Advanced International Trade: Lesson 4

Maria Bas

M2 Paris I

- Empirical Evidence
- The effect of trade liberalisation on firms' wages and wage inequalities

Stylized facts I

- Increase of wage gap in the USA, between 1979 and 1995:
 - Real wage of workers with less than 12 years of education fell by 20.2%
 - Real wage of workers with more than 16 years of education rose by 3.4%

Relative wage of non-production / production workers, U.S. manufacturing

Source: NBER data, Feenstra, 2005

Stylized facts I: US

- Berman, Bound and Griliches (1994)
 - Decomposition of the change in relative employment within and between industries

Table 4.1. Industry Level Decomposition of the Change in the Share of Employment and Wages of Non-Production Workers, 1973-79 and 1979-87

All variables are in percentage changes per year

Year	Em	ployment	Wages		
	Between	Within	Between	Within	
1973-79	0.12	0.20	0.12	0.21	
Total	0.32	1	0.38		
1979-1987	0.18	0.36	0.31	0.41	
Total	0.55		0.72	\bigvee_{\uparrow}	
	tive employment and on-prod workers incre		but mainly within inc	dustries	

Trade, Inequalities and Labor Market Institutions

Wage inequality also rose in developing countries.

- Goldberg and Pavcnik (JEL, 2001):
- Review evidence on trade openness and inequality for several developing countries (Mexico, Colombia, Argentina, Brazil, Chile, India, and Hong Kong)
- All these countries have experienced increases in the skill premium during the 80s and 90s.
- Returns to university education (relative to primary education):
- \bullet Mexico: + 68% between 1987 and 1993 (Cragg and Epelbaum (1996).
- ullet Colombia: +16% between 1986 and 1998 (Attanasio et. al. (2004)
- Argentina: + 20% between 1992 and 1998 (Gasparini 2004),
- India: +13% in India between 1987 and 1999 (Kijima (2006)
- Brazil: +10% (Gasparini (2003)

Stylized facts I: Chile, within industry

Table 4: Decomposition of Relative Demand for Skilled labor (H/L): 1990-1999

	Tot al	Between	Within	Within/Total
Industries at 2 digit	0.056	0.001	0.055	0.983
Industries at 3 digit	0.068	0.002	0.066	0.969
Firms	0.044	-0.083	0.127	2.846

Notes: The relative demand for skilled labor is measured by the ratio between non-production and production workers. The growth in the relative skilled labor demand uses the decomposition approach developed by Machin and Van Reenen (1998). Between measures the between-industry variation indicator and Within is the within-industry variation indicator.

Trade, Inequalities and Labor Market Institutions

- (1) Increasing wage inequalities in both developed and developing countries
- (2) Growing wage inequalities between skilled and unskilled labor due to a higher proportion of skilled workers within industries following trade liberalization.
- Between industry increase in relative demand for skilled labor → reallocation across sectors
- Within industry increase in relative demand for skilled labor → reallocation across firms in the same sector.
- ♦ Micro-determinants: heterogeneous firms, firms' decisions
- Theoretical explanations

- Theoretical Explanations
- Predictions of the "New new trade theory": Firm heterogeneity +
- (1) Trade induced SBTC
- (2) Imperfections labor Market

- Amiti, M. and Davis, D., 2012. Trade, Firms, and Wages: Theory and Evidence, Review of Economic Studies, vol. 79(1) 1 -36.
- Aim:
- To test the differentiated effects of trade liberalization on wages across firms depending on their trade status or mode of globalization (importer, exporter or domestic firm).

Theoretical model

- Combines Melitz (2003) with domestic and imported inputs (Kasahara and Lapham, 2007) and efficiency wage theory in labor market
- \bullet Firms are ready to pay higher wages to create an incentive for the effort of workers (Akerlof, 1982) ---> fair-wage constraint

- Relationship between profits and wages
- (1) Production side
- (2) Labor market: eficiency wage

The fair-wage constraint and the labour market

 Main assumption: the nominal wage on offer at any zero-profit firm is unity while that at any other firm is an increasing function of the profitability of that firm

FIGURE 1

Determination of firm wage and profit for given mode of globalization

Production

- Monopolistic competition and heterogeneous firms as in Melitz
- Firms can produce final goods with domestic and imported inputs
- Marginal costs are Cobb-Douglas in the input prices (wages and intermediate goods):

$$c_{\nu} = \frac{1}{\phi_{\nu}} \left(\frac{W_{\nu}}{\alpha} \right)^{\alpha} \left(\frac{P_{M\nu}}{1 - \alpha} \right)^{1 - \alpha} = \frac{\kappa W_{\nu}^{\alpha} P_{M\nu}^{1 - \alpha}}{\phi_{\nu}}, \text{ where } \kappa \equiv \alpha^{-\alpha} (1 - \alpha)^{-(1 - \alpha)}.$$
 (5)

