Vector Space Models of Lexical Meaning - Part II

Lukas Schmitt

Saarland University s9lkscmi@stud.uni-saarland.de

November 20, 2017

Overview

- Compositional Vector Space Models
- Background
- The Compositional Framework
- Conclusion

Development in Computational Linguistics

Compositional treatment for distributional vector-based models

Development in Computational Linguistics

Compositional treatment for distributional vector-based models

Framework by Coecke et al.

Designed for linguists and has interesting links with Montague semantics

Development in Computational Linguistics

Compositional treatment for distributional vector-based models

Framework by Coecke et al.

Designed for linguists and has interesting links with Montague semantics

Goal of the Framework

Get one vector for a whole sequence of words based on the vectors of each word

Development in Computational Linguistics

Compositional treatment for distributional vector-based models

Framework by Coecke et al.

Designed for linguists and has interesting links with Montague semantics

Goal of the Framework

Get one vector for a whole sequence of words based on the vectors of each word

But why?

Reasons

- Interesting new viewpoint on the problem
- Language Processing applications benefit from it

Reasons

- Interesting new viewpoint on the problem
- Language Processing applications benefit from it

Query: Find all car showrooms with sales on for Ford cars.

Reasons

- Interesting new viewpoint on the problem
- Language Processing applications benefit from it

Query: Find all car showrooms with sales on for Ford cars.

Headline: Cheap Fords available at the car salesroom.

Top-Ranked page: Dog shoots man.

Third-Ranked page: The Man who killed his friend for eating his dog after it was killed.

Top-Ranked page: Dog shoots man.

Third-Ranked page: The Man who killed his friend for eating his dog after it was killed.

 \rightarrow Order of words matter!

Distributional Sentence Representation

Intuition

Last talk: Words that occur in similar contexts tend to have similar meanings

Distributional Sentence Representation

Intuition

Last talk: Words that occur in similar contexts tend to have similar meanings

How to apply to a larger sequences of words?

Existing Vector Composition Methods

Information Retrieval

Vector addition is used for combination of word vectors, but also other binary vector operations

Existing Vector Composition Methods

Information Retrieval

Vector addition is used for combination of word vectors, but also other binary vector operations

Cognitive Science

How can distributional, connectionist representations be given a compositional treatment to reflect the compositional nature of language?

Tensor Product

Existing Vector Composition Methods

Information Retrieval

Vector addition is used for combination of word vectors, but also other binary vector operations

Cognitive Science

How can distributional, connectionist representations be given a compositional treatment to reflect the compositional nature of language?

Baroni & Zamparelli

Usage of matrix multiplication of vectors and machine learning methods

syntax drives the compositional process

syntax drives the compositional process
Syntactic and semantic descriptions are type-driven

syntax drives the compositional process
Syntactic and semantic descriptions are type-driven

Syntactic Type in Combinatory Categorial Grammar

likes := $(S \setminus NP)/NP$

syntax drives the compositional process Syntactic and semantic descriptions are type-driven

Syntactic Type in Combinatory Categorial Grammar

$$likes := (S \backslash NP)/NP$$

Classical Categorial Grammar

$$X/YY\Rightarrow X(>)$$

$$YX \setminus Y \Rightarrow X$$

Adjoint Categories

 $likes := NP^r \cdot S \cdot NP^l$

Adjoint Categories

likes := $NP^r \cdot S \cdot NP^l$

Cancellation Rules

$$X \cdot X^r \to 1$$

$$X^I \cdot X \rightarrow 1$$

Pregroup Derivation

Investors	are	appealing	to	$_{ m the}$	Exchange	Commission
NP	$\overline{NP^r \cdot S[dcl] \cdot S[ng]^l \cdot NP}$	$\overline{NP^r \cdot S[ng] \cdot PP^l}$	$PP \cdot NP^l$	$NP \cdot N^l$	$N \cdot N^l$	N
						N
				-	NP	
					PP	
			$NP^r \cdot S[r]$	[g]		-
		$NP^r \cdot S[dcl]$			-	
	S[dcl]			-		

