Funciones elementales

Función exponencial compleja

La identidad de Euler establece para todo $\theta \in \mathbb{R}$: $e^{i\theta} = \cos \theta + i \sin \theta$

Queremos darle un significado a e^z para $z=x+iy\in\mathbb{C}$, de modo que se verifique la identidad de Euler y que cuando z sea un número real obtengamos la función exponencial real. A la vez, quisiéramos que para e^z se mantenga la regla del "producto de potencias de igual base". Todo esto se logra con la siguiente definición:

 $e^z = e^{x+iy} \stackrel{\text{def}}{=} \underbrace{e^x}_{exponencial} . \quad e^{iy} = e^x(\cos y + i \operatorname{sen} y)$

Claramente $f(z) = e^z$ es una función cuyo dominio es $\mathbb C$. Sus compone $\mathbb C$ ntes $u(x,y) = \operatorname{Re}(e^z) = e^x \cos y$; $v(x,y) = \operatorname{Im}(e^z) = e^x \sin y$ son continuas en $\mathbb R^2$. Luego, $D_{cont}(f) =$

Ejemplo:

$$e^{-1+i\pi} = e^{-1}e^{i\pi} = e^{-1}(\cos \pi + i \sin \pi) = -e^{-1}$$
$$e^{2-i} = e^2e^{-i} = e^2(\cos(-1) + i \sin(-1)) = e^2(\cos 1 - i \sin 1)$$

La función exponencial compleja es derivable en todo el plano complejo y por lo tanto analítica en $\mathbb C$. Basta notar que $u(x,y)=\mathrm{Re}(e^z)=e^x\cos y$; $v(x,y)=\mathrm{Im}(e^z)=e^x\sin y$ tienen derivadas parciales de

primer orden continuas en \mathbb{R}^2 y que las ecuaciones CR: $\begin{cases} e^x \cos y = e^x \cos y \\ -e^x \sin y = -e^x \sin y \end{cases}$

se verifican en todo \mathbb{R}^2 . Además:

$$f'(z) = \frac{d}{dz}(e^z) = u_x(x, y) + iv_x(x, y) = e^x \cos y + ie^x \sin y = e^z$$

Propiedades elementales

- Si z = x + iy entonces $|e^z| = e^x$, $\arg(e^z) = \{y + 2k\pi : k \in \mathbb{Z}\}$
- $e^z \neq 0$, $\forall z \in \mathbb{C}$. En efecto: $|e^z| = e^x > 0$.
- e^z coincide con la exponencial real $\forall z \in \mathbb{R}$. Si z = x + iy con $y \neq 0$ entonces $e^z = e^{x+i0} = e^x e^{i0} = e^x (\cos 0 + i \ sen \ 0) = e^x$
- $e^z e^w = e^{z+w}$; $e^{-w} = \frac{1}{e^w}$; $\frac{e^z}{e^w} = e^{z-w}$; $(e^z)^n = e^{nz} \text{ si } n \in \mathbb{Z}$.

Por ejemplo, si $b,d \in \mathbb{R}$, ya se probó que al multiplicar complejos se multiplican los módulos y se suman los argumentos. Entonces si z=a+ib, w=c+id se tiene $b\in \arg(e^z)$ y $d\in \arg(e^w)$ resulta $e^{ib}e^{id}=e^{i(b+d)}$. Además, por la propiedad de la exponencial real: $e^ae^c=e^{a+c}$.

Luego,

$$e^{z}e^{w} = |e^{z}|e^{ib}|e^{w}|e^{id} = |e^{z}||e^{w}|e^{i(b+d)} = e^{a}e^{c}e^{i(b+d)} = e^{a+c}e^{i(b+d)} = e^{z+w}$$

- $e^{\bar{z}} = \overline{e^z}$ pues si z = x + iy entonces $e^{\bar{z}} = e^{x-iy} = e^x e^{-iy} = e^x (\cos(-y) + i \sin(-y)) = e^x (\cos y i \sin y) = e^x \cos y i e^x \sin y = \overline{e^x \cos y + i e^x \sin y} = \overline{e^x (\cos y + i \sin y)} = \overline{e^z}$
- e^z es periódica de período $2\pi i$ pues $e^{z+2\pi i}=e^ze^{2\pi i}=e^z$ ya que $e^{2\pi i}=\cos 2\pi + i \sin 2\pi = 1+i0=1$

Ejemplo: Hallar $D_{ana}(f)$. Calcular la derivada donde exista.

$$a) f(z) = \frac{e^z}{e^{iz} + 1}$$

b)
$$f(z) = \frac{1}{e^z + ie^{-z}}$$

$$c) f(z) = e^{\bar{z}}$$

$$d) f(z) = \bar{z}e^{z}$$

e)
$$f(z) = ze^{\bar{z}}$$

a)
$$f(z) = \frac{e^z}{e^{iz} + 1}$$
 b) $f(z) = \frac{1}{e^z + ie^{-z}}$ c) $f(z) = e^{\bar{z}}$ d) $f(z) = \bar{z}e^z$ e) $f(z) = ze^{\bar{z}}$ f) $f(z) = \frac{e^{1/z}}{e^z - 4e^{-z} + 3}$

Rta

a)
$$f(z) = \frac{e^z}{e^{iz} + 1}$$

Las funciones $N(z) = e^z$, $T(z) = e^{iz} + 1$ son analíticas en \mathbb{C} , la primera por ser polinómica y la segunda porque es suma de la constante 1 (analítica en $\mathbb C$) con la función e^{iz} (analítica en $\mathbb C$ por ser composición de e^z con iz, ambas analíticas en $\mathbb C$).

