Package 'matricks'

October 13, 2022

```
Version 0.8.2
Description Provides functions, which make matrix creation conciser
     (such as the core package's function m() for rowwise matrix definition or
     runifm() for random value matrices).
     Allows to set multiple matrix values at once, by using list of formulae.
     Provides additional matrix operators and dedicated plotting function.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
BugReports https://github.com/krzjoa/matricks/issues
URL https://github.com/krzjoa/matricks,
     https://krzjoa.github.io/matricks/
Suggests testthat (>= 2.1.0), knitr, rmarkdown, covr
RoxygenNote 6.1.1
LinkingTo Rcpp
Imports Rcpp, rlang, ggplot2, reshape2
VignetteBuilder knitr
NeedsCompilation yes
Author Krzysztof Joachimiak [aut, cre]
     (<https://orcid.org/0000-0003-4780-7947>)
Maintainer Krzysztof Joachimiak < joachimiak.krzysztof@gmail.com>
Repository CRAN
Date/Publication 2020-02-23 11:40:02 UTC
```

Type Package

Title Useful Tricks for Matrix Manipulation

2 antidiag

R topics documented:

ıntidiag	•
ıt	
s_idx_possible	
n	
natrix_idx	
neighbour_idx	
neighbour_idx_matrix	
pperators	
olot_matrix	
boolm	
epetitions	
unifm	
unif_same_dims	
eq_matrix	
et_values	
⁷	
vith_same_dims	
	at binding s_is_idx_possible m m matrix_idx meighbour_idx meighbour_idx_matrix pperators plot_matrix boolm meteritions muniff same_dims seq_matrix set_values with_same_dims

 $antidiag \qquad \qquad \textit{Matrix antidiagonals}$

Description

Extract or replace the antidiagonal of a matrix, or construct a antidiagonal matrix.

Usage

```
\label{eq:antidiag} \begin{split} &\text{antidiag}(x = as.numeric(c(1)), \ nrow = NULL, \ ncol = NULL) \\ &\text{antidiag}(x) <- \ value \end{split}
```

Arguments

X	matrix, vector or 1D array, or missing.
nrow	number of rows (optional; when x is not a matrix)
ncol	number of columns (optional; when x is not a matrix)
value	either a single value or a vector of length equal to that of the current antidiagonal. Should be of a mode which can be coerced to that of x .

at 3

Examples

```
# Extracting antidiag
antidiag(diag(3))
# Creating antidiagonal matrix
antidiag(7, 3, 3)
antidiag(1:5, 3, 3)
# Assigning antidiagonal
mat <- matrix(0, 3, 3)
antidiag(mat) <- c(3, 4, 5)
mat</pre>
```

at

Set or get matrix value at index vector

Description

This function allows to access matrix values by passing indices as vector

Usage

```
at(mat, idx)
at(mat, idx) <- value</pre>
```

Arguments

mat matrix
idx two-element integer vector
value a value to be assign at index

Value

'at' function: value from matrix at index idx

```
 \begin{array}{l} \text{mat} <- \; \text{matrix}(\emptyset,\;3,\;3) \\ \text{idx} <- \; \text{c}(1,\;2) \\ \#\; \text{Typically, given matrix and row-column indices as two-element vector, we should do it like this:} \\ \text{mat}[\text{idx}[1],\; \text{idx}[2]] \\ \text{mat}[\text{idx}[1],\; \text{idx}[2]] <- \; 8 \\ \#\; \text{Using `at`, we can do it simplier!} \\ \text{at}(\text{mat, idx}) \\ \text{at}(\text{mat, idx}) <- \; 7 \\ \text{mat} \\ \text{at}(\text{mat, idx}) \\ \end{array}
```

4 is_idx_possible

binding

Bind vector, single values and matrices

Description

This functions works very similar to well-known base 'cbind' or 'rbind' function. However, there is one big difference between these functions. If you pass a vector, each value will be get individually.

Usage

```
col_bind(...)
row_bind(...)
```

Arguments

... single values, vectors, matrices or data.frames

Value

a matrix being a product of matrix/vector/values binding

Examples

```
# `col_bind` vs `cbind`
cbind(1,2,3,4,5)
col_bind(1,2,3,4,5)
cbind(1:5)
col_bind(matrix(3, 3, 3), 0.33, 4:7)
col_bind(matrix(3, 3, 3), 0.33, 4:7)
# `row_bind` vs `rbind`
rbind(1,2,3,4,5)
row_bind(1,2,3,4,5)
rbind(1:5)
row_bind(1:5)
row_bind(matrix(3, 3, 3), 0.33, 4:7)
row_bind(matrix(3, 3, 3), 0.33, 4:7)
```

is_idx_possible

Is idx possible in given matrix?

