

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

11

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/892,476	06/28/2001	Joun Ho Lee	8733.481.00	3748
30827	7590	05/03/2005		EXAMINER
				KIELIN, ERIK J
			ART UNIT	PAPER NUMBER
			2813	

DATE MAILED: 05/03/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	09/892,476	LEE ET AL.
	Examiner	Art Unit
	Erik Kielin	2813

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 14 February 2005.
 2a) This action is **FINAL**. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1,2,4-7 and 9-20 is/are pending in the application.
 4a) Of the above claim(s) 4,7,9 and 16-20 is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1,2,5,6 and 10-15 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
 Paper No(s)/Mail Date 11/1/2004.

4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.
 5) Notice of Informal Patent Application (PTO-152)
 6) Other: _____.

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 14 January 2005 has been entered.

Claim Rejections - 35 USC § 102

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

3. Claims 1, 2, 5, 6 and 10-12 are rejected under 35 U.S.C. 102(e) as being anticipated by US 6,341,003 B1 (Ashizawa et al.).

Regarding claim 1, Ashizawa discloses an in-plane switching mode LCD device comprising:

first and second substrates (**SUB1, SUB2**, Fig. 2);

gate lines **GL** and data lines **DL** defining a pixel region on the first substrate (Figs. 16, 18, 19, 21, 22);

a plurality of common **CT** and data electrodes **PX** (called “pixel electrodes” in Ashizawa) formed to cross one another within the pixel region at constant intervals;

a common line **CL** formed in parallel with the gate line **GL**, the common electrodes **CT** being diverged from the common line **CL**;

a thin film transistor **TFT** formed in a crossing portion of the gate and data lines; and

a liquid crystal layer (**LC**, Fig. 2) formed between the first and second substrates,

wherein the data electrodes **PX** include a first data electrode having a first end with the thin film transistor **TFT** (e.g. as shown in Fig. 18) and a second end overlapping an upper portion of the common line **CL** (e.g. Fig. 18, the end of **PX** shown over **CL**) to maintain a direction of an electric field **E** generated between the common electrodes **CT** and the data electrodes **PX** (e.g. as shown in cross-sectional view of Fig. 2(B) and as known to be the case for in-plane switching mode LCD); The in the same direction as a rubbing direction, **as shown for example in Fig. 21** (col. 4, lines 18-29; col. 21, line 54 to col. 24, line 22), and

wherein the first and second data electrode have a substantially rounded edge portion and a substantially rectangular edge portion (e.g. as shown in Figs. 18, 26(A)-26(C), 29(B), 33, 34, and 38(A)), and

wherein some edges of the data electrodes **PX** in the minimum area are located on an inner portion of the common line **CL** and other edges of the data electrodes **PX** located away from the common line **CL** are rounded and include portions that are non-overlapping with the common line (Figs. 22, 33, 35(B) 38(A); especially **col. 31, last paragraph**). In this regard, **Ashizawa** states at col. 24,

“FIG. 22 is a schematic plan view of one pixel that is enclosed by a light shield film, that is, the main structure of a liquid crystal display device

according to a fifth embodiment of the invention. In the third embodiment, the **occurrence of a rubbing defect is prevented by equalizing the direction θ_S of the peripheries of those portions of the pixel electrode PX that are connected to the storage capacitor C_{stg} to the rubbing direction θ_R at the crossing portions having a level difference where those portions of the pixel electrode PX cross the counter voltage signal line CL .**" (Emphasis added.)

And at col. 31, last paragraph states,

"FIG. 38(A) shows the electrode structure having curved corners at the joining portion e' of FIG. 35(A) and **the crossing portion a' of FIG. 35(B), partially.**" (Emphasis added.)

Regarding claim 2, the common electrodes **CT** include a first common electrode formed in parallel with the data line **TFT** and diverged from the common line **CL** within the pixel region (Fig. 18);

a second common electrode **CT** formed with at least one data electrode **PX** interposed between the first common electrode **CT** and the second common electrode **CT** in parallel with the first common electrode **CT** and diverged from the common line **CL** (Fig. 18); and

a third common electrode **CT** formed with at least one data electrode **PX** interposed between the second common electrode **CT** and the third common electrode **CT**, having one end connected with one end of the second common electrode (i.e. by the common line **CL**) (Figs. 18).

Regarding claim 5, the overlap of the data electrodes **PX** with the common line **CL** form edge portions that are selectively located inside and outside the common line (Figs. 16, 18, 19, 21, 22).

