

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/051739

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 G02B21/00 G02B27/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 459 484 B1 (YOKOI EIJI) 1 October 2002 (2002-10-01) figure 5 column 14, line 29 - column 17, line 25 -----	1-16
X	WO 02/082166 A (CIDRA CORP) 17 October 2002 (2002-10-17) figures 1,3 page 7, line 26 - page 13, line 19 -----	1-14
X	US 6 204 946 B1 (AKSYUK VLADIMIR A ET AL) 20 March 2001 (2001-03-20) figure 1 column 2, line 24 - column 3, line 39 ----- -/-	1-14

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

25 November 2004

03/12/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Windecker, R

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/051739

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 198 42 288 A (ZEISS CARL JENA GMBH) 10 February 2000 (2000-02-10) cited in the application the whole document -----	1-16
A	DE 195 10 102 C (UHL RAINER DR) 2 October 1996 (1996-10-02) figures column 4, line 59 - column 6, line 49 -----	1-16

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/051739

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6459484	B1	01-10-2002	JP	2001116696 A JP 2001255463 A		27-04-2001 21-09-2001
WO 02082166	A	17-10-2002	CA	2443356 A1		17-10-2002
			CA	2443664 A1		17-10-2002
			EP	1386192 A2		04-02-2004
			EP	1386193 A2		04-02-2004
			WO	02082165 A2		17-10-2002
			WO	02082166 A2		17-10-2002
			US	2002176151 A1		28-11-2002
			US	2002176149 A1		28-11-2002
			US	2003174939 A1		18-09-2003
			US	2003184843 A1		02-10-2003
			US	2004008401 A1		15-01-2004
US 6204946	B1	20-03-2001		NONE		
DE 19842288	A	10-02-2000	DE	19842288 A1		10-02-2000
			JP	2000056233 A		25-02-2000
			US	2001046046 A1		29-11-2001
DE 19510102	C	02-10-1996	DE	19510102 C1		02-10-1996
			GB	2299235 A ,B		25-09-1996
			US	5751417 A		12-05-1998

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/051739

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 G02B21/00 G02B27/10

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 G02B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 6 459 484 B1 (YOKOI EIJI) 1. Oktober 2002 (2002-10-01) Abbildung 5 Spalte 14, Zeile 29 – Spalte 17, Zeile 25	1-16
X	WO 02/082166 A (CIDRA CORP) 17. Oktober 2002 (2002-10-17) Abbildungen 1,3 Seite 7, Zeile 26 – Seite 13, Zeile 19	1-14
X	US 6 204 946 B1 (AKSYUK VLADIMIR A ET AL) 20. März 2001 (2001-03-20) Abbildung 1 Spalte 2, Zeile 24 – Spalte 3, Zeile 39	1-14
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldeatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldeatum oder dem Prüflätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

25. November 2004

03/12/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Windecker, R

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/051739

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE 198 42 288 A (ZEISS CARL JENA GMBH) 10. Februar 2000 (2000-02-10) in der Anmeldung erwähnt das ganze Dokument -----	1-16
A	DE 195 10 102 C (UHL RAINER DR) 2. Oktober 1996 (1996-10-02) Abbildungen Spalte 4, Zeile 59 – Spalte 6, Zeile 49 -----	1-16

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/051739

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 6459484	B1	01-10-2002	JP	2001116696 A		27-04-2001
			JP	2001255463 A		21-09-2001
WO 02082166	A	17-10-2002	CA	2443356 A1		17-10-2002
			CA	2443664 A1		17-10-2002
			EP	1386192 A2		04-02-2004
			EP	1386193 A2		04-02-2004
			WO	02082165 A2		17-10-2002
			WO	02082166 A2		17-10-2002
			US	2002176151 A1		28-11-2002
			US	2002176149 A1		28-11-2002
			US	2003174939 A1		18-09-2003
			US	2003184843 A1		02-10-2003
			US	2004008401 A1		15-01-2004
US 6204946	B1	20-03-2001		KEINE		
DE 19842288	A	10-02-2000	DE	19842288 A1		10-02-2000
			JP	2000056233 A		25-02-2000
			US	2001046046 A1		29-11-2001
DE 19510102	C	02-10-1996	DE	19510102 C1		02-10-1996
			GB	2299235 A ,B		25-09-1996
			US	5751417 A		12-05-1998

