We will be seen to see the see	$\sum_{k_1 = (2k - 1) \cdot w^2 - 2k p^2_{k_1 + 1} \cdot w^2 - 2k p p^2_{k_2 + 1} \cdot w^2 - 2k p p p p p p p p p p p p p p p p p p $
The second of th	
Know We do A so it Inser Where We have where We have where We have where A so it Inser We have where We have where We have where A so it Inser A so it I	
whise We was We was We was We was We was Interest to the was We	
Very state of the	
Election We will be with the service of the servic	
The will be seen to be	
will be seed to see the seed t	For each of the control of the contr
The state of the s	
The control of the bold of the	Control of the contro
The control of the co	The control of the co
The contact of the base of the	Solution of the control of the cont
The first state of the first sta	Sistematic content (1972) according to according to the property content as a single distinct of the content content (1974). ***Property of the content content (1974) According to the content of the content content (1974). ***Property of the content content (1974) According to the content of the content content (1974). ***Property of the content content (1974) According to the content of the content content (1974). ***Property of the content content (1974) According to the content (1974). ***Property of the content (1974) According to the content (1974) According to the content (1974). ***Property of the content (1974) According to the content (1974) According to the content (1974). ***Property of the content (1974) According to the content (1974) According to the content (1974). ***Property of the content (1974) According to the content (1974) According to the content (1974) According to the content (1974). ***Property of the content (1974) According to the content
### ##################################	where the content content is the selection and as the consequent quality for the an extraction content and the content of the
pside	The state of the
The state of the s	$d_{ij} = \max_{i} \sum_{j=1}^{N} \frac{1}{2} \sum_{i} \frac{1}{2} 1$
Left [1/ Left	$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} $
The atthe at	
The and a the an	who delives the content contain colors $J = J_1$ and $J = J_2$ control is $\{2, N_1 = 4\}$, we collision the improve polynomials by provided from an actually that $N_1 = 0$. $N_2 = (N_1 - N_2 - N_3 - N_$
j = psi_ psi_ psi_ psi_ psi_ psi_ psi_ psi	$\begin{aligned} & \text{constraint}(t) \forall t) \\ & = -\cos^{-1}(t) \cos^{-1}(t) \cos$
psi- psi- psi- psi- psi- psi- psi- psi-	gright — synchrolity of pot parts part [2] gright — synchrolity of pot parts part [2] gright — synchrolity of pot parts part [2] gright — synchrolity of parts pa
A_j; A_j; A_j; A_j; A_j; A_i; A_i; A_i; A_i; A_i; A_i; A_i; A_i	with $-$ sym_animality (sym_animality (sym_animali
b_ai prir Arbi [[7] [-4] [17] Arbi [[4] [h* This Co Want Ne Stitcl Solvi conta the b s.	is a non-accept ("charginit, chargin, chargin), charging the reclaiment vectors \(\lambda \) in the "white blooms of search in the received in the control of the control
