

f) Z" is >CH₂, >C=O, >C(H)-OH, >C=N-OR₅, >C(H)-C≡N, or >C(H)-NR₅R₅, wherein each R₅ is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl;

In the Claims

Please rewrite Claims 1 and 9 as follows.

1. (Amended) A compound of the general formula:

wherein:

a) R_b and R_o are independently -H, -Cl, -Br, -I, -F, -CN, lower alkyl, -OH, -CH₂-OH, -NH₂; or N(R₆)(R₇), wherein R₆ and R₇ are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;

b) R_a is -N₃, -C≡N, -C≡C-R, -CH=CH-R, -R-CH=CH₂, -C≡CH, -O-R, -R-R₁,

-OC(O)CH₃, -C(O)H, -NH₂, -NMe₂, -NHMe, or -O-R-R₁ where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃;

AS Conf
c) Z' is >CH, >COH, or >C-R₂-OH, where R₂ is an alkyl or branched alkyl with up to 10 carbons or aralkyl;

d) >C-R_g is >CH₂, >C(H)-OH, >C=O, >C=N-OH, >C(R₃)OH, >C=N-OR₃, >C(H)-NH₂, >C(H)-NHR₃, >C(H)-NR₃R₄, or >C(H)-C(O)-R₃, where each R₃ and R₄ is independently an alkyl or branched alkyl with up to 10 carbons or aralkyl;

AS Conf
e) R_{h1} and R_{h2} are independently H, or a straight or branched chain alkyl, alkenyl or alkynyl with up to 6 carbons that is unsubstituted, or substituted with one or more groups selected from a hetero functionality (O-Y, N-Y₂ or S-Y) where Y is independently selected from H, Me or an alkyl chain up to 6 carbons; a halo functionality (F, Cl, Br or I); an aromatic group optionally substituted with hetero, halo or alkyl; or R_{h1} and R_{h2} are independently an aromatic group optionally substituted with hetero, halo or alkyl, provided that both R_{h1} and R_{h2} are not H;

f) Z'' is >CH₂, >C=O, >C(H)-OH, >C=N-OR₅, >C(H)-C≡N, or >C(H)-NR₅R₅, wherein each R₅ is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl;

wherein all monosubstituted substituents have either an α or β configuration, and with the proviso that if R_b is H, R_o is H, R_a is OMe, Z' is $>\text{COH}$, $>\text{C-R}_g$ is $>\text{C=O}$, and Z'' is $>\text{CH}_2$, then R_{h1} and R_{h2} are not collectively H and Cl.

ASL
9. (Amended) The compound of Claim 1, wherein:

R_{h1} and R_{h2} are independently H and $(\text{CH}_2)_n\text{N}(\text{Me})_2$, wherein
 n is from 1 to 6.

Please cancel Claim 10 without prejudice to applicants' right to file continuation applications directed to the subject matter thereof.

Please enter the following new claims.

11. (New) A compound of the general formula:

Sub B2
wherein:

R_a is $-\text{N}_3$, $-\text{C}\equiv\text{N}$, $-\text{C}\equiv\text{C}-\text{R}$, $-\text{CH}=\text{CH}-\text{R}$, $-\text{R}-\text{CH}=\text{CH}_2$, $-\text{C}\equiv\text{CH}$,

-O-R, -R-R₁, -OC(O)CH₃, -C(O)H, -NH₂, -NMe₂, -NHMe, or -O-R-R₁ where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃; with the proviso that R_a is not OMe;

*Sub B²⁰
cont'd
A
cont'd*
R_b and R_o are H,

Z' is >C-OH,

>C-R_g is >C(H)OH,

R_{h1} and R_{h2} are H, and

Z'' is >CH₂,

and wherein all monosubstituted substituents have either an α or β configuration.

12. (New) The compound of Claim 11, wherein:

R_a is OC(O)CH₃.

13. (New) The compound of Claim 11, wherein:

R_a is C(O)H.

14. (New) The compound of Claim 11, wherein:

R_a is CH₂OH.

15. (New) The compound of Claim 11, wherein:

R_a is NH₂.

16. (New) The compound of Claim 11, wherein:

R_a is $C\equiv CCH_3$.

17. (New) The compound of Claim 11, wherein:

R_a is N_3 .

18. (New) The compound of Claim 11, wherein:

R_a is OEt .

19. (New) The compound of Claim 11, wherein:

R_a is $CH=CHCH_3$.

20. (New) The compound of Claim 11, wherein:

R_a is NMe_2 .

21. (New) The compound of Claim 11, wherein:

R_a is $O-n-Pr$.

22. (New) The compound of Claim 11, wherein:

R_a is OCH_2CF_3 .

23. (New) A compound of the general formula:

wherein:

R_b is H,

R_o is -H, -Cl, -Br, -I, -F, -CN, lower alkyl, -OH, -CH₂-OH, -NH₂;

or N(R₆)(R₇), wherein R₆ and R₇ are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;

R_a is -N₃, -C≡N, -C≡C-R, -CH=CH-R, -R-CH=CH₂, -C≡CH, -O-R, -R-R₁, -OC(O)CH₃, -C(O)H, -NH₂, -NMe₂, -NHMe, or -O-R-R₁ where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃;

Z' is >C-OH,

>C-R_g is >C(H)OH or >CH₂,

R_{h1} and R_{h2} are H, and

Z'' is >CH₂, >C=O, >C(H)-OH, >C=N-OR₅, >C(H)-C≡N, or >C(H)-NR₅R₅, wherein each R₅ is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl;

and wherein all monosubstituted substituents have either an α or β configuration.

*P/M
compt*
24. (New) The compound of Claim 23, wherein:

R_O is Br,

R_a is Br,

$>C-R_g$ is $>C(H)OH$, and

Z'' is $>CH_2$.

25. (New) The compound of Claim 23, wherein:

R_O is H,

R_a is OEt,

$>C-R_g$ is $>C(H)OH$, and

Z'' is $>C(H)OH$.

26. (New) The compound of Claim 23, wherein:

R_O is H,

R_a is OEt,

$>C-R_g$ is $>C(H)OH$, and

Z'' is $>C=NOMe$.

27. (New) The compound of Claim 23, wherein:

R_O is H,
R_a is OEt,
>C-R_g is >C(H)OH, and
Z" is >C=NOH.

AM
Amend
Claim 28
28. (New) The compound of Claim 23, wherein:

R_O is H,
R_a is NH₂,
>C-R_g is >CH₂, and
Z" is >CH₂.

29. (New) The compound of Claim 23, wherein:

R_O is H,
R_a is NMe₂,
>C-R_g is >CH₂, and
Z" is >CH₂.

30. (New) The compound of Claim 23, wherein:

R_O is H,
R_a is NHMe,
>C-R_g is >CH₂, and
Z" is >CH₂.