

UNIVERSIDADE FEDERAL DE MATO GROSSO ENGENHARIA FLORESTAL

Colheita, Transporte e Logística Florestal (40219940)

Sistemas Complementares

Prof. Gabriel Agostini Orso gabrielorso16@gmail.com

Recapitulando

- Motores
 - Combustão externa
 - Combustão interna
 - Elétricos
- Motores de Combustão interna
 - Motores de 2 e 4 tempos
 - Ciclo Otto e ciclo Diesel
 - Componentes do motor

1.Tópicos da aula

2. INTRODUÇÃO

- Os motores de combustão interna são constituídos de partes fundamentais e de sistemas complementares ou auxiliares, que são indispensáveis para o funcionamento do motor;
- Estes sistemas complementares proporcionam as condições necessárias para que ocorra a transformação de energia química, do combustível, em trabalho mecânico, de forma eficiente e contínua;
- Os sistemas complementares são: sistema de válvulas, sistema de alimentação, sistema de arrefecimento, sistema de lubrificação e sistema elétrico.

3.1 componentes

- O sistema de válvulas é um conjunto de mecanismos que controla a entrada de ar ou de mistura gasosa no cilindro e a saída dos gases resultantes da combustão nos motores de quatro tempos;
- Nos motores dois tempos, essa função é realizada pelo êmbolo, que abre e fecha as janelas de admissão e de escape do cilindro, durante seu deslocamento;

3.1 componentes

- Os motores de quatro tempos possuem no mínimo duas válvulas por cilindro:
- Válvula de admissão: por onde é admitido o ar, nos motores do Ciclo Diesel, ou a mistura ar + combustível, nos motores do Ciclo Otto, para o interior do cilindro;
- Válvula de escape: pela qual saem os gases queimados, para o coletor de escape.
- Tanto a válvula de admissão quanto a de escape abrem-se para dentro da câmara de combustão, sob a ação de um mecanismo de comando, e fecham-se por meio da mola da válvula;

3. Sistema de válvulas3.1 componentes

3. Sistema de válvulas3.1 componentes

3.1 componentes

- O mecanismo de comando de abertura das válvulas é constituído por uma árvore de comando de válvulas, que contém, ao longo de seu comprimento, ressaltos ou cames;
- Quando a árvore de comando é acionada, os ressaltos levantam os tuchos, que transmitem esse movimento à válvula, de modo direto ou por meio de varetas e balancins, abrindo-a;
- A partir da diferença dessa transmissão à válvula, podemos classificar o sistema de comando de válvulas em direto ou indireto;

Figura 2 - Tipos de mecanismos de comando de válvulas. (a) Direto. (b) Indireto. Fonte: Mialhe (1980) apud Fiedler e Oliveira (2018).

3.1 componentes

No comando direto, o tucho atua diretamente no pé da válvula;

 Já no comando indireto, entre o tucho e o pé da válvula existe uma vareta e um balancim.

3.2 Funcionamento

- O acionamento do sistema de válvulas é realizado por meio da transmissão de movimento da árvore de manivelas para a árvore de comando de válvulas, o que é feito por engrenagens ou rodas dentadas e correntes;
- Nos motores de quatro tempos a realização do ciclo, em cada cilindro completa-se após duas voltas da árvore de manivelas. Porém, cada uma das válvulas de um cilindro abre-se apenas uma vez durante cada ciclo. Portanto, a velocidade angular da árvore de comando de válvulas deve corresponder à metade da velocidade da árvore de manivelas;
- De maneira geral, a abertura e fechamento das válvulas ocorrem de forma adiantada ou atrasada em relação a posição do êmbolo, para seus ponto morto superior (PMS) e inferior (PMI).

4. Sistema de alimentação

- O sistema de alimentação corresponde a um conjunto de mecanismos cuja função é fornecer ao motor quantidade adequada de ar e combustível, de acordo com a rotação e carga aplicadas;
- Nos motores do ciclo Otto, a dosagem do combustível a ser misturado com o ar é feita pelo carburador ou por um sistema de injeção eletrônica;
- Nos motores de ciclo Diesel, o sistema de alimentação tem como componentes principais a bomba e o bico injetores.

4. Sistema de alimentação

4.1 motores de ciclo Otto

- Carburador:
- O carburador é responsável pela dosagem da mistura ar + Combustível, em proporções adequadas, de acordo com as condições de carga e velocidade exigidas do motor;
- Os componentes básicos de um carburador são: um tubo venturi, que funciona como difusor, e um vaporizador, que está ligado a um reservatório com o combustível;
- Quando o ar é succionado pelo êmbolo, passa pelo difusor em alta velocidade e arrasta gotículas de combustível, que é dosado por uma agulha. Já o controle da mistura gasosa é realizado por meio de uma válvula de borboleta, que fica na saída do tubo venturi.

