ASD Laboratorio 02

The A(SD)-Team

UniTN

2022-10-18

CONTATTI

ESERCITATORI

- Cristian Consonni (cristian.consonni@unitn.it)
- Quintino Francesco Lotito (quintino.lotito@unitn.it)

TUTOR

- Daniele Cabassi (daniele.cabassi@studenti.unitn.it)
- Gabriele Masina (gabriele.masina@studenti.unitn.it)
- Filippo Momesso (filippo.momesso@studenti.unitn.it)
- Luca Mosetti (luca.mosetti-1@studenti.unitn.it)
- Elisa Trento (elisa.trento@studenti.unitn.it)

DOMANDE FREQUENTI

DOMANDE

- Gli esercizi del laboratorio pesano sul voto dell'esame?
- → No, servono come allenamento.
 - E il progetto?
- → Si, è necessario passare almeno un progetto per poter fare l'esame; ogni progetto passato dà da 1 a 3 punti bonus.
 - Si possono avere i file di input usati su judge?
- → No, però vi possiamo fornire altri esempi ed aiutarvi a capire quali sono i casi in cui il vostro algoritmo sbaglia. Tenete conto che il primo caso presente su judge è **sempre** il primo esempio fornito nel testo.

20/09	Introduzione
18/10	Ad-hoc
10/11	Grafi 1
24/11	Grafi 2
12/12	Presentazione Progetto 1
13/12	Lab Progetto 1
15/12	Lab Progetto 1

PROGETTO GRAFI

- Dal 12 al 19 dicembre (consegna ore 18:00);
- Iscrizione dei gruppi al progetto entro venerdì 9 dicembre:
 https://noclick.dev/ASDprog_2022-2023 (dovete essere loggati con l'account UniTN)

CALCOLO COMBINATORIO (I)

Quante sono le COPPIE senza ripetizioni e senza tenere conto dell'ordine da un insieme di *n* elementi?

Numero di combinazioni di ${\bf 2}$ elementi dati ${\bf n}$ senza ripetizioni

$$C(n,2) = \binom{n}{2} = \frac{n \cdot (n-1)}{2}$$

Caso particolare del COEFFICIENTE BINOMIALE:

$$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Intuizione (numero di disposizioni di k elementi da n, diviso per il numero di permutazioni di k elementi):

$$C(n,k) = \frac{D(n,k)}{P(k)} = \frac{n!}{(n-k)!} \cdot \frac{1}{k!}$$

2022-10-18

5/29

CALCOLO COMBINATORIO (II)

Considerando le ripetizioni:

Numero di combinazioni di ${\bf 2}$ elementi dati ${\bf n}$ con ripetizione

$$C'(n,2)=\binom{n+1}{2}=\frac{n\cdot(n+1)}{2}$$

In questo caso:

$$C'(n,k) = {n+k-1 \choose k} = \frac{(n+k-1)!}{(n-1)!k!}$$

Intuizione:

• corrispondenza biunivoca tra combinazione con ripetizioni e combinazioni senza ripetizione k elementi da n+k-1

CALCOLO COMBINATORIO (III)

$$C = \{(i,j) \mid i,j \in A \subseteq N, j \ge i\}$$

ASD Lab (UniTN) ASD Laboratorio 02 2022-10-18 7/29

SOTTOSEQ: SOLUZIONE $\mathcal{O}(N^2)$ (I)

SOLUZIONE $\mathcal{O}(N^2)$

Costruiamo array delle somme:

$$S_i = \sum_{j=1}^i A_j$$

Per ogni sottosequenza, calcoliamo la somma in O(1):

Somma da i a j = $S_j - S_{i-1}$

8/29

SOTTOSEQ: SOLUZIONE $\mathcal{O}(N^2)$ (II)

$$S_i = \sum_{j=1}^i A_j$$

Esempio:

Array delle somme:

may done comme.						
index	1	2	3	4	5	
array	2	-3	4	1	5	
S	2	-1	3	4	9	

Combinazioni (i, j):

Combinazioni (1, j).						
i/j	1	2	3	4	5	
1	2	-1	3	4	9	
2	_	-3	1	2	7	
3	_	_	4	5	10	
4	_	_	_	1	6	
5	_	_	_	_	5	

La sottosequenza di somma massima conterrà un elemento con indice massimo, sia esso *i*:

- B_i la sottosequenza di somma massima che ha come ultimo elemento il numero in posizione i;
- assumendo di conoscere B_{i-1} , procedendo per induzione allora: $B_i = \max(A_i, B_{i-1} + A_i)$;
- terminiamo restituendo il valore massimo individuato durante l'induzione: $max(B_0, B_1, ..., B_{N-1})$.

ALGORITMO DI KADANE, $\mathcal{O}(N)$

```
int last = 0, mx = 0;
for(int i=0; i<N; i++) {
  in >> cur;
  last = max(cur, cur+last);
  mx = max(mx, last);
}
out << mx << endl;</pre>
```

SOTTOSEQ: SOLUZIONE $\mathcal{O}(N)$ (II)

Esempio:

2 -3 4

index	1	2	3	4	5
array	2	-3	4	1	5
last	2	-1	4	5	10
mx	2	2	4	5	10

SOTTOMAT: SOLUZIONE BRUTE-FORCE

Soluzione "a forza bruta" $\mathcal{O}\left((RC)^3\right) \sim \mathcal{O}(N^6)$:

- Ci sono $(RC)^2 \sim N^4$ sottomatrici¹
- Obbiamo veramente guardare tutte le sottomatrici?

