Advanced Signal Processing

Lecture 1: Random Variables

Prof Danilo Mandic

room 813, ext: 46271

Department of Electrical and Electronic Engineering Imperial College London, UK

d.mandic@imperial.ac.uk, URL: www.commsp.ee.ic.ac.uk/~mandic

Introduction → **Recap**

Discrete Random Signals:

discrete vs. digital → quantisation

- $\{x[n]\}_{n=0:N-1}$ is a sequence of indexed random variables $x[0],x[1],\ldots,x[N-1]$, and the symbol $'[\cdot]'$ indicates the random nature of signal x (every sample is random too!)
- \circ The sequence is discrete with respect to sample index n (discrete time or some other physical variable, such as spatial index in arrays of sensors)
- $\circ x[n]$ real or complex with discrete or continuous values

NB: signals can be continuous or discrete in *time* as well as *amplitude*.

Digital signal = discrete in time and amplitude

Discrete—time signal = discrete in time, amplitude either discrete or continuous

Standardisation and normalisation

(e.g. to be invariant of amplifier gain or the quality of sensor contact)

Some real-world applications require data of specific mean and variance, yet measured variables are usually of different natures and magnitudes. We refer to **standardisation** as the process of converting the data to an arbitrary mean $\bar{\mu}$ and variance $\bar{\sigma^2}$, and to **normalisation** as the particular case $\bar{\mu}=0$, $\bar{\sigma^2}=1$. In practice, **raw data** $\{x[n]\}_{n=0:N-1}$ are normalised by subtracting the sample mean, μ , and dividing by the sample std. dev., σ

- Compute statistics: $\mu = \frac{1}{N} \sum_{n=0}^{N-1} x[n], \quad \sigma^2 = \frac{1}{N} \sum_{n=0}^{N-1} (x[n] \mu)^2$
- Centred data: $x^{C} = x \mu$
- Centred and scaled data (normalised): $x^{\text{CS}} = \frac{x^{\text{C}}}{\sigma}$ $(\mu = 0, \sigma = 1)$

Normalised data can be **standardised** to any mean $\bar{\mu}$ and variance $\bar{\sigma}^2$ by

$$x^{\rm ST} = \frac{x^{\rm CS} - \bar{\mu}}{\bar{\sigma}}$$
 Standardize to zero mean and range $[-1,1] \hookrightarrow x(n) = \frac{x(n) - \left(x_{max} + x_{min}\right)/2}{\left(x_{max} - x_{min}\right)/2}$

Standardisation: Example

The bars denote the amplitudes of the samples of signals x_1 - x_4

For the raw measurements: $\{x_1[n], x_2[n], x_3[n], x_4[n]\}_{n=1:N}$

- \circ Standardisation allows for a coherent and aligned handling of different variables, as the amplitude plays a role in regression algorithms.
- Furthermore, input variable selection can be performed by assigning smaller or larger weighting to samples (confidence intervals).

How do we describe a signal? (statistically)

Probability distribution functions – very convenient!

 Cumulative Density Function (CDF) – probability of a random variable falling within a given range.

$$F_X(x[n]) = \text{Probability}(X[n] \le x[n])$$
 (1)

X[n] – random quantity, x[n] – particular fixed value.

 Probability Density Function (pdf) – relative likelihood for a random variable to occur at a given point in the observation space.

$$p(x[n]) = \frac{\partial F_X(x[n])}{\partial x[n]} \qquad \Leftrightarrow \qquad F(x) = \int_{-\infty}^x p(X)dX \qquad (2)$$

NB: For random signals, for two time instants n_1 and n_2 , the pdf of $x[n_1]$ need not be identical to that of $x[n_2]$. (e.g. $\sin(n) + w(n)$)

Statistical distributions: Uniform distribution

Important: Recall that probability densities sum up to unity

$$\int_{-\infty}^{\infty} p(x[n]) dx[n] = 1$$

and that the connection between pdf and its *cumulative density* function CDF is

$$F(x[n]) = \int_{-\infty}^{x[n]} p(z)dz, \quad \text{also} \quad \lim_{x[n] \to \infty} F\big(x[n]\big) = 1$$

Figure: pdf and CDF for uniform distribution. In MATLAB - function rand

Gaussian probability and cumulative density functions

How does the variance σ^2 influence the shape of CDP and pdf?

Gaussian pdf

Gaussian CDF

$$p(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \qquad P(x;\mu,\sigma) = \frac{1}{2}\left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]$$

$$P(x; \mu, \sigma) = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x - \mu}{\sqrt{2}\sigma} \right) \right]$$

The **standard Gaussian** distribution $(\mu=0,\sigma=1)$ is given by $p(x)=\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)$

Statistical distributions: Gaussian \(\to \) randn in Matlab

Very convenient (mathematical tractability) - especially in terms of log-likelihood $\log p(x[n])$

$$p(x[n]) = \frac{1}{\sqrt{2\pi\sigma_x^2}} e^{-\frac{(x[n]-\mu_x)^2}{2\sigma_x^2}} \implies \log p(x[n]) = -\frac{(x[n]-\mu_x)^2}{2\sigma_x^2} - \frac{1}{2}\log(2\pi\sigma_x^2)$$

$$x[n] \sim \mathcal{N}\left(\mu_x, \sigma_x^2\right) \quad \mu_x \to \text{mean}, \ \sigma_x^2 \to \text{variance}$$

Bipolar distribution

Sample densities for varying N

Multi-dimensionality versus multi-variability

Univariate vs. Multivariate vs. Multidimensional

- o Single input single output (SISO) e.g. single-sensor system
- Multiple input multiple output (MIMO) (arrays of transmitters and receivers) can measure one source with many sensors
- Multidimensional processes (3D inertial bodymotion sensors, radar, vector fields, wind anemometers) – intrinsically multidimensional

Example: Multivariate function with single output (MISO)

$$stockvalue = f(stocks, oilprice, GNP, month, ...)$$

 \Rightarrow Complete probabilistic description of $\{x[n]\}$ is given by its pdf $p(x[n_1], \dots, x[n_k])$ for all k and n_1, \dots, n_k .

Much research is being directed towards the reconstruction of the process history from observations of one variable only (Takens)

Joint distributions of delayed samples (temporal)

Joint distribution (bivariate CDF)

$$F(x[n_1], x[n_2]) = \mathsf{Prob}(X[n_1] \le x[n_1], X[n_2] \le x[n_2])$$

and its pdf

$$p(x[n_1], x[n_2]) = \frac{\partial^2 F(x[n_1], x[n_2])}{\partial x[n_1]\partial x[n_2]}$$

A k-th order multivariate CDF distribution

$$F(x[n_1], x[n_2], \dots, x[n_k]) = \mathsf{Prob}(X[n_1] \le x[n_1], \dots, X[n_k] \le x[n_k])$$

and its pdf

$$p(x[n_1], x[n_2], \dots, x[n_k]) = \frac{\partial^k F(x[n_1], \dots, x[n_k])}{\partial x[n_1] \cdots \partial x[n_k]}$$

Mathematically simple, but complicated to evaluate in reality

Luckily, real world time series often have "finite memory" (Markov)

Example 1.1. Bivariate pdf

Notice the change in indices (assuming discrete time signals)

$$CDF: \qquad F\left(x[n],x[m]\right) = \operatorname{Prob}\left\{X[n] \leq x[n],X[m] \leq x[m]\right\}$$

$$PDF:$$
 $p(x[n], x[m]) = \frac{\partial^2 F(x[n], x[m])}{\partial x[n]\partial x[m]}$

Homework: Plot the CDF for this case. (What would happen in C?)

Properties of the statistical expectation operator

P1: Linearity

$$E\{ax[n] + by[m]\} = aE\{x[n]\} + bE\{y[m]\}$$

P2: $E\{x[m]y[n]\} \neq E\{x[m]\}E\{y[n]\}$ unless $\{x[m]\}$ and $\{y[n]\}$ are independent random processes

P3: If y[n] = g(x[n]) and the pdf of x[n] is p(x[n]) then

$$E\{y[n]\} = \int_{-\infty}^{\infty} g(x[n])p(x[n])dx[n]$$

that is, we DO NOT need to know the pdf of $\{y[n]\}$ to find its expected values (when $g(\cdot)$ is a deterministic function).

NB: Think of a saturation-type sensor (microphone)

Example 1.2. Mean for linear systems (use P1 & P2)

Consider a general linear system given by z[n] = ax[n] + by[n]. Find the mean $(E\{x[n]\} = \mu_x, E\{y[n]\} = \mu_y$, and $x \perp y$).

Solution:

$$E\{z[n]\} = E\{ax[n] + by[n]\} = aE\{x[n]\} + bE\{y[n]\}$$

that is

$$\mu_z = a\mu_x + b\mu_y$$

This is a consequence of the linearity of the $E\{\cdot\}$ operator.

Example 1.3. Mean for nonlinear systems (use P3)

For a nonlinear system, say the sensor nonlinearity is given by

$$z[n] = x^2[n]$$

using Property P3 of the statistical expectation operator, we have

$$\mu_z = E\{x^2[n]\} = \int_{-\infty}^{\infty} x^2[n]p(x[n])dx[n]$$

This is extremely useful, since most of the real-world signals are observed through sensors, e.g.

microphones, geophones, various probes ...

which are almost invariably nonlinear (typically a saturation type nonlinearity)

Dealing with ensembles of random processes

Ensemble → collection of all possible realisations of a random signal

The Ensemble Mean

$$\mu_x(n) = \frac{1}{N} \sum_{i=1}^{N} x_i[n]$$

where $x_i[n] \hookrightarrow \text{outcome of } i$ —th experiment at sample n.

For $N \to \infty$ we have

$$\mu_x(n) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} x_i[n]$$

Average both **along** one and **across** all realisations?

