Infinite Cardinalities

PARADOX AND INFINITY Benjamin Brast-McKie March 20, 2025

Cardinality Principles

Bijection Principle: |A| = |B| *iff* $A \simeq B$.

Reflexive: $A \simeq A$.

Symmetric: if $A \simeq B$, then $B \simeq A$.

* What's an inverse of a relation?

* Do functions always have inverses?

* Observe: the inverse of a bijection is a bijection.

Transitive: if $A \simeq B$ and $B \simeq C$, then $A \simeq C$.

Observe: We get equivalence classes but no ordering.

Injection Principle: $|A| \leq |B|$ *iff* $A \simeq C$ for some $C \subseteq B$.

Reflexive: $|A| \leq |A|$.

Transitive: if $|A| \leq |B|$ and $|B| \leq |C|$, then $|A| \leq |C|$.

Anti-Symmetric: if $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Cantor-Schroeder-Bernstein Theorem: If there are injective functions $f: A \to B$ and $g: B \to A$, then there is a bijection $h: A \to B$.

Total: $|A| \le |B|$ or $|B| \le |A|$. (Requires the Axiom of Choice)

Could Define: |A| = |B| iff $|A| \le |B|$ and $|B| \le |A|$.

|A| < |B| iff $|A| \le |B|$ and $|B| \le |A|$.

Countably Infinite

Countable: A set *A* is *countable iff* $|A| \leq |\mathbb{N}|$.

Infinite: A set A is infinite iff $|\mathbb{N}| \leq |A|$.

- \mathbb{N}_m is countably infinite since f(n) = n + m is a bijection.
- $\mathbb{N}_{(m)}$ is countably infinite since $f(n) = n \times m$ is a bijection.
- \mathbb{Z} is countably infinite since there is a bijection $f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{-(n+1)}{2} & \text{otherwise.} \end{cases}$
- The positive rational numbers Q⁺ are countably infinite since:
 - There is an injection from \mathbb{Q}^+ to \mathbb{N}^2 .
 - And $f(\langle n, m \rangle) = 2^n \cdot 3^m$ is an injection from \mathbb{N}^2 to \mathbb{N} .
 - Hence Q^+ is countable, and so Q is also countable.
 - Infinite since identity is an injection from \mathbb{N} to \mathbb{Q} .

Real Numbers

Real Interval: The real interval (0,1) is uncountably infinite.

- 1. $|\mathbb{N}_2| \leq |(0,1)|$ since f(x) = 1/x is an injection $f : \mathbb{N}_2 \to (0,1)$.
- 2. $|\mathbb{N}_2| \neq |(0,1)|$ by Cantor's diagonal argument.
- 3. Thus $|\mathbb{N}_1| < |(0,1)|$.
- 4. Observe that $g(x) = \pi(x-1/2)$ is a bijection $g:(0,1) \to (-\pi/2,\pi/2)$.
- 5. Additionally $tan: (-\pi/2, \pi/2) \to \mathbb{R}$ is a bijection.
- 6. By the bijection principle, $|(0,1)| = |(-\pi/2, \pi/2)| = |\mathbb{R}|$.
- 7. Thus $|\mathbb{N}_2| < |\mathbb{R}|$ where $|\mathbb{N}_2| = |\mathbb{N}|$, so $|\mathbb{N}| < |\mathbb{R}|$.

Cantor's Theorem

Theorem: $|A| < |\wp(A)|$ for any set A where $\wp(A) = \{X : X \subseteq A\}$.

- 1. $|A| \le |\wp(A)|$ since $f(a) = \{a\}$ is an injection.
- 2. Assume there is a bijection $f: A \to \wp(A)$.
- 3. Let $D = \{a \in A : a \notin f(a)\}.$
- 4. Since $D \subseteq A$, we know that $D \in \wp(A)$.
- 5. Since f is surjective, f(d) = D for some $d \in A$.
- 6. But $d \in f(d)$ iff $d \in D$ iff $d \notin f(d)$.
- 7. This has the form $P \leftrightarrow \neg P$ which is equivalent to $P \land \neg P$.
- 8. Thus there is no bijection $f: A \to \wp(A)$, and so $|A| \neq |\wp(A)|$.
- 9. Given the above, $|A| < |\wp(A)|$.

Corollary

Universal Set: There is no set of all sets.

- 1. Suppose there were a set *U* of all sets.
- 2. Since every $X \in \wp(U)$ is a set, $\wp(U) \subseteq U$.
- 3. So f(x) = x is an injection $f : \wp(U) \to U$.
- 4. Thus $|\wp(U)| \leq |U|$.
- 5. Moreover, $g(x) = \{x\}$ is an injection $g: U \to \wp(U)$.
- 6. So $|U| \le |\wp(U)|$.
- 7. Thus $|U| = |\wp(U)|$.
- 8. By Cantor's Theorem, $|U| < |\wp(U)|$, so $|U| \neq |\wp(U)|$.
- 9. Hence there is no set *U* of all sets, so no set of everything!

Axioms and Intuitions

Continuum Hypothesis: There is no set *A* where $|\mathbb{N}| < |A| < |\mathbb{R}|$.

Independent: Adding CH or its negation to ZFC is consistent if ZFC is consistent.

- Is it up to us to choose?
- Neither intuition nor mathematical practice seems to decide the issue.

Compare: Gödel showed that ZFC is consistent if ZF is consistent.

Axiom of Choice: Every set of sets X has a function f where $f(Y) \in Y$ for all $Y \in X$.

Well-Ordering Theorem: Every set *X* can be well-ordered (its subsets all have least elements).

- AC and WOT are equivalent, intuitive, and extremely useful.
- Not so for CH!