Završni ispit iz Linearne algebre

7. srpnja 2009.

1. [2 boda] Zadana je matrica

$$A = \left[\begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array} \right].$$

i vektor $b=(2,4)^{\top}$, s elementima iz polja $\mathbb{Z}_5=\{0,1,2,3,4\}$. Riješite jednadžbu Ax=b.

2. [5 bodova] Zadan je skup X svih matrica oblika

$$A = \left[\begin{array}{cc} a+b & a-2b \\ a+3c & a-c \end{array} \right]$$

gdje su $a, b, c \in \mathbb{R}$.

- (a) (1 bod) Pokažite da je X vektorski potprostor prostora $M_{2,2}$ svih matrica s realnim koeficijentima.
- (b) (2 boda) Navedite definiciju baze općeg vektorskog prostora X. Dokažite da je rastav vektora $x \in X$ po bazi određen jednoznačno.
- (c) (2 boda) Za vektorski prostor X iz (a) odredite neku bazu i izračunajte njegovu dimenziju.
- 3. [4 boda] Zadan je linearni operator $A: P_2 \to M_{2,2}$ sa

$$A(a_0 + a_1x + a_2x^2) = \begin{bmatrix} a_0 & a_1 \\ a_2 & a_1 - a_2 \end{bmatrix}.$$

- (a) (2 boda) Odredite matricu tog linearnog operatora u paru kanonskih baza od P_2 i $M_{2,2}$.
- (b) (2 boda) Odredite rang i defekt tog linearnog operatora.
- 4. [2 boda] Zadan je linearni operator $A: \mathbb{R}^2 \to \mathbb{R}^2$ matricom

$$A = \left[\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array} \right]$$

u kanonskoj bazi. Odredite matricu istog operatora u bazi $\{(1,2)^\top,(-1,3)^\top\}.$

5. [2 boda] Na skupu $M_{2,2}$ svih matrica

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right],$$

gdje su $a,b,c,d\in\mathbb{R},$ zadana je norma $\|A\|=|a|+|b|+|c|+|d|.$

- (a) (1 bod) Dokažite da je to zaista norma.
- (b) (1 bod) Nađite udaljenost matrica $A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$ i $B = \begin{bmatrix} 1 & 3 \\ 3 & -2 \end{bmatrix}$ u toj normi.
- 6. [5 bodova] (a) (3 boda) Definirajte stabilnu kvadratnu matricu i dokažite da je kvadratna matrica A stabilna ako i samo ako vrijedi $e^{At} \to 0$ kada $t \to \infty$.
 - (b) (2 boda) Odredite sve $a \in \mathbb{R}$ takve da za matricu

$$A = \begin{bmatrix} -3 + 2a - 5i & a^2 + i \\ 0 & 1 - 2a - ai \end{bmatrix}$$

vrijedi $e^{At} \to 0$ kada $t \to \infty$.

- 7. [**2 boda**] Zadana je matrica $A = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$. Izračunajte njenu spektralnu normu $||A||_2 = \sup_{x \in \mathbb{R}^2} \frac{||Ax||_2}{||x||_2}$, gdje je $||.||_2$ euklidska norma, $||x||_2 = \sqrt{x_1^2 + x_2^2}$.
- 8. [7 bodova] Zadana je matrica

$$A = \left[\begin{array}{rrr} -3 & 1 & -1 \\ 0 & -5 & 3 \\ 1 & -3 & -6 \end{array} \right].$$

- (a) (3 boda) Formulirajte i dokažite Geršgorinov teorem o krugovima.
- (b) (1 bod) Crtanjem Geršgorinovih krugova pokažite da se spektar navedene matrice nalazi lijevo od imaginarne osi.
- (c) (2 boda) Opišite Jacobijevu metodu općenito. Navedite teorem o nužnim i dovoljnim uvjetima za konvergenciju te metode.
- (d) (1 bod) Pokažite da za navedenu matricu Jacobijeva metoda za rješavanje jednadžbe Ax = b konvergira za bilo koji $b \in \mathbb{R}^3$.
- 9. [6 bodova] Zadana je matrica

$$A = \left[\begin{array}{rrr} 0 & -3 & 0 \\ -5 & 0 & 0 \end{array} \right].$$

- (a) (3 boda) Odredite skraćenu singularnu dekompoziciju te matrice.
- (b) (2 boda) Izračunajte pseudoinverz matrice A tako da najprije odredite skraćenu singularnu dekompoziciju matrice A^+ .
- (c) (1 bod) Odredite $x \in \mathbb{R}^3$ tako da je za $b = (1, -2)^\top$ vrijednost $||Ax b||_2$ minimalna.
- 10. [5 bodova] Zadan je sustav diferencijalnih jednadžbi $y'_1 = -3y_2, y'_2 = 3y_1 + 2.$
 - (a) (1 bod) Napišite taj sustav u matričnom obliku.
 - (b) (2 boda) Izračunajte e^{At} , gdje je A matrica tog sustava.
 - (c) (2 boda) Riješite matrični sustav iz (a) uz početni uvjet $y_1(0) = 0$, $y_2(0) = 1$, te uz pomoć tog rješenja napišite odgovarajuće rješenje sustava.