Como $f(z) = \frac{N(z)}{T(z)}$ es cociente de analíticas, resulta analítica en $D_{ana}(f) = \mathbb{C} - \{z: T(z) = 0\}$

Se tiene:

$$T(z) = 0 \Leftrightarrow e^{iz} + 1 = 0 \Leftrightarrow e^{iz} = -1 \Leftrightarrow e^{i(x+iy)} = -1 \Leftrightarrow$$

$$\Leftrightarrow e^{-y+ix} = -1 \Leftrightarrow \left| e^{-y+ix} \right| = \left| -1 \right| \land \arg(e^{-y+ix}) = \arg(-1) \Leftrightarrow$$

$$\Leftrightarrow e^{-y} = 1 \land x \in \arg(-1) \Leftrightarrow y = 0 \land x = (2k+1)\pi, k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow z = (2k+1)\pi, k \in \mathbb{Z}$$

Entonces,

$$D_{ana}(f) = \mathbb{C} - \{(2k+1)\pi: k \in \mathbb{Z}\} = \mathbb{C} - \{\pm \pi, \pm 3\pi, \pm 5\pi, ...\}$$

Para $z \in D_{ana}(f)$:

$$f'(z) = \frac{e^z(e^{iz}+1) - e^z e^{iz}i}{(e^{iz}+1)^2} = \frac{(1-i)e^{(1+i)z} + e^z}{(e^{iz}+1)^2}$$

b)
$$f(z) = \frac{1}{e^z + ie^{-z}}$$

La función f es cociente de analíticas en \mathbb{C} , el numerador una constante y el denominador $T(z)=e^z+ie^{-z}$ es suma de analíticas.

Además:

$$T(z) = 0 \Leftrightarrow e^{z} + ie^{-z} = 0 \Leftrightarrow e^{z}(e^{z} + ie^{-z}) = 0 \Leftrightarrow e^{2z} + i = 0 \Leftrightarrow$$

$$\Leftrightarrow e^{2x + i2y} = -i \Leftrightarrow \left| e^{2x + i2y} \right| = \left| -i \right| \land 2y \in \arg(-i) \Leftrightarrow$$

$$\Leftrightarrow e^{2x} = 1 \land 2y = -\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow x = 0 \land y = (4k - 1)\frac{\pi}{4}, k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow z = i(4k - 1)\frac{\pi}{4}, k \in \mathbb{Z}$$

Entonces,

$$D_{ana}(f) = \mathbb{C} - \left\{ i(4k-1)\frac{\pi}{4} \colon k \in \mathbb{Z} \right\} = \mathbb{C} - \left\{ -\frac{i\pi}{4}, \frac{i3\pi}{4}, -\frac{i5\pi}{4}, \frac{i7\pi}{4}, \dots \right\}$$

Para $z \in D_{ana}(f)$:

$$f'(z) = -\frac{e^z - ie^{-z}}{(e^z + ie^{-z})^2}$$

c) $f(z) = e^{\bar{z}}$ es una función continua en $\mathbb C$ que no admite derivada en ningún punto. En efecto:

$$f(z) = e^{\bar{z}} = e^{x-iy} = e^x e^{-iy} = e^x (\cos(-y) + i \sin(-y)) = e^x \cos y - i e^x \sin y$$

Sus partes real e imaginaria son:

$$u(x, y) = e^x \cos y$$
 $v(x, y) = -e^x \sin y$

cuyas derivadas parciales están dadas por:

$$u_x(x,y) = e^x \cos y$$
 $v_x(x,y) = -e^x \sin y$
 $u_y(x,y) = -e^x \sin y$ $v_y(x,y) = -e^x \cos y$

Condiciones de Cauchy-Riemann (CR):

$$\begin{cases} u_x &= v_y \\ u_y &= -v_x \end{cases} \equiv \begin{cases} e^x \cos y &= -e^x \cos y \\ -e^x \sin y &= e^x \sin y \end{cases} \equiv \begin{cases} 2\cos y &= 0 \\ 2\sin y &= 0 \end{cases}$$

Este sistema carece de soluciones. Luego, por la condición necesaria de derivabilidad resulta $D_{der}(f) = \emptyset$. En consecuencia, $D_{ana}(f) = \emptyset$.

d)
$$f(z) = \bar{z}e^z$$

Si f(z) fuera derivable para algún $z \in \mathbb{C}$, Entonces

$$\bar{z} = \frac{f(z)}{e^z}$$

también lo sería (como cociente de tales, siendo que $e^z \neq 0$ siempre).

Pero ya hemos visto que \bar{z} no es derivable en ningún punto.

Luego, f(z) no puede ser derivable en ningún punto.

Es decir, $D_{der}(f) = \emptyset$ de modo que $D_{ana}(f) = \emptyset$

e)
$$f(z) = ze^{\bar{z}}$$

Si f(z) fuera derivable para algún $z \neq 0$, entonces $e^{\bar{z}} = \frac{f(z)}{z}$ también lo sería (como cociente de tales). Pero en c) vimos que $e^{\bar{z}}$ no es derivable en ningún punto.

Luego, f(z) sólo podría ser derivable en el origen. ¿Lo es? Una manera sencilla de analizarlo es por definición:

$$f'(0) = \lim_{\Delta z \to 0} \frac{f(0 + \Delta z) - f(0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(\Delta z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z} = \lim_{\Delta z \to 0} \frac{e^{\overline{\Delta z}}}{\Delta z} = 1$$

Luego, $D_{der}(f) = \{1\}$ de modo que $D_{ana}(f) = \emptyset$

f)
$$f(z) = \frac{e^{1/(z-1)}}{e^z + 3 - 4e^{-z}}$$

El numerador $N(z)=e^{1/(z-1)}$ es analítica en $\mathbb{C}-\{1\}$ por ser composición de analíticas.

El denominador $T(z)=e^z+3-4e^{-z}$ es analítico en $\mathbb C$ (suma de analíticas).

Luego,

$$D_{ana}(f) = \mathbb{C} - (\{1\} \cup \{z: T(z) = 0\})$$

Planteamos,

$$T(z) = 0 \Leftrightarrow e^{z} + 3 - 4e^{-z} = 0 \Leftrightarrow e^{z}(e^{z} + 3 - 4e^{-z}) = 0 \Leftrightarrow$$

$$\Leftrightarrow (e^{z})^{2} + 3e^{z} - 4 = 0 \Leftrightarrow e^{z} = \frac{-3 \pm \sqrt{9 + 16}}{2} \Leftrightarrow e^{z} = \frac{-3 \pm 5}{2} \Leftrightarrow$$

$$\Leftrightarrow e^{z} = -4 \lor e^{z} = 1$$

$$e^{z} = -4 \Leftrightarrow e^{x} = 4 \land y \in \arg(-4) \Leftrightarrow x = \ln 4 \land y = (2k + 1)\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow z = \ln 4 + i(2k + 1)\pi, k \in \mathbb{Z}$$

$$e^{z} = 1 \Leftrightarrow e^{z} = 1 \land y \in \arg(1) \Leftrightarrow x = 0 \land y = 2k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow z = i2k\pi, k \in \mathbb{Z}$$

Luego,

$$D_{ana}(f) = \mathbb{C} - (\{1\} \cup \{\ln 4 + i(2k+1)\pi : k \in \mathbb{Z}\} \cup \{i2k\pi : k \in \mathbb{Z}\})$$

Logaritmos complejos. Función logaritmo principal

Dados $z, w \in \mathbb{C}$, w se dice un logaritmo complejo de z si se verifica $e^w = z$.

