DATA AUGMENTATION TECHNIQUES FOR AIRBUS SHIP DETECTION

A COMPARATIVE STUDY ON THE EFFECTS OF DIFFERENT METHODS ON THE ACCURACY AND ROBUSTNESS OF THE TRAINED MODELS

Simone Carena Francesco Paolo Carmone Ludovica Mazzucco

Given an image representing an aerial view of ocean areas, detect if there are any ships and where they are.

"help to support the maritime industry to increase knowledge, anticipate threats, trigger alerts, and improve efficiency at sea."

THE NET

Generalized RCNN Transform

- Input normalization
- Input/Target resizing (skipped)

Image, Target

INPUT

	Training	Fine-tuning
Learning Rat e	StepLR from 1e-4 to 1e- 6	1e-6 (constant)
Batch size	32	32
Num Epochs	18	5

Training Results for data augmentation type: gaussian_patch

THE METHOD

- 1. Formatting dataset targets
- 2. Defining different compositions of transforms to train different models
- 3. Train and validate models with backbone layers frozen
- 4. Fine-tune models activating all gradients
- 5. Test models and evaluate through Mean Average Precision metric

THE RESULTS

