第十六周作业?

洪艺中

2024年12月29日

本文档仅提供 10.5 节部分习题的答案, 第十六周第二部分作业没做.

1 第一部分

习题 10.5 题目 13

设 A 是一个正定矩阵, $B = \begin{pmatrix} A & \alpha \\ \alpha^\top & a \end{pmatrix}$, 其中 $a \in \mathbb{R}$. 证明:

- 1. **B** 正定当且仅当 $a \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{\alpha} > 0$;
- 2. **B** 半正定当且仅当 $a \boldsymbol{\alpha}^{\top} A \boldsymbol{\alpha} \geq 0$.

解答.

1. $\mathbb{R}\begin{pmatrix} \boldsymbol{x}^\top & y \end{pmatrix} \neq \boldsymbol{\theta}$,

$$\begin{pmatrix} \boldsymbol{x}^{\top} & y \end{pmatrix} \boldsymbol{B} \begin{pmatrix} \boldsymbol{x} \\ y \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}^{\top} & y \end{pmatrix} \begin{pmatrix} \boldsymbol{A}\boldsymbol{x} + y\boldsymbol{\alpha} \\ \boldsymbol{\alpha}^{\top}\boldsymbol{x} + ay \end{pmatrix} = \boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{x} + y\boldsymbol{x}^{\top}\boldsymbol{\alpha} + y\boldsymbol{\alpha}^{\top}\boldsymbol{x} + ay^{2}, \tag{*}$$

如果 \boldsymbol{B} 正定, 那么 (*) 式为正. 取 $\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{\alpha}, y = -1$ 得到

$$\boldsymbol{\alpha}^{\top} \boldsymbol{A}^{-1} \boldsymbol{\alpha} - 2 \boldsymbol{\alpha}^{\top} \boldsymbol{A}^{-1} \boldsymbol{\alpha} + a > 0.$$

即

$$a - \boldsymbol{\alpha}^{\top} \boldsymbol{A}^{-1} \boldsymbol{\alpha} > 0$$
:

反过来, 如果上式成立. 因为我们知道 B 的前 n-1 个顺序主子式是 A 的主子式, 已经是正的, 所以只需要证明 $\det B > 0$ 即可, 利用矩阵的分块初等变换

$$\begin{bmatrix} \boldsymbol{E} & \boldsymbol{\theta} \\ -\boldsymbol{\alpha}^{\top}\boldsymbol{A} & 1 \end{bmatrix} \boldsymbol{B} = \begin{bmatrix} \boldsymbol{E} & \boldsymbol{\theta} \\ -\boldsymbol{\alpha}^{\top}\boldsymbol{A} & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{A} & \boldsymbol{\alpha} \\ \boldsymbol{\alpha}^{\top} & a \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{\alpha} \\ \boldsymbol{\theta}^{\top} & a - \boldsymbol{\alpha}^{\top}\boldsymbol{A}\boldsymbol{\alpha} \end{bmatrix},$$

所以

$$|\boldsymbol{B}| = |\boldsymbol{A}|(a - \boldsymbol{\alpha}^{\top} \boldsymbol{A} \boldsymbol{\alpha}),$$

因为 A 正定, 而条件又给出 $a - \alpha^{T} A \alpha > 0$, 因此 |B| > 0, 即 B 正定.

2. 半正定的情况只需要把上面对应的 > 改为 ≥ 即可.

题目 14

设 A 是一个实对称矩阵, B 是一个半正定矩阵. 证明: AB 的特征值全为实数.

解答. 假设 λ 是 AB 的一个特征值, ξ 是对应的一个特征向量, $AB\xi = \lambda \xi$. 根据定理 10.5.3, 半正定矩阵可以写成一个实矩阵与其转置的乘积, 即有矩阵 C, $B = C^{T}C$. 则

$$CAB\xi = CAC^{\top}C\xi = (CAC^{\top})(C\xi) = \lambda C\xi,$$

如果 $C\xi \neq \theta$, 说明 λ 是 CAC^{\top} 的特征值, 而这个矩阵是实对称矩阵, 所以它的特征值一定是实数; 如果 $C\xi = \theta$, 那么 $AB\xi = \theta$, 所以特征值是 0, 也是实数. Q.E.D.¹.

