Álgebra Linear I - Aula 11

- 1. Transformações lineares.
- 2. Exemplos de Transformações lineares.

Roteiro

1 Transformações lineares

Definição 1 (Transformação linear). Uma transformação linear T definida $de \mathbb{R}^n$ $em \mathbb{R}^m$ (pense, por exemplo, em n e m iguais a 2 ou 3) é uma aplicação $T: \mathbb{R}^n \to \mathbb{R}^m$ que verifica as seguintes propriedades:

- T(u+v) = T(u) + T(v), para todo par de vetores $u \in v$ de \mathbb{R}^n ,
- $T(\sigma u) = \sigma T(u)$ para todo vetor u de \mathbb{R}^n e todo número real σ .

A definição significa que uma transformação linear preserva as operações de adição de vetores e multiplicação de um vetor por um escalar. Como consequência da definição de transformação linear temos que

$$T(\bar{0}) = T(\bar{0} + \bar{0}) = T(2\bar{0}) = 2T(\bar{0}), \quad T(\bar{0}) = \bar{0}.$$

Observe que $T(\bar{0})=\bar{0}$ é uma condição necessária para que a transformação T seja linear, mas esta condição não é suficiente. Veja o seguinte exemplo, a transformação T

$$T: \mathbb{R} \to \mathbb{R}, \quad T(x) = x^2,$$

verifica T(0) = 0 mas, em geral, $T(x + y) \neq T(x) + T(y)$:

$$T(x+y) = (x+y)^2 = x^2 + y^2 + 2xy \neq x^2 + y^2 = T(x) + T(y),$$

sempre que x e y sejam os dois simultaneamente não nulos.

Vejamos outros exemplos de transformações que não são lineares:

- $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+2,y+1), não é uma transformação linear, pois $T(0,0) = (2,1) \neq (0,0)$.
- $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (\operatorname{sen} x, \operatorname{sen} y)$ verifica T(0,0) = (0,0), porém não é uma transformação linear. Deixamos v. verificar os detalhes, observamos que o fato de T não ser linear segue de que, em geral, $\operatorname{sen}(x+x') \neq \operatorname{sen}(x) + \operatorname{sen}(x')$.

Da definição de transformação linear obtemos as seguintes propriedades (que v. deve verificar como exercício):

Propriedade 1.1. Considere duas transformações de lineares T e S,

$$T. S: \mathbb{R}^n \to \mathbb{R}^m.$$

e um número real λ. Então

• A soma das transformações lineares $T + S \colon \mathbb{R}^n \to \mathbb{R}^m$, definida como

$$(T+S)(u) = T(u) + S(u),$$

é uma transformção linear,

• O produto por um número real λ de uma transformação linear T, definida como $(\lambda T)(u) = \lambda (T(u))$, é uma transformação linear.

Definição 2 (Conjunto imagem). A imagem do conjunto \mathbb{V} pela transformação T é o conjunto:

$$im(T(\mathbb{V})) = \{ w \in \mathbb{R}^m \ tal \ que \ existe \ v \in \mathbb{V} \ tal \ que \ w = T(v) \}.$$

Propriedade 1.2. Se \mathbb{V} é um subespaço vetorial e T é uma transformação linear, então a imagem $T(\mathbb{V})$ também é um subespaço.

Em particular, a imagem por uma transformação linear de uma reta ou um plano que contém a origem também é uma reta ou um plano que contém a origem ou o vetor $\bar{0}$.

Prova: Para provar que $\operatorname{im}(T(\mathbb{V}))$ é um subespaço considere vetores w_1 e w_2 de $\operatorname{im}(T(\mathbb{V}))$. Temos que provar que $w_1 + w_2 \in \operatorname{im}(T(\mathbb{V}))$. Da definição de imagem, existem vetores v_1 e $v_2 \in \mathbb{V}$ tais que

$$w_1 = T(v_1)$$
 e $w_2 = T(w_2)$.

