1. For the function $f(x,y) = \cos(x+y) \exp(x-y)$ calculate $\partial f/\partial x$, $\partial f/\partial y$, $\partial^2 f/\partial x^2$, $\partial^2 f/\partial y^2$, $\partial^2 f/\partial x \partial y$, $\partial^2 f/\partial y \partial x$. Use your results to show that $\partial^2 f/\partial x^2 = -\partial^2 f/\partial y^2$ and $\partial^2 f/\partial x \partial y = \partial^2 f/\partial y \partial x$.

Problems: page 1

- 2. Let F(t) be the value of the function $f(x,y,z)=\cos(xy)\,z$ restricted to the helix $x=\cos(t),\,y=\sin(t)$, z=t which is parametrised by t and $-\infty < t < \infty$. Calculate dF/dt as a function of t (i) directly by substituting the equations of the helix into f(x,y,z) to calculate F(t) as a function of t and then differentiating, and (ii) using the chain rule. Note how similar these approaches are.
- 3. If $\mathbf{a} = \sin 2t \, \mathbf{e_1} + e^t \, \mathbf{e_2} (t^3 5t) \, \mathbf{e_3}$, find (a) $d\mathbf{a}/dt$, (b) $||d\mathbf{a}/dt||$, (c) $d^2\mathbf{a}/dt^2$, (d) $||d^2\mathbf{a}/dt^2||$, all at t = 0.
- 4. Find a unit vector tangent to the space curve $x = t^3$, y = t, $z = t^2$ at t = 2.
- 5. Use the chain rule to calculate df/dt when $f(\mathbf{x}) = \exp(-||\mathbf{x}||^2)$ is restricted to the curves:
 - (a) $\mathbf{x} = \mathbf{e_1} \log t + \mathbf{e_2} t \log t + \mathbf{e_3} t,$
 - (b) $(x, y, z) = (\cosh t, \sinh t, 0).$
- 6. **Harder:** Let **t** denote the unit tangent vector to a space curve $\mathbf{a} = \mathbf{a}(s)$ in \mathbb{R}^3 , where $\mathbf{a}(s)$ is assumed differentiable, and where s measures the arclength from some fixed point on the curve. Define the unit vector $\mathbf{n} = \frac{1}{\kappa} \frac{d\mathbf{t}}{ds}$, where κ is a scalar. Also define $\mathbf{b} = \mathbf{t} \times \mathbf{n}$ as the *unit binormal vector* to the space curve.

By considering the derivative of the product $\mathbf{t}.\mathbf{t}$, show that the 3 vectors \mathbf{t} , \mathbf{n} , \mathbf{b} form an orthonormal basis of \mathbb{R}^3 .

Hence, prove that

$$\frac{d\mathbf{b}}{ds} = -\tau \mathbf{n}$$
, and $\frac{d\mathbf{n}}{ds} = \tau \mathbf{b} - \kappa \mathbf{t}$,

where τ is some real constant.

These formulae are of fundamental importance in differential geometry. They involve the curvature κ and the torsion τ . The reciprocals of these are the radius of curvature $(\rho = \frac{1}{\kappa})$ and the radius of torsion $(\sigma = \frac{1}{\tau})$.

Bonus 1. If $f(x,y) = F(r,\theta)$ with $x = r\cos\theta$ and $y = r\sin\theta$, use the chain rule to compute $\partial^2 f/\partial x^2 + \partial^2 f/\partial y^2$ in terms of partial r- and θ - derivatives of F, and hence find the general rotationally-symmetric solution to $\partial^2 f/\partial x^2 + \partial^2 f/\partial y^2 = 0$ in two dimensions which is non-singular away from the origin.

Suggestion: Begin by writing $\partial r/\partial x$, $\partial r/\partial y$, $\partial \theta/\partial x$ and $\partial \theta/\partial y$ as functions of r and θ .

- 7. Compute the gradient, ∇f , for the following functions:
 - (a) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$,
 - (b) f(x, y, z) = xy + yz + xz,
 - (c) $f(x, y, z) = 1/(x^2 + y^2 + z^2)$.

- 8. Show that $\underline{h}(s) = \left(s/\sqrt{2}, \cos(s/\sqrt{2}), \sin(s/\sqrt{2})\right)$ is the arc-length parameterisation of a helix, that is that $\left|\frac{dh}{ds}\right| = 1 \quad \forall s$.
 - Calculate the directional derivative of the scalar field $f(\underline{x})=(\log(x^2+y^2+z^2))$ along $\underline{h}(s)$ at $s=\sqrt{2}\pi$.

- 9. Draw a sketch of the contour plot of the scalar field on \mathbb{R}^2 $f(\underline{x}) = xy$, as well as the gradient of f. What do you notice?
- 10. Let $f, g : \mathbb{R}^3 \to \mathbb{R}$ be scalar fields on \mathbb{R}^3 , $h : \mathbb{R} \to \mathbb{R}$ be a function on \mathbb{R} and a be a constant in \mathbb{R} . Show (using the definition of $\underline{\nabla}$) that

$$\underline{\nabla}(af(\underline{x})g(\underline{x}) + h(f(\underline{x}))) = a(\underline{\nabla}f)g + af\underline{\nabla}g + \underline{\nabla}f\frac{dh}{df}.$$

- 11. Exam question June 2001 (Section B): You are given the following family of scalar functions labelled by a real parameter λ : $\Phi_{\lambda}(x,y,z) = (y-\lambda)\cos x + zxy$.
 - (a) What are their derivatives in the direction $V = e_1 + 2(e_2 + e_3)$?
 - (b) Which member of the family has its gradient at the point $(\frac{\pi}{2}, 1, 1)$ equal to $\frac{\pi}{2}(e_1 + e_2 + e_3)$?
 - (c) Calling this particular member of the family Φ_{λ_0} , in which direction is Φ_{λ_0} decreasing most rapidly when starting at the point $(\frac{\pi}{2}, 1, 1)$?
- 12. Exam question June 2002 (Section A): Give the unit vector normal to the surface of equation $x^2/a^2 + y^2/b^2 + z^2/c^2 = 4$ where a, b, c are three real constants. What is the unit vector normal to a sphere of radius 2 at the point $(x, y, z) = (\sqrt{2}, 0, \sqrt{2})$?
- 13. Find the vector equations of tangent and normal lines in \mathbb{R}^2 to the following curves at the given points
 - (a) $x^2 + 2y^2 = 3$ at (1,1),
 - (b) xy = 1 at (2, 1/2),
 - (c) $x^2 y^3 = 3$ at (2, 1).
- 14. Exam question June 2003 (Section A): Find the directional derivative of the function $\phi(x,y,z)=xy^2z^3$ at the point P=(1,1,1) in the direction from P towards Q=(3,1,-1). Starting from P, in which direction is the directional derivative maximum and what is the value of this maximum?
- 15. Exam question June 2002 (Section A): What is the derivative of the scalar function $\phi(x,y,z) = x\cos z y$ in the direction $\mathbf{V} = \mathbf{e_1} + \mathbf{e_2} + \mathbf{e_3}$? What is the gradient at the point $(x,y,z) = (0,1,\pi/2)$? In which direction is ϕ increasing the most when moving away from this point?
- 16. A marble is released from the point (1, 1, c a b) on the elliptic paraboloid defined by $z = c ax^2 by^2$, where a, b, c are positive real numbers and the z-coordinate is vertical. In which direction in the (x, y) plane does the marble begin to roll?

