Project Synopsis: FF No 180

Project Title: Automated Requirement Writing

Introduction:

The Automated Requirement Writing project leverages Artificial Intelligence (AI) and Natural Language Processing (NLP) to streamline the process of extracting, classifying, and documenting software requirements. Traditionally, requirement gathering is time-consuming, error-prone, and inconsistent, often involving manual review of documents such as Word, PDF, Excel, and emails. Our system automates this process by analyzing multiple input formats, classifying functional and non-functional requirements, and generating IEEE-compliant requirement documents. It also integrates with collaboration tools such as JIRA and Confluence for task tracking and version control, ensuring efficiency, traceability, and reduced manual effort.

Literature Survey:

Table 1. Literature Survey of existing literature

Sr. No	Paper Title	Objectives claimed by authors in their paper	Methodologie s used	Outcomes (from result & Discussion)	Gap Identified (Generally from Conclusion & Future scope)
1.	An Approach towards Automation of Requirements Analysis	Automate object- oriented analysis from natural language requirements (identify actors, use cases, classes, relations).	NLP-driven CASE tool (R-TOOL); object- oriented mapping; pronoun/ambi guity resolution; ATM case study.	Successfully generated class diagrams from English text; resolved some ambiguities.	Struggles with incomplete/ambiguo us inputs; needs stakeholder clarifications and broader domain coverage.
2.	Advances in Automated Support for Requirements Engineering: A Systematic Literature Review	Synthesize advances in automation across RE phases (elicitation, analysis, validation, management).	Systematic review of tools/techniqu es (NLP, ML, formal methods) and their evaluation contexts.	Automation reduces effort, improves consistency, detects ambiguities early.	Limited end-to-end automation; weak integration with project workflows; difficulty with unstructured/multiformat inputs.
3.	Automated Validation of Requirement Reviews: A Machine	Automate validation of review comments to improve requirement review efficiency.	ML classifiers (Random Forest, SVM, Naive Bayes) trained on review-	Significantly filtered invalid/irrelev ant comments, speeding up reviews.	Performance depends on labeled data quality/size; may misclassify context-heavy comments.

	Lagraina		aammant		
	Learning		datasets.		
4	Approach	G t : t		T 1	C ₄ 1 '41
4.	Automated	Separate requirement	NLP with	Improved	Struggles with
	Requirement	sentences from	rule-based	precision/reca	complex syntax,
	Sentences	background text in SRS	sentence	ll for	implicit
	Extraction	documents.	filtering +	requirement-	requirements, and
	from SRS		classification	sentence	domain-specific
	~~		on real SRS.	detection.	vocabulary.
5.	How	Evaluate how	Case studies	Better	Limited adaptability
	Automate	automated RE systems	of projects	requirement	across diverse
	Requirements	affect quality, speed,	using	quality, fewer	domains; reliance on
	Engineering	and traceability.	AI/NLP/CAS	errors, faster	tool-specific
	System		E-integrated	documentatio	formats; handling
	Effects and		tooling.	n; improved	highly unstructured
	Support			traceability.	data remains hard.
	Requirement				
	Engineering				
6.	An Error-	Compare AES systems	Automated	AES is	Automated systems
	Analysis	with human scoring in	Essay Scoring	faster/more	misread
	Study from an	EFL contexts; analyze	(NLP +	consistent;	idioms/cultural cues;
	EFL Writing	error patterns.	statistical	discrepancies	human oversight
	Context:		features) vs.	on nuanced	needed for complex
	Human and		human raters	language/creat	language.
	Automated		on EFL	ivity/context.	
	Essay Scoring		essays.		
	Approaches				
7.	Automated	Extract software	NLP with	Efficient	Limited portability;
	Requirements	requirements from	domain	extraction	requires heavy
	Extraction for	scientific	dictionaries &	using tailored	domain
	Scientific	literature/documentatio	pattern	term	customization and
	Software	n automatically.	matching	sets/patterns	maintenance of
			applied to	in scientific	dictionaries.
			scientific	domains.	
			texts.		
8.	Automated	Provide measurable	ARM tool:	Found	Lacks semantic
	Analysis of	quality indicators for	text analysis	ambiguity,	understanding/correc
	Requirement	NL requirements to aid	of	weak	tness checks;
	Specifications	managers/assurance.	imperatives,	structures,	difficulty
			weak phrases,	organization	distinguishing
			readability,	issues; gave	prescriptive vs.
			structure;	actionable	descriptive
			applied across	quality	statements.
			NASA specs.	metrics.	
9.	Automated	Bridge requirements to	MDD	Reduced	Needs consistent,
	Requirements	models in agile via	integrated	manual	well-defined inputs;
	Engineering	automation for better	with agile;	modeling	limited for highly
	Framework	alignment/traceability.	automatic	effort; better	volatile/ambiguous
	for Agile		transformatio	requirements-	requirements.
	Model-Driven		n to	design	
	Development		PIM/PSM;	alignment;	
	F	I.		<i></i>	I

