Mathématiques

Fiches de cours UTC

Table des matières

T	Ana	alyse dans \mathbb{R} (M190/M191/M112)		1
	1.1	Propriétés de \mathbb{R}	;	3
	1.2	Suites réelles de $\mathbb{N} \to \mathbb{R}$	4	4
	1.3	Fonctions de $\mathbb{R} \to \mathbb{R}$ (généralités)		
	1.4	Dérivation		
	1.5	Théorie de la mesure		
	1.0			
		1.5.1 Généralités		
		1.5.2 Exemples de mesures		
	1.6	Intégration		
		1.6.1 Définitions		*
		1.6.2 Propriétés des intégrales	8	*
		1.6.3 Convergence des intégrales	10	
		1.6.4 Intégrale impropre au sens de Riemann		1
		1.6.5 Intégrale de Riemann-Stieltjes		
		1.6.6 Fonctions définies par une intégrale		
		1.6.7 Introduction au calcul des variations		
	1 7			
	1.7	Séries dans \mathbb{R}		
		1.7.1 Généralités		
		1.7.2 Séries de Taylor		
		1.7.3 Séries de Fourier	13	3
	1.8	Le corps \mathbb{C}	1	j
	1.9	Distributions	10	j
		1.9.1 Fonctions test ou de base : \mathcal{D}	10	ĉ
		1.9.2 Distributions : \mathcal{D}'		
	1 10	Convolution		
	1.10	1.10.1 Convolution de fonctions		
		1.10.2 Convolution de suites		
	1 11	1.10.3 Convolution de distributions et algèbre dans \mathcal{D}'_+	1	
	1.11	Transformées de Fourier		
		1.11.1 Fonctions		
		1.11.2 Distributions		
	1.12	Transformées de Laplace		
		1.12.1 Fonctions	2	1
		1.12.2 Distributions	2	1
2	Ana	$ ext{alyse dans } \mathbb{R}^n \ (ext{MT22})$	2:	
	2.1	Fonction de plusieurs variables $\mathbb{R}^n \to \mathbb{R}$		
		2.1.1 Généralités	25	2
		2.1.2 Dérivation	25	2
		2.1.3 Dérivées directionnelles		3
	2.2	Analyse vectorielle		4
	2.3	Courbes et surfaces		Τ
	2.0	2.3.1 Surfaces		
	0.4			
	2.4	Intégrales dans \mathbb{R}^n		
		2.4.1 Intégrales doubles		
		2.4.2 Intégrales triples		
		2.4.3 Intégrales curvillignes	28	3
		2.4.4 Intégrales surfaciques	29	9
	2.5	Théorèmes intégraux		j
		2.5.1 Théorème de Stokes-Ampères		2
		•		

		2.5.2 Théorème de Gauss-Ostrogradski	30
3	Alg	ebre linéaire (MT23)	31
	3.1	Espaces vectoriels	31
	3.2	Applications linéaires et matrices	
		3.2.1 Applications linéaires	33
		3.2.2 Matrices	
	3.3	Déterminants et systèmes linéaires	
		3.3.1 Déterminants	
		3.3.2 Systèmes linéaires $Ax = b$	
	3.4	Valeurs propres et diagonalisation	
	0.1	3.4.1 Valeurs propres	38
		3.4.2 Diagonalisation	
		3.4.3 Trigonalisation	39
	2.5	TT TT TT	
	3.5	Espaces Euclidiens	
		3.5.1 Généralités	
		3.5.2 Matrices orthogonales	
		3.5.3 Matrices symétriques	
		3.5.4 Formes quadratiques	41
4	Sah	emas numériques (MT09)	42
4	4.1	Systèmes linéaires	42
	4.1	Problèmes de moindres carrées	
	4.3	Méthodes itératives	
		4.3.1 Méthodes de Newton (équation et systèmes non-linéaire)	
		4.3.2 Résolution de systèmes linéaires	
	4.4	Interpolation	
	4.5	Intégration numérique	
	4.6	Équations différentielles	
	4.7	Valeurs propres	49
5	E	nulaires	50
3	5.1	Équations différentielles	
	5.1		
		5.1.1 Équation d'ordre 1	
		5.1.2 Équation d'ordre 2 (à coéfficient constant)	
	5.2	Trigonométrie	51
		$5.2.1\cos,\sin,\tan\dots$	
		$5.2.2~{\rm sh}$, ch $~\dots$	
	5.3	Normes, produit scalaire	
		5.3.1 En dimension finie	
		5.3.2 En dimension infinie	
		5.3.3 Convergence	52

Chapitre 1

Analyse dans \mathbb{R} (MT90/MT91/MT12)

1.1 Propriétés de \mathbb{R}

Structure : $(\mathbb{R}, +, .)$ est un corps ordonné

Formule du binôme :

$$(x+y)^n = \sum_{k=0}^n \binom{k}{n} x^k y^{(n-k)} \text{ avec } \binom{k}{n} = \frac{n!}{k!(n-k)!}, \forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}$$

Produit scalaire (\mathbb{R}) : $\langle x, y \rangle = xy, \forall x, y \in \mathbb{R}$

Norme (
$$\mathbb{R}$$
) (Valeur absolue) : $\mathbb{R} \to \mathbb{R}_+, x \mapsto |x| = \begin{cases} x, & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$

Positivité : |x| > 0 et $|x| = 0 \Leftrightarrow x = 0$

Homothétie : |ax| = |a||x|

Inégalité triangulaire : $|x+y| \le |x| + |y|$

Convergence : $f(x) \to l \Leftrightarrow |f(x) - l| \to 0, x \to \pm \infty$

Intervalles: I est un intervalle si $\forall a, b \in I, a < c < b \Rightarrow c \in I$

$$\begin{cases} [a,b] &= \{x \in \mathbb{R}; a \le x \le b\} \\ c \in [a,b] &\Leftrightarrow \exists \theta \in [0,1], \theta a + (1-\theta)b \end{cases}$$

Densité de $\mathbb Q$:

$$\forall |a,b| \neq \emptyset, \ \exists a \in \mathbb{Q} \cap [a,b] \ \text{et} \ \exists b \in (\mathbb{R} - \mathbb{Q}) \cap [a,b]$$

Ensembles bornées : Soit $A \subset \mathbb{R}$

$$\label{eq:majoration} \begin{split} \mathbf{Majoration} \ : \forall x \in A, x \leq M \\ \mathbf{Minoration} \ : \forall x \in A, x \geq m \\ \mathbf{Encadrement} \ : \forall x \in \mathbb{R}, |x| < M \end{split}$$

Borne supérieur : Plus petit des majorants (s'ils existent)

$$s = \sup A \Leftrightarrow \begin{cases} \forall x \in A, x \leq s \\ \forall t < s, \exists x \in A \text{ tel que } t < x \end{cases}$$

Droite numérique achevée : $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$

1.2 Suites réelles de $\mathbb{N} \to \mathbb{R}$

Définition : $u : \mathbb{N} \to \mathbb{R}, n \mapsto u_n$

Convergence:

$$(U_n) \to l, n \to \infty \Leftrightarrow (\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que } \forall n \in \mathbb{N}, n > n_0 \Rightarrow |u_n - l| < \varepsilon)$$

Limite infinie:

$$(U_n) \to +\infty, n \to \infty \Leftrightarrow (\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que } \forall n \in \mathbb{N}, n > n_0 \Rightarrow u_n > \varepsilon)$$

Convergences connues:

$$\lim_{n\to\infty}\frac{k^n}{n!}=0\,;\;\lim_{n\to\infty}\frac{n^\alpha}{k^n}=0\,;\;\lim_{n\to\infty}\frac{(\ln n)^\beta}{n^\alpha}=0$$

Propriétés de convergence : Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ avec $u_n\to l$ et $v_n\to l'$ quand $n\to\infty$

Combinaison : $u_n + \lambda v_n \to l + \lambda l'$ quand $n \to \infty$

Produit: $u_n v_n \to ll'$ quand $n \to \infty$

Rapport: Si $l' \neq 0$, $u_n/v_n \rightarrow l/l'$ quand $n \rightarrow \infty$

Vers zéro : Si $u_n \to 0$ et v_n bornée alors $u_n v_n \to 0$ quand $n \to \infty$

Ordre : Si $u_n \leq v_n$ alors $\lim_{n \to \infty} u_n \leq \lim_{n \to \infty} v_n$

Suites adjacentes : (u_n) et (v_n) sont dites adjacentes si

$$(u_n)$$
 est croissante; (v_n) est décroissate; $\lim_{n\to\infty}(v_n-u_n)=0$

Suite arithmétique:

$$u_{n+1} = u_n + r$$
; $u_n = u_0 + nr$; $\sum_{k=0}^{n-1} u_k = n \frac{u_0 + u_{n-1}}{2}$

Suite géométrique:

$$u_{n+1} = qu_n$$
; $u_n = u_0 q^n$; $\sum_{k=0}^{n-1} u_k = u_0 \frac{1-q^n}{1-q}$

Suite récurrente : $u_{n+1} = f(u_n)$

Si $\exists l \in \mathbb{R}, f(l) = l$ et f est contractante ((k < 1)-Lipschitzienne) avec 0 < k < 1 alors $(u_n) \to l$

1.3 Fonctions de $\mathbb{R} \to \mathbb{R}$ (généralités)

 $\textbf{D\'efinition}\,: f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x)$

Image : $f(A) = \{f(x); x \in A\}$

Image réciproque : $f^{-1}(B) = \{x \in D_f; f(x) \in B\}$ Support d'une fonction : supp $\varphi = \overline{\{x : \varphi(x) \neq 0\}}$

Correspondances : Pour $f: E \to F$

Surjection: $\forall x, x' \in E, f(x) = f(x') \Rightarrow x = x'$

Injection: $\forall y \in F, \exists E \text{ tel que } y = f(x)$

Bijection: $\forall y \in F, \exists ! E \text{ tel que } y = f(x) \text{ (} f \text{ injective et surjective)}$

Composée de fonction : $(f \circ g)(x) = f(g(x))$

Bijection réciproque : Si f bijective, alors $\exists f^{-1}$ tel que $f \circ f^{-1}(x) = f^{-1} \circ f(x) = x$

Convergence : $f(x) \rightarrow l, x \rightarrow a$

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \Omega, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Limite à doite :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \Omega, a < x < a + \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Caractérisation de la limite (avec les suites) :

$$\lim_{x \to a} f(x) = l \Leftrightarrow \left(\forall (x_n)_{n \in \mathbb{N}} \begin{cases} \lim_{n \to \infty} x_n = a \\ \forall n \in \mathbb{N}, x_n \in \Omega - \{a\} \end{cases} \Rightarrow \lim_{n \to \infty} f(x_n) = l \right)$$

Continuité : $\lim_{x\to a} f(x) = f(a)$

Théorème des valeurs intermédiaires (TVI) : Soit $f \in C^0([a,b])$ et $y \in \mathbb{R}$

$$f(a) < y < f(b) \Rightarrow \exists x \in [a, b], f(x) = y$$

Condition de Lipschitz:

$$\exists k \in \mathbb{R}, \forall x, y \in \mathbb{R}, |f(x) - f(y)| < k|x - y|$$

1.4 Dérivation

Fonction dérivable : f est dérivable si et seulement si

$$\exists d \in \mathbb{R}, \text{ tel que } f(x+h) = f(x) + hd + |h|\epsilon(h)$$

Taux de variation:

$$f'(x) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Théorème de Rolle : Soit $f \in C^0([a,b])$

$$f(a) = f(b) \Rightarrow \exists c \in [a, b] \text{ tel que } f'(c) = 0$$

Théorème des accroissements finis : Soit $f \in C^0([a,b])$

$$\exists c \in [a,b] \text{ tel que } f'(c) = \frac{f(b) - f(a)}{b-a}$$

Formule de Leibniz:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{k}{n} f^{(k)} g^{(n-k)}$$

Opérations:

$$(f+\lambda g)'=f'+\lambda g', \lambda\in\mathbb{R}\,;\;\left(\frac{f}{q}\right)'=\frac{f'g-fg'}{q^2}\,;\;(f\circ g)'=g'\times f'(g)$$

Dérivée d'une fonction réciproque :

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$

Dérivées connues :

$$(x^q)' = qx^{q-1}, q \in \mathbb{Z}; \ (e^x)' = e^x; \ (\ln|x|)' = \frac{1}{x}; \ (\cos x)' = -\sin x; \ (\sin x)' = \cos x; \ (\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

Saut d'une fonction:

$$\sigma_m = f^{(m)}(0^+) - f^{(m)}(0^-), m \ge 0$$

1.5 Théorie de la mesure

1.5.1 Généralités

Fonction indicatrice (ou caractéristique) : $1_A(x) = \begin{cases} 1 \text{ si } x \in A \\ 0 \text{ si } x \notin A \end{cases}$

 $\sigma\text{-algèbre} \ \, \text{(tribu)}$: Une famille A de sous-ensemble de X est une tribu si :

- 1. $X \in A$
- 2. A est stable par complémentarité
- 3. A est stable par union dénombrable

Espace mesurable: Ensemble muni d'une tribu (X, A)

Tribu borélienne : Plus petite tribu de $\mathbb R$ contenant tous les intervalles

Mesure: Une mesure μ sur (X, A) est une application de $A \to [0, \infty]$ telle que

- 1. $\mu(\emptyset) = 0$
- 2. Si $(A_n)_{n\geq 1}$ est une suite dénombrable de A deux à deux disjointes alors : $\mu(\cup_{n\geq 1}A_n)=\sum_{n\geq 1}\mu(A_n)$ $(\sigma$ -additivité)

Espace mesuré : Le triplet (X, A, μ) est appelé un espace mesuré

Propositions : Soit \bar{x} une tribu de X

- 1. Si $A, B \in \bar{x}$ et $A \subset B$ alors $\mu(A) \leq \mu(B)$
- 2. Si $A_1 \subset A_2 \subset ... \subset A_n \subset ...$, $A_k \in \bar{x}$ alors $\lim_{n \to \infty} A_n = \bigcup_n A_n$ et $\mu(\bigcup_n A_n) = \lim_{n \to \infty} \mu(A_n)$
- 3. Si $A, B \in \bar{x}$ alors $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$

Ensemble négligeable : A est dit négligeable si $\mu(A) = 0$

Proposition vraie presque partout (pp) : Une proposition est dite vraie (μ -)presque partout sur X si elle est vrai sur $X \setminus E$ avec $\mu(E) = 0$

Ensemble de mesure nulle : Un sous-ensemble de A de \mathbb{R} est dit de mesure nulle si pour tout $\varepsilon > 0$, il existe une suite d'intervalles ouverts et bornés (I_n) telle que :

- 1. $A \subset \cup_{i>1} I_i$
- 2. $\sum_{i>1} |I_i| < \varepsilon$

Propositions:

- 1. Tout ensemble dénombrable est de mesure nulle
- 2. Si A est de mesure nulle et $B \subset A$, alors B est de mesure nulle
- 3. Si $A \cup_{n \geq 1} A_n$ avec chaque A_n de mesure nulle, alors A est de mesure nulle

Fonction mesurable : $f(X, \bar{x}) \to (\mathbb{R}, B)$ est mesurable si $f^{-1}(B) \subset \bar{x}$

1.5.2 Exemples de mesures

Mesure de Lebesgue : Il existe une unique mesure λ sur $(\mathbb{R}, B(\mathbb{R}))$ telle que $\forall I = [a, b]$ borné, $\lambda([a, b]) = \lambda([a, b]) = b - a$

7

Mesure de Dirac : $\delta_a : T \to 0, 1$ avec T une tribu et $\delta_a(A) = \begin{cases} 1 & \text{si } a \in A \\ 0 & \text{si } a \notin A \end{cases}$

Mesure de comptage (cardinal) : Pour un ensemble dénombrable de \mathbb{R} , $\forall n, \mu(\{n\}) = 1$

1.6 Intégration

1.6.1 Définitions

Fonction en escalier : Fonctions constantes sur des intervalles

Intégrale selon Riemann : Soit

$$f = \sum_{i=1}^{n} \alpha_i 1_{I_i}$$

une fonction en escalier, on définit l'intégrale de f par

$$I(f) = \int_a^b f(t)dt = \sum \alpha_i (x_{i+1} - x_i)$$

Pour une fonction quelconque, s'il existe, pour tout $\varepsilon > 0$, deux fonctions en escalier f_{ε} et F_{ε} telle que $f_{\varepsilon} \leq f \leq F_{\varepsilon}$ et $I(f_{\varepsilon}) - I(f_{\varepsilon}) < \varepsilon$, alors f est dite Riemann-intégrable et on a :

$$\int_a^b f(x)dx = \sup\{I(g), \text{ avec } g \text{ fonction en escalier, telle que } g \leq f\}$$