Description

Is idx possible in given matrix?

m 5

Usage

```
is_idx_possible(mat, idx)
```

Arguments

mat matrix

idx two-element vector

Examples

```
is_idx_possible(matrix(0, 3, 3), c(4, 5))
is_idx_possible(matrix(0, 3, 3), c(3, 2))
```

m

A shortcut to create matrix defining rows

Description

One of the main functionalities of the package. It is an alternative to standard way we define matrices in R.

Usage

```
m(...)
```

Arguments

... Single values, vectors, matrices and 'l' as special symbol which breaks input on the rows.

Value

matrix with defines elements

6 matrix_idx

```
x
# Moreover, we can pass to the `m` function
# whole sequences or even matrices.
x <- m(1:5 | 6:10 | 11:15 )
x
# We can combine multiple matrices into one
m(diag(3), diag(3) * 3|
diag(3) * 3, diag(3) )</pre>
```

matrix_idx

Get available marix indices

Description

Get available marix indices

Usage

```
matrix_idx(mat, n.row = NULL, n.col = NULL, mask = NULL)
```

Arguments

mat matrix

n.row number of rows; default: NULL

n.col number of columns; default: NULL

mask logical matrix; default: NULL

```
T <- TRUE; F <- FALSE
mat <- matrix(0, 3, 3)
mask <- m(T, T, F | T, F, T | F, F, T)
# All poss
matrix_idx(mat)
matrix_idx(mat, mask = mask)
matrix_idx(mask = mask)</pre>
```

neighbour_idx 7

neighbour_idx	Get all indices in neighbourhood

Description

Get all indices in neighbourhood

Usage

```
neighbour_idx(mat, idx, mask = NULL, diagonal = TRUE,
include.idx = FALSE)
```

Arguments

mat matrix or data.frame
idx two-element vector
mask logical matrix; optional
diagonal include diagonal neighbours
include.idx include current index

Examples

Description

Create matrix of lists, where each one contains list of neighbour field coordinates

Usage

```
neighbour_idx_matrix(mat, mask = NULL, diagonal = TRUE,
  random.select = NULL)
```

8 operators

Arguments

mat matrix

mask logical matrix. Its dimensions must be identical with dimensions of mat

diagonal logical. get diagonal neighbours

random.select select one random neighbour

Examples

```
T <- TRUE; F <- FALSE
mat <- matrix(0, 3, 3)
mask <- m(T, T, F | T, F, T | F, F, T)
nimat <- neighbour_idx_matrix(mat, mask, diagonal = TRUE)
neighbour_idx_matrix(mat, mask, diagonal = TRUE, random.select = 1)</pre>
```

operators

Binary operations on matrices/vectors

Description

This operator allows to do elementwise operation of two algebraic object i.e. matrices/vectors. There is one required condition to perform such operation: at least one domension values from both objects must be the same

Usage

- a %m% b
- a %d% b
- a %-% b
- a %+% b

Arguments

a matrix/vector
b matrix/vector

Value

Matrix/vector

plot_matrix 9

Examples

```
# Multiply
m(1, 2, 3 | 4, 5, 6 | 7, 8, 9) %m% v(5,4,3)
# Divide
m(1, 2, 3 | 4, 5, 6 | 7, 8, 9) %d% v(5,4,3)
# Add
m(1, 2, 3 | 4, 5, 6 | 7, 8, 9) %+% v(5,4,3)
# Subtract
m(1, 2, 3 | 4, 5, 6 | 7, 8, 9) %-% v(5,4,3)
```

