Not filling sin peso

Not filling con peso

Not filling con peso

- Define max deformation value when size = 0 (0 to 1 or 0 to max)
- Def metric in 2x2 (0 to 0.018) <<< 10x10 (0 to 10⁵)
 - Define max available def metric value (when size>0 but def_metric > 1)

GT RGB

03_gr_e04

GT filling (2x2)

GT filling (6x6)

GT Not filling con peso (2x2) - escala color igual que 10x10

GT Not filling con peso (6x6)

Possible new GT (Not filling con peso (6x6))

GT RGB

Filling (dif kmeans parameters)

Default parameters:

 $n_clusters = 4, init = 'random', n_init = 10, max_iter = 300, tol = 1e-2, random_state = 0$

more iterations and tolerance:

n_clusters=4, init='random', n_init=20, max_iter=400, tol=1e-8, random_state=0

	2x2	3x3	4x4	5x5	
Success A	100	96.429	42.857	53.571	
Success B	15.556	71.111	11.111	75.556	
Success C	0	0	0	0	
Success D	0	50	0	0	
TOTAL	38.889	68.889	18.889	54.444	

	2x2	3x3	4x4	5x5
Success A	0	100	100	0
Success B	66.667	26.667	33.333	11.111
Success C	63.636	72.727	0	0
Success D	0	0	0	0
TOTAL	41.111	53.333	47.778	5.556

Filling vs Not filling

n_clusters=4, init='random', n_init=20, max_iter=400, tol=1e-8, random_state=0 (aumented values)

Filling

	2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
Success A	0	100	100	0	100	96.429	42.857	53.571	46.429
Success B	66.667	26.667	33.333	11.111	15.556	68.889	13.333	62.222	13.333
Success C	63.636	72.727	0	0	0	9.091	0	0	0
Success D	0	0	0	0	0	0	0	0	0
TOTAL	41.111	53.333	47.778	5.556	38.889	65.556	20	47.778	21.111

not filling con peso

	2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
Success A	0	0	100	100	100	0	96.429	89.286	25
Success B	73.333	8.889	24.444	11.111	66.667	71.111	77.778	93.333	93.333
Success C	0	0	0	27.273	36.364	0	0	0	27.273
Success D	50	100	0	0	0	0	0	0	0
TOTAL	40	11.111	43.333	40	68.889	35.556	68.889	74.444	57.778

A probar

- Porque no diferencia clase D (y C)?
- Defininr metricas de inicio para el kmeans segun tipo de def (GT)
- Otro algoritmo de clustering