Notes: MPLN

immediate

September 21, 2023

1 Data Structure

Let Y_i denote the binary phenotype of interest, and X_{ij} represents the counts of jth feature (e.g. ICD code, NLP mentions, etc) of ith patient, $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)^{\mathsf{T}}$ and $\mathbf{X}_i \in \mathbb{R}^p$, U_i denotes the healthcare utilization of patient i. Our data consist of n independent and identically distributed (iid) labelled data $\mathcal{L} = \{(\mathbf{X}_i, Y_i, U_i) : i \in \mathcal{I}_L\}$ where $n = |\mathcal{I}_L|$, and N iid unlabelled data $\mathcal{U} = \{(\mathbf{X}_i, U_i) : i \in \mathcal{I}_U\}$ where $N = |\mathcal{I}_U|$. We assume that the labelling mechanism is completely at random.

2 Model

We propose to model the EHR data using a mixture of multivariate Poisson-LogNormal (MPLN)[Aitchison and Ho, 1989, Subedi and Browne, 2020], with

$$egin{aligned} & m{X}_i \mid m{Z}_i \sim Poisson(e^{m{Z}_i}) &, & X_{ij} \mid Z_{ij} \ indep. \ & m{Z}_i \mid (Y_i = y) \sim \mathcal{N}(m{D}_i^{(y)^\mathsf{T}} m{B}_{d \times p}, m{\Sigma}_{p \times p}) &, \ & Y_i \sim Ber(\pi) \quad iid \end{aligned}$$

where $D_i^{(y)} = (1, U_i, y)^{\mathsf{T}}$. In the model, $Z_i \in \mathbb{R}^p$ represents the patient-level embedding for ith patient, and B_{2j} can be interpreted as the importance of the jth feature to the phenotype of interest, adjusting for healthcare utilization. Σ_{ij} describes the underlying relationships between the ith and jth concept. Due to the similarity and relatedness among p concepts, we assume Σ has a low rank. We decompose $\Sigma = V\Lambda V^{\mathsf{T}}$, where $V \in \mathbb{R}^{p \times q}$ is orthonormal and the rank $q \leq p$, $\Lambda \in \mathbb{R}^{q \times q}$ is diagonal. Assuming that across different institutions, the orientation/rotation (V) is the same but the shape/scaling Λ can be different, we may obtain V by applying singular value decomposition (SVD) to the feature-level embedding matrix E and obtain $V \in \mathbb{R}^{p \times q}$ as the first q left singular

vectors. In that case, instead of estimating the full covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$, we only need to estimate the diagonal matrix $\Lambda \in \mathbb{R}^{q \times q}$, reducing the number of parameters to be estimated from pq to q. Alternatively, we can write the model as:

$$X_i \mid Z_i \sim Poisson(e^{Z_i})$$
, $X_{ij} \mid Z_{ij} \ indep.$

$$Z_i \mid (Y_i = y) = D_i^{(y)\mathsf{T}} B + V \Lambda^{1/2} W_i$$

$$W_i \sim \mathcal{N}(0_q, I_{q \times q}) \quad iid, \quad Y_i \sim Ber(\pi) \quad iid$$

$$(1)$$

For model estimation, we first consider the supervised scenario, i.e. estimation of the model with \mathcal{L} . With Y_i known for $i \in \mathcal{I}_L$, the complete-data log-likelihood can be written as

$$\log p(\boldsymbol{X}_{L}, \boldsymbol{W}_{L}, \boldsymbol{Y}_{L}; \boldsymbol{B}, \boldsymbol{\Lambda}, \pi) = \sum_{y=0}^{1} \sum_{i \in \mathcal{I}_{L}} I(Y_{i} = y) \left\{ \log p(\boldsymbol{X}_{i} \mid \boldsymbol{W}_{i}, U_{i}, y; \boldsymbol{B}, \boldsymbol{\Lambda}, \pi) + \log p(\boldsymbol{W}_{i}) + \log p(y; \pi) \right\}$$

