typing

June 16, 2021

Below, W_1 is used for $\langle w_1, l_1 \rangle$, W_2 for $\langle w_2, l_2 \rangle$, and U for $\langle u, l \rangle$. Naming conventions are

- W_i for starting worlds
- U_i for future worlds (usually introduced by a \forall)
- V for "inner" worlds (usually under a \triangleright)

preworld

0.1 $preworld: K_0$

Showing $\Gamma \vdash preworld : K_0$ for any Γ Apply 40 to get

- 1. $\Gamma, w : \underline{K_0} \vdash \mathbb{N} \to (\triangleright w \to_K \triangleright \mathbb{N} \to U_0) : K_0$ Apply 8 to get
 - (a) $\Gamma \cdots \vdash \mathbb{N} : U_0$ basic types
 - (b) $\Gamma, w : \underline{K_0} \vdash (\triangleright w \to_K \triangleright \mathbb{N} \to U_0)$ Apply 13 to get

i.
$$\Gamma, w : \underline{K_0} \vdash \rhd w : K_0$$

32

ii.
$$\Gamma, w : \underline{K_0} \vdash \rhd \mathbb{N} \to U_0 : K_0$$

Apply 8

A.
$$\Gamma, w : \underline{K_0} \vdash \triangleright \mathbb{N} : U_0$$

$$32$$

B.
$$\Gamma, w : \underline{K_0} \vdash U_0 : K_0$$
97

 $\begin{array}{c} 2. \ 0: level \\ \text{done} \end{array}$

Showing $\Gamma \vdash \triangleright preworld : K_0$.

32 on above. Need lemma allowing weakening to promote(Γ).

0.2 $\Gamma \vdash w_1 \ i \ u \ l : U_0$

Given $\Gamma \vdash W_1 : world$, $\Gamma \vdash i : \mathbb{N}$, $\Gamma \vdash u : \triangleright preworld$, $\Gamma \vdash l : \triangleright \mathbb{N}$. Apply 6 to get

$$\Gamma \vdash w_1 iu : \Pi(y : \triangleright \mathbb{N}).U_0$$

Apply 108, 11 to get

$$\Gamma \vdash w_1 iu : \rhd \mathbb{N} \to U_0$$

Applying 6, 108, (11 and 16 with transitivity) gives

$$\Gamma \vdash w_1 i : \triangleright pw \to_k \triangleright \mathbb{N} \to U_0$$

Applying 6, 108, 11 again gives

$$\Gamma \vdash w_1 : \mathbb{N} \to \triangleright pw \to_k \triangleright \mathbb{N} \to U_0$$

Applying 108, 43 gives

- $\Gamma \vdash w_1 : \mu w. \mathbb{N} \to \triangleright w \to_k \triangleright \mathbb{N} \to U_0$ Beta reduction on $\pi_1 W_1$, using $\Gamma \vdash \langle w_1, l_1 \rangle : world$.
- $\Gamma, w : \underline{type} \vdash \mathbb{N} \to \triangleright w \to_k \triangleright \mathbb{N} \to U_0 : type$ preworld, 101, 105

$0.3 \quad cons_b$

(cons on the back) $cons_b w_1 l_1 x$ is defined as

$$\lambda i.ite(i <_b l_1)(w_1 i)(x)$$

Showing that if $\Gamma \vdash w_1 : preworld$ and and $\Gamma \vdash l_1 : \mathbb{N}$ and $\Gamma \vdash x : \triangleright pw \to_k \triangleright \mathbb{N} \to U_0$, then $\Gamma \vdash cons_b \ w_1 \ l_1 \ x : pw$.

subseq

 $\Gamma \vdash W_1 \leq W_2 : U_0$

For Γ where $\Gamma \vdash W_i : world$. Apply 27 to get

- $\Gamma \vdash l_1 \leq l_2 : U_0$ Beta reduction on $\pi_1 W_1$, using $\Gamma \vdash \langle w_1, l_1 \rangle : world$. Beta reduction on $\pi_2 W_j$, using $\Gamma \vdash \langle w_j, l_j \rangle : world$, gives $\Gamma \vdash l_j : nat$ for $j \in \{1, 2\}$. Then use basic types.
- $\Gamma \vdash \forall (u: \triangleright pw)\Pi(l: \triangleright \mathbb{N})\Pi(i: \mathbb{N})\Pi(m: i \leq l_1)(w_1 \ i \ u \ l = w_2 \ i \ u \ l: type): U_0$ Apply 66 to get

$$\Gamma, u : \triangleright pw \vdash \Pi(l : \triangleright \mathbb{N})\Pi(i : \mathbb{N})\Pi(m : i \leq l_1)(w_1 \ i \ u \ l = w_2 \ i \ u \ l : type) : U_0$$

Apply 4 to get

$$\triangleright \mathbb{N}: U_0$$

which is easy by 34 and basic types as well as

$$\Gamma, u : \triangleright pw, l : \triangleright \mathbb{N} \vdash \Pi(i : \mathbb{N})\Pi(m : i \leq l_1)(w_1 \ i \ u \ l = w_2 \ i \ u \ l : type) : U_0$$

Apply 4 again

$$\Gamma, u : \triangleright pw, l : \triangleright \mathbb{N}, i : \mathbb{N}, m : i \leq l_1 \vdash (w_1 \ i \ u \ l = w_2 \ i \ u \ l : type) : U_0$$

(where $\Gamma, u : \triangleright pw, l : \triangleright \mathbb{N}, i : \mathbb{N} \vdash m : i \leq l_1 : U_0$ follows from basic types and the fact that $\Gamma \vdash l_i : nat$). Apply 107

$$\Gamma, u : \triangleright pw, l : \triangleright \mathbb{N}, i : \mathbb{N}, m : i \leq l_1 \vdash w_i \ i \ u \ l : U_i$$

This follows from preworld

0.4 transitivity

 $\Gamma, m_1: W_1 \leq W_2, m_2: W_2 \leq W_3 \vdash \langle *, \lambda l. \lambda i. \lambda m. * \rangle: W_1 \leq W_3$ Apply (108 with 28) then 20 to get

•

$$\Gamma, m_1: W_1 \leq W_2, m_2: W_2 \leq W_3 \vdash, *: l_1 \leq l_3$$

Apply 119, taking advantage of rule 28 and the fact that if $\Gamma \vdash A = B$ then $\Gamma \vdash A \leq B$ (basic types)

$$\Gamma, m_1 : \Sigma(l_1 \leq l_2).B, m_2 : \Sigma(l_2 \leq l_3).B \vdash, * : l_1 \leq l_3$$

From here, I have by 21 that

$$\Gamma, m_1 : \Sigma(l_1 \leq l_2).B, m_2 : \Sigma(l_2 \leq l_3).B \vdash \pi_1 m_1 : l_1 \leq l_2$$

and

$$\Gamma, m_1 : \Sigma(l_1 \le l_2).B, m_2 : \Sigma(l_2 \le l_3).B \vdash \vdash \pi_1 m_2 : l_2 \le l_3$$

I can then apply transitivity of \leq (basic types) to get that

$$\Gamma \cdots \vdash, *: l_1 \leq l_3$$

•

 $\Gamma, m_1: W_1 \leq W_2, m_2: W_2 \leq W_3 \vdash \lambda l. \lambda i. \lambda m. *: \forall (u: \triangleright pw) \Pi(l: \triangleright \mathbb{N}). \Pi(i: \mathbb{N}) \Pi(m: i \leq l_1) (w_1 iul = w_3 iul: type)$ Apply 67

 $\Gamma, m_1: W_1 \leq W_2, m_2: W_2 \leq W_3, u: \rhd pw \vdash \lambda l. \lambda i. \lambda m. *: \Pi(l: \rhd \mathbb{N}). \Pi(i: \mathbb{N}) \Pi(m: i \leq l_1) (w_1 iul = w_3 iul: type)$

Apply 5 multiple times

$$\Gamma, m_1: W_1 \leq W_2, m_2: W_2 \leq W_3, u: \triangleright pw, l: \triangleright \mathbb{N}, i: \mathbb{N}, m: i \leq l_1 \vdash *: (w_1 \ iu \ l = w_3 \ iu \ l: type)$$

I denote $\Gamma, m_1 : W_1 \leq W_2, m_2 : W_2 \leq W_3, u : \triangleright pw, l : \triangleright \mathbb{N}, i : \mathbb{N}, m : i \leq l_1$ as Γ' . It suffices to show there is an x, y where

$$\Gamma' \vdash x : (w_1 \ i \ u \ l = w_2 \ i \ u \ l : type)$$

and

$$\Gamma' \vdash y : (w_2 \ i \ u \ l = w_3 \ i \ u \ l : type)$$

- I assume the existence of such an x, y. Then,

Result 5 of basic types gives

$$\Gamma' \vdash w_1 \ i \ u \ l = w_2 \ i \ u \ l : type$$

and

$$\Gamma' \vdash (w_2 \ i \ u \ l = w_3 \ i \ u \ l : type)$$

Then 110 gives

$$\Gamma' \vdash w_1 \ i \ u \ l = w_3 \ i \ u \ l : type$$

which is equivalent to the desired

$$\Gamma' \vdash * : (w_1 \ i \ u \ l = w_3 \ i \ u \ l : type)$$

- I show

$$\Gamma' \vdash (\pi_2 \ m_1) l \ i \ m : (w_1 \ i \ u \ l = w_2 \ i \ u \ l : type) \ (1)$$

and

$$\Gamma' \vdash (\pi_2 \, m_2) l \, i \, ((\pi_1 m_1) \circ m) : (w_2 \, i \, u \, l = w_3 \, i \, u \, l : type)$$
 (2)

The proofs go similarly, so I show only 1 for now. Apply 119 with 28 and result 4 of basic types.

$$\Gamma, \ldots, m_1 : \Sigma(l_1 \leq l_2).B, u : \triangleright pw, l : \triangleright \mathbb{N}, i : \mathbb{N}, m : i \leq l_1 \vdash (\pi_2 m_1) l i m : (w_1 i u l = w_2 i u l : type)$$

Applying 6 multiple times gives

$$\Gamma, \ldots, m_1 : \Sigma(l_1 \leq l_2).B, u : \triangleright pw, l : \triangleright \mathbb{N}, i : \mathbb{N}, m : i \leq l_1 \vdash (\pi_2 m_1) :$$

$$\Pi(l : \triangleright \mathbb{N})\Pi(i : \mathbb{N})\Pi(m : i \leq l_1)(w_1 i u l = w_2 i u l : type)$$

But this follows from 22.

