Ames Residential Sales Price Prediction

Data Triad Team

The objective of this project is to develop a robust deep learning model on this data, that can help determine from residential information of the Ames, IA neighborhoods the sale price for a house or property.

Data Set

The first step will be to analyze and understan the data we are working with to determine what type of changes should be made in order to make the model more efficient.

In [1]: pip install shap

```
ckages (0.45.1)
       Requirement already satisfied: numpy in /opt/anaconda3/lib/python3.11/site-p
       ackages (from shap) (1.26.4)
       Requirement already satisfied: scipy in /opt/anaconda3/lib/python3.11/site-p
       ackages (from shap) (1.11.4)
       Requirement already satisfied: scikit-learn in /opt/anaconda3/lib/python3.1
       1/site-packages (from shap) (1.2.2)
       Requirement already satisfied: pandas in /opt/anaconda3/lib/python3.11/site-
       packages (from shap) (2.1.4)
       Requirement already satisfied: tqdm>=4.27.0 in /opt/anaconda3/lib/python3.1
       1/site-packages (from shap) (4.65.0)
       Requirement already satisfied: packaging>20.9 in /opt/anaconda3/lib/python3.
       11/site-packages (from shap) (23.1)
       Requirement already satisfied: slicer==0.0.8 in /opt/anaconda3/lib/python3.1
       1/site-packages (from shap) (0.0.8)
       Requirement already satisfied: numba in /opt/anaconda3/lib/python3.11/site-p
       ackages (from shap) (0.59.0)
       Requirement already satisfied: cloudpickle in /opt/anaconda3/lib/python3.11/
       site-packages (from shap) (2.2.1)
       Requirement already satisfied: llvmlite<0.43,>=0.42.0dev0 in /opt/anaconda3/
       lib/python3.11/site-packages (from numba->shap) (0.42.0)
       Requirement already satisfied: python-dateutil>=2.8.2 in /opt/anaconda3/lib/
       python3.11/site-packages (from pandas->shap) (2.8.2)
       Requirement already satisfied: pytz>=2020.1 in /opt/anaconda3/lib/python3.1
       1/site-packages (from pandas->shap) (2023.3.post1)
       Requirement already satisfied: tzdata>=2022.1 in /opt/anaconda3/lib/python3.
       11/site-packages (from pandas->shap) (2023.3)
       Requirement already satisfied: joblib>=1.1.1 in /opt/anaconda3/lib/python3.1
       1/site-packages (from scikit-learn->shap) (1.2.0)
       Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/anaconda3/lib/py
       thon3.11/site-packages (from scikit-learn->shap) (2.2.0)
       Requirement already satisfied: six>=1.5 in /opt/anaconda3/lib/python3.11/sit
       e-packages (from python-dateutil>=2.8.2->pandas->shap) (1.16.0)
       Note: you may need to restart the kernel to use updated packages.
In [2]: import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import numpy as np
        import math
        sns.set_theme(color_codes=True)
        import warnings
        warnings.filterwarnings("ignore")
In [3]: df = pd.read csv("90 percent sample.csv", delimiter=",")
In [4]: pd.set option("display.max columns", None)
        df.head()
```

Requirement already satisfied: shap in /opt/anaconda3/lib/python3.11/site-pa

Out[4]:		MS_SubClass	MS_Zoning	Lot_Frontage	Lot_
	0	Two_Story_1945_and_Older	Residential_Medium_Density	0	
	1	Two_Story_PUD_1946_and_Newer	Residential_Medium_Density	21	
	2	Two_Story_1946_and_Newer	Residential_Low_Density	62	
	3	One_Story_1946_and_Newer_All_Styles	Residential_Low_Density	60	
	4	One_Story_1945_and_Older	Residential_Medium_Density	50	
In [5]:	df	.info()			

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2637 entries, 0 to 2636
Data columns (total 81 columns):

