Feuille d'exercices n. 7 : Poincaré et son disque.

Il s'agit d'une feuille moins "standard", mais peut-être aussi plus intéressante que d'habitude ...

Exercice 1 (Cet exercice n'est pas nécessaire pour le reste, mais permet de s'amuser ensuite avec la géométrie hyperbolique de \mathbb{H}). On dit que deux ouverts $U_1, U_2 \subset \mathbb{C}$ sont conformément équivalents s'il existe une application bijective et holomorphe $f: U_1 \to U_2$ avec inverse f^{-1} holomorphe.

- (a) Montrer que le disque unité $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$ et le demi-plan supérieur $\mathbb{H}:=\{z\in\mathbb{C}:Im(z)>0\}$ sont conformément équivalents. (Suggestion : considérer $\phi(z):=i\frac{1+z}{1-z}$).
- (b) Montrer que les automorphismes de $\mathbb H$ sont de la forme $z\mapsto \frac{az+b}{cz+d}$ avec $a,b,c,d\in\mathbb R$ et ac-bd=1 (Suggestion : utiliser les automorphismes de $\mathbb D$ et le point précédent).

Exercice 2 Si v est un vecteur tangent à \mathbb{D} en un point z, de norme euclidienne $||v||_{eucl}$, sa norme hyperbolique est définie par

$$||v||_{hyp} := \frac{1}{1 - |z|^2} ||v||_{eucl}.$$

Cela permet de définir la longueur hyperbolique d'un chemin $\gamma:[a,b]\to\mathbb{D}$ par

$$\ell_{hyp}(\gamma) := \int_a^b ||\gamma'(t)||_{hyp} dt = \int_a^b \frac{||\gamma'(t)||_{eucl}}{1 - |\gamma(t)|^2} dt$$

et la distance hyperbolique (ou distance de Poincaré) dist $_{hyp}(z_0,z_1)$ du disque comme le minimum des longueurs hyperboliques des courbes joignant z_0 à z_1 . Le disque de Poincaré est l'espace métrique ainsi obtenu. Les courbes de longueur minimale sont appelées géodésiques ou droites hyperboliques.

Montrer que pour tout $f \in \operatorname{Aut}(\mathbb{D})$ on a

$$\frac{|df(z)|}{1 - |f(z)|^2} = \frac{|dz|}{1 - |z|^2}.$$

Notez que cela veut dire que la norme hyperbolique (et donc la longueur hyperbolique, et donc la distance hyperbolique) est invariante par $\operatorname{Aut}(\mathbb{D})$.

Exercice 3 Nous voulons calcular la distance hyperbolique entre 2 points $a, b \in \mathbb{D}$.

- (a) Montrer que la géodésique allant de l'origine à un point $w \in \mathbb{D}$ est le segment [0, w] et calculer la longueur hyperbolique de ce segment. (Suggestion : passer en coordonnées polaires).
- (b) Calculer ${\rm dist}_{hyp}(a,b)$ (Suggestion : se servir de ce qui précède et de l'automorphisme du disque $f:z\mapsto \frac{z-a}{1-\bar az}$.
- (c) Décrire la géodésique allant de a à b, en séparant le cas 0, a, b alignés des autres (Même suggestion qu'au point précédent. Utiliser également le fait que les applications holomorphes sont conformes).

Exercice 4 La géométrie du disque hyperbolique muni de la norme (et de la longueur et de la distance) hyperbolique est appelée géométrie hyperbolique. Vérifier qu'en géométrie hyperbolique les axiomes d'Euclide sont vérifiés, à exception du cinquième postulat.