A Few Notes on Linear Solvers in IC-Ferst

James Percival

AMCG, Department of Earth Science and Engineering Imperial College London

IC-Ferst Training 2015

Outline

Direct Methods

Iterative Methods

Stationary methods

Krylov subspace methods

Preconditioning

Multigrid

Halting

Parallel Solvers

Solver Failures & Troubleshooting

Numerical Solutions to PDEs

The majority of the work in generating an algorithm and set of discretizations to solve a system of PDEs numerically is aimed at reducing them to a series of linear equations. I.e. to a matrix problem like

$$\begin{pmatrix} 3 & 2 & 0 \\ 4 & 4 & 1 \\ 0 & 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix},$$

or, in a more general form,

$$Ax = b$$
.

Solving a linear system

Still actually get a solution for this. IC-Ferst uses linear solvers available from the PETSc framework (http://www.mcs.anl.gov/petsc/) to solve problem efficiently and in parallel.

Generally solution algorithms can be split into two sorts, direct methods and iterative methods.

Solving a linear system

1. Direct methods: Generate an explict representation of ${\bf A}^{-1}$ and then perform multiplication

$$x = A^{-1}b.$$

These methods tend to be slow and memory inefficient, especially when only using the matrix once. Also difficult to do in parallel.

2. Iterative methods: given a previous guess, x_i , generate a new guess, x_{i+1} , such that the new residual

$$r_{i+1} := b - Ax_{i+1}$$

is "smaller" than the old residual r_i . Iterate over the algorithm until the residual error is small enough to be acceptable.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ◆■■ 釣۹@

A Direct method: LU factorization

As an example of a direct method, lets look at LU factorization. This takes the original matrix, A, and creates two new ones, L & U such that

$$A = LU$$
,

where L is lower triangular and U is upper triangular

$$A = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right],$$

$$L = \begin{bmatrix} a & 0 & 0 \\ d & e & 0 \\ g & h - \frac{gb}{a} & \cdots \end{bmatrix}, \quad U = \begin{bmatrix} 1 & b/a & c/a \\ 0 & 1 & \frac{ea(f - cd/a)}{ea - db} \\ 0 & 0 & 1 \end{bmatrix}$$

A Direct method: LU factorization

Now $A^{-1}=U^{-1}L^{-1}$ and the triangular matrices can be quickly inverted by two elimination sweeps working from top-to-bottom or bottom to top.

$$L_{11}y_1 = b_1,$$
 $L_{22}y_2 = b_2 - L_{21}y_1,$
 $y_n = \frac{1}{L_{nn}} \left(b_n - \sum_{i=1}^{n-1} L_{ni}y_i \right)$

$$\begin{bmatrix} 0 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_{N} = y_{N}$$

$$x_{N-1} = y_{N-1} - U_{(N-1)N}x_{N}$$

$$x_n = y_n - \sum_{i=n+1}^N U_{ni} x_i$$

Iterative Methods

Iterative methods can be further subdivided into two groups:

- 1. Stationary methods: Split A into a bit which is easy to invert and a bit which is moved to the right hand side of the equation.
- 2. Krylov subspace methods: Get a "good" solution in a subspace smaller than the length of the vector x, then extend the subspace until it spans all of x.

Stationary method:Successive Over-Relaxation(sor)

For this method we use

$$A = D + L + U$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and rewrite the original equation Ax = b into the form

$$(D + \omega L) x = \omega b - (\omega U + (\omega - 1) D) x.$$

Where ω is a constant, $\omega > 1$. The iterative method is thus

$$\mathbf{x}_{k+1} = (\mathbf{D} + \omega \mathbf{L})^{-1} \left[\omega \mathbf{b} - (\omega \mathbf{U} + (\omega - 1) \mathbf{D}) \mathbf{x}_k \right].$$

Knowing the best value of ω to use can be tricky.

Krylov subspace methods:Conjugate Gradients(cg)

If A is a symmetric $(A^T = A)$, positive definite matrix $(x^T A x > 0)$ for all $x \neq 0$, then the solution to Ax = b is also the value of x which minimises the quadratic form $I(x) = \frac{1}{2}x^T A x - x^T b$. Could just slide down gradient

$$r_k = Ax_k - b$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{r}_k$$

Minimizing I implies

$$\mathbf{r}_k^T \mathbf{r}_{k+1} = \mathbf{r}_k^T (\mathbf{A} \mathbf{x}_{k+1} - \mathbf{b}) = \mathbf{r}_k^T (\mathbf{A} \mathbf{x}_k - \alpha \mathbf{r}_k) = 0$$

$$\alpha = \frac{\mathbf{r}_k^T \mathbf{A} \mathbf{x}_k}{\mathbf{r}_k^T \mathbf{r}_k}.$$

Krylov subspace methods:Conjugate Gradients(cg)

Can do better! Use the new residual to make a seach direction "A conjugate" to all the previous ones

$$r_k = Ax_k - b$$

$$p_k = r_k - \sum_{i < k} \frac{p_i^T r_k}{p_i^T A p_i} p_i$$

 $x_{k+1} = x_k - \alpha_k p_k$

with

$$\alpha = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{p}_k^T \mathbf{A} \mathbf{p}_k},$$

which makes $\mathbf{r}_k^T \mathbf{r}_k = 0$.

illustration by Oleg Alexandrov - via Wikimedia Commons

Ksp:Generalized minimum residual(gmres)

Conjugate gradients method relies on A being symmetric and positive (or negative) definite. In the general case where A is non-symmetric but an inverse exists then a similar approach can be used.

