Indukcja reguł

- Kompleks k składa się z selektorów.
- $k_1=\{<$ słoneczna \lor deszczowa, zimna \lor ciepła, $?,?>\}$ $k_2=\{<$ słoneczna, ciepła, $?,?>\}$ $k_2 \prec k_1$ k_2 jest bardziej szczegółowe od k_1 , k_1 jest bardziej ogólne od k_2
- ullet $S\rhd k$ to dokładniej $(\exists k\in S)k\rhd x$ zbiór wszystkich x pokrywanych przez $k\in S$
- $\{k_1 > x\} = \{1, 2, 5, 6, 9\}$
- $\{k_2 > x\} = \{1, 2\}$

Indukcja reguł - sekwencyjne pokrywanie

```
funkcja sekwencyjne-pokrywanie(T)
argumenty wejściowe:
     • T - zbiór trenujący dla pojęcia c
   zwraca: zbiór reguł reprezentujący hipotezę przybliżającą c
        R := 0; P := T;
       jak długo P \neq 0 wykonaj
               k := \operatorname{znajd\acute{z}-kompleks}(T, P);
               d := \mathsf{kategoria}(k, T, P);
               R := R \cup \{k \rightarrow d\};
               P := P - P_k;
            koniec jak długo
```

zwróć ${\cal R}$

Indukcja reguł - algorytm CN2

funkcja znajdź-kompleks-cn2(T, P) argumenty wejściowe:

- T zbiór trenujący dla pojęcia c,
- $\bullet \ P$ podzbiór zbioru T zawierający przykłady nie pokryte przez wygenerowane wcześniej reguły

zwraca: statystycznie istotny kompleks pokrywający pewną liczbę przykładów z P z dużą dokładnością;

```
\begin{split} S := \{<?>\}; &k_* := <?>; \\ \text{jak długo } S \neq \phi \text{ wykonaj} \\ S' := S \cap \mathbb{S}; \\ S' := S' - S - \{<\phi>\}; \\ \text{dla wszystkich kompleksów } k \in S' \text{ wykonaj} \\ &\text{jeśli } \psi_k(P) > \theta \wedge \vartheta_k(P) > \vartheta_{k_*}(P) \text{ to } k_* := k \\ &\text{koniec jeśli} \\ &\text{koniec dla} \\ S := \text{Arg } \max_{k \in S'}^m v_k(P) \\ &\text{koniec jak długo} \\ \text{zwróć } k_* \end{split}
```

Algorytm CN2 - funkcja oceniająca kompleksy

Entropię zbioru P ze względu na kompleks k określa się następująco:

$$E_k(P) = \sum_{d \in C} -\frac{|P_k^d|}{|P_k|} log \frac{|P_k^d|}{|P_k|}$$

Entropia ma tę cechę, że największą wartość przyjmuje dla zrównoważonych rozkładów częstości kategorii. Funkcja oceniająca kompleksy musi być zanegowaną entropią:

$$\vartheta_k(P) = -E_k(P)$$

Algorytm CN2 - statystyka χ

Niech f_i oznacza zaobserwowaną częstość (liczbę wystąpień) i-tej wartości atrybutu y_i dla $i=1,2,3,\ldots,v_1$ i odpowiednio f_j dla y_j dla $j=1,2,3,\ldots,v_2$, f_{ij} liczbę (częstość) jednoczesnych wystąpień i-tej i j-tej wartości atrybutów y_i i y_j , a e_{ij} to wartość oczekiwana jednoczesnego wystąpienia przy założeniu niezależności y_1 i y_2 i $(v_1-1)(v_2-1)$ stopniach swobody.

$$\chi^2 = \sum_{i=1}^{v_1} \sum_{j=1}^{v_2} rac{(f_{ij} - e_{ij})^2}{e_{ij}}$$
, gdzie $e_{ij} = rac{f_i^1 f_j^2}{n}$

Im większa wartość statystyki tym bardziej atrybuty są zależne od siebie.

Algorytm CN2 - statystyka χ

$$\chi_k^2(P) = \sum_{d \in C} \frac{(|P_k^d| - e_k^d(P))^2}{e_k^d(P)},$$
 gdzie $e_k^d(P) = |P_k| \frac{|P^d|}{|P|}$

$oxed{x}$	aura	temperatura	wilgotność	wiatr	c(x)
1	słoneczna	ciepła	duża	słaby	0
2	słoneczna	ciepła	duża	silny	0
3	pochmurna	ciepła	duża	słaby	1
4	deszczowa	umiarkowana	duża	słaby	1
5	deszczowa	zimna	normalna	słaby	1
6	deszczowa	zimna	normalna	silny	0
7	pochmurna	zimna	normalna	silny	1
8	słoneczna	umiarkowana	duża	słaby	0
9	słoneczna	zimna	normalna	słaby	1
10	deszczowa	umiarkowana	normalna	słaby	1
11	słoneczna	umiarkowana	normalna	silny	1
12	pochmurna	umiarkowana	duża	silny	1
13	pochmurna	ciepła	normalna	słaby	1
14	deszczowa	umiarkowana	duża	silny	0