OPTISCHE VORRICHTUNG UND MIKROSKOP MIT EINER OPTISCHEN VORRICHTUNG ZUR
KOLLINEAREN VEREINIGUNG VON LICHTSTRÄHLEN UNTERSCHIEDLICHER WELLENLÄNGE

5

Die Erfindung betrifft eine optische Vorrichtung, die Lichtstrahlen kollinear
10 vereinigt, und ein Mikroskop mit einer optischen Vorrichtung.

Zum Vereinigen von Lichtstrahlen unterschiedlicher Wellenlänge werden in
der Optik üblicherweise dichroitische Strahlteiler eingesetzt. Aus der
Deutschen Offenlegungsschrift DE 196 33 185 A1 ist eine Punktlichtquelle für
ein Laserscanmikroskop und ein Verfahren zum Einkoppeln von mindestens
15 zwei Lasern unterschiedlicher Wellenlänge in ein Laserscanmikroskop
bekannt. Die Punktlichtquelle ist modular ausgestaltet und beinhaltet einen
dichroitischen Strahlvereiniger, der das Licht mindestens zweier
Laserlichtquellen vereinigt und in eine zum Mikroskop führende Lichtleitfaser
einkoppelt.

20 Anordnungen auf der Basis von dichroitischen Strahlteilern haben häufig den
Nachteil, dass das Vereinigen von Lichtstrahlen, die eine eng
beieinanderliegende Wellenlänge aufweisen, gar nicht oder nur mit geringer
Effizienz möglich ist, da dichroitische Strahlvereiniger mit einer unendlich
steilen Kantencharakteristik nur theoretisch herstellbar sind.

25 Aus der Europäischen Patentschrift EP 0 473 071 B1 ist eine
Strahlvereinigungsvorrichtung für Halbleiterlaser bekannt, die sowohl
dichroitische Spiegel als auch ein polarisierendes Strahlteilerprisma
beinhaltet. Mit Hilfe des polarisierenden Strahlteilerprismas können

Hf

Lichtstrahlen, die eine senkrecht zueinander liegende lineare Polarisationsrichtung aufweisen, zu einem kollinearen Lichtstrahl vereinigt werden, wobei dieser beide Polarisationsrichtungen aufweist. Für die Mikroskopie ist diese Methode zur Herstellung eines Beleuchtungslichtstrahls

5 aus zwei Einzellichtstrahlen nur eingeschränkt verwendbar, da die vorgegebene Polarisationscharakteristik des resultierenden Beleuchtungslichtstrahls die Experimentierbedingungen oft zu sehr einschränkt.

In der Rastermikroskopie wird eine Probe mit einem Lichtstrahl beleuchtet, um das von der Probe emittierte Reflexions- oder Fluoreszenzlicht zu beobachten.

10 Der Fokus eines Beleuchtungslichtstrahles wird mit Hilfe einer steuerbaren Strahlablenkeinrichtung, im Allgemeinen durch Verkippen zweier Spiegel, in einer Objektebene bewegt, wobei die Ablenkachsen meist senkrecht aufeinander stehen, so dass ein Spiegel in x-, der andere in y-Richtung ablenkt. Die Verkippung der Spiegel wird beispielsweise mit Hilfe von Galvanometer-Stellelementen bewerkstelligt. Die Leistung des vom Objekt kommenden Lichtes wird in Abhängigkeit von der Position des Abtaststrahles gemessen. Üblicherweise werden die Stellelemente mit Sensoren zur Ermittlung der aktuellen Spiegelstellung ausgerüstet.

15

20 Speziell in der konfokalen Rastermikroskopie wird ein Objekt mit dem Fokus eines Lichtstrahles in drei Dimensionen abgetastet.

