(3)

Japanese Patent Laid-open Publication No. 2002-14881 A

Publication date: January 18, 2002

Applicant: FUJITSU LIMITED

Title: Network Managing Device and Method thereof

5

15

20

25

(57) [Abstract]

[Problem]

To provide a network-managing device which can specify a point at which any failure has occurred automatically.

10 [Solving Means]

A network-managing device collects network structures, failure information and the like from a monitoring target device 11 such as a network node of a monitoring-subject network, and stores the information in a managing server device 10 connected to the monitoring-subject network. Based upon the information obtained through the monitoring subject network, it specifies a network structure and a node, a link and the like at which any failure has occurred, and transmits the results to a client device 12 through a digital dedicated line 15. Based upon the information sent from the managing server device 10, a network administrator, who is in a remote monitoring center, examines failure information displayed on the client device 12, and specifies where the network failure has occurred.

[0006]

[Means to Solve the Problems]

A network managing device of the present invention is provided with: information acquiring means for acquiring information relating to an actual structure of a

network and information relating to each network node from a monitoring-subject network; comparing means for comparing the acquired information relating to an actual structure of a network and information relating to each network node with previously acquired information relating to an actual structure of a network and information relating to each network node; and failure information generation means for generating failure information relating to the network based upon the results of the comparison.

The network managing method of the present invention is characterized by including an information acquiring step of acquiring information relating to an actual structure of a network and information relating to each network node from a monitoring-subject network; a comparing step of comparing the acquired information relating to an actual structure of a network and information relating to each network node with previously acquired information relating to an actual structure of a network and information relating to each network node; and a failure-information generating step of generating failure information relating to the network based upon the results of the comparison.

[8000]

5

10

15

20

25

In accordance with the present invention, the failure information conventionally transmitted to each node individually, is processed in batch, and a network managing device, which supplies information of the entire structure of a network and information of the occurrence of any failure to an administrator, is installed; thus, it becomes possible to efficiently carry out network managements quickly. In particular, the latest actual structure of a network is compared with the previously obtained actual structure of the network, while the latest failure information of each network node is compared with the previously obtained failure information thereof, so

that it becomes possible to automatically specify a portion at which the failure has occurred.

[0009]

5

10

15

20

25

[Embodiment of the Present Invention]

Fig. 1 is a drawing that shows a system structure of one embodiment of the present invention. In this embodiment of the present invention, a managing server device 10 is placed in a monitoring-subject network including a monitoring-target device 11 such as a network node, or adjacent to the monitoring-subject network. A client device 12 of the managing server device 10 is placed in a remote monitoring center. The managing server device 10 and the client device 12 are connected through a digital dedicated line 15 that is a high-speed digital line. The structure and the state of the monitoring-target network are displayed on this client device 12 so that a technician in the remote monitoring center is allowed to execute a primary analysis of the failure (for example, analysis on the failure information that forms a basis required for the recovery from the failure, such as a position at which the failure has occurred). Here, routers 13, 14 may be attached to the digital dedicated line 15 so that a plurality of client devices 12 are connected to the managing server device 10, and allowed to utilize the system of the present invention.

[0010]

Means to solve the problems: Fig. 2 shows a structural example of the server managing device. The managing server device 20 is provided with an information collection unit 21 which collects information relating to a device state and a traffic state from a node (network node) of the monitoring-subject network based upon protocols such as snmp and rcp, a state managing unit 22 which determines the states of nodes, ports and lines based upon information data that have been collected, and holds the

state data, a actual structure managing unit 23 that holds actual structure data of the network, and a communication unit 24 that transmits the state data and the actual structure data to the client device.

[0011]

5

10

The information collection unit 21 collects information registered in the actual structure data base 26, that is, the state of the port and the state of the device (MIB), through the network node periodically, or upon receipt of a signal (trap message) from the network node, by using snmp or other communication means (Fig. 2(1)). [0012]

Fig. 3 shows an example of a signal sequence between the node and the monitoring server in the event of a node failure. Moreover, Table 1 shows data to be collected from the node at this time.

[Brief Description of the Drawings]

15 [FIG. 1] Fig. 1 is a drawing that shows a system structure of one embodiment of the present invention.

