11/07/2024, 17:03 FDI in India.ipynb - Colab

from google.colab import drive
drive.mount('/content/drive')

Suggested code may be subject to a license | import pandas as pd import matplotlib.pyplot as plt %matplotlib inline

df = pd.read_csv('_/content/drive/MyDrive/FDI_in_India.csv')
df

→	Sector		2000- 01	2001- 02	2002- 03	2003- 04	2004- 05	2005- 06	2006- 07	2007 - 08	2008- 09	2009- 10	2010- 11	2011- 12	2012- 13	2013- 14	2014- 15	2015- 16	2016- 17	
	0	METALLURGICAL INDUSTRIES	22.69	14.14	36.61	8.11	200.38	149.13	169.94	1175.75	959.94	419.88	1098.14	1786.14	1466.23	567.63	359.34	456.31	1440.18	11.
	1	MINING	1.32	6.52	10.06	23.48	9.92	7.40	6.62	444.36	34.16	174.40	79.51	142.65	57.89	12.73	684.39	520.67	55.75	
	2	POWER	89.42	757.44	59.11	27.09	43.37	72.69	157.15	988.68	907.66	1271.79	1271.77	1652.38	535.68	1066.08	707.04	868.80	1112.98	
	3	NON-CONVENTIONAL ENERGY	0.00	0.00	1.70	4.14	1.27	1.35	2.44	58.82	125.88	622.52	214.40	452.17	1106.52	414.25	615.95	776.51	783.57	
	4	COAL PRODUCTION	0.00	0.00	0.00	0.04	0.00	9.14	1.30	14.08	0.22	0.00	0.00	0.00	0.00	2.96	0.00	0.00	0.00	
	58	PRINTING OF BOOKS (INCLUDING LITHO PRINTING IN	0.00	0.00	6.30	0.00	0.06	9.90	20.04	35.54	31.61	70.51	36.63	47.39	14.34	113.78	72.58	122.81	53.17	
	59	COIR	0.00	0.00	0.00	0.00	0.47	0.59	0.04	0.01	0.00	0.25	0.10	0.55	0.15	0.54	1.36	0.00	0.00	
	60	CONSTRUCTION (INFRASTRUCTURE) ACTIVITIES	0.00	0.00	0.00	0.00	0.00	0.93	64.06	182.92	172.70	324.56	675.07	386.28	283.89	485.37	870.25	4510.71	1860.73	
	61	CONSTRUCTION DEVELOPMENT: Townships,	24.33	51.75	36.10	47.04	152.06	228.71	1392.95	3887.33	4657.51	5466.13	1663.03	3140.78	1332.49	1226.05	769.14	112.55	105.14	

Generate code with df

Next steps:

View recommended plots

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 63 entries, 0 to 62
Data columns (total 18 columns):
     Column
             Non-Null Count Dtype
     Sector
             63 non-null
                             object
     2000-01 63 non-null
                             float64
 1
     2001-02 63 non-null
                             float64
                             float64
     2002-03 63 non-null
     2003-04 63 non-null
                             float64
 5
     2004-05 63 non-null
                             float64
     2005-06 63 non-null
                             float64
     2006-07 63 non-null
                             float64
     2007-08 63 non-null
                             float64
     2008-09 63 non-null
                             float64
     2009-10 63 non-null
                             float64
     2010-11 63 non-null
                             float64
     2011-12 63 non-null
                             float64
 13 2012-13 63 non-null
                             float64
 14 2013-14 63 non-null
                             float64
 15 2014-15 63 non-null
                             float64
 16 2015-16 63 non-null
                             float64
 17 2016-17 63 non-null
                             float64
dtypes: float64(17), object(1)
memory usage: 9.0+ KB
```

Descriptive Statistics of the FDI Dataset

df.describe()

11/07/2024, 17:03 FDI in India.ipynb - Colab

	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2
count	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.
mean	37.757302	63.931587	42.925714	34.727778	51.090317	87.932540	198.281905	390.085714	498.348571	410.069524	339.413810	557.472698	355.
std	112.227860	157.878737	86.606439	67.653735	101.934873	206.436967	686.783115	1026.249935	1134.649040	926.814626	627.141139	1031.474056	778.
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	0.000000	0.000000	0.200000	0.215000	0.715000	1.230000	4.160000	9.950000	11.950000	7.880000	8.430000	22.720000	15
50%	4.030000	5.070000	11.010000	6.370000	9.090000	22.620000	25.820000	58.820000	84.880000	69.740000	58.070000	129.360000	95.
75%	23.510000	44.830000	36.555000	38.660000	43.205000	63.855000	108.325000	279.270000	383.320000	341.595000	304.280000	593.525000	288.
max	832.070000	873.230000	419.960000	368.320000	527.900000	1359.970000	4713.780000	6986.170000	6183.490000	5466.130000	3296.090000	5215.980000	4832.
4													>

→ Year-wise investment

