

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

Topología I

Autor: Jesús Muñoz Velasco

Índice general

1.	\mathbf{Esp}	acios Topológicos	5
	1.1.	Topología métrica. La topología usual de \mathbb{R}^n	7
	1.2.	Comparación de Topologías	12
	1.3.	Cerrados	13
	1.4.	Bases de topología	15
	1.5.	Entornos	18
		1.5.1. Bases de Entornos	20
	1.6.	Puntos adherentes. Clausura	22
	1.7.	Interior	25
	1.8.	Frontera	27
	1.9.	Topología inducida. Subespacio topológico	28
	1.10.	Axiomas de separación	30
	1.11.	Axiomas de numerabilidad	32
2.	Apli	icaciones entre Espacios Topológicos	35
	2.1.	Aplicaciones abiertas y cerradas	38
	2.2.	Homeomorfismos	40
	2.3.	Topología Producto	46
	2.4.	Identificaciones y topología cociente	52

1. Espacios Topológicos

Definición 1.1. Un **espacio topológico** es una par (X, \mathcal{T}) , donde $X \neq \emptyset$ es un conjunto y $\mathcal{T} \subset \mathcal{P}(X)$ es una familia de subconjuntos de X. Esta familia \mathcal{T} tiene las siguientes propiedades:

- (A1) $\emptyset, X \in \mathcal{T}$.
- (A2) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$, entonces $\bigcup_{i\in I} U_i \in \mathcal{T}$ (unión arbitraria¹).
- (A3) Si $U_1, U_2 \in \mathcal{T}$, entonces $U_1 \cap U_2 \in \mathcal{T}$.

A la familia \mathcal{T} se le llama **topología** en el conjunto X. A los elementos de \mathcal{T} se les llama **abiertos** en el espacio topológico (X, \mathcal{T}) .

Observación. De (A3) podemos concretar que si $U_1, \ldots, U_k \in \mathcal{T}$, entonces $\bigcap_{i=1}^k U_i \in \mathcal{T}$, es decir, que la intersección finita de abiertos es abierto (se prueba con una inducción trivial).

En general, si $\{U_i\}_{i=1}^{\infty} \in \mathcal{T}$, entonces $\bigcup_{i=1}^{\infty} U_i$ no tiene por qué ser abierto.

Ejemplo.

- •) Topología trivial: Sea $X \neq \emptyset$, $\mathcal{T}_t = \{\emptyset, X\} \Rightarrow (X, \mathcal{T}_t)$ es un e.t².
- •) Topología discreta: Sea $X \neq \emptyset$, $\mathcal{T}_{disc} = \mathcal{T}_D = \mathcal{P}(X) \Rightarrow (X, \mathcal{T}_D)$ es un e.t.
- •) Topología del punto incluido: Sea $X \neq \emptyset$, $x_0 \in X$, $\mathcal{T}_{x_0} = \{\emptyset\} \cup \{U \subset X : x_0 \in U\} \Rightarrow (X, \mathcal{T}_{x_0})$ es un e.t.
- •) Topología cofinita: (o topología de los complementos finitos) Sea $X \neq \emptyset$, $\mathcal{T}_{CF} = \{\emptyset\} \cup \{U \subset X : X \setminus U \text{ es finito}\} \Rightarrow (X, \mathcal{T}_{CF})$ es un e.t. (por las leyes de Morgan)

$$X \setminus \left(\bigcup_{i \in I} U_i\right) = \bigcap_{i \in I} (X \setminus U_i)$$
 (intersección de finitos es finito)
 $X \setminus (U_1 \cap U_2) = (X \setminus U_1) \cup (X \setminus U_2)$ (unión de finitos es finito)

¹Puede ser finita o infinita, numerable o no numerable

²A partir de ahora notaremos así a un espacio topológico

- •) Topología conumerable: (o topología de los complementos numerables) Sea $X \neq \emptyset$, $\mathcal{T}_{CF} = \{\emptyset\} \cup \{U \subset X : X \setminus U \text{ es numerable}\} \Rightarrow (X, \mathcal{T}_{CF})$ es un e.t.
- •) \mathbb{R} , $\mathcal{T} = \{\emptyset, \mathbb{R}, \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q}\}, \Rightarrow (\mathbb{R}, \mathcal{T})$ es un e.t.
- •) Topología de Sierpinski: $X = \{a, b\}, \mathcal{T} = \{\emptyset, \{a\}, X\} \Rightarrow (X, \mathcal{T})$ es un e.t. (es un caso particular del punto incluido, \mathcal{T}_a).
- •) Topología de Sorgenfrey: $X = \mathbb{R}, \ \mathcal{T}_S, \ U \in \mathcal{T}_S \iff \forall x \in U \ \exists \varepsilon > 0 \ \text{tal que} \ [x, x + \varepsilon) \subset U.$

Observación. En $X = \{x\}$ solo existe una topología, $\mathcal{T} = \{\emptyset, \{x\}\}$ (todas las topologías son la misma).

Ejercicio 1. Determinar todas las topologías en un conjunto con 2 elementos.

Consideramos $X = \{a, b\}$. Las topologías posibles son:

- •) Trivial: $\mathcal{T}_t = \{\emptyset, X\}$
- •) Discreta: $\mathcal{T}_{disc} = \mathcal{P}(X)$
- •) Punto incluido (a): $\mathcal{T}_a = \{\emptyset, \{a\}, X\}$
- •) Punto incluido (b): $\mathcal{T}_b = \{\emptyset, \{b\}, X\}$

Cualquier otra topología que se pueda construir sobre este conjunto coicidirá con alguna de las anteriores.

Ejercicio 2. Sea (X, \mathcal{T}) e.t. Demostrar que $\mathcal{T} = \mathcal{T}_{disc} \iff \{x\} \in \mathcal{T} \ \forall x \in X$.

- \Rightarrow) Si $\mathcal{T} = \mathcal{T}_{disc}$, como $\{x\} \in \mathcal{P}(X) \ \forall x \in X$, se tiene que $\{x\} \in \mathcal{T}_{disc} = \mathcal{T}$.
- \Leftarrow) Tenemos $\{x\} \in \mathcal{T} \ \forall x \in X$. Consideramos $U \in \mathcal{P}(X)$ un subconjunto cualquiera de X. Podemos expresar $U = \bigcup_{i \in I} \{x_i\}$, donde $\{x_i\} \in X \ \forall i \in I$. Por la propiedad (A2) tenemos $U \in \mathcal{T}$. Como U era un subconjunto arbitrario de X, tenemos $\mathcal{T} = \mathcal{T}_{disc}$.

1.1. Topología métrica. La topología usual de \mathbb{R}^n

Definición 1.2. Un **espacio métrico** es un par (X, d) donde $X \neq \emptyset$ es un conjunto y $d: X \times X \to \mathbb{R}$ es una aplicación que verifica:

- **(D1)** $d(x,y) \ge 0 \ \forall x,y \in X$. Además, $d(x,y) = 0 \iff x = y$.
- **(D2)** (simetría) $d(x,y) = d(y,x) \ \forall x,y, \in X$.
- **(D3)** (designaldad triangular) $d(x,z) \leq d(x,y) + d(y,z) \ \forall x,y,z \in X$

A la aplicación d la llamaremos **distancia**.

Ejercicio 1.1.1. Demostrar que a partir de las propiedades (**D2**), (**D3**) y la segunda parte de (**D1**) se puede deducir la primera parte de (**D1**), y como consecuencia se tiene $d: X \times X \to [0, \infty)$.

Para cualesquiera $x, y \in X$, tenemos:

$$0 \stackrel{\textbf{(D1)}(2)}{=} d(x,x) \stackrel{\textbf{(D3)}}{\leqslant} d(x,y) + d(y,x) \stackrel{\textbf{(D2)}}{=} d(x,y) + d(x,y) = 2d(x,y)$$

De donde podemos deducir

$$d(x,y)\geqslant 0 \Rightarrow d: X\times X \to [0,\infty)$$

Definición 1.3. (X, d) e.m.³ $x \in X$, r > 0, se definen:

ullet) La **bola (abierta)** de centro x y radio r como

$$B(x,r) = \{ y \in X : d(x,y) < r \} \subset X$$

 $\bullet)$ La bola cerrada de centro x y radio r como

$$\overline{B}(x,r) = \{ y \in X : d(x,y) \leqslant r \} \subset X$$

ullet) La **esfera** de centro x y radio r como

$$S(x,r) = \{ y \in X : d(x,y) = r \} \subset X$$

Propiedades. De las definiciones anteriores se deducen las siguientes propiedades:

- •) $\overline{B}(x,r) = B(x,r) \cup S(x,r)$
- •) $S(x,r) = \overline{B}(x,r) \setminus B(x,r)$

³A partir de ahora notaremos así a un espacio métrico

•) Si s < r, entonces $\overline{B}(x,s) \subset B(x,r)$

Ejemplo. (Espacio euclídeo \mathbb{R}^n) En \mathbb{R}^n consideramos la **distancia usual**,

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{2} (x_i - y_i)^2}$$

Al espacio métrico (\mathbb{R}^n , d) lo denominaremos **Espacio Euclídeo**.

•) Si n = 1, d(x, y) = |x - y|,

$$B(x,r) = (x - r, x + r)$$
$$\overline{B}(x,r) = [x - r, x + r]$$
$$S(x,r) = \{x, y\}$$

•) En n=2 tenemos

 $B(x,r) \equiv {\rm disco}$

 $\overline{B}(x,r) \equiv {\rm disco~cerrado}$

 $S(x,r) \equiv \text{circunferencia}$

•) En n=3 tenemos:

 $B(x,r) \equiv \text{bola}$

 $\overline{B}(x,r) \equiv \text{bola cerrada}$

 $S(x,r) \equiv \text{esfera}$

Ejemplo. En un conjunto $X \neq \emptyset$, se define la **distancia discreta** como

$$d_{disc}(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$$

Con la distancia así definida tenemos:

$$B(x,y) = \begin{cases} X & \text{si } r > 1\\ \{x\} & \text{si } r \leqslant 1 \end{cases}$$

$$\overline{B}(x,y) = \begin{cases} X & \text{si } r \geqslant 1\\ \{x\} & \text{si } r < 1 \end{cases}$$

$$S(x,y) = \begin{cases} X \setminus \{x\} & \text{si} \quad r = 1\\ \emptyset & \text{si} \quad r \neq 1 \end{cases}$$

Ejemplo.

- •) Si d es una distancia en X y $\lambda > 0$, entonces $\lambda \cdot d : X \times X \to [0, \infty)$ también es una distancia y $B_{\lambda d}(x, r) = B_d\left(x, \frac{r}{\lambda}\right)$.
- •) Sean $d y \tilde{d}$ distancias en $X y d \leq \tilde{d}$, entonces $B_d(x,r) \supseteq B_{\tilde{d}}(x,r) \ \forall r \in \mathbb{R}^+, \ x \in X$.

Definición 1.4. (X, d) e.m. Un subconjunto $U \subset X$ se dice **abierto métrico** si $U = \emptyset$ o si $\forall x \in U$, $\exists r > 0$ tal que $B(x, r) \subset U$.

Proposición 1.1. Si (X, d) es un espacio métrico, entonces

$$\mathcal{T}_d = \{U \subset X : U \text{ es un abierto métrico en } (X, d)\} \subset \mathcal{P}(X)$$

es una topología en X que llamamos la **topología métrica** en (X, d).

Demostración. Veamos que \mathcal{T}_d así definida verifica las propiedades de una topología:

- (A1) \emptyset , $X \in \mathcal{T}_d$ trivialmente (ya que $X \subset X$).
- (A2) Sea $\{U_i\}_{i\in I}\subset \mathcal{T}_d$. Tendremos que ver si se verifica que $\bigcup_{i\in I}U_i\in \mathcal{T}_d$. Para ello estudiemos los dos casos posibles:

Si
$$\bigcup_{i \in I} U_i = \emptyset \Rightarrow \bigcup_{i \in I} U_i \in \mathcal{T}_d$$
.

Si $\bigcup_{i \in I} U_i \neq \emptyset$, entonces podemos considerar $x \in \bigcup_{i \in I} U_i \Rightarrow \exists i \in I : x \in U_i \in \mathcal{T}_d \Rightarrow \exists r > 0 : B(x,r) \subset U_i \subset \bigcup_{i \in I} U_i \Rightarrow \bigcup_{i \in I} U_i \in \mathcal{T}.$

- (A3) Sean $U_1, U_2 \in \mathcal{T}_d$. ¿Se verifica que $U_1 \cap U_2 \in \mathcal{T}_d$? De nuevo veamos los casos posibles:
 - Si $U_1 \cap U_2 = \emptyset$, entonces se verifica trivialmente.

Si $U_1 \cap U_2 \neq \emptyset$, entonces podemos considerar $x \in U_1 \cap U_2 \Rightarrow \exists r_1, r_2 > 0$: $B(x, r_1) \subset U_1 \text{ y } B(x, r_2) \subset U_2 \Rightarrow B(x, \min\{r_1, r_2\}) \subset U_1 \cap U_2$, es decir existe una bola abierta en la intersección que contiene al punto luego $U_1 \cap U_2 \in \mathcal{T}_d$.

Definición 1.5. Se llama **topología usual de** \mathbb{R}^n , \mathcal{T}_u , a la topología métrica en \mathbb{R}^n con la distancia usual, es decir, $U \subset \mathbb{R}^n$ es abierto en $(\mathbb{R}^n, \mathcal{T}_u)$ si $U = \emptyset$ o si $\forall x \in U \ \exists r > 0 : B(x, r) \subset U$.

Proposición 1.2. (X, d) e.m. Se cumplen:

- (i) Las bolas abiertas en (X, d) son abiertos.
- (ii) Todo abierto no vacío en (X, d) se puede escribir como unión de bolas abiertas y como unión de bolas cerradas.

Demostración.

(i) Sea $x \in X$, r > 0, $B(x, r) \in \mathcal{T}_d$?

Sea $y \in B(x,r) \Rightarrow d(x,y) < r \Rightarrow \exists \varepsilon > 0 : d(x,y) + \varepsilon < r \Rightarrow B(y,\varepsilon) \subset B(x,r)$. Para ver esta última implicación tenemos que si tomamos un $z \in B(y,\varepsilon) \Rightarrow d(x,z) \leq d(x,y) + d(y,z) < d(x,y) + \varepsilon < r \Rightarrow z \in B(x,r)$.

(ii) Sea $U \in \mathcal{T}_d \Rightarrow \forall x \in U \quad \exists r_x > 0 \text{ tal que } B(x, r_x) \subset U \Rightarrow U = \bigcup_{x \in U} B(x, r_x) = \bigcup_{x \in U} \overline{B}\left(x, \frac{r_x}{2}\right).$

Corolario 1.2.1. En (X, d) tenemos

$$\mathcal{T}_d = \{\emptyset\} \cup \{U \subset X : U \text{ es unión de bolas abiertas}\}$$

Ejemplo.

- \bullet) (X,d) e.m. En general, no todo abierto es una bola. Por ejemplo la unión de bolas no concéntricas.
- •) No todo conjunto en $(\mathbb{R}^n, \mathcal{T}_u)$ es abierto. Por ejemplo $\{x\} \subset \mathbb{R}^n$ no es abierto.
- •) En $(\mathbb{R}, \mathcal{T}_u)$ los únicos intervalos abiertos (topológicamente) son los intervalos abiertos, es decir, los del tipo $\mathbb{R} = (-\infty, +\infty)$, (a, b) con a < b, $(-\infty, a)$ y $(b, +\infty)$.

- •) En (X, d), en general la intersección infinita de abiertos no es abierto. Por ejemplo, $\bigcap_{n \in \mathbb{N}} \left(\frac{-1}{n}, \frac{1}{n}\right) = \{0\}$ que no es abierto.
- •) $X \neq \emptyset$, $\mathcal{T}_{d_{disc}} = \mathcal{T}_{disc}$ (la topología asociada a la distancia discreta es la distancia discreta).

Definición 1.6. Sean $X \neq \emptyset$ y d_1, d_2 distancias en X. Decimos que d_1 y d_2 son **equivalentes** si existen a, b > 0 tal que

$$a \cdot d_1(x, y) \leqslant d_2(x, y) \leqslant b \cdot d_1(x, y) \quad \forall x, y \in X$$

Proposición 1.3. Si d_1, d_2 son distancias en $X \neq \emptyset$ y existe a > 0 tal que $a \cdot d_1(x,y) \leq d_2(x,y) \quad \forall x,y \in X$, entonces $\mathcal{T}_{d_1} \subset \mathcal{T}_{d_2}$. En particular, si d_1 y d_2 son equivalentes, entonces $\mathcal{T}_{d_1} = \mathcal{T}_{d_2}$.

Demostración. Sea $U \in \mathcal{T}_{d_1}, U \neq \emptyset$, $\xi U \in \mathcal{T}_{d_2}$? Sea $x \in U \in \mathcal{T}_{d_1} \Rightarrow \exists r > 0 : B_{d_1}(x,r) \subset U$. Como $a \cdot d_1 \leqslant d_2 \Rightarrow B_{d_2}(x,a \cdot r) \subset B_{d_1}(x,r)$. Para verlo, tomamos $y \in B_{d_2}(x,a \cdot r) \Rightarrow d_2(x,y) < a \cdot r \Rightarrow a \cdot d_1(x,y) < r \Rightarrow y \in B_{d_1}(x,r)$. Por tanto, $B_{d_1}(x,r) \subset U \Rightarrow U \in \mathcal{T}_{d_2} \Rightarrow \mathcal{T}_{d_1} \subset \mathcal{T}_{d_2}$.

Definición 1.7. Un e.t. (X, \mathcal{T}) se dice **metrizable** si existe una distancia d en X tal que $\mathcal{T} = \mathcal{T}_d$.

Ejemplo.

- •) $(\mathbb{R}^n, \mathcal{T}_u)$ es metrizable.
- •) (X, \mathcal{T}_{disc}) es metrizable.

Ejercicio 1.1.2. Si (X, \mathcal{T}) es un e.t. metrizable, entonces cumple la condición de Hausdorff:

$$\forall x, y \in X, x \neq y, \exists U, V \in \mathcal{T} \text{ tal que } x \in U, y \in V \text{ y } U \cap V = \emptyset$$

Por ser metrizable, sabemos que $\mathcal{T} = \mathcal{T}_d$ donde $d: X \to [0, \infty)$ es una distancia. Por tanto, para cada $x, y \in X$ con $x \neq y$ tengo d(x, y) > 0. Puedo considerar entonces $r = \frac{d(x, y)}{2}$. Tengo entonces U = B(x, r) y V = B(y, r). Es claro que $x \in U$ y $y \in V$. Veamos que U y V son disjuntos. Tengo $U \cap V = \{z \in X : d(z, x) < r, d(z, y) < r\}$. Supongamos que este conjunto no es vacío, en cuyo caso tendría que $\exists z \in X$ tal que d(z, x) < r y d(z, y) < r. Por tanto, d(z, x) + d(z, y) < 2r = d(x, y) lo cual incumple la desigualdad triangular. Llegamos a contradicción y por tanto $U \cap V = \emptyset$.

Ejemplo.

- •) (X, \mathcal{T}_t) no es metrizable si #X > 2 (cardinal del conjunto) ya que no verifica la condición de Hausdorff.
- •) (X, \mathcal{T}_{x_0}) no es metrizable por la misma razón (ya que la intersección de cualesquiera dos abiertos va a contener a x_0).
- •) (X, \mathcal{T}_{CF}) no es metrizable si X es infinito (aplicar las leyes de morgan para la intersección).
- •) (X, \mathcal{T}_{CN}) no es metrizable si X no es numerable.
- •) $(\mathbb{R}, \{\emptyset, \mathbb{R}, \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q}\}).$
- •) La topología de Sierpinski tampoco es metrizable (ya que el único abierto que contiene a b es el total).
- •) La topología de Sorgenfrey $(\mathbb{R}, \mathcal{T}_S)$ cumple la propiedad de Hausdorff.

1.2. Comparación de Topologías

Definición 1.8. Sean $X \neq \emptyset$ un conjunto y \mathcal{T}_1 , \mathcal{T}_2 dos topologías en X. Diremos que \mathcal{T}_2 es **más fina** que \mathcal{T}_1 o que \mathcal{T}_1 es **menos fina** que \mathcal{T}_2 si $\mathcal{T}_1 \subseteq \mathcal{T}_2$ y lo notamos como $\mathcal{T}_1 \leqslant \mathcal{T}_2$.

