SENG 457/CSC 557 Lab 4: Qiskit and PennyLane (Quantum Teleportation)

Prashanti Priya Angara, Maziyar Khadivi

Contact email: mazy1996@uvic.ca

June 3, 2025

Bases

Basis States

The general quantum state of a qubit can be represented by a linear superposition of its two orthonormal basis states $|x\rangle$ and $|y\rangle$ for example:

$$|\psi\rangle = \alpha |x\rangle + \beta |y\rangle$$

1

Computational Basis

- \bullet Computational Basis $\{|0\rangle,|1\rangle\}$ for a single qubit system
- Measurement in the computational basis will only distinguish between the states $\{|0\rangle,|1\rangle\}$
- Sometimes measuring in another basis might be helpful
- Some other bases:
 - $\{|+\rangle, |-\rangle\}$
 - $\{|i+\rangle, |i-\rangle\}$

Some Common Bases

Pauli Measurements

Pauli Measurement	Unitary transformation
Z	1
X	H
Y	HS^{\dagger}

Multi-Qubit Bases

• For a two qubit system, the computational basis is:

$$\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$$

In general, for an n-qubit system, the computational basis is composed of 2ⁿ elements:

$$\{|000...0\rangle_n, |000...1\rangle_n, ... |11...1\rangle_n\}$$

Bell Basis

In	Out
$ 00\rangle$	$(00\rangle + 11\rangle)/\sqrt{2} \equiv \beta_{00}\rangle$
$ 01\rangle$	$(00\rangle + 11\rangle)/\sqrt{2} \equiv \beta_{00}\rangle$ $(01\rangle + 10\rangle)/\sqrt{2} \equiv \beta_{01}\rangle$
$ 10\rangle$	$(00\rangle - 11\rangle)/\sqrt{2} \equiv \beta_{10}\rangle$
$ 11\rangle$	$(01\rangle - 10\rangle)/\sqrt{2} \equiv \beta_{11}\rangle$

Teleportation: Another Way

Quantum Teleportation: Recap

Quantum Teleportation: Recap

Final state before measurement:

$$\frac{1}{2} \big(|00\rangle \otimes \alpha |0\rangle + \beta |1\rangle \big) + \frac{1}{2} \big(|01\rangle \otimes \alpha |1\rangle + \beta |0\rangle \big) + \frac{1}{2} \big(|10\rangle \otimes \alpha |0\rangle - \beta |1\rangle \big) + \frac{1}{2} \big(|11\rangle \otimes \alpha |1\rangle - \beta |0\rangle \big)$$

Teleportation via Bell Basis

Principle of Deferred Measurement

Deferred Measurement

The Deferred Measurement Principle is a result in quantum computing which states that delaying measurements until the end of a quantum computation doesn't affect the probability distribution of outcomes.

Teleportation Circuit

Modified Teleportation Circuit: Deferred Measurements

Teleportation in Qiskit

Mid-Circuit Measurements with Dynamic Circuits

- Incorporate real-time classical communication into quantum circuits
- Operations depend on data produced at run time
- Control flow with Qiskit: https://docs.quantum.ibm.com/build/classical-feedforward-and-control-flow

Teleportation in PennyLane

Mid-Circuit Measurements

PennyLane allows specifying measurements in the middle of the circuit. Quantum functions such as operations can then be conditioned on the measurement outcome of such mid-circuit measurements:

```
def my_quantum_function(x, y):
    qml.RY(x, wires=0)
    qml.CNOT(wires=[0, 1])
    m_0 = qml.measure(1)

qml.cond(m_0, qml.RY)(y, wires=0)
    return qml.probs(wires=[0])
```

Deferred measurements in PennyLane

- A quantum function with mid-circuit measurements (defined using measure())
 and conditional operations (defined using cond()) can be executed by applying the
 deferred measurement principle
- Performing true mid-circuit measurements and conditional operations is dependent on the quantum hardware and PennyLane device capabilities.

$qml.cond^1$

- Quantum-compatible if-else conditionals: Condition quantum operations on parameters (results of mid-circuit measurements)
- When used with the qjit() decorator, this function allows for general if-elif-else constructs.

```
dev = aml.device("lightning.qubit", wires=1)
@gml.ajit
@qml.qnode(dev)
def circuit(x: float):
    def ansatz true():
        aml.RX(x, wires=0)
        qml.Hadamard(wires=0)
    def ansatz false():
        aml.RY(x, wires=0)
    qml.cond(x > 1.4, ansatz true, ansatz false)()
    return gml.expval(gml.PauliZ(@))
```

¹https://docs.pennylane.ai/en/stable/code/api/pennylane.cond.html

References

Qiskit

- https://learning.quantum.ibm.com/course/basics-of-quantum-information/entanglement-in-action
- https://docs.quantum.ibm.com/build/classical-feedforward-and-control-flow
- https://www.ibm.com/quantum/blog/quantum-dynamic-circuits

PennyLane

- https://docs.pennylane.ai/en/stable/introduction/measurements.html
- https://docs.pennylane.ai/en/stable/code/api/pennylane.qjit.html
- $\bullet \ \ https://docs.pennylane.ai/en/stable/code/api/pennylane.cond.html$