Equations différentielles linéaires

Dans ce chapitre, I désigne un intervalle de \mathbb{R} et E un \mathbb{K} -espace vectoriel normé de dimension finie ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

1 Généralités

Définition 1.1 Equation différentielle linéaire

On appelle équation différentielle linéaire une équation de la forme

$$x' = a(t)(x) + b(t)$$

où

- $a: I \to \mathcal{L}(E)$ est continue;
- $b: I \rightarrow E$ est continue;
- $x: I \to E$ est une fonction **inconnue** de classe \mathcal{C}^1 .

Ecriture matricielle d'une équation différentielle linéaire

Si $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E, alors en notant

- $A(t) \in \mathcal{M}_n(\mathbb{R})$ la matrice de a(t) dans la base \mathcal{B} ;
- $B(t) \in \mathcal{M}_{n,1}(\mathbb{R})$ la matrice de b(t) dans la base \mathcal{B} ;
- $X(t) \in \mathcal{M}_{n,1}(\mathbb{R})$ la matrice de x(t) dans la base \mathcal{B} ;

l'équation différentielle

$$x' = a(t)(x) + b(t)$$

équivaut à

$$X' = A(t)X + B(t)$$

Définition 1.2 Equation différentielle homogène

L'équation différentielle homogène associée à l'équation différentielle linéaire

$$x' = a(t)(x) + b(t)$$

est

$$x' = a(t)(x)$$

Proposition 1.1 Principe de superposition

Si x_1 et x_2 sont des solutions respectives des équations différentielles **linéaires**

$$x' = a(t)(x) + b_1(t)$$
 et $x' = a(t)(x) + b_2(t)$

alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$, $\lambda x_1 + \mu x_2$ est solution de l'équation différentielle linéaire

$$x' = a(t)(x) + (\lambda b_1(t) + \mu b_2(t))$$

Définition 1.3 Problème de Cauchy

On appelle problème de Cauchy une équation différentielle linéaire assortie d'une condition initiale :

$$\begin{cases} x' = a(t)(x) + b(t) \\ x(t_0) = x_0 \end{cases}$$

avec $t_0 \in I$ et $x_0 \in E$.

Proposition 1.2 Equation différentielle linéaire scalaire d'ordre n

On considère l'équation différentielle linéaire scalaire

$$x^{(n)} = \sum_{k=0}^{n-1} a_k(t) x^k + b(t)$$

où

- a_0, \dots, a_{n-1} sont des fonctions continues sur I à valeurs dans \mathbb{K} ;
- b est une fonction continue sur I à valeurs dans \mathbb{K} ;
- x est une fonction inconnue de classe \mathcal{C}^n sur I à valeurs dans \mathbb{K} .

Alors en posant

$$\mathbf{A}(t) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ a_0(t) & \cdots & \cdots & a_{n-1}(t) \end{pmatrix} \qquad \mathbf{B}(t) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ b(t) \end{pmatrix} \qquad \mathbf{X}(t) = \begin{pmatrix} x(t) \\ x'(t) \\ \vdots \\ x^{(n-1)}(t) \end{pmatrix}$$

l'équation initiale équivaut à

$$X' = A(t)X + B(t)$$

Exemple 1.1

L'équation différentielle linéaire scalaire

$$x^{(3)} - e^t x'' + t^2 x' + x = \sin(t)$$

équivaut à

$$X' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -t^2 & e^t \end{pmatrix} X + \begin{pmatrix} 0 \\ 0 \\ \sin(t) \end{pmatrix}$$

avec
$$X = \begin{pmatrix} x \\ x' \\ x'' \end{pmatrix}$$
.

Corollaire 1.1 Problème de Cauchy pour une équation différentielle linéaire scalaire

Un problème de Cauchy pour une équation différentielle linéaire scalaire d'ordre n est de la forme

$$\begin{cases} x^{(n)} = \sum_{k=0}^{n-1} a_k(t) x^k + b(t) \\ \forall k \in [0, n-1], \ x^{(k)}(t_0) = x_k \end{cases}$$

avec $t_0 \in I$ et $(x_0, \dots, x_{n-1}) \in \mathbb{K}^n$.

