$12a_{0719} (K12a_{0719})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^4 + 2u^2 + b, \ u^{28} - u^{27} + \dots + 4a - 5, \ u^{29} + 14u^{27} + \dots + u + 1 \rangle \\ I_2^u &= \langle -217988152638u^{47} + 1406532927108u^{46} + \dots + 3784892885959b - 5225681996414, \\ 17960627004036u^{47} - 14379379524196u^{46} + \dots + 3784892885959a - 93018602061573, \\ u^{48} - u^{47} + \dots - 12u + 1 \rangle \\ I_3^u &= \langle b - 1, \ a^2 + au - 1, \ u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 81 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^4 + 2u^2 + b, u^{28} - u^{27} + \dots + 4a - 5, u^{29} + 14u^{27} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{4}u^{28} + \frac{1}{4}u^{27} + \dots - \frac{11}{2}u^{2} + \frac{5}{4} \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{27} - \frac{1}{2}u^{26} + \dots - u + \frac{1}{2} \\ -\frac{1}{4}u^{28} + \frac{1}{4}u^{27} + \dots + \frac{3}{2}u^{2} + \frac{1}{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{28} + \frac{1}{4}u^{27} + \dots - \frac{12}{2}u^{2} - \frac{1}{4} \\ \frac{1}{4}u^{28} - \frac{1}{4}u^{27} + \dots - \frac{7}{2}u^{2} + \frac{5}{4} \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{4}u^{28} + \frac{1}{4}u^{27} + \dots + \frac{7}{2}u + \frac{1}{4} \\ u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{28} - u^{27} + 27u^{26} - 10u^{25} + 159u^{24} - 38u^{23} + 522u^{22} - 51u^{21} + 990u^{20} + 75u^{19} + 912u^{18} + 361u^{17} - 172u^{16} + 442u^{15} - 1278u^{14} - 914u^{12} - 460u^{11} + 325u^{10} - 287u^9 + 589u^8 + 114u^7 + 18u^6 + 133u^5 - 128u^4 + 3u^3 + 18u^2 - 13u + 8$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{29} + 13u^{28} + \dots + 17u + 4$
c_2, c_7	$u^{29} + 3u^{28} + \dots - u - 2$
c_3, c_5	$u^{29} - 3u^{28} + \dots + 80u - 32$
c_4, c_6, c_9 c_{10}, c_{11}, c_{12}	$u^{29} + 14u^{27} + \dots + u - 1$
c ₈	$u^{29} + 9u^{28} + \dots + 95u + 6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{29} + 7y^{28} + \dots - 271y - 16$
c_2, c_7	$y^{29} - 13y^{28} + \dots + 17y - 4$
c_3, c_5	$y^{29} - 19y^{28} + \dots - 7424y - 1024$
$c_4, c_6, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^{29} + 28y^{28} + \dots + y - 1$
c_8	$y^{29} - y^{28} + \dots + 5569y - 36$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.837271 + 0.076877I		
a = -2.37885 + 0.65426I	4.96568 - 6.65204I	9.90546 + 5.57516I
b = -1.85683 + 0.43644I		
u = -0.837271 - 0.076877I		
a = -2.37885 - 0.65426I	4.96568 + 6.65204I	9.90546 - 5.57516I
b = -1.85683 - 0.43644I		
u = 0.833662 + 0.041563I		
a = -2.37643 - 0.35224I	6.73725 + 1.44483I	12.74743 - 0.59636I
b = -1.86234 - 0.23468I		
u = 0.833662 - 0.041563I		
a = -2.37643 + 0.35224I	6.73725 - 1.44483I	12.74743 + 0.59636I
b = -1.86234 + 0.23468I		
