Appunti di Algebra Lineare e Analisi Matematica 2

Mattia Ruffini

Febbraio 2022

Indice

1	Al	gebra Lineare	2
1	Spazi vettoriali e vettori		
	1.1	Somma di vettori geometrici	4
	1.2	Prodotto di un vettore per uno scalare	4
	1.3	Spazio Vettoriale	
		$1.\overline{3}.1$ \mathbb{R}^n	
	1.4	Spazi vettoriali astratti	
	1.5	Combinazione lineare di vettori	7
	1.6	Sottospazio Vettoriale	
	1.7	Sottospazio generato da k vettori	
	1.8	Dipendenza e Indipendenza Lineare	9
	1.9	Basi e dimensioni	11
II	E	quazioni Differenziali	12
Η	I]	Esercitazioni	13
2	Sistemi Lineari		14
	2.1	Riduzione a scala	14
	2.2	Risoluzione di sistemi lineari mediante riduzione a scala (Metodo di eliminazione di Gauss)	15

Parte I Algebra Lineare

L'algebra Lineare studia gli **spazi vettoriali** e le **funzioni lineari tra spazi vettoriali**.

Capitolo 1

Spazi vettoriali e vettori

Chiamiamo con *E* l'insieme dei vettori geometrici nello spazio. I vettori nascono in fisica per secrivere grandezze che oltre un numero necessitano una direzione e un verso. Dato un segmento orientato, un'unità di misura, due segmenti orientati sono equivalenti se hanno la stessa lunghezza, stessa direzione e stesso verso. Si chiama vettore la famiglia formata da tutti i segmenti orientati tra di loro equivalenti.

Un vettore particolare è il vettore nullo $\underline{v} = \underline{0}$ ed è chiamato **vettore** nullo. E' l'unico vettore ad avere modulo 0.

1.1 Somma di vettori geometrici

Dati due vettori \underline{v} e \underline{u} allora la loro somma è il vettore seguente:

Per trovare la somma di due vettori si può utilizzare o la regola del parallelogramma, o la regola punto-coda.

1.2 Prodotto di un vettore per uno scalare

Consideriamo $t \in \mathbb{R}$ e $\vec{v} \in E$. Allora sappiamo che se t = 0 oppure se $\vec{v} = \vec{0}$, allora l'operazione

$$t \cdot \vec{v} = \vec{0} \tag{1.1}$$

altrimenti vale che

$$t \cdot \vec{v} = \vec{p} \tag{1.2}$$

con $|\vec{p}| = t \cdot |\vec{v}|$, ovvero \vec{p} è un vettore con direzione identica a \vec{v} e verso identico a \vec{v} se t > 0, altrimenti l'opposto.

I vettori \vec{v} e $t\vec{v}$ sono paralleli. In generale: "due vettori di cui uno non sia il vettore nullo sono paralleli se e solo se $\exists t \in \mathbb{R} : \vec{u} = t\vec{v}$ ". Inoltre $t = \frac{|\vec{u}|}{|\vec{v}|}$. Il segno di t dipende se i vettori sono discordi.

1.3 Spazio Vettoriale

Definizione "Un insieme V si dice che è uno spazio vettoriale se sono definite in V due operazioni: somma e prodotto per uno scalare. La somma di due elementi di V corrisponde a un terzo elemento di V, il prodotto per uno scalare $t \in \mathbb{R}$ e \vec{v} con $t \cdot \vec{v} \in V$ soddisfa le seguenti proprietà:"

- 1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- 3. $\forall \vec{u} \in V, \vec{u} + \vec{0} = \vec{u}$
- 4. $\forall \vec{u} \in V, \vec{u} \vec{u} = \vec{0}$
- 5. $\forall \vec{u} \in V, t \in \mathbb{R}, t(\vec{u} + \vec{v}) = \vec{u}t + \vec{v}t$
- 6. $(t+s)\vec{u} = t\vec{u} + t\vec{v}$
- 7. $ts\vec{u} = t(s\vec{u})$
- 8. $1 \cdot \vec{u} = \vec{u}$

Se valgono queste proprietà, allora V è uno spazio vettoriale.

