	ACM 106a Set 4 Problem 1
	THE COURT OF THE PROPERTY
	1. 2) Mij = a., - & likuk, Vij = 1,2,,n
	, Y F21 13 1
	7-11-0 ~ ~ ~
	We know A = LU = aij = & lik Mkj
	- Mij = Elik Mkj - Elik Mkj
	(E) (E)
)	
	-> Mij = E LikMij = LiiMij + Liamucinj + + LinMij
2	= 1 kg
	desigh = 0 since Lis lower-transpolar so I ab = 0 when a c b
	→ Mij = (Mij) + 0 = Mij as desired.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	[-1 -1 -1 -1]
)	Apply LV factorization step-by-step (referencing Algorithm 3 in the notes):
	After the Heration (k=1) we have:
)	[100]
	A(1) = -1 1 0 2
1	-1 -1 1 ··· 2 Atter(k=2): A(2) = -1 -1 1 ··· 4
1	
	1 2
	$\begin{bmatrix} 1 & 2 \\ -1 & -1 & -1 & -1 & 2 \end{bmatrix}$
	We can see the pattern. We have:
	[100]
	A(n-1) = -1 1 0 · · · 2 So we have max; uij = 2n-1
N. C.	
	and max; $ aij = 1$ $ 2^{n-2} $ Therefore $P = \frac{2^{n-1}}{2^n} = 2^{n-1}$ as desired.
	and max; $ a_{ij} = 1$ $ 2^{n-2} $ Therefore $p = \frac{2^{n-1}}{1} = 2^{n-1}$ as desired.
	-1 2"]
1	
L. Comment	
8 12 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
Live	

		Jawb Smyder
	ACMINGA Sct 4 Problem 2.2	l Si
		and the same of the
	2.2) We can see that the growth factor appears to grow roughly linearly with 1.	
		-
- W		
		1
-		
		40.000