The University of Newcastle School of Electrical Engineering and Computer Science

COMP3260/COMP6360 Data Security Week 5 Workshop – 22nd and 24th March 2021

Solutions

1. For polyalphabetic substitution cipher with period d estimate the unicity distance, assuming that all keys are equally likely

Solution:

The unicity distance is defined as U = H(k)/D, where H(k) is the entropy of the key k, and D is the redundancy of the language. For English, we estimate D=3.2

There are
$$(26!)^d$$
 possible keys so U = $\lg (26!)^d / 3.2 = d \times \lg 26! / 3.2 \approx 27.62d$

2. Decipher the following ciphertext, which was enciphered using a Vigenere cipher with key ART: YFN GFM IKK IXA T.

Solution:

With a Vigenere cipher the key K is a sequence of letters $K = k_1 k_2 ... k_d$ where k_i gives the amount of shift in the i^{th} alphabet. That is:

$$f_i(X) = (x + k_i) \text{ mod } n$$
, that is

$$c = (m + k) \mod 26$$
, so $m = (c - k) \mod 26$

YFN	GFM	IKK	IXA	T	Cipher
ART	ART	ART	ART	A	Key
YOU	GOT	ITR	IGH	T	Plaintext

As numbers for first three characters.

Alternatively, you can use the lookup table in the textbook. For plaintext letter m and key letter k, the ciphertext c is the letter in column m of row k. For ciphertext c, the plaintext m is the column containing c in row k.

Plaintext is YOU GOT IT RIGHT.

3. Decipher the following ciphertext, which was enciphered using a Beaufort cipher with key ART: CDZ ORQ WRH SZA AHP

Solution:

Beaufort cipher:

$$f_i(x) = (k_i - x) \text{ mod } n$$
, that is

$$c = (k - m) \mod 26$$
, so $m = (k - c) \mod 26$

CDZ ORQ WRH SZA AHP Ciphertext

ART ART ART ART Key

YOU MAD EAM IST AKE Plaintext

As number for the first three characters:

02 03 25 ciphertext c

00 17 19 key k

24 14 20 plaintext m

Alternatively use Vigenere Tableau. As m + c = k, for plaintext letter m, the ciphertext letter c is the row containing the key k in column m. For ciphertext c, the plaintext m is the column containing k in row c.

Plaintext is YOU MADE A MISTAKE.

4. Consider a linear substitution cipher that uses the transformation $f(a) = ak \mod 26$. Suppose you know with certainty that the plaintext letter J(9) corresponds to the ciphertext letter P(15), that is, $9k \mod 26 = 15$. Break the cipher by solving for k.

Solution:

We have an equation of the form ax mod n = b: there are three cases

- When gcd(a,n) = 1: find solution x_0 to $ax \mod n = 1$; then $x = bx_0 \mod n$.
- When gcd(a,n) = g:
 - O If g divides b, that is, b mod g = 0, then $ax \mod n = b$ has g solutions of the form: $x = ((b/g)x_0 + t(n/g)) \mod n$, for t=0,1,...,g-1, where x_0 is the solution to $(a/g)x \mod (n/g) = 1$.
 - o If g does not divide b then there are no solutions.

To solve $9k \mod 26 = 15$ we need to calculate gcd(9,26). Applying Euclid's algorithm (or simply by inspection, as the values are very small) we show that gcd(9,26)=1, and therefore $k=15k_0 \mod 26$, where k_0 is a solution of $9k_0 \mod 26 = 1$, that is, k is a multiplicative inverse of $9 \mod 26$. Since 26=2x13, we can use CRT and we get $9k \mod 2 = 1$, that is, $k_1 \mod 2 = 1$, and

 $9k \mod 13 = 1$, thus $k_2 \mod 13 = 3$

Solving these two equations gives us

 $k \mod 2 = 1, k_1=1$

 $k \mod 13 = 3, k_2=3$

We are now using CRT to find a common solution in the range [0,25]:

$$13y_1 \mod 2 = 1, y_2 = 1$$

 $2y_1 \mod 13 = 1, y_1 = 7$

Thus
$$k_0 = (1x1x13 + 3x7x2) \mod 26 = (13+42) \mod 26 = (13+16) \mod 26 = 3$$

Therefore $k=15k_0 \mod 26 = 45 \mod 26 = 19$

5. Consider again a linear substitution cipher that uses the transformation $f(a) = ak \mod 26$. Suppose you know with certainty that the plaintext letter N(13) corresponds to the ciphertext letter N(13), that is, $13k \mod 26 = 13$. Can you break the cipher by solving for k? What about if you also know that the plaintext letter C(2) corresponds to the ciphertext C(6)?

Solution:

We have $13k \mod 26 = 13$ so we again have an equation of the form ax mod n = b, but unlike in the previous question we have $\gcd(13,26) = 13$. Since $13 \mod 13 = 0$, the equation has 13 solutions of the form $k = (k_0 + 2t) \mod 26$, where $t = 0,1,\ldots,12$, and k_0 is the solution of equation $k_0 \mod 2 = 1$, this $k_0 = 1$. Therefore, we have $k = 1,3,5,\ldots,25$ and we cannot break the cipher as we cannot uniquely determine k. However, if we also know that $2k \mod 26 = 6$, it follows that k also has to satisfy k = 3 + 13t, t = 0,1 so k = 3 or 16. Thus the common solution is 3. Also note that 16 cannot be chosen for k in any case, as $\gcd(16,26) = 2$ and we would not have a one-to-one function, so we could not decrypt messages.

6. Consider again a linear substitution cipher that uses the transformation $f(a) = ak \mod 26$. Suppose that you suspect that the plaintext letter N(13) corresponds to the ciphertext letter P(15), that is, $13k \mod 26 = 15$. Can you break the cipher by solving for k?

Solution:

No, you can't break the cipher but you can tell that your guess is wrong, as the equation $13k \mod 26 = 15$ has no solutions.

7. Consider the Measure of Roughness $M = \sum_{i=0}^{n-1} (p_i - \frac{1}{n})^2$ and consider the alternative versions $M_1 = \sum_{i=0}^{n-1} (p_i - \frac{1}{n})$ and $M_2 = \sum_{i=0}^{n-1} |p_i - \frac{1}{n}|$. Could each of M_1 and M_2 be used in place of M_1 ? If yes, which is a better measure and why?

Solution:

 M_1 cannot be used, as $M_1 = \Sigma p_i$ - $\Sigma 1/n = 1$ -1 = 0 and therefore M_1 does not depend on the frequency distribution of letters. M_2 can be used, but it takes all the probability deviations from 1/n equally into account, while M emphasizes larger deviations (which translate into greater 'roughness'). For example, if we have

a)
$$p_1=p_2=1/52$$
, $p_3=p_4=3/52$, and $p_5=...=p_{26}=2/52$, and

b)
$$p_1=0$$
, $p_2=4/52$, and $p_3=...=p_{26}=2/52$

(note that $\Sigma p_i = 1$ in both cases as it should be), we have M $_1$ =0.076923 in both cases, while M=0.001479 in a) and M=0.002959 in b). Therefore, M appears to capture the notion of 'roughness' better than M $_1$.