[FIG. 1] DRAWING THAT SHOWS A SYSTEM STRUCTURE OF ONE EMBODIMENT OF THE PRESENT INVENTION

20

MONITORING-TARGET DEVICE 11 (NETWORK NODE)

MANAGING SERVER DEVICE 10

DIGITAL DEDICATED LINE 15

ROUTER 13

25 ROUTER 14

CLIENT DEVICE 12

USER WORK STATION (MONITORING-SUBJECT NETWORK)

REMOTE MONITORING CENTER

(19) 日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2002-14881A) (P2002-14881A) (43)公開日 平成14年1月18日(2002.1.18)

(51) Int. C1. 7		識別記号		FI				テーマコード(参考)
G06F		3 5 1		G 0 6 F	13/00	3 5 1	М	5B089
		652			3/00	652		5E501
	•	657			-,	657		5K030
H04L	12/24			H 0 4 L	11/08			5K035
	12/26				13/00	3 1 3		
		未請求	請求項の数 9	OL			(全	21頁) 最終頁に続く
(21)出願番号	特願20	00-198482	(P2000-198482)	(71)出願人	00000	5223		
•			,			株式会社		
(22)出願日	平成12	年6月30日	(2000. 6. 30)					区上小田中4丁目1番1
		•			号			
				(71)出願人	00010	2739		
					エヌ・	ティ・テ	1.	アドバンステクノロジ
					株式会	≑社		
					東京者	『新宿区西	新宿	二丁目1番1号
				(74)代理人	10007	4099		
					弁理Ⅎ	大菅	義之	(外1名)
								•
								El (de Ter) - John J
								最終頁に続く

(54) 【発明の名称】ネットワーク運用装置及びその方法

(57)【要約】

【課題】障害発生ポイントを自動的に特定することができるネットワーク運用装置を提供する。

【解決手段】被監視ネットワークのネットワークノードなどの監視対象装置11からネットワークの構成や障害情報などを被監視ネットワークに接続された管理サーバ装置10に収集する。管理サーバ装置10は、被監視ネットワークから得られた情報を下に、ネットワーク構成や障害の発生したノード、リンクなどを特定し、結果をデジタル専用線15を介してクライアント装置12に送信する。ネットワーク管理者のいるリモート監視センタでは、管理サーバ装置10からの情報を下に、クライアント装置12に表示される障害情報を調べて、ネットワークの障害がどこに生じたかを特定する。

本発明の一定施形態のシステム構成を示す例

•

【特許請求の範囲】

【請求項1】被監視対象のネットワークからネットワークの実構造に関する情報と各ネットワークノードに関する情報とを取得する情報取得手段と、

1

該取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報を、それぞれ、以前に取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報と比較する比較手段と、

該比較の結果からネットワークに関する障害情報を生成する障害情報生成手段と、を備えることを特徴とするネ 10 ットワーク運用装置。

【請求項2】前記ネットワーク運用装置には、リモート管理センタに設けられたクライアント装置が接続され、該クライアント装置に、前記ネットワークの障害情報を表示することを特徴とする請求項1に記載のネットワーク運用装置。

【請求項3】前記ネットワークに関する情報には、管理対象となっているネットワークの回線を流れるトラフィックに関する情報が含まれることを特徴とする請求項1に記載のネットワーク運用装置。

【請求項4】前記クライアント装置におけるネットワーク障害情報の表示において、複数のノード及び回線からなる集合体を仮想的なひとつのノードであるドメインとして表示することを特徴とする請求項2に記載のネットワーク運用装置。

【請求項5】前記ドメインに属するノード及び回線の状態を総合した結果を該ドメインの状態として表示することを特徴とする請求項4に記載のネットワーク運用装置。

【請求項6】前記ドメインの表示を選択すると、該ドメ 30 インに属するノードや回線の詳細なネットワーク構成及 び障害状態を表示することを特徴とする請求項4に記載 のネットワーク運用装置。

【請求項7】前記ドメインに属するノードと回線の詳細表示の際に、同一画面に、他のドメインの表示を含ませることを特徴とする請求項6に記載のネットワーク運用装置。

【請求項8】被監視対象のネットワークからネットワークの実構造に関する情報と各ネットワークノードに関する情報とを取得する情報取得ステップと、

該取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報を、それぞれ、以前に取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報と比較する比較ステップと、該比較の結果からネットワークに関する障害情報を生成する障害情報生成ステップと、を備えることを特徴とするネットワーク運用方法。

【請求項9】被監視対象のネットワークからネットワークの実構造に関する情報と各ネットワークノードに関する情報とを取得する情報取得ステップと、

該取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報を、それぞれ、以前に取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報と比較する比較ステップと、該比較の結果からネットワークに関する障害情報を生成する障害情報生成ステップと、を備えることを特徴とするネットワーク運用方法を情報装置に実現させるプログラムを格納した、情報装置読み取り可能な記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ネットワーク運用 装置及びその方法に関する。