4. Sistema de alimentação 4.1 motores de ciclo Otto

- Injeção eletrônica:
- A injeção eletrônica é um sistema de alimentação de combustível e gerenciamento eletrônico de um motor;
- As vantagens do sistema de injeção eletrônica em relação ao carburador são: maior controle da mistura ar + combustível, maior economia de combustível, melhor dirigibilidade, controle automático das rotações máxima e mínima e melhor controle do nível de emissões de gases;
- Esse sistema possui como principais componentes:
- Central de entrada de sinais ou Engine Control Unit (ECU): Onde ficam gravadas as informações do veículo e os seus parâmetros de fábrica. Os sinais de entrada são impulsos elétricos provenientes de sensores e interruptores que informam as condições instantâneas de funcionamento do motor;

4. Sistema de alimentação

4.1 motores de ciclo Otto

- Sensores e interruptores: São componentes que captam informações e as transfere para a ECU, transformando rotação, pressão, temperatura, e outros parâmetros físicos, em sinais elétricos para que a central possa analisar e decidir qual estratégia seguir;
- Atuadores: São os componentes responsáveis pelo controle do motor. Eles recebem os sinais elétricos da ECU e controlam as reações do motor, variando, por exemplo, o volume de combustível que o bico injetor irá inserir na câmara de combustão.

4. Sistema de alimentação

4.1 motores de ciclo Otto

- Os sistemas de injeção eletrônica podem ser classificados como:
- Tecnologia: analógica ou digital;
- Número de injetores: monoponto ou multiponto;
- Posição do bico injetor: junto ao corpo de borboleta (CFI central fuel injection), próximo à válvula de admissão (PFI - port fuel injection), ou no interior da câmara de combustão (DI -direct injection);
- Combustível utilizado: Um único combustível (sistema dedicado) ou sistema multicombustível (flex).

4. Sistema de alimentação 4.2 motores do Ciclo Diesel

- Nos motores do Ciclo Diesel, o combustível deve ser injetado diretamente na câmara de combustão, de forma pulverizada e a alta pressão;
- Devido a estas operações o sistema de alimentação dos motores a Diesel, deve realizar a seguintes operações:
- Admissão e limpeza do diesel;
- Injetar o combustível finamente pulverizado ou nebulizado, para facilitar sua mistura com o ar, a qual deve ocorrer de modo mais uniforme possível;
- Iniciar a injeção no instante correto e na velocidade de injeção desejada;
- Finalizar a injeção instantaneamente, sem a ocorrência de gotejamento;
- Para conseguir realizar estas operações, tratores agrícolas ou florestais nacionais, possui um dos seguintes sistemas de injeção:

4. Sistema de alimentação

4.2 motores do Ciclo Diesel

- Sistema de bomba individual: Uma bomba injetora para cada cilindro do motor;
- Sistema de bomba distribuidora ou rotativa: Distribui o combustível aos vários bicos injetores;
- Sistema com unidade injetora completa: Apresenta em uma só unidade a bomba injetora e o bico injetor.
- De uma forma geral os sistema de injeção dos motores a diesel são constituídos pelos seguintes componentes:
- Bomba alimentadora: Alimenta os filtros e a bomba injetora com óleo diesel, fornecendo-o sob uma certa pressão;
- Filtro de combustível: Tem como função a limpeza do óleo combustível;
- ❖Bomba injetora: Função de fornecer combustível aos bicos injetores, sob determinada pressão no momento exato da combustão e na quantidade exigida pelas condições de funcionamento do motor;

4. Sistema de alimentação 4.2 motores do Ciclo Diesel

- Bicos injetores: São componentes de extrema precisão, responsáveis por introduzir o combustível nebulizado na câmara de combustão do motor;
- ❖ Porta-injetores: São dispositivos que fixam o bico injetor no cabeçote do motor, conectando o bico a tubulação de combustível proveniente da bomba injetora;
- Câmara de combustão: Local onde ocorre a combustão;
- Regulador: São dispositivos que ficam junto à bomba injetora e que permitem manter o regime do motor aproximadamente constante, dentro de determinados limites;
- Sistema de alimentação de ar: Um subsistema do sistema de alimentação de combustível. Sua função é de suprir o motor com ar limpo;

