1. Exercices « de base »

Exercice 1.1 On considère l'équation différentielle $x^2y'=y$ (E).

- (1) Trouver les solutions de (E) sur $]-\infty,0[$ et sur $]0,+\infty[$.
- (2) Trouver toutes les solutions de (E) sur \mathbb{R} .

Exercice 1.2 Chercher toutes les solutions de $(x+1)y'' - y' - xy = e^{-x}$ (remarquer que $x \mapsto e^x$ est solution de l'équation homogène.

Exercice 1.3 Intégrer les équations différentielles suivantes :

- (1) 2x(1-x)y' + (1-2x)y = 1.
- (2) $y'' 2y' + 2y = xe^x$
- (3) $y'' + y = \cot gx$.
- (4) $y'' y' e^{2x}y = e^{3x}$ (poser $u = e^x$).

Exercice 1.4 Chercher les solutions développables en série entière des équations suivantes et résoudre complètement ces équations.

- $(1) 4xy'' 2y' + 9x^2y = 0.$
- (2) xy'' + 2y' xy = 0.

ÉQUATIONS LINÉAIRES DU SECOND ORDRE

Exercice 1.5 [Préambule] Soient $a_1, \ldots, a_n : I \to \mathbb{R}$ des fonctions continues. Montrer que toute solution non-nulle de l'équation $y^{(n)} + a_{n-1}(t)y^{(n-1)} + \cdots + a_0(t)y = 0$ a ses zéros isolés. (Si $t_0 \in I$ et $y(t_0) = 0$, utiliser une formule de Taylor en t_0)

Exercice 1.6 On considère l'équation différentielle z'' + a(x)z' + b(x)z = 0 à coefficients continus sur un intervalle I.

- (1) Montrer qu'en posant z(x) = u(x)y(x) on peut se ramener à étudier une équation différentielle (E) de la forme y'' + py = 0 où p est une fonction continue sur I
- (2) On suppose que p est continue sur \mathbb{R} à valeurs dans $]0,+\infty[$. Montrer que toute solution de y'' + py = 0 s'annule au moins une fois sur \mathbb{R} .
- (3) Soit z une solution de l'équation différentielle z'' pz = 0 non identiquement nulle. Montrer que z s'annule au plus une fois.
- (4) Soient f, g deux solutions indépendantes de (E). Si α et β (avec $\alpha < \beta$) sont deux zéros consécutifs de f (cf. exercice 1), alors il existe $\gamma \in [\alpha, \beta]$ tel que $g(\gamma) = 0$.
- (5) On suppose désormais que l'on a deux équations du second ordre

$$(E_1): y'' + p(t)y = 0$$

$$(E_2): y'' + q(t)y = 0$$

où $p \leq q$ sont deux fonctions continues sur un intervalle I. On considère f (resp. g) une solution non-identiquement nulle de (E_1) (resp. de E_2). Montrer que si α et β sont deux zéros consécutifs de f, alors il existe $\gamma \in [\alpha, \beta]$ tel que $g(\gamma) = 0$.

- (6) Comparaison à un cas classique Soit l'équation y'' + q(t)y = 0, et f une solution nonidentiquement nulle de cette équation. Montrer que

 - $-\sin q(t) \le M^2$, alors deux zéros consécutifs de f sont distants d'au moins π/M ; $-\sin q(t) \ge M^2$, alors dans tout intervalle I de longueur π/M , f admet au moins un zéro dans I.

Exercice 1.7 Soit p une fonctions continue et intégrable sur \mathbb{R}^+ . Montrer que l'équation différentielle y'' + p(x)y = 0 admet des solutions non bornées. (Raisonner par l'absurde en utilisant le Wronskien).

1

AUTRES EXERCICES

Exercice 1.8 Soit f une application de classe \mathcal{C}^1 sur \mathbb{R} . On suppose que $f(x) + f'(x) \to 0$ quand $x \to +\infty$. Montrer que $f(x) \to 0$ quand $x \to +\infty$.

APPLICATIONS

Exercice 1.9 On considère le système de trois ressorts de raideur k et deux masses suivant La

FIGURE 1. Ressorts couplés.

loi fondamentale de la mécanique montre que si y_1 et y_2 désignent les élongations des deux premiers ressorts on a

$$-my_1" - ky_1 - k(y_1 - y_2) = 0 (1)$$

$$k(y_1 - y_2) - my_2" - ky_2 = 0. (2)$$

- (1) Écrire ce système d'équations différentielle sous forme d'un sytème différentiel d'ordre 1.
- (2) Déterminer les valeurs propres de la matrice 4×4 associée dans le cas où k = 1 et m = 1.
- (3) On se donne pour condition initiale $y_1(0) = \alpha$, $y_1'(0) = 0$. $y_2(0) = 0$ et $y_2'(0) = 0$. Étudier le mouvement.
- (4) On impose maintenant un mouvement sinusoïdal à l'extrémité précédemment fixe du « premier »ressort. Étudier le mouvement.

Exercice 1.10 [Équation logistique] On considère l'équation différentielle

$$y' = ay(m - y). (3)$$

où a et m sont des constantes positives.

- (1) Montrer que les solutions maximales de cette équation sont globales.
- (2) Montrer, sans résoudre l'équation, que si $y(0) \in]0, m[$ on a $y(t) \in]0, m[$ pour tout $t \in \mathbb{R}$.
- (3) Montrer que si y(0) > m la solution y(t) est décroissante et $y(t) \to m$ quand t tend vers $+\infty$.
- (4) Résoudre l'équation en posant $z(t) = \frac{1}{y(t)}$.

Illustrer cet exemple à l'aide de votre logiciel préféré.