Matrix Fejér-Riesz theorem with gaps

Aljaž Zalar, University of Ljubljana, Slovenia

IWOTA 2015, Tbilisi, 6 July 2015

R - the ring of complex polynomials $\mathbb{C}[x]$ $(x^* = \overline{x} = x)$ or complex Laurent polynomials $\mathbb{C}[z, \frac{1}{z}]$ $(z^* = \overline{z} = \frac{1}{z})$

$$M_n(R)$$
 - matrix polynomials $(F^* = \overline{F}^T)$

 $H_n(R)$ - hermitian matrix polynomials

 $\sum M_n(R)^2$ - SOHS matrix polynomials, i.e., finite sums of the form $\sum A_i^*A_i$, where $A_i\in M_n(R)$

Matrix Fejďż"r-Riesz theorem

Theorem (Fejér-Riesz theorem on T)

Let

$$A(z) = \sum_{m=-N}^{N} A_m z^m \in M_n \left(\mathbb{C} \left[z, \frac{1}{z} \right] \right)$$

be a $n \times n$ matrix Laurent polynomial, such that A(z) is positive semidefinite for every $z \in \mathbb{T} := \{z \in \mathbb{C} \colon |z| = 1\}$. Then there exists a matrix polynomial $B(z) = \sum_{m=0}^N B_m z^m \in M_n(\mathbb{C}[z])$, such that

$$A(z) = B(z)^*B(z).$$

Matrix Fejďż"r-Riesz theorem

Theorem (Fejér-Riesz theorem on $\mathbb R)$

Let

$$F(x) = \sum_{m=0}^{2N} F_m x^m \in M_n(\mathbb{C}[x])$$

be a $n \times n$ matrix polynomial, such that F(x) is positive semidefinite for every $x \in \mathbb{R}$. Then there exists a matrix polynomial $G(x) = \sum_{m=0}^{N} G_m x^m \in M_n(\mathbb{C}[x])$, such that

$$F(x) = G(x)^* G(x).$$

Main problem

Problem

- Characterize univariate matrix Laurent polynomials, which are positive semidefinite on a union of points and arcs in \mathbb{T} .
- ② Characterize univariate matrix polynomials, which are positive semidefinite on a union of points and intervals (not necessarily bounded) in \mathbb{R} .

A basic closed semialgebraic set $K_S \subseteq \mathbb{R}$ associated to a finite subset $S = \{g_1, \dots, g_s\} \subset \mathbb{R}[x]$ is given by

$$K := K_S = \{x \in \mathbb{R} : g_j(x) \ge 0, j = 1, \dots, s\}.$$

We define the *n-th matrix quadratic module* M_S^n by

$$M_S^n := \{\sigma_0 + \sum_{j=1}^s \sigma_j g_j \colon \sigma_j \in \sum M_n(\mathbb{C}[x])^2 \text{ for } j = 0, \dots, s\}.$$

Let $\prod S := \{g_1^{e_1} \cdots g_s^{e_s} : e_j \in \{0,1\}, \ j=1,\ldots,s\}$. The *n-th matrix preordering* T_S^n is $M_{\prod S}^n$.

Let $\operatorname{Pos}_{\succeq 0}^n(K_S)$ be the set of all $n \times n$ hermitian matrix polynomials, which are positive semidefinite on K_S .

A matrix quadratic module M_S^n is saturated if $M_S^n = Pos_{\geq 0}^n(K_S)$.

A saturated matrix quadratic module M_S^n is boundedly saturated, if every $F \in \mathsf{Pos}^n_{\succeq 0}(K_S)$ is of the form $\sigma_0 + \sum_{j=1}^s \sigma_j g_j$, where

$$\deg(\sigma_0), \deg(\sigma_j g_j) \leq \deg(F)$$
 for $j = 1, \dots s$.

Let $K \subseteq \mathbb{R}$ be a basic closed semialgebraic set.

A set $S = \{g_1, \dots, g_s\} \subset \mathbb{R}[x]$ is the *natural description* of K, if it satisfies the following conditions:

- (a) If K has the least element a, then $x a \in S$.
- (b) If K has the greatest element a, then $a x \in S$.
- (c) For every $a \neq b \in K$, if $(a, b) \cap K = \emptyset$, then $(x a)(x b) \in S$.
- (d) These are the only elements of S.

Let $K = \bigcup_{j=1}^m [x_j, y_j] \subseteq \mathbb{R}$ be a basic compact semialgebraic set.

A set $S = \{g_1, \dots, g_s\} \subset \mathbb{R}[x]$ with $K = K_S$ is the *saturated description* of K, if it satisfies the following conditions:

- (a) For every left endpoint x_j there exists $k \in \{1, ..., s\}$, such that $g_k(x_j) = 0$ and $g'_k(x_j) > 0$.
- (b) For every right endpoint y_j there exists $k \in \{1, ..., s\}$, such that $g_k(y_j) = 0$ and $g'_k(y_j) < 0$.

Known results - scalar case

1 (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering $T_S^1 = M_{\prod S}^1$ is boundedly saturated.