u = -0.732519		
a = -1.59609	1.48106	7.22880
b = -1.36109		
u = 0.028083 + 1.284050I		
a = -1.81534 - 0.31795I	-5.68843 + 2.62043I	-0.80670 - 3.52599I
b = 0.585292 + 0.093469I		
u = 0.028083 - 1.284050I		
a = -1.81534 + 0.31795I	-5.68843 - 2.62043I	-0.80670 + 3.52599I
b = 0.585292 - 0.093469I		
u = 0.323515 + 1.266490I		
a = 0.83700 - 1.78087I	-2.35148 + 1.67474I	2.52522 - 1.56718I
b = 1.42217 + 0.81837I		
u = 0.323515 - 1.266490I		
a = 0.83700 + 1.78087I	-2.35148 - 1.67474I	2.52522 + 1.56718I
b = 1.42217 - 0.81837I		
u = -0.348532 + 1.291470I		
a = 1.07285 + 1.53998I	-1.05837 - 7.04671I	4.61471 + 6.27988I
b = 1.51186 - 0.98379I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.348532 - 1.291470I		
a = 1.07285 - 1.53998I	-1.05837 + 7.04671I	4.61471 - 6.27988I
b = 1.51186 + 0.98379I		
u = 0.133920 + 1.390120I		
a = -0.659184 - 0.455120I	-9.06064 + 3.87312I	-0.24533 - 3.24694I
b = 0.302303 + 0.681001I		
u = 0.133920 - 1.390120I		
a = -0.659184 + 0.455120I	-9.06064 - 3.87312I	-0.24533 + 3.24694I
b = 0.302303 - 0.681001I		
u = -0.380467 + 1.345060I		
a = 1.37808 + 1.03819I	-2.01294 - 10.23390I	4.21079 + 5.73081I
b = 1.60610 - 1.36006I		
u = -0.380467 - 1.345060I		
a = 1.37808 - 1.03819I	-2.01294 + 10.23390I	4.21079 - 5.73081I
b = 1.60610 + 1.36006I		
u = 0.338958 + 1.357740I		
a = 0.987536 - 0.915157I	-7.32448 + 7.83990I	-2.00524 - 4.89975I
b = 1.31640 + 1.34118I		
u = 0.338958 - 1.357740I		
a = 0.987536 + 0.915157I	-7.32448 - 7.83990I	-2.00524 + 4.89975I
b = 1.31640 - 1.34118I		
u = 0.39002 + 1.36214I		
a = 1.47122 - 0.87684I	-4.1212 + 15.5713I	1.45377 - 9.68760I
b = 1.63429 + 1.49453I		
u = 0.39002 - 1.36214I		
a = 1.47122 + 0.87684I	-4.1212 - 15.5713I	1.45377 + 9.68760I
b = 1.63429 - 1.49453I		
u = -0.08532 + 1.43102I		
a = -0.804301 + 0.163541I	-13.00060 - 0.38893I	-5.31626 - 0.21588I
b = -0.023082 - 0.508186I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.08532 - 1.43102I		
a = -0.804301 - 0.163541I	-13.00060 + 0.38893I	-5.31626 + 0.21588I
b = -0.023082 + 0.508186I		
u = -0.16556 + 1.42736I		
a = -0.411189 + 0.278237I	-11.9273 - 8.4157I	-3.46124 + 6.83368I
b = 0.203418 - 0.954656I		
u = -0.16556 - 1.42736I		
a = -0.411189 - 0.278237I	-11.9273 + 8.4157I	-3.46124 - 6.83368I
b = 0.203418 + 0.954656I		
u = 0.417850 + 0.314001I		_
a = 0.589467 - 1.254980I	-0.65256 + 3.97304I	7.14340 - 9.12328I
b = -0.088921 - 0.564710I		
u = 0.417850 - 0.314001I		
a = 0.589467 + 1.254980I	-0.65256 - 3.97304I	7.14340 + 9.12328I
b = -0.088921 + 0.564710I		
u = -0.414438 + 0.109369I		
a = 0.217260 + 0.434902I	0.809813 - 0.139665I	12.95255 + 2.10646I
b = -0.336911 + 0.210279I		
u = -0.414438 - 0.109369I	0.000010 : 0.1000077	10.05055 0.100405
a = 0.217260 - 0.434902I	0.809813 + 0.139665I	12.95255 - 2.10646I
