Diversification models

Birth-death model

- Assumptions:
 - Speciation and extinction occur randomly
 - Each lineage has an equal and constant rate of speciation, b, and extinction, d

ERM Model

- BD is a special case of the Equal Rates Markov model (ERM)
- ERM Model assumptions
 - Markov model: next step depends only on current state
 - Equal rates: b and d are constant across lineages at any given time
 - b and/or d might change through time

Diversification Model

- Model: birth-death
- Every lineage has constant probability of:

Waiting times

 Under a birth-death model, the time intervals between successive events are always drawn from exponential distributions

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} &, x \ge 0, \\ 0 &, x < 0. \end{cases}$$

Expected species diversity under a birth-death model:

$$E[N_t] = N_o e^{(b-d)t}$$

 N_t = species diversity after time t

 N_o = starting species diversity

b = birth rate

d = death rate

t = time

Species Accumulation

 Expected number of species increases exponentially with λ-μ

Diversification Model

 Expected number of species increases exponentially with λ-μ

Time

Lineage-through-time

LTT Plot

Extinction

- Can leave an imprint on present-day phylogenies
- Older lineages are more likely to have gone extinct than younger ones

Time

Time

Plethodontid salamanders

Plethodontid salamanders

Plethodontid salamanders

We can use ML or Bayesian methods to analyze data, estimate parameters, and carry out model selection

Testing for slowdowns

- Pybus and Harvey gamma statistic
- Rabosky DDX/DDL models

Trait-dependent diversification models

- We can use BiSSE (and related) models to test for a relationship between traits and diversification rates
- For example, do speciation rates depend on character state?

Character-independent model

VS.

Character State

Characterdependent model

Diversification rate

 λ μ 0

1

Character State

Diversification rate

BiSSE Family

- BiSSE binary character
- MuSSE multi-state character
- ClaSSE cladogenesis
- GeoSSE geography
- QuaSSE quantitative character