The proof of 2 requires only the additional explanation that $(\pi_1 m_1) \circ m : i \leq l_2$. But, this comes from transitivity of \leq and the typing of m_1 and rule 21.

0.5 reflexivity

if $\Gamma \vdash W : world$ then $\Gamma \vdash * : W \leq W$.

$0.6 \quad cons_b$

if $\Gamma \vdash W_1 : world$ and $\Gamma \vdash x : \triangleright pw \to_k \to \triangleright \mathbb{N} \to U_0$, then

$$\Gamma \vdash \langle *, \lambda l_v.\lambda i.\lambda m_i.* \rangle : W_1 \leq \langle (cons_b \ w_1 \ l_1 \ x), succ(l_1) \rangle.$$

I abbreviate $cons_b w_1 l_1 x$ as w_2 .

Applying 108 with 28, then 20 yields $\Gamma \vdash *: l_1 \leq succ(l_1)$ (which is done in basic types) as well as

$$\Gamma \vdash \lambda l_v.\lambda i.\lambda m_i.*$$
:

$$\forall (v: \triangleright pw) \Pi(l_v: \triangleright \mathbb{N}) \Pi(i: \mathbb{N}) \Pi(m: i < l_1). (w_1 \ i \ v \ l_v) = (w_2 \ i \ v \ l_v) : type$$

Apply 67

$$\Gamma, v : \triangleright pw \vdash \lambda l_v . \lambda i . \lambda m_i . * :$$

$$\Pi(l_v : \triangleright \mathbb{N})\Pi(i : \mathbb{N})\Pi(m : i < l_1).(w_1 \ i \ v \ l_v) = (w_2 \ i \ v \ l_v) : type$$

Applying 5 x3 gives

$$\Gamma, v : \triangleright pw, l_v : \triangleright \mathbb{N}, i : \mathbb{N}, m : i < l_1 \vdash * : (w_1 \ i \ v \ l_v) = (w_2 \ i \ v \ l_v) : type$$

I apply 119, taking advantage of the reflection lemma between $i <_b l_1 = true : bool$ and $i < l_1$ to get, amongst goals easily solved,

$$\Gamma, v : \triangleright pw, l_v : \triangleright \mathbb{N}, i : \mathbb{N}, m : (i <_b l_1 = true : bool) \vdash * : (w_1 i v l_v) = (w_2 i v l_v) : type (*)$$

It suffices to show that

$$\Gamma, v : \triangleright pw, l_v : \triangleright \mathbb{N}, i : \mathbb{N}, m : (i <_b l_1 = true : bool) \vdash \lambda_{-*} : \Pi(m' : i <_b l_1 = true : bool)((w_1 ivl_v) = (w_2 ivl_v) : type)(**)$$

• I assume (**) and show (*) By (**) and 6, I have that

$$\Gamma, v : \triangleright pw, l_v : \triangleright \mathbb{N}, i : \mathbb{N}, m : (i <_b l_1 = true : bool) \vdash (\lambda_- *)m : ((w_1 i v l_v) = (w_2 i v l_v) : type)$$

 β reduction gives

$$\Gamma, v : \triangleright pw, l_v : \triangleright \mathbb{N}, i : \mathbb{N}, m : (i <_b l_1 = true : bool) \vdash * : ((w_1 i v l_v) = (w_2 i v l_v) : type)$$

But, this is exactly (*)

• Showing (**)

I apply 121 with $M := i <_b l_1$ to generate

 $\Gamma, v : \triangleright pw, l_v : \triangleright \mathbb{N}, i : \mathbb{N}, m : (i <_b l_1 = true : bool) \vdash i <_b l_1 : bool (basic types) and$

$$\Gamma, v : \triangleright pw, l_v : \triangleright \mathbb{N}, i : \mathbb{N}, m : (i <_b l_1 = true : bool), b : bool \vdash$$

$$\lambda_{-*}: \Pi(m': b = true: bool)((w_1 \ i \ v \ l_v) = ((\lambda i.ite(b)(w_1 i)(x)) \ i \ v \ l_v): type)$$

I denote $\Gamma, v : \triangleright pw, l_v : \triangleright \mathbb{N}, i : \mathbb{N}, m : (i <_b l_1 = true : bool), b : bool as <math>\Gamma_1, b : bool$. Applying 5 yields $\Gamma_1, b : bool \vdash (b = true) : bool : type$ (which is straightforward) as well as

$$\Gamma_1, b: bool, m': b = true: bool \vdash *: ((w_1 i v l_v) = ((\lambda i.ite(b)(w_1 i)(x)) i v l_v): type)$$

Applying 120 gives

- Γ₁, $b : bool, m' : b = true : bool ⊢ ((w₁ i v l_v) = ((λi.ite(b)(w₁i)(x)) i v l_v) : type) : type Similar reasoning to <math>cons_b : w_1 l_1 x : pw$ to show that the λ has type pw, then similar reasoning to section 0.2 to show that both applications have type U_0 .
- $-\Gamma_1, b: bool, m': b = true: bool \vdash b = true: bool$ basic types
- $FV(true) \cap \Gamma_2, b: bool = \emptyset$ nice

$$\Gamma_1, m' : true = true : bool \vdash * : ((w_1 i v l_v) = ((\lambda i.ite(true)(w_1 i)(x)) i v l_v) : type)$$

After β reduction, this is

$$\Gamma_1 \cdots \vdash *: (w_1 \ i \ v \ l_v = w_1 i \ v \ l_v : type)$$

which is to say

$$\Gamma_1 \cdots \vdash w_1 \ i \ v \ l_v : type$$

This follows from the fact that $\Gamma_1 \vdash w_1 : pw$ and 0.2 of preworld.

store

Showing $\Gamma, w_1 : pw, l_1 : \mathbb{N} \vdash store(W_1) : U_0$

Apply 66 to get

$$\Gamma, w_1: pw, l_1: \mathbb{N}, u: pw \vdash \Pi(l: \mathbb{N}) \langle w_1, l_1 \rangle < \langle u, l \rangle \rightarrow *w_1/\langle u, l \rangle$$

Apply 4, 10, subseq to get

$$\Gamma, w_1: pw, l_1: \mathbb{N}, u: pw, l: \mathbb{N} \vdash *w_1/\langle u, l \rangle: U_0$$

which is to say

$$\Gamma, w_1: pw, l_1: \mathbb{N}, u: pw, l: \mathbb{N} \vdash \pi(i: \mathbb{N}).w_1 \ i(next \ u) \ (next \ l): U_0$$

Apply 4 to get

$$\Gamma, w_1: pw, l_1: \mathbb{N}, u: pw, l: \mathbb{N}, i: \mathbb{N} \vdash w_1 \ i(next \ u) \ (next \ l): U_0$$

This follows from preworld and 35.

types

For any τ in source language and Γ where $\Gamma \vdash W_1 : world$, $\Gamma \vdash \tau @W_1 : U_0$. Induction on τ .

0.7 nat

basic types

$\mathbf{0.8} \quad \tau_1 \rightarrow \tau_2$

Apply 66 to get

- 1. $\Gamma \vdash pw : K_0$ preworld
- 2. $\Gamma, u: pw \vdash \Pi(l:\mathbb{N}) \cdots : U_0$ Apply 4
 - (a) $\mathbb{N}: U_0$ basic types
 - (b) $\Gamma, u: pw, l: \mathbb{N} \vdash W_1 \leq U \rightarrow \tau_1@U \rightarrow \tau_2@U$ Apply 10
 - i. $\Gamma, u: pw, l: \mathbb{N} \vdash W_1 \leq U: U_0$ subseq
 - ii. $\Gamma, u: pw, l: \mathbb{N} \vdash \tau_1@U \to \tau_2@U: U_0$ apply 10, by IH suffices to show that $\Gamma, u: pw, l: \mathbb{N} \vdash U: world$. Apply (28 and 108), then 20. Suffices to show that $\Gamma \cdots \vdash \mathbb{N}: type$.
- 3. $\Gamma \vdash 0 : level$ done
- 4. $0 \le 0$ basic types

0.9 $\bigcirc \tau$

Apply 66 to get, amongst other goals solved before,

 $\Gamma, u: pw \vdash \Pi(l:\mathbb{N})W_1 \leq U \rightarrow store(U) \rightarrow \rhd \exists (v:pw)\Sigma(l':\mathbb{N})(U \leq \langle v, l' \rangle \times store\langle v, l' \rangle \times \tau@\langle v, l' \rangle): U_0$

Apply 4 to get $\Gamma, u: pw \vdash \mathbb{N}: U_0$ and

 $\Gamma, u: pw, l: \mathbb{N} \vdash W_1 \leq U \rightarrow store(U) \rightarrow \triangleright \exists (v: pw) \Sigma(l': \mathbb{N}) (U \leq \langle v, l' \rangle \times store(v, l') \times \tau@\langle v, l' \rangle) : U_0$

