Keccak- f[25] and ElGamal

Chenglong Ma s3629862

Abstract

This report briefly describes how $\operatorname{Keccak-} f[25]$ and $\operatorname{ElGamal}$ work.

1 Keccak

Keccak is an implementation of SHA-3 Cryptographic Hash Algorithm [1]. In this report, we discuss a lightweight version Keccak where we set state $b=25=5\times5\times2^l$ in its Sponge stage. I.e. l=0 and thus there is only **one** slice (5 × 5 bits) and 12 rounds as $n_rounds=12+2l$. Each round function consists of 5 steps to process the state [1]: $\{\theta\to\rho\to\pi\to\chi\to\iota\}$. The output of former step would be treated as the input of next, likewise, the output of ι step will be feed into θ step of next round. We implement 4 of them in this report (ρ step excluded). We will discuss these steps in detail in the following sections.

1.1 θ Step

The θ Step is defined as below:

$$\begin{cases}
C[x] = A[x,0] \oplus A[x,1] \oplus A[x,2] \oplus A[x,3] \oplus A[x,4], & x \in [0,4] \\
D[x] = C[x-1] \oplus rot(C[x+1],1), & x \in [0,4] \\
A[x,y] = A[x,y] \oplus D[x], & x,y \in [0,4]
\end{cases}$$
(1)

where A[x, y] indicates the *lane* in *column* x and *row* y; thus C[x] is a bitwise XOR summation between all rows of column x. Then, rot(C[x+1], 1) rotates the bits within the lane C[x]. Particularly, as there is only slice in our implementation, the rot function makes no changes so that rot(C[x+1], 1) =

C[x+1]. Thereafter, D[x] combines C[x-1] and C[x+1] by XOR summation. Finally, the output of each single value in A[] of this step obtains from the original A[x,y] XOR D[x].

An example of this step is shown below (Fig. 1), including input and all outputs of intermediate steps.

Figure 1: An Example of θ Step

The origin of coordinates in each matrix (i.e. A[0,0]) locates at the left bottom. Take A[2,3] as an example, the input is 0 and the output of intermediate steps are:

$$C[2] = A[2,0] \oplus A[2,1] \oplus A[2,2] \oplus A[2,3] \oplus A[2,4]$$

$$= 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0$$

$$= 1$$

$$D[2] = C[1] \oplus C[3]$$

$$= 0 \oplus 0$$

$$= 0$$

$$A'[2,3] = A[2,3] \oplus D[2]$$

$$= 0 \oplus 0$$

$$= 0$$

1.2 π Step

Differ from the other 3 steps, which are all *substitution* functions, π step is a *permutation* function [2]. The output of θ step will put into π step as initial input. The π step is defined as:

$$A'[y, 2x + 3y] = rot(A[x, y], r[x, y]), x, y \in [0, 4],$$
(3)

likewise as θ step, x and y represent the index of column and row respectively (the same below). rot function would also make no effects.

Continued from the example of θ step 2, the π step is illustrated below (Fig. 2):

Figure 2: An Example of π Step

As shown above, the value of A[2,3] would be assigned to $A'[3,(2 \times 2 + 3 \times 3) \mod 5] = A'[3,3]$, i.e., A'[3,3] = A[2,3] = 0.

1.3 χ Step

The output of A'[x,y] in χ step is determined by $\bar{A}[x+1,y]$ and A[x+2,y], the complete definition is:

$$A'[x,y] = A[x,y] \oplus (\bar{A}[x+1,y] \wedge A[x+2,y]), x,y \in [0,4], \tag{4}$$

where $\bar{A}[x+1,y]$ is the *NOT* operation of A[x+1,y]. This step can be illustrated as Fig. 3:

Figure 3: The illustration of χ step

Therefore, A[2,3] would be substituted as:

$$A'[2,3] = A[2,3] \oplus (\bar{A}[3,3] \wedge A[4,3])$$

$$= 1 \oplus (1 \wedge 1)$$

$$= 0,$$
(5)

The complete intermediate outputs are:

Figure 4: An Example of χ Step

1.4 ι Step

The ι step is the final step of one round in Keccak. It introduces a set of round constants and combines A[0,0] with one of them (pick a different value for each round) by XOR summation [2], as shown below (Equ. 6). The rest of matrix would remain their values unchanged.

$$A'[0,0] = A[0,0] \oplus RC[i_r], \tag{6}$$

where RC[] is the rounds constants array and i_r equals the current round index. It should be noted that each slice in the state of Keccak should XOR

the $slice^{th}$ bit in $RC[i_r]$ from the leftmost (e.g., in our implementation, only the leftmost bit of $RC[i_r]$ is used). Based on this, we get our final output of the first round:

Figure 5: An Example of ι Step

1.5 Rounds

As mentioned at the beginning of this section, there are 12 rounds in our implementation. For each round, we feed the final output of the ι step into the θ step of next round and switch the round constants to next index. The last round of Keccak-f[25] is shown below:

Figure 6: Final output of the 12^{th} round

2 Elgamal

The Elgamal encryption scheme is an asymmetric key encryption algorithm which consists of three phases (i.e. key generation, encryption, decryption) [3]. It is based on the Diffie-Hellman key exchange and defined over a cyclic group G. Therefore, its security relies heavily on Discrete-log based building blocks [3].

2.1 Configuration

The Elgamal algorithm is defined on a cyclic group so that it should be safe to select a prime p to generate a prime order group Z_p^* . Then we need to choose a prime q to define a unique subgroup G_q and $g \in Z_p^*$ is one of its generators where $p = \gamma q + 1$, γ is a specific integer.

2.2 Key Generation

To generate the *public* key of Elgamal, we firstly pick a random x as the *private* key where $x \in (0, q)$. Then we get the public key $\{p, g, y\}$:

$${p, g, y} = {p, g, g^x \mod p},$$
 (7)

now we can pass this public key triplets to anyone who wants to send his/her encrypted message to us. The following is an example of key generation phase:

Key Generation

Figure 7: An Example of Elgamal Key Generation

It should be noted that y can be calculated by Fast Exponentiation Methods [4] whose pseudo-code is shown in Algo 1.

```
Algorithm 1 FastExponentiation(x, exp, n)

Input: An integer (x), an exponent (exp) and a modulus (n)

Output: res

1: if n == 1 then

2: return 0

3: end if

4: res \leftarrow 1

5: for i \leftarrow 0 to (exp - 1) do

6: res \leftarrow (res \times x) \mod n

7: end for

8: return res
```

2.3 Encryption

Assume that we encrypt a message $m \in (0, p)$ using the above configured ElGamal. First, we need to choose an integer $k \in (0, q)$ randomly. Then, we get the cipher pair $\{c_1, c_2\}$:

$$\begin{cases} c_1 &= g^k \mod p \\ c_2 &= y^k \cdot m \mod p \end{cases}$$
(8)

Based on the example shown in Fig. 7 and setting m = 100, k = 89, we can easily get the cipher is

$$\{c_1, c_2\} = \{g^k \mod p, y^k \cdot m \mod p\}$$

$$= \{100^8 9 \mod 809, 65^8 9 \cdot 100 \mod 809\}$$

$$= \{345, 517\}, \tag{9}$$

the result is shown in Fig. 8.

Encryption

Figure 8: An Example of Elgamal Encryption

2.4 Decryption

With the private key x, we can decode the cipher pair $\{c_1, c_2\}$ to get the plaintext m:

$$m = \frac{C_2}{C_1^x} \mod p = C_2 \cdot C_1^{-x} \mod p$$
 (10)

where $(C_1^{-x} \mod p)$ is the inverse of $(C_1^x \mod p)$ that $(C_1^{-x} \cdot C_1^x \equiv 1 \mod p)$. There are multiple methods to solve this equation. We implement an $Extended\ Euclidean\ algorithm$ to get the inverse, see Algo 2 ¹:

```
Algorithm 2 inverse(a, n)
```

```
Input: An integer (a), a modulus (n)
Output: t
 1: t \leftarrow 0; newt \leftarrow 1;
 2: r \leftarrow n; newr \leftarrow a;
 3: while newr \neq 0 do
       quotient \leftarrow r \div newr
       (t, newt) \leftarrow (newt, t - quotient \times newt)
       (r, newr) \leftarrow (newr, r - quotient \times newr)
 7: end while
 8: if r \ge 1 then
       return "a is not invertible."
10: end if
11: if t \le 0 then
       t \leftarrow t + n
12:
13: end if
14: return t
```

