DSAA 5002 - HW1

50015976 Ruiming ZHANG

Q1 [15 Marks]

Given the transaction database below,set the minimum support count to 2 and the minimum confidence level to 60% to find the strong association rule. Generate the set C_3 of the candidate 3-itemset, using prunning on Apriori principle.

Solution:

Thus we get the candidate 3-itemset C_3 .

Q2 [15 Marks]

Reducing the transactions using dynamic hashing and prunning(DHP) algorithm. Set the minimum support count to 2.

Hash function bucket #= $h(\{xy\}) = ((\text{order of } x) * 10 + (\text{order of } y))\%7$

Solution

Because we have:

- Items = A, B, C, D, E,
- Order = 1, 2, 3, 4, 5
- Hash function : $h(\lbrace xy \rbrace) = ((\text{order of } x) * 10 + (\text{order of } y))\%7$

Thus we have the hash table below:

bucket	0	1	2	3	4	5	6
count	1	1	1	4	3	2	1
2-itemset	{A D}	{A E}	{B C}	{B D}	{BE}	{AB}	{A C}
				{DE}	{BE}	{AB}	
				{B D}	{BE}		
				{DE}			

Let L_1*L_1 to generate a 2-itemset table, and choose the itemsets where the number of content in its bucket is above the minimum support.

Because if an item occurs in a frequent (k+1)-itemset, it must occur in at least k candidate k-itemsets.

TID	Item	2-itemset occurs			
T1	A, B, C	{A B}	Disgard	TID	Item
T2	B, D, E	{BD} {BE} {DE}	Keep {B D E}	 T2	B, D, E
Т3	A, B, D, E	{AB} {BD} {BE} {DE}	Keep {B D E}	Т3	B, D, E
T4	B, E	{E E}	Disacrd		

Thus we have reduced the transactions.

Q3 [35 Marks]

An itemset X is said to be a frequent itemset if the frequency count of X is at least a given support threshold.

An itemset Y is a proper super-itemset of X if $X \subset Y$ and $X \neq Y$.

An itemset X is said to be a closed frequent itemset if (1) X is frequent and (2) there exists no proper super-itemset Y of X such that Y is frequent and Y has the same frequency count as X.

An itemset X is said to be a maximal frequent itemset if (1) X is frequent and (2) there exists no proper superitemset Y of X such that Y is frequent.

Let F_c be the set of (traditional) frequent itemsets each of which is associated with a frequency in the dataset.

For example, if there are three frequent itemsets, $\{I_1\}$ with frequency 4, $\{I_2\}$ with frequency 5, and $\{I_1, I_2\}$ with frequency 3, $F = \{\{I_1\}, \{I_2\}, \{I_2, I_2\}\}$ and $F_c = \{\{\{I_1\}, \{I_2\}, \{I_2\}, \{I_2\}, \{I_3\}, \{I_4\}, \{I_4\},$

Similarly, let C be the set of closed frequent itemsets without specifying the frequency of itemsets.

Let C_c be the set of closed frequent itemsets each of which is associated with a frequency of itemsets.

Let M be the set of maximal frequent itemsets without specifying the frequency of itemsets.

Ler M_c be the set of maximal frequent itemsets each of which is associated with a frequency in the dataset.

The following shows six transactions with four items. Each row corresponds to a transaction where 1 corresponds to a presence of an item and 0 corresponds to an absence.

A	В	C	D
0	0	1	1
1	1	0	0
0	0	1	1
1	0	1	1
1	0	0	0
0	0	0	1

Suppose that the support threshold is 2.

- (a) (i) What is F_C ?
- (ii) What is C_c ?
- (iii) What is M_c ? (5 Marks)
- (b) (i) What is the advantages and the disadvantages of using closed frequent itemsets compared with traditional frequent itemsets? (5 Marks)
- (ii) What are the advantages and the disadvantages of using closed frequent itemsets compared with maximal frequent itemsets? (5 Marks)
- (c) Please adapt algorithm FP-growth with the use of the FP-tree to find all closed frequent item set. Please write down how to adapt algorithm FP-growth and illustrate the adapted algorithm with the above example. (20 Marks)

Solution

(a) According to the topic, we have the following transaction database. And we generate all the k-itemsets which might be frequent itemsets.

i: We have
$$F_c = \{<\{A\}, 3>, <\{C\}, 3>, <\{D\}, 4>, <\{C, D\}, 3>\}$$

ii: We have
$$C_c = \{ \langle \{A\}, 3 \rangle, \langle \{C, D\}, 3 \rangle \}$$

iii: We have
$$M_c = \{ \langle \{A\}, 3 \rangle, \langle \{C, D\}, 3 \rangle \}$$

(b)

(c) We can prove that:

ullet If X is a closed frequent itemset, thus the FP-conditional tree for X would be empty.

Because if

Firstly, deduce the ordered frequent items.

ordered transaction database

Then we construct the FP-tree from the above data.

From the FP-tree above, construct the FP-conditional tree for C, A and D.

