SPD semestrální projekt $Inteligentní\ CAN\ senzor\ +\ kontrol\'er$

Michal Vokáč, Jaroslav Šach

3. ledna 2011

Obsah

1	Inte	eligentni CAN senzor
	1.1	Vlastnosti
	1.2	Popis zapojení
	1.3	Firmware
		1.3.1 sja control
		1.3.2 avr sja1000p
		1.3.3 sensor
		1.3.4 avr can
		1.3.5 main
2	$\mathbf{C}\mathbf{A}$	N senzor - kontrolér 5
	2.1	Popis řídící jednotky CAN senozoru
	2.2	Popis řídícího firmware
	2.3	Ovládání řídící jednotky
3	Kor	munikační protokol 6
	3.1	Typy zpráv
	_	3.1.1 Identifikace
		3.1.2 Nastavení senzoru
		3.1.3 Naměřená data
1	Pří]	lohy 8
4	1 11	iony
\mathbf{S}	ezn	am obrázků
	1	CAN sensor - funkční blokový diagram
	2	CAN senzor - schéma zapojení
	3	CAN senzor kontrolér - funkční blokový diagram
	4	CAN senzor kontrolér - schéma zapojení
S	07 N	am tabulek
Ŋ	CZII	ani tabulek
	1	Požadavek na identifikaci senzoru
	2	Odpověď senzoru na požadevek o identifikaci
	3	Formát zprávy pro konfiguraci senzoru
	4	Nastavení kanálu pro sledování prahu
	5	Nastavení průměrování na kanálech
	6	Formát zprávy obsahujcí naměřená data

1 Inteligentní CAN senzor

Michal Vokáč

1.1 Vlastnosti

Jedná se o inteligentní senzor se třemi analogovými vstupními kanály s rozsahem 0-5Vss. Pomocí sběrnice CAN je senzor spojen s kontrolérem, který umožňuje:

- identifikaci senzoru,
- možnost sledování všech kanálů + výběr jednotlivých,
- jednoduchý a kontinuální odměr,
- průměrování pro každý kanál zvlášť (se zadáváním počtu průměrovaných hodnot),
- monitorování nastavené meze u jednoho kanálu a indikace překročení této meze.

1.2 Popis zapojení

Hlavní částí senzoru je mikrokontrolér Atmel AVR ATmega32. Pro taktování mikrokontroléru je použit interní kalibrovaný RC oscilátor s frekvencí 8MHz.

Připojení mikrokontroléru ke sbernici CAN je realizováno použitím CAN kontroléru SJA1000 a budiče sběrnice 82c250 společnosti Philips. Zapojení kontroléru a budiče vychází ze standardního zapojení z katalogového listu výrobce. Kontrolér SJA1000 je taktován pomocí 16MHz krystalu.

Pro účely ladění firmware je k mikrokontroléru pripojen znakový inteligentní LCD diplay 16x2.

Senzorovou část zapojení tvoří tři analogové vstupy mikrokontroléru s nastaveným rozlišním 8bitů. Kanál 0 je připojen na jezdec potenciometru, kanál 1 měří ubytek napětí na fotorezistoru a kanál 2 měří napájecí napěti senzoru.

Napájení všech částí senzoru zajišťuje lineární stabilizátor 78L05.

Komplení schméma zapojení senzoru je na Obrázku 2.

1.3 Firmware

Program pro mikrokontrolér senzoru je napsaný v jazyce C a kompletní zdrojové kódy včetně html dokumentace jsou k dospozici v příloze 1. Základní funkce programu je znázorněna v blokovém diagramu na Obrazku 1. Program je složen z několika hlavních částí.

1.3.1 sja control

Nízkoúrovňové funkce a makra pro řízení komunikace mezi AVR a SJA1000:

• ovládání řídících signálů ALE, CS, RD, WR,

- adresace registrů,
- čtení/zápis registrů.

1.3.2 avr sja1000p

Vysokoúrovňové funkce pro ovládání CAN kontroléru SJA1000 v režimu PeliCAN.

Tento modul vychází z ovladačů lin
CAN pro různé zásuvné karty (PCI ap.) s rozhraním CAN pro operační systém GNU/Linux [1]. Konkrétně se jedná o pře
pracovanou knihovnu sja1000p pro karty s čipem SJA1000.

Knihovna byla významně zjednodušena a upravena tak, aby mohla být využita i na nevýkoném osmibitovém mikrokontroléru a nezávisle na typu použitého mikrokontroléru. Interface mezi touto knihovnou a skutečným hardware mikrokontroléru tvoří modul $sja_control$. V případě použití jiného mikrokontroléru nebo jen jiného propojení mezi AVR a SJA čipem stačí jednoduše upravit knihovnu $sja_control$ podle použitého typu propojení/mikrokontroléru.

