# Sorting and Complexity Analysis

#### Algorithmic Efficiency

- We sometimes say "algorithm A is faster or more efficient than algorithm B." But how do we actually measure efficiency?
- We shall discuss how we can qualitatively measure the efficiency of an algorithm.
- We start with the problem of sorting.

#### The Sorting Problem

• The problem of *sorting* is to *reorder* the elements in an array so that they fall in some defined sequence.



Ascending order

#### The Selection Sort Algorithm

One of the simplest sorting algorithms is the selection sort.

 The algorithm goes through each array position and selects a suitable value for that position.



array[0] : swap with the smallest
value of array[0] to array[n]

array[1]: swap with the smallest value of array[1] to array[n]

array[2] : swap with the smallest
value of array[2] to array[n]

:

#### The Selection Sort Algorithm



 selects a value for:

 array[0]
 56:
 swap with 19

 array[1]
 25:
 no swap

 array[2]
 37:
 swap with 30

 array[3]
 58:
 swap with 37

 array[4]
 95:
 swap with 56

 array[5]
 95:
 swap with 58

 array[6]
 73:
 no swap

Goes through each array *position* and *selects* a suitable value for that position.

#### The Selection Sort Algorithm

- Round 0: find the smallest element in array[0 ... n-1] and exchange it with array[0].
  Round 1: find the smallest element in array[1 ... n-1] and exchange it with array[1].
  Round 2: find the smallest element in array[2 ... n-1] and exchange it with array[2].
  ...
  Round i: find the smallest element in array[i ... n-1] and exchange it with array[i].
- Round n-2: find the smallest element in array[n-2...n-1] and exchange it with array[n-2].

#### Selection Sort Implementation

```
void SelectionSort(int array[], int n) {
   int i, j, k;
   for (i = 0; i < n - 1; i++) {

        (Find the index k such that array[k] is
        the smallest in array[i ... n-1].)

        (Exchange array[i] and array[k].)
}</pre>
```

Round i: find the smallest element in array[i ... n-1] and exchange it with array[i].

Round o to Round n-2

#### Selection Sort Implementation

```
void SelectionSort(int array[], int n) {
   int i, j, k;
   for (i = 0; i < n - 1; i++) {
        k = i;
        for (j = i + 1; j < n; j++)
            if (array[j] < array[k])
            k = j;

        (Exchange array[i] and array[k])
        }
}</pre>
```

Round i: find the smallest element in array[i ... n-1] and exchange it with array[i].

#### Selection Sort Implementation

```
void SelectionSort(int array[], int n) {
                                                           Round i
   int i, j, k, tmp;
   for (i = 0; i < n - 1; i++) {
      k = i;
                                                   Find the index k
      for (j = i + 1; j < n; j++)
                                                 such that array[k]
          if (array[j] < array[k])</pre>
                                                  is the smallest in
             k = j;
                                                  array[i    n-1]
      tmp = array[i];
      array[i] = array[k];
      array[k] = tmp;
                                                 Exchange array[i]
                                                   and array[k]
```

Round i: find the smallest element in array[i ... n-1] and exchange it with array[i].

#### How Efficient is Selection Sort?

• Some *empirical* measurements

| N       | Time (s) |
|---------|----------|
| 10,000  | 0.265    |
| 20,000  | 1.061    |
| 40,000  | 4.260    |
| 100,000 | 26.797   |
| 110,000 | 32.557   |
| 120,000 | 38.721   |
| 140,000 | 54.142   |
| 200,000 | 110.032  |
|         |          |

#### Observations:

Doubling *N* increases the running time by 4 times roughly.

Multiplying *N* by 10 times increases the running time by 100 times roughly.

CPU: AMD Athlon™ 64 3500+ (2.2GHz)

#### Analyzing Selection Sort

Initial: 56 25 37 58 95 19 73 30

- Round 0: must consider all N elements in array [0 ... n-1]
  - Round 0: 19 25 37 58 95 56 73 30
- Round 1: must consider N 1 elements in array [1 ... n-1]
  - Round 1: 19 25 37 58 95 56 73 30
- Round 2: must consider N 2 elements in array [2 ... n-1]
  - Round 2: 19 25 30 58 95 56 73 37
- Round 3: must consider N 3 elements...

Round i: find the smallest element in array[i ... n-1] and exchange it with array[i].

