

# **PowerFactory 2021**

**Technical Reference SEL 321** 

#### Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88

info@digsilent.de

Please visit our homepage at: https://www.digsilent.de

# Copyright © 2021 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

November 15, 2019 PowerFactory 2021 Revision 924

# **Contents**

| 1 | Mod  | del information                   | 1  |
|---|------|-----------------------------------|----|
| 2 | Gen  | neral description                 | 1  |
| 3 | Sup  | pported features                  | 2  |
|   | 3.1  | Measurement and acquisition       | 2  |
|   |      | 3.1.1 Available Units             | 2  |
|   |      | 3.1.2 Functionality               | 2  |
|   |      | 3.1.3 Data input                  | 2  |
|   | 3.2  | Main Relay protective elements    | 3  |
|   |      | 3.2.1 Available Units             | 3  |
|   |      | 3.2.2 Functionality               | 3  |
|   |      | 3.2.3 Data input                  | 5  |
|   | 3.3  | Out of Step subrelay              | 11 |
|   |      | 3.3.1 Available Units             | 11 |
|   |      | 3.3.2 Functionality               | 11 |
|   |      | 3.3.3 Data input                  | 11 |
|   | 3.4  | Output logic                      | 13 |
|   |      | 3.4.1 Available Units and Signals | 13 |
|   |      | 3.4.2 Functionality               | 13 |
|   |      | 3.4.3 Data input                  | 13 |
| 4 | Feat | tures not supported               | 14 |
|   | 4.1  | Main Relay                        | 14 |
|   | 4.2  | Out of Step Subrelay              | 14 |
| 5 | Refe | erences                           | 15 |

### 1 Model information

Manufacturer SEL

Model 321

**Variants** The SEL 321 PowerFactory relay models can be used to simulate the different firmware versions of the SEL 321 protective relays. The reference firmware version used to implement the model is SEL 321-5-R854 990415 and SEL 321-5-R454 990415. However please consider that the model has been implemented with a reduced set of the features available in the relays.

# 2 General description

The SEL 321 relay protects, controls, and monitors EHV, HV, and subtransmission lines. The relay contains all protective elements and control logic to protect any overhead transmission line.

The SEL 321 PowerFactory relay models consist of a main model and a subrelay hosting the out of step logic.

The following model versions are available:

- SEL 321-1A
- SEL 321-5A

The relay models have been implemented trying to simulate the most commonly used protective functions.

The relay models contain the measurement and acquisition units, the polarizing elements, the directional element for the distance elements, the mho and the polygonal distance elements, a set of timers, the overcurrent elements, the undervoltage and overvoltage elements, the output logic.

The model implementation has been based on the information available in the relay manual [1] [2].

# 3.1 Measurement and acquisition

The voltage and the current are measured by one three phase current transformer ("Ct" block) and one three phase voltage transformer ("Vt" block).

Three measurement units ("M-I/U", "M-lab/Ibc/Ica" and "Meas RMS seq" block) are fed by this CT and this VT.

#### 3.1.1 Available Units

- One three phase current transformers measuring the phase current ("Ct" block).
- One three phase voltage transformer measuring the phase voltages("Vt" block).
- One three phase measurement element calculating both the current and voltage values ("M-I/U" block).
- One three phase measurement element calculating the phase to phase currents ("M-lab/lbc/lca" block).
- One three phase measurement element calculating the current and the voltage sequence vectors ("Meas RMS seq" block).

### 3.1.2 Functionality

The input current and voltage values are sampled at 20 samples/cycle. The values are processed by a DFT filter, operating over a cycle, which then calculates the voltage and current values used by the protective elements.

The "M-lab/lbc/lca" block calculates the phase-phase current values used by the phase-phase loop distance elements.

#### 3.1.3 Data input

The nominal current and the nominal voltage values MUST be entered in all the measurement blocks.

#### 3.2 Main Relay protective elements

The overcurrent starting elements, polarizing elements, the directional element, the load encroachment element, the polygonal and the mho distance elements are working together to simulate the SEL 321 distance functionalities. The ancillary overcurrent elements and the voltage protective elements are also modeled.

