EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit Numbers 78421 and PSDTX1183

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission Point No. (1)	Facility/Source Name (2)	Air Contaminant Name (3)	Emission lb/hr	Rates * TPY**
LGNTUNLPIT	Lignite Unloading Pit Fugitives	PM	0.01	0.01
		PM_{10}	< 0.01	< 0.01
		PM _{2.5}	0.01 <0.01 <0.01 0.02 0.01 <0.01 0.03 0.01 <0.01 0.03 0.01 <0.01 0.02 0.01 <0.01	<0.01
STAMLER	Stamler Mill (Lignite Crusher #1)	PM	0.02	0.03
STAMLLK	Fugitives	PM ₁₀		0.03
		PM _{2.5}		<0.02
		1 1012.5	\0.01	\0.01
LGPTTOLSB	Transfer Lignite to Lignite Surge	РМ	0.03	0.04
Bin Fugitives	PM_{10}	0.01	0.01	
		$PM_{2.5}$	<0.01	<0.01
KLN5TRNSFR	Kiln 5 Transfer Conveyors Fug	PM	0.03	0.04
112.1011110111	Emissions	PM ₁₀		0.01
		PM _{2.5}		<0.01
WILLMILL	Williams Mill Fugitives	PM		0.03
		PM_{10}		0.02
		$PM_{2.5}$	<0.01	<0.01
FGTVTRNSFR	Lignite Transfer Fugitives to Kilns	PM	0.03	0.04
	2, 3, and 4	PM ₁₀		0.01
		PM _{2.5}		<0.01

MHFXFRDCVT	MHF #1Lignite Transfer Pt Dust Vent	PM/PM ₁₀ /PM _{2.5}	0.05	0.23
MHFLSDCVT	MHF #1 Lignite Silo DC Vent (Lig Silo #3)	PM/PM ₁₀ /PM _{2.5}	0.05	0.23
MHFLS2DCVT	MHF #2 Lignite Silo DC Vent (Lig Silo #4)	PM/PM ₁₀ /PM _{2.5}	0.05	0.23
M2FDBNDCVT	MHF #2 Feed Bin DC Vent	PM/PM ₁₀ /PM _{2.5}	0.02	0.09
LIGSIL4VFD	Lignite Silo #4 (MHF #2 Lignite	PM	0.01	0.03
	Silo) Vibrating Feeder	PM ₁₀	0.01	0.02
		PM _{2.5}	<0.01	<0.01
MHF2STACK	MHF #2 Stack (MHF Normal	PM/PM ₁₀ /PM _{2.5}	2.64	11.54
	Operations) (4)	NO_x	9.10	39.86
		SO_2	16.40	71.83
		CO	6.60	28.91
		VOC	2.30	6.55
		Pb	< 0.01	0.02
		H_2SO_4	0.98	4.29
		Hg	< 0.01	0.01
		HCI	0.31	1.35
		HF	0.06	0.24
MHF2VENT	MHF #2 Vent (MHF MSS	PM/PM ₁₀ /PM _{2.5}	0.29	0.03
	Operations) (4)	NO_x	1.21	0.12
		SO_2	0.02	< 0.01
		CO	3.17	0.32
		VOC	0.21	0.02
13BKBNDCSK	#13 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
		PM _{2.5}	0.01	0.06

14BKBNDCSK	#14 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06
15BKBNDCSK	#15 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06
16BKBNDCSK	#16 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06
6MILLDCSTK	#6 Mill DC Stack	PM/PM ₁₀ PM _{2.5}	0.21 0.01	0.94 0.09
6MILLVAC	#6 Mill Vacuum Unit Vent	PM/PM ₁₀ /PM _{2.5}	0.02	0.09
6MILLFDBNA	#6 Mill Feed Bin A DC Stack	PM/PM ₁₀ PM _{2.5}	0.04 0.01	0.19 0.02
6MILLFDBNB	#6 Mill Feed Bin B DC Stack	PM/PM ₁₀ PM _{2.5}	0.04 0.01	0.19 0.02
LOB1DCST	Load Out Bin #1 DC Stack	PM/PM ₁₀ PM _{2.5}	0.15 0.02	0.66 0.07
LS1DCSTK	Loading Spout #1 DC Stack	PM/PM ₁₀ PM _{2.5}	0.06 0.01	0.09 0.01
LOB2DCST	Load Out Bin #2 DC Stack	PM/PM ₁₀ PM _{2.5}	0.15 0.02	0.66 0.07
LS2DCSTK	Loading Spout #2 DC Stack	PM/PM ₁₀ PM _{2.5}	0.06 0.01	0.09 0.01

