Classification

Wei Li

Syracuse University

Spring 2021

Classification

Sensitivity and Specificity

Binary classification

Unequal losses

LDA and QDA

Logistic regression

Sensitivity and Specificity

Sensitivity and Specificity

Imagine a scenario where people are tested for a disease:

- ► The test outcome can be positive (sick) or negative (healthy)
- ▶ The actual health status of the persons can be sick or healthy

There are four possible scenarios:

- ► True positive (TP): sick people correctly diagnosed as sick
- ▶ False positive (FP) : healthy people incorrectly identified as sick
- ▶ True negative (TN): healthy people correctly identified as healthy
- ▶ False negative (FN): sick people incorrectly identified as healthy.

	Test Outcome		
True outcome	Positive	Negative	Total
Positive	True Pos. (TP)	False Neg. (FN)	P
Negative	False Pos. (FP)	True Neg. (TN)	N
	P^*	N^*	

	Test Outcome		
True outcome	Positive	Negative	Total
Positive	True Pos. (TP)	False Neg. (FN)	P
Negative	False Pos. (FP)	True Neg. (TN)	N
	P^*	N^*	

Sensitivity: the proportions of positives that are correctly identified (true positive rate)

$$Sensitivity = TP/P = TP/(TP + FN)$$

Specificity: the proportions of negative that are correctly identified (true negative rate)

Specificity =
$$TN/N = TN/(FP + TN)$$

- ▶ Type I error: false alarm rate, Type I error = 1 − Specificity.
- ➤ Type II error: false negative rate, = 1 Sensitivity, Power = Sensitivity.
- ► False Discovery Rate (FDR): the proportion of predicted positives that are in fact false positives

$$FDR = FP/P^*$$

Example:

	Predicted	
True	email	spam
email	57.3%	4.0%
spam	5.3%	33.4%

spam =presence of disease, email=absence of disease.

$$\begin{array}{ll} {\rm specificity} &= 100 \times \frac{57.3}{57.3+4.0} = 93.4\% \\ {\rm sensitivity} &= 100 \times \frac{33.4}{33.4+5.3} = 86.3\% \end{array}$$

The **ROC** curve is a plot of the sensitivity versus specificity. Area under curve (AUC) is a commonly used quantitative summary. An ideal ROC curve will hug the top right corner, so the larger the AUC the better the classifier.

Wei Li (Syracuse University), MAT850

Binary classification

Binary classification

- ▶ input vector $X \in \mathcal{X} \subset \mathbb{R}^d$
- ightharpoonup output $Y \in \{0,1\}$
- ▶ the goal is to construct a function $h: \mathcal{X} \longrightarrow \{0,1\}$

A classification rule is characterized as

$$h(X) = I(b(X) > 0)$$

where b is the boundary function (or discriminant function) that gives the decision boundary $\{x:b(x)=0\}$.

▶ If b(X) is a linear in X, then the classifier has a linear boundary.

The classification error rate, of h is defined as

$$R(h) = E_{X,Y}(I(Y \neq h(X))) = P(Y \neq h(X))$$

and the empirical classification error or training error is

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} I(h(X_i) \neq Y_i)$$

The rule h that minimizes R(h) is

$$h^*(x) = \begin{cases} 1 & \text{if } m(x) > \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

where
$$m(x) = P(Y = 1 \mid X = x) = E(Y \mid X = x)$$
.

- ▶ This optimal rule is called the **Bayes rule** (under equal costs).
- ▶ The risk $R(h^*)$ is called the **Bayes risk**.
- ▶ The set $\{x: m(x) \frac{1}{2} = 0\}$ is called the **Bayes decision** boundary.

Alternatively, the Bayes rule is h^* , is given by

$$h^*(x) = \begin{cases} 1 & \text{if} \quad P(Y=1 \mid X=x) > P(Y=0 \mid X=x) \\ 0 & \text{if} \quad P(Y=1 \mid X=x) < P(Y=0 \mid X=x) \end{cases}$$

The classification boundary of the Bayes rule is

$$\{x: P(Y = 1 \mid X = x) = P(Y = 0 \mid X = x)\}\$$
$$= \{x: P(Y = 1 \mid X = x) - 0.5 = 0\}\$$

Examples of linear boundary

Linear logit models assume: the **logit function** is linear in x, i.e.,

$$\log \frac{\Pr(Y = 1 \mid X = x)}{\Pr(Y = 0 \mid X = x)} = \beta_0 + \beta_1^T x$$

Thus the classification boundary is given by $\{x: \beta_0 + \beta_1^T x = 0\}$

Examples: LDA, Logistic regression

Note that the posterior class probabilities P(Y = j | X = x) provide updated class probabilities after observing x. From Bayes' theorem

$$p(Y = 1 \mid X = x) = \frac{p(x \mid Y = 1)p(Y = 1)}{p(x \mid Y = 1)p(Y = 1) + p(x \mid Y = 0)p(Y = 0)}$$
$$= \frac{\pi_1 p_1(x)}{\pi_1 p_1(x) + (1 - \pi_1) p_0(x)}$$

where $\pi_1 = p(Y = 1), \pi_0 = p(Y = 0)$ are the marginal distribution of Y (prior class probabilities); and $p_j(x) = p(x \mid Y = j)$, denote the conditional density of X given that Y = j.

Thus the Bayes rule becomes

$$h^*(x) = \begin{cases} 1 & \text{if } \frac{p_1(x)}{p_0(x)} > \frac{\pi_0}{\pi_1} \\ 0 & \text{otherwise.} \end{cases}$$

Unequal losses

Unequal losses

For any decision function, there are two possible errors:

- ▶ misclassifying a sample in class 0 to 1 (false positive)
- ▶ misclassifying a sample in class 1 to 0 (false negative)

Each type of error is associated with a cost (the price to pay for the consequence):

- \blacktriangleright L(1,0) is the cost of misclassifying a sample in class 1 to 0
- \blacktriangleright L(0,1) is the cost of misclassifying a sample in class 0 to 1.

We assume L(j,j) = 0 for j = 0,1; but it may not be L(0,1) = L(1,0).

The loss becomes

$$L(Y, h(X)) = L(1,0)I(Y = 1, h(X) = 0) + L(0,1)I(Y = 0, h(X) = 1)$$

For fixed x, the Bayes rule is given as

$$h^*(x) = \begin{cases} 1 & \text{if } L(1,0)P(Y=1 \mid X=x) > L(0,1)P(Y=0 \mid X=x) \\ 0 & \text{if } L(1,0)P(Y=1 \mid X=x) < L(0,1)P(Y=0 \mid X=x) \end{cases}$$

Equivalently,

$$h^*(x) = \begin{cases} 1 & \text{if } & \frac{P(Y=1|X=x)}{P(Y=0|X=x)} > \frac{L(0,1)}{L(1,0)} \\ 0 & \text{if } & \frac{P(Y=1|X=x)}{P(Y=0|X=x)} < \frac{L(0,1)}{L(1,0)} \end{cases}$$

the Bayes rule

$$h^*(x) = 1 \left\{ x : P(Y = 1 \mid X = x) > \frac{L(0, 1)}{L(0, 1) + L(1, 0)} \right\}.$$

Using the Bayes' theorem,

$$h^*(x) = \begin{cases} 1 & \text{if } & \frac{p_1(x)}{p_0(x)} > \frac{\pi_0 L(0,1)}{\pi_1 L(1,0)} \\ 0 & \text{if } & \frac{p_1(x)}{p_0(x)} < \frac{\pi_0 L(0,1)}{\pi_1 L(1,0)} \end{cases}$$

Any classifier aims to minimize the total losses incurred by its predictions. In building a binary classifier, by changing the weights for L_{01} and L_{10} , we can effectively change the classification threshold.

- $ightharpoonup L_{01}$ = the loss of predicting a "non-disease" sample to "disease"
- $ightharpoonup L_{10}$ = the loss of predicting a "disease" sample to "non-disease"

Changing the weights for L_{01} and L_{10} alone for a particular classifier, the ROC curve can also be changed.

Multi-class classification

- ightharpoonup Class label $Y \in \{1, \dots, K\}, K \geq 3$.
- ▶ The classifier $h: \mathbb{R}^d \longrightarrow \{1, \dots, K\}$.

The loss function $L(Y, h(X)) = \sum_{k=1}^{L} \sum_{l=1}^{K} C(l, k) I(Y = l, h(X) = k)$ where C(l, k) = cost of classifying a sample in class l to class k.

The classification risk, or error rate, of h is defined as

$$R(h) = E_{X,Y}(L(Y, h(X)))$$

Using the 0-1 loss, C(k, k) = 0 for any $k = 1, \dots, K$, but equal to 1 otherwise, the rule h that minimizes R(h) is

$$h^*(x) = \arg\max_{k=1,\dots,K} P(Y = k \mid x)$$

i.e., assign x to the most probable class using $P(Y \mid x)$.

For the general loss function, the Bayes rule can be derived as

$$h^*(x) = k^*$$
 if $k^* = \arg\min_{k=1,\dots,K} \sum_{l=1}^K C(l,k) P(Y = l \mid x)$.

We generally need to estimate multiple **discriminant functions** $\delta_k(x), k = 1, \dots, K$

- ▶ Each $\delta_k(x)$ is associated with class k.
- \triangleright $\delta_k(x)$ represents the evidence strength of a sample (x, y) belonging to class k.

The decision rule constructed using δ_k 's is

$$\hat{h}(x) = k^*, \quad \text{ where } \quad k^* = \arg\max_{k=1,...,K} \delta_k(x)$$

The decision boundary of the classification rule \hat{h} between class k and class l is defined as

$${x:\delta_k(x)=\delta_l(x)}$$

LDA and QDA

Consider the binary classification

If $X \mid Y = 0 \sim N(\mu_0, \Sigma_0)$ and $X \mid Y = 1 \sim N(\mu_1, \Sigma_1)$, then the Bayes rule is

$$h^*(x) = \begin{cases} 1 & \text{if } r_1^2 < r_0^2 + 2\log\left(\frac{\pi_1}{1-\pi_1}\right) + \log\left(\frac{|\Sigma_0|}{|\Sigma_1|}\right) \\ 0 & \text{otherwise} \end{cases}$$

where $r_i = \sqrt{(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i)}$ for i = 0, 1 is the **Mahalanobis** distance between x and μ_i .

QDA

$$\log \frac{\Pr(Y=1 \mid X=x)}{\Pr(Y=0 \mid X=x)} = \log \frac{\pi_1 \phi\left(x; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1\right)}{\pi_0 \phi\left(x; \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0\right)}$$
$$= \delta_1(x) - \delta_0(x).$$

This rule can also be written as

$$h^*(x) = \operatorname{argmax}_{k \in \{0,1\}} \delta_k(x)$$

where

$$\delta_k(x) = -\frac{1}{2}\log|\Sigma_k| - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log \pi_k$$

is called the Gaussian discriminant function.

- ▶ The decision boundary: $\{x \in \mathcal{X} : \delta_1(x) = \delta_0(x)\}$
- ▶ quadratic discriminant analysis (QDA).

To estimate $\pi_0, \pi_1, \mu_0, \mu_1, \Sigma_0, \Sigma_1$:

$$\widehat{\pi}_{0} = \frac{1}{n} \sum_{i=1}^{n} (1 - Y_{i}), \quad \widehat{\pi}_{1} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

$$\widehat{\mu}_{0} = \frac{1}{n_{0}} \sum_{i:Y_{i}=0} X_{i}, \quad \widehat{\mu}_{1} = \frac{1}{n_{1}} \sum_{i:Y_{i}=1} X_{i}$$

$$\widehat{\Sigma}_{0} = \frac{1}{n_{0} - 1} \sum_{i:Y_{i}=0} (X_{i} - \widehat{\mu}_{0}) (X_{i} - \widehat{\mu}_{0})^{T}$$

$$\widehat{\Sigma}_{1} = \frac{1}{n_{1} - 1} \sum_{i:Y_{i}=1} (X_{i} - \widehat{\mu}_{1}) (X_{i} - \widehat{\mu}_{1})^{T}$$

LDA

LDA assumes both classes are from Gaussian and they have the same covariance matrix

$$\Sigma_k = \Sigma, \quad k = 0, 1$$

Note that

$$\log \Pr(Y = k \mid X = x) = -\frac{1}{2} (x - \boldsymbol{\mu}_k)^T \Sigma^{-1} (x - \boldsymbol{\mu}_k) + \log \pi_k + \text{ const.}$$

Alternatively,

$$h^*(x) = \operatorname{argmax}_k \delta_k(x)$$

discriminant function is simplified

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k.$$

Pooled estimate of the Σ :

$$\widehat{\Sigma} = \frac{(n_0 - 1)\widehat{\Sigma}_0 + (n_1 - 1)\widehat{\Sigma}_1}{n_0 + n_1 - 2}$$

The classification rule is

$$h^*(x) = \begin{cases} 1 & \text{if } \delta_1(x) > \delta_0(x) \\ 0 & \text{otherwise} \end{cases}$$

multi-class classification

QDA assume that $X \mid Y = k \sim N(\mu_k, \Sigma_k)$. The Bayes rule for the multiclass QDA can be written as

$$h^*(x) = \operatorname{argmax}_k \delta_k(x)$$

where

$$\delta_k(x) = -\frac{1}{2}\log|\Sigma_k| - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log \pi_k.$$

If all Gaussians assumed to have equal variance Σ ,

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k.$$

The corresponding estimates are given by

$$\widehat{\pi}_{k} = \frac{1}{n} \sum_{i=1}^{n} I(y_{i} = k), \quad \widehat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:Y_{i} = k} X_{i}$$

$$\widehat{\Sigma}_{k} = \frac{1}{n_{k} - 1} \sum_{i:Y_{i} = k} (X_{i} - \widehat{\mu}_{k}) (X_{i} - \widehat{\mu}_{k})^{T}$$

$$\widehat{\Sigma} = \frac{\sum_{k=0}^{K-1} (n_{k} - 1)\widehat{\Sigma}_{k}}{n - K}.$$

Logistic regression

Binary case

The logistic regression assumes that

$$p_1(x; \beta_0, \beta_1) := P(Y = 1 \mid X = x) = \frac{\exp(\beta_0 + x^T \beta_1)}{1 + \exp(\beta_0 + x^T \beta_1)}$$

The model can be written as

$$logit(x) := logit(Pr(Y = 1 \mid X = x)) = log \frac{Pr(Y = 1 \mid X = x)}{Pr(Y = 0 \mid X = x)} = \beta_0 + \beta_1^T x$$

- logit function: $logit(a) = log(a/(1-a)) : (0,1) \mapsto \mathbb{R}$
- ▶ The inverse of logit function is called "logistic function" (or sigmoid function), which is given by

$$\sigma(a) = \exp(a)/(1 + \exp(a)) : \mathbb{R} \mapsto (0, 1)$$

So the model can be written as $P(Y = 1 \mid X = x) = Ber(Y = 1 \mid \sigma(\beta_0 + x^T \beta_1))$

Interpretation of β_j

$$e^{\beta_j} = \frac{\text{odds}(\dots, X_j = x + 1, \dots)}{\text{odds}(\dots, X_j = x, \dots)} = \text{oddsratio}$$

If $X_j = 0$ or 1, then odds for group with $X_j = 1$ are e^{β_j} higher than for group with $X_j = 0$, with other values of X_{-j} fixed.

With rare incidents $P(Y=1) \approx 0$, odds $\approx Pr(Y=1|\cdots)$,

$$e^{\beta_j} \approx \frac{\Pr\left(\dots, X_j = x + 1, \dots\right)}{\Pr\left(\dots, X_j = x, \dots\right)} = \text{relativerisk}$$

MLE for logistic models

Notations: assuming x_i contains the constant term 1 (thus a p+1 vector).