Fonction étagée : Fonction dont l'image est constituée d'un nombre fini de valeurs réelles

Théorème : Toute fonction à valeur dans \mathbb{R}^n est limite de fonctions étagées

Intégrale selon Lebesgue : Soit

$$f = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

une fonction étagée, on définit l'intégrale de f par rapport à la mesure μ par

$$\int_{X} f d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i})$$

et pour $E \subset X$,

$$\int_{E} f d\mu = \int_{X} f 1_{E} d\mu$$

Pour f une fonction positive,

$$\int_{Y} f d\mu = \sup \left\{ \int s d\mu, s \text{ étagée telle que } s \leq f \right\}$$

Enfin pour une fonction quelconque, on définit : $f^+ = \max(0, f)$ et $f^- = \max(0, -f)$ de sorte que :

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

1.6.2 Propriétés des intégrales

Lien Riemann-Lebesgue : Si f est Riemann-Intégrable, alors f est Lebesgue-intégrable Ensemble de fonctions intégrables (au sens de Lebesgue) :

$$L^p(A) = \left\{ f : \mathbb{R} \to \mathbb{R} ; \int_A |f|^p < \infty \right\}$$

Fonctions localement intégrables : $f: \mathbb{R} \to \mathbb{R}$ Lebesgue-intégrable sur tout intervalle borné $(L^1 \subset L^1_{loc})$ Intégration et dérivation :

$$f(x) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt$$

Egalité d'intégrales:

$$f \stackrel{pp}{=} g \Leftrightarrow \int f(x)dx = \int g(x)dx$$

Linéarité:

$$\int (f(x) + \lambda g(x))dx = \int f(x)dx + \lambda \int g(x)dx$$

Relation de Chasles : Qui implique aussi $\int_a^b f(x) dx = - \int_b^a f(x) dx$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Relation d'ordre:

$$f \le g \Rightarrow \int f(x)dx \le \int g(x)dx$$

Fonctions périodiques : Si f est T-périodique alors

$$\int_0^T f(x)dx = \int_c^{c+T} f(x)dx$$

Inégalité triangulaire :

$$\left| \int f(x) dx \right| \le \int |f(x)| dx$$

Cauchy-Schwartz:

$$\left| \int f(x)g(x)dx \right| \leq \sqrt{\int f^2(x)dx \times \int g^2(x)dx}$$

Inéaglité de Holder:

$$\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow \int f(x)g(x)dx \le \left(\int |f(x)|^p dx\right)^{\frac{1}{p}} \left(\int |f(x)|^q dx\right)^{\frac{1}{q}}$$

Théorème de la moyenne :

$$\forall x \in [a, b], m \le f \le M \Rightarrow m \le \frac{1}{b - a} \int_a^b f(x) dx \le M$$

Inégalité de la moyenne :

$$\left| \int_a^b f(x)g(x)dx \right| \leq \sup_{x \in [a,b]} |f(x)| \times \int_a^b |g(x)|dx$$

Intégrale sur un ensemble négligable : Soit μ une mesure alors

$$\mu(E) = 0 \Rightarrow \int_E f d\mu = 0$$

Théorème fondamental:

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt$$

Intégration par partie (IPP):

$$\int_a^b u'(t)v(t)dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)dt$$

Changement de variable:

$$\int_{\alpha}^{\beta} f(x)dx \stackrel{x=u(t)}{=} \int_{u^{-1}(a)}^{u^{-1}(b)} f(u(t))u'(t)dt$$

Propositions sur l'intégrabilité :

f monotone $\Rightarrow f$ Riemann-intégrable

f continue $\Rightarrow f$ Riemann-intégrable

f pp-continue et bornée $\Rightarrow f$ Riemann-intégrable

f pp-continue $\Rightarrow f$ Lebesgue-intégrable

|f| < g, g Lebesgue-intégrable $\Rightarrow f$ Lebesgue-intégrable

fLebesgue-intégrable $\Leftrightarrow |f|$ Lebesgue-intégrable

1.6.3 Convergence des intégrales

Convergence (Riemann):

$$f_n \stackrel{unif}{\to} f \Rightarrow \int_a^x f_n(t)dt \stackrel{unif}{\to} \int_a^x f(t)dt$$

Théorème de convergence monotone (Beppo-Levi) :

$$\begin{cases} (f_n) \text{ suite croissante de fonctions} \\ f_n \to f, n \to \infty \end{cases} \Rightarrow \int f_n \to \int f, n \to \infty$$

Théorème de convergence dominée

$$\begin{cases} f_n \stackrel{pp}{\to} f \\ |f_n| < g, g \in L^1 \end{cases} \Rightarrow \int f_n \to \int f \left(\text{Et même } \int |f_n - f| \to 0 \right)$$

Inversion somme-integrale:

$$(u_n)$$
 suite de fonction positive $\Rightarrow \int \sum_{n=0}^{\infty} u_n(x) d\mu = \sum_{n=0}^{\infty} \int u_n(x) d\mu$

Théorème de Fubini:

$$f \in L^1 \Rightarrow \iint f(x,y) dx dy = \int \left(\int f(x,y) dy \right) dx$$

Théorème de Fubini-Tonnelle

$$f \ge 0 \Rightarrow \iint f(x,y) dx dy = \int \left(\int f(x,y) dy \right) dx$$

1.6.4 Intégrale impropre au sens de Riemann

Définition : intégrale de fonction discontinue, intégrale sur un intervalle non bornée, etc.

Intégrales Riemann-impropre de références :

$$\int_0^1 \frac{dt}{t^{\alpha}} \text{ converge si } \alpha < 1; \int_1^{\infty} \frac{dt}{t^{\alpha}} \text{ converge si } \alpha > 1; \int_0^1 \ln t dt = -1$$

R-impropre et Lebesgue : Si f est Riemann-intégrable au sens impropre et de signe constant alors f est Lebesgue-intégrable

1.6.5 Intégrale de Riemann-Stieltjes

Définition: Si α est une fonction croissante, alors elle définit une mesure. On appelle intégrale de Riemann-Stieltjes l'intégrale par rapport à cette mesure : $\int f(x)d\alpha(x)$ et on a :

$$\alpha([a,b]) = \alpha(b^+) - \alpha(a^-)$$

$$\alpha([a,b[) = \alpha(b^-) - \alpha(a^-)$$

$$\alpha(]a,b[) = \alpha(b^-) - \alpha(a^+)$$

$$\alpha(]a,b[) = \alpha(b^+) - \alpha(a^+)$$

Calcul:

$$\int f(x)d\alpha(x) = \int f(x)\alpha'(x)dx$$

1.6.6 Fonctions définies par une intégrale

Définition: Soit $f:(x,t)\mapsto f(x,t)$ alors si f est continue en t pour presque-tout x et $|f(t,x)|\leq g(x), g\in L^1$ alors la fonction suivante est défini et est continue

$$F(t) = \int f(t, x) dx$$

Dérivabilité : Si $\frac{\partial f}{\partial t}(x,t)$ existe et est continue et $\left|\frac{\partial f}{\partial t}(x,t)\right| < g(x), g \in L^1$ alors F est dérivable et

$$\frac{dF}{dt}(t) = \int \frac{\partial f}{\partial t}(t, x) dx$$

Formule:

$$\begin{split} F(t) &= \int_{[u(t),v(t)]} f(x,t) dx \\ \frac{dF}{dt}(t) &= f(t,v(t)) \frac{dv(t)}{dt} + f(t,u(t)) \frac{du(t)}{dt} + \int_{[u(t),v(t)]} \frac{\partial f}{\partial t}(t,x) dx \end{split}$$

1.6.7 Introduction au calcul des variations

Problème de variation : Trouver u tel que

$$\min_{u \in K} J(u) \text{ avec } J(u) = \int_{\alpha}^{\beta} \varphi(u, \dot{u}, t) dt$$

Équation d'Euler-Lagrange : u est solution du problème de variation alors

$$\frac{\partial}{\partial u}\varphi(u,\dot{u},t) - \frac{d}{dt} \left[\frac{\partial}{\partial \dot{u}}\varphi(u,\dot{u},t) \right] = 0$$

Intégrale première d'Euler-Lagrange (si $\varphi(u,\dot{u},t)=\varphi(u,\dot{u})$) :

$$\varphi(u,\dot{u}) = \left[\frac{\partial}{\partial \dot{u}}\varphi(u,\dot{u})\right]\dot{u} + k, k \in \mathbb{R}$$

Conditions aux limites:

— Deux extrémités fixes : $u(\alpha) = a$ et $u(\beta) = b$

— Une extrémité libre : $u(\alpha)=a$ et $\frac{\partial}{\partial \dot{u}} \varphi(u(\beta),\dot{u}(\beta),\beta)=0$

— Deux extrémités libres : $\frac{\partial}{\partial \dot{u}}\varphi(u(\alpha),\dot{u}(\alpha),\alpha)=0 \text{ et } \frac{\partial}{\partial \dot{u}}\varphi(u(\beta),\dot{u}(\beta),\beta)=0$

1.7 Séries dans \mathbb{R}

1.7.1 Généralités

Condition nécessaire de convergence :

$$\sum_{n\geq 0} u_n \text{ converge} \Rightarrow u_n \to 0$$

Espace vectoriel : L'espace des séries convergentes est un espace vectoriel Critère de Cauchy :

$$\sum u_n \text{ converge} \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N, \forall p \in \mathbb{N}, \left| \sum_{k=n+1}^{n+p} u_k \right| < \varepsilon$$

Règle de Riemann : Si $\forall n \in \mathbb{N}, u_n > 0$ et $n^{\alpha}u_n$ majoré avec $\alpha > 1$ alors $\sum u_n$ converge **Règle de d'Alembert** : Si $\forall n \in \mathbb{N}, u_n > 0$ et $\frac{u_{n+1}}{u_n} \to l$ avec l < 1 alors $\sum u_n$ converge **Séries géométriques** :

$$\sum_{n>0} aq^n = a \frac{1}{1-q}$$

Séries de Riemann:

$$\sum_{n\geq 1} \frac{1}{n^{\alpha}} \text{ CV } \Leftrightarrow \alpha > 1$$

Série exponentielle:

$$\sum_{n\geq 0} \frac{z^n}{n!} = e^z, z \in \mathbb{C}$$

1.7.2 Séries de Taylor

Formule générale:

$$f(x) = \sum_{n>0} f^{(n)}(x_0) \frac{(x-x_0)^n}{n!}$$

Formule de Taylor-Lagrange :

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + \frac{f^{(n+1)}(x_0 + \theta h)}{(n+1)!} h^{n+1}, \theta \in [0, 1]$$

Formule de Taylor-Young:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + h^n \epsilon(h), h \to 0, h \to 0$$

Séries connues :

$$(1+x)^{\alpha} = 1 + \alpha \frac{x}{1!} + \dots + \alpha(\alpha - 1)\dots(\alpha - n - 1)\frac{x^n}{n!} + o(x^n)$$

$$e^x = 1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\cos x = 1 - \frac{x^2}{2!} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + o(x^{2p+1})$$

$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^{p-1} \frac{x^{2p-1}}{(2p-1)!} + o(x^{2p})$$

$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^6)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

Infiniment petit : f est un infiniment petit au voisinage de a si $\lim_{x\to a} f(x) = 0$ Infiniment grand : f est un infiniment grand au voisinage de a si $\lim_{x\to a} |f(x)| = +\infty$ Ordre d'un infiniment petit : f et g sont dit de même ordre si $\lim_{x\to a} \frac{f(x)}{g(x)} \in \mathbb{R}^*$

f est dite d'ordre p si f et $(x-a)^p$ sont de même ordre

Equivalence:

$$f \sim g \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Développements limités : f admet un DL à l'ordre n au voisinage de a si

$$\exists \alpha_0, \alpha_1, ..., \alpha_n \in \mathbb{R}$$
 tel que $f(a+h) = \alpha_0 + \alpha_1 h + ... + \alpha_n h^n + h^n \epsilon(n), \epsilon(h) \to 0, h \to 0$

fadmet un DL à l'ordre n au voisinage de $+\infty$ si

$$\exists \alpha_0, \alpha_1, ..., \alpha_n \in \mathbb{R} \text{ tel que } f(x) = \alpha_0 + \frac{\alpha_1}{x} + ... + \frac{\alpha_n}{x^n} + \frac{1}{x^n} \epsilon \left(\frac{1}{x}\right)$$

Le DL d'une fonction paire (resp. impaire) ne contient que des termes de puissances paire (resp. impaire).

Opérations sur les DL : Soient f et g avec $\begin{cases} f(a+h) = P(h) + h^n \epsilon_1(h) \\ g(a+h) = Q(h) + h^n \epsilon_2(h) \end{cases}$

Combinaison : $-f + \lambda g = P(h) + \lambda Q(h) + h^n \epsilon(h)$

Produit : $fg = P(h)Q(h) + h^n \epsilon(h)$, tronqué à l'ordre n

Quotient : $\frac{f}{g}$ = quotient de P(h) par Q(h) suivant les puissances croissantes

Primitivisation : Si F' = f avec $f(a+h) = \sum_{i=1}^{n} \alpha_i h^i + h^n \epsilon(h)$ alors $F(a+h) = \sum_{i=1}^{n} \alpha_i \frac{h^{i+1}}{i+1} + h^{n+1} \epsilon(h)$

Etude locale d'une courbe : Soit x_0 tel que $f'(x_0) = 0$

 $f''(x_0) > 0$ alors la courbe est au dessus de la tangente et x_0 réalise un minimum locale

 $f''(x_0) < 0$ alors la courbe est en dessous de la tangente et x_0 réalise un maximum locale

 $f''(x_0) = 0$ alors x_0 est un point d'inflexion

1.7.3 Séries de Fourier

Dans la base $(e^{in\omega x})_{n\in\mathbb{Z}}$

Série de Fourier : $(e^{in\omega x})_{n\in\mathbb{Z}}$ avec $\omega=\frac{2\pi}{T}$ est une base de l'espace des fonctions T-périodiques, alors pour tout f, fonction T-périodique, on a

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{in\omega x}$$
 avec $c_n = (f|e^{in\omega x}) = \frac{1}{T} \int f(x)e^{-in\omega x} dx$

Egalité de Parsseval : (égalité de la norme)

$$||f||_2^2 = \sum_{n \in \mathbb{Z}} |c_n|^2$$

Dans la base $(\cos(n\omega x), \sin(n\omega x))_{n\in\mathbb{N}}$

Série de Fourier : Soit f une fonction T-périodique, on a

$$f(x) = a_0 + \sum_{n \ge 1} (a_n \cos n\omega x + b_n \sin n\omega x)$$

$$a_0 = \frac{1}{T} \int_0^T f(x) dx$$
; $a_n = \frac{1}{T} \int_0^T f(x) \cos n\omega x dx$; $b_n = \frac{1}{T} \int_0^T f(x) \sin n\omega x dx$

Egalité de Parseval:

$$||f||_2^2 = a_0^2 + \frac{1}{2} \sum_{n>1} (a_n^2 + b_n^2)$$

Autres

Lien entre les coeficients :
$$\begin{cases} a_0 = c_0 \\ a_n = c_n + c_{-n} \\ b_n = i(c_n - c_{-n}) \end{cases} \text{ et } \begin{cases} c_0 = a_0 \\ c_n = \frac{a_n - ib_n}{2} \\ c_{-n} = \frac{a_n + ib_n}{2} \end{cases}$$

Convergence:

$$f \in L^2(0,T), f(x) = \sum_{n \in \mathbb{Z}} c_n(f)e^{in\omega x}$$

$$f \in L^1(0,T), c_n(f) \to 0, n \to \infty$$

Théorème de Dirichlet (convergence ponctuelle) :

$$f \in C^1 \Rightarrow SF(f)(x_0) \stackrel{unif}{\to} f(x_0)$$
$$f \in CM^1 \Rightarrow SF(f)(x_0) \to \frac{f(x_0^+) + f(x_0^-)}{2}$$

Série de Fourier d'une distribution

Définition:

$$T = \sum_{n \in \mathbb{Z}} c_n e^{in\omega x}$$
 avec $c_n = \frac{1}{a} < T, e^{-in\omega s} >$

Convergence : La série de Fourier d'une distribution converge vers la distribution (au sens des distributions) Convergence d'une série trigonométrique dans \mathcal{D}' :

$$\sum c_n e^{in\omega s}$$
 converge dans $\mathcal{D}' \Leftrightarrow |c_n| \leq A |n|^p$ (suite à croissance lente)

1.8 Le corps \mathbb{C}

Définiton:

$$\mathbb{C} = \{ a + ib \mid a, b \in \mathbb{R} \text{ et } i^2 = -1 \}$$

Partie réelle et imaginaire :

$$Re(a+ib) = a \text{ et } Im(a+ib) = b$$

Module et argument :

$$|z| = \sqrt{a^2 + b^2}$$
 et $\arg z = \tan \frac{b}{a}$

Ecritures d'un nombre complexe : $\forall z \in \mathbb{C}, \exists a, b, r, \theta \in \mathbb{R}$ tel que

$$z = a + ib = re^{i\theta} = r(\cos\theta + i\sin\theta)$$
 avec $r = |z|$ et $\theta = \arg z$

Conjugaison : Soit z = a + ib alors $\bar{z} = a - ib$ et

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2; \ \overline{z_1 z_2} = \overline{z}_1 \overline{z}_2; \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}; \ \overline{\overline{z}} = z$$

$$z + \bar{z} = 2 \times Re(z)$$
; $z - \bar{z} = 2i \times Im(z)$

Calcul sur les modules :

$$z\bar{z} = |z|^2$$
; $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$; $|z_1||z_2| = |z_1z_2|$; $|z| = |\bar{z}|$

Calcul sur les arguments :

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)[2\pi]; \arg\left(\frac{1}{z}\right) = -\arg(z)$$

Formule de Moivre:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Formules d'Euler:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
; $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

Théorème de D'Alembert-Gauss : Toute équation algébrique de $\mathbb C$ admet au moins une solution dans $\mathbb C$ Racine n-ième :

tachie n-reme . $z^n = lpha \Leftrightarrow \left\{ |z| = |lpha|^{rac{1}{n}}
ight.$

$$z^n = \alpha \Leftrightarrow \begin{cases} |z| = |\alpha|^{\frac{1}{n}} \\ \arg z = \frac{\arg \alpha}{n} + \frac{2k\pi}{n}, k \in [0, n-1] \end{cases}$$

Racine complexe d'une équation du second degré : $az^2 + bz + c = 0$

$$\delta^2 = b^2 - 4ac$$
 alors $z = \frac{-b \pm \delta}{2a}$

Polynomes premiers : Les seuls polynômes premier de $\mathbb{C}[X]$ sont les polynomes constants, ceux de degré 1 et ceux de degré 2 qui n'ont pas de racine réelles

Multiplicité d'une racine : Soit P un polynôme de $\mathbb{C}[X]$

$$r$$
 de multiplicité m $\Leftrightarrow P(r) = P'(r) = \ldots = P^{(m-1)}(r) = 0$ et $P^{(m)}(r) \neq 0$

Partie entière d'une fraction rationnelle : Soit $F = P/Q \in \mathbb{C}(X)$ on peut décomposer F de façon unique tel que $F = E + \frac{P_0}{Q}$ avec, ou $P_0 = 0$ ou $deg(P_0) < deg(Q)$

Décomposition en élément simple dans $\mathbb{C}(X)$: Soit F = P/Q

Objectif : écrire F sous la forme $F=P^*+S$ où P^* est un polynôme et S une somme d'éléments simples :

Si deg(P) < deg(Q) alors $P^* = 0$

Sinon effectuer la division euclidienne

Décomposer Q en produit de facteur premier

Règles de décomposition dont les constantes a, b, c, d, ... sont à déterminer :

$$\frac{N(x)}{(x-1)(x-2)} = \frac{a}{x-1} + \frac{b}{x-2}$$

$$\frac{N(x)}{(x-1)^3(x-2)^2} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{(x-1)^3} + \frac{d}{x-2} + \frac{e}{(x-2)^2}$$

$$\frac{N(x)}{(x-1)(x^2+1)} = \frac{a}{x-1} + \frac{bx+c}{x^2+1}$$

1.9 Distributions

1.9.1 Fonctions test ou de base : \mathcal{D}

Définition : $\varphi : \mathbb{R} \to \mathbb{C}$ est dite fonction test si elle est à support borné et $\varphi \in C^{\infty}$

Exemple : $\varphi(x) = \begin{cases} exp(-\frac{1}{1-x^2}) \text{ si } |x| < 1 \\ 0 \text{ sinon} \end{cases}$

Propriétés de \mathcal{D} :

- 1. \mathcal{D} est un espace vectoriel (car supp $(\varphi + \psi) \subset \text{supp } (\varphi) \cup \text{supp } (\psi)$)
- 2. $\varphi, \psi \in D \Rightarrow \varphi \psi \in \mathcal{D} \text{ (car supp } (\varphi \psi) \subset \text{supp } (\varphi) \cap \text{supp } (\psi))$
- 3. $\varphi \in \mathcal{D}$ et $f \in L^1 \Rightarrow \psi(x) = \varphi * f(x) \in \mathcal{D}$
- 4. \mathcal{D} ne peut pas être muni d'une norme de sorte qu'il soit complet (c-a-d où toute suite convergente est de Cauchy)

Proposition : $f \in C_k^0$ peut-être approchée par une fonction test $\varphi \in \mathcal{D}$ uniformement

Convergence dans \mathcal{D} :

$$\varphi_n \overset{\mathcal{D}}{\to} \varphi \Leftrightarrow \begin{cases} \sup \varphi_n \subset K = [a, b], \forall n \geq 1 \\ \varphi_n^{(k)} \overset{unif}{\to} \varphi^{(k)} \end{cases}$$

Proposition : $f \in L^1_{loc}$ et $\forall \varphi \in \mathcal{D}$ on a $\int f \varphi = 0 \Rightarrow f \stackrel{pp}{=} 0$

1.9.2 Distributions : \mathcal{D}'

Définition: $T \in \mathcal{D}' \Leftrightarrow T : \mathcal{D} \to \mathbb{R}, \varphi \mapsto T(\varphi) \stackrel{notation}{=} \langle T, \varphi \rangle$ tel que T soit

- 1. Linéaire : $< T, \varphi + \psi > = < T, \varphi > + < T, \psi >$
- 2. Continue : $\varphi_n \xrightarrow{\mathcal{D}} \varphi \Rightarrow \langle T, \varphi_n \rangle \rightarrow \langle T, \varphi \rangle$

Addition:

$$< T + S, \varphi > = < T, \varphi > + < S, \varphi >$$

Multiplication:

$$<\lambda T, \varphi> = \lambda < T, \varphi>$$

Convergence dans \mathcal{D}' :

$$T_n \stackrel{\mathcal{D}'}{\to} T \Leftrightarrow < T_n, \varphi > \to < T, \varphi >, \forall \varphi \in \mathcal{D}$$

Distribution régulière :

$$f \in L^1_{loc}, \langle T_f, \varphi \rangle = \int f(x)\varphi(x)dx, \forall \varphi \in \mathcal{D}$$

Distribution singulière : $<\delta,\varphi>=\varphi(0),\forall\varphi\in\mathcal{D}$

Peigne de Dirac : $\Delta_a = \sum_{n \in \mathbb{Z}} \delta_{na}, a$ fixé

Opérations:

- 1. Translation: $\tau_a f(x) = f(x-a), \langle T_{\tau_a f}, \varphi \rangle = \langle T_f, \tau_{-a} \varphi \rangle$
- 2. Homothetie : $T_{f(a.)}, < T_{f(a.)}, \varphi > = \frac{1}{|a|} < T_f, \varphi(\frac{\cdot}{a}) >$
- 3. Transposition: $\check{f}(x) = f(-x), \langle T_{\check{f}}, \varphi \rangle = \langle T_f, \check{\varphi} \rangle$
- 4. Produit : On peut avoir $T, S \in \mathcal{D}'$ sans $TS \in \mathcal{D}'$, en revanche, $\forall f, g \in L^1_{loc}, \langle gf, \varphi \rangle = \langle f, g\varphi \rangle$
- 5. Derivation : $\langle T', \varphi \rangle = -\langle T, \varphi' \rangle$
- 6. Derivation k-ième : $\langle T^{(k)}, \varphi \rangle = (-1)^k \langle T, \varphi^{(k)} \rangle$

Dérivation d'une fonction discontinue à l'origine : $(T_f)' = \sigma_0 \delta + T_{f'}$

Support d'une distribution : supp $T_f = \text{supp } f$

Valeur principale de Cauchy:

$$vp \int_{-A}^{A} \frac{dx}{x} = \lim_{\varepsilon \to 0} \left\{ \int_{-A}^{-\varepsilon} \frac{dx}{x} + \int_{\varepsilon}^{A} \frac{dx}{x} \right\} = 0$$

16

Distribution $vp\frac{1}{x}: \langle vp\frac{1}{x}, \varphi \rangle = vp\int \frac{\varphi(x)}{x}dx$

1.10 Convolution

1.10.1 Convolution de fonctions

Définition sur \mathbb{R} :

$$f * g(x) = \int f(x-t)g(t)dt$$

Convolution sur \mathbb{R}_+ :

$$\begin{cases} \operatorname{supp} f \subset \mathbb{R}_+ \\ \operatorname{supp} g \subset \mathbb{R}_+ \end{cases} \Rightarrow f * g(x) = \int_0^x f(x-t)g(t)dt$$

Support:

$$\mathrm{supp}\ f*g\subset\mathrm{supp}\ f+\mathrm{supp}\ g$$

Propriétés : Le produit de convolution est commutatif, ditributif et associatif

Convolution bornée :

$$f,g \in L^1 \Rightarrow ||f * g||_1 \leq ||f||_1.||g||_1$$
 et $f * g$ définit presque partout $f,g \in L^2 \Rightarrow ||f * g||_{\infty} \leq ||f||_2.||g||_2$ et $f * g$ partout définit $f \in L^1, g \in L^2 \Rightarrow ||f * g||_2 < ||f||_1.||g||_2$ et $f * g$ définit presque partout

Valeur moyenne d'une fonction :

$$m = \frac{1}{2h}f * 1_{[-h,h]}(x)$$

1.10.2 Convolution de suites

Définiton:

$$u * v(n) = v * u(n) = \sum_{k \in \mathbb{N}} u(n-k)v(k), n \in \mathbb{N}$$

1.10.3 Convolution de distributions et algèbre dans \mathcal{D}'_{+}

Produit tensoriel : Pour $f : \mathbb{R} \to \mathbb{R}$ et $g : \mathbb{R} \to \mathbb{R}$

$$f \otimes q(x,y) = f(x)q(y)$$

Définition : Soit $T, S \in \mathcal{D}'$

$$< T * S, \varphi > = < T, < S, \tau_{-y} \varphi > > = < T \otimes S, \varphi(x+y) >, \forall \varphi \in \mathcal{D}$$

Dérivation :

$$(T * S)' = T * S' = T' * S$$

Existence: Le produit T*S a un sens si les supports A et B de T et S sont tels que $x \in A, y \in B, x+y$ ne puisse être borné que si x et y restent bornées tous les deux. Il est alors commutatif.

Proposition : Si l'une au moins de T et S est à support bornée alors T*S existe. L'ensemble des distributions à support bornée est noté \mathcal{E}'

Proposition: Si T et S ont leur support limités à gauche (ou à droite) alors T*S existe (i.e. $\exists a \in \mathbb{R}$, tel que supp $T \subset [a, \infty[)$

 \mathcal{D}'_+ : L'ensemble des distributions à support dans \mathbb{R}_+ est noté \mathcal{D}'_+ ($\subset \mathcal{D}$)

$$T \in \mathcal{D}'_+ \Leftrightarrow \forall \varphi \in \mathcal{D}$$
 tel que supp $\varphi \subset \mathbb{R}_-, \langle T, \varphi \rangle = 0$

Associativité :

$$T, S \in \mathcal{D}'_+ \Rightarrow (T * S) * V = T * (S * V)$$

Algèbre de convoluion \mathcal{D}'_{+} :

1. Le produit de convolution est une loi de composition interne

$$T, S \in \mathcal{D}'_{+} \Rightarrow T * S \in \mathcal{D}'_{+}$$

2. \mathcal{D}'_{+} est un espace vectoriel

3. δ élement neutre

$$T*\delta=T$$

4. Soit $T \in \mathcal{D}'_+$, on dit que $S \in \mathcal{D}'_+$ est un élement inverse de T si $T * S = \delta$ et on note $S = T^{*-1}$

Exemples: $Y^{*2} = xY(x)$ et pour $n \ge 2$

$$Y^{*n} = \frac{x^{n-1}}{(n-1)!}Y(x)$$

Résolution d'équation différentielle à coefficient constant : Soit D un opérateur différentiel tel que

$$D = a_n \frac{d^n}{dt^n} + \dots + a_1 \frac{d}{dt} + a_n$$

Alors pour résoudre l'équation DT = S:

1. Résoudre : $DE = \delta$

2. Solution générale : T = S * E

Inversion type:

$$\left(\delta^{(n)} + a_1 \delta^{(n-1)} + \dots + a_{n-1} \delta' + a_n \delta\right)^{*-1} = Yz$$

avec z une solution de

$$\begin{cases} z^{(n)} + a_1 z^{(n-1)} + \dots + a_{n-1} z' + a_n z = 0 \\ z(0) = z'(0) = \dots = z^{(n-2)}(0) = 0 \\ z^{(n-1)}(0) = 1 \end{cases}$$

Transformées de Fourier 1.11

1.11.1 **Fonctions**

Définition:

$$\mathcal{F}(f)(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-i\xi x} dx$$

Transformée conjuguée :

$$(\overline{\mathcal{F}})(\xi) = \int_{\mathbb{R}} f(x)e^{i\xi x} dx$$

Inversion: Si $f \in L^1(\mathbb{R})$ et $\hat{f} \in L_1(R)$ alors

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) e^{i\xi x} d\xi, x - pp$$

Propriété de \hat{f} :

1. \hat{f} est continue et bornée sur \mathbb{R}

2.

$$\lim_{|\xi| \to +\infty} \hat{f}(\xi) = 0$$

Propriétés:

1.
$$\begin{cases} \widehat{(\tau_{x_0} f)} = e^{-ix_0 \xi} \hat{f} \\ \widehat{(e^{i\xi_0 x} f)} = \tau_{\xi_0} \hat{f} \end{cases}$$

2.
$$\{ \widehat{(f^{(n))}} = (i\xi)^{(n)} \hat{f} \\ ((-ix)^n f) = (\hat{f})^{(n)}$$

3.
$$\begin{cases} \widehat{(f * g)} = \hat{f}.\hat{g} \\ 2\pi \widehat{(f.g)} = \hat{f} * \end{cases}$$

3.
$$\begin{cases} \widehat{(f * g)} = \widehat{f} \cdot \widehat{g} \\ 2\pi \widehat{(f \cdot g)} = \widehat{f} * \widehat{g} \end{cases}$$
4.
$$\begin{cases} \mathcal{F}\overline{\mathcal{F}}f = \overline{\mathcal{F}}\mathcal{F}f = 2\pi f(x - pp) \\ \widehat{f} = 2\pi \widecheck{f} \end{cases}$$

1.11.2 Distributions

Distributions tempérées

Décroissance rapide (DR): f décroit plus vite que toute puissance de 1/|x|

$$f \in DR \Leftrightarrow \forall p \in \mathbb{N}, x^p f(x) \to 0, x \to \pm \infty$$

Proposition:

$$f \in L^1_{loc}(\mathbb{R}) \cap DR \Rightarrow \forall p \in \mathbb{N}, x^p f(x) \in L^1(\mathbb{R})$$

Espace de fonction test $S: f: \mathbb{R} \to \mathbb{C}$ tel que

1.
$$f \in C^{\infty}$$

2.
$$f^{(n)} \in DR, \forall n \in \mathbb{N}$$

Propriétés de S:

1. S est un \mathbb{C} -espace vectoriel

2.
$$\mathcal{D} \subset S \subset L^p$$

3.
$$\varphi \in S \Rightarrow \hat{\varphi} \in S$$

4.
$$\varphi \in S$$
 et $P \in \mathcal{P}_n \Rightarrow \varphi P \in S$

5.
$$f, g \in S \Rightarrow fg \in S$$

6.
$$\varphi \in S \Rightarrow \varphi' \in S$$

7.
$$f, g \in S \Rightarrow f * g \in S$$

8.
$$f \in S \Rightarrow x^p f^{(q)}$$
 bornée et sommable

Convergence dans S:

$$\varphi_n \stackrel{S}{\to} 0 \Leftrightarrow \sup_{x \in \mathbb{R}} |\varphi_n^{(p)} x^q| \to 0, n \to \infty, \forall p, q \in \mathbb{N}$$