Exemple 1.2

Voici un exemple de problème de Cauchy pour une équation différentielle scalaire linéaire d'ordre 2.

$$\begin{cases} y'' + e^t y' - \ln(t)y = \text{th } t \\ y(1) = 2 \\ y'(1) = -1 \\ y''(1) = 0 \end{cases}$$

2 Solutions d'une équation différentielle linéaire

Dans tout ce paragraphe,

- $a: I \to \mathcal{L}(E)$ est une fonction continue;
- $b: I \to E$ est une fonction continue;

2.1 Théorème de Cauchy linéaire

Théorème 2.1 Théorème de Cauchy linéaire

Soit $(t_0, x_0) \in I \times E$. Le problème de Cauchy

$$\begin{cases} x' = a(t)(x) + b(t) \\ x(t_0) = x_0 \end{cases}$$

admet une unique solution.

Corollaire 2.1 Cas des équations différentielles linéaires scalaires

Soient

- a_0, \ldots, a_{n-1} des fonctions continues sur I à valeurs dans \mathbb{K} ;
- b une fonction continue sur I à valeurs dans \mathbb{K} ;
- $t_0 \in I$;
- $(x_0, ..., x_{n-1}) \in \mathbb{K}^n$;

Le problème de Cauchy

$$\begin{cases} x^{(n)} = \sum_{k=0}^{n-1} a_k(t) x^k + b(t) \\ \forall k \in [0, n-1], \ x^{(k)}(t_0) = x_k \end{cases}$$

admet une unique solution.

2.2 Equations différentielles homogènes

Proposition 2.1 Structure de l'ensemble des solutions d'une équation différentielle homogène

L'ensemble des solutions de l'équation différentielle linéaire homogène

$$x' = a(t)(x)$$

est un sous-espace vectoriel du K-espace vectoriel E^I.

Proposition 2.2

Notons \mathcal{S} l'ensemble des solutions de l'équation différentielle **homogène**

$$x' = a(t)(x)$$

Pour tout $t_0 \in E$, l'application

$$\begin{cases}
S & \longrightarrow & E \\
x & \longmapsto & x(t_0)
\end{cases}$$

est un isomorphisme

Remarque. Ceci signifie notamment que si deux solutions prennent la même valeur en un certain t_0 , alors elles sont égales. De manière un peu plus savante, les graphes des solutions forment une partition de $I \times E$.

Corollaire 2.2

L'ensemble des solutions de l'équation différentielle linéaire homogène

$$x' = a(t)(x)$$

est un \mathbb{K} -espace vectoriel de dimension $n = \dim E$.

Proposition 2.3 Equation différentielles scalaires homogènes

Soient a_0, \ldots, a_{n-1} sont des fonctions continues sur I à valeurs dans \mathbb{K} . L'ensemble des solutions l'équation différentielle **scalaire homogène**

$$x^{(n)} = \sum_{k=0}^{n-1} a_k(t) x^k$$

est un \mathbb{K} -espace vectoriel de dimension n.

2.3 Equations différentielles avec second membre

Proposition 2.4 Structure de l'ensemble des solutions d'une équation différentielle linéaire

Les solutions de l'équation différentielle linéaire

$$x' = a(t)(x) + b(t)$$

sont les sommes d'une solution particulière et d'une solution de l'équation différentielle homogène associée. Autrement dit, l'ensemble des solutions est un sous-espace affine de $E^{\rm I}$ de direction l'ensemble des solutions de l'équation homogène.

Exemple 2.1

Soit pour $t \in \mathbb{R}$

$$a(t): (x,y) \in \mathbb{R}^2 \mapsto \left(\frac{tx}{1+t^2} - \frac{y}{1+t^2}, \frac{x}{1+t^2} + \frac{ty}{1+t^2}\right) \qquad \text{et} \qquad b(t) = \left(\frac{1+t}{1+t^2}, \frac{1-t}{1+t^2}\right)$$

On considère l'équation différentielle u' = a(t)(u) + b(t), autrement dit le système différentiel

$$\begin{cases} x' = \frac{tx}{1+t^2} - \frac{y}{1+t^2} + \frac{1+t}{1+t^2} \\ y' = \frac{x}{1+t^2} + \frac{ty}{1+t^2} + \frac{1-t}{1+t^2} \end{cases}$$

En raisonnant dans la base canonique de \mathbb{R}^2 , cette équation différentielle peut s'écrire X' = A(t)X + B(t) avec

$$A(t) = \begin{pmatrix} \frac{t}{1+t^2} & -\frac{1}{1+t^2} \\ \frac{1}{1+t^2} & \frac{t}{1+t^2} \end{pmatrix} \quad \text{et} \quad B(t) = \begin{pmatrix} \frac{1+t}{1+t^2} \\ \frac{1-t}{1+t^2} \end{pmatrix}$$

On remarque que $u_1: t \mapsto (1,t)$ et $u_2: t \mapsto (t,-1)$ sont solutions de l'équation **homogène** associée. Puisque l'ensemble des solutions de cette équation homogène est un espace vectoriel de dimension 2 et que la famille (u_1,u_2) est libre, cet ensemble de solutions est vect (u_1,u_2) .

