Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА

Лабораторная работа №3 на тему: «Ключевой режим работы транзистора»

Вариант 4

Преподаватель:

Ковынев Н.В.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-44

Репозиторий работы: https://github.com/ledibonibell/Module04-ECE

Москва 2024

Цель работы

Исследовать статические режимы и переходные процессы в схеме простого транзисторного ключа.

Входные данные

Задание 1, 2:

Вариант	$E_k(V3)$ B	<i>С</i> ₁ пФ	
4	11	1300	

Перечень приборов

Транзистор ВС817-16:

1. Максимальное напряжение: 45 В

2. Максимальный ток: 0.5 А

3. Емкость: 3 рF

4. $h_{21 min}$: 100

5. $h_{21 max}$: 250

6. f_{rp} : 100 МГц

Ход работы

Задание 1. Исследовать динамические характеристики транзисторного ключа.

Рис. 1

R_k	130 Ом	910 Ом	5.1 кОм	10 кОм	22 кОм
t_{ϕ}	$151 \cdot 10^{-9}$	$26.5 \cdot 10^{-9}$	$63.2 \cdot 10^{-9}$	$147 \cdot 10^{-9}$	$234 \cdot 10^{-9}$
t_c	$14.1 \cdot 10^{-9}$	$9.20 \cdot 10^{-9}$	$8.30 \cdot 10^{-9}$	$7.52 \cdot 10^{-9}$	$7.48 \cdot 10^{-9}$

Таблица 1

Рис. 2 - $R_k = 130 \text{ Ом}$

Рис. 3 - $R_k = 910 \text{ Ом}$

Рис. 4 - $R_k = 5.1$ кОм

Рис. 5 - $R_k = 10$ кОм

Рис. 6 - $R_k = 22$ кОм

Задание 2. Собрать на рабочем поле среды Multisim схему для испытания усилительного каскада на биполярном транзисторе с ОБ (Рис. 5), ознакомиться с порядком расчёта параметров схемы.

Рис. 7

R_k	130 Ом	910 Ом	5.1 кОм	10 кОм	22 кОм
t_{ϕ}	$898 \cdot 10^{-9}$	$6.3 \cdot 10^{-6}$	$34 \cdot 10^{-6}$	$65 \cdot 10^{-6}$	$1.3 \cdot 10^{-9}$
t_c	$1.21 \cdot 10^{-6}$	$1.21 \cdot 10^{-6}$	$1.92 \cdot 10^{-6}$	$1.1 \cdot 10^{-6}$	419· 10 ⁻⁹

Таблица 2

Рис. 8 - $R_k = 130 \, \text{Ом}$

Рис. 9 - $R_k = 910 \text{ Ом}$

Рис. $10 - R_k = 5.1$ кОм

Рис. 11 - $R_k = 10$ кОм

Рис. 12 - $R_k = 22$ кОм

Вывод

В результате выполнения лабораторной работы было выяснено, как величина тока коллектора влияет на длительности фронта и среза.

Также было изучен способ уменьшения этих временных задержек за счет форсирующего конденсатора.