17. In which direction does the function $f(x,y) = x^2 - y^2$ increase fastest at the points (a) (1,0), (b) (-1,0), (c) (2,1)? Illustrate with a sketch.

- 18. Let $f(x,y) = (x^2 y^2)/(x^2 + y^2)$.
 - (a) In which direction is the directional derivative of f at (1,1) equal to zero?
 - (b) What about at an arbitrary point (x_0, y_0) in the first quadrant?
 - (c) Describe the level curves of f and discuss them in the light of the result in (b).
- 19. Compute the divergence, $\nabla \cdot \mathbf{A}$, of the following vector fields:
 - (a) $A(x, y, z) = yze_1 + xze_2 + xye_3,$
 - (b) $\mathbf{A}(x, y, z) = (x^2 + y^2 + z^2)(3\mathbf{e_1} + 4\mathbf{e_2} + 5\mathbf{e_3}),$
 - (c) $\mathbf{A}(x, y, z) = (x + y)\mathbf{e_1} + (y + z)\mathbf{e_2} + (z + x)\mathbf{e_3}.$
- 20. Compute the curl, $\nabla \times \mathbf{A}$, of each of the vector fields, \mathbf{A} , in the previous question.
- 21. If f(r) is a differentiable function of $r = |\mathbf{x}|$, show that
 - (a) $\operatorname{grad} f(r) = f'(r) \mathbf{x} / r$,
 - (b) $\operatorname{curl}[f(r)\mathbf{x}] = 0$.
- 22. Let x be the position vector in three dimensions, with $r = |\mathbf{x}|$, and let a be a constant vector. Show that
 - (a) $\operatorname{div} \mathbf{x} = 3$,
 - (b) $\operatorname{curl} \mathbf{x} = 0$,
 - (c) $\operatorname{grad} r = \mathbf{x}/r$,
 - (d) $\operatorname{div}(r^n \mathbf{x}) = (n+3) r^n$,
 - (e) $\operatorname{grad}(\mathbf{a} \cdot \mathbf{x}) = \mathbf{a}$,
 - (f) $\operatorname{div}(\mathbf{a} \times \mathbf{x}) = 0$,
 - (g) $\operatorname{curl}(\mathbf{a} \times \mathbf{x}) = 2\mathbf{a}$,
 - (h) $\operatorname{curl}(r^2\mathbf{a}) = 2(\mathbf{x} \times \mathbf{a}),$
 - (i) $\nabla^2(1/r) = 0$, if $r \neq 0$,
 - (j) $\nabla^2(\log r) = 1/r^2, \quad \text{if } r \neq 0,$
 - (k) $\operatorname{div}[(\mathbf{a} \cdot \mathbf{x})\mathbf{x}] = 4\mathbf{a} \cdot \mathbf{x},$
 - (1) $\operatorname{div}\left[\mathbf{x}\times(\mathbf{x}\times\mathbf{a})\right]=2\,\mathbf{a}\cdot\mathbf{x},$
 - (m) curl $(\mathbf{a} \times \mathbf{x}/r^3) = 3(\mathbf{a} \cdot \mathbf{x})\mathbf{x}/r^5 \mathbf{a}/r^3$,
 - (n) Exam question June 2002 (Section A): calculate the curl of $(\mathbf{a} \cdot \mathbf{x}) \mathbf{x}$.

23. If x is the position vector, $\mathbf{x} = x\mathbf{e_1} + y\mathbf{e_2} + z\mathbf{e_3}$, a is a constant vector, $\mathbf{F} = (\mathbf{a} \cdot \mathbf{x}) \mathbf{x}$ and $\mathbf{G} = r^2 \mathbf{a}$, (with $r = |\mathbf{x}|$), show that