M3FDBNDCVT	MHF #3 Feed Bin DC Vent	PM/PM ₁₀ /PM _{2.5}	0.02	0.09
MHF3STACK	MHF #3 Stack (MHF Normal	PM/PM ₁₀ /PM _{2.5}	2.64	11.54
	Operations) (4)	NO _x	9.10	39.86
	, , ,	SO ₂	16.40	71.83
		CO	6.60	28.91
		VOC	2.30	6.55
		Pb	< 0.01	0.02
		H_2SO_4	0.98	4.29
		Hg	< 0.01	0.01
		HCI	0.31	1.34
		HF	0.06	0.24
MHF3VENT	MHF #3 Vent (MHF MSS	PM/PM ₁₀ /PM _{2.5}	0.29	0.03
	Operations) (4)	NO_x	1.21	0.12
		SO_2	0.02	< 0.01
		CO	3.17	0.32
		VOC	0.21	0.02
17BKBNDCSK	#17 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
		PM _{2.5}	0.01	0.06
18BKBNDCSK	#18 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
		PM _{2.5}	0.01	0.06
19BKBNDCSK	#19 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
		PM _{2.5}	0.01	0.06
20BKBNDCSK	#20 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
		PM _{2.5}	0.01	0.06
7MILLDCSTK	#7 Mill DC Stack	PM/PM ₁₀ /PM _{2.5}	0.21	0.94

7MILLFDBNA	#7 Mill Feed Bin A DC Stack	PM/PM ₁₀	0.04	0.19
		PM _{2.5}	0.01	0.02
7MILLFDBNB	#7 Mill Feed Bin B DC Stack	PM/PM ₁₀	0.04	0.19
		PM _{2.5}	0.01	0.02
LOB3DCST	Load Out Bin #3 DC Stack	PM/PM ₁₀	0.15	0.66
		PM _{2.5}	0.02	0.07
LS3DCSTK	Loading Spout #3 DC Stack	PM/PM ₁₀	0.06	0.09
		PM _{2.5}	0.01	0.01
LOB4DCST	Load Out Bin #4 DC Stack	PM/PM ₁₀	0.15	0.66
		PM _{2.5}	0.02	0.07
LS4DCSTK	Loading Spout #4 DC Stack	PM/PM ₁₀	0.06	0.09
		PM _{2.5}	0.01	0.01
M2ASHDCVT	MHF #2-3 Ash Silo Vacuum Blower DC	PM/PM ₁₀ /PM _{2.5}	0.13	0.56
M2ASHLOAD	MHF #2-3 Ash Silo Truck Loading DC	PM/PM ₁₀ /PM _{2.5}	0.06	0.09
GENCOOL1	Generator Cooling Tower #1	PM/PM ₁₀ /PM _{2.5}	0.03	0.13
LIGPIT2	Lignite Unloading Pit #2	PM	<0.01	<0.01
		PM_{10} $PM_{2.5}$	<0.01 <0.01	<0.01 <0.01
		I IVI2.5	~ 0.01	~U.UI
CRUSHER2	Lignite Crusher #2	PM	0.02	0.02
		$PM_{10}/PM_{2.5}$	0.01	0.01

