1. Co je to SoC?

a. SoC znamená System on Chip a označuje integrovaný obvod, který kombinuje všechny klíčové komponenty počítače na jednom čipu.

2. Jaké výhody mají SoC?

a. Snížená velikost, nižší spotřeba energie, vyšší výkon a nižší náklady.

3. Popis signálu datové sběrnice UART

a. UART (Universal Asynchronous Receiver/Transmitter) je asynchronní sériová komunikační sběrnice. Signál obsahuje start bit, data, paritní bit (volitelně) a stop bit.

4. Popis signálu datové sběrnice SPI

a. SPI (Serial Peripheral Interface) využívá čtyři linky – MOSI (Master Out Slave In), MISO (Master In Slave Out), SCLK (Serial Clock), a SS/CS (Slave Select/Chip Select).

5. Popis signálu datové sběrnice I2C

a. I2C (Inter-Integrated Circuit) využívá dvě linky – SDA (Serial Data) a SCL (Serial Clock) a umožňuje komunikaci mezi zařízeními na sběrnici.

6. Čím je tvořen signál PWM?

a. PWM (Pulse Width Modulation) signál je tvořen periodickým střídavým signálem s proměnnou šířkou pulzu.

7. Obsahuje ESP32 Hallovu sondu?

a. Ano, ESP32 obsahuje Hallovu sondu pro měření magnetického pole.

8. Hodnota napětí pro log.1 na I/O pinech ESP32

a. Pro ESP32 je typicky 3.3V považováno za logickou 1.

9. Co je to režim hibernace u ESP32?

a. Režim hibernace u ESP32 je nízkoenergetický spánek, kde je spotřeba energie minimalizována.

10. Na jaké frekvenci funguje WiFi?

a. WiFi může fungovat na různých frekvencích, například 2.4 GHz a 5 GHz.

11. Co je to mesh ve WiFi kontextu?

a. WiFi mesh je síťová topologie, kde se zařízení vzájemně propojují a komunikují, což zvyšuje pokrytí a spolehlivost sítě.

12. Jaké pracovní režimy je možno vytvářet ve WiFi sítích?

a. Pracovní režimy WiFi zahrnují klienta, přístupový bod (AP), ad-hoc síť a mesh síť.

13. Co znamená zkratka AP u WiFi?

a. AP znamená Access Point, což je zařízení, které umožňuje připojení Wi-Fi klientů k síti.

14. Jak se označuje komunikace při odesílání dat na webovské stránky?

a. Obvykle se jedná o HTTP (Hypertext Transfer Protocol) komunikaci.

15. Co znamená BLE?

a. BLE znamená Bluetooth Low Energy, což je bezdrátová komunikační technologie s nízkou spotřebou energie.

16. Oblast použití BLE

a. Používá se například v bezdrátových sluchátkách, senzorech, a jiných zařízeních s omezenou spotřebou energie.

17. Kolik rezistorů je potřeba minimálně pro sestrojení odporového děliče?

a. Pro odporový dělič jsou minimálně potřeba dva rezistory.

18. Máte odporový dělič s R1=R2=1k, Jaké bude výstupní napětí, pokud na vstup připojíte 10 V?

a. Výstupní napětí bude polovina vstupního, tedy 5 V.

19. Jaké hodnoty R1 a R2 zvolíte pro dělič napětí, kde U1=10 V a výstupní napětí U2=3 V.

a. Poměr R1 k R2 bude 7:3 (např. R1=7k, R2=3k).

20. Jakou hodnotu R2 bude mít dělič napětí, pokud R1=90 k, když při vstupním napětí 10 V bude výstupní napětí 1 V.

a. Poměr R1 k R2 bude 9:1, tedy R2=10 k.

21. Co způsobí zatížení děliče napětí rezistorem?

a. Způsobí snížení výstupního napětí a může ovlivnit účinnost děliče.

22. Co je odporový potenciometr, trimr?

a. Odporový potenciometr (trimr) je proměnný rezistor, jehož hodnota lze měnit nastavením otočného prvku.

23. Lze potenciometr použít jako dělič napětí?

a. Ano, potenciometr lze použít jako dělič napětí při zapojení jako odporový dělič.

