Lustre

Paul Bienkowski 2bienkow@informatik.uni-hamburg.de

Proseminar "Ein-/Ausgabe - Stand der Wissenschaft"

2013-06-10

Outline

- 1 Introduction
- 2 The Project
 - Goals and Priorities
 - History
 - Who is involved?
- 3 Lustre Architecture
 - Network Architecture
 - Data Storage and Access
 - Software Architecture
- 4 Performance
 - Theoretical Limits
 - Bottlenecks
 - Improvements
 - Scalability
- 5 Conclusion
- 6 References

ntroduction The Project 0000 Lustre Architecture 000000000000000 Performance 00000 Conclusion Reference

What is Lustre

- parallel Filesystem
- well-scaling (capacity and speed)
- based on linux kernel
- optimized for clusters (many clients)

ntroduction The Project 0000 Lustre Architecture 00000000000000 Performance 00000 Conclusion Reference

What is Lustre

- parallel Filesystem
- well-scaling (capacity and speed)
- based on linux kernel
- optimized for clusters (many clients)

Linux cluster

The Project 0000 Lustre Architecture 0000000000000000 Performance 00000 Conclusion References

The Project

- 1 Introduction
- 2 The Project
 - Goals and Priorities
 - History
 - Who is involved?
- 3 Lustre Architecture
 - Network Architecture
 - Data Storage and Access
 - Software Architecture
- 4 Performance
 - Theoretical Limits
 - Bottlenecks
 - Improvements
 - Scalability
- 5 Conclusion
- 6 References

Goals

until **2007**"it's a science project"

(prototype)

2010 *used in high-performance production environments*

History

- started as a research project in 1999 by Peter Braam
- Braam founds Cluster File Systems
- Lustre 1.0 released in 2003
- Sun Microsystems aquires Cluster File Systems in 2007
- Oracle Corporation aquires Sun Mircrosystems in 2010
- Oracle ceases Luster development, many new Organizations continue development, including Xyratec, Whamcloud, and more
- in 2012, Intel aquires Whamcloud
- in 2013, Xyratec purchases the original Lustre trademark from Oracle

Who is involved?

```
Oracle no development, only pre-1.8 support
       Intel funding, preparing for exascale computing
       Cray funding, development (Titan Supercomputer)
    Xyratex hardware bundling
  OpenSFS (Open Scalable File Systems) "keeping Lustre open"
      EOFS (EUROPEAN Open File Systems) (community collaboration)
FOSS Community many joined one of the above to help development
            (e.g. Braam works for Xyratex now)
DDN, Dell, NetApp, Terascala, Xyratex
            storage hardware bundled with Lustre
```

Supercomputers

Lustre File System is managing data on more than 50 percent of the top 50 supercomputers and seven of the top 10 supercomputers.

- hpcwire.com, 2008 [9]

The biggest computer today (Titan by Cray, #1 on TOP500) uses Lustre.

n The Project 0000 Lustre Architecture 00000000000000 Performance 00000 Conclusion References

Lustre Architecture

- 1 Introduction
- 2 The Project
 - Goals and Priorities
 - History
 - Who is involved?
- 3 Lustre Architecture
 - Network Architecture
 - Data Storage and Access
 - Software Architecture
- 4 Performance
 - Theoretical Limits
 - Bottlenecks
 - Improvements
 - Scalability
- 5 Conclusion
- 6 References

Network Structure

Network Structure

graph reproduced from [1]

Introduction The Project 0000 Lustre Architecture 000000000000000 Performance 00000 Conclusion References

Network Structure

Network Architecture

Introduction The Project 0000 Lustre Architecture 000000000000000 Performance 00000 Conclusion References

Network Structure

Network Architecture

Introduction The Project 0000 Lustre Architecture 000000000000000 Performance 00000 Conclusion References

Network Structure

Network Architecture

Introduction The Project 0000 Lustre Architecture 0●0000000000000 Performance 00000 Conclusion References

Metadata Server (MDS)

Network Architecture

- store file information (metadata)
- accessed by clients to access files
- manage data storage
- at least one required
- up to \sim 100 possible (failovers)

uction The Project 0000 **Lustre Architecture 00●00000**00000000 Performance 00000 Conclusion References

Network Architecture

Network Structure

tion The Project 0000 **Lustre Architecture 00●00000**0000000 Performance 00000 Conclusion References

Network Structure

Network Architecture

The Project 0000 Lustre Architecture 000 000000000000 Performance 00000 Conclusion References

Object Storage Server (OSS)

- store file content (objects)
- accessed by clients directly
- at least one required

Network Architecture

- > 10000 OSS are used in large scale computers
- multiple targets per server
- multiple servers per target

