DIC L6: SPICE

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

- Simulation Program with Integrated Circuit Emphasis
 - Developed in 1970's at UC Berkeley
 - Many commercial versions are available.
 (For example, HSPICE)
- Initially, written in FORTRAN for punch-card machines
 - Circuit elements are called cards.
 - Compled description is called a SPICE deck.

Larry Nagel, the main author of SPICE (Google Images)

- Consider a simple problem.
 - What is the current?

- Of course, you can easily answer that $I = \frac{V_A}{R_1}$.
- But, how can we teach our computer to solve this problem?

- Elements: Resistors, capacitors, etc
 - A circuit is made by connecting the elements.
 - They can have multiple terminals.
 - A resistor has two terminals.
 - A diode has two terminals.

A MOSFET has three (or four) terminals.

- Terminal current
 - Conventionally, an in-coming current is regarded as a positive one.

- Node: A point to which multiple terminals are tied.
 - Usually, a dot is used to represent a node.
 - There is a special node, GND.

- How can we describe a circuit?
- Of course, we can draw a circuit schematic. What else?
- A netlist for this circuit looks like:

A netlist for this circuit looks like:

- Solve a simple problem by a numerical means.
 - Identifying the governing equation

- Our simple problem
 - Three equations:

Voltage source

$$V(out) - 0.0 = 1.0$$

$$I_{r1} = \frac{V(out)}{1000}$$
 Resistor

$$I_{va} + I_{r1} = 0$$
 KCL

- Solve a simple problem by a numerical means.
 - Identifying the governing equation

8.2. SPICE tutorial (1)

Meaning of characters

Letter	Unit	Magnitude	
а	atto	10 ⁻¹⁸	
f	fempto	10 ⁻¹⁵	
р	pico	10 ⁻¹²	
n	nano	10 ⁻⁹	
u	micro	10 ⁻⁶	
m	milli	10 ⁻³	
k	kilo	10 ³	
Х	mega	10 ⁶	
g	giga	10 ⁹	

			_	_
2	h	le	Q	つ
a	U	\Box	Ο.	

Letter	Element	Table 8.1	
R	Resistor	Table 0.1	
С	Capacitor		
<u>L</u>	Inductor		
K	Mutual Inductor		
V	Independent voltage	source	
<u> </u>	Independent current s	source	
М	MOSFET		
D	Diode		
Q	Bipolar transistor		
W	Lossy transmission li	ne	
X	Subcircuit		
E	Voltage-controlled vo	Itage source	
G	Voltage-controlled cu	rrent source	
H	Current-controlled vo		
F	Current-controlled current source		

8.2. SPICE tutorial (2)

- Example: RC circuit
 - We want to follow Figure 8.2 of our textbook. (Tested with SPICE3)

```
* rc.sp for SPICE3F5

Vin in 0 pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0 R1 in out 2k
C1 out 0 100f

.tran 20ps 1ns
.plot tran v(in) v(out)
.end
```

8.2. SPICE tutorial (3)

M element for MOSFET

Mname drain gate source body type

- + W=<width> L=<length>
- + AS=<area source> AD = <area drain>
- + PS=<perimeter source> PD=<perimeter drain>
 - Valid for NMOSFETs and PMOSFETs! (I made a mistake in Lecture5.)

8.2. SPICE tutorial (4)

- Example: DC analysis
 - We want to follow Figure 8.6 of our textbook. (Tested with SPICE3)
 - SPICE3 does not support the BSIM3 model.

```
* mosiv.sp for SPICE3F5
.include models 1p2mu.sp
Vgs g 0 0
Vds d 0 0
M1 d q 0 0 NMOS W=2.4 L=1.2
.dc Vds 0 5.0 0.05 Vqs 0 5.0 1.0
.print dc V(g) I(Vds)
. end
      GIST Lecture on October 1, 2019
```

8.2. SPICE tutorial (5)

- Example: Inverter
 - Calculate the voltage transfer curve. (Tested with SPICE3)

```
* inv.sp for SPICE3F5
.include models 1p2mu.sp
Vdd vdd 0 5.0
Vin a 0 0.0
M1 y a 0 0 NMOS W=2.4 L=1.2
M2 y a vdd vdd PMOS W=4.8 L=1.2
.dc Vin 0 5 0.01
.print dc V(a) V(y)
. end
```

Homework#2

- Report on the previous three examples
 - Run those examples.
 - Show the simulation results.
- Due: October 8, 2019 (Before the lecture starts)
 - Upload your Homework to our GitHub repository.