Ejemplo.

- •) $X \neq \emptyset$, $\mathcal{T}_{CF} \leqslant \mathcal{T}_{CN}$.
- •) (X, \mathcal{T}) e.t, entonces $\mathcal{T}_t \leqslant \mathcal{T} \leqslant \mathcal{T}_{disc}$
- •) Si $\mathcal{T}_1 \leqslant \mathcal{T}_2$ y $\mathcal{T}_2 \leqslant \mathcal{T}_1$, entonces $\mathcal{T}_1 = \mathcal{T}_2$ (por doble inclusión).
- \bullet) En general si tenemos dos topologías en X, no siempre son comparables. Por ejemplo la topología del punto incluido en dos puntos distintos:

$$0, 1 \in \mathbb{R} \quad (\mathbb{R}, \mathcal{T}_0), (\mathbb{R}, \mathcal{T}_1)$$

Veamos que $\mathcal{T}_0 \nleq \mathcal{T}_1$, ya que $\{0\} \notin \mathcal{T}_1$, y por el mismo motivo (pero con el 1) tenemos $\mathcal{T}_1 \nleq \mathcal{T}_0$.

Otro ejemplo sería $(\mathbb{R}, \mathcal{T}_u)$, $(\mathbb{R}, \mathcal{T}_{x_0})$ ya que $\{x_0\} \in \mathcal{T}_{x_0}$, $\{x_0\} \notin \mathcal{T}_u \Rightarrow \mathcal{T}_{x_0 \nleq \mathcal{T}_u}$ Igualmente $(x_0 + 1, x_0 + 2) \in \mathcal{T}_u$ y $(x_0 + 1, x_0 + 2) \in \mathcal{T}_{x_0} \Rightarrow \mathcal{T}_u \nleq topo_{x_0}$

- •) En \mathbb{R} , $\mathcal{T}_u \leqslant \mathcal{T}_{Sorgenfrey}$.
- •) $(X,d), (X,d'), d \leq d' \Rightarrow \mathcal{T}_d \leq \mathcal{T}_{d'}.$

1.3. Cerrados

Definición 1.9. Sea (X, \mathcal{T}) un e.t. Diremos que un conjunto $F \subset X$ es **cerrado** en (X, \mathcal{T}) si $X \setminus F \in \mathcal{T}$. Denotamos por $\mathcal{C}_{\mathcal{T}}$ a la familia de todos los cerrados en (X, \mathcal{T}) .

Propiedades.

- (C1) $\emptyset, X \in \mathcal{C}_{\mathcal{T}}$.
- (C2) Si $\{F_i\}_{i\in I} \subset \mathcal{C}_{\mathcal{T}}$, entonces $\bigcap_{i\in I} F_i \in \mathcal{C}_{\mathcal{T}}$.
- (C3) Si $F_1, F_2 \in \mathcal{C}_{\mathcal{T}}$, entonces $F_1 \cup F_2 \in \mathcal{C}_{\mathcal{T}}$

Por inducción, de (C3) tenemos que la unión finita de cerrados es cerrada.

Observación.

- •) $U \in \mathcal{T} \iff X \setminus U \in \mathcal{C}_{\mathcal{T}}, F \in \mathcal{C}_{\mathcal{T}} \iff X \setminus F \in \mathcal{T}.$
- •) $\mathcal{T}_1 \leqslant \mathcal{T}_2 \iff \mathcal{C}_{\mathcal{T}_1} \subseteq \mathcal{C}_{\mathcal{T}_2}$. Esto además implica que $\mathcal{T}_1 = \mathcal{T}_2 \iff \mathcal{C}_{\mathcal{T}_1} = \mathcal{C}_{\mathcal{T}_2}$. Esto nos dice que para conocer una topología basta con conocer la familia de sus cerrados.
- •) En general, puede haber conjuntos que no sean ni abiertos ni cerrados. Por ejemplo, en $(\mathbb{R}, \mathcal{T}_u)$, tenemos que $[0,1) \notin (\mathcal{T}_u \cup \mathcal{C}_{\mathcal{T}_u})$.
- •) En (X, \mathcal{T}_{x_0}) tenemos que $\mathcal{T}_{x_0} \cup \mathcal{C}_{\mathcal{T}_{x_0}} = \mathcal{P}(X)$ y además $\mathcal{T}_{x_0} \cap \mathcal{C}_{\mathcal{T}_{x_0}} = \{\emptyset, X\}.$
- •) En general, la unión arbitraria de cerrados no es cerrado. Por ejemplo, $(\mathbb{R}, \mathcal{T}_u)$, tomamos $\bigcup_{n \in \mathbb{N}} \left[-\frac{1}{n}, 3 \frac{1}{n} \right] = (0, 3)$. Otro ejemplo sería $(\mathbb{R}, \mathcal{T}_{CF})$ considerando $\bigcup_{n \in \mathbb{N}} \{n\} = \mathbb{N}$ que no es cerrado.

Ejemplo.

- •) Topología trivial: $\mathcal{T}_t = \{\emptyset, X\} \Rightarrow \mathcal{C}_{\mathcal{T}_t} = \mathcal{C}_t = \{\emptyset, X\}.$
- •) Topología discreta: $\mathcal{T}_{disc} = \mathcal{P}(X) \Rightarrow \mathcal{C}_{\mathcal{T}_{disc}} = \mathcal{C}_{disc} = \mathcal{P}(X)$.
- •) Topología del punto incluido: $x_o \in X$, $\mathcal{T}_{x_0} = \{\emptyset\} \cup \{U \subset X : x_0 \in U\} \Rightarrow \mathcal{C}_{\mathcal{T}_{x_0}} = \mathcal{C}_{x_0} = \{X\} \cup \{F \subset X : x_0 \notin F\}$
- •) Topología cofinita: $\mathcal{T}_{CF} = \{\emptyset\} \cup \{U \subset X : X \setminus U \text{ finito }\} \Rightarrow \mathcal{C}_{\mathcal{T}_{CF}} = \mathcal{C}_{CF} = \{X\} \cup \{F \subset X : F \text{ finito}\}$
- •) En ocasiones no es fácil describir $\mathcal{C}_{\mathcal{T}}$. Por ejemplo en \mathcal{T}_u o $\mathcal{T}_{Sorgenfrey}$.

Ejemplo. En un espacio métrico (X, \mathcal{T}_d) , las bolas cerradas y las esferas son cerrados.

Demostración.

•) Sea $x \in X$, r > 0, $\overline{B}(x,r) \in \mathcal{C}_d$? Esto es equivalente a preguntarse $\overline{B}(x,r) \in \mathcal{T}_d$?

Sea
$$y \in X \setminus \overline{B}(x,r) \Rightarrow d(x,y > r)$$
. Entonces $\exists \varepsilon > 0 : r + \varepsilon < d(x,y) \Rightarrow B(y,\varepsilon) \cap \overline{B}(x,r) = \emptyset \Rightarrow B(y,\varepsilon) \subset X \setminus \overline{B}(x,r) \in \mathcal{T}_d \Rightarrow X \setminus \overline{B}(x,r) \in \mathcal{C}_{\mathcal{T}}$

•) Sea $x \in X$, r > 0, $S(x,r) \in C_d$? Dado que $X \setminus S(x,r) = B(x,r) \cup (X \setminus \overline{B}(x,r)) \in \mathcal{T}_d$ (por ser unión de abiertos).

Ejercicio 1.3.1. En $(\mathbb{R}, \mathcal{T}_u)$ los únicos intervalos cerrados son los de la forma $(-\infty, a], [b, +\infty), \mathbb{R} = (-\infty, +\infty)$ y [a, b] con a < b.

Sabemos que los únicos abiertos en \mathcal{T}_u son los intervalos de la forma $\mathbb{R} = (-\infty, +\infty)$, (a, b) con a < b, $(-\infty, a)$ y $(b, +\infty)$.

Es claro que $\mathbb{R} \in \mathcal{C}_{\mathcal{T}_u}$.

Tenemos que $\mathbb{R} \setminus (-\infty, a] = (a, +\infty) \in \mathcal{T}_u$, luego $(-\infty, a] \in \mathcal{C}_{\mathcal{T}_u}$.

De la misma forma, $\mathbb{R} \setminus [b, +\infty) = (-\infty, b) \in \mathcal{T}_u$, luego $[b, +\infty) \in \mathcal{C}_{\mathcal{T}_u}$

Finalmente $\mathbb{R} \setminus [a, b] = (-\infty, a) \cup (b, +\infty) \in \mathcal{T}_u$ por ser unión de abiertos luego $[a, b] \in \mathcal{C}_{\mathcal{T}_u}$.

Dado que ya se han estudiado todos los complementarios de los intervalos abiertos (los abiertos en la topología) no habrá más tipos de intervalos cerrados (recordemos $U \in \mathcal{T} \iff X \setminus U \in \mathcal{C}_{\mathcal{T}}$)

Teorema 1.4. Sea $X \neq \emptyset$ y $\mathcal{C} \subset \mathcal{P}(X)$ cumpliendo

- (C1) $\emptyset, X \in \mathcal{C}$.
- (C2) Si $\{F_i\}_{i\in I}\subset \mathcal{C}$, entonces $\bigcap_{i\in I}F_i\in \mathcal{C}$.
- (C3) Si $F_1, F_2 \in \mathcal{C}$, entonces $F_1 \cup F_2 \in \mathcal{C}$

Entonces existe una única topología \mathcal{T} en X tal que $\mathcal{C}_{\mathcal{T}} = \mathcal{C}$.

Demostración. La existencia queda probada definiendo $\mathcal{T} = \{U \subset X : X \setminus U \in \mathcal{C}\}$. La unicidad es inmediata ya que si $\mathcal{C}_{\mathcal{T}'} = \mathcal{C}_{\mathcal{T}} \Rightarrow \mathcal{T} = \mathcal{T}'$.

1.4. Bases de topología

Definición 1.10. Sea (X, \mathcal{T}) un e.t. Una familia de abiertos $\mathcal{B} \subset \mathcal{T}$ es una base de la topología \mathcal{T} si $\forall U \in \mathcal{T} \quad \exists \{B_i\} \subset \mathcal{B} \text{ tal que } U = \bigcup_i B_i$.

A los elementos de \mathcal{B} se les llama abiertos básicos.

Observación.

- •) Ni \mathcal{B} ni la familia $\{B_i\}_{i\in I}$ tienen que ser finitas o numerables
- •) La forma de escribir $U = \bigcup_{i \in I} B_i$ puede no ser única.
- •) \mathcal{T} es base de \mathcal{T} (trivialmente).
- •) Si $\mathcal{B} \subset \mathcal{B}' \subset \mathcal{T}$ con \mathcal{B} base de \mathcal{T} , entonces \mathcal{B}' es también base de \mathcal{T} .

Proposición 1.5. Sea (X, \mathcal{T}) un e.t y $\mathcal{B} \subset \mathcal{T}$ una familia de abiertos. Son equivalentes:

- (i) \mathcal{B} es base de \mathcal{T} .
- (ii) $\forall U \in \mathcal{T}, \ U \neq \emptyset \ \forall x \in U \ \exists B \in \mathcal{B} \text{ tal que } x \in B \subset U \text{ (si tenemos un abierto de la topología podemos encontrar para cada punto suyo un abierto básico contenido en el abierto y que contiene al punto).$

Demostración.

- (i) \Rightarrow (ii) Sea $U \in \mathcal{T}$, $U \neq \emptyset$. Sea $x \in U \Rightarrow U = \bigcup_{i \in I} B_i$ con $B_i \in \mathcal{B} \Rightarrow \exists i \in I$ tal que $x \in B_i = B_x \subset U$
- (ii) \Rightarrow (i) Sea $U \in \mathcal{T}$.

- Si
$$U = \emptyset \Rightarrow U = \bigcup_{i \in \emptyset} B_i = \emptyset$$

- Si
$$U \neq \emptyset \Rightarrow \forall x \in U \ \exists B_x \in \mathcal{B} \text{ tal que } x \in B_x \subset U \Rightarrow U = \bigcup_{x \in U} B_x$$

Ejemplo.

- •) Sea (X, \mathcal{T}_d) un e.m. La familia $\mathcal{B} = \{B(x, r) : x \in X, r > 0\}$ de todas las bolas abiertas es una base de \mathcal{T}_d .
- •) En $(\mathbb{R}, \mathcal{T}_u)$, $\mathcal{B}_u = \{(a, b) : a < b\}$ es base de \mathcal{T}_u y se le llama base usual.
- •) En $(\mathbb{R}, \mathcal{T}_u)$, $\mathcal{B} = \{(a, b) : a, b \in \mathbb{Q}, a < b\}$ es base de \mathcal{T}_u (por la densidad de \mathbb{Q} en \mathbb{R}).

- •) En $(\mathbb{R}^n, \mathcal{T}_u)$, $\mathcal{B}_u = \{B(x,r) : x \in \mathbb{R}^n, r > 0\}$ es la base usual. $(\mathbb{R}^n, \mathcal{T}_u)$, $\mathcal{B}_u = \{B(x,r) : x \in \mathbb{R}^n, r \in \mathbb{Q}, r > 0\}$ también es base de \mathcal{T}_u (numerable).
- •) En (X, \mathcal{T}_t) , $\mathcal{B} = \{X\}$ es base (la única que no contiene al vacío).
- •) $(X, \mathcal{T}_d), \mathcal{B} = \{\{x\} : x \in X\} \subset \mathcal{T} \text{ es base de } \mathcal{T}_{disc}$. Es la más económica ya que si \mathcal{B}' es base, entonces $\mathcal{B} \subset \mathcal{B}'$.

Demostración. Sea $\{x\} \in \mathcal{T}_{disc}$, como \mathcal{B}' es base podemos considerar $x \in \{x\}$ y entonces $\exists B \in \mathcal{B}'$ tal que $x \in B \subset \{x\}$ y entonces $B = \{x\} \subset \mathcal{B}' \ \forall x \in X \Rightarrow \mathcal{B} \subset \mathcal{B}'$

- •) $(X, \mathcal{T}_{x_0}), x_0 \in X \neq \emptyset, \mathcal{B} = \{\{x, x_0\} : x \in X\}$ es una base. Esta es la base más económica.
- •) $(\mathbb{R}, \mathcal{T}_{Sorgenfrey})$ (recordemos que $U \in \mathcal{T}_S \iff \forall x \in U, \exists \varepsilon : [x, x + \varepsilon) \subset U$). $\mathcal{B} = \{[x, x + \varepsilon) : x \in \mathbb{R}, \varepsilon > 0\}$ es base. $\mathcal{B}' = \{[x, x + \varepsilon) : x \in \mathbb{Q}, \varepsilon \in \mathbb{Q}, \varepsilon > 0\}$ no lo es (ya que tomando un intervalo de la forma $[x, x + \varepsilon)$ con $x \in \mathbb{Q}$ entonces no existe ningún elemento de \mathcal{B}' que contenga a x y quede enmedio).

Teorema 1.6. Sea (X, \mathcal{T}) un espacio topológico y \mathcal{B} una base suya. Entonces:

- **(B1)** $X = \bigcup_{B \in \mathcal{B}} B$
- **(B2)** Si $B_1, B_2 \in \mathcal{B}$, $x \in B_1 \cap B_2$, entonces $\exists B_3 \in \mathcal{B}$ con $x \in B_3 \subset B_1 \cap B_2$ Demostración.
- (B1) Trivial
- **(B2)** Tenemos $x \in B_1 \cap B_2 \in \mathcal{T}$ entonces, como \mathcal{B} es base $\exists B_3 = B_x \in \mathcal{B}$ con $x \in B_3 \subset B_1 \cap B_2$.

Teorema 1.7. Sean $X \neq \emptyset$ un conjunto y $\mathcal{B} \subset \mathcal{P}(X)$ cumpliendo:

(B1)
$$X = \bigcup_{B \in \mathcal{B}} B$$

(B2) Si $B_1, B_2 \in \mathcal{B}, x \in B_1 \cap B_2$, entonces $\exists B_3 \in \mathcal{B} \text{ con } x \in B_3 \subset B_1 \cap B_2$

Entonces existe una única topología $\mathcal{T}(\mathcal{B})$ en X tal que \mathcal{B} es base de $\mathcal{T}(\mathcal{B})$. Además,

$$\mathcal{T}(\mathcal{B}) = \{\emptyset\} \cup \{U \subset X : \exists \{B_i\}_{i \in I} \subset \mathcal{B} \text{ con } U = \bigcup_{i \in I} B_i\}$$
$$= \{\emptyset\} \cup \{U \in X : \forall x \in U \ \exists B = B_x \in \mathcal{B} \text{ con } x \in B \subset U\}$$

Además, $\mathcal{T}(\mathcal{B})$ es la topología menos fina conteniendo a \mathcal{B} , es decir, si (X, \mathcal{T}') es un e.t y $\mathcal{B} \subset \mathcal{T}'$, entonces $\mathcal{T}(\mathcal{B}) \leqslant \mathcal{T}'$. A esta topología se le llama la **topología generada** por \mathcal{B} .

Demostración. Empezaremos por probar la existencia. Para ello tendremos que ver que $\mathcal{T}(\mathcal{B})$ es una topología, probando que verifica las propiedades de las topologías:

- (A1) $\emptyset \in \mathcal{T}(\mathcal{B})$ por la definición de $\mathcal{T}(\mathcal{B})$. Por (B1), tenemos también que $X \in \mathcal{T}(\mathcal{B})$.
- (A2) Sea $\{U_i\}_{i\in I} \subset \mathcal{T}(\mathcal{B})$ y sea $x \in \bigcup_{i\in I} U_i \Rightarrow \exists i \in I : x \in U_i \in \mathcal{T}(\mathcal{B})$ por lo que $\exists B_x \in \mathcal{B}$ tal que $x \in B_x \subset U_i \subset \bigcup_{i\in I} U_i \Rightarrow \bigcup_{i\in I} U_i \in \mathcal{T}(\mathcal{B})$.
- (A3) Sean $U_1, U_2 \in \mathcal{T}(\mathcal{B})$ (si la intersección es vacía es trivial). Consideramos $x \in U_1 \cap U_2 \Rightarrow \exists B_1, B_2 \in \mathcal{B}$ con $x \in B_1 \subset U$ y $x \in B_2 \subset U_2$ por tanto $x \in B_1 \cap B_2 \subset U_1 \cap U_2$. Por (**B2**), existe un $B_2 \in \mathcal{B}$ tal que $x \in B_3 \subset B_1 \cap B_2 \subset U_1 \cap U_2$ por lo que $U_1 \cap U_2 \in \mathcal{T}(\mathcal{B})$.

Con esto queda probado que es una topología. Tendremos que ver ahora que \mathcal{B} es base de $\mathcal{T}(\mathcal{B})$. Para ello empiezo viendo que $\mathcal{B} \subset \mathcal{T}$. Por la segunda defición de $\mathcal{T}(\mathcal{B})$, esto es evidente. Como verifica las hipótesis del Teorema 1.7, es base de $\mathcal{T}(\mathcal{B})$.

Veamos ahora la unicidad. Sea (X, \mathcal{T}') un e.t. con \mathcal{B} base de \mathcal{T}' . Tendré que ver que $\mathcal{T}' = \mathcal{T}$. Sea $\emptyset \neq U \subset X \Rightarrow U \in \mathcal{T}' \iff \forall x \in U \exists B \in \mathcal{B}$ con $x \in \mathcal{B} \subset U \iff U \in \mathcal{T}(\mathcal{B})$ ya que \mathcal{B} es base de \mathcal{T}' .

Nos queda ver que es la menos fina conteniendo a \mathcal{B} . Para ello, sea (X, \mathcal{T}') un e.t. tal que $\mathcal{B} \subset \mathcal{T}'$, entonces por (A2) tenemos que $\mathcal{T}(\mathcal{B}) \subset \mathcal{T}'$, lo cual es equivalente a decir que $\mathcal{T}(\mathcal{B}) \leqslant \mathcal{T}'$.

Ejemplo.

- •) Si $X = \{a, b\}$ y $\mathcal{B} = \{\{a\}\}$ no es base de ninguna topología en X (ya que no cumple **(B1)**).
- •) Si $X = \{a, b, c\}$ y $\mathcal{B} = \{\{a, b\}, \{b, c\}\}$. Esta base verifica (**B1**) pero no (**B2**) (tomando x = b se ve facilmente).
- •) Si $X = \mathbb{R}$ y $\mathcal{B} = \{[a, b] : a < b\}$. Si tomamos dos intervalos $[0, 1] \cap [1, 2]$, su intersección es $\{1\}$ y por tanto no verifica (**B2**) (tomando x = 1).
- •) Si $X = \mathbb{R}$ y $\mathcal{B} = \{[a, b] : a \leq b\}$ es base de una topología, $\mathcal{T}(\mathcal{B})$ en \mathbb{R} . Además, $\mathcal{T}(\mathcal{B}) = \mathcal{T}_{disc}$.

