Job No.:Tina & Bill SandstonAddress:572A Rutherglen Road, Greymouth, New ZealandDate:02/09/2024Latitude:-42.545421Longitude:171.197325Elevation:79.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N2	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.1 m
Wind Region	NZ2	Terrain Category	3.0	Design Wind Speed	34.92 m/s
Wind Pressure	0.73 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Medium	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = 0.6951

For roof CP,e from 0 m To 2.90 m Cpe = -0.9 pe = -0.51 KPa pnet = -0.99 KPa

For roof CP,e from 2.9 m To 5.8 m Cpe = -0.5 pe = -0.28 KPa pnet = -0.71 KPa

For wall Windward Cp, i = 0.6951 side Wall Cp, i = -0.6409

For wall Windward and Leeward CP,e from 0 m To 6 m Cpe = 0.7 pe = 0.44 KPa pnet = 0.82 KPa

For side wall CP,e from 0 m To 2.9 m Cpe = pe = -0.41 KPa pnet = -0.30 KPa

Maximum Upward pressure used in roof member Design = 0.99 KPa

Maximum Downward pressure used in roof member Design = 0.51 KPa

Maximum Wall pressure used in Design = 0.82 KPa

Maximum Racking pressure used in Design = 0.75 KPa

Design Summary

Rafter Design Internal

Internal Rafter Load Width = 4500 mm Internal Rafter Span = 5850 mm Try Rafter 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 1.00$

K8 Upward = 1.00 S1 Downward = 6.81 S1 Upward = 6.81

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	6.50 Kn-m	Capacity	10.08 Kn-m	Passing Percentage	155.08 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	15.59 Kn-m	Capacity	13.44 Kn-m	Passing Percentage	86.21 %
M0.9D-WnUp	-14.73 Kn-m	Capacity	-16.8 Kn-m	Passing Percentage	114.05 %
V _{1.35D}	4.44 Kn	Capacity	28.94 Kn	Passing Percentage	651.80 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 10.66 Kn Capacity 38.6 Kn Passing Percentage 362.10 % $V_{0.9D-WnUp}$ -10.07 Kn Capacity -48.24 Kn Passing Percentage 479.05 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 16.875 mm Deflection under Dead and Service Wind = 23.595 mm Limit by Woolcock et al, 1999 Span/240 = 25.00 mm Limit by Woolcock et al, 1999 Span/100 = 60.00 mm

Reactions

Maximum downward = 10.66 kn Maximum upward = -10.07 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 100 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 21.67 Kn > -10.07 Kn

Intermediate Design Front and Back

Intermediate Spacing = 2250 mm Intermediate Span = 2549 mm

Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.51

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 1.50 Kn-m
 Capacity
 4.2 Kn-m
 Passing Percentage
 280.00 %

 V0.9D-WnUp
 2.35 Kn
 Capacity
 -24.12 Kn
 Passing Percentage
 1026.38 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 6.68 mm

Limit byWoolcock et al, 1999 Span/100 = 25.49 mm

Reactions

Maximum = 2.35 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm

Girt's Span = 2250 mm

Try Girt 150x50 SG8 Dry

279.10 %

1005.00 %

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.89 S1 Downward = 9.63 S1 Upward = 15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.67 Kn-m Capacity 1.87 Kn-m Passing Percentage V_{0.9D-WnUp} 1.20 Kn Capacity 12.06 Kn Passing Percentage

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 3.78 mm

Limit by Woolcock et al, 1999 Span/100 = 22.50 mm

Sag during installation = 1.55 mm

Reactions

Maximum = 1.20 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 3000 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.79 S1 Downward =9.63 S1 Upward =17.59

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.20 Kn-m Capacity 1.65 Kn-m Passing Percentage 137.50 % $V_{0.9D-WnUp}$ 1.60 Kn Capacity 12.06 Kn Passing Percentage 753.75 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 11.93 mm

Limit by Woolcock et al. 1999 Span/100 = 30.00 mm

Sag during installation =4.91 mm

Reactions

Maximum = 1.60 kn

Middle Pole Design

Geometry

150 UNI H5	Dry Use	Height	2800 mm
Area	17663 mm2	As	13246.875 mm2
Ix	24837891 mm4	Zx	331172 mm3
Iy	24837891 mm4	Zx	331172 mm3
Lateral Restraint	2800 mm c/c		

Loads

Total Area over Pole = 13.5 m^2

Dead	3.38 Kn	Live	3.38 Kn
Wind Down	6.88 Kn	Snow	0.00 Kn
Moment wind	6.07 Kn-m		
Phi	0.8	K8	0.74
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	fs =	2.96 MPa
fc =	18 MPa	$\mathbf{fp} =$	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNex Wind	187.08 Kn	PhiMnx Wind	6.69 Kn-m	PhiVnx Wind	31.37 Kn
PhiNcx Dead	112.25 Kn	PhiMnx Dead	4.01 Kn-m	PhiVnx Dead	18.82 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.98 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.90 < 1 OK$

Deflection at top under service lateral loads = $33.87 \text{ mm} \le 28.00 \text{ mm}$

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30)) / (1+\sin(30))$				
Kp =	$(1+\sin(30))/(1-\sin(30))$				

Geometry For Middle Bay Pole

$D_S =$	0.6 mm	Pile Diameter
L=	1300 mm	Pile embedment length
f1 =	2325 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of top soil at rest pressure

Loads

Moment Wind = 6.07 Kn-m Shear Wind = 2.61 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.40 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.57 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.80 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1300) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1300)

Skin Friction = 13.65 Kn

Weight of Pile + Pile Skin Friction = 18.15 Kn

Uplift on one Pile = 10.33 Kn

Uplift is ok