CORRIGÉ DU DS°2

QUESTIONS DE COURS : E3A PSI 2008

Je ne reviens bien sûr pas sur les démonstrations...

Question 1.

1. L'implication proposée est fausse comme le montre le contre-exemple suivant :

Si
$$u_n = \frac{1}{n}$$
 pour $n \in \mathbb{N}^*$, la suite (u_n) tend bien vers 0 lorsque n tend vers $+\infty$; cependant, la série harmonique $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ diverge!

2. Il a été démontré en classe que l'implication est vraie :

$$Si$$
 la série $\sum_{n\geq 0} u_n$ converge, alors la suite (u_n) converge vers 0.

3. L'implication a été démontrée en cours pour des séries à termes positifs!.

Dans le cas général, l'implication est fausse comme le montre le contre-exemple suivant :

Soit, pour
$$n \in \mathbb{N}^*$$
, $u_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$ et $v_n = \frac{(-1)^n}{\sqrt{n}}$.
On a bien : $u_n \underset{n \to +\infty}{\sim} v_n$.

Cependant, la série de terme général v_n est convergente, car elle vérifie le critère spécial sur les séries alternées, et la série de terme général u_n est divergente, comme somme d'une série convergente (celle de terme général v_n) et d'une série divergente (la série harmonique).

4. L'implication proposée est fausse comme le montre le contre-exemple suivant :

Si
$$u_n = \frac{(-1)^n}{n}$$
 pour $n \in \mathbb{N}^*$, la série de terme général u_n converge (série harmonique alternée) mais la série de terme général $|u_n|$ diverge (série harmonique).

La réciproque de la propriété est, elle, vraie : toute série de nombres réels qui est absolument convergente est convergente.

Question 2.

On démontre que la série proposée vérifie le critère spécial sur les séries alternées. En effet :

- Pour tout $n \ge 2$, $u_n = (-1)^n \frac{\ln n}{n}$ est du signe de $(-1)^n$: la suite est bien alternée.
- $\lim_{n \to +\infty} u_n = 0$ d'après les croissances comparées des suites usuelles.
- Si on pose, pour tout x > 0, $f(x) = \frac{\ln x}{x}$, f est dérivable sur \mathbb{R}_+^* et $f'(x) = \frac{1 \ln x}{x^2}$ pour tout x > 0.

Pour $x \ge e$, $f'(x) \le 0$; f est décroissante sur $[e, +\infty[$; puisque $|u_n| = f(n)$, on en déduit que la suite $(|u_n|)$ est décroissante pour $n \ge 3$.

Il résulte donc du critère spécial sur les séries alternées que la série $\sum_{n\geq 2} u_n$ converge.

PROBLÈME: CCP PSI 2006

Partie I: deux exemples.

I.1. Cas d'une suite constante.

Soit $\alpha \in \mathbb{C}^*$; on suppose ici que la suite a est définie par $\forall n \in \mathbb{N}, \ a_n = \alpha$.

I.1.1. D'après la formule du binôme,

$$\sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n$$

I.1.2. On a donc :
$$a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \alpha = \frac{1}{2^n} 2^n \alpha = \alpha$$

I.1.3. α étant différent de 0, les termes généraux des séries $\sum_{n\geqslant 0}a_n$ et $\sum_{n\geqslant 0}a_n^*$ ne tendent pas vers 0 : ces séries sont grossièrement divergentes.

I.2. Cas d'une suite géométrique.

Soit $z \in \mathbb{C}$; on suppose ici que la suite a est définie par : $\forall n \in \mathbb{N}, \ a_n = z^n$.

I.2.1. Toujours d'après la formule du binôme :

$$a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} z^k = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} z^k 1^{n-k} = \frac{1}{2^n} (z+1)^n$$

Ainsi, (a_n^*) est une suite géométrique de raison $\frac{z+1}{2}$.

I.2.2. On suppose ici que |z| < 1.

