## • 1. 인공지능 역사

### 인공지능

- 지능적인 요소가 포함된 모든 기술 총칭
- 인공지능>머신러닝>딥러닝
- 단층 신경망 → 다층 신경망(DNN) → CNN, RNN 등

#### 1943년

워렌 맥클록과 월터 피츠, 전기 스위치처럼 켜고 끄는 기초기능의 인공신경을 그물망 형태로 연결하면 사람의 뇌에서 동작하는 아주 간단한 기능을 흉내낼 수 있음을 증명

#### 1956년



다트머스 회의에서 인공지능 용어 처음 사용. "학습의 모든 면 또는 지능의 다른 모든 특성을 기계로 정밀하게 기술할 수 있고 이를 시뮬레이션할 수 있다"

#### 1980년대

전문가들의 지식과 경험을 데이터베이스화해 의사결정 과정을 프로그래밍화한 '전문가 시스템' 도입. 그러나 관리의 비효율성과 유지·보수의 어려움으로 한계

#### 2006년

제프리 힌튼 토론토대 교수, 딥러닝 알고리즘 발표

#### ENET cy Rate 국제 이미 인식 경진

국제 이미지 인식 경진대회 '이미지넷'에서 딥러닝 활용한 팀이 우승하며 획기적 전환점

#### 2014년

구글, 딥마인드 인수



#### 1950년

앨런 튜링, 기계가 인간과 얼마나 비슷하게 대화할 수 있는지를 기준으로 기계에 지능이 있는지를 판별하는 튜링 테스트 제안

#### 1958년

프랭크 로센블래트, 뇌신경을 모사한 인공신경 뉴런 '퍼센트론' 제시

#### 1970년대

AI 연구가 기대했던 결과를 보여주지 못하자 대규모 투자가 중단되며 암흑기 도래

#### 1997년

IBM 딥블루, 체스 챔피언 개리 카스파로프와의 체스 대결에서 승리

#### 2016년

구글 알파고, 이세돌에게 승리



### Layer

| Hidden layer 수 | 신경망 이름 |
|----------------|--------|
| 0개             | 단층 신경망 |
| 1개             | 얕은 신경망 |
| 2개 이상          | 다층 신경망 |



| 지도 학습 |  | 출력층 노드 수 |
|-------|--|----------|
|       |  |          |
|       |  |          |
|       |  |          |



| 지도 학습 |      | 출력층 노드 수 |
|-------|------|----------|
| ㅂㄹ    | 이진분류 |          |
| 분류    | 다중분류 |          |
| 회귀    |      |          |

| 지도 학습 |      | 출력층 노드 수 |
|-------|------|----------|
| ㅂㄹ    | 이진분류 |          |
| 분류    | 다중분류 | 범주 수만큼   |
| 회귀    |      |          |



| 지도 학습 |      | 출력층 노드 수 |
|-------|------|----------|
| ㅂㄹ    | 이진분류 |          |
| 분류    | 다중분류 | 범주 수만큼   |
| 회귀    |      |          |



| 지도 학습 |      | 출력층 노드 수 |
|-------|------|----------|
| ㅂㄹ    | 이진분류 | 1개       |
| 분류    | 다중분류 | 범주 수만큼   |
| 회귀    |      |          |



| 지도 학습 |      | 출력층 노드 수 |
|-------|------|----------|
| ㅂㄹ    | 이진분류 | 1개       |
| 분류    | 다중분류 | 범주 수만큼   |
| 회귀    |      |          |



| 지도 학습 |      | 출력층 노드 수 |
|-------|------|----------|
| ㅂㄹ    | 이진분류 | 1개       |
| 분류    | 다중분류 | 범주 수만큼   |
| 회귀    |      | 1개       |



## Weight



#### Weight

$$\mathbf{w} = \begin{bmatrix} 첫번째노드의 가중치 \\ \vdots \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} \\ \vdots & \vdots & \end{bmatrix},$$



### 단층 신경망

$$\mathbf{w} = \begin{bmatrix} 첫번째노드의 가중치 \\ \vdots \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} \\ \vdots & \vdots & & \end{bmatrix},$$

$$\mathbf{u} = \mathbf{w}\mathbf{x},$$

$$\mathbf{z} = f(\mathbf{u})$$



### Activation function

| 문제 유형 | 출력층 활성함수 |
|-------|----------|
| 회귀    | 항등함수     |
| 이진분류  | 시그모이드함수  |
| 다중분류  | 소프트맥스함수  |

$$f(u) = \frac{1}{1 + e^{-u}}$$



### Activation function

| 문제 유형 | 출력층 활성함수 |
|-------|----------|
| 회귀    | 항등함수     |
| 이진분류  | 시그모이드함수  |
| 다중분류  | 소프트맥스함수  |

$$f(u_i) = \frac{e^{u_i}}{\sum_{j=1}^{J} e^{u_j}}$$

#### Cost function

| 문제 유형 | 출력층 활성함수 | 비용 함수  |
|-------|----------|--------|
| 회귀    | 항등함수     | 오차제곱식  |
| 이진분류  | 시그모이드함수  | 교차엔트로피 |
| 다중분류  | 소프트맥스함수  | 교차엔드토피 |

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{d}_n - \mathbf{y}(\mathbf{x}_n; \mathbf{w}))^2$$

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{j=1}^{J} d_{nj} \log y_j(\mathbf{x}_n; \mathbf{w})$$

| 지모 | E 학습 | 출력층<br>노드 수 | 출력층<br>활성함수 | 비용함수   |
|----|------|-------------|-------------|--------|
| 분류 | 이진분류 | 1개          | 시그모이드함수     | 교차엔트로피 |
| 正田 | 다중분류 | 범주 수만큼      | 소프트맥스함수     | 교차엔트로피 |
| 3  | 회귀   | 1개          | 항등함수        | 오차제곱식  |

#### **Optimizer**

- 학습의 목표는 비용함수에 최솟값을 주는 가중치를 구하는 것
- 비용함수를 최소화하는 방법: Gradient Descent, RMSProp, Adam 등
- 경사 하강법(Gradient Descent)은 현재의 가중치를 음의 기울기 방향으로 움직이는 것을 반복

$$\nabla E_n(\mathbf{w}) = \begin{bmatrix} \frac{\partial E_n(\mathbf{w})}{\partial w_{11}} & \dots & \frac{\partial E_n(\mathbf{w})}{\partial w_{I1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial E_n(\mathbf{w})}{\partial w_{J1}} & \dots & \frac{\partial E_n(\mathbf{w})}{\partial w_{JI}} \end{bmatrix},$$

$$\mathbf{w} := \mathbf{w} - \eta \nabla E_n(\mathbf{w})$$

### 단층 신경망 학습 방법

- 1. 가중치를 임의로 초기화한다.
- 2. 훈련 샘플에 대해서 출력값을 계산한다.
- 3. 비용함수를 이용하여 가중치를 갱신한다.

$$\mathbf{w} := \mathbf{w} - \eta \nabla E_n(\mathbf{w})$$

• 4. 업데이트한 가중치로 다음 훈련 샘플에 대해서 출력값을 계산한다.