Continued with the above example, we can get:

$$m = \frac{C_2}{C_1^x} \mod p = C_2 \cdot C_1^{-x} \mod p$$

= $(517 \times 720) \mod 809$
= 100 (11)

Finally, we complete all the tree phases of Elgamal:

Decryption

Message (decrypted): 100
$$M(plain) = {^C2}/_{C_I}^x \mod P$$
Decrypt

Figure 9: An Example of Elgamal Decryption

¹Refer to https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

2.5 Homomorphic Property of ElGamal

Homomorphic encryption allows users to perform calculations on the ciphers and bring the calculated encrypted results into correspondence with the results of operated on the plaintexts [5]. It enables the black-box operations on cipher messages and improves the security of the information transfer process. Elgamal is an implementation of homomorphic encryption. The multiplicative operation between two ciphers of m_1 and m_2 is as follows:

The encryptions of m_1 and m_2 are:

$$C_1 = (c_1, c_2) = (g^k \mod p, y^k \cdot m_1 \mod p)$$

$$C_2 = (c'_1, c'_2) = (g^{k'} \mod p, y^{k'} \cdot m_2 \mod p)$$
(12)

The product of C_1 and C_2 is:

$$C_1 \cdot C_2 = (c_1, c_2) \cdot (c'_1, c'_2)$$

$$= (g^{k+k'} \mod p, y^{k+k'} \cdot (m_1 \cdot m_2) \mod p)$$
(13)

Then, we get decryption of $C_1 \cdot C_2$ and verify if it equals the product of m_1 and m_2 :

$$D[(g^{k+k'}, y^{k+k'} \cdot (m_1 \cdot m_2))] = \frac{(y^{k+k'} \cdot (m_1 \cdot m_2))}{(g^{x \cdot (k+k')})} \mod p$$

$$= m_1 \cdot m_2 \mod p$$
(14)

Based on the deduction of Equ. 14, we have verified the homomorphic property of ElGamal, which is also demonstrated in our implementation.

We randomly choose 5 integer messages $[m_1, m_2, \dots, m_5]$ and 5 random integer k $[k_1, k_2, \dots, k_5]$, then encrypt them respectively. Finally, we calculate the products of each pair and the output has proved the homomorphic property of ElGamal as well, shown as Fig. 10.

Multiplication over Encrypted Data

100	10	⇒ {801, 409}
99	12	⇒ {737, 721}
98	14	⇒ {161, 500}
97	16	⇒ {640, 686}
96	18	⇒ {97, 440}
Multiplication ov	er <u>Encrypted</u> Data	
{585, 26}		
Decrypt Multipli	cation over <u>Encryp</u>	ted Data
563		
_	er <u>Plaintext</u> Data	
563	√	
Calculate		

Figure 10: Homomorphic Property of ElGamal

References

- [1] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, "Keccak," in *Advances in Cryptology EUROCRYPT 2013*, ser. Lecture Notes in Computer Science, T. Johansson and P. Q. Nguyen, Eds. Springer Berlin Heidelberg, 2013, pp. 313–314.
- [2] W. Stallings, Cryptography and Network Security: Principles and Practice. Pearson Upper Saddle River, 2017, 00382.
- [3] Y. Tsiounis and M. Yung, "On the security of ElGamal based encryption," in *Public Key Cryptography*, ser. Lecture Notes in Computer Science, H. Imai and Y. Zheng, Eds. Springer Berlin Heidelberg, 1998, pp. 117–134, 00402.
- [4] D. M. Gordon, "A Survey of Fast Exponentiation Methods," *Journal of Algorithms*, vol. 27, no. 1, pp. 129–146, Apr. 1998, 00676.
- [5] C. Gentry *et al.*, "Fully homomorphic encryption using ideal lattices." in *Stoc*, vol. 9, no. 2009, 2009, pp. 169–178, 04140.