Wersja: A S-10 s.104 S-10 s.105 S-10 s.139 S-10 s.139 S-10 s.130 S-10 s.140 I0-12 s.134 I0-12 s.139 I0-12 s.140 I0-12 s.104 I0-12 s.139 I0-12 s.140 I0-12 s.104 I0-12 s.139 I0-12 s.140 I0-12 s.104 I0-12 s.139 I0-12 s.140 I0-12 s.140 I0-12 s.139 I0-12 s.140 I0-12 s.1			Numer indeksu:				ſ	Grupa-:		
Logika dla informatyków Sprawdzian nr 1, 20 listopada 2015 czas pisania: $30+60$ minut Zadanie 1 (2 punkty). Jeśli dla dowolnych formul φ i ψ logiki pierwszego rzędu formula $(\exists x \ \varphi) \Rightarrow (\exists x \ \psi) \Rightarrow \forall x \ (\varphi \Rightarrow \psi)$ jest tautologią to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład. Zadanie 2 (2 punkty). W prostokąt poniżej wpisz dwie formuly, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							}	8–10 s.104	8–10 s.105	8–10 s.139
Logika dla informatyków Sprawdzian nr 1, 20 listopada 2015 czas pisania: $30+60$ minut Zadanie 1 (2 punkty). Jeśli dla dowolnych formuł φ i ψ logiki pierwszego rzędu formuła $(\exists x \ \varphi) \Rightarrow (\exists x \ \psi) \Rightarrow \forall x \ (\varphi \Rightarrow \psi)$ jest tautologią to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład. Zadanie 2 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wersja:	$ \mathbf{A} $					}		10 10 100	10 10 140
Sprawdzian nr 1, 20 listopada 2015 czas pisania: $30+60$ minut \mathbb{Z} adanie 1 (2 punkty). Jeśli dla dowolnych formuł φ i ψ logiki pierwszego rzędu formuła $(\exists x \varphi) \Rightarrow (\exists x \psi) \Rightarrow \forall x (\varphi \Rightarrow \psi)$ jest tautologią to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład. Zadanie 2 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$							l	10–12 s.104	10–12 s.139	10–12 s.140
czas pisania: $30+60$ minut φ i ψ logiki pierwszego rzędu formuła $(\exists x \varphi) \Rightarrow (\exists x \psi) \Rightarrow \forall x (\varphi \Rightarrow \psi)$ jest tautologią to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład. Zadanie 2 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Logi	ka d	lla i	nfor	mat	yków		
Zadanie 1 (2 punkty). Jeśli dla dowolnych formuł φ i ψ logiki pierwszego rzędu formuła $(\exists x \ \varphi) \Rightarrow (\exists x \ \psi) \Rightarrow \forall x \ (\varphi \Rightarrow \psi)$ jest tautologią to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład. Zadanie 2 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Sprawdzia	an n	r 1,	20 l	listo	pada 2015		
$(\exists x \ \varphi) \Rightarrow (\exists x \ \psi) \Rightarrow \forall x \ (\varphi \Rightarrow \psi)$ jest tautologią to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład. Zadanie 2 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			czas	pisa	nia:	30+	-60 1	minut		
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(\exists x \ \varphi) \Rightarrow$	$(\exists \hat{x} \ \psi) \Rightarrow \dot{x}$	$\forall x \ (\varphi \Rightarrow \psi) \text{ jest ta}$	auto	logia	ą to	w p	rostokąt poni	żej wpisz dow	ód tej tauto-
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową. $\begin{array}{c c c c c c c c c c c c c c c c c c c $										
T T T T T T T T T T T T T T F T T T T T										ysjunkcyjnej
T T F T T T T T T T T T T T T T T T T T				p	q	r	φ]		
T F T T T T F T T F F F F F F T F							!!			
T F F T T F F F F F F F F F F F F F F F				1			!!			
F T F F F F F F F F				1			11			
F F T F							H			
				1						
				1			11			

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Jeśli zbiór klauzul $\{\neg q \lor p, \ s \lor q, \ \neg r \lor \neg p, \ \neg s \lor q\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.
Zadanie 4 (2 punkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup , \cap , \setminus i nawiasy, oraz W zawiera mniej symboli niż W' . Np. $A \cup B$ jest uproszczeniem $(A \setminus B) \cup B$. Jeśli istnieje uproszczenie wyrażenia $A \cap ((C \cup B) \setminus B)$ to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 5 (2 punkty). Jeśli formuły $(p \Leftrightarrow q) \land r$ oraz $(p \land q) \Leftrightarrow (p \land r)$ są równoważne to w prostokąt poniżej wpisz słowo "RÓWNOWAŻNE". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Wersja:

Numer in	deksu:	

Grupa ⁺ :						
8–10 s.104	8–10 s.105	8–10 s.139				
8–10 s.140						
10–12 s.104	10–12 s.139	10–12 s.140				

Zadanie 6 (5 punktów). Które z poniższych zdań są prawdziwe dla wszystkich formuł φ i ψ rachunku zdań?