Par ailleurs, on remarque que $v: t \mapsto (t, t)$ est solution de l'équation **avec second membre**. Ainsi l'ensemble des solutions est

$$v + \text{vect}(u_1, u_2)$$

c'est-à-dire l'ensemble des solutions de la forme

$$t \mapsto (t + \lambda + \mu t, t + \lambda t - \mu)$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

2.4 Equations différentielles linéaires scalaires non résolues

On dit qu'une équation différentielle linéaire scalaire d'ordre n est **non résolue** si le coefficient de la dérivée $n^{\text{ème}}$ de l'inconnue peut s'annuler sur l'intervalle considéré.

Exemple 2.2

L'équation différentielle x(x-1)y'' + 3xy' + y = 0 est non résolue sur \mathbb{R} mais elle l'est sur les intervalles $] - \infty, 0[$,]0, 1[et $]1, +\infty[$.

ATTENTION! Tous les résultats précédents (existence de solution, dimension de l'ensemble des solutions) ne s'appliquent plus dans le cas d'équations différentielles non résolues.

Exemple 2.3

L'ensemble des solutions sur \mathbb{R}_+^* de l'équation différentielle xy'=1 est bien un sous-espace affine de $\mathbb{R}_+^{\mathbb{R}_+^*}$ de dimension 1, à savoir $\ln + \mathrm{vect}(x \mapsto 1)$ mais cette équation différentielle n'admet évidemment **aucune solution** sur \mathbb{R} (considérer x=0).

Exemple 2.4

Considérons l'équation x'' + 2y' = 0. Cette équation équivaut à (xy)'' = 0. On trouve ainsi aisément que l'ensemble des solutions sur \mathbb{R}_+^* est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}_+^*}$ de dimension 2, à savoir $\text{vect}(x \mapsto 1/x, x \mapsto 1)$.

Une solution sur \mathbb{R} doit être solution sur \mathbb{R}_+^* donc de la forme $x \mapsto \frac{\lambda}{x} + \mu$ mais la continuité de cette solution en 0 impose $\lambda = 0$. On en déduit que l'ensemble des solutions sur \mathbb{R} est vect $(x \mapsto 1)$ qui est de dimension 1.

Méthode Recherche de solutions développables en séries entières

On peut rechercher des solutions d'une équation différentielle linéaire scalaire à coefficients **polynomiaux** sous forme de fonctions développables en séries entières. On rappelle que si

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

alors f est de classe \mathcal{C}^{∞} sur] – R, R[où R désigne le rayon de convergence. De plus,

$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n$$

$$f''(x) = \sum_{n=2}^{+\infty} n(n-1) a_n x^{n-2} = \sum_{n=1}^{+\infty} (n+1) n a_{n+1} x^{n-1} = \sum_{n=0}^{+\infty} (n+2)(n+1) a_{n+2} x^n$$

Enfin, on peut tirer parti de l'**unicité** du développement en série entière pour déterminer des relations de récurrences entre les a_n .

Remarque. On peut en fait indexer toutes les sommes à partir de 0 car les premiers termes sont nuls. Le seul «problème» consiste alors en les éventuelles puissances négatives mais ce n'est pas un réel problème comme le montre l'exemple suivant.

Exemple 2.5

On considère l'équation différentielle

(E):
$$x(x-1)y'' + 3xy' + y = 0$$

On cherche une solution développable en série entière au voisinage de l'origine.

Soit $\sum a_n x^n$ de rayon de convergence R > 0 de somme f(x).

