



# Formación de Equipos Multiples (MTFP) con Sociometría

**Multiple Team Formation Problem** 

Ignacio Martínez





#### Introducción al Problema

- Asignar individuos a proyectos considerando:
  - Requerimientos mínimos de habilidades
  - Afinidades sociales entre individuos
  - Prioridades de proyectos
- Objetivo: maximizar la eficiencia social y técnica en la formación de equipos.





#### **Entorno Modelado**

- En un entorno real para la formación de equipos se tendrían concideraciones como lo siguiente:
  - Personas con distintas habilidades y disponibilidad.
  - Interacciones sociales (positivas, negativas, neutras).
  - Proyectos independientes, cada uno con requerimientos mínimos por habilidad.
- Se asume:
  - Cada persona tiene una habilidad principal.
  - Puede asignarse parcialmente a varios proyectos (asignación fraccionaria).
  - La afinidad social entre personas es fija durante la asignación.





# Consideraciones y Simplificaciones

#### • Simplificaciones del modelo:

- No se consideran múltiples habilidades por persona.
- No hay restricciones económicas ni dependencias entre proyectos.
- La matriz de afinidad social es estática.

#### • Importancia de los proyectos:

- Cada proyecto tiene un peso que refleja su prioridad o relevancia.
- El peso ajusta la influencia de cada proyecto en la solución final.





# Definición Formal del Problema (MTFP)

## **Conjuntos:**

- $\mathcal{H} = \{1, \ldots, h\}$ : Individuos disponibles
- $\mathcal{P} = \{1, \dots, p\}$ : Proyectos
- $\mathcal{K} = \{1, \dots, k\}$ : Habilidades requeridas
- $Q_a \subseteq \mathcal{H}$ : Individuos con habilidad  $a \in \mathcal{K}$





#### Parámetros del Modelo

Afinidad social:

$$s_{ij} \in \{-1, 0, 1\}$$

Indica colaboración o conflicto entre individuos i y j

• Requerimientos:

$$r_{al} \in \mathbb{Z}^+$$

Mínimo de personas con habilidad a para proyecto l

• Peso de proyecto:

$$w_l \in [0,1]$$
, con  $\sum w_l = 1$ 

Prioridad relativa de cada proyecto





# Variables y Función Objetivo

Variables de decisión:

$$x_{il} \in [0,1]$$

Fracción del tiempo de individuo i en proyecto l

• Función objetivo:

$$\max E = \sum_{l \in \mathcal{P}} w_l \cdot rac{1}{2} \left( 1 + rac{\sum_{i 
eq j} s_{ij} x_{il} x_{jl}}{\left(\sum_a r_{al}
ight)^2} 
ight)$$

Maximiza eficiencia ponderada de proyectos basada en cohesión social y tamaño.

## **Explicaciones**





- Valor máximo teórico ≠ 100%:
  - $\circ$  La división por  $(\sum r_{al})^2$  penaliza proyectos grandes.
  - Proyectos pequeños con sobreasignación pueden superar el 100% (ej: 216.67% en *Caso 2*).

#### • Interpretación ajustada:

- $e_l > 100\%$ : Sobreasignación con alta sinergia.
- $\circ \ e_l < 50\%$ : Equipos con conflictos o baja cohesión.
- ullet La suma de afinidades  $\sum_{i,j} s_{ij} x_{il} x_{jl}$  puede crecer con el tamaño del equipo.
- Para comparabilidad, se normaliza dividiendo por  $(\sum_a r_{al})^2$ , el cuadrado del total requerido.