#### Analyzing Selection Sort

• The total running time is roughly *proportional* to

$$N + (N-1) + (N-2) + ... + 3 + 2 + 1$$
  
=  $N(N+1)/2$   
=  $(N^2 + N)/2$ 

### How Big is $(N^2 + N)/2$ ?

| N       | Time (s) | $F(N)=(N^2 + N)/2$ |
|---------|----------|--------------------|
| 10,000  | 0.265    | 50,005,000         |
| 20,000  | 1.061    | 200,010,000        |
| 40,000  | 4.260    | 800,020,000        |
| 100,000 | 26.797   | 5,000,050,000      |
| 110,000 | 32.557   | 6,050,055,000      |
| 120,000 | 38.721   | 7,200,060,000      |
| 140,000 | 54.142   | 9,800,070,000      |
| 200,000 | 110.032  | 20,000,100,000     |

#### Observations:

Doubling N increases F(N) by 4 times roughly.

Multiplying N by 10 times increases F(N) by 100 times roughly.

#### Analyzing an Algorithm

- Precise running time of an algorithm depends on specific computer hardware.
- The *essence* of analyzing the selection sort, however, is *how the* algorithm responds to changes in the size N of the array.
  - That is,

Doubling *N* increases the running time by 4 times roughly.

#### Computational Complexity

- The relationship between the problem size N and the performance of an algorithm as N becomes large is called the *computational* complexity (or time complexity) of the algorithm.
- To denote computational complexity, we use the big-O notation.

#### **Big-O Notation**

- The big-O notation is used to provide a quantitative insight as to how changes in the problem size N affect the algorithmic performance as N becomes large.
- For example, as we shall see, the computational complexity of selection sort is  $O(N^2)$  (Read as "big-O of N squared.")

#### Standard Simplifications of Big-O

- Before giving the formal definition, let's see how we can simplify a formula when using big-O notation.
- We illustrate the simplifications using the formula obtained from selection sort:

$$(N^2 + N)/2$$

• Eliminate any term whose contribution to the total becomes insignificant as N becomes large.

```
• Example: (N^2 + N)/2
= N^2/2 + N/2
= O(N^2/2)
```

| N       | N <sup>2</sup> /2 | N/2    | $(N^2 + N)/2$ |
|---------|-------------------|--------|---------------|
| 10      | 50                | 5      | 55            |
| 100     | 5,000             | 50     | 5,050         |
| 1,000   | 500,000           | 500    | 500,500       |
| 10,000  | 50,000,000        | 5,000  | 50,005,000    |
| 100,000 | 5,000,000,000     | 50,000 | 5,000,050,000 |

The term N/2 (comparing with N²/2) becomes *in*significant to the total value when N becomes large.

• When a formula involves a summation of several terms, the *fastest* growing term alone will control the running time of the algorithm for large N.

- More examples
  - N + 1 = O(N)
  - $N^3 + 1000N^2 + N = O(N^3)$

• Eliminate any constant factors.

• Example: 
$$(N^2 + N)/2$$
  
=  $O(N^2/2)$  Rule 1  
=  $O(N^2)$ 

Increase by100 times when N is increased by 10 times

#### Simplification Rule 2

| N       | N <sup>2</sup> /2 | $N^2$          |
|---------|-------------------|----------------|
| 10      | 50                | 100            |
| 100     | 5,000             | 10,000         |
| 1,000   | 500,000           | 1,000,000      |
| 10,000  | 50,000,000        | 100,000,000    |
| 100,000 | 5,000,000,000     | 10,000,000,000 |

The constant factor 1/2 has **no** effect on the growth rate.

- What we want to capture in computational complexity is how changes in N affect the algorithmic performance.
- Constant factors have no effect on the growth rate.
- More examples
  - 10000 $N^{0.5} = O(N^{0.5})$
  - $0.0001N^3 + 10000N^2 + N + 3 = O(N^3)$

#### **Exercises**

- $2N^9 + N = O(?)$
- $7N 2N^{1/2} + 4 = O(?)$
- $N^{3/2} 2N^{1/2} = O(?)$
- $2N + 4\log N = O(?)$
- $N^2 + Nlog N = O(?)$

#### Implications of Computational Complexity

- Recall that the computational complexity of selection sort is  $O(N^2)$ .
- An implication on  $O(N^2)$  is that the running time grows by the square of the increase in the problem size.
- This *precisely* captures the performance of selection sort, which is doubling N increases the running time by 4 times, multiplying N by 10 times increases the running time by 100 times

What is the computational complexity of the following function?

```
double Average(double *array, int n) {
   int i;
   double total = 0.0;
   for (i = 0; i < n; i++)
        total += array[i];
   return total / n;
}</pre>
Each other statement
   executed once.
```

What is the computational complexity of the following function?

```
double Average(double *array, int n) {
  int i;
  double total = 0.0;
  for (i = 0; i < n; i++)
     total += array[i];
  return total / n;
}</pre>

Constant is denoted as
O(1) in big-O notation.
```

- Hence, computational complexity is O(N).
- Commonly called *linear time*.