1.3.1 \mathbb{R}^n

L'insieme \mathbb{R}^n è l'insieme formato dalle n-uple coordinate di numeri reali.

$$\vec{x} \in \mathbb{R}^n, \vec{x} = (x_1, x_2, ..., x_n)$$

Dati due elementi \vec{x} e \vec{y} di \mathbb{R}^n si vuole definire l'operazione somma:

$$\vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

mentre il prodotto con $t \in \mathbb{R}$:

$$t\vec{x} = (tx_1, tx_2, ..., tx_n)$$

Dunque \mathbb{R}^n è uno spazio vettoriale perchè valgono le 8 proprietà che definiscono uno spazio vettoriale. Nei casi particolari in cui n = 1, n = 2, n = 3 è presente un'interpretazione geometrica dello spazio vettoriale. In particolare si afferma che lo spazio vettoriale dei vettori nel piano si identifica in \mathbb{R}^2 . Analogamente lo spazio con \mathbb{R}^3 .

1.4 Spazi vettoriali astratti

Esistono degli spazi vettoriali che non hanno un'interpretazione geometria, tuttavia esistono. Chiamiamo con F l'insieme delle funzioni reali di variabile reale, cioè le funzioni del tipo $\mathbb{R} \to \mathbb{R}$. La somma di due elementi di F è definita come:

$$f, g \in F, f + g \in F, (f + g)(x) = f(x) + g(x)$$

mentre il prodotto con uno scalare è definito come:

$$c \cdot f \in F, c(f)(x) = cf(x)$$

Di conseguenza F è uno spazio vettoriale rispetto queste operazioni e i suoi elementi sono vettori. Dunque con il termine vettore si intende un elemento di uno spazio vettoriale.

Un altro esempio di spazio vettoriale astratto è l'insieme $\mathbb{R}[x]$ come insieme dei polinomi di variabile x a coefficienti reali è uno spazio vettoriale rispetto alla somma e al prodotto con uno scalare.

1.5 Combinazione lineare di vettori

Dato uno spazio vettoriale V fissati i vettori $\vec{v_1}, \vec{v_2}, ..., \vec{v_k} \in V$ e fissati $c_1, c_2, ..., c_k \in \mathbb{R}$ scalari, allora si chiama **combinazione lineare di** $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$ **con coefficienti** $c_1, c_2, ..., c_k$ **il vettore**

$$\vec{v} = c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_k \vec{v_k} \tag{1.3}$$

Generalizzazione in \mathbb{R}^n Ogni vettore di \mathbb{R}^n si può scrivere come combinazione lineare dei vettori fondamentali con coefficienti:

$$\vec{x} = \sum_{i=1}^{n} x_i \vec{e_i} \tag{1.4}$$

dove i vettori fondamentali sono:

$$\vec{e_1} = (1, 0, 0, 0, ..., 0)$$

 $\vec{e_2} = (0, 1, 0, 0, ..., 0)$
...
$$\vec{e_n} = (0, 0, 0, 0, ..., 1)$$

Inoltre il vettore nullo è sempre combinazione lineare di una qualunque combinazione di vettori.

1.6 Sottospazio Vettoriale

Definisco V come spazio vettoriale, e $W\subseteq V, W\neq\varnothing$. W è uno spazio vettoriale di V se:

- $\forall \vec{w_1}, \vec{w_2} \in \vec{w_1} + w_2 \in W$ ovvero W è chiuso rispetto la somma;
- $\forall t \in \mathbb{R}, \forall \vec{w} \in W, t \cdot \vec{w} \in W$, ovvero W è chiuso rispetto il prodotto per uno scalare.

