CS161: Fundamentals of Artificial Intelligence Final Exam Spring 2022

Name	ID Number

1

[Q1. (30 pts)] True or false?

- 1. Convolutional Neural Networks (CNNs) are usually used for vision applications and Recurrent Neural Networks (RNNs) are usually used in language applications.
- 2. Depth first search is typically implemented using a queue while breadth first search is implemented using a stack.
- 3. One of the main advantages of hill climbing search is its space requirements.
- 4. Uniform-cost search with a cost function g(n) = depth(n) is equivalent to breadth first search.
- 5. Depth first search is a complete search strategy.
- 6. Breadth first search is an optimal but incomplete search strategy.
- 7. The *Minimax* algorithm is usually implemented using depth-first search.
- 8. $\alpha\beta$ -pruning can potentially double the depth we can search to (in the same amount of time).
- 9. If we know the exact depth of an optimal solution, then limited—depth search is better than depth-first search.
- 10. The minimax procedure is guaranteed to compute an optimal move against any player.
- 11. Resolution is guaranteed to detect a contradiction in any knowledge base if one exists.
- 12. $(X \vee Y) \vee (\neg X \vee Y \vee \neg Z)$ is a conjunctive normal form (X, Y and Z are variables).
- 13. $A \lor B \lor \neg C$ is a Horn clause (A, B and C are variables).
- 14. Supervised learning is used with labeled data and unsupervised learning is used with unlabeled data.
- 15. A sentence is valid iff its negation is consistent.
- 16. Any propositional logic sentence can be represented by a CNF.
- 17. If $\alpha \models \beta$, then $Pr(\alpha) < Pr(\beta)$.
- 18. $\forall x \exists y Likes(x, y)$ is equivalent to $\exists x \forall y Likes(x, y)$.
- 19. $\forall x Nice(x)$ is equivalent to $\neg \exists x \neg Nice(x)$.

- 20. Any sentence in first-order logic can be expressed without using the existential \exists quantifier.
- 21. In Bayesian networks, MAP queries are a special type of MPE queries.
- 22. If X and Y are probabilistically independent, then they must continue to be independent given any variable Z.
- 23. $Pr(\alpha) = Pr(\alpha \wedge \beta) + Pr(\alpha \wedge \neg \beta)$ for any events α and β .
- 24. $Pr(\alpha|\beta)Pr(\beta) = Pr(\beta|\alpha)Pr(\alpha)$ for any events α and β .
- 25. Neural networks are universal function approximators.
- 26. One can count the models of an NNF circuit that is decomposable, deterministic and smooth in linear time.
- 27. Decision trees are typically used for unsupervised learning using unlabeled data.
- 28. When learning the parameters of a Bayesian network from complete data, the maximum-likelihood parameter estimates are unique.
- 29. When learning a Bayesian network structure, one seeks a network that maximizes the probability of data.
- 30. The naive Bayes structure assumes that attributes are pairwise independent.

[Q2. (20 pts)] True or false?

- 31. If the branching factor b = 1, then iterative deepening will expand $\Theta(d^2)$ nodes, where d is the depth of an optimal solution.
- 32. The inputs and outputs of a neural network are restricted to be in [0,1].
- 33. If $\Delta \models \alpha$ or $\Delta \models \neg \alpha$ for any α , then Δ must have a single model (satisfied by one world).
- 34. A unifier exists for P(F(B), F(G(w)), w) and P(F(y), F(y), B).
- 35. In neural networks, the ReLU activation function is g(x) = 0 if x < 0 and g(x) = x if $x \ge 0$.
- 36. The entropy of distribution Pr(X) is $\sum_{x} Pr(x) \log Pr(x)$.
- 37. If α can be derived from a knowledge base Δ using some inference rules, then α can be derived from Δ' using the same rules, where Δ' is a larger knowledge base that includes Δ .
- 38. In Figure 1, and assuming all nodes are binary, the CPT for node S has 8 parameters.
- 39. In Figure 1: W and X are d-separated by R.
- 40. In Figure 1: W and T are independent given Y and Z.

Figure 1: The structure of a Bayesian network.

[Q3. (20 pts)] Choose only one answer.

