Cluster Expansion

Solvers

Reculte

Conclusion and

Cluster Expansion of Thermal States using Tensor Networks

David Devoogdt

Faculty of Engineering and Architecture
Ghent University

June 20, 2021

Simulation

Cluster Expansion

Solvers

esults

Conclusion and

Introduction

Introduction

Overview Simulation

Cluster Expansion

Solvers

Results

- Overview condensed matter physics
 - Macroscopic and microscopic physical properties of matter
 - Metals
 - semiconductors
 - Liquids
 - Bose-Einstein Condensates
 - Magnets
 - Different disciplines
 - Experimental
 - Theoretical
 - Engineering

Introduction

Overview Simulation

Cluster Expansion

Solvers

Results

- Overview condensed matter physics
- Strongly correlated materials [1]
 - Superconductors
 - Quantum spin liquids
 - Strange metals
 - Correlated topological matter

Introduction

Overview Simulation

Cluster Expansion

Solvers

Results

- Overview condensed matter physics
- Strongly correlated materials
- How to proceed
 - Material synthesis and discovery
 - Analytical methods
 - Numerical methods

Simulating Quantum Many-body Systems

Introduction

Overview Simulation

Cluster Expansion

Solvers

Results

- Equations are known
- Curse of dimensionality
- Numerical methods
 - Exact diagonalisation
 - (post-) Hartree Fock methods, DFT methods
 - Monte Carlo methods
 - Tensor Networks

Tensor Networks

Introduction

Overview Simulation

Cluster Expansion

Solvers

Results

$$|\Psi\rangle = \sum_{i_1, \dots, i_n} C^{i_1 i_2 \dots i_n} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_n\rangle.$$
 (1)

- MPS
- Relevant corner Hilbert space

Operator exponential

Introduction

Simulation

Cluster Expansion

Solvers

Results

Conclusion and Outlook ■ (Real) Time evolution:

$$\hat{O} = e^{-\frac{i\hat{H}t}{\hbar}} \qquad (3)$$

Statistical ensembles:

$$\hat{O} = rac{e^{-eta H}}{\mathsf{Tr}ig(e^{-eta \hat{H}}ig)}$$
 (4)

(5)

Cluster Expansion

Solvers

Results

Conclusion and

Cluster Expansion

Introductio

Cluster Expansion

Solvers

Results

Conclusion and

Introduction

 ${\sf Cluster} \,\, {\sf Expansion}$

Solvers

Results

- Finite number of blocks
- Encoded by 1 tensor

$$O^{abcd} = \begin{array}{c|c} & b & i_c \\ \hline & j_d & \end{array}$$
 (6)

$$0^{0010} = \bigcirc \boxed{1} \qquad (7)$$

Introduction

Cluster Expansion

Solvers

Results

Introduction

Cluster Expansion

Solvers

Results

- Multiple choices for encoding
- Doesn't break symmetry
- Thermodynamic limit
- Tensor Network toolbox

Solvers

onlinear Solv

sults

Conclusion an Outlook

Solvers

Linear solver

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

Conclusion and

- Invert leg per leg
- Pseuodinverse

Linear Solver: Applicability

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

Conclusion and

Nonlinear Solver

Introduction

Cluster Expansion

Solvers

Linear Solve

Nonlinear Solver

Sequential Linear Solver

Results

Conclusion and Outlook

- Nonlinear least squares
- Jacobian
- Permutations

(9)

Sequential Linear Solver

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

- Based on linear solver
- Sweep over unknown tensors
- Permutations

Cluster Expansion

Solvers

Results

1D exact

2D exact

2D Transvers model

Conclusion ar Outlook

Results

1D: Cluster expansions

Introductior

Cluster Expansion

Solvers

Results

1D exact

2D exact

2D Transverse Ising

Conclusion and Outlook Relative error ϵ

■ Different encodings blocks

A: small bond dimension

■ E: no spurious blocks

F: well conditioned

χ				
		Encoding A E/F		
Order	3	5	10	
	5	21	42	
	7	85	170	

1D: Transverse Field Ising

1D exact

1D: Heisenberg XXX

1D exact

2D: Cluster expansions

- Introduction
- Cluster Expansion
- Solvers

10 . . .

ID exact

2D exact

2D Transverse Ising

- Relative error ϵ
- Encodings based on A (order 5)

	χ
no loops	21
loops	27
extensions	43

2D: TFI

Introduction

Cluster Expansion

Solvers

10

2D exact

2D Transverse Ising

TFI: Phase Diagram

Criticality

 $\Gamma = 0$ and

 $\Gamma = 2.5$

Cluster Expansion

Solvers

Resul

10

ID CAUC

2D Transverse Ising model

Figure taken from [2] \rightarrow

2D: Classical Ising

Introduction

Cluster Expansion

Solvers

Daniela

1D evac

20 ----

2D Transverse Ising model

2D: TFI $\Gamma = 2.5$

Cluster Expansion

Solvers

501761.