题目 15

设 $A_{n\times n}$ 是一个实对称矩阵, 其最小与最大的特征值分别为 a,b. 证明: 对任意的向量 $x\in\mathbb{R}^n$, 有

$$a\mathbf{x}^{\top}\mathbf{x} \leqslant \mathbf{x}^{\top}\mathbf{A}\mathbf{x} \leqslant b\mathbf{x}^{\top}\mathbf{x}.$$

解答. 因为 A 是实对称的, 所以存在正交矩阵 U 让 A 对角化 $U^{\top}AU = \Lambda := \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. 那 么设 x = Uy,

$$oldsymbol{x}^ op oldsymbol{A} oldsymbol{x} = oldsymbol{y}^ op oldsymbol{\Lambda} oldsymbol{y} = \sum_{i=1}^n \lambda_i |y_i|^2,$$

因为 $a \leq \lambda_i \leq b$, 所以

$$a \sum_{i=1}^{n} |y_i|^2 \leqslant \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} = \sum_{i=1}^{n} \lambda_i |y_i|^2 \leqslant b \sum_{i=1}^{n} |y_i|^2.$$

而正交矩阵不改变向量的长度, 所以 $y^{\mathsf{T}}y = x^{\mathsf{T}}x$, 用这一点替换上式的两边, 即得证.

题目 16

设 $f(x) := x^{\mathsf{T}} A x$ 是一个实二次型, 有 n 维向量 x_1 与 x_2 , 使得

$$\boldsymbol{x}_1^{\top} \boldsymbol{A} \boldsymbol{x}_1 > 0, \qquad \boldsymbol{x}_2^{\top} \boldsymbol{A} \boldsymbol{x}_2 < 0.$$

证明: 必存在 n 维向量 \mathbf{x}_0 , 使 $\mathbf{x}_0^{\mathsf{T}} \mathbf{A} \mathbf{x}_0 = 0$.

解答. 思路: 我们假设 $x_1 = e_1$, $x_2 = e_2$, 且空间为 2 维. 那么就是说二次型在 (1,0) 点为正, (0,1) 点为负. 因为二次型是多元多项式, 是连续函数, 那么如果我们在 (1,0) 点和 (0,1) 点之间连一条线段, 根据连续函数的介值定理, 线段上一定有一个点取到 0.

设
$$x(t) = (1-t)x_1 + tx_2$$
, 那么

$$g(t) := f(\boldsymbol{x}(t))$$

是关于 t 的连续函数, g(0) > 0, g(1) < 0, 所以由连续性, 存在 $t_0 \in (0,1)$, 使 $f(t_0) = 0$. 则取 $\boldsymbol{x}_0 = \boldsymbol{x}(t_0)$ 即可.

¹Q.E.D. 的意思是 "quite easily done quod erat demonstrandum", 意思是「证毕」

题目 17

设分块矩阵 $m{A} = egin{pmatrix} m{A}_{11} & m{A}_{12} \ m{A}_{21} & m{A}_{22} \end{pmatrix}$ 是一个正定矩阵. 证明:

- 1. 矩阵 A_{11} , A_{22} , $A_{22} A_{21}A_{11}^{-1}A_{12}$ 也正定;
- 2. $|A| \leqslant |A_{11}||A_{22}|$.

解答.

1. A_{11} 和 A_{22} 的正定性证明可以用题目 19(在后面) 的方法, 即说明他们所有的主子式都是正的. 第三个矩阵会让我们想到 72 页习题 4(1), 即有

$$egin{pmatrix} egin{pmatrix} egi$$

因为 $A_{12} = A_{21}^{\mathsf{T}}$, 所以上面是合同变换. 故右边的矩阵和正定矩阵合同, 那么它也是正定的. 所以用和判断前两个矩阵正定同样的理由, 得到 $A_{22} - A_{21}A_{11}^{-1}A_{12}$ 也正定.