			project	enhanced	
			applications.	traceability.	
10.	Automated	Detect contradictions in	Hybrid of	Higher	Sensitive to prompt
	Requirement	requirements more	formal logic	contradiction-	quality/domain
	Contradiction	robustly than logic-only	reasoning and	detection rates	terms; false
	Detection	systems.	LLMs (e.g.,	vs. logic-only	positives/negatives
	through		GPT) for	baselines;	with ambiguous text.
	Formal Logic		contextual	better context	
	and LLMs		checks.	handling.	

Gaps Identified:

- 1. Most existing approaches rely on rule-based or keyword-based methods (e.g., ARM tool) which detect structural and linguistic issues but fail to capture semantic meaning and correctness of requirements.
- 2. Current ML/NLP techniques improve extraction and classification but are highly dependent on domain-specific datasets and cannot generalize well across different projects or domains.
- 3. Many automated systems focus only on a single stage of requirement engineering (extraction, validation, or contradiction detection) but do not provide a complete end-to-end framework.
- 4. Approaches for requirement validation and contradiction detection often suffer from false positives/negatives, especially when dealing with ambiguous or context-heavy language.
- 5. Existing tools face difficulty in handling multi-format documents (PDF, Word, Excel, emails) and unstructured inputs, which are very common in real projects.
- 6. Automated methods lack seamless integration with agile tools (like JIRA, Confluence) and industry standards (like IEEE requirement specifications).
- 7. Some approaches (like scientific-domain extractions) are too domain-specific and lack scalability to other domains.
- 8. Overall, literature shows progress in automation but no unified, collaborative, and scalable system exists that combines AI/NLP with real-time validation, prioritization, and IEEE-compliant documentation.

Objectives framed based on Gaps

- 1. To enable semantic understanding of requirements using advanced AI/NLP models, overcoming the limitations of rule-based and keyword-based tools.
- 2. To automate end-to-end requirement engineering from extraction, classification, and validation to documentation instead of focusing on isolated phases.
- 3. To ensure multi-format document support (Word, PDF, Excel, emails), enabling seamless requirement extraction from diverse sources.
- 4. To improve requirement accuracy and validation by integrating real-time clarification, contradiction detection, and prioritization methods.
- 5. To provide a collaborative and scalable platform by integrating with agile tools (JIRA, Confluence) and generating IEEE-compliant requirement documents for industry standards.

Problem Statement:

In software development, requirement gathering is often manual, time-consuming, and prone to human error. Information is scattered across documents such as Word, Excel, PDFs, and emails, leading to inconsistencies and missing details. This slows down project initiation,

reduces accuracy, and increases costs. There is a strong need for an automated, intelligent system that can extract, classify, validate, and organize requirements into structured, standardcompliant documents while supporting collaboration and traceability.