On sait que

$$\forall x \in]-R, R[, f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}$$

donc

$$\forall x \in]-R, R[, xf'(x) = \sum_{n=0}^{+\infty} na_n x^n$$

De même

$$\forall x \in]-R, R[, f''(x) = \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2} = \sum_{n=1}^{+\infty} (n+1)na_{n+1} x^{n-1}$$

donc

$$\forall x \in]-R, R[, \ x(x-1)f''(x) = x^2f''(x) - xf''(x) = \sum_{n=0}^{+\infty} n(n-1)a_nx^n - \sum_{n=0}^{+\infty} (n+1)na_{n+1}x^n$$

D'un point de vue technique, l'idée essentielle est de ne faire apparaître que des termes en x^n (pas de «mélange» de puissances). Finalement,

$$\forall x \in]-R, R[, x(x-1)f''(x) + 3xf'(x) + f(x) = \sum_{n=0}^{+\infty} [n(n-1)a_n - (n+1)na_{n+1} + 3na_n + a_n] x^n$$

ou encore

$$\forall x \in]-R, R[, x(x-1)f''(x) + 3xf'(x) + f(x) = \sum_{n=0}^{+\infty} \left[(n+1)^2 a_n - (n+1)na_{n+1} \right] x^n$$

L'unicité du développement en série entière permet alors d'affirmer que f est solution de (E) si et seulement si

$$\forall n \in \mathbb{N}, (n+1)^2 a_n = n(n+1)a_{n+1}$$

ou encore

$$\forall n \in \mathbb{N}, (n+1)a_n = na_{n+1}$$

On vérifie aisément que cela équivaut à $\forall n \in \mathbb{N}$, $a_n = na_1$. Ainsi les solutions de (E) développables en série entière sont les fonctions

$$x \mapsto \lambda \sum_{n=0}^{+\infty} nx^n = \frac{\lambda x}{(1-x)^2}$$

avec $\lambda \in \mathbb{R}$.

3 Systèmes différentiels linéaires homogènes à coefficients constants

On considère dans ce paragraphe des équations différentielles linéaires du type x' = a(x) avec $a \in \mathcal{L}(E)$. On remarque en particulier :

- qu'il s'agit d'une équation différentielle homogène;
- que a ne dépend pas de la variable.

En considérant les matrices A et X de a et x dans une certaine base de E, ce système équivaut alors à X' = AX.

3.1 Exponentielle d'un endomorphisme ou d'une matrice carrée

Proposition 3.1 Continuité de l'exponentielle

Les applications $a \in \mathcal{L}(E) \mapsto \exp(a)$ et $A \in \mathcal{M}_n(\mathbb{K}) \mapsto \exp(A)$ sont continues.

Proposition 3.2

- Soit $a \in \mathcal{L}(E)$. Alors $t \mapsto \exp(ta)$ est dérivable sur \mathbb{R} et sa dérivée est $t \mapsto a \circ \exp(ta) = \exp(ta) \circ a$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors $t \mapsto \exp(ta)$ est dérivable sur \mathbb{R} et sa dérivée est $t \mapsto A \circ \exp(tA) = \exp(tA) \circ A$.

ATTENTION! Si A: I $\to \mathcal{M}_n(\mathbb{K})$ est une application dérivable, la dérivée de $\exp \circ A$ n'est pas forcément A'($\exp \circ A$) ni $(\exp \circ A)A'$.

Exemple 3.1

Posons $A(t) = \begin{pmatrix} 0 & 1 \\ 0 & t \end{pmatrix}$. On vérifie que $A(t)^n = t^{n-1}A$ pour $n \in \mathbb{N}^*$ et donc que $(\exp \circ A)(t) = \begin{pmatrix} 1 & \frac{e^t - 1}{t} \\ 0 & e^t \end{pmatrix}$ prolongée

par continuité en 0. Ainsi $(\exp \circ A)'(t) = \begin{pmatrix} 0 & \frac{te^t - e^t + 1}{t^2} \\ 0 & e^t \end{pmatrix}$ prolongée par continuité en 0 tandis que $A'(t) \exp(A(t)) = \frac{te^t - e^t + 1}{t^2}$

$$\begin{pmatrix} 0 & 0 \\ 0 & e^t \end{pmatrix} \text{ et } \exp(A(t))A'(t) = \begin{pmatrix} 0 & \frac{e^t - 1}{t} \\ 0 & e^t \end{pmatrix} \text{ prolong\'ee par continuit\'e en 0.}$$

Exercice 3.1

Soit A: $I \to \mathcal{M}_n(\mathbb{K})$ une application dérivable. Montrer que si A(t) et A'(t) commutent pour tout $t \in I$, alors

$$\forall t \in I$$
, $(\exp \circ A)'(t) = A'(t)(\exp \circ A)(t) = (\exp \circ A)(t)A'(t)$