W è un sottospazio vettoriale di V se è uno spazio vettoriale.

La condizione necessaria affinchè W sia un sottospazio vettoriale di V è che $\vec{0} \in W$.

Consideriamo $\vec{w} \in W, t = 0$. Se $t\vec{w} \in W$, allora per la proprietà ***** $\vec{0} \in W$.

Dimostrazione $0 \cdot w = 0$

$$w + 0w = w$$
$$w - w + 0w = w - w$$
$$0 + 0w = 0$$
$$0w = 0$$

Se V è uno spazio vettoriale, allora il più piccolo sottospazio vettoriale è quello il cui elemento è esclusivamente il vettore nullo. Mentre il sottospazio vettoriale più grande è quello che coincide con V. Questi sottospazi sono chiamati **banali**.

Esempi I sottospazi di \mathbb{R}^3 sono: \mathbb{R}^3 , (0,0,0), i piani per l'origine, le rette per l'origine. I sottospazi di \mathbb{R}^2 sono \mathbb{R}^2 , (0,0) e le rette passanti per l'origine.

Se consideriamo lo spazio vettoriale dei polinomi $\mathbb{R}[x]$, lo spazio vettoriale dei polinomi con grado minore o uguale a n è sottospazio vettoriale di $\mathbb{R}[x]$. Un polinomio di quinto grado sommato ad un altro polinomio di quinto grado, è sempre di quinto grado. Un polinomio di quinto grado moltiplicato per un numero è un polinomio di quinto grado.

Anche il sottoinsieme delle funzioni reali di variabile reale che appartengono a C^1 è un sottospazio vettoriale dello spazio vettoriale delle funzioni reali di variabile reale:

$$f, g \in C^1(\mathbb{R}), f + g \in C^1$$

 $c \in \mathbb{R}, f \in C^1(\mathbb{R}), cf \in C^1$

ovvero C^1 è chiuso rispetto le operazioni di somma e prodotto con uno scalare.

1.7 Sottospazio generato da k vettori

Dato uno spazio vettoriale V e k vettori $\vec{v_1}, \vec{v_2}..., \vec{v_k} \in V$ qual è il più piccolo sottospazio vettoriale di V che contiene i vettori $\vec{v_1}, \vec{v_2}..., \vec{v_k} \in V$?

Per semplicità consideriamo $V=\mathbb{R}^3$ con e i vettori

$$\vec{v_1} = (1, 0, 0)$$

 $\vec{v_2} = (0, 1, 0)$
 $\vec{v_3} = (1, 1, 0)$

Il sottospazio vettoriale di V in questo caso è il piano xy. Osserviamo che il sottospazio vettoriale di V deve essere uno spazio vettoriale, questo deve essere **chiuso rispetto alla somma e rispetto al prodotto**. Quindi dati k vettori di V deve essere contenuto nel suo sottospazio vettoriale:

$$c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_k \vec{v_k} \tag{1.5}$$

ovvero il sottospazio vettoriale di V deve contenere **tutte le combinazioni** lineari dei vettori $\vec{v_1}, \vec{v_2}..., \vec{v_k}$.

Definizione 1.7.1 (Sottospazio vettoriale). Dato uno spazio vettoriale V e i suoi k elementi, il suo sottospazio vettoriale si chiama W ed è l'insieme di tutte le combinazioni lineari dei k elementi di V. Ed è il più piccolo sottospazio di V.

