

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year (2021-22)

Year: 2

Semester: IV

Program: B. Tech. (Computer Engg.)

Subject: Engineering Mathematics-IV

Date:

Max. Marks: 75

Time: 10: 30 am to 1:30 pm

Duration: 3 Hours

REGULAR EXAMINATION

ANSWER KEY

Question	1)	Max.
No.		Marks

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING (Autonomous College Affiliated to the University of Mumbai)
NAAC Accredited with "A" Grade (CGPA: 3.18)

1001X . 3.16)	
We have $M = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$	
For 3x3 matrix, we consider	
$A(A) = \times_2 A^2 + \times_1 A + \times_0 I$	
$\therefore A^{75} = \alpha_2 A^2 + \alpha_1 A + \alpha_2 I - \cdots = 0$	
Man find characteristic tools of A	
$\therefore 1R - \lambda II = 0$	disease in the second
$\Rightarrow \lambda^3 - S_1 \lambda^2 + S_2 \lambda - 1AI = 0 \qquad 2$	
Where S1 = 1, S2 = -1, S3 = A1 = -1	
$\lambda^{3} - \lambda^{2} - \lambda + 1 = 0$	9
$\Rightarrow \lambda_1 = -1, \lambda_2 = 1 = \lambda_3$	y 8
Nau replace A by A in C4' ()	r
$\Rightarrow \lambda^{75} = \times_2 \lambda^2 + \times_1 \lambda + \times_2 - \cdots $;
$Put \lambda_{1} = 1 \text{ in } eq^{2} \bigcirc$	
$\Rightarrow -1 = \times_2 - \times_1 + \times_2 - \cdots $	[7]
	[,1
Put $\lambda_2 = 1$ in $\epsilon \psi^{\circ}(3)$;
$\Rightarrow 1 \in \alpha_2 + \alpha_1 + \alpha_2 - \cdots = (5)$	
Now Since we get repeated root, so taking	20
derivative of ear (3) cont x of Pull x=1	
=> 75 x = 2 x 2 x + x 1	
=) 75 = 2 x2 + x1 6	
by solving (4), (5) & (6), we get	i i
	1
$\alpha_{0} = -37, \alpha_{1} = 1, \alpha_{2} = 37$	-
PW it in eg 1	û
$A^{75} = \alpha_2 A^2 + \alpha_1 A + \alpha_0 I = 37 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} + 37$	010
$A = \begin{bmatrix} 1 & 0 & 0 \\ 33 & 0 & 1 \end{bmatrix}$	1. 50 0 4 <i>[</i>

Q1 (a)

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai)

NAAC Accredited with "A" Grade (CGPA: 3.18)

	OR	
Q1 (a)	have $H = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$ $\Rightarrow \lambda^{3} - 5, \lambda^{2} + 5, \lambda - A = 0$ Where $5_{1} = 6$, $5_{2} = 11$, $ A = 6$ $\Rightarrow \lambda^{3} - 6\lambda^{2} + 11\lambda - 6 = 0$ $\lambda_{1} = 1, \lambda_{2} = 2, \lambda_{3} = 3$	[7]
	$X_{1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, X_{2} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, X_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$ $P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$ $P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$ $P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$ $P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING (Autonomous College Affiliated to the University of Mumbai)
NAAC Accredited with "A" Grade (CGPA: 3.18)

Q1 (b)	We have $A = \begin{bmatrix} 1 & 3 & 1 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 4 & 4 & 4 \end{bmatrix}$	[8]
--------	---	-----

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING (Autonomous College Affiliated to the University of Mumbai)
NAAC Accredited with "A" Grade (CGPA: 3.18)

