

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I

Teste 1

30-abr-2014 Duração:2h00m

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados.

 π

- 1. Considere a função $f(x) = cos(\frac{\pi}{6}) + sen(2x \frac{\pi}{3})$.
 - a. Calcule $f(\frac{5\pi}{6})$.
 - b. Determine os zeros da função f(x).
 - c. Justifique que f(x) não é injetiva e determine a restrição de injetividade para a função.
 - d. Caracterize a função inversa de f(x), indicando domínio, contradomínio e expressão analítica.
- 2. Considere a região representada na figura

a. Justificando convenientemente a sua escolha, diga se algum dos seguintes conjuntos corresponde à região representada no gráfico por A. Em caso negativo, defina convenientemente o conjunto.

$$A_{1} = \{(x, y) \in \Re^{2} : x \le \ln(-y) \land x + 1 \le y^{2} \land y \le 0\}$$

$$A_{2} = \{(x, y) \in \Re^{2} : x \le -\ln(-y) \land x + 1 \ge y^{2} \land y \le 0\}$$

$$A_{3} = \{(x, y) \in \Re^{2} : x \ge -\ln(-y) \land x + 1 \ge -y^{2} \land y \le 0\}$$

$$A_{4} = \{(x, y) \in \Re^{2} : x \ge \ln(-y) \land x + 1 \le -y^{2} \land y \le 0\}$$

- b. Utilizando o cálculo integral, identifique, sem calcular, a expressão que lhe permite determinar o volume do sólido de revolução em torno do eixo das abcissas.
- c. Que pode concluir sobre a existência da medida encontrada na alínea anterior? Justifique convenientemente a sua resposta.
- d. Considere o domínio A limitado pela equação x = 1. Utilizando o cálculo integral, identifique, sem calcular, a expressão que lhe permite determinar a área da região.
- 3. Considere a região do plano $B = \left\{ (x, y) \in \Re : y \ge \frac{1}{2}x^2 \frac{1}{2} \land x^2 + y^2 \le 1 \right\}$.
 - a. Represente graficamente a região B.
 - b. Reescreva o domínio plano X da forma: $\{(x,y) \in \Re^2 : g(x) \le y \le f(x) \land a \le x \le b\}$.
 - c. Usando unicamente o cálculo integral, indique expressões simplificadas que lhe permitam calcular:
 - i. a área de B;
 - ii. o volume do sólido de revolução que se obtém pela rotação de B em torno do eixo OX;
 - iii. o perímetro de *B*.
- 4. Considere a seguinte função real de variável real $f(x) = \frac{1}{\sqrt{4-2x}}$.
 - a. Prove que o integral $\int_{0}^{2} f(x)dx$ é impróprio de 2^{a} espécie e determine a sua natureza.
 - b. Identifique, justificando, cada uma das seguintes expressões:

i.
$$\int_{4}^{10} f(x)dx$$

ii.
$$\int_{0}^{2} f(x)dx$$

ii.
$$\int_{-\infty}^{2} f(x)dx$$
 iii.
$$\int_{0}^{1} f(x)dx$$

- 5. Mostre que a equação diferencial $\sqrt{1-v^2} dt t dv = 0$ é de variáveis separáveis e determine a solução particular de v = f(t) que satisfaz a condição $v(1) = \frac{1}{2}$.
- 6. Considere a seguinte equação diferencial $x^2y' xy = 2x^4 sen(x^2)$
 - a. Verifique se $y = -x\cos(x^2)$ é solução da equação.
 - b. Resolva a equação diferencial.

Cotação

1a	1b	1c	1d	2a	2b	2c	2d	3a	3b	3ci	3cii	3ciii	4a	4b	5	6a	6b
0,75	1,25	1,0	1,0	1,0	1,5	1,5	1,0	1	0,75	0,75	0,75	1,25	1,5	1,0	1,5	1,25	1,25