Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

КУРСОВАЯ РАБОТА

Моделирование системы, формализованной как система массового обслуживания.

По дисциплине «Архитектура программных систем»

Выполнила

студентка гр. 5130904/10104 Ролецкая С. Н.

Руководитель Гончаров А. В.

«1» декабря 2023г.

Оглавление

Введение	3
Постановка варианта	4
Расшифровка варианта:	4
Общая постановка задачи	7
Описание бизнес-домена.	7
Маппинг бизнес-домена на архитектуру СМО	7
Артефакты	g
Sequence диаграмма	9
Диаграмма классов	
Описание программной модели.	11
Описание СМО.	14
Ограничения и требуемые характеристики	14
Экономическое обоснование.	
Результаты анализа системы на предмет экономической выгоды	
Вывод.	

Введение.

Целью практической курсовой является создание модели ВС или ее компоненты на некотором уровне детализации, описывающей и имитирующей ее структуру и функциональность. Модель дает приближенное описание объекта с целью получения требуемых результатов с определенной точностью и достоверностью.

Степень приближения модели к описываемому объекту может быть различной и зависит от требований задачи. Существуют различные типы моделей ВС: аналитические, аналоговые, физические и имитационные. В данной работе будет использоваться имитационная модель ВС. Одним из подходов к построению имитационной модели является построение ее в виде системы массового обслуживания (СМО).

Результатом курсовой работы является экономическое обоснование получившейся системы с описанием маппинга бизнес-домена на архитектуру СМО.

Постановка варианта.

Вариант 12:

<u>ИБ ИЗ2 ПЗ1 Д1033 Д10О4 Д2П2 Д2Б3 ОР1 ОД3</u>

Расшифровка варианта:

- 1. Параметры элементов модели.
 - 1.1. Источники:

ИБ – бесконечный;

ИЗ2 – равномерный закон распределения;

1.2. Приборы.

П31 — экспоненциальный закон распределения времени обслуживания;

- 2. Описание дисциплин постановки и выбора.
 - 2.1. Дисциплины буферизации.

Д1 — постановки в буфер;

Д1О — относительные приоритеты на обслуживание;

Д1ОЗ — записи в буфер, если есть место;

Д1О33 — на свободное место;

Заявка встанет в очередь на первое от начала свободное место, если такое найдется. Сдвига очереди в этом случае не происходит.

2.2. Дисциплины отказа.

Д1004 — последняя поступившая в буфер;

Самая последняя заявка из поступивших в буфер, т. е. заявка, меньше других простоявшая в очереди, выбивается из БП, и на её место встаёт пришедшая заявка.

2.3. Дисциплины постановки на обслуживание.

Д2 — постановки на обслуживание;

Д2Б — выбор заявки из буфера;

Д2Б3 — по кольцу;

Д2П — выбор прибора;

Д2П2 — по кольцу;

Освобождение прибора или его простой означает, что прибор готов взять заявку на обслуживание. Если в буфере есть очередь, то заявка поступает на прибор в момент его освобождения. Какую заявку поставить на обслуживание на освободившийся прибор определяют дисциплины выбора заявок.

2.3.1. Дисциплины выбора заявок на обслуживание.

Д2Б3 — по кольцу;

Эта дисциплина выбора работает аналогично дисциплине постановки в БП «по кольцу». Здесь также вводится понятие «Указателя», который принимает значение номера места, с которого начинается поиск заявок в БП. Как только будет найдено место, занятое заявкой, эта заявка ставится на освободившийся прибор, а указатель передвигается на место, следующее за тем, откуда была выбрана на обслуживание заявка. Поиск следующего занятого места буфера будет производиться также, начиная с указателя.

2.3.2. Дисциплины выбора прибора.

Д2П2 — выбор прибора по кольцу;

Эта дисциплина производит выбор свободного прибора таким же способом, как и аналогичная дисциплины выбора заявок из буфера по кольцу, т. е. поиск свободных приборов каждый раз начинается с указателя, и заявка встает на обслуживание на первый из найденных приборов.

- 3. Виды отображения результатов работы программной модели.
 - 3.1. Динамическое отражение результатов (пошаговый режим).

ОД — отображение динамики функционирования модели;

ОДЗ — временные диаграммы, текущее состояние.

Шаг в этом случае — интервал модельного времени от одного особого события до другого ближайшего по времени особого события.

3.2.Отражение результатов после сбора статистики OP1-OP2 (автоматический режим).

ОР — отображение результатов;

OP1 — сводная таблица результатов;

Общая постановка задачи.

Описание бизнес-домена.

Бизнес-домен представляет собой систему автоматизации проектирования деталей для круизных лайнеров. Процесс включает в себя обработку заявки, конструирование и создание чертежей по заданным требованиям, перевод созданных чертежей в 3D-модель и примерку 3D-модели на корабле.

