Curs 4: Vectori aleatori discreți

.

1.1 Vectori aleatori discreți

Dacă într-un experiment aleator se observă simultan două sau mai multe variabile aleatoare discrete, atunci o pereche, (X,Y), sau mai general un n-uplu , (X_1,X_2,\ldots,X_n) , de variabile aleatoare se numește vector aleator. Considerăm mai întâi cazul unei perechi, generalizarea noțiunilor și rezultatelor la vectori aleatori de n componente fiind apoi evidentă.

Pentru a putea calcula probabilități ale evenimentelor în care sunt implicate două variabile aleatoare discrete, X și Y, se precizează mulțimile de valori ale acestora, $D_X = \{x_1, x_2, \ldots, x_m\}$, respectiv $D_Y = \{y_1, y_2, \ldots, y_m\}$ și se dă distribuția de probabilitate a vectorului aleator, care constă în precizarea probabilitătilor evenimentelor de forma $((X, Y) = (x_i, y_j)) = (X = x_i) \cap (Y = y_j), i = \overline{1, m}, j = \overline{1, n}$. Evenimentul $((X, Y) = (x_i, y_j))$ este evenimentul ca vectorul aleator (X, Y) să ia ca "valoare" perechea (x_i, y_j) . Notând cu $p_{X,Y}(x_i, y_j) \stackrel{sau}{=} p_{ij} := P((X, Y) = (x_i, y_j))$, probabilitatea unui astfel de eveniment, distribuția de probabilitate se afișează concentrat astfel:

$$(X,Y) = \begin{pmatrix} (x_i, y_j) \\ p_{ij} \end{pmatrix}, \quad \sum_{i=1}^m \sum_{j=1}^n p_{ij} = 1$$
 (1)

Pentru vectori aleatori, (X, Y), cu număr redus de valori ale componentelor, distribuția de probabilitate se dă într-un tablou 2D de tipul:

				Y		
		y_1	y_2		y_j	 y_n
	x_1	p_{11}	p_{12}		p_{1j}	 p_{1n}
	x_2	p_{21}	p_{22}		p_{2j}	 p_{2n}
X	:					
	x_i	p_{i1}	p_{i2}		p_{ij}	 p_{in}
	:					
	x_m	p_{m1}	p_{m2}		p_{mj}	 p_{mn}

Observația 1.1.1 Fiind dat vectorul aleator (X,Y), evenimentul:

$$((X,Y) = (x,y)) = (X = x) \cap (Y = y)$$

se notează (X = x, Y = y).

Exemplul 1. Fie X, Y două variabile aleatoare discrete ce pot lua valorile $\{1, 2, 3, 4\}$. Distribuția de probabilitate comună a celor două variabile este dată în tabloul:

			Y		
		1	2	3	4
	1	0.03	0.05	0.1	0.12
Χ	2	0.05	0.06	0.08	0.07
	3	0.07	0.06	0.06	0.02
	4	0.07	0.09	0.05	0.02

Fiecare element din poziția (i, j) a matricii 4×4 reprezintă probabilitatea P(X = i, Y = j). De exemplu P(X = 2, Y = 3) = 0.08. Suma tuturor acestor probabilități este 1: $\sum_{i=1}^{4} \sum_{j=1}^{4} p_{ij} = 1$.

Cunoscând distribuţia de probabilitate a vectorului aleator, (X, Y), ne întrebăm dacă putem afla distribuţia fiecărei componente, adică a lui X, respectiv Y. Mai precis, a determina distribuţia de probabilitate a lui X, revine la a determina probabilităţile evenimentelor $(X = x_i)$, $i = \overline{1, m}$.

mentelor $(X = x_i)$, $i = \overline{1, m}$. Notăm cu $p_X(x_i) \stackrel{sau}{=} p_{i \bullet} = P(X = x_i)$, probabilitatea ca variabila aleatoare X să ia valoarea x_i și cu $p_Y(y_j) \stackrel{sau}{=} p_{\bullet j} = P(Y = y_j)$, probabilitatea ca Y să ia valoarea y_j , $i = \overline{1, m}$, $j = \overline{1, n}$. Exprimăm evenimentul $(X = x_i)$ ca reuniune de evenimente relativ la vectorul aleator (X, Y):

$$(X = x_i) = (X = x_i, Y = y_1) \cup (X = x_i, Y = y_2) \cup \dots \cup (X = x_i, Y = y_n).$$
 (2)

Deoarece evenimentele:

$$(X = x_i, Y = y_1), (X = x_i, Y = y_2), \dots, (X = x_i, Y = y_n)$$
 (3)

sunt incompatibile, rezultă că:

$$p_X(x_i) = p_{i\bullet} := P(X = x_i) = p_{i1} + p_{i2} + \dots + p_{in}, i = \overline{1, m},$$
 (4)

adică $P(X = x_i)$ este suma elementelor de pe linia i din tabloul distribuției de probabilitate a vectorului aleator, (X, Y). Analog se argumentează că:

$$p_Y(y_j) = p_{\bullet j} := P(Y = y_j) = p_{1j} + p_{2j} + \dots + p_{mj}, j = \overline{1, n}$$
 (5)

Evident că $\sum_{j=1}^{n} p_{\bullet j} = 1$ și $\sum_{i=1}^{m} p_{i \bullet} = 1$.

