Grafos - Conceitos Básicos

Prof. Andrei Braga

Conteúdo

- Motivação (revisão)
- Conceitos básicos
- Exercícios
- Referências

Motivação (Revisão)

- Muitas aplicações computacionais envolvem
 - Itens (dados ou conjuntos de dados)
 - Conexões entre os itens
- Para modelar situações como estas, usamos uma estrutura matemática (ou uma estrutura de dados) chamada de grafos

Motivação (Revisão)

- Exemplos de aplicações:
 - Problemas de roteamento
 - Estudo de redes sociais
 - Problemas de topologia em redes
 - Problemas de alocação

Grafo

- Um **grafo** *G* é um par ordenado (*V*, *E*) composto por
 - o um conjunto de **vértices** *V* e
 - o um conjunto de **arestas** E, sendo cada aresta um conjunto $\{v_i, v_i\}$ de dois vértices de G
 - note que $\{v_i, v_i\} = \{v_i, v_i\}$, ou seja, não consideramos uma direção para a aresta

Exemplo:

- \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$
 - $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$

Desenho de um grafo

- Um desenho de um grafo é uma representação gráfica do grafo onde
 - o pontos (ou círculos) representam os vértices do grafo e
 - o linhas conectando os pontos (ou círculos) representam as arestas do grafo
- Um desenho nos dá uma intuição sobre a estrutura do grafo, mas devemos usar esta intuição com cautela, porque o grafo é definido independentemente das suas representações gráficas
- Exemplo:
 - G = (V, E), onde $V = \{v_0, v_1, v_2, v_3, v_4, v_5\} e$ $E = \{\{v_0, v_1\}, \{v_0, v_2\}, \{v_0, v_4\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_3, v_5\}\}$

- Na definição que estamos usando para um grafo, estamos fazendo duas simplificações:
 - não podem existir duas ou mais arestas conectando um mesmo par de vértices e
 - não podem existir arestas que conectam um vértice a ele mesmo
- Exemplo:
 - \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$
 - $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$

- Na definição que estamos usando para um grafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas conectando um mesmo par de vértices e
 - o não podem existir arestas que conectam um vértice a ele mesmo
- Exemplo:
 - \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$
 - $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$

- Na definição que estamos usando para um grafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas conectando um mesmo par de vértices e
 - não podem existir arestas que conectam um vértice a ele mesmo
- Exemplo:
 - \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$
 - $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \}, \{ v_0, v_1 \} \}$

- Na definição que estamos usando para um grafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas conectando um mesmo par de vértices e
 - não podem existir arestas que conectam um vértice a ele mesmo

Exemplo:

$$\circ$$
 $G = (V, E)$, onde

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$$

$$E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \}, \{ v_2 v_1 \} \}$$

- Na definição que estamos usando para um grafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas conectando um mesmo par de vértices e
 - o não podem existir arestas que conectam um vértice a ele mesmo
- Exemplo:
 - \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$
 - $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$

- Na definição que estamos usando para um grafo, estamos fazendo duas simplificações:
 - não podem existir duas ou mais arestas conectando um mesmo par de vértices e
 - o não podem existir arestas que conectam um vértice a ele mesmo
- Exemplo:
 - \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$
 - $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$

- Na definição que estamos usando para um grafo, estamos fazendo duas simplificações:
 - não podem existir duas ou mais arestas conectando um mesmo par de vértices e
 - o não podem existir arestas que conectam um vértice a ele mesmo
- Exemplo:
 - \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$
 - $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \}, \{ v_3, v_3 \} \}$

- Na definição que estamos usando para um grafo, estamos fazendo duas simplificações:
 - não podem existir duas ou mais arestas conectando um mesmo par de vértices e
 - o não podem existir arestas que conectam um vértice a ele mesmo

Exemplo:

$$\circ$$
 $G = (V, E)$, onde

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$$

$$E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \}, \{ v_2 v_3 \} \}$$

- Na definição que estamos usando para um grafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas conectando um mesmo par de vértices e
 - o não podem existir arestas que conectam um vértice a ele mesmo
- Um grafo que não contém arestas paralelas nem laços também é chamado

de grafo simples

• **Propriedade:** Um grafo (simples) G = (V, E) possui no máximo |V| (|V| - 1) / 2 arestas.