Dimostrazione chiuso rispetto la somma Sia W sottospazio vettoriale di V. Presi due elementi di $W, \vec{w_1}, \vec{w_2}$ combinazioni lineari dei k elementi di V, definiti nel seguente modo:

$$\vec{w_1} = c_1 \vec{v_1} + \dots + c_k \vec{v_k}$$

 $\vec{w_2} = d_1 \vec{v_1} + \dots + d_k \vec{v_k}$

poichè valgono la proprietà commutativa e distributiva si ha:

$$\vec{w_1} + \vec{w_2} = (c_1 + d_1)\vec{v_1} + \dots + (c_k + d_k)\vec{v_k}$$

allora W è chiuso rispetto la somma. Prende il nome di $\mathbf{Span}(\vec{v_1}, \vec{v_2}..., \vec{v_k})$ il sottospazio generato dai vettori $\vec{v_1}, \vec{v_2}..., \vec{v_k}$.

$$Span(\vec{v_1}, \vec{v_2}..., \vec{v_k}) = \{\vec{v} \in V : \vec{v} = c_1\vec{v_1} + ... + c_k\vec{v_k}\}$$

Esiste un numero minimo di vettori necessario affinchè siano generatori di uno spazio vettoriale.

1.8 Dipendenza e Indipendenza Lineare

Sia V uno spazio vettoriale con $\vec{v_1}, \vec{v_2}..., \vec{v_k} \in V$.

Teorema 1. La famiglia di vettori $\{v_1, v_2, ..., v_k\}$ è linearmente indipendente se uno dei vettori della famiglia è combinazione lineare degli altri. Nel caso opposto si dice che la famiglia di vettori è linearmente indipendente.

Esempio con \mathbb{R}^3 Consideriamo $V = \mathbb{R}$, con

$$\vec{w_1} = (1, 0, -1) \tag{1.6}$$

$$\vec{w_2} = (0, 1, -1) \tag{1.7}$$

$$\vec{w_1} = (1, 1, -2) \tag{1.8}$$

Allora la famiglia di vettore $\vec{w_1}, \vec{w_2}, \vec{w_3}$ è linearmente indipendente, in quanto $\vec{w_3}$ è combinazione lineare degli altri due.

$$\vec{w_3} = (1, 1, -2) = c_1(1, 0, -1) + c_2(0, 1, -1)$$

$$= (c_1, c_2, -c_1 - c_2)$$

$$c_1 = 1$$

$$c_2 = 1$$

$$\vec{w_3} = 1 \cdot w_1 + 1 \cdot w_2$$

Esempio con i vettori unitari e_n Consideriamo i vettori $\vec{e_1}, \vec{e_2}, ..., \vec{e_n}$ e verifichiamo che siano linearmente indipendenti. Si vede subito come per esempio non esista $c \in \mathbb{R}$ per cui e_1 sia combinazione lineare degli altri vettori, in particolare per cui $c \cdot 0 = 1$. Vale per tutte le n-uple di \mathbb{R}^n .

Quando una famiglia di vettori è dipendente indipendente

- Se una famiglia di vettori contiene $\vec{0}$ allora è linearmente dipendente;
- Se una famiglia di vettori linearmente dipendenti aggiunge un qualunque vettore è ancora linearmente dipendente;
- Se ad una famiglia di vettori linearmente indipendente tolgo un vettore ottengo ancora una famiglia linearmente indipendente;

L'ultimo punto perchè consideriamo $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$ linearmente indipendente allora anche $\vec{v_1}, \vec{v_2}, ..., \vec{v_{k-1}}$ è indipendente, oppure andrebbe contro il secondo principio se fosse dipendente.

Definizione Equivalente La definizione di dipendenza lineare funziona solamente quando si hanno almeno due vettori. Ovvero dati $\vec{v_1}, \vec{v_2}$. Questi sono linearmente dipendenti se

$$\vec{v_1} = c\vec{v_2}$$
$$\vec{v_2} = d\vec{v_1}$$

Per esempio se fossimo in \mathbb{R}^3 si parla di vettori paralleli. Tuttavia è impossibile applicare la definizione se la famiglia è costituita da un solo vettore. Dunque ecco una definizione equivalente: " $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$ sono linearmente dipendenti se \exists una loro combinazione lineare uguale al vettore nullo con i coefficienti non tutti nulli".

