Expository graphs

Roger D. Peng, Associate Professor of Biostatistics

May 18, 2016

Why do we use graphs in data analysis?

- ► To understand data properties
- ► To find patterns in data
- ▶ To suggest modeling strategies
- ► To "debug" analyses
- To communicate results

Expository graphs

- ► To understand data properties
- ► To find patterns in data
- ▶ To suggest modeling strategies
- ► To "debug" analyses
- ▶ To communicate results

Characteristics of expository graphs

- ▶ The goal is to communicate information
- Information density is generally good
- Color/size are used both for aesthetics and communication
- Expository figures have understandable axes, titles, and legends

Housing data

pData <- read.csv("./data/ss06pid.csv")

Axes

Important parameters: xlab,ylab,cex.lab,cex.axis

Axes

Legends

▶ Important paramters: *x,y,legend, other plotting parameters*

```
plot(pData$JWMNP,pData$WAGP,pch=19,col="blue",cex=0.5,xlab=legend(100,200000,legend="All surveyed",col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col="blue",pch=19,col
```


Legends

```
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="TT (min)"
legend(100,200000,legend=c("men","women"),col=c("black","re
```

Warning in if (xc < 0) text.width <- -text.width: the co ## > 1 and only the first element will be used

マロトマ御トマミトマミト ヨーの

Titles

```
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="CT (min)"
    ylab="Wages (dollars)",col=pData$SEX,main="Wages earned
legend(100,200000,legend=c("men","women"),col=c("black","red
```

Warning in if (xc < 0) text.width <- -text.width: the compared + and only the first element will be used

Wages earned versus commute time

∢ロト∢御ト∢産ト∢産ト 産 め

Multiple panels

```
par(mfrow=c(1,2))
hist(pData$JWMNP,xlab="CT (min)",col="blue",breaks=100,main
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="CT (min)"
legend(100,200000,legend=c("men","women"),col=c("black","re
```

Warning in if (xc < 0) text.width <- -text.width: the co ## > 1 and only the first element will be used

Adding text

```
par(mfrow=c(1,2))
hist(pData$JWMNP,xlab="CT (min)",col="blue",breaks=100,main
mtext(text="(a)",side=3,line=1)
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="CT (min)"
legend(100,200000,legend=c("men","women"),col=c("black","re
## Warning in if (xc < 0) text.width <- -text.width: the co
## > 1 and only the first element will be used
mtext(text="(b)",side=3,line=1)
```


Figure captions

Warning in if (xc < 0) text.width <- -text.width: the cc
> 1 and only the first element will be used

Figure 1. Distribution of commute time and relationship to wage earned by sex (a) Commute times in the American Community Survey (ACS) are right skewed. (b) Commute times do

Colorblindness

Graphical workflow

- ► Start with a rough plot
- Tweak it to make it expository
- Save the file
- Include it in presentations

Saving files in R is done with graphics *devices*. Use the command ?Devices to see a list. Here we will go over the most popular devices.

Something to avoid

http:

Something to aspire to

http://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919

Further resources

- How to display data badly
- The visual display of quantitative information
- Creating more effective graphs
- ► R Graphics Cookbook
- ggplot2: Elegant Graphics for Data Analysis
- Flowing Data