

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:	Digital Design Laboratory	Semester:	III
Date of Performance:	_23_ / <u>08</u> / _2024	Batch No:	E-2
Faculty Name:		Roll No:	16010123325
Faculty Sign & Date:		Grade/Marks:	/25

Experiment No: 2

Title: Binary Adders and Subtractors

Aim and Objective of the Experiment:
To implement half and full adder–subtractor using gates and IC 7483

COs to be achieved:

CO2: Use different minimization technique and solve combinational circuits.

Tools used:	
Trainer kits	

Theory:

Adder: Addition of two binary digits is most basic operation performed by the digital computer. There are two types of adder:

- Half adder
- Full adder

Half Adder: Half adder is combinational logic circuit with two inputs and two outputs. It is the basic building block for addition of two single bit numbers.

Full adder: A half adder has a provision not to add a carry coming from the lower order bits when multi bit addition is performed. for this purpose a third input terminal is added and this circuits is to add A,B,C where A and B are the nth order bits of the number A and B respectively and C is the carry generated from the addition of (n-1) order bits. This circuit is referred to as full adder.

Subtractor: Subtraction of two binary digits is one of the most basic operations performed by digital computer .there are two types of subtractor:

- Half subtractor
- Full subtractor

Half subtractor: Logic circuit for the subtraction of B from A where A,B are 1 bit numbers is referred to as half subtract or .the subtract or process has two input and difference and borrow are the two outputs.

Object Oriented Programming	Semester: V	Academic Year: 2024-25
		Roll No:

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Full subtractor: As in the case of the addition using logic gates, a full subtractor is made by combining two half-sub tractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as BOR_{IN}) and so allows cascading which results in the possibility of multi-bit subtraction.

IC 7483

For subtraction of one binary number from another, we do so by adding 2's complement of the former to the latter number using a full adder circuit.

IC 7483 is a 16 pin, 4-bit full adder. This IC has a provision to add the carry output to transfer and end around carry output using Co and C4 respectively.

2's complement: 2's complement of any binary no. can be obtained by adding 1 in 1's complement of that no.

e.g. 2's complement of $+(10)_{10} = 1010$ is

1C of 1010 0101
$$+$$
 1 $-$ (10)10 0110

In 2's complement subtraction using IC 7483, we are representing negative number in 2's complement form and then adding it with 1st number.

Implementation Details: Half Adder Block Diagram

Half Adder Circuit

Semester: V

Object Oriented Programming

Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Truth Table for Half Adder

Inputs		Outputs		
A	В	S	C	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

From the truth table (with steps):

$$0+0 = 0 \quad 0 \quad \text{Carry} \to 0.0 = 0 \quad \text{Sum} \to 0.1+1.0 = 0$$

$$0+1 = 1 \quad 0 \quad \text{Carry} \to 0.1 = 0 \quad \to 1.0+1.1 = 1$$

$$1+0 = 1 \quad 0 \quad \text{Carry} \to 1.0 = 0 \quad \to 1.1+0.1 = 1$$

$$1+1 = 0 \quad 1 \quad \text{Carry} \to 1.1 = 1 \quad \to 1.0+0.1 = 0$$

Full Adder Block Diagram

Object Oriented Programming

Semester: V Academic Year: 2024-25

Roll No:____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Full Adder Circuit

Truth Table for Full Adder

Inj	puts		Ou	tputs
A	В	C in	S	C out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

From the truth table (with steps):

Semester: V Academic Year: 2024-25

Roll No:____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Half Subtractor Block Diagram

Half Subtractor Circuit

Truth Table for Half Subtractor

A	В	DIFFERENCE(D)	BORROW(Bo)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Object Oriented Programming

Semester: V Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

From the truth table (with steps):

$$\frac{1}{1 \rightarrow \text{Diff}} \cdot \frac{0}{1 \rightarrow \text{Diff}} \cdot \frac{0}{1 \rightarrow \text{Diff}} \cdot \frac{0}{1 \rightarrow 0}$$

$$(0 < 1)$$

Full Subtractor Block Diagram

Full Subtractor Circuit

Truth Table for Full subtractor

Object Oriented Programming

Semester: V Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

A	В	BIN	D	BOROUT
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

From the truth table (with steps):

$$\begin{array}{c|c}
 & | (A) \\
 & - | (B) \\
\hline
0 & | = Bout \\
\hline
- | (Bin) \\
\hline
1 = Difference$$

$$\begin{array}{c|c}
 & | (Bin) \\
\hline
1 = Difference$$

Example:

1)
$$710-210 = 510$$
 7
 0111
 2
 0010
 $1'C ext{ of } 2$
 1101
 $+1$
 $2'C ext{ of } 2$
 1110

Object Oriented Programming

Semester: V

Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

0111 + 1110 + 10101

Pin Diagram IC7483

Adder/Subtractor

Implementation Details

Procedure:

- 1) Locate the IC 7483 and 4-not gates block on trainer kit.
- 2) Connect 1st input no. to A4-A1 input slot and 2nd (negative) no. to B4-B1 through 4-not gates (1C of 2nd no.)
- 3) Connect high input to Co so that it will get added with 1C of 2nd no. to get 2C.
- 4) Connect 4-bit output to the output indicators.
- 5) Switch ON the power supply and monitor the output for various input combinations.

Object Oriented Programming

Semester: V Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Post Lab Subjective/Objective type Questions: 1. Design a full adder using two half adders

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

- 2. Perform the following Binary subtraction with the help of appropriate ICs:
 - a. 6-4
 - b. 5-8
 - c. 7-9

These calculations can be implemented using a 4-bit binary adder IC like the 74LS83 by setting the mode for subtraction.

Conclusion:

The above experiment highlights the uses and application of control adders/subtractors, half adder subtractor and full adder and subtractor.

Signature of faculty in-charge with Date:

Object Oriented Programming

Semester: V Academic Year: 2024-25

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Object Oriented F	Programming
-------------------	-------------

Semester: V Academic Year: 2024-25