Propriétés de convergence :

$$\varphi_n \xrightarrow{S} 0 \Rightarrow \begin{cases} \varphi'_n \xrightarrow{S} 0 \\ \varphi_n P \xrightarrow{S} 0 \text{ avec } P \in \mathcal{P}_n \\ \varphi_n \xrightarrow{L^1} 0 \\ \widehat{\varphi_n} \xrightarrow{S} 0 \end{cases}$$

Espace des distributions tempérées $S':T:S\to\mathbb{C}, \varphi\mapsto < T, \varphi>$

- 1. linéaire : $< T, \varphi + \mu \psi > = < T, \varphi > + \mu < T, \psi >$
- 2. continue : $\varphi_n \stackrel{S}{\to} 0 \Rightarrow \langle T, \varphi_n \rangle \to 0$

Convergence dans S':

$$T_n \stackrel{S'}{\to} T \Leftrightarrow < T_n, \varphi > \to < T, \varphi >, \varphi \in S$$

Fonction à croissance lente $(CL): f: \mathbb{R} \to \mathbb{C}$

$$f \in CL \Leftrightarrow |f(x)| \le A|x|^p, |x| \to \infty$$

Proposition : Toute fonction à croissance lente définit une distribution tempérée Transformée de Fourier :

$$<\hat{T}, \varphi> = < T, \hat{\varphi}>, \forall \varphi \in S$$

Propriétés:

1.
$$\begin{cases} (\hat{T})^{(n)} = (\widehat{(-ix)^n}T) \\ \widehat{(T^{(n)})} = (i\xi)^n \hat{T} \end{cases}$$

2.
$$\begin{cases} \tau_a \hat{T} = \widehat{(e^{ixa}T)} \\ \widehat{\tau_a T} = e^{-i\xi a} \hat{T} \end{cases}$$

3.
$$\hat{\hat{T}} = 2\pi\check{T}$$

3.
$$\hat{T} = 2\pi \check{T}$$
4.
$$\begin{cases} \hat{1} = 2\pi \delta \\ \hat{t}^{\hat{n}} = \frac{1}{(-i)^n} \delta^{(n)} \\ \hat{\delta_a}(\xi) = e^{-ia\xi} \end{cases}$$

1.12 Transformées de Laplace

1.12.1 Fonctions

Définition:

$$\tilde{f}(s) = \mathcal{L}f(s) = \int_0^\infty f(x)e^{-sx}dx$$

Théorème : \tilde{f} est holomorphe et

$$\frac{d^k}{ds^k}\tilde{f}(s) = \int_0^\infty f(x)(-x)^k e^{-sx} dx, \forall k \in \mathbb{N}$$

Théorème: Si F est une fonction analytique dans le demi-plan complexe $\{z \in \mathbb{C} | Re(z) > \eta_0\}$, et si, en tant que fonction de $\eta = \text{Im }(z)$, F est intégrable, alors elle est la transformée de Laplace d'une fonction continue telle que

$$f(x) = \frac{1}{2i\pi} \int_{\xi - i\infty}^{\xi + i\infty} f(x)e^{zx}dz$$

Théorème : Si les transformées de Laplace coïncides pour un Re(s) assez grand alors f = g

Exemples:

1.
$$\widetilde{Y(x)}x^a = \frac{\Gamma(a+1)}{s^{a+1}}$$

$$2. \ \widetilde{Y(x)e^{ax}} = \frac{1}{s-a}$$

Propriétés :

1.
$$\mathcal{L}(e^{-at}f(t)) = \tilde{f}(s+a)$$

2.
$$\mathcal{L}(f^{(n)}(t)) = s^n \tilde{f}(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$$

3.
$$\mathcal{L}\left(\int_0^t f(u)du\right) = \frac{\tilde{f}(s)}{s}$$

4.
$$\mathcal{L}(tf(t)) = -\tilde{f}'(s)$$

5.
$$\mathcal{L}\left(\frac{f(t)}{t}\right) = \int_0^s \tilde{f}(p)dp$$

6.
$$\mathcal{L}(f * g) = \tilde{f}.\tilde{g}$$

7. Si
$$f$$
 est T -périodique alors $\mathcal{L}(f)(s) = \frac{\int_0^T f(t)e^{-st}dt}{1-e^{-st}}$

Transformée inverse :

1. linéarité
$$\mathcal{L}^{-1}(a\tilde{f}+b\tilde{g})=a\mathcal{L}^{-1}(\tilde{f})+b\mathcal{L}^{-1}(\tilde{g})=af+bg$$

2. translation
$$\mathcal{L}^{-1}(\tilde{f}(s-a)) = e^{at}f(t)$$

3. modulation
$$\mathcal{L}^{-1}(e^{-as}\tilde{f}(s)) = \begin{cases} f(t-a), t > a \\ 0 \text{ sinon} \end{cases}$$

4. changement d'échelle
$$\mathcal{L}^{-1}(\tilde{f}(ks)) = \frac{1}{k} f\left(\frac{t}{k}\right)$$

5. dérivée
$$\mathcal{L}^{-1}(\tilde{f}^{(k)}(s)) = (-1)^k t^k f(t)$$

6. intégrale
$$\mathcal{L}^{-1}\left(\int_0^\infty \tilde{f}(s)ds\right) = \frac{f(t)}{t}Y(t)$$

7. multiplication par
$$s^n$$
 $\mathcal{L}^{-1}(sf(s)) = f'(t) + f(0)\delta$

Théorème taubériens:

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} s\tilde{f}(s)$$

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s\tilde{f}(s)$$

1.12.2 Distributions

Définition : $T \in \mathcal{D}'_+$

$$\mathcal{L}(T) = \tilde{T} = \langle T, e^{-st} \rangle$$

Exemples:

1.
$$\tilde{\delta} = 1$$

$$2. \ \tilde{\delta}_a = e^{-as}$$

3.
$$\widetilde{\delta'} = s$$

4.
$$\widetilde{\delta^{(n)}} = s^n$$

Chapitre 2

Analyse dans \mathbb{R}^n (MT22)

2.1 Fonction de plusieurs variables $\mathbb{R}^n \to \mathbb{R}$

2.1.1 Généralités

Disque ouvert de centre A et de rayon ρ :

$$B(A, \rho) = \{ M \in \mathbb{R}^n, ||\overrightarrow{AM}|| < \rho \}$$

Limite:

$$\lim_{M\to M_0} f(M) = l \Leftrightarrow \forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall M \in \mathbb{R}^n, ||\overrightarrow{M_0M}|| < \eta \Rightarrow |f(M) - l| < \varepsilon$$

Continuité : $\lim_{M\to M_0} f(M) = f(M_0)$

Condition suffisante de continuité :

$$\begin{cases} x = x_0 + r \cos \theta \\ y = y_0 + r \sin \theta \end{cases}, \exists \varepsilon \text{ tel que } |f(M) - f(M_0)| \le \varepsilon(r) \text{ avec } \varepsilon \xrightarrow{r \to 0} 0 \Rightarrow f \text{ continue en } M_0(x_0, y_0)$$

Condition suffisante de non-continuité : S'il existe un chemin C tel que

$$\lim_{M\to M_0} f(M) \neq f(M_0) \Rightarrow f$$
 n'est pas continue

2.1.2 Dérivation

Différentiabilité : f différentiable si

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + Ah + Bk + \sqrt{h^2 + k^2} \varepsilon(h, k) \text{ avec } \varepsilon \to 0$$

Condition suffisante de différentiabilité : Si f admet des dérivées partielles premières continues en M_0 alors f est différentiable en M_0

Théorème de Schwarz:

$$\frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x} \in C^0 \Rightarrow \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Dérivation de composée de fonctions :

1.
$$\Phi(t) = f(\alpha(t), \beta(t))$$

$$\Phi'(t) = \alpha'(t) \frac{\partial}{\partial x} f(\alpha(t), \beta(t)) + \beta'(t) \frac{\partial}{\partial y} f(\alpha(t), \beta(t))$$

2.
$$\psi(u, v) = f(a(u, v), b(u, v))$$

$$\frac{\partial \psi}{\partial u}(u,v) = \frac{\partial a}{\partial u}(u,v)\frac{\partial f}{\partial x}\left(f(a(u,v),b(u,v))\right) + \frac{\partial b}{\partial u}(u,v)\frac{\partial f}{\partial u}\left(f(a(u,v),b(u,v))\right)$$

$$\frac{\partial \psi}{\partial v}(u,v) = \frac{\partial a}{\partial v}(u,v)\frac{\partial f}{\partial x}\left(f(a(u,v),b(u,v))\right) + \frac{\partial b}{\partial v}(u,v)\frac{\partial f}{\partial v}\left(f(a(u,v),b(u,v))\right)$$

3.
$$\zeta(x,y) = \alpha(f(x,y))$$

$$\frac{\partial \zeta}{\partial x}(x,y) = \frac{\partial f}{\partial x}(x,y)\alpha'(f(x,y))$$

$$\frac{\partial \zeta}{\partial y}(x,y) = \frac{\partial f}{\partial y}(x,y)\alpha'(f(x,y))$$

Différentielle:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

Formule des accroissements finis :

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)h + \frac{\partial f}{\partial y}(x_0, y_0)k + \sqrt{h^2 + k^2}\varepsilon(h, k)$$

Taylor à l'ordre 2 :

$$\begin{split} f(x_0+h,y_0+k) = & f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)h + \frac{\partial f}{\partial y}(x_0,y_0)k \\ & + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} f(x_0,y_0)h^2 + 2 \frac{\partial^2 f}{\partial x \partial y}(x_0,y_0)hk + \frac{\partial^2 f}{\partial y^2} f(x_0,y_0)k^2 \right) + (h^2 + k^2)\varepsilon(h,k) \end{split}$$

Condition nécessaire d'optimalité :

$$\frac{\partial f}{\partial x}(x^*, y^*) = \frac{\partial f}{\partial y}(x^*, y^*) = 0$$

Puis repasser à Taylor :

$$f(x^* + h, y^* + k) - f(x^*, y^*) = \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} f(x^*, y^*) h^2 + 2 \frac{\partial^2 f}{\partial x \partial y} (x^*, y^*) h k + \frac{\partial^2 f}{\partial y^2} f(x^*, y^*) k^2 \right) + (h^2 + k^2) \varepsilon(h, k)$$

2.1.3 Dérivées directionnelles

Définition:

$$Df(x,y) = \lim_{\lambda \to 0} \frac{f(x + \lambda y) - f(x)}{\lambda}$$

On remarque que $Df(x, \vec{e_i}) = \frac{\partial f}{\partial x_i}(x)$

Si f est différentiable alors Df(x,y) = Df(x)y

Théorème:

$$f(x^*) \le f(x), \forall x \in \mathbb{R}^n \Rightarrow Df(x^*, y) = 0, \forall y \in \mathbb{R}^n$$

Existence: Si f est continue et $\lim_{||x||\to\infty} f(x) = +\infty$ alors x^* existe

Unicité : Si f est une fonction convexe, alors x^* , s'il existe, est unique

2.2 Analyse vectorielle

Produit scalaire : $\overrightarrow{u} \cdot \overrightarrow{v} = 0 \Leftrightarrow \overrightarrow{u}$ et \overrightarrow{v} sont orthogonaux

$$\overrightarrow{u}.\overrightarrow{v} = x_1x_2 + y_1y_2 + z_1z_2 = ||\overrightarrow{u}||.||\overrightarrow{v}||\cos\theta$$

Produit vectoriel : $\overrightarrow{u} \wedge \overrightarrow{v} = -\overrightarrow{v} \wedge \overrightarrow{u}$

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \wedge \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

 $\overrightarrow{u} \wedge \overrightarrow{v} = 0 \Leftrightarrow \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont colinéaires}$

Produit mixte : $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = (\overrightarrow{u} \wedge \overrightarrow{v}) \cdot \overrightarrow{w} = \text{volume du parallélépipède formé par } \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$ $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 0 \Leftrightarrow \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \text{ sont coplanaires}$

Coordonées cylindriques :

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}, \theta \in [0, 2\pi[$$

Coordonées sphériques :

$$\begin{cases} x = \rho \cos \phi \cos \theta \\ y = \rho \cos \phi \sin \theta \\ z = \rho \sin \phi \end{cases}, \theta \in [0, 2\pi[, \phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[\right]]$$

Gradient:

$$\overrightarrow{\nabla} f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}; \overrightarrow{\nabla} (fg) = f \overrightarrow{\nabla} g + g \overrightarrow{\nabla} f$$

Rotationnel:

$$\overrightarrow{\operatorname{rot} V} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} P(x, y, z) \\ Q(x, y, z) \\ R(x, y, z) \end{pmatrix} ; \overrightarrow{\operatorname{rot} f V} = f \overrightarrow{\operatorname{rot} V} + \overrightarrow{\nabla} f \wedge \overrightarrow{V}$$

Divergence:

$$\operatorname{div}\, f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}\,;\; \begin{cases} \operatorname{div}\, f\overrightarrow{V} = f \operatorname{div}\, \overrightarrow{V} + \overrightarrow{\nabla} f\overrightarrow{V} \\ \operatorname{div}\, \overrightarrow{V_1} \wedge \overrightarrow{V2} = \overrightarrow{V_2} \overrightarrow{\operatorname{rot}} \overrightarrow{V}_1 - \overrightarrow{V_1} \overrightarrow{\operatorname{rot}} \overrightarrow{V}_2 \end{cases}$$

Laplacien:

$$\Delta f = \operatorname{div} \overrightarrow{\nabla} f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

Propositions:

$$\begin{split} &f\in C^2\Rightarrow \overrightarrow{\operatorname{rot}}\overrightarrow{\nabla}f=0\\ &\overrightarrow{V}=(P,Q,R)^T \text{ avec } P,Q,R\in C^1,\overrightarrow{\operatorname{rot}}\overrightarrow{V}=0\Rightarrow \exists f \text{ tel que } \overrightarrow{\nabla}f=\overrightarrow{V}\\ &\overrightarrow{V}=(P,Q,R)^T \text{ avec } P,Q,R\in C^2, \text{div } \overrightarrow{\operatorname{rot}}\overrightarrow{V}=0\\ &\overrightarrow{V}=(P,Q,R)^T \text{ avec } P,Q,R\in C^1, \text{div } \overrightarrow{V}=0\Rightarrow \exists \overrightarrow{A} \text{ tel que } \overrightarrow{\operatorname{rot}}\overrightarrow{A}=\overrightarrow{V} \end{split}$$

2.3 Courbes et surfaces

2.3.1 Surfaces

Plan (cartésien) : Plan passant par M_0 et de normal $\overrightarrow{N} = (a, b, c)$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Plan (paramétrique): Plan passant par M_0 et contenant $\overrightarrow{u} = (\alpha, \beta, \gamma)$ et $\overrightarrow{v} = (\alpha', \beta', \gamma')$

$$\begin{cases} x = x_0 + \alpha t + \alpha' t' \\ y = y_0 + \beta t + \beta' t' \\ z = z_0 + \gamma t + \gamma' t' \end{cases}, (t, t') \in \mathbb{R}^2$$

Distance d'un point à un plan : Plan P de normal \overrightarrow{N} contenant M_0

$$\delta(P, M) = \frac{||\overrightarrow{M_0M}.\overrightarrow{N}||}{||\overrightarrow{N}||}$$

Surface (cartésien):

$$f(x, y, z) = 0$$
 (implicite); $z = f(x, y)$ (explicite)

Surface (paramétrique):

$$\begin{cases} x = Q_1(t, t') \\ y = Q_2(t, t') \\ z = Q_3(t, t') \end{cases}, (t, t') \in \mathbb{R}^2$$

Surface de révolution : (S) est dite de révolution autour de (Δ) si l'intersection avec tout plan perpendiculaire à Δ est vide ou un cercle centré sur (Δ)

Vecteur normal à une surface :

Si la surface est définit par une équation cartésienne (f(x,y,z)=0) alors $\overrightarrow{\nabla} f$ est normal à S Si la surface est définit par une équation paramétrique par $Q_1(.,.),Q_2(.,.),Q_3(.,.)$ alors $\overrightarrow{N}=(\frac{\partial Q_1}{\partial u},\frac{\partial Q_2}{\partial u},\frac{\partial Q_3}{\partial u})\wedge (\frac{\partial Q_1}{\partial v},\frac{\partial Q_2}{\partial v},\frac{\partial Q_3}{\partial v})$ est normal à S