Regarding claim 6, the selective inside and outside locations of the edge portions are based upon a rubbing direction, **as shown for example in Fig. 21** (col. 4, lines 18-29; col. 21, line 54 to col. 24, line 22; Figs. 16, 18, 19, 21, 22).

Regarding claim 10, Ashizawa discloses an in-plane switching liquid crystal display device, comprising:

- a plurality of parallel data lines **DL** (Fig. 32);
- a plurality of gate lines **GL**, crossing the data lines **DL**, such that a pixel region is defined by the data and gate lines;
- a thin film transistor **TFT** comprising source, drain and gate electrodes formed at a crossing point of the data and gate lines;
- a common line **CL** within the pixel region;
- a plurality of common electrodes **CT** extending in a direction perpendicular to the common line **CL**;
- a plurality of data electrodes **PX** parallel to the common electrodes **CT**, wherein first ends of the data electrodes connected to the drain of said thin film transistor **TFT**, and second ends of the data electrodes are located on an inner portion of the common line, wherein edges of the data electrodes **PX** are rounded and correspond to a rubbing direction (as clearly shown in Figs. 35(B) and 38(A)), and wherein the data electrodes **PX** and the common electrodes **CT** form an alternating pattern; and
- a transverse data electrode **Cstg** overlying the common line **CL** and connecting second ends of the data electrodes **PX**, the transverse data electrode **Cstg** having a first portion having a first width and a second portion having a second width, wherein the first width is less than the

Art Unit: 2813

second width; wherein the first width is sufficiently narrow that disinclination is removed. (Disinclination is necessarily removed because **Ashizawa** teaches that the common and data electrodes are fashioned to prevent alignment problems due to the rubbing (alignment) direction of the liquid crystals, which Applicant indicates is the problem leading to disinclination. See col. 4, lines 18-29; col. 21, line 54 to col. 24, line 22; Figs. 16, 18, 19, 21, 22, 33, 35(A), 35(B), and 38(A).)

With respect to the rounded corners at the joining portions of the data electrodes **PX** with the transverse data electrode **C_{stg}** --away from the common line **CL**-- **Ashizawa** shows rounded corners in Figs. 35(B) and 38(A) as discussed at col. 31, line 48 to col. 32, line 14, wherein **Ashizawa** states that 35(A) and 35(B) are related to that shown in Figs. 38(A) and 38(B) -- especially at the location denoted "a." **Ashizawa** additionally shows rounding in the rubbing direction when Figs. 35(B) and 38(A) are considered with at least Fig. 22 as discussed in col. 24, lines 4-21 and in more detail in the section entitled "3. Preferred Electrode Structures for Suppressing 'Alignment Defects'" in col. 21, line 54 to col. 27, line 3. Note that **DIR(Np)** and **DIR(Nn)** are the rubbing directions θR . (See **Ashizawa** col. 25.) Finally, as noted above in the rejection of the claims. Rounding provides an infinite number of directions since rounding generates an arc. Accordingly, the rubbing directions **DIR(Np)** and **DIR(Nn)** are shown to fall within the directions of the arc.

Regarding claim 11, the first ends of the common electrodes **CT** intersect the common line **CL** wherein at least one corner portion of a vertex of the intersection of the common electrodes **CT** and the common line **CL** is rounded (Fig. 38(A)); and

wherein at least one corner portion of a vertex of a connecting point of the second ends of the data electrodes **PX** and the transverse data electrode is substantially rounded (Fig. 38(A)).

Regarding claim 12, the first portion of the transverse data electrode (not labeled, but shown as the connecting portion of the data electrodes **PX** overlying the common line **CL**; Fig. 18) corresponds to the at least one corner portion of the vertex of the intersection of the common electrodes **CT** and the common line **CL**.

Claim Rejections - 35 USC § 103

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

5. Claims 1, 2, 5, 6, and 10-15 are rejected under 35 U.S.C. 103(a) as being unpatentable over US 6,281,958 B1 (Nakajima) in view of Applicant's admitted prior art (APA).

