DATA BEGINNER LEVEL **ANALYTICS** INTERMEDIATE LEVEL **LGM VIRTUAL INTERNSHIP PROGRAM 2021** • ADVANCE LEVEL >Beginner Level Task... Task-1 Iris Flowers Classification ML Project: This particular ML project is usually referred to as the "Hello World" of Machine Learning. The iris flowers dataset contains numeric attributes, and it is perfect for beginners to learn about supervised ML algorithms, mainly how to load and handle data. Also, since this is a small dataset, it can easily fit in memory without requiring special transformations or scaling capabilities. Dataset: http://archive.ics.uci.edu/ml/datasets/Iris Name: Manish Singh 1. Importing Required Libraries In [26]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno print(" All required packages included successfully!") All required packages included successfully! 2. Importing the Dataset df = pd.read_csv('D:\Data_Set\Iris.csv') Out[4]: $sepal_length \quad sepal_width \quad petal_length \quad petal_width$ species 0 5.1 3.5 1.4 0.2 Iris-setosa 3.0 4.9 1.4 0.2 1 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa 4 5.0 3.6 1.4 0.2 Iris-setosa 145 6.7 3.0 5.2 2.3 Iris-virginica 146 6.3 2.5 5.0 1.9 Iris-virginica 147 6.5 3.0 5.2 2.0 Iris-virginica 2.3 Iris-virginica 148 6.2 5.4 149 5.9 5.1 1.8 Iris-virginica 150 rows × 5 columns 3. Data Exploration In [9]: r,c = df.shapeprint("Number of rows = ",r) print("Number of columns = ",c) Number of rows = 150 Number of columns = 5 In [5]: df.head() sepal_length sepal_width petal_length petal_width species Out[5]: 0 5.1 3.5 1.4 0.2 Iris-setosa 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 4.6 1.5 3.1 0.2 Iris-setosa 5.0 3.6 1.4 0.2 Iris-setosa In [6]: # to display stats about data df.describe() Out[6]: sepal_length sepal_width petal_length petal_width 150.000000 150.000000 150.000000 150.000000 count 5.843333 mean 3.054000 3.758667 1.198667 0.828066 0.433594 1.764420 0.763161 std min 4.300000 2.000000 1.000000 0.100000 25% 5.100000 2.800000 1.600000 0.300000 **50**% 5.800000 3.000000 4.350000 1.300000 6.400000 1.800000 **75**% 3.300000 5.100000 7.900000 6.900000 2.500000 max 4.400000 In [7]: # To display basic data df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns): Non-Null Count Dtype Column sepal_length 150 non-null sepal_width 150 non-null petal_length 150 non-null float64 float64 petal_width 150 non-null species 150 non-null object dtypes: float64(4), object(1) memory usage: 6.0+ KB 4. Checking Missing Values In [10]: print("Are there any missing values in the dataset ?", df.isnull().values.any()) Are there any missing values in the dataset ? False In [14]: msno.bar(df,figsize=(10,6),color='lightgreen') plt.show() 1.0 150 8.0 120 0.6 90 0.4 60 0.2 30 0.0 0 5. Statistical Analysis In [15]: df.describe(include='all').T Out[15]: std min 25% 50% 75% max count unique top freq mean sepal_length 150.0 NaN NaN NaN 5.843333 0.828066 4.3 5.8 6.4 7.9 3.054 0.433594 2.0 2.8 3.0 3.3 sepal_width 150.0 NaN NaN NaN petal_length 150.0 NaN 3.758667 1.76442 1.0 1.6 4.35 NaN NaN 150.0 1.198667 0.1 0.3 1.3 1.8 petal_width NaN NaN NaN 0.763161 species 150 3 Iris-setosa NaN Nan Nan Nan Nan Nan In [16]: df['species'].unique() array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object) 6. Parametric Visualization In [17]: g=sns.relplot(x='sepal_length', y='sepal_width', data=df, hue='species', style='species') g.fig.set_size_inches(18,8) plt.show() 4.5 4.0 3.5 sepal_width species Iris-setosa Iris-versicolor 3.0 Iris-virginica 2.5 2.0 4.5 7.0 7.5 8.0 5.0 5.5 6.0 6.5 sepal length In [18]: sns.pairplot(df, hue='species') plt.show() sepal_length 4.5 4.0 2.5 2.0 species Iris-setosa Iris-versicolor Iris-virginica petal_length w b g 2.5 2.0 0.5 0.0 sepal_length sepal_width petal_length petal_width In [19]: plt.figure(figsize=(18,10)) plt.subplot(2,2,1) sns.boxplot(x='species',y='petal_length',data=df) plt.subplot(2,2,2) sns.boxplot(x='species', y='petal_width', data=df) plt.subplot(2,2,3) sns.boxplot(x='species',y='sepal_length',data=df) plt.subplot(2,2,4)sns.boxplot(x='species', y='sepal_width', data=df) plt.show() 