Notatki Technologie Sieciowe

Jakub Kogut

$27~\mathrm{maja}~2025$

Spis treści

1	Wstęp				
2	Wykład 2025-03-11				
	2.1 Czym jest sieć komputerowa?				
	2.2 Jak wyglądały kiedyś połączenia sieciowe?				
	2.3 Jak dane są przesyłane w kablu?				
	2.2 Jak wyglądały kiedyś połączenia sieciowe? 2.3 Jak dane są przesyłane w kablu? 2.4 Jak wygląda komunikacja w protokole Ethernet?				
3	2025-04-31				
	3.1 Sieci Lokalne				
	3.2 Intra–sieć				
	3.2.1 Chararakterystyki sieci				
4	ważne				
5	Podsumowanie				

1 Wstęp

Notatki z przedmiotu *Technologie sieciowe* na kierunku Informatyka Algorytmiczna na Politechnice Wrocławskiej na semestrze 4 2025r.

• Prowadzący: dr inż. Łukasz Krzywiecki

• email: mail

• konsultacje D1/210

- Mon. 11:00 - 13:00, MSTeams, D-1:210

- Wed. 11:00 - 13:00, MSTeams, D-1:210 (The 1st and the 2nd week of the month)

- Fri. 15:00 - 17:00, MSTeams, (Last 2 weeks of the month)

2 Wykład 2025-03-11

2.1 Czym jest sieć komputerowa?

Rysunek 1: Przykład sieci komputerowej

Jest to ważony graf, w którym nodami są komputery, a krawędziami połączenia między nimi. Waga krawędzi można interpretować jako:

- przepustowość łącza ilość danych, które można wysłać przez łącze
- opóźnienie
- szerokość pasma szerokość zakresu częstotliwości, który jest wykorzystywany przez nadawane lub odbierane sygnały w danym medium transmisyjnym. Szerokość pasma jest wyrażana w różnicy pomiędzy najwyższa a najniższą częstotliwością składnika transmitowanego sygnału

2.2 Jak wyglądały kiedyś połączenia sieciowe?

Używano kabla koncetrycznego Coaxial Cable (10 Mb/s) oraz kabla skrętkowego $Twisted\ Pair$ (około 100 Mb/s). Współcześnie używa się światłowodów, które mają przepustowość rzędu 10 Gb/s.

2.3 Jak dane są przesyłane w kablu?

Istnieją różne sposoby modulacji sygnału:

częstotliwościowa – polegajaca na zmianie częstotliwości sygnału

- amplitudowa polegająca na zmianie amplitudy sygnału
- fazowa polegająca na zmianie fazy sygnału
- jeżeli używamy światłowodu, to używamy modulacji światła
- mieszane:
 - QAM polegająca na zmianie amplitudy i fazy sygnału, użwyają konstelacji czętotliwości

2.4 Jak wygląda komunikacja w protokole Ethernet?

Każda wiadomość przesyłana przez sieć opakowana jest w **ramkę Ethernetową**. Wkładane są w nią kolejne warstwy odpowiednich protokołów.

- 1. Ethernet
- 2. IP Internet Protocol. Na jego warstwie znajduje się protokół ICMP używany przez program *Ping*.
- 3. TCP/UDP Transmiton Control Protocol/User Datagram Protocol

3 2025-04-31

Kilka słów o 2. liscie na laboratoria: jej termin został przesunięty o 2 tygodnie oraz aby przyspieszyć sprawdzanie mamy 2 zadania z niej wykonać w 3 osobowych grupach.

3.1 Sieci Lokalne

W sieciach lokalnych występują generalnie jeden kanał komuniakcyjny, który jest współdzielony przez wszystkie urządzenia. Stacje bazowe "rywalizują" o przesył/dostęp do kanału. Jest to tak zwany **Kanał typu rozsiewczego**. Jednakże, w takich topologiach występują zagłuszenia, co wymuszało stosowanie "wzmacniaków" sygnału. Są to urządzenia analogowe, które wzmacniają sygnał, ale również szum. Współcześnie stosuje się **przełączniki** Switch, które są urządzeniami cyfrowymi, które przesyłają dane tylko do odpowiednich stacji, co eliminuje zagłuszenia. Standardy określają ile może być **segmentów** w sieci lokalnej. Każda maszyna w takiej sieci jest równie ważna. W tego typu topologiach występują kolizje powodowane jednoczesnym przesyłem sygnału. Jeśli odbiornik znajduje się w miejscu interferencji dwóch fal to odbierze sygnał zniekształcony, szum.

3.2 Intra-sieć

Chodzi tu o *internet*. Jest ona odpowiedzialna za **trasowanie** (*routing*), również za abstrakcje warstwy sieciowej, aby umożliwić niezależność sieci lokalnych podłączonych do chmury.