#### 3.2.1 Available Units

- Four phase starting elements ("50PP1", "50PP2", "50PP3" and "50PP4" block).
- Four ground starting elements ("50G1/50L1", "50G2/50L2", "50G3/50L3" and "50G4/50L4" block)
- Two polarizing elements ("Polarizing" and "Polarizing 2-3-4" block).
- One load encroachment element ("Load Encroachment" block).
- One directional element ("Sel Dir" block).
- Four mho distance elements for the phase loops ("Z1P", "Z2P", "Z3P" and "Z4P" block).
- Three timers associated to the phase mho elements ("Z2PD", "Z3PD" and "Z4PD" block).
- Four mho distance elements for the ground loops ("Z1MG", "Z2MG", "Z3MG" and "Z4MG" block).
- Four polygonal distance elements for the ground loops ("Ph-Q1", "Ph-Q2", "Ph-Q3" and "Ph-Q4" block).
- Three timers associated to the ground polygonal and mho elements ("Z2GD", "Z3GD" and "Z4GD" block).
- One inverse time directional phase overcurrent element ("51P" block).
- One inverse time directional ground overcurrent element ("51N" block).
- Four definite time directional ground overcurrent element ("50/67N1", "50/67N2", "50/67N3" and "50/67N4" block).
- One inverse time directional negative sequence overcurrent element ("51Q" block).
- Four definite time directional negative sequence overcurrent element ("50/67Q1", "50/67Q2", "50/67Q3" and "50/67Q4" block).
- One definite time phase-phase overvoltage element ("59L" block).
- One definite time positive sequence overvoltage element ("59B" block).
- One definite time phase-phase undervoltage element ("27L" block).
- One definite time residual overvoltage element ("59N" block).

#### 3.2.2 Functionality

**Overcurrent starting elements** Separated set of overcurrent starting elements are available for the phase-phase and for the phase-ground loops. An overcurrent starting element is available for each distance zone. The phase-ground loop starting elements have both a ground and a phase current threshold.

Directional elements The directional element simulate in detail the SEL 321 negative sequence direction detection logic. The direction of the four distance elements and of the overcurrent elements must be set in the directional element dialog. For each inverse time overcurrent element the full set of available direction logics is present:

#### 51P

- M2P (direction controlled by the Zone 2 phase distance element)
- N

#### 51N

- 32QF
- 32QR
- Z2G (direction controlled by the Zone 2 ground distance elements)
- N

#### 51Q

- 32QF
- 32QR
- M2P (direction controlled by the Zone 2 phase distance element)
- Z2G (direction controlled by the Zone 2 ground distance elements)
- N

The "Loss of potential" logic is also supported.

Polarizing element The polarizing elements are calculating the operating current and voltage and the polarizing voltage vectors used by the polygonal and the mho elements. Separated elements are available for the 1st zone ("Polarizing" block) and for the other zones ("Polarizing" 2-3-4" block).

Mho elements Separated sets of mho elements are monitoring the phase-ground and the phase-phase loops. The starting of the mho elements is controlled by the overcurrent starting elements. The phase mho elements can be blocked by the load encroachment element when the system impedance is in the load encroachment zone.

Polygonal elements A set of polygonal elements can be sued to monitor the phase-ground loops. The starting of the ground polygonal elements is controlled by the overcurrent starting elements.

Load encroachment element The model load encroachment element simulate exactly the shape of the relay feature. When a load encroachment condition is detected it blocks the phase mho elements.

**Timers** The timers are connected to the mho and to the polygonal output signals. Separated timers are available for the phase and the ground loops. The ground mho and the ground polygonal elements share the same timers.

Overcurrent The inverse time elements ("51P", "51N" and "51Q" block) are supporting the following inverse time trip characteristics:

- C1 IEC Class A (Standard Inverse)
- C2 IEC Class B (Very Inverse)
- C3 IEC Class C (Extremely Inverse)
- C4 IEC Long Time Inverse
- U1 U.S. Moderately Inverse
- U2 U.S. Inverse
- U3 U.S. Very Inverse
- U4 U.S. Extremly Inverse

The inverse time element trip characteristic equations comply with the IEC and ANSI standard equations.

