Республиканская олимпиада по физике 1999 год, г. Гродно

9 класс.

1. Небольшой шарик падает из точки Aна массивную плиту, закрепленную на высоте h = 1,0 M от поверхности земли и ориентированную под углом $\alpha = 45^{\circ} \, \mathrm{K}$ горизонту. После упругого отражения от ПЛИТЫ шарик падает на поверхность земли В точке Cна расстоянии S = 4.0 M от вертикальной прямой Найдите время движения шарика до удара о землю.

На какой высоте необходимо расположить плиту (не меняя ее ориентации), чтобы расстояние S было максимально при неизменном начальном положении шарика в точке A? Чему оно равно? Сопротивлением воздуха пренебречь.

2. Вращающийся вокруг вертикальной однородный шар радиуса R = 10cMаккуратно положили круглое отверстие радиуса $r_1 = 8.0 c M$, проделанное в тонкой горизонтальной плите. Вращение шарика прекратилось через время $t_1 = 12c$. Через какое время остановится этот же шар, если его раскрутить до той же начальной скорости и положить в отверстие радиуса $r_2 = 6.0 cm$?

3. Молодой талантливый физик Федя решил самостоятельно изготовить термометр. Тонкую стеклянную трубку вставил в небольшой сосуд, залил в него подкрашенную жидкость, рассчитал шкалу, изготовил ее и прикрепил к трубке. Проводя испытания этого термометра Федя с удивлением обнаружил, что погруженный в тающий лед термометр показывает $t_0 = 5^{\circ}$, а помещенный в кипящую воду дает показания $t_1 = 95^{\circ}$. Какова температура воздуха в комнате,

если показание Фединого термометра $t = 25^{\circ}$? Атмосферное давление нормальное.

4. Насос прокачивает воду по прямой трубе длиной l так, что расход воды равен V_{θ} . В трубу врезали кольцо радиуса r, изготовленное из труб того же поперечного сечения, как показано

на рисунке. Считая, что разность давлений на концах трубы осталась неизменной, найдите расход воды в этом случае.

<u>Примечания.</u> 1. Расходом называется объем жидкости, протекающей через поперечное сечение трубы в единицу времени.

2. Средняя скорость движения жидкости по трубе определяется формулой

$$v_{cp.} = \lambda \frac{S}{I} \Delta P,$$

где ΔP - разность давлений на концах трубы, l - длина трубы, S - площадь ее поперечного сечения, λ - постоянный коэффициент, зависящий только от свойств жидкости.

5. Небольшой брусок массой $m = 1.0 \kappa r$ движется по гладкой горизонтальной поверхности под действием горизонтально направленной силы \vec{F} . На рисунке

представлен график зависимости модуля его скорости от времени. Постройте график зависимости модуля силы \vec{F} от смещения бруска. Какая работа совершена силой F за 5,0c

движения бруска?

Республиканская олимпиада по физике

1999 год, г. Гродно

10 класс.