TIMICO Real-time Ethernet

Christian Fischer Pedersen Assistant Professor cfp@eng.au.dk

Section of Electrical and Computer Engineering
Department of Engineering
Aarhus University

November 3, 2014

Outline

Motivation and background

Single segment Ethernet

Multi segment Ethernet

Single segment real-time Ethernet

Multi segment real-time Ethernet

References

Outline

Motivation and background

Single segment Ethernet

Multi segment Ethernet

Single segment real-time Ethernet

Multi segment real-time Ethernet

References

Ethernet moves to the plant floor

Typical network requirements

Plant networks may span entire production facilities

▶ Connecting various nodes: office servers ↔ sensors/actuators

Control networks typically span plant floor

Connecting specialized nodes

Device networks typically span parts of plant floor

Connecting sensors and actuators

Figure: Typical network requirements at plant, control, and device levels

Ethernet convergence

Convergence in hardware and software standards

- More companies to support development
- All benefit from all
- Unifies and simplifies the wealth of field-buses
- Ubiquity reduces R&D, production, training, and maintenance costs
- Open standards may progress initiatives in open source projects and small/medium sized companies
- ► Get all the benefits of prior Ethernet R&D efforts for free

The OSI reference model

About the model

OSI (Open Systems Interconnection) model (ISO/IEC 7498-1)

- ► ISO: International Standards Organization
- ▶ IEC: International Electrotechnical Commission

Not a network architecture per se

- Comprises seven abstraction layers for communication
- Does not precisely specify services and protocols in each layer
- Just tells in general what each layer should do
- A layer serves the layer above it

Quite similar to the TCP/IP reference model

Not a network architecture per se either

The OSI reference model

Ethernet's place in the model

	Layer	Data unit	Name	Function		
Host layers	7	Data	Application	Meaning of data		
	6		Presentation	Data representation and en/de-cryption. Machine de/inde-pendent data conversion		
	5		Session	Interhost communication		
	4	Segments	Transport	End to end connection, reliability and flow control		
ers	3	Packet or datagram	Network	Determination of data paths within the network via logical addressing		
Media layers	2	Frame /	Data link	Data transmission via physical addressing, source, destination, and checksum		
Me	1	Bit	Physical	Media (wire/fiber), signal connection, voltage levels, and binary transmission		
	Ethe	rnet frame	Ethernet, IEEE 802.3			

The OSI reference model

Communication in the model

- ▶ A layer serves the layer above it, i.e. layer L_n serves L_{n+1}
- ▶ Service Data Units (SDU) are passed down from L_{n+1} to L_n
- ightharpoonup L_n encapsulates L_{n+1} SDUs into protocol data units (PDU)
- ightharpoonup A L $_{n+1}$ SDU is embedded in the payload of a L $_n$ PDU
- ▶ SDU is data sent by a user of the services of a given layer, and is transmitted semantically unchanged to a peer service user
- ► L_n entity peers interact by the L_n protocol by transmitting PDUs

Ethernet frame structure

- Payload includes all other protocol headers and footers
- Payloads less than 46 octets are padded
- ▶ 802.1Q for VLAN and quality of service prioritization
- ► Video (5:23): Renepick, How to build an Ethernet Frame, 2013

ı	Preamble	Start of frame delimiter	MAC destination	MAC source	, ,	Ethertype (Ethernet II) or length (IEEE 802.3)	Payload	Frame check sequence (32-bit CRC)	Interframe gap
Γ	7 octets	1 octet	6 octets	6 octets	(4 octets)	2 octets	42 ^[note 2] -1500 octets	4 octets	12 octets
64-1522 octets									
	72–1530 octets								
	84-1542 octets								

Figure: 802.3 Ethernet frame structure (Wikipedia).

Background

Protocol overhead and efficiency

Ethernet protocol efficiency = $\frac{\text{Payload size}}{\text{Frame size}}$

- ▶ Good (nearly best) case: $\frac{1500 \text{octets}}{1542 \text{octets}} = 97.28\%$
- ▶ Bad (nearly worst) case: $\frac{46 \text{octets}}{1542 \text{octets}} = 2.98\%$

Other protocol headers in Ethernet payload, e.g.