#	Column	Non-Null Count	Dtype
0	MS_SubClass	2637 non-null	object
1	MS_Zoning	2637 non-null	object
2	Lot_Frontage	2637 non-null	int64
3	Lot_Area	2637 non-null	int64
4	Street	2637 non-null	object
5	Alley	2637 non-null	object
6	Lot_Shape	2637 non-null	object
7	Land_Contour	2637 non-null	object
8	Utilities	2637 non-null	object
9	Lot_Config	2637 non-null	object
10	Land_Slope	2637 non-null	object
11	Neighborhood	2637 non-null	object
12	Condition_1	2637 non-null	object
13	Condition_2	2637 non-null	object
14	Bldg_Type	2637 non-null	object
15	House_Style	2637 non-null	object
16	Overall_Qual	2637 non-null	object
17	Overall_Cond	2637 non-null	object
18	Year_Built	2637 non-null	int64
19	Year_Remod_Add	2637 non-null	int64
20	Roof_Style	2637 non-null	object
21	Roof_Matl	2637 non-null	object
22	Exterior_1st	2637 non-null	object
23	Exterior_2nd	2637 non-null	object
24	Mas_Vnr_Type	1045 non-null	object
25	Mas_Vnr_Area	2637 non-null	int64
26	Exter_Qual	2637 non-null	object
27	Exter_Cond	2637 non-null	object
28	Foundation	2637 non-null	object
29	Bsmt_Qual	2637 non-null	object
30	Bsmt_Cond	2637 non-null	object
31	Bsmt_Exposure	2637 non-null	object
32	BsmtFin_Type_1	2637 non-null	object
33	BsmtFin_SF_1	2637 non-null	int64
34	BsmtFin_Type_2	2637 non-null	object
35	BsmtFin_SF_2	2637 non-null	int64
36	Bsmt_Unf_SF	2637 non-null	int64
37	Total_Bsmt_SF	2637 non-null	int64
38	Heating	2637 non-null	object
39	Heating_QC	2637 non-null	object
40	Central_Air	2637 non-null	object
41	Electrical	2637 non-null	object
42	First_Flr_SF	2637 non-null	int64
43	Second_Flr_SF	2637 non-null	int64
44	Low_Qual_Fin_SF	2637 non-null	int64
45	Gr_Liv_Area	2637 non-null	int64
46	Bsmt_Full_Bath	2637 non-null	int64
47	Bsmt_Half_Bath	2637 non-null	int64
48	Full_Bath	2637 non-null	int64
49	Half_Bath	2637 non-null	int64
50	Bedroom_AbvGr	2637 non-null	int64

```
51 Kitchen_AbvGr
                               2637 non-null
                                              int64
       52 Kitchen_Qual
                               2637 non-null
                                              object
       53 TotRms AbvGrd
                               2637 non-null
                                              int64
       54 Functional
                               2637 non-null
                                              object
       55 Fireplaces
                               2637 non-null
                                              int64
       56 Fireplace_Qu
                               2637 non-null
                                              object
       57 Garage_Type
                               2637 non-null
                                              object
       58 Garage_Finish
                               2637 non-null
                                              object
       59 Garage Cars
                               2637 non-null
                                              int64
       60 Garage_Area
                               2637 non-null
                                              int64
       61 Garage_Qual
                               2637 non-null
                                              object
       62 Garage Cond
                               2637 non-null
                                              object
       63 Paved_Drive
                               2637 non-null
                                              object
       64 Wood_Deck_SF
                               2637 non-null
                                              int64
       65 Open Porch SF
                               2637 non-null
                                              int64
       66 Enclosed_Porch
                               2637 non-null
                                              int64
       67 Three_season_porch 2637 non-null
                                              int64
       68 Screen_Porch
                               2637 non-null
                                              int64
       69 Pool Area
                               2637 non-null
                                              int64
       70 Pool QC
                               2637 non-null
                                              object
       71 Fence
                               2637 non-null
                                              object
       72 Misc_Feature
                                              object
                               97 non-null
       73 Misc_Val
                               2637 non-null
                                              int64
       74 Mo_Sold
                               2637 non-null
                                              int64
       75 Year_Sold
                               2637 non-null
                                              int64
       76 Sale_Type
                               2637 non-null
                                              object
       77 Sale_Condition
                               2637 non-null
                                              object
       78 Sale Price
                               2637 non-null
                                              int64
       79 Longitude
                               2637 non-null
                                              float64
       80 Latitude
                               2637 non-null
                                              float64
       dtypes: float64(2), int64(33), object(46)
      memory usage: 1.6+ MB
In [6]: df.isnull().sum()
Out[6]: MS SubClass
                         0
        MS_Zoning
                          0
        Lot_Frontage
                         0
        Lot_Area
                         0
        Street
                         0
                         . .
        Sale Type
                         0
        Sale_Condition
                         0
        Sale Price
                         0
        Longitude
                         0
        Latitude
        Length: 81, dtype: int64
```

Exploratory Data Analysis

```
In [7]: #Change data on Overall Quality and Overall Condition column to avoid incons

df['Overall_Qual'] = df['Overall_Qual'].replace({
    'Very_Poor': 1,
    'Poor': 2,
```

```
'Fair': 3,
    'Below_Average': 4,
    'Average': 5,
    'Above_Average': 6,
    'Good': 7,
    'Very_Good': 8,
    'Excellent': 9,
    'Very_Excellent': 10
})
df['Overall_Cond'] = df['Overall_Cond'].replace({
    'Very_Poor': 1,
    'Poor': 2,
    'Fair': 3,
    'Below_Average': 4,
    'Average': 5,
    'Above_Average': 6,
    'Good': 7,
    'Very_Good': 8,
    'Excellent': 9,
    'Very_Excellent': 10
})
```

```
Out[8]:
                                  MS_SubClass
                                                               MS_Zoning Street
                                                                                            G
         0
                      Two_Story_1945_and_Older Residential_Medium_Density
                                                                             Pave
         1
                 Two_Story_PUD_1946_and_Newer Residential_Medium_Density
                                                                             Pave No_Alley_Ac
         2
                      Two_Story_1946_and_Newer
                                                    Residential_Low_Density
                                                                             Pave No_Alley_Ac
         3 One_Story_1946_and_Newer_All_Styles
                                                    Residential_Low_Density
                                                                             Pave No_Alley_Ac
         4
                      One_Story_1945_and_Older Residential_Medium_Density
                                                                             Pave No_Alley_Ac
```

```
In [9]: #Numerical Data Selection
df_numerical = df[[
    "Lot_Frontage", "Lot_Area", 'Overall_Qual' , 'Overall_Cond', 'Year_Built
    'Year_Remod_Add', 'Mas_Vnr_Area', 'BsmtFin_SF_1', 'BsmtFin_SF_2', 'Bsmt_
    'Total_Bsmt_SF', 'First_Flr_SF', 'Second_Flr_SF', 'Low_Qual_Fin_SF',
    'Gr_Liv_Area', 'Bsmt_Full_Bath', 'Bsmt_Half_Bath', 'Full_Bath',
    'Half_Bath', 'Bedroom_AbvGr', 'Kitchen_AbvGr', 'TotRms_AbvGrd',
    'Fireplaces', 'Garage_Cars', 'Garage_Area', 'Wood_Deck_SF',
```

```
'Open_Porch_SF', 'Enclosed_Porch', 'Three_season_porch', 'Screen_Porch',
    'Pool_Area', 'Misc_Val', 'Sale_Price', 'Longitude', 'Latitude', 'Mo_Solc
]]

df_numerical.head()
```