- (a) $\operatorname{div} \mathbf{F} = 2 \operatorname{div} \mathbf{G} = 4 \mathbf{a} \cdot \mathbf{x}$,
- (b) $\operatorname{curl} \mathbf{G} = -2 \operatorname{curl} \mathbf{F} = 2 \mathbf{x} \times \mathbf{a},$
- (c) $\operatorname{div} \operatorname{curl} \mathbf{F} = \operatorname{div} \operatorname{curl} \mathbf{G} = 0$,
- (d) $\operatorname{curl} \operatorname{curl} \mathbf{G} = -2 \operatorname{curl} \operatorname{curl} \mathbf{F} = -4 \mathbf{a}.$
- 24. Exam question June 2001 (Section A):
 - (a) Give a representation of the vector function $\mathbf{A}(x,y) = y\mathbf{e_1}$ as a collection of arrows in the region of the (x,y)-plane bounded by $(x_1,y_1) = (-2,2), (x_2,y_2) = (2,2), (x_3,y_3) = (2,-2), (x_4,y_4) = (-2,-2).$
 - (b) Calculate the curl of the vector field $\mathbf{A}(x,y) = (-y\mathbf{e_1} + x\mathbf{e_2})/(x^2 + y^2)$ defined everywhere in the (x,y)-plane except at the origin. (You can consider \mathbf{A} to be embedded in three dimensions, independent of z and with zero z component.)
 - (c) Give the unit vector normal to the surface of equation ax + by = cz, where a, b, c, are three real constants.
 - (d) (Slightly modified from exam) Let \mathbf{x} be the position vector in 3-dimensions and \mathbf{a} be a constant vector. Use the result $\mathbf{x} \times (\mathbf{x} \times \mathbf{a}) = \mathbf{x} (\mathbf{x} \cdot \mathbf{a}) \mathbf{a} (\mathbf{x} \cdot \mathbf{x})$ to show that $\operatorname{div} \left[\mathbf{x} \times (\mathbf{x} \times \mathbf{a}) \right] = 2\mathbf{a} \cdot \mathbf{x}$.
- 25. Let x be the position vector in three dimensions, with $r = |\mathbf{x}|$, and let a be a constant vector. Using index notation, show that
 - (a) $\operatorname{div} \mathbf{x} = 3$,
 - (b) $\operatorname{curl} \mathbf{x} = 0$,
 - (c) $\operatorname{grad} r = \mathbf{x}/r$,
 - (d) $\operatorname{div}(r^n \mathbf{x}) = (n+3) r^n$,
 - (e) $\operatorname{grad}(\mathbf{a} \cdot \mathbf{x}) = \mathbf{a}$,
 - (f) $\operatorname{div}(\mathbf{a} \times \mathbf{x}) = 0$,
 - (g) $\operatorname{curl}(\mathbf{a} \times \mathbf{x}) = 2\mathbf{a}$,
 - (h) $\operatorname{curl}(r^2\mathbf{a}) = 2(\mathbf{x} \times \mathbf{a}),$
 - (i) $\nabla^2(1/r) = 0$ if $r \neq 0$: using $\frac{\partial}{\partial x_i} r = x_i/r$ from part (c),
 - (j) $\nabla^2(\log r) = 1/r^2 \text{ if } r \neq 0$:
 - (k) $\operatorname{div}[(\mathbf{a} \cdot \mathbf{x})\mathbf{x}] = 4\mathbf{a} \cdot \mathbf{x}$,
 - (1) $\operatorname{div}\left[\mathbf{x}\times(\mathbf{x}\times\mathbf{a})\right]=2\mathbf{a}\cdot\mathbf{x}$,
 - (m) curl $(\mathbf{a} \times \mathbf{x}/r^3) = 3(\mathbf{a} \cdot \mathbf{x})\mathbf{x}/r^5 \mathbf{a}/r^3$,
 - (n) Exam question June 2002 (Section A): calculate the curl of $(\mathbf{a} \cdot \mathbf{x}) \mathbf{x}$.

26. The vector \underline{a} has components $(a_r) = (1,1,1)$ and the vector \underline{b} has components $(b_r) = (2,3,4)$. In the following expressions state which indices are free and which are dummy, and give the numerical values of the expressions for each value that the free variable takes (e.g. for $a_r - b_r$ the free variable is r and it takes the values 1, 2, 3 so $a_1 - b_1 = -1$, $a_2 - b_2 = -2, a_3 - b_3 = -3$)

- (a) $a_r + b_r$,
- (b) $a_r b_r$,
- (c) $a_r b_s a_r$,
- (d) $a_r b_s a_r b_s a_r b_r a_s b_s$.
- 27. If δ_{rs} is the three-dimensional Kronecker delta, evaluate
 - (a) $\delta_{rs} \, \delta_{sr} \, \delta_{pq} \, \delta_{pq}$,
 - (b) $\delta_{rs} \, \delta_{sk} \, \delta_{kl} \, \delta_{lr}$,
 - (c) $\delta_{rs} \, \delta_{qr} \, \delta_{pq} \, \delta_{sp}$.
- 28. If δ_{rs} is the three-dimensional Kronecker delta, simplify
 - (a) $(\delta_{rp} \, \delta_{sq} \delta_{rq} \, \delta_{sp}) \, a_p \, b_q$,
 - (b) $\left(\delta_{rp}\,\delta_{sq} \delta_{rq}\,\delta_{sp}\right)\delta_{pq}$.
- 29. If δ_{rs} is the Kronecker delta in n dimensions, calculate
 - (a) δ_{rr} ,
 - (b) $\delta_{rs} \, \delta_{rs}$,
 - (c) $\delta_{rs} \, \delta_{st} \, \delta_{tr}$.
- 30. Starting from $\varepsilon_{ijk} \, \varepsilon_{klm} = \delta_{il} \, \delta_{jm} \delta_{im} \, \delta_{jl}$ simplify as much as possible:
 - (a) $\varepsilon_{ijk}\varepsilon_{ijp}$,
 - (b) $\varepsilon_{ijk}\varepsilon_{ijk}$.
- 31. Calculate ε_{iji} .
- 32. Show, using index notation, that
 - (a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = 0$,
 - (b) $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = [\mathbf{d} \cdot (\mathbf{a} \times \mathbf{b})] \mathbf{c} [\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})] \mathbf{d}$ = $[\mathbf{a} \cdot (\mathbf{c} \times \mathbf{d})] \mathbf{b} - [\mathbf{b} \cdot (\mathbf{c} \times \mathbf{d})] \mathbf{a}$,
 - $(\mathbf{c}) \ \ (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) \, = \, (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) \, \, (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \, ,$
 - (d) $\mathbf{a} \times [\mathbf{a} \times (\mathbf{a} \times \mathbf{b})] = a^2 (\mathbf{b} \times \mathbf{a}),$
 - (e) $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) + (\mathbf{b} \times \mathbf{c}) \cdot (\mathbf{a} \times \mathbf{d}) + (\mathbf{c} \times \mathbf{a}) \cdot (\mathbf{b} \times \mathbf{d}) = 0$.
- 33. Exam question June 2002 (Section A): Evaluate $\varepsilon_{ijk}\varepsilon_{ijl}x_kx_l$.

34. Exam question June 2001 (Section A): Evaluate $\varepsilon_{ijk}\partial_i\partial_j(x_lx_l)^{1/2}$ away from the origin.

