### Chapter 6

Supervised Learning II:
Backpropagation and Beyond



Neural Networks: A Classroom Approach
Satish Kumar
Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

#### Multilayered Network Architectures



### Approximation and Generalization

- □ What kind of network is required to learn with sufficient accuracy a function that is represented by a finite data set?
- Does the trained network predict values correctly on unseen inputs?



# Function Described by Discrete Data

 $\square$  Assume a set of  $\mathbb{Q}$ training vector pairs:  $T = (X_k, D_k) k=1...Q$  $X_k \in R^n, D_k \in R^p$ where  $D_k$  is a vector response desired when input  $X_{k}$  is presented as input to the network.



$$\mathcal{T} = \left\{ (X_k, D_k) \right\}_{k=1}^Q$$

### Supervised Learning Procedure

Error information fed back for network adaptation



### Backpropagation Weight Update Procedure

- 1. Select a pattern  $X_k$  from the training set T present it to the network.
- 2. Forward Pass: Compute activations and signals of input, hidden and output neurons in that sequence.
- 3. Error Computation: Compute the error over the output neurons by comparing the generated outputs with the desired outputs.
- 4. Compute Weight Changes: Use the error to compute the change in the hidden to output layer weights, and the change in input to hidden layer weights such that a global error measure gets reduced.

#### Backpropagation Weight Update Procedure

5. Update all weights of the network.

Hidden to output layer weights

$$w_{hj}^{k+1} = w_{hj}^k + \Delta w_{hj}^k$$

Input to hidden layer weights

$$w_{ih}^{k+1} = w_{ih}^k + \Delta w_{ih}^k$$

6. Repeat Steps 1 through 5 until the global error falls below a predefined threshold.

### Square Error Function

The instantaneous summed squared error  $\varepsilon_k$  is the sum of the squares of each individual output error  $e_j^k$ , scaled by one-half:

$$E_{k} = (e_{1}^{k}, \dots, e_{p}^{k})^{T} = (d_{1}^{k} - \mathbb{S}(y_{1}^{k}), \dots, d_{p}^{k} - \mathbb{S}(y_{p}^{k}))^{T}$$

$$\mathcal{E}_{k} = \frac{1}{2} \sum_{i=1}^{p} (d_{j}^{k} - \mathbb{S}(y_{j}^{k}))^{2} = \frac{1}{2} E_{k}^{T} E_{k}$$

$$\mathcal{E} = \frac{1}{Q} \sum_{k=1}^{Q} \mathcal{E}_k$$

### Error Surface



### Gradient Descent Procedure



### Recall: Gradient Descent Update Equation

$$| \square | \text{ If } \frac{\partial \mathcal{E}}{\partial w_i^k} > 0, (w_i^k > \hat{w}_i), \underline{\text{decrease }} w_i^k |$$

$$| \square | \text{ If } \frac{\partial \mathcal{E}}{\partial w_i^k} < 0, (w_i^k < \hat{w}_i) \underline{\text{increase }} w_i^k |$$

$$ightharpoonup$$
 If  $\frac{\partial \mathcal{E}}{\partial w_i^k} < 0$ ,  $(w_i^k < \hat{w}_i)$  increase  $w_i^k$ 

□ It follows logically therefore, that the weight component should be updated in proportion with the negative of the gradient as follows:

$$w_i^{k+1} = w_i^k + \eta \left( -\frac{\partial \mathcal{E}}{\partial w_i^k} \right) \qquad i = 0, 1, \dots, n$$

### Neuron Signal Functions



Input layer neurons are linear.

$$S(x) = x$$

Hidden and output layer neurons are sigmoidal.

$$S(x) = \frac{1}{1 + e^{-\lambda x}}$$

A training data set is assumed to be given which will be used to train the network.

$$\mathcal{T} = \left\{ (X_k, D_k) \right\}_{k=1}^Q$$

# Notation for Backpropagation Algorithm Derivation

|                                                                                                 | Input                                   | Hidden                                                                              | Output                                                                                          |
|-------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Number of neurons Signal function Neuron index range Activation Signal Weights (including bias) | $n+1$ linear $i = 0,, n$ $x_i$ $S(x_i)$ | $q + 1$ sigmoidal $h = 0, \dots, q$ $z_h$ $S(z_h)$ $\Rightarrow w_{ih} \rightarrow$ | $p \\ \text{sigmoidal} \\ j = 1, \dots, p \\ y_j \\ \Im(y_j) \\ \rightarrow w_{hj} \rightarrow$ |

# The General Idea Behind Iterative Training...

- Employ the gradient of the pattern error in order to reduce the global error over the entire training set.
- Compute the error gradient for a pattern and use it to change the weights in the network.
- Such weight changes are effected for a sequence of training pairs  $(X_1,D_1)$ ,  $(X_2,D_2)$ , ...,  $(X_k,D_k)$ , ... picked from the training set.
- Each weight change perturbs the existing neural network slightly, in order to reduce the error on the pattern in question.

# Square Error Performance Function

- $\square$  The  $k^{th}$  training pair  $(X_k, D_k)$  then defines the instantaneous error:
  - $\blacksquare$   $E_k = D_k S(Y_k)$  where
  - $\blacksquare \quad \mathsf{E}_{\mathsf{k}} = (\mathsf{e}_1^{\;\mathsf{k}}, \ldots, \mathsf{e}_{\mathsf{p}}^{\;\mathsf{k}})$
  - =  $(d_1^k S(y_1^k), ..., d_p^k S(y_p^k))$
- ☐ The instantaneous summed squared error  $E_k$  is the sum of the squares of each individual output error  $e_j^k$ , scaled by one-half:

$$\mathcal{E}_k = \frac{1}{2} \sum_{j=1}^p \left( d_j^k - \mathbb{S}(y_j^k) \right)^2$$

# The Difference Between Batch and Pattern Update

# Derivation of BP Algorithm: Forward Pass-Input Layer



$$S(x_i^k) = x_i^k, i = 1, ..., n$$
  
 $S(x_0^k) = x_0^k = 1$ 

# Derivation of BP Algorithm: Forward Pass-Hidden Layer



$$z_h^k = \sum_{i=0}^n w_{ih}^k S(x_i^k) = \sum_{i=0}^n w_{ih}^k x_i^k, \ h = 1, \dots, q$$
$$S(z_h^k) = \frac{1}{1 + e^{-z_h^k}}, \ h = 1, \dots, q$$
$$S(z_0^k) = 1, \ \forall k$$

# Derivation of BP Algorithm: Forward Pass-Output Layer



$$y_j^k = \sum_{h=0}^q w_{hj}^k S(z_h^k), \ j = 1, \dots, p$$

$$S(y_j^k) = \frac{1}{1 + e^{-y_j^k}}, \ j = 1, \dots, p$$

# Recall the Gradient Descent Update Equation

☐ A weight gets
updated based on
the negative of the
error gradient with
respect to the
weight

$$w_{hj}^{k+1} = w_{hj}^k + \Delta w_{hj}^k$$

$$= w_{hj}^k + \eta \left( -\frac{\partial \mathcal{E}_k}{\partial w_{hj}^k} \right)$$

$$w_{ih}^{k+1} = w_{ih}^k + \Delta w_{ih}^k$$

$$= w_{ih}^k + \eta \left( -\frac{\partial \mathcal{E}_k}{\partial w_{ij}^k} \right)$$



$$\frac{\partial \mathcal{E}_k}{\partial w_{hj}^k} = \frac{\partial \mathcal{E}_k}{\partial \mathcal{S}(y_j^k)} \frac{\partial \mathcal{S}(y_j^k)}{\partial y_j^k} \frac{\partial y_j^k}{\partial w_{hj}^k}$$

$$\frac{\partial \mathcal{E}_k}{\partial \mathcal{S}(y_j^k)} = -\left(d_j^k - \mathcal{S}(y_j^k)\right) = -e_j^k$$

$$\frac{\partial \mathcal{S}(y_j^k)}{\partial y_j^k} = \mathcal{S}'(y_j^k) = \mathcal{S}(y_j^k)\left(1 - \mathcal{S}(y_j^k)\right)$$

$$\frac{\partial y_j^k}{\partial w_{hj}^k} = \mathcal{S}(z_h^k)$$

$$\frac{\partial \mathcal{E}_k}{\partial w_{hj}^k} = -e_j^k S'(y_j^k) S(z_h^k)$$
$$= -\delta_j^k S(z_h^k)$$



$$\frac{\partial \mathcal{E}_k}{\partial w_{ih}^k} = \frac{\partial \mathcal{E}_k}{\partial \mathcal{S}(z_h^k)} \frac{\partial \mathcal{S}(z_h^k)}{\partial z_h^k} \frac{\partial z_h^k}{\partial w_{ih}^k}$$



$$\frac{\partial \mathcal{E}_k}{\partial \mathcal{S}(z_h^k)} = \sum_{j=1}^p \left\{ \frac{\partial \mathcal{E}_k}{\partial y_j^k} \, \frac{\partial y_j^k}{\partial \mathcal{S}(z_h^k)} \right\}$$

$$\frac{\partial \mathcal{E}_{k}}{\partial w_{ih}^{k}} = \sum_{j=1}^{p} \left\{ \frac{\partial \mathcal{E}_{k}}{\partial y_{j}^{k}} \frac{\partial y_{j}^{k}}{\partial S(z_{h}^{k})} \right\} S'(z_{h}^{k}) S(x_{i}^{k})$$

$$= \sum_{j=1}^{p} \left\{ \frac{\partial \mathcal{E}_{k}}{\partial S(y_{j}^{k})} \frac{\partial S(y_{j}^{k})}{\partial y_{j}^{k}} \frac{\partial y_{j}^{k}}{\partial S(z_{h}^{k})} \right\} S'(z_{h}^{k}) S(x_{i}^{k})$$

$$= \sum_{j=1}^{p} \left\{ -e_{j}^{k} S'(y_{j}^{k}) w_{hj}^{k} \right\} S'(z_{h}^{k}) x_{i}^{k}$$

$$= - \left[ \sum_{j=1}^{p} (\delta_{j}^{k} w_{hj}^{k}) S'(z_{h}^{k}) x_{i}^{k} \right]$$

$$\delta_{h}^{k} = e_{h}^{k} S'(z_{h}^{k})$$

error backpropagation

$$\frac{\partial \mathcal{E}_k}{\partial w_{ih}^k} = -\delta_h^k x_i^k$$



$$\delta_h^k = e_h^k S'(z_h^k)$$

#### Generalized Delta Rule: Momentum

□ Increases the rate of learning while maintaining stability

$$\Delta w_{hj}^{k} = \eta \delta_{j}^{k} S(z_{h}^{k}) + \alpha \Delta w_{hj}^{k-1}$$
$$\Delta w_{ih}^{k} = \eta \delta_{h}^{k} x_{i}^{k} + \alpha \Delta w_{ih}^{k-1}$$

#### How Momentum Works

- Momentum should be less than 1 for convergent dynamics.
- If the gradient has the same sign on consecutive iterations the net weight change increases over those iterations accelerating the descent.
- If the gradient has different signs on consecutive iterations then the net weight change decreases over those iterations and the momentum decelerates the weight space traversal. This helps avoid oscillations.

$$\Delta w_{hj}^0 = 0$$

$$\Delta w_{hj}^1 = \eta \delta_j^1 s_h^1$$

$$\Delta w_{hj}^2 = \eta \delta_j^2 s_h^2 + \alpha \Delta w_{hj}^1$$
$$= \eta \delta_j^2 s_h^2 + \alpha \eta \delta_j^1 s_h^1$$

$$\Delta w_{hj}^{3} = \eta \delta_{j}^{3} s_{h}^{3} + \alpha \Delta w_{hj}^{2}$$

$$= \eta \delta_{j}^{3} s_{h}^{3} + \alpha (\eta \delta_{j}^{2} s_{h}^{2} + \alpha \eta \delta_{j}^{1} s_{h}^{1})$$

$$= \eta \delta_{j}^{3} s_{h}^{3} + \alpha \eta \delta_{j}^{2} s_{h}^{2} + \alpha^{2} \eta \delta_{j}^{1} s_{h}^{1}$$

$$\Delta w_{hj}^k = \eta \sum_{t=1}^k \alpha^{k-t} \delta_j^t s_h^t = -\eta \sum_{t=1}^k \alpha^{k-t} \frac{\partial \mathcal{E}_t}{\partial w_{hj}^t}$$

