Contrôle : généralités sur les fonctions

Seconde 9

2 Mai 2025

- Une présentation soignée est de rigueur.
- Tout effort de recherche, même non abouti, sera valorisé.
- Toute résultat, sauf mention contraire, doit être justifié.
- La calculatrice est Interdite.

Exercice 1 : Etude de fonction (6 points)

On étudie la fonction f dont la courbe représentative est donnée ci-après :

- (a) (1 point) Résoudre les équations suivantes. On justifiera ses résultats en faisant apparaître des traits de construction sur la figure.
 - i. f(x) = 2
 - ii. f(x) = -3
- (b) (1 point) Résoudre l'inéquation $f(x) \ge 0$. On justifiera ses résultats en faisant apparaître des traits de construction sur la figure.
- (c) (2 points) Compléter le tableau de variation de cette fonction.

x	
Variations de f	

(d) (2 points) En déduire le maximum et le minimum de f.

Exercice 2: Physique (4 points)

Deux pots de fleurs tombent d'un balcon. L'un contient un cactus et l'autre des roses. Le voisin d'en face observe la chute.

- On pose c(t) la hauteur par rapport au sol (en m) du pot contenant le cactus à l'instant t.
- On pose r(t) la hauteur par rapport au sol (en m) du pot contenant les roses à l'instant t.

Le temps t est donné en secondes.

Les courbes représentatives C_c et C_r sont données ci-après.

Répondre aux questions suivantes, en justifiant chacune des réponses.

- (a) (1 point) Quelle est la hauteur du balcon?
- (b) (1 point) À partir de quels instants chacune des plantes a commencé à tomber?
- (c) (1 point) Quelle plante a touché le sol en premier?
- (d) (1 point) À quels instants les pots étaient-ils à la même hauteur?

Exercice 3 : Géométrie (8 points)

Le quadrilatère ABCD est un rectangle vérifiant $AB = 10 \,\mathrm{cm}$ et $AD = 6 \,\mathrm{cm}$. Soit M un point quelconque du segment [AB]; N un point quelconque du segment [BC]; P un point quelconque du segment [CD] et Q un point quelconque du segment [AD], tels que AM = BN = CP = DQ. On pose x la longueur AM.

On pose f(x) l'aire du quadrilatère MNPQ.

- (a) (1 point) Compléter la figure en précisant les segments de longueur x dans cette exemple.
- (b) (1 point) Justifier que x est dans l'intervalle [0; 6].
- (c) (2 points) En considérant que l'aire de MNPQ par rapport à l'aire de ABCD, montrer que l'expression de f(x) en fonction de x est donnée par :

$$f(x) = 60 - x(10 - x) - x(6 - x)$$

- (d) (2 points) En déduire que pour tout $x \in [0;6]$ $f(x) = 2(x-4)^2 + 28$.
- (e) (2 points) À l'aide de la courbe représentative de g vérifiant $g(x) = 2(x-4)^2 + 28$ pour tout $x \in [0; 6]$, en déduire pour quelle valeur de x l'aire de MNPQ est minimale.

Exercice 4 : Dessin (2 points)

Dessiner la courbe représentative d'une fonction vérifiant tous les critères suivants :

- La fonction est définie sur [0;7];
- -f(3)=2;
- f admet exactement trois antécédents à -1;
- f est croissante sur [1;2];
- f admet 4 comme maximum;
- f atteint son minimum en 6.