Automi e Linguaggi Formali – Appello 5/7/2021

Seconda parte - Decidibilità e complessità

Esercizio 1: Simulazione di MT a testine multiple

Teorema

Qualsiasi macchina di Turing a testine multiple può essere simulata da una macchina di Turing deterministica a nastro singolo.

Dimostrazione

Costruzione della MT simulante M₁:

Idea: Codificare le k testine su un singolo nastro usando marcatori speciali.

Alfabeto esteso: $\Gamma' = \Gamma \cup \{\hat{\gamma} \mid \gamma \in \Gamma\} \cup \{\#\}$

dove $\hat{\gamma}$ rappresenta il simbolo γ con testina sopra, e # è separatore.

Codifica del nastro: I contenuti dei k nastri:

Nastro 1: $a_1a_2a_3...$ Nastro 2: $b_1b_2b_3...$...
Nastro k: $z_1z_2z_3...$

vengono codificati come:

#a₁a₂â₃...#b₁b̂₂b₃...#...#z₁z₂2̂₃...#

Algoritmo di simulazione:

Fase 1 - Scansione e lettura:

1. Scansiona il nastro da sinistra a destra

- 2. Per ogni sezione i-esima (tra #), trova il simbolo marcato $\hat{\gamma_i}$
- 3. Memorizza nella tabella degli stati: $(\gamma_1, \gamma_2, ..., \gamma_k)$

Fase 2 - Calcolo della transizione: 4. Calcola $\delta(q_{\text{current}}, \gamma_1, ..., \gamma_k) = (q_{\text{new}}, \beta_1, ..., \beta_k, d_1, ..., d_k)$

Fase 3 - Aggiornamento: 5. Scansiona nuovamente il nastro 6. Per ogni sezione i:

- Sostituisci $\hat{y_i}$ con β_i (rimuove marcatura)
- Sposta la marcatura secondo d_i
- Gestisci estensioni del nastro se necessario

Correttezza: La configurazione del nastro di M_1 codifica univocamente la configurazione di M_k . Ogni transizione di M_k è simulata correttamente da una sequenza finita di transizioni di M_1 .

Complessità: Se M_k termina in tempo T(n), allora M₁ termina in tempo O(k²T(n)). ■

Esercizio 2: Indecidibilità di L2

Teorema

Il linguaggio $L_2 = \{(M, w) \mid M \text{ accetta la stringa ww^R}\}$ è indecidibile.

Dimostrazione

Dimostriamo per riduzione da ACCEPT_TM = $\{(M, w) \mid M \text{ accetta } w\}$, che è indecidibile.

Costruzione della riduzione:

Data un'istanza (M_0, w_0) di ACCEPT_TM, costruiamo (M', w') per L₂:

Costruzione di M':

M' = "Su input x:

- 1. Ignora completamente l'input x
- 2. Simula M₀ su w₀
- 3. Se Mo accetta wo, allora accetta
- 4. Se M₀ rifiuta w₀, allora rifiuta
- 5. Se M₀ non termina su w₀, allora non terminare"

Scelta di w': Poniamo w' = ε (stringa vuota). Quindi w'w'^R = ε .

Verifica della correttezza:

Caso 1: $\langle M_0, w_0 \rangle \in ACCEPT_TM$

- M_0 accetta $w_0 \Rightarrow M'$ accetta ogni input (incluso ϵ)
- \Rightarrow M' accetta w'w'^R = ϵ
- $\Rightarrow \langle M', \epsilon \rangle \in L_2$

Caso 2: (M₀, w₀) ∉ ACCEPT_TM

- M_0 non accetta $w_0 \Rightarrow M'$ non accetta alcun input
- \Rightarrow M' non accetta ε
- $\Rightarrow \langle M', \epsilon \rangle \notin L_2$

Conseguenza: Se L₂ fosse decidibile, potremmo decidere ACCEPT_TM, contraddicendo la sua indecidibilità.

Quindi L₂ è indecidibile. ■

Esercizio 3: PebbleDestruction è NP-hard

Teorema

PebbleDestruction è NP-hard.

Dimostrazione

Dimostriamo per riduzione dal **Circuito Hamiltoniano** (NP-completo).

Costruzione della riduzione:

Dato G = (V, E) con |V| = n, costruiamo un'istanza di PebbleDestruction:

Grafo G':

- V' = V ∪ {s} (s è nuovo vertice "sink")
- $E' = E \cup \{(v, s) \mid v \in V\}$

Distribuzione ciottoli:

- $p'(v) = 3 \text{ per ogni } v \in V$
- p'(s) = 0

• Totale: 3n ciottoli

Obiettivo: ridurre a 1 ciottolo

Direzione (\Rightarrow): Se G ha circuito Hamiltoniano C = $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n \rightarrow v_1$

Strategia di soluzione:

Fase 1 - Consolidamento lungo C (n mosse):

Per i = 1 to n:

Da v_I rimuovi 2 ciottoli, aggiungi 1 a v_{I+1}

Risultato: ogni v_i ha 2 ciottoli (totale 2n)

Fase 2 - Raccolta in v_1 (n-1 mosse):

Seguendo C⁻¹: consolidare tutti i ciottoli in v₁

Risultato: v₁ ha n ciottoli

Fase 3 - Trasferimento finale (n-1 mosse):

Da v₁ trasferisci tutto a s

Risultato: 1 ciottolo in s

Totale mosse: 3n-2 < 3n-1 (limite energetico) ✓

Direzione (⇐): Se PebbleDestruction ha soluzione ma G non ha circuito Hamiltoniano

Senza struttura Hamiltoniana, ogni strategia di consolidamento richiede > 3n-1 mosse per gestire:

- Ponti critici
- Vertici di taglio
- Back-tracking necessario

Questo viola il vincolo energetico (ogni mossa riduce il totale di 1).

Conclusione: Circuito Hamiltoniano ≤_p PebbleDestruction

