机密★启用前

重庆邮电大学

2022 年攻读硕士学位研究生入学考试试题

科目名称:	计算机网络	(A) 卷
-------	-------	-------

科目代码:	803	

考生注意事项

- 1、答题前,考生必须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 所有答案必须写在答题纸上,写在其他地方无效。原则上按顺序作答,所有答案必须标注题号。
- 3、 填 (书) 写必须使用黑色字迹钢笔、圆珠笔或签字笔。
- 4、 考试结束, 将答题纸和试题一并装入试卷袋中交回。
- 5、本试题满分150分,考试时间3小时。

一、 名词解释题(本大题共6小题,每小题2分,共12分)

- 1、快恢复
- 2、主动队列管理
- 3、MIB
- 4、RPB
- 5、WDM
- 6, IPsec

二、 简答题(本大题共4小题,每小题7分,共28分)

- 7、HTTP 响应报文 301 Moved Permanently 在什么情况下出现? Location 在报文结构中的哪个部分? 用什么符号表示结束?
- 8、差错检测单独使用是否可以保证可靠传输?试简要回答原因。
- 9、 试分析 RIP 协议坏消息传播慢的主要原因? 试给出解决措施。
- 10、 SNMP 有哪些基本的管理功能?如何实现这些管理功能?被管设备有异常发生时,可以使用何种操作进行处理?

三、 分析题(本大题共6小题,每小题8分,共48分)

- 11、 下列是关于 HTTP 的问题:
- (1) HTTP 请求报文是在三次握手的哪个阶段发送出去的?这样做有何优点?
- (2) IE 11.0 浏览器中,HTTP 默认是持续连接还是非持续连接? 采用这种连接有何优点?
- 12、 ICMP 在处理错误报告中,总是将错误信息报告给哪个设备?ICMP 不会对哪些地址发出的信息进行响应?
- 13、 MIME 中需要将邮件中的多媒体信息转换成什么编码?为什么需要进行这种转换? 如对任意二进制文件进行转换,使用什么内容传送编码技术?使用该技术对一个 48 位 的二进制文件进行转换,转换的开销有多大?
- 14、 两个 CDMA 用户被分配了两个八位的码片, A=1100 1101, B=1001 0111, 试回答 这两个码片是否正交?并简要证明你的结论。如果有一个新的用户 C=1010 0001, 该码片是否可用?为什么?
- 15、 在服务器和客户端之间进行数据传送。服务器和客户端之间的每个链路的长度都是 600Km,传播速度为 2*108m/s。如果两者之间需要经过链路速度分别为 1Mbps 的四个路由器,所有分组都是同样的 1500 字节。(1) 如果链路中允许每个路由器的队列长

度固定为 5 个分组,那么从客户端到服务器的最大端到端时延是多少? (2)如果该应用是一个实时流媒体应用,为了使得接收方顺利(无丢包)播放,接收方的缓存最小设置为多少?假设中间转发设备处理时延可以忽略,没有丢包情况。

16、 客户端 C 需要跟服务器 S 间建立一个连接,发送一个 35KB 的文件。假如每个分组能承载 2KB 的数据,分组头部大小可以忽略,双方的处理时延可以忽略,链路的单程传播时延为 5ms,链路发送率是 10Mb/s。控制消息大小很小(SYN,ACK,FIN等),可不考虑发送时延。(1) 试问 C 在连接发起后经过多长时间可以开始发送文件到服务器 S? (2) S 在连接发起后经过多长时间可以发送针对 C 的第一个数据的 ACK 报文?

四、 综合题(本大题共5小题,前3道每小题12分,后2道每小题13分,共62分)

17、 下面记录了 5 个不同 TCP 连接的拥塞窗口大小变化情况。(12 分)

连接 A: 1,2,4,8,16,17,18,19

连接 B: 1,2,4,8,9,10,11,12

连接 C: 1,2,4,5,6,3,4,5

连接 D: 1,2,3,4,1,2,3,4

连接 E: 1,2,4,8,16,32,1,2

试回答以下问题。

- (1) 对连接 A 到 E 使用的慢开始门限值进行排序(从高到低);
- (2) 哪个连接收到连续三个重复确认?
- (3) 哪些连接中出现了网络超时?
- 18、 路由器的主要功能是转发分组到合适的接口。如下表是某个路由器的转发情况,描述了相应目的地址范围的分组转发到相应接口。(12分)

1100 1100 0001 0111 0001 1000 0000 000	目的地址范围	接口
1100 1100 0001 0111 0001 1000 1111 1111 1100 1100 0001 0111 0001 1010 0000 0000 到 1 1100 1100	1100 1100 0001 0111 0001 1000 0000 0000	
1100 1100 0001 0111 0001 1010 0000 000	到	0
到 1 1100 1100 0001 0111 0001 1011 1111 1111 1100 1100 0001 0111 0001 1001 0000 0000 到 2 1100 1100 0001 0111 0001 1001 1111 111	1100 1100 0001 0111 0001 1000 1111 1111	
1100 1100 0001 0111 0001 1011 1111 111	1100 1100 0001 0111 0001 1010 0000 0000	
1100 1100 0001 0111 0001 1001 0000 0000 到 2 1100 1100 0001 0111 0001 1001 1111 111	到	1
到 1100 1100 0001 0111 0001 1001 1111 111	1100 1100 0001 0111 0001 1011 1111 1111	
1100 1100 0001 0111 0001 1001 1111 1111	1100 1100 0001 0111 0001 1001 0000 0000	
	到	2
++/1	1100 1100 0001 0111 0001 1001 1111 1111	
	其他	3

(1)按照最长前缀匹配方式,在下列转发表的空格中填写相应的地址(用十六进制形式,以及缺省等)。

目的地址前缀	接口
①	0
<u></u>	1
3	2
4	3

- (2)为什么使用最长前缀匹配?如果采用二叉线索方法来进行地址表查找时,如何进行?
- (3)为了提高二叉线索查找的时间效率,如何优化二叉线索?当路由表变化频繁时, 优化技术是否合适?为什么?
- 19、 考虑到图 1 中所示网络情况,所有接口的 ARP 表是空的。假如节点 227.192.7.23 的主机发一个数据到 227.192.7.14。试回答以下问题,假定在此过程中本局域网中没有其他主机参与通信。(12 分)

图 1 网络图示

- (1) 网络中出现的第一个以太网帧的目的地址是多少?
- (2) 网络中出现的第二个以太网帧的目的地址是多少?

- (3) 网络中出现的第三个以太网帧的目的地址是多少?
- (4) 如果 227.192.7.88 所在的主机要跟 237.193.7.13 的主机通信,该主机能否直接获得 237.193.7.13 主机的 MAC 地址?请简要分析原因。请列出图 1 中可以直接获得 237.193.7.13 主机的 MAC 地址的接口。
- 20、 假定用户 Alice 发现用户 Bob 有他需要的文件。Bob 在一个 NAT 网络内部,而 Alice 不在该网络内部。假定 139.87.92.7 是 NAT 的公有 IP 地址,而 10.0.0.4 是 Bob 的 IP 地址。另外,NAT 采用 NAPT 技术,初始没有为任何 P2P 应用进行特殊配置。试回 答以下问题。(13 分)
- (1) Bob 需要访问某服务器 140.27.21.3, 其是否需要经过 NAT? 如果经过 NAT, IP 地址转换是如何进行的?
- (2) Alice 能否跟 Bob 通过唯一的 TCP 连接进行数据传输?试解释原因。如果 Alice 知道 NAT 的公有 IP 地址,能否跟 Bob 发起一个 TCP 连接?试解释原因。
- (3) 如果 Alice 和 Bob 在不同的 NAT 网络内部,是否可能设计一个方法允许 Alice 在没有应用特殊配置 NAT 的情况下建立到 Bob 的 TCP 连接?试解释原因。
- 21、 如图 2 所示是一个 DNS 服务器和主机的网络图。为了简化分析,假设任意两个节点之间的时延都为 d,没有分组丢失。本地 DNS 服务器 Cache 为空,没有<IP,域 名>的任何信息,原始的 DNS 查询是递归方式。试回答下列问题: (13 分)
- (1) 如果 DNS 回复采用递归方式, DNS 解析需要多少时间? 如果采用迭代方式, 需要多少时间?
- (2) 如果采用递归方式,根 DNS 服务器需要处理多少条消息(包括发送和接收)?如果采用迭代方式,根 DNS 服务器需要处理多少条消息?

现在假定采用迭代方式, 请分析使用 cache 后的情况:

- (3) 如果 cache 中存在查询的结果, DNS 解析需要多少时间? 如果不存在,需要多少时间?
- (4) 如果 cache 中存在查询的结果,根服务器需要处理多少条消息(包括发送和接收)?如果 cache 中不存在查询的结果,需要处理多少条消息?

图 2 DNS 解析过程图