[0002]

【従来の技術】今日、インターネットの普及に見られるように、ネットワークを利用した情報の通信が盛んに行われてる。また、ネットワークが普及するにつれ、ネットワークに接続されるクライアントの数も急速な勢いで増加しており、ネットワーク自体の規模は増大の一途を辿っている。従って、ネットワークを管理する側として20 は、増大するネットワークを十分に、かつ、効率的に管理することが要求される。ネットワークの管理が十分に行われないと、ネットワークを利用する多くのクライアントに不具合を生じ、ネットワークによるサービスを十分な信頼度で提供することが不可能となってしまう。

【0003】従来のネットワークの監視システムは、被監視ネットワーク内にネットワーク監視装置を置き、リモートの監視センタへは障害の発生のみを文字情報などで通知する構成であった。すなわち、各ネットワークノードはそれぞれ独立して障害情報を監視センタに送信し、障害発生を知った管理者は、障害通知を発したノードを虱潰しに調べ、障害ポイントを特定する、あるいは、経験上特定の障害が生じる場合には、どこが故障している場合が多いかを知得しておき、この経験に基づいて、障害の発生ポイントを特定するという手順を踏んでいた。

[0004]

【発明が解決しようとする課題】従来技術では、コネクションレス型およびコネクション型複合ネットワークでは、障害が発生したという事実のみ、もしくは、障害を検出した装置の情報(ネットワークは相互に装置が関連するため、1つの障害は複数の装置で検出される)しか得られない。従って、どこの障害かの特定が監視装置の情報からのみでは出来ず、保守員が現場へ急行し、障害箇所の特定を行うため、特定までに時間がかかるという問題があった。このような事態が生じると、ネットワークサービスの提供が中断される時間が長くなり、ネットワークの利用者に大きな悪影響を与えてしまうことになる。

【0005】本発明の課題は、障害発生ポイントを自動的に特定することができるネットワーク運用装置を提供

50

40

することである。

[0006]

【課題を解決するための手段】本発明のネットワーク運用装置は、被監視対象のネットワークからネットワークの実構造に関する情報と各ネットワークノードに関する情報とを取得する情報取得手段と、該取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報を、それぞれ、以前に取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報と比較する比較手段と、該比較の結果からネットワークに関する障害情報を生成する障害情報生成手段とを備えることを特徴とする。

【0007】本発明のネットワーク運用方法は、被監視対象のネットワークからネットワークの実構造に関する情報と各ネットワークノードに関する情報とを取得する情報取得ステップと、該取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報を、それぞれ、以前に取得したネットワークの実構造に関する情報及び各ネットワークノードに関する情報と比較する比較ステップと、該比較の結果からネットワークに関する障害情報を生成する障害情報生成ステップとを備えることを特徴とする。

【0008】本発明によれば、従来各ノード独自に送信されて来ていた障害情報を、一括して処理し、管理者にネットワーク全体の構造と共に、障害の発生情報を提供するネットワーク運用装置を設けたことにより、ネットワーク管理をより迅速かつ効率よく行うことが出来る。特に、先に取得されたネットワークの実構成と最新のネットワークの実構成、及び先に取得されたネットワークノードの障害情報と最新の障害情報とを比較することに30より、障害が発生した箇所を自動的に特定することが出来る。

[0009]

【発明の実施の形態】図1は、本発明の一実施形態のシステム構成を示す図である。本発明の実施形態においては、管理サーバ装置10を、ネットワークノードなどの

【0010】解決する仕組み:図2は、サーバ管理装置の構成例を示す図である。管理サーバ装置20は、snmpやrcpなどのプロトコルにより被監視ネットワークのノード(ネットワークノード)から装置状態やトラヒック状況に関する情報を収集する情報収集部21と、収集した情報データからノードやポート、回線の状態を判別し、その状態データを保持する状態管理部22と、ネットワークの実構成データを保持する実構成管理部23、状態データや実構成データとクライアント装置に送る通信部24とからなる。

【0011】情報収集部21は、snmpや他の通信手段を使って、実構成データベース26に登録されている情報、すなわち、ポートの状態、装置の状態 (MIB)をネットワークノードから周期的に、あるいは、ネットワークノードからの信号 (trapメッセージ)受信を契機に収集する(図2(1))。

