Professor: S. Ortiz-Latorre

Review of Basic Results on Linear Programming

1 Linear Programming

Linear programming (\mathbf{LP}) is about solving optimization problems where the objective function and the constraints are linear. The optimization problem can be finding a maximum or a minimum and the constraints can be given by equalities and/or inequalities. In what follows most inequalities will be vector inequalities, that is, the inequalities hold componentwise. All (\mathbf{LP}) problems can be written in the following standard form

Primal Problem (P)
$$\max J\left(x\right) = \max c^T x$$
 subject to $Ax \leq b$,
$$x \geq 0$$
, where $x \in \mathbb{R}^n, c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n} \text{ and } b \in \mathbb{R}^m$.

We will use the following notation:

- Objective function: It is the function J to be optimized. In this case the linear function $J(x) = c^T x$.
- Feasible set/solution: $x \in \mathbb{R}^n$ is a feasible solution if satisfies the constraints, i.e., $Ax \leq b, x \geq 0$. The feasible set F_P is the convex set defined by all feasible solutions, i.e.,

$$F_P := \left\{ x \in \mathbb{R}^n : Ax \le b, x \ge 0 \right\}.$$

• Optimal solution: $\hat{x} \in F_P$ such that

$$J\left(\hat{x}\right) = c^{T}\hat{x} = \max\left\{c^{T}x : Ax \leq b, x \geq 0\right\}.$$

• Optimal value: It is the value (finite) of the objective function at an optimal solution, i.e., $J(\hat{x})$.

There are three different cases regarding the problem (\mathbf{P}) :

- 1. There exists an optimal solution (or many) and only one optimal value.
- 2. $F_P = \emptyset$, then the optimal value is set to $-\infty$. We say that the problem is not feasible.
- 3. The problem is unbounded. There exists a sequence $\{x_k\}_{k\geq 1}\subseteq F_P$ such that $J(x_k)\to_{k\to\infty}\infty$.

2 Reduction to the standard form

We have the following rules:

- "min" \longrightarrow "max": min $J(x) = -\max J(-x)$.
- " \geq " \rightarrow " \leq ": Multiply the equation by -1.
- "=" \longrightarrow " \leq ": Write as two inequalities using " \leq " and " \geq ". Then apply the previous point to the inequality with " \geq ".
- "Free variables" "Restricted variables": Write $x = x^+ x^-$, where $x^+ = \max(0, x) \ge 0$ and $x^- = -\min(0, x) \ge 0$ and rewrite the other constraints and the objective function in terms of x^+ and x^- .

A general (iterative) method to solve LP problems is the simplex method (Dantzig, 1947). In the simplex method the constraints must be in equality form. We can go from " \leq " to "=" by introducing the so called slack variables w := b - Ax, then the problem (**P**) can be written as

$$\max J(x)$$
subject to $w = b - Ax$,
$$w \ge 0$$
,
$$x \ge 0$$
.

Example 1. Consider the (**LP**) problem

$$\max J(x) = 3x_1 + 2x_2$$
subject to $-x_1 + 3x_2 \le 12$,
$$x_1 + x_2 \le 10$$
,
$$2x_1 - x_2 \le 10$$

$$x_1 \ge 0, \quad x_2 \ge 0$$

Here,
$$c = (3, 2)^T$$
, $b = (12, 8, 10)^T$, $A = \begin{pmatrix} -1 & 3 \\ 1 & 1 \\ 2 & -1 \end{pmatrix}$. Moreover, one can prove that

the optimal solution is $\hat{x} = (6, 2)^T$ and the optimal value is $\hat{J} = J(\hat{x}) = 22$. Any point in F_P is a lower bound for \hat{J} . To find an upper bound we can try conic linear combinations (i.e., linear combinations with non-negative scalars) of the constraints. In this way the inequalities are not reversed. For example, consider

$$2 \cdot (-x_1 + 3x_2) \le 2 \cdot 12,$$

$$1 \cdot (x_1 + x_2) \le 1 \cdot 8,$$

$$3 \cdot (2x_1 - x_2) \le 3 \cdot 1,$$

which added give

$$5x_1 + 4x_2 \le 62.$$

Since

$$J(x) = 3x_1 + 2x_2 \le 5x_1 + 4x_2 \le 62,$$

we obtain the upper bound $J(\hat{x}) \leq 62$. We can use this procedure to get the best upper bound. Take $y_1, y_2, y_3 \geq 0$ and compute

