

Outline

- Introduction
- Synthesis flow
- Appendix

Introduction

- □ Three levels of design and the information that we can get
 - RTL Design & Simulation
 - Logical operations on signals
 - Synthesis
 - **♦** Wiring (without placing and routing information), timing
 - Layout
 - Place and route, timing(clock tree synthesis)
- We transform the RTL code into the gate-level code, so we know how the design is implemented with those cells.
- □ To make the simulation more realistic, we use cells that contains timing information.

Introduction

□ Tool : Design Compiler

Company : Synopsys

→ Version : 2018.06

☐ Before synthesis, you need to prepare...

→ Your RTL code

synopsys_dc.setup

Synthesis flow

- Setup library
- Read file
- Define clock specification
- Define operating environment
- Compile
- Report & Analysis
- Save design

Design Compiler

In the terminal, Enter dv.

國 140.116.156.10 - PuTTY	_ D X
vlsicad9:/home/user2/vlsi18/vlsi1881 % dv&	
	E

Open DC

Check if there is any error.

Check whether library setup correctly

X Application Se	etup@vlsicad6	×
Categories	Defaults	
Defaults Variables	Search path:ver /usr/cad/synopsys/synthesis/cur/dw/sim_ver	
	Link library: * generic_io_ff1p98vm40c.db dw_foundation.sldb	
	Target library: *25c.db fsa0m_a_t33_generic_io_ff1p98vm40c.db	
	Symbol library: *a_generic_core.sdb fsa0m_a_t33_generic_io.sdb	
	Synthetic library: dw_foundation.sldb	
1 D	* = required	
	<u>R</u> eset ▼ OK Cancel App	у

fail success

If fail, read dc setup file

If fail, read dc setup file

X Execute Script File@vlsicad9	×				
Look in: ProbA ProbB ProbC score command.log					
synopsys_dc.setup tsmc13_neg.v					
File name: synopsys_dc.setup	<u>O</u> pen				
Files of type: All Files (*)					
□ <u>E</u> cho commands □ <u>V</u> erbose					

Check library again

X Application Se	etup@vlsicad6	×
Categories Defaults Variables	Defaults Search path: _ver /usr/cad/synopsys/synthesis/cur/dw/sim_ver Link library: * _generic_io_ff1p98vm40c.db dw_foundation.sldb _Target library: * 25c.db fsa0m_a_t33_generic_io_ff1p98vm40c.db Symbol library: * a_generic_core.sdb fsa0m_a_t33_generic_io.sdb	
1	Synthetic library: dw_foundation.sldb * = required Reset ▼ OK Cancel App	J

Read Files (1)

File >> Read...

Read Files (2)

Choose toplevel design

X Read Designs@vlsicad8	×	
Look in: home/user2/ms108/kat/source/student/ProbC 🔾 🔾 🔾		
Computer mac_v mac_tb.v		
File <u>n</u> ame: mac.v	<u>O</u> pen	
Files of type: Database Files (*.ddc *.ddc.gz *.db *.db.gz *.gdb *.sdb *.pdb *.e ▼	Cancel	
<u>F</u> ormat: Auto <u>▼</u>	SAUODSAS.	
		22

Read Files (3)

Check if there is any error

Read Files (4)

If current design is not toplevel module, use command current_deign module_name to change current design to toplevel module

LPHPLMB VLSI Design LAB

Open Schematic

What to do next?

- Define Clock Specification
- Define operating environment

Define Clock Specification

- Period
- Waveform
- Uncertainty
 - Skew
- Latency
 - → Source latency (optional)
 - Network latency
- Transition
 - Input transition (optional, not need if driving cell has set)
 - Clock transition (optional, it can merge with clock latency)

Clock Specification (1/2)

Why fix hold?

Clock Specification (2/2)

Don't add buffers on clock path

Specify Clock	×
Clock name: clk	
Port name: clk	_
☐ <u>R</u> emove clock	
Clock creation	
Perio <u>d</u> : 10	
Edge Value Add edge pair Rising 5	
Falling 10 Remove edge pair	
Invert wave form	
Add buffers	on data path to satisfy hold time
	7
0.00 5.00	10
✓ Don't touch network ✓ Fix hold	
OK Cancel Apply	

LPHPLHB VLSI Design LAB

Set clock uncertainty & clock latency

- Set clock uncertainty
 - set_clock_uncertainty 0.1 [get_clocks clock_name]

What is clock uncertainty?

