Математически анализ 2 Упражнения

Exonaut

6 май 2021 г.

Съдържание 1

Съдърг	жание
--------	-------

1	Упр	ажнение към лекция 1	3			
	1.1	Задачи	3			
	1.2	Решения	4			
2	Упр	ажнение към лекция 2	5			
	2.1	Задачи	5			
	2.2	Решения	7			
3	Упражнение към лекция 3					
	3.1	Задачи	10			
	3.2	Решения	11			
4	Упражнение към лекция 4					
	4.1	Задачи	15			
	4.2	Решения	16			
5	Упражнение към лекция 5 21					
	5.1	Задачи	21			
	5.2	Решения	22			
6	Упражнение към лекция 6					
	6.1	Задачи	29			
	6.2	Решения	31			
7	Упр	ажнение към лекция 7	35			
	7.1	Задачи	35			
	7.2	Решения	36			
8	Упр	ажнение към лекция 8	41			
	8.1	Задачи	41			
	8.2	Решения	44			
9	Упражнение към лекция 9 59					
	9.1	Задачи	59			
	9.2	Решения	60			
10	Упр	ажнение към лекция 10	64			
	_	Задачи	64			
		Решения	65			

Съдържание	2

11 Упражнение към лекция 11	66
11.1 Задачи	66
11.2 Решения	67

1.1 Задачи

Задача 1

Да се покаже дали посочените редици $\{X_n\} = \{x_n, y_n\}$ са сходящи или разходящи. За сходящите да се намери границите им.

1.
$$x_n = 1 + \frac{1}{n}, y_n = 2 + \frac{\sin n}{n}$$

2.
$$x_n = \left(1 + \frac{1}{n}\right)^n, y_n = 2 + n$$

3.
$$x_n = (-1)^n, y_n = n$$

4.
$$x_n = (-1)^n$$
, $y_n = \frac{1}{n}$

5.
$$x_n = \sin \frac{n\pi}{2}, y_n = (-1)^n$$

6.
$$x_n = \sin n, y_n = \frac{(-1)^n}{n}$$

1.2 Решения

- 1. $\lim_{n\to\infty}\frac{1}{n}=0, \frac{|\sin n|}{n}\in\left[0,\frac{1}{n}\right]\implies\lim_{n\to\infty}x_n=1, \lim_{n\to\infty}y_n=2\implies$ редицата е сходяща; точката (1,2) е нейна граница
- 2. $\lim_{n \to \infty} x_n = e, \lim_{n \to \infty} y_n = \infty \implies$ разходяща редица
- 3. $\lim_{\substack{n\to\infty\\\infty}}x_n$ не съществува, защото има две точки на сгъстяване., $\lim_{n\to\infty}y_n=$
- 4. $\lim_{\substack{n\to\infty\\0\ \Longrightarrow\ }}x_n$ не съществува, защото има две точки на сгъстяване., $\lim_{\substack{n\to\infty\\0\ \Longrightarrow\ }}y_n=$
- 5. $\lim_{n \to \infty} x_n$ не съществува, $\lim_{n \to \infty} y_n = \infty \implies$ разходяща редица
- 6. $\lim_{n \to \infty} x_n$ не съществува, $\lim_{n \to \infty} y_n = 0 \implies$ разходяща редица

2.1 Задачи

Задача 1

Нека $D \subset \mathbb{R}^m$ и са разгледани няколко функции. Да се напишат дефиниционните им множества и да се даде пояснение.

1.
$$z(x,y) = x^2 + y^2$$

2.
$$z(x,y) = \sqrt{y^2 - 2x}$$

3.
$$z(x,y) = \ln \sqrt{y^2 - 2x}$$

4.
$$z(x,y) = \frac{1}{\sqrt{-y^2 + 2x + 1}}$$

5.
$$w(x, y, z) = \arccos(x^2 + y^2 + z^2)$$

6.
$$f(n) = \begin{cases} 1, & x \in \mathbb{Q}^m \\ 0, & x \in \frac{\mathbb{R}^m}{\mathbb{Q}^m} \end{cases}$$

Задача 2

Разгледаните по - долу функциите са дефинирани в $D=\mathbb{R}^2\setminus\{(0,0)\}$. Кои от границите същестуват и колко са

$$A = \lim_{(x,y)\to(0,0)} f(x,y) \quad A_{1,2} = \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y) \right) \quad A_{2,1} = \lim_{x\to 0} \left(\lim_{y\to 0} f(x,y) \right)$$

$$1. \ f(x,y) = \frac{x-y}{x+y}$$

2.
$$f(x,y) = \frac{x^2 + y^2}{x^2y^2 + (x-y)^2}$$

3.
$$f(x,y) = \frac{xy^2}{x^2 + y^4}$$

4.
$$f(x,y) = (x+y)\sin\frac{1}{x}\cos\frac{1}{y}$$

5.
$$f(x,y) = \frac{x^4 + y^4}{x^2 + y^2}$$

2.1 Задачи 6

Задача 3

Нека A, B, C, D са подмножества на \mathbb{R}^2 дефинирани както следва

$$A = \{(x, y) : x \ge 0, y \le 1, y > x\}$$

$$B = \{(x, y) : x \le 1, y \ge 0, y < x\}$$

$$C = \{(x, y) : x = y, 0 \le x \le 1\}$$

$$D = A \cup B \cup C$$

и функцията $f:D \to \mathbb{R}$ зададена по следния начин

и функцията
$$f:D \to \mathbb{R}$$
 зададена по следния начин
$$f(x,y) = \begin{cases} \frac{1}{y^2}, & (x,y) \in A \\ 0, & x=y \\ -\frac{1}{x^2}, & (x,y) \in B \end{cases}$$
 Да се изследва непрекъснатостта на тази функция.

2.2 Решения

Задача 1

1.
$$z(x,y) = x^2 + y^2$$

 $D = \mathbb{R}^2$

2.
$$z(x,y) = \sqrt{y^2 - 2x}$$

 $D = \{(x,y) : y^2 - 2x \ge 0\} \subset \mathbb{R}^2, x \le \frac{y^2}{2}$

3.
$$z(x,y) = \ln \sqrt{y^2 - 2x}$$

$$D = \{(x,y) : y^2 - 2x > 0\} \subset \mathbb{R}^2, x < \frac{y^2}{2}$$

4.
$$z(x,y) = \frac{1}{\sqrt{-y^2 + 2x + 1}}$$

$$D = \{(x,y) : -y^2 + 2x + 1 > 0\} \subset \mathbb{R}^2, x > \frac{y^2 - 1}{2}$$

5.
$$w(x,y,z)=\arccos(x^2+y^2+z^2)$$

 $D=\{(x,y,z):x^2+y^2+z^2\leq\pi\}\subset\mathbb{R}^3,$
Графиката е кълбо с център $(0,0,0)$ и радиус $\sqrt{\pi}$

6. $D \subset \mathbb{R}^m$

Задача 2

1.

$$f(x,y) = \frac{x-y}{x+y}$$

$$\lim_{x\to 0} f(x,y) = \frac{-y}{y} = -1 \qquad \lim_{y\to 0} f(x,y) = \frac{x}{x} = 1$$

$$A_{1,2} = \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right) = \lim_{y\to 0} (-1) = -1$$

$$A_{2,1} = \lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right) = \lim_{x\to 0} (1) = 1$$

$$A = \lim_{(x,y)\to(0,0)} f(x,y)$$
 Не съществува, защото трябва $A_{1,2} = A_{2,1}$

2.

$$f(x,y) = \frac{x^2 + y^2}{x^2y^2 + (x - y)^2}$$

$$\lim_{x \to 0} f(x,y) = \frac{y^2}{(-y)^2} = 1 \qquad \lim_{y \to 0} f(x,y) = \frac{x^2}{x^2} = 1$$

$$\Longrightarrow A_{1,2} = A_{2,1} = 1 \implies \exists A = \lim_{(x,y) \to (0,0)} f(x,y)$$
 Редица: $(x_n,y_n) = \left(\frac{1}{n},\frac{1}{n}\right) \to (0,0), f(x_n,y_n) = 1 \to 1$ Редица: $(x'_n,y'_n) = \left(\frac{1}{n},\frac{-1}{n}\right) \to (0,0), f(x'_n,y'_n) = \frac{2n^2}{1+4n^2} \to \frac{1}{2} \neq 1$
$$\Longrightarrow f(x,y)$$
 няма граница при $(x,y) \to (0,0)$

3.

$$f(x,y) = \frac{xy^2}{x^2 + y^4}$$

$$\lim_{x \to 0} f(x,y) = \frac{0}{y^4} = 0 \qquad \lim_{y \to 0} f(x,y) = \frac{0}{x^2} = 0$$

$$A_{1,2} = A_{2,1} = 0 \implies \exists A = \lim_{(x,y) \to (0,0)} f(x,y)$$
 Редица: $(x_n,y_n) = \left(\frac{1}{n^2},\frac{1}{n}\right) \to (0,0), f(x_n,y_n) = \frac{1}{2} \to \frac{1}{2} \neq 0$
$$\implies f(x,y) \text{ няма граница при } (x,y) \to (0,0)$$

4.

$$f(x,y)=(x+y)\sin\frac{1}{x}\cos\frac{1}{y}$$
 $0\leq |f(x,y)|\leq |x+y|\leq |x|+|y|$ и $|x|+|y|\to 0$ $A=0$
$$\lim_{x\to 0}\sin\frac{1}{x}$$
 - не съществува
$$\lim_{x\to 0}f(x,y)=y\cos\frac{1}{y}\lim_{x\to 0}\sin\frac{1}{x}$$

Аналогично и другата вътрешна граница не съществува. Но тогава и повторните граници $A_{1,2}, A_{2,1}$ не съществуват.

5.

$$f(x,y) = \frac{x^4 + y^4}{x^2 + y^2}$$

$$\lim_{x \to 0} f(x,y) = y^2 \qquad \lim_{y \to 0} f(x,y) = x^2$$

$$A_{1,2} = \lim_{y \to 0} \left(\lim_{x \to 0} f(x,y) \right) = \lim_{y \to 0} \left(y^2 \right) = 0$$

$$A_{2,1} = \lim_{x \to 0} \left(\lim_{y \to 0} f(x,y) \right) = \lim_{x \to 0} \left(x^2 \right) = 0$$

$$\implies A = A_{1,2} = A_{2,1} = 0$$

Задача 3

Функцията f е непрекъсната в A, защото е частно на две функции със знаменател $y^2 \neq 0$, в A.

Аналогично е непрекъсната в В защото знаменателя е $x^2 \neq 0$. Остана да се изследва поведението върху С.

$$(x_0,y_0)=(x_0,x_0)\in C$$
 $R=\{(x_n,y_n)\},\;(x_n,y_n)\in A$
 $\lim_{n\to\infty}R=(x_0,y_0)$
 $\lim_{n\to\infty}f(x_n,y_n)=\frac{1}{y_0^2}=\frac{1}{x_0^2}\neq 0$
Ако $x_0\neq 0,\;f(x_0,y_0)=0$
 $\Longrightarrow \;$ функцията е прекъсната в точката $(x_0,x_0)\neq (0,0)$
Ако $(x_n,y_n)\in B,\; \lim_{n\to\infty}f(x_n,y_n)=-\frac{1}{x_0^2}\neq f(x_0,x_0)\neq 0.$
Ако $x_0=0,\; \lim_{n\to\infty}f(x_n,y_n)=\infty(-\infty),\;f(0,0)=0,$
 $\Longrightarrow \;$ f е прекъсната в точката $(0,0).$

Функцията е непрексъната в D, с изключение на точките от C, където е прекъсната.

3.1Задачи

Задача 1

Да се намерят първите частни производни на следните функции

- 1. $f(x,y,z)=e^{4x+3y}+xy^2z^3+1111e^\pi$ за произволна точка $(x_0,y_0,z_0)\in\mathbb{R}^3$
- 2. f(x,y) = |x+y| в точката (0,0)

3.
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 в равнината \mathbb{R}^2

Задача 2

$$f(x,y) = x + (y-1) \arcsin \sqrt{\frac{x}{y}}$$
 $f'_x(x,1) = ?$

Задача 3

Да се докаже че функцията $f(x,y)=\begin{cases} \dfrac{x^3y}{x^6+y^2}, & (x,y)\neq (0,0)\\ 0, & x^2+y^2=(0,0) \end{cases}$

е прекъсната в точката (0,0) но има частни производни в тази точка.

Задача 4

Да се намерят първите частни производни на следните функции:

1.
$$f(x,y) = \sin(2x+3) + 3e^{-x}e^{4y} - 11x^3 + 19e^{\pi}$$

2.
$$f(x,y) = \sqrt{x^2 + y^2} + \arctan \frac{y}{x}$$

3.
$$f(x, y, z) = (xy)^z$$

$$4. \sqrt[3]{x^2 + 3y^2}e^{x^2 - 5y}$$

3.2 Решения

Задача 1

1.

$$f(x, y, z) = e^{4x+3y} + xy^2z^3 + 1111e^{\pi}$$

$$f(x, y_0, z_0) \implies f'_x(x_0, y_0, z_0) = 4e^{4x_0+3y_0} + y_0^2z_0^3$$

$$f(x_0, y, z_0) \implies f'_y(x_0, y_0, z_0) = 3e^{4x_0+3y_0} + 2x_0y_0z_0^3$$

$$f(x_0, y_0, z) \implies f'_z(x_0, y_0, z_0) = 3x_0y_0^2z_0^2$$

2.

$$\begin{split} f(x,y) &= |x+y| \\ \frac{g(h)-g(0)}{h} &= \frac{f(0+h,0)-f(0,0)}{h} \\ \lim_{h\to 0} \frac{f(0+h,0)-f(0,0)}{h} &= \lim_{h\to 0} \frac{|h|}{h} \text{ не съществува} \\ &\Longrightarrow \nexists f_x'(0,0) \text{(Аналогично се получава за } f_y'(0,0)) \end{split}$$

3.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$(x,y) \neq (0,0)$$

$$f'_x(x,y) = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}$$

$$f'_y(x,y) = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$$

$$\lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = \lim_{h \to 0} = 0$$

$$\lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0-0}{k} = \lim_{k \to 0} = 0$$

 \implies Функцията има частни производни във всичко точки на равнината \mathbb{R}^2

Задача 2

$$f'_{x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} \text{(Ако съществува)} \implies$$

$$f'_{x}(x,1) = \lim_{h \to 0} \frac{f(x+h,1) - f(x,1)}{h} \text{(Ако съществува)}$$

$$f(x+h,1) = x+h+(1-1)\arcsin\sqrt{\frac{x}{1}} = x+h+0\arcsin\sqrt{\frac{x}{1}} = x+h$$

$$f(x,1) = x+(1-1)\arcsin\sqrt{\frac{x}{1}} = x+0\arcsin\sqrt{\frac{x}{1}} = x \implies$$

$$\lim_{h \to 0} \frac{f(x+h,1) - f(x,1)}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 \implies f'_{x}(x,1) = 1$$

Редица
$$(x_n,y_n)=\left(\frac{1}{n},\frac{1}{n^3}\right)$$

$$f(x_n,y_n)=\frac{\left(\frac{1}{n}\right)^3\cdot\frac{1}{n^3}}{\left(\frac{1}{n}\right)^6+\left(\frac{1}{n^3}\right)^3}=\frac{\frac{1}{n^6}}{\frac{2}{n^6}}=\frac{1}{2}\qquad \lim_{n\to\infty}f(x_n,y_n)=\frac{1}{2}\implies \lim_{x\to 0,y\to 0}f(x,y)\neq f(0,0)=0\implies f(x,y)$$
 е прекъсната в т. $(0,0)$.

$$f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \frac{\frac{x^3 \cdot 0}{x^6 + 0} - 0}{x - 0} = 0$$
$$f'_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = \frac{\frac{0^3 \cdot y}{0^6 + y^2} - 0}{y - 0} = 0$$

Задача 4

1.

$$\begin{split} f(x,y) &= \sin{(2x+3)} + 3e^{-x}e^{4y} - 11x^3 + 19e^{\pi} \\ f'_x(x,y) &= (\sin{(2x+3)})'_x + (3e^{-x}e^{4y})'_x - (11x^3)'_x + (19e^{\pi})'_x \\ f'_x(x,y) &= \cos{(2x+3)} \cdot 2 + (-3e^{-x}e^{4y}) - (3 \cdot 11x^2) + 0 \\ f'_x(x,y) &= 2\cos{(2x+3)} - 3e^{-x}e^{4y} - 33x^2 \\ f'_y(x,y) &= (\sin{(2x+3)})'_y + (3e^{-x}e^{4y})'_y - (11x^3)'_y + (19e^{\pi})'_y \\ f'_y(x,y) &= 0 + (3 \cdot 4e^{-x}e^{4y}) - 0 + 0 = 12e^{-x}e^{4y} \end{split}$$

