Scalar-valued Functions (Linear and Affine)

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Think of a function as a machine f into which one may feed a real number. For each input x this machine outputs a single real number f(x)

- (A) What number x satisfies 10x = 3?
- (B) What 3-vector u satisfies $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times u = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$?

What vector X satisfies f(X) = B?

- (C) What polynomial p satisfies $\int_{-1}^{1} p(y)dy = 0$ and $\int_{-1}^{1} yp(y)dy = 1$?
- (D) What power series f(x) satisfies $x \frac{d}{dx} f(x) 2f(x) = 0$?
- (E) What number x satisfies $4x^2 = 1$?

Note

Linear and affine functions in this session are scalar-valued. We focus on the linear function machine of the previous slide, which outputs are scalar values. Remains will discuss later.

- $f: \mathbb{R}^n \to \mathbb{R}$ means that f is a function that maps real n-vectors to real numbers
- f(x) is the value of function f at x (x is referred to as the argument of the function).
- $f(x) = (x_1, x_2, ..., x_n)$
- A function $f: \mathbb{R}^n \to \mathbb{R}$ is linear if it satisfies the following two properties:
 - Homogeneity: For any n-vector x and any scalar α : $f(\alpha x) = \alpha f(x)$
 - Additivity: For any *n*-vector *x* and *y*, f(x + y) = f(x) + f(y)
- Superposition property:

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

A function that satisfies the superposition property is called linear.

 Show that inner product has superposition property so it is a linear function.

$$f(x) = a^{T}x = a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n}$$

If a function f is linear, superposition extends to linear combinations of any number of vectors:

$$f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha_1 f(x_1) + \dots + \alpha_k f(x_k)$$

- A function defined as the inner product of its argument with some fixed vector is linear.
- If a function is linear, then it can be expressed as the inner product of its argument with some fixed vector.
 - Proof
- The representation of a linear function f as $f(x) = a^T x$ is unique, which means that there is only one vector a for which $f(x) = a^T x$ holds for all x.
 - Proof
- Is average a linear function?
- Is maximum a linear function?

Affine Function

- A function $f: R^n \to R$ is affine if and only if it can expressed as $f(x) = a^T x + b$ (linear function plus a constant (offset))
- Superposition property for affine function: $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$, $\alpha + \beta = 1$
 - Proof

Affine Function

- Any scalar-valued function that satisfies the restricted superposition property is affine.
 - Proof

Conclusion: Important note: every affine function can be written as $f(x) = a^T x + b$ with:

$$a = (f(e_1) - f(0), f(e_2) - f(0), \dots, f(e_n) - f(0))$$

 $b = f(0)$

Conclusion

Method 1:

Linear:

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 f(x_1) + \dots + \alpha_n f(x_n), \forall \alpha_1, \dots, \alpha_n$$

• Affine:

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 f(x_1) + \dots + \alpha_n f(x_n)$$
, $\alpha_1 + \dots + \alpha_n = 1$

Method 2:

- Linear $f(x) = a^T x$
- Affine $f(x) = a^T x + b$

Conclusion

In many applications, scalar-valued functions of n variables, or relations between n variables and a scalar one, can be approximated as linear or affine functions, which is called "Model".

Scalar-valued function of a scalar

Derivative of function $f: R \to R$ at the point z: (f'(z)):

$$\lim_{t \to 0} \frac{f(z+t) - f(z)}{t}$$

- It gives the slope of the graph of f at the point (z; f(z)).
- f'(z) is a scalar-valued function of a scalar variable

Scalar-valued function of a vector

The partial derivative of function f: Rⁿ → R at the point Z, with respect to its ith argument

$$\frac{\partial f}{\partial x_i}(z) = \lim_{t \to 0} \frac{f(z_1, \dots, z_{i-1}, z_i + t, z_{i+1}, \dots, z_n) - f(z)}{t}$$
$$= \lim_{t \to 0} \frac{f(z + te_i) - f(z)}{t},$$

 The partial derivative is the derivative with respect to the ith argument, with all other arguments fixed.

Gradient

$$\nabla f(z) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(z) \\ \vdots \\ \frac{\partial f}{\partial x_n}(z) \end{bmatrix}.$$

Gradient of a combination of functions

$$f(x) = ag(x) + bh(x).$$

$$\nabla f(z) = a\nabla g(z) + b\nabla h(z)$$

How to find an approximate affine model

- $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable: its partial derivatives exist
- The (first-order) Taylor approximation of f near (or at) the point z:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n),$$

- z is n-vector
- $\hat{f}(x)$ is a linear function or a affine function?

$$\hat{f}(x) = f(z) + \nabla f(z)^T (x - z)$$

Constant- value of function at z

Deviation or Perturbation of x from z

$$\hat{f}(x) = \nabla f(z)^T x + (f(z) - \nabla f(z)^T z)$$
Linear function Constant
Hamid R. Rabige & Manyam Ramezani, SUT CE40282-1: Linear Algebra

Taylor approximation

 The Taylor approximation is sometimes called the linear approximation or linearized approximation of f (at z)

A function f of one variable, and the first-order Taylor approximation $\hat{f}(x) = f(z) + f'(z)(x-z)$ at z

Taylor approximation

Example:

Consider the function $f: \mathbf{R}^2 \to \mathbf{R}$ given by $f(x) = x_1 + \exp(x_2 - x_1)$, the Taylor approximation \hat{f} near the point z = (1, 2)

\overline{x}	f(x)	$\hat{f}(x)$	$ \hat{f}(x) - f(x) $
(1.00, 2.00)	3.7183	3.7183	0.0000
(0.96, 1.98)	3.7332	3.7326	0.0005
(1.10, 2.11)	3.8456	3.8455	0.0001
(0.85, 2.05)	4.1701	4.1119	0.0582
(1.25, 2.41)	4.4399	4.4032	0.0367

Regression model is (the affine function of x) $\hat{y} = x^T w + w_0$

- Example
- \triangleright y is selling price of house in \$1000 (in some location, over some period)
- regressor is

$$x = (\text{house area}, \# \text{ bedrooms})$$

(house area in 1000 sq.ft.)

regression model weight vector and offset are

$$\beta = (148.73, -18.85), \quad v = 54.40$$

• we'll see later how to guess β and v from sales data

House	x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Reference

- Chapter 2: Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
- Part of chapter 1 and chapter 6: Linear Algebra by David Cherney, etc.