Recursion		
Similar	to mathematical induction.	
hallot is	induction? It's a proof technique	
	lous for arbitrary His of	
	rions ("steps").	
Than:	$A \Rightarrow \epsilon$	
Proof.	A => B (ation 1)	
	B => (akebru.)	
	(-> D (+rian, sle - ineg)	
	D=) E (none alselora).	
Proof ha	A a lixed \$ of ">"	
	: kind of neta, I+ is	
Machin	on, that can construct proofs	
with	or bit ravily long seguences of "=>".	
	it work: usually used to prove size	
State it	parameterited by not wall this (1,2,3.	
Dondo 1	ne truth I the with chater and bar to	.),
40100 000	ne truth of the inth statement by to	
	Explicitly demonstrate t (1) (+ rath of first state next).	
	(trath of dirst state ment).	
3	Show that in sever al	
	t(n-1) => t(n)	

3 Conclude truth for all n: Example: $\sum_{i=1}^{n} = \frac{n(n+1)}{2}$ Proof: n=1: \(\frac{1}{2}\) 2) Assuming 2 ; = (n-1)n, need to Show $\sum_{i=1}^{N} u(n+1)$ $\sum_{i=1}^{n} i = \left(\sum_{i=1}^{n-1} i\right) + N$ = n(n-1)+n = n(n-1) + 2n = n-n+2n= N(N+1)what does this have to do with programming? Usually E(n) = my program computes the right value on inputs ob size n". Then we write a self-referencing program as follows: int of (int n) } if (N==1) return right answer;

RECUSIVE Sorting: 7/1/5/2/3/04/8 0348 voctor Lint > Sort (vector Lint > & V) } if (v. size () < 2) return v; 1/else break v into last & vishet vector <: n+) Vleft (0, USTE()/2); vector <int > va: sht (v.site()/2+1, v.site()-1); 11 Sort West + & wright by recursive masic" Vleft = sort (vleft); night = 200+ (night)! I merge results! reducint) sorted; int i=0, i=0; While (ic uld. 5. Fel) && j < wight, 5:20)

return sacted;