- 35. Exam question June 2003 (Section A): Calculate $\partial_i \left(\varepsilon_{ijk} \ \varepsilon_{jkl} \ x_l \right)$. (Hint: use the connection between $\partial_i x_j = \frac{\partial x_j}{\partial x_i}$ and the Kronecker delta.)
- 36. The functions f, g are scalars, while \mathbf{A} and \mathbf{B} are vector functions with components A_i and B_i respectively. Verify the following identities using index notation:
 - (a) $\operatorname{grad}(fg) = f \operatorname{grad} g + g \operatorname{grad} f$,
 - (b) $\operatorname{grad}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times \operatorname{curl} \mathbf{B} + \mathbf{B} \times \operatorname{curl} \mathbf{A} + (\mathbf{B} \cdot \nabla) \mathbf{A} + (\mathbf{A} \cdot \nabla) \mathbf{B},$
 - (c) $\operatorname{div}(f\mathbf{A}) = f\operatorname{div}\mathbf{A} + (\operatorname{grad} f) \cdot \mathbf{A},$
 - (d) $\operatorname{curl}(f\mathbf{A}) = f \operatorname{curl} \mathbf{A} + (\operatorname{grad} f) \times \mathbf{A},$
 - (e) $\operatorname{div}(\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \operatorname{curl} \mathbf{A} \mathbf{A} \cdot \operatorname{curl} \mathbf{B}$,
 - (f) $\operatorname{curl}(\mathbf{A} \times \mathbf{B}) = (\operatorname{div} \mathbf{B})\mathbf{A} (\operatorname{div} \mathbf{A})\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} (\mathbf{A} \cdot \nabla)\mathbf{B},$
 - (g) $\operatorname{div}\operatorname{curl}\mathbf{A} = 0$,
 - (h) curl curl $\mathbf{A} = \operatorname{grad} \operatorname{div} \mathbf{A} \nabla^2 \mathbf{A}$.
- 37. What is the divergence of the vector function $\mathbf{A}(\mathbf{x}) = r \mathbf{x} + \nabla r$ where \mathbf{x} is the position vector in 3 dimensions and $r = |\mathbf{x}|$? What is the corresponding result in n dimensions?
- 38. For which values of (x, y) are the following continuous:
 - (a) $x/(x^2+y^2+1)$,
 - (b) $x/(x^2+y^2)$,
 - (c) (x+y)/(x-y),
 - (d) $x^3/(y-x^2)$?
- 39. Which of the following sets are open:
 - (a) $\{(x, y, z) : x > 0\},\$
 - (b) $\{(x, y, z) : y > 0\},\$
 - (c) $\{(x, y, z) : 1 > (x^2 + y^2)/z\},\$
 - (d) $\{(x, y, z) : 1 > (x^2 + y^2)/z\}$?
- 40. Prove that an open ball, as defined in lectures, is an open set.
- 41. Prove that the intersection of two open sets, as defined in lectures, is another open set. (Note that the empty set is an open set: since it contains no points, the statement that every point in it sits inside an open ball which is also in the set is *vacuously* true.) What about the intersection of a finite number of open sets? And what about the intersection of an *infinite* number of open sets?

- 42. Exam question June 2014 (Section A):
 - (a) Give the definition of the open ball $B_{\delta}(\mathbf{a})$ with centre $\mathbf{a} \in \mathbb{R}^n$ and radius $\delta > 0$, and define what it means for a subset S of \mathbb{R}^n to be open.

- (b) Which of the following subsets of \mathbb{R}^2 are open? In each case, justify your answer in terms of the definition you gave in part (a).
 - (i) $S_1 = \{(x, y) : x > 2\},$
 - (ii) $S_2 = \{(x, y) : x > 2, y = 2\},\$
 - (iii) $S_3 = \{(x, y) : x > 2, y > 2\}.$
- 43. Exam question (last part) June 2014 (Section B): Determine the points of \mathbb{R}^2 at which the function f(x,y) = |xy + x + y + 1| is
 - (a) continuously differentiable; (b) differentiable. (Hint: first factorise f.)
- 44. Determine the points of \mathbb{R}^2 at which the function $f(x,y) = |x^2 y^2|$ is (a) continuously differentiable; (b) differentiable.
- 45. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(\mathbf{0}) = 0$ whilst for $\mathbf{x} \neq \mathbf{0}$:

$$f(\mathbf{x}) = \frac{x^3}{x^2 + y^2}.$$

Calculate the partial derivatives of f with respect to x and y at $\mathbf{x} = \mathbf{0}$ using their definitions as limits. Defining $R(\mathbf{h})$ at the origin by $R(\mathbf{h}) = f(\mathbf{h}) - f(\mathbf{0}) - \mathbf{h} \cdot \nabla f$ as usual, show that $R(\mathbf{h})/|\mathbf{h}|$ does not tend to zero as \mathbf{h} tends to $\mathbf{0}$, so that f is not differentiable at the origin.

On the line through the origin, $\mathbf{x} = \mathbf{b}t$, (with \mathbf{b} a constant vector), f becomes a function of the single variable t, $f(\mathbf{b}t)$. Write $\mathbf{b} = \mathbf{e_1}b_1 + \mathbf{e_2}b_2$ and use this to write $f(\mathbf{b}t)$ explicitly as a function of t. Show that this function is differentiable at the origin, i.e. df/dt exists at t = 0 despite $f(\mathbf{x})$ not being differentiable at $\mathbf{0}$.

- 46. If $y = 1 + xy^5$ show that y may be written in the form y = f(x) in a neighbourhood of (0,1) and find the gradient of the graph of f at the point (0,1).
- 47. Show that the equation $xy^3 y^2 3x^2 + 1 = 0$ can be written in the form y = f(x) in a neighbourhood of the point (0,1), and in the form y = g(x) in a neighbourhood of the point (0,-1). Is it true that f(x) and g(x) are equivalent as functions of x? What are the critical values of the curve $H(x,y) = xy^3 y^2 3x^2 + 1$, and what are the regular values of this curve?
- 48. Determine whether or not the equation $x^2 + y + \sin(xy) = 0$ can be written in the form y = f(x) or in the form x = g(y) in some small open disc about the origin for some suitable continuously differentiable functions f, g.

- 49. Exam question May 2015 (Section B, lightly edited):
 - Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the scalar function $f(x,y) = e^{xy} x + y$.
 - (a) Find the vector equations of the tangent and normal lines to the curve f(x,y)=0 at the points (1,0) and (0,-1).

- (b) Use the implicit function theorem for functions of two variables to determine whether or not the curve f(x,y)=2 can be written in the form y=g(x) for some differentiable function g(x) in the neighbourhoods of the points (i) (0,1); (ii) (-1,0). Determine also whether the curve can be written as x=h(y) for some differentiable function h(y), in the neighbourhoods of the same two points.
- (c) Does the function f(x,y) have any critical points? Justify your answer. (You can quote without proof that $|xe^{-x^2}| < 1$ for all $x \in \mathbb{R}$.)
- 50. Part of Exam Question May 2017 (Section B):
 - (c) Consider the function

$$f(x,y) = (3x+y)e^{3xy}.$$

Determine whether or not the curve f(x,y) = c can be written in the form y = g(x), and if not, state clearly the points (x_0, y_0) and corresponding values of c where problems occur. You may assume that f is differentiable on \mathbb{R}^2 .

