CS 390 HW5 Problem 2

Aaryan Wadhwani

1 Small Numbers Case $(x_i \leq \epsilon T)$

```
Algorithm 1 Algorithm for Small Numbers Input: A set of numbers \{x_1, x_2, \dots, x_n\} where x_i \leq \epsilon T, and target sum T
```

Output: A subset S with sum $S_{\text{sum}} \in [(1 - \epsilon)T, (1 + \epsilon)T]$

- 1: Initialize an empty subset S and set $S_{\text{sum}} = 0$
- 2: **for** each x_i in the list (in any order) **do**
- 3: if $S_{\text{sum}} + x_i \leq T$ then
- 4: Add x_i to S
- 5: Update $S_{\text{sum}} = S_{\text{sum}} + x_i$
- 6: end if
- 7: end for
- 8: **return** the subset S

1.1 Time Complexity

- The algorithm performs a single pass through the list, requiring O(n) time.
- Total time complexity: O(n), which is polynomial.

1.2 Correctness Proof

To demonstrate that the algorithm returns a subset S with sum $S_{\text{sum}} \in [(1 - \epsilon)T, (1 + \epsilon)T]$, we proceed as follows:

1. **Termination and Sum Bounds:** The algorithm adds numbers to S as long as $S_{\text{sum}} + x_i \leq T$. It stops adding numbers when either all numbers are included (so $S_{\text{sum}} \leq T$) or there exists an x_j not added because $S_{\text{sum}} + x_j > T$. Since $x_j \leq \epsilon T$, we have:

$$S_{\text{sum}} > T - x_j \ge T - \epsilon T = (1 - \epsilon)T$$

Also, $S_{\text{sum}} \leq T$ holds because the algorithm only adds x_i if the sum remains at most T.

2. Range Verification: Combining the inequalities:

$$(1 - \epsilon)T < S_{\text{sum}} \le T$$

Since $T \leq (1 + \epsilon)T$ (as $\epsilon > 0$), it follows that:

$$S_{\text{sum}} \in [(1 - \epsilon)T, (1 + \epsilon)T]$$

2 Big Numbers Case $(x_i > \epsilon T)$

Algorithm 2 Algorithm for Big Numbers

```
Input: A set of numbers \{x_1, x_2, \dots, x_n\} where x_i > \epsilon T, and target sum T

Output: A subset U with sum S_U \in [(1 - \epsilon)T, (1 + \epsilon)T] or indication of no solution

1: Define k_{\max} = \left\lfloor \frac{1+\epsilon}{\epsilon} \right\rfloor

2: Enumerate all subsets U \subseteq \{x_1, x_2, \dots, x_n\} with |U| \le k_{\max}

3: for each subset U do

4: Compute S_U = \sum_{x \in U} x

5: if S_U \in [(1 - \epsilon)T, (1 + \epsilon)T] then

6: return U

7: end if

8: end for

9: If no such subset is found, indicate accordingly
```

2.1 Time Complexity

- Number of subsets: $\sum_{k=0}^{k_{\text{max}}} \binom{n}{k} \leq \sum_{k=0}^{k_{\text{max}}} n^k = O(n^{k_{\text{max}}})$.
- Since $k_{\text{max}} = O\left(\frac{1}{\epsilon}\right)$ and ϵ is a constant, this is $O(n^{O(1/\epsilon)})$.
- Computing S_U takes O(n) per subset, so the total time is $O(n^{O(1/\epsilon)} \cdot n) = O(n^{O(1/\epsilon)})$.

2.2 Correctness Proof

To prove that the algorithm returns a subset U with sum $S_U \in [(1 - \epsilon)T, (1 + \epsilon)T]$, we proceed as follows:

1. Bounding the Number of Elements: Since each $x_i > \epsilon T$, the sum of a subset U with k elements satisfies $S_U > k \cdot \epsilon T$. To ensure $S_U \leq (1 + \epsilon)T$, we require:

$$k \cdot \epsilon T \le (1 + \epsilon)T \implies k \le \frac{1 + \epsilon}{\epsilon}$$

Thus, $k_{\text{max}} = \left\lfloor \frac{1+\epsilon}{\epsilon} \right\rfloor$ is the maximum number of elements that can yield a sum $\leq (1+\epsilon)T$. Enumerating all subsets with $|U| \leq k_{\text{max}}$ ensures all relevant candidates are considered.