- ightharpoonup pprox 8 (LLC) + 20 (IP) + 20 (TCP) = 48 octets
- E.g. add 48 header octets to send 10 yields 58 octets (> 46)
 - ▶ Efficiency from payload perspective $\frac{10 \text{octets}}{1542 \text{octets}} = 0.65\%$

Ethernet timeline

- ▶ 1973: First versions of Ethernet developed at Xerox PARC
- ▶ 1975: Patent on Ethernet was filed by Xerox
- ▶ 1976: Ethernet deployed at PARC
- ▶ 1980: DIX (Digi. Equip. Corp/Intel/Xerox) std. v.1: 10 Mbit s
- 1980: IEEE began R&D on LAN std. 802
 Different specs were promoted, e.g. CSMA/CD by DIX,
 Token Ring by IBM, Token Bus by GM
- ▶ 1985: IEEE std. 802.3 CSMA/CD was published. HDX
- ▶ 1990: In the decade, Ethernet became prevalent LAN tech.
- ▶ 1998: IEEE 802.3x introduced FDX
- ▶ 2011: Ethernet ubiquitous in home/industry: 0.1 and 1 $\frac{\text{Gbit}}{\text{s}}$

Ethernet layout anno 1976

Robert Metcalfe presents Ethernet to the National Computer Conference in June 1976

Video (9:14): The History of Ethernet, R. Metcalfe, 2007

Ethernet physical media examples

The original commercially available variant of Ethernet – no longer in use 10BASE5 (ThickNet)

- ightharpoonup Coaxial cable with 9.5 mm diameter and 50Ω impedance
- Throughput of 10 Mbit/s
- Baseband digital transmission
- ► Maximum segment length of **5**00 m
- Maximum 100 nodes per segment

Figure: Transceivers, cables and tapping tool (Wikipedia)

Ethernet physical media examples

Other media examples

10BASE2 (ThinNet)

- Coaxial
- As 10BASE5 but cheaper and easier to install

10BASE-T (UTP)

- Full-duplex Unshielded Twisted Pair
- Revision IEEE 802.3i completely new physical layer
- Also: 100Base-T/TX and 1000Base-T

10BASE-FL

- Full-duplex fiber-optic cable
- Also: 100Base-FX & 1000BASE-SX/LX

Outline

Motivation and background

Single segment Ethernet

Multi segment Etherne

Single segment real-time Etherne

Multi segment real-time Ethernet

References

Single segment Ethernet

- ▶ Originally single segment and HDX (< ca. 1990)
- CSMA/CD for sharing bandwidth on shared medium
- Speed is function of no. of simultaneously active nodes
- Collisions reduce throughput
- Packets are received by all. NIC filters per address
- During transmission: 1 node/time exclusive right to medium
- Damage to shared medium affects entire segment

CSMA/CD - Carrier Sense

Carrier Sense Multiple Access with Collision Detection

- Network interface card (NIC) listens for traffic on bus
- ▶ If traffic exist: Do not transmit
- ▶ If no traffic for a certain period (inter-frame gap): Transmit

CSMA/CD - Multiple Access

Carrier Sense Multiple Access with Collision Detection

- Multiple nodes on shared medium
- Collisions are highly likely
- All packets are passed by all nodes
- NIC filters: only addressee nodes receive data

CSMA/CD - Collision Detection

Carrier Sense Multiple Access with Collision Detection

- Collision occur if nodes send data simultaneously
- Nodes monitor own transmission
 - If node detects collision (high voltage signal)
 - Transmission stops and jam-signal broadcasted
 - Nodes discard packets and stops transmitting

