University of Waterloo Pmath 450 - Summer 2015 Assignment 3

Sina Motevalli 20455091

Problem 1

Assume $f: \mathbb{R} \to \mathbb{R}$ is integrable. Then since f^+ and f^- are non-negative and measurable, so we have:

$$\int_{\mathbb{R}} f(x+y)dm(x) = \int_{\mathbb{R}} f^{+}(x+y)dm(x) - \int_{\mathbb{R}} f^{-}(x+y)dm(x)$$

$$= \int_{\mathbb{R}} f^{+}(x)dm(x) - \int_{\mathbb{R}} f^{-}(x)dm(x)$$

$$= \int_{\mathbb{R}} f(x)dm(x)$$

Now if $f: \mathbb{R} \to \mathbb{C}$ is integrable, we have that Re(f) and Im(f) are integrable and therefore we have:

$$\int_{\mathbb{R}} f(x+y)dm(x) = \int_{\mathbb{R}} Re(f(x+y))dm(x) + i \int_{\mathbb{R}} Im(f(x+y))dm(x)$$

$$= \int_{\mathbb{R}} Re(f(x))dm(x) - \int_{\mathbb{R}} Im(f(x))dm(x)$$

$$= \int_{\mathbb{R}} f(x)dm(x)$$

Part a

We know that $\sup\{|f(x)+g(x)|:x\in A\}\leq \sup\{|f(x)|:x\in A\}+\sup\{|g(x)|:x\in A\}$. This implies that

$$\inf\{\sup |f(x) + g(x)| : x \in A\} \le \inf\{\sup |f(X)| : x \in A\} + \inf\{\sup |g(x)| : x \in A\}$$

Hence $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

Part b

We know that $m\{x: |h(x)| > ||h||_{\infty}\} = 0$. Thus

$$\inf\{\alpha \in \mathbb{R} : m\{x : |h(x)| > \alpha\} = 0\} \le ||h||_{\infty}$$

Now assume for a contradiction that there exist $\alpha < ||h||_{\infty}$ such that $m\{x : |h(x)| > \alpha\} = 0$. Since $||h||_{\infty} = \inf_{m(E \setminus A) = 0} \{\sup |h(x)| : x \in A\}$ and $\alpha < ||h||_{\infty}$, for every set A with $m(E \setminus A) = 0$, we have that $\alpha < \{\sup |h(x)| : x \in A\}$. This means that there exist no set A with $m(E \setminus A) = 0$ such that $A = \{x : |h(x)| \le \alpha\}$. Thus $m\{x : |h(x)| > \alpha\} > 0$. Hence

$$\inf\{\alpha \in \mathbb{R} : m\{x : |h(x)| > \alpha\} = 0\} = ||h||_{\infty}$$

Problem 3

By lotus lemma we have:

$$\int \liminf f_n \le \liminf \int f_n$$

Since $f_n \to f$, we have $\int f \le \liminf \int f_n$. Thus f is integrable. Now dominated convergence theorem readily implies $\int f = \lim_n \int f_n$.

Part a

Let f(x) = 0 when x < 1 and $f(x) = \frac{1}{x}$ when $x \ge 1$. We have:

$$\int_{\mathbb{R}} |f|^2 = \int_{1}^{\infty} \frac{1}{x^2} = 1$$

Thus $f \in L^2(\mathbb{R})$. But $\int_{\mathbb{R}} |f| = \int_1^{\infty} \frac{1}{x}$ does not converge, thus $f \notin L^1(\mathbb{R})$. Let $g(x) = \frac{1}{\sqrt{x}}$ on [0,1] and g(x) = 0 elsewhere. We have:

$$||g||_1 = \int_{\mathbb{R}} g = \int_0^1 \frac{1}{\sqrt{x}} = 2$$

But $\int_{\mathbb{R}} g^2 = \int_0^1 \frac{1}{x} = \infty$. Thus $g \notin L^2(\mathbb{R})$.

Part b

Let $f^2\in L^1[0,1]$. So $\int_0^1|f^2|=\int_0^1|f|^2<\infty,$ thus $f\in L^2[0,1].$ We have:

$$\int_0^1 |f| = \int_0^1 |f|.1$$

$$\leq ||f||_2 ||1||_2 \text{ by holder's inequality}$$

Since $f \in L^2[0,1]$, $||f||_2 < \infty$, so $||f||_2 ||1||_2 < \infty$ which implies $\int_0^1 |f| < \infty$. Hence $f \in L^1[0,1]$.