$$y_1 \cdot (-x_1 + 3x_2) \le y_1 \cdot 12,$$

 $y_2 \cdot (x_1 + x_2) \le y_2 \cdot 8,$
 $y_3 \cdot (2x_1 - x_2) \le y_3 \cdot 1,$

which added yield

$$(-y_1 + y_2 + y_3) x_1 + (3y_1 + y_2 - y_3) x_2 \le 12y_1 + 8y_2 + y_3$$

Since $J(x) = 3x_1 + 2x_2$, we take y_1, y_2 and y_3 such that

$$-y_1 + y_2 + 2y_3 \ge 3$$
 and $3y_1 + y_2 - y_3 \ge 2$.

Then,

$$J(x) = 3x_1 + 2x_2 \le (-y_1 + y_2 + y_3)x_1 + (3y_1 + y_2 - y_3)x_2 \le 12y_1 + 8y_2 + y_3.$$

Finally, to get the best upper bound we can solve the followin (LP) problem

$$\min J(x) = 12y_1 + 8y_2 + y_3$$
subject to $-y_1 + y_2 + 2y_3 \ge 3$,
$$3y_1 + y_2 - y_3 \ge 2$$
,
$$y_1 \ge 0, \quad y_2 \ge 0, \quad y_3 \ge 0$$
.

3 Duality

The previous example justifies the introduction of the dual problem of a (LP).

Definition 2. Given the (LP) problem (P) we define its dual (D) as

$$\begin{aligned} \mathbf{Dual\ Problem\ (D)} \\ & \min J\left(y\right) = \min b^T y \\ & \text{subject to } A^T y \geq c, \\ & y \geq 0, \\ \\ & \text{where } y \in \mathbb{R}^m, b \in \mathbb{R}^m, A^T \in \mathbb{R}^{n \times m} \text{ and } c \in \mathbb{R}^n. \end{aligned}$$

Remark 3. We have that

- The dual problem of a (LP) problem is also a (LP) problem.
- The dual problem provides upper bounds for the optimal value of the primal problem
- (D) is sometimes easier to solve than (P).
- Good implementations of the simplex algorithm solve simultaneously (P) and (D).

Lemma 4. The dual of (\mathbf{D}) is (\mathbf{P}) .

Proof. We can write

$$\min \{b^T y : A^T y \ge c, y \ge 0\} = -\max \{(-b)^T y : -A^T y \le -c\}.$$

The problem on the right hand side of the previous equation is in standard form, so we can take its dual to get

$$-\min\left\{ \left(-c\right)^{T}x:\left(A^{T}\right)^{T}x\geq b,x\geq0\right\} ,$$

which written in standard form is

$$\max = \left\{ c^T x : Ax \le b, x \ge 0 \right\}.$$

Sometimes it is convenient to find the dual of a (**LP**) problem without finding first its standard form. We assume that we have a (**LP**) problem in the form of a generalised primal problem ($\mathbf{P_g}$) (this means that we have a primal problem with some constraints that are equalities and only R variables are restricted), i.e.,

Generalized Primal Problem
$$(P_g)$$

$$\max J(x) = \max c^T x$$

$$\text{subject to } \sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i \in I,$$

$$\sum_{j=1}^n a_{ij} x_j = b_i, \quad i \in E,$$

$$x_j \geq 0, \quad j \in R$$

$$\text{where } x \in \mathbb{R}^n, c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n} \text{ and } b \in \mathbb{R}^m,$$

$$R \subseteq \{1, \dots, n\}, I, E \subseteq \{1, \dots, m\} \text{ and}$$

$$I \cap E = \emptyset, \quad I \cup E = \{1, \dots, m\}.$$

Using the following primal-dual correspondence

	$\operatorname{In}\left(\mathbf{P_g}\right)$	$\operatorname{In}\left(\mathbf{D_g}\right)$	
I	Inequality constraints	Restricted variables	R
E	Equality constraints	Free variables	F
R	Restricted variables	Inequality constraints	Ι
F	Free variables	Equality constraints	E

we can find its associated generalised dual problem $(\mathbf{D_g})$ (this means a dual problem with some constraints that are equalities and only some variables which are restricted), i.e,