【0012】図3は、ノード障害発生時のノードと監視サーバ感の信号シーケンスの例を示す図である。また、その際、ノードから収集するデータを表1に示す。

[0013]

【表1】

r No	是一直的数据性 取得位据 。2017年3月1日	The Control of the Autological Control
1	ノード登録情報	sysObjectID は必ず存在する
	· sysObjectID	値は装置に依存する
2	ポート情報	ポート情報は装置、もしくは装置が
	・ポート番号	実装するOSに依存する
ļ	・伝送種別	伝送種別とは、伝送方式(Ethernet
<u></u>	・ポート状態(Link up/Link down)	ATM)と帯域を指す
3	ノード障害情報	取得する情報は装置、もしくは装置
	・電源状態	が実装する OS に依存する
	・温度状態	
	· FAN 状態	<u>.</u>
	· CPU 状態	(
	・メモリ状態	
	・その他、機器固有の状態	
4	ポート障害情報	取得する情報は装置、もしくは装置
	・ボート番号	が実装する OS に依存する
	・モジュール状態(閉塞、障害) ・ポート状態	
	(閉塞、Link up/Link down)	•
	・その他、機器固有の状態	
5	ポートトラフィック情報	新祖之子 (chin) Nic 8
•	・送信パケット数	取得する情報は装置、もしくは装置
į,	・受信パケット数	が実装する OS に依存する
	・送信バイト数	
- 1	・受信バイト数	
	・異常パケット数	·
	・コリジョン発生回数	
	・通信方式(全二重/半二重)	
}	・送信セル数	,
	・受信セル数	
	・廃棄セル数	

【0014】管理サーバ装置は、ネットワークノードに 所定の周期でMIB取得依頼を発行する。管理サーバ装 置からのMIB取得依頼を受信したネットワークノード 30 してクライアント装置へ通知する(図2(4))。ま は、MIB情報を管理サーバ装置に送信する。あるい は、ノードからtrap信号を受信したことを契機に管 理サーバ装置は、ノードからのMIB情報を取得する。 【0015】図2に戻って説明する。状態管理部22 は、収集された情報を受け取り(図2(2))、状態デ ータベース25に保持されている状態と比較する。その 結果、変化が有れば状態データベース25を更新し、そ の変化をクライアント装置へ通知する(図2(3))。 変化がなければ何もしない。

*成データベース26に保持し、実構成に変化(新たなネ ットワークノードの登録など)があれば通信部24を通 た、障害などが発生した場合には、情報収集部21に情 報収集頻度信号を出力して、情報収集部21の情報収集 頻度を変化させる。例えば、障害が生じていない場合に は、所定の頻度で情報を収集するが、障害が発生した場 合には、事態の変化をより詳しく観測するため、所定の 頻度より多い頻度で情報の収集を行うようにする。

【0017】その実構成データベース26の内容を表2 に示す。

[0018]

【表2】

【0016】実構成管理部23は、実構成データを実構*40

内容	
ネットワークノードを識別する名前	
ノードへアクセスする際の IP アドレス	
複数あるポートを設別する番号	
ボートに接続されている回線の名前	
ポートに接続されている回線の種別	
p-p 型 : 回線に接続されるノードは2台	
パス型 : 回線に接続されるノードは2台以上	
	ネットワークノードを練別する名前 ノードへアクセスする際のIPアドレス 領数あるポートを設別する音号 ポートに接続されている回線の名前 ポートに接続されている回線の名前

【0019】図4は、ネットワークの実構成の表現手法 を示した図である。ネットワークの実構成は、ノードに 接続された回線をその回線が接続されているポート番号 と回線名とを関連付けることで実際のネットワーク構成 50 ト番号#2のポートにて回線Bを介してノードCと接続

をモデル化している。

【0020】図4は、ノードAはポート番号#1のポー トにて回線Aを介してノードBと接続されており、ポー

されていることを示している。

【0021】実際には、回線は、単なる伝送線であるの で、回線から当該回線に関する情報を得ることはできな い。従って、回線に接続されるノードから当該ノードに 関する情報を得ると共に、回線に接続されるノードから の情報に基づいて、管理サーバ装置が回線の情報を構築 する。このようにして、構築されるノード情報と回線情 報とから、実際のネットワークの構成や障害状態などを 取得し、管理サーバ装置のクライアント装置において、 GUIを用いて、グラフィック化して表示する。ネット 10 ワーク管理者は、クライアント装置に表示されるネット ワークの図を見ることによって、容易に、ネットワーク の構成と障害状態を把握することが出来る。