#### 3.2.3 Data input

The relationships between the relay settings and the model parameters can be found in the following tables (the relay model parameter names are listed between brackets):

#### Starting elements :

| Address | Relay Setting | Model block | Model setting      | Note |
|---------|---------------|-------------|--------------------|------|
|         | 50PP1         | 50PP1       | Current I>> (Ip2)  |      |
|         | 50PP2         | 50PP2       | Current I>> (Ip2)  |      |
|         | 50PP3         | 50PP3       | Current I>> (Ip2)  |      |
|         | 50PP4         | 50PP4       | Current I>> (Ip2)  |      |
|         | 50L1          | 50G1/50L1   | Current I>> (Ip2)  |      |
|         | 50L2          | 50G2/50L2   | Current I>> (Ip2)  |      |
|         | 50L3          | 50G3/50L3   | Current I>> (Ip2)  |      |
|         | 50L4          | 50G4/50L4   | Current I>> (Ip2)  |      |
|         | 50G1          | 50G1/50L1   | Current, 3*I0 (Ie) |      |
|         | 50G2          | 50G2/50L2   | Current, 3*I0 (Ie) |      |
|         | 50G3          | 50G3/50L3   | Current, 3*I0 (Ie) |      |
|         | 50G4          | 50G4/50L4   | Current, 3*I0 (Ie) |      |

#### Polarizing element :

| Address | Relay Setting | Model block | Model setting | Note |
|---------|---------------|-------------|---------------|------|
|         | k01M          | Polarizing  | k0 (k0)       |      |
|         | k01A          | Polarizing  | Angle (phik0) |      |

| Address | Relay Setting | Model block      | Model setting | Note |
|---------|---------------|------------------|---------------|------|
|         | k0M           | Polarizing 2-3-4 | k0 (k0)       |      |
|         | k0A           | Polarizing 2-3-4 | Angle (phik0) |      |

# Mho impedance elements :

| Address | Relay Setting                        | Model block | Model setting            | Note |
|---------|--------------------------------------|-------------|--------------------------|------|
|         | PMHOZ                                | Z1P         | Out of Service (outserv) |      |
|         |                                      | Z2P         | Out of Service (outserv) |      |
|         |                                      | Z3P         | Out of Service (outserv) |      |
|         |                                      | Z4P         | Out of Service (outserv) |      |
|         | Z1P                                  | Z1P         | Replica Impedance (Zm)   |      |
|         | Z2P                                  | Z2P         | Replica Impedance (Zm)   |      |
|         | Z3P                                  | Z3P         | Replica Impedance (Zm)   |      |
|         | Z4P                                  | Z4P         | Replica Impedance (Zm)   |      |
|         | GMHOZ                                | Z1MG        | Out of Service (outserv) |      |
|         |                                      | Z2MG        | Out of Service (outserv) |      |
|         |                                      | Z3MG        | Out of Service (outserv) |      |
|         |                                      | Z4MG        | Out of Service (outserv) |      |
|         | Z1MG                                 | Z1MG        | Replica Impedance (Zm)   |      |
|         | Z2MG                                 | Z2MG        | Replica Impedance (Zm)   |      |
|         | Z3MG                                 | Z3MG        | Replica Impedance (Zm)   |      |
|         | Z4MG                                 | Z4MG        | Replica Impedance (Zm)   |      |
|         | Positive-Seq.Line<br>Impedance Angle | Z1P         | Relay angle (phi)        |      |
|         |                                      | Z2P         | Relay angle (phi)        |      |
|         |                                      | Z3P         | Relay angle (phi)        |      |
|         |                                      | Z4P         | Relay angle (phi)        |      |
|         | Zero-Seq.Line<br>Impedance Angle     | Z1MG        | Relay angle (phi)        |      |
|         |                                      | Z2MG        | Relay angle (phi)        |      |
|         |                                      | Z3MG        | Relay angle (phi)        |      |
|         |                                      | Z4MG        | Relay angle (phi)        |      |

