$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

OMITTED FROM SUMMARY TABLE

This entry was previously called $T_1(2190)$. See our mini-review under the $\rho(1700)$.

ρ (2150) MASS

e^+e^- PRODUCED

VALUE (MeV)	DOCUMENT ID)	TECN	COMMENT
• • • We do not use	e the following da	ita for a	averages,	fits, limits, etc. • •
2254 ± 22	¹ LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
$2150\!\pm\!40\!\pm\!50$	AUBERT	07 AU	BABR	10.6 $e^+e^- \rightarrow f_1(1285)\pi^+\pi^-\gamma$
1990 ± 80	AUBERT	07 AU	BABR	10.6 $e^+e^- \rightarrow \bar{\eta'}\pi^+\pi^-\gamma$
2153 ± 37	BIAGINI	91	RVUE	$e^+e^- ightarrow~\pi^+\pi^-$, K^+K^-
2110 ± 50	² CLEGG	90	RVUE	$e^+e^- \rightarrow 3(\pi^+\pi^-), 2(\pi^+\pi^-\pi^0)$

$\overline{p}p \rightarrow \pi\pi$

VALUE (MeV)	DOCUMENT ID)	TECN	COMMENT
• • • We do not use the follow	ving data for averag	es, fits,	limits, e	etc. • • •
\sim 2191	HASAN	94	RVUE	$\overline{p} p \rightarrow \pi \pi$
~ 2070	³ OAKDEN	94	RVUE	$0.36 – 1.55 \overline{p} p \rightarrow \pi \pi$
~ 2170	⁴ MARTIN	80 B	RVUE	
~ 2100	⁴ MARTIN	80c	RVUE	

S-CHANNEL NN

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

2110 ± 35				0.6–1.9 $p\overline{p} \rightarrow \omega \pi^0$, $\omega \eta \pi^0$, $\pi^+\pi^-$
~ 2190				$0.97-3 \ \overline{p} p \rightarrow \overline{N} N$
2155 ± 15				$0.7-2.4 \ \overline{p}p \rightarrow \overline{p}p$
$2193\pm~2$	^{6,8} ALSPECTOR	73	CNTR	$\overline{p}p$ S channel
2190 ± 10	⁹ ABRAMS	70	CNTR	S channel $\overline{p}N$

$\pi^- p \rightarrow \omega \pi^0 n$

VALUE (MeV)	DOCUMENT II	D	TECN	COMMENT
2155±21 OUR AVERAGE				
2140 ± 30	ALDE	95	GAM2	$38 \pi^- p \rightarrow \omega \pi^0 n$
2170 ± 30	ALDE	92C	GAM4	$100 \pi^- p \rightarrow \omega \pi^0 n$

 $^{^{}m 1}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

Created: 5/30/2017 17:20

² Includes ATKINSON 85.

³ See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

 $^{^4}I(J^P)=1(1^-)$ from simultaneous analysis of $p\overline{p}\to\pi^-\pi^+$ and $\pi^0\pi^0$.

⁵ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02. 6 Isospins 0 and 1 not separated.

⁷ From a fit to the total elastic cross section.

DOCUMENT ID

DOCUMENT ID

¹⁷ ABRAMS

COMMENT

COMMENT

70 CNTR S channel $\overline{p}N$

Created: 5/30/2017 17:20

ρ (2150) WIDTH

e^+e^- PRODUCED

VALUE (IVIEV)	DOCUMENT ID		TLCIV	COMMENT
• • • We do not	use the following dat	a for a	averages,	fits, limits, etc. ● ●
109± 76	¹⁰ LEES			$e^+e^- \rightarrow \pi^+\pi^-\gamma$
$350 \pm 40 \pm 50$	AUBERT	07 AL	BABR	10.6 $e^+e^- \rightarrow f_1(1285)\pi^+\pi^-\gamma$
310 ± 140	AUBERT			10.6 $e^+e^- \rightarrow \eta^{\prime}\pi^+\pi^-\gamma$
389 ± 79	BIAGINI	91	RVUE	$e^+e^- ightarrow~\pi^+\pi^-$, K^+K^-
410 ± 100	¹¹ CLEGG	90	RVUE	$e^{+}e^{-} \rightarrow 3(\pi^{+}\pi^{-}), 2(\pi^{+}\pi^{-}\pi^{0})$

$\overline{p}p \rightarrow \pi\pi$ VALUE (MeV)

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	ing data for average	es, fits,	limits, e	etc. • • •
~ 296	HASAN	94	RVUE	$\overline{p}p \rightarrow \pi\pi$
\sim 40	¹² OAKDEN	94	RVUE	0.36–1.55 $\overline{p}p \rightarrow \pi\pi$
\sim 250	¹³ MARTIN	80 B	RVUE	
~ 200	¹³ MARTIN	80C	RVUE	

S-CHANNEL NN

VALUE (MeV)

85

• • • We do no	t use the following data	for a	verages,	fits, limits, etc. • • •
230 ± 50	¹⁴ ANISOVICH	02	SPEC	0.6–1.9 $p\overline{p} \rightarrow \omega \pi^0$, $\omega \eta \pi^0$, $\pi^+\pi^-$
$135\!\pm\!75$	^{15,16} COUPLAND	77	CNTR	$0.7-2.4 \overline{p}p \rightarrow \overline{p}p$
08 + 8	16 ALSPECTOR			

TECN

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
320±70	ALDE	95	GAM2	$38 \pi^- p \rightarrow$	$\omega \pi^0 n$

• • • We do not use the following data for averages, fits, limits, etc. • • •

92C GAM4 100 $\pi^{-} p \rightarrow \omega \pi^{0} n$ ~ 300

 $^{^8}$ Referred to as T or T region by ALSPECTOR 73.