Маппинг бизнес-домена на архитектуру СМО.

П	
Предметная область	Система автоматизации проектирования
	деталей для круизных лайнеров
Источники	Источником является заявка от компании на
	проектирование детали, в которой отражены
	требования для ее проектирования, ее
	размеры и характеристики.
Приборы	Прибором является ЭВМ с инженером,
	которые получают информацию из заявки и
	реализуют модель детали по
	соответствующим требованиям.
	Обработанные заявки записываются в базу
	данных для «поднятия» информации по ним
	в случае непредвиденных ситуаций.
Буфер	Буфером является база данных заявок в
	облачном хранилище компании.
Дисциплина постановки в	В порядке поступления, ни одна из
буфер	заявок не имеет приоритета.
Дисциплина отказа	Самая последняя заявка из поступивших в
	буфер, т. е. заявка, меньше других

	простоявшая в очереди, выбивается из БП,
	и на её место встаёт пришедшая заявка.
Дисциплина выбора из	По кольцу;
буфера	Выбор осуществляется с помощью
	указателя, который принимает значение
	номера места, с которого начинается поиск
	заявок в БП. Как только будет найдено
	место, занятое заявкой, эта заявка ставится
	на освободившийся прибор, а указатель
	передвигается на место, следующее за тем,
	откуда была выбрана на обслуживание
	заявка. Поиск следующего занятого места
	буфера будет производиться также, начиная
	с указателя.
Дисциплина постановки	По кольцу;
на обслуживание	Поиск свободных приборов каждый раз
	начинается с указателя, и заявка встает на
	обслуживание на первый из найденных
	приборов.

Артефакты.

Sequence диаграмма.

Диаграмма классов.

Описание программной модели.

Разработка производилась в среде IntelliJ IDEA 2023 на языке Java. Результаты работы программы выводятся при помощи графического интерфейса, написанного с помощью инструментов JavaFX.

Начальный экран программы — это экран конфигурации. Пользователю необходимо ввести данные, чтобы сконфигурировать модель: количество источников, количество заявок, количество приборов, размер буфера, α и β для расчета времени генерации заявок, γ для расчета времени обслуживания заявки на приборе.

Время генерации высчитывается по равномерному закону распределения:

$$F(x) = \begin{cases} 0, & x < \alpha \\ \frac{x - \alpha}{\beta - \alpha}, & \alpha \le x < \beta \rightarrow x = F(x)(\beta - \alpha) + \alpha \\ 1, & x \ge \beta \end{cases}$$

где F(x) – функция генерации случайного числа в диапазоне от 0 до 1

Время обработки высчитывается по экспоненциальному закону распределения:

$$F(x) = 1 - e^{-\gamma x} \rightarrow \log(1 - F(x)) = -\gamma x$$
$$\rightarrow x = -\frac{1}{\gamma}\log(1 - F(x))$$

После ввода всех данных необходимо нажать кнопку «Конфигурировать». Чтобы просмотреть результаты модели нужно нажать на кнопку «Симулировать». В программе реализованы два варианта отображения результатов:

- Пошаговый режим с календарем событий
- Автоматический режим с выводами о результатах

В пошаговом режиме отражается состояние системы: на каждом шаге выводятся состояния буфера, источников и приборов, указываются перемещения указателей для выбора заявки и выбора прибора. Каждый шаг представляет собой одно из событий: заявка сгенерирована, заявка отправлена в буфер, выбивание заявки из буфера, выбор заявки на обработку, отправка заявки на обработку, обработка заявки. По событиям можно перемещаться с помощью кнопок «Шаг назад» и «Шаг вперед» или непосредственно введя нужный шаг.

В автоматическом режиме выводятся две таблицы с выводами по источникам и по приборам. В таблице с источниками для каждого источника высчитывается общее количество заявок, количество отказанных заявок, среднее время пребывания заявки в системе, среднее время обработки заявки на приборе, среднее время ожидания обработки заявки, дисперсия времени ожидания, дисперсия времени обработки заявок и вероятность отказа заявки.

Дисперсии высчитываются по формуле:

$$D_w = \frac{\sum (T_i - T_w)^2}{N_{req}}$$

Для таблицы с приборами высчитывается коэффициент загруженности для каждого прибора.

Описание СМО.

Ограничения и требуемые характеристики.

- Вероятность отказа не должна превышать 15%, чтобы компания не упала в убытки.
- Загрузка приборов не должна составлять более 90%, чтобы обеспечить адекватную загруженность работников.
- Время пребывания заявки в системе не ограничено, так как в зависимости от сложности проектируемых деталей заявки могут обрабатываться достаточно длительное время.
- Заявка от компании-источника генерируется некоторое время по равномерному закону, так как часто нужно уточнение многих деталей по проектируемому механизму.