Proposición 1.8. Sean $X \neq \emptyset$ y $\mathcal{T}_1, \mathcal{T}_2$ topologías en X con bases \mathcal{B}_1 y \mathcal{B}_2 respectivamente. Equivalen:

- (i) $\mathcal{T}_1 \leqslant \mathcal{T}_2$.
- (ii) $\forall B_1 \in \mathcal{B}_1, x \in B_1, \exists B_2 \in \mathcal{B}_2 \text{ con } x \in B_2 \subset B_1.$

Demostración.

- (i) \Rightarrow (ii) Sea $B \in \mathcal{B}_1$. Por (i), $\mathcal{B}_1 \subset \mathcal{T}_1 \subset \mathcal{T}_2$ y como \mathcal{B}_2 es base de \mathcal{T}_2 , aplicando la definición de base tengo que $\exists B_2 \in \mathcal{B}_2$ con $x \in B_2 \subset B_1$.
- (ii) \Rightarrow (i) Por (ii) tenemos que $\mathcal{B}_1 \subset \mathcal{T}_2 \Rightarrow \mathcal{T}(\mathcal{B}_1) \leqslant \mathcal{T}_2$ (por el Teorema 1.7) y entonces $\mathcal{T}_1 = \mathcal{T}(\mathcal{B}_1) \leqslant \mathcal{T}_2$.

Ejemplo.

- •) En \mathbb{R} , $\mathcal{T}_u \leqslant \mathcal{T}_{Sorgenfrey}$.
- •) Ejercicios 1 y 2 de la relación.

Proposición 1.9. Sean $X \neq \emptyset$ y $S \subset \mathcal{P}(X)$, $S \neq \emptyset$, Entonces,

$$\mathcal{B}(S) = \left\{ \bigcap_{i \in I} S_i : I \text{ finito, } S_i \in S \ \forall i \in I \right\}$$

Es base de una única topología $\mathcal{T}(S) = \mathcal{T}(\mathcal{B}(S))$ en X. A esta topología la llamaremos la **topología generada** por S y es la topología menos fina que contiene a S, es decir, si (X, \mathcal{T}') es un e.t. y $S \subset \mathcal{T}'$, entonces $\mathcal{T}(S) \leqslant \mathcal{T}'$.

Decimos que S es una **subbase** de $\mathcal{T}(S)$.

Demostración. Tendremos que comprobar (B1) y (B2) y que es la menos fina. □ Ejemplo.

- •) Toda base (X, \mathcal{T}) es subbase de (X, \mathcal{T}) .
- •) $S = \{X\}$ es subbase de \mathcal{T}_t .
- •) En \mathbb{R} , $S = \{(a, +\infty) : a \in \mathbb{R}\} \cup \{(-\infty, b) : b \in \mathbb{R}\}$ es subbase de \mathcal{T}_u .

1.5. Entornos

Definición 1.11. Sea (X, \mathcal{T}) un e.t y $x \in X$. Diremos que un conjunto $N \subset X$ es un **entorno** de x si $\exists U \in \mathcal{T}$ con $x \in U \subset N$.

Denotamos $\mathcal{N}_x = \{N \subset X : N \text{ es entorno de } x\}$ y lo llamamos sistema de entornos del punto x en (X, \mathcal{T}) .

Ejemplo.

•) En $(\mathbb{R}, \mathcal{T}_u)$, $[0,1) \in \mathcal{N}_x$ para todo $x \in (0,1)$, pero no es entorno de 0 ni de 1.

Observación.

•) $X \in \mathcal{N}_x \ \forall x \in X \Rightarrow \mathcal{N}_x \neq \emptyset \ \forall x \in X$.

- •) Si $x \in U \in \mathcal{T} \Rightarrow U \in \mathcal{N}_x$
- •) Puede ocurrir que exista $N \subset \mathcal{N}_x$ con $N \notin \mathcal{T}$.

Proposición 1.10. Sea (X, \mathcal{T}) un e.t., $U \subset X$. Equivalen:

- (i) $U \in \mathcal{T}$.
- (ii) $U \in \mathcal{N}_x \ \forall x \in U$.

Demostración.

- (i) \Rightarrow (ii) Si $U \in \mathcal{T}$, entonces $U \in \mathcal{N}_x \ \forall x \in U$
- (ii) \Rightarrow (i) $\forall x \in U \ \exists U_x \in \mathcal{T} \ \text{con} \ x \in U_x \subset U \Rightarrow U = \bigcup_{x \in U} U_x \in \mathcal{T}.$

Ejemplo.

- •) $(X, \mathcal{T}_t), \mathcal{N}_x = \{X\} \ \forall x \in X.$
- •) $(X, \mathcal{T}_{disc}), \mathcal{N}_x = \{N \subset X : x \in N\}$
- •) $(X, \mathcal{T}_{x_0}), \mathcal{N}_x = \{N \subset X : x_0, x \in N\}$
- •) $(X,d), \mathcal{N}_x = \{N \subset X : \exists \varepsilon > 0 \text{ con } B(x,r) \subset N\}. \text{ En particular, } \overline{B}(x,r) \in \mathcal{N}_x.$

Proposición 1.11. Sea (X, \mathcal{T}) e.t., $x \in X$. Entonces:

- (N1) $\mathcal{N}_x \neq \emptyset \ \forall x \in X$.
- (N2) Si $N \in \mathcal{N}_x$, entonces $x \in N$.
- (N3) Si $N \in \mathcal{N}_x$ y $N \subset N'$, entonces $N' \in \mathcal{N}_x$.
- (N4) Si $N, N' \in \mathcal{N}_x$, entonces $N \cap N' \in \mathcal{N}_x$.
- (N5) Si $N \in \mathcal{N}_x$, entonces $\exists N' \in \mathcal{N}_x$ con $N' \subset N$ y $N \in \mathcal{N}_y$ $\forall y \in N'$.

Demostración.

(N5) $N \in \mathcal{N}_x \Rightarrow \exists U \in \mathcal{T} \text{ con } x \in U \subset N.$ Tomamos U = N' y se verifica que $x \in U \in \mathcal{N}_x$. Además $U \subset N$ y tendré que ver que $N \in \mathcal{N}_y \ \forall y \in U.$ Como $U \in \mathcal{T} \Rightarrow U \in \mathcal{N}_y \ \forall y \in U \overset{\text{(N3)}}{\Rightarrow} N \in \mathcal{N}_y \ \forall y \in U.$

Proposición 1.12. (Hausdorff, 1914) Sean $X \neq \emptyset$ un conjunto y supongamos que tenemos $\forall x \in X$ una familia $\mathcal{M}_x \subset \mathcal{P}(X)$ cumpliendo $(\mathbf{N1}), \dots, (\mathbf{N5})$. Entonces existe una única topología \mathcal{T} en X cuyos sistemas de entornos \mathcal{N}_x coinciden con \mathcal{M}_x $\forall x \in X$ (es decir, $\mathcal{N}_x = \mathcal{M}_x \ \forall x \in X$).

Además, $\mathcal{T} = \{U \subset X : U \in \mathcal{M}_x \ \forall x \in U\} \cup \{\emptyset\}.$

Demostración. Veamos en primer lugar que \mathcal{T} es una topología, comprobando que verifica (A1), (A2), (A3). Esto se deja planteado como ejercicio para el lector.

Veamos que esa topología es única. Para ello supongamos que $\exists \mathcal{T}'$ con $\mathcal{N}'_x = \mathcal{M}_x (= \mathcal{N}_x)$. Tenemos que $U \in \mathcal{T}' \iff U \in \mathcal{N}'_x = \mathcal{N}_x \ \forall x \in U \iff U \in \mathcal{T}$.

Nos queda probar que $\mathcal{N}_x = \mathcal{M}_x \ \forall x \in X$. Sea $x \in X$. Veamos la doble inclusión:

- \subseteq) $N \in \mathcal{N}_x \Rightarrow \exists U \in \mathcal{T} \text{ con } x \in U \subset N$. Por la definición de $\mathcal{T}, U \in \mathcal{M}_x$.
- ⊇) Sea $N \in \mathcal{M}_x$. Tendremos que comprobar que $N \in \mathcal{N}_x$. Esto ocurrirá si $\exists U \in \mathcal{T}$ tal que $x \in U \subset N$. Definimos $U = \{y \in N : N \in \mathcal{M}_y\}$. Veamos que este conjunto verifica lo que buscamos. Comencemos viendo que $x \in U$. Es claro que $N \in \mathcal{M}_x$ (por hipótesis) y además, por (N2) tenemos que $x \in N$, luego $x \in U$. Veamos ahora que $U \subset N$, lo cual es claro por la definición de U. Por último tendré que ver que $U \in \mathcal{T}$ lo cual equivale a ver que $U \in \mathcal{M}_y$ $\forall y \in U$. Para ello tomo $y \in U$. Tendremos que ver que $U \in \mathcal{M}_y$. Como $y \in U \Rightarrow y \in N \in \mathcal{M}_y \stackrel{\text{(N5)}}{\Rightarrow} \exists N' \in \mathcal{M}_y \text{ con } N' \subset N \text{ y } N \in \mathcal{M}_z \text{ } \forall z \in N' \stackrel{\text{(N2)}}{\Rightarrow} y \in N' \subset U \stackrel{\text{(N3)}}{\Rightarrow} U \in \mathcal{M}_y$.

1.5.1. Bases de Entornos

Definición 1.12. Sea (X, \mathcal{T}) e.t. y $x \in X$,. Entonces una base de entornos de x en \mathcal{T} es una familia de entornos, $\mathcal{B}_x \subset \mathcal{N}_x$ tal que $\forall N \in \mathcal{N}_x \ \exists V \in \mathcal{B}_x \ \text{con} \ x \in V \subset N$.

A los elementos de \mathcal{B}_x se les llama entornos básicos.

Observación.

- •) Si \mathcal{B}_x es b.d.e⁴. entonces $\mathcal{N}_x = \{N \subset X : \exists V \in \mathcal{B}_x \text{ con } V \subset N\}$.
- •) $\mathcal{B}_x \neq \emptyset$.
- •) \mathcal{N}_x es una b.d.e. de x.
- •) $\mathcal{B}_x = \mathcal{N}_x \cap \mathcal{T} = \{U \subset \mathcal{T} : x \in U\}$ es también una b.d.e. de x.

⁴Notaremos así a las bases de entornos

•) Si \mathcal{B} es base de \mathcal{T} , entonces $\mathcal{B} \cap \mathcal{N}_x = \{B \in \mathcal{B} : x \in B\}$ es una b.d.e. de x

Demostración. Sea $N \in \mathcal{N}_x \Rightarrow \exists U \in \mathcal{T} \text{ con } x \in U \subset N$. Como \mathcal{B} es base de \mathcal{T} , entonces $\exists B \in \mathcal{B} \text{ con } x \in B \subset U \subset N$.

•) En general, no todo entoorno de un punto es unión de entornos básico. Por ejemplo, $(\mathbb{R}, \mathcal{T}_u)$, x = 0, $\mathcal{B}_x = \{(a, b) : a < x < b\}$ es una b.d.e. de x. Tomamos $[-1, 1) \in \mathcal{N}_x$ (es entorno de x = 0) pero no es unión de elementos de \mathcal{B}_x .

Ejemplo.

- •) $(X, \mathcal{T}_u), x \in X \Rightarrow \mathcal{B}_x = \{X\}$ es la única b.d.e de x posible.
- •) $(X, \mathcal{T}_{disc}), x \in X \Rightarrow \mathcal{B}_x = \{\{x\}\}\}$ es una b.d.e de x (la más "económica").
- •) $(X, \mathcal{T}_{x_0}), x \in X \Rightarrow \mathcal{B}_x = \{\{x, x_0\}\}\$ es b.d.e de x (la más "económica").
- •) $(\mathbb{R}^n, \mathcal{T}_u), x \in X \Rightarrow \mathcal{B}_x = \{B(x, \varepsilon) : \varepsilon > 0\}$ es una b.d.e de $x. \mathcal{B}_x = \{B(x, \varepsilon) : \varepsilon > 0, \varepsilon \in \mathbb{Q}\}, \mathcal{B}_x = \{B(x, \varepsilon) : \varepsilon = \frac{1}{k}, k \in \mathbb{N}\}, \mathcal{B}_x = \{B(x, \varepsilon) : \varepsilon = \frac{1}{k}, k \in \mathbb{N}, k \text{ par}\}$ también son bases de entornos de x (cada una más económica que la anterior).

Proposición 1.13. Sea (X, \mathcal{T}) un e.t., \mathcal{B}_x una b.d.e. de $x \ \forall x \in X \ y \ U \subset X$. Equivalen:

- (i) $U \in \mathcal{T}$.
- (ii) $\forall x \in U \ \exists V = V_x \in \mathcal{B}_x \text{ con } V_x \subset U.$

Demostración.

- (i) \Rightarrow (ii) Como $U \in \mathcal{T}$, entonces $U \in \mathcal{N}_x \ \forall x \in U$. Por tanto, $\forall x \in U, \ \exists V_x \in \mathcal{B}_x$ con $V_x \subset U$.
- (ii) \Rightarrow (i) Por la hipótesis tenemos que $U \in \mathcal{N}_x \quad \forall x \in U$ por lo que $U \in \mathcal{T}$ (por la Proposición 1.11)

Proposición 1.14. Sea (X, \mathcal{T}) un e.t. y \mathcal{B}_x una b.d.e de $x \ \forall x \in X$. Entonces:

- (V1) $\mathcal{B}_x \neq \emptyset$.
- (V2) Si $V \in \mathcal{B}_x$, entonces $x \in V$.
- (V3) Si $V_1, V_2 \in \mathcal{B}_x$, entonces $\exists V_3 \in \mathcal{B}_x$ con $V_3 \subset V_1 \cap V_2$. (En general, la intersección de dos abiertos básicos no tiene por qué ser abierto básico pero sí contener a uno).

(V4) Si $V \in \mathcal{B}_x$, entonces $\exists V' \in \mathcal{B}_x$ con $V' \subset V$ tal que $\forall y \in V' \ \exists V_y \in \mathcal{B}_y$ con $V_y \subset V$.

Demostración.

(V4) $V \in \mathcal{B}_x \subset \mathcal{N}_x$, entonces, por (N5) $\exists N' \in \mathcal{N}_x \text{ con } N' \subset V \text{ tal que } V \in \mathcal{N}_y$ $\forall y \in N'. \text{ Como } \mathcal{B}_x \text{ es b.d.e, } \exists V' \in \mathcal{B}_x \text{ con } V' \subset N' \subset V.$

Sea $y \in V' \subset N' \Rightarrow V \in \mathcal{N}_y$. Como \mathcal{B}_y es b.d.e, $\exists V_y \in \mathcal{B}_y$ con $V_y \subset V$.

Proposición 1.15. Sea $X \neq \emptyset$ un conjunto y supongamos que $\forall x \in X$ tenemos una familia $\mathcal{B}_x \subset \mathcal{P}(X)$ cumpliendo **(V1)**, ..., **(V4)**. Entonces existe una única topología \mathcal{T} en X tal que \mathcal{B}_x es b.d.e de x en (X, \mathcal{T}) $\forall x \in X$.

Además, \mathcal{T} es la única topología con $\mathcal{N}_x = \{N \subset X : \exists V = V_x \in \mathcal{B}_x \text{ con } V_x \subset N\}$ $\forall x \in X$.

Demostración. Tengo que comprobar que \mathcal{N}_x cumplen $(\mathbf{N1}), \ldots, (\mathbf{N5})$ usando que \mathcal{B}_x cumplen $(\mathbf{V1}), \ldots, (\mathbf{V4})$. La demostración se deja propuesta como ejercicio para el lector.

Ejercicio 1.5.1. Sean (X, \mathcal{T}) y (X, \mathcal{T}') espacios topológicos y \mathcal{B}_x b.d.e de x en (X, \mathcal{T}) $\forall x \in X$. Si V es entorno de x en \mathcal{T}' $\forall V \in \mathcal{B}_x$, entonces $\mathcal{T} \leqslant \mathcal{T}'$.

1.6. Puntos adherentes. Clausura

Definición 1.13. Sean (X, \mathcal{T}) un e.t., $A \subset X$, $x \in X$. Diremos que x es **adherente** de A si $A \cap N \neq \emptyset \ \forall N \in \mathcal{N}_x$, es decir, si cada entorno del punto interseca al conjunto. Esto no implica que $x \in A$. Podemos distinguir dos tipos:

- •) Decimos que un punto adherente x es de **acumulación** de A si $A \cap (N \setminus \{x\}) \neq \emptyset$ $\forall N \in \mathcal{N}_x$ (Esto no implica que $x \in A$).
- •) Decimos que un punto adherente x es **aislado** de A si existe un entorno $N \in \mathcal{N}_x$ tal que $A \cap N = \{x\}$ (Esto sí implica que $x \in A$).

Proposición 1.16. Sea (X, \mathcal{T}) un e.t., $A \subset X, x \in X$. Equivalen:

- (i) x es adherente a A.
- (ii) $A \cap U \neq \emptyset \quad \forall U \in \mathcal{T} \text{ con } x \in U.$
- (iii) $A \cap B \neq \emptyset \ \forall B \in \mathcal{B} \text{ con } x \in B, \text{ donde } \mathcal{B} \text{ es base de } \mathcal{T}.$
- (iv) $A \cap V \neq \emptyset \quad \forall V \in \mathcal{B}_x \text{ con } \mathcal{B}_x \text{ base de entornos de } x$.

Demostración.

- (iii) \Rightarrow (iv) Sea $V \in \mathcal{B}_x \Rightarrow \exists U \in \mathcal{T}$ con $x \in U \subset V$. Como \mathcal{B} es base de \mathcal{T} , entonces $\exists B \in \mathcal{B}$ con $x \in B \subset U \subset V$. Por hipótesis, $B \cap A \neq \emptyset$, por lo que $V \cap A \neq \emptyset$
 - (iv) \Rightarrow (i) Sea $N \in \mathcal{N}_x$. Como \mathcal{B}_x es base de entornos de x, entonces $\exists V \in \mathcal{B}_x$ con $V \subset N$. Por hipótesis, $A \cap V \neq \emptyset \Rightarrow A \cap N \neq \emptyset$ por lo que x es adherente a A.

Observación. Los puntos de acumulación y los puntos aislados admiten una caracterización análoga.

Definición 1.14. Sea (X, \mathcal{T}) , $A \subset X$. Se define la **adherencia** (**clausura** o **cierre**) de A como $\overline{A} = cl(A) = \{x \in X : x \text{ es adherente de } A\}$.

Ejemplo.

- •) $\overline{\emptyset} = \emptyset$.
- •) $A \subset \overline{A}$. Para verlo puedo tomar $x \in A, N \in \mathcal{N}_x$, entonces $x \in N \Rightarrow x \in N \cap A \neq \emptyset$ por lo que $x \in \overline{A}$.
- $\bullet) \ \overline{X} = X.$
- •) Sea (X, d) e.m. y tomamos $A \subset X, x \in X$. Entonces $x \in \overline{A}$ si $B(x, \varepsilon) \cap A \neq \emptyset$ $\forall \varepsilon > 0$.

Ejemplo. En $(\mathbb{R}, \mathcal{T}_u)$

- •) $A = (0,1) \Rightarrow \overline{A} = [0,1]$ y todos los puntos son de acumulación.
- •) $A = (0,1) \cup \{2\} \Rightarrow [0,1] \cup \{2\}$. Además x es de acumulación $\forall x \in [0,1]$ y x = 2 es aislado (ya que puedo considerar $N = \left(\frac{3}{2}, \frac{5}{2}\right) \in \mathcal{N}_2$ y $N \cap A = \{2\}$).

Proposición 1.17. Sea (X, \mathcal{T}) un e.t y $A \subset X$. Entonces:

- (i) $\overline{A} \in \mathcal{C}_{\mathcal{T}}$.
- (ii) Si $C \in \mathcal{C}_{\mathcal{T}}$ y $A \subset C$, entonces $\overline{A} \subset C$, es decir, la adherencia es el cerrado más pequeño que contiene a A.
- (iii) $A = \overline{A} \iff A \in \mathcal{C}_{\mathcal{T}}$.