24. Co je spojitý a diskrétní signál?

a. Spojeitý signál má nekonečný počet hodnot v čase, zatímco diskrétní signál má pouze diskrétní hodnoty v časových okamžicích.

25. Co je AD převodník?

a. AD převodník (Analog-to-Digital Converter) převádí analogový signál na digitální formát.

26. Co je DA převodník?

a. DA převodník (Digital-to-Analog Converter) převádí digitální signál na analogový formát.

27. Jak se značí hodnoty rezistorů?

a. Hodnoty rezistorů se značí v ohmech (Ω) nebo kiloohmech $(k\Omega)$ a megaohmech $(M\Omega)$.

28. Jaký má význam poslední proužek kódu u rezistoru?

a. Poslední proužek u rezistoru udává toleranci, což je maximální odchylka od nominální hodnoty rezistoru.

29. Co znamená DPS?

a. DPS znamená Deska plošných spojů, což je nosič pro umístění a propojení elektronických součástek.

30. Jaký materiál se používá u vodivých cest na DPS?

a. Pro vodivé cesty na DPS se často používá měď.

31. Co znamená prokov?

a. Prokov je spojení elektrických vodičů na DPS.

32. K čemu slouží obvodové simulátory pro elektroniku?

 a. Obvodové simulátory umožňují modelování chování elektronických obvodů a testování jejich funkce před fyzickou realizací.

33. K čemu slouží aplikace WOKWI?

a. WOKWI je platforma pro online simulace a vizualizace elektronických obvodů.

34. Vysvětlete pojem inerciální sensor

a. Inerciální sensor měří změny rychlosti a úhlové rychlosti tělesa, často kombinuje akcelerometr a gyroskop.

35. Co znamená zkratka MEMS?

a. MEMS znamená Micro-Electro-Mechanical Systems a označuje miniaturizované elektromechanické systémy.

36. Co je to komunikační rozhranní mikrokontroleru/mikropočítače?

a. Komunikační rozhraní umožňuje mikrokontroléru komunikovat s jinými zařízeními, například přes sériové sběrnice.

37. Co je to synchronní komunikační rozhranní mikrokontroléru?

a. Synchronní komunikační rozhraní vyžaduje společný časový referenční signál pro odesílání a příjem dat.

38. Co je to asynchronní komunikační rozhranní mikrokontroléru?

a. Asynchronní komunikační rozhraní nepotřebuje společný časový signál, ale používá start-bity a stop-bity pro synchronizaci.

39. Rozhraní typu SPI je synchronní nebo asynchronní?

a. SPI je synchronní sériová komunikační sběrnice.

40. Rozhraní typu UART je synchronní nebo asynchronní?

a. UART je asynchronní sériová komunikační sběrnice.

41. Uvedte příklad nějaké obvyklé vnitřní periférie mikrokontroléru

a. Příklady zahrnují ADC (Analog-to-Digital Converter), PWM (Pulse Width Modulation), a časovače.

42. Jak zjednodušeně propojíte mikrokontrolér vybavený rozhraním UART a počítač typu PC vybavený rozraním USB?

a. Používáte USB-UART převodník, který převádí signály mezi USB a UART.

43. Jakým způsobem se zahajuje komunikace na rozhraní UART?

a. Komunikace začíná start bitem, následovaný datovými bity a volitelným paritním bitem a stop bitem.

44. Jakým způsobem se ukončuje komunikace na rozhraní UART?

a. Komunikace končí stop bitem.

45. Jaký je rozdíl mezi RS232 a UART?

a. RS232 je standard pro sériovou komunikaci, zatímco UART je hardware implementace sériové komunikace.

46. Čím je definován harmonický signál?

a. Harmonický signál je definován jako periodický signál, jehož frekvence jsou násobky základní frekvence.

47. Jaký je vztah periody a frekvence harmonického signálu?

a. Vztah je T = 1/f, kde T je perioda a f je frekvence.

48. Jak je specifické spektrum harmonického signálu?

a. Spektrum obsahuje celočíselné násobky základní frekvence, nazývané harmonické.

49. Co je spektrum signálu?

a. Spektrum signálu je grafické znázornění amplitudy složek signálu v závislosti na frekvenci.

50. Co říká vzorkovací teorém?

a. Vzorkovací teorém říká, že frekvence vzorkování musí být alespoň dvojnásobkem nejvyšší frekvence ve vzorkovaném signálu.

