

Ozys Corp

KLAYswap Security Audit

: Final Report

Oct 2021

Theori Korea

Theori, Inc. ("We") is acting solely for the client and is not responsible to any other party. Deliverables are valid for and should be used solely in connection with the purpose for which they were prepared as set out in our engagement agreement. You should not refer to or use our name or advice for any other purpose. The information (where appropriate) has not been verified. No representation or warranty is given as to accuracy, completeness or correctness of information in the Deliverables, any document, or any other information made available. Deliverables are for the internal use of the client and may not be used or relied upon by any person or entity other than the client. Deliverables are confidential and are not to be provided, without our authorization (preferably written), to entities or representatives of entities (including employees) that are not the client, including affiliates or representatives of affiliates of the client.

©2021. For information, contact Theori, Inc.

Table of Contents

Table of Contents	2
Executive Summary	3
Project Overview	4
Engagement Summary	4
Scope	4
Contracts Summary	5
Severity Categories	7
Issue Breakdown by Severity	8
Findings	9
Recommendations	10

Executive Summary

Starting on August 30, 2021, Theori assessed the Ozys' KLAYswap for five weeks. The purpose of this audit was to identify security issues and establish the appropriate measures for improvement. For this, we analyzed the relevant source code to examine the internal process, identify security issues, and give recommendations.

• Source code received: 8/30 (Mon)

• Static code analysis: 8/30 (Mon) ~ 10/06 (Wed)

• Project report: 10/06 (Wed)

We evaluated the attack surfaces by understanding the KLAYswap service and threat modeling and proceeded with a source code audit. Through this, we were able to identify issues based on threat scenarios that can occur in the KLAYswap service.

We identified one security issue where an attacker could obtain slight profit and two recommendations regarding improvement. Moreover, we provide design comments that consider further implementation in the future.

Project Overview

Engagement Summary

Dates	2021. 8. 30 2021. 10. 06. (5 weeks)
Methodology	Source code auditing

Scope

Name	KLAYswap	
Version	 2021. 8. 30. Github Repository: https://github.com/KLAYswap/audit-theori Commit Hash: b4f12ea2b61c63bca583ab8e3f0843ad24e9fdf8 	
Application Type	Smart contracts	
Lang. / Platforms	Solidity / Klaytn network	

Contracts Summary

Directory	Contract	Description	
	BuybackFund.sol	This contract buys back tokens from token holders.	
	KSStore.sol	This contract is used to prevent reentrant attacks between two or more different contracts using a shared variable that describes locked status.	
	Klaytn Exchange.impl.sol	Implementation of the KlaytnExchange contract.	
contracts/	Klaytn Exchange.sol	This contract expands KIP7 that is created with every liquidity pair.	
	Klaytn Factory . impl . sol	Implementation of the KlaytnFactory contract.	
	KlaytnFactory.sol	This contract oversees the full functionality of token pair registration and transactions in KLAYswap.	
	Klaytn Mining View.sol	This contract is a viewer that allows sorted searching of various KLAYswap data.	
	Admin.impl.sol		
contracts/kai/	Admin.sol	These have yet to be implemented completely. (Out of the audit scope)	
	Kai.sol		
	Helper.sol	This contract supports single side deposit to the liquidity pool.	
	Supporter.impl.sol	Implementation of the Supporter contract.	
contracts/supporter/	Supporter.sol	This contract supports adding liquidity to the KLAY-sKLAY pool.	
	Wallet.impl.sol	Implementation of the Wallet contract.	

	Wallet.sol	This contract is a wallet to store each user's LP token that is created to every single user.	
	Airdrop Operator.sol	This contract operates a token distribution contract.	
	Distribution.impl.sol	Implementation of the Distribution contract.	
contracts/treasury/	Distribution.sol	This contract supports an airdrop distribution.	
	Treasury.impl.sol	Implementation of the Treasury contract.	
	Treasury.sol	This contract organizes airdrop operations.	
contracts/vksp/	Governance.impl.sol	Implementation of the Governance contract.	
	Governance.sol	This contract is the governance module of KLAYswap. Currently, Ozys manages the ecosystem using this contract for themselves.	
	PoolVoting.impl.sol	Implementation of the PoolVoting contract.	
	PoolVoting.sol	This contract supports a pool voting system that includes voting and managing rewards.	
	Store.impl.sol	Implementation of the Store contract.	
	Store.sol	This contract calculates Time-weighted average price(TWAP) and is forked from Uniswap Oracle.	
	VotingKSP.impl.sol	Implementation of the VotingKSP contract.	
	Voting KSP.sol	This contract manages voting power(votingKSP).	

Severity Categories

Severity	Description		
Critical	The attack cost is low (not requiring much time or effort to succeed in the actual attack), and the vulnerability causes a high-impact issue. (e.g. Effect on service availability, Attacker taking financial gain)		
High	An attacker can succeed in an attack which clearly causes problems in the service's operation. Even when the attack cost is high, the severity of the issue is considered "high" if the impact of the attack is remarkably high.		
Medium	An attacker may perform an unintended action in the service, and the action may impact service operation. However, there are some restrictions for the actual attack to succeed.		
Low	An attacker can perform an unintended action in the service, but the action does not cause significant impact or the success rate of the attack is remarkably low.		
Informational	The issue is not currently recognized as a vulnerability, but may develop into a potential security threat as the service is further developed.		

Issue Breakdown by Severity

Category	Count	Issues	
Critical	N/A	N/A	
High	N/A	N/A	
Medium	1	Issue #1. BuybackFund contract is vulnerable to front-running attack due to missing owner check.	
Low	N/A	N/A	
Informational	2	Recommendation #1. Reentrancy occurs when the createPool function transfers the token. Recommendation #2. Incorrect documentation	

Findings

ID	Title	Summary	Severity	Status
BUYBACK-001	BuybackFund contract is vulnerable to front-running attack due to missing owner check.	Unauthorized users can call BubackFund's buyback function. A front-running attack may occur in the BuybackFund contract. Due to this, an attacker can get illegitimate profits.	Medium	FIXED
Last Updated: 2021 - 10 - 07				

Recommendations

ID	Title	Summary	Severity	Status
FACTORY-001	Reentrancy occurs when the createPool function transfers the token	createPool function can be abused using reentrancy attacks, which leads to unintended behavior creating the same token pair.	Informational	FIXED
COMMON-001	Incorrect documentation	Incorrect content of official documentation can confuse the user, or monetary damage can occur.	Informational	FIXED (Documentat ion has not yet been updated.)
Last Updated: 2021 - 10 - 07				

Theori, Inc. ("We") is acting solely for the client and is not responsible to any other party. Deliverables are valid for and should be used solely in connection with the purpose for which they were prepared as set out in our engagement agreement. You should not refer to or use our name or advice for any other purpose. The information (where appropriate) has not been verified. No representation or warranty is given as to accuracy, completeness or correctness of information in the Deliverables, any document, or any other information made available. Deliverables are for the internal use of the client and may not be used or relied upon by any person or entity other than the client. Deliverables are confidential and are not to be provided, without our authorization (preferably written), to entities or representatives of entities (including employees) that are not the client, including affiliates or representatives of affiliates of the client.

©2021. For information, contact Theori, Inc.