$\begin{bmatrix} 4 \\ h \end{bmatrix}$ This solving the bound of the	gives us the same entries to the element matrix as for the leftmost element, but a new right hand side: $b = \begin{bmatrix} R(2kJ - 2h - 1)/3 \\ 4R(2kJ - 2h - 1)/3 \end{bmatrix}$ $b = \begin{bmatrix} R(2kJ - 2h - 1)/3 \\ 4R(2kJ - 2h - 1)/3 \end{bmatrix}$ mbbining the element matrices and vectors $E = 3 \text{ and } x \in \Omega = \{0, 1\} \text{ so that we got three element matrices and element vectors together. Here is an example use and x \in \Omega = \{0, 1\} \text{ so that we got three element matrices} A^0 = \begin{bmatrix} a_{00}^2 & a_{01}^2 & a_{02}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^1 = \begin{bmatrix} a_{01}^2 & a_{01}^2 & a_{02}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ b_{11}^2 & a_{12}^2 & a_{02}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ b_{11}^2 & a_{12}^2 & a_{02}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{12}^2 & a_{12}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 \\ a_{12}^2 & a_{12}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{01}^2 & a_{02}^2 \\ a_{12}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{02}^2 & a_{02}^2 \\ a_{12}^2 & a_{12}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{02}^2 & a_{02}^2 \\ a_{12}^2 & a_{12}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{02}^2 & a_{02}^2 & a_{02}^2 \\ a_{12}^2 & a_{12}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{02}^2 & a_{02}^2 & a_{02}^2 \\ a_{12}^2 & a_{12}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{02}^2 & a_{02}^2 & a_{02}^2 \\ a_{12}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \end{bmatrix}, A^2 = \begin{bmatrix} a_{02}^2 & a_{02}^2 & a_{12}^2 & a_{12}^2 \\ a_{12}^$
where corresponds and a second and a second a se	$A^0 = \begin{bmatrix} a_{00}^0 & a_{01}^0 & a_{02}^0 \\ a_{00}^0 & a_{01}^1 & a_{02}^1 \\ a_{00}^0 & a_{01}^1 & a_{02}^1 \\ a_{00}^1 & a_{01}^1 & a_{12}^1 \\ a_{00}^2 & a_{01}^2 & a_{12}^2 \end{bmatrix} , A^1 = \begin{bmatrix} a_{00}^1 & a_{01}^1 & a_{12}^1 \\ a_{00}^1 & a_{11}^1 & a_{12}^1 \\ a_{00}^2 & a_{01}^2 & a_{11}^2 \end{bmatrix} , A^2 = \begin{bmatrix} a_{00}^2 & a_{01}^2 \\ a_{10}^2 & a_{21}^2 & a_{22}^2 \end{bmatrix} . A^2 = \begin{bmatrix} a_{00}^2 & a_{01}^2 \\ a_{10}^2 & a_{21}^2 & a_{22}^2 \end{bmatrix} . A^2 = \begin{bmatrix} a_{00}^2 & a_{01}^2 \\ a_{10}^2 & a_{11}^2 \end{bmatrix} .$ We A^0 is the matrix corresponding to the leftmost element, A^1 is the matrix corresponding to the inner element and A^2 is the matrix corresponding to the rightmost element. We have three corresponding element vectors $ b^0 = \begin{bmatrix} b_0^1 \\ b_0^2 \\ b_0^2 \end{bmatrix} . b^1 = \begin{bmatrix} b_0^1 \\ b_1^2 \\ b_2^2 \end{bmatrix} . b^2 = \begin{bmatrix} b_0^2 \\ b_1^2 \end{bmatrix} .$ Thing them togheter gives us a 6×6 "block" matrix $ A = \begin{bmatrix} a_{00}^1 & a_{01}^1 & a_{02}^2 & 0 & 0 & 0 \\ a_{00}^2 & a_{01}^2 & a_{02}^2 + a_{00}^2 & a_{01}^2 & 0 \\ 0 & 0 & a_{10}^1 & a_{12}^2 & 0 & 0 & 0 \\ 0 & 0 & a_{10}^1 & a_{11}^2 & a_{12}^2 & 0 \\ 0 & 0 & a_{10}^1 & a_{11}^2 & a_{12}^2 & 0 \\ 0 & 0 & a_{10}^1 & a_{11}^2 & a_{12}^2 & 0 \\ 0 & 0 & a_{10}^2 & a_{11}^2 & a_{12}^2 & a_{10}^2 \\ a_0^2 & a_{01}^2 & a_{01}^2 & a_{01}^2 \\ a_1^2 & a_{11}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{11}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{11}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{11}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{11}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{11}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 & a_{12}^2 \\ a_1^2 & a_{12$
