### Modeling Regressive Vowel Harmony from Continuous Speech Stream

Sneha Ray Barman, Shakuntala Mahanta Indian Institute of Technology Guwahati, India sneha.barman@iitg.ac.in, smahanta@iitg.ac.in







#### Phonological learning



Phonological production

Prelexical perception

#### Existing models and more!

| Approach                   | Author(s)                                                                      | Common Factor                                   |  |
|----------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|--|
| Optimality Theory          | Prince and Smolensky (2004)                                                    | Curated <b>text</b> data;                       |  |
| Harmonic Grammar           | Legendre et al. (1990)                                                         | Supervised and/or semi-<br>supervised training. |  |
| Maximum Entropy<br>Grammar | Goldwater & Johnson (2003);<br>Hayes & Wilson (2008)                           |                                                 |  |
| Computational Models       | Kirove & Cotterell (2018);<br>Mayer & Nelson (2020);<br>Prickett et al. (2022) |                                                 |  |

# Unsupervised Modeling of Vowel HarmonyWHY?

- Vowel harmony is widespread yet nowhere near universal.
- Involves learning crucial factors like features, domains, directionality, iterativity, and opacity (Archangeli & Pulleybank 2007).
- Regular patterns while also accommodating exceptions.
- Raw speech ~ The input received by a child (approx.)
- Unsegmented, unlabeled.
- Probably easy to infer phonology from readily available language data.



#### Assamese

- An Indo-Aryan language spoken across the state of Assam
- Spoken by 15 million people, according to 2011 Census of India
- °20 consonants and 8 surface vowels.

#### Phonemic inventory of Assamese

| Consonants:         | Bil | abial                      | Alv | veolar  | Palatal | Vel                       | lar                                                                              | Glottal |
|---------------------|-----|----------------------------|-----|---------|---------|---------------------------|----------------------------------------------------------------------------------|---------|
| Stops               | p   | b                          | t   | d       |         | k                         | g                                                                                |         |
|                     | ph  | b<br><u>b</u> <sup>h</sup> | th  | $d^{h}$ |         | $\mathbf{k}^{\mathrm{h}}$ | $g^h_{\!n\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |         |
| Nasals              |     | m                          |     | n       |         |                           | ŋ                                                                                |         |
| Fricatives          |     |                            | s   | Z       |         | x                         |                                                                                  | h       |
| Approximants        |     |                            |     | Ţ       | j       |                           | w                                                                                |         |
| Lateral approximant |     |                            |     | 1       |         |                           |                                                                                  |         |
|                     |     |                            |     |         |         |                           |                                                                                  |         |

Fig 1. Consonants in Assamese (Mahanta 2007)

| Vowels: | Front | Back |   | ATR  |
|---------|-------|------|---|------|
| High    | i     |      | u | +ATR |
|         |       |      | Ω | -ATR |
| Mid     | e     |      | o | +ATR |
|         | ε     |      | э | -ATR |
| Low     |       |      | a | -ATR |

Fig 2. Vowels in Assamese (Mahanta 2007)

#### Assamese Vowel Harmony

- Feature
- Domain
- Directionality
- Iterativity
- Opacity



#### Features

- Target: The vowel that changes its vocalic properties
- Trigger: The vowel that induces the change
- Example:
- [-ATR] vowels become [+ATR] when followed by [+high, +ATR] vowels.

$$\operatorname{p}_{\mathcal{E}}^{oldsymbol{\epsilon}}$$
t 'belly'  $ightarrow$  p $_{\mathcal{E}}$ t - $\operatorname{u}$  'pot-bellied'

pet 'belly' 
$$\rightarrow$$
 pet u 'pot-bellied'  
pagol -i 'mad-F'

| Vowels: | Front | Back |   | ATR  |
|---------|-------|------|---|------|
| High    | i     |      | u | +ATR |
|         |       |      | Ω | -ATR |
| Mid     | e     |      | o | +ATR |
|         | ε     |      | э | -ATR |
| Low     |       |      | α | -ATR |

Fig 2. Vowels in Assamese (Mahanta 2007)

#### Directionality

- ► **Regressive:** Righ-to-left harmony
- **Examples:**

```
kobita 'poem'

pagol'mad-M' pagol-i 'mad-F'
```

#### Domain

Non-local harmony: Trigger vowels target all the vowels.



