

Normal Call		2020-01-21
No	_Name	
Assessment durat	tion: 45 minutes	
Value of each que	estion: marked with brackets	
Multiple choice q	uestions: each wrong answer deducts 1/3 of the question's value	

Part I 10%

- a. [3.3] A device such as a printer that recognizes the PostScript page description language will behave like a
 - i. Raster device
 - ii. Vector device
 - iii. Tensor device
 - iv. None of the above
- b. [3.3] Under what circumstances is a vector transformed by a translation?
 - i. Under no circumstances
 - ii. Only when the direction of the translation is not perpendicular to the direction of the vector
 - iii. In all circumstances
 - iv. None of the above
- c. [3.3] In OpenGL, a perspective projection associated with an asymmetric viewing volume can be achieved with functions
 - i. glOrtho() or glFrustum()
 - ii. glOrtho() or gluPerspective()
 - iii. glFrustum() or gluPerspective()
 - iv. None of the above

- d. [3.3] In the octree representation of 3D objects
 - i. There is ambiguity, because the same representation can correspond to several models
 - ii. The 3D space is divided into equally sized cubes
 - iii. The 3D space is divided into cubes whose sides are powers of 2
 - iv. None of the above
- e. [3.3] The contribution made by the emission component of the OpenGL lighting model
 - i. Models the effect of the light reflected by other objects in the environment
 - ii. Simulates the reflection of light by highly polished objects
 - iii. Simulates the fluorescence phenomenon
 - iv. None of the above
- f. [3.3] In OpenGL texture mapping, does it make sense to define the GL_NEAREST_MIPMAP_LINEAR magnification filtering method?
 - i. Yes. It will compute a weighted linear average of the 2 x 2 array of texels that lie nearest to the center of the pixel within the nearest mipmap
 - ii. Yes. It will compute the nearest texel in each of the two nearest best choice of mipmaps and then interpolates linearly between these two values
 - iii. No. It will always use the highest resolution map
 - iv. None of the above

Nor	mal Call					2020-01-21
No.		Name				
Part	: II					20%
a.		oose you want to ma the one shown in Fig ertex.				-
		Figure 1	v3	Figure 2	v2	
	v0:		v0		v1	
	v1:					
	v2:					
	v3:					
b.	light source Specify the	sider a sphere made ce (1.0, 0.8, 1.0). Wh e calculations made.	nat are the prima	ry components (R	•	
	_					

Norma	al Call					2020-01
No		Name				
It	ts opposite	-	he origin and	the point (1		adrilateral shown in Figur he polygon's front face is
		<i>y</i>	100,100,75	Z Figure 3	100,100,75 X	100,100,75 α=36.8°
Norm	nal·			0		
	5m			1m		
		' 1m '		Figure 4		
-		ollowing infor			the desired o	camera, considering that
Eye:					,	
Cente	er:					

Normal Call	2020-01-21

No. ______Name _____

e. **[5.0]** Consider the object illustrated in Figure 5 and the existence of the function box() that draws a unit cube, aligned with the axes and centered on the origin.

Further consider that:

- The origin of the coordinate system is in the center of element A;
- Element B moves vertically relative to element A;
- Element C rotates around a horizontal axis, according to the figure;
- Elements D and E move perpendicularly to object C (that is, vertically while object C has not rotated);
- **Important:** Translations of elements D and E must be made in relation to the axis of rotation of C;
- For the scene tree, use only the shapes shown in Figure 6. The circles represent transformations (and the letters S, R and T identify the type of transformation); the squares represent the calls to the box() function, with the letter identifying the corresponding element.

Figure 5

Figure 6

Draw the tree that represents the object on the back of this sheet.