

Wahrscheinlichkeitstheorie und Frequentistische Inferenz

BSc Psychologie WiSe 2022/23

Prof. Dr. Dirk Ostwald

Wahrscheinlichkeitstheorie

Probabilistisches Modell

$$(\Omega, \mathcal{A}, \mathbb{P}), \xi : \Omega \to \mathbb{R}$$

Wahrscheinlichkeitsrechnung

$$\mathbb{P}_{\xi}(S) = \mathbb{P}(\xi^{-1}(S))$$

Zufallsvorgänge

Phänomene, die von Menschen nicht mit absoluter Sicherheit vorhergesagt werden können.

Wir nehmen an, dass die BDI Scores der Proband:innen Realisierungen unabhängiger und identisch normalverteilter Zufallsvariablen sind.

Zufallsvorgang

Wahrscheinlichkeitstheorie

$$y_{1j} \sim N(\mu_1, \sigma^2), j = 1, ..., n_1$$

 $y_{2j} \sim N(\mu_2, \sigma^2), j = 1, ..., n_2$

Klinische Studie zum Vergleich der Effekte von Face-To-Face und Online Psychothrapie bei Depression

Multivariate Verteilungen

Marginalverteilungen

Bedingte Verteilungen

Unabhängige Zufallsvariablen

Multivariate Verteilungen

Marginalverteilungen

Bedingte Verteilungen

Unabhängige Zufallsvariablen

Definition (Zufallsvektor)

 $(\Omega, \mathcal{A}, \mathbb{P})$ sei ein Wahrscheinlichkeitsraum und $(\mathcal{X}, \mathcal{S})$ sei ein n-dimensionaler Messraum. Ein n-dimensionaler Zufallsvektor ist definiert als eine Abbildung

$$\xi: \Omega \to \mathcal{X}, \omega \mapsto \xi(\omega) := \begin{pmatrix} \xi_1(\omega) \\ \vdots \\ \xi_n(\omega) \end{pmatrix} \tag{1}$$

mit der Messbarkeitseigenschaft

$$\{\omega \in \Omega | \xi(\omega) \in S\} \in \mathcal{A} \text{ für alle } S \in \mathcal{S}.$$
 (2)

- ξ ist hier eine univariate, vektorwertige Abbildung.
- Das Standardbeispiel für $(\mathcal{X}, \mathcal{S})$ ist $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.
- Wir verzichten auf eine explizite Einführung n-dimensionaler σ -Algebren wie $\mathcal{B}(\mathbb{R}^n)$.
- Ohne Beweis halten wir fest, dass ξ messbar ist, wenn die Funktionen $\xi_1, ..., \xi_n$ messbar sind.
- Die Komponentenfunktionen eines Zufallsvektors sind Zufallsvariablen.
- ullet Ein n-dimensionaler Zufallsvektor ist die Konkatenation von n Zufallsvariablen.
- Für n := 1 ist ein Zufallsvektor eine Zufallsvariable.
- Für einen Zufallsvektor schreiben wir auch häufig $\xi := (\xi_1, ..., \xi_n)$.

$$\mathbb{P}\big(\xi^{-1}(S)\big) = \mathbb{P}(\{\omega \in \Omega | \xi(\omega) \in S\}) =: \mathbb{P}_{\xi}(S)$$

Multivariate Verteilungen

Marginalverteilungen

Bedingte Verteilungen

Unabhängige Zufallsvariablen

Definition (Multivariate Verteilung)

 $(\Omega,\mathcal{A},\mathbb{P})$ sei ein Wahrscheinlichkeitsraum, $(\mathcal{X},\mathcal{S})$ sei ein n-dimensionaler Messraum und

$$\xi: \Omega \to \mathcal{X}, \omega \mapsto \xi(\omega)$$
 (3)

sei ein Zufallsvektor. Dann heißt das Wahrscheinlichkeitsmaß \mathbb{P}_{ξ} , definiert durch

$$\mathbb{P}_{\xi}: \mathcal{S} \to [0, 1], S \mapsto \mathbb{P}_{\xi}(S) := \mathbb{P}(\xi^{-1}(S)) = \mathbb{P}\left(\{\omega \in \Omega | \xi(\omega) \in S\}\right) \tag{4}$$

die multivariate Verteilung des Zufallsvektor ξ.

