Лабораторная работа по квантовой электронике

№ 23 Инжекционные полупроводниковые лазеры

Яромир Водзяновский Б04-855а

1 Описание работы

1.1 Цели

В ходе работы предлагается решить следующие поставленные задачи:

- 1. Измерение спектральных характеристик лазера и светодиодов, их дальнейший анализ
- 2. Получение зависимости мощности излучения светодиодов и лазера от мощности накачки (Вт-Вт характеристика)

1.2 Суть эксперимента

1.2.1 Спектральная характеристика

Исследование зависимости спеткра излучения инжекционного полупроводникового лазера/светодиодов от мощности накачки производится путём изменения детектируемой длины волны и фиксации напряжения при постоянной мощност накачки.

Для лазера опыт производится четыре раза при разных накачках с целью определения характера изменения формы спектральной характеристики от установленной мощности накачки.

1.2.2 Ватт-Ваттная характеристика

Получение зависимости мощности излучения от мощности накачки для светодиодов и лазера реализуется поточечным изменением тока и напряжения накачки и фиксации установившихся тока и напряжения

2 Экспериментальные данные

2.1 Спектральные характеристики

Рассмотрим зависимость аплитуды излучения лазера от длины волны при разных токах накачки

Рис. 1: Характеристика лазера при разных мощностях накачки

Заметно, что при уменьшении накачки аплитуда выходного излучения падает, что, вообще говоря, совершенно неудивительно. Длина волны генерируемого сигнала не зависит от I_{pump} .

Незначительное повышение накачки может стать результатом значительного уширения полосы генерации. Аналогичные данные приведём для диодов

Рис. 2: Характеристика синего диода

Рис. 3: Характеристика зеленого диода

Рис. 4: Характеристика красного диода

Соответсвующи приблизительные максимумы излучения: 617, 522, 462 nm.

2.2 Ватт-ваттные характеристики

Теперь рассмотрим зависимости амплитуды выходого сигнала от мощности накачки для двух лазеров

Рис. 5: В-В зарактеристика лазеров

На гарфике мы можем наблюдать три чётко выраженных участка: недостаток накачки (излучение остутсвует), линейная зависимость, насыщение (мощность излучения максимальна).

Легко определить характерные значения, накачки, описывающие поеденя лазеров: пороговая мощность и мощность насыщения: $P_{\Pi O P O \Gamma} \approx 23 \text{ мВт}$, $P_{H A C} \approx 45 \text{ мВт}$. Про КПД лазера говорить не приходится, поскольку вместо мощности излуения детектировался лишь ток на фотодетекторе.

И для трёх диодов

Рис. 6: Анимэ на картинке

В-В характеристика диодов имеет линейный вид, КПД каждого определяется как коэффициент наклона линейного фита, коэффициенты в таблицах (1,2,3)

Таблица 1: Коэффициенты аппроксимации Синего диода

coeffs	coeffs_values	standard error	relative se, %
a_0	5.543E-01	1.715E-03	3.094E-01
a_1	6.049E-01	1.020E-01	1.686E+01

Таблица 2: Коэффициенты аппроксимации красного богатыря

coeffs	coeffs_values	standard error	relative se, $\%$
a_0	4.523E-01	1.139E-04	$\substack{2.518\text{E-}02\\1.113\text{E}+01}$
a_1	3.580E-01	3.985E-02	

Таблица 3: Коэффициенты аппроксимации зеленого диода

coeffs	coeffs_values	standard error	relative se, $\%$
a_0	3.478E-01	2.382 E-04	6.849E-02
a_1	9.271E-01	8.325E-02	8.979E + 00

3 Выводы

Полученные результаты позволяют сформулировать следующие тезисы:

- 1. Рост мощность накачки увеличивает ширину спектра излучения лазера, не меняя частоту генерации;
- 2. Рост мощность накачки увеличивает ширину спектра излучения диода, снижая частоту генерации;
- 3. Лазер имеет наименьшую ширину спектра излучения при сравнимых мощностях накачки;
- 4. Диоды имеют линейную ватт-ваттную характеристику по крайней мере в диапазоне от 0 до ≈ 50 мВт;
- 5. Лазер имеет линейную BBX искючительно в заданном диапазоне мощностей накачки, от 23 до 45 мВт. Границы диапазона называются пороговой мощностью и мощностью насыщения соответсвенно;
- 6. Коэффициенты полезного действия для изучаемых диодов: 45%, 35%, 55%.