Out[9]: Lot_Frontage Lot_Area Overall_Qual Overall_Cond Year_Built Year_Remod_Add 0 0 5100 8 7 1925 1996 1 21 1890 6 7 1972 1972 7 2 62 7162 2003 2004 5 60 8070 1994 1995 3 4 5 4 50 7000 6 8 1998 1926

```
In [10]: from sklearn import preprocessing
          # List of categorical columns
          categorical_columns = [
              'MS_SubClass', 'MS_Zoning', 'Street', 'Alley', 'Lot_Shape', 'Land_Contol
              'Utilities', 'Lot_Config', 'Land_Slope', 'Neighborhood', 'Condition_1',
              'Condition_2', 'Bldg_Type', 'House_Style', 'Roof_Style', 'Roof_Matl',
              'Exterior_1st', 'Exterior_2nd', 'Mas_Vnr_Type', 'Exter_Qual', 'Exter_Cor
              'Foundation', 'Bsmt_Qual', 'Bsmt_Cond', 'Bsmt_Exposure', 'BsmtFin_Type_1
              'BsmtFin_Type_2', 'Heating', 'Heating_QC', 'Central_Air', 'Electrical',
              'Kitchen_Qual', 'Functional', 'Fireplace_Qu', 'Garage_Type', 'Garage_Fir'Garage_Qual', 'Garage_Cond', 'Paved_Drive', 'Pool_QC', 'Fence',
              'Misc_Feature', 'Sale_Type', 'Sale_Condition'
          # Apply LabelEncoder to each column and show before/after values
          for col in categorical_columns:
              # Display original values
              print(f"Original values in '{col}':", df[col].unique())
              # Fit and transform the column
              label encoder = preprocessing.LabelEncoder()
              df[col] = label_encoder.fit_transform(df[col])
              # Display encoded values
              print(f"Encoded values in '{col}':", df[col].unique())
              print('-' * 40)
```

```
Original values in 'MS_SubClass': ['Two_Story_1945_and_Older' 'Two_Story_PUD
1946 and Newer'
 'Two Story 1946 and Newer' 'One Story 1946 and Newer All Styles'
 'One_Story_1945_and_Older' 'One_Story_PUD_1946_and_Newer'
 'Duplex_All_Styles_and_Ages' 'Two_Family_conversion_All_Styles_and_Ages'
 'Split or Multilevel' 'Split Foyer'
 'One and Half Story Finished All Ages'
 'One_and_Half_Story_Unfinished_All_Ages' 'Two_and_Half_Story_All_Ages'
 'PUD Multilevel Split Level Foyer'
 'One Story with Finished Attic All Ages'
 'One_and_Half_Story_PUD_All_Ages']
Encoded values in 'MS SubClass': [12 14 13 2 1 3 0 11 10 9 5 7 15 8
4 61
Original values in 'MS Zoning': ['Residential Medium Density' 'Residential L
ow Density'
'Residential_High_Density' 'Floating_Village_Residential' 'C_all' 'I_all'
 'A agr']
Encoded values in 'MS_Zoning': [6 5 4 2 1 3 0]
Original values in 'Street': ['Pave' 'Grvl']
Encoded values in 'Street': [1 0]
Original values in 'Alley': ['Gravel' 'No_Alley_Access' 'Paved']
Encoded values in 'Alley': [0 1 2]
Original values in 'Lot_Shape': ['Regular' 'Slightly_Irregular' 'Irregular'
'Moderately Irregular']
Encoded values in 'Lot Shape': [2 3 0 1]
_____
Original values in 'Land_Contour': ['Lvl' 'Bnk' 'HLS' 'Low']
Encoded values in 'Land_Contour': [3 0 1 2]
_____
Original values in 'Utilities': ['AllPub' 'NoSewr']
Encoded values in 'Utilities': [0 1]
Original values in 'Lot Config': ['Inside' 'FR2' 'CulDSac' 'Corner' 'FR3']
Encoded values in 'Lot Config': [4 2 1 0 3]
_____
Original values in 'Land_Slope': ['Gtl' 'Mod' 'Sev']
Encoded values in 'Land_Slope': [0 1 2]
_____
Original values in 'Neighborhood': ['Old_Town' 'Briardale' 'Edwards' 'Colleg
e Creek' 'Iowa DOT and Rail Road'
