Discrete Elastic Rods Algorithm

Heebeom Park

Abstract— For homework 2, Discrete Elastic Rods (DER) algorithm for 3D simulation of elastic rods was introduced. Using the algorithm, 3D simulation for the deformation of a rod under gravity was carried out.

I. INTRODUCTION

In the second homework of MAE 259B class, students do a 3d simulation for rod under gravity. Bending, stretching, and twisting are considered for a complete physically based simulation of a rod.

II. DISCRETE ELASTIC RODS ALGORITHM

The DOF vector of a rod with N nodes and (N-1) edges has a size of (4N-1) and defined as

$$q = [x_1, \theta^1, x_2, \theta^2, \cdots, x_{N-1}, \theta^{N-1}, x_N]$$

where x_k (k=1,...,N) are the nodal coordinates and θ^K is the twist angle at edge $e^K = x_{k+1} - x_k$. The equations in 3D scenario to march from $t = t_i$ to $t = t_{i+1} = t_i + \Delta t$ is

$$f_{i} \equiv \frac{m_{i}}{\Delta t} \left[\frac{q_{i}(t_{j+1}) - q_{i}(t_{j})}{\Delta t} - \dot{q}_{i}(t_{j}) \right] + \frac{\partial E_{elastic}}{\partial q_{i}} - f_{i}^{ext} = 0$$
(1)

where i=1,...,4N-1, the old DOF $q_i(t_j)$ and velocity $\dot{q}_i(t_j)$ are known. $E_{elastic}$ is the elastic energy evaluated at $q_i(t_{j+1})$, f_i^{ext} is the external force (or moment for twist angles). Gravity and m_i is the lumped mass at each DOF. $m_i = \frac{1}{2} \Delta m r_0^2$ (Moment of Inertia) for twist angle where Δm is the mass of the edge and r_0 is the cross sectional area (with the assumption of a solid circular cross section). The Jacobian for Equation (1) is

$$J_{ij} = \frac{\partial f_i}{\partial a_i} = J_{ij}^{inertia} + J_{ij}^{elastic} + J_{ij}^{ext}$$
 (2)

where

$$J_{ij}^{inertia} = \frac{m_i}{\Delta t^2} \delta_{ij} \tag{3}$$

$$J_{ij}^{elastic} = \frac{\partial^2 E_{elastic}}{\partial q_i \partial q_j} \delta_{ij}$$
 (4)

$$J_{ij}^{ext} = -\frac{\partial f_i^{ext}}{\partial q_j} \tag{5}$$

The (4N-1) equations of motion in equation (12) can be solved to obtain the new DOF $q(t_{j+1})$. The new velocity is simply

$$\dot{q}(t_{j+1}) = \frac{q(t_{j+1}) - q(t_j)}{\Delta t} \tag{6}$$

The total elastic energy of an elastic rod is

$$E_{elastic} = \sum_{k=1}^{N-1} E_k^s + \sum_{k=1}^{N-1} E_k^b + \sum_{k=1}^{N-1} E_k^t$$
 (7)

where

 E_k^s is stretching energy, E_k^b is bending energy, and E_k^t is twist energy.

$$E_k^s = \frac{1}{2} EA(\frac{|x_{k+1} - x_k|}{|\overline{e^k}|} - 1)^2 |\overline{e^k}|$$
 (8)

$$E_k^b = \frac{1}{2} EI(|k_k - k_k^0|) \frac{1}{\overline{l_k}}$$
 (9)

$$E_k^s = \frac{1}{2}GJ(\tau_k^2)\frac{1}{\overline{l_k}} \tag{10}$$

where

EA is stretching stiffness, EI is bending stiffness, GJ is twist stiffness, $|e^k|$ is length of the edge e^k in undeformed state, x_k is node, k_k is the curvature vector at node x_k , k_k^0 is the natural (undeformed) curvature at the same node, and τ_k is the integrated twist at node x_k .

For the simulation, an elastic rod with total length l=20cm that naturally curved with radius $R_n=2cm$ is considered with the physical parameters of density $\rho=1000kg/m^3$, cross sectional area $r_0=1mm$, Young's modulus E=10MPa, shear modulus G=E/3, and the gravitational acceleration $-9.81m/s^2$ in z direction.

A. The deformation of the rod under gravity from t = 0 to t = 5 s.

The graph below shows the final deformation of the rod when the rod is exposed to the gravity for 5s.

Figure 1. Deformation of the rod under gravity

B. Z coordinate of the last node with time

The figure below shows the z coordinate of the last node (X_N) as a function of time for t = 0 to t = 5s.

Figure 2. Z coordinate of the last node with time

III. CONCLUSION

In this homework, students did 3d simulation to show the final deformation of an elastic rod under gravity for 5 seconds. Also, they showed the z-coordinate location of the last node as a function of time. Through this homework, students got more familiar with DER algorithm and prepared to use the algorithm for the final project.

ACKNOWLEDGMENT

I would like to express my gratitude to Professor Khalid, who guided students this homework during the class.

REFERENCES

- M. Khalid Jawed, Sangmin. Lim "Discrete Simulation of Slender Structures", pp. 39–45.
- [2] M. Khalid Jawed computekappa.m
- [3] M. Khalid Jawed crossMat.m
- [4] M. Khalid Jawed gradEb hessEb.m
- [5] M. Khalid Jawed gradEs hessEs.m
- [6] M. Khalid Jawed gradEt_hessEt.m[7] M. Khalid Jawed signedAngle.m
- [8] M. Khalid Jawed plotRod.m