×

Linear Classifiers & Logistic Regression

5 试题

1 point

1.

(True/False) A linear classifier assigns the predicted class based on the sign of $score(x) = w^T h(x)$.

- True
- False

1 point

2.

(True/False) For a conditional probability distribution over $y \mid x$, where y takes on two values (+1, -1, i.e. good review, bad review) $P(y = +1 \mid x) + P(y = -1 \mid x) = 1$.

- O True
- False

1 point

3.

Which function does logistic regression use to "squeeze" the real line to [0, 1]?

	Linear Classifiers & Logistic Regression Coursera
0	Logistic function
0	Absolute value function
0	Zero function
1 point I. f Score (x)? O	$e(x) = w^T h(x) > 0, \text{ which of the following is true about } P(y = +1 \mid P(y = +1 \mid x) <= 0.5$ $P(y = +1 \mid x) > 0.5$ $Can't \text{ say anything about } P(y = +1 \mid x)$
ecogn	er training a 1 vs. all multiclass classifier for the problem of digit ition using logistic regression. There are 10 digits, thus there are ses. How many logistic regression classifiers will we have to

提交测试

O D