IT-Serviceanfragen analysieren und Lösungen erarbeiten

Die Komplexität moderner IT-Services

Die Analyse von Serviceanfragen beginnt unmittelbar mit deren Annahme und erfordert systematisches Vorgehen.

Serviceprobleme sind heute komplexer denn je und erfordern:

- Hohe Aufmerksamkeit
- Gute Analysefähigkeit
- Zuverlässigkeit
- Bereitschaft zur Verbesserung

Persönliche Anforderungen an IT-Helpdesk-Mitarbeiter

Kunden- und Serviceorientierung

Höchste Priorität im täglichen Support

Kommunikationsfähigkeit

Klar und verständlich mit allen Stakeholdern kommunizieren

Eigeninitiative & Zuverlässigkeit

Proaktiv handeln und verlässlich arbeiten

Strukturiertes Denken

Komplexe Probleme systematisch angehen

Fachliche Anforderungen im IT-Support

1

Support & Fehleranalyse

Störungsbehebung per Telefon, E-Mail und Remote-Steuerung bei vielfältigen IT-Problemen 2

Ticketsystem-Management

Protokollieren, Kategorisieren, Priorisieren und Weiterleiten aller Vorgänge 3

Betriebssystem-Kenntnisse

Windows 10, Office 365, iOS, Android und weitere Plattformen beherrschen

4

Netzwerk-Infrastruktur

WLAN, TCP/IP, Routing, VPN, Firewall – fundierte Kenntnisse erforderlich Į

Cloud & Virtualisierung

Optimierung und Monitoring der Cloud-Umgebung sowie virtueller Infrastruktur

Wissensdatenbanken als Fundament

Zur systematischen Analyse von IT-Problemen und Störungen ist der Aufbau und die kontinuierliche Pflege von Wissensdatenbanken unerlässlich.

Knowledge Base

Zentrale Dokumentation aller bekannten Lösungen und Best Practices für schnellen Zugriff

FAQ-Datenbank

Häufig gestellte Fragen und deren Antworten strukturiert aufbereitet

Die 5-Warum-Methode

Systematische Ursachenforschung

Diese Methode eignet sich besonders für kleinere Probleme. Durch wiederholtes Fragen nach dem "Warum" gelangt man zur eigentlichen Ursache.

Ziel: Die Grundursache identifizieren, nicht nur Symptome behandeln.

Warum 1

Problem beschreiben

Warum 2

Erste Ursache erforschen

Warum 3-5

Tiefer graben bis zur Grundursache

Praxisbeispiel: 5-Warum-Methode

Problem: Drucker druckt nicht zuverlässig

Warum? Die Druckqualität ist mangelhaft

Warum? Der Toner verschmiert und druckt ungleichmäßig

Warum? Der Toner weist eine schlechte Qualität auf

Grundursache: Es wurde der billigste Toner gekauft

Der DMAIC-Zyklus

Six-Sigma-Methodik für komplexe Probleme

DMAIC: Define & Measure

Define – Problem definieren

Leitfragen:

- Was ist das Problem?
- Wie groß ist das Problem?
- Wer ist betroffen?

Tätigkeiten:

- Rückmeldungen sammeln
- RACI-Matrix erstellen
- Stakeholder-Analyse
- KPI-Analyse durchführen

Measure – Status quo messen

Fokus: Ist-Situation ermitteln

Tätigkeiten:

- Prozessdarstellungen erstellen
- Auswirkungen von Störungen messen
- SLA-Vereinbarungen prüfen
- Baseline-Daten erfassen

DMAIC: Analyze, Improve & Control

Analyze – Ursachenanalyse

Was sind die tatsächlichen Ursachen?

Ursache-Wirkungsdiagramme, Konkretbefragung, Problemlösungsmatrix, 5-Warum-Methode anwenden

Improve – Lösung entwickeln

Wie beheben wir das Problem nachhaltig?

Lösungsmatrix erstellen, Simulationen und Testläufe durchführen, PDCA-Zyklus nutzen

Control – Erfolg sicherstellen

Wie stellen wir nachhaltigen Erfolg sicher?