Average Statistically
$$E\{x[n]\} = \mu_x = \int_{-\infty}^{\infty} x[n]p(x[n])dx[n]$$

Ensemble Average = Ensemble Mean

Our old noisy sine example stochastic process is a collection of random variables

The pdf at time instant n is different from that at m, in particular:

$$\mu(n) \neq \mu(m) \qquad m \neq n$$

Left & Right: Ensemble average $\sin(2x) + 2 * rand$

Left: 6 realisations, **Right:** 100 realisations (and the overlay plot)

Second order statistics: 1) Correlation

Correlation (also known as Autocorrelation Function (ACF))

$$r(m,n) = E\{x[m]x[n]\},$$
 that is

$$r(m,n) = \int_{-\infty}^{\infty} x[m]x[n]p(x[m],x[n])dx[m]dx[n]$$

 in practice, for ergodic signals we calculate correlations from the relative frequency perspective

$$r(m,n) = \lim_{N \to \infty} \left\{ \frac{1}{N} \sum_{i=1}^{N} x_i[m] x_i[n] \right\}, \text{(i denotes the ensemble index)}$$

- $\circ r(m,n)$ measures the **degree of similarity** between x[n] and x[m].
- $\circ r(n,n) = E\{x^2[n]\} \Rightarrow \text{ is the average "power" of a signal}$
- $\circ \ r(m,n) = r(n,m) \Rightarrow$ the autocorrelation matrix of all $\{r(m,n)\}$

$$\mathbf{R} = \{r(m,n)\} = E[\mathbf{x}\mathbf{x}^H]$$
 is symmetric

Example 1.4. Autocorrelation of sinewaves

(the need for a covariance function)

Useful information gets obscured in noise or under a DC offset

 \rightsquigarrow

Second order statistics: 2) Covariance

• Covariance is defined as

$$c(m,n) = E\{(x[m] - \mu(m))(x[n] - \mu(n))\}$$

$$= E\{x[m]x[n]\} - \mu(m)\mu(n)$$

$$c(n,n) = \sigma_n^2 = E\{(x[n] - \mu(n))^2\} \text{ for m = n}$$

• Properties:

 \circ $c(m,n)=c(n,m)\Rightarrow$ the covariance matrix for $\mathbf{x}=\begin{bmatrix}x[0],\dots,x[N-1]\end{bmatrix}^T$ is **symmetric** and given by

$$\mathbf{C} = \{c(m, n)\} = E[\mathbf{x}\mathbf{x}^H], \text{ where } \mathbf{x} = \{x - \mu\}$$

 \circ For zero mean signals, c(m,n)=r(m,n)

(see also the Standardisation slide and Example 1.4)

Higher order moments

For a zero-mean stochastic process $\{x[n]\}$:

Third and fourth order moments

Skewness : $R_3(l, m, n) = E\{x[l]x[m]x[n]\}$

Kurtosis : $R_4(l, m, n, p) = E\{x[l]x[m]x[n]x[p]\}$

• In general, *n*—th order moment

$$R_N(l_1, l_2, \dots, l_n) = E\{x[l_1]x[l_2] \cdots x[l_n]\}$$

Higher order moments can be used to form noise-insensitive statistics (cumulants).

- Important in non-linear signal processing
- Applications: blind source separation
- In many applications the signals are assumed to be, or are reduced to,
 zero-mean stochastic process.

Example 1.5. Use of statistics in system identification (statistical rather than transfer function based analysis)

Task: Select $\{h(n)\}$ such that y[n] is as similar to d[n] as possible.

Measure of "goodness" is the distribution of the error $\{e[n]\}$.

Ideally, the error should be zero mean, white, and uncorrelated with the output signal

Solution: Minimise error power $E\{e^2[n]\}$ by selecting suitable $\{h(k)\}$

- Cost function: $J = E\left\{\left(d[n] \sum_{k} h(k)x[n-k]\right)^2\right\}$
- Setting $\nabla_h J = 0$ for h = h(i), gives (you will see more detail later)

$$E\{d[n]x[n-i]\} - \sum_{k} h(k)E\{x[n-k]x[n-i]\} = 0$$

• The solution $r_{dx}(-i) = \sum_{k} h(k) r_{xx}(i-k)$ in vector form is

$$\mathbf{h} = \mathbf{R}^{-1} \mathbf{r}_{dx}$$

⇒ The optimal coefficients are **inversely proportional** to the autocorrelation matrix and **directly proportional** to the estimate of the crosscorrelation.

Independence, uncorrelatedness and orthogonality

• Two RV are **independent** if the realisation of one does not affect the distribution of the other, consequently, the joint density is separable:

$$p(x,y) = p(x)p(y)$$

Example: Sunspot numbers on 31 December and Argentinian debt

• Two RVs are uncorrelated if their cross-covariance is zero, that is

$$c(x,y) = E[(x - \mu_x)(y - \mu_y)] = E[xy] - E[x]E[y] = 0$$

Example: $x \sim \mathcal{N}(0,1)$ and $y=x^2$ (impossible to relate through a linear relationship)

• Two RV are **orthogonal** if r(x,y) = E[xy] = 0

Example: Two uncorrelated RVs with at least one of them zero-mean

Independence, uncorrelatedness and orthogonality - Properties

- Independent RVs are always uncorrelated
- Uncorrelatedness can be seen as a 'weaker' form of independence since only the expectation (rather than the density) needs to be separable.
- Uncorrelatedness is a measure of linear independence. For instance, $x \sim \mathcal{N}(0,1)$ and $y=x^2$ are clearly dependent but uncorrelated, meaning that there is no linear relationship between them
- Since $c_{xy} = r_{xy} m_x m_y$ orthogonal RVs x and y need not be uncorrelated. Furthermore:
 - uncorrelated if they are independent and one them is zero mean
 - orthogonal if they are uncorrelated and one them is zero mean
- For uncorrelated random variables: $var\{x + y\} = var\{x\} + var\{y\}$

Stationarity: Strict and wide sense

• Strict Sense Stationarity (SSS): The process $\{x[n]\}$ is SSS if for all k the joint distribution $p(x[n_1], \ldots, x[n_k])$ is invariant under time shifts, i.e. (all moments considered)

$$p(x[n_1 + n_0], \dots, x[n_k + n_0]) = p(x[n_1], \dots, x[n_k]), \forall n_0$$

As SSS is too strict for practical applications, we consider the more 'relaxed' stationarity condition: .