3.2 Résolution d'un système différentiel linéaire homogène à coefficients constants

Proposition 3.3

Soit $a \in \mathcal{L}(E)$. L'ensemble des solutions sur \mathbb{R} de x' = a(x) d'inconnue $x : \mathbb{R} \to E$ est

$$\{t \mapsto \exp(ta)(u), u \in E\}$$

De plus, l'unique solution du problème de Cauchy $\begin{cases} x' = a(x) \\ x(t_0) = x_0 \end{cases} \text{ où } (t_0, x_0) \in \mathbb{R} \times \text{E est la fonction } t \mapsto \exp((t - t_0)a)(x_0).$

Proposition 3.4

Soit $A \in \mathcal{M}_n(\mathbb{K})$. L'ensemble des solutions sur \mathbb{R} de X' = AX d'inconnue $X : \mathbb{R} \to \mathcal{M}_{n,1}(\mathbb{K})$ est

$$\{t \mapsto \exp(tA)U, U \in \mathcal{M}_{n,1}(\mathbb{K})\}$$

De plus, l'unique solution du problème de Cauchy $\begin{cases} X' = AX \\ X(t_0) = X_0 \end{cases} \text{ où } (t_0, x_0) \in \mathbb{R} \times \mathcal{M}_{n,1}(\mathbb{K}) \text{ est la fonction}$

$$t \mapsto \exp((t - t_0)A)X_0$$

Exemple 3.2 Cas diagonalisable

On considère le système différentiel

$$\begin{cases} x' = 2y + 2z \\ y' = -x + 3y - z \\ z' = 3x - 3y + z \end{cases}$$

En posant $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $A = \begin{pmatrix} 0 & 2 & 2 \\ -1 & 3 & -1 \\ 3 & -3 & 1 \end{pmatrix}$, ce système équivaut à X' = AX. Le polynôme caractéristique de A est

$$\chi_{A} = \begin{vmatrix} X & -2 & -2 \\ 1 & X - 3 & 1 \\ -3 & 3 & X - 1 \end{vmatrix} = \begin{vmatrix} X - 2 & X - 2 & X - 2 \\ 1 & X - 3 & 1 \\ -3 & 3 & X - 1 \end{vmatrix} \qquad L_{1} \leftarrow L_{1} + L_{2} + L_{3}$$

$$= (X - 2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & X - 3 & 1 \\ -3 & 3 & X - 1 \end{vmatrix} = (X - 2) \begin{vmatrix} 1 & 0 & 0 \\ 1 & X - 4 & 0 \\ -3 & 6 & X + 2 \end{vmatrix} \qquad C_{2} \leftarrow C_{2} - C_{1}$$

$$= (X - 2)(X - 4)(X + 2)$$

La matrice A est donc diagonalisable et, en étudiant les sous espaces propres, on trouve que $A = PDP^{-1}$ avec

$$D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad P = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \qquad P^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

Les solutions de l'équation différentielle X' = AX sont donc les fonctions $t \mapsto P \exp(tD)P^{-1}X_0$ avec $X_0 \in \mathcal{M}_{3,1}(\mathbb{R})$. Après un calcul palpitant, on trouve que les solutions du système initiale sont

$$x: t \mapsto \frac{1}{2}e^{2t}(x_0 + y_0 + z_0) + \frac{1}{2}e^{-2t}(x_0 - y_0 - z_0)$$

$$y: t \mapsto \frac{1}{2}e^{2t}(x_0 + y_0 + z_0) + \frac{1}{2}e^{4t}(-x_0 + y_0 - z_0)$$

$$z: t \mapsto \frac{1}{2}e^{2t}(x_0 - y_0 + z_0) + \frac{1}{2}e^{-2t}(-x_0 + y_0 + z_0)$$

avec $(x_0, y_0, z_0) \in \mathbb{R}^3$.