$$= \sum_{y=0}^{1} I(Y_{i} = y) \left[\mathbf{1}_{n}^{\mathsf{T}} \left\{ \boldsymbol{X}_{L} \odot (\boldsymbol{D}_{L}^{(y)} \boldsymbol{B} + \boldsymbol{W}_{L} \boldsymbol{\Lambda}^{1/2} \boldsymbol{V}^{\mathsf{T}}) - \exp(\boldsymbol{D}_{L}^{(y)} \boldsymbol{B} + \boldsymbol{W}_{L} \boldsymbol{\Lambda}^{1/2} \boldsymbol{V}^{\mathsf{T}}) \right\} \mathbf{1}_{p}$$

$$- \frac{||\boldsymbol{W}_{L}||_{F}^{2}}{2} - \frac{nq}{2} \log(2\pi) - \mathbf{1}_{n}^{\mathsf{T}} \log(\boldsymbol{X}_{L}!) \mathbf{1}_{p} + ny \log \pi + n(1 - y) \log(1 - \pi) \right].$$

Since W_L is also latent, the evaluations of the log-likelihood of the observed data

$$\ell_L(\boldsymbol{B}, \boldsymbol{\Lambda}, \pi) = \log p(\boldsymbol{X}_L, \boldsymbol{Y}_L; \boldsymbol{B}, \boldsymbol{\Lambda}, \pi) = \log \int p(\boldsymbol{X}_L, \boldsymbol{W}_L, \boldsymbol{Y}_L; \boldsymbol{B}, \boldsymbol{\Lambda}, \pi) d\boldsymbol{W}_L$$

is intractable, as well as its maximization with respect to $(\boldsymbol{B}, \boldsymbol{\Lambda})$. In this setting, the most popular strategy to perform maximum likelihood is to use the EM algorithm [Moon, 1996], which requires the evaluation of $E_{W|X}\{\log p(\boldsymbol{X}_L, \boldsymbol{W}_L; \boldsymbol{B}, \boldsymbol{\Lambda}, \pi)\}$. This is challenging as it requires at least the first and second order of $p(\boldsymbol{W}_i|\boldsymbol{X}_i)$ which are unknown in general and hard to compute. Karlis [2005] and Silva et al. [2019] suggest achieving this task via numerical or Monte-Carlo integration, but this approach is too computationally demanding when dealing with even a moderate number of p. To circumvent this issue, we resort instead to a variational strategy and integrate out W under a tractable approximation of $p(\boldsymbol{W}|\boldsymbol{X})$.

2.1 Variational Approximation

Variational approximation [Wainwright et al., 2008] is an approximate inference technique which has been very popular in machine learning. It presents an alternative parameter estimation framework by using a computationally convenient approximating density in place of a more complex posterior density. Using computationally convenient Gaussian densities, complex posterior distributions are approximated by minimizing the Kullback-Leibler (KL) divergence between the true and the approximating densities and therefore, reducing the computational overhead.

Instead of directly maximizing the log likelihood, we maximize the evidence lower bound (ELBO):

$$\mathcal{J}(\boldsymbol{B}, \boldsymbol{\Lambda}, q) = \log p(\boldsymbol{X}, \boldsymbol{Y}; \boldsymbol{B}, \boldsymbol{\Lambda}) - KL[q(\boldsymbol{W}), p(\boldsymbol{W} \mid \boldsymbol{X}, \boldsymbol{Y}; \boldsymbol{B}, \boldsymbol{\Lambda}))]$$
$$= E_q[\log p(\boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Y}; \boldsymbol{B}, \boldsymbol{\Lambda})] - E_q[\log q(\boldsymbol{W})]$$

In our variational approximation, we choose the set Q of product distribution of q-dimensional multivariate Gaussian with diagonal covariance matrices:

$$\mathcal{Q} = \left\{q: q(\boldsymbol{W}) = \prod_i q_i(\boldsymbol{W}_i), q_i(\boldsymbol{W}_i) = \mathcal{N}(\boldsymbol{W}_i; \boldsymbol{m}_i, diag(\boldsymbol{s}_i \circ \boldsymbol{s}_i))), (\boldsymbol{m}_i, \boldsymbol{s}_i) \in \mathbb{R}^q \times \mathbb{R}_+^q\right\}$$

