

Machine Learning with Graphs (MLG)

Node Classification

The era before Graph Representation Learning (GRL)

Cheng-Te Li (李政德)

Institute of Data Science
National Cheng Kung University

TANDILAND KUNG CZIVERRO

chengte@mail.ncku.edu.tw

Node Classification

Node Classification Problem

- Some of the nodes in a network are labeled,
 the goal is to produce the labels of the rest nodes
 - Each node may have some attributes (features)
 - E.g. gender, income, hometown, interests, favorites, etc

Homophily 物以類聚

- Connected nodes tend to have the same label
 - People with similar characteristics tend to befriend each other
- Examples
 - Friends sharing common interests/preferences
 - Webpages hyperlinked to each other have the same topic
 - Papers cited with one another belong to the same area
 - Proteins frequently interacted possess the same function

Relational Neighbor (RN) Classifier

• Estimate P(c|v), the label-membership probability of node v having label c, as the weighted proportion of nodes in N_v that belong to label c

$$P(c|v) = \frac{1}{Z} \sum_{\{u \in N_v | label(u) = c\}} w(v, u) \qquad Z = \sum_{u \in N_v} w(v, u)$$

- N_v : the set of neighboring nodes of node v
- w(v, u): the edge weight between nodes v and u
- Nodes in N_v that are not of the same label as e are ignored
- If N_v is empty or has no nodes with labels \rightarrow use global P(c)
- Make the classification based on

 $\operatorname{argmax}_{c \in C} P(c|v)$

Example of RN Classifier

Problems of RN Classifier

- When surrounding by non-labeled nodes, assign class labels based on the prior
- Problem 1: If the labeled nodes are very sparse, the prediction will be dominated by label prior
- Problem 2: The order of the label classification could affect the results

Iterative Relational Neighbor Classifier

- Iteratively classify nodes using RN in its inner loop
- Unlabeled nodes that just get labels will affect the classification of the remaining labeled nodes
- At iteration i:(i, j > 0)
 - RN(i) uses the labels derived by RN(j), j < i, to estimate the probability P(c|v) of currently unlabeled nodes
- Introduce the UNKNOWN tag
 - lacksquare If the majority of the neighbors of node v are unlabeled
 - lacktriangle Delay the classification for nodes with the unknown tag until node v's majority of neighbors are labeled
- Stop when no unknown nodes are left or when no nodes can be classified

8

Example of Iterative RN Classifier

Weighted-Vote RN (wvRN) Classifier

- wvRN estimates P(c|v) as the weighed mean of the label-membership probabilities of nodes in N_v
 - Use RN to initialize P(c|v)
 - If v or u has no labeled neighbors, use the prior probabilities observed in the training data
 - Update P(c|v) until convergence

$$P(c|v) = \frac{1}{Z} \sum_{u \in N_v} w(v, u) \times P(c|u)$$

$$Z = \sum_{u \in N_v} w(v, u)$$

Attribute-only Node Classification

a1	a2	a 3	L
1	1	0	G

a1	a2	a3	L
1	1	0	?

a1	a2	a 3	
1	0	1	?

a1	a2	a 3	L
1	1	1	В

Attribute-only Node Classification

a1	a2	a3	L
1	0	0	R
1	1	0	R
0	1	1	В
0	0	1	В
0	0	1	G
0	0	0	G
0	1	1	?
1	0	1	?
0	0	0	?:
0	0	1	?

Learn a classifier, such as Naïve Bayes, k-NN, Logistic Regression, etc

Use the classifier to predict these

Problem on Link-based Node Classification

a1	a2	а3	N1	N2	N3	L
0	1	0	R	R	В	R

How do we order the neighbors?

a1	a2	а3	N1	N2	N3	L
0	1	0	R	В	R	R

What if different nodes have different number of neighbors?

a1	a2	a3	N1	N2	N3	N4	L
0	1	0	R	R	В	R	R

Information Aggregation

- Aggregate a set of attributes into a fixed length representation
 - Count
 - Proportion
 - Mode (Majority)
 - Exist (Binary)
 - Mean

