Quiz 4

Name: _____

1. Given the functions h(t) and g(t), compute the following quantities.

t	g(t)
-1	1
0.25	-1
0	1
1	-3
2	-1

(a) [2 pts]
$$(g \cdot h)(-1) = 0$$

(c) [2 pts]
$$(g \circ h)(0) = 1$$

(b) [2 pts]
$$(g \circ g)(2) = 1$$

(d) [2 pts]
$$(h \circ g \circ h)(3) = 2$$

- 2. Let $f(x) = 2x^2 5$ and $g(x) = \frac{1}{x}$.
 - (a) [3 pts] Find a formula for $(g \circ f)(x)$. (b) [3 pts] Find a formula for $(f \circ g)(x)$.

$$(g \circ f)(x) = \frac{1}{f(x)} = \frac{1}{2x^2 - 5} \qquad (f \circ g)(x) = 2(g(x))^2 - 5 = 2\left(\frac{1}{x}\right)^2 - 5 = \frac{2}{x^2} - 5$$

- 3. Let $g(x) = \sqrt{x-1}$ and $f(x) = \frac{2}{x}$.
 - (a) [3 pts] Find a formula for the composition $g \circ f$.

$$(g \circ f)(x) = \sqrt{\frac{2}{x} - 1}.$$

(b) [3 pts] What is the domain of $g \circ f$? First kick out things not in the domain of f, which is x = 0. Then, for $g \circ f$ to make sense, we need $\frac{2}{x} - 1 \ge 0$, or $\frac{2}{x} \ge 1$. This happens when $x \le 2$ as x must already be positive. So, the domain is (0,2].