(19)日本国特許庁(J P)

四公開特許公報(A)

(II)特許出願公閱番号 特開2001-326311

(P2001-326311A)

(43)公開日 平成13年11月22日(2001.11.22)

(51) Int.Cl.7	識別記号	FΙ			ī	~7]- *(多 考)
H01L 23	/427	F 2 5 B	39/02	2	7.	3 L 0 4 4
F 2 5 B 39		F 2 5 D	9/00	J	3	3 L 0 4 5
F25D 9	/00 .		15/00			5 F 0 3 6
15,	/00	H01L	23/46		¥	

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号	特願2000-147452(P2000-147452)	(71)出竄人 000005108
		株式会社日立製作所
(22)出顧日	平成12年 5 月 15日 (2000. 5. 15)	東京都千代田区神田駿河台四丁目6番地
((72)発明者 芦分 範之
		茨城県土浦市神立町502番地 株式会社日
÷		立製作所機械研究所内
		(72)発明者 川村 圭三
		茨城県土浦市神立町502番地 株式会社日
		立製作所機械研究所内
<u>:</u>		(74)代型人 100075096
		弁理士 作田 康夫

最終質に続く

(54)【発明の名称】 電子機器の冷却装置

(57)【要約】

【課題】モジュールに冷凍機の蒸発器を直接取り付けて強制流動冷却する方式の電子機器の冷却装置において、蒸発器で取りうる熱量の限界を引き上げることである。 【解決手段】上記課題を解決するために本発明では蒸発器内の流路に曲率をもたせた。また流路壁に微細な溝を設け、流路壁上に液膜が保持されやすくなり、蒸発器で取りうる熱量の限界を引き上げることができる。

30

【特許請求の範囲】

【請求項1】半導体チップを搭載したモジュールに冷凍 機の蒸発器を直接取り付けて冷却する電子機器の冷却装 置において、蒸発器の底部を凹面上にし、そこに流路を 形成したことを特徴とする電子機器の冷却装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は電子計算機に用いら れる半導体素子の冷却技術の分野に属する。冷却すべき 半導体素子がCMOS素子である場合には、その性能が 10 温度によって変化することが知られている。CMOS素 子では低温化することによって動作速度が速くなるた め、チップ面上に形成された素子を低温に保ち、素子の 動作を加速することが行われている。

[0002]

【従来の技術】特開平9-139453 号公報に垂直に設置さ れた中空容器に冷媒を封入しこの中空容器の下方に半導 体素子を圧接接合し冷媒の蒸発によってこの半導体素子 を冷却する構造が開示されている。この中空容器の上方 には冷却部が設けられ、下方で蒸発した冷媒は冷却部で 20 凝縮し、重力の作用で蒸発部に戻る。即ち冷媒を強制流 動せしめる装置は存在せず、自然循環が前提である。本 従来技術では、中空容器の加熱部の幅を上方ほど広くす る構造が開示されている。

[0003]

【発明が解決しようとする課題】近年のLSIチップに はCMOS素子が用いられ、従来のバイボーラ素子を用 いた場合に比べ、発熱量は一旦減少した。しかしなが ら、素子の高集積度化と動作周波数の増大によって、 し SIチップ当たりの発熱量は再び急上昇し始め、このよ うなLSIチップを搭載したモジュールも大発熱量化し つつある.

【0004】モジュールに冷凍機の蒸発器を直接取り付 けて強制流動冷却する方式の電子機器の冷却装置は大発 熱量のモジュールを低温に冷却するのに適しているが、 電子計算機の場合、実装のコンパクト性が強く要求され るため、蒸発器の大きさはモジュールと同程度の大きさ に制限される。このような小形の蒸発器で取りうる熱量 には沸騰現象や冷媒の乾きによる限界があると考えら れ、モジュールの大発熱量化に対応するためには、この 40 限界を引き上げることが極めて重要な課題となる。

【0005】従来の技術は自然循環蒸発による冷却技術 であり、強制流動蒸発による大発熱量のモジュールの冷 却方法に関しては配慮されていない。

[0006]

【課題を解決するための手段】上記課題を解決するた め、本発明では、モジュールに直接取り付ける蒸発器の 底部を凹面上にし、そこに流路を形成した。また、流路 壁に微細な溝を形成した。

[0007]

