

Algorithm Efficiency Analysis

Objectives

At the end of the class, students are expected to be able to do the following:

- Know how to measure algorithm efficiency.
- Know the meaning of big O notation and determine the notation in algorithm analysis.

Algorithm analysis

- Study the efficiency of algorithms when the input size grow based on the number of steps, the amount of computer time and space.
- Is a major field that provides tools for evaluating the efficiency of different solutions.
- What is an efficient algorithm?
 - ✓ Faster is better (Time) How do you measure time? Wall clock? Computer clock?
 - ✓ Less space demanding is better But if you need to get data out of main memory it takes time

Analysis of algorithms

Algorithm analysis should be independent of :

- Specific implementations and coding tricks (programming language, control statements -Pascal, C, C++, Java)
- Specific Computers (hardware chip, OS, clock speed)
- Particular sets of data (string, int, float).

But size of data should matter

Analysis of algorithms

For a particular problem size, we may be interested in:

 Worst-case efficiency: Longest running time for any input of size n

A determination of the maximum amount of time that an algorithm requires to solve problems of size n

 Best-case efficiency: Shortest running time for any input of size n

A determination of the minimum amount of time that an algorithm requires to solve problems of size n

 Average-case efficiency: Average running time for all inputs of size n

A determination of the average amount of time that an algorithm requires to solve problems of size n.

Complexity of algorithm

- Complexity time can be represented by big 'O' notation
- Big 'O' notation is denoted as: O(acc)
 whereby:
 - ✓ O order
 - ✓ acc class of algorithm complexity
- Big O notation example:

```
O(1), O(log_x n), O(n), O(n log_x n), O(n^2)
```


Notation	Execution time/ number of step
O(1)	Constant function, independent of input size, n. Example: Finding the first element of a list.
O(logxn)	Problem complexity increases slowly as the problem size increases. Squaring the problem size only doubles the time. Characteristic: Solve a problem by splitting into constant fractions of the problem (e.g., throw away ½ at each step)
O(n)	Problem complexity increases linearly with the size of the input, n Example: counting the elements in a list.

Notation	Execution time/ number of step
O(nlogxn)	Log-linear increase - Problem complexity increases a little faster than n Characteristic: Divide problem into sub problems that are solved the same way.
	Example: Merge sort
O(n ²)	Quadratic increase. Problem complexity increases fairly fast, but still manageable Characteristic: Two nested loops of size n
O(n ³)	Cubic increase. Practical for small input size, n.
O(2 ⁿ)	Exponential increase - Increase too rapidly to be practical Problem complexity increases very fast Generally unmanageable for any meaningful n Example: Find all subsets of a set of n elements

Order-of-Magnitude Analysis and Big O Notation

A comparison of growth-rate functions in tabular form

	n					
	ر ا ۱	100	1 000	10.000	100.000	1 000 000
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
$\log_2 n$	3	6	9	13	16	19
n	10	10 ²	10³	104	105	10 ⁶
$n * \log_2 n$	30	664	9,965	105	10 ⁶	10 ⁷
n^2	10²	104	10 ⁶	10 ⁸	1010	10 ¹²
n^3	10³	10 ⁶	10 ⁹	1012	1015	10 ¹⁸
2 ⁿ	10³	10 ³⁰	1030	1 103,0	10 10 30,	103 10 301,030

Order-of-Magnitude Analysis and Big O Notation

A comparison of growth-rate functions in graphical form

Order of increasing complexity

 $O(1) < O(\log_x n) < O(n) < O(n \log_2 n) < O(n^2) < O(n^3) < O(2^n)$

Notasi	n = 8	n = 16	n = 32
O(log₂n)	3	4	5
O(n)	8	16	32
O(n log₂n)	24	64	160
O(n²)	64	256	1024
$O(n^3)$	512	4096	32768
O(2 ⁿ)	256	65536	4294967296

Example of algorithm (only for cout operation):

