Claims 1 and 3-13 were pending in the application. New claims 14-16 have

been added. Applicants have amended claims 1, 4-8, and 10 and cancelled claims 12 and

13 from further consideration in this application. Applicants are not conceding in this

application that those claims are not patentable over the art cited by the Examiner.

Applicants respectfully reserve the right to pursue these and other claims in one or more

continuations and/or divisional patent applications. Applicant respectfully requests

reconsideration.

CLAIM REJECTIONS UNDER 35 USC §112

The Office Action rejected claims 1 and 3-13 under 35 USC 112, first paragraph,

for failing to comply with the written description requirement.

Claim 1 has been amended. Applicant submits that these changes moot the 112

rejections. Support for the claim amendments can be found in paragraphs [0027], [0090]-

[0095], and [0109] - [0117] of Applicant's specification. These paragraphs describe the

method of claim 1; specifically, they describe how it is sufficient to periodically examine

the references from the array, to a depth of one, rather than keeping "track of every element

in those leaking data structures" -- the former is a constant-sized traversal, the latter (every

element) is one that is unbounded in size.

6

CLAIM REJECTIONS UNDER 35 USC §102

The Office Action rejected claims 1 and 3-13 under 35 USC 102(b) as being

anticipated by Bournas et al. (US 6,061,679, hereinafter "Bournas").

Claim 1 has been amended to more clearly track the key aspect of the invention.

which is: for evolving data structures, we need only perform single-depth traversals of the

evolving data structures in order to detect evolutionary trends in the region in which the

data structures are located.

Bournas does not teach the elements of amended claim 1:

deriving a suspect region from a running application:

periodically traversing only selected subgraphs to a depth of one;

characterizing the data structure changes;

updating a histogram of the suspect region;

using the characterized data structure changes to describe, characterize, and

identify an evolutionary trend of the suspect region as a whole; and

reporting the characterized changes to the region to an analysis agent.

Bournas's method for creating and searching a data structure uses an ordering

scheme comprising a tree structure. [Bournas, Col. 5, lines 1-3] "On the other hand, if the

key mask is stored within the range, then a find procedure is used to locate the key in the

found tree, STEP 518." [Bournas, col. 10, 11-13] "Described in detail above are examples

of techniques for adding, deleting and searching a data structure..." [Bournas, col. 11, 19-

7

Serial Number 10/674,234 Docket Number YOR920030485US1 Amendment after Final Page 8

201

Bournas does not perform a traversal limited to a depth of one. Bournas must traverse an entire graph, because Bournas describes what amounts to an efficient way to do lookups. In performing a lookup in a binary tree, one traverses the tree to find the matching element. The number of nodes visited is log(N), for a graph with N nodes. This is not constant-sized.

For the foregoing reasons, Applicant respectfully requests allowance of the pending claims.

Respectfully submitted,

Michael J. Buchenhorner

Reg. No. 33,162

Date: May 4, 2008

Michael Buchenhorner, P.A. 8540 S.W. 83 Street Miami, Florida 33143 (305) 273-8007 (voice) (305) 595-9579 (fax)