

La fonction logarithme népérien

I. Définition de la fonction logarithme népérien :

Définition :

Pour tout réel x de $]0; +\infty[$, il existe un unique réel y tel que $e^y=x$.

Définition:

La fonction logarithme népérien, notée ln, est la fonction définie sur]0; $+\infty[$ qui à tout réel x>0, associe le réel noté $\ln(x)$ dont l'exponentielle est x.

REMARQUE:

L'image d'un réel strictement positif x par la fonction ln se note souvent ln x au lieu de ln(x).

Conséquences:

- 1. Pour tout réel x>0 et tout réel y, $x=e^y$ équivaut à y=lnx.
- 2. Pour tout réel x>0, $e^{lnx} = x$.
- 3. Pour tout réel x, $ln(e^x) = x$

PREUVE:

- (1) et (2) se déduisent directement de la définition.
- (3) Pour tout réel x, si $y=ln(e^x)$ alors d'après (1) $e^x=e^y$ donc x=y.

Conséquences:

ln1=0.En effet $e^0=1$ et d'après (1) ceci équivaut à ln1=0.

lne=1.En effet $e^1=e$ et d'après (1) ceci équivaut à lne=1.

Pour tout réel λ , l'équation $lnx=\lambda$ a pour unique solution $x\equiv e^{\lambda}$ d'après (1).

Propriété:

Dans un repère orthonormal, les courbes représentatives des fonctions exponentielles et logarithmes népérien sont symétriques par rapport à la droite d'équation y=x.

PREUVE:

ON note φ et \bigwedge Invalid Equation les courbes représentatives des fonctions exp et ln.

Dire que M'(x;y) appartient à Λ Invalid Equation équivaut à dire que M(y;x) appartient à φ .

 φ et **A** Invalid Equation sont donc symétriques par rapport à la droite y=x.

II. Sens de variation de la fonction logarithme népérien sur $]0;+\infty[$:

Propriété:

La fonction logarithme népérien est strictement croissante sur $]0;+\infty[.$

PREUVE:

a et b sont deux réels tels que 0 < a < b, c'est à dire que $e^{lna} < e^{lnb}$.

La fonction exponentielle est strictement croissante sur $\mathbb R$ donc lna < lnb.

Conséquences:

Pour tous réels a et b de $]0;+\infty[:$

- lna = lnb équivaut à a = b et lna < lnb équivaut à a < b.
- lna>0 équivaut à a>1 et lna<0 équivaut à 0< a<1 .

III. Les propriétés algébriques :

1. Relation fonctionnelle:

Théorème :

Pour tout réels a et b de $]0; +\infty[$, ln(ab) = lna + lnb.

PREUVE:

a et b sont deux réels strictement positifs.On note A=lnab et B=ln a + ln b alors

$$e^A = ab$$
 et $e^B = e^{lna + lnb} = e^{lna} \times e^{lnb} = ab$

donc $e^A = e^B$ d'où A=B puisque la fonction exponentielle est bijective sur $\mathbb{R}.$

2. Logarithme d'un quotient :

Propriété:

Pour tout réel a de $]0; +\infty[$, $ln(\frac{1}{a})=-lna$.

PREUVE:

Pour a>0, on écrit $a \times \frac{1}{a} = 1$ donc $ln(a \times \frac{1}{a}) = ln1$

c'est à dire $ln(a) + ln(\frac{1}{a}) = 0$ d'où $ln(\frac{1}{a}) = -ln(a)$.

Propriété:

Pour tous réels a et b de $]0; +\infty[$, $ln(\frac{a}{b}) = ln(a) - ln(b)$.

PREUVE:

Pour a>0 et b>0, $ln(\frac{a}{b}) = ln(a \times \frac{1}{b}) = lna + ln\frac{1}{b} = ln(a) - ln(b)$.

3. Logarithme d'un produit de nombres réels strictement positifs :

Propriété:

Pour tous réels $a_1, a_2, a_3,, a_n$ de $]0; +\infty[$,

$$ln(a_1a_2a_3...a_n) = lna_1 + lna_2 + lna_3 + + lna_n$$

REMARQUE:

Cette formule généralise la relation fonctionnelle établie dans le paragraphe 1. et peut se démontrer par récurrence.

Propriété:

Pour tout réel a de $]0;+\infty[$ et tout entier relatif n, $ln(a^n)=nlna.$

Démonstration:

La démonstration de cette propriété se fait par récurrence et sur le signe de n.

4. Logarithme d'une racine carrée :

Propriété:

Pour tout réel a de $]0;+\infty[$, $ln(\sqrt{a})=\frac{1}{2}lna.$

PREUVE:

Pour a>0, $(\sqrt{a})^2=a$ donc $ln(\sqrt{a})^2=lna$

ainsi
$$2ln(\sqrt{a})=lna$$

$$\mathrm{d'où}\ ln(\sqrt{a}) = \frac{1}{2}lna$$