- ullet Der Einfachheit halber spricht man oft auch nur von "der Verteilung des Zufallsvektors ξ ".
- Die Notationskonventionen für Zufallsvariablen gelten für Zufallsvektoren analog, z.B.

$$\mathbb{P}_{\xi}(\xi \in S) := \mathbb{P}\left(\{\xi \in S\}\right) = \mathbb{P}\left(\{\omega \in \Omega | \xi(\omega) \in S\}\right)$$

$$\mathbb{P}_{\xi}(\xi = x) := \mathbb{P}\left(\{\xi = x\}\right) = \mathbb{P}\left(\{\omega \in \Omega | \xi(\omega) = x\}\right)$$

$$\mathbb{P}_{\xi}(\xi \le x) := \mathbb{P}\left(\{\xi \le x\}\right) = \mathbb{P}\left(\{\omega \in \Omega | \xi(\omega) \le x\}\right)$$

$$\mathbb{P}_{\xi}(x_{1} \le \xi \le x_{2}) := \mathbb{P}\left(\{x_{1} \le \xi \le x_{2}\}\right) = \mathbb{P}\left(\{\omega \in \Omega | x_{1} \le \xi(\omega) \le x_{2}\}\right)$$
(5)

- Relationsoperatoren wie < werden hier komponentenweise verstanden.
- Zum Beispiel heißt $x \leq y$ für $x, y \in \mathbb{R}^n$, dass $x_i \leq y_i$ für alle i = 1, ..., n.

Definition (Multivariate kumulative Verteilungsfunktionen)

 ξ sei ein Zufallsvektor mit Ergebnisraum ${\mathcal X}$. Dann heißt eine Funktion der Form

$$P_{\xi}: \mathcal{X} \to [0, 1], \ x \mapsto P_{\xi}(x) := \mathbb{P}_{\xi}(\xi \le x) \tag{6}$$

multivariate kumulative Verteilungsfunktion von ξ .

Bemerkung

Multivariate kumulative Verteilungsfunktionen k\u00f6nnen zur Definition von multivariaten Verteilungen genutzt werden, h\u00e4ufiger ist allerdings die Definition multivariater Verteilungen durch multivariate Wahrscheinlichkeitsmasse- oder Wahrscheinlichkeitsdichtefunktionen.

Definition (Diskreter Zufallsvektor, Multivariate WMF)

 ξ sei ein Zufallsvektor mit Ergebnisraum \mathcal{X} . ξ heißt diskreter Zufallsvektor wenn der Ergebnisraum \mathcal{X} endlich oder abzählbar ist und eine Funktion

$$p_{\xi}: \mathcal{X} \to [0, 1], x \mapsto p_{\xi}(x)$$
 (7)

existiert, für die gilt

- (1) $\sum_{x \in \mathcal{X}} p(x) = 1$ und
- (2) $\mathbb{P}_{\xi}(\xi = x) = p(x)$ für alle $x \in \mathcal{X}$.

Ein entsprechende Funktion p heißt multivariate Wahrscheinlichkeitsmassefunktion (WMF) von ξ .

- Der Begriff der multivariaten WMF ist analog zum Begriff der WMF.
- Man spricht oft einfach von der WMF eines Zufallsvektors.
- Wie univariate WMFen sind multivariate WMFen nicht-negativ und normiert.

Beispiel (Multivariate Wahrscheinlichkeitsmassefunktion)

Wir betrachten einen zweidimensionalen Zufallsvektor $\xi:=(\xi_1,\xi_2)$ der Werte in $\mathcal{X}:=\mathcal{X}_1\times\mathcal{X}_2$ annimmt, wobei $\mathcal{X}_1:=\{1,2,3\}$ und $\mathcal{X}_2=\{1,2,3,4\}$ seien.

