Jerrold E. Marsden and Anthony J. Tromba

Vector CalculusFifth Edition

Chapter 2: Differentiation

2.4 Introduction to Paths and Curves

2.4 Introduction to Paths

Key Points in this Section.

- 1. A **path** in \mathbb{R}^3 is a map **c** of an interval [a, b] to \mathbb{R}^3 . The **endpoints** of the path are the points $\mathbf{c}(a)$ and $\mathbf{c}(b)$. The associated geometric curve C is the set of image points $\mathbf{c}(t)$ as t ranges from a to b. We say **c** is a **parametrization** of C. Paths in the plane are similar (leave off the last component).
- 2. A particle on the rim of a rolling circle of radius 1 traces out a path called a *cycloid*:

$$\mathbf{c}(t) = (t - \sin t, 1 - \cos t).$$

3. If a path c is differentiable, its velocity is defined to be

$$\mathbf{c}'(t) = \lim_{h \to 0} \frac{\mathbf{c}(t+h) - \mathbf{c}(t)}{h} = x'(t)\mathbf{i} + y'(t)\mathbf{j} + z'(t)\mathbf{k},$$

where $\mathbf{c}(t)$ has components (x(t), y(t), z(t)).

4. The vector $\mathbf{c}'(t_0)$ is tangent to the path at the point $\mathbf{c}(t_0)$. The **tan**-gent line at this point is

$$\ell(t) = \mathbf{c}(t_0) + (t - t_0)\mathbf{c}'(t_0).$$

Paths and Curves A path in \mathbb{R}^n is a map $\mathbf{c} : [a, b] \to \mathbb{R}^n$; it is a path in the plane if n = 2 and a path in space if n = 3. The collection C of points $\mathbf{c}(t)$ as t varies in [a, b] is called a curve, and $\mathbf{c}(a)$ and $\mathbf{c}(b)$ are its endpoints. The path \mathbf{c} is said to parametrize the curve C. We also say $\mathbf{c}(t)$ traces out C as t varies.

If **c** is a path in \mathbb{R}^3 , we can write $\mathbf{c}(t) = (x(t), y(t), z(t))$ and we call x(t), y(t), and z(t) the *component functions* of **c**. We form component functions similarly in \mathbb{R}^2 or, generally, in \mathbb{R}^n .

$$\mathbf{c}(t) = (\cos t, \sin t), \qquad 0 \le t \le 2\pi$$

$$\mathbf{c}(t) = (t, t^2) \qquad t \in \mathbb{R}$$

$$\mathbf{C}(t) = (vt, R) \qquad \mathbf{d}(t) = r \left(\cos \left[-\frac{v}{R} t - \frac{\pi}{2} \right] \mathbf{i} + \sin \left[-\frac{v}{R} t - \frac{\pi}{2} \right] \mathbf{j} \right)$$

$$\mathbf{d}(t) = r \left(-\sin \frac{vt}{R} \mathbf{i} - \cos \frac{vt}{R} \mathbf{j} \right)$$

$$\mathbf{c}(t) = \left(vt - r\sin\frac{vt}{R}, R - r\cos\frac{vt}{R}\right)$$

Cycloid

Hypocycloid

DEFINITION: Velocity Vector If \mathbf{c} is a path and it is differentiable, we say \mathbf{c} is a differentiable path. The velocity of \mathbf{c} at time t is defined by³

$$\mathbf{c}'(t) = \lim_{h \to 0} \frac{\mathbf{c}(t+h) - \mathbf{c}(t)}{h}.$$

We normally draw the vector $\mathbf{c}'(t)$ with its tail at the point $\mathbf{c}(t)$. The *speed* of the path $\mathbf{c}(t)$ is $s = \|\mathbf{c}'(t)\|$, the length of the velocity vector. If $\mathbf{c}(t) = (x(t), y(t))$ in \mathbb{R}^2 , then

$$\mathbf{c}'(t) = (x'(t), y'(t)) = x'(t)\mathbf{i} + y'(t)\mathbf{j}$$

and if $\mathbf{c}(t) = (x(t), y(t), z(t))$ in \mathbb{R}^3 , then

$$\mathbf{c}'(t) = (x'(t), y'(t), z'(t)) = x'(t)\mathbf{i} + y'(t)\mathbf{j} + z'(t)\mathbf{k}.$$

Tangent Vector The velocity $\mathbf{c}'(t)$ is a vector **tangent** to the path $\mathbf{c}(t)$ at time t. If C is a curve traced out by \mathbf{c} and if $\mathbf{c}'(t)$ is not equal to $\mathbf{0}$, then $\mathbf{c}'(t)$ is a vector tangent to the curve C at the point $\mathbf{c}(t)$.

Tangent Line to a Path If $\mathbf{c}(t)$ is a path, and if $\mathbf{c}'(t_0) \neq \mathbf{0}$, the equation of its *tangent line* at the point $\mathbf{c}(t_0)$ is

$$\mathbf{l}(t) = \mathbf{c}(t_0) + (t - t_0)\mathbf{c}'(t_0).$$

If C is the curve traced out by \mathbf{c} , then the line traced out by \mathbf{l} is the tangent line to the curve C at $\mathbf{c}(t_0)$.