51. Co se stane, porušíme-li při vzorkování signálu vzorkovací podmínku?

a. Porušení vzorkovací podmínky může vést k aliasingu, když se frekvence zkreslí v rekonstruovaném signálu.

52. K čemu při vzorkování slouží tzv. antialiasingový filtr?

a. Antialiasingový filtr snižuje frekvence vyšší než polovina vzorkovací frekvence, aby předešel aliasingu.

53. Na jakou hodnotu kmitočtu nastavíte při vzorkování signálu antialiasingový filtr (vzhledem ke vzorkovací frekvenci)?

a. Antialiasingový filtr se nastaví na polovinu vzorkovací frekvence (nyquistova frekvence).

54. Signál obsahuje nejvyšší frekvenční složku o frekvenci 3 kHz. Jakou zvolíte minimální vzorkovací frekvenci?

a. Minimální vzorkovací frekvence by měla být alespoň dvojnásobkem nejvyšší frekvence, tedy 6 kHz.

55. Jaké nejvyšší frekvenční složky jsou obvykle zastoupeny ve zvukovém projevu?

a. Nejvyšší frekvenční složky ve zvukovém projevu jsou obvykle v rozsahu 20 Hz až 20 kHz.

56. Co je to fotodioda?

a. Fotodioda je polovodičové zařízení, které generuje elektrický proud pod vlivem světla.

57. V jakých režimech se dá provozovat fotodioda?

a. Fotodioda může být provozována v závěrném nebo přívodném směru, podle její aplikace.

58. Jak se chová fotodioda v závěrném směru?

a. Ve závěrném směru fotodioda omezuje průchod světla, vytvářející fotoelektrický jev.

59. V jakém směru zapojíte LED tak, aby svítila?

a. LED svítí při přivedení proudu v přívodném směru.

60. Jak určíte hodnotu předřadného rezistoru LED?

a. Hodnota předřadného rezistoru pro LED se určuje na základě napětí LED a požadovaného proudu, obvykle podle Ohmova zákona.

61. Kde se např. používá infračervená LED?

a. Infračervené LED se používají například v dálkových ovladačích, senzorech a bezpečnostních systémech.

62. Co je to modulace?

- a. Modulace je proces přenášení informace pomocí modulačního signálu do nosného signálu.
- 63. Proč se pro přenos signálu často moduluje signál na vyšší kmitočet?
 - a. Modulace na vyšší kmitočet umožňuje efektivnější přenos signálu a lepší odolnost proti rušení.
- 64. V jakých vlnových délkách se pohybuje rádiové vlnění (např. v pásmu x100 MHz) (řádově metry, kilometry, ...)?
 - a. Rádiové vlny v pásmech x100 MHz mají vlnové délky v řádu desítek centimetrů až několik metrů.
- 65. V jakých vlnových délkách se pohybuje viditelné světlo (řádově metry, kilometry, ...)?
 - a. Viditelné světlo má vlnové délky v rozsahu přibližně 400-700 nanometrů.
- 66. Jakou maximální frekvenci může mít harmonická složka signálu, který má být vzorkován vzorkovací frekvencí fs?
 - a. Maximální frekvence harmonické složky je fs/2, kde fs je vzorkovací frekvence.
- 67. Jak široké frekvenční pásmo je potřeba pro analogový srozumitelný přenos lidské řeči?
 - a. Pro analogový srozumitelný přenos lidské řeči je potřeba široké frekvenční pásmo v rozsahu 300 Hz až 3.4 kHz.
- 68. Jestliže máte k dispozici N vzorků signálu, kolik prvků má spektrum signálu vypočtené pomocí FFT?
 - a. Spektrum vypočtené pomocí FFT má N/2 + 1 prvků.
- 69. Jestliže máte k dispozici N vzorků signálu získaných vzorkovací frekvencí fs, jaké bude mít spektrum vypočtené pomocí FFT rozlišení?
 - a. Rozlišení spektra bude fs/N.
- 70. Jak dlouho potrvá získání N vzorků pomocí vzorkovací frekvence fs?
 - a. Čas potřebný pro získání N vzorků je N/fs.
- 71. Jaké frekvenci odpovídá první (nultý) koeficient ve spektru signálu vypočteného pomocí FFT?
 - a. Nultý koeficient ve spektru odpovídá střední frekvenci signálu, tj. fs/2.
- 72. Jaká je vzorkovací perioda vzorkovací frekvence fs?
 - a. Vzorkovací perioda je inverzní hodnota vzorkovací frekvence, tedy 1/fs.
- 73. Které komponenty obsahuje blokové schéma Dopplerovského radaru?
 - a. Blokové schéma Dopplerovského radaru zahrnuje vysílací a přijímací antény, mikrovlnný oscilátor, směšovač a detektor Dopplerova signálu.
- 74. Jak se vypočítá Dopplerovská frekvence fD, když radar vysílá signál o frekvenci f, rychlost cíle je v a rychlost světla je c?
 - a. Dopplerovská frekvence se vypočítá podle vzorce: fD = 2 * (v / c) * f.
- 75. Jak se spočítá rychlost cíle v, pokud radar vysílá signál o frekvenci f, změřená Dopplerovská frekvence je fD a rychlost světla je c?
 - a. Rychlost cíle se spočítá podle vzorce: v = (c / 2) * (fD / f).
- 76. Slovně popište, co popisuje efektivní odrazná plocha RCS?
 - a. Efektivní odrazná plocha (RCS) popisuje, jak moc je cíl schopen odrážet elektromagnetické vlny a je klíčovým parametrem pro hodnocení detekce radarovým systémem.

