Содержание

23 1.	Іодгруппа. Подгруппы целых чисел. Порождающее множество	2
24 Π	Іорядок элемента. Циклические группы	4
25 J.	Іевые и правые смежные классы. Теорема Лагранжа и следствие из неё	5
26 H	Іормальные подгруппы	6
27 4	Ракторгруппа	6
28 L	Ц ентр группы	7
29 K	Коммутант группы: нормальность, факторгруппа	8
30 Г	омоморфизм: определение, примеры, свойства ядра и образа	9
31 T	Сеорема о гомоморфизме	10
32 T	Георема Кэли	11
33 Д	Lействие группы на множество. Орбиты. Стабилизаторы	11
34 J.	Іемма Бернсайда, примеры применения	12
35 T	Ірямое произведение групп: определение, подгруппы прямого произведения	14
	Іорядки элементов в прямом произведении. Прямое произведение циклических подрупп	16
	Iемма о нормальных подгруппах с единичным пересечением. Прямое произведение юдгрупп	17
38 P	Разложение конечной циклической группы в прямое произведение двух подгрупп	18
	Разложение конечной циклической группы в прямое произведение примарных под- рупп	18
	Определение евклидова и унитарного пространства. Углы и расстояния. Неравенство Коши	19
41 N	Латрица Грама: вычисление скалярного произведения, замена базиса	21
	Свойства ортогональных векторов. Процесс ортогонализации Рама-Шмидта	22
43 C	Ортогональное дополнение	23
44 C	Ортогональные и унитарные матрицы	25
45 C	Сопряжённый оператор	26
46 C	Собственные числа и собственные векторы	28
47 C	Свойства нормального оператора	30
48 Д	Ц иагонализуемость нормального оператора. Следствия (без доказательства)	30
Обо	значение. $A \in B$ – непустое подмножество	

23. Подгруппа. Подгруппы целых чисел. Порождающее множество

Определение 1. G – группа, $H \subset G$

Если H является группой относительно той же операции, то H называется подгруппой G

Обозначение. H < G

Свойства.

- 1. $e_H = e_G$
- 2. Если a' обратный к a в группе H, то a' обратный к a в группе G

Теорема 1 (подгруппы группы \mathbb{Z}). $H < \mathbb{Z}$

$$\implies \exists d \in \mathbb{Z} : H = \{ dx \mid x \in \mathbb{Z} \}$$

Доказательство.

- Если $H = \{0\}$, то d = 0
- Пусть $H \neq \{0\}$

Тогда H содержит хотя бы одно положительное число, так как $\forall x \in H - x \in H$ Пусть d — наименьший положительный элемент H

Положим $K\coloneqq \{\,dx\mid x\in\mathbb{Z}\,\}$ и докажем, что K=H:

 $-H\subset K$

- * Элементы $d, 2d, 3d, \dots$ принадлежат H, т. к. H замкнута относительно сложения
- * Элемент -d принадлежит H, т. к. H замкнута относительно взятия обратного
- * Элементы $-d, -2d, -3d, \dots$ принадлежат H, т. к. $-d \in H$ и H замкнута относительно сложения
- $-K\subset H$

Нужно доказать, что в H нет лишних

Пусть это не так, и существует $a \in (H \setminus K)$

Поделим a на d с остатком. Пусть x = aq + r, 0 < r < d

Лемма 1 (критерий подгруппы). G – группа, $H \in G$

$$H < G \iff \begin{cases} a, b \in H \implies ab \in H \\ a \in H \implies a^{-1} \in H \end{cases} \tag{1}$$

Доказательство.

 $\bullet \implies$

Очевидно из того, что H – группа и подгруппа G

- =
 - Соответствие операций:

Из (1) следует, что операция G является бинарной операцией в H

– Ассоциативность:

 $a, b, c \in H \implies a, b, c \in G \implies (ab)c = a(bc)$

– Единица и обратный:

Пусть $a \in H$

$$(2) \implies a^{-1} \in H$$

$$(1) \implies aa^{-1} \in H$$

$$\implies a^{-1}a = aa^{-1} = e_H$$

Следствие. $\left(\bigcap_{H < G} H\right) < G$

Теорема 2 (порождающее множество). G – группа, $S \subseteq G$ Тогда

1.
$$\exists\, H_0 < G: egin{cases} S \subset H_0 \\ H_0 & \text{-- минимальная по включению} \end{cases}$$

2. $H_0 = \bigcap_{S \subset H} H$

Доказательство. Пусть M — множество всех подгрупп, содержащих S Обозначим

$$H_0 \coloneqq \bigcap_{H \in M} H$$

По следствию к критерию подгруппы, H_0 является подгруппой. При этом H_0 содержит S Проверим, что H_0 — минимальная по включению:

Пусть H_1 содержит S. Тогда $H_1 \in M$ и

$$H_1 \supset \bigcap_{H \in M} H = H_0$$

3. H_0 состоит из всех произведений элементов вида x и $x^{-1},$ где $x\in S$

Доказательство. Обозначим через S^{-1} множество элементов, обратным к элементам из S Положим $T\coloneqq S\cup S^{-1}$

Обозначим $K := \{ x_1 x_2 ... x_n \mid x_i \in T \}$

Нужно доказать, что K – минимальная по включению подгруппа:

• Докажем, что K – подгруппа Применим критерий:

$$-a, b \in K, \qquad a = x_1 ... x_n, \quad b = y_1 ... y_m$$

$$ab = x_1...x_n y_1...y_m$$

Все сомножители принадлежат T

$$-a \in K, \qquad a = x_1 ... x_n$$

$$a^{-1} = x_n^{-1} ... x_1^{-1}$$

Все сомножители принадлежат T

• Проверим минимальность K:

Пусть H — произвольная подгруппа, содержащая S

Тогда $S^{-1} \subset H$ (т. к. любая подгруппа вместе с каждым элементом содержит его обратный)

Значит, $T \subset H$, и произведение любого набора элементов из N принадлежит H

Определение 2. Пусть H — минимальная подгруппа, содержащая S Тогда говорят, что S порождает H

Обозначение. $H = \langle S \rangle$

24. Порядок элемента. Циклические группы

Определение 3. G – группа,

 $a \in G$

Порядком a называется

ord
$$a := \min \{ n \in \mathbb{N} \mid a^n = e \}$$

Если $\not\exists n \in \mathbb{N} : a^n = e$, то ord $a \coloneqq \infty$

Свойства.

1. ord $a < \infty$, $k \in \mathbb{Z}$

$$a^k = e \iff k : \text{ord } a$$

Доказательство. Пусть $n \coloneqq \operatorname{ord} a$

Разделим k на n с остатком:

$$k = nq + r, \qquad 0 \le r < n$$

$$a^k = (a^n)^q a^r = e^q a^r = a^r$$

- Если k : n, то $r = 0 \implies a^r = e$
- Иначе $r \in \mathbb{N}, \quad r \neq 0$ Тогда $a^r = e$ (т. к. n – минимальная натуральная степень, при возведении в которую элемент a обращается в e)

2. ord $a < \infty$, $k, m \in \mathbb{Z}$

$$a^k = a^m \iff k \underset{\text{ord } a}{\equiv} m$$

Доказательство.

$$a^k = a^m \iff a^k(a^m)^{-1} = e \iff a^{k-m} = e \iff k - m : \text{ord } a$$

Определение 4. Группа G называется циклической, если $G=\langle a \rangle$ для некоторого $a \in G$

Свойства.

- 1. Если $G = \langle a \rangle$, то G состоит из элементов a^n , $n \in \mathbb{Z}$
- 2. Циклическая группа абелева

Теорема 3 (строение циклических групп). G – циклическая группа

- $|G| = \infty \implies G \cong \mathbb{Z}$
- $|G| = n < \infty \implies G \cong \mathbb{Z}_n$

Доказательство. Пусть $G = \langle a \rangle$

- Если ord $a=\infty$, то все элементы a^k , $k\in\mathbb{Z}$ различны, и, следовательно, $|G|=\infty$ Пусть $f:\mathbb{Z}\to G$ определяется равенством $f(x)=a^x$
 - Проверим, что f согласовано с операцией:

$$f(x + y) = a^{x+y} = a^x y^x = f(x)f(y)$$

— Проверим биективность: Мы только что выяснили, что элементы a^x различны при различных x

• Если ord a конечен, то элементы $a^0, a^1, ..., a^{\operatorname{ord} a-1}$ различны, и любой другой элемент a^k совпадает с одним из них, следовательно, $|G| = \operatorname{ord} a$

Определим $f: \mathbb{Z}_n \to G$

Пусть $x \in \mathbb{Z}, \quad 0 \le x \le n-1$, и $\overline{x} \in \mathbb{Z}_n$ – соответствующий вычет

Положим $f(\overline{x}) \coloneqq a^x$

— Проверим, что f согласовано с операцией: Пусть

$$\overline{x}, \overline{y} \in \mathbb{Z}_n, \quad x, y \in \mathbb{Z}, \quad 0 \le x, y \le n - 1$$

Тогда $f(\overline{x}) = a^x$, $f(\overline{y}) = a^y$

Положим

$$z := \begin{cases} x + y, & x + y < n \\ x + y - n, & x + y \ge n \end{cases}$$

Тогда $\overline{z} = \overline{x} + \overline{y}$ в \mathbb{Z}_n , и

$$f(\overline{x} + \overline{y}) = f(\overline{z}) = a^z = \begin{cases} a^{x+y} = a^x a^y, & x + y < n \\ a^{x+y-n} = a^x a^y (a^n)^{-1}, & x + y \ge n \end{cases}$$

Учитывая, что ord a=|G|=n, получаем, что $a^n=e$, и правая часть равна $a^xa^y=f(\overline{x})f(\overline{y})$

– Проверим биективность:

Пусть $0 \le x, y \le n-1$, и $f(\overline{x}) = f(\overline{y})$

$$a^x = a^y \implies x \equiv y \implies x = y$$

Свойство. $|\langle a \rangle| = \operatorname{ord} a$

25. Левые и правые смежные классы. Теорема Лагранжа и следствие из неё

Обозначение. G – группа, H < G

На множестве элементов G введём отношение \sim : $a \sim b$, если b = ah для некоторого $h \in H$

Свойство. \sim является отношением эквивалентности

Определение 5. Класс эквивалентности элемента a называется левым смежным классом a относительно H

Аналогично опредляются правые смежные классы

Свойство. Левый смежный класс \overline{a} равен aH, где $aH=\{\,ah\mid h\in H\,\}$

Правый смежный класс равен Ha

Определение 6. Если H имеет конечное количество левых смежных классов, то их количество назвывается индексом H в G

Обозначение. [G:H]

Теорема 4 (Лагранжа).

