AI-Driven Mineral Targeting in Karnataka-Andhra Pradesh

Team Name: GeoSurfers

Team Leader: Jasjeev Singh Kohli

Members: Kirti Aggarwal, Vineet Goyal, Ayush Verma, Kartik Kumar

Hackathon: IndiaAI-GSI Hackathon 2025

Resources Used

- Hardware & Software
 - o Hardware: Laptop (16GB RAM, NVIDIA GPU for model training).
 - o Software: Python 3.12, Conda, QGIS (for spatial validation).
 - O Libraries: GeoPandas, Rasterio, Scikit-learn, XGBoost, SHAP.
- Manpower
 - o Geoscientist (Data Interpretation).
 - o ML Developer (Model Development).
 - o GIS Specialist (Spatial Analysis).

Data Used

Primary Datasets

Data Type	Source	Description
Geological Maps	GSI 25K/50K Scale	Lithology, faults, shear zones
Geochemical (NGCM)	GSI Stream Sediments	71 elements (Cu, Au, Ni, PGEs).
Aeromagnetic	GSI Grids	Total Magnetic Intensity (TMI)
ASTER Remote Sensing	NASA/JPL	Clay, silica, iron oxide indices.

Derived Data Layers

Feature	Source Data	Significance
Cu/Zn Ratio	Geochemical Data	Indicator of copper mineralization
Distance to Faults	Geological Maps	Structural controls on fluid pathwa
Clay/Silica Ratio	ASTER AlOH/SiO ₂	Hydrothermal alteration zones.
Magnetic Gradient	Aeromagnetic Data	Edge detection for subsurface bod

Figure 1: Clay/Silica Ratio (derived from ASTER AlOH and Silica indices).

Methodology

- Data Preprocessing:
 - O Log-transformed skewed geochemical elements (e.g., Cu).
 - O Reprojected all datasets to UTM Zone 43N.

Figure 2: Lithology map (25K scale) reprojected to UTM.

- Feature Extraction
 - o Calculated elemental ratios (Cu/Zn, Ni/Cr).
 - o Computed distance to faults using BallTree algorithm
- Model Training
 - o Algorithms: Random Forest (AUC: 0.89), XGBoost (AUC: 0.91).
 - o Validation: 80-20 train-test split, ROC-AUC scoring.

Figure 3: Model performance metrics.

- Explainability
 - o SHAP analysis revealed Cu ppm and Magnetic Anomaly as top predictors.

Conceptual Genetic Model

- Targeted Mineral Systems
 - O Gold-Copper Deposits: Associated with shear zones and hydrothermal alteration (high clay/silica ratios).
 - O PGE-Ni Sulfides: Correlated with mafic-ultramafic rocks and magnetic highs.
- Targeting Criteria

Criterion	Data Layer	Weight (SHAP)
Geochemical Anomaly	Cu_ppm, Ni/Cr	35%
Structural Control	Distance to Faults	25%
Alteration Signature	Clay/Silica Ratio	20%
Geophysical Anomaly	Magnetic_Gradient	20%

Results & Deliverables

Predictive Maps

Figure 5: Mineral prospectivity map (High = Red, Low = Blue).

- **High-Confidence Target**: 12 zones (7 new, 5 overlapping with GSI blocks)
- 3D Depth Models (Conceptual)
 - o # SimPEG inversion for depth estimation
 - o survey = gravity.survey.Survey(...)
 - o model = gravity.Inversion.run(...)

Figure 6: Aeromagnetic data used for depth modeling.

Virtual Presentation Summary

- Problem Statement:
 - O "40% of Karnataka-Andhra mineral potential remains unexplored at depth."
- Methodology Flowchart

- Recommendations
 - o Prioritize drilling in high-probability zones (see Figure 5).
 - o Integrate borehole data to refine depth models.

Supporting Documents

- Code Repository: <u>GitHub Link</u>
- Data Sources: GSI AIKosh Portal, NASA ASTER.
- Confidence Metrics:
 - o ROC-AUC: 0.91 (XGBoost).
 - o Spatial Validation: 78% overlap with GSI blocks