5. For $a, b, c, d \in \mathbb{R}$,

(i) Proposition: If a < b and c < d, then a + c < b + d.

Proof. $a < b \Longrightarrow a + c < b + c$ and $c < d \Longrightarrow b + c < b + d$. Since a + c < b + d, it follows that a + c < b + d if a < b and c < d.

(ii) Proposition: If a < b then -b < -a.

 $Proof. \ a < b \Longrightarrow \Big(a - (a + b) < b - (a + b)\Big) \Longrightarrow \Big(a - a - b < b - a - b\Big) \Longrightarrow -b < -a.$

(iii) Proposition: If a < b and c > d, then a - c < b - d.

Proof. $a < b \Longrightarrow (a - c < b - c)$ and $c > d \Longrightarrow (-c < -d) \Longrightarrow (b - c < b - d)$. Since a - c < b - d, it follows that a - c < b - d for a < b and c > d.

(iv) Proposition: If a < b and c > 0, then ac < bc

Proof. $a < b \Longrightarrow a + a < b + b$. Hence $\sum_{i=1}^{c} a < \sum_{i=1}^{c} b$, meaning ac < bc.

(v) Proposition: If a < b and c < 0, then ac > bc

 $Proof.\ a < b \Longrightarrow \left(\sum_{i=1}^{c} a < \sum_{i=1}^{c} b\right) \Longrightarrow \left(-\sum_{i=1}^{|c|} a > -\sum_{i=1}^{|c|} b\right) \Longrightarrow -|c|a> -|c|b. \text{ Since } c = -|a|, \text{ it follows that } ac>bc.$

(vi) Proposition: If a > 1, then $a^2 > a$

Proof. $a > 1 > 0 \Longrightarrow a * a > 1 * a \Longrightarrow a^2 > a$.

(vii) Proposition: If 0 < a < 1, then $a^2 < a$.

Proof. $0 < a < 1 \Longrightarrow a = \frac{\pm x}{+y}$ for $x, y \in \mathbb{N}$ where x < y. Observe that

$$x < y \Longrightarrow x^{2} < xy$$

$$\Longrightarrow \frac{x^{2}}{y^{2}} < \frac{x}{y}$$

$$\Longrightarrow \frac{\pm x}{\pm y} * \frac{\pm x}{\pm y} < \frac{\pm x}{\pm y}$$

$$\Longrightarrow a^{2} < a.$$

(viii) Proposition: If $0 \le a \le b$ and $0 \le c \le d$, then $ac \le bd$.

Proof. Observe that $(0 \le c) \land (0 \le a < b) \implies (0 \le ac \le bc)$, and $(0 < b) \land (0 \le c < d) \implies (0 \le bc < bd)$. Thus $(0 \le ac \le bc < bd) \implies (ac < bd)$.

(ix) Proposition: If $0 \le a < b$, then $a^2 < b^2$.

Proof. Observe that $(0 \le a < b) \Longrightarrow (a * a < b * b) \Longrightarrow (a^2 < b^2)$.

(x) Proposition: If $a, b \ge 0$ and $a^2 < b^2$, then a < b.

Proof. Note that $a \ge 0 \Longrightarrow a = \sqrt{a^2}$, and similarly $b = \sqrt{b^2}$. Thus $a^2 < b^2 \Longrightarrow \sqrt{a^2} < \sqrt{b^2} \Longrightarrow a < b$.