G – конечная группа, H < G

Тогда $|G| = [G:H] \cdot |H|$

Доказательство. Количество элементов в любом смежном классе равно |H|

Группа G разбивается на левые смежные классы, в каждом из них |H| элементов

Следствие. G – конечная группа

Тогда |G| : ord $a \quad \forall a \in G$

Доказательство. Положим $H = \langle a \rangle$

Применяя теорему Лагранжа, получаем, что |G|: ord a

26. Нормальные подгруппы

Определение 7. G – группа

Подгруппа H называется нормальной, если $aH=Ha \quad \forall a \in G$

Обозначение. $H \lhd G$

Теорема 5 (равносильные определения нормальной подгруппы). G – группа, H < G Следующие условия равносильны:

1. $H \triangleleft G$

2. $a^{-1}Ha = H \quad \forall a \in G$

3. $a^{-1}ha \in H \quad \forall a \in G, h \in H$

Доказательство.

 \bullet 1 \iff 2

 $aH = Ha \iff a^{-1}aH = a^{-1}Ha \iff eH = a^{-1}H \iff H = a^{-1}Ha$

 \bullet 2 \Longrightarrow 3

 $a^{-1}Ha = H \implies a^{-1}Ha \subset H \implies a^{-1}ha \in H \quad \forall h \in H$

 \bullet 3 \Longrightarrow 2

– ⊂ – очевидно

- =

Зафиксируем $a \in G$

Нужно доказать, что $H \subset a^{-1}Ha$, то есть, что

 $\forall h \in H \quad \exists h_1 \in H : a^{-1}h_1a = h$

Применим утверждение 3 к h и $a_1 = a^{-1}$. Получим, что

 $a_1^{-1}ha_1 = aha^{-1} \in H$

Элемент aha^{-1} подойдёт в качестве h_1

27. Факторгруппа

Определение 8. $H \triangleleft G$

На множестве левых смежных классов относительно H определим операцию умножения: Пусть A,B – классы. Выберем в каждом классе произвольный элемент, пусть $a\in A,b\in B$ Тогда AB – такой класс, что $ab\in AB$

Теорема 6 (факторгруппа). $H \triangleleft G$

1. Операция умножения левых смежных классов определена корректно, то есть не зависит от выбора элементов в классах

Доказательство. Докажем, что, если a_1, a_2 лежат в одном смежном классе, и b_1, b_2 лежат в одном смежном классе, то a_1b_1, a_2b_2 лежат в одном смежном классе Существуют $x, y \in H$, такие, что $a_2 = a_1x$, $b_2 = b_1y$. Подставим:

$$a_2b_2=a_1b_1b_1^{-1}a_1^{-1}a_2b_2=a_1b_1b_1^{-1}y_1^{-1}y_1xb_1y=a_1b_1b_1^{-1}xb_1y=(a_1b_1)\bigg((b_1^{-1}xb_1)y\bigg)$$

Из того, что $H \lhd G$ следует, что $b_1^{-1}xb_1 \in H$ Следовательно, $(b_1^{-1}xb_1)y \in H$

2. Множество левых смежных классов с операцией умножения является группой

Доказательство.

- Ассоциативность: $(\overline{a}\overline{b})(\overline{c}) = (\overline{ab})(\overline{c}) = (\overline{abc})$
- \bullet Единица: $\overline{e} = H$
- Обратный: $(\overline{a})^{-1} = \overline{a}^{-1}$

Определение 9. Группа смежных классов по подгруппе H назвыается факторгруппой G по H

Обозначение. G/H

28. Центр группы

Определение 10. Центром группы G называется множество элементов, которые коммутируют со всеми элементами G, т. е.

$$Z(G) := \{ a \mid ax = xa \quad \forall x \in G \}$$

Свойство. G абелева $\iff G = Z(G)$

Теорема 7. Центр группы является нормальной подгруппой

Доказательство.

• Z(G) < G

$$e \in Z(G) \implies Z(G) \neq \emptyset$$

Применим критерий: Пусть $a,b\in Z(G)$

— Проверим, что $ab \in Z(G)$, то есть, что $(ab)x = x(ab) \quad \forall x \in G$ Воспользуемся тем, что a и b коммутируют с любым элементом:

$$abx = axb = xab$$

– Проверим, что $a^{-1} \in Z(G)$, то есть $a^{-1}x = xa^{-1} \quad \forall G$

$$a \in G \implies xa = ax \iff a(a^{-1}x)a = a(xa^{-1}) \iff a^{-1}x = xa^{-1}$$

• $Z(G) \triangleleft G$ Пусть $a \in Z(G), x \in G$

$$x^{-1}ax = ax^{-1}x = a \in Z(G)$$

Определение 11. Если $Z(G) = \{e\}$, то группа G называется группой с тривиальным центром или группой без центра

29. Коммутант группы: нормальность, факторгруппа

Определение 12. Коммутатором элементов a и b называется элемент $a^{-1}b^{-1}ab$

Обозначение. [a, b]

Свойства.

- 1. ba[a,b] = ab
- 2. $[a,b]^{-1} = [b,a]$
- 3. $ab = ba \iff [a, b] = e$

Определение 13. Коммутантом группы G называется подгруппа

$$[G,G]\coloneqq \langle [a,b]|a,b\in G\rangle$$

Замечание. G абелева \iff $[G,G]=\{e\}$

Определение 14. $L, M \subset G$

Взаимным коммутантом L и M называется подгруппа

$$[L, M] := \langle [a, b] | a \in L, b \in M \rangle$$

Теорема 8. Коммутант группы является нормальной подгруппой

Доказательство. Пусть $g \in G, k \in K$

Докажем, что $g^{-1}kg \in K$:

Пусть a_i, b_i таковы, что

$$k = [a_1, b_1][a_2, b_2]...[a_n, b_n]$$

$$g^{-1}kg = g^{-1}[a_1, b_1][a_2, b_2]...[a_n, b_n]g = g^{-1}[a_1, b_1]gg^{-1}...gg^{-1}[a_n, b_n]g = (g^{-1}[a_1, b_1]g)(g^{-1}[a_2, b_2]g)...(g^{-1}[a_n, b_n]g)$$

Достаточно доказать, что произведение в любой скобке принадлежит K, то есть для любых $g,a,b\in G$ выполнено $g^{-1}[a,b]g\in K$

$$g^{-1}[a,b]g = g^{-1}a^{-1}b^{-1}abg = (g^{-1}a^{-1}ga)(a^{-1}g^{-1}b^{-1}abg) = [g,a][a,bg]$$

Теорема 9 (факторгруппа по коммутанту). G – группа, K = [G, G]

1. группа G/[G,G] абелева

Доказательство. Частный случай следующего

2. $H \triangleleft G$

$$[G,G]\subset H\iff G/H$$
 абелева

Доказательство.

$$G/H$$
 абелева $\iff \forall a,b \in G \quad \overline{ab} = \overline{ba} \iff \overline{ab} = \overline{ba} \iff \exists \ h \in H : ab = bah \iff (ba)^{-1}ab \in H \iff [a,b] \in H \iff [G,G] \subset H$

30. Гомоморфизм: определение, примеры, свойства ядра и образа

Определение 15. $(G,*),(H,\times)$ – группы

Отображение $f:G\to H$ называется гомоморфизмом, если

$$\forall a, b \in G \quad f(a * b) = f(a) \times f(b)$$

Примеры.

1.
$$f: \mathbb{C}^*_{(\mathbb{C}\setminus\{0\})} \to \mathbb{C}^*, \qquad f(z) = |z|$$

2.
$$f: \mathbb{R}^* \to \mathbb{C}^*$$
, $f(z) = z$

3.
$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(z) = 2z$

Свойства.

1. (a) $f(e_G) = e_H$

Доказательство. $f(a)e_H=f(a)=f(ae_G)=f(a)f(e_G)\implies f(e_G)$

(b)
$$f(a^{-1}) = \left(f(a)\right)^{-1}$$

Доказательство. $f(a)f(a^{-1}) = f(aa^{-1}) = f(e_G) = e_H$

2. G,H,K – группы, $f:G\to H, \quad g:H\to K$ – гомоморфизмы Тогда $g\circ f:G\to K$ – гомоморфизм

Доказательство.

$$(g \circ f)(ab) = g\big(f(ab)\big) = f\big(f(a)f(b)\big) = g\big(f(a)\big)g\big(f(b)\big) = (g \circ f)(a)(g \circ f)(b)$$

Определение 16 (ядро и образ). $f: G \to H$ – гомоморфизм

$$\ker f := \{ x \in G \mid f(x) = e_H \}$$

$$\operatorname{Im} f := \{\, f(a) \mid a \in G \,\}$$

Свойства (ядра).

1. $\ker f \triangleleft G$

Доказательство.

• $\ker f < G$

Пусть $a,b \in \ker f$

$$-f(ab) = f(a)f(b) = e_H e_H = e_H \implies ab \in \ker f$$

 $-f(a^{-1}) = (f(a))^{-1} = e_H^{-1} = e_H \implies a^{-1} \in \ker f$

• $\ker f \triangleleft G$

Пусть $a \in G, h \in \ker f$

$$f(a^{-1}ha) = f(a^{-1})f(h)f(a) = f(a)^{-1}e_Hf(a) = f(a)^{-1}f(a) = e_H \implies a^{-1}ha \in \ker f$$

2.
$$f$$
 – инъекция \iff ker $f = \{e_G\}$

Доказательство.

$$x \in \ker G \implies f(x) = e_H \implies f(x) = f(e_G) \implies x = e_G$$

• =

$$f(x) = f(y) \implies f(x)(f(y))^{-1} = e_H \implies f(x)f(y^{-1}) = e_H \implies f(xy^{-1}) = e_H \implies xy^{-1} \in \ker f \implies xy^{-1} = e_G \implies x = y$$

Свойство (образа). Im f < H

Доказательство. Пусть $a,b \in \operatorname{Im} f$

Тогда

$$\exists x, y \in G : \begin{cases} a = f(x) \\ b = f(y) \end{cases}$$

- $ab = f(xy) \in \operatorname{Im} f$
- $\bullet \ a^{-1} = f(x^{-1}) \in \operatorname{Im} f$

