Unidade 1

Bancos de Dados Relacionais e Linguagem SQL

1.3 Fundamentos de Relacionamentos: UIDs e Normalização

Relacionamentos

- Todas os trabalhos de modelagem evoluem a cada versão e nesta melhora, nosso modelo passa a garantir que os relacionamentos de entidades demonstrem nossas regras de negócios.
- O foco é prever erros que podem custar caro em um futuro próximo, tanto no quesito retrabalho (financeiro) quanto na credibilidade.

Relacionamentos

- **UIDs ou** *Unique identifiers:* São valores únicos identificáveis para cada linha de uma entidade. Cada entidade pode inclusive possuir mais de um identificador único.
- O sinônimo de UID na prática é chave primária. Se não houver nenhum, você pode sugerir a criação de um UID artificial, que pode ser sequencial na inserção dos registros.

Relacionamentos - Tipos de entidades

- Entidade regular: estrutura que inclui os atributos simples da entidade.
 - ✓ Mesmo que o atributo seja composto represente-os somente da forma simples. Deve ser escolhido um atributo que terá um valor único na entidade.

 NEmp

 NEmp

 NomeEmp

Fonte: CAMPOS, 2021.

Salário

PUC Minas IEC Engenharia de dados

Relacionamentos - Tipos de entidades

- **Entidade fraca**: estrutura que inclui os atributos compostos por atributos presentes em outras entidades.
 - ✓ Precisamos ter um relacionamento entre entidades. O registro do lado secundário tem vínculo direto, existencial com o lado primário.

- O fator determinante para a existência dos relacionamento é a definição da cardinalidade mínima e máxima das entidades que participam do relacionamento.
- Há três formas básicas para tradução de relacionamentos para o modelo relacional apresentadas a seguir.

 Tabela própria: o relacionamento é implementado através de uma entidade própria que contém os atributos definidos como identificadores das entidades relacionadas.

 Colunas adicionais dentro da tabela de entidade: Inserção de colunas em uma tabela correspondente a uma das entidades que participam do relacionamento.

 Fusão de tabelas de entidades: implementado através da fusão das tabelas referentes às entidades envolvidas no relacionamento. Só ocorre quando o relacionamento é do tipo um para um.

Fonte: CAMPOS, 2021.

Relacionamentos - Tipos de relacionamentos

retacioname	incos inposaciacia	cionamentos
Tipo de relacionamento	Características	Obrigatoriedades
	Acontece de forma direta entre duas entidades, um campo de ligação em	Mesmo atributo de valor único dos dois lados.

comum que pode ser utilizada uma única

Na prática é o mais comum. Possui um

campo de ligação em comum que pode

Existe no modelo conceitual porém não

ser utilizada uma única vez no lado

primário e pode se repetir no lado

existe na implementação prática.

relacionamentos um para muitos.

Transforma-se assim em dois

Atributo de valor único do lado

correspondente que pode se repetir no lado secundário.

Segue as mesmas regras do

relacionamento um para

muitos.

primário e atributo

vez na entidade relacionada.

secundário.

1:1 (um para um)

1:N(um para muitos)

M:N (muitos para muitos)

Normalização - 1ª Forma normal - 1FN

 A Primeira Forma Normal exige que n\u00e3o existam atributos de v\u00e1rios valores (multivalorados).

Desta forma, deve existir apenas um valor para cada intância

de entidade.

Normalização - 1ª Forma normal - 1FN

Na prática:

• Identifica-se a chave primária da entidade, logo após o(s) atributo(s) que tem(êm) dados repetidos. Remove-se estes atributos e cria-se uma nova entidade com a chave primária para armazenar o dado repetido. Cria-se assim uma relação entre as entidades.

Normalização - 2ª Forma normal - 2FN

- Para estar na 2FN o modelo deve atender a 1FN e, os registros da entidade que não são chave, devem depender da chave primária da tabela em sua totalidade e não apenas parte dela.
- Isto previne redundância de dados e para resolver é necessário criar entidades separadas para estes conjuntos de dados.

Normalização - 2ª Forma normal - 2FN

• Lembre-se de que a entidade que vai nascer deve possuir os dados relativos apenas a sua natureza ou assunto!

Normalização - 3ª Forma norma - 3FN

 Para estar na 3FN o modelo deve atender a 2FN e os atributos não chave de uma entidade devem ser mutuamente independentes e dependentes única e exclusivamente da chave primária (um atributo B é funcionalmente dependente de A se, e somente se, para cada valor de A só existe um valor de B).

Normalização - 3ª Forma norma - 3FN

- Terceira Forma Normal (3NF) determina que nenhum atributo que n\u00e3o seja UID pode depender de outro atributo que n\u00e3o seja UID.
- Esta regra proíbe dependências transitivas (Existe quando algum atributo em uma entidade depende de outro atributo que não seja UID nessa entidade).

Normalização - 3ª Forma normal - 3FN

- O objetivo é eliminar dados que são desnecessários e que poderiam causar maior acúmulo de informação, fazendo com que no processo ocorra desatualização desses dados.
- Não há necessidade de aplicar a terceira forma normal em todas as tabelas, isto porque a própria característica da tabela (geralmente) exclui esses dados redundantes.

Normalização - 3ª Forma normal - 3FN

Na prática:

 Nenhuma coluna n\u00e3o-chave n\u00e3o pode depender de outra coluna n\u00e3o-chave.

Pedido
#VID_Pedido
*UID_produto
*Quantidade
*valor_unitário
*subtotal

Pedido #UID_Pedido *UID_produto *Quantidade *valor_unitário

Normalização - FINALIZANDO

- Vocês provavelmente irão ouvir algo sobre a 4FN e a 5FN mas elas são aplicadas em situações especiais.
- Há também a forma normal de Boyce-Codd ou BCNF, que trata anomalias ocorridas na 3FN.
- Geralmente garantindo estas 3 formas normais seu modelo está muito bom, mas vale a pena pesquisar as demais!

Let's make it!

Referências bibliográficas

CAMPOS, Vitor Valerio de Souza, 2020. Projeto de BD Relacional. Disponível em: https://www.uel.br/pessoal/valerio/05%20Projeto%20de%20BD%20Relacional%20-%204%20folhas.pdf Acesso em: 26 set. 2021.

SILBERSCHATZ, A., et. Al. Sistema de Banco de Dados . 1ª ed. São Paulo. Pearson, 1999.

MANNINO, Michael V. Projeto, Desenvolvimento de Aplicações e Administração de Banco de Dados. 3ª ed. Porto Alegre. Bookman, 2008.

MEDEIROS, Marcelo. Banco de dados para sistema de informação. 1ª ed. Florianópolis. Visual Books,2006.

BARBIERI, Carlos. Modelagem e administração de dados. 1ª ed. Rio de Janeiro. Infobook, 1994.

Referências bibliográficas

MACHADO, Diego. Normalização em Bancos de Dados, 2015. Disponível em: https://medium.com/@diegobmachado/normaliza%C3%A7%C3%A3o-em-banco-de-dados-5647cdf84a12>. Acesso em: 25 set. 2021.

MELO, Izabela Vanessa de Almeida. Armazenamento em nuvem: como preservar documentos digitais?. Disponível em: <

http://www.dsc.ufcg.edu.br/~pet/jornal/maio2011/materias/recapitulando.html >. Acesso em: 25 set. 2021.

REIS, Fabio. Modelagem de Dados - Normalização - Forma Normal de Boyce-Codd, 2018. Disponível em: https://www.youtube.com/watch?v=o6mSiTO-vak. Acesso em: 25 set. 2021.