Eine Masse mi mit Gerdundegtheit ui stoße auf eine Masse mz im Rate Dann piet:

$$\frac{1}{2}m_1 U_1^2 = \frac{1}{2}m_1 U_1^2 + \frac{1}{2}m_2 U_2^2$$
 Englishalling (1)
 $m_1 U_1 = m_1 U_1 + m_2 U_2^2$ Impulse halfing (2)

wober of, or die Enderschundigherten von m, und mz sind wähle Kockmaten syptem so doß stoß in xy-Ebene statt findet mit $U_1 = U_1 \tilde{e}_X$, $U_2 = P_2 = m_2 \tilde{v}_2 \cdot \tilde{e}_X$; $U_3 = P_2 = m_2 \tilde{v}_2 \cdot \tilde{e}_X$; $U_4 = P_2 = m_2 \tilde{v}_2 \cdot \tilde{e}_X$

=)
$$\xi^2 + \eta^2 = m_2^2 U_2^2$$
 (3); $(m_1 u_1 - \xi)^2 + \eta^2 = m_1^2 U_1^2$ (4)

Nun ist
$$m_1^2 u_1^2 = m_1^2 \left(u_1^2 - \frac{m_2}{m_1} u_2^2 \right) = m_1^2 u_1^2 - \frac{m_1}{m_2} \left(\xi^2 + \eta^2 \right)$$
(1)

Education (4) lie per

$$(\S^{2} + \eta^{2})(1 + \frac{m_{1}}{m_{2}}) - 2m_{1}u_{1}\S = 0$$

Multiplihaha m't $\frac{m_{2}}{m_{1} + m_{2}}$ Sibt $\S^{2} + \eta^{2} - 2m_{1}\S = 0$ ode

Wobai $\Gamma = \frac{m_1 m_2}{m_1 + m_2}$ die reduzierte Masse ist

alle Lösingen hiegen out einem Krais mit Radius pry, um den Punht (x,y) = (pu,, o) 1. tentrale Stors: Alle Imputse heyen out de x-Achke; sodoss

m, 4, = m, 5, + mz vz

Anwendung von't Fijur errist (abgerehen van der hivialen Lösung $U_1 = u_1, U_2 = 0$) $m_2 U_2 = 2 m_1$ $m_2 U_3 = 2 m_1$ $m_3 = 0$ $m_4 = 0$ $m_4 = 0$ $m_4 = 0$ $m_5 = 0$

2. m, = m2 = m (sleidre Massen)

=) $C = \frac{m}{2}$ $C = \frac{m}{2}u_1 = \frac{m_1u_1}{2} =$ $C = \frac{m}{2}$ $C = \frac{m}{2}$ C =

3. m1 >> m2

=1 mam2 mu, ccmu,

für linen penhale staß halt man $m_2 v_2 \approx 2 m_2 u_1 = 1 v_2 \approx 2 u_1$ $m_1 v_1 \approx m_1 u_1 - m_2 2 u_1 = 1 v_1 \approx u_1$ Der Eurgie-überhaj ist $\frac{1}{2} \frac{m_2 v_2^2}{m_1 u_1^2} \approx 4 \frac{m_2}{m_1} < < 1$

4. m, << m2

=) $\nabla^2 m_1$ $\int u_1 \simeq m_1 u_1$ for eine rentrate Stass ist $m_2 v_2 \simeq 2 m_1 u_1 = 1$ $v_2 \simeq 2 \frac{m_1}{m_2} u_1$ $m_1 v_1 \simeq m_1 u_1 - 2 m_1 u_1 = 1$ $v_1 \simeq -u_1 = 1$ Reflexion $v_1 = 1$ Impulsibertay $\Delta p \simeq -2 m_1 u_1 \rightarrow u_1 + 1$ $u_1 \rightarrow u_2 \rightarrow u_3 \rightarrow u_4$ $u_1 \rightarrow u_4 \rightarrow u_5 \rightarrow u_5$ in der hinetischen Gastheerie

Penhale inelæshister Stoffs zweier gleider Mussen

$$\frac{m}{2}u_1^2 = \frac{m}{2}v_1^2 + \frac{m}{2}v_2^2 + Q(1) + u_1 = v_1 + v_2$$

$$v_2^2 - v_2 u_1 + \frac{Q}{m} = 0$$
 =) $v_2 = \frac{u_1}{2} + \sqrt{\frac{u_1^2}{4} - \frac{Q}{m}}$

$$= \frac{u_1}{2} - \sqrt{\frac{u_1^2}{4} - \frac{u_2}{m}}$$

Ans de Wurred Foly and

Untral- Symmetriches System V(i) = V(r)

$$F(7) = - \overrightarrow{\nabla} V(7) = - \frac{dV}{d7} \overrightarrow{e}_{7}$$

