

The Big Mountain Pricing Strategy

LINA GAO

Introduction

- □ The Big Mountain Resort, a ski resort located in Montana, offers spectacular views of Glacier National Park and Flathead National Forest. ~ 350,000 people ski or snowboard at Big Mountain each year.
- ☐ It has recently installed a chair lift, which increases the operating costs by \$1,540,000 this season.
- ☐ The resort's executive team needs suggestions to develop a strategy to cover this cost, either by charging a premium fee, cutting underused facilities, or other scenarios.

Problem identification

- Is the current ticket price of Big Mountain Resort reasonable in the ski resort market with the facilities they provided for the customers?
- If it is lower than its peers, how much can we increase the ticket price without a significant effect on the customer numbers?
- Which facility is the most valuable one to attract customers to visit this resort?
- Is any facility of the resort underused and can be eliminated?

Key findings: Market competitiveness evaluation

- ☐ Montana is among the top five states in US with large state area, large total skiable area and high number of resorts per 100 k population.
- ☐ Big Mountain Resort is the top resort with high SnowMaking_ac, total_chairs, fastQuads, number of runs, and the most considerable amount of skiable terrain.
- ☐ The current ticket price of Big Mountain Resort is the highest in Montana. It is in the median high range in US.

Key findings

Important features identified by the model		
Total number of runs	Total number of chairs	
Vertical drop	Area covered by snow	
Number of trams	Longest run	
Skiable terrain area		

Key findings

Evaluation of the Pricing Scenarios by Machine Learning Models

S1	S2	S3	S4
Increase the ticket price from \$81 to \$94, the predicted ticket price by the model.	Add a new run to increase the vertical drop by 150 feet, install a chair lift	Add two acres of snow making	Close up to 4 least used runs
It will increase the revenue by 22,750,000 dollars this season. It can completely cover the cost of the new lift.	It will increase support for ticket price by \$8.46. Over the season, this could be expected to amount to \$14,811,594.	It will increase support for ticket price by \$9.75. Over the season, this could be expected to amount to \$17,068,841	It will barely have effect on the revenue

Modeling's Process and Results

Project workflow

Data analysis driven by the essential business questions

Data wrangling & feature engineering & EDA

- I. Is the dataset clean enough for exploratory data analysis
- II. Which feature is out best choice as the target variable, adultWeekend or adultWeekday?
- III. Are there enough proper features for the development of the pricing model?

ski_data (330 rows ×27 cols)

ski_data (277 rows ×36 cols)

Data Pre-processing and Modeling

- I. Primary question: How can we develop a good predictive pricing model?
- II. Minor questions:
 - 1. Which imputation technique should we use for filling in the missing data, mean or median?
 - 2. How do we train the model?
 - 3. How can we find the best hyperparameters?
 - 4. How can we evaluate the model?

X: ski_data-y-demography variables v: 'AdultWeekend'

Impute missing values Scale the data

Optimization technique: RandomSearchCV, GridSearchCV

Regression model metrics:

R-squared, Mean absolute error, Mean squared error

- I. Combine customer information in the study
- II. Cluster analysis and market segmentation
- III.Collect social media data to improve marketing accuracy

suggestions