

05: Wielomian Jonesa węzłów alternujących

Weronika Jakimowicz

27.03.2024

Spis sznurków

Definicja węzła alternującego	1
Linki rozszczepione (ang. split) i pierwsze	3
Po co nam to wszystko? Czyli o jeżach (między innymi)	4

Definicja węzła alternującego

Mówimy, że diagram regularny D węzła K jest alternujący, jeśli poruszając dowolny punkt $P \in D$ wzdłuż D, ciągle w jedną stronę, będziemy na zmianę pokonywać skrzyżowania górą i dołem.

Definicja: węzeł alternujący.

Węzeł K jest alternujący, jeśli posiada przynajmniej jeden diagram alternujący.

Najprostszy (o najmniejszej liczbie skrzyżowań) węzeł niealternujący to np. 8_{19} (ale też 8_{20} i 8_{21}), który widać na fig. 1. Do pokazania, że naprawdę nie kłamię jeśli chodzi o jego niealternującą naturę, wrócimy przy okazji powierzchni Seiferta i *sygnatury węzła*.

Figure 1: Przykładowy diagram węzła 8₁₉.

Fakt: alternująca suma spójna.

Jeśli K_1 i K_2 są węzłami alternującymi o alternujących diagramach mających odpowiednio n_1 i n_2 skrzyżowań, to ich suma spójna $K_1\#K_2$ ma diagram alternujący o dokładnie (n_1+n_2) skrzyżowaniach.

Dowód

Wiemy, że "na zewnątrz" węzła K_1 istnieje segment, pod którym przechodzi dokładnie jeden inny segment. Tak samo w przypadku diagramu K_2 . Mamy dwie opcje, jak widać na fig. 2.

Pierwsza z nich jest raczej oczywista. Druga wymaga zauważenia, że konsekwentnie przyglądając się łuczkom na zewnątrz diagramu po lewej, w końcu przejście "nad" będzie musiało występować na górze. Wtedy wystarczy taki łuczek przeciągnąć nad całym węzłem w przestrzeń pomiędzy węzłami i skorzystać z niego do połączenia K₁ i K₂ tak jak na obrazku na dole fig. 2.

Figure 2: Dwa możliwe ułożenie łuczków na zewnątrz alternujących diagramów K₁ i K₂.

Zadanie 1.

Rozważmy węzeł wielokątny K oraz prostą I, wzdłuż której K rzutujemy. Niech K będzie położony w sposób regularny (tzn. co najwyżej dwa punkty mogą leżeć na jednej prostej równoległej do osi rzutu).

Pokaż, że istnieje wówczas węzeł alternujący K' w pozycji regularnej taki, że rzuty wzdłuż l obu węzłów są identyczne. W rzucie nie rozróżniamy który segment w skrzyżowaniu biegnie górą.

Szukany w zadaniu wyżej węzeł alternujący niekoniecznie musi być nietrywialny. Aby więc skonstruować węzeł K' wystarczy wybrać punkt startowy na K i przemieszczać się wzdłuż niego konsekwentnie w jedną stronę, na zmianę wymagając, by segment w danych skrzyżowaniu szedł górą lub dołem. Nietrywialną częścią tego podejścia jest pokazanie, że na końcu uda nam się zamknąć tak zatoczoną drogę.

Drugi sposób to użycie indukcji po ilości skrzyżowań K, rozcinanie go tak, by dostać co najmniej dwa rozłączne węzły, do których możemy przyłożyć założenie indukcyjne. Następnie wystarczy połączyć te węzły korzystając z faktu wyżej.

Twierdzenie: hipotezy Tait'a.

Chociaż poniższe trzy stwierdzenia nazywają się hipotezami, to zostały udowodnione w 1987 (dwa pierwsze) i 1991 (ostatnie), ale nie przez Tait'a.

- 1. Dowolny zredukowany diagram alternujący ma najmniejszą możliwą liczbę skrzyżowań.
- 2. Dowolne dwa zredukowane diagramy alternujące tego samego węzła mają tę samą sumę ważoną skrzyżowań (ang. *writhe*)
- 3. Dowolne dwa zredukowane alternujące diagramy D_1 i D_2 zorientowanego, pierwszego linku (co to znaczy dowiemy się za chwilę) można przekształcić przy pomocy skończonej liczby ruchów flype.

Figure 3: Wywracanie skarpety na lewą stronę, czyli flype.

Słowo *flype* pochodzi ze szkockiego i oznacza wywracanie skarpetki na lewą stronę. Chodzi o obracanie kołtuna (ang. *tangle*) o 180 stopni (patrz. fig. 3 lub wikipedia <3). Kołtun to włożenie n łuczków w S³ tak, że ich 2n końców jest przyklejonych do 2n punktów zaznaczonych na granicy S³.

Linki rozszczepione (ang. split) i pierwsze

Definicja bycia alternującym linkiem jest analogiczna jak bycia alternującym węzłem, więc ją pominiemy. Zaczniemy od przymiotnika, który dotyczy tylko linków i nie ma łatwo osiągalnego tłumaczenia na język polski. To znaczy zastanowimy się, co to znaczy móc rozdzielić (rozszczepić) link L.

Definicja: link i diagram rozszczepiony.

Powiemy, że **link** L (o co najmniej dwóch komponentach) zanurzony w S³ jest **rozszczepiony**, jeśli możemy S³ podzielić na dwie kule S² tak, że każda ma po przynajmniej jednym komponencie L.

Definicja ta przenosi się na diagram $D \in S^2$ poprzez spłaszczenie tych sfer S^2 do zamkniętych krzywych. To znaczy, **diagram** D **jest rozszczepiony**, jeśli istnieje prosta krzywa zamknięta w $S^2 \setminus D$, która dzieli je na dwa rozłączne dyski, każdy zawierający przynajmniej jeden komponent D.