Exemple 3.3 Cas trigonalisable

On considère le système différentiel

$$\begin{cases} x' = x - 3y + 4z \\ y' = 4x - 7y + 8z \\ z' = 6x - 7y + 7z \end{cases}$$

En posant $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $A = \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}$, ce système équivaut à X' = AX. Le polynôme caractéristique de A est

$$\chi_{A} = (X+1)^{2}(X-3)$$

En posant
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, on a

$$Ker(A - 3I_3) = vect(v_1)$$

$$Ker(A + I_3) = vect(v_2)$$

On cherche ensuite un vecteur v_3 tel que $(A + I_3)v_3 = v_2$ et on trouve $v_3 = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$. Ainsi $A = PTP^{-1}$ avec

$$T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$

$$T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 1 & 0 \end{pmatrix} \qquad P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 2 & -1 \\ -2 & 1 & 0 \end{pmatrix}$$

Les solutions de X' = AX sont les fonctions $t \mapsto P \exp(tT)P^{-1}X_0$ avec $X_0 \in \mathcal{M}_{3,1}(\mathbb{R})$. En posant $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ et

 $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, T = D + N, les matrices D et N commutent et $N^2 = 0$. Ainsi

$$\exp(tT) = \exp(tD) \exp(tN) = \exp(tD)(I_3 + tN) = \begin{pmatrix} e^{3t} & 0 & 0\\ 0 & e^{-t} & te^{-t}\\ 0 & 0 & e^{-t} \end{pmatrix}$$

Après un calcul fastidieux, on en déduit que les solutions du système sont

$$x:\, t\mapsto e^{3t}(x_0-y_0+z_0)+e^{-t}(y_0-z_0)+te^{-t}(-2x_0+y_0)$$

$$y: t \mapsto e^{3t}(2x_0 - 2y_0 + 2z_0) + e^{-t}(-2x_0 + 3y_0 - 2z_0) + te^{-t}(-4x_0 + 2y_0)$$

$$z:\, t\mapsto e^{3t}(x_0-2y_0+2z_0)+e^{-t}(-2x_0+2y_0-z_0)+te^{-t}(-2x_0+y_0)$$

avec $(x_0, y_0, z_0) \in \mathbb{R}^3$.

Exercice 3.2

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ tel que A et B commutent. En considérant l'équation différentielle X' = (A + B)X d'inconnue $X : \mathbb{R} \mapsto \mathcal{M}_{n,1}(\mathbb{K})$, montrer que $\exp(A + B) = \exp(A) \exp(B)$.

4 Variation des constantes

On revient dans ce paragraphe au cas général, c'est-à-dire qu'on considère

- des équations différentielles du type x' = a(t)(x) + b(t) où $a: I \to \mathcal{L}(E)$ et $b: I \to E$ sont des fonctions continues;
- ou leurs versions matricielles X' = A(t)X + B où $A: I \to \mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathcal{M}_{n,1}(\mathbb{K})$ sont également des fonctions continues.

4.1 Cas général

Proposition 4.1 Variation des constantes

Soit $(x_1, ..., x_n)$ une **base** de l'espace vectoriel des solutions de l'équation homogène x' = a(t)(x). Il existe des fonctions $c_1, ..., c_n$ dérivables sur I à valeurs dans \mathbb{K} vérifiant

$$\sum_{k=1}^{n} c_k' x_k = b$$

telles que

$$x = \sum_{k=1}^{n} c_k x_k$$

soit solution de l'équation différentielle x' = a(t)(x) + b(t).

On a bien évidemment une version matricielle.

Proposition 4.2 Variation des constantes

Soit $(X_1, ..., X_n)$ une **base** de l'espace vectoriel des solutions de l'équation homogène X' = A(t)X. Il existe des fonctions $c_1, ..., c_n$ dérivables sur I à valeurs dans \mathbb{K} vérifiant

$$\sum_{k=1}^{n} c_k' X_k = B$$

telles que

$$X = \sum_{k=1}^{n} c_k X_k$$

soit solution de l'équation différentielle X' = A(t)X + B(t).

Corollaire 4.1 Cas particulier des systèmes différentiels à coefficients constants

• Soit $a \in \mathcal{L}(E)$. Il existe une solution x de x' = a(x) + b(t) vérifiant

$$x = \exp(ta)(u)$$
 $b = \exp(ta)(u')$

avec $u: \mathbb{R} \to E$ dérivable.

• Soit $A \in \mathcal{M}_n(\mathbb{K})$. Il existe une solution X de X' = AX + B(t) vérifiant

$$X = \exp(tA)U$$

 $B = \exp(tA)U'$

avec U : $\mathbb{R} \to \mathcal{M}_{n,1}(\mathbb{K})$ dérivable.

