ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: «Вычислительная математика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3 «Численное интегрирование»

Вариант 8

Выполнил: Студент гр. Р32151 Соловьев Артемий Александрович

Проверил: *Машина Екатерина Алексеевна*

Цель

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами

Задание

1. № варианта определяется как номер в списке группы согласно ИСУ.

2. Исходные данные:

- Пользователь выбирает функцию, интеграл которой требуется вычислить (3-5 функций), из тех, которые предлагает программа.
- Пределы интегрирования задаются пользователем.
- Точность вычисления задается пользователем.
- Начальное значение числа разбиения интервала интегрирования: n=4.
- Ввод исходных данных осуществляется с клавиатуры.

3. Программная реализация задачи:

- Реализовать в программе методы по выбору пользователя:
 Метод прямоугольников (3 модификации: левые, правые, средние), Метод трапеций, Метод Симпсона
- Методы должны быть оформлены в виде отдельной(ого) функции/класса.
- Вычисление значений функции оформить в виде отдельной(ого) функции/класса.
- Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге.
- Предусмотреть вывод результатов: значение интеграла, число разбиения интервала интегрирования для достижения требуемой точности.

4. Вычислительная реализация задачи:

• Вычислить интеграл
$$\int\limits_{2}^{4} (2x^{3}-2x^{2}+7x-14)dx$$
, точно.

• Вычислить интеграл по формуле Ньютона — Котеса при n=5.

- Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n = 10.
- Сравнить результаты с точным значением интеграла.
- Определить относительную погрешность вычислений для каждого метода.
- В отчете отразить последовательные вычисления.

5. Необязательное задание:

- Установить сходимость рассматриваемых несобственных интегралов 2 рода (2-3 функции). Если интеграл расходящийся, выводить сообщение: «Интеграл не существует».
- Если интеграл сходящийся, реализовать в программе вычисление несобственных интегралов 2 рода (заданными численными методами).
- Рассмотреть случаи, когда подынтегральная функция терпит бесконечный разрыв: 1) в точке а, 2) в точке b, 3) на отрезке интегрирования

Описание метода, расчетные формулы

Метод прямоугольников:

Идея этого метода в том, чтобы считать интеграл через вычисление площади под интегральной кривой. Её разбивают на прямоугольники ширины h высоты равной f(xi) где xi принадлежит отрезку (основанию) нашего прямоугольника.

Различают метод левых, правых и средних прямоугольников.

Площади всех прямоугольников суммируются и получается приближенное значение интеграла, чем больше будет отрезков (а соответственно и прямоугольников), тем точнее будет результат.

Рабочая формула метода: средних, левых и правых соответственно.

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} y_{i-1}$$

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} y_{i}$$

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} y_{i}$$

Метод трапеций:

Метод трапеции работает аналогичным образом -- мы приближаем значение интеграла через площадь под интегралом, но на этот раз трапециями с основаниями параллельными оси у. Получаются прямоугольные трапеции с боковой стороной соединяющей точки f(xi) и f(x(i+1)) - значения функции в начале и конце отрезка.

Рабочая формула метода:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \cdot \left(y_{0} + y_{n} + 2 \sum_{i=1}^{n-1} y_{i} \right)$$

Метод Симпсона:

Метод Симпсона приближает подынтегральную площадь параболами, проведенными через три соседние точки -- на которые мы разбиваем наш интервал от а до b. Такую параболу можно построить пользуясь интерполяционным многочленом Лагранжа второй степени, проходящий через точки (x(i-1), y(i-1)), (xi, yi), (x(i+1), y(i+1)).

