Scheduling Techniques

Dra. Mª Dolores Rodríguez Moreno

Objectives

Specific Objectives

- To understand what scheduling is
- Main techniques

Source

- Stuart Russell & Peter Norvig (2009). Artificial Intelligence: A Modern Approach. (3rd Edition). Ed. Pearsons
- Dechter, Meiri, and Pearl (1991). Simple Temporal Networks. Artificial Intelligence 49:61–95.
- Dana Nau's slides for Automated Planning. Licensed under License https://creativecommons.org/licenses/by-nc-sa/2.o/

- Introduction
- Scheduling Problem (SP)
- Types of SP
- Techniques
 - Operational Research (OR)
 - Constraints Satisfaction Problems (CSPs)
 - Temporal Constraints Satisfaction Problems (TCSP)
- Conclusions

Introduction (I)

- Scheduling has usually been addressed separately from planning
- In some cases, cannot decompose planning and scheduling so cleanly
- There is not specific language

Introduction (II)

- Given:
 - actions to perform
 - set of resources to use
 - time constraints
- Objective:
 - allocate times and resources to the actions
- What is a resource?
 - Something needed to carry out the action
 - Usually represented as a numeric quantity
 - Actions modify it in a *relative* way
 - Several concurrent actions may use the same resource

Introduction (III)

- Scheduling Problem (SP)
 - Set of resources and their future availability
 - Actions and their resource requirements
 - Constraints
 - Cost function
- Output
 - Allocations of resources and start times to actions
 - Must meet the constraints and resource requirements

- Introduction
- Scheduling Problem (SP)
- Types of SP
- Techniques
 - Operational Research (OR)
 - Constraints Satisfaction Problems (CSPs)
 - Temporal Constraints Satisfaction Problems (TCSP)
- Conclusions

SP: Actions

- Action a
 - resource requirements: which resources, what quantities
 - usually, upper and lower bounds on start and end times
 - Start time $s(a) \in [s_{min}(a), s_{max}(a)]$
 - End time $e(a) \in [e_{min}(a), e_{max}(a)]$
- Non-preemptive action: cannot be interrupted
 - Duration d(a) = e(a) s(a)
- Preemptive action: can interrupt and resume
 - Duration $d(a) = \sum_{i \in I} d(a) \le e(a) s(a)$
 - Can have constraints on the intervals

SP: Reusable Resources

- A reusable resource is "borrowed" by an action, and released afterward
 - e.g., use a tool, return it when done
- Total capacity Q_i for r_i may be either discrete or continuous
 - Current level $z_i(t) \in [0, Q_i]$ is $-z_i(t) = \text{how much of } r_i \text{ is currently available}$
- If action requires quantity q of resource r_{i}
 - Then decrease z_i by q at time s(a) and increase z_i by q at time e(a)
- Example: the two grippers in the robot problem
 - We might represent this as $Q_i = 2$
 - One of them in use at time t: z(t) = 2 1 = 1

SP: Consumable Resources

- A *consumable* resource is used up (or in some cases produced) by an action (e.g., fuel)
- Like before, we have total capacity Q_i and current level $z_i(t)$
- If action requires quantity q of r_i
 - Decrease z_i by q at time s(a)
 - Don't increase z_i at time e(a)

SP: Resources

- An action's resource requirement is a conjunct of assertions
 - consume $(a, r_i, q_i) \& \dots$
- or a disjunct if there are alternatives
 - consume (a,r_j,q_j) V ...
- z_i is called the "resource profile"

SP: Time constraints

- Bounds on start and end points of an action
 - absolute times
 - e.g., a deadline: $e(a) \le u$
 - release date: $s(a) \ge v$
 - relative times
 - latency: $u \le s(b) e(a) \le v$
 - total extent: $u \le e(a) s(a) \le v$
- Constraints on availability of a resource
 - e.g., can only communicate with a satellite at certain times

SP: Costs

- may be fixed
- may be a function of quantity and duration
 - e.g., a set-up cost to begin some activity, plus a run-time cost that's proportional to the amount of time
- e.g., suppose *a* follows *b*
 - cost $c_r(a,b)$ for a
 - duration $d_r(a,b)$, i.e., $s(b) \ge e(a) + d_r(a,b)$
- Objective: minimize some function of the various costs and/or end-times
 - The makespan or maximum ending time
 - The total number of resources allocated ...

