Class 08: Miniproject

Christopher Brockie (PID: A16280405)

Today we are applying machine learning to breast cancer biopsy data from fine needle aspiration (FNA).

First I put the .csv file into the class08 file on my computer. Then I call it up and rename it:

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.df)</pre>
```

	diagnosis	radius_mean	${\tt texture_mean}$	<pre>perimeter_mean</pre>	area_mean	L
842302	M	17.99	10.38	122.80	1001.0)
842517	M	20.57	17.77	132.90	1326.0)
84300903	M	19.69	21.25	130.00	1203.0)
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0)
843786	M	12.45	15.70	82.57	477.1	
	smoothness	s_mean compa	ctness_mean co	oncavity_mean co	oncave.poi	nts_mean
842302	0	.11840	0.27760	0.3001		0.14710
842517	0	.08474	0.07864	0.0869		0.07017
84300903	0	.10960	0.15990	0.1974		0.12790
84348301	0	. 14250	0.28390	0.2414		0.10520
84358402	0	.10030	0.13280	0.1980		0.10430
843786	0	. 12780	0.17000	0.1578		0.08089
	symmetry_n	nean fractal	_dimension_mea	n radius_se te	kture_se p	erimeter_se
842302	0.2	2419	0.0787	1.0950	0.9053	8.589
842517	0.1	1812	0.0566	0.5435	0.7339	3.398
84300903	0.2	2069	0.0599	0.7456	0.7869	4.585
84348301	0.2	2597	0.0974	0.4956	1.1560	3.445
84358402	0.1	1809	0.0588	0.7572	0.7813	5.438
843786	0.2	2087	0.0761	.3 0.3345	0.8902	2.217
	area_se sm	noothness_se	compactness_s	se concavity_se	concave.p	oints_se
842302	153.40	0.006399	0.0490	0.05373		0.01587

74.08	0.005225		0.01308	0.0	01860		0.01340
94.03	0.006150		0.04006	0.0	03832		0.02058
27.23	0.009110		0.07458	0.0	05661		0.01867
94.44	0.011490		0.02461	0.0	05688		0.01885
27.19	0.007510		0.03345	0.0	03672		0.01137
symmetry_se	fractal_di	mension	_se radi	us_wors	t texture	_worst	
0.03003		0.006	193	25.3	8	17.33	
0.01389		0.003	532	24.9	9	23.41	
0.02250		0.004	571	23.5	7	25.53	
0.05963		0.009	208	14.9	1	26.50	
0.01756		0.005	115	22.5	4	16.67	
0.02165		0.005	082	15.4	7	23.75	
perimeter_wo	rst area_w	orst sm	oothness	s_worst	compactnes	ss_wor	st
184	.60 20	19.0		0.1622		0.66	56
158	.80 19	56.0		0.1238		0.18	66
152	.50 17	09.0		0.1444		0.42	45
98	.87 5	67.7		0.2098		0.86	63
152	.20 15	75.0		0.1374		0.20	50
103	.40 7	41.6		0.1791		0.52	49
concavity_wo	rst concav	e.point	s_worst	symmetr	y_worst		
0.7	119		0.2654		0.4601		
0.2	416		0.1860		0.2750		
0.4	504		0.2430		0.3613		
0.6	869		0.2575		0.6638		
0.4	000		0.1625		0.2364		
0.5	355		0.1741		0.3985		
fractal_dime	nsion_wors	t					
	0.1189	0					
	0.0890	2					
	0.0875	8					
	0.1730	00					
	0.0767	'8					
	0.1244	:0					
	94.03 27.23 94.44 27.19 symmetry_se: 0.03003 0.01389 0.02250 0.05963 0.01756 0.02165 perimeter_wo: 184 158 152 98 152 103 concavity_wo: 0.7 0.24 0.66 0.44 0.55	94.03	94.03	94.03	94.03	94.03	94.03

Now we want to omit the first column, which is the diagnosis. Save your input data file into your Project directory

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

radius_mean texture_mean perimeter_mean area_mean smoothness_mean 842302 17.99 10.38 122.80 1001.0 0.11840

842517	20.57	17.77		326.0	0.08474
84300903	19.69	21.25		203.0	0.10960
84348301	11.42	20.38		386.1	0.14250
84358402	20.29	14.34		297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780
	compactness_mean	concavity_mean	concave.poin	ts_mean symme	etry_mean
842302	0.27760	0.3001		0.14710	0.2419
842517	0.07864	0.0869		0.07017	0.1812
84300903	0.15990	0.1974		0.12790	0.2069
84348301	0.28390	0.2414		0.10520	0.2597
84358402	0.13280	0.1980		0.10430	0.1809
843786	0.17000	0.1578		0.08089	0.2087
	fractal_dimensio	n_mean radius_se	texture_se	perimeter_se	area_se
842302	0	.07871 1.0950	0.9053	8.589	153.40
842517	0	.05667 0.5435	0.7339	3.398	74.08
84300903	0	.05999 0.7456	0.7869	4.585	94.03
84348301	0	.09744 0.4956	1.1560	3.445	27.23
84358402	0	.05883 0.7572	0.7813	5.438	94.44
843786	0	.07613 0.3345	0.8902	2.217	27.19
	smoothness_se co	mpactness_se con	cavity_se co	ncave.points_	_se
842302	0.006399	0.04904	0.05373	0.015	587
842517	0.005225	0.01308	0.01860	0.013	340
84300903	0.006150	0.04006	0.03832	0.020)58
84348301	0.009110	0.07458	0.05661	0.018	367
84358402	0.011490	0.02461	0.05688	0.018	385
843786	0.007510	0.03345	0.03672	0.011	137
	symmetry_se frac	tal_dimension_se	radius_wors	t texture_wor	rst
842302	0.03003	0.006193	25.3	8 17.	. 33
842517	0.01389	0.003532	24.9	9 23.	.41
84300903	0.02250	0.004571	23.5	7 25.	. 53
84348301	0.05963	0.009208	14.9	1 26.	. 50
84358402	0.01756	0.005115	22.5	4 16.	. 67
843786	0.02165	0.005082	15.4	7 23.	.75
	perimeter_worst	area_worst smoot	hness_worst	compactness_v	vorst
842302	184.60	2019.0	0.1622	0.	6656
842517	158.80	1956.0	0.1238	0.	1866
84300903	152.50	1709.0	0.1444	0.	4245
84348301	98.87	567.7	0.2098	0.	.8663
84358402	152.20	1575.0	0.1374	0.	2050
843786	103.40	741.6	0.1791	0.	5249
	concavity_worst	concave.points_w	orst symmetr	y_worst	
842302	0.7119	0.	2654	0.4601	
842517	0.2416	0.	1860	0.2750	

