Math 143 Set 11

1. Draw the points in \mathbb{R}^3 represented by these relations:

a.
$$x^2 + z^2 \le 3$$

b.
$$(x-1)^2 + y^2 + (z+1)^2 = 1$$

c.
$$x^2 + y^2 + z^2 - 6x + 4y - 2z = 11$$

d.
$$4x^2 + z^2 = 1$$
.

- **2.** The vector \mathbf{v} lies in the first quadrant of \mathbb{R}^2 , has $|\mathbf{v}|=4$, and makes an angle of $\pi/3$ with the *x*-axis. Write \mathbf{v} as $\langle a,b \rangle$ for some real numbers a and b.
- **3.** Find two unit vectors that have dot product with both $\langle 1, 1, 1 \rangle$ and $\langle 2, 1, 0 \rangle$ equal to 0.
- **4.** Do the following operations on the vectors $\mathbf{u} = \langle 3, 1, 2 \rangle$, $\mathbf{v} = \langle 2, 0, -1 \rangle$, and $\mathbf{w} = \langle 1, 1, 1 \rangle$:
 - a. Find a vector in the same direction as $\mathbf{u} + \mathbf{v}$ but has length 2.
 - b. Find the angle between ${\bf u}$ and ${\bf v}$ and the angle between ${\bf u}$ and ${\bf w}$.