

planetmath.org

Math for the people, by the people.

an integral domain is lcm iff it is gcd

 ${\bf Canonical\ name} \quad {\bf An Integral Domain Is Lcm Iff It Is Gcd}$

Date of creation 2013-03-22 18:19:38 Last modified on 2013-03-22 18:19:38

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771) Entry type Derivation Classification msc 13G05 **Proposition 1.** Let D be an integral domain. Then D is a lcm domain iff it is a gcd domain.

This is an immediate consequence of the following

Proposition 2. Let D be an integral domain and $a, b \in D$. Then the following are equivalent:

- 1. a, b have an lcm,
- 2. for any $r \in D$, ra, rb have a qcd.

Proof. For arbitrary $x, y \in D$, denote LCM(x, y) and GCD(x, y) the sets of all lcm's and all gcd's of x and y, respectively.

 $(1 \Rightarrow 2)$. Let $c \in LCM(a, b)$. Then c = ax = by, for some $x, y \in D$. For any $r \in D$, since rab is a multiple of a and b, there is a $d \in D$ such that rab = cd. We claim that $d \in GCD(ra, rb)$. There are two steps: showing that d is a common divisor of ra and rb, and that any common divisor of ra and rb is a divisor of d.

- 1. Since c = ax, the equation rab = cd = axd reduces to rb = xd, so d divides rb. Similarly, ra = yd, so d is a common divisor of ra and rb.
- 2. Next, let t be any common divisor of ra and rb, say ra = ut and rb = vt for some $u, v \in D$. Then uvt = rav = rbu, so that z := av = bu is a multiple of both a and b, and hence is a multiple of c, say z = cw for some $w \in D$. Then the equation axw = cw = z = av reduces to xw = v. Multiplying both sides by t gives xwt = vt. Since vt = rb = xd, we have xd = xwt, or d = wt, so that d is a multiple of t.

As a result, $d \in GCD(ra, rb)$.

 $(2\Rightarrow 1)$. Suppose $k\in \mathrm{GCD}(a,b)$. Write $ki=a,\,kj=b$ for some $i,j\in D$. Set $\ell=kij$, so that $ab=k\ell$. We want to show that $\ell\in \mathrm{LCM}(a,b)$. First, notice that $\ell=aj=bi$, so that $a\mid \ell$ and $b\mid \ell$. Now, suppose $a\mid t$ and $b\mid t$, we want to show that $\ell\mid t$ as well. Write t=ax=by. Then ta=aby and tb=abx, so that $ab\mid ta$ and $ab\mid tb$. Since $\mathrm{GCD}(ta,tb)\neq\varnothing$, we have $tk\in \mathrm{GCD}(ta,tb)$ (see http://planetmath.org/PropertiesOfAGCDDomainproof of this here), implying $ab\mid tk$. In other words tk=abz for some $z\in D$. As a result, $tk=abz=k\ell z$, or $t=\ell z$. In other words, $\ell\mid t$, as desired.

Since the first statement is equivalent to D being an lcm domain, and the second statement is equivalent to D being a gcd domain, Proposition 1 follows.

Another way of stating Proposition 1 is the following: let L be the set of equivalence classes on the integral domain D, where $a \sim b$ iff a and b are associates. Partial order L so that $[a] \leq [b]$ iff ac = b for some $c \in D$. Then L is a semilattice (upper or lower) implies that L is a lattice.