- (d) Using f(x,y) as given in the previous part, determine whether or not the curve (f(x,y)=c) can be written in the form x=y(h), and if not, state clearly the points (x_0,y_0) where problems occur.
- (e) Using f(x, y) as in the previous parts of this question, are there any points where the curve f(x, y) = c can neither be written as y = g(x), nor as x = h(y)?
- 51. Compute the differential, or Jacobian matrix, and the Jacobian of the function $\underline{V}:\mathbb{R}^2\to\mathbb{R}^2$ defined by $\underline{V}(x,y)=(x\cos y,x\sin y)$. State where \underline{V} defines an orientation preserving local diffeomorphism, and where it defines an orientation reversing local diffeomorphism.
- 52. Repeat question 51 for $V(x, y) = (e^x \cos y, e^x \sin y)$.
- 53. Calculate the differential, or Jacobian matrix, and the Jacobian of the following transformations:
 - (a) $\underline{U}(u,v)=(x(u,v),y(u,v))$ where $x(u,v)=\frac{1}{2}(u+v)$ and $y(u,v)=\frac{1}{2}(u-v)$;
 - (b) $\underline{V}(r,\theta)=(x(r,\theta),y(r,\theta))$ where $x(r,\theta)=r\cos\theta$ and $y(r,\theta)=r\sin\theta$;
 - (c) $\underline{W}(r, \theta, \phi) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$.

- 54. Adapted from exam question 2009 (Section B) Q7:
 - (a) Let $\underline{V}: \mathbb{R}^n \to \mathbb{R}^n$ be a vector field. Give the definition of \underline{V} being differentiable at a point \underline{a} .

- (b) Let $\underline{V}(x)$ and $\underline{W}(x)$ be two differentiable vector fields in \mathbb{R}^2 . Give formulae for the two differentials $D\underline{V}_x$ and $D\underline{W}_x$.
- (c) Use the chain rule to show that the differential of the composite map $\underline{U}(\underline{x}) := \underline{V}(\underline{W})$ satisfies

$$D\underline{U}_{\underline{x}} = D\underline{V}_{\underline{W}} D\underline{W}_{\underline{x}} \,.$$

- 55. Adapted from exam question 2018 (Section B) Q8:
 - (a) Given a vector field $\underline{u}(\underline{x}) = \underline{w}(\underline{v}(\underline{x}))$, use the chain rule to show that $D\underline{u}(\underline{x}) = D\underline{w}(\underline{v})D\underline{v}(\underline{x})$, and hence $J(\underline{u}) = J(\underline{w})J(\underline{v})$.
 - (b) Let

$$\underline{v}(\underline{x}) = (v_1, v_2) = (\cos y, \sin x)$$

 $w(x) = (w_1, w_2) = (x^2 + y^3, x^2y),$

and define $\underline{u}(\underline{x}) = \underline{w}(\underline{v}(\underline{x}))$. Use the result from part (a) to calculate $J(\underline{u})$. Verify your answer by direct substitution.

- 56. (a) Let $\underline{v}: \mathbb{R}^n \to \mathbb{R}^n$ be a vector field. Give the definition of \underline{V} being differentiable on an open set $U \subset \mathbb{R}^n$.
 - (b) For $\underline{x} = x\underline{e}_1 + y\underline{e}_2$, let $\underline{v} : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$\underline{v}(\underline{x}) = (x^2 + y^2, x + y).$$

Using the definition of differentiability, show that \underline{v} is differentiable on \mathbb{R}^2 .

- (c) Draw a diagram to show where \underline{v} defines an orientation preserving local diffeomorphism (on $U \subseteq \mathbb{R}^2$), and where \underline{v} defines an orientation reversing local diffeomorphism (on $V \subseteq \mathbb{R}^2$).
- 57. Let A be the region bounded by the positive x- and y-axes and the line 3x + 4y = 10. Compute $\iint_A (x^2 + y^2) \, dx \, dy$, taking the integrals in both orders and checking that your answers agree.
- 58. In the following integrals sketch the integration regions and then evaluate the integrals. Next interchange the order of integrations and re-evaluate.
 - (a) $\int_0^1 \left(\int_x^1 xy \, dy \right) dx,$
 - (b) $\int_0^{\pi/2} \left(\int_0^{\cos \theta} \cos \theta \, dr \right) d\theta,$
 - (c) $\int_0^1 \left(\int_1^{2-y} (x+y)^2 \, dx \right) dy.$

59. Exam question 2010 (Section A) Q4: Calculate the double integral

$$\iint_A (|x| + |y|) \, dx \, dy.$$

Problems: page 10

where A is the region defined by $|x| + |y| \le 1$.

60. Exam question 2011 (Section A) Q4: Change the order of integration in the double integral

$$\int_{0}^{2} \int_{x}^{2x} f(x,y) \, dy \, dx \, .$$

61. Exam question May 2017 (Section A): A solid cylinder ${\cal C}$ of radius 1 and height 1 is defined by

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ 0 \le z \le 1\}.$$

Show that the paraboloid $P=\{(x,y,z)\in\mathbb{R}^3:z=x^2+y^2\}$ cuts C into two pieces of equal volume.

62. Compute the iterated integral

$$\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \, dx \, .$$

Now reverse the order of integrations and re-evaluate. Why doesn't your answer contradict Fubini's theorem? (Hints: for the first integral, with respect to y, it might help to aim at something that can be integrated by parts using $\frac{d}{dy}\left(\frac{1}{x^2+y^2}\right) = -\frac{2y}{(x^2+y^2)^2}$; and in answering to the last part of the question, the fact that $\int_0^1 \left|\frac{x^2-y^2}{(x^2+y^2)^2}\right| dy \ge \int_0^x \frac{x^2-y^2}{(x^2+y^2)^2} dy$ could be useful.)

- 63. Let B be the region bounded by the five planes $x=0,\,y=0,\,z=0,\,x+y=1,$ and z=x+y.
 - (a) Find the volume of B.
 - (b) Evaluate $\int_B x \, dV$.
 - (c) Evaluate $\int_B y \, dV$.
- 64. A function f(x, y) is defined by

$$f(x,y) = \begin{cases} 1 & \text{if } -1 < x - y < 0 \\ -1 & \text{if } 0 < x - y < 1 \\ 0 & \text{otherwise} \,. \end{cases}$$

Compute $\int_0^\infty \left(\int_{-\infty}^\infty f(x,y) \, dx \right) dy$ and also $\int_{-\infty}^\infty \left(\int_0^\infty f(x,y) \, dy \right) dx$ (for the second case it might help to draw a picture). Comment on your two answers – why does Fubini fail?