1.2.2.1. On sait calculer la somme des termes d'une suite géométrique. La raison z étant différente de 1,

$$\sum_{k=0}^{n} z^k = \frac{1 - z^{n+1}}{1 - z}$$

Pour |z| < 1, $\lim_{n \to +\infty} z^{n+1} = 0$ donc ce terme admet une limite. Ainsi, $\sum_{n \in \mathbb{N}} a_n$ converge et

$$A(z) = \sum_{n=0}^{\infty} z^k = \frac{1}{1-z}$$

1.2.2.2. On a $\left|\frac{z+1}{2}\right| \leqslant \frac{1+|z|}{2} < 1$ et $\sum_{n \in \mathbb{N}} a_n^*$ est donc aussi une série géométrique convergente de somme

$$\sum_{n=0}^{+\infty} a_n^* = \frac{1}{1 - \frac{z+1}{2}} = \frac{2}{1-z} = 2A(z)$$

I.2.3. On suppose ici que $|z| \ge 1$.

- I.2.3.1. La série $\sum_{n\geqslant 0}a_n=\sum_{n\geqslant 0}z^n$ est grossièrement divergente (terme général qui n'est pas de limite nulle). sk
- I.2.3.2. Pour z=-2, on a $a_n^*=\frac{(-1)^n}{2^n}$, la série $\sum_{n\geqslant 0}a_n^*$ est une série géométrique de raison $-\frac{1}{2}$ et elle est donc convergente (de somme $\frac{2}{3}$).

I.2.3.3. Pour $z=\mathrm{e}^{\mathrm{i}\theta}$ avec $0<|\theta|<\pi$, on a $a_n^*=\frac{(1+\mathrm{e}^{\mathrm{i}\theta})^n}{2^n}$. Donc $\sum_{n\geqslant 0}a_n^*$ est une série géométrique de raison $\frac{1+\mathrm{e}^{\mathrm{i}\theta}}{2}$.

Or:

$$\left| \frac{1 + e^{i\theta}}{2} \right|^2 = \frac{(1 + \cos(\theta))^2 + \sin^2(\theta)}{4} = \frac{1 + 2\cos\theta + \cos^2\theta + \sin^2\theta}{4} = \frac{2(1 + \cos\theta)}{4} = \cos^2\left(\frac{\theta}{2}\right)$$

$$donc \left| \frac{1 + e^{i\theta}}{2} \right| < 1 \text{ puisque } 0 < \left| \frac{\theta}{2} \right| < \frac{\pi}{2}.$$

La série $\sum_{n>0} a_n^*$ est donc convergente et a pour somme :

$$\sum_{n=0}^{+\infty} a_n^* = \frac{1}{1 - \frac{1 + e^{i\theta}}{2}} = \frac{2}{1 - e^{i\theta}} = \frac{2}{e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}} \right)}$$
$$= \frac{2e^{-i\frac{\theta}{2}}}{-2i\sin\frac{\theta}{2}} = \frac{ie^{-i\frac{\theta}{2}}}{\sin\frac{\theta}{2}} = 1 + i\cot\left(\frac{\theta}{2}\right)$$

Partie II : étude du procédé de sommation.

Rem: L'énoncé supposait dans cette partie que a est à valeurs réelles, mais cela ne sert strictement à rien pour les démonstrations!

II.1. Comparaison des convergences des deux suites.

II.1.1. Soit $n \in \mathbb{N}^*$, on considère un entier k fixé, $k \in [0, n]$

II.1.1.1.
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n.(n-1)...(n-k+1)}{k!} \sim \frac{n^k}{k!}$$
.