2.3.2 Courbes

Droite (cartésien) : Vu comme l'intersection de deux plans

$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases}$$

Droite (paramétrique): Droite de vecteur direteur $\overrightarrow{u} = (\alpha, \beta, \gamma)$ qui passe par M_0

$$\begin{cases} x = x_0 + \alpha t \\ y = y_0 + \beta t \\ z = z_0 + \gamma t \end{cases}, t \in \mathbb{R}$$

Distance d'un point à une droite : Droite (Δ) de vecteur directeur \overrightarrow{V} et passant par M_0

$$\delta(M, \Delta) = \frac{||\overrightarrow{M_0M} \wedge \overrightarrow{V}||}{||\overrightarrow{V}||}$$

Courbe (cartésien) : Vu comme l'intersection de deux surfaces

$$\begin{cases} f_1(x, y, z) = 0 \\ f_2(x, y, z) = 0 \end{cases}$$

Courbe (paramétrique):

$$\begin{cases} x = Q_1(t) \\ y = Q_2(t) \\ z = Q_3(t) \end{cases}, t \in \mathbb{R}$$

Vecteur tangent à une courbe :

Si C est définit par des équations cartésiennes $(f_1(x,y,z)=0)$ et $f_2(x,y,z)=0$) alors le vecteur $\overrightarrow{v}=\overrightarrow{\nabla}f_1\wedge\overrightarrow{\nabla}f_2$ est tangent à CSi C est définit par un système d'équations paramétriques $(\{x=Q_1(t),y=Q_2(t),z=Q_3(t)\})$ alors le vecteur $\overrightarrow{v}=(Q_1'(t),Q_2'(t),Q_3'(t))$ est tangent à C

Surfaces usuelles:

2.4 Intégrales dans \mathbb{R}^n

2.4.1 Intégrales doubles

Théorème : Si $D = [a, b] \times [c, d]$

$$\iint_D f(x)g(y)dxdy = \left(\int_a^b f(x)dx\right)\left(\int_c^d g(y)dy\right)$$

Théorème de Fubini : Si $D = \{(x,y) \in \mathbb{R} | a < x < b, \Phi_1(x) < y < \Phi_2(x) \}$ alors

$$\iint_D f(x,y) dx dy = \int_a^b \left(\int_{\Phi_1(x)}^{\Phi_2(x)} f(x,y) dy \right) dx$$

Aire d'un domaine :

$$\iint_D dx dy = \text{Aire du domaine } D$$

Masse d'un domaine : Si on note $\mu(x,y)$ la masse surfacique du domaine alors la masse m du domaine est donnée par

$$\iint_D \mu(x,y) dx dy$$

Centre de gravité:

$$\begin{cases} x_G = \frac{1}{m} \iint_D x\mu(x, y) dx dy \\ y_G = \frac{1}{m} \iint_D y\mu(x, y) dx dy \end{cases}$$

Matrice Jacobienne²:

$$J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

Changement de variable : (En coordonnées polaire : |J| = r)

$$\iint_D f(x,y)dxdy = \iint_{\Delta} |J| f(\zeta(u,v),\eta(u,v)) dudv$$

Moment d'inertie par rapport à une droite :

$$\mathcal{J}_{\Delta} = \iint_{D} [d(M, \Delta)]^{2} \mu(x, y) dx dy$$

Moment d'inertie par rapport à un point :

$$\mathcal{J}_{A} = \iint_{D} [d(M,A)]^{2} \mu(x,y) dx dy = \iint_{D} ((x-x_{A})^{2} + (y-y_{A})^{2}) \mu(x,y) dx dy$$

2.4.2 Intégrales triples

Théorème : Si $D = [a, b] \times [c, d] \times [e, f]$

$$\iiint_D g(x)h(y)l(z)dxdydz = \left(\int_a^b g(x)dx\right)\left(\int_c^d h(x)dy\right)\left(\int_e^f l(x)dz\right)$$

Méthode des bâtons : On note D_0 la projection de V sur (xOy)

$$\iiint_V f(x,y,z)dxdydz = \iint_{D_0} \left(\int_{\zeta(x,y)}^{\varphi(x,y)} f(x,y,z)dz \right) dxdy$$

Méthode des tranches :

$$\iint_V f(x,y,z) dx dy dz = \int_a^b \left(\iint_D f(x,y,z) dx dy \right) dz$$

Matrice Jacobienne³:

$$\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{pmatrix}$$

Changement de variable : (En sphérique : $|J| = r^2 |\cos \varphi|$)

$$\iiint_V f(x,y,z)dxdydz = \iiint_{\Lambda} |J|f(\epsilon(u,v,w),\eta(u,v,w),\zeta(u,v,w))dudvdw$$

Masse totale:

$$m = \iiint_V \mu(x, y, z) dx dy dz$$

Centre d'inertie:

$$\begin{cases} x_G = \frac{1}{m} \iiint_V x\mu(M) dx dy dz \\ y_G = \frac{1}{m} \iiint_V y\mu(M) dx dy dz \\ z_G = \frac{1}{m} \iiint_V z\mu(M) dx dy dz \end{cases}$$

Moment d'inertie par rapport à un point :

$$\mathcal{J}_{A} = \iiint_{V} [d(M,A)]^{2} \mu(x,y,z) dx dy dz = \iiint_{V} ((x-x_{A})^{2} + (y-y_{A})^{2} + (z-z_{A})^{2}) \mu(x,y,z) dx dy dz$$

Moment d'inertie par rapport à une droite :

$$\mathcal{J}_{\Delta} = \iiint_{V} [d(M, \Delta)]^{2} \mu(x, y, z) dx dy dz$$

Moment d'inertie par rapport à un plan :

$$\mathcal{J}_{P} = \iiint_{V} [d(M, P)]^{2} \mu(x, y, z) dx dy dz$$

Théorème de Guldin : Si (S) est un volume de révolution engendré par le domaine (D) autour de l'axe (Oz) alors :

$$V(S) = 2\pi x_G A(D)$$

2.4.3 Intégrales curvillignes

Abscisse curviligne:

$$s(t) = \int_{t_0}^{t} \sqrt{x'(t)^2 + y'(y)^2 + z'(t)^2} dt$$

Notation:

$$ds = \sqrt{x'(t)^2 + y'(y)^2 + z'(t)^2} dt$$

Longeur d'arc:

$$\int_{\theta_0}^{\theta_1} \sqrt{\rho^2(\theta) + \rho'^2(\theta)} d\theta$$

Masse d'un fil:

$$m = \left| \int_{\Gamma} \mu(s) ds \right|$$

Circulation d'un champ de vecteur : Soit C une courbe paramétrée d'extrémité A et B et d'équation :

$$\begin{cases} x(t) \\ y(t) \\ z(t) \end{cases}, t \in [t_A, t_B] \text{ alors } \forall \overrightarrow{V} = \begin{pmatrix} P(x, y, z) \\ Q(x, y, z) \\ R(x, y, z) \end{pmatrix}, \text{ on definit la circulation de } \overrightarrow{V} \text{ le long de } AB \text{ par } AB \text$$

$$\mathcal{T}_{AB}(\overrightarrow{V}) = \int_{AB} \overrightarrow{V}.\overrightarrow{dl} = \int_{AB} (P(M)dx + Q(M)dy + R(M)dz) = \int_{t_A}^{t_B} (x'(t)P(M) + y'(t)Q(M) + z'(t)R(M))dt$$

Remarque: $\mathcal{T}_{AB} = -\mathcal{T}_{BA}$

Circulation d'un champ de vecteur dérivant d'un potentiel scalaire :

Si
$$\overrightarrow{\operatorname{rot}}\overrightarrow{V} = 0$$
 alors $\exists f$ telle que $\overrightarrow{\nabla}f = \overrightarrow{V}$ et $\mathcal{T}_{AB} = f(B) - f(A)$

Formule de Green-Rieman : Soit $D \in \mathbb{R}^2$ limité par Γ et orienté dans le sens direct, sans point double. $\forall P, Q$ on a

$$\int_{\Gamma} P(x,y) dx + Q(x,y) dy = \iint_{D} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right) dx dy$$

Aire d'un domaine avec Green-Rieman : En prenant $P(x,y) = -\frac{1}{2}y$ et $Q(x,y) = \frac{1}{2}x$ on a $\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) = 1$ d'où :

$$A(D) = \iint_D dx dy = \int_{\Gamma} x dy = \frac{1}{2} \int_{\Gamma} x dy - y dx$$
$$A(D) = \frac{1}{2} \int_{\theta_0}^{\theta_1} \rho^2(\theta) d\theta \text{ (en polaire)}$$

2.4.4 Intégrales surfaciques

Aire d'une surface paramétrée en (u, v):

$$A(S) = \iint_{\Delta} ||\overrightarrow{T_u} \wedge \overrightarrow{T_v}|| du dv \text{ avec } \overrightarrow{T_u} = \begin{pmatrix} \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial u} \end{pmatrix} \text{ et } \overrightarrow{T_v} = \begin{pmatrix} \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial v} \end{pmatrix}, (u, v) \in \Delta$$

Aire d'une surface explicité en z:

$$A(S) = \iint_{D} \sqrt{\left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2} + 1} dx dy, (x, y) \in D$$

Notation:

$$d\sigma = ||\overrightarrow{T_u} \wedge \overrightarrow{T_v}|| dudv$$

Masse d'une surface :

$$m = \iint_{S} \mu(M) d\sigma$$

Centre de gravité:

$$\begin{cases} x_G = \frac{1}{m} \iint_S x\mu(M) d\sigma \\ y_G = \frac{1}{m} \iint_S y\mu(M) d\sigma \\ z_G = \frac{1}{m} \iint_S z\mu(M) d\sigma \end{cases}$$

Moment d'inertie :

$$\mathcal{J}_{\Delta} = \iint_{S} [d(M, \Delta)]^{2} \mu(M) d\sigma$$

Vecteur normal à une surface (paramétrée) :

$$\overrightarrow{n_1} = \frac{\overrightarrow{T_u} \wedge \overrightarrow{T_v}}{||\overrightarrow{T_u} \wedge \overrightarrow{T_v}||} = -\overrightarrow{n_2}$$

Vecteur normal à une surface (explicité en z):

$$\overrightarrow{n_1} = \begin{pmatrix} -\frac{\partial f}{\partial x}(M) \\ -\frac{\partial f}{\partial y}(M) \\ 1 \end{pmatrix} \times \frac{1}{\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + 1}} = -\overrightarrow{n_2}$$

Orientation d'une surface : L'orientation associée au vecteur \overrightarrow{n} est faite dans le même sens du mouvement d'un tire-bouchon qui s'enfonce dans la direction de \overrightarrow{n} .

Flux d'un champ de vecteur :

$$\Phi_S(\overrightarrow{V}) = \iint_S \overrightarrow{V} \cdot \overrightarrow{n} \, d\sigma$$

2.5 Théorèmes intégraux

2.5.1 Théorème de Stokes-Ampères

Soit S une surface de \mathbb{R}^3 et Γ le bord de S (courbe fermée), alors pour $\overrightarrow{V}=(P(M),Q(M),R(M))^T$ on a :

$$\iint_{S} \overrightarrow{\operatorname{rot}} \overrightarrow{V} = \oint_{\Gamma} P dx + Q dy + R dz \text{ i.e. } \mathcal{T}_{\Gamma}(\overrightarrow{V}) = \Phi_{S}(\overrightarrow{\operatorname{rot}} \overrightarrow{V})$$

2.5.2 Théorème de Gauss-Ostrogradski

Soit ν un volume de \mathbb{R}^3 limité par une surface Σ , on a

$$\iiint_{\nu} \operatorname{div} \, \overrightarrow{V} = \iint_{\Sigma} \overrightarrow{V} . \overrightarrow{n} \, d\sigma = \Phi_{\Sigma}(\overrightarrow{V})$$

Chapitre 3

Algèbre linéaire (MT23)

3.1 Espaces vectoriels

Groupe: (G, +) est un groupe si:

- + est une loi de composition interne
- -- + est associative
- + admet un élement neutre e dans G tel que $\forall x \in G, x + e = e + x = x$
- Tout élement de G admette un symétrique $(\forall x \in G, \exists \bar{x} \text{ tel que } x + \bar{x} = \bar{x} + x = e)$

Espace vectoriel : $(E, +, .)_K$ est un K-espace vectoriel si

- -(E,+) est un groupe commutatif
- . est une loi de composition externe $K \times E \to E$
- . vérifie les propriétés suivantes $(\forall \lambda, \mu \in K, \forall \overrightarrow{x}, \overrightarrow{y} \in E)$

$$-(\lambda \mu).\overrightarrow{x} = \lambda.(\mu \overrightarrow{x})$$

$$-(\lambda + \mu).\overrightarrow{x} = \lambda \overrightarrow{x} + \mu \overrightarrow{x}$$

$$-\lambda \cdot (\overrightarrow{x} + \overrightarrow{y}) = \lambda \overrightarrow{x} + \lambda \overrightarrow{y}$$

$$-1_K \cdot \overrightarrow{x} = \overrightarrow{x}$$

Sous-espace vectoriel : (F, +, .) est un sous-espace vectoriel de (E, +, .) si $F \subset E$ et (F, +, .) est un espace vectoriel

Caractérisation : $F \subset E$ est un sous-espace vectoriel de (E, +, .) si et seulement si

$$-F \neq \emptyset$$

$$- \forall \overrightarrow{x}, \overrightarrow{y} \in F, \overrightarrow{x} + \overrightarrow{y} \in F$$

$$- \forall \lambda \in K, \forall \overrightarrow{x} \in F, \lambda \overrightarrow{x} \in F$$

Somme:

$$F + G = \{z \in E | z = x + y, x \in F, y \in G\}$$

Sous-espace supplémentaire : F et G sont supplémentaire dans E si

$$E = F \oplus G \Leftrightarrow E = F + G \text{ et } F \cap G = \{\overrightarrow{0}\}\$$

Famille liée : $(\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p})$ est liée s'il existe $\lambda_1, \lambda_2, ..., \lambda_p$ non tous nuls tel que $\lambda_1 \overrightarrow{x_1} + \lambda_2 \overrightarrow{x_2} + ... + \lambda_p \overrightarrow{x_p} = \overrightarrow{0}$ Famille libre (famille non liée) :

$$\sum_{i=1}^{p} \lambda_i \overrightarrow{x_i} = 0 \Rightarrow \lambda_i = 0, \forall i$$

Famille génératrice : $(\overrightarrow{x}_i)_i$ est une famille génératrice si

$$\forall \overrightarrow{x} \in E, \exists \lambda_i \in K, \text{ tels que } \overrightarrow{x} = \sum \lambda_i \overrightarrow{x_i}$$

Sous-espace vectoriel engendré:

$$\overrightarrow{x} \in \text{vect } < \overrightarrow{x_1}, ..., \overrightarrow{x_p} > \Leftrightarrow \exists \lambda_1, ..., \lambda_p \in K, \overrightarrow{x} = \sum \lambda_i \overrightarrow{x_i}$$

Base : famille libre et génératrice

Théorème de la base incomplète : Si \mathcal{G} est une famille géneratrice de E et \mathcal{L} une famille libre avec $\mathcal{L} \subset \mathcal{G}$, alors il existe une base \mathcal{B} de E telle que $\mathcal{L} \subset \mathcal{B} \subset \mathcal{G}$

Théorème: Tout espace vectoriel fini, différent de $\{\overrightarrow{0}\}$, possède une base

Dimension d'un espace vectoriel : nombre d'élément d'une base

Propositions sur les bases : E est un espace vectoriel de dimension n, \mathcal{F} une famille de p vecteur

- Si p=n et $\mathcal F$ est, soit libre, soit génératrice, alors $\mathcal F$ est une base de E
- Si p > n alors \mathcal{F} est liée
- Si p < n alors \mathcal{F} n'est pas génératrice

Proposition sur les dimensions : E est une espace vectoriel de dimension n, F et G sont deux sous-espaces vectoriels de E

- $--\dim F \leq \dim E$
- $--F = E \Leftrightarrow \dim F = \dim E$
- $--\dim F+G=\dim F+\dim G-\dim F\cap G$
- $--\dim F \oplus F = \dim F + \dim G$

3.2 Applications linéaires et matrices

3.2.1 Applications linéaires

E et F sont deux espaces vectoriels sur un même corps K

Application linéaire : $f:E\to F$ est une application linéiare si

$$f(\overrightarrow{x} + \lambda \overrightarrow{y}) = f(\overrightarrow{x}) + \lambda f(\overrightarrow{y})$$

En particulier, on a : $f(\overrightarrow{0}_E) = \overrightarrow{0}_F$

Ensemble des applications linéaires : $\mathcal{L}(E, F)$

 ${\bf Noyeau}\,:$ Sous-espace vectoriel de E tel que

$$\operatorname{Ker} f = \{ \overrightarrow{x} \in E | f(\overrightarrow{x}) = \overrightarrow{0}_F \}$$

