Programmability of Covariant Quantum Channels

Martina Gschwendtner, Andreas Bluhm, and Andreas Winter

DOI: 10.22331/q-2021-06-29-488

Presenter: Parsa Rangriz
Sharif University of Technology

Authors

Martina Gschwendtner
Technical University of Munich

Andreas Bluhm
University of Copenhagen

Andreas Winter
Universitat Autònoma de Barcelona

Programmable Quantum Processor

 Programmable quantum processors are devices which can apply desired quantum operations, specified by the user via program states, to arbitrary input states.

Nielsen and Chuang's No-Programming Theorem

· It is not possible to implement infinitely many unitary channels exactly with finitedimensional program register, i.e. exact universal programmable quantum processors are impossible.

$$|\psi\rangle \otimes |\mathscr{P}\rangle \to U|\psi\rangle \otimes |\mathscr{P}'\rangle$$

$$|\psi\rangle$$

$$|\mathscr{P}\rangle$$

$$|\mathscr{P}\rangle$$

DOI: 10.1103/PhysRevLett.79.321.

Symmetry

- · Symmetries are of fundamental importance in physics, since they give rise to conserved quantities via Noether's theorem.
- · In open systems, these symmetries arise as covariant quantum channels and are studied using tools from quantum information theory.

Emmy Noether

Symmetry - II

- The No-Programming Theorem states that it is not possible to build a device which can implement all unitary channels, or in fact any infinite set of unitaries, exactly and with a finite-dimensional program register.
- In this work, they consider a setting where the No-Pogramming Theorem is not applicable because we do not want our processor to implement all unitary channels but a family with a certain symmetry consisting of possibly noisy quantum operations.

Preliminaries

- · Definition 1: (Unitary representation). Let G be a compact group. A unitary representation of G is a continuous homomorphism from G to the unitary operators $\mathcal{U}:=\{U\,|\,U\subset\mathcal{U}(H)\}$ on some complex, d-dimensional Hilbert space H.
- Definition 2: (Irreducible representation). A unitary representation U of a group G on a finite-dimensional vector space H is called irreducible representation (irrep) if and only if the only invariant subspaces of $\mathscr U$ are $\{0\}$ and the whole space.
- · A fundamental result in representation theory states that we can decompose any unitary representation of a compact group into a direct sum of irreducible representations.

Preliminaries - II

· Definition 3: (UV-covariant quantum channel). Let G be a compact group and let U and V be representations on Hilbert spaces H_1 and H_2 . Let $T:B(H_1)\to B(H_2)$ be a quantum channel. We call $T,\ UV$ -covariant if

$$T(U_gAU_g^*) = V_gT(A)V_g^*, \quad \forall A \in B(H_1), \forall g \in G.$$

 \cdot The set of all UV-covariant channels is represented by

$$\mathcal{T}_{UV} := \{T : B(H_1) \to B(H_2), UV \text{-covariant quantum channel} \}$$

· We define the set of all Choi-Jamiolkowski states corresponding to quantum channels $T\in \mathcal{T}_{UV}$ as

$$\mathcal{J}_{UV} := \{ c_T \in B(H_1 \otimes H_2) : c_T := (I \otimes T)(|\Omega\rangle\langle\Omega|), \forall T \in \mathcal{T} \}$$

An Introduction to Exact and Approximate Programmability

There is a lemma which states that $T\in\mathcal{T}_{UV}$ is equivalent to $[c_T,\bar{U}_g\otimes V_g]=0$ for all $g\in G$. Due to this correspondence, we consider representations of the form $\bar{U}\otimes V$ with $U_g\in\mathcal{U}_1,g\in G$ and the commutant

$$K := \{ X \in B(H_1 \otimes H_2) \mid [X, \bar{U}_g \otimes V_g] = 0, \forall g \in G \}$$

- · Let K be as define above and let U be an irrep of a compact group G on H_1 . Let V be a representation of G on H_2 . Then $K\cap D(H_1\otimes H_2)=\mathcal{J}_{UV}$. Moreover, if V is an irrep, any $T\in\mathcal{T}_{UV}$ is unital
- The channels implemented by a processor that is covariant with respect to the special unitary group $SU(H_1)$ are unital using a similar argument. Then the authors considered how to construct covariant programmable quantum processors in the case where K is abelian.

ϵ -Programmable Quantum Processor (ϵ -PQP)

Let H_1 and H_2 be separable Hilbert spaces. Then we call $P \in \operatorname{CPTP}(H_1 \otimes H_P, H_2)$, with finite-dimensional H_P , an ϵ -programmable quantum processor for a set $C \subset \operatorname{CPTP}(H_1, H_2)$ of channels (ϵ -PQP $_C$), if for every quantum channel $T \in C$ there exists a state $\pi_T \in D(H_P)$ such that

$$\frac{1}{2}\|P(\cdot\otimes\pi_T)-T(\cdot)\|\leq\epsilon.$$

 \cdot For $\epsilon=0$ we say that P exactly implements the class C, and address it as a PQP $_C$.

What we will see?

- · Bounds for Approximate Programmability.
- · Exact and Approximate Programmability