Apply 10 repeatedly to get

- 1. $\Gamma, u: pw, l: \mathbb{N} \vdash W_1 \leq U: U_0$ subseq
- 2. $\Gamma, u: pw, l: \mathbb{N} \vdash store(U): U_0$ store
- 3. $\Gamma, u: pw, l: \mathbb{N} \vdash \rhd \exists (v: pw) \Sigma(l': \mathbb{N}) (U \leq \langle v, l' \rangle \times store \langle v, l' \rangle \times \tau@\langle v, l' \rangle) : U_0$ Apply the bar rule from bar types to get

$$\Gamma, u: pw, l: \mathbb{N} \vdash \exists (v: pw) \Sigma(l': \mathbb{N}) (U \leq \langle v, l' \rangle \times store \langle v, l' \rangle \times \tau@\langle v, l' \rangle) : U_0$$

Apply 70 to get

$$\Gamma, u: pw, l: \mathbb{N}, v: pw \vdash \Sigma(l': \mathbb{N})(U \leq \langle v, l' \rangle \times store\langle v, l' \rangle \times \tau@\langle v, l' \rangle): U_0$$

Apply 19 to get

$$\Gamma, u: pw, l: \mathbb{N}, v: pw, l': \mathbb{N} \vdash U \leq \langle v, l' \rangle \times store \langle v, l' \rangle \times \tau@\langle v, l' \rangle : U_0$$

Apply 27 twice to get

- $\Gamma, u: pw, l: \mathbb{N}, v: pw, l': \mathbb{N} \vdash U \leq \langle v, l' \rangle : U_0$ subseq
- $\Gamma, u: pw, l: \mathbb{N}, v: pw, l': \mathbb{N} \vdash store\langle v, l' \rangle : U_0$
- $\Gamma, u: pw, l: \mathbb{N}, v: pw, l': \mathbb{N} \vdash \tau@\langle v, l' \rangle: U_0$ induction

0.10 $ref\tau$

Apply 19 to get

$$\Gamma, i : \mathbb{N} \vdash (i < l_1) \times \forall (u : \triangleright pw) \Pi(l : \triangleright \mathbb{N}) (w_1 iul = \triangleright (\tau@U) : type)$$

Apply 27 to get

- $\Gamma, i : \mathbb{N} \vdash (i < l_1) : U_0$ basic types (to get $l_1 : \mathbb{N}$, β reduce $\pi_2 \langle w_1, l_1 \rangle$ using $\Gamma \vdash \langle w_1, l_1 \rangle : world$)
- $\Gamma, i : \mathbb{N} \vdash \forall (u : \triangleright pw) \Pi(l : \triangleright \mathbb{N})(w_1 iul = \triangleright(\tau@U) : type) : U_0$ Apply 66 to get

$$\Gamma, i: \mathbb{N}, u: (\triangleright pw) \vdash \Pi(l: \triangleright \mathbb{N})(w_1 iul = \triangleright(\tau@U): type): U_0$$

Apply 4 to get

$$\Gamma, i: \mathbb{N}, u: \triangleright pw, l: \triangleright \mathbb{N} \vdash w_1 iul = \triangleright (\tau@U): type: U_0$$

Apply 107

- $\Gamma, i: \mathbb{N}, u: \triangleright pw, l: \triangleright \mathbb{N} \vdash w_1 iul: U_0$ preworld
- $-\Gamma, i: \mathbb{N}, u: \triangleright pw, l: \triangleright \mathbb{N} \vdash \triangleright (\tau@U): type: U_0$ 34, induction (with weakening)

move

Given $\Gamma \vdash \langle w_1, l_1 \rangle, \langle w_2, l_2 \rangle : world, \Gamma \vdash m_0 : \langle w_1, l_1 \rangle \leq \langle w_2, l_2 \rangle$. For source type τ , showing

$$\Gamma \vdash move_{\tau}m_0 : \tau@W_1 \to \tau@W_2$$

.

0.11 move $\tau_1 \rightarrow \tau_2$

(one)

Showing $\Gamma, f: \tau_1 \to \tau_2@W_1, u: pw, l: \mathbb{N}, m: W_2 \leq U, x: \tau_1@U \vdash fl(m \circ m_0)x: \tau_2@U$ Repeated applications of (6,11, 108) yield the following goals

- $\Gamma, f: \tau_1 \to \tau_2@W_1, u: pw, l: \mathbb{N}, m: W_2 \le U, x: \tau_1@U \vdash x: \tau_1@U$ Done
- $\Gamma, f: \tau_1 \to \tau_2@W_1, u: pw, l: \mathbb{N}, m: W_2 \le U \vdash (m \circ m_0): W_1 \le U$ Done by subseq
- $\Gamma, f: \tau_1 \to \tau_2@W_1, u: pw, l: \mathbb{N}, m: W_2 \le U, x: \tau_1@U \vdash l: \mathbb{N}$ done
- $\Gamma, f: \tau_1 \to \tau_2@W_1, u: pw, l: \mathbb{N}, m: W_2 \leq U, x: \tau_1@U \vdash f: \Pi(l:\mathbb{N}).W_1 \leq U \to \tau_1@U \to \tau_2@U$ I denote $\Gamma, f: \tau_1 \to \tau_2@W_1, u: pw, l: \mathbb{N}, m: W_2 \leq U, x: \tau_1@U$ as Γ' . Apply 68 to get
 - $-\Gamma' \vdash f : \forall (x:pw)\Pi(l:\mathbb{N}).W_1 \leq \langle x,l \rangle \to \tau_1@\langle x,l \rangle \to \tau_2@\langle x,l \rangle$ done by def $\tau_1 \to \tau_2@W_1$
 - $\begin{array}{c} -\ \Gamma' \vdash u : pw \\ \text{done} \end{array}$
 - $\begin{array}{l} -\Gamma', x: pw \vdash \Pi(l:\mathbb{N}).W_1 \leq \langle x, l \rangle \rightarrow \tau_1@\langle x, l \rangle \rightarrow \tau_2@\langle x, l \rangle : type \\ \text{By types I have } \Gamma' \vdash \tau_1 \rightarrow \tau_2@W_1 : U_0. \text{ Similar reasoning to the body of that proof gives that} \\ \Gamma', x: pw \vdash \Pi(l:\mathbb{N}).W_1 \leq \langle x, l \rangle \rightarrow \tau_1@\langle x, l \rangle \rightarrow \tau_2@\langle x, l \rangle : U_0 \end{array}$

move $\bigcirc \tau$

Apply 5, then 67, then 5 multiple times to get, amongst goals already solved by types, preworld, basic types, subseq, and store

$$\Gamma, c: \bigcap (\tau)@W_1, u: pw, l: \mathbb{N}, m: W_2 \leq U, s: storeU \vdash (1)$$

```
c \ l \ (m \circ m_0) \ s : \rhd \rhd \exists (u_3 : pw) \Sigma(l_3 : \mathbb{N}) (\langle u_2, l_2 \rangle \leq \langle u_3, l_3 \rangle \times store \langle u_3, l_3 \rangle \times \tau@\langle u_3, l_3 \rangle)
```

I denote context (1) as Γ' . Repeated applications of 6 and (108 with 11) give, amongst goals solved immediately by Γ' or transitivity of subseq,

$$\Gamma' \vdash c : \Pi(l : \mathbb{N})(W_1 \leq U \to store(U) \to \triangleright \exists (u_3 : pw) \Sigma(l_3 : \mathbb{N})(\langle u_2, l_2 \rangle \leq \langle u_3, l_3 \rangle \times store(\langle u_3, l_3 \rangle \times \tau@\langle u_3, l_3 \rangle)$$

Apply 68 to this to get, amongst goals solved by preworld and types,

$$\Gamma' \vdash c : \forall (u : pw)\Pi(l : \mathbb{N})(W_1 \leq U \rightarrow store(U) \rightarrow \rhd \exists (u_3 : pw)\Sigma(l_3 : \mathbb{N})(\langle u_2, l_2 \rangle \leq \langle u_3, l_3 \rangle \times store\langle u_3, l_3 \rangle \times \tau@\langle u_3, l_3 \rangle)$$

But, this is $c : \bigcirc(\tau) \in \Gamma'$.

move $ref\tau$

Apply 5 to get

$$\Gamma, R: ref(\tau)@W_1 \vdash \langle \pi_1 R, \langle (\pi_1 m_0) \circ (\pi_1 \pi_2 R), \lambda_{-} * \rangle \rangle : ref(\tau)@W_2$$

