Basic gates \bigcirc AND \rightarrow Not AND \Rightarrow AB

Other gales \bigcirc NOR \rightarrow Not OR \Rightarrow AB

NOR \rightarrow Exclusive OR

XOR \Rightarrow NOR \Rightarrow NOR \Rightarrow NOR \Rightarrow NOR

XOR \Rightarrow NOR \Rightarrow NOR

ANSI network symbols

NAND = Not of AND

NOR = Not of OR

XOR =

XNOR =

 $\times OR = A \oplus B$ $= M_1 + M_2$ $= \overline{AB + AB}$

$$\begin{array}{rcl}
\times NOR &=& A \oplus \mathbb{C} \\
&=& \gamma N_0 + M_3 \\
&=& \widetilde{A} \, \widetilde{B} + A
\end{array}$$

NAND/NOR gates + Petricks

Vikas Dhiman for ECE275

September 25, 2023

1 Circuit design using NAND/NOR gates

Example 1. Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using (1) NAND gates only and (2) NOR gates only.

NAND gates only = Sunn of products (SOP)

$$f = A\overline{B} + \overline{A}B = A\overline{B} + \overline{A}B$$

$$= \overline{\chi} + \overline{y}$$

$$= \overline{\chi} + \overline{\chi} + \overline{\chi}$$

$$= \overline{\chi} + \overline{\chi}$$

$$= \overline{\chi} + \overline{\chi} + \overline{\chi}$$

$$= \overline{\chi} + \overline{\chi}$$

$$= \overline{\chi} + \overline{\chi} + \overline{\chi}$$

$$= \overline{\chi} +$$

Remark 1. NAND-NAND logic is generated from SOP form. NOR-NOR logic is generated from POS form.

Remark 2. NOT gate can also be created from a NAND gate $\bar{x} = \overline{x \cdot x}$.

$$x - \bigcirc$$

Remark 3. NOT gate can also be created from a NOR gate $\bar{x} = \overline{x+x}$.

Problem 1. Design the simplest circuit that implements the function $f(x_1, x_2, x_3) = \sum m(3, 4, 6, 7)$ using (1) NAND gates only (2) NOR gates only.

 Ex.1) Find the min cost NAND implementation $f(21, \chi_2, \chi_3) = Zm(2, 3, 4, 6, 7)$ for NAND, we design SOP unplementation 71,713 J=EPC ソスナンハス

$$f(\eta_{1},\chi_{2},\chi_{3}) = \sum_{i} m(2,3,4,6,7)$$
for NOR implementation find POS
$$f(\chi_{1},\chi_{2},\chi_{3}) = \sum_{i} \chi_{1} \chi_{2} \chi_{3}$$

$$\chi_{3} = \sum_{i} \chi_{1} \chi_{2} \chi_{3} \chi_{3} = EPI$$

$$f = \chi_{1} \chi_{2} + \chi_{2} \chi_{3}$$

$$f = \chi_{1} \chi_{2} + \chi_{2} \chi_{3}$$

$$= (\chi_{1} + \chi_{2}) \cdot (\chi_{2} + \chi_{3})$$

$$\chi_{1} \chi_{2} = \chi_{1} \chi_{2} + \chi_{3} \chi_{3}$$

$$= \chi_{1} + \chi_{2} \cdot (\chi_{2} + \chi_{3})$$

$$\chi_{2} = \chi_{3} + \chi_{4} \chi_{3}$$

$$= \chi_{1} + \chi_{2} \cdot (\chi_{2} + \chi_{3})$$

$$\chi_{2} = \chi_{3} + \chi_{4} \chi_{3}$$

$$= \chi_{1} + \chi_{2} \cdot (\chi_{2} + \chi_{3})$$

$$\chi_{2} = \chi_{3} + \chi_{4} \chi_{3}$$

$$= \chi_{1} + \chi_{2} \cdot (\chi_{2} + \chi_{3})$$

$$\chi_{2} = \chi_{3} + \chi_{4} \chi_{3}$$

$$= \chi_{1} + \chi_{2} \cdot (\chi_{2} + \chi_{3})$$

Quine McCluskey method (i) Funding all the PI Finding minimum cost COVER Toom the PIs 2 PI Table reduction and Petrick's method

This is not in the text-book. For additional reading, please refer to the linked resources on the website.

Definition 1 (Implicant). Given a function f of n variables, a product term P is an implicant of f if and only if for every combination of values of the n variables for which P=1, f is also equal to f.

Definition 2 (Prime Implicant). A prime implicant of a function f is an implicant which is no longer an implicant if any literal is removed from it.

