

Sardar Patel Institute of Technology

/www.mexcens.com/project/5-069dis-10058dis-100dis-

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination

May 2022

Max. Marks: 60

Duration: 120 Mins

Class: B.Tech.

Semester: IV

Course Code: CS205/IT205

Branch: Computer Engineering/IT

Name of the Course: Design and Analysis of Algorithms

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q No.		Max. Marks	CO			
Q.1 (A)	A) Suppose computer A executes one billion instructions per second and computer B executes only ten million instructions per second. On computer A running insertion sort against slower computer B running merge sort. Each Computer is given two million numbers to sort. Computer A is 100 times faster than computer B (c1=4, c2=50). How much time is taken by both the computers? Justify the answer by comparing the time required on both machine.					
Q.1 (B)	Use definition of θ notations, show that $\frac{1}{2}n^2$ -3n = $\theta(n^2)$.	02	CO1			
Q.1 (C)	Write a strassen's matrix multiplication algorithm. Derive it's time complexity? Use Strassen's algorithm to compute the matrix product. $\begin{pmatrix} 1 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 4 & 2 \end{pmatrix}$ OR Prove the master theorem: Let $a \ge 1$ and $b > 1$ be constants, and let $f(n)$ be a nonnegative function defined on exact power of b . Define $T(a)$	10	CO2			
	function defined on exact power of b. Define $T(n)$ on exact power of b by the recurrence $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ aT(n/b) + f(n) & \text{if } n = b^i \end{cases}$					
	where i is a positive integer. Then					
	$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$					

Q.2(A)	Find an optimal parenthesization of matrix-chain product whose sequence of dimensions is (5,10,3,12,5,50,6)								9	CO3
Q.2(B)	Given the jobs, their deadlines and associated profits as given below:-							en 06	6	· CO3
	Jobs	J1	J2	J3	J4	J5	J6			1
	Deadlines	5	3	3	2	4	2			
	Profits	200	180	190	300	120	100			
	Answer the following questions: i) Write the optimal schedule that gives maximum profit. ii) Are all the jobs completed in the optimal schedule? iii) What is the maximum earned profit?									
Q.3(A)	Write a Prim's the complexity the cost of Mi prim's algorithm	of prim	's algori	thms us	ing Gree	edy appr	roach? Fir	nd	8	CO3
Q.3(B)	What is sum-of-subsets problem? Analysis the time complexity of sum-of-subsets problem? Consider the sum-of-subsets problem, n=4, sum=13,w1=3,w2=4,w3=5,w4=6. find a solution to the problem using backtracking, show the state-space tree leading to the solution. Also, number the nodes in the tree in the order of recursion calls.								7	CO4
Q.4(A)	What is the difference between Branch-N-Bound and Backtracking? Explain the travelling saleperson problem using branch and bound. Solve the travelling saleperson problem for the following cost adjacency matrix using least cost Branch-N-Bound Technique. $\begin{bmatrix} \infty & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{bmatrix}$								0	CO4
Q.4 (B)	Construct the P=aabab and T=aaababaaba	illustr					he patter text strir	SAF 0'00'6	5	CO5
	OR									
	Differentiate between NP-hard and NP-complete problems. Give an approximation algorithm for the set covering problem and justify its approximation ratio with example									