Image Transforms

DCT and JPEG
Haar Filter for pattern recognition
ART (Angular Radial Transform)

Lecturer: Sang Hwa Lee

Introduction

- Important transforms for image processing
 - Compression
 - Pattern analysis
- Topics
 - Discrete Cosine Transform (DCT)
 - Haar Transform
 - ART (Angular Radial Transform)

Fourier Transform

- Fourier Analysis for continuous/discrete time signals
 - Use orthogonal basis functions {cos nt, sin mt}

$$x(t) = \sum_{n=0}^{\infty} a_n \cos(nt) + \sum_{m=0}^{\infty} b_m \sin(mt)$$

$$x[n] = \sum_{k=-\infty}^{\infty} X[k] e^{jk\frac{2\pi}{N}n}$$
, with N samples

- Fourier Coefficients
 - Unique representation of a function (signal)
 - Signal identification and reconstruction
 - Pattern recognition and synthesis

Why Transform is Used?

- Frequency domain processing
 - Modulation/demodulation
- Mathematical tool
 - Filtering (convolution-multiplication)
- Pattern identification
 - Fourier coefficients distributions
- Energy compaction
 - Energy is mainly distributed in the lower frequency band.
 - Usually high frequency coefficients are almost zero.

2D DTFS (DFT)

- Application to DTFS to 2D image signal
 - Consider the NxN image block as a periodic discrete signal
 - Orthogonal transform (x, y axes)
- Using the 2D DFT coefficients
 - Image compression: energy compaction
 - Pattern recognition: vector representation and clustering

$$I[x, y] = \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} X[m, n] e^{jm\frac{2\pi}{N}x} e^{jn\frac{2\pi}{N}y}$$
, with NxN block

$$X[m,n] = \frac{1}{N} \frac{1}{N} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} I[x,y] e^{-jm\frac{2\pi}{N}x} e^{-jn\frac{2\pi}{N}y}$$

DCT (Discrete Cosine Transform)

1D DCT (1)

1D Discrete Cosine Transform

$$v(k) = \alpha(k) \sum_{m=0}^{N-1} u(m) \cos\left[\frac{\pi(2m+1)k}{2N}\right], \quad 0 \le k \le N-1$$

$$u(m) = \sum_{k=0}^{N-1} \alpha(k) v(k) \cos\left[\frac{\pi(2m+1)}{2N}k\right], \quad 0 \le m \le N-1$$
where $\alpha(0) = \frac{1}{\sqrt{N}}$

$$\alpha(k) = \frac{2}{\sqrt{N}}, \quad 1 \le k \le N-1$$

1D DCT (2)

Basis functions (waveforms) for 1D DCT(N = 16)

2D DCT (1)

- Basis functions for 2D DCT
 - Separable for x and y directions

2D DCT (2)

- Efficient energy compaction
- Blocking artifact at low bit rates
- Fast FDCT/IDCT algorithms exist

$$F_{vu} = \frac{1}{4} C_v C_u \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} S_{yx} cos \left(v \pi \frac{2y+1}{2N} \right) cos \left(u \pi \frac{2x+1}{2N} \right)$$

$$S_{yx} = \frac{1}{4} \sum_{v=0}^{N-1} \sum_{u=0}^{N-1} C_v C_u F_{vu} cos \left(v \pi \frac{2y+1}{2N} \right) cos \left(u \pi \frac{2x+1}{2N} \right)$$

$$C_u = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } u = 0\\ 1 & \text{else} \end{cases}$$
 $C_v = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } v = 0\\ 1 & \text{else} \end{cases}$

2D DCT (3)

2-D DCT Waveforms (8x8: total 64 coefficients)

Higher freq. components in the *x* direction

Higher freq. components in the *x-y* directions

Higher freq. components in the *y* direction

DCT Energy Compaction (1)

DCT Energy Compaction (2)

DCT Energy Compaction (3)

그림 1-12 화면내(공간적) 상관관계에 따른 정보압축의 방법

DCT Energy Compaction (4)