 'Gilbert' 'Blueste' 'Northpark_Villa' 'Sawyer' 'Northridge_Heights'
 'Northwest_Ames' 'Meadow_Village' 'North_Ames' 'Sawyer_West' 'Timberland'
 'Bloomington_Heights' 'Somerset' 'Brookside' 'Stone_Brook' 'Clear_Creek'
 'Crawford' 'Mitchell' 'Northridge'
 'South_and_West_of_Iowa_State_University' 'Veenker' 'Greens' 'Landmark'
 'Green Hills'l
Encoded values in 'Neighborhood': [20 2 7 5 11 8 1 16 21 18 19 13 15 22
26 0 23 3 25 4 6 14 17 24
27 10 12 9]
Original values in 'Condition_1': ['Norm' 'PosA' 'Artery' 'Feedr' 'RRAn' 'Po
sN' 'RRAe' 'RRNn' 'RRNe']
```

```
Encoded values in 'Condition_1': [2 3 0 1 6 4 5 8 7]
Original values in 'Condition 2': ['Norm' 'Artery' 'PosA' 'Feedr' 'RRNn' 'Po
sN' 'RRAe' 'RRAn']
Encoded values in 'Condition_2': [2 0 3 1 7 4 5 6]
Original values in 'Bldg_Type': ['OneFam' 'Twnhs' 'TwnhsE' 'Duplex' 'TwoFmCo
n'l
Encoded values in 'Bldg Type': [1 2 3 0 4]
Original values in 'House_Style': ['Two_Story' 'One_Story' 'SLvl' 'SFoyer'
'One and Half Fin'
'One_and_Half_Unf' 'Two_and_Half_Unf' 'Two_and_Half_Fin']
Encoded values in 'House Style': [5 0 4 3 1 2 7 6]
______
Original values in 'Roof_Style': ['Hip' 'Gable' 'Gambrel' 'Mansard' 'Flat'
Encoded values in 'Roof_Style': [3 1 2 4 0 5]
_____
Original values in 'Roof Matl': ['CompShq' 'Tar&Grv' 'Roll' 'WdShnql' 'WdSha
ke' 'ClyTile' 'Membran'
 'Metal'l
Encoded values in 'Roof_Matl': [1 5 4 7 6 0 2 3]
Original values in 'Exterior_1st': ['Stucco' 'HdBoard' 'VinylSd' 'Plywood'
'MetalSd' 'CemntBd' 'Wd Sdng'
'BrkFace' 'AsbShng' 'WdShing' 'BrkComm' 'Stone' 'PreCast' 'AsphShn'
'ImStucc' 'CBlock']
Encoded values in 'Exterior 1st': [12 6 13 9 8 5 14 3 0 15 2 11 10 1
7 4]
Original values in 'Exterior_2nd': ['Wd Shng' 'HdBoard' 'Stucco' 'VinylSd'
'Brk Cmn' 'MetalSd' 'Plywood'
'CmentBd' 'Wd Sdng' 'BrkFace' 'AsbShng' 'Other' 'ImStucc' 'Stone'
'AsphShn' 'PreCast' 'CBlock']
Encoded values in 'Exterior 2nd': [16 6 13 14 2 8 10 5 15 3 0 9 7 12
1 11 41
Original values in 'Mas_Vnr_Type': [nan 'BrkFace' 'Stone' 'BrkCmn' 'CBlock']
Encoded values in 'Mas_Vnr_Type': [4 1 3 0 2]
_____
Original values in 'Exter_Qual': ['Typical' 'Good' 'Excellent' 'Fair']
Encoded values in 'Exter Qual': [3 2 0 1]
______
Original values in 'Exter_Cond': ['Good' 'Typical' 'Fair' 'Excellent' 'Poo
r'l
Encoded values in 'Exter Cond': [2 4 1 0 3]
Original values in 'Foundation': ['PConc' 'CBlock' 'BrkTil' 'Slab' 'Stone'
'Wood'l
Encoded values in 'Foundation': [2 1 0 3 4 5]
Original values in 'Bsmt Qual': ['Typical' 'Good' 'Fair' 'Excellent' 'No Bas
ement' 'Poor']
Encoded values in 'Bsmt Qual': [5 2 1 0 3 4]
```

```
Original values in 'Bsmt_Cond': ['Typical' 'Good' 'Fair' 'No_Basement' 'Poo
r' 'Excellent']
Encoded values in 'Bsmt Cond': [5 2 1 3 4 0]
Original values in 'Bsmt_Exposure': ['No' 'Av' 'Gd' 'Mn' 'No_Basement']
Encoded values in 'Bsmt_Exposure': [3 0 1 2 4]
Original values in 'BsmtFin_Type_1': ['Unf' 'ALQ' 'GLQ' 'Rec' 'BLQ' 'LwQ' 'N
o Basement']
Encoded values in 'BsmtFin_Type_1': [6 0 2 5 1 3 4]
Original values in 'BsmtFin Type 2': ['Unf' 'GLQ' 'Rec' 'LwQ' 'No Basement'
'BL0' 'AL0'l
Encoded values in 'BsmtFin Type 2': [6 2 5 3 4 1 0]
Original values in 'Heating': ['GasA' 'Grav' 'GasW' 'Wall' 'OthW' 'Floor']
Encoded values in 'Heating': [1 3 2 5 4 0]
_____
Original values in 'Heating_QC': ['Fair' 'Excellent' 'Typical' 'Good' 'Poo