Er haltung größen:

$$E = E_{mn} + E_{pot} = \frac{m}{2} \ddot{x}^2 + V(\ddot{x}) \qquad E_{neple}$$

$$L = \ddot{x} \times \ddot{p} = m \ddot{x} \times \ddot{x} \qquad D_{rehimpuls}$$

In elem Polarhocidmaten ist = reg + rieg

$$= \frac{m}{2} \left(\mathring{n} \mathring{e}_{\Upsilon} + n \mathring{q} \mathring{e}_{\varphi} \right)^{2} + V(\Upsilon) = \frac{m}{2} \left(\mathring{n}^{2} + n^{2} \mathring{\varphi}^{2} \right) + V(\Upsilon)$$

$$\stackrel{\sim}{L} = m \mathring{\gamma} \times \left(\mathring{n} \mathring{e}_{\Upsilon} + n \mathring{q} \mathring{e}_{\varphi} \right) = m n^{2} \mathring{q} \mathring{e}_{\chi}$$

Subrecht zu Bahnebene

Mit L2 = (mr24)2 = const. hann man die Energie schreiben als

$$V_{\text{ey}}(x) = V(x) + \frac{L^2}{2mx^2}$$

-) ellethir ein dimensionales Problem

Drehimpulbanier!

=)
$$\dot{\gamma} = \frac{dr}{dt} = \sqrt{\frac{2}{m}(E - V_{eff}(r))}$$

$$=) \quad t(x) - t(x_0) = \int_{t(x_0)}^{t(x)} dt' = \int_{r_0}^{\infty} \frac{dx'}{r'(x')} = \int_{r_0}^{\infty} \frac{dx'}{\sqrt{\frac{2}{m}(E-Vey_{(M)})}}$$

About it have man den Azimuth wintel & at Funtha van y and driven:

$$\begin{aligned}
\varphi(r) - \varphi(r_0) &= \int d\varphi' &= \int \frac{d\varphi}{dt} \frac{dt}{dr} dr' &= \int \varphi' \frac{1}{r'(q')} dr' \\
&= \frac{L}{\sqrt{2m}} \int_{r_0}^{r} \frac{dr'}{r'^2 \sqrt{E} - V_{eh}(r')} \\
L &= mr^2 \dot{\varphi} = confr.
\end{aligned}$$

Ju allgeneinen liem V(x) = 0, abre and Vey (x) -) 0 fin x-) as

=) Fire ungebundene Buhnen ist EZO

Fire gebundere Buhnen: Vin Ex Ever und die Umlant leit,ist

$$T = 2 \int \frac{dr'}{\sqrt{\frac{2}{m} (E - VeW[n])}}$$

Nu wenn der dansite derid confine Azimuth with sel

en vielfordes van 211 ist, AG=211h, NEIN, 1st die Bahn gerklossen
Typische Polenhiale: Abstofender Ken
Antichung

$$V(r) = \alpha \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^6 \right]$$
 lennard-Sona Potential for Webselwishung zwisten Atomen

Keple publem

Zwei Massin M, in (ida. M>sm)

Wähle Irechal system in wedden de Schwerpung mit:

$$\vec{R} = \frac{\vec{M} \cdot \vec{n}_1 + \vec{m} \cdot \vec{n}_2}{\vec{M} + \vec{m}} = 0 \quad \Rightarrow \quad \vec{n}_1 = -\frac{\vec{m} \cdot \vec{n}_2}{\vec{M}}$$

$$\vec{\gamma} := \vec{\gamma}_2 - \vec{\gamma}_1 = \frac{M_{tm}}{M} \vec{\gamma}_2 =) \quad \vec{\gamma}_2 = \frac{M}{M_{tm}} \vec{\gamma} \qquad \vec{\gamma}_1 = \frac{m}{M_{tm}} \vec{\gamma}$$

$$V(x) = -\frac{G_N M_{on}}{T} = -\frac{G_N (M_{fm})_{0}}{T}$$

$$C = \frac{M_{on}}{M_{fm}} \quad \text{redurieste}$$

$$M_{onste}$$

$$= \frac{1}{2} = \frac{G}{2} \dot{r}^2 + Veh(r) = const. \quad Veh(r) = -\frac{GMm}{r} + \frac{L^2}{2mr^2}$$

