Reg. No.		

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, JULY 2023

First Semester

21CYB101J - CHEMISTRY

(For the candidates admitted from the academic year 2022-2023 onwards)

(i)		over	t - A should be answered in OM to hall invigilator at the end of 4 t - B and Part - C should be answ	0th minute		t shoul	d be	han	ded
۲im	e: 3	Hour	s			Max.	Ma	rks:	75
			PART – A (20 >	1 = 20N	Iorks)	Marks	BL	со	PO
			Answer ALI						
	1	In V	$_{4}[Fe(CN)_{6}]$ the number of un			1.	2	1	1
	1.	(A)		(B)					
		(C)		(D)					
		(C)		(D)					
2		The	tetrahedral complexes have c	oordinati	on number	1	2	1	1
		(A)		(B)					
		(C)		(D)					
						u Li	2.6		1
	3.	The	magnetic moment of [Co(NH			1	3	1	1
		(A)	1.73	(B)	2.83				
		(C)	6.6	(D)	0				
	4.		energy required to remove	an elec	tron from the highest occupied	1	1	1	1
			Ionization energy	(B)	Kinetic energy				
		` /	Binding energy	, ,	Vibrational energy				
	5.		the naturally occurring proce leads to	esses proc	eed spontaneously in a direction	1	1	2	2
		(A)	decrease of entropy	(B)	an increase in enthalpy				
		(C)	an increase of free energy	(D)	decrease of free energy				
	6	Met	als do NOT exist in nature in	the form	of	1	1	2	3
	0.	(A)	Nitrates	(B)	Sulphates				
		(C)	Carbonates	(D)	Oxides				
		(0)							
	7.	Dia	stereomers are			1	2	2	2
		(A)		(B)	Mirror images				
		(C)	Non-Mirror images	(D)	Unstable molecules				
	0	and a		ia maria	um for	1	2	2	2
	δ.		potential energy of n-butane	(B)	Staggered conformations				
		(A)		(D)	Gauche conformations				
		(C)	Eclipsed conformation	(D)	Gadelle Collicialations				

Note:

9.		N1 the first step involves the for	rmatic	on of	1	1	3	4
	. ,	Free radical	. ,	Carbanion				
	(C)	Final product	(D)	Carbocation				
10.	Ma	kovnikov's law is applied in add	lition	of .	1	1	3	2
		Propylene with Cl ₂						
	(C)	Ethylene with Br ₂		Ethylene with HCl				
11.	The	product of Dieckmann condense	ation 1	reaction is	1	2	3	2
		Cyclic alcohol		Keto esters				
		Cyclic ketone	, ,	Alkane				
12.	The	reactivity order of alkyl halides	in SN	¹² mechanism is	1	3	3	2
		$CH_3-X > 1^{\circ} > 2^{\circ} > 3^{\circ}$						
	(C)	$CH_3-X > 3^{\circ} > 1^{\circ} > 2^{\circ}$	(D)	$CH_3-X > 3^{\circ} > 2^{\circ} > 1^{\circ}$				
13.	Wh	ch of the following is a thermos	etting	polymer?	1	2	4	1
		polystyrene	_	polyolefins				
		nylons		phenolic resins				
14.	Whi	ch of the following polymer exh	ibit a	lower value of molar cohesion?	1	1	4	1
		wool		silk				
	(C)	vulcanized rubber	` '	polystyrene				
15.	Whi	ch of the following is a co-polyr	ner?		1	2	4	4
		Polythene		Bakelite				
	(C)	PVC	(D)	Polyacrylonitrile				
16.	Whi	ch of the following is NOT an el	laston	ner?	1	1	4	1
	(A)	Buna-S	(B)	Buna-N				
	(C)	PVC	(D)	Neoprene				
17.	In f	ber reinforced composites long	itudin	al strength is mainly influenced	1	4	5	1
	by (A)	Fiber strength	(D)	Eiber erientation				
	(C)	Fiber volume fraction	(B)	Fiber orientation				
	(C)	Their volume fraction	(D)	Fiber length				
18.		rs having thin crystals is called	(D)		1	1	5	1
	(A)	Wires	(B)	Fibers				
	(C)	Whiskers	(D)	Matrix				
19.		t does the area under the stress-s			1	4	5	3
		Toughness		Total deformation				
	(C)	Modulus of elasticity	(D)	Average force applied				
20.		ar is a type of mate	rial.		1	1	5	1
		Glass	(B)	Thermoplastic				
	(C)	Whisker	(D)	Polymer				

	$PART - B (5 \times 8 = 40 \text{ Marks})$	Marks	BL	CO	PO	
	Answer ALL Questions					
21. a.	Discuss the crystal field splitting in tetrahedral complexes.	8	2	1	1	
	(OR)					
b.	Discuss the crystal field splitting in octahedral complexes.	8	2	1	1	
22. a.	Explain the structural isomerism exhibited by organic compounds with suitable examples.	8	1	2	2	
	(OR)					
b.	Derive the Nernst equation and mention its applications.	8	3	2	3	
23. a.	Discuss in detail about SN1 mechanism with a suitable example.	8	4	3	2	
	(OR)					
b.	What is the reaction of the following with cyclopropane?	8	2	3	2	
	a. Halogens b. HI c. Sulphuric acid d. Hydrogen					
24. a.	Discuss the synthesis, properties and applications of the following a) PTFE and b) Polystyrene.	8	1	4	1	
	(OR)					
b.	What are the differences between Thermoplastic and Thermosets?	8	1	4	4	
25. a.	Describe the principle, instrumentation and applications of XPS.	8	1	5	1	
	(OR)					
b.	b. Describe the ceramic matrix composite and metal matrix composite with suitable examples.					
	$PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Question	Marks	BL	CO	PO	
26.	Identify from the following as high spin or low spin complexes and calculate the magnetic moment of the complexes. i. $[CoF_6]^{3-}$ ii. $[NiCl_4]^{2-}$ iii. $[Fe (CN)_6]^{3-}$ iv. $[Co(H_2O)_6]^{3+}$ v. $[FeCl_4]^{-}$	15	2	1	4	
27.i.	Explain in detail particle reinforced composites, fiber reinforced composites and metal matrix composites. (9 Marks)	9	1	5	1	
ii.	Explain Bragg's law with a neat diagram. (6 Marks)	6	1	5	1	

* * * * *