Image : Sous-espace vectoriel de F tel que

Im
$$f = \{\overrightarrow{y} \in F | \exists x \in E, \overrightarrow{y} = f(\overrightarrow{x})\}\$$

Rang:

Rang
$$f = \dim \operatorname{Im} f$$

Image d'une famille : Soit $f \in \mathcal{L}(E, F)$

- L'image par f d'une famille liée de E est une famille liée de F
- L'image d'une famille génératrice de E est une famille génératrice de f

Application injective:

- f injective \Leftrightarrow Ker $f = \{\overrightarrow{0}_E\}$
- Si f est injective alors l'image d'une famille libre de E est une famille libre de F

Application surjective :

- f surjective \Leftrightarrow Im f = F
- Si f est surjective alors l'image par f d'une famille génératrice de E est une famille génératrice de F Application bijective :
 - f bijective \Leftrightarrow Ker $= \{\overrightarrow{0}\}$ et Im f = F
 - Si f est bijective alors l'image d'une base de E est une base de F

Définitions:

Homomorphisme : application linéaire de E dans F Endomorphisme : application linéaire de E dans E Isomorphisme : bijection linéaire de E dans F E et F sont isomorphes $\Leftrightarrow \dim E = \dim F$

Automorphisme : bijection linéaire de E dans E

Théorème du rang:

$$\dim \operatorname{Ker} f + \operatorname{Rang} f = \dim E$$

3.2.2 Matrices

Soient f et g deux applications linéaires telles que :

$$\mathcal{E} = (\overrightarrow{e_1}, ..., \overrightarrow{e_n}) \xrightarrow{f} \mathcal{F} = (\overrightarrow{f_1}, ..., \overrightarrow{f_m}) \qquad \qquad \mathcal{F} = (\overrightarrow{f_1}, ..., \overrightarrow{f_m}) \xrightarrow{g} \mathcal{G} = (\overrightarrow{g_1}, ..., \overrightarrow{g_p})$$

Définition : Pour chaque élement de ${\mathcal E}$ on a :

$$f(\overrightarrow{e_j}) = \sum_{i=1}^{m} a_{ij} \overrightarrow{f_i}$$

On appelle matrice associé à f le tableau M_f de scalaire suivant :

$$\begin{pmatrix}
f(\overrightarrow{e_1}) & \dots & f(\overrightarrow{e_j}) & \dots & f(\overrightarrow{e_n}) \\
a_{11} & \dots & a_{1j} & \dots & a_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{m1} & \dots & a_{mj} & \dots & a_{mm}
\end{pmatrix} \xrightarrow{\overrightarrow{f_1}} \underbrace{\vdots}_{\overrightarrow{f_m}}$$

Somme de matrices : $c_{ij} = a_{ij} + b_{ij}$ (associé à la f + g)

Produit par un scalaire : $c_{ij} = \lambda a_{ij}$ (associé à λf)

Produit de matrices : (associé à $g \circ f$)

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$\mathcal{E} = (\overrightarrow{e_1}, ..., \overrightarrow{e_n}) \xrightarrow{f} \mathcal{F} = (\overrightarrow{f_1}, ..., \overrightarrow{f_n}) \xrightarrow{g} \mathcal{G} = (\overrightarrow{g_1}, ..., \overrightarrow{g_n})$$

$$\mathcal{G} = (\overrightarrow{g_1}, ..., \overrightarrow{g_n})$$

Image d'un vecteur : Si
$$\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = X$$
 et $\overrightarrow{y} = Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$ alors $Y = M_f X$

Inverse d'une matrice carrée : Si $CM_f=M_fC=I$ alors $C=M_{f^{-1}}$ est appelée inverse de M_f Et $(AB)^{-1}=B^{-1}A^{-1}$

Transposée d'une matrice : $(A^T)_{ij} = (A)_{ji}$ Et $(AB)^T = B^TA^T$

Matrice de passage : La matrice de passage de la base \mathcal{E} à la base \mathcal{E}'

$$\mathcal{E}' = (\overrightarrow{e_1}, ..., \overrightarrow{e_n}) \xrightarrow{id_E} \mathcal{E} = (\overrightarrow{e_1}, ..., \overrightarrow{e_n})$$

$$\overrightarrow{e_1} \quad ... \quad \overrightarrow{e_j} \quad ... \quad \overrightarrow{e_n'}$$

$$P = \begin{pmatrix} a_{11} & ... & a_{1j} & ... & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & ... & a_{mj} & ... & a_{mm} \end{pmatrix} \overrightarrow{e_n'}$$

Changement de base (Composantes d'un vecteur) : Si P est la matrice de passage de \mathcal{E} à \mathcal{E}' , alors les coordonnées X' dans \mathcal{E}' en fonction des coordonées X dans \mathcal{E} est donné par $X = PX' \Leftrightarrow X' = P^{-1}X$

Changement de base d'un même espace (E = F):

 M_f est la matrice associée à f quand on choisit la base \mathcal{E} M_f' est la matrice associée à f quand on choisit la base \mathcal{E}'

P est la matrice de passage de \mathcal{E} à \mathcal{E}'

Changement d'espace vectoriel :

 \mathcal{E} et \mathcal{E}' sont deux bases de E

 \mathcal{F} et \mathcal{F}' sont deux bases de F

 M_f est la matrice associé à f de ${\mathcal E}$ à ${\mathcal F}$

 M'_f est la matrice associé à f de \mathcal{E}' à \mathcal{F}'

P est la matrice de passage de \mathcal{E} à \mathcal{E}'

Q est la matrice de passage de \mathcal{F} à \mathcal{F}'

Image d'une matrice : (Im $M_f = \mathrm{vect} \ < M_{f_1}, ..., M_{f_n} >)$

$$Y \in \text{Im } M_f \Leftrightarrow X \in \mathcal{M}_{n1} \text{ tel que } Y = M_f X$$

Rang d'une matrice :

Rang $M_f=\dim \operatorname{Im} M_f=$ nombre de colonne linéairement indépendant de la matrice

Théorème du rang :

$$\dim \operatorname{Ker} M_f + \operatorname{Rang} M_f = \dim E$$

Noyau d'une matrice :

$$Ker A = \{X \in \mathcal{M}_{n1} | AX = 0\}$$

Condition d'inversivilité d'une matrice :

 M_f inversible $\Leftrightarrow f$ inversible

3.3 Déterminants et systèmes linéaires

3.3.1 Déterminants

Notation : On note $A_{[i,j]}$ la matrice obtenue, à partir de A en ôtant la i-ème ligne et la j-ème colonne

Définition: det $\mathcal{M}_{n,n} \to K$

Si n = 1, A = (a) et det A = a

Si n > 1, det $A = a_{11} \det A_{[1,1]} + \dots + (-1)^{k+1} a_{ik} \det A_{[1,k]} + \dots + (-1)^{n+1} \det A_{[1,n]}$

Développement selon la i-ème ligne :

$$\det A = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det A_{|i,j|}$$

Cofacteur:

$$cof(a_i j) = (-1)^{i+j} \det A_{|i,j|}$$

Co-matrice:

$$[co(A)]_{ij} = cof(a_{ij})$$

Transposée:

$$\det A = \det A^T$$

Matrice triangulaire:

$$A \text{ triangulaire} \Rightarrow \det A = \sum_{i=1}^{n} a_{ii}$$

Matrice à coefficient complexe :

$$\det \overline{A} = \overline{\det A}$$

Déterminant d'une famille de vecteur : Si on note X la matrice dont les colonnes sont les coordonées des \overrightarrow{x}_i dans une base alors $\det(\overrightarrow{x}_1,...,\overrightarrow{x}_n) = \det X$

Multi-linéarité :

$$\det(A_1, ..., \lambda A_K, ..., A_n) = \lambda \det(A_1, ..., A_k, ..., A_n)$$

$$\det(A_1, ..., A_{k-1}, B + C, A_{k+1}, ..., A_n) = \det(A_1, ..., A_{k-1}, B, A_{k+1}, ..., A_n) + \det(A_1, ..., A_{k-1}, C, A_{k+1}, ..., A_n)$$

Colonnes et lignes :

- Le déterminant est une fonction multi-linéaire des colonnes/lignes
- Si deux colonnes/lignes sont égales, le déterminant est nul
- Si on échange entre elles deux colonnes/lignes, le déterminant change de signe
- Si à une colonne on ajoute une combinaison linéaire des autres colonnes, le déterminant ne change pas
- Si à une ligne on ajoute une combinaison linéaire des autres lignes, le déterminant ne change pas

Produit de matrices:

$$\det BA = \det B \det A$$

Matrice inversible:

A inversible
$$\Leftrightarrow \det A \neq 0$$
 et $\det A^{-1} = \frac{1}{\det A}$

Base d'un espace vectoriel:

$$(\overrightarrow{a_1},...,\overrightarrow{a_n})$$
 est une base de $E\Leftrightarrow\det(\overrightarrow{a_1},...,\overrightarrow{a_n})\neq 0$

Rang d'une matrice : Le rang de A est le plus grand entier r tel qu'il existe une matrice inversible de dimension r extraite de A

De plus : Rang $A = \text{Rang } A^T$

Famille libre: Soit $H = (\overrightarrow{x_1}, ..., \overrightarrow{x_n})$ une famille de vecteur de E, si on note X la matrice dont les colonnes sont les coordonnées des vecteurs $\overrightarrow{x_i}$, alors H est une famille libre s'il existe une matrice inversible $n \times n$ extraite de X

36

3.3.2 Systèmes linéaires Ax = b

$$Ax = b \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \ddots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Existence de solution (matrice carrée) :

Si det $A \neq 0$ le système admet une unique solution quelque soit b

Sinon $(\det A = 0)$: Si $b \in \operatorname{Im} A$ alors le système admet une infinité de solution, sinon il n'en admet aucune.

Méthode de Cramer (matrice carrée) :

$$x_i = \frac{\det A_{[i]}}{\det A}$$
 avec $A_{[i]}$ la matrice carrée formée en remplaçant la i-ème colonne de A par b

Existence de solution (cas générale) : On pose r = Rang A. Si les r premieres colonnes forment une famille libre, alors

$$Ax = b$$
 admet une unique solution $\Leftrightarrow b \in \text{vect } \langle A_1, ..., A_r \rangle$

Méthode de Cramer (cas générale) :

On note r = Rang A

On note A^* une matrice inversible $r \times r$ extraite de A

On note \hat{A} la matrice extraite de A dont les lignes correspondent à celles de A utiliséespour construire A^*

$$Ax = b \Leftrightarrow \begin{cases} \hat{A}x = \hat{b} \\ x \text{ vérifie les } (n-r) \text{ dernières équations} \end{cases} \Leftrightarrow \begin{cases} A^*x^* = \hat{b} - \sum_{j=r+1}^{n-r} x_j \hat{A}_j \\ x \text{ vérifie les } (n-r) \text{ dernières équations} \end{cases}$$

Calcul de l'inverse d'une matrice : Il s'agit de résoudre $\forall j, A(A^{-1})_j = I_j$

$$A^{-1} = \frac{1}{\det A} (co(A))^T$$

3.4 Valeurs propres et diagonalisation

3.4.1 Valeurs propres

Valeur propre d'un endomorphisme : $\lambda \in K$ est une valeur propre de $f \in \mathcal{L}(E, F) \Leftrightarrow \exists \overrightarrow{y} \in E, \overrightarrow{y} \neq \overrightarrow{0}$ tel que

$$f(\overrightarrow{y}) = \lambda \overrightarrow{y}$$

Valeur propre d'une matrice : $\lambda \in K$ est une valeur propre de $A \in \mathcal{M}_{nm}(K) \Leftrightarrow \exists Y \in \mathcal{M}_{n1}, Y \neq 0$ tel que

$$AY = \lambda Y$$

Couple propre : (λ, Y) avec λ valeur propre et Y un vecteur propre associé à λ

Polynôme caractéristique :

$$\pi_A(s) = \det(sI - A)$$

Caractérisation d'une valeur propre :

$$\lambda$$
 valeur propre de $A \Leftrightarrow \det(\lambda I - A) = 0$

Multiplicité d'une valeur propre : On dit que λ est une valeur propre de A de multiplicité r, si λ est une racine de multiplicité r de π_A

De plus, si $A \in \mathcal{M}_{nn}(\mathbb{C})$ admet p valeurs propres $\lambda_1,...,\lambda_p$ de multiplicité $r_1,...,r_p$, alors $\sum_{i=1}^p r_i = n$

Propriétés liées aux valeurs propres :

- Si $A \in \mathcal{M}_{nn}(\mathbb{R})$ alors λ valeur propre de $A \Leftrightarrow \lambda$ valeur propre de A (de même multiplicité)
- Si $A \in \mathcal{M}_{nn}(\mathbb{C})$ alors λ valeur propre de $A \Leftrightarrow \bar{\lambda}$ valeur propre de A (de même multiplicité)
- Si A est diagonale alors les valeurs propres de A sont ses termes diagonaux
- A et A^T ont les mêmes valeurs propres
- Deux matrices semblables ont les mêmes valeurs propres
- Si $\mu_1, ..., \mu_n$ sont les valeurs propres de $A \in \mathcal{M}_{nn}(K)$ alors

trace
$$A = \sum_{i=1}^{n} \mu_i$$
 et $\det A = \prod_{i=1}^{n} \mu_i$

Sous-espace propre : Si λ est valeur propre de A, alors le sous-espace propre associé est

$$V_{\lambda} = \{Y \in \mathcal{M}_{n1}(K) | AY = \lambda Y\} = \text{Ker } (A - \lambda I)$$

Famille de vecteurs propres : Si $\lambda_1, ..., \lambda_p$ sont des valeurs propres distinctes de A, alors $(Y_1, ..., Y_p)$ est une famille libre $(Y_i$ associé à $\lambda_i)$

Dimension d'un sous-espace propre : Si λ est une valeur propre de multiplicité m de A, alors dim $V_{\lambda} \leq m$ Théorème de Cayley-Hamilton :

$$\pi_A(A) = 0$$

3.4.2 Diagonalisation

Diagonalisation: A est dite diagonalisable dans K s'il existe $D \in \mathcal{M}_{nn}(K)$ diagonale et $P \in \mathcal{M}_{nn}(K)$ inversible telle que

$$A = P^{-1}DP$$

Condition nécessaire et suffisante de diagonalisation : Soit $A \in \mathcal{M}_{nn}(K)$ une matrice et $\lambda_1, ..., \lambda_k$ ses k valeurs propres de multiplicité $m_1, ..., m_k$, alors les propositions suivantes sont équivalentes :

- A diagonalisable
- $-\forall i = 1...k, \dim \operatorname{Ker} (A \lambda_i I) = m_i$
- $--\sum_{i=1}^k \dim \operatorname{Ker} (A \lambda_i I) = n$

Condition suffisante de diagonalisation : $A \in \mathcal{M}_{nn}(K)$, si A admet n valeurs propres distinctes dans K alors A est diagonnalisable dans K

Proposition : Si λ est valeur propre de $A \in \mathcal{M}_{nn}(\mathbb{R})$ de multiplicité n, alors A diagonalisable $\Leftrightarrow A = \lambda I$ Calcul pratique :

- 1. Déterminer les valeurs propres de $A: \lambda_1, ..., \lambda_k$
- 2. Déterminer les sous-espaces propres de A pour chaque λ_i (dim $V_i = m_i$)
- 3. On a alors:

$$P = \left(\underbrace{Y_1, Y_2, ..., Y_p}_{\text{associé à } \lambda_1}, \underbrace{Y_{p+1}, ..., Y_q}_{\text{associé à } \lambda_2}, ..., \underbrace{Y_m, ..., Y_n}_{\text{associé à } \lambda_k}\right)$$

4.
$$D = P^{-1}AP$$

3.4.3 Trigonalisation

Trigonalisation: Toute matrice $A \in \mathcal{M}_{nn}(\mathbb{C})$ est semblable à une matrice triangulaire supérieur $T \in \mathcal{M}_{nn}(\mathbb{C})$

3.4.4 Applications

Calcul de puissance d'une matrice :

$$A = PDP^{-1} \Rightarrow A^k = PD^kP^{-1}$$

Résolution d'un système de suite récurrente : Soient (u_n) et (v_n) deux suites réelles définis par

$$\begin{cases} u_0, v_0 \text{ donn\'ees} \\ u_{n+1} = a_{11}u_n + a_{12}v_n \\ v_{n+1} = a_{21}u_n + a_{22}v_n \end{cases} \quad \text{si on pose } X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix} \text{ et } A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