Notation	Code
O(1)	int counter = 1; cout << "Arahan cout kali ke " << counter << "\n";
O(log _x n)	<pre>int counter = 1; int i; for (i = x; i <= n; i = i * x) { // x must be > than 1 cout << "Arahan cout kali ke " << counter << "\n"; counter++; }</pre>
O(n)	<pre>int counter = 1; int i; for (i = 1; i <= n; i++) { cout << "Arahan cout kali ke " << counter << "\n"; counter++; }</pre>

innovative • entrepreneurial • global

Notation	Code
O(n ²)	int counter = 1; int i, j;
	for (i = 1 ; i <= n; i++) {
	for (j = 1 ; j <= n; j++) {
	cout << "Arahan cout kali ke " <<
	counter << "\n";
	counter++;
	}
	}

ľ	Notation	Code
	O(n ³)	<pre>int counter = 1; int i, j, k; for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { for (k = 1; k <= n; k++) { cout << "Arahan cout kali ke " <<</pre>
		<pre>counter << "\n"; counter++; } }</pre>

Notation	Code
O(2 ⁿ)	<pre>int counter = 1; int i = 1, j = 1; while (i <= n) { j = j * 2; i++; }</pre>
	<pre>for (i = 1; i <= j; i++) { cout << "Arahan cout kali ke " << counter << "\n"; counter++; }</pre>

Determine the complexity time of algorithm

Can be determined

- Theoretically by calculation
 The complexity time is related to the number of steps/ operations
 - ✓ Count the number of steps and then find the class of complexity @
 - ✓ Find the complexity time for each steps and then count the total
- Practically by experiment or implementation
 - ✓ Implement the algorithms in any programming language and run the programs
 - ✓ Depend on the compiler, computer, data input and programming style.

It can be expressed by summation series

$$\sum_{i=1}^{n} f(i) = f(1) + f(2) + \ldots + f(n) = n$$

where:

f(i) – Statement executed in the loop

Example 1: If n = 5, i = 1

$$\sum_{i=1}^{5} f(i) = f(1) + f(2) + f(3) + f(4) + f(5) = 5$$

The statement that represented by **f(i)** will be **repeated 5 times**

Example 2: If n = 5, i = 3

$$\sum_{i=3}^{5} f(i) = f(3) + f(4) + f(5) = 3$$

The statement that represented by **f(i)** will be **repeated 3 times**

Example 3: If n = 1, i = 1

$$\sum_{i=1}^{1} f(i) = f(1) = 1$$

The statement that represented by **f(i)** will be **executed only once**

Statements	Number of steps
int counter = 1;	$\sum_{i=1}^{1} f(i) = 1$
int i = 0;	$\sum_{i=1}^{1} f(i) = 1$
for (i = 1; i <= n; i++) {	$\sum_{i=1}^{n} f(i) = n$
<pre>cout << "Arahan cout kali ke " << counter << "\n";</pre>	$\sum_{i=1}^{n} f(i) \sum_{i=1}^{1} f(i) = n.1$ = n
counter++;	$\sum_{i=1}^{n} f(i) \sum_{i=1}^{1} f(i) = n.1$ = n
}	0
Total Steps	2 + 3n
Complexity Time	O(n)

Algorithm	Number of steps
void sample4 () {	0
for (int a=2; a<=n; a++)	n – 2 + 1 = n - 1
<pre>cout << "Example of step calculation";</pre>	(n - 1).1 = n - 1
}	0
Total Steps	2(n – 1)
Complexity Time	O(n)

Algorithm	Number of steps
void sample5 () {	0
for (int a=1; a<=n-1; a++)	n - 1 - 1 + 1 = n - 1
<pre>cout << "Example of step calculation";</pre>	(n - 1).1 = n - 1
}	0
Total Steps	2(n – 1)
Complexity Time	O(n)

Algorithm	Number of steps
void sample6 () {	0
for (int a=1; a<=n; a++)	n - 1 + 1 = n
for (int b=1; b<=n; b++)	n.(n - 1 + 1) = n.n
<pre>cout << "Example of step calculation";</pre>	n.n.1 = n.n
}	0
Total Steps	n + 2n ²
Complexity Time	O(n²)

Algorithm	Number of steps
void sample6 () {	0
for (int a=1; a<=n; a++)	n - 1 + 1 = n
for (int b=1; b<=a; b++)	n(n + 1) / 2
cout << "Example of step calculation";	(n(n + 1) / 2).1 = n(n+1)/2
}	0
Total Steps	$n + n^2 + n = 2n + n^2$
Complexity Time	O(n²)

