КИНЕТИКА МЕЖФАЗНОГО ОБМЕНА КИСЛОРОДА В Се- И/ИЛИ Y-МОДИФИЦИРОВАННОМ ОКСИДЕ ВаFeO_{3-δ}

Свищ И.В.⁽¹⁾, Ходимчук А.В.^(1,2), Захаров Д.М.⁽²⁾, Гордеев Е.В.^(1,2), Поротникова Н.М.⁽²⁾

⁽¹⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

⁽²⁾ Институт высокотемпературной электрохимии УрО РАН 620137, г. Екатеринбург, ул. Академическая, д. 20

Перспективными материалами для катодов H-SOFC являются церий- и иттрийдопированные сложные оксиды на основе BaFeO $_{3-\delta}$, которые обладают смешанной тройной (e $^-$ /H $^+$ /O $^2-$) проводимостью. Целью настоящей работы было исследовать кинетику обмена кислорода между газовой фазой и сложными оксидами BaFe $_{0.9}$ Ce $_{0.1}$ O $_{3-\delta}$, BaFe $_{0.9}$ Y $_{0.1}$ O $_{3-\delta}$ и BaFe $_{0.8}$ Ce $_{0.1}$ Y $_{0.1}$ O $_{3-\delta}$.

Кинетика межфазного обмена кислорода была изучена методом импульсного изотопного обмена кислорода на порошках оксидов при $\Delta T = 200$ –600 °C и $p{
m O}_2 = 213$ мбар и методом релаксации давления кислорода на плотных образцах оксидов при $\Delta T = 600$ –800 °C и $\Delta p{
m O}_2 = 1$ –35 мбар. Рассчитаны химический (k^{δ}) и изотопный (k^{*}) коэффициенты обмена кислорода с поверхностью оксидов (см. рисунок).

pО₂-зависимости изотопного (k^*) и химического (k^δ) коэффициентов обмена кислорода для BaFe_{0.9}Ce_{0.1}O_{3- δ}, BaFe_{0.9}Y_{0.1}O_{3- δ} и BaFe_{0.8}Ce_{0.1}Y_{0.1}O_{3- δ}

Обнаружено, что значения k^{δ} , полученные методом релаксации pO_2 , лежат выше значений k^* , рассчитанных при обработке данных импульсного изотопного обмена O_2 . В настоящей работе рассматриваются возможные причины наблюдаемых различий и обсуждается соответствующие модели для описания кинетики межфазного обмена кислорода в системе «газообразный кислород — оксид».

Исследование выполнено за счет гранта Российского научного фонда № 24-23-00086, https://rscf.ru/project/24-23-00086/.