

N-ROD: a Neuromorphic Dataset for Synthetic-to-Real Domain Adaptation

Marco Cannici*,1, Chiara Plizzari*,2, Mirco Planamente*,2,3, Marco Ciccone1, Andrea Bottino2, Barbara Caputo2,3, Matteo Matteucci1

¹name.surname@polimi.it

²name.surname@polito.it

3name.surname@iit.it

Motivation

How can we study the Synth-to-Real gap in event-based cameras?

• We propose N-ROD, a new dataset designed for supporting research in domain adaptive event-based classification, in both single and multimodal settings.

Synthetic-to-Real Scenario

Double domain-shift: it combines the synth-to-real shift on RGB images and the sim-to-real shift on events.

ROD [2]:

300 daily objects grouped in 51 categories, 41'877 samples with RGB-D data.

SynROD [3]:

3D models from the same ROD categories, synthetic RGB and depth renderings.

NEW N-ROD:

Real event: Saccadic motion [1] / Real RGB images recorded with Prophesee HVGA Gen3 Simulated events: Event simulation through ESIM [1] / Virtual camera performing same saccadic motion

Architecture

Results

Unsupervised Domain Adaptation (UDA) techniques are effective in bridging the synth-to-real gap.

$Synth-N-ROD \implies N-ROD$					
	Single-modal			Multi-modal	
Method	RGB	Depth	Event	RGB+D	RGB+E
Source Only	52.13	7.56	21.78	47.70	50.78
GRL [10]	57.12	26.11	33.09	59.51	57.15
MMD [20]	63.68	29.34	42.05	62.57	61.78
Rot [34][19]	63.21	6.70	31.26	66.68	<u>68.54</u>
AFN [35]	<u>64.63</u>	30.72	<u>55.12</u>	62.40	64.04
Entropy [13]	61.53	16.79	50.14	63.12	64.08
Avg	62.03	21.93	42.33	62.86	63.12
	▲ +9.9	$\blacktriangle+14.4$	▲ + 2 0.6	▲ +15.2	▲ +12.3

Bibliography

- [1] Gehrig, Daniel, et al. "Video to events: Recycling video datasets for event cameras." CVPR, 2020
- [2] Lai, Kevin, et al. "A large-scale hierarchical multi-view rgb-d object dataset." ICRA, 2011
- [3] Loghmani, Mohammad Reza, et al. "Unsupervised Domain Adaptation through Inter-modal Rotation for RGB-D Object Recognition." RA-L, 2020

Dataset Available

https://n-rod-dataset.github.io/home/

