Implementation of an Iterative Linear Quadratic Regulator (iLQR)

Gabriel Desfrene Antoine Groudiev

January 14, 2025

Plan

Problem statement

The iLQR algorithm

Plan

Problem statement

The iLQR algorithm

General formulation

Dynamics function:

$$x_{t+1} = f(x_t, u_t)$$

Goal: minimize a quadratic cost function

Cost function:

$$J(u) = \sum_{t=0}^{T-1} \left(x_t^{\top} Q x_t + u_t^{\top} R u_t \right) + \frac{1}{2} (x_T - x^*)^{\top} Q_f(x_T - x^*)$$

Q: state cost matrix

 Q_f : final state cost matrix

R: control cost matrix

Example: Simple Pendulum

State: $x = \begin{bmatrix} \theta & \dot{\theta} \end{bmatrix}$

Control: u, torque applied to the pendulum

Dynamics: physical laws (simulator)

Target: $x = \begin{bmatrix} 0 & 0 \end{bmatrix}$

Cost function:

$$J(u) = \frac{1}{2} \left(\theta_f^2 + \dot{\theta}_f^2 \right) + \frac{1}{2} \int_0^T r u^2(t) dt$$

corresponding to $Q_f = I_2$, $Q = 0_2$, $R = rI_1$

Example: Cartpole

State: $x = \begin{bmatrix} y & \theta & \dot{y} & \dot{\theta} \end{bmatrix}$

Control: u, force applied to the cart

Dynamics: physical laws (simulator)

Target: $x = [0 \ 0 \ 0 \ 0]$

Cost function:

$$J(u) = \frac{1}{2} \left(\theta_f^2 + \dot{\theta}_f^2 + y_f^2 + \dot{y}_f^2 \right) + \frac{1}{2} \int_0^T r u^2(t) dt$$

corresponding to $Q_f = I_4$, $Q = 0_4$, $R = rI_1$

Plan

Problem statement

The iLQR algorithm