퍼셉트론 보고서

제출일: 25.06.25 제출인: 서윤철

<순서>

- AND GATE
- OR GATE
- NAND GATE
- XOR GATE
- 단층 퍼셉트론 구조
- 다층 퍼셉트론 구조
- 부연설명
- 결론
- 해결방안
- 다층 퍼셉트론을 사용한 결과
- 참고

AND GATE

- 예측한 결과

```
Epoch 1/10, Errors: 1
Epoch 2/10, Errors: 3
Epoch 3/10, Errors: 3
Epoch 4/10, Errors: 2
Epoch 5/10, Errors: 1
Epoch 6/10, Errors: 0
Epoch 7/10, Errors: 0
Epoch 8/10, Errors: 0
Epoch 9/10, Errors: 0
Epoch 10/10, Errors: 0
```

AND GATE TEST:

Input: [0 0], Predicted Output: 0 Input: [0 1], Predicted Output: 0 Input: [1 0], Predicted Output: 0 Input: [1 1], Predicted Output: 1

=> Epoch 6 부터 Error = 0

- 결정 경계 시각화

=> True

OR GATE

- 예측한 결과

```
Epoch 1/10, Errors: 1
Epoch 2/10, Errors: 2
Epoch 3/10, Errors: 1
Epoch 4/10, Errors: 0
Epoch 5/10, Errors: 0
Epoch 6/10, Errors: 0
Epoch 7/10, Errors: 0
Epoch 8/10, Errors: 0
Epoch 9/10, Errors: 0
Epoch 10/10, Errors: 0
```

OR GATE TEST:

Input: [0 0], Predicted Output: 0
Input: [0 1], Predicted Output: 1
Input: [1 0], Predicted Output: 1
Input: [1 1], Predicted Output: 1

Input: [1 1], Predicted Output: 1 => Epoch 4 부터 Error = 0

- 결정 경계 시각화

Perceptron Decision Boundary

=> True

NAND GATE

- 예측한 결과

```
Epoch 1/10, Errors: 2
Epoch 2/10, Errors: 2
Epoch 3/10, Errors: 1
Epoch 4/10, Errors: 0
Epoch 5/10, Errors: 0
Epoch 6/10, Errors: 0
Epoch 7/10, Errors: 0
Epoch 8/10, Errors: 0
Epoch 9/10, Errors: 0
Epoch 10/10, Errors: 0
```

NAND GATE TEST:

Input: [0 0], Predicted Output: 1
Input: [0 1], Predicted Output: 0
Input: [1 0], Predicted Output: 0
Input: [1 1], Predicted Output: 0

out: [1 1], Predicted Output: 0 => Epoch 4 부터 Error = 0

- 결정 경계 시각화

=> True

XOR GATE

- 예측한 결과

Epoch 1/10, Errors: 2 Epoch 2/10, Errors: 3 Epoch 3/10, Errors: 4 Epoch 4/10, Errors: 4 Epoch 5/10, Errors: 4 Epoch 6/10, Errors: 4 Epoch 7/10, Errors: 4 Epoch 8/10, Errors: 4 Epoch 9/10, Errors: 4 Epoch 10/10, Errors: 4

XOR GATE TEST:

Input: [0 0], Predicted Output: 1 Input: [0 1], Predicted Output: 1

Input: [0 1], Predicted Output: 0
Input: [1 1], Predicted Output: 0 => 예측한 결과와 실제 결과 사이에 **오류** 발생!!

- 결정 경계 시각화

단층 퍼셉트론 구조

```
class Perceptron:
   def __init__(self, input_size, lr=0.1, epochs=10): # lr: 학습률
                                       # 가중치 초기화
      self.weights = np.zeros(input_size)
      self.bias = 0
                                               # 바이어스 초기화
      self.lr = lr
      self.epochs = epochs
                                               # 학습 횟수
      self.errors = []
                                               # 학습 과정에서의 오류 저장
   def activation(self, x): # 이진 계단 함수
      return np.where(x > 0, 1, 0)
   def predict(self, x):
      linear_output = np.dot(x, self.weights) + self.bias # 선형 결합
                                           # 활성화 함수 통과
      return self.activation(linear_output)
   def train(self, x, y):
      for epoch in range(self.epochs):
          total_error = 0
          for xi, target in zip(x, y):
             prediction = self.predict(xi)
                                                    # 현재 예측
             update = self.lr * (target - prediction) # 가중치 조정량 계산
             self.weights += update * xi
                                         # 가중치 업데이트
             self.bias += update
                                                   # 바이어스 업데이트
             total_error += abs(target - prediction) # 오차 누적
          self.errors.append(total_error)
          print(f"Epoch {epoch+1}/{self.epochs}, Errors: {total_error}")
```

다층 퍼셉트론 구조

XOR gate 부연 설명

오류:

-Epoch 0

Input	Target	Prediction	Error	Update	
[0,0]	0	1	-1	w += 0, b -= 0.1	
[0,1]	1	1	0	no change	
[1,0]	1	1	0	no change	
[1,1]	0	1	-1	w -= 0.1, b -= 0.1	
Post als 1					

-Epoch 1

- [0, 0] → 0 (정답)
- [0, 1] → 1 (정답)
- [1, 0] → 1 (정답)
- $[1, 1] \rightarrow 0 \text{ or } 1 \text{ (} = \exists \text{ } \neg \text{FL } \text{ } \cap \text{SL} \text{)}$

-Epoch 2,3,4,...

비선형 => 가중치 계속 변화 => 불안정한 결과 도출

오류 원인:

단층 퍼셉트론은 입력 공간을 단 하나의 직선(또는 초평면)으로 나눌 수 있어야 학습 가능하다. 즉, [0,0]과 [1,1](input1, input2)의 결과는 0이고 [0,1], [1,0]은 1인데, 이 두 결과는 서로 다른 대각선에 위치한다. 그러므로 XOR GATE의 0과 1의 영역을 한 개의 선으로 구분하는 건 불가능하다.

결론: XOR GATE 를 단층 퍼셉트론으로 학습시키는 것은 불가능하다.

해결방안: 은닉층을 가지는 다층 퍼셉트론을 사용한다.

다층 퍼셉트론(MLP)이란?

구조: 입력층 → 은닉층(1개 이상) → 출력층

각 층(layer)은 여러 개의 노드(퍼셉트론)로 구성되며, 각 노드는 입력을 받아 가중치와 곱하고 합산한 뒤,비선형 활성화 함수를 거쳐 다음 층으로 전달하고 최종적으로 출력층에서 은닉층의 출력값을 선형 결합하여 결과를 도출해낸다.

항목	단층 퍼셉트론	다층 퍼셉트론 (MLP)
층 구조	입력층 → 출력층	입력층 → 은닉층 → 출력층
표현 가능성	선형 문제만 해결가능	비선형 문제 (XOR, etc.) 해결 가능
활성화 함수	계단 함수(혹은 선형)	비선형 함수 (ReLU, Sigmoid 등)
학습 알고리즘	간단한 퍼셉트론 학습 규칙	역전파 사용

다층 퍼셉트론(sigmoid)을 사용한 결과

- 예측한 결과

Epoch 1/10000, Loss: 0.283190
Epoch 1000/10000, Loss: 0.212605
Epoch 2000/10000, Loss: 0.057486
Epoch 3000/10000, Loss: 0.010708
Epoch 4000/10000, Loss: 0.004686
Epoch 5000/10000, Loss: 0.002788
Epoch 6000/10000, Loss: 0.001916
Epoch 7000/10000, Loss: 0.001430
Epoch 8000/10000, Loss: 0.001127
Epoch 9000/10000, Loss: 0.000921
Epoch 10000/10000, Loss: 0.000775

XOR 테스트 결과:

Input: [0 0], Predicted: 0.0197, Rounded: 0
Input: [0 1], Predicted: 0.9742, Rounded: 1
Input: [1 0], Predicted: 0.9700, Rounded: 1
Input: [1 1], Predicted: 0.0339, Rounded: 0

- 결정 경계 시각화

참고

ReLU: f(x)=max(0,x)

• 입력 X가 **양수**면: 그대로 출력

• 입력 x가 **0 이하**면: 0으로 출력

장점: 계산간단, 딥러닝에서 성능 우수, 일정한 기울기

단점: 음수 입력 항상 0(학습 도중 일부 뉴런이 비활성화될 수 있음), 미분 불연속

Sigmoid: $\sigma(x)=1/(1+e^{-(-x)})$

- 입력값이 클수록 (양수) → 출력은 1에 가까움
- 입력값이 작을수록 (음수) → 출력은 0에 가까움
- 입력값이 0이면 → 출력은 0.5

장점: 비선형성, 출력 범위 제한(0~1)

단점:

- 입력이 너무 크거나 작으면, 도함수가 0에 가까워져서 학습이 거의 되지 않음
- 중심이 $0.5 \rightarrow$ 출력값이 항상 양수 \rightarrow 학습 시 편향 발생 가능
- 지수함수 연산 필요 → ReLU에 비해 느릴 수 있음

역전파: 신경망이 오차(error)를 계산하고, 이를 바탕으로 가중치(weight)를 조정하는 알고리즘 "모델이 잘못된 출력을 냈을 때, 그 실수를 추적해서 어디서 잘못된 건지 역으로 거슬러 올라가며 가중치를 수정하는 방법"

출처

chat gpt

Minsky, Marvin & Papert, Seymour (1969). Perceptrons

Goodfellow, Bengio, Courville (2016). Deep Learning (MIT Press)

Glorot, Xavier, & Bengio (2010). "Understanding the difficulty of training deep feedforward neural networks" PyTorch & TensorFlow 공식 문서

Rumelhart, Hinton, and Williams (1986). "Learning representations by back-propagating errors" Michael Nielsen – Neural Networks and Deep Learning (2015)