Problem 1: Take the data sets Append_1.csv, and Append_2.csv and append the two sets together. Name the new data set Append.

```
append_1 = pd.read_csv("Append_1.csv", index_col=0)
append_2 = pd.read_csv("Append_2.csv", index_col=0)
```

append_1

	Id	Score	1
1	78917851	13	
2	34554367	77	
3	22173883	10	

append_2

	Id	Score	1
1	56993289	72	
2	26856261	51	
3	33921834	99	
4	97613637	63	
5	78816868	28	
6	67731229	17	

Append = pd.concat([append_1, append_2])
Append.to_csv("Append.csv")
Append

	Id	Score	10:
1	78917851	13	
2	34554367	77	
3	22173883	10	
1	56993289	72	
2	26856261	51	
3	33921834	99	
4	97613637	63	
5	78816868	28	
6	67731229	17	

Problem 2: Take the data sets Merge_1.csv and Merge_2.csv and perform an

inner join, left join, right join, full join. Name the resulting data sets, Inner, Left, Right, and Full.

```
merge_1 = pd.read_csv("Merge_1.csv", index_col=0)
merge_2 = pd.read_csv("Merge_2.csv", index_col=0)
```

merge_1

	Id	Score	7
4	68134933	71	
7	22113381	69	
9	31937926	98	
2	17245265	41	
3	42428425	9	
10	92922546	67	
1	31674694	96	

	Id	Score	1
8	23525437	54	
7	22113381	69	
9	31937926	98	
2	17245265	41	
10	92922546	67	
6	38672872	76	
1	31674694	96	

Inner

Inner = pd.merge(merge_1, merge_2, on='Id', how='inner')
Inner

	Id	Score_x	Score_y	7
0	22113381	69	69	
1	31937926	98	98	
2	17245265	41	41	
3	92922546	67	67	
4	31674694	96	96	

Left

Left = pd.merge(merge_1, merge_2, on='Id', how='left')
Left

	Id	Score_x	Score_y	1
0	68134933	71	NaN	
1	22113381	69	69.0	
2	31937926	98	98.0	
3	17245265	41	41.0	
4	42428425	9	NaN	
5	92922546	67	67.0	
6	31674694	96	96.0	

Right

Right = pd.merge(merge_1, merge_2, on='Id', how='right')
Right

	Id	Score_x	Score_y
0	23525437	NaN	54
1	22113381	69.0	69
2	31937926	98.0	98
3	17245265	41.0	41
4	92922546	67.0	67
5	38672872	NaN	76
6	31674694	96.0	96

Full = pd.merge(merge_1, merge_2, on='Id', how='outer')
Full

	Id	Score_x	Score_y	1
0	68134933	71.0	NaN	
1	22113381	69.0	69.0	
2	31937926	98.0	98.0	
3	17245265	41.0	41.0	
4	42428425	9.0	NaN	
5	92922546	67.0	67.0	
6	31674694	96.0	96.0	
7	23525437	NaN	54.0	
8	38672872	NaN	76.0	

Problem 3. Take the Filter.csv data set, and filter the data so that the new data set has

(i) only rows where Id is a vowel and (ii) only columns where the column means of the original data are positive. Name the new dataset Vowels.

```
Filter = pd.read_csv("Filter.csv", index_col=0)
Filter
```

	Id	V1	V2	V3	V4	V5	V6	V7	
1	а	-3.131767	-1.296154	-0.840714	-0.511305	-0.276927	-0.030081	0.228564	0.5091
2	а	-2.753743	-1.293420	-0.830057	-0.510220	-0.271765	-0.029370	0.228574	0.5104
3	а	-2.717051	-1.288645	-0.828611	-0.509153	-0.271128	-0.027879	0.230532	0.5116
4	а	-2.475701	-1.279962	-0.824249	-0.499681	-0.266096	-0.027428	0.235311	0.5152
5	b	-2.450370	-1.267123	-0.822122	-0.498173	-0.264964	-0.019237	0.237964	0.5158
96	Х	-1.325443	-0.861595	-0.522726	-0.285047	-0.043476	0.221000	0.493902	0.8012
97	Х	-1.312452	-0.853865	-0.518978	-0.283813	-0.043063	0.221481	0.498393	0.8017
98	у	-1.300866	-0.850192	-0.517301	-0.283729	-0.038558	0.225658	0.498915	0.8095
99	z	-1.300555	-0.844371	-0.517238	-0.280365	-0.033863	0.225745	0.498943	0.8098
100	Z	-1.299469	-0.840888	-0.513931	-0.280236	-0.033170	0.226953	0.508562	0.8125
100 rows × 11 columns ∢									•

```
Filter["Id"].unique()
```

```
array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'], dtype=object)
```