Apply 20

- $\Gamma, R : ref(\tau)@W_1, i : \mathbb{N} \vdash (i < l_2 \times \forall (u : \triangleright pw)\Pi(l : \triangleright \mathbb{N})(w \ i \ u \ l = \triangleright(\tau@U) : type) : type$ Similar reasoning to the body of $\Gamma, R : ref(\tau)@W_1 \vdash ref(\tau)@W_2 : U_0$
- $\Gamma, R : ref(\tau)@W_1 \vdash \pi_1 R : \mathbb{N}$ Apply 21
- $\Gamma, R : ref(\tau)@W_1 \vdash \langle (\pi_1 \ m_0) \circ (\pi_1 \pi_2 R), \lambda_{-} * \rangle : (\pi_1 R < l_2 \times \forall (u : \triangleright pw)\Pi(l : \triangleright \mathbb{N})(w \ (\pi_1 R) \ u \ l = \triangleright (\tau @U) : type)$ Apply 108 with 28 to get $\Gamma, R : ref(\tau)@W_1 \vdash \langle (\pi_1 \ m_2) \circ (\pi_1 \pi_2 R) \rangle \Rightarrow \forall \Gamma \in \Gamma(\pi_1 R) \land \Gamma(u : \triangleright m_2)\Pi(l : \triangleright \mathbb{N})(u \ (\pi_1 R) \ u \ l = \triangleright (\tau @U) : tume)$
 - $\langle (\pi_1 \ m_0) \circ (\pi_1 \pi_2 R), \lambda_- .* \rangle : \Sigma(\pi_1 R < l_2). \forall (u : \triangleright pw) \Pi(l : \triangleright \mathbb{N}) (w \ (\pi_1 R) \ u \ l = \triangleright (\tau@U) : type).$ Apply 20 to get
 - $-\Gamma, R: ref(\tau)@W_1 \vdash \forall (u: \triangleright pw)\Pi(l: \triangleright \mathbb{N})(w\ (\pi_1R)\ u\ l = \triangleright(\tau@U): type): type$ Use 121 with $\Gamma, R: ref(\tau)@W_1 \vdash \pi_1R: \mathbb{N}$ to get

$$\Gamma, R: ref(\tau)@W_1, i: \mathbb{N} \vdash \forall (u: \rhd pw) \Pi(l: \rhd \mathbb{N}) (w \ i \ u \ l = \rhd (\tau @U) : type) : type$$

Then, invert on Γ , $R: ref(\tau)@W_1 \vdash ref(\tau): U_0$ to get

$$\Gamma, R: ref(\tau)@W_1 \vdash \ \, \bot \lor \forall (u: \rhd pw)\Pi(l: \rhd \mathbb{N})(w \ i \ u \ l = \rhd(\tau@U): type): U_0$$

- $\Gamma, R : ref(\tau)@W_1 \vdash (\pi_1 \ m_0) \circ (\pi_1 \pi_2 R) : (\pi_1 R < l_2)$ by transitivity of <, \leq , it suffices to show
 - * $\Gamma, R: ref(\tau)@W_1 \vdash (\pi_1\pi_2R): \pi_1R < l_1$
 - Rule 21, rule (108 with 28), * $\Gamma, R : ref(\tau)@W_1 \vdash \pi_1 \ m_0 : l_1 \le l_2$
 - * $\Gamma, R : ref(\tau)@W_1 \vdash \pi_1 \ m_0 : l_1 \le l_2$ rule (108 with 28), rule 21
- $-\Gamma, R : ref(\tau)@W_1 \vdash \lambda_{-} * : \Pi(l : \triangleright \mathbb{N})(w (\pi_1 R) u l = \triangleright(\tau @U) : type)$ Apply 5

 $\Gamma, R : ref(\tau)@W_1, l : \triangleright \mathbb{N} \vdash * : (w(\pi_1 R) u l = \triangleright(\tau@U) : type).$

By basic types 5) it suffices to show that

$$\Gamma, R : ref(\tau)@W_1, l : \triangleright \mathbb{N} \vdash \pi_2\pi_2R : (w(\pi_1R) u l = \triangleright(\tau@U) : type)$$

. Apply 22, rule (108 with 28) to get

$$\Gamma, R : ref(\tau)@W_1, l : \rhd \mathbb{N} \vdash \pi_2 R : ((\pi_1 R) < l_1) \times (w (\pi_1 R) u l = \rhd (\tau @U) : type)$$

Apply 22.

 $move_{\Gamma}m$

For Γ a context in the source language and W_1, W_2 where $\Delta \vdash W_1, W_2 : world$, if $\Delta, \Gamma@W_1 \vdash m : W_1 \leq W_2$ and $\Delta, \Gamma@W_2 \vdash e : B$ and $\Gamma \cap FV(B) = \emptyset$, then $\Delta, \Gamma@W_1 \vdash move_{\Gamma} m e : B$. Recall first that

$$move_{\Gamma} \ m \ e \equiv e[i := move_{\tau_i} \ m \ i]_{i:\tau_i \in \Gamma}$$

I can rewrite this as

$$move_{\Gamma} \ m \ e \equiv e[i := move_{\tau_i} \ m \ i]_{i:\tau_i \in \Gamma}[j := j]_{j \in \Delta}$$

To show

$$\Delta, \Gamma@W_1 \vdash e[i := move_{\tau_i} \ m \ i]_{i:\tau_i \in \Gamma}[j := j]_{j \in \Delta} : B$$

I rewrite as

$$\Delta, \Gamma@W_1 \vdash e[i := move_{\tau_i} \ m \ i]_{i:\tau_i \in \Gamma}[j := j]_{j \in \Delta} : B[i := move_{\tau_i} \ m \ i]_{i:\tau_i \in \Gamma}[j := j]_{j \in \Delta}$$

(allowed as $\Gamma \cap FV(B) = \emptyset$). I apply rule 121 $|\Delta, \Gamma|$ times to get

- Δ , $\Gamma@W_1 \cdots \vdash move_{\tau_i} m \ i : \tau_i@W_2$ for $i : \tau_i \in \Gamma$ (where . . . denotes some extension to Δ , $\Gamma@W_1$) Apply 6 to get Δ , $\Gamma@W_1 \vdash i : \tau_i@W_1$ (def $\Gamma@W_1$) and Δ , $\Gamma@W_1 \vdash move_{\tau_i} m : \Pi(_{-} : \tau_i@W_1).\tau_i@W_2$. This follows from move, (108 with 11), and the fact that Δ , $\Gamma@W_1 \vdash m : W_1 \leq W_2$.
- $\Delta, \Gamma@W_1 \cdots \vdash j : \tau_j \text{ for } j : \tau_j \in \Delta$ Def Δ
- $\Delta, \Gamma@W_2 \vdash e : B$ given

translation

When I write $\lambda(W_1 : world)$, it is an abuse. I really mean $\lambda(l_1 : \mathbb{N})$ (the function really only takes the nat part of the world). I include the preworld part just to keep track. The same goes for $f(W_1)$. I really mean $f(l_1)$ but pass in the W_1 to keep track.

Showing that for any $\Gamma \vdash e : \tau$ in the source language and $\Delta \vdash \langle w_1, l_1 \rangle : world$ in the target language, $\Delta, \Gamma@W_1 \vdash \bar{e} W_1 : \tau@W_1$. I proceed by induction on $\Gamma \vdash e : \tau$.

0.12 ap

Have: $\Gamma \vdash e_1 e_2 : \tau_2$.

Showing: $\Delta, \Gamma@W_1 \vdash (\lambda W_1.\overline{e_1}W_1 \ l \ refl_{W_1} \ (\overline{(\underline{e_2})}W_1))W_1 : \tau_2@W_1.$

 β reduce to get Δ , $\Gamma@W_1 \vdash \overline{e_1}W_1$ l_1 $refl_{W_1}$ $(\overline{(e_2)}W_1) : \tau_2@W_1$. Apply 6 to get

• Δ , $\Gamma@W_1 \vdash \overline{e_1}W_1 \ l_1 \ refl_{W_1} : \Pi(e_2 : \tau_1@W_1)(\tau_2@W_1)$ 108 with 11 gives

$$\Delta, \Gamma \vdash \overline{e_1}W_1 \ l_1 \ refl_{W_1} : \tau_1@W_1 \rightarrow \tau_2@W_1$$

6 gives

 $\begin{array}{l} -\Delta, \Gamma@W_1 \vdash \overline{e_1}W_1 \ l_1 : \Pi(W_1 \leq W_1).\tau_1@W_1 \rightarrow \tau_2@W_1 \ 108 \ \text{with } 11 \ \text{gives} \\ \Delta, \Gamma@W_1 \vdash \overline{e_1}W_1 \ l_1 : W_1 \leq W_1 \rightarrow \tau_1@W_1 \rightarrow \tau_2@W_1 \\ 6 \ \text{gives} \ \Delta, \Gamma@W_1 \vdash l_1 : \mathbb{N} \ \text{(which follows from the fact that} \ \Delta, \Gamma@W_1 \vdash W_1 : world \) \ \text{and} \end{array}$

$$\Delta, \Gamma@W_1 \vdash \overline{e_1}W_1 : \Pi(l:\mathbb{N})W_1 \leq \langle w_1, l \rangle \to \tau_1@W_1 \to \tau_2@W_1$$

Apply 68 to get

- * $\Delta, \Gamma@W_1 \vdash \overline{e_1}W_1 : \forall (u : preworld)\Pi(l : \mathbb{N})W_1 \leq U \rightarrow \tau_1@U \rightarrow \tau_2@U$ induction on $\Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2$.
- * $\Delta, \Gamma@W_1 \vdash w_1 : preworld$ follows from the fact that $\Delta, \Gamma \vdash W_1 : world$
- * $\Delta, \Gamma@W_1, u: pw \vdash \Pi(l:\mathbb{N})W_1 \leq U \rightarrow \tau_1@U \rightarrow \tau_2@U: type$ Shown in proof that $(\tau_1 \rightarrow \tau_2@W_1): type$
- $-\Delta, \Gamma \vdash refl_{W_1} : W_1 \leq W_1$ subseq, as $\Delta, \Gamma \vdash W_1 : world$
- $\Delta, \Gamma \vdash (\overline{e_2}W_1) : \tau_1@W_1$ IH on $\Gamma \vdash e_2 : \tau_1$