Demostración.

- (i) Supongamos que $\overline{A} = X$. Entonces $\overline{A} \in \mathcal{C}_{\mathcal{T}}$. Supongamos ahora el caso $\overline{A} \neq X \Rightarrow X \setminus \overline{A} \neq \emptyset$. Tendré que ver si $X \setminus \overline{A} \in \mathcal{T}$. Para ello tomo $x \in X \setminus \overline{A}$ y como $x \notin \overline{A}$, entonces $\exists U \in \mathcal{T}$ con $x \in U$, $U \cap A = \emptyset$, luego $U \cap \overline{A} = \emptyset$. Esto quiere decir que $x \in U \in X \setminus \overline{A}$ y entonces $X \setminus \overline{A} \in \mathcal{N}_x \ \forall x \in X \setminus \overline{A}$ por lo que $X \setminus \overline{A} \in \mathcal{T}$
- (ii) (Por reducción al absurdo) Supongamos $\overline{A} \cap (X \setminus C) \neq \emptyset$ y considero $x \in \overline{A} \cap (X \setminus C)$, entonces, como $(X \setminus C) \in \mathcal{T}$ tengo $x \in (X \setminus C) \in \mathcal{T}$ y como $x \in \overline{A}$, entonces $(X \setminus C) \cap A \neq \emptyset$, pero como teníamos que $A \subset C$ llegamos a contradicción
- (iii) \Rightarrow) $A = \overline{A} \stackrel{(i)}{\Rightarrow} A \in \mathcal{C}_{\mathcal{T}}.$
 - \Leftarrow) Tengo que $A \in \mathcal{C}_{\mathcal{T}}$ y $A \subset A$ (trivialmente) $\stackrel{(ii)}{\Rightarrow} \overline{A} \subset A$ y como $A \subset \overline{A}$ (por lo visto anteriormente), se da la doble inclusión y tenemos que $A = \overline{A}$.

Ejemplo. (Ejercicio 23 de la Relación 1)

- a) (X, \mathcal{T}_t) , $A \subset X$, $\#A \geqslant 2 \Rightarrow \overline{A} = X$ ya que $X \cap A = A \neq \emptyset \ \forall x \in X$.
- b) (X, \mathcal{T}_{disc}) , $A \subset X \Rightarrow \overline{A} = A$ ya que $A \in \mathcal{C}_{\mathcal{T}} \ \forall A \subset X$. Además, todos los puntos son aislados ya que $\forall x \in \overline{A} \ \exists \{x\} \in \mathcal{N}_x, \ A \cap \{x\} = \{x\}$.
- c) (X, \mathcal{T}_{CF}) , $A \subset X$ infinito, entonces $\overline{A} = A$ (ya que al ser A finito es cerrado). Además, todos los puntos serán aislados, ya que $\forall a \in A$ puedo considerar $U = (X \setminus A) \cup \{a\} \in \mathcal{N}_a$ y $U \cap A = \{a\}$.
- d) $(\mathbb{R}, \mathcal{T}_S)$ (una base de \mathcal{T}_S es $\{[x, x + \varepsilon) : x \in \mathbb{R}, \varepsilon > 0\}$). $A = (0, 1] \Rightarrow \overline{A} = [0, 1]$. Además x es de acumulación $\forall x \in [0, 1)$ y x = 1 es aislado.
 - $A = (0,1) \Rightarrow \overline{A} = [0,1)$ (ya que puedo considerar $N = [1,2) \in \mathcal{N}_1$ y $N \cap A = \emptyset$ luego $1 \notin \overline{A}$).

Ejemplo.

- •) $(\mathbb{R}^n, \mathcal{T}_u), \overline{B(x,r)} = \overline{B}(x,r)$. Esto no es cierto en todo espacio métrico.
- •) $(\mathbb{R}, \mathcal{T}_u), \overline{(a,b)} = [a,b] = \overline{(a,b]} = \overline{[a,b)}. \overline{\mathbb{Q}} = \mathbb{R} = \overline{\mathbb{R} \setminus \mathbb{Q}}.$

Definición 1.15. Sea (X, \mathcal{T}) un e.t., $A \subset X$, A se dice **denso** si $\overline{A} = X$. El espacio (X, \mathcal{T}) se dice **separable** si $\exists A \subset X$ denso y numerable.

Ejemplo.

- •) $(\mathbb{R}^n, \mathcal{T}_u)$ es separable $\overline{\mathbb{Q}} = \mathbb{R}^n$.
- •) $A \subset X$ denso $\iff A \cap B \neq \emptyset \ \forall B \in \mathcal{B} \text{ con } \mathcal{B} \text{ base de } \mathcal{T}.$

Proposición 1.18. Sea (X, \mathcal{T}) un e.t., $A, B \subset X$. Entonces:

- (i) $\overline{\overline{A}} = \overline{A}$.
- (ii) Si $A \subset B$, entonces $\overline{A} \subset \overline{B}$.
- (iii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (iv) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ (la otra inclusión no se verifica en general, por ejemplo, en $(\mathbb{R}, \mathcal{T}_u)$, los conjuntos A = (0, 1), B = (1, 2))

Demostración.

- (i) $\overline{A} \in \mathcal{C}_{\mathcal{T}}$ luego $\overline{\overline{A}} = \overline{A}$.
- (ii) $A \subset B \subset \overline{B} \in \mathcal{C}_{\mathcal{T}} \Rightarrow \overline{A} \subset \overline{B}$.
- (iii) \subset) $A \cup B \subset \overline{A} \cup \overline{B} \in \mathcal{C}_{\mathcal{T}} \Rightarrow \overline{A \cup B} \subset \overline{A} \cup \overline{B}$. \supset) $A \subset A \cup B \subset \overline{A \cup B} \in \mathcal{C}_{\mathcal{T}} \Rightarrow \overline{A} \subset \overline{A \cup B}$

$$\supset)\quad A\subset A\cup B\subset \overline{A\cup B}\in \mathcal{C}_{\mathcal{T}}\Rightarrow \overline{A}\subset \overline{A\cup B}\\ B\subset A\cup B\subset \overline{A\cup B}\in \mathcal{C}_{\mathcal{T}}\Rightarrow \overline{B}\subset \overline{A\cup B} \ \right\}\Rightarrow \overline{A}\cup \overline{B}\subset \overline{A\cup B}$$

(iv) $A \cap B \subset A \subset \overline{A} \in \mathcal{C}_{\mathcal{T}} \Rightarrow \overline{A \cap B} \subset \overline{A}$ $A \cap B \subset B \subset \overline{B} \in \mathcal{C}_{\mathcal{T}} \Rightarrow \overline{A \cap B} \subset \overline{B}$ $\Rightarrow \overline{A \cap B} \subset \overline{A} \cap \overline{B}$

1.7. Interior

Definición 1.16. Sea (X, \mathcal{T}) un e.t, $A \subset X$, $x \in X$ se dice **interior** de A si $A \in \mathcal{N}_x$. Denotamos $A^{\circ} = int(A) = \{x \in A : x \text{ es interior de } A\}$ y lo llamamos **interior** de A.

Ejemplo.

- •) $X^{\circ} = X$, $\emptyset^{\circ} = \emptyset$.
- •) $(X, \mathcal{T}_d), x \in A^{\circ} \iff \exists \varepsilon > 0 \text{ tal que } B(x, \varepsilon) \subset A.$

•) $(\mathbb{R}, \mathcal{T}_n), A = (0, 1), B = [0, 1) \cup \{2\} \Rightarrow A^{\circ} = A, B^{\circ} = A$

Propiedades. (X, \mathcal{T}) un e.t, $A \subset X$. Entonces:

- (i) $A^{\circ} \subset A \text{ y } A^{\circ} \in \mathcal{T}$.
- (ii) Si $U \subset \mathcal{T}$ y $U \subset A$, entonces $U \subset A^{\circ}$ (A° es el mayor abierto contenido en A).
- (iii) $A \in \mathcal{T} \iff A = A^{\circ}$.

Demostración.

- (i) $A^{\circ} \subset A$ trivial porque $A \in \mathcal{N}_x \quad \forall x \in A^{\circ}$. $x \in A^{\circ}$, tendremos que ver que $A^{\circ} \in \mathcal{N}_x$. Sabemos que $A \in \mathcal{N}_x \Rightarrow \exists U \in \mathcal{T}$ con $x \in U$, $U \subset A$. TEndremos que ver entonces si $U \subset A^{\circ}$. Como $U \in \mathcal{T}$, entonces $U \in \mathcal{N}_y \quad \forall y \in U$ y como $U \subset A$, entonces $A \in \mathcal{N}_y \quad \forall y \in U$ luego tenemos que $U \in A^{\circ}$
- (ii) $U \in \mathcal{T}$, $U \subset A$ y podemos comprobar que $U \subset A^{\circ}$ (Igual que antes).
- (iii) \Rightarrow) $A \in \mathcal{T}$, $A \subset A$, luego por (ii) $A \subset A^{\circ}$ y por (i) $A = A^{\circ}$. \Leftarrow) Por (i), $A = A^{\circ} \in \mathcal{T}$.

Ejemplo.

- •) $(X, \mathcal{T}_t), A \subset X, A \neq X \Rightarrow A^{\circ} = \emptyset.$
- •) $(X, \mathcal{T}_{disc}), A \subset X \Rightarrow A^{\circ} = A.$
- •) $(X, \mathcal{T}_{x_0}), A \subset X \Rightarrow A^{\circ} = \begin{cases} A & \text{si } x_0 \in A \\ \emptyset & \text{si } x_0 \notin A \end{cases}$
- •) $(\mathbb{R}^n, \mathcal{T}_u), (\overline{B}(x,r))^{\circ} = B(x,r) \ \forall x \in \mathbb{R}^n, r > 0$. Esto no es cierto en cualquier espacio métrico.
- •) $(\mathbb{R}, \mathcal{T}_u), [a, b]^{\circ} = (a, b) = [a, b)^{\circ} = (a, b]^{\circ} = (a, b)^{\circ}.$
- •) $(\mathbb{R}, \mathcal{T}_u), \mathbb{Q}^{\circ} = \emptyset = (\mathbb{R} \setminus \mathbb{Q})^{\circ}.$
- •) $(\mathbb{R}, \mathcal{T}_{Sorgenfrey}), [0,1)^{\circ} = [0,1) = [0,1]^{\circ}, (0,1]^{\circ} = (0,1).$

Proposición 1.19. Sea (X, \mathcal{T}) , $A \subset X$. Se tienen:

- (i) $X \setminus \overline{A} = (X \setminus A)^{\circ}$.
- (ii) $X \setminus A^{\circ} = \overline{X \setminus A}$.

Demostración.

 $(\mathrm{i})\quad \subset)\ A\subset\overline{A}\Rightarrow X\setminus\overline{A}\subset X\setminus A\Rightarrow X\setminus\overline{A}\subset (X\setminus A)^{\circ}.$

⊃) Sabemos que $(X \setminus A)^{\circ} \subset X \setminus A \Rightarrow A \subset X \setminus (X \setminus A)^{\circ}$ y como $X \setminus (X \setminus A)^{\circ} \in \mathcal{C}_{\mathcal{T}} \Rightarrow \overline{A} \subset X \setminus (X \setminus A)^{\circ} \Rightarrow (X \setminus A)^{\circ} \subset X \setminus \overline{A}$.

(ii)
$$A = X \setminus A \Rightarrow X \setminus \overline{(X \setminus A)} = A^{\circ} \Rightarrow \overline{A \setminus A} = X \setminus A^{\circ}$$
.

Definición 1.17. Sea (X, \mathcal{T}) , $A \subset X$, se llama **exterior** de A al conjunto $A^e = ext(A) = (X \setminus A)^\circ = X \setminus \overline{A}$.

1.8. Frontera

Definición 1.18. Sea (X, \mathcal{T}) un e.t., $A \subset X$, $x \in X$. Se dice que x es **frontera** de A si $x \in \overline{A} \cap \overline{X \setminus A}$. Se denomina **frontera** de A al conjunto $\partial A = fr(A) = \overline{A} \cap \overline{X \setminus A} = \{x \in X : x \text{ es frontera de } A\}$.

Proposición 1.20. Sea (X, \mathcal{T}) un e.t, $A \subset X$. Se tienen:

- (i) $\partial A = \overline{A} \setminus A^{\circ}$. Esto se ve sabiendo que $\partial A = \overline{A} \cap (\overline{X \setminus A}) = \overline{A} \setminus (X \setminus A^{\circ}) = \overline{A} \setminus A^{\circ}$.
- (ii) $\partial A \in \mathcal{C}_{\mathcal{T}}$ (ya que es intersección de 2 conjuntos cerrados).
- (iii) $\partial A = \partial(X \setminus A)$. Esto es porque $\partial(X \setminus A) = \overline{X \setminus A} \cap \overline{A}$.
- (iv) $\overline{A} = A^{\circ} \sqcup \partial A$ (unión disjunta). Esto es porque $\overline{A} = A^{\circ} \sqcup (\overline{A} \setminus A^{\circ})$.
- (v) $A^{\circ} = A \setminus \partial A$.
- (vi) $X = A^{\circ} \sqcup \partial A \sqcup A^{e}$.
- (vii) $A \in \mathcal{C}_{\mathcal{T}} \iff \partial A \subset A$. (trivial con definiciones)
- (viii) $A \in \mathcal{T} \iff \partial A = \emptyset$.
 - (ix) $A \in (\mathcal{T} \cap \mathcal{C}_{\mathcal{T}}) \iff \partial A = \emptyset$.
 - (x) $\partial(A \cup B) \subset (\partial A \cup \partial B)$

Ejemplo.

- •) $(X, \mathcal{T}_t), A \subset X \Rightarrow \partial A = \begin{cases} \emptyset & \text{si} \quad A \in \{X, \emptyset\} \\ X & \text{si} \quad A \notin \{X, \emptyset\} \end{cases}$
- •) $(X, \mathcal{T}_{disc}), A \subset X \Rightarrow \partial A = \emptyset.$
- •) $(X, \mathcal{T}_{x_0}), A \subset X \Rightarrow \partial A = \begin{cases} X \setminus A & \text{si} \quad x_0 \in A \\ A & \text{si} \quad x_0 \notin A \end{cases}$
- •) $(\mathbb{R}^n, \mathcal{T}_u), \, \partial B(x,r) = \partial \overline{B}(x,r) = S(x,r).$
- •) $(\mathbb{R}, \mathcal{T}_u)$, $\partial[a, b] = \{a, b\} = \partial(a, b) = \partial[a, b) = \partial(a, b]$, $\partial \mathbb{Q} = \mathbb{R} = \partial(\mathbb{R} \setminus \mathbb{Q})$.

1.9. Topología inducida. Subespacio topológico

Proposición 1.21. Sea (X, \mathcal{T}) un e.t. y sea $A \subset X$, $A \neq \emptyset$ un conjunto. Entonces el conjunto

$$\mathcal{T}_A = \mathcal{T}_{|A} = \{ U \cap A : U \in \mathcal{T} \} \subset \mathcal{P}(A)$$

es una topología en A por lo que (A, \mathcal{T}_A) es un e.t.

Demostración. Para demostrarlo tendremos que ver que \mathcal{T}_A es una topología, es decir que verifica las propiedades:

- (A1) Sabemos que $\emptyset \in \mathcal{T}$ y como $\emptyset \cap A = \emptyset$ entonces $\emptyset \in \mathcal{T}_A$. Análogamente, $X \in \mathcal{T}$ y $X \cap A = A$ por lo que $A \in \mathcal{T}_A$.
- (A2) Sea $\{O_i\}_{i\in I}\subset \mathcal{T}_A$. Tendremos que comprobar que $\bigcup_{i\in I}O_i\in \mathcal{T}_A$. Para ello sabemos que para cada $i\in I$ se verifica que $O_i=U_i\cap A$ donde $U_i\in \mathcal{T}$. Tenemos entonces

$$\bigcup_{i \in I} O_i = \bigcup_{i \in I} (U_i \cap A) = (\bigcup_{i \in I} U_i) \cap A \in \mathcal{T}_A$$

(A3) Sean $O_1, O_2 \in \mathcal{T}_A$, tendremos que ver que $O_1 \cap O_2 \in \mathcal{T}_A$. Para ello sabemos que

$$O_1 = U_1 \cap A \qquad O_2 = U_2 \cap A \qquad U_1, U_2 \in \mathcal{T}$$

Por tanto, $O_1 \cap O_2 = (U_1 \cap A) \cap (U_2 \cap A) = (U_1 \cap U_2) \in A \in \mathcal{T}_A$ ya que $(U_1 \cap U_2) \in \mathcal{T}$.

Definición 1.19. Diremos que \mathcal{T}_A es la **topología inducida** por \mathcal{T} sobre A, y que (A, \mathcal{T}_A) es un **subespacio topológico** de (X, \mathcal{T}) . De un conjunto $O \in \mathcal{T}_A$ diremos que es **abierto** en A.

Observación.

- •) Sea $O \subset A$, entonces $O \in \mathcal{T}A \iff \exists U \in \mathcal{T} \text{ con } O = U \cap A$.
- •) Sea $O \subset A$, entonces $O \in \mathcal{T} \Rightarrow O \in \mathcal{T}_A$ (ya que $O = O \cap A$). El recíproco no es cierto ya que no todo abierto de un subespacio tiene que ser abierto en el espacio. Por ejemplo, en $(\mathbb{R}, \mathcal{T}_u)$ consideramos A = [0, 3), entonces $[0, 1) \in \mathcal{T}_A$ pero $[0, 1) \notin \mathcal{T}_u$ (podemos considerar $[0, 1) = (-1, 1) \cap A$).

Proposición 1.22. Sea (X, \mathcal{T}) un e.t., $\emptyset \neq A \subset X$, $a \in A$. Se tienen:

- (i) $C \subset A$ es cerrado en A $(C \in \mathcal{C}_{\mathcal{T}_A}) \iff \exists C' \in \mathcal{C}_{\mathcal{T}}$ con $C = C' \cap A$.
- (ii) $N \subset A$ es entorno de a en A $(N \in \mathcal{N}_a^{\mathcal{T}_A}) \iff \exists N' \in \mathcal{N}_a^{\mathcal{T}} \text{ con } N = N' \cap A.$
- (iii) Si \mathcal{B} es base de \mathcal{T} , entonces $\mathcal{B}_A = \{B \cap A : B \in \mathcal{B}\}$ es base de \mathcal{T}_A .
- (iv) Si \mathcal{B}_a es b.d.e. de a en (X, \mathcal{T}) , entonces $(\mathcal{B}_A)_a = \{V \cap A : V \in \mathcal{B}_a\}$ es b.d.e. de a en (A, \mathcal{T}_A) .
- (v) $E \subset A \Rightarrow \overline{E}^A = \overline{E} \cap A$.
- (vi) $E \subset A \Rightarrow E^{\circ A} \supset E^{\circ} \cap A$. La otra inclusión no es cierta en general. Por ejemplo, en $(\mathbb{R}, \mathcal{T}_u)$ consideramos A = [0, 2) y E = [0, 1). Entonces tenemos que $E^{\circ A} = E$ pero $E^{\circ} \cap A = (0, 1)$.
- (vii) $E \subset A \Rightarrow fr_A(E) \subset fr(E) \cap A$.

Demostración.