Remarque. On peut alors préciser que l'unique solution du problème de Cauchy $\begin{cases} x' = a(x) + b(t) \\ x(t_0) = x_0 \end{cases}$ est

$$t \mapsto \exp(ta) \left(\int_{t_0}^t \exp(-sa)(b(s)) \, ds \right) + \exp((t - t_0)a)(x_0) = \int_{t_0}^t \exp((t - s)a)(b(s)) \, ds + \exp((t - t_0)a)(x_0) + \exp((t - t_0$$

et que l'unique solution du problème de Cauchy $\begin{cases} X' = AX + B(t) \\ X(t_0) = X_0 \end{cases}$ est

$$t \mapsto \exp(tA) \left(\int_{t_0}^t \exp(-sA)B(s) \, ds \right) + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp((t - s)A)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp((t - t_0)A)X_0 = \int_{t_0}^t \exp(-sA)B(s) \, ds + \exp(-sA)B(s) \, ds + \exp(-sA)B(s) = \int_{t_0}^t \exp(-sA)B($$

4.2 Cas des équations différentielles linéaires scalaires d'ordre 2

Proposition 4.3

Soient a, b et c des fonctions continues sur I à valeurs dans \mathbb{K} . Si (x_1, x_2) est une base de l'espace vectoriel des solutions de l'équation différentielle homogène x'' + a(t)x' + b(t)x = 0, il existe des fonctions λ_1 et λ_2 dérivables sur I à valeurs dans \mathbb{K} vérifiant

$$\begin{cases} \lambda_1' x_1 + \lambda_2' x_2 = 0 \\ \lambda_1' x_1' + \lambda_2' x_2' = c \end{cases}$$

telles que $x = \lambda_1 x_1 + \lambda_2 x_2$ soit solution de l'équation différentielle x'' + a(t)x' + b(t)x = c(t).

Remarque. On peut calculer λ'_1 et λ'_2 à l'aide des règles de Cramer :

$$\begin{cases} \lambda_1' = -\frac{bx_2}{x_1 x_2' - x_1' x_2} \\ \lambda_2' = \frac{bx_1}{x_1 x_2' - x_1' x_2} \end{cases}$$

Exemple 4.1

On considère l'équation différentielle

$$y'' - 3y' + 2y = \frac{1}{1 + e^{-2t}}$$

Le polynôme caractéristique associé à cette équation différentielle linéaire à coefficients constantes est $X^2 - 3X + 2 = (X-1)(X-2)$ donc une base de l'espace vectoriel des solutions de l'équation homogène est $(f_1, f_2) = (t \mapsto e^t, t \mapsto e^{2t})$. On cherche donc une solution de la forme $\lambda_1 f_1 + \lambda_2 f_2$ avec λ_1 et λ_2 dérivables sur \mathbb{R}_+^* vérifiant

$$\begin{cases} \lambda_1' f_1 + \lambda_2' f_2 = 0 \\ \lambda_1' f_1' + \lambda_2' f_2' = \frac{1}{1 + e^{-2t}} \end{cases}$$

ou encore

$$\begin{cases} \lambda_1' e^t + \lambda_2' e^{2t} = 0\\ \lambda_1' e^t + 2\lambda_2' e^{2t} = \frac{1}{1 + e^{-2t}} \end{cases}$$

ce qui équivaut à

$$\begin{cases} \lambda_1' = -\frac{e^{-t}}{1 + e^{-2t}} \\ \lambda_2' = \frac{e^{-2t}}{1 + e^{-2t}} \end{cases}$$

On peut choisir

$$\begin{cases} \lambda_1 = \arctan(e^{-t}) \\ \lambda_2 = -\frac{1}{2}\ln(1 + e^{-2t}) \end{cases}$$

Une solution particulière est donc

$$\varphi: t \mapsto \arctan(e^{-t})e^t - \frac{1}{2}\ln(1 + e^{-2t})e^{2t}$$

et l'ensemble des solutions est φ + vect (f_1, f_2) .