Network Structure

Network Structure

OOOO Lustre Architecture OOOOOOOO

Targets

- two types
 - object storage target (OST)
 - metadata target (MDT)
- can be any block device
 - normal hard disk / flash drive / SSD
 - advanced storage arrays
- will be formatted for lustre
- up to 8 TiB / target (ext3 limit)

roduction The Project 0000 **Lustre Architecture 000000 00**0000000 Performance 00000 Conclusion Reference:

Failover

Network Architecture

- if one server failes, another one takes over
- backup server needs access to targets
- enabled on-line software upgrades (one-by-one)

Network Structure

Network Structure

System characteristics

Subsystem	Typical number of systems	Performance	Required atta- ched storage	Desirable hard- ware characteri- stics
Clients	1 - 100,000	1 GB/sec I/O, 1000 metadata ops	None	None
Object Storage	1 - 1000	500 - 2.5 GB/sec	total capacity / OSS count	Good bus bandwidth
Metadata Sto- rage	1 + backup (up to 100 with Lustre 2.4+)	3000 - 15000 metadata ops	1 - 2% of file system capacity	Adequate CPU power, plenty of memory

table reproduced from [1]

Traditional INodes

- used in many file system structures (e.g. ext3)
- each node has an index
- bijective mapping (file ↔ inode)
- contains metadata and data location (pointer)

Introduction The Project 0000 Lustre Architecture 0000000000 Performance 00000 Conclusion Reference

Data Storage and Access

Metadata (Lustre INodes)

- lustre uses similar structure
- INodes are stored on MDT
- INodes point to objects on OSTs
- file is *striped* across multiple OSTs (limit was 160, now

Striping

- RAID-0 type striping
- data is split into blocks
- block size adjustable per file/directory
- OSTs store every n-th block (with n being number of OSTs involved)
- speed advantage (multiple simultaneous OSS/OST connections)

Introduction The Project 9000 Lustre Architecture 000000000000 Performance 00000 Conclusion Reference

Data Storage and Access

Data safety

- striping does **not** backup any data
- but for the targets, a software or hardware RAID can be used
- in target RAIDs, a drive may fail (depends on RAID type)
- with failovers, server availability is ensured
- for data consistency: lustre log (similar to journal)
- for simultaneous write protection: LDLM (Lustre Distributed Lock Manager), distributed across OSS

Software Architecture - Server

- MDS/OSS has mkfs.lustre-formatted space
- Idiskfs kernel module required (based on ext3)
- kernel requires patching (not available for Linux > 2.6)

Limitations

- very platform dependent
- needs compatible kernel
- not a problem when using independent storage solution

Software Architecture - Client

- "patchfree" client: kernel module for Linux 2.6
- userspace library (liblustre)
- userspace filesystem (FUSE) drivers
- NFS access (legacy support)

Platform Support

- all Linux kernel versions > 2.6 supported
- NFS for Windows
- NFS/FUSE MacOS

Introduction The Project 0000 Lustre Architecture 0000000000000 Performance 00000 Conclusion References
Software Architecture

Interversion Compatibility

- Lustre usually supports interoperability [6].
- \blacksquare e.g. 1.8 clients \leftrightarrow 2.0 servers and vice versa
- ullet ightarrow on-line upgrade-ability using failover systems

Project 0000 Lustre Architecture 00000000000000 Perform

Performance

- 1 Introduction
- 2 The Project
 - Goals and Priorities
 - History
 - Who is involved?
- 3 Lustre Architecture
 - Network Architecture
 - Data Storage and Access
 - Software Architecture
- 4 Performance
 - Theoretical Limits
 - Bottlenecks
 - Improvements
 - Scalability
- 5 Conclusion
- 6 References

Introduction The Project 0000 Lustre Architecture 0000000000000 Performance ●0000 Conclusion References

Theoretical Limits

A well designed Lustre storage system can achieve 90% of underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Introduction The Project 0000 Lustre Architecture 00000000000000 Performance 00000 Conclusion References

Theoretical Limits

A well designed Lustre storage system can achieve 90% of underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

■ 160 OSS, 16 OST each, 2 TiB each (old limits)

Introduction The Project 0000 Lustre Architecture 0000000000000 Performance ●0000 Conclusion References

Theoretical Limits

A well designed Lustre storage system can achieve 90% of underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

- 160 OSS, 16 OST each, 2 TiB each (old limits)
- ightharpoonup ightharpoonup 2.5 PiB (Pebibyte) total storage

A well designed Lustre storage system can achieve 90% of underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

- 160 OSS, 16 OST each, 2 TiB each (old limits)
- ullet ightarrow 2.5 PiB (Pebibyte) total storage
- each OST delivers 50 MiB/s

