

Presentation

A genetic algorithm for finding the k shortest paths in a network

Duc Nguyen

October 14, 2015

- 1 Introduction
- 2 Concepts of genetics algorithm
- 3 Design and Example
- 4 Experiments

Problem description

Given a network G(V, E) where $V = \{1, 2, ...n\}$ denotes the set of nodes and $E = \{e_1, e_2, ..., e_m\}$ denotes the set of edges connecting nodes. Let $n_0 \subseteq V$ be source node,

 $M = \{n_0, u_1, ..., u_m\} \subseteq V$ be the set of destination nodes and Band(e) be the bandwidth of edge e.

Given a path $P(V_p, E_p)$ in the network G and

$$Band(P) = min\{Band(e) : e \in P(V_p, E_p)\}$$

Let B be a required value of the bandwidth, P is the shortest path if Band(P) > B

Find all the shortest paths from source node to each destination node.

Example

The shortest paths P with the restricted bandwidth B=10 1 2 8 7 6 4 gives Band(P)=10 1 5 6 7 8 2 4 gives Band(P)=10

Where we find the problem

- In a multiparty multimedia teleconference, it requires to maintain the route to send video and voice at each conference site to the other sites.
- In distant education systems, the voice and video of the instructor are sent to all students.
- In video-on-demand system, batching a number of customer requests from the same video object and using one I/O stream to serve multiple customers..

- 1 Introduction
- 2 Concepts of genetics algorithm
- 3 Design and Example
- 4 Experiments

A heuristic search based on the process of natural selection for improving the solution's quality by exploiting historical information.

Genetic algorithm components

- Encoding method: representing every solution domain into a sequence of data called chromosome.
- Initial population method: generating initial population.
- Objective function: verifying and weighting how a chromosome is closed to expected solution.
- Genetic operators: generating new chromosomes from historical information (basic operators: crossover and mutation operations).
- Terminator: determining to terminate reproduction cycle.

- 1 Introduction
- 2 Concepts of genetics algorithm
- 3 Design and Example
- 4 Experiments

Given a network G(V, E) and |V| = N

- Encoding method: an array of integers with length N to represent the respectively visited nodes of a path in G.
- Initial population method: randomly generating the set of candidate solutions in a form of above encoding method.
- Objective function: testing a chromosome with 1-connectivity condition and the bandwidth constraint.
- Genetic operators: Crossover operation(random cut-point) and mutation operation(replacing bit-by-bit basis).
- Terminator: terminating the algorithm if the number of reproduction cycles is reached.

i							
							.1
	no l	ı n:	ı n:	l n ₁ ,	 	l n _m	a
	0	11	1 **1	K	 	**111	-

A chromosome form (where $n_i, n_j, n_k, \ldots, n_m$ are the nodes between the source node n_0 and destination node d).

Figure 2 Crossover operation.

Figure 3 Mutation operation.

Design and Example

Algorithm: Genetic algorithm for finding the *k* shortest paths

Input: pop_size, maxgen, $P_{\rm m}$, $P_{\rm c}$, n_0 , the destination nodes U, B. **Output:**

- 1. Generate the initial population as in Section 3.2.
- 2. gen \leftarrow 1.
- 3. While (gen \leq = maxgen) do
- $4. P \leftarrow 1$
- 5. While $(p < = pop_size)$ do
- 6. Obtain chromosomes of the new population, select two chromosomes from the parent population according to P_c . Apply crossover, and then mutate the new child according to $P_{\rm m}$ parameter.
- 7. Compute the bandwidth of the new child (Band(P)) according to Eq. (1).
- 8. If $B(P) \ge B$ then Save this child as a candidate solution.
- 9. $P \leftarrow p+1$.
- 10. End if
- 11. End
- 12. Print all obtained solutions.
- 13. End

- 4 Experiments

Questions?

Duc Nguyen