# Polygonal impedance elements :

| Address | Relay Setting                    | Model block | Model setting            | Note |
|---------|----------------------------------|-------------|--------------------------|------|
|         | QUADZ                            | Ph-Q1       | Out of Service (outserv) |      |
|         |                                  | Ph-Q2       | Out of Service (outserv) |      |
|         |                                  | Ph-Q3       | Out of Service (outserv) |      |
|         |                                  | Ph-Q4       | Out of Service (outserv) |      |
|         | XG1                              | Ph-Q1       | +X Reach (Xmax)          |      |
|         | XG2                              | Ph-Q2       | +X Reach (Xmax)          |      |
|         | XG3                              | Ph-Q3       | +X Reach (Xmax)          |      |
|         | XG4                              | Ph-Q4       | +X Reach (Xmax)          |      |
|         | RG1                              | Ph-Q1       | +R Resistance (Rmax)     |      |
|         | RG2                              | Ph-Q2       | +R Resistance (Rmax)     |      |
|         | RG3                              | Ph-Q3       | +R Resistance (Rmax)     |      |
|         | RG4                              | Ph-Q4       | +R Resistance (Rmax)     |      |
|         | Zero-Seq.Line<br>Impedance Angle | Ph-Q1       | Relay angle (phi)        |      |
|         |                                  | Ph-Q2       | Relay angle (phi)        |      |
|         |                                  | Ph-Q3       | Relay angle (phi)        |      |
|         |                                  | Ph-Q4       | Relay angle (phi)        |      |

### Timers :

| Address | Relay Setting | Model block | Model setting          | Note |
|---------|---------------|-------------|------------------------|------|
|         | Z2PD          | Z2PD        | Time Setting (Tcdelay) |      |
|         | Z3PD          | Z3PD        | Time Setting (Tcdelay) |      |
|         | Z4PD          | Z4PD        | Time Setting (Tcdelay) |      |
|         | Z2GD          | Z2GD        | Time Setting (Tcdelay) |      |
|         | Z3GD          | Z3GD        | Time Setting (Tcdelay) |      |
|         | Z4GD          | Z4GD        | Time Setting (Tcdelay) |      |

Load Encroachment :

| Address | Relay Setting | Model block       | Model setting            | Note |
|---------|---------------|-------------------|--------------------------|------|
|         | ELE           | Load Encroachment | Out of Service (outserv) |      |
|         | ZLF           | Load Encroachment | ZLF                      |      |
|         | ZLR           | Load Encroachment | ZLR                      |      |
|         | PLAF          | Load Encroachment | PLAF                     |      |
|         | NLAF          | Load Encroachment | NLAF                     |      |
|         | PLAR          | Load Encroachment | PLAR                     |      |
|         | NLAR          | Load Encroachment | NLAR                     |      |

# Directional element ("Sel Dir") :

| Address | Relay Setting | Model block | Model setting                                         | Note                                |
|---------|---------------|-------------|-------------------------------------------------------|-------------------------------------|
|         | DIR1          | Sel Dir     | Level 1 direction (DIR1)                              | In the "Basic settings" tab page    |
|         | DIR2          | Sel Dir     | Level 2 direction (DIR1)                              | In the "Basic settings" tab page    |
|         | DIR3          | Sel Dir     | Level 3 direction (DIR1)                              | In the "Basic settings" tab page    |
|         | DIR4          | Sel Dir     | Level 4 direction (DIR1)                              | In the "Basic settings" tab page    |
|         | Z2F           | Sel Dir     | Forward directional Z2 threshold Z2F                  | In the "Negative sequence" tab page |
|         | 50QF          | Sel Dir     | Forward directional current threshold (s50QF)         | In the "Negative sequence" tab page |
|         | Z2R           | Sel Dir     | Reverse directional Z2 threshold Z2R                  | In the "Negative sequence" tab page |
|         | 50QR          | Sel Dir     | Reverse directional current threshold (s50QR)         | In the "Negative sequence" tab page |
|         | a2            | Sel Dir     | Positive sequence current restraint factor a2=I2/I1   | In the "Negative sequence" tab page |
|         | ELOP          | Sel Dir     | Loss Of Potential enable setting (ELOP)               | In the "Basic settings" tab page    |
|         | Z1MAG         | Sel Dir     | Positive sequence line impedance magnitude Z1MAG (Zm) | In the "Negative sequence" tab page |
|         | Z1ANG         | Sel Dir     | Positive sequence line impedance angle Z1ANG (phi)    | In the "Negative sequence" tab page |