RRT: Random re-transmission. Idle time: — Data on bus: —

CSMA/CD - Collision Detection

Carrier Sense Multiple Access with Collision Detection

Truncated binary exponential back-off algorithm

- ▶ To schedule retransmissions after detected collision
- ▶ Retransmit after a random number of slot-times: Max theoretical roundtrip time: $t_{\sf slot} = t_{\sf data\ out} + t_{\sf jam\ back}$
- ▶ Back-off after $c \in [1; c_{\sf max}]$ collisions: $t_{\sf back-off} = r \cdot t_{\sf slot}$
- Where
 - $r \sim \mathcal{U}[0,...,2^c-1]$ where \mathcal{U} is the uniform PMF
 - $t_{\mathsf{slot}} = 51.2\mu\mathsf{s}$ at 10 Mbit/s
 - $t_{\rm slot} = 5.12 \mu {\rm s}$ at 100 Mbit/s
- Truncated means
 - ► Ceiling on retransmission timeout
 - ▶ IEEE 802.3 CSMA/CD standard: $c_{\sf max} = 10$ (IEEE, 2008 [3])
 - ► Transmission canceled after 16 successive attempts and back-off interval reset to initial value

Medium monopolization by back-off algorithm

- Two nodes A and B have a number of packets to transmit
- ▶ At some point a collision occur and, e.g. B randomly selects 0 and A selects 1 in [0;1]
- ▶ Thus B will be successful in first retransmission
- B still has more packets to send and tries immediately to send again. By chance this collides with A
- ► A doubles the back-off interval whereas B uses the initial one. Thus B has higher chance of transmitting successfully
- ▶ This may repeat and B may monopolize the medium

Summary of single segment Ethernet

Pros in regard to real-time operations

▶ Low cost, flexible, and ubiquitous hardware

Cons in regard to real-time operations

- CSMA/CD w/ random back-off algorithm
- Nondeterministic medium access timing makes it hard to guarantee deadlines
- No packet prioritization means that time-critical packets may yield for non-critical packets

Perspectives

Methods to counter the cons exist

Outline

Motivation and background

Single segment Ethernet

Multi segment Ethernet

Single segment real-time Ethernet

Multi segment real-time Ethernet

References

Main functionalities of a switch

Micro-segmentation

- Separate collision domain for each network segment
- Only two nodes coexist in a collision domain
- Nodes have dedicated point-to-point bandwidth
- Full duplex without collisions

Figure: Industrial Ethernet switches from Molex

Micro-segmentation by switch

Single segment vs. switched Ethernet

- One collision domain, C, for multiple nodes, N
- Collisions are possible
- Non-deterministic

 $\begin{pmatrix} N_1 & N_2 \\ N_4 & N_3 \end{pmatrix}$

- One collision domain, C, per node, N, due to switch, S
- Collision free
- Deterministic

Conceptual switch internals

Switched Ethernet

Fully switched means full-duplex Ethernet

- Collision-free: Only 2 nodes per collision domain
- ▶ Net speed is x bit/s \Rightarrow node-to-node is 2x bit/s

Cabling

- Twisted-pair or fiber optic
- Separate transmit (Tx) and receive (Rx) conductors

Switching methods on port basis

Store and forward

- Entire packets buffered and checksum verified
- Corrupted packets dropped

Cut through

- Reads only up to destination address before forwarding
- Forwards corrupted packets as checksum is not verified
- Higher speed than store and forward

Adaptive switching

- ▶ If error rates low: Cut-through mode
- ▶ If error rates high: Store-and-forward mode

Characteristics of switched traffic

Corruption

- Bit errors by noise or interference
- Drops and retransmits packets in store and forward

Latency

- Communication delay in media, e.g. wires, switches, routers
- Delay may build up even if throughput is approx. constant
- Ping command measures round-trip (NOOP) latency

Packet delay variation (PDV)

- ▶ Low PDV: RT system may deal with latency by time offsets
- ▶ High PDV: Unpredictable and hard to guarantee deadlines

Latency and packet loss example

goedel.math.ku.dk ping statistics ---

```
5 packets transmitted, 5 received, 0% packet loss, time 4006ms rtt min/avg/max/mdev = 8.630/9.167/10.848/0.851 ms

--- www.monash.edu.au ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4000ms rtt min/avg/max/mdev = 332.910/333.107/333.586/0.439 ms
```

Figure : Ping statistics

Typical switch data

Port to port communication

- Less than 50 μ s
- Depends on packet size

Packet delay variation

Approximately 100 ns

Latency: Single 100Mbit/s switch

- ► Min: (packet size, latency) = (64 Bytes, 10840 ns)
- ▶ Max: (packet size, latency) = (1518 Bytes, 126240 ns)

