

数学系统精讲

数列

MBA大师——董璞

本章概况

-
- 1. 每年2-3题
- 2. 知识点汇合
- 3. 技巧性强
- 4. 等差、等比数列性质和应用
 - ▶ 等差/等比概念、性质、通项公式、前n项和公式等
 - ➤ a_n和S_n之间相互推导计算
 - ▶ 简单递推公式
 - > 数列思维的应用题

数列基础知识

.

【数列】依一定次序排成的一列数

有穷数列 1, 2, 3, 4, 5, 6, 7

无穷数列 1, 2, 3, 4, 5, 6, 7, ...

【递增数列】第二项起,每一项都比前一项大。

7, 6, 5, 4, 3, 2, 1, ...

【递减数列】第二项起,每一项都比前一项小。

1, -1, 1, -1, 1, -1, 1, -1, ... 公比为-1的等比数列

【摆动数列】从第二项起,有些项大于它的前一项,有些项小于它的前一项。

2, 2, 2, 2, 2, 2, ...

【常数列】各项均为同一个常数 特值法

数列基础知识

. . . .

【数列】依一定次序排成的一列数 $\{a_n\}$

1, 1, 2, 3, 5, 8, 13,

 a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 ,

【通项】数列的第n项 a_n 与其项数n之间的关系

【前n项和】 $S_n = a_1 + a_2 + a_3 + \cdots + a_n$

数列下标的概念

数列基础知识•等差数列

【等差数列】如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一常 数, $a_{n+1} - a_n = d$, 那么这个数列就叫做等差数列, 这个常数叫做等差数列的公差d。

2, 4, 6, 8, 10,

 $n+1, n+4, n+7, \ldots$

等差数列通项公式: $a_n = a_1 + (n-1)d$

若等差数列公差d=0,数列 $\{a_n\}$ 为常数列

等差数列前n项和公式: $S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d$

数列基础知识•等比数列

【等比数列】如果一个数列从第二项起,每一项与它的前一项的比都等于同一常数, $a_{n+1}/a_n = q$,那么这个数列就叫做等比数列,这个常数就叫做等比数列的公比q $(q \neq 0)$ 等比数列每一项a_n和公比q均不为0 2, 4, 8, 16, 32,

n+1, $(n+1)^2$, $(n+1)^3$,

等比数列通项公式: $a_n = a_1 q^{n-1}$ ($q \neq 0$)

等比数列前n项和公式 $(q \neq 0)$:

(2) 当q = 1时, $S_n = na_1$ (若等比数列公比q = 1, 数列 $\{a_n\}$ 为常数列)

当 $n \to \infty$, 且0 < |q| < 1时, $S = \lim_{n \to \infty} \frac{a(1-q^n)}{1-q} = \frac{a_1}{1-q}$

数列出题趋势及考点分布

	基础词汇	等差数列		等比数列		其他数列
	a, b, c是 等差/比数列	套路一	进阶 词汇	等比 求和	结合 等差	
2018	19	17		7		
2017		11				
2016						24
2015		20	23			21
2014	18, 21					
2013		13				25
2012				8	18	
2011	16	7	25			

数列出题套路

★【套路一】求数列某项的值或者某几项的和 词汇2

等差数列

| \bigstar 【进阶词汇】 | 2.等差数列过0点的项 $(S_n \leq S_{\text{QLAMS}})$ 3.等差数列片段和公式 ($S_5 = 2, S_{10} = 6$)

等比数列

秒杀技巧

其他数列

等差数列•套路一

求数列具体项的值或者某几项的和

【等差数列词汇1】a, b, c成等差数列 $\Leftrightarrow 2b = a + c$

可以被用在任何知识点

【等比数列词汇1】a, b, c成等比数列 $\Leftrightarrow b^2 = ac$ $(b \neq 0)$ | 等同于给出一个关于a, b, c的算式条件

【2010.10.21】 一元二次方程 $ax^2 + bx + c = 0$ 无实根。 (A)

(1) a, b, c成等比数列,且 $b \neq 0$.

(2) a, b, c成等差数列.

无实根: $\Delta = b^2 - 4ca < 0$

条件 (1) $b^2 = ac (b \neq 0)$

条件 (2) 2b = a + c

等差数列•套路一

求数列具体项的值或者某几项的和

题干出现数列某几项的和【等差数列词汇2】考察数列的下标:下标和相等的两项之和相等

数列重要数学思维

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9$$

$$a_1 + a_9 = a_2 + a_8 = a_3 + a_7$$

$$a_1 + a_7 = a_2 + a_6 = a_3 + a_5 = 2a_4$$

$$a_2 - a_5 + a_8 =$$

等差数列•套路一

求数列具体项的值或者某几项的和

题干出现数列某几项的和【等差数列词汇2】考察数列的下标:下标和相等的两项之和相等 【2013.1.13】已知 $\{a_n\}$ 为等差数列,若 a_2 与 a_{10} 是方程 $x^2 - 10x - 9 = 0$ 的两个根,则 $a_5 + a_7 = (D)$

B. -9 C. 9

D. 10

E. 12

E. 8

 $a_2 + a_{10} = a_5 + a_7$

【2010.10.13】等比数列 $\{a_n\}$ 中, a_3 、 a_8 是方程 $3x^2+2x-18=0$ 的两个根,则 $a_4 a_7 = (C)$

A. -9

B. -8 C. -6 D. 6

 $a_3 a_8 = a_4 a_7$

等差数列•套路一

求数列具体项的值或者某几项的和

题干出现数列某几项的和【等差数列词汇2】 考察数列的下标:下标和相等的两项之和相等

$$a_1 + a_6 = a_3 + a_4$$

$$a_1$$
 a_2 a_4 a_4 a_5 a_6

$$a_1 + a_7 = 2a_4$$

$$a_1 + a_7 = 2a_4$$
 $a_1 \quad a_2 \quad a_4 \quad a_4 \quad a_5 \quad a_6 \quad a_7$

$$a_1 + a_n = a_2 + a_{n-1} = \dots = egin{array}{ccc} 2a_{rac{n+1}{2}} & ext{ 下标和}n + 1为偶数 \ a_{rac{n}{2}} + a_{rac{n}{2}+1} & ext{ 下标和}n + 1为奇数 \end{array}$$

【扩展一】下标和为偶数,可以知道中间项

下标和为奇数,可以知道中间两项的和

等差数列•套路— 求数列具体项的值或者某几项的和

【等差数列词汇2】下标和相等的两项之和相等

【扩展一】两项下标和为偶数,可以知道中间项;

两项下标和为奇数,可以知道它们中间两项的和。

$$S_1 = a_1$$
 $S_3 = a_1 + a_2 + a_3 = 3 a_2$ $S_7 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 = 7 a_4$

$$S_7 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 = 7a_4$$

$$S_8 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 = 4(a_1 + a_8) = \dots = 4(a_4 + a_5)$$

$$S_n = \frac{n(a_1 + a_n)}{2} = \begin{bmatrix} na_{\frac{n+1}{2}} & \text{下标和} n + 1$$
为偶数/奇数个项的和
$$\frac{n}{2}(a_{\frac{n}{2}} + a_{\frac{n+1}{2}}) & \text{下标和} n + 1$$
为奇数/偶数个项的和

$$\left(a_{\frac{n}{n}}+a_{\frac{n}{n+1}}\right)$$
 下标和 $n+1$ 为奇数/偶数个项的和

【扩展二】已知奇数个项的中间项,可求出 $S_n = na_{n+1}$;反之亦然

已知偶数个项的中间两项之和,可求出 $S_n = \frac{n}{2} \left(a_n^n + a_{n+1}^n \right)$; 反之亦然

等差数列•套路一

【2014.1.1.7】已知 $a_8 = 11$ 和 $a_{13} = 21$,求 S_{15} 和 S_{20}

方法1
$$S_{15} = \frac{a_1 + a_{15}}{2} \times 15$$
 $S_{20} = \frac{a_1 + a_{20}}{2} \times 20$

$$S_{20} = \frac{a_1 + a_{20}}{2} \times 20$$

方法2
$$S_{15} = a_1 + (a_1 + d) + \dots + (a_1 + 14d) = 15a_1 + \frac{14 \times 15}{2}d$$

$$S_{20} = a_1 + (a_1 + d) + \dots + (a_1 + 19d) = 20a_1 + \frac{19 \times 20}{2}d$$

$$\begin{cases} a_8 = a + 7d = 11 \\ a_{13} = a_1 + 12d = 21 \end{cases} \implies \begin{cases} a_1 = -3 \\ d = 2 \end{cases}$$