【0022】図5は、実構成データベースのデータ構成 を示す図である。実構成データベースは、ノード管理テ ーブルと回線管理テーブルとからなっている。ノード管 理テーブルには、各ノードの名称、当該ノードのIPア ドレス、実装ポート数、ポート番号及びそのポートに接 続されている回線名称からなっている。ノードBの場合 には、 I Pアドレスが0.0.0.0. 、実装ポート数が 1、ポ 20 ート番号が#1、接続回線が回線Aであることが示され ている。また、回線管理テーブルは、回線名称、該回線 に接続されている接続ノード数(回線種別)、接続ノー ド名称、該ノードの接続ポートからなっている。回線A の場合には、接続ノード数が2 (回線種別が p - p型) で、接続ノードはノードBとAであり、それぞれ、ポー ト番号#1のポートに接続されていることが示されてい

【0023】そして、ノード管理テーブルの接続回線の 登録内容と回線管理テーブルのエントリとの関連、及 び、回線管理テーブルの接続ノードの登録内容とノード 管理テーブルのエントリとの関連を辿ることにより、ネ ットワークの実構成を把握することができる。

【0024】図6は、状態データベースの構成を示す図 である。状態データベースは、ノード状態テーブルと回 綠状態テーブルからなっている。ノード状態テーブル は、ノード名称とノード障害数、及び、障害がある場合 には、その障害情報が格納される。図6の場合、ノード Bについては、ノード障害数が2であり、障害情報とし ては、0系電源障害と1系FAN障害が発生しているこ 40 とが示されている。また、回線状態テーブルは、回線名 称と回線状態とからなる。例えば、回線Aの場合には、 回線状態は正常となっている。

【0025】図7は、管理サーバ装置のノード登録シー ケンスを示す図である。まず、ユーザが実構成管理部に ノード登録依頼を入力すると、実構成管理部から実構成 データベースにノード登録依頼が発行されると共に、実 構成管理部から状態管理部にノード登録通知が通知され る。そして、状態管理部からは、状態データベースにノ ード状態登録依頼が行われる。このとき、初期状態で

は、"状態不明"扱いとなる。そして、実構成部からノ 一ド登録通知が通信部に通知され、通信部から、クライ アント装置にノード登録通知が行われる。

【0026】図8は、管理サーバ装置のノード削除シー ケンスを示す図である。まず、ユーザから実構成管理部 にノード削除依頼が出されると、実構成管理部は、実構 成データベースの削除対象ノードに関連する回線情報の 削除を行う。そして、状態管理部には、実構成管理部か ら回線削除通知が行われ、状態データベースに回線状態 削除依頼が行われる。そして、実構成管理部からは、回 線削除通知が通信部に送られ、回線削除通知がクライア ント装置に送られる。次に、実構成管理部からノード削 除依頼が実構成データベースに行われ、ノード削除通知 が状態管理部に通知される。そして、状態管理部から状 態データベースにノード状態削除依頼が送られ、実構成 管理部から通信部へノード削除通知が通知され、ノード 削除通知がクライアント装置に送信される。

【0027】図9は、管理サーバ装置の回線登録シーケ ンスを示す図である。まず、ユーザから、実構成管理部 に回線登録依頼があると、実構成管理部からは、実構成 データベースに回線登録依頼が行われる。更に、実構成 管理部は、回線登録通知が状態管理部に通知され、状態 管理部から状態データベースへ回線状態登録依頼が行わ れる。そして、実構成管理部からは、回線登録通知が通 信部を介して、クライアント装置に通知される。

【0028】図10は、管理サーバ装置の回線削除シー ケンスを示す図である。まず、ユーザが実構成管理部に 回線削除依頼を行うと、実構成管理部は、実構成データ ベースに回線削除依頼を行う。これと共に、実構成管理 部は、回線削除通知を状態管理部に行い、状態管理部か らは、回線状態削除依頼が状態データベースに行われ る。そして、実構成管理部から回線削除通知が通信部を 介してクライアント装置に通知される。

