APPM 4650 - Final Exam Review Sheet

- 1. Find a way to accurately evaluate $e^x e^1$ as $x \to 1$.
- 2. Find the rate of convergence of

$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$

as $h \to 0$.

- 3. (a) Create a function f(x) so that you can approximate $\sqrt[3]{25}$ with the bissection method.
 - (b) Find an upper bound on the number of steps needed to approximate $\sqrt[3]{25}$ within 10^{-4} .
- 4. Use algebraic manipulation to show that $g(x) = \left(\frac{x+3-x^4}{2}\right)^{\frac{1}{2}}$ has a fixed point p when f(p) = 0 for $f(x) = x^4 + 2x^2 x 3$.
- 5. Determine an interval [a, b] on which the fixed point iteration will converge to $x = \frac{2 e^x + x^2}{3}$. Estimate the number of iterations necessary to obtain an approximation that is accurate within 10^{-5} .
- 6. Derive the Secant method.
- 7. (a) Use an appropriate Lagrange interpolating polynomial to approximate f(0.43) with the following data.

$$f(0) = 1$$
, $f(0.25) = 1.64872$, $f(0.5) = 2.71828$, $f(0.75) = 4.48169$

- (b) The function generating this data is $f(x) = e^{2x}$. Find an upper bound on the error in your approximation in part (a).
- 8. Derive the truncation for the following approximation of $f'(x_0)$.

$$f'(x_0) \sim \frac{1}{2h} \left(-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right)$$

9. Suppose that N(h) is an approximation to M for every h > 0 and that

$$M = N(h) + k_1 h + k_2 h^2 + k_3 h^3 + \cdots$$

for some constants $\{k_j\}_{j=1}^{\infty}$. Use the values N(h), N(h/3), and N(h/9) to produce an $O(h^3)$ approximation of M.

10. Find the degree of precision of the quadrature formula

$$\int_{-1}^{1} f(x)dx = f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$

11. Determine the values of n and h required to approximated

$$\int_0^2 \frac{1}{x+4} dx$$

to within 10^{-5} . Use

- (a) Composite Trapezoidal Rule
- (b) Composited Simpson's Rule
- (c) Composite Midpoint Rule
- 12. What is the error term for Gaussian quadrature?
- 13. Use Composite Simpson's rule and the given values of n to approximate the following improper integral.

$$\int_0^1 \frac{e^{-x}}{\sqrt{1-x}} dx$$

with n = 6.

14. (a) Use Euler's method to approximate the solution to

$$y' = te^{3t} - 2y \quad \text{for } 0 \le t \le 1$$
$$y(0) = 0$$

with h = 0.5.

• The exact solution to this problem is

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

Determine the theoretical error bound. How does this compare with the actual error?

15. (a) Derive a third order Taylor method for approximating solutions to initial value problems of the form

$$y' = f(t, y) \quad t \in [a, b]$$
$$y(a) = \alpha.$$

- (b) Derive a formula for the truncation error.
- (c) Create an error bound when $f(t,y) = \frac{2-2ty}{t^2+1}$ and $t \in [0,1]$.
- 16. Show that the difference method

$$w_0 = \alpha$$

$$w_{i+1} = w_i + a_1 f(t_i, w_i) + a_2 f(t_i + \alpha_2, w_1 + \delta_2 f(t_i, w_i)),$$

for each $i=0,1,\ldots,N-1$, cannot have a local truncation error $O(h^3)$ for any choice of constants a_1, a_2, α_2 , and δ_2 .

2

- 17. Derive the Adams-Bashforth Two-Step method by using the Lagrange form of the interpolating polynomial.
- 18. Consider the difference equation

$$w_{i+1} = w_i + h\phi(t_i, w_i, h)$$

where ϕ is continuous and Lipschitz with respect to w with Lipschitz constant L on the set

$$D = \{(t, w, h) \mid t \in [a, b], \ w \in \mathbb{R}, \ 0 \le h \le h_0\}$$

. Show that there exist a constant K > 0 such that

$$|u_i - v_i| \le K|u_0 - v_0|$$

for each $1 \leq i \leq N$, whenever $\{u_i\}_{i=1}^N$, and $\{v_i\}_{i=1}^N$ are from satisfy the difference equation.

19. Given the multistep method

witistep method
$$w_{i+1} = -\frac{3}{2}w_i + 3w_{i-1} - \frac{1}{2}w_{i-2} + 3f(t_i, w_i), \quad \text{for } i = 2, \dots, N-1$$

with starting values w_0 , w_1 , and w_2 .

- (a) Find the local truncation error.
- (b) Analyze this method for consistency, stability, and convergence.
- 20. Determine the stability, consistency and convergence for the implicit Trapezoidal method

(b) Analyze this method for consistency, stability, and convergence Determine the stability, consistency and convergence for the implic
$$w_{i+1} = w_i + \frac{h}{2} \left(f(t_{i+1}, w_{i+1}) + f(t_i, w_i) \right)$$
 for $i = 0, \dots, N-1$.