Generalized Dual Problem
$$(\mathbf{D_g})$$

$$\min J\left(y\right) = \min b^T y$$

$$\text{subject to } \sum_{i=1}^m a_{ij} y_i \geq c_j, \qquad j \in R,$$

$$\sum_{i=1}^m a_{ij} y_i = c_j, \qquad i \in F,$$

$$y_i \geq 0, \qquad i \in I$$

$$\text{where } x \in \mathbb{R}^n, c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n} \text{ and } b \in \mathbb{R}^m,$$

where $R, F \subseteq \{1, ..., n\}$ are such that and

$$R \cap F = \emptyset, \qquad R \cup F = \{1, \dots, n\}.$$

Theorem 5 (Duality). Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

1. (Weak duality) If x is feasible for (\mathbf{P}) and y is feasible for (\mathbf{D}) , then

$$c^T x \le (A^T y)^T x = y^T A x = ((xA)^T y)^T = (xA)^T y \le b^T y.$$

Moreover:

- (a) If (\mathbf{P}) is unbounded $\Longrightarrow (\mathbf{D})$ is not feasible.
- (b) If (\mathbf{D}) is unbounded $\Longrightarrow (\mathbf{P})$ is not feasible.
- (c) If $c^T \hat{x} = b^T \hat{y}$ with \hat{x} feasible for (**P**) and \hat{y} feasible for (**D**), then \hat{x} must solve (**P**) and \hat{y} must solve (**D**).
- 2. (Strong duality) If either (\mathbf{P}) or (\mathbf{D}) has a finite optimal value, then so does the other, the optimal values coincide, and optimal solutions for both (\mathbf{P}) and (\mathbf{D}) exist.

4 Convex analysis

Definition 6. A set $A \subset \mathbb{R}^n$ is convex if one has that $\lambda x + (1 - \lambda) y \in A$, for all $x, y \in A$ and $\lambda \in (0, 1)$.

Definition 7. An hyperplane with normal vector $a \neq 0 \in \mathbb{R}^n$ and level α is the set

$$H_{a,\alpha} = \left\{ x \in \mathbb{R}^n : a^T x = \alpha \right\}.$$

Every hyperplane $H_{a,\alpha}$ is the intersection of the halfspaces

$$H_{a,\alpha}^{-} = \left\{ x \in \mathbb{R}^n : a^T x \le \alpha \right\},$$

$$H_{a,\alpha}^{+} = \left\{ x \in \mathbb{R}^n : a^T x \ge \alpha \right\}.$$

Definition 8. Let S and T be two sets in \mathbb{R}^n . We say that $H_{a,\alpha}$ strongly separates S and T if there exists $\varepsilon > 0$ such that $S \subseteq H_{a,\alpha-\varepsilon}^-$ and $T \subseteq H_{a,\alpha+\varepsilon}^+$ or viceversa.

Theorem 9 (Separating Hyperplane Theorem). Let S and T be two disjoint, non-empty, closed, convex sets in \mathbb{R}^n and one of them is compact. Then, there exists an hyperplane $H_{a,\alpha}$ that strongly separates S and T.

Corollary 10. Let S be a non-empty, closed, convex set in \mathbb{R}^n and such that $0 \notin S$. Then, there exist $a \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}_{++}$ such that

$$a^T x \ge \alpha > 0, \qquad x \in S.$$

Corollary 11. Let V be a linear subspace of \mathbb{R}^n and let K be a non-empty, compact, convex set in \mathbb{R}^n , such that $K \cap V = \emptyset$. Then, there exists $a \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}_{++}$ such that

$$\begin{split} a^T x &= 0, & x \in V, \\ a^T y &\geq \alpha > 0, & y \in K. \end{split}$$

5 Linear algebra

Definition 12. Given $A \in \mathbb{R}^{m \times n}$, we can consider the following fundamental linear subspaces:

- col(A): The *column space* of A, it contains all linear combinations of the columns of A.
- null (A): The null space of A, it contains all solutions to the system Ax = 0.
- $\operatorname{col}(A^T)$: The row space of A, it contains all linear combinations of the rows of A, (or columns of A^T).
- null (A^T) : The left null space of A^T , it contains all solutions to the system $A^Ty=0$.