【0029】図11は、管理サーバ装置のノード障害発 生時処理のシーケンスを示す図である。まず、ネットワ ークノードからノード障害通知が情報収集部に通知され る。このノード障害通知は、状態管理部に通知される。 状態管理部は、状態データベースに旧ノード状態の問い 合わせを行い、状態データベースから旧ノード状態を取 得する。そして、ネットワークノードから通知されたノ ード障害通知を含む新ノード状態と状態データベースに 格納されていた旧ノード状態とを比較し、両者が異なっ ている場合には、状態データベースのノード状態変更依 頼を出力する。そして、通信部には、ノード状態変更通 知を通知し、通信部からノード状態変更通知がクライア ント装置に通知される。

【0030】図12は、管理サーバ装置の回線障害発生 時処理のシーケンスを示す図である。まず、ネットワー クノードからポート障害通知が情報収集部に通知され 50 る。この通知は、状態管理部に通知され、状態管理部か

ら実構成管理部に関連回線の問い合わせが行われる。実 構成管理部は、実構成データベースに関連回線の問い合 わせを行い、実構成データベースから関連回線情報を取 得する。この関連回線情報は、状態管理部に通知され る。次に、状態管理部は、状態データベースに旧回線状 態の問い合わせを行い、状態データベースから旧回線状 態を取得する。状態管理部は、実構成データベースから 得た関連回線情報を基に得られた新回線状態と、状態デ ータベースから得られた旧回線状態とを比較し、変化が あった場合には、状態データベースに回線状態変更依頼 10 を行って、回線状態の更新を行う。そして、状態管理部 は、通信部に回線変更通知を通知する。通信部からは、 クライアント装置に回線状態変更通知が通知される。

【0031】図13は、クライアント装置のブロック構 成を示す図である。クライアント装置30は、管理サー バ装置から、ネットワークの実構成データとノード・回 線の状態データとを受けてネットワークの構成図とノー ドや回線の状態をグラフィカルに表示する。

【0032】通信部31は、管理サーバ装置からネット ワークの実構成データやノード・回線の状態データを受 20 け(図6(1))、GUIデータ管理部32へ該データ の格納を依頼する(図6(2))。

【0033】GUIデータ管理部32は、該データをG UIデータベース33に書き込むと共に、GUI表示処 理部34へ表示の依頼を行う(図6(3))。また、G UIデータ管理部32は、画面上におけるノード及び回 線の位置情報・形や色の情報をGUIデータベース33 に保持し、GUI表示処理部34はGUIデータベース 33の全てのデータ・情報を使ってネットワークの構成 図とノードや回線の状態をグラフィカルに表示する。

【0034】図14は、ドメインを含むGUI表示の例 を示す。ドメインや回線、ノードはその状態に従って色 分けして表示される。状態と色の対応例を表3に示す。

[0035]

【表3】

ドメイン、回線、ノードの状態	表示される色
正常運用	緑
軽度障害発生	黄色(橙)
重度障害発生	赤
状態不明	黒

【0036】ここで、ドメインとは、複数のネットワー クノードや端末がネットワークによって接続されたロー カルなネットワーク構成のことであり、ネットワーク全 体の管理において、1つの単位とされる。ただし、ドメ インは、ネットワーク管理において上位レベルを示して おり、より下位のレベルでの管理を行う場合、ドメイン を、これを構成するネットワークとノード、端末単位に 分けて管理することも可能である。

【0037】ドメインの色(状態)は、以下のロジック により決定する。ドメインの色をS(D)、ドメイン内 50 装置の処理をプログラムで実現する場合に必要とされる

にあるノード、回線個々の色をS(I)とすると、 $S(D) = S(I = 1) \cdot OR \cdot S(I = 2) \cdot OR \cdot$ $\cdot \cdot \cdot \circ R \cdot S \quad (I = n)$ となる。ここで、「はノード・回線の識別コードであ

【0038】S(I)と色の関係は、以下の通り。

色		S	(1)	値
青	(正常運用)	0	0 0	
黒	(状態不明)	0	0 1	
黄	(軽度障害発生)	0	1 1	
赤	(重度障害発生)	1	1 1	
	黒黄	色 青(正常運用) 黒(状態不明) 黄(軽度障害発生) 赤(重度障害発生)	青 (正常運用) 0 黒 (状態不明) 0 黄 (軽度障害発生) 0	黒 (状態不明) 0 0 1 黄 (軽度障害発生) 0 1 1

なお、ここでは、ドメインの色をドメインを構成するノ ードや回線の色によって決定される旨述べたが、ドメイ ンに含まれないノードや回線の個々の色は、それぞれに 与えられるS(I)によって決定される。

