Case Study 3: Textual Analysis of Movie Reviews

Team 9

Tingting Ma Jinyan Lyu Jiani Gao Tianhao Guo Mo Cheng

Motivation and Background

Textual analysis and machine learning

responses content text (INCL) vsis insights ad-hoc and reviews sent trends ad-hoc analysis early warning

Sentiment Analysis on Movie Reviews

Pipeline:

Sentiment Analysis on Movie Reviews

```
n samples: 2000
0 params - {'vect ngram range': (1, 1)}; mean - 0.83; std - 0.00
1 params - {'vect ngram range': (1, 2)}; mean - 0.86; std - 0.01
            precision
                         recall f1-score support
                 0.87
                           0.82
                                     0.85
                                               256
       neg
                 0.82
                           0.87
                                     0.85
                                               244
       pos
avg / total
                 0.85
                           0.85
                                     0.85
                                                500
[[210 46]
[ 31 213]]
```

Result:

For a total number of 500 comments, 210 out of 256 negative and 213 out of 244 positive comments are correctly predicted.

Terminologies:

- Term Frequency (TF)
- Inverse Document Frequency (IDF)
- TF-IDF
- min_df, max_df
- n-gram, ngram_range

Screening of min_df (upper) and max_df (lower):

Explore TfidfVectorizer

Exploration of ngram_range:

$$(1,2) = (1,1) + (2,2)$$

```
(1, 1): shape is 35443;

(2, 2): shape is 400307;

(3, 3): shape is 763139;

(4, 4): shape is 895933;

(5, 5): shape is 925941;

(1, 2): shape is 435750;

(2, 3): shape is 1163446;

(3, 4): shape is 1659072;

(4, 5): shape is 1821874;

(1, 3): shape is 1198889;

(2, 4): shape is 2059379;

(3, 5): shape is 2585013;

(1, 4): shape is 2094822;

(2, 5): shape is 2985320;

(1, 5): shape is 3020763;
```


Machine Learning Algorithms

Classifiers we used: LinearSVC, K-Neighbors Classifier, Random Forest Classifier

For the three classifiers, we both choose the same set of parameters of TfidfVectorizer.

```
'vect__ngram_range': [(1,1),(2,2),(1,2),(1,3)],
'vect__max_df': [0.5, 0.75, 1.0],
'vect__min_df': [1,10,20,30],
```


LinearSVC

penalty parameter C: 1, 500 or 1000

Best score: 0.86

KNeighborsClassifier

n_neighbors parameter: 1, 10, 20

Best Score: 0.73

penalty parameter C	vect_min_df	vect_max_df	vect_ngram_range (1, 3)		
1	10	0.5			
1	10	0.75	(1, 3)		
500	0 10 0.75		(1, 3)		
1000	10	0.75	(1, 3)		
1000 10		1.0	(1, 3)		

n_neighbors:	min_df	max_df	ngram_range		
20	1	0.5	(1, 2)		
20	1	0.5	(1, 3)		
20	10	0.5	(1, 2)		
20	10	0.5	(1, 3)		
20	10	0.75	(1, 3)		
20	30	0.75	(1, 3)		

Machine Learning Algorithms

Prediction result of LinearSVC and K-NN

LinearSVC K-NN

	precision	recall	f1-score	support		precision	recall	f1-score	support
neg	0.89	0.89	0.89	266	neg	0.80	0.64	0.71	266
pos	0.88	0.88	0.88	234	pos	0.67	0.82	0.73	234
avg / total	0.88	0.88	0.88	500	avg / total	0.74	0.72	0.72	500
[[237 29] [29 205]]					[[170 96] [43 191]]				

Random Forest Classifier:

Prediction Result:

best score: 0.79

parameters:

'clf__n_estimators': 64,
'vect__max_df': 0.25,
'vect__min_df': 30, '
'vect__ngram_range': (1, 3).

	precision	recall	f1-score	support
neg pos	0.72 0.84	0.88 0.66	0.79 0.74	251 249
avg / total	0.78	0.77	0.77	500
[[220 31] [84 165]]				

Better than K-NN, worse than LinearSVC.

Machine Learning Algorithms

Two examples where the prediction was incorrect:

1. Topless Women Talk About Their Lives

Negative but predicted as positive

Reason: Words used in this context are kind of vague.

Not too many negative words to describe.

2. The Jackal

Positive but predicted as negative

Reason: Too many negative words such as "not", "didn't" and "wasn't" when telling the story of the movie.

Open Ended Question: Finding the right plot

#1

Professor's method:

The length of the review versus the number of features

Finding the right plot

#2

Professor's method:

Principle Component Analysis (PCA)

Open Ended Question:

Finding the right plot

#3

Optimized PCA

First use selectKBest, then PCA

f_classif: ANOVA F-value between label/feature for classification tasks.

Open Ended Question:

Finding the right plot

#4

Use k-means to compute centroids, then compute distance

Open Ended Question:

Finding the right plot

#5

First, use selectKBest, then use k-means to compute centroids, finally compute distance

Open Ended Question: Finding the right plot

#6

Compute centroids without k-means

Questions?