- Imported and domestic inputs are combined by a CES
- A firm that uses domestic inputs only has PMv=1, while a firm that imports intermediates has $PMv=[1+n\tau_{Mv}^{1-\gamma}]^{1/(1-\gamma)}<1$

Fixed and variable costs to export and import

$$\pi_{\nu}(W_{\nu}) = \begin{cases} 0 & \text{if a firm exits without producing,} \\ \pi_{\nu d} V_{\text{ar}} - f & \text{domestic only,} \\ \Gamma_{M\nu} \pi_{\nu d} V_{\text{ar}} - (f + nf_{M}) & \text{imported intermediates,} \\ \Gamma_{X\nu} \pi_{\nu d} V_{\text{ar}} - (f + nf_{X}) & \text{exported final goods,} \\ \Gamma_{X\nu} \Gamma_{M\nu} \pi_{\nu d} V_{\text{ar}} - [f + n(f_{X} + f_{M})] & \text{imp'd interm's \& exp'd final goods.} \end{cases}$$

Theoretical predictions

Theoretical predictions

- Wages, productivity and trade status
- (1) Pure domestic firms: low-productivity firms selling only in the domestic market paying low wages.
- (2) Importers of inputs: trade off (fixed cost- marginal cost), only more productive firms are able to import and increase revenues and pay higher wages
- (3) Exporters: fixed cost of exporting, only most productive firms export, have larger revenues and pay higher wages.

Propositions

- (1) An autarky fair-wage equilibrium exists and is unique.
- (2) The fair-wage equilibrium with trade in final and intermediate goods exists and is unique
- (3) A move to costly trade from autarky raises the equilibrium cutoff

Propositions

- (4) A move to costly trade from autarky leads to:
 - Exit of the least productive firms,
 - A decline in wages at all firms that serve only the domestic market.
 - A decline in wages at marginal importers and marginal exporters.
 - A rise in wages for sufficiently large exporters or importers.
- (5) A firm that exports a larger share of its output or imports a higher share of its inputs will have higher profits and wages.

Tested channels

- Output tariffs lowers wages at import-competing firms (foreign competition effect)
- but boosts wages at exporting firms (market access effect)
- A fall in input tariffs raises wages at import-using firms relative to those at firms that only source inputs locally (Revenue effect)

Data

- Indonesian firms manufacturing census 1991-2000
- Matched with the census on importers and exporters.
- Indonesia's unilateral trade liberalization in the early 90s'.
- Output and Input tariffs constructed using IO tables
- Endogeneity issue of tariffs

Data

Possible instruments

Endogeneity

- It could be argued that firms in low-wage growth industries lobby for protection,
- which would lead to reverse causality and a negative bias on the output tariff coefficient.
- Solution: following Trefler (2004) who proposes using initial tariffs and industry-level characteristics as instruments in a differenced equation to instrument changes in tariffs.
- Other instruments non tariffs barriers

Estimation

- Take five-period differences and estimate the following equation using instrumental variables (IV):
- $\Delta Wage_{t,t-5} = \gamma_1 \Delta Output\tau_{t,t-5} + \gamma_2 \Delta Output\tau_{t,t-5} \times FX + \gamma_3 \Delta Input\tau_{t,t-5} + \gamma_4 \Delta Input\tau_{t,t-5} \times FM + \Delta Z_{i,t,t-5} + \epsilon_{i,t}$
- FX anf FM dummy variables equal to one if the firm export or import intermediate goods.
- Instruments:
- The 1991 share of production workers in total industry employment, and this variable interacted with the five-period lagged export status dummy
- a non-tariff barriers
- the 1991 input tariff level and its interaction with the five-period lagged import status indicator.