{(D:2, C:2), (D:1, A:1, C:1)}

Item	Frequency
D	3
A	1
С	3

Cond. FP-tree on "C"

Q4 [35 Marks]

A GSP example: Suppose now we have 5 events: 'Upload Songs', 'Add Tags', 'Share', 'Listen' and 'Comment'. Let min-support be 40%. The sequence database of a Music Platform is shown in following table:

Object	Sequence
A	<{'Upload Songs', 'Add Tags'}>
В	<{'Upload Songs', 'Share'}>
С	<{'Upload Songs'}, {'Share', 'Listen'}>
D	<{'Upload Songs'}, {'Upload Songs', 'Add Tags'}, {'Listen'}>
Е	<{'Listen'}, {'Add Tags', 'Comment'}, {'Share', 'Listen'}>

Please answer the following questions:

- (a) Make the first pass over the sequence database to yield all the 1-element **frequent** sequences and what is the corresponding support? **5 Marks**
- (b) Based on (a), do the 2-sequences Candidate Generation and Candidate Pruning. 10 Marks
- (c) What is the **frequent** 2-sequences based on the result of (b)? 5 Marks
- (d) Based on (c), do the 3-sequences Candidate Generation and Candidate Pruning. When a sequence should be pruned, you need to explain why. **10 Marks**
- (e) What is the frequent 3-sequences based on the result of (d)? Please calculate the support. 5 Marks

Remember: For frequent k-sequences, the support >= min-support

Solution

For easier reading, we denote 'Upload Songs', 'Add Tags', 'Share', 'Listen' and 'Comment' by U, A, S, L and C respectively. And if there are 2 items in 1 set, we have arranged it in alphabetical order by the first letter. Thus we have:

Object	Sequence		Object	Sequence
A	<{'Upload Songs', 'Add Tags'}>		A	<{A, U}>
В	<{'Upload Songs', 'Share'}>		В	<{S, U}>
C	<{'Upload Songs'}, {'Share', 'Listen'}>		С	<{U}, {L, S}>
D	<{'Upload Songs'}, {'Upload Songs', 'Add Tags'}, {'Listen'}>		D	<{U}, {A, U}, {L}>
Е	<{'Listen'}, {'Add Tags', 'Comment'}, {'Share', 'Listen'}>		Е	<{L}, {A, C}, {L, S}>

(a) Candidate 1-sequences are:

According to the database above, we have:

Sequence	Sup			
	1		Sequence	Sup
<{A}>	60%		<{A}>	60%
<{C}>	20%	disgard sup<40%		
·(T.):	COM		<{L}>	60%
<{L}>	60%		<{S}>	60%
<{S}>	60%			
	900		<{U}>	80%
<{U}>	80%			

The 1-element frequent sequences and the corresponding support are:

<{'Add Tags'}> (support=60%)

<{'Listen'}> (support=60%)

<{'Share'}> (support=60%)

<{'Upload Songs'}> (support=80%)

(b) Base case (k=2): Merging two frequent 1-sequences $<\{i_1\}>$ and $<\{i_2\}>$ will produce two candidate 2-sequences: $<\{i_1\}$ $\{i_2\}>$ and $<\{i_1,i_2\}>$

Candidate 2-sequences are:

$$<\{A,L\}>,<\{A,S\}>,<\{A,U\}>,<\{L,S\}>,<\{L,U\}>,<\{S,U\}>,$$

$$\{L\}, \{A\} >, \{L\}, \{L\} >, \{L\}, \{S\} >, \{L\}, \{U\} >,$$

$$\{U\}, \{A\} >, \{U\}, \{L\} >, \{U\}, \{S\} >, \{U\}, \{U\} >$$

All the 1-sequences we generate 2-sequences from are frequent. So after candidate prunning, the 2-sequences should remain the same.

(c) After candidate elimination, frequent 2-sequences are:

$$<$$
{A, U} $>$ (support=40%),

$$\{L, S\} > (support = 40\%),$$

$$\{A\}, \{L\} > (support = 40\%),$$

$$\{U\}, \{L\} > (support=40\%)$$

(d) Generate 3-sequences from the remaining 2-sequences, 3-sequences are:

$$\{A, U\}, \{L\} > (generate from \{A, U\} > and \{U\}, \{L\} > or from \{A, U\} > and \{A\}, \{L\} >),$$

$$\{A\}, \{L, S\} > (generate from < \{A\}, \{L\} > and < \{L, S\}),$$

$$\{U\}, \{L, S\} > (generate from < \{U\}, \{L\} > and < \{L, S\})$$

Pruning:

 $\{A\}, \{L, S\}$ should be pruned because one 2-subsequence $\{A\}, \{S\}$ is not frequent.

 $\{U\}, \{L, S\}$ should be pruned because one 2-subsequence $\{U\}, \{S\}$ is not frequent.

(e) $\{A, U\}, \{L\} > (support = 20\% < 40\%, should be eliminated)$

Thus, there is no frequent 3-sequence.