HomeWork 2

26 сентября 2022 г.

Задача 1

a

$$238x + 385y = 133$$

x	y	238x + 385y
0	1	385
1	0	238
-1	1	147
2	-1	91
-3	2	56
5	-3	35
-8	5	21
13	-8	14
-21	13	7
55	-34	0

Name: Денис Грачев

Следовательно

$$238a + 385b = 0 \Leftrightarrow a, b = 55k, -34k,$$

$$\gcd(238,385) = 7 = -21 * 238 + 13 * 385.$$

$$133:7 = 19 \Rightarrow (-21*19)*238 + (13*19)*385 = 133$$

$$x = -21 * 19 = -399, y = 13 * 19 = 247.$$

Пусть
$$238x' + 385y' = 133 \Rightarrow 238(x - x') + 385(y - y') = 0 \Rightarrow x', y' = x + 55k, y - 34k.$$

Ответ: x, y = -399 + 55k, 247 - 34k, где $k \in \mathbb{Z}$.

б

$$143x + 121y = 52$$

x	y	$\boxed{143x + 121y}$
1	0	143
0	1	121
1	-1	22
-5	6	11
11	-13	0

Следовательно

$$143 + 121b = 0 \Leftrightarrow a, b = 11k, -13k,$$

$$\gcd(143, 121) = 11 = -5 * 143 + 6 * 121.$$

52 / 11 Решения в целых числах не существует.

Задача 2

$$68x + 85 \equiv 0 \pmod{561} \Leftrightarrow \exists N \in \mathbb{Z} : 68x + 85 = 561N \Leftrightarrow \exists N \in \mathbb{Z} : 68x + 561N = 476.$$

$$x$$
 N
 $68x + 561N$

 0
 1
 561

 1
 0
 68

 -8
 1
 17

 33
 -4
 0

Следовательно

$$68a + 561b = 0 \Leftrightarrow a, b = 33k, -4k,$$

$$\gcd(68, 561) = 17 = -8 * 68 + 1 * 561.$$

$$476:17=28 \Rightarrow (-8*28)*68+(1*68)*561=476$$

$$x = (-8 * 28) = -224 \equiv 337 \pmod{561}$$
.

Аналогично задаче1, x = 337 + 33k = 7 + 33k.

Ответ $x = 7 + 33k, k \in \mathbb{Z}$

Задача 3

Третий и больше столбики заполняется снизу вверх.

Я пытался выровнять знаки равенства, почему то выровнялись только mod

$$7^{13} \mod 167 = 7*7^{6^2} \mod 167 = 7*81^2 \mod 167 = 7*48 \mod 167 = 2$$
 $7^6 \mod 167 = 7^{3^2} \mod 167 = 9^2 \mod 167 = 81$
 $7^3 \mod 167 = 7*7^2 \mod 167 = 7*49 \mod 167 = 9$
 $7^1 \mod 167 = 7 \mod 167 = 7 \mod 167 = 7$

Задача 5

1

$$T_1(n)=cn+T_1(n-1)$$

$$T_1(n)=cn+c(n-1)+T_1(n-2)$$

$$T_1(n)=cn+c(n-1)+c(n-2)+\ldots+c*4+T(3)$$

$$T_1(n)=c(n+(n-1)+(n-1)+\ldots 1)-c(3+2+1)+T(3)$$

$$T_1(n)=c\frac{n(n+1)}{2}-6c+1$$
 Легко видеть что $T_1(n)=\Theta(n^2)$

2

$$T_2(n) = T_2(n-1) + 4T_2(n-3)$$

С заменой n=n-3, чтобы пропустить часть которая определяется не по формуле.

• Легко видеть, что $T_2(n)$ монотонно возрастающая функция

•
$$T_2(n) \ge 4T_2(n-3) \Rightarrow \frac{T_2(n)}{T_2(n-3)} \ge 4 \Rightarrow T_2(n) \ge (4^{\frac{1}{3}})^n \Rightarrow \log T_2(n) = \Omega(n).$$

•
$$T_2(n) \le 5T_2(n-1) \Rightarrow \frac{T_2(n)}{T_2(n-1)} \le 5 \Rightarrow T_2(n) \le 5^n \Rightarrow \log T_2(n) = O(n)$$

Таким образом $\log T_2(n) = \Theta(n)$

6

Пусть длина это бит в регистре n.

Сделаем функцию которая копирует k-ый бит и не меняет значения битов после k.

r - регистр, k - в соответсвии с описанием, v - значение бита записанного в k.

```
SetK(r, k, v):
    if k == 1:
        r[1] = v
        return

SetK(r, k-1, 1)
    for i in [k-2 ... 1]:
        SetK(r, i, 0)
```

Корректность

Функция рекурсивная, аргумент k с каждым вызовом уменьшается. Есть условие остановки при k=1 поэтому функция конечная.

Докажем корректность по индукции:

База

Для k=1 корректность очевидна

Переход

Пусть функция корректна для $i = 1 \dots k - 1$, докажем корректность для k.

Тогда SetK(r, k-1, 1) выставит 1 в k-1 бит и не изменит биты после k.

SetK(r, i, 0) выставят 0 в і элемент и не изменит биты после і, таким образом все биты от 1 до k-1 будут 0.

Таким образом в k-1 будет стоять первая 1, и r[k] = v поставит необходимое значение в k-ый бит.

Алгоритм

```
Copy(from, to, n):
    for i in [n ... 1]:
        SetK(to, i, from[i])
```

Корректность алгоритма легко следует из корректности функции SetK.

Сложность

Обозначим сложность функции SetK(r, k, v) как T(k).

Тогда
$$T(k) = 1 + \sum_{i=1}^{k-1} T(i)$$

Докажем что $T(k) = 2^{k-1}$ по индукции.

База: для k=1 верно. Шаг индукции:

Пусть верно для $i = 1 \dots k - 1$, тогда

$$T(k) = 1 + T(1) + T(2) + \dots + T(k-1) = 1 + 1 + 2 + 4 + \dots + 2^{k-2} = 2^{k-1}$$

Итоговая сложность будет $T(1) + T(2) + \dots T(n) = 2^n - 1$, т.е. $\Theta(2^n)$.