- Wide-Sense Stationarity (WSS): The process $\{x[n]\}$ is WSS if $\forall m, n$:
 - \circ Mean: $E\{x[m]\} = E\{x[m+n]\},\$
 - \circ Covariance: c(m,n) = c(m-n,0) = c(m-n)

Note that only the first two moments are considered.

Example of WSS: $x[n] = \sin(2\pi f n + \phi)$, where ϕ is uniformly distributed on $[-\pi,\pi]$

Autocorrelation function r(m) of WSS processes

- i) Time/shift invariant: r(m,n) = r(m-n,0) = r(m-n) (follows from the covariance WSS requirement)
- ii) **Symmetric:** r(-m) = r(m) (follows from the definition)
- iii) $r(0) \ge |r(m)|$ (maximum at m = 0)

The signal power $= r(0) \hookrightarrow Parseval's relationship$

Follows from $E\{(x[n] - \lambda x[n+m])^2\} \ge 0$, i.e.

$$E\{x^{2}[n]\} - 2\lambda E\{x[n]x[n+m]\} + \lambda^{2}E\{x^{2}[n+m]\} \ge 0 \qquad \forall \lambda$$
$$r(0) - 2\lambda r(m) + \lambda^{2}r(0) \ge 0 \qquad \forall \lambda$$

which is quadratic in λ and required to be positive for all λ , i.e. the equation determinant: $\Delta = r^2(m) - r(0)r(0) \le 0 \Rightarrow r(0) \ge |r(m)|$.

Properties of ACF – continued

iv) The AC matrix for a stationary $\mathbf{x} = [x[0], \dots, x[L-1]]^T$ is

$$\mathbf{R} = E\{\mathbf{x}\mathbf{x}^{T}\} = E\left\{\begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{L-1} \end{bmatrix} [x_{0}, x_{1}, \dots, x_{L-1}]\right\} = \begin{bmatrix} r(0) & r(1) & \cdots & r(L-1) \\ r(1) & r(0) & \cdots & \vdots \\ \vdots & \vdots & \ddots & r(1) \\ r(L-1) & r(L-2) & \cdots & r(0) \end{bmatrix}$$

is symmetric and Toeplitz.

v) ${f R}$ is **positive semi-definite**, that is

$$\mathbf{a}^T \mathbf{R} \mathbf{a} \ge 0 \qquad \forall \mathbf{a} \ne 0$$

which follows from $y = \mathbf{a}^T \mathbf{x}$ and $y^T = \mathbf{x}^T \mathbf{a}$ so that

$$E\{y^2[n]\} = E\{y[n]y^T[n]\} = E\{\mathbf{a}^T\mathbf{x}\mathbf{x}^T\mathbf{a}\} = \mathbf{a}^TE\{\mathbf{x}\mathbf{x}^T\}\mathbf{a} = \mathbf{a}^T\mathbf{R}\mathbf{a} \ge 0$$

Properties of r(m) – contd II

vi) The autocorrelation function **reflects the basic shape of a signal**, for instance if the signal is periodic, the autocorrelation function will also be periodic

Sinewave and its ACF - Sampling rate=10Hz

Properties of the crosscorrelation

- i) $r_{xy}(m) = E\{x[n]y[n+m]\} = r_{yx}(-m)$ (accounts for the lead/trail signal see also the radar principle in Example 1.6)
- ii) If z[n] = x[n] + y[n] then

$$r_{zz}(m) = E\{(x[n] + y[n])(x[n+m] + y[n+m])\}$$
$$= r_{xx}(m) + r_{yy}(m) + r_{xy}(m) + r_{yx}(m)$$

and if x[n] and y[n] are independent or uncorrelated

$$r_{zz}(m) = r_{xx}(m) + r_{yy}(m)$$

(therefore for m = 0 we have var(z) = var(x) + var(y)

iii) $r_{xy}^2(m) \le r_{xx}(0)r_{yy}(0)$ (Same as ACF P(iii) when x = y)

Example 1.6. The use of (cross-)correlation

Detection of Tones in Noise:

Consider a noisy tone $x = A\cos(\omega n + \theta)$ $y[n] = A\cos(\omega n + \theta) + w[n]$

ACF:
$$R(m) = E[y[n]y[n+m]] =$$

= $R_x(m) + R_w(m) + R_{xw}(m) + R_{wx}(m)$

For R_w = $B^2 \exp(-\alpha |m|)$ & $x \perp w$, then $R_y(m) = \frac{1}{2} A^2 \cos(\omega m) + B^2 \exp(-\alpha |m|)$

- \circ for large m, the ACF \propto the signal
- ∃ extract tiny signal from large noise

Principle of Radar:

The received signal (see previous slide)

$$y[n] = ax[n - T_0] + w[n],$$
 so that $R_{xy}(\tau) = E\{x(n)y(n+\tau)\}$

$$= aR_x(\tau - T_0) + R_{xw}(\tau)$$

Since

$$oldsymbol{x} \perp oldsymbol{w}
ightsquigarrow R_{xy}(oldsymbol{ au}) \!=\! oldsymbol{a} R_x(oldsymbol{ au} - T_0)$$

Example 1.7. Range of a radar

Unbiased estimate of a true radar delay δ_0 that has distribution $\delta \sim \mathcal{N}(\delta_0, \sigma_0^2)$

Q: What is the distribution of the range of the radar, and how should the radar be designed (i.e. what should σ_0 be) so that the range estimate is within 100 of the actual range with a probability of 99%?

