Problem 2.2. Prove that there is no "exact identity" for convolutions, in the following sense: If $\phi \in \mathcal{R}_{loc}(\mathbb{R})$, then there exists $f \in C_c(\mathbb{R})$ such that the identity $\phi * f \equiv f$ does not hold.

Hint: Argue by contradiction. Assume ϕ is an "exact identity" (i.e., $\phi * f \equiv f$ for all $f \in BC(\mathbb{R})$). Choose $(f_n)_{n=1}^{\infty}$ to be a sequence of nonnegative, continuous functions, supported inside some fixed bounded interval, such that $\sup_{n\in\mathbb{N}}\int_{-\infty}^{\infty}f_n(x)dx\leq M<+\infty$, and such that $f_n(0)\to\infty$ as $n\to\infty$. (You may assume the existence of such a sequence of functions.) Look at the sequence of numbers $(\phi * f_n(0))_{n=1}^{\infty}$ and derive a contradiction.

Proof. Assume for the sake of contradiction that such a ϕ does exist. Then let f_n be an approximate identity like the one we just just studied (except smoothed out a bit to be continuous). This satisfies $f_n(0) \to \infty$ as $n \to 0$ and $\sup_{n \in \mathbb{N}} ||f||_{L^1} < M$. Then we have $\phi * f_n(0) \to \phi(0)$ as $n \to \infty$. However, then $\phi * f(0) \neq f(0)$ since $f_n(0) \to f(0) = \infty$ as $n \to \infty$, which gives contradiction as desired.

Problem 2.3. Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous away from x = a, but that it has a jump discontinuity at $a: f(a^+) \neq f(a^-)$. Assume also that f is bounded.

(a) Suppose $(\phi_n)_{n=1}^{\infty}$ is an approximate identity such that each ϕ_n is an even function, i.e., $\phi_n(x) = \phi_n(-x)$ for every $x \in \mathbb{R}$. Prove that

$$\lim_{n \to \infty} \phi_n * f(a) = \frac{f(a^+) + f(a^-)}{2}.$$

(b) Let $\lambda \in [0,1]$ be given. Construct an approximate identity $(\phi_n)_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} \phi_n * f(a) = \lambda f(a^+) + (1 - \lambda)f(a^-).$$

In your answer, you should show that your sequence $(\phi_n)_{n=1}^{\infty}$ satisfies the definition of an approximate identity from Exercise 2.1 and Example 2.2.

Proof. We proceed with each part separately.

(a) Consider the value $|\phi_n * f(a) - \frac{1}{2}(f(a^+) + f(a^-))|$. We want to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, this value is less than ε . The intuition is that each side of the convolution is approximating each side of the function, and thus in total forms the average. Indeed, noting that $\int_{-\infty}^{0} \phi_n(y) dy = \int_{0}^{\infty} \phi_n(y) dy = 1/2$ (since ϕ_n is even), split the convolution at x = a and consider both sides:

$$\int_{-\infty}^{0} \phi_n(y) f(a-y) dy - \frac{f(a^{-})}{2} = \int_{-\infty}^{0} \phi_n(y) (f(a-y) - f(a^{-})) dy$$

1 Page 1

and

$$\int_0^\infty \phi_n(y) f(a-y) dy - \frac{f(a^+)}{2} = \int_0^\infty \phi_n(y) (f(a-y) - f(a^+)) dy.$$

Now for the left, f(y) is continuous and converges to $f(a^-)$, so choose $\delta > 0$ such that $|f(a-y) - f(a^-)| < \frac{\varepsilon}{2M}$ whenever $-\delta < y < 0$. Next, choose $N \in \mathbb{N}$ large enough such that

$$\int_{-\infty}^{-\delta} |\phi_n(x)| dx < \frac{\varepsilon}{4||f||_u}.$$

Then for $n \geq N$, we have

$$\left| \int_{-\infty}^{0} \phi_n(y) (f(a-y) - f(a^-)) dy \right| = \int_{-\infty}^{-\delta} + \int_{-\delta}^{0} |\phi_n(y)| |f(a-y) - f(a^-)| dy$$

$$\leq \frac{\varepsilon}{2M} \int_{-\delta}^{0} |\phi_n(y)| dy + 2||f||_u \int_{-\infty}^{-\delta} |\phi_n(y)| dy$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

By symmetry, the same logic holds for the right as well, so we have

$$\left| \int_0^\infty \phi_n(y) (f(a-y) - f(a^+)) dy \right| < \varepsilon.$$

Thus summing both sides, we conclude that $|\phi_n * f(a) - \frac{1}{2}(f(a^+) + f(a^-))| < 2\varepsilon$ for $n \ge N$, i.e., $\lim_{n \to \infty} \phi_n * f(a) = \frac{1}{2}(f(a^+) + f(a^-))$, as desired.

(b) Generalizing the idea from part (a), we want to create a approximate identity that is weighted λ on the left and $1 - \lambda$ on the right. The most natural way to do this is simply define:

$$\phi_n(x) = n \mathbb{1}_{[-\lambda/n, (1-\lambda)/n]}.$$

This is clearly an approximate identity. Conditions (1) and (2) are trivial ($\|\phi_n\|_{L^1} = 1$ for all $n \in \mathbb{N}$). For condition (3), choose $\delta = \max(\lambda/n, (1-\lambda)/n)$.

Page 2