PROJETO 2

Este projeto estende o projeto anterior. São acrescentados novos comandos e novas consultas.

A colonização espacial já está em estágio avançado. O ser humano habita diversos planetas da Via Láctea. Recentemente, Elon Musk XVII inaugurou a primeira colônia, batizada de New Grimesland (NG), em um aprazível planeta em Andrômeda. Infelizmente, descobriu-se que o planeta é ocasionalmente atingido por meteoros que não são completamente desintegrados na entrada da atmosfera. Para agravar a situação, os meteoritos residuais são muito radioativos. Cada meteorito produz de 1 a 25mSv no momento do impacto.

A colônia possui várias edificações. Uma parede reduz em 20% a radiação. Por isso, quando uma chuva de meteoros é detectada antecipadamente, um alerta é emitido e os habitantes tentam se abrigar na edificação mais próxima.

Sua tarefa é identificar, para cada indivíduo, a edificação mais próxima e o eventual nível de exposição à radiação. A tabela abaixo mostra o efeito de diferentes níveis de exposição. Ela determina as classes de exposição.

Exceder a taxa de doses de radiação e efeitos

(adaptado de: http://pt.nextews.com/8893167c/)

Dose única (mSv)	O que acontece com o corpo	
Até 25 (00ffff)	Alterações no estado de saúde não são observadas	
25-50 (00ff00)	Reduziu o número total de linfócitos (imunidade reduzida)	
50-100 (ff00ff)	Uma redução significativa nos linfócitos, sinais de fraqueza,	
	náuseas, vômitos	
100-250 (0000ff)	Em 5% dos casos ser fatal, mais observado chamado ressaca	
	radiação (sintomas semelhantes a ressaca álcool)	
250-500 (800080)	Alterações no sangue, esterilização masculina temporária, 50%	
	de mortalidade dentro de 30 dias após a exposição	
500-1000 (000080)	Uma dose letal de radiação, não de ser tratada	
1000-8000 (ff0000)	Coma e morte dentro de 5-30 minutos	
mais de 8000 (000000)	Morte instantânea a partir de um feixe	

ENTRADA DE DADOS

A entrada de dados, via de regra, ocorrerá por meio de um ou mais arquivos. Estes arquivos estarão sob um diretório, referenciado por BED neste texto.¹

SAIDA DE DADOS

Os dados produzidos serão mostrados na saída padrão e/ou em diversos arquivos-texto. Alguns resultados serão gráficos no formato SVG. Os arquivos de saída serão colocados sob um diretório, referenciado por BSD neste texto.²

DESCRIÇÃO

A entrada do algoritmo será basicamente um conjunto de retângulos e círculos dispostos numa região do plano cartesiano e algumas consultas, por exemplo, que indagam se dois retângulos se sobrepõem. Os comandos estão contidos num arquivo .geo e as consultas num arquivo .gry.

Considere a Figura 1. Cada retângulo é definido por uma coordenada âncora (veja ponto roxo na figura) e por suas dimensões. A coordenada âncora do retângulo é seu canto inferior esquerdo³ e suas dimensões são sua largura (w) e sua altura (h). Cada retângulo é identificado por um código alfa-numérico.

Figura 1: Retângulos no plano

As tabelas abaixo mostram os formatos dos arquivos de entrada (.geo e .qry). Os arquivos de entrada são compostos, basicamente, por conjunto de comandos (um por linha).

¹ Indicado pela opção -e.

² Indicado pela opção -o.

³ Note que o plano cartesiano está desenhado "de ponta-cabeça" em relação à representação usual.

