# ระบบค้นหากองทุนที่เหมาะสมกับผู้ลงทุน Mutual Fund Searching System

## คณะผู้จัดทำ

นาย ฐปนพงศ์ จันตะมะ 600510542 นาย วชิระ นรสิงห์ 600510576

## อาจารย์ที่ปรึกษา

ผู้ช่วยศาสตราจารย์ ดร.อารีรัตน์ ตรงรัศมีทอง

รายงานนี้เป็นส่วนหนึ่งของวิชา การออกแบบและพัฒนาออนโทโลยี (204424) ภาคการศึกษาที่ 2 ปีการศึกษา 2563

#### คำนำ

รายงานเล่มนี้จัดทำขึ้นเพื่อเป็นส่วนหนึ่งของวิชา การออกแบบและพัฒนาออนโทโลยี (204424) โดยคณะ ผู้จัดทำได้สร้างระบบสำหรับค้นหากองทุนให้เหมาะสมกับผู้ลงทุน โดยใช้ฐานข้อมูลในรูปแบบ ออนโทโลยีซึ่งมี ความสามารถสำหรับจัดเก็บฐานข้อมูลในรูปแบบฐานข้อมูลแบบความรู้

โดยคณะผู้จัดทำหวังว่าการจัดทำเอกสารฉบับนี้จะช่วยให้ข้อมูลที่เป็นประโยชน์ต่อผู้สนใจในการออกแบบ ฐานข้อมูลแบบ ออนโทโลยี และ การใช้งานเครื่องมือสำหรับใช้ฐานข้อมูลแบบ ออนโทโลยี

นาย ฐปนพงศ์ จันตะมะ

นาย วชิระ นรสิงห์

## สารบัญ

| เรื่อง  |                                                      | หน้า |
|---------|------------------------------------------------------|------|
| คำนำ    |                                                      | a    |
| สารบัญ  |                                                      | b    |
| บทที่ 1 | บทนำ                                                 | 1    |
| 1.1     | แนวคิดหลัก (Concept)                                 | 1    |
| 1.2     | วัตถุประสงค์                                         | 1    |
| 1.3     | ข้อความที่เกี่ยวข้อง                                 | 1    |
| บทที่ 2 | เครื่องมือ และ ทฤษฎีที่เกี่ยวข้อง                    | 3    |
| 2.1     | เครื่องมือที่ใช้ในการพัฒนาระบบ                       | 3    |
| 2.1.    | 1 Related Technologies                               | 3    |
| 2.2     | ภาษาที่ใช้พัฒนาระบบและภาษาที่ใช้ในการ Query Ontology | 3    |
| บทที่ 3 | การออกแบบ                                            | 5    |
| 3.1     | Ontology Schema                                      | 5    |
| 3.2     | Class Hierarchy                                      | 7    |
| 3.3     | Object Properties                                    | 11   |
| 3.4     | Data Properties                                      | 11   |
| 3.5     | ตัวอย่างของ Instance                                 | 12   |
| 3.6     | Relation between objects                             | 14   |
| 3.7     | ส่วนก่อประสาน (User Interface)                       | 15   |
| 3.8     | สถาปัตยกรรมของระบบ (Software Architecture)           | 16   |

## บทที่ 1

#### บทนำ

### 1.1 แนวคิดหลัก (Concept)

ระบบค้นหากองทุนที่เหมาะสมกับนักลงทุน เนื่องจากการลงทุนเป็นเรื่องที่จำเป็นต้องใช้ความรู้ในการพิจารณา ทำให้นักลงทุนจะต้องศึกษาข้อมูลจำนวนมากก่อนตัดสินใจ แต่ระบบที่จัดทำจะนำ Knowledge Base มาช่วยใน การตัดสินใจและเลือกกองทุนที่เหมาะสมกับนักลงทุน และ แสดงข้อมูลการคาดการณ์ ผลตอบแทนที่ได้ผ่านระบบ ภายนอก โดยใช้การเขียนโปรแกรมสำหรับแสดงผลคาดการณ์ในอนาคตทั้งนี้ผลคาดการณ์เป็นเพียงการนำข้อมูล จากอดีตมาประมวลผล