# Derivation of BP Algorithm: Finally...!

1. For hidden to output layer weights:

$$w_{hj}^{k+1} = w_{hj}^k + \Delta w_{hj}^k$$
$$= w_{hj}^k + \eta \left( -\frac{\partial \mathcal{E}_k}{\partial w_{hj}^k} \right)$$
$$= w_{hj}^k + \eta \delta_j^k \mathcal{S}(z_h^k)$$

2. For input to hidden layer weights:

$$w_{ih}^{k+1} = w_{ih}^k + \Delta w_{ih}^k$$
$$= w_{ih}^k + \eta \left( -\frac{\partial \mathcal{E}_k}{\partial w_{ih}^k} \right)$$
$$= w_{ih}^k + \eta \delta_h^k x_i^k$$

# Backpropagation Algorithm: Operational Summary

```
Given
                   A training set \mathcal{T} comprising vectors X_k \in \mathbb{R}^n
                   and desired output vectors D_k \in \mathbb{R}^p
                   and an n-q-p architecture neural network N
                    \hookrightarrow Randomize weights w_{ih}^1 to small values, set \Delta w_{ih}^0 = 0, i = 0, \ldots, n; h = 1, \ldots, q \hookrightarrow Randomize weights w_{hi}^1 to small values, set \Delta w_{hi}^0 = 0, h = 0, \ldots, q; j = 1, \ldots, p
Initialize
                    \hookrightarrow Set k = 1, \eta, \alpha, and the error tolerance \tau as desired
Iterate

    Repeat

                         \rightsquigarrow Select a training pair (X_k, D_k) \in \mathcal{T}

    ∼ Compute signals on forward pass in the following sequence:

                           S(x_i^k) = x_i^k
                                                                                          i = 1, \ldots, n
                           S(x_0^k) = 1
                           z_h^k = \sum_{i=0}^n w_{ih}^k x_i^k, 
S(z_h^k) = \frac{1}{1 + \exp(-z_h^k)},
                                                                                      h=1,\ldots,a
                                                                                          h = 1, \ldots, q
                            S(z_0^k) = 1
                           y_{j}^{k} = \sum_{h=0}^{q} w_{hj}^{k} S(z_{h}^{k}),
S(y_{j}^{k}) = \frac{1}{1 + \exp(-y_{j}^{k})},
                                                                                        i=1,\ldots,p
                                                                                         j = 1, \ldots, p
```

# Backpropagation Algorithm: Operational Summary(contd.)

$$\delta_{j}^{k} = (d_{j}^{k} - S(y_{j}^{k}))S'(y_{j}^{k}) \qquad j = 1, ..., p$$

$$\Delta w_{hj}^{k} = \eta \delta_{j}^{k} S(x_{h}^{k}) \qquad h = 0, ..., q; j = 1, ..., p$$

$$\delta_h^k = \left(\sum_{j=1}^p \delta_j^k w_{hj}^k\right) S'(z_h^k) \qquad h = 1, \dots, q$$
  
$$\Delta w_{ih}^k = \eta \delta_h^k x_i^k \qquad i = 0, \dots, n; \ h = 1, \dots, q$$

∨→ Update weights:

$$w_{hj}^{k+1} = w_{hj}^{k} + \Delta w_{hj}^{k} + \alpha \Delta w_{hj}^{k-1} \qquad h = 0, \dots, q; \ j = 1, \dots, p$$
  
$$w_{ih}^{k+1} = w_{ih}^{k} + \Delta w_{ih}^{k} + \alpha \Delta w_{ih}^{k-1} \qquad i = 0, \dots, n; \ h = 1, \dots, q$$

 $\rightsquigarrow$  Collect pattern error  $\mathcal{E}_k$ 

} until 
$$(\mathcal{E}_{av} = \frac{1}{Q} \sum_{k=1}^{Q} \mathcal{E}_k < \tau)$$

# Hand-worked Example

| Pattern Index | $x_1^k$ | $x_2^k$ | $d_1^k$ | $d_2^k$ |
|---------------|---------|---------|---------|---------|
| 1             | 0.5     | -0.5    | 0.9     | 0.1     |
| 2             | -0.5    | 0.5     | 0.1     | 0.9     |



### Forward Pass 1/Backprop Pass 1

$$k$$
  $x_1^k$   $x_2^k$   $S(x_1^k)$   $S(x_2^k)$   $z_1^k$   $z_2^k$   $S(z_1^k)$   $S(z_2^k)$   $y_1^k$   $y_2^k$   $S(y_1^k)$   $S(y_2^k)$   $1$  .5 -.5 .5 -.5 .16 -.145 .5399 .4638 .9271 .0955 .7164 .5238

$$e_1^1 = d_1^1 - s_1^1 = 0.9 - 0.7164 = 0.1836$$

$$e_2^1 = d_2^1 - s_2^1 = 0.1 - 0.5238 = -0.4238$$

$$\delta_1^1 = 0.1836 \times 0.7164(1 - 0.7164) = 0.0373$$

$$\delta_2^1 = -0.4238 \times 0.5238(1 - 0.5238) = -0.1057$$

$$\delta H_1^1 = (0.0373 \times 0.37 + (-0.1057 \times -0.22)) \times 0.5399(1 - 0.5399) = 0.0092$$

$$\delta H_2^1 = (0.0373 \times 0.9 + (-0.1057 \times -0.12)) \times 0.4638(1 - 0.4638) = 0.0115$$