r'l
Encoded values in 'Heating_QC': [1 0 4 2 3]
Original values in 'Central_Air': ['Y' 'N']
Encoded values in 'Central_Air': [1 0]
_____
Original values in 'Electrical': ['SBrkr' 'FuseA' 'FuseF' 'Unknown' 'FuseP'
Encoded values in 'Electrical': [4 0 1 5 2 3]
Original values in 'Kitchen_Qual': ['Good' 'Typical' 'Fair' 'Excellent' 'Poo
r'l
Encoded values in 'Kitchen Qual': [2 4 1 0 3]
_____
Original values in 'Functional': ['Typ' 'Min2' 'Maj1' 'Min1' 'Mod' 'Maj2' 'S
al' 'Sev'l
Encoded values in 'Functional': [7 3 0 2 4 1 5 6]
Original values in 'Fireplace Qu': ['Good' 'No Fireplace' 'Typical' 'Fair'
'Poor' 'Excellent']
Encoded values in 'Fireplace_Qu': [2 3 5 1 4 0]
Original values in 'Garage_Type': ['Detchd' 'BuiltIn' 'No_Garage' 'Attchd'
'CarPort' 'Basment'
'More Than Two Types']
Encoded values in 'Garage_Type': [4 2 6 0 3 1 5]
Original values in 'Garage_Finish': ['Unf' 'Fin' 'No_Garage' 'RFn']
Encoded values in 'Garage Finish': [3 0 1 2]
Original values in 'Garage Qual': ['Typical' 'No Garage' 'Fair' 'Good' 'Poo
r' 'Excellent']
Encoded values in 'Garage_Qual': [5 3 1 2 4 0]
Original values in 'Garage_Cond': ['Typical' 'No_Garage' 'Fair' 'Poor' 'Goo
d' 'Excellent'l
Encoded values in 'Garage Cond': [5 3 1 4 2 0]
```

```
Original values in 'Paved_Drive': ['Paved' 'Partial_Pavement' 'Dirt_Gravel']
        Encoded values in 'Paved_Drive': [2 1 0]
        _____
       Original values in 'Pool_QC': ['No_Pool' 'Fair' 'Excellent' 'Good' 'Typica
        1'1
        Encoded values in 'Pool QC': [3 1 0 2 4]
        Original values in 'Fence': ['Minimum_Privacy' 'No_Fence' 'Good_Privacy' 'Go
       od Wood'
        'Minimum_Wood_Wire']
        Encoded values in 'Fence': [2 4 0 1 3]
        _____
        Original values in 'Misc Feature': [nan 'Shed' 'TenC' 'Gar2' 'Elev' 'Othr']
        Encoded values in 'Misc_Feature': [5 3 4 1 0 2]
       Original values in 'Sale_Type': ['WD ' 'New' 'COD' 'ConLw' 'ConLD' 'Oth' 'Co
        nLI' 'VWD' 'CWD' 'Con']
        Encoded values in 'Sale Type': [9 6 0 5 3 7 4 8 1 2]
       Original values in 'Sale_Condition': ['Normal' 'Partial' 'Family' 'Abnorml'
        'AdjLand' 'Alloca']
        Encoded values in 'Sale_Condition': [4 5 3 0 1 2]
In [11]: X = df.drop('Sale_Price', axis=1)
        y = df['Sale_Price']
         Linear Regression
In [12]: from sklearn.model_selection import train_test_split
         from sklearn.metrics import accuracy score
         X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3,randc
In [13]: from sklearn.linear_model import LinearRegression
         from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_scor
         # Step 3: Initialize and train the Linear Regression model
         lr = LinearRegression()
         lr.fit(X train, y train)
         # Step 4: Make predictions on the test set
         y pred = lr.predict(X test)
         # Step 5: Calculate performance metrics on the test set
         mae = mean_absolute_error(y_test, y_pred)
         mse = mean_squared_error(y_test, y_pred)
         r2 = r2_score(y_test, y_pred)
         print(f'Mean Absolute Error on Test Set: {mae:.2f}')
         print(f'Mean Squared Error on Test Set: {mse:.2f}')
         print(f'R-squared on Test Set: {r2:.2f}')
       Mean Absolute Error on Test Set: 19787.26
```

