

Università degli Studi di Milano- Bicocca

Dipartimento di Informatica, Sistemistica e Comunicazione Anno Accademico 2021 – 2022

Contraceptive Method Choice

Giacomo Savazzi 845372

Raffaele Cerizza 845512

22 Febbraio 2022

Analisi del Dominio di Riferimento

Target → Contraceptive Method Choice:

- No Use
- Short Term
- Long Term

Covariate di riferimento:

- Wife Age \rightarrow numeric
- Wife Education → factor (High, Mid-High, Mid-Low, Low)
- Husband Education → factor (High, Mid-High, Mid-Low, Low)
- Number of Children → numeric
- Wife Religion → factor (Islam, Non-Islam)
- Wife is Working → factor (Yes, No)
- Husband Occupation \rightarrow factor (High, Mid-High, Mid-Low, Low)
- Living Index → factor (High, Mid-High, Mid-Low, Low)
- Media Exposure → factor (Good, Not-Good)

Obiettivi dell'Elaborato

Problema binario:

- No Use
- Use (Short Term o Long Term)

Problema multi-classe:

- No Use
- Short Term
- Long Term

Analisi Esplorativa

Dataset → 1473 istanze in 10 variabili
Target → Contraceptive_Is_Used

Analisi Esplorativa – Variabili Numeriche

Boxplot

Feature plot Wife Age

Analisi Esplorativa – Variabili Numeriche

> cor(cmc[, c(1,4)]) # 0.5401259 Wife_Age Number_Children Wife_Age 1.0000000 0.5401259 Number_Children 0.5401259 1.0000000

Feature plot Number of Children

Analisi Esplorativa – Variabili Categoriche

Utilizzo del contraccettivo da parte di mogli con medio alto o alto livello di educazione

Utilizzo del contraccettivo da parte di coppie con alto o medio alto livello di vita

Analisi Esplorativa – Variabili Categoriche

Utilizzo del contraccettivo da parte di mogli con basso o medio basso livello di educazione, e basso o medio basso standard di vita

1017 istanze analizzate

Utilizzo del contraccettivo da parte di mogli con alto o medio alto livello di educazione, e alto o medio alto standard di vita

Principal Component Analysis (PCA)

Percentuale di varianza spiegata

Correlazione tra dimensioni e variabili originali

> cmc.pca\$var\$cor				
	Dim.1	Dim.2		
Wife_Age	0.8775323	0.4795175		
Number_Children	0.8775323	-0.4795175		

Modelli di Apprendimento scelti

Alberi Decisionali & Reti Neurali

Motivazioni:

- Modelli di apprendimento supervisionato
- Gestione delle variabili categoriche
- Classificazione di pattern complessi
- Tolleranti alla presenza di outliers
- Alberi Decisionali facilmente interpretabili

Tipologie:

- Alberi Decisionali di tipo CART
- Reti Neurali con funzione logistica

Cross-Validation

Problema per il testing:

• Le istanze disponibili non sono molte: 1473

Soluzione:

- Cross-Validation
- In particolare per ogni modello sono state eseguite:
 - o 10-Fold CV sull'intero dataset per il problema binario
 - o 10-Fold CV sull'intero dataset per il problema multi-classe
 - 10-Fold CV ripetuta 3 volte su train set per il problema binario
 - o 10-Fold CV ripetuta 3 volte su train set per il problema multi-classe
- I risultati migliori sono stati ottenuti con la 10-Fold CV sull'intero dataset. Viene ora riportato il confronto fra questi modelli.

Alberi Decisionali – Problema Binario

Albero Decisionale su dataset binario

rpart variable importance	
	overall
Wife_Age	100.000
Number_Children	93.536
Wife_EducationHigh	68.201
Media_ExposureNot-Good	49.427
Husband_EducationHigh	31.579
Wife_EducationMid-High	12.130
Husband_OccupationMid-Low	2.744
Living_IndexHigh	0.000
`Husband_OccupationMid-Low`	0.000
Wife_Is_WorkingNo	0.000
`Husband_EducationMid-Low`	0.000
`Wife_EducationMid-High`	0.000
`Media_ExposureNot-Good`	0.000
Husband_OccupationHigh	0.000
`Husband_EducationMid-High`	0.000
`Living_IndexMid-High`	0.000
`Husband_OccupationMid-High`	0.000
`Living_IndexMid-Low`	0.000
Wife_ReligionIslam	0.000
`Wife_EducationMid-Low`	0.000

Var importance

Alberi Decisionali – Problema Multi-Classe

Albero Decisionale su dataset binario

rpart variable importance	
	overal1
Wife_EducationHigh	100.00
Wife_Age	62.70
Husband_EducationHigh	51.44
Number_Children	51.16
Living_IndexHigh	38.79
Media_ExposureNot-Good	27.26
Husband_EducationMid-Low	12.02
`Wife_EducationMid-Low`	0.00
`Living_IndexMid-Low`	0.00
Husband_OccupationHigh	0.00
`Husband_EducationMid-Low`	0.00
`Wife_EducationMid-High`	0.00
`Husband_OccupationMid-High`	0.00
`Husband_OccupationMid-Low`	0.00
`Living_IndexMid-High`	0.00
Wife_ReligionIslam	0.00
`Media_ExposureNot-Good`	0.00
`Husband_EducationMid-High`	0.00
Wife_Is_WorkingNo	0.00