31. Теорема о гомоморфизме

Теорема 10. $f: G \to H$ – гомоморфизм

$$\implies G/\ker f \cong \operatorname{Im} f$$

Доказательство. Определим отображение $\varphi:G/\ker f \to \operatorname{Im} f$

Пусть $A \in G/\ker f$, то есть A – некоторый смежный класс по подгруппе $\ker f$

Выберем произвольный элемент $a \in A$

Положим $\varphi(A)\coloneqq f(a),$ т. е. $\varphi(\overline{a})=f(a)$

• Корректность

Проверим, что $\forall a, a' \in A \quad f(a) = f(a')$:

Элементы a и a' принадлежат одному смежному классу, следовательно, a=a'x для некоторого $x\in\ker f$

Применим f:

$$f(a) = f(a'x) = f(a')f(x) = e_H f(a') = f(a')$$

• φ – гомоморфизм

Пусть A, B – смежные классы

Выберем произвольные $a \in A, b \in B$

Тогда AB – это класс, которому принадлежит ab

To ecth, $A = \overline{a}$, $B = \overline{b}$, $AB = \overline{ab}$

Применим φ :

$$\varphi(AB) = \varphi(\overline{ab}) = f(ab) = f(a)f(b) = \varphi(\overline{a})\varphi(\overline{b}) = \varphi(A)\varphi(B)$$

• φ – сюръекция

$$x \in \operatorname{Im} f \implies \exists a \in G : x = f(a) \implies x = \varphi(\overline{a})$$

• φ – инъекция

$$\ker \varphi = e_{G/\ker f} = \{ \ker f \}$$

$$\overline{a} \in \ker \varphi \implies \varphi(\overline{a}) = e_H \implies f(a) = e_H \implies a \in \ker f \implies \overline{a} = \ker f$$

32. Теорема Кэли

Обозначение. S_n – группа перестановок (т. е. биекций $X = \{1, 2, ..., n\}$ в себя)

Теорема 11. G – конечная группа, |G| = n

Тогда G изоморфна некоторой подгруппе группы S_n

Доказательство. Пронумеруем произвольным образом элементы группы, пусть это $g_1, ..., g_n$

Заметим, что для любого $a \in G$ элементы $ag_1,...,ag_n$ различны

Следовательно, $ag_1, ..., ag_n$ – это некоторая перестановка элементов $g_1, ..., g_n$

Определим отображение $\varphi: G \to S_n$ следующим образом:

Для элемента $a \in G$ обозначим через $\varphi(a)$ такую перестановку σ , что

$$ag_1 = g_{\sigma(1)}, \quad \dots, \quad ag_n = g_{\sigma(n)}$$

• Докажем, что φ – гомоморфизм:

Пусть $\varphi(a) := \sigma, \quad \varphi(b) := \tau$

Нужно проверить, что $\varphi(ab) = \sigma \tau$, т. е.

$$\forall i \quad (ab)g_i = g_{(\sigma\tau)(i)}$$

Пусть $\tau(i) = j$, $\sigma(j) = k$

$$\begin{cases}
bg_i = g_j \\
(ab)g_i = a(bg_i) = ag_j = g_k \\
(\sigma\tau)(i) = k
\end{cases} \implies (ab)g_i = g_k = g_{(\sigma\tau)(i)}$$

Положим $H = \operatorname{Im} f$

Тогда $H < S_n$

Докажем, что $G \cong H$:

Гомоморфизм φ можно рассматривать как отображение $G \to H$

• Проверим, что это биекция:

Для этого нужно проверить, что $\ker \varphi = \{e\}$

Пусть $a \in \ker \varphi$

Тогда $\varphi(a)$ – тождественная перестановка

$$ag_1 = g_1, \dots, ag_n = g_n$$

По свойству сокращения, из этого следует, что a=e

33. Действие группы на множество. Орбиты. Стабилизаторы

Определение 17. G – группа, M – множество

Говорят, что группа G действует (слева) на множество M, если каждой паре элементов $g \in G, m \in M$ сопоставлен элемент $g(m) \in M$, и при этом выполнены свойства:

- 1. $(gh)(m) = g(h(m)) \quad \forall g, h \in G, m \in M$
- 2. $e(m) = m \quad \forall m \in M$

Примечание. Аналогично определяется действие справа

Определение 18. Введём на M отношение эквивалентности:

 $m \sim l$, если $\exists g \in G : gm = l$

Классы эквивалентости по отношению ~ называются орбитами

Обозначение. Орбита, содержащая элемент m обозначается $\operatorname{Orb} m$ или Gm

Доказательство (корректности). Проверим, что \sim является отношением эквивалентности:

- $em = m \implies m \sim m$
- Пусть $m \sim l$ Тогда gm = l для некоторого $g \in G$

$$\implies g^{-1}l = m \implies l \sim m$$

• Пусть $\sim l, l \sim k$ Тогда gm = l, hl = k для некоторых $g, h \in G$

$$\implies k = h(gm) = (hg)m \implies m \sim k$$

Определение 19. Стабилизатором элемента $m \in M$ называется множество

$$St(m) := \{ g \in G \mid gm = m \}$$

Определение 20. Фиксатором элемента $g \in G$ называется множество

$$\mathrm{Fix}(g) \coloneqq \{\, m \in M \mid gm = m \,\}$$

Свойства.

- 1. $St(m) < G \quad \forall m \in M$
- $2. \ G$ конечная группа

$$|G| = |\operatorname{Orb}(m)| \cdot |\operatorname{St}(m)|$$

Доказательство. Пусть $k \coloneqq |\operatorname{Orb}(m)|$, и $m_i \in M, g_i \in G$ таковы, что

$$Orb(m) = \{ m_1, ..., m_k \}, \qquad m_i = g_i m$$

Докажем, что $g_1,...,g_k$ принадлежат различным смежным классам по подгруппе $\mathrm{St}(m)$ и являются представителями всех классов:

• Пусть g_i, g_i принадлежат одному классу

• Докажем, что любой элемент $g \in G$ попадает в смежный класс, содержащий некоторый g_i :

$$gm \in \operatorname{Orb}(m) \implies \exists i : gm = m_i \implies gm = g_i m = g_i^{-1} gm = m \implies g_i^{-1} g \in \operatorname{St}(m)$$

Значит, элементы g и g_i принадлежат одному смежному классу

Получили, что k = [G : St(m)]

По теореме Лагранжа, выполнено $|G| = k \cdot |\operatorname{St}(m)|$

34. Лемма Бернсайда, примеры применения

Лемма 2 (Бернсайда). G – конечная группа, M – конечное множество, G действует на M Тогда количество орбит равно среднему арифметическому мощностей фиксаторов элементов G, т. е.

$$\frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|$$

Доказательство. Рассмотрим количество всех пар (g, m), для которых выполнено gm = m:

- Если найти количество пар для каждого m, а затем просуммировать, получится $\sum_{m \in M} |\operatorname{St}(m)|$
- Если найти количество пар для каждого g, а затем просуммировать, получится $\sum_{g \in G} |\operatorname{Fix}(m)|$

Приравняем и разделим на |G|:

$$\frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)| = \frac{1}{|G|} \sum_{m \in M} |\operatorname{St}(m)|$$

Достаточно доказать, что правая часть равна количеству орбит. Преобразуем её, используя свойство стабилизатора:

$$\frac{1}{|G|} \sum_{m \in M} |\operatorname{St}(m)| = \sum_{m \in M} \frac{|\operatorname{St}(m)|}{|G|} = \sum_{m \in M} \frac{1}{|\operatorname{Orb}(m)|}$$

Пусть есть n орбит, содержащих $a_1, a_2, ...,$ элементов Запишем сумму в правой части:

$$\sum_{m \in M} \frac{1}{|\operatorname{Orb}(m)|} = \underbrace{\left(\frac{1}{a_1} + \frac{1}{a_1} + \ldots\right)}_{a_1 \text{ char.}} + \underbrace{\left(\frac{1}{a_2} + \frac{1}{a_2} + \ldots\right)}_{a_2 \text{ char.}} + \dots$$

Следовательно, в каждой скобке сумма равна 1, а вся сумма равна n

Примеры.

1. Сколькими способами можно составить ожерелье из 5 чёрных и 5 белых бусин? Ожерелья считаются одинаковыми, если их можно перевести друг в друга поворотом или симметрией

Решение. Пусть M — множество различных раскрасок ожерелья, зафиксированного в пространстве, G — группа самосовмещений ожерелья

Тогда G состоит из 10 поворотов и 10 осевых симметрий:

тогда с состоит из то поворотов и то оссыва симметрии.			
Повороты	Fix		
0°	$C_{10}^5 = 252$		
$36k^{\circ}, k = 1, 3, 7, 9$	0		
$36k^{\circ}, k = 2, 4, 6, 8$	2		
180°	0		
Симметрии			
	0		
Относительно прямой, проходящей через вершины	$2 \cdot C_4^2 = 12$		
Относительно прямой, проходящей через середины сторон	0		
Искомое число:			
$\frac{1}{20}(1 \cdot 252 + 4 \cdot 0 + 4 \cdot 2 + 1 \cdot 0 + 5 \cdot 12 + 5 \cdot 0) = 16$			

2. Требеутся найти количество раскрасок прямоугольника $a \times b$ в k цветов с точностью до осевой или центральной симметрии

Решение. Пусть M — множество всех раскрасок прямоугольника, G — группа самосовмещений прямоугольника. Тогда количество раскрасок с точностью до симметрии — это количество орбит

Группа состоит из 4-х элементов:

- ullet нейтральный e
- осевые симметрии σ_1, σ_2
- ullet центральная симметрия au

Фиксатор любого элемента группы – множество раскрасок, которые при данном преобразовании переходят сами в себя:

- $\operatorname{Fix}(e)$ множество всех раскрасок, $|\operatorname{Fix}(e)| = k^{ab}$
- $\operatorname{Fix}(\sigma_{1,2})$ множество раскрасок, симметричных относительно оси:
 - Раскраска, симметричная относительно горизонтальной оси, определяется раскраской верхней половины, и, в случае нечётного количества строк раскраской средней строки

Следовательно, она определяется раскраской прямоугольника $\lceil \frac{a}{2} \rceil \times b$ Количество таких раскрасок равно $k^{\lceil a/2 \rceil b}$

- Количество раскрасок, симметричных относительно вертикальной оси вычисляется аналогично, оно равно $k^{a\lceil \frac{b}{2} \rceil}$
- Fix (τ) количество раскрасок, которые переходят в себя при центральной симметрии. Такая раскраска задаётся раскраской $\lceil \frac{ab}{2} \rceil$ клеток, количество раскрасок равно $k^{\lceil ab/2 \rceil}$

