Different programming languages support different styles of programming (called programming paradigms). Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Integrated development environments (IDEs) aim to integrate all such help. One approach popular for requirements analysis is Use Case analysis. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. One approach popular for requirements analysis is Use Case analysis. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Code-breaking algorithms have also existed for centuries. Code-breaking algorithms have also existed for centuries. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Many applications use a mix of several languages in their construction and use. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Whatever the approach to development may be, the final program must satisfy some fundamental properties. While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams.