# Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability

Research Manager: Chan-gi Pak, Ph.D.

Team Members: Wesley Li (FY08-09; RS)

Shun-fat Lung, Ph.D. (FY08-09; RS)

Claudia Herrera (FY09; RS)

*Christine Jutte, Ph.D. (FY09; rotation from RC)* 

Brian Griffin (FY09; rotation from RC)



Structural Dynamics Group, NASA Dryden Flight Research Center



#### Objectives

- Support the Aeronautics Research Mission Directorate (ARMD) guidelines at NASA's Dryden Flight Research Center.
  - Supported by Subsonic Fixed Wing (SFW) & Supersonics (SUP) projects under Fundamental Aeronautics (FA) Program
- Generating the basic object-oriented framework for a multi-disciplinary analysis and design optimization tool to be used in the preliminary design stage of a subsonic / transonic / supersonic / hypersonic aircraft.
  - ❖ Develop analysis modules for flutter optimization in <u>transonic flight regime</u>
    - ➤ No commercial MDO code exists in this speed regime
  - ❖ Difficulties in domain of analysis for each disciplines
    - > Frequency-domain: Design, Classical control theories, Lifting surface theories, Linear, etc.
    - ➤ Time-domain: Analysis, Modern control theories, CFD, Nonlinear, etc.
- The framework will be set up to <u>integrate analysis codes</u> for multiple disciplines, instead of having one code perform the analysis for all the disciplines. These multiple analysis codes will be integrated using a front end code.
- Reduce uncertainties in the aeroservoelastic model to increase the safety of flight
  - ❖ Develop model update techniques based on <u>design optimization</u> to improve analysis/test correlation



#### Approach

☐ Front-End Code ❖ Based on FORTRAN "call system" command Optimizer > Genetic Algorithm: gradient free approaches > DOT: based on gradient values ❖ Executive Pre- & Post-processors > Pre-processor ✓ Select optimizer, design variables, objective functions, and constraints ➤ Post-processor ✓ Optimization histories & active constraints table ☐ Each Disciplines ❖ Pre-processor: Prepare input data for an analysis code` > Read before optimization ✓ Analysis code name ✓ Temporary data file name created by other disciplines ✓ Code name for updating input data > Read during optimization ✓ Read updated values of design variables ✓ Update input data automatically based on new design Output > System variables (such as total weight, frequencies, drag, noise level, flutter speed, etc.)

> Design sensitivity matrices if available

> Temporary data file required by other disciplines

Need to develop; Depends on Analysis code

Analysis code; Commercial and/or inhouse codes



**❖** Post-processor

> Draw results using GUI

> Create result data file



#### Disciplines

- The following modules will be developed in the MDAO code.
  - Flutter/Divergence analysis module
  - Static structural analysis module
  - Structural model update module
  - Buckling analysis module
  - Weight analysis module
  - Modal analysis module



**Test** 

- Trim analysis module
- Sonic boom analysis module
- Control model update module
- Aerodynamic load analysis module
- Aerodynamic model update module
- Gain/Phase margins analysis module
- Other performance analysis modules, such as cabin noise, mission analysis, landing and taxiing analysis, panel flutter analysis, hot structure dynamics, etc.



# Analysis Codes for each Discipline

| Disciplines                                        | Analysis Codes  |               |                      |  |  |  |
|----------------------------------------------------|-----------------|---------------|----------------------|--|--|--|
| Disciplines                                        | FY 08           | FY 09         | FY10                 |  |  |  |
| Stress/Strain Analysis                             | NASTRAN sol 101 |               | In-house code        |  |  |  |
| Buckling Analysis                                  | NASTRAN sol 105 |               |                      |  |  |  |
| Modal Analysis                                     | NASTRAN sol 103 |               | In-house code        |  |  |  |
| Lift, Drag, Trim Analysis                          |                 | FUN3D         | ZAERO, DLM, &<br>KFM |  |  |  |
| Subsonic/Supersonic Flutter Analysis               | ZAERO           | DLM           | KFM                  |  |  |  |
| Subsonic/Supersonic Divergence Analysis            | In-house code   |               |                      |  |  |  |
| Gain/Phase Margin Analysis                         |                 | In-house code | ZAERO                |  |  |  |
| Transonic Flutter Analysis in Frequency-Domain     |                 | In-house code |                      |  |  |  |
| Transonic Flutter Analysis in Time-Domain          |                 | FUN3D         |                      |  |  |  |
| Transonic Aeroservoelastic Analysis in Time-Domain |                 |               | Modify FUN3D         |  |  |  |