Latency: Multiple 100Mbit/s switches

Latency: Multiple Gbit/s switches

Latency: Connecting two switches

Routers read the address for proper routing

Nagle's algorithm

Increases bandwidth at the expense of latency

- Combines outgoing packets with small payloads
- Decreases overhead/pay-load ratio
- Good for normal Ethernet operations

Poor compliance with real-time systems

Increases latency and packet delay variations

Disable / enable the algorithm

- Disable it: TCP_NODELAY socket option
- ▶ E.g. Unix nc6 (netcat): Swiss army knife for TCP, UDP, ...
- "Client": nc6 –disable-nagle -l -p 1234
- "Server": nc6 127.0.0.1 1234

Summary of multi segment Ethernet

Pros in regard to real-time operations

- Fully switched gives full duplex
- ▶ No collisions: only two nodes in same collision domain
- Network segmentation via logical overlay virtual LAN
- Low cost, flexible, and ubiquitous hardware

Cons in regard to real-time operations

- Deadlines hard to guarantee
- Arrival times of packets hard to predict
- Ethernet frames vary in size
- Unknowns: Route, latency, packet delay var., corruption ratio

Perspectives

Methods to counter the cons exist

Outline

Motivation and background

Single segment Ethernet

Multi segment Ethernet

Single segment real-time Ethernet

Multi segment real-time Ethernet

References

Single segment real-time Ethernet approaches

Main challenge

Collision avoidance on shared medium

Common approaches

- Token based
- Time slot based
- Statistics based

See (Moraes, 2010 [4]) for a survey on real-time in CSMA networks

Single segment real-time Ethernet

Token based

Token represents permission to transmit

- Token circulated according to strategy
- ▶ Token management uses time and bandwidth
- Only one node may transmit at any time
- Limited performance vs. switched networks

Single segment real-time Ethernet

Time slot based

Time slot represents permission to transmit

- Time is divided according to strategy (TDMA)
- Strike a balance on time-slot lengths
 - ▶ Long: Long idle periods. Short: Frequent data partitioning
- Time management uses time and bandwidth
- Limited performance vs. switched networks

Figure: Stream into frames and time slots with data+guard (Wikipedia)

Single segment real-time Ethernet

- Keep network traffic low to bound probability of collisions
- Statistical guarantee to nodes for transmission time and bandwidth
- The overall network utilization decreases with stronger statistical guarantees
- Basically avoidance of invoking the back-off algorithm

Outline

Motivation and background

Single segment Etherne

Multi segment Ethernet

Single segment real-time Ethernet

Multi segment real-time Ethernet

References

Multi segment real-time Ethernet approaches

Main challenge

▶ Bandwidth control and scheduling, e.g. in switches

Common approaches

- ProfinetIRT
- EtherCAT
- Ethernet Powerlink
- Sercos III
- EtherNet/IP

Classification of multi segment RTE approaches

By protocol stacks

- 1. No RTE overlay
- 2. Ethernet/IP
- 3. Ethernet Powerlink
- Profinet v3, Sercos-III, EtherCAT

(Felser, 2005 [2])

Classification of multi segment RTE approaches

By hardware and software compliance

Classification of multi segment RTE approaches

By bandwidth control methods

Separate slave polling

Ethernet Powelink, ProfiNet IRT, Sercos-III

Combined slave polling

EtherCAT

Time based

Ethernet/IP (based entirely on standard Ethernet)

Ethernet Powerlink, ProfiNet IRT, and Sercos III

Separate slave polling

Per cycle

- ▶ RT traffic: Master polls each slave with an Ethernet telegram
- ▶ Non-RT traffic: Remaining cycle time

Figure: Time slot mechanism

Ethernet Powerlink, ProfiNet IRT, and Sercos III

Separate slave polling

Figure: Telegram structuring

Ethertype

▶ ID of protocol encapsulated in the Ethernet frame payload

EtherCAT

Combined slave polling

Per cycle

- ▶ RT traffic: Master polls slaves with an Ethernet telegram shared by all
- Non-RT traffic: Space reserved as a sub-telegram in the shared telegram