65. A function f(x, y) is defined by

$$f(x,y) = \begin{cases} 2^{2(n+1)} & \text{if } 2^{-(n+1)} < x < 2^{-n}, \quad 2^{-(n+1)} < y < 2^{-n} \\ -2^{2n+3} & \text{if } 2^{-(n+1)} < x < 2^{-n}, \quad 2^{-(n+2)} < y < 2^{-(n+1)} \\ 0 & \text{otherwise} \,, \end{cases}$$

Problems: page 11

for $n \in \mathbb{Z}_{\geq 0} = \{0, 1, 2, \ldots\}.$

Compute $\int_0^1 \int_0^1 f(x,y) dx dy$, and $\int_0^1 \int_0^1 f(x,y) dy dx$. Does this contradict Fubini's theorem?

66. Write the line integral

$$\int_C xdx + ydy + (xz - y)dz$$

in the form $\int_C \mathbf{v} \cdot d\mathbf{x}$ for a suitable vector field $\mathbf{v}(\mathbf{x})$, and compute its value when C is the curve given by $\mathbf{x}(t) = t^2 \, \mathbf{e_1} + 2t \, \mathbf{e_2} + 4t^3 \, \mathbf{e_3}$ with $0 \le t \le 1$.

- 67. Evaluate $\int_{\sigma} \mathbf{F} \cdot d\mathbf{x}$, where $\mathbf{F} = y \mathbf{e_1} + 2x \mathbf{e_2} + y \mathbf{e_3}$ and the path σ is given by $\mathbf{x}(t) = t \mathbf{e_1} + t^2 \mathbf{e_2} + t^3 \mathbf{e_3}$, $0 \le t \le 1$.
- 68. Let $\underline{A}(\underline{x})$ be the vector field $\underline{A}(x,y,z) = x \underline{e}_1 + y \underline{e}_2 + z \underline{e}_3$.
 - (a) Compute the line integral $\int_C \underline{A} \cdot d\underline{x}$ where C is the straight line from the origin to the point (1,1,1).
 - (b) Show (by finding f) that the vector field \underline{A} from part (a) is equal to $\nabla f(\underline{x})$ for some scalar field f, and that your answer to part (a) is equal to f(1,1,1) f(0,0,0).
- 69. Show that the result from question 68 applies in general: if the vector field $\underline{v}(\underline{x})$ in \mathbb{R}^n is the gradient of a scalar field $f(\underline{x})$, so that $\underline{v} = \nabla f$, and if C is a curve in \mathbb{R}^n running from $\underline{x} = \underline{a}$ to $\underline{x} = \underline{b}$, then $\int_C \underline{v} \cdot d\underline{x} = f(\underline{b}) f(\underline{a})$. (Hint: use the chain rule.)
- 70. Use the result from question 69 to evaluate $\int_C 2xyzdx + x^2zdy + x^2ydz$, where C is any regular curve connecting (1,1,1) to (1,2,4).
- 71. Compute the surface integral, $\int_S \mathbf{F} \cdot d\mathbf{A}$, of the vector field $\mathbf{F} = (3x^2, -2yx, 8)$ over the surface given by the plane z = 2x y with $0 \le x \le 2$, $0 \le y \le 2$,
 - (a) using method 2 from lectures,
 - (b) using method 1 from lectures.
- 72. Let $\mathbf{F}(x,y,z)=(z,x,y)$, and S be the part of the surface of the sphere $x^2+y^2+(z-1)^2=r^2$ above the plane z=0. Assume that r>1 so that the boundary C of S, where S intersects the plane z=0, is non-empty.
 - (a) Compute the line integral $\oint_C \mathbf{F} \cdot d\mathbf{x}$.
 - (b) By parameterising the surface S with spherical coordinates centred on the point (0,0,1), compute the surface integral of the curl of \mathbf{F} , $\int_S \nabla \times \mathbf{F} \cdot d\mathbf{A}$.

73. Let $\underline{A}(\underline{x})$ be the vector field $\underline{A}(x,y,z) = z\,\underline{e}_1 + x\,\underline{e}_2 + y\,\underline{e}_3$, C be the circle in the x,y-plane of radius r centred on the origin, and S the disk in the x,y-plane whose boundary is C.

- (a) Compute the line integral $\oint_C \underline{A} \cdot d\underline{x}$.
- (b) Compute the surface integral of the curl of \underline{A} , $\int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{A}$.
- 74. Let $\underline{A}(\underline{x})$ be the vector field $\underline{A}(x,y,z)=z\,\underline{e}_1+x\,\underline{e}_2+y\,\underline{e}_3$, C be the a by a square \underline{abcd} in the y,z-plane with vertices $\underline{a}=\underline{0}$, $\underline{b}=a\,\underline{e}_2$, $\underline{c}=a\,\underline{e}_2+a\,\underline{e}_3$ and $\underline{d}=a\,\underline{e}_3$, and S be the region of the y,z-plane bounded by C.
 - (a) Compute the line integral $\oint_C \underline{A} \cdot d\underline{x}$.
 - (b) Compute the surface integral of the curl of \underline{A} , $\int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{A}$.
- 75. Based on exam question May 2015 (Section A) Q5 (which didn't contain part (b)):
 - (a) Calculate $\int_V (\underline{\nabla} \cdot \underline{U}) \, dV$ where V is the solid cube with faces $x=\pm 1,\,y=\pm 1$ and $z=\pm 1$ and

$$\underline{U}(x, y, z) = (x y^2, y x^2, z).$$

- (b) Calculate $\int_S \underline{U} \cdot d\underline{A}$, where S is the surface of V.
- 76. For a simple closed curve C in the (x,y)-plane, show by Green's theorem that the area enclosed is $A=\frac{1}{2}\oint_C (xdy-ydx)$. (Note, 'simple' means that C does not cross itself, which means that it encloses a well-defined area A.)
- 77. Evaluate $\oint \mathbf{F} \cdot d\mathbf{x}$ around the circle $x^2 + y^2 + 2x = 0$, where $\mathbf{F} = y\mathbf{e_1} x\mathbf{e_2}$, both directly and by using Green's theorem in the plane.
- 78. Evaluate $\oint_C 2xdy 3ydx$ around the square with vertices at (x,y) = (0,2), (2,0), (-2,0) and (0,-2).
- 79. Let \underline{v} be the radial vector field $\underline{v}(\underline{x}) = \underline{x}$.
 - (a) Compute $l_1=\int_{C_1}\underline{v}\cdot d\underline{x}$, where C_1 is the straight-line contour from the origin to the point (2,0,0).
 - (b) Compute $l_2=\int_{C_2}\underline{v}\cdot d\underline{x}$, where C_2 is the semi-circular contour from the origin to the point (2,0,0) defined by $0\leq x\leq 2,$ $y=+\sqrt{1-(x-1)^2}$, z=0. [It may help to start by sketching C_2 , and then to parameterize it as $\underline{x}(t)=(1-\cos t,\sin t,0)$ with $0\leq t\leq \pi$.]
 - (c) You should have found that $l_1 = l_2$. Explain this result using Stokes' theorem.