#### Validations

- ☐ Sample 1: Weight minimization
  - Three bar truss



- ☐ Sample 2: Flutter/Divergence speed maximization
  - ❖ NASA 870 IKHANA Aircraft



- ☐ Sample 3: Minimize errors between test data and analytical results
  - Structural model update
  - ❖ Aerostructures test wing 1





## Sample 1: Weight Minimization

- ☐ Three Bar Truss Problem
  - Check feasibility of our proposed approach
  - Test weight analysis module
  - Test static structural analysis module
- ☐ Objective Function: Minimize total weight
- $\square$  Applied Load  $P_1 = P_2 = 20000 \text{ lb}$
- Constraints
  - ❖ Allowable stress 20000 psi (tension)
  - Allowable Stress -15000 psi (compression)
- Design Variables
  - Cross Sectional Areas  $X_1 = X_3$  and  $X_2$





## Sample 1: Results

#### ☐ Closed form solution

Assume:  $X_1 = X_3$ 

Objective  $f(X_1, X_2) = 2\sqrt{2}X_1 + X_2$ 

Function:

Active Constraint:  $\frac{2X_1 + \sqrt{2}X_2}{2X_1(X_1 + \sqrt{2}X_2)} = 1 \rightarrow X_2 = \frac{2X_1 - 2X_1^2}{\sqrt{2}(2X_1 - 1)}$ 

$$f(X_1) = 2\sqrt{2}X_1 + \frac{2X_1 - 2X_1^2}{\sqrt{2}(2X_1 - 1)}$$
$$f'(X_1) = \frac{\sqrt{2}(6X_1^2 - 6X_1 + 1)}{(2X_1 - 1)^2} = 0$$
$$X_1 = \frac{6 + \sqrt{12}}{12} = 0.788675$$

$$X_2 = 0.408249$$
$$f = 2.638958$$

#### ☐ Finite Element Model

- ❖ Use MSC / Nastran SOL200
- ❖ Use 3 CBAR (uniform beam) elements

|                         | Closed form solution | MSC/<br>NASTRAN | MDAO<br>with DOT | MDAO<br>with GA               |
|-------------------------|----------------------|-----------------|------------------|-------------------------------|
| Bar Area X <sub>1</sub> | .788675              | .77142          | .78798           | .80460                        |
| Bar Area X <sub>2</sub> | .408249              | .45185          | .40999           | .36526                        |
| Total Weight            | 2.63896              | 2.6338          | 2.6388           | 2.6419                        |
| Number of iterations    | N/A                  | 5               | 7                | 50 generation & 20 propulsion |





### Sample 2: Flutter/Divergence Speed Maximization

- □ NASA Dryden Flight Research Center acquired a Predator B unmanned aircraft system for civilian missions.
  - \* IKHANA carries a 'fire pod' that will transmit images of remote areas of the western United States down from the aircraft to a ground station.
  - ❖ The fire pod is located under the wing near the left wing root, and can alter the flutter characteristics of the baseline aircraft.
  - ❖ Test modal analysis module.
  - ❖ Test flutter/divergence analysis module







#### Sample 2: Flutter/Divergence Speed Maximization (continued)

- ☐ Optimization Problem Statement
  - ❖ Objective Function: flutter and divergence speed
  - \* Constraint: None
- ☐ Design Variables
  - Chordwise location of the fire pod
- ☐ Structure Finite Element Model
  - ❖ MSC Nastran model (18854 nodes and 20979 elements)
- ☐ Unsteady Aerodynamic Model
  - ❖ ZAERO model (2736 of elements)