```
df.sum(axis=0).plot(kind='bar', figsize=(10,4))
plt.grid()
plt.show()
```


✓ Sector-wise Investment over the years

```
df.sum(axis=1).sort_values().plot(kind = 'barh', figsize=(10,20))
plt.grid()
plt.show()
```


→ Top 5 Investment Sector

```
df_trans = df.transpose()
df_trans.sum().sort_values()[-5:].plot(figsize=(20,10),kind='bar', title ='top 10 investments by FDIs')
```

<Axes: title={'center': 'top 10 investments by FDIs'}, xlabel='Sector'>

IICES SECTOR (Fin.,Banking,Insurance,Non Fin/Business,Outsourcing,R&D,

CONSTRUCTION DEVELOPMENT: Townships, housing, built-up infrastr

Sector

→ Year on Year Top 5 best performing sector

```
plt.subplot(1, 5, 1)
df.loc['SERVICES SECTOR (Fin., Banking, Insurance, Non Fin/Business, Outsourcing, R&D, Courier, Tech. Testing and Analysis, Other)'].plot(kind='bar', figsize=(30,6))
plt.title('FDI for service sector')
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.subplot(1, 5, 2)
df.loc['TELECOMMUNICATIONS'].plot(kind='bar',title='FDI for Computer software and hardware',figsize=(40,5))
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.subplot(1, 5, 3)
df.loc['COMPUTER SOFTWARE & HARDWARE'].plot(kind='bar',title='FDI for Computer software and hardware',figsize=(40,5))
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.subplot(1, 5, 4)
df.loc['CONSTRUCTION DEVELOPMENT: Townships, housing, built-up infrastructure and construction-development projects'].plot(kind='bar',title='FDI for Construc
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.subplot(1, 5,5)
df.loc['CONSTRUCTION (INFRASTRUCTURE) ACTIVITIES'].plot(kind='bar',title='FDI for Construction',figsize=(30,6))
plt.xlabel('FY year')
plt.ylabel('FDI')
```


✓ Overall growth of the best performing sector from FY 2000-2016

```
df.loc['SERVICES SECTOR (Fin.,Banking,Insurance,Non Fin/Business,Outsourcing,R&D,Courier,Tech. Testing and Analysis, Other)'].plot(figsize=(20,5))
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.show()
```



```
X = list(df.columns)
# X.remove('Sector')
      '2000-01',
      '2001-02',
      '2002-03',
      '2003-04',
      '2004-05',
      '2005-06',
      '2006-07',
      '2007-08',
      '2008-09',
      '2009-10',
      '2010-11',
      '2011-12',
      '2012-13',
      '2013-14',
      '2014-15',
      '2015-16',
      '2016-17']
```

11/07/2024, 17:03 FDI in India.ipynb - Colab

→ Top and Bottom Sectors*

Top 10 Sectors

```
df.sum(axis=1).nlargest(10)
    Sector
    SERVICES SECTOR (Fin., Banking, Insurance, Non Fin/Business, Outsourcing, R&D, Courier, Tech. Testing and Analysis, Other)
                                                                                                                      59476.49
    COMPUTER SOFTWARE & HARDWARE
                                                                                                                      24669.49
    CONSTRUCTION DEVELOPMENT: Townships, housing, built-up infrastructure and construction-development projects
                                                                                                                      24293.09
                                                                                                                      23946.01
    TELECOMMUNICATIONS
    AUTOMOBILE INDUSTRY
                                                                                                                      16673.92
                                                                                                                      14706.90
    DRUGS & PHARMACEUTICALS
                                                                                                                      14210.88
    TRADING
    CHEMICALS (OTHER THAN FERTILIZERS)
                                                                                                                      13293.09
    POWER
                                                                                                                      11589.13
    METALLURGICAL INDUSTRIES
                                                                                                                      10330.54
    dtype: float64
df 1 = df.loc[['SERVICES SECTOR (Fin., Banking, Insurance, Non Fin/Business, Outsourcing, R&D, Courier, Tech. Testing and Analysis, Other)',
'COMPUTER SOFTWARE & HARDWARE',
'CONSTRUCTION DEVELOPMENT: Townships, housing, built-up infrastructure and construction-development projects',
'TELECOMMUNICATIONS',
'AUTOMOBILE INDUSTRY',
'DRUGS & PHARMACEUTICALS',
'TRADING',
'CHEMICALS (OTHER THAN FERTILIZERS)',
'POWER',
'METALLURGICAL INDUSTRIES' ], X]
df_1.transpose().plot(kind = 'bar', figsize=(35,8))
plt.grid()
plt.show()
```


∨ Bottom 10 Sectors

s = df.sum(axis=1).sort_values(ascending=True)
s.head(10)

\rightarrow	Sector					
	COIR					
	DEFENCE INDUSTRIES	5.12				
	MATHEMATICAL, SURVEYING AND DRAWING INSTRUMENTS	7.98				
	COAL PRODUCTION					
	PHOTOGRAPHIC RAW FILM AND PAPER	67.28				
	INDUSTRIAL INSTRUMENTS	76.12				
	DYE-STUFFS	88.40				
	TEA AND COFFEE (PROCESSING & WAREHOUSING COFFEE & RUBBER)	111.22				
	GLUE AND GELATIN	128.39				
	TIMBER PRODUCTS	157.68				
	dtype: float64					

