Tausworthe PRN report

Student: Andrei Goncharov (agoncharov6@gatech,edu)

Problem statement

Implement the Tausworthe pseudo-random number generator. Perform a decent number of statistical tests on the generator to see that it gives PRN's that are approximately i.i.d. Uniform(0,1). Plot adjacent PRN's (Ui, Ui+1), i = 1, 2, ..., on the unit square to see if there are any patterns. Generate a few Nor(0,1) deviates (any way you want) using Unif(0,1)'s from the Tausworthe generator.

Approach

- 1. Implement a base class for thr Tausworthe generator.
- 2. Implement a simple CLI to interact with the class
- 3. Add commands to the CLI to:
 - 1. Generate a sequence of PRNs (pseudo-random numbers) and print them.
 - 2. Generate PRNs and test them. Print the graphs. Generate Nor(0, 1) deviates.

CLI

Using python-nubia create a simple CLI. Read more about it in the README.

CLI has limitations! It currently does not do any input validation. If you enter bad data, you are on your own!

Tausworthe generator class

Accepts initial seed, q, r, l. Exposes a single method next that returns a new U(i). Internally, keeps the current number of q bits as seq. To generate a new PRN it appends l new bits to seq and pop l first bits. seq is initialized to seed.

Every new bit is calculated by the algorithm: $B(i) = B(i - q) \times (i - r)$.

Every new PRN requires 1 new bits and is calculated as 1 converted from binary to decimal divided by 2^1 .

Statistical tests

We will perform a goodness-of-fit test (with a = 0.05 and 101 bins) and an independence test (runs "Up and Down") (with a = 0.05).

We use 101 bins so our chi squared distribution has 100 degrees of freedom.

Choosing constants

Tausworthe algorithm uses several constants:

- q big number of offset bits
- r little number of offset bits

• 1 - little number of offset bits

q must be as big as possible as we generally want as big as possible cycles for our PRN generators. So we set q to 31 bits by default. It gives us a cycle of 2^31-1 which is the biggest any 32-bit machine can handle.

r and 1 can vary. Due to the limited scope of the project, we set 1 to 20. It makes the generator produce 2^20 different PRNs which sounds like a reasonable number.

For r we will perform a few tests to see if value of r significantly affects the result.

Testing r

Using 424242424242 as our seed. We will generate 10000 numbers. Based on the constants listed above, our reference (threshold) Z-score is 1.96. Reference chi squared value is 124.342.

r = 1

 $Chi^2 = 97.7578$. Number of runs = 6708.

r = 10

 $Chi^2 = 77.75$. Number of runs = 6659.

r = 20

 $Chi^2 = 100.6868$. Number of runs = 6612.

r = 30

 $Chi^2 = 104.89$. Number of runs = 6643.

Summary

As we can see, our Tausworthe generator produces PRNs that pass goodness-of-fit and independence tests, thus we conclude that the implementation is correct. We can also notice that different values of \mathbf{r} did not affect the out come significantly, thus we conclude that \mathbf{r} does not affect generator properties and can be anything between $\mathbf{1}$ and $\mathbf{q} - \mathbf{1}$. Finally, we can clearly see from the graphs that we can generate Nor(0, 1) deviates using Box-Muller method from the PRNs produces by our generator.

References

https://studio.edx.org/assets/courseware/v1/f33427e02d57018e66a65baa3c8305c5/asset-v1:GTx+ISYE6644x+2T2019+type@asset+block/Module06-RandomNumberGenerationSlides_180526.pdf