An introduction to Anderson localization

Author: Jan Šuntajs Mentor: dr. Janez Bonča Comentor: doc. Lev Vidmar

April 3, 2018

University of Ljubljana
Faculty of Mathematics and Physics

What is it about?

- Conduction in NON-INTERACTING systems with DISORDER
- Describes the role of IMPURITIES
- Completely different than the Drude model:

 $\sigma \propto I$

What does it predict?

for some disorder:

$$\sigma
ightarrow 0$$

put forth by P. W.Anderson (1958)

1D dynamics with no disorder and with strong disorder.

Nobel prize in 1977

Why does it (still) matter?

What began in 1958 ...

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. Anderson

Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

... still remains relevant today

PHYSICAL REVIEW B 96, 214201 (2017)

Anderson localization transitions with and without random potentials

Trithep Devakul and David A. Huse
Department of Physics, Princeton University, New Jersey 08544, USA
(Received 20 October 2017; published 6 December 2017)

The current "hot topic"

Published in 2015:

Many-body localization (MBL)

Many-Body Localization and Thermalization in Quantum Statistical Mechanics

includesINTERACTIONS

Rahul Nandkishore¹ and David A. Huse^{1,2}

¹Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544; email: rahuln@princeton.edu, huse@princeton.edu

not our today's topic

672 citations as of April 2018 acc. to Google Scholar.

²Department of Physics, Princeton University, Princeton, New Jersey 08544

Outline

The basic concepts of the Anderson localization

Models of disorder

Numerical simulations

Conclusion

The basics

DISORDER → states can localize

A localized state:

$$|\psi(\mathbf{r})|\sim \exp\left(|\mathbf{r}-\mathbf{r}_0|/\xi
ight)$$

• explains vanishing transport

Localization:

Extended and localized states.

The important keynotes

An interference phenomenon

Strong dimensionality dependence

Energy dependence → the mobility edge

April 3, 2018

8 / 17

The enhanced back-scattering

- calculation of the transition probability
 w
- any two paths:

$$w = |A_1 + A_2|^2 = w_{cl} + w_{int}$$

• time-reversed paths:

$$w = 4|A_1|^2 = 2w_{cl}$$

Path from A to B back to A and its time-reverse

The scaling theory

Anderson localization

scaling of the conductance g

Ohmic conductor:

$$g = \sigma L^{d-2}$$

• Localized regime:

$$g \propto \exp(-L)$$

Transition between ext. and loc. states is only possible in 3D.

10 / 17

The scaling theory

1D, 2D

localization for any finite disorder

3D

localization for some critical disorder

Transition between ext. and loc. states is only possible in 3D.

The mobility edge

3D, finite disorder

Jan Šuntajs Anderson localization

The models of disorder

A schematic of the cobalt niobate, CoNb₂O₆

The neutron scattering experiments

The neutron scattering experiments

The neutron scattering experiments