# Sample 2: Challenges / Issues

- ☐ Modification of the fire pod location affects both the structural finite element model and the unsteady aerodynamic model.
  - ❖ New MSC/NASTRAN and ZAERO analyses must be executed for each optimization iteration.
  - Computing speed for generating AIC (from scratch 20 hours; even using existing 30 mins)
  - Genetic optimizer requires thousands of iterations

#### ☐ Approximation Methods

- ❖ Avoid computing a new AIC matrix for each design variable update.
- AIC approximation based on matrix AJJ (General AIC).
  - > ZAERO allows "Direct matrix input" for matrix QHH but not matrix AJJ.
- ❖ AIC approximation based on matrix QHH (Modal AIC).
  - Cubic-spline each element in matrix QHH does not provide accurate estimates. (Mode switch etc.)
- Flutter and divergence speed approximation based on pre-calculated values.
  - Interpolates flutter and divergence speeds from some pre-calculated flutter and divergence speeds for each design variable update.



# Sample 2: Results

Flutter & Divergence Speed





Ikhana with fire pod optimization using design optimization tools.

| Design<br>Chordwise location | Objective value<br>Critical speed, KEAS |        |
|------------------------------|-----------------------------------------|--------|
| Initial value                |                                         |        |
| -20.0 -19.80                 |                                         | 463.95 |
| 0.0 0.0001                   |                                         | 464.20 |
| 10.0                         | 14.31                                   | 465.53 |
| 20.0 14.27                   |                                         | 465.53 |

Summaries of critical speeds before and after optimization using genetic algorithm.

|           | Design variable<br>Chordwise location<br>from baseline, in. | Objective value<br>Critical speed, KEAS |
|-----------|-------------------------------------------------------------|-----------------------------------------|
| Baseline  | 0.00                                                        | 464.20                                  |
| Optimized | 14.37                                                       | 465.53                                  |



# Sample 3: Structural Model Update

- Everyone believes the test data except for the experimentalist, and no one believes the finite element model except for the analyst.
  - Some of the discrepancies come from analytical Finite Element modeling uncertainties, noise in the test results, and/or inadequate sensor and actuator locations.
- ☐ MIL-STD-1540C Section 6.2.10
  - \* Test Requirements for Launch, Upper-Stage, & Space Vehicles
  - ❖ Less than <u>3%</u> and <u>10%</u> frequency errors for the <u>primary</u> and <u>secondary</u> modes, respectively
  - ❖ Less than <u>10%</u> off-diagonal terms in orthonormalized mass matrix
- ☐ AFFTC-TIH-90-001 (Structures Flight Test Handbook)
  - ❖ If measured mode shapes are going to be associated with a finite element model of the structure, it will probably <u>need to be adjusted</u> to match the lumped mass modeling of the analysis.
  - ❖ Based on the measured mode shape matrix [F] and the analytical mass matrix [M], the following operation is performed.

#### $\Phi^{\mathsf{T}}\mathsf{M}\Phi$

The results is near diagonalization of the resulting matrix with values close to 1 on the diagonal and values close to zero in the off-diagonal terms. Experimental reality dictates that the data will not produce exact unity or null values, so <a href="#ref10">10</a> percent of these targets are accepted as <a href="#good orthogonality">good orthogonality</a> and the data can be confidently correlated with the finite element model.



## Sample 3: Structural Model Update (continued)





# Sample 3: Mathematical Background

- ☐ Optimization Problem Statement
  - $\bullet$  Minimize  $J_i$
  - Such that  $|J_k| \le \varepsilon_k$  k = 1...13 &  $k \ne i$
- ☐ Step 1: Improve Rigid Body Mass Properties
  - Errors in Total Mass
  - Errors in CG Locations
  - Errors in Mass Moment of Inertias

