#### Differentiation

Let C be the graph of y = f(x) and P be the point  $(x_0, y_0)$  on C. We assume that P is not an endpoint of C. We want find the tangent line to the graph of f(x) at P.

Let C be the graph of y = f(x) and P be the point  $(x_0, y_0)$  on C. We assume that P is not an endpoint of C. We want find the tangent line to the graph of f(x) at P. What is a tangent line?

Let C be the graph of y = f(x) and P be the point  $(x_0, y_0)$  on C. We assume that P is not an endpoint of C. We want find the tangent line to the graph of f(x) at P. What is a tangent line?

\* It is NOT just a line that meets the graph at one point.

Let C be the graph of y = f(x) and P be the point  $(x_0, y_0)$  on C. We assume that P is not an endpoint of C. We want find the tangent line to the graph of f(x) at P. What is a tangent line?

- \* It is NOT just a line that meets the graph at one point.
- \* It is the limit of the secant line (a line drawn between two points on the graph) as the distance between the two points goes to zero.

\*



Now consider a point different from P called Q. Then  $Q = (x_0 + h, f(x_0 + h))$  where  $h \neq 0$  since  $P = (x_0, f(x_0))$ .

Now consider a point different from P called Q. Then  $Q = (x_0 + h, f(x_0 + h))$  where  $h \neq 0$  since  $P = (x_0, f(x_0))$ .

\* The slope of the line PQ is

$$\frac{f(x_0+h)-f(x_0)}{h}$$
 (Newton quotient)



#### Definition

Nonvertical Tangent lines

#### **Definition**

#### **Nonvertical Tangent lines**

If f is continuous at  $x = x_0$  and that

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}=m$$

exist.

#### **Definition**

#### **Nonvertical Tangent lines**

If f is continuous at  $x = x_0$  and that

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}=m$$

exist. Then

#### Definition

#### **Nonvertical Tangent lines**

If f is continuous at  $x = x_0$  and that

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}=m$$

exist. Then

$$y = m(x - x_0) + f(x_0)$$

is called the **tangent line** to the graph of f at  $(x_0, f(x_0))$ .

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

**Solution:** Here  $f(x) = \frac{1}{x}$ ,  $x_0 = 1$ , and  $y_0 = f(1) = 1$ .

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

$$m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

$$m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\frac{1}{1+h} - 1}{h}$$

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

$$m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\frac{1}{1+h} - 1}{h} = \lim_{h \to 0} \frac{\frac{-h}{1+h}}{h}$$

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

$$m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\frac{1}{1+h} - 1}{h} = \lim_{h \to 0} \frac{\frac{-h}{1+h}}{h} = \lim_{h \to 0} -\frac{1}{1+h}$$

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

$$m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\frac{1}{1+h} - 1}{h} = \lim_{h \to 0} \frac{\frac{-h}{1+h}}{h} = \lim_{h \to 0} -\frac{1}{1+h} = -1.$$

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

**Solution:** Here  $f(x) = \frac{1}{x}$ ,  $x_0 = 1$ , and  $y_0 = f(1) = 1$ . The slope of the tangent is:

$$m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\frac{1}{1+h} - 1}{h} = \lim_{h \to 0} \frac{\frac{-h}{1+h}}{h} = \lim_{h \to 0} -\frac{1}{1+h} = -1.$$

The equation of the tangent line at (1,1) is

#### Example

Find an equation of the tangent line to the curve  $y = \frac{1}{x}$  at the point (1,1).

**Solution:** Here  $f(x) = \frac{1}{x}$ ,  $x_0 = 1$ , and  $y_0 = f(1) = 1$ . The slope of the tangent is:

$$m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\frac{1}{1+h} - 1}{h} = \lim_{h \to 0} \frac{\frac{-h}{1+h}}{h} = \lim_{h \to 0} -\frac{1}{1+h} = -1.$$

The equation of the tangent line at (1,1) is

$$y = -(x-1) + 1$$
, or  $y = -x + 2$ .



#### Definition

Vertical tangents

#### Definition

#### Vertical tangents

If f is continuous at  $x = x_0$  and if either

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \infty \text{ or } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty,$$

#### Definition

#### Vertical tangents

If f is continuous at  $x = x_0$  and if either

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \infty \text{ or } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty,$$

then the vertical line  $x = x_0$  is tangent to the graph y = f(x) at  $(x_0, f(x_0))$ .

#### **Definition**

#### Vertical tangents

If f is continuous at  $x = x_0$  and if either

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \infty \text{ or } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty,$$

then the vertical line  $x = x_0$  is tangent to the graph y = f(x) at  $(x_0, f(x_0))$ .

\* If  $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$  fails to exist in any other way than by being  $\infty$  or  $-\infty$ , y=f(x) has no tangent line at  $(x_0,f(x_0))$ .

\* Consider  $f(x) = \sqrt[3]{x}$ .

\* Consider  $f(x) = \sqrt[3]{x}$ . The limit of the Newton quotient for f at x = 0:

\* Consider  $f(x) = \sqrt[3]{x}$ . The limit of the Newton quotient for f at x = 0:

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^{1/3}}{h} = \lim_{h \to 0} \frac{1}{h^{2/3}} = \infty,$$

\* Consider  $f(x) = \sqrt[3]{x}$ . The limit of the Newton quotient for f at x = 0:

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^{1/3}}{h} = \lim_{h \to 0} \frac{1}{h^{2/3}} = \infty,$$

 $\implies$  The y-axis is tangent to  $y = \sqrt[3]{x}$ .



