- 1. Пусть функция ρ неотрицательная симметричная функция на $X \times X$, удовлетворяющая неравенству треугольника. Пусть для некоторых x, y, принадлежащих X, $\rho(x, y)=0$. Следует ли из этого, что для произвольного z, принадлежащего X, $\rho(x,z) = \rho(y,z)$?
- 2. Пользуясь неравенством треугольника, докажите, что для произвольных элементов $x_{1,2,...,n}$ метрического пространства выполнено неравенство многоугольника $\rho(x_1,x_n) \le$ $\rho(x_1, x_2) + \rho(x_2, x_3) + ... + \rho(x_{n-1}, x_n)$
- 3. Пользуясь неравенством треугольника, докажите, что для произвольных элементов метрического пространства x, y, z выполнено второе неравенство треугольника $\rho(x,z) \ge |\rho(x,y) - \rho(y,z)|$
- 4. Пользуясь неравенством треугольника, докажите, что для произвольных элементов метрического пространства a,b,c,d выполнено неравенство четырёхугольника $|\rho(a,b)-\rho(c,d)| \le \rho(a,c)+\rho(b,d)$
- 5. Пусть M_1 и M_2 метрические пространства, расстояния на которых задаются с помощью функций ρ_1 и ρ_2 соответственно. Докажите, что на декартовом произведении $M_1 \times M_2$ расстояние может быть задано с помощью формулы $\rho(X,Y) = \max \{ \rho_1(x_1,y_1), \dots, \rho(X,Y) \}$ $\rho_2(x_2,y_2)$ } Здесь x_1,y_1 – элементы M_1 , x_2,y_2 – элементы M_2 , $X=(x_1,x_2)$, $Y=(y_1,y_2)$ – элементы декартова произведения $M_1 \times M_2$.
- 6. Пусть M_1 и M_2 метрические пространства, расстояния на которых задаются с помощью функций ρ_1 и ρ_2 соответственно. Докажите, что на декартовом произведении $M_1 \times M_2$ расстояние может быть задано с помощью формулы $\rho(X,Y) = \rho_1(x_1,y_1) + \rho_2(x_2,y_2)$ Здесь x_1, y_1 – элементы M_1 , x_2, y_2 – элементы M_2 , $X=(x_1, x_2)$, $Y=(y_1, y_2)$ – элементы декартова произведения $M_1 \times M_2$.
- 7. Пусть M_1 и M_2 метрические пространства, расстояния на которых задаются с помощью функций ρ_1 и ρ_2 соответственно. Докажите, что на декартовом произведении $M_1 \times M_2$ расстояние может быть задано с помощью формулы

$$\rho(X,Y) = \sqrt{\rho_1^2(x_1,y_1) + \rho_2^2(x_2,y_2)}$$
 Здесь x_1,y_1 – элементы M_1 , x_2,y_2 – элементы M_2 , $X=(x_1,x_2)$, $Y=(y_1,y_2)$ – элементы декартова произведения $M_1\times M_2$.

- 8. Пусть $M_{\scriptscriptstyle X} = (X, \rho_{\scriptscriptstyle X})$ и $M_{\scriptscriptstyle Y} = (Y, \rho_{\scriptscriptstyle Y})$ метрические пространства. Докажите, что на декартовом произведении $M_X \times M_Y$ расстояние между элементами $z_1 = (x_1, y_1)$ и $z_2 = (x_2, y_2)$, где $x_{1,2} \in X$, $y_{1,2} \in Y$, может быть задано, в частности с помощью любой из трёх формул: $\rho_\infty(z_1,z_2)=\max\{\rho_X(x_1,x_2),\rho_Y(y_1,y_2)\}$, $\rho_1(z_1,z_2)=\rho_X(x_1,x_2)+\rho_Y(y_1,y_2)$, $\rho_2(z_1,z_2)=\sqrt{\rho_X^2(x_1,x_2)+\rho_Y^2(y_1,y_2)}$. Понятно ли, что эта задача – это просто переформулировка предыдущих трёх в других терминах?
- 9. Докажите, что введённые в предыдущей задаче расстояния удовлетворяют неравенствам $\rho_{\infty}(z_1,z_2) \le \rho_2(z_1,z_2) \le \rho_1(z_1,z_2)$. Приведите примеры, когда выполняются равенства.
- 10. Докажите, что расстояние в арифметическом пространстве \mathbf{R}^n может быть задано, в частности с помощью любой из трёх формул: $\rho_{_{\infty}}(\mathbf{x},\mathbf{y}) = \max_{1 \leq i \leq n} \mid x_i - y_i \mid$

$$\rho_2(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^n |x_i - y_i|^2} \qquad \qquad \rho_1(\mathbf{x},\mathbf{y}) = \sum_{i=1}^n |x_i - y_i|$$
 [доказано на лекции, повторить],
Докажите, что эти расстояния удовлетворяют неравенствам