Рабочая формула метода:

$$\int_{a}^{b} f(x) = \frac{h}{3} \left[(y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n) \right]$$

Блок-схема

Метод прямоугольников(средних):

Метод трапеций:

Метод Симпсона:

Вычислительная часть

$$\int_{2}^{4} (2x^3 - 2x^2 + 7x - 14) dx$$

1. По формуле Ньютона-Лейбница:

$$\int_{2}^{4} (2x^{3} - 2x^{2} + 7x - 14) dx = (2x^{4}/4 - 2x^{3}/3 + 7x^{2}/2 - 14x) =$$

$$= (x^{4}/2 - 2x^{3}/3 + 7x^{2}/2 - 14x) = (4^{4}/2 - 2 * 4^{3}/3 + 7* 4^{2}/2 - 14 * 4) -$$

$$-(2^4/2-2*2^3/3+7*2^2/2-14*2) = (256/3) - (-34/3) = 290/3 \approx 96,667$$

2. По формуле Ньютона – Котеса при n =5:

$$c_5^0 = c_5^5 = \frac{19(b-a)}{288} \quad c_5^1 = c_5^4 = \frac{75(b-a)}{288} \quad c_5^2 = c_5^3 = \frac{50(b-a)}{288}$$

$$c_{5}^{0} = c_{5}^{5} = 19 * (4 - 2)/288 = 38/288 = 19/144$$

$$c_{5}^{1} = c_{5}^{4} = 75 * (4 - 2)/288 = 150/288 = 25/48$$

$$c_{5}^{2} = c_{5}^{3} = 50 * (4 - 2)/288 = 100/288 = 25/72$$

$$\int_{2}^{4} (2x^{3} - 2x^{2} + 7x - 14) dx = c_{5}^{0} * f(2) + c_{5}^{1} * f(2, 4) + c_{5}^{2} * f(2, 8) + c_{5}^{3} * f(3, 2) + c_{5}^{4} * f(3, 6) + c_{5}^{5} * f(4) = 19/144 * 8 + 25/48 * 2366/125 + 25/72 * 4228/125 + 25/72 * 6682/125 + 25/48 * 9824/125 + 19/144 * 110 = 290/3 ≈ 96,667$$

Погрешность $\Delta = 0$

3. По формуле средних прямоугольников при n=10: h=(4-2)/10=0,2

$$\int_{2}^{4} (2x^{3} - 2x^{2} + 7x - 14) dx = 0, 2 * \sum_{1}^{10} f(x_{i-1/2}) = 0, 2 * (482.8) = 96.56$$

Погрешность $\Delta = 8/75 \approx 0,107$

i	0	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>
x_{i}	2	2,2	2,4	2,6	2,8	3	3,2	3,4	3,6	3,8	4
x _{i-1/2}		2,1	2,3	2,5	2,7	2,9	3,1	3,3	3,5	3,7	3,9
$f(x_{i-1/2})$		5201 /500	7927 /500	89 /4	14843 /500	19129 /500	24031 /500	29597 /500	287 /4	42913 /500	50759 /500

По формуле трапеций при n = 10:

$$h = (4-2)/10 = 0.2$$

$$\int_{2}^{4} (2x^{3} - 2x^{2} + 7x - 14) dx = 0,2 * ((8 + 110)/2 + \sum_{i=1}^{n-1} f(x_{i})) = 0,2 * (59 + 43 + 382,4) = 0,2 * 484,4 = 96,88$$

Погрешность $\Delta = 16/75 \approx 0.213$

i	0	1	2	3	4	5	6	7	8	9	10
x_{i}	2	2,2	2,4	2,6	2,8	3	3,2	3,4	3,6	3,8	4
$f(x_i)$	8	1627 /125		3229 /125		43	ı		9824 /125	11683 /125	110

5. По формуле Симпсона при n=10: h=(4-2)/10=0,2

$$\int_{2}^{4} (2x^{3} - 2x^{2} + 7x - 14) dx = 0, 2 / 3 * (8 + 4 * (240, 6) + 2 * (184, 8) + 110) =$$

$$= 0, 2 / 3 * 1450 = 290/3 \approx 96,667$$

Погрешность $\Delta = 0$

i	0	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>
x_{i}	2	2,2	2,4	2,6	2,8	3	3,2	3,4	3,6	3,8	4
$f(x_i)$	8	1627 /125		3229 /125		43	6682 /125	8161 /125	ı	11683 /125	110

6. Погрешность при вычислении методом Симпсона и по формуле Ньютона – Котеса получилась нулевая, а самая большая погрешность получилась при вычислении методом трапеций.