Complex numbers

Textbook: Section 5.1

Motivation

We have seen that the matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ has the characteristic polynomial $c_A(\lambda) = \lambda^2 + 1$ which has no real roots. A root would be a square root $\sqrt{-1}$. Complex numbers solve this problem.

Definition

The set of complex number $\mathbb C$ is the set vector space $\mathbb R^2$ with an additional multiplication of two complex numbers

$$\begin{pmatrix} a \\ b \end{pmatrix} * \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} ac - bd \\ ad + bc \end{pmatrix}$$

Remark

One often writes these coordinate tuples as vectors in the basis $\{1, i\}$. The coordinate vector $\begin{pmatrix} a \\ b \end{pmatrix}$ corresponds then to a + ib.

Discussion

- 1. Express $\binom{2}{3}$ and $\binom{-1}{4}$ in the basis and determine $\binom{2}{3}*\binom{-1}{4}$
- 2. Let $W = \text{span}\{1\} \subseteq \mathbb{C}$. Show that W is closed under the multiplication *.
- 3. Can we say that W is isomorphic to \mathbb{R} ? If so, why?

Definition

Let $z = a + ib \in \mathbb{C}$. We call Re(z) = a the real part of z and Im(z) = b the imaginary part of z.

Discussion

Let $p(x) = x^2 + 1$ and $q(x) = x^4 + 1$.

- 1. Find all roots of p(x) in \mathbb{C} .
- 2. Find all solutions to the equation $i \cdot z = 1$. Can you now give meaning to the expression i^{-1} ?
- 3. Find all roots of q(x) in \mathbb{C} .
- 4. What is the inverse of a complex number a + ib in general?

Let w=a+ib and consider $\mathbb{C}\xrightarrow{T_w}\mathbb{C}$ to be $T_w(z)=w\cdot z.$

- 1. Is T_w a linear transformation between real vector spaces? If it is, what is the matrix representing it?
- 2. Under what condition is T_w invertible?

Let $\mathbb{C} \xrightarrow{T} \mathbb{C}$ to be the function T(a+ib) = a-ib.

- 1. Is T_w a linear transformation between real vector spaces? If it is, what is the matrix representing it?
- 2. What are eigenvalues and eigenspaces of T?
- 3. What is $T \circ T$? Is T invertible?

Fields

Textbook: Section 5.1

Goal

We would like to replace for vector spaces real numbers \mathbb{R} with complex numbers \mathbb{C} because of their obvious advantage that some characteristic polynomials have roots in \mathbb{C} but not in \mathbb{R} . In order to do so, we axiomatize all properties that our prototypes \mathbb{R} and \mathbb{C} satisfy.

Definition (5.1.4)

A field is a set F together with two operations called addition (+) and multiplication (\cdot) if the following axioms are satisfied:

Which of the following sets are fields? If they are not field, explain one axiom that does not hold.

 \mathbb{N}

 \mathbb{Z}

 \mathbb{Q}

 \mathbb{R}

$$\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x \ge 0 \}$$

 \mathbb{C}

Example

The finite field \mathbb{F}_p with p elements where p is a prime.

Exercise

- 1. Write out the addition and multiplication tables for the field \mathbb{F}_3 .
- 2. How can you tell that addition and multiplication are commutative?
- 3. How can you conclude that 0 is the additive identity?
- 4. How can you conclude that every element has an additive inverse?
- 5. How can you conclude that 1 is the multiplicative identity?
- 6. How can you conclude that every non-zero element has a multiplicative inverse?

- 1. What are the roots of $p(x) = x^2 1$ in \mathbb{F}_2 ? How about \mathbb{F}_3 ?
- 2. For each of the fields $\mathbb{R}, \mathbb{Q}, \mathbb{C}$ and \mathbb{F}_2 , if possible give an example of
 - (a) a polynomial that has a root in the field
 - (b) a polynomial that does not have a root in the field.

Definition (5.1.11)

A field F is called algebraically closed if every non-constant polynomial with coefficients in F has a root in F.

Discussion

Decide which of the fields $\mathbb{R}, \mathbb{Q}, \mathbb{C}$ and \mathbb{F}_2 is algebraically closed.

Theorem (5.1.12 Fundamental Theorem of Algebra)

 \mathbb{C} is algebraically closed, that is, every plynomial of degree n

$$p(x) = a_n x^n + \dots + a_0$$

has n roots counted with multiplicity.

Vector Spaces over a Field

Textbook: Section 5.2

Definition 5.2.1

A vector space $(V, +, \cdot)$ over a field F consists of a set V and two operations that we call addition (+) and scalar multiplication \cdot

$$V\times V\xrightarrow{+}V$$

$$F\times V \xrightarrow{\cdot} V$$

such that the following axioms hold

- 1. (additive closure) $\vec{x} + \vec{y} \in V$, for all $\vec{x}, \vec{y} \in V$
- 2. (multiplicative closure) $\alpha \cdot \vec{x} \in V$, for all $\vec{x} \in V$ and scalars $\alpha \in F$
- 3. (commutativity) $\vec{x} + \vec{y} = \vec{y} + \vec{x}$, for all $\vec{x}, \vec{y} \in V$
- 4. (additive associativity) $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$, for all $\vec{x}, \vec{y}, \vec{z} \in V$
- 5. (additive identity) There exists a vector $\vec{0} \in V$ such that $\vec{x} + \vec{0} = \vec{x}$ for all $\vec{x} \in V$
- 6. (additive inverse) For each $\vec{x} \in V$, there exists a vector $-\vec{x} \in V$ with the property that $\vec{x} + (-\vec{x}) = \vec{0}$
- 7. (multiplicative associativity) $(\alpha \cdot \beta) \cdot \vec{x} = \alpha \cdot (\beta \cdot \vec{x})$, for all $\alpha, \beta \in F$ and $\vec{x} \in V$
- 8. (distributivity over vector addition) $\alpha \cdot (\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$, for all $\alpha \in F$ and $\vec{x}, \vec{y} \in V$
- 9. (distributivity over scalar addition) $(\alpha + \beta) \cdot \vec{x} = \alpha \vec{x} + \beta \vec{x}$, for all $\alpha, \beta \in F$ and $\vec{x} \in V$
- 10. (identity property) $1 \cdot \vec{x} = \vec{x}$, for all $\vec{x} \in V$, $1 \in F$

Examples

- 1. F^n , the set of *n*-tuples in a field F
- 2. $\operatorname{Mat}_n(F)$, the set of $n \times n$ matrices with entries from F.
- 3. $\mathcal{P}_n(F)$, the set of polynomials of degree n with coefficients in F.
- 4. \mathbb{C}^n may be thought of as a complex vector space or a real vector space.

Remark

Specifying the field for a vector space is important! The vectors $\binom{i}{2}$ and $\binom{-1}{2i}$ in are dependent in \mathcal{C}^2 as a complex vector space, but independent in \mathcal{C}^2 as a real vector space.

Consider $V = \mathbb{R}$ as a vector space over \mathbb{Q} .

- 1. Is the family of vector $\{1, \sqrt{2}\}$ linearly independent or dependent?
- 2. What is the dimension of the subspace span $\{1, \sqrt{2}, \sqrt{3}, \sqrt{4}\}$?
- 3. What do the above results suggest about $\dim(V)$?

\mathbf{Remark}

Everything we did about vector spaces, matrices, inverse matrices, determinants, eigenvalues, ... can be applied to a vector space over a field. See Example (5.2.8-10) in the book for examples.