### Weight Changes: Pass 1

$$\Delta n_{01}^{1} = 1.2 \times 0.0373 \times 1.0 = 0.0447$$

$$\Delta n_{11}^{1} = 1.2 \times 0.0373 \times 0.5399 = 0.0241$$

$$\Delta n_{21}^{1} = 1.2 \times 0.0373 \times 0.4638 = 0.0207$$

$$\Delta n_{02}^{1} = 1.2 \times -0.1057 \times 1.0 = -0.1268$$

$$\Delta n_{12}^{1} = 1.2 \times -0.1057 \times 0.5399 = -0.0684$$

$$\Delta n_{22}^{1} = 1.2 \times -0.1057 \times 0.4638 = -0.0588$$

$$\Delta m_{01}^{1} = 1.2 \times 0.0092 \times 1.0 = 0.011$$

$$\Delta m_{11}^{1} = 1.2 \times 0.0092 \times 0.5 = 0.0055$$

$$\Delta m_{21}^{1} = 1.2 \times 0.0092 \times -0.5 = -0.0055$$

$$\Delta m_{02}^{1} = 1.2 \times 0.0115 \times 1.0 = 0.0138$$

$$\Delta m_{12}^{1} = 1.2 \times 0.0115 \times 0.5 = 0.0069$$

$$\Delta m_{22}^{1} = 1.2 \times 0.0115 \times -0.5 = -0.0069$$

$$n_{01}^2 = 0.31 + 0.0447 = 0.3547$$
 $n_{11}^2 = 0.37 + 0.0241 = 0.3941$ 
 $n_{21}^2 = 0.9 + 0.0207 = 0.9207$ 
 $n_{02}^2 = 0.27 - 0.1268 = 0.1432$ 
 $n_{12}^2 = -0.22 - 0.0684 = -0.2884$ 
 $n_{22}^2 = -0.12 - 0.0588 = -0.1788$ 
 $m_{01}^2 = 0.01 + 0.011 = 0.021$ 
 $m_{11}^2 = 0.1 + 0.0055 = 0.1055$ 
 $m_{21}^2 = -0.2 - 0.0055 = -0.2055$ 
 $m_{02}^2 = -0.02 + 0.0138 = -0.0062$ 
 $m_{12}^2 = 0.3 + 0.0069 = 0.3069$ 
 $m_{22}^2 = 0.55 - 0.0069 = 0.5431$ 

### Network N<sup>2</sup> after first Iteration



### Forward Pass 2/Backprop Pass 2

$$k$$
  $x_1^k$   $x_2^k$   $S(x_1^k)$   $S(x_2^k)$   $z_1^k$   $z_2^k$   $S(z_1^k)$   $S(z_2^k)$   $y_1^k$   $y_2^k$   $S(y_1^k)$   $S(y_2^k)$   $z_2^k$   $z_2^k$ 

$$e_1^2 = d_1^2 - s_1^2 = 0.1 - 0.7358 = -0.6358$$

$$e_2^2 = d_2^2 - s_2^2 = 0.9 - 0.4786 = 0.4214$$

$$\delta_1^2 = -0.6358 \times 0.7358(1 - 0.7358) = -0.1235$$

$$\delta_2^2 = 0.4214 \times 0.4786(1 - 0.4786) = 0.1051$$

$$\delta H_1^2 = (-0.1235 \times 0.3941 + 0.1051 \times -0.2884)) \times 0.4664(1 - 0.4664) = -0.0196$$

$$\delta H_2^2 = (-0.1235 \times 0.9207 + 0.1051 \times -0.1788)) \times 0.5279(1 - 0.5279) = -0.033$$

### Weight Changes: Pass 2

$$\Delta n_{01}^2 = 1.2 \times -.1235 \times 1.0 = -0.1482$$

$$\Delta n_{11}^2 = 1.2 \times -.1235 \times 0.4664 = -0.0691$$

$$\Delta n_{21}^2 = 1.2 \times -.1235 \times 0.5279 = -0.0782$$

$$\Delta n_{02}^2 = 1.2 \times 0.1051 \times 1.0 = 0.1261$$

$$\Delta n_{12}^2 = 1.2 \times 0.1051 \times 0.4664 = 0.0588$$

$$\Delta n_{22}^2 = 1.2 \times 0.1051 \times 0.5279 = 0.0665$$

$$\Delta m_{01}^2 = 1.2 \times -.0196 \times 1.0 = -0.0235$$

$$\Delta m_{11}^2 = 1.2 \times -.0196 \times -0.5 = 0.0117$$

$$\Delta m_{21}^2 = 1.2 \times -.0196 \times 0.5 = -0.0117$$

$$\Delta m_{02}^2 = 1.2 \times -.033 \times 1.0 = -0.0396$$

$$\Delta m_{12}^2 = 1.2 \times -.033 \times -0.5 = 0.0198$$

$$\Delta m_{22}^2 = 1.2 \times -.033 \times 0.5 = -0.0198$$

```
n_{11}^3 = 0.3941 - 0.0691 + 0.8 \times 0.0241
                                                     0.3442
n_{21}^3 = 0.9207 - 0.0782 + 0.8 \times 0.0207
                                                     0.8590
n_{01}^3 = 0.3547 - 0.1482 + 0.8 \times 0.0447
                                                     0.2422
n_{12}^3 = -0.2884 + 0.0588 + 0.8 \times -0.0684 = -0.2843
n_{22}^3 = -0.1788 + 0.0665 + 0.8 \times -0.0588 = -0.1593
n_{02}^3 = 0.1432 + 0.1261 + 0.8 \times -0.1268 =
m_{11}^3 = 0.1055 + 0.0117 + 0.8 \times 0.0055
                                                     0.1216
m_{21}^3 = -0.2055 - 0.0117 + 0.8 \times -0.0055 = -0.2216
m_{01}^3 = 0.021 - 0.0235 + 0.8 \times 0.011
                                                     0.0063
m_{12}^3 = 0.3069 + 0.0198 + 0.8 \times 0.0069
                                                     0.3322
m_{22}^3 = 0.5431 - 0.0198 + 0.8 \times -0.0069
                                                     0.5177
m_{02}^3 = -0.0062 - 0.0396 + 0.8 \times 0.0138
                                                = -0.0347
```