- 1. Jeśli $\varphi \Rightarrow \psi$ jest spełnialna oraz $\neg \psi$ jest tautologią, to $\neg \varphi$ jest spełnialna.
- 2. Jeśli $\varphi \Rightarrow \psi$ jest spełnialna oraz $\neg \psi$ jest tautologią, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 7 (5 punktów). Udowodnij, że jeżeli dla pewnych zbiorów A i B zachodzi $A \setminus B = B \setminus A$, to A = B.

Zadanie 8 (5 punktów). Rozważmy odwzorowanie \mathcal{T} przyporządkowujące formułom zbudowanym ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) formuły zbudowane ze zmiennych, spójników \Rightarrow, \bot (i nawiasów) w następujący sposób.

$$\mathcal{T}(p) = p, \quad \text{dla wszystkich zmiennych } p$$

$$\mathcal{T}(\varphi_1 \vee \varphi_2) = (\mathcal{T}(\varphi_1) \Rightarrow \bot) \Rightarrow \mathcal{T}(\varphi_2)$$

$$\mathcal{T}(\varphi_1 \wedge \varphi_2) = (\mathcal{T}(\varphi_1) \Rightarrow (\mathcal{T}(\varphi_2) \Rightarrow \bot)) \Rightarrow \bot$$

$$\mathcal{T}(\neg \varphi) = \mathcal{T}(\varphi) \Rightarrow \bot$$

Udowodnij, że dla wszystkich formuł φ zbudowanych ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) formuły φ i $\mathcal{T}(\varphi)$ są równoważne.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

	Numer indeksu:	$Grupa^1$:		
		8–10 s.104	8–10 s.105	8–10 s.139
Wersja: D		8–10 s.140	10 10 100	
		10–12 s.104	10–12 s.139	10–12 s.140
	Logika dla infor	matyków		
	Sprawdzian nr 1, 20 l czas pisania: 30+	-		
$(\exists x \ \varphi \Rightarrow \psi) \Rightarrow (\exists x \ \varphi$	kty). Jeśli dla dowolnych form ϕ) $\Rightarrow \exists x \ \psi$ jest tautologią to walnej dedukcji. W przeciwnym	w prostokąt poniz	żej wpisz dowe	ód tej tauto-
Zadanie 2 (2 punkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup, \cap, \setminus i nawiasy, oraz W zawiera mniej symboli niż W' . Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeśli istnieje uproszczenie wyrażenia $(A \cap (C \setminus B)) \cup B$ to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".				

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową.

p	q	r	φ
Т	Т	Т	Т
Т	Т	F	T
Т	F	Т	T
Т	F	F	F
F	Т	Т	T
F	Т	F	T
F	F	T	F
F	F	F	F

		Numer indeksu:
Wersja:	\Box	

Grupa ⁺ :						
8–10 s.104	8-10 s. 105	8–10 s.139				
8–10 s.140						
10–12 s.104	10–12 s.139	10–12 s.140				

Zadanie 6 (5 punktów). Rozważmy odwzorowanie \mathcal{T} przyporządkowujące formułom zbudowanym ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) formuły zbudowane ze zmiennych, spójników \Rightarrow, \neg (i nawiasów) w następujący sposób.

$$\mathcal{T}(p) = p, \quad \text{dla wszystkich zmiennych } p$$

$$\mathcal{T}(\varphi_1 \vee \varphi_2) = \neg(\mathcal{T}(\varphi_1)) \Rightarrow \mathcal{T}(\varphi_2)$$

$$\mathcal{T}(\varphi_1 \wedge \varphi_2) = \neg(\mathcal{T}(\varphi_1) \Rightarrow \neg(\mathcal{T}(\varphi_2)))$$

$$\mathcal{T}(\neg \varphi) = \neg(\mathcal{T}(\varphi))$$

Udowodnij, że dla wszystkich formuł φ zbudowanych ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) formuły φ i $\mathcal{T}(\varphi)$ są równoważne.

Zadanie 7 (5 punktów). Które z poniższych zdań są prawdziwe dla wszystkich formuł φ i ψ rachunku zdań?

- 1. Jeśli $\varphi \Rightarrow \psi$ jest tautologią oraz $\neg \psi$ jest spełnialna, to $\neg \varphi$ jest spełnialna.
- 2. Jeśli $\varphi \Rightarrow \psi$ jest tautologią oraz $\neg \psi$ jest spełnialna, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 8 (5 punktów). Udowodnij, że jeżeli dla pewnych zbiorów A, B i C zachodzi $A \cap B = A \cap C$ oraz $A \cup B = A \cup C$, to B = C.

¹Proszę zakreślić właściwą grupę ćwiczeniową.