0.13 lam

Have: $\Gamma \vdash \lambda x.e : \tau_1 \to \tau_2$. Showing: $\Delta, \Gamma@W_1 \vdash (\lambda W_1.\lambda l.\lambda m.\lambda x.(move_{\Gamma} \ m\ (\overline{e}\ U)))W_1 : (\tau_1 \to \tau_2)@W_1$. β - reduce to get $\Delta, \Gamma@W_1 \vdash \lambda l.\lambda m.\lambda x.(move_{\Gamma} \ m\ (\overline{e}\ U)) : (\tau_1 \to \tau_2)@W_1$. Apply 67 to get

$$\Delta, \Gamma@W_1, u: pw \vdash \lambda l. \lambda m. \lambda x. (move_{\Gamma} \ m\ (\overline{e}\ U)): \Pi(l:\mathbb{N}). W_1 \leq U \rightarrow \tau_1@U \rightarrow \tau_2@U$$

Apply 5 and (108 with 11) repeatedly to get

- $\Delta, \Gamma@W_1, u: pw, l: \mathbb{N} \vdash W_1 \leq U: type$ subseq, as $\Delta, u: pw, l: \mathbb{N} \cdots \vdash W_1, U: world$
- $\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U \vdash \tau_1@U: type$ types
- $\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, x: \tau_1@U \vdash (move_{\Gamma} \ m \ (\overline{e} \ U)): \tau_2@U$ After applying result $move_{\Gamma} m$ with $\Delta := \Delta, u: pw, l: \mathbb{N}, m: W_1 \leq U$ and $\Gamma := \Gamma, x: \tau_1$ I need show that
 - $-\Delta, u: pw, l: \mathbb{N}, m: W_1 \leq U \vdash W_1, U: world$ Follows pretty fast from assumption that $\Delta \vdash W_1: world$.
 - $-\Delta, u:pw, l:\mathbb{N}, m:W_1\leq U, \Gamma@W_1, x:\tau_1@W_1\vdash m:W_1\leq U$ Easy
 - $\begin{array}{l} -\Delta, u: pw, l: \mathbb{N}, m: W_1 \leq U, \Gamma@U, x: \tau_1@U \vdash \overline{e}\ U: \tau_2@U \\ \text{I have } \Gamma, x: \tau_1 \vdash e: \tau_2. \text{ My IH on this with } \Delta:=\Delta, u: pw, l: \mathbb{N}, m: W_1 \leq U \text{ gives exactly} \end{array}$

$$\Delta, u: pw, l: \mathbb{N}, m: W_1 \leq U, \Gamma@U, x: \tau_1@U \vdash \overline{e}\ U: \tau_2@U$$

 $-\Gamma \cap FV(\tau_2@U) = \emptyset$ By the above bullet and rule 129, I have

$$\Delta, u: pw, l: \mathbb{N}, m: W_1 \leq U, \Gamma@U, x: \tau_1@U \vdash \tau_2@U: typ$$

I have by structural rules that for any $i \in \Gamma@U$, $i \notin FV(\tau_2@U)$.

0.14 ret

Have: $\Gamma \vdash return(e) : \bigcirc \tau$. Showing:

$$\Delta, \Gamma@W_1 \vdash (\lambda W_1.\lambda l.\lambda m.\lambda s.return_{A\ target} \langle l, \langle refl_{u.l}, s, move_{\tau}\ m\ (\overline{e}\ W_1) \rangle \rangle)W_1 : (\bigcirc \tau)@W_1$$

where

$$A := \exists (v : pw) \Sigma(l_v : \mathbb{N}) U \le \langle v, l_v \rangle \times store \langle v, l_v \rangle \times \tau@\langle v, l_v \rangle$$

 β -reduce, apply 67

 $\Delta, \Gamma@W_1, u: pw \vdash \lambda l. \lambda m. \lambda s. return_{A \ target} \langle l, \langle refl_{u,l}, s, move_{\tau} \ m \ (\overline{e}W_1) \rangle \rangle : \Pi(l: \mathbb{N})W_1 \leq U \rightarrow store(U) \rightarrow \dots$

Apply 5 and (108 with 11) repeatedly

- $\Delta, \Gamma@W_1, u: pw, l: \mathbb{N} \vdash W_1 \leq U: type$ subseq, as $\Delta, u: pw, l: \mathbb{N} \cdots \vdash W_1, U: world$
- $\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U \vdash store(U): type$ store

•

$$\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U) \vdash$$

 $return_{A \ target} \langle l, \langle refl_{u,l}, s, move_{\tau} \ m \ (\overline{e}W_1) \rangle \rangle : \rhd \rhd \exists (v : pw) \Sigma(l_v : \mathbb{N}) U \leq \langle v, l_v \rangle \times store \langle v, l_v \rangle \times \tau @\langle v, l_v \rangle$ $Legate \Delta \ \Gamma@W, \ u : mv \ l : \mathbb{N} \ m : W, \leq U \ s : store(U) \ \text{as} \ \Gamma'$

I denote Δ , $\Gamma@W_1$, $u:pw,l:\mathbb{N}, m:W_1\leq U, s:store(U)$ as Γ' . Apply 6 to get

- $-\Gamma' \vdash return_{A \ target} : \Pi(_: A). \rhd \rhd A$ apply return rule from bar types. suffices to show that $\Gamma' \vdash A : U_0$. as A is a (structural) subterm of $\bigcap \tau@W_1$, this follows similar reasoning to the proof that $\Delta, \Gamma \vdash \tau@W_1 : U_0$.
- $-\Gamma' \vdash \langle l, \langle refl_{u,l}, s, move_{\tau} \ m \ (\overline{e} \ W_1) \rangle \rangle : A$ Apply 71 to get $\Gamma' \vdash u : pw$ (easy by def Γ') and

 $\Gamma' \vdash \langle l, \langle refl_{u,l}, s, move_{\tau} \ m \ (\overline{e} \ W_1) \rangle \rangle : \Sigma(l_v : \mathbb{N})U \leq \langle u, l_v \rangle \times store\langle u, l_v \rangle \times \tau@\langle u, l_v \rangle$

Apply 20 to get $\Gamma' \vdash l : \mathbb{N}$ (easy by def Γ') and

 $\Gamma', l_v : \mathbb{N} \vdash U \leq \langle u, l_v \rangle \times store\langle u, l_v \rangle \times \tau@\langle u, l_v \rangle : type \text{ (which follows the (subterm of } \bigcirc \tau@W_1)$ argument) and

$$\Gamma' \vdash \langle refl_{u,l}, s, move_{\tau} \ m \ (\overline{e} \ W_1) \rangle : U \leq U \times store(U) \times \tau@U$$

Applying 20 multiple times gives

- $\Gamma' \vdash refl_{u,l} : U \leq U$ subseq
- $\cdot \Gamma' \vdash s : store(U)$ def Γ'
- · $\Gamma' \vdash move_{\tau} \ m \ (\overline{e} \ W_1) : \tau@U$ Applying 6 gives
- · $\Gamma' \vdash move_{\tau} \ m : \Pi(\underline{\ }: \tau@W_1).\tau@U$ result move gives that it suffices to show that $\Gamma' \vdash W_1, U : world$ and $\Gamma' \vdash m : W_1 \leq U$. The former follows by weakening and the latter by definition of Γ' .

· $\Gamma' \vdash \overline{e} \ W_1 : \tau@W_1$ Induction on the typing $\Gamma \vdash e : \tau$ gives $\Delta, \Gamma@W_1 \vdash \overline{e} \ W_1 : \tau@W_1$. Weakening then gives $\Gamma' \vdash \overline{e} \ W_1 : \tau@W_1$

*

$$\Gamma', v : pw \vdash \Sigma(l_v : \mathbb{N})U \leq \langle v, l_v \rangle \times store\langle v, l_v \rangle \times \tau@\langle v, l_v \rangle$$

As $\Sigma(l_v : \mathbb{N})U \leq \langle v, l_v \rangle \times store \langle v, l_v \rangle \times \tau@\langle v, l_v \rangle$ is a subterm of $\bigcirc \tau@W_1$, this follows similar reasoning to the proof that $\Gamma' \vdash \tau@W_1 : U_0$.

0.15 bind

Have: $\Gamma \vdash bind(e_1, x.e_2) : \bigcirc \tau_2$. Let

$$A := \exists (v:pw) \Sigma(l_v : \mathbb{N}) (U \leq \langle v, l_v \rangle \times store \langle v, l_v \rangle \times \tau_1@\langle v, l_v \rangle)$$

$$B := \exists (v':pw) \Sigma(l_v' : \mathbb{N}) (U \leq \langle v', l_v' \rangle \times store \langle v', l_v' \rangle \times \tau_2@\langle v', l_v' \rangle)$$

$$C := \exists (v':pw) \Sigma(l_v' : \mathbb{N}) (\langle v, \pi_1 z \rangle \leq \langle v', l_v' \rangle \times store \langle v', l_v' \rangle \times \tau_2@\langle v', l_v' \rangle)$$

$$\overline{e_2}' := \lambda x. \big(move_{\Gamma} \left(\pi_2 z \circ m \right) \left(\overline{e_2} \langle v, \pi_1 z \rangle \right) \big) \big(\pi_4 z \big) \, \pi_1 z \, refl_{v, \, \pi_1 \, z} \, \pi_3 z$$

I am showing

$$\Delta, \Gamma@W_1 \vdash \lambda l. \lambda m. \lambda s. bind_{target} \ (\overline{e_1} \ W_1 \ l \ m \ s) \ \lambda(z_1:A). \Big(bind_{target} \ \overline{e_2}' \ \big(\dots \big) \Big) [z:=z_1] : (\bigcirc \tau_2) @W_1$$

Apply 67, then (5 and (108 with 11)) repeatedly to get

- Δ , $\Gamma@W_1$, $u:pw,l:\mathbb{N} \vdash W_1 \leq U:type$ subseq, similar to ret proof
- $\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U \vdash store(U): type$ store
- I denote $\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U)$ as Γ' . I need show

$$\Gamma' \vdash bind_{target} \ (\overline{e_1} \ W_1 \ l \ m \ s) \ \lambda(z_1 : \exists v \dots) . \Big(bind_{target} \ \overline{e_2}' \ \big(\dots \big) \Big) [z := z_1] : \rhd \rhd B$$

Apply the bind rule to get

 $-\Gamma' \vdash \overline{e_1} W_1 \ l \ m \ s : \rhd \rhd A$ Apply 6 and (108 with 11) multiple times to get

$$\Gamma' \vdash \overline{e_1} W_1 : \Pi(l : \mathbb{N}) . W_1 \leq U \rightarrow store(U) \rightarrow \rhd \rhd A$$

Apply 68 to get (amongst goals solved before)

$$\Gamma' \vdash \overline{e_1} W_1 : \forall (u : pw) \Pi(l : \mathbb{N}) . W_1 \leq U \rightarrow store(U) \rightarrow \rhd \rhd A$$

I have by induction on $\Gamma \vdash e_1 : \bigcirc \tau_1$ that $\Delta, \Gamma \vdash \overline{e_1} W_1 : (\bigcirc \tau_1)@W_1$. The desired result follows by weakening.

