

Lecture

Quantum Computing

Guest Lecture in University of Oklahoma

Quantum Annealing Versus Grover's Search: Optimizing Transaction Schedules

Professor Dr. rer. nat. habil. Sven Groppe https://www.ifis.uni-luebeck.de/index.php?id=groppe

Quantum Mechanics

- Very small particles and light behave differently from objects in normal life
- Mechanics of light and matter at the atomic and subatomic scale are described by quantum theory
 - forming the underlying principles of chemistry and most of physics
- Quantum theory has brought us the information age with its disruptive technologies of
 - transistors,
 - lasers,
 - nuclear power, and
 - superconductivity...
 - ...and now also quantum computers!

the electron in a hydrogen atom at different energy levels. Brighter areas represent a higher probability of finding the electron.

Timeline of important events

- 1982: Feynman first proposes the concept of quantum computers [F'82]
- 2019: Google announces "Quantum Supremacy" by its 53-bit chip "Sycamore" [A+'19]
 - 200 seconds on Sycamore versus 10,000 years on the world's fastest supercomputer IBM Summit
 - IBM [P+'19]: only 2.5 days on classical supercomputer after deduction of the problem (i.e., using a better classical algorithm)
 - Discussion intensified the excessive hype about the current state of quantum technology

[]/;; [F'82] [A+'19] [P+'19] [2 3 / 51

Architectures of Emergent Hardware

Quantum Computer

- use of quantum-mechanical phenomena such as superposition and entanglement to perform computation
- Different types of quantum computer, e.g.
 - Universal Quantum Computer
 - uses quantum logic gates arranged in a circuit to do computation
 - measurement (sometimes called observation) assigns the observed variable to a single value
 - Quantum Annealing
 - metaheuristic for finding the global minimum of a given objective function over a given set of candidate solutions
 - i.e., some way to solve a special type of mathematical optimization problem

Simulated versus Quantum Annealing

Classical versus Quantum Computing

	Classical	Quantum		
Information Unit	Binary Digit (Bit):basis of a 2-level systemcan be in state 0 or 1	Qu antum Bit (Qubit): • basis of a 2-level quantum system • can be in state $ 0\rangle$, $ 1\rangle$ or in a linear combination of both states		
Operation	Logic Gate: • performs on 1 or more bits to produce a single bit output	Quantum Logic Gate: • performs on 1 or more qubits to change the quantum state of a single qubit		
	NOT/Inverter:	NOT/Pauli $_x$ -Gate:		
	Digital Circuit: In—Out	Quantum Circuit: $ In angle \ \ \ \ \ \ \ \ Out angle$		
		Alternatively: $ In\rangle - X - Out\rangle$		
Example	In Out	In Out		
Operation	0 1	0 angle $ 1 angle$		
	1 0	1 angle 0 angle		
		$rac{1}{\sqrt{2}}\left(\ket{0}+\ket{1} ight)\left[rac{1}{\sqrt{2}}\left(\ket{0}+\ket{1} ight) ight]$		
		$rac{3\cdot i}{5}\ket{0}+rac{4}{5}\ket{1}$ $rac{4}{5}\ket{0}+rac{3\cdot i}{5}\ket{1}$		

Representation of a Qubit in Bloch-Sphere

• Angels θ and ϕ can be associated with spherical coordinates on the so-called Bloch-sphere:

Classical Measurement/Observation

• The state is not destroyed by a measurement/observation in classical systems:

Quantum Measurement/Observation 1/2

• The state is not destroyed by a measurement/observation in quantum mechanical systems for state $|0\rangle$ and $|1\rangle$:

Quantum Measurement/Observation 2/2

• During observation a superposition state collapses to $|0\rangle$ or $|1\rangle$ according to corresponding probabilities:

Measurement/Observation along other axis (here y-axis)

However, observation typically according to z-axis

Generator for True Random Numbers

- Commercially available, see e.g.
 - https://www.magiqtech.com/solutions/network-security/
 - https://www.idquantique.com/random-number-generation/