Es claro que esta ecuación no tiene solución para w si z=0 (pues la exponencial compleja no se anula nunca).

Veamos que cada $z \in \mathbb{C}$, $z \neq 0$, posee infinitos logaritmos complejos. Si $z = re^{i\theta}$, (donde r = |z|, $\theta \in \arg(z)$) y w = u + iv:

$$e^w = z \iff e^{u+iv} = re^{i\theta} \iff e^u e^{iv} = re^{i\theta} \iff e^u = r \land v = \theta + 2k\pi, k \in \mathbb{Z} \iff u = \ln r \land v = \theta + 2k\pi, k \in \mathbb{Z}$$

Entonces,

$$w = u + iv = \ln r + i(\theta + 2k\pi), k \in \mathbb{Z}$$

Anotaremos ln(z) al **conjunto de los logaritmos de** $z \in \mathbb{C}$, $z \neq 0$. Así,

Logaritmo real Logaritmo real Logaritmo real $\ln(z) = \{\ln r + i(\theta + 2k\pi) : k \in \mathbb{Z}\} = \ln r + i \arg(z) = \ln|z| + i \arg(z)$

Notar que ln(z) no es una función porque para cada $z \neq 0$ no da un único resultado.

Uno de los logaritmos complejos de $z \neq 0$ se obtiene restringiendo $\arg(z)$ a tomar valores en el intervalo $(-\pi,\pi]$. Se obtiene así un único valor, llamado el **logaritmo principal de z**, que denotamos:

Ln(z) =
$$\ln r + i \operatorname{Arg}(z) = \ln |z| + i \operatorname{Arg}(z)$$
 Argumento principal de z

Si a cada $z \neq 0$ le asignamos su logaritmo principal, obtenemos la función logaritmo principal f(z) = Ln(z), cuyo dominio es $\mathbb{C} - \{0\}$.

Ejemplo:

$$\ln(-1+i) = \ln|-1+i| + i \arg(-1+i) = \ln(\sqrt{2}) + i \left(\frac{3}{4}\pi + 2k\pi\right), k \in \mathbb{Z}$$

$$\ln(-1+i) = \ln(\sqrt{2}) + i \frac{3}{4}\pi$$

$$\ln(-i) = \ln|-i| + i \arg(-i) = \ln(1) + i \left(\frac{3}{2}\pi + 2k\pi\right) = i \left(\frac{3}{2}\pi + 2k\pi\right), k \in \mathbb{Z}$$

$$\ln(-i) = -i \frac{\pi}{2}$$

Observar

Es sencillo probar que:

$$\ln(z_1 z_2) = \ln(z_1) + \ln(z_2)$$

$$\ln\left(\frac{z_1}{z_2}\right) = \ln(z_1) - \ln(z_2)$$

Por ejemplo:

$$\ln((-1)(-1)) = \ln 1 = i2k\pi, k \in \mathbb{Z}$$

$$\ln(-1) + \ln(-1) = \{i(2k+1)\pi + i(2h+1)\pi : k, h \in \mathbb{Z}\} = \{i2l\pi : l \in \mathbb{Z}\} = \ln((-1)(-1))$$

Sin embargo, en general para $n \in \mathbb{Z}$:

$$ln(z^n) \neq n ln z$$

Por ejemplo:

$$\ln((-1)^2) = \ln 1 = \{i2k\pi: k \in \mathbb{Z}\} = \{0, \pm i2\pi, \pm i4\pi, \pm i6\pi, \pm i8\pi, \dots\}$$

$$2\ln(-1) = \{i2(2k+1)\pi \neq : k \in \mathbb{Z}\} = \{\pm i2\pi, \pm i6\pi, \pm i10\pi, \dots\} \neq \ln((-1)^2)$$

En general:

$$\operatorname{Ln}(z_1 z_2) \neq \operatorname{Ln}(z_1) + \operatorname{Ln}(z_2)$$

$$\operatorname{Ln}\left(\frac{z_1}{z_2}\right) \neq \operatorname{Ln}(z_1) - \operatorname{Ln}(z_2)$$

$$\operatorname{Ln}(z^n) \neq n \operatorname{Ln} z$$

<u>Ejemplo</u>:

$$Ln((-1)(-1)) = Ln \ 1 = 0$$
 $Ln(-1) + Ln(-1) = i\pi + i\pi = 2i\pi \neq Ln((-1)(-1))$

$$\operatorname{Ln}\left(\frac{1+i}{i}\right) = \operatorname{Ln}(1-i) = \ln|1-i| + i\operatorname{Arg}(1-i) = \ln\sqrt{2} - \frac{i\pi}{4}$$

$$\operatorname{Ln}(1+i) - \operatorname{Ln}(i) = \ln|1-i| + i\operatorname{Arg}(1-i) - (\ln|i| + i\operatorname{Arg}(i)) = \ln\sqrt{2} - \frac{i3\pi}{4} \neq \operatorname{Ln}\left(\frac{1+i}{i}\right)$$

$$\operatorname{Ln}((-1)^2) = \operatorname{Ln} 1 = 0$$
 $2\operatorname{Ln}(-1) = i2\pi \neq \operatorname{Ln}((-1)^2)$

Ejemplo: Hallemos las soluciones de

a)
$$2 \operatorname{Ln}(iz) = -i\pi$$

a)
$$2 \text{ Ln}(iz) = -i\pi$$
 b) $\text{Ln}(2z - 5i) = i\pi + \text{Ln}(iz)$

Rta

a)
$$2 \operatorname{Ln}(iz) = -i\pi \iff \operatorname{Ln}(iz) = -\frac{i\pi}{2} \iff iz = e^{-\frac{i\pi}{2}} \iff iz = -i \iff z = -1$$

b)
$$\operatorname{Ln}(2z - 5i) = i\pi + \operatorname{Ln}(iz) \Rightarrow e^{\operatorname{Ln}(2z - 5i)} = e^{i\pi + \operatorname{Ln}(iz)} \Rightarrow 2z - 5i = -iz \Rightarrow$$

