Sizing Algorithm Documentation

Team 7

 21^{st} June 2022

Contents

0.1	Rationale	2
0.2	Sizing Methodology	2
0.3	Common Definitions	2
0.4	Stall Speed Constraint	2
0.5	Climb Rate Constraint	3
0.6	Estimation of Motor Power Rating	5
0.7	Textual References	3

0.1 Rationale

We need to determine 2 very important things:

- 1. The thrust to weight ratio affects:
 - acceleration:
 - climb rate:
 - maximum speed:
 - turn rate:
 - Aircraft Endurance:
- 2. The stall speed is directly determined by the wing loading and the maximum lift coefficient. Wing Loading will affect:
 - stall speed
 - induced drag
 - take-off distance

0.2 Sizing Methodology

- 1. First Method:
 - (a) Firstly use the stall speed to determine wing loading Stall speed should be independent of engine size
 - (b) After figuring out wing loading, determine the thrust to weight ratio based on takeoff distance Rate of climb
- 2. Second Alternative Method:
 - (a) Determine the Thrust to Weight Ratio
 - (b) Determine the wing loading by direct computation

0.3 Common Definitions

q is the dynamic pressure of an aircraft flying. It is defined as

$$q = \frac{1}{2}\rho v^2$$

wherein ρ represents the density of the air, v represents the velocity the aircraft is flying at.

0.4 Stall Speed Constraint

Wing loading is basically the weight of the aircraft divided by the total wing area.

$$L_{wi} = \frac{W}{S} = \frac{1}{2}\rho v_{stall}^2 c_{L,max}$$

Our typical would be around $c_{L,max} \approx 1.2 - > 1.5$, Sweep only reduces your maximum coefficient of lift.

2

0.5 Climb Rate Constraint

The cimb rate G is defined as the ratio between vertical and horizontal distance travelled when the aircraft is climbing D is going to represent drag.

$$\frac{D}{W} = \frac{T}{W} - G \tag{1}$$

There is also another relation for drag to weight ratio,

$$\frac{D}{W} = \frac{qc_{D,0}}{L_{wi}} + L_{wi} \frac{1}{q\pi A_r e} \tag{2}$$

wherein A_r is the aspect ratio of the wings, and e represents the efficiency factor due to deviating from the elliptic lift distribution. Substituting equation 1 into equation 2 and solving for $\frac{T}{W}$,

$$\frac{D}{W} = \frac{T}{W} - G = \frac{qc_{D,0}}{L_{wi}} + L_{wi} \frac{1}{q\pi A_r e}$$

$$\frac{T}{W} = \frac{qc_{D,0}}{L_{wi}} + L_{wi} \frac{1}{q\pi A_r e} + G$$

0.6 Estimation of Motor Power Rating

The equation below was found in page 118,

$$\frac{T}{W} = \left(\frac{\eta_p}{V}\right) \left(\frac{P}{W}\right)$$

wherein η_p represents the propeller efficiency, P represents power of the engines, W represents the weight of the aircraft, V represents the true air speed of the aircraft.

0.7 Textual References

- 1. Page 117 has table for thrust to weight of typical aircrafts.
- 2. Page 119 has a table for power to weight ratio of typical aircrafts.
- 3. Page 124 has a tabel for typical wing loadings.
- 4. Page 126 has description on typical $c_{L,max}$ values.