```
84300903
                   0.4504
                                         0.2430
                                                         0.3613
84348301
                   0.6869
                                         0.2575
                                                         0.6638
84358402
                   0.4000
                                         0.1625
                                                         0.2364
843786
                   0.5355
                                         0.1741
                                                         0.3985
         fractal_dimension_worst
842302
                          0.11890
842517
                          0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
```

We are saving the diagnosis column for later, as a factor.

```
diagnosis <- as.factor(wisc.df$diagnosis)</pre>
     Q1. How many people are in this data set?
  nrow(wisc.data)
[1] 569
```

Q2. How many of the observations have the malignant diagnosis?

```
table( wisc.df$diagnosis )
```

```
В
     Μ
357 212
  sum(wisc.df$diagnosis == "M")
```

[1] 212

Q3. How many variables/features in the data are suffixed with _mean?

```
x <- colnames(wisc.df)</pre>
length( grep("_mean", x))
```

[1] 10

```
[1] "diagnosis"
                                "radius mean"
[3] "texture_mean"
                                "perimeter_mean"
 [5] "area mean"
                                "smoothness mean"
 [7] "compactness_mean"
                                "concavity_mean"
[9] "concave.points_mean"
                                "symmetry mean"
[11] "fractal_dimension_mean"
                                "radius_se"
[13] "texture se"
                                "perimeter se"
[15] "area_se"
                                "smoothness_se"
[17] "compactness_se"
                                "concavity_se"
[19] "concave.points_se"
                                "symmetry_se"
[21] "fractal_dimension_se"
                                "radius_worst"
[23] "texture_worst"
                                "perimeter_worst"
[25] "area_worst"
                                "smoothness_worst"
[27] "compactness_worst"
                                "concavity_worst"
[29] "concave.points_worst"
                                "symmetry_worst"
[31] "fractal dimension worst"
```

Principal Component Analysis

We need to scale our input data before PCA as some of the columns are measured in terms of very different units with different means and different variances. The upshot here is we set scale=TRUE argument to prcomp().