 $\Rightarrow (2+i)z = 5i \Rightarrow z = \frac{5i}{2+i} \Rightarrow z = \frac{5i(2-i)}{(2+i)(2-i)} \Rightarrow z = 1+2i$

Sin embargo, z = 1 + 2i no es solución de la ecuación dada. En efecto:

$$\operatorname{Ln}(2z - 5i) \Big|_{z=1+2i} = \operatorname{Ln}(2(1+2i) - 5i) = \operatorname{Ln}(2-i) = \ln\sqrt{5} + i \operatorname{arctg}\left(-\frac{1}{2}\right)$$
$$i\pi + \operatorname{Ln}(iz) \Big|_{z=1+2i} = i\pi + \operatorname{Ln}(i(1+2i)) = i\pi + \operatorname{Ln}(-2+i)$$
$$= i\pi + \ln\sqrt{5} + i\left(\pi + \operatorname{arctg}\left(-\frac{1}{2}\right)\right) = 2i\pi + \ln\sqrt{5} + i \operatorname{arctg}\left(-\frac{1}{2}\right)$$

Así que la ecuación $\text{Ln}(2z - 5i) = i\pi + \text{Ln}(iz)$ no tiene soluciones.

Propiedades de los logaritmos complejos

- $w \in \ln z \iff e^w = z$
- logaritmo real exponencial real • $\overline{\text{Si } z \neq 0}$: $e^{\ln z} = z$; $e^{\ln z} = z$ • $\ln(e^z) = z + i2k\pi$, $k \in \mathbb{Z}$ pues $\ln(e^z) = \ln|e^z| + i \arg(e^z) = \ln(e^{\tilde{x}}) + i(y + 2k\pi) = \lim_{x \to \infty} \frac{1}{x} \ln(e^x)$ $= x + iy + i2k\pi = z + i2k\pi^{x}, k \in \mathbb{Z}$
- $\operatorname{Ln}(e^z) = z \iff -\pi < \operatorname{Im}(z) \le \pi$
- El dominio de definición de la función $f(z)=\operatorname{Ln} z$ es $D_{def}(f)=\mathbb{C}-\{0\}$
- $f(z) = \operatorname{Ln} z$ extiende a la función real $\ln x$. Es decir, si $y = \operatorname{Im}(z) = 0$ y $x = \operatorname{Re}(z) > 0$, entonces $\operatorname{Ln} z = \ln x$
- Hemos visto en general que f(z) = u(x,y) + iv(x,y) es continua en z = x + iy si y sólo si u(x,y) y v(x,y) son continuas en (x, y).

Para $f(z) = \text{Ln}(z) = \ln|z| + i \text{ Arg}(z)$ se tiene

$$u(x,y) = \ln\left(\sqrt{x^2 + y^2}\right)$$
 es continua en $\mathbb{R}^2 - \{(0,0)\}$

$$v(x,y) = \operatorname{Arg}(z)$$
 es continua en $\mathbb{R}^2 - \{(x,y): y = 0 \land x \leq 0\}$

Entonces, $f(z) = \operatorname{Ln}(z)$ es continua en $\mathbb{C} - \{x + iy : y = 0 \land x \leq 0\}$.

Siendo discontinua en $\{x+iy\in\mathbb{C}:\ y=0\ \land\ x\leq 0\}$, no puede ser derivable allí.

Ejemplo: aplicando logaritmos complejos resolver las siguientes ecuaciones.

a)
$$e^{iz} + 1 = 0$$

b)
$$e^z + ie^{-z} = 0$$

a)
$$e^{iz} + 1 = 0$$
 b) $e^z + ie^{-z} = 0$ c) $e^z + 3 - 4e^{-z} = 0$

Rta

a)

$$e^{iz} + 1 = 0 \iff e^{iz} = -1 \iff iz \in \ln(-1) \iff iz \in \ln|-1| + i \arg(-1) \iff iz = \ln 1 + i (2k+1)\pi, k \in \mathbb{Z} \iff iz = i (2k+1)\pi, k \in \mathbb{Z} \iff z = (2k+1)\pi, k \in \mathbb{Z}$$

b)

$$e^{z} + ie^{-z} = 0 \iff e^{z}(e^{z} + ie^{-z}) = 0 \iff e^{2z} + i = 0 \iff e^{2z} = -i \iff 2z \in \ln(-i) \iff 2z \in \ln|-i| + i \arg(-i) \iff 2z = \ln 1 + i\left(-\frac{\pi}{2} + 2k\pi\right), k \in \mathbb{Z} \iff 2z = i(4k-1)\frac{\pi}{2}, k \in \mathbb{Z} \iff z = i(4k-1)\frac{\pi}{4}, k \in \mathbb{Z}$$

c)

$$e^{z} + 3 - 4e^{-z} = 0 \Leftrightarrow e^{z}(e^{z} + 3 - 4e^{-z}) = 0 \Leftrightarrow (e^{z})^{2} + 3e^{z} - 4 = 0 \Leftrightarrow e^{z} = \frac{-3 \pm \sqrt{9 + 16}}{2} \Leftrightarrow e^{z} = 1 \lor e^{z} = -4$$

$$e^z = 1 \iff z \in \ln(1) \iff z \in \ln|1| + i \arg(1) \iff z = i2k\pi, k \in \mathbb{Z}$$

 $e^z = -4 \iff z \in \ln(-4) \iff z \in \ln|-4| + i \arg(-4) \iff z = \ln 4 + i(2k+1)\pi, k \in \mathbb{Z}$

Condiciones suficientes de derivabilidad en coordenadas polares

Sea f(z) = u(x, y) + i v(x, y) donde $z = x + iy \neq 0$. Empleando coordenadas polares para z:

$$z = re^{i\theta}$$
, $r = |z| > 0$, $-\pi < \theta = Arg(z) \le \pi$

Sean

$$U(r,\theta) = u(r\cos\theta, r\sin\theta)$$
; $V(r,\theta) = v(r\cos\theta, r\sin\theta)$

