

Pricing Non-fungible Resources

Toward Multi-dimensional Fee Markets

Theo Diamandis

Bain Capital Crypto & MIT

Joint work with Alex Evans, Tarun Chitra, Guillermo Angeris

Fee markets with a joint unit of account are inefficient.

Our work: framework to optimally set multi-dimensional fees.

Why are transactions so expensive?

Fixed unit of account leads to DoS attacks

- All opcodes have fixed prices relative to each other
- Potential mismatch between relative prices & resource usage leads to resource exhaustion attacks (DoS attacks)
 - EXTCODESIZE attack in 2016 exploited disk read mispricing
 - Opcode costs manually adjusted (EIP-150)

Fixed unit of account limits throughput

2d market

Orthogonal resources should be priced separately.

We need a mechanism for resource price discovery!

But what is a resource?

- Anything that can be metered
 - Blobs (EIP-2242 & EIP-4844)
 - Compute, memory, storage
 - Opcodes
 - Sequences of opcodes
 - Compute on a specific core
 - 0 ...

Let's formalize this

- A transaction j consumes a vector of resources a ∈ R^m
 - (a_i)_i = amt of resource i consumed by tx j

Let's formalize this

- A transaction j consumes a vector of resources a, ∈ R^m
 - (a_i)_i = amt of resource i consumed by tx j
- $x \in \{0, 1\}^n$ records which of **n** possible tx's included in block
 - x_i = 1 if tx j included, 0 otherwise

Let's formalize this

- A transaction j consumes a vector of resources a ∈ R^m
 - (a_i)_i = amt of resource i consumed by tx j
- $x \in \{0, 1\}^n$ records which of **n** possible tx's included in block
 - x_i = 1 if tx j included, 0 otherwise
- The quantity of resources consumed by this block is then

$$y = \sum_{j=1} x_j a_j = Ax$$

We constrain & charge for each resource

- Define a resource target b*
 - Deviation from the target is Ax b*
 - o In Ethereum: b★ = 15M gas

We constrain & charge for each resource

- Define a resource target b*
 - Deviation from the target is Ax b★
 - o In Ethereum: b★ = 15M gas
- Define a resource limit b
 - Tx included must satisfy Ax ≤ b

We constrain & charge for each resource

- Define a resource target b*
 - Deviation from the target is Ax b★
 - o In Ethereum: b★ = 15M gas
- Define a resource limit b
 - Tx included must satisfy Ax ≤ b
- Charge for each resource usage (EIP-1559)

But how do we determine prices?

- We want a few properties:
 - \circ (Ax)_i = $b^*_i \rightarrow$ no update
 - \circ (Ax)_i > b \star_i \rightarrow p_i increases
 - \circ (Ax)_i < b \star _i \rightarrow p_i decreases

But how do we determine prices?

- We want a few properties:
 - \circ (Ax)_i = b^* _i \rightarrow no update
 - \circ (Ax), \Rightarrow b, increases
 - \circ (Ax), < b \star , \rightarrow p, decreases
- Proposal

$$p_i^{k+1} = p_i^k \cdot \exp\left(\eta (Ax - b^*)_i\right)$$

Is this a good update rule?

Update rules are implicitly solving an optimization problem.

Specific choice of objective by network designer → rule.

The resource allocation problem

Setting (for now):

Network designer is omniscient & determines tx in each block.

Loss function is network designer's 'unhappiness' w. resource utilization

$$\ell(y) = \begin{cases} 0 & y = b^* \\ \infty & \text{otherwise.} \end{cases}$$

$$\ell(y) = \begin{cases} 0 & y \le b^* \\ \infty & \text{otherwise.} \end{cases}$$

Network designer determines loss function to define resource allocation problem

We encode all tx constraints in set S

- $S \subseteq \{0, 1\}^n$ is the set of allowable transactions
 - Network constraints, e.g. Ax ≤ b
 - Interactions among tx's, e.g., bidders for MEV

We encode all tx constraints in set S

- $S \subseteq \{0, 1\}^n$ is the set of allowable transactions
 - Network constraints, e.g. Ax ≤ b
 - o Interactions among tx's, e.g., bidders for MEV
- Consider the convex hull of S: conv(S)
 - \circ $\mathbf{x}_{i} \in (0,1) \Rightarrow tx \mathbf{j}$ included after roughly $1/\mathbf{x}_{i}$ blocks

Transaction **j** included

→ user's & validators'

joint utility is **q**;

- Tx producers = users + validators
- We almost never know q in practice
- However, the network does not need to know q!