In the supervised setting, let $M_L = (m_1, \dots, m_n)^{\mathsf{T}} \in \mathbb{R}^{n \times q}$ and $S_L = (s_1, \dots, s_n)^{\mathsf{T}} \in \mathbb{R}^{n \times q}$. Let $\Theta = \{B, \Lambda, \pi\}$. The ELBO on the labeled set can be derived as

$$\mathcal{J}_{L}(\boldsymbol{\Theta}, \boldsymbol{M}_{L}, \boldsymbol{S}_{L}; \boldsymbol{X}_{L}, \boldsymbol{D}_{L}) = \sum_{y=0}^{1} I(\boldsymbol{Y}_{L} = y) \left\{ \boldsymbol{1}_{n}^{\mathsf{T}} \left[\boldsymbol{X}_{L} \odot (\boldsymbol{D}_{L}^{(y)} \boldsymbol{B} + \boldsymbol{M}_{L} \boldsymbol{\Lambda}^{1/2} \boldsymbol{V}^{\mathsf{T}}) - \mathbb{E}_{q} \left\{ \exp(\boldsymbol{D}_{L}^{(y)} \boldsymbol{B} + \boldsymbol{W}_{L} \boldsymbol{\Lambda}^{1/2} \boldsymbol{V}^{\mathsf{T}}) \right\} \right] \boldsymbol{1}_{q} - \frac{1}{2} \boldsymbol{1}_{n}^{\mathsf{T}} \left\{ \boldsymbol{M}_{L} \odot \boldsymbol{M}_{L} + \boldsymbol{S}_{L} \odot \boldsymbol{S}_{L} - 2 \log(\boldsymbol{S}_{L}) - \boldsymbol{1}_{n \times q} \right\} \boldsymbol{1}_{q} - \boldsymbol{1}_{n}^{\mathsf{T}} \log(\boldsymbol{X}_{L}!) \boldsymbol{1}_{p} + ny \log \pi + n(1 - y) \log(1 - \pi) \right\}, \tag{2}$$

where

$$\mathbb{E}_q\left\{\exp(\boldsymbol{D}_L^{\scriptscriptstyle(y)}\boldsymbol{B}+\boldsymbol{W}_L\boldsymbol{\Lambda}^{1/2}\boldsymbol{V}^{\scriptscriptstyle\mathsf{T}})\right\}=\exp\left\{\boldsymbol{D}_L^{\scriptscriptstyle(y)}\boldsymbol{B}+\boldsymbol{M}_L\boldsymbol{\Lambda}^{1/2}\boldsymbol{V}^{\scriptscriptstyle\mathsf{T}}+\frac{1}{2}(\boldsymbol{S}_L\odot\boldsymbol{S}_L)(\boldsymbol{\Lambda}^{1/2}\boldsymbol{V}^{\scriptscriptstyle\mathsf{T}}\odot\boldsymbol{\Lambda}^{1/2}\boldsymbol{V}^{\scriptscriptstyle\mathsf{T}})\right\}=:\boldsymbol{A}_L^{\scriptscriptstyle(y)}.$$

2.2 Supervised Setting

In the supervised setting, maximizing the ELBO leads to the variational EM (VEM) algorithm, which alternates between two steps until convergence: (I) VE step: update (M, S) keeping $(B, \Lambda^{1/2})$ fixed; (II) M step: update $(B, \Lambda^{1/2})$ keeping (M, S) fixed. Since the blockwise gradients can be easily derived, we may still use gradient-based local optimization algorithms for maximizing the ELBO,

with block-wise gradients:

$$\frac{\partial \mathcal{J}_{L}}{\partial \boldsymbol{M}_{L}} = (\boldsymbol{X}_{L} - \boldsymbol{A}_{L}) \boldsymbol{V} \boldsymbol{\Lambda}^{1/2} - \boldsymbol{M}_{L}$$

$$\frac{\partial \mathcal{J}_{L}}{\partial \boldsymbol{S}_{L}} = \boldsymbol{S}_{L}^{\odot} - \boldsymbol{S}_{L} - \boldsymbol{A}_{L} (\boldsymbol{V} \boldsymbol{\Lambda}^{1/2} \odot \boldsymbol{V} \boldsymbol{\Lambda}^{1/2}) \odot \boldsymbol{S}_{L}$$

$$\frac{\partial \mathcal{J}_{L}}{\partial \boldsymbol{B}} = (\boldsymbol{X}_{L} - \boldsymbol{A}_{L})^{\mathsf{T}} \boldsymbol{D}_{L}$$

$$\frac{\partial \mathcal{J}_{L}}{\partial \boldsymbol{\Lambda}^{1/2}} = \operatorname{diag} \left\{ \boldsymbol{V}^{\mathsf{T}} \left[(\boldsymbol{X}_{L} - \boldsymbol{A}_{L})^{\mathsf{T}} \boldsymbol{M}_{L} - \{\boldsymbol{A}_{L}^{\mathsf{T}} (\boldsymbol{S} \odot \boldsymbol{S})\} \odot \boldsymbol{V} \boldsymbol{\Lambda}^{1/2} \right] \right\}$$
(3)