⁹ Seen as bump in I=1 state. See also COOPER 68. PEASLEE 75 confirm $\overline{p}p$ results of ABRAMS 70, no narrow structure.

 $^{^{10}}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

¹¹ Includes ATKINSON 85.

 $^{^{12}}$ See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

 $^{^{13}}I(J^P)=1(1^-)$ from simultaneous analysis of $p\overline{p}\to\pi^-\pi^+$ and $\pi^0\pi^0$.

¹⁴ From the combined analysis of ANISOVICH 00J, ANISOVICH 01E, and ANISOVICH 02.

¹⁵ From a fit to the total elastic cross section. 16 Isospins 0 and 1 not separated.

¹⁷ Seen as bump in I=1 state. See also COOPER 68. PEASLEE 75 confirm $\overline{p}p$ results of ABRAMS 70, no narrow structure.

ρ (2150) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	e^+e^-	
	$\pi^+\pi^-$	seen
Γ ₃	K^+K^-	seen
Γ_4	$3(\pi^{+}\pi^{-})$	seen
Γ_5	$2(\pi^{+}\pi^{-}\pi^{0})$	seen
Γ_6	$\eta'\pi^+\pi^-$	seen
	$f_1(1285)\pi^+\pi^-$	seen
	$\omega \pi^0$	seen
Γ ₉	$\omega \pi^{0} \eta$	seen
Γ ₁₀	p p	

$\rho(2150) \Gamma(i)\Gamma(e^+e^-)/\Gamma^2(total)$

 $\Gamma(f_1(1285)\pi^+\pi^-)/\Gamma_{ ext{total}}\, imes\,\Gamma(e^+e^-)/\Gamma_{ ext{total}}$

 $\Gamma_7/\Gamma \times \Gamma_1/\Gamma$

VALUE (units 10^{-7}) $3.1\pm0.6\pm0.5$

 $\frac{\textit{DOCUMENT ID}}{18} \frac{\textit{TECN}}{\mathsf{AUBERT}} \frac{\textit{COMMENT}}{\mathsf{O7AU BABR}} \frac{\mathsf{COMMENT}}{\mathsf{10.6 e^+ e^-} \rightarrow \textit{f}_1(1285)\pi^+\pi^-\gamma}$

Created: 5/30/2017 17:20

$\Gamma(\eta' \pi^+ \pi^-)/\Gamma_{\text{total}} \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$

 $\Gamma_6/\Gamma \times \Gamma_1/\Gamma$

VALUE (units 10^{-8})

DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

 4.9 ± 1.9

19 AUBERT 07AU BABR 10.6 $e^+e^- \to \eta' \pi^+ \pi^- \gamma$

ρ (2150) REFERENCES

LEES AUBERT ANISOVICH ANISOVICH ANISOVICH	12G 07AU 02 01D 01E 00J	PR D86 032013 PR D76 092005 PL B542 8 PL B508 6 PL B513 281 PL B491 47	J.P. Lees <i>et al.</i> B. Aubert <i>et al.</i> A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	(RUTG, NORD)
ALDE	95	ZPHY C66 379	D.M. Alde et al.	(GAMS Collab.) JP
HASAN	94	PL B334 215	A. Hasan, D.V. Bugg	` (LOQM)
OAKDEN	94	NP A574 731	M.N. Oakden, M.R. Pennington	(DURH)
ALDE	92C	ZPHY C54 553	D.M. Alde et al. (BELC	G, SERP, KEK, LANL+)
BIAGINI	91	NC 104A 363	M.E. Biagini et al.	(FRAS, PRAG)
CLEGG	90	ZPHY C45 677	A.B. Clegg, A. Donnachie	(LANC, MCHS)
ATKINSON	85	ZPHY C29 333	M. Atkinson <i>et al.</i> (BONN, CERN, GLAS+)
MARTIN	80B	NP B176 355	B.R. Martin, D. Morgan	(LOUC, RHEL) JP
MARTIN	80C	NP B169 216	A.D. Martin, M.R. Pennington	(DURH) JP
CUTTS	78B	PR D17 16	D. Cutts et al.	(STON, WISC)
COUPLAND	77	PL 71B 460	M. Coupland et al.	(LOQM, RHEL)
PEASLEE	75	PL 57B 189	D.C. Peaslee <i>et al.</i> (CANB, BARI, BROW+)
ALSPECTOR	73	PRL 30 511	J. Alspector <i>et al.</i>	(RUTG, UPNJ)
ABRAMS	70	PR D1 1917	R.J. Abrams <i>et al.</i>	(BNL)
COOPER	68	PRL 20 1059	W.A. Cooper <i>et al.</i>	(ANL)
GOUNARIS	68	PRL 21 244	G.J. Gounaris, J.J. Sakurai	

 $^{^{18}}$ Calculated by us from the reported value of cross section at the peak.

 $^{^{19}\,\}mathrm{Calculated}$ by us from the reported value of cross section at the peak.