SISTEM OPERASI

Pertemuan 4 – Thread, Symmetric Multiprocessing, dan Microkernel

Menu

- Definisi Thread
- Hubungan Proses dan Thread
- Multithreading
- Definisi Symmetric Multiprocessing
- Organisasi SMP
- Microkernel

Definisi Thread

- Sebuah thread adalah bagian dari proses, sehingga jika ada proses yang berjalan setidaknya ada satu thread di dalamnya.
- Thread dapat mengakses langsung data segmen dari proses utama nya.
- Thread dapat berkomunikasi dengan thread lain tanpa harus menggunakan Inter-process communication

Dalam Thread

- Status eksekusi (running, ready, dll.)
- Konteks thread tersimpan saat tidak berjalan (not running)
- Stack eksekusi
- Beberapa storage statis per-thread bagi variabel lokal Akses terhadap memory & sumber daya dari prosesnya (semua thread dari proses saling berbagi pakai)

Jenis Thread

- User Level Thread (ULT)
- Kernel level Thread (KLT) juga disebut:
 - kernel-supported threads
 - •lightweight processes.

Keuntungan Thread

- Pembuatan thread baru lebih cepat dari pada proses baru
- Penghentian thread lebih singkat daripada penghentian proses
- Switching antara dua thread lebih singkat daripada switching antar proses
- Thread dapat berkomunikasi satu sama lain
- Tanpa memanggil kernel

Kernel-Level Thread

- Kernel memelihara informasi konteks bagi proses & thread
 - Manajemen thread dilakukan oleh kernel, bukan aplikasi
- Scheduling dilakukan pada basis thread
- Windows menggunakan pendekatan ini

Keuntungan KLT

- Kernel dapat secara simultan menjadwal banyak thread dari proses yang sama pada banyak processor.
- Jika satu thread dalam suatu proses diblock, kernel dapat menjadwal thread yang lain dari proses yang sama.
- Rutin kernel sendiri dapat dibuat multithread.

Kerugian KLT

 Transfer kontrol dari satu thread ke lainnya di dalam proses yang sama mengharuskan switch modus ke kernel

User Level Thread

Semua manajemen thread dikerjakan oleh aplikasi

Kernel is not aware of keberadaan thread.

Hubungan ULT dan Proses

Process & Thread

- Thread merupakan bagian dari Proses, bisa disimpulkan tidak ada Proses yang berjalan berarti tidak ada Thread
- Proses dapat memunculkan banyak thread jika diperlukan, selayaknya proses induk membuat proses anak.
- Jika proses dikendalikan oleh sistem operasi, thread dikendalikan oleh programmer.
- Thread dapat digunakan untuk aplikasi untuk memroses tugastugas tertentu.

Thread dalam Sistem Single User

- Kerja foreground & background
- Pemrosesan asynchronous
- Kecepatan eksekusi
- Struktur program modular

Multi Threading dalam Sistem Operasi

 Pada dasarnya Sistem Operasi mendukung banyak konkurensi dalam proses tunggal.

Pendekatan Thread Tunggal

- •Dalam sistem operasi Ms. DOS, satu proses hanya dibatasi satu thread saja. Di karenakan oleh kemampuan saat itu yang belum optimal seperti sekarang
- •Sedangkan sistem operasi UNIX, UNIX-like mampu mendukung banyak proses dari pengguna. Namun hanya terdapat satu thread per proses

Pendekatan Multithreading

- Program yang dibuat dengan menggunakan bahasa Java memiliki kelebihan dengan multithreading. DI karenakan program/aplikasi dengan bahasa Java tidak dijalankan langsung ke dalam sistem. Melainkan masuk ke dalam ruang virtual dari Java itu sendiri
- Sehingga Java memungkinkan sebuah proses untuk memiliki banyak thread. Yang kini disebut dengan Multithreading.

Lanjutan

 Dan itulah kemudian kemampuan multithreading kembali dikembangkan oleh sistem-sistem operasi modern untuk melakukan multithreading dalam satu proses

Symmetric Multi Processing

Secara tradisional, komputer ditampilkan sebagai mesin sequential.

- Processor mengeksekusi satu demi satu instruksi (satu pada satu waktu) secara urut (sequence)
- Setiap instruksi adalah suatu urutan operasi Dua pendekatan popular untuk penyediaan parallelism
- Symmetric MultiProcessors (SMP)

Lanjutan

- Kernel dapat berjalan pada processor manapun
 - Memungkinkan bagian-bagian kernel berjalan secara paralel
- Biasanya setiap processor melakukan selfscheduling dari pool proses atau thread yang tersedia

Arsitektur SMP

Kategori Sistem Komputer

Single Instruction Single Data (SISD) stream

- Processor tunggal mengeksekusi stream intruksi tunggal untuk beroperasi pada data yang disimpan dalam memory tunggal Single Instruction Multiple Data (SIMD) stream
- Setiap instruksi dieksekusi pada himpunan data berbeda oleh processor berbeda

Lanjutan

- Multiple Instruction Single Data (MISD) stream (Tidak pernah diimplementasikan)
- Serangkaian data ditransmisikan ke suatu himpunan processor, masing-masing mengeksekusi rangkaian instruksi berbeda
- Multiple Instruction Multiple Data (MIMD)
- Sekumpulan processor secara simultan mengeksekusi rangkaian instruksi berbeda pada kumpulan data berbeda

Arsitektur

Rancangan SO Multi Processor

Isu rancangan utama mencakup

- Proses atau thread concurrent simultan
- Scheduling (penjadwalan)
- Synchronization (sinkronisasi)
- Manajemen Memory
- Reliability dan Fault Tolerance

Dukungan SMP Windows

Thread dapat berjalan pada processor apapun

Tetapi aplikasi dapat membatasi persamaan

Pertalian soft

- Dispatcher mencoba untuk melewatkan suatu thread ready ke processor yang sama saat berjalan terakhir.
- Ini membantu reuse data masih dalam yang cache memory processor dari eksekusi thread sebelumnya.

Pertalian hard

Suatu aplikasi membatasi thread untuk processor tertentu

Microkernel

- Microkernel merupakan suatu inti SO kecil yang menyediakan fondasi bagi ekstensi-ekstensi modular.
- Pertanyaan besar: seberapa kecil harusnya suatu kernel agar dapat disebut sebagai microkernel
 - Haruskah driver ada dalam user space?
- Dalam teori, pendekatan ini memberikan fleksibilitas & modularitas derajat tinggi.

Keuntungan Microkernel

- Interface seragam pada request dibuat oleh suatu proses.
- Extensibility
- Flexibility
- Portability
- Reliability
- Dukungan sistem terdistribusi
- Sistem operasi berorientasi obyek

Kuis Pengganti Kelas

- 1. Apa itu Sistem Operasi?
- 2. Jelaskan Fungsi dari Sistem Operasi!
- 3. Jelaskan Apa Itu Proses?
- 4. Jelaskan Peran Process Control Block!
- 5. Buatlah Ilustrasi dari
 - Model Proses Dua Status
 - Model Proses Lima Status