Eine exemplarische bivariate WMF der Form

$$p_{\xi}: \{1, 2, 3\} \times \{1, 2, 3, 4\} \to [0, 1], (x_1, x_2) \mapsto p_{\xi}(x_1, x_2)$$
 (8)

ist dann durch nachfolgende Tabelle definiert:

$p_{\xi}(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$x_2 = 4$
$x_1 = 1$	0.1	0.0	0.2	0.1
$x_1 = 2$	0.1	0.2	0.0	0.0
$x_1 = 3$	0.0	0.1	0.1	0.1

Man beachte, dass $\sum_{x_1=1}^3 \sum_{x_2=1}^4 p_\xi(x_1,x_2) = 1.$

Definition (Kontinuierlicher Zufallsvektor, Multivariate WDF)

Ein Zufallsvektor ξ heißt kontinuierlich, wenn \mathbb{R}^n der Ergebnisraum von ξ ist und eine Funktion

$$p_{\xi}: \mathbb{R}^n \to \mathbb{R}_{\geq 0}, x \mapsto p_{\xi}(x),$$
 (9)

existiert, für die gilt

(1)
$$\int_{\mathbb{R}^n} p_{\xi}(x) dx = 1$$
 und

(2)
$$\mathbb{P}_{\xi}(x_1 \leq \xi \leq x_2) = \int_{x_{1_1}}^{x_{2_1}} \cdots \int_{x_{1_n}}^{x_{2_n}} p_{\xi}(s_1, ..., s_n) ds_1 \cdots ds_n.$$

Eine entsprechende Funktion p heißt multivariate Wahrscheinlichkeitsdichtefunktion (WDF) von ξ .

- Der Begriff der multivariaten WDF ist analog zum Begriff der WDF.
- Man spricht häufig auch einfach von der WDF eines Zufallsvektors
- Wie univariate WDFen sind multivariate WDFen nicht-negativ und normiert.
- Wie für kontinuierliche Zufallsvariablen gilt für kontinuierliche Zufallsvektoren

$$\mathbb{P}_{\xi}(\xi = x) = \mathbb{P}_{\xi}(x \le \xi \le x) = \int_{x_1}^{x_1} \cdots \int_{x_n}^{x_n} p_{\xi}(s_1, ..., s_n) \, ds_1 \cdots ds_n = 0 \quad (10)$$

Multivariate Verteilungen

Marginalverteilungen

Bedingte Verteilungen

Unabhängige Zufallsvariablen

Marginalverteilungen

Definition (Univariate Marginalverteilung)

 $(\Omega, \mathcal{A}, \mathbb{P})$ sei ein Wahrscheinlichkeitsraum, $(\mathcal{X}, \mathcal{S})$ sei ein n-dimensionaler Messraum, $\xi : \Omega \to \mathcal{X}$ sei ein Zufallsvektor, \mathbb{P}_{ξ} sei die Verteilung von ξ , $\mathcal{X}_i \subset \mathcal{X}$ sei der Ergebnisraum der iten Komponente ξ_i von ξ , und \mathcal{S}_i sei eine σ -Algebra auf ξ_i . Dann heißt die durch

$$\mathbb{P}_{\xi_i}: \mathcal{S}_i \to [0,1], S \mapsto \mathbb{P}_{\xi} \left(\mathcal{X}_1 \times \cdots \times \mathcal{X}_{i-1} \times S \times \mathcal{X}_{i+1} \times \cdots \times \mathcal{X}_n \right) \text{ für } S \in \mathcal{S}_i$$
 (11)

definierte Verteilung die ite univariate Marginalverteilung von ξ .

- Univariate Marginalverteilungen sind die Verteilungen der Komponenten eines Zufallsvektors.
- Univariate Marginalverteilungen sind Verteilungen von Zufallsvariablen.
- Die Festlegung der multivariaten Verteilung von ξ legt auch die Verteilungen der ξ_i fest.

Theorem (Marginale Wahrscheinlichkeitsmasse- und dichtefunktionen)

(1) $\xi=(\xi_1,...,\xi_n)$ sei ein n-dimensionaler diskreter Zufallsvektor mit Wahrscheinlichkeitsmassefunktion p_ξ und Komponentenergebnisräumen $\mathcal{X}_1,...,\mathcal{X}_n$. Dann ergibt sich die Wahrscheinlichkeitsmassefunktion der iten Komponente ξ_i von ξ als

$$p_{\xi_i}: \mathcal{X}_i \to [0,1], x_i \mapsto p_{\xi_i}(x_i) := \sum_{x_1} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \cdots \sum_{x_n} p_{\xi}(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n). \quad (12)$$