	P	
	$H^{3} = \frac{1}{3} \left\{ \begin{bmatrix} 20 & 23 & 23 \\ 15 & 22 & 37 \end{bmatrix} - 4 \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix} \right\}$	
	$\therefore \vec{A} = \frac{1}{35} \begin{bmatrix} -4 & 11 & -5 \\ -1 & -6 & 25 \\ 6 & 1 & -10 \end{bmatrix}$	
	Nas we have $g = A^7 - 4A^6 - 20A^5 - 34A^4 - 4A^3 - 20A^2 - 33A + I$ divide B by Characteristic egg?	
,	$\vec{z} = \vec{\xi} B = (\vec{A} - 4\vec{A} - 20\vec{A} - 35\vec{I}) (\vec{A} + \vec{A}) + (2\vec{A} + \vec{I})$	
	Usigg Cayley-Hamilton thm	
	⇒ 2 = 2A+I	
3,.	$B = 2 \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \dots$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	We have Pof $f(x) = 3x^2$, $0 \le x \le 1$	
	5.000 P (XSa) = P (X>9) Also	
	$P(x>6) = 0.05$ $\Rightarrow 2P(x \le a) = 1$	
	$P(x \le a) = 1/2$	
Q2 (a)	$\frac{d}{3x^{2} dx + 1} = 0.05$	[7]
	$3 \left[\frac{x^3}{3} \right]_0^9 = 1/2$ $5 \left[\frac{x^3}{3} \right]_0^9 = 1/2$ $5 \left[\frac{x^3}{3} \right]_0^9 = 1/2$	
	$[a^3 - o] = \frac{1}{2}$: $b = 0.9850$	
	% = 0.783₹ 	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING
(Autonomous College Affiliated to the University of Mumbai)
NAAC Accredited with "A" Grade (CGPA: 3.18)

· Var (x) = 0.0375 OR	
$= \frac{3}{5} \left[1 - \circ \right] - \frac{9}{16}$	
$= 3 \left[\frac{x^5}{5} \right]_0^1 - \left(\frac{3}{4} \right)^2$	
$Var(X) = \int_{0}^{1} 3x^{4} dx - \{E(x)\}^{2}$	
$=\frac{3}{4}[1-0]=314$	
$= 3 \left[\frac{\chi^4}{4} \right]_0^1$	
$= \int_{0}^{1} 3x^{3} dx$	
$E(x) = \int x (3x^2) dx$	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

	lac have x : -2 -1 0 1 2 3	
	P(X:x): 0.1 K 02 2k 0.3 3k	
	$\sum_{i} \propto P(x) = 1$	
	> - 0.2 - K + 2 K + 0 6 + 9 K - 1	
	⇒ 10k+0.4 = 1	
Q2 (a)	: 1 = 0.06	[7]
	$P(x \ge 2) = P(x = 2) + P(x = 3)$ $= 0.3 + 3(0.06) = 0.48$	
	P(-2 < x < 2) = P(x = -1) + P(x = 0) + + P(x = 1)	
	(0 06) + (0 2) + (0 12)	
	= 0-25	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING (Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