A: The range is given by $R = \delta \frac{C}{2}$, therefore, $R \sim \mathcal{N}(\delta_0 \frac{C}{2}, \sigma_0^2 \frac{C^2}{4})$, where $R_0 = \delta_0 \frac{C}{2}$ is the actual true range.

To fulfil the radar design requirement, we need, $\mathbb{P}\{|R-R_0|<100\}=0.99$, or equivalently (due to the symmetry of the RV R)

$$\mathbb{P}\left\{\frac{(R-R_0)}{\sigma_0^2 C/2} < \frac{100}{\sigma_0^2 C/2}\right\} = 0.995,$$

and as $\frac{(R-R_0)}{\sigma_0^2C/2}\sim\mathcal{N}(0,1)$, we have $P\left(\frac{100}{\sigma_0^2C/2};1,0\right)=0.995$. Evaluating this from the expression of the Gaussian CDF in an earlier slide we have

$$\frac{100}{\sigma_0^2 C/2} = 2.58 \Rightarrow \sigma_0 = \sqrt{\frac{200}{2.58 \times 3 \times 10^8}} = 0.51$$
 milliseconds

NB: By dividing $\mathcal{N}(0,\sigma)$ with σ we standardise pdf to unit variance $\mathcal{N}(0,1)$.

Power spectral density (PSD)

The **power spectrum** or **power spectral density** S(f) of a process $\{x[n]\}$ is the Fourier transform of its ACF (Wiener–Khintchine Theorem)

$$S(f) = \mathcal{F}\{r_{xx}(m)\} = \sum_{m=-\infty}^{\infty} r_{xx}(m)e^{-\jmath 2\pi nf} \qquad f \in (-1/2, 1/2], \omega \in (-\pi, \pi]$$

The sampling period T is assumed to be unity, thus f is the *normalised* frequency.

From the inversion formula (Fourier), we can write

$$r_{xx}(m) = \int_{-1/2}^{1/2} S(f)e^{j2\pi mf} df$$

- \Rightarrow ACF tells us about the power within the signal (Average)
- \Rightarrow PSD tell us about the distribution of power across frequencies (Density)

PSD properties

i) S(f) is a **positive real** function (it is a distribution) $\Rightarrow S(f) = S^*(f)$. Since r(-m) = r(m) we can write

$$S(f) = \sum_{m=-\infty}^{\infty} r_{xx}(-m)e^{j2\pi mf} = \sum_{m=-\infty}^{\infty} r_{xx}(m)e^{-j2\pi mf}$$

and hence

$$S(f) = \sum_{m=-\infty}^{\infty} r_{xx}(m)\cos(2\pi mf) = r_{xx}(0) + 2\sum_{m=1}^{\infty} r_{xx}(m)\cos(2\pi mf)$$

- ii) S(f) is a **symmetric** function, S(-f) = S(f). This follows from the last expression.
- iii) $r(0) = \int_{-1/2}^{1/2} S(f) df = E\{x^2[n]\} \ge 0.$
- \Rightarrow the area below the PSD (power spectral density) curve = Signal Power.

Linear systems

Described by their impulse response h(n) or the transfer function H(z)

In the frequency domain (remember that $z=e^{j\theta}$) the transfer function is

$$H(\theta) = \sum_{n=-\infty}^{\infty} h(n)e^{-jn\theta} \qquad \{x[n]\} \to \left| \begin{array}{c} \{h(n)\} \\ H(\theta) \end{array} \right| \to \{y[n]\}$$

that is
$$y[n] = \sum_{r=-\infty}^{\infty} h(r)x[n-r] = h * x$$

Example 1.8. Linear systems – statistical properties \hookrightarrow mean and variance

i) Mean

$$E\{y[n]\} = E\left\{\sum_{r=-\infty}^{\infty} h(r)x[n-r]\right\} = \sum_{r=-\infty}^{\infty} h(r)E\{x[n-r]\}$$

$$\Rightarrow \mu_y = \mu_x \sum_{r=-\infty}^{\infty} h(r) = \mu_x H(0)$$

[NB:
$$H(\theta) = \sum_{r=-\infty}^{\infty} h(r)e^{-jr\theta}$$
. For $\theta = 0$, then $H(0) = \sum_{r=-\infty}^{\infty} h(r)$]

ii) Cross-correlation

$$r_{yx}(m) = E\{y[n]x[n+m]\} = \sum_{r=-\infty}^{\infty} h(r)E\{x[n-r]x[n+m]\}$$

$$= \sum_{r=-\infty}^{\infty} h(r)r_{xx}(m+r) \quad \text{convolution of input ACF and } \{\mathbf{h}\}$$

$$\Rightarrow$$
 Cross-power spectrum $S_{yx}(f) = \mathcal{F}(r_{yx}) = S_{xx}(f)H(f)$