- 41. A sibling is another child of one's parent. Which of the following sentences reflects this fact:
 - (a) $\forall x, y \; Sibling(x, y) \Leftrightarrow (x \neq y \land \forall p \; Parent(p, x) \land Parent(p, y)).$
 - (b) $\exists x, y \; Sibling(x, y) \Leftrightarrow (x \neq y \land \exists p \; Parent(p, x) \land Parent(p, y)).$
 - (c) $\forall x, y \; Sibling(x, y) \Leftrightarrow (x \neq y \land \exists p \; Parent(p, x) \land Parent(p, y)).$
 - (d) $\forall x, y \; Sibling(x, y) \Leftrightarrow (\exists p \; Parent(p, x) \land Parent(p, y)).$
 - (e) None of the above.
- 42. The sentence $\exists x Person(x) \land Nice(x) \land (\forall y (Person(y) \land Nice(y)) \Rightarrow x = y)$ says:
 - (a) At least one person is nice.
 - (b) There is exactly one person who is nice.
 - (c) All persons are nice.
 - (d) No person is nice.
 - (e) None of the above.
- 43. Resolving $R(F(y)) \vee \neg G(y)$ with $G(A) \vee S(w)$ gives:
 - (a) $S(A) \vee R(F(A))$.
 - (b) $S(y) \vee R(F(A))$.
 - (c) $S(w) \vee R(F(A))$.
 - (d) $S(F(A)) \vee R(F(A))$.
 - (e) None of the above.
- 44. The result of dropping quantifiers from $\forall x \exists y Likes(x, y)$ during the process of converting to CNF, gives:
 - (a) Likes(x, y).
 - (b) Likes(F(x), y).
 - (c) Likes(x, F(y)).
 - (d) Likes(x, A).
 - (e) None of the above.
- 45. The Markovian assumption for Bayesian networks says:
 - (a) Every node is independent of its parents given its non-descendants.
 - (b) Every node is independent of its descendants given its parents.
 - (c) Every node is independent of its non-descendants given its parents.
 - (d) Every node is independent of its parents given its descendants.
 - (e) None of the above.

- 46. The EM algorithm is usually used for learning Bayesian networks when:
 - (a) Structure is known and data is complete.
 - (b) Structure is known and data is incomplete.
 - (c) Structure is unknown and data is complete.
 - (d) Structure is unknown and data is incomplete.
 - (e) None of the above.
- 47. If a student scores an A+ on CS111 (X), then that student must be exceptional (E) and, hence, will most probably score an A on CS161 (Y). If we want to represent this scenario using a Bayesian network, which of the following causal structures should we use?
 - (a) $X \leftarrow E, Y \leftarrow E$.
 - (b) $X \leftarrow E, Y \rightarrow E$.
 - (c) $X \to E, Y \leftarrow E$.
 - (d) $X \to E, Y \to E$.
 - (e) None of the above.
- 48. Consider the probability distribution in Table 1, where all missing worlds have probability 0. $Pr(I_1 = 0|T = 1)$ is:
 - (a) 1/4
 - (b) 1/2
 - (c) 2/3
 - (d) 1/6
 - (e) None of the above.

$\mid I_1 \mid$	I_2	I_3	I_4	I_5	T	Pr(.)
1	0	0	0	0	1	1/12
0	0	0	0	0	0	1/12
0	0	0	0	1	1	3/12
0	0	0	1	0	1	3/12
0	1	0	0	0	1	2/12
0	0	1	0	0	1	2/12

Table 1: Probability distribution.

- 49. Evaluating the expression (CONS '(A B) (REST (CONS 'B '(C)))) gives:
 - (a) '(A B (C)).
 - (b) '((A B) C).
 - (c) '(A B C).
 - (d) '((A B) (B C)).
 - (e) None of the above.
- 50. Consider the function:

(DEFUN FOO (L I)

(COND ((NULL (REST L)) I)
$$(T (+ 2 (FOO (REST L) (+ 1 I)))))$$

The result of evaluating (FOO '(A B C) 2) is:

- (a) 5.
- (b) 6.
- (c) 7.
- (d) 8.
- (e) None of the above.

[Q4. (30 pts)] Choose only one answer.