### 1.2 วัตถุประสงค์

เพื่อแสดงกองทุนที่เหมาะสมกับ เป้าหมาย, เงินทุน และ ระยะเวลาการลงทุน ของผู้ลงทุน

## 1.3 ข้อความที่เกี่ยวข้อง

- บริษัทหลักทรัพย์จัดการกองทุน
- นักลงทุน
- ราคา
  - O NAV
  - ราคาซื้อ
  - O ราคาขาย
- กองทุนรวม
  - กองทุนเปิด
  - กองทุนปิด
  - กองทุนรวมตลาดเงิน
  - ๐ กองทุนรวมตราสารหนี้
  - กองทุนรวมตราสารทุน
  - ๐ กองทุนรวมผสม

- กองทุนรวมทรัพย์สินทางเลือก
- กองทุนรวมต่างประเทศ
- ความเสี่ยง
  - O เสี่ยงน้อย (1)
  - o เสี่ยงมาก (8)
- สินทรัพย์
  - 0 กองทุน
  - 0 หุ้น
  - O ตราสารหนี้ภาครัฐ
  - 0 หุ้นกู้
  - ทองคำ
  - 0 น้ำมัน
  - ๐ อสังหาริมทรัพย์
- ผลตอบแทน
  - 0 ปันผล
  - สะสมมูลค่า

## บทที่ 2 เครื่องมือ และ ทฤษฎีที่เกี่ยวข้อง

## 2.1 เครื่องมือที่ใช้ในการพัฒนาระบบ

#### 2.1.1 Related Technologies

- React Framework สำหรับสร้าง Client-application
- Express.js (a server framework)
- Prisma (an ORM for creating Object-oriented model for Relational Database)
- Fast API (a server framework for python)
- Axios (Library for creating Http Request to RESTful API)
- PostgreSQL สำหรับเก็บข้อมูลที่จำเป็นต้อง Update อยู่ตลอด
   ยกตัวอย่างเช่น NAV, ราคาซื้อ, ราคาขาย, รายละเอียดกองทุน
- Protégé (a knowledge base administration tool) สำหรับสร้าง Ontology Schema
- Apache Jena Fuseki สำหรับ Ontology Server เพื่อรับ Query และ Update Command
- fbProphet สำหรับทำนายอัตราการเติบโตของกองทุน

#### 2.1.2 Outer API

• SEC API (กลต.) สำหรับเรียก Fact Sheet และ NAV ของกองทุนรวมทั้งหมด

## 2.2 ภาษาที่ใช้พัฒนาระบบและภาษาที่ใช้ในการ Query Ontology

#### 2.2.1 Client App และ Server

- TypeScript
- Python
- SQL Language

## 2.2.2 Ontology Server (Jena Fuseki)

- SPARQL Command
- Turtle Type extension

#### บทที่ 3

#### การออกแบบ

#### 3.1 Ontology Schema

การออกแบบ Ontology Schema ในระบบค้นหากองทุนนั้นเริ่มจากการออกแบบที่ตัวกองทุนซึ่งสำคัญที่สุด โดยกองทุนมี Sub-Class ที่ได้มากจากการจำแนกของ กลต. จากเอกสาร นิยามประกาศ สน.87/2558 ภาคผนวก 2 โดยออกแบบไว้ดังนี้

- กองทุน
  - กองทุนที่จ่ายปันผล
  - ๐ กองทุนตราสารหนี้
  - ๐ กองทุนตราสารทุน
  - กองทุนผสม
  - ๐ กองทุนทางเลือก
  - 0 อื่น

นอกจากนี้กองทุนยังมี Data-Properties หรือ ข้อมูลภายใน Object โดยการเลือก Data-Properties ทำได้ จากการวิเคราะห์การเลือกกองทุนเบื้องต้นซึ่งประกอบไปด้วย

- ชื่อรหัสกองทุน
- ผลตอบแทนที่ทำได้ ตั้งแต่เริ่มจัดตั้ง
- ระดับความเสี่ยง
- การขาดทุนมากที่สุด ตั้งแต่จัดตั้ง
- ค่าความคลาดเคลื่อน

เนื่องจากข้อมูลเหล่านี้มีการเปลี่ยนแปลงเพียงปีละครั้งจึงเหมาะสมที่จะนำเข้าไปไว้ใน Knowledge Base เพื่อ ทำการวิเคราะห์หากองทุนที่เหมาะสม

#### ตัวอย่าง Individual ของ กองทุนรวม



ในส่วนต่อไปคือส่วนของ สินทรัพย์ที่กองทุนลงทุนโดยจะถูกเชื่อมความสัมพันธ์กับกองทุนโดย Object Properties ที่ชื่อว่า Invest โดยลักษณะของ Class สินทรัพย์มีดังนี้