```
wisc.pr <- prcomp( wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                          PC1
                                 PC2
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                                  PC9
                           PC8
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
Cumulative Proportion
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
```

```
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                         PC28
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Standard deviation
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

0.4427

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

 γ

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

biplot(wisc.pr)

This plot appears to have three-dimensions. It is very difficult to read because it plots each patient ID, which becomes jumbled up in the middle. It is also difficult to tell the values without points.

Generate one of our main result figures - the PC plot (a.k.a. "score plot", "orientation plot", "PC1 vs PC2 plot", "PC plot", "projection plot", etc.) It is known by different names.

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis, pch=16, xlab="PC1", ylab="PC2")
```


And a ggplot version

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

plot(wisc.pr\$x[,1], wisc.pr\$x[,3], col=diagnosis, pch=16, xlab="PC1", ylab="PC3")

This "PC1 vs. PC3" plot appears to have more overlap between the red and black dots. This means that it captures less variance than PC2, as the "PC1 vs. PC2" plot had more defined subgroups.

Calculate the variance of each principal component by squaring the sdev component of wisc.pr using wisc.pr\$sdev^2. Save the result as an object called pr.var.

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Calculate the variance explained by each principal component by dividing by the total variance explained of all principal components. Assign this to a variable called pve and create a plot of variance explained for each principal component.

```
# Variance explained by each principal component: pve
pve <- pr.var / sum(pr.var)

# Plot variance explained for each principal component
plot(pve, xlab = "Principal Component",</pre>
```

```
ylab = "Proportion of Variance Explained",
ylim = c(0, 1), type = "o")
```


Q9. For the first principal component, what is the component of the loading vector wisc.pr\$rotation[,1] for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean", 1]
```

[1] -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
sum(pve[1:5])
```

[1] 0.8473427

5 principal components are needed

Hierarchical clustering

The goal of this section is to do hierarchical clustering of the original data. As part of the preparation for hierarchical clustering, the distance between all pairs of observations are computed. Furthermore, there are different ways to link clusters together, with single, complete, and average being the most common linkage methods.

First scale the wisc.data data and assign the result to data.scaled.

```
data.scaled <- scale(wisc.data)</pre>
```

Calculate the (Euclidean) distances between all pairs of observations in the new scaled dataset and assign the result to data.dist.

```
data.dist <- dist(data.scaled)</pre>
```

Create a hierarchical clustering model using complete linkage. Manually specify the method argument to hclust() and assign the results to wisc.hclust.

```
wisc.hclust <- hclust(data.dist, method = "complete")</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Selecting number of clusters

Use cutree() to cut the tree so that it has 4 clusters. Assign the output to the variable wisc.hclust.clusters.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")
wisc.hclust.clusters <- cutree(wisc.pr.hclust, k=4)</pre>
```

We can use the table() function to compare the cluster membership to the actual diagnoses.

```
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters B M
1 0 111
2 24 68
3 184 32
4 149 1
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
wisc.hclust.clusters4 <- cutree(wisc.pr.hclust, k=4)
table(wisc.hclust.clusters4, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters4 B M
1 0 111
2 24 68
3 184 32
4 149 1
```

As we discussed in our last class videos there are number of different "methods" we can use to combine points during the hierarchical clustering procedure. These include "single", "complete", "average" and (my favorite) "ward.D2".

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

This method minimizes variance within the clusters, making a single group where all points are included at the top of the three. It makes for a much more understandable and visually appealing graph.

K-means clustering

Create a k-means model on wisc.data, assigning the result to wisc.km. Be sure to create 2 clusters, corresponding to the actual number of diagnosis. Also, remember to scale the data (with the scale() function and repeat the algorithm 20 times (by setting setting the value of the nstart argument appropriately). Running multiple times such as this will help to find a well performing model.

```
wisc.km <- kmeans(scale(wisc.data), centers=2, nstart=20)</pre>
```

Use the table() function to compare the cluster membership of the k-means model wisc.km\$cluster to the actual diagnoses contained in the diagnosis vector.