Exemple 4.2

On considère l'équation différentielle

$$(1+t^2)y'' + 4ty' + 2y = 1 + t^2$$

On résout d'abord l'équation homogène

$$(1+t^2)y'' + 4ty' + 2y = 0$$

On recherche des solutions dévéloppables en séries entières. Une fonction $y: t \mapsto \sum_{n=0}^{+\infty} a_n t^n$ est solution si et seulement si $a_{n+2} = -a_n$. On en déduit que $a_{2n} = (-1)^n a_0$ et que $a_{2n+1} = (-1)^n a_1$. Les solutions développables en séries entières sont donc les fonctions $t \mapsto \frac{a_0 + a_1 t}{1 + t^2}$. En posant $y_1: t \mapsto \frac{1}{1 + t^2}$ et $y_2: t \mapsto \frac{t}{1 + t^2}$, (y_1, y_2) est une base de l'espace vectoriel des solutions de l'équation homogène. On trouve alors une solution particulière en appliquant la méthode de variation des constantes. On recherche une solution de la forme $\lambda_1 y_1 + \lambda_2 y_2$ avec λ_1 et λ_2 dérivables vérifiant

$$\begin{cases} \lambda'_1 y_1 + \lambda'_2 y_2 = 0 \\ \lambda'_1 y'_1 + \lambda'_2 y'_2 = 1 \end{cases}$$

ou encore

$$\begin{cases} \frac{\lambda_1'}{1+t^2} + \frac{t\lambda_2'}{1+t^2} = 0\\ \frac{-2t\lambda_1'}{(1+t^2)^2} + \frac{(1-t^2)\lambda_2'}{(1+t^2)^2} = 1 \end{cases}$$

ou enfin

$$\begin{cases} \lambda_1' + t\lambda_2' = 0 \\ -2t\lambda_1' + (1 - t^2)\lambda_2' = (1 + t^2)^2 \end{cases}$$

On trouve

$$\begin{cases} \lambda_1' = -t - t^2 \\ \lambda_2' = 1 + t^2 \end{cases}$$

On peut choisir

$$\begin{cases} \lambda_1 = -\frac{t^2}{2} - \frac{t^4}{4} \\ \lambda_2 = t + \frac{t^3}{3} \end{cases}$$

On en déduit qu'une solution particulière est

$$t \mapsto \frac{t^2}{2(1+t^2)} + \frac{t^4}{12(1+t^2)}$$

Les solutions sont donc les fonctions

$$t \mapsto \frac{t^2}{2(1+t^2)} + \frac{t^4}{12(1+t^2)} + \frac{at+b}{1+t^2}$$

REMARQUE. On peut faire beaucoup plus simple en reconnaissant une formule de Leibniz : l'équation équivaut à

$$((1+t^2)v)'' = 1+t^2$$

Ceci équivaut donc à l'existence de $(a, b) \in \mathbb{R}^2$ tel que

$$(1+t^2)y = \frac{t^2}{2} + \frac{t^4}{12} + at + b$$

Les solutions sont donc les fonctions

$$t\mapsto \frac{t^2}{2(1+t^2)}+\frac{t^4}{12(1+t^2)}+\frac{at+b}{1+t^2}$$

Définition 4.1 Wronskien de deux solutions d'une équation scalaire homogène d'ordre 2

Soient a et b des fonctions continues sur I à valeurs dans \mathbb{K} . Si x_1 et x_2 sont deux solutions de l'équation différentielle x'' + a(t)x' + b(t)x = 0, on appelle **wronskien** du couple de solutions (x_1, x_2) la fonction

$$W = \begin{vmatrix} x_1 & x_2 \\ x_1' & x_2' \end{vmatrix} = x_1 x_2' - x_1' x_2$$

REMARQUE. Le wronskien est en particulier dérivable sur I et

$$W' = x_1 x_2'' - x_1'' x_2 = x_1 (-ax_2' - bx_2) - x_2 (-ax_1' - bx_1) = -aW$$

W vérifie donc une équation différentielle linéaire et, en vertu du théorème de Cauchy linéaire, on a deux alternatives :

- soit le wronskien est constamment nul sur I;
- soit il ne s'annule pas sur I.

On peut également préciser une expression du wronskien : en fixant $t_0 \in I$,

$$\forall t \in I, \ W(t) = W(t_0) \exp\left(-\int_{t_0}^t a(s) \ ds\right)$$

Exemple 4.3

Soit $q: I \to \mathbb{K}$ continue Soient x_1 et x_2 deux solutions de l'équation différentielle x'' + q(t)x = 0. Le wronskien du couple (x_1, x_2) est

$$W = x_1 x_2' - x_1' x_2$$

De plus, W est dérivable sur I et

$$W' = x_1 x_2'' - x_1'' x_2 = -q x_1 x_2 + q x_1 x_2 = 0$$

Le wronskien est donc constant sur I.