Constructive representation theory and applications to causal structures Part IV: a taste of composition*

BY DENIS ROSSET

Perimeter Institute (\$ JTF)

Email: physics@denisrosset.com

July 12, 2019

^{*.} Download software for MATLAB/Octave at github.com/replab/replab

A taste of composition

Wreath product components

- The group $H = S_n$ permutes n components.
- Each component has symmetry group A + representation $\rho: A \to \mathcal{U}(d)$
- Wreath product group: $W = S_n \wr A = S_n \ltimes (A_1 \times ... \times A_n)$.

A taste of composition

Wreath product components

- The group $H = S_n$ permutes n components.
- Each component has symmetry group A + representation $\rho: A \to \mathcal{U}(d)$
- Wreath product group: $W = S_n \wr A = S_n \ltimes (A_1 \times ... \times A_n)$.

What should are natural representations of W?

• Imprimitive representation

$$\mathbb{R}^{nd} = \underbrace{\mathbb{R}^d \oplus \mathbb{R}^d \oplus \cdots \oplus \mathbb{R}^d}_{n \text{ times}}$$

• Primitive representation

$$\mathbb{R}^{d^n} = \underbrace{\mathbb{R}^d \otimes \mathbb{R}^d \otimes \cdots \otimes \mathbb{R}^d}_{n \text{ times}}$$

... with "what you expect" action.

Party in Bell scenarios

Party with m measurement settings with k outcomes

Wreath product group $S_m \wr S_k = S_m \ltimes (S_k \times \cdots \times S_k)$.

What should are natural representations of W?

Party in Bell scenarios

Party with m measurement settings with k outcomes

Wreath product group $S_m \wr S_k = S_m \ltimes (S_k \times \cdots \times S_k)$.

What should are natural representations of W?

Imprimitive representation

$$\mathbb{R}^{mk} = \underbrace{\mathbb{R}^k \oplus \mathbb{R}^k \oplus \cdots \oplus \mathbb{R}^k}_{m \text{ times}} \qquad \vec{P} = (\vec{P}(a|x=1), ..., \vec{P}(a|x=m))$$

Primitive representation

$$\mathbb{R}^{k^m} = \underbrace{\mathbb{R}^k \otimes \mathbb{R}^k \otimes \cdots \otimes \mathbb{R}^k}_{m \text{ times}} \qquad P(a_{x=1} a_{x=2} \dots a_{x=m})$$

Party in Bell scenarios

Party with m measurement settings with k outcomes

Wreath product group
$$S_m \wr S_k = S_m \ltimes (S_k \times \cdots \times S_k)$$
.

What should are natural representations of W?

Imprimitive representation (conditional probability distributions)

$$\mathbb{R}^{mk} = \underbrace{\mathbb{R}^k \oplus \mathbb{R}^k \oplus \cdots \oplus \mathbb{R}^k}_{m \text{ times}} \qquad \vec{P} = (\vec{P}(a|x=1), ..., \vec{P}(a|x=m))$$

Primitive representation (weights of deterministic strategies)

$$\mathbb{R}^{k^m} = \underbrace{\mathbb{R}^k \otimes \mathbb{R}^k \otimes \cdots \otimes \mathbb{R}^k}_{m \text{ times}} \qquad P(a_{x=1} a_{x=2} \dots a_{x=m})$$

Representations, representations...

Scenario with n parties with m measurement settings with k outcomes

Wreath product group $S_n \wr S_m \wr S_k = S_n \ltimes ((S_m \wr S_k) \times \cdots \times (S_m \wr S_k))$.

Two levels (sic!) of wreath products

Scenario level $S_n(S_m \wr S_k)$ Party level $S_m \wr S_k$ Final representation

Imprimitive List of POVM elements

Primitive Imprimitive P(abc...|xyz...)

Primitive Primitive Deterministic local strategies

```
See https://github.com/replab/replab/blob/master/jupyter/QCS_part4_TasteOfComposition.ipynb
```