Prova:

- Para cada vértice, a quantidade máxima de arestas conectando o vértice aos outros vértices
 é |V| 1.
- O somatório de todas estas quantidades é |V| (|V| 1).
- \circ Neste somatório, cada aresta é contada duas vezes (como { v_i , v_i } e como { v_i , v_i }).
- Portanto, *G* possui no máximo |*V*| (|*V*| 1) / 2 arestas. □

Ordem e tamanho

- Dado um grafo G = (V, E), denotamos por
 - V(G) o conjunto de vértices de G, ou seja, V(G) = V e
 - E(G) o conjunto de arestas de G, ou seja, E(G) = E
- Dizemos que
 - a ordem de G é o número de vértices de G, ou seja, |V(G)|, e
 - o **tamanho** de G é o número de arestas de G, ou seja |E(G)|
- Exemplo:
 - A ordem do grafo ao lado é 6 e o seu tamanho é 8

- Por simplicidade, também denotamos uma aresta { v_i, v_j } como v_iv_j
- Dada uma aresta $v_i v_j$, os vértices v_i e v_j são os **extremos** desta aresta
- Se v_iv_j é uma aresta de um grafo G, então
 - o s vértices v_i e v_i são **vizinhos** ou **adjacentes** em G,
 - \circ v_i é **vizinho** de v_i em G (e vice-versa),
 - o v_i é adjacente a v_i em G (e vice-versa) e
 - o a aresta $v_i v_j$ incide em v_i e incide em v_j
- Exemplo:
 - No grafo ao lado, v₀ é vizinho de (ou adjacente a)
 v₂ (e vice-versa), os vizinhos de v₃ são v₁, v₄ e v₅ e a aresta v₁v₄ incide em v₁ e em v₄

- Dado um vértice v_i de um grafo G,
 - o a **vizinhança** de v_i em G é o conjunto dos vizinhos de v_i em G e
 - o **grau** de v_i em G é o número de arestas de G incidentes em v_i
- Denotamos por
 - $N_G(v_i)$, ou simplesmente $N(v_i)$, a vizinhança de v_i em G e
 - \circ $d_G(v_i)$, ou simplesmente $d(v_i)$, o grau de v_i em G
- Note que $d_G(v_i) = |N_G(v_i)|$
- Exemplo:
 - No grafo ao lado,
 - $N(v_0) = \{$ } $e N(v_5) = \{$ } e
 - $d(v_0) = , d(v_1) = , d(v_2) = , d(v_3) = ,$ $d(v_4) = e d(v_5) =$

- Dado um vértice v, de um grafo G,
 - o a **vizinhança** de v_i em G é o conjunto dos vizinhos de v_i em G e
 - o **grau** de v_i em G é o número de arestas de G incidentes em v_i
- Denotamos por
 - $\sim N_G(v_i)$, ou simplesmente $N(v_i)$, a vizinhança de v_i em G e
 - o $d_G(v_i)$, ou simplesmente $d(v_i)$, o grau de v_i em G
- Note que $d_G(v_i) = |N_G(v_i)|$
- Exemplo:
 - No grafo ao lado,
 - $N(v_0) = \{ v_1, v_2, v_4 \} \in N(v_5) = \{ v_3 \} \in N(v_5) = \{ v_5 \} \in$
 - $d(v_0) = 3, d(v_1) = 3, d(v_2) = 2, d(v_3) = 3, d(v_4) = 4 e d(v_5) = 1$