【発明の実施の形態】図1に、半導体チップを搭載した モジュールに冷凍機の蒸発器を直接取り付けて冷却する 電子機器の冷却装置の構成を示す。 蒸発器1,圧縮機 2. 凝縮器 3 及び減圧装置 4 から成る冷凍機の蒸発器 1 が、半導体チップを搭載したモジュール5に熱伝導グリ ース6等を介して直接取り付けられる。 モジュールちは 蒸発器 1 内で蒸発する冷媒が蒸発潜熱を奪うことにより 冷却される。電子計算機の場合、実装のコンパクト性が

程度の大きさに制限される。 【0008】図2及び図3に本発明の一実施例をしめ す。蒸発器は冷媒を流すための流路7、及び、冷媒を供 給,排出するための管8(一方のみ図示)及びカバー9 から成る。図3は図2におけるA-A断面図を表してい る。 蒸発器底部10は凹面になっており、そこに流路7 が形成されている。即ち、流路7はある大きさの曲率を

強く要求されるので、蒸発器の大きさはモジュールと同

有している. 【0009】次に本実施例の作用を説明する。冷媒は流 路内を蒸発しながら二相流の状態で流れ、蒸発器内の二 相流の流動様式は大部分の領域で、流路壁に液膜が存在 し中心部を蒸気が流れるいわゆる環状流となる。この場 合、特に流路の下流部の蒸気流速の大きい領域で液膜が 破断して微細な液滴が蒸気とともに流れる噴霧流が出現 しやすくなり、流路壁が乾き、蒸発器の底部の温度が急 **激に上昇する限界熱流束現象が発生しやすくなり、蒸発** 器で取りうる熱量に限界が生じる。

【0010】本実施例では、流路7に曲率を持たせたた め、二相流に遠心力が作用し、液膜を流路底に押し付け る降下が生じ、液膜が破断しにくくなるため、限界熱流 束現象が発生しにくく、蒸発器で取りうる熱量を引き上 げることができるという作用効果がある。

【0011】図4に本発明の他の実施例を示す。流路7 の壁面上に微細な溝11を形成したものである。本実施 例によれば、第1の実施例の遠心力の効果に加えて、表 面張力による液膜保持作用があるので、蒸発器で取りう る熱量の限界をさらに引き上げることが可能になる。

[0012] 【発明の効果】本発明では、モジュールに直接取り付け られる蒸発器内の流路に曲率をもたせた。これによって 冷媒二相流に遠心力が作用するようにしたから限界熱流 束現象が発生しにくく、蒸発器で取りうる熱量の限界を 引き上げることができる。また、流路壁面上に微細な溝 を形成したから、表面張力が作用し液膜の保持が容易に なり、蒸発器で取りうる熱量の限界をさらに引き上げる ことができる。

【図面の簡単な説明】

【図1】本発明の実施例である半導体チップの冷却シス テムを示す構成図。

【図2】本発明の一実施例の平面図。

50 【図3】本発明の一実施例の断面図。

3

【図4】本発明の他の実施例の断面図。 【符号の説明】

1…蒸発器、2…圧縮機、3…凝縮器、4…減圧装置、

【図1】

【図3】

図3

5…モジュール、6…熱伝導グリース、7…流路、8… 管、9…カバー、10…蒸発器底部、11…微細溝。

【図2】

☑ 2

【図4】

图 4

フロントページの続き

F ターム(参考) 3L044 AA04 BA06 CA14 DD07 FA04 KA04 KA05 3L045 AA04 AA06 BA04 DA02 GA05 HA01 PA04

5F036 AA01 BA08 BA23 BB53

· PAT-NO:

JP02001326311A

DOCUMENT-IDENTIFIER: JP 2001326311 A

TITLE:

COOLING DEVICE FOR <u>ELECTRONIC</u> EQUIPMENT

PUBN-DATE:

November 22, 2001

INVENTOR-INFORMATION:

NAME

COUNTRY

ASHIWAKE, NORIYUKI

N/A

KAWAMURA, KEIZO

N/A

INT-CL (IPC): H01L023/427, F25B039/02, F25D009/00, F25D015/00

ABSTRACT:

PROBLEM TO BE SOLVED: To relax the limit amount of heat that can be taken by an evaporator in the cooling device of electronic equipment in a system for performing forced flow cooling by mounting the evaporator of a refrigerating machine to a module directly.

SOLUTION: A channel in the evaporator is allowed to have curvature. Also, by providing a fine groove on a channel wall, a liquid film can be retained on the channel wall easily, and the limit amount of heat that can be taken by the evaporator can be relaxed.

COPYRIGHT: (C)2001,JPO

5/16/05, EAST Version: 2.0.1.4

THIS PAGE BLANK (USPTO)