Standard Reduction Potentials at 25 °C

Half-reaction			E°(volts)
F ₂ (g) + 2 e ⁻ =	<u> </u>	2 F-(aq)	+ 2.89
$H_2O_2(aq) + 2 H^+(aq) + 2 e^{-\frac{1}{2}}$	=	2 H ₂ O(ℓ)	+ 1.76
$PbO_2(s) + SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^{-\frac{1}{2}}$	<u></u>	$PbSO_4(s) + 2 H_2O(\ell)$	+ 1.69
2 HCℓO(aq) + 2 H⁺(aq) + 2 e⁻ =	<u> </u>	$C\ell_2(g) + 2 H_2O(\ell)$	+ 1.63
MnO ₄ -(aq) + 8 H+(aq) + 5 e- =	=	$Mn^{2+}(aq) + 4 H_2O(\ell)$	+ 1.51
Au³+(aq) + 3 e⁻ ₹	=	Au(s)	+ 1.50
HCℓO(aq) + H⁺(aq) + 2 e⁻ =	=	$C\ell^-(aq) + H_2O(\ell)$	+ 1.49
PbO ₂ (s) + 4 H ⁺ (aq) + 2 e ⁻ =	=	$Pb^{2+}(aq) + 2 H_2O(\ell)$	+ 1.46
$Cl_2(g) + 2 e^{-\frac{1}{2}}$	—	2 Cl-(aq)	+ 1.36
Cr ₂ O ₇ ²⁻ (aq) + 14 H ⁺ (aq) + 6 e ⁻ =	=	$2 \text{ Cr}^{3+}(aq) + 7 \text{ H}_2O(\ell)$	+ 1.36
O ₂ (g) + 4 H ⁺ (aq) + 4 e ⁻ =	=	2 H ₂ O(ℓ)	+ 1.23
$Br_2(\ell) + 2 e^{-\xi}$	=	2 Br ⁻ (aq)	+ 1.08
Ag⁺(aq) + e⁻ =	=	Ag(s)	+ 0.80
Fe ³⁺ (aq) + e ⁻ =	=	Fe ²⁺ (aq)	+ 0.77
O ₂ (g) + 2 H ⁺ (aq) + 2 e ⁻ =	=	$H_2O_2(aq)$	+ 0.70
$I_2(s) + 2 e^{-s}$	—	2 I ⁻ (aq)	+ 0.54
$O_2(g) + 2 H_2O(\ell) + 4 e^{-\xi}$	—	4 OH-(aq)	+ 0.40
Cu ²⁺ (aq) + 2 e ⁻ =	=	Cu(s)	+ 0.34
S(s)+ 2 H⁺(aq) + 2 e⁻ =	—	H ₂ S(aq)	+ 0.17
2 H⁺(aq) + 2 e⁻ ₹	=	$H_2(g)$	0 exactly
Pb ²⁺ (aq) + 2 e ⁻ =	=	Pb(s)	- 0.13
Sn²⁺(aq) + 2 e⁻ ₹	=	Sn(s)	- 0.14
Ni ²⁺ (aq) + 2 e ⁻ ₹	=	Ni(s)	-0.24
Co ²⁺ (aq) + 2 e ⁻ =	=	Co(s)	- 0.28
PbSO ₄ (s) + 2 e ⁻ =	—	$Pb(s) + SO_4^{2-}(aq)$	-0.36
Cd ²⁺ (aq) + 2 e ⁻ =	=	Cd(s)	-0.40
2 CO ₂ (g) + 2 H ⁺ (aq) + 2 e ⁻ =	<u></u>	$H_2C_2O_4(aq)$	-0.43
Fe ²⁺ (aq) + 2 e ⁻ =	-	Fe(s)	-0.44
Cr³+(aq) + 3 e⁻ ₹	=	Cr(s)	-0.74
Zn²+(aq) + 2 e- =	=	Zn(s)	-0.76
2 H ₂ O(ℓ) + 2 e ⁻ ₹	=	H ₂ (g) + 2 OH ⁻ (aq)	-0.83
Mn²+(aq) + 2 e⁻ ₹	=	Mn(s)	– 1.18
$A\ell^{3+}(aq) + 3 e^{-} =$	=	Al(s)	– 1.68
Mg²+(aq) + 2 e⁻ ₹	=	Mg(s)	-2.36
Na⁺(aq) + e⁻ <i>₹</i>	_	Na(s)	- 2.71
Ca ²⁺ (aq) + 2 e ⁻ =	—	Ca(s)	− 2.87
Sr ²⁺ (aq) + 2 e ⁻ =	=	Sr(s)	- 2.90
Ba ²⁺ (aq) + 2 e ⁻ =	_	Ba(s)	- 2.91
K⁺(aq) + e⁻ ₹	=	K(s)	- 2.94

