

Artificial Intelligence Science Program

Chapter 5: Neural Networks and Deep Learning

Gradient Descent

- Gradient Descent is a machine learning algorithm that operates iteratively to find the optimal values for its parameters. It takes into account, user-defined learning rate, and initial parameter values.
- Working: (Iterative)
 - 1. Start with initial values.
 - 2. Calculate cost.
 - 3. Update values using the update function.
 - 4. Returns minimized cost for our cost function

Update the value of weights

$$X = X - lr * \frac{d}{dX} f(X)$$

Where,

X = input

 $F(X) = output \ based on X$

lr = learning rate

$$ino = w_1 * i_1 + w_2 * i_2 + w3 * b$$

Applying sigmoid function for predicted output :

$$outo = \frac{1}{1 + e^{-ino}}$$

Calculate the error:

$$Error = \sum_{i=1}^{n} \frac{1}{2} (target\ output\ -outo)^2$$

Changing the weight value based on gradient descent formula:

$$w = w - lr * \frac{\partial Error}{\partial w}$$

Calculating the derivative:

$$\frac{\partial Error}{\partial w} = \frac{\partial Error}{\partial outo} * \frac{\partial outo}{\partial ino} * \frac{\partial ino}{\partial w}$$

• Individual derivatives:

$$\frac{\partial Error}{\partial outo} = (outo-target\ output)$$

$$\frac{\partial outo}{\partial ino} = outo (1 - outo)$$

$$\frac{\partial ino}{\partial w} = input \ values$$

Example (logical OR Gate)

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	1

Input for o1 =
$$w1*x1 + w2*x2 + b*x3$$

= $0.2*0 + 0.3*1 + 0.5*1$
= $0 + 0.3 + 0.5$
= 0.8

$$f(X) = \frac{1}{1 + e^{-X}}$$

Output for 01 =
$$\frac{1}{1+e^{-0.8}}$$
 = 0.68997

$$MSE = \sum_{i=1}^{n} \frac{1}{2} * (target - output)^{2}$$

$$MSE = \sum_{i=1}^{n} \frac{1}{2} * (target - output)^{2}$$
 $MSE = \frac{1}{2} * (1 - 0.68997)^{2} = 0.048059$

$$\frac{\partial Error}{\partial outo} = \frac{\partial}{\partial outo} \left(\frac{1}{2} * (target - output)^2 \right)$$

$$\frac{\partial Error}{\partial outo} = \left(\frac{1}{2} * 2 * (target - output)\right) * \frac{\partial}{\partial outo}(target - output)$$

$$\frac{\partial Error}{\partial outo} = (target - output) * (-1)$$

$$\frac{\partial Error}{\partial outo} = output - target$$

- In our case:
- Output = 0.68997, Target = 1

$$\frac{\partial Error}{\partial out \, o_1} = (0.68997 - 1) = -0.31003$$

Finding the second part of the derivative:

$$\frac{\partial outo}{\partial ino} = outo (1 - outo)$$

Value of outo1:

$$outo_1 = \left(\frac{1}{1 + e^{-ino_1}}\right)$$

• Finding the derivative with respect to ino1: $\frac{douto_1}{dino_1} = \frac{\partial}{\partial ino_1} \left(\frac{1}{1 + e^{-ino_1}} \right)$

$$\frac{\partial outo_1}{\partial ino_1} = \frac{\partial}{\partial ino_1} \left(\frac{1}{1 + e^{-ino_1}} \right)$$

• Simplifying it a bit to find the derivative easily: $\frac{\partial outo_1}{\partial ino_1} = \frac{\partial}{\partial ino_1} (1 + e^{-ino_1})^{-1}$

$$\frac{\partial outo_1}{\partial ino_1} = \frac{\partial}{\partial ino_1} \left(1 + e^{-ino_1}\right)^{-1}$$

Applying chain rule and power rule:

$$\frac{\partial outo_1}{\partial ino_1} = -1(1 + e^{-ino_1})^{-2} * \frac{\partial}{\partial ino_1} (1 + e^{-ino_1})$$

$$\frac{\partial outo_1}{\partial ino_1} = -1(1 + e^{-ino_1})^{-2} * \left(\frac{\partial}{\partial ino_1}(1) + \frac{\partial}{\partial ino_1}(e^{-ino_1})\right)$$

• The derivative of constant is zero:
$$\frac{\partial outo_1}{\partial ino_1} = -1(1 + e^{-ino_1})^{-2} * \left(0 + \frac{\partial}{\partial ino_1}(e^{-ino_1})\right)$$

