ТЕМА 2. Основы математической логики

Основы математической логики

- Высказывания;
- Операции над высказываниями;
- Формулы алгебры логики;
- Равносильные формулы;
- Контактные схемы;

Высказывания

ПРИМЕРЫ:

- A = «Минск столица Беларуси» (истина).
- B = «Заяц хищное животное» (ложь).
- Который час? (не высказывание).

$$A = 1$$
 $B = 0$.

Операции над высказываниями

Отрицанием (**негацией**) высказывания x называется новое высказывание \bar{x} , которое является истиной, если x=0, и ложью, если x=1.

Запись: $\bar{x} = \neg x$ (читается: «не x»). Ясно, что «¬» — унарная связка, так как применяется только к одному утверждению.

Таким образом, возможны следующие варианты:

a)
$$x = 1$$
, $\bar{x} = \neg x = 0$;

6)
$$x = 0$$
, $\bar{x} = \neg x = 1$.

Эти два варианта полностью определяют свойства операции «¬».

Операции над высказываниями

Принято описывать свойства операций с помощью таблицы:

x	\overline{x}
1	0
0	1

Такие таблицы называются *таблицами истинности*. Связка ¬ может использоваться и несколько раз.

ПРИМЕР:
$$x = 1$$
; $\neg x = 1$; $\neg x = 0$; $\neg \neg x = \neg(\neg x) = \neg(0) = 1$; $\neg \neg \neg x = 0$ и т. д.

Конъюнкция (логическое умножение)

Запись: $z = x \wedge y$ (иногда встречаются $x \otimes y$), читается (x) и y». Связка (x) — бинарная, связывает два высказывания

\boldsymbol{x}	y	$x \wedge y$
1	1	1
1	0	0
0	1	0
0	0	0

Дизъюнкция (логическое сложение)

Запись: $z = x \lor y$ (иногда x + y) читается «x или y». Связка \lor бинарная.

\boldsymbol{x}	y	$x \lor y$
1	1	1
1	0	1
0	1	1
0	0	0

Дизъюнкция (логическое сложение)

ПРИМЕР:

$$x = «6 × 3 = 18» = 1;$$

 $y = «18 - трехзначное число» = 0.$

Тогда $z = x \lor y = «6 × 3 = 18$ или 18 - трехзначное» равное 1, так как одно из утверждений — истинно.

Импликация

Запись:

$$z = x \rightarrow y$$

(встречаются обозначения $x => y, x \supset y$).

Чтение:

«если x, то y» или «из x следует y» или «x влечет y».

В этом высказывании x часто называется условием или посылкой, а y - следствием или заключением.

Импликация

Таблица истинности:

x	y	$x \rightarrow y$
1	1	1
1	0	0
0	1	1
0	0	1

ПРИМЕР:

$$x = «6 × 3 = 18» = 1;$$

 $y = «18: 6 = 7» = 0.$
Тогда $z = x \rightarrow y = «Если 6 × 3 = 18, то $18: 6 = 7» = 0.$$

Эквиваленция

Запись:

$$z = x \leftrightarrow y$$

(встречаются обозначения $x \sim y$, $x \Leftrightarrow y$).

Чтение:

(x) эквивалентно y или

x тогда и только тогда, когда y или «для того, чтобы x, необходимо и достаточно, чтобы y.

Эквиваленция

Таблица истинности:

x	y	$x \leftrightarrow y$
1	1	1
1	0	0
0	1	0
0	0	1

Например, пусть:

$$x = (2 > 3) = 0;$$

$$y = «6: 2 = 3» = 1.$$

Тогда
$$z = x \leftrightarrow y =$$

$$6: 2 = 3 = 0.$$

Исключающее «или» (неравнозначность)

Таблица истинности:

x	y	$x \oplus y$
1	1	0
1	0	1
0	1	1
0	0	0

Запись: $x \oplus y$

Чтение: «либо x , либо y »

(понимается — в разделительном смысле).

Формулы алгебры логики

Порядок выполнения операций регулируется:

- скобками;
- соглашением о старшинстве операций:

$$\neg$$
; \wedge ; \vee ; \rightarrow ; \leftrightarrow

(в порядке убывания).

Формулы алгебры логики

ПРИМЕР:

$$p = (x \land y) \lor z;$$

 $q = x \rightarrow \neg (y \lor (x \land z))$ или $q = x \rightarrow \overline{y \lor (x \land z)}$

С учетом соглашения о старшинстве эти формулы могут быть записаны и в виде:

$$p = x \wedge y \vee z; \qquad q = x \to \overline{y \vee x \wedge z}.$$

Логическое значение формулы

ПРИМЕР:

$$x = 1, y = 1, z = 0.$$

Определим значение формулы $P = \overline{x \wedge y} \vee z$.

Последовательно:

$$P = \overline{x \wedge y} \forall z = \neg(x \wedge y) \forall z = \neg(1) \forall z == 0 \forall 0$$

= 0.