(2) $\xi = (\xi_1, ..., \xi_n)$ sei ein n-dimensionaler kontinuierlicher Zufallsvektor mit Wahrscheinlichkeitsdichtefunktion p_{ξ} und Komponentenergebnisraum \mathbb{R} . Dann ergibt sich die Wahrscheinlichkeitsdichtefunktion der iten Komponente ξ_i von ξ als

$$\begin{aligned} p_{\xi_i} : \mathbb{R} &\to \mathbb{R}_{\geq 0}, x_i \mapsto p_{\xi_i}(x_i) := \\ & \int \cdots \int \int \cdots \int p_{\xi}(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n) \, dx_1 ... \, dx_{i-1} \, dx_{i+1} ... \, dx_n. \end{aligned} \tag{13}$$

- · Wir verzichten auf einen Beweis
- Die WMFen der univariaten Marginalverteilungen diskreter Zufallsvektoren ergeben sich durch Summation.
- Die WDFen der univariaten Marginalverteilungen kontinuierlicher Zufallsvektoren ergeben sich durch Integration.

Marginalverteilungen

Beispiel (Marginale Wahrscheinlichkeitsmassefunktionen)

Wir betrachten erneut den zweidimensionalen Zufallsvektor $\xi:=(\xi_1,\xi_2)$ der Werte in $\mathcal{X}:=\mathcal{X}_1\times\mathcal{X}_2$ annimmt, wobei $\mathcal{X}_1:=\{1,2,3\}$ und $\mathcal{X}_2=\{1,2,3,4\}$ seien.

Basierend auf der oben definierten WMF ergeben sich folgende marginale WMFen p_{ξ_1} und p_{ξ_2} :

$p_{\xi}(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$x_2 = 4$	$p_{\xi_1}(x_1)$
$x_1 = 1$	0.1	0.0	0.2	0.1	0.4
$x_1 = 2$	0.1	0.2	0.0	0.0	0.3
$x_1 = 3$	0.0	0.1	0.1	0.1	0.3
$p_{\xi_2}(x_2)$	0.2	0.3	0.3	0.2	

Man beachte, dass
$$\sum_{x_1=1}^3 p_{\xi_1}(x_1)=1$$
 und $\sum_{x_2=1}^3 p_{\xi_2}(x_2)=1$ gilt.

Multivariate Verteilungen

Marginalverteilungen

Bedingte Verteilungen

Unabhängige Zufallsvariablen

Bedingte Verteilungen

Vorbemerkungen

Wir erinnern uns, dass für einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ und zwei Ereignisse $A, B \in \mathcal{A}$ mit $\mathbb{P}(B) > 0$ die bedingte Wahrscheinlichkeit von A gegeben B definiert ist als

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$
 (14)

Analog wird für zwei Zufallsvariablen ξ_1, ξ_2 mit Ereignisräumen $\mathcal{X}_1, \mathcal{X}_2$ und (messbaren) Mengen $S_1 \in \mathcal{X}_1, S_2 \in \mathcal{X}_2$ die bedingte Verteilung von ξ_1 gegeben ξ_2 mithilfe der Ereignisse

$$A := \{ \xi_1 \in S_1 \} \text{ und } B := \{ \xi_2 \in S_2 \}$$
 (15)

definiert.

So ergibt sich zum Beispiel die bedingte Wahrscheinlichkeit, dass $\xi_1\in S_1$ gegeben dass $\xi_2\in S_2$ unter der Annahme, dass $\mathbb{P}(\{\xi_2\in S_2\})>0$, zu

$$\mathbb{P}(\{\xi_1 \in S_1\} | \{\xi_2 \in S_2\}) = \frac{\mathbb{P}(\{\xi_1 \in S_1\} \cap \{\xi_2 \in S_2\})}{\mathbb{P}(\{\xi_2 \in S_2\})}.$$
 (16)

Wir betrachten zunächst durch WMFen/WDFen zweidimensionaler Zufallsvektoren definierte bedingte Verteilungen.

