Number of Neutrino Types

The neutrinos referred to in this section are those of the Standard $SU(2)\times U(1)$ Electroweak Model possibly extended to allow nonzero neutrino masses. Light neutrinos are those with $m < m_Z/2$. The limits are on the number of neutrino mass eigenstates, including ν_1 , ν_2 , and ν_3 .

A REVIEW GOES HERE - Check our WWW List of Reviews

Number from e^+e^- Colliders

Number of Light ν Types

VALUEDOCUMENT IDTECN2.9840 ± 0.0082 1 LEP-SLC06RVUE• • • We do not use the following data for averages, fits, limits, etc. • • •3.00 ± 0.05 2 LEP92RVUE

Number of Light ν Types from Direct Measurement of Invisible Z Width

In the following, the invisible Z width is obtained from studies of single-photon events from the reaction $e^+e^- \to \nu \overline{\nu} \gamma$. All are obtained from LEP runs in the $E^{ee}_{\rm CM}$ range 88–209 GeV.

VALUE	DOCUMENT ID		TECN	COMMENT		
2.92±0.05 OUR AVERAGE	Error includes scale fa	ctor o	of 1.2.			
$2.84 \pm 0.10 \pm 0.14$	ABDALLAH	05 B	DLPH	$\sqrt{s}=$ 180–209 GeV		
$2.98 \pm 0.05 \pm 0.04$	ACHARD	04E	L3	1990-2000 LEP runs		
2.86 ± 0.09	HEISTER	03 C	ALEP	$\sqrt{s}=$ 189–209 GeV		
$2.69 \pm 0.13 \pm 0.11$	ABBIENDI,G	00 D	OPAL	1998 LEP run		
$2.89 \pm 0.32 \pm 0.19$	ABREU	97J	DLPH	1993-1994 LEP runs		
$3.23 \pm 0.16 \pm 0.10$	AKERS	95 C	OPAL	1990-1992 LEP runs		
$2.68 \pm 0.20 \pm 0.20$	BUSKULIC	93L	ALEP	1990-1991 LEP runs		
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
$2.84 \pm 0.15 \pm 0.14$	ABREU	00Z	DLPH	1997-1998 LEP runs		
3.01 ± 0.08	ACCIARRI	99 R	L3	1991-1998 LEP runs		
$3.1 \pm 0.6 \pm 0.1$	ADAM	96 C	DLPH	$\sqrt{s}=$ 130, 136 GeV		

Limits from Astrophysics and Cosmology

Effective Number of Light ν Types

("Light" means < about 1 MeV). The quoted values correspond to N $_{\rm eff}$, where N $_{\rm eff}$ = 3.046 in the Standard Model with N $_{\nu}$ = 3. See also OLIVE 81. For a review of limits based on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90. Also see "Big-Bang Nucleosynthesis" in this *Review*.

¹Combined fit from ALEPH, DELPHI, L3 and OPAL Experiments.

² Simultaneous fits to all measured cross section data from all four LEP experiments.

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
\bullet \bullet We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
3.3 ± 0.5	95	¹ ADE	14	COSM	Planck
$3.78^{igoplus 0.31}_{-0.30}$		² COSTANZI	14	COSM	
3.29 ± 0.31		³ HOU	14	COSM	
< 3.80	95	⁴ LEISTEDT	14	COSM	
< 4.10	95	⁵ MORESCO	12	COSM	
< 5.79	95	⁶ XIA	12	COSM	
< 4.08	95	MANGANO	11	COSM	BBN
$0.9 < N_{\nu} < 8.2$		⁷ ICHIKAWA	07	COSM	
$3 < N_{\nu} < 7$	95	⁸ CIRELLI	06	COSM	
$2.7 < N_{11} < 4.6$	95	⁹ HANNESTAD	06	COSM	
$3.6 < N_{\nu} < 7.4$	95	⁸ SELJAK	06	COSM	
< 4.4		¹⁰ CYBURT	05	COSM	
< 3.3		¹¹ BARGER	03 C	COSM	
$1.4 < N_{\nu} < 6.8$		¹² CROTTY	03	COSM	
$1.9 < N_{\nu} < 6.6$		¹² PIERPAOLI	03	COSM	
$2 < N_{\nu} < 4$		LISI	99	COSM	BBN
< 4.3		OLIVE	99	COSM	BBN
< 4.9		COPI	97		Cosmology
< 3.6		HATA	97 B		High D/H quasar abs.
< 4.0		OLIVE	97		BBN; high ⁴ He and ⁷ Li
< 4.7		CARDALL	96 B	COSM	High D/H quasar abs.
< 3.9		FIELDS	96	COSM	BBN; high ⁴ He and ⁷ Li
< 4.5		KERNAN	96	COSM	High D/H quasar abs.
< 3.6		OLIVE	95		BBN; \geq 3 massless $ u$
< 3.3		WALKER	91		Cosmology
< 3.4		OLIVE	90		Cosmology
< 4		YANG	84		Cosmology
< 4		YANG	79		Cosmology
< 7		STEIGMAN	77		Cosmology
		PEEBLES	71		Cosmology
<16		¹³ SHVARTSMAN	169		Cosmology
		HOYLE	64		Cosmology
1					