```
df_1 = df.loc[['COIR',
   'DEFENCE INDUSTRIES',
   'MATHEMATICAL,SURVEYING AND DRAWING INSTRUMENTS',
   'COAL PRODUCTION',
   'PHOTOGRAPHIC RAW FILM AND PAPER',
   'INDUSTRIAL INSTRUMENTS',
   'DYE-STUFFS',
   'TEA AND COFFEE (PROCESSING & WAREHOUSING COFFEE & RUBBER)',
   'GLUE AND GELATIN',
   'TIMBER PRODUCTS'], X]
df_1.transpose().plot(kind = 'bar', figsize=(35,8))
plt.grid()
```


plt.show()

∨ Maximum Investment in Sectors Year-wise

df.idxmax()

2000-01 2001-02 MISCELLANEOUS INDUSTRIES TELECOMMUNICATIONS

2004-05 COMPUTER SOFTWARE & HARDWARE 2005-06 COMPUTER SOFTWARE & HARDWARE 2006-07 SERVICES SECTOR (Fin., Banking, Insurance, Non Fi... 2007-08 SERVICES SECTOR (Fin., Banking, Insurance, Non Fi... 2008-09 SERVICES SECTOR (Fin., Banking, Insurance, Non Fi... 2009-10 CONSTRUCTION DEVELOPMENT: Townships, housing, ... 2010-11 SERVICES SECTOR (Fin., Banking, Insurance, Non Fi... 2011-12 SERVICES SECTOR (Fin., Banking, Insurance, Non Fi... 2012-13 SERVICES SECTOR (Fin., Banking, Insurance, Non Fi... FOOD PROCESSING INDUSTRIES

2013-14 FOOD PROCESSING INDUSTRIES
2014-15 SERVICES SECTOR (Fin., Banking, Insurance, Non Fi...
2015-16 SERVICES SECTOR (Fin., Banking, Insurance, Non Fi...

2016-17 SERVICES SECTOR (Fin., Banking, Insurance, Non Fi... dtype: object

Minimum Investment in Sectors Year-wise

df.idxmin()

→	2000-01 2001-02 2002-03	NON-CONVENTIONAL ENERGY NON-CONVENTIONAL ENERGY COAL PRODUCTION
	2003-04	PRIME MOVER (OTHER THAN ELECTRICAL GENERATORS)
	2004-05	COAL PRODUCTION
	2005-06	BOILERS AND STEAM GENERATING PLANTS
	2006-07	PORTS
	2007-08	SCIENTIFIC INSTRUMENTS
	2008-09	BOILERS AND STEAM GENERATING PLANTS
	2009-10	COAL PRODUCTION
	2010-11	COAL PRODUCTION
	2011-12	COAL PRODUCTION
	2012-13	COAL PRODUCTION
	2013-14	MATHEMATICAL, SURVEYING AND DRAWING INSTRUMENTS
	2014-15	COAL PRODUCTION
	2015-16	COAL PRODUCTION
	2016-17	COAL PRODUCTION
	dtype: obj	ject

∨ Quinquennial percentage changes in investment over the sectors

→ Period 2000-2005

df.iloc[:, 0:6].pct_change(axis=1).plot(kind = 'bar', figsize=(20,10))

				FDI in India.ipyi
PRIME MOVER	INFORMATION & BI	MISCELLANEOUS N COMMERC	MATHEMATICAL,:	PAPER /

PAPER / SOP SOP SOP SOP SOP SOP SOP SOUTSOUTCING R&D.

PRINTING OF BOO

Sector

Period 2006-2010

df.iloc[:, 6:11].pct_change(axis=1).plot(kind = 'bar', figsize=(20,10))

<Axes: xlabel='Sector'>

PAPER A

TEA AND COFFEE (PROCESSIN PRINTING OF BOOKS

Sector

MISCELLANEOUS MI COMMERC

∨ Period 2011-2016

df.iloc[:, 11:].pct_change(axis=1).plot(kind = 'bar', figsize=(20,10))