Known results - scalar case

- 1 (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering $T_S^1 = M_{\prod S}^1$ is boundedly saturated.
 - K not compact: T_S^1 is saturated if and only if S contains each of the polynomials in the natural description of K up to scaling by positive constants.
 - K compact (Scheiderer, 2003): T_S^1 is saturated if and only if S is a saturated description of K. Moreover, $T_S^1 = M_S^1$.

Known results - scalar case

- 2 (Scheiderer, version for curves, 2003) Let I be a prime ideal of $\mathbb{R}[\underline{x}] := \mathbb{R}[x_1, \dots, x_n]$ such that $\dim(\frac{\mathbb{R}[\underline{x}]}{I}) = 1$. Suppose $K_S \cap \mathcal{Z}(I)$ is compact and each $p \in K_S \cap \mathcal{Z}(I)$ is a non-singular zero of I. Then $M_S^1 + I$ is saturated if and only if the following conditions hold:
 - For each boundary point $p \in K_S \cap \mathcal{Z}$, which is not an isolated point of $K_S \cap \mathcal{Z}$, there exists $k \in \{1, \dots, s\}$, such that $\nu_p(g_k) = 1$.
 - ② For each isolated point $p \in K_S \cap \mathcal{Z}$, there exist $k, l \in \{1, \ldots, s\}$, such that $v_p(g_k) = v_p(g_l) = 1$ and $g_k g_l \leq 0$ in some neighbourhood of p in \mathcal{Z} .

Known results - matrix case

- **①** (Gohberg, Krein, 1958) For $K = \mathbb{R}$, M_{\emptyset}^n is boundedly saturated for every $n \in \mathbb{N}$.
- ② (Dette, Studden, 2002) For $K = K_{\{x,1-x\}} = [0,1]$, $T^n_{\{x,1-x\}}$ is boundedly saturated for every $n \in \mathbb{N}$.
- **③** (Hol, Scherer, 2006) For a finite set $S \subseteq \mathbb{R}[x]$ with a compact set $K = K_S$, M_S^n contains every $F \in M_n(\mathbb{R}[x])$ such that $F|_{K} \succ 0$.
- **①** (Schmüdgen, Savchuk, 2012) For $K = K_{\{x\}} = [0, \infty)$, $M_{\{x\}}^n$ is boundedly saturated for every $n \in \mathbb{N}$.

Compact Nichtnegativstellensdž"tze Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

New results

Theorem (Compact Nichtnegativstellensatz for \mathbb{R})

Let $K \subset \mathbb{R}$ be compact. The n-th matrix quadratic module M_S^n is saturated for every $n \in \mathbb{N}$ if and only if S is a saturated description of K.

Sketch of the proof of compact Nsatz

Proposition

Suppose K is a non-empty basic closed semialgebraic set in $\mathbb R$ and S a saturated description of K. Then for every $F \in Pos^n_{\succeq 0}(K)$ and every $w \in \mathbb C$ there exists $h \in \mathbb R[x]$, such that $h(w) \neq 0$ and $h^2F \in M^n_S$.

Sketch of the proof of compact Nsatz

Proposition

Suppose K is a non-empty basic closed semialgebraic set in \mathbb{R} and S a saturated description of K. Then for every $F \in Pos^n_{\succeq 0}(K)$ and every $w \in \mathbb{C}$ there exists $h \in \mathbb{R}[x]$, such that $h(w) \neq 0$ and $h^2F \in M^n_S$. Moreover, $\deg(h) \leq \deg(F)(3^n-1)$ and $h^2F \in T^n_{S,b}$.

Sketch of the proof of compact Nsatz

To conclude the proof we need the following:

Proposition (Scheiderer, 2006)

Suppose R is a commutative ring with 1 and $\mathbb{Q} \subseteq R$. Let $\Phi: R \to C(K, \mathbb{R})$ be a ring homomorphism, where K is a topological space which is compact and Hausdorff. Suppose $\Phi(R)$ separates points in K. Suppose $f_1, \ldots, f_k \in R$ are such that $\Phi(f_j) \geq 0$, $j = 1, \ldots, k$ and $(f_1, \ldots, f_k) = (1)$. Then there exist $s_1, \ldots, s_k \in R$ such that $s_1 f_1 + \ldots + s_k f_k = 1$ and such that each $\Phi(s_j)$ is strictly positive.