DCT encoding example

$$r(x,y)$$

$$\begin{pmatrix} 74 & 75 & 77 & 80 & 85 & 91 & 95 & 98 \\ 77 & 77 & 78 & 79 & 82 & 86 & 89 & 91 \\ 78 & 77 & 77 & 77 & 78 & 81 & 83 & 84 \\ 74 & 74 & 74 & 74 & 76 & 78 & 81 & 82 \\ 69 & 69 & 70 & 72 & 75 & 78 & 82 & 84 \\ 68 & 68 & 69 & 71 & 75 & 79 & 82 & 85 \\ 73 & 73 & 72 & 73 & 75 & 77 & 80 & 81 \\ 78 & 77 & 76 & 75 & 74 & 75 & 76 & 77 \end{pmatrix}$$

$$e(x,y) = f(x,y)-r(x,y)$$

$$\begin{pmatrix} 5 & 0 & 2 & 2 & -3 & -5 & -1 & -4 \\ -1 & 1 & -2 & 3 & 1 & 0 & -4 & 1 \\ -6 & -2 & -10 & 1 & 2 & -3 & -9 & -2 \\ 0 & 2 & 1 & 1 & 10 & 2 & 0 & -3 \\ 4 & 1 & 5 & -5 & 3 & 0 & -3 & 1 \\ 1 & -5 & -1 & -2 & 0 & -1 & 0 & -5 \\ 3 & 3 & -1 & -2 & -8 & 2 & 0 & 2 \\ -6 & 0 & 2 & -6 & 1 & 0 & 2 & 1 \end{pmatrix}$$

JPEG Encoding Structure

☐ Quantization table

- No default values for quantization tables
- Application may specify the tables
- Q(u, v) : quantization table integer value from 1 to 255

Quantization :
$$F^{Q}(u,v) = round\left(\frac{F(u,v)}{Q(u,v)}\right)$$

Dequantization: $R(u,v) = F^{Q}(u,v) \times Q(u,v)$

Table 8.1 Luminance quantization matrix Q_{uv} (example only) [367]

16	11	1.0	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Source: © 1993 ITU-T.

Table 8.2 Chrominance quantization matrix Q_{uv} (example only) [367]

17	18	24	47	99	99	99	99
18	21	26	66	9 <u>9</u>	99	99	99
24	26	56	99	.99	99	99	99
47	66	99	99	99	99	99	- 99
99	99	99	99	99	99	99	99
99	99	99	99	99	9 9	99	99
99	99	99	99	- 99	7 99	99	99
99	99	99	99	99	99	99	99

Source: © 1993 ITU-T.

Zigzag Scan

Zigzag scan of DCT coefficients

그림 4-3 DCT 부호화방식에 있어서 DCT 계수의 DC 성분과 AC 성분

RLE on AC components

- 8x8 DCT block has many zeros for AC components.
 - Number of zeros are encoded
- RLE Construction
 - *Skip*: number of zeros
 - Value: next non-zero component
 - (0,0) end-of-block
- DC coefficients
 - DPCM coding

Entropy Coding

- Huffman coding
 - Variable length coding (VLC)
 - Huffman tables (2 AC and DC tables for baseline)

Table 8.3 Difference categories for DC coding [367]

SSSS	DIFF values
0	0
1	-1, 1
2	-3, -2, 2, 3
. 3	$-7\cdots -4, 4\cdots 7$
4	$-15\cdots-8,8\cdots15$
5	$-31 \cdots -16, 16 \cdots 31$
6	$-63 \cdots -32, 32 \cdots 63$
7	$-127\cdots -64, 64\cdots 127$
8	$-255 \cdots -128, 128 \cdots 255$
9	$-511\cdots -256, 256\cdots 511$
10	$-1023 \cdots -512, 512 \cdots 1023$
11	$-2047 \cdots -1024, 1024 \cdots 2047$

Source: © 1993 ITU-T.

Table 8.4 Huffman code table for luminance and chrominance DC difference [367]

	Lumina	nce DC	Chrominance DC		
SSSS	Code length	Codeword	Code length	Codeword	
0	2	00	2	00	
1	3	010	2	01	
2.	3	011	2	10	
3	3	100	3	110	
4	3	101	4	1110	
5	3	110	5	11110	
6	. 4	1110	6	111110	
7	5	11110	7	1111110	
8	6 .	111110	8	11111110	
9	7	1111110	9	111111110	
10	8	11111110	10	111111111	
11	9	111111110	11	111111111	

Source: © 1993 ITU-T.