II.1.1.2. Par croissance comparées, on a donc

$$\lim_{n \to +\infty} \frac{1}{2^n} \binom{n}{k} = 0$$

II.1.2.
$$S_q(n,a) = \sum_{k=0}^{q} {n \choose k} \frac{a_k}{2^n}$$
.

q étant fixé, $S_q(n,a)$ est donc une somme finie de termes de limite nulle et

$$\lim_{n \to +\infty} S_q(n, a) = 0$$

II.1.3. Soit $\varepsilon > 0$. Comme a est de limite nulle, il existe un rang q tel que $\forall k \geqslant q, \ |a_k| \leqslant \varepsilon/2$. La suite $S_q(n,a)$ étant de limite nulle, il existe n_0 tel que $\forall n \geqslant n_0, \ |S_q(n,a)| \leqslant \varepsilon/2$. On a alors

$$\forall n \geqslant n_0, \ |a_n^*| = \left| S_q(n,a) + \frac{1}{n} \sum_{k=q+1}^n \binom{n}{k} a_k \right| \leqslant \frac{\varepsilon}{2} + \frac{1}{2^n} \sum_{k=q+1}^n \binom{n}{k} \frac{\varepsilon}{2}$$

Comme $\sum_{k=q+1}^{n} {n \choose k} \le \sum_{k=0}^{n} {n \choose k} \le 2^n$, on a finalement

$$\forall n \geqslant n_0, |a_n^*| \leqslant \varepsilon$$

et on a montré que

$$\lim_{n\to+\infty}a_n^*=0$$

Remarque : Il s'agit là de la démonstration classique du célèbre théorème de Césaro!

II.1.4. Puisque $\lim_{n\to+\infty}a_n=\ell$, on a $\lim_{n\to+\infty}(a_n-\ell)=0$. Or :

$$a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} (a_n - \ell) + \underbrace{\frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \ell}_{-\ell} = b_n^* + \ell \quad \text{où} \quad b_n = a_n - \ell$$

Comme $\lim_{n\to\infty}b_n=0$, on a $\lim_{n\to\infty}b_n^*=0$ d'après la question précédente et donc

$$\lim_{n\to\infty}a_n^*=\ell$$

II.1.5. On vient de prouver que la convergence de la suite $(a_n)_{n\in\mathbb{N}}$ implique la convergence de la suite $(a_n^*)_{n\in\mathbb{N}}$ mais la réciproque n'est pas toujours vraie.

En effet, pour $a_n = (-1)^n$, la suite $(a_n)_{n \in \mathbb{N}}$ est une suite divergente et

$$\forall n \in \mathbb{N}^*, \ a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} (-1)^n = \frac{1}{2^n} (1 + (-1))^n = 0$$

Donc ici la suite $(a_n^*)_{n\in\mathbb{N}}$ est convergente.

Il n'y a donc pas équivalence entre la convergence de la suite $(a_n)_{n\in\mathbb{N}}$ et celle de la suite $(a_n^*)_{n\in\mathbb{N}}$.

II.2. Comparaison des convergences des séries $\sum a_n$ et $\sum a_n^*$.

Pour
$$n \in \mathbb{N}^*$$
, on note $S_n = \sum_{k=0}^n a_k$, $T_n = \sum_{k=0}^n a_k^*$, $U_n = 2^n T_n$.

II.2.1. Il suffit de calculer :

$$\begin{aligned} & U_0 = T_0 = a_0 = S_0 \\ & U_1 = 2T_1 = 2(a_0^* + a_1^*) = 2\left(a_0 + \frac{1}{2}(a_0 + a_1)\right)) = 2S_0 + S_1 \\ & U_2 = 4T_2 = 4(a_0^* + a_1^* + a_2^*) = 4\left(a_0 + \frac{1}{2}(a_0 + a_1) + \frac{1}{4}(a_0 + 2a_1 + a_2)\right) = S_2 + 3S_1 + 3S_0 \end{aligned}$$

$$U_{3} = 8T_{3} = 8(a_{0}^{*} + a_{1}^{*} + a_{2}^{*} + a_{3}^{*}) = 8\left(a_{0} + \frac{1}{2}(a_{0} + a_{1}) + \frac{1}{4}(a_{0} + 2a_{1} + a_{2}) + \frac{1}{8}(a_{0} + 3a_{1} + 3a_{2} + a_{3})\right)$$

