1.1 集合与子集

34 求证: 如果 $A \subseteq B \perp B \subseteq C$,那么 $A \subseteq C$

证明:

 $A \subseteq B$ 即 $\forall x \in A, x \in B$

 $B \subseteq C$ 即 $\forall x \in B, x \in C$

得: $\forall x \in A, x \in C$, 即 $A \subseteq C$

1.2 集合运算

48 何时有 A-B=B-A? 请给出解释。

充分条件: A=B。此时有, A-B=空集, B-A=空集, 即 A-B=B-A 成立。 (以下非题目所问, 为拓展)

A=B 其实也是必要条件,以下是证明。

必要性: 须证 A-B=B-A, 则 A=B

反证, 设 A 不等于 B, \sim (A = B) = \sim (A \subseteq B \wedge B \subseteq A) = A $\not\subseteq$ B \vee B $\not\subseteq$ A 不妨假设A $\not\subseteq$ B

则存在 $a \in A$, $a \notin B$,故 $a \in A - B$,由 A - B = B - A 得 $a \in B - A$ 因 $B - A \subseteq B$,故 $a \in B$,矛盾。

第 9 页定理 2 推第 10 页定理 3

 $|A \cup B \cup C| = |(A \cup B) \cup C|$

- $= |AUB| + |C| |(AUB) \cap C|$
- $= |A| + |B| |A \cap B| + |C| |(A \cap C) \cup (B \cap C)|$
- $= |A| + |B| |A \cap B| + |C| (|A \cap C| + |B \cap C| |(A \cap C) \cap (B \cap C)|$
- $= |A| + |B| |A \cap B| + |C| (|A \cap C| + |B \cap C| |A \cap B \cap C|)$
 - $= |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$

1.6 数学结构

5 求证:对于集合是可交换运算

证明: 欲证 $A \oplus B = B \oplus A$

可参考 522 页答案,或者:

$$A \oplus B = (A \cup B) - (A \cap B) = (B \cup A) - (B \cap A) = B \oplus A$$

6 使用例 12 的定义,

(a) 求证: 口是可结合的

(b) 求证: ▽是可结合的

(a) 即证 $(a \square b)$ 口 $c = a \square(b \square c)$

列举 abc 八种取值情况(类似真值表)

а	b	С	(a □ b)	(a □ b)□	(b □ c)	<mark>а 口(b 口 c)</mark>
				C		
0	0	0	0	O	0	0
0	0	1	0	1	0	0
0	1	0	1	1	1	1
0	1	1	1	O	0	1
1	0	0	1	1	0	1
1	0	1	1	O	1	0
1	1	0	0	O	1	0
1	1	1	0	1	0	1

由上表可知, (a 口 b)口 c = a 口(b 口 c)成立

6(b) 即证(a ∇ b) ∇ c = a ∇ (b ∇ c)

列举 abc 八种取值情况(类似真值表)

а	b	С	(a∇b)	(a ▽ b) ▽	(b∇c)	a∇(b∇c)
				C		
0	0	0	0	O	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

由上表可知, (a▽b) ▽c = a▽(b▽c)成立

2.2 条件命题

利用真值表证明定理 2(a) 即 $(p \Rightarrow q) \equiv (\sim q \Rightarrow \sim p)$

р	q	p⇒q	~p	~pVq	$(p\Rightarrow q)\Leftrightarrow (\sim p \lor q)$
Т	Т	Т	F	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

∵(p⇒q) ⇔ (~p V q)为永真 (重言) 式

$$\therefore (p \Rightarrow q) \equiv (\sim q \Rightarrow \sim p)$$

利用真值表证明定理 2(c) 即 $(p \Leftrightarrow q) \equiv ((p \Rightarrow q) \land (q \Rightarrow p))$

р	q	p⇒q	d⇒b	p⇔q	(p⇒q) ∧ (q⇒p)	(p⇔q)⇔
						((p⇒q) ∧ (q⇒p))
Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	F	F	Т
F	F	Т	Т	Т	Т	Т

∵(p⇔q)⇔((p⇒q)∧(q⇒p))为永真(重言)式

$$\therefore (p \Leftrightarrow q) \equiv ((p \Rightarrow q) \land (q \Rightarrow p))$$

65 页 推导定理 2(b)

(~q⇒~p)

66 页 推导定理 4(g)

 $(p \land (p \Rightarrow q)) \Rightarrow q$

≡True

66 页 推导定理 4(j)

$$((\rho \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (\rho \Rightarrow r)$$