Definition 13. The rank of A is the dimension of col(A) or $col(A^T)$, i.e.,

$$\operatorname{rank}(A) = \dim(\operatorname{col}(A)) = \dim(\operatorname{col}(A^T)).$$

Definition 14. Let $S \subseteq \mathbb{R}^n$. We define S^{\perp} , the *orthogonal complement* of S, as the set of vectors in \mathbb{R}^n which are orthogonal to S, that is,

$$S^{\perp} := \left\{ x \in \mathbb{R}^n : x^T y = 0, \quad y \in S \right\}.$$

It is easy to check that S^{\perp} is a linear subspace, regardless of S being a subspace or not. If S is a linear subspace, then $S \cap S^{\perp} = \{0\}$.

Proposition 15 (Orthogonal projection). Let $v \in \mathbb{R}^n$ and let $S \subseteq \mathbb{R}^n$ be a linear subspace. Then there exist unique $x \in S$ and $y \in S^{\perp}$ such that

$$v = x + y$$
.

We write $\mathbb{R}^n = S \oplus S^{\perp}$, and we say that \mathbb{R}^n is the direct sum of S and S^{\perp} .

Theorem 16 (Fundamental theorem of linear algebra). Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{col}(A)$ is orthogonal to $\operatorname{null}(A^T)$, and

$$\mathbb{R}^{m} = \operatorname{col}(A) \oplus \operatorname{null}(A^{T}).$$

Moreover, col (A^T) is orthogonal to null (A) and

$$\mathbb{R}^n = \operatorname{col}\left(A^T\right) \oplus \operatorname{null}\left(A\right).$$

Proof. Follows from Proposition 15 and the following equalities

$$\operatorname{col}(A)^{\perp} = \left\{ y \in \mathbb{R}^m : y^T A x = 0, \quad x \in \mathbb{R}^n \right\}$$
$$= \left\{ y \in \mathbb{R}^m : x^T \left(A^T y \right) = 0, \quad x \in \mathbb{R}^n \right\}$$
$$= \left\{ y \in \mathbb{R}^m : A^T y = 0 \right\}$$
$$= \operatorname{null}(A^T).$$

Proposition 17 (Fredholm's alternative). For every matrix $A \in \mathbb{R}^{m \times n}$ and vector $b \in \mathbb{R}^m$, exactly one of the following statements is true:

- 1. Ax = b has a solution $x \in \mathbb{R}^n$.
- 2. There exists $0 \neq y \in \mathbb{R}^m$ such that $A^T y = 0$ and $y^T b \neq 0$.

Proof. Suppose Ax = b has a solution. This is equivalent to $b \in \operatorname{col}(A)$. Let $y = y_c + y_n \in \mathbb{R}^m$, $y_c \in \operatorname{col}(A), y_n \in \operatorname{null}(A^T)$. Note that

$$A^T y = A^T y_c + A^T y_n = A^T y_c$$

and

$$y^T b = y_c^T b + y_n^T b = y_c^T b.$$

But then, if $A^T y = 0$ we have that

$$A^T y_c = 0 \Leftrightarrow y_c = 0 \Leftrightarrow y_c^T = 0 \Longrightarrow y_c^T b = 0,$$

which also implies that $y^Tb = 0$. Therefore, 2. is not true.

Suppose that Ax = b does not have a solution. Note that, in this case, $b \neq 0 \in \mathbb{R}^m$, because for b = 0 we always have the solution x = 0. Moreover, this is equivalent to $b \notin \operatorname{col}(A)$ (i.e., $b \in \operatorname{null}(A^T)$). Then, $A^Tb = 0$ and $b^Tb = ||b||^2 \neq 0$. Hence, we can take y = b and we have that 2. is true.