|   | Mass Properties         | Objective Functions & Constraints           |
|---|-------------------------|---------------------------------------------|
| 3 | Total Mass              | $J_1 = (W-W_G)^2/W_G^2$                     |
|   |                         | $J_2 = (X - X_G)^2 / X_G^2$                 |
|   | CG Locations            | $J_3 = (Y - Y_G)^2 / Y_G^2$                 |
|   |                         | $J_4 = (Z - Z_G)^2 / Z_G^2$                 |
|   | Mass Moment of Inertias | $J_5 = (I_{XX} - I_{XXG})^2 / I_{XXG}^2$    |
|   |                         | $J_6 = (I_{YY} - I_{YYG})^2 / I_{YYG}^2$    |
|   |                         | $J_7 = (I_{ZZ} - I_{ZZG})^2 / I_{ZZG}^2$    |
|   |                         | $J_8 = (I_{XY} - I_{XYG})^2 / I_{XYG}^2$    |
|   |                         | $J_9 = (I_{YZ} - I_{YZG})^2 / I_{YZG}^2$    |
|   |                         | $J_{10} = (I_{ZX} - I_{ZXG})^2 / I_{ZXG}^2$ |



# Sample 3: Mathematical Background (Continued)

- Step 2: Improve Mass Matrix
  - Off-diagonal terms of Orthonormalized Mass Matrix:  $\underline{\mathbf{M}} = \mathbf{\Phi}_{G}^{T} \mathbf{T}^{T} \mathbf{M} \mathbf{T} \mathbf{\Phi}_{G}$ Guyan reduction

$$T = T_G = \begin{bmatrix} I \\ -K_{ss}^{-1}K_{sm} \end{bmatrix} \qquad M = \begin{bmatrix} M_{mm}M_{ms} \\ M_{sm}M_{ss} \end{bmatrix} \qquad K = \begin{bmatrix} K_{mm}K_{ms} \\ K_{sm}K_{ss} \end{bmatrix}$$

$$M = \begin{bmatrix} M_{mm} M_{ms} \\ M_{sm} M_{ss} \end{bmatrix}$$

$$K = \begin{bmatrix} K_{mm} & K_{ms} \\ K_{sm} & K_{ss} \end{bmatrix}$$

Improved reduction system

$$T = T_{IRS} = \begin{bmatrix} I \\ -K_{ss}^{-1}K_{sm} + (K_{ss}^{-1}M_{ss} - K_{ss}^{-1}M_{ss}K_{ss}^{-1}K_{sm})M_G^{-1}K_G \end{bmatrix}$$

$$M_G = T_G^T M T_G$$

$$K_G = T_G^T K T_G$$

$$J_{11} = \sum_{i=1, j=1, i \neq j}^{n} \underline{M}_{ij}^{2}$$





## Sample 3: Mathematical Background (Continued)

- ☐ Step 3: Frequencies and Mode Shapes
  - **\*** Errors in Frequencies

$$J_{12} = \sum_{i=1}^{n} \left( \frac{\Omega_i - \omega_i}{\Omega_i} \right)^2$$

• Option 1: Off-diagonal terms of Orthonormalized Stiffness Matrix:  $\underline{\mathbf{K}} = \mathbf{\Phi}_{G}^{T} \mathbf{T}^{T} \mathbf{K} \mathbf{T} \mathbf{\Phi}_{G}$ 

$$J_{13} = \sum_{i=1, j=1, i \neq j}^{n} \underline{K}_{ij}^{2}$$

Option 2: Errors in Mode Shapes

$$J_{13} = \sum_{i=1}^{m} (\Phi_i - \Phi_{iG})^2$$

n: number of modes m: number of sensors



### Sample 3: Aerostructures Test Wing 1

| Number of DOFs in FE Model       | 1311 |
|----------------------------------|------|
| Number of Accelerometers for GVT | 35   |