等差数列•套路一

【2014.1.1.7】已知 $a_8 = 11$ 和 $a_{13} = 21$,求 S_{15} 和 S_{20}

$$a_{15} = \frac{a_1 + a_{15}}{2} \times 15$$

方法1
$$S_{15} = \frac{a_1 + a_{15}}{2} \times 15$$
 $S_{20} = \frac{a_1 + a_{20}}{2} \times 20$

$$S_{15} = 15a_1 + \frac{14 \times 15}{2}$$

方法2
$$S_{15} = 15a_1 + \frac{14 \times 15}{2}d$$
 $S_{20} = 20a_1 + \frac{19 \times 20}{2}d$

$$S_{15} = 15a_8 = 15 \times 11 = 165$$

$$S_{20} = 10(a_{10} + a_{11}) = 10(a_{13} + a_{8}) = 10(11 + 21) = 320$$

等差数列•套路一

题干出现数列某几项的的和:

【词汇2】下标和相等的两项之和相等

【词汇3】通过词汇2无法解决的问题→ Ha_1 和d表示出数列的每一项(通项公式)

题干特征:往往没有给出 a_1 /下标数字不对称/项的系数不是1

$$3a_3 + 2a_7 = 3(a_1 + 2d) + 2(a_1 + 6d) = 5a_1 + 18d$$

$$a_1 + a_2 + \dots + a_{14} + a_{15} = 15a_8 = 15a_1 + 105d$$

$$a_3 + a_4 + a_5 + a_6 + a_7 + a_8 = 3(a_5 + a_6) = 3 \times (2a_1 + 9d) = 6a_1 + 27d$$

$$3a_4 + 5a_5 + 7a_6 + 5a_7 + 3a_8 = 3(a_4 + a_8) + 5(a_5 + a_7) + 7a_6$$

= $6a_6 + 10a_6 + 7a_6 = 23a_6 = 23a_1 + 115d$

等差数列•套路一

【2014.1.1.7】已知 $\{a_n\}$ 为等差数列,且 $a_2 - a_5 + a_8 = 9$,则 $a_1 + a_2 + \cdots + a_9 = (D)$

(A) 27

下标和相等的两项之和相等|| 已知奇数个项的中间项,可求出 S_n

$$a_2 - a_5 + a_8 = a_2 + a_8 - a_5 = 2a_5 - a_5 = a_5 = 9$$

$$a_1 + a_2 + \cdots + a_9 = 9a_5 = 81$$

另解: 常数列特值法

令
$$a_2 = a_5 = a_8 = t$$
,则有 $t - t + t = 9$, $t = 9$

$$a_1 + a_2 + \cdots + a_9 = 9t = 81$$

等差数列•套路一

【例】在等差数列 $\{b_n\}$ 中, $b_1 - b_4 - b_8 - b_{12} + b_{15} = 2$,则 $b_3 + b_{13} = (D)$

 $-b_4 - b_{12} = -(b_4 + b_{12}) = -2b_8$

$$b_1 - b_4 - b_8 - b_{12} + b_{15} = 2$$
 得: $2b_8 - 2b_8 - b_8 = -b_8 = 2$
 $b_1 + b_{15} = 2b_8$ $b_3 + b_{13} = 2b_8 = -4$

另解: 常数列特值法 (令 $\{b_n\}$ 为公差d=0的常数列)

即
$$b_1 = b_4 = b_8 = b_{12} = b_{15} = t$$
, 则有 $t - t - t - t + t = -t = 2$, $t = -2$
 $b_3 + b_{13} = 2t = -4$

等差数列•套路一

【2018.17】设 $\{a_n\}$ 为等差数列,则能确定 $a_1 + a_2 + \cdots + a_9$ 的值(B)

- (1) 已知a₁的值
- (2) 已知a₅的值

已知奇数个项的中间项,可求出 S_n $a_1 + a_2 + \cdots + a_9 = 9a_5$

$$a_1 + a_2 + \dots + a_9 = 9a_5$$

【2018.17 修改】设 $\{a_n\}$ 为等差数列,则能确定 $a_1 + a_2 + \cdots + a_9$ 的值(C)

- (1) 已知a₁的值
- (2) 已知 a_6 的值 $a_1 + a_2 + \cdots + a_9 = 9a_5$

$$\begin{cases} a_1 \\ a_6 = a_1 + 5d \end{cases} \implies \begin{cases} a_1 \\ d \end{cases} S_9 = 9a_1 + \frac{8 \times 9}{2}d$$

等差数列•套路一

【例】设 $\{a_n\}$ 是等差数列,若 $a_2 + a_3 + a_{10} + a_{11} = 48$,求 $S_{12} + 3(a_6 + a_7)$ 的值(B)

$$a_2 + a_3 + a_{10} + a_{11} = 2(a_6 + a_7) = 48$$

$$S_{12} = 6 \ (a_6 + a_7)$$

$$S_{12} + 3(a_6 + a_7) = 9(a_6 + a_7) = 216$$

【改】设
$$\{a_n\}$$
是等差数列,若 $a_2=3$, $a_4=7$,求 $S_{12}+3(a_6+a_7)$ 的值

等差数列•套路一

【2009.10.22】等差数列 $\{a_n\}$ 的前18项和 $S_{18} = \frac{19}{2}$. (A)

(1)
$$a_3 = \frac{1}{6}$$
, $a_6 = \frac{1}{3}$.

(2)
$$a_3 = \frac{1}{4}$$
, $a_6 = \frac{1}{2}$. $S_{18} = (a_1 + a_{18}) + \dots + (a_9 + a_{10}) = 9(2a_1 + 17d) = \frac{19}{2}$

基本方法: 等差数列求和公式

条件 (1)
$$\begin{cases} a_3 = \frac{1}{6} = a_1 + 2d \\ a_6 = \frac{1}{3} = a_1 + 5d \end{cases} \Rightarrow \begin{cases} a_1 = \frac{1}{18} \\ d = \frac{1}{18} \end{cases} \Rightarrow S_{18} = 18a_1 + \frac{17 \times 18}{2}d = 1 + \frac{17}{2} = \frac{19}{2}$$

条件 (2)
$$\begin{cases} a_3 = \frac{1}{4} = a_1 + 2d \\ a_6 = \frac{1}{2} = a_1 + 5d \end{cases} \Rightarrow \begin{cases} a_1 = \frac{1}{12} \\ d = \frac{1}{12} \end{cases} \Rightarrow S_{18} = 18a_1 + \frac{17 \times 18}{2}d \neq \frac{19}{2}$$

等差数列•套路一

【2009.10.23修改】等差数列 $\{a_n\}$ 的前18项和 $S_{18} = \frac{19}{2}$ (D)

(1)
$$a_3 = \frac{1}{6}$$
, $a_6 = \frac{1}{3}$

(2)
$$a_9 = \frac{1}{2}$$
, $a_{10} = \frac{5}{9}$ 已知偶数

(2) $a_9 = \frac{1}{2}$, $a_{10} = \frac{5}{9}$ 已知偶数个项的中间两项之和,可求出 S_n

$$S_{18} = (a_1 + a_{18}) + (a_2 + a_{17}) \dots + (a_9 + a_{10})$$

= $9(a_1 + a_{18}) = 9(a_2 + a_{17}) = \dots = 9(a_9 + a_{10}) = \frac{19}{2}$

等差数列•套路一

【2009.1.25】 $\{a_n\}$ 的前n项和 S_n 与 $\{b_n\}$ 的前n项和 T_n 满足 S_{19} : $T_{19} = 3:2.$ (C)

- (1) $\{a_n\}$ 和 $\{b_n\}$ 是等差数列
- (2) a_{10} : $b_{10} = 3:2$.

【词汇2扩展】已知奇数个项的中间项,可求出 S_n 等于中间项的n倍

知道
$$S_{19}$$
,可以求出 $a_{10} = \frac{1}{19}S_{19}$

知道 a_{10} ,可以求出 $S_{19} = 19a_{10}$

$$\frac{S_{19}}{T_{19}} = \frac{19a_{10}}{19b_{10}} = \frac{3}{2}$$

等差数列•套路一

【例】等差数列 $\{a_n\}$, $\{b_n\}$ 的前n项和分别为 S_n , T_n , 若 $\frac{S_n}{T_n}=\frac{2n}{3n+1}$, 则 $\frac{a_7}{b_7}$ 的值为(B)

A.
$$-\frac{13}{20}$$
 B. $\frac{13}{20}$ C. $\frac{13}{10}$ D. $\frac{1}{3}$

B.
$$\frac{13}{20}$$

C.
$$\frac{13}{10}$$

D.
$$\frac{1}{3}$$

【词汇2扩展】已知奇数个项的中间项,可求出 S_n 等于中间项的n倍

知道 S_{13} ,可以求出 a_7

知道a7,可以求出S13

$$\frac{a_7}{b_7} = \frac{13a_7}{13b_7} = \frac{S_{13}}{T_{13}} = \frac{2 \times 13}{3 \times 13 + 1} = \frac{26}{40} = \frac{13}{20}$$

数列出题套路

「★【套路一】求数列某项的值或者某几项的和

【词汇1】a, b, c成等差数列⇔ 2b = a + c

【词汇2】下标和相等的两项之和相等

【扩展一】两项下标和为偶数,可以知道中间项;奇数同理

【扩展二】已知奇数个项的中间项,可求出S_n;偶数个同理

【词汇3】通过词汇2无法解决的问题→ Ha_1 和d表示出数列的每一项(通项公式)

1.等差数列两项之积在分母,求和 $\sum_{\alpha} \frac{1}{\alpha}$

↓★【进阶词汇】 2.等差数列过0点的项 $(S_n \leq S_{\mu + \Delta y})$ 等比数列

¹ 3.等差数列片段和公式 $(S_5 = 2, S_{10} = 6)$

秒杀技巧

其他数列

等差数列

等差数列•进阶词汇1

等差数列两项之积在分母→裂项相消

【题干特征】等差数列两项的乘积在分母上——1,求和

裂项相消基础知识回顾

通分
$$\frac{1}{3}$$
 $-\frac{1}{5}$ $=\frac{5-3}{3\times5}$ $=\frac{2}{15}$

$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \dots + \frac{1}{98\times 99} + \frac{1}{99\times 100} = \frac{2-1}{1\times 2} + \frac{3-2}{2\times 3} + \dots + \frac{99-98}{98\times 99} + \frac{100-99}{99\times 100}$$
$$= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{98} - \frac{1}{99} + \frac{1}{99} - \frac{1}{100} = \frac{99}{100}$$

$$\frac{1}{1\times3} + \frac{1}{3\times5} + \dots + \frac{1}{97\times99} + \frac{1}{99\times101} = \frac{1}{2} \cdot \frac{3-1}{1\times3} + \frac{1}{2} \cdot \frac{5-3}{3\times5} + \frac{1}{2} \cdot \frac{7-5}{5\times7} + \dots + \frac{1}{2} \cdot \frac{101-99}{99\times101}$$

$$= \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{97} - \frac{1}{99} + \frac{1}{99} - \frac{1}{101} \right)$$

等差数列•进阶词汇1

两项之积在分母 \rightarrow 裂项相消【题干特征】等差数列两项的乘积在分母上 $\frac{1}{a_1a_2a_3}$,求和

$$\frac{1}{a_1 a_2} = \frac{1}{d} \cdot \frac{d}{a_1 a_2} = \frac{1}{d} \times \frac{a_2 - a_1}{a_1 a_2} = \frac{1}{d} \times \left(\frac{1}{a_1} - \frac{1}{a_2}\right)$$

$$\frac{1}{a_n a_{n+1}} = \frac{1}{d} \cdot \frac{d}{a_n a_{n+1}} = \frac{1}{d} \times \frac{a_{n+1} - a_n}{a_n a_{n+1}} = \frac{1}{d} \times \left(\frac{1}{a_n} - \frac{1}{a_{n+1}}\right)$$

$$\frac{1}{a_1 a_2} = \frac{1}{2d} \cdot \frac{2d}{a_1 a_2} = \frac{1}{2d} \times \frac{a_3 - a_1}{a_1 a_2} = \frac{1}{2d} \left(\frac{1}{a_1} - \frac{1}{a_2} \right)$$

$$\dot{\mathbb{R}} \colon \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_{99} a_{100}} = \frac{1}{d} \cdot \frac{d}{a_1 a_2} + \frac{1}{d} \cdot \frac{d}{a_2 a_3} + \dots + \frac{1}{d} \cdot \frac{d}{a_{99} a_{100}}$$

$$=\frac{1}{d}\left(\frac{a_2-a_1}{a_1a_2}+\frac{a_3-a_2}{a_2a_3}+\cdots+\frac{a_{10}-a_{99}}{a_{99}a_{100}}\right)=\frac{1}{d}\left(\frac{1}{d}-\frac{1}{a_2}+\frac{1}{a_2}-\frac{1}{a_3}+\cdots+\frac{1}{a_{99}}-\frac{1}{a_{100}}\right)$$

等差数列•进阶词汇1

【2012.10.5】在等差数列 $\{a_n\}$ 中, $a_2 = 4$, $a_4 = 8$ 。若 $\sum_{k=1}^n \frac{1}{a_k a_{k+1}} = \frac{5}{21}$,则n = (D)

由 $a_2 = 4$. $a_4 = 8$, 得: 公差d = 2, 首项 $a_1 = 2$

$$\sum_{k=1}^{n} \frac{1}{a_k a_{k+1}} = \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_n a_{n+1}}$$

$$= \frac{1}{2} \left[\left(\frac{1}{a_n} - \frac{1}{a_{n+1}} \right) + \left(\frac{1}{a_{n-1}} - \frac{1}{a_n} \right) + \dots + \left(\frac{1}{a_2} - \frac{1}{a_3} \right) + \left(\frac{1}{a_1} - \frac{1}{a_2} \right) \right]$$

$$= \frac{1}{2} \left(\frac{1}{a_1} - \frac{1}{a_{n+1}} \right) = \frac{5}{21}$$

$$\frac{1}{a_{n+1}} = \frac{1}{a_1} - \frac{10}{21} = \frac{1}{2} - \frac{10}{21} = \frac{1}{42}$$

$$a_{n+1} = a_1 + nd = 42$$
,代入公差 $d = 2$,首项 $a_1 = 2$,得 $n = 20$

数列出题套路

.

「 | ★【套路一】求数列某项的值或者某几项的和

【词汇1】a. b. c成等差数列 \Leftrightarrow 2b = a + c

【词汇2】下标和相等的两项之和相等

【扩展一】两项下标和为偶数,可以知道中间项;奇数同理

【扩展二】已知奇数个项的中间项,可求出Sn; 偶数个同理

【词汇3】通过词汇2无法解决的问题→用a₁和d表示出数列的每一项 (通项公式)

1.等差数列两项之积在分母,求和 $\sum \frac{1}{a_n a_{n+1}}$ →裂项相消

★【进阶词汇】

2.等差数列过0点的项 $(S_n \leq S_{\mu \to \Delta p})$

[[]3.等差数列片段和公式 $(S_5 = 2, S_{10} = 6)$

秒杀技巧 其他数列

等比数列

等差数列

等差数列•数列过0点的项

【题干特征】出现形如 $S_n \geq S_{\text{Blkm}}$,或求 S_n 的最大值/最小值

$$a_1$$
 a_2 a_3 a_4 a_5 a_6 ... a_{n-1} a_n a_{n+1}

$$-10 -7 -4 -1 2 5 -10 + 3(n-2) -10 + 3(n-1) -10 + 3n$$

$$a_4 < 0$$
, $a_5 > 0$

 a_5 即为数列 $\{a_n\}$ "过零点的项"

从第5项开始,以后的每一项都是大于0。

 S_n 有最小值。

$$S_n = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + (a_1 - \frac{d}{2})n$$

等差数列•数列过0点的项

• • • • •

【题干特征】出现形如 $S_n \geq S_{\text{Alphabe}}$,或要求 S_n 的最大值/最小值

-10 -7 -4 -1 2 5 ...

