가

Table 16. Comparison of rate of single bulb formation based on seed bulb materials and ecotypes in spring cultivation of garlic.

Seed	Ecotype	Cloved bulb - rate (%)	Single bulb formation rate (%)		
bulb material			Total	Seed garlic	Commercial
Bulbil	Cold type ^{a)}	77.3	22.9	23.0	0
	$Intertype^{b)}$	0	100	73.0	28.0
	Warm type ^{c)}	41.1	58.9	30.0	28.0
	Mean	39.5 c	60.6 a	42.0 a	18.7 c
Single bulb	Cold type	100	0	0	0
	Intertype	16.0	84.0	17.0	67.0
	Warm type	36.1	63.9	59.0	5.0
	Mean	50.7 b	49.3 b	25.3 b	24.0 b
Clove	Cold type	100	0	0	0
	Intertype	12.0	88.0	3.0	85.0
	Warm type	70.9	29.1	18.0	12.0
	Mean	61.0 a	39.0 c	7.0 c	32.3 a
Ecotype mean	Cold type	92.4 a	7.6 с	7.7 c	0 с
	Intertype	9.3 с	90.7 a	31.0 b	60.0 a
	Warm type	49.4 b	50.6 b	35.7 a	15.0 b
S ^{d)}		**	**	**	**
$E^{e)}$		**	**	**	**
S×E		**	**	**	**

For seed garlic: Under 10 g single bulb, For commercial: Over 10 g single bulb

Same letters within a column indicate no significant difference at α =0.05 by DMRT(*, p<0.05; **, p<0.01; ns, non-significant)

생태형별로는 한지형(단양종)이 추대율과 인편 분화율이 높았기 때문에 분구율이 92.4%로 월등히 높았고, 단구형성은 7.6%로 현저히 낮았다. 중간형(DL01)은 분구율이 9.3%로 매우 낮은 반면, 단구형성율은 90.7%로 가장 높았고, 상품성 단구비율도 60.0%로 매우 높았다.

마늘의 구 형성에는 저온이 요구되는데, 저온의 범위와 기간은 생태형과 품종에 따라 상이하였고, 단구형성율은 난지형이 한지형보다 높았으며, 난지형 춘파재배의 통마늘 형성율은 87~100%였다(Ahn et al., 2010; Lim et al., 1987)는 연구결과와 유사한 경향을 보였다.

한지형인 서산재래와 난지형인 제주재래의 비교에서 인편 분화기는 서산재래가 4월 8일, 제주재래는 2월 28일경 이었으며, 구 비대기는 서산재래가 6월 상순, 제주재래는 5월 상순경으로 난지형의 인편분화와 구 비대는 한지형보다 빨랐다. 이와 같이 생태형 간의 구 비대생육이 차이 나는 원인은 마늘이 어느 정도 생장한 후 화경과 인편이 분화되는데, 남도마늘은 화경과 인편분화에 필요한 생육단계에 도달하기 전에 고온에 의한 인편비대가 먼저 유기되었기 때문으로

^{a)}Danyangjong, ^{b)}DL01, ^{c)}Namdojong, ^{d)}Seed bulb material, ^{e)}Ecotype