 $^{^{1}\,\}mathrm{Fit}$ to the number of neutrino degrees of freedom from Planck CMB data along with WMAP polarization, high L, and BAO data.

² Fit to the number of neutrinos degrees of freedom from Planck CMB data along with BAO, shear and cluster data. 3 Fit based on the SPT-SZ survey combined with CMB, BAO, and H_0 data.

⁴ Constrains the number of neutrino degrees of freedom (marginalizing over the total mass) from CMB, CMB lensing, BAO, and galaxy clustering data.

⁵ Limit on the number of light neutrino types from observational Hubble parameter data with seven-year WMAP data, SPT, and the most recent estimate of H_0 . Best fit is 3.45 ± 0.65 .

 $^{^{6}}$ Limit on the number of light neutrino types from the CFHTLS combined with seven-year WMAP data and a prior on the Hubble parameter. Best fit is $4.17^{+1.62}_{-1.26}$. Limit is relaxed to $3.98 {+2.02 \atop -1.20}$ when small scales affected by non-linearities are removed.

 $^{^{7}}$ Constrains the number of neutrino types from recent CMB and large scale structure data. No priors on other cosmological parameters are used.

 9 Constrains the number of neutrino types from recent CMB and large scale structure data. See also HAMANN 07.

Number Coupling with Less Than Full Weak Strength

 VALUE
 DOCUMENT ID
 TECN

 ● • • We do not use the following data for averages, fits, limits, etc. • • •

 <20</td>
 ¹ OLIVE
 81C
 COSM

 <20</td>
 ¹ STEIGMAN
 79
 COSM

 ¹ Limit varies with strength of coupling. See also WALKER 91.

