Combinatoria

Andrea Canale

December 14, 2024

Contents

1	Principio moltiplicativo del conteggio	1
2	Ordinamento	2
3	Anagrammi	2
4	Disposizioni	2
	4.1 Disposizioni con ripetizione	2
	4.2 Disposizioni semplici	3
	4.3 Disposizioni circolari	3
5	Combinazioni semplici	3
6	Combinazioni con ripetizione	3
7	Coefficienti binomiali	4
	7.1 Formule dei coefficienti binomiali	4
	7.2 Formula del binomio di Newton	4

1 Principio moltiplicativo del conteggio

Se dobbiamo risolvere k compiti e per il primo compito abbiamo n_1 modi per risolverlo, per il secondo abbiamo n_2 modi per risolverlo e così via, il numero totale di modi per risolvere i compiti consecutivamente è dato da

$$\prod_{i=1}^{k} n_i$$

cioè la produttoria di tutti i modi.

2 Ordinamento

Dato un insieme A con cardinalità n, un ordinamento di A è una funzione biettiva $f: I_n \to A$, dove I_n è l'insieme ordinato degli indici.

L'insieme di tutti gli ordinamenti di A è denotato come O_a

La sua cardinalità si può calcolare attraverso la funzione fattoriale:

$$|O_a| = n!$$

Esempio:

 $A = \{a, b\}$ i suoi possibili ordinamenti sono $O_a = \{(a, b), (b, a)\}$, infatti $|O_a| = 2! = 4$

3 Anagrammi

Gli anagrammi sono dei casi particolari di ordinamenti dove l'insieme di elementi di cui fare un ordinamento contiene delle ripetizioni.

La funzione ordinamento che crea gli anagrammi non è sicuramente iniettiva in quanto potrebbero esserci delle ripetizioni.

La cardinalità dell'insieme di tutti i possibili anagrammi su un insieme è

$$\frac{n!}{r_1! \cdot \ldots \cdot r_k!}$$

Dove $r_1...r_k$ sono il numero di ripetizioni dei simboli.

Esempio:

 $A = \{O, R, O\}$ ha come ordinamenti $O_a = \{(O, R, O), (R, O, O), (O, R, O), (O, O, R)\}$, infatti $|O_a| = \frac{3!}{2!} = \frac{6}{2} = 3$ perchè l'elemento duplicato non si conta

4 Disposizioni

4.1 Disposizioni con ripetizione

Sia A un insieme finito con cardinalità n e $k \ge 1$. Una disposizione con ripetizione di ordine k in A è un'insieme di K elementi di A che si potrebbero ripetere tra loro.

Il numero totale di disposizioni con ripetizione è dato da

$$n^k$$

Esempio:

Dato l'insieme $D = \{A, B, C\}$, le loro disposizioni saranno: $\{(A, A), (A, B), (A, C), (B, A), (B, B), (B, C), (C, A), (C, A$

4.2 Disposizioni semplici

Sia A un insieme finito con cardinalità n e $k \ge 1$. Una disposizione semplice di ordine k in A è un'insieme di K elementi di A distinti tra loro.

La formula per calcolare l'insieme di tutte le possibili disposizioni semplici è

$$D_{n,k} = \frac{n!}{(n-k)!}$$

Notiamo che la permutazione $D_{n,n} = n!$

Esempio:

Se vogliamo calcolare tutte le possibili password formate da 8 caratteri sull'insieme A composto da tutte le lettere dell'alfabeto e i numero da 0 a 9, faremo il seguente calcolo:

$$D_{36,8} = \frac{36!}{28!} = 1220096908800$$

4.3 Disposizioni circolari

In una disposizione circolare l'ordine relativo degli oggetti non cambia se viene traslato di una posizione e quindi otteniamo:

$$\frac{n!}{n} = (n-1)!$$

Ad esempio una disposizione circolare può essere: Disporre persone in un cerchio, ecc...

5 Combinazioni semplici

Sia A un insieme finito con cardinalità n e sia k un insieme tra 0 e n. Si dice combinazione semplice di ordine k il numero di sottoinsiemi C con |C| = k. Il numero di combinazioni semplici possibili si può calcolare attraverso questa formula:

$$C_{n,k} = \frac{n!}{k! \cdot (n-k)!}$$

Esempio:

Nel SuperEnalotto vengono estratti 6 numeri su 90. Quante sono le estrazioni possibili?

$$C_{90,6} = \frac{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86 \cdot 85}{6!} = 622614630$$

6 Combinazioni con ripetizione

Sia A un insieme finito con cardinalità n e sia k un insieme tra 0 e n. Si dice combinazione con ripetizione di ordine k il numero di sottoinsiemi C con |C| = k dove gli elementi possono essere

ripetuti tra loro. Il numero di combinazioni semplici possibili si può calcolare attraverso questa formula:

$$C_{n,k} = C_{k+n-1,n-1} = \frac{(k+n-1)!}{(n-1)!k!}$$

7 Coefficienti binomiali

Un modo più compatto per scrivere il numero di combinazioni semplici di ordine k è usare la seguente notazione:

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

A questo punto il numero di combinazioni semplici su un insieme con cardinalità n di ordine k può essere scritta come:

$$C_{n,k} = \binom{n}{k}$$

7.1 Formule dei coefficienti binomiali

•
$$\forall n \ge 0, \, \binom{n}{0} = \binom{n}{n} = 1$$

• Per ogni coppia di numeri k ed n
 tali che
$$n \geq 0$$
 e $0 \leq k \leq n$, vale $\binom{n}{k} = \binom{n}{n-k} = 1$

• Per ogni coppia di numeri k
 ed n tali che
$$n\geq 1$$
 e $1\leq k\leq n,$ vale $\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}=\binom{n}{k}$

7.2 Formula del binomio di Newton