Zbiór S kompleksów atomowych

```
\mathbb{S} = \{ \langle \mathsf{deszczowa}, ?, ?, ? \rangle, \}
< deszczowa \lor słoneczna, ?, ?, ?
< deszczowa \vee pochmurna, ?, ?, ? >,
< pochmurna, ?, ?, ? >,
< pochmurna \lor słoneczna, ?, ?, ? >,
< słoneczna, ?, ?, ? >,
<?, ciepła, ?, ? >,
<?, ciepła \lor zimna, ?, ?>,
<?, ciepła \lor umiarkowana, ?, ? >,
<?, umiarkowana, ?, ? >,
<?, umiarkowana \lor zimna, ?, ?>,
<?, zimna, ?, ? >,
<?,?,du\dot{z}a,?>,<?,?,normalna,?>,<?,?,?,silny>,<?,?,?,siaby>
```

Kolejne kroki algorytmu CN2 1/3

- 1. Początkowo $R = \phi, P = T = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}, \mathbb{S}$
- 2. Następuje wywołanie znajdź-kompleks(T, P).
 - $S = \{ \langle ? \rangle \} \neq \phi, k_* = \langle ? \rangle i \vartheta_{k_*}(P) = -E_{k_*}(P) = -0.940,$
 - $S' = \mathbb{S} = S \cap \mathbb{S}$,
 - k=< pochmurna, ?,?,?> ma największą wartość $\vartheta_k=0$ w zbiorze \mathbb{S} ; $S=\{k\}, k_*=k$,
- 3. $R = \{ < \mathsf{pochmurna}, ?, ?, ? > \rightarrow 1 \}, P = \{1, 2, 4, 5, 6, 8, 9, 10, 11, 14 \}, \}$
- 4. $P \neq \phi \Rightarrow znajd\acute{z}$ -kompleks(T, P),
 - $S = \{ <? > \} \neq \phi, k_* = <? > i \vartheta_{k_*}(P) = -1,$
 - $S' = \mathbb{S} = S \cap \mathbb{S}$,
 - $k=<?, {\rm ciepła},?,?>$ ma największą wartość $\vartheta_k=0$ w zbiorze $\mathbb S;$ $S=\{k\} \neq \phi, k_*=k$,
- 5. $R = \{ < \text{pochmurna}, ?, ?, ? > \rightarrow 1, <?, \text{ciepła}, ?, ? > \rightarrow 0 \},$ $P = \{ 4, 5, 6, 8, 9, 10, 11, 14 \},$

Kolejne kroki algorytmu CN2 2/3

- 1. $P \neq \phi \Rightarrow znajd\acute{z}$ -kompleks(T, P),
 - $S' = \mathbb{S} = S \cap \mathbb{S}$,
 - k=<?,?, normalna,? > zostaje wybrane z najwyższą wartością $\vartheta_k=-0,721$ w zbiorze $\mathbb{S};$ $S=\{k\}\neq\phi, k_*=k,$
 - k_* nie ma wartości 0 (pętla jak długo się nie kończy),
 - w następnym cyklu dla $S' = S \cap \mathbb{S}$ największą wartość $\vartheta_k = 0$ ma kompleks k = <?,?, normalna, słaby $>, k_* = k$
- 2. $R = \{ < \text{pochmurna}, ?, ?, ? > \rightarrow 1, <?, \text{ciepła}, ?, ? > \rightarrow 0, <?, ?, \text{normalna}, \text{słaby} > \rightarrow 1 \}, P = \{ 4, 6, 8, 11, 14 \},$
- 3. po kilku dalszych wywołaniach funkcji znajdź-kompleks(T,P) otrzymujemy $R=\{<$ pochmurna, $?,?,>\to 1,<?,$ ciepła, $?,?>\to 0,<?,?,$ normalna, słaby $>\to 1,<?,$ zimna, $?,?>\to 0,<?,?,$ normalna, $?>\to 1,<?,?,$ silny $>\to 0,<$ słoneczna, $?,?,?>\to 0\}, P=\{4\}$

Kolejne kroki algorytmu CN2 3/3

- 1. $P \neq \phi \Rightarrow znajd\acute{z}$ -kompleks(T, P),
 - $S = \{ \langle ? \rangle \} \neq \phi, k_* = \langle ? \rangle i \vartheta_{k_*}(P) = -E_{k_*}(P) = 0,$
- 2. Ostatecznie

$$R = \{ \langle \mathsf{pochmurna}, ?, ?, ? \rangle \rightarrow 1,$$

$$</math, ciepła, $?$, $? > \rightarrow 0$,$$

$$,?</math, normalna, słaby $> \rightarrow 1$,$$

$$</math, zimna, $?$, $? > \rightarrow 0$,$$

$$,?</math, normalna, $?> \rightarrow 1$,$$

$$,?,?, \mathsf{silny} \to 0,$$

$$<$$
 słoneczna, $?$, $?$, $?$ $> \rightarrow 0$,

$$\rightarrow 1$$