3 Simulations

In the simulations, we fit the model in supervised setting as well as unsupervised and semi-supervised settings, but for the bias issue, we can first just focus on the supervised setting. That corresponds to fixedV(sup) in the simulations.

3.1 Data Generation

The datasets are generated as the following:

- (i) Generate $\widetilde{\boldsymbol{\Sigma}} = AR_1(0.5)$. Find its eigen-decomposition $\widetilde{\boldsymbol{\Sigma}} = \boldsymbol{V}\widetilde{\boldsymbol{\Lambda}}\boldsymbol{V}^{\mathsf{T}}$. Let $\boldsymbol{\Lambda} = diag(seq(10, 5, length.out = q))$, and $\boldsymbol{\Sigma} = \boldsymbol{V}_{[,1:q]}\boldsymbol{\Lambda}_{[1:q,1:q]}\boldsymbol{V}_{[,1:q]}^T$.
- (ii) For each patient, generate $Y_i \sim Ber(0.4), U_i \sim Pois(10), \text{ let } \mathbf{D}_i = (1, \log(U_i + 1), Y_i)^\mathsf{T},$ $\mathbf{B} = (0\mathbf{1}_p, 0.1\mathbf{1}_p, (0.8\mathbf{1}_2^\mathsf{T}, 0.2\mathbf{1}_{18}^\mathsf{T}, 0.1\mathbf{1}_{30}^\mathsf{T}, -0.1\mathbf{1}_{50}^\mathsf{T}, 0\mathbf{1}_{p-100}^\mathsf{T})).$
- (iii) Generate $\boldsymbol{W}_i \sim \mathcal{N}(0_q, \boldsymbol{I}_{q \times q})$ and let $\boldsymbol{Z}_i = \boldsymbol{D}_i^{\mathsf{T}} \boldsymbol{B} + \boldsymbol{V} \boldsymbol{\Lambda}^{1/2} \boldsymbol{W}_i$.
- (iv) Generate $X_i \sim Poisson(e^{Z_i})$.

We then randomly choose n samples for which we assume Y_i is observed. To study the behavior of the optimization algorithm and assess our method's robustness to various model specifications, we varied the following generative parameters:

- (a) The number of observed phenotype labels n = 100, 200, 400;
- (b) The total number of patients N = 5000, 10000, 20000;
- (c) The number of selected features p = 100, 200, 400;
- (d) The rank q = 5, 10, 20.

3.2 Benchmark Methods

For comparison, we considered (1) lowrank(sup) supervised MPLN without known V adpated from Chiquet et al. [2018].(2) fixedV(sup): supervised MPLN with known V, (3) lowrank(unsup): unsupervised MPLN model with known V, (4) fixedV(unsup): unsupervised MPLN model with known V, (5) lowrank(semisup): semi-supervised MPLN model without known V, (6) fixedV(semisup): semi-supervised MPLN model with known V. The differences among the models are summarized in table 1.

Method	known V	labels	\mathcal{U} used	# training	# model params.	# var. params.
lowrank(sup)	no	yes	no	n	dp + pq	2nq
fixedV(sup)	yes	yes	no	n	dp + q	2nq
lowrank(unsup)	no	no	yes	N	dp + pq	2Nq
fixedV(unsup)	yes	no	yes	N	dp + q	2Nq
lowrank(semisup)	no	yes	yes	N + n	dp + pq	2(N+n)q
fixedV(semisup)	yes	yes	yes	N+n	dp + q	2(N+n)q

Table 1: Comparison between different models.

3.3 Results

Figure 1: Top: varying p and q with N = 5000, n = 100. Bottom: varying N and n with p = 200, q = 20.

