Todos los ejemplos que se han dado hasta ahora han sido en el espacio \mathbb{R}^n . Esto no representa una restricción tan grande como parece. En la sección 5.4 (teorema 5.4.6) se demostrará que diferentes espacios vectoriales de apariencia muy distinta tienen, en esencia, las mismas propiedades. Por ejemplo, se verá que el espacio \mathbb{P}_n es fundamentalmente el mismo que \mathbb{R}^{n+1} . Se dirá que dos espacios vectoriales con esta forma son *isomórficos*.

Este importante resultado tendrá que esperar hasta el capítulo 7. Mientras tanto, se darán algunos ejemplos en espacios diferentes a \mathbb{R}^n .

EJEMPLO 5.4.8 Tres matrices linealmente independientes en M₂₃

En
$$\mathbb{M}_{23}$$
, sean $A_1 = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & -1 \end{pmatrix}$, $A_2 = \begin{pmatrix} -1 & 1 & 4 \\ 2 & 3 & 0 \end{pmatrix}$ y $A_2 = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}$. Determine si A_1 , A_2 y A_3 son

linealmente dependientes o independientes.

SOLUCIÓN Suponga que $c_1A_1 + c_2A_2 + c_3A_3 = 0$. Entonces

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = c_1 \begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & -1 \end{pmatrix} + c_2 \begin{pmatrix} -1 & 1 & 4 \\ 2 & 3 & 0 \end{pmatrix} + c_3 \begin{pmatrix} -1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_1 - c_2 - c_3 & c_2 & 2c_1 + 4c_2 + c_3 \\ 3c_1 + 2c_2 + c_3 & c_1 + 3c_2 + 2c_3 & -c_1 + c_3 \end{pmatrix}$$

Esto nos proporciona un sistema homogéneo de seis ecuaciones con tres incógnitas, c_1 , c_2 y c_3 , en el cual resulta bastante sencillo verificar que la única solución es $c_1 = c_2 = c_3 = 0$. De este modo, las tres matrices son linealmente independientes.

EJEMPLO 5.4.9 Cuatro polinomios linealmente independientes en P₃

En \mathbb{P}_3 determine si los polinomios 1, x, x^2 y x^3 son linealmente dependientes o independientes.

SOLUCIÓN Suponga que $c_1 + c_2x + c_3x^2 + c_4x^3 = 0$. Esto debe cumplirse para todo número real x. En particular, si x = 0, se obtiene $c_1 = 0$. Entonces, haciendo x = 1, -1, 2 se obtiene, sucesivamente,

$$c_2 + c_3 + c_4 = 0$$

$$-c_2 + c_3 - c_4 = 0$$

$$2c_2 + 4c_3 + 8c_4 = 0$$

El determinante de este sistema homogéneo es

$$\begin{vmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 2 & 4 & 8 \end{vmatrix} = 12 \neq 0$$

De manera que el sistema tiene una solución única $c_1 = c_2 = c_3 = c_4 = 0$ y los cuatro polinomios son linealmente independientes. Esto se puede ver de otra forma. Se sabe que cualquier polinomio de grado 3 tiene a lo más tres raíces reales. Pero si $c_1 + c_2 x + c_3 x^2 + c_4 x^3 = 0$ para algunas constantes diferentes de cero c_1 , c_2 , c_3 y c_4 y para todo número real x, entonces se ha construido un polinomio cúbico para el que todo número real es una raíz, lo cual es imposible.