 $S_1 = a_1 = -10$

 $S_2 = -10 - 7 = -17$

 $S_3 = -10 - 7 - 4 = -21$ $S_4 = -10 - 7 - 4 - 1 = -22$

 $S_4 = -10 = 7 = 4 = 1 = -22$ $S_5 = -10 = 7 = 4 = 1 = 20$ $S_4 = -10 = 7 = 4 = 1 + 2 + 5 = -15$ $a_1 < 0$, d > 0, S_n 有最小值

 $a_1 > 0$, d < 0, S_n 有最大值

(若过零点的项 $a_n=0$, $S_{n-1}=S_n$, 有两个相等的极值)

 $S_1 > S_2 > S_3 \dots S_{n-2} > S_{n-1} < S_n < S_{n+1}$ (当 $a_n > 0$ 时)

数列中 a_n 为过0点的项, S_n 的最小值,只有一项,为 S_{n-1}

数列中 $a_n=0$,所以 $S_n=S_{n-1}+a_n=S_{n-1}$, S_n 的最小值,有2项,为 S_n 和 S_{n-1} 。

等差数列•数列过0点的项

.

【2015.23】已知 $\{a_n\}$ 是公差大于零的等差数列, S_n 是 $\{a_n\}$ 的前n项和,则 $S_n \geq S_{10}$,

 $n = 1, 2 \cdots (D)$

(1) $a_{10} = 0$.

 $(2) \ a_{11}a_{10} < 0.$

【题干特征】出现形如 $S_n \geq S_{\text{具体数字}}$,或求 S_n 的最大值/最小值

 $S_1 > S_2 > S_3 \dots S_{n-2} > S_{n-1} \le S_n < S_{n+1}$ (当 $a_n = 0$ 的时候,等号成立)

条件1) $a_{10}=0$, a_{10} 是过零点的项,所以 $S_n \geq S_{10}$ $(S_9=S_{10})$,条件(1)充分

条件2) d>0, $a_{11}a_{10}<0$, 说明 $a_{10}<0$, $a_{11}>0$, a_{11} 是过零点的项。

所以: $S_n > S_{10}$, 条件 (2) 充分

等差数列•数列过0点的项

【例】等差数列 $\{a_n\}$ 中, S_n 是前n项之和,则 $a_5 < 0$, $a_6 > 0$ (C)

- 1) $S_n \geq S_5$
- 2) $a_n \neq 0$

【题干特征】出现形如 $S_n \geq S_{\text{light}}$,或求 S_n 的最大值/最小值

$$S_n \ge S_5 \begin{cases} S_n > S_5, & S_6 > S_5, & S_4 > S_5 \\ \\ \hline \not F \not E S_n = S_6 \end{cases} \begin{cases} a_5 = 0, & S_4 = S_5 \\ a_6 = 0, & S_5 = S_6 \end{cases}$$

等差数列•数列过0点的项

【例】已知 $\{a_n\}$ 为等差数列, $a_1 + a_3 + a_5 = 105$, $a_2 + a_4 + a_6 = 99$,若 S_n 表示 $\{a_n\}$ 的前n项和,使得 S_n 达到最大值时的n = (B)

C.19

- B.20

D.18

E.22

【题干特征】出现形如 $S_n \geq S_{\text{light}}$,或求 S_n 的最大值/最小值

$$a_1 + a_3 + a_5 = 3a_3 = 105, \quad a_3 = a_1 + 2d = 35$$
 $a_2 + a_4 + a_6 = 3a_4 = 99, \quad a_4 = a_1 + 3d = 33$
 $\Rightarrow \begin{cases} d = -2 \\ a_1 = 39 \end{cases}$

使 S_n 达到最大值时的n→过0点的项是第几项→从哪一项开始 $a_n \leq 0$

$$a_{20} = a_1 + 19d = 39 - 38 = 1 > 0$$

 $a_{21} = a_1 + 20d = 39 - 40 = -1 < 0$

等差数列•数列过0点的项

【例】在等差数列 $\{a_n\}$ 中, S_n 表示前n项和,若 $a_1=13$, $S_3=S_{11}$,则 S_n 的最大值是(B)

- A.42
- B.49
- C.59
- D.133

E.不存在

【题干特征】出现形如 $S_n \geq S_{\text{lim}}$,或求 S_n 的最大值/最小值

$$S_3 = 3a_2 = 3a_1 + 3d$$
 $S_{11} = 11a_6 = 11a_1 + 55d$ $\Rightarrow \begin{cases} d = -2 \\ a_1 = 13 \end{cases}$ $a_1 > 0, \ d < 0, \ S_n$ 有最大值 $a_1 < 0, \ d > 0, \ S_n$ 有最小值

$$a_7 = a_1 + 6d = 1$$
, $a_8 = a_1 + 7d = -1$

$$S_n$$
的最大值为, $S_7 = \frac{(a_1 + a_7) \times 7}{2} = \frac{(13+1) \times 7}{2} = 49$

数列出题套路

「 | 【套路一】求数列某项的值或者某几项的和

【词汇1】a, b, c成等差数列 $\Leftrightarrow 2b = a + c$

【词汇2】下标和相等的两项之和相等

【扩展一】两项下标和为偶数,可以知道中间项;奇数同理 【扩展二】已知奇数个项的中间项,可求出 S_n ;偶数个同理

【词汇3】通过词汇2无法解决的问题→ Ha_1 和d表示出数列的每一项(通项公式)

1.等差数列两项之积在分母,求和 $\sum \frac{1}{a_n a_{n+1}}$ → 裂项相消

★【进阶词汇】 2.等差数列过0点的项 $(S_n \leq S_{\text{lab}})$

[[]3.等差数列片段和公式 (S₃,S₆/S₅,S₁₀/S_n,S_{2n}等值)

等比数列 秒杀技巧

等差数列

其他数列

等差数列•片段和

.

首项 $a_1 = 1$, 公差d = 2的等差数列

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23......
$$a_1$$
, a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 , a_{10} , a_{11} , a_{12}

 $S_3 = 9$ $S_6 - S_3 = 27$ $S_9 - S_6 = 45$ $S_{12} - S_9 = 63$
 $27 - 9 = 18$ $45 - 28 = 18$ $63 - 45 = 18$

 S_3 , $S_6 - S_3$, , $S_9 - S_6$, $S_{12} - S_9$ 是公差为9d的等差数列。

【等差数列片段和定理】如果 a_1 , a_2 , a_3 , …, a_n 为等差数列,那么这个数列连续的n项之和也是等差数列,并且公差为 n^2d

等差数列·片段和

【等差数列片段和定理】如果 a_1 , a_2 , a_3 , …, a_n 为等差数列,那么这个数列连续的n项之和,即 s_n , $s_{2n}-s_n$, $s_{3n}-s_{2n}$ ……也是等差数列,并且公差为 n^2d

$$S_3 = a_1 + a_2 + a_3 = a_1 + (a_1 + d) + (a_1 + 2d)$$

 $S_6 - S_3 = a_4 + a_5 + a_6 = (a_1 + 3d) + (a_1 + 4d) + (a_1 + 5d)$
片段相減 = $(a_4 + a_5 + a_6) - (a_1 + a_2 + a_3) = 3 \times 3d$

n = 3 时,一共有3项,每一项相差3d,共相差 $3 \times 3d = n^2d$ (n = 3)

$$S_4 = a_1 + a_2 + a_3 + a_4 = a_1 + (a_1 + d) + (a_1 + 2d) + (a_1 + 3d)$$
 $S_8 - S_4 = a_5 + a_6 + a_7 + a_8 = (a_1 + 4d) + (a_1 + 5d) + (a_1 + 6d) + (a_1 + 7d)$
片段相减 = $(a_5 + a_6 + a_7 + a_8) - (a_1 + a_2 + a_3 + a_4) = 4 \times 4d$
 $n = 4$ 时,一共有4项,每一项相差4d,共相差4×4d = n^2d ($n = 4$)

等差数列•片段和

. . . .