2.

$$f(x,y) = \sqrt{x^2 + y^2} + \arctan \frac{y}{x}$$

$$f'_x(x,y) = \frac{1}{2} (x^2)^{-\frac{1}{2}} \cdot 2x + \frac{1}{1 + \frac{y^2}{x^2}} \cdot y \cdot (-\frac{1}{x^2})$$

$$f'_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}} - \frac{x^2 y}{x^2 + y^2} \cdot \frac{1}{x^2}$$

$$f'_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}} - \frac{xy}{x^2 + y^2}$$

$$f'_y(x,y) = \frac{1}{2} (x^2)^{-\frac{1}{2}} \cdot 2y + \frac{1}{1 + \frac{y^2}{x^2}} \cdot \frac{1}{x}$$

$$f'_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}} + \frac{x^2}{x^2 + y^2} \cdot \frac{1}{x}$$

$$f'_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}} + \frac{x}{x^2 + y^2}$$

3.

$$f(x, y, z) = (xy)^{z}$$

$$f'_{x}(x, y, z) = z(xy)^{z-1} \cdot (xy)'x = yz(xy)^{z-1}$$

$$f'_{y}(x, y, z) = z(xy)^{z-1} \cdot (xy)'y = xz(xy)^{z-1}$$

$$f'_{z}(x, y, z) = (xy)^{z} \ln(xy)$$

4.

$$\begin{split} &\sqrt[3]{x^2 + 3y^2}e^{x^2 - 5y} \\ &f'_x(x,y) = \left[\sqrt[3]{x^2 + 3y^2}\right]'_x \cdot e^{x^2 - 5y} + \sqrt[3]{x^2 + 3y^2} \cdot (e^{x^2 - 5y})'_x \\ &f'_x(x,y) = \frac{1}{3}(x^2 + 3y^2)^{-\frac{2}{3}} \cdot 2x \cdot e^{x^2 - 5y} + \sqrt[3]{x^2 + 3y^2} \cdot 2x e^{x^2 - 5y} \\ &f'_x(x,y) = \frac{2x}{3} \cdot \frac{e^{x^2 - 5y}}{\sqrt[3]{(x^2 + 3y^2)^2}} + 2x\sqrt[3]{x^2 + 3y^2} \cdot e^{x^2 - 5y} \\ &f'_x(x,y) = \frac{2x}{3} \cdot \frac{e^{x^2 - 5y}}{\sqrt[3]{(x^2 + 3y^2)^2}} \left[1 + 3(x^2 + 3y^2) \right] \\ &f'_x(x,y) = \frac{2x}{3}(1 + 3x^2 + 9y^2) \frac{e^{x^2 - 5y}}{\sqrt[3]{(x^2 + 3y^2)^2}} \\ &f'_y(x,y) = \left[\sqrt[3]{x^2 + 3y^2}\right]'_y \cdot e^{x^2 - 5y} + \sqrt[3]{x^2 + 3y^2} \cdot (e^{x^2 - 5y})'_y \\ &f'_y(x,y) = \frac{1}{3}(x^2 + 3y^2)^{-\frac{2}{3}} \cdot 6y \cdot e^{x^2 - 5y} + \sqrt[3]{x^2 + 3y^2} \cdot (-5e^{x^2 - 5y}) \\ &f'_y(x,y) = 2y \cdot \frac{1}{\sqrt[3]{(x^2 + 3y^2)^2}} \cdot e^{x^2 - 5y} - 5\sqrt[3]{x^2 + 3y^2} \cdot e^{x^2 - 5y} \\ &f'_y(x,y) = e^{x^2 - 5y} \cdot \sqrt[3]{(x^2 + 3y^2)^2}(2y - 5(x^2 + 3y^2)) \\ &f'_y(x,y) = (2y - 5x^2 - 15y^2) \frac{e^{x^2 - 5y}}{\sqrt[3]{(x^2 + 3y^2)^2}} \end{split}$$

4.1 Задачи

Задача 1

$$f(x,y) = \sqrt[3]{xy}$$
 Изследвайте $f(x,y)$ за диференцируемост в $(0,0)$. $f'_x(0,0) = ?$ $f'_y(0,0) = ?$

Задача 2

$$f(x,y) = \sqrt[3]{x^3 + y^3}$$
 Изследвайте $f(x,y)$ за диференцируемост в $(0,0)$.

Задача 3

Да се изследвай за диференцируемост в (0,0) функцията

$$f(x,y) = \begin{cases} e^{-\frac{1}{x^2 + y^2}}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

Задача 4

$$f(x,y) = x^2 + 3xy - 8y^3 + 11, df(0,1) = ?$$

 $f(x,y,z) = x^2 + 3xy - 8y^3 - 2e^{3z}x, df(0,0,4) = ?$

$$f(x,y) = x^6 - 7xy^2 + 14y,$$

$$f''_{xx} = ?, f''_{yy} = ?, f''_{xy} = ?, d^2f(x,y) = ?$$

$$f(x,y,z) = x^6 - 7xy + y^2 - xz + z^3,$$

$$f''_{xx} = ?, f''_{xy} = ?, f''_{xz} = ?f''_{yx} = ?, f''_{yy} = ?, f''_{yz} = ?f''_{zx} = ?, f''_{zy} = ?, f''_{zz} = ?, d^2f(1,0,0)$$

4.2 Решения

Задача 1

$$f(x,0) - f(0,0) = \sqrt[3]{x0} - \sqrt[3]{0} \Longrightarrow$$

$$\lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = 0 f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = 0$$

$$f(0,y) - f(0,0) = \sqrt[3]{0y} - \sqrt[3]{0} \Longrightarrow$$

$$f'_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = \lim_{y \to 0} \frac{0}{y} = 0$$
Нека:
$$\lim_{(x \to 0,y \to 0)} \varepsilon(x,y) \to 0, \rho(x,y) = \sqrt{x^2 + y^2}$$
Проверка за диференцируемост в $(0,0)$:
$$f(x,y) - f(0,0) = f'_x(0,0)(x - 0) + f'_y(0,0)(y - 0) + \varepsilon(x,y)\rho(x,y)$$

$$\sqrt[3]{xy} - 0 = 0x + 0y + \varepsilon(x,y)\sqrt{x^2 + y^2} \Longrightarrow$$

$$\varepsilon(x,y) = \frac{\sqrt[3]{xy}}{\sqrt{x^2 + y^2}} \to 0$$
?

Разглеждаме редица с общ член $(x_n,y_n)=\left(\frac{1}{n^3},\frac{1}{n^3}\right)$ за която $(x_n,y_n)\to(0,0),$

$$\varepsilon(x_n, y_n) = \frac{\frac{1}{n^2}}{\frac{\sqrt{2}}{n^3}} = \frac{n}{\sqrt{2}} \implies \lim_{(x,y)\to(0,0)} \varepsilon(x_n, y_n) \not\to 0 \implies$$

f(x,y) не е диференцируема в т.(0,0)

Решения 17

Задача 2

$$f(x,0)-f(0,0)=\sqrt[3]{x^3}-0=x\Longrightarrow$$

$$\lim_{x\to 0}\frac{f(x,0)-f(0,0)}{x-0}=\lim_{x\to 0}\frac{x}{x}=1\Longrightarrow\exists f'_x(0,0)=1$$

$$f(0,y)-f(0,0)=\sqrt[3]{y^3}-0=y\Longrightarrow$$

$$\lim_{y\to 0}\frac{f(0,y)-f(0,0)}{y-0}=\lim_{y\to 0}\frac{y}{y}=1\Longrightarrow\exists f'_y(0,0)=1$$
 Heka:
$$\lim_{(x\to 0,y\to 0)}\varepsilon(x,y)\to 0, \rho(x,y)=\sqrt{x^2+y^2}$$
 Проверка за диференцируемост в $(0,0)$:
$$f(x,y)-f(0,0)=f'_x(0,0)(x-0)+f'_y(0,0)(y-0)+\varepsilon(x,y)\rho(x,y)$$

$$\sqrt[3]{x^3+y^3}=x+y+\varepsilon(x,y)\sqrt{x^2+y^2}$$

$$\varepsilon(x,y)=\frac{\sqrt[3]{x^3+y^3}-x-y}{\sqrt{x^2+y^2}}$$

$$\lim_{(x\to 0,y\to 0)}\varepsilon(x,y)\to 0$$
? Разглеждаме редица с общ член $(x_n,y_n)=\left(\frac{1}{n},\frac{1}{n}\right)$ за която $(x_n,y_n)\to (0,x_n)$

Разглеждаме редица с общ член $(x_n, y_n) = \left(\frac{1}{n}, \frac{1}{n}\right)$ за която $(x_n, y_n) \to (0, 0)$,

$$\varepsilon(x_n, y_n) = \frac{\frac{\sqrt[3]{2}}{n} - \frac{2}{n}}{\frac{\sqrt{2}}{n}} = \frac{\sqrt[3]{2} - 2}{\sqrt{2}} \implies \lim_{(x \to 0, y \to 0)} \varepsilon(x, y) \not\to 0 \implies$$

f(x,y) не е диференцируема в т.(0,0)

$$\begin{split} f(x,0) - f(0,0) &= e^{-\frac{1}{x^2}} - 0 = e^{-\frac{1}{x^2}} \\ \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} &= \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x} &= \lim_{x \to 0} \frac{1}{\frac{1}{x}} = \begin{bmatrix} \infty \\ \infty \end{bmatrix} \\ \left(\frac{1}{x}\right)' &= -\frac{1}{x^2} \qquad \left(e^{\frac{1}{x^2}}\right)' &= -\frac{2}{x^3}e^{\frac{1}{x^2}} \\ \lim_{x \to 0} \frac{-\frac{1}{x^2}}{-\frac{1}{x^3}e^{\frac{1}{x^2}}} &= \lim_{x \to 0} \frac{x}{2e^{\frac{1}{x^2}}} = \frac{0}{\infty} = 0 \implies f_x'(0,0) = 0 \\ \text{Нека} : \lim_{(x \to 0, y \to 0)} \varepsilon(x,y) \to 0, \rho(x,y) = \sqrt{x^2 + y^2} \\ \text{Проверка за диференцируемост в } (0,0): \\ f(x,y) - f(0,0) &= f_x'(0,0)(x - 0) + f_y'(0,0)(y - 0) + \varepsilon(x,y)\rho(x,y) \\ e^{-\frac{1}{x^2 + y^2}} - 0 &= 0(x - 0) + 0(y - 0) + \varepsilon(x,y)\sqrt{x^2 + y^2} \\ e^{-\frac{1}{x^2 + y^2}} &= \varepsilon(x,y)\sqrt{x^2 + y^2} \\ \varepsilon(x,y) &= \frac{e^{-\frac{1}{x^2 + y^2}}}{\sqrt{x^2 + y^2}} \\ \lim_{(x \to 0, y \to 0)} \varepsilon(x,y) \to 0? \end{split}$$

$$\begin{split} \rho(x,y) &= \sqrt{x^2 + y^2} \implies \lim_{(x \to 0, y \to 0)} \rho(x,y) \to 0 \\ &\lim_{(x \to 0, y \to 0)} \varepsilon(x,y) = \lim_{\rho \to 0} \frac{e^{-\frac{1}{\rho^2}}}{\rho} = \left[\frac{\infty}{\infty}\right] \\ &\left(\frac{1}{\rho}\right)' = -\frac{1}{\rho^2} \quad \left(e^{\frac{1}{\rho^2}}\right)' = -\frac{2}{\rho^3} e^{\frac{1}{\rho^2}} \\ &\lim_{\rho \to 0} \frac{\rho}{2e^{\frac{1}{\rho^2}}} = \frac{0}{\infty} = 0 \implies \\ &\lim_{(x \to 0, y \to 0)} \varepsilon(x,y) = \lim_{\rho \to 0} \frac{\frac{1}{\rho}}{e^{\frac{1}{\rho^2}}} = \lim_{\rho \to 0} \frac{\left(\frac{1}{\rho}\right)'}{\left(e^{\frac{1}{\rho^2}}\right)'} = 0 \implies \\ &\lim_{(x \to 0, y \to 0)} \varepsilon(x,y) = 0 \implies f(x,y) \text{ е диференцируема в } (0,0) \end{split}$$

$$df(x,y) = f'_x(x,y)dx + f'_y(x,y)dy$$

$$f'_x(x,y) = 2x + 3y f'_x(0,1) = 3$$

$$f'_y(x,y) = 3x - 24y^2 f'_y(0,1) = -24$$

$$df(x,y) = (2x + 3y)dx + (3x - 24y^2)dy$$

$$df(0,1) = 3dx - 24dy$$

$$df(x,y,z) = f'_x(x,y,z)dx + f'_y(x,y,z)dy + f'_z(x,y,z)dz$$

$$f'_x(x,y,z) = 2x + 3y - 2e^{3z} \qquad f'_x(0,0,4) = -2e^{12}$$

$$f'_y(x,y,z) = 3x - 24y^2 \qquad f'_y(0,0,4) = 0$$

$$f'_z(x,y,z) = 6xe^{3z} \qquad f'_z(0,0,4) = 0$$

$$df(x,y,z) = (2x + 3y - 2e^{3z})dx + (3x - 24y^2)dy + (6xe^{3z})dz$$

$$df(x,y,z) = -2e^{12}dx + 0dy + 0dz = -2e^{12}dx$$

Задача 5

$$\begin{split} f'_x(x,y,z) &= 6x^5 - 7y - z \\ f''_{xx}(x,y,z) &= (6x^5 - 7y - z)'_x = 30x^4 \qquad f''_{xx}(1,0,0) = 30 \\ f''_{xy}(x,y,z) &= (6x^5 - 7y - z)'_y = -7 \qquad f''_{xy}(1,0,0) = -7 \\ f''_{xz}(x,y,z) &= (6x^5 - 7y - z)'_z = -1 \qquad f''_{xz}(1,0,0) = -1 \\ f''_{yx}(x,y,z) &= -7x + 2y \\ f''_{yx}(x,y,z) &= (-7x + 2y)'_x = -7 \qquad f''_{yx}(1,0,0) = -7 \\ f''_{yy}(x,y,z) &= (-7x + 2y)'_y = 2 \qquad f''_{yy}(1,0,0) = 2 \\ f''_{yz}(x,y,z) &= (-7x + 2y)'_z = 0 \qquad f''_{yz}(1,0,0) = 0 \\ f'_{zx}(x,y,z) &= -x + 3z^2 \\ f''_{zx}(x,y,z) &= (-x + 3z^2)'_x = -1 \qquad f''_{zy}(1,0,0) = 0 \\ f''_{zz}(x,y,z) &= (-x + 3z^2)'_z = 6z \qquad f''_{zz}(1,0,0) = 0 \\ d^2f &= f''_{xx}dx^2 + 2f''_{xy}dxdy + f''_{yy}dy^2 + 2f''_{xz}dxdz + f''_{zz}dz^2 + f''_{yz}dydz \\ d^2f(x,y,z) &= 30x^4dx^2 + 2 \cdot (-7)dxdy + 2dy^2 + 2 \cdot (-1)dxdz + 6zdz^2 + 2 \cdot 0dydz \\ d^2f(1,0,0) &= 30dx^2 - 14dxdy + 2dy^2 - 2dxdz + 0dz^2 + 0dydz \end{split}$$

 $d^2f(1,0,0) = 30dx^2 + 2dy^2 - 14dxdy - 2dxdz$

5.1 Задачи

Задача 1

Да се намерят посочените частни производни на следните функции.

1.
$$u(x,y) = x^4 + 11x^2y^3$$
, $u''_{xx} = ?$, $u''_{xy} = ?$

2.
$$u(x,y) = \arctan \frac{x+y}{1-xy}$$
, $u''_{xx} = ?$, $u''_{xy} = ?$, $u''_{yy} = ?$

3.
$$u(x,y) = \frac{1}{2} \ln(x^2 + y^2),$$
 $u''_{xx} = ?, u''_{xy} = ?, u''_{yx} = ?, u''_{yy} = ?$

4.
$$u(x,y) = \ln(x+2y), \quad u'''_{xxy} = ?$$

5.
$$u(x, y, z) = e^{xy^2z^3}$$
, $u'''_{xyz} = ?$

Задача 2

Дали са верни равенствата:

• Ako
$$z = y \ln (x^2 + y^2)$$
 to $\frac{1}{x} z'_x + \frac{1}{y} z'_y = \frac{z}{y^2}$

• Ako
$$u = \ln(x^3 + y^3 + z^3 - 3xyz)$$
 to $u'_x + u'_y + u'_z = \frac{3}{x + y + z}$

Задача 3

Да се докаже, че функцията: $z(x,y)=\arctan\left(\frac{x+y}{x-y}\right)$ удовлетворява тъждеството: $z_x'+z_y'=\frac{x-y}{x^2+y^2}$

Задача 4

Да се провери тъждеството на Ойлер за следните функции: $z(x,y)=\frac{1}{(x^2+y^2)^2}$ $u(x,y,z)=\sqrt{x^2+y^2+z^2}\cdot\ln\left(\frac{y}{x}\right)$ Тъждество на Ойлер $(f:D\to R,D\subset\mathbb{R}^m)$

$$x_1 f'_{x_1} + x_2 f'_{x_2} + \dots + x_m f'_{x_m} = mf$$

5.2Решения

$$u(x,y) = x^{4} + 11x^{2}y^{3}$$

$$u'_{x} = 4x^{3} + 22xy^{3}$$

$$u''_{xx} = 12x^{2} + 22y^{3}$$

$$u''_{xy} = 4x^{3} + 66xy^{2}$$

$$u(x,y) = \arctan \frac{x+y}{1-xy}$$

$$u'_{x} = \frac{1}{1+\left(\frac{x+y}{1-xy}\right)^{2}} \cdot \left(\frac{x+y}{1-xy}\right)'_{x}$$

$$u_y' = \frac{1}{1 + \left(\frac{x+y}{1-xy}\right)^2} \cdot \left(\frac{x+y}{1-xy}\right)_y'$$

$$u_{xx}^{\prime\prime} = (u_x^\prime)_x^\prime$$

$$u_{xy}^{"} = (u_x)_y^{\prime}$$

$$u_{yy}^{"} = (u_y)_y^{'}$$

$$A = \frac{1}{1 + \left(\frac{x + y}{1 - xy}\right)^2}. \quad B = \left(\frac{x + y}{1 - xy}\right)'_x \implies u'_x = AB$$

$$A = \frac{1}{1 + \left(\frac{x + y}{1 - xy}\right)^2} = \frac{1}{1 + \frac{(x + y)^2}{(1 - xy)^2}} = \frac{(1 - xy)^2}{(1 - xy)^2 + (x + y)^2}$$

$$A = \frac{(1 - xy)^2}{(1 - 2xy + x^2y^2 + x^2 + 2xy + y^2)} = \frac{(1 - xy)^2}{(1 + x^2y^2 + x^2 + y^2)}$$

$$A = \frac{(1 - xy)^2}{(1 + y^2) + x^2 + x^2y^2} = \frac{(1 - xy)^2}{(1 + y^2) + x^2(1 + y^2)} = \frac{(1 - xy)^2}{(1 + y^2)(1 + x^2)}$$

$$B = \left(\frac{x + y}{1 - xy}\right)'_x = \frac{1(1 - xy) - (x + y)(-y)}{(1 - xy)^2} = \frac{1 - xy + xy + y^2}{(1 - xy)^2} = \frac{1 + y^2}{(1 - xy)^2}$$

$$u'_x = AB = \frac{(1 - xy)^2}{(1 + y^2)(1 + x^2)} \cdot \frac{1 - y^2}{(1 - xy)^2} = \frac{1}{1 + x^2}$$

$$C = \left(\frac{x + y}{1 - xy}\right)'_y \implies u'_y = AC$$

$$C = \frac{1(1 - xy) - (x + y)(-x)}{(1 - xy)^2} = \frac{1 - xy + x^2 + xy}{(1 - xy)^2} = \frac{1 + x^2}{(1 - xy)^2}$$

$$u'_y = AC = \frac{(1 - xy)^2}{(1 + y^2)(1 + x^2)} \cdot \frac{1 + x^2}{(1 - xy)^2} = \frac{1}{1 + y^2}$$

$$u''_{xx} = \left(\frac{1}{1 + x^2}\right)'_x = ((1 + x^2)^{-1})'_x$$

$$u''_{xy} = -(1 + x^2)^{-2}(1 + x^2)'_x = -2x(1 + x^2)^{-2} = \frac{-2x}{(1 + x^2)^2}$$

$$u''_{yy} = \left(\frac{1}{1 + y^2}\right)'_y = ((1 + y^2)^{-1})'_y$$

$$u''_{yy} = \left(\frac{1}{1 + y^2}\right)'_y = ((1 + y^2)^{-1})'_y$$

$$u''_{yy} = -(1 + y^2)^{-2}(1 + y^2)'_y = -2y(1 + y^2)^{-2} = \frac{-2y}{(1 + x^2)^{22}}$$

$$\begin{split} u(x,y) &= \frac{1}{2} \ln{(x^2 + y^2)} \\ u'_x &= \frac{1}{2(x^2 + y^2)} \cdot (x^2 + y^2)'_x = \frac{2x}{2(x^2 + y^2)} = \frac{x}{x^2 + y^2} \\ u'_y &= \frac{1}{2(x^2 + y^2)} \cdot (x^2 + y^2)'_y = \frac{2y}{2(x^2 + y^2)} = \frac{y}{x^2 + y^2} \\ u''_{xx} &= (u'_x)'_x = \left(\frac{x}{x^2 + y^2}\right)'_x = \frac{1(x^2 + y^2) - (2x)x}{(x^2 + y^2)^2} = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \\ u''_{xy} &= (u'_x)'_y = \left(\frac{x}{x^2 + y^2}\right)'_y = \frac{-2xy}{(x^2 + y^2)^2} \\ u''_{yy} &= (u'_y)'_y = \left(\frac{y}{x^2 + y^2}\right)'_y = \frac{1(x^2 + y^2) - (2y)y}{(x^2 + y^2)^2} = \frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2} \\ u''_{yx} &= (u'_y)'_x = \left(\frac{y}{x^2 + y^2}\right)'_x = \frac{-2xy}{(x^2 + y^2)^2} \\ u(x, y) &= \ln{(x + 2y)} \\ u'_x &= \frac{1}{x + 2y} \end{split}$$

$$u(x,y) = \ln(x+2y)$$

$$u'_x = \frac{1}{x+2y}$$

$$u''_{xx} = \left(\frac{1}{x+2y}\right)'_x = ((x+2y)^{-1})'_x = -(x+2y)^{-2}(x+2y)'_x = -\frac{1}{(x+2y)^2}$$

$$u'''_{xxy} = \left(-\frac{1}{(x+2y)^2}\right)'_y = -((x+2y)^{-2})'_y = 2((x+2y)^{-3})(x+2y)'_y = \frac{4}{(x+2y)^3}$$

$$u(x, y, z) = e^{xy^2z^3}$$

$$u'_x = e^{xy^2z^3}(xy^2z^3)'_x = y^2z^3e^{xy^2z^3}$$

$$u''_{xy} = (y^2z^3 \cdot e^{xy^2z^3})'_y = (y^2z^3)'_y \cdot e^{xy^2z^3} + y^2z^3(e^{xy^2z^3})'_y$$

$$u''_{xy} = 2yz^3e^{xy^2z^3} + 2xy^3z^6e^{xy^2z^3} = 2yz^3e^{xy^2z^3}(1 + xy^2z^3)$$

$$\begin{split} u_{xyz}''' &= \left[2yz^3e^{xy^2z^3}(1+xy^2z^3)\right]_z' = (2yz^3e^{xy^2z^3})_z'(1+xy^2z^3) + 2yz^3e^{xy^2z^3}(1+xy^2z^3)_z'\\ &= \left[(2yz^3)_z'\cdot e^{xy^2z^3} + 2yz^3\cdot (e^{xy^2z^3})_z'\right](1+xy^2z^3) + 2yz^3e^{xy^2z^3}(1+xy^2z^3)_z'\\ u_{xyz}''' &= \left[6yz^2e^{xy^2z^3} + 2yz^3e^{xy^2z^3}3xy^2z^2\right](1+xy^2z^3) + 2yz^3e^{xy^2z^3}(3xy^2z^2)\\ u_{xyz}''' &= \left[6yz^2e^{xy^2z^3} + 6xy^3z^5e^{xy^2z^3}\right](1+xy^2z^3) + 6xy^3z^5e^{xy^2z^3}\\ u_{xyz}''' &= \left[6yz^2e^{xy^2z^3} + 6yz^2e^{xy^2z^3}xy^2z^3 + 6xy^3z^5e^{xy^2z^3} + 6xy^3z^5e^{xy^2z^3}xy^2z^3\right] + 6xy^3z^5e^{xy^2z^3}\\ u_{xyz}''' &= \left[6yz^2e^{xy^2z^3} + 6xy^3z^5e^{xy^2z^3} + 6xy^3z^5e^{xy^2z^3} + 6x^2y^5z^8e^{xy^2z^3}\right] + 6xy^3z^5e^{xy^2z^3}\\ u_{xyz}''' &= \left[6yz^2e^{xy^2z^3} + 6xy^3z^5e^{xy^2z^3} + 6xy^3z^5e^{xy^2z^3} + 6x^2y^5z^8e^{xy^2z^3}\right] + 6xy^3z^5e^{xy^2z^3}\\ u_{xyz}''' &= 6yz^2e^{xy^2z^3} + 18xy^3z^5e^{xy^2z^3} + 6x^2y^5z^8e^{xy^2z^3}\\ u_{xyz}''' &= 6yz^2e^{xy^2z^3} \left[1 + 3xy^2z^3 + x^2y^4z^6\right] \end{split}$$

$$\begin{split} z &= y \ln{(x^2 + y^2)} \\ z_x' &= y \frac{1}{x^2 + y^2} 2x = \frac{2xy}{x^2 + y^2} \\ z_y' &= \ln{(x^2 + y^2)} + y \frac{1}{x^2 + y^2} - 2y = \ln{(x^2 + y^2)} - \frac{2y^2}{x^2 + y^2} \\ \frac{1}{x} z_x' + \frac{1}{y} z_y' &= \frac{1}{x} \cdot \frac{2xy}{x^2 + y^2} + \frac{1}{y} \cdot \left[\ln{(x^2 + y^2)} - \frac{2y^2}{x^2 + y^2} \right] = \\ \frac{2y}{x^2 + y^2} + \frac{\ln{(x^2 + y^2)}}{y} - \frac{2y}{x^2 + y^2} = \frac{\ln{(x^2 + y^2)}}{y} \\ \frac{z}{y^2} &= \frac{y \ln{(x^2 + y^2)}}{y^2} = \frac{\ln{(x^2 + y^2)}}{y} \implies \text{ Равенството е вярно.} \end{split}$$

$$\begin{array}{l} u = \ln \left(x^3 + y^3 + z^3 - 3xyz \right) \\ u'_x = \frac{\left(x^3 + y^3 + z^3 - 3xyz \right)'_x}{x^3 + y^3 + z^3 - 3xyz} = \frac{3x^2 - 3yz}{x^3 + y^3 + z^3 - 3xyz} \\ u'_y = \frac{\left(x^3 + y^3 + z^3 - 3xyz \right)'_y}{x^3 + y^3 + z^3 - 3xyz} = \frac{3y^2 - 3xz}{x^3 + y^3 + z^3 - 3xyz} \\ u'_z = \frac{\left(x^3 + y^3 + z^3 - 3xyz \right)'_z}{x^3 + y^3 + z^3 - 3xyz} = \frac{3z^2 - 3xy}{x^3 + y^3 + z^3 - 3xyz} \\ u'_x + u'_y + u'_z = \frac{3x^2 - 3yz}{x^3 + y^3 + z^3 - 3xyz} + \frac{3y^2 - 3xz}{x^3 + y^3 + z^3 - 3xyz} + \frac{3z^2 - 3xy}{x^3 + y^3 + z^3 - 3xyz} = \frac{3(x^2 - yz + y^2 - xz + z^2 - xy)}{x^3 + y^3 + z^3 - 3xyz} = \frac{3(x^2 + y^2 + z^2 - xy - xz - yz)}{x^3 + y^3 + z^3 - 3xyz} \cdot \frac{x + y + z}{x + y + z} = \frac{3(x^3 + y^3 + z^3 - 3xyz)(x + y + z)}{\left(x^3 + y^3 + z^3 - 3xyz \right)(x + y + z)} = \frac{3}{x + y + z} \Rightarrow \text{ Pabehctboto e вярно.} \end{array}$$

$$\begin{split} z_x' &= \frac{1}{1 + \left(\frac{x+y}{x-y}\right)^2} \cdot \left(\frac{x+y}{x-y}\right)_x' = \frac{1}{\frac{(x-y)^2 + (x+y)^2}{(x-y)^2}} \cdot \frac{x-y-x-y}{(x-y)^2} \\ z_x' &= \frac{(x-y)^2}{(x-y)^2 + (x+y)^2} \cdot \frac{-2y}{(x-y)^2} \frac{-2y}{x^2 - 2xy + y^2 + x^2 + 2xy + y^2} \\ z_x' &= \frac{-2y}{2(x^2 + y^2)} = -\frac{y}{x^2 + y^2} \\ z_y' &= \frac{1}{1 + \left(\frac{x+y}{x-y}\right)^2} \cdot \left(\frac{x+y}{x-y}\right)_y' \frac{1}{\frac{(x-y)^2 + (x+y)^2}{(x-y)^2}} \cdot \frac{x-y+x+y}{(x-y)^2} = \\ z_y' &= \frac{(x-y)^2}{(x-y)^2 + (x+y)^2} \cdot \frac{2x}{(x-y)^2} = \frac{2x}{x^2 - 2xy + y^2 + x^2 + 2xy + y^2} = \frac{x}{x^2 + y^2} \\ z_x' + z_y' &= -\frac{y}{x^2 + y^2} + \frac{x}{x^2 + y^2} = \frac{x-y}{x^2 + y^2} \Longrightarrow \text{ Тъжеството е вярно} \end{split}$$

$$\begin{split} z(x,y) &= \frac{1}{(x^2+y^2)^2} \\ xz_x' + yz_y' &= 2z \\ z_x' &= \left(\frac{1}{(x^2+y^2)^2}\right)_x' = \left((x^2+y^2)^{-2}\right)_x' = -2(x^2+y^2)^{-3}(x^2+y^2)_x' = -\frac{4x}{(x^2+y^2)^3} \\ z_y' &= \left(\frac{1}{(x^2+y^2)^2}\right)_y' = \left((x^2+y^2)^{-2}\right)_y' = -2(x^2+y^2)^{-3}(x^2+y^2)_x' = -\frac{4y}{(x^2+y^2)^3} \\ xz_x' + yz_y' &= x \cdot \left(-\frac{4x}{(x^2+y^2)^3}\right) + y \cdot \left(-\frac{4y}{(x^2+y^2)^3}\right) = -\frac{4x^2}{(x^2+y^2)^3} - \frac{4y^2}{(x^2+y^2)^3} = \\ \frac{-4(x^2+y^2)}{(x^2+y^2)^3} &= -\frac{4}{(x^2+y^2)^2} \\ 2z &= \frac{2}{(x^2+y^2)^2} \\ -\frac{4}{(x^2+y^2)^2} \neq \frac{2}{(x^2+y^2)^2} \Longrightarrow \text{ Тъждението не е изпълнено.} \end{split}$$

$$\begin{split} u(x,y,z) &= \sqrt{x^2 + y^2 + z^2} \cdot \ln\left(\frac{y}{x}\right) \\ xu_x' + yu_y' + zu_z' &= 3z \\ u_x' &= \left(\sqrt{x^2 + y^2 + z^2}\right)_x' \ln\left(\frac{y}{x}\right) + \sqrt{x^2 + y^2 + z^2} \left(\ln\left(\frac{y}{x}\right)\right)_x' \\ u_y' &= \left(\sqrt{x^2 + y^2 + z^2}\right)_y' \ln\left(\frac{y}{x}\right) + \sqrt{x^2 + y^2 + z^2} \left(\ln\left(\frac{y}{x}\right)\right)_y' \\ u_z' &= \left(\sqrt{x^2 + y^2 + z^2}\right)_z' \ln\left(\frac{y}{x}\right) + \sqrt{x^2 + y^2 + z^2} \left(\ln\left(\frac{y}{x}\right)\right)_z' \end{split}$$

$$u'_{x} = \left(\sqrt{x^{2} + y^{2} + z^{2}}\right)'_{x} \ln\left(\frac{y}{x}\right) + \sqrt{x^{2} + y^{2} + z^{2}} \left(\ln\left(\frac{y}{x}\right)\right)'_{x}$$

$$u'_{x} = \frac{x \ln\left(\frac{y}{x}\right)}{\sqrt{x^{2} + y^{2} + z^{2}}} - \frac{\sqrt{x^{2} + y^{2} + z^{2}}}{x} = \frac{x \ln\left(\frac{y}{x}\right)x - \left(\sqrt{x^{2} + y^{2} + z^{2}}\right)^{2}}{x\sqrt{x^{2} + y^{2} + z^{2}}}$$

$$u'_{x} = \frac{x^{2} \ln\left(\frac{y}{x}\right) - x^{2} - y^{2} - z^{2}}{x\sqrt{x^{2} + y^{2} + z^{2}}}$$

$$u'_{y} = \left(\sqrt{x^{2} + y^{2} + z^{2}}\right)'_{y} \ln\left(\frac{y}{x}\right) + \sqrt{x^{2} + y^{2} + z^{2}} \left(\ln\left(\frac{y}{x}\right)\right)'_{y}$$

$$u'_{y} = \frac{y \ln\left(\frac{y}{x}\right)}{\sqrt{x^{2} + y^{2} + z^{2}}} + \frac{\sqrt{x^{2} + y^{2} + z^{2}}}{y} = \frac{y \ln\left(\frac{y}{x}\right)y + \left(\sqrt{x^{2} + y^{2} + z^{2}}\right)^{2}}{y\sqrt{x^{2} + y^{2} + z^{2}}}$$

$$u'_{y} = \frac{y^{2} \ln\left(\frac{y}{x}\right) + x^{2} + y^{2} + z^{2}}{y\sqrt{x^{2} + y^{2} + z^{2}}}$$

$$u'_{y} = \left(\sqrt{x^{2} + y^{2} + z^{2}}\right)' \ln\left(\frac{y}{x}\right) + \sqrt{x^{2} + y^{2} + z^{2}} \left(\ln\left(\frac{y}{x}\right)\right)'$$

$$u'_{z} = \left(\sqrt{x^{2} + y^{2} + z^{2}}\right)'_{z} \ln\left(\frac{y}{x}\right) + \sqrt{x^{2} + y^{2} + z^{2}} \left(\ln\left(\frac{y}{x}\right)\right)'_{z}$$

$$u'_{z} = \frac{z \ln\left(\frac{y}{x}\right)}{\sqrt{x^{2} + y^{2} + z^{2}}} + 0 \cdot \sqrt{x^{2} + y^{2} + z^{2}} = \frac{z \ln\left(\frac{y}{x}\right)}{\sqrt{x^{2} + y^{2} + z^{2}}}$$

$$\begin{aligned} xu_x' + yu_y' + zu_z' &= 3z, \quad A = xu_x' + yu_y' + zu_z', \quad B = 3u \\ A &= x \cdot \frac{x^2 \ln\left(\frac{y}{x}\right) - x^2 - y^2 - z^2}{x\sqrt{x^2 + y^2 + z^2}} + y \cdot \frac{y^2 \ln\left(\frac{y}{x}\right) + x^2 + y^2 + z^2}{y\sqrt{x^2 + y^2 + z^2}} + z \cdot \frac{z \ln\left(\frac{y}{x}\right)}{\sqrt{x^2 + y^2 + z^2}} \\ A &= \frac{x^2 \ln\left(\frac{y}{x}\right) - x^2 - y^2 - z^2}{\sqrt{x^2 + y^2 + z^2}} + \frac{y^2 \ln\left(\frac{y}{x}\right) + x^2 + y^2 + z^2}{\sqrt{x^2 + y^2 + z^2}} + \frac{z^2 \ln\left(\frac{y}{x}\right)}{\sqrt{x^2 + y^2 + z^2}} \\ A &= \frac{x^2 \ln\left(\frac{y}{x}\right) - x^2 - y^2 - z^2 + y^2 \ln\left(\frac{y}{x}\right) + x^2 + y^2 + z^2 + z^2 \ln\left(\frac{y}{x}\right)}{\sqrt{x^2 + y^2 + z^2}} \\ A &= \frac{x^2 \ln\left(\frac{y}{x}\right) \ln\left(\frac{y}{x}\right) + z^2 \ln\left(\frac{y}{x}\right)}{\sqrt{x^2 + y^2 + z^2}} = \frac{\ln\left(\frac{y}{x}\right)(x^2 + y^2 + z^2)}{\sqrt{x^2 + y^2 + z^2}} = \sqrt{x^2 + y^2 + z^2} \cdot \ln\left(\frac{y}{x}\right) \\ B &= 3u = 3\sqrt{x^2 + y^2 + z^2} \cdot \ln\left(\frac{y}{x}\right) \implies A \neq B \implies \text{Тъждението не е изпълнено.} \end{aligned}$$

6.1 Задачи

Задача 1

Дадени са функцията $z(x,y)=\varphi(x+y)+\psi(x-y)$, където φ,ψ - непрекъснато диференцируеми Да се намерят първите частни производни.

Задача 2

Да се провери дали w(x, y, z) удволетворява тъждествено равенството:

$$xw_x + yw_y + zw_z = w + \frac{xy}{z}$$

Ако $w=\frac{xy}{z}+\ln x+x\cdot \varphi\left(\frac{y}{x},\frac{z}{x}\right), \varphi$ е непрекъснато диференцируема.

Задача 3

Дадени са функциите и точката M(2,1). Да се пресметне $\operatorname{gradf}(M)$ и $\|\operatorname{gradf}(M)\|$

1.
$$f(x,y) = x^2 + 11y^2 - 3$$

2.
$$f(x,y) = x^2 - y^2$$

3.
$$f(x,y) = \ln(x^2 + y^2)$$

Задача 4

Дадени са функциите и точката M(2,1).

Да се пресметне $\frac{\partial f(M)}{\partial \nu}, \nu = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

1.
$$f(x,y) = x^2 + 11y^2 - 3$$

2.
$$f(x,y) = x^2 - y^2$$

3.
$$f(x,y) = \ln(x^2 + y^2)$$

6.1 Задачи 30

Задача 5

Да се определи ъгъла между градиентите на функцията

$$u = x^2 + y^2 + z^2 - 111$$

в точките $A(\varepsilon,0,0)$ и $B\ (0,\varepsilon,0),\varepsilon>0$

Задача 6

Да се намери y',y'' на неявната функция y=f(x), дефинирана от уравнението

$$x^2 - 2xy + 5y^2 + 4y = 2x + 9$$

Да се пресметнат y'(0), y''(0), ако y(0) = 1

6.2 Решения

Задача 1

$$z(x,y) = \varphi(x+y) + \psi(x-y)$$

$$z'_{x} = \varphi'(x+y)(x+y)'_{x} + \psi'(x-y)(x-y)'_{x} = \varphi'(x+y)1 + \psi'(x-y)1$$

$$z'_{x} = \varphi'(x+y) + \psi'(x-y)$$

$$z'_{y} = \varphi'(x+y)(x+y)'_{y} + \psi'(x-y)(x-y)'_{y} = \varphi'(x+y)1 + \psi'(x-y)(-1)$$

$$z'_{y} = \varphi'(x+y) - \psi'(x-y)$$

Задача 2

$$\begin{aligned} u &= \frac{y}{x} \qquad v = \frac{z}{x} \\ u'_x &= -\frac{y}{x^2} \qquad u'_y = \frac{1}{x} \qquad u'_z = 0 \\ v'_x &= -\frac{z}{x^2} \qquad v'_y = 0 \qquad v'_z = \frac{1}{x} \\ w'_x &= \frac{y}{z} \ln x + \frac{xy}{z} \cdot \frac{1}{x} + \varphi \left(\frac{y}{x}, \frac{z}{x} \right) + x(\varphi'_u u'_x + \varphi'_v v_x) = \\ w'_x &= \frac{y}{z} \ln x + \frac{y}{z} + \varphi \left(\frac{y}{x}, \frac{z}{x} \right) - \frac{y}{x} \varphi'_u - \frac{z}{x} \varphi'_v \\ w'_y &= \frac{x}{z} \ln x + x(\varphi'_u u'_y + \varphi'_v v_y) = \frac{x}{z} \ln x + \varphi'_u \\ w'_z &= -\frac{xy}{z^2} \ln x + x(\varphi'_u u'_z + \varphi'_v v_z) = -\frac{xy}{z^2} \ln x + \varphi'_v \\ xw_x + yw_y + zw_z &= \\ &= \frac{xy}{z} \ln x + \frac{xy}{z} + x\varphi \left(\frac{y}{x}, \frac{z}{x} \right) - y\varphi'_u - z\varphi'_v + \frac{xy}{z} \ln x + y\varphi'_u + -\frac{xy}{z} \ln x + z\varphi'_v = \\ &= \frac{xy}{z} + \ln x + x \cdot \varphi \left(\frac{y}{x}, \frac{z}{x} \right) + \frac{xy}{z} = w + \frac{xy}{z} \end{aligned}$$

Задача 3

$$f(x,y) = x^{2} + 11y^{2} - 3$$

$$f'_{x} = 2x f'_{y} = 22y$$

$$gradf(x,y) = (2x, 22y)$$

$$gradf(M) = (2 \cdot 2, 22 \cdot 1) = (4, 22)$$

$$||aradf(M)|| = \sqrt{4^{2} + 22^{2}} = \sqrt{500} = 10\sqrt{5}$$

 $gradf = (f'_x, f'_y)$

$$\begin{split} f(x,y) &= x^2 - y^2 \\ f'_x &= 2x \qquad f'_y = -2y \\ grad f(x,y) &= (2x, -2y) \\ grad f(M) &= (2 \cdot 2, -2 \cdot 1) = (4, -2) \\ \|grad f(M)\| &= \sqrt{4^2 + (-2)^2} = \sqrt{20} = 2\sqrt{5} \end{split}$$

$$f(x,y) = \ln(x^2 + y^2)$$

$$f'_x = \frac{2x}{x^2 + y^2} \qquad f'_y = \frac{2y}{x^2 + y^2}$$

$$gradf(x,y) = \left(\frac{2x}{x^2 + y^2}, \frac{2y}{x^2 + y^2}\right)$$

$$gradf(M) = \left(\frac{2 \cdot 2}{2^2 + 1^2}, \frac{2 \cdot 1}{2^2 + 1^2}\right) = \left(\frac{4}{5}, \frac{2}{5}\right)$$

$$\|gradf(M)\| = \sqrt{\left(\frac{4}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = \sqrt{\frac{20}{25}} = \frac{2}{\sqrt{5}}$$

$$\frac{\partial f(M)}{\partial \nu} = (gradf, \nu)$$

$$f(x,y) = x^{2} + 11y^{2} - 3$$
$$gradf(M) = (2 \cdot 2, 22 \cdot 1) = (4, 22)$$
$$\frac{\partial f(M)}{\partial \nu} = 4 \cdot \frac{\sqrt{3}}{2} + 22 \cdot \frac{1}{2} = 2\sqrt{3} + 11$$

$$f(x,y) = x^{2} - y^{2}$$

$$gradf(M) = (2 \cdot 2, -2 \cdot 1) = (4, -2)$$

$$\frac{\partial f(M)}{\partial \nu} = 4 \cdot \frac{\sqrt{3}}{2} - 2 \cdot \frac{1}{2} = 2\sqrt{3} - 1$$

$$f(x,y) = \ln(x^2 + y^2)$$

$$gradf(M) = \left(\frac{2 \cdot 2}{2^2 + 1^2}, \frac{2 \cdot 1}{2^2 + 1^2}\right) = \left(\frac{4}{5}, \frac{2}{5}\right)$$

$$\frac{\partial f(M)}{\partial \nu} = \frac{4}{5} \cdot \frac{\sqrt{3}}{2} + \frac{2}{5} \cdot \frac{1}{2} = \frac{4\sqrt{3}}{10} + \frac{1}{5} = \frac{4\sqrt{3} + 2}{10}$$

$$\begin{split} u_x' &= 2x \qquad u_y' = 2y \qquad u_z' = 2z \\ gradu(A) &= (2\varepsilon, 0, 0) \qquad gradu(B) = (0, 2\varepsilon, 0) \\ (gradu(A), gradu(B)) &= 2\varepsilon \cdot 0 + 0 \cdot 2\varepsilon + 0 \cdot 0 = 0 \\ (gradu(A), gradu(B)) &= \|u(A)\| \cdot \|u(B)\| \cdot \cos \alpha \\ \cos \alpha &= 0 \Leftrightarrow \alpha = \frac{\pi}{2} \end{split}$$

$$F(x,y) = x^{2} - 2xy + 5y^{2} + 4y = 2x + 9$$

$$F'_{y} = -2x + 10y + 4 \neq 0$$

$$F'_{x}(x,y) = 2x - 2y - 2$$

$$F'_{y}(0,1) = -2 \cdot 0 + 10 \cdot 1 + 4 \neq 0$$

$$y'(x) = -\frac{F'_{x}(x,y)}{F'_{y}(x,y)} = -\frac{2x - 2y - 2}{-2x + 10y + 4} = -\frac{x - y - 1}{-x + 5y + 2}$$

$$y'(0) = -\frac{0 - 1 - 1}{-0 + 5 \cdot 1 + 2} = -\frac{-2}{7} = \frac{2}{7}$$

$$y''(x) = -\frac{F''_{xx}(x,y) + 2F''_{xy}y' + F''_{yy}(x,y)y'^{2}}{F'_{y}(x,y)}$$

$$F''_{xx} = 2, \quad F''_{yy} = 10, \quad F''_{xy} = -2$$

$$F''_{xx}(0,1) = 2, \quad F''_{yy}(0,1) = 10, \quad F''_{xy}(0,1) = -2$$

$$y''(x) = -\frac{2 + 2 \cdot (-2)y' + 10y'^{2}}{-2x + 10y + 4}$$

$$y''(x) = -\frac{2 + -4y' + 10y'^{2}}{-2x + 10y + 4}$$

$$y''(0) = -\frac{2 + -4 \cdot \frac{2}{7} + 10 \cdot \left(\frac{2}{7}\right)^{2}}{-2 \cdot 0 + 10 \cdot 1 + 4}$$

$$y''(0) = -\frac{2 + -\frac{8}{7} + \frac{40}{49}}{14}$$

$$y''(0) = -\frac{\frac{98 - 56 + 40}{49}}{14} = -\frac{\frac{82}{49}}{14} = \frac{82}{49} \cdot \frac{1}{14} = \frac{41}{343}$$

7.1 Задачи

Задача 1

Да се намерят локалните екстремуми на функциите

- $z = \sin x + \sin y + \sin (x + y)$ $(0 < x < \frac{\pi}{2}, 0 < y < \frac{\pi}{2})$
- $z = x^4 + y^4 4xy$

Задача 2

Да се намерят локалните екстремуми на функциите

- $u = x^2 + y^2 + z^2 + 2x + 4y 6z$
- $u = x^3 + y^2 + z^2 3x + 6y 2z$
- $u = x^3 + y^2 + z^2 3x 2y$

Задача 3

Да се намерят y'(0), y''(0) ако y(0) = 2 на неявната функция y = f(x) дефинирана от уравнението

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

Задача 4

Да се покаже, че функцията z=f(x,y) дефинирана неявно от уравнението

$$z = x\varphi(\frac{z}{y})$$

 φ - непрекъснато диференцируема, удовелетворява тъждествено уравнението

$$xz_x' + yz_y' = z$$

7.2 Решения

$$z = \sin x + \sin y + \sin (x + y) \quad (0 < x < \frac{\pi}{2}, 0 < y < \frac{\pi}{2})$$

$$z'_{x} = \cos x + \cos (x + y) \quad z'_{y} = \cos y + \cos (x + y)$$

$$\begin{vmatrix} \cos x + \cos (x + y) = 0 \\ \cos y + \cos (x + y) = 0 \end{vmatrix} \Rightarrow \begin{vmatrix} 2\cos\frac{2x+y}{2}\cos\frac{y}{2} = 0 \\ 2\cos\frac{x+2y}{2}\cos\frac{x}{2} = 0 \end{vmatrix} \Rightarrow \begin{vmatrix} \frac{2x+y}{2} = \frac{\pi}{2} \\ \frac{x+2y}{2} = \frac{\pi}{2} \end{vmatrix}$$

$$\frac{y}{2} = \frac{\pi}{2}, \quad \frac{x}{2} = \frac{\pi}{2} \implies x = y = \pi \not\in (0 < x, y < \frac{\pi}{2})$$

$$x_{0} = y_{0} = \frac{\pi}{3} \implies M_{0}\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$$

$$z''_{xx} = -\sin x - \sin (x + y) \quad z''_{yy} = -\sin y - \sin (x + y) \quad z''_{xy} = -\sin (x + y)$$

$$z''_{xx}(M_{0}) = -\frac{2\sqrt{3}}{2} = -\sqrt{3} = \Delta_{1} \quad z''_{yy}(M_{0}) = -\frac{2\sqrt{3}}{2} = -\sqrt{3} \quad z''_{xy}(M_{0}) = -\frac{\sqrt{3}}{2}$$

$$\begin{pmatrix} z''_{xx}(M_{0}) & z''_{xy}(M_{0}) \\ z''_{yx}(M_{0}) & z''_{yy}(M_{0}) \end{pmatrix} = \begin{pmatrix} -\sqrt{3} & -\frac{2\sqrt{3}}{2} \\ -\frac{2\sqrt{3}}{2} & -\sqrt{3} \end{pmatrix}$$

$$\Delta_{1} = -\sqrt{3} < 0 \qquad \Delta_{2} = 3 - \frac{3}{4} > 0$$

$$\implies \exists \text{ локален максимум, } z_{max} = z(M_{0}) - \frac{3\sqrt{3}}{2}$$

$$z = x^{4} + y^{4} - 4xy$$

$$z'_{x} = 4x^{3} - 4y \quad z'_{y} = 4y^{3} - 4x$$

$$\begin{vmatrix} 4x^{3} - 4y & 0 \\ 4y^{3} - 4x & 0 \end{vmatrix} \Rightarrow \begin{vmatrix} y = x^{3} \\ x^{9} - x & 0 \end{vmatrix} \Rightarrow \begin{vmatrix} x(x^{2} - 1)(x^{2} + 1)(x^{4} + 1) & 0 \\ y & x^{3} \end{vmatrix} \Rightarrow M_{0}(0, 0) \quad M_{1}(1, 1) \quad M_{2}(-1, 1)$$

$$z''_{xx} = 12x^{2} \quad z''_{yy} = 12y^{2} \quad z''_{xy} = -4$$

$$d^{2}z = \begin{pmatrix} z''_{xx}(M_{0}) & z''_{xy}(M_{0}) \\ z''_{yy}(M_{0}) & z''_{yy}(M_{0}) \end{pmatrix} = \begin{pmatrix} 12x^{2} & -4 \\ -4 & 12y^{2} \end{pmatrix}$$

$$d^2z(M_0) = \begin{pmatrix} 0 & -4 \\ -4 & 0 \end{pmatrix} \implies \Delta = \begin{vmatrix} 0 & -4 \\ -4 & 0 \end{vmatrix} = -16 < 0 \implies \text{ няма лок. екстремум в } M_0$$

$$d^2z(M_1) = \begin{pmatrix} 12 & -4 \\ -4 & 12 \end{pmatrix} \implies \Delta_1 = 12 > 0 \\ \Delta_2 = \begin{vmatrix} 0 & -4 \\ -4 & 0 \end{vmatrix} 144 - 16 > 0 \implies$$

z има локален минимум

$$z_{min} = z(M_1) = 1^4 + 1^4 - 4 \cdot 1 \cdot 1 = -2$$

Аналогично и за M_2 има лок. мин $z_{min}=-2$

Задача 2

$$u = x^{2} + y^{2} + z^{2} + 2x + 4y - 6z$$

$$u'_{x} = 2x + 2 \quad u'_{y} = 2y + 4 \quad u'_{z} = 2z - 6$$

$$\begin{vmatrix} x + 1 = 0 \\ y + 2 = 0 \implies M_{0}(-1, -2, 3) \\ z - 3 = 0 \end{vmatrix}$$

$$u''_{xx} = 2 \quad u''_{yy} = 2 \quad u''_{zz} = 2$$

$$u''_{xy} = u''_{xz} = u''_{yx} = u''_{yz} = u''_{zx} = u''_{zy} = 0$$

$$d^{2}u(M_{0}) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\Delta_{1} = u''_{xx} = 2 > 0 \quad \Delta_{2} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 > 0 \quad \Delta_{3} = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8 > 0 \implies$$

 d^2u е положително дефинитна квадратична форма и има лок. минимум $u_{min}=u(M_0)=1+4+9-2-4\cdot 2-18=-14$

$$u = x^{3} + y^{2} + z^{2} - 3x + 6y - 2z$$

$$u'_{x} = 3x^{2} + 2 \quad u'_{y} = 2y + 6 \quad u'_{z} = 2z - 2$$

$$\begin{vmatrix} 3x^{2} + 2 = 0 \\ 2y + 6 = 0 & \Longrightarrow M_{0}(1, -3, 1) M_{1}(-1, -3, 1) \\ 2z - 2 = 0 \end{vmatrix}$$

$$u''_{xx} = 6x \quad u''_{yy} = 2 \quad u''_{zz} = 2$$

$$u''_{xy} = u''_{xz} = u''_{yx} = u''_{yz} = u''_{zx} = u''_{zy} = 0$$

$$d^{2}u(M_{0}) = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \Longrightarrow$$

$$\Delta_{1} = 6 > 0 \quad \Delta_{2} = \begin{vmatrix} 6 & 0 \\ 0 & 2 \end{vmatrix} = 12 > 0 \quad \Delta_{3} = \begin{vmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 24 > 0 \Longrightarrow$$

 d^2u е положително дефинитна квадратична форма

и има лок. минимум $u_{min} = u(M_0) = 1 + 9 + 1 - 3 - 18 - 2 = -12$

$$d^2u(M_1) = \begin{pmatrix} -6 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{pmatrix} \implies$$

$$\Delta_1 = -6 < 0$$
 $\Delta_2 = \begin{vmatrix} -6 & 0 \\ 0 & 2 \end{vmatrix} = -12 < 0$ $\Delta_3 = \begin{vmatrix} -6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = -24 < 0 \Longrightarrow$

 d^2u е не е дефинитна квадратична форма \implies няма лок. екстремуми

$$u = x^{3} + y^{2} + z^{2} - 3x - 2y$$

$$u'_{x} = 3x^{2} - 3 \quad u'_{y} = 2y - 2 \quad u'_{z} = 2z$$

$$\begin{vmatrix} 3x^{2} - 3 = 0 \\ 2y - 2 = 0 \\ 2z = 0 \end{vmatrix} \Longrightarrow M_{0}(1, 1, 0) M_{1}(-1, 0, 0)$$

$$\begin{vmatrix} 2z = 0 \\ u''_{xx} = 6x \quad u''_{yy} = 2 \quad u''_{zz} = 2 \\ u''_{xy} = u''_{xz} = u''_{yx} = u''_{yz} = u''_{zx} = u''_{zy} = 0 \\ d^{2}u(M_{0}) = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \Longrightarrow$$

$$\Delta_{1} = 6 > 0 \quad \Delta_{2} = \begin{vmatrix} 6 & 0 \\ 0 & 2 \end{vmatrix} = 12 > 0 \quad \Delta_{3} = \begin{vmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 24 > 0 \Longrightarrow$$

 d^2u е положително дефинитна квадратична форма и има лок. минимум $u_{min}=u(M_0)=1+1-3-2=-3$

$$d^{2}u(M_{1}) = \begin{pmatrix} -6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \implies$$

$$\Delta_{1} = -6 < 0 \quad \Delta_{2} = \begin{vmatrix} -6 & 0 \\ 0 & 2 \end{vmatrix} = -12 < 0 \quad \Delta_{3} = \begin{vmatrix} -6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = -24 < 0 \implies$$

 d^2u е не е дефинитна квадратична форма \implies няма лок. екстремуми

$$F(x,y) = \frac{x^2}{9} + \frac{y^2}{4} - 1 \quad M_0(0,2)$$

$$F'_y = \frac{2y}{4} = \frac{y}{2} \neq 0 \\ y'(x) = -\frac{F'_x}{F'_y} \qquad y''(x) = -\frac{F''_{xx} + 2F''_{xy}y' + F''_{yy}(y')^2}{F'_y}$$

$$F'_x = \frac{2}{9}x \quad F'_y = \frac{2y}{4} \quad F''_{xx} = \frac{2}{9} \quad F''_{xy} = F''_{yx} = 0 \quad F''_{yy} = \frac{1}{2}$$

$$F'_x(0,2) = 0 \quad F'_y(0,2) = 1 \quad F''_{xx}(0,2) = \frac{2}{9} \quad F''_{xy}(0,2) = F''_{yx}(0,2) = 0 \quad F''_{yy}(0,2) = \frac{1}{2}$$

$$y'(0) = -\frac{0}{1} = 0 \qquad y''(0) = -\frac{\frac{2}{9} + 2 \cdot 0 \cdot 0 + \frac{1}{2} \cdot 0^2}{1} = -\frac{2}{9}$$

Pewerul. Ozhazabane

$$F(x,y,z) = z - x \ \varphi(z/y), \quad (3)$$

Our Rodento uzberroane y crobineno za z!

Heshra pyrkyus:

 $F'_z = 1 - x \ \varphi'(z/y) \cdot \frac{1}{y} + 0. \quad (4)$
 $No-Hamamax:$
 $F'_x = - \varphi(z/y); \quad F'_y = -x \ \varphi'(z/y) \cdot (-\frac{z}{y^2}), \tau.e$
 $F'_x = - \varphi(z/y); \quad F'_y = \frac{xz}{y^2} \ \varphi'(z/y) \Rightarrow 2'_x = -\frac{F'_x}{F'_z} = \frac{-\varphi(z/y)}{1-x \ \varphi'(z/y)} = \frac{\varphi(z/y)}{1-x \ \varphi'(z/y)}$
 $z'_y = -\frac{F'_y}{F'_z} = -\frac{xz}{y} \ \varphi'(z/y) = \frac{\varphi(z/y)}{1-x \ \varphi'(z/y)} = \frac{xz}{1-x} \ \varphi'(z/y) = \frac{x}{1-x} \$

8 Упражнение към лекция 8

8.1 Задачи

Задача 1

Да се изследва за локален екстремум следната функция.

$$z = 1 - \sqrt{x^2 - y^2}$$

Задача 2

Намерете точките на условен екстремум и екстремумите на следните функции.

- $z = x^2 + y^2$, and x + y = 1
- $u = x^2 + y^2 12x + 16y$, ako $x^2 + y^2 = 25$
- u = x + y + z, ако z = 1 и $x^2 + y^2 = 1$

Задача 3

Да се изследва функцията u = xy + yz за условен екстремум, при ограничения.

$$x^2 + y^2 = 2$$

$$y + z = 2$$

Задача 4

Да се изследва функцията z=x+y за условен екстремум, при ограничения.

$$xy = 1$$

Задача 5

Да се намери дефиниционното множество на функциите.

- $z = \sqrt{1 x^2 y^2 + 2x}$
- $z = \frac{x^2y}{2x+y}$
- $z = \arcsin(x + y)$
- $w = \frac{1}{\sqrt{xy}}$

8.1 Задачи 42

Задача 6

Да се намерят границите ако съществуват.

•
$$\lim_{(x,y)\to(0,0)} \frac{\tan(xy)}{xy}$$

•
$$\lim_{(x,y)\to(0,0)} \frac{y}{\sin(xy)}$$

$$\bullet \lim_{(x,y)\to(0,0)} \frac{1-\sqrt{1-xy}}{xy}$$

Задача 7

Да се провери дали уравнението удовлетворява посочената функция.

•
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}, z(x, y) = \ln(x^2 + y^2 + 1)$$

•
$$\frac{x}{y}\frac{\partial z}{\partial x} + \frac{1}{\ln x}\frac{\partial z}{\partial y} = 2z, z(x,y) = x^y$$

•
$$2\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} = 0, z(x, y) = 2\cos^2(y - \frac{x}{2})$$

•
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 1, u(x, y, z) = x + \frac{x - y}{y - z}$$

Задача 8

Да се изследват за локален екстремум следните функции.

•
$$z = x^4 + y^4 - x^2 - 2xy - y^2$$

$$\bullet \ z = xy(1 - x - y)$$

$$z = x^3 - y^3 - 3x + 3y + 2$$

$$\bullet \ u = x^3 + y^2 + z^2 + 12xy + 2z$$

Задача 9

Да се изследват за локален екстремум следните неявно зададени функции.

•
$$x^3 + y^3 = 3xy, y = y(x)$$

•
$$y^2 - 3y - \sin(x) = 0, y = y(x)$$

•
$$x^2 + y^2 + z^2 - xz - yz + 2x + 2y + 2z - 2 = 0, z = z(x, y)$$

•
$$2x^2 + 2y^2 + z^2 + 8xz - 8yz + 8 = 0, z = z(x, y)$$

8.1 Задачи 43

Задача 10

Да се изследва за условен екстремум

- z = xy, ako 2x + y = 1
- $z = x^2 + y^2$, ako x y = 1
- $u = x^2 + y^2 + z^2$, ако $\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} = 1$
- u = xyz, ako x + y + z = 5, xy + yz + zx = 8

Задача 11

Намерете точките на условен екстремум и екстремумите на следните функции.

- $u = x^2 + y^2 + z^2 + 2x + 4y 6z$, ako $x^2 + y^2 + z^2 = 14$
- $u = x^2 + y^2 + z^2 + 2x + 4y$, and $x^2 + y^2 = 20$
- $u = x^2 + y^2 + z^2 + 6x 2y + 4z$, and $x^2 + y^2 + z^2 = 56$

Задача 12

Намерете абсолютните екстремуми на следните функции и определете вида им (условен, локален, минимум, максимум)

•
$$u=x^2+y^2-12x+16y$$
, ако $x^2+y^2\leq 25, x^2+y^2\leq 400, x^2+y^2\leq 100$

•
$$u = x^2 + y^2 + z^2 + 2x + 4y - 6$$
, ako $x^2 + y^2 + z^2 \le 9$

•
$$u = x^2 + 2y^2 + 3z^2$$
, ако $x^2 + y^2 + z^2 \le 100$

8.2 Решения

Задача 1

$$z(\Delta x, \Delta y) - z(0, 0) = 1 - \sqrt{\Delta x^2 - \Delta y^2} - 1 = -\sqrt{\Delta x^2 - \Delta y^2} < 0$$

Имаме строг локален максимум в z(0,0) = 1

$$z = x^{2} + y^{2}, \quad x + y = 1$$

$$F(x, y\lambda) = x^{2} + y^{2} + \lambda(x + y - 1), \quad \lambda \neq 0$$

$$F'_{x} = 2x + \lambda \qquad F'_{y} = 2y + \lambda$$

$$\begin{vmatrix} 2x + \lambda = 0 \\ 2y + \lambda = 0 \Leftrightarrow \\ x + y = 1 \end{vmatrix} = \begin{pmatrix} x = -\frac{\lambda}{2} \\ y = -\frac{\lambda}{2} \\ -\frac{\lambda}{2} - \frac{\lambda}{2} = 1 \end{pmatrix} \Rightarrow M_{0} \left(\frac{1}{2}, \frac{1}{2}, -1\right)$$

$$F''_{xx} = 2 \qquad F''_{yy} = 2 \qquad F''_{xy} = F''_{yx} = 0$$

$$\Delta = F''_{xx}F_{yy} - F''_{xy}F''_{yx} = 4\Big|_{M_{0}} = 4 > 0$$

$$F''_{xx}\Big|_{M_{0}} = 2 > 0 \implies z_{min} = z\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$u = x^{2} + y^{2} - 12x + 16y, \quad x^{2} + y^{2} = 25$$

$$F(x, y, \lambda) = x^{2} + y^{2} - 12x - 16x + \lambda(x^{2} + y^{2} - 25) \quad \lambda \neq 0$$

$$F'_{x} = 2x + 16 + 2\lambda x \qquad F'_{y} = 2y - 12 + 2\lambda y$$

$$\begin{vmatrix} 2x + 16 + 2\lambda x & F'_{y} = 2y - 12 + 2\lambda y \\ 2y - 12 + 2\lambda y = 0 \Leftrightarrow \begin{vmatrix} x = \frac{6}{1+\lambda} \\ y = -\frac{8}{1+\lambda} \\ x^{2} + y^{2} = 25 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = -3 \land x = 3 \\ y = 4 \land y = -4 \\ \lambda = -3 \land \lambda = 1 \end{vmatrix}$$

$$\implies M_{1}(-3, 4, -3) \land M_{2}(3, -4, 1)$$

$$F''_{xx} = 2 + 2\lambda \qquad F''_{yy} = 2 + 2\lambda \qquad F''_{xy} = F''_{yx} = 0$$

$$\Delta = F''_{xx}F_{yy} - F''_{xy}F''_{yx} = 4(1 + \lambda)^{2}$$

$$\begin{split} \Delta\Big|_{M_1} &= 4(1+(-3))^2 = 16 > 0 \\ F''_{xx}\Big|_{M_1} &= 2+2\cdot -3 = -4 < 0 \implies \\ u_{max} &= u(-3,4) = (-3)^2 + 4^2 - 12(-3) + 16(4) = 125 \\ \Delta\Big|_{M_2} &= 4(1+1)^2 = 16 \\ F''_{xx}\Big|_{M_2} &= 2+2\cdot 1 = 4 > 0 \implies \\ u_{min} &= u(3,-4) = 3^2 + (-4)^2 - 12\cdot 3 + 16(-4) = -75 \end{split}$$

$$u &= x+y+z, \qquad z = 1, \ x^2+y^2 = 1 \\ F(x,y,z,\lambda,\nu) &= x+y+z+\lambda(z-1)+\nu(x^2+y^2-1), \quad \lambda,\nu \neq 0 \\ F'_x &= 1+2\nu x \qquad F'_y = 1+2\nu y \qquad F'_z = 1+\lambda \\ \begin{vmatrix} 1+2\nu x=0 & | & x=-\frac{1}{2\nu} \\ 1+2\nu y=0 & | & y=-\frac{1}{2\nu} \\ 1+\lambda=0 & \Leftrightarrow z=1 & \Leftrightarrow | & z=1 \\ x^2+y^2 &= 1 & \frac{1}{4\nu^2}+\frac{1}{4\nu^2} &= 1 & | & \nu=\frac{1}{\sqrt{2}}\wedge\frac{1}{\sqrt{2}} \\ M_1\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},1,-1,\frac{1}{\sqrt{2}}\right)\wedge M_2\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},1,-1,-\frac{1}{\sqrt{2}}\right) \\ F''_{xx} &= 2\nu \qquad F''_{yy} = 2\nu \qquad F''_{zz} = F''_{xy} = F''_{xz} = F''_{yz} = F''_{zy} = F''_{zy} = 0 \\ d^2F &= \begin{pmatrix} 2\nu & 0 & 0 \\ 0 & 2\nu & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \Delta_1 &= F''_{xx} &= 2\mu\Big|_{M_1} &= \frac{2}{\sqrt{2}} > 0 \quad \Delta_2 = 4\nu^2\Big|_{M_1} = 2 > 0 \quad \Delta_3 = 0\Big|_{M_2} = 0 \\ d^2F &= 2\nu \ dx^2 + 2\nu \ dy^2 \\ x^2 + y^2 &= 1 \implies x \ dx + y \ dy = 0 (x=y \in M_1, M_2) \implies dx + dy = 0 \implies dy = -dx \\ d^2F &= 2\nu \ dx^2 + 2\nu \ (-dx)^2 = 4\nu \ dx^2 \\ d^2F\Big|_{M_1} &> 0 \implies u_{min} = u \left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right) = -\sqrt{2} + 1 \\ d^2F\Big|_{M_1} &< 0 \implies u_{max} = u \left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right) = \sqrt{2} + 1 \\ \end{pmatrix}$$

Задача 3

$$\begin{array}{lll} u = xy + yz & x^2 + y^2 = 2, \ y + z = 2 \\ F(x,y,z,\lambda,\nu) = xy + yz + \lambda(x^2 + y^2 - 2) + \nu(y + z - 2), & \lambda,\nu \neq 0 \\ F'_x = 2\lambda x + y & F'_y = 2\lambda y + \nu + x + z & F'_z = y + \nu \\ 2\lambda x + y = 0 & & x = 1 \land x = -1 \\ y + \nu = 0 & \Leftrightarrow & z = 1 \\ x^2 + y^2 = 2 & & z = 1 \\ y + z = 2 & & \nu = -1 \\ \end{array}$$

$$\begin{array}{l} \Rightarrow M \left(1,1,1,-\frac{1}{2},-1\right) \land N\left(-1,1,1,\frac{1}{2},-1\right) \\ \land N\left(-1,1,1,\frac{1}{2},-1$$

Задача 5

•
$$z = \sqrt{1 - x^2 - y^2 + 2x}$$

$$D: (x, y \in \mathbb{R}: x^2 + y^2 \le 2x + 1)$$

•
$$z = \frac{x^2y}{2x+y}$$

$$D: (x, y \in \mathbb{R}: 2x + y \neq 0)$$

• $z = \arcsin(x + y)$

$$D: (x, y \in \mathbb{R}: -1 \le x + y \le 1)$$

•
$$w = \frac{1}{\sqrt{xy}}$$

$$D: (x, y \in \mathbb{R} \setminus 0 : xy > 0)$$

Задача 6

• $\lim_{(x,y)\to(0,0)} \frac{\tan(xy)}{xy}$ При заместване се получават недефинирани форми от вида $\begin{bmatrix} 0\\0 \end{bmatrix}$

$$\lim_{(x,y)\to(0,0)} \frac{\tan(xy)}{xy} = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy\cos(xy)} = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} = \lim_{(x,y)\to(0,0)} \frac{y\cos(xy)}{y} = \lim_{(x,y)\to(0,0)} \cos(xy) = 1$$

• $\lim_{(x,y)\to(0,0)} \frac{y}{\sin(xy)}$

$$\lim_{y\to 0} \frac{y}{\sin(xy)} = \begin{bmatrix} 0\\0 \end{bmatrix} \implies \lim_{y\to 0} \frac{1}{x\cos(xy)} = \frac{1}{x}$$

$$\lim_{x\to 0} \frac{1}{x} = \frac{1}{0} = \infty$$

$$\lim_{x\to 0} \frac{y}{\sin xy} = \begin{bmatrix} 0\\0 \end{bmatrix} \implies \lim_{x\to 0} \frac{0}{y} = 0$$

$$\lim_{y\to 0} 0 = 0$$

$$0 \neq \infty \implies \text{Няма граница.}$$

$$\begin{array}{l}
\bullet \lim_{y \to 0} \frac{1 - \sqrt{1 - xy}}{xy} \\
\lim_{y \to 0} \frac{1 - \sqrt{1 - xy}}{xy} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \lim_{y \to 0} \frac{x}{2\sqrt{1 - xy}} \cdot \frac{1}{x} = \lim_{y \to 0} \frac{1}{2\sqrt{1 - xy}} = \frac{1}{2} \\
\lim_{x \to 0} \frac{1}{2} = \frac{1}{2} \\
\lim_{x \to 0} \frac{1 - \sqrt{1 - xy}}{xy} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \lim_{x \to 0} \frac{y}{2\sqrt{1 - xy}} \cdot \frac{1}{y} = \lim_{x \to 0} \frac{1}{2\sqrt{1 - xy}} = \frac{1}{2} \\
\lim_{y \to 0} \frac{1}{2} = \frac{1}{2}
\end{array}$$

•
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}, z(x, y) = \ln(x^2 + y^2 + 1)$$

$$z'_x = \frac{2x}{x^2 + y^2 + 1} \qquad z'_y = \frac{2y}{x^2 + y^2 + 1}$$

$$z''_{xy} = -\frac{4xy}{(x^2 + y^2 + 1)^2} \qquad z''_{yx} = -\frac{4xy}{(x^2 + y^2 + 1)^2} \implies \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} \text{ е вярно}$$

•
$$\frac{x}{y}\frac{\partial z}{\partial x} + \frac{1}{\ln x}\frac{\partial z}{\partial y} = 2z, z(x,y) = x^y$$

$$z'_x = \frac{x^yy}{x} \qquad z'_y = x^y\ln(x)$$

$$A = \frac{x}{y} \cdot z'_x = \frac{x}{y} \cdot \frac{x^yy}{x} = x^y$$

$$B = \frac{1}{\ln(x)} \cdot z'_y = \frac{1}{\ln(x)} \cdot x^y\ln(x) = x^y$$

$$A + B = 2x^y \qquad 2z = 2x^y \implies$$

$$\frac{x}{y}\frac{\partial z}{\partial x} + \frac{1}{\ln x}\frac{\partial z}{\partial y} = 2z \text{ е вярно}$$

•
$$2\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} = 0, z(x, y) = 2\cos^2(y - \frac{x}{2})$$

$$z'_x = -2\cos\left(-y + \frac{x}{2}\right)\sin\left(-y + \frac{x}{2}\right)$$

$$z''_{xx} = -2\cos^2\left(-y + \frac{x}{2}\right) + 1 \qquad z''_{xy} = 4\cos^2\left(-y + \frac{x}{2}\right) - 2$$

$$2z''_{xx} = -4\cos^2\left(-y + \frac{x}{2}\right) + 2$$

$$2z''_{xx} + z''_{xy} = -4\cos^2\left(-y + \frac{x}{2}\right) + 2 + 4\cos^2\left(-y + \frac{x}{2}\right) - 2 = 0 \implies 2\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} = 0$$
 е вярно

•
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 1, u(x, y, z) = x + \frac{x - y}{y - z}$$

$$u'_x = \frac{y - z + 1}{y - z} \qquad u'_y = \frac{z - x}{(y - x)^2} \qquad u'_z = \frac{x - y}{(y - z)^2}$$

$$u'_x + u'_y + u'_z = \frac{y - z + 1}{y - z} + \frac{z - x}{(y - x)^2} + \frac{x - y}{(y - z)^2} = \frac{(y - z + 1)(y - z) + z - x + x - y}{(y - z)^2} = \frac{y^2 - yz - yz + z^2 + y - z + z - y}{(y - z)^2} = \frac{y^2 - 2yz + z^2}{(y - z)^2} = 1 \implies \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 1 \text{ e вярно}$$

•
$$z = x^4 + y^4 - x^2 - 2xy - y^2$$

$$z'_x = 4x^3 + 2x - 2y \qquad z'_y = 4y^3 - 2y - 2x$$

$$\begin{vmatrix} 4x^3 + 2x - 2y = 0 \\ 4y^3 - 2y - 2x = 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = 0 \land x = 1 \land x = -1 \\ y = 0 \land y = 1 \land y = -1 \end{vmatrix} \Rightarrow L(0,0), M(1,1), N(-1,-1)$$

$$z''_{xx} = 12x^2 + 2 \qquad z''_{yy} = 12y^2 - 2 \qquad z'_{xy} = z'_{yx} = -2$$

$$\Delta = z''_{xx}z''_{yy} - z''_{xy}z''_{yx} = (12x^2 - 2)(12y^2 - 2) - 4$$

$$z''_{xx}(L) = -2 < 0 \qquad \Delta(L) = 0 \Rightarrow \text{ Hяма екстремум.}$$

$$z''_{xx}(M) = 10 > 0 \qquad \Delta(M) = 96 > 0 \Rightarrow$$

$$z'_{min1} = z(1,1) = -2$$

$$z''_{xx}(N) = 10 > 0 \qquad \Delta(N) = 96 > 0 \Rightarrow$$

$$z'_{min2} = z(-1,-1) = -2$$

•
$$z = xy(1-x-y)$$

$$\begin{aligned} z'_x &= y(1-x-y) - xy & z'_y &= x(1-x-y) - xy \\ y(1-x-y) - xy &= 0 \Leftrightarrow \begin{vmatrix} x &= 0 \land x &= 1 \land x &= \frac{1}{3} \\ x(1-x-y) - xy &= 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x &= 0 \land x &= 1 \land x &= \frac{1}{3} \\ y &= 0 \land y &= 1 \land y &= 0 \land y &= \frac{1}{3} \end{aligned} \Longrightarrow \\ A(0,0), \ B(0,1), \ C(1,0), \ D\left(\frac{1}{3},\frac{1}{3}\right) \\ z''_{xx} - 2y &= z''_{yy} &= -2y \qquad z''_{xy} &= z''_{yx} &= 1 - 2x - 2y \\ \Delta &= z''_{xx}z''_{yy} - z''_{xy}z''_{yx} &= 4xy - (1 - 2x - 2y)^2 \\ z''_{xx}(A) &= 0 \qquad \Delta(A) &= -1 \implies \text{ Няма екстремум.} \\ z''_{xx}(B) &= -2 \qquad \Delta(A) &= -1 \implies \text{ Няма екстремум.} \\ z''_{xx}(C) &= 0 \qquad \Delta(C) &= -1 \implies \text{ Няма екстремум.} \\ z''_{xx}(D) &= -\frac{2}{3} \qquad \Delta(D) &= \frac{1}{3} \implies z_{max} &= z\left(\frac{1}{3},\frac{1}{3}\right) &= \frac{1}{27} \end{aligned}$$

•
$$z = x^3 - y^3 - 3x + 3y + 2$$

$$\begin{aligned} z_x' &= 3x^2 - 3 & z_y' &= -3y^2 + 3 \\ \begin{vmatrix} 3x^2 - 3 &= 0 \\ -3y^2 + 3 &= 0 \end{vmatrix} & \Rightarrow \begin{vmatrix} x &= 1 \land x &= -1 \\ x &= 1 \land x &= -1 \end{vmatrix} \Longrightarrow A(1,1), \ B(1,-1), \ C(-1,1), \ D(-1,-1) \end{aligned}$$

$$\begin{aligned} z_{xx}'' &= x_y'' &= -6y & z_{xy}'' &= z_{yx}'' &= 0 \\ \Delta &= z_{xx}''z_{yy}'' - z_{xy}''z_{yx}'' &= -36xy \\ z_{xx}''(A) &= 6 > 0 & \Delta(A) &= -36 < 0 \Longrightarrow \text{ Няма екстремум.} \end{aligned}$$

$$\begin{aligned} z_{xx}''(B) &= 6 > 0 & \Delta(A) &= 36 > 0 \Longrightarrow z_{min} &= z(1,-1) &= -2 \\ z_{xx}''(C) &= -6 < 0 & \Delta(A) &= 36 > 0 \Longrightarrow z_{max} &= z(-1,1) &= 6 \\ z_{xx}''(D) &= -6 < 0 & \Delta(A) &= -36 < 0 \Longrightarrow \text{ Няма екстремум.} \end{aligned}$$

•
$$u = x^3 + y^2 + z^2 + 12xy + 2z$$

$$u'_x = 3x^2 - 12y \qquad u'_y = 3y^2 - 12x \qquad u'_z = 2z^2 + 2$$

$$\begin{vmatrix} 3x^2 - 12y = 0 \\ 3y^2 - 12x = 0 \Leftrightarrow \\ y = 0 \land x = 24 \\ y = 0 \land y = -144 \implies A(0, 0, -1), B(24, -144, -1) \\ 2z^2 + 2 = 0 \qquad | z = -1 \end{vmatrix}$$

$$u''_{xx} = 6x \qquad u''_{xy} = 12 \qquad u''_{xz} = 0$$

$$u''_{yx} = 12 \qquad u''_{yy} = 2 \qquad u''_{yz} = 0$$

$$u''_{yx} = 0 \qquad u''_{xy} = 0 \qquad u''_{zz} = 2$$

$$\Delta_1 = u''_{xx} = 6x$$

$$\Delta_2 = \begin{vmatrix} u''_{xx} & u''_{xy} \\ u''_{yx} & u''_{yy} \end{vmatrix} = \begin{vmatrix} 6x & 12 \\ 12 & 2 \end{vmatrix} = 12x - 144$$

$$\Delta_3 = \begin{vmatrix} u''_{xx} & u''_{xy} & u''_{xz} \\ u''_{xx} & u''_{xy} & u''_{xz} \\ u''_{xx} & u''_{xy} & u''_{xz} \end{vmatrix} = \begin{vmatrix} 6x & 12 & 0 \\ 12 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 24x - 288$$

$$\Delta_1(A) = 0 \qquad \Delta_2(A) = -144 \qquad \Delta_3(A) = -288 \implies \text{ Няма екстремум.}$$

$$\Delta_1(B) = 144 > 0 \qquad \Delta_2(B) = 144 > 0 \qquad \Delta_3(B) = 288 > 0 \implies$$

$$u_{min} = u(24, -144, -1) = -6913$$

•
$$x^3 + y^3 = 3xy, y = y(x)$$

 $F = x^3 + y^3 - 3xy$
 $F'_x = 3x^2 - 3y$ $F'_y = 3y^2 - 3x$
 $y' = -\frac{f'_x}{f'_y} = -\frac{3x^2 - 3y}{3y^2 - 3x}$
 $\begin{vmatrix} -\frac{3x^2 - 3y}{3y^2 - 3x} = 0\\ x^3 + y^3 = 3xy \Leftrightarrow \begin{vmatrix} x = \sqrt[3]{2}\\ y = \sqrt[3]{2^2} \end{vmatrix} \Longrightarrow A = (\sqrt[3]{2}, \sqrt[3]{2^2})$
 $3y^2 - 3x \neq 0$
 $F''_{xx} = 6x$
 $y'' = -\frac{f''_{xx}}{f'_y} = -\frac{6x}{3y^2 - 3x}$
 $y''(A) = -2 < 0 \implies y_{max} = y(\sqrt[3]{2}) = \sqrt[3]{2^2}$

•
$$y^2 - 3y - \sin(x) = 0, y = y(x)$$

$$F = y^2 - 3y - \sin(x)$$

$$F'_x = -\cos(x) \qquad F'_y = 2y - 3$$

$$y' = -\frac{f'_x}{f'_y} = \frac{\cos(x)}{2y - 3}$$

$$\begin{vmatrix} \frac{\cos(x)}{2y - 3} &= 0 \\ y^2 - 3y - \sin(x) &= 0 \Leftrightarrow \\ 2y - 3 \neq 0 \end{vmatrix} = \frac{3 + \sqrt{13}}{2} \wedge y = \frac{3 - \sqrt{5}}{2} \implies$$

$$A = \left(\frac{\pi}{2} + 2k\pi, \frac{3 + \sqrt{13}}{2}\right), B\left(-\frac{\pi}{2} + 2k\pi, \frac{3 - \sqrt{5}}{2}\right)$$

$$F''_{xx} = \sin(x)$$

$$y'' = -\frac{f''_{xx}}{f'_y} = -\frac{\sin(x)}{2y - 3}$$

$$y''(A) = -\frac{\sqrt{13}}{13} < 0 \implies y_{max,k} = y\left(\frac{\pi}{2} + 2k\pi\right) = \frac{3 + \sqrt{13}}{2}$$

$$y''(B) = -\frac{\sqrt{5}}{5} < 0 \implies y_{min,k} = y\left(-\frac{\pi}{2} + 2k\pi\right) = \frac{3 - \sqrt{5}}{2}$$
(Панева, как тва е минимум беее)

•
$$x^2 + y^2 + z^2 - xz - yz + 2x + 2y + 2z - 2 = 0, z = z(x, y)$$

$$F = x^2 + y^2 + z^2 - xz - yz + 2x + 2y + 2z - 2$$

$$F'_x = 2x - z + 2 \qquad F'_y = 2y - z + 2 \qquad F'_z = -x - y + 2z + 2$$

$$z'_x = -\frac{F'_x}{F'_z} = -\frac{2x - z + 2}{-x - y + 2z + 2} \qquad z'_y = -\frac{F'_y}{F'_z} = -\frac{2y - z + 2}{-x - y + 2z + 2}$$

$$\begin{vmatrix} -\frac{2x - z + 2}{-x - y + 2z + 2} & 0 \\ -\frac{2y - z + 2}{-x - y + 2z + 2} & 0 \\ x^2 + y^2 + z^2 - xz - yz + 2x + 2y + 2z - 2 & 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = -3 + \sqrt{6} \\ y = -3 + \sqrt{6} \\ z = -4 + 2\sqrt{6} \end{vmatrix} \Rightarrow$$

$$A(-3 + \sqrt{6}, -3 + \sqrt{6}, -4 + 2\sqrt{6})$$

$$F''_{xx} = 2 F''_{xy} = 0 F''_{yx} = 0 F''_{yy} = 2$$

$$\Delta = \begin{vmatrix} -\frac{F''_{xx}}{F'} & -\frac{F''_{xy}}{F'} \\ -\frac{F''_{xx}}{F'_{z}} & -\frac{F''_{yy}}{F'_{z}} \end{vmatrix} = \begin{vmatrix} -\frac{2}{-x-y+2z+2} & 0 \\ 0 & -\frac{2}{-x-y+2z+2} \end{vmatrix} = \frac{4}{(-x-y+2z+2)^2}$$

$$-\frac{F''_{xx}}{F'_{z}}(A) = -\frac{\sqrt{6}}{6} \Delta(A) = \frac{1}{6} \implies z_{max} = z(-3+\sqrt{6}, -3+\sqrt{6}) = -4 + 2\sqrt{6}$$

от къде дойде втората точка в решението на Панева

$$\bullet \ 2x^2 + 2y^2 + z^2 + 8xz - 8yz + 8 = 0, z = z(x, y)$$

$$F = 2x^2 + 2y^2 + z^2 + 8xz - 8yz + 8$$

$$F'_x = 4x + 8z \qquad F'_y = 4y - 8z \qquad F'_z = 8x - 8y + 2z$$

$$z'_x = -\frac{F'_x}{F'_z} = -\frac{4x + 8z}{8x - 8y + 2z} \qquad z'_y = -\frac{F'_y}{F'_z} = -\frac{4y - 8z}{8x - 8y + 2z}$$

$$\begin{vmatrix} -\frac{4x + 8z}{8x - 8y + 2z} & 0 \\ -\frac{4y - 8z}{8x - 8y + 2z} & 0 \\ 2x^2 + 2y^2 + z^2 + 8xz - 8yz + 8 = 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = -\frac{4\sqrt{30}}{15} \\ y = \frac{4\sqrt{30}}{15} \\ z = \frac{2\sqrt{30}}{15} \end{vmatrix} \Rightarrow A\left(-\frac{4\sqrt{30}}{15}, \frac{4\sqrt{30}}{15}, \frac{2\sqrt{30}}{15}\right)$$

$$F''_{xx} = 4 \qquad F''_{xy} = 0 \qquad F''_{yx} = 0 \qquad F''_{yy} = 4$$

$$\Delta = \begin{vmatrix} -\frac{F''_{xx}}{F'_z} & -\frac{F''_{xy}}{F'_z} \\ -\frac{F''_{xy}}{F'_z} & -\frac{F''_{xy}}{F'_z} \end{vmatrix} = \begin{vmatrix} -\frac{4}{8x - 8y + 2z} \\ 0 & -\frac{4}{8x - 8y + 2z} \end{vmatrix} = \frac{16}{(8x - 8y + 2z)^2}$$

$$-\frac{F''_{xx}}{F'}(A) = \frac{\sqrt{30}}{30} > 0 \qquad \Delta(A) = \frac{1}{30} > 0 \implies z_{min} = z\left(-\frac{4\sqrt{30}}{15}, \frac{4\sqrt{30}}{15}\right) = \frac{2\sqrt{30}}{15}$$

Задача 10

• z = xy, ako 2x + y = 1

$$\begin{split} F(x,y,\lambda) &= xy + \lambda(2x + y - 1) \quad \lambda \neq 0 \\ F'_x &= 2\lambda + y \qquad F'_y = \lambda + x \\ \begin{vmatrix} 2\lambda + y = 0 \\ \lambda + x = 0 \\ 2x + y = 1 \end{vmatrix} & x = \frac{1}{4} \\ y &= \frac{1}{2} \\ \lambda &= -\frac{1}{4} \end{cases} \implies A\left(\frac{1}{4},\frac{1}{2},-\frac{1}{4}\right) \\ F''_{xx} &= 0 \qquad F''_{xy} = 1 \qquad F''_{yx} = 1 \qquad F''_{yy} = 0 \\ \Delta &= F''_{xx}F''_{yy} - F''_{xy}F''_{yx} = -1 \end{split}$$

•
$$z = x^2 + y^2$$
, and $x - y = 1$

$$F(x, y, \lambda) = x^2 + y^2 + \lambda(x - y - 1) \quad \lambda \neq 0$$

$$F'_x = \lambda + 2x \qquad F'_y = 2y - \lambda$$

$$\begin{vmatrix} \lambda + 2x = 0 \\ 2y - \lambda = 0 \Leftrightarrow \\ x = \frac{1}{2} \end{vmatrix} \Rightarrow A\left(\frac{1}{2}, -\frac{1}{2}, -1\right)$$

$$x - y = 1 \qquad \lambda = -1$$

$$F''_{xx} = 2 \qquad F''_{xy} = 0 \qquad F''_{yx} = 0 \qquad F''_{yy} = 2$$

$$\Delta = F''_{xx}F''_{yy} - F''_{xy}F''_{yx} = 4$$

$$F''_{xx}(A) = 2 > 0 \qquad \Delta(A) = 4 > 0 \implies z_{min} = z\left(\frac{1}{2}, -\frac{1}{2}\right) = \frac{1}{2}$$

•
$$u = x^2 + y^2 + z^2$$
, and $\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} = 1$

$$F(x, y, z, \lambda) = x^2 + y^2 + z^2 + \lambda \left(\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} - 1\right) \quad \lambda \neq 0$$

$$F'_x = \frac{1}{8}\lambda x + 2x \qquad F'_y = \frac{2}{9}\lambda y + 2y \qquad F'_z = \frac{1}{2}\lambda z + 2z$$

$$\begin{vmatrix} \frac{1}{8}\lambda x + 2x & 0 \\ \frac{2}{9}\lambda y + 2y & 0 \\ \frac{1}{2}\lambda z + 2z & 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = 4 \land x = -4 \land x = 0 \\ y = 0 \land y = 3 \land y = -3 \\ z = 0 \land z = 2 \land z = -2 \\ \lambda = -16 \land \lambda = -9 \land \lambda = -4 \end{vmatrix} \Longrightarrow A(4, 0, 0, -16), B(-4, 0, 0, -16), C(0, 3, 0, -9), D(0, -3, 0, -9) E(0, 0, 2, -4), F(0, 0, -2, -4)$$

$$F_{xx}'' = \frac{1}{8}\lambda + 2 \qquad F_{yy}'' = \frac{2}{9}\lambda + 2 \qquad F_{zz}'' = \frac{1}{2}\lambda + 2$$

$$F_{xy}'' = F_{xz}'' = F_{yx}'' = F_{yz}'' = F_{zx}'' = F_{zy}'' = 0$$

$$\Delta_{1} = F_{xx}'' = \frac{1}{8}\lambda$$

$$\Delta_{2} = \begin{vmatrix} F_{xx}'' & F_{xy}'' \\ F_{yx}'' & F_{yy}'' \end{vmatrix} = \begin{vmatrix} \frac{1}{8}\lambda + 2 & 0 \\ 0 & \frac{2}{9}\lambda + 2 \end{vmatrix} = \begin{pmatrix} \frac{1}{8}\lambda + 2 \end{pmatrix} \begin{pmatrix} \frac{2}{9}\lambda + 2 \end{pmatrix}$$

$$\Delta_{3} = \begin{vmatrix} F_{xx}'' & F_{xy}'' & F_{xz}'' \\ F_{yx}'' & F_{yy}'' & F_{yz}'' \\ F_{zx}'' & F_{zy}'' & F_{zz}'' \end{vmatrix} = \begin{vmatrix} \frac{1}{8}\lambda + 2 & 0 & 0 \\ 0 & \frac{2}{9}\lambda + 2 & 0 \\ 0 & 0 & \frac{1}{2}\lambda + 2 \end{vmatrix} = \begin{pmatrix} \frac{1}{8}\lambda + 2 \end{pmatrix} \begin{pmatrix} \frac{2}{9}\lambda + 2 \end{pmatrix} \begin{pmatrix} \frac{1}{2}\lambda + 2 \end{pmatrix}$$

$$\Delta_1(A) = 0$$
 $\Delta_2(A) = 0$ $\Delta_3(A) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(B) = 0$ $\Delta_2(B) = 0$ $\Delta_3(B) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(C) = 0$ $\Delta_2(C) = 0$ $\Delta_3(C) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(D) = 0$ $\Delta_2(D) = 0$ $\Delta_3(D) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(E) = 0$ $\Delta_2(E) = 0$ $\Delta_3(E) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(F) = 0$ $\Delta_2(F) = 0$ $\Delta_3(F) = 0 \Longrightarrow$ Няма екстремум. Панева кво стааа?!

• u = xyz, ako x + y + z = 5, xy + yz + zx = 8

$$\begin{split} F(x,y,z,\lambda,\mu) &= xyz + \lambda(x+y+z-5) + \mu(xy+yz+zx-8) \quad \lambda,\mu \neq 0 \\ F'_x &= \lambda + \mu(y+z) + yz \qquad F'_y = \lambda + \mu(x+z) + xz \qquad F'_z = \lambda + \mu(y+x) + yx \\ \begin{vmatrix} \lambda + \mu(y+z) + yz = 0 \\ \lambda + \mu(x+z) + xz = 0 \\ \lambda + \mu(y+x) + yx = 0 \Leftrightarrow \begin{vmatrix} x = 1 \land x = 2 \land x = \frac{4}{3} \land x = \frac{7}{3} \\ y = 2 \land y = 1 \land y = \frac{4}{3} \land y = \frac{7}{3} \\ z = 2 \land z = 1 \land z = \frac{4}{3} \end{cases} \implies \\ x + y + z = 5 \\ xy + yz + zx = 8 \qquad \qquad \mu = -2 \land \mu = -\frac{4}{3} \\ A\left(1, 2, 2, 4, -2\right), B\left(2, 2, 1, 4, -2\right), C\left(2, 1, 2, 4, -2\right) \\ D\left(\frac{4}{3}, \frac{7}{3}, \frac{4}{3}, \frac{16}{9}, -\frac{4}{3}\right), E\left(\frac{7}{3}, \frac{4}{3}, \frac{4}{3}, \frac{16}{9}, -\frac{4}{3}\right), F\left(\frac{4}{3}, \frac{4}{3}, \frac{7}{3}, \frac{16}{9}, -\frac{4}{3}\right) \end{split}$$

$$F''_{xx} = F''_{yy} = F''_{zz} = 0$$

$$F''_{xy} = F''_{yx} = \mu + z$$

$$F''_{xz} = F''_{zx} = \mu + y$$

$$F''_{yz} = F''_{zy} = \mu + x$$

$$\Delta_1 = F''_{xx} = 0$$

$$\Delta_2 = \begin{vmatrix} F''_{xx} & F''_{xy} \\ F''_{yx} & F''_{yy} \end{vmatrix} = \begin{vmatrix} 0 & \mu + z \\ \mu + z & 0 \end{vmatrix} = -(\mu + z)^2$$

$$\Delta_3 = \begin{vmatrix} F''_{xx} & F''_{xy} & F''_{xz} \\ F''_{yx} & F''_{yy} & F''_{zz} \\ F''_{yx} & F''_{yy} & F''_{zz} \end{vmatrix} = \begin{vmatrix} 0 & \mu + z & \mu + y \\ \mu + z & 0 & \mu + x \\ \mu + y & \mu + x & 0 \end{vmatrix} = 2(\mu + z)(\mu + y)(\mu + x)$$

$$\Delta_1(A) = 0$$
 $\Delta_2(A) = 0$ $\Delta_3(A) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(B) = 0$ $\Delta_2(B) = -1$ $\Delta_3(B) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(C) = 0$ $\Delta_2(C) = 0$ $\Delta_3(C) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(D) = 0$ $\Delta_2(D) = 0$ $\Delta_3(D) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(E) = 0$ $\Delta_2(E) = 0$ $\Delta_3(E) = 0 \Longrightarrow$ Няма екстремум. $\Delta_1(F) = 0$ $\Delta_2(F) = -1$ $\Delta_3(F) = 0 \Longrightarrow$ Няма екстремум. Панева кво стааа?!