Var importance

Reti Neurali – Problema Binario

Rete Neurale su dataset binario

Var Importance

	Overall
Wife_EducationHigh	100.000
Number_Children	98.833
Wife_Is_WorkingNo	67.284
Husband_OccupationHigh	58.881
Wife_EducationMid-Low	47.182
Media_ExposureNot-Good	46.861
Wife_ReligionIslam	46.595
Living_IndexHigh	46.295
Husband_EducationMid-High	36.264
Husband_EducationMid-Low	34.676
Husband_EducationHigh	34.204
Living_IndexMid-Low	21.578
Living_IndexMid-High	19.622
Wife_EducationMid-High	16.687
Husband_OccupationMid-Low	12.809
Husband_OccupationMid-High	3.824
Wife_Age	0.000

Reti Neurali – Problema Multi-Classe

Rete Neurale su dataset multi-classe

Var Importance

variables are sorted by	maximum	importar	nce across	the classe
	0verall	No.Use	Long.Term	Short.Term
Living_IndexHigh	100.00	100.00	100.00	100.00
Number_Children	95.51	95.51	95.51	95.51
Wife_EducationMid-Low	94.75	94.75	94.75	94.75
Husband_OccupationHigh	78.24	78.24	78.24	78.24
Wife_EducationHigh	73.58	73.58	73.58	73.58
Husband_EducationMid-High	71.30	71.30	71.30	71.30
Husband_EducationHigh	67.64	67.64	67.64	67.64
Husband_EducationMid-Low	66.22	66.22	66.22	66.22
Living_IndexMid-High	59.30	59.30	59.30	59.30
Living_IndexMid-Low	44.14	44.14	44.14	44.14
Wife_EducationMid-High	34.16	34.16	34.16	34.16
Husband_OccupationMid-High	32.09	32.09	32.09	32.09
Media_ExposureNot-Good	30.05	30.05	30.05	30.05
Wife_ReligionIslam	28.00	28.00	28.00	28.00
Wife_Is_WorkingNo	21.60	21.60	21.60	21.60
Husband_OccupationMid-Low	11.08	11.08	11.08	11.08
Wife_Age	0.00	0.00	0.00	0.00

Confronto tra Modelli – Matrici di Confusione

Problema Binario

Accuracy: 0.7074
Albero Decisionale

Accuracy: 0.7101
Rete Neurale

Confronto tra Modelli – Matrici di Confusione

Problema Multi-Classe

Accuracy: 0.5261
Albero Decisionale

Accuracy: 0.5628
Rete Neurale

Confronto tra Modelli – Performance

Problema Binario

	DT binario	NN binario
Accuracy	0.7074 ± 0.0231	0.7101 ± 0.0231
Precision No	0.7281106	0.7186147
Precision Yes	0.6987488	0.7062315
Precision	0.7134297	0.7124231
Macro Average	0.7134297	0.7124231
Recall No	0.5023847	0.5278219
Recall Yes	0.8601896	0.8459716
Recall	0.6812872	0.6868968
Macro Average	0.0012072	0.0000500
F1-Measure No	0.5945437	0.6086159
F1-Measure Yes	0.7711099	0.7698113
F1-Measure	0.6828268	0.6892136
Macro Average	0.0020200	0.0032130

Confronto tra Modelli – Performance

Problema Multi-Classe

	DT multi-classe	NN multi-classe
Accuracy	0.5261 ± 0.0258	0.5628 ± 0.0255
Precision No Use	0.6457143	0.6677909
Precision Long Term	0.4974874	0.4460641
Precision Short Term	0.4499332	0.5214153
Precision	0.521045	0.5450004
Macro Average	0.531045	0.5450901
Recall No Use	0.5389507	0.6295707
Recall Long Term	0.2972973	0.4594595
Recall Short Term	0.6594912	0.5479452
Recall	0.4985797	0.5456585
Macro Average	0.4965797	0.5450565
F1-Measure No Use	0.5875217	0.6481178
F1-Measure Long Term	0.3721805	0.4526627
F1-Measure Short Term	0.5349206	0.5343511
F1-Measure	0.4092076	0.5450420
Macro Average	0.4982076	0.5450439

Confronto tra Modelli – Curve ROC Problema Binario

Curve ROC classe Yes

Confronto tra Modelli – Curve ROC Problema Multi-Classe

Confronto tra Modelli – AUC

Problema Binario

	DT binario	NN binario
AUC No	0.7301	0.7343
AUC Yes	0.7301	0.7343

Problema Multi-Classe

	DT multi-classe	NN multi-classe
AUC No Use	0.717548	0.7549032
AUC Long Term	0.6654286	0.7409646
AUC Short Term	0.6614156	0.7004345
AUC Macro Average	0.6814631	0.7320958
AUC Micro Average	0.7169151	0.7480347

Confronto tra Modelli – Tempi Computazione

	Everything (s)	Final (s)	Prediction (s)
DT binario	0.76	0.01	NA
NN binario	8.76	0.17	NA
DT multi-classe	1.02	0.02	NA
NN multi-classe	14.89	0.59	NA

Conclusioni

- Le Reti Neurali hanno registrato performance predittive migliori
- Gli Alberi Decisionali hanno beneficiato di tempi di computazione migliori
- Le performance predittive dei modelli sono complessivamente modeste:
 - Dataset sbilanciato
 - Poche istanze
- Possibili rimedi:
 - Aumentare il numero di istanze
 - Aggiungere ulteriori attributi quantitativi e qualitativi

GRAZIE PER L'ATTENZIONE