- Dado um vértice v_i de um grafo G,
 - a vizinhança de v, em G é o conjunto dos vizinhos de v, em G e
 - o **grau** de v_i em G é o número de arestas de G incidentes em v_i
- Denotamos por
 - \circ $N_{G}(v_{i})$, ou simplesmente $N(v_{i})$, a vizinhança de v_{i} em G e
 - \circ $d_G(v_i)$, ou simplesmente $d(v_i)$, o grau de v_i em G
- Note que $d_G(v_i) = |N_G(v_i)|$
- Exemplo:
 - No grafo ao lado,

(v2)

- Dado um vértice v_i de um grafo G,
 - a vizinhança de v, em G é o conjunto dos vizinhos de v, em G e
 - o **grau** de v_i em G é o número de arestas de G incidentes em v_i
- Denotamos por
 - $N_G(v_i)$, ou simplesmente $N(v_i)$, a vizinhança de v_i em G e
 - \circ $d_G(v_i)$, ou simplesmente $d(v_i)$, o grau de v_i em G
- Note que $d_G(v_i) = |N_G(v_i)|$
- Exemplo:
 - No grafo ao lado,
 - $d(v_2) = 0$

Chamamos de vértice **isolado** um vértice v_i tal que $d(v_i) = 0$

(v2)

Grau mínimo e máximo

- Dado um grafo G,
 - o **grau mínimo** de G, denotado por $\delta(G)$, é o menor grau de um vértice de G, ou seja, $\delta(G) = \min\{d(v_i) : v_i \in V(G)\}$
 - o **grau máximo** de G, denotado por $\Delta(G)$, é o maior grau de um vértice de G, ou seja, $\Delta(G) = \max\{ d(v_i) : v_i \in V(G) \}$
- Exemplo:
 - Para o grafo ao lado, $\delta(G) = e \Delta(G) =$

Grau mínimo e máximo

- Dado um grafo G,
 - o **grau mínimo** de G, denotado por $\delta(G)$, é o menor grau de um vértice de G, ou seja, $\delta(G) = \min\{d(v_i) : v_i \in V(G)\}$
 - o **grau máximo** de G, denotado por $\Delta(G)$, é o maior grau de um vértice de G, ou seja, $\Delta(G) = \max\{ d(v_i) : v_i \in V(G) \}$
- Exemplo:
 - Para o grafo ao lado, $\delta(G) = 1$ e $\Delta(G) = 4$

1. É possível construir um grafo tal que $V(G) = \{v_0, v_1, v_2, v_3\}$ e $d(v_0) = 0$, $d(v_1) = 1$, $d(v_2) = 2$ e $d(v_3) = 3$?

2. Prove que, em qualquer grupo de duas ou mais pessoas, sempre existem pelo menos duas pessoas que possuem exatamente o mesmo número de amigos presentes no grupo.

 Prove que, em qualquer grupo de duas ou mais pessoas, sempre existem pelo menos duas pessoas que possuem exatamente o mesmo número de amigos presentes no grupo.

Prova:

- Considere o grafo G que é definido da seguinte maneira:
 - os vértices do grafo correspondem às pessoas do grupo e
 - existe uma aresta entre os vértices v_i e v_j se e somente se as pessoas correspondentes a v_i e v_i são amigas
- A princípio, existem |V(G)| valores possíveis para o grau de um vértice de G:
 0, 1, 2, ..., |V(G)| 1

2. Prove que, em qualquer grupo de duas ou mais pessoas, sempre existem pelo menos duas pessoas que possuem exatamente o mesmo número de amigos presentes no grupo.

Prova:

- No entanto, se existe um vértice de G com grau 0, então não pode existir um vértice de G com grau |V(G)| 1
- O contrário também vale: se existe um vértice de G com grau |V(G)| 1, então não pode existir um vértice de G com grau 0
- o Portanto, na verdade, existem apenas |V(G)| 1 valores possíveis para o grau de um vértice de G
- Como existem |V(G)| vértices em G, pelo menos dois dos vértices de G possuem
 o mesmo grau

Princípio da casa dos pombos

2. Prove que, em qualquer grupo de duas ou mais pessoas, sempre existem pelo menos duas pessoas que possuem exatamente o mesmo número de amigos presentes no grupo.