b = -0.336911 - 0.210279I		
u = 0.131847 + 0.393506I	1 00100 1 505001	2.00702 0.224001
a = 1.68992 - 0.55774I	-1.29100 - 1.59593I	3.66703 + 0.23498I
b = 0.266797 - 0.179002I $u = 0.131847 - 0.393506I$		
	1 00100 + 1 505007	2.66702 0.224001
a = 1.68992 + 0.55774I	-1.29100 + 1.59593I	3.66703 - 0.23498I
b = 0.266797 + 0.179002I		

$$\begin{array}{l} I_2^u = \langle -2.18 \times 10^{11} u^{47} + 1.41 \times 10^{12} u^{46} + \dots + 3.78 \times 10^{12} b - 5.23 \times 10^{12}, \ 1.80 \times 10^{13} u^{47} - 1.44 \times 10^{13} u^{46} + \dots + 3.78 \times 10^{12} a - 9.30 \times 10^{13}, \ u^{48} - u^{47} + \dots - 12 u + 1 \rangle \end{array}$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -4.74535u^{47} + 3.79915u^{46} + \cdots - 173.968u + 24.5763 \\ 0.0575943u^{47} - 0.371618u^{46} + \cdots - 3.92085u + 1.38067 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -4.74535u^{47} + 3.79915u^{46} + \cdots - 173.968u + 24.5763 \\ 0.0575943u^{47} - 0.371618u^{46} + \cdots - 3.92085u + 1.38067 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -4.74535u^{47} + 3.55040u^{46} + \cdots - 3.92085u + 1.38067 \\ -4.765u^{3} - 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -5.55732u^{47} + 3.55040u^{46} + \cdots - 170.824u + 25.8316 \\ -0.158538u^{47} - 0.442451u^{46} + \cdots + 4.87445u - 0.167244 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -3.20292u^{47} + 3.42884u^{46} + \cdots + 149.755u + 21.9747 \\ 0.847526u^{47} - 0.612468u^{46} + \cdots + 3.21471u + 1.01524 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -3.50861u^{47} + 3.63777u^{46} + \cdots - 167.772u + 24.6986 \\ 0.647166u^{47} - 0.266498u^{46} + \cdots + 1.13773u + 1.25150 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.748497u^{47} - 0.101330u^{46} + \cdots + 20.5778u - 7.84423 \\ -0.251503u^{47} + 0.898670u^{46} + \cdots - 27.4222u + 4.15577 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{24601630690532}{3784892885959}u^{47} + \frac{18604517425224}{3784892885959}u^{46} + \dots - \frac{609246536515560}{3784892885959}u + \frac{112526788081386}{3784892885959}u^{46} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^{24} + 11u^{23} + \dots - 2u^2 + 1)^2$
c_2, c_7	$(u^{24} - u^{23} + \dots - 2u^3 + 1)^2$
c_3, c_5	$(u^{24} + u^{23} + \dots + 10u + 1)^2$
c_4, c_6, c_9 c_{10}, c_{11}, c_{12}	$u^{48} + u^{47} + \dots + 12u + 1$
c ₈	$(u^{24} - 3u^{23} + \dots - 4u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^{24} + 5y^{23} + \dots - 4y + 1)^2$
c_2, c_7	$(y^{24} - 11y^{23} + \dots - 2y^2 + 1)^2$
c_3, c_5	$(y^{24} - 19y^{23} + \dots - 48y + 1)^2$
$c_4, c_6, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^{48} + 35y^{47} + \dots - 48y + 1$
