Paper No: 20PESGM0131

Continuous-Trajectory Robust Unit Commitment Considering Beyond-the-Resolution Uncertainty

Bo Zhou, Xiaomeng Ai, Jiakun Fang, Wei Yao, Jinyu Wen Huazhong University of Science and Technology (HUST)
Smart Grid Operation and Control Center (SGO)
zhoubo563@foxmail.com

Background

- Beyond-the-resolution (BtR) uncertainty
 - Renewable generation developes rapidly, yet its uncertainty challenges the power system operating security.
 - Existing piecewise-constant (PC) scheduling can not access the power variation inside scheduling periods, which is unreasonable when renewable penetration gets higher.

- Continuous-Trajectory (CT) Method
 - Derive an analytical continuous trajectory with more information to approximate the load curve for more accurate and secure scheduling.
 - Break scheduling horizon into some periods and use Bernstein splines to approximate BtR variation of each period.

$$B_{3,k}(t) = C_3^k t^k (1-t)^{3-k}, \ k = 0, 1, 2, 3$$

$$P(t) = \sum_{k=0}^{3} P^{Bk} B_{3,k}(t) = (P^{B})^{T} B_{3}(t), \ t \in [0,1]$$

$$\begin{array}{c} 220 \\ 210 \\ 200 \\ 190 \\ 170 \\ 160 \\ 150 \\ 0 \end{array}$$
Real Predicted Load
Piecewise-Constant
Continuous-Trajectory

Time/hour

Proposed method

Basic BtR Variations

0.2

 Any BtR variation can be linearly combined by Basic BtR Variations.

Uncertainty Region — Predicted Scenario ---- Basic BtR Variation

0.4 Time/hour

- CT Robust UC (CT-RUC)
 - CT-RUC can be shifted from the time domain to the time-function space for tractable computation.

$$\begin{cases} G(t) = 0 \Rightarrow \mathbf{G}^B = 0 \\ G(t) \le 0 \Rightarrow \mathbf{G}^B \le 0 \\ \int_0^T G(t)dt = (G^{B0} + G^{B1} + G^{B2} + G^{B3})T/4 \\ \mathbf{g}(\mathbf{x}(\tau), \mathbf{y}(\tau), \mathbf{u}(\tau)) \le 0 & \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{C}\mathbf{u} \le \mathbf{D} \end{cases}$$

CT-RUC: min
$$\sum_{t} \sum_{i} (C_{suit} + C_{sdit} + C_{fuel,it}^{E})$$

$$s.t. \mathbf{A}x + \mathbf{B}y^{E} + \mathbf{C}u^{E} \leq \mathbf{D}$$

$$\mathbb{F} = \left\{ x \middle| \begin{aligned} \mathbb{U} &= \{ u | (1 - \gamma) P_{u0,it}^{B} \leq P_{uit}^{B} \leq (1 + \gamma) P_{u0,it}^{B} \} \\ \forall u \in \mathbb{U}, \exists \mathbf{y}, \text{such that } \mathbf{A}x + \mathbf{B}y + \mathbf{C}u \leq \mathbf{D} \end{aligned} \right\}$$

Case studies

Case settings

(c) Wind Farm1 in CT-RUC (d) Wind Farm2 in CT-RUC

Power & Energy Society®

Simulation results

PC	CT
4427.33	4423.79
1368.50	1365.74
3058.83	3058.05
2	2
1.40	5.68
0	0
24	48
43054.34	44639.83
0	0
- 43054.34 -	-44639.83
31.82%	100%
	4427.33 1368.50 3058.83 2 1.40 0 24 43054.34 0 - 43054.34

CT-RUC is much more robust!

(a) PC-RUC

(b) CT-RUC

(a) Power Load and Generation

Ramping scarcity events

Conclusions

- This paper proposes the continuous-trajectory robust unit commitment considering
 the beyond-the-resolution uncertainty in the computationally tractable formulation.
 With the BtR uncertainty considered, the proposed CT-RUC can provide a more
 robust solution than traditional PC-RUC, especially in the high renewable energy
 penetrated power system. The numerical comparison between PC-RUC and CT-RUC
 demonstrates that,
 - in CT-RUC, the worse scenario with the BtR variation is considered, and sufficient ramping capacity is scheduled.
 - The robustness of the proposed CT-RUC is higher than that of traditional PC-RUC.
- Future works include more accurate modeling of CT-RUC and the coordination of the operational security and economy under BtR uncertainties.