【0039】図15は、ドメイン内にて重度障害が発生 している時の表示例を示す図である。図15において は、ドメインやネットワークノードなどからなる全体の ネットワークの構成が示されており、特に、一つのドメ インにおいて、障害が発生していることが示されてい る。この場合、上記したような色の設定に従って、ドメ インの色が変化される。

【0040】図16は、ドメインのアイコンを選択する ことで、ドメイン内のネットワーク構成図を表示する場 合の表示例を示した図である。なお、上述したように、 ドメインの色は、ドメインを構成するノードやリンクの 障害状態によって決定されるが、ドメイン内のノード及 びリンクで障害が発生し、リモート監視センタで管理者 が障害を確認した後に、ノード及びリンクの障害状態を ネットワーク運用システムは正常と読み替える様にして も良い。この場合、正常と読み替えた後は、ドメイン色 を正常状態として再評価する。本方式を採用することに より、ドメイン内で別の障害が更に発生した場合でも、 ドメインの色が正常色に戻っているので、異なる障害が 新たに発生したということが判断可能になり、確実にド メイン内の障害を発見することが可能である。

【0041】図17は、ルートドメイン表示の表示例を 示した図である。ドメインを利用し、階層毎にノード、 リンク状態を監視する場合に、当該ドメインの上位及 40 び、上位ドメインの下位ドメインを表示している場合、 当該ドメイン外の他のドメインやネットワークノードが 表示されなくなるため、その画面で他の障害の確認が不 可能になる。そのためドメイン内には、ルートドメイン というアイコンを表示して、上位ドメイン及び上位ドメ インの下位ドメインの情報を集約して表示する。これに より、どのドメインを表示していても、監視対象ネット ワーク全域の障害発生状況を、リモート監視センタで発 見可能となる。

【0042】図18は、管理サーバ装置やクライアント

ハードウェア環境を説明する図である。CPU41は、バス40を介して、ROM42、RAM43、通信インターフェース44、記録装置47、記録媒体読み取り装置48、及び、入出力装置50に接続される。ROM42には、BIOSなどの基本プログラムが格納され、管理サーバ装置あるいはクライアント装置などの情報装置の電源投入時に、CPU41によって実行され、入出力装置50や記録装置47、記録媒体読み取り装置48などを使用可能とする。

【0043】入出力装置50は、キーボード、マウス、ディスプレイなどからなり、ユーザからの情報の入力や、ユーザへの情報の出力を行う。情報装置51がクライアント装置である場合には、ディスプレイには、図14から図17に示したようなネットワーク構成や障害情報が表示される。

【0044】情報装置51をクライアント装置あるいは 管理サーバ装置として機能させるためのプログラムは、 ROM42、記録装置47、あるいは、可搬記録媒体4 9に格納可能である。記録装置47に格納された当該プ ログラムは、RAM43に展開され、CPU41が実行 20 可能な状態にされる。記録装置47は、例えば、ハード ディスクである。また、当該プログラムが可搬記録媒体 49に格納されている場合には、CPU41が当該プロ グラムを記録媒体読み取り装置48を介して読みとり、 RAM43に展開して、実行する。可搬記録媒体49 は、例えば、CD-ROM、DVD、MO、フロッピー (登録商標) ディスクなどである。また、管理サーバ装 置に設けられる状態データベースや実構成データベー ス、クライアント装置に設けられるGUIデータベース は、記録装置47や可搬記録媒体49に構築することが 30 可能である。

【0045】また、情報装置51は、通信インターフェース44を使って、ネットワーク45経由で情報提供者46に接続可能であり、当該プログラムを情報提供者46からダウンロードして実行することも可能である。あるいは、情報提供者46とネットワーク45を介して接続しながら、ネットワーク環境の下で当該プログラムを実行することが可能である。

[0046]

【発明の効果】本発明によれば、ネットワーク内の障害 40 の発生した地点を自動的に特定することが出来、障害の 復旧や保守管理を効率的に、かつ、迅速に行うことが出来る。

