Previously...

The Relational Data Model

Relation or Entity Set - A table of related entity occurrences

Tuple or row - the set of attributes for a single occurrence

Primary Key - uniquely identifies each tuple. No Nulls.

Foreign Key - links a table to the PK of another table

Relational Algebra

Select, Project, Join

Intersect, Union, Difference

Product, Divide

Relationships

1:1, 1:M, M:N

Represented in an Entity Relationship Diagram (ERD)

1:M is used frequently in good design

Inner Join

on s.sid = g.sid

	K	
sid	name	age
1	Joe	11
2	Sally	22
3	Jim	28

s.sid	s.nam	s.age	g.sid	g.groupId	g.groupNam
	е				e
l	Jue	11	1	/ †	Alphas
3	Jim	28	3	B	Betas

Left Outer Join on s.sid = g.sid

S	SPK			G FK PK			K
	sid	name	age		sid	groupld	groupNam
	1	Joe	11	~ >			е
	2	Sally	22		1	Α	Alphas
	3	Jim	28		3	В	Betas
1	L	1	1	1	4	G	Gammas

s.sid	s.nam e	s.age	g.sid	g.groupld	g.groupNam e
1	Joe	11	1	/ +	Alphas
5	Sally	22			
3	Jim	SR	3	ß	Batas

S

sid name

1 Joe

2 Sally

3 Jim

cid	sid	grade
1163	1	B+
1158	1	В
1156	1	С
1163	2	Α

s.sid	s.name	c.cid	c.sid	c.grade
1	Jue	1163		β ≠
1	Jue	1158	1	ß
1	Joe	1156	ı	<u> </u>
S	5-11-5	11.63	2	A
3	Jin			

s.sid	s.nam	s.age	g.sid	g.groupId	g.groupNam
	е				e
1	Jue	11	1	<i>A</i> .	Alphas
2	Sally	22	Q	B	Betas
	J			5	GAMMAS

And now...

Entity Relationship Modelling

Objectives

Understand and create Entity Relationship Diagrams Correctly use cardinality and connectivity Create composite entities to remove M:N relationships

Some Tools

Attributes

Required vs. optional
Domain
The set of possible values for an attribute
Domains may be shared
Identifiers (Primary Keys)
TABLE [key attribute1, attribute_2, ..., attribute_k]
May be composite
May be simple or composite
age, sex, marital status
address, phone number
Single valued vs. Multi-valued
serial numbers
phones, full address (street, city, province, etc.)

STUDENT [sid, address, (phone)]

key

Composite

composite multi-valued

s0075425, 3000 College Dr. S, (403-320-3202, 403-555-1211)

Derived Attributes

Attributes calculated from other attributes

Examples?

Age — DOB

Cumulative GPA - Aug of Set of Grades

Depiction of a derived attribute

Relationships

An association between entities

Participants are the entities in the relationship

The relationship name is a VERB

,

Connectivity - the classification of the relationship between entities. (AKA **Modality**) Cardinality - the minimum and maximum number of entity occurrences associated with one occurrence of a related entity

Connectivity and Cardinality are established by business rules

Existence Dependence

An entity is existence-dependent if it can only have an occurrence when related to another entity

An entity is existence-independent if it can have an occurrence without being related to another entity.

Strong Entity Regular Entity

Weak Entities

Existence-dependent Strong Weak Strong dependence **FIGURE** A weak entity in an ERD 4.10 **Chen Model** DEPENDENT **EMPLOYEE** has (1,1)(0, N)**EMP NUM EMP NUM** EMP_LNAME **DEP NUM** EMP_FNAME DEP_FNAME DEP_DOB EMP_INITIAL EMP_DOB EMP_HIREDATE **Crow's Foot Model EMPLOYEE** DEPENDENT EMP NUM PK DEP NUM PK has PK,FK1 EMP_NUM EMP_LNAME (1,1)(0,N)EMP_FNAME DEP_FNAME EMP_INITIAL DEP_DOB EMP_DOB EMP_HIREDATE

SOURCE: Course Technology/Cengage Learning

Relationship Strength

Weak (non-identifying) Relationship PK of the related entity does not contain a PK component of the parent

Relationship Strength

Strong (identifying) Relationship PK of the related entity contains a PK component of the parent

Relationship Participation

Optional Participation - minimum cardinality is 0

Mandatory Participation - minimum cardinality is 1

Indicates the number of entities or participants associated with a relationship

Unary relationship: association is maintained within a single entity recursive

e.g. An employee manages some employees

Binary Between two entities e.g. A professor teaches one or more classes

P | teaches | C

Ternary (or higher)
Three (or more entities)
Many doctors prescribe many drugs to many patients

Docto Ry Patients

Docto

Doct

Associative (Composite) Entities

Associative (Composite) Entities

Page 154 - Problem 1 - Create the ERD

- A department employs many employees, but each employee is employed by only one department
- Some employees, known as "rovers", are not assigned to any department
- A division operates many departments, but each department is operated by only one division
- An employee may be assigned to many projects, and a project may have many employees assigned to it
- A project must have at least one employee assigned to it
- One of the employees manages each department, and each department is managed by only one employee
- One of the employees runs each division, and each division is run by only one employee

Thursday

Access Lab #2 Quiz Chapter 3