Solvi Solvi Contathe beautiful adoma Class S.	hing them togheter gives us a 6×6 "block" matrix $A = \begin{bmatrix} a_{00}^0 & a_{01}^0 & a_{02}^0 & 0 & 0 & 0 \\ a_{10}^0 & a_{11}^0 & a_{12}^0 & 0 & 0 & 0 \\ a_{20}^0 & a_{21}^0 & a_{22}^0 + a_{10}^0 & a_{11}^0 & a_{12}^1 & 0 \\ 0 & 0 & a_{10}^1 & a_{11}^1 & a_{12}^1 & 0 \\ 0 & 0 & a_{20}^2 & a_{21}^2 & a_{22}^2 + a_{00}^2 & a_{01}^2 \\ 0 & 0 & 0 & 0 & a_{10}^2 & a_{11}^2 \end{bmatrix}$ as 6×1 vector $b = \begin{bmatrix} b_0^0 \\ b_1^0 \\ b_2^0 + b_1^1 \\ b_2^1 + b_0^2 \\ b_1^1 \end{bmatrix}.$ and $A^{-1}b = c$ provides us with a matrix $c = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix}$ and ining the coefficients in front of our basis functions in the expression for our approximation u . We must now remember to incorporate youndary condition, and with this in mind we get the full expression for our approximation u and u in this in mind we get the full expression for our approximation u and u in this in mind we get the full expression for our approximation u and u in this in mind we get the full expression for our approximation u and u in this in mind we get the full expression for our approximation u and u in this in mind we get the full expression for our approximation u and u in this in mind we get the full expression for our approximation u and u in this in mind we get the full expression for u approximation u and u in this in mind we get the u and u in this in u and u in this in u and u and u in u and u in u and u in u and
Contathe being some some some some some some some some	$b = \begin{bmatrix} b_0^0 \\ b_1^0 \\ b_2^0 + b_0^1 \\ b_1^1 \\ b_2^1 + b_0^2 \\ b_1^2 \end{bmatrix}.$ $c = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix}$ aining the coefficients in front of our basis functions in the expression for our approximation u . We must now remember to incorpoundary condition, and with this in mind we get the full expression for our approximation $u(x) = \begin{cases} c_0 \psi_0 + c_1 \psi_1 + c_2 \psi_2 & x \leq \frac{1}{3} \\ c_2 \psi_3 + c_3 \psi_4 + c_4 \psi_5 & \frac{1}{3} < x < \frac{2}{3} \\ c_4 \psi_6 + c_5 \psi_7 + D \psi_8 & \frac{2}{3} \leq x \end{cases}$
contathe being the being well a domain of the being the contact of the being the being the contact of the being the contact of the being the contact of the being the being the contact of the being	$c = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix}$ aining the coefficients in front of our basis functions in the expression for our approximation u . We must now remember to incorpoundary condition, and with this in mind we get the full expression for our approximation $u(x) = \begin{cases} c_0 \psi_0 + c_1 \psi_1 + c_2 \psi_2 & x \leq \frac{1}{3} \\ c_2 \psi_3 + c_3 \psi_4 + c_4 \psi_5 & \frac{1}{3} < x < \frac{2}{3} \\ c_4 \psi_6 + c_5 \psi_7 + D \psi_8 & \frac{2}{3} \leq x \end{cases}$
Below well a domain domain de s	
de v	w is a class solver which solves a 1D PDE on the interval $x \in \Omega[0, 1]$. In theory, since the solver takes both an analytical solution as a right hand side function, it can take any 1D PDE as long as the boundary conditions are $u_x(0) = C$, $u(1) = D$ and it lives of ain Ω .
s.	<pre>definit(self, f, N_elements, C, D, analytical, grid_points): """ Initialize class variables and matrices/vectors of size according to number of elements self.Ne = N_elements self.gp = grid_points self.C = C self.D = D self.f = lambda x: f(x) self.tol = 10e-4 self.x = sym.Symbol("x")</pre>
