Long-Term Bond Supply, Term Premium, and the Duration of Corporate Investment

Antoine Hubert de Fraisse (HEC Paris)

Discussion: Walker Ray (LSE & CEPR)

EFA Doctoral Tutorial, August 2024

Motivation: QE Effects in Bond Markets

- Monetary policy over the last 15 years has relied heavily on balance sheet policies
- Unconventional policy transmission to (risk-free) yield curve is better understood:
 - Constrained intermediation/market segmentation/preferred habitat [Vayanos & Vila (2021), Ray, Droste, & Gorodnichenko (2024), Gourinchas, Ray, & Vayanos (2024), Greenwood & Vayanos (2014), Gertler & Karadi (2012, 2015), Sims and Wu (2021), ...]
- But much less is known about effects on corporate investment
- Moreover, the theory suggests that these policies should work through relative supply/demand effects

This paper:

- Extends the preferred habitat framework to both bond and corporate investment
- Tests predictions through historical identification of large Treasury supply shocks
- Takeaway: supply effects are important for corporate investment

Transmission Intuition

- Changes in the supply of long-duration bonds (held by marginal investors) leads to changes in risk compensation:
 - Suppose ↓ supply of bonds (or ↑ in QE purchases)
 - · Intermediaries hold fewer bonds, hence less exposed to duration risk
 - · If risk averse (or face some intermediation frictions), $\implies \downarrow$ term premia
- Note that this intuition implies re-pricing of any investment exposed to duration risk (to the extent these investments are undertaken by the same intermediaries)
- Thus, Treasury supply shocks should affect corporate investment
 - · Additionally, the effects should be larger for firms with larger cash-flow duration
 - · "Across-firms" channel

Treasury Duration Shocks

- While preferred habitat theory is typically focused on monetary policy, QE/QT policy events are not well-suited for identification
 - · Both policies are endogenous to the business cycle
 - QE in particular is typically undertaken during times of high macro-financial stress
- · Similarly, Treasury supply typically reacts to business cycle fiscal policy
- · Instead, this paper takes a more historical/narrative approach

Identification Comments and Suggestions

Empirical issues

- · Narrative identification tradeoffs: five shocks is not much variation
 - · Standard errors are tight, but what is the correct clustering?
- Very high degree of serial correlation
 - The theory suggests we would find pre-trends; but then how informative are the "shocks"?

Suggestions

- · Romer & Romer (2010) tax shocks
 - · Narrative approach to purge business cycle variation from tax policy changes
- · Ray, Droste, & Gorodnichenko (2024) Treasury demand shocks
 - · High frequency approach to identify shocks to Treasury demand

Model Comments and Suggestions

- · Model ingredients:
 - · Bonds of different maturities subject to habitat demand shocks
 - Investors (households) who intermediate bond markets also own firms and choose investment
 - · Cash flow from investment is split across future time periods (firm-specific)
- · Current setup: firm cash-flow is deterministic function of investment
 - Payoff of firm investment can be perfectly replicated with simple positions in short- and long-term bonds
- · Modeling idea (this or follow-up paper): add cash-flow risk
 - Substantive extension of preferred habitat models
 - Allows for even richer exploration of spillovers from Treasury supply shocks (duration risk and risky payoff risk)

Model Sketch (based on Ray, Droste, & Gorodnichenko 2024)

- Continuum of risk-free bonds with maturity $\tau \in (0,T)$: price $P_t^{(\tau)}$ and pays \$1 at $t+\tau$
- · Claims on future "risky" payoff stream: price $\tilde{P}_t^{(au)}$ and pays $D_{t+ au}\equiv e^{d_{t+ au}}$ at t+ au
- · Bonds subject to habitat demand frictions $Z_t^{(\tau)} = -\alpha(\tau) \log P_t^{(\tau)} \beta_t(\tau)$
 - · Short rate r_t , payoffs d_t , demand shocks $\beta_t^{(\tau)}$ follow stochastic process (PE or GE)
- Investing I_t in firm i implies claim on firm-specific risky payoff stream $f(I_t)\omega_i(t+\tau)D_{t+\tau}$ at period $t+\tau$
 - · Can also consider extending the payoff process to allow for multiple factors
 - Or, idiosyncratic firm-specific risk $D_{i,t+ au}$
- Thus, investing in long-duration firms exposes intermediaries to duration risk, habitat demand risk, and payoff risk

Model Hypotheses

- Ray, Droste, & Gorodnichenko (2024) does not feature corporate investment, but can make some educated guesses...
- · Conjectures: \uparrow Treasury supply $\implies \downarrow$ value of claims on risky asset, and decreases investment
- · This effect is:
 - 1. Larger in magnitude for long-duration firms
 - 2. Smaller in magnitude when short-rate risk is low
 - 3. Smaller in magnitude when payoff risk is high
- Ambiguous/unclear predictions:
 - Transmission when demand/supply risk is high/low?
 - · Aggregate vs. idiosyncratic payoff risk?
 - ٠ ...
- Intersection of preferred habitat and corporate investment seems rich!

Concluding Remarks

- · Really nice paper!
- The habitat model is promising; some possible extensions (for future work?)
- Narrative approach to identifying Treasury supply shocks is interesting, but there are some difficulties

 The paper already explores some alternative identification strategies, but a battery of tests is rarely a bad thing