Докажите, что эти расстояния удовлетворяют неравенствам $\rho_{\infty}(\mathbf{x},\mathbf{y}) \le \rho_{2}(\mathbf{x},\mathbf{y}) \le \rho_{1}(\mathbf{x},\mathbf{y})$

11. Пусть l_2 - метрическое пространство, элементами которого являются бесконечные

последовательности
$$\mathbf{x}=(x_1,...,x_n,...)$$
 таких, что $\sum_{i=1}^{\infty} |x_i|^2 < \infty$ («квадратично

$$\rho_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{\infty} |x_i - y_i|^2}$$

суммируемые»), а метрика задаётся формулой формула для расстояния корректно определена (т.е. ряд сходится), и что выполняются все аксиомы метрического пространства [доказано на лекции, повторить].

12. Пусть l_1 - метрическое пространство, элементами которого являются бесконечные

последовательности
$$\mathbf{x}=(x_1,...,x_n,...)$$
 таких, что $\sum_{i=1}^{\infty} |x_i| < \infty$ («абсолютно

$$\rho_1(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{\infty} |x_i - y_i|$$

 $ho_1(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{\infty} |x_i - y_i|$. Докажите, что суммируемые»), а метрика задаётся формулой формула для расстояния корректно определена (т.е. ряд сходится), и что выполняются все аксиомы метрического пространства.

- 13. Пусть l_{∞} метрическое пространство, элементами которого являются ограниченные бесконечные последовательности $\mathbf{x} = (x_1, ..., x_n, ...)$, а метрика задаётся формулой $\rho_{\scriptscriptstyle\infty}(\mathbf{x},\mathbf{y})=\sup_i |x_i-y_i|$. Докажите, что формула для расстояния корректно определена, и что выполняются все аксиомы метрического пространства.
- 14. Докажите, что $l_1 \subset l_2 \subset l_\infty$, причём каждое включение строгое.
- 15. Докажите, что $\forall x, y \in l_1 : \rho_1(x, y) \ge \rho_2(x, y)$. Приведите пример, когда выполняется равенство.
- 16. Докажите, что $\forall x,y \in l_2: \rho_2(x,y) \geq \rho_\infty(x,y)$. Приведите пример, когда выполняется
- 17. Пусть C[a,b] метрическое пространство, элементами которого являются непрерывные на [a,b] функции $\mathbf{x} = x(t)$, а метрика задаётся формулой $\rho_C(\mathbf{x}, \mathbf{y}) = \max_{t \in [a,b]} |x(t) - y(t)|$. Докажите, что формула для расстояния корректно определена, и что выполняются все аксиомы метрического пространства.
- 18. Пусть $D_k[a,b]$ (другое обозначение $C_k[a,b]$)- метрическое пространство, элементами которого являются k раз непрерывно дифференцируемые на $\begin{bmatrix} a,b \end{bmatrix}$ функции $\mathbf{x}=x(t)$, а метрика задаётся формулой $ho_{D_k}(\mathbf{x},\mathbf{y}) = \max_{0 \leq j \leq k} \rho_C(\mathbf{x}^{(j)},\mathbf{y}^{(j)})$, где $\mathbf{x}^{(j)} = x^{(j)}(t)$ - j-я производная функции x(t), а под нулевой производной понимается сама функция. Докажите, что формула для расстояния корректно определена, и что выполняются все аксиомы метрического пространства [доказано на лекции, повторить].

Теперь задачи, которых я не задавал, но было бы неплохо, если бы вы над ними подумали (часть из них есть в книжке).

19. Пусть X – произвольное непустое множество. Докажите, что функция

$$\rho(x,y) = \begin{cases}
0, & x = y \\
1, & x \neq y
\end{cases}$$
 задаёт на этом множестве метрику (такая метрика называется дискретной).

20. Докажите, что если для некоторого элемента a метрического пространства M значения $\rho(x,a)$ при всевозможных x, принадлежащих M, в совокупности ограничены (т.е. не превосходят некоторой константы A), то значения $\rho(x,y)$ при произвольных x,y из Mтакже не превосходят некоторой константы В. Как связаны А и В? Перепишите данное утверждение, используя логическую символику. (Такое метрическое пространство

$$\dim(M) = \sup_{x,y \in M} \rho(x,y)$$
 называется *ограниченным*, а величина
$$\max_{x,y \in M} \rho(x,y)$$
 называется его *диаметром*.)

