Erreur Cartographie: Proposition de plan de travail

July 16, 2021

Contents

1	Model		
	1.1	Sets	
	1.2	Param	ieters
	1.3	Decisio	on variables
	1.4	Object	tive function
	1.5	Consti	raints
		1.5.1	Nodes outflows and inflows
		1.5.2	Platooning Time condition
		1.5.3	Platooning Unique leader for each vehicle
		1.5.4	Platoon does not exceed Q
		1.5.5	Vehicles on same platoon should traverse same edge
		1.5.6	Vehicles on same platoon should traverse same edge
		1.5.7	Time v enters its first edge
		1.5.8	\mathcal{T}_v^D
		1.5.9	Intermediate enter times
		1.5.10	Enter time no flow is zero
		1 5 11	Wait time no flow is zero

1 Model

1.1 Sets

We can think about defining three sets:

- \mathcal{V} : set of vehicles to route (could be a set of integers that are the ids of the vehicles)
- \mathcal{I} : set of nodes for the road network, obviously for each vehicle, the starting node and destination node are in \mathcal{I}
- \mathcal{E} : set of edges, which is the road network. Basically, \mathcal{E} is set of some couples (i,j) for $i,j\in\mathcal{I}$

1.2 Parameters

The following parameters will be used to parametrize the model (we can perform some variations on them, according the type on inputs we are given)

- \mathcal{O}_v : Origin node for vehicle v
- \mathcal{D}_v : Destination node for vehicle v
- \mathcal{T}_{v}^{O} : Origin time for vehicle v (earliest time v can depart from \mathcal{O}_{v})
- \mathcal{T}_v^D : Destination time for vehicle v (latest time v can arrive from \mathcal{D}_v)
- $C_{i,j}$: Cost of the edge $(i,j) \in \mathcal{E}$
- $\mathcal{T}_{i,j}$: Time to take the edge $(i,j) \in \mathcal{E}$
- $\mathcal{M}_{i,j}$: Minimum time to travel from node i to node j.
- Q: Maximum number of vehicles of a platoon.
- η : Saving factor.
- β : Transit delay factor.
- $B_{v,i}$: An indicator such that for each $v \in \mathcal{V}$: $B_{v,i} = \begin{cases} 1 & \text{if } i = \mathcal{O}_v \\ -1 & \text{if } i = \mathcal{D}_v \\ 0 & \text{otherwise} \end{cases}$

1.3 Decision variables

The following are the decision variables for the model:

• $f_{v,i,j}$: binary variable takes 1 if v travels on the edge $(i,j) \in \mathcal{E}$ and 0 otherwise.

- $q_{v,w,i,j}$: binary variable takes 1 if v follows w on the edge $(i,j) \in \mathcal{E}$ and 0 otherwise.
- $e_{v,i,j}$: real positive variable that is the time v enters the edge $(i,j) \in \mathcal{E}$.
- $w_{v,i}$: real positive variable that is the time v waits at $i \in \mathcal{I}$

1.4 Objective function

Given the information that vehicle travels at the same speed, the objective function is:

$$\sum_{v,i,j} C_{i,j} (f_{v,i,j} - \eta \sum_{w} q_{v,w,i,j}) + \beta w_{v,i}$$

1.5 Constraints

1.5.1 Nodes outflows and inflows

Node outflows must equal inflows.

$$\sum_{j:(i,j)\in\mathcal{E}} f_{v,i,j} = \sum_{j:(j,i)\in\mathcal{E}} f_{v,j,i} + B_{v,i} \quad \forall v \in \mathcal{V}, i \in \mathcal{V}$$

1.5.2 Platooning Time condition

When platooning, the times vehicles enter an edge must be equal.

$$-M(1-q_{v,w,i,j}) \le e_{v,i,j} - e_{w,i,j} \le M(1-q_{v,w,i,j}) \quad \forall (v,w) \in \mathcal{V}, (i,j) \in \mathcal{E}, v > w$$

1.5.3 Platooning Unique leader for each vehicle

A vehicle can follow at most one other vehicle in its platoon

$$\sum_{v \in \mathcal{E}} q_{v,w,i,j} \le 1 \quad \forall w \in \mathcal{V}, \forall (i,j) \in \mathcal{E}$$

1.5.4 Platoon does not exceed Q

The number of vehicles in a platoon cannot exceed Q.

$$\sum_{u} q_{u,v,i,j} \le (Q-1) \left(1 - \sum_{w} q_{v,w,i,j} \right) \quad \forall v \in V, (i,j) \in E$$

1.5.5 Vehicles on same platoon should traverse same edge

Platooning requires both vehicles to traverse the edge

$$2q_{v,w,i,j} \le f_{v,i,j} + f_{w,i,j} \quad \forall v, w \in \mathcal{V}, (i,j) \in \mathcal{E}$$

1.5.6 Vehicles on same platoon should traverse same edge

Platooning requires both vehicles to traverse the edge

$$2q_{v,w,i,j} \leq f_{v,i,j} + f_{w,i,j} \quad \forall v, w \in \mathcal{V}, (i,j) \in \mathcal{E}$$

1.5.7 Time v enters its first edge

$$-M\left(1 - f_{v,\mathcal{O}_{v},j}\right) \le e_{v,\mathcal{O}_{v},j} - \mathcal{T}_{v}^{O} - w_{v,O_{v}} \le M\left(1 - f_{v,\mathcal{O}_{v},j}\right) \quad \forall v \in \mathcal{V}, j \in \mathcal{I}$$

1.5.8 \mathcal{T}_{v}^{D}

 \mathcal{T}_v^D is the final enter time plus the time required to travel the final edge plus waiting at the end

$$-M\left(1-f_{v,i,\mathcal{D}_{v}}\right) \leq \mathcal{T}_{v}^{D}-e_{v,i,\mathcal{D}_{v}}-w_{v,\mathcal{D}_{v}}-T_{i,\mathcal{D}_{v}}f_{v,i,\mathcal{D}_{v}} \leq M\left(1-f_{v,i,\mathcal{D}_{v}}\right) \quad \forall v \in \mathcal{V}, i \in \mathcal{T}$$

1.5.9 Intermediate enter times

Intermediate enter times are equal plus the travel and waiting times

$$-M(2 - f_{v,i,j} - f_{v,k,i}) \le e_{v,i,j} - e_{v,k,i} - w_{v,i} - T_{k,i} f_{v,k,i} \le M(2 - f_{v,i,j} - f_{v,k,i})$$
$$\forall v \in \mathcal{V}, (i,j), (j,k) \in \mathcal{E}, \mathcal{D}_v \ne i \ne \mathcal{O}_v$$

1.5.10 Enter time no flow is zero

If there is no flow, the enter time can not be nonzero.

$$e_{v,i,j} \leq M f_{v,i,j} \quad \forall v \in V, (i,j) \in \mathcal{E}$$

1.5.11 Wait time no flow is zero

$$w_{v,i} \le M\left(\sum_{i,j} f_{v,i,j} + f_{v,j,i}\right) \forall v \in \mathcal{V}, i \in \mathcal{I}$$

The Big-M can be chosen to tighten the constraints, one valid value for M is the following one:

$$M = \max_{v} \left\{ \mathcal{T}_{v}^{D} \right\} - \min_{v} \left\{ \mathcal{T}_{v}^{O} \right\}$$