GAL - praca domowa na ćwiczenia (grupy 2 i 3)

Gracjan Barski, album: 448189

October 22, 2024

Zadanie 1:

Odpowiedź: Tak.

Uzasadnienie: Weźmy dowolną bazę przestrzeni Y, oczywiście posiada ona n-1 wektorów. Oznaczmy te wektory $x_1, x_2, \ldots, x_{n-1}$. Teraz rozszerzmy tą bazę do bazy X dodając jeden wektor x_n , który razem z bazą Y tworzy układ liniowo niezależny. Można tak zrobić ponieważ Y jest podprzestrzenią X o wymiarze o 1 mniejszym. Teraz weźmy układ wektorów $(x_1, \ldots, x_{n-1}, x_n)$ i weźmy bazę dualną (sprzężoną) do tej bazy: $(x_1^*, \ldots, x_{n-1}^*, x_n^*)$. Nasz poszukiwany funkcjonał $x^* \in X^*$ to $x^* = x_n^*$. Czyli ten, który zwraca współczynnik który stoi przy x_n w reprezentacji wektora jako suma przeskalowanych wektorów z bazy. Jeśli wektor należy do Y to jego współczynnik przy x_n będzie równy 0, więc się zgadza, a jeśli wektor będzie miał w rozkładzie wektor x_n to znaczy, że nie należy do Y (ponieważ $x_n \notin Y$), a funkcjonał zwróci wartość niezerową, a to jest pożądane zachowanie. Taki funkcjonał istnieje dla każdej podprzestrzeni $Y \subset X$ o wymiarze n-1. \square

Zadanie 2:

Odpowiedź: Nie

Uzasadnienie: Wiemy (Z podstaw matematyki) że wszystkich wielomianów w $\mathbb{Q}[x]$ jest \aleph_0 . Teraz sprawdźmy kardynalność zbioru wszystkich funkcjonałów ($\mathbb{Q}[x]$)*. Chcielibyśmy znaleźć iniekcję $f : [0;1) \to (\mathbb{Q}[x])^*$, wtedy $|(\mathbb{Q}[x])^*| \geq \mathfrak{c}$, więc będziemy wiedzieć, że te dwie przestrzenie liniowe nie są ze sobą izomorficzne, ponieważ nie spełniają kluczowego warunku na tą samą moc.

Weźmy dowolną liczbę rzeczywistą $x \in [0; 1)$. Zapiszmy x jako rozwinięcie dziesiętne $x = 0, x_0x_1x_2x_3...$, oraz zapiszmy wielomian $q \in \mathbb{Q}[x]$ jako $q = a_0 + a_1x + a_2 + x^2 + ...$ Teraz rozważmy $f : [0; 1) \to (\mathbb{Q}[x])^*$ takie że:

$$f(x)(q) = \sum_{k=0}^{\deg q} x_i \cdot a_i$$

Pokażmy, że f jest iniekcją. Weźmy dwa dowolne $x,y\in[0;1)$. Takie że $x\neq y$. Zapiszmy $x=0,x_0x_1x_2x_3\dots$ oraz $y=0,y_0y_1y_2y_3\dots$ Jeśli mają być różne, to $\exists_i \ x_i\neq y_i$. Weźmy takie i i rozważmy wielomian $q=a_i\cdot x^i$. Teraz przyłóżmy f(x) oraz f(y) do q. Dostajemy:

$$f(x)(q) = a_i \cdot x_i$$

$$f(y)(q) = a_i \cdot y_i$$

Jednak te wartości są różne (ponieważ $x_i \neq y_i$), więc przekształcenia funkcjonały f(x), f(y) przyjmują różne wartości na tym samym argumencie, więc są różne. Co za tym idzie dowiedliśmy, że f jest iniekcją, więc $|(\mathbb{Q}[x])^*| > |\mathbb{Q}[x]|$, więc te przestrzenie nie są ze sobą izomorficzne.

Zadanie 3:

Implikacje w obie strony:

 (\Longrightarrow) Załóżmy ker $f\subseteq\ker g$. Wiemy, że istnieje przestrzeń liniowa U, taka że $Y=\inf\oplus U$. Wtedy każdy wektor $y\in Y$ może być jednoznacznie zapisany jako y=i+u, gdzie $i\in\inf$, $u\in U$. Można zapisać i jako i=f(x) dla pewnego $x\in X$ (aksjomat wyboru). Teraz rozważmy taką funkcję $h\colon Y\to Z$. Określoną wzorem:

$$h(y) = h(f(x) + u) = g(x)$$

Teraz wystarczy sprawdzić czy taka funkcja jest dobrze określona, to znaczy, czy wartość h(y) będzie taka sama niezależnie od tego jakiego $x \in X$ wybierzemy do f(x).

Rozważmy dowolne elementy $x_1, x_2 \in X$, takie że $f(x_1) = f(x_2)$, chcielibyśmy aby zachodziło również $g(x_1) = g(x_2)$. Przekształćmy założenie, otrzymujemy $f(x_1 - x_2) = 0$ (ponieważ f to przekształcenie liniowe), więc $x_1 - x_2 \in \ker f$, ale $\ker f \subseteq \ker g$, więc $g(x_1 - x_2) = 0$, a z tego $g(x_1) = g(x_2)$ (ponieważ g to przekształcenie liniowe).

Więc istotnie taka funkcja jest dobrze określona. Teraz rozważmy złożenie: $(h \circ f)(x) = h(f(x)) = g(x)$ (ponieważ $f(x) \in \text{im} f$), więc wykazaliśmy istnienie takiej funkcji h.

(\iff) Załóżmy, że istnieje pewne przekształcenie liniowe $h\colon Y\to Z$ spełniające $g=h\circ f$. Teraz weźmy dowolny element $x'\in X$, taki że $x'\in\ker f$. Jeżeli rozważymy g(x') to otrzymamy:

$$g(x') = h(f(x')) = h(0) = 0$$

Ponieważ każde przekształcenie liniowe przekształca 0 na 0. Więc $x' \in \ker g$. Z tego wnioskujemy $\ker f \subseteq \ker g$.

Zadanie 4:

z Jeśli $X=U\oplus V$, to wiemy, że dowolny $x\in X$ można zapisać jednoznacznie jako x=u+v gdzie $u\in U$ oraz $v\in V$. Weźmy przekształcenie liniowe h spełniającą warunki zadania, i sprawdźmy jego wartość dla x:

$$h(x) = h(u + v) = h(u) + h(v) = f(u) + g(v)$$

Więc okazuje się, że każda wartość funkcji h(x) jest jednoznacznie wyznaczona przez wartości funkcji f(u) i g(v) dla argumentów jednoznacznie wyznaczonych przez początkowy argument x. Jako że funkcje f i g są ustalone, to istnieje tylko jedno takie przekształcenie liniowe h.