Mean Squared Error on Test Set: 19787.26

Mean Squared Error on Test Set: 1370465347.08

R-squared on Test Set: 0.80

SVM

```
In [14]: import pandas as pd
         from sklearn.model_selection import train_test_split, GridSearchCV
         from sklearn.svm import SVR
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics import mean absolute error, mean squared error, r2 scor
         # Step 3: Scale the features
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
         # Step 4: Initialize the SVR model with the RBF kernel
         svr = SVR(kernel='rbf')
         # Step 5: Define the hyperparameter grid for tuning
         param_grid = {
             'C': [0.1, 1, 10, 100],
              'epsilon': [0.01, 0.1, 0.2, 0.5],
             'gamma': ['scale', 'auto']
         }
         # Step 6: Use GridSearchCV for hyperparameter tuning
         grid_search = GridSearchCV(svr, param_grid, cv=5, scoring='r2', n_jobs=-1)
         grid search.fit(X train scaled, y train)
         # Step 7: Get the best model from GridSearchCV
         best_svr = grid_search.best_estimator_
         # Step 8: Make predictions on the test set
         y pred = best svr.predict(X test scaled)
         # Step 9: Calculate performance metrics on the test set
         mae = mean_absolute_error(y_test, y_pred)
         mse = mean_squared_error(y_test, y_pred)
         r2 = r2_score(y_test, y_pred)
         print(f'Best Hyperparameters: {grid search.best params }')
         print(f'Mean Absolute Error on Test Set: {mae:.2f}')
         print(f'Mean Squared Error on Test Set: {mse:.2f}')
         print(f'R-squared on Test Set: {r2:.2f}')
        Best Hyperparameters: {'C': 100, 'epsilon': 0.01, 'gamma': 'auto'}
        Mean Absolute Error on Test Set: 52113.54
        Mean Squared Error on Test Set: 6361710220.17
        R-squared on Test Set: 0.08
```

Decision Tree

```
In [15]: from sklearn.tree import DecisionTreeRegressor
# Use 'squared_error' for the criterion
```

```
regressor = DecisionTreeRegressor(criterion='squared_error', max_depth=3, re
         # Fit the model
         regressor.fit(X_train, y_train)
         # Make predictions
         y_pred = regressor.predict(X_test)
In [16]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_scor
         mae = mean_absolute_error(y_test, y_pred)
         mse = mean_squared_error(y_test, y_pred)
         rmse = mean_squared_error(y_test, y_pred, squared=False)
         r2 = r2_score(y_test, y_pred)
         print(f"Mean Absolute Error: {mae:.2f}")
         print(f"Mean Squared Error: {mse:.2f}")
         print(f"Root Mean Squared Error: {rmse:.2f}")
         print(f"R-squared: {r2:.2f}")
        Mean Absolute Error: 31175.73
        Mean Squared Error: 1907512301.00
        Root Mean Squared Error: 43675.08
        R-squared: 0.72
```

Random Forest

```
In [17]: from sklearn.ensemble import RandomForestRegressor

# Initialize a RandomForestRegressor with n_estimators = 300
regressor = RandomForestRegressor(n_estimators=300, random_state=0)

# Fit the model to the training set
regressor.fit(X_train, y_train)

# Make predictions
y_pred = regressor.predict(X_test)

In [18]: # Most important scores of the model's features
feature_scores = pd.Series(regressor.feature_importances_, index=X_train.col
pd.set_option('display.max_rows', None)

# Display feature scores
print(feature scores)
```

Overall_Qual	0.599095
Gr_Liv_Area	0.096839
First_Flr_SF	0.039677
Total_Bsmt_SF	0.038026
Second_Flr_SF	0.019448
Garage_Area	0.018280
Lot_Area	0.015105
Kitchen_Qual	0.014560
Bsmt_Qual	0.014444
Garage_Cars	0.014218
Year_Built	0.010135
Longitude	0.008205
Year_Remod_Add	0.008196
Latitude	0.008039
Full_Bath	0.007555
Bsmt_Unf_SF	0.006569
Mas_Vnr_Area	0.006251
Fireplaces	0.005312
-	
Open_Porch_SF	0.004067
Lot_Frontage	0.004036
Overall_Cond	0.003921
Wood_Deck_SF	0.003545
Garage_Type	0.003298
Mo_Sold	0.003183
TotRms_AbvGrd	0.003103
	
Neighborhood	0.002599
Screen_Porch	0.002559
Bsmt_Full_Bath	0.002471
MS_Zoning	0.002187
Exter_Qual	0.002024
Bsmt_Exposure	0.002019
Sale_Condition	0.001924
	0.001524
BsmtFin_Type_1	
BsmtFin_SF_1	0.001565
MS_SubClass	0.001548
Year_Sold	0.001488
Bedroom_AbvGr	0.001359
Exterior_1st	0.001212
Exterior_2nd	0.001192
Central_Air	0.001136
Fireplace_Qu	0.001103
Land_Contour	0.000995
Garage_Finish	0.000969
Lot_Shape	0.000923
Roof_Style	0.000919
Mas_Vnr_Type	0.000896
Heating_QC	0.000807
Pool_Area	0.000766
Enclosed_Porch	0.000730
_	0.000730
Half_Bath	
House_Style	0.000603
Foundation	0.000599
Lot_Config	0.000556
Bsmt_Half_Bath	0.000483
Paved_Drive	0.000461
Exter_Cond	0.000461

```
Sale_Type
                     0.000460
Fence
                     0.000460
Land Slope
                     0.000446
Garage_Qual
                     0.000445
Bsmt_Cond
                     0.000432
Condition 1
                     0.000398
Pool_QC
                     0.000380
BsmtFin_Type_2
                     0.000374
Bldg Type
                     0.000366
Functional
                     0.000351
BsmtFin_SF_2
                     0.000298
Alley
                     0.000294
Kitchen_AbvGr
                     0.000211
Garage Cond
                     0.000197
Electrical
                     0.000182
Misc Feature
                     0.000156
Condition_2
                     0.000156
Misc_Val
                     0.000119
Three_season_porch 0.000108
Roof Matl
                     0.000104
Heating
                     0.000068
                     0.000019
Low Qual Fin SF
Street
                     0.000018
Utilities
                     0.000000
dtype: float64
```

```
In [19]: mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = mean_squared_error(y_test, y_pred, squared=False)
    r2 = r2_score(y_test, y_pred)

print(f"Mean Absolute Error: {mae:.2f}")
    print(f"Mean Squared Error: {mse:.2f}")
    print(f"Root Mean Squared Error: {rmse:.2f}")
    print(f"R-squared: {r2:.2f}")
```