A well designed Lustre storage system can achieve 90% of underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

- 160 OSS, 16 OST each, 2 TiB each (old limits)
- ightharpoonup ightharpoonup 2.5 PiB (Pebibyte) total storage
- each OST delivers 50 MiB/s
- $ightharpoonup
 ightarrow 800 \; ext{MiB/s} \; ext{combined throughput per OSS}$

A well designed Lustre storage system can achieve 90% of underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

- 160 OSS, 16 OST each, 2 TiB each (old limits)
- ightharpoonup ightharpoonup 2.5 PiB (Pebibyte) total storage
- each OST delivers 50 MiB/s
- $ightharpoonup
 ightarrow 800 \; ext{MiB/s} \; ext{combined throughput per OSS}$
- stripe size 16 MiB

A well designed Lustre storage system can achieve 90% of underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

- 160 OSS, 16 OST each, 2 TiB each (old limits)
- ightharpoonup ightharpoonup 2.5 PiB (Pebibyte) total storage
- each OST delivers 50 MiB/s
- $ightharpoonup
 ightarrow 800 \; ext{MiB/s} \; ext{combined throughput per OSS}$
- stripe size 16 MiB
- write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

A well designed Lustre storage system can achieve 90% of underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

- 160 OSS, 16 OST each, 2 TiB each (old limits)
- ightharpoonup ightharpoonup 2.5 PiB (Pebibyte) total storage
- each OST delivers 50 MiB/s
- $ightharpoonup
 ightarrow 800 \; ext{MiB/s} \; ext{combined throughput per OSS}$
- stripe size 16 MiB
- write 200 GiB file (80 stripes per OSS, 5 stripes per OST)
- ightharpoonup ightharpoonup 1.25 GiB per OSS, written in 1.6 seconds

A well designed Lustre storage system can achieve 90% of underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

- 160 OSS, 16 OST each, 2 TiB each (old limits)
- ightharpoonup ightharpoonup 2.5 PiB (Pebibyte) total storage
- each OST delivers 50 MiB/s
- $ightharpoonup
 ightarrow 800 \; ext{MiB/s} \; ext{combined throughput per OSS}$
- stripe size 16 MiB
- write 200 GiB file (80 stripes per OSS, 5 stripes per OST)
- ightharpoonup ightharpoonup 1.25 GiB per OSS, written in 1.6 seconds
- all OSS parallel, total speed 125 GiB/s

The Project 0000 Lustre Architecture 00000000000000 Performance 0000 Conclusion References

Metadata overhead

Common Task

directory traversal and stat (ls -1)

Problem

- one stat call for every file, each is a RPC (POSIX).
- each RPC generates overhead and I/O wait

Solution

- kernel detects traversal+stat and requests all stats from OSS in advance (parallel)
- a combined RPC reply is sent (up to 1 MB)

Metadata overhead (cont'd)

graph data from [4]

Performance ©

Improvements

Improvements

Recently implemented

OSS/file limit extended (wide striping, > 160 OSS possible)

Planned features

- ZFS instead of Idiskfs
- metadata striping / namespacing (multiple MDS)

Introduction The Project 0000 Lustre Architecture 00000000000000 Performance 0000 € Conclusion Reference Scalability

Scalability

- Lustre distributes bandwidth evenly over OSS (striping)
- different network types simultaneously (InfiniBand, TCP: GigE)
- more OSS can always be added (for more bandwidth and/or capacity)
- current bottleneck: MDS

- still heavyly developed
- many interested/involved companies + funding
- actively used in HPC clusters
- well scalable
- throughput depends on network
- still improvements for metadata performance required
- Linux 2.6 (Redhat Enterprise Linux, CentOS) only

References

- [1] http://www.raidinc.com/assets/documents/lustrefilesystem_wp.pdf 2013-05-17
- [2] http://www.opensfs.org/wp-content/uploads/2011/11/Rock-Hard1.pdf 2013-05-17
- [3] http://www.hpcadvisorycouncil.com/events/2013/Switzerland-Workshop/ Presentations/Day_3/10_Intel.pdf 2013-05-21
- [4] http://storageconference.org/2012/Presentations/T01.Dilger.pdf 2013-05-21
- [5] http://wiki.lustre.org/images/3/35/821-2076-10.pdf 2013-05-28
- [6] http://wiki.lustre.org/index.php/Lustre_Interoperability_-_Upgrading_From_ 1.8_to_2.0 2013-05-25
- [7] http://wiki.lustre.org/index.php/FAQ_-_Installation 2013-05-12
- [8] https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre 2013-05-21
- [9] http://www.hpcwire.com/hpcwire/2008-11-18/suns_lustre_file_system_powers_top_supercomputers.html 2013-05-28