

Wout Singerling Iliass Allach Mathijs Parmentier

Het probleem

 Bedenk een radiofrequentie indeling voor de Russische overheid

Zeven frequentie types: A t/m G

Vier kostenschema's

Probleem: Restricties

Eén frequentie per provincie

Aangrenzende provincies mogen niet dezelfde frequentie hebben

Zo goedkoop mogelijk

Probleem: Heuristieken

Zo min mogelijk frequenties

Four Colour Theorem

Frequenties zo gelijk mogelijk verdeeld

Probleem: Statespace

Oekraïne: 23^4 = 279.814

USA: 48^4 = 5.408.416

China: 33^4 = 1.185.921

Rusland: 85⁴ = 52.200.625

Methodes

Data verzamelen

"Frequentieverdeling" → "Kleurenpallet"

- Graph colouring algoritmes
 - Constructieve algoritmes
 - Exact algoritme

Methods: Data verzamelen

WikiData

SPARQL Query

CSV dataset

Subregion	Neighbor
Novgorod Oblast	Vologda Oblast
Novgorod Oblast	Leningrad Oblast
Novgorod Oblast	Pskov Oblast
Novgorod Oblast	Tver Oblast

Methods: Greedy Colouring Algoritme

Pseudocode:

- 1. Kleur een node in de graaf
 - a. Als de node dezelfde kleur heeft als een van zijn buren:
 - i. Geef de node de volgende kleur.
- Herhaal totdat elke node is ingekleurd.

Methods: DSatur Algoritme

Saturatie van aangrenzende provincies

Recursieve implementatie

Methods: DSatur Algoritme

- Sorteer de lijst op basis van saturatie en degree
- 2. Kleur de eerste node in de gesorteerde lijst
- Herhaal met niet gekleurde nodes.

Methods: Backtracking Algoritme

- Geef een node een kleur
 - Als deze kleur dezelfde kleur heeft als een van zijn buren, geef het de volgende kleur
 - i. Als deze kleur niet toegestaan is, ga terug naar de vorige node

Methods: Kostenschema's

4 verschillende kostenschema's:

Frequency type	Costs 1	Costs 2	Costs 3	Costs 4
A	12	19	16	3
В	26	20	17	34
С	27	21	31	36
D	30	23	33	39
E	37	36	36	41
F	39	37	56	43
G	41	38	57	58

Resultaten: Oekraïne

Ukraine	Greedy Alphabetical	Greedy Degree	DSatur	Backtracking
Cost Scheme 1	542	548	542	560
Cost Scheme 2	523	535	506	510
Cost Scheme 3	568	557	548	549
Cost Scheme 4	577	577	598	629

Resultaten: USA

United States	Greedy Alphabetical	Greedy Degree	DSatur	Backtracking
Cost Scheme 1	1936	1103	1050	1085
Cost Scheme 2	1779	1036	967	983
Cost Scheme 3	1949	1118	1044	1099
Cost Scheme 4	2177	1214	1179	1234

	Greedy Alphabetical	Greedy Degree	DSatur	Backtracking
Ukraine	0.58	0.566	0.346	0.327
United States	0.469	0.661	0.437	0.358
China	0.564	0.654	0.405	0.264
Russia	0.494	0.671	0.561	TBD

Conclusie 1

- Kostenschema 2 is over het algemeen het goedkoopst.
 - Mogelijk doordat deze het best gebalanceerd is

Frequency type	Costs 1	Costs 2	Costs 3	Costs 4
A	12	19	16	3
В	26	20	17	34
С	27	21	31	36
D	30	23	33	39
Е	37	36	36	41
F	39	37	56	43
G	41	38	57	58

Conclusie 2

 Naast backtracking zorgt DSatur voor het laagst aantal frequenties

Conclusie 3

- DSatur zorgt consistent voor een evenwichtige verdeling
 - Backtracking geeft niet altijd dezelfde resultaten

Questions?