5. Sistema de arrefecimento

- Parte do calor produzido pelos motores de combustão interna não é transformada em trabalho mecânico;
- O sistema de arrefecimento é projetado para impedir que os elementos mecânicos do motor atinjam temperaturas muito elevadas;
- O calor proveniente da combustão que não é convertido em trabalho mecânico, é liberado ao meio externo por radiação direta, gases de escape e pelo sistema de arrefecimento;

5. Sistema de arrefecimento

5.1 Meios arrefecedores

- O ar e a água são os meios arrefecedores que melhor preenchem os requisitos para desempenhar essa função;
- A vantagem do emprego do ar em relação a água como meio arrefecedor são: Sistemas de arrefecimento mais simples, dispensa o uso de reservatórios e tubulação de condução, não é corrosivo ou deixa incrustações não se evapora ou congela, mesmo em condições severas de funcionamento do motor;
- Porém o ar apresenta como desvantagem o seu baixo calor específico, baixa densidade e sua grande variação que apresenta em função da temperatura;
- A principal vantagem de se utilizar a água, é que a mesma garante uniformidade da temperatura do motor.

5. Sistema de arrefecimento5.2 tipos de sistemas arrefecedores

- Sistema de arrefecimento a ar: Neste sistema o motor tem o bloco, as paredes externas do cilindro e o cabeçote dotados de aletas, cuja função e aumentar a superfície de contato com o ar, aumentando a eficiência do arrefecimento;
- Sistema de arrefecimento a água: A circulação da água é feita por termossifão ou através de bomba. Este sistema pode ser do tipo camisa aberta, circulação fechada com torre de arrefecimento e circulação aberta com reservatório. O tipo camisa aberta é mais simples e consiste em uma camisa que envolve o cilindro do motor, com um reservatório em sua parte superior. No sistema de circulação fechada com torre de arrefecimento, a água circula em camisas ao redor do cilindro. O sistema de circulação aberta com reservatório e semelhante ao anterior, diferindo na forma como a água troca o calor como ambiente;
- Sistema de arrefecimento a água e ar: A água absorve o calor excedente do motor e o transfere para o ar. Essa troca de calor ocorre no radiador, que é formado dois reservatórios interligados por tubos, montados uns ao lado dos outros no interior de um conjunto de lâminas transversais (aletas de arrefecimento), formando o denominado colmeia dos radiados.

5. Sistema de arrefecimento5.2 tipos de sistemas arrefecedores

6. SISTEMA DE LUBRIFICAÇÃO

- As peças móveis que se encontram no motor estão sempre em constante atrito e sujeitas assim ao aquecimento e desgaste;
- Porém com o auxílio dos sistema de lubrificação, esses efeitos danosos são contornados;
- Os sistemas de lubrificação tem como finalidade:
- Permitir que o óleo lubrificante forme uma película na interface de contato entre as superfícies móveis;
- ❖ Promover uma circulação ininterrupta do óleo nos pontos que exigem lubrificação;
- *Fazer com que o óleo lubrificante atue como agente de limpeza do motor,
- Auxiliar na vedação entre os anéis, o pistão e as paredes do cilindro e ainda reduzir os ruídos produzidos pelas partes móveis.

6. SISTEMA DE LUBRIFICAÇÃO6.1 Tipos de sistemas de lubrificação

- Os sistemas de lubrificação são classificados de acordo com o modo distribuição do óleo nas partes do motor a serem lubrificadas. Desta forma, são classificados da seguinte maneira:
- Sistema de mistura com combustível: Utilizado nos motores de dois tempos a gasolina. O óleo lubrificante é adicionado ao combustível em proporções convenientes;
- Sistema de borrifo: Nesse sistema, um prolongamento localizado no pé da biela. denominado pescador, toca no óleo lubrificante contido no cárter, borrifando-o nas paredes do cilindro e na partes encerradas na parte inferior do bloco;

6. SISTEMA DE LUBRIFICAÇÃO

6.1 Tipos de sistemas de lubrificação

6. SISTEMA DE LUBRIFICAÇÃO6. 1 Tipos de sistemas de lubrificação

- Sistema de circulação com borrifo: Neste sistema, uma bomba capta o óleo do cárter e o envia, sob baixa pressão, para as calhas de lubrificação e para os mecanismos de comando de válvula. O óleo contido nas calhas é borrifado pelo pescador às outras partes móveis;
- Sistema de circulação sob pressão: Neste sistema, uma bomba pressiona o óleo lubrificante por galerias no bloco e cabeçote, fazendo com que o mesmo circule sob pressão e alcance todos os pontos que requerem lubrificação.