Prova:

 Isto quer dizer que pelo menos duas pessoas possuem exatamente o mesmo número de amigos presentes no grupo

Igualdade entre grafos

- Dois grafos G_1 e G_2 são **iguais** se
 - $\circ V(G_1) = V(G_2) e$
 - $\circ \quad E(G_1) = E(G_2)$
- Exemplo:

$$V(G_1) = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$$

$$E(G_1) = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$$

$$V(G_2) = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$$

$$E(G_2) = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$$

$$30$$

 Dois grafos G₁ e G₂ são isomorfos se apresentam estruturas idênticas quando os rótulos de seus vértices são ignorados

Exemplo:

$$V(G_1) = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$$

$$E(G_1) = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$$

$$V(G_2) = \{ u_0, u_1, u_2, u_3, u_4, u_5 \} e$$

$$E(G_2) = \{ \{ u_0, u_3 \}, \{ u_0, u_5 \}, \{ u_1, u_4 \}, \{ u_2, u_3 \}, \{ u_2, u_4 \}, \{ u_2, u_5 \}, \{ u_3, u_5 \}, \{ u_4, u_5 \} \}$$

• Dois grafos G_1 e G_2 são **isomorfos** se apresentam estruturas idênticas quando os rótulos de seus vértices são ignorados

• Exemplo: G_1

Dois grafos G₁ e G₂ são isomorfos se existe uma função bijetiva
 f: V(G₁) → V(G₂) tal que vᵢvⱼ é uma aresta de G₁ se e somente se f(vᵢ)f(vⱼ) é uma aresta de G₂

Exemplo:

função f:

- $V_0 \rightarrow U_3$
- $V_1 \rightarrow U_2$
- $V_2 \rightarrow U_0$
- $V_3 \rightarrow U_4$
- \bullet V_4
- $V_5 \rightarrow U_1$

- Dois grafos G₁ e G₂ são isomorfos se existe uma função bijetiva
 f: V(G₁) → V(G₂) tal que vᵢvⱼ é uma aresta de G₁ se e somente se f(vᵢ)f(vⱼ) é uma aresta de G₂
- Determinar se dois grafos são isomorfos ou não é um problema difícil!

3. Mostre que os grafos G_1 e G_2 definidos a seguir são isomorfos.

$$V(G_1) = \{ a, b, c, d, e \}, E(G_1) = \{ \{ a, b \}, \{ a, c \}, \{ a, e \}, \{ b, d \}, \{ b, e \}, \{ c, d \} \}$$

 $V(G_2) = \{ v, w, x, y, z \}, E(G_2) = \{ \{ v, x \}, \{ v, y \}, \{ w, x \}, \{ w, z \}, \{ x, y \}, \{ y, z \} \}$

Passeio

Um passeio em um grafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

Exemplo:

 A sequência v₂v₀v₄v₁v₀v₄v₃ é um passeio no grafo ao lado

Um passeio em um grafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

Exemplo:

Um passeio em um grafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

Exemplo:

Um passeio em um grafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

Exemplo:

Um passeio em um grafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

Exemplo:

Um passeio em um grafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

Exemplo:

Um passeio em um grafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

Exemplo:

Um passeio em um grafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

(v2

Exemplo:

- Em um passeio, especificamos os vértices, mas as arestas envolvidas também estão implicitamente especificadas
- Por isso, podemos nos referir às arestas de um passeio

Um passeio em um grafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho em G do seu antecessor

