

Road Roughness and Vehicle Speeds

Data driven Mobility Modeling and Simulation

By

Akshay Penmatcha

BACKGROUND

- > Potholes, Pavement Defects or Pavement Roughness leads to defensive driving
- Result could be an inefficient flow of vehicles, fuel inefficiency and discomfort to drivers

PROJECT GOAL

- > Explore the relationship between Road Roughness and Vehicle Speeds
- Build a model to predict the Vehicle Speeds based on the Vibration and Length of the Road Link Data

RECAP OF PAPER REVIEW

- Multivariate analyses found statistically significant roughness effects
- HDM-III model developed a generalized roughness-speed model, but cannot ensure the accuracy of the prediction in all types of conditions
- Given the multiplicity of factors influencing speeds it is not always certain that the roughness effects have been accurately isolated.
- Limitations exist when trying to do predictions based on a wide variety of Data Sources
- The roughness effects can be expected to be small, particularly on roads with low levels of roughness (IRI < 5,0) such are usually found in developed countries.

DATASET

Syracuse, New York

- Point Vibration and Vehicle Speed Data collected in Syracuse, NY
- Only used the data from Residential Segments
- > Road Length Data From OpenStreetMap
- Net Vibration of X,Y,Z components was used
- Note: This data was collected by only one car in controlled conditions

Point Vibration, Speed Data collected (Residential Roads)

Data Distributions

- > The Net vibrations data has a mean value of 0.83 and median value of 0.65
- Mean Speeds are concentrated between 12-18mph indicating the controlled driving that was done in this case.
- > Speed Limit across all the roads considered was 30mph

Length, Vibration and Speed Correlations

1.0

0.8

0.6

0.4

0.2

- Desired correlation between Speed and Mean Vibration was Negative
- > But the result was a positive correlation
- Reason: Vibration on a vehicle keeps increasing with speed until a threshold speed
 - In this case, vehicle speeds were pretty low
 - Binning the Speed Data in 10mph intervals

Correlation with Mean Vibration in 10mph bins

Shift in Distribution with Speed bins

- We can observe a shift in the distribution of vibrations for each speed bin of 10mph
- After 30mph, the distribution is shifting backwards *not in graph

Correlation with Max Vibration

- Max Vibration was taken to check the effect of a major road defect on average speed.
- This has shown a negative correlation indicating that the larger the road defect, the lower the vehicle speed

Univariate Regression between Vibration and Speed

OLS Regression Results

=======================================					
Dep. Variable:	Speed	R-sq	uared:		0.732
Model:	OLS	s Adj.	R-squared:		0.731
Method:	Least Squares	s F-st	atistic:		2316.
Date:	Thu, 04 May 2017	7 Prob	(F-statistic)	:	8.14e-245
Time:	03:20:34	1 Log-	Likelihood:		-3075.9
No. Observations:	850	AIC:			6154.
Df Residuals:	849	BIC:			6159.
Df Model:	1	L			
Covariance Type:	nonrobust	t			
=======================================			=======================================		
CO	ef std err	t	P> t	[0.025	0.975]
vibration 5.85	54 0 . 122	48.126	0.000	5.618	6.095
============			=========		
Omnibus:	98.804	1 Durb	in-Watson:		1.784
Prob(Omnibus):	0.000) Jarq	ue-Bera (JB):		132.152
Skew:	0.916	9 Prob	(JB):		2.01e-29
Kurtosis:	3.649	9 Cond	. No.		1.00
=======================================	==========				

WAY FORWARD

- > Use INRIX Vehicle Speeds Data instead of point speeds
- > Include other data sources like No: of Lanes, Annual Daily Vehicle Traffic etc.
- Acquire flow data from DOT Traffic Cameras in New York City
- Clustering similar roads and vibrations for better categorization of Speed + Vibration Data
- > Try different transformations like Logarithmic to get a better model

THANK YOU