 $\Gamma' \vdash \lambda z_1. \Big(bind_{target} \ \overline{e_2}' \ \Big(\lambda z_2. \Big(return_{target} \langle \pi_1 z', \langle \pi_2 z' \circ \pi_2 z, \pi_3 z', \pi_4 z' \rangle \rangle \Big) \big[z' := z_2\big] \Big) \Big) [z := z_1\big] : A \rightarrow \rhd \rhd B$

Apply 5 to get (amongst goals solved before)

$$\Gamma', z_1 : A \vdash \Big(bind_{target} \ \overline{e_2}' \ (\lambda z_2. \big(return_{target} \langle \pi_1 z', \langle \pi_2 z' \circ \pi_2 z, \pi_3 z', \pi_4 z' \rangle \rangle \big) [z' := z_2] \Big) \Big) [z := z_1] : \rhd \rhd B$$
Apply 72 to get

- * $\Gamma', z_1 : A \vdash z_1 : A$ done
- * $\Gamma' \vdash pw : type$ done
- * $\Gamma', v: pw \vdash \Sigma(l_v: \mathbb{N})U \leq \langle v, l_v \rangle \times store \langle v, l_v \rangle \times \tau_1@\langle v, l_v \rangle : type$ Since the type above is a subterm of $\bigcirc \tau_1@U$ and since $\Gamma' \vdash \tau_1@U : U_0$ by types, I can use similar reasoning to that proof. Below, I denote $\Sigma(l_v: \mathbb{N})U \leq \langle v, l_v \rangle \times store \langle v, l_v \rangle \times \tau_1@\langle v, l_v \rangle$ as A'.

as well as

$$\Gamma', v: pw, z: A' \vdash bind_{target} \overline{e_2}' \left(\lambda z_2. \left(return_{target} \langle \pi_1 z', \langle \pi_2 z' \circ \pi_2 z, \pi_3 z', \pi_4 z' \rangle \rangle \right) [z' := z_2] \right) : \rhd \rhd B$$

Applying the bind rule gives

* $\Gamma', v: pw, z: A' \vdash \overline{e_2}' : \overline{C}$ Recalling the definition of $\overline{e_2}'$, I am showing that

$$\Gamma', v: pw, z: A' \vdash \lambda x. (move_{\Gamma}(\pi_2 z \circ m)(\overline{e_2}\langle v, \pi_1 z \rangle))(\pi_4 z) \pi_1 z \ refl_{v, \pi_1 z} \pi_3 z: \overline{C}$$

Applying 6 and (108 with 11) to this multiple times gives the following goals

- · $\Gamma', v: pw, z: A' \vdash \pi_3 z: store(\langle v, \pi_1 z \rangle)$ def A', some wiggling involving the "third projection"
- · $\Gamma', v: pw, z: A' \vdash refl_{v, \pi_1 z}: \langle v, \pi_1 z \rangle \leq \langle v, \pi_1 z \rangle$ by the reflexivity result in subseq it suffices to show that $\Gamma', v: pw, z: A' \vdash \pi_1 z: \mathbb{N}$. But, this follows from rule 21.
- · $\Gamma', v: pw, z: A' \vdash \pi_1 z: \mathbb{N}$ see above bullet

as well as, with V_{mid} abbreviating $\langle v, l_{mid} \rangle$ and V abbreviating $\langle v, \pi_1 z \rangle$

$$\Gamma', v : pw, z : A' \vdash \lambda x. (move_{\Gamma}(\pi_2 z \circ m)(\overline{e_2}\langle v, \pi_1 z \rangle))(\pi_4 z) :$$

 $\Pi(l_{mid}: \mathbb{N})V \leq V_{mid} \rightarrow store(V_{mid}) \rightarrow \rhd \rhd \exists (v': pw)\Sigma(l'_v: \mathbb{N})(V_{mid} \leq \langle v', l'_v \rangle \times store\langle v', l'_v \rangle \times \tau_2@\langle v, l'_v \rangle)$ Apply rule 68 to get (amongst goals solved before)

$$\Gamma', v: pw, z: A' \vdash \lambda x. (move_{\Gamma}(\pi_2 z \circ m)(\overline{e_2}\langle v, \pi_1 z \rangle))(\pi_4 z): \bigcirc \tau_2@V$$

Apply rule 6 to get $\Gamma', v: pw, z: A' \vdash \pi_4 z: \tau_1@V$ (easy by def A') and

$$\Gamma', v: pw, z: A' \vdash \lambda x. move_{\Gamma}(\pi_2 z \circ m)(\overline{e_2} V): \Pi(\underline{\cdot}: \tau_1@V \rightarrow). \bigcirc \tau_2@V$$

Apply rule 5 to get $\Gamma' \cdots \vdash \tau_1 @V : type$ (done in types) and

$$\Gamma', v: pw, z: A', x: \tau_1@V \vdash move_{\Gamma}(\pi_2 z \circ m)(\overline{e_2} V): \bigcirc \tau_2@V$$

By $move_{\Gamma}$ it suffices to show

- · $\Delta, u: pw, l: \mathbb{N}, m: W_1 \leq U, v: pw, z: A' \vdash W_1, V: world$ easy
- · $\Delta, u: pw, l: \mathbb{N}, m: W_1 \leq U, v: pw, z: A' \vdash \pi_2 \ z \circ m: W_1 \leq V$ transitivity of subseq
- · $\Delta, u: pw, l: \mathbb{N}, m: W_1 \leq U, v: pw, z: A', \Gamma@V, x: \tau_1@V \vdash \overline{e_2} V \bigcirc \tau_2@V$ I have that $\Gamma, x: \tau_1 \vdash e_2: \bigcirc \tau_2$. IH on this gives exactly the result desired.

* $\Gamma', v: pw, z: A' \vdash \lambda z_2. (return_{target} \langle \pi_1 z', \langle \pi_2 z' \circ \pi_2 z, \pi_3 z', \pi_4 z' \rangle))[z' := z_2]: C \to \overline{B}$ Below, I denote $\Sigma(l'_v: \mathbb{N})(\langle v, \pi_1 z \rangle \leq \langle v', l'_v \rangle \times store \langle v', l'_v \rangle \times \tau_2@\langle v', l'_v \rangle)$ as C'. Apply 5 to get

$$\Gamma', v: pw, z: A', z_2: C \vdash (return_{target} \langle \pi_1 z', \langle \pi_2 z' \circ \pi_2 z, \pi_3 z', \pi_4 z' \rangle \rangle)[z' := z_2]\overline{B}$$

Apply 72 to get (amongst goals solved before)

$$\Gamma', v: pw, z: A', v': pw, z': C' \vdash return_{target} \langle \pi_1 z', \langle \pi_2 z' \circ \pi_2 z, \pi_3 z', \pi_4 z' \rangle \rangle : \overline{B}$$

Apply the return rule to get (as well as a goal solved before)

$$\Gamma', v: pw, z: A', v': pw, z': C' \vdash \langle \pi_1 z', \langle \pi_2 z' \circ \pi_2 z, \pi_3 z', \pi_4 z' \rangle \rangle : B$$

Apply 71 with v' := v' to get

$$\Gamma', v: pw, z: A', v': pw, z': C' \vdash \langle \pi_1 z', \langle \pi_2 z' \circ \pi_2 z, \pi_3 z', \pi_4 z' \rangle \rangle :$$

$$\Sigma(l'_v: \mathbb{N})(U \leq \langle v', l'_v \rangle \times store \langle v', l'_v \rangle \times \tau_2 @\langle v', l'_v \rangle)$$

Multiple applications of rule 20 (with rule 108 and 28) gives

- $\cdot \Gamma', v : pw, z : A', v' : pw, z' : C' \vdash \pi_1 z' : \mathbb{N}$
- $\cdot \pi_2 z' \circ \pi_2 z : U \leq \langle v', l'_v \rangle$

Follows from def C', A' (some wiggling with projections) that $\pi_2 z' : \langle v, \pi_1 z \rangle \leq \langle v', l'_v \rangle$ and $\pi_2 z : U \leq \langle v, \pi_1 z \rangle$

- $\cdot \pi_3 z' : store\langle v', l'_v \rangle$ def C'
- $\cdot \pi_4 z' : \tau_2 @\langle v', l'_v \rangle \operatorname{def} C'$

0.16 ref

Have: $\Gamma \vdash ref(e) : \bigcirc (ref\tau)$. Let m_1 denote $\langle *, \lambda l_v. \lambda i. \lambda m_i. * \rangle$. Let p_1 denote

$$\langle \langle *, \lambda l_v.\lambda i.\lambda m_i.* \rangle, \lambda l_2.\lambda m_2.\lambda i.ite\ (i <_b l)\ ((s\ l_2)(m_2 \circ m_1)\ i)\ (next(move_\tau(m_2 \circ m_1 \circ m)(\overline{e}W_1))) \rangle$$

Let u_1 be as written in the jamboard.

