \mathsf{C}_{109} \mathsf{C}_{110} + \mathsf{C}_{111}, \mathsf{A}_1, \dots, \mathsf{A}_{92}$$

$$\mathsf{B} \ \leftarrow \ \mathsf{B}_{78} + \mathsf{A}_{66} + \mathsf{A}_{91} \mathsf{A}_{92} + \mathsf{A}_{93}, \mathsf{B}_{1}, \dots, \mathsf{B}_{83}$$

$$\mathsf{C} \ \leftarrow \ \mathsf{C}_{87} + \mathsf{B}_{69} + \mathsf{B}_{82} \mathsf{B}_{83} + \mathsf{B}_{84}, \mathsf{C}_1, \dots, \mathsf{C}_{110}$$

Output bit $z \leftarrow A_{66} + A_{93} + B_{69} + B_{84} + C_{66} + C_{111}$.

Trivium DFA

 ${\bf Idea:} \ \ {\bf Develop} \ \ {\bf the} \ \ {\bf DFA} \ \ {\bf from} \ \ z$

Figure: A solution for Trivium 672 considering s_{243} (66th bit of register C) as starter node. Blue nodes are the cube bits; the red one is the key bit.

Section summary

- 1 Monomial propagation / Division property
- Trivium as a graph
- 3 Doubling patterns
- 4 Solver Strategy & Arity of the Cube

Doubling patterns: Long-Double

Doubling patterns: **3-Consecutive**

Hard patterns: Looping edge

Looping edge is useful but too much constraints

Useless patterns: Cycle

Cycle is easier to constrain but not oftenly used in our case

Overlapping patterns: example on **3-Consecutive**

Overlapping patterns: example on **3-Consecutive**

Overlapping patterns: example on 3-Consecutive

19 - 27

Results on Trivium

Graph solver	R = 840/1	R = 841	R = 842
without doubling constraints	12 909	30 177	3 188 835
with Pattern 3-consecutive	5 953	18 929	720 779

Table: Number of solutions

Section summary

- 1 Monomial propagation / Division property
- Trivium as a graph
- Oubling patterns
- Solver Strategy & Arity of the Cube

Strategy

Division property: Hot restart

- Find one solution
- Restart from the beginning of the solution

Monomial Prediction: Divide-and-conquer

- Cut 200-400 rounds
- Solve all sub-solution
- \hookrightarrow Basic MILP strategy is not sufficient
 - → How to use trivium structure?

Arity approximation

Definition (Arity approximation: Liu at CRYPTO'17)

For each node approximate the number of reachable cube bits

Idea: develop the formula on two rounds to prevent most redundancies

Figure: Arity redundancies on two doubling transitions

Strategy

1. Compute arity approximation: Dynamic programming

- 2. Use solver strategy: (ex: Gurobi)
 - VarHintVal: Focus on doubling edges
 - BranchPriority: Focus on big arity
 - \hookrightarrow no cut

Results on Trivium

Model	Monomial Prediction	Division Property	MILP Graph	CP Graph
R = 675	3m	1m	3 s	15s
R = 735	4m	2m	10s	31m
R = 840/1	472m	269m	10m	> 24h
R = 840/2	316m	91m	10m	
R = 840/3	351m	108m	6m	
R = 841	956m	282m	19m	
R = 842	> 24h	990m	182m	

Table: Times on Trivium with 32 threads

Conclusion

A new Graph model that enables

- Doubling patterns
- Arity approximation
- faster MILP model: less even trails

Conclusion

A new Graph model that enables

- Doubling patterns
- Arity approximation
- faster MILP model: less even trails

Open question

- Multiple pattern overlapping ?
- Strengthen the solver strategy (other trivium features ?)
- Apply the method on other ciphers

Thank you for listening

Grain DFA