Semantic Types and Tensor Products

Remember Syntactic Type

 $likes := NP^r \cdot S \cdot NP^l$

Semantic Types and Tensor Products

Remember Syntactic Type

$$likes := NP^r \cdot S \cdot NP^l$$

Vector Space

$$\overrightarrow{likes} \in \mathbf{N} \cdot \mathbf{S} \cdot \mathbf{N}$$

Tensor Product

Tensor Product

Individual Vector

$$\Psi = \sum_{ijk} C_{ijk} (\overrightarrow{n_i} \otimes \overrightarrow{s_j} \otimes \overrightarrow{n_k}) \in \mathbf{N} \otimes \mathbf{S} \otimes \mathbf{N}$$

Individual Vector

$$\Psi = \sum_{ijk} C_{ijk} (\overrightarrow{n_i} \otimes \overrightarrow{s_j} \otimes \overrightarrow{n_k}) \in \mathbf{N} \otimes \mathbf{S} \otimes \mathbf{N}$$

 \downarrow

Answer to the question: What is the semantic type corresponding to a particular syntactic type?

Individual Vector

$$\Psi = \sum_{ijk} C_{ijk} (\overrightarrow{n_i} \otimes \overrightarrow{s_j} \otimes \overrightarrow{n_k}) \in \mathbf{N} \otimes \mathbf{S} \otimes \mathbf{N}$$

 \downarrow

Answer to the question: What is the semantic type corresponding to a particular syntactic type?

Remaining question: How can the vector for the transitive verb shown above be combined with vectors of a subject and object to give a vector in the sentence space?

Plausability Space for Sentences

Noun Vectors in N

	fluffy run	fast	aggressive	tasty	buy	juice	fruit
\overrightarrow{dog} \overrightarrow{cat}	0.8 0.8	0.7	0.6	0.1	0.5	0.0	0.0
	0.9 0.8	0.6	0.3	0.0	0.5	0.0	0.0
\overrightarrow{apple}	0.0 0.0	0.0	0.0	0.9	0.9	0.8	1.0
\overrightarrow{orange}	0.0 0.0	0.0	0.0	1.0	0.9	1.0	1.0

Transitive Verb Vectors

	$\langle \mathrm{fluffy}, \mathrm{T}, \mathrm{fluffy}\rangle \langle \mathrm{fluffy}, \mathrm{F}, \mathrm{fluffy}\rangle \langle \mathrm{fluffy}, \mathrm{T}, \mathrm{fast}\rangle \langle \mathrm{fluffy}, \mathrm{F}, \mathrm{fast}\rangle \langle \mathrm{fluffy}, \mathrm{T}, \mathrm{juice}\rangle \langle \mathrm{fluffy}, \mathrm{F}, \mathrm{juice}\rangle \langle \mathrm{tasty}, \mathrm{T}, \mathrm{juice}\rangle \boldsymbol{.} \boldsymbol{.} \boldsymbol{.} \boldsymbol{.} \boldsymbol{.} \boldsymbol{.} \boldsymbol{.} \boldsymbol{.}$							
\overrightarrow{chases}	0.8	0.2	0.75	0.25	0.2	0.8	0.1	
\overrightarrow{eats}	0.7	0.3	0.6	0.4	0.9	0.1	0.1	

	(fluffy,T,fluff	fy) (fluffy,F,fluf	fy) (fluffy,T,fas	$\operatorname{st} \ \langle \operatorname{fluffy,F,fast} $	⟩⟨fluffy,T,juice	⟩ ⟨fluffy,F,juice	$\langle \text{tasty,T,juice} \rangle$.
\overrightarrow{chases}	0.8	0.2	0.75	0.25	0.2	0.8	0.1
dog, cat	0.8,0.9	0.8,0.9	0.8,0.6	0.8,0.6	0.8,0.0	0.8,0.0	0.1,0.0

