Recap: Where are we, structurally, in the organization of the course.

- So far: All about access... and what?
 - Recall what is an <u>access path</u>?

14: Two Phase Sort

CS347 Database Management

Recap: Where are we, structurally, in the organization of the course.

✓ Storage Management

Recap: We know...

- Where/how to place data on the disk,
 - 1. Row store: sorted rows in blocks
 - 2. Parallel partitioning
 - 3. Column store
 - 4. Key, value store
- How to get the data off the disk.
 - 1. B_____
 - 2. B_____
 - 3. B____

14: Two Phase Sort

CS347 Database Management

Next Section

- Given a [large] quantity of disk resident data i.e. | Data | > | Memory |
- How to implement database functions

Had a Peek: B+ trees

- Fat fanout. → shortens the tree height
- Primary index, leverages sorted data
 - → Sparse Index
 - → Shorten the tree

Why shorten the tree? Fewer accesses

14: Two Phase Sort

CS347 Database Management

5

Two Phase Multiway Merge Sort

a.k.a. External, Two Phase Sort

Objectives:

- External (of RAM) Algorithm
 - explicitly understand and incorporate movement of data into the algorithm
- The algorithm

Reading: Text 15.4.1

14: Two Phase Sort

CS347 Database Management

Reminder:

Simple I/O cost models – and how they fail

I/O models:

- Linear:
 - 1 average seek per block
 - n blocks, f(n) = cn, c = average seek time
- Affine:
 - seek first block,
 - weighted average of rotational latency + track to track seek time for each additional block
 - n block f(n) = c + c'(n-1)
- · and how they fail
 - buffering (hardware and software)
 - prefetch

14: Two Phase Sort

CS347 Database Management

Text & Class Cost Model

- B(R) number of blocks of relation R
- T(R) number of tuples [rows] in relation R

Count the number of blocks read

• Not yet: commonly, no cost for writing output.

Nested Loop, Merge Join and Sorting CS347

2

A word about notation

- text & class: B(R) and T(R)
- common in the literature
 - T(R) = |R| // number or rows/tuples
 - B(R) = ||R|| // number of blocks/pages

14: Two Phase Sort

CS347 Database Management

Merge-Sort (divide and conquer) that considers external storage

- Phase 1 == Divide
 - until done
 - · read file until memory full
 - sort that portion
 - write result in its own temp file
- Phase 2 == n-way Merge for n temp files
 - read 1 block of each temp file
 - until done
 - n-way merge to produce sorted block in an output buffer
 upon full output buffer, write to disk
 - if a temp file's block is exhausted, read another block

In how long? How large a file can we sort?

14: Two Phase Sort

CS347 Database Management

Two Phase External Sorting

• For all intents and purposes, sorting a file, f, bigger than available memory requires

-2 * B(f) I/O reads + 2 * B(f) I/O writes

14: Two Phase Sort

CS347 Database Management

Bottleneck is the Merge Phase

- Given RAM, M
- Can't have more [temporary] sorted chunks than B(M) 1, // number of page buffers + 1 for output
- How big is each chunk?

M

• So we can sort $\sim B(M) * M$

14: Two Phase Sor

CS347 Database Managemen

Suppose 4 GBytes of RAM

- 4 Kbyte pages [buffers]
- B(M) = 4GB/4KB =

14: Two Phase Sort

S347 Database Management