- 21. Для каких наименьших значений $k_{1,2,3}$ для произвольных $\mathbf{x},\mathbf{y}\in\mathbf{R}^n$ выполнены неравенства $\rho_1(\mathbf{x}, \mathbf{y}) \le k_1 \rho_{\infty}(\mathbf{x}, \mathbf{y})$, $\rho_2(\mathbf{x}, \mathbf{y}) \le k_2 \rho_{\infty}(\mathbf{x}, \mathbf{y})$, $\rho_1(\mathbf{x}, \mathbf{y}) \le k_3 \rho_2(\mathbf{x}, \mathbf{y})$? Приведите примеры, когда выполняются равенства.
- 22. Пусть с метрическое пространство, элементами которого являются сходящиеся бесконечные последовательности $\mathbf{x} = (x_1, ..., x_n, ...)$, а метрика задаётся формулой $ho_{\mathbf{c}}(\mathbf{x},\mathbf{y}) = \sup_{i} |x_i - y_i|$. Докажите, что формула для расстояния корректно определена, и что выполняются все аксиомы метрического пространства.
- 23. Пусть § метрическое пространство, элементами которого являются бесконечные последовательности $\mathbf{x} = (x_1, ..., x_n, ...)$, а метрика задаётся формулой

$$\rho_{s}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{\infty} 2^{-i} \frac{|x_{i} - y_{i}|}{1 + |x_{i} - y_{i}|}$$
. Докажите, что формула для расстояния корректно определена, и что выполняются все аксиомы метрического пространства.

- 24. Докажите, что $l_1 \subset l_2 \subset \mathbf{c} \subset l_\infty \subset \mathbf{s}$, причём каждое включение строгое.
- 25. Можно ли на прямой **R** ввести метрику по формуле $\rho(x,y) = |\arctan y|$?
- 26. Для каких функций $f: \mathbf{R} \to \mathbf{R}$ формула $\rho'(x, y) = |f(x) f(y)|$ будет определять метрику на **R**?
- 27. Пусть $M=(X,\rho)$ метрическое пространство. Для каких функций $f: X \to X$ формула $\rho'(x,y) = \rho(f(x),f(y))$ будет определять метрику на X?
- 28. Можно ли на прямой **R** ввести метрику по формуле $\rho(x,y) = \text{arctg} |x-y|$ γ
- 29. Какое свойство функции $f: \mathbf{R} \to \mathbf{R}$ гарантирует нам, что функция $\rho'(x, y) = f(|x y|)$ будет определять метрику на **R**?
- 30. Пусть M=(X, ρ) метрическое пространство. Какое свойство функции $f: \mathbf{R} \to \mathbf{R}$ гарантирует нам, что функция $\rho'(x,y) = f(\rho(x,y))$ будет определять метрику на X, каково бы ни было пространство M?

Задачи, рассмотренные на последней лекции и семинарском занятии:

31. Докажите, что *неотрицательная непрерывная* функция x(t), удовлетворяющая

$$\int\limits_a^b x(t)dt=0$$
 условию $\int\limits_a^b x(t)dt=0$, тождественно равна нулю на $\left[a,b\right]$.

- 32. $\mathbf{C}_{\mathbf{L}_{\mathbf{I}}}[a,b]$ метрическое пространство, элементами которого являются непрерывные на
- $\rho_1(\mathbf{x},\mathbf{y}) = \int\limits_a^v |x(t)-y(t)| \, dt$ [a,b] функции $\mathbf{x} = x(t)$, а расстояние задаётся формулой Докажите, что при таком определении выполнены все аксиомы метрического пространства.
- 33. $\mathbf{C}_{\mathbf{L}_2}[a,b]$ метрическое пространство, элементами которого являются непрерывные на

$$\rho_2(\mathbf{x},\mathbf{y}) = \sqrt{\int\limits_a^b |x(t)-y(t)|^2} \ dt$$
 [a,b] функции $\mathbf{x} = x(t)$, а расстояние задаётся формулой Докажите, что при таком определении выполнены все аксиомы метрического пространства.

- 34. Для каких наименьших значений $k_{1,2,3}$ для произвольных $\mathbf{x}, \mathbf{y} \in C[a,b]$ выполнены неравенства $\rho_1(\mathbf{x}, \mathbf{y}) \leq k_1 \rho_C(\mathbf{x}, \mathbf{y})$, $\rho_2(\mathbf{x}, \mathbf{y}) \leq k_2 \rho_C(\mathbf{x}, \mathbf{y})$, $\rho_1(\mathbf{x}, \mathbf{y}) \leq k_3 \rho_2(\mathbf{x}, \mathbf{y})$? Приведите примеры, когда выполняются равенства.
- 35. Пусть метрическое пространство является одновременно линейным пространством. Можно ли утверждать, что произвольное подпространство этого пространства в смысле линейной алгебры является одновременно подпространством метрического пространства? Можно ли утверждать, что произвольное подпространство этого пространства как метрического является одновременно подпространством в смысле линейной алгебры?

Ещё одна задача, продолжение первой:

36. Пусть функция ρ – неотрицательная симметричная функция на $X \times X$, удовлетворяющая неравенству треугольника. Докажите, что равенство $\rho(x,y)=0$ задаёт на X отношение эквивалентности. Докажите, что функция ρ задаёт метрику на множестве классов эквивалентности.