Transaction producers get **utility** from each included transaction

The resource allocation problem:

maximize
$$q^T x - \ell(y)$$

subject to $y = Ax$
 $x \in \mathbf{conv}(S).$

- This is 'best case' scenario: tx's included to maximize utility, BUT
 - Cannot be implemented-designer does not build blocks!
 - o q is unknowable
 - Cannot partially include tx's!

Setting prices via duality

Duality theory: relaxing constraints to penalties

- Network designer cares about throughput y, based on inc. tx's x
- We `decouple` utilization of network and that of tx producers
- Correctly set penalty → the dual problem is equivalent to the original problem & these utilizations are equal

Dual decouples tx producers & network

Network Problem

Block Building Problem

$$g(p) = \sup_{y} \left(p^{T} y - \ell(y) \right) + \sup_{x \in \mathbf{conv}(S)} \left((q - A^{T} p)^{T} x \right).$$

- p is dual variable for constraint y = Ax
 - Relaxing constraint to penalty → pay per unit violation
- First term is easy to evaluate: can be done on chain!
- Let's look at the second term...

Second term: block building problem

maximize
$$(q - A^T p)^T x$$

subject to $x \in \mathbf{conv}(S)$,

- Maximizing net tx utility subject to tx constraints
- Same optimal value as replacing conv(S) with S!
- Solved by block producers! → Network can observe x*

What do we get at optimality?

- Let p^* be a minimizer of g(p) [prices are set optimally]
- Assume the block building problem has optimal sol x*
- The optimality conditions are

$$\nabla g(p^*) = y^* - Ax^* = 0$$

• Where y^* satisfies $\nabla (y^*) = p^*$

Prices that minimize g charge the tx producers exactly the marginal costs faced by the network:

$$\nabla \ell(Ax^{\star}) = p^{\star}$$

And these prices incentivize tx producers to include tx's that maximize welfare generated q^Tx minus the network loss (y)

Cool. So how do we minimize g(p)?

We can compute the gradient:

$$\nabla g(p) = y^{\star}(p) - Ax^{\star}(p)$$

Cool. So how do we minimize g(p)?

We can compute the gradient:

$$\nabla g(p) = y^{\star}(p) - Ax^{\star}(p)$$

Network determines y*(p) (computationally easy)

Cool. So how do we minimize g(p)?

We can compute the gradient:

$$\nabla g(p) = y^{\star}(p) - Ax^{\star}(p)$$

- Network determines y*(p) (computationally easy)
- x*(p) found by observing tx's included in block by tx producers

Cool. So how do we minimize q(p)?

We can compute the gradient:

$$\nabla g(p) = y^{\star}(p) - Ax^{\star}(p)$$

- Network determines y*(p) (computationally easy)
- x*(p) found by observing tx's included in block by tx producers
- Then apply any optimization method (e.g., gradient descent)

$$p^{k+1} = p^k - \eta \nabla g(p^k).$$

Some simple examples:

Loss function

$$\ell(y) = \begin{cases} 0 & y = b^* \\ \infty & \text{otherwise.} \end{cases}$$

Update rule

$$p^{k+1} = p^k - \eta \left(b^* - Ax^* \right)$$

Some simple examples:

Loss function

$$\ell(y) = \begin{cases} 0 & y = b^* \\ \infty & \text{otherwise.} \end{cases}$$

$$\ell(y) = \begin{cases} 0 & y \le b^* \\ \infty & \text{otherwise.} \end{cases}$$

Update rule

$$p^{k+1} = p^k - \eta \left(b^* - Ax^* \right)$$

$$p^{k+1} = \left(p^k - \eta \left(b^* - Ax^*\right)\right)_+$$

1-dim prices hurt networks

Multidimensional fees increase throughput

Even when the tx distribution shifts

And resource utilization better tracks targets

Future work & open questions

For researchers:

- What is the dynamical behavior? How do we make this strategy-proof?
 [Game-theoretic analysis of incentives]
- What update rules are most useful? [convergence behavior vs complexity]

For system designers:

- What should the resources be in a given system?
- How do you optimally trade-off between complexity & ease of use?
- How do you design a loss function for desired performance characteristics?

For more, check out our paper!

Thank you!

Theo Diamandis
Bain Capital Crypto & MIT