- สินทรัพย์
  - 0 เงินฝาก
  - 0 หน่วยลงทุน
  - 0 หุ้น
  - 0 ตราสารหนี้
  - 0 หุ้นกู้
  - ทองคำ
  - 0 ใบสำแดงสิทธิ

โดย สินทรัพย์จะมี Data Properties เพียง 3 เท่านั้นซึ่งประกอบไปด้วย

- รหัสของสินทรัพย์
- ชื่อของสินทรัพย์
- สัญลักษณ์ของสินทรัพย์

#### ตัวอย่าง Individual ของ สินทรัพย์



ตัวอย่างการเรียก Query Command และ ผลลัพธ์สำหรับเรียกกองทุนใน Ontology

Parameter: dividend: false, loss: 5

## ผลลัพธ์จาก Query Command

```
"project_id": "M0512_2563",
"name": "KCHINARMF",
"draw_down": "-2.16",
"profit": "8.02",
"sd": "17.19",
"risk": "6",
"max_profit": "25.21",
"min_profit": "-9.17"
"project_id": "M0110_2563",
"name": "BCHINAARMF",
"draw_down": "-2.48",
"profit": "8.05",
"sd": "14.21",
"max_profit": "22.26",
"min_profit": "-6.16"
"project_id": "M0470_2563",
"name": "KUSARMF",
"draw_down": "-2.73",
"profit": "5.24",
"sd": "16.15",
"risk": "6",
"max_profit": "21.39",
"min_profit": "-10.91"
"project_id": "M0108_2563",
"name": "BMAPS100",
"draw_down": "-1.81",
"profit": "4.89",
"sd": "6.4",
"max_profit": "11.29",
"min_profit": "-1.51"
"project_id": "M0534_2563",
"name": "SCBGEESG",
"draw_down": "-1.08",
"profit": "5.37",
"sd": "2.29",
"max_profit": "7.66",
"min_profit": "3.08"
```

### 3.2 Class Hierarchy

Class Hierarchy คือ แผนภาพแสดงความสัมพันธ์ระหว่าง Class และ Property ซึ่งมีความสัมพันธ์ใน ลักษณะ Subject => Predicate => Object โดยใช้สัญลักษณ์ในการแสดงแผนภาพดังนี้

| Symbol   | Meaning                                                                        |
|----------|--------------------------------------------------------------------------------|
| Class    | แสดงถึง Class ที่เป็น Subject                                                  |
| Relation | แสดงถึง ความสัมพันธ์ระหว่าง<br>Class ถึง Class หรือ Class ถึง<br>Property      |
| Property | แสดงถึงความหมายของ<br>ความสัมพันธ์ที่เกิดขึ้นระหว่าง<br>Class โดยผ่าน Relation |



แผนภาพแสดง Class Hierarchy

## 3.3 Object Properties

| Name   | Domain | Range |
|--------|--------|-------|
| invest | Fund   | Asset |

## 3.4 Data Properties

| Name               | Domain | Range   |
|--------------------|--------|---------|
| asset_id           | asset  | string  |
| asset_name         | asset  | string  |
| asset_symbol       | asset  | string  |
| project_class_name | fund   | string  |
| project_id         | fund   | string  |
| project_loss       | fund   | decimal |
| project_name       | fund   | string  |
| project_profit     | fund   | decimal |
| project_sd         | fund   | decimal |
| risk_rate          | fund   | integer |

## 3.5 ตัวอย่างของ Instance

1. Class: fund

**Sub-Class**: equity-fund

Instance Name: SCBSET50

Data Property

| Subject    | Туре   | Value      |
|------------|--------|------------|
| project_id | string | M0415_2562 |
| loss       | float  | 36.5%      |
| risk_rate  | int    | 6          |
| sd         | float  | 18.76%     |
| profit     | float  | 5.04%      |

## Object Property

| Subject  | Predicate | Object |
|----------|-----------|--------|
| SCBSET50 | invest    | PTT    |
| SCBSET50 | invest    | AOT    |
| SCBSET50 | invest    | CPALL  |
| SCBSET50 | invest    | DELTA  |
| SCBSET50 | invest    | AIS    |