Si $z_0 = r_0 e^{i\theta_0}$ con $r_0 = |z_0| > 0$, $-\pi < \theta_0 < \pi$, y si las derivadas parciales U_r , U_θ , V_r , V_θ existen en un entorno de (r_0, θ_0) y son continuas en (r_0, θ_0) y verifican allí las "condiciones de Cauchy-Riemann en polares":

$$\begin{cases} U_r(r_0, \theta_0) &= \frac{1}{r} V_{\theta}(r_0, \theta_0) \\ V_r(r_0, \theta_0) &= -\frac{1}{r} U_{\theta}(r_0, \theta_0) \end{cases}$$

entonces f(z) es derivable en z_0 y se verifica:

$$f'(z_0) = e^{-i\theta_0} (U_r(r_0, \theta_0) + iV_r(r_0, \theta_0))$$

Ejemplo: Veamos que $D_{\text{der}}(\operatorname{Ln}) = \mathbb{C} - \{x + iy : y = 0 \land x \leq 0\}$

Como f(z) = Ln(z) es discontinua en el origen (por no tener valor allí) y en el semieje real negativo (porque su parte imaginaria Arg(z) es discontinua allí), en esos puntos no es derivable.

En cualquier otro punto se tiene:

$$f(z) = \operatorname{Ln}(z) = \underbrace{\ln r}_{U(r,\theta)} + i \underbrace{\theta}_{U(r,\theta)} \quad \text{donde } r = |z|, \theta = \operatorname{Arg}(z)$$

$$U_r(r,\theta) = \frac{1}{r} \qquad U_{\theta}(r,\theta) = 0$$

$$V_r(r,\theta) = 0 \qquad V_{\theta}(r,\theta) = 1$$

Estas derivadas parciales son continuas en $D=\{\ (r,\theta): -\pi<\theta<\pi\ \land\ r>0\}$. Además, satisfacen las condiciones CR en polares:

$$\begin{cases} U_r(r,\theta) &= \frac{1}{r} = -\frac{1}{r} V_{\theta}(r,\theta) \\ V_r(r,\theta) &= 0 = -\frac{1}{r} U_{\theta}(r,\theta) \end{cases}$$

Por lo tanto, f(z) es derivable en D y se tiene:

$$f'(z) = e^{-i\theta} (U_r(r,\theta) + iV_r(r,\theta)) = e^{-i\theta} \frac{1}{r} = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

<u>Observar</u>: f(z) = Ln(z) es analítica en $D_{\text{ana}}(\text{Ln}) = \mathbb{C} - \{x + iy : y = 0 \land x \leq 0\}$

Ejemplo: Dada f(z) = Ln (1 - iz) hallar el dominio más amplio $D_{def}(f)$, $D_{ana}(f)$ y calcular la derivada f'(z) donde exista. Rta

$$z \in D_{def}(f)$$
 sii $1 - iz \neq 0$ sii $z \neq -i$. Entonces, $D_{def}(f) = \mathbb{C} - \{-i\}$

La función g(z)=1-iz es analítica en $\mathbb C$ y tiene inversa $g^{-1}(w)=\frac{1-w}{i}=-i+iw$ analítica en $\mathbb C$. Sea $g(z_0)=w_0$

- Si $f \circ g^{-1}$ es analítica en w_0 entonces como g es analítica en z_0 , la composición $(f \circ g^{-1}) \circ g = f$ es analítica en z_0 .
- Si f es analítica en z_0 entonces como g^{-1} es analítica en w_0 , la composición $f \circ g^{-1}$ es analítica en w_0 .

Es decir: f es analítica en z_0 si y sólo si $f \circ g^{-1}$ es analítica en $w_0 = g(z_0)$

Observemos que:
$$f \circ g^{-1} = (\operatorname{Ln} \circ g) \circ g^{-1} = \operatorname{Ln} \circ (g \circ g^{-1}) = \operatorname{Ln}$$

Por lo tanto,

$$f$$
 es analítica en z_0 si y sólo si Ln es analítica en $w_0=g(z_0)=1-iz_0$

Así, para hallar el dominio de analiticidad de f(z) = Ln (1 - iz) hay que plantear que g(z) = 1 - iz caiga en el dominio de analiticidad del logaritmo principal Ln.

Dado que:
$$1 - iz = 1 - i(x + iy) = 1 - ix + y = (1 + y) + i(-x)$$

los z para los cuales eso ocurre son los que cumplen: Im(1-iz)=0 \land $Re(1-iz)\leq 0$.

Es decir:
$$-x = 0 \land 1 + y \le 0$$
. O sea: $x = 0 \land y \le -1$. Luego, $D_{ana}(f) = \mathbb{C} - \{x + iy : x = 0, y \le -1\}$

Aplicando la regla de la cadena:
$$\frac{d}{dz}(\operatorname{Ln}(1-iz)) = \frac{1}{1-iz}(-i) = -\frac{i}{1-iz}$$

Ejemplo: Dada $f(z) = \frac{1}{2i \operatorname{Ln}(z) - \pi}$ hallar el dominio más amplio $D_{def}(f)$, $D_{ana}(f)$ y calcular la derivada f'(z) donde exista.

<u>Rta</u>

$$2i \operatorname{Ln}(z) - \pi = 0 \iff \operatorname{Ln}(z) = \frac{\pi}{2i} \iff \operatorname{Ln}(z) = -\frac{i\pi}{2} \iff z = e^{-\frac{i\pi}{2}} \iff z = -i$$

Entonces,

$$D_{def}(f) = \mathbb{C} - \{0, -i\}$$

La función f(z) es cociente con numerador analítico en $\mathbb C$ (constante).

Si $z \notin \{x + iy : y = 0 \text{ , } x \le 0\}$ entonces $\operatorname{Ln}(z)$ es analítica allí. Luego, también lo es el denominador $T(z) = 2i \operatorname{Ln}(z) - \pi$.

