Skript Mathe 2

25. April 2018

Beweis:

- 1. Sei $(a_n) \nearrow$ und nach oben beschränkt und seien $a = \sup\{a_n | n \in \mathbb{N}\}$ und $\epsilon > 0$. $\Rightarrow a_n \le a \quad \forall n \in \mathbb{N}$ a kleinste obere Schranke $\Rightarrow a - \epsilon$ keine obere Schranke. $\Rightarrow \exists N \in \mathbb{N} : a - \epsilon < a_N \le a$ $\Rightarrow |a_n - a| = a - a_n \le a - a_N$ $\Rightarrow a_n \to a$ 2. analog \square

0.1 Bernoulli-Ungleichung

 Im folgenden Beispiel wird die Bernoulli-Ungleichung benötigt:

$$(1+h)^n \ge 1 + nh \quad \forall h \ge -1 \forall n \in \mathbb{N}$$

Beweis mit vollständiger Induktion

0.2 Beispiel: Folgen mit Grenzwert e

• $a_n = (1 + \frac{1}{n})^n = (1 + \frac{n+1}{n})$ ist monoton.

Zeigen dazu: $a_n \ge a_{n-1} \left(\Leftrightarrow \frac{a_n}{a_{n-1}} \ge 1 \right)$

$$\frac{a_n}{a_{n-1}} = \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^{n-1}$$

$$= \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^n \cdot \frac{n}{n-1} = \left(\frac{n^2-1}{n^2}\right)^n \cdot \frac{n}{n-1}$$

$$= \left(1 - \frac{1}{n^2}\right)^n \left(\frac{n}{n-1}\right) \underset{1.24}{\geq} \underbrace{\left(1 - \frac{1}{n}\right) \cdot \frac{n}{n-1}}_{\frac{n-1}{2}} = 1$$

$$h = \frac{1}{n^2}$$

• $b_n = \left(1 + \frac{1}{n}\right)^{1+n} = \left(\frac{n+1}{n}_{n+1}\right)$ ist monoton fallend.

Zeige dazu:
$$b_n \leq b_{n-1} \left(\Leftrightarrow \frac{b_n}{b_{n-1}} \leq 1 \right)$$
Analog: $\frac{b_n}{b_{n-1}} = \left(1 + \frac{1}{n^2 - 1} \right)^n \left(\frac{n}{n+1} \right)$
Wegen $\left(1 + \frac{1}{n^2 - 1} \right)^n \geq 1 + \frac{n}{n^2 - 1} \geq 1 + \frac{1}{n}$ ist
$$\frac{b_n}{b_{n-1}} \geq \frac{1+1}{n} \cdot \frac{n}{n+1} = 1 \quad (?)$$

In Beispiel 1.27 werden wir sehen, dass

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Der Limes wird als Eulerische Zahl e bezeichnet. Dazu zunächst:

0.3 Satz: Intervallschachtelung

Seien $(a_n), (b_n)$ reelle Folgen mit

- $(a_n) \nearrow, (b_n) \searrow$
- $a_n \le b_n \quad \forall n \in \mathbb{N}$
- $b_n a_n \to 0$

Dann sind $(a_n), (b_n)$ konvergent und besitzen den selben Limes.

Beweis: Es ist $a_1 \leq a_n \leq b_n \leq b_1 \quad \forall n \in \mathbb{N}$

- \Rightarrow (a_n) hat obere Schranke b_1
 - (b_n) hat untere Schranke a_1
- \Rightarrow $(a_n), (b_n)$ konvergent.

Da $(b_n - a_n)$ Nullfolge, sind auch die Grenzwerte gleich.

0.4 Beispiel

- $(a_n) \nearrow, (b_n) \searrow (\text{siehe } 1.25)$
- $(a_n) = (1 + \frac{1}{n})^n \le (1 + \frac{1}{n}) \cdot a_n = (1 + \frac{1}{n})^{n+1} = b_n$
- $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \underbrace{\left(1 + \frac{1}{n}\right)}_{\rightarrow 1} \cdot a_n = \lim_{1.13/3} \lim_{n \to \infty} a_n$

0.5 Definition: Eulersche Zahl

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \left(= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \right)$$

0.6 Bemerkung

 (a_n) konvergent $\underset{1.8}{\Rightarrow} (a_n)$ beschränkt. **Die Umkehrung gilt nicht!** z.B besitzt jedoch $a_n = (-1)^n$ zwei konvergente Teilfolgen mit Limes +1 und -1.

0.7 Definition: Teilfolge

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und $(n_k)_{k\in\mathbb{N}}$ eine streng monoton steigende Folge von Indizes. Dann heißt die Folge $(a_{n_k})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$.

0.8 Beispiel

 $a_n = (-1)^n$

- $n_k = 2k \Rightarrow a_{n_k} = a_{2k} = (-1)^{2k} = 1 \quad \forall k \in \mathbb{N}$
- $n_k = 2k + 1 \Rightarrow a_{n_k} = a_{2k+1} = (-1)^{2k+1} = -1 \quad \forall k \in \mathbb{N}$

0.9 Bemerkung

 (a_n) konvergiert gegen $a \Rightarrow$ Jede Teilfolge von (a_n) konvergiert gegen a.

0.10 Definition: Häufungspunkt (HP)

Sei (a_n) reelle Folge. $h \in \mathbb{R}$ heißt Häufungspunkt von (a_n) , wenn es eine Teilfolge von (a_n) gibt, die gegen h konvergiert.

0.11 Beispiel

 (a_n) mit $a_n = (-1)^n + \frac{1}{n}$ hat zwei Häufungspunkte: -1 und 1.

0.12 Satz: Bonzano-Weierstraß

Sei (a_n) reelle Folge. (a_n) beschränkt $\Rightarrow (a_n)$ besitzt konvergente Teilfolge

Beweis: Konstruiere konvergente Teilfolge $(a_{nk})_{k \in \mathbb{N}}$,

 (a_n) beschränkt $\Rightarrow |a_n| \leq K \quad \forall n \in \mathbb{N} \text{ (K geeignet)}$

$$\Rightarrow a_n \in \underbrace{[-K,K]}_{=[A_0,B_0]} \quad \forall n \in \mathbb{N}$$

- $\underline{k} = \underline{1}$: Halbiere $[A_0, B_0]$
 - Falls in der linken Folgenhälfte unendlich viele Folgeglieder liegen, wähle eines davon aus.
 - Falls nicht, liegen in der rechten Hälfte unendlich viele. Wähle eines davon aus.

Das ausgewählte Folgenglied nennen wir a_{n1} , die Intervallhälfte aus der es stammt $[A_1, B_1]$.

- $\underline{k} = \underline{2}$: Halbiere $[A_1, B_1]$. Wende obiges Verfahren an, um $a_{n2} \in [A_2, B_2]$ zu bestimmen.
- usw ...

Erhalte Intervallschachtelung mit

- $(A_k) \nearrow, (B_k) \searrow$
- $A_k \leq B_k$

$$A_k = B_k = \frac{K}{2^{k-1}} \to 0$$

$$\underset{1.26}{\Rightarrow} \lim_{k \to \infty} A_k = \lim_{k \to \infty} B_k$$

Da
$$A_k \le a_{nk} \le B_k$$
, ist $\lim_{n \to \infty} A_k = \lim_{1.15} (a_{nk})$ \square