【図面の簡単な説明】

【図1】本発明の一実施形態のシステム構成を示す図である。

【図2】サーバ管理装置の構成例を示す図である。

【図3】ノード障害発生時のノードと監視サーバ間の信 号シーケンスの例を示す図である。

【図4】ネットワークの実構成の表現手法を示した図である。

【図5】実構成データベースのデータ構成を示す図である。

【図6】状態データベースの構成を示す図である。

【図7】管理サーバ装置のノード登録シーケンスを示す 図である。

10 【図8】管理サーバ装置のノード削除シーケンスを示す 図である。

【図9】管理サーバ装置の回線登録シーケンスを示す図である。

【図10】管理サーバ装置の回線削除シーケンスを示す図である。

【図11】管理サーバ装置のノード障害発生時処理のシーケンスを示す図である。

【図12】管理サーバ装置の回線障害発生時処理のシーケンスを示す図である。

20 【図13】クライアント装置のブロック構成を示す図である。

【図14】ドメインを含むGUI表示の例を示す。

【図15】ドメイン内にて重度障害が発生している時の 表示例を示す図である。

【図16】ドメインのアイコンを選択することで、ドメイン内のネットワーク構成図を表示する場合の表示例を示した図である。

【図17】ルートドメイン表示の表示例を示した図である。

30 【図18】管理サーバ装置やクライアント装置の処理を プログラムで実現する場合に必要とされるハードウェア 環境を説明する図である。

【符号の説明】

10、20 管理サーバ装置

11 監視対象装置 (ネットワークノード)

12、30 クライアント装置

13、14 ルータ

15 デジタル専用線

21 情報収集装置

22 状態管理部

23 実構造管理部

24、31 通信部

25 状態データベース

26 実構成データベース

32 **GUIデータ管理部**

33 GUIデータベース

34 GUI表示処理部

【図1】

【図3】

本発明の一実施形態のシステム構成を示す図

ノード障害発生時の/-ドと 監視サーバ間の信号シーケンスの 例も示す図

【図4】

【図10】

世ーバ管理装置の構成例を示す図

【図5】

実構成データベースのデータ構成を示す図

【図6】

状態 データベースの構成を示す図

状態デー	タベース
ノード状態テーブル	回線状態テーブル
:	:
ノードA (ノード名跡)	回線A (回線名称)
0 (ノード陳吉敦)	正常(回線状態)
:	:
ノードB (ノード名称)	回線B (回線名跡)
2 (/- * 陳杏致)	異常 (回兼状館)
0 系電源障害(障害情報)	:
L系 PAN 除害(降害情報)	
:	•
ノードC (/-ド名称)	
0(八十、障害数)	
: .	

【図7】

管理サーバ装置のノード登録シーケンスを示す図

[図8]

管理サーバ装置のノード削除シーケンスを示す図

【図9】

管理サーバ装置の回線登録シーケンスを示す図

【図11】

管理サーバ装置の ノード障害発生時処理のシケンス を示す図

【図13】

クライアント装置のブロック構成を示す図

【図12】

管理 サーバ装 置の 回線障害発生時処理のシケンスを示す図

[図14] ドメイツを含む GUI 表示の例を示す

【図15】

ドメイソ内にて重度障害が 発生している時の表示例を示す図

【図16】

ドメインのアイコンを選択することで、ドメイン内の ネットワーク構成図を表示する場合の表示例を示け図

【図17】 ルートドメイン表示の表示例を示いた図

【図18】

管理サーバ装置ゃりライアント装置の処理も プログラムで実現する場合に少要とされる ハードウェア環境も説明する図

フロントページの続き

(51) Int. Cl. 7

識別記号

HO4L 29/14

(72) 発明者 佐藤 隆昭

東京都新宿区西新宿二丁目1番1号 エヌ・ティ・ティ・アドバンステクノロジ株式会社内

(72)発明者 佐藤 美幸

神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内

(72) 発明者 藤中 紀孝

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(72)発明者 高橋 完悦 東京都新宿区西新宿六丁目12番1号 富士 通エーシーエス株式会社内

(72) 発明者 椛沢 敦

東京都新宿区西新宿六丁目12番1号 富士 通エーシーエス株式会社内 FΙ

テーマコード(参考)

(72)発明者 大橋 正彦

大阪府大阪市中央区城見二丁目2番53号 富士通関西中部ネットテック株式会社内

(72) 発明者 岩本 朗

大阪府大阪市中央区城見二丁目2番53号 富士通関西中部ネットテック株式会社内

Fターム(参考) 5B089 GA11 GA21 GB02 HB06 JB14

JB17 KA04 KA12 KB03 LB01

LB16 LB19

5E501 AA13 AC25 AC35 BA03 CA02

EA05 EA11 EB05 FA04 FA14

FA22 FA46 FB28

5K030 GA12 KX30 MB01 MC09

5K035 AA07 BB03 DD01 FF02 GG13

HH02 HH07 JJ02 KK07 MM03