Aggregation: Count

a1	a2	а3	CR	СВ	CG	L
0	1	0	2	1	0	R

a1	a2	а3	CR	СВ	CG	L
0	1	0	2	1	0	R

a1	a2	а3	CR	СВ	CG	L
0	1	0	3	1	0	R

Aggregation: Proportion

a1	a2	а3	PR	PB	PG	L
0	1	0	0.67	0.33	0	R

a1	a2	а3	PR	РВ	PG	L
0	1	0	0.67	0.33	0	R

a1	a2	а3	PR	PB	PG	L
0	1	0	0.75	0.25	0	R

Aggregation: Exist

a1	a2	a3	ER	EB	EG	L
0	1	0	1	1	0	R

a1	a2	а3	ER	EB	EG	L
0	1	0	1	1	0	R

a1	a2	а3	ER	EB	EG	L
0	1	0	1	1	0	R

Iterative Classification Algorithm (ICA)

- 1) Convert each node i to a feature vector \mathbf{v}_i
 - Various #neighbors → aggregation
 - E.g., mode, binary, count, proportion
- 2) Use Local Classifier $f(\mathbf{v}_i)$ to obtain its label y_i
 - e.g., SVM, LR, RF, XGBoost
- 3) Repeat for each node i
 - \blacksquare Reconstruct feature vector \mathbf{v}_i using current labels
 - Update label to $f(\mathbf{v}_i)$ based on prediction results
- Until labels are stabilized or max # iterations

Challenges on Node Labels

Sparse Labeling

Non-Homophily

Homophily

Solution: Ghost Edges

- To address the following problems:
 - Label Sparsity: # of unknown neighbors might be large
 - Link Sparsity: # of nodes are large, but loosely connected
 - Non-homophily: local positive correlation may not hold
- Solution: Adding Ghost Edges
 - Exploit information obtained from a node's non-neighbor nodes by adding ghost edges
 - Use learning methods to determine the effect of the other connected nodes

Ghost Edges

- Allow the information from labeled nodes to affect the classification of unlabeled nodes
- Create a single ghost edge between every
 <labeled, unlabeled> pair of nodes in our graph

Label Sparsity: We have plenty of neighbors, but too few of them are labeled Link Sparsity: There are plenty of labeled nodes, but we don't link to enough of them

Weighting Ghost Edges

- Ghost edges increase the number of labeled neighbors per node
- Ghost edge weights should correspond with correlation between node labels
- Assumption: Correlation is higher between labels of nodes that are "closer" to each other
 - Each node's influence is NOT equal
- Assign a weight to each ghost edge based on proximity

Measure Node Proximity by Random Walk with Restart (RWR)

$$R_{\text{nx1}} = \alpha \widetilde{W} R_{\text{nxn nx1}} + (1 - \alpha) E_{\text{nx1}}$$

Score Vector Adjacency Matrix Fly-out Starting Probability Vector

From Proximity to Ghost Edge Weights

How to Deal with non-Homophily?

Even-step Random Walk with Restart

Homophily

Even-step RWR

25

Non-homophily

$$R = c\widetilde{W}^2R + (1 - c)E$$

Two Ghost-Edge Classifiers

- GhostEdgeNL (non-learning)
 - Ignore observed edges
 - Create ghost edges from unlabeled to labeled nodes
 - Take weighted vote of ghost edge neighbors

→ Apply wvRN

26

- GhostEdgeL (learning)
 - Uses labeled nodes to learn label-dependencies separately across for observed edges and ghost edges
 - Bin ghost edges by proximity scores and learn dependencies separately for each bin (e.g., <0.1, 0.1~0.2, 0.2~0.4, >0.4)
 - Features
 - Count of neighbors of each class observed edges (2 features)
 - □ Count of neighbors of each class across ghost edges for each bin ("2 x number of bins" features)
 - → Apply ML methods, e.g., SVM, LR, RF, XGBoost

GhostEdgeL

Representation of instances for learning

	Observed Edges			Ghost Edges							
	C+	C-	C+ (<0.1)	C- (<0.1)	C+ (0.1~0.2)	C- (0.1~0.2)	C+ (0.2~0.4)	C- (0.2~0.4)	C+ (>0.4)	C- (>0.4)	Class Label
V_1											
V ₂											
V ₃											
•••											
V _n											

Short Summary

- Unsupervised Relational Neighbor-based Homophily
 Bolational Neighbor (BN) Classifier
 Within Network
 - Relational Neighbor (RN) Classifier
 - Weighted Vote RN (wvRN) Classifier
- Supervised Learning-based

Cross/Within Network

- Link-based Node Classification
- Iterative Classification Algorithm (ICA)
- Random Walk-based

Flexible

GhostEdge Algorithm

Non-homophily & Very Sparse