

Introduction

ITEV DBMS – 1st Seminar, Sep. 6, 2008

Original slides are from

Silberschatz, Korth and Sudarshan

Today's Agenda

- 09.00 09.30 Introduction
- 09.30 11.00 Relational Model
- 11.00 12.00 SQL (1)
- 12.00 12.45 Lunch
- 12.45 13.45 SQL (2)
- 13.45 15.00 Entity-Relationship Model
- 15.00 15.45 Mini-Project, exam and assignments
- 15.45 16.00 Summary of the day

Administration Info

- Course lecturer
 - Hua Lu (<u>luhua@cs.aau.dk</u>, Tel: 9940 9973)
- Course website
 - http://www.cs.aau.dk/~luhua/courses/itev-db08/
- Seminar dates
 - September 6, 2008
 - September 13, 2008
 - October 4, 2008
- Oral exam and mini-project
 - Exam date: October 18, 2008
 - Mini-project report deadline: October 16, 2008 at 14.00
 - 2-4 people a group is preferred
 - Form groups in the lunch break if possible (deadline: Monday, Sept. 8)
 - No report, no exam!
 - More details about exam and mini-project in the afternoon

Course Structure

- Introduction to DBMS
- Relational Databases and Database Design

Day 1

- Relational Model
- SQL
- Entity-Relationship (E-R) Model

Physical Design

Normalization

- Data Storage and Querying
- Day 2
- Storage and File Structure

- **Query Processing and Optimization**
- **Transaction Management**

Day 3

- **Transactions**
- Concurrency Control
- Recovery

Introduction to DBMS

- Purpose of Database Systems
- View of Data
- Database Languages
- Relational Databases
- Database Design
- Data Storage and Querying
- Transaction Management

Database Management System (DBMS)

- DBMS contains information about a particular organization
 - Collection of interrelated data
 - Set of programs to access the data
 - An environment that is both convenient and efficient to use
- Database Applications:
 - Banking: all transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
- Databases touch all aspects of our lives

Purpose of Database Systems

- In the early days, database applications were built directly on top of file systems
- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Data isolation multiple files and formats
 - Interoperability issue
 - Integrity problems
 - Integrity constraints (e.g. account balance > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Purpose of Database Systems (Cont.)

- Drawbacks of using file systems (cont.)
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
 - Concurrent access by multiple users
 - Concurrent accessed needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance and updating it at the same time
 - Security problems
 - Hard to provide user access to some, but not all, data
- Database systems offer solutions to all the above problems

Levels of Abstraction

- Physical level: describes how a record (e.g., customer) is stored.
- Logical level: describes data stored in database, and the relationships among the data.

View level: application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.

View of Data

An architecture for a database system

Instances and Schemas

- Similar to types and variables in programming languages
- Schema the logical structure of the database
 - Example: The database consists of information about a set of customers and accounts and the relationship between them)
 - Analogous to type information of a variable in a program
 - Physical schema: database design at the physical level
 - Logical schema: database design at the logical level
- Instance the actual content of the database at a particular point in time
 - Analogous to the value of a variable
- Physical Data Independence the ability to modify the physical schema without changing the logical schema
 - Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

Data Models

- A collection of tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
- Relational model
- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Object-relational)
- Semistructured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model

Data Definition Language (DDL)

Specification notation for defining the database schema

- DDL compiler generates a set of tables stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - Database schema
 - Data storage and definition language
 - Specifies the storage structure and access methods used
 - Integrity constraints
 - Domain constraints
 - Referential integrity (references constraint in SQL)
 - Assertions
 - Authorization

Data Manipulation Language (DML)

- Language for accessing and manipulating the data organized by the appropriate data model
 - DML also known as query language
- Two classes of DMLs
 - Procedural DML user specifies what data is required and how to get those data
 - Declarative (nonprocedural) DML user specifies what data is required without specifying how to get those data
- SQL is the most widely used query language
 - Set-based, declarative
 - But procedural extensions are offered by different database systems

Relational Model

Example of tabular data in the relational model

customer_id	customer_name	customer_street	customer_city	account_number
192-83-7465	Johnson	12 Alma St.	Palo Alto	A-101
192-83-7465	Johnson	12 Alma St.	Palo Alto	A-201
677-89-9011	Hayes	3 Main St.	Harrison	A-102
182-73-6091	Turner	123 Putnam St.	Stamford	A-305
321-12-3123	Jones	100 Main St.	Harrison	A-217
336-66-9999	Lindsay	175 Park Ave.	Pittsfield	A-222
019-28-3746	Smith	72 North St.	Rye	A-201

Attributes

A Sample Relational Database

customer_id	customer_name	сиѕ	tomer_stree	et	customer_city			
192-83-7465	Johnson		Alma St.		Palo Alto			
677-89-9011	Hayes	3 Main St.			Harrison			
182-73-6091	.82-73-6091 Turner		123 Putnam Ave.		Stamford			
321-12-3123	21-12-3123 Jones		100 Main St.		Harrison			
336-66-9999	Lindsay	175 Park Ave.			Pittsfield			
019-28-3746	Smith	72 N	72 North St.		Rye			
(a) The <i>customer</i> table								
account_number balance								
	1	500						
	5	700						
A-10		2	400					
A-30		5	350					
A-20			900					
A-21			750					
A-22		2	700					
(b) The account table								
	ассот	account_number						
192-83-7465		A-101						
192-83-746		A-201						
019-28-3746		1	A-215					
677-89-9011		1	A-102					
182-73-6091		1	A-305					
	321-12-3123		A-217					
	336-66-9999		A-222					
	019-28-3746		A-201					
(c) The <i>depositor</i> table								

SQL

- SQL: widely used non-procedural language
 - Example: Find the name of the customer with customer-id 192-83-7465

select *customer.customer_name*

from customer

where *customer.customer_id* = '192-83-7465'

 Example: Find the balances of all accounts held by the customer with customer-id 192-83-7465

select account.balance

from depositor, account

where depositor.customer_id = '192-83-7465' and

depositor.account_number = account.account_number

- Application programs generally access databases through one of
 - Language extensions to allow embedded SQL
 - Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database

Database Design

The process of designing the general structure of the database:

- Conceptual and Logical Designs Deciding on the database schema.
 Database design requires that we find a "good" collection of relation schemas.
 - Business decision What attributes should we record in the database?
 - Computer Science decision What relation schemas should we have and how should the attributes be distributed among the various relation schemas?
- Physical Design Deciding on the physical layout of the database

The Entity-Relationship Model

- Models an organization as a collection of *entities* and *relationships*
 - Entity: a "thing" or an "object" in the organization that is distinguishable from other objects
 - Described by a set of attributes
 - Relationship: an association among several entities
- Represented diagrammatically by an entity-relationship diagram:

Storage Management

- Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.
- The storage manager is responsible to the following tasks:
 - Interaction with the file manager
 - Efficient storing, retrieving and updating of data
- Issues:
 - Storage access
 - File organization
 - Indexing and hashing

Query Processing

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

Query Processing (Cont.)

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation
- Cost difference between a good and a bad way of evaluating a query can be enormous
- Need to estimate the cost of operations
 - Depends critically on statistical information about relations which the database must maintain
 - Need to estimate statistics for intermediate results to compute cost of complex expressions

Transaction Management

- A transaction is a collection of operations that performs a single logical function in a database application
- Transaction management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

End of Introduction

ITEV DBMS – 1st Seminar, Sep. 6, 2008

Acknowledgements

- Slides from the SKS book site
- Slides from Kristian Torp, course lecturer in 2006

Original slides are from

Silberschatz, Korth and Sudarshan