77. Kolikrát se sníží výkon přijatý přijímačem radaru, pokud dojde ke zdvojnásobení vzdálenosti cíle od radaru?

a. Výkon přijatý přijímačem se sníží čtyřikrát (2^2) při zdvojnásobení vzdálenosti.

78. CW radar se používá k detekci statických, nebo pohyblivých cílů?

a. CW radar se používá k detekci pohyblivých cílů.

79. Jak se spočítá vlnová délka elektromagnetické vlny ve vzduchu?

a. Vlnová délka (λ) se spočítá podle vzorce: $\lambda = c / f$, kde c je rychlost světla a f je frekvence.

80. Jaká je vlnová délka elektromagnetické vlny ve vzduchu vysílaná modulem ESP32?

a. Vlnová délka závisí na frekvenci vysílaného signálu.

81. Kolikrát se v ideálním případě sníží přijatý výkon na přijímači, pokud od sebe antény vzdálíme dvakrát?

a. V ideálním případě se přijatý výkon sníží čtyřikrát (2^2) při zdvojnásobení vzdálenosti.

82. Jaká je polarizace vysílané vlny pomocí ground plane antény?

a. Polarizace ground plane antény může být vertikální nebo horizontální, v závislosti na orientaci antény.

83. Dozví se přijímač o korektním příjmu UDP paketu v přijímači?

a. Přijímač UDP paketu nemá zabudovaný mechanismus potvrzení přijetí (acknowledgment), takže není informován o korektním příjmu.

84. Co znamená zkratka IFTTT?

a. Zkratka IFTTT znamená "If This Then That", což je online platforma pro propojování různých služeb pomocí jednoduchých pravidel.

85. K čemu slouží služba IFTTT?

a. Služba IFTTT umožňuje automatické propojení různých online služeb a zařízení pomocí jednoduchých pravidel typu "If This Then That".

86. K čemu slouží MQTT?

a. MQTT (Message Queuing Telemetry Transport) je protokol pro komunikaci mezi zařízeními v IoT (Internet of Things) prostředí.

87. Co je to MQTT broker?

a. MQTT broker je server, který přijímá a distribuuje zprávy mezi zařízeními v MQTT síti.

88. Jaké služby se používají při komunikaci s MQTT brokerem?

a. Při komunikaci s MQTT brokerem se obvykle používají služby jako publish (publikování) a subscribe (přihlášení k odběru) k výměně zpráv.

89. K čemu slouží publish funkce v MQTT kontextu?

a. Publish funkce slouží k odesílání zpráv (publishing) na MQTT broker, aby byly distribuovány do sítě.

90. K čemu slouží subscribe funkce v MQTT kontextu?

a. Subscribe funkce slouží k přihlášení se k odběru (subscribe) určitých zpráv ze sítě MQTT brokeru.