Количество орбит равно

$$\frac{1}{4} \left(k^{ab} + k^{\lceil a/2 \rceil b} + k^{a \lceil b/2 \rceil} + k^{\lceil ab/2 \rceil} \right)$$

35. Прямое произведение групп: определение, подгруппы прямого произведения

Определение 21. $(G,*), (H,\cdot)$ – группы (Внешнее) прямое произведение G и H – это множество $G \times H$ с операцией \circ , определяемой равенством $(g_1,h_1)\circ (g_2,h_2)=(g_1*g_2,h_1\cdot h_2)$

Примечание. Аналогично определяется произведение нескольких групп

Теорема 12. Прямое произведение групп явялется группой

Доказательство. Пусть задано произведение групп $G \times H \times ...$

• Ассоциативность:

$$\bigg((g_1,h_1,\ldots)(g_2,h_2,\ldots)\bigg)(g_3,h_3,\ldots)=(g_1g_2,h_1h_2,\ldots)(g_3,h_3,\ldots)=(g_1g_2g_3,h_1h_2h_3,\ldots)$$

$$(g_1,h_1,\ldots)\bigg((g_2,h_2,\ldots)(g_3,h_3,\ldots)\bigg)=(g_1,h_1,\ldots)(g_2g_3,h_2h_3,\ldots)=(g_1g_2g_3,h_1h_2h_3,\ldots)$$

• Нейтральный:

$$e_{G\times H\times \dots} = (e_G, e_H, \dots)$$

• Обратный:

$$(g, h, \dots)^{-1} = (g^{-1}, h^{-1}, \dots)$$

Свойство.

- Если группы H_i конечны, то G тоже конечна, $|G| = |H_1| \cdot |H_2| \cdot ... \cdot |H_k|$
- ullet Если хотя бы одна из H_i бесконечна, то G бесконечна

Напоминание. $A_1, A_2, ..., A_k$ – подмножества G

Произведением $A_1A_2...A_k$ называется множество элементов $a_1a_2...a_k$, где $a_i \in A_i$

Свойства (подгруппы прямого произведения). $G = G_1 \times G_2 \times ... \times G_k$, e_i — нейтральный элемент G_i H_i — множество элементов вида $(e_1,...,e_{i-1},g_i,e_{i+1},...,e_k)$

1. $H_i \simeq G_i \quad \forall i$

Доказательство. Отображение $f: G_i \to H_i$, заданное формулой

 $f(x) = (e_1, ..., e_{i-1}, x, e_{i+1}, ..., e_k)$ является изоморфизмом

2. $H_i \triangleleft G \quad \forall i$

Доказательство.

• $H_i < G$

Надо доказать, что у произведений элементов из H_i , все j-е компоненты (при $i\neq j$) равны e_j . Это верно, т. к. $e_je_j=e_j$ То же самое для обратных

• $H_i \triangleleft G$ Пусть $h \in H_i$, $x \in G$, $x = (g_1, ..., g_k)$

 $\forall j \quad j$ -я комп. $x^{-1}hx$ равна $g_j^{-1}e_jg_j=g_j^{-1}g_j=e_j \quad \Longrightarrow \quad x^{-1}hx\in H_i$

3. $\forall i \neq j, h_i \in H_i, h_j \in H_j$ $h_i h_j = h_j h_i$

Доказательство. Пусть $h_i = (e_1, ..., g_i, ..., e_j, ..., e_k), \quad h_j = (e_1, ..., g_j, ..., e_i, ..., e_k)$ Тогда каждый из элементов $h_i h_j, h_j h_i$ равен $(e_1, ..., g_i, ..., g_j, ..., e_k)$

4. $H_i \cap H_1...H_{i-1}H_{i+1}...H_k = \{e\}$

Доказательство. У элементов H_i все компоненты, кроме i-й равны нейтральным элементам У элементов произведения $H_1...H_{i-1}H_{i+1}...H_k, i$ -я компонента равна e_i Следовательно, у элемента из пересечения все компоненты — нейтральные

5. $H_1H_2...H_k = G$

Доказательство. Элемент $(g_1,...,g_k)$ равен произведению элементов $(e_1,...,g_i,...,e_k) \in H_i$

6. $G/H_i \simeq G_1 \times ... \times G_{i-1} \times G_{i+1} \times ... \times G_k$

Доказательство. Пусть $T := G_1 \times ... \times G_{i-1} \times G_{i+1} \times ... \times G_k$

Определим отображение $f: G \to T$ как

$$f(g_1,...,g_{i-1},g_i,g_{i+1},...,g_k) = \varphi(g_1,...,g_{i-1},g_{i+1},...,g_k)$$

Образ f равен T

Ядро f состоит из элементов, которые φ отображает в $e_T = (e_1, ..., e_{i-1}, e_{i+1}, ..., e_k)$

$$\ker f = \{ (e_1, ..., e_{i-1}, e_{i+1}, ..., e_k) \} = H_i$$

Применяя теорему о гомоморфизме, получаем, что $G/H_i \simeq T$

36. Порядки элементов в прямом произведении. Прямое произведение циклических подгрупп

Лемма 3 (порядки элементов). $G = H_1 \times H_2 \times ... \times H_k, \qquad h_i \in H_i, \qquad g = (h_1, ..., h_k)$

1. $\exists i : \operatorname{ord}_{H_i}(h_i) = \infty \implies \operatorname{ord}_G(g) = \infty$

Доказательство. Пусть e_i — нейтральный элемент H_i , и e — нейтральный элемент G Пусть $\operatorname{ord}(g)$ конечен и равен n

$$(e_1,...,e_k) = e = g^n = (h_1^n,...,h_k^n) \implies h_i^n = e_i \quad \forall n \implies \operatorname{ord}(h_i) \le n -$$

2. $\forall i \quad \operatorname{ord}_{H_i}(h_i)$ конечен $\Longrightarrow \quad \operatorname{ord}_{G}(g) = \operatorname{HOД}\left(\operatorname{ord}_{H_1}(h_1), ..., \operatorname{ord}_{H_k}(h_k)\right)$

Доказательство. Положим $a_i \coloneqq \operatorname{ord}(h_i), \quad n \coloneqq \operatorname{HOД}(a_1,...,a_n)$ Из свойств порядка следует, что

$$h_i^{b_i} = e_i \iff b_i : a_i$$

• Докажем, что $n \ge \operatorname{ord}(g)$: Для этого достаточно проверить, что $g^n = e$

$$n : a_i \quad \forall i \implies q^n = (h_1^n, ..., h_k^n) = (e_1, ..., e_k) = e$$

• Докажем, что $\operatorname{ord}(g) \geq n$:

$$(h_1^{\operatorname{ord}(g)},...,h_k^{\operatorname{ord}(g)}) = g^{\operatorname{ord}(g)} = e = (e_1,...,e_k) \implies h_i^{\operatorname{ord}(g)} = e_i \quad \forall i \implies \\ \Longrightarrow \operatorname{ord}(g) \vdots a_i \implies \operatorname{ord}(g) \vdots n \implies \operatorname{ord}(g) \ge n$$

Теорема 13 (прямое произведение). $a_1,...,a_k\in\mathbb{N}, \qquad G=\mathbb{Z}_{a_1}\times...\times\mathbb{Z}_{a_k}, \qquad a\coloneqq a_1\cdot...\cdot a_k$

- $a_1,...,a_k$ попарно взаимно просты $\implies G \simeq \mathbb{Z}_a$
- $a_1, ..., a_k$ не попарно взаимно просты $\implies G$ не циклическая

Доказательство. Используем аддитивные обозначения:

- ullet Нейтральный элемент группы G это $0=(\overline{0},...,\overline{0})$
- $\bullet \ \ x+x+\ldots+x=s\cdot x$

Выполнено $|G| = a_1...a_k$, следовательно,

$$G$$
 – цикл. $\iff \exists q \in G : \operatorname{ord}(q) = a_1...a_k$

Кроме того,

$$a_1,...,a_k$$
 попарно вз. просты \iff НОД $(a_1,...,a_k) = a_1...a_k$

- $\bullet \ \operatorname{ord}_{H_i}(\overline{1}) = a_i \quad \forall i \implies \operatorname{ord}_G(\overline{1},...,\overline{1}) = \operatorname{HOД}\left(a_1,...,a_k\right) = a_1...a_k$
- Пусть $g \in G$, $g = (h_1, ..., h_k)$ По следствию к теореме Лагранжа,

$$a_i : \operatorname{ord}_{H_i}(h_i) \implies \operatorname{HOД}(a_1, ..., a_k) : \operatorname{ord}_{H_i}(h_i) \implies \operatorname{HОД}(a_1, ..., a_k) \cdot h_i = \overline{0}$$

$$\begin{split} \text{HOД}\left(a_1,...,a_k\right) \cdot g &= \left(\text{HOД}\left(a_1,...,a_k\right) \cdot h_1,..., \text{HOД}\left(a_1,...,a_k\right) \cdot h_k\right) = (\overline{0},...,\overline{0}) = 0 \\ \Longrightarrow \forall g \in G \quad \text{ord}(g) \leq \text{HOД}\left(a_1,...,a_k\right) \leq a_1 a_2 ... a_k \end{split}$$

37. Лемма о нормальных подгруппах с единичным пересечением. Прямое произведение подгрупп

Определение 22. G – группа, $H_1, ..., H_k \triangleleft G$

Говорят, что G является (внутренним) прямым произведением подгрупп $H_1, ..., H_k$ (разложена в произведение подгрупп $H_1, ..., H_k$), если

1.
$$\forall g \in G \quad \exists ! h_1, ..., h_k : g = h_1 ... h_k$$

2.
$$\forall h_i \in H_i, h_j \in H_j \quad h_i h_j = h_j h_i$$

Обозначение. $G = H_1 \times ... \times H_k$

Лемма 4 (нормальные подгруппы с единичным пересечением). $H \lhd G, \quad K \lhd G, \quad H \cap K = \{e\}$ Тогда элементы H коммутируют с элементами K

Доказательство. По свойствам коммутанта,

$$hk = kh \iff [h, k] = e \iff \begin{cases} [h, k] \in H \\ [h, k] \in K \end{cases}$$

Докажем первое включение (второе – аналогично): Запишем коммутант как $h^{-1}(k^{-1}hk)$

$$H \triangleleft G \implies \left\{ \begin{matrix} h^{-1} \in H \\ k^{-1}hk \in H \end{matrix} \right\} \implies h^{-1}(k^{-1}hk) \in H$$