	<pre>self.h = 1/(2*self.Ne) self.global_matrix = np.zeros([2*self.Ne, 2*self.Ne]) self.global_vector = np.zeros([2*self.Ne]) self.psi = sym.zeros(3*self.Ne,1) self.analytical = lambda x,C,D: analytical(x,C,D) self.x_values = np.linspace(0,1,self.gp) def make_matrix(self): """ Calls all methods to produce the lagrange polynomials, the element matrix and right had vector.""" self.leftmost_element()</pre>
	<pre>self.rightmost_element() self.interior_element() #Transforms all sympy symbolic expressions for the lagrange polynomials into callable funct self.psi_funcs = [sym.lambdify([self.x], self.psi[i], modules = "numpy") for i in range(3*s) def find_coefficients(self): """ Calls mathod to produce element matrix and vector and computes the coefficients. """ self.make_matrix() self.coeffs = np.linalg.solve(self.global_matrix,self.global_vector) self.coeffs = np.append(self.coeffs, self.D) #Initial condition</pre>
	<pre>def leftmost_element(self): """ Find element matrix and vector for the special case of the leftmost element """ #Element limits L = 0 R = 2*self.h psi0 = (self.x-self.h)*(self.x-2*self.h)/(2*self.h**2) psi1 = -self.x*(self.x-2*self.h)/(self.h**2) psi2 = self.x*(self.x-self.h)/(2*self.h**2)</pre>
	<pre>self.psi[0] = psi0 self.psi[1] = psi1 self.psi[2] = psi2 d_psi0 = sym.diff(psi0,self.x) d_psi1 = sym.diff(psi1,self.x) d_psi2 = sym.diff(psi2,self.x) psi_00 = d_psi0*d_psi0 psi_11 = d_psi1*d_psi1 psi_22 = d_psi2*d_psi2 psi_01 = d_psi0*d_psi1</pre>
	<pre>psi_02 = d_psi0*d_psi2 psi_12 = d_psi1*d_psi2 A_00 = sym.integrate(psi_00, (self.x, L, R)) A_11 = sym.integrate(psi_11, (self.x, L, R)) A_22 = sym.integrate(psi_22, (self.x, L, R)) A_01 = sym.integrate(psi_01, (self.x, L, R)) A_02 = sym.integrate(psi_02, (self.x, L, R)) A_12 = sym.integrate(psi_12, (self.x, L, R)) rhs_0 = sym.integrate(self.f(self.x)*psi0, (self.x, L, R)) rhs_1 = sym.integrate(self.f(self.x)*psi1, (self.x, L, R)) rhs_2 = sym.integrate(self.f(self.x)*psi2, (self.x, L, R))</pre>
	<pre>a1 = [A_00, A_01, A_02] a2 = [A_01, A_11, A_12] a3 = [A_02, A_12, A_22] A = np.array([a1, a2, a3]).reshape(3,3) #Dette kan gjøres utenfor bro. b = np.array([rhs_0, rhs_1, rhs_2]) for i in range(3): self.global_vector[i] = b[i] for j in range(3): self.global matrix[i,j] = A[i,j]</pre>
	<pre>def interior_element(self): """ Find element matrix and vector for all interior elements.""" temp = 0 for j in range(3,2*self.Ne-2,2): L = (j-1)*self.h R = (j+1)*self.h psi_jm1 = (self.x-self.h*j)*(self.x-self.h*j-self.h)/(2*self.h**2) psi_j = -(self.x-self.h*j-self.h)*(self.x-self.h*j+self.h)/(self.h**2) psi jp1 = (self.x-self.h*j)*(self.x-self.h*j+self.h)/(2*self.h**2)</pre>
	<pre>self.psi[j + temp] = psi_jm1 self.psi[j + temp + 1] = psi_j self.psi[j + temp + 2] = psi_jp1 d_psi_jm1 = sym.diff(psi_jm1,self.x) d_psi_j = sym.diff(psi_j,self.x) d_psi_jp1 = sym.diff(psi_jp1,self.x) psi_jp1 = d_psi_j*d_psi_j psi_jm1jm1 = d_psi_jm1*d_psi_jm1 psi_jp1jp1 = d_psi_jp1*d_psi_jp1 psi_jjm1 = d_psi_j*d_psi_jm1</pre>
	<pre>psi_jjp1 = d_psi_j*d_psi_jp1 psi_jm1jp1 = d_psi_jm1*d_psi_jp1 A_jj = sym.integrate(psi_jj, (self.x, L, R)) A_jm1jm1 = sym.integrate(psi_jm1jm1, (self.x, L, R)) A_jp1jp1 = sym.integrate(psi_jp1jp1, (self.x, L, R)) A_jjm1 = sym.integrate(psi_jjm1, (self.x, L, R)) A_jjp1 = sym.integrate(psi_jjp1, (self.x, L, R)) A_jm1jp1 = sym.integrate(psi_jjp1, (self.x, L, R)) rhs_jm1 = sym.integrate(self.f(self.x)*psi_jm1, (self.x, L, R)) rhs_j = sym.integrate(self.f(self.x)*psi_j, (self.x, L, R))</pre>
