

Questionário 2

Ciência e Tecnologia dos Materiais

Arthur Cadore Matuella Barcella

5 de Outubro de 2025

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1.	Intro	duçãodução	3
2.	Ques	tões	3
	2.1.	O que são orbitais molecular ligantes? E antiligantes?	3
	2.2.	Combinando-se n orbitais atômicos, quantos orbitais moleculares são formados? .	3
	2.3.	Escreva uma expressão de forma genérica que demonstre a combinação linear	
		construtiva entre dois orbitais p_z e pertencentes a dois átomos distintos. $\ldots \ldots$	3
	2.4.	Escreva uma expressão de forma genérica que demonstre a combinação linear	
		destrutiva entre dois orbitais p_z e pertencentes a dois átomos distintos	4
	2.5.	Demonstre, por meio de desenhos, a interação construtiva entre dois orbitais \boldsymbol{p}_z	
		e pertencentes a dois átomos distintos. Considere o eixo z como sendo o eixo de	
		ligação.	4
	2.6.	Demonstre, por meio de desenhos, a interação destrutiva entre dois orbitais \boldsymbol{p}_z e	
		pertencentes a dois átomos distintos. Considere o eixo z como sendo o eixo de	
		ligação.	4
	2.7.	Considere o íon molecular $H_2^$ Desenhe o diagrama de orbitais moleculares para	
		o mesmo	5
	2.8.	Considere a espécie química da questão 07. Obtenha a ordem de ligação para a	
		referida espécie química. Demonstre passo a passo	5

1. Introdução

2. Questões

2.1. O que são orbitais molecular ligantes? E antiligantes?

Quando dois átomos se aproximam para formar uma molécula, seus orbitais atômicos (por exemplo, os orbitais 1s, 2s, 2p, etc), se combinam, e a partir dessa combinação surgem novos orbitais, chamados orbitais moleculares, que pertencem à molécula toda (não mais a um único átomo). Um orbital molecular ligante é aquele que:

- Resulta da soma construtiva (superposição em fase) das funções de onda dos orbitais atômicos;
- Apresenta maior densidade eletrônica entre os núcleos dos dois átomos;
- Estabiliza a molécula, pois os elétrons nesse orbital atraem ambos os núcleos, ajudando a mantê-los unidos.

Já um orbital molecular antiligante é aquele que:

- Resulta da superposição destrutiva (fora de fase) das funções de onda;
- Apresenta uma região de densidade eletrônica reduzida entre os núcleos (muitas vezes um nó, onde a probabilidade de encontrar elétrons é zero);
- Desestabiliza a molécula, pois os elétrons nesse orbital aumentam a repulsão entre os núcleos.

2.2. Combinando-se n orbitais atômicos, quantos orbitais moleculares são formados?

Quando n orbitais atômicos se combinam, formam-se n orbitais moleculares. Esses orbitais moleculares podem ser classificados em orbitais de ligação (com menor energia) e orbitais anti-ligação (com maior energia). Portanto, para n orbitais atômicos, são formados n orbitais moleculares, sendo a soma dos orbitais de ligação e anti-ligação.

2.3. Escreva uma expressão de forma genérica que demonstre a combinação linear construtiva entre dois orbitais p_z e pertencentes a dois átomos distintos.

A combinação linear construtiva entre dois orbitais p_z de átomos distintos resulta em um orbital molecular de ligação. A expressão genérica para essa combinação pode ser representada como:

$$\psi_{\{\text{lig}\}} = \frac{1}{\sqrt{2}} \cdot \psi_{\{p_z\}}^{\{(A)\}} + \frac{1}{\sqrt{2}} \cdot \psi_{\{p_z\}}^{\{(B)\}}$$
(1)

2.4. Escreva uma expressão de forma genérica que demonstre a combinação linear destrutiva entre dois orbitais p_z e pertencentes a dois átomos distintos.

A combinação linear destrutiva entre dois orbitais p_z de átomos distintos resulta em um orbital molecular antiligante. A expressão genérica para essa combinação pode ser representada como:

$$\psi_{\text{\{antilig\}}} = \frac{1}{\sqrt{2}} \cdot \psi_{\{p_z\}}^{\{(A)\}} - \frac{1}{\sqrt{2}} \cdot \psi_{\{p_z\}}^{\{(B)\}}$$
 (2)

2.5. Demonstre, por meio de desenhos, a interação construtiva entre dois orbitais p_z e pertencentes a dois átomos distintos. Considere o eixo z como sendo o eixo de ligação.

Infelizmente, não consigo desenhar diretamente aqui, mas posso descrever a interação construtiva:

- Quando dois orbitais p_z se combinam de forma construtiva, as regiões de alta densidade de probabilidade se alinham ao longo do eixo de ligação z.
- As ondas dos orbitais se reforçam entre si, resultando em uma região maior de densidade eletrônica no espaço entre os núcleos. Esse tipo de interação é responsável pela formação de uma ligação covalente.
- Visualmente, pode-se imaginar duas "lóbulos" de densidade eletrônica, um de cada átomo, que se combinam para formar uma "cápsula" maior de densidade no centro da molécula, com os núcleos em cada extremidade.

2.6. Demonstre, por meio de desenhos, a interação destrutiva entre dois orbitais p_z e pertencentes a dois átomos distintos. Considere o eixo z como sendo o eixo de ligação.

Para o íon molecular H_2^- , temos dois átomos de hidrogênio, cada um com um elétron na camada 1s. Com um elétron extra no sistema (como o ânion H_2^-), o diagrama de orbitais moleculares seria o seguinte:

O primeiro orbital molecular formado é:

$$(\sigma_{1s}) \tag{3}$$

O segundo orbital molecular formado é:

$$(\sigma_{1s}) \tag{4}$$

Assim, o diagrama de orbitais moleculares para o íon H_2^- pode ser representado da seguinte forma:

$$\left(\sigma_{1s}\right)^2 \left(\sigma_{1s}\right)^1 \tag{5}$$

2.7. Considere o íon molecular H_2^- . Desenhe o diagrama de orbitais moleculares para o mesmo

A ordem de ligação é dada pela fórmula:

Ordem de ligação =
$$\frac{N_b - N_a}{2}$$
 (6)

Para o H_2^- , temos:

Ordem de ligação =
$$\frac{2-1}{2} = \frac{1}{2} = 0.5 \tag{7}$$

2.8. Considere a espécie química da questão 07. Obtenha a ordem de ligação para a referida espécie química. Demonstre passo a passo.