Como T é linear:

$$w_1 + w_2 = T(v_1) + T(v_2) = T(v_1 + v_2).$$

Como $v_1, v_2 \in \mathbb{V}$ e \mathbb{V} é um subespaço, $v_1 + v_2 = v_3 \in \mathbb{V}$. Portanto,

$$w_1 + w_2 = T(v_3), \qquad v_3 \in \mathbb{V}.$$

Logo, $w_1 + w_2 \in \operatorname{im}(T(\mathbb{V}))$.

Deixamos como exercício verificar que se $w \in \operatorname{im}(T(\mathbb{V}))$ e λ é um número real então $\lambda w \in \operatorname{im}(T(\mathbb{V}))$. Veja que se $w = T(v), v \in \mathbb{V}$, então $\lambda w = T(\lambda v)$ onde $\lambda v \in \mathbb{V}$, (complete os detalhes).

Considere uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$. Veremos que a imagem de uma reta r que contém a origem é ou outra reta que contém a origem ou o vetor nulo. A princípio, como a imagem da reta deve ser um subespaço de \mathbb{R}^3 , a imagem da reta poderia ser um plano que contém a origem ou todo \mathbb{R}^3 . Seja v o vetor diretor da reta, então: $r: \{t \, v, \, t \in \mathbb{R}\}$.

Seja w = T(v). Afirmamos que T(r) é a reta r' que contém a origem cujo vetor diretor é w, isto é,

$$r'$$
: $\{t w, t \in \mathbb{R}\}.$

Observamos que se $w=\bar{0}$, então $T(r)=\bar{0}$ (deixamos v. conferir esta afirmação). Vejamos as duas inclusões:

 $T(r) \subset r'$: seja $u \in T(r)$, então u = T(tv) para certo t. Como T é linear, u = t T(v) = t w. Portanto, $u \in r'$.

 $r'\subset T(r)$: seja $u\in r'$, então $u=t\,w=t\,T(v)$, para certo t. Como T é linear, $u=T(t\,v)=T(\ell)$, onde (por definicção) $\ell\in r$. Portanto, $u\in T(r)$.

De forma análoga temos que a imagem por uma transformação linear de um plano π que contém a origem é ou um plano ou uma reta contendo a origem ou o vetor nulo. Suponha que o plano π é gerado pelos vetores v e w. As equações paramétricas de π são,

$$\pi$$
: $u = t v + s w$, $t, s \in \mathbb{R}$.

Sejam T(v) = v' e T(w) = w'. Temos as seguintes possibilidades para a imagem $T(\pi)$:

- um plano ρ : se os vetores v' e w' não são paralelos e são não nulos. De fato, o plano ρ é o plano que contém a origem e é paralelo aos vetores v' e w'.
- uma reta r: se os vetores v' e w' são paralelos e um deles não é nulo (por exemplo, $v' \neq \bar{0}$). De fato, r é a reta que contém a origem e é paralela a v'.
- o vetor $\bar{0}$: se v' e w' são nulos.

Vejamos, por exemplo, que se $v' = T(v) \neq \bar{0}$ e $w' = T(w) \neq \bar{0}$ não são paralelos, se verifica que o plano ρ paralelo a v' e w' que contém a origem contém $T(\pi)$ (as outras inclusões e os outros casos seguem exatamente como no exemplo acima e serão omitidos). Seja $\ell' \in T(\pi)$, então, por definição, existe um vetor $\ell \in \pi$ tal que $T(\ell) = \ell'$. Como $\ell \in \pi$, $\ell = t \, v + s \, w$. Como T é linear,

$$\ell' = T(\ell) = T(t v + s w) = t T(v) + s T(w) = t v' + s w'.$$

Assim, pela definição de ρ , $\ell \in \rho$.

2 Exemplos de Transformações lineares

A seguir veremos alguns exemplos de transformações lineares (v. deve completar os detalhes).

