The Transfer Function What Is The Bode Plot How To Construct A Bode Plot (by hand) Examples Conclusion

Frequency response to dynamical systems

July 7, 2015

Outline

- 1 The Transfer Function
- 2 What Is The Bode Plot
- 3 How To Construct A Bode Plot (by hand)
- 4 Examples
- Conclusion

The transfer function

From previous lectures:

$$y(t) = h(t) \otimes u(t)$$

$$\Rightarrow \quad \mathcal{L}\{y(t)\} = \mathcal{L}\{h(t) \otimes u(t)\}$$

$$\Rightarrow \quad Y(s) = H(s) \cdot U(s)$$

$$H(s) = \frac{Y(s)}{U(s)}$$

This is the transfer function, the relation between input and output in the Laplace domain (continuous time systems)

Plot of H(s)?

- s and H(s) are both complex \rightarrow 4D-graph?
- No, we will substitute s for $j\omega$ with ω the angular frequency [rad/s]. (We will often use frequency to indicate ω but keep in mind that $\omega=2\pi f$)
- We will also split $H(s) = H(j\omega)$ using its polar representation in two, an amplitude and a phase plot
- Remember: $H(j\omega) = |H(j\omega)| \exp \angle (H(j\omega))$
- ullet The amplitude plot and the phase plot of $H(j\omega)$ are called the bode plot

Outline

- The Transfer Function
- 2 What Is The Bode Plot
- 3 How To Construct A Bode Plot (by hand)
- 4 Examples
- Conclusion

The amplitude plot

Convention:

- for the ordinate (y-axis) we use $20\log_{10}|H(j\omega)|$ with the special unit dB
- ullet for the abscissa (x-axis) we use a logarithmic plot of ω

This is thus a bi-log plot

The reason for using the logarithm of the modulus of $H(j\omega)$ will become clear later

The phase plot

Convention:

- for the ordinate (y-axis) we use $\angle H(j\omega)$ in degrees
- ullet for the abscissa (x-axis) we use a logarithmic plot of ω

This is thus a semi-log plot

Example bode plot

$$H(s) = \frac{14s^2 + 7s + 3}{s^4 + 10s^3 + 10s^2 + 10s + 10}$$

Outline

- The Transfer Function
- 2 What Is The Bode Plot
- 3 How To Construct A Bode Plot (by hand)
- 4 Examples
- Conclusion

A new representation of the transfer function

From before:

$$H(s) = \frac{\beta_0 s^r + \beta_1 s^{r-1} + \ldots + \beta_r}{s^n + \alpha_1 s^{n-1} + \ldots + \alpha_n}$$

Factorization in zeros and poles

$$\Rightarrow H(s) = \frac{\beta_0(s-n_1)(s-n_2)\dots(s-n_r)}{(s-p_1)(s-p_2)\dots(s-p_n)}$$

This is the usual representation. Now however, we will look for factors $(1 + \frac{s}{s_i})$, with s_i a so-called breakpoint.

A new representation of the transfer function

We can do this by bringing all the zeros and poles not equal to zero outside the brackets, as follows:

$$H(s) = \beta_0 \frac{\prod (-n_i)}{\prod (-p_j)} \frac{(1 + \frac{s}{-n_1})(1 + \frac{s}{-n_2}) \dots (1 + \frac{s}{-n_i})}{s^l (1 + \frac{s}{-p_1})(1 + \frac{s}{-p_2}) \dots (1 + \frac{s}{-p_j})}$$

Replacing the constants by K, and setting

$$r_k = -n_k$$

$$s_k = -p_k$$

A new representation of the transfer function

We ultimately get:

$$H(s) = K \frac{(1 + \frac{s}{r_1})(1 + \frac{s}{r_2}) \dots (1 + \frac{s}{r_i})}{s^l (1 + \frac{s}{s_1})(1 + \frac{s}{s_2}) \dots (1 + \frac{s}{s_j})}$$

Now we are able to construct the bode plot of each different factor of H(s). Afterwards we can just add up these plots using the calculation rules of complex numbers.

Intermezzo complex numbers

- The amplitude of the product of complex numbers is equal to the product of the amplitudes of these numbers
- The phase of the product of complex numbers is equal to the sum of the phases of these numbers
- The logarithm of a product of numbers is equal to the sum of the logarithms of these numbers

This comes down to

$$20 \log_{10} |H(j\omega)| = \sum 20 \log_{10} |factors|$$
 $\angle H(j\omega) = \sum (\angle factors)$

Next we will quickly go over the simple bodeplots of the different factors of H(s)

The constant K

- $20 \log_{10} |K| = \text{constant}$
- $\angle K = 0^{\circ}$ or $\pm 180^{\circ}$ (resp K > 0 and K < 0)

Example: K = 10

$(1+rac{j\omega}{r_i})$ in the numerator

(Assume $r_i > 0$)

- What if $\omega \to 0$? $(1 + \frac{j\omega}{r_i}) \to 1$
 - $20 \log_{10} |1| = 0$
 - ∠1 = 0°
- What if $\omega \to \infty$? $(1 + \frac{j\omega}{r_i}) \to j\infty$
 - $20 \log_{10} |j\infty| = \infty$
 - $\angle j\infty = 90^{\circ}$
- The two terms balance each other out for $\omega = r_i$ (remember, this is called a break point).
 - $20 \log_{10} |1+j| = 20 \log_{10}(\sqrt{2}) \approx 3 dB$
 - $\angle(1+i) = 45^{\circ}$

A break point is therefore also called a 3dB point

$(1+rac{j\omega}{r_i})$ in the numerator

Example: $r_i = 100$

$(1+rac{j\omega}{s_i})$ in the denominator

This factor is equivalent to the previous one. The only difference is the sign change in both plots as:

$$\bullet \log |\frac{1}{z}| = -\log |z|$$

•
$$\angle \frac{1}{z} = -\angle z$$

$(1+rac{j\omega}{s_i})$ in the denominator

$j\omega$ in the numerator

- This is simply a (ascending) straight line in the amplitude plot, with a slope of 20 dB/decade
- Constant phase of 90°

$j\omega$ in the denominator

- This is simply a (descending) straight line in the amplitude plot, with a slope of -20 dB/decade
- Constant phase of -90°

Second order factors

A second order factor has twice the effect of a first order factor.

Consider for example $(1 + \frac{j\omega}{100})^2$ in the numerator:

Similar for higher order factors

Exception

Up until now we always considered r_i and $s_i > 0$, but what if we had a factor $(1 - \frac{j\omega}{r_i})$ for example?

- ullet The amplitude plot remains unchanged, as $|1+rac{j\omega}{r_i}|=|1-rac{j\omega}{r_i}|$
- The phase plot is reversed, as $\angle(1+\frac{j\omega}{r_i})=-\angle(1-\frac{j\omega}{r_i})$

Exception

Outline

- The Transfer Function
- 2 What Is The Bode Plot
- 3 How To Construct A Bode Plot (by hand)
- 4 Examples
- Conclusion

Example

Outline

- The Transfer Function
- 2 What Is The Bode Plot
- 3 How To Construct A Bode Plot (by hand)
- 4 Examples
- Conclusion

Conclusion

- Today we revised the basics about (constructing) the bode plot
- These techniques will be used in later lectures regarding controllers
- The importance of the bode plot will then also be shown