2. Class: asset

Sub-class: stock

Instance Name: AOT

## Data Property

| Property     | Туре   | Value                  |
|--------------|--------|------------------------|
| asset_id     | string | AOT                    |
| asset_name   | string | AIRPORTS OF THAILAND   |
|              |        | PUBLIC COMPANY LIMITED |
| Asset_symbol | string | AOT                    |

### 3.6 Relation between objects

ตัวอย่างของ Individual ที่ถูกเชื่อมความสัมพันธ์เข้ากับทั้ง Object Property และ Data Property



#### 3.7 ส่วนก่อประสาน (User Interface)

การออกแบบส่วนก่อประสานประกอบไปด้วย 5 ส่วนโดยประกอบไปด้วย

## A. ส่วนรับเข้าข้อมูล

- 1. เงินทุนเริ่มต้น
- 2. เงินทุนต่อเดือน
- 3. ความเสี่ยงที่รับได้
- 4. ระยะเวลาการลงทุน
- 5. จำนวนเงินเป้าหมาย
- 6. การจ่ายปันผล
- 7. ปุ่มค้นหา
- B. ส่วนแสดงอัตราส่วนการลงทุน
- C. ส่วนแสดงรายละเอียดของกองทุนที่ถูกเลือก
- D. ส่วนแสดงการคาดการณ์มูลค่ากองทุนทั้งหมดในอนาคต
  - 1. เส้นที่ 1 แสดงมูลค่ากองทุนทั้งหมด
  - 2. เส้นที่ 2 แสดงจำนวนเงินต้นทั้งหมด
- E. ส่วนแสดงผลลัพธ์ความสามารถในการทำตามเป้าหมาย



#### 3.8 สถาปัตยกรรมของระบบ (Software Architecture)

การออกแบบสถาปัตยกรรมของระบบโดยออกแบบในลักษณะ Three-Tier Architecture โดยมี Application Layer แยกจาก Database Layer และมี Presentation Layer โดยจำแนกได้ดังนี้

- 1. Presentation Layer
  - a. Client-App
- 2. Application Layer
  - a. Mutual-Fund-Ranking API: เป็น Entry Point สำหรับ Client-App เพื่อเรียกใช้ API อื่นๆ
  - b. SEC-API: สำหรับ ข้อมูลของกองทุนรวม จาก กลต.
  - c. Predication API: สำหรับ ประมวลผล และ สร้างการคาดการณ์กองทุนผ่าน fbPhophet
  - d. Ontology API: สำหรับ ประมวลและเรียกข้อมูลภายใน Knowledge Base
- 3. Database Layer
  - a. Turtle Extension: Ontology Schema
  - b. PostgreSQL: Relational Database

โดยภาพรวมของสถาปัตยกรรมทั้งหมดเป็นตาม รูปภาพด้านล่าง



## 3.9 ทฤษฎีที่เกี่ยวข้อง (Related Theory)

ในหัวข้อนี้กล่าวถึงกระบวน และ ทฤษฎีทั้งหมดที่ใช้ภายในระบบจัดการกองทุน

## 1. หลักการคำนวณผลตอบแทนสูงสุดและมากที่สุดของ กองทุนรวม ในระยะเวลา 1 ปี

ในการหาผลตอบแทนสูงสุดของกองทุนรวมนั้นจำเป็นต้องมีข้อมูลประกอบดังนี้

- ผลตอบแทนตั้งแต่จัดตั้งกองทุน (initProfit)
- ค่าความผันผวนตั้งแต่จัดตั้งกองทุน (S.D.)

โดยสามารถคำนวณจากสมการดังนี้

estimateMaxProfit = initProfit + s.d.estimateMinProfit = initProfit - s.d.

## 2. ความเสี่ยงและผลตอบแทน (Risk And Reward)

Risk and Reward คือ การนำความเสี่ยงมาเทียบกับผลตอบแทนที่เราจะได้รับนั้นคุ้มค่าหรือไม่ โดย ใช้วิธีง่ายๆ โดยนำความเสี่ยงหรือการขาดทุนมานับให้คุ้มค่าต่อการลงทุนยกตัวอย่างเช่นหากขาดทุนที่ 5 % ของเงินทุน ควรที่จะได้ผลตอบแทนมากกว่า 5 % เพื่อที่จะได้รับผลตอบแทนที่คุ้มค่ากับความ เสี่ยงที่ให้กับการลงทุนแต่ละครั้ง โดยใน Project ให้ Risk: Reward อยู่ที่ 1:1.25