There are 4 main steps in the Quine-McCluskey algorithm/PI Table reduction and Petrick's method:

- 1. Generate Prime Implicants
- 2. Construct Prime Implicant Table. PIs as columns, and minterms as rows (don't cares are excluded).
- 3. Reduce Prime Implicant Table by repeating following steps until they it cannot be reduced further
 - (a) Remove Essential Prime Implicants
 - (b) Row Dominance: Remove dominating rows. (i.e. unnecessary minterms)
 - (c) Column Dominance: Remove dominated columns. (i.e. remove unnecessary PIs)
- 4. Solve Prime Implicant Table by Petrick's method

2.1 Generate Prime Implicants

Example 2. Generate prime implicants of the function $F(A, B, C, D) = \sum m(0, 2, 5, 6, 7, 8, 10, 12, 13, 14, 15)$ using Quine-McCluskey method

Conoul	Minterns ->	Briary number G. L. A. B. C. D	AB
0 Mo	خاناه	[m(0,2) 0 0 * 0	010/010/4
S M	Ng 1000	0 m(0,8) * 0 0 0	00000000000
	Mr DIDI		mo + Mz.
62	We OIID	m(8,0) + 0 + 0	$m_0 + m_1$
1	M_{10} 1010	m(8,12) 1 7 0 0	J= ÁBCD+ ABCD
\		$-\frac{m(S_{1}3)}{2} \times 10^{-1}$	= AB(C+C)D
7 ³	Myl. Start with writing	g minterms in him (16) hat (include don't care	s as minterms). $\stackrel{\checkmark}{} \stackrel{\frown}{} \stackrel{\frown}{\stackrel}{\stackrel}{\stackrel}{\stackrel}{\stackrel}{\stackrel}{\stackrel}{\stackrel}{\stackrel}{\stackrel}{\stackrel}{\stackrel}{\stackrel}$
4	m, 1111	/m(6,7)/ 0 1 1 *	(1100)
	\.	m(10,121) (* (O	
		m(12,13) 1 0 =	
		m(12,14)) 1 1 * 0	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABCD ABCD	CA ABCS	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	* 1 * * * * * * * * * * * * * * * * * *	AD, BD, BDS	,)

PI table reduction

- 2. Create potential groups of minterms that can be combined (merged). The only minterms that can be combined differ only be single 1. Create a new list of combined minterms as n-1 literal implicants.
- 3. Check off the minterms that could be combined. Unchecked minterms are prime implicants (PIs).
- 4. Repeat the grouping process with n-1 literal implicants.

Problem 2. Generate PIs for the function $F(A, B, C, D) = \sum m(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)$.

2.2 Prime Implicants table and reduction

Example 3. Reduce the prime implicants $\{\bar{B}\bar{D}, C\bar{D}, BD, BC, A\bar{D}, AB\}$ using prime implicants table

Draw all the nunterns CD Example 4. CD

x) | x 10 PT table gr Frow mystern De la as colums 6L→ AD mmterms 1 BD AB 0000 0010 25678 0101 0110 0111 1000 10 0101 11 0 0 12 13 1101 ١٦ 1110 15 1111

Example 5.

CD A	B_{00}	01	11	10	
00	d	0	0	0	
01	1	1	d	d	
11	1	1	0	0	
10	1	d	0	0	

Example 6. Reduce the following PI table

Example 6. Reduce the following 11 tubic									
	$\bar{A}\bar{D}$	$\bar{B}\bar{D}$	$\bar{C}\bar{D}$	$\bar{A}C$	$\bar{B}C$	$\bar{A}B$	$B\bar{C}$	$A\bar{B}$	$A\bar{C}$
0	X	X	X						
2	X	X		X	X				
3				X	X				
4 5	X		X			X	X		
5						X	X		
6	X			X		X			
γ				X		X			
8		X	X					X	X
g								X	X
10		X			X			X	
11					X			X	
12			X		X		X		X
13							X		X

2.3 Petrick's method

Example 7. Solve the Prime Implicant table using Petrick's method

					<u></u>	
	$p_1 = \bar{A}C$	$p_2 = \bar{B}C$	$p_3 = \bar{A}B$	$p_4 = B\bar{C}$	$p_5 = A\bar{B}$	$p_6 = A\bar{C}$
3	X	X				
5			X	X		
γ	X		X			
g					X	X
11		X			X	
13				X		X

Example 8. Find the minimum SOP expression for the function $F(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$ using Quine-McCluskey method.