Cada comando tem um certo número de parâmetros, separados por um espaço. Os parâmetros mais comuns são:

- id: um identificador alfa-númerico. Por exemplo, r18, retang-0.1.2.3, etc.
- w, h: números reais. Dimensões do retângulo.
- x, y: números reais. Coordenada (x,y).
- cor: string. Cor válida dentro do padrão SVG. Em lugar da cor, pode ser colocado a caractere @, indicando que não deve ser usada nenhuma cor.

comando	parâmetros	descrição	
nx	n	Número aproximado de retangulos	
cc	cor	Cor para o contorno dos retângulo	
ср	cor	Cor preenchimento dos retângulos	
bc	cor	Cor do contorno dos círculos	
pc	cor	Cor do preenchimenhto dos círculos	
r	id x y w h	Desenhar retângulo: w é a largura do retângulo e h, a altura	
c id x y r		Desenhar círculo com centro em (x,y) e raio r	
comandos .geo			

Abaixo, um exemplo de um arquivo geo, com sua respectiva representação pictórica. Vamos supor que o nome do arquivo seja a1.geo.

As consultas estão descritas na tabela abaixo. A primeira coluna da tabela apresenta códigos que indicam o efeito esperado da consulta:

D: (delição): Dados são removidos de estruturas de dados.

⁴ http://www.december.com/html/spec/colorsvg.html. https://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html

- U (update): Dados existentes são modificados
- I (inserção): Novo dado é inserido
- C (consulta): estrutura de dados é consultada, mas não modificada
- E (exposição): algum elemento gráfico é colocado na saída svg, mas não é armazenado .

Note que muitas consultas são semelhantes. Espera-se que as partes comuns sejam fatoradas e reaproveitadas.

	comando	parâmetros	descrição	
D	dpi	х у	Remover todos os retângulos para os quais o ponto (x,y) é interno. TXT: reportar os identificadores dos retângulos removidos. SVG: retângulo removido não deve aparecer	
D	dr	id	Semelhante ao dpi, mas remove retângulos que estejam inteiramente dentro do retângulo de identificador id. Não remove o triângulo id.	
E	fg	хуг	Pessoas que estão dentro da região delimitada pela circunferência com centro em (x,y) e raio r abrigam-se na edificação mais próxima. Calcular a distância do centro de massa do retângulo ao centro do círculo. TXT: para cada edificação (colocar id do retângulo), listar as pessoas abrigadas (os identificadores dos círculos) SGV: colocar círculo em cinza claro na posição original, colocar linha tracejada da posição original até dentro da edificação (retângulo) mais próximo, mover (animação) o círculo da posição inicial até a posição final. Escrever o número de abrigados na edificação	
U E D	im	хуѕ	Meteoro com radiação de s mSv impactou o ponto (x,y). Calcular classe de exposição à radiação e preencher respectivo círculo com a cor da tabela. As pessoas com morte instantânea devem ser removidas (representadas por um círculo preto e com cruz branca). A exposição é cumulativa. SVG: colocar circulo cinza escuro na coordenada (x,y). O raio deve ser proporcional à radiação s. Pintar círculo referente à pessoa conforme nível de exposição. Assinalar mortes instantâneas como descrito acima. TXT: listar pessoas (id do círculo) das pessoas com morte instantânea e morte iminente.	
D	t30		Transcorreram 30 minutos. As pessoas da classe de morte iminente morreram. SVG e TXT: semelhante à morte instantânea.	

CE	nve	ху	Nivel de exposição corrente no ponto (x,y). SGV: colocar um pequeno quadrado com bordas arredondadas, contendo o nível de exposição corrente da região onde está o ponto e pintá-lo com a cor correspondente à classe de exposição. TXT: reportar o nivel	
	comandos de consulta (.qry)			

Exemplo da consulta fg

IMPLEMENTAÇÃO

Uma **árvore k-d** (abreviação para a árvore k-dimensional) é uma estrutura de dados de particionamento do espaço para a organização de pontos em um k-dimensional espaço. Árvores k-d são estruturas úteis para uma série de aplicações, tais como pesquisas envolvendo pesquisa multidimensional de chaves (e.g. busca de abrangência e busca do vizinho mais próximo). Árvores k-d são um caso especial de árvores de particionamento binário de espaço.