Mean Absolute Error: 15751.14 Mean Squared Error: 658577807.90 Root Mean Squared Error: 25662.77

R-squared: 0.90

XG Boost

```
In [20]: pip install xgboost
```

Requirement already satisfied: xgboost in /opt/anaconda3/lib/python3.11/site -packages (2.0.3)

Requirement already satisfied: numpy in /opt/anaconda3/lib/python3.11/site-p ackages (from xgboost) (1.26.4)

Requirement already satisfied: scipy in /opt/anaconda3/lib/python3.11/site-p ackages (from xgboost) (1.11.4)

Note: you may need to restart the kernel to use updated packages.

```
In [21]: from xgboost import XGBRegressor
xgb = XGBRegressor(n_estimators=1000, learning_rate=0.001, random_state=0)
```

```
xgb.fit(X_train, y_train)
         y_pred = xgb.predict(X_test)
In [22]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_scor
         mae = mean_absolute_error(y_test, y_pred)
         mse = mean_squared_error(y_test, y_pred)
         rmse = mean_squared_error(y_test, y_pred, squared=False)
         r2 = r2_score(y_test, y_pred)
         print(f"Mean Absolute Error: {mae:.2f}")
         print(f"Mean Squared Error: {mse:.2f}")
         print(f"Root Mean Squared Error: {rmse:.2f}")
         print(f"R-squared: {r2:.2f}")
        Mean Absolute Error: 29013.66
        Mean Squared Error: 1840591138.13
        Root Mean Squared Error: 42902.11
        R-squared: 0.73
In [23]: feature_scores = pd.Series(xgb.feature_importances_, index=X_train.columns).
```

print(feature_scores)

Overall_Qual	0.486642
Garage_Cars	0.053597
First_Flr_SF	0.036847
Gr_Liv_Area	0.034610
Kitchen_Qual	0.031577
Land_Contour	0.030302
Central_Air	0.018713
Total_Bsmt_SF	0.018086
Bsmt_Qual	0.016190
Second_Flr_SF	0.014994
Garage_Type	0.014971
Latitude	0.013602
Fireplaces	0.013317
Exter_Qual	0.012543
Full_Bath	0.011217
Neighborhood	0.010765
Year_Remod_Add	0.009917
Lot_Area	0.008650
MS_Zoning	0.008279
BsmtFin_Type_1	0.007970
Year_Built	0.007970
BsmtFin_SF_2	0.007489
Longitude	0.007317
Mas_Vnr_Type	0.007143
Garage_Area	0.007018
Lot_Shape	0.006627
Paved_Drive	0.006447
Overall_Cond	0.005543
Foundation	0.005333
Bsmt_Full_Bath	0.005329
Bsmt_Unf_SF	0.004511
 Half_Bath	0.004488
House_Style	0.004425
BsmtFin_Type_2	0.004234
Open_Porch_SF	0.003912
Sale_Condition	0.003845
Sale_Type	0.003676
Lot_Frontage	0.003520
Garage_Finish	0.003320
Mas_Vnr_Area	0.003430
Fence	0.003080
Fireplace_Qu	0.002901
Exter_Cond	0.002829
Roof_Style	0.002794
Screen_Porch	0.002674
Wood_Deck_SF	0.002607
Bldg_Type	0.002571
Garage_Qual	0.002276
Bsmt_Exposure	0.002081
Bedroom_AbvGr	0.002068
Exterior_2nd	0.002005
Mo_Sold	0.001902
_ Year_Sold	0.001700
MS_SubClass	0.001508
Functional	0.001467
Exterior_1st	0.001393
	0.001000

```
Kitchen_AbvGr
                   0.001131
Condition_1
                   0.001054
TotRms_AbvGrd
                  0.001012
Bsmt Half Bath
                  0.000843
Electrical
                  0.000774
Heating QC
                  0.000625
                 0.000345
Enclosed_Porch
                  0.000205
Lot Config
Condition 2
                  0.000008
Misc_Feature
                  0.000000
Roof_Matl
                  0.000000
Street
                  0.000000
Land_Slope
                  0.000000
Bsmt Cond
                  0.000000
BsmtFin_SF_1
                  0.000000
Misc Val
                  0.000000
Pool_Area
                 0.000000
Pool_QC
                  0.000000
Heating
                  0.000000
                  0.000000
Utilities
Garage_Cond
                  0.000000
Low_Qual_Fin_SF 0.000000
Alley
                   0.000000
Three_season_porch 0.000000
dtype: float32
```