$$= 8\underbrace{a_{0}}_{=S_{0}} + 4\underbrace{(a_{0} + a_{1})}_{=S_{1}} + 2\underbrace{(a_{0} + 2a_{1} + a_{2})}_{=S_{2} + S_{1} - S_{0}} + \underbrace{(a_{0} + 3a_{1} + 3a_{2} + a_{3})}_{=S_{3} + 2S_{2} - 2S_{0}} = S_{3} + 4S_{2} + 6S_{1} + 4S_{0}$$

II.2.2 .

II.2.2.1. On reconnaît dans les expressions précédentes les coefficients binomiaux.

On peut donc penser que

$$U_n = \sum_{k=0}^n \binom{n+1}{k+1} S_k$$

c'est-à-dire
$$\lambda_{n,k} = \binom{n+1}{k+1}$$
.

II.2.2.2. Soit l'hypothèse de récurrence :

$$(H_n): U_n = \sum_{k=0}^n \binom{n+1}{k+1} S_k$$

- On vient de voir que cette hypothèse est vérifiée pour n = 0, 1, 2, 3.
- Si on suppose (H_n) réalisée à un certain rang n, alors :

$$\begin{aligned} \mathbf{U}_{n+1} &= 2^{n+1} \mathbf{T}_{n+1} = 2^{n+1} \sum_{k=0}^{n+1} a_k^* = 2 \underbrace{\left(2^n \sum_{k=0}^n a_n^* \right)}_{=\mathbf{T}_n} + 2^{n+1} a_{n+1}^* \\ &= 2 \sum_{k=0}^n \lambda_{n,k} \mathbf{S}_k + \sum_{k=0}^{n+1} \binom{n+1}{k} a_k \\ &= 2 \sum_{k=0}^n \lambda_{n,k} \mathbf{S}_k + \sum_{k=0}^{n+1} \binom{n+1}{k} (\mathbf{S}_k - \mathbf{S}_{k-1}) \qquad (\text{car } a_k = \mathbf{S}_k - \mathbf{S}_{k-1}) \\ &= 2 \sum_{k=0}^n \binom{n+1}{k+1} \mathbf{S}_k + \sum_{k=0}^{n+1} \binom{n+1}{k} \mathbf{S}_k - \sum_{k=0}^n \binom{n+1}{k+1} \mathbf{S}_k \quad \text{d'après } (\mathbf{H}_n) \\ &= \mathbf{S}_{n+1} + \sum_{k=0}^n \underbrace{\left(\binom{n+1}{k} + \binom{n+1}{k+1} \right)}_{=\binom{n+2}{k+1}} \mathbf{S}_k = \sum_{k=0}^{n+1} \binom{n+2}{k+1} \mathbf{S}_k \end{aligned}$$

donc $H_n \Longrightarrow H_{n+1}$, ce qui achève la récurrence.

II.2.3. On suppose que $\sum_{n\geqslant 0} a_n$ converge et on note S sa somme. Grâce à la question précédente, on a

$$U_{n-1} = \sum_{k=0}^{n-1} {n \choose k+1} S_k = \sum_{k=1}^{n} {n \choose k} S_{k-1} = \sum_{k=0}^{n} {n \choose k} S_{k-1} \quad (S_{-1} = 0)$$

Comme $\lim_{n\to+\infty} S_{n-1} = S$, la question II.1 donne :

$$\lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} S_{k-1} = S$$

ce qui donne $\frac{\mathbf{U}_{n-1}}{2^n} \to \mathbf{S}$ ou encore $\mathbf{T}_{n-1} = \frac{\mathbf{U}_{n-1}}{2^{n-1}} \to 2\mathbf{S}$. La série $\sum_{n \geq 0} a_n^*$ converge et

$$\sum_{n=0}^{\infty} a_n^* = 2 \sum_{n=0}^{\infty} a_n$$

II.2.4. D'après I.2.3, si $a_n = (-2)^n$ alors $\sum_{n \ge 0} a_n$ diverge alors que $\sum_{n \ge 0} a_n^*$ converge.