- Dado um passeio $v_{i0}v_{i1}...v_{ik-1}v_{ik}$, dizemos que
 - v_{i0} e v_{ik} são os extremos do passeio;
 - v_{i1}, ..., v_{ik-1} são os vértices internos do passeio;
 - o comprimento do passeio é k, ou seja, a quantidade de arestas percorridas;
 - o passeio é **par** se o seu comprimento é par e é **impar** caso contrário e
 - o passeio é **fechado** se $v_{i0} = v_{ik}$ e é **aberto** caso contrário

 Uma trilha em um grafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um grafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um grafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um grafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um grafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um grafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

- Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência v₂v₄v₀v₁v₃ é um caminho no grafo ao lado

- Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência v₂v₄v₀v₁v₃ é um caminho no grafo ao lado

- Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência v₂v₄v₀v₁v₃ é um caminho no grafo ao lado

- Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência v₂v₄v₀v₁v₃ é um caminho no grafo ao lado

- Um caminho em um grafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência v₂v₄v₀v₁v₃ é um caminho no grafo ao lado

Ciclo

• Um **ciclo** em um grafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 3 e onde não existem vértices internos repetidos

Exemplo:

• A sequência $v_2v_0v_1v_3v_4v_2$ é um ciclo no grafo ao lado

Ciclo

• Um **ciclo** em um grafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 3 e onde não existem vértices internos repetidos

Exemplo:

• A sequência $v_2 v_0 v_1 v_3 v_4 v_2$ é um ciclo no grafo ao lado

Distância

- A distância entre dois vértices v_i e v_j em G, denotada por $d(v_i, v_j)$ é
 - o menor comprimento de um caminho entre v_i e v_j em G ou
 - ∞ (infinita) caso não exista um caminho entre v_i e v_i em G
- Exemplo:
 - No grafo ao lado,

 - $d(v_4, v_4) = e$
 - $d(v_1, v_5) =$

Distância

- A distância entre dois vértices v_i e v_j em G, denotada por $d(v_i, v_j)$ é
 - o menor comprimento de um caminho entre v_i e v_j em G ou
 - ∞ (infinita) caso não exista um caminho entre v_i e v_i em G
- Exemplo:
 - No grafo ao lado,
 - $d(v_2, v_3) = 2,$
 - $d(v_0, v_1) = 1,$
 - $d(v_4, v_4) = 0 e$

- 4. Indique todas as afirmações corretas sobre o grafo ao lado:
 - a. O comprimento máximo de um caminho entre v_0 e v_1 é 5.
 - b. A distância entre v_0 e v_1 é 5.
 - c. A sequência $v_3 v_4 v_0 v_2 v_6 v_4 v_3$ é um ciclo.

- 5. Indique todas as afirmações corretas sobre o grafo *G* ao lado:
 - a. $N(0) = \{1, 3, 5\}.$
 - b. G contém 5 vértices de grau 2 e 5 vértices de grau 3.
 - c. $d(5) = \delta(G)$.
 - d. A sequência de vértices 0 1 2 7 5 0 é uma trilha de G.
 - e. $\delta(G) = \Delta(G)$.

6. Descreva todos os caminhos entre os vértices v_2 e v_3 no grafo abaixo:

- 7. Indique todas as afirmações corretas sobre o grafo *G* ao lado:
 - a. d(s, p) = 3.
 - b. $d(t, p) = \infty$.
 - c. G contém 3 vértices isolados.
 - d. A ordem de G é 11.
 - e. O tamanho de G é 8.

8. Mostre que os grafos abaixo são isomorfos.

- 9. Responda às seguintes perguntas sobre o grafo *G* abaixo:
 - A sequência de vértices a x a x u y c d y v x b a é um passeio aberto em G?
 - A sequência de vértices a x u y c d y v x b a é um trilha em G?
 - Quais são os ciclos em G?

10. Prove que todo passeio entre dois vértices v_i e v_j contém um caminho entre v_i e v_j .

Referências

 Um tratamento mais detalhado dos conceitos básicos definidos nesta apresentação pode ser encontrado em qualquer uma das referências básicas e complementares da disciplina