

Machine Learning Course

Week 3: Logistic Regression

Pr. Khadija SLIMANI

Previously on ML..

- What are the 3 main Machine Learning categories ?
- What is the formula for a typical simple linear regression?
- Which expression of the Cost function do we prefer and why?

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \qquad J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- How do we evaluate the performance of a simple linear regression?
- What is the difference between simple and multiple regression?
- How can you improve a linear regression model ?

Course overview

- Week 1: Introduction to Data Science and Machine Learning
- 2. Week 2: Univariate & Multivariate Linear Regression
- 3. Week 3: Logistic Regression (Classification)
- Week 4: Decision Trees (Regression & Classification)
- 5. Week 5: Model evaluation (overfitting, bias-variance, crossfolding, ...)
- 6. Week 6:

Course overview

- Week 3 : Logistic Regression (Classification)
 - Introduction to Classification
 - 2. Linear Regression for Classification?
 - 3. Logistic Regression Model (Binary Classification)
 - 4. Multi-Class Logistic Regression
 - 5. Evaluating Classifiers
 - Cross Validation

Reminder of Machine Learning Types

Machine learning tasks are typically classified into three broad categories.

3.1 Introduction to Classification

Classification

• Goal: Inputs are divided into two or more classes, and the ML algorithm must produce a model that assigns unseen inputs to one or more of these classes.

An algorithm that implements classification is known as a classifier

Two-class(Binary) Classification

• Emails type: Output y has 2 categories

Not-spam

Input: x

Mail sender, subjet, keywords, etc...

Output: y

Email type

Two-class(Binary) Classification

Loan demand: Output y has 2 categories

Input: x

Client's characteristics (age, Revenue, credit, etc..)

Output: y

Loan safety evaluation

Multi-class Classifier

• News: Output y has more than 2 categories

Input: x

Webpage: title, keywords, etc..

Output: y

News category

Multi-class Classifier

• Weather: Output y has more than 2 categories

Input: x

Altitude, region, date, etc...

Output: y

Weather status

Classification Algorithms

Linear Classifiers

Logistic Regression
Naive Bayes classifier
Linear discriminant

Support vector machines

Decision Trees

Random Forests

Boosting

Quadratic Classifiers

Neural Netwoks

K-nearest neighbor

Classification problem example

Classification problem: Loan demand safety?

Input: x Client's characteristics (age, Revenue, charges, etc..)

Output: y Loan safety evaluation

One method is to use linear regression.

x	y
Age	Loan safety
20	0
23	0
25	0
27	0
40	1
42	1
45	1
47	1

- Map all predictions greater than 0.5 as a 1 and all less than 0.5 as a 0.
- Threshold classifier output $h\theta(x)$ at 0.5:
 - if $h\theta(x) \ge 0.5$ predict: y="1"
 - if $h\theta(x) < 0.5 \rightarrow \text{predict: y="0"}$

 Linear Regression can sometimes be lucky...but it is often not useful for classification problems.

- Another problem: is that classification need categorical values:
 - y = 0 or 1
 - But with LR: $h\theta(x)$ can be > 1 or < 0

- How the model behaves with extreme points?
 - Certain predictions.
- And with middle points ?
 - Not very certain
- We need to know how confident our prediction is.

- Need for another Linear Classifier !!
 - → Logistic Regression

3.3 Logistic Regression

Logistic Regression Model

• Change the form for our hypotheses $h_{\theta}(x) = \theta^{T}x$ to satisfy $0 \le h_{\theta}(x) \le 1$

- Use the Sigmoid / Logistic Function : $g(z) = \frac{1}{1+e^{-z}}$
- $h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$

Interpretation of $h\theta(x) = g(\theta Tx)$

•
$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

- $h_{\theta}(x)$ = estimated probability that y = 1 given the input x parameterized by θ
 - Example: $h_{\theta}(x)$ = 0,8 → The probability that the loan is safe (y=1) is equal to 80%

•
$$h_{\theta}(x) = P(y = 1 | x; \theta) = 1 - P(y = 0 | x; \theta)$$

- $P(y = 1 | x; \theta) + P(y = 0 | x; \theta) = 1$
- Hypothesis:
 - $y = 1 \text{ when } g(\theta^T x) \ge 0.5 \Rightarrow \theta^T x \ge 0$
 - y = 0 when $g(\theta^T x) < 0.5 \Rightarrow \theta^T x < 0$

Decision Boundary

- The decision regions are separated by surfaces called the decision boundaries.
- These separating surfaces represent points where there are links between two or more categories.

Decision Boundary

- Example: Loan demand evaluation model
 - Predict the loan safety class given the revenue and the charges values
 - o $h_{\theta}(x) = g (\theta_0 + \theta_1 x_1 + \theta_2 x_2) = g (20 + 0.01 \text{ #revenue} 0.1 \text{ #charges})$
- Predict 1: if $g(\theta^T x) \ge 0.5 \Rightarrow \theta^T x \ge 0$
 - if $g(20 + 0.01x_1 0.1x_2) \ge 0.5$
 - \Rightarrow 20 + 0,01x₁ 0,1x₂ \geq 0
- Predict 0: if $g(\theta^T x) < 0.5 \Rightarrow \theta^T x < 0$
 - if $g(20 + 0.01x_1 0.1x_2) < 0.5$
 - \Rightarrow 20 + 0,01x₁ 0,1x₂ < 0

• $20 + 0.01x_1 - 0.1x_2 = 0$ is our decision boundary

Decision Boundary

- Example: Loan demand evaluation model.
- Predict the loan safety class given the revenue and the charges values

o
$$h_{\theta}(x) = g (\theta_0 + \theta_1 x_1 + \theta_2 x_2) = g (20 + 0.01 \text{ #revenue} - 0.1 \text{ #charges})$$