$z = x \wedge \overline{y} \to \overline{x} \vee y$

x	y	\overline{x}	\overline{y}	$x \wedge \overline{y}$	$\overline{x} \lor y$	Z
1	1	0	0	0	1	1
1	0	0	1	1	0	0
0	1	1	0	0	1	1
0	0	1	1	0	1	1

Формулы алгебры логики

Число значений формулы определяется числом n элементарных высказываний и равно 2^n (это же и число строк таблицы).

Так, в нашем примере всего два элементарных высказывания x и y, т. е. n=2 и число значений для z равно $2^2=4$ (четыре строки таблицы).

Равносильные формулы

Запись:

$$A = B$$
 (можно $A \leftrightarrow B$).

Чтение:

«A равносильно B».

ПРИМЕРЫ:

$$x = \neg \neg x$$
; $x = x \land x$; $x \land 0 = 0$; $x \land x = 1$ и т. д. Легко видеть, что если $A = B$, то и $= \bar{A} = \bar{B}$

Тождественно истинная (или тавтология)

Примеры тавтологий: $x \lor \bar{x}$ и $x \to (y \to x)$.

x	\overline{x}	$x \lor \overline{x}$	••••	x	y	$y \rightarrow x$	$x \to (y \to x)$
1	0	1		1	1	1	1
1	0	1		1	0	1	1
0	1	1		0	1	0	1
0	1	1		0	0	1	1

Тождественно ложная формула

 $x \wedge \overline{x}$

Отношение равносильности обладает свойствами

- A = A (рефлексивно).
- Если A = B , то B = A (симметрично).
- Если A = B и B = C, то A = C (транзитивно).

Основные равносильности

- $x \land x = x$; $x \lor x = x$ идемпотентность;
- $x \land 1 = x$; $x \lor 1 = 1$; $x \land 0 = 0$; $x \lor 0 = 0$;
- $x \land (y \lor x) = x; x \lor (y \land x)$ —законы поглощения;
- $x \wedge \bar{x} = 0$ закон противоречия;
- $x \wedge \bar{x} = 1$ закон исключенного третьего;
- $\neg \neg x = x$ закон отрицания противоречия.

Равносильности преобразований

• $x \leftrightarrow y = (x \to y) \land (y \to x)$ — закон контрапозиции;

• $x \rightarrow y = \bar{x} \vee y$;

• $(x \land y) \lor (x \land \bar{y}) = x$; $(x \lor y) \land (x \lor \bar{y}) = x$ — формулы расщепления.

$$\overline{x} \overline{\wedge y} = \overline{x} \overline{\vee y}; \ \overline{x} \overline{\vee y} = \overline{x} \overline{\wedge y}$$
— законы де Моргана;

Правила де Моргана:

a)
$$\overline{x_1 \cdot x_2} = \overline{x_1} \cdot \overline{x_2}$$

6)
$$x_1 \lor x_2 = \overline{x_1} \cdot \overline{x_2}$$

 $x \land y = \overline{\neg x \lor \neg y}; x \lor y = \overline{\neg x \neg y}$ — следствия законов де Моргана

Равносильности алгебры логики

- $x \land y = y \land x$; $x \lor y = y \lor x$ коммутативность;
- $x \land (y \land z) = (x \land y) \land z;$ $x \lor (y \lor z) = (x \lor y) \lor z$ — ассоциативность;
- $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z);$
- $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ дистрибутивность.

Контактные схемы

Если значение булевой функции = 1 (переключатель замкнут), ток проходит через переключатель.

При нулевом значении булевой функции ток через переключатель не проходит (переключатель разомкнут).

Булевой функции f(x) = xсоответствует контактная схема

Контактные схемы

С помощью контактной схемы

_____X____

получают отрицание \bar{x} .

Конъюнкция xy реализуется контактной схемой

____ X ____ Y ____

Дизъюнкции х∨у соответствует контактная схема

Способы задания булевой функции

- табличный (таблицей истинности);
- аналитический (формулой высказываний);
- десятичным вектором (кортежем);
- двоичным вектором;
- полиномом (с помощью операций ⊕ и &);
- строкой или матрицей;
- деревом решений.

Десятичным вектором (кортежем)

ПРИМЕР: f(x, y, z) = (0,3,5,6), g(x, y, z) = (2,3,5,7).

x	y	Z	f(x, y, z)	g(x, y, z)
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	1

Двоичным вектором (кортежем)

ПРИМЕР:
$$f(x, y, z) = (10010110)$$
, $g(x, y, z) = (00110101)$.

x	y	Z	f(x, y, z)	g(x, y, z)
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	1

В ЭВМ аналитическую форму можно представить в виде строки, а табличную — в виде матрицы

Дерево решений

Таблицы истинности булевых функций можно представить в виде полного бинарного дерева высоты n+1. Ярусы дерева соответствуют переменным, дуги — значениям переменных; например, левая дуга — 0, правая — 1. Листья дерева хранят значение функции на кортеже, соответствующем пути из кортежа в этот лист.

Такое дерево называется *деревом решений* (или семантическим деревом). Дерево решений можно сократить, если заменить корень каждого поддерева, все листья которого имеют одно и то же значение, этим значением.

Дерево решений можно сделать еще компактнее, если перейти к бинарной диаграмме решений.