Les séries $\sum_{n\geqslant 0} a_n$ et $\sum_{n\geqslant 0} a_n^*$ n'ont donc pas toujours même nature.

Partie III: une étude de fonctions.

III.1. Etude de f.

III.1.1. f(x) est évidemment définie pour x = 0 (et f(0) = 1), et, pour $x \neq 0$;

$$\left| \frac{\frac{x^{n+1}}{(n+2)!}}{\frac{x^n}{(n+1)!}} \right| = \frac{|x|}{n+2} \xrightarrow[n \to +\infty]{} 0$$

ce qui prouve, par la règle de d'Alembert, la convergence absolue (donc la convergence) de la série $\sum_{n \ge 0} \frac{x^n}{(n+1)!}$.

Ainsi, f est bien définie sur $\mathbb R$ (et elle y est de classe $\mathscr C^\infty$ d'après la propriété admise dans l'énoncé).

III.1.2. Pour tout $x \in \mathbb{R}$:

$$xf(x) = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{(n+1)!} = \sum_{n=1}^{+\infty} \frac{x^n}{n!} = e^x - 1$$

III.1.3. Donc immédiatement : $e^{-x} f(x) = \frac{1 - e^{-x}}{x}$ si $x \neq 0$ et vaut 1 en 0.

III.2. Etude de g.

III.2.1. Pour tout entier $n \ge 1$: $\sigma_n \le n$ donc, pour tout x réel: $\left| \frac{\sigma_n x^n}{n!} \right| \le \left| \frac{x^n}{(n-1)!} \right|$.

La série de terme général $\frac{x^n}{(n-1)!}$ étant absolument convergente (même démonstration que dans III.1.1), il résulte des théorèmes de comparaison des séries à termes réels positifs qu'il en est de même de la série de terme général $\frac{\sigma_n x^n}{n!}$.

Ainsi, g est bien définie sur \mathbb{R} .

III.2.2. D'après les propriétés admises dans l'énoncé, on peut écrire :

$$g'(x) = \sum_{n=1}^{+\infty} \frac{\sigma_n n x^{n-1}}{n!} = \sum_{n=1}^{+\infty} \frac{\sigma_n x^{n-1}}{(n-1)!} = \sum_{n=0}^{+\infty} \frac{\sigma_{n+1} x^n}{n!}$$

donc

$$g'(x) - g(x) = \sum_{n=0}^{+\infty} \frac{(\sigma_{n+1} - \sigma_n)x^n}{n!} = \sum_{n=0}^{+\infty} \frac{1}{n+1} \frac{x^n}{n!} = \sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!} = f(x)$$

Ainsi : g' - g = f.

III.2.3. Les solutions de l'équation différentielle y'-y=0 sont de la forme $x\mapsto \lambda e^x$. On applique la méthode de la variation de la constante pour trouver celles de l'équation y'-y=f. On cherche donc g(x) sous la forme $\lambda(x)e^x$ ce qui nous conduit à

$$\lambda'(x)e^{x} = f(x) \text{ d'où } \lambda'(x) = e^{-x}f(x) \text{ puis } \lambda(x) = \int_{0}^{x} e^{-t}f(t)dt + cste \text{ et enfin}$$
$$g(x) = \left(\int_{0}^{x} e^{-t}f(t)dt + cste\right)e^{x}$$

Or g(0) = 0 donc cste = 0 ce qui donne bien la relation de l'énoncé.

III.3. La fonction F.