Let x denote

let next
$$v' = v$$
 in let next $l'_v = l_v$ in $\triangleright (\tau@\langle v', l'_v \rangle)$

Showing:

 $\Delta, \Gamma@W_1 \vdash \lambda(l:\mathbb{N}).\lambda(m:W_1 \leq U).\lambda(s:store(U)).return_{target}\langle succ(l), \langle p_1, \langle l, *, \lambda_-.* \rangle \rangle : \bigcirc (ref\tau)@W_1$ Apply 67, then (5 and (108 with 11)) repeatedly to get (amongst goals solved before)

$$\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U) \vdash return_{target} \langle succ(l), \langle p_1, \langle l, *, \lambda_{-}.* \rangle \rangle \rangle:$$

$$\rhd \rhd \exists (v:pw) \Sigma(l_v:\mathbb{N}) U \leq \langle v, l_v \rangle \times store \langle v, l_v \rangle \times (ref\tau) @\langle v, l_v \rangle$$

Apply the return rule

$$\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U) \vdash \langle succ(l), \langle p_1, \langle l, *, \lambda_-. * \rangle \rangle \rangle:$$
$$\exists (v: pw) \Sigma(l_v: \mathbb{N}) U < \langle v, l_v \rangle \times store \langle v, l_v \rangle \times (ref\tau) @\langle v, l_v \rangle$$

Apply 71 to get

$$\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U) \vdash u_1: pw$$

By $cons_b$ suffices to show Δ , $\Gamma@W_1$, $u:pw,l:\mathbb{N}$, $m:W_1\leq U, s:store(U)\vdash u:pw,l:\mathbb{N}$ (easy) and

$$\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U) \vdash \lambda v. \lambda l_v. x:$$

$$\triangleright pw \to_k \triangleright \mathbb{N} \to U_0$$

Apply (108 with 16), then (108 with 11), then 5, then (108 with 11), then 5 again to get

$$\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U), v: \triangleright pw, l_v: \triangleright \mathbb{N} \vdash x: U_0$$

By 122

$$\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U), v: \triangleright pw, l_v: \triangleright \mathbb{N} \vdash x: let next v' = v in U_0$$

Then by 36

 $\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U), v: \triangleright pw, l_v: \triangleright \mathbb{N}, v': \underline{pw} \vdash \text{let next } l_v' = l_v \text{ in } \triangleright (\tau@\langle v', l_v' \rangle): U_0$ Similar reasoning gives

$$\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U), v: \rhd pw, l_v: \rhd \mathbb{N}, v': pw, l_v': \underline{\mathbb{N}} \vdash \rhd (\tau@\langle v', l_v' \rangle): U_0$$

Apply 34

$$\overline{\Delta}, \overline{\Gamma@W_1}, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U), v: \triangleright pw, l_v: \triangleright \mathbb{N}, v': pw, l_v': \mathbb{N} \vdash \tau@\langle v', l_v' \rangle : U_0$$

Follows from types

$$\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U) \vdash \langle succ(l), \langle p_1, \langle l, *, \lambda_{-} * \rangle \rangle \rangle :$$

$$\Sigma(l_v: \mathbb{N})U \leq \langle u_1, l_v \rangle \times store\langle u_1, l_v \rangle \times (ref\tau)@\langle u_1, l_v \rangle$$

Let Δ , $\Gamma@W_1$, $u:pw,l:\mathbb{N}$, $m:W_1\leq U$, s:store(U) be denoted Γ' .

I abbreviate $\langle u_1, succ(l) \rangle$ as U_1 and $\langle u_2, l_2 \rangle$ as U_2

Multiple applications of 20 yield Δ , $\Gamma@W_1$, $u:pw,l:\mathbb{N}, m:W_1\leq U, s:store(U)\vdash succ(l):\mathbb{N}$, as well as

$$-\Delta, \Gamma@W_1, u: pw, l: \mathbb{N}, m: W_1 \leq U, s: store(U) \vdash p_1: U \leq \langle u_1, succ(l) \rangle \times store\langle u_1, succ(l) \rangle$$

Recall the definition of p_1 , apply 20.

1st projection

Showing

$$\Gamma' \vdash m_1 : U < U_1$$

Recalling that $u_1 := \langle cons_b \ u \ l \ \lambda v. \lambda l_v. x, succ(l) \rangle$, it follows from result $cons_b$ in subseq that I need only show $\Delta, \Gamma@W_1, u : pw, l : \mathbb{N}, m : W_1 \leq U, s : store(U) \vdash U : world$ (easy) and $\Delta, \Gamma@W_1, u : pw, l : \mathbb{N}, m : W_1 \leq U, s : store(U) \vdash \lambda v. \lambda l_v. x : \triangleright pw \rightarrow_k \triangleright N \rightarrow U_0$ (done in round bullet above).

2nd projection

Showing

$$\Gamma' \vdash \lambda l_2.\lambda m_2.\lambda i.ite\ (i <_b l)\ ((s\ l_2)(m_2 \circ m_1)\ i)\ (next(move_{\tau}(m_2 \circ m_1 \circ m)(\overline{e}W_1))): store(U_1)$$

Apply 67 to get

$$\Gamma', u_2 : pw \vdash \lambda l_2 . \lambda m_2 . \lambda i.ite \ (i <_b l) \ ((s \ l_2)(m_2 \circ m_1) \ i) \ (next(move_{\tau}(m_2 \circ m_1 \circ m)(\overline{e}W_1))) :$$

$$\Pi(l_2:\mathbb{N})U_1 \leq U_2 \rightarrow *u_1/U_2$$

Applying 5 x3 (along with 108 and 11) gives

$$\Gamma', u_2 : pw, l_2 : \mathbb{N}, m_2 : U_1 < U_2, i : \mathbb{N} \vdash$$

ite
$$(i <_b l) ((s l_2)(m_2 \circ m_1) i) (next(move_{\tau}(m_2 \circ m_1 \circ m)(\overline{e} W_1))) : u_1 i (next u_2)(next l_2)$$

Apply 121 with $M := i <_b l$ to get

$$\Gamma', u_2: pw, l_2: \mathbb{N}, m_2: U_1 \leq U_2, i: \mathbb{N}, b: bool \vdash$$

ite b
$$((s\,l_2)(m_2\circ m_1)\,i)\;(next(move_\tau(m_2\circ m_1\circ m)(\overline{e}\;W_1))):$$

$$(\lambda i.ite\ b\ (u\ i)(\lambda v.\lambda l_v.x)i)\ i\ (next\ u_2)(next\ l_2)$$

 β reduce to get

$$\Gamma', u_2 : pw, l_2 : \mathbb{N}, m_2 : U_1 \leq U_2, i : \mathbb{N}, b : bool \vdash$$

ite b
$$((s l_2)(m_2 \circ m_1) i)$$
 $(next(move_{\tau}(m_2 \circ m_1 \circ m)(\overline{e} W_1)))$:

$$\Big(ite\ b\ (u\ i)(\lambda v.\lambda l_v.x)i\Big)\ (next\ u_2)(next\ l_2)$$

Apply 57 to get

*

$$\Gamma', u_2: pw, l_2: \mathbb{N}, m_2: U_1 \leq U_2, i: \mathbb{N} \vdash$$

$$(s l_2)(m_2 \circ m_1) i : (ite true (u i)(\lambda v.\lambda l_v.x)i) (next u_2)(next l_2)$$

which β reduces to

$$\Gamma', u_2 : pw, l_2 : \mathbb{N}, m_2 : U_1 \leq U_2, i : \mathbb{N} \vdash (s \, l_2)(m_2 \circ m_1) \, i : u \, i \, (next \, u_2)(next \, l_2)$$

Apply 6 twice to get (amonst goals easily solved)

$$\Gamma', u_2: pw, l_2: \mathbb{N}, m_2: U_1 \leq U_2, i: \mathbb{N} \vdash (m_2 \circ m_1): U \leq U_2$$

In '1st projection', I showed that $\Gamma' \vdash m_1 : U \leq U_1$. This and transitivity of subseq gives the above.

 $\Gamma', u_2 : pw, l_2 : \mathbb{N}, m_2 : U_1 \leq U_2, i : \mathbb{N} \vdash (sl_2) : \Pi(U \leq U_2).\Pi(i : \mathbb{N}) (ui(next u_2)(next l_2))$

Apply 108 with 11, then apply 6 to get $\Gamma' \cdots \vdash l_2 : \mathbb{N}$ (easy) as well as

 $\Gamma', u_2 : pw, l_2 : \mathbb{N}, m_2 : U_1 \leq U_2, i : \mathbb{N} \vdash s : \Pi(l_2 : \mathbb{N}).U \leq U_2 \to \Pi(i : \mathbb{N}) (ui(nextu_2)(nextl_2))$

Apply 68 to get

$$\Gamma', u_2: pw, l_2: \mathbb{N}, m_2: U_1 \leq U_2, i: \mathbb{N} \vdash s: \forall (u_2: pw) \Pi(l_2: \mathbb{N}). U \leq U_2 \rightarrow \Pi(i: \mathbb{N}) \big(ui(nextu_2)(nextl_2) \big)$$

In other terms

$$\Gamma', u_2 : pw, l_2 : \mathbb{N}, m_2 : U_1 \leq U_2, i : \mathbb{N} \vdash s : store(U)$$

This follows immediately from the def of Γ' .