Calculation of Basis Vectors

True Basis Vector

$$\overrightarrow{dog\ chases\ cat}_{True} = 0.8.0.8.0.9 + 0.75.0.8.0.6 + 0.2.0.8.0.0 + 0.1.0.1.0.1 + \dots$$

False Basis Vector

 $\overrightarrow{dog \ chases \ cat_{False}} = 0.2.0.8.0.9 + 0.25.0.8.0.6 + 0.8.0.8.0.0 + \dots$

Combining a Transitive Verb with its Subject and Object

$$f\left(\overrightarrow{\pi} \otimes \overrightarrow{\Psi} \otimes \overrightarrow{o}\right) = \sum_{ijk} C_{ijk} \langle \overrightarrow{\pi} \mid \overrightarrow{\pi_i} \rangle \overrightarrow{s_j} \langle \overrightarrow{o} \mid \overrightarrow{o_k} \rangle$$
$$= \sum_{i} \left(\sum_{ik} C_{ijk} \langle \overrightarrow{\pi} \mid \overrightarrow{\pi_i} \rangle \langle \overrightarrow{o} \mid \overrightarrow{o_k} \rangle \right)$$

Pregroup Derivation with semantics

man	bites	dog
NP N	$\begin{matrix} NP^r \cdot S \cdot NP^l \\ \mathbf{N} \otimes \mathbf{S} \otimes \mathbf{N} \end{matrix}$	NP N
	$egin{array}{c} NP^r \cdot S \ \mathbf{N} \otimes \mathbf{S} \end{array}$	
	$rac{S}{\mathbf{S}}$	

The Meaning of a Sentence

$$\overrightarrow{w_1 \cdots w_n} = F(\alpha)(\overrightarrow{w_1} \otimes \cdots \otimes \overrightarrow{w_n})$$

Active area of research

- Active area of research
- Provide a level of robustness that logic-based approaches can't provide

- Active area of research
- Provide a level of robustness that logic-based approaches can't provide
- Classical logic-based enterprise in NLP has failed

- Active area of research
- Provide a level of robustness that logic-based approaches can't provide
- Classical logic-based enterprise in NLP has failed
- Open question: Whether fundamental concepts from semantics can be incorporated

- Active area of research
- Provide a level of robustness that logic-based approaches can't provide
- Classical logic-based enterprise in NLP has failed
- Open question: Whether fundamental concepts from semantics can be incorporated
- Incorporation of vision into the vector representations

- Active area of research
- Provide a level of robustness that logic-based approaches can't provide
- Classical logic-based enterprise in NLP has failed
- Open question: Whether fundamental concepts from semantics can be incorporated
- Incorporation of vision into the vector representations
- A semantic theory incorporating distributional representations at the word, phrase, sentence or even document level, multi-modal features and effective robust methods of inference

- Active area of research
- Provide a level of robustness that logic-based approaches can't provide
- Classical logic-based enterprise in NLP has failed
- Open question: Whether fundamental concepts from semantics can be incorporated
- Incorporation of vision into the vector representations
- A semantic theory incorporating distributional representations at the word, phrase, sentence or even document level, multi-modal features and effective robust methods of inference
- \Rightarrow Solving one of the most difficult and fundamental problems in Al and the cognitive sciences

References

Stephen Clarke (2015)

Vector Space Models of Lexical Meaning

Handbook of Contemporary Semantic Theory second edition, edited by Shalom Lappin and Chris Fox Chapter 16, 493 – 522.

Coecke et al. (2010)

Mathematical foundations for a com-positional distributional model of meaning, in J. van Bentham, M. Moortgat, & W. Buszkowski (eds.)

Linguistic Analysis (Lambek Festschrift) volume 36, 345 – 384.

Joachim Lambek (2008)

From Word to Sentence. A Computational Algebraic Ap-proach to Grammar *Polimetrica*.

Baroni & Zamparelli (2010)

Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space

Conference on Empirical Methods in Natural Language Processing (EMNLP-10) Cambridge, MA, 1183 – 1193.