Determining the states (θ,ϕ) of identical prepared Qubits

- After one measurement in one of the axis (x,y,z), the qubit collapses to $|0_a\>
 angle$ or $|1_a\>
 angle$ with $a\in\{x,y,z\}$
- As more identical prepared qubits are measured in a axis, as more the measured distribution of $|0_a\rangle$ and $|1_a\rangle$ is getting closer to P_{0_a} and $P_{1_a}\Rightarrow\theta,\phi$ can be determined

No-Cloning-Theorem of 1 Qubit

ullet Only not perfect copying possible of information in one of the (x,y,z) axis, other information of superposition gets lost

Operations via Quantum Logic Gates

- quantum logic gates for 1 qubit: often rotation around one axis
 - Relatively general quantum logic gate: rotation around a specified angle θ :

Rotation operator for rotation around x-axis:

$$R_X(heta) = e^{-iXrac{ heta}{2}} = \left[egin{array}{ccc} cosrac{ heta}{2} & -i \ sinrac{ heta}{2} \ -i \ sinrac{ heta}{2} & cosrac{ heta}{2} \end{array}
ight]$$

 $|\mathbf{0}\rangle$

e.g. $Pauli_x$ -Gate:

Rotation Matrix

Quantum Circuit

Table of in- & outputs:

$$NOT = \left[egin{array}{ccc} 0 & 1 \ 1 & 0 \end{array}
ight] \ |In
angle & igodots |Out
angle \ Alternatively: \ |In
angle & igodots |Out
angle \ |Out
angle$$

0/	1 /
1 angle	0 angle
$rac{1}{\sqrt{2}}\left(\ket{0}+\ket{1} ight)$	$\frac{1}{\sqrt{2}}\left(\ket{0}+\ket{1} ight)$
$rac{3\cdot i}{5}\ket{0}+rac{4}{5}\ket{1}$	$\frac{4}{5}\ket{0}+\frac{3\cdot i}{5}\ket{1}$

11\

Controlled NOT (CNOT)-Gate

• "If the control bit is set, then it flips the target bit."

Quantum Circuit	Table of in- & outputs		Rotation Matrix ${\cal R}$					
	Inputs		Output					
	$\operatorname{Control} C$	Target T_{before}	Target T_{after}	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 0	0	0	
$ C\rangle - C\rangle$	0 angle	0 angle	0 angle	0	1	0	0	
$ C\rangle - C\rangle T_{before}\rangle \oplus T_{after}\rangle$	0 angle	1 angle	1 angle		0	0	1	
	1 angle	0 angle	1 angle		0 0	1	0	
	1 angle	1 angle	$ 0\rangle$	L	U	1	ل ک	
	$R \cdot \frac{1}{\sqrt{2}} \left(01\rangle \right)$	$+\ket{11}) = \frac{1}{\sqrt{2}}$	- $(01 angle + 10 angle)$					

- reversible gate: 2 applications of CNOT retrieves the original input
- Classical analog of the CNOT gate is a reversible XOR gate (i.e., they have analogous in- & and outputs for $\{|0\rangle,|1\rangle\}$ inputs)
- $ullet |a,b
 angle \mapsto |a,a\oplus b
 angle$, where \oplus is XOR

Bell States via Entaglement

Entaglement	Quantum Circuit	Table of in- & outputs		
Correlated	$\begin{array}{c c} A\rangle & \bullet & A\rangle \\ 0\rangle & \oplus & B\rangle \end{array}$	$egin{array}{c c} A & B \ 0 angle & 0 angle \ 1 angle & 1 angle \ \hline rac{1}{\sqrt{2}}\left(00 angle + 11 angle ight) \end{array}$		
Anti-Correlated	$\begin{vmatrix} A\rangle & \bullet & A\rangle \\ 1\rangle & \oplus & B\rangle \end{vmatrix}$	$egin{array}{ l l l l l l l l l l l l l l l l l l l$		

