

Department of Computer Science

# CS301 - Theory of Automata FALL 2018

Office

Instructor Name: Noshaba, Nasir

Email address: noshaba.nasir@nu.edu.pk

TA Name (if any): Email address: -

Office Location/Number: M107, Opposite Lab 4

Location/Number: M107, Opposite Lab 4

Office Hours: TBA Office Hours: -

**Course Information** 

Program: BS Credit Hours: 3 Type: Core

**Pre-requisites:** CS211 Discrete Structures

Course Website: <a href="https://sites.google.com/view/cs301-toa-fall2018">https://sites.google.com/view/cs301-toa-fall2018</a>

Class Meeting Time: Section C: M, W 1230 - 1400, Section D: T ,T 0930-1100,

Section E: M, W 1400 - 1530

Class Venue: Section C & E: CS-06 Section D: CS-08

# **Course Description/Objectives/Goals:**

| Course Learning Outcomes (CLOs):                                                                                                                                               |        |          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--|--|
| At the end of the course students will be able to:                                                                                                                             | Domain | BT Level |  |  |
| Explain and manipulate the different concepts in automata theory and formal languages such as formal proofs, automata, regular expressions, Turing machines etc;               |        |          |  |  |
| Prove properties of languages, grammars and automata with rigorously formal mathematical methods                                                                               |        |          |  |  |
| Design of automata, RE and CFG                                                                                                                                                 |        |          |  |  |
| Transform between equivalent NFAs, DFAs and REs                                                                                                                                |        |          |  |  |
| Define Turing machines performing simple tasks.                                                                                                                                |        |          |  |  |
| Differentiate and manipulate formal descriptions of languages, automata and grammars with focus on regular and context-free languages, finite automata and regular expressions |        |          |  |  |

### **Course Textbook**

1. John C. Martin. *Introduction to Languages and the Theory of Computation*. Fourth Edition. 2003. McGraw-Hill. ISBN: 0-07-115468-X (International Students Edition).

#### Additional references and books related to the course:

- 1. John E. Hopcroft. Jeffery D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. 1979. Addison-Wesley. ISBN 0-201-02988
- 2. Michael Sipser. *Introduction to the Theory of Computation.* 1997. PWS Publishing Company.
- 3. T.A. Sudkamp: Languages and Machines (Addison-Wesley, 2<sup>nd</sup> Edition, 1997)
- 4. Harry R. Lewis, Christos H. Papadimitriou *Elements of The Theory of Computation*. Second Edition. 1998.
- 5. Daniel I. A. Cohen. *Introduction to Computer Theory*. Second Edition. 1997. John Wiley & Sons. ISBN: 0-471-13772-3.

## **Tentative Weekly Schedule**

|      |                                                                                                          | -,       | <u>~</u>                 |
|------|----------------------------------------------------------------------------------------------------------|----------|--------------------------|
| Week | Topics to be covered                                                                                     | Readings | Assignments/<br>Projects |
| 1    | <ul><li>Introduction</li><li>Language Definition<br/>Preliminaries</li></ul>                             |          |                          |
| 2    | <ul> <li>Regular Languages<br/>(Focus of DFA)</li> </ul>                                                 |          | Assignment 1             |
| 3    | NFA, NFA null                                                                                            |          |                          |
| 4    | <ul> <li>Closure Properties of FA</li> <li>Regular Expressions</li> <li>Kleene Theorem Part 1</li> </ul> |          |                          |
| 5    | <ul><li>Kleene Theorem part 2</li><li>Minimal DFA</li></ul>                                              |          |                          |
| 6    | <ul><li>Pumping lemma of<br/>Non RL</li><li>Intro to CFL</li></ul>                                       |          |                          |
| 7    | <ul> <li>PDA, (deterministic<br/>and non-<br/>deterministic)</li> </ul>                                  |          | Assignment 2             |

| 8  | • CNF                                                                         |              |
|----|-------------------------------------------------------------------------------|--------------|
|    | <ul> <li>CYK parser</li> </ul>                                                |              |
| 9  | • LL(1) grammar                                                               |              |
|    | <ul> <li>Top down parser</li> </ul>                                           |              |
| 10 | <ul> <li>Closure Properties of<br/>CFG</li> </ul>                             |              |
|    | <ul> <li>Pumping lemma for<br/>CFG</li> </ul>                                 |              |
| 11 | <ul> <li>Turing Machines</li> </ul>                                           | Assignment 3 |
| 12 | <ul> <li>Turing Machines</li> </ul>                                           |              |
| 13 | <ul><li>Turing Machines</li><li>Decidability</li></ul>                        |              |
| 14 | <ul><li>Context sensitive languages</li><li>Linear bounded automate</li></ul> |              |

# (Tentative) Grading Criteria

Assignments + Quizzes
 Mid-I + Mid II
 Final
 45%

## **Course Policies**

- 1. Cheating in any respect will be treated as a big crime and your cases will be forwarded to DC.
- 2. Eligibility to pass this course, students should have to get at least 50% marks and 80% attendance.
- 3. Hand written assignments should be submitted in due time. 25% marks will be deducted per day after due date.
- 4. Attendance will be marked at the start of class, late comer will be marked LATE.
- 5. Quizzes can be unannounced, covering contents of last two lectures.