Ein konfokales Rastermikroskop umfasst im Allgemeinen eine Lichtquelle, eine Abbildungsoptik, mit der das Licht der Quelle auf eine Lochblende – die sog. Anregungsblende – fokussiert wird, einen Strahlteiler, eine

25 Strahlablenkeinrichtung zur Strahlsteuerung, eine Mikroskopoptik, eine Detektionsblende und die Detektoren zum Nachweis des Detektions- bzw. Fluoreszenzlichtes. Das Beleuchtungslicht wird oft über den Strahlteiler, der beispielsweise als Neutralstrahlteiler oder als dichroitischer Strahlteiler ausgeführt sein kann, eingekoppelt. Neutralstrahlteiler haben den Nachteil,

30 dass je nach Teilungsverhältnis viel Anregungs- oder viel Detektionslicht verloren geht.

Das vom Objekt kommende Fluoreszenz- oder Reflexionslicht gelangt über die Strahlablenkeinrichtung zurück zum Strahleiter, passiert diesen, um anschließend auf die Detektionsblende fokussiert zu werden, hinter der sich die Detektoren befinden. Detektionslicht, das nicht direkt aus der Fokusregion

5 stammt, nimmt einen anderen Lichtweg und passiert die Detektionsblende nicht, so dass man eine Punktinformation erhält, die durch sequentielles Abtasten des Objekts zu einem dreidimensionalen Bild führt. Meist wird ein dreidimensionales Bild durch schichtweise Bilddatenaufnahme erzielt, wobei die Bahn des Abtastlichtstrahles auf bzw. in dem Objekt idealerweise einen

10 Mäander beschreibt. (Abtasten einer Zeile in x-Richtung bei konstanter y-Position, anschließend x-Abtastung anhalten und per y-Verstellung auf die nächste abzutastende Zeile schwenken und dann, bei konstanter y-Position, diese Zeile in negative x-Richtung abtasten usw.). Um eine schichtweise Bilddatenaufnahme zu ermöglichen, wird der Probentisch oder das Objektiv nach

15 dem Abtasten einer Schicht verschoben und so die nächste abzutastende Schicht in die Fokusebene des Objektivs gebracht.

Bei vielen Anwendungen werden Proben mit mehreren Markern, beispielsweise mehreren unterschiedlichen Fluoreszenzfarbstoffen präpariert. Diese Farbstoffe können sequentiell, beispielsweise mit

20 Beleuchtungslichtstrahlen, die unterschiedliche Anregungswellenlängen aufweisen, angeregt werden. Auch eine simultane Anregung mit einem Beleuchtungslichtstrahl, der Licht mehrerer Anregungswellenlängen beinhaltet, ist üblich. Aus der Europäischen Patentanmeldung EP 0 495 930: „Konfokales Mikroskopsystem für Mehrfarbenfluoreszenz“ ist beispielsweise

25 eine Anordnung mit einem einzelnen mehreren Laserlinien emittierenden Laser bekannt. Derzeit sind in der Praxis solche Laser meist als Mischgaslaser, insbesondere als ArKr-Laser, ausgebildet.

Aus der Deutschen Offenlegungsschrift DE 198 42 288 A1 ist eine Vorrichtung zur einstellbaren Einkopplung und/oder Detektion einer oder mehrerer Wellenlängen in einem Mikroskop bekannt.

Es ist die Aufgabe der vorliegenden Erfindung, eine optische Vorrichtung anzugeben, die es ermöglicht, unabhängig von der Polarisationsrichtung und

unabhängig von der spektralen Nähe der Wellenlängen Lichtstrahlen kollinear zu vereinigen.

Diese Aufgabe wird durch eine optische Vorrichtung gelöst, bei der ein dispersives Element und eine Abbildungsoptik eine Aufspaltungsebene

5 definieren, in der jeder Lichtwellenlänge ein Ort zugeordnet ist und in der ein mikrostrukturiertes Element angeordnet ist, das aus unterschiedlichen Richtungen kommende und auf die ihrer Wellenlänge entsprechenden Orte fokussierte Lichtstrahlen über die Abbildungsoptik zu dem dispersiven Element lenkt, das die Lichtstrahlen kollinear vereinigt.

