

planetmath.org

Math for the people, by the people.

representations of locally compact groupoids

Canonical name RepresentationsOfLocallyCompactGroupoids

Date of creation 2013-03-22 18:16:21 Last modified on 2013-03-22 18:16:21

Owner bci1 (20947) Last modified by bci1 (20947)

Numerical id 15

Author bci1 (20947)

Entry type Topic

 $\begin{array}{lll} {\rm Classification} & {\rm msc} \ 18{\rm D}05 \\ {\rm Classification} & {\rm msc} \ 55{\rm N}33 \\ {\rm Classification} & {\rm msc} \ 55{\rm N}20 \\ {\rm Classification} & {\rm msc} \ 55{\rm P}10 \\ {\rm Classification} & {\rm msc} \ 55{\rm U}40 \\ \end{array}$

Synonym representations of topological groupoids

Related topic QuasiInvariant

Related topic GroupoidAndGroupRepresentationsRelatedToQuantumSymmetries

Related topic UniformContinuityOverLocallyCompactQuantumGroupoids

Related topic LocallyCompactQuantumGroup

Related topic FrameGroupoid

Related topic GroupoidRepresentation4

Related topic LieGroupoid

Related topic CategoryOfRepresentations

Defines representation of locally compact groupoids

Defines Haar system triple

Definition 0.1. Let G_{lc} be a locally compact (topological) groupoid endowed with a Haar system $\nu = \nu^u$, $u \in U_{G_{lc}}$. Then a representation of G_{lc} together with the its associated Haar system ν is defined as a triple $(\mu, U_{G_{lc}} * \mathcal{H}, L)$, where: μ is a quasi-invariant measure defined over $U_{G_{lc}}$,

 $U_{\mathsf{G}_{lc}} * \mathcal{H}$ is an analytical, fibered Hilbert space or Hilbert bundle over $U_{\mathsf{G}_{lc}}$, and $L: U_{\mathsf{G}_{lc}} \longrightarrow \mathbf{Iso}(U_{\mathsf{G}_{lc}} * \mathcal{H})$ is a Borelian (or borelian) groupoid morphism whose restriction on $U_{\mathsf{G}_{lc}}$ is the identification map, that is, $U_{\mathbf{Iso}(U_{\mathsf{G}_{lc}} * \mathcal{H})}$ is being identified via L with $U_{\mathsf{G}_{lc}}$. Thus, $L(x) = [r(x), \tilde{L}(x), d(x)],$

where $\tilde{L}(x): \mathcal{H}(d(x)) \longrightarrow \mathcal{H}(r(x))$ is a Hilbert space \mathcal{H} isomorphism.