- 2. 这一题我们分成三步做
 - a) 证明: 如果 \boldsymbol{B} , \boldsymbol{C} 是两个实对称矩阵, \boldsymbol{B} 正定, 则存在可逆的 \boldsymbol{P} 使 $\boldsymbol{P}^{\top}\boldsymbol{B}\boldsymbol{P} = \boldsymbol{E}$, 且 $\boldsymbol{P}^{\top}\boldsymbol{C}\boldsymbol{P}$ 是 对角阵²;
 - b) 利用 a) 证明, 如果 **B** 正定, **C** 半正定, 且 **B C** 是半正定的, 那么 $|B| \ge |C|$;
 - c) 利用 b) 证明 (2).

我们先证明前两项.

引理 1

如果 B, C 是两个实对称矩阵, B 正定, 则存在可逆的 P 使 $P^{T}BP = E$, 且 $P^{T}CP$ 是对角阵.

证明. 首先由于 B 正定, 那么存在可逆矩阵 M 使之合同于单位矩阵 $M^{\top}BM$, 此时 $M^{\top}CM$ 由合同关系, 依然是半正定的. 因为后者是实对称矩阵, 可以相似对角化, 我们取正交矩阵 U 来让 $M^{\top}CM$ 对角化为对角阵 $U^{\top}M^{\top}CMU = \Lambda$, 那么取 P = MU 即可,

$$oldsymbol{U}^{ op} oldsymbol{M}^{ op} oldsymbol{B} oldsymbol{U} = oldsymbol{E}, \qquad oldsymbol{U}^{ op} oldsymbol{M}^{ op} oldsymbol{C} oldsymbol{M} oldsymbol{U} = oldsymbol{\Lambda}.$$

2注意这个题目与 229 页题目 11 「同时可对角化」的区别, 这里是合同变换而非相似, 所以不需要两个矩阵可交换

引理 2

如果 B 正定, C 半正定, 且 B-C 是半正定的, 那么 $|B| \ge |C|$.

证明. 利用引理 1, 存在 P,

$$P^{\top}BP = E$$
, $P^{\top}CP = \Lambda$.

那么 $P^{\mathsf{T}}B - CP = E - \Lambda$ 是半正定的. 由于经过 P 变化之后, 三个矩阵都是对角阵, 那么正定就是说它们的对角元都是正的, 半正定就是说它们的对角元是非负的. 所以 Λ 的对角元和 $E - \Lambda$ 的对角元都是非负的, 即 Λ 的对角元在 [0,1] 区间上.

所以
$$1 = |\mathbf{P}^{\top} \mathbf{B} \mathbf{P}| \geqslant |\mathbf{P}^{\top} \mathbf{C} \mathbf{P}|$$
, 即 $|\mathbf{B}| \geqslant |\mathbf{C}|$.

有了这两个引理,我们就可以证明(2)了. 首先 A_{22} 和 $A_{22} - A_{21}A_{11}^{-1}A_{12}$ 都正定,而 A_{11} 正定,所以 $\mathbf{x}^{\mathsf{T}}A_{21}A_{11}^{-1}A_{12}\mathbf{x} = (A_{12}\mathbf{x})^{\mathsf{T}}A_{11}^{-1}(A_{12}\mathbf{x}) \geq 0$,即 $A_{21}A_{11}^{-1}A_{12}$ 是半正定的. 那么根据引理 2, $|A_{22}| \geq |A_{22} - A_{21}A_{11}^{-1}A_{12}|$,因此

$$|A| = |A_{11}||A_{22} - A_{21}A_{11}^{-1}A_{12}| \leqslant |A_{11}||A_{22}|.$$

题目 19

设 $\mathbf{A} = (a_{ij})$ 是一个实对称矩阵. 证明:

- 1. 矩阵 A 正定当且仅当 A 的任一个主子式都大于零;
- 2. 假设 **A** 正定, 对任意 $i \neq j$, 有 $|a_{ij}| \leq \sqrt{a_{ii}a_{jj}}$;
- 3. 假设 A 正定, A 中所有元素中绝对值最大的元素一定在对角线上.

解答.

1. 假设主子阵 \mathbf{A}' 由 i_1, i_2, \dots, i_k 行和列决定, 那么取 $\mathbf{x} = x_1 \mathbf{e}_{i_1} + x_2 \mathbf{e}_{i_2} + \dots + x_k \mathbf{e}_{i_k}$, 如果 $\mathbf{x}' := (x_1, x_2, \dots, x_k) \neq \mathbf{\theta}$,

$${\boldsymbol{x}'}^{\top} \boldsymbol{A}' \boldsymbol{x}' = \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} > 0.$$

这说明主子阵 A' 正定. 故主子式大于零.