6. SISTEMA DE LUBRIFICAÇÃO

6.2 óleo Lubrificante

- O óleo lubrificante deve ser viscoso o suficiente para que a película por ele formada não se rompa sob a ação das temperaturas e pressões que ocorrem nos pontos de lubrificação;
- Porém o óleo lubrificante deve ser adequadamente fluido, para que escoe e alcance as superfície dos componentes do motor, mesmo a baixas temperaturas;
- Face às variadas condições de utilização, os óleos lubrificantes contêm aditivos que os tornam qualificados para determinadas aplicações alguns tipos de aditivos são antioxidantes, detergentes, dispersantes, antiespumantes, dentre outros.

6. SISTEMA DE LUBRIFICAÇÃO 6.2 óleo Lubrificante

6. SISTEMA DE LUBRIFICAÇÃO

6.2 óleo Lubrificante

- O sistema elétrico de tratores é constituído basicamente pelas partes de produção, armazenamento e consumo;
- Nos motores de ciclo Otto, o sistema elétrico também é responsável pela centelha de ignição;
- Bateria: acumulador de energia elétrica. Fornece energia elétrica com o motor desligado;
- Motor de partida ou arranque: Tem a função de iniciar o movimento do motor principal;
- Alternador ou gerador: Transforma parte da energia produzida pelo motor em energia elétrica para atender à demanda de consumo dos dispositivos elétricos consumidores e manter a carga da bateria. Supre o sistema quando o motor encontra-se em funcionamento;

 Cabos condutores: Interligam eletricamente os componentes do sistema elétrico;

- Quadro de fusíveis: Garante que cargas elétricas excessivas não danifiquem os componentes e acessórios consumidores;
- Dispositivos elétricos consumidores: Possuem funções múltiplas, podem ser sensores eletrônicos, faróis, lanternas, buzina, sinalizadores, luzes do painel, controladores, etc.

7.1 Produção

- No circuito de produção ou carga, a energia mecânica é transformada em energia elétrica, que será utilizada para recarregar a bateria e alimentar o sistema elétrico, de modo a suprir a energia consumida durante o funcionamento do motor;
- Essa parte do sistema elétrico é composta pelo alternador ou gerador e por regulador de voltagem;
- Através de polias e correia o motor faz funcionar o gerador, ou alternador, que, por sua vez, mantém a carga da bateria estável;
- O circuito de carga de corrente alternada contém um gerador (um tipo de dínamo) e um regulador. O gerador fornece a potência elétrica e retifica a corrente mecanicamente. O regulador auxilia no fornecimento de uma corrente com tensão uniforme, previne a sobrecarga da bateria e limita a saída de carga do gerador a níveis seguros para não danificar o sistema elétrico.

7.2 armazenamento

 O armazenamento de energia é realizado pela bateria, que é um acumulador de energia elétrica, fornecendo-a ao sistema de ignição, ao motor de arranque, às luzes, ao painel e ao restante dos equipamentos elétricos e eletrônicos do veículo;

7.3 Consumo

- A parte do sistema elétrico que tem por finalidade o consumo é o sistema de partida, que converte a energia elétrica da bateria em energia mecânica para dar partida no motor de arranque, e assim ligar o motor principal;
- O motor de arranque faz com que o motor principal atinja certa velocidade, de maneira a promover as primeiras explosões nos cilindros, dando início ao seu funcionamento;
- Na extremidade do eixo do motor de arranque há um pinhão, montado sobre ranhuras helicoidais que permitem o seu movimento no sentido axial. Este mecanismo é normalmente denominado "Bendix". Quando o motor de partida é acionado, o pinhão avança até a uma engrenagem instalada na periferia do volante, conhecida como cremalheira do volante. O movimento do pinhão arrasta o volante fazendo com que a árvore de manivelas do motor comece a girar. O motor de arranque desengrena-se assim que o motor principal começa a funcionar.

7.3 Consumo

- O sistema de partida em motores de uso agrícola também pode ser feito pelos seguintes mecanismos:
- Partida manual: Realizada através de uma corda enrolada no volante. Geralmente aplicada a pequenos motores;
- Partida com motores a gasolina: Comum em tratores mais antigos. Neste caso a partida é realizada por um pequeno motor a gasolina, acionado por meio de um cordel enrolado no volante;
- Partida de motores diesel com gasolina: Utilizado em motores diesel que funcionam temporariamente com gasolina. Esses motores apresentam uma válvula especial de arranque.

8. Referências

• FIEDLER, N. C.; OLIVEIRA, M. P. Motores e máquinas florestais. CAUFES: Alegre-ES, 323 p. 2018.