[Data source: Aylward, G.H., & Findlay, T. (2008). SI Chemical Data (6th ed.). Queensland: John Wiley & Sons Australia, Ltd.]

CHEMISTRY DATA SHEET 2012

Copyright

© Curriculum Council, 2010

This document—apart from any third party copyright material contained in it—may be freely copied, or communicated on an intranet, for non-commercial purposes by educational institutions, provided that it is not changed in any way and that the Curriculum Council is acknowledged as the copyright owner.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act or by permission of the Curriculum Council.

Copying or communication of any third party copyright material contained in this document can be done only within the terms of the Copyright Act or by permission of the copyright owners.

This document is valid for teaching and examining until 31 December 2012.

2011/38829(v2) Chemistry Data Sheet revised December 2011

Periodic table

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H hydrogen 1.008																	2 He helium 4.003
3	4											5	6	7	8	9	10
Li	Be beryllium											B	C	N nitrogen	O oxygen	fluorine	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											A£ aluminium	Si	Р	S	Ce	Ar
sodium 22.99	magnesium 24.31											26.98	28.09	phosphorus 30.97	32.06	chlorine 35.45	argon 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 39.10	calcium 40.08	scandium 44.96	titanium 47.88	vanadium 50.94	chromium 52.00	manganese 54.94	iron 55.85	cobalt 58.93	nickel 58.69	copper 63.55	zinc 65.38	gallium 69.72	germanium 72.59	arsenic 74.92	selenium 78.96	bromine 79.90	krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Te	I	Xe
rubidium 85.47	strontium 87.62	yttrium 88.91	zirconium 91.22	niobium 92.91	molybdenum	technetium	ruthenium	rhodium	palladium	Ag	cadmium	indium	tin	antimony	tellurium	iodine	xenon
55	56	57–71	72	73	95.94 74	75	101.1 76	102.9 77	106.4 78	107.9 79	112.4 80	114.8 81	118.7 82	121.8 83	127.6 84	126.9 85	131.3 86
Cs	Ba	* La	Hf	Ta	W	Re	Os	Ír	Pt	I _	Hg	Τ̈́ℓ	Pb	Bi	Po	Åt	Rn
caesium	barium	"La lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	Au	mercury	I € thallium	lead	bismuth	polonium	astatine	radon
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	•		
87	88	89–103	104	105	106	107	108	109	110	111	112						
Fr	Ra radium 226.0	**Ac	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	HS hassium	Mt meitnerium	Ds darmstadtium	Rg roentgenium	Cn						

Lanthanide

series

** Actinide

Solubility rules for ionic solids in water

Soluble in water

Atomic number

Symbol

Standard

atomic weight

Key:

Soluble	Exceptions				
	Insoluble	Slightly soluble			
Most chlorides	AgCl	PbCl ₂			
Most bromides	AgBr	PbBr ₂			
Most iodides	AgI, PbI ₂				
All nitrates	No exce	ntions			
All ethanoates	No exec				
Most sulfates	SrSO ₄ , BaSO ₄ , PbSO ₄	CaSO ₄ , Ag ₂ SO ₄			

Pr

140.9

Pa

Ce

cerium 140.1

Th

thorium 232.0

Nd

144.2

U

238.0

[Data source: The International Union of Pure and Applied Chemistry Periodic Table of the Elements (January 2011 version)]