Definition (Bedingte WMF, diskrete bedingte Verteilung)

 $\xi:=(\xi_1,\xi_2)$ sei ein diskreter Zufallsvektor mit Ergebnisraum $\mathcal{X}:=\mathcal{X}_1\times\mathcal{X}_2$, WMF $p_\xi=p_{\xi_1,\xi_2}$ und marginalen WMFen p_{ξ_1} und p_{ξ_2} . Die bedingte WMF von ξ_1 gegeben $\xi_2=x_2$ ist dann für $p_{\xi_2}(x_2)>0$ definiert als

$$p_{\xi_1|\xi_2=x_2}: \mathcal{X}_1 \to [0,1], x_1 \mapsto p_{\xi_1|\xi_2=x_2}(x_1|x_2) := \frac{p_{\xi_1,\xi_2}(x_1,x_2)}{p_{\xi_2}(x_2)}$$
(17)

Analog ist für $p_{\xi_1}(x_1)>0$ die bedingte WMF von ξ_2 gegeben $\xi_1=x_1$ definiert als

$$p_{\xi_2|\xi_1=x_1}: \mathcal{X}_2 \to [0,1], x_2 \mapsto p_{\xi_2|\xi_1=x_2}(x_1|x_2) := \frac{p_{\xi_1,\xi_2}(x_1,x_2)}{p_{\xi_1}(x_1)}$$
(18)

Die bedingten Verteilungen mit WMFen $p_{\xi_1|\xi_2=x_2}$ und $p_{\xi_2|\xi_1=x_1}$ heißen dann die diskreten bedingten Verteilungen von ξ_1 gegeben $\xi_2=x_2$ und ξ_2 gegeben $\xi_1=x_1$, respektive.

Bemerkungen

In Analogie zur Definition der bedingten Wahrscheinlichkeit von Ereignissen gilt also

$$p_{\xi_1|\xi_2}(x_1|x_2) = \frac{p_{\xi_1,\xi_2}(x_1,x_2)}{p_{\xi_2}(x_2)} = \frac{\mathbb{P}(\{\xi_1 = x_1\} \cap \{\xi_2 = x_2\})}{\mathbb{P}(\{\xi_2 = x_2\})}.$$
 (19)

• Bedingte Verteilungen sind (lediglich) normalisierte gemeinsame Verteilungen.

Bedingte Verteilungen

Beispiel (Bedingte Wahrscheinlichkeitsmassefunktionen)

Wir betrachten erneut den zweidimensionalen Zufallsvektor $\xi := (\xi_1, \xi_2)$ der Werte in $\mathcal{X} := \mathcal{X}_1 \times \mathcal{X}_2$ annimmt, wobei $\mathcal{X}_1 := \{1, 2, 3\}$ und $\mathcal{X}_2 = \{1, 2, 3, 4\}$ seien.

Basierend auf der oben definierten WMF und den entsprechenden oben evaluierten marginalen WMFen ergeben sich folgende bedingte WMFen für $p_{\xi_2|\xi_1=x_1}$

$p_{\xi_2 \xi_1}(x_2 x_1)$	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$x_2 = 4$
$p_{\xi_2 \xi_1=1}(x_2 x_1=1)$	$\frac{0.1}{0.4} = 0.25$	$\frac{0.0}{0.4} = 0.00$	$\frac{0.2}{0.4} = 0.50$	$\frac{0.1}{0.4} = 0.25$
$p_{\xi_2 \xi_1=2}(x_2 x_1=2)$	$\frac{0.1}{0.3} = 0.3\bar{3}$	$\frac{0.2}{0.3} = 0.6\bar{6}$	$\frac{0.0}{0.3} = 0.00$	$\frac{0.0}{0.3} = 0.00$
$p_{\xi_2 \xi_1=3}(x_2 x_1=3)$			$\frac{0.1}{0.3} = 0.3\bar{3}$	$\frac{0.1}{0.3} = 0.3\bar{3}$

- Man beachte, dass $\sum_{x_2=1}^4 p_{\xi_2|\xi_1=x_1}(x_2|x_1)=1$ für alle $x_1\in\mathcal{X}_1$.
- Man beachte die qualitative Ähnlichkeit der WMFen $p_{\xi_1,\xi_2}(x_1,x_2)$ und $p_{\xi_2|\xi_1}(x_2|x_1)$.
- Bedingte Verteilungen sind (lediglich) normalisierte gemeinsame Verteilungen.

