Chapitre VII Méthode de la puissance itérée et méthode de la déflation

- 1. Introduction
- 2. Méthode de la puissance itérée
- Méthode de la déflation

1. Introduction

On considère une matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$ diagonalisable admettant n valeurs propres λ_k avec la convention de notation :

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$$

On dit que λ_1 est la **valeur propre dominante** si $|\lambda_1| > |\lambda_2|$ et le vecteur propre \mathbf{e}_1 associé à λ_1 est appelé **vecteur propre dominant**.

La méthode de la puissance itérée est une méthode numérique qui permet de calculer de façon approchée le couple dominant $(\lambda_1, \mathbf{e}_1)$.

Exemple:
$$\mathbf{A} = \begin{pmatrix} 7 & 16 \\ -2 & -5 \end{pmatrix}$$

La matrice **A** est diagonalisable :
$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \begin{pmatrix} -4 & -2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -4 & -2 \\ 1 & -1 \end{pmatrix}^{-1}$$

On définit la suite de vecteurs (\mathbf{x}_n) suivante :

$$\begin{cases} \mathbf{x}_0 = (1,1)^T \\ \mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k \end{cases}$$

•
$$\mathbf{x}_1 = \mathbf{A}\mathbf{x}_0 = \begin{pmatrix} 7 & 16 \\ -2 & -5 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 23 \\ -7 \end{pmatrix}$$

•
$$\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1 = \begin{pmatrix} 7 & 16 \\ -2 & -5 \end{pmatrix} \begin{pmatrix} 23 \\ -7 \end{pmatrix} = \begin{pmatrix} 49 \\ -11 \end{pmatrix}$$

•
$$\mathbf{x}_3 = \mathbf{A}\mathbf{x}_2 = \begin{pmatrix} 7 & 16 \\ -2 & -5 \end{pmatrix} \begin{pmatrix} 49 \\ -11 \end{pmatrix} = \begin{pmatrix} 167 \\ -43 \end{pmatrix}$$

•
$$\mathbf{x}_4 = \mathbf{A}\mathbf{x}_3 = \begin{pmatrix} 7 & 16 \\ -2 & -5 \end{pmatrix} \begin{pmatrix} 167 \\ -43 \end{pmatrix} = \begin{pmatrix} 481 \\ -119 \end{pmatrix}$$

•
$$\mathbf{x}_5 = \mathbf{A}\mathbf{x}_4 = \begin{pmatrix} 7 & 16 \\ -2 & -5 \end{pmatrix} \begin{pmatrix} 481 \\ -119 \end{pmatrix} = \begin{pmatrix} 1463 \\ -367 \end{pmatrix}$$

•
$$\mathbf{x}_6 = \mathbf{A}\mathbf{x}_5 = \begin{pmatrix} 7 & 16 \\ -2 & -5 \end{pmatrix} \begin{pmatrix} 1463 \\ -367 \end{pmatrix} = \begin{pmatrix} 4369 \\ -1091 \end{pmatrix}$$

On remarque que :

- le vecteur \mathbf{x}_{k+1} est presque proportionnel à \mathbf{x}_k
- le coefficient de proportionnalité est très proche de la valeur propre dominante $\lambda_1=3$
- le vecteur \mathbf{x}_k tend vers le vecteur propre dominant $\mathbf{e}_1 = (-4, \ 1)^T$

Explications

On a:

$$\forall k \in \mathbb{N}, \quad \mathbf{x}_k = \mathbf{A}\mathbf{x}_{k-1} = \mathbf{A}^2\mathbf{x}_{k-2} = \dots = \mathbf{A}^k\mathbf{x}_0$$

On rappelle (cf. cours chapitre I, diagonalisation) que :

$$\mathbf{A}^k = \sum_{i=1}^n \lambda_i^k \mathbf{M}_i \quad \text{avec} \quad \mathbf{M}_i = \mathbf{e}_i \mathbf{f}_i^T$$

