Übungsblatt 3: Ideale, Primvermeidung und Faktorraüme

In den folgenden Übungen sind alle Ringe kommutativ mit Eins.

Übung 3.1. (wird benotet, auf 2 Punkten) Sei R ein Ring, $u \in R$ eine Einheit und $x \in R$ ein nilpotentes Element. Beweisen Sie, dass u + x auch eine Einheit ist.

Übung 3.2. (Primvermeidung; wird benotet, auf 3 Punkten) Sei R ein Ring und $n \ge 1$.

- 1) Sei I ein Ideal von R und $\mathfrak{p}_1, \dots \mathfrak{p}_n$ Primideale von R, sodass $I \subseteq \mathfrak{p}_1 \cup \dots \cup \mathfrak{p}_n$. Beweisen Sie, dass es ein i mit $I \subseteq \mathfrak{p}_i$ gibt.
- 2) Seien I_1, \ldots, I_n Ideale von R und $\mathfrak p$ ein Primideal von R mit $I_1 \cap \cdots \cap I_n \subseteq \mathfrak p$. Beweisen Sie, dass es $1 \leq j \leq n$ gibt, sodass $I_j \subseteq \mathfrak p$. Wenn zudem $I_1 \cap \cdots \cap I_n = \mathfrak p$, beweisen Sie dass es ein j mit $I_j = \mathfrak p$ gibt.

Übung 3.3. (Schemata Erste Runde) Sei R ein Ring, sei $\operatorname{Spec}(R)$ die Menge der Primidealen von R. Für jedes Ideal $I \subset R$ definieren wir die Teilmenge

$$V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid I \subset \mathfrak{p} \}.$$

1) Sei $(I_s)_{s \in S}$ eine Familie an Idealen von R. Beweisen Sie, dass

$$\bigcap_{s \in S} V(I_s) = V\left(\sum_{s \in S} I_s\right).$$

- 2) Seien $I, J \subset R$ Idealen. Beweisen Sie, dass $V(I) \cup V(J) = V(I \cap J) = V(I \cdot J)$.
- 3) Was ist die Verbindung zwischen dieser Übung und dem Nullstellensatz?

Übung 3.4. Bestimmen Sie alle Ringhomomorphismen $\mathbb{R}[X] \to \mathbb{C}$.

Übung 3.5. Sei $I \subset \mathbb{R}$ ein Interval und sei $\mathscr{C}^0(I)$ die Menge der stetigen Abbildungen von I auf \mathbb{R} .

- 1) Beweisen Sie, dass $\mathscr{C}^0(I)$ ein Ring ist.
- 2) Beweisen Sie, dass für jeder $x \in \mathbb{R}$ die Teilmenge

$$\mathfrak{m}_x := \{ f \in \mathscr{C}^0(I) \mid f(x) = 0 \}$$

ein maximales Ideal von $\mathscr{C}^0(I)$ ist.

3) Sei $\operatorname{Max} \mathscr{C}^0(I)$ die Menge der maximalen Idealen von $\mathscr{C}^0(I)$. Beweisen Sie, dass die Abbildung

$$\mu: \quad \begin{matrix} I & \to & \operatorname{Max}\mathscr{C}^0(I) \\ x & \mapsto & \mathfrak{m}_x \end{matrix}$$

bijektiv ist, wenn ${\cal I}$ beschränkt und abgeschlossen ist.