令和5年度 単元テスト (1-4) 三角関数 (その1)

1 以下の表を埋めよ. 【8 点】

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°
弧度	D	17c	1x	10	1/2	370	37	57	T
$\sin \theta$	0	1/2	1	1	1	2	1	1 2	0
cos θ	ſ	13/2	12	1/2	0	- 1	12	1/2/CJ	-1
$\tan \theta$	0	13	1	[3	/	-13	- (山上	0

θ	210°	225°	240°	270°	300°	315°	330°	360°
弧度	7-rc	5-	470	377	5-x	770	11	M
sin θ	-12	- 1/2	-3	-1	- 3	1/2	$-\frac{1}{2}$.0
сов в	- [3	- 12	$-\frac{l}{2}$	0	1	11	73	l
tan θ	13	1	13	/	-13	-1	1-1-1	0

 $2\theta = -\frac{11}{6}\pi$ のとき、 $\sin\theta$ 、 $\cos\theta$ 、 $\tan\theta$ の値を求めよ. [6点] $-\frac{1}{6}\pi$ な事後に「しい」

$$\frac{f_{2}[y]}{f_{2}[y]}$$

$$\frac{f_{2}[y]}{f_{2}[y]}$$

$$\frac{f_{3}[y]}{f_{4}[y]}$$

$$\frac{f_{4}[y]}{f_{4}[y]}$$

$$\frac{f_{4}[y]}{f_{4}[y]}$$

3 以下の問いに答えよ. 【14 点】

(1) 半径 4,中心角 $rac{1}{3}\pi$ である扇形の面積と弧の長さを求めよ.

$$S = \frac{1}{2}r^20$$

$$l = r0 \qquad 31$$

$$S = \frac{4}{3}\pi$$

$$l = \frac{4}{3}\pi$$

(2) θ の動径が第 1 象限にあり $,\sin\theta=\frac{4}{5}$ のとき $,\cos\theta,\tan\theta$ の値を求めよ.

(3) $\tan \theta = 2$ のとき, $\sin \theta$, $\cos \theta$ の値を求めよ. $\left| + \frac{1}{\cos^2 \theta} \right| = \frac{1}{\cos^2 \theta}$

$$1 + 4 = \frac{1}{0000}$$
 $000^{2}0 = \frac{1}{5}$
 $\frac{1}{15}$

tard= and =) la = tard. and.

J.7. 2:0=エデ, CORO=サー (神野同り) 小 計

年	組	番	

氏名______NO.:

合 計

令和5年度 単元テスト (1-4) 三角関数 (その2)

R5. 6. 12

$$\begin{array}{c} \text{h}^{2} + \text{aa}^{2} = (2^{2}) \\ \text{$(+2h + aa + 0) = -\frac{1}{4}$} \\ \text{$2h + aa + 0 = -\frac{1}{4}$} \\ = -\frac{3}{4} \end{array}$$

(2) 方程式 $3 \tan \theta - \sqrt{3} = 0$ を解け.

(3) 不等式 $2\cos\theta + \sqrt{3} \ge 0$ を解け.

$$2 \text{ CAO } \ge -13$$

 $\text{CAO } \ge -\frac{13}{2}$

(4) 方程式 $2\sin\left(\theta - \frac{1}{6}\pi\right) - \sqrt{3} = 0$ を解け.

(4) 方程式 $2\sin\left(\theta - \frac{1}{6}\pi\right) - \sqrt{3} = 0$ を解け.

(5) $\left(0 - \frac{1}{6}\pi\right) = \frac{\sqrt{3}}{2}$ 「エヌッ」

(6) $\left(0 - \frac{1}{6}\pi\right) = \frac{\sqrt{3}}{2}$ (7) $\left(0 - \frac{1}{6}\pi\right) = \frac{\sqrt{3}}{2}$ (8) $\left(0 - \frac{1}{6}\pi\right) = \frac{\sqrt{3}}{2}$ (9) $\left(0 - \frac{1}{6}\pi\right) = \frac{\sqrt{3}}{2}$

(5) 不等式 $2\cos\left(\theta + \frac{1}{3}\pi\right) + \sqrt{2} < 0$ を解け. $2\cos\left(0 + \frac{1}{3}\pi\right) < -\sqrt{2}$ $\cos\left(0 + \frac{1}{3}\pi\right) < -\frac{52}{2} = -\sqrt{2}$

左図すり、 - たてくりく12 ア

令和 5 年度 単元テスト (1-4) 三角関数 (その 3)

$$\begin{array}{lll}
2\pi &=& 4\pi + 6\pi \\
2\pi &=& 2\pi \cdot 4\pi \cdot 24\pi \cdot 24\pi$$

 $\theta = \frac{5}{8}\pi$ について, $\sin\theta$, $\cos\theta$, $\tan\theta$ の値を求めよ. 【10 点】 $\theta = \frac{1}{8}\pi$ について, $\frac{1}{4}\pi$.

 $= \frac{6+4\sqrt{3}+2}{4} = 2+\sqrt{3}$

$$CoR_{4}^{-}\pi = |-2 \sin^{2}\pi\pi.$$

$$-\frac{1}{4} = |-2 \sin^{2}\pi\pi.$$

$$pin^{2}\pi\pi = \frac{2+\sqrt{2}}{4}$$

$$\frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} = \frac$$

$$\frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} = \frac{1}{4}$$

のについて、火動とかる前かる.

2+53

②についる、 と東西とりを引向りにストナイナー

(`@MREG. OKM事に、 大の(章不十分下) = 2-13.

よって まるまでまること

年粗番		小	計
氏名	NO.2		

令和 5 年度 単元テスト (1-4) 三角関数 (その 4)

 $oxed{8}$ $0 \le heta < 2\pi$ のとき, 方程式 $\sin 2 heta = \cos heta$ を解け. 【7 点】

$$A = 2 \text{MORD} = 1$$
 $2 \text{MORD} = \text{CMD}$
 $2 \text{MORD} - \text{CMD} = 0$
 $2 \text{MO} - 1) \text{CMD} = 0$
 $(2 \text{MO} - 1) \text{CMD} = 0$
 $(2 \text{MO} - 1) \text{CMD} = 0$

For $0 = \frac{1}{6}\pi$, $\frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{3}{17}\pi$

 $egin{aligned} \mathbf{9} & 0 \leq heta < 2\pi \ heta$ のとき、方程式 $\sqrt{3}\sin heta + \cos heta = 1$ を解け. 【7 点】

$$\sqrt{3} \text{ AD} + \text{CORD} = 1$$

$$2(\frac{\sqrt{3}}{3} \text{ AD} + \frac{1}{2} \text{ CAD}) = 1$$

$$2 \cdot \left(2 \cdot \left(0 + \frac{1}{6} \pi \right) \right) = \frac{1}{2}$$

$$\left(2 \cdot \left(0 + \frac{1}{6} \pi \right) \right) = \frac{1}{2}$$

10 $y = \sin x + \cos x$ の最大値, 最小値を求めよ. 【7 点】

$$\chi = \frac{1}{4} \pi z^{11} \quad \forall = \sqrt{2} \ \ 2 \times 2$$

R5. 6. 12