Midterm review

Jia Chen jiac@ucr.edu

Q1: For the two-bit comparator, what's the minimum/simplest SOP presentation of LT?

	Inp	out	Output			
A	В	C	D	LT	EQ	GT
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Q1: For the two-bit comparator, what's the minimum/simplest SOP presentation of LT?

	Inp	out	Output			
A	В	C	D	LT	EQ	GT
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Q1: For the two-bit comparator, what's the minimum/simplest SOP presentation of LT?

Input				Output		
A	В	C	D	LT	EQ	GT
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

$$LT = A'B'D + A'C + B'CD$$

Q2: Find the minimum number of product term(s) to cover the following function and explain why.

	Input	Output		
A	В	C	Output	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	

Q2: Find the minimum number of product term(s) to cover the following function and explain why.

	Input	Output		
A	В	C	Output	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	

Q2: Find the minimum number of product term(s) to cover the following function and explain why.

	Input	Output		
A	В	C	Output	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	

Answer: 1

Output = B'
Literal is the simplest product term and the simplest sum term.

Q3: For the function f(A, B, C) = AB + A'C, show how the function f(A, C) = AB + A'C, show how the function f(A, C) = AB + A'C, show how the function f(A, C)

Q3: For the function f(A, B, C) = AB + A'C, show how the function f(A, C) = AB + A'C, show how the function f(A, C) = AB + A'C, show how the function f(A, C)

$$f (A, B, C) = AB + A'C$$

= ABC + ABC' + A'BC + A'B'C = $m_7 + m_6 + m_3 + m_1$

Q4: For the function f(A, B, C) = AB + A'C, show how the function f(A, C) = AB + A'C, show how the function f(A, C) = AB + A'C, show how the function f(A, C)

Q4: For the function f(A, B, C) = AB + A'C, show how the function f(A, C) = AB + A'C, show how the function f(A, C) = AB + A'C, show how the function f(A, C)

Q5: What's the value of F (a, b, c) = c' a + (b + a) c when a = 1, b = 0, and c = 1?

Q5: What's the value of F (a, b, c) = c' a + (b + a) c when a = 1, b = 0, and c = 1? F = 0*1 + (0+1)1 = 0 + 1*1 = 1

Q6: The binary number representation of decimal number 70 is ?

Q6: The binary number representation of decimal number 70 is 1000110

Q7: What's the simplest SoP form for the function $f(a, b, c, d) = m_1 + m_2 + m_3 + m_4$

Q7: What's the simplest SoP form for the function $f(a, b, c, d) = m_1 + m_2 + m_3 + m_4$? Please show all your work.

Q7: What's the simplest SoP form for the function $f(a, b, c, d) = m_1 + m_2 + m_3 + m_4$. Please show all your work.

Method 1: using Boolean algebra

$$f(a, b, c, d) = m_1 + m_2 + m_3 + m_4$$

= $a'b'c'd + a'b'cd' + a'b'cd + a'bc'd'$
= $a'b'd + a'b'cd' + a'bc'd'$
= $(a'b'd + a'b'cd') + a'bc'd'$
= $a'b'(d + cd') + a'bc'd'$
= $a'b'(d + c) + a'bc'd'$

= a'b'd + a'b'c + a'bc'd'

Method 2: using K-maps

Q8: What is a 2-input XOR gate's output value given input values a = 1, b = 0?

Q8: What is a 2-input XOR gate's output value given input values a = 1, b = 0?

Q9: Find the dual expression of (X'Y + Z)W'

The dual form is (X' + Y)Z + W'

Q10: What are the canonical SOP and POS (both) for each logic function. Please express each minterm and maxterm involved explicitly using the inputs, e.g., XYZ and A+B+C.

1) $F = \sum_{Y, Z, X} (3, 2, 6)$ and 2) $G(A, B, C) = \prod M(0, 3, 5, 6, 7)$

Q11: simplify $Y = \overline{A} \, \overline{B} + \overline{A} \, B \, \overline{C} + A + \overline{B}$ as much as possible.

Q11: $Y = \overline{A} \overline{B} + \overline{A} B \overline{C} + \overline{A} + \overline{B}$

Q12: Find the simplest SoP of

 $f(x_1, x_2, x_3) = \prod M(2, 3, 6)$

Q12: Find the simplest SoP of

$$f(x_1, x_2, x_3) = \prod M(2, 3, 6)$$

$$f = x_2' + x_1x_3$$

Q13: Perform the following operations involving eight-bit 2's complement numbers and indicate whether arithmetic overflow occurs. What are the decimal values of the minuend and subtrahend?

01110101 _ 101101 Q13: Perform the following operations involving eight-bit 2's complement numbers and indicate whether arithmetic overflow occurs. What are the decimal values of the minuend and subtrahend?

Solution:

01110101101101

0100000011101010100101

1011111

The last two carry-outs are different. Thus, there is overflow.

The value of the minuend is 1+4+16+32+64 = 117. The value of the subtrahend is -(01001010) = -(2+8+64) = -74 Q14: Use Boolean algebra laws/theorems to find the simplest SoP of y.

$$y(x_1, x_2, x_3) = \sum m(0, 3, 4, 7)$$

Q15: Use K-maps to find the simplest SoP of y. Show all your work.

$$y(x_1, x_2, x_3) = \prod M(1, 3, 7, 5, 6)$$

Q16: Use a 4-to-1 MUX and logic gates to design a circuit satisfying the following input (x_1, x_2, x_3) and output (y) relationship $y(x_1, x_2, x_3) = \prod M(1, 3, 7, 5, 6)$

Q17: Prove or disapprove the following equations.

(1)
$$ab + bc = ab'(c + c')$$

(2)
$$abc + ab'c + a'c' = ab'c + ab'c' + abc$$