Regarding claim 1, Nakajima discloses an in-plane switching mode LCD device (Title) comprising:

first **20** and second **21** substrates (col. 3, line 44; Fig. 2);

gate lines **39** (called "source line" in Nakajima) and data lines **31** defining a pixel region on the first substrate (Fig. 3);

a plurality of common **33** and data electrodes **40** (called "pixel electrodes" in Nakajima) formed to cross one another within the pixel region at constant intervals;

a common line **32** formed in parallel with the gate line **31**, the common electrodes **33** being diverged from the common line **32**;

a thin film transistor **38** formed in a crossing portion of the gate and data lines; and a liquid crystal layer **16** (Fig. 2) formed between the first **20** and second **21** substrates, wherein the data electrodes **40** (Fig. 3) include a first data electrode having a first end connected with the with the thin film transistor **38** and a second end overlapping the common line **32** to maintain a direction of an electric field generated between the common electrodes **33** and the data electrodes **40**, and a second data electrode **40** formed between the common electrodes **33**,

wherein the first and second data electrodes **40** each have a substantially rectangular edge (Fig. 3).

Note the electric field is maintained in a same direction as the rubbing direction (called “initial aligning angle” in Nakajima at col. 7, line 25, for example; col. 7, lines 13-61), and some edges of the data electrodes **40** in the minimum area are located on an inner portion of the common line **32** and other edges of the data electrodes **40** are located away from the common line **32** (as shown e.g. in Figs. 3, and 4). In this regard, Nakajima states at col. 7, lines 35-61,

“Therefore, unlike the conventional arrangement [of the pixel electrode and common electrodes/line], the present embodiment does **not** cause a difference between the inclining direction of the **electric line of force** [i.e. the electric field] and the **initial aligning direction** [i.e. rubbing direction] **of the liquid crystal molecules**, partially within the same pixel, especially on ends of the display section. Namely, the inclining directions of the electric lines of force **18** are set so as to be even within the same pixel, and the **initial aligning directions of the liquid crystal molecules 19 are set so as to be the same as the inclining direction of the electric lines of force 18**. With this arrangement, for example, when voltage is applied, the liquid crystal molecules **19** rotate to the right in the entire pixel in the liquid crystal display panel of the present

embodiment; therefore, it becomes possible to **considerably improve the display quality as compared with the conventional arrangement.** Additionally, the state of a rotating liquid crystal molecule during the application of voltage will be described later.” (Emphasis added.)

“As described above, **the initial aligning angle of the liquid crystal molecule 19 is not particularly limited as long as the initial aligning angle is set in accordance with the inclining direction of the electric line of force 18** of the display section 17. For example, it is possible to obtain sufficient contrast in the case when the angle ranges between 0° to 45° in the clockwise direction in the FIG. 1 with regard to the branching wires of the pixel electrode 10 and the common electrode 3 which are disposed orthogonally to the common line 2. Here, the angle is set at 2° in the present embodiment.” (Emphasis added.)

(See also col. 3, lines 58-62; section entitled “EMBODIMENT 3” beginning at col. 11, line 1 -- especially col. 13, lines 5-15.)

Nakajima does not state that the data electrodes **40** located away from the common line **32** (as shown in Fig. 3) have a rounded edge portion.

APA in paragraph [19] states that such corners are inherently rounded.

It would have been obvious for one of ordinary skill in the art, at the time of the invention to form the corners of **Nakajima** to be rounded, because **APA** states that this occurs as a matter of the manufacturing and that only in “design” are the corners shown to be “right angles.”

With this in mind, because **Nakajima** shows some edges of the data electrodes perpendicularly intersecting the data lines **away from the common lines** (Figs. 3 and 4, for example), these corners will necessarily be rounded at an area away from the common lines and therefore meet this claim feature.

Regarding claim 2, the plurality of common electrodes **33** include a first common electrode formed in parallel with the data line **39** and diverged from the common line **32** within the pixel region;

a second common electrode **33** formed with at least one data electrode **40** interposed between the first common electrode **33** and the second common electrode **33** in parallel with the first common electrode **33** and diverged from the common line **32**; and

a third common electrode **33** formed with at least one data electrode **40** interposed between the second common electrode **33** and the third common electrode **33**, the second common electrode having one end connected with one end of the second common electrode (i.e. by the common line **32**).

Regarding claim 5, the overlap of the data electrodes **40** overlapped with the common line **32** form edge portions that are selectively located inside and outside the common line.

Regarding claim 6, the selective inside and outside locations of the edge portions are based on a rubbing direction **49** (called “initial inclination direction” in Nakajima; col. 7, lines 13-61).

