Tell Us a Special Climate Story!

Emission of CO2 and Seismic Activity

By Hajar Kaddouri(DataScience),
Marouane Kaddouri(CyberSecurity),
Zakaria Chaoui(WebDev)

Exploring the Relationship Between the Climate Emissions and Seismic Activity!!

The Introduction

A Changing Climate, A Global Challenge

- Climate change is one of the biggest challenges of our time. Greenhouse gases (GHG), particularly CO₂ and methane, are the primary drivers of global warming.
- While human activity is the main contributor, natural phenomena such as volcanic eruptions and earthquakes may also play a role

Hypothesis

Do Seismic Events Influence Emissions?

- As we face the global climate crisis, it's critical to understand how both natural and human-made activities affect the planet's atmosphere.
- Our analysis investigates whether earthquakes could cause spikes or drops in emissions.
- We explore this through data on seismic events and emissions from 2015 to 2020.

Gathering the Data

DATA SOURCES

 Emissions Data: Sourced from NASA's CO₂ and methane emissions datasets, tracking concentrations and fluxes globally. Earthquake Data: Collected from the IRIS Earthquake
 Browser from 2015 to 2020, focusing on events with magnitude 5 and above.

Goal: Merge these datasets to explore any patterns between seismic activity and emissions changes.

Emissions

0 -179.5 89.5 -9999.0 2015-01-01 1 -178.5 89.5 -9999.0 2015-01-01 2 -177.5 89.5 -9999.0 2015-01-01 3 -176.5 89.5 -9999.0 2015-01-01 4 -175.5 89.5 -9999.0 2015-01-01

Latitude

Value

Date

Longitude

earthquakes

		Longitude	Latitude	Value	Date
	2260	-79.5	83.5	1.956606e-07	2015-01-01
	2261	-78.5	83.5	6.236824e-08	2015-01-01
S	2262	-77.5	83.5	1.843677e-07	2015-01-01
	2263	-76.5	83.5	6.893937e-07	2015-01-01
	2264	-75.5	83.5	6.770272e-07	2015-01-01

The Analytical Process

Steps in Our Analysis

Step 1: Filtered earthquake data by magnitude (≥ 5) and specific regions of interest.

Step 2: Mapped emissions data close to seismic events.

Step 3: Analyzed changes in emissions 30 days before and after major earthquakes.

Step 4: Visualized patterns and relationships between seismic events and emissions.

Visualizing Earthquakes and Emissions

Insights

More steps in Our Analysis

In some regions, emissions values fluctuate after large seismic events.

Analysis focused on emissions within a 100 km radius of earthquake epicenters, examining 30 days before and after major quakes.

Key Insight: Emissions spikes were observed after some major seismic events, particularly in areas with industrial activity.

Case Study

coordinates (120.1775, -1.7144)

- At the beginning we detected :The approximate region is: Southeast Asia
- Exactly Indonesia: The coordinates (120.1775,
 -1.7144) are located in Indonesia (likely in the Sulawesi
- Indonesia, situated along the Pacific Ring of Fire, is prone to both seismic activity and emissions from industrial processes and deforestation.
- We analyzed earthquakes and emissions in Indonesia and found correlations between large earthquakes and emission changes.

Climate Story: Emissions and Earthquakes

What We Found

- Seismic events, especially in regions like Indonesia, seem to have an impact on emissions.
- Natural factors, like volcanic eruptions, and human factors, such as industrial disruptions, might both contribute to these emissions spikes.
- These findings suggest that monitoring seismic zones could offer early warning signs of potential emission spikes.

Challenges Faced

- Data Sparsity: Some regions had insufficient emissions data, making it difficult to draw broad conclusions.
- Time Lag: It was challenging to align seismic and emissions data accurately in time for some regions.
- Complexity of Relationships: Emissions changes may result from a mix of natural and industrial factors, making causation hard to prove.

Conclusion

What Does This Mean for the Climate?

- Key Finding: Seismic events can potentially influence emissions, particularly in regions with active industries or natural carbon sources.
- These findings underline the importance of monitoring seismic zones not only for their physical impact but also for their environmental impact.
- More research is needed to further explore how seismic activity might be linked to long-term climate change trends.

The Next Steps

- Future Work: More granular research is required to understand how natural events like earthquakes, and volcanic eruptions affect emissions.
- Improved monitoring of both emissions and seismic activity could help predict and mitigate some of the environmental effects.

THANKS