Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

17 Giugno 2013

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	20	
problema 2	10	
totale	30	

1. (a) Si disegni il diagramma delle transizioni della macchina a stati finiti M_D con variabile d'ingresso $I = \{falso, vero\}$ e variabile d'uscita $U = \{falso, vero\}$ che modella un ritardo inizializzato a falso (produce falso alla prima reazione, e produce il valore dell'ingresso precedente alle reazioni successive).

Si disegni il circuito sequenziale che realizza la macchina M_D (un circuito sequenziale e' una realizzazione strutturale con bistabili e porte logiche).

Traccia di soluzione.

 M_D :

- stati: $s_1, s_2 \text{ con } s_1 \text{ stato iniziale};$
- una variabile d'ingresso $X = \{falso, vero\}$, una variabile d'uscita $Y = \{falso, vero\}$;
- transizione da s_1 a s_1 : falso/falso, transizione da s_1 a s_2 : vero/falso, transizione da s_2 a s_2 : vero/vero, transizione da s_2 a s_1 : falso/vero.

Per realizzare M_D basta un bistabile di tipo D.

- (b) Si considerino le seguenti macchine a stati finiti M_A , M_B e M_C . M_A :
 - stati: $s_1, s_2 \text{ con } s_1 \text{ stato iniziale};$
 - una variabile d'ingresso $X = \{falso, vero\}$, una variabile d'uscita $Y = \{falso, vero\}$;
 - transizione da s_1 a s_1 : vero/falso, transizione da s_1 a s_2 : falso/falso, transizione da s_2 a s_2 : falso/vero, transizione da s_2 a s_1 : vero/vero.

M_B :

- stati: $s_1, s_2 \text{ con } s_1 \text{ stato iniziale};$
- ullet una variabile d'ingresso $X=\{falso,vero\}$, una variabile d'uscita $Y=\{falso,vero\}$;
- transizione da s_1 a s_1 : vero/falso, transizione da s_1 a s_2 : falso/falso, transizione da s_2 a s_2 : falso/vero, transizione da s_2 a s_1 : vero/falso.

M_C :

- stati: $s_1, s_2 \text{ con } s_1 \text{ stato iniziale};$
- una variabile d'ingresso $X = \{falso, vero\}$, una variabile d'uscita $Y = \{falso, vero\}$;
- transizione da s_1 a s_1 : vero/vero, transizione da s_1 a s_2 : falso/falso, transizione da s_2 a s_2 : falso/falso, transizione da s_2 a s_1 : vero/vero.

i. Si disegnino i diagrammi delle transizioni e i circuiti sequenziali che realizzano le macchine $M_A,\,M_B$ e M_C . Per ognuna si stabilisca se e' una una macchina di Moore o di Mealy.

ii. Si chiudano ad anello la macchina M_A con la macchina M_D , per cui l'uscita di M_A diventa l'ingresso di M_D e l'uscita di M_D diventa l'ingresso di M_A , per ottenere una macchina composta senza ingresso proprio e con uscita coincidente con quella di M_A . Si costruisca la macchina composta.

La composizione di M_A e M_D e' ben formata, cioe' per ogni stato e per ogni ingresso definisce una sola uscita ?

Si disegni il circuito sequenziale corrispondente alla macchina composta risultante.

Traccia di soluzione.

 M_A e' una macchina di Moore che corrisponde a un bistabile di tipo D con un invertitore all'ingresso (supponendo di assegnare il codice 0 allo stato iniziale e il codice 1 all'altro stato).

Macchina composta $M_A \times M_D$:

- stati: $(s_{1a}, s_1), (s_{2a}, s_1), (s_{2a}, s_2), (s_{1a}, s_2)$ con (s_{1a}, s_1) stato iniziale;
- una variabile d'ingresso unaria $X = \{\bullet\}$ (l'orologio), una variabile d'uscita $Y = \{falso, vero\}$;
- transizione da (s_{1a}, s_1) a (s_{2a}, s_1) : •/falso, transizione da (s_{2a}, s_1) a (s_{2a}, s_2) : •/vero, transizione da (s_{2a}, s_2) a (s_{1a}, s_2) : •/vero, transizione da (s_{1a}, s_2) a (s_{1a}, s_1) : •/falso.

La composizione di M_A e M_D e' ben formata, cioe' definisce una sola uscita per ogni stato e per ogni ingresso (risultato garantito in partenza dal fatto che M_D e' una macchina di Moore, condizione sufficiente per ottenere un punto fisso unico).

iii. Si ripeta l'esercizio al punto precedente per la macchina M_B (al posto della macchina M_A).

Traccia di soluzione.

 M_B e' una macchina di Mealy che corrisponde a un bistabile di tipo D con un invertitore all'ingresso, supponendo di assegnare il codice 0 allo stato iniziale e il codice 1 all'altro stato; sempre con la medesima codifica, l'uscita ha equazione X'S dove S e' lo stato presente (uscita del bistabile).