\* The Newton quotient for  $f(x) = x^{2/3}$  at x = 0:

\* The Newton quotient for  $f(x) = x^{2/3}$  at x = 0:

$$\frac{f(0+h)-f(0)}{h}=\frac{h^{2/3}}{h}=\frac{1}{h^{1/3}},$$

which has no limit as  $h \rightarrow 0$ 

\* The Newton quotient for  $f(x) = x^{2/3}$  at x = 0:

$$\frac{f(0+h)-f(0)}{h}=\frac{h^{2/3}}{h}=\frac{1}{h^{1/3}},$$

which has no limit as  $h \rightarrow 0$  since

$$\lim_{h\to 0-}\frac{f(0+h)-f(0)}{h}=\lim_{h\to 0-}\frac{h^{2/3}}{h}=\lim_{h\to 0-}\frac{1}{h^{1/3}}=-\infty,$$

\* The Newton quotient for  $f(x) = x^{2/3}$  at x = 0:

$$\frac{f(0+h)-f(0)}{h}=\frac{h^{2/3}}{h}=\frac{1}{h^{1/3}},$$

which has no limit as  $h \rightarrow 0$  since

$$\lim_{h \to 0-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0-} \frac{h^{2/3}}{h} = \lim_{h \to 0-} \frac{1}{h^{1/3}} = -\infty,$$

and

$$\lim_{h\to 0+} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0+} \frac{h^{2/3}}{h} = \lim_{h\to 0+} \frac{1}{h^{1/3}} = \infty.$$

\* The Newton quotient for  $f(x) = x^{2/3}$  at x = 0:

$$\frac{f(0+h)-f(0)}{h}=\frac{h^{2/3}}{h}=\frac{1}{h^{1/3}},$$

which has no limit as  $h \rightarrow 0$  since

$$\lim_{h \to 0-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0-} \frac{h^{2/3}}{h} = \lim_{h \to 0-} \frac{1}{h^{1/3}} = -\infty,$$

and

$$\lim_{h \to 0+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0+} \frac{h^{2/3}}{h} = \lim_{h \to 0+} \frac{1}{h^{1/3}} = \infty.$$

We say this curve has a **cusp** at (0,0).

\* The Newton quotient for  $f(x) = x^{2/3}$  at x = 0:

$$\frac{f(0+h)-f(0)}{h}=\frac{h^{2/3}}{h}=\frac{1}{h^{1/3}},$$

which has no limit as  $h \rightarrow 0$  since

$$\lim_{h \to 0-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0-} \frac{h^{2/3}}{h} = \lim_{h \to 0-} \frac{1}{h^{1/3}} = -\infty,$$

and

$$\lim_{h \to 0+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0+} \frac{h^{2/3}}{h} = \lim_{h \to 0+} \frac{1}{h^{1/3}} = \infty.$$

We say this curve has a **cusp** at (0,0).

The graph of f has no tangent at (0,0).



**Normals:** 

#### Normals:

If a curve C has a tangent line L at point P, then the straight line N through P perpendicular to L is called the **normal** to C at P.

#### Normals:

If a curve C has a tangent line L at point P, then the straight line N through P perpendicular to L is called the **normal** to C at P. Then

slope of the normal 
$$=\frac{-1}{\text{slope of the tangent}}$$
.

#### Normals:

If a curve C has a tangent line L at point P, then the straight line N through P perpendicular to L is called the **normal** to C at P. Then

slope of the normal 
$$=\frac{-1}{\text{slope of the tangent}}$$
.

\* We know the tangent to  $y = \frac{1}{x}$  at (1,1) has slope -1.

#### Normals:

If a curve C has a tangent line L at point P, then the straight line N through P perpendicular to L is called the **normal** to C at P. Then

slope of the normal 
$$=\frac{-1}{\text{slope of the tangent}}$$
.

\* We know the tangent to  $y = \frac{1}{x}$  at (1,1) has slope -1. Then the normal has slope 1,

#### Normals:

If a curve C has a tangent line L at point P, then the straight line N through P perpendicular to L is called the **normal** to C at P. Then

slope of the normal 
$$=\frac{-1}{\text{slope of the tangent}}$$
.

\* We know the tangent to  $y=\frac{1}{x}$  at (1,1) has slope -1. Then the normal has slope 1, and an equation of the normal to  $y=\frac{1}{x}$  at (1,1) is

$$y = (x - 1) + 1$$
 or  $y = x$ .

#### **Normals:**

If a curve C has a tangent line L at point P, then the straight line N through P perpendicular to L is called the **normal** to C at P. Then

slope of the normal 
$$=\frac{-1}{\text{slope of the tangent}}$$
.

\* We know the tangent to  $y=\frac{1}{x}$  at (1,1) has slope -1. Then the normal has slope 1, and an equation of the normal to  $y=\frac{1}{x}$  at (1,1) is

$$y = (x - 1) + 1$$
 or  $y = x$ .

**Exercise:** Does the graph of y = |x| have a tangent line at x = 0?

#### **Normals:**

If a curve C has a tangent line L at point P, then the straight line N through P perpendicular to L is called the **normal** to C at P. Then

slope of the normal 
$$=\frac{-1}{\text{slope of the tangent}}$$
.

\* We know the tangent to  $y=\frac{1}{x}$  at (1,1) has slope -1. Then the normal has slope 1, and an equation of the normal to  $y=\frac{1}{x}$  at (1,1) is

$$y = (x - 1) + 1$$
 or  $y = x$ .

**Exercise:** Does the graph of y = |x| have a tangent line at x = 0? Does the graph of |x| have a cusp at the origin?

