Área momento de inercia

Círculo

Rectángulo A=b.h

$$\bar{I}_x = \frac{bh^3}{12}$$
 $\bar{I}_y = \frac{b^3h}{12}$ $\bar{I}_{xy} = 0$

$$I_x = \frac{bh^3}{3}$$
 $I_y = \frac{b^3h}{3}$ $I_{xy} = \frac{b^2h^2}{4}$

A=#R2

$$I_x = I_y = \frac{\pi R^4}{4} \qquad I_{xy} = 0$$

$$\bar{I}_x = \frac{37bh^3}{2100} \qquad I_x = \frac{bh^3}{21}$$

$$\bar{I}_y = \frac{b^3h}{80} \qquad I_y = \frac{b^3h}{5}$$

$$\bar{I}_{xy} = \frac{b^2h^2}{120} \qquad I_{xy} = \frac{b^2h^2}{12}$$

$$\bar{I}_x = \frac{bh^3}{36}$$
 $\bar{I}_y = \frac{b^3h}{36}$ $\bar{I}_{xy} = -\frac{b^2h^2}{72}$

$$I_x = \frac{bh^3}{12}$$
 $I_y = \frac{b^3h}{12}$ $I_{xy} = \frac{b^2h^2}{24}$

$$\bar{I}_x = 0.1098R^4$$
 $\bar{I}_{xy} = 0$
 $I_x = I_y = \frac{\pi R^4}{8}$ $I_{xy} = 0$

$$\begin{split} \bar{I}_x &= \frac{8bh^3}{175} \qquad I_x = \frac{2bh^3}{7} \\ \bar{I}_y &= \frac{19b^3h}{480} \qquad I_y = \frac{2b^3h}{15} \\ \bar{I}_{xy} &= \frac{b^2h^2}{60} \qquad I_{xy} = \frac{b^2h^2}{6} \end{split}$$

	4		2	
$\bar{I}_x = \frac{l}{2}$	bh ³ 36	$I_y = \frac{b^3}{4!}$	$\frac{h}{8}$ \bar{I}_{xy}	= 0
$I_x = \frac{I}{2}$	5h ³ 12			= 0

Triángulo

$$\bar{I}_x = \bar{I}_y = 0.054 \, 88 R^4$$
 $I_x = I_y = \frac{\pi R^4}{16}$ $\bar{I}_{xy} = -0.016 \, 47 R^4$ $I_{xy} = \frac{R^4}{8}$

$$I_x = \frac{R^4}{8} (2\alpha - \sin 2\alpha)$$

$$I_y = \frac{R^4}{8} (2\alpha + \sin 2\alpha)$$

$$I_{xy} = 0$$

$\bar{x} = \frac{a+b}{3}$ $\bar{y} = \frac{h}{3}$

