52310-sea listing

SEQUENCE LISTING	
<110> McGill University Herscovics, Annette A. Tremblay, Linda O.	
<120> ALPHA 1,2-MANNOSIDASE AND THERAPEUTICAL USES THEREOF	
<130> 1770-228PCT	
<140> PCT/CA/00/00775 <141> 2000-06-28	
<150> US 60/140,992 <151> 1999-06-29	
<160> 19	
<170> FastSEQ for Windows Version 3.0	
<210> 1 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Sense primer	
<400> 1 ccacagaccc agcaaggtgc c	21
<210> 2 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense primer	
<400> 2 ctaggcaggg gtccagatag g	21
<210> 3 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> GSP1 primer	
<400> 3 gggcacttct gctcttcttg aag	23
<210> 4 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> GSP2 sense primer	
<400> 4 atgactgtcc tctgcggatc tc	22
<210> 5 <211> 21 <212> DNA	

52310-seq listing	
<213> Artificial Sequence	
<220> <223> GSP3.1 antisense primer	
<400> 5 tgtcttctgt gacgaaatct c	21
<210> 6 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> GSP3.2 sense primer	
<400> 6 cagagctttc caatggtcag c	21
<210> 7 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> GSP3.3 antisense primer	
<400> 7 tcatagctct cgccaaagct cagc	24
<210> 8 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Sense primer	
<400> 8 atcgggactt cacctcggtg	20
<210> 9 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Sense primer	
<221> misc_feature <222> (4)(9) <223> EcoRI site	
<400> 9 aaagaattcc agattagacc cccaagccaa g	31
<210> 10 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense primer SHMSTOP	
<221> misc_feature <222> (4)(9) <223> XbaI site	

52310-seq listing

<pre><400> 10 aaatctagac taggcagggg tccaga</pre>	atagg 30	0
<210> 11 <211> 30 <212> DNA <213> Artificial Seque	ence	
<220> <223> Sense primer		
<221> misc_feature <222> (4)(9) <223> EcoRI site		
<400> 11 aaagaattcc agggcacacc agtgc	atctg 3	0
<210> 12 <211> 29 <212> DNA <213> Artificial Sequ	ence	
<220> <223> Antisense prime	rSHMR	
<221> misc_feature <222> (4)(9) <223> XbaI site		
<400> 12 aaatctagag caggggtcca gatag	gcag 2	9
<210> 13 <211> 37 <212> DNA <213> Artificial Sequ	ence	
<220> <223> Sense primer fo	r producing R461L	
<400> 13 gtattcacgc tgggcgcttt ggccg	acagc tactatg 3	7
<210> 14 <211> 37 <212> DNA <213> Artificial Sequ	ence	
<220> <223> Antisense prime	r for producing R461L	
<400> 14 catagtagct gtcggccaaa gcgcc	cagcg tgaatac 3	37
<210> 15 <211> 38 <212> DNA <213> Artificial Sequ	ence	
<220> <223> Sense primer		
<221> misc_feature <222> (5)(10) <223> Hind III		
<400> 15		

52310-seq listing aaaaaagctt ccaccatggc tgcctgcgag ggcaggag	38										
<210> 16 <211> 41 <212> DNA <213> Artificial Sequence											
<220> <223> Antisense primer											
<221> misc_feature <222> (9)(16) <223> Not 1 site											
<400> 16 aaaaaaaagc ggccgctagg caggggtcca gataggcaga g	41										
<210> 17 <211> 41 <212> DNA <213> Artificial Sequence											
<220> <223> antisense primer containing a Not 1 site											
<221> misc_feature <222> (9)(16) <223> Not 1 site											
<400> 17 aaaaaaaagc ggccgcgagg caggggtcca gataggcaga g	41										
<210> 18 <211> 2739 <212> DNA <213> Artificial Sequence											
<220> <223> Human alpha1,2-mannosidase cDNA											
<221> CDS <222> (51)(2147) <223> Human alpha1,2-mannosidase											
<400> 18 cgcacgcgca gtcgtatccg tgtgatgggc gggctgttga cggcgctgcg atg gct Met Ala 1	56										
gcc tgc gag ggc agg aga agc gga gct ctc ggt tcc tct cag tcg gac Ala Cys Glu Gly Arg Arg Ser Gly Ala Leu Gly Ser Ser Gln Ser Asp 5 10 15	104										
ttc ctg acg ccg cca gtg ggc ggg gcc cct tgg gcc gtc gcc acc act Phe Leu Thr Pro Pro Val Gly Gly Ala Pro Trp Ala Val Ala Thr Thr 20 25 30	152										
gta gtc atg tac cca ccg ccg ccg ccg cct cat cgg gac ttc atc Val Val Met Tyr Pro Pro Pro Pro Pro Pro His Arg Asp Phe Ile 35 40 45 50	200										
tcg gtg acg ctg agc ttt ggc gag agc tat gac aac agc aag agt tgg Ser Val Thr Leu Ser Phe Gly Glu Ser Tyr Asp Asn Ser Lys Ser Trp 55 60 65	248										
cgg cgg cgc tcg tgc tgg agg aaa tgg aag caa ctg tcg aga ttg cag Arg Arg Arg Ser Cys Trp Arg Lys Trp Lys Gln Leu Ser Arg Leu Gln 70 75 80 Page 4	296										

52310-seq listing

cgg Arg	aat Asn	atg Met 85	att Ile	ctc Leu	ttc Phe	ctc Leu	ctt Leu 90	gcc Ala	ttt Phe	ctg Leu	ctt Leu	ttc Phe 95	tgt Cys	gga Gly	ctc Leu	344
ctc Leu	ttc Phe 100	tac Tyr	atc Ile	aac Asn	ttg Leu	gct Ala 105	gac Asp	cat His	tgg Trp	aaa Lys	gct Ala 110	ctg Leu	gct Ala	ttc Phe	agg Arg	392
cta Leu 115	gag Glu	gaa Glu	gag Glu	cag Gln	aag Lys 120	atg Met	agg Arg	cca Pro	gaa Glu	att Ile 125	gct Ala	ggg Gly	tta Leu	aaa Lys	cca Pro 130	440
gca Ala	aat Asn	cca Pro	ccc Pro	gtc Val 135	tta Leu	cca Pro	gct Ala	cct Pro	cag Gln 140	aag Lys	gcg Ala	gac Asp	acc Thr	gac Asp 145	cct Pro	488
gag Glu	aac Asn	tta Leu	cct Pro 150	gag Glu	att Ile	tcg Ser	tca Ser	cag Gln 155	aag Lys	aca Thr	caa