Figure: Telegram structuring

EtherCAT

Combined slave polling

- Designed for small payloads per node
- One Ethernet frame holds more sub-frames
 - Encoded and decoded by special hardware
 - Slaves read and write in same sub-frame on the fly
- Each with payloads for nodes in the network
 - Reduces overhead/payload ratio
- Synchronization via distributed clock
 - Very low packet delay variations

EtherNet/IP

Time based

Ethernet/IP

- Based entirely on standard Ethernet
- Synchronized clocks via Precision Time Protocol
- Control commands must be received by slaves in due time
- RT delivery by master by UDP
- QoS prioritization of traffic (802.1Q)

EtherNet/IP

Time based

Preamble	Start of frame delimiter	MAC destination	MAC source	802.1Q tag (optional)	Ethertype or length	Payload	Frame check sequence (32-bit CRC)	Interframe gap
7 octets of 10101010	1 octet of 10101011	6 octets	6 octets	(4 octets)	2 octets	46-1500 octets	4 octets	12 octets

Figure: QoS prioiritization in Ethernet frame; switches prioritize traffic

Figure: Precision Time Protocol for clock synchronization

Comparison of approaches in real-time setup

- Setup: 100 axles to be controlled synchronously
- ▶ Response time: Cycle time
- ▶ Jitter: Variations in response time
- ▶ Conclusion: More proprietary → Faster and less jitter

Organization	Response time (for 100 axles)	Jitter	Data rate
Ethernet/IP CIPSync ODVA	≈1ms	<1ms	100Mbit/s
Ethernet Powerlink EPSG	<1ms	<1ms	100Mbit/s
Profinet-IRT PNO	<1ms	<1ms	100Mbit/s
Sercos-III IGS	<0.5ms	<0.1ms	100Mbit/s
EtherCAT ETG	≈0.1ms	<0.1ms	100Mbit/s

Comparison of approaches in real-time setup

- Setup: Field bus vs. Ethernet
- ▶ No. of slave pollings measured in no. of packets/ms
- Performance criteria: Theoretical packet throughput (actual throughput lower due to processing and latency)
- ► Conclusion: New Ethernet based systems perform well

	Transfer rate	Packet size with 8 bytes of user data	Theoretical packs throughput
Profibus DP	12 Mbit/s	19 bytes	79 packets/ms
Sercos-II	16 Mbit/s	14 bytes	142 packets/ms
Ethernet	100 Mbit/s	72 bytes	174 packets/ms

Outline

Motivation and background

Single segment Ethernet

Multi segment Ethernet

Single segment real-time Etherne

Multi segment real-time Ethernet

References

Further reading

Online material

- Industrial Ethernet University
- ► Industrial Ethernet Book
- ► IEEE Standards Association
- ODVA (Open DeviceNet Vendors Association)
- ► Ethernet Powerlink Standardization Group
- EtherCAT Technology Group
- ► Fieldbus Foundation
- Modbus Organization
- ► Profibus and Profinet International
- ► Sercos The Automation Bus

Further reading

Papers and books

- Snader, J.C., "Effective TCP/IP Programming", Addison Wesley, 2000
- ► Lammermann, S., "Ethernet as a real-time technology", Univ. of Telecomm., Leipzig, 2008
- Marx, U. and RTnet development team, "RTnet project", Univ. of Hannover, Germany, 2011

References I

- Coley, K. (2004). Using intelligent ethernet switches to enhance data packet delivery speed in Ethernet/IP networks. In CIP Networks Conference.
- [2] Felser, M. (2005). Real-time ethernet industry prospective. In Proceedings of the IEEE, Volume 93.
- [3] IEEE (2008). IEEE 802.3-2008, part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications. Rev.: 3rd printing 22 June 2010. URL: http://standards.ieee.org/about/get/802/802.3.html. pp. 1-315.
- [4] Moraes, R. (2010). Survey of real-time communication in CSMA-based networks. In Network Protocols and Algorithms, Volume 2.