#### Network N<sup>3</sup> after second Iteration



## MATLAB Simulation Example 1 Two Dimensional XOR Classifier

- Specifying a 0 or 1 desired value does not make sense since a sigmoidal neuron can generate a 0 or 1 signal only at an activation value -∞ or ∞. So it is never going to quite get there.
- ☐ The values 0.05, 0.95 are somewhat more reasonable representatives of 0 and 1.
- □ Note that the inputs can still be 0 and 1 but the desired values must be changed keeping in mind the signal range.

| $x_1$ | $x_2$ | $f_{\oplus}$ |
|-------|-------|--------------|
| 0.05  | 0.05  | 0.05         |
| 0.05  | 0.95  | 0.95         |
| 0.95  | 0.05  | 0.95         |
| 0.95  | 0.95  | 0.05         |

### Generalization Surface, Grayscale Map of the Network Response





# MATLAB Simulation 2: Function Approximation



| Parameter             | Number / Value |
|-----------------------|----------------|
| Input nodes           | 2              |
| Hidden nodes-Layer 1  | 10             |
| Hidden nodes-Layer 2  | 10             |
| Number of patterns    | 625            |
| Learning rate, $\eta$ | 0.9            |
| Momentum, $\alpha$    | 0.6            |
| Gain Scale, λ         | 1.0            |
| Tolerance, $\tau$     | 0.05           |

# MATLAB Simulation 2: Error vs Epochs



## MATLAB Simulation 2: Simulation Snapshots



## MATLAB Simulation 2: Error Histogram and Error Mesh



### MATLAB Code for Backprop

```
pattern=[0.1 0.1 0.1
        0.1.95.95
        .95 0.1 .95
        .95 .95 0.1];
eta = 1.0; % Learning rate
alpha = 0.7; % Momentum
tol = 0.001; % Error tolerance
Q = 4; % Total no. of the patterns to be input
n = 2; q = 2; p = 1; % Architecture
Wih = 2 * rand(n+1,q) - 1;
                        % Input-hidden weight matrix
Whj = 2 * rand(q+1,p) - 1; % Hidden-output weight matrix
DeltaWih = zeros(n+1,q); % Weight change matrices
DeltaWhj = zeros(q+1,p);
DeltaWihOld = zeros(n+1,q);
DeltaWhjOld = zeros(q+1,p);
```

### MATLAB Code for Backprop - 2

```
Si = [ones(Q,1) pattern(:,1:2)]; % Input signals
D = pattern(:,3);
                          % Desired values
Sh = [1 zeros(1,q)];
                          % Hidden neuron signals
Sy = zeros(1,p);
                          % Output neuron signals
                          % Error-slope product at output
deltaO = zeros(1,p);
deltaH = zeros(1,q+1);
                          % Error-slope product at hidden
sumerror = 2*tol;
                          % To get in to the loop
while (sumerror > tol)
                          % Iterate
sumerror = 0;
for k = 1:Q
  Zh = Si(k,:) * Wih;
                                   % Hidden activations
  Sh = [1 1./(1 + exp(-Zh))];
                                   % Hidden signals
  Yj = Sh * Whj;
                                   % Output activations
  Sy = 1./(1 + exp(-Y_i));
                                   % Output signals
  Ek = D(k) - Sy;
                                   % Error vector
  deltaO = Ek.* Sy.* (1 - Sy);
                                   % delta output
```

### MATLAB Code for Backprop - 3

```
for h = 1:q+1
      DeltaWhj(h,:) = deltaO * Sh(h); % Delta W:hidden-output
   end
   for h = 2:q+1 % delta hidden
      deltaH(h)=(deltaO*Whj(h,:)')*Sh(h)*(1-Sh(h));
   end
   for i = 1:n+1 % Delta W:input-hidden
      DeltaWih(i,:) = deltaH(2:q+1) * Si(k,i);
   end % Update weights
   Wih = Wih + eta * DeltaWih + alpha * DeltaWihOld;
   Whj = Whj + eta * DeltaWhj + alpha * DeltaWhjOld;
   DeltaWihOld = DeltaWih; DeltaWhjOld = DeltaWhj; % Store changes
   sumerror = sumerror + sum(Ek.^2); % Compute error
 end
 sumerror %Print epoch error
end
```

## Practical Considerations: Pattern or Batch Mode Training

- ☐ Pattern Mode:
  - Present a single pattern
  - Compute local gradients
  - Change the network weights
- Given Q training patterns  $\{X_i, D_i\}_{i=1}^Q$ , and some initial neural network  $N_0$ , pattern mode training generates a sequence of Q neural networks  $N_1, \ldots, N_Q$  over one epoch of training.
- ☐ Batch Mode (true gradient descent):
  - Collect the error gradients over an entire epoch
  - Change the weights of the initial neural network  $N_0$  in one shot.

## Practical Considerations: When Do We Stop Training?

- 1. Compare absolute value of squared error averaged over one epoch,  $E_{av}$ , with a training tolerance, typically 0.01 or as low as 0.0001.
- 2. Alternatively use the absolute rate of change of the mean squared error per epoch.
- 3. Stop the training process if the Euclidean norm of the error gradient falls below a sufficiently small threshold. (Requires computation of the gradient at the end of each epoch.)
- 4. Check the generalization ability of the network. The network generalizes well if it is able to predict correct or near correct outputs for unseen inputs.
  - Partition the data set T into two subsets:  $T_{training}$  (used for estimation) and  $T_{test}$  (used for evaluation of the network)
  - T<sub>training</sub> is divided into  $T_{learning}$  and  $T_{validation}$ . ( $T_{validation}$  might comprise 20 30 per cent of the patterns in  $T_{training}$ .
  - $\blacksquare$  Use  $T_{learning}$  to train the network using backpropagation.
  - Evaluate network performance at the end of each epoch using  $T_{\text{validation}}$ .
  - lacktriangle Stop the training process when the error on  $T_{validation}$  starts to rise.

