

Report Project 2

Data Analysis and Statistical Modeling Prof Isabel Rodrigues

Grupo 1

João Matos nº98949 Ana Pinto nº102949 Marina Nóbrega nº103880 Manuel Dias nº96056 Maria Freitas nº96757

Library: ISLR Data frame: Auto

Subset: observation 1 to 50 **Variables**: all except name:

- mpg miles per gallon
- cylinders number of cylinders between 4 and 8
- displacement engine displacement (cu. Inches)
- horsepower engine horsepower
- weight vehicle weight (lbs.)
- acceleration time to accelerate from 0 to 60 mph (sec.)
- year model year (modulo 100)
- origin (origin of the car (1. American, 2. European, 3. Japanese)

Summary statistics

> # Summary statistics

> summary(auto_subset)

mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
Min. : 9.00	Min. :4.00	Min. : 97.0	Min. : 46.00	Min. :1835	Min. : 8.00	Min. :70.00	Min. :1.00
1st Qu.:14.00	1st Qu.:4.50	1st Qu.:154.5	1st Qu.: 91.25	1st Qu.:2599	1st Qu.:11.50	1st Qu.:70.00	1st Qu.:1.00
Median :17.50	Median :7.00	Median :280.0	Median :121.50	Median :3381	Median :13.75	Median :70.00	Median :1.00
Mean :18.08	Mean :6.48	Mean :268.8	Mean :135.34	Mean :3366	Mean :13.40	Mean :70.42	Mean :1.28
3rd Qu.:22.00	3rd Qu.:8.00	3rd Qu.:357.8	3rd Qu.:173.75	3rd Qu.:4195	3rd Qu.:15.38	3rd Qu.:71.00	3rd Qu.:1.00
Max · 28 00	Max · 8 00	Max ·455 0	Max ·225 00	Max ·5140	Max · 20 50	Max ·71 00	Max ·3 00

	vars n	sd	trimmed	mad	min	max	range	skew	kurtosis	se	Winsorized_Mean	Variance
mpg	1 50	5.2092539	17.9000	5.18910	9	28.0	19.0	0.37391779	-0.9913305	0.73669976	18.06	27.1363
cylinders	2 50	1.6932037	6.6000	1.48260	4	8.0	4.0	-0.46070716	-1.4771470	0.23945516	6.48	2.8669
displacement	3 50	115.7538839	267.5750	137.14050	97	455.0	358.0	-0.07343823	-1.3197659	16.37007125	263.80	13398.9616
horsepower	4 50	49.1945783	132.2750	49.66710	46	225.0	179.0	0.34493617	-1.2440568	6.95716398	131.16	2420.1065
weight	5 50	899.0059865	3342.4250	1202.38860	1835	5140.0	3305.0	0.13682281	-1.2067456	127.13864587	3354.26	808211.7637
acceleration	6 50	2.8193935	13.3375	2.59455	8	20.5	12.5	0.12596323	-0.3767769	0.39872245	13.40	7.9490
year	7 50	0.4985694	70.4000	0.00000	70	71.0	1.0	0.31449986	-1.9386713	0.07050836	6.48	0.2486
origin	8 50	0.6074369	1.1250	0.00000	1	3.0	2.0	1.93771682	2.4157790	0.08590455	1.00	0.3690

> #Covariance#

> auto_cov = round(cov(auto_subset), digits = 4)

> auto_cov

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
mpg	27.1363	-8.1208	-527.3273	-211.8033	-4312.4865	6.8857	0.2310	2.1812
cylinders	-8.1208	2.8669	184.3216	69.9967	1341.4890	-3.1347	-0.1649	-0.7086
displacement	-527.3273	184.3216	13398.9616	5050.3078	90877.8065	-241.3816	-7.4890	-46.2784
horsepower	-211.8033	69.9967	5050.3078	2420.1065	37211.8200	-94.7204	-7.3906	-13.0971
weight	-4312.4865	1341.4890	90877.8065	37211.8200	808211.7637	-1253.5347	-3.7482	-321.2539
acceleration	6.8857	-3.1347	-241.3816	-94.7204	-1253.5347	7.9490	0.2673	0.5082
year	0.2310	-0.1649	-7.4890	-7.3906	-3.7482	0.2673	0.2486	-0.0180
origin	2.1812	-0.7086	-46.2784	-13.0971	-321.2539	0.5082	-0.0180	0.3690