80. Integrate curl \mathbf{F} , where $\mathbf{F}=3y\mathbf{e_1}-xz\mathbf{e_2}+yz^2\mathbf{e_3}$, over the portion S of the surface $2z=x^2+y^2$ below the plane z=2, both directly and by using Stokes' theorem. Take the area elements of S to point outwards, so that their z components are negative.

Problems: page 13

- 81. The paraboloid of equation $z=x^2+y^2$ intersects the plane z=y in a curve C. Calculate $\oint_C \mathbf{v} \cdot d\mathbf{x}$ for $\mathbf{v}=2z\mathbf{e_1}+x\mathbf{e_2}+y\mathbf{e_3}$ using Stokes' theorem. Check your answer by evaluating the line integral directly.
- 82. For an open surface S with boundary C, show that $2\int_S \mathbf{u} \cdot d\mathbf{A} = \oint_C (\mathbf{u} \times \mathbf{x}) \cdot d\mathbf{x}$, where \mathbf{u} is a fixed vector.
- 83. Verify Stokes' theorem for the upper hemispherical surface $S: z = \sqrt{1 x^2 y^2}, z \ge 0$, with **F** equal to the radial vector field, i.e. $\mathbf{F}(x, y, z) = x\mathbf{e_1} + y\mathbf{e_2} + z\mathbf{e_3}$.
- 84. Let $\mathbf{F} = ye^z \mathbf{e_1} + xe^z \mathbf{e_2} + xye^z \mathbf{e_3}$. Show that the integral of \mathbf{F} around a regular closed curve C that is the boundary of a surface S is zero.
- 85. By applying Stokes' theorem to the vector field $\mathbf{G} = |\mathbf{x}|^2 \mathbf{a}$ (with \mathbf{a} a constant vector), or otherwise, show that $\int_S \mathbf{x} \times d\mathbf{A} = -\frac{1}{2} \oint_C |\mathbf{x}|^2 d\mathbf{x}$, where S is the area bounded by the closed curve C.
- 86. Exam question June 2002 (Section B): Evaluate the line integral $I = \int_C \mathbf{F} \cdot d\mathbf{x}$ where $\mathbf{F}(\mathbf{x}) = 2y\mathbf{e_1} + z\mathbf{e_2} + 3y\mathbf{e_3}$ and the path C is the intersection of the surface of equation $x^2 + y^2 + z^2 = 4z$ and the surface of equation z = x + 2, taken in a clockwise direction to an observer at the origin. A picture of the path is required, as well as full justifications of the theoretical results you might use.
- 87. Exam question 2012 (Section B) Q9(a)(ii): Use Stokes' theorem to calculate the line integral $\oint_C y dx + z dy + x dz$, where C is the intersection of the surfaces $x^2 + y^2 + z^2 = a^2$ and x + y + z = 0 and is orientated anticlockwise when viewed from above. Suggestion: Instead of one of the two standard methods for surface integrals, just use $d\mathbf{A} = \frac{\nabla f}{|\nabla f|} dA$ and think about how the surfaces intersect.
- 88. Consider the vector field $\mathbf{F} = y \mathbf{e_1} + (z-x) \mathbf{e_2} + (x^3+y) \mathbf{e_3}$. Evaluate $\int_S (\underline{\nabla} \times \mathbf{F}) \cdot d\mathbf{A}$ explicitly, where
 - (i) S is the disk $x^2 + y^2 \le 4$, z = 1,
 - (ii) S is the surface of a paraboloid $x^2 + y^2 = 5 z$ above the plane z = 1.

Verify that each of these agrees with Stokes' theorem by considering the integral of F around each bounding contour.

89. Evaluate the line integral

$$\int_{P_1}^{P_2} yz \, dx + xz \, dy + (xy + z^2) \, dz$$

Problems: page 14

from P_1 with co-ordinates (1,0,0) to P_2 at (1,0,1) explicitly,

- (a) along a straight line in the z-direction, and
- (b) along a helical path parametrised by $\mathbf{x}(t) = \mathbf{e_1} \cos t + \mathbf{e_2} \sin t + \mathbf{e_3} t/2\pi$, where t varies along the path.

Compare these two results – does this suggest that there might be a general formula for the integral from $P_1 = (1,0,0)$ to any point P with coordinates (x,y,z)? Check your answer when $P = P_2$.

90. State a necessary and sufficient condition for a vector field \mathbf{F} to be expressible in the form $\mathbf{F} = \nabla \phi$ in some simply-connected region. The scalar field ϕ is called a *scalar potential*, though sometimes the opposite sign is used.

Determine whether the following vector fields are expressible in this form

- (i) $(\mathbf{a} \cdot \mathbf{x}) \mathbf{x}$, (ii) $(\mathbf{a} \cdot \mathbf{x}) \mathbf{a}$, (iii) $(\mathbf{a} \cdot \mathbf{a}) \mathbf{x}$, (iv) $\mathbf{a} \times \mathbf{x}$, (v) $\mathbf{a} \times (\mathbf{a} \times \mathbf{x})$, and find the vector fields, \mathbf{F} , for which the corresponding potentials are
- (a) $\frac{1}{2}(\mathbf{a} \cdot \mathbf{x})^2$, (b) $\frac{1}{2}a^2|\mathbf{x}|^2 \frac{1}{2}(\mathbf{a} \cdot \mathbf{x})^2$.

Here a is a constant non-zero vector, and $a^2 = |\mathbf{a}|^2$.

