Case Study

"Lead Scoring"

Dated: 26th August 2019

Submitted By:

Sangeeta Kalra & Vikram mathur

Problem Statement & Overall Approach

Problem Statement

- ➤ Building a logistic regression model to assign a lead score of 0 to 100 to each lead such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance.
- > A ballpark of the target lead conversion rate to be around 80%.

Overall Approach

Overall Approach

- Step 1: Reading and Understanding Data
 - 1.1 Running Pandas Profiler
- Step 2: Data Preparation & EDA
 - 2.1 Removing Redundant Features
 - 2.2 Check for Duplicates
 - 2.3 Check & Treat Missing Values
 - 2.4 Check & Fix Datatypes
 - 2.5 Outlier Analysis & Treatment
 - 2.6 Numerical Features Analysis
 - 2.7 Categorical Features Analysis
- Step 3: Feature Engineering Data Preparation
 - 3.1 Derived Metrics
 - 3.2 Dummy Encoding for Unordered Categorical Variables
- Step 4: Split Data into Training and Test Sets
- Step 5: Training the Model
 - 5.1 MinMax Scaling
 - 5.2 RFE
 - 5.3 Building model using statsmodel, for the detailed statistics
- Step 6: Model Evaluation
 - 6.1 Predictions
 - 6.2 ROC Curve
 - 6.3 Finding Optimal Cutoff Point
 - 6.4 Assign Lead Score
- Step 7: Predictions and Evaluation on the Test Set

- Reading & Understanding Data
- Data Preparation & EDA

Data Preparation

- Removed Redundant Features
 - Removed Features with Constant Features
 - Removed Features with 95% Constant Value
 - Removed ID Feature having all Unique Values
 - Removed Features with High Missing Values
- Removed Duplicate Rows
- Handled Missing Data
 - Removed rows with high % missing values
 - Handling Missing data for Continuous Numerical Features
 - Handling Missing Data for Categorical Variables
 - · Imputed with Mode
 - Imputed with an "unknown" value
- Fixed Data Types
- Outliers Analyzed & Treated

Prepared DataFrame Shape (7323, 13)

Outlier Analysis & Treatment

Treated outliers based on IQR 0.5 to 0.95

Numerical Feature Analysis

Range of 0 to 7 maximum density

0 to 500 range has highest density. Range 900 to 1600 has a healthy frequency.

"TotalVisits" and "Page Views Per Visit" have a positive correlation of 0.56

Range of 1 to 4 has the maximum density

Numerical Feature Analysis

Ordered Categorical Variable (BINS) - Total Time Spent on Website Distribution

- If the Total Time Spent on Website is high then the conversion is also higher.
- If the Total Time Spent on Website is low then the conversion is very low.
- Clear visualization of correlation with conversion (y dependent variable)

Similar Analysis done on all Numerical Variables – Not included in presentation

Categorical Feature Analysis

- Working Professional
 Occupation has a very
 high conversion. This
 value seems to have
 the highest positive
 correlation. This is
 followed by
 Unemployed.
- Businessman occupation has very low conversion.

Similar Analysis done on all

Categorical Features – Not included in presentation

Categorical Feature - Bivariate Analysis (Graphs)

Do Not Email Distribution for Not Converted over What is your current occupation

Do Not Email Distribution for Converted over What is your current occupation

- Feature Engineering
- Split into Test & Train
- Training the Model
- Model Evaluation

Feature Engineering

Derived Metrics Possibilities

- Combine the three numerical variables by multiplying them into a single derived column. This will
 yield the overall time spent online in one feature
- The numerical features could even be binned into
- Not creating any derived metrics as the above 2 points are not compelling enough and don't seem to add a lot of value.

Dummy Encoding

- Creating Dummy Variables for Categorical Variables
- Removed redundant features having "unknown" value
- Analyzed Correlation

Featured Engineered DataFrame shape (9323, 85)

Training The Model

- Train DataFrame Shape: (5126, 84) Test DataFrame Shape: (2197, 84)
- Scaling Numerical Features using MinMaxScaler
- RFE (Recursive Feature Elimination)
 - Reduced Dimentionality by extracing ranked features
 - Reduced the feature list to 10 to model
- Modelling (using GLM & VIF)
 - Model with following features chosen
 - Total Time Spent on Website
 - Lead Origin_Lead Add Form
 - Do Not Email True
 - Last Notable Activity_Modified
 - Last Notable Activity Olark Chat Conversation
 - Last Notable Activity_Page Visited on Website
 - Current Occupation Working Professional
 - Top 3 Features contributing most towards highest probabilities
 - Total Time Spent on Website
 - Lead Origin_Lead Add Form
 - Current Occupation_Working Professional

Model Evaluation

- Predicted values on Train dataset
- ROC Curve
 - The closer the curve comes to the 45degree diagonal of the ROC space, the less accurate the test.
 - The curve is good for our model
- Finding Optimal Cut-off Point
 - Cut Off Point 0.34
 - Confusion Matrix

Actual / Predicted	Not Converted	Converted	
Not Converted	2505	652	
Converted	438	1531	

- Metrics at ballpark 80%
 - Accuracy 79%
 - Sensitivity 77%
 - Specificity 79%

Evaluation on Test Data Set

Metrics on Test Data Set

Accuracy of 81%
Sensitivity of 79%
Specificity of 81%

Assigned Lead Score 0-100

	Lead Number	Converted	Converted_Prob	predicted	Lead Score
0	597640	True	0.783231	1	78
1	606086	True	0.892178	1	89
2	641652	True	0.716747	1	72
3	609351	False	0.104436	0	10
4	607845	False	0.177670	0	18