## Practical Considerations: Use a Bipolar Signal Function

- ☐ Introducing a bipolar signal function such as the hyperbolic tangent function can cause a significant speed up in the network convergence.
- Specifically,  $S(x) = a \tanh(\lambda x)$  with a = 1.716 and  $\lambda = 0.66$  being suitable values.
- The use of this function comes with the added advantage that the range of valid desired signals extends to  $[-1 + \epsilon, 1 \epsilon]$  where  $\epsilon > 0$ .

## Practical Considerations: Weight Initialization

- Choose small random values within some interval [-ε, +ε]. (Identical initial values can lead to network paralysis—the network learns nothing.)
- Avoid very small ranges of weight randomization—may lead to very slow learning initially.
- Incorrect choice of weights might lead to network saturation where weight changes are almost negligible over consecutive epochs.
  - May be incorrectly interpreted as a local minimum.
  - Signal values are close to the 0 or 1; signal derivatives are infinitesimally small.
  - Weight changes are negligibly small.
  - Small weight changes allow the neuron to escape from *incorrect* saturation only after a very long time.
  - Randomization of network weights helps avoid these problems.
- For bipolar signal functions it is useful to randomize weights depending on individual neuron *fan-in*,  $f_i$ : randomized in the interval  $(-2.4/f_i, 2.4/f_i)$

### Practical Considerations: Check the Input and Target Ranges

- Given a logistic signal function which ranges in the interval (0,1) the desired outputs of patterns in the entire training set should lie in an interval  $[0 + \epsilon, 1 \epsilon]$  where  $\epsilon > 0$  is some small number.
- Desired values of 0 and 1 causes weights to grow increasingly large in order to generate these limiting values of the output.
- To generate a 0 and 1 requires a -∞ or ∞ activation which can be accomplished by increasing the values of weights.
- ☐ Algorithm cannot be expected to converge if desired outputs lie outside the interval [0,1].
- □ If one were to use a hyperbolic tangent signal function with the range [-1.716,+1.716], then target values of -1, 0 or +1 would be perfectly acceptable.

### Practical Considerations: Adjusting Learning Rates

- For small learning rates, convergence to the local minimum in question is guaranteed but may lead to long training times.
- ☐ If network learning is non-uniform, and we stop before the network is trained to an error minimum, some weights will have reached their final "optimal" values; others may not have.
  - In such a situation, the network might perform well on some patterns and very poorly on others.
- If we assume that the error function can be approximated by a quadratic then we can make the following observations.
  - An optimal learning rate reaches the error minimum in a single learning step.
  - Rates that are lower take longer to converge to the same solution.
  - Rates that are larger but less than twice the optimal learning rate converge to the error minimum but only after much oscillation.
  - Learning rates that are larger than twice the optimal value will diverge from the solution.

## Practical Considerations: Selection of a Network Architecture

- A three-layered network can approximate any continuous function.
- Problem with multilayered nets using one hidden layer:
  - neurons tend to interact with each other globally
  - interactions make it difficult to generate approximations of arbitrary accuracy.
- □ With two hidden layers the curve-fitting process is easier:
  - The first hidden layer extracts local features of the function (as binary threshold neurons partition the input space into regions.)
  - Global features are extracted in the second hidden layer.

#### Practical Considerations: Cross Validation

- $\square$  Divide the data set into a training set  $T_{\text{training}}$  and a test set  $T_{\text{test}}$ .
- Subdivide  $T_{training}$  into two subsets: one to train the network  $T_{learning}$ , and one to validate the network  $T_{validation}$ .
- $\square$  Train different network architectures on  $T_{learning}$  and evaluate their performance on  $T_{validation}$ .
- ☐ Select the best network.
- Finally, retrain this network architecture on T<sub>training</sub>.
- □ Test for generalization ability using T<sub>test</sub>.

## Backpropagation: Two-Spirals Problem





- Solved by Lang and Witbrock 2-5-5-5-1 architecture 138 weights.
- □ In the Lang-Witbrock network each layer of neurons is connected to every succeeding layer.

## Structure Growing Algorithms

#### ☐ Approach 1:

- Starts out with a large number of weights in the network and gradually prunes them.
- Idea: eliminate weights that are least important.
- Examples: Optimal Brain Damage, Optimal Brain Surgeon, Hinton weight decay procedure.

#### ☐ Approach 2:

- Starts out with a minimal architecture which is made to grow during training.
- Examples: Tower algorithm, Pyramid algorithm, cascade correlation algorithm.

#### Structure Growing Algorithms: Tower Algorithm

- Train a single TLN using the pocket learning algorithm with a ratchet.
  - If there are n inputs, we have to train n + 1 weights.
- Freeze the weights of the TLN.
- Now add a new TLN to the system.
  - This TLN gets all the original n inputs, as well as an additional input from the first TLN trained.
- ☐ Train the n + 2 weights of this TLN using the pocket learning algorithm with ratchet.
- Continue this process until no further improvement in classification accuracy is achieved.
- Freeze the weights of the TLN.
  - Each added TLN is guaranteed to correctly classify a greater number of input patterns
- ☐ The tower algorithm is guaranteed to classify linearly non-separable pattern sets with an arbitrarily high probability provided
  - enough TLNs are added
  - enough training iterations are provided to train each incrementally added TLN.

## Structure Growing Algorithms: Pyramid Algorithm

- ☐ Similar to the tower algorithm
- Each added TLN receives inputs from the n original inputs
- The added TLN receives inputs from all previously added TLNs.
- Training is done using the pocket algorithm with ratchet.