```
table(wisc.km$cluster, diagnosis)
   diagnosis
      В
          М
  1 343 37
  2 14 175
     Q14. How well does k-means separate the two diagnoses? How does it compare to
     your hclust results?
  table(wisc.hclust.clusters, wisc.km$cluster)
wisc.hclust.clusters
                            2
                        1
                        2 109
                    2 17 75
                    3 211
                            5
                    4 150
                            0
```

5. Combining methods

This approach will take not the data but our PCA results and work with them.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Generate 2 cluster groups from this helust object.

```
grps <- cutree(wisc.pr.hclust, k=2)
grps</pre>
```

1 1	4458202 1 4799002 1 851509
1 1 2 1 1 2 1 848406 84862001 849014 8510426 8510653 8510824 8511133 2 1 1 2 2 2 1 852552 852631 852763 852781 852973 853201 853401 1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	1
1 1 2 1 1 2 1 848406 84862001 849014 8510426 8510653 8510824 8511133 2 1 1 2 2 2 1 852552 852631 852763 852781 852973 853201 853401 1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	1
2 1 1 2 2 2 2 1 852552 852631 852763 852781 852973 853201 853401 1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	1 851509
2 1 1 2 2 2 2 1 852552 852631 852763 852781 852973 853201 853401 1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	851509
1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	
1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	1
1 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 1 2 1 2	853612
1 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 1 2 1 2	1
2 1 1 1 2 1 2	855138
2 1 1 1 2 1 2	1
	85715
857155 857156 857343 857373 857374 857392 857438 85	1
001100 001100 001040 001010 001014 001092 001400 00	5759902
2 2 2 2 1 2	2
857637 857793 857810 858477 858970 858981 858986	859196
1 1 2 2 2 2 1	2
85922302 859283 859464 859465 859471 859487 859575	859711

1	1	2	2	1	2	1	1
_	859983				8610637		_
1	2	2	2	2	1	1	2
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
2	1	1	1	2	1	2	1
861597	861598	861648	861799	861853	862009	862028	86208
2	1	2	2	2	2	1	1
86211	862261	862485	862548	862717	862722	862965	862980
2	2	2	1	2	2	2	2
862989	863030	863031	863270	86355	864018	864033	86408
2	1	2	2	1	2	2	2
86409	864292	864496	864685	864726	864729	864877	865128
1	2	2	2	2	1	1	2
865137	86517	865423	865432	865468	86561	866083	866203
2	1	1	2	2	2	2	1
866458	866674	866714	8670	86730502	867387	867739	868202
1	1	2	1	1	2	1	2
868223	868682	868826	868871	868999	869104	869218	869224
2	2	1	2	2	2	2	2
869254	869476	869691	86973701	86973702	869931	871001501	871001502
2	2	1	2	2	2	2	1
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
1	2	2	2	1	2	2	2
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
2	1	1	2	1	2	2	2
8712766	8712853	87139402	87163	87164	871641	871642	872113
1	2	2	2	1	2	2	2
872608	87281702	873357	873586	873592	873593	873701	873843
1	1	2	2	1	1	1	2
873885	874158	874217	874373	874662	874839	874858	875093
2	2	2	2	2	2	1	2
875099	875263	87556202	875878	875938	877159	877486	877500
2	1	1	2	1	1	1	1
877501	877989	878796	87880	87930	879523		
2	1	1	1	2	2	2	2
8810158	8810436	881046502	8810528	8810703	881094802	8810955	8810987
1	2	1	2	1	1	1	1
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
2	2	1	1	2	2	2	1
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202
_		2					
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
2	1	2	2	1	1	2	1

884626	884448	884437	884180	88411702	883852	883539	88350402
1	2	2	1	2	1	2	2
886452	886226	8860702	885429	88518501	884948	884689	88466802
1	1	1	1	2	1	2	2
889403	888570	888264	887549	88725602	887181	886776	88649001
2	1	2	1	1	1	1	1
8910748	8910721	8910720	8910506	8910499	8910251	88995002	889719
2	2	2	2	2	2	1	1
8911834	8911800	8911670	8911230	8911164	8911163	8910996	8910988
2	2	2	2	2	2	2	1
8913	8912909	8912521	8912284	8912280	89122	8912055	8912049
2	2	2	2	1	1	2	1
891923	891716	891703	891670	8915	89143602	89143601	8913049
2	2	2	2	2	1	2	1
892657	89263202	892604	892438	892399	892214	892189	891936
2	1	2	1	2	2	2	2
89382601	893783	893548	893526	89346	89344	893061	89296
2	2	2	2	2	2	2	2
894335	894329	894326	894090	894089	894047	893988	89382602
2	1	1	2	2	2	2	2
895299	89524	89511502	89511501	895100	894855	894618	894604
2	2	2	2	1	2	1	2
89742801	897374	897137	897132	896864	896839	895633	8953902
1	2	2	2	2	1	1	1
898431	89827	898143	89813	89812	897880	897630	897604
1	2	2	1	1	2	1	2
899667	899187	899147	898690	89869	898678	898677	89864002
1	2	2	2	2	2	2	2
901034301	9010333	901028	9010259	9010258	901011	9010018	899987
2	2	2	2	2	2	1	1
9011495	9011494	901088	9010877	9010872	9010598	901041	901034302
2	1	1	2	2	2	2	2
901303	9013005	901288	9012795	9012568	9012315	9012000	9011971
2	2	1	1	2	1	1	1
90251	90250	901836	901549	9013838	9013594	9013579	901315
2	2	2	2	1	2	2	1
903483	90317302	90312	903011	902976	902975	90291	902727
2	2	1	2	2	2	2	2
904357	904302	90401602	90401601	903811	903554	903516	903507
2	2	2	2	2	2	1	1
905190	905189	904971	904969		904689	904647	90439701
2	2	2	2	2	2	2	1
905686	905680	905557	905539	905520	905502	905501	90524101

1	2	2	2	2	2	2	2
905978	90602302						
2	1	2	2	2	1	2	2
907145	907367	907409	90745	90769601	90769602	907914	907915
2		2		2			2
908194	908445	908469	908489	908916	909220	909231	909410
1	1	2	1	2	2	2	2
909411	909445	90944601	909777	9110127	9110720	9110732	9110944
2	1	2	2	1	2	1	2
911150	911157302	9111596	9111805	9111843	911201	911202	9112085
2	1	2	1	2	2	2	2
9112366	9112367	9112594	9112712	911296201	911296202	9113156	911320501
2	2	2	2	1	1	2	2
911320502	9113239	9113455			911366	9113778	9113816
2		2					
911384		911391					911916
2	_				2		1
	91227						
2				2			
913512					914101		
2		2			2		2
914366					91504		
1							
915186		91544001					915664
1					1		
	915940						
1		2					
	91762702						
2					2		2
	918465						
2		2		2			
	919812 2						
_	_	_	_	_	_	_	_
	922576						
2	924342						
	924342						
	925311						
925292					920082		
92751		1	1	1	1	2	1
92751							
2							