Pm

Np

Sm

150.4

Pu

Eu

europium 152.0

95

Am

Gd

157.3

Cm

Insoluble in water

Insoluble	Exceptions				
	Soluble	Slightly soluble			
Most hydroxides	NaOH, KOH, Ba(OH) ₂ (note: NH ₄ OH and AgOH do not exist)	Ca(OH) ₂ , Sr(OH) ₂			
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃				
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄				
Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S				

Soluble = more than 0.1 mole dissolves per litre
Slightly soluble = between 0.01 and 0.1 mole dissolves per litre
Insoluble = less than 0.01 mole dissolves per litre

Colours of selected ionic substances

Ho

164.9

Es

Tb terbium 158.9

Bk

Dy

dysprosium 162.5

Cf

In general, ionic solids have the same colour as that of any coloured ion they contain. Two colourless ions in general produce a white solid.

Yb

173.0

No

Lu

175.0

103

Lr

Tm

168.9

Md

Selected exceptions to these two basic rules are noted below.

Er erbium

167.3

Fm

Ionic Solid	Colour
copper(II) carbonate	green
copper(II) chloride	green
copper(II) oxide	black
copper(II) sulfide	black
lead(II) iodide	yellow
lead(II) sulfide	grey
manganese(IV) oxide	black
silver carbonate	yellow
silver iodide	pale yellow
silver oxide	brown
silver sulfide	black

Other coloured substances

Most gases and liquids are colourless, and most metals are silvery or grey. Selected exceptions to these basic rules are noted below.

Substance	State	Colour
copper	solid	salmon pink
gold	solid	yellow
nitrogen dioxide	gas	brown
sulfur	solid	yellow

Coloured ions in aqueous solution

Cation	Colour
Cr ³⁺	deep green
Co ²⁺	pink
Cu ²⁺	blue
Fe ²⁺	pale green
Fe ³⁺	pale brown
Mn ²⁺	pale pink
Ni ²⁺	green

Anion	Colour
CrO ₄ ²⁻	yellow
Cr ₂ O ₇ ²⁻	orange
MnO ₄ -	purple

w ms

Number of moles $n = \frac{m}{M} = \frac{\text{mass}}{\text{molar mass}}$

Number of moles of solute n = cV

Number of moles of a gas at STP $n = \frac{V}{22.71}$

Ideal gas law PV = nRT

Parts per million $ppm = \frac{mass of solute (mg)}{mass of solution (kg)}$

pH of a solution $pH = -\log [H^{\dagger}]$

Units

Formulae

Volumes are given in the units of litres (L), or millilitres (mL)

Temperatures are given in the units of degrees Celsius (°C) or kelvin (K).

It may be assumed that $0.0 \,^{\circ}\text{C} = 273.15 \,^{\circ}\text{K}$

Energy changes are given in kilojoules (kJ)

Pressures are given in kilopascals (kPa)

Solution concentrations are given in the units moles per litre (mol L^{-1}),

grams per litre (g L-1) or parts per million (ppm).

Constants

Universal gas constant, R = 8.314 J K⁻¹ mol⁻¹

Avogadro constant, N = 6.022×10^{23} mol⁻¹

Volume of 1.00 mol of an ideal gas at 0.0 $^{\circ}\text{C}$ and 100.0 kPa is 22.71 L

S.T.P. is 0.0 °C and 100.0 kPa

Equilibrium constant for water at 25 °C, $K_w = 1.00 \times 10^{-14}$

Coloured halogens

Halogen	Colour of free element
F ₂ (g)	yellow
Cl ₂ (g)	greenish-yellow
$Br_2(\ell)$	red
$I_2(s)$	purple

Halogen	Colour of halogen in aqueous solution
Cl ₂ (aq)	pale yellow
Br ₂ (aq)	orange
I ₂ (aq)	brown

Halogen	Colour of halogen in organic solvent
Br ₂	red
I ₂	purple