

Skill Tuning in Pretrained Skill-Conditioned Policies

Rob Harries

CS 224R Deep RL

Environment

Mujoco Walker_Walk
Two-Dimensional Locomotion

Rewarded for:

- Specific Forward Velocity
- Upright and Elevated Torso

$$r = \left(\frac{3}{4}r_{\text{torso_elevated}} + \frac{1}{4}r_{\text{torso_upright}}\right)\left(\frac{1}{6} + \frac{5}{6}r_{\text{forward_vel}}\right)$$

Reward-Free Pretraining

Contrastive Intrinsic Control (2022)

Maps randomized skill vectors to diverse, predictable trajectories

Maximizes Mutual Info between skill, trajectory

Maximizes dissimilarity between different skills

 $z\in\mathbb{R}^{64}$ High-dimensional 2,000,000 training steps continuous skill space

Task-Specific Skill Initialization

- Use first 4,000 steps in task to test return on
 40 different skills spread along diagonal:
 z = <0, 0, ..., 0>
 z = <1, 1, ..., 1>
- Default method selects and freezes the best performing skill, then finetunes the actor
- In Skill Vocab Tuning, top K skills are chosen as initialization, then further trained

Can pretrained policies solve tasks without finetuning?

<u>Default:</u> Select a fixed skill vector and finetune skill-conditioned policy.

Option A: Freeze policy, tune input skill vector.

Option B: Freeze policy, tune multiple skill vectors alongside a skill-selection policy.

Results

Option A: Single Skill Tuning cannot solve task.

Option B: Skill Vocabulary Tuning can solve task, albeit inefficiently.

Hybrid: Simultaneous skill + policy tuning yields slight efficiency improvements (using 8 skills).

DDPG Actor Loss Function Single Skill

$$\mathcal{L}_{\text{actor}}(\theta, z) = \mathbb{E}_s \left[-Q^{\phi} \left(s, \pi^{\theta}(s, z) \right) \right]$$

Multiple Skills

$$\mathcal{L}_{actor}(\theta, z, \gamma) = \mathbb{E}_{s} \left[-\sum_{i=1}^{n} \pi^{\gamma}(i \mid s) Q^{\phi}(s, \pi^{\theta}(s, z_{i})) \right] + \lambda \mathbb{E}_{s} \left[\mathcal{H}(\pi^{\gamma}(\cdot \mid s)) \right]$$