PATENT NON-FINAL

IN THE CLAIMS:

1. (currently amended) In a sealed, nonaqueous electrolyte secondary battery having an outer casing which deforms as an internal pressure of the battery increases, said nonaqueous electrolyte secondary battery being characterized as using a material capable of storing and releasing lithium as the negative electrode material, and a mixture containing a lithium transition metal complex oxide and lithium cobaltate as the positive electrode material, said lithium transition metal complex oxide containing Ni and Mn as transition metals, having a layered structure and containing fluorine and obtained by heat treating a mixture of a fluorine compound and raw materials used to formulate said lithium transition metal complex oxide by heat treatment.

2. (canceled)

- 3. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 1, characterized in that said outer casing is formed at least partly of an aluminum alloy or laminated aluminum film with a thickness of 0.5 mm or below.
 - 4. (currently amended) In a nonaqueous electrolyte secondary

PATENT NON-FINAL

battery which has a rectangular shape and includes positive and negative electrodes each having a rectangular electrode face, said nonaqueous electrolyte secondary battery being characterized as using a material capable of storing and releasing lithium as the negative electrode material, and a mixture containing a lithium transition metal complex oxide and lithium cobaltate as the positive electrode material, said lithium transition metal complex oxide containing Ni and Mn as transition metals, having a layered structure and containing fluorine and obtained by heat treating a mixture of a fluorine compound and raw materials used to formulate said lithium transition metal complex oxide by heat treatment.

5. (currently amended) A sealed, nonaqueous electrolyte secondary battery using a lithium transition metal complex oxide containing Ni and Mn as transition metals and having a layered structure, as the positive electrode material, and having an outer casing which, when only said lithium transition metal complex oxide is used as the positive electrode material, is caused to expand by a gas generated in the battery while stored; said nonaqueous electrolyte secondary battery being characterized in that a mixture of said lithium transition metal complex oxide containing fluorine and lithium cobaltate is used as the positive electrode material,

PATENT NON-FINAL

said lithium transition metal complex oxide containing fluorine being obtained by heat treating a mixture of a fluorine compound and raw materials used to formulate said lithium transition metal complex oxide by heat treatment.

- 6. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 1, characterized in that said lithium transition metal complex oxide is represented by the formula $\text{Li}_a \text{Mn}_x \text{Ni}_y \text{Co}_z \text{O}_2$ (wherein a, x, y and z are numerical values which satisfy the relationships $0 \le a \le 1.2$, x + y + z = 1, x > 0, y > 0, and $z \ge 0$).
- 7. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 1, characterized in that said lithium transition metal complex oxide contains nickel and manganese in substantially the same amount.
- 8. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 1, characterized in that said lithium transition metal complex oxide has a mean particle diameter of 20 µm or below.

PATENT NON-FINAL

9. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 1, characterized in that said lithium cobaltate has a mean particle diameter of 10 μm or below.

10 - 11. (canceled)

12. (withdrawn-currently amended) A method for reducing a gas generated in a nonaqueous electrolyte secondary battery, while stored in the charged state, which uses a lithium transition metal complex oxide containing Ni and Mn as transition metals and having a layered structure, as the positive electrode material; said method being characterized in that lithium cobaltate is mixed in a lithium transition metal complex oxide containing Ni and Mn as transition metals and containing fluorine and which is obtained by heat treating a mixture of a fluorine compound raw materials used to formulate said lithium transition metal complex oxide by heat treatment.

13. (cancelled)

14. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 4, characterized in that said

PATENT NON-FINAL

lithium transition metal complex oxide is represented by the formula $\text{Li}_a \text{Mn}_x \text{Ni}_y \text{Co}_2 \text{O}_2$ (wherein a, x, y and z are numerical values which satisfy the relationships $0 \le a \le 1.2$, x + y + z = 1, x > 0, y > 0, and $z \ge 0$).

- 15. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 5, characterized in that said lithium transition metal complex oxide is represented by the formula $\text{Li}_{3}\text{Mn}_{x}\text{Ni}_{y}\text{Co}_{z}\text{O}_{2}$ (wherein a, x, y and z are numerical values which satisfy the relationships $0 \le a \le 1.2$, x + y + z = 1, x > 0, y > 0, and $z \ge 0$).
- 16. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 4, characterized in that said lithium transition metal complex oxide contains nickel and manganese in substantially the same amount.
- 17. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 5, characterized in that said lithium transition metal complex oxide contains nickel and manganese in substantially the same amount.

PATENT NON-FINAL

- 18. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 4, characterized in that said lithium transition metal complex oxide has a mean particle diameter of 20 µm or below.
- 19. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 5, characterized in that said lithium transition metal complex oxide has a mean particle diameter of 20 µm or below.
- 20. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 4, characterized in that said lithium cobaltate has a mean particle diameter of 10 µm or below.
- 21. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 5, characterized in that said lithium cobaltate has a mean particle diameter of 10 µm or below.

22 - 23. (canceled)

24. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 1, characterized in that said

PATENT NON-FINAL

fluoride compound is LiF.

- 25. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 1, characterized in that a fluorine content of said lithium transition metal complex oxide is between 100 ppm and 20,000 ppm.
- 26. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 4, characterized in that said fluoride compound is LiF.
- 27. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 4, characterized in that a fluorine content of said lithium transition metal complex oxide is between 100 ppm and 20,000 ppm.
- 28. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 5, characterized in that said fluoride compound is LiF.
- 29. (previously presented) The nonaqueous electrolyte secondary battery as recited in claim 5, characterized in that a

PATENT NON-FINAL

fluorine content of said lithium transition metal complex oxide is between 100 ppm and 20,000 ppm.