10 Die Erfindung hat den Vorteil, dass auch Lichtstrahlen, die ein kontinuierliches Spektrum beinhalten, vereinigbar sind; selbst dann, wenn Wellenlängen des einen Lichtstrahls innerhalb des Spektrums des anderen Lichtstrahls liegen.

Für den Fall, dass einer der Lichtstrahlen Licht mehrerer Wellenlängen beinhaltet, ist vorgesehen, diesen Lichtstrahl vor dem Auftreffen auf das

15 mikrostrukturierte Element räumlich spektral aufzuspalten. Dies kann mit einem weiteren dispersiven Element, beispielsweise mit einem Prisma oder einem Gitter erfolgen oder mit dem dispersiven Element, das das von dem mikrostrukturierten Element ausgehende Licht vereinigt.

Das disperse Element kann beispielsweise als Gitter oder als Prisma

20 ausgebildet sein. Die Abbildungsoptik könnte beispielsweise als Linsenoptik oder als Spiegeloptik ausgeführt sein. In einer besonderen Variante sind das disperse Element und die Abbildungsoptik beispielsweise als Hohlspiegelgitter zusammengefasst. Die Abbildungsoptik kann sowohl zylinder- als auch sphärische Optiken beinhalten.

25 Vorzugsweise entspricht der Abstand zwischen dem dispersiven Element und der Abbildungsoptik einerseits und der Abstand zwischen der Abbildungsoptik und dem mikrostrukturierten Element andererseits der Brennweite f der Abbildungsoptik. Hat die beispielsweise als Linse ausgebildete Abbildungsoptik zwei unterschiedliche Hauptebenen oder bevorzugt man aus

30 irgendwelchen Gründen eine Linsenkombination, so wählt man vorzugsweise die Abstände sinngemäß entsprechend, so dass die Abbildung der

unterschiedlichen Wellenlängen telezentrisch auf die Aufspaltungsebene erfolgt. Die Abbildungsoptik ist vorzugsweise ein telezentrisches Abbildungssystem, da dann kein Parallelversatz des zurückkommenden Lichts entsteht.

In einer besonderen Variante weist das mikrostrukturierte Element

5. reflektierende und transmittierende Bereiche auf. Das Licht eines ersten Lichtstrahls wird in dieser Variante auf die reflektierenden Bereiche fokussiert, während das Licht eines zweiten Lichtstrahls auf die transmittierenden Bereiche fokussiert wird. Das mikrostrukturierte Element könnte beispielsweise ein photolithographisch teilverspiegeltes Glassubstrat

10 beinhalten, auf das die reflektierenden und die transmittierenden Bereiche streifenförmig aufgebracht sind. Das Streifenmuster verläuft vorzugsweise senkrecht zur Aufspaltungsrichtung des dispersiven Elements.

In einer anderen Ausgestaltungsform weist das mikrostrukturierte Element Spiegelflächen unterschiedlicher Neigung auf. Vorzugsweise verwendet man

15 eine lamellenartige Struktur aus linienförmigen, z.B. rechteckigen planen Bereichen, die jeweils verspiegelt sind und in verschiedener Raumrichtung geneigt sind, wobei die Liniendurchgangsenrichtung senkrecht zur spektralen Aufspaltung in der Aufspaltungsebene verläuft. Die jeweiligen planen Flächenstücke sind hierbei vorzugsweise um eine in der Aufspaltungsebene liegende Drehachse

20 aus der Aufspaltungsebene herausgedreht, wobei die Drehachse vorteilhafterweise senkrecht zur Richtung der spektralen Aufspaltung verläuft. In einer anderen Variante sind die planen Flächenstücke um parallel zur Aufspaltungsrichtung verlaufende Drehachsen aus der Aufspaltungsebene herausgedreht. Das mikrostrukturierte Element könnte aus einem