- (i) \Rightarrow) $C \subset A$ cerrado en $A \Rightarrow A \setminus C \in \mathcal{T}_A \Rightarrow \exists U \in \mathcal{T}$ con $A \setminus C = U \cap A \Rightarrow C = A \setminus (A \cap A) = A \cap (X \setminus U)$, donde $X \setminus U$ es cerrado por lo que puedo tomar $C' = X \setminus U \in \mathcal{C}_{\mathcal{T}}$ y se tiene lo buscado.
 - \Leftarrow) Sea $C' \in \mathcal{C}_{\mathcal{T}}$. Tendremos que ver que $C = C' \cap A$ es cerrado en A, lo cual equivale a ver que $A \setminus C \in \mathcal{T}_A$. Tenemos que $A \setminus C = A \setminus (C' \cap A) = A \cap (X \setminus C') \in \mathcal{T}_A$, ya que $X \setminus C'$ es abierto en \mathcal{T} .
- (ii) \Rightarrow) Sea N un entorno de a en A. Entonces existe un $U \in \mathcal{T}_A$ con $a \in U \subset N$ lo cual implica que $\exists U' \in \mathcal{T}$ con $U = U' \cap A$. Tomamos $N' = U' \cup N \in \mathcal{N}_a$. Tenemos que $N' \cap A = (U' \cup N) \cap A = (U' \cap A) \cup (N \cap A) = U$.
- (iii) Para ver que se verifica tendremos que probar la doble inclusión:
 - \supset) $\mathcal{B}_A = \{B \cap A : B \in \mathcal{B}\} \subset \mathcal{T}_A$ y se verifica.
 - \subset) Sea $O \in \mathcal{T}A$, $x \in O$. Entonces $\exists U \in \mathcal{T}$ con $x \in O = U \cap A$. Como \mathcal{B} es base de \mathcal{T} , $\exists B \in \mathcal{B}$ tal que $x \in B \subset U \Rightarrow x \in (B \cap A) \subset (U \cap A) = O$.
- (iv) Análogo a (iii).
- (v) De nuevo tendremos que ver la doble inclusión:
 - \subset) $E \subset (\overline{E} \cap A) \in \mathcal{C}_{\mathcal{T}_A} \Rightarrow \overline{E}^A \subset (\overline{E} \cap A)$, ya que $\overline{E} \in \mathcal{C}_{\mathcal{T}}$.
 - ⊃) Sea $a \in \overline{E} \cap A$ y N un entorno de a en A. Tendremos que ver si $N \cap N = \emptyset$. Para ello sabemos que $\exists N \in \mathcal{N}_a$ con $N = N' \cap A$ por lo que $N \cap E = N' \cap A \cap E = N' \cap E \neq \emptyset \Rightarrow a \in \overline{E}^A$.

Ejemplo.

- •) $(X, \mathcal{T}_t), \emptyset \neq A \subset X, \mathcal{T}_{t_A} = \{\emptyset, A\} = \mathcal{T}_t.$
- •) $(X, \mathcal{T}_{disc}), A \subset X, \mathcal{T}_{disc_A} = \mathcal{T}_{disc}$.

- •) $(\mathbb{R}, \mathcal{T}_u), \ \mathcal{T}_{u_{\mathbb{Z}}} = \mathcal{T}_{disc}, \ \{p\} = (p \frac{1}{2}, p + \frac{1}{2}) \cap \mathbb{Z}. \ \mathcal{T}_{u_{\mathbb{N}}} = \mathcal{T}_{disc}.$
- •) Ejercicio $\emptyset \neq A' \subset A \subset X$, $(\mathcal{T}_A)_{A'} = \mathcal{T}_{A'}$.
- •) (X, \mathcal{T}_d) , $\emptyset \neq A \subset X \Rightarrow d_A : A \times A \to [0, +\infty)$ tal que $(x, y) \mapsto d_A(x, y) = d(x, y)$. Entonces d_A es una distancia en A y (A, \mathcal{T}_{d_A}) es un espacio topológico y $\mathcal{T}_{d_A} = (\mathcal{T}_d)_A$. Todo subespacio de un e.t. metrizable es metrizable.
- •) $(X, \mathcal{T}_d), \emptyset \neq A \subset X$ finito $\Rightarrow (\mathcal{T}_d)_A = \mathcal{T}_{disc}$ (ya que $\exists \varepsilon > 0 : d(x, y) > \varepsilon \ \forall x \neq y$ y tomando $B(x, \varepsilon) \cap A = \{x\}$ se verifica).

Definición 1.20. Sea (X, \mathcal{T}) un e.t., $A \subset X$ con $A \neq \emptyset$, decimos que A es **discreto** si \mathcal{T}_A es la topología discreta en A.

Definición 1.21. Una propiedad topológica se dice **hereditaria** si al cumplirla un e.t (X, \mathcal{T}) también la cumplen todos su subespacios, es decir, si (X, \mathcal{T}) cumple $P \Rightarrow (A, \mathcal{T}_A)$ cumple $P \ \forall A \subset X, A \neq \emptyset$.

Ejemplo.

- •) "Ser metrizable" es una propiedad hereditaria.
- •) "Tener la topología discreta" es hereditario (trivialmente).

1.10. Axiomas de separación

Definición 1.22. Un e.t. (X, \mathcal{T}) se dice:

•) T1 (o de Fréchet, o que satisface el primer axioma de separación) si $\forall x, y \in X \text{ con } x \neq y, \exists V \in \mathcal{N}_x, W \in \mathcal{N}_y \text{ con } y \notin V, x \notin W.$

Esta definición se podría hacer análogamente con abiertos, abiertos básicos o entornos básicos.

•) T2 (o de Haussforff, o que satisface el segundo axioma de separación) si $\forall x, y \in X \text{ con } x \neq y, \exists V \in \mathcal{N}_x, W \in \mathcal{N}_y \text{ tal que } V \cap W = \emptyset.$

De nuevo esta definición se podría hacer con abiertos, abiertos básicos o entornos básicos.

Observación.

•) T2 \Rightarrow T1. Esto es claro ya que si un e.t (X, \mathcal{T}) es T2, entonces para $x, y \in X$, $x \neq y$ podemos encontrar $V \in \mathcal{N}_x$, $W \in \mathcal{N}_y$ tal que $V \cap W = \emptyset$. En particular tenemos que $y \notin V$ y $x \notin W$ y por tanto es T1. El recíproco no es cierto (T2 es una propiedad más restrictiva que T1).

Proposición 1.23. T1 y T2 son propiedades hereditarias.

Demostración.

- T1) Supongamos (X, \mathcal{T}) un e.t. T1 y $\emptyset \neq A \subset X$. Tendré que ver que (X, \mathcal{T}_A) es T1. Sean $a, a' \in A$ con $a \neq a'$. Como (X, \mathcal{T}) es T1 tenemos que $\exists V \in \mathcal{N}_a$, $W \in \mathcal{N}_{a'}$, con $a \notin W$ y $a' \notin V$. Defino $V' = V \cap A \in \mathcal{N}_a^A$ y $W' = W \cap A \in \mathcal{N}_{a'}^A$ y tengo que $a \notin W'$ y $a' \notin V'$ por lo que (X, \mathcal{T}_A) es T1.
- T2) Supongamos (X, \mathcal{T}) un e.t. T2 y $\emptyset \neq A \subset X$. Tendré que ver que (X, \mathcal{T}_A) es T2. Sean $a, a' \in A$ con $a \neq a'$. Como (X, \mathcal{T}) es T2 tenemos que $\exists V \in \mathcal{N}_a$, $W \in \mathcal{N}_{a'}$, con $V \cap W = \emptyset$. Defino $V' = V \cap A \in \mathcal{N}_a^A$ y $W' = W \cap A \in \mathcal{N}_{a'}^A$ y tengo que $V' \cap W' = (V \cap W) \cap A = \emptyset$ y tenemos lo buscado.

Ejemplo.

- •) (X, \mathcal{T}_t) , con #X > 2, no es T1 (ya que el único entorno de cualquier punto es X). (por ser no es ni T0, aunque este concepto no se va a trabajar en esta asignatura).
- •) (X, \mathcal{T}_{disc}) es T2 (y por tanto T1). Para verlo puedo tomar $x \neq y$ y tengo $\{x\} \in \mathcal{N}_x, \{y\} \in \mathcal{N}_y \text{ y } \{x\} \cap \{y\} = \emptyset.$
- •) (X, \mathcal{T}_u) es T2 (ya se vio anteriormente) y por tanto T1.
- •) Si X es un conjunto infinito, entonces (X, \mathcal{T}_{CF}) es T1, pero no T2. Comprobémoslo:
 - T1) $x \neq y, x, y \in X$. Cojo $V = X \setminus \{y\} \in \mathcal{T}_{CF}$ y además $V \in \mathcal{N}_x$ con $y \notin V$. Repetimos el proceso para x y llegamos a lo mismo.

T2) (por reducción al absurdo) Supongamos $x \neq y$ y que existen $V \in \mathcal{N}_x$, $W \in \mathcal{N}_y$ con $V \cap W = \emptyset$. Entonces $X \setminus (V \cap W) = X = (X \setminus V) \cup (X \setminus W)$ que es finito por ser unión de conjuntos finitos, pero X es infinito por lo que llegamos a contradicción.

Proposición 1.24. (Caracterización de T1) Un e.t. (X, \mathcal{T}) es T1 \iff $\{x\} \in \mathcal{C}_{\mathcal{T}}$ $\forall x \in X$.

Demostración.

- \Rightarrow) Supongamos (X, \mathcal{T}) un e.t. T1, $x \in X$, tendré que ver que $\overline{\{x\}} = \{x\}$. Veámoslo por reducción al absurdo. Para ello, supongamos que $\exists y \in X, \ y \in \overline{\{x\}}$ y $y \neq x \Rightarrow x \in N \ \forall N \in \mathcal{N}_y$. Esto contradice que (X, \mathcal{T}) sea T1.
- \Leftarrow) Sean $x,y\in X$ con $x\neq y$ y tomo $V=X\setminus\{y\}\in\mathcal{T}$ (por hipótesis, al ser complementario de cerrado). Además como $x\in V$, tenemos $V\in\mathcal{N}_x$ y además $y\notin V$. Repetimos este razonamiento para y y tenemos que (S,\mathcal{T}) es T1.

Ejercicio 1.10.1. Sea (X, \mathcal{T}) un e.t. T2 y $\{y_n\}_{n\in\mathbb{N}}\subset X$ una sucesión convergente, entonces tiene un único límite.

1.11. Axiomas de numerabilidad

Definición 1.23. Diremos que un e.t (X, \mathcal{T}) es

- •) 1AN (o que cumple el primer axioma de numerabilidad) si todo punto de x tiene una base de entornos numerable.
- •) 2AN (o que cumple el segundo axioma de numerabilidad) si existe una base de \mathcal{T} numerable.

Observación.

- •) $2AN \Rightarrow 1AN$ ya que si \mathcal{B} es base numerable y $x \in X$ entonces $\mathcal{B}_x = \{B \in \mathcal{B} : x \in B\}$ es una b.d.e de x numerable.
- •) Si $\{V_n\}_{n\in\mathbb{N}}$ es una b.d.e de $x\in X$, entonces definiendo $W_n=\bigcap_{k=1}^n V_k$, tenemos que $\{W_n:n\in\mathbb{N}\}$ es b.d.e de x y $W_1\supset W_2\supset W_3\supset\ldots$ Es decir, para todo espacio 1AN podemos encontrar una base de entornos numerable y encajada.
- •) Las propiedades 1AN y 2AN son propiedades hereditarias.

Demostración.

2AN) Supongamos (X, \mathcal{T}) 2AN y sea (A, \mathcal{T}_A) con $\emptyset \neq A \subset X$. Sabemos que existe \mathcal{B} base de \mathcal{T} numerable $\Rightarrow \mathcal{B}_A = \{B \cap A : B \in \mathcal{B}\}$ es base de \mathcal{T}_A y numerable.

1AN)

Ejemplo.

- •) Si (X, \mathcal{T}) es un e.t. y \mathcal{T} es numerable, entonces (X, \mathcal{T}) es 2AN. En particular, (X,\mathcal{T}) es 2AN.
- •) (X, \mathcal{T}_{disc}) es 1AN ya que $\{\{x\}\}$ es b.d.e de x en \mathcal{T} . Si además X es numerable, entonces tengo que $\mathcal{B} = \{\{x\} : x \in X\}$ es base de \mathcal{T} por lo que es 2AN. (es una condición suficiente y necesaria ya que dicha base es la más fina).
- •) (X, \mathcal{T}_{CF}) , si X es numerable entonces tiene una cantidad numerable de subconjuntos finitos por lo que con esta condición, \mathcal{T}_{CF} es numerable y por tanto 2AN (luego también 1AN). Si X no es nuerable, entonces no es 1AN (luego tampoco 2AN).

Demostración. Veamos que si X no es numerable entonces no es 1AN. Hagámoslo por reducción al absurdo. Supongamos $x \in X$, $\mathcal{B}_x = \{V_n\}_{n \in \mathbb{N}}$ b.d.e. de x. Entonces podemos escribir $V_n = X \setminus C_n$ con C_n finito. Entonces $C = \bigcup_{n \in \mathbb{N}} C_n$ es numerable y además $C \subset X$. Por tanto, $X \setminus C$ no es vacío y además tiene infinitos elementos por lo que puedo tomar un $y \in X \setminus C$ con $y \neq x$ y consideramos $X \setminus \{y\}$ que es abierto en \mathcal{T}_{CF} . Como $\{V_n\}_{n \in \mathbb{N}}$ es b.d.e. de x, entonces existe un $n \in \mathbb{N}$ con $x \in V_n \subset X \setminus \{y\} \Rightarrow \{y\} \subset C_n$ y llegammos a contradicción (ya que $V_n = X \setminus C_n$).

- •) si X no es numerable, entonces (X, \mathcal{T}_{CF}) no es 1AN (misma demostración que el apartado anterior pero con finito en lugar de numerable) y por tanto tampoco es 2AN.
- •) $(\mathbb{R}^n, \mathcal{T}_u)$ es 2AN (y 1AN). Esto es porque $\mathcal{B}\{B\left(x, \frac{1}{n}\right) : n \in \mathbb{N}, x \in \mathbb{Q}^n\}$ es base de \mathcal{T}_u y es numerable.

Ejemplo. $(\mathbb{R}, \mathcal{T}_S)$ la topología de Sorgenfrey

- •) Es 1AN: $x \in \mathbb{R}$, $\mathcal{B}_x = \{[x, x + \frac{1}{n}) : n \in \mathbb{N}\}$ es b.d.e. de x.
- •) No es 2AN: para verlo tomo \mathcal{B} base de \mathcal{T}_S . $\forall x \in \mathbb{R}, [x, x+1) \in \mathcal{T}_S$ y $x \in$ [x, x + 1). Como \mathcal{B} es base, entonces $\exists B_x \in \mathcal{B}$ con $x \in B_x \subset [x, x + 1)$ y entonces x es el mínimo de \mathcal{B}_x . Esto quiere decir que $B_x \neq B_y$ para todo $x \neq y$. Entonces la familia $\{B_x : x \in \mathbb{R}\} \subset \mathcal{B}$ no es numerable por lo que \mathcal{B} no es numerable.

Proposición 1.25. Sea (X, \mathcal{T}) un e.t. 2AN y \mathcal{B} una base de \mathcal{T} , entonces existe una base \mathcal{B}' de \mathcal{T} con $\mathcal{B}' \subset \mathcal{B}$ con \mathcal{B}' numerable. Es decir, de toda base puedo extraer una base numerable.

Esta proposición se usa para probar que un e.t. no es 2AN (utilizando el contra-rrecíproco):

•) $(\mathbb{R}, \mathcal{T}_S)$ no es 2AN. $\mathcal{B} = \{[a, b) : a < b\}$ es base de \mathcal{T}_S . Hagámoslo por reducción al absurdo. Si $(\mathbb{R}, \mathcal{T}_S)$ es 2AN, entonces $\exists \mathcal{B}' = \{[a_n, b_n) : n \in \mathbb{N}\}$ base de \mathcal{T}_S . Entonces el conjunto $A = \{a_n : n \in \mathbb{N}\}$ es numerable $\Rightarrow \mathbb{R} \setminus A \neq \emptyset$. Sea $x \in \mathbb{R} \setminus A$, $x \in [x, x + 1) \in \mathcal{T}_S \Rightarrow \exists n \in \mathbb{N} : x \in [a_n, b_n) \subset [x, x + 1) \Rightarrow a_n = x$ y llegamos a contradicción.

Proposición 1.26. Si (X, \mathcal{T}) es 2AN, entonces de todo recubrimiento⁵ por abiertos⁶ de X se puede extraer un subrecubrimiento numerable, es decir,

si
$$X = \bigcup_{i \in I} U_i$$
 con $U_i \in \mathcal{T} \ \forall i \in I \Rightarrow \exists J \subset I$ numerable tal que $X = \bigcup_{j \in J} U_j$.

⁵Un recubimiento de un conjunto X es una familia $\{U_i\}_{i\in I}$ tal que $\bigcup_{i\in I}U_i=X$, es decir, es como una partición de X pero cuyos elementos no tienen por qué ser disjuntos 2 a 2.

⁶Un recubrimiento por abiertos de un e.t. (X, \mathcal{T}) es un recubrimiento cuyos elementos son abiertos en la topología, es decir, una familia $\{U_i\}_{i\in I}$ tal que $U_i \in \mathcal{T} \ \forall i \in I \ y \bigcup_{i\in I} U_i = X$

2. Aplicaciones entre Espacios Topológicos

Definición 2.1. Dados (X, \mathcal{T}) , (Y, \mathcal{T}') dos e.t., diremos que $f:(X, \mathcal{T}) \to (Y, \mathcal{T}')$ (que notaremos como $f:X \to Y$ cuando estén claros los e.t.) es **continua** en un punto $x_0 \in X$ si $\forall N' \in \mathcal{N}'_{f(x_0)} \ \exists N \in \mathcal{N}_{x_0} \ \text{con} \ f(N) \subset N'$.

Equivalentemente, $\forall N' \in \mathcal{N}'_{f(x)}$ $f^{-1}(N') \in \mathcal{N}_{x_0}$. Es decir, la imagen inversa por f de todo entorno de f(x) en el espacio topológico \mathcal{T}' es entorno de x en el espacio topológico \mathcal{T} .

Observación. La definición se puede reformular usando abiertos, abiertos básicos o entornos básicos. La demostración queda planteada como ejercicio para el lector.

Definición 2.2. Dados (X, \mathcal{T}) , (Y, \mathcal{T}') dos e.t., $\emptyset \neq A \subset X$. Diremos que $f: X \to Y$ es **continua en** A si es continua en $x \ \forall x \in A$. Diremos que f es **continua** si es continua en X.

Proposición 2.1. Dados (X, \mathcal{T}) , (Y, \mathcal{T}') dos e.t., $f: X \to Y$. Entonces son equivalentes:

- (i) f es continua.
- (ii) $f^{-1}(U') \in \mathcal{T} \ \forall U' \in \mathcal{T} \ (f \text{ trae abiertos en abiertos}).$
- (iii) $f^{-1}(B') \in \mathcal{T} \ \forall B' \in \mathcal{B}'$, donde \mathcal{B}' es base de \mathcal{T}' .
- (iv) $f^{-1}(C') \in \mathcal{C}_{\mathcal{T}} \ \forall C' \in \mathcal{C}_{\mathcal{T}'}$ (f trae cerrados en cerrados).

(v)
$$f(\overline{A}) \subset \overline{f(A)} \ \forall A \subset X$$
.

Demostración.