New results

Theorem (Nichtnegativstellensatz for \mathbb{T})

Let $\mathscr{K} \subseteq \mathbb{T}$ be a basic closed semialgebraic set and $\mathscr{S} = \{b_1, \ldots, b_s\} \subset H_1(\mathbb{C}[z, \frac{1}{z}])$ a finite set, such that $\mathscr{K} = \mathscr{K}_\mathscr{S}$. The n-th matrix quadratic module $\mathcal{M}^n_\mathscr{S} := \left\{ \sum_{i=0}^s \tau_e b_i \colon \tau_e \in \sum M_n \left(\mathbb{C}[z] \right)^2 \text{ for } i = 0, \ldots, s \right\}$ is saturated for every integer $n \in \mathbb{N}$ if and only if \mathscr{S} satisfies the following conditions:

- (a) For every boundary point $a \in \mathcal{K}$, which is not isolated, there exists $k \in \{1, ..., s\}$, such that $b_k(a) = 0$ and $\frac{db_k}{dz}(a) \neq 0$.
- (b) For every isolated point $a \in \mathcal{K}$, there exist $k, l \in \{1, \ldots, s\}$, such that $b_k(a) = b_l(a) = 0$, $\frac{db_k}{dz}(a) \neq 0$, $\frac{db_l}{dz}(a) \neq 0$ and $b_k b_l \leq 0$ on some neighborhood of a.

Compact Nichtnegativstellensdž"tze Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

New results

Theorem (Compact Nichtnegativstellensatz for curves)

Under the hypothesis of igodots and if the coordinate ring $\frac{\mathbb{R}[x]}{I}$ is regular, then the n-th matrix quadratic module $M_S^n + M_n(I)$ is saturated.

Counterexample for non-compact case

Example

The matrix polynomial $F(x) := \begin{bmatrix} x+2 & \sqrt{6} \\ \sqrt{6} & x^2-2x+3 \end{bmatrix}$ is positive semidefinite on $K := [-1,0] \cup [1,\infty)$, but $F \notin T_S^2 = M_{\prod S}^2$, where S is the natural description of K. Moreover, for $\epsilon > 0$ small enough, even $F + \epsilon I \notin T_S^2$.

Counterexample for non-compact case

Example

The matrix polynomial $F(x) := \begin{bmatrix} x+2 & \sqrt{6} \\ \sqrt{6} & x^2-2x+3 \end{bmatrix}$ is positive semidefinite on $K := [-1,0] \cup [1,\infty)$, but $F \notin T_S^2 = M_{\prod S}^2$, where S is the natural description of K. Moreover, for $\epsilon > 0$ small enough, even $F + \epsilon I \notin T_S^2$.

Example

The matrix polynomial

$$G(x) := x^2 F(\frac{1}{x} - 2) = \begin{bmatrix} x & \sqrt{6}x^2 \\ \sqrt{6}x^2 & 1 - 6x + 11x^2 \end{bmatrix} \text{ is positive}$$
 semidefinite on $K := [0, \frac{1}{3}] \cup [\frac{1}{2}, 1]$, but $G \notin T_{S,b}^2 = M_{\prod S,b}^2$, where S is the natural description of K . However, $G \in T_{S,4}^2$.

Compact Nichtnegativstellensdž"tze Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Classification of non-compact sets K

Let K be a non-compact closed semialgebraic set with a natural description S. The classification of sets K according to T_S^n being saturated is the following:

Classification of non-compact sets K

К	T_S^n sat.	
an unbounded interval	Yes	
a union of an unbounded interval and	7	
an isolated point	!	
a union of an unbounded interval and	No	
m isolated points with $m \ge 2$		
a union of two unbounded intervals	Yes	
a union of two unbounded intervals and	7	
an isolated point	:	
a union of two unbounded intervals and	No	
m isolated points with $m \ge 2$	INO	
includes a bounded and an unbounded interval	No	

Classification of compact sets K

Let K be a compact closed semialgebraic set with a natural description S. The classification of sets K according to T_S^n being boundedly saturated is the following:

Classification of compact sets K

К	T_S^n sat.	T_S^n bsat.
a union of at most three points	Yes	Yes
a union of m points with $m \ge 4$	Yes	No
		stable
a bounded interval	Yes	Yes
a union of a bounded interval	Yes	?
and an isolated point		
a union of a bounded interval and	Yes	No
m isolated points with $m \ge 2$		
a compact set containing	Yes	No
at least two intervals		

Non-compact Nichtnegativstellensatz

Theorem (Non-compact Nichtnegativstellensatz)

Suppose K is an unbounded basic closed semialgebraic set in \mathbb{R} and S a natural description of K. Then, for a hermitian $F \in M_n(\mathbb{C}[x])$, the following are equivalent:

- $\bullet F \in Pos^n_{\succeq 0}(K).$
- $(1+x^2)^k F \in T_S^n \text{ for some } k \in \mathbb{N} \cup \{0\}.$

Non-compact Nichtnegativstellensatz

Theorem (Non-compact Nichtnegativstellensatz)

Suppose K is an unbounded basic closed semialgebraic set in \mathbb{R} and S a natural description of K. Then, for a hermitian $F \in M_n(\mathbb{C}[x])$, the following are equivalent:

- $\bullet F \in Pos^n_{\succ 0}(K).$
- $(1+x^2)^k F \in T_S^n \text{ for some } k \in \mathbb{N} \cup \{0\}.$
- **3** There exists $h ∈ \mathbb{R}[x]$, such that $h^2 > 0$ on \mathbb{R} , deg $(h) ≤ \deg(F)(3^n 1)$ and $h^2F ∈ T^n_{S.b}$.

Compact Nichtnegativstellensdž"tze Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Thank you for your attention!