≡True

2.3 证明方法

18 求证: n^2 是偶数 iff n 是偶数

证明: 以下证明需基于 n 是整数为大前提。

不然我们可以举出反例 n 为根号 2。

设 p: n^2 为偶数, q:n 为偶数

证 $p \Rightarrow q$: 反证法, 若不然, n 为奇数, 则存在整数 k, n=2k+1, 那么 n^2=4k^2+4k+1=2(2k^2+2k)+1, 即~p, 矛盾。

证 $\mathbf{q} \Rightarrow \mathbf{p}$: n 为偶数,则存在整数 k, n=2k, 那么 n^2=2(2k^2),即 p 为真。

2.4 数学归纳法

26.设A和B是方阵,如果AB=BA,那么 $(AB)^n = A^nB^n$ 对 $n \ge 1$ 成立。

证明:

先证一个辅助的结论

记 Q(n): $AB^n = B^n A$

下面用归纳法证明 Q(n)对任意正整数 n 成立。

首先已知 Q(1)为真。

假设 Q(k)为真,

 $AB^{k+1} = AB^kB$

 $= B^k AB$... Q(k)为真

 $= B^k BA \dots Q(k)$ 为真

 $=B^{k+1}A$,即 Q(k+1)为真。

记 P(n): $(AB)^n = A^n B^n$

已知 P(1)为真。

假设 P(k)为真,

 $(AB)^{k+1} = (AB)^k (AB)$

 $= A^k B^k A B$...P(k)为真

 $=A^kAB^kB...Q(n)$ 对任意正整数 n 为成立

 $=A^{k+1}B^{k+1}$, 即 P(k+1)为真。

4.1 笛卡尔积与划分

40 设 $p_1 = \{A_1, A_2, \cdots, A_k\}$ 是 A 的一个划分, $p_2 = \{B_1, B_2, \cdots, B_m\}$ 是 B 的一个划分,求证 $p = \{A_i \times B_j, 1 \le i \le k, 1 \le j \le m\}$ 是 AXB 的一个划分。

证明:

(不重)

 $(a,b) \in A_x \times B_y \in a \in A_x , b \in B_y$

由于 A_i , A_x 是划分里的块,且都含有 a,故必须是同一块 $A_i = A_x$ 同理, $B_j = B_y$,得 $A_i \times B_j = A_x \times B_y$,矛盾 (不漏)

AXB 中任一有序对(a,b)

 p_1 是 A 的划分,故存在某个块 A_i , $a \in A_i$

 p_2 是 B 的划分,故存在某个块 B_j , $b \in B_j$

得 $(a,b) \in A_i \times B_i$

即 p 中有一个块包含(a,b)

4.4 关系的性质

33.设 R 是集合 A 上的一个非空关系,假设 R 是对称的和传递的,求证:R 不是非自反的。

证明:

R 非空, 则∃(a,b) ∈ R,

R 对称, 故(b,a) \in R,

R 传递,故(a,a) ∈ R

得 $(a,a) \in R \cap \Delta \neq \emptyset$

即R不是非自反的。

4.5 等价关系

24. 求证: 如果 R_1 和 R_1 是集合 A 上的等价关系,那么 $R_1 \cap R_2$ 是 A 上的一个等价关系。(即 176 页定理 5(c))

证明:

(1) 自反

$$R_1$$
自反 \Leftrightarrow $\Delta \subseteq R_1$ R_2 自反 \Leftrightarrow $\Delta \subseteq R_1 \cap R_2 \Leftrightarrow R_1 \cap R_2$ 自反

(2) 对称

按定义:

$$\forall (a,b) \in R_1 \cap R_2 \Rightarrow (a,b) \in R_1 \land (a,b) \in R_2$$

由 $R_1 \cap R_2 \rightarrow (b,a) \in R_1 \land (b,a) \in R_2 \Rightarrow (b,a) \in R_1 \cap R_2$
故 $R_1 \cap R_2 \rightarrow (b,a) \in R_1 \cap R_2$

(3) 传递

按定义:

$$\forall (a,b) \in R_1 \cap R_2 \land (b,c) \in R_1 \cap R_2 \Rightarrow (a,b) \in R_1 \land (b,c) \in R_1 \land (a,b)$$
$$\in R_2 \land (b,c) \in R_2$$

