Regularization

Guowei Wei Department of Mathematics Michigan State University

References:
Duc D. Nguyen's lecture notes
Andrew Ng's notes
Wikipedia

Introduction

- Minimize the magnitude of parameters
- Eliminate the overfitting problems

Overfitting Problems

$$p(x) = c_0 + c_1 x$$

(Underfit, high bias)

$$p(x) = c_0$$
+ $c_1 x + c_2 x^2$
(Just right)

variance)

 Overfitting: The predictor may perfectly fit the training set but fail to predict new examples

Avoiding Overfitting

- Reduce the number of features
 - Manually select which features to keep
 - Model selection algorithm
- Regularization
 - Keep all the features, but reduce the magnitude of parameters

$$\mathbf{c} = (c_0, c_1, \dots)$$

Linear Regression

$$L(\mathbf{c}) = \sum_{i=1}^{m} (p_{\mathbf{c}}(\mathbf{x}^{(i)}) - y^{(i)})^2$$

Regularized Linear Regression

$$L(\mathbf{c}) = \sum_{i=1}^{m} (p_{\mathbf{c}}(\mathbf{x}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2} \sum_{j=1}^{n} c_{j}^{2}$$

Logistic Regression

$$L(\mathbf{c}) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log \left(p_{\mathbf{c}}(\mathbf{x}^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - p_{\mathbf{c}}(\mathbf{x}^{(i)}) \right) \right]$$

Regularized Logistic Regression

$$L(\mathbf{c}) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log \left(p_{\mathbf{c}}(\mathbf{x}^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - p_{\mathbf{c}}(\mathbf{x}^{(i)}) \right) \right]$$

$$+\frac{\lambda}{2n}\sum_{j=1}^{n}c_{j}^{2}$$
 Do not include bias c_{0}

Use gradient descent for optimization

$$p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$$

$$p(x) = c_0 + c_1 x + c_2 x^2 + \mathbf{0} x^3 + \mathbf{0} x^4$$

How big is λ ?

Linear Regression

$$L(\mathbf{c}) = \sum_{i=1}^{m} (p_{\mathbf{c}}(\mathbf{x}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2} \sum_{j=1}^{n} c_{j}^{2}$$

- What happen when λ is too big, $\lambda = 10^6$
- $c_j = 0, j = 1, 2, \dots, n \Rightarrow p_{\mathbf{c}}(\mathbf{x}) = c_0$ (constant)

Therefore underfitting

Discussions

Square loss function:

$$L(p(\mathbf{x}), y) = (1 - yp(\mathbf{x}))^{2}$$

Hinge loss function (used in SVM):

$$L(p(\mathbf{x}), y) = \max(0, 1 - yp(\mathbf{x}))$$

Tikhonov regularization:

If
$$p(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$$
, $\min \sum_{i=1}^{m} L(\mathbf{x}^{(i)} \cdot \mathbf{c}, y^{(i)}) + \lambda \|\mathbf{c}\|_{2}^{2}$
In general, $\min \sum_{i=1}^{m} L(p(\mathbf{x}^{(i)}), y^{(i)}) + \lambda \|p\|_{2}^{2}$

■ LASSO: $\min \sum_{i=1}^{m} \frac{1}{m} \|\mathbf{x}^{(i)} \cdot \mathbf{c} - \mathbf{y}^{(i)}\| + \lambda \|\mathbf{c}\|_{1}$

(Least absolute shrinkage and selection operator)

Discussions

• Regularizers for Semi-Supervised Learning $\min \left[\sum_{i=1}^{m} L(p(\mathbf{x}^{(i)}), y^{(i)}) + \lambda R \right]$

The regularizer:

$$R = \sum_{i,j}^{m} w_{ij} (p(\mathbf{x}^{(i)}) - p(\mathbf{x}^{(j)}))^2 = \mathbf{p}^T L \mathbf{p}$$

- L = D A: Laplacian matrix.
- *D*: Degree matrix
- *A*: Adjacency matrix