#### Iterativity

- ► Long-distance iterative harmony
- Examples:
  p o d o b i 'surname'
  b o s o r i 'yearly'

#### Opacity

- $\blacktriangleright$  / $\alpha$ / [-high, -ATR] blocks harmony.
- Examples:

```
z v n a k 'firefly-M' *z u n a k -i z v n a k -i 'firefly-F'
b ɛ p a r 'trade' *b e p a r -i b ɛ p a r -i 'trader'

Exception:
a l a x 'luxury' a l o x -u w a 'pampered' *a l a x u w a
m i s a 'lie' m i s o -l -i j a 'liar' *m i s a -l -i j a
```

# Featural InfoWaveGAN for Vowel Harmony



FiwGAN architecture (Beguš 2021; Beguš and Zhou 2022) trained on Assamese

#### Experiment

#### ► Research questions:

- 1. Can we model Assamese vowel harmony, especially iterative long-distance patterns, using fiwGAN?
- 2. How far can the model learn the discrete categories related to harmony?

#### Participants:

- 1. 15 native Eastern Assamese speakers from the campus. 8 females and 7 males between 18-35 years. All of them were educated in vernacular medium.
- 2. Recorded at the Phonetics and Phonology lab at IIT Guwahati with a DR-100 MKII recorder.

#### Data

| English                    | Assamese   | Recorded<br>Sentence                |
|----------------------------|------------|-------------------------------------|
| (will) Tell                | kobo       | মই <u>ক'ব</u> বুলি<br>ক'লো          |
| Something worth mentioning | kobologija | মই<br><u>ক'বলগীয়া</u> বুলি<br>ক'লো |
| To tell (you)              | koboloi    | মই <u>ক'বলৈ</u> বুলি<br>ক'লো        |
| Tell (me)                  | koba       | মই <u>ক'বা</u> বুলি<br>ক'লো         |
| Meanwhile                  | EnEtE      | মই <u>এনেতে</u> বুলি<br>ক'লো        |

- 82 words harmonic and nonharmonic words in total.
- Each word was in a carrier sentence মই <u>X</u> বুলি ক'লো in Assamese; 'I say X' in English.
- Each sentence was repeated at least 4 times.
- 5000 tokens in total. 4789 tokens used for the training.

#### Data

| English       | Assamese   | Recorded             |
|---------------|------------|----------------------|
|               |            | Sentence             |
| (will) Tell   | kobo       | भरे <u>क'व</u> वूनि  |
|               |            | ক'লো                 |
| Something     | kobologija |                      |
| worth         |            | <b>म</b> इ           |
| mentioning    |            | ক'বলগীয়া বুলি       |
|               |            | ক'লো                 |
| To tell (you) | koboloi    | মই <u>ক'বলৈ</u> বুলি |
|               |            | ক'লো                 |
| Tell (me)     | koba       | মই <u>ক'বা</u> বুলি  |
|               |            | ক'লো                 |
| Meanwhile     | επετε      | गरे शतक दनि          |
|               |            | মই <u>এনেতে</u> বুলি |
|               |            | ক'লো                 |

| Stem     | Suffix        | Surface   | Category         |
|----------|---------------|-----------|------------------|
| dile     | -i            | dilei     | Harmonic         |
| nokorilε | -u            | nokorileu | Harmonic         |
| gorom    | - <b>ɔ</b> -t | gərəmət   | Non-<br>harmonic |
| bεpar    | -i            | bεpari    | Non-<br>harmonic |

#### Model Implementation



- Latent space has 93 uniformly distributed random variables (z).
- ► 7 binary latent codes (φ) accommodate 82 unique lexical items.  $2^7$  = 128 lexical classes.
- Each word is represented as a one-hot vector [1,0,0,0,0,0,0; 0,1,0,0,0,0,0 etc.].
- $\blacktriangleright$  Batch size = 64.
- ► Generator and Discriminator Adam optimizer.
- ▶ Q-network- RMSProp Algortihm.
- ▶ The model was trained for 960 epochs.
- ► Each epoch generated 100 outputs.
- ▶ 64 out of 100 outputs were analyzed.

#### Method

- ▶ The recorded data was sliced in PRAAT (Boersma & Weenick 2009).
- ▶ Recorded data sampling rate 48 kHz with 16-bit quantization.
- ▶ Downsampled the data at 16 kHz using the Sox program. Converted to single-channel .wav files.
- ► Training dataset contained 3169 harmonic and 1620 non-harmonic words.
- ▶ At least 60 data points for each lexical element.
- ► The PyTorch version of the model was used.
- ▶ The model ran on the CLST lab's GPU for 3 consecutive days.

#### Results

#### Results at 960 epochs (Identical)







Generated item



Training item

#### More identical outputs...



Generated item



Training item

#### Results at 960 epochs (Innovative)







Generated item



Generated item

#### More innovative outputs...







Generated item



#### Results at 960 epochs (Shortened)







Generated item



#### Ungrammatical outputs







Generated item



Training item

#### Analysis

- The outputs were manually annotated in PRAAT; and collected F1, F2, F3 values at 10-time points.
- The mean first formants of the vowels in training and generated data to quantify the presence of ATR vowel harmony in PRAAT.
- Regression analysis in R (R Core Team 2021) to assess the presence of directionality.