<i>c</i> ₈	$(y^{24} + y^{23} + \dots + 20y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.083162 + 1.035970I		
a = 0.841864 - 0.321789I	-1.54603 - 2.05721I	8.27298 + 4.01793I
b = -0.0601129 + 0.0367502I		
u = -0.083162 - 1.035970I		
a = 0.841864 + 0.321789I	-1.54603 + 2.05721I	8.27298 - 4.01793I
b = -0.0601129 - 0.0367502I		
u = 0.392939 + 0.971182I		
a = -0.309360 - 0.748390I	-5.03285 + 0.40841I	-1.87200 - 0.75563I
b = 0.982133 - 0.443510I		
u = 0.392939 - 0.971182I		
a = -0.309360 + 0.748390I	-5.03285 - 0.40841I	-1.87200 + 0.75563I
b = 0.982133 + 0.443510I		
u = 0.884347 + 0.132718I		
a = 2.11818 + 1.02084I	0.58237 + 11.00000I	5.31825 - 8.05284I
b = 1.59566 + 1.20269I		
u = 0.884347 - 0.132718I		
a = 2.11818 - 1.02084I	0.58237 - 11.00000I	5.31825 + 8.05284I
b = 1.59566 - 1.20269I		
u = -0.859254 + 0.109305I		
a = 2.20088 - 0.78527I	2.55519 - 5.78082I	8.37527 + 3.72629I
b = 1.63876 - 1.06164I		
u = -0.859254 - 0.109305I		
a = 2.20088 + 0.78527I	2.55519 + 5.78082I	8.37527 - 3.72629I
b = 1.63876 + 1.06164I		
u = -0.546029 + 0.650274I		
a = -0.571077 + 0.256979I	-6.25412 + 1.34320I	-2.02964 - 0.62000I
b = 0.470130 - 0.014776I		
u = -0.546029 - 0.650274I		
a = -0.571077 - 0.256979I	-6.25412 - 1.34320I	-2.02964 + 0.62000I
b = 0.470130 + 0.014776I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.649138 + 0.481545I		
a = -0.151229 - 0.117560I	-5.72979 - 5.71321I	-0.10823 + 7.50361I
b = 0.508439 - 0.442655I		
u = -0.649138 - 0.481545I		
a = -0.151229 + 0.117560I	-5.72979 + 5.71321I	-0.10823 - 7.50361I
b = 0.508439 + 0.442655I		
u = 0.784879 + 0.163524I		
a = 1.66447 + 0.46022I	-2.54173 + 3.77265I	2.10807 - 3.49106I
b = 1.33791 + 0.89026I		
u = 0.784879 - 0.163524I		
a = 1.66447 - 0.46022I	-2.54173 - 3.77265I	2.10807 + 3.49106I
b = 1.33791 - 0.89026I		
u = -0.795746 + 0.032611I		
a = 2.46879 - 0.15993I	3.07007 - 2.92383I	9.29020 + 3.29300I
b = 1.74739 - 0.69246I		
u = -0.795746 - 0.032611I		
a = 2.46879 + 0.15993I	3.07007 + 2.92383I	9.29020 - 3.29300I
b = 1.74739 + 0.69246I		
u = 0.469574 + 1.138130I		
a = -0.062143 - 1.315650I	-2.49287 - 6.17959I	0
b = 1.41310 - 0.90321I		
u = 0.469574 - 1.138130I		
a = -0.062143 + 1.315650I	-2.49287 + 6.17959I	0
b = 1.41310 + 0.90321I		
u = -0.423332 + 1.157340I		
a = 0.118454 + 1.197480I	-0.655501 + 1.182900I	0
b = 1.54922 + 0.71748I		
u = -0.423332 - 1.157340I		
a = 0.118454 - 1.197480I	-0.655501 - 1.182900I	0
b = 1.54922 - 0.71748I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.763915 + 0.011868I		
a = 2.60812 + 0.15719I	1.53995 + 2.24524I	7.02697 - 1.89383I
b = 1.78089 - 0.50529I		
u = 0.763915 - 0.011868I		
a = 2.60812 - 0.15719I	1.53995 - 2.24524I	7.02697 + 1.89383I
b = 1.78089 + 0.50529I		
u = 0.187442 + 1.231110I		