```
table(diagnosis)

diagnosis
    B    M
357 212

table(diagnosis, grps)

    grps
diagnosis    1    2
    B    24   333
    M   179   33
```

Note the color swap here as the hclust cluster 1 is mostly "M" and cluster 2 is mostly "B" as we saw from the results of calling table(grps, diagnosis). To match things up we can turn our groups into a factor and reorder the levels so cluster 2 comes first and thus gets the first color (black) and cluster 1 gets the second color (red).

```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"</pre>
```

Plot using our re-ordered factor:

```
plot(wisc.pr$x[,1:2], col=g)
```


We can be fancy and look in 3D with the rgl or plotly packages. Note that this output will not work well with PDF format reports yet so feel free to skip this optional step for your PDF report. If you have difficulty installing the rgl package on mac then you will likely need to install the XQuartz package from here: https://www.xquartz.org. There are also lots of other packages (like plotly) that can make interactive 3D plots.

```
library(rgl)
plot3d(wisc.pr$x[,1:3], xlab="PC 1", ylab="PC 2", zlab="PC 3", cex=1.5, size=1, type="s",
```

Use the distance along the first 7 PCs for clustering.

```
wisc.pr.hclust <- hclust(dist(wisc.pr$x[, 1:7]), method="ward.D2")</pre>
```

Cut this hierarchical clustering model into 2 clusters.

```
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)</pre>
```

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

Using table(), compare the results from your new hierarchical clustering model with the actual diagnoses.

```
table(wisc.pr.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24
```