Regarding claim 10, Nakajima discloses an in-plane switching liquid crystal display device, comprising:

a plurality of parallel data lines **69** (Fig. 4);

a plurality of gate lines **61**, crossing the data lines **69**, such that a pixel region is defined by the data and gate lines;

a thin film transistor **68** comprising source, drain and gate electrodes formed at a crossing point of the data and gate lines;

a common line **62** within the pixel region;

a plurality of common electrodes **63** extending in a direction perpendicular to the common line **62**;

a plurality of data electrodes 70 parallel to the common electrodes 63, wherein (1) first ends of the data electrodes connected to the drain of said thin film transistor 68 (because the source is connected to the source line 9 **the drain is necessarily connected to the data [i.e. the pixel] electrodes 70** as stated at col. 5, lines 6-12 and at col. 6, lines 8-14 and as shown in Fig. 2), (2) second ends of the data electrodes are located on an inner portion of the common line 62, (3) wherein some edges of the data electrodes 70 are located away from the common line and include portions that are non-overlapping with the common line, and (4) wherein the data electrodes 70 and the common electrodes 63 forming an alternating pattern; and

a transverse data electrode 70 overlying the common line 62 and connecting second ends of the data electrodes 70, the transverse data electrode 70 having a first portion having a first width and a second portion having a second width,

wherein the first width is less than the second width; wherein the first width is sufficiently narrow that disinclination is removed. (Disinclination is necessarily removed because Nakajima teaches that the liquid crystal functions properly everywhere at col. 3, lines 58-62 and col. 7, lines 13-61.)

Nakajima does not state that the edges of the data electrodes 70 located away from the common line are “rounded in a same direction as a rubbing direction.” However, Nakajima states at col. 12, lines 39-44,

“It is possible to obtain sufficient contrast in the case when the initial aligning angle [i.e. rubbing direction] of the liquid crystal molecule 79 **ranges between 0° to 45° in the clockwise direction in the Figure [4]** with regard to the wires of the pixel [i.e. data] electrodes 70 and the common electrodes 63, which are disposed orthogonally to the common line 62.” (Emphasis added.)

APA in paragraph [19] states that the electrode corners are inherently rounded as a result of the manufacturing. Since **Nakajima** indicates that the rubbing direction may be 0° to 45°, the inherent rounding of the corner edges of the data electrodes 70 away from the common line are in “a” rubbing direction as shown in Fig. 4 of **Nakajima**. The rounded edges inherently occurring at the corners of the data electrodes would be 0° to 90° in a clockwise direction of **Nakajima**’s Fig. 4, as shown to be inherent in the **APA** Figs. 2B and 2C. (Even narrowly interpreting the rounding direction as shown in Fig. 4 of the instant application, at **Nakajima**’s 45° rubbing direction, is the inherent direction of rounding indicated to naturally occur during manufacturing, as stated by **APA**, of the corner edges of the electrodes located away from the common line in **Nakajima**.)

It would have been obvious for one of ordinary skill in the art, at the time of the invention to form the corners of **Nakajima** to be rounded, because **APA** states that this occurs as a matter of the manufacturing and that only in “design” are the corners shown to be “right angles.”

Regarding claim 11, as noted above, **Nakajima** discloses each of the features of claim 10 and additionally, that first ends of the common electrodes 62 intersect the common line 62 and that the data electrodes 70 have an intersecting point with the transverse electrode 70 (Fig. 4). But **Nakajima** does not indicate (1) that at least one corner portion of a vertex of the intersection of the common electrodes and the common line is rounded; and (2) that at least one corner portion of a vertex of a connecting point of the second ends of the data electrodes and the transverse data electrode is substantially rounded. In short, **Nakajima** does not indicate that the corners formed at the intersection points of the electrodes with the lines are rounded.

APA in paragraph [19] states that such corners are inherently rounded. It would have been obvious for one of ordinary skill in the art, at the time of the invention to form the corners of **Nakajima** to be rounded, because **APA** states that this occurs as a matter of the manufacturing and that only in “design” are the corners shown to be “right angles.”

Regarding claim 12, **Nakajima** discloses that the first portion of the transverse data electrode corresponds to the at least one corner portion of the vertex of the intersection of the common electrodes and the common line.

Regarding claim 13, **Nakajima** does not disclose that the LCD further comprises a transverse common electrode connected to second ends of the common electrodes, wherein at least one corner portion of a vertex of the intersection of the common electrodes and the transverse common electrode is rounded.

APA prior art Fig. 2C teaches that the transverse common electrode is a common configuration and that it is known to round the corners of the intersection between the electrodes and the transverse electrodes (paragraph [19]).

It would have been obvious for one of ordinary skill in the art, at the time of the invention to apply the features of the **APA** to **Nakajima** to connect the common electrodes ends opposite the common line and to round the corners, because **APA** teaches that this is common in the art.