Let $||f||_{\infty} > \epsilon > 0$. Let $A_{\epsilon} = \{x : |f(x)| \ge ||f||_{\infty} - \epsilon\}$. So by definition of maximum norm we get that $m(A_{\epsilon}) > 0$, so we have:

$$||f||_p \ge \left(\int_{A_{\epsilon}} (||f||_{\infty} - \epsilon)^p\right)^{\frac{1}{p}} = (||f||_{\infty} - \epsilon)(m(A_{\epsilon}))^{\frac{1}{p}} \to ||f||_{\infty} - \epsilon \quad as \quad p \to \infty$$

Thus, $\lim_{p\to\infty}\inf||f||_p \ge ||f||_{\infty}$. We also have:

$$||f||_{p} = \left(\int |f|^{p-1}|f|\right)^{\frac{1}{p}}$$

$$\leq ||f||_{\infty}^{\frac{p-1}{p}}||f||_{1}^{\frac{1}{p}} \quad by \quad holder's \quad inequality$$

$$\rightarrow ||f||_{\infty} \quad as \quad p \rightarrow \infty$$

Thus, $\lim_{p\to\infty}\sup||f||_p\leq ||f||_{\infty}$. Hence $||f||_p\to ||f||_{\infty}$ as $p\to\infty$.

Claim: S is dense in C[0,1] with respect to $L^2[0,1]$ norm.

Proof:

Let $\epsilon > 0$. Let $f \in C[0,1]$.

WLOG we can assume that f is real-valued. (Otherwise approximate real and imaginary part and put them back together).

First assume that f is bounded. Say $|f(x)| \leq N \ \forall x \in [0,1]$.

We define a new function $g:[0,1]\to\mathbb{R}$ as follows:

g(x) = f(x) for all $x \in (\epsilon, 1 - \epsilon)$.

On $[0, \epsilon]$, g is the line from 0 to $f(\epsilon)$ (g(0) = 0 and $g(\epsilon) = f(\epsilon)$).

On $[1-\epsilon,1]$, g is the line from $f(1-\epsilon)$ to 0 $(g(1-\epsilon)=f(1-\epsilon)$ and g(1)=0).

Note that $g \in S$. We have:

$$||f - g||_{2}^{2} = \int_{0}^{1} |f - g|^{2}$$

$$= \int_{[0,\epsilon]} |f - g|^{2} + \int_{(\epsilon,1-\epsilon)} |f - g|^{2} + \int_{[1-\epsilon,1]} |f - g|^{2}$$

$$\leq N^{2}\epsilon + 0 + N^{2}\epsilon$$

$$= 2N^{2}\epsilon$$

This concludes the proof for f being bounded.

Now suppose $f \in C[0,1]$ is arbitrary.

Define $f_N(x) = f(x)$ if $|f(x)| \le N$ and $f_N(x) = 0$ otherwise.

We have $f_N \to f$ pointwise a.e.

So $|f_N - f|^2 \to 0$ pointwise a.e.

Since $|f - f_N|^2 \le |f|^2$ and $|f|^2$ is integrable, by dominated convergence theorem, we have:

$$\int_{[0,1]} |f - f_N|^2 \to \int_{[0,1]} 0 = 0$$

So $||f - F_N||_2 \to 0$.

Let $\epsilon > 0$. Pick $N \in \mathbb{N}$ such that $||f - f_N||_2 < \frac{\epsilon}{2}$.

Get $h \in S$ with $||h - f_N||_2 < \frac{\epsilon}{2}$. We have:

$$||h - f||_2 \le ||h - f_N||_2 + ||f_N - f||_2 < \epsilon$$

Hence S is dense in C[0,1] with respect to $L^2[0,1]$ norm.

Let $(g_n)_{n=1}^{\infty}$ be a sequence in S such that $||g_n||_2 \to ||f||_2$ and $g_n \leq f$ for all n.

By the dominated convergence theorem, $\int_0^1 f^2 = \int_0^1 \lim_{n \to \infty} f g_n = \lim_{n \to \infty} \int_0^1 f g_n = 0$ since $\int_0^1 f g = 0$ for all $g \in S$.

Thus $||f||_2 = 0$. Hence f = 0 a.e.

Since $f \ge 0$, $||f^n||_1 = \int_0^1 f^n(x) = \int_0^1 f(x) = ||f||_1$ for all $n \in \mathbb{N}$. Now since $||f^n||_1 = ||f||_1$ we have that $f^n(x) = f(x)$ a.e for all $n \in \mathbb{N}$. So f(x) = 1 a.e.

Let $E = \{x : f(x) = 1\}$. We just need to prove that E is measurable. We have:

$$E = \left(\bigcap_{n=1}^{\infty} \{x : f(x) \le 1 + \frac{1}{n}\}\right) \cap \left(\bigcap_{n=1}^{\infty} \{x : f(x) \ge 1 - \frac{1}{n}\}\right)$$

Since countable intersection of measurable sets is measurable, E is measurable and $f = X_E$ a.e.