

Lecture 01: Introduction

ANSYS CFX Rotating Machinery Modeling

Release 2019 R3

Motivation

- Flows within rotating systems occur frequently in science and engineering applications...
- Examples
 - compressors and turbines
 - fans and pumps
 - rotating cavities, seals, and bearings
 - mixing equipment
 - fluid coupling devices and torque converters
 - air motors
 - marine and aircraft propellers
 - and many more...
- Computational Fluid Dynamics (CFD) now plays a central role in the design and analysis of these systems

Examples of Rotating Machinery

Multistage compressor **HVAC** blower unit **Tube axial fan** Multistage pump

Wind turbines

Goals of the Training

- Examine the major classes of rotating machinery problems
 - Single Rotating Component Analysis
 - Multiple Rotating Component Analysis
 - Transient TBR methods
- Present the workflow for modeling rotating machinery problems with ANSYS CFX
 - Problem definition
 - Model setup
 - Solution process
 - Post-processing (special turbomachinery mode in CFD-Post)

Types of Rotating Machines

Turbomachinery

- Machines which add work to or extract work from a fluid
- Examples
 - compressors, fans, pumps add work to achieve a pressure or velocity rise in the fluid
 - turbines, windmills extract work from fluid to produce power or drive other machines

Mixing equipment

- Machines which are designed to mix fluid (and possibly solid) materials for use in a chemical processing applications
- Example: industrial mixing tanks

Other Devices

- Disk cavities and labyrinth seals in gas turbine engines
- Electric motors and generators

Compressor section of a large landbased gas turbine Courtesy Siemens AG

Francis turbine Courtesy Turboinstitut Republic of Slovenia

Classification of Turbomachinery

Axial machines

- Flow through the machine is aligned with the axis of rotation
 - > Examples: propellers, axial fans/compressors/turbines

Centrifugal/Radial machines

- Flow through the machine is (in general) perpendicular to the axis of rotation
 - Examples: liquid pumps, centrifugal fans/compressors, radial turbines

Mixed flow machines

- Flow through the machine is somewhere between axial and centrifugal
 - > Example: mixed flow compressor, oil well pump, water propulsion system

Rotating Machinery Systems

- Rotating machines usually consist of <u>multiple</u> <u>components</u> to facilitate the flow process in the system
- Example: Liquid pump components
 - Inlet duct directs flow to the eye of the impeller
 - Impeller increases the pressure of the fluid
 - Volute collects and diffuses the flow
- Example: Axial gas turbine compressor components
 - Stator blade passage followed by a rotor blade passage
 - Stator directs the flow into the rotor at an optimal flow angle to facilitate maximum pressure rise in the rotor
 - Full compressor will consist of several stages to achieve a desired pressure rise → multistage compressor

High bypass ratio aero-engine

Multistage Turbomachine Example

Various Modelling Approaches

- Single Rotating Component Analysis (Steady-State)
 - Entire domain in a single moving reference frame
 - Steady-state solution
- Multiple Component Analysis (Steady-State)
 - Multiple components are required (e.g. additional blade rows, volutes, baffles, struts, etc.),
 - Frozen Rotor Model, Mixing Plane Model
- Multiple Component Analysis (Unsteady)
 - Transient full-annulus
 - Transient pitch change

Summary

- Various rotating machine types
 - Turbomachinery, mixing, other...
 - Axial, centrigugal, mixed
- Various Modelling Approaches
 - Single Rotating Component Analysis (Steady-State)
 - Multiple Component Analysis (Steady-State)
 - Multiple Component Analysis (Unsteady)