- Set clock latency
 - set_clock_latency 0.5 [get_clocks clock_name]

What is clock latency?

Define operating environment

- Set operating conditions
- Set driving cell
- Set load
- Set input delay
- Set output delay
- Set wire load model

Operating Conditions

Set driving cell

Script :

set_driving_cell -library(tpz973gvwg-lib_cell PDIDGZ-pin {C} [all_inputs]

IO library, usually use slow library

Input pad you used

Port of input pad connect to top module

You need to set driving cell, only when you synthesize top level module

Set load

- □ Script :
 - set_load 0.05 [all_outputs]
 - set_load [load_of "tpz973gvwc/PDO16CDG/I"] [all_outputs]
- Value :
 - TSRI testing equipment: 40 pF
 - → PCB : 10 pF
 - → Top module to IO_pad : 0.05 pF
 - → Load between modules : 0.002 pF

Input delay

Output delay

Wire load

LPHPLMB VLSI Design LAB

Compile Design

	Design Vision - To	opLevel.1 (error_diffusion) (on vlsicad	9)
→ Hier.1 Logical Hierarchy Cells (Hierarchica Cell Name R	Design Attributes Schematics Compile Design Compile Witra Check Design Report Design Report Design Hierarchy	ic <u>Timing Test Power AnalyzeRTL</u>	
	Report Reference Report Ports Report Cells Report Nets Report Clocks Report Area	✓ Map design ✓ Exact map Ma&p effort: medium Ar&ea effort: medium Po&wer effort: medium ✓ Fix design rules and optimize ma	☐ Top leve☐ Incremental mapping☐ Ungroup☐ Allow boundary conditio☐ Scan☐ Auto ungroup☐ Gate Cl☐ ☐ Area☐ ☐ Delay☐
design_vision> source DC.sdc	Report Power Analyze Datapath Extrac Reset Current Design	Optimize mapping only Fix design rules only Fix hold time only	2
Information: Setting sdc_version outs Using operating conditions 'slow' four Using operating conditions 'fast' four 1 design_vision> Log History design_vision>	nd in library 'slow'.		OK Cancel Apply

Report Timing (1/2)

Command: report_timing

Report Timing (2/2)

☐ Slack must no less than 0, or it will lead to timing violation

	Point	Incr	Path	
)	clock clk (rise edge) clock network delay (ideal) input external delay d[1] (in) U78/Y (XOR2X1) add_0_root_add_0_root_add_31_2/A[2] (grayscale_DW01_ac	0.00 0.50 5.00 0.06 0.31	0.00 0.50 5.50 f 5.56 f 5.87 r	
	add_0_root_add_0_root_add_31_2/U8/Y (0A21X4) add_0_root_add_0_root_add_31_2/U9/Y (A021XL) add_0_root_add_0_root_add_31_2/U3/Y (NOR2X1) add_0_root_add_0_root_add_31_2/U2/Y (0R2X1) add_0_root_add_0_root_add_31_2/U12/Y (0A12BB1X2) add_0_root_add_0_root_add_31_2/U1_4/C0 (ADDFHX2) add_0_root_add_0_root_add_31_2/U1_5/C0 (ADDFHX2) add_0_root_add_0_root_add_31_2/U1_6/C0 (ADDFHX4) add_0_root_add_0_root_add_31_2/U1_6/C0 (ADDFHX4) add_0_root_add_0_root_add_31_2/U1/Y (XOR2X1) add_0_root_add_0_root_add_31_2/U1/Y (XOR2X2) add_0_root_add_0_root_add_31_2/SUM[7] (grayscale_DW01_	0.00 0.22 0.47 0.21 0.33 0.13 0.21 0.22 0.22 0.22 0.24 0.31 add_0)	5.87 r 6.09 r 6.56 r 6.77 f 7.10 f 7.23 r 7.44 r 7.66 r 7.88 r 8.12 r 8.43 f	
	add_39/A[2] (grayscale_DW01_inc_0) add_39/U1_1_2/C0 (ADDHX1) add_39/U3/Y (AND2X2) add_39/U6/Y (AND2X4) add_39/U2/Y (AND2X2) add_39/U1/Y (NAND2X1) add_39/U1/Y (NAND2X1) add_39/U1/Y (XOR2X2) add_39/SUM[7] (grayscale_DW01_inc_0) U40/Y (A0I22X2) U39/Y (0AI21X2) q_reg[7]/D (DFFRX2) data arrival time	0.00 0.00 0.34 0.28 0.20 0.25 0.20 0.20 0.17 0.15	8.43 f 8.43 f 8.77 f 9.06 f 9.26 f 9.50 f 9.70 r 9.90 r 10.07 f 10.22 r 10.22 r	
	clock clk (rise edge) clock network delay (ideal) clock uncertainty q_reg[7]/CK (DFFRX2) library setup time data required time	10.00 0.50 -0.10 0.00 -0.18	10.00 10.50 10.40 10.40 r 10.22 10.22	
	data required time data arrival time		10.22 -10.22	
	slack (MET)		0.00	

