Tutorial-2

1. Let Q(x) be the statement "x + 1 > 2x." If the domain consists of all integers, what are these truth values?

a)
$$Q(0)$$
 b) $Q(-1)$ **c)** $Q(1)$ **d)** $\exists x \ Q(x)$ **e)** $\forall x \ Q(x)$ **f**) $\exists x \ \neg Q(x)$ **g)** $\forall x \ \neg Q(x)$

2. Determine the truth value of each of these statements if the domain consists of all real numbers.

a)
$$\exists x \ (x^3 = -1)$$
 b) $\exists x \ (x^4 < x^2)$ **c)** $\forall x \ ((-x)^2 = x^2)$ **d)** $\forall x (2x > x)$

- 3. Let P(x) be the statement "x spends more than five hours every weekday in class," where the domain for x consists of all students. Express each of these quantifications in English.
- **a)** $\exists x P(x)$ **b)** $\forall x P(x)$ **c)** $\exists x \neg P(x)$ **d)** $\forall x \neg P(x)$
- 4. Express the statements "Some student in this class has visited Mexico" and "Every student in this class has visited either Canada or Mexico" using predicates and quantifiers.
- 5. Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all real numbers.

a)
$$\forall x(x^2 = x)$$
 b) $\forall x(x^2 = 2)$ **c)** $\forall x(|x| > 0)$