CS3873 Assignment Page 1

Assignment 2: Network Applications

Please submit your answers in a single PDF file.

1. (2 points) True or false?

- a. A user requests a Web page that consists of some text and three images. For this page, the client will send one HTTP request message and receive four HTTP response messages. Assume HTTP/1.1 is used.
- b. With non-persistent connections between browser and origin server, it is possible for a single TCP segment to carry two distinct HTTP request messages.
- c. The Date: header in the HTTP response message indicates when the object in the response was last modified.
- d. HTTP response messages never have an empty entity body.
- 2. (4 points) Consider the following string of ASCII characters that were captured by Wireshark when the browser sent an HTTP GET message (i.e., this is the actual content of an HTTP GET message). The characters <cr><lf> are carriage return and line-feed characters (that is, the italic character string <cr> in the text below represents the single carriage-return character that was contained at that point in the HTTP header). Answer the following questions, indicating where in the HTTP GET message below you find the answer.

```
GET /cs453/index.html HTTP/1.1
cr><1f>Host: gai
a.cs.umass.edu
cr><1f>User-Agent: Mozilla/5.0 (
Windows;U; Windows NT 5.1; en-US; rv:1.7.2) Gec
ko/20040804 Netscape/7.2 (ax) <cr><1f>Accept:ex
t/xml, application/xml, application/xhtml+xml, text
/html;q=0.9, text/plain;q=0.8,image/png,*/*;q=0.5
<cr><1f>Accept-Language: en-us,en;q=0.5<<cr><1f>Accept-Encoding: zip,deflate<<cr><1f>Accept-Charset: ISO
-8859-1,utf-8;q=0.7,*;q=0.7<<cr><1f>Keep-Alive: 300<<cr><1f>Connection:keep-alive<<cr><1f>Cr><1f>Connection:keep-alive<<cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Connection:keep-alive<<cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f><1f>Cr</1f
```

- a. What is the **complete URL** (in the format http://.....) of the object requested by the browser?
- b. What version of HTTP is the browser running?
- c. Does the browser request a non-persistent or a persistent connection?
- d. What is the file type of the requested object?
- 3. (2 points) Suppose within your Web browser you click on a link to obtain a Web page. The IP address for the associated URL has been cached in your local host, so a

CS3873 Assignment Page 2

DNS lookup is not necessary to obtain the IP address. Suppose that the Web page associated with the link contains a small amount of HTML text, and it references to 8 very small objects on the same server. Neglect transmission times and let RTTw denote the RTT between the local host and the Web server containing the objects. How much time (in terms of RTTw) elapses with

- a. Non-persistent HTTP with no parallel TCP connections?
- b. Persistent HTTP?
- 4. (1 point) In BitTorrent, Consider a new peer Alice that joins BitTorrent without possessing any chunks. Without any chunks, she cannot become a top-four uploader for any of the other peers, since she has nothing to upload. How then will Alice get her first chunk?
- 5. (6 points) Consider distributing a file of F = 20 GB to N peers. The server has an upload rate of $u_s = 1$ Gbps, and each peer has a download rate of $d_i = 20$ Mbps and an upload rate of u_i . For N = 10, N = 100, or N = 1000, and $u_i = 500$ kbps, $u_i = 5$ Mbps, or $u_i = 25$ Mbps, prepare a table giving the distribution time for each of the combinations of N and u_i for both client-server distribution and P2P distribution. For simplicity, round your results for the distribution time into integers in terms of seconds. (Hint: Pay attention to the units in the question. You can refer to the following appendix.)

Distribution time for client / server:

u _i (Mbps)	N = 10	N = 100	N = 1000
0.5			
5			
25			

Distribution time for peer-to-peer:

u_i (Mbps)	<i>N</i> = 10	N = 100	N = 1000
0.5			
5			
25			

CS3873 Assignment Page 3

Appendix

Table of Units for Data Size.

Unit	Abbreviation	Value
kilobyte	КВ	10 ³ bytes
megabyte	МВ	10 ⁶ bytes
gigabyte	GB	10 ⁹ bytes
terabyte	ТВ	10 ¹² bytes

Table of Units for Data Rate.

Unit	Abbreviation	Value
kilobits/s	kbps, kbit/s	10 ³ bits/s
megabits/s	Mbps, Mbit/s	10 ⁶ bits/s
gigabits/s	Gbps, Gbit/s	10 ⁹ bits/s