Report Area

Command: report_area

Report Power

Command: report_power

Design Vision - TopLevel.1 (grayscale)												
	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>S</u> elect	<u>H</u> ighlight	L <u>i</u> st	<u>H</u> ierarchy	<u>D</u> esign	<u>A</u> ttributes	S <u>c</u> hematic	<u>T</u> imi	ng <u>T</u> es
■ Report Power						×	★ 🖈 📗	Comp	ile Design			grayso
Report for									ile <u>U</u> ltra		×	
Summary only							A		Design		F	
All nets/cells [g]											— <u>L</u>	(
C Only nets/cells:					<u>S</u> elect	ion			t <u>D</u> esign			(grays
Report options									t Design <u>H</u> ie			7/C0 (
Report options	1 [t Design <u>R</u> e			(XOR2X gra
☐ Show nets histogram		□ Use	hierarch	ical format	t[<u>z]</u>		1205.1		t Constra <u>i</u> nt			, ,,,,,,
Exclude values <=		<u>H</u> ier	rarchy le	vels:			0.0		t Re <u>f</u> erence	2		
Exclude val <u>u</u> es >=	\ \	orst nu	mber:				0.0 0.0	Repor	t <u>P</u> orts			
Analysis effo <u>r</u> t: low ▼	-	ort mod					6440.0		t <u>C</u> ells			lay
□ No line split		erbose	,				1205.1		t <u>N</u> ets			
		_					7645.1		t Cloc <u>k</u> s			
☐ Exclude <u>p</u> ower of boundary nets	□ R	eport c	umulati	ve power[k	<u>[</u>]				t <u>A</u> rea	1		
☐ <u>Traverse</u> hierarchy at all levels									t Compile <u>O</u>	ptions	-	
Output options								Repor	t Po <u>w</u> er			
✓ To report viewer								Ana <u>l</u> y:	ze Datapath	n Extraction.	[
☐ To file: Report.txt					Brows	se		Reset	: Curren <u>t</u> De	esign		
✓ Appe <u>n</u> d to file			2				644	0.03228	8			
		(OK	Cal	ncel <u>A</u> pp	oly	120	5. 15404	6	oower u	nit	:μW

Save File

The Verilog file after synthesis

SDF File:

write_sdf -version 2.1 -context verilog -load_delay net filename.sdf

Post Simulation

- In your test bench
 - Apply delay in your design use command :
 - \$sdf_annotate("sdf_file_name", module_instance_name)

```
mac m1(.clk(clk),.rst(rst),.clear(clear),.w_w(w_w),.w_in(w_in),.if_w(if_w),.if_in(if_in),.out(out));
  `ifdef syn
  initial $sdf_annotate("mac_syn.sdf",m1);
  `endif
```

Post sim waveform

Work with tcl

```
🔚 DC.sdc 🔀
    # operating conditions and boundary conditions #
    set cycle 10.0
                         ;#clock period defined by designer
   create clock -period $cycle [get ports clk]
   set fix hold
                              [get clocks clk]
   set_dont_touch_network [get_clocks clk]
   set clock uncertainty 0.1 [get clocks clk]
    set clock latency 0.5 [get clocks clk]
    set input delay 5
                          -clock clk [remove from collection [all inputs] [get ports clk]]
11
    set output delay 0.5
                          -clock clk [all outputs]
                           [all outputs]
    set load
                    0.1
                           [all inputs]
    set drive
                    0.1
    set_operating_conditions -max slow -min fast
16
    set wire load model -name tsmc13 wl10 -library slow
18
    set_max_fanout 20 [all_inputs]
```