a = 0.545130 - 0.408643I	-5.03285 - 0.40841I	0
b = 1.53791 + 0.32240I		
u = 0.187442 - 1.231110I		
a = 0.545130 + 0.408643I	-5.03285 + 0.40841I	0
b = 1.53791 - 0.32240I		
u = -0.387629 + 1.193070I		
a = -0.37581 - 1.54631I	1.53995 + 2.24524I	0
b = -1.50691 - 0.05742I		
u = -0.387629 - 1.193070I		
a = -0.37581 + 1.54631I	1.53995 - 2.24524I	0
b = -1.50691 + 0.05742I		
u = -0.087792 + 1.256180I		
a = 0.194932 - 0.097149I	-3.23391 - 1.77225I	0
b = 0.095700 + 0.946512I		
u = -0.087792 - 1.256180I		
a = 0.194932 + 0.097149I	-3.23391 + 1.77225I	0
b = 0.095700 - 0.946512I		
u = -0.343517 + 1.240530I		
a = 0.574621 + 0.998480I	-0.655501 - 1.182900I	0
b = 1.93449 + 0.31400I		
u = -0.343517 - 1.240530I		
a = 0.574621 - 0.998480I	-0.655501 + 1.182900I	0
b = 1.93449 - 0.31400I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.381844 + 1.230540I		
a = -0.60470 + 1.40460I	3.07007 + 2.92383I	0
b = -1.66121 - 0.16942I		
u = 0.381844 - 1.230540I		
a = -0.60470 - 1.40460I	3.07007 - 2.92383I	0
b = -1.66121 + 0.16942I		
u = 0.003860 + 1.314540I		
a = 0.389563 - 0.108946I	-6.25412 - 1.34320I	0
b = 0.73816 - 1.24315I		
u = 0.003860 - 1.314540I		
a = 0.389563 + 0.108946I	-6.25412 + 1.34320I	0
b = 0.73816 + 1.24315I		
u = -0.312455 + 1.285240I		
a = -0.685205 - 0.791335I	-2.54173 - 3.77265I	0
b = -1.45997 + 0.81592I		
u = -0.312455 - 1.285240I		
a = -0.685205 + 0.791335I	-2.54173 + 3.77265I	0
b = -1.45997 - 0.81592I		
u = 0.326858 + 1.282730I		
a = 0.777912 - 0.946368I	-2.49287 + 6.17959I	0
b = 2.13689 - 0.15998I		
u = 0.326858 - 1.282730I		
a = 0.777912 + 0.946368I	-2.49287 - 6.17959I	0
b = 2.13689 + 0.15998I		
u = 0.502420 + 0.447701I		
a = -0.134106 - 0.384855I	-3.23391 + 1.77225I	4.01088 - 4.04184I
b = 0.723438 + 0.251564I		
u = 0.502420 - 0.447701I		
a = -0.134106 + 0.384855I	-3.23391 - 1.77225I	4.01088 + 4.04184I
b = 0.723438 - 0.251564I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.109509 + 1.330900I		
a = 0.0069009 - 0.1157290I	-5.72979 + 5.71321I	0
b = -0.02405 - 1.48729I		
u = 0.109509 - 1.330900I		
a = 0.0069009 + 0.1157290I	-5.72979 - 5.71321I	0
b = -0.02405 + 1.48729I		
u = 0.373011 + 1.298830I		
a = -1.01979 + 1.09705I	2.55519 + 5.78082I	0
b = -1.94507 - 0.64857I		
u = 0.373011 - 1.298830I		
a = -1.01979 - 1.09705I	2.55519 - 5.78082I	0
b = -1.94507 + 0.64857I		
u = -0.372104 + 1.322640I		
a = -1.17196 - 0.98411I	0.58237 - 11.00000I	0
b = -2.05820 + 0.82837I		
u = -0.372104 - 1.322640I		
a = -1.17196 + 0.98411I	0.58237 + 11.00000I	0
b = -2.05820 - 0.82837I		
u = 0.179559 + 0.049688I		
a = 0.07555 - 5.02709I	-1.54603 + 2.05721I	8.27298 - 4.01793I
b = 1.025290 + 0.022853I		
u = 0.179559 - 0.049688I		
a = 0.07555 + 5.02709I	-1.54603 - 2.05721I	8.27298 + 4.01793I
b = 1.025290 - 0.022853I		

III.