Example 1.9. Linear systems – statistical properties → crosscorrelation (this will be used in AR spectrum)

From $r_{xy}(m)=r_{yx}(-m)$ we have $r_{xy}(m)=\sum_{r=-\infty}^{\infty}h(r)r_{xx}(m-r)$. Now we write

$$r_{yy}(m) = E\{y[n]y[n+m]\} = \sum_{r=-\infty}^{\infty} h(r)E\{x[n-r]y[n+m]\}$$

$$= \sum_{r=-\infty}^{\infty} h(r)r_{xy}(m+r) = \sum_{r=-\infty}^{\infty} h(-r)r_{xy}(m-r)$$

by taking Fourier transforms we have

$$S_{xy}(f) = S_{xx}(f)H(f)$$

$$S_{yy}(f) = S_{xy}(f)H(-f) = \mathcal{F}(r_{xx})$$

or

$$\mathbf{S}_{\mathbf{y}\mathbf{y}}(\mathbf{f}) = \mathbf{H}(\mathbf{f})\mathbf{H}(-\mathbf{f})\mathbf{S}_{\mathbf{x}\mathbf{x}}(\mathbf{f}) = |\mathbf{H}(\mathbf{f})|^2\mathbf{S}_{\mathbf{x}\mathbf{x}}(\mathbf{f})$$

Output power spectrum = input power spectrum \times squared transfer function

Crosscorrelation and cross-PSD (recap)

CC of two jointly WSS discrete time signals (this is not symmetric)

$$r_{xy}(m) = E\{x[n]y[n+m]\} = r_{yx}(-m)$$

• For z[n] = x[n] + y[n] where x[n] and y[n] are zero mean and independent, we have $r_{xy}(m) = r_{yx}(m) = 0$, therefore

$$r_{zz}(m) = r_{xx}(m) + r_{yy}(m) + r_{xy}(m) + r_{yx}(m)$$

= $r_{xx}(m) + r_{yy}(m)$

Cross Power Spectral Density

$$P_{xy}(f) = \mathcal{F}\{r_{xy}(m)\}\$$

Generally a complex quantity and so will contain both the **magnitude** and **phase** information.

Special signals: a) White noise

If the joint pdf is separable

$$\dot{p}(x[0], x[1], \dots x[n]) = p(x[0])p(x[1]) \cdots p(x[n]) \quad \forall n$$

where the pdf's p(x[r]) are identical $\forall r$, then all the pairs x[n], x[m] are independent and $\{x[n]\}$ is said to be an independent identically distributed (iid) signal.

Since independent samples x[n] are also uncorrelated, then for a zero-mean signal we have

$$r(n-m) = E\{x[m]x[n]\} = \sigma^2 \delta(n-m)$$

where the variance (signal power) $\sigma^2 = E\{x^2[n]\}$ and

$$\delta(n-m) = \begin{cases} 1 & n=m\\ 0 & \text{elsewhere} \end{cases}$$

where $\delta(n)$ is the Kronecker delta operator

Example 1.10. ACF and power spectrum of white noise

The Fourier transform of WN is constant for all frequencies, hence "white".

• The autocorrelation matrix

$$\mathbf{R} = \sigma^2 \mathbf{I}$$
 $r(m) = \sigma_x^2 \delta(m)$

Since $E\{x[n]x[n-1]\}=0$, the variance $r(0)=\sigma_x^2$ is the power of WN.

• The shape of the pdf p(x[n]) determines whether the white noise is called Gaussian (WGN), uniform (UWN), Poisson, Laplacian, etc.

From the Wiener–KhinchineTheorem:

 $PSD(White Noise) = FT(ACF(WN)) = FT(\delta(t) \text{ function}) = constant$

b) First order Markov signals: autoregressive modelling

(finite memory in the description of a random signal)

If instead of the iid condition, we have the **first order conditional expectation**, then

$$p(x[n], x[n-1], x[n-2], \dots, x[0]) = p(x[n]|x[n-1])$$

where p(a|b) is defined as the pdf of "a" conditioned upon the (possibly correlated) observation "b"

⇒ the signal above is the **first order Markov signal**.

Example: Examine the statistical properties of the signal given by

$$y[n] = ay[n-1] + w[n]$$

where a=0.8 and $w[n] \sim \mathcal{N}(0,1)$ (see your coursework).

c) Minimum phase signals

Let $\{x[n]\}$ be observed for $n=0,1,\ldots,N-1$.

$$X(z) = x[0] + x[1]z^{-1} + \dots + x[N-1]z^{-(N-1)} =$$

$$A \prod_{i=1}^{N} (1 - z_i z^{-1}), \quad A(0) = x[0]$$

- $|z_i| \leq 1$, $\forall i$ then X(z) is said to be minimum phase
- $|z_i| \ge 1$, $\forall i$, then X(z) is said to be maximum phase
- $|z_i| \ge 0$ for some i while for others $|z_i| \le 1$ then X(z) is said to be of mixed phase.