Por ende, f(z) es analítica en $\mathbb{C}-(\{-i\}\cup\{x+iy:y=0,x\leq0\})$ mientras que no lo es en el resto de puntos. En efecto:

- f(z) es discontinua en z = i porque no está definida en ese punto.
- Sea z=x+iy con y=0, $x\leq 0$. Si f(z) fuera analítica allí, entonces 2i Ln $(z)-\pi=\frac{1}{f(z)}$ también lo sería (porque f(z) nunca se anula) y por ende también Ln $(z)=\frac{1}{2i}\Big(\pi+\frac{1}{f(z)}\Big)$. Pero sabemos que Ln (z) no es derivable en tales puntos. Entonces f(z) tampoco lo es.

Así,

$$D_{ana}(f) = \mathbb{C} - (\{-i\} \cup \{x + iy : y = 0 , x \le 0\})$$

La derivada es

$$f'(z) = -\frac{2i}{z(2i \operatorname{Ln}(z) - \pi)^2}$$

Funciones trigonométricas complejas

Identidad de Euler: $e^{i\theta} = \cos \theta + i \sin \theta$, $\forall \theta \in \mathbb{R}$.

Entonces, $e^{-i\theta} = \cos(-\theta) + i \sin(-\theta) = \cos\theta - i \sin\theta$, $\forall \theta \in \mathbb{R}$.

- Sumando ambas expresiones: $e^{i\theta} + e^{-i\theta} = 2\cos\theta$
- Restando ambas expresiones: $e^{i\theta} e^{-i\theta} = 2i \operatorname{sen} \theta$

Despejando, se obtienen las siguiente identidades $\forall \theta \in \mathbb{R}$:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Puesto que contamos con la exponencial compleja, resulta natural la definición siguiente, para $\theta \in \mathbb{C}$:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \qquad \qquad \operatorname{sen} z = \frac{e^{iz} - e^{-iz}}{2i}$$

Notar que $\cos z$, $\sin z$ pasan a ser funciones que extienden al coseno y al seno reales.

Ejemplo:

$$\cos\left(\frac{\pi}{2}+i\right) = \frac{e^{i\left(\frac{\pi}{2}+i\right)} + e^{-i\left(\frac{\pi}{2}+i\right)}}{2} = \frac{e^{\frac{i\pi}{2}-1} + e^{-\frac{i\pi}{2}+1}}{2} = \frac{e^{\frac{i\pi}{2}}e^{-1} + e^{-\frac{i\pi}{2}}e^{1}}{2} = \frac{ie^{-1} - ie^{1}}{2} = -i \operatorname{senh}(1)$$

$$\operatorname{sen}\left(\frac{\pi}{4} - i\right) = \frac{e^{i\left(\frac{\pi}{4} - i\right)} - e^{-i\left(\frac{\pi}{4} - i\right)}}{2i} = \frac{e^{i\pi/4}e - e^{-i\pi/4}e^{-1}}{2i} = -\frac{\sqrt{2}}{4}i\left((1+i)e - (1-i)e^{-1}\right) = -\frac{\sqrt{2}}{2}i\left(\operatorname{senh}(1) + i\operatorname{cosh}(1)\right) = \frac{\sqrt{2}}{2}\operatorname{cosh}(1) - i\frac{\sqrt{2}}{2}\operatorname{senh}(1)$$

Las funciones sen(z) y cos(z) son analíticas en todo el plano complejo. Para calcular sus derivadas basta aplicar reglas de derivación.

$$\frac{d}{dz}(\text{sen}(z)) = \cos(z) \qquad \qquad \frac{d}{dz}(\cos(z)) = -\sin(z)$$

Por ejemplo:

$$\frac{d}{dz}(\text{sen}(z)) = \frac{d}{dz} \left(\frac{e^{iz} - e^{-iz}}{2i} \right) = \frac{ie^{iz} - (-i)e^{-iz}}{2i} = \frac{e^{iz} + e^{-iz}}{2} = \cos z$$

Propiedades

- $\operatorname{sen}(z) = \operatorname{sen}(x) \cosh(y) + i \cos(x) \operatorname{senh}(y)$
- cos(z) = cos(x) cosh(y) i sen(x) senh(y)

Por ejemplo:

$$sen(z) = \frac{e^{-y+ix} - e^{y-ix}}{2i} = \frac{e^{-y}e^{ix} - e^{y}e^{-ix}}{2i} = \frac{e^{-y}(\cos x + i \sin x) - e^{y}(\cos x - i \sin x)}{2i} =$$

$$= \frac{e^{-y}\cos x + ie^{-y}\sin x - e^{y}\cos x + ie^{y}\sin x}{2i} = \frac{(e^{-y} - e^{y})\cos x + i(e^{-y} + e^{y})\sin x}{2i} =$$

$$= \frac{-(\frac{e^{y} - e^{-y}}{2})\cos x + i(\frac{e^{y} + e^{-y}}{2})\sin x}{i} = \frac{-\sinh(y)\cos(x) + i\cosh(y)\sin(x)}{i} = i\sinh(y)\cos(x) + \cosh(y)\sin(x)$$

•
$$|\sec(z)| = \sqrt{\sec^2(x)\cosh^2(y) + \cos^2(x)\sinh^2(y)} = \sqrt{\sec^2(x)(1 + \sinh^2(y)) + (1 - \sin^2(x))\sinh^2(y)} = \sqrt{\sec^2(x)\cosh^2(y) + \cosh^2(y)} = |\sech(y)|$$

•
$$|\cos(z)| = \sqrt{\cos^2(x)\cosh^2(y) + \sin^2(x)\sinh^2(y)} = \sqrt{\cos^2(x)(1 + \sinh^2(y)) + (1 - \cos^2(x))\sinh^2(y)} = \sqrt{\cos^2(x) + \sinh^2(y)} \ge |\sinh(y)|$$

En particular, sen(z) y cos(z) no están acotadas en el plano complejo (pues $|senh(y)| \rightarrow \infty$ cuando $y \rightarrow \infty$)

Propiedad: Sea $t \in \mathbb{R}$ tal que $-1 \le t \le 1$.

- a) Las soluciones complejas de la ecuación sen(z) = t son reales (por lo tanto son las mismas soluciones que en variable real).
- b) Las soluciones complejas de la ecuación cos(z) = t son reales (por lo tanto son las mismas soluciones que en variable real).

