

Meteorological conditions in the Mesosphere during SSW events

Benedikt Gast Seminar Upper Atmosphere Leipzig, August 14th, 2020

Contents

- 1. Basics and methods
 - 1. Sudden Stratospheric Warming
 - 2. Gravity wave filtering
 - 3. Superposed epoch analysis
- 2. Measurements/Results
 - 1. Winds
 - 2. Gravity waves
 - 3. GAIA model data
- 3. Summary

Sudden Stratospheric Warmings (SSWs)

undisturbed conditions:

- eastward stratospheric jet
- westward mesospheric jet
- zero wind line near 75 km

SSW event:

- planetary waves initiate the SSWs
- westward flow in the stratosphere
- sometimes elevated stratopause

Wind profiles during an undisturbed winter (upper panel) and during a winter with SSW event and elevated stratopause (lower panel).

Gravity wave filtering in the atmosphere

Wind profile and gravity wave propagation for normal winter conditions (a) and during SSW events (b)

$$m^2 = \frac{N^2}{\left(c - \overline{u}\right)^2}$$

m – vertical wave number

N – buoyancy frequency

c – phase speed

 $\bar{\textbf{u}}$ – background wind

Superposed epoch analysis

- goal: characterize the meteorological conditions during an "average" SSW event
- data from each event are ordered with reference to the SSW onset
- average parameters for all SSW events are determined with reference to the epoch time

Locations of the meteor radar stations

Winds

Measurements of u at Collm and Kiruna

Measurements of meteor radars at Collm Observatory (left) and Kiruna (right): climatology (upper panels) and anomalies (lower panels) of the zonal wind component.

Measurements and GAIA data of u at Collm and Kiruna

Measurements of meteor radars (upper panels) and GAIA data (lower panels) of the anomalies of the zonal wind component at Collm Observatory (left) and Kiruna (right).

Measurements of v at Collm and Kiruna

Measurements of meteor radars at Collm Observatory (left) and Kiruna (right): climatology (upper panels) and anomalies (lower panels) of the meridional wind component.

Results

Wind measurements at CMA station

Measurements of the CMOR meteor radar at London, Ontario (Canada): zonal wind component (left) and meridional wind component (right): climatologies (upper panels) and anomalies (lower panels).

Wind and gravity wave measurements at CMA station

Measurements of the CMOR meteor radar at London, Ontario (Canada): climatologies of the zonal components (left) and meridional components (right) of wind (upper panels) and gravity waves (lower panels).

13

Inter – hemispheric coupling

- weaker northward meridional wind on the NH around the SSW onset
- → Cooling at the polar and warming at the tropical mesosphere
- → weaker latitudinal gradient on the SH

Effects on the Southern Hemisphere:

- occur with 4 10 days time shift
- weakening of the westward zonal wind
- reduced gravity wave activity in the upper mesosphere, below increased
- negative anomaly of the mean meridional wind

Wind measurements at Rio Grande (Argentina)

Measurements of the meteor radar at Rio Grande (Argentina): zonal wind component (left) and meridional wind component (right): climatologies (upper panels) and anomalies (lower panels).

Results

Wind measurements at Davis (Antarctic)

Measurements of the meteor radar at Davis (Antarctic): zonal wind component (left) and meridional wind component (right): climatologies (upper panels) and anomalies (lower panels).

16

Gravity waves

Gravity wave measurements at Collm Observatory

Measurements of the meteor radar at Collm Observatory: total kinetic energy (left) and zonal component (right) of gravity waves: climatologies (upper panels) and anomalies (lower panels).

Gravity wave measurements at Kiruna and CMA

Measurements of the meteor radars at Kiruna (left) and CMA (right): climatologies (upper panels) and anomalies (lower panels) of the total kinetic energy of gravity waves.

Gravity wave measurements at Rio Grande and Davis

Measurements of the meteor radars at Rio Grande (left) and Davis (right): climatologies (upper panels) and anomalies (lower panels) of the total kinetic energy of gravity waves.

Results

20

GAIA model data

GAIA model data of u at Collm and Kiruna

GAIA model data of the zonal wind component at Collm Observatory (left) and Kiruna (right): climatology (upper panels) and anomalies (lower panels).

GAIA model data of v at Collm and Kiruna

GAIA model data of the meridional wind component at Collm Observatory (left) and Kiruna (right): climatology (upper panels) and anomalies (lower panels).

Results

23

5. Summary

- strong latitudinal dependence of the effects of a sudden stratospheric warming
- on the northern hemisphere: enhanced gravity wave activity in the upper mesosphere before the SSW events
- results for the southern hemisphere are consistent with the interhemispheric coupling theory
- elevated stratopause seems to be a common phenomenon after SSWs
- gravity waves are an important driver for the mesospheric circulation
- to understand all effects, planetary waves must be investigated, too

Summary Benedikt Gast

UNIVERSITÄT LEIPZIG

Leipziger Institut für Meteorologie - LIM

References

King, A. D., Butler, A. H., Jucker, M., Earl, N. O., & Rudeva, I. (2019). Observed relationships between sudden stratospheric warmings and European climate extremes. Journal of Geophysical Research: Atmospheres

Denton, M. H., Kivi, R., Ulich, T., Rodger, C. J., Clilverd, M. A., Denton, J. S., & Lester, M. (2019). Observed response of stratospheric and mesospheric composition to sudden stratospheric warmings. *Journal of Atmospheric and Solar-Terrestrial Physics*, 191, 105054.

Yasui, R., Sato, K., & Tsutsumi, M. (2016). Seasonal and interannual variation of mesospheric gravity waves based on MF radar observations over 15 years at Syowa Station in the Antarctic. *SOLA*, *12*, 46-50.

Körnich, H., & Becker, E. (2010). A simple model for the interhemispheric coupling of the middle atmosphere circulation. *Advances in Space Research*, 45(5), 661-668.