- (i) \Rightarrow (ii) Supongamos que f es continua. Tomamos $U' \in \mathcal{T}'$ y tendremos que verificar que $f^{-1}(U') \in \mathcal{T}$. Sea $x \in f^{-1}(U')$, entonces tendré que ver que $f^{-1}(U') \in \mathcal{N}_x$. Sabemos que $f(x) \in U' \subset \mathcal{N}_{f(x)}$. Como f es continua, entonces $\exists U \in \mathcal{T}, x \in U$, $f(U) \subset U' \Rightarrow x \in U \subset f^{-1}(U')$. Como $U \in \mathcal{T}$, tenemos que $f^{-1}(U') \in \mathcal{N}_x$. Como esto sucede para un x arbitrario tendremos que se verifica.
- (ii)⇒(iii) Esta implicación es trivial ya que todo abierto básico es en particular abierto en la topología.
- (iii) \Rightarrow (iv) Sea $C' \in \mathcal{C}_{\mathcal{T}'}$, $C' \subset Y$. Tendré que ver que $f^{-1}(C') \in \mathcal{C}_{\mathcal{T}}$, lo cual es equivalente a ver que $X \setminus f^{-1}(C') \in \mathcal{T}$. Sabemos que $X \setminus f^{-1}(C') = f^{-1}(Y \setminus C')$ y $Y \setminus C' \in \mathcal{T}$. Como \mathcal{B}' es base de \mathcal{T}' , tenemos que $Y \setminus C' = \bigcup_{i \in I} B'_i$ con $B'_i \in \mathcal{B}'$ $\forall i \in I$. Entonces tenemos que $f^{-1}(Y \setminus C') = f^{-1}\left(\bigcup_{i \in I} B'_i\right) = \bigcup_{i \in I} f^{-1}(B'_i) \in \mathcal{T}$ por ser unión de abiertos.
- (iv) \Rightarrow (v) Sea $\emptyset \neq A \subset X$, como $\overline{f(A)} \in \mathcal{C}_{\underline{T'}}$, por (iv) tenemos que $f^{-1}(\overline{f(A)}) \in \mathcal{C}_{\underline{T}}$. Además, $A \subset f^{-1}(f(A)) \subset f^{-1}(\overline{f(A)}) \in \mathcal{C}_{\underline{T}}$. Entonces $\overline{A} \subset f^{-1}(\overline{f(A)})$. Al aplicar f tenemos que $f(\overline{A}) \subset f(f^{-1}(\overline{f(A)})) = \overline{f(A)}$.
- (v) \Rightarrow (iv) Sea $C' \in \mathcal{C}_{\mathcal{T}'}$ y tendremos que ver que $f^{-1}(C') \in \mathcal{C}_{\mathcal{T}}$. Para ello veré que coincide con su adherencia, es decir, que $\overline{f^{-1}(C')} = f^{-1}(C')$. Como la inclusión $\overline{f^{-1}(C')} \supset f^{-1}(C')$ es clara tendré que ver solo la otra incusión. Sea $A = f^{-1}(C')$, por (v) tenemos que $f(\overline{f^{-1}(C')}) \subset \overline{f(f^{-1}(C'))} \subset \overline{C'} = C'$. Aplicando f^{-1} tenemos que $f^{-1}(f(\overline{f^{-1}(C')})) \subset f^{-1}(C')$ y como $f^{-1}(f(\overline{f^{-1}(C')})) = \overline{f^{-1}(C')}$ tenemos lo buscado.
- (iv) \Rightarrow (i) Sea $x \in X$ arbitrario. Tendré que ver que f es continua en x. Sea $U' \in \mathcal{T}'$ con $f(x) \in U'$. Tendré que ver que existe un $U \in \mathcal{T}$ con $x \in U$ y $f(U) \subset U'$. Tomo $Y \setminus (U') \in \mathcal{C}_{\mathcal{T}'}$ y por (iv) tenemos que $f^{-1}(Y \setminus U') \in \mathcal{C}_{\mathcal{T}}$ y $f^{-1}(Y \setminus U') = X \setminus f^{-1}(U')$ por lo que $x \in f^{-1}(U') \in \mathcal{T}$. Como $f(f^{-1}(U')) \subset U'$ puedo denotar $U = f^{-1}(U')$ y tenemos de nuevo lo buscado.

Observación. Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es una aplicación continua, entonces

$$f^{-1}((a,b)), f^{-1}((-\infty,b)), f^{-1}((a,+\infty)) \in \mathcal{T}$$

y además

$$f^{-1}([a,b]), f^{-1}((-\infty,b]), f^{-1}([a,+\infty)) \in \mathcal{C}_{\mathcal{T}}$$

La utilidad de esta observación es poder ver si un conjunto es abierto viendo si existe una aplicación continua que lleve un abierto de la topología en dicho conjunto. Análogamente se puede usar para cerrados.

Ejemplo.

•) $f:(X,d) \to (Y,d')$ continua entre espacios métricos $\iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que si } d(x,x_0) < \delta \ \text{entonces } d'(f(x),f(x_0)) < \varepsilon \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que } f(B(x_0,\delta)) \subset B'(f(x_0),\varepsilon).$

Observación.

•) Cuanto más abiertos hay en \mathcal{T} y menos en \mathcal{T}' más fácil es que f sea continua. Por ejemplo, las aplicaciones

$$f:(X, \mathcal{T}) \to (Y, \mathcal{T}_t)$$

 $f:(X, \mathcal{T}_{disc}) \to (Y, \mathcal{T}')$

son continuas.

•) Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es constante, $f(x)=y_0\in Y \ \forall x\in X$, Sea $U'\in\mathcal{T}$, entonces

$$f^{-1} = \left\{ \begin{array}{ll} X & \text{si} & y_0 \in U' \\ \emptyset & \text{si} & y_0 \notin U \end{array} \right.$$

- •) $Id_X: (X, \mathcal{T}) \to (X, \mathcal{T}')$ es continua $\iff \mathcal{T}' \leqslant \mathcal{T}$. Por ejemplo, $Id_{\mathbb{R}}: (\mathbb{R}, \mathcal{T}_u) \to (\mathbb{R}, \mathcal{T}_S)$ no es continua pero $Id_{\mathbb{R}}: (\mathbb{R}, \mathcal{T}_S) \to (\mathbb{R}, \mathcal{T}_u)$ sí lo es.
- •) Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ y $g:(Y,\mathcal{T}')\to (Z,\mathcal{T}'')$ son aplicaciones continuas, entonces $g\circ f:(X,\mathcal{T})\to (Z,\mathcal{T}'')$ es continua.

Demostración. Sea $U'' \in \mathcal{T}''$, $(g \circ f)^{-1}(U'') = f^{-1}(g^{-1}(U'')) \in \mathcal{T}$.

•) $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ continua y $\emptyset\neq a\subset X$, entonces

$$f_{|A}: (A, \mathcal{T}_A) \to (Y, \mathcal{T}')$$
 es continua $x \mapsto f(x)$

Demostración. Sea $U' \in \mathcal{T}'$, $(f_{|A})^{-1}(U') = \{x \in A : f(x) \in U\} = f^{-1}(U') \cap A \in \mathcal{T}_A$ ya que $f^{-1}(U') \in \mathcal{T}$.

•) Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ continua, $\emptyset\neq A'\subset Y$ con $f(X)\subset A'$, entonces

$$f^{A'}: (X, \mathcal{T}) \to (A', \mathcal{T}'_{A'})$$
 es continua $x \mapsto f(x)$

Demostración. Sea $O' \in \mathcal{T}'_{A'}$, entonces $\exists U' \in \mathcal{T}' \text{ con } O' = U' \cap A \Rightarrow (f^{A'})^{-1}(O') = (f^{A'})^{-1}(U' \cap A') = f^{-1}(U') \in \mathcal{T}$ ya que f es continua y U' es abierto en \mathcal{T}' . \square

Lema 2.2. (de pegado) Sean (X, \mathcal{T}) , (Y, \mathcal{T}') dos e.t. y sea $\{A_i\}_{i \in I} \subset X$ una familia de subconjuntos no vacío de X y $\{f_i : A_i \to Y\}_{i \in I}$ una familia de aplicaciones tales que

- (i) $\bigcup_{i \in I} A_i = X$.
- (ii) $f_i = f_j$ en $A_i \cap A_j \ \forall i, j \in I$ con $A_i \cap A_j \neq \emptyset$.
- (iii) $f_i: (A_i, \mathcal{T}_{A_i}) \to (Y, \mathcal{T}')$ es continua $\forall i \in I$.
- (iv) O bien $A_i \in \mathcal{T} \ \forall i \in I$ o bien $A_i \in \mathcal{C}_{\mathcal{T}} \ \forall i \in I$ con I finito.

Entonces la aplicación

$$f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$$

 $x \mapsto f_i(x) \text{ si } x \in A_i$

está bien definida y es continua.

Demostración.

Es claro que la aplicación f está bien definida por las condiciones (i) y (ii). Tendremos que ver su continuidad. Tendremos que distinguir dos casos. Demostraremos uno y el otro será análogo y se deja propuesto como ejercicio para el lector:

Supongamos I es finito y $A_i \in \mathcal{C}_{\mathcal{T}} \ \forall i \in I$. Sea $C' \in \mathcal{C}_{\mathcal{T}'}$, tendremos que ver que $f^{-1}(C') \in \mathcal{C}_{\mathcal{T}}$. Tenemos que $f^{-1}(C') = X \cap f^{-1}(C') \stackrel{(i)}{=} \left(\bigcup_{i \in I} A_i\right) \cap f^{-1}(C') = \bigcup_{i \in I} (A_i \cap f^{-1}(C')) = \bigcup_{i \in I} \{x \in A : f_i(x) \in C'\} = \bigcup_{i \in I} f_i^{-1}(C')$. Como $f_i^{-1}(C') \in \mathcal{C}_{\mathcal{T}_{A_i}}$ y además $A_i \in \mathcal{C}_{\mathcal{T}} \Rightarrow f_i^{-1}(C') \in \mathcal{C}_{\mathcal{T}}$, entonces por (iv) tenemos que $\bigcup_{i \in I} f_i^{-1}(C') \in \mathcal{C}_{\mathcal{T}}$.

Ejemplo. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases}
sen(x) = f_1(x) & \text{si} \quad x \in (-\infty, 0] = A_1 \\
x^2(x - 1) = f_2(x) & \text{si} \quad x \in [0, 1] = A_2 \\
-\ln(x) = f_3(x) & \text{si} \quad x \in [1, +\infty) = A_3
\end{cases}$$

Entonces $f:(\mathbb{R},\mathcal{T}_u)\to(\mathbb{R},\mathcal{T}_u)$ es continua.

2.1. Aplicaciones abiertas y cerradas

Definición 2.3. Una aplicación $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ diremos que es

- •) abierta si lleva abiertos de \mathcal{T} en abiertos de \mathcal{T}' , es decir, $f(U) \in \mathcal{T}' \ \forall U \in \mathcal{T}$.
- •) cerrada si lleva cerrados de \mathcal{T} en cerrados de \mathcal{T}' , es decir, $f(C) \in \mathcal{C}_{\mathcal{T}'} \ \forall Cf \in \mathcal{C}_{\mathcal{T}}$.

Observación. Ser continua, abierta y cerrada son propiedades independientes.

Proposición 2.3. Si $f:(X,\mathcal{T})\to (Y,\mathcal{T})$ es una aplicación, entonces equivalen:

- (i) f es abierta.
- (ii) $f(B) \in \mathcal{T}' \ \forall B \in \mathcal{B} \text{ con } \mathcal{B} \text{ base de } \mathcal{T}.$
- (iii) Si $x \in X$, $N \in \mathcal{N}_x$, entonces $f(N) \in \mathcal{N}'_{f(x)}$.
- (iv) Si $A \subset X$, entonces $f(A^{\circ}) \subset (f(A))^{\circ}$.

Demostración.

- $(i) \Rightarrow (ii) \Rightarrow (iii)$ Trivial.
 - (iii) \Rightarrow (iv) Sea $x \in A^{\circ}$, tendremos que ver que $f(x) \in (f(A))^{\circ}$. Como $x \in A^{\circ}$, entonces $A \in \mathcal{N}_x$ y por (iii) tenemos que $f(A) \in \mathcal{N}'_{f(x)}$ por lo que $f(x) \in (f(A))^{\circ}$.
 - (iv) \Rightarrow (i) $U \in \mathcal{T}$ por lo que $U = U^{\circ}$. Entonces $f(U) = f(U^{\circ})$ y por (iv) tenemos que $f(U^{\circ}) \subset (f(U))^{\circ}$ y como la otra inclusión se da siempre tenemos que $f(U) = (f(U))^{\circ} \in \mathcal{T}$.

Proposición 2.4. Si $f:(X,\mathcal{T})\to (Y,\mathcal{T})$ es una aplicación, entonces equivalen:

- (i) f es cerrada.
- (ii) $\overline{f(A)} \subset f(\overline{A}) \ \forall A \subset X$.

Demostración.

- (i) \Rightarrow (ii) $\overline{A} \in \mathcal{C}_{\mathcal{T}} \stackrel{(i)}{\Rightarrow} f(\overline{A} \in \mathcal{C}_{\mathcal{T}})$ y como $\overline{f(A)} \subset f(\overline{A})$ lo tenemos.
- (ii) \Rightarrow (i) $\overline{C} = C \in \mathcal{C}_{\mathcal{T}}$, por (ii) tenemos que $\overline{f(C)} \subset f(\overline{C}) = f(C) \in \mathcal{C}_{\mathcal{T}'}$.

Ejemplo.

- •) Una aplicación $f:(X,\mathcal{T}) \to (Y,\mathcal{T}')$ es más fácil que sea abierta y/o cerrada cuanto menos abiertos haya en \mathcal{T} y más en \mathcal{T}' (no es riguroso pero es una buena intuición). Por ejemplo, $f(X,\mathcal{T}) \to (Y,\mathcal{T}_{disc})$ es abierta y cerrada. La aplicación $f:(X,\mathcal{T}_t) \to (Y,\mathcal{T})$ es abierta si y solo si $f(X) \in \mathcal{T}'$ y es cerrada si y solo si $f(X) \in \mathcal{C}_{\mathcal{T}'}$.
- •) $Id_X: (X, \mathcal{T}) \to (X, \mathcal{T}')$ es abierta si y solo si $T \leqslant \mathcal{T}'$ y es cerrada si y solo si $\mathcal{C}_{\mathcal{T}} \subset \mathcal{C}_{\mathcal{T}'}$ (lo cual es equivalente a que sea abierta).

- •) Si $f:(X,\mathcal{T}) \to (Y,\mathcal{T}')$ es constante, con $f(x) = y_0 \in Y \ \forall x \in X$, entonces f es abierta si y solo si $\{y_0\} \in \mathcal{T}'$ y es cerrada si y solo si $\{y_0\} \in \mathcal{C}_{\mathcal{T}'}$. En particular, $f:(X,\mathcal{T}) \to (\mathbb{R},\mathcal{T}_u)$ constante es continua, cerrada pero no es abierta.
- •) Sean $f:(X,\mathcal{T}) \to (Y,\mathcal{T}')$ y $g:(Y,\mathcal{T}') \to (Z,\mathcal{T}'')$, entonces si f y g son abiertas, entonces $g \circ f:(X,\mathcal{T}) \to (Z,\mathcal{T}'')$ es abierta ya que $(g \circ f)(U) = g(f(U)) \in \mathcal{T}''$. Análogamente, si f y g son cerradas, entonces la composición $g \circ f:(X,\mathcal{T}) \to (Z,\mathcal{T}'')$ es cerrada.
- •) Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es abierta y $\emptyset\neq A\subset X$, entonces si A es abierto se tiene que $f_{|A}:(A,\mathcal{T}_A)\to (Y,\mathcal{T}')$ es abierta. Análogamente, si A es cerrado se tiene que $f_{|A}:(A,\mathcal{T}_A)\to (Y,\mathcal{T}')$ es cerrada.

Demostración. Supongamos que f es abierta y $A \in \mathcal{T}$ y tendremos que ver ue $f_{|A}$ es abierta. Sea $O \in \mathcal{T}_A$ tendremos que ver que $f_{|A}(O) \in \mathcal{T}'$. Como $O \in \mathcal{T}_A$ tenemos que $O \in \mathcal{T} \Rightarrow f(O) \in \mathcal{T}'$. Como $f(O) = f_{|A}(O)$ tenemos que $f_{|A}(O) \in \mathcal{T}'$ y lo tenemos.

La demostración para cerrado es análoga y se deja como ejercicio para el lector. \Box

•) Si $f:(X,\mathcal{T}) \to (Y,\mathcal{T}')$ es abierta y $\emptyset \neq A' \subset Y$ con $f(X) \subset A'$, entonces $f^{A'}:(X,\mathcal{T}) \to (A',\mathcal{T}'_{A'})$ es abierta. Igualmente si $f:(X,\mathcal{T}) \to (Y,\mathcal{T}')$ es cerrada y $\emptyset \neq A' \subset Y$ con $f(X) \subset A'$, entonces $f^{A'}:(X,\mathcal{T}) \to (A',\mathcal{T}'_{A'})$ es cerrada.

Demostración. Sea $U \in \mathcal{T} \Rightarrow f^{A'}(U) = f(U) \in \mathcal{T} \text{ y } f(U) = f(U) \cap A' \in \mathcal{T}'_{A'}$ por lo que lleva abiertos en abiertos y tenemos lo buscado.

La demostración para cerrados es análoga y se deja como ejercicio para el lector. \Box

Observación. Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es una aplicación biyectiva, entonces equivalen:

- (i) $f^{-1}:(Y,\mathcal{T}')\to (X,\mathcal{T})$ es continua.
- (ii) f es abierta.
- (iii) f es cerrada.

Demostración. Sea $A \subset X$, entonces su imagen, $f(A) = (f^{-1})^{-1}(A)$ y $(f^{-1})^{-1} = f$.

2.2. Homeomorfismos

Definición 2.4. Una aplicación $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ diremos que es un **homeomorfismo** si es biyectiva, continua y su inversa, f^{-1} es continua. Si existe un homeomorfismo entre dos e.t. $(X,\mathcal{T})\to (Y,\mathcal{T}')$ diremos que (X,\mathcal{T}) y (Y,\mathcal{T}') son **homeomorfos** y escribiremos $(X,\mathcal{T})\cong (Y,\mathcal{T}')$. **Teorema 2.5.** Sea $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ una aplicación. Equivalen:

- (i) f es un homeomorfismo.
- (ii) f es biyectiva, continua y abierta.
- (iii) f es biyectiva, continua y cerrada.

Demostración. Es trivial utilizando la observación anterior.

Observación. f es continua y cerrada $\iff \overline{f(A)} = f(\overline{A}) \ \forall A \subset X$. (Esto a veces puede servir para ver que una aplicación f es ub homeomorfismo).

Ejemplo.

- •) $Id_X:(X,\mathcal{T})\to (X,\mathcal{T}')$ es un homeomorfismo $\iff T=T'$.
- •) Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es un homeomorfismo, entonces $f^{-1}:(Y,\mathcal{T}')\to (X,\mathcal{T})$ (por su definición). Es una doble implicación pero no la podemos escribir rigurosamente ya que no podemos escribir f^{-1} sin suponer que es biyectiva.
- •) $f:(X,\mathcal{T}) \to (Y,\mathcal{T}'), g:(Y,\mathcal{T}') \to (Z,\mathcal{T}'')$ es un homeomorfismo, entonces $g \circ f:(X,\mathcal{T}) \to (Z,\mathcal{T}'')$ es un homeomorfismo (ya que la composición de biyecciones es biyectiva, la composición de abiertas es abierta y la composición de cerradas es cerrada).
- •) Sea $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ un homeomorfismo, $\emptyset\neq A\subset X,\ A'=f(A)\neq\emptyset,$ $f(A)\subset Y.$ Entonces $f_{|A}^{A'}:(A,\mathcal{T}_A)\to (A',\mathcal{T}'_{A'})$ es un homeomorfismo. La demostración se basa en que $(f_{|A}^{A'})^{-1}=f_{|A'}^A$ y que $f_{|A}^{A'}$ es biyectiva y continua y que $f_{|A'}^A$ es continua.

Observación. En el conjunto de todos los espacios topológicos, "ser homeomorfo" es una relación de equivalencia (ya que en los ejemplos anteriores hemos visto que verifica las propiedades reflexiva, simétrica y transitiva).

Ejemplo. (Clásicos)

•) Cualesquiera dos intervalos abiertos en $(\mathbb{R}, \mathcal{T}_u)$ son homeomorfos con la topología inducida.

Demostración. Veamos en primer lugar que $(a,b) \cong (0,1)$, con a < b. Definimos $f(x) = \frac{x-a}{b-a}$. Esta aplicación es biyectiva ya que tiene inversa (habría que calcularla). Además es continua y su inversa (que pronto tendremos calculada) también lo es.

Veamos también que $(0,1) \cong (1,+\infty)$. Para ello definimos $f(x) = \frac{1}{x}$ que es claramente biyectiva, continua y su inversa es continua.

Además, $(1, +\infty) \cong (0, +\infty)$ con f(x) = x - 1 claramente un homeomorfismo.

Tenemos lo siguiente:

$$(0, +\infty) \cong \begin{cases} (a, +\infty) & \text{con} \quad f(x) = x + a \\ (-\infty, b) & \text{con} \quad f(x) = -x + b \\ \mathbb{R} = (-\infty, +\infty) & \text{con} \quad f(x) = \ln(x) \end{cases}$$

•) En $(\mathbb{R}, \mathcal{T}_u)$, $[a, b] \cong [0, 1] \ \forall a < b \text{ pero } [a, b] \ncong [c, +\infty)$ (lo demostraremos en el Tema 3).