<u>Dem</u>

a) Sea $t \in \mathbb{R}$ tal que $-1 \le t \le 1$.

$$\operatorname{sen}(z) = t \iff \frac{e^{iz} - e^{-iz}}{2i} = t \iff e^{iz} - e^{-iz} = 2it \iff$$

$$\Leftrightarrow e^{iz} - 2it - e^{-iz} = 0 \Leftrightarrow e^{iz} \left(e^{iz} - 2it - e^{-iz} \right) = 0 \Leftrightarrow$$

$$\Leftrightarrow \left(e^{iz} \right)^2 - 2it \left(e^{iz} \right) - 1 = 0 \iff e^{iz} = \frac{2it \pm \sqrt{-4t^2 + 4}}{2} \Leftrightarrow$$

$$\Leftrightarrow e^{iz} = it \pm \sqrt{1 - t^2} \Leftrightarrow iz \in \ln\left(\pm \sqrt{1 - t^2} + it \right)$$

Pero
$$\left| \pm \sqrt{1 - t^2} + it \right| = \sqrt{\left(\pm \sqrt{1 - t^2} \right)^2 + t^2} = \sqrt{1 - t^2 + t^2} = 1$$

Entonces,

$$\ln\left(\pm\sqrt{1-t^2}+it\right) = \ln\left|\pm\sqrt{1-t^2}+it\right| + i\arg\left(\pm\sqrt{1-t^2}+it\right)$$

Luego,

$$iz \in \ln\left(\pm\sqrt{1-t^2}+it\right) \iff iz \in i\arg\left(\pm\sqrt{1-t^2}+it\right) \iff z \in \arg\left(\pm\sqrt{1-t^2}+it\right)$$

Como $\arg(\pm\sqrt{1-t^2}+it)$ siempre es un número real, resulta que las soluciones z de la ecuación $\sin(z)=t$ son reales.

Propiedad: Sea $t \in \mathbb{R}$ tal que $-1 \le t \le 1$.

a) Las soluciones complejas de la ecuación sen(z) = t son reales (por lo tanto son las mismas soluciones que en variable real).

b) Las soluciones complejas de la ecuación $\cos(z) = t$ son reales (por lo tanto son las mismas soluciones que en variable real).

Ejemplo: Hallar el dominio de analiticidad de la función

$$1) f(z) = \frac{\operatorname{Ln}(1-z)}{z \cos(z)}$$

$$2) f(z) = \frac{1}{1 + \sin z}$$

1)
$$f(z) = \frac{\ln(1-z)}{z\cos(z)}$$
 2) $f(z) = \frac{1}{1+\sin z}$ 3) $f(z) = \frac{1}{2i+\cos(z)}$

Rta

$$1) \quad f(z) = \frac{\ln(1-z)}{z\cos(z)}$$

$$z = x + iy$$
; $1 - z = (1 - x) + i(-y)$

N(z) = Ln(1-z) es analítica excepto si Im(1-z) = 0 \land $\text{Re}(1-z) \leq 0$, es decir salvo si -y = 0 \land $1 - x \le 0$

Luego,N(z) es analítica en $\mathbb{C} - \{x + iy : y = 0 \land x \ge 1\}$.

 $D(z) = z \cos(z)$ es analítica en \mathbb{C} (producto de analíticas).

Además:

$$D(z) = 0 \Leftrightarrow z \cos(z) = 0 \Leftrightarrow z = 0 \lor \cos(z) = 0 \Leftrightarrow$$

 $\Leftrightarrow z = 0 \lor z = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$

Luego,
$$D_{\mathrm{ana}}(f) = \mathbb{C} - \left(\left\{ x + iy : y = 0 \land x \ge 1 \right\} \cup \left\{ 0 \right\} \cup \left\{ \frac{\pi}{2} + k\pi : k \in \mathbb{Z} \right\} \right)$$

$$2) f(z) = \frac{1}{1 + \operatorname{sen}(z)}$$

 $D(z) = 1 + \operatorname{sen}(z)$ es analítica en \mathbb{C} .

Siendo cociente de analíticas, f(z) es analítica excepto donde se anula D(z).

$$D(z)=0 \iff 1+\mathrm{sen}(z)=0 \iff \mathrm{sen}(z)=-1 \Leftrightarrow z=-\frac{\pi}{2}+2k\pi, k\in\mathbb{Z}$$
 Luego, $D_{\mathrm{ana}}(f)=\mathbb{C}-\left\{-\frac{\pi}{2}+2k\pi\colon k\in\mathbb{Z}\right\}$ 3) $f(z)=\frac{1}{2i+\cos(z)}$

La función es cociente de analíticas así que es analítica excepto donde se anule su denominador:

$$D(z) = 0 \iff 2i + \cos(z) = 0 \iff \cos(z) = -2i \iff \frac{e^{iz} + e^{-iz}}{2} = -2i \iff e^{iz} + e^{-iz} = -4i$$

$$\iff e^{iz} + 4i + e^{-iz} = 0 \iff e^{iz} \left(e^{iz} + 4i + e^{-iz}\right) = 0 \iff \left(e^{iz}\right)^2 + 4ie^{iz} + 1 = 0 \iff$$

$$e^{iz} = \frac{-4i \pm \sqrt{-16 - 4}}{2} \iff e^{iz} = \left(-2 \pm \sqrt{5}\right)i \iff iz \in \ln\left(\left(-2 + \sqrt{5}\right)i\right) \lor iz \in \ln\left(\left(-2 - \sqrt{5}\right)i\right) \iff$$

$$\iff z \in -i \ln\left(\left(-2 + \sqrt{5}\right)i\right) \lor z \in -i \ln\left(\left(-2 - \sqrt{5}\right)i\right)$$

$$z \in -i \ln\left(\left(-2 + \sqrt{5}\right)i\right) \iff z = -i \left(\ln\left(\sqrt{5} - 2\right) + i\left(\frac{\pi}{2} + 2k\pi\right)\right) \iff z = \left(\frac{\pi}{2} + 2k\pi\right) - i \ln\left(\sqrt{5} - 2\right), k \in \mathbb{Z}$$

$$z \in -i \ln\left(\left(-2 - \sqrt{5}\right)i\right) \iff z = -i \left(\ln\left(\sqrt{5} + 2\right) + i\left(-\frac{\pi}{2} + 2k\pi\right)\right) \iff z = \left(-\frac{\pi}{2} + 2k\pi\right) - i \ln\left(\sqrt{5} + 2\right), k \in \mathbb{Z}$$

