Notes of Modern Quantum Chemistry, Szabo & Ostlund

hebrewsnabla

January 4, 2020

Contents

0			2
1			2
	1.1		2
	1.2		2
	1.3		2
	1.4	N-D Complex Vector Spaces	2
		1.4.1 Change of Basis	2
2			2
	2.1	The Electronic Problem	2
		2.1.1 Atomic Units	2
		2.1.2 The B-O Approximation	2
		2.1.3 The Antisymmetry or Pauli Exclusion Principle	2
	2.2	Orbitals, Slater Determinants, and Basis Functions	2
		2.2.1 Spin Orbitals and Spatial Orbitals	2
		2.2.2 Hartree Products	2
		2.2.3 Slater Determinants	2
		2.2.4 The Hartree-Fock Approximation	3
		2.2.5 The Minimal Basis H_2 Model	3
		2.2.6 Excited Determinants	3
	2.3	Operators and Matrix Elements	3
		2.3.1 Minimal Basis H ₂ Matrix Elements	3
		2.3.2 Notations for 1- and 2-Electron Integrals	3
		2.3.3 General Rules for Matrix Elements	3
	2.4	Second Quantization	4
		2.4.1 Creation and Annihilation Operators and Their Anticommutation Relations	4
	2.5	Spin-Adapted Configurations	4
		2.5.1 Spin Operators	4
		2.5.2 Restricted Determinants and Spin-Adapted Configurations	4

3	$\mathbf{Th}\epsilon$	e Hartree-Fock Approximation	4
	3.1	The HF Equations	4
		3.1.1 The Coulomb and Exchange Operators	4
		3.1.2 The Fock Operator	4
	3.2	Derivation of the HF Equations	4
		3.2.1 Functional Variation	4
		3.2.2 Minimization of the Energy of a Single Determinant	
		3.2.3 The Canonical HF Equations	4
	3.3	Interpretation of Solutions to the HF Equations	4
		3.3.1 Orbital Energies and Koopmans' Theorem	4

0

spatial mol orb – ψ – i,j,k,...spatial basis fxn – ϕ – $\mu,\nu,\lambda,...$ spin orb – χ occ mol orb – a,b,c,...vir mol orb – r,s,t,...exact many-elec wfn – Φ approx many-elec wfn – Ψ exact energy – $\mathscr E$ approx energy – E

1

- 1.1
- 1.2
- 1.3

1.4 N-D Complex Vector Spaces

Suppose

$$\mathcal{O}|a\rangle = |b\rangle \tag{1.1}$$

$$\langle i \mid \mathcal{O} \mid j \rangle = O_{ij} \tag{1.2}$$

def the **adjoint** of \mathcal{O} as \mathcal{O}^{\dagger}

$$\langle a | \mathcal{O}^{\dagger} = \langle b | \tag{1.3}$$

$$\langle i \mid \mathcal{O}^{\dagger} \mid j \rangle = O_{ii}^{*} \tag{1.4}$$

1.4.1 Change of Basis

$$|\alpha\rangle = \sum_{i} |i\rangle \langle i|\alpha\rangle = \sum_{i} |i\rangle U_{i\alpha}$$
 (1.5)

$$|i\rangle = \sum_{\alpha} |\alpha\rangle \langle i|\alpha\rangle = \sum_{\alpha} |\alpha\rangle U_{i\alpha}^*$$
 (1.6)

If i, α are all orthonormal, **U** must be unitary.

$$\Omega_{\alpha\beta} = \langle \alpha \, | \, \mathcal{O} \, | \, \beta \rangle = \dots \sum_{ij} U_{\alpha i}^* O_{ij} U_{j\beta}$$
(1.7)

or

$$\mathbf{\Omega} = \mathbf{U}^{\dagger} \mathbf{O} \mathbf{U} \tag{1.8}$$

2.1 The Electronic Problem

- 2.1.1 Atomic Units
- 2.1.2 The B-O Approximation
- 2.1.3 The Antisymmetry or Pauli Exclusion Principle
- 2.2 Orbitals, Slater Determinants, and Basis Functions
- 2.2.1 Spin Orbitals and Spatial Orbitals
- 2.2.2 Hartree Products
- 2.2.3 Slater Determinants

def

$$|\chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots\chi_{k}(\mathbf{x}_{N})\rangle \equiv \frac{1}{\sqrt{N!}}\begin{vmatrix} \chi_{i}(\mathbf{x}_{1}) & \chi_{j}(\mathbf{x}_{1}) & \cdots & \chi_{k}(\mathbf{x}_{1}) \\ \chi_{i}(\mathbf{x}_{2}) & \chi_{j}(\mathbf{x}_{2}) & \cdots & \chi_{k}(\mathbf{x}_{2}) \\ \vdots & \vdots & & \vdots \\ \chi_{i}(\mathbf{x}_{N}) & \chi_{j}(\mathbf{x}_{N}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \end{vmatrix}$$
(2.1)

It can be further shortened to

$$|\chi_i \chi_j \cdots \chi_k\rangle$$
 (2.2)

2.2.4 The Hartree-Fock Approximation

2.2.5 The Minimal Basis H_2 Model

gerade, ungerade

2.2.6 Excited Determinants

Suppose the ground state det

$$||psi_0\rangle = |\chi_1 \cdots \chi_a \cdots \chi_b \cdots \chi_N\rangle \tag{2.3}$$

thus, singly excited det

$$||psi_a^r\rangle = |\chi_1 \cdots \chi_r \cdots \chi_b \cdots \chi_N\rangle$$
 (2.4)

$$||psi_{ab}^{rs}\rangle = |\chi_1 \cdots \chi_r \cdots \chi_s \cdots \chi_N\rangle$$
 (2.5)

How does program determine what dets can exist? by gerade/ungerade?