		PM _{2.5}	<0.01	<0.01
CRUSHER3	Lignite Crusher #3	PM	0.02	0.02
	-	PM ₁₀ /PM _{2.5}	0.01	0.01
		PM _{2.5}	<0.01	<0.01
LIGCNV2	Lignite Conveyor #2	РМ	0.02	0.02
		PM ₁₀ /PM _{2.5}	0.01	0.01
		PM _{2.5}	<0.01	<0.01
LS5DCVT	Lignite Silos #5 and #6 DC Vent	PM/PM ₁₀ /PM _{2.5}	0.09	0.38
M4FDBNDCVT	MHF #4 Feed Bin DC Vent	PM/PM ₁₀ /PM _{2.5}	0.02	0.09
MHF4STACK	MHF#4 Stack (MHF Normal	PM/PM ₁₀ /PM _{2.5}	2.64	11.54
	Operations) (4)	NO _x	9.10	39.86
		SO ₂	16.40	71.83
		CO	6.60	28.91
		VOC	2.30	6.55
		Pb	<0.01	0.02
		H_2SO_4	0.98	4.29
		Hg	<0.01	0.01
		HCI	0.31	1.35
		HF	0.06	0.24
MHF4VENT	MHF #4 Vent (MHF MSS	PM/PM ₁₀ /PM _{2.5}	0.29	0.03
	Operations) (4)	NO_x	1.21	0.12
		SO ₂	0.02	< 0.01
		CO	3.17	0.32
		VOC	0.21	0.02
M5FDBNDCVT	MHF #5 Feed Bin DC Vent	PM/PM ₁₀ /PM _{2.5}	0.02	0.09

MHF5STACK	MHF#5 Stack (MHF Normal Operations) (4)	PM/PM ₁₀ /PM _{2.5} NO _x SO ₂	2.64 9.10 16.40	11.54 39.86 71.83
MHF5STACK	MHF#5 Stack (MHF Normal Operations) (4)	CO VOC Pb H ₂ SO ₄ Hg HCI HF	6.60 2.30 <0.01 0.98 <0.01 0.31 0.06	28.91 6.55 0.02 4.29 0.01 1.35 0.24
MHF5VENT	MHF #5 Vent (MHF MSS Operations) (4)	PM/PM ₁₀ /PM _{2.5} NO _x SO ₂ CO VOC	0.29 1.21 0.02 3.17 0.21	0.03 0.12 <0.01 0.32 0.02
M4ASHDCVT	MHF #4-5 Ash Silo Vacuum Blower DC	PM/PM ₁₀ /PM _{2.5}	0.13	0.56
M4ASHLOAD	MHF #4-5 Ash Silo Truck Loading DC	PM/PM ₁₀ /PM _{2.5}	0.06	0.09
M6FDBNDCVT	MHF #6 Feed Bin DC Vent	PM/PM ₁₀ /PM _{2.5}	0.02	0.09

MHF6STACK	MHF#6 Stack (MHF Normal	PM/PM ₁₀ /PM _{2.5}	2.64	11.54
	Operations) (4)	NO_x	9.10	39.86
		SO_2	16.40	71.83
		CO	6.60	28.91
		VOC	2.30	6.55
		Pb	< 0.01	0.02
		H_2SO_4	0.98	4.29
		Hg	< 0.01	0.01
		HCI	0.31	1.35
		HF	0.06	0.24
MHF6VENT	MHF #6 Vent (MHF MSS	PM/PM ₁₀ /PM _{2.5}	0.29	0.03
	Operations) (4)	NO_x	1.21	0.12
		SO_2	0.02	< 0.01
		CO	3.17	0.32
		VOC	0.21	0.02
M7FDBNDCVT	MHF #7 Feed Bin DC Vent	PM/PM ₁₀ /PM _{2.5}	0.02	0.09
MHF7STACK	MHF#7 Stack (MHF Normal	PM/PM ₁₀ /PM _{2.5}	2.64	11.54
	Operations) (4)	NO_x	9.10	39.86
		SO_2	16.40	71.83
		CO	6.60	28.91
		VOC	2.30	6.55
		Pb	< 0.01	0.02