Definiția 1.1.1 Distribuțiile de probabilitate ale variabilelor aleatoare X și Y:

$$X = \begin{pmatrix} x_i \\ p_{i\bullet} \end{pmatrix}, i = \overline{1, m}, \quad Y = \begin{pmatrix} y_j \\ p_{\bullet j} \end{pmatrix}, j = \overline{1, n}, \tag{6}$$

determinate din distribuția de probabilitate a vectorului aleator, (X, Y), se numesc distribuții marginale ale vectorului aleator (X, Y).

Cunoscând distribuția de probabilitate a unui vector aleator, (X,Y), problema fundamentală este să stabilim interdependeța dintre evenimentele de forma $(X=x_i)$, $i=\overline{1,m}$, $(Y=y_j)$, $j=\overline{1,n}$. Cu alte cuvinte sa investigăm dacă perechi de astfel de evenimente sunt independente sau nu. În acest scop calculăm probabilitățile condiționate $P(X=x_i|Y=y_j)$ (probabilitatea ca X să ia valoarea x_i , știind că Y a luat valoarea y_j):

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_i)} = \frac{p_{ij}}{p_{\bullet i}} = \frac{p_{ij}}{\sum_{i=1}^{m} p_{ij}}$$
(7)

Notăm $p(x_i|y_j) = P(X = x_i|Y = y_j) = \frac{p_{ij}}{\sum_{i=1}^m p_{ij}}$. Suma acestor probabilități condiționate este:

$$\sum_{i=1}^{m} p(x_i|y_j) = \sum_{i=1}^{m} \frac{p_{ij}}{p_{\bullet j}} = \frac{\sum_{i=1}^{m} p_{ij}}{p_{\bullet j}} = \frac{p_{\bullet j}}{p_{\bullet j}} = 1.$$
 (8)

Astfel, avem o variabilă aleatoare ce ia valorile x_i cu probabilitățile $p(x_i|y_j)$. Notăm această variabilă prin $(X|Y=y_j)$ și citim: variabila aleatoare X condiționată de evenimentul $(Y=y_j)$, j fixat:

$$(X|Y = y_j) = \begin{pmatrix} x_1 & x_2 & \cdots & x_i & \cdots & x_m \\ p(x_1|y_j) & p(x_2|y_j) & \cdots & p(x_i|y_j) & \cdots & p(x_m|y_j) \end{pmatrix}$$
(9)

Analog variabila Y condiționată de $(X = x_i)$ are distribuția de probabilitate:

$$(Y|X = x_i) = \begin{pmatrix} y_1 & y_2 & \cdots & y_j & \cdots & y_n \\ p(y_1|x_i) & p(y_2|x_i) & \cdots & p(y_j|x_i) & \cdots & p(y_n|x_i) \end{pmatrix},$$
(10)

unde

$$p(y_j|x_i) := P(Y = y_j|X = x_i) = \frac{P(Y = y_j, X = x_i)}{P(X = x_i)} = \frac{p_{ij}}{\sum_{i=1}^n p_{ij}}$$
(11)

Exemplul 2. Considerăm vectorul aleator (X, Y) din exemplul precedent. Adăugăm distribuției de probabilitate a vectorului aleator și distribuțiile marginale:

			Y			
		1	2	3	4	p_X
	1	0.03	0.05	0.1	0.12	0.3
X	2	0.05	0.06	0.08	0.07	0.26
	3	0.07	0.06	0.06	0.02	0.21
	4	0.07	0.09	0.05	0.02	023
	p_Y	0.22	0.26	0.29	0.23	

Distribuția de probabilitate a variabilei condiționate (X|Y=2) este:

$$(X|Y=2) = \begin{pmatrix} \frac{1}{p_{12}} & \frac{2}{p_{22}} & \frac{3}{p_{32}} & \frac{4}{p_{42}} \\ \frac{p_{12}}{p_{12}} & \frac{p_{22}}{p_{12}} & \frac{p_{32}}{p_{12}} & \frac{p_{42}}{p_{12}} \end{pmatrix} = \begin{pmatrix} \frac{1}{0.05} & \frac{2}{0.26} & \frac{3}{0.26} & \frac{4}{0.26} \\ \frac{0.05}{0.26} & \frac{0.06}{0.26} & \frac{0.06}{0.26} & \frac{0.09}{0.26} \end{pmatrix}$$

Definiția 1.1.2 Variabilele aleatoare discrete X, Y cu proprietatea că $P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$, oricare ar fi $i = \overline{1, m}$, $j = \overline{1, n}$, se numesc variabile aleatoare independente.