- 2. Range Check: The algorithm checks each U and returns the first with $S_U \in [(1 \epsilon)T, (1 + \epsilon)T]$. If no such U exists, it indicates failure, aligning with the problem's assumption of a feasible solution.
- 3. Completeness and Feasibility:

- Lower Bound: For $S_U \geq (1 \epsilon)T$, a subset with $k \geq \frac{1 \epsilon}{\epsilon}$ elements could exceed $(1 \epsilon)T$ if $k \cdot \epsilon T > (1 \epsilon)T$. However, k_{max} limits the search to valid combinations, and the existence of a solution is assumed.
- Upper Bound: If $|U| > k_{\text{max}}$, $S_U > (1 + \epsilon)T$, which is outside the range. Thus, k_{max} is sufficient.
- Existence: If a subset with sum in $[(1 \epsilon)T, (1 + \epsilon)T]$ exists and has at most k_{max} elements, the enumeration will identify it.

3 General Case (Both Big and Small Numbers)

Algorithm 3 Combined Algorithm for General Case

```
Input: A set of numbers \{x_1, x_2, \dots, x_n\} with some x_i > \epsilon T and some x_i \le \epsilon T, and target
     sum T
Output: A subset U \cup V with sum S_{\text{total}} \in [(1 - \epsilon)T, (1 + \epsilon)T] or indication of no solution
 1: Partition the input into:
        B = \{x_i \mid x_i > \epsilon T\} \text{ (big numbers)}
 2:
        S = \{x_i \mid x_i \le \epsilon T\} (small numbers)
 4: Define k_{\text{max}} = \left| \frac{1+\epsilon}{\epsilon} \right|
 5: Enumerate all subsets U \subseteq B with |U| \le k_{\text{max}}
 6: for each subset U do
         Compute S_U = \sum_{x \in U} x
         if S_U > T then
 8:
              Skip this U
 9:
10:
         else
              Initialize V as an empty subset and sum_V = 0
11:
              for each x_i in S (in any order) do
12:
                  if sum_V + x_i \leq T - S_U then
13:
                       Add x_i to V
14:
                       Update sum_V = sum_V + x_i
15:
                  end if
16:
              end for
17:
18:
              Compute S_{\text{total}} = S_U + \text{sum}_V
              if S_{\text{total}} \in [(1 - \epsilon)T, (1 + \epsilon)T] then
19:
                  return U \cup V
20:
              end if
21:
         end if
22:
23: end for
```

3.1 Time Complexity

- Partitioning: O(n).
- Enumerating $U: O(n^{k_{\max}}) = O(n^{O(1/\epsilon)})$ since $k_{\max} = O(1/\epsilon)$.
- Computing S_U : O(n) per subset, total $O(n^{O(1/\epsilon)} \cdot n)$.
- Processing S per U: O(n) per subset, total $O(n^{O(1/\epsilon)} \cdot n)$.
- Total: $O(n) + O(n^{O(1/\epsilon)} \cdot n) = O(n^{O(1/\epsilon)})$, polynomial for constant ϵ .

3.2 Correctness Proof

To prove that the algorithm returns a subset $U \cup V$ with sum $S_{\text{total}} = S_U + \text{sum}_V \in [(1 - \epsilon)T, (1 + \epsilon)T]$, we proceed as follows:

- 1. Bounding Big Numbers (*U*): Since $x_i > \epsilon T$ for $x_i \in B$, a subset *U* with *k* elements has $S_U > k \cdot \epsilon T$. To ensure $S_U \le T$ (to proceed with adding small numbers), $k \le \frac{1}{\epsilon}$. For the total sum to be at most $(1 + \epsilon)T$, $k \le \frac{1+\epsilon}{\epsilon}$. Thus, $k_{\max} = \lfloor \frac{1+\epsilon}{\epsilon} \rfloor$ ensures all feasible *U* are considered.
- 2. Selection of Small Numbers (V): For a fixed U with $S_U \leq T$, the algorithm adds $x_i \in S$ to V if $\sup_V + x_i \leq T S_U$. When it stops, either all small numbers are included, or there exists $x_j \in S$ such that $\sup_V + x_j > T S_U$. Since $x_j \leq \epsilon T$:

$$sum_V > (T - S_U) - x_j \ge (T - S_U) - \epsilon T$$

Thus:

$$S_{\text{total}} = S_U + \text{sum}_V > S_U + (T - S_U) - \epsilon T = T - \epsilon T = (1 - \epsilon)T$$

3. Upper Bound Verification: Since $\sup_{U} \leq T - S_U$ and $S_U \leq T$:

$$S_{\text{total}} = S_U + \text{sum}_V \le S_U + (T - S_U) = T \le (1 + \epsilon)T$$

4. Range Satisfaction: Combining the bounds:

$$(1 - \epsilon)T < S_{\text{total}} \le (1 + \epsilon)T$$

Thus, $S_{\text{total}} \in [(1 - \epsilon)T, (1 + \epsilon)T].$