$$L = \frac{G}{2} \dot{r}^2 + Veh(r) = const.$$

Ferner ist fin diese spenielle Poturbial der lenz-Runge-Chliter
PI-39

exhalten:

$$\dot{A} = \dot{x} \times \dot{L} + \frac{G_{N}M_{m}}{r^{2}} \dot{x} - \frac{G_{N}M_{m}}{r} \dot{x}$$

$$= \frac{G_{N}M_{m}}{r} \left(-\frac{\ddot{x}}{c^{2}r^{2}} \times \left(c^{2}r^{2} \times \ddot{x}^{2} \right) + \frac{\ddot{x}}{r} \dot{x}^{2} - \frac{\ddot{x}}{r} \right)$$

$$\dot{c} = \dot{c}(\dot{x}) = -\ddot{v} V(\dot{x}) = -\frac{G_{N}M_{m}}{r^{3}} \dot{x}^{2}$$

$$= \frac{G_{N}M_{m}}{r} \left(\dot{x} + \frac{\ddot{x}}{r} \dot{x}^{2} + \frac{\ddot{x}}{r} \dot{x}^{2} - \frac{\ddot{x}}{r} \right) = 0$$

$$\dot{x} \times (\ddot{x} \times \ddot{x}) = \ddot{x} \cdot (\ddot{x} \cdot \ddot{x}) - \ddot{x} \cdot (\ddot{x} \cdot \ddot{x}) = \ddot{x} \cdot r \dot{x} - r^{2} \ddot{x}$$

$$\dot{d}(\dot{x}) = 2r \dot{x} = \frac{\dot{d}}{dt} (\ddot{x} \cdot \ddot{x}) = 2\ddot{x} \cdot \ddot{x}$$

$$\dot{d}(\dot{x}) = 2r \dot{x} = \frac{\dot{d}}{dt} (\ddot{x} \cdot \ddot{x}) = 2\ddot{x} \cdot \ddot{x}$$

Bolras:

$$A^{2} = \overrightarrow{A} \cdot \overrightarrow{A} = \left(\overrightarrow{\tau} \times \overrightarrow{L} - \frac{G_{N}M_{m}}{\gamma} \overrightarrow{\gamma} \right)^{2} = \overrightarrow{\gamma}^{2} \overrightarrow{L}^{2} - \frac{2G_{N}M_{m}}{\gamma} \left(\overrightarrow{\gamma} \times \overrightarrow{L} \right) \cdot \overrightarrow{\gamma} + \left(G_{N}M_{m} \right)^{2}$$

$$|\overrightarrow{\gamma} \times \overrightarrow{L}| = \overrightarrow{\gamma}^{2} \overrightarrow{L}^{2} \quad \text{well} \quad \overrightarrow{\gamma} \cdot \overrightarrow{L} = 0$$

$$= L^{2}(\ddot{x}^{2} - \frac{2G_{N}\Pi_{m}}{\sigma x}) + (G_{N}\Pi_{m})^{2} = \frac{2L^{2}}{\sigma} E + (G_{N}\Pi_{m})^{2}$$

$$(\ddot{x} \chi \ddot{L}) \cdot \ddot{x} = (\ddot{x} \chi \ddot{x}) \cdot \ddot{L} = \frac{\ddot{L}^{2}}{\sigma}$$

Delinière numerische Extentizität

$$E := \sqrt{1 + \frac{2L^2E}{\sigma(G_N M_m)^2}}$$
 (1)

-) Senhedt zur Ebene de Kepterbahn

$$b = \sqrt{a^2 - e^2} = \alpha \sqrt{1 - e^2} = \sqrt{\frac{b^2}{a}} \cdot a = \sqrt{h} \cdot a = \sqrt{2}$$

$$= \frac{L}{\sqrt{-2}\sigma^{E}} \qquad (4)$$

Er gilt de Flächer soch i Der Radius vetrtor überstreicht in gleichen Zeiten gleiche Flächen (Zweiter Kepleischer Geselt):

$$d\vec{r} = \frac{1}{2} \vec{n} \times d\vec{n}$$

$$= \frac{1}{2} \vec{n} \times d\vec{n}$$

$$= \frac{1}{2} \vec{n} \times \vec{n} = \frac{1}{2$$

$$F = \overline{11ab} = \overline{11a}$$

$$V = \overline{17ab} = \overline{17a}$$

$$A = \overline{17ab} = \overline{17ab} = \overline{17a}$$

$$A = \overline{17ab} = \overline$$

=)
$$T = \pi \alpha \sqrt{\frac{2\sigma}{E}} = 2\pi a \sqrt{\frac{\sigma \alpha}{G_N M_m}}$$