13 P(x) = 0.3	
A Company of the Comp	
inobability that the businessman foes to hotel y	
Probability that the businessman fore to hotel Z is $f'(z) = 0.3$	*
Desame that A is the event of all the facility	
(A/x): 0.04, P(D/Y): 0.04 4 P(D/Z): 0.08	[8]
Probability that faulty plumbing is assigned to hotel.	[6]
P(z), P(A/z)	
P(x) P(A)x)+P(y)P(A)y)+P(z).P(A/z)	
= (0.3) (0.68)	
(62)(0.05) + (05)(0.04) + (0-3)(0.08)	
- 0 c24 0 o54	
P(2/A) = 0-4444	
Aiven n=5, P:0.5, 9:05, N=800	
(i) $P(x=3) = \frac{5}{2}(0.5)^3(0.5)^3 = 0.3125$	
" Total Ho. of familify would expect 3 boys = 0.3125x800	
(ii) $P(x=5) = 5c_5(0.5)(0.5) = 0.03125$	
	[7]
= 56 (0.5) ² (0.5) ³ + 56 (0.5) ² (0.5) ²	
Poted it . I smilling wheat The care of street	
(Probability that the basinessman foce to hotel 2 13 $f(z) = 0.5$ Assume that A is the event of all the faulty Planning: then Probability that faulty plumbing is assigned to hotel. 2 is $f(z) = 0.00$, $f(z) = f(z) = f(z)$. $f(z) = f(z) = f(z)$. P(x) $f(z) = f(z) = f(z) = f(z) = f(z) = f(z)$. P(x) $f(z) = f(z) = f(z) = f(z) = f(z) = f(z)$. (6 z) $f(z) = f(z) = f(z) = f(z) = f(z) = f(z)$. (6 z) $f(z) = f(z) = f(z) = f(z) = f(z) = f(z)$. (7) $f(z) = f(z) = f(z) = f(z) = f(z) = f(z)$. (9) $f(z) = f(z) = f(z) = f(z) = f(z) = f(z)$. (10) $f(z) = f(z) = f(z) = f(z) = f(z) = f(z)$. (11) $f(z) = f(z) = f(z) = f(z) = f(z) = f(z)$. (12) $f(z) = f(z) = f(z) = f(z) = f(z)$. (13) $f(z) = f(z) = f(z) = f(z) = f(z)$. (14) $f(z) = f(z) = f(z) = f(z) = f(z)$. (15) $f(z) = f(z) = f(z) = f(z) = f(z)$. (16) $f(z) = f(z) = f(z) = f(z) = f(z)$. (17) $f(z) = f(z) = f(z) = f(z)$. (18) $f(z) = f(z) = f(z) = f(z)$. (19) $f(z) = f(z) = f(z) = f(z)$. (19) $f(z) = f(z) = f(z)$. (20) $f(z) = f(z) = f(z)$. (3) $f(z) = f(z) = f(z)$. (3) $f(z) = f(z) = f(z)$.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

	1103 5 (x = 3) - 2 (x: 4) 4 1 1 x 2 2 3 4 1 1 x 2 2 3 4 1	
	=) - P(x=0)	
	1 5 (05)(05)	
	1 - 0.03125 = 0.96875 ·	
	: Total No al families would expect at least one boy	
	5 0.96875 x 800 = 775	
	OR	
	The mean no. of mistakes	
	= {90+84+36+36+15+6}	
	300	
	= <u>267</u> = 0.89	
	No. of Mistakes Probability Theoretical Freg?	
	0 (0.8g) = 0.411 × 300 \ 123	ē
	1 (0.89) = 0.365 x 300 % 110	
Q3 (a)	$\frac{-0.89}{2!} = 0.163 \qquad 0.163 \times 300 \% 49$	[7]
	$\frac{-0.89}{2} = 0.048 \qquad 0.048 \times 300 \ \% 14$	
	4 (0.89) = 0.011 0.011 × 300 2 3	
	5 -0.89 5 -0.002 0.002 x 300 \(\text{2} \) 0 1 = 0.002	
	6 (0.89) = 0.0003 0.0003 × 800	

Q3 (b)

Shri Vile Parle Kelayani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

[8]

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

$$Z_1 = \frac{470 - 400}{45} = 1.56$$

$$P(X \ge 470) = 0.5 - P(0 < Z < 1.56)$$

$$= 0.5 - 0.4406$$

$$= 0.0594$$

470 hours = 5.94 %.