On a alors
$$X_{n+1} = AX_n$$
 et donc $X_n = A^n X_0$

Espaces Euclidiens 3.5

3.5.1Généralités

Produit scalaire : $(x,y) \mapsto \langle x,y \rangle, E^2 \to \mathbb{R}$ est un produit scalaire si elle verifie les propriétés suivantes

- 1. Symétrique : $\langle x, y \rangle = \langle y, x \rangle$
- 2. Linéarité : $\langle x_1 + \mu x_2, y \rangle = \langle x_1, y \rangle + \mu \langle x_2, y \rangle$
- 3. Positivité: $\forall x \in E, \langle x, x \rangle > 0$ et $\langle x, x \rangle = 0 \Rightarrow x = 0$

Inégalité de Cauchy-Schwarz:

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

Famille liée:

$$(x,y)$$
 est liée $\Leftrightarrow \langle x,y\rangle^2 = \langle x,x\rangle\langle y,y\rangle$

Norme : $x \mapsto ||x||, E \to \mathbb{R}^+$ est une norme si elle vérifie les propriétés suivantes

- 1. Séparativité : $||x|| = 0 \Rightarrow x = 0$
- 2. Homogéneité : $||\alpha x|| = |\alpha|.||x||, \forall \alpha \in \mathbb{R}$
- 3. Inégalité triangulaire : $||x+y|| \le ||x|| + ||y||$

Proposition: Soit E un espace vectoriel muni d'un produit scalaire alors $x \mapsto \sqrt{\langle x, x \rangle}$ est une norme sur E Vecteurs orthogonaux:

$$x, y$$
 orthogonaux $\Leftrightarrow \langle x, y \rangle = 0$

Famille de vecteur orthogonale : $(x_1, ..., x_n)$ est dite orthogonale si $\langle x, y \rangle = 0, \forall i \neq j$

Famille de vecteur orthonormée : $(x_1,...,x_p)$ est dite orthonormée si elle est orthogonale et $||x_i||=1, \forall i$

Théorème de Pythagore :

$$\langle x, y \rangle = 0 \Leftrightarrow ||x + y||_2^2 = ||x||_2^2 + ||y||_2^2$$

Sous-espace orthogonal:

$$F^{\perp} = \{ x \in E | \forall y \in F, \langle x, y \rangle = 0 \}$$

Caractérisation : Si $F = \text{vect } < f_1, ..., f_p >$

$$x \in F^{\perp} \Leftrightarrow \langle x, f_i \rangle = 0, \forall i$$

Famille libre: Toute famille orthogonale de vecteurs non nuls d'un espace euclidien est libre

Théorème: Soit E un espace euclidien et F un sous-espace vectoriel de E, alors

$$E = F \oplus F^{\perp}$$

Espaces orthogonaux : Si $F = \text{vect } < f_1, ..., f_p > \text{et } G = \text{vect } < g_1, ..., g_q >, \text{ alors}$

$$F, G$$
 orthogonaux $\Leftrightarrow \langle f_i, g_i \rangle = 0, \forall i, j$

Proposition: Si F et G sont orthogonaux alors $F \cap G = \{0\}$

Procédé d'orthogonalisation de Schmidt : Si $(x_1, x_2, ..., x_p)$ est une famille libre de E, alors il existe une famille orthonormée $(y_1, y_2, ..., y_p)$ telle que vect $\langle x_1, x_2, ..., x_p \rangle = \text{vect } \langle y_1, y_2, ..., y_p \rangle, \forall k = 1...p$

-
$$p = 1 : y_1 = \frac{x_1}{||x_1||}$$
 on a alors vect $\langle x_1 \rangle = \text{vect } \langle y_1 \rangle$

—
$$p = 2$$
: On pose $\hat{y}_2 = x_2 + \beta y_1$ et $y_2 = \frac{\hat{y}_2}{||\hat{y}_2||}$

On a alors par construction vect $\langle x_1, x_2 \rangle = \text{vect } \langle y_1, y_2 \rangle$ Et $\langle \hat{y}_2, y_1 \rangle = \langle x_2 + \beta y_1, y_1 \rangle = 0 \Rightarrow \beta = -\langle x_2, y_1 \rangle$

Et
$$\langle \hat{y}_2, y_1 \rangle = \langle x_2 + \beta y_1, y_1 \rangle = 0 \Rightarrow \beta = -\langle x_2, y_1 \rangle$$

—
$$p = 3$$
: On pose $\hat{y}_3 = x_3 + \beta_1 y_1 + \beta_2 y_2$ et $y_3 = \frac{\hat{y}_3}{||\hat{y}_3||}$
Et $\beta_1 = -\langle x_3, y_1 \rangle, \ \beta_2 = -\langle x_3, y_2 \rangle$

Projection orthogonale : Soit F un sous espace de E, et soit $(f_1, f_2, ..., f_p)$ une base orthonormée de F, alors $\forall x \in E, x = x_F + x_{F^{\perp}}$

$$x_F = \sum_{k=1}^{p} \langle x, f_i \rangle f_i$$

3.5.2 Matrices orthogonales

Définition: $Q \in \mathcal{M}_{nn}(K)$ est orthogonale si et seulement si

$$(Q_i)^T Q_j = \delta_{ij}$$
 (Kronecker)

Condition nécessaire et suffisante :

$$Q$$
 orthogonale $\Leftrightarrow Q^TQ = I \Leftrightarrow Q^T = Q^{-1}$

Matrice de passage : La matrice de passage entre deux bases orthonormées est une matrice orthogonale Stabilité : Soient $A, B \in \mathcal{M}_{nn}(K)$ deux matrices orthogonales

- A^T est orthogonale
- AB est orthogonale

Propositions:

- Q orthogonale $\Leftrightarrow \forall x \in \mathbb{R}^n, ||x|| = ||Qx||$ (norme usuelle de \mathbb{R}^n)
- Q orthogonale $\Leftrightarrow \langle x, y \rangle = \langle Qx, Qy \rangle$

3.5.3 Matrices symétriques

Proposition: Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$ est une matrice symétrique, λ_1 et λ_2 deux valeurs propres de A, alors les vecteurs propres associés y_1 , y_2 sont orthogonaux

Théorème : Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$ est une matrice symétrique

- Toutes les valeurs propres de A sont réelles
- A est diagonalisable, et P est orthogonale : $D = P^T A P$

3.5.4 Formes quadratiques

Définie-positivité:

- A est semi-positive si $\forall x \in \mathbb{R}^n, x^T A x \geq 0$
- A est définie-positive si, de plus, $\forall x \in \mathbb{R}^n, x^T A x = 0 \Rightarrow x = 0$

Proposition: Les termes diagonaux d'une matrice définie positive sont strictement positifs

Proposition: Toute matrice symétrique définie-positive est inversible

Définition : Polynôme de degré 2 des variables $(x_1, ..., x_n)$

$$q(x) = \sum_{i=1}^{n} \alpha_i x_i^2 + \sum_{1 \le i < j < n} \beta x_i x_j$$

Caractérisation :

q est une forme quadratique $\Leftrightarrow \exists ! A \in \mathcal{M}_{nn}(\mathbb{R}), q(x) = x^T A x$

Chapitre 4

Schémas numériques (MT09)

4.1 Systèmes linéaires

Elimination de Gauss: Soit une matrice $A \in \mathcal{M}_{nn}$ et $b \in \mathcal{M}_{n1}$, pour résoudre efficacement l'équation Ax = b, on cherche à transformer A en une matrice triangulaire grâce à l'algorithme de Gauss.

On note $A^{(0)} = A$

On trouve alors $A^{(k+1)}$ en fonction de $A^{(k)}$ avec :

$$\begin{cases} a_{ij}^{(k)} \rightarrow a_{ij}^{k+1} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)} \\ \\ b_{ij}^{(k)} \rightarrow b_{ij}^{k+1} = b_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} b_{kj}^{(k)}, \text{ pour } j = k, k+1, ..., n \end{cases}$$

L'algorithme termine pour k = n.

Écriture matricielle de Gauss : On peut réécrire les équations précedentes sous la forme matricielle suivante, en notant A_i la i-ème ligne de A

$$\underline{A_i^{(i)}} = \underline{A_i^{(i-1)}} - \left(\frac{a_{i,i-1}^{(i-1)}}{a_{i-1}^{(i-1)}}\right) \underline{A_{i-1}^{(i-1)}}$$

Pivot : Les coefficients $a_{kk}^{(k)}$ sont appelées les pivots

Sous-matrice principale : On appelle sous matrice principale de A d'ordre k la matrice noté

$$[A]_k = (a_{ij})_{1 \le i \le k, 1 \le j \le k}$$

Factorisation LU: Il s'agit de trouver $U \in \mathcal{M}_{nn}$ triangulaire supérieur et $L \in \mathcal{M}_{nn}$ triangulaire inférieur telle que A = LU, L ayant tous ses termes diagonaux égaux à 1 cf. Algorithme de Doolitle

Existence:

$$A$$
 est LU -factorisable $\Leftrightarrow [A]_1, [A]_2, ..., [A]_n$ inversible

Unicité: La factorisation LU, si elle existe, est unique

Factorisation PALU: Si A est non LU-factorisable, on peut permuter les lignes de A effectuer la factorisation. Alors le système s'écrit $PA = LU \Leftrightarrow C = LU$ (avec C = PA où P est une matrice carrée indiquant les permutations effectuées)

Factorisation LUPAQ: Pour les mêmes raisons, et de manière similaire, on peut permuter les colonnes de A et alors: LU = PAQ

Application à la résolution de système linéaire : Si A est LU-factorisable, alors

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases}$$

Factorisation LDL^T : Si A est LU-factorisable et symétrique, alors $\exists L, D \in \mathcal{M}_{nn}$ avec L une matrice triangulaire inférieur à diagonale unité et D une matrice diagonale telle que

$$A = LDL^T$$

Factorisation de Cholesky (BB^T) : Si A est une matrice symétrique définie positive alors elle admet une factorisation unique $A = BB^T$ avec B une matrice triangulaire inférieur dont les termes diagonaux sont positifs cf. algorithme de Cholesky

4.2 Problèmes de moindres carrées

Définition : Le problème des moindres carrées consiste à trouver x^* telle que

$$x^* = \min_{x \in \mathbb{R}^n} ||Ax - b||$$

 ${\bf\acute{E}} quation\ normale\ :$

$$x^* = \min_{x \in \mathbb{R}^n} ||Ax - b|| \Leftrightarrow A^T A x^* = A^T b$$

Cette équation provient de $||A(x^*+\Delta x)-b||_2^2$

4.3 Méthodes itératives

Méthode itérative: Les méthodes itératives consistent à, étant donnée $f: \mathbb{R}^n \to \mathbb{R}^n$ avec $f(\bar{x}) = 0, \bar{x} \in \mathbb{R}^n$, construire une suite $(x^{(k)})_{k \in \mathbb{N}}$ telle que $\lim_{n \to \infty} x^{(n)} = \bar{x}$

Méthode des points fixes : Pour résoudre f(x)=0, on écrit l'équation sous la forme x=g(x) puis on construit la suite

$$\begin{cases} x^{(0)} \text{ donn\'e} \\ x^{(n+1)} = g(x^{(n)}) \end{cases}$$

Théorème de convergence : Si g est continue et si $(x^{(n)})_n$ converge alors $(x^{(n)})_n$ converge vers un point fixe de g

Théorème de convergence globale : Soit $g:[a,b] \to [a,b]$ une fonction continument dérivable sur [a,b]. S'il existe $k \in \mathbb{R}$ telle que $0 \le k < 1$ et $\forall x \in [a,b], |g'(x)| \le k$, alors g possède un unique point fixe $x^* \in [a,b]$ et la suite $\begin{cases} x^{(0)} \in [a,b] \\ x^{(n+1)} = g(x^{(n)}) \end{cases}$ converge vers x^*

Théorème de convergence locale : Soit x^* un point fixe de g, fonction continument dérivable vérifiant $|g'(x^*)| < 1$ alors la suite $\begin{cases} x^{(0)} \in \mathbb{R} \\ x^{(n+1)} = g(x^{(n)}) \end{cases}$ converge vers x^* à condition que $x^{(0)}$ soit suffisamment proche de x^*

4.3.1 Méthodes de Newton (équation et systèmes non-linéaire)

Méthode de Newton : Obtenu géométriquement ou par troncature du développement de Taylor :

$$\begin{cases} x^{(0)} \in \mathbb{R} \\ x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})} \end{cases}$$

Théorème de convergence quadratique : Soit g une fonction définie et deux fois continument dérivable de [a,b] dans lui-même. Soit $x^* \in [a,b]$ tel que $g(x^*) = x^*$ et $g'(x^*) = 0$. Alors la suite définie par $\begin{cases} x^{(0)} \in [a,b] \\ x^{(n+1)} = g(x^{(n)}) \end{cases}$ converge et

$$|x^{(n+1)} - x^*| \le \frac{M}{2}|x^{(n)} - x^*|^2 \text{ avec } M = \max_{x \in [a,b]} |g''(x)|$$

Pour Newton : $g(x) = x - \frac{f(x)}{f'(x)} \Rightarrow g(x^*) = x^*$ et $g'(x^*) = 0$

Matrice Jacobienne:

$$Df(x) = \left(\frac{\partial f(x)}{\partial x_1}; \frac{\partial f(x)}{\partial x_2}; ...; \frac{\partial f(x)}{\partial x_n}\right), x \in \mathbb{R}^n$$

Méthode de Newton pour un système d'équation : En tronquant les développements de Taylor de dimensions n à l'ordre 1 on obtient

$$x^{(i+1)} = x^{(i)} - f(x^{(i)}) \times [Df(x^{(i)})]^{-1}$$

4.3.2 Résolution de systèmes linéaires

Principe générale: Pour résoudre le système Ax = b, on utilise la suite $x^{(k)}$ suivante:

$$\begin{cases} x_0 \in \mathbb{R} \\ Mx^{(k+1)} = Nx^{(k)} + b \end{cases}$$

Avec A = M - N de sorte que lorsque $n \to \infty$, $(x^{(n)})_n$ converge vers \bar{x} et alors $(M - N)\bar{x} = b \Leftrightarrow A\bar{x} = b$ **Méthode de Jacobi**: La méthode de Jacobi consiste, à chaque itération k, à résoudre chaque équation par rapport à une variable, les autres restants fixes. On obtient alors : M = D et N = L + U. Et en pratique :

$$\begin{cases} a_{11}x_1^{(k+1)} = b_1 - \sum_{j=2}^n a_{1j}x_j^{(k)} \\ \vdots \\ a_{ii}x_i^{(k+1)} = b_i - \sum_{j=1, j \neq i}^n a_{ij}x_j^{(k)} \\ \vdots \\ a_{nn}x_n^{(k+1)} = b_n - \sum_{j=1}^{n-1} a_{nj}x_j^{(k)} \end{cases}$$

Méthode de Gauss-Seidel : Modification de la méthode de Jacobi qui consiste à utiliser pour chaque équation les composantes de $x^{(k+1)}$ déjà calculés. Il vient alors que : M = D - L et N = U. Et en pratique :

$$\begin{cases} a_{11}x_1^{(k+1)} = b_1 - \sum_{j=2}^n a_{1j}x_j^{(k)} \\ \vdots \\ a_{ii}x_i^{(k+1)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} - \sum_{j=1+1}^n a_{ij}x_j^{(k)} \\ \vdots \\ a_{nn}x_n^{(k+1)} = b_n - \sum_{j=1}^{n-1} a_{nj}x_j^{(k)} \end{cases}$$

Théorème de convergence : On considère la méthode itérative suivante $x^{(k+1)} = Cx^{(k)} + d$ avec $x^{(0)}$ donné

- S'il existe une norme matricielle subordonnée telle que ||C|| < 1 alors la méthode converge vers la solution de $(I C)\bar{x} = d$ quel que soit $x^{(0)}$
- La méthode converge si et seulement si $\rho(C) < 1$, avec $\rho(C) =$ "plus grande valeur propre de C"

Matrice à diagonale strictement dominante : On dit que la matrice A est à diagonale strictement dominante si

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \forall i \le n$$

Théorème de convergence pour Jacobi et Gauss-Seidel : Si la matrice A est à diagonale strictement dominante alors les méthodes de Jacobi et Gauss-Seidel convergent

Théorème de convergence pour Gauss-Seidel : Si la matrice A est symétrique définie positive, alors la méthode de Gauss-Seidel est convergente

