

ESCUELA SUPERIOR DE COMPUTO

PRIMER EXAMEN DEPARTAMENTAL (Semestre 22-1) TEORÍA DE COMUNICACIONES Y SEÑALES PROF. IVAN DIAZ T.

NOMBRE: Meza Vargas Brandon David

GRUPO: 3CM18

INSTRUCCIONES.

- **→** Conteste de forma correcta los siguientes problemas.
- + Cada ejercicio deberá contener el desarrollo matemático para que el resultado sea válido.
- + Enviar las fotos de las evidencias de los ejercicios en tiempo y ordenados a la plataforma de Google Classroom.
- **→** Asegurarse de enviarlos y dar clic en "ENTREGAR".

SECCIÓN PREGUNTAS

PREGUNTA 1 (3 puntos). Escriba la letra que corresponda a su respuesta.

A. Una señal periódica tiene un espectro de tipo:	(J) Señal continua
B. Señal de alta frecuencia que se usa para el proceso de modulación.	(M) discreta
C. Es cuando la señal pierde energía durante su paso por el canal	(L) Circuito Filtro
D. Proceso que transfiere la información desde un punto a otro.	(N) Serie de Fourier
E. Ventaja de la modulación	() Interferencia
F. Si una señal en el tiempo tiene simetría impar, entonces	() Amplificación
G. Lazo de unión entre el transmisor y receptor en un sistema de comunicaciones.	(B) Portadora
H. Sirve para obtener el contenido de frecuencias de una señal.	(E) Multicanalización
I. Señal eléctrica no deseada que se produce por agentes internos.	(D) Comunicación
J. Es la señal que puede existir para cualquier valor de tiempo	() Transformada de Fourier
K. Señal que porta la información a transmitirse.	(I) Ruido
L. Circuito que limpia una señal de impurezas.	(G) Canal de transmisión
M. Aquella señal que sólo existe para valores particulares del tiempo es	(F) el conjunto $b_n=0$
N. Es la representación de una señal en tiempo con un conjunto completo de funciones ortogonales.	(O) discreto
O. Una señal no periódica se caracteriza porque su espectro en frecuencias es del tipo:	(C) Atenuación

SECCIÓN PROBLEMAS

Problema 1 (1 punto). Dibuje el diagrama a bloques de un sistema básico de comunicaciones, indicando las operaciones que realiza cada bloque.

Problema 2 (6 Puntos). Encuentre la serie trigonométrica de Fourier de la siguiente señal.

NOTA: Considere que la parte oscilatoria de la señal es de tipo senoidal o cosenoidal.

-6-2, -8 Ct 6-4 f-2, MITES Wo = 20 = 七 como fais es por 0.86612 |bn=0 in = 2 (1-t-2) cos (nwot) dt + (1+2) cos (nwot) dt 4 (-2 son (2) (cos (nwot))) 10= 12]-tros(MIE) dt - 2 [cos(ne)) t+] tros(ne)) dt -] ros(ne)) t un = 1 [- [哲] + cos(智) - 2 [sen(幣)] + (sen(幣)) + (sen(ಌ)) + (sen(-2 Sen(+90) = 12 - [12(4 Sen (09)) + 144(05(09)) - [-9(Sen (-1902)) + 144 (05(-102)) } -2 {[125en(3)]-[125en(-12)]} + [16 sen (13) + 144 (15 (3)] - [48 sen (13) + 144 (25 (3)] - 2 [12 sen (13)] - [usen(19)] - 1 (usen(19) - 144 (d) + 96 sen (-19) - 144 (c) (-19) -2 (12 SPAN(CE) + 2 [12 SON(-1/2)] + 46 SEN(DE) + 144 CS(CE) 185 SAN(CE) -MH (95(10) - 2 [12 5H((12))] + 2 [12 5H((12))] (25) - 286 cos(3) tac soul-20) - 144102 (- 123) 14 (12 20 (-12)) 10 con (1972) 124 5 ch (1900) 100 con (100