$$I_3^u = \langle b-1, \ a^2 + au - 1, \ u^2 + 1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -au + 1 \\ a - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a \\ -a+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a+1\\1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -au \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4au

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - u + 1)^2$
c_2, c_7, c_8	$u^4 - u^2 + 1$
c_3, c_5	u^4
c_4, c_6, c_9 c_{10}, c_{11}, c_{12}	$(u^2+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^2 + y + 1)^2$
c_2, c_7, c_8	$(y^2 - y + 1)^2$
c_3, c_5	y^4
$c_4, c_6, c_9 \\ c_{10}, c_{11}, c_{12}$	$(y+1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = -0.866025 - 0.500000I	-3.28987 - 2.02988I	2.00000 + 3.46410I
b = 1.00000		
u = 1.000000I		
a = 0.866025 - 0.500000I	-3.28987 + 2.02988I	2.00000 - 3.46410I
b = 1.00000		
u = -1.000000I		
a = -0.866025 + 0.500000I	-3.28987 + 2.02988I	2.00000 - 3.46410I
b = 1.00000		
u = -1.000000I		
a = 0.866025 + 0.500000I	-3.28987 - 2.02988I	2.00000 + 3.46410I
b = 1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{2} - u + 1)^{2})(u^{24} + 11u^{23} + \dots - 2u^{2} + 1)^{2}$ $\cdot (u^{29} + 13u^{28} + \dots + 17u + 4)$
c_2, c_7	$(u^4 - u^2 + 1)(u^{24} - u^{23} + \dots - 2u^3 + 1)^2(u^{29} + 3u^{28} + \dots - u - 2)$
c_3,c_5	$u^{4}(u^{24} + u^{23} + \dots + 10u + 1)^{2}(u^{29} - 3u^{28} + \dots + 80u - 32)$
c_4, c_6, c_9 c_{10}, c_{11}, c_{12}	$((u^{2}+1)^{2})(u^{29}+14u^{27}+\cdots+u-1)(u^{48}+u^{47}+\cdots+12u+1)$
c_8	$(u^4 - u^2 + 1)(u^{24} - 3u^{23} + \dots - 4u + 1)^2(u^{29} + 9u^{28} + \dots + 95u + 6)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^{2} + y + 1)^{2})(y^{24} + 5y^{23} + \dots - 4y + 1)^{2} \cdot (y^{29} + 7y^{28} + \dots - 271y - 16)$
c_2, c_7	$((y^{2} - y + 1)^{2})(y^{24} - 11y^{23} + \dots - 2y^{2} + 1)^{2}$ $\cdot (y^{29} - 13y^{28} + \dots + 17y - 4)$
c_3,c_5	$y^{4}(y^{24} - 19y^{23} + \dots - 48y + 1)^{2}(y^{29} - 19y^{28} + \dots - 7424y - 1024)$
c_4, c_6, c_9 c_{10}, c_{11}, c_{12}	$((y+1)^4)(y^{29} + 28y^{28} + \dots + y - 1)(y^{48} + 35y^{47} + \dots - 48y + 1)$
c_8	$((y^{2} - y + 1)^{2})(y^{24} + y^{23} + \dots + 20y + 1)^{2}$ $\cdot (y^{29} - y^{28} + \dots + 5569y - 36)$