

N-Channel 60-V (D-S), 175°C MOSFET

PRODUCT SUMMARY				
V _{(BR)DSS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)		
60	0.014	70 ^a		

ABSOLUTE MAXIMUM RATINGS (T _C = 25°C UNLESS OTHERWISE NOTED)					
Parameter Gate-Source Voltage		Symbol	Limit ±20	Unit	
		V _{GS}		V	
Continuous Drain Current (T _J = 175°C)	T _C = 25°C		70 ^a		
	T _C = 100°C	- I _D -	49		
Pulsed Drain Current		I _{DM}	160	A	
Avalanche Current		I _{AR}	70		
Repetitive Avalanche Energy ^b	L = 0.1 mH	E _{AR}	180	mJ	
Power Dissipation	T _C = 25°C (TO-220AB and TO-263)	PD	142 ^c	w	
	T _A = 25°C (TO-263) ^d	1 「	3.7		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 175	°C	

THERMAL RESISTANCE RATINGS				
Parameter		Symbol	Limit	Unit
Junction-to-Ambient	PCB Mount (TO-263)d	D	40	°C/W
	Free Air (TO-220AB)	R_{thJA}	62.5	
Junction-to-Case		R _{thJC}	1.05	

Notes:

- Package limited.
- Duty cycle \leq 1%.
- See SOA curve for voltage derating.
 When mounted on 1" square PCB (FR-4 material).

For SPICE model information via the Worldwide Web: http://www.vishay.com/www/product/spice.htm

SUP/SUB70N06-14

Vishay Siliconix

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static	•		•		•	•
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			v
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{DS} = 1$ mA	2.0	3.0	4.0	
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V			±100	nA
Zero Gate Voltage Drain Current		V _{DS} = 60 V, V _{GS} = 0 V			1	
	I _{DSS}	V _{DS} = 60 V, V _{GS} = 0 V, T _J = 125°C			50	μΑ
		V _{DS} = 60 V, V _{GS} = 0 V, T _J = 175°C			150	1
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	70			Α
		V _{GS} = 10 V, I _D = 30 A			0.014	
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 30 A, T _J = 125°C			0.023	Ω
		V _{GS} = 10 V, I _D = 30 A, T _J = 175°C			0.028	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 30 A	25	50		S
Dynamic ^b						
Input Capacitance	C _{iss}			2400		
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		490		pF
Reversen Transfer Capacitance	C _{rss}			130		
Total Gate Charge ^c	Qg			45	70	
Gate-Source Charge ^c	Q_{gs}	$V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 60 \text{ A}$		12		nC
Gate-Drain Charge ^c	Q_gd			16		1
Turn-On Delay Time ^c	t _{d(on)}			13	30	
Rise Time ^c	t _r	$V_{DD} = 30 \text{ V}, R_L = 0.47 \Omega$ $I_D \simeq 60 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 2.5 \Omega$		11	30	ns
Turn-Off Delay Time ^c	t _{d(off)}			30	60	
Fall Time ^c	t _f			11	25	
Source-Drain Diode Ratings ar	nd Characteristics	(T _C = 25°C)b				
Continuous Current	Is				70	_
Pulsed Current	I _{SM}				160	A
Forward Voltagea	V _{SD}	$I_F = 70 \text{ A}, V_{GS} = 0 \text{ V}$			1.4	V
Reverse Recovery Time	t _{rr}	I _F = 60 A, di/dt = 100 A/μs		47		ns
Peak Reverse Recovery Current	I _{RM(REC)}			3.5		Α
Reverse Recovery Charge	Q _{rr}			0.08		μС

- Notes: a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature.

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

V_{DS} - Drain-to-Source Voltage (V)

3000 C_{iss}

2500
0 2500
0 1500
0 1000
0 10 20 30 40

Capacitance

V_{DS} - Drain-to-Source Voltage (V)

V_{GS} - Gate-to-Source Voltage (V)

I_D - Drain Current (A)

 Q_g - Total Gate Charge (nC)

3500

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

THERMAL RATINGS