2.5 petal width petal_length 0.5 0.0 Iris-setosa Iris-versicolor Iris-virginica Iris-setosa Iris-versicolor Iris-virginica species species 8.0 7.5 4.0 7.0 sepal_width sepal length 5.5 2.5 5.0 4.5 2.0 Iris-setosa Iris-setosa Iris-versicolor Iris-virginica Iris-versicolor Iris-virginica In [20]: plt.figure(figsize=(18,10)) plt.subplot(2,2,1)sns.violinplot(x='species', y='petal_length', data=df) sns.violinplot(x='species', y='petal_width', data=df) plt.subplot(2,2,3) sns.violinplot(x='species',y='sepal_length',data=df) plt.subplot(2,2,4)sns.violinplot(x='species', y='sepal_width', data=df) plt.show() 2.5 6 2.0 petal_width 0.5 2 0.0 Iris-versicolor Iris-virginica Iris-versicolor Iris-virginica Iris-setosa Iris-setosa species 4.5 8 4.0 sepal_length 3.5 andth 3.0 2.5 2.0 Iris-setosa Iris-versicolor Iris-virginica Iris-setosa Iris-versicolor Iris-virginica species species In [21]: plt.figure(figsize=(18,7)) sns.boxplot(data=df).set_title("Normal distribution of Iris features\n", size=20) plt.show() Normal distribution of Iris features 6 5 sepal_length sepal_width petal_length petal_width In [22]: plt.figure(figsize=(18,7)) sns.violinplot(data=df).set_title("Variance of Iris features\n", size=20) plt.show() Variance of Iris features 0 petal_width sepal_length sepal_width petal_length 7. Attribute Correlation In [23]: plt.figure(figsize=(16,8)) sns.heatmap(df.corr(), annot=True, fmt='f', cmap='gist_heat').set_title('Correaltion of attributes\n', size=20) Correaltion of attributes -1.0 1.000000 -0.109369 0.871754 0.817954 - 0.8 - 0.6 -0.109369 1.000000 -0.420516 -0.356544 - 0.4 - 0.2 0.871754 -0.420516 0.962757 1.000000 - 0.0 -0.2 0.817954 -0.356544 0.962757 1.000000 sepal_length petal_length petal width sepal_width In [24]: X = df.iloc[:.0:4].valuesy = df.iloc[:,4].valuesfrom sklearn.preprocessing import LabelEncoder le = LabelEncoder() $y = le.fit_transform(y)$ 8. Metric In [27]: from sklearn.metrics import make_scorer,accuracy_score,precision_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score print("All necessary metrics included!") All necessary metrics included! 9. Model Selection In [28]: from sklearn.model_selection import KFold,train_test_split,cross_val_score from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC from sklearn.naive_bayes import GaussianNB X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) print("All Machine Learning packages included!") All Machine Learning packages included! 10.Random Forest In [29]: rf = RandomForestClassifier(n_estimators=100) rf.fit(X_train,y_train) $y_pred = rf.predict(X_test)$ acc_rf = round(accuracy_score(y_test,y_pred)*100,2) rf_acc = round(rf.score(X_train,y_train)*100,2) cm = confusion_matrix(y_test,y_pred) acc = accuracy_score(y_test,y_pred) prec = precision_score(y_test, y_pred, average='micro') recall = recall_score(y_test,y_pred,average='micro') f1 = f1_score(y_test, y_pred, average='micro') print("Confusion matrix of Random Forest\n",cm) print("Accuracy of Random Forest = ",acc) print("Precision of Random Forest = ",prec) print("Recall of Random Forest = ",recall) print("f1 score of Random Forest = ",f1) Confusion matrix of Random Forest [[11 0 0] [0 13 0] [0 0 6]] Accuracy of Random Forest = 1.0Precision of Random Forest = 1.0Recall of Random Forest = 1.0f1 score of Random Forest = 1.0 11.Logistic Regression In [30]: lg = LogisticRegression(solver='lbfgs', max_iter=400) lg.fit(X_train,y_train) $y_pred = lg.predict(X_test)$ acc_lg = round(accuracy_score(y_test, y_pred)*100, 2) lg_acc = round(lg.score(X_train,y_train)*100,2) cm = confusion_matrix(y_test,y_pred) acc = accuracy_score(y_test,y_pred) prec = precision_score(y_test,y_pred,average='micro') recall = recall_score(y_test,y_pred,average='micro') f1 = f1_score(y_test,y_pred,average='micro') print("Confusion matrix of Logistic Regression\n", cm) print("Accuracy of Logistic Regression = ",acc) print("Precision of Logistic Regression = ",prec) print("Recall of Logistic Regression = ",recall) print("f1 score of Logistic Regression = ",f1) Confusion matrix of Logistic Regression [[11 0 0] [0 13 0]