- Even if the entagled qubits are at different locations, they are still entagled ⇒ quantum teleportation
- Succeeding operations on entagled qubits are possible (without changing the state of the other entagled qubits if the operation is not a measurement)

Digital versus Quantum Circuits

Timeline of Quantum Computers

Noisy Intermediate-Scale Quantum (NISQ)

- quantum computers with 50-100 qubits: noise in quantum gates limits the size of quantum circuits that can be executed reliably
- Such NISQ devices may be able to perform tasks which surpass the capabilities of today's classical digital computers with application areas like quantum chemistry, optimization & machine learning
- 100-qubit quantum computers are (only) intermediate technologies

[]/# [P'18] ☑

Suspected Shape of BQP

- PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space
- NP: nondeterministic polynomial time is the set of problems that can be solved in polynomial time by a nondeterministic Turing machine
- A problem is said to be NP-hard if everything in NP can be transformed in polynomial time into it even though it may not be in NP
- A problem is NP-complete if it is both in NP and NP-hard
- P: PTIME contains all decision problems that can be solved by a deterministic Turing machine in polynomial time
- BQP: bounded-error quantum polynomial time is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances
- Note: Neither P≠NP nor P≠PSPACE has been proven, and if either of these are equal, the shape of BQP would be different

Potential of Quantum Algorithms

 Quantum Algorithm Zoo ☐ as example of collection of important quantum algorithms

Covered Years
#Investigated References
#Algorithms

Speedups

1974-today

430 (visited on October 2021)

64

Superpolynomial: 31,

Polynomial: 27,

Constant factor: 1, Varies: 3, Various: 1,

Unknown: 1

Terminology:

lpha: positive constant

C(n): runtime of the best known classical algorithm

Q(n): runtime of the quantum algorithm

Superpolynomial Speedup: $C=2^{\Omega(Q^{lpha})}$

Polynomial Speedup: otherwise

Very Important Quantum Algorithms 1/2: Shor's Algorithm¹

- factoring integers in polynomial time
 - Depth of quantum circuit² to factor integer N: $O((\log N)^2 (\log \log N) (\log \log \log N))$
 - superpolynomial speedup, i.e., almost exponentially faster than the most efficient known classical factoring algorithm (general number field sieve):

$$O(e^{1.9(\log N)^{\frac{1}{3}}(\log \log N)^{\frac{2}{3}}})$$

- Important for cryptography o Post-Quantum Cryptography
- Most quantum algorithms with superpolynomial speedup like Shor's algorithm are based on quantum Fourier transforms (quantum analogue of inverse discrete Fourier transform)

Very Important Quantum Algorithms 2/2: Grover's Search Algorithm

- Black box function (oracle) $f:\{0,...,2^b-1\}\mapsto \{true,false\}$
- ullet Grover's search algorithm finds one $x\in \{0,...,2^b-1\}$, such that f(x)=true
 - if there is only one solution: $\frac{\pi}{4}\cdot\sqrt{2^b}$ basic steps each of which calls f Let f'(b) be runtime complexity of f for testing x to be true:

$$\Rightarrow O(\sqrt{2^b} \cdot f'(b))$$

- if there are k possible solutions: $O(\sqrt{rac{2^b}{k}} \cdot f'(b))$
- Basis of many other quantum algorithms and applications

Algorithms (used e.g. in Query Optimization) and their Quantum Counterparts

Query Optimization Approach	Basic Algorithm	Quantum Computing Counterpart
[S+79] ☑	Dynamic Programming [E04] 🖸	[R19] [Z [A+19] [Z
[IW87] ☑, QA: [TK16] ☑	Simulated Annealing [KGV83] 🖸	[J+11] 🖸
[MP18] ☑ [Y+20] ☑ [W+19] ☑ [O+19] ☑	Reinforcement Learning [BSB81]	[S+21] [[DCC05] [
[GPK94] ☑	Random Walk [BN70] 🗹	[ADZ93] [2 [A+01] [2
[BFI91] ☑	Genetic Algorithm [H92] ☑	[W+13] ☑
[TC19] ☑	Ant Colony Optimization [CDM91] ☑ [DBS06] ☑	[WNF07] ☑ [G+20] ☑

This list is not complete...