Parameter Estimates We studied how the bias of parameter estimates change with varying N, n, p, q. Figure 1(top) shows the bias of \hat{B}_2 (the coefficients corresponding to the difference in mean

between two groups) with varying p and q when N = 5000, n = 100. As p increases, we observe decrease in bias for all estimators. Intuitively speaking, we are using p measures from each patient i to estimate the variational parameters $\mathbf{m}_i \in \mathbb{R}^q$ and $\mathbf{s}_i \in \mathbb{R}^q$. Figure 1(bottom) shows that the bias stabilizes after n = 200 and does not decrease further with increasing n or N, suggesting that the bias term is not dominated by the sample size.

Figure 2 shows $||\hat{B}_2 - B_2||_2/||B_2||_2$ and $||\hat{\Sigma} - \Sigma||_F/||\Sigma||_F$ with varying p and q with N = 5000, n = 100. We observe increase in the L_2 -norm error of \hat{B}_2 for the supervised estimators, which is likely due to small sample size to estimate the growing number of parameters. The L_2 -norm error of \hat{B}_2 for unsupervised and semi-supervised estimators stayed relatively stable with growing p. For $\hat{\Sigma}$, the relative F-norm error of $\hat{\Sigma}$ for methods without known V (dotted lines) unsurprisingly increases with larger p. By fixing V and reducing the number of parameters from pq to q, we can observe that (i) the relative F-norm error of $\hat{\Sigma}$ of the supervised estimator does not change with p as the it is likely dominated by n, and (ii) the relative F-norm error pf $\hat{\Sigma}$ of the unsupervised and semi-supervised estimators decrease with increasing p, since with large N the bias is likely dominated by estimation of the variational parameters. Comparing across different q, we see that both $||\hat{B}_2 - B||_2/||B||_2$ and $||\hat{\Sigma} - \Sigma||_F/||\Sigma||_F$ increases with larger q for all methods. This is as expected as the number of variational parameters to be estimated grows with the training size and q. In EHR settings, we expect q to be small relative to p, due to similarity and relatedness among the EHR concepts.

Figure 2: $||\hat{B}_2 - B_2||_2/||B_2||_2$ and $||\hat{\Sigma} - \Sigma||_F/||\Sigma||_F$ with varying p and q, with N = 5000, n = 100.

Figure 3 shows $||\widehat{\boldsymbol{B}}_2 - \boldsymbol{B}_2||_2$ and $||\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}||_F / ||\boldsymbol{\Sigma}||_F$ with varying N and n with p = 200, q = 20.

Figure 3: $||\hat{B}_2 - B_2||_2/||B_2||_2$ and $||\hat{\Sigma} - \Sigma||_F/||\Sigma||_F$ with varying N and n, with p = 200, q = 20.

As expected, as n increases, we see reduction in both errors for supervised methods. The errors of semi-supervised methods remains mostly unchanged with growing n or N, suggesting that the errors come from the variational approximation procedure, thus cannot be further reduced with increasing training sample size.

4 Suggested simulation settings

It would be very helpful if we can get a sense of how the bias and error of parameter estimates change with changing n, p, q by using the debiasing method. We can use the data generation setting in section 3.1, and q = 20, p = 100, 200, 400, n = 100, 400 or n = 5000, 10000.

References

- John Aitchison and CH Ho. The multivariate poisson-log normal distribution. *Biometrika*, 76(4): 643–653, 1989.
- Julien Chiquet, Mahendra Mariadassou, and Stéphane Robin. Variational inference for probabilistic poisson pca. *The Annals of Applied Statistics*, 12(4):2674–2698, 2018.
- Dimitris Karlis. Em algorithm for mixed poisson and other discrete distributions. ASTIN Bulletin: The Journal of the IAA, 35(1):3–24, 2005.
- Todd K Moon. The expectation-maximization algorithm. *IEEE Signal processing magazine*, 13(6): 47–60, 1996.
- Anjali Silva, Steven J Rothstein, Paul D McNicholas, and Sanjeena Subedi. A multivariate poissonlog normal mixture model for clustering transcriptome sequencing data. *BMC bioinformatics*, 20 (1):1–11, 2019.
- Sanjeena Subedi and Ryan Browne. A parsimonious family of multivariate poisson-lognormal distributions for clustering multivariate count data. arXiv preprint arXiv:2004.06857, 2020.
- Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008.