由 R_1 和 R_2 传递知 $(a,c) \in R_1 \land (a,c) \in R_2 \Leftrightarrow (a,c) \in R_1 \cap R_2$ 故 $R_1 \cap R_2$ 传递

- 4.7 关系运算
- 37. 证明定理 3。

设R是集合A上的一个关系,那么

- (a) R 对称 iff $R = R^{-1}$
- (b) R 反对称 iff $R \cap R^{-1} \subseteq \Delta$
- (c) R 非对称 iff $R \cap R^{-1} = \emptyset$

证明:

(a)

$$R$$
 対称 $\Leftrightarrow \forall (a,b) \in R, (b,a) \in R \Leftrightarrow \forall (a,b) \in R, (a,b) \in R^{-1} \Leftrightarrow R$
 $\subseteq R^{-1}$

$$R$$
 $\forall (a,b) \in R, (b,a) \in R \Leftrightarrow \forall (b,a) \in R^{-1}, (b,a) \in R$
 $\Leftrightarrow R^{-1} \subseteq R$

- (b) R 反对称 $\Leftrightarrow \forall (a,b) \in R \land (b,a) \in R, \ a = b$ $\Leftrightarrow \forall (a,b) \in R \land (a,b) \in R^{-1}, (a,b) \in \Delta \Leftrightarrow R \cap R^{-1} \subseteq \Delta$
- (c) R 非对称 $\Leftrightarrow \forall (a,b) \in R, (b,a) \notin R \Leftrightarrow \forall (a,b) \in R, (a,b) \notin R^{-1} \Leftrightarrow$ $R \cap R^{-1} = \emptyset$

4.8 传递闭包与 WarShall 算法

25.设 A=R, R 是由 aRb 当且仅当|a|<|b|所定义的关系, 计算包含 R 的最小等价关系。

解:用X记录包含R的最小等价关系.初始化X=R

先弄成自反,即并上相等关系, $X \leftarrow X \cup \Delta$,

此时 $aXb iff |a| < |b| \lor a = b$

再弄成对称. $X \leftarrow X \cup X^{-1}$.

此时 $aXb \ iff \ |a| < |b| \lor a = b \lor |a| > |b|$

最后只要计算X的传递闭包 X^{∞}

先算 X^2 ,由X的描述知 $\forall a \forall b$,有 $(a,0) \in X$, $(0,b) \in X$,故 $(a,b) \in X^2$,

既然任意有序对(a,b)都属于 X^2 , 那么 $X^2 = A \times A$, 故 $X^\infty = A \times A$

结论:包含R的最小等价关系为 $A \times A$

另需求证 R 的等价闭包 X 为 $(R \cup \Delta \cup R^{-1})^{\infty}$

证明:

- (1) 易知 $R \subseteq X$
- (2) 验证 X 是等价关系
 - a) $\Delta \subseteq R \cup \Delta \cup R^{-1} \subseteq (R \cup \Delta \cup R^{-1})^{\infty} = X$, 故自反
 - b) 易证若 S 对称,则 S^{∞} 也对称。故只需说明 $R \cup \Delta \cup R^{-1}$ 对称,如下:

$$(R \cup \Delta \cup R^{-1})^{-1} = R^{-1} \cup \Delta^{-1} \cup (R^{-1})^{-1} = R^{-1} \cup \Delta \cup R$$
$$= R \cup \Delta \cup R^{-1}$$

c) $X 为 R \cup \Delta \cup R^{-1}$ 的传递闭包,故 X 是传递的

(3) 说明 X 是最小的

可证 任意包含 R 的等价关系 Y, $X \subseteq Y$

显然,有 $R \subseteq Y$ (已知), $\Delta \subseteq Y$ (等价关系-自反的需要), $R^{-1} \subseteq Y$ (等价关系-对称的需要),

故 $R \cup \Delta \cup R^{-1} \subseteq Y$,那么 $(R \cup \Delta \cup R^{-1})^{\infty} \subseteq Y$ (等价关系-传递的需要),即得 $X \subseteq Y$

声明

上述证明资料仅供本班(中山大学人工智能学院)学生参考,切勿传播。

这些证明尽量使用教材中出现的知识点和方法。不一定是唯一的证明过程。

这些证明中难以避免存在不足和纰漏,请同学们辨证地看待这些资料, 欢迎指正错误和交流心得。

对本资料的不正当获取或错误使用所造成的任何后果, 均与本课题组无关。

常晓斌、陈梓潼

2022/10/15