Open Challenges for QC for Databases

- Are QC counterparts of basic algorithms used in query optimizations suitable for speeding up databases?
- What should be the properties of a quantum computer (e.g. #qubits, latencies of gates) to achieve certain speedups?
- How to combine classical and quantum computing algorithms to achieve good speedups with few qubits?
 (...for running database optimizations on current available quantum computers...)
- What other database domains besides query optimization benefit from quantum computers?

(In short: those based on mathematical optimization problems, but also other...?)

QC4DB: Accelerating Relational Database Management Systems via Quantum Computing

- Project Website@Quantentechnologien ☑
- Project funded by BMBF
 - Duration 3 years, 1.8M Euros
- Topics
 - Query Optimization
 - Optimizing Transaction Schedules

of an open source relational database management system

Partners

- University of Lübeck (Coordinator Sven Groppe)
 - Hardware-Acceleration of Databases
 - Website: ☑
 <u>https://www.ifis.uni-luebeck.de/~groppe/</u>
- Quantum Brilliance GmbH
 - Room Temperature Diamond Quantum Accelerators
 - Website: ☑<u>https://quantumbrilliance.com/</u>
- Collaborations are welcome!

Platform-specific types of DBMS

Using Hardware Accelerator for optimizing Transaction Schedules

2 Phase Locking (2PL) versus Strict Conservative 2PL

- required locks to be determined by
 - static analysis of transaction, or if static analysis is not possible:
 - an additional phase at runtime before transaction processing
 - A. Thomson et al., "Calvin: Fast distributed transactions for partitioned database systems", SIGMOD 2012.

Optimizing Transaction Schedules

- Variant of job shop schedule problem (JSSP):
 - Multi-Core CPU
 - Process whole job (here transaction) on core X
 - Schedule: ∀ cores: Sequence of jobs to be processed
 - What is the optimal schedule for minimal overall processing time?
- Additionally to JSSP: Blocking transactions not to be processed in parallel
- Example:

Black: Blocking transactions

Transaction schedule

- JSSP is among the hardest combinatorial optimizing problems*
- \rightarrow Hardware accelerating the optimization of transaction schedules

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Quantum versus Simulated Annealing

Optimizing Transaction Schedules via Quantum Annealing

- Transaction Model
 - T: set of transactions with |T| = n
 - M: set of machines with |M| = k
 - $O \subseteq T \times T$: set of blocking transactions
 - Ii: length of transaction i
 - R: maximum execution time
 - upper bound r_i = R I_i for start time of transaction i

• Example

- T =
$$\{t_1, t_2, t_3\}$$
, n=3

-
$$M = \{m_1, m_2\}, k=2$$

$$-O = \{(t_2, t_3)\}$$

$$-I_1 = 2, I_2 = 1, I_3 = 1$$

$$-R = 2$$

$$- r_1 = 0, r_2 = 1, r_3 = 1$$

- Quadratic unconstrained binary optimization (QUBO) problems (solving is NP-hard)
 - A QUBO-problem is defined by N weighted binary variables

$$X_1,...,X_N\in 0,1$$
, either as linear or quadratic term to be minimized:

$$\sum_{0 < i \le N} w_i X_i + \sum_{i \le j \le N} w_{ij} X_i X_j, \text{ where } w_i, w_{ij} \in \mathbb{R}$$

Optimizing Transaction Schedules via Quantum Annealing

- Multi-Core CPU
 - Process whole transaction on core X
- Solution formulated as set of binary variables
 - $X_{i,j,s}$ is 1 iff transaction t_i is started at time s on machine m_i , otherwise 0
- Example:

Black: Blocking transactions

Transaction schedule

- Solution:

$$X_{1,1,0}, X_{3,1,2}, X_{4,2,0}, X_{7,2,1}, X_{6,2,3}, X_{5,2,6}, X_{2,3,0}, X_{8,3,5}$$

Optimizing Transaction Schedules via Quantum Annealing

- Valid Solution
 - A: each transaction starts exactly once

$$A = \sum_{i=1}^{n} \left(\sum_{j=1}^{k} \sum_{s=0}^{r_i} X_{i,j,s} - 1 \right)^2$$

transactions machines start times

Example:
$$R=2$$

$$T=\{t_1,t_2,t_3\} \text{ with } |T|=n=1$$

$$M=\{m_1,m_2\} \text{ with } |M|=k=1$$

$$O=\{(t_2,t_3)\}$$

$$l_1=2,\ l_2=1,\ l_3=1$$

$$r_1=0,\ r_2=1,\ r_3=1$$

$$\begin{array}{l} R=2 \\ T=\{t_1,t_2,t_3\} \text{ with } |T|=n=3 \\ M=\{m_1,m_2\} \text{ with } |M|=k=2 \end{array} \begin{array}{l} A= & (X_{1,1,0}+X_{1,2,0}-1)^2 \\ & +(X_{2,1,0}+X_{2,1,1}+X_{2,2,0}+X_{2,2,1}-1)^2 \\ & +(X_{3,1,0}+X_{3,1,1}+X_{3,2,0}+X_{3,2,1}-1)^2 \end{array}$$

Optimizing Transaction Schedules via Quantum Annealing

- Valid Solution
 - B: transactions cannot be executed at the same time on the same machine

transactions without t_n remaining transactions

$$B = \sum_{\substack{j=1 \text{machines}}}^{k} \sum_{i_1=1}^{n-1} \sum_{\substack{s_1=0 \text{start times}}}^{r_{i_1}} \sum_{\substack{s_2=q \text{invalid start times}}}^{p} X_{i_1,j,s_1} X_{i_2,j,s_2} \text{ for } q = \max\{0, s_1 - l_{i_2} + 1\}, p = \min\{s_1 + l_{i_1}, r_{i_2}\}$$

Example:
$$R=2$$

$$T=\{t_1,t_2,t_3\} \text{ with } |T|=n=3$$

$$M=\{m_1,m_2\} \text{ with } |M|=k=2$$

$$O=\{(t_2,t_3)\}$$

$$l_1=2,\ l_2=1,\ l_3=1$$

$$r_1=0,\ r_2=1,\ r_3=1$$

$$\begin{array}{l} R=2 \\ T=\{t_1,t_2,t_3\} \text{ with } |T|=n=3 \\ M=\{m_1,m_2\} \text{ with } |M|=k=2 \\ O=\{(t_2,t_3)\} \end{array} \\ \begin{array}{l} B=\begin{array}{l} X_{1,1,0}X_{2,1,0}+X_{1,1,0}X_{2,1,1}+X_{1,1,0}X_{3,1,0} \\ +X_{1,1,0}X_{3,1,1}+X_{2,1,0}X_{3,1,0}+X_{2,1,1}X_{3,1,1} \\ +X_{1,2,0}X_{2,2,0}+X_{1,2,0}X_{2,2,1}+X_{1,2,0}X_{3,2,0} \\ +X_{1,2,0}X_{3,2,1}+X_{2,2,0}X_{3,2,0}+X_{2,2,1}X_{3,2,1} \end{array}$$

