6.5 Kruskal (克鲁斯卡尔) 算法过程

设G=(V, E), 最小生成树
$$T_{mst}$$
=(V_T, E_T)

- 1. 将图G中边的代价按照非递减的顺序排序;
- 2. 在E中选择最小的边 $e_{i,j}$ (V_i, V_j) ,如果顶点 V_i, V_j 属于两个不同连通分量加入到最小生成树 T_{mst}
- 3. $\mathbf{E} = \mathbf{E} \boldsymbol{e}_{i,i}$
- 4. 重复这个过程,直到T_{mst}中有n-1条边为止(即只有一个连通分量)

6.5 Kruskal (克鲁斯卡尔) 算法

注意:不能产生回路

- 将所有的顶点看作一个连通子图,加入到最小生成树
- 集合E中的边按权递增顺序排列为:

$$(v_0, v_1) = 5$$

 $(v_3, v_5) = 8$
 $(v_1, v_5) = 10$
 $(v_0, v_3) = 14$
 $(v_1, v_4) = 14$
 $(v_2, v_3) = 17$
 $(v_2, v_5) = 17$
 $(v_1, v_2) = 24$
 $(v_4, v_5) = 25$
 $(v_0, v_2) = 30$

- 选择权值最小的边加入到最小生成树中
- 直到加入了n-1条边成为一个连通子图为止

循环	本次循环 添加的边	group[]数组					
		0	1	2	3	4	5
1	(V_0, V_1)	0	0	2	3	4	5
2	(V_3, V_5)	0	0	2	3	4	3
3	(V_1, V_5)	0	0	2	0	4	0
4	(V_1, V_4)	0	0	2	0	0	0
5	(V_2, V_5)	2	2	2	2	2	2

Group数组记录各个顶点归属的连通分量

Begin	End	weight	是否加入到 最小生成树
0	1	5	Y
3	5	8	Y
1	5	10	Y
0	3	14	
1	4	14	Υ
2	5	17	Υ
2	3	17	
1	2	24	
4	5	25	
0	2	30	

Edge:各边按权值大小排序

Kruskal (克鲁斯卡尔) 课堂练习

- 将所有的顶点看作一个连通子图,加入到最小生成树
- 集合E中的边按权递增顺序排列为:

$$(v_1, v_2) = 5$$

 $(v_1, v_3) = 6$
 $(v_2, v_3) = 6$
 $(v_0, v_1) = 10$
 $(v_1, v_5) = 11$
 $(v_3, v_5) = 14$
 $(v_3, v_4) = 18$
 $(v_0, v_4) = 19$
 $(v_0, v_5) = 21$
 $(v_4, v_5) = 33$

- 选择权值最小的边加入到最小生成树中
- 直到加入了n-1条边成为一个连通子图为止

Kruskal (克鲁斯卡尔) 课堂练习

- 将所有的顶点看作一个连通子图,加入到最小生成树
- 集合E中的边按权递增顺序排列为:

$$(V_1, V_2) = 5$$

 $(V_1, V_3) = 6$
 $(V_2, V_3) = 6$
 $(V_0, V_1) = 10$
 $(V_1, V_5) = 11$
 $(V_3, V_5) = 14$
 $(V_3, V_4) = 18$
 $(V_0, V_4) = 19$
 $(V_0, V_5) = 21$
 $(V_4, V_5) = 33$

- 选择权值最小的边加入到最小生成树中
- 直到加入了n-1条边成为一个连通子图为止

1、画出该图的最小生成树 (prim and Kruskal)