=) $\frac{T^2}{\alpha^3} = \frac{4\pi^2 G}{G_N M_m} = \frac{4\pi^2}{G_N (M+m)} \simeq \frac{4\pi^2}{G_N M}$

-) drittes Keplerishes Geretz

Ohne defaillierte Beweist:

1. Definition:
$$\frac{\chi^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$=) \quad \gamma_{1} = \frac{h}{1 + \epsilon c_{5} \varphi} \qquad h = \frac{b^{2}}{a}$$

$$a = \frac{G_N M_m}{2F} > 0 \qquad b = \frac{L}{\sqrt{2mE1}}$$

$$=) \quad \text{Sin } \frac{1}{2} = \text{Sin} \left(\frac{1}{2} \right) = - \text{Cos } \frac{1}{2} = \frac{1}{2}$$

=)
$$\tan \frac{\pi}{2} = \frac{\sin \frac{\pi}{2}}{\sqrt{1-\sin^2{\theta}h}} = (\sin^{-2}{\frac{\pi}{2}} - 1)^{-1/2} = (\varepsilon^2 - 1)^{-1/2} =$$

$$=\left(\frac{e^2}{a^2}-1\right)^{-1/2}=\left(\frac{b^2}{a^2}\right)^{-1/2}=\frac{a}{b}=\frac{G_NMm}{2bE}$$

=)
$$\theta(b) = 2 \operatorname{arcten} \frac{GNMm}{2bE}$$

= "Stops parameter"

3. Parabel -) Riche friher übung anfgabe

Annehung: Keple bahnen sind gestrlessen o wenn das Pohnhal mitt et to wie E.B. in allgemeine Relativiteits thearie, dann sind Bahnen mitt gestrlossen 4.B. Periheldrehung des Mertsur

3. Parabeli

Menge alle Purthe, die vom Brennpunter Fund einer Genden & den gleiden Abstand haben

$$x + \frac{h}{2} = \sqrt{y^2 + (x - \frac{h}{2})^2}$$
 (=) $(x + \frac{h}{2})^2 = y^2 + (x - \frac{h}{2})^2$ (=) $y^2 = 2hx$

In Polarhourdinaters:
$$\gamma(\varphi) = \chi + \frac{h}{2} = \frac{h}{2} - \gamma \cos \varphi + \frac{h}{2} = h - \gamma \cos \varphi$$

$$= 1 \quad \gamma(\varphi) = \frac{h}{1 + \cos \varphi}$$

Ensammen fassens:

- 1. Keplerste Gesetz: Gebundene Planete bewegungen (zweiherpe problem)
 ond Ellippen
- 2. Keplershe Olsetz: Der Fahrshahl üboerstreicht in gleichen Zeiten gleiche Flüchen
- 3. Replesibles begin : $\frac{T^2}{q^3} = const. = \frac{4\pi^2}{6\pi(Mm)}$

Wirhung gurschnitt und Menung

Stromdichte j = # enfallende Teilchen pro Zeit und Fläche Raum win helelement dN = sind dodg

Wirhunpquesdnitt do= do da =

= # Teilohen gestrent in dol pro ?eit =

= is jbabdy = bolbay

"impact parameter" b

$$=) \frac{d\sigma}{d\Lambda} = \frac{b \, db \, d\varphi}{s \, m \, \theta \, d\theta \, d\varphi} = \frac{b}{s \, m \, \theta} \frac{db}{d\theta}$$

Shenverinhel & wird mid wadendem impact b hleine

 $\frac{db}{d\theta} = \frac{d\sigma}{d\eta} = \frac{b}{sn\theta} \left[\frac{db}{d\theta} \right]$

hie: $b = \frac{G_N M_m}{2E} cot \frac{\theta}{2} = \frac{G_N M_m}{d\theta} = -\frac{G_N M_m}{4E} \frac{1}{\sin^2 \frac{\theta}{2}}$

=)
$$\frac{d\sigma}{dN} = \frac{(G_N M_m)^2}{16E^2} \frac{1}{\sin^4 \frac{\theta}{2}}$$

Pently fordstall Strupped (im Shwe punth system) 2 Contomb Strenung Pently ford sches Atommodell