		H ₂ SO ₄	0.98	4.29
MHF7STACK	MHF#7 Stack (MHF Normal	Hg	<0.01	0.01
	Operations) (4)	HCI	0.31	1.35
		HF	0.06	0.24
MHF7VENT	MHF #7 Vent (MHF MSS	PM/PM ₁₀ /PM _{2.5}	0.29	0.03
	Operations) (4)	NO_x	1.21	0.12
		SO ₂	0.02	< 0.01
		CO	3.17	0.32
		VOC	0.21	0.02
M6ASHDCVT	MHF #6-#7 Ash Silo Vacuum Blower DC	PM/PM ₁₀ /PM _{2.5}	0.13	0.56
M6ASHLOAD	MHF #6-#7 Ash Silo Truck Loading DC	PM/PM ₁₀ /PM _{2.5}	0.06	0.09
MHFVAC	MHF #4-#7 Vacuum Unit Vent	PM/PM ₁₀ /PM _{2.5}	0.02	0.09
8MILLFDBNA	#8 Mill Feed Bin A DC	PM/PM ₁₀	0.04	0.19
		PM _{2.5}	0.01	0.02
8MILLFDBNB	#8 Mill Feed Bin B DC	PM/PM ₁₀ PM _{2.5}	0.04 0.01	0.19 0.02
8MILLFDBNC	#8 Mill Feed Bin C DC	PM/PM ₁₀ PM _{2.5}	0.04 0.01	0.19 0.02

8MILLFDBND	#8 Mill Feed Bin D DC	PM/PM ₁₀ PM _{2.5}	0.04 0.01	0.19 0.02
9MILLFDBNA	#9 Mill Feed Bin A DC	PM/PM ₁₀ PM _{2.5}	0.04 0.01	0.19 0.02
9MILLFDBNB	#9 Mill Feed Bin B DC	PM/PM ₁₀	0.04 0.01	0.19
9MILLFDBNC	#9 Mill Feed Bin C DC	PM _{2.5}	0.04	0.19
9MILLFDBND	#9 Mill Feed Bin D DC	PM _{2.5}	0.01	0.02
10MILLFDBNA	#10 Mill Feed Bin A DC	PM _{2.5}	0.01	0.02
10MILLFDBNB	#10 Mill Feed Bin B DC	PM _{2.5}	0.01	0.02
		PM _{2.5}	0.01	0.02
10MILLFDBNC	#10 Mill Feed Bin C DC	PM/PM ₁₀ PM _{2.5}	0.04 0.01	0.19 0.02
10MILLFDBND	#10 Mill Feed Bin D DC	PM/PM ₁₀ PM _{2.5}	0.04 0.01	0.19 0.02
8MILLDCSTK	#8 Mill DC Stack	PM/PM ₁₀ PM _{2.5}	0.21 0.01	0.94 0.09
21BKBNDCSK	#21 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06

22BKBNDCSK	#22 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
		PM _{2.5}	0.01	0.06
23BKBNDCSK	#23 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
		PM _{2.5}	0.01	0.06
24BKBNDCSK	#24 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
24BKBNDC3K	#24 Bulk Bill DC Stack	PM _{2.5}	0.13	0.06
LOB5DCST	Load Out Bin #5 DC Stack	PM/PM ₁₀	0.15 0.02	0.66 0.07
		PM _{2.5}	0.02	0.07
LS5DCSTK	Loading Spout #5 DC Stack	PM/PM ₁₀	0.06	0.09
		PM _{2.5}	0.01	0.01
LOB6DCST	Load Out Bin #6 DC Stack	PM/PM ₁₀	0.15	0.66
20202001	Load Out Bill 110 DO Clack	PM _{2.5}	0.02	0.07
LS6DCSTK	Loading Spout #6 DC Stack	PM/PM ₁₀	0.06	0.09
		PM _{2.5}	0.01	0.01
9MILLDCSTK	#9 Mill DC Stack	PM/PM ₁₀	0.34	1.50
		PM _{2.5}	0.04	0.15
9MILLVAC	#9 Mill Vacuum Unit Vent	PM/PM ₁₀ /PM _{2.5}	0.02	0.09
SIVILLEVACE	75 Will Vaddam Offic Vent	1 10//1 10/10/1 10/2.5	0.02	0.00
	WOE Dully Die DO Charle	DA4/DA4	0.10	0.50
25BKBNDCSK	#25 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06
		F1V12.5	0.01	0.00
26BKBNDCSK	#26 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
		PM _{2.5}	0.01	0.06
27BKBNDCSK	#27 Bulk Bin DC Stack	PM/PM ₁₀	0.13	0.56
=. ===			5.25	