【等差数列片段和定理】如果 a_1 , a_2 , a_3 , …, a_n 为等差数列,那么这个数列连续的n项之和,即 S_n , $S_{2n}-S_n$, $S_{3n}-S_{2n}$ ……也是等差数列,并且公差为 n^2d

【例】 S_3 , $S_6 - S_3$, 和 $S_9 - S_6$ 是公差为 $3^2 d = 9d$ 的等差数列。

【例】 S_4 , $S_8 - S_4$, 和 $S_{12} - S_8$ 是公差为 $4^2d = 16d$ 的等差数列。

【题干特征】题目中出现 S_3 , S_6/S_5 , S_{10} 等具体值

注意

如
$$n = 3$$
时

是 S_3 , $S_6 - S_3$, 和 $S_9 - S_6$ 成等差数列 而非 S_3 , S_6 , S_9 成等差数列。

等差数列·片段和

0000

【2014.10.7】等差数列 $\{a_n\}$ 的前n项和为 S_n ,已知 $S_3=3$, $S_6=24$,则此等差数列的公差 d等于(B)

【题干特征】题目中出现 S_3 , S_6/S_5 , S_{10} 等具体值

n = 3, 连续3项之和成等差数列

即 S_3 , $S_6 - S_3$, 和 $S_9 - S_6$为等差数列

公差为 $3^2d = 9d$

$$(S_6 - S_3) - S_3 = n^2 d = 9d = (24 - 3) - 3 = 18$$

等差数列•片段和

【1998.10.7】若在等差数列前5项和 $S_5 = 15$,前15项和 $S_{15} = 120$,则前10项和 S_{10} 为(D)

(A) 40

(D) 55

【题干特征】题目中出现 S_3 , S_6/S_5 , S_{10} 等具体值

n = 5,连续5项之和成等差数列

 S_5 , $S_{10} - S_5$, $S_{15} - S_{10}$ 是公差为 $n^2d = 25d$ 的等差数列

【词汇1】a、b、c三个数成等差数列⇔ 2b = a + c

$$2(S_{10} - S_5) = S_5 + (S_{15} - S_{10})$$

$$3S_{10} = 3S_5 + S_{15} = 165$$

等差数列•片段和公式

【例】在等差数列 $\{a_n\}$ 中,已知 $S_4=1$, $S_8=4$,设 $S=a_{17}+a_{18}+a_{19}+a_{20}$,

【求1】*S* =?

【求2】数列
$$\{a_n\}$$
的公差?

【题干特征】题目中出现 S_3 , S_6/S_5 , S_{10} 等具体值

【解1】 $S_4 = 1$, $S_8 - S_4$, $S_{12} - S_8$, $S_{16} - S_{12}$, $S_{20} - S_{16}$ 成等差数列

片段和等差数列首项为 $S_4 = 1$,片段和等差数列第二项为 $S_8 - S_4 = 3$,公差为2

1 3 5 7 9..... 故S = 9

【解2】片段和等差数列的公差为 $n^2d = 16d = 2$,故原数列 $d = \frac{1}{6}$

【解3】 $S_4 = 4a_1 + 6d = 1$, $d = \frac{1}{9}$, 故 $a_1 = \frac{1}{16}$, $a_3 = a_1 + 2d = \frac{5}{16}$

等差数列•词汇总结

1) a,b,c三个数成等差/等比数列

2) 任意个任意项的和,都能转换为a₁和d

 $3a_3 + 2a_7 = 3(a_1 + 2d) + 2(a_1 + 6d) = 5a_1 + 18d$

3) 两项和,通过下标和做转换

下标和为奇数: $a_4 + a_7 = a_2 + a_9 = a_1 + a_{10} = a_5 + a_6$ 下标和为偶数,有中间项: $a_4 + a_6 = a_3 + a_7 = a_2 + a_8 = 2a_5$

4) 前奇数项 S_n 等于中间项的n倍 $S_7 = 7a_4 = 7a_1 + 21d$ $S_{11} = 11a_6 = 11a_1 + 55d$

 $S_{10} = 5(a_1 + a_{10}) = 5(a_5 + a_6) = 5(2a_1 + 9d)$

5) $a_1 < 0$, d > 0, S_n 有最小值 \Rightarrow 求过0点的项(若过零点的项 $a_n = 0$, $S_{n-1} = S_n$, 有两个相等的极值) $a_1 > 0$, d < 0, S_n 有最大值

6) 片段和定理: {a_n}为公差为d的等差数列 「S₄, S₈ – S₄, S₁₂ – S₈ 为等差数列, 公差为4²d = 16d

 S_3 , $S_6 - S_3$, $S_9 - S_6$ 为等差数列,公差为 $3^2d = 9d$

等比数列

【等比数列】如果一个数列从第二项起,每一项与它的前一项的比都等于同一常数, $a_{n+1}/a_n = q$,那么这个数列就叫做等比数列,这个常数就叫做等比数列的公比q $(q \neq 0)$

等比数列每一项a_n和公比q均不为0

通项公式: $a_n = a_1 q^{n-1}$ ($q \neq 0$)

前n项和公式 $(q \neq 0)$: (1) 当 $q \neq 1$ 时, $S_n = \frac{a_1(1-q^n)}{1-a}$

(2) 当q = 1时, $S_n = na_1$

若 $\{a_n\}$ 为等比数列,则 $\left\{\frac{1}{a_n}\right\}$, $\{|a_n|\}$, $\{a_n^2\}$ 均为等比数列,公比分别为: $\frac{1}{a_n}$ 、|q|、|q|

数列出题套路

★【进阶词汇】

★【套路一】求数列某项的值或者某几项的和 词汇1 词汇2 词汇3

等差数列

 $\int 1.$ 两项之积在分母,求和 $\sum \frac{1}{a_n a_{n+1}}$ 2.等差数列过0点的项 $(S_n \leq S_{\text{light}})$

【基础词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac$ ($b \neq 0$)

^l 3.等差数列片段和公式 (S₃, S₆/S₅, S₁₀/S_n, S_{2n}等值)

等比数列

秒杀技巧

其他数列

等比数列•基础词汇

【等比数列基础词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac$ ($b \neq 0$)

可以被用在任何知识点,等同于给出一个关于a, b, c的算式条件

【2001.1.10】若2, $2^x - 1$, $2^x + 3$ 成等比数列,则x = (A)

(A) log_25

(B) log_26

(C) log_27

(D) $log_2 8$

$$(2^x - 1)^2 = 2(2^x + 3)$$
 $\Leftrightarrow 2^x = t$, 注意 $t > 0$

$$(t-1)^2 = 2(t+3)$$

$$t^2 - 4t - 5 = 0$$

$$(t-5)(t+1) = 0$$

$$t = 5$$
, $t = -1$ (含) $t = 5 = 2^x$, $x = \log_2 5$

等比数列·基础词汇

【2013.10.21】设 $\{a_n\}$ 是等比数列,则 $a_2=2$. (E)

(1)
$$a_1 + a_3 = 5$$
.

(2)
$$a_1a_3 = 4$$
.

$$\begin{cases} a_1 = 1 \\ a_3 = 4' \end{cases} \ a_2 = \pm 2$$

数列出题套路

★【套路一】求数列某项的值或者某几项的和 词汇1 词汇2 词汇3

等差数列

1.两项之积在分母,求和 $\sum \frac{1}{a_n a_{n+1}}$ ★【进阶词汇】 | 2.等差数列过0点的项($S_n \leq S_{A}$

1 3.等差数列片段和公式 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

【基础词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac$ ($b \neq 0$)

等比数列

★【套路一】等比数列求和

秒杀技巧

其他数列

等比数列•求和公式

【2012.10.7】设{ a_n }是非负等比数列,若 $a_3 = 1$, $a_5 = \frac{1}{4}$, $\sum_{n=1}^{8} \frac{1}{a_n} = (B)$

(B)
$$\frac{255}{4}$$

(B)
$$\frac{255}{4}$$
 (C) $\frac{255}{8}$ (D) $\frac{255}{16}$ (E) $\frac{255}{32}$