Upravená knihovna $avr_sja1000p$ stále zachovává základní funkce shodné s původní sja1000p knihovnou a pro pochopení a studium funkce je možné využít dokumentaci a manuál k ovladačnům linCAN.

1.3.3 sensor

Modul *senzor* realizuje vlastní měření, zpracování a odeslání vzorků s využitím stavových automatů (FSM - finite state machine).

Senzor má definovány tři stavy ve kterých se můze nacházet.

wait_for_command() čeká na příchod konfigurační zprávy která povolí přechod do dalšího stavu a spustí měření

sensor_capture_data() v tomto stavu naměří vzorky na kanálech podle nastavení v přijaté zprávě, provede půměrování a kontrolu překročení nastaveného prahu

sensor_send_data() vytvoří zprávu pro odeslání, vloží do ní naměřená data a parametry podle kterých byla naměřena a odešle zprávu na sběrnici CAN

Pokud během provádění měření přijde zpráva s novým nastavením senzoru, poslední měření se provede až do konce podle posledního nastavení a pak se provede nastavení a měření podle nových parametrů.

1.3.4 avr can

Modul obsahuje definici struktury zpáv posílaných po sběrnici, struktutu pro uložení nastavení parametrů SJA čipu (baudrate, mask...), aj. Tato část opět vychází z linCAN [1].

1.3.5 main

Po provedení základních inicializačních kroků program běží v nekonečné smyčce ve které se periodicky s intervalem 100ms spouští funkce umožňujcí přechod mezi stavy FSM.

2 CAN senzor - kontrolér

Jaroslav Šach

2.1 Popis řídící jednotky CAN senozoru

Zařízení je postaveno na procesoru řady AVR. Výběr konkrétního typu ovlivnil především počet vstupně-výstupních pinů potřebných pro připojení periferních obvodů. Komunikační rozhraní s uživatelem je tvořeno, čtyřřádkovým znakovým displejem a čtyrmi tlačítky. (ESCAPE, ENTER, +, -). Jako řadič CANového rozhraní slouží obvod SJA1000 doplněn o standardní budič sběrnice 82C250. Schéma zapojení je na Obrázku 4. Řídící firmware byl napsán v jazyce ANSI C.

2.2 Popis řídícího firmware

Celý program je koncipován objektovým přístupem a rozdělen do několika zdrojových souborů. Jendotlivé programové bloky se dělí na SJA1000.c, LCD_disp.c, OBJ_menu.c. Tyto bloky slouží jako knihovny pro přístup a ovládání jednotlivých periferií.

Z výše uvedených zdrojových souborů následně popíši pouze OBJ_menu.c, což je základní část celého programu.

Po připojení napájení provede program nejprve inicializaci svých periferních obvodů. Nastaví vstupní a výstupní porty a následně vykoná inicializační sekvence pro zobrazovač a CANový řadič. V dalším kroku nastaví potřebné parametry přerušovacího systému, povolí přerušení a na první pozici v zásobníku umístí ukazatel na hlavní obrazovku. Dále je tento objekt vykreslen na displeji a po té program vstoupí do nekonečné smyčky v níž čeká na příchod přerušení. Pokud dojde k vygenerování přerušení od CAN řadiče, zpracuje procesor přijatou zprávu a provede její dekódování. Pokud podnět k přerušení pochází od ovládacích tlačítek, vyzvedne procesor objekt uložený na vrcholu zásobníku a zavolá příslušnou proceduru tohoto objektu. V zavolané funkci se v závislosti na kódu stisknutého tlačítka provede potřebná akce a ukončí se přerušení. Procesor neustále vyzvedává a aktualizuje objekty uložené na vrcholu zásobníku a vykonává funkce které k deným objektům náleží. Popis funkce programu je na Obrázku 3.

2.3 Ovládání řídící jednotky

Jak již bylo uvedeno, pro veškerou komunikaci směrem od uživatele slouží čtyři tlačítka. Po zapnutí zařízení se uživateli otevře základní obrazovka. Na té jsou uživateli v průběhu měření vyobrazovány naměřené hodnoty jednotlivých kanálů a název senzoru, jenž s jednotkou komunikuje. Jelikož po prvním zapnutí nebyla provedena identifikace senzoru a nebylo zažádáno o žádná data, vypadá základní obrazovka následovně.

