Príprava a predspracovanie dát		Modelovanie	
Normalizácia pomocou Min Max Scaleru: from sklearn preprocessing import MinMaxScaler		Prediktívne	
Normalizácia pomocou Min Max Scaleru: from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() data['atribut'] = pd.DataFrame(scaler.fit_transform(pd.DataFrame(data['atribut'].)), columns=['fare']) Transformácia kategorického atribútu na numerický pomocou Label Encoder: from sklearn.preprocessing import LabelEncoder data['atribut'] = LabelEncoder().fit_transform(data['atribut']) Transformácia ordinálnych kategorických atribútov na numerické: data['atribut'] = data['atribut'].map({Hodnota1: 0, Hodnota2: 1, Hodnota3: 2}) Binarizácia kategorického atribútu (One Hot Encoding): data = pd.get_dummies(data, columns=[atribut']) Rozdelenie na trénovaciu a testovaciu množinu X_data = data.drop("cieľový atribút", axis=1) y_data = data["cieľový atribút"] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.3, random_state=123)		Klasifikácia K-NN: from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier() model.fit(X_train, y_train) Stromy: from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() model.fit(X_train, y_train) Random Forests: from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model.fit(X, Y) Naive Bayes: from sklearn.naive_bayes import GaussianNB model = GaussianNB() model.fit(X_train, y_train)	Lineárna regresia: from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, y_train) K-NN: from sklearn.neighbors import KNeighborsRegressor model = KNeighborsRegressor() model.fit(X_train, y_train) Stromy: from sklearn.tree import DecisionTreeRegressor model = DecisionTreeRegressor() model.fit(X_train, y_train)
		Support Vector Machines from sklearn.svm import SVC model = SVC() model.fit(X_train, y_train)	
Vyhodnotenie modelov		· - · · ·	
Klasifikácia	Regresia	Popisné	fram aldana alustas impart DDCCAN
y_model = model.predict(X_test) from sklearn.metrics import accuracy_score, precision_score, recall_score accuracy_score(y_test, y_model) precision_score(y_test, y_model)	<pre>y_model = model.predict(X_test) summary_df = pd.DataFrame() summary_df['target'] = y_test summary_df['prediction'] = y_model print(summary_df)</pre>	K-Means from sklearn.cluster import KMeans model = KMeans(n_clusters=4) model.fit(X_train)	from sklearn.cluster import DBSCAN dbscan = DBSCAN(eps=100) labels = dbscan.fit_predict(X_train)
recall_score(y_test, y_model)	from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score	Ladenie parametrov modelu	
from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, y_model)	mae = mean_absolute_error(y_test, y_model) mse = mean_squared_error(y_test, y_model) r2 = r2_score(y_test, y_model)	Nastavenie rozsahu parametrov parameter_range = list(range(1, 50)) param_grid = dict(<názov modelu="" parametra="">=parameter_range)</názov>	
Metriky pre zhlukovanie		Použitie Grid Search s krížovou validáciou pre odhad kvality modelu	
labels = model.predict(X_train) print(model.inertia_) print(euclidean_distances(model.cluster_centers_)) print(model.labels_) cluster_0 = np.where(model.labels_==0) data_cluster_0.describe()	from sklearn.metrics import silhouette_score labels = model.predict(X_train) print(silhouette_score(X_train, labels))	from sklearn.model_selection import GridSearchCV grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=10, scoring='accuracy') grid.fit(X_train, y_train) Nájdenie najlepšieho modelu print(grid.best_params_) print(grid.best_score_)	