D)
$$\frac{255}{16}$$

(E)
$$\frac{255}{32}$$

 $a_3 = 1, a_5 = \frac{1}{4} \Rightarrow q^2 = \frac{a_5}{a_1} = \frac{1}{4}$, 数列非负, 故 $q = \frac{1}{2}, a_1 = 4$

$$a_1 = 4$$
, $a_2 = 2$, $a_3 = 1$, $a_4 = \frac{1}{2}$, $a_5 = \frac{1}{4}$, $a_6 = \frac{1}{8}$, $a_7 = \frac{1}{16}$, $a_8 = \frac{1}{32}$

$$\sum_{n=1}^{8} \frac{1}{a_n} = \frac{1}{4} + \frac{1}{2} + 1 + 2 + 4 + 8 + 16 + 32$$

$$\left\{\frac{1}{an}\right\}$$
为首项为 $\frac{1}{a}=\frac{1}{4}$, 公比为 $\frac{1}{a}=2$ 的等比数列

$$\sum_{n=1}^{8} \frac{1}{a_n}$$
为其前8项和,即 $S_8 = \frac{\frac{1}{4}(1-2^8)}{1-2} = \frac{255}{4}$

数列出题套路

★【套路一】求数列某项的值或者某几项的和 词汇1 词汇2 词汇3

等差数列

1.两项之积在分母,求和 $\sum \frac{1}{a_n a_{n+1}}$ ★【进阶词汇】

2.等差数列过0点的项 $(S_n \leq S_{\text{且体数字}})$

3.等差数列片段和公式 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

【基础词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac (b \neq 0)$

等比数列

★【套路一】等比数列求和

等比数列片段和 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

秒杀技巧

其他数列

等比数列·片段和

【等比数列片段和】如果 a_1 , a_2 , a_3 , ..., a_n 为等比数列,那么这个数列连续的n项之和 若非零,即 S_n , $S_{2n}-S_n$, $S_{3n}-S_{2n}$也是等比数列,并且公比为 q^n 设等比数列 $\{a_n\}$ 的前n项和为 S_n ,若 $S_6 = 3S_3$,则 $S_9 = ____7 ___S_3$

$$S_3 = a_1 + a_2 + a_3$$

$$S_6 - S_3 = a_4 + a_5 + a_6 = a_1q^3 + a_2q^3 + a_3q^3 = (a_1 + a_2 + a_3)q^3 = S_3q^3$$

$$S_9 - S_6 = a_7 + a_8 + a_9 = a_1 q^6 + a_2 q^6 + a_3 q^6 = (a_1 + a_2 + a_3) q^6 = S_3 q^6 = (S_6 - S_3) q^3$$

$$S_6 = 3S_3 = (1 + q^3)S_3$$
, 两边约去 S_3 ($S_3 \neq 0$) , 片段和等比数列公比为 $q^3 = 2$

$$S_9 - S_6 = (S_6 - S_3)q^3 = S_3q^6$$
, $S_9 = 3S_3 + 4S_3 = 7S_3$

数列出题套路

★【套路一】求数列某项的值或者某几项的和 词汇1 词汇2 词汇3

等差数列

1.两项之积在分母,求和 $\sum_{q_nq_{n+1}}^{1}$ ★【进阶词汇】 .

2.等差数列过0点的项 $(S_n \leq S_{\text{且体数字}})$ ^し 3.等差数列片段和公式 (S₃, S₆/S₅, S₁₀/S_n, S_{2n}等值)

【基础词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac (b \neq 0)$

等比数列

★【套路一】等比数列求和

等比数列片段和 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

【套路二】结合等差数列

其他数列

秒杀技巧

等比数列·结合等差

[2007.10.1]
$$\frac{\frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^8}{0.1 + 0.2 + 0.3 + 0.4 + \dots + 0.9} = (C)$$

A.
$$\frac{85}{768}$$

B.
$$\frac{85}{512}$$

C.
$$\frac{85}{384}$$

D.
$$\frac{255}{256}$$

A. $\frac{85}{768}$ B. $\frac{85}{512}$ C. $\frac{85}{384}$ D. $\frac{255}{256}$ E. 以上结论都不正确

分子为首项为 $\frac{1}{2}$, 公比为 $\frac{1}{2}$ 的等比数列 $\left[\frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n = 1 - \left(\frac{1}{2}\right)^n\right]$

分母为首项为0.1,公差为0.1的等差数列

$$S_{\widehat{\Im}\widehat{\nearrow}} = \frac{\frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^8 \right]}{1 - \frac{1}{2}} = 1 - \left(\frac{1}{2} \right)^8$$

$$\Rightarrow \boxed{\mathbb{R}} \overrightarrow{\bot} = \frac{85}{384}$$

$$S_{\widehat{\Im}\widehat{\bowtie}} = \frac{1 + 0.9}{2} \times 9 = \frac{9}{2}$$

等比数列•结合等差

【2000.10.6】已知等差数列{a,}的公差不为0,但是第三、四、七项构成等比数列,则 $\frac{a_2+a_6}{a_3+a_7}$ 为(A)

(A)
$$\frac{3}{5}$$

(B)
$$\frac{2}{3}$$

(A)
$$\frac{3}{5}$$
 (B) $\frac{2}{3}$ (C) $\frac{3}{4}$ (D) $\frac{4}{5}$ (E) $\frac{5}{6}$

【等差数列词汇】a. b. c成等差数列 $\Leftrightarrow 2b = a + c$

【等比数列词汇】a. b. c成等比数列 $\Leftrightarrow b^2 = ac$ $(b \neq 0)$

$$a_4^2 = a_3 \cdot a_7 = (a_4 - d)(a_4 + 3d), \ a_4 = 1.5d$$

$$\frac{a_2 + a_6}{a_3 + a_7} = \frac{2a_4}{2a_5} = \frac{a_4}{a_5} = \frac{1.5d}{2.5d} = \frac{3}{5}$$

等比数列·结合等差

【2014.1.18】甲、乙、丙三人的年龄相同.(C)

- (1) 甲、乙、丙的年龄成等差数列.
- (2) 甲、乙、丙的年龄成等比数列.

既成等差数列,又成等比数列的数列,为非零常数列。

【等差数列词汇】a, b, c成等差数列 $\Leftrightarrow 2b = a + c$

【等比数列词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac$ ($b \neq 0$)

设甲、乙、丙年龄为a、b、c

条件 (1)
$$2b = a + c$$
 (设公差为 d)

条件 (2)
$$b^2 = ac = (b-d)(b+d) = b^2 - d^2$$

d = 0

等比数列·结合等差

【2000.1.6】若 α^2 , 1, β^2 成等比数列,而 $\frac{1}{\alpha}$, 1, $\frac{1}{\theta}$ 成等差数列,则 $\frac{\alpha+\beta}{\alpha^2+\beta^2}=(B)$

(A)
$$-\frac{1}{2}$$
 或

(A)
$$-\frac{1}{2}$$
 $\vec{\boxtimes}$ 1 (B) $-\frac{1}{3}$ $\vec{\boxtimes}$ 1 (C) $\frac{1}{2}$ $\vec{\boxtimes}$ 1 (D) $\frac{1}{3}$ $\vec{\boxtimes}$ 1 (E) $-\frac{1}{2}$

(C)
$$\frac{1}{2}$$

(E)
$$-\frac{1}{2}$$

【等差数列词汇】a, b, c成等差数列 $\Leftrightarrow 2b = a + c$

【等比数列词汇】a, b, c成等比数列 \Leftrightarrow $b^2=ac$ $(b\neq 0)$ 项,一定要注 意正负性讨论

涉及到等比中

 α^2 , 1, β^2 成等比数列: $\alpha^2\beta^2 = 1$, $\alpha\beta = \pm 1$

 $\frac{1}{\alpha}$, 1, $\frac{1}{\beta}$ 成等差数列: $\frac{1}{\alpha} + \frac{1}{\beta} = 2 \times 1 = \frac{\alpha + \beta}{\alpha \beta}$, $\alpha + \beta = 2\alpha\beta$

$$\frac{\alpha+\beta}{\alpha^2+\beta^2} = \frac{\alpha+\beta}{(\alpha+\beta)^{-2}-2\alpha\beta} = \frac{2\alpha\beta}{(2\alpha\beta)^2-2\alpha\beta} = \frac{1}{2\alpha\beta-1} = \begin{bmatrix} 1, & \alpha\beta=1\\ -\frac{1}{3}, & \alpha\beta=-1 \end{bmatrix}$$

数列出题套路

0000

★【套路一】求数列某项的值或者某几项的和 词汇1 词汇2 词汇3

等差数列

1.两项之积在分母,求和 $\sum \frac{1}{a_n a_{n+1}}$

2.等差数列过0点的项 $(S_n \leq S_{AAbb})$

¹ 3.等差数列片段和公式 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

【基础词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac$ $(b \neq 0)$

等比数列 -

★【套路一】等比数列求和

等比数列片段和 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

【套路二】结合等差数列

秒杀技巧 ★【特值法:常数列】

★【进阶词汇】

其他数列

数列秒杀技巧•特值法 常数列

.