- 1. A transformação linear nula, definida por $T(u) = \bar{0}$ para todo vetor u.
- 2. A transformação linear identidade, T(u) = u para todo vetor u.
- 3. Transformações de escala, $T(u) = \sigma u$ para todo vetor u, onde $\sigma \in \mathbb{R}$. Se $|\sigma| < 1$ dizemos que é uma contração e se $|\sigma| > 1$ é uma dilatação.
- 4. Transformações $V\colon \mathbb{R}^2 \to \mathbb{R}^2$ de $cisalhamento\ vertical$ e

$$V(x,y) = (x, \alpha x + y)$$

e $H: \mathbb{R}^2 \to \mathbb{R}^2$ de cisalhamento horizontal

$$H(x,y) = (x + \alpha y, y).$$

Veja a Figura 1.

Figura 1: Cisalhamento vertical

5. Projeção ortogonal em um vetor u definida por

$$P(v) = \frac{v \cdot u}{u \cdot u} u.$$

Veja a Figura 2.

Escreveremos P(x,y,z) em coordenadas. Podemos supor, sem perda de generalidade que o vetor u=(a,b,c) é unitário. Em coordenadas temos,

$$P(x,y,z) = ((x,y,z) \cdot (a,b,c)) (a,b,c) = (ax + by + cz) (a,b,c) = (a^2x + aby + acz, abx + b^2y + bcz, acx + bcy + c^2z).$$

6. Reflexões em torno dos eixos coordenados X e Y, definidas como

$$R(x,y) = (x, -y), \quad S(x,y) = (-x, y),$$

respectivamente. Veja a Figura 3.

7. Reflexão na origem,

$$T(x,y) = (-x, -y).$$

Figura 2: Projeção ortogonal

- 8. Dado um vetor u de \mathbb{R}^3 , definimos a transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}$ como $T(v) = v \cdot u$ (produto escalar). O fato de T ser linear segue das propriedades do produto escalar.
- 9. Dado um vetor u de \mathbb{R}^3 , definimos a transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ como $T(v) = v \times u$ (produto vetorial). O fato de T ser linear segue das propriedades do produto vetorial.

Figura 3: Reflexões

Deixamos, como exercício, verificar que as transformações anteriores são lineares.

Observe que todas as transformações lineares exibidas até agora são da forma

$$T(x,y) = (a x + b y, c x + d y),$$

no caso de transformações do plano no plano, e da forma

$$T(x, y, z) = (ax + by + cz, dx + ey + fz, gx + hy + kz),$$

no caso de transformações de \mathbb{R}^3 em \mathbb{R}^3 . Por exemplo, a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \quad T(v) = v \times w,$$

para certo vetor w tem a seguinte forma. Suponha que w = (a, b, c), então

$$T(x,y,z) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ a & b & c \end{vmatrix} = (cy - bz, az - bx, bx - ay).$$

Finalmente, no caso da transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}, \quad T(v) = v \cdot u,$$

se o vetor u = (a, b, c) temos

$$T(x, y, z) = a x + b y + c z.$$

Temos também que as seguintes transformações são lineares:

$$\begin{split} T \colon \mathbb{R}^2 &\to \mathbb{R}, & T(x,y) = a\,x + b\,y, \\ T \colon \mathbb{R}^3 &\to \mathbb{R}, & T(x,y,z) = a\,x + b\,y + c\,z, \\ T \colon \mathbb{R}^3 &\to \mathbb{R}^2, & T(x,y,z) = (a\,x + b\,y + c\,z, d\,x + e\,y + f\,z) \\ T \colon \mathbb{R}^2 &\to \mathbb{R}^3, & T(x,y) = (a\,x + b\,y, c\,x + d\,y, e\,x + f\,y), \end{split}$$

onde a, b, c, d, e, f são números reais.

De fato, temos o seguinte, toda transformação linear tem a forma das transformações acima.