REFERENCES FOR Limits on Number of Neutrino Types

ADE COSTANZI HOU LEISTEDT MORESCO XIA MANGANO HAMANN ICHIKAWA	14 14 14 14 12 12 11 07	AA 571 A16 JCAP 1410 081 APJ 782 74 PRL 113 041301 JCAP 1207 053 JCAP 1206 010 PL B701 296 JCAP 0708 021 JCAP 0705 007	P.A.R. Ade et al. M. Costanzi et al. Z. Hou et al. B. Leistedt, H.V. Peiris, L. Verde M. Moresco et al. JQ. Xia et al. G. Mangano, P. Serpico J. Hamann et al. K. Ichikawa, M. Kawasaki, F. Takahashi	(Planck Collab.) (TRST, TRSTI)
CIRELLI	06	JCAP 0612 013	M. Cirelli et al.	
HANNESTAD LEP-SLC SELJAK	06 06 06	JCAP 0611 016 PRPL 427 257 JCAP 0610 014	S. Hannestad, G. Raffelt ALEPH, DELPHI, L3, OPAL, SLD and U. Seljak, A. Slosar, P. McDonald	working groups
ABDALLAH	05B	EPJ C38 395		(DELPHI Collab.)
CYBURT	05	ASP 23 313	R.H. Cyburt et al.	
ACHARD	04E	PL B587 16	P. Achard et al.	(L3 Collab.)
BARGER	03C	PL B566 8	V. Barger et al.	
CROTTY	03	PR D67 123005	P. Crotty, J. Lesgourgues, S. Pastor	
CYBURT	03	PL B567 227	R.H. Cyburt, B.D. Fields, K.A. Olive	(ALEDIL C. II. I.)
HEISTER	03C	EPJ C28 1	A. Heister <i>et al.</i>	(ALEPH Collab.)
PIERPAOLI	03	MNRAS 342 L63	E. Pierpaoli	
CYBURT KNELLER	01 01	ASP 17 87 PR D64 123506	R.H. Cyburt, B.D. Fields, K.A. Olive J.P. Kneller <i>et al.</i>	
ABBIENDI,G	01 00D	EPJ C18 253	G. Abbiendi <i>et al.</i>	(ODAL Callah)
ABREU	00D	EPJ C16 255 EPJ C17 53	· · · · · · · · · · · · · · · · · ·	(OPAL Collab.) (DELPHI Collab.)
ACCIARRI	99R	PL B470 268	M. Acciarri <i>et al.</i>	(L3 Collab.)
LISI	991	PR D59 123520	E. Lisi, S. Sarkar, F.L. Villante	(LS Collab.)
OLIVE	99	ASP 11 403	K.A. Olive, D. Thomas	
ABREU	97J	ZPHY C74 577	•	(DELPHI Collab.)
COPI	97	PR D55 3389	C.J. Copi, D.N. Schramm, M.S. Turner	(CHIC)
HATA	97B	PR D55 540	N. Hata et al.	(OSU, PENN)
OLIVE	97	ASP 7 27	K.A. Olive, D. Thomas	(MINN, FLOR)
ADAM	96C	PL B380 471		(DELPHI Collab.)
CARDALL	96B	APJ 472 435	C.Y. Cardall, G.M. Fuller	` (UCSD)
FIELDS	96	New Ast 1 77	B.D. Fields et al. (NDAM,	CERN, MINN+)
KERNAN	96	PR D54 3681	P.S. Kernan, S. Sarkar	(CASE, OXFTP)

⁸ Constrains the number of neutrino types from recent CMB, large scale structure, Lymanalpha forest, and SN1a data. The slight preference for $N_{\nu} > 3$ comes mostly from the Lyman-alpha forest data.

 $^{^{10}}$ Limit on the number of neutrino types based on 4 He and D/H abundance assuming a baryon density fixed to the WMAP data. Limit relaxes to 4.6 if D/H is not used or to 5.8 if only D/H and the CMB are used. See also CYBURT 01 and CYBURT 03.

¹¹Limit on the number of neutrino types based on combination of WMAP data and bigbang nucleosynthesis. The limit from WMAP data alone is 8.3. See also KNELLER 01. $N_{\nu} \geq 3$ is assumed to compute the limit.

 $^{^{12}}$ 95% confidence level range on the number of neutrino flavors from WMAP data combined with other CMB measurements, the 2dfGRS data, and HST data.

 $^{^{13}}$ SHVARTSMAN 69 limit inferred from his equations.

AKERS OLIVE	95C 95	ZPHY C65 47 PL B354 357	R. Akers <i>et al.</i> K.A. Olive, G. Steigman	(OPAL Collab.) (MINN, OSU)
BUSKULIC	93L	PL B313 520	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
LEP	92	PL B276 247	LEP Collabs. (LEP, ALEPH, DEI	
WALKER	91	APJ 376 51	T.P. Walker <i>et al.</i> (HSC)	
DENEGRI	90	RMP 62 1	D. Denegri, B. Sadoulet, M. Spiro	
OLIVE	90	PL B236 454	K.A. Olive et al. (MINI	N, CHIC, $OSU+)$
YANG	84	APJ 281 493	J. Yang <i>et al.</i>	
OLIVE	81	APJ 246 557	K.A. Olive <i>et al.</i>	(CHIC, BART)
OLIVE	81C	NP B180 497	K.A. Olive, D.N. Schramm, G. Steigman	(EFI+)
STEIGMAN	79	PRL 43 239	G. Steigman, K.A. Olive, D.N. Schramm	
YANG	79	APJ 227 697	J. Yang et al. (CF	
STEIGMAN	77	PL 66B 202	G. Steigman, D.N. Schramm, J.E. Gunn	(YALE, CHIC+)
PEEBLES	71	Physical Cosmology	P.Z. Peebles	(PRIN)
Princeton	Univ.	Press (1971)		
SHVARTSMAN	N 69	JETPL 9 184		(MOSU)
		Translated from ZETFP		
HOYLE	64	NAT 203 1108	F. Hoyle, R.J. Tayler	(CAMB)