

INNOVATION. AUTOMATION. ANALYTICS

PROJECT ON

EDA on Engineering Graduates' Outcomes

Subtitle: "AMEO 2015 Dataset Analysis"

PRESENTED BY-:

Athira kumari

Introduction

Let's Explore the data!

Imagine our dataset as a treasure trove of information waiting to be uncovered. Our goal is to dive deep into this data, like detectives investigating a case, to find valuable clues and patterns. By doing so, we aim to answer important questions and make smarter decisions.

Dataset Overview

Project Snapshot

Let's start by getting to know our dataset better. We'll import the data and take a sneak peek with the help of some basic statistics. This step sets the stage for our analytical adventure.

	Unnamed: 0	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10рє
0	train	203097	420000	2012- 06-01	present	senior quality engineer	Bangalore	f	1990- 02-19	
1	train	579905	500000	2013- 09-01	present	assistant manager	Indore	m	1989- 10-04	
2	train	810601	325000	2014- 06-01	present	systems engineer	Chennai	f	1992- 08-03	
3	train	267447	1100000	2011- 07-01	present	senior software engineer	Gurgaon	m	1989- 12-05	
4	train	343523	200000	2014- 03-01	2015- 03-01 00:00:00	get	Manesar	m	1991- 02-27	
5 rows × 39 columns										

Unvariate Analysis

Understanding Individual Variables

1. Checking Salary Distribution

For Salaries:

- See how salaries are spread out among our team with this graph called Probability Density Function (PDF).
- Example Code: sns.histplot(data['Salary'], kde=True, color='skyblue')

For Specializations:

- Now, let's look at the different job roles in our team using simple Countplots.
- Example Code: sns.countplot(x='Specialization', data=data, palette='pastel')

Salary Distribution

2. Keeping an Eye on Extreme Values:

- We'll find unusual values in salaries through a Boxplot. It helps us notice anything standing out.
- Example Code: sns.boxplot(x=data['Salary'], color='lightcoral')

3. Understanding Specialization Frequencies:

- Let's see how many team members specialize in each area. Countplots make this easy.
- Example Code: sns.countplot(x='Specialization', data=data, palette='pastel')

Spotting Outliers - Boxplot for Salaries

Bivariate Analysis

Exploring Relationship

In this step, we delve into relationships between different variables to uncover patterns and correlations.

Research Questions

1. Testing Earnings Claim

- Test the claim made by a Times of India article stating, "After doing your Computer Science Engineering, if you take up jobs as a Programming Analyst, Software Engineer, Hardware Engineer, and Associate Engineer, you can earn up to 2.5-3 lakhs as a fresh graduate.
- Utilize the data to validate or challenge this claim.
- Example: Visualize the salary distribution for Computer Science Engineering roles using a boxplot. Compare the median salary of different roles to assess the claim's validity.

2. Exploring Gender-Specialization Relationship

- Investigate the relationship between gender and specialization.
- Analyze if the preference for specialization varies based on gender.
- Example: Create a stacked bar plot showcasing the count of each specialization, categorized by gender.

3. Observations and Insights

- Provide key observations and insights derived from the analysis.
- Highlight any interesting patterns or trends discovered during the exploration.
- Example: Summarize findings such as the most common specialization, salary variations among roles, and any unexpected correlations.

Count of Specializations by Gender Gender 800 m 600 Count 400 200 0 information & communication tec computer and communication end

Specialization

Observations and Insights

Conclusion

1. What We Learned:

We found out some cool stuff about our team makeup and how different jobs and skills are spread out.

2. What's Standing Out:

Some jobs and skills are more common in our team, giving us clues about what we're good at.

3. Big Picture Takeaways:

Salaries differ among us, and we spotted some key roles like software and data folks that are a big deal.

Any Question

THANK YOU

