Algoritmos em Grafos

Rodrigo Caetano de Oliveira Rocha

Pontifícia Universidade Católica de Minas Gerais

2015

- ► A matriz de adjacências de um grafo com n vértices é uma matriz n × n, definida como:
 - $M_{u,v} = 1$ se existe uma aresta entre os vértices $u \in v$.
 - $M_{u,v} = 0$ caso contrário.

	1	2	3	4	5
1	0	1 0 1 1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

- ► Vantagem: verificar adjacência entre vértices é simples.
- ▶ **Desvantagem:** espaço de armazenamento.

4 D > 4 A > 4 B > 4 B > B 900

► Em um grafo completo a matriz é preenchida por 1's em todos os elementos, exceto na diagonal principal.

Exemplo do K_5 :

Um grafo nulo possui todos os elementos da matriz de adjacências preenchidos por 0's.

Grafo nulo de 5 vértices:

► Se existe um loop no vértice *u*, o elemento da diagonal principal na linha e coluna *u* é preenchido com 1.

Exemplo de um grafo de 5 vértices com um loop em *a* e um loop em *c*:

▶ O grau de um vértice pode ser equivalentemente determinado pela coluna ou linha do vértice.

Obtendo o grau do vértice b pela coluna ou linha do vértice:

► Caso haja um loop, ao calcular o grau do vértice com loop, a entrada da diagonal principal deve ser contada duas vezes.

Obtendo o grau do vértice c, considerando o loop existente:

O número de arestas de um grafo pode ser calculado utilizando os elementos do triangulo superior da matriz de adjacências, incluindo os elementos da diagonal principal, pois cada aresta é representada por duas entradas simétricas da matriz. De maneira equivalente, o triangulo inferior pode ser utilizado.

Contagem de arestas em um grafo de 5 vértices:

4 D > 4 A > 4 B > 4 B > B 9 Q C

- A matriz de adjacências de um grafo direcionado com n vértices é uma matriz n x n, definida como:
 - M_{u,v} = 1 se existe uma aresta direcionada com origem no vértice u e destino em v.
 - $M_{u,v} = 0$ caso contrário.

		2				
1	0	1	0	1	0	0
		0				
		0				
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

- Vantagem: verificar adjacência entre vértices é simples.
- ▶ **Desvantagem:** espaço de armazenamento.

4 □ > 4 ₱ > 4 ≣ > ■ 9 0 0

O número de arestas de um grafo direcionado é calculado somando todos os elementos da matriz de adjacências, pois cada aresta é representada por apenas uma entrada da matriz.

Calculando o número de arestas:

	а	b	С	d	e 0 0 0 1 0
а	1	1	1	1	0
b	0	0	0	0	0
С	0	1	1	0	0
d	0	0	0	0	1
е	1	0	0	0	0

- O grau de saída de um vértice u é obtido somando os elementos da linha u.
- ► Em grafos direcionados, loops são computados apenas uma vez para o grau de saída e uma para o grau de entrada.

Calculando o grau de saída dos vértices a e c:

		b				
a	1	1	1	1	0	$d^+(a)=4$
b	0	0	0	0	0	
С	0	1	1	0	0	$d^+(c)=2$
d	0	0	0	0	1	
е	1	0	0	0	0	

- O grau de entrada de um vértice u é obtido somando os elementos da coluna u.
- ► Em grafos direcionados, loops são computados apenas uma vez para o grau de saída e uma para o grau de entrada.

Calculando o grau de entrada do vértice c:


```
public class MatrizDigrafo extends Digrafo {
   private int n;
   private int [][]adj;
   public MatrizDigrafo(int n){
      this.n = n;
      this.adj = new int[n][n];
   public void adicionaAresta(int u, int v){
      this.adj[u][v] = 1;
   }
   public void removeAresta(int u, int v){
      this.adj[u][v] = 0;
}
```

```
public class MatrizDigrafo extends Digrafo {
   //...
   public boolean existeAresta(int u, int v){
      return (this.adj[u][v] != 0);
   public int numArestas(){
      int arestas = 0:
      for(int u = 0; u<numVertices(); u++){</pre>
         for(int v = 0; v<numVertices(); v++){</pre>
             if(existeAresta(u,v)){
                arestas++;
      return arestas:
```

Matriz de adjacências

Para grafos com grandes estruturas, a representação por matriz de adjacências possui uma limitação de espaço de armazenamento, que pode ser agravada em grafos com poucas conexões (grafos esparços), devido ao espaço desnecessariamente utilizado.

- ▶ A lista de adjacências de um grafo com *n* vértices é representada por *n* listas, sendo uma para cada vértice.
- Cada lista contém apenas os vértices adjacentes, armazenando apenas os elementos diferentes de zero da matriz de adjacências.

- ► Vantagem: espaço de armazenamento proporcional ao número de arestas.
- Desvantagem: para verificar adjacência é necessário percorrer uma lista.

Lista de adjacências - Grafos direcionados

- A lista de adjacências de um grafo com n vértices é representada por n listas, sendo uma para cada vértice.
- Cada lista contém apenas os vértices adjacentes, armazenando apenas os elementos diferentes de zero da matriz de adjacências.

- Vantagem: espaço de armazenamento proporcional ao número de arestas.
- ► **Desvantagem:** para verificar adjacência é necessário percorrer uma lista.

Lista de adjacências

Outras vantagens:

- ▶ Melhor representação para arestas paralelas (ou redundantes).
- Melhor representação para arestas com pesos.

Lista de adjacências - Grafos direcionados

```
public class ListaDigrafo extends Digrafo {
   private int n;
   private List<Integer> []adj;
   public ListaDigrafo(int n){
      this.n = n:
      this.adj = (List<Integer>[])new List[n];
      for(int u = 0; u < this.n; u++){
         this.adj[u] = new ArrayList < Integer > ();
   public void adicionaAresta(int u, int v){
      this.adj[u].add(new Integer(v));
   public void removeAresta(int u, int v){
      this.adj[u].remove(new Integer(v));
```

Lista de adjacências - Grafos direcionados

```
public class ListaDigrafo extends Digrafo {
   //...
   public boolean existeAresta(int u, int v){
      if( this.adj[u].contains(new Integer(v)) ){
         return true;
      }else{
         return false;
   public int numArestas(){
      int arestas = 0;
      for(int u = 0; u<numVertices(); u++){</pre>
         arestas += adj[u].size();
      return arestas;
```