雑談対話システム構築フレームワーク PyChatに基づく 特定シチュエーション向け対話システム

中島圭祐*1 駒谷和範*1 中野幹生*2

*1 大阪大学 産業科学研究所

*2(株) ホンダ・リサーチ・インスティチュート・ジャパン

1.1 背景

▶ 評価軸に合わせて「人らしい」対話システムの 構築を目標とした

> 実働期間が約6週間での作成

1.2 課題

- ▶ 分岐の無い1通りの応答だけを行う場合
 - ■破綻する可能性
 - ■ユーザの話を聞いていないシステム

1通りの応答を行った例

S1: 印象に残った場所ってどこ?

U1: イギリスかな

S2: そっかあ. いつ行ったの?

S1: 印象に残った場所ってどこ?

U1: <mark>去年行ったハワイかな</mark>

S2: そっかあ. <u>いつ</u>行ったの?

既に言った事を聞いている

1.言語理解が必要

短い期間での実装が困難

1.2 課題

- ▶ 1問1答型のシステム
 - ◆唐突な話題転換をする
 - > 文脈を無視している

唐突な話題転換の例

S1: 印象に残った場所ってどこ?

U1: イギリスかな

S2:そっかあ. ところで, 好きな食べ物って何?

2.文脈を踏まえた発話

1.3 アプローチ

1.言語理解の実装

対話システム構築フレームワークHRIChat (PyChat改め)を用いる

- ▶ ドメイン依存の言語理解を構築可能
- > 短い期間でも構築可能

2.文脈を踏まえた発話

状態遷移ネットワーク型の対話管理

> 言語理解を利用した分岐も作成できる

- 1 概要
- 2 HRIChat
 - 2.1 言語理解
 - 2.2 例文の記述
 - 2.3 対話フローの記述例
- 3 対話の設計
 - 3.1 対話フローの構成
 - 3.2 システム発話表現の調整
- 4 予選の結果
- 5 まとめ

2 HRIChat

▶ HRIChatとは特定ドメインの対話システム構築フレーム ワーク

開発に必要なのは対話知識の記述 Excelファイルで記述可能 対話知識 言語理解に使用する 例文 **HRIChat** 対話システム 対話フロー

2.1 言語理解

- > 文のタイプ推定
 - ▶ 粗いタイプ:supertype(19クラス)
 - ► 細かいタイプ: type(50クラス以上)
- ▶ スロット値抽出
 - ▶「PLACE」,「FOOD_DRINK」,「TIME_EVENT」の3クラスの名詞句を抽出

2.2 言語理解のための例文

- ▶ 例文の文中にスロットタグを入れて言語理解の学習に利用
 - ▶部分文字列を変更して作成し,例文の数量を増やす(432→20000)

supertype	type	発話例		
provide-info	refer-place	PLACE:福岡>がよかったよ		
provide-info	refer-place	PLACE:沖縄県かな		
acknowledge	yes	そうだよ		
deny	no	違います		
スロットタグ				

2.3 対話フローの記述例

※システム発話は一部省略

状態	システム発話	条件	遷移先の状態
first	印象に残った場所って どこ?	check- Okinawa(PLACE)	Q-Okinawa
first		not-empty(PLACE)	Q-place
first			Q-when
Q-Okinawa	沖縄行ったんだ!最高 だよね!いつ行った の?	スロット値を引数とした 数を分岐条件としている	
Q-place	<place>!いつ行っ たの?</place>		
Q-when	そうなんだ!いつ行っ たの?		

- ▶ 全部で92行
- ▶ 関数はPythonのプログラムで定義

▶ 表を可視化したグラフ

- 1 概要
- 2 HRIChat
 - 2.1 HRIChatの言語理解
 - 2.2 例文の記述例
 - 2.3 対話フローの記述例
- 3 対話の設計
 - 3.1 対話フローの構成
 - 3.2 システム発話表現の調整
- 4 予選の結果
- 5 まとめ

3 対話の設計

1. 構造としての設計

3.1 対話フローの構成

▶ 対話を3つに分割(5発話×3)

▶管理がしやすい

例:沖縄の方言ってほっこり してていいよねー 例:美味しいもの食べた? 例:今度白馬行くんだけど 一緒に行かない? 沖縄について 質問する 質問と自分語り 語る 北海道について 語る ▶ ユーザの印象に残った場所に合わせて 例:富良野のブドウ畑が すごい綺麗だったよ 印象に残った場所 が沖縄かどうかで

分岐

S1: 印象に残った場所ってどこ?

自分語りの変化

U1: 沖縄かな

S2:沖縄! なんか美味しいもの食べた

U2:締めに食べたステーキが美味しかったなあ

S6:そうそう、最近、北海道でのスイーツ巡りにハマってるんだ♪

3.2 システム発話表現の調整

- ▶ ユーザ発話の情報を発話に組み込む
- ▶ 含まれる地名のグラフDB上の親をチェック
 - ▶「沖縄」か「北海道」

S1:ところで, これまで行ったところで一番印象に残った場所ってどこ?

U1:**石垣島かなー**

S2:<u>石垣島!</u>いつ行ったの?

S2:<u>沖縄行ったんだ!海綺麗だし最高だよね!</u> いつ行ったの?

右の方は沖縄の地名だと理解している印象を与えている ⇒印象の向上

3.2 システム発話表現の調整

> 言語理解結果に依存しない応答

S1: 旅行とか一緒にどう?

U1:行きたい!! (肯定)

S2: じゃあさ, 今度一緒にご飯でも行かない?

U2:うん!そうしよう!

U1: うーん、春は仕事が忙しいしね。さすがに 有給はとれなさそうかな。(否定)

S2: <u>じゃあさ, 今度一緒にご飯でも行かない?</u>

U2: そうだね、ランチしましょう。パンケーキ

食べたい。

▶ 肯定でも否定でも成り立っている!

4 予選の結果

▶ 5段階で評価(最大5,最小1)して予選での評価点平均は4.1

予選でのコメント

- ▶ まずこちらの話を聞いてから自分の話をしてくるところが、 なかなか聞き上手だと思いました。(評価点:4)
 - 対話を分割する構成がうまくいっている

- こちらの投げかけた内容がそのままスルーされているので、 もう少し拾ってくれると嬉しい。(評価点:2)
 - ▶ユーザに質問をされると弱い

5まとめ

▶ HRIChatを用いて実装する事で対話フローの管理が行い やすく, 短期間でも作成できた

▶ 予選を経て実際の対話例を見る中で対話フローを分ける事で管理がしやすいだけでなくユーザの印象を上げている事がわかった

<今後の課題>

▶ 例文の拡張を行う事で言語理解の精度向上の余地あり