In DSP, the algorithms often rely on the minimum phase property of a signal for stability (of the inverse system) and to be able to have real-time implementation (causality).

d) Gaussian random signals

A signal in which each of the L samples is Gaussian distributed

$$p(x[i]) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{\frac{(x[i] - \mu(i))^2}{2\sigma_i^2}} \qquad i = 0, \dots, L - 1$$

denoted by $\mathcal{N}(\mu(i), \sigma_i^2)$.

The joint pdf of L samples $x[n_0], x[n_1], \ldots, x[n_{L-1}]$ is then

$$p(\mathbf{x}) = p(x[n_0], x[n_1], \dots, x[n_{L-1}])$$

$$p(\mathbf{x}) = \frac{1}{[2\pi]^{L/2} det(\mathbf{C})^{1/2}} e^{\frac{(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{C}^{-1} (\mathbf{x} - \boldsymbol{\mu})}{2}} = \frac{1}{(2\pi\sigma^2)^{L/2}} e^{\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{L-1} (x[n] - \boldsymbol{\mu})^2\right]}$$

where $\mathbf{x} = [x[n_0], x[n_1], \dots, x[n_{L-1}]]$, $\boldsymbol{\mu} = [\mu[n_0], \mu[n_1], \dots, \mu[n_{L-1}]]$ and \mathbf{C} is a covariance matrix with determinant Δ .

e) Properties of a Gaussian distribution

1) If x and y are jointly Gaussian, then for any constants a and b the random variable

$$z = ax + by$$

is Gaussian with mean

$$m_z = am_x + bm_y$$

x and variance

$$\sigma_z^2 = a^2 \sigma_x^2 + b^2 \sigma_y^2 + 2ab\sigma_x \sigma_y \rho_{xy}$$

2) If two jointly Gaussian random variables are uncorrelated ($\rho_{xy} = 0$) then they are statistically independent,

$$f_{x,y} = f(x)f(y)$$

For $\mu = 0$, $\sigma = 1$, the inflection points are ± 1

Example 1.11. Rejecting outliers from cardiac data

 Failed detection of R peaks in ECG [left] causes outliers in R-R interval (RRI, time difference between consecutive R peaks) [right]

No clear outcome from PSD analysis of outlier-compromised RRI [left],
 but PSD of RRI with outliers removed reveals respiration rate [right]

f) Conditional mean estimator for Gaussian random variables

3) If x and y are jointly Gaussian random variables then the optimum estimator for y, given by

$$\hat{y} = g(x)$$

that minimizes the mean square error $\xi = E\{[y = g(x)]^2\}$ is a **linear** estimator in the form

$$\hat{y} = ax + b$$

4) If x is Gaussian with zero mean then

$$E\{x^n\} = \begin{cases} 1 \times 3 \times 5 \times \dots \times (n-1)\sigma_x^n, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

e) Ergodic signals

In practice, we often have only one observation of a signal (real-time)

Then, statistical averages are replaced by time averages.

This is necessary because

- o ensemble averages are generally unknown a priori
- only a single realisation of the random signal is often available

Thus, the ensemble average

$$m_x(n) = \frac{1}{L} \sum_{i=1}^{L} x_i(n)$$

is therefore replaced by a time average

$$m_x(N) = \frac{1}{N} \sum_{n=0}^{N-1} x(n)$$

e) Ergodic signals – Example

Consider the random process

$$x(n) = A\cos(n\omega_0)$$

where A is a random variable that is equally likely to assume the value of 1 or 2.

The mean of this process is

$$E\{x(n)\} = E\{A\}\cos(n\omega_0) = 1.5\cos(n\omega_0)$$

However, for a single realisation of this process, for large N, the sample mean is approximately zero

$$m_x \approx 0, \qquad N >> 1$$

 $\Rightarrow x(n)$ is not ergodic and therefore the statistical expectation cannot be computed using time averages on a single realisation.

e) Ergodicity in the mean

DEF: If the sample mean $\hat{m}_x(N)$ of a WSS process converges to m_x , in the mean–square sense, then the process is said to be **ergodic in the mean**, and we write

$$\lim_{N\to\infty} \hat{m}_x(N) = m_x$$

For the convergence of the sample mean in the mean-square sense

Asymptotically unbiased

$$\lim_{N\to\infty} E\{\hat{m}_x(N)\} = m_x$$

Consider the variance of the estimate $\to 0$ as $N \to \infty$

$$\lim_{N\to\infty} Var\{\hat{m}_x(N)\} = 0 \qquad \text{(consistent)}$$

e) Ergodicity - Summary

In practice, it is necessary to assume that the single realisation of a discrete time random signal satisfies ergodicity in the mean and autocorrelation.