【2014.1.1.7】已知 $\{a_n\}$ 为等差数列,且 $a_2-a_5+a_8=9$,则 $a_1+a_2+\cdots a_9=$ (D)

- (A) 27
- (B) 45
- (C) 54
- (D) 81
- (E) 162

【例】在等差数列 $\{b_n\}$ 中, $b_1 - b_4 - b_8 - b_{12} + b_{15} = 2$,则 $b_3 + b_{13} = (D)$

- (A) 16
- (B) 4
- (C) -16
- (D) -4
- (E) -2

使用常数列特值法解题信号

多项的和(包括 S_n)等于一个具体数字

不使用常数列特值法

- 1.数列某一项等于一个具体的数字
- 2.数列有多个限制条件

数列秒杀技巧•常数列特值法

.

【2007.10.11】已知等差数列 $\{a_n\}$ 中 $a_2 + a_3 + a_{10} + a_{11} = 64$,则 $S_{12} = (D)$

- (A) 64
- (B) 81
- (C) 128
- (D) 192
- (E) 188

设 $\{a_n\}$ 为公差d=0的常数列,每一项均为t

则:
$$a_2 = a_3 = a_{10} = a_{11} = t$$

$$a_2+a_3+a_{10}+a_{11}=4t=64\,,\ t=16$$

$$S_{12} = 12 \times t = 12 \times 16 = 192$$

数列秒杀技巧•常数列特值法

.

【例】设 $\{a_n\}$ 为等差数列,且 $a_2+a_4+a_9+a_{14}+a_{16}=150$, S_{17} 的值为(B)

- (A) 580
- (B) 510
- (C) 850
- (D) 200
- (E) 300

【解法一:下标和转换】

$$a_2 + a_4 + a_9 + a_{14} + a_{16} = (a_2 + a_{16}) + (a_4 + a_{14}) + a_9 = 5a_9 = 150$$

$$a_9 = 30$$

$$S_{17} = 17a_9 = 510$$

【解法二:常数列特值法】令 $\{a_n\}$ 为常数列,每一项均为t,则有:

$$a_2 + a_4 + a_9 + a_{14} + a_{16} = 5t = 150, \ t = 30$$

$$S_{17} = 17t = 510$$

数列秒杀技巧•常数列特值法

【2011.10.9】若等差数列 $\{a_n\}$ 满足 $5a_7-a_3-12=0$,则 $\sum_{k=1}^{15}a_k=(D)$

(A) 15

【解法一:下标和转换】

$$5a_7 - a_3 = 4a_1 + 28d = 12$$
, $a_1 + 7d = a_8 = 3$

$$\sum_{k=1}^{15} a_k = S_{15} = a_1 + a_2 + \dots + a_{14} + a_{15} = 15a_8 = 45$$

【解法二:常数列特值法】 $令\{a_n\}$ 为常数列,每一项均为t,则有:

$$5a_7 - a_3 - 12 = 5t - t - 12 = 4t - 12 = 0$$
, $t = 3$

$$\sum_{k=1}^{15} a_k = 15t = 45$$

数列秒杀技巧•常数列特值法

【例】若等差数列 $\{a_n\}$ 满足 $S_{13}=52$,则 $2a_2-3a_7+2a_{12}=(C)$

【解法一】下标和转换

$$S_{13} = 13a_7 = 52, \ a_7 = 4$$

$$2a_2 + 2a_{12} - 3a_7 = a_7 = 4$$

【解法二】常数列特值法,令 $\{a_n\}$ 为常数列,每一项均为t,则有:

所以
$$S_{13} = 13t = 52, t = 4$$

$$2a_2 - 3a_7 + 2a_{12} = 2t - 3t + 2t = t = 4$$

数列秒杀技巧•常数列特值法

【2011.10.6】若等比数列 $\{a_n\}$ 满足 $a_2a_4+2a_3a_5+a_2a_8=25$,且 $a_1>0$,则 $a_3+a_5=(B)$

(A) 8

(E)
$$-5$$

【解法一:下标和转换】

$$a_2a_4 + 2a_3a_5 + a_2a_8 = a_3^2 + 2a_3a_5 + a_5^2 = (a_3 + a_5)^2 = 25$$

$$a_3 + a_5 = 5$$

【解法二:常数列特值法】令 $\{a_n\}$ 为公比g=1的非零常数列,每一项均为t,则有:

$$a_2a_4 + 2a_3a_5 + a_2a_8 = t^2 + 2t^2 + t^2 = 4t^2 = 25$$
, $t = \frac{5}{2}$

$$a_3 + a_5 = 2t = 5$$

★【套路一】求数列某项的值或者某几项的和 词汇1 词汇2 词汇3

等差数列

1.两项之积在分母,求和 $\sum \frac{1}{q_nq_{n+1}}$ ★【进阶词汇】 2.等差数列过0点的项 $(S_n \leq S_{\text{且体数字}})$

3.等差数列片段和公式 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

【基础词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac$ ($b \neq 0$)

等比数列

★【套路一】等比数列求和

等比数列片段和 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

【套路二】结合等差数列

秒杀技巧

▲【特值法:常数列】 下标和与韦达定理

其他数列

已知 S_n 求 a_n 用a"表示a"_1

数列秒杀技巧•下标和与韦达定理

$$x_1 + x_2 = -\frac{b}{a}$$
 两根之和对应等差数列下标和相等 $a_5 + a_7 = a_2 + a_{10}$

$$x_1x_2 = \frac{c}{a}$$
 两根之乘积对应等比数列下标和相等 $a_4a_7 = a_3a_8$

$$\Delta = b^2 - 4ac$$
 $2a, b, 2c$ 为等比数列,则 $b^2 = 4ac$,方程有两个相等的实数根

数列秒杀技巧•下标和与韦达定理

【2013.1.13】已知 $\{a_n\}$ 为等差数列,若 a_2 与 a_{10} 是方程 $x^2 - 10x - 9 = 0$ 的两个根,则 $a_5 + a_7 = (D)$

$$a_5 + a_7 = a_2 + a_{10} = -\frac{a}{b} = 10$$

【2010.10.13】等比数列 $\{a_n\}$ 中, a_3 , a_8 是方程 $3x^2 + 2x - 18 = 0$ 的两个根,则 $a_4a_7 = (C)$

$$a_4 a_7 = a_3 a_8 = \frac{c}{a} = \frac{-18}{3} = -6$$

数列秒杀技巧•下标和与韦达定理

【例题】若方程 $ax^2 - 2bx + c = 0$ ($a \neq 0$) 有两个相等的实根,则 (A)

(A) a,b,c成等比数列

(B) a,c,b成等比数列

(C) b, a, c成等比数列 (D) a, b, c成等差数列 (E) b, a, c成等差数列

方程有两个相等的实根,则 $4b^2 - 4ac = 0$, $ac = b^2$ a, b, c成等比数列

数列秒杀技巧•下标和与韦达定理

【1999.1.3】若方程 $(a^2 + c^2)x^2 - 2c(a+b)x + b^2 + c^2 = 0$ 有实根,则(R)

- (A) a,b,c成等比数列
- (B) a,c,b成等比数列
- (C) b, a, c成等比数列

- (C) a, b, c成等差数列 (E) b, a, c成等差数列

方程有实根,则 $\Delta = 4c^2(a+b)^2 - 4(a^2+c^2)(b^2+c^2) \ge 0$

$$a^2b^2-2abc^2+c^4\leq 0$$

$$(ab-c^2)^{-2} \leq 0$$

$$ab - c^2 = 0 \quad \therefore ab = c^2$$

即a,c,b成等比数列

数列出题套路

★【套路一】求数列某项的值或者某几项的和 词汇1 词汇2 词汇3

等差数列

 $[1.两项之积在分母,求和<math>\sum_{\alpha=\alpha=1}^{1}$

★【进阶词汇】

2.等差数列过0点的项 $(S_n \leq S_{\text{且体数字}})$

^l 3.等差数列片段和公式 (S₃, S₆/S₅, S₁₀/S_n, S_{2n}等值)

