ЛАБОРАТОРНАЯ №8

Алгоритмы на графах

А. Длина пути (поиск в ширину)

В неориентированном графе требуется найти длину минимального пути между двумя вершинами. Гарантируется, что путь существует.

Входные данные

Во входном файле записаны в первой строке число N - количество вершин в графе ($1 < N \le 100$) и M — количество ребер. Затем записаны M пар целых чисел — номера вершин определяющих ребра. Затем записаны номера двух вершин - начальной и конечной.

Выходные данные

В выходной файл выведите в первой строке - длину пути (количество ребер, которые нужно пройти), а во второй путь от начальной до конечной вершины.

Пример

P	input.txt	output.txt
7	6	3
1	2	3 2 1 5
1	5	
3	4	
2	3	
3	6	
6	7	
3	5	

В. Все цепи (поиск в глубину, использовать dfs)

Имеется **n** городов пронумерованных с **1** до **n** и **m** соединяющих дорог. Найти всевозможные маршруты автобусов с города с номером **start**.

В терминах теории графов: дан неориентированный граф с **n** вершинами и с **m** ребрами . Напечатать все цепи с данной вершины **start**.

paw	imi : Halle latarb bee delli e dallion bepilinibi sait.			
	input.txt	output.txt		
5	6	1 2 3 4 5		
1	2	1 2 3 4		
1	3	1 2 3		
1	5	1 2		
2	3	1 3 2		
3	4	1 3 4 5		
4	5	1 3 4		
1		1 3		
		1 5 4 3 2		
		1 5 4 3		
		1 5 4		
		1 5		
		1		

C. Network

Андрей работает системным администратором и планирует создание новой сети в своей компании. Всего будет N хабов, они будут соединены друг с другом с помощью кабелей.

Поскольку каждый сотрудник компании должен иметь доступ ко всей сети, каждый хаб должен быть достижим от любого другого хаба — возможно, через несколько промежуточных хабов. Требуется сделать такой план сети (соединения хабов), чтобы суммарная длина кабелей была как можно меньше. Есть еще одна проблема — не каждую пару хабов можно непосредственно соединять по причине проблем совместимости и геометрических ограничений здания. Андрей снабдит вас всей необходимой информацией о возможных соединениях хабов.

Вы должны помочь Андрею найти способ соединения хабов, который удовлетворит всем указанным выше условиям. Ввод:

Первая строка входного файла содержит два целых числа: N -количество хабов в сети ($2 \le N \le 1000$) и M -количество возможных соединений хабов ($1 \le M \le 15000$). Все хабы пронумерованы от 1 до N. Следующие M строк содержат информацию о возможных соединениях — номера двух хабов, которые могут быть соединены, и длина кабеля, который требуется, чтобы соединить их. Эта длина — натуральное число, не превышающее 10^6 . Существует не более одного способа соединить каждую пару хабов. Хаб не может быть присоединен сам к себе. Всегда существует хотя бы один способ соединить все хабы. Bывод:

Сначала выведите сумму длин использованных кабелей в вашем плане. Затем выведите свой план: сначала выведите P — количество кабелей, которые вы использовали, затем выведите P пар целых чисел — номера хабов, непосредственно соединенных в вашем плане кабелями.

Пример:

input.txt	output.txt
4 6	3
1 2 1	3
1 3 1	1 2
1 4 2	1 3
2 3 1	3 4
3 4 1	
2 4 1	

D. Кратчайший путь

Дан неориентированный граф. Для него вам необходимо найти кратчайшее расстояние от одной заданной вершины до другой.

Входные данные

В первой строке входного файла три числа: N, M, S и F ($1 \le N \le 100$; $1 \le S$, F $\le N$), где N - количество вершин графа, M – количество ребер, S - начальная вершина, а F - конечная. В следующих M строках заданы по 3 числа, номера вершин и расстояние между ними.

Выходные данные

В первой строке вывести искомое расстояние или -1, если пути между указанными вершинами не существует. Во второй строке маршрут.

Пример

		Input.txt	Output.txt
4	4 1	1 4	10
1	2 6	6	1 3 2 4
1	3 2	2	
2	3 3	3	
2	4 5	5	

Е. Диаметр дерева. Дано дерево из n вершин (n≤100000). Найти диаметр дерева.

Формат входных данных

В первой строке заданы количество вершин и количество ребер. Со второй строки заданы ребра дерева.

Формат выходных данных

В первой строке вывести диаметр дерева.

Пример

FF	
input.txt	output.txt
4 3	3
4 1	
1 3	
2 4	

F. Центр дерева. Дано дерево из n вершин (n≤100000). Найти центр дерева.

Формат входных данных

В первой строке заданы количество вершин и количество ребер. Со второй строки заданы ребра дерева.

Формат выходных данных

В первой строке вывести количество вершин входящих в центр, во второй номера вершин входящих в центр дерева.

Пример

input.txt	output.txt
7 6	1
1 2	1
1 3	

2 6		
2 7		
3 4		
3 5		
4 3	2	
4 1	1 4	
1 3		
2 4		