Work with tcl

- Setup library
- Read file
- Read script
- Compile
- Check report
- Save design

Work with tcl

How to read script

Reference

☐ (C104) Logic Synthesis with Design Compiler training manual

The DC Setup File

```
synopsys_dc.setup ⊠
 1 set company "CIC"
   set designer "Student"
   set CoreSearchPath /usr/cad/CBDK/CBDK018 UMC Faraday v1.0/orig lib/fsa0m a/2009Q2v2.0/GENERIC CORE/FrontEnd/synopsys/
   set IOSearchPath /usr/cad/CBDK/CBDK018_UMC_Faraday_v1.0/orig_lib/fsa0m_a/2008Q3v1.2/T33_GENERIC_IO/FrontEnd/synopsys/
   set MemoryPath ../sim/SRAM\ ../sim/data array\ ../sim/tag array
    set DefintionPath ../include
   set search path   "$CoreSearchPath $IOSearchPath $MemoryPath $DefintionPath $search path"
   set target library " fsa0m a generic core ss1p62v125c.db fsa0m a generic core ff1p98vm40c.db SRAM WC.db SRAM BC.db dat
   set synthetic_library "dw_foundation.sldb"
   set link library "* $target_library $synthetic_library"
   set symbol library "fsa0m a generic core.sdb fsa0m a t33 generic io.sdb"
   set min lib "fsa0m a generic core ss1p62v125c.db" \
                                                          : # for core lib
           -min "fsa0m a generic core ff1p98vm40c.db"
   set min lib "fsa0m a t33 generic io ss1p62v125c.db" \
           -min "fsa0m a t33 generic io ff1p98vm40c.db"
                                                          ; # for IO lib
   set min lib "SRAM WC.db" \
           -min "SRAM BC.db"
                                                          ; # for Memory
    set min lib "data array WC.db" \
           -min "data array BC.db"
                                                          ; # for Memory
   set min lib "tag array WC.db" \
           -min "tag array BC.db"
                                                          ; # for Memory
26 set verilogout no tri true
   set hdlin enable presto for vhdl "TRUE"
   set sh enable line editing true
   history keep 100
   alias h history
```

Corner	Temperature	Voltage
SS	125	1.62
TT	25	1.8
FF	-40	1.98

Timing violation

- Setup time & hold time
 - Setup time: the amount of time the data at the synchronous input (D) must be stable before the active edge of clock.
 - Hold time: the amount of time the data at the synchronous input (D) must be stable after the active edge of clock.
- Launch edge & latch edge :
 - Arrival time

 Data Valid

 Launch Edge

 CLK

 Data Valid
 - Data arrival time (launch edge + clock source -> FF1/CK + FF1/CK -> FF1/Q + FF1/Q -> FF2/D + data transition time)
 - Clock arrival time (latch edge + clock source -> FF2/CK + clock transition time)

Timing violation

- Setup time violation (data path too long)
 - → Clock arrival time < Data arrival time + setup time</p>
 - How to fix?
 - Add clock period
 - Add flip-flops in longest clock path
- □ Hold time violation (data path too short)
 - Clock arrival time + hold time > Data arrival time
 - How to fix?
 - Fix hold (add buffers in data path)
 - Incremental compile

Timing violation

Incremental compile

Clock uncertainty

- □ Clock uncertainty ≈ clock skew + clock jitter
- Clock skew
 - → The maximum difference between the arrival of clock signals at sequential cells in one clock domain or between domains

Clock skew = 1.2 - 1.0 = 0.2 (ns)

- Clock jitter
 - the timing variations of a set of signal edges from their ideal values

Clock latency

- What is clock latency
 - Source latency
 - Propagation time from the actual clock origin to the clock definition point in the design
 - Network latency
 - Propagation time from the clock definition point in the design to the register's clock pin

Thank you For your attention!!

