- 1. Unit 01 Foundation and Tidy Data Model
- two-dimensional Python data structures to represent tabular data
 - o list of row lists
 - o dictionary mapping column names to a list of column values
 - o list of row dictionaries, where each dictionary maps a column name to the value for that row
- Regular expressions/pattern matching/extraction
 - o given a regular expression, understand what it matches
 - o write regular expressions to problem solve
- fundamental operations on dataframes
 - subset rows and columns based on
 - integer indices (individual or slice or list)
 - row or column names (individual or slice or list)
 - boolean predicate
 - aggregate operations
 - across full set (one column, all rows)
 - using group_by partitioning
 - o iterating over rows
 - column vector operations and adding columns
 - o sorting, ordering (less important for final)
 - o do not need to know merge/join here
- know the constraints of the model, to be able to
 - o recognize when data is not tidy
 - tidy characteristics
 - observations
 - unique independent variables
 - set of measures/dependent variables determined by value-combination of independent variables
 - variables/columns
 - red flags
 - time going across columns
 - new data growing in column direction without being a new measure
 - o understand what operations can transform two dimensional data into tidy form
 - melt and pivot and what arguments they need to do their job
- 2. Unit 02 Relational Data Model
- Sound database design (constraints of the model)
 - o recognize the big violations and know what to do about them to achieve a sound database design
 - multiple "things" in one table
 - multipart (in column name)
 - multi-value (as value for a given column)
 - derived data
 - note that solution (multi-value or two-things-in-one) requires a new table or tables, based on whether they are one-many or many-many
 - o Schema
 - keys (primary vs foreign, composite vs single-field)
 - relationships
 - one-many
 - linkage table to get many-many from one-many many-one
 - o Draw/Design a Schema that is sound
- SQL/Operations
 - SELECT/WHERE

- INNER JOIN, LEFT OUTER JOIN
- o Subquery to break a problem into smaller pieces
- o GROUP_BY and aggregation in SELECT
 - Note that the online part of the exam can use python magics
- 3. Unit 03 Networking and HTTP
 - o HTTP as messages (request/response) over TCP
 - General syntax
 - GET versus POST (know that there are others, but don't need specifics beyond GET/POST)
 - Headers
 - POST body
 - Response
 - status code
 - headers
 - body (as html, or xml, or csv, or binary like jpeg)
 - o requests module to create request and be able to do something useful with response
- 4. Unit 04 Tree Data Model XML, JSON
 - · As a file format
 - Write well-formed XML
 - Determine if XML is well-formed, and therefore parseable
 - tags, attributes, text
 - Tree operations
 - Given JSON or XML (and know structure), how to
 - loop over children
 - retrieve tags, attributes, text
 - XPath declarative extraction of data
 - tree tag and attribute traversal
 - conditionals
 - positional
 - · Constraints in the form of DTD for XML
 - Given DTD and XML, determine if valid
- 5. Unit 05 APIs, Authentication/Authorization; Synthesis
 - Understand how a data provider can offer data to clients over HTTP by specifying
 - protocol and location
 - resource endpoint and path parameters
 - Query parameters
 - request header values
 - POST body (Form) parameters
 - Tie content response to downstream processing as XML/JSON/HTML
 - Understand OAuth 2
 - Conceptually why we want delegated authorization and how that differs from impersonation (user/password known/used by App) (i.e the three party system)
 - Steps in the OAuth Dance
 - Lines 1-6 to get authorization code
 - building the url
 - resource owner steps
 - redirect to get code
 - Lines 7-8 to exchange code for token
 - Lines 9-10 for API request/response with token
 - Web Scraping

- Basic HTML as a tree instantiating XML concepts
- Common scenarios for HTML to carry tabular data
 - as table/tr/td/th