Filter Summary Report: TIA,simple,Z4

Generated by MacAnalog-Symbolix

December 18, 2024

Contents

1 Examined $H(z)$ for TIA simple Z4: $\frac{Z_4}{2}$	2
$_{ m 2}$ HP	2
3 BP 3.1 BP-1 $Z(s) = \left(\infty, \ \infty, \ \infty, \ \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \ \infty, \ \infty\right)$	2 2
$4~~\mathrm{LP}$	2
5 BS $5.1 BS-1 Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$	2 2
$6 \mathbf{GE}$	2
7 AP	2
8 INVALID-NUMER	3
9 INVALID-WZ	3
10 INVALID-ORDER $ 10.1 \text{ INVALID-ORDER-1 } Z(s) = (\infty, \infty, \infty, R_4, \infty, \infty) $ $ 10.2 \text{ INVALID-ORDER-2 } Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4s}, \infty, \infty\right) $ $ 10.3 \text{ INVALID-ORDER-3 } Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right) $ $ 10.4 \text{ INVALID-ORDER-4 } Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4s}, \infty, \infty\right) $ $ 10.5 \text{ INVALID-ORDER-5 } Z(s) = \left(\infty, \infty, \infty, L_4s + \frac{1}{C_4s}, \infty, \infty\right) $ $ 10.6 \text{ INVALID-ORDER-6 } Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right) $ $ 10.7 \text{ INVALID-ORDER-7 } Z(s) = \left(\infty, \infty, \infty, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right) $ $ 10.8 \text{ INVALID-ORDER-8 } Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right) $	3 3 3
11 PolynomialError	3

1 Examined H(z) for TIA simple Z4: $\frac{Z_4}{2}$

 $H(z) = \frac{Z_4}{2}$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(\infty, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$

Parameters:

Q: $C_4R_4\sqrt{\frac{1}{C_4L_4}}$ wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{1}{C_4R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

- 4 LP
- 5 BS
- **5.1** BS-1 $Z(s) = \left(\infty, \infty, \infty, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$

Parameters:

Q: $\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$ wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{R_4}{L_4}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

- 6 **GE**
- 7 AP

$$H(s) = \frac{L_4 R_4 s}{2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, \infty, R_4, \infty, \infty)$

$$H(s) = \frac{R_4}{2}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{1}{2C_4 s}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_4}{2C_4R_4s + 2}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 R_4 s + 1}{2C_4 s}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{2C_4 s}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$

$$H(s) = \frac{L_4 s}{2C_4 L_4 s^2 + 2}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{2C_4 s}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{2C_4 L_4 s^2 + 2}$$

11 PolynomialError