苏州大学 <u>物理化学下(一)</u>课程期中试卷 共3页

考试形式	闭	卷	2022	年4月	(2019	级应化学拔尖班)
JUVIJI	1,11	4	2022	1 7 / 1	(201)	

院系: 材料与化学	化工学部 年级:	专业:
姓名:	学号:	成绩:
一、选填题(共 10 题 , ⁴ 1. 电极 AgNO ₃ (<i>m</i> ₁) Ag(s) (KCl、NaNO₃、	与 ZnCl ₂ (m ₂) Zn(s)组成电池时,	可作为盐桥盐的是:
浓度:	物浓度与时间成线性关系,则此	比反应的半衰期与反应物初始
(成止比、成反比、	平方成反比、无关)	
		A力学电势为 -0.06 V, 电解此溶液
的,氢仕铜电极上的忻出	电势φ _{H2} 为:	
(大于 -0.06 V、等于	-0.06 V、小于 -0.06 V、不	能判定)
(2) Pt $Cu^{2+}(a_1), Cu^{+}(a')$	Cu ²⁺ (a ₂) Cu(s) , 电动势 Cu ²⁺ (a ₂),Cu ⁺ (a') Pt 电动	
5. 某反应 A → B, 反	应物消耗 3/4 所需时间是其半系	衰期的 5 倍,此反应为:
(零级反应、一级反应	 Z、二级反应、三级反应)	
6. 298 K 时, 在下列电	池 Pt H ₂ (p ⁽²⁾) H ⁺ (a=1) CuSO	4(0.01 mol • kg ⁻¹) Cu(s)
右边溶液中通入 NH ₃ , 电 (升高、下降、不变、	池电动势将: 无法比较)	
	¹ 的 MgCl ₂ 水溶液,其离子强原 .15 mol kg ⁻¹ 、0.2 mol kg ⁻¹ 、	
	充电电池以 1.8 V 的输出电压放过程的功、热及体系的吉布斯自	

 $\overline{(W < 0, W > 0, W = 0; Q < 0, Q > 0, Q = 0; \Delta G < 0, \Delta G > 0, \Delta G = 0)}$

9. $Al_2(SO_4)_3$ 的化学势 μ 与 Al^{3+} 和 SO_4^{2-} 离子的化学势 μ_+ , μ_- 的关系为:

$$(\mu = \mu_+ + \mu_-; \mu = 3\mu_+ + 2\mu_-; \mu = 2\mu_+ + 3\mu_-, \mu = \mu_+ \mu_-)$$

10. 极谱分析的基本原理是根据滴汞电极的:

(电阻:浓差极化的形成:汞齐的形成:活化超电势)

二、计算题 (每题 15 分,共 60 分)

11.15 分

在 0℃时, 0.1 mol dm⁻³ 盐酸中的 H⁺和 Cl⁻的淌度分别为 3.65×10⁻⁷ 和 7.9× 10^{-8} m² V⁻¹ s⁻¹。

- (1) 计算该溶液的电导率
- (2) 将该溶液置于均匀截面为 0.200 cm² 的管中做界面移动法实验,并且将 HCl 装在阴极端,试问当通以 5 mA 的电流 1 h 后,界面向阴极区移动多少?
 - (3) 施加的电场强度(电位梯度)为多少?

12.15分

在 298 K 时,有一含有 Zn^{2+} 和 Cd^{2+} 的浓度均为 0.1 $mol\ kg^{-1}$ 的溶液,用电解沉积的方法把它们分离,试问:

- (1) 哪种离子首先在阴极析出? 用光亮 Pt 作阴极, H_2 在 Pt 上的超电势为 $0.6\,V$ 。
- (2) 第二种金属开始析出时, 前一种金属剩下的浓度为多少? 设活度系数均为 1。

已知:
$$\varphi^{\ominus}$$
 (Zn²⁺/Zn) = -0.763 V, φ^{\ominus} (Cd²⁺/Cd) =-0.403 V

13、15分

在 10℃的试验室中,用电池 Pb,PbCl₂(s)|KCl(aq)|Hg₂Cl₂(s),Hg 作为电动势标准:

已知 E^{\ominus} (298 K) = 0.5356 V, 计算此电池电动势的温度系数及 10℃时的电动势。

各物质的 S_m [©](298 K)为: PbCl₂(s): 136 J mol⁻¹ K⁻¹, Hg(l): 76 J mol⁻¹ K⁻¹, Pb(s): 65 J mol⁻¹ K⁻¹, Hg₂Cl₂(s): 192 J mol⁻¹ K⁻¹。

14、15分

在 671-768 K 之间, C_2H_5Cl 发生分解反应 C_2H_5Cl (g) \rightarrow C_2H_4 (g))+ HCl (g),速率常数 k (s⁻¹) 和温度 (T) 的关系式为: $lg(k/s^{-1}) = -13290/(T/K) + 14.6$

- (1) 求 700K 时该反应的速率常数。
- (2) 在 $700 \,\mathrm{K}$ 时,将压力为 $6664.5 \,\mathrm{Pa}$ 的 $\mathrm{C}_2\mathrm{H}_5\mathrm{Cl}$ 通入一反应器中,反应开始后,反应器中压力增大,问需多少时间,反应器中压力变为 $46 \,662.8 \,\mathrm{Pa}$?

三、问答题 (共2题 10分)

15.10 分

对于 $A \leftarrow B$ 1-1 对峙反应, A 的初始浓度为 a, B 的初始浓度为 0, t 时刻 A 的浓度

为
$$a$$
- x ,平衡时 A 浓度为 a - x eq, 证明: $\ln \frac{X_{eq}}{x_{eq}-x} = (k_1+k_{-1})t$

16、5分

将反应 $Ag_2SO_4(s) = 2 Ag^+ + SO_4^{2-}$ 设计成电池,写出电池表达式以及电极反应。

17、5分

气相基元反应 2A \xrightarrow{k} B 在一恒容的容器中进行, p_0 为 A 的初始压力, B 的初始压力为 0, p_t 为时间 t 时反应体系总压,推导出以 dp_t/dt 为反应速率的反应速率方程。