Jak reprezentować sieć? Robimy to za pomocą grafu, w którym wierzchołkami są routery, a krawędziami łącza między nimi. Wierzchołki te są połączone z innymi wierzchołkami, które reprezentują inne sieci. Wierzchołki te nazywamy **bramkami** (gateways). Edge w grafie reprezentuje łącze między dwoma sieciami, są to tzw **duplexy**, ponieważ komunikacja zachodzi w obie strony. Krawędzie możemy charakteryzować liczbami – **wagami**, są to pewne funkcje oznaczające np. przepustowość łącza.

3.2.1 Chararakterystyki sieci

- \bullet Przepustowość ilość danych, którą można przesłać w jednostce czasu. Oznaczana przez c.
- Niezawodność prawdopodobieństwo, że sieć działa poprawnie. Oznaczana przez p. Wartość 1-p to prawdopodobieństwo, że sieć nie działa.
- Opóźnienie czas, jaki upływa od wysłania pakietu do jego odbioru

• Szerokość pasma – szerokość zakresu częstotliwości, który jest wykorzystywany przez nadawane lub odbierane sygnały w danym medium transmisyjnym. Szerokość pasma jest wyrażana w różnicy pomiędzy najwyższą a najniższą częstotliwością składnika transmitowanego sygnału

4 ważne

Ważna jest niezawodność w przesyłaniu tych bitów

- najniżej jest sygnał, fale itp.
- dalej mamy ramkę ethernetową. Już na tym etapie możemy sprawdzić, czy ramka jest poprawna na podstawie sumy kontrolnej (algorytm CRC).
- do ramek wkładamy inne paczki, które nazywamy datagramami/pakietami, które należą do protokołu sieciowego ip4 lub ip6. Tutaj rutery zajmują się wyznaczaniem trasy routing/trasowanie czyli wybieraniem najkrótszej trasy do danego hosta. Dane potrzebne do routowania są zaszyte w nagłówku pakietu.¹ Tutaj również można przeprowadzić werfikację poprawności pakietu. Jeżeli pakiet jest niepoprawny, to jest on odrzucany. W przeciwnym wypadku jest przekazywany do kolejnej warstwy.
- Następnie mamy warstwę transportową, która zajmuje się przesyłaniem danych między hostami. W tej warstwie mamy dwa protokoły: TCP i UDP. TCP jest protokołem połączeniowym, który zapewnia niezawodność przesyłania danych, natomiast UDP jest protokołem bezpołączeniowym, który nie zapewnia niezawodności przesyłania danych. W tej warstwie również możemy przeprowadzić werfikację poprawności pakietu. TCP zapewnia niezawodność przesyłania danych poprzez mechanizm potwierdzeń i retransmisji. UDP nie zapewnia niezawodności, ale jest szybszy, ponieważ nie wymaga potwierdzeń.

WAŻNE! TCP zapewnia niezawodność poprzez pozytywne potwierdzenie i retransmisje. Również zapewnia kontrole przepływu – efektywne wykożystanie kanału komunikacyjnego. W przypadku TCP mamy okno przesuwne – jest to mechanizm, który pozwala na przesyłanie wielu pakietów bez oczekiwania na potwierdzenie każdego z nich. Okno przesuwne jest dynamicznie dostosowywane w zależności od przepustowości łącza i opóźnienia. TCP posiada również reakcje na przeciążenia, nadawca kontroluje ilość wysyłanych danych w zależności od stanu sieci. W przypadku przeciążenia sieci, nadawca zmniejsza ilość wysyłanych danych, a w przypadku braku przeciążenia, zwiększa ją.

Protokoły te zajmóją sie przesyłaniem **bajtów/oktetów**. Jest to system **połączeniowy**, musi zostać otwarty kanał komunijaci oraz potwierdzenie nadawcy i odbiorcy. Po skończonym nadawaniu kanał/połączenie musi zostać zamknięte. W przypadku TCP mamy **trójfazowe uzgadnianie połączenia** – jest to proces, który pozwala na ustalenie parametrów połączenia między nadawcą a odbiorcą. Proces ten składa się z trzech kroków:

- 1. Nadawca wysyła do odbiorcy pakiet SYN (synchronizacja), w którym informuje o chęci nawiązania połączenia.
- 2. Odbiorca odpowiada pakietem SYN-ACK (synchronizacja i potwierdzenie), w którym informuje nadawcę o chęci nawiązania połączenia oraz potwierdza otrzymanie pakietu SYN.
- 3. Nadawca wysyła pakiet ACK (potwierdzenie), w którym potwierdza otrzymanie pakietu SYN-ACK i kończy proces uzgadniania połączenia.

5 Podsumowanie

¹routery aktualizuja sobie **tablice routingu** – jest to tablica, która zawiera informacje o tym, jak dotrzeć do danego hosta.

Source I	Port (16 bits)	Destination Port (16 bits)			
Sequence Number (32 bits)					
Acknowledgment Number (32 bits)					
Data Offset (4 bits)	Reserved (6 bits)	Flags (6 bits)	Window Size (16 bits)		
Checksum (16 bits)	Urgent Pointer (16 bits)	nter (16 bits) Options & Padding (variable)			

Tabela 1: TCP Header Segment Fields