### Structure Growing Algorithms: Cascade Correlation Algorithm

- Assume a minimal network structure: n input neurons; p output neurons with full feedforward connectivity, the requisite bias connections, and no hidden neurons.
- □ This network is trained using backpropagation learning (or the Quickprop algorithm) until no further reduction in error takes place.
- Errors at output neurons are computed over the entire pattern set.
- $\square$  Next, a single hidden neuron is added. This neuron receives n+1 inputs including the bias and is not connected to the p output neurons.
- □ The weights of this hidden neuron are adjusted using BP or Quickprop
- $\square$  The goal of training is to maximize the correlation  $\mathcal C$  between the signal of the hidden neuron and the residual output error.

$$C = \sum_{j=1}^{p} \left| \sum_{k=1}^{Q} \left( S(z_h^k) - S_{av} \right) \left( \delta_j^k - \Delta_j \right) \right|$$

## Quickprop: Fast Relative of Backprop

- Works with second order error derivative information instead of only the usual first order gradients.
- □ Based on two "risky" assumptions:
  - The error function E is a parabolic function of any weight  $w_{ij}$ .
  - The change in the slope of the error curve is independent of other concurrent weight changes.
- The slope of the error function is thus linear.
- The algorithm pushes the weight w<sub>ij</sub> directly to a value that minimizes the parabolic error.
- □ To compute this weight, we require the previous value of the gradient ∂E/∂w; k-1 and the previous weight change.

$$\Delta w_{ij}^k = \frac{\frac{\partial \mathcal{E}}{\partial w_{ij}^k}}{\frac{\partial \mathcal{E}}{\partial w_{ij}^{k-1}} - \frac{\partial \mathcal{E}}{\partial w_{ij}^k}} \Delta w_{ij}^{k-1} = \alpha_{ij}^k \Delta w_{ij}^{k-1}$$

$$\Delta w_{ij}^k = -\eta \ I \left[ \frac{\partial \mathcal{E}}{\partial w_{ij}^k} \Delta w_{ij}^{k-1} > 0 \right] \frac{\partial \mathcal{E}}{\partial w_{ij}^k} + \alpha_{ij}^k \Delta w_{ij}^{k-1}$$

## Universal Function Approximation

☐ Kolmogorov proved that any continuous function f defined on an n-dimensional cube is representable by sums and superpositions of continuous functions of exactly one variable:

$$f(x_1, \dots, x_n) = \sum_{q=1}^{2n+1} \phi_q \left[ \sum_{p=1}^n \psi_{pq}(x_p) \right]$$

#### Universal Approximation Theorem

Let  $\phi(\cdot)$  be a non-constant, bounded, and monotone-increasing continuous function. Let  $\mathbb{I}^n$  denote the *n*-dimensional unit hypercube  $[0, 1]^n$ , and the space of continuous functions on  $\mathbb{I}^n$  be denoted by  $C(\mathbb{I}^n)$ . Then given any function  $F \in C(\mathbb{I}^n)$  and  $\epsilon > 0$ , there exists an integer p and sets of real constants  $\alpha_j$ ,  $\theta_j$ , and  $w_{ij}$ , where  $i = 1, \ldots, n$  and  $j = 1, \ldots, p$  such that we may define

$$f(X, W) = \sum_{j=1}^{p} \alpha_j \ \phi\left(\sum_{i=1}^{n} w_{ij} x_i - \theta_j\right) \ X \in \mathbb{I}^n, W \in \mathbb{R}^{n \times p}$$

as an approximate realization of the function F(X) where

$$|f(X, W) - F(X)| < \epsilon$$

for all  $X \in \mathbb{I}^n$ .

## Applications of BP: Steering Autonomous Vehicles

□ The primary objective is to steer a robot vehicle like Carnegie Mellon University's (CMU) Navlab, which is equipped with motors on the steering wheel, brake and accelerator pedal thereby enabling computer control of the vehicles' trajectory.

## Applications of BP: Steering Autonomous Vehicles-ALVINN

- ☐ ALVINN
  - □ (autonomous land vehicle in a neural network)



#### **ALVINN Network Architecture**

- □ Input to the system is a 30 × 32 neuron "retina"
- Video images are projected onto the retina.
- Each of these 960 input neurons is connected to four hidden layer neurons which are connected to 30 output neurons.
- Output neurons represent different steering directions—the central neuron being the "straight ahead" and the first and last neurons denoting "sharp left" and "sharp right" turns of 20 m radius respectively.
- □ To compute an appropriate steering angle, an image from a video camera is reduced to 30 × 32 pixels and presented to the network.
- The output layer activation profile is translated to a steering command using a *center of mass* around the hill of activation surrounding the output neuron with the largest activation.
- Training of ALVINN involves presentation of video images as a person drives the vehicle using the steering angle as the desired output.

#### CMU NAVLAB and ALVINN

- ALVINN runs on two SUNSPARC stations on board Navlab and training on the fly takes about two minutes.
- During this time the vehicle is driven over a 1/4 to 1/2 mile stretch of the road and ALVINN is presented about 50 images, each transformed 15 times to generate 750 images.
- The ALVINN system successfully steers NAVLAB in a variety of weather and lighting conditions. With the system capable of processing 10 images/second Navlab can drive at speeds up to 55 mph, five times faster than any other connectionist system.
- On highways, ALVINN has been trained to navigate at up to 90 mph!

### Reinforcement Learning: The Underlying Principle

- ☐ If an action of a system is followed by a satisfactory response, then strengthen the tendency to produce that action.
- Evaluate the success and failure of a neuron to produce a desired response.
  - If success: encourage the neuron to respond in the same way by supplying a reward
  - Otherwise supply a penalty
- Requires the presence of an external critic that evaluates the response within an environment.

## Types of Reinforcement Learning

- Reinforcement learning algorithms generally fall into one of three categories:
  - Non-associative
  - Associative
  - Sequential

### Three Basic Components

- □ A critic which sends the neural network a reinforcement signal whose value at any time k, is a measure of the "goodness" of the behaviour of the process at that point of time.
- □ A learning procedure in which the network updates its parameters—that determine its actions—based on this coarse information.
- ☐ The generation of another action, and the subsequent repetition of the above two operations.

### Architecture of Reinforcement Learning Networks



### Nonassociative Reinforcement Learning

- Extensively studied as a part of learning automata theory
- Assume that the learning system has m possible actions which we denote by  $a_i$ , i = 1...m.
- The effect of these actions on the binary (or bipolar) success-failure reinforcement signal can be modelled as a collection of probabilities which are denoted by P<sub>i</sub>—which is the probability of success given that the learning system generated an action a<sub>i</sub>.
- Objective: Maximize the probability of receiving a "success"— perform an action  $a_j$  such that the probability  $P_j = max(P_i)$ , i = 1...m.