Optimizing Transaction Schedules via Quantum Annealing

- Valid Solution
 - C: transactions that block each other cannot be executed at the same time

$$C = \sum_{\substack{\{t_{i_1}, t_{i_2}\} \in O \text{ } j_1 = 1 \text{ } \sum_{s_1 = 0}^{remaining} \\ \text{blocking transactions start times}}} \sum_{j_2 \in J} \sum_{\substack{s_2 = q \\ \text{invalid start times}}} \sum_{j_2 \in J} \sum_{s_2 = q}^{p} X_{i_1, j_1, s_1} X_{i_2, j_2, s_2} \text{ for } J = \{1, \dots, k\} \setminus \{j_1\}, q = \max\{0, s_1 - l_{i_2} + 1\}, p = \min\{s_1 + l_{i_1}, r_{i_2}\}$$

Example:
$$R=2$$

$$T=\{t_1,t_2,t_3\} \text{ with } |T|=n=3 \\ M=\{m_1,m_2\} \text{ with } |M|=k=2 \\ O=\{(t_2,t_3)\} \\ l_1=2,\ l_2=1,\ l_3=1 \\ r_1=0,\ r_2=1,\ r_3=1$$
 $C=X_{2,1,0}X_{3,2,0}+X_{2,1,1}X_{3,2,1} \\ +X_{2,2,0}X_{3,1,0}+X_{2,2,1}X_{3,1,1}$

Optimizing Transaction Schedules via Quantum Annealing

- Optimal Solution
 - D: minimizing the maximum execution time

$$D = \sum_{i=1}^{n} \sum_{j=1}^{k} \sum_{s=0}^{r_i} w_{s+l_i} X_{i,j,s}, \text{ where } w_{s+l_i} = \frac{(k+1)^{s+l_i-1}}{(k+1)^R} < 1$$

- Increasing weights: Weight of step n is larger than of all preceding steps 1 to n-1 ⇒ preferring transactions ending earlier
- Weigths in A, B and C ≥ 1
 ⇒ first priority is validity, second priority is optimality

Example:
$$R=2$$

$$T=\{t_1,t_2,t_3\} \text{ with } |T|=n=3 \\ M=\{m_1,m_2\} \text{ with } |M|=k=2 \\ O=\{(t_2,t_3)\} \\ l_1=2,\ l_2=1,\ l_3=1 \\ r_1=0,\ r_2=1,\ r_3=1$$

$$D=\frac{\frac{3}{9}X_{1,1,0}+\frac{3}{9}X_{1,2,0}}{+\frac{1}{9}X_{2,1,1}+\frac{1}{9}X_{2,2,0}+\frac{3}{9}X_{2,2,1}}{+\frac{1}{9}X_{3,1,0}+\frac{3}{9}X_{3,1,1}+\frac{1}{9}X_{3,2,0}+\frac{3}{9}X_{3,2,1}}$$

Optimizing Transaction Schedules via Quantum Annealing

- Overall Solution
 - Minimize P = A + B + C + D

Optimal schedules (transaction 1 in blue, transaction 2 in green and transaction 3 in red) for our example:

 $P = A + B + C + D = -3 + 0 + 0 + \frac{7}{9} = -2\frac{2}{9}$ If the offset is added (optional), then the result is:

$$P = A + B + C + D = -3 + 0 + 0 + \frac{7}{9} + 3 = \frac{7}{9}$$

runtime

Optimizing Transaction Schedules via Quantum Annealing

- Experiments on real Quantum Annealer (D-Wave 2000Q cloud service)
 - first minute free(afterwards too much for our budget)
- Versus Simulated Annealing on CPU
- Preprocessing time/Number of QuBits:

$$O((n \cdot k \cdot R)^2)$$

Fig.	k	n	R	0	$l_1,,l_n$	r_1, \ldots, r_n	req. var.
		2	8	{}	8, 4	0, 4	8
11	2	3	5	$\{(t_1,t_3)\}$	4, 5, 1	1, 0, 4	10
11	2	4	4	$\{(t_2,t_4)\}$	3, 2, 1, 2	1, 2, 3, 2	16
		5	2	$\{(t_1,t_2),(t_4,t_5)\}$	1, 1, 1, 1, 1	1, 1, 1, 1, 1	10