Total Variance

> auto_vartot

[1] 194011

Summary Plots

Mahalanobis Distances

2.A) To find the best subset of regressors, we applied the regression model until we got the ones that we considered useful.

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	88.1914525	40.9568090	2.153	0.037085	*
cylinders	-1.8554467	0.4601097	-4.033	0.000228	***
displacement	0.0036874	0.0079945	0.461	0.647005	
horsepower	-0.0313082	0.0127249	-2.460	0.018074	*
weight	-0.0014804	0.0007306	-2.026	0.049118	*
acceleration	-0.3973985	0.1403159	-2.832	0.007070	**
year	-0.6492297	0.5674529	-1.144	0.259056	
origin	0.9263427	0.5777388	1.603	0.116343	

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	84.6660928	39.8672768	2.124	0.03949	*
cylinders	-1.7606663	0.4078873	-4.317	9.14e-05	***
horsepower	-0.0287331	0.0113296	-2.536	0.01492	*
weight	-0.0014294	0.0007155	-1.998	0.05211	
acceleration	-0.4288316	0.1215273	-3.529	0.00101	**
year	-0.5934321	0.5493096	-1.080	0.28602	
origin	0.8277284	0.5317864	1.557	0.12692	

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.7214469 3.0398687 13.725 < 2e-16 ***
cylinders -1.5852955 0.3749030 -4.229 0.000117 ***
horsepower -0.0229062 0.0099822 -2.295 0.026579 *
weight -0.0018702 0.0005889 -3.176 0.002729 **
acceleration -0.3882040 0.1157813 -3.353 0.001652 **
origin 0.9604299 0.5183869 1.853 0.070636 .
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 45.3408068 2.3911834 18.962 < 2e-16 *** cylinders -1.9702777 0.3203725 -6.150 1.87e-07 *** horsepower -0.0179892 0.0098797 -1.821 0.075285 . weight -0.0018947 0.0006044 -3.135 0.003026 ** acceleration -0.4238977 0.1172125 -3.616 0.000752 ***
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.9154963 2.3155947 18.965 < 2e-16 ***
cylinders -2.0388707 0.3260589 -6.253 1.21e-07 ***
weight -0.0024559 0.0005329 -4.609 3.23e-05 ***
acceleration -0.3250775 0.1064735 -3.053 0.00376 **
```

At the end, cylinders, weight, and acceleration are the selected ones. We chose these because it would allow us to work with less predictors. The adjusted r^2 value of the last two iterations is similar and lower in the last iteration.

After fitting a regression model to explain the mpg variable using the predictors we just selected we get the values:

```
r^2 = 0.891092607413735
r^2adj = 0.8839899513755
```


<u>2.B)</u>

For this regression we are using p = 3 predictors for n = 50 observations Searching for possible influential/leverage observations we get this:

Página 5 de 6

For mpg, the possible leverage observations are 29, 20 and 14. The two observations with highest cook's distance are 14 and 29, so the more possible influential observations are 29 and 14.

<u>2.C)</u>

Calculating the 97.5% Confidence Interval and Prediction Interval for the expected values of the responses for observations **14** and **31** we get:

		0bs_14		0bs_31
CI] 2.77279693700092	,	2.92437757683037 [] 3.19053386221619	,	3.29633578732302 [
PI] 2.63475473062577	,	3.06241978320552 [] 3.03660472892808	,	3.45026492061112 [