[0 0 6]] Accuracy of Logistic Regression = 1.0 Precision of Logistic Regression = 1.0 Recall of Logistic Regression = 1.0 f1 score of Logistic Regression = 1.0 12.K Nearest Neighbours In [31]: knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train,y_train) y_pred = knn.predict(X_test) acc_knn = round(accuracy_score(y_test,y_pred)*100,2) knn_acc = round(knn.score(X_train,y_train)*100,2) cm = confusion_matrix(y_test,y_pred) acc = accuracy_score(y_test,y_pred) prec = precision_score(y_test, y_pred, average='micro') recall = recall_score(y_test,y_pred,average='micro') f1 = f1_score(y_test, y_pred, average='micro') print("Confusion matrix of K Nearest Neighbour\n",cm) print("Accuracy of K Nearest Neighbour = ",acc) print("Precision of K Nearest Neighbour = ",prec) print("Recall of K Nearest Neighbour = ",recall) print("f1 score of K Nearest Neighbour = ",f1) Confusion matrix of K Nearest Neighbour [[11 0 0] [0 12 1] [0 0 6]] Accuracy of K Nearest Neighbour = 0.9666666666666667 Precision of K Nearest Neighbour = 0.9666666666666667 Recall of K Nearest Neighbour = 0.9666666666666667 f1 score of K Nearest Neighbour = 0.9666666666666667 13.KNN In [32]: plt.figure(figsize=(20,7)) $a_{index} = list(range(1,50))$ a = pd.Series() x = range(1, 50)**for** i **in** list(range(1,50)): model = KNeighborsClassifier(n_neighbors=i) model.fit(X_train,y_train) prediction = model.predict(X_test) a = a.append(pd.Series(accuracy_score(y_test, prediction))) plt.plot(a_index, a, marker="*") plt.xticks(x) plt.show() C:\Users\Lenovo\AppData\Local\Temp/ipykernel_6860/4153686925.py:3: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float6 4' in a future version. Specify a dtype explicitly to silence this warning. a = pd.Series() 1.00 0.98 0.96 0.94 0.92 0.90 0.88 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 14. Gaussian Naive Bayes gauss = GaussianNB() gauss.fit(X_train,y_train) y_pred = gauss.predict(X_test) acc_gauss = round(accuracy_score(y_test,y_pred)*100,2) gauss_acc = round(gauss.score(X_train,y_train)*100,2) cm = confusion_matrix(y_test,y_pred) acc = accuracy_score(y_test,y_pred) prec = precision_score(y_test, y_pred, average='micro') recall = recall_score(y_test,y_pred,average='micro') f1 = f1_score(y_test,y_pred,average='micro') print("Confusion matrix of K Nearest Neighbour\n",cm) print("Accuracy of K Nearest Neighbour = ",acc) print("Precision of K Nearest Neighbour = ",prec) print("Recall of K Nearest Neighbour = ",recall) print("f1 score of K Nearest Neighbour = ",f1) Confusion matrix of K Nearest Neighbour [[11 0 0] [0 13 0] [0 1 5]] Accuracy of K Nearest Neighbour = 0.9666666666666667 Precision of K Nearest Neighbour = 0.966666666666667 f1 score of K Nearest Neighbour = 0.9666666666666667 14.Linear Support Vector Classifier lsvc = LinearSVC(max_iter=4000) lsvc.fit(X_train,y_train) y_pred = lsvc.predict(X_test) acc_lsvc = round(accuracy_score(y_test,y_pred)*100,2) lsvc_acc = round(lsvc.score(X_train,y_train)*100,2) cm = confusion_matrix(y_test,y_pred) acc = accuracy_score(y_test,y_pred) prec = precision_score(y_test, y_pred, average='micro')