 $\Gamma', u_2: pw, l_2: \mathbb{N}, m_2: U_1 \leq U_2, i: \mathbb{N}, b: bool \vdash next(move_{\tau}(m_2 \circ m_1 \circ m)(\overline{e} \ W_1)):$ $\left(ite \ false \ (u \ i)(\lambda v. \lambda l_v. x)i\right) (next \ u_2)(next \ l_2)$

which β reduces to

*

$$\Gamma', u_2: pw, l_2: \mathbb{N}, m_2: U_1 \leq U_2, i: \mathbb{N}, b: bool \vdash next(move_{\tau}(m_2 \circ m_1 \circ m)(\overline{e} \ W_1)):$$
 let next $v' = (next \ u_2)$ in let next $l'_v = (next \ l_2)$ in $\rhd (\tau@\langle v', l'_v \rangle)$

This reduces further to

$$\Gamma', u_2: pw, l_2: \mathbb{N}, m_2: U_1 \leq U_2, i: \mathbb{N}, b: bool \vdash next(move_{\tau}(m_2 \circ m_1 \circ m)(\overline{e}W_1)): \rhd(\tau@\langle u_2, l_2 \rangle)$$

Apply 35 (and the weaking rule for promotion)

$$\Gamma', u_2: pw, l_2: \mathbb{N}, m_2: U_1 \leq U_2, i: \mathbb{N}, b: bool \vdash (move_{\tau}(m_2 \circ m_1 \circ m)(\overline{e} W_1)): \tau@\langle u_2, l_2 \rangle$$

By move, 6, and (108 with 11) it suffices to show that

- · $\Gamma', u_2 : pw, l_2 : \mathbb{N}, m_2 : U_1 \leq U_2, i : \mathbb{N}, b : bool \vdash m_2 \circ m_1 \circ m : W_1 \leq U_2$ By def Γ' I have that $m : W_1 \leq U$. I showed in 1st projection that $\Gamma' \vdash m_1 : U \leq U_1$. The result then follows from transitivity of \leq .
- · $\Gamma', u_2 : pw, l_2 : \mathbb{N}, m_2 : U_1 \leq U_2, i : \mathbb{N}, b : bool \vdash \overline{e} W_1 : \tau@W_1$ I have that $\Gamma \vdash e : \tau$. My IH then gives that $\Delta, \Gamma \vdash \overline{e} W_1 : \tau@W_1$. The desired result comes from weakening.
- $-\Gamma' \vdash \langle l, *, \lambda_{-}.* \rangle \rangle : (ref\tau)@\langle u_1, succ(l) \rangle$ Apply 20 twice (along with 108 and 28) to generate
 - * $\Gamma' \vdash l : \mathbb{N}$ by def Γ'
 - * $\Gamma' \vdash$ * : l < succ(l) basic types
 - * $\Gamma' \vdash \lambda_{-}$ *: $\forall (v:pw)\Pi(l_v:\mathbb{N})((u_1 \ l \ (next \ v) \ (next \ l_v)) = \triangleright(\tau@\langle v, l_v\rangle): type)$ Apply 67 and 5 to get

$$\Gamma', v : pw, l_v : \mathbb{N} \vdash * : (u_1 \ l \ (next \ v) \ (next \ l_v)) = \triangleright (\tau @\langle v, l_v \rangle) : type$$

Recalling the definition of u_1 , this is equivalent to

$$\Gamma', v: pw, l_v: \mathbb{N} \vdash *: ((\lambda i.ite (i <_b l) (u i) \lambda v. \lambda l_v. x) l (next v) (next l_v)) = \triangleright (\tau@\langle v, l_v \rangle) : type \beta$$
 reduction gives

$$\Gamma', v: pw, l_v: \mathbb{N} \vdash *: (ite (l <_b l) (u l) \lambda v. \lambda l_v. x) (next v) (next l_v) = \triangleright (\tau@\langle v, l_v \rangle) : type \ (*)$$

It suffices to show that

(**)
$$\Gamma', v : \triangleright pw, l_v : \triangleright \mathbb{N} \vdash \lambda_{-.}* :$$

$$\Pi(m': l <_b l = false: bool) \Big(\big(ite(l <_b l)(ul) \lambda v. \lambda l_v. x \big) (nextv) (nextl_v) = \rhd (\tau@\langle v, l_v \rangle) : type \Big)$$

· I assume (**) and show (*)

By basic types I have that $\Gamma' \cdots \vdash * : (l <_b l = false : bool)$. So, by (**) and 6, I have that

$$\Gamma' \cdots \vdash \lambda_{-} \ast \ast : (ite (l <_b l) (u l) \lambda v. \lambda l_v. x) (next v) (next l_v) = \triangleright (\tau @\langle v, l_v \rangle) : type$$

 β reduction gives exactly (*).

· I show (**)

I apply 121 with $M := l <_b l$ to generate

$$\Gamma' \dots b : bool \vdash \lambda_{-} * : \Pi(m' : b = false : bool) \Big(\big(iteb(ul) \lambda v . \lambda l_v . x \big) (nextv) (nextl_v) = \triangleright (\tau@\langle v, l_v \rangle) : type \Big)$$

Apply 5 for

$$\Gamma' \dots b : bool, m' : b = false : bool \vdash * : (iteb(ul) \lambda v . \lambda l_v . x) (nextv) (nextl_v) = \triangleright (\tau@\langle v, l_v \rangle) : type$$

Apply 120 with M := false to get, amongst goals solved before

$$\Gamma' \dots m' : false = false : bool \vdash$$

*: (ite false (u l)
$$\lambda v.\lambda l_v.x$$
) (next v) (next l_v) = $\triangleright (\tau@\langle v, l_v \rangle)$: type

After β reduction, this is

$$\Gamma' \vdash * : (\lambda v . \lambda l_v . x) (next \ v) (next \ l_v) = \triangleright (\tau @\langle v, l_v \rangle) : type$$

Definition of x and more β reduction gives

 $\Gamma', v : pw, l_v : \mathbb{N} \vdash * : \text{let next } v' = (nextv) \text{ in let next } l_v' = (nextl_v) \text{ in } \triangleright (\tau@\langle v', l_v' \rangle) = \triangleright (\tau@\langle v, l_v \rangle) : type$ $\beta \text{ reduction again gives}$

$$\Gamma', v : pw, l_v : \mathbb{N} \vdash * : \triangleright (\tau@\langle v, l_v \rangle) = \triangleright (\tau@\langle v, l_v \rangle) : type$$

Apply 33 and use the promotion-weakening lemma to get

$$\Gamma', v: pw, l_v: \mathbb{N} \vdash *: \tau@\langle v, l_v \rangle = \tau@\langle v, l_v \rangle : type$$

This follows from types and the fact that $\Gamma', v : pw, l_v : \mathbb{N} \vdash \langle v, l_v \rangle : world$.

bar types

bind rule

 $\Gamma \vdash M_0 : \overline{A} \text{ and } \Gamma \vdash M_1 : A \to \overline{B} \text{ means that } \Gamma \vdash bind_{target \ A \ B} M_0 \ M_1 : \overline{B}.$

0.17 return rule

If $\Gamma \vdash A : U_0$ then $\Gamma \vdash return_{A \ target} : \Pi(_: A). \rhd \rhd A$.

0.18 bar rule

If $\Gamma \vdash A : U_i$ then $\Gamma \vdash \rhd \rhd A : U_i$

basic types

- 1. $\mathbb{N} : U_0$
- 2. $l_i : \mathbb{N} \text{ gives } l_1 \leq l_2 : U_0$
- 3. Transitivity of \leq $\Gamma \vdash q_1 : l_1 \leq l_2$ and $\Gamma \vdash q_2 : l_2 \leq l_3$ gives $\Gamma \vdash q : l_1 \leq l_3$
- 4. $\Gamma \vdash A = B$ gives that $\Gamma \vdash A \leq B$
- 5. If $\Gamma \vdash x : (A = B) : type$, then $\Gamma \vdash A = B : type$ I'm showing $\Gamma \vdash * = * : (A = B : type)$. I have

$$\Gamma \vdash (x = *) : (A = B) : type$$
 111 (1)

$$\Gamma \vdash (* = x) : (A = B) : type$$
 124 (2)

$$\Gamma \vdash (*=*) : (A=B) : type$$
 125

- 6. refl of \leq
- 7. trans of < to \le (in that order) $\Gamma \vdash i < j$, $\Gamma \vdash j \le k$ gives $\Gamma \vdash i < k$
- 8. Boolean lt for nats
- 9. reflection of $=_{nat}$ with $==_{nat}$ $\Gamma \vdash i, j : \mathbb{N}$ means $\Gamma \vdash (i = j : \mathbb{N}) = ((i == j) = true : bool) : type$
- 10. reflection of < with $<_b$ $\Gamma \vdash i, j : \mathbb{N}$ means $\Gamma \vdash (i < j) = ((i == j) = true : bool) : type$
- 11. $\Gamma \vdash l : \mathbb{N} \text{ gives } \Gamma \vdash * : l \leq succ(l)$
- 12. $A = B : type \text{ means } A \subseteq B \text{ and } B \subseteq A$
- 13. l < succ(l)
- 14. l < l = false : bool
- 15. $\Gamma \vdash m : (M = true : bool)$ and $\Gamma \vdash P : type$ means that $\Gamma \vdash ite(M) P Q = P : type$.

structural rules

1. if $\Gamma \vdash \tau_1@W_1 : typ$ and $x : \tau_x@W_x \in \Gamma$, then $x \notin FV(\tau_1@W_1)$ induction on τ_1 . need some concept of what it means to be a free variable.