Kontinuierliches Monitoring, Service-Management-System pflegen, Knowledge Base aufbauen

Problemlösungsmatrix

Systematische Analyse durch IST-IST-NICHT-Vergleich

Kategorie	IST	IST NICHT	Mögliche Ursache
Lokalisierung	Wo ist das Problem aufgetreten?	Wo ist es nicht aufgetreten?	Was war am Ort anders?
Zeitpunkt	Wann ist es aufgetreten?	Wann nicht?	Was war zeitlich anders?
Bedeutung/Größe	Wie groß ist der Schaden?	Welcher Teil ist nicht betroffen?	Unterschied in der Größe?

Diese Matrix hilft, die Abweichung zwischen Ist-Zustand und Ist-Nicht-Zustand systematisch zu untersuchen und mögliche Ursachen zu identifizieren.

Praxisbeispiel: Problemlösungsmatrix

Anmeldeproblem bei Software X

Kategorie	IST	IST NICHT	Mögliche Ursache
Identifizieren (Was)	Login-Fehler bei Software X.	Kein Problem mit Windows- Login oder anderer Software.	Problem ist an das Benutzerkonto in Software X gebunden.
Lokalisieren (Wo)	Tritt am Arbeitsplatz des Mitarbeiters auf.	Tritt nicht auf, wenn sich Admin am selben PC anmeldet.	Problem ist an das Benutzerprofil gebunden (Fehlkonfiguration/Ber echtigung).

Dieses Beispiel zeigt, wie die Problemlösungsmatrix dabei hilft, Schritt für Schritt die wahre Ursache eines IT-Problems zu erkennen.

Ishikawa-Diagramm

Ursachen-Wirkungsdiagramm zur visuellen Problemanalyse

Das von Kaoru Ishikawa in den 1940er-Jahren entwickelte Diagramm stellt Haupt- und Nebenursachen grafisch dar. Die Methode hilft, tiefer liegende Gründe von Problemen zu verstehen.

Hauptkategorien

Mensch, Maschine, Material, Methode, Mitwelt, Messung

Nebenursachen

Detaillierte Faktoren, die auf Hauptursachen einwirken

Problemstamm

Das zu analysierende Problem am Diagrammkopf

Praxisbeispiel: Ishikawa-Diagramm

Problem: Website ist langsam

Um das Problem einer langsamen Website zu analysieren, wenden wir das Ishikawa-Diagramm an und unterteilen die möglichen Ursachen in verschiedene Kategorien.

Mensch

Mangelnde Schulung (ineffizienter Code)

Fehlkonfiguration durch Administrator

Maschine

Server unterdimensioniert (zu wenig RAM/CPU)

Langsame Festplatte

Defekte Netzwerkkarte

Methode

Kein Caching implementiert

Ineffiziente Datenbankabfragen

Keine Komprimierung von

Daten

Software (Material)

Veraltete PHP-Version

Fehlerhaftes Plugin

Aufgeblähtes CMS

Mitwelt (Umwelt)

Hohe Netzwerklast durch viele gleichzeitige Zugriffe

DDoS-Angriff

Diese Aufschlüsselung hilft, alle potenziellen Problembereiche systematisch zu betrachten und die wahren Ursachen der Website-Performance zu identifizieren.

Monitoring: Die Grundlage der Störungsanalyse

Monitoring bezeichnet die laufende Kontrolle von IT-Systemen, Anwendungen, Prozessen und Infrastruktur. Es ist die wichtigste Aufgabe des Systemadministrators.

Infrastruktur-Monitoring

Überwachung von Servern, Netzwerken, Routern, Switches und deren Betriebssystemen

Alarmierung

Automatische Benachrichtigung bei Überschreitung kritischer Grenzwerte

Ressourcen-Überwachung

Disk Space, CPU, Memory, Temperatur, Luftfeuchtigkeit kontinuierlich prüfen

Monitoring-Bereiche im Überblick

Netzwerk Verfügbarkeit, Latenz, Firewall-Status, Drucker im Netz End-User-Systeme Digital Experience, Application Performance, Mobile Apps IT-Sicherheit Antivirensoftware, Virenscanner nach ISO 27001 Cloud & Services Datenbank, Cloud-Umgebung, Virtualisierung

Key Performance Indicators im Netzwerk

Bandbreite/Datendurchsatz

1 Datenrate von Netzwerkverbindungen (z.B. 100 Gbit/s über Glasfaser). Messung via WMI, SNMP, Packet Sniffer

Latenz (Verzögerung)

oder Netflow.

