Decisions Trees are the Most Popular technique of Machine learning

But why?

1. Simplicity

Decisions Trees are the Most Popular technique of Machine learning

2. Accuracy

But why?

Course Structure

Topics Covered

Simple Decision Trees

- Classification Trees
- Regression Trees
- Tree Pruning

Advanced Ensemble techniques

- Bagging
- Random Forest
- Gradient Boosting
- ADA Boost
- XG Boost

Basics

Regression vs Classification

Chart is a visual representation of numerical data. It can make your number more representable.

QUANTITATIVE DATA

Bias variance Tradeoff

Month	Sales	
Jan	\$	2,933,743.00
Feb	\$	2,836,435.00
Mar	\$	2,799,982.00
Apr	\$	2,888,563.00
May	\$	2,945,629.00
Jun	\$	3,087,680.00
Jul	\$	3,202,347.00
Aug	\$	3,156,729.00
Sep	\$	3,057,932.00
Oct	\$	3,000,123.00
Nov	\$	2,930,987.00
Dec	\$	2,801,240.00

QUANTITATIVE DATA

OLS Method

QUANTITATIVE DATA

Overfitting

Definition

A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains conditional control statements.

Example

•	score [‡]	hours	midterm [‡]
1	35	6	42
2	38	5	65
3	40	7	35
4	45	6	75
5	35	8	60
6	65	11	50
7	70	12	45
8	75	18	40
9	80	14	80
10	85	12	82

Types

- Regression Tree
 For continuous quantitative target variable.
 Eg. Predicting rainfall, predicting revenue, predicting marks etc.
- Classification Tree
 For discrete categorical target variables
 Eg. Predicting High or Low, Win or Loss, Healthy or Unhealthy etc

Terminologies

Steps

- 1. We divide the predictor space—that is, the set of possible values for X1,X2, . . .,Xp—into J distinct and non-overlapping regions, R1,R2, . . . , RJ .
- 2. For every observation that falls into the region Rj, we make the same prediction, which is simply the mean of the response values for the training observations in Rj.

Goal is to minimize RSS

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

Building tree

Mean score 39

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

Mean score 75

Approach

- Top-down, greedy approach that is known as recursive binary splitting.
- Top-down because it begins at the top of the tree and then successively splits the predictor space
- Each split is indicated via two new branches further down on the tree.
- It is greedy because at each step of the tree-building process, the best split is made at that particular step, rather than looking ahead and picking a split that will lead to a better tree in some future step.

Steps

- 1. Considers all predictors and all possible cut point values
- 2. Calculates RSS for each possibility
- 3. Selects the one with least RSS
- 4. Continues till stopping criteria is reached

Stopping Criteria

- Minimum Observations at internal node
 Minimum numbers of observations required for further split
- Minimum Observations at leaf node
 Minimum number of observation needed at each node after splitting
- Maximum depthMaximum layers of tree possible

Pruning

Constraint
A split should have a benefit of
10 Units

Weakest Link Pruning

$$\sum_{m=1}^{|T|} \sum_{i: \ x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

$$= 1 i: x_i \in R_m$$

$$|T| = 1 i: x_i \in R_m$$

$$|T| = 1 i: x_i \in R_m$$

$$|T| = 1 i: x_i \in R_m$$

Pruning

Steps

- 1. Grow a very large tree
- 2. Cut it back to get an optimal tree

Types

- Regression Tree
 For continuous quantitative target variable.
 Eg. Predicting rainfall, predicting revenue, predicting marks etc.
- Classification Tree
 For discrete categorical target variables
 Eg. Predicting High or Low, Win or Loss, Healthy or Unhealthy etc

Classification Trees

Prediction method

Regression

Mean of response variable became prediction for that class

Classification

We use mode (most frequent category in that region will be the prediction)

Classification Trees

Methods

Both Regression and classification use recursive binary splitting

In Regression RSS is used to decide the split

In Classification we can use

- 1. Classification error rate
- 2. Gini Index
- 3. Cross Entropy

Classification Trees

In Classification we can use

- Classification error rate
- 2. Gini Index
- 3. Cross Entropy

Gini index and cross entropy signifies node purity

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

Ensemble Methods

Types

- 1. Bagging
- 2. Random Forest
- 3. Boosting

Problem with normal decision tree

High Variance

Ensemble Methods

Example

Bagging

Methods

Concept:-

If N observations have variance sigma sq. (s^2), then variance of mean of these observations is (s^2)/N

Training Data 1

Training Data 2

Training Data 3

Training Data 4

Model 1

Model 2

Model 3

Model 4

Prediction 1

Prediction 2

Prediction 3

Prediction 4

Final Model

Bagging

Bootstrapping

7	9	5	4	3	
Sample 1 -	9	5	4	3	4
Sample 2 -	7	9	5	4	7
Sample 3 -	7	9	9	4	3

Bagging

Methods

- 1. While bagging pruning is not done, Full length trees are grown
- 2. Individual trees have high variance and low bias, averaging reduces the variance
- 3. In regression, we take the average of predicted values
- 4. In Classification, we take majority vote i.e. most predicted class will be taken as the final prediction

Random Forest

Shortcomings Of Bagging Problem:-

Bagging creates correlated trees

Final Model

Created models are very similar

Random Forest

Shortcomings

Concept:-

We use subset of predictor variables so that we get different splits in each model

Different set of m predictors out of p Random m pred

Model 1

Prediction 1

Random m pred
Random m pred
Model 2

Prediction 2

Training Data 3

Random m pred

Model 3

Prediction 3

red Random m pred

Model 4

Prediction 4

Final Model

Random Forest

Thumb Rule for value of M

- 1. For Regression P/3
- For Classification sqrt(P)
- 2. Don't forget to use your business knowledge
 If the variables are highly correlated try a smaller value of M

Boosting

Process of turning a weak learner into a strong learner

- .. Gradient Boost
- 2. Ada Boost
- 3. XG Boost

Gradient Boosting

Ada Boosting

1st Tree

 Assign more weightage to misclassified observations

2nd tree

 Retrain the tree after accounting for weightages

Nth tree

 Final tree after accounting for weightages N-1 Times

XG Boost

- Almost similar to Gradient Boost
- XG-boost used a more regularized model formalization to control over-fitting, which gives it better performance.
- For model, it might be more suitable to be called as regularized gradient boosting.

Regularization

The cost function we are trying to optimize (MSE in regression etc) also contains a penalty term for number of variables. In a way, we want to minimize the number of variables in final model along with the MSE or accuracy. This helps in avoiding overfitting

XG-Boost contains regularization terms in the cost function.

Decision Trees

Advantages

- 1. Trees are very easy to explain to people
- 2. decision trees more closely mirror human decision-making than other regression and classification approaches
- 3. XGTrees can be displayed graphically, and are easily interpreted even by a non-expert
- 4. Trees can easily handle qualitative predictors without the need to create dummy variables.

Decision Trees

Disadvantages

1. Trees generally do not have the same level of predictive accuracy as some of the other regression and classification approaches