The base model

The first iteration of the model consists of

- A large set of (apparently semantically inert), sentence-like strings of sounds, $_$ sentences, $s_1...s_k$.
- A large set of speakers or $_agents a_1..a_n$.
- For each _agent *a*_i, a _*value* function,

$$V_i$$
: s , t , $\mathbf{x} \rightarrow v$

where s is a _sentence, t is a time, \mathbf{x} is a point in 3-dimensional space representing a_i 's position at t, and v is a number between 0 and 1 with 0 representing maximum _disvalue, 1 maximum _value, and 0.5 indifference. A _sentence token is a complex of the form s, t, t, t, a _sentence type is just t.

_Pleasure

A distinction is made between _value , which is meant to correlate to a feeling of something's being the case, even if trivial or banal, and a provisional, model-specific feeling associated with novel, _valuable _sentences, _pleasure. _Pleasure will ultimately be discarded from the model, but until it is, it will serve as the only motive for exchanging _sentences – for _conversing. The sole goal of talk in the model is to maximize _pleasure.

The model, first refinement – focus of attention

To reflect the fact that our reaction to a sentence may depend on where our attention is focused – for example, where we are looking— a second, 3-dimensional position argument, ξ , is added to represent this for a_i :

$$V_i$$
: s , t , x , $\xi \rightarrow v$.

A _sentence token is now a complex of the form $\langle s, t, \mathbf{x}, \boldsymbol{\xi} \rangle$. One utterance corresponds to arbitrarily many token _sentences, insofar as it can be evaluated at arbitrarily many values of $\boldsymbol{\xi}$.

The model, second refinement – simultaneously _valued _sentences

The next parameter to add is a set, B, of token _sentences, representing the token _sentences _valued by a_i at t, excluding potentially s itself:

$$V_i$$
: s , t , x , ξ , $B \rightarrow v$.

Note that *B* makes the _value function impredicative, as plausibly it should be.

Note also that at a time, *B* may contain token _sentences from other times and places, just as I may now believe a thing you said yesterday.

Belief

_agent a_i _believes a token _sentence <s, t, \mathbf{x} , $\boldsymbol{\xi}$ > $iff V_i(s, t, \mathbf{x}, \boldsymbol{\xi}, B) > 0.5$, where B is the set of token _sentences _believed by a_i at t excluding s.

The model, last refinement – _context

The final parameter to add is a set, C, of token _sentences representing the _sentences heard at recent times t' < t by a_i at t, excluding s itself – the _context of s:

$$V_i$$
: s, t, x, ξ , B, $C \rightarrow v$

A token _sentence is now $\langle s, t, \mathbf{x}, \boldsymbol{\xi}, C \rangle$ – change the _context, and the token _sentence is changed.

_Observation and _theory _sentences

A token _sentence s is an _observation _sentence for a_i iff the _value of s is independent of B and varies with t, x, ξ and C. A token _sentence which is not an _observation _sentence is a _theory _sentence.

Aggregate _value

The aggregate _value A_i for a_i of a set of token _sentences B is,

$$A_i(B) = \sum_{j=0}^n V_i(s_j, B \setminus \{s_j\})$$

where s_i are the elements of B.

Maximal _belief set for a

B is the (or a) maximal _belief set for _agent *a* iff the aggregate _value of *B* for *a* is greater than or equal to the aggregate _value for *a* of any other set, *B*′.

_True-for-a

A _sentence *s* is _*true for a iff s* is an element of the (or a) maximal _belief set for *a*. The parenthetic "or a" is included because nothing in the model precludes the existence of more than one maximal set.

Combined aggregate _value

The *combined aggregate* value for the speakers of a language of a set of beliefs B is,

$$C(B) = \sum_{i=0}^{n} A_i(B)$$

where *i* ranges over all _agents who speak the _language.

Maximal _belief set (punkt)

B is the (or a) maximal _belief set iff the combined aggregate _value of B is greater than (or equal to) the combined aggregate _value of any other set, B'.

_True (punkt)

_sentence *s* is _*true iff B* is the maximal _belief set (or a maximal _belief set) and $s \in B$ and $C(B) > C(B) \setminus \{s\}$.

Words

Logic

Atomic sentence

A _sentence *s* is atomic *iff s* contains no _logical connective or _quantifier.

_Moment

A _moment is a complex of the form $\langle t, \mathbf{x}, \boldsymbol{\xi}, C \rangle$.

_Truth set of a _phrase at a _moment

A set *M* of token _sentences is the _*truth set* at a _moment *m* of a _phrase *p iff M* is the set of all and only the _true atomic _sentences containing *p* at *m*.

_Observation and theory _truth sets of a _phrase

A _truth set *M* at a _moment *m* of a _phrase *p* is an _*observation* _truth set *iff* the _truth set of *p* at *m* contains _observation _sentences. A _truth set of a _phrase which is not an _observation _truth set is a _theory _truth set.