- 2. 考虑 i, j 行和列决定的二阶主子式, 由上面的结论, 它是正的, 所以有 $a_{ii}a_{jj} a_{ij}^2 > 0$, 因此 $|a_{ij}| \le \sqrt{a_{ii}a_{jj}}$.
- 3. 由第二个结论, a_{ii} 和 a_{jj} 中至少有一个大于等于 $|a_{ij}|$, 所以对任何一个非对角元, 都能找到一个对角元比它的绝对值大. 所以所有元素中绝对值最大的元素一定在对角线上.

 $^{^3}$ 如果把这个引理换到实数上,这个引理就是说: 如果 $b>0,\,c\geqslant0$ 且 $b-c\geqslant0$,那么 $|b|\geqslant|c|$. 可见正定矩阵某种程度上就像是「正数」一样

题目 21

设分块实矩阵 $\boldsymbol{A} = \begin{pmatrix} \boldsymbol{B} & \boldsymbol{C} \\ \boldsymbol{C}^\top & \boldsymbol{O} \end{pmatrix}$, 其中 $\boldsymbol{B}_{m \times m}$ 正定, $\boldsymbol{C}_{m \times n}$ 列满秩. 证明二次型 $f(\boldsymbol{x}) = \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}$ 的正惯性指数和负惯性指数分别为 m 和 n.

解答. 思路: 将这个矩阵合同为规范形.

因为 B 正定, 所以可以取 M 可逆, 使 $M^{\mathsf{T}}BM = E_m$. 那么

$$\begin{pmatrix} M & \\ & E \end{pmatrix}^\top \begin{pmatrix} B & C \\ C^\top & O \end{pmatrix} \begin{pmatrix} M & \\ & E \end{pmatrix} = \begin{pmatrix} E_m & M^\top C \\ C^\top M & O \end{pmatrix},$$

然后,用合同变换把次对角的两个矩阵消去

$$\begin{pmatrix} \boldsymbol{E}_m & -\boldsymbol{M}^\top \boldsymbol{C} \\ & \boldsymbol{E}_n \end{pmatrix}^\top \begin{pmatrix} \boldsymbol{E}_m & \boldsymbol{M}^\top \boldsymbol{C} \\ \boldsymbol{C}^\top \boldsymbol{M} & \boldsymbol{O} \end{pmatrix} \begin{pmatrix} \boldsymbol{E}_m & -\boldsymbol{M}^\top \boldsymbol{C} \\ & \boldsymbol{E}_n \end{pmatrix} = \begin{pmatrix} \boldsymbol{E}_m & \\ & -\boldsymbol{C}^\top \boldsymbol{M} \boldsymbol{M}^\top \boldsymbol{C} \end{pmatrix}$$

M 可逆, 所以 MM^{\top} 正定. 而 C 列满秩, 所以 $Cy = 0 \Leftrightarrow y = 0$, 因此

$$\boldsymbol{y}^{\top} \boldsymbol{C}^{\top} \boldsymbol{M} \boldsymbol{M}^{\top} \boldsymbol{C} \boldsymbol{y} = 0 \Leftrightarrow \boldsymbol{C} \boldsymbol{y} = 0 \Leftrightarrow \boldsymbol{y} = 0,$$

即 $C^{\top}MM^{\top}C$ 正定, 进而 $-C^{\top}MM^{\top}C$ 负定. 因此有可逆矩阵 N 使之变为规范形 $N^{\top}C^{\top}MM^{\top}CN=E_n$. 因此

$$egin{pmatrix} egin{pmatrix} oldsymbol{E} & oldsymbol{O} & oldsymbol{E} & oldsymbol{O} & oldsymbol{C} & oldsymbol{O} & oldsymbol{N} \end{pmatrix} = egin{pmatrix} oldsymbol{E}_m & & & \ & -oldsymbol{E}_n \end{pmatrix},$$

即 A 的正惯性指数是 m, 负惯性指数是 n.