	<pre>rhs_jp1 = sym.integrate(self.f(self.x)*psi_jp1, (self.x,L,R)) a1 = [A_jmljm1,A_jjm1,A_jm1jp1] a2 = [A_jjm1, A_jj, A_jjp1] a3 = [A_jmljp1, A_jjp1, A_jp1jp1] A = np.array([a1, a2, a3]).reshape(3,3) b = np.array([rhs_jm1, rhs_j, rhs_jp1]) for i in range(j-1,j+2): self.global_vector[i] += b[i-(j-1)] for k in range(j-1,j+2): self.global_matrix[i,k] += A[i-(j-1),k-(j-1)]</pre>
	<pre>temp += 1 def rightmost_element(self): """ Find element matrix and vector for the special case of the rightmost element """ #Element limits L = 1 - 2*self.h R = 1 psiN = (self.x-1+self.h)*(self.x-1+2*self.h)/(2*self.h**2) psiNm1 = -(self.x-1)*(self.x-1+2*self.h)/(self.h**2)</pre>
	<pre>psiNm2 = (self.x-1+self.h)*(self.x-1)/(2*self.h**2) self.psi[-1] = psiN self.psi[-2] = psiNm1 self.psi[-3] = psiNm2 d_psiNm2 = sym.diff(psiNm2,self.x) d_psiNm1 = sym.diff(psiNm1,self.x) d_psiN = sym.diff(psiNm1,self.x) psi_Nm1Nm1 = d_psiNm1*d_psiNm1 psi_Nm2Nm2 = d_psiNm2*d_psiNm2 psi_Nm1Nm2 = d_psiNm1*d_psiNm2</pre>
	<pre>A_Nm1Nm1 = sym.integrate(psi_Nm1Nm1, (self.x, L, R)) A_Nm2Nm2 = sym.integrate(psi_Nm2Nm2, (self.x, L, R)) A_Nm1Nm2 = sym.integrate(psi_Nm1Nm2, (self.x, L, R)) rhs_Nm2 = sym.integrate(self.f(self.x)*psiNm2, (self.x,L,R)) - sym.integrate(self.D*d_psiN*d, (self.x,L,R)) rhs_Nm1 = sym.integrate(self.f(self.x)*psiNm1, (self.x,L,R)) - sym.integrate(self.D*d_psiN*d, (self.x,L,R)) al = [A_Nm2Nm2, A_Nm1Nm2] al = [A_Nm2Nm2, A_Nm1Nm2] al = [A_Nm1Nm2, A_Nm1Nm1] A = np.array([al, a2]).reshape(2,2)</pre>
+ se	<pre>b = np.array([rhs_Nm2, rhs_Nm1]) for i in range(2*self.Ne-2,2*self.Ne): self.global_vector[i] = b[i-(2*self.Ne-2)] for j in range(2*self.Ne-2,2*self.Ne): self.global_matrix[i,j] = A[i-(2*self.Ne-2), j-(2*self.Ne-2)] def u(self,x,i,temp): """Method that returns the approximated values for u(x) in a specified element.""" return self.coeffs[i]*self.psi_funcs[i+temp](x) + self.coeffs[i+1]*self.psi_funcs[i+temp+1] elf.coeffs[i+2]*self.psi_funcs[i+temp+2](x) def calculate numerical solution(self):</pre>
	<pre>""" Calculates the approximated solution u(x) over entire grid.""" self.u = np.vectorize(self.u) self.numerical = np.zeros(self.gp) #Store value of u(x) in each gridpoint #Calculate special case of element 0 L = 0 R = 2*self.h end = np.where((np.abs(self.x_values - R)<=self.tol))[0][0] end += 1 x = self.x_values[L:end] self.numerical[L:end] = self.u(x,0,0)</pre>
	<pre>temp = 1 #Starts as 1 since the Oth element is calculated outside the loop #Calculate value of u(x) in each element. for i in range(2,2*self.Ne,2): L = i* self.h R = L + 2*self.h #Find idices in x array to define element start/end start = np.where((np.abs(self.x_values - L)<=self.tol))[0][0] end = np.where((np.abs(self.x_values - R)<=self.tol))[0][0] #We want to find L < X <= R, except from first element where we want to include L=0.</pre>
	<pre>start += 1 end += 1 x = self.x_values[start:end] self.numerical[start:end] = self.u(x,i,temp) temp+=1 def plot_solution(self): """Method to plot analytical vs. numerical solution. """ plt.plot(self.x_values, self.analytical(self.x_values, self.C,self.D), label = "Analytical' plt.plot(self.x_values, self.numerical, label = "Numerical")</pre>
	<pre>plt.title("Numerical vs. Analytical Solution") plt.xlabel("x") plt.ylabel("u(x)") plt.legend() plt.show() def automatic_results(self): """ Method that calls all other relevant methods to produce numerical solution, plot to compare analytical to numerical solution and L2-norm of the err """ self.find_coefficients() self.calculate numerical solution()</pre>