In [33]: In [34]: recall = recall_score(y_test,y_pred,average='micro') f1 = f1_score(y_test,y_pred,average='micro') print("Confusion matrix of K Nearest Neighbour\n",cm) print("Accuracy of K Nearest Neighbour = ",acc) print("Precision of K Nearest Neighbour = ",prec) print("Recall of K Nearest Neighbour = ",recall) print("f1 score of K Nearest Neighbour = ",f1) Confusion matrix of K Nearest Neighbour [[11 0 0] [0 13 0] [0 0 6]] Accuracy of K Nearest Neighbour = 1.0 Precision of K Nearest Neighbour = 1.0 Recall of K Nearest Neighbour = 1.0 f1 score of K Nearest Neighbour = 1.0 15. Decision Tree Classifier In [35]: dt = DecisionTreeClassifier() dt.fit(X_train,y_train) y_pred = dt.predict(X_test) acc_dt = round(accuracy_score(y_test,y_pred)*100,2) dt_acc = round(dt.score(X_train,y_train)*100,2) cm = confusion_matrix(y_test,y_pred) acc = accuracy_score(y_test,y_pred) prec = precision_score(y_test, y_pred, average='micro') recall = recall_score(y_test, y_pred, average='micro') f1 = f1_score(y_test,y_pred,average='micro') print("Confusion matrix of K Nearest Neighbour\n",cm) print("Accuracy of K Nearest Neighbour = ",acc) print("Precision of K Nearest Neighbour = ",prec) print("Recall of K Nearest Neighbour = ",recall) print("f1 score of K Nearest Neighbour = ",f1) Confusion matrix of K Nearest Neighbour [[11 0 0] [0 13 0] [0 0 6]] Accuracy of K Nearest Neighbour = 1.0 Precision of K Nearest Neighbour = 1.0 Recall of K Nearest Neighbour = 1.0 f1 score of K Nearest Neighbour = 1.0 17.Model Scorer In [36]: res = pd.DataFrame('Model':['KNN','Logistic Regression','Random Forest','Naive Bayes','Support Vector Regression','Decision Tree'], 'Score':[acc_knn,acc_lg,acc_rf,acc_gauss,acc_lsvc,acc_dt], 'Accuracy_score':[knn_acc,lg_acc,rf_acc,gauss_acc,lsvc_acc,dt_acc] plt.figure(figsize=(20,8))

ax = sns.barplot(x='Model', y='Accuracy_score', data=res)

ax.text(i,v+1,str(v),horizontalalignment='center',size=15,color='indigo')

96.67

100.0

100.0

95.83

95.0

labels = (res['Accuracy_score']) for i, v in enumerate(labels):

95.0

100

80

Accuracy_score

20

THANK YOU!