Static Code Analyzer for Python

Hong Xin

Introduction

Goal:

The goal of this project is to build a static codes analyzer that finds syntax errors in python without executing the source codes.

Product Goals

Users:

I want to find syntax errors in my python codes

Instruction:

Copy and paste python codes to a CSV file. Each line of code will be placed in a cell. The program will read the CSV file. It will identify if a line of code contains syntax errors. The program will then calculate the accuracy of the predictive model and the accuracy of the codes.

System Components

- Code
 - Model.ipynb
- Data
 - Dataset
 - dataset.csv
 - Test
 - test_if_else_elif.csv
 - test import.csv
 - test_integer.csv
- Visualization

Data

Confusion Matrix of import library:

Testing set (Test_import.csv)

model_name	predicted_score	code	true_score	accuracy fo model(%)	accuracy of codes(%)
SVM	0	import	0	90	40
SVM	0	import	0	90	40
SVM	0	mport numpy	0	90	40
SVM	0	port pandas	0	90	40
SVM	0	port numpy	0	90	40
SVM	1	import numpy	1	90	40
SVM	1	import numpy as np	1	90	40
SVM	0	import csv	1	90	40
SVM	1	import pandas as pd	1	90	40
SVM	1	import pandas	1	90	40

Confusion Matrix of integer:

Confusion Matrix of if_else_elif:

Analysis

Classifiers:

- 1. Logistic Regression
- 2. Naive Bayes
- 3. KNN
- 4. SVM
- 5. Decision Tree

Analysis:

- 1. **Size & Accuracy:** Importing library has the most number of data entries and the highest prediction accuracy.
- 2. **Size VS Accuracy:** The size of if, else, and elif is about the same as the size of Integer. However, the accuracy of integer is the highest
 - a. Comparing to less complicated syntax errors, more complicated syntax errors required a bigger dataset to achieve the same accuracy level
- B. **Best Classifier:** The prediction that is made by SVM is highest

Next Steps

- Create a Machine Learning to automatically generate syntax errors for various programming languages
- If not, keep generating more datasets for complicated syntax errors and achieve 80% of accuracy