		PM _{2.5}	0.01	0.06
28BKBNDCSK	#28 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06
LOB7DCST	Load Out Bin #7 DC Stack	PM/PM ₁₀ PM _{2.5}	0.15 0.02	0.66 0.07
LS7DCSTK	Loading Spout #7 DC Stack	PM/PM ₁₀ PM _{2.5}	0.06 0.01	0.09 0.01
LOB8DCST	Load Out Bin #8 DC Stack	PM/PM ₁₀ PM _{2.5}	0.15 0.02	0.66 0.07
LS8DCSTK	Loading Spout #8 DC Stack	PM/PM ₁₀ PM _{2.5}	0.06 0.01	0.09 0.01
10MILLDCSTK	#10 Mill DC Stack	PM/PM ₁₀ PM _{2.5}	0.34 0.04	1.50 0.15
29BKBNDCSK	#29 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06
30BKBNDCSK	#30 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06
31BKBNDCSK	#31 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06
32BKBNDCSK	#32 Bulk Bin DC Stack	PM/PM ₁₀ PM _{2.5}	0.13 0.01	0.56 0.06
LOB9DCST	Load Out Bin #9 DC Stack	PM/PM ₁₀ PM _{2.5}	0.15 0.02	0.66 0.07

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

LS9DCSTK	Loading Spout #9 DC Stack	PM/PM ₁₀ PM _{2.5}	0.06 0.01	0.09 0.01
LOB10DCST	Load Out Bin #10 DC Stack	PM/PM ₁₀ PM _{2.5}	0.15 0.02	0.66 0.07
LS10DCSTK	Loading Spout #10 DC Stack	PM/PM ₁₀ PM _{2.5}	0.06 0.01	0.09 0.01
LOB11DCST	Load Out Bin #11 DC Stack	PM/PM ₁₀ PM _{2.5}	0.15 0.02	0.66 0.07
LS11DCSTK	Loading Spout#11 DC Stack	PM/PM ₁₀ PM _{2.5}	0.06 0.01	0.09 0.01
GENCOOL2	Generator Cooling Tower #2	PM/PM ₁₀ /PM _{2.5}	0.06	0.25
LS1DCVT	Lignite Silos #1 DC Vent	PM/PM ₁₀ /PM _{2.5}	0.09	0.38
LS2DCVT	Lignite Silos #2 DC Vent	PM/PM ₁₀ /PM _{2.5}	0.09	0.38

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number (EPN) from a plot plan.

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}

PM₁₀ - particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

HCl - hydrogen chloride

HF - hydrogen fluoride

Hg - mercury

H₂SO₄ - sulfuric acid

⁽²⁾ Specific point source names. For fugitive sources, use an area name or fugitive source name.

⁽³⁾ VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Pb - lead

- (4) Activities and emissions associated with MHF Normal Operations as defined in Special Condition Nos. 7 and 8. Activities and emissions associated with MHF MSS Operations as defined in Special Condition Nos. 7 and 9.
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

EPNs: LS1DCSTK-LS5DCSTK, M2ASHLOAD, M4ASHLOAD, and M6ASHLOAD:

12 hrs/day, 7 days/week, 52 weeks/year, 2,920 hrs/year.

EPNs: LS6DCSTK-LS11DCSTK: 24 hrs/day, 7 days/week, 52 weeks/year, 2,920 hrs/year.

All Other EPNs: 24 hrs/, 7 days/week, 52 weeks/year, or 8,760 hrs/year.

** Compliance with annual emission limits is based on a rolling 12-month period.

Dated: August 20, 2010