	<pre>self.plot_solution() self.L2_norm() def L2_norm(self): """Calculates the L2-norm of the error.""" analyticals = self.analytical(self.x_values, self.C, self.D) error = analyticals - self.numerical self.L2 = np.sqrt((1/self.gp)*np.sum(error**2))</pre> mplement our right hand side function as well as the analytical solution:
Let's Ne = n =	return $2*x - 1$ analytical (x, C, D) : return $0.5*x**2 - (1/3)*x**3 + (x-1)*C + D - (1/6)$ see how our solver performs when trying to approximate $u(x)$ using $N_e = 3$ elements and $C = 0.1, D = 1$: $= 3$ 1000 #Number of gridpoints to evaluate our approximation in 0.1
my_s my_s end time prir prir	rt = time() solver = FiniteElementSolverP2(f, Ne, C, D, analytical, n) solver.automatic_results() = time() eused = end - start nt("Time used = ", timeused) nt("L2-norm = %.16f" % (my_solver.L2)) Numerical vs. Analytical Solution Output Analytical Numerical
0. S 0. 0.	95 - 90 - 85 - 80 - 75 - 0.0 0.2 0.4 0.6 0.8 1.0 x
L2-r What 2]: C = D = star my_s my_s	<pre>term used = 3.586423873901367 norm = 0.0004257533578156 tif we make the values of C and D large? Let's see: 100 500 rt = time() solver = FiniteElementSolverP2(f, Ne, C, D, analytical, n) solver.automatic_results()</pre>
end time prir prir	
42 42 40 Time	<pre>eused = end - start nt("Time used = ", timeused) nt("L2-norm = %.16f" % (my_solver.L2)) Numerical vs. Analytical Solution 00 Analytical Numerical</pre>
As w choic inclu abov	eused = end - start nt("Time used = ", timeused) nt("L2-norm = %.16f" % (my_solver.L2)) Numerical vs. Analytical Solution O Analytical Numerical

Solving a 1D Poisson equation with the finite element method (P2 elements)

	<pre>Ne_list = [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] L2s = [] C = 0.1 D = 1 for ne in Ne_list: print("\n Ne = ", ne) my_solver = FiniteElementSolverP2(f, ne, C, D, analytical, n) my_solver.find_coefficients() my_solver.calculate_numerical_solution() my_solver.L2_norm() L2s.append(my_solver.L2) print("L2-norm = %.16f" %(my_solver.L2))</pre> Ne_list = np_array(Ne_list)
	<pre>Ne_list = np.array(Ne_list) L2s = np.array(L2s) h = 1/Ne_list r = [] for i in range(len(L2s)-1):</pre>
	L2-norm = 0.0004257533578156 Ne = 4 L2-norm = 0.0001796146980103 Ne = 5 L2-norm = 0.0000919627253961 Ne = 6 L2-norm = 0.0000532191696796 Ne = 7
	L2-norm = 0.0000335141126518 Ne = 8 L2-norm = 0.0000224518374800 Ne = 9 L2-norm = 0.0000157686421503 Ne = 10 L2-norm = 0.0000114953409357 Ne = 11
	Ne = 11 L2-norm = 0.0000086366203378 Ne = 12 L2-norm = 0.000006523942021 Ne = 13 L2-norm = 0.0000052322896315 Ne = 14 L2-norm = 0.0000041892628001 Ne = 15
	L2-norm = 0.0000034060274182 Ne = 16 L2-norm = 0.0000028064813668 Ne = 17 L2-norm = 0.0000023397810096 Ne = 18 L2-norm = 0.0000019710808282 Ne = 19
	Ne = 19 L2-norm = 0.0000016759401639 Ne = 20 L2-norm = 0.0000014369254308 [2.999999996480306, 2.999999999980168, 3.0000000113140866, 3.00000000633432, 2.99999999021504866, 3.0000489072191, 2.9999993328031964, 2.9999993301172134, 3.000004487441054, 2.999996588272792, 3.0000752684522, 2.999993175040992, 2.99999306868467, 3.0000051346015524, 3.0000010806868915, 3.0001123145247, 2.9997797581623153] As you can see we get an observed convergence rate of = 3, which is consistent with the excpected convergence rate for P2 elements ince we use quadratic polynomials.
[]:	