Теорема 14 (прямое произведение двух подгрупп). $H \lhd G, \quad K \lhd G, \quad H \cap K = \{e\}, \quad HK = G$

$$\implies G = H \times K$$

Доказательство. По лемме, элементы H коммутируют с элементами K

Условие G = HK означает, что любой элемент $g \in G$ представим в виде g = hk, $h \in H, k \in K$ Докажем единственность представления:

Пусть $h_1k1 = h_2k_2$, $h_i \in H, k_i \in K$

$$\underbrace{h_2^{-1}h_1}_{\in H} = \underbrace{k_2k_1^{-1}}_{\in K} \xrightarrow{H \cap K = \{e\}} \begin{cases} h_1 = h_2 \\ k_1 = k_2 \end{cases}$$

Теорема 15 (прямое прозведение нескольких подгрупп). $H_1 \triangleleft G, \ldots, H_k \triangleleft G$

$$\forall i \ H_1...H_{i-1} \cap H_i = \{e\}, \ H_1...H_k = G$$

$$\implies G = H_1 \times ... \times H_k$$

Доказательство. Пусть $i \neq j$

• Докажем, что элементы из подгрупп H_i и H_j коммутируют: НУО считаем, что i < j

$$\forall h_i \in H_i \quad h_i = e...eh_i e...e \implies H_i \subset H_1...H_{j-1} \implies H_i \cap H_j = \{\,e\,\} \xrightarrow[\text{лемма}]{}$$
 эл-ты коммутируют

• Докажем, что представление элемента $g \in G$ в виде произвдения $g = h_1 h_2 ... h_k, \quad h_i \ni H_i$ единственно:

Пусть

$$h_1 h_2 ... h_k = h'_1 h'_2 ... h'_k, \qquad h_i, h'_i \in H_i, \qquad \exists s : \begin{cases} h_s \neq h'_s \\ h_i = h'_i & \forall i > s \end{cases}$$

Тогда выполнено

$$h_1h_2...h_s = h'_1h'_2...h'_s$$

Следовательно,

$$(h_1h_1'^{-1})(h_2h_2'^{-1})...(h_{s-1}h_{s-1}'^{-1}) = h_s'h_s^{-1}$$

Этот элемент принадлежит $H_1...H_{s-1} \cap H_s$, следовательно, он равен e. Получили, что

$$h_s'h_s^{-1} = e \implies h_s' = h_s$$

Это противоречит выбору s

38. Разложение конечной циклической группы в прямое произведение двух подгрупп

Теорема 16. G – конечная циклическая группа, |G| = mn, HOД(m,n) = 1 Тогда G можно разложить в прямое произведение двух подгрупп, изоморфных \mathbb{Z}_m и \mathbb{Z}_n

Доказательство. Положим

$$G := \langle a \rangle$$
, $b := a^m$, $c := a^n$, $H := \langle b \rangle$, $K := \langle c \rangle$

• Проверим, что $\operatorname{ord}(b) = n$ и $\operatorname{ord}(c) = m$: Имеем $b^n = a^{mn} = e$

$$\forall 0 < t < n \quad \begin{cases} b^t = a^{mt} \\ 0 < mt < mn \end{cases} \implies a^{mt} \neq e \implies b^t \neq e$$

Для c аналогично

Получаем, что |H| = n, |K| = n

Эти подгруппы циклические, следовательно, $H \simeq \mathbb{Z}_n, K \simeq \mathbb{Z}_m$

- Проверим, что $G = H \times K$:
 - Условие $H, K \triangleleft G$ выполнено, так как любая подгруппа абелевой группы нормальна
 - Проверим, что $H \cap K = \{e\}$: Пусть $x \in H \cap K$ и $x = a^t$

$$\exists\, s, r: \begin{cases} x = b^s = a^{ms} \\ x = c^r = a^{nr} \end{cases} \implies a^{ms} = a^{nr} \implies ms - nr : mn \implies \begin{cases} nr: m \implies r: m \\ ms: n \implies s: n \end{cases}$$

Получили, что ms : mn и $x = a^{ms} = e$

— Докажем, что HK = G:

Элементы произведения HK имеют вид $b^sc^r=a^{ms+nr}$

По теореме о линейном представлении НОД,

$$\exists s_0, r_0 : ms_0 + nr_0 = 1 \implies \forall x \quad a^x = a^{ms_0x + nr_0x} \in HK$$

39. Разложение конечной циклической группы в прямое произведение примарных подгрупп

Теорема 17. G – конечная циклическая группа

Tогда G можно разложить в прямое произведение нескольких примарных подгрупп

Доказательство. Пусть

$$|G|\coloneqq n, \qquad G\coloneqq \langle a\rangle\,, \qquad n\coloneqq p_1^{s_1}...p_k^{s_k}, \quad p_i\in \mathbb{P}, \qquad \forall i \quad q_i\coloneqq \frac{n}{p^{s_i}}, \quad b_i\coloneqq a^{q_i}, \quad H_i\coloneqq \langle b_i\rangle$$

Тогда $\mathrm{ord}(b_i)=p^{s_i},$ и, следовательно, H_i – примарная подгруппа, изоморфная $\mathbb{Z}_{p^{s_i}}$ Докажем, что $G=H_1\times\ldots\times H_k$:

- ullet Условие $H_i \lhd G$ выполнено, так как любая подгруппа абелевой группы нормальна
- Проверим, что $H_1...H_{i-1} \cap H_i = \{e\}$: Пусть x принадлежит пересечению

$$x \in H_1 \dots H_{i-1} \implies x = b_1^{t_1} \dots b_{i-1}^{t_{i-1}} = a^{q_1 t_1 + \dots + q_{i-1} t_{i-1}}, \qquad t_1, \dots, t_{i-1} \in \mathbb{Z}$$

$$x \in H_i \implies xx = b_i^{t_i} = a^{q_i t_i}, \qquad t_i \in \mathbb{Z}$$

$$\implies q_1 t_1 + \dots + q_{i-1} t_{i-1} - q_i t_i \vdots n \vdots p_i^{s_i}$$

Числа $q_1,...,q_{i-1}$ делятся на $p_i^{s_i}$, а значит, q_it_i : n и $x=a^{q_it_i}=e$

• Докажем, что $H_1...H_k=G$: Элементы произведения $H_1...H_k$ имеют вид $a^{q_1t_1+...+q_kt_k}$

$$HOД(q_1,...,q_k) = 1 \implies \forall x \in \mathbb{Z} \quad x = q_1t_1 + ... + q_kt_k, \qquad a^x \in H_1...H_k$$

Следствие. G – циклическая группа, $|G| = m_1 m_2 ... m_k$, $m_1, ..., m_k$ попарно взаимно просты Тогда G можно разложить в прямое произведение подгрупп, изоморфных $\mathbb{Z}_{m_1}, ..., \mathbb{Z}_{m_k}$

Доказательство. Нужные группы – произведения нескольких (или одной) примарных

40. Определение евклидова и унитарного пространства. Углы и расстояния. Неравенство Коши

Обозначение. $\overline{a}= \begin{cases} a & \text{в евклидовом пространстве} \\ \overline{a} & \text{в унитраном пространстве} \end{cases}$

Определение 24. Векторное пространство над $\mathbb R$ будем называть вещественным Векторное пространство над $\mathbb C$ будем называть комплексным

Определение 25. V — вещественое векторное пространство

Скалярным произведением на V называется функция $(\cdot,\cdot):V\times V\to\mathbb{R},$ обладающая следующими свойствами:

- 1. Линейность по первому аргументу: (au + bv, w) = a(u, w) + b(v, w)
- 2. Симметричность: (u, v) = (v, u)
- 3. Положительная определённость: $(v, v) > 0 \quad \forall v \in (V \setminus \{0\})$

Примечание. Из первых двух свойств следует линейность по второму аргументу Из линейности следует, что (v,0)=(0,v)=0

Определение 26. Евклидовым пространством называется конечномерное вещественное векторное пространство со скалярным произведением

Определение 27. V – комплексное векторное пространство

Скалярным произведением на V называется функция $(\cdot,\cdot):V\times V\to\mathbb{C},$ обладающая следующими свойствами:

- 1. Линейность по первому аргументу: (au + bv) = a(u, w) + b(v, w)
- 2. $(u,v) = \overline{(v,u)}$
- 3. Положительная определённость: (v,v) является вещественным положительным числом $\forall v \in (V \setminus \{\, 0\, \})$

Примечание. Скалярное произведение на комплексном пространстве не линейно по второму аргументу, но выполняется равенство:

$$(u, av + bw) = \overline{a}(u, v) + \overline{b}(u, w)$$

Определение 28. Унитарным пространством называется конечномерное комплексное векторное пространство со скалярным произведением

Определение 29. Длина вектора v в евклидовом или унитарном пространстве определяется как

$$|v| = \sqrt{(v,v)}$$

Определение 30. Угол между векторами u и v в евклидовом пространстве определяется как

$$\arccos\left(\frac{(u,v)}{|u|\cdot|v|}\right)$$

Примечание. В унитарном пространстве углы не определяются

Теорема 18 (неравенство Коши). V — евклидово или унитарное пространство

Для любых $u,v \in V$ выполнено

$$|(u,v)|^2 \le (u,u)(v,v)$$

Равенство достигается тогда и только тогда, когда u=sv для некторого $s\in\mathbb{R},\mathbb{C}$ или при v=0

Доказательство. Будем пользоваться линейностью по первому аргументу и равенством $(u, av + bw) = \overline{a}(u, v) + \overline{b}(u, w)$

Пусть $v \neq 0$. Тогда

$$(v,v) > 0, \qquad (v,v) \in \mathbb{R} \tag{3}$$

Положим

$$a\coloneqq (u,u), \qquad b\coloneqq (u,v), \qquad c\coloneqq (v,v), \qquad t\coloneqq \frac{b}{c}$$

Заметим, что (3) $\implies \bar{t}c = \bar{b}$

Применим свойство положительной определённости к вектору u - tv:

$$0 \le (u - tv, u - tv) = (u, u) + (u, -tv) + (-tv, u) + (-tv, -tv) = a - \bar{t}b - \bar{t}b + t\bar{t}c = a - \frac{b\bar{b}}{c} - t(-\bar{b} + \bar{t}c) = a - \frac{|b|^2}{c} - t(-\bar{b$$

Получаем, что $a \ge \frac{|b|^2}{c}$

Умножая на положительное число c, получаем нужное неравенство

Равенство достигается тогда и только тогда, когда (u - tv, u - tv) = 0, т. е. u - tv = 0

Следствие (неравенство Коши-Буняковского). Для любых $x_1,...,x_n,y_1,...,y_n \in \mathbb{R}$ выполнено

$$(x_1y_1 + \dots + x_ny_n)^2 \le (x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2)$$

Следствие (неравенство треугольника). Для любых векторов u,v евклидова или унитарного пространства выполнено $|u+v| \leq |u| + |v|$

Доказательство. Возведём левую часть в квадрат и оценим сверху, пользуясь неравенством Коши:

$$\begin{aligned} |u+v|^2 &= (u+v,u+v) = |(u+v,u+v)| = |(u,u)+(u,v)+(v,u)+(v,v)| \leq \\ &\leq |(u,u)| + |(u,v)| + |(v,u)| + |(v,v)| \underset{\text{(Koiiii)}}{\leq} (u,u) + \sqrt{(u,u)(v,v)} + \sqrt{(u,u)(v,v)} + (v,v) = (|u|+|v|)^2 \end{aligned}$$

41. Матрица Грама: вычисление скалярного произведения, замена базиса

Определение 31. V – евклидово или унитарное пространство размерности n Матрицей Грама для набора $e_1,...,e_n$ называется матрица $\Gamma=(g_{ij})$, где $g_{ij}=e_ie_j$

Определение 32. Матрица с условием $A^T=A$ называется симметричной, а с условием $A^T=\overline{A}$ – эрмитовой

Свойство. Матрица Грама является симметричной (эрмитовой)

Теорема 19 (вычисление скалярного произведения).