only rows where Id is a vowel

```
Vowels = Filter[(Filter["Id"] == 'a') | (Filter["Id"] == 'e') | (Filter["Id"] == 'i') | (Filter["Id"] == 'o') | (Filter["Id"] == 'u')]
Vowels
```

```
a -3.131767 -1.296154 -0.840714 -0.511305 -0.276927 -0.030081
                                                                          0.228564 0.50913
      2
            -2.753743 -1.293420 -0.830057 -0.510220 -0.271765 -0.029370 0.228574 0.51042
             -2.717051 -1.288645
                                 -0.828611 -0.509153 -0.271128 -0.027879 0.230532 0.51164
             -2.475701 -1.279962 -0.824249 -0.499681 -0.266096 -0.027428 0.235311 0.51527
Vowels.mean()
     <ipython-input-18-cd15463a6dea>:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') i
       Vowels.mean()
           -1.970904
     V1
           -1.097115
     V2
     V3
           -0.704506
     ٧4
           -0.412453
     V5
           -0.180318
     ۷6
            0.085924
     V7
            0.343293
            0.624228
            0.962593
     V10
            1.574673
     dtype: float64
```

۷6

٧7

٧

only columns where the column means of the original data are positive

Ιd

٧1

V2

٧3

٧4

۷5

```
index = ["Id"] + list(Vowels.mean()[Vowels.mean() > 0].index)
Vowels = Vowels[index]
Vowels
    <ipython-input-19-eab92df07757>:1: FutureWarning: Dropping of nuisance columns in Dat
     index = ["Id"] + list(Vowels.mean()[Vowels.mean() > 0].index)
       Ιd
               ۷6
                      ٧7
                              ٧8
                                     ۷9
                                            V10
     1
        a -0.030081 0.228564 0.509134 0.816408 1.209791
     2
        a -0.029370 0.228574 0.510424 0.817482 1.215493
        a -0.027879 0.230532 0.511642 0.818404 1.224739
     3
     4
          -0.027428
                  0.235311  0.515277  0.819011  1.225300
    21
        e
           0.033444 0.284396 0.559895 0.871592 1.354335
    22
           0.035520 0.289390 0.560585 0.873613 1.359896
    35
           0.072672  0.326803  0.603491  0.936952  1.461178
           0.073014 0.330990 0.613375 0.937777 1.469812
    36
    55
           0.140601 0.395279 0.662332 1.025431 1.634369
    56
           57
           58
          0.151200 0.403982 0.665422 1.039321 1.645503
    83
           84
           85
           u
```

Problem 4. Take the Filter.csv dataset, and take a simple random sample of the data with ten rows. Keep all columns. Name the new dataset SRS_Filter.

```
SRS_Filter = Filter.sample(n=10)
SRS_Filter
```

	Id	V1	V2	V3	V4	V5	V6	V7	٧
41	j	-1.768754	-1.084088	-0.709889	-0.403803	-0.181488	0.091924	0.341611	0.61902
93	Х	-1.337392	-0.871296	-0.529506	-0.293274	-0.050818	0.214479	0.488918	0.79720
94	Х	-1.334215	-0.868354	-0.527451	-0.288823	-0.050732	0.217681	0.490113	0.79983
97	х	-1.312452	-0.853865	-0.518978	-0.283813	-0.043063	0.221481	0.498393	0.80177

Problem 5. Randomly partition the Filter.csv data set into three subsets:

Train (70% of your data), Validation (15% of your data), Test (15% of your data). For each of the three subsets, print the first three rows and the dimensions of the data set.

1 0.4F0070 4.007400 0.000400 0.400470 0.004004 0.040007 0.007004 0.F4F07

This can be easily done using scikit learn's train_test split.

from sklearn.model_selection import train_test_split

train, rest = train_test_split(Filter, train_size=0.7)
val, test = train_test_split(rest, test_size=0.5)

Train

train.head(3)

	Id	V1	V2	V3	V4	V5	V6	V7	V
18	d	-2.102028	-1.178832	-0.765685	-0.476587	-0.234067	0.020574	0.272390	0.54453
74	s	-1.463690	-0.948343	-0.585414	-0.334283	-0.104285	0.173921	0.442712	0.740832
95	Х	-1.330359	-0.868267	-0.523089	-0.287184	-0.045273	0.218168	0.491043	0.800560

train.shape

(70, 11)

Validation

val.head(3)

	Id	V1	V2	V3	V4	V5	V6	V7	٧
7	b	-2.347337	-1.260646	-0.814551	-0.494618	-0.257148	-0.002708	0.243666	0.52176
64	q	-1.543357	-0.983950	-0.627542	-0.360100	-0.118509	0.158597	0.424618	0.70891
44	k	-1.718103	-1.077033	-0.705715	-0.396122	-0.172683	0.105170	0.347219	0.63401

val.shape

(15, 11)

Test

test.head(3)

	Id	V1	V2	V3	V4	V5	V6	V7	V
51	m	-1.643792	-1.039570	-0.672395	-0.377073	-0.163041	0.124118	0.375872	0.652258
86	v	-1.379663	-0.899883	-0.553627	-0.304022	-0.060937	0.204793	0.473697	0.78497
21	е	-2.071032	-1.167847	-0.760093	-0.461729	-0.227863	0.033444	0.284396	0.55989

test.shape

(15, 11)

· ·