• In general, we can determine the time complexity simply by finding the piece of the code that is executed *most often*.

```
for (i = 0; i < n; i++)
   total += array[i];</pre>
```

• However, if an expression or statement involves *function calls*, it must be accounted *separately*.

What about this one?

```
System dependent,
            double Variance(double array[], int n) {
                                                           usually O(1) or O(N)
               double k, *temp;
                                                                  time.
               int i;
               temp = (double *)malloc(n * sizeof(double));
               for (i = 0; i < n; i++) {
                   k = array[i] - Average(array, n);
                                                                O(N) time
    Loop:
                   temp[i] = k * k;
  N iterations
                                                                O(1) time
               return Average(temp, n);
                                                       Totally O(N(N+1)) =
                                            O(N) time
                                                       O(N^2) time for this part.
• O(N^2 + N) = O(N^2)
```

 $O(1V^- + 1V) = O(1V^-)$ 

Commonly called quadratic time.

#### Determining Complexity from Code Structure

 With a little bit revision, double Variance(double array[], int n) { double k, mean, \*temp; int i; temp = (double \*)malloc(n \* sizeof(double)); mean = Average(array, n); O(N) time for (i = 0; i < n; i++) { k = array[i] - mean; Loop body: *O*(1) time temp[i] = k \* k;*N* iterations return Average(temp, n); Totally  $O(N \times 1) = O(N)$ O(N) time time only for this part.

• it improves to O(N+N) = O(N).

#### Selection Sort Revisited

```
void SelectionSort(int array[], int n) {
    int i, j, k;
    for (i = 0; i < n - 1; i++) {
        k = i;
        for (j = i + 1; j < n; j++)
            if (array[j] < array[k])
            k = j;
            iterations

            j = array[i];
            array[i] = array[k];
            array[k] = j;
        }
}</pre>
Each single statement/expression executes in O(1) time.
```

•  $O(N \times N) = O(N^2)$ 

#### Formal Definition of Big-O

- Definition: T(N) = O(f(N)) if and only if
  - there are positive constants  $n_0$  and c such that for every value of  $N \ge n_0$ , the following condition holds:

$$T(N) \le c \times f(N)$$

• As long as N is "large enough," T(N) is always bounded by a constant multiple of f(N).

for  $N \ge n_0$ ,  $T(N) \le c \times f(N)$ 

#### Example: why $(N^2 + N)/2 = O(N^2)$ ?

- To prove  $(N^2 + N)/2 = O(N^2)$ , we need to find constants  $n_0$  and c so that for all values of  $N \ge n_0$ ,  $(N^2 + N)/2 \le cN^2$
- We know that  $N \le N^2$  when  $N \ge 1$
- Therefore, for all  $N \ge n_0 = 1$ , we have

$$(N^2 + N)/2 \le (N^2 + N^2)/2$$
  
=  $N^2$   
=  $1N^2$ 

• Thus, setting  $n_0 = 1$  and c = 1 completes the proof

$$(N^2 + N)/2 = O(N^2)$$



#### Examples

(A) 
$$2N + 4 = O(N)$$
 for all  $N \ge 4$ ,  $2N + 4 \le 2N + N = 3N$   $(n_0 = 4 \text{ and } c = 3)$ 

(B) 
$$N^8 + 1000N^3 = O(N^8)$$
  
for all  $N \ge 4$ ,  $N^8 + 1000N^3 \le N^8 + N^5N^3 = 2N^8$   
Note that when  $N = 3$ ,  $N^5 = 243 < 1000$  when  $N = 4$ ,  $N^5 = 1024 > 1000$  (or  $1000 < N^5$ )  $(n_0 = 4 \text{ and } c = 2)$ 

#### Polynomials

• In general, given a polynomial P(N) of degree k,

$$P(N) = a_k N^k + a_{k-1} N^{k-1} + \dots + a_2 N^2 + a_1 N + a_0$$

where  $a_0$ , ...,  $a_k$  and k are constants, we can prove that

$$P(N) = O(N^k)$$

#### Examples

for all 
$$N \geq 1$$
, 
$$4N + \log N = O(N)$$
 
$$4N + \log N \leq 4N + N$$
 
$$= 5N$$
 
$$(n_0 = 1 \text{ and } c = 5)$$