•) Proyección estereográfica: Esta proyección (para n=3) prueba que una esfera a la que se le quita un punto es homeomorfa a un plano. Para ello podemos trazar la recta que va desde el polo norte de la esfera (el punto que le falta a la esfera) hacia cualquier punto p de la esfera y hallar la intersección de dicha recta con el plano que resulta de poner la última coordenada a 0. Dicha intersección será $\Phi(p)$ y repitiendo esto con todos los puntos obtengo el plano con última coordenada 0. Veámoslo analíticamente:

Sea $\mathbb{S}^n = \{x_1, \dots, x_n, x_n + 1 : x_1^2 + \dots + x_n^2 + x_{n+1}^2 = 1\} = S((0, \dots, 0, 0), 1) \subset \mathbb{R}^{n+1}$. Sea $N = (0, \dots, 0, 1) \in \mathbb{S}^n$ el polo norte. Podemos definir la aplicación

$$\Phi: \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$$
$$(x_1, \dots, x_n, x_{n+1}) \mapsto \frac{1}{1 - x_{n+1}}(x_1, \dots, x_n) \in \mathbb{R}^n.$$

Su inversa es

$$\Phi^{-1}: \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\} \subset \mathbb{R}^{n+1}$$
$$(y_1, \dots, y_n) \mapsto \frac{1}{\|y\|^2 + 1} (2y_1, \dots, 2y_n, \|y\|^2 - 1)$$

Tenemos que la aplicación

$$\Phi: (\mathbb{S}^n \setminus \{N\}, \mathcal{T}_{|\mathbb{S}^n \setminus \{S\}}) \to (\mathbb{R}^n, \mathcal{T}_u)$$

es un homeomorfismo ya que, como estamos en la topología usual podemos usar la intuición del análisis y ver que tanto Φ como Φ^{-1} son continuas y es fácil ver que $\Phi \circ \Phi^{-1} = Id_{\mathbb{S}^n \setminus \{N\}}$.

Esta proyección se usa para hacer mapas de la Tierra, y por eso se producen deformaciones en la representación del mapa mundi. Hay mejores proyecciones para esto. Veamos la que viene a continuación:

•) Proyección de Mercator: Esta proyección prueba que si se retiran 2 puntos de la esfera, el norte y el sur, la figura resultante es homeomorfa a un cilindro. Para ello se toma el punto central de la circunferencia y se proyecta una recta sobre los puntos p de la esfera sin los polos. La intersección de dicha recta con el cilindro que tiene el radio de la esfera será $\varphi(p)$ y repitiendo esto en todos los puntos de la esfera obtenemos el cilindro de radio 1.

Sea $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ la misma esfera definida en el apartado anterior y $S = (0, \dots, 0, -1)$ el polo sur. Podemos definir la siguiente aplicación:

$$\varphi: \mathbb{S}^n \setminus \{N, S\} \to \mathbb{S}^{n-1} \times \mathbb{R}$$
$$(x_1, \dots, x_n, x_{n+1}) \mapsto \frac{1}{\|x\|} (x_1, \dots, x_n, x_{n+1})$$

Esta aplicación es biyectiva y su inversa es

$$\varphi^{-1}: \mathbb{S}^{n-1} \times \mathbb{R} \to \mathbb{S}^n \setminus \{N, S\}$$
$$y = (y_1, \dots, y_n, y_{n+1}) \mapsto \frac{y}{\|y\|}$$

Es fácil ver que al componer ambas aplicaciones obtenemos la identidad. Con esta aplicación tenemos

$$\varphi: (\mathbb{S}^n \setminus \{N, S\}, \mathcal{T}_{u_{\mid \mathbb{S}^n \setminus \{N, S\}}}) \to (\mathbb{S}^{n-1} \times \mathbb{R}, \mathcal{T}_{u_{\mid \mathbb{S}^{n-1} \times \mathbb{R}}})$$

es un homeomorfismo.

Proposición 2.6. Sea $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ un homeomorfismo. Entonces:

- (i) Si $U \subset X$, entonces $U \in \mathcal{T} \iff f(U) \in \mathcal{T}'$.
- (ii) Si $C \subset X$, entonces $C \subset \mathcal{C}_{\mathcal{T}} \iff f(C) \in \mathcal{C}_{\mathcal{T}'}$.
- (iii) Si $\mathcal{B} \subset \mathcal{P}(X)$, entonces \mathcal{B} es base de $\mathcal{T} \iff \mathcal{B}' = f(B) = \{f(B) : B \in \mathcal{B}\}$ es base de \mathcal{T}' .
- (iv) Si $x \in X$, y $N \in X$, entonces $N \in \mathcal{N}_x \iff f(N) \in \mathcal{N}'_{f(x)}$.

(v) Si $x \in X$, $\mathcal{B}_x \subset \mathcal{P}(X)$, entonces \mathcal{B}_x es b.d.e. de x en $\mathcal{T} \iff \mathcal{B}'_{f(x)} = f(\mathcal{B}_x) = \{f(V) : V \in \mathcal{B}_x\}$ es b.d.e. de f(y) en \mathcal{T}' .

Demostración. Para las demostraciones veremos solo las implicaciones hacia la derecha ya que al ser un homeomorfismo, la implicación hacia la izquierda se basa en aplicar que f^{-1} es también un homeomorfismo.

- (i) Como f es abierta se verifica.
- (ii) Como f es cerrada se verifica.
- (iii) Tengo que comprobar varias cosas:
 - •) $f(B) \in \mathcal{T}' \ \forall B \in base$. Esto es cierto ya que $B \in \mathcal{T}$ y f es abierta.
 - •) Sea $U' \in \mathcal{T}'$, $y \in U'$ tendré que ver que existe un abierto básico entremedias. Para ello tomo $f^{-1}(y) \subset f^{-1}(U')$ y como f es continua tenemos que $f^{-1}(U') \in \mathcal{T}$. Como \mathcal{B} es base tenemos que $\exists B \in \mathcal{B}$ con $f^{-1}(y) \in \mathcal{B} \subset f^{-1}(U')$ y como f es biyectiva, $y \in f(B) \subset U'$ con $f(B) \in \mathcal{B}'$.

- (iv) Sea $x \in X$, $N \in \mathcal{N}_x$. Como \mathcal{N}_x es entorno, $\exists U \in \mathcal{T}$ con $x \in U \subset N' \Rightarrow f(x) \in f(U) \subset f(N)$ y como f es abierta tengo que $f(U) \in \mathcal{T}'$ por lo que $f(N) \in \mathcal{N}'_{f(x)}$
- (v) Sea $N' \in \mathcal{N}'_{f(x)}$. Por (iv) (la implicación hacia la izquierda) tenemos que $f^{-1}(N') \in \mathcal{N}_x$. Como tenemos una b.d.e tenemos que $\exists V \in \mathcal{B}_x$ con $V \subset f^{-1}(N') \Rightarrow f(V) \subset N'$ y de nuevo por (iv) tenemos que $f(V) \in \mathcal{N}'_{f(x)}$ y tenemos lo que queríamos.

Definición 2.5. Una propiedad P que pueda o no tener un e.t. (X, \mathcal{T}) se dice **topológica** o que es un **invariante topológico** si al cumplirlo (X, \mathcal{T}) , también la cumplen todos los espacios topológicos homeomorfos a él, es decir:

$$(X, \mathcal{T})$$
 cumple $P \iff (Y, \mathcal{T}')$ cumple $P \ \forall (Y, \mathcal{T}') \cong (X, \mathcal{T})$

Proposición 2.7. Las propiedades (T1), (T2), (1AN), (2AN) son invariantes topológicas.

Demostración. Se deja como ejercicio para el lector

Ejemplo.

- •) $(\mathbb{R}, \mathcal{T}_u) \ncong (\mathbb{R}, \mathcal{T}_S)$ ya que $(\mathbb{R}, \mathcal{T}_u)$ es 2AN y $(\mathbb{R}, \mathcal{T}_S)$ no lo es.
- •) $(\mathbb{R}, \mathcal{T}_u) \ncong (\mathbb{R}, \mathcal{T}_{CF}) \ncong (\mathbb{R}, \mathcal{T}_S)$ ya que $(\mathbb{R}, \mathcal{T}_u), (\mathbb{R}, \mathcal{T}_S)$ son T2 pero $(\mathbb{R}, \mathcal{T}_{CF})$ no lo es.
- •) $(\mathbb{R}, \mathcal{T}_u) \ncong (\mathbb{R}, \mathcal{T}_{disc})$ ya que $(\mathbb{R}, \mathcal{T}_{disc})$ no es 2AN.

Definición 2.6. Diremos que $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es un **embebimiento** si $f^{f(X)}:(X,\mathcal{T})\to (f(X),\mathcal{T}'_{f(X)})$ es un homeomorfismo. En ese caso, $(X,\mathcal{T})\cong (f(X),\mathcal{T}'_{f(X)})$

Ejemplo.

- •) f homeomorfismo $\Rightarrow f$ embebimiento. El recíproco no es cierto.
- •) Si $n, k \in \mathbb{N}$,

$$f: (\mathbb{R}^n, \mathcal{T}_u) \to (\mathbb{R}^{n+k}, \mathcal{T}_u)$$

 $x \mapsto f(x) = (x, 0)$

es un embebimiento con $f(\mathbb{R}^n) = {\mathbb{R}^n \times {0}}.$

Para verlo tendremos que tomar la aplicación

$$f^{\mathbb{R}^n \times \{0\}} : (\mathbb{R}^n, \mathcal{T}_u) \to (\mathbb{R}^n \times \{0\}, \mathcal{T}_{u_{|\mathbb{R}^n \times \{0\}}})$$

 $x \mapsto (x, 0)$

y tenemos además

$$(f^{\mathbb{R}^n \times \{0\}})^{-1} : (\mathbb{R}^n \times \{0\}, \mathcal{T}_{u_{|\mathbb{R}^n \times \{0\}}}) \to (\mathbb{R}^n, \mathcal{T}_u)$$
$$(x, 0) \mapsto x$$

y es fácil ver que $(f^{\mathbb{R}^n \times \{0\}})$ es un homeomorfismo y por tanto f un embebimiento.

2.3. Topología Producto

En esta sección estudiaremos cómo a partir de dos e.t. (X, \mathcal{T}) , (Y, \mathcal{T}') podemos buscar una topología en el espacio $X \times Y$ a partir de \mathcal{T} y \mathcal{T}' . Para ello, teniendo $X \times Y = \{(x,y) : x \in X, y \in Y\}$ podemos tomar el conjunto $\{U \times U' : U \in \mathcal{T}, U' \in \mathcal{T}'\}$ pero vemos que no cumple la propiedad (A2). Sin embargo, sí podemos considerar que dicho conjunto sea una base de la topología producto.

Proposición 2.8. $\mathcal{B}_{\mathcal{T}\times\mathcal{T}'} = \{U \times U' : U \in \mathcal{T}, U' \in \mathcal{T}'\}$ es base de una única topología en $X \times Y$ que se denota $\mathcal{T} \times \mathcal{T}'$ y se llama **topología producto** de \mathcal{T} y \mathcal{T}' .

Al e.t. $(X \times Y, \mathcal{T} \times \mathcal{T}')$ lo llamaremos **espacio topológico producto** de (X, \mathcal{T}) y (Y, \mathcal{T}') .

Demostración. Para ver que esto es cierto tendremos que comprobar que cumple las condiciones de la Proposición

(B1)
$$X \times Y \in \mathcal{B}_{\mathcal{T} \times \mathcal{T}'} \Rightarrow \bigcup_{B \in \mathcal{B}_{\mathcal{T} \times \mathcal{T}'}} = X \times Y.$$

(B2)
$$U_1 \times U_1', U_2 \times U_2' \in \mathcal{B}_{\mathcal{T} \times \mathcal{T}'}$$
. Tenemos uqe $(U_1 \times U_1') \cap (U_2 \times U_2') = (U_1 \cap U_2) \times (U_1' \times U_2') \in \mathcal{B}_{\mathcal{T} \times \mathcal{T}'}$. ya que $(U_1 \times U_2) \in \mathcal{T}$ y $(U_1' \times U_2') \in \mathcal{T}'$.

y ya lo tenemos probado.

Observación.

- •) Si $W \subset X \times Y$, $W \in \mathcal{T} \times \mathcal{T}' \iff \forall (x,y) \in W \quad \exists U \in \mathcal{T}, U \in \mathcal{T}' \text{ con } (x,y) \in U \times U' \subset W \iff \forall (x,y) \in W \quad \exists U \in \mathcal{T}, U' \in \mathcal{T}' \text{ con } x \in y \in U', U \times U' \subset W \iff W = \bigcup_{i \in I} U_i \times U'_i \text{ con } U_i \in \mathcal{T}, U'_i \in \mathcal{T}' \quad \forall i \in I.$
- •) En $(X \times Y, \mathcal{T} \times \mathcal{T}')$, todo producto de abiertos es abierto (básico) pero el recíproco no es cierto ya que hay abiertos en el producto que no son procducto de abiertos. Es decir, que la topología $\mathcal{T} \times \mathcal{T}'$ hay más abiertos en general que los básicos, es decir, $\mathcal{T} \times \mathcal{T}' \setminus \mathcal{B}_{\mathcal{T} \times \mathcal{T}'} \neq \emptyset$.

Proposición 2.9. Sean $(X, \mathcal{T}), (Y, \mathcal{T}')$ dos e.t. Entonces:

- (i) Si \mathcal{B} es base de \mathcal{T} y \mathcal{B}' es base de \mathcal{T}' , entonces $\mathcal{B} = \mathcal{B} \times \mathcal{B}' = \{B \times B' : B \in \mathcal{B}, B' \in \mathcal{B}'\}$ es base de $\mathcal{T} \times \mathcal{T}'$.
- (ii) Si $x \in X$, \mathcal{B}_x b.d.e. de x en (X, \mathcal{T}) y $y \in Y$, \mathcal{B}'_y b.d.e. de y en (Y, \mathcal{T}') , entonces

$$\tilde{\mathcal{B}}_{(x,y)} = \mathcal{B}_x \times \mathcal{B}'_y = \{V \times V' : V \in \mathcal{B}_x, V' \in \mathcal{B}'_y\}$$

es b.d.e. de (x, y) en $(X \times Y, \mathcal{T} \times \mathcal{T}')$.

Demostración.

- (i) $\tilde{\mathcal{B}} = \mathcal{B} \times \mathcal{B}' \subset \mathcal{T} \times \mathcal{T}'$. Sea $W \in \mathcal{T} \times \mathcal{T}'$ y $(x, y) \in W$. Tendremos que ver que existe un elemento $B \times B' \in \tilde{\mathcal{B}}$ con $(x, y) \in B \times B' \subset W$. Como $\mathcal{B}_{\mathcal{T} \times \mathcal{T}'}$ es base de $\mathcal{T} \times \mathcal{T}'$, entonces $\exists U \in \mathcal{T}, U' \in \mathcal{T}'$ con $(x, y) \in U \times U' \subset W$. Como además $\mathcal{B}, \mathcal{B}'$ con bases tenemos que $\exists B \in \mathcal{B}, B' \in \mathcal{B}'$ con $x \in \mathcal{B} \subset U, y \in N' \subset U \Rightarrow (x, y) \in B \times B' \subset U \times U' \subset W$ y lo tenemos.
- (ii) La demostración es análoga a la anterior y se deja planteada como ejercicio para el lector.

Corolario 2.9.1. (X, T), (Y, T) e.t.

- (i) Si (X, \mathcal{T}) y (Y, \mathcal{T}') son 1AN, entonces $(X \times Y, \mathcal{T} \times \mathcal{T}')$ es 1AN.
- (ii) Si (X, \mathcal{T}) y (Y, \mathcal{T}') son 2AN, entonces $(X \times Y, \mathcal{T} \times \mathcal{T}')$ es 2AN.

Ejemplo.

- •) $\emptyset \neq A \subset X$, $\emptyset \neq A' \subset Y$ tenemos que $(\mathcal{T}, \mathcal{T}')_{|A \times A'} = \mathcal{T}_A \times \mathcal{T}'_{A'}$ (es fácil de comprobar).
- •) $\mathcal{T}_t \times \mathcal{T}_t = \mathcal{T}_t$.
- •) $\mathcal{T}_{disc} \times \mathcal{T}_{disc} = \mathcal{T}_{disc}$.
- •) $(\mathbb{R}^n \times \mathbb{R}^m, \mathcal{T}_u^n \times \mathcal{T}_u^m) = (\mathbb{R}^{n+m}, \mathcal{T}_u^{n+m}).$ $B_{\infty}^n(x, \varepsilon) \times B_{\infty}^m(y, \varepsilon) = B_{\infty}^{n+m}((x, y), \varepsilon).$

Observación. Sean (X, \mathcal{T}) , (Y, \mathcal{T}') dos e.t., $C \in \mathcal{C}_{\mathcal{T}}$, $C' \in \mathcal{C}_{\mathcal{T}'} \Rightarrow C \times C' \in \mathcal{C}_{\mathcal{T} \times \mathcal{T}'}$. En efecto,

$$(X\times Y)\setminus (C\times C')=\{(x,y)\in X\times Y: (x,y\notin C\times C')\}=((X\setminus C\times Y))\cup (X\times (T\setminus C'))$$

y como $((X \setminus C \times Y)), (X \times (T \setminus C')) \in \mathcal{T} \times \mathcal{T}'$, entonces la unión de abiertos en la topología producto es abierto.

Cabe destacar que el recíproco no es cierto, es decir, no todo cerrado en $\mathcal{T} \times \mathcal{T}'$ es producto de cerrados. Por ejemplo, en $(\mathbb{R}^2, \mathcal{T}_u)$, $([0,1] \times [0,1]) \cup ([1,2] \times [1,2])$.

Definición 2.7. Sean X, Y dos conjuntos no vacíos, se definen las **proyecciones**

$$\pi_X: X \times Y \to X$$
 $\pi_Y: X \times Y \to Y$ $(x,y) \mapsto x(x,y)$ $\mapsto y$

Son sobreyectivas

Proposición 2.10. Sean (X, \mathcal{T}) , (Y, \mathcal{T}') e.t., entonces $\pi_X : (X \times Y, \mathcal{T} \times \mathcal{T}') \to (X, \mathcal{T})$ y $\pi_Y : (X \times Y, \mathcal{T} \times \mathcal{T}') \to (Y, \mathcal{T}')$ son continuas y abiertas.

Demostración. Veamos en primer lugar que π_X es continua. Sea $U \in \mathcal{T}$ tendré que ver que $\pi_X^{-1}(U) \in \mathcal{T} \times \mathcal{T}'$. Tenemos que $\pi_X^{-1}(U) = \{(x, y \in X \times Y : x \in U)\} = U \times Y \in \mathcal{T} \times \mathcal{T}'$.

Veamos ahora que es abierta. Para ello consideramos $\mathcal{B}_{\mathcal{T}\times\mathcal{T}'} = \{U\times U': U\in\mathcal{T}, U'\in\mathcal{T}'\}$ base de $\mathcal{T}\times\mathcal{T}'$. Sea $U\times U'\in\mathcal{B}_{\mathcal{T}\times\mathcal{T}'}$, entonces $\pi_X(U\times U')=U\in\mathcal{T}$.

Ejercicio 2.3.1. En general, las proyecciones no son cerradas.

Proposición 2.11. Sean (X, \mathcal{T}) , (Y, \mathcal{T}') dos e.t., entonces $\mathcal{T} \times \mathcal{T}'$ es la topología menos fina en $X \times Y$ que hace que las proyecciones sean continuas. Es decir, si $\tilde{\mathcal{T}}$ es una topología en $X \times Y$ tal que $\pi_X : (X \times Y, \tilde{\mathcal{T}}) \to (X, \mathcal{T})$ y $\pi_Y : (X \times Y, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}')$ son continuas, entonces $\mathcal{T} \times \mathcal{T}' \leq \tilde{\mathcal{T}}$.

Demostración. Supongamos $\tilde{\mathcal{T}}$ y sea $U \times U' \in \mathcal{B}_{\mathcal{T} \times \mathcal{T}'} \Rightarrow U \in \mathcal{T}, U' \in \mathcal{T}'$. Tendremos que comprobar que $U \times U' \in \tilde{\mathcal{T}}$. Tenemos que

$$U \times U' = \{(x, y) \in X \times Y : x \in U, y \in U'\}$$

$$= \{(x, y) \in X \times Y : x \in U\} \cap \{(x, y) \in X \times Y : y \in U'\}$$

$$= (U \times Y) \cap (X \times U') = \pi_X^{-1}(U) \cap \pi_Y^{-1}(U')$$

Como π_X y π_Y son continuas, tenemos que $\pi_X^{-1}(U) \in \tilde{\mathcal{T}}$ y $\pi_Y^{-1}(U') \in \tilde{\mathcal{T}}$ por lo que su intersección también está en $\tilde{\mathcal{T}}$ y por tanto $U \times U' \in \tilde{\mathcal{T}}$.