Folosind notațiile de mai sus, variabilele aleatoare X,Y, cu proprietatea că $p_{X,Y}(x_i,y_j) = p_X(x_i)p_Y(y_j)$ sunt independente. Echivalent, variabilele aleatoare X,Y sunt independente dacă distribuțiile condiționate coincid cu cele marginale:

$$P(X = x_i | Y = y_j) = P(X = x_i)$$
, sau $P(Y = y_j | X = x_i) = P(Y = y_j)$, (12)

$$\forall i, = \overline{1, m}, j = \overline{1, n}.$$

Generalizând, variabilele aleatoare discrete X_1, X_2, \ldots, X_n , astfel încât distribuția de probabilitate a vectorului aleator $X = (X_1, X_2, \ldots, X_n)$ este produsul distribuțiilor marginale:

$$p_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = p_{X_1}(x_1)p_{X_2}(x_2)\cdots p_{X_n}(x_n),$$

oricare ar fi $(x_1, x_2, ..., x_n) \in D_{X_1} \times D_{X_2} \times ... \times D_{X_n}$, se numesc variabile aleatoare independente.

Exemplul 3. Un blogger realizează 0,1 sau 2 postări, sâmbăta şi 0 sau 1 duminica. Notăm cu S, respectiv D variabilele aleatoare ce dau numărul de postări făcute sâmbăta, respectiv, duminica. Vectorul aleator (S,D) are distribuția de probabilitate:

		D	
		0	1
	0	0.1	0.1
S	1	0.3	0.2
	2	0.1	0.2

Este numărul de postări afișate sâmbăta independent de numărul celor afișate duminica? **Rezolvare:** Pentru a răspunde la întrebare, calculăm probabilitățile marginale P(S = i), i = 0, 1, 2, P(D = j), j = 0, 1 și avem:

		D		
		0	1	$p_{i.}$
	0	0.1	0.1	0.2
S	1	0.3	0.2	0.5
	2	0.1	0.2	0.3
	$p_{.j}$	0.5	0.5	

Să verificăm dacă $P(S=i, D=j) = P(S=i)P(D=j), \forall i=0,1,2, \forall j=0,1$: pentru $i=0, j=0, 0.1=0.2 \cdot 0.5$; pentru $i=0, j=1, 0.1=0.2 \cdot 0.5$; $i=1, j=0, 0.3 \neq 0.5 \cdot 0.5$. În concluzie variabilele S și D nu sunt independente.

1.1.1 Vectori aleatori discreți de distribuție uniformă

Definiția 1.1.3 Fie X, Y două variabile aleatoare ce au ca mulțimi de valori pe $D_X = \{x_1, x_2, \dots, x_m\}$, respectiv $D_Y = \{y_1, y_2, \dots, y_n\}$. Vectorul aleator (X, Y) ce are distribuția de probabilitate $p_{X,Y}(x,y) = P((X,Y) = (x,y)) = \frac{1}{|D_X| |D_Y|} = \frac{1}{mn}$, $\forall (x,y) \in D_X \times D_Y$, se numește vector aleator, uniform distribuit pe $D_X \times D_Y$.

În notația adoptată anterior, distribuția de probabilitate se dă printr-un tablou:

				Y			
		y_1	y_2		y_j		y_n
	x_1	$\frac{1}{mn}$	$\frac{1}{mn}$		$\frac{1}{mn}$		$\frac{1}{mn}$
X	x_2	$\frac{1}{mn}$	$\frac{1}{mn}$		$\frac{1}{mn}$		$\frac{1}{mn}$
	:		• • •	:		:	:
	x_i	$\frac{1}{mn}$	$\frac{1}{mn}$		$\frac{1}{mn}$		$\frac{1}{mn}$
	:		:		:		
	x_m	$\frac{1}{mn}$	$\frac{1}{mn}$		$\frac{1}{mn}$		$\frac{1}{mn}$