### Overcurrent :

| Address | Relay Setting | Model block | Model setting                         | Note |
|---------|---------------|-------------|---------------------------------------|------|
|         | E51P          | 51P         | Out of Service (outserv)              |      |
|         | 51PP          | 51P         | Current Setting (Ipsetr)              |      |
|         | 51PC          | 51P         | Characteristic(pcharac)               |      |
|         | 51PTD         | 51P         | Time Dial (Tpset)                     |      |
|         | 51PTC         | Sel Dir     | Phase(51P) Torque Control (s51PTC)    |      |
|         | E51N          | 51N         | Out of Service (outserv)              |      |
|         | 51NP          | 51N         | Current Setting (Ipsetr)              |      |
|         | 51NC          | 51N         | Characteristic(pcharac)               |      |
|         | 51NTD         | 51N         | Time Dial (Tpset)                     |      |
|         | 51NTC         | Sel Dir     | Residual(51N) Torque Control (s51PTC) |      |
|         | E51Q          | 51Q         | Out of Service (outserv)              |      |
|         | 51QP          | 51Q         | Current Setting (Ipsetr)              |      |

#### Voltage :

| Address | Relay Setting | Model block | Model setting            | Note |
|---------|---------------|-------------|--------------------------|------|
|         | EVOLT         | 59L         | Out of Service (outserv) |      |
|         |               | 59B         | Out of Service (outserv) |      |
|         |               | 27L         | Out of Service (outserv) |      |
|         |               | 59N         | Out of Service (outserv) |      |
|         | 59N           | 59N         | Pickup Voltage (Usetr)   |      |
|         | 27L           | 27L         | Pickup Voltage (Usetr)   |      |
|         | 59L           | 59L         | Pickup Voltage (Usetr)   |      |
|         | 59PB          | 59PB        | Pickup Voltage (Usetr)   |      |
|         | 59PBD         | 59PBD       | Time Delay (cTdel)       |      |

#### 3.3 Out of Step subrelay

The Out of Step subrelay implements the out of step and the power swing detection logic.

#### 3.3.1 Available Units

- Two polygonal zones defining the power swing detection area ("Zone 5" and "Zone 6" block).
- One minimum current activation threshold ("I supervision" block).
- One power swing and out of step detection element ("Out Of Step" block).
- One timer associated to the out of step trip signal ("OS Time Delay" block).

#### 3.3.2 Functionality

The power swing detection area is defined by two polygonal zones: please notice that one zone ("Zone 6") contains the second one ("Zone 5") and no intersection is present between the zones. The power swing condition is declared when the system impedance point is in the area defined between the two polygonal zones for a time greater than an user definable setting ("tP1" in the "Timers" tab of the "OS Time Delay" element dialog). The power swing block is disabled after 2 seconds. The number of the distance zones blocked by the power swing detector can be configured by the user. The out of step condition is declared when the system impedance point intersects in sequence both the internal and the external polygonal zone. The out of step trip signal can be delayed by an additional timer ("OS Time Delay").