Link trywialny, czyli O O, jest w oczywisty sposób rozszczepialny.

Twierdzenie.

Link L o alternującym diagramie D jest rozszczepialny \iff D jest rozszczepialnym diagramem.

Dowód tego twierdzenia zostanie podany na koniec sekcji.

Na pierwszych zajęciach dowiedzieliśmy się, że nietrywialny węzeł K jest pierwszy (ang. prime), jeśli nie jest sumą spójną dwóch nietrywialnych węzłów. Moglibyśmy powiedzieć, że każda kula $S^2 \subseteq S^3 \setminus K$ przecinająca węzeł K w dwóch punktach dzieli S^3 na dwa fragmenty, z czego jeden posiada "trywialny łuczek", tj. łuczek który bez problemu możemy rozsupłać przy pomocy ruchów Reidenmeistera. W podobny sposób możemy przenieść definicję pierwszości na linki i ich diagramy.

Definicja: link i diagram pierwszy.

Link $L \subseteq S^3$, różny od linku (i węzła) trywialnego, jest **pierwszy**, jeśli każda sfera S^2 przecinająca go w dwóch punktach dzieli S^3 na dwa fragmenty, z których jeden zawiera jeden trywialny łuczek L.

Diagram $D \subseteq S^2$ **jest pierwszy**, jeśli każda prosta krzywa zamknięta w S^2 przecinająca D w dwóch punktach zawiera w swoim wnętrzu lub na zewnątrz diagram odpowiadający rozwiązywalnemu łuczkowi. Takie D jest *silnie pierwszy*, jeśli zawsze po takim rozcięciu znajdziemy diagram z zerową liczbą skrzyżowań.

Tutaj warto zauważyć, że jedynym linkiem, który jest jednocześnie pierwszy i rozszczepiony jest link trywialny O O.

Kolejne twierdzenie, na którego dowód musimy troszkę poczekać, które pozwala nam badać pierwszość linków alternujących przez pryzmat ich diagramów.

Twierdzenie.

Załóżmy, że L jest linkiem o alternującym diagramie D. Wtedy L jest linkiem pierwszym ← D jest diagramem pierwszym.

WRÓCIĆ TUTAJ, BO MI SIĘ CHWILOWO NIE CHCE

Po co nam to wszystko? Czyli o jeżach (między innymi)

Zacznijmy od szybkiej informacji co to znaczy być powierzchnią. Oczywiście mówiąc powierzchnia mamy na myśli 2-rozmaitość, czyli przestrzeń której każdy punkt ma otoczenie homeomorficzne z otwartym podzbiorem \mathbb{R}^2 . Zamkniętych powierzchni nie ma bardzo dużo i każda taka powierzchnia jest wymieniona niżej

- 1. sfera S²
- 2. suma spójna n torusów \mathbb{T}^2
- 3. suma spójna n płaszczyzn rzutowych $\mathbb{R} P^2$

Poza tym jest m.in. butelka Kleina (nieorientowalna, bez brzegu) czy wstęga Möbiusa (nieorientowalna, z brzegiem).

Powiemy teraz, co to znaczy, że powierzchnia $F \subseteq M$, gdzie M jest 3-rozmaitością, jest niekompresowalna. Przy okazji dowiemy się, co to znaczy być dyskiem rozpinającym powierzchnię.

Definicja: powierzchnia niekompresowalna.

Niech F będzie powierzchnią różną od S² zanurzoną w 3-rozmaitość M. Powiemy, że F jest **niekompresowalna**, jeśli każdy dysk $\Delta \subseteq M$ taki, że $\Delta \cap F = \partial \Delta$ (tzn. Δ *rozpina* powierzchnię F) ogranicza dysk w F (patrz fig. 4).

Sfera S² jest niekompresowalna, jeśli nie ogranicza D³ w M.

Figure 4: Powierzchnię (b) możemy rozciąć wzdłuż $\partial\Delta$ i zakleić dwoma kopiami Δ , by dostać dwie "zakrętki". Jest tak, ponieważ otoczenie tubularne Δ ma ciekawy przekrój z F. W przypadku powierzchni (a) otoczenie tubularne Δ daje po prostu annulus na F.

Fakt.

Niech L będzie nierozszczepialnym, pierwszym i alternującym linkiem, a F niech będzie zamkniętą niekompresowalną powierzchnią w S 3 \ L. Wówczas istnieje dysk Δ rozpinający F w S 3 , który przecina L w dokładnie jednym punkcie.

Żeby to zobaczyć, trzeba wyobrazić sobie najeżenie węzła/linku L, czyli jego otoczenie tubularne (zamiast nitki mamy sznurek bawełniany o średnicy 5mm). Takich otoczeń mamy dużo, dla każdego $\varepsilon > 0$. Możemy więc wybierać otoczenia U_n o średnicy $\frac{1}{n}$. Kiedy wyjmujemy z S³ węzeł K duża część U_n zostaje, więc możemy wybierać duszczki Δ_n , które mają przekrój z otoczneiem U_n o średnicy $\frac{1}{n}$ na wysokości tylko jednego segmentu. Granica tych dyszczków nie jest już w S³ \ L, bo zahacza o otoczenie średnicy 0, tzn. przecina się z węzłem L w jednym punkcie.

Fakt .

Niech L będzie nierozszczepialnym, pierwszym i alternującym linkiem. Każdy niekompresowalny torus T zawarty w S 3 \ L jest równoległy do granicy najeżenia pewnego komponentu L.