Efficient Verification of an Elaboration-Time, Key Size Configurable, Pipelined AES Encoder and Decoder using a Mentor Veloce Emulator

Alex Pearson

Daniel Collins

Outline

- Advanced Encryption Standard Overview
 - Round Computation
 - Key Schedule
- Implementation
 - Block Diagram
 - Design/Verification Methodology
- Simulation and Emulation Results

Advanced Encryption Standard Overview

AES Overview

- AES is a symmetric-key block cipher used to encrypt electronic data
 - Specified in the FIPS 197 document published by NIST in 2001
 - Operates on 128-bit blocks of data
 - Supports three key sizes: 128, 192, and 256 bits
 - Widely adopted, designed with hardware implementations in mind.
- Performs multiple rounds of state transformation on the input block to produce the output

AES Overview Round Computation

- Each AES variant performs a fixed number of rounds
 - AES-128: 10 rounds
 - AES-192 12 rounds
 - AES-256: 14 rounds
- Each round applies four transformations to the state
 - SubBytes
 - ShiftRows
 - MixColumns (omitted on the final round)
 - AddRoundKey

AES Overview Key Schedule

- The initial input key is expanded into separate 128-bit round keys
- Copy last 4B of previous key block, perform schedule core on it
 - Rotate word, Sbox substitution, Rcon operation on leftmost byte, XOR with corresponding column of previous block

Implementation

Implementation Design and Verification Methodology

Simulation and Emulation Results

Simulation and Emulation Execution Times with and without inferred RAMs

Simulation and Emulation Execution Time with and without inferred RAMs

	128-bit Key w/ Inferred RAMs	128-bit Key w/out Inferred RAMs
Simulation Runtime	3,174 S	3,192 S
Emulation Runtime	64 s	27 S
Emulation Speedup over	50X	118X
Simulation		
Emulator HDL Time Advance	87.59%	75.70%
(Throughput)	07.5970	/5./0/0
Emulator Clock Speed	207 kHz	740 kHz
Veloce Compilation Time	5 minutes	10 minutes

Future Work

- More carefully tune the performance tradeoff of logic vs RAM for look up tables.
- Investigate advanced concurrent strategies for inbound and outbound streaming of data.
- Increase compiled frequency of the emulator by reducing the design critical path or finding additional compilation options.

References

[1] Advanced Encryption Standard. (2016, October 12). In *Wikipedia, The Free Encyclopedia*. Retrieved 13:29, October 12, 2016. (http://en.wikipedia.org/w/index.php?title=Advanced_Encryption_Standard&oldid=743995771)

[2] Pub, NIST FIPS. "197: Advanced encryption standard (AES)." Federal Information Processing Standards Publication 197 (2001): 441-0311. (http://csrc.nist.gov/publications/fips/fips-197.pdf)

[3] S.-M. Yoo, D. Kotturi, D.W. Pan, J. Blizzard, An AES crypto chip using a high-speed parallel pipelined architecture, Microprocessors and Microsystems, Volume 29, Issue 7, 1 September 2005, Pages 317-326, ISSN 0141-9331, http://dx.doi.org/10.1016/j.micpro.2004.12.001. (http://www.sciencedirect.com/science/article/pii/S0141933104001632)

[4] A. Pearson, D. Collins, S. Lawson, Compilation Time Configurable Pipelined AES Encoder and Decoder PSU ECE571, Spring 2016

Questions?

https://github.com/kinap/AES-Processor/