Calculând distribuțiile marginale obținem:

$$X = \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_m \\ \frac{1}{m} & \frac{1}{m} & \dots & \frac{1}{m} \end{array}\right)$$

$$Y = \left(\begin{array}{ccc} y_1 & y_2 & \dots & y_n \\ \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \end{array}\right),$$

adică variabilele aleatoare, X și Y, sunt uniform distribuite pe D_X , respectiv D_Y , și

$$P((X,Y) = (x,y)) = \frac{1}{mn} = \frac{1}{m} \frac{1}{n} = P(X=x) \cdot P(Y=y), \forall x, y \in \mathbb{R},$$

ceea ce ilustrează că variabilele aleatoare, X și Y, sunt independente. Prin urmare avem:

Propoziția 1.1.1 Dacă un vector aleator discret, (X,Y), este uniform distribuit pe produsul cartezian a două mulțimi finite D_X , D_Y , atunci coordonatele sale, X și Y, sunt independente și uniform distribuite pe D_X , respectiv D_Y .

Reciproc, dacă X şi Y sunt variabile aleatoare independente şi uniform distribuite, pe mulțimile finite D_X , respectiv D_Y , atunci vectorul aleator discret (X,Y) este uniform distribuit pe $D_X \times D_Y$

1.2 Funcții de două variabile aleatoare discrete

Fie X,Y două variabile aleatoare discrete ce au mulțimile de valori $D_X = \{x_i, i = \overline{1,m}\}$, respectiv $D_Y = \{y_j, j = \overline{1,n}\}$ și funcția $h: D_X \times D_Y \to \mathbb{R}$, continuă și mărginită. Atunci h(X,Y) este o variabilă aleatoare discretă ce ia valorile $z_{ij} = h(x_i,y_j), i = \overline{1,m}, j = \overline{1,n}$. Să calculăm distribuția de probabilitate a variabilei imagine h(X,Y):

 $P(h(X,Y) = z_{ij}) = P((X,Y) \in h^{-1}(\{z_{ij}\})), \ \forall \ i = \overline{1,m}, \ j = \overline{1,n}, \ \text{unde} \ h^{-1}(\{z\}) = \{(x,y) \mid h(x,y) = z\}$ este preimaginea elementului z.

Exemplul 4. Fie h(x,y) = x + y şi variabila aleatoare h(X,Y) = X + Y. Distribuţia de probabilitate a variabilei aleatoare Z = X + Y se obţine calculând P(Z = z) = P(X + Y = z). Evenimentul (X + Y = z) se poate produce în mai multe moduri, dacă există mai multe perechi (x_i, y_i) pentru care suma $x_i + y_i = z$. Astfel,

$$P(X+Y=z) = P((X,Y) \in h^{-1}(z)) = \sum_{i,j|x_i+y_j=z} P(X=x_i, Y=y_j).$$
 (13)

Observații

- Putem calcula distribuţia de probabilitate a sumei a două variabile sau mai general, a compusei h(X,Y), doar dacă cunoaștem distribuţia de probabilitate a vectorului aleator (X,Y);
- Distribuția de probabilitate a sumei poate fi calculată în cazul variabilelor X, Y, independente şi când cunoasţem doar distribuţiile marginale ale lui X şi Y, pentru că $P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i)$.

Exemplul 5. Considerăm exemplul prezentat anterior:

Exemplul 6. Un blogger realizează 0,1 sau 2 postări, sâmbăta și 0 sau 1 duminica. Notăm cu S, respectiv D variabilele aleatoare ce dau numărul de postări făcute sâmbăta, respectiv, duminica. Vectorul aleator (S,D) are distribuția de probabilitate:

		D	
		0	1
	0	0.1	0.1
S	1	0.3	0.2
	2	0.1	0.2

Să se calculeze probabilitatea ca în cele două zile să afișeze două postări.

Rezolvare: Trebuie să calculăm P(S+D=2). Evenimentul $(S+D=2)=(S=1, D=1) \cup (S=2, D=0)$. Deci P(S+D=2)=P(S=1, D=1)+P(S=2, D=0)=0.2+0.1=0.3.

Propoziția 1.2.1 Dacă $X_1, X_2, ..., X_n$ sunt variabile aleatoare discrete având mediile $m_i = M(X_i)$, $i = \overline{1, n}$, și $a_1, a_2, ..., a_n \in \mathbb{R}$, atunci media combinației liniare a variabilelor aleatoare, cu coeficienții a_i , este combinația liniară cu aceeași coeficienți, a mediilor $M(X_i)$, $i = \overline{1, n}$:

$$M(a_1X_1 + a_2X_2 + \dots + a_nX_n) = a_1M(X_1) + a_2M(X_2) + \dots + a_nM(X_n)$$