Uma árvore k-d é uma árvore binária em que cada nó é um ponto k-dimensional. Cada nó não-folha pode ser considerado implicitamente como um gerador de um hiperplano que divide o espaço em duas partes, conhecido como semiespaço. Os pontos à esquerda do hiperplano são representados pela subárvore esquerda desse nó e pontos à direita do hiperplano são representados pela subárvore direita. A direção do hiperplano é escolhida da seguinte maneira: cada nó na árvore é associado a uma das k-dimensões, com o hiperplano perpendicular a esse eixo dimensional. Assim, por exemplo, se para uma determinada operação de split o eixo "x" é escolhido, todos os

pontos da subárvore com um valor "x" menor que o nó irão aparecer na subárvore esquerda e todos os pontos com um valor "x" maior vão estar na subárvore direita. Nesse caso, o hiperplano seria definido pelo valor de x do ponto, e o seu normal seria a unidade do eixo x.

Copiado da Wikipedia: https://pt.wikipedia.org/wiki/%C3%81rvore_k-d

- Armazenar retângulos, círculos em árvores-Kd
- Armazenar segmentos ativos em árvores binária busca
- Armazenar polígonos em um dos dois tipos de árvores
 - o Dica: usar mínimo retângulo envolvente
- Usar o algoritmo **qsort** da biblioteca do C
- Dica: Para determinar o nível de exposição de um ponto, verificar a quantos polígonos ele é interno.
- Usar o algoritmo de cálculo de região de visibilidade para determinar a área de máxima exposição
- Usar a implementação dinâmica duplamente encadeada da lista.
- Quando fizer busca em uma região, só descer em sub-árvores "promissoras".
- É expressamente proibido declarar structs em arquivos .h.
- Coloque um comentário nos arquivos txt e svg informando o nome do aluno.

Atenuação da radiação (Sugestão):5

A figura abaixo mostra um meteorito caído. Note que os segmentos foram "cercados" por um retângulo (em laranja). Se traçarmos semirretas do meteorito passando pelas extremidades de um segmento e determinamos as intersecções com o retângulo envolvente, obtemos um polígono convexo que corresponde à região de atenuação daquela parede (veja, por exemplo, o polígono P1).

⁵ Mateus, obrigado pela inspiração.

A sugestão é, para cada meteorito, criar uma árvore dos polígonos relativos às "sombras" provocadas por cada parede. Dado um ponto, para determinar a atenuação total basta saber a quantos destes poligonos ele é interno. Por exemplo, o ponto **i** é interno apenas ao polígono P2, portanto a radiação do meteorito **m** é atenuada por uma parede (-20%). Já o ponto **j** é interno a dois polígonos (P3 e P5) e, assim, sofre duas atenuações.

Note que o polígono que determina a região de visibilidade a partir do ponto **m** possui incidência máxima de radiação.

Cálculo da Incidência Total

A incidência total de radiação em um ponto é a soma simples da incidência de cada meteorito. Para cada meteorito é necessário determinar se ele está na região de visibilidade do meteorito (incidência máxima) ou se ele está na sombra do meteorito (cálculo da atenuação).

Assim, uma sugestão poderia ser:

- como já mencionado, manter uma árvore dos polígonos de sombras para cada meteorito.
 - o ponto interno a polígono: atenuação (combinação de atenuações diminui radiação)
- manter outra árvore com os polígonos das regiões de visibilidade
 - ponto interno à polígono: intensificação. Somar a radiação de cada polígono de visibilidade para o qual o ponto é interno
- Somar a contribuição de cada árvore

ORGANIZAÇÃO DA ENTREGA

O trabalho deve ser submetido no formato **ZIP**, cujo nome deve ser curto, mas suficiente para identificar o aluno ou a equipe. Este arquivo deve estar organizado como descrito à frente.