Per esempio se consideriamo la famiglia di vettori $\vec{w_1}, \vec{w_2}, \vec{w_3}$ definiti nell'equazione 1.6 questi sono linearmente dipendenti perchè

$$\vec{w_1} + \vec{w_2} - \vec{w_3} = \vec{0}$$

e questa è una combinazione lineare il cui risultato è il vettore nullo. L'esempio classico è con $\vec{e_1}, \vec{e_2}, ..., \vec{e_n}$ in quanto non esiste una loro combinazione lineare uguale al vettore nullo con almeno un coefficiente diverso da zero.

Casi particolari Se esiste un solo vettore $\vec{v} \in V, \exists c \neq 0$:

$$c \cdot \vec{v} = \vec{0}$$

allora si ha che $\vec{v} = \vec{0}$ e V è linearmente dipendente. Altrimenti se $\vec{v} \neq 0$ sarebbe linearmente indipendente.

1.9 Basi e dimensioni

Definizione 1.9.1 (Base di uno spazio vettoriale). Sia V uno spazio vettoriale qualsiasi con $a = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_k}\}$ dove a è una famiglia di vettori di V. Allora a è una base di V se

- 1. $span(\vec{v_1}, \vec{v_2}, ..., \vec{v_k}) = V$ cioè la famiglia a costituisce i generatori di V, oppure ogni vettore di V è combinazione lineare di $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$;
- 2. la famiglia a è linearmente indipendente;

Per esempio la base di \mathbb{R}^n è $a = \{\vec{e_1}, \vec{e_2}, ..., \vec{e_n}\}.$

Parte II Equazioni Differenziali

Parte III Esercitazioni

Capitolo 2

Sistemi Lineari

Un sistema lineare è formato da m equazioni di primo grado in n incognite.

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases} (2.1)$$

oppure più sinteticamente un sistema può essere riscritto in modo matriciale:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

$$(2.2)$$

2.1 Riduzione a scala

$$\begin{bmatrix} a & * & * & * & * & * \\ b & * & * & * & * \\ c & * & * & * \end{bmatrix}$$
 (2.3)

dove gli spazi vuoti equivalgono a zero, * sono numeri qualsiasi e a, b, c sono detti **pivot della matrice**.

Esempio di riduzione a scala

$$\begin{bmatrix} 0 & 1 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

in questo caso i pivot della matrice sono 1, 1, 1.

2.2 Risoluzione di sistemi lineari mediante riduzione a scala (Metodo di eliminazione di Gauss)

$$\begin{cases} x + y + kz = 2 \\ x + y + 3z = k - 1 \end{cases} \rightarrow \begin{bmatrix} 1 & 1 & k & 2 \\ 1 & 1 & 3 & k - 1 \\ 2 & k & -1 & 1 \end{bmatrix}$$

$$\xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 1 & k & 2 \\ 0 & 0 & 3 - k & k - 3 \\ 0 & k - 2 & -1 - 2k & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & k & 2 \\ 0 & k - 2 & -1 - 2k & -3 \\ 0 & 0 & 3 - k & k - 3 \end{bmatrix}$$

Discussione

- Se $k \neq 2$ e $k \neq 3$ esiste una sola soluzione, e il numero di pivot è 3.
- Se k = 2:

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & -5 & -3 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{5R_3 - R_2} \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & -5 & -3 \\ 0 & 0 & 0 & -8 \end{bmatrix}$$

cioè il sistema è impossibile, in quanto nella terza equazione risulta 0 = -8, dunque non ammette soluzioni

• Se k = 3:

$$\begin{bmatrix} 1 & 1 & 3 & 2 \\ 0 & 1 & -7 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

cioè il sistema ammette infinite soluzioni dipendenti da $z=t\in\mathbb{R}$

$$\begin{cases} x = 2 - 3t + 3 - 7t = 3 - 10t \\ y = 7t - 3 \\ z = t \in \mathbb{R} \end{cases}$$