25 entsprechend bearbeiteten und verspiegelten Glasmaterial bestehen. In einer bevorzugten Ausführungsform beinhaltet das mikrostrukturierte Element ein mikro-elektromechanisches System (MEMS) bzw. ein mikro-opto-elektromechanisches System (MOEMS). Ein derart ausgeführtes mikrostrukturiertes Element hat den zusätzlichen Vorteil, dass die lokalen

30 Reflektionswinkel durch Anlegen von Spannungen verändert werden können. Ein verwendbares MDM-Spiegelarray wird beispielsweise von der Firma Texas-Instruments hergestellt.

In einer anderen bevorzugten Ausgestaltungsform beinhaltet das mikrostrukturierte Element ein Mikroprismenarray aus unterschiedlichen Prismen oder ein Array mit Zonen, die einen unterschiedlichen Brechungsindex aufweisen, was beispielsweise durch geeignet gepoltes

5 Lithiumniobat in einem elektrischen Feld realisierbar wäre. Diese Variante ermöglicht darüber hinaus eine spezifische Ansteuerung über das elektrische Feld.

Die erfindungsgemäße Strahlvereinigungstechnik kann mit anderen Strahlvereinigungstechniken kombiniert werden, d. h. beispielsweise zu

10 bereits im Vorfeld vereinigten Strahlen können weiteren Strahlen hinzugefügt werden.

Alle bei der Justage zu bewegenden Teile sind vorzugsweise motorisiert, insbesondere kann es von Vorteil sein, wenn das spektral selektive Element entlang der Richtung der spektralen Aufspaltung beweglich ist.

15 Vor oder nach der erfindungsgemäßen optischen Vorrichtung können die Lichtleistung variierende Elemente angeordnet sein, z. B. bevorzugt ein AOTF. Die optische Vorrichtung ist vorzugsweise als eine mechanische Einheit gefertigt, welche weitere Bauteile wie z. B. einen AOTF oder eine Temperaturstabilisierung beinhalten kann.

20 Es ist mit der beschriebenen Technik möglich, auf einen ersten Lichtstrahl nicht nur einen zweiten, sondern auch einen dritten oder weitere Lichtstrahlen aufzufädeln. Dies ist besonders vorteilhaft im Zusammenhang mit den beschriebenen MEMS-/MOEMS-Aktuatoren möglich.

25 In einer ganz besonders bevorzugten Ausführungsform dient die optische Vorrichtung zur Erzeugung eines Beleuchtungslichtstrahls in einem Rastermikroskop, insbesondere in einem konfokalen Rastermikroskop.

In der Zeichnung ist der Erfindungsgegenstand schematisch dargestellt und wird anhand der Figuren nachfolgend beschrieben, wobei gleich wirkende Bauteile mit denselben Bezugszeichen versehen sind. Dabei zeigen:

Fig. 1 eine erfindungsgemäße optische Vorrichtung,
Fig. 2 ein mikrostrukturiertes Element,
Fig. 3 ein weiteres mikrostrukturiertes Element,
Fig. 4 ein weiteres mikrostrukturiertes Element,
5 Fig. 5 eine weitere erfindungsgemäße optische Vorrichtung und
Fig. 6 eine andere erfindungsgemäße optische Vorrichtung.