F1 comparison of [podobi] (training data; shown in bars) and [podobi] (generated data; shown in hatched bars). Here, o1 and o2 denote the first and second vowel and i denotes the third vowel, in the input training data "podobi".

Table 4: LMER model for the training dataset

| Data        | Directionality | Fixed effects    | DF | $\chi^2$ | р       |
|-------------|----------------|------------------|----|----------|---------|
| Whole       | right-to-left  | $F1V1\sim V1+V2$ | 13 | 33.062   | < 0.001 |
|             | left-to-right  | $F1V2\sim V2+V1$ | 10 | 6.5156   | 0.77    |
| Only [+ATR] | right-to-left  | F1V1~V1+V2       | 7  | 27.829   | < 0.001 |
|             | left-to-right  | $F1V2\sim V2+V1$ | 2  | 1.6522   | 0.43    |

Table 5: Linear regression model for machine-generated items

| Data                   | Estimate | t-value | p-value |
|------------------------|----------|---------|---------|
| Whole                  | 605.25   | 7.793   | < .001  |
| only V2[i] coefficient | -279.11  | 3.376   | .01     |

#### Discussion

- Computation of long-distance iterative vowel harmony.
- Feature learning.
- ► Emergence of lexical learning.
- ▶ Ungrammatical outputs with local harmony.
- Lack of results with opaque vowel /α/. Difficult to learn non-frequent/irregular items? (Marcus et al. 1995; McCurdy et al. 2020)

#### **Future Direction**

- Need more outputs to assess the learnability
- How does this learning take place? What are the cues? Latent space analysis.
- More epochs than previous experiments in English aspiration and French nasality.
- Can the model learn trans-word utterances?

#### Selected References

- Alan Prince and Paul Smolensky. 2004. Optimality 631 theory: Constraint interaction in generative grammar. Optimality Theory in phonology: A reader, pages 1–71.
- Bruce Hayes and Colin Wilson. 2008. A maximum entropy model of phonotactics and phonotactic learning. Linguistic Inquiry, 39(3):379–440.
- Christo Kirov and Ryan Cotterell. 2018. Recurrent neural networks in linguistic theory: Revisiting pinker and prince (1988) and the past tense debate. Transactions of the Association for Computational Linguistics, 6:651–665.
- Connor Mayer and Max Nelson. 2020. Phonotactic learning with neural language models. Proceedings of the Society for Computation in Linguistics, 3(1):149–159.
- Diana Archangeli and Douglas Pulleyblank. 2007. Harmony, Cambridge Handbooks in Language and Linguistics, page 353–378. Cambridge University Press.

#### Selected References

- Gašper Beguš. 2021. Ciwgan and fiwgan: Encoding information in acoustic data to model lexical learning with generative adversarial networks. Neural Networks, 139:305–325.
- Gašper Beguš and Alan Zhou. 2022. Interpreting intermediate convolutional layers of generative cnns trained on waveforms. IEEE/ACM Transactions on 556 Audio, Speech, and Language Processing, 30:3214–3229.
- Géraldine Legendre, Yoshiro Miyata, and Paul Smolen603 sky. 1990. Can connectionism contribute to syntax?: Harmonic Grammar, with an application. University of Colorado, Boulder, Department of Computer Science.
- Paul Boersma and David Weenink. 2009. Praat: doing phonetics by computer (version 5.1.13).
- R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

#### Selected References

- Shakuntala Mahanta. 2007. Directionality and locality 608 in vowel harmony. Ph.D. thesis, Utrecht University.
- Shakuntala Mahanta. 2008. Directionality and locality 610 in vowel harmony: With special reference to vowel harmony in Assamese. Netherlands Graduate School of Linguistics.
- Sharon Goldwater, and Mark Johnson. 2003. Learning OT constraint rankings using a maximum entropy model. In Proceedings of the Stockholm Workshop on Variation within Optimality Theory, ed. by Jennifer Spenader, Anders Eriksson, and O"sten Dahl, 111–120. Stockholm: Stockholm University, Department of Linguistics

#### Dataset and codes available at:

https://github.com/sneha2599/Fiw

GAN-Assamese.git

## Acknowledgement

- To the 15 data consultants.
- To my supervisor, Prof. Shakuntala Mahanta;
- To Gasper Begus for his encouragement and help with the model.
- The three anonymous reviewers of SCiL for their valuable and detailed feedback.



# THANK YOU!

#### Ungrammatical outputs







