# Matma

# placeholder

# February 6, 2023

# Contents

| 1 | liczby zespolone |                                           |   |  |
|---|------------------|-------------------------------------------|---|--|
|   | 1.1              | postać algerbraiczna liczby zespolonej    | 2 |  |
|   |                  | 1.1.1 sprzężenie liczby zespolonej        | 2 |  |
|   | 1.2              | postać trygonometryczna liczby zespolonej | 2 |  |
|   | 1.3              | postać wykładnicza liczby zespolonej      | 2 |  |
|   | 1.4              | moduł liczby zespolonej                   | 3 |  |
|   | 1.5              | Potęgowanie liczby zespolonej             | 3 |  |
|   | 1.6              | funkcja kwadratowa                        | 3 |  |
| 2 | Wektory          |                                           |   |  |
|   | 2.1              | Macierz obrotu                            | 4 |  |
| 3 | Stożkowe         |                                           |   |  |
|   | 3.1              | Sprowadzanie do postaci kwadratowej       | 4 |  |
|   | 3.2              | Elipsa                                    | 4 |  |
|   | 3.3              | Parabola                                  | 5 |  |
|   | 3.4              | Hiperbola                                 | 5 |  |
| 4 | $\mathbb{R}^3$   |                                           | 6 |  |
|   | 4.1              | Równianie ogólne płaszczyzny              | 6 |  |
| 5 | Analiza          |                                           |   |  |
|   | 5.1              | Wzór Taylora                              | 6 |  |
|   | 5.2              | Asymptoty                                 | 7 |  |
|   |                  | 5.2.1 Pionowe                             | 7 |  |
|   |                  | 5.2.2 Ukośne                              | 7 |  |

# 1 liczby zespolone

- $\bullet~\mathbbmss{Z}-z$ biór liczb całkowitych
- $\bullet \ \mathbb{R}$  zbo<br/>ór liczb rzeczywistych
- $\bullet$   $\mathbb{C}$  zbiór liczb zespolonych

$$\mathbb{Z} \subset \mathbb{R} \subset \mathbb{C}$$

1.1 postać algerbraiczna liczby zespolonej

$$z = a + bi$$

- $\Re(z) = a$  część rzeczywista liczby zespolonej.
- $\Im(z) = b$  częśc urojona liczby zespolonej.
- i jednostka urojona  $i^2 = -1$

1.1.1 sprzężenie liczby zespolonej

$$z = a + bi$$
  $\overline{z} = a - bi$   
 $w = f - gi$   $\overline{w} = f + gi$ 

1.2 postać trygonometryczna liczby zespolonej

$$z = (z)(\cos\varphi \cdot \sin\varphi)$$

1.3 postać wykładnicza liczby zespolonej

$$z = (z) \cdot e^{i\varphi}$$

#### 1.4 moduł liczby zespolonej



$$|z| = \sqrt{a^2 + b^2}$$

 $\varphi$  – argument

### 1.5 Potęgowanie liczby zespolonej

$$z = a + bi \rightarrow z = |z|(\cos\varphi + i\sin\varphi)^n \rightarrow |z|^n(\cos n\varphi + i\sin n\varphi)$$

## 1.6 funkcja kwadratowa

$$z^2 + z + 1 = 0$$

 $\Delta = b^2 - 4ac = -3$  – brak rozwiązań w  $\mathbb R$ 

$$\sqrt{\Delta} = \sqrt{-3} = \sqrt{(-1)3} = \sqrt{-1}\sqrt{3} = \sqrt{i^2}\sqrt{3} = i\sqrt{3}$$

$$z_1 = \frac{-b - \sqrt{\Delta}}{2a} \lor z_2 = \frac{-b + \sqrt{\Delta}}{2a}$$
$$z_1 = \frac{-1 - i\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \lor z_2 = \frac{-1 + i\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

## 2 Wektory

#### 2.1 Macierz obrotu

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

#### 3 Stożkowe

$$Q(\vec{x}) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 \to M = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

 $\det M$  – wyróżnik formy kwadratowej  $Q(\vec{x})$ 

| $\det M > 0$ | forma kwadratowa typu eliptycznego    |
|--------------|---------------------------------------|
| $\det M = 0$ | forma kwadratowa typu parabolicznego  |
| $\det M < 0$ | forma kwadratowa typu hiperbolicznego |

## 3.1 Sprowadzanie do postaci kwadratowej

$$Q(\vec{x}) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2 \to Q(\vec{x}) = a_1\hat{x}_1^2 + a_2\hat{x}_2^2$$

gdzie  $a_1,a_2$  – wartości własne macierzy  ${\cal M}$ 

 $\hat{x}_1, \hat{x}_2$  – współżędne wektora  $\vec{x}$  w nowej baze ortonormalnej  $\vec{v_1}, \vec{v_2}$  złożonej z wersorów własnych macierzy M.

wersor własny – wektor własny o długości 1.

#### 3.2 Elipsa

Wzór ogólny

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$$

Promienie

a, b

### 3.3 Parabola

Wzór ogólny

$$x_1 = ax_2^2$$

# 3.4 Hiperbola

Wzór ogólny

$$\frac{x_1^2}{a^2} - \frac{x_2^2}{b^2} = 1$$

Wieszchołki

$$x_1 = \pm a$$

Asymptoty

$$x_2 = \pm \frac{b}{a} x_1$$

 $\mathbb{R}^3$ 4

#### Równianie ogólne płaszczyzny 4.1



$$\vec{n} = [A, B, C]$$
  $P = (x_0, y_0, z_0)$ 

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

#### 5 Analiza

### Wzór Taylora

5.1 Wzor Taylora
$$f(x) \approx f(x_0) + \frac{f'(x_0)}{1!} (x - x_0)^1 + \frac{f''(x_0)}{2!} (x - x_0)^2 + \ldots + \frac{f^{(n-1)'}(x_0)}{(n-1)!} (x - x_0)^{(n-1)} + \underbrace{\frac{f^{(n)'}(x_0)}{n!} (x - x_0)^n}_{\text{reszta}}$$

### 5.2 Asymptoty

#### 5.2.1 Pionowe

- Prawostronna w punkcie pjeżeli $\lim_{x\to p^+}=-\infty.$
- Lewostronna w punkcie pjeżeli $\lim_{x\to p^-}=+\infty.$
- Obustronna jeżeli oba powyższe.

#### 5.2.2 Ukośne

$$y = ax + b$$
  $a = \lim_{x \to \pm \infty} \frac{f(x)}{x}$   $b = \lim_{x \to \pm \infty} (f(x) - ax)$ 

Jeżeli a=0 jest to asymptota pozioma.