Proposición 2.12. (Placas del producto)

Sean (X, \mathcal{T}) , (Y, \mathcal{T}') dos e.t., $x_0 \in X$, $y_0 \in Y$, entonces

$$(X \times \{y_0\}, (\mathcal{T} \times \mathcal{T}')_{X \times \{y_0\}}) \cong (X, \mathcal{T})$$
$$(\{x_0\} \times Y, (\mathcal{T} \times \mathcal{T}')_{\{x_0\} \times Y}) \cong (Y, \mathcal{T}')$$

Demostración. Sea $\pi_{X_{|_{X \times \{y_0\}}}}$ y tenemos

$$(X \times \{y_0\}, (\mathcal{T} \times \mathcal{T}')_{X \times \{y_0\}}) \to (X, \mathcal{T})$$

 $(x, y_0) \mapsto x$

Para ver que es un homeomorfismo tendremos que ver que es biyectiva (que es claro ya que su inversa sería la aplicación que lleva x al par (x, y_0)), continua (que es claro por ser la restricción de una aplicación continua) y abierta. Veamos entonces que es abierta.

Sea $\mathcal{B}_{\mathcal{T}\times\mathcal{T}'}=\{U\times U':U\in\mathcal{T},U'\in\mathcal{T}'\}$ base de $\mathcal{T}\times\mathcal{T}'$. Consideramos $\mathcal{B}=\{(U\times U')\cap(X\times\{y_0\}):U\in\mathcal{T},U'\in\mathcal{T}'\}$ que es base del subespacio. Tenemos entonces:

$$A = (U \times U') \cap (x \times \{y_0\}) = \begin{cases} \emptyset & \text{si} \quad y_0 \notin U' \\ U \times \{y_0\} & \text{si} \quad y_0 \in U' \end{cases}$$

Tenemos que

$$\pi_{X_{|_{X\times\{y_0\}}}}(A) = \pi_X(A) = \begin{cases} \emptyset & \text{si} \quad y_0 \notin U' \\ U & \text{si} \quad y_0 \in U' \end{cases}$$

Por lo que $\pi_{X_{|_{X\times\{y_0\}}}}(A)\in\mathcal{T}$ y ya tenemos que es abierta y por tanto un homeomorfismo.

Proposición 2.13. Sean (X, \mathcal{T}) , (Y, \mathcal{T}') dos e.t., entonces

- (i) $(X \times Y, \mathcal{T} \times \mathcal{T}')$ es 1AN \iff (X, \mathcal{T}) y (Y, \mathcal{T}') son 1AN.
- (ii) $(X \times Y, \mathcal{T} \times \mathcal{T}')$ es 2AN \iff (X, \mathcal{T}) y (Y, \mathcal{T}') son 2AN.
- (iii) $(X \times Y, \mathcal{T} \times \mathcal{T}')$ es T1 \iff (X, \mathcal{T}) y (Y, \mathcal{T}') son T1.
- (iv) $(X \times Y, \mathcal{T} \times \mathcal{T}')$ es T2 \iff (X, \mathcal{T}) y (Y, \mathcal{T}') son T2.
- (v) $(X \times Y, \mathcal{T} \times \mathcal{T}')$ es metrizable $\iff (X, \mathcal{T})$ y (Y, \mathcal{T}') son metrizables.

Demostración.

- \Rightarrow) Supongamos que $(X \times Y, \mathcal{T} \times \mathcal{T}')$ cumple P, entonces $(X \times \{y_0\}, (\mathcal{T} \times \mathcal{T}')_{X \times \{x_0\}})$ cumple P y como P es un invariante topológico, entonces (X, \mathcal{T}) que es homeomorfo a dicho espacio también la cumple. Análogamente obtengo que (Y, \mathcal{T}') también verifica P (considerando el subespacio $(\{x_0\} \times Y, (\mathcal{T} \times \mathcal{T}')_{\{x_0\} \times Y})$).
- \Leftarrow) (i) Hecho en clase.
 - (ii) Hecho en clase
 - (iii) Es análoga que (iv)
 - (iv) Sean $(x, y), (x', y') \in X \times Y$ con $(x, y) \neq (x', y')$ y supongamos que $x \neq x'$ (esto no quita generalidad ya que en caso de que x = x', entonces necesariamente $y \neq y'$ y se razonaría de forma simétrica). Como X es T2, entonces existen $U_1, U_2 \in \mathcal{T}$ con $x \in U_1, x' \in U_2$ y $U_1 \cap U_2 = \emptyset \Rightarrow (x, y) \in U_1 \times Y \in \mathcal{T} \times \mathcal{T}'$ y $(x', y') \in U_2 \times Y \in \mathcal{T} \times \mathcal{T}'$ por lo que tenemos que $(U_1 \times Y) \cap (U_2 \times Y) = (U_1 \cap U_2) \times Y = \emptyset \times Y = \emptyset$ y lo tenemos.
 - (v) Es un ejercicio de análisis I. Se hace de la siguiente forma. Supongamos que $\mathcal{T} = \mathcal{T}_d$ y $\mathcal{T}' = \mathcal{T}_{d'}$ y podemos definir

$$\tilde{d}: (X \times Y) \to [0, +\infty]$$
$$((x, y), (x', y')) \mapsto d(x, x') + d'(y, y')$$

Solo quedaría comprobar que \tilde{d} es una distancia en $X \times Y$ (que no es materia de esta asignatura) y comprobar que $\mathcal{T}_{\tilde{d}} = \mathcal{T} \times \mathcal{T}'$.

Definición 2.8. Sea $f: Z \to X \times Y$ una aplicación, escribimos $f = (f_X, f_Y)$ donde

$$f_X = \pi_X \circ f : Z \to X$$
$$f_Y = \pi_Y \circ f : Z \to Y$$

A estas aplicaciones las llamaremos **aplicaciones componentes** de f. Tenemos entonces $f(z) = (f_X(z), f_Y(z)) \in (X \times Y)$.

Proposición 2.14. Sean (X, \mathcal{T}) , (Y, \mathcal{T}') y (Z, \mathcal{T}'') e.t. Si $f: (Z, \mathcal{T}'') \to (X \times Y, \mathcal{T} \times \mathcal{T}')$ es una aplicación, entonces:

$$f \text{ es continua} \iff f_X = \pi_X \circ f : (Z, \mathcal{T}'') \to (X, \mathcal{T}) \\ f_Y = \pi_Y \circ f : (Z, \mathcal{T}'') \to (Y, \mathcal{T}') \text{ son continuas}$$

Es decir, la función f es continua si y solo si lo es en cada una de sus componentes. Demostración.

- ←) Trivial por ser composición de aplicaciones continuas.
- \Rightarrow) Sea $U \times U' \in \mathcal{B}_{\mathcal{T} \times \mathcal{T}'} \subset \mathcal{T} \times \mathcal{T}'$. Tendremos que ver que $f^{-1}(U \times U') \in \mathcal{T}''$. Veamos cuál es la imagen inversa. Tenemos que

$$f^{-1}(U \times U') = \{ z \in Z : f(z) \in (U \times U') \} = \{ z \in Z : f_X(z) \in U, f_Y(z) \in U' \} = f_Y^{-1}(U) \cap f_Y^{-1}(U') \in \mathcal{T}''$$

por ser intersección de abiertos en \mathcal{T}'' .

Definición 2.9. Sean $X_1, X_2, Y_1, Y_2 \neq \emptyset$, $f_1: X_1 \rightarrow Y_1$, $f_2: X_2 \rightarrow Y_2$ aplicaciones, se define la **aplicación producto** de f_1 y f_2 como

$$f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$$

 $(x_1, x_2) \mapsto (f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$

Proposición 2.15. Sean (X_i, \mathcal{T}_i) , (Y_i, T_i') e.t. para i = 1, 2 y $f_i(X_i, \mathcal{T}_i) \to (Y_i, \mathcal{T}_i')$ funciones entre e.t. para i = 1, 2. Consideramos la aplicación producto $f_1 \times f_2$: $(X_1 \times X_2, \mathcal{T}_1 \times \mathcal{T}_2) \to (Y_1 \times Y_2, \mathcal{T}_1' \times \mathcal{T}_2')$. Entonces

- (i) $f_1 \times f_2$ es continua $\iff f_1 \text{ y } f_2 \text{ son continuas.}$
- (ii) $f_1 \times f_2$ es abierta \iff $f_1 y f_2$ son abiertas.
- (iii) $f_1 \times f_2$ es homeomorfismo $\iff f_1 \ y \ f_2$ son homeomorfismos.

Demostración.

(i) Sea $U_1' \times U_2' \in \mathcal{B}_{\mathcal{T}_1' \times \mathcal{T}_2'} \Rightarrow (f_1 \times f_2)^{-1}(U_1' \times U_2') = f_1^{-1}(U_1') \times f_2^{-1}(U_2')$

- ⇒) $f_1^{-1}(U_1') \times f_2^{-1}(U_2') \in \mathcal{T}_1 \times \mathcal{T}_2$. Como la proyección π_{X_1} es abierta, $\pi_{X_1}(f_1^{-1}(U_1') \times f_2^{-1}(U_2')) = f_1^{-1}(U_1')$
- \Leftarrow) Trivial
- (ii) $(f_1 \times f_2)(U_1 \times U_2) = f_1(U_1) \times f_2(U_2)$.
- (iii) $(f_1 \times f_2)^{-1} = f_1^{-1} \times f_2^{-1}$

Corolario 2.15.1. Si $(X_i, \mathcal{T}_i) \cong (Y_i, \mathcal{T}'_i)$ con i = 1, 2, entonces:

$$(X_1 \times X_2, \mathcal{T}_1 \times \mathcal{T}_2) \cong (Y_1 \times T_2, \mathcal{T}_1' \times \mathcal{T}_2')$$

Definición 2.10. (Productos finitos) Sean (X_i, \mathcal{T}_i) e.t. para $i = 1, \ldots, n$ con $n \in \mathbb{N}$, definimos:

$$\mathcal{B}_{\mathcal{T}_1 \times \cdots \times \mathcal{T}_n} = \{ U_1 \times U_2 \times \cdots \times U_n : U_i \in \mathcal{T}_i \ \forall i \in \{1, \dots, n\} \} \subset \mathcal{P}(X_1 \times \cdots \times X_n)$$

Entonces $\mathcal{B}_{\mathcal{T}_1 \times \cdots \times \mathcal{T}_n}$ es base de una única topología $\mathcal{T}_1, \ldots, \mathcal{T}_n$ en X_1, \ldots, X_n . Al espacio topológico $(X_1 \times \cdots \times X_n, \mathcal{T}_1 \times \cdots \times \mathcal{T}_n)$ lo llamaremos **espacio topológico producto** de (X_i, \mathcal{T}_i)

Observación. Todos los resultados vistos para n=2 son ciertos para cualquier $n\geqslant 2$.

Definición 2.11. (Topología inicial) Sean $X \neq \emptyset$ un conjunto, $\{(X_i, \mathcal{T}_i)\}_{i \in I}$ una familia de e.t. y $\mathcal{F} = \{f_i : X \to X_i\}_{i \in I}$ una familia de aplicaciones. Se llama **topología inicial** en X para la familia \mathcal{F} a la única topología $\mathcal{T}_{\mathcal{F}}$ que tiene por subbase a

$$\emptyset \neq S = \{f^{-1}(U_i) : U_i \in X_i, i \in I\} \subset \mathcal{P}(X)$$

Proposición 2.16. Con esta notación:

- (i) $f_i:(X,\mathcal{T}_F)\to (X_i,\mathcal{T}_i)$ es continua $\forall i\in I$.
- (ii) Si \mathcal{T} es una topología en X y $f_i:(X,\mathcal{T})\to (Y_i,\mathcal{T}_i)$ es continua $\forall i\in I$, entonces $\mathcal{T}_{\mathcal{F}}\leqslant \mathcal{T}$
- (iii) Si $f:(Z,\mathcal{T}')\to (X,\mathcal{T}_{\mathcal{F}})$, entonces f es continua $\iff (f_i\circ f)(Z,\mathcal{T}')\to (X_i,\mathcal{T}_i)$ es continua $\forall i\in I$

Demostración.

(i) Trivial

- (ii) Trivial
- (iii) Se deja planteada como ejercicio para el lector

Ejemplo.

- •) Si (X, \mathcal{T}) , Y, \mathcal{T}' son e.t. y $\mathcal{F} = \{\pi_X : X \times Y \to X, \pi_Y : X \times Y \to Y\}$, entonces $(X \times Y, \mathcal{T}_{\mathcal{F}}) = (X \times Y, \mathcal{T} \times \mathcal{T}')$
- •) Si (X, \mathcal{T}) e.t., $\emptyset \neq A \subset X$, $\mathcal{F} = \{i_A : A \to X\}$ (donde i_A es la aplicación inclusión de A), entonces $(A, \mathcal{T}_{\mathcal{F}}) = (A, \mathcal{T}_A)$ (ya que $i_A^{-1}(U) = U \cap A$).

2.4. Identificaciones y topología cociente

Teorema 2.17. Sea (X, \mathcal{T}) un e.t., $Y \neq \emptyset$ un conjunto y la aplicación $f: (X, \mathcal{T}) \rightarrow Y$, entonces la familia

$$\mathcal{T}_f = \{ U' \subset Y : f^{-1}(U') \in \mathcal{T} \} \subset \mathcal{P}(Y)$$

es una topología en Y que llamamos topología final para la aplicación f. Además,

- (i) $f:(X,\mathcal{T})\to (Y,\mathcal{T}_f)$ es continua.
- (ii) Si \mathcal{T}' es una topología en Y con $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es continua, entonces $\mathcal{T}'\leqslant \mathcal{T}_f$

Demostración. Veamos en primer lugar que efectivamente \mathcal{T}_f es una topología en X

(A1)
$$f^{-1}(\emptyset) = \emptyset \in \mathcal{T} \Rightarrow \emptyset \in \mathcal{T}_f$$
. $f^{-1}(Y) = X \in \mathcal{T} \Rightarrow Y \in \mathcal{T}_f$

(A2) Sea $\{U_i'\}_{i\in I} \subset \mathcal{T}_f$. Queremos ver que $\bigcup_{i\in I} U_i' \in \mathcal{T}_f$.

$$f^{-1}\left(\bigcup_{i\in I}U_i'\right) = \bigcup_{i\in I}f^{-1}(U_i')\in\mathcal{T} \Rightarrow \bigcup_{i\in I}U_i'\in\mathcal{T}_f$$

(A3) Sean $U'_1, U'_2 \in \mathcal{T}_f$ tendremos que ver que $U'_1 \cap U'_2 \in \mathcal{T}_f$.

$$f^{-1}(U_1' \cap U_2) = f^{-1}(U_1') \cap f^{-1}(U_2') \in \mathcal{T}$$

por ser intersección de abiertos en \mathcal{T} .

Veamos ahora que verifica las 2 propiedades que menciona el teorema:

- (i) Trivial (por la definición de \mathcal{T}_f)
- (ii) Sea $U' \in \mathcal{T}$ veamos que entonces $U' \in \mathcal{T}_f$. Por ser f continua tenemos que $f^{-1}(U') \in \mathcal{T} \Rightarrow U' \in \mathcal{T}_f$ y lo tenemos probado.

Ejemplo.

- •) $Id_X: (X, \mathcal{T}) \to X$. $\mathcal{T}_{Id_X} = \{U \in X : Id_X^{-1}(U) \in \mathcal{T}\} = \{U \in X : U \in \mathcal{T}\}$
- •) $f:(X,\mathcal{T})\to Y$ constante, es decir, $f(x)=y_0\in Y\ \forall x\in X$. Entonces tenemos que $\mathcal{T}_f=\mathcal{T}_{disc}$ ya que

$$\mathcal{T}_f = \{ U' \subset Y : f^{-1}(U') \in \mathcal{T} \} = \mathcal{P}(Y)$$

Esto se debe a que

$$f^{-1}(U') = \begin{cases} X & \text{si} \quad y_0 \in U' \\ \emptyset & \text{si} \quad y_0 \notin U' \end{cases}$$

•) Consideramos la siguiente función

$$f: ([0,1], \mathcal{T}_u|_{[0,1]}) \to Y = \{0,1\}$$

$$x \mapsto \begin{cases} 1 & \text{si} \quad x \in [0, \frac{1}{2}] \\ 0 & \text{si} \quad x \in (\frac{1}{2}, 1] \end{cases}$$

Entonces tenemos que

$$\mathcal{T}_f = \{U' \subset \{0,1\} : f^{-1}(U') \in \mathcal{T}_u|_{[0,1]}\} = \{\emptyset, \{0,1\}, \{0\}\}\$$

Veamos por qué $\{0\} \in \mathcal{T}_f$ pero $\{1\} \notin \mathcal{T}_f$

$$f^{-1}(\{0\}) = (1/2, 1] \in \mathcal{T}_u|_{[0,1]} \Rightarrow \{0\} \in \mathcal{T}_f$$

$$f^{-1}(\{1\}) = [0, 1/2] \notin \mathcal{T}_u|_{[0,1]} \Rightarrow \{1\} \notin \mathcal{T}_f$$

Proposición 2.18. Sea $f:(X,Y)\to Y$ una aplicación. Entonces:

(i) Una aplicación $g:(Y,\mathcal{T}_f)\to (Z,\mathcal{T}'')$ es continua si y solo si $g\circ f:(X,\mathcal{T})\to (Z,\mathcal{T}'')$ es continua.

1.
$$C_{\mathcal{T}_f} = \{ C' \subset Y : f^{-1}(C') \in C_{\mathcal{T}} \}$$

Demostración.

(i) \Rightarrow) Por ser $g \circ f$ composición de continuas.

 \Leftarrow) Sea $U'' \in \mathcal{T}''$, tendremos que ver que $g^{-1}(U'') \in \mathcal{T}_f$.

$$f^{-1}(g^{-1}(U'')) \stackrel{*}{=} (g \circ f)^{-1}(U'') \in \mathcal{T} \Rightarrow g^{-1}(U'') \in \mathcal{T}_f$$

Donde en *hemos tenido en cuenta que $g\circ f$ es continua. Por tanto tenemos que g es continua.

(ii) Sea
$$C' \subset Y$$
, $C' \in \mathcal{C}_{\mathcal{T}_f} \iff Y \setminus C' \in \mathcal{T}_f \iff f^{-1}(Y \setminus C') \in \mathcal{T} \iff f^{-1}(C') \in \mathcal{C}_{\mathcal{T}}$

Definición 2.12. Una aplicación $p:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es una **identificación** si p es sobreyeciva y $\mathcal{T}'=\mathcal{T}_p$.

Observación.

- •) Toda identificación es continua.
- •) Si $p:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es una identificación y $g:(Y,\mathcal{T}')\to (Z,\mathcal{T}'')$ es otra aplicación con $\mathcal{T}'=\mathcal{T}_p$, entonces g es continua $\iff g\circ p:(X,\mathcal{T})\to (Z,\mathcal{T}'')$ es continua.

Ejemplo.

- •) $Id_X:(X,\mathcal{T})\to (X,\mathcal{T}')$ es identificación $\iff \mathcal{T}=\mathcal{T}'.$
- •) $p: \mathcal{X}_{[0,1/2)}: ([0,1], \mathcal{T}_u|_{[0,1]}) \to (\{0,1\}, \mathcal{T}_f = \{\emptyset, \{0,1\}, \{0\}\})$ es identificación pero no es abierta ni cerrada.

$$p([0, 1/4)) = \{1\} \notin \mathcal{T}_f \text{ pero } [0, 1/4) \in \mathcal{T}_u|_{[0,1]}$$

 $p([3/4, 1]) = \{0\} \notin \mathcal{C}_{\mathcal{T}_p} \text{ pero } [3/4, 1] \in \mathcal{C}_{\mathcal{T}_u - [0,1]}$

Proposición 2.19. Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es continua, sobreyectiva y abierta, o continua, sobreyectiva y cerrada, entonces f es una identificación.

Demostración. Por hipótesis tenemos que f es sobreyecriva y queremos ver que $\mathcal{T}' = \mathcal{T}_f$. Como f es continua tenemos que $\mathcal{T}' \leqslant \mathcal{T}_f$. Supongamos que f es abierta y querremos ver la otra inclusión. Sea $U' \in \mathcal{T}_f$, entonces tenemos que $f^{-1}(U) \in \mathcal{T}$. Por ser f abierta tenemos que $f(f^{-1}(U)) \in \mathcal{T}'$ y ya tenemos probada la doble inclusión.

Observación. Una identificación puede no ser abierta ni cerrada.