Proposed Methodologies:

The system will leverage AI and NLP models such as BERT for classification of functional and non-functional requirements, GPT-4 for generating structured requirement documents, and Code Llama for code/test case generation. Data extraction libraries such as python-docx, pdfminer, and pandas will handle multi-format document parsing. Integration with JIRA and Confluence will support collaboration and version control. The MoSCoW method will be used for prioritization of requirements.

a. Software and Hardware Requirements:

Software Requirements:

- Programming Languages/Frameworks: Python (for NLP pipelines, document ingestion), TensorFlow/PyTorch (for BERT/GPT-4 integration), Node.js/Java (for backend services).
- AI/ML Models: BERT (requirement classification & prioritization), GPT-4 (document generation), Code Llama (test case & code generation).
- Databases & Version Control: MySQL / PostgreSQL for requirement storage, Git for version control.
- Collaboration & Tracking Tools: JIRA for issue tracking, Confluence for documentation, APIs for integration.
- Libraries & Tools: python-docx, pdfminer, pandas (document parsing), REST APIs for JIRA/Confluence.

Hardware Requirements:

- Development machine with at least 16 GB RAM, multi-core CPU, and GPU (NVIDIA CUDA-enabled) for model execution.
- Cloud environment (AWS/Azure/GCP) for scalability and model deployment.

b. Algorithms

- 1. Data Ingestion & Parsing Algorithm Collects raw data from multiple sources (Word, PDF, Excel, Emails) using parsing libraries.
- 2. BERT-based Extraction & Classification Algorithm Identifies functional vs. nonfunctional requirements using transformer embeddings.
- 3. GPT-4 Document Generation Algorithm Converts classified requirements into IEEE 830:1998 compliant structured documents.
- 4. MoSCoW Prioritization with BERT Applies NLP-based prioritization (Must-have, Should-have, Could-have, Won't-have).
- 5. Stakeholder Q&A Algorithm Interactive clarification using fine-tuned LLM for resolving ambiguities.
- 6. Test Case & Code Generation Algorithm (Code Llama) Generates test cases and initial code skeletons from refined requirements.

c. Architecture Diagram

Expected Outcomes:

- Automated extraction of requirements from multiple file formats.
- Accurate classification into functional and non-functional requirements.
- IEEE-compliant structured requirement documents.
- Real-time validation and prioritization of requirements.
- Collaboration support with JIRA and Confluence integration.
- Reduced manual effort, improved accuracy, and enhanced project traceability.

References:

- [1] Vinay, S., Aithal, S., & Desai, P. (2009, March). An approach towards automation of requirements analysis. In *Proceedings of the International MultiConference of Engineers and Computer Scientists* (Vol. 1).
- [2] Umar, M. A., & Lano, K. (2024). Advances in automated support for requirements engineering: a systematic literature review. Requirements Engineering, 29(2), 177-207.
- [3] Singh, M. (2018, August). Automated validation of requirement reviews: a machine learning approach. In 2018 IEEE 26th International Requirements Engineering Conference (RE) (pp. 460-465). IEEE.
- [4] Haris, M. S., & Kurniawan, T. A. (2020, November). Automated requirement sentences extraction from software requirement specification document. In *Proceedings of the 5th International Conference on Sustainable Information Engineering and Technology* (pp. 142-147).
- [5] Faisal, M., Issa, G. F., Ayub, I., Asadullah, M., Joiya, U. N., & Iqbal, M. (2022, February). How automate requirements engineering system effects and support requirement engineering. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-3). IEEE.
- [6] Almusharraf, N., & Alotaibi, H. (2023). An error-analysis study from an EFL writing context: Human and automated essay scoring approaches. Technology, Knowledge and Learning, 28(3), 1015-1031.

Vishwakarma Institute of Technology Issue 01 : Rev No. 00 : Dt. 01/08/22

- [7] Li, Y., Guzman, E., Tsiamoura, K., Schneider, F., & Bruegge, B. (2015). Automated requirements extraction for scientific software. Procedia Computer Science, 51, 582-591.
- [8] Wilson, W. M., Rosenberg, L. H., & Hyatt, L. E. (1997, May). Automated analysis of requirement specifications. In Proceedings of the 19th international conference on Software engineering (pp. 161-171).
- [9] Umar, M. A., Lano, K., & Abubakar, A. K. (2025). Automated requirements engineering framework for agile model-driven development. Frontiers in Computer Science, 7, 1537100.
- [10] Gärtner, A. E., & Göhlich, D. (2024). Automated requirement contradiction detection through formal logic and LLMs. Automated Software Engineering, 31(2), 49.