#### Associative Reinforcement Learning

- $\square$  Assume that at time instant k stimulus vector  $X_k$  buffers the system.
- System selects an action  $a_k = a_j$  through a procedure that usually depends on  $X_k$ .
- Upon execution of this action, the critic provides its reinforcement signals: "success" with probability  $P_j(X_k)$  and "failure" with probability  $1 P_j(X_k)$ .
- Objective: Maximize the success probability—at all subsequent time instants k the learning system executes action  $a_k = a_j$ , such that  $P_j(X_k) = \max(P_i(X_k))$  i = 1...m.

## Associative Reinforcement Learning Rules

- Consider the j <sup>th</sup> neuron in a field that receives an input stimulus vector  $X_k = (x_0^k, \ldots, x_n^k)$  at time k in addition to the critic's reinforcement signal,  $r_k$ .
- Let  $W_k = (w_{0j}^k, \dots, w_{nj}^k)$  and  $a_k = s_j^k$  respectively denote the neuronal weight vector and action (neuron signal), and let  $y_j^k$  denote the neuronal activation at time k.

$$y_j^k = \sum_{i=0}^n w_{ij}^k x_i^k$$

#### Associative Search Unit

- □ Extension of the Hebbian learning rule.
- Neuron signal function is assumed to be a probabilistic function of its activation.

$$s_j^k = \begin{cases} 1 & \text{with probability } P(y_j^k) \\ 0, -1 & \text{with probability } 1 - P(y_j^k) \end{cases}$$

$$P[s_j^k = +1] = P(y_j^k) = \frac{1}{1 + \exp(-2\beta y_j^k)}$$

 $\square$  where  $y_j^k = \sum_i w_{ij}^k x_i^k$ 

## Associative Search Neuron Weight Updated

- This is essentially the Hebbian learning rule with the reinforcement signal acting as an additional modulatory factor.
- $\Box$   $\Delta W_k = \eta r_k s_j^{k-\tau} X_{k-\tau}$  where we assume that the critic takes a (discrete) time  $\tau$  to evaluate the output action, and  $r_k \in \{1,-1\}$  such that +1 denotes a success and -1 a failure.
- $\square$  As before,  $\eta > 0$  is the learning rate.
- ☐ The interpretation of this rule is as follows:
  - if the neuron fires a signal  $s_j^k = +1$  in response to an input  $X_k$ , and this action is followed by "success", then change the weights so that the neuron will be more likely to fire a +1 signal in the presence of  $X_k$ .
- The converse is true for failure reinforcement.

## Selective Bootstrapping

- The neuron signal  $s_i^k \in \{0, 1\}$  is computed as the deterministic threshold of the activation,  $y_i^k$ .
- $\square$  It receives a reinforcement signal,  $r_k$ , and updates its weights according to a *selective bootstrap* rule:

$$\Delta W_k = \begin{cases} \eta(s_j^k - y_j^k) X_k & \text{if } r_k = \text{ reward} \\ \eta(1 - s_j^k - y_j^k) X_k & \text{if } r_k = \text{ penalty} \end{cases}$$

- $\square$  The reinforcement signal  $r_k$  simply evaluates  $s_j^k$ .
- When  $s_j^k$  produces a "success", the LMS rule is applied with a desired value  $s_j^k \leftarrow positive bootstrap adaptation$
- when  $s_j^k$  produces a "failure", the LMS rule is applied with a desired value  $1 s_j^k$ .

  negative bootstrap adaptation

#### Associative Reward-Penalty Neurons

The ARP neuron combines stochasticity with selective bootstrapping.

$$\Delta w_{ij}^k = \begin{cases} \eta(s_j^k - E[s_j^k]) x_i^k & \text{if } r_k = +1 \text{ (reward)} \\ \lambda \eta(-s_j^k - E[s_j^k]) x_i^k & \text{if } r_k = -1 \text{ (penalty)} \end{cases}$$

- $\Box$   $E[s_j^k] = (+1)P(y_j^k) + (-1)1 P(y_j^k) = \tanh \beta y_j^k$
- □ Asymmetry is important: asymptotic performance improves as \( \lambda \) approaches zero.
- ☐ If binary rather than bipolar neurons are used, the  $-s_j^k$  in the penalty case is replaced by  $1 s_j^k$ .
- $\square$   $E[s_j^k]$  then represents a probability of getting a 1.

#### Reinforcement Learning Networks

- □ Networks of *ARP* neurons have been used successfully in both supervised and associative reinforcement learning tasks in feedforward architectures.
- □ Supervised learning:
  - output layer neurons learn as in standard error backpropagation
  - hidden layer neurons learn according to the ARP rule.
  - the reinforcement signal is defined to increase with a decrease in the output error.
  - Hidden neurons learn simultaneously using this reinforcement signal.
- ☐ If the entire network is involved in an associative reinforcement learning task, then all the neurons which are *ARP* neurons receive a common reinforcement signal.
  - self-interested or hedonistic neurons
  - attempt to achieve a global purpose through individual maximization of the reinforcement signal r.

## Observations on Reinforcement Learning

- ☐ A critical aspect of reinforcement learning is its stochasticity.
- ☐ A critic is an abstract process model employed to evaluate the actions of learning networks.
- A reinforcement signal need not be just a two-state success/failure signal. It can be a signal that takes on real values in which case the objective of learning is to maximize its expected value.
- The critic's signal does not suggest which action is the best; it is only evaluative in nature. No error gradient information is available, and this is an important aspect in which reinforcement learning differs from supervised learning.

## Observations on Reinforcement Learning (contd.)

- There must be a variety in the process that generates outputs.
  - Permits the varied effect of alternative outputs to be compared following which the best can be selected.
  - Behavioural variety is referred to as exploration
  - Randomness plays an important role.
- Involves a trade-off between exploitation and exploration
  - Network learning mechanism has to exploit what it has already learnt to obtain a consistently high success rate
  - At the same time it must explore the unknown in order to learn more.
  - These are conflicting requirements, and reinforcement learning algorithms need to carefully balance them.