PROCESSO DE COMPILAÇÃO E TESTES DO TRABALHO

Organização do ZIP a ser entregue

A organização do zip a ser entregue pelo aluno deve ser a seguinte:

<pre>[abreviatura-nome]</pre>	Por exemplo, <u>josers</u> .		
LEIA-ME.txt	colocar matrícula e o nome do aluno. Atenção: O número da matricula de estar no início da primeira linha do arquivo. Só colocar os números; não colocar qualquer pontuação.		
*	Outros arquivos podem ser solicitados.		
/src	(arquivos-fonte)		
makefile	deve ter target para a geração do arquivo objeto de cada módulo e o target progr que produzirá o executável de mesmo nome dentro do mesmo diretório src. Os fontes devem ser compilados com a opção -fstack-protector-all. * adotamos o padrão C99. Usar a opção -std=c99.		
*.h e *.c	Atenção: não devem existir outros arquivos além dos arquivos fontes e do makefile		

Organização do diretório para a compilação e correção dos trabalhos (no computador do professor):

[HOME DIR]

*.py	scripts para compilar e executar		
\t	diretório contendo os arquivos de testes		
*.geo *.qry	arquivos de consultas, em geral, distribuídos em alguns outros sub- diretórios. Por exemplo, as consultas relativas a um arquivo a1.geo, normalmente, estarão no subdiretório a1.		
\alunos	(contém um diretório para cada aluno)		
\abrnome	diretório pela expansão do arquivo submetido (p.e., josers)		
	outros subdiretórios para os arquivos de saída informados na opção		

Os passos para correção serão os seguintes:

⁶ Por exemplo, josers.zip (se aluno se chamar José Roberto da Silva), josers-mariabc.zip (para uma equipe com dois alunos. Evite usar maiúsculas, caracteres acentuados ou especiais.

- 1. O arquivo .zip será descomprimido dentro do diretório alunos, conforme mostrado acima
- 2. O makefile provido pelo aluno será usado para compilar os módulos e produzir o executável. Os fontes serão compilados com o compilador gcc em um máquina virtual Linux. Os executáveis devem ser produzidos no mesmo diretório dos arquivos fontes O professor usará o GNU Make. Serão executadas (a partir dos scripts) o seguinte comando:

make progr

3. O programa será executado automaticamente várias vezes: uma vez para cada arquivo de testes e o resultado produzido será inspecionado visualmente pelo professor. Cada execução produzirá (pelo menos) um arquivo .svg diferente dentro do diretório informado na opção -o. Possivelmente serão produzidos outros arquivos .svg e .txt.

RESUMO DOS PARÂMETROS DO PROGRAMA

Parâmetro / argumento	Opcional	Descrição
-e path	S	Diretório-base de entrada (BED)
-f <i>arq</i> .geo	N	Arquivo com a descrição da cidade. Este arquivo deve estar sob o diretório BED .
-o path	N	Diretório-base de saída (BSD)
-q arqcons.qry	S	Arquivo com consultas. Este arquivo deve estar sob o diretório BED.
-ib	S	Inicia coleta de dados de desempenho
-cb	S	Continua a coletar dados
-fb arq titulo	S	Finaliza a coleta, produz no diretório BED o arquivo arq.svg contendo o gráfico com o título especificado
-ldd	S	(default) Usar lista duplamente encadeada com alocação dinâmica
-lse	S	Usar lista simplesmente encadeada com alocação estática

RESUMO DOS ARQUIVOS PRODUZIDOS

-f	-q	comando com sufixo	arquivos
arq .geo			arq.svg
arq.geo	<i>arqcons</i> .qry		arq.svg arq-arqcons.svg arq-arqcons.txt
arq.geo	<i>arqcons</i> .qry	sufx	arq.svg arq-arqcons.svg arq-arqcons.txt arq-arqcons-sufx.[svg txt] ⁷

ATENÇÃO:

- * os fontes devem ser compilados com a opção -fstack-protector-all.
- * adotamos o padrão C99. Usar a opção -std=c99.

APENDICE

https://www.gnu.org/software/make/manual/make.html
http://opensourceforu.com/2012/06/gnu-make-in-detail-for-beginners/

^{*} compilar mantendo a tabela de símbolos do programa (opção -g).

⁷ Podem ser produzidos os respectivos arquivos .svg e/ou .txt, dependendo da especificação do comando.