【基础词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac$ ($b \neq 0$)

等比数列

★【套路一】等比数列求和

等比数列片段和 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

【套路二】结合等差数列

秒杀技巧

【特值法:常数列】

下标和与韦达定理

其他数列 $\left\{\begin{array}{c}$ 【套路一】已知 S_n 求 a_n $a_1=S_1$, $a_n=S_n-S_{n-1}$ $(n\geq 2)$ 【套路二】用 a_n 表示 a_{n-1}

其他数列•已知 S_n 求 a_n $a_1 = S_1$, $a_n = S_n - S_{n-1}$ $(n \ge 2)$

【例】数列 $\{a_n\}$ 的前n项和 $S_n = 4n^2 + n$,则下面正确的是 (A)

$$A.\{a_n\}$$
是等差数列 $B.a_n=2$ $C.a_n=2n+3$ $D.s_{10}=411$ $E)$ 以上均不正确

$$= 2n + 3$$
 D.s

$$a_1 = S_1 = 4 + 1 = 5$$

$$a_2 = S_2 - S_1 = 4 \times 2^2 + 2 - 4 \times 1^2 - 1 = 13$$

$$a_3 = S_3 - S_2 = 4 \times 3^2 + 3 - 4 \times 2^2 - 2 = 21$$

$$a_n = S_n - S_{n-1} = 4n^2 + n - 4(n-1)^2 - n - 1 = 8n - 3$$

$$a_n = a_1 + (n-1)d = nd + (a_1 - d)$$

$$S_n = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \left(a_1 - \frac{d}{2}\right)n$$

其他数列•已知 S_n 求 a_n $a_1 = S_1$, $a_n = S_n - S_{n-1}$ $(n \ge 2)$

【2008.1.11】如果数列 $\{a_n\}$ 的前n项的和 $S_n = \frac{3}{2}a_n - 3$,那么这个数列的通项公式是 (D)

(A)
$$a_n = 2(n^2 + n + 1)$$
 (B) $a_n = 3 \times 2^n$

(B)
$$a_n = 3 \times 2^n$$

(C)
$$a_n = 3n + 1$$

(D)
$$a_n = 2 \times 3^n$$
 (E) 以上都不是

$$a_n = S_n - S_{n-1} = (\frac{3}{2}a_n - 3) - (\frac{3}{2}a_{n-1} - 3)$$

$$a_n = 3a_{n-1}$$
, $q = \frac{a_n}{a_{n-1}} = 3$

$$a_1 = S_1 = \frac{3}{2}a_1 - 3$$
, $a_1 = 6$, $a_n = aq^{n-1} = 6 \times 3^{n-1} = 2 \times 3^n$

另解:
$$a_1 = S_1 = \frac{3}{2}a_1 - 3$$
, $a_1 = 6$

$$S_2 = \frac{3}{2}a_2 - 3 = a_1 + a_2 = 6 + a_2, \quad a_2 = 18$$

其他数列•用 a_n 表示 a_{n-1} 根据递推公式寻找数字变化规律

【2013.10.8】设数列 $\{a_n\}$ 满足: $a_1=1$, $a_{n+1}=a_n+\frac{n}{3}(n\geq 1)$, 则 $a_{100}=(B)$

(C)
$$\frac{5050}{3}$$

(A) 1650 (B) 1651 (C)
$$\frac{5050}{3}$$
 (D) 3300 (E) 3301

方法—
$$a_1 = 1$$
, $a_2 = 1 + \frac{1}{3}$, $a_3 = 1 + \frac{1}{3} + \frac{2}{3}$, $a_4 = 1 + \frac{1}{3} + \frac{2}{3} + \frac{3}{3}$, $a_{100} = a_{99} + \frac{99}{3}$

$$a_{100} = 1 + \frac{1}{3} + \frac{2}{3} + \frac{3}{3} + \dots + \frac{98}{3} + \frac{99}{3} = 1 + \frac{1 + 2 + \dots + 99}{3} = 1 + \frac{(1 + 99) \times 99}{2 \times 3} = 1651$$

方法二
$$a_{100} - a_{99} + a_{99} - a_{98} + a_{98} - a_{97} + \dots + a_3 - a_2 + a_2 - a_1$$

$$a_3 - a_2 = \frac{3}{3} \qquad = a_{100} - a_1$$

$$\dots$$

$$a_{99} - a_{98} = \frac{98}{3} \qquad = \frac{1+2++\dots+99}{3}$$

$$99 = 1651$$

其他数列•用 a_n 表示 a_{n-1} 根据递推公式寻找数字变化规律

[2010.10.17]
$$x_n = 1 - \frac{1}{2^n} (n = 1, 2, \dots)$$
. (B)

(1)
$$x_1 = \frac{1}{2}$$
, $x_{n+1} = \frac{1}{2}(1 - x_n)$ $(n = 1, 2, \dots)$.

(2)
$$x_1 = \frac{1}{2}, x_{n+1} = \frac{1}{2}(1+x_n) (n=1,2,\cdots).$$

条件 (1)
$$x_1 = \frac{1}{2}$$
, $x_2 = \frac{1}{2}(1 - x_1) = \frac{1}{4}$, $x_3 = \frac{1}{2}(1 - x_2) = \frac{3}{8}$, 非单调递增,不充分。

条件 (2)
$$x_{n+1} = \frac{1}{2}(1+x_n) = \frac{1}{2} + \frac{1}{2}x_n$$
, $x_{n+1} - 1 = \frac{1}{2}(x_n - 1)$

$$\{x_n - 1\}$$
为首项为 $-\frac{1}{2}$, 公比为 $\frac{1}{2}$ 的等比数列

$$x_n - 1 = -\frac{1}{2} \left(\frac{1}{2}\right)^{n-1}, \ x_n = 1 - \frac{1}{2^n}$$

$$x_1 = \frac{1}{2}, \ x_2 = \frac{1}{2}(1+x_1) = \frac{3}{4}, \ x_3 = \frac{1}{2}(1+x_2) = \frac{7}{8}, \ x_4 = \frac{1}{2}(1+x_3) = \frac{15}{16}$$

其它数列•用 a_n 表示 a_{n-1} 根据递推公式寻找数字变化规律

【2013.1.25】设 $a_1 = 1$, $a_2 = k$, ..., $a_{n+1} = |a_n - a_{n-1}| \ (n \ge 2)$, 则 $a_{100} + a_{101} + a_{101}$ $a_{102} = 2$. (D)

- (1) k = 2.
- (2) k是小于20的正整数.

条件 (1) k=2, $a_2=1$, $a_4=1$, $a_5=|a_4-a_2|=0$, $a_6=1$, $a_7=1$, $a_9=0$ 数列为1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 0, … a_3 以后的任意三项和为2.

条件 (2) 1, k, k-1, 1, k-2, k-3, 1, k-4, k-5, 1, ..., k-k, 1,1,0,1,1,0..... 后面的任意三项和为2.

数列出题套路

★【套路一】求数列某项的值或者某几项的和 词汇1 词汇2 词汇3

等差数列

★【进阶词汇】

2.等差数列过0点的项 $(S_n \leq S_{\text{且体数字}})$

¹ 3.等差数列片段和公式 (S₃, S₆/S₅, S₁₀/S_n, S_{2n}等值)

【基础词汇】a, b, c成等比数列 $\Leftrightarrow b^2 = ac (b \neq 0)$

等比数列

★【套路一】等比数列求和

等比数列片段和 $(S_3, S_6/S_5, S_{10}/S_n, S_{2n}$ 等值)

【套路二】结合等差数列

秒杀技巧 {特值法: 常数列】

【套路一】已知 S_n 求 a_n $a_1 = S_1$, $a_n = S_n - S_{n-1}$ $n \ge 2$ 【套路二】用 a_n 表示 a_{n-1}

THANK YOU FOR WATCHING