#### Restricciones del Modelo

1. Capacidad:

$$\sum_{l} x_{il} \leq 1 \quad orall i \in \mathcal{H}$$

(individuos no pueden asignarse más del 100% de su tiempo)

2. Requerimientos:

$$\sum_{i \in Q_a} x_{il} \geq r_{al} \quad orall a \in \mathcal{K}, l \in \mathcal{P}$$





## Requerimientos: Enteros vs Fraccionales

- **Diseño original:**  $r_{al}$  son enteros, ej. 2 personas Backend.
- En la práctica:
  - $\circ$  Modelo asigna  $x_{il} \in [0,1]$ , permitiendo fracciones de personas.
  - Esto implica que la suma de fracciones puede cumplir el requisito mínimo.
  - Interpretación: carga o tiempo asignado, no individuos enteros estrictos.
- Importante: Esta reinterpretación fue inesperada pero válida para el modelo y mejora flexibilidad.





## Métrica de Eficiencia por Proyecto

$$e_l = rac{1}{2} \Biggl( 1 + rac{\sum_{i,j} s_{ij} x_{il} x_{jl}}{\left(\sum_a r_{al}
ight)^2} \Biggr) imes 100\%$$

| Valor | Significado                         |  |  |  |  |
|-------|-------------------------------------|--|--|--|--|
| 100%  | Equipo ideal (No factible)          |  |  |  |  |
| >100% | Sobreasignación con eficiencia alta |  |  |  |  |
| <50%  | Conflictos y baja cohesión          |  |  |  |  |





# Implementación Técnica

- Modelado con Pyomo (Python)
- Optimización con IPOPT (solver no lineal)
- Generadores de datos para instancias controladas y pruebas





## Resultados

- Se evaluó el modelo en casos de prueba de distintos tamaños y complejidad:
  - o Casos pequeños (validación): eficiencia global alta, asignaciones balanceadas.
  - Casos medianos y grandes: eficiencia disminuye levemente, pero se mantienen tiempos de cómputo bajos (< 2 s).</li>
- Ejemplo de resultados:
  - Eficiencia global varía entre 54% y 87% en escenarios realistas.
  - En casos de sobreasignación, la métrica puede superar el 100% (ej: 216%).
- El modelo es robusto ante requerimientos fraccionarios y distribuciones desiguales de habilidades.

|      |       |       |              |              |            | DOCTOR                | RADO           |
|------|-------|-------|--------------|--------------|------------|-----------------------|----------------|
| Caso | Pers. | Proy. | Req. Totales | Efic. Global | Tiempo (s) | Observaciones         | EMAS<br>NIERÍA |
| 1    | 4     | 2     | 4            | 87.5%        | 2.38       | Asignación balanceada |                |
| 2    | 6     | 1     | 3            | 216.67%      | 0.08       | Sobreasignación       |                |
| 3    | 4     | 1     | 2            | 37.5%        | 0.08       | Afinidad negativa     |                |
| 4    | 5     | 2     | 6            | 89.72%       | 0.09       | Variación en pesos    |                |
| 5    | 10    | 2     | 16           | 63.13%       | 0.09       | Incremental pequeño   |                |
| 6    | 20    | 3     | 36           | 81.60%       | 0.12       | Incremental mediano   |                |
| 7    | 30    | 4     | 64           | 76.39%       | 0.54       | Incremental grande    |                |
| 8    | 40    | 3     | 48           | 70.37%       | 0.20       | Incremental mayor     |                |
| 9    | 50    | 3     | 48           | 65.17%       | 0.39       | Incremental extremo   |                |
| G1   | 100   | 10    | 160          | 58.20%       | 18.37      | Caso grande           |                |
| G2   | 200   | 20    | 320          | 54.10%       | 767.11     | Caso muy grande       | 14             |





## Conclusión

- El modelo mantiene tiempos de solución bajos incluso en instancias grandes.
- La métrica penaliza sobreasignación y premia cohesión social.
- Valores > 100% reflejan equipos sobredimensionados, no errores.
- Soporta requerimientos fraccionarios (media jornada, etc.).
- Permite priorizar proyectos mediante pesos.
- No considera múltiples habilidades por persona ni restricciones económicas.
- La afinidad social es estática y no evoluciona.
- Útil para planificación flexible y rápida de equipos multidisciplinarios en organizaciones.