#### 3.3.3 Data input

The relationships between the relay settings and the model parameters can be found in the following table:

| Address | Relay Setting | Model block   | Model setting                       | Note                                                                                                           |
|---------|---------------|---------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|
|         | EOOS          | Out Of Step   | Out of Step (ioos)                  |                                                                                                                |
|         | OOSB1         | Out Of Step   | Blocking Configuration (iblockconf) | Select "All zones Blocking Configuration" or "Z1 Blocking Configuration" or "Z1 & Z2 Blocking Configuration"   |
|         | OOSB2         | Out Of Step   | Blocking Configuration (iblockconf) | Select "All zones Blocking Configuration" or "Z1 & Z2 Blocking Configuration" or "Z2=> Blocking Configuration" |
|         | OOSB3         | Out Of Step   | Blocking Configuration (iblockconf) | Select "All zones Blocking Configuration" or "Z2=> Blocking Configuration"                                     |
|         | OOSB4         | Out Of Step   | Blocking Configuration (iblockconf) | Select "All zones Blocking Configuration" or "Z2=> Blocking Configuration"                                     |
|         | OSBD          | Out Of Step   | tP1 (TtP1)                          | In the "Timer" tab page                                                                                        |
|         | OSTD          | OS Time Delay | Time Setting (Tcdelay)              |                                                                                                                |
|         | X1T5          | Zone 5        | +X Reach (Xmax)                     |                                                                                                                |
|         | X1B5          | Zone 5        | -X Reach (Xmin)                     |                                                                                                                |
|         | R1R5          | Zone 5        | +R Resistance (Rmax)                |                                                                                                                |
|         | R1L5          | Zone 5        | -R Resistance (Rmin)                |                                                                                                                |
|         | X1T6          | Zone 6        | +X Reach (Xmax)                     |                                                                                                                |
|         | X1B6          | Zone 6        | -X Reach (Xmin)                     |                                                                                                                |
|         | R1R6          | Zone 6        | +R Resistance (Rmax)                |                                                                                                                |

| Address | Relay Setting | Model block   | Model setting           | Note |
|---------|---------------|---------------|-------------------------|------|
|         | R1L6          | Zone 6        | -R Resistance (Rmin)    |      |
|         | 50ABC         | I supervision | Pickup Current (Ipsetr) |      |

#### 3.4 Output logic

The output logic is the interface between the relay and the power system. A set of relay output signals is available and can be configured by the user to implement any control logic.

#### 3.4.1 Available Units and Signals

The trip logic is implemented by the "Logic" block. Twenty two relay output signals are available ("OUT1", "OUT2", "OUT3" . . . "OUT22")

By default the unique active relay output signal is "OUT1".

#### 3.4.2 Functionality

The "Logic" block operates the power breaker when a trip command has been issued by any protective element. The block output signal used to operate the breaker is "OUT1". The "Logic" block gets from the definite time overcurrent elements both the trip signals and the starting signals. The trip logic provided with the default model considers also the status of the starting signals. The behavior of the other output signals and the trip logic can be configured in the "Logic" tab page of the "Logic" block dialog.

#### 3.4.3 Data input

Please disable the "Logic" block to disable the relay model ability to open the power circuit.

# 4 Features not supported

# 4.1 Main Relay

The following features are not supported:

- · Permissive Overreaching scheme.
- Directional Comparison Unblocking scheme.
- Directional Comparison Blocking scheme.
- Zone 1 extension.
- Remote End Just Opened.
- · Switch Onto Fault.
- Positive Sequence Remote Bus Overvoltage element ("59PR" element).
- · Polarization "Non-Homogeneous Correction Angle".
- · Single Pole trip.
- · Stub Protection.
- · Pole Discordance.

# 4.2 Out of Step Subrelay

Negative sequence current unblock.

# 5 References

- [1] SCHWEITZER ENGINEERING LABORATORIES, 2350 NE HOPKINS COURT PULLMAN, WA USA 99163-5603. SEL-321-5 PHASE AND GROUND DISTANCE RELAY DIRECTIONAL OVERCURRENT RELAY FAULT LOCATOR INSTRUCTION MANUAL, February 2001.
- [2] SCHWEITZER ENGINEERING LABORATORIES, 2350 NE HOPKINS COURT PULLMAN, WA USA 99163-5603. *SEL-321 Data Sheet*, February 2001.