Engineering Optimization Homework

Tai Jiang

January 2024

1 Big M AND The Two-Phase Method

 $\max_{s.t.} z = 2x_1 + 3x_2$

- $x_1 + 2x_2 \le 4$
 - $x_1 + x_2 = 3$
 - $x_1, x_2 \ge 0$

$$z -2x_1 - 3x_2 + M\bar{x}_4 = 0$$

$$x_1 + 2x_2 + x_3 = 4$$

$$x_1 + x_2 + \bar{x}_4 = 3$$
(1)

$$Z - 2x_1 - 3x_2 + M\bar{x}_4 = 0$$
$$-M(x_1 + x_2 + \bar{x}_4 = 3)$$
(2)

new
$$Z - (M+2)x_1 - (M+3)x_2 = -3M$$

Iteration	Basis	Eq.	Coefficient of:				Right	
	Variable		Z	x_1	x_2	x_3	x_4	Side
0	Z	(0)	1	-(M+2)	-(M+3)	0	0	-3M
	x_3	(1)	0	1	2	1	0	4
	\bar{x}_4	(2)	0	1	1	0	1	3
2	z	1	-4	-3	-6	0	0	0
	x_2	0	0	2	0	0	0	20
	x_4	0	2	2	3	0	1	1