$$\boldsymbol{\beta} := \{\beta_0, \boldsymbol{\beta}_1^T\}^T$$

$$\mathbf{y} := [y_1, \dots, y_n]^T$$

$$\mathbf{p} := \mathbf{p}(\boldsymbol{\beta}) = [p(x_1; \boldsymbol{\beta}), \dots, p(x_n; \boldsymbol{\beta})]^T$$

$$\mathbf{W} := \mathbf{W}(\boldsymbol{\beta}) = \operatorname{diag} \{p(x_i; \boldsymbol{\beta}) (1 - p(x_i; \boldsymbol{\beta}))\} : n \times n$$

The log (conditional) likelihood function is

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left\{ y_i \log p\left(x_i; \boldsymbol{\beta}\right) + (1 - y_i) \log \left[1 - p\left(x_i, \boldsymbol{\beta}\right)\right] \right\}$$
$$= \sum_{i=1}^{n} \left\{ y_i \boldsymbol{\beta}^T x_i - \log \left[1 + \exp \left(\boldsymbol{\beta}^T x_i\right)\right] \right\}.$$

The score and Hessian are given by

$$\frac{\partial \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \sum_{i=1}^{n} x_i \left[y_i - p\left(x_i; \boldsymbol{\beta}\right) \right] = \mathbf{X}^T (\mathbf{y} - \mathbf{p})$$
$$\frac{\partial^2 \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T} = -\sum_{i=1}^{n} x_i x_i^T p\left(x_i; \boldsymbol{\beta}\right) \left[1 - p\left(x_i; \boldsymbol{\beta}\right) \right] = -\mathbf{X}^T \mathbf{W} \mathbf{X}$$

Newton-Raphson step: In the k-th sep,

$$\beta^{(k+1)} = \beta^{(k)} + \left(\mathbf{X}^T \mathbf{W}^{(k)} \mathbf{X}\right)^{-1} \mathbf{X}^T (\mathbf{y} - \mathbf{p}^{(k)})$$

$$= \left(\mathbf{X}^T \mathbf{W}^{(k)} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{W}^{(k)} \left(\mathbf{X} \beta^{(k)} + \mathbf{W}^{(k)^{-1}} (\mathbf{y} - \mathbf{p}^{(k)})\right)$$

$$= \left(\mathbf{X}^T \mathbf{W}^{(k)} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{W}^{(k)} \mathbf{z}^{(k)}$$

where we defined the adjusted response

$$\mathbf{z}^{(k)} = \mathbf{X}\boldsymbol{\beta}^{(k)} + \mathbf{W}^{(k)^{-1}}(\mathbf{y} - \mathbf{p}^{(k)})$$

The update is equivalent to solving the weighted LS till convergence (Iteratively Reweighted Least Squares Algorithm):

$$\boldsymbol{\beta}^{(k+1)} = \arg\min_{\boldsymbol{\beta}} (\mathbf{z}^{(k)} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{W}^{(k)} (\mathbf{z}^{(k)} - \mathbf{X}\boldsymbol{\beta}).$$

Using central limit theorem,

$$\widehat{\boldsymbol{\beta}} \to N\left(\boldsymbol{\beta}, \left(\mathbf{X}^T\mathbf{W}(\boldsymbol{\beta}^*)\mathbf{X}\right)^{-1}\right)$$

.

Multi-class case

Suppose there are K groups. Let the K-th group be the base group. One may model $Pr(Y=k|x;\beta_0,\beta)$ as

$$Pr(Y = k|x; \boldsymbol{\beta}_0, \boldsymbol{\beta}) = \frac{\exp(x^T \boldsymbol{\beta}_k + \beta_{k0})}{\sum_{k'} \exp(x^T \boldsymbol{\beta}_{k'} + \beta_{k'0})}$$

- $ightharpoonup \eta = \beta x + \beta_0$ the vector of logits
- $\beta := (\beta_1, \dots, \beta_K)^T$, a K by p matrix.

The **S** is the **softmax function** $\mathbb{R}^K \to \mathbb{R}^K$, defined as

$$\mathbf{S}(\boldsymbol{\eta})_k = \frac{e^{\eta_k}}{\sum_{k'}^K e^{\eta_{k'}}}, \quad k = 1, \dots, K; \quad \boldsymbol{\eta} = (\eta_1, \dots, \eta_K)^T$$

- We set $\beta_{K0} = 0, \beta_K = 0$ to avoid overparametrization.