V — евклидово (унитарное) пространство с базисом $e_1,...,e_n,$ $\Gamma(g_{ij})$ — матрица Грама в этом базисе

1.
$$\forall \begin{cases} u = x_1 e_1 + \dots + x_n e_n \\ v = y_1 e_1 + \dots + y_n e_n \end{cases} (u, v) = \sum_{i,j} x_i \overline{y_j} g_{ij}$$

Доказательство. В евклидовом и унитарном пространстве выполняется аддитивность по обеим координатам, следовательно,

$$(u,v) = \sum_{i,j} (x_i e_i, y_j e_j) = \sum x_i \overline{y_j} (e_i, e_j) \sum = x_i \overline{y_j} g_{ij}$$

2. $(u,v) = X^T \Gamma \overline{Y}$

Доказательство. Запишем матрицы X^T и Y в стандартном виде $X^T=(x_{ki})$ и $Y=(y_{il})$ Тогда $x_{1i}=x_i$ и $y_{j1}=y_j$

Применим формулу произведения трёх матриц к $X\Gamma\overline{Y}$:

Произведение – матрица 1 × 1, её единственный элемент равен $\sum_{i,j} x_{1i} \overline{g_{ij}} y_{j1}$

3. Если для матрицы Γ' выполнено $(u,v)=X^T\Gamma'\overline{Y},$ то Γ' является матрицей Γ рама

Доказательство. Пусть $\Gamma=(g_{ij})$ и $\Gamma'=(g'_{ij})$

Возьмём $u = e_i, \ v = e_i$

Тогда X и Y – векторы, у которых i-я и j-я координаты равны 1, а остальные – 0

Перемножая матрицы получаем, что $(e_j, e_i) = g'_{ij}$

Теорема 20 (замена базиса). Дано евклидово (унитарное) пространство Γ, Γ' – матрицы Γ рама в базисах e_i и e_i' , C – матрица перехода от e_i к e_i'

$$\implies \Gamma' = C^T \Gamma \overline{C}$$

Доказательство. Положим $\Gamma'' \coloneqq C^T \Gamma \overline{C}$

Пусть u, v – векторы, X, X', Y, Y' – их столбцы координат в базисах e_i, e'_i . Тогда

$$X = CX', \qquad Y = CY', \qquad (u, v) = X^T \Gamma \overline{Y}$$

Нужно проверить, что $(u, v) = (X')^T \Gamma'' \overline{Y'}$. Подставим:

$$X^T \Gamma \overline{Y} = (CX')^T \Gamma (\overline{CY'}) = X' C^T \Gamma \overline{CY'} = X' \Gamma'' \overline{Y'}$$

42. Свойства ортогональных векторов. Процесс ортогонализации Грама-Шмидта

Определение 33. Векторы u и v евклидова (унитарного) пространства называются ортогональными, если (u,v)=0

Обозначение. $u \perp v$

Свойства.

1. $u\perp v\implies v\perp u$ Доказательство. $(v,u)=\overline{(u,v)}=\overline{0}=0$

- 2. Если u ортогонален векторам $v_1,...,v_n$, то он ортогонален любой их линейной комбинации **Доказательство.** $(a_1v_1+...+a_kv_k,\ u)=a_1(v_1,u)+...+a_k(v_k,u)=a_1\cdot 0+...+a_k\cdot 0=0$
- 3. Если u ортогонален любому вектору, то u = 0 Доказательство. $u \perp u \implies (u, u) = 0 \implies u = 0$
- 4. Если u ортогонален всем векторам некоторого базиса, то u=0 Доказательство. Следует из предыдущих двух
- 5. $e_1,...,e_k$ базис, u,v некоторые векторы Если $\forall i \quad (u,e_i)=(v,e_i),$ то u=v Доказательство. Применим предыдущее свойство к (u-v)
- 6. Попарно ортогональные ненулевые векторы ЛНЗ

Доказательство. Пусть $a_1e_1 + ... + a_ke_k = 0$. Тогда

$$\forall i$$
 $0 = (a_1e_1 + ... + a_ke_k, e_i) = a_i(e_i, e_i) \implies a_i = 0$

Теорема 21 (ортогонализация Грама-Шмидта). $u_1, ..., u_n$ – ЛНЗ в евклидовом (унитарном) пр-ве Тогда существуют попарно ортогональные векторы $x_1, ..., x_n$, такие, что

$$\langle x_1, ..., x_i \rangle = \langle u_1, ..., u_i \rangle \quad \forall i$$

Доказательство.

- Положим $x_1 \coloneqq u_1$
- Пусть уже построены ортогональные векторы $x_1, ..., x_k$, такие, что

$$\langle x_1, ..., x_i \rangle = \langle u_1, ..., u_i \rangle \quad \forall i < k$$

Заметим, что $x_i \neq 0 \quad \forall i$,т. к.

$$\dim \langle x_1, ..., x_{i-1}, 0 \rangle = \dim \langle x_1, ..., x_{i-1} \rangle \le i - 1 < i = \dim \langle u_1, ..., u_i \rangle$$

Докажем, что сущестует вектор x_{k+1} , такой, что

$$\begin{cases}
 x_{k+1} \perp v_i & \forall i \leq k \\ \langle x_1, ..., x_k, x_{k+1} \rangle = \langle u_1, ..., u_k, u_{k+1} \rangle
\end{cases}$$
(4)

Будем искать x_{k+1} в виде

$$x_{k+1} = u_{k+1} - a_1 x_1 - \dots - a_k x_k$$

где $a_1, ..., a_k$ – скаляры

Выполнено $\langle u_1,...,u_i,u_{k+1}\rangle=\langle x_1,...,x_i,u_{k+1}\rangle$ и для любых скаляров $a_1,...,a_k$ выполнено

$$\langle x_1, ..., x_i, u_{k+1} \rangle = \langle x_1, ..., x_i, u_{k+1} - a_1 x_1 - ... - a_k x_k \rangle$$

Следовательно, для любого набора $a_1, ..., a_k$ выполнено условие (5)

Найдём такой набор, для которого выполнено условие (4):

Запишем скалярное произведение:

$$(x_{k+1}, x_i) = (u_{k+1} - a_1 x_1 - \dots - a_i x_i - \dots - a_k x_k, x_i) =$$

$$= (u_{k+1}, x_i) - a_1(x_1, x_i) - \dots - a_i(x_i, x_i) - \dots + a_k(x_k, x_i) = (u_{k+1}, x_i) - a_1 \cdot 0 - \dots - a_i(x_i, x_i) - \dots - a_k \cdot 0 =$$

$$= (u_{k+1}, x_i) + a_i(x_i, x_i)$$

Подойдут скаляры

$$a_i = \frac{(u_{k+1}, x_i)}{(x_i, x_i)}$$

Определение 34. Вектор называтся нормированным, если его длина равна 1

Определение 35. Базис называется ортонормированным, если он состоит из попарно ортогональных нормированных векторов

Следствие. V — евклидово или унитарное пространство

- 1. Существует ОНБ пространства V
- 2. U подпространство V Тогда существует ОНБ $e_1,...,e_n$ пространства V, такой, что при некотором $k \leq n$ векторы $e_1,...,e_k$ образуют базис U

43. Ортогональное дополнение

Определение 36. V — евклидово или унитарное пространство, U — подпространство V Ортогональным дополнением к подпространству V называется множество

$$U^{\perp} \coloneqq \{ x \mid x \perp u \quad \forall u \in U \}$$

Свойства. V – евклидово или унитарное пространство, U, W – подпространства V

1. U^{\perp} является подпространством

Доказательство. $x \in U^{\perp} \iff (x,u) = 0 \quad \forall u \in U$ Применим линейность

2. $U \oplus U^{\perp} = V$

Доказательство. Достаточно доказать, что существуют такие базисы U и U^{\perp} , что их объединение является базисом V

Выберем ОНБ $e_1....,e_k,g_1,...,e_m$ пространства V так, что $e_1,...,e_k$ – базис U

Докажем, что g_i – базис U^{\perp}

Проверим, что g_i порождают U^{\perp} :

Пусть $v \in U^{\perp}$

Разложим v по базису всего пространства: $v = \sum x_i e_i + \sum y_i g_i$

$$x_i = (v, e_i) = 0 \quad \forall i$$

Следовательно, $v = \sum y_i g_i$

Набор векторов g_i является ЛНЗ, т. к. это – подмножество базиса

Следовательно, векторы g_i образуют базис U^{\perp}

3. $\dim U + \dim U^{\perp} = \dim V$

Доказательство. Следует из предыдущего

4. $(U^{\perp})^{\perp} = U$

Доказательство. Любой вектор из U ортогонален всем векторам из U^{\perp}

Следовательно, $U \subset U^{\perp}$

Применяя предыдущее к U и U^{\perp} , получаем, что

 $\dim U + \dim U^{\perp} = \dim V = \dim U^{\perp} + \dim(U^{\perp})^{\perp} \implies \dim(U^{\perp})^{\perp} = \dim U$

5. $U \subset W \implies W^{\perp} \subset U^{\perp}$

Доказательство. Если $v \in W^{\perp}$, то он ортогонален всем векторам из W

Следовательно, он ортогонален всем векторам из U

6. $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$

Доказательство.

