

Uncertainty principle and Schrodinger

wave equation

- 1. The uncertainty principle was enunciated by
 - (a) Einstein
- (b) Heisenberg
- (c) Rutherford
- (d) Pauli
- According to heisenberg uncertainty 2. principle

(a)
$$E = mc^2$$

(b)
$$\Delta x \times \Delta p \ge \frac{h}{4\pi}$$

(c)
$$\lambda = \frac{h}{p}$$

(d)
$$\Delta x \times \Delta p = \frac{h}{6\pi}$$

- **3.** "The position and velocity of a small particle like electron cannot be simultaneously determined." This statement is
 - (a) Heisenberg uncertainty principle
 - (b) Principle of de Broglie's wave nature of electron
 - (c) Pauli's exclusion principle
 - (d) Aufbau's principle
- 4. In Heisenberg's uncertainty equation

$$\Delta x \times \Delta p \ge \frac{h}{4\pi}$$
; Δp stands for

- (a) Uncertainty in energy
- (b) Uncertainty in velocity
- (c) Uncertainty in momentum
- (d) Uncertainty in mass

5. Which one is not the correct relation in the following

(a)
$$h = \frac{E}{v}$$

(b)
$$E = mc^2$$

(c)
$$\Delta x \times \Delta p = \frac{h}{4\pi}$$
 (d) $\lambda = \frac{h}{mv}$

(d)
$$\lambda = \frac{h}{mv}$$

- The maximum probability of finding an electron in the d_{xy} orbital is
 - (a) Along the x-axis
 - (b) Along the y-axis
 - (c) At an angle of 45° from the x and *y-*axes
 - (d) At an angle of 90° from the x and *y-*axes
- Simultaneous determination of exact position and momentum of an electron
 - (a) Possible
 - (b) Impossible
 - (c) Sometimes possible sometimes impossible
 - (d) None of the above
- 8. If uncertainty in the position of an electron is zero, the uncertainty in its momentum would be
 - (a) Zero

(b)
$$< \frac{h}{2\lambda}$$

- (c) > $\frac{h}{2\lambda}$
- (d) Infinite

- The possibility of finding an electron in 9. an orbital was conceived by
 - (a) Rutherford
 - (b) Bohr
 - (c) Heisenberg
 - (d) Schrodinger
- 10. Uncertainty principle gave the concept
 - (a) Probability
 - (b) An orbital
 - (c) Physical meaning of Ψ the Ψ^2
 - (d) All the above
- 11. The uncertainty principle and concept of wave nature of matter was proposed by and respectively
 - (a) Heisenberg, de Broglie
 - (b) de-Broglie, Heisenberg
 - (c) Heisenberg, Planck
 - (d) Planck, Heisenberg
- 12. The uncertainty in momentum of an uncertainty in its position will be (h = $6.62 \times 10^{-34} kg - m^2/s$
 - (a) $1.05 \times 10^{-28} m$
 - (b) $1.05 \times 10^{-26} m$
 - (c) $5.27 \times 10^{-30} m$
 - (d) $5.25 \times 10^{-28} m$
- 13. The uncertainty in the position of a moving bullet of mass 10 gm is $10^{-5}m$. Calculate the uncertainty in its velocity

- (a) $5.2 \times 10^{-28} m/sec$
- (b) $3.0 \times 10^{-28} m/sec$
- (c) $5.2 \times 10^{-22} m/sec$
- (d) $3 \times 10^{-22} m/sec$
- **14.** The equation $\Delta x. \Delta p \ge \frac{h}{4\pi}$ shows
 - (a) de-Broglie relation
 - (b) Heisenberg's uncertainty principle
 - (c) Aufbau principle
 - (d) Hund's rule
- 15. Which quantum number is not related with Schrodinger equation
 - (a) Principal
- (b) Azimuthal
- (c) Magnetic
- (d) Spin
- Uncertainty in position of a 0.25 g particle is 10^{-5} . Uncertainty of velocity is $(h = 6.6 \times 10^{-34} Js)$
 - (a) 1.2×10^{34}
- (b) 2.1×10^{-29}
- (c) 1.6×10^{-20}
- (d) 1.7×10^{-9}
- electron is $1 \times 10^{-5} kg m/s$. The uncertainty in momentum of an electron is $1 \times 10^{-5} kgm/s$. The uncertainity in its position will be (h = $6.63 \times 10^{-34} Js$
 - (a) $5.28 \times 10^{-30} m$
 - (b) $5.25 \times 10^{-28} m$
 - (c) $1.05 \times 10^{-26} m$
 - (d) $2.715 \times 10^{-30} m$
 - 18. According to Heisenberg's uncertainty principle, the product of uncertainties

IIT-JEE CHEMISTRY

in position and velocities for an electron of mass $9.1 \times 10^{-31} kg$ is

(a)
$$2.8 \times 10^{-3} m^2 s^{-1}$$

(b)
$$3.8 \times 10^{-5} m^2 s^{-1}$$

(c)
$$5.8 \times 10^{-5} m^2 s^{-1}$$

(d)
$$6.8 \times 10^{-6} m^2 s^{-1}$$

19. For an electron if the uncertainty in velocity is Δv , the uncertainty in its position (Δx) is given by

(a)
$$\frac{hm}{4\pi\Delta\nu}$$

(b)
$$\frac{4\pi}{hm\Delta\nu}$$

(c)
$$\frac{h}{4\pi m \Delta v}$$

(d)
$$\frac{4\pi}{h} \frac{m}{\Delta v}$$

- 20. Orbital is
 - (a) Circular path around the nucleus in which the electron revolves
 - (b) Space around the nucleus where the probability of finding the electron is maximum
 - (c) Amplitude of electrons wave
 - (d) None of these

ESTD: 2005