plot_matrix

Plot a matrix

Description

This function allows us to plot matrices easily

Usage

```
plot_matrix(x, ...)
## S3 method for class 'matrix'
plot(x, ...)
```

Arguments

```
x a matrix
... for S3 generic API consistency; does nothing
```

Value

a ggplot object

10 repetitions

rboolm

Create matrix of random choosen boolean values

Description

Create matrix of random choosen boolean values

Usage

```
rboolm(nrow, ncol, true.proba = 0.5)
```

Arguments

nrow number of rows
ncol numer of columns

true.proba probability of true values; default: 0.5

Value

a matrix

Examples

```
rboolm(3, 3)
rboolm(4, 5, true.proba = 0.3)
```

repetitions

Repeat columns or rows

Description

Repeat matrix object respectively to its shape and orientation

Usage

```
crep(x, times)
rrep(x, times)
```

Arguments

x matrix

times number of repetitions

runifm 11

Details

```
crep = columnwise repetition
rrep = rowwise repetition
```

Value

matrix

Examples

```
# Columnwise repetition
crep(v(1:3), 4)
crep(t(v(1:5)), 4)
# Rowwise repetition
rrep(v(1:3), 4)
rrep(t(v(1:5)), 4)
```

runifm

Create matrix of random values drawn from uniform distribution

Description

Create matrix of random values drawn from uniform distribution

Usage

```
runifm(nrow, ncol, min = 0, max = 1)
```

Arguments

nrow number of rows
ncol numer of columns

min lower limit of the distribution. Must be finite.

max upper limit of the distribution. Must be finite.

Value

a matrix

```
runifm(3, 3)
runifm(4, 5, min = -1, max = 3)
```

12 seq_matrix

runif_same_dims	Create matrix of random values with dimensions copied from an existing matrix

Description

Create matrix of random values with dimensions copied from an existing matrix

Usage

```
runif_same_dims(mat, min = 0, max = 1)
```

Arguments

mat matrix

min lower limit of the distribution. Must be finite.

max upper limit of the distribution. Must be finite.

Value

a matrix

Examples

```
mat <- matrix(0, 3, 3)
runif_same_dims(mat)</pre>
```

seq_matrix

Return a sequence of pairs (value, index vector)

Description

Facilitates iterating over matrix, returning a sequence of pairs, where the first element is a value at index (x, y) and the second one is the index (x, y)

Usage

```
seq_matrix(mat)
```

Arguments

mat

matrix

Value

list of two-element list (single value, two-element vector)

set_values 13

Examples

```
mat <- matrix(1:9, 3, 3)
seq_matrix(mat)</pre>
```

set_values

Set multiple values useing one function call

Description

This functions allows to set multiple elements of a matrix instead of using annoying step-by-step assignment by mat[1,2] <- 2 mat[2,3] <- 0.5 etc.

Usage

```
set_values(mat, ...)
sv(mat, ...)
```

Arguments

mat a matrix object

... formulae; left hand values should be two-element interger vectors and right-hand: a single-value numeric

Value

matrix

Examples

```
mat <- matrix(0, 4, 5) 
set_values(mat, c(1,1) \sim 5, c(3, 4) \sim 0.3)
```

ν

A shortcut to create a vertical vector

Description

This function provides convenient shortcut to create a vertical (column) vector.

Usage

```
v(...)
```

14 with_same_dims

Arguments

... arbitrary number of values

Value

matrix with dims n_elements x 1

Examples

```
# Enumerating all the values with commas v(1,\ 2,\ 3) # Passing whole sequence as an argument v(1:5)
```

with_same_dims

Create new matrix copying dimensions from the existing one

Description

Create new matrix copying dimensions from the existing one

Usage

```
with_same_dims(mat, data)
```

Arguments

mat a matrix with desired dimensions data sigle numeric value or numeric vector

Value

a matrix

```
x <- matrix(7, 3, 6)
x
with_same_dims(x, 0)
with_same_dims(x, c(1, 2))</pre>
```

Index

```
%+% (operators), 8
%-% (operators), 8
%d% (operators), 8
\mbox{\em m\%} (operators), \mbox{\em 8}
antidiag, 2
antidiag<- (antidiag), 2</pre>
at, 3
at<- (at), 3
binding, \textcolor{red}{4}
col_bind (binding), 4
crep (repetitions), 10
is_idx_possible, 4
m, 5
matrix_idx, 6
neighbour_idx, 7
neighbour\_idx\_matrix, 7
operators, 8
plot.matrix(plot_matrix), 9
plot_matrix, 9
rboolm, 10
repetitions, 10
row_bind (binding), 4
rrep (repetitions), 10
runif_same_dims, 12
runifm, 11
seq_matrix, 12
set_values, 13
sv (set_values), 13
v, 13
with_same_dims, 14
```