操作系统课程实验报告

学生胜名:____

班学号: ____

指导教师: __/__

地理与信息工程学院

2019年6月8日

实习题目: 内存管理模型的设计与实现

【需求规格说明】

对内存的可变分区申请采用链表法管理进行模拟实现。要求:

- (1) 对于给定的一个存储空间自己设计数据结构进行管理,可以使用单个链表,也可以使用多个链表,自己负责存储空间的所有管理组织,要求采用分页方式(指定单元大小为页,如 4K, 2K,进程申请以页为单位)来组织基本内容;
- (2) 当进程对内存进行空间申请操作时,模型采用一定的策略(如:首先利用可用的内存进行分配,如果空间不够时,进行内存紧缩或其他方案进行处理)对进程给予分配:
- (3) 从系统开始启动到多个进程参与申请和运行时,进程最少要有 3 个以上,每个 进程执行申请的时候都应能对系统当前的内存情况进行查看;
- (4) 对内存的申请进行内存分配,对使用过的空间进行回收,对给定的某种页面调度 进行合理的页面分配。
- (5) 利用不同的颜色代表不同的进程对内存的占用情况,动态更新这些信息。

【算法设计】

(1) 设计思想:

用链表存储每个被进程申请的内存块与空闲的内存块,初始链表只有两个 节点,存放系统占用内存与空的内存块,每页大小为 1k。

申请内存时提供四种分配方法:最先匹配法、下次匹配法、最佳匹配法和最坏匹配法。最先匹配法:遍历链表,找到的第一个符合要求的空块分配;下次匹配法:每次分配完内存纪录当前位置,下次分配内存时从当前位置开始,若无则从头再遍历链表;最佳匹配法:遍历链表,纪录符合要求的最小的块的节点用于分配;最坏匹配法:遍历链表,纪录符合要求的最大的块的地址用于分配。

函数具体实现见代码。

(2) 详细设计:

链表节点构成:

int begin;	起始地址
int size;	块大小
Node* next;	指向下一节点
string process;	状态(os->操作系统,hole->空闲区,process->进程)

我主要设计了一个类 Memory Manage,来模拟内存管理模型:

成员变量说明:

Node *head;	链表头节点
Node *current;	纪录当前位置,服务于下次匹配法
Int size;	纪录内存大小

函数说明:

构造函数,默认内存大小256,操作系 MemoryManage(int size=256, int 统占用8 osSize=8);析构函数,释放申请的内存 ~MemoryManage(); void init(int size, int osSize); 类初始化,相关变量初始化 bool request(string process, int size, 进程按照相关方法申请内存 *int mode);* 将 node 节点分配给进程 void assignMemory(Node* node, string process, int size); 最先匹配法 bool firstFit(string process, int size); 最佳匹配法 bool bestFit(string process, int size); bool nextFit(string process, int size); 下次匹配法 bool worstFit(string process, int 最坏匹配法 size); void print(); 打印相关信息 用户输入交互 void scanf(); bool memoryRecycling(string 内存回收 process); bool tighteningMemory(); 内存紧缩,即将不连续的空块连续

程序执行过程: 初始化->用户选择申请内存/释放内存/退出->系统进行相关操作。

【调试报告】

内存分配测试,用书上的习题做测试,先模拟出初始情况:

进程	大小	地址
	8k	0k-7k
		8k-17k
		19k-22k
hole	20k	24k-43k
hole	18k	45k-62k
hole	7k	64k-70k
hole	9k	72k-80k
hole	12k	82k-93k
		95k-109k
		110k-255k
	hole b hole d hole f hole h hole j hole l hole	hole 10k b 1k hole 4k d 1k hole 20k f 1k hole 18k h 1k hole 7k j 1k hole 9k 1 1k hole 12k n 1k hole 15k

依次用各种分配方法申请: a->12k, c->10k, e->9k: 最先匹配法:

e 块号	 进程	 大小	 地址
0	OS	8k	0k-7k
1			
2	hole	0k	18k-17k
3			
4 5	hole	4k	19k-22k
6			
7	hole	8k	36k-43k
8			
9			
10	hole	9k	54k-62k
11			
12	hole	7k	64k-70k
13			
14	hole	9k	72k-80k
15			
16	hole	12k	82k-93k
17			
18	hole	15k	95k-109k
19			

下次匹配法:

块号	进程	大小	地址
0		8k	
1	hole	10k	8k-17k
2			
3	hole	4k	19k-22k
2 3 4 5 6			
5			
6	hole	8k	36k-43k
7			
8			
9	hole	8k	55k-62k
10			
11	hole	7k	64k-70k
12			
13			
14	hole	0k	81k-80k
15			
16	hole	12k	82k-93k
17			
18	hole	15k	95k-109k
19			

最佳匹配法:

 块号		士小	
次 与	进程	大小	地址
1		8k 10k	0k-7k 8k-17k
1	c hole	0k	0K-17K 18k-17k
2		0k 1k	
3 4 5			18k-18k
4	hole	4k	19k-22k
Ь		1k	23k-23k
6	hole	20k	24k-43k
7			
8	hole	18k	45k-62k
9			
10	hole	7k	64k-70k
11			
12			
13	hole	0k	81k-80k
14			
15			
16	hole	0k	94k-93k
17	n	1k	94k-94k
18	hole	15k	95k-109k
19	р	146k	110k-255k

最坏匹配法:

块号	进程	大小	地址
0	OS	8k	0k-7k
} 1	hole	10k	8k-17k
2		1k	18k-18k
3	hole		19k-22k
4			23k-23k
^a 5			24k-35k
⁰ 6	hole	8k	36k-43k
$^{0}7$			44k-44k
b <mark>8</mark>			45k-54k
0 <mark>9</mark>	hole	8k	55k-62k
010			63k-63k
$_{c}11$	hole	7k	64k-70k
$_{0}12$			71k-71k
₁ 13	hole	9k	72k-80k
.14			81k-81k
$_{0}^{1}$ 15	hole	12k	82k-93k
16			94k-94k
17			95k-103k
,18	hole	6k	104k-109k
19			110k-255k
/			

在初始时申请 x->30k(此时内存中空闲块均小于 30k)内存不足时执行内存紧缩:

分配失 执行内			
- 块 0 1 2 3 4 5 6 7 8 9	世程 os b d f h j 1 n p hole	大小 8k 1k 1k 1k 1k 1k 1k 1k 146k 95k	地址 0k-7k 8k-8k 9k-9k 10k-10k 11k-11k 12k-12k 13k-13k 14k-14k 15k-160k 161k-255k
 块 0 1 2 3 4 5 6 7 8 9 10 	Description of the control of the c	大小 8k 1k 1k 1k 1k 1k 1k 1k 1k 1k 1	地址 0k-7k 8k-8k 9k-9k 10k-10k 11k-11k 12k-12k 13k-13k 14k-14k 15k-160k 161k-190k

【附录】

代码位置:

 $\underline{\texttt{https://github.com/Xhofe/0perating-system/tree/master/src/lab3}}$