Mean Ergodic Theorem: Let x[n] be a wide sense stationary (WSS) random process with autocovariance sequence $c_x(k)$, sufficient conditions for x[n] to be ergodic in the mean are that $c_x(k) < \infty$ and

$$\lim_{k \to \infty} c_x(k) = 0$$

Autocorrelation Ergodic Theorem:mean A necessary and sufficient condition for a WSS Gaussian process with covariance $c_x(k)$ to be autocorrelation ergodic is

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} c_x(k) = 0$$

Taylor series expansion

Most 'smooth' functions can be expanded into their Taylor Series Expansion (TSE)

$$f(x) = f(x_0) + \frac{f'(x_0)}{1}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!}$$

To show this consider the polynomial

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \cdots$$

- 1. To get $a_0 \quad \hookrightarrow \quad \text{choose } x = x_0 \quad \Rightarrow \quad a_0 = f(x_0)$
- 2. To get $a_1 \quad \hookrightarrow \quad$ take derivative of the polynomial above to have

$$\frac{d}{dx}f(x) = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + 4a_4(x - x_0)^4 + \cdots$$

choose
$$x=x_0 \Rightarrow a_1=\frac{df(x)}{dx}|_{x=x_0}$$
 and so on ... $a_k=\frac{1}{k!}\frac{d^kf(x)}{dx^k}|_{x=x_0}$

Power series - contd.

Consider

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \implies f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} \text{ and } \int_0^x f(t) dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

1. Exponential function, cosh, sinh, sin, cos, ...

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
 and $e^{-x} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n}}{n!}$ \Rightarrow $\frac{e^{x} - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$

2. other useful formulas

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad \Rightarrow \quad \sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2} \quad \text{and} \quad \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n nx^2$$

Integrate to obtain $atan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$.

For x=1 we have $\frac{\pi}{4}=1=1/3+1/5-1/7+\cdots$

Numerical derivatives - examples

Two-point approximation:

$$\circ$$
 Forward: $f'(0) = \frac{f(1) - f(0)}{h}$

• Backward:
$$f'(0) = \frac{f(-1) - f(0)}{h}$$

Three-point approximation:

$$\circ f'(0) = \frac{f(1)-2f(0)+f(-1)}{2h}$$

$$f'(0) = \frac{f(1) - 2f(0) + f(-1)}{2h}$$

$$f''(0) = \frac{f(1) - 2f(0) + f(-1)}{h^2}$$

Five-point approximation (also look up for stencil):

$$\circ f'(0) = \frac{f(-2) - 8f(-1) + 8f(1) - f(2)}{12h}$$

$$f''(0) = \frac{-f(-2) + 16f(-1) - 30f(0) + 16f(1) - f(2)}{12h^2}$$

Constrained optimisation using Lagrange multipliers: Basic principles

Consider a two-dimensional problem:

maximize
$$\underbrace{f(x,y)}_{function \ to \ max/min}$$
 subject to
$$\underbrace{g(x,y)=c}_{constraint}$$

 \hookrightarrow we look for point(s) where curves f & g touch (but do not cross).

In those points, the tangent lines for f and g are parallel \Rightarrow so too are the gradients $\nabla_{x,y} f \parallel \lambda \nabla_{x,y} g$, where λ is a scaling constant.

Although the two gradient vectors are parallel they can have different magnitudes. Therefore, we are looking for \max or \min points (x,y) of f(x,y) for which

$$\nabla_{x,y} f(x,y) = -\lambda \nabla_{x,y} g(x,y) \quad \text{where } \nabla_{x,y} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \text{ and } \nabla_{x,y} g = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right)$$

We can now combine these conditions into one equation as:

$$F(x,y,\lambda) = f(x,y) - \lambda \big(g(x,y) - c\big)$$
 and solve $\nabla_{x,y,z}F(x,y,\lambda) = \mathbf{0}$
Obviously, $\nabla_{\lambda}F(x,y,\lambda) = 0 \Leftrightarrow g(x,y) = c$

The method of Lagrange multipliers in a nutshell max/min of a function f(x,y,z) where x,y,z are coupled

Since x, y, z are not independent there exists a constraint g(x, y, z) = c

Solution: Form a new function

$$F(x, y, z, \lambda) = f(x, y, z) - \lambda (g(x, y, z) - c)$$
 and calculate $F'_x, F'_y, F'_z, F'_\lambda$

Set $F'_x, F'_y, F'_z, F'_\lambda = 0$ and solve for the unknown x, y, z, λ .

Example 1: Economics Two factories, A and B make TVs, at a cost $f(x,y) = 6x^2 + 12y^2$ $(x,y=\#TV\in A,B)$. Minimise the cost of producing 90 TVs, by finding optimal numbers #x and #y at factories A and B.

Solution: The constraint g: (x+y=90), so $F(\boldsymbol{x},\boldsymbol{y},\boldsymbol{\lambda}) = 6\boldsymbol{x}^2 + 12\boldsymbol{y}^2 - \boldsymbol{\lambda}(\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{90})$ Then: $F_x' = 12x - \lambda, F_y' = 24y - \lambda, F_\lambda' = -x - y - 90$, and for min / max $\nabla F = \boldsymbol{0}$

Set to zero $\Rightarrow x = 60, y = 30, \lambda = 720$

inscribed in the ellipse $x^2 + 4y^2 = 4$.

Solution: Constraint $(x^2 + 4y^2 = 4)$

Example 2: Geometry

of

maximal

The perimeter P(x,y) = 4x + 4y so $F(x,y,\lambda) = 4x + 4y - \lambda(x^2 + 4y^2 - 4)$ $\Rightarrow P'_x = \lambda g'_x, P'_y = \lambda g'_y \hookrightarrow x = 4y$ Solve to give: $x = 4/\sqrt{5}, P = 4\sqrt{5}$.

Find

the

perimeter,

Notes:

0

Notes:

0