- 91. Exam question June 2002 (Section B):
 - (a) State the conditions for the line integral $\int_c \mathbf{F} \cdot d\mathbf{x}$ from \mathbf{x}_0 to \mathbf{x}_1 to be independent of the path connecting these two points.
 - (b) Determine the value of the line integral $\int_c \mathbf{F} \cdot d\mathbf{x}$ where

$$\mathbf{F} = (e^{-y} - ze^{-x})\mathbf{e_1} + (e^{-z} - xe^{-y})\mathbf{e_2} + (e^{-x} - ye^{-z})\mathbf{e_3},$$

and C is the path

$$x = \frac{1}{\ln 2} \ln(1+p), \quad y = \sin \frac{\pi p}{2}, \quad z = \frac{1-e^p}{1-e},$$

with the parameter p in the range $0 \le p \le 1$, from (0, 0, 0) to (1, 1, 1).

92. If $\mathbf{F} = x \, \mathbf{e_1} + y \, \mathbf{e_2}$, calculate $\int_S \mathbf{F} \cdot \mathbf{dA}$, where S is the part of the surface $z = 9 - x^2 - y^2$ that is above the x,y plane, by applying the divergence theorem to the volume bounded by the surface and the piece it cuts out of the x,y plane.

Hint: what is $\mathbf{F} \cdot d\mathbf{A}$ on the x,y plane?

- 93. Evaluate each of the integrals below as **either** a volume integral **or** a surface integral, whichever is easier:
 - (a) $\int_S \mathbf{x} \cdot d\mathbf{A}$ over the whole surface of a cylinder bounded by $x^2 + y^2 = R^2$, z = 0 and z = L. Note that \mathbf{x} means $x \mathbf{e_1} + y \mathbf{e_2} + z \mathbf{e_3}$.

- (b) $\int_S \mathbf{F} \cdot \mathbf{dA}$, where $\mathbf{F} = x \cos^2 y \, \mathbf{e_1} + xz \, \mathbf{e_2} + z \sin^2 y \, \mathbf{e_3}$, over the surface of a sphere with centre at the origin and radius π .
- (c) $\int_V \underline{\nabla} \cdot \mathbf{F} \, dV$, where $\mathbf{F} = \sqrt{x^2 + y^2} (x \, \mathbf{e_1} + y \, \mathbf{e_2})$, over the three-dimensional volume $x^2 + y^2 \le R^2$, $0 \le z \le L$.
- 94. Suppose the vector field \mathbf{F} is everywhere tangent to the closed surface S, which encloses the volume V. Prove that

$$\int_{V} \underline{\nabla} \cdot \mathbf{F} \, dV = 0.$$

95. Exam question June 2003 (Section A): Evaluate $\int_S \mathbf{B}(\mathbf{x}) \cdot d\mathbf{A}$, where

$$\mathbf{B}(\mathbf{x}) = (8x + \alpha y - z) \mathbf{e_1} + (x + 2y + \beta z) \mathbf{e_2} + (\gamma x + y - z) \mathbf{e_3}$$

and S is the surface of the sphere having centre at (α, β, γ) and radius γ , where $\alpha, \beta \in \mathbb{R}$, and γ is an arbitrary positive real number.

- 96. Let A be the interior of the circle of unit radius centred on the origin. Evaluate $\iint_A \exp(x^2 + y^2) dx dy$ by making a change of variables to polar co-ordinates.
- 97. Let A be the region $0 \le y \le x$ and $0 \le x \le 1$. Evaluate $\int_A (x+y) \, dx \, dy$ by making the change of variables x = u + v, y = u v. Check your answer by evaluating the integral directly.
- 98. The expressions below are called Green's first and second identities. Derive them from the divergence theorem with $\mathbf{F} = f \underline{\nabla} g$ or $g \underline{\nabla} f$ as appropriate, where f and g are differentiable functions:

$$\begin{split} \int_{V} \left(f \underline{\nabla}^2 g + \underline{\nabla} f \cdot \underline{\nabla} g \right) dV &= \int_{S} \left(f \underline{\nabla} g \right) \cdot \mathbf{dA} \ , \\ \int_{V} \left(f \underline{\nabla}^2 g - g \underline{\nabla}^2 f \right) dV &= \int_{S} \left(f \underline{\nabla} g - g \underline{\nabla} f \right) \cdot \mathbf{dA} \ . \end{split}$$

where the volume V is that enclosed by the closed surface S.

99. A gas holder has the form of a vertical cylinder of radius R and height H with hemispherical top also of radius R. The density, ρ , (i.e. the mass per unit volume) of the gas inside varies with height z above the base according to the relation $\rho = C \exp(-z)$, where C is a constant. Calculate the total mass of gas in the holder, taking care to define any coordinate system used and the range of the corresponding variables.

Problems: page 16

Use this result to find the integral of the field

$$\mathbf{F} = B z e^{-y} \mathbf{e_1} + C y e^{-z} \mathbf{e_2}$$

over the curved surface of the gas holder.

Hint: it may help to note first what the integral over the base of the holder is.

100. Exam question June 2001 (Section B): In electrostatic theory, Gauss' law states that the flux of an electrostatic (vector) field $\mathbf{E}(\mathbf{x})$ over some closed surface S is equal to the enclosed charge q divided by a constant ϵ_0 :

$$\int_{S} \mathbf{E}(\mathbf{x}) \cdot \mathbf{dA} = \frac{q}{\epsilon_0}.$$

If the electrostatic field is given by $\mathbf{E}(x,y) = \alpha x \mathbf{e_1} + \beta y \mathbf{e_2}$, use Gauss' law to find the total charge in the compact region bounded by the surface S consisting of S_1 , the curved portion of the half-cylinder $z = (R^2 - y^2)^{1/2}$ of length H; S_2 and S_3 the two semi-circular plane end pieces; and S_4 , the rectangular portion of the (x,y)-plane. (In equations, the relevant bounded region may be described by $z^2 + y^2 \leq R^2, z \geq 0, -\frac{H}{2} \leq x \leq \frac{H}{2}$). Express your result in terms of α, β, R and H.

- 101. Exam question June 2002 (Section A): In electrostatic theory, Gauss' law states that the flux of an electrostatic field $\mathbf{E}(\mathbf{x})$ over a closed surface S is given by the ratio of the enclosed charge q and a constant ϵ_0 . Calculate the electric charge enclosed in the ellipsoid of equation $x^2 + \frac{1}{2}y^2 + z^2 = 1$ in the presence of
 - (a) an electrostatic field $\mathbf{E}(\mathbf{x}) = yz\mathbf{e_1} + xz\mathbf{e_2} + xy\mathbf{e_3}$,
 - (b) an electrostatic field $\mathbf{E}(\mathbf{x}) = x\mathbf{e_1} + y\mathbf{e_2} + z\mathbf{e_3}$.