Macchina composta $M_B \times M_D$:

- stati: $(s_{1b}, s_1), (s_{2b}, s_1), (s_{2b}, s_2), (s_{1b}, s_2) \operatorname{con}(s_{1b}, s_1)$ stato iniziale;
- una variabile d'ingresso unaria $X = \{\bullet\}$ (l'orologio), una variabile d'uscita $Y = \{falso, vero\}$;
- transizione da (s_{1b}, s_1) a (s_{2b}, s_1) : •/falso, transizione da (s_{2b}, s_1) a (s_{2b}, s_2) : •/vero, transizione da (s_{2b}, s_2) a (s_{1b}, s_1) : •/falso, transizione da (s_{1b}, s_2) a (s_{1b}, s_1) : •/falso.

La composizione di M_B e M_D e' ben formata, cioe' definisce una sola uscita per ogni stato e per ogni ingresso (risultato garantito in partenza dal fatto che M_D e' una macchina di Moore, condizione sufficiente per ottenere un punto fisso unico).

iv. Si ripeta l'esercizio per la macchina M_C (al posto della macchina M_A).

Alla fine si discutano brevemente i risultati delle tre composizioni. Traccia di soluzione.

 M_C e' una macchina di Mealy la cui uscita coincide con l'ingresso, cioe' corrisponde a un "filo" (funzione identita').

Macchina composta $M_C \times M_D$:

- stati: $(s_{1c}, s_1), (s_{2c}, s_1), (s_{2c}, s_2), (s_{1c}, s_2) \operatorname{con}(s_{1c}, s_1)$ stato iniziale;
- una variabile d'ingresso unaria $X = \{\bullet\}$ (l'orologio), una variabile d'uscita $Y = \{falso, vero\}$;
- transizione da (s_{1c}, s_1) a (s_{2c}, s_1) : •/falso, transizione da (s_{2c}, s_1) a (s_{2c}, s_1) : •/falso, transizione da (s_{2c}, s_2) a (s_{1c}, s_2) : •/vero, transizione da (s_{1c}, s_2) a (s_{1c}, s_2) : •/vero.

La composizione di M_C e M_D e' ben formata, cioe' definisce una sola uscita per ogni stato e per ogni ingresso (risultato garantito in partenza dal fatto che M_D e' una macchina di Moore, condizione sufficiente per ottenere un punto fisso unico).

2. Una rete di Petri marcata e' specificata da una quintupla: $\{P, T, A, w, x\}$, dove P sono i posti, T le transizioni, A gli archi, w la funzione di peso sugli archi, e x il vettore di marcamento (numero di gettoni per posto). $I(t_i)$ indica l'insieme dei posti in ingresso alla transizione t_i , $O(t_j)$ indica l'insieme dei posti in uscita dalla transizione t_j .

Si consideri la rete di Petri P_{g421a} definita da:

- $P = \{p_1\}$
- $T = \{t_1, t_2\}$
- $A = \{(p_1, t_2), (t_1, p_1)\}$
- $\forall i, j \ w(p_i, t_j) = 1$
- $\forall i, j \ w(t_i, p_i) = 1$

Sia $x_0 = [0]$ la marcatura iniziale.

(a) Si disegni il grafo della rete di Petri P_{g421a} .

Si disegni il grafo di copertura della rete di Petri P_{g421a} .

Traccia di soluzione.

Il grafo di copertura ha due nodi: [0] ed $[\omega]$, e i seguenti tre lati:

- i. da [0] a $[\omega]$ sotto t_1 ,
- ii. da $[\omega]$ a $[\omega]$ sotto t_1 ,
- iii. da $[\omega]$ a $[\omega]$ sotto t_2 .

Si noti che nel costruire il grafo o albero di copertura, per i posti che contengono ω si utilizzano le regole:

- $\forall n \in \mathbb{N}, \ \omega > n$
- $\forall n \in \mathbb{N}, \ \omega + n = \omega$
- $\forall n \in \mathbb{N}, \ \omega n = \omega$

(b) Si enunci la definizione di rete di Petri limitata.

La rete di Petri P_{g21a} e' limitata ? Si giustifichi la risposta.

Traccia di soluzione.

Un posto di una rete marcata e' limitato se esiste un intero $k \geq 0$ tale che, per ogni marcatura raggiungibile, il numero di gettoni del posto e' $\leq k$. Una rete marcata e' limitata se ogni posto e' limitato.

La rete di Petri P_{g421a} non e' limitata perche' si possono accumulare infiniti gettoni nell'unico posto.

(c) Si enunci la definizione di rete di Petri reversibile.

La rete di Petri P_{g21a} e' reversibile ? Si giustifichi la risposta.

Traccia di soluzione.

Una rete marcata si dice reversibile se da ogni marcatura raggiungibile e' possibile ritornare alla marcatura iniziale.

La rete di Petri P_{g421a} e' reversibile perche' da una qualsiasi marcatura raggiungibile $x_k = [k]$ si puo' raggiungere la marcatura iniziale x = [0], facendo scattare k volte la transizione t_2 .

(d) Si completi la seguente proposizione, motivando brevemente la risposta. Si consideri una rete di Petri marcata che sia limitata.

La rete e' reversibile se e solo se il suo grafo di raggiungibilita' e'

Traccia di soluzione.

Si consideri una rete di Petri marcata che sia limitata.

La rete e' reversibile se e solo se il suo grafo di raggiungibilita' e' *fortemente connesso*.