(4) Unbiased estimators

Let \hat{a} and \hat{b} be unbiased estimators of unknown parameters a and b respectively.

- (a) Check if $\alpha \hat{a} + \beta \hat{b}$ is an unbiased estimator of the parameter $\alpha a + \beta b$, where $\alpha, \beta \in \mathbb{R}$.
- (b) Is \hat{a}^2 an unbiased estimator of a^2 ?
- (c) Based on the following measurements of a side of a square (in milimeters)

find an unbiased estimator of the area.

of) Let
$$X$$
 be a random variable corresponding to the data, such that $\mathbb{E}(\tilde{a}(X)) = a$ and $\mathbb{E}(\tilde{b}(X)) = b$.

Since $\mathbb{E}(\alpha\widehat{a}(X) + \beta\widehat{b}(X)) = \alpha \mathbb{E}(\widehat{a}(X)) + \beta \mathbb{E}(\widehat{b}(X)) = \alpha \alpha + \beta b$, $\alpha\widehat{a} + \beta\widehat{b}$ is an unbiasced estimator of $\alpha a + \beta b$.

b)
$$\mathbb{E}((\widehat{a}(X))^2) = \mathbb{V}$$
 $(\widehat{a}(X)) + (\mathbb{E}(\widehat{a}(X)))^2 = \mathbb{V}$ $(\widehat{a}(X)) + \alpha^2$
 $(\widehat{a}(X))^2) - \alpha^2 = \mathbb{V}$ $(\widehat{a}(X)) \geqslant 0$, equality holds only if $\widehat{a}(X)$ is random.

 $\frac{1}{2}\sum_{i=1}^{n}\sum_{k}x_{i}x_{i}$

almost everywhere.

$$\mathbb{E}\left(\partial_{i}(X)\right) = \frac{1}{h(n-1)} \sum_{i=1}^{n} \sum_{j \in \{1, \dots, n\}} \mathbb{E}\left(X_{i} \times_{j}\right) = \frac{1}{h(n-1)} \sum_{i=1}^{n} \sum_{j \in \{1, \dots, n\}} \mathbb{E}\left(X_{i}\right) \mathbb{E}\left(X_{j}\right) = \ell^{2} = :ol$$

where $\ell = \mathbb{E}(X_i)$ for all $i \in \{1,...,n\}$, hence ℓ is the Arme length of a side of the squard. In our race, n=6, and we obtain $\widehat{a}(x) = \frac{7574}{30} = \frac{3757}{75} \approx 250,5 \text{ (mm²)}$.