

AMENDMENTS TO THE CLAIMS

SUB > 1. (Original) A method for manufacturing a Thin Film Inorganic Light Emitting Diode device, said method comprising the following steps, in order, :

- (1) preparing a nanoparticle dispersion of ZnS doped with a luminescent centre by precipitation from appropriate aqueous solutions comprising zinc ions, sulfide ions and dopant ions,
- (2) washing said dispersion of doped ZnS to remove non-precipitated ions,
- (3) coating onto a first conductive electrode said washed dispersion of doped ZnS, optionally after admixture with a binder,
- (4) applying on top of said coated layer resulting from step (3) a second conductive electrode, with the proviso that at least one of said first and second electrode is transparent.

2. (Original) A method according to claim 1 wherein said precipitation of step (1) is performed according to the double jet principle whereby a first solution containing zinc ions and a second solution containing sulfide ions are added together to a third solution.

S5
cont'd

A²cont'

3. (Original) A method according to claim 2 wherein said first solution also contains said dopant ions.
4. (Original) A method according to claim 1 wherein said dopant ions are Cu²⁺ ions.
5. (Original) A method according to claim 1 wherein said dopant ions are Cu⁺ ions.
6. (Original) A method according to claim 1 wherein said dopant ions are Mn²⁺ ions.
7. (Currently Amended) ~~A method~~ Method according to claims claim 1 wherein said washing of said dispersion of doped ZnS is performed by an ultrafiltration step, ultrafiltration step and a diafiltration step, or a and/or diafiltration step.
8. (Currently Amended) ~~A method~~ Method according to claim 7 wherein said ultrafiltration step, ultrafiltration step and a diafiltration step, or a and/or diafiltration step is (are) performed in the presence of a compound preventing agglomeration of nanoparticles.
9. (Original) A method according to claim 8 wherein said compound preventing the agglomeration of nanoparticles is a polyphosphate or polyphosphoric acid.
10. (Original) A method according to claim 1 wherein said first electrode is an Indium Tin Oxide (ITO) electrode.

Sub O
cont'd

Amend

11. (Original) A method according to claim 1 wherein said first electrode is a foil comprising a polythiophene/polyanion complex.
12. (Original) A method according to claim 11 wherein said polythiophene/polyanion complex is a poly(3,4-ethylenedioxythiophene)/polystyrene sulphonate complex.
13. (Original) A method according to claim 1 wherein said second conductive electrode is an aluminum electrode applied by vacuum deposition.
14. (Currently Amended) A Thin Film Inorganic Light Emitting Diode device manufactured according to the a method of any of the previous claims for manufacturing a Thin Film Inorganic Light Emitting Diode device, said method comprising the following steps, in order:
 - (1) preparing a nanoparticle dispersion of ZnS doped with a luminescent center by precipitation from appropriate aqueous solutions comprising zinc ions, sulfide ions and dopant ions,
 - (2) washing said dispersion of doped ZnS to remove non-precipitated ions,
 - (3) coating onto a first conductive electrode said washed dispersion of doped ZnS, optionally after admixture with a binder, and

*As conc'd
P-55
Cont'd*

(4) applying on top of said coated layer resulting from step (3) a second conductive electrode, with the proviso that at least one of said first and second electrodes is transparent.