4.4 Interpolation

Existence: Soient $t_0, t_1, ..., t_n \in \mathbb{R}$ distincts et soient $y_0, y_1, ..., y_n \in \mathbb{R}$, il existe un et un seul polynôme $p_n \in \mathcal{P}_n$ tel que :

$$p_n(t_i) = y_i, \forall i = 0, 1, ..., n$$

Dans la base canonique : Dans la base canonique $(1, x, x^2, ..., x^n)$ il suffit de résoudre le système $p_i(t_i) = y_i$ i.e.

$$Ax = b \text{ avec } \begin{cases} \underline{A_i} = (1 \quad t_i \quad t_i^2 \quad \dots \quad t_i^n) \\ \underline{b_i} = (y_i) \\ x = (a_0 \quad a_1 \quad \dots \quad a_n)^T \end{cases}$$

Dans la base de Lagrange : On appelle base de Lagrange la famille

$$(\mathcal{L}_1(t), \mathcal{L}_2(t), ..., \mathcal{L}_n(t))$$
 où $\mathcal{L}_i(t) = \prod_{k=0, k \neq i}^n \frac{t - t_k}{t_i - t_k} = \begin{cases} 1 \text{ si } t_i = t \\ 0 \text{ sinon} \end{cases}$

Le polynôme d'interpolation est alors donné par

$$p_n(t) = \sum_{i=0}^{n} y_i \mathcal{L}_i(t)$$

Erreur: On note $e_n(t) = f(t) - p_n(t)$ l'erreur d'interpolation. On note également $\pi_n(t) = (t - t_0)(t - t_1)...(t - t_n)$ Alors (en notant $Int(t_0, ..., t_n)$ le plus petit interval contenant les $t_0, ..., t_n$)

$$e_n(t) = \frac{\pi_n(t)}{(n+1)!} f^{(n+1)}(\xi) \text{ avec } \xi \in Int(t_0, ..., t_n)$$

Dans la base de Newton : Dans la base de Newton $(1, t - t_0, (t - t_0)(t - t_1), ..., (t - t_0)(t - t_1)...(t - t_{n-1}))$, le polynôme d'interpolation est donné par

$$p_n(t) = c_0 + c_1(t - t_0) + \dots + c_n(t - t_0)(t - t_1)\dots(t - t_{n-1})$$

Où les c_k sont les différences divisés d'ordre k

Différence divisée : Soit f une fonction dont on connait les valeurs en des points distincts $t_0, t_1, ..., t_n$. On appelle différence divisée l'expression suivante

$$\begin{cases} f[a] = f(a) \\ f[a, X, b] = \frac{f[a, X] - f[X, b]}{a - b} \end{cases}$$

Calcul pratique des différences divisées : Les coéficients c_k sont sur la diagonale en k-ième position

k = 0	k = 1	k = 2		k = n
$f[t_0]$				
$f[t_1]$	$f[t_0, t_1]$			
$f[t_2]$	$f[t_1, t_2]$	$f[t_0, t_1, t_2]$		
:	:	:	٠.	
•	•	•		
$f[t_n]$	$f[t_{n-1},t_n]$	$f[t_{n-2}, t_{n-1}, t_n]$		$f[t_0,t_1,,t_n]$

Schéma de Horner : Pour calculer $p_3(t) = c_0 + c_1(t - t_0) + c_2(t - t_0)(t - t_1) + c_3(t - t_0)(t - t_1)(t - t_2)$, on calcul plutôt :

$$p_3(t) = c_0 + (t - t_0) [c_1 + (t - t_1) [c_2 + (t - t_2) [c_3]]]$$

Splines cubiques : Soit $\Delta = (a = t_0, t_1, ..., t_n = b)$ une subdivision de l'intervalle [a, b]. On dit qu'une fonction g est un spline cubique si

- $-q \in C^2([a,b])$
- g correspond sur chaque intervalle $[t_i, t_{i+1}]$ à un polynome de degré inférieur ou égal à 3
- $-g(t_i)=y_i$

4.5 Intégration numérique

Principe : On cherche à approximer $I(f) = \int_a^b f(x) dx$ par une fonction

$$J(f) = \sum \omega_i f(t_i)$$

Où ω_i est appelé poids du noeud t_i

 $\mathbf{Ordre}\,:$ On dit qu'une méthode est d'ordre k si

$$\begin{cases} I(1) = J(1) \\ \vdots \\ I(X^k) = J(X^k) \end{cases} \text{ et } I(X^{k+1}) \neq J(X^{k+1})$$

Erreur d'intégration : e(f) = I(f) - J(f)

Méthode des rectangles (ici à gauche) : Méthode d'ordre 0 et d'erreur locale (sur $[t_1, t_{i+1}]$) de $\frac{h^2}{2}f''(\eta_0)$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} hf(t_i) + o\left(\frac{1}{n}\right)$$

Méthode des rectangles centrées : Méthode d'ordre 1 et d'erreur locale $\frac{h^3}{24}f''(\eta_0)$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} hf\left(\frac{t_i + t_{i+1}}{2}\right) + o\left(\frac{1}{n^2}\right)$$

Méthode des trapèzes : Méthode d'ordre 1 et d'erreur locale $\frac{h^3}{12}f''(\eta_0)$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} h\left(\frac{f(t_i) + f(t_{i+1})}{2}\right) + o\left(\frac{1}{n^2}\right)$$

Méthode de Simpson : Méthode d'ordre 3

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n-1} \frac{h}{3} \left(f(t_{i-1}) + 4f(t_i) + f(t_{i+1}) \right) + o\left(\frac{1}{n^4}\right)$$

4.6 Équations différentielles

On pose
$$U = \begin{pmatrix} y \\ y' \\ \vdots \\ y^{n-1} \end{pmatrix}$$
 et donc $U' = \begin{pmatrix} y' \\ y'' \\ \vdots \\ f(t, y^{n-1}, ..., y'', y', y) \end{pmatrix}$
Cela revient donc à résoudre

$$U'(t) = F(t, U(t)) \text{ avec } F: \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ f(t, x_n, ..., x_2, x_1) \end{pmatrix}$$

Schéma à un pas : Si on subdivise l'intervalle [a,b] en $[t_0,t_1,...,t_k]$ alors résoudre y'(t)=f(t,y(t)) sur $[t_n,t_{n+1}]$ revient à résoudre $\int_{t_n}^{t_{n+1}}y'(t)dt=\int_{t_n}^{t_{n+1}}f(t,y(t))dt$

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t, y(t))dt$$

Principe des schémas à un pas : Pour calculer $\int_{t_n}^{t_{n+1}} f(t, y(t)) dt$, on utilise les méthodes d'intégration numériques classiques (intégration à gauche, à droite, trapèze, point milieu).

Schémas prédicteur-correcteurs à un pas simple (Euler retrograde) :

$$\begin{cases} \hat{z}_{n+1} = z_n + hf(t_n, z_n) \\ z_{n+1} = z_n + hf(t_{n+1}, \hat{z}_{n+1}) \end{cases}$$

Schéma d'Euler-Cauchy:

$$\begin{cases} \hat{z}_{n+1} = z_n + hf(t_n, z_n) \\ z_{n+1} = z_n + \frac{h}{2}(f(t_n, z_n) + f(t_{n+1}, \hat{z}_{n+1})) \end{cases}$$

Soit le schéma suivant : $\begin{cases} z_0 = y(t_0) \\ z_{n+1} = z_n + h\Phi(t_n, z_n, h) \end{cases}$

Erreur locale: (C'est-à-dire l'erreur $\tau_{n+1} = y(t_{n+1}) - z_{n+1}$ si on suppose $z_n = y(t_n)$)

$$\tau_{n+1} = y(t_{n+1}) - y(t_n) - h\Phi(t_n, y(t_n), h)$$

Ordre d'un schéma : On dit qu'un schéma est d'ordre p si

$$\exists K > 0, \max_{1 \le n \le N} \left| \frac{\tau_n(h)}{h} \right| \le K h^p$$

Schéma consistant : Un schéma est dit consistant si

$$\lim_{h \to 0} \max_{1 \le n \le N} \left| \frac{\tau_n(h)}{h} \right| = 0$$

Proposition: Un schéma d'ordre positif est consistant Schéma convergent : Un schéma est dit convergent si

$$\lim_{h \to 0} \max_{1 \le n \le N} |y(t_i) - z_i| = 0$$

Schéma stable : Un schéma est stable s'il existe une constante M telle que pour tout z_0 , pour tout u_0 , et pour toute suite ε_i , les suites z_i et u_i définies par $\begin{cases} z_{i+1}s = z_i + h\Phi(t_i, z_i, h) \\ u_{i+1} = u_i + h\Phi(t_i, u_i, h) \end{cases}$ vérifient la condition suivante

$$\forall i = 1...N, |z_i - u_i| \le M \left(|z_0 - u_0| + \sum_{k=0}^{i-1} |\varepsilon_k| \right)$$

Condition suffisante de stabilité : Pour qu'un schéma soit stable il suffit que Φ soit lipschitzienne pour son deuxième argument

Théorème de convergence : Un schéma stable et consistant converge.

4.7 Valeurs propres

Méthode de la puissance itérée :

$$\begin{cases} x^{(0)} \in \mathbb{R}^n \\ x^{(k+1)} = \frac{Ax^{(k)}}{||Ax^{(k)}||} \end{cases}$$

Théorème de convergence : En notant $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge ... \ge |\lambda_n|$ les valeurs propres de $A \in \mathcal{M}_{nn}$ et en supposant $x^{(0)}$ dans le sous-espace engendré par les vecteurs propres $(y^{(2)}, y^{(3)}, ..., y^{(n)})$ alors

$$\lim_{k \to \infty} ||Ax^{(k)}|| = |\lambda_1|$$

$$\lim_{k \to \infty} [sgn(\lambda_1)]^k x^{(k)} = \gamma y^{(1)}$$

Chapitre 5

Formulaires

5.1 Équations différentielles

Définition : On appelle équation linéaire toute équation de la forme

$$y(t) = f(t, y, y', ..., y^{(k)})$$

Solution générale : La solution d'un équation différentielle linéaire s'écrit sous la forme : $y = y_h + y_p$ où y_p est une solution particulière et y_h une solution de l'équation homogène (sans second membre)

5.1.1 Équation d'ordre 1

Forme générale:

$$y'(x) + a(x)y(x) = b(x)$$

Solution de l'équation homogène :

$$y(x) = Ce^{-A(x)}$$
 avec $C \in \mathbb{R}$ et $A(x) = \int a(x)dx$

Solution particulière (Variation de la constante) : On pose $y_p = \varphi(x)e^{A(x)}$ et on trouve :

$$\varphi(x) = \int b(x)e^{-A(x)}$$

Ou poser y_p "de la même forme" que b

5.1.2 Équation d'ordre 2 (à coéfficient constant)

Forme générale :

$$ay''(x) + by'(x) + cy(x) = f(x)$$

Wronskien (déterminant du Jacobien) : Deux solutions φ et ψ de l'équation homogène sont dites indépendantes si

$$\begin{vmatrix} \varphi & \psi \\ \varphi' & \psi' \end{vmatrix} = 0$$

Solution de l'équation homogène : $ar^2 + br + c = 0$ est appellé équation caractéristique associée, alors

$$\Delta = b^2 - 4ac$$

Si
$$\Delta > 0$$
, $y(t) = Ae^{r_1t} + Be^{r_2t}$ avec $r_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $r_2 = \frac{-b - \sqrt{\Delta}}{2a}$
Si $\Delta = 0$, $y(t) = (A + Bt)e^{rt}$ avec $r = -\frac{b}{2a}$
Si $\Delta < 0$, $y(t) = (A\cos\omega t + B\sin\omega t)e^{-\frac{b}{2a}t}$ avec $\omega = \frac{\sqrt{-\Delta}}{2a}$

5.2Trigonométrie

5.2.1cos, sin, tan

Valeurs usuelles						
x en °	0	30	45	60	90	
$x ext{ en } rad$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	
$\cot x$	∞	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	

	Dérivées et primitives					
	Dérivée	Primitive				
$\cos x$	$-\sin x$	$-\cos x + k$				
$\sin x$	$\cos x$	$\sin x + k$				
$\tan x$	$1 + \tan^2 x$	$-\ln \cos x + k$				
$\arccos x$	$\frac{-1}{\sqrt{1-x^2}}$	$x\arccos x - \sqrt{1 - x^2} + k$				
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	$x\arcsin x + \sqrt{1 - x^2} + k$				
$\arctan x$	$\frac{1}{1+x^2}$	$xarctan x - \frac{1}{2}\ln(1+x^2) + k$				

Formules des carrés

$$\cos^2 x + \sin^2 x = 1$$
$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$

Exponentielle complexe

$$e^{ix} = \cos x + i\sin x$$

Formules d'Euler

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
$$\sin x = \frac{e^{ix} - e^{-ix}}{2}$$

Taylor

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$$

Parité

$$\cos(-x) = \cos(x)$$
$$\sin(-x) = -\sin(x)$$

Équation

$$\begin{aligned} \cos x &= \cos a & \Leftrightarrow x &= \pm a & [2\pi] \\ \sin x &= \sin a & \Leftrightarrow x &= a, \pi - a & [2\pi] \\ \tan x &= \tan a & \Leftrightarrow x &= a & [\pi] \end{aligned}$$

Formules d'addition

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a+b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\sin(a-b) = \sin a \cos b - \sin b \cos a$$

$$\tan(a+b) = \frac{\tan a + \tan b}{\tan a + \tan b}$$
En fonction de $t = \tan \frac{x}{2}$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$
$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Formules de duplication

$$\cos(2a) = \cos^2 a - \sin^2 a$$

$$= 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$\sin(2a) = 2\sin a \cos a$$

$$\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}$$

Linéarisation

$$\cos^2 a = \frac{1 + \cos 2a}{2}$$
$$\sin^2 a = \frac{1 - \cos 2a}{2}$$
$$\cos^3 a = \frac{\cos 3a + 3\cos a}{4}$$
$$\sin^3 a = \frac{-\sin 3a + 3\sin a}{4}$$

Formules de factorisation

$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$
$$\sin p + \sin q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

En fonction de
$$t = \tan \frac{x}{2}$$

$$\cos x = \frac{1 - t^2}{1 + t^2}$$

$$\sin x = \frac{2t}{1 - t^2}$$

$$\tan x = \frac{2t}{1 - t^2}$$
Et $dx = \frac{2dt}{1 + t^2}$

Règles de Bioche

$$\int f(t)dt = \int \frac{P(\sin t, \cos t)}{Q(\sin t, \cos t)}dt$$

Changement de variable Si $f(t) = -f(t), u = \cos t$ Si $f(\pi - t) = -f(t), u = \sin t$ Si $f(\pi + t) = f(t), u = \tan t$ Si 2 relations vérifiés, $u = \cos 2t$ Sinon $u = \tan \frac{t}{2}$

Encadrement

$$|\cos x| \le 1$$
$$|\sin x| \le 1$$
$$|\arctan x| < \frac{\pi}{2}$$

5.2.2sh, ch

Définition

ch
$$x = \frac{e^x + e^{-x}}{2}$$

sh $x = \frac{e^x - e^{-x}}{2}$

Dérivées

$$\frac{d\operatorname{sh} x}{dx} = \operatorname{ch} x$$

$$\frac{d\operatorname{ch} x}{dx} = \operatorname{sh} x$$

Identités

$$ch x + sh x = e^{x}$$

$$ch x - sh x = e^{-x}$$

$$ch^{2}x - sh^{2}x = 1$$

5.3 Normes, produit scalaire

5.3.1 En dimension finie

Norme p:

$$||x||_p = \left(\sum_{i=0}^n x_i^p\right)^{\frac{1}{p}}$$

Norme ∞ :

$$||x||_{\infty} = \max(|x_1|, ..., |x_n|)$$

Équivalence des normes :

$$||x||_{\infty} \le ||x||_p \le n^{\frac{1}{p}} ||x||_{\infty}$$

5.3.2 En dimension infinie

Norme de $L^p(A)$:

$$||f||_p = ||f||_{L^p} = \left(\int_A |f(t)|^p dt\right)^{\frac{1}{p}}$$

Norme ∞ :

$$||f||_{\infty} = \sup_{t \in [a,b]} |f(t)|$$

Norme pour l'espace \mathcal{C}^1 : Normes de L^p ou

$$||f|| = \int_{a}^{b} (|f(t)| + |f'(t)|)dt$$

5.3.3 Convergence

Convergence au sens d'une norme $\mathcal N$:

$$f_n \stackrel{\mathcal{N}}{\to} f, n \to \infty \Leftrightarrow \mathcal{N}(f_n - f) \to 0, n \to 0$$