Fig. 1 zeigt eine erfindungsgemäße optische Vorrichtung mit einem dispersiven Element 1, das als Prisma 3 ausgebildet ist und mit einer Abbildungsoptik 5, die gemeinsam eine Aufspaltungsebene 7 definieren, in der ein mikrostrukturiertes Element 9 angeordnet ist. Das mikrostrukturierte Element 9 ist als streifenförmig reflektierendes Glassubstrat 11 ausgebildet, wobei die Streifen des Streifenmusters senkrecht zur Aufspaltungsrichtung des Prismas 3 ausgerichtet sind. Ein erster Lichtstrahl 13, der Licht zweier Wellenlängen beinhaltet, wird von dem Prisma 3 räumlich spektral aufgespalten und die resultierenden Teilstrahlen 15, 17 von der Linse 5 auf jeweils einen verspiegelten Streifen des Glassubstrats 11 fokussiert. Ein zweiter Lichtstrahl 19 wird von einer Optik 21 auf einen transmittierenden Streifen des Glassubstrats 11 fokussiert. Die Orte, an denen die Teilstrahlen 15, 17 und der zweite Lichtstrahl 19 auf das Glassubstrat 11 treffen, entsprechen gemäß der Aufspaltungscharakteristik des Prismas 3 ihrer Wellenlänge. Die von dem Glassubstrat 11 reflektierten Teilstrahlen 15, 17 werden gemeinsam mit dem transmittierten zweiten Lichtstrahl 19 über die Linse 5 zum Prisma 3 geführt, das die Teilstrahlen 15, 17 sowie den zweiten Lichtstrahl 19 kollinear zu einem Ausgangslichtstrahl 23 vereinigt. Das mikrostrukturierte Element 9 weist gegenüber der optischen Achse eine leichte Neigung auf, um den ersten Lichtstrahl 13 und den Ausgangslichtstrahl 23 räumlich voneinander zu trennen. Durch die Neigung des mikrostrukturierten Elements 9 verläuft der Ausgangslichtstrahl 23 unter einem spitzen Winkel aus der Zeichenebene hinaus, was in der gezeigten Figur nicht

erkennbar ist. Die Neigung beeinflusst die Funktionsweise der optischen Vorrichtung jedoch nur sehr geringfügig.

Fig. 2 zeigt das mikrostrukturierte Element 9, das bereits bezüglich Fig. 1 erwähnt ist. Das mikrostrukturierte Element 9 ist als streifenförmig beschichtetes Glassubstrat ausgebildet und weist Bereiche 25 und transmittierende Bereiche 27 auf. Das Streifenmuster ist wie durch den Doppelpfeil 29 angedeutet ist, senkrecht zur Richtung der spektralen Aufspaltung des dispersiven Elements angeordnet.

Fig. 3 zeigt ein mikrostrukturiertes Element 9 mit planen Spiegelementen 31-43, die unterschiedliche Neigungen aufweisen. Die planen Spiegelemente 31-43 sind um Drehachsen drehbar, die senkrecht zur spektralen Aufspaltungsrichtung in der Aufspaltungsebene liegen. Das mikrostrukturierte Element 9 ist als mikro-opto-elektrisch-mechanisches System (MOEMS) ausgebildet, so dass die jeweiligen Neigungswinkel durch Anlegen von Spannungen veränderbar sind.

Fig. 4 zeigt ein mikrostrukturiertes Element mit Mikroprismen 45-57. Die Prismen sind um eine Drehachse, die parallel zur spektralen Aufspaltungsrichtung verläuft, geneigt.

Fig. 5 zeigt eine weitere erfindungsgemäße optische Vorrichtung, die ein vollständig reflektierendes mikrostrukturiertes Element 9 beinhaltet, das eine Lamellenstruktur 59 aufweist. Der erste Lichtstrahl 13 trifft die, wie bezüglich Fig. 1 bereits geschildert, auf das mikrostrukturierte Element 9. Der zweite Lichtstrahl 19 wird von der Linse 21 auf ein erstes Teilstück des mikrostrukturierten Elements fokussiert. Die Teilstrahlen 15, 17 treffen auf andere Teilstücke 63, 65, wobei die Teilstücke 63, 65 eine andere Neigung aufweisen, als das Teilstück 61. Die Neigungen der Teilstücke 61-65 sind so gewählt, dass die Teilstrahlen 15, 17 sowie der zweite Lichtstrahl 19 gemeinsam über die Linse 5 zum Prisma 3 gelenkt werden, das die Teilstrahlen 15, 17 und den zweiten Lichtstrahl 19 kollinear zu einem Ausgangslichtstrahl 23 vereinigt.