Lesson 4: Baseline results

TABLE 2A
Tariffs and wages—baseline regressions

	Dependent var	riable: $ln(wage)_{f,i,t}$	$-\ln(\text{wage})_{f,i,t-}$	5		
	Instrumental variables estimation					
	Output tariff (1)	With exporters (2)	Input tariffs (3)	With importers (4)	Both tariffs (5)	
Δ Output tariff _{i,t}	0·158 (0·184)	0·271 (0·186)			0·244 (0·187)	
Δ (Output tariff _{i,t} x FX _{f,i,t})		-0·583*** (0·098)			-0·482*** (0·096)	
Δ Input tariff $_{i,t}$			-0·333* (0·190)	-0·209 (0·188)	-0·227 (0·196)	
$\Delta(\text{Input tariff}_{i,t} \times \text{FM}_{f,i,t})$				-0·694*** (0·131)	-0·520*** (0·124)	
$\Delta FX_{f,i,t}$	0·019*** (0·007)	0·129*** (0·019)	0·019*** (0·007)	0·022*** (0·007)	0·112*** (0·018)	
$\Delta \text{FM}_{f,i,t}$	0·033*** (0·008)	0·031*** (0·008)	0·033*** (0·008)	0·112*** (0·016)	0·090*** (0·015)	
Joint Significance tests Ho: su	m of coefficients	on tariff variables e	quals zero			
Output tariffs		-0·312** (0·154)			-0·238 (0·168)	
Input tariffs				-0·903*** (0·217)	-0·748*** (0·222)	

Lesson 4: Other outcome variables

Dependent variable	$\ln(\text{revenue})_{f,i,t}$	$\ln(\mathrm{wu})_{f,l,t}$	$\ln(\mathrm{ws})_{f,i,t}$	$\ln(\text{wage})_{f,i,t}$	$\ln(\text{wage})_{f,i,t}$	$\ln(\text{wage})_{f,I,t}$
				1995-1997	1995-1997	1995-1997
					With skill share	With education share
	(1)	(2)	(3)	(4)	(5)	(6)
Output tariff _{i,t}	-0-028	0·119**	0-134***	0-452***	0-460***	0·463***
	(0-076)	(0·051)	(0-053)	(0-132)	(0-131)	(0·130)
Output $tariff_{i,t} \times FX_{f,i,t}$	-0·399***	-0·202***	-0·147***	-0·277***	-0·272***	-0·264***
	(0·072)	(0·045)	(0·057)	(0·099)	(0·098)	(0·094)
Input $tariff_{i,t}$	0·130	-0-085	-0·014	-0·529*	-0·516*	-0·524*
	(0·168)	(0-097)	(0·099)	(0·310)	(0·306)	(0·302)
Input $tariff_{i,t} \times FM_{f,i,t}$	-0.649***	-0·573***	-0-225**	-0.600***	-0.613***	-0·600***
	(0.130)	(0·095)	(0-100)	(0.215)	(0.215)	(0·203)
$FX_{f,i,t}$	0·148***	0-047***	0·072***	0.069***	0.068***	0.065***
	(0·015)	(0-010)	(0·011)	(0.018)	(0.018)	(0.017)
$FM_{f,i,t}$	0·251***	0-092***	0-077***	0·100***	0·100***	0·098***
	(0·019)	(0-012)	(0-014)	(0·027)	(0·027)	(0·026)
${\it skillshare}_{f,i,t}$	0-050 (0-034)	0·570*** (0·020)	-1·595*** (0·033)		0·270*** (0·042)	
$\Delta \ln(\text{labour})_{f,i,t}$	0.794***	-0·062***	0-002***	-0·128***	-0·126***	-0·121***
	(0.016)	(0·006)	(0-006)	(0·014)	(0·014)	(0·014)
$\operatorname{Exit}_{f,i,t}$ if exit in t+1	-0·082***	-0·052***	-0·026***	-0-054***	-0-054***	-0·053***
	(0·009)	(0·006)	(0·008)	(0-009)	(0-009)	(0·008)
Education shares f,i,t Production_1 Production_2 Production_3 Production_4 Production_5 Non-production_1 Non-production_2 Non-production_3 Non-production_3 Non-production_3 Non-production_4						-0.938*** -0.929*** -0.890*** -0.835*** -0.599*** -0.926** -0.669*** -0.446***

Quantification

- A 10 percentage point fall in output tariffs decreases wages by 3 percent in firms oriented exclusively toward the domestic economy;
- But the same fall in the output tariff increases wages by up to 3 percent in firms that export;
- A 10 percentage point fall in input tariffs has an insignificant effect on firms that do not import, but increases wages by up to 12 percent in firms that do import

Conclusion

- The first work to disentagle the effects of output and input tariffs on firms' wages
- depending on trade orientation of the firm
- Find that trade status matter to understand the differential impact of trade liberalization on wages
- Some firms-workers loose from trade liberalization (import-oriented)
- Other firms-workers win (export oriented and imported inputs intensive)