SENZOR DATA	
Channel 1: ——	
Channel 2: ——	
Channel 3: ——	

Na prvním řádku je uveden název senzoru. Tři čárky místo číselného údaje označují, že daný kanál není měřen. Do další nabídky se uživatel dostane dlouhým stiskem tlačítka ENTER. Podrží-li toto tlačítko po debu alespoň 1,5 vteřiny, přejde řídící jednotka do režimu nastavování parametrů pro jednotlivé kanály. A na displeji se zobrazí následující obrazovka.

| Main menu | > Averagging |

Tiskem tlačítek PLUS/MINUS se uživatel pohybuje mezi jednotlivými položkami menu. Stiskem ENTER vybere aktuálně zvolenou položku a vstoupí tak v menu o úroveň výše. Tlačítkem ESCAPE se naopak v menu vrátí o úroveň výše. Podrží-li ESCAPE déle než jednu vteřinu vyskočí program do základní obrazovky se zobrazenými údaji.

3 Komunikační protokol

Komunikace mezi senzorem a kontrolérem probíhá pomocí zpráv s přesně definovaným formátem.

Formát zpráv umožňuje poslat požadavek na identifikaci všech připojených senzorů, provést nastavení všech parametrů senzoru a předávat naměřená data ze senzoru do kontroléru. Formát zprávy je navržen tak, aby veškeré nastavení a požadavky na senzor byly nastaveny pouze v identifikační části rozšířené CAN zprávy (29 bitů) a umožňuje rozlišení až 255 senzorů připojených ke společné sběrnici.

3.1 Typy zpráv

3.1.1 Identifikace

Zpráva IDN? je požadavek kontroléru na zaslání identifikačního řetězce a adresy všech senzorů připojených ke sběrnici.

Odpovědí na tuto zprávu je zpráva jejíž identifikátor = adresa senzoru a v datové části zprávy je uloženo max. 8 znaků identifikačního řetězce senzoru.

Požadavek na identifikaci IDN?								
ID0	D0 ID1 ID2 ID3							
0xFF	0	0	0	X				
8b	8b	8b	5b	3b				

Tabulka 1: Požadavek na identifikaci senzoru

Odpověď na identifikaci IDN									
ID0 ID1 ID2 ID3 DATA[0-7]									
senzor ID	0	0	0	X	'string ID'				
8b	8b	8b	5b	3b	max. 8x8b				

Tabulka 2: Odpověď senzoru na požadevek o identifikaci

3.1.2 Nastavení senzoru

Nastavení měřících parametrů senzoru kontrolér provádí zasláním zprávy která obsahuje adresu senzoru (0 - 254) a parametry podle kterých požaduje naměřit data (kanály, průměrování, sledování prahu aj.).

Konfigurace senzoru									
ID0	ID0 ID1 ID2 ID3								
senzor ID	Treshold	Treshold ch.	Treshold ch. CH2 CH1			Delivery	-	X	
8b	8b	2b	3b	3b	3b	1b	1b	3b	

Tabulka 3: Formát zprávy pro konfiguraci senzoru

Treshold channel								
	THC0							
OFF	0	0						
CH0	0	1						
CH1	1	0						
CH2	1	1						

Tabulka 4: Nastavení kanálu pro sledování prahu

Averaging								
CHx.2 CHx.1 CHx.0								
channel OFF	0	0	0					
channel ON	0	0	1					
AVRG 4x	0	1	0					
AVRG 8x	0	1	1					
AVRG 16x	1	0	0					
AVRG 32x	1	0	1					
AVRG 64x	1	1	0					
AVRG 128x	1	1	1					

Tabulka 5: Nastavení průměrování na kanálech

3.1.3 Naměřená data

Senzor po přijetí konfogurační zprávy provede měření podle požadovaného nastavení a odesílá zpět na sběrnici naměřená data. Identifikátor zprávy takto naměřených dat obsahuje adresu senzoru který tato data naměřil a také parametry podle kterých byla data naměřena. V případě, že to bylo v nastavení požadováno, tak je nastaven příznak překročení nastaveného prahu.

Naměřená data									
ID0 ID1 ID2 ID3								DATA[0-2]	
senzor ID	Treshold	Treshold ch. CH0 CH1			CH2	Delivery	Overflow	X	Senzor data
8b	8b	2b	3b	3b	3b	1b	1b	3b	max. 3x8b

Tabulka 6: Formát zprávy obsahujcí naměřená data

4 Přílohy

- 1. avr_can_sensor.zip
 - kompletní zdrojové soubory projektu CAN senzoru v jazyce C
 - html dokumentace
 - schéma zapojení
 - funkční blokový diagram
- 2. avr_can_sensor_controller.zip
 - kompletní zdrojové soubory projektu kontroléru CAN senzoru v jazyce C
 - schéma zapojení
 - funkční blokový diagram

Reference

[1] linCAN - ovladače různých typů CAN karet pro operační systém GNU/Linux http://freshmeat.net/projects/lincan/

Obrázek 1: CAN sensor - funkční blokový diagram

Obrázek 2: CAN senzor - schéma zapojení

Obrázek 3: CAN senzor kontrolér - funkční blokový diagram

Obrázek 4: CAN senzor kontrolér - schéma zapojení