The multi-class logistic regression (or multinomial logistic regression) models K-1 logits:

$$\log \frac{\Pr(Y = 1 \mid X = x)}{\Pr(Y = K \mid X = x)} = \beta_{10} + \beta_1^T x$$

$$\log \frac{\Pr(Y = 2 \mid X = x)}{\Pr(Y = K \mid X = x)} = \beta_{20} + \beta_2^T x$$

$$\log \frac{\Pr(Y = K - 1 \mid X = x)}{\Pr(Y = K \mid X = x)} = \beta_{(K-1)0} + \beta_{K-1}^T x$$

Equivalently,

$$p_k(x) \equiv \Pr(Y = k \mid x) = \frac{\exp(\beta_{k0} + \beta_k^T x)}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + \beta_l^T x)} \text{ for } k = 1, \dots, K-1$$

$$p_K(x) \equiv \Pr(Y = K \mid x) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp(\beta_{I0} + \beta_l^T x)}$$

Clearly $\sum_{k=1}^{K} p_k(x) = 1$. The parameter vector

$$\boldsymbol{\theta} = \left\{\beta_{10}, \boldsymbol{\beta}_1^T, \dots, \beta_{(K-1)0}, \boldsymbol{\beta}_{K-1}^T\right\}^T$$

Let
$$p_{k,i} := Pr(Y_i = k | X = x_i, \boldsymbol{\theta})$$
 and $p_{y_i}(x_i; \boldsymbol{\theta}) = Pr(Y_i = y_i | X = x_i, \boldsymbol{\theta}).$

$$\ell(\theta) = \sum_{i=1}^{n} \log p_{y_i}(x_i; \theta)$$

$$= \log \left(\prod_{i=1}^{n} \prod_{k=1}^{K} p_{k,i}^{1(y_i = k)} \right)$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{K} 1(y_i = k) \log(p_{k,i})$$

Let $\beta_{K0} := 0$ and $\beta_K := 0$, The local log-likelihood:

$$\sum_{i=1}^{n} \left\{ \beta_{y_{i}0} + \beta_{y_{i}}^{T} x_{i} - \log \left[1 + \sum_{k=1}^{K-1} \exp \left(\beta_{k0} + \beta_{k}^{T} x_{i} \right) \right] \right\}$$

Compare logistic regression with LDA

Logistic regression:

- Maximizing the conditional likelihood, the multinomial likelihood with probabilities $Pr(Y = k \mid \mathbf{X})$
- ▶ The marginal density Pr(X) is totally ignored (fully nonparametric using the empirical distribution function which places 1/n at each observation)

LDA:

▶ Maximizing the full log-likelihood based on the joint density

$$\Pr(X, Y = k) = \phi(X; \boldsymbol{\mu}_k, \Sigma) \, \pi_k$$

- ▶ Standard MLE theory leads to estimators $\hat{\boldsymbol{\mu}}_k, \hat{\Sigma}, \hat{\pi}_k$
- ▶ Marginal density does play a role $Pr(\mathbf{X}) = \sum_{k} \pi_{k} \phi(X; \boldsymbol{\mu}_{k}, \Sigma)$

Regularized logistic regression

The idea is to minimize the penalized negative likelihood function (binary response):

$$\min_{\beta_0, \boldsymbol{\beta}_1} \sum_{i=1}^n \left(-y_i \left(\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}_1 \right) + \log \left(1 + e^{\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}_1} \right) \right) + \lambda J(\boldsymbol{\beta}_1)$$

The update is equivalent to solving the weighted LS till convergence (Iteratively Reweighted Least Squares Algorithm):

$$(\beta_0^{(k+1)}, \boldsymbol{\beta_1}^{(k+1)}) = \arg\min_{\boldsymbol{\beta}} \left\{ (\mathbf{z}^{(k)} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{W}^{(k)} (\mathbf{z}^{(k)} - \mathbf{X}\boldsymbol{\beta}) + \lambda J(\boldsymbol{\beta}_1^{(1)}) \right\}.$$

For the Lasso penalty, it can be solved using coodinate descent.