III.3.1. On sait que : $\forall x \in \mathbb{R}$, $e^{-x} = \sum_{n=0}^{+\infty} \frac{(-x)^n}{n!}$, donc, d'après III.1.3, on aura, pour $x \neq 0$:

$$e^{-x}f(x) = \frac{1 - e^{-x}}{x} = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}x^{n-1}}{n!} = \sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{(n+1)!},$$

l'égalité restant vraie pour x = 0.

On peut alors poser, pour tout $x \in \mathbb{R}$:

$$G(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{(n+1)(n+1)!}$$

la série écrite ci-dessus étant absolument convergente pour les mêmes raisons que dans III.1.1 (règle de d'Alembert).

D'après la propriété admise dans l'énoncé, G est de classe \mathscr{C}^{∞} sur $\mathbb R$ et

$$\forall x \in \mathbb{R} , G'(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{(n+1)!} = e^{-x} f(x)$$

Puisque G(0) = 0, on en déduit $G(x) = \int_0^x e^{-t} f(t) dt = F(x)$ et finalement

$$F(x) = G'x = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{(n+1)(n+1)!} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n \cdot n!}$$

III.3.2.
$$\forall x \in \mathbb{R}, \ g(x) = e^x F(x) = \left(\sum_{k=0}^{\infty} \frac{x^k}{n!}\right) \cdot \left(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n \cdot n!}\right) = \sum_{n=0}^{+\infty} \sigma_n \frac{x^n}{n!}.$$

On effectue le produit de Cauchy des deux séries, qui sont bien absolument convergentes, et on identifie les coefficients (ce qui est permis d'après une propriété admise dans l'énoncé), d'où :

$$\forall n \in \mathbb{N}^*, \ \frac{\sigma_n}{n!} = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!} \frac{1}{k!!} \frac{1}{(n-k)!}$$

III.4. La série $\sum \frac{(-1)^{k+1}}{k}$.

III.4.1. Soit
$$w_k = \ln\left(\frac{k+1}{k}\right) - \frac{1}{k+1}$$
 pour $k \in \mathbb{N}^*$.

III.4.1.1. On a

$$w_k = -\ln\left(1 - \frac{1}{k+1}\right) - \frac{1}{k+1} \sim \frac{1}{2(k+1)^2}$$

puisque $\ln(1+x) - x \sim -\frac{x^2}{2}$.

La série de terme général $\frac{1}{k^2}$ étant une série à termes positifs convergente, il résulte des théorèmes de comparaison que la série de terme général w_k est elle aussi convergente.

III.4.1.2. Soit $v_n = \sigma_n - \ln(n)$; on a $v_n - v_{n+1} = w_n$. Or on sait que la série $\sum_{n \ge 1} (v_n - v_{n+1})$ et la suite $(v_n)_{n \in \mathbb{N}^*}$ ont même nature (*résultat important du cours !*); d'après la question précédente,

la suite (v_n) est donc convergente.

Rem : sa limite est la constante d'Euler γ ...

III.4.2. En regroupant les termes d'indices pairs et ceux d'indices impairs, on a

$$\tau_{2n} = \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} = -\sum_{k=1}^{n} \frac{1}{2k} + \sum_{k=1}^{n} \frac{1}{2k-1}$$
$$\sigma_{2n} = \sum_{k=1}^{n} \frac{1}{2k} + \sum_{k=1}^{n} \frac{1}{2k-1}$$

En faisant la différence, on obtient

$$\tau_{2n} = \sigma_{2n} - \sigma_n$$

III.4.3.
$$\forall n \in \mathbb{N}^*, \ \tau_{2n} = \sigma_{2n} - \sigma_n = \underbrace{(\sigma_{2n} - \ln(2n))}_{\substack{\text{quand } n \to +\infty}} - \underbrace{(\sigma_n - \ln(n))}_{\substack{\text{quand } n \to +\infty}} + \underbrace{\ln(2n) - \ln(n)}_{\substack{\text{eln } 2}}$$

donc $\lim_{n\to+\infty} \tau_{2n} = \ln 2$.

