EDRVASS Fase 7

Team: TMEC

Sergio Sánchez Vallés Álvaro Campillos Delgado

TABLE OF CONTENTS

- Introduction
- 12 Initial approaches
- Exploratory data analysis
- **14** Data processing
- **05** Models
- **16** Future work

Team and methodology of work

Team members

Sergio Sánchez Vallés

Software Engineering (URJC)

Data science, software development, aerospace, DevOps.

Álvaro Campillos Delgado

Computer Science (Universidad de Sevilla)

Data science, programming, math

Technology stack

Project workflow

RL and RNN

Reinforcement learning

State:

- o x_pos, y_pos
- x_vel, y_vel
- o angle
- o angle_vel
- o leg1, leg2

• Actions:

- o main_booster
- lat_booster

• Environment:

- o gravity
- o wind_power
- turbulence_power

Recurrent neural network

Main **advantages** for the problem:

- Learns complex patterns in time series data (nonlinearity)
- Learns temporal dependence present in data

Main **disadvantages**:

- Vanishing/exploding gradient
- Weak memory
- Computationally expensive

Statistics, correlation, missing values and visualization

Problem's dataset

Experiments' summaries

Experiments' series

Experiments' summary

filename	total_timesteps	gravity	wind_power	turbulence_power	efficiency
experiment_1.csv	185	-5.375066	14.337393	1.902789	415.69
experiment_2.csv	428	-3.958084	16.376438	1.697932	104.37
experiment_4.csv	193	-3.640152	1.614948	0.192214	411.14
experiment_5.csv	166	0.000000	0.000000	0.242178	414.93
experiment_6.csv	172	-5.289123	15.771525	1.453806	373.85

experiments_summary_train.xlsx

Experiments' series

x_pos	y_pos	x_vel	y_vel	angle	ang_vel	leg_1	leg_2	main_booster	lat_booster
-0.001548	1.403302	-1.571687e-01	-3.385856e-01	0.002068	4.082241e-02	0.0	0.0	-0.327187	0.481895
-0.003124	1.395385	-1.598507e-01	-3.518934e-01	0.004395	4.654207e-02	0.0	0.0	-0.341337	0.935360
-0.004636	1.387138	-1.516633e-01	-3.665214e-01	0.004803	8.163137e-03	0.0	0.0	0.265217	0.893026
-0.006214	1.379139	-1.566717e-01	-3.554864e-01	0.003728	-2.151341e-02	0.0	0.0	-0.214743	0.577881
-0.007766	1.370820	-1.531046e-01	-3.697289e-01	0.001665	-4.125303e-02	0.0	0.0	-0.151192	0.531269

experiment_1.csv

Missing values imputation, padding, scaling and reshaping

Data imputation

Missing values in experiments' summary

Columns gravity and wind_power can have missing values registered as 0.

These columns can have missing values simultaneously.

Experiments' summary after removing missing values

Experiments' summary

Imputation methods:

- K-nearest neighbors
- Median
- Average
- Bayesian Ridge

Experiments' summary after removing missing values

Imputation approaches

Imputation using summaries and series

Find similarity between experiments based on their time series to impute missing values. Two approaches:

- Similarity between series <u>using each time serie entirely</u> (requires finding an appropriate <u>distance measure</u> for time series)
- Compute <u>statistics</u> from them and consider the <u>distance between these</u> (less complexity, computation already done for EDA, requires finding appropriate statistics that summarize the series, allows hand-crafted statistics)

Handcrafted stats analysis from series

Explained variance percentage per principal component 0.26

Correlation plot for static experiments' summary variables

PCA explained variance for static experiments' summary variables

Comparative using time series statistics

	Gravity MAE	Wind power MAE
K-nearest neighbors	1.6530	4.6752
Median	2.8344	5.0531
Average	2.6918	4.9913
Bayesian Ridge	2.2202	4.7954

	Gravity MAE	Wind power MAE
K-nearest neighbors	1.4806	4.2995
Median	2.7153	4.9973
Average	2.7673	5.1631
Bayesian Ridge	1.2339	3.6660

MAE without using time series statistics for imputation (train)

MAE using time series statistics for imputation (train)

Missing values in experiments' series

	NaNs	-999	0
x_pos	8	Ø	8
y_pos	8	8	(
y_vel	8	8	8

Type of missing value for x_pos, y_pos and y_vel columns in time series

Missing values distribution in x_pos, y_pos and y_vel columns of train time series

x_pos column

experiment_2274.csv

Missing values imputation with different interpolation methods

y_pos column

Missing values imputation with different interpolation methods

y_vel column

0.0

Missing values imputation with different interpolation methods

Linear interpolation on NaNs

Missing values distribution in series

Distribution of equal consecutive missing values for columns x_pos, y_pos and y_vel in train time series data

Scaling

Padding

Variable-length time series

Reshaping

Missing values imputation, padding, scaling and reshaping

Features

Static and time dependent data

Original time series columns

Original
experiments
columns
+
time series
describe

Models

Long short-term memory (LSTM)

LSTM with several timesteps

LSTM with multiple units

Baseline model

Optimized baseline model

Refined model architecture

Optimized model architecture

Layers

Units

GRU

Dropout

ReLU

Shuffle fold

Early Stopping

Bi-Directional

Batch size

Learning rate

Weight initialization

Hyperparameter optimization

Grid Search

Model accuracy

Important parameter

Unimportant parameter

Random Search

Important parameter

GridSearch results

Top 10 models GridSearch

RMSE	model_name	batch_size	learning_rate	epochs
19.2808	encoder_dual	64	0.001	50
19.7086	same_dual	64	0.001	46
19.9849	same_dual	128	0.0005	99
21.0189	encoder_dual	64	0.0005	102
21.1027	same_dual	32	0.0005	42
21.4186	same_dual	64	0.0005	63
21.5796	encoder_dual	32	0.0005	105
21.5999	encoder_dual	32	0.001	54
21.7104	same_dual	32	0.001	39
22.9838	same_dual	128	0.001	42

Top model RandomSearch

(None, 104)

Score: 18.5575

Other machine learning models

More hyperparameter tuning

Transformers

Transformer

Attention Is All You Need

Many thanks

sergio-sanchez-valles

alvarocampillosdelgado

SergioSV96

acampillos