Количество источников –	От 1 до 6			
государственных организаций и	511 A0 0			
частных туристических компаний				
	0.1.2355.4			
Размер заявки – пакета документов	От 1 до 3 Мбайт			
с параметрами и требованиями для				
модели				
Размер буфера – базы данных в	От 50 до 200 Гбайт			
облачном хранилище компании				
Количество приборов –	От 3 до 8			
сотрудников с ЭВМ				
Скорость генерации заявок	По равномерному закону распределения с			
	lpha=195 и $eta=200$			
	- простые проекты			
	$\alpha = 299$ и $\beta = 300$			
	- проекты средней детальности			
	lpha = 495 и $eta = 500$			
	- проекты высокой детальности			
Скорость работы прибора	По экспоненциальному закону с			
	$\gamma = 0.00001 - 0.0000$			
	- сотрудник с устаревшим ПО			
	$\gamma = 0.0001 - 0.0006$			
	- сотрудник с обновленным ПО			
	$\gamma = 0.001 - 0.005$			
	- сотрудник с новейшим ПО			

Экономическое обоснование.

о Затраты компании:

Покупка лицензии на ПО для	Новейшее ПО – 164 тыс. руб. в год за штуку		
моделирования	Обновленное ПО - 61 тыс. руб. в год за		
	штуку		
	Устаревшее ПО - 21 тыс. руб. в год за штуку		
Заработная плата	90 тыс. руб. в месяц на одного сотрудника		
сотрудникам			
Облачное хранилище на	2 тыс. руб. в месяц за 10 гб		
основе Microsoft OneDrive			

о Прибыль компании:

Средняя стоимость обслуживания одной заявки

Простой проект $-\sim 50$ тыс. руб.

Проект средней детальности – до 80 тыс. руб.

Проект высокой детальности – от 100 тыс. руб.

Результаты анализа системы на предмет экономической выгоды.

Возьмем среднее количество источников — заказчиков и оставим это количеств фиксированным. Рассмотрим различные сочетания сложности проекта и качества ПО. При вычислении следующих результатов были учтены все ограничения и требуемые характеристики.

N_{uct}	N_3	$N_{\rm np}$	$S_{ m бу\phi}$, гб	α	β	γ	Доходы, млн	Расходы,	Прибыль,
							руб.	млн руб.	млн руб.
5	200	6	150	195	200	0.00006	10	6,9	3
5	200	5	80	195	200	0.0005	10	5,9	4,1
5	200	4	50	195	200	0.001	10	5,1	4,9
5	200	8	150	299	300	0.00006	16	9,2	6,8
5	200	4	50	299	300	0.0006	16	4,7	11,3

5	150	5	50	299	300	0.005	12	6,3	5,7
5	100	8	80	495	500	0.00001	10	9	1
5	100	4	70	495	500	0.0005	10	4,7	5,3
5	100	4	50	495	500	0.001	10	5	4,9

Сначала рассматривались варианты с легкими проектами, затем с проектами средней детализации и с проектами высокой детализации.

Пояснение результатов:

Из таблицы видно, что, чем хуже качество ПО, тем медленнее работают сотрудники и, следовательно, чтобы обеспечить качество труда и процент отказа, нужно увеличивать штат сотрудников, а также увеличивать объем хранилища. Использование новейшего ПО улучшает эту ситуацию, но, чтобы получать достаточную прибыль, нет смысла брать простые проекты, а с увеличением сложности проекта уменьшается количество заявок, что уменьшает и прибыль.

В случае простых проектов самым оптимальным вариантом будет использование новейшего ПО, так как можно сократить штат сотрудников и объем облачного хранилища.

Обрабатывая заявки высокой детализации, лучше использовать обновленное программное обеспечение, чтобы сохранять баланс между затратами на сотрудников и затратами на ПО.

Самый выгодный для компании вариант — это работа с заявками средней детализации на обновленном ПО. В этом варианте компания может обрабатывать достаточно большое количество заявок, при этом не перегружая сотрудников и не увеличивая объем облачного хранилища. Худший расклад для компании — это работа с заявками высокой сложности на устаревшем ПО. В теории, этот вариант должен быть самым прибыльным, но, чтобы

соответствовать требуемым нормам, приходится увеличивать штат сотрудников и облачного хранилища при небольшом количестве заявок.

Вывод.

В ходе курсовой работы была написана система массового обслуживания на языке Java с использованием графической библиотеки JavaFX. С помощью данной программы была проанализирована реальная система и подобрана максимально выгодная комплектация данной системы.