Pipelining for further Speedup

Caching of & Reusing generated formulas to minimize preprocessing time

- Following parameters are fixed:
 - the number k of machines (system does not change during runtime)
 - the number n of transactions (for batches of the same size)
- We observe:
 - The (maximal) execution time R and hence upper bounds of start times $r_i,...,r_n$ depend on the lengths of the transactions,
 - the formulas $A,\,B$ and D depend on the fixed parameters k and n, and on the lengths of the transactions, and
 - the formula C is a sum of sub-formulas depending on k and the lengths of blocking transactions as well as the identifiers of blocking transactions.
 - \Rightarrow Caching A, B and D, and sub-formulas of C with the key of the lengths of the transactions (orderd by lengths) (Example: using (1,1,2) as key) Further information in paper!

Optimizing Transaction Schedules via **Quantum Computing**

Grover's Search Algorithm

- ullet Black box function $f: \{0,...,2^b-1\} \mapsto \{true,false\}$
- ullet Grover's search algorithm finds one $x\in \{0,...,2^b-1\}$, such that f(x)=true
 - if there is only one solution: $\frac{\pi}{4}\cdot\sqrt{2^b}$ basic steps each of which calls f Let f'(b) be runtime complexity of f for testing x to be true:

$$\Rightarrow O(\sqrt{2^b} \cdot f'(b))$$

- if there are k possible solutions: $O(\sqrt{rac{2^b}{k}} \cdot f'(b))$

Motivation - Quadratic Speedup

$$\frac{N}{2} \text{ Linear Search} \\ k \text{ known in advance:} \\ \frac{\pi}{4} \cdot \sqrt{N} \text{ Grover's Search for } k = 1 \\ \frac{\pi}{4} \cdot \sqrt{\frac{N}{k}} \text{ Grover's Search for } k = \frac{5}{100} \cdot N \\ \frac{\pi}{4} \cdot \sqrt{\frac{N}{k}} \text{ Grover's Search for } k = 5 \\ k = \frac{5}{100} \cdot N \text{ unknown in advance:} \\ \frac{9}{4} \cdot \sqrt{\frac{N}{k}} \text{ randomized Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ k = 5 \text{ unknown in advance:} \\ \frac{9}{4} \cdot \sqrt{\frac{N}{k}} \text{ randomized Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \cdot \sqrt{\frac{N}{k}} \text{ deterministic Grover's Search} \\ \frac{8 \cdot \pi}{3} \cdot \sqrt{\frac{N}{k}} \cdot \sqrt{\frac{N}{k}} \cdot \sqrt{\frac{N}{k}} \cdot \sqrt{\frac{N}{k}} \cdot \sqrt{\frac{N}{k}} \cdot \sqrt{\frac{N}{k}} \cdot \sqrt{\frac{N}{k$$

	Linear Search $k=1$	Grover $k=1$	$k=rac{5}{100}\cdot N$			k=5		
N			known k	unknown ${\it k}$		known k	unknown $oldsymbol{k}$	
				randomized	deterministic	KIIOWII 16	randomized	deterministic
10	5	2.48	3.51	51 10.06	37.46	1.11	3.81	11.85
100	50	7.85				3.51	10.06	37.47
1000	500	24.84				11.11	31.82	118.48
1000 000	500 000	785.40				351.24	1006.23	3746.57

Overview of Optimizing Transaction Schedules via Quantum Computing

Encoding Scheme of Transaction Schedules

```
Algo determineSchedule
                                                                                                                                                            Example (n=4, m=2):
   Input: p:\{0, ..., 2^b-1\}
                                                                                                                                                             29
   Output: \{0, ..., n-1\}^{m-1} \times
                                                   \{0, ..., n-1\}^{n-1}
  for(x in 1..m-1)
                                                                                                                                                           x = 1:
             \mu_x = p \mod n
                                                                                                                                                       \mu_1 = 1
             p = p \operatorname{div} n
                                                                                                                                                        p = 7
  a = [0, ..., n-1] a = [0, 1, 2, 3]
for(i in 0..n-1) i = 0: j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0 j = 0
  return (\mu_1, ..., \mu_{m-1}, \pi)
                                                                                                                                  return (1,[3,1,0,2])
```