$$P(385 < x < 415) = P(-0.33 < z < 0) + P(0 < x < 0.33)$$

$$= 0.1293 + 0.1293$$

$$= 0.2586$$

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

: Proportion of batteries with lifetime bet 385 & 415 hours = 25.86%

(iii)
$$P(x > x_4) = 0.05$$

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

	NAAC Accredited with "A" Grade (CGPA: 3.18)	
	$H_a: \mathcal{M}_A = \mathcal{M}_C$	
	H. " Un & Un	
	fiven that $\overline{\alpha}_1 = 170$; $\overline{\alpha}_2 = 178$	
	$n_1 = 400$; $n_2 = 800$	
	$\delta_1 = 6 \; ; \delta_2 = 8$	
	$Z = \pm \overline{\alpha} \overline{\alpha}_1 - \overline{\alpha}_2$	
	$\sqrt{\frac{{\delta_1}^2}{{\Omega_1}} + \frac{{\delta_2}^2}{{\Omega_2}}}$	
	$\Rightarrow z = \frac{170 - 178}{}$	
Q4 (a)	$\sqrt{\frac{G^2}{S_{co}} + \frac{8^2}{8\omega}}$	[7]
	Z = -19.4029	
	: 121 cat = 19.4029	
	Here problem belongs to one tailed &	
	Consider L.o.s as 5%.	
-	$ Z _{tab} = 1.64$	
	> 121 cal > 121 tab	
	:. Ho is rejected	

()

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

	: We can say that persons in Country B	
	ore toller than those of country. A.	
	OR	
Q4 (a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[7]
	$ \begin{array}{lll} 6 &=& 2.0948 \\ H_1 &=& \overline{x} = \overline{y} \\ & & & \\$	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

	2 t = 1.2174 tlcal = 1.2174	
	Onsider problem belongs toos to two treited 4	
	Los. as 5% : 11/tax = 2.16	
	i Itical < Itital	
	in Ho is accepted, as can say that diffusione	
	mean is not significant	
	H. Tatellizence is associated with dothing	
	The dissociated with clothing	
,	Intelligence Clothing	
	Foorly Clad hell clad	,
	$\frac{1200}{1200} = 100 \qquad \frac{200 \times 240}{1200} = 60$	
	Intelligent $\frac{400 \times 600}{1200} = 200$ $\frac{500 \times 600}{1200} = 250$ $\frac{300 \times 600}{1200} = 150$	
	1200 1200 = 150	
	Very Intelligent $\frac{400 \times 360}{1200} = 120$ $\frac{500 \times 360}{1200} = 150$ $\frac{300 \times 360}{1200} = 90$	
Q4 (b)	$\chi^{2}_{col} = \frac{(72-80)^{2}}{80} + \frac{(190-100)^{2}}{100} + \frac{(78-60)^{2}}{60} +$	[8]
	$\frac{(184-200)^2}{260} + \frac{(305-250)^2}{257} + \frac{(111-150)^2}{150} +$	
	$\frac{(144-120)^2}{120} + \frac{(105-150)^2}{150} + \frac{(111-90)^2}{90}$	
	120 150 90	=
	$X_{col}^{2} = 0.8 + 1 + 5.4 + 1.28 + 12.1 + 10.14$	
	+ 4-8 + 13.5 + 4.9	
	$\chi^2_{\text{col}} = 53.92$	
	D.F. = (r-1)(c-1) = (3-1)(3-1) = 4	
	Consider L.O.s as 51%	
	0	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

	$\chi^2_{tab} = 13.277$								
	$\Rightarrow \chi^2_{col} > \chi^2_{tas}$							v	
	=) Ho is rejected								
	: Intelligence is not associated with								
	Clothing.								
	Ma 1	have M	oxz =	57, 130	Ç _{2.}			3.7	
	Switch to $3x_1 + 5x_2 \le 15$ $5x_1 + 2x_2 \le 10$, x_1, x_1, x_2								
		Consido	r = lo.		$2 \leq 10$,	X 1, 31	230		
	Consider slack variable 51,52								
	Max $z = 5x_1 + 3x_2 + 0s_1 + 0s_2$ Switch to $5x_1 + 5x_2 + s_1 + 0s_4 = 15$								
4 C		5	>(1 + 2×	2 +05,+	5 ₄ =	10			
					2, ⁵ 1, ⁵ 2				
* ==		~~~?			3			Min Raho	
	C _B	XB			$\alpha_{\rm L}$				
Q5 (a)	0	51	15	3	5	1	0	12/3 = 2	[7]
	0	52	10	57	2	0	1	10/5 = 2	
ee:		Zj-G		-5	-3	0	0		
			Gj	5	3	0	O	Min Ratio	
	$\subset_{\mathcal{B}}$	\times^{8}	9	\propto	72		52		
	0	51	9	Ó	19/5	1	-315	45/19	
	5	\propto_1	2	1	2/5	0	1/5	10/2	
		Zj-Cj		0	1	0	1	Fig.	