- Introduction
- Scheduling Problem (SP)
- Types of SP
- Techniques
 - Operational Research (OR)
 - Constraints Satisfaction Problems (CSPs)
 - Temporal Constraints Satisfaction Problems (TCSP)
- Conclusions

Types of SP: machine scheduling

- Machine *i*: unit capacity (in use or not in use)
- Job *j*: partially ordered set of actions a_{jx} , ..., a_{jk}
- Schedule:
 - A machine *i* for each action a_{jk}
 - A time interval during which *i* processes a_{ik}
 - No two actions can use the same machine at once
- Actions in different jobs are completely independent
- Actions in the same job cannot overlap
 - e.g., Actions to be performed on the same physical object

Types of SP: single-stage machine scheduling

- Each job is a single action, and can be processed on any machine
- Identical parallel machines
 - Processing time p_i is the same regardless of which machine
 - Thus we can model all m machines as a single resource of capacity m
- Uniform parallel machines
 - Machine *i* has speed(*i*); time for *j* is *p_i*/speed(*i*)
- Unrelated parallel machines
 - Different time for each combination of job and machine

Types of SP: multiple-stage scheduling

- Job contains several actions
- Each requires a particular machine
- Flow-shop problems:
 - Each job j consists of exactly m actions $\{a_{j1}, a_{j2}, ..., a_{jm}\}$
 - Each a_{ii} needs to be done on machine i
 - Actions must be done in order a_{j1} , a_{j2} , ..., a_{jm}
- Open-shop problems
 - Like flow-shop, but the actions can be done in any order
- **Job-shop** problems (general case)
 - Constraints on the order of actions, and which machine for each action

Example: Job Shop

- Machines m_1 , m_2 , m_3 and jobs j_1 , ..., j_5
- j_1 : $\langle m_2(3), m_1(3), m_3(6) \rangle$
 - *i.e.*, m_2 for 3 time units then m_1 for 3 time units then m_3 for 6 time units
- j_2 : $\langle m_2(2), m_1(5), m_2(2), m_3(7) \rangle$
- j_3 : $\langle m_3(5), m_1(7), m_2(3) \rangle$
- j_4 : $\langle m_2(4), m_3(6), m_2(4), m_1(7) \rangle$
- j_5 : $\langle m_3(2), m_2(6) \rangle$

- Introduction
- Scheduling Problem (SP)
- Types of SP
- Techniques
 - Operational Research (OR)
 - Constraints Satisfaction Problems (CSPs)
 - Temporal Constraints Satisfaction Problems (TCSP)
- Conclusions

Operational Research

- Different approaches: Branch and bound, lineal programming, lagrangian relaxation...
- Integer Programming (IP) formulations
 - Set of constraints *C*, all are linear inequalities
 - Linear objective function *f*
 - Find a point $p=(x_1,...,x_n)$ such that
 - *p* satisfies *C*
 - p is integer-valued, i.e., every x_i is an integer
 - no other integer-valued point p'satisfies C and has f(p) < f(p)
- A huge number of problems can be translated into this format
- Several commercial IP solvers

- Introduction
- Scheduling Problem (SP)
- Types of SP
- Techniques
 - Operational Research (OR)
 - Constraints Satisfaction Problems (CSPs)
 - Temporal Constraints Satisfaction Problems (TCSP)
- Conclusions

- Introduction
- Scheduling Problem (SP)
- Types of SP
- Techniques
 - Operational Research (OR)
 - Constraints Satisfaction Problems (CSPs)
 - Temporal Constraints Satisfaction Problems (TCSP)
- Conclusions

- Introduction
- Scheduling Problem (SP)
- Types of SP
- Techniques
 - Operational Research (OR)
 - Constraints Satisfaction Problems (CSPs)
 - Temporal Constraints Satisfaction Problems (TCSP)
- Conclusions

Conclusions

- SP techniques: OR & CSP
- For time, TCSP \rightarrow uses STN
- How can we integrate P&S?

Integrating P&S

• CSP approach

Integrating P&S

Propagation

Compute

Select

Resolve

Integrating P&S

Scheduling Techniques

Dra. Mª Dolores Rodríguez Moreno

Backtracking search

```
function Backtracking-Search(csp) returns a solution, or failure return Recursive-Backtracking(\{\}, csp)

function Recursive-Backtracking(assignment, csp) returns a solution, or failure

if assignment is complete then return assignment

var \leftarrow Select-Unassigned-Variable(Variables[csp], assignment, csp)

for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment according to Constraints[csp] then

add { var = value } to assignment

result \leftarrow Recursive-Backtracking(assignment, csp)

if result \neq failue then return result

remove { var = value } from assignment

return failure
```


Arc consistency AC-3

```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{Remove-First}(queue) if RM-Inconsistent-Values(X_i, X_j) then for each X_k in Neighbors[X_i] do add (X_k, X_i) to queue function RM-Inconsistent-Values(X_i, X_j) returns true iff remove a value removed \leftarrow false for each x in Domain[X_i] do if no value y in Domain[X_j] allows (x,y) to satisfy constraint(X_i, X_j) then delete x from Domain[X_i]; removed \leftarrow true return removed
```

☐ Time complexity: O(n2d3)

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Actions: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

• Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