Regarding claims 14 and 15, **Nakajima** does not discloses that the second ends of the data electrodes **40** (Fig. 3) connect to a second transverse data electrode, the second transverse data electrode having a third portion having a third width and a fourth portion having a fourth width, wherein the third width is less than the fourth width (instant claim 14). **Nakajima** also fails to disclose that the third portion of the second transverse data electrode corresponds to the at

least one corner portion of the vertex of the intersection of the common electrodes and the transverse common electrode (instant claim 15).

APA prior art Fig. 2C shows these features.

It would have been obvious for one of ordinary skill in the art, at the time of the invention to apply the features of the **APA** to **Nakajima** to connect the data electrodes ends opposite the first transverse electrode, because **APA** teaches that this is common in the art.

Response to Arguments

6. Applicant's arguments filed 14 January 2005 have been fully considered but they are not persuasive.

With regard to claim 1, Applicant argues that Ashizawa does not teach first and second data electrodes having both rounded and rectangular edges. Examiner respectfully disagrees because Ashizawa teaches rounded edges particularly in Fig. 38(A) which is applied to any embodiment of which there are several having first and second data electrodes e.g. Figs. 18 and 34.

With regard to claim 10, Applicant argues that the **C_{stg}** cannot be considered a transverse data electrode. Examiner respectfully disagrees. The electrode labeled **C_{stg}** is transverse to the data electrodes **PX** and --as admitted by Applicant as quoted from Ashizawa-- is driven by the signal held by the storage capacitor “portion” (Ashzawa, col. 22, lines 3-10). Therefore the **C_{stg}** has also stores data. Ergo the **C_{stg}** qualifies as a “transverse data electrode. Additionally, Applicant realizes that only a **portion** of the transverse electrodes is the **C_{stg}** as Applicant has quoted this from Ashizawa. Notwithstanding that fact that only a portion of the transverse data

electrode is a C_{stg} , even if it were assumed that the entirety was the C_{stg} , note that the terminology “transverse data electrode” cannot be given the status of a “special definition” absent an expressed statement in the instant specification limiting the meaning to that special definition. Absent the expressed special definition, this equals reading limitations from the specification into the claims. In this regard, it has been held, that claim interpretation must begin with the language of the claim itself. See *Smithkline Diagnostics, Inc. v. Helena Laboratories Corp.*, 859 F.2d 878, 882, 8 USPQ2d 1468, 1472 (Fed. Cir. 1988). As stated by the court in *In re Hiniker Co.*, 150 F.3d 1362, 1369, 47 USPQ2d -523, 1529 (Fed. Cir. 1998) “[t]he name of the game is the claim.” Claims will be given their broadest reasonable interpretation consistent with the specification, and limitations appearing in the specification are not to be read into the claims. *In re Enter.*, 756 F.2d 852, 858, 225 USPQ 1, 5 (Fed. Cir. 1985). The language of the claim defines the scope of the protected invention. *Yale Lock Mfg. Co. v. Greenleaf*, 117 U.S. 554, 559 (1886) (“The scope of letters patent must be limited to the invention covered by the claim, and while the claim may be illustrated it cannot be enlarged by language used in other parts of the specification.”); *Autogiro Co. of Am. v. United States*, 384 F.2d 391, 396, 155 USPQ 697, 701 (Ct. Cl. 1967) (“Courts can neither broaden nor narrow the claims to give the patentee something different than what he has set forth [in the claim].”). See also *Continental Paper Bag Co. v. Eastern Paper Bag Co.*, 210 U.S. 405, 419 (1908); *Cimiotti Unhairing Co. v. American Fur Ref. Co.*, 198 U.S. 399, 410 (1905). Accordingly, “resort must be had in the first instance to the words of the claim” and words “will be given their ordinary and accustomed meaning, unless it appears that the inventor used them differently.” *Envirotech Corp. v. Al George, Inc.*, 730 F.2d 753, 759, 221 USPQ 473, 477 (Fed. Cir. 1984).

Regarding the rejection of the claims over Nakajima in view of APA, Applicant's arguments do not address the configuration of the data electrodes as presently claimed and are accordingly considered moot. Applicant argues that Nakajima in view of APA do not have data electrodes having rounded and rectangular edges. Examiner respectfully disagrees for reasons of record, as presented in the rejection of the claims above.

For at least these reasons, the arguments are not found persuasive.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Erik Kielin whose telephone number is 571-272-1693. The examiner can normally be reached from 9:00 - 19:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Carl Whitehead, Jr. can be reached on 571-272-1702. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Erik Kielin
Primary Examiner
April 30, 2005