•
$$u = x^2 + y^2 + z^2 + 2x + 4y - 6z$$
, ako $x^2 + y^2 + z^2 = 14$

$$F = x^2 + y^2 + z^2 + 2x + 4y - 6z + \lambda(x^2 + y^2 + z^2 - 14) \quad \lambda \neq 0$$

$$F'_x = 2\lambda x + 2x + 2 \qquad F'_y = 2\lambda y + 2y + 4 \qquad F'_z = 2\lambda z + 2z - 6$$

$$\begin{vmatrix} 2\lambda x + 2x + 2 = 0 \\ 2\lambda y + 2y + 4 = 0 \\ 2\lambda z + 2z - 6 = 0 \\ x^2 + y^2 + z^2 = 14 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = -1 \land x = 1 \\ y = -2 \land y = 2 \\ z = 3 \land z = -3 \\ \lambda = 0 \land \lambda = -2 \end{vmatrix} \Rightarrow A(-1, -2, 3, 0), B(1, 2, -3, -2)$$

$$F''_{xx} = F''_{yy} = F''_{zz} = 2\lambda + 2$$

$$F''_{xy} = F''_{xz} = F''_{yx} = F''_{yz} = F''_{zx} = F''_{zy} = 0$$

$$\Delta_1 = F''_{xx} = 2\lambda + 2$$

$$\Delta_2 = \begin{vmatrix} F''_{xx} & F''_{xy} \\ F''_{yx} & F''_{yy} \end{vmatrix} = \begin{vmatrix} 2\lambda + 2 & 0 \\ 0 & 2\lambda + 2 \end{vmatrix} = (2\lambda + 2)^2$$

$$\Delta_3 = \begin{vmatrix} F''_{xx} & F''_{xy} & F''_{xz} \\ F''_{xx} & F''_{yy} & F''_{yz} \\ F''_{xx} & F''_{yy} & F''_{zz} \end{vmatrix} = \begin{vmatrix} 2\lambda + 2 & 0 & 0 \\ 0 & 2\lambda + 2 & 0 \\ 0 & 0 & 2\lambda + 2 \end{vmatrix} = (2\lambda + 2)^3$$

$$\Delta_1(A) = 2 > 0$$
 $\Delta_2(A) = 4 > 0$ $\Delta_3(A) = 8 > 0 \Longrightarrow$
 $u_{min} = u(-1, -2, 3) = -14$
 $\Delta_1(B) = -2 < 0$ $\Delta_2(B) = 4 > 0$ $\Delta_3(B) = -8 < 0 \Longrightarrow$
 $u_{max} = u(1, 2, -3) = 42$

•
$$u = x^2 + y^2 + z^2 + 2x + 4y$$
, and $x^2 + y^2 = 20$

$$F = x^2 + y^2 + z^2 + 2x + 4y + \lambda(x^2 + y^2 - 20) \quad \lambda \neq 0$$

$$F'_x = 2\lambda x + 2x + 2 \qquad F'_y = 2\lambda y + 2y + 4 \qquad F'_z = 2z$$

$$\begin{vmatrix} 2\lambda x + 2x + 2 = 0 \\ 2\lambda y + 2y + 4 = 0 \\ 2z = 0 \\ x^2 + y^2 = 20 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = 2 \wedge x = -2 \\ y = 4 \wedge y = -4 \\ z = 0 \\ \lambda = -\frac{3}{2} \wedge \lambda = -\frac{1}{2} \end{vmatrix} \Rightarrow A\left(2, 4, 0, -\frac{3}{2}\right), B\left(-2, -4, 0, -\frac{1}{2}\right)$$

$$F''_{xx} = F''_{yy} = 2\lambda + 2 \qquad F''_{zz} = 2$$

$$F''_{xy} = F''_{xz} = F''_{yx} = F''_{yz} = F''_{zx} = F''_{zy} = 0$$

$$\Delta_1 = F''_{xx} = 2\lambda + 2$$

$$\Delta_2 = \begin{vmatrix} F''_{xx} & F''_{xy} \\ F''_{yx} & F''_{yy} \end{vmatrix} = \begin{vmatrix} 2\lambda + 2 & 0 \\ 0 & 2\lambda + 2 \end{vmatrix} = (2\lambda + 2)^2$$

$$\Delta_3 = \begin{vmatrix} F''_{xx} & F''_{xy} & F''_{xz} \\ F''_{yx} & F''_{yy} & F''_{yz} \\ F''_{zx} & F''_{zy} & F''_{zz} \end{vmatrix} = \begin{vmatrix} 2\lambda + 2 & 0 & 0 \\ 0 & 2\lambda + 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2\lambda + 2)(4\lambda + 4)$$

$$\Delta_1(A) = -1$$
 $\Delta_2(A) = 1 > 0$ $\Delta_3(A) = 2 > 0 \Longrightarrow$ Няма екстремум. $\Delta_1(B) = 1 > 0$ $\Delta_2(B) = 1 > 0$ $\Delta_3(B) = 2 > 0 \Longrightarrow u_{min} = u(-2, -4, 0) = 0$

•
$$u = x^2 + y^2 + z^2 + 6x - 2y + 4z$$
, and $x^2 + y^2 + z^2 = 56$

$$F = x^2 + y^2 + z^2 + 6x - 2y + 4z + \lambda(x^2 + y^2 + z^2 - 56) \quad \lambda \neq 0$$

$$F'_x = 2\lambda x + 2x + 6 \qquad F'_y = 2\lambda y + 2y - 2 \qquad F'_z = 2\lambda z + 2z + 4$$

$$\begin{vmatrix} 2\lambda x + 2x + 6 & 0 \\ 2\lambda y + 2y - 2 & 0 \\ 2\lambda z + 2z + 4 & 0 \\ x^2 + y^2 + z^2 & = 56 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = 6 \land x = -6 \\ y = -2 \land y = 2 \\ z = 4 \land z = -4 \\ \lambda = -\frac{3}{2} \land \lambda = -\frac{1}{2} \end{vmatrix} \Rightarrow A\left(6, -2, 4, -\frac{3}{2}\right), B\left(-6, 2, -4, -\frac{1}{2}\right)$$

$$F''_{xx} = F''_{yy} = F''_{zz} = 2\lambda + 2$$

$$F''_{xy} = F''_{xz} = F''_{yx} = F''_{yz} = F''_{zx} = F''_{zy} = 0$$

$$\Delta_1 = F''_{xx} = 2\lambda + 2$$

$$\Delta_2 = \begin{vmatrix} F''_{xx} & F''_{xy} \\ F''_{yx} & F''_{yy} \end{vmatrix} = \begin{vmatrix} 2\lambda + 2 & 0 \\ 0 & 2\lambda + 2 \end{vmatrix} = (2\lambda + 2)^2$$

$$\Delta_3 = \begin{vmatrix} F''_{xx} & F''_{xy} & F''_{xz} \\ F''_{yx} & F''_{yy} & F''_{zz} \\ F''_{zx} & F''_{zy} & F''_{zz} \end{vmatrix} = \begin{vmatrix} 2\lambda + 2 & 0 & 0 \\ 0 & 2\lambda + 2 & 0 \\ 0 & 0 & 2\lambda + 2 \end{vmatrix} = (2\lambda + 2)^3$$

$$\begin{array}{lll} \Delta_1(A) = -1 < 0 & \Delta_2(A) = 1 > 0 & \Delta_3(A) = -1 < 0 \implies \\ u_{max} = u(6, -2, 4) = 112 & & \\ \Delta_1(B) = 1 > 0 & \Delta_2(B) = 1 > 0 & \Delta_3(B) = 1 > 0 \implies \\ u_{min} = u(-6, 2, -4) = 0 & & \end{array}$$

•
$$u = x^2 + y^2 - 12x + 16y$$
, ако $x^2 + y^2 \le 25, x^2 + y^2 \le 400, x^2 + y^2 \le 100$

•
$$u = x^2 + y^2 + z^2 + 2x + 4y - 6$$
, ako $x^2 + y^2 + z^2 \le 9$

•
$$u = x^2 + 2y^2 + 3z^2$$
, ако $x^2 + y^2 + z^2 \le 100$

9 Упражнение към лекция 9

9.1 Задачи

Задача 1

Да се пресметнат интегралите

•
$$I = \iint_D xy \, dx \, dy, \, D: \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 2 \end{cases}$$

•
$$I = \iint\limits_D xy\,dx\,dy$$
, ако D е оградена от $\begin{cases} xy=1\\ x+y=rac{5}{2} \end{cases}$

•
$$I = \iint\limits_D dx\,dy$$
, ако D е оградена от кривите $D: \begin{cases} 4y = x^2 - 4x \\ x - y - 3 = 0 \end{cases}$

Задача 2

Да се определят границите на интегриране и да се пресметне интеграла

$$\iint_{D} (x^{2} + y^{2}) dx dy, \qquad D: \begin{cases} y = x, & y = 2 \\ y = x + 2, & y = 6 \end{cases}$$

Задача 3

Да се пресметне интеграла

$$\iint\limits_{D} (x+y) \, dx \, dy, \qquad \partial D : \begin{cases} y^2 = 2x \\ x+y = 4 \\ x+y = 12 \end{cases}$$

Задача 4

Да се пресметне интеграла

$$\iint\limits_{D} (x+y) \, dx \, dy$$

Където D е триъгълник $\triangle ABO$ с върхове A(1,0), B=(1,1), O=(0,0)

9.2 Решения

•
$$I = \iint_D xy \, dx \, dy, \, D : \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 2 \end{cases}$$

$$I = \int_0^1 x \, dx \int_0^2 y \, dy \qquad \left(\int_0^2 y \, dy = \frac{y^2}{2} \Big|_0^2 = 2 \right)$$

$$I = 2 \int_0^1 x \, dx = 2 \frac{x^2}{2} \Big|_0^1 = 1$$

•
$$I = \iint_D xy \, dx \, dy$$
, ако D е оградена от $\begin{cases} xy = 1 \\ x + y = \frac{5}{2} \end{cases}$ $\begin{vmatrix} xy = 1 \\ x + y = \frac{5}{2} \end{vmatrix} \Leftrightarrow \begin{vmatrix} y = \frac{5}{2} - x \\ x \left(\frac{5}{2} - x \right) = 1 \end{cases} \Rightarrow D : \begin{cases} \frac{1}{2} \le x \le 2 \\ \frac{1}{x} \le y \le \frac{5}{2} - x \end{cases}$ $I = \int_{\frac{1}{2}}^2 x \, dx \int_{\frac{1}{2}}^{\frac{5}{2} - x} y \, dy$
$$\int_{\frac{1}{2}}^{\frac{5}{2} - x} y \, dy = \frac{y^2}{2} \Big|_{\frac{1}{2}}^{\frac{5}{2} - x} = \frac{1}{2} \left[\left(\frac{5}{2} - x \right)^2 - \frac{1}{x^2} \right]$$
 $I = \frac{1}{2} \int_{\frac{1}{2}}^2 x \left[\left(\frac{5}{2} - x \right)^2 - \frac{1}{x^2} \right] \, dx = \frac{1}{2} \int_{\frac{1}{2}}^2 x \left(\frac{25}{4} - 5x + x^2 - \frac{1}{x^2} \right) \, dx = \frac{1}{2} \int_{\frac{1}{2}}^2 \left(\frac{25}{4} x - 5x^2 + x^3 - \frac{1}{x} \right) \, dx = \frac{1}{2} \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{25x^2}{8} - \ln|x| \right] \Big|_{\frac{1}{2}}^2 = \frac{165}{128} - \ln(2)$

•
$$I = \iint\limits_{D} dx \, dy$$
, ако D е оградена от кривите $D : \begin{cases} 4y = x^2 - 4x \\ x - y - 3 = 0 \end{cases}$
$$\begin{vmatrix} 4y = x^2 - 4x \\ x - y - 3 = 0 \end{cases} \Leftrightarrow \begin{vmatrix} y = x - 3 \\ 4(x - 3) = x^2 - 4x \end{cases} \Rightarrow D : \begin{cases} 2 \le x \le 6 \\ \frac{x^2}{4} - x \le y \le x - 3 \end{cases}$$

$$I = \int\limits_{2}^{6} dx \int\limits_{\frac{x^2}{4} - x}^{x - 3} dy$$

$$\int\limits_{\frac{x^2}{4} - x}^{x - 3} dy = y \Big|_{\frac{x^2}{4} - x}^{x - 3} = \left[x - 3 - \left(\frac{x^2}{4} - x \right) \right]$$

$$I = \int\limits_{2}^{6} \left[x - 3 - \left(\frac{x^2}{4} - x \right) \right] dx = \int\limits_{2}^{6} \left[2x - 3 - \frac{x^2}{4} \right] dx = \left[x^2 - 3x - \frac{x^3}{12} \right] \Big|_{2}^{6} = \frac{8}{3}$$

Задача 2

$$I = \iint_{D} (x^{2} + y^{2}) dx dy, \qquad D : \begin{cases} y = x, & y = 2 \\ y = x + 2, & y = 6 \end{cases}$$

$$D_{1} : \begin{cases} 0 \le x \le 2 \\ 2 \le y \le x + 2 \end{cases} \qquad D_{2} : \begin{cases} 2 \le x \le 4 \\ x \le y \le x + 2 \end{cases} \qquad D_{3} : \begin{cases} 4 \le x \le 6 \\ x \le y \le 6 \end{cases}$$

$$I_{1} = \int_{0}^{2} x^{2} dx \int_{2}^{x+2} y^{2} dy \qquad I_{2} = \int_{2}^{4} x^{2} dx \int_{x}^{x+2} y^{2} dy \qquad I_{3} = \int_{4}^{6} x^{2} dx \int_{x}^{6} y^{2} dy$$

$$I_{1} = \int_{0}^{2} x^{2} dx \int_{2}^{x+2} y^{2} dy$$

$$\int_{2}^{x+2} y^{2} dy \frac{y^{3}}{3} \Big|_{2}^{x+2} = \frac{(x+2)^{3}}{3} - \frac{8}{3}$$

 $I_1 = \int_{-\infty}^{2} x^2 \left(\frac{(x+2)^3}{3} - \frac{8}{3} \right) = \int_{-\infty}^{2} \left(\frac{x^2(x+2)^3}{3} - \frac{8x^2}{3} \right) = \frac{56}{3}$

$$I_{2} = \int_{2}^{4} x^{2} dx \int_{x}^{x+2} y^{2} dy$$

$$\int_{x}^{x+2} y^{2} dy \frac{y^{3}}{3} \Big|_{x}^{x+2} = \frac{(x+2)^{3}}{3} - \frac{x^{3}}{3}$$

$$I_{2} = \int_{2}^{4} x^{2} \left(\frac{(x+2)^{3}}{3} - \frac{x^{3}}{3} \right) = \int_{0}^{2} \left(\frac{x^{2}(x+2)^{3}}{3} - \frac{x^{5}}{3} \right) = 104$$

$$I_{3} = \int_{4}^{6} x^{2} dx \int_{x}^{6} y^{2} dy$$

$$\int_{x}^{6} y^{2} dy = \frac{y^{3}}{3} \Big|_{x}^{6} = 72 - \frac{x^{3}}{3}$$

$$I_{3} = \int_{4}^{6} x^{2} \left(72 - \frac{x^{3}}{3} \right) dx = \int_{4}^{6} \left(72x^{2} - \frac{x^{5}}{3} \right) dx = \frac{304}{3}$$

$$I = I_{1} + I_{2} + I_{3} = \frac{56}{3} + 104 + \frac{304}{3} = 224$$

$$\iint_{D} (x+y) \, dx \, dy, \qquad \partial D : \begin{cases} y^2 = 2x \\ x+y = 4 \\ x+y = 12 \end{cases}$$

$$\begin{vmatrix} y^2 = 2x \\ x+y = 4 \end{cases} \Leftrightarrow \begin{vmatrix} y = 4-x \\ (4-x)^2 = 2x \\ x+y = 12 \end{cases} \Rightarrow D_1 = \begin{cases} 2 \le x \le 8 \\ 4-x \le y \le \sqrt{2x} \end{cases}$$

$$\begin{vmatrix} y^2 = 2x \\ x+y = 12 \end{cases} \Leftrightarrow \begin{vmatrix} y = 12-x \\ (12-x)^2 = 2x \\ x+y = 12 \end{cases} \Rightarrow D_2 = \begin{cases} 8 \le x \le 18 \\ -\sqrt{2x} \le y \le 12-x \end{cases}$$

$$I_1 = \int_{2}^{8} dx \int_{4-x}^{\sqrt{2x}} (x+y) \, dy \qquad I_2 = \int_{8}^{18} dx \int_{-\sqrt{2x}}^{12-x} (x+y) \, dy$$

$$I_{1} = \int_{2}^{8} dx \int_{4-x}^{\sqrt{2x}} (x+y) dy$$

$$\int_{4-x}^{\sqrt{2x}} (x+y) dy = xy + \frac{y^{2}}{2} \Big|_{4-x}^{\sqrt{2x}} = \sqrt{2}x^{\frac{3}{2}} + \frac{x^{2}}{2} + x - 8$$

$$I_{1} = \int_{2}^{8} \sqrt{2}x^{\frac{3}{2}} + \frac{x^{2}}{2} + x - 8 dx = \frac{826}{5}$$

$$I_{2} = \int_{8}^{18} dx \int_{-\sqrt{2x}}^{12-x} (x+y) dy \int_{-\sqrt{2x}}^{12-x} (x+y) dy = xy + \frac{y^{2}}{2} \Big|_{-\sqrt{2x}}^{12-x} = \sqrt{2}x^{\frac{3}{2}} - \frac{x^{2}}{2} - x + 72$$

$$I_{2} = \int_{8}^{18} \sqrt{2}x^{\frac{3}{2}} - \frac{x^{2}}{2} - x + 72 dx = \frac{5678}{15}$$

$$I = I_{1} + I_{2} = \frac{8156}{15}$$

Задача 4

$$\iint\limits_{D} (x+y)\,dx\,dy$$

Където D е триъгълник $\triangle ABO$ с върхове A(1,0), B=(1,1), O=(0,0)

$$D = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x \end{cases}$$

$$I = \int_{0}^{1} dx \int_{0}^{x} (x+y) dy$$

$$\int_{0}^{x} (x+y) dy = xy + \frac{y^{2}}{2} \Big|_{0}^{x} = \frac{3x^{2}}{2}$$

$$I = \frac{3}{2} \int_{0}^{1} x^{2} dx = \frac{x^{3}}{2} \Big|_{0}^{1} = \frac{1}{2} - 0 = \frac{1}{2}$$

- 10 Упражнение към лекция 10
- 10.1 Задачи

- 11 Упражнение към лекция 11
- 11.1 Задачи