Fig. 6 zeigt eine Weiterbildung der in Fig. 5 gezeigten optischen Vorrichtung. In dieser Ausgestaltungsvariante beinhaltet der zweite Lichtstrahl 19 Licht mehrerer Wellenlängen und wird von einem Element 67, das als weiteres Prisma 69 ausgebildet ist, räumlich spektral in die Teilstrahlen 71 und 73 aufgespalten, die von der Linse 21 auf unterschiedliche Orte des mikrostrukturierten Elements 9 fokussiert sind. Das mikrostrukturierte Element 9 reflektiert die Teilstrahlen 15, 17 sowie die Teilstrahlen 71, 73 gemeinsam über die Linse 5 zu dem Prisma 3, das die Teilstrahlen 15, 17, 71, 73 zu einem kollinear vereinigten Ausgangslichtstrahl 23 vereinigt.

5 Die Erfindung wurde in Bezug auf eine besondere Ausführungsform beschrieben. Es ist jedoch selbstverständlich, dass Änderungen und Abwandlungen durchgeführt werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.

10

Bezugszeichenliste:

1	dispersives Element
3	Prisma
5	Abbildungsoptik
7	Aufspaltungsebene
9	mikrostrukturiertes Element
11	Glassubstrat
13	erster Lichtstrahl
15	Teilstrahl
17	Teilstrahl
19	zweiter Lichtstrahl
21	Optik
23	Ausgangslichtstrahl
25	verspiegelte Bereiche
27	transmittierende Bereiche
29	Richtung der spektralen Aufspaltung
31-43	Spiegelemente
45-57	Mikoprismen
59	Lamellenstruktur
61	Teilstück
63	Teilstück
65	Teilstück
67	weiteres dispersives Element
69	weiteres Prisma
71	Teilstrahl
73	Teilstrahl

Patentansprüche

1. Optische Vorrichtung, bei der ein dispersives Element und eine Abbildungsoptik eine Aufspaltungsebene definieren, in der jeder Lichtwellenlänge ein Ort zugeordnet ist und in der ein mikrostrukturiertes Element angeordnet ist, das aus unterschiedlichen Richtungen kommende und auf die ihrer Wellenlänge entsprechenden Orte fokussierte Lichtstrahlen über die Abbildungsoptik zu dem dispersiven Element lenkt, das die Lichtstrahlen kollinear vereinigt.
2. Optische Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtstrahlen unterschiedliche Wellenlängen aufweisen.
3. Optische Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zumindest ein Lichtstrahl mehrere Wellenlängen aufweist.
4. Optische Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das dispersive Element zumindest einen Lichtstrahl vor dem Auftreffen auf das mikrostrukturierte Element räumlich spektral aufspaltet.
5. Optische Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein weiteres dispersives Element zumindest einen Lichtstrahl vor dem Auftreffen auf das mikrostrukturierte Element räumlich spektral aufspaltet.
6. Optische Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das dispersive Element ein Prisma beinhaltet.
7. Optische Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das dispersive Element ein Gitter beinhaltet.
8. Optische Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das dispersive Element die Abbildungsoptik umfasst.

9. Optische Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das mikrostrukturierte Element reflektierende und transmittierende Bereiche aufweist.
10. Optische Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das mikrostrukturierte Element Spiegelflächen unterschiedlicher Neigung aufweist.
11. Optische Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das mikrostrukturierte Element MEMS (mikro-elektromechanisches System) bzw. MOEMS (mikro-opto-elektromechanisches System) beinhaltet.
12. Optische Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das mikrostrukturierte Element ein Mikrospiegelarray beinhaltet.
13. Optische Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das mikrostrukturierte Element ein Mikroprismenarray beinhaltet.
14. Optische Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das mikrostrukturierte Element Bereiche mit unterschiedlichem Brechungsindex aufweist.
15. 15. Mikroskop mit einer optischen Vorrichtung nach einem der Ansprüche 1 bis 14.
16. Rastermikroskop, insbesondere konfokales Rastermikroskop, mit einer optischen Vorrichtung nach einem der Ansprüche 1 bis 14 zur Erzeugung eines Beleuchtungslichtstrahles.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6