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

OR								
	Max z = 225/19							
	$\alpha_1 = \frac{20}{19}, \alpha_2 = \frac{45}{19}$							
	., Hare.	all Zj-C	j ≥0	: Sol	15			
	Zj-(-1	0	0	5119	16/19		
	5 ×1	20/19	1	0	-2/19	Slag		
	3 22	45/19	0	1	5113	- 3		
	CB X8	$b_{\dot{a}}$	\propto_1	\sim_2	5,	S2		
1		cj						

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

	$Max z' = -12x_1 - 20x_2$							
	Subject to $6x_1 + 8x_2 - s_1 + A_1 = 100$							
	$7x_1 + 12x_2 - s_2 + A_2 = 120$							
	C_{j} -12 -20 0 0 $-M$ $-M$ Min Raho C_{g} 8 X_{g} α_{1} α_{2} β_{1} β_{2} β_{2} β_{1} β_{2} β_{3} β_{4} β_{5} β_{6} β_{7} β_{1} β_{2} β_{3} β_{4} β_{5} β_{7} β_{1} β_{2} β_{3} β_{4} β_{5} β_{7}							
	$-M$ A_2 120 7 $[12]$ 0 -1 0 1 $120 _{32} = 10$							
	2;-C; -13M+12 -20M+20 M M O O							
	G; -12 -20 0 0 -M Min Rahio							
	C_8 8 X_6 α_1 α_2 α_3 α_4 α_5 α_5 α_6 α_6 α_7 α_8 α_8 α_1 α_2 α_3 α_4 α_5 α_6 α_1 α_2 α_3 α_4 α_5 α_6 α_1 α_2 α_3 α_4 α_5 α_5 α_6 α_7 α_8 α_8 α_1 α_2 α_3 α_4 α_5 α_5 α_5 α_7 α_8 α_8 α_1 α_2 α_3 α_4 α_5 $\alpha_$							
	-M A1 90 179							
O5 (a)	-20 \propto_2 $\frac{10}{2112}$ $\frac{7}{112}$ 0_1 0 -1_{12} 0 17.1428							
Q5 (a)	Zj-C; -4M+1/3 0 M -2M+1/3 0	[7]						
	Cj = 12 - 20 0 0							
	C_{8} B X_{8} α_{1} α_{2} S_{1} S_{2}							
	$-12 \propto 15 \implies 10 -314 \cdot 112$							
	-70 ×2 514 0 1 7/36 -318							
	Zj-cj 0 0 114 312							
	Here all Zj-Cj = 0							
	optimum Sol is at $x_1 = 15$, $x_2 = 514$							
	. Man z' = -205							
	Min Z = 205							

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

		and an an estate of the first						
	\propto	J	T	12	xy			
	78	84	6084	7056	6552			
	36	5 1	1296	2601	1836			
	98	91	9604	8281	8918			
	25	60	625	3600	1200			
	75	68	5625	4624	5100			
	82	62	6724	3844	5084			
	90	86	8100	7396	7740			
	62	58	3844	3364	3596			
	65	53	4225	2809	3445 1833			
	39	47	1521	2209	The second second of the second			
	650	660	47648	45784	45604			
Q5 (b)	$r(\alpha,y) = \frac{1}{n} \sum xy - xy$ $\sqrt{\frac{1}{n}} \sum x^2 - x^2 \cdot \sqrt{\frac{1}{n}} \sum y^2 - y^2$ $= \frac{1}{10} (45604) - (65)(66)$ $\sqrt{\frac{47648}{10} - 65^2} \cdot \sqrt{\frac{45784}{10} - 66^2}$ $= 270.4$ $(23.2336)(14.9131)$ $\therefore r(x,y) = 0.7804$							
	()	3/	•	1				