Funciones Transendentales

• $f(a) = a^{-1}$: Esta función se puede aproximar utilizando la iteración

$$x_{k+1} = x_k(2 - a \cdot x_k),$$

donde x_0 es el valor inicial dado por:

$$x_0 = \begin{cases} \text{eps}^{15} & \text{si } 80! < a \le 100! \\ \text{eps}^{11} & \text{si } 60! < a \le 80! \\ \text{eps}^{8} & \text{si } 40! < a \le 60! \\ \text{eps}^{4} & \text{si } 20! < a \le 40! \\ \text{eps}^{2} & \text{si } 0! < a \le 20! \end{cases}$$

donde eps representa la precisión relativa de punto flotante que es $2.220446049250313 \times 10^{-16}$. Un criterio de parada es $|(x_{k+1} - x_k)/x_{k+1}| < tol$, donde tol es una tolerancia dada.

• $f(a) = e^a$: Esta función se puede aproximar utilizando el polinomio

$$S_k(a) = \sum_{n=0}^k \frac{a^n}{n!}.$$

Un criterio de parada es $|S_{k+1}(a) - S_k(a)| < tol$, donde tol es una tolerancia dada.

 $\bullet \ f(a) = \sin(a)$: Esta función se puede aproximar utilizando el polinomio

$$S_k(a) = \sum_{n=0}^k (-1)^n \frac{a^{2n+1}}{(2n+1)!}.$$

Un criterio de parada es $|S_{k+1}(a) - S_k(a)| < tol$, donde tol es una tolerancia dada.

• $f(a) = \cos(a)$: Esta función se puede aproximar utilizando el polinomio

$$S_k(a) = \sum_{n=0}^k (-1)^n \frac{a^{2n}}{(2n)!}.$$

Un criterio de parada es $|S_{k+1}(a) - S_k(a)| < tol$, donde tol es una tolerancia dada.

• $f(a) = \ln(a)$: Esta función se puede aproximar utilizando la serie

$$S_k(a) = \frac{2(a-1)}{a+1} \sum_{n=0}^k \frac{1}{2n+1} \left(\frac{a-1}{a+1}\right)^{2n}.$$

Un criterio de parada es $|S_{k+1}(a) - S_k(a)| < tol$, donde tol es una tolerancia dada.

- $f(a) = \sqrt[p]{a}$: Esta función se puede aproximar utilizando la iteración generada por el método de Newton-Rapshon al encontrar el cero positivo de la función $g(x) = x^p a$. (Queda como ejercicio deducir dicha iteración). Dicha sucesión tiene como valor inicial $x_0 = \frac{a}{2}$. Un criterio de parada es $|(x_{k+1} x_k)/x_{k+1}| < tol$, donde tol es una tolerancia dada.
- π : Esta constante se puede aproximar utilizando la suma parcial de la serie de Leibniz (**Queda como ejercicio investigar dicha serie**). Sea S_k la suma parcial de la serie de Leibniz de orden k. Un criterio de parada es $|S_{k+1} S_k| < tol$, donde tol es una tolerancia dada.