- 51. When learning a random forest from data, the attributes of each decision tree contain:
 - (a) All attributes in the dataset.
 - (b) Only those attributes selected by the decision tree learning algorithm.
 - (c) Only those attributes selected by the decision tree learning algorithm from among a randomly selected subset of attributes from the dataset.
 - (d) A randomly selected subset of attributes from the dataset.
- 52. Consider the knowledge base $\Delta = \{X \Rightarrow Y, \neg Z \Rightarrow \neg Y, X \Rightarrow \neg Z\}$. Which of the following sentences is entailed by Δ :
 - (a) $X \wedge Z$.
 - (b) $X \vee Y$.
 - (c) $\neg X$.
 - (d) $\neg X \wedge Y$.
 - (e) None of the above.
- 53. The following two sentences:

$$\exists t \, Time(t) \land (\forall x Person(x) \Rightarrow Fooled_At(x,t))$$

$$\forall x Person(x) \Rightarrow (\exists t \, Time(t) \land Fooled_At(x,t))$$

are:

- (a) Equivalent.
- (b) The first implies the second.
- (c) The second implies the first.
- (d) None of the above.
- 54. The following two sentences:

$$\forall x(\forall y Likes(x,y)) \Rightarrow Nice(x)$$

$$\forall x (\neg Nice(x)) \Rightarrow (\exists y Likes(x, y))$$

are:

- (a) Equivalent.
- (b) The first implies the second.
- (c) The second implies the first.
- (d) None of the above.

- 55. The CNF of $\neg(\forall x \exists y \ (P(x) \Rightarrow Q(x,y)))$ is:
 - (a) $P(F(A)) \vee \neg Q(F(A), y)$.
 - (b) P(F(A)), $\neg Q(F(A), y)$.
 - (c) $P(A) \vee \neg Q(A, y)$.
 - (d) P(A), $\neg Q(A, y)$.
 - (e) None of the above.
- 56. Consider a Bayesian network with structure $X \leftarrow Z \rightarrow Y$ (X and Y are children of Z). Then Pr(x, y, z) is equal to:
 - (a) Pr(x)Pr(y)Pr(z).
 - (b) Pr(x|z)Pr(y|z)Pr(z).
 - (c) Pr(x|z)Pr(y|z).
 - (d) Pr(x)Pr(y)Pr(z|xy).
 - (e) None of the above.
- 57. Consider a Bayesian network $X_1 \to X_2 \to \ldots \to X_n$ (a chain with n nodes). Assume that each variable X_i has only two values x_i and \bar{x}_i . Then $Pr(x_3 \mid \bar{x}_1)$ is equal to:
 - (a) $Pr(x_3)$.
 - (b) $Pr(x_3, \bar{x}_1)Pr(\bar{x}_1)$.
 - (c) $Pr(x_3|x_2, \bar{x}_1) + Pr(x_3 | \bar{x}_2, \bar{x}_1)$.
 - (d) $Pr(x_3|x_2)Pr(x_2 \mid \bar{x}_1) + Pr(x_3|\bar{x}_2)Pr(\bar{x}_2 \mid \bar{x}_1)$.
 - (e) None of the above.
- 58. The prior probability that a person has high cholesterol is 0.5. Maya took two high-cholesterol tests, and both tests came out positive. The tests false positive and false negative rates are 0.1 for both tests. The probability that Maya has high cholesterol is:
 - (a) 0.64
 - (b) 40/41
 - (c) 0.81
 - (d) 81/82
 - (e) None of the above.

- 59. We are learning a decision tree given n training instances, and we want to choose between two attributes A and B to test on next (according to the expected entropy criterion). Each attribute has two outcomes true and false. Moreover, A = true in n/2 instances, and B = false in also n/2 instances. There are n/4 positive instances given A = true and n/8 positive instances given A = false. There are n/3 positive instances given B = true, and n/4 positive instances given B = false. We then have:
 - (a) Attribute A is more informative than B and should be tested on first.
 - (b) Attribute B is more informative than A and should be tested on first.
 - (c) The two attributes are equally informative.
 - (d) We don't have enough information to decide which attribute is more informative.
- 60. Consider the neural network below and assume that inputs are either 0 or 1. The output of the neural network is 1 iff:
 - (a) both inputs are 1.
 - (b) some input is 1.
 - (c) inputs are both 0 or both 1.
 - (d) one input is 1 and the other is 0.
 - (e) None of the above.

Figure 2: A neural network. All activation functions g(x) are step functions, where g(x) = 1 for $x \ge 1$ and g(x) = 0 otherwise.