Tensed _sentence

Explanatory note:

The concept of a _sentence type is extended to include a parameter doing the work of simple verb tense. A _sentence type may thus now be denoted by an ordered pair, $\langle s, q \rangle$, where q may have the values *present*, *past* or *future*. The value of q is understood to be conveyed by the speaker – for example by her uttering it along with a _sentence: "Bob is black-haired (*past*)", "Bob is grey-haired (*present*)", "Bob is bald (*future*)". For notational simplicity, $\langle s, present \rangle$ can still be written as just 's'.

The model is constrained so that if u is the _truth set of a _phrase at < t, \mathbf{x} , $\boldsymbol{\xi}$, C > then for every element of u of the form << s, past>, < t, \mathbf{x} , $\boldsymbol{\xi}$, C >> it happens that there exists one or more moments < t', \mathbf{x}' , $\boldsymbol{\xi}'$, C >> such that t' < t and << s, present>, < t', \mathbf{x}' , $\boldsymbol{\xi}'$, C >> is _true. The correlate point applies for << s, future>, < t, \mathbf{x} , $\boldsymbol{\xi}$, C >> and t' > t. (If 'Bob was black-haired.' is true now, then there are arbitrarily many points in the past when 'Bob is black-haired.' was true.)

Extending this treatment of tense, let the model also permit a _sentence type to be represented as an ordered pair $\langle s, \tau \rangle$, where τ is a time.

If $\tau = t$, then $\langle \langle s, \tau \rangle$, $\langle t, \mathbf{x}, \boldsymbol{\xi}, C \rangle \rangle = \langle \langle s, present \rangle$, $\langle t, \mathbf{x}, \boldsymbol{\xi}, C \rangle \rangle$ - ie, the _sentence is present-tensed.

If $\tau < t$, then if <<s, $\tau>$, < t, \mathbf{x} , $\boldsymbol{\xi}$, C>> is _true then so too will be <<s, past>, < t, \mathbf{x} , $\boldsymbol{\xi}$, C>>. And again the correlate point applies for <<s, future>, < t, \mathbf{x} , $\boldsymbol{\xi}$, C>> and $\tau>t$. Furthermore, if <<s, past>, < t, \mathbf{x} , $\boldsymbol{\xi}$, C>> is _true then there will be at least one time $\tau< t$ such that <<s, $\tau>$, <t, \mathbf{x} , $\boldsymbol{\xi}$, C>> is _true, and similarly for future tense statements and $\tau>t$.

Call <<s, $\tau>$, <t, \mathbf{x} , $\boldsymbol{\xi}$, C>> the *de-indexicalized* correlate of <<s, q>, <t, \mathbf{x} , $\boldsymbol{\xi}$, C>>

Notes: context remains the same. Elements of context may have t > t', noting that there are assumed to be no spatial indexicals (*here*, *there*, *etc*.) in the model.

_Truth set correlates

_Truth sets w_1 and w_2 are correlates *iff* their de-indexicalized correlates are identical.

_Moment line of a _phrase

A set l of _moments is a _moment line of a _phrase p iff the _truth sets of p at every _moment m in l are correlates, each is a non-empty _observation _truth set, and the components < t, $\xi >$ of the _moments of l jointly constitute a smooth space-time curve.

Concrete singular _term

A _phrase p belonging to a _true atomic token _sentence <<s, q>, t, x, ξ , C> is a concrete singular _term *iff* there exists a _moment line l of p and either

- 1) <<*s*, *q*>, *t*, **x**, ξ , *C*> is an observation _sentence and <*t*, ξ > is on *l* or
- 2) there is a _truth set correlate at some _moment $< t', \mathbf{x}', \boldsymbol{\xi}', C' >$ of the _truth set of p at $< t, \mathbf{x}, \boldsymbol{\xi}, C >$ which is a non-empty _observation _truth _set and $< t', \boldsymbol{\xi}' >$ is on l.

Sameness of concrete singular _term _reference

Two concrete singular _terms c_1 and c_2 have the same _reference *iff* c_1 and c_2 have the same _moment line.

Sentential complement of a phrase

A _phrase q is the _sentential complement of a _phrase p in an atomic _sentence s iff q is the _phrase remaining when p is removed from s.

_Predicate

A token _phrase *p* at a _moment *m* is a _*predicate iff* the _sentential complements of *p* of the elements of the _truth set of *p* at *m* all are concrete singular _terms. //what about 'colour'? "Red is a colour"

_Complement set of a _predicate

A set \bar{E} of _concrete singular _terms is the _complement set of a token _predicate p at a _moment m *iff* E is the set of the _sentential complements of p of the elements of the _truth set of p at m.

Sameness of _predicate _reference

Two token _predicates p_1 and p_2 have the same reference *iff* p_1 and p_2 have the same _complement set.