To get n.(n+1)/2, we used summation series as shown below:

$$\sum_{\alpha=1}^{n} \sum_{b=1}^{n} = \frac{1}{a=1} = \frac{1}{b=1}$$

$$= n(1 + 2 + 3 + 4 + ... + n)$$

$$= \frac{n(n+1)}{2}$$

$$= \frac{n^2 + n}{2}$$

```
Proof:
    If n = 4, for inner loop
        for (int b=1; b<=a; b++)

It will be repeated:
        (1+2+3+4) = 10 times

By using the formula:
        n.(n+1)/2 = 4(5)/2 =
        10 times</pre>
```


Statements	Number of steps
int counter = 1;	$\sum_{i=1}^{1} f(i) = 1$
int i = 0;	$\sum_{i=1}^{1} f(i) = 1$
int j = 1;	$\sum_{i=1}^{1} f(i) = 1$
for (<u>i = 3</u> ; i <= n; <u>i = i * 3</u>) {	$\sum_{i=3}^{n} f(i) = f(3) + f(9) + f(27) + \dots + f(n) = \log_3 n$
while (j <= n) {	$\sum_{i=3}^{n} f(i) \sum_{i=1}^{n} f(i) = n. \log_3 n$
<pre>cout << "Arahan cout kali ke " << counter << "\n";</pre>	$\sum_{i=3}^{n} f(i) \sum_{i=1}^{n} f(i) \sum_{i=1}^{1} f(i) = n. \log_{3} n.1$
counter++;	$\sum_{i=3}^{n} f(i) \sum_{i=1}^{n} f(i) \sum_{i=1}^{1} f(i) = n. \log_{3} n.1$
j++;	$\sum_{i=3}^{n} f(i) \sum_{i=1}^{n} f(i) \sum_{i=1}^{1} f(i) = n. \log_{3} n.1$
}}	0
Total Steps	$3 + Log_3 n + 4n log_3 n$
Complexity Time	O(n log₂n)

- $3 + Log_3 n + 4n log_3 n$
- Consider the largest factor: 4n log₃n
- Remove the coefficient: n log₃n
- In asymptotic classification, the base of the log can be omitted as shown in this formula:

$$log_a n = log_b n / log_b a$$

Then,

$$\log_3 n = \log_2 n / \log_2 3 = \log_2 n / 1.58$$

- Remove the coefficient 1/1.58
- So, the complexity time = O (nlog₂n)

Algorithm	Number of steps
void sample8 () {	0
int n, x, i=1;	1
while (i<=n) {	n - 1 + 1 = n
X++;	n.1 = n
i++;	n.1 = n
}	0
Total Steps	1 + 3n
Complexity Time	O(n)

Algorithm	Number of steps
void sample9 () {	0
int n, x, i=1;	1
while (i<=n) {	1 + log ₂ n
X++;	$(1 + \log_2 n) \cdot 1 = 1 + \log_2 n$
i=i*2;	$(1 + \log_2 n) \cdot 1 = 1 + \log_2 n$
}	0
Total Steps	1 + 3(1 + log ₂ n)
Complexity Time	O(log ₂ n)

Algorithm	Number of steps
void sample9 () {	0
int n, x, i=1;	1
while (i<=n) {	1 + log ₄ n
X++;	$(1 + \log_4 n) \cdot 1 = 1 + \log_4 n$
i=i*4;	$(1 + \log_4 n) \cdot 1 = 1 + \log_4 n$
}	0
Total Steps	1 + 3(1 + log ₄ n)
Complexity Time	O(log ₂ n)

- While loop iterate from i=1 until i=n; i increment 4 times at each iteration
- Number of iteration for while loop = (1 + log₄n)

Using **asymptotic O**, where base for the algorithm is ignored:

$$log_a n = log_b n / log_b a$$

Then,

$$\log_4 n = \log_2 n / \log_2 4 = \log_2 n / 2$$

Therefore,

Complexity Time = $O(log_2n)$

Thank You