- $29=000111~01_{binary}\equiv$ Core 0 $[3,1]~\mu_1=1~[0,2]$ Core 1, some bits for permutation and some for separators
- $ullet \ b = (m-1) \cdot \lceil log_2(n-1)
 ceil + \lceil log_2(n!-1)
 ceil$

Generated Black Box Function

Quantum computation: circuit of quantum logic gates

⇒ circuit must be generated dependent on the concrete problem instance, no general circuit to solve all instances of a problem

Sketch of algo:

1. Determine Ser	parators and Permutation	O(m+n)
Determine eep	saratoro arra i crimatationi	$\mathcal{O}(m + m)$

2. Check Validity of Separators
$$O(m)$$

3.
$$\forall i$$
: Determine lengths of i -th transaction in permutation $O(n \cdot log_2(n))$ with decision tree over transaction number

4. Check: Which separator configuration? For current case:
$$O(n)$$

4a. determine total runtime of core and check if it's below given limit
$$\ O(n)$$

$$O(n \cdot log_2 \ (min(n,c)) + c)$$
 with

4a. determine start and end times of conflicting transactions decision tree over conflicting transactions (for
$$n >> c$$
) or

transaction numbers (for
$$c >> n$$
)

5. Check: Do conflicting transactions overlap?
$$O(c)$$

$$\sum: O(n \cdot log_2(n) + c)$$

Complexity Analysis

Approach	CPU	Quantum Computer	Quantum Annealing
Preprocessing	O(1)	$O(n^2 \cdot c)$	$O(m \cdot R^2 \cdot (c \cdot m + n^2))$
Execution	$O(rac{(m+n-1)!}{(m-1)!}\cdot (n+c))$	$O(\sqrt{rac{n!\cdot n^m}{k}}\cdot (n\cdot log_2(n)+c))$	O(1)
Space	O(n+m+c)	$O((n+m) \cdot log_2(n))$	$O(m \cdot R^2 \cdot (c \cdot m + n^2))$
Code	O(1)	$O(n^2 \cdot c)$	$O(m \cdot R^2 \cdot (c \cdot m + n^2))$

m: number of machines n: number of transactions c: number of conflicts R: max. runtime k: number of solutions

Number of Solutions

$$ $m = 2$, $ O = n \cdot 0\%$ $$ $m = 2$, $ O = n \cdot 20\%$
$ m = 4, O = n \cdot 20\% m = 4, O = n \cdot 40\%$

	m=2	m=4
N	8,589,934,592	2,199,023,255,552
k	48,384,000	559,872
k for $\leq 1.25 \cdot R_{opt}$	1,472,567,040	2,047,306,752

Summary & Conclusions

- Scheduling transactions as variant of jobshop problem with additionally considering blocking transactions
 - Hard combinatorial optimization problem ⇒ hardware acceleration
- Enumeration of all possible transaction schedules for finding an optimal one
 - Hardware acceleration via quantum annealing
 - Formulating transaction schedule problem as quadratic unconstrained binary optimization (QUBO) problem
 - Constant execution time in contrast to simulated annealing on classical computers
 - Preprocessing time increasing with larger problem sizes
 - **Grover**'s search: \approx quadratic speedup on Universal Quantum Computers
 - Estimation of number of solutions for a further speedup
 - Estimation of speedup for suboptimal solutions being a guaranteed factor away from optimal solution
 - Code Generator available at ☑ https://github.com/luposdate/OptimizingTransactionSchedulesWithSilg

[]/#