- 1. Work in space $\mathcal{K}_n = \operatorname{span}\left\{r_0, \operatorname{A} r_0, A^2 r_0, \ldots A^n r_0\right\}$,
- 2. Find $x_n \in \mathcal{K}_n$ which minimises $\|r_n\|_{K_n}$.
- 3. If residual not small enough form $\mathcal{K}_{n+1} = \operatorname{span} \{ \mathbf{r}_0, \mathbf{A} \mathbf{r}_0, A^2 \mathbf{r}_0, \dots A^{n+1} \mathbf{r}_0 \}.$

In a practical implimentation, often impossible to work with \mathcal{K}_n as n gets big. Answer: stop solve periodically and restart with

$$x_0 = x_{n_{max}},$$
 $\mathcal{K}_0 = \operatorname{span}\left\{r_{n_{max}}
ight\}.$

Convergence can be slow. Preconditioning is important.

Preconditioning: The Matrix Condition number

A square matrix can be written as

$$A = PDP^{-1}$$

where D is a diagonal matrix containing the eigenvalues of A and P has columns containing the eigenvectors of A. We define the matrix condition number as

$$\kappa := \frac{\max |\lambda_i|}{\min |\lambda_i|} \ge 1.$$

Generally low condition numbers mean a matrix is "easier" to solve numerically, that iterative methods convergence and that solutions are more robust to truncation error.

Preconditioning: The Preconditioning matrix

Need to solve Ax = b. Suppose we have another matrix M, "close" to A, but easier to invert. Can attempt to solve

$${
m M}^{-1}{
m A}x={
m M}^{-1}m{b}$$
, (left preconditioning) or ${
m AM}^{-1}{
m M}x={
m M}^{-1}m{b}$ (right preconditioning)

i.e. solve a two part system

$$My = b, AM^{-1}y = b,$$

 $M^{-1}Ax = y. Mx = y.$

Advantage is that matrix product is hopefully more "identity-like", i.e. smaller condition number, so both problems are easier to solve.

Preconditioning: The Preconditioning matrix

Jacobi method

Precondition using $\boldsymbol{M} = \boldsymbol{D}$

SOR

Precondition using $M = D + \omega L$

Incomplete LU factorization

Like a lazy LU factorization. Do trickery to find an approximate \tilde{L} and \tilde{U} such that $\tilde{L}\tilde{U}\approx A$ then use $M=\tilde{L}\tilde{U}$ as preconditioner.

Multigrid

Preconditioning shows it is better to solve simple problems than more difficult ones. Multigrid takes this a step further: Big matrices are hard to solve for, so why not solve a smaller problem which is "like" the big one, and then use the update to correct the full problem?

Halting Criteria

Good:

Absolute tolerance acheived, $\|r_k\| \leq \tau_{abs}$, Relative tolerance acheived, $\|r_k\| \leq \tau_{rel} \, \|r_0\|$,

Bad:

```
Maximum iterations reached, k=k_{max} Matrix solve diverges \|r_k\| \geq \tau_{div} \, \|r_{k-1}\| , NANs start appearing
```


Parallel Solvers

In principle a parallel matrix solve could work just like a serial one. In practice, multiplying out rows of a matrix is local and cheap, while exchanging column information requires expensive communication.

PETSc modifies methods to be more efficient. This means

- Direct solvers don't work
- ▶ Parallel solvers may need more (fast) iterations for good answer.
- Serial & parallel solves can halt on different answers.

Solver failures

When a PETSc linear solve fails an error message usually gets reported

WARNING: Failed to converge.

PETSc did not converge for matrix solve of: DeltaP

Reason for non-convergence: KSP_DIVERGED_ITS

Number of iterations: 3000

Sending signal to dump and finish

This names the variable for which the solve failed, the halting criterion and the number of solve iterations successfully performed.

Solver failures

Possible reasons include

KSP_DIVERGED_ITS Specified limit on solver iterations reached

KSP_DIVERGED_DTOL The residual has increased too much between iterations

KSP_DIVERGED_NAN The problem PETSc has been asked to solve has stopped making sense.

KSP_DIVERGED_INDEFINITE_PC You've trying to solve a badly assymetric matrix using CG.

If you see a much longer error message involving PETSc then either you're trying to do something it can't (e.g. a direct solve in parallel), or something else has broken earlier.

Troubleshooting

- ▶ When trying to understand a solver failure, it's important to check that you're looking at the first thing which went wrong.
- ▶ If solver failures appear (almost) immediately, then it's possible there's a mistake in your input file.
- ► Solver failures can be the result of a bad mesh, either fixed or adaptive. Fix the mesh before trying to fix the solver.
- ▶ If you're really sure it's just the solver, then you can try
 - Increasing the maximum number of iterations
 - ► Adding an absolute tolerance limit (e.g. 1.0e-10)
 - Reducing the simulation timestep.

Final Summary

Robust option choice:

► Iterative_method(gmres)

▶ restarts: 30

preconditioner(hypre)

▶ relative_error: 1.0e-7

▶ max_iterations: 1000

References

- Y. Saad
 Iterative Methods for Sparse Linear Systems.
 SIAM 2003
- G. H. Golub & C. F. Van Loan Matrix Computations Johns Hopkins University Press 1996
- Fluidity Manual
 Applied Modelling & Computation Group
- Petsc Manual/online documentation http://www.mcs.anl.gov/petsc/