JPEG Modes

- Sequential mode
 - Left-to-right, top-to-bottom scan
 - Baseline sequential mode use Huffman coding
- Lossless mode
 - Spatial prediction + Huffman coding
- Progressive mode
 - Spectral selection:
 - Send DC and few AC coeff's first and gradually some more ACs
 - Successive approximation:
 - send DCT coeff's MSB to LSB

Compression Results (1)

Original image (24bpp)

JPEG Compressed image

(8:1 -- 3bpp)

JPEG Compressed image

(32:1 --

0.75bpp)

JPEG Compressed image

(128:1 --

0.1875bpp)

Compression Results (2)

QF=5: 9438 bytes

QF=10: 15325 bytes

QF=25: 29360 bytes

QF=50: 46295 bytes

QF=75: 70586 bytes

QF=100: 326321 bytes

No compression: 781300 bytes

Haar Transform (Filter)

Haar transform (1)

- Haar function
 - non-sinusoidal periodic, orthonormal, complete

$$haar(0,0,t) = \frac{1}{\sqrt{N}}, \qquad t \in (0,1)$$

$$haar(r,m,t) = \begin{cases} 2^{\frac{r}{2}} / \sqrt{N} & \frac{m-1}{2^r} \le t < \frac{m-\frac{1}{2}}{2^r} \\ 2^{-\frac{r}{2}} / \sqrt{N} & \frac{m-\frac{1}{2}}{2^r} \le t < \frac{m}{2^r} \end{cases}$$

$$0 \qquad \text{elsewhere for } t \in (0,1)$$

$$\Rightarrow \text{Haar transform is obtained by letting } t = \frac{m}{N}, \quad m = 0,1,\dots, N-1$$

Haar transform (2)

- Basis Functions (N = 16)
 - One cycle of harmonic waveforms
 - How much energy for the specific frequency exists at a local position

Haar transform (3)

$$\mathbf{H}_4 = \frac{1}{\sqrt{4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{bmatrix}$$

2-D Haar-like transform (1)

- 2-D Haar-like Feature Bank (Location & Size)
 - Various filters with respect to locations & sizes
 - For pattern analysis

2-D Haar-like transform (2)

- Linear combination 2-D Haar-like filters for face
 - openCV: face detection

Haar 필터 - 패턴 인식 (얼굴)

ART (Angular Radial Transform)

ART (1)

- ◆ MPEG-7: Region-based shape descriptor
- suitable for shape analysis

Basis function of ART in the polar coordinates

$$ART_{nm} = \int_{0}^{2\pi} \int_{0}^{1} A_{m}(\theta) R_{n}(\rho) I(\rho, \theta) \rho d\rho d\theta$$

$$A_{m}(\theta) = \frac{1}{2\pi} \exp(jm\theta),$$

$$R_{n}(\rho) = \begin{cases} 1, & n = 0, \\ 2\cos(\pi n\rho), & n \neq 0. \end{cases}$$

ART (1)

- ◆ Usually use 36 patterns (3 radial, 12 angular frequencies)
- ◆ 36-D vector descriptor of magnitude

3 radial, 12 angular ART Basis patterns

ART Application (1)

- Human shape recognition and classification
 - Using 2000 human shapes DB and 36-D ART vectors
- Design the classifier based on
 - 36-D ART mean vectors
 - Distance variance of each cluster

$$m_d = E[\|\mathbf{M}_{ART} - \mathbf{D}\mathbf{B}_{ART}\|],$$

$$\sigma_d^2 = Var[\|\mathbf{M}_{ART} - \mathbf{D}\mathbf{B}_{ART}\|]$$

$$T_h = m_d + \alpha \sigma_d$$

ART Application (2)

◆ Example: Shape (human) recognition

True-positive recognition

True-negative recognition

False-negative errors

False-positive errors

- ◆ Vector clustering of ART vectors
 - ➤ Multi-modes modeling of ART vector space
 - > Human pose classification

class	Samples of DB	# of class	α
1	* * * * * * * * * *	445	0.4
2	有有十十十十十十十十	321	0.3
3	**************************************	714	0.5
4	大大大大大大大大大	398	0.4
5	人大大大大大大大大大	546	0.4
6	1111111111	255	0.3