Applying exponential rule and chain rule:

$$\frac{\partial outo_1}{\partial ino_1} = -1(1 + e^{-ino_1})^{-2} * \left(e^{-ino_1} * \frac{\partial}{\partial ino_1} [-ino_1]\right)$$

• Simplifying it a bit:

$$\frac{\partial outo_1}{\partial ino_1} = -1(1 + e^{-ino_1})^{-2} * (e^{-ino_1} * -1)$$

Multiplying both negative signs:

$$\frac{\partial outo_1}{\partial ino_1} = (1 + e^{-ino_1})^{-2} * (e^{-ino_1})$$

$$\frac{\partial outo_1}{\partial ino_1} = \frac{\left(e^{-ino_1}\right)}{\left(1 + e^{-ino_1}\right)^2}$$

• Simplifying it:
$$\frac{\partial outo_1}{\partial ino_1} = \frac{1 * (e^{-ino_1})}{(1 + e^{-ino_1}) * (1 + e^{-ino_1})}$$

• Further simplification:

$$\frac{\partial outo_1}{\partial ino_1} = \frac{1}{\left(1 + e^{-ino_1}\right)} * \frac{\left(e^{-ino_1}\right)}{\left(1 + e^{-ino_1}\right)}$$

• Adding +1–1:

$$\frac{\partial outo_1}{\partial ino_1} = \frac{1}{\left(1 + e^{-ino_1}\right)} * \frac{\left(e^{-ino_1}\right) + 1 - 1}{\left(1 + e^{-ino_1}\right)}$$

• Separate the parts:
$$\frac{\partial out \, o_1}{\partial ino_1} = \frac{1}{(1+e^{-ino_1})} * \left(\frac{(1+e^{-ino_1})}{(1+e^{-ino_1})} - \frac{1}{(1+e^{-ino_1})} \right)$$

• Simplify:
$$\frac{douto_1}{dino_1}$$

• Simplify:
$$\frac{\partial outo_1}{\partial ino_1} = \frac{1}{(1 + e^{-ino_1})} * (1 - \frac{1}{(1 + e^{-ino_1})})$$

• Now we all know the value of outo1 from equation 1: $outo_1 = \left(\frac{1}{1 + o^{-ino_1}}\right)$

$$outo_1 = \left(\frac{1}{1 + e^{-ino_1}}\right)$$

From that we can derive the following final derivative:

$$\frac{\partial outo_1}{\partial ino_1} = outo_1 * (1 - outo_1)$$

Calculating the value of our input:

$$\frac{\partial outo_1}{\partial ino_1} = 0.68997 * (1 - 0.68997) = 0.21391$$

Finding the third part of the derivative :

$$\frac{\partial ino}{\partial w} = input values$$

- Value of ino: $ino_1 = w1 * i1 + w2 * i2 + w3 * 1$
- Finding derivative: All the other values except w2 will be considered constant here.

$$\frac{\partial ino_1}{\partial w_2} = 0 + i_2 + 0 = i_2$$

Calculating both values for our input:

$$\frac{\partial ino_1}{\partial w_2} = i_2 = 1$$

• Putting it all together:
$$\frac{\partial Error}{\partial outo_1} * \frac{\partial outo_1}{\partial ino_1} * \frac{\partial ino_1}{\partial w_2} = -0.31003 * 0.21391 * 1$$
$$= -0.06631$$

• Putting it in our main equation: $w = w - lr * \frac{\partial Error}{\partial w_2}$

• We can calculate: w2 = 1 - (0.05) * (-0.06631) = 1.0033155

Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc ...

Train the deep neural network

A dataset

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Initialize with random weights

Compare with the target output

Adjust weights based on error 1.4 2.7 1.9 Control of the control

Repeat this thousands, maybe millions of times – each time taking a random training instance, and making slight weight adjustments

Algorithms for weight adjustment are designed to make changes that will reduce the error

Deep Learning

- The fundamental data structure in neural networks is the layer,
- layer is a data-processing module that takes as input one or more tensors and that outputs one or more tensors.

Deep Learning

Convolutional output

MaxPooling: usually present after the convolutional layer. It provides a down-sampling of the convolutional output

Dropout: randomly drop units along with their connections during training. It helps to learn more robust features by reducing complex co-adaptations of units and alleviate overfitting issue as well.

• https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network

- from keras import layers
- layer = layers.Dense(32, input_shape=(784,))