Best algorithm

```
In [24]: from sklearn.metrics import accuracy_score,log_loss
In [25]: lr = LinearRegression()
         dt = DecisionTreeRegressor(max depth=3, random state=0)
         rfr = RandomForestRegressor(n_estimators=100, random_state=0)
         svr = SVR(kernel='poly', C=1, degree=3)
         xgbr = XGBRegressor(n_estimators=1000, learning_rate=0.01, random_state=0)
In [26]: algos = [lr, rfr, svr, dt, xgbr]
         ml_algo = ['Linear Regression', 'Random Forest', 'SVR', 'Decision Tree', 'XC
In [27]: # Step 3: Loop through all the algorithms and evaluate their performance
         for i, j in zip(algos, ml_algo):
             i.fit(X_train, y_train) # Fit the model on training data
             pred = i.predict(X_test) # Predict on test data
             # Calculate regression metrics
             mae = mean_absolute_error(y_test, pred)
             mse = mean_squared_error(y_test, pred)
             rmse = np.sqrt(mse)
             r2 = r2_score(y_test, pred)
             # Print the results
             print(j, ':\n')
             print("Test metrics")
             print(f'Mean Absolute Error: {mae:.2f}')
```

```
print(f'Mean Squared Error: {mse:.2f}')
print(f"Root Mean Squared Error: {rmse:.2f}")
print(f'R-squared: {r2:.2f}')
print('=' * 40)
pred = i.predict(X_train) # Predict on test data
# Calculate regression metrics
mae = mean_absolute_error(y_train, pred)
mse = mean_squared_error(y_train, pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_train, pred)
# Print the results
print(j, ':\n')
print("Train metrics")
print(f'Mean Absolute Error: {mae:.2f}')
print(f'Mean Squared Error: {mse:.2f}')
print(f"Root Mean Squared Error: {rmse:.2f}")
print(f'R-squared: {r2:.2f}')
print('=' * 40)
```

Linear Regression:

Test metrics

Mean Absolute Error: 19787.26 Mean Squared Error: 1370465347.08 Root Mean Squared Error: 37019.80

R-squared: 0.80

Linear Regression:

Train metrics

Mean Absolute Error: 17756.28 Mean Squared Error: 740154429.88 Root Mean Squared Error: 27205.78

R-squared: 0.88

Random Forest:

Test metrics

Mean Absolute Error: 15729.70 Mean Squared Error: 647382431.26 Root Mean Squared Error: 25443.71

R-squared: 0.91

Random Forest:

Train metrics

Mean Absolute Error: 6149.49 Mean Squared Error: 107941849.95 Root Mean Squared Error: 10389.51

R-squared: 0.98

SVR :

Test metrics

Mean Absolute Error: 57264.13 Mean Squared Error: 7096139404.22 Root Mean Squared Error: 84238.59

R-squared: -0.03

SVR:

Train metrics

Mean Absolute Error: 55764.28 Mean Squared Error: 6605002656.48 Root Mean Squared Error: 81271.17

R-squared: -0.06

Decision Tree :

Test metrics

Mean Absolute Error: 31175.73 Mean Squared Error: 1907512301.00 Root Mean Squared Error: 43675.08

R-squared: 0.72

```
Decision Tree:
       Train metrics
       Mean Absolute Error: 29782.53
       Mean Squared Error: 1640383948.15
       Root Mean Squared Error: 40501.65
       R-squared: 0.74
       _____
       XGBoost :
       Test metrics
       Mean Absolute Error: 14623.69
       Mean Squared Error: 536638209.82
       Root Mean Squared Error: 23165.45
       R-squared: 0.92
       _____
       XGBoost:
       Train metrics
       Mean Absolute Error: 4559.32
       Mean Squared Error: 36471085.86
       Root Mean Squared Error: 6039.13
       R-squared: 0.99
       _____
In [29]: import pandas as pd
        # Assume df is your DataFrame and 'variable_name' is the column of interest
        min value = df['Sale Price'].min()
        max_value = df['Sale_Price'].max()
        print(f"Minimum value of Price Sales: {min value}")
        print(f"Maximum value of Price Sales: {max_value}")
       Minimum value of Price Sales: 12789
       Maximum value of Price Sales: 755000
In [34]: for model, name in zip([best rf, best xqb], ['Random Forest', 'XGBoost']):
            y_pred = model.predict(X_test)
            mae = mean_absolute_error(y_test, y_pred)
            mse = mean_squared_error(y_test, y_pred)
            rmse = np.sqrt(mse)
            r2 = r2_score(y_test, y_pred)
            print(f'{name} - Best Hyperparameters: {model.get_params()}')
            print(f'Mean Absolute Error: {mae:.2f}')
            print(f'Mean Squared Error: {mse:.2f}')
            print(f'Root Mean Squared Error: {rmse:.2f}')
            print(f'R-squared: {r2:.2f}')
            print('='*40)
```

Random Forest - Best Hyperparameters: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth': 15, 'max_features': 1.0, 'max_lea f_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_es timators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 0, 'verb

ose': 0, 'warm_start': False} Mean Absolute Error: 12092.23 Mean Squared Error: 466191149.56 Root Mean Squared Error: 21591.46

R-squared: 0.92

XGBoost - Best Hyperparameters: {'objective': 'reg:squarederror', 'base_scor e': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'co lsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopp ing_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'featur e_types': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 3, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'random_state': 0, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.9, 'tree_method': None, 'validate_parameters': None, 'verbosi ty': None}

Mean Absolute Error: 12651.57 Mean Squared Error: 402790465.93 Root Mean Squared Error: 20069.64

R-squared: 0.93

In []: