6.006-Introduction to Algorithms

Lecture 8
Prof. Piotr Indyk

Menu

- Sorting!
 - Insertion Sort
 - Merge Sort
- Recurrences
 - Master theorem

The problem of sorting

Input: array A[1...n] of numbers.

Output: permutation B[1...n] of A such

that $B[1] \mathcal{L} B[2] \mathcal{L} \cdots \mathcal{L} B[n]$.

e.g.
$$A = [7, 2, 5, 5, 9.6] \rightarrow B = [2, 5, 5, 7, 9.6]$$

How can we do it efficiently?

Insertion sort

INSERTION-SORT $(A, n) \triangleright A[1 ... n]$ for $j \leftarrow 2$ to ninsert key A[j] into the (already sorted) sub-array A[1 ... j-1]. by pairwise key-swaps down to its right position

Illustration of iteration j

8 2 4 9 3 6

Running time? $\Theta(n^2)$

e.g. when input is A = [n, n - 1, n - 2, ..., 2, 1]

Meet Merge Sort

```
divide and conquer
```

Merge-Sort $A[1 \dots n]$

- 1. If n = 1, done (nothing to sort).
- 2. Otherwise, recursively sort A[1 ... n/2] and A[n/2+1...n].
- 3. "Merge" the two sorted sub-arrays.

Key subroutine: MERGE

20 12

13 11

7 9

2 1

```
20 12
```

13 11

7 9

Time = Q(n) to merge a total of n elements (linear time).

Analyzing merge sort

MERGE-SORT A[1 ... n]1. If n = 1, done. 2. Recursively sort $A[1 ... \lceil n/2 \rceil]$ 2. and $A[\lceil n/2 \rceil + 1 ... n]$. 3. "Merge" the two sorted lists O(n)

$$T(n) = \begin{cases} Q(1) \text{ if } n = 1; \\ 2T(n/2) + Q(n) \text{ if } n > 1. \end{cases}$$
 $T(n) = ?$

Recurrence solving

Solve
$$T(n) = 2T(n/2) + cn$$
, where $c > 0$ is constant.
$$T(n)$$

The master method

"One theorem to rule them all" (sort of)
The master method applies to recurrences of the form

```
where a^3 1, b > 1, and f is positive. where a^3 1, b > 1, and f is positive. combine results e.g. Mergesort: a=2, b=2, f(n)=O(n) e.g.2 Binary Search: a=1, b=2, f(n)=O(1) Basic Idea: Compare f(n) with n^{\log ba}.
```


Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = \Theta(n^{\log_b a e})$ for some constant e > 0.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^e factor).

cost of level $i = a^i f(n/b^i) = \mathbb{Q}(n^{\log_b a - \mathbf{e}} \cdot b^{i \cdot \mathbf{e}})$ so geometric increase of cost as we go deeper in the tree hence, leaf level cost dominates!

Solution: $T(n) = \mathbb{Q}(n^{\log_b a})$.

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 2. $f(n) = Q(n^{\log ba} \log^k n)$ for some constant k^3 0. f(n) and $n^{\log ba}$ grow at similar rates.
 - (cost of level i) = $a^{i}f(n/b^{i})$ = $Q(n^{\log_b a} \cdot \log^k(n/b^{i}))$ so all levels have about the same cost

Solution: $T(n) = \mathbb{Q}(n^{\log_b a} \log^{k+1} n)$.

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Theta(n^{\log_b a + e})$ for some constant e > 0.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^e factor).

(cost of level i) = $a^{i}f(n/b^{i})$ = $\mathbb{Q}(n^{\log b^{a+e}} \cdot b^{-i})$ so geometric decrease of cost as we go deeper in the tree hence, root cost dominates!

Solution: T(n) = Q(f(n)).

Examples

Ex.
$$T(n) = 2T(n/2) + 1$$

 $a = 2, b = 2 \Rightarrow n^{\log_b a} = n; f(n) = 1.$
Case 1: $f(n) = O(n^{1-e})$ for $e = 1$.
 $\therefore T(n) = Q(n).$

Ex.
$$T(n) = 2T(n/2) + n$$

 $a = 2, b = 2 \Rightarrow n^{\log_b a} = n; f(n) = n.$
Case 2: $f(n) = Q(n \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = Q(n \lg n)$.

Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
Case 3: $f(n) = W(n^{2+e})$ for $e = 1$.
 $\therefore T(n) = Q(n^3).$