Les vecteurs \mathbf{e}_i sont les vecteurs propres de \mathbf{A} (c'est-à-dire les vecteurs colonnes de \mathbf{P}) et les vecteurs \mathbf{f}_i^T sont les vecteurs lignes de la matrice \mathbf{P}^{-1} . Donc :

$$\forall k \in \mathbb{N}, \quad \mathbf{x}_k =$$

Mais comme λ_1 est la valeurs propre dominante on a :

$$\forall i \in [2, n], \qquad \lim_{k \to +\infty} \left(\frac{\lambda_i}{\lambda_1}\right)^k = 0$$

Donc, pour k suffisamment grand :

$$\mathbf{x}_k \simeq \lambda_1^k a_1 \mathbf{e}_1$$

Donc \mathbf{x}_k est proche d'un vecteur propre dominant (puisque presque proportionnel à \mathbf{e}_1).

Au rang suivant :

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k \simeq \lambda_1^k a_1 \mathbf{A} \mathbf{e}_1 = \lambda_1^k a_1 \lambda_1 \mathbf{e}_1 = \lambda_1 (\lambda_1^k a_1 \mathbf{e}_1)$$

Donc:

$$\forall k \in \mathbb{N}, \quad \mathbf{x}_{k+1} \simeq \lambda_1 \mathbf{x}_k$$

Ceci explique le fait que le rapport des composantes est proche de λ_1 :

$$|\lambda_1| = \frac{\|\mathbf{x}_{k+1}\|}{\|\mathbf{x}_k\|}$$

Remarques

- la convergence est d'autant plus rapide que le rapport $|\lambda_1|/|\lambda_2|$ est grand
- la méthode ne marche pas si $|\lambda_1| = |\lambda_2|$
- il est également possible de normer les vecteurs \mathbf{x}_k à chaque étape afin de les composantes ne deviennent trop grandes (ou trop petites) ; la suite (\mathbf{x}_k) est alors définie par :

$$\mathbf{x}_{k+1} = \frac{\mathbf{A}\mathbf{x}_k}{\|\mathbf{x}_k\|}$$

3. Méthode de la déflation

Pour calculer les autres valeurs propres on utilise la **méthode de déflation** qui consiste à construire une matrice ${\bf B}$ admettant pour valeurs propres $0,\lambda_2,\ldots,\lambda_n$ respectivement associées aux vecteurs propres ${\bf e}_1,{\bf e}_2,\ldots,{\bf e}_n$. Le couple dominant est alors $(\lambda_2,{\bf e}_2)$; il suffit alors d'appliquer la méthode de la puissance itérée à la matrice ${\bf B}$.

Construction de la matrice B

Soit $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ la base constituée des vecteurs propres de la matrice \mathbf{A}^T (on rappelle que \mathbf{A} et \mathbf{A}^T ont les mêmes valeurs propres), c'est-à-dire :

$$\forall k \in [1, n], \quad \mathbf{A}^T \mathbf{u}_k = \lambda_k \mathbf{u}_k$$

Ou encore (en prenant la transposée de la formule précédente) :

$$\forall k \in [1, n], \quad \mathbf{u}_k^T \mathbf{A} = \lambda_k \mathbf{u}_k^T$$

3. Méthode de la déflation

Donc 0 est une valeur propre de ${\bf B}$; elle est associée au vecteur propre ${\bf e_1}$.

3. Méthode de la déflation

De plus:

Donc λ_k est une valeur propre de ${\bf B}$; elle est associée au vecteur propre ${\bf e}_k$.

Finalement, **B** est une matrice diagonalisable admettant pour valeurs propres $0, \lambda_2, \lambda_3, ..., \lambda_n$ avec :

$$|\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$$

La valeur propre dominante est alors λ_2 et le vecteur propre dominant est \mathbf{e}_2 . Il suffit alors d'appliquer la méthode de la puissance itérée à la matrice \mathbf{B} pour déterminer le couple dominant $(\lambda_2, \mathbf{e}_2)$, et ainsi de suite pour les autres valeurs propres et vecteurs propres.