ID exac

2D Transw

2D Transverse Ising model

Conclusion and Outlook

Data from [3]

Cluster Expansion

Solvers

Results

Conclusion and Outlook

Conclusion

Introductior

Cluster Expansion

Solvers

Results

- Construction fast and stable
- Cluster expansions work well in 1D and 2D
- Real time evolution

Outlook

ntroduction

Solvers

Results

- 3D?
- Internal symmetries

References I

Introduction

Cluster Expansion

Solvers

Results

Conclusion and Outlook

A. Alexandradinata, N. P. Armitage, A. Baydin, W. Bi, Y. Cao, H. J. Changlani, E. Chertkov, E. H. d. S. Neto, L. Delacretaz, I. E. Baggari, G. M. Ferguson, W. J. Gannon, S. A. A. Ghorashi, B. H. Goodge, O. Goulko, G. Grissonnanche, A. Hallas, I. M. Haves, Y. He, E. W. Huang, A. Kogar, D. Kumah, J. Y. Lee, A. Legros, F. Mahmood, Y. Maximenko, N. Pellatz, H. Polshyn, T. Sarkar, A. Scheie, K. L. Sevler. Z. Shi, B. Skinner, L. Steinke, K. Thirunavukkuarasu, T. V. Trevisan, M. Vogl, P. A. Volkov, Y. Wang, Y. Wang, D. Wei, K. Wei, S. Yang, X. Zhang, Y.-H. Zhang, L. Zhao, A. Zong, The Future of the Correlated Electron Problem (oct 2020). arXiv:2010.00584. URL http://arxiv.org/abs/2010.00584

References II

Introduction

Cluster Expansion

Solvers

Results

Conclusion and Outlook

S. Hesselmann, S. Wessel, Thermal Ising transitions in the vicinity of two-dimensional quantum critical points, PHYSICAL REVIEW B 93 (2016) 155157.

doi:10.1103/PhysRevB.93.155157.

P. Czarnik, P. Corboz, Finite correlation length scaling with infinite projected entangled pair states at finite temperature, Physical Review B 99 (2019) 245107.

doi:10.1103/PhysRevB.99.245107.

Tensor Networks

Linear Solver

Construction

_ 20

Tensor Networks

Tensor Networks: Introduction

$$|\Psi\rangle = \sum_{i_1 i_2 \cdots i_n} C^{i_1 i_2 \cdots i_n} |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_n\rangle.$$
 (10)

$$i_1 i_2 \cdots i_n$$

$$C^{i_1 i_2 \cdots i_n} = Tr(C^{i_1} C^{i_2} \cdots C^{i_n} M). \tag{11}$$

Tensor Networks: Graphical Notation

Tensor Networks

Linear Solver

Construction

 $\Gamma = 2.9$

conventional	Einstein	tensor notation
\vec{x}	x_{α}	<u>x</u> —
М	$M_{lphaeta}$	<u> </u>
$\vec{x}\cdot\vec{y}$	$x_{\alpha}y_{\alpha}$	(x)—(y)

Tensor Networks: MPS

Tensor Networks

Linear Solver

Construction

$$\Gamma = 2.9$$

Tensor Networks: Operators

Tensor Networks

Linear Solver

Construction

$$\Gamma = 2.9$$

$$\hat{O} = \cdots \qquad (14)$$

$$\hat{O} |\Psi\rangle =$$
 ... χ ... χ ... χ ... χ ... χ ...

(15)

Tensor Networks

Linear Solver

Construction

_ 2 9

Linear Solver

Tensor Networks

Linear Solver

Construction

Tensor Networks

Linear Solver

Construction

- Invert A^i separately
 - Fast
 - Numerically unstable

Tensor Networks

Linear Solver

Construction

- Invert A^i separately
 - Fast
 - Numerically unstable

Tensor Networks

Linear Solver

Construction

- Invert A^i separately
- Full inversion
 - Slow
 - Stable for pseudoinverse

Tensor Networks

Linear Solver

Construction

- Invert Aⁱ separately
- Full inversion
- Sparse full inversion

$$A^i = U^i \Sigma^i V^{i\dagger}$$

Tensor Networks

Linear Solver

Construction

Constituction

1D

2D

 $\Gamma = 2.9$

Construction

Notation

Construction

(17)

Construction

$$\bigcirc \frac{1}{}\bigcirc = \exp{-\beta H}(\bigcirc --\bigcirc)$$

 $\bigcirc = \exp(-\beta H(\bigcirc))$

(19)

(20)

Tensor Network

Linear Solve

. . .

Construction

1D

2D

$$\Gamma = 2.9$$

Construction

 $\bigcirc \frac{1}{} \bigcirc \frac{1}{} \bigcirc = \exp{-\beta H} (\bigcirc - \bigcirc)$

(21)

Construction

◆□ > ◆□ > ◆ = > ◆ = | = り < ○</p>

(21)

1D: Variant A

 \bigcirc $\frac{1}{\bigcirc}$ \bigcirc $\frac{2}{\bigcirc}$ \bigcirc $\frac{1}{\bigcirc}$

(22a)

(22b)

(22c)

(22d)

(22e)

1D: Variant E

Tensor Networ

inear Solve

Canataniation

1D

2D

C

$$\frac{1}{2'}$$

(23a)

(23b)

(23c)

(23d)

(23e)

1D: Variant F

$$\bigcirc \frac{1'}{\bigcirc} + \bigcirc \frac{1}{\bigcirc} \bigcirc$$

$$-0+0$$

$$\bigcirc$$
1

$$\bigcirc \frac{1}{\bigcirc} \bigcirc \frac{2}{\bigcirc} \bigcirc \frac{1}{\bigcirc} \bigcirc +$$

(24a)

(24b)

(24c)

(24d)

(24e)

$$\Gamma = 2.9$$

$$D^{0000} = \frac{0}{|j_0|} |i_0| = 0$$
 (25)

 \bigcirc 1

Construction

1D

2D: Linear Blocks

(26c)

(26a)

(26b)

2D: Nonlinear Blocks

Tensor Network

_inear Solve

. . .

1D

2D

(27)

 β^{α}

(28)

$$\Gamma = 2.9$$

$$\Gamma = 2.9$$

Tensor Networks
Linear Solver