• С Применим предыдущее:

$$\begin{array}{c} U \subset (U+W) \implies (U+W)^{\perp} \subset U^{\perp} \\ W \subset (U+W) \implies (U+W)^{\perp} \subset W^{\perp} \end{array} \} \implies (U+W)^{\perp} \subset (U^{\perp} \cap W^{\perp})$$

• 🗆

Пусть $v \in (U^{\perp} \cap W^{\perp})$

Нужно доказать, что v ортогонален любому вектору из (U+W), т. е.

$$v \perp (u+w) \quad \forall u \in U, w \in W$$

Это следует из того, что $v\perp u$ и $v\perp w$

7. $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$

Доказательство. Применим предыдущее к U^{\perp} и W^{\perp} и воспользуемся (4):

$$(U^{\perp} + W^{\perp})^{\perp} = (U^{\perp})^{\perp} \cap (W^{\perp})^{\perp} = U \cap W$$

Возьмём ортогональное дополнение к обеим частям, получим нужное равенство

Определение 37. V – евклидово или унитарное пространство,

U – подпространство V,

 $v \in V$

Проекцией вектора v на подпространство U называется такой вектор p, что

$$\begin{cases} p \in U \\ v - p \in U^{\perp} \end{cases}$$

Вектор (v-p) называется ортогональным дополнением

Свойство. Для любых v и U существует единственная проекция v на U

Доказательство. Утверждение следует из того, что $U \oplus U^{\perp} = V$

44. Ортогональные и унитарные матрицы

Определение 38. Квадратная матрица A с вещественными элементами называется ортогональной, если $AA^T = E$

Квадратная матрица A с комплексными элементами называется унитарной, если $A\overline{A}^T=E$

Свойства.

1. Ортогональные (унитарные) матрицы порядка n образуют группу по умножению

Доказательство. Докажем для унитарных:

Нужно доказать два утверждения:

(a) если A и B — унитарные матрицы, то AB — унитарная матрица

$$(AB)(\overline{AB})^T = AB\overline{B}^T \overline{A}^T = AE\overline{A}^T = A\overline{A}^T = E$$

(b) если A – унитарная матрица, то A обратима и A^{-1} является унитарной матрицей Из равенства $A\overline{A}^T=E$ следует, что A обратима, и $A^{-1}=\overline{A}^T$ Проверим, что A^{-1} унитарна:

$$A^{-1}\overline{A^{-1}}^T = \overline{A}^T \overline{(\overline{A}^T)}^T = \overline{A}^T A = E$$

ими

2. A – квадратная матрица порядка n с вещественными (комплексными) элементами Следующие условия равносильны:

- (a) A ортогональная (унитарная)
- (b) строки A образуют ОНБ \mathbb{R}^n (\mathbb{C}^n)
- (c) столбцы A образуют ОНБ \mathbb{R}^n (\mathbb{C}^n)

Доказательство.

• Докажем $2a \iff 2b$ для унитарной матрицы: Пусть $X_1,...,X_n$ – строки A и $B \coloneqq A\overline{A}^T, \quad B = (b_{ij})$ Тогда $\overline{X_1}^T,...,\overline{X_n}^T$ – столбцы $\overline{A}^T,$ и

$$b_{ij} = X_i \overline{X_j}^T = (X_i, X_j)$$

Таким образом,

$$A$$
 – унитарная $\iff B = E \iff b_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \iff X_i$ – ОНБ

- \bullet Доказательство $2a \iff 2c$ аналогично, нужно рассмотреть равенство $\overline{A}^TA = E$
- 3. u_i ОНБ, v_i базис, C матрица перехода $u_i \to v_i$ C ортогональная (унитарная) $\iff v_i$ ОНБ

Доказательство. Докажем для унитарной Пусть $C = (c_{ij})$, и C_i – это i-й столбец матрицы C, то есть

Запишем (v_i, v_j) и воспользуемся тем, что u_i – OHБ:

$$(v_i,v_j) = (c_{1i}u_1 + \ldots + c_{ni}u_n, \ c_{1j}u_1 + \ldots + c_{nj}u_n) = \sum_{s,t} c_{ti}\overline{c_{tj}}\underbrace{(u_s,u_t)}_{=1} = c_{1i}\overline{c_{1j}} + \ldots + c_{ni}\overline{c_{nj}} = C_i^T\overline{C_j}$$

Следвательно, v_i – ОНБ $\iff C_i$ – ОНБ в \mathbb{C}^n

Применяя предыдущее свойство, получаем нужное утверждение

45. Сопряжённый оператор

Напоминание. Оператором на векторном пространстве V называется линейное отображение V o V

Обозначение. Будем обозначать операторы в евклидовом или унитарном пространстве (если не обговорено другое) буквами $\mathcal{A}, \mathcal{B}, ...,$ а их матрицы в некотором базисе – буквами $\mathcal{A}, \mathcal{B}, ...$

Обозначение. В записи A(x) будем опускать скобки и писать Ax

Напоминание. Столбцы матрицы A – это столбцы координат векторов $\mathcal{A}e_i$ в выбранном базисе Выполнено равенство $AX = \mathcal{A}x$, где X – столбец координат вектора x

Определение 39. \mathcal{B} называется сопряжённым к \mathcal{A} , если

$$(\mathcal{A}x, y) = (x, \mathcal{B}y) \quad \forall x, y$$

Обозначение. \mathcal{A}^*

Теорема 22 (существование и единственность сопряжённого оператора).

- 1. Для любого $\mathcal A$ существует единственный $\mathcal A^*$
- 2. Пусть выбран базис, и Г матрица Грама в этом базисе

$$A^* = \overline{\Gamma^{-1}A^T\Gamma}$$

Доказательство. Докажем два утверждения:

• Если \mathcal{B} – оператор, заданный формулой из (2), то ($\mathcal{A}x, y$) = $(x, \mathcal{B}y) \forall x, y$ Будем доказывать для унитарного пространства Пусть X, Y – столбцы координат векторов x, y

$$(\mathcal{A}x, y) = (AX)^T \Gamma \overline{Y} = X^T A^T \Gamma \overline{Y}$$

$$(x, \mathcal{B}y) = X^T \Gamma \overline{BY} = X^T \Gamma \overline{\Gamma^{-1} A^T \Gamma Y} = X^T \Gamma \Gamma^{-1} A^T \Gamma \overline{Y} = X^T A^T \Gamma \overline{Y}$$

• Если $\mathcal{B}_1, \mathcal{B}_1$ – такие операторы, что $\begin{cases} (\mathcal{A}x,\ y) = (x,\ \mathcal{B}_1y) \\ (\mathcal{A}x,\ y) = (x,\ \mathcal{B}_2y) \end{cases} \forall x,y, \text{ то } \mathcal{B}_1 = \mathcal{B}_2$

$$0 = (x, \mathcal{B}_1 y) - (x, \mathcal{B}_2 y) = \left(x, (\mathcal{B}_1 y - \mathcal{B}_2 y)\right) \quad \forall x, y$$

Вектор $(\mathcal{B}_1y - \mathcal{B}_2y)$ ортогонален любому вектору $x \in V$, значит, он равен 0, и $\mathcal{B}_1y = \mathcal{B}_2y$

Определение 40. Подпространство U называется инвариантным для A, если

$$\forall x \in U \quad \mathcal{A}x \in U$$

Свойства.

1. В случае ОНБ выполнено $A* = \overline{A}^T$ Доказательство. В ОНБ выполнено $\Gamma = E$

2. $(A^*)^* = A$

Доказательство. Нужно проверить, что \mathcal{A} является сопряжённым к \mathcal{A}^* , то есть

$$(\mathcal{A}^*x, y) = (x, \mathcal{A}y) \quad \forall x, y$$

Левая часть равна $\overline{(y,~\mathcal{A}^*x)}$, правая – $\overline{\mathcal{A}y,~x}$

Они равны по определению сопряжённого оператора, применённого к паре y, x

3. (полуторалинейность)

$$\begin{cases} (\mathcal{A} + \mathcal{B})^* = \mathcal{A}^* + \mathcal{B}^* \\ (k\mathcal{A})^* = \overline{k}\mathcal{A}^* \quad \forall k \in \mathbb{R}(\mathbb{C}) \end{cases}$$

Доказательство.

• Докажем второе равенство: Проверим, что оператор $\bar{k}\mathcal{A}^*$ является сопряжённым к $k\mathcal{A}$:

$$\left((k\mathcal{A})x,\ y\right) = \left(k(\mathcal{A}x),\ y\right) = k(\mathcal{A}x,\ y) = k(x,\ \mathcal{A}^*y) = \left(x,\ \overline{k}\mathcal{A}^*y\right) = \left(x,\ (\overline{k}\mathcal{A}^*)y\right)$$

• Первое равенство доказывается аналогично

4. $(\mathcal{A}\mathcal{B})^* = \mathcal{B}^*\mathcal{A}^*$

Доказательство.

$$\left((\mathcal{A}\mathcal{B})x,\ y \right) = \left(\mathcal{A}(\mathcal{B}x),\ y \right) = \left(\mathcal{B}x,\ \mathcal{A}^*y \right) = \left(x,\ \mathcal{B}^*(\mathcal{A}^*y) \right) = \left(x, (\mathcal{B}^*\mathcal{A}^*)y \right)$$

Значит, $\mathcal{B}^*\mathcal{A}^*$ является сопряжённым к $\mathcal{A}\mathcal{B}$

5. Если U инвариантно для $\mathcal{A},$ то U^{\perp} инвариантно для \mathcal{A}^*

Доказательство. Пусть $y \in U^{\perp}$

Нужно доказать, что $\mathcal{A}^*y\in U^\perp$, то есть $\mathcal{A}^*y\perp x\quad \forall x\in U$ Тогда

$$\forall x \in U \quad \mathcal{A}x \in U \implies y \perp \mathcal{A}x$$

Запишем скалярное произведение:

$$0 = (\mathcal{A}x, y) = (x, \mathcal{A}^*y) \implies \mathcal{A}^*y \perp x$$

Обозначение. \mathcal{E} – тождественный оператор

Определение 41. ${\cal A}$ называется

- Нормальным, если $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$
- Ортогональным (унитарным), если $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A} = \mathcal{E}$
- Самосопряжённым, если $\mathcal{A} = \mathcal{A}^*$

Определение 42. Матрица A называется нормальной, если $A\overline{A}^T = \overline{A}^T A$