SOTTOMAT: MATRICE DELLE SOMME (I)

CALCOLARE LA SOMMA IN O(1)

Stessa idea di prima. Riempiamo un array somma (O(RC))

$$S[i,j] = \sum_{a=1}^{i} \sum_{b=1}^{j} A[a,b]$$

Per calcolare la somma da $[r_1, c_1]$ a $[r_2, c_2]$:

$$S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1] - S[r_1, c_2]$$

Sfruttando questa idea otteniamo un algoritmo $O((RC)^2)$.

NOTA IMPLEMENTATIVA

Creando S[i,j] con un "orlo" di zeri si semplifica la gestione degli indici.

ASD Lab (UniTN) ASD Laboratorio 02 2022-10-18 14/29

SOTTOMAT: MATRICE DELLE SOMME (II)

15/29

SOTTOMAT: MATRICE DELLE SOMME (III)

 $S[r_2, c_2]$

ASD Lab (UniTN) ASD Laboratorio 02 2022-10-18

16/29

SOTTOMAT: MATRICE DELLE SOMME (IV)

$$S[r_2, c_2] + S[r_1, c_1]$$

ASD Lab (UniTN) ASD Laboratorio 02 2022-10-18 17/29

SOTTOMAT: MATRICE DELLE SOMME (V)

$$S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1]$$

ASD Lab (UniTN) ASD Laboratorio 02 2022-10-18

18/29

SOTTOMAT: MATRICE DELLE SOMME (VI)

$$S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1]$$

ASD Lab (UniTN) ASD Laboratorio 02 2022-10-18 19/29

SOTTOMAT: MATRICE DELLE SOMME (VII)

 $S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1] - S[r_1, c_2]$

ASD Lab (UniTN) ASD Laboratorio 02 2022-10-18 20/29

SOTTOMAT: MATRICE DELLE SOMME (VIII)

$$S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1] - S[r_1, c_2]$$

ASD Lab (UniTN) ASD Laboratorio 02 2022-10-18 21/29

Potete definire la matrice somma S[i, j] nel modo seguente:

```
for(int i=0;i<R;i++) {</pre>
  for (int j=0; j<C; j++) {</pre>
     in>>A[i][j];
     if(i==0){
       if(j==0) {
         S[i][j]=A[i][j];
     . . .
         S[i][j]=S[i][j-1] + \
                   S[i-1][j] - \setminus
                   S[i-1][i-1] + \
                   A[i][j];
```

ma esiste un modo più furbo che vi semplifica la vita.

SOTTOMAT: SOLUZIONE $\mathcal{O}(N^4)$

Soluzione $\mathcal{O}\left((RC)^2\right) \sim \mathcal{O}(N^4)$

- per ogni coppia di righe $r_s, r_e \rightarrow \mathcal{O}(R^2)$
- per ogni coppia di colonne $c_s, c_e o \mathcal{O}\left(C^2\right)$
- \Rightarrow calcoliamo la somma $\rightarrow \mathcal{O}(1)$:

$$S[r_s, c_s] + S[r_e, c_e] - S[r_e, c_s] - S[r_s, c_e]$$

SOTTOMAT: SOLUZIONE $\mathcal{O}(N^3)$, INTUIZIONE

- possiamo sfruttare la soluzione ottima O(N) del problema della sottosequenza di somma massima per trovare la sottomatrice di somma massima?
- consideriamo tutte le sottomatrici che partono dalla colonna $^{(*)}$ C_1 e arrivano alla colonna C_2 , possiamo applicare la sottosequenza di somma massima?
 - ightharpoonup se $C_1=C_2$, stiamo considerando una singola colonna, possiamo applicare facilmente la sottosequenza di somma massima
 - negli altri casi?
- (*) il discorso è speculare per righe e colonne

SOTTOMAT: SOLUZIONE $\mathcal{O}(N^3)$, ESEMPIO (I)

Per ogni coppia C_1 , C_2 creiamo un'istanza del problema della sottosequenza di somma massima.

Con Kadane riusciamo a considerare tutte e 6 le possibili sottomatrici.

SOTTOMAT: SOLUZIONE $\mathcal{O}(N^3)$, ESEMPIO (II)

Per ogni coppia C_1 , C_2 creiamo un'istanza del problema della sottosequenza di somma massima.

Con Kadane troviamo che la sottosequenza massima è 18 (10 + 8) e corrisponde alla sottomatrice (2, 2), (3, 4)

SOLUZIONE $\mathcal{O}(N^3)$

Per ogni coppia di colonne C_1, C_2 :

- Costruiamo l'array S[1..R], di dimensione pari al numero di righe R;
- ② Inseriamo in S[i] "la somma degli elementi appartenenti alla riga i e compresi fra le colonne C_1, C_2 ". In formula: $S[i] = \sum_{i=C_1}^{C_2} A[i][j];$
- Usiamo l'algoritmo lineare per la sottosequenza di somma massima su S.
- $\Rightarrow \mathcal{O}(RC^2)$, oppure $\mathcal{O}(R^2C)$

I sorgenti sono disponibili su

http://judge.science.unitn.it/slides/

NATALE A FLATLANDIA

- Vecchio progetto di algoritmi
- Slides sul sito (secondo progetto, a. a. 2014/2015):
 http://judge.science.unitn.it/slides/asd14b/prog2.pdf
- Esiste soluzione con Programmazione Dinamica
- Esiste anche soluzione ad-hoc.

PROBLEMI

Testi completi su https://judge.science.unitn.it/.

SORTING

Implementate un algoritmo di ordinamento $\mathcal{O}(N \log N)$.

INTERVALLI

Dato un insieme di intervalli temporali, scoprire il periodo più lungo non coperto da alcun intervallo.

SORTING PESATO

Avete un array di *N* interi, con i numeri da 1 a *N* (in ordine sparso). Ad ogni turno potete scambiare le posizioni di due interi, pagando la loro somma. Qual è il numero minimo di turni per ordinare l'array? Quant'è il prezzo minimo?