### Sample 3: Results

#### **Frequency Comparisons**

|        | GVT       | Before Optin | mization (ATA | 's final) | After Optimization without $J_{11}$ |            |       | After Optimization with $J_{11}$ |            |       |
|--------|-----------|--------------|---------------|-----------|-------------------------------------|------------|-------|----------------------------------|------------|-------|
|        | Frequency | Frequency/E  | Error (Hz/%)  | MAC       | Frequency/Error (Hz/%)              |            | MAC   | Frequency/Error (Hz/%)           |            | MAC   |
|        | (Hz)      | Guyan        | Full order    | Value     | Guyan                               | Full order | Value | Guyan                            | Full order | Value |
| Mode 1 | 13.76     | 13.35/-3.0   | 13.35/-3.0    | 99        | 13.75/-0.1                          | 13.75/-0.1 | 98    | 13.41/-2.5                       | 13.41/-2.5 | 95    |
| Mode 2 | 20.76     | 22.82/9.9    | 22.82/9.9     | 99        | 20.76/0.0                           | 20.76/0.0  | 99    | 21.01/1.2                        | 21.01/1.2  | 97    |
| Mode 3 | 77.83     | 79.06/1.6    | 78.77/1.2     | 95        | 77.82/-0.0                          | 77.84/0.0  | 95    | 77.87/0.1                        | 77.50/-0.4 | 95    |





# Sample 3: Results (continued)

#### **Mass Properties**

|          | Measured                                       | Before Optimization         |                             |                             | After Optimization without $J_{11}$ |                             |                             | After Optimization with $J_{11}$ |       |        |  |
|----------|------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------------|-----------------------------|-----------------------------|----------------------------------|-------|--------|--|
| Weight   | 2.66 lb                                        | 2.77 lb (error 4.1%)        |                             |                             | 2.67 lb (error 0.4%)                |                             |                             | 2.70 lb (error 1.5%)             |       |        |  |
| $X_{CG}$ | N/A                                            | 12.94 inch                  |                             |                             | 12.88 inch                          |                             |                             | 12.72 inch                       |       |        |  |
| $Y_{CG}$ | N/A                                            |                             | 9.16 inch                   |                             | 8.80 inch                           |                             |                             | 8.91 inch                        |       |        |  |
| $Z_{CG}$ | N/A                                            | 0.0 inch                    |                             |                             | 0.0 inch                            |                             | 0.0 inch                    |                                  |       |        |  |
| $I_{XX}$ | N/A                                            | 161.22 lb-inch <sup>2</sup> |                             | 152.06 lb-inch <sup>2</sup> |                                     |                             | 154.78 lb-inch <sup>2</sup> |                                  |       |        |  |
| $I_{YX}$ | N/A                                            | 95.27 lb-inch <sup>2</sup>  |                             | 93.75 lb-inch <sup>2</sup>  |                                     |                             | 89.45 lb-inch <sup>2</sup>  |                                  |       |        |  |
| $I_{YY}$ | N/A                                            | 113.08 lb-inch <sup>2</sup> |                             | 112.83 lb-inch <sup>2</sup> |                                     |                             | 102.57 lb-inch <sup>2</sup> |                                  |       |        |  |
| $I_{ZX}$ | N/A                                            | 0.                          | 011 lb-inc                  | h <sup>2</sup>              | $0.010 \text{ lb-inch}^2$           |                             |                             | 0.010 lb-inch <sup>2</sup>       |       |        |  |
| $I_{ZY}$ | N/A                                            | -0.                         | 028 lb-ind                  | ch <sup>2</sup>             | -0.035 lb-inch <sup>2</sup>         |                             |                             | -0.033 lb-inch <sup>2</sup>      |       |        |  |
| $I_{ZZ}$ | I <sub>ZZ</sub> N/A 268.2 lb-inch <sup>2</sup> |                             | 258.79 lb-inch <sup>2</sup> |                             |                                     | 251.26 lb-inch <sup>2</sup> |                             |                                  |       |        |  |
|          |                                                | 1                           | 8.9 %                       | 17.7 %                      | 1                                   | 15.7 %                      | 14.8 %                      | 1                                | 3.0 % | 11.9 % |  |
|          | ormalized<br>Matrix                            | .089                        | 1                           | 9.3 %                       | .157                                | 1                           | 10.9 %                      | .030                             | 1     | 2.8 %  |  |
| TVIGSS   | 111111111                                      | .177                        | .093                        | 1                           | .148                                | .109                        | 1                           | .119                             | .028  | 1      |  |



#### Conclusions

- An object-oriented MDAO tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage <u>existing commercial as well as in-house codes</u> to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft.
  - ❖ Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well.
- ☐ Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool.
  - ❖ More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.



### Questions?