Zeitintervall zwischen Senden und Empfangsbestätigung (Round Trip Time). Kritisch für VoIP und Videostreaming.

Packet Loss (TCP-Verlust)

Anzahl oder Prozentsatz verlorener Pakete. Beeinträchtigt die Anwendungslatenz erheblich.

SYN- und FIN-Fehler

TCP-Nachrichten bei Fehlern im Verbindungsaufbau oder -abbau. Indikator für Netzwerkprobleme.

Log-Dateien

4

5

Automatisierte Protokolle über Ereignisse, Debug-Traces und Fehler. Essenziell für Fehleranalyse.

Ticketsysteme: Das Herzstück des Service-Managements

Wichtige Ticket-Felder

- Ticketnummer: Automatisch generiert
- Kategorie: Hardware, Software, Netzwerk, Cloud
- **Beschreibung:** Symptome und Kommunikationsart
- Status: Offen, in Bearbeitung, zurückgestellt, abgeschlossen
- Configuration Items (CI): Betroffene Systeme
- Case-Owner: Verantwortlicher Mitarbeiter

Best Practices

- Umfassend dokumentieren
- 2. Rollen klar kommunizieren
- 3. Kunden transparent informieren

Reaktionszeiten qualifiziert einschätzen

Die Reaktionszeit hängt von SLA-Bedingungen und der Dringlichkeit ab. Verschiedene Faktoren beeinflussen qualifizierte Aussagen:

Sachlich bedingt

- SLA/Vertragsbedingungen
- Art der Störung
- Zuständigkeit (Hersteller)
- Wunsch auf Hard-/Software

Organisatorisch bedingt

- Verfügbarkeit der Lösung
- Ersatzteile/Ressourcen
- Mitarbeiter Know-how
- Kapazitäten, Fernzugriff

Sonstige Faktoren

- Fallspezifische Umstände
- Werk- oder Betriebszeiten
- Sicherheitsanforderungen
- Vertraulichkeit

Incident vs. Problem vs. Change Management

Incident Management

Reaktiv & zeitkritisch

Temporäre Ausfälle schnell beheben: Serverausfall, Netzwerkstörungen, Druckausfälle, technische Störungen

Problem Management

Proaktiv & nachhaltig

Grundursachen beseitigen, um
Wiederauftreten zu verhindern. Known
Errors dokumentieren und
Workarounds bereitstellen

Change Management

Kontrolliert & geplant

Formale Veränderungen an IT-Services und Configuration Items strukturiert durchführen und dokumentieren

Change-Kategorien im Detail

	Emergency Change Eilige Änderungen zur Behebung schwerwiegender Incidents – sofortige Freigabe erforderlich	
	Normal Change Level 3 Größte Auswirkungen – umfassende Analyse und höchste Freigabeebene notwendig	
	Normal Change Level 2 Signifikante Auswirkungen – mittlere Freigabeebene mit detaillierter Risikoanalyse	
	Normal Change Level 1 Mittlere Auswirkungen – Standard-Freigabeprozess mit Kosten- Nutzen-Analyse	
%	Standard Change Geringes Risiko, vorautorisiert – z.B. Installation von	

Standard-Updates

Der Change-Management-Prozess

Ein strukturierter Change-Prozess minimiert Risiken und gewährleistet eine kontrollierte Weiterentwicklung der IT-Infrastruktur.

Zusammenfassung: IT-Serviceanfragen analysieren und Lösungen erarbeiten

In dieser Präsentation haben wir verschiedene Methoden und Prozesse zur effektiven Analyse und Bearbeitung von IT-Serviceanfragen beleuchtet.

Systematische Problemanalyse

Methoden wie die 5-Warum-Methode und Ishikawa-Diagramme ermöglichen die Tiefenanalyse von Störungen und die Identifizierung von Grundursachen.

Effektives Ticketmanagement

Ticketsysteme sind das Herzstück des Service-Managements, sie strukturieren die Bearbeitung und Dokumentation von Anfragen und Incidents.

Kontinuierliches Monitoring

Die laufende Überwachung von IT-Infrastruktur und Key Performance Indicators (KPIs) ist die Basis für eine proaktive Störungsanalyse.

Kontrolliertes Change Management

Ein klar definierter Change-Management-Prozess minimiert Risiken bei der Implementierung von Änderungen und sichert die IT-Stabilität.