Or
$$\tau_{2n+1} - \tau_{2n} = \frac{1}{2n+1} \xrightarrow[n \to +\infty]{} 0$$
 donc $\lim_{n \to +\infty} \tau_{2n+1} = \lim_{n \to +\infty} \tau_{2n} = \ln 2$.

La suite $(\tau_n)_{n\in\mathbb{N}}$ est donc convergente de limite $\ln(2)$, c'est-à-dire que la série $\sum_{k\geqslant 1}\frac{(-1)^{k+1}}{k}$ est convergente de somme $\ln(2)$.

III.5. Etude de la fonction ϕ .

III.5.1. Puisque $\lim_{n\to +\infty}\sigma_n - \ln n = \gamma$ et que $\lim_{n\to +\infty} \ln n = +\infty$, on a l'équivalent : $\sigma_n \underset{n\to +\infty}{\longleftarrow} \ln n$.

D'où, pour tout $x \in \mathbb{R}^*$:

$$\lim_{n \to \infty} \left| \frac{\sigma_{n+1} x^{n+1}}{\sigma_n x^n} \right| = \lim_{n \to +\infty} \frac{\ln(n+1)}{\ln n} |x| = |x|$$

Il résulte alors de la règle de d'Alembert que la série $\sum_{n\geqslant 1}\sigma_nx^n$ est absolument convergente si |x|<1 et divergente si |x|>1.

On a donc R = 1.

III.5.2. Puisque $\lim_{n\to\infty}\sigma_n=+\infty$, la série $\sum_{n\geqslant 1}\sigma_nx^n$ diverge grossièrement pour $x=\pm 1$. L'ensemble de définition de ϕ est donc l'intervalle]-1,1[.

D'après la propriété admise dans l'énoncé, φ est de classe \mathscr{C}^{∞} sur] – 1,1 \lceil et

$$\forall x \in [0,1[, \phi'(x)] = \sum_{n=1}^{+\infty} n\sigma_n x^{n-1} \ge 0$$

et ϕ est donc croissante sur [0,1[.

III.5.3. La relation $\gamma_n = \frac{\sigma_n}{n!}$ peut s'écrire d'après le résultat de III.3.2 :

$$\sigma_n = \sum_{k=1}^n \binom{n}{k} \frac{(-1)^{k+1}}{k}$$

Si on pose $a_k = \frac{(-1)^{k+1}}{k}$ pour $k \ge 1$ et $a_0 = 0$, on a donc

$$\frac{\sigma_n}{2^n} = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k = a_n^*$$

La partie II indique alors que la série $\sum_{n\in\mathbb{N}}a_n^*$ est convergente de somme égale à deux fois celle de

$$\sum_{n\in\mathbb{N}}a_n$$
. On a ainsi

$$\phi\left(\frac{1}{2}\right) = \sum_{n=1}^{+\infty} \frac{\sigma_n}{2^n} = 2\ln(2)$$

III.5.4. Soit $x \in]-1,1[$.

Soit $u_k = \frac{x^k}{k}$ si $k \ge 1$ et $u_0 = 0$ et soit $v_k = x^k$. On a

$$\forall n \geqslant 0, \ \sigma_n x^n = \sum_{k=0}^n u_k v_{n-k}$$

en ayant posé de plus $\sigma_0 = 0$.

La série $\sum_{n\geqslant 0} \sigma_n x^n$ est donc la série produit de Cauchy des séries $\sum_{k\geqslant 1} \frac{x^k}{k}$ et $\sum_{k\geqslant 0} x^k$. Ces séries étant absolument convergentes lorsque $x\in]-1,1[$, le cours indique alors que

$$\forall x \in]-1,1[, \phi(x) = \left(\sum_{k=1}^{+\infty} \frac{x^k}{k}\right) \left(\sum_{k=0}^{+\infty} x^k\right) = -\frac{\ln(1-x)}{1-x}$$

On retrouve $\phi(1/2) = 2\ln(2)$.