2.3 Operators and Matrix Elements

2.3.1 Minimal Basis H₂ Matrix Elements

2.3.2 Notations for 1- and 2-Electron Integrals

For spin orb, physicists'

$$\langle ij | kl \rangle = \left\langle \chi_i(1)\chi_j(2) \left| \frac{1}{r_{12}} \right| \chi_k(1)\chi_l(2) \right\rangle$$
 (2.6)

$$\langle ij \parallel kl \rangle = \langle ij \mid kl \rangle - \langle ij \mid lk \rangle \tag{2.7}$$

chemists?

$$[ij|kl] = \left\langle \chi_i(1)\chi_j(1) \left| \frac{1}{r_{12}} \right| \chi_k(2)\chi_l(2) \right\rangle$$
 (2.8)

For spatial orb

$$(ij|kl) = \left\langle \psi_i(1)\psi_j(1) \left| \frac{1}{r_{12}} \right| \psi_k(2)\psi_l(2) \right\rangle$$
 (2.9)

2.3.3 General Rules for Matrix Elements

1. $|K\rangle = |\cdots mn \cdots \rangle$

$$\langle K | \mathcal{H} | K \rangle = \sum_{m}^{N} [m|h|m] + \frac{1}{2} \sum_{m}^{N} \sum_{n}^{N} ([mm|nn] - [mn|nm])$$
 (2.10)

or (Since [mm|mm] - [mm|mm] = 0)

$$\langle K | \mathcal{H} | K \rangle = \sum_{m}^{N} [m|h|m] + \sum_{m}^{N} \sum_{n>m}^{N} ([mm|nn] - [mn|nm])$$
 (2.11)

2. $|K\rangle = |\cdots mn \cdots \rangle, |L\rangle = |\cdots pn \cdots \rangle$

$$\langle K \mid \mathcal{H} \mid L \rangle = [m|h|p] + \sum_{n=1}^{N} ([mp|nn] - [mn|np])$$
 (2.12)

3.
$$|K\rangle = |\cdots mn \cdots \rangle, |L\rangle = |\cdots pq \cdots \rangle$$

$$\langle K \mid \mathcal{H} \mid L \rangle = [mp|nq] - [mq|np] \tag{2.13}$$

2.4 Second Quantization

2.4.1 Creation and Annihilation Operators and Their Anticommutation Relations

$$a_i^{\dagger} a_i^{\dagger} + a_i^{\dagger} a_i^{\dagger} = 0 \quad a_i a_j + a_j a_i^{\dagger} 0 \tag{2.14}$$

$$\{a_i, a_j^{\dagger}\} \equiv a_i a_j^{\dagger} + a_j^{\dagger} a_i = \delta_{ij} \tag{2.15}$$

2.5 Spin-Adapted Configurations

2.5.1 Spin Operators

total spin

$$\hat{\mathscr{P}} = \sum_{i}^{N} \hat{\mathbf{s}}(i) \tag{2.16}$$

$$\hat{\mathscr{S}}_x = \sum_{i}^{N} \hat{\mathbf{s}}_x(i) \tag{2.17}$$

$$\hat{\mathscr{S}}_{+} = \sum_{i}^{N} \hat{\mathbf{s}}_{+}(i) \tag{2.18}$$

$$\hat{\mathcal{S}}^2 = \hat{\mathcal{S}}_+ \hat{\mathcal{S}}_- - \hat{\mathcal{S}}_z + \hat{\mathcal{S}}_z^2 \tag{2.19}$$

$$\hat{\mathscr{S}}^2 |\Phi\rangle = S(S+1) |\Phi\rangle \tag{2.20}$$

$$\hat{\mathscr{S}}_z |\Phi\rangle = M_S |\Phi\rangle \tag{2.21}$$

$$\hat{\mathscr{S}}_z |ij\cdots k\rangle = \frac{1}{2} (N^\alpha - N^\beta) |ij\cdots k\rangle$$
 (2.22)

2.5.2 Restricted Determinants and Spin-Adapted Configurations

$$|^{1}\Psi_{1}^{2}\rangle = \frac{1}{\sqrt{2}}(|1\bar{2}\rangle + |\bar{1}2\rangle) = \frac{1}{\sqrt{2}}(\psi_{1}(1)\psi_{2}(2)\alpha(1)\beta(2) - \psi_{2}(1)...)$$
 (2.23)

3 The Hartree-Fock Approximation

- 3.1 The HF Equations
- 3.1.1 The Coulomb and Exchange Operators
- 3.1.2 The Fock Operator
- 3.2 Derivation of the HF Equations
- 3.2.1 Functional Variation
- 3.2.2 Minimization of the Energy of a Single Determinant
- 3.2.3 The Canonical HF Equations
- 3.3 Interpretation of Solutions to the HF Equations
- 3.3.1 Orbital Energies and Koopmans' Theorem

$$\varepsilon_{i} = \langle i \mid h \mid i \rangle + \sum_{b} \langle ib \parallel ib \rangle \tag{3.1}$$

$$= \langle i \mid h \mid i \rangle + \sum_{b} (\langle ib \mid ib \rangle - \langle ib \mid bi \rangle)$$
 (3.2)