Definition (Bedingte WDF, kontinuierliche bedingte Verteilungen)

 $\xi:=(\xi_1,\xi_2)$ sei ein kontinuierlicher Zufallsvektor mit Ergebnisraum \mathbb{R}^2 , WDF $p_\xi=p_{\xi_1,\xi_2}$ und marginalen WDFen p_{ξ_1} und p_{ξ_2} . Die bedingte WDF von ξ_1 gegeben $\xi_2=x_2$ ist dann für $p_{\xi_2}(x_2)>0$ definiert als

$$p_{\xi_1|\xi_2=x_2}: \mathbb{R} \to \mathbb{R}_{\geq 0}, x_1 \mapsto p_{\xi_1|\xi_2=x_2}(x_1|x_2) := \frac{p_{\xi_1,\xi_2}(x_1,x_2)}{p_{\xi_2}(x_2)}$$
 (20)

Analog ist für $p_{\xi_1}\left(x_1\right)>0$ die bedingte WMF von ξ_2 gegeben $\xi_1=x_1$ definiert als

$$p_{\xi_2|\xi_1=x_1}: \mathbb{R} \to \mathbb{R}_{\geq 0}, x_2 \mapsto p_{\xi_2|\xi_1=x_2}(x_2|x_1) := \frac{p_{\xi_1,\xi_2}(x_1,x_2)}{p_{\xi_1}(x_1)}$$
 (21)

Die Verteilungen mit WDFen $p_{\xi_1|\xi_2=x_2}$ und $p_{\xi_2|\xi_1=x_1}$ heißen dann die *kontinuierlichen bedingten Verteilungen von* ξ_1 gegeben $\xi_2=x_2$ und ξ_2 gegeben $\xi_1=x_1$, respektive.

Bemerkung

• Im kontinuierlichen Fall gilt zwar $\mathbb{P}(\xi=x)=0$, aber nicht notwendig auch $p_{\xi}(x)=0$.

Multivariate Verteilungen

Marginal verteilungen

Bedingte Verteilungen

Unabhängige Zufallsvariablen

Definition (Unabhängige Zufallsvariablen)

 $(\Omega,\mathcal{A},\mathbb{P})$ sei ein Wahrscheinlichkeitsraum und $\xi:=(\xi_1,\xi_2)$ ein zweidimensionaler Zufallsvektor. Die Zufallsvariablen ξ_1,ξ_2 mit Ergebnisräumen $\mathcal{X}_1,\mathcal{X}_2$ heißen *unabhängig*, wenn für alle $S_1\subseteq\mathcal{X}_1$ und $S_2\subseteq\mathcal{X}_2$ gilt, dass

$$\mathbb{P}_{\xi}(\xi_1 \in S_1, \xi_2 \in S_2) = \mathbb{P}_{\xi_1}(\xi_1 \in S_1) \mathbb{P}_{\xi_2}(\xi_2 \in S_2). \tag{22}$$

- Die Definition besagt, dass die Ereignisse $\{\xi_1 \in S_1\}$ und $\{\xi_2 \in S_2\}$ unabhängig sind.
- Es gilt also auch, dass $\mathbb{P}(\{\xi_1 \in S_1\})|\{\xi_2 \in S_2\}) = \mathbb{P}(\{\xi_1 \in S_1\}).$
- Wissen um das Ereignis $\{\xi_2 \in S_2\}$ verändert die Wahrscheinlichkeit von $\{\xi_1 \in S_1\}$ nicht.
- Einen formaleren Zugang bietet das Konzept der Produktwahrscheinlichkeitsräume.

Theorem (Unabhängigkeit und Faktorisierung der WMF/WDF)

(1) $\xi:=(\xi_1,\xi_2)$ sei ein diskreter Zufallsvektor mit Ergebnisraum $\mathcal{X}_1\times\mathcal{X}_2$, WMF p_ξ und marginalen WMFen p_{ξ_1},p_{ξ_2} . Dann gilt

 ξ_1 und ξ_2 sind unabhängige Zufallsvariablen \Leftrightarrow

$$p_{\xi}(x_1, x_2) = p_{\xi_1}(x_1)p_{\xi_2}(x_2)$$
 für alle $(x_1, x_2) \in \mathcal{X}_1 \times \mathcal{X}_2$. (23)

(2) $\xi:=(\xi_1,\xi_2)$ sei ein kontinuierlicher Zufallsvektor mit Ergebnisraum \mathbb{R}^2 , WDF p_ξ und marginalen WDFen p_{ξ_1},p_{ξ_2} . Dann gilt

 ξ_1 und ξ_2 sind unabhängige Zufallsvariablen \Leftrightarrow

$$p_{\xi}(x_1, x_2) = p_{\xi_1}(x_1)p_{\xi_2}(x_2) \text{ für alle } (x_1, x_2) \in \mathbb{R}^2.$$
 (24)

- Wir verzichten auf einen Beweis.
- Die Produkteigenschaft $p_{\xi}(x_1,x_2)=p_{\xi_1}(x_1)p_{\xi_2}(x_2)$ heißt auch Faktorisierung.
- Unabhängigkeit zweier ZVen entspricht der Faktorisierung ihrer gemeinsamen WMF/WDF.

Beispiel (Unabhängige diskrete Zufallsvariablen)

Wir betrachten erneut den zweidimensionalen Zufallsvektor $\xi := (\xi_1, \xi_2)$, der Werte in $\{1, 2, 3\} \times \{1, 2, 3, 4\}$ annimmt, und dessen gemeinsame und marginale WMFen die untenstehende Form haben

$p_{\xi}(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$x_2 = 4$	$p_{\xi_1}(x_1)$
$x_1 = 1$	0.10	0.00	0.20	0.10	0.40
$x_1 = 2$	0.10	0.20	0.00	0.00	0.30
$x_1 = 3$	0.00	0.10	0.10	0.10	0.30
$p_{\xi_{2}}(x_{2})$	0.20	0.30	0.30	0.20	

Da hier gilt, dass

$$p_{\xi}(1,1) = 0.10 \neq 0.08 = 0.40 \cdot 0.20 = p_{\xi_1}(1)p_{\xi_2}(1)$$
 (25)

sind die Zufallsvariablen ξ_1 und ξ_2 nicht unabhängig.

Beispiel (Unabhängige diskrete Zufallsvariablen)

Die gemeinsame Verteilung von ξ_1 und ξ_2 unter der Annahme der Unabhängigkeit von ξ_1 und ξ_2 bei gleichen Marginalverteilungen ergibt sich zu

$p_{\xi}(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$x_2 = 4$	$p_{\xi_1}(x_1)$
$x_1 = 1$	0.08	0.12	0.12	0.08	0.40
$x_1 = 2$	0.06	0.09	0.09	0.06	0.30
$x_1 = 3$	0.06	0.09	0.09	0.06	0.30
$p_{\xi_2}(x_2)$	0.20	0.30	0.30	0.20	

Weiterhin ergeben sich im Falle der Unabhängigkeit von ξ_1 und ξ_2 zum Beispiel die bedingten Wahrscheinlichkeitsmassefunktion $p_{\xi_2|\xi_1}$ zu

$p_{\xi_1 \xi_2}(x_1,x_2)$	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$x_2 = 4$
$p_{\xi_2 \xi_1=1}(x_2 x_1=1)$	$\frac{0.08}{0.40} = 0.2$	$\frac{0.12}{0.40} = 0.3$	$\frac{0.12}{0.40} = 0.3$	$\frac{0.08}{0.40} = 0.2$
$p_{\xi_2 \xi_1=2}(x_2 x_1=2)$	$\frac{0.06}{0.30} = 0.2$	$\frac{0.09}{0.30} = 0.3$	$\frac{0.09}{0.30} = 0.3$	$\frac{0.06}{0.30} = 0.2$
$p_{\xi_2 \xi_1=3}(x_2 x_1=3)$	$\frac{0.06}{0.30} = 0.2$	$\frac{0.09}{0.30} = 0.3$	$\frac{0.09}{0.30} = 0.3$	$\frac{0.06}{0.30} = 0.2$

Im Falle der Unabhängigkeit von ξ_1 und ξ_2 ändert sich die Verteilung von ξ_2 gegeben (oder im Wissen um) den Wert von ξ_1 also nicht und entspricht jeweils der Marginalverteilung von ξ_2 . Dies entspricht natürlich der Intuition der Unabhängigkeit von Ereignissen im Kontext elementarer Wahrscheinlichkeiten.

Definition (n unabhängige Zufallsvariablen)

 $\xi:=(\xi_1,...,\xi_n)$ sei ein n-dimensionaler Zufallsvektor mit Ergebnisraum $\mathcal{X}=\times_{i=1}^n\mathcal{X}_i$. Die n Zufallsvariablen $\xi_1,...,\xi_n$ heißen unabhängig, wenn für alle $S_i\in\mathcal{X}_i,i=1,...,n$ gilt, dass

$$\mathbb{P}_{\xi}(\xi_1 \in S_1, ..., \xi_n \in S_n) = \prod_{i=1}^n \mathbb{P}_{\xi_i}(\xi_i \in S_i).$$
 (26)

Wenn der Zufallsvektor eine n-dimensionale WMF oder WDF p_{ξ} mit marginalen WMFen oder WDFen $p_{\xi_i}, i=1,...,n$ besitzt, dann ist die Unabhängigkeit von $\xi_1,...,\xi_n$ gleichbedeutend mit der Faktorisierung der gemeinsamen WMF oder WDF, also mit

$$p_{\xi}(\xi_1, ..., \xi_n) = \prod_{i=1}^n p_{\xi_i}(x_i).$$
 (27)

Bemerkung

Es handelt sich um eine direkte Generalisierung des zweidimensionalen Falls.

Definition (Unabhängig und identisch verteilte Zufallsvariablen)

- n Zufallsvariablen $\xi_1, ..., \xi_n$ heißen unabhängig und identisch verteilt (u.i.v.), wenn
- (1) $\xi_1, ..., \xi_n$ unabhängige Zufallsvariablen sind, und
- (2) die Marginalverteilungen der ξ_i übereinstimmen, also gilt, dass

$$\mathbb{P}_{\xi_i} = \mathbb{P}_{\xi_j} \text{ für alle } 1 \le i, j \le n. \tag{28}$$

Wenn die Zufallsvariablen $\xi_1,...,\xi_n$ unabhängig und identisch verteilt sind und die ite Marginalverteilung $\mathbb{P}_\xi:=\mathbb{P}_{\xi_i}$ ist, so schreibt man auch

$$\xi_1, \dots, \xi_n \sim \mathbb{P}_{\xi}. \tag{29}$$

- Man sagt kurz, dass $\xi_1, ..., \xi_n$ u.i.v. sind.
- Im Englischen spricht man von independent and identically distributed (i.i.d) Zufallsvariablen.
- In der Statistik werden Fehlerterme meist durch u.i.v. Zufallsvariablen modelliert.
- n u.i.v. normalverteilte ZVen werden als $\xi_1,...,\xi_n \sim N(\mu,\sigma^2)$ geschrieben.

Multivariate Verteilungen

Marginalverteilungen

Bedingte Verteilungen

Unabhängige Zufallsvariablen

- 1. Definieren Sie den Begriff des Zufallsvektors.
- 2. Definieren Sie den Begriff der multivariaten Verteilung eines Zufallsvektors.
- 3. Definieren Sie den Begriff der multivariaten WMF.
- 4. Definieren Sie den Begriff der multivariaten WDF.
- 5. Definieren Sie den Begriff der univariaten Marginalverteilung eines Zufallsvektors.
- 6. Wie berechnet man die WMF der iten Komponente eines diskreten Zufallsvektors?
- 7. Wie berechnet man die WDF der iten Komponente eines kontinuierlichen Zufallsvektors?
- 8. Definieren Sie den Begriff der Unabhängigkeit zweier Zufallsvariablen.
- 9. Wie erkennt man an der gemeinsamen WMF oder WDF eines zweidimensionalen Zufallsvektors, ob die Komponenten des Zufallsvektors unabhängig sind oder nicht?
- 10. Definieren Sie den Begriff der Unabhängigkeit von n Zufallsvariablen.
- 11. Definieren Sie den Begriff n unabhängig und identisch verteilter Zufallsvariablen.