Charges	Revenue	$\theta^T x$	$g(\theta^T x)$	Safe loan ? (prediction)
500	1300	-17	4,14E-08	0
450	1500	-10	4,54E-05	0
400	1000	-10	4,54E-05	0
450	2000	-5	6,69E-03	0
250	2000	15	1,00E+00	1
200	3000	30	1,00E+00	1
300	3500	25	1,00E+00	1
100	2800	38	1,00E+00	1
450	2700	2	0,880797	1

3.4 Multiclass classification

Multi-class Classification: Example

Image labelling

Multi-class Classification: Formulation

C possible classes: y can be 1, 2,..., C

m data points

Data point	X ₁	x ₂	У
x ⁽¹⁾ , y ⁽¹⁾	1	4	<u> </u>
x ⁽²⁾ , y ⁽²⁾	3	1	•
x ⁽³⁾ , y ⁽³⁾	3	3	•
x ⁽⁴⁾ , y ⁽⁴⁾	4	4	•

Learn:

$$P(y = | x; \theta)$$

$$P(y = | x; \theta)$$

$$P(y = | x; \theta)$$

Multi-class Classification: One-vs-all (one-vs-rest)

• In one-vs-All classification, for the N-class instances dataset, we have to generate the N-binary classifier models.

• The number of class labels present in the dataset and the number of generated binary classifiers must be the same.

Multi-class Classification: One-vs-all (one-vs-rest)

Transform the original classification model to C 2-class models

• On a new input, to make a prediction, pick the class that maximizes: $\max_i h_{\theta}^i(x)$

3.5 Evaluating classifiers

Evaluating classifiers: Confusion matrix

- In many cases in real life problems, you care more about well predicting one class than the others:
 - Cancer detection: care more about cancer gets detected. You can tolerate occasionally false detections but not overlooking real cancers.

Y = 0 (no cancer)	You can tolerate having errors when predicting this class: predict patient has cancer when it's not the case
Y = 1 (cancer)	You can not tolerate having errors when predicting this class: predict patient has no cancer when it's the case

 There is a need for a performance metric that can favor one type of an error than an other.

Evaluating classifiers: Confusion matrix

- We have two classes:
 - positive class (y = 1) ____
 - Negative class (y=0)

Match each data point to the appropriate cell

Evaluating classifiers: Confusion matrix

		Predicted class	
		Negative	Positive
Actual class	Negative	True Negative	False Positive
	Positive	False Negative	True Positive

Sklearn: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

Evaluating classifiers: Accuracy

$$Accuracy = \frac{number\ of\ data\ points\ classified\ correctly}{all\ data\ points}$$

- is 99% accuracy good?
 - Can be excellent, good, mediocre, poor, terrible
 - It depends on the proportion of the classes in your dataset.

Accuracy is not ideal for skewed (imbalanced) classes !!

Evaluating classifiers: Accuracy

- Accuracy = (TP+TN)/(FP+FN+TP+TN)
- Error of classification = 1-Accuracy = (FP+FN)/(FP+FN+TP+TN)

Evaluating classifiers: Precision - Recall

		Predicted class		
		Negative	Positive	
Actual class	Negative	True Negative	False Positive	
	Positive	False Negative	True Positive	

- Precision for the positive class answers the following question:
- Out of all the examples the classifier labeled as positive, what fraction were correct?

Precision =
$$\frac{True\ positive}{True\ positive + False\ positive} = \frac{9}{9+1} = 90\%$$

Evaluating classifiers: Precision - Recall

		Predicted class		
		Negative	Positive	
Actual class	Negative	True Negative	False Positive	
	Positive	False Negative	True Positive	

- Recall for the positive class answers the following question:
- Out of all the positive examples there were, what fraction did the classifier pick up?

Recall =
$$\frac{True\ positive}{True\ positive + False\ negative} = \frac{9}{9+3} = 75\%$$

Evaluating classifiers: F1 score

- Given the nature of the problem, you can optimize the model to get a better precision or a better recall.
- It is possible to optimize both by combining precision and recall into a single value, called F1 score.

$$F1\ score = 2 * \frac{precsion * recall}{precision + recall} = 81.81\%$$

Best value at 1, worse at 0.

3.6 K-fold cross-validation

Cross-Validation: Why?

Data = Training set + Testing set

We need to derive the most accurate estimate of model prediction performance !!! Gives an insight on how the model will generalize to an independent dataset X_train y_train 70 - 80% X_test y_test 20 - 30%

One-round Cross Validation

- Each data point is used only once for training or for testing
- Variability may arise !!
- Moreover: Sometimes we do not have enough data available to make reliable partitions

Cross-Validation: Why?

Partition the dataset into K folds (bins) of equal size.

• for each k = 1, 2, ... K, fit the model to the other K - 1 parts and compute its error in predicting the kth part.

Cross-Validation example: K-fold

- Run K separate learning experiments.
 - Pick testing set
 - Train
 - Test on testing test and compute performance
 - Example: Linear Regression : R2, Logistic Regression: Accuracy

- Average the performance from those K experiments
- Typically, K=5 or 10.
- K-Fold is more robust for parameter tuning (choose the regularization parameter, the learning rate, ..)

More about Cross-Validation

Multiple rounds of cross-validation are performed using different partitions,
 and the validation results are averaged over the rounds.

- Common Types of Cross-Validation:
 - Non-exhaustive cross-validation
 - k-fold cross-validation
 - 2-fold cross-validation
 - Exhaustive cross-validation
 - Leave-p-out cross-validation
 - Leave-one-out cross-validation

Practical work

LAB3: Back in 10min!