46. Собственные числа и собственные векторы

В этом вопросе рассматривается проивольное векторное пространство над произвольным полем

Определение 43. \mathcal{A} – оператор, действующий на векторном пространстве V

Число λ называется собственным числом \mathcal{A} , если существует ненулевой вектор v, такой, что $\mathcal{A}v = \lambda v$ Если λ – с. ч. \mathcal{A} , то любой вектор, удовлетворяющий условию $\mathcal{A}v = \lambda v$, называется собственным вектором \mathcal{A} , соотвестсвующим λ

Определение 44. А – квадратная матрица

Число λ называется собственным числом A, если существует ненулевой столбец X, такой, что $AX = \lambda X$

Если λ – с. ч. A, то любой столбец X, удовлетворяющий условию $AX=\lambda X$, называется собственным столбцом A, соотвестсвующим λ

Определение 45. А – квадратная матрица

Характеристическим многочленом A называется многочлен от t, равный $\det(A-tE)$

Обозначение. $\chi(t), \chi_A(t)$

Свойства. $A = (a_{ij})$ – матрица порядка n, и $\chi(t)$ – её характеристический многочлен

- 1. $\chi(t)$ является многочленом
- 2. $\deg \chi = n$
- 3. Старший коэффициент $\chi(t)$ равен $(-1)^n$
- 4. Свободный член равен $\det A$

Доказательство. Подставим t = 0

5. Коэффициент при t^{n-1} равен $(-1)^{n-1}(a_{11}+...+a_{nn})$ Доказательство. Без доказательства

Теорема 23 (о корнях характеристического многочлена). Число λ является с. ч. матрицы A тогда и только тогда, когда оно является корнем характеристического многочлена A

Доказательство.

$$\lambda$$
 является с. ч. $\iff \exists x_1, ..., x_n \\ \text{не все равны нулю} : \begin{pmatrix} a_{11} & ... & a_{1n} \\ . & . & . \\ a_{n1} & ... & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ . \\ . \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ . \\ . \\ x_n \end{pmatrix} \iff$

$$\iff \text{система} \begin{cases} a_{11}x_1 + \ldots + a_{1n}x_n = \lambda x_1 \\ \ldots \\ a_{11}x_1 + \ldots + a_{nn}x_n = \lambda x_n \end{cases}$$
 имеет ненулевое решение \iff система
$$\begin{cases} (a_{11} - \lambda)x_1 + \ldots + a_{1n}x_n = 0 \\ \ldots \\ a_{11}x_1 + \ldots + (a_{nn} - \lambda)x_n = 0 \end{cases}$$
 имеет ненулевое решение \iff

$$\iff$$
 система
$$\begin{cases} (a_{11} - \lambda)x_1 + \dots + a_{1n}x_n = 0 \\ \dots & \text{имеет ненулевое решение} \end{cases}$$

ightarrow однородная система с матрицей $(A-\lambda E)$ имеет ненулевое решение

Если $\det(A - \lambda E) \neq 0$, то по теореме Крамера, система имеет единственное решение Это решение – $x_1 = ... = x_n = 0$

• Если $det(A - \lambda E) = 0$, то $rk(A - \lambda E) \le n - 1 < n$ По теореме о пространстве решений однородной системы, размерность пространства решений не равна 0, и, следовательно, пространство решений не равно { 0 } Значит, в этом случае система имеет ненулевое решение

Определение 46. \mathcal{A} – оператор на конечномерном векторном пространстве VХарактеристическим многочленом $\mathcal A$ называется характеристический многочлен его матрицы в произвольном базисе

Обозначение. χA

Свойства.

1. Характ. многочлен не зависит от выбора базиса

Доказательство. Пусть A, B – матрицы оператора в разных базисах, C – матрица перехода от первого базиса ко второму Тогда $B = C^{-1}AC$

$$B - tE = C^{-1}AC - C^{-1}(tE)C = C^{-1}(A - tE)C$$

$$\chi_B(t) = \det(B - tE) = \det(C^{-1}) \det(A - tE) \det(C) = \det(A - tE) = \chi_A(t)$$

2. С. ч. оператора на конечномерном пространстве совпадают с корнями его характ. многочлена Доказательство. С. ч. оператора совпадают с с. ч. его матрицы в произвольном баисе, т. к. если X – столбец координат v, то

$$Av = \lambda v \iff AX = \lambda X, \qquad v \neq 0 \iff X \neq 0$$

Определение 47. λ – с. ч. оператора \mathcal{A} , действующего на пространстве V Собственным подпространством \mathcal{A} , соответствующим λ , называется множество с. в., соответствующих λ

Обозначение. V_{λ}

Свойство. V_{λ} является подпространством

47. Свойства нормального оператора

Свойства. \mathcal{A} – нормальный оператор в евклидовом или унитарном пространстве

1.
$$\forall x \ (\mathcal{A}x, \ \mathcal{A}x) = (\mathcal{A}^*x, \ \mathcal{A}^*x)$$
, то есть $|\mathcal{A}x| = |\mathcal{A}^*x|$

Доказательство. $(\mathcal{A}x, \ \mathcal{A}x) = (x, \ \mathcal{A}^*\mathcal{A}x) = (x, \ \mathcal{A}\mathcal{A}^*x) = (\mathcal{A}^*x, \ \mathcal{A}^*x)$

 $2. \ v$ – скаляр

Тогда $\mathcal{A}-v\mathcal{E}$ – тоже нормальный оператор

Доказательство. Положим $\mathcal{B} \coloneqq \mathcal{A} - \lambda \mathcal{E}$

Тогда $\mathcal{B}^* = \mathcal{A}^* - \overline{\lambda}\mathcal{E}$

Подставим:

$$(\mathcal{B}\mathcal{B}^*)(x) = \mathcal{B}(\mathcal{B}^*x) \stackrel{\text{def}}{=} \mathcal{B}(\mathcal{A}^*x - \overline{\lambda}\mathcal{E}x) = \mathcal{B}(\mathcal{A}^*x - \overline{\lambda}x) \stackrel{\text{def}}{=}$$
$$= \mathcal{A}(\mathcal{A}^*x - \overline{\lambda}x) - \lambda(\mathcal{A}^*x - \overline{\lambda}x) = \mathcal{A}(\mathcal{A}^*x) - \overline{\lambda}\mathcal{A}x - \lambda\mathcal{A}^*x + \lambda\overline{\lambda}x$$

$$(\mathcal{B}^*\mathcal{B})(x) = \mathcal{B}^*(\mathcal{B}x) \stackrel{\text{def}}{=} \mathcal{B}^*(\mathcal{A}x - \lambda \mathcal{E}x) = \mathcal{B}^*(\mathcal{A}x - \lambda x) \stackrel{\text{def}}{=}$$
$$= \mathcal{A}^*(\mathcal{A}x - \lambda x) - \overline{\lambda}(\mathcal{A}x - \lambda x) = \mathcal{A}(\mathcal{A}^*x) - \lambda \mathcal{A}^*x - \overline{\lambda}\mathcal{A}x + \overline{\lambda}\lambda x$$

3. λ – с. ч. оператора \mathcal{A}

Тогда $\overline{\lambda}$ является с. ч. \mathcal{A}^* , и собств. подпр-во λ для \mathcal{A} равно собств. подпр-ву $\overline{\lambda}$ для \mathcal{A}^*

Доказательство. Нужно доказать, что $Av = \lambda v \iff A^*v = \lambda x$

Положим $\mathcal{B} \coloneqq \mathcal{A} - \lambda \mathcal{E}$

Тогда $\mathcal{B}^* = \mathcal{A}^* - \overline{\lambda}\mathcal{E}$

Нужно доказать, что $\mathcal{B}x = 0 \iff \mathcal{B}^*x = 0$

По (2), оператор \mathcal{B} нормальный. Применим (1):

$$\mathcal{B}x = 0 \iff |\mathcal{B}x| = 0 \iff |\mathcal{B}^*x| = 0 \iff \mathcal{B}^*x = 0$$

4. С. в. A, относящиеся к разным с. ч., ортогональны

Доказательство. Пусть x, y – с. в. \mathcal{A} , соответствующие с. ч. λ, μ , где $\lambda \neq \mu$

Тогда x,y – с. в. \mathcal{A}^* , соответствующие с. ч. $\overline{\lambda},\overline{\mu}$

Преобразуем (Ax, y) двумя способами:

$$\begin{cases} (\mathcal{A}x, \ y) = (\lambda x, y) = \lambda(x, y) \\ (\mathcal{A}x, \ y) = (x, \ \mathcal{A}^*y) = (x, \overline{\mu}u) = \mu(x, y) \end{cases}$$

Из того, что $\lambda(x,y) = \mu(x,y)$, следует, что (x,y) = 0

48. Диагонализуемость нормального оператора. Следствия (без доказательства)

Теорема 24. \mathcal{A} – нормальный оператор в унитарном пространстве

Тогда существует ОНБ, состоящий из с. в. оператора ${\mathcal A}$

То есть, существует ОНБ, в котором матрица этого оператора диагональна

Доказательство. Индукция по размерности пространства

База. $\dim = 1$ – очевидно

Переход

У оператора $\mathcal A$ существует хотя бы одно с. ч. λ_1 , т. к. характ. многочлен $\chi_{\mathcal A}$ имеет корень в $\mathbb C$

Пусть e_1 – с. в. \mathcal{A} , соотв. λ_1 , такой, что $|e_1|=1$

Тогда e_1 является с. в. и для \mathcal{A}^*

Положим $U := \langle e_1 \rangle$

Тогда U инвариантно для \mathcal{A} и \mathcal{A}^* , и, следовательно, \mathcal{U}^T инвариантно для \mathcal{A} и \mathcal{A}^*

Положим $\mathcal{B}\coloneqq\mathcal{A}\Big|_{U}$

Тогда \mathcal{A}^* является сопряжённым к \mathcal{B} на U^\perp , т. .к равенство из определения сопряжённого оператора выполнено на подпространстве

По индукционному предположению, в U^{\perp} существует ОНБ из с. в. \mathcal{B}

Эти векторы являются собств. для \mathcal{A} , и все они ортогональны e_1

Следствие (канонический вид матрицы нормального оператора). A — нормальная матрица в унитарном пространстве

Тогда существует унитарная матрица C, такая, что матрица $C^{-1}AC$ диагональна

Следствие (унитарный оператор). \mathcal{A} – нормальный оператор, λ_i – с. ч. \mathcal{A} – унитарный $\iff |\lambda_i| = 1 \quad \forall i$