Luego,

$$D_{\text{ana}}(f) = \mathbb{C} - \left(\left\{ \left(\frac{\pi}{2} + 2k\pi \right) - i \ln(\sqrt{5} - 2) : k \in \mathbb{Z} \right\} \cup \left\{ \left(-\frac{\pi}{2} + 2k\pi \right) - i \ln(\sqrt{5} + 2) : k \in \mathbb{Z} \right\} \right)$$

Algunas identidades trigonométricas útiles

$$\cos^{2}(z) + \sin^{2}(z) = 1$$

$$\operatorname{sen}(z \pm w) = \operatorname{sen}(z) \cos(w) \pm \cos(z) \operatorname{sen}(w)$$

$$\cos(z \pm w) = \cos(z) \cos(w) - \operatorname{sen}(z) \operatorname{sen}(w)$$

$$\cos(2z) = \cos^{2}(z) - \operatorname{sen}^{2}(z)$$

$$\operatorname{sen}(2z) = 2 \operatorname{sen}(z) \cos(z)$$

$$\operatorname{sen}^{2}(z) = \frac{1 - \cos(2z)}{2} \qquad \cos^{2}(z) = \frac{1 + \cos(2z)}{2}$$

Funciones hiperbólicas complejas

Si queremos extender las funciones hiperbólicas reales al campo complejos, podemos definirlas a partir de la exponencial compleja del modo siguiente:

$$cosh z = \frac{e^z + e^{-z}}{2} \qquad senh z = \frac{e^z - e^{-z}}{2}$$

Evidentemente ambas son analíticas en todo en plano complejo y vale:

$$\frac{d}{dz}(\operatorname{sen}h(z)) = \cosh(z) \qquad \qquad \frac{d}{dz}(\cosh(z)) = \operatorname{senh}(z)$$

Notar:

$$\cos(iz) = \frac{e^{-z} + e^z}{2} = \cosh(z) \qquad \qquad \operatorname{sen}(iz) = \frac{e^{-z} - e^z}{2i} = i \operatorname{senh}(z)$$

A partir de esta observación se deduce que si en una identidad trigonométrica se reemplaza $\cos(z)$ por $\cosh(z)$ y a la vez $\sin(z)$ por i $\sinh(z)$, se obtiene una identidad hiperbólica. Por ejemplo:

$$\cos^{2}(z) + \sin^{2}(z) = 1$$

 $(\cosh(z))^{2} + (i \sinh(z))^{2} = 1$
 $\cosh^{2}(z) - \sinh^{2}(z) = 1$

Ejemplo: Hallar el dominio de analiticidad de $f(z) = \frac{1}{2 \operatorname{senh}(z) - ie^z}$

La función es cociente de analíticas en $\mathbb C$, así que f(z) es analítica excepto donde se anula

$$D(z) = 2 \operatorname{senh}(z) - ie^{z}$$

$$D(z) = 0 \iff 2 \operatorname{senh}(z) - ie^{z} = 0 \iff e^{z} - e^{-z} - ie^{z} = 0 \Leftrightarrow$$

$$\Leftrightarrow e^{z}(e^{z} - e^{-z} - ie^{z}) = 0 \Leftrightarrow (1 - i)e^{2z} = 1 \Leftrightarrow e^{2z} = \frac{1}{1 - i} \Leftrightarrow$$

$$\Leftrightarrow e^{2z} = \frac{1 + i}{2} \iff 2z \in \ln\left(\frac{1 + i}{2}\right) \Leftrightarrow 2z = \ln\left|\frac{1 + i}{2}\right| + i \operatorname{arg}\left(\frac{1 + i}{2}\right) \Leftrightarrow$$

$$\Leftrightarrow 2z = \ln\left(\frac{1}{\sqrt{2}}\right) + i(\operatorname{arctg}(1) + 2k\pi), k \in \mathbb{Z} \Leftrightarrow$$

$$2z = -\frac{\ln(2)}{2} + i\left(\frac{\pi}{4} + 2k\pi\right), k \in \mathbb{Z} \Leftrightarrow z = -\frac{\ln(2)}{4} + i\left(\frac{\pi}{8} + k\pi\right), k \in \mathbb{Z}$$
Luego, $D_{\operatorname{ana}}(f) = \mathbb{C} - \left\{-\frac{\ln(2)}{4} + i\left(\frac{\pi}{8} + k\pi\right) : k \in \mathbb{Z}\right\}$

Exponenciación compleja general

Dados $\alpha, z \in \mathbb{C}$, $\alpha \neq 0$, definimos:

$$\alpha^z \stackrel{\text{def}}{=} e^z \ln(\alpha)$$

Como $ln(\alpha)$ es multivaluado, entonces α^z no define una función de z.

Función exponencial generalizada: $f(z) = \alpha^z \stackrel{\text{def}}{=} e^{z \operatorname{Ln}(\alpha)}$

Ejemplo:

$$(1+i)^{i} = e^{i \ln(1+i)} = e^{i(\ln|1+i|+i \arg(1+i))} = e^{i\left(\ln(\sqrt{2})+i\left(\frac{\pi}{4}+2k\pi\right)\right)} =$$

$$= e^{-\left(\frac{\pi}{4}+2k\pi\right)+i \ln(\sqrt{2})} = e^{-\left(\frac{\pi}{4}+2k\pi\right)}e^{i \ln\sqrt{2}} =$$

$$= e^{-\left(\frac{\pi}{4}+2k\pi\right)}\left(\cos\left(\ln(\sqrt{2})\right)+i \sin\left(\ln(\sqrt{2})\right)\right), k \in \mathbb{Z}$$

$$(1+i)^{i} = e^{i \ln(1+i)} = e^{i(\ln|1+i|+i \arg(1+i))} = e^{i\left(\ln(\sqrt{2})+\frac{i\pi}{4}\right)} =$$

$$= e^{-\frac{\pi}{4}+i \ln(\sqrt{2})} = e^{-\frac{\pi}{4}}e^{i \ln(\sqrt{2})} = e^{-\frac{\pi}{4}}\left(\cos\left(\ln(\sqrt{2})\right)+i \sin\left(\ln(\sqrt{2})\right)\right)$$