UNIVERSIDAD MAYOR DE SAN ANDRES FACULTAD DE CIENCIAS PURAS Y NATURALES CARRERA DE INFORMATICA

INFORME

Docente: Lic. Brígida Carvajal Blanco

Universitario: Nelson Alexander Mamani Villazante

Materia: Análisis Numérico

Fecha: 15 de octubre de 2024

Aplicar Newton y Lagrange para comparar los datos estadísticos del censo 2024 con los datos del Instituto Nacional de Estadística (INE)

#	POBLACION	AÑO		
0	1,172,156	1882		
U	1,172,130	1002		
1	1,766,451	1900		
2	2,704,165	1950		
3	4,613,419	1976		
4	6,420,792	1992		
5	8,274,325	2001		
6	10,059,856	2012		

Ahora utilizando el método de Newton y Lagrange queremos saber la población para el 2024:

En Excel utilizamos el método de Newton

	#	AÑO	POBLACION	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nivel
	0	1882	1.172.156,00	33016,3889	-209,736895	9,88501823	-0,06795795	0,0049032	-0,00031505
	1	1900	1.766.451,00	18754,28	719,454818	2,40964389	0,51552282	-0,03605304	
	2	1950	2.704.165,00	73432,8462	941,142056	54,4774488	-3,52241741		
	3	1976	4.613.419,00	112960,813	3719,49194	-163,912431			
4	4	1992	6.420.792,00	205948,111	-2181,35556				
	5	2001	8.274.325,00	162321					
	6	2012	10.059.856,00						

Solución, Comparamos y calculamos el Error

	2024	?
	p(x)=	f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2)
	P(x)=	10.473.328
DATOS REAL	DEL INE	11,312,620
	'	
	ERROR	839.292

Ahora hacemos los cálculos con el método de Lagrange

Calculadora de polinomios de Lagrange

```
Puntos de datos, un punto por línea, separados por el espacio

1882 1172156

1900 1766451

1950 2704165

1976 4613419

1992 6420792

2001 8274325
```

Puntos de interpolación 2024

CALCULAR

```
\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{C\'alculo preciso} \\ \text{D\'igitos despu\'es del punto decimal: 2} \end{array} \\ \hline \\ Polinomio de Lagrange \\ L(x) = -\frac{506389539374393}{1607341008960086400} x^6 + \frac{1318476692053455911}{357186890880019200} x^5 - \frac{57923213652992838867889}{3214682017920172800} x^4 \\ + \frac{1047068494516849054434749}{22324180680001200} x^3 - \frac{7883796074332160084822474413}{114810072068577600} x^2 \\ + \frac{1196833362811226350316396860111}{22324180680001200} x - \frac{342624547990971821979588281}{19648108326} \\ \hline \\ \text{Puntos Interpolados} \\ \hline \\ \text{$\times$} & 2024 \\ \hline \\ \text{$y$} & 6108208 \\ \end{array}
```

Grafica de la Interpolación

Conclusión

La comparación entre los datos del censo poblacional del INE de Bolivia y los resultados obtenidos mediante los métodos de extrapolación e interpolación (Lagrange) muestra diferencias notables. Mientras que el INE reporta un crecimiento continuo de la población, los cálculos realizados predicen cifras más bajas para 2024, especialmente con el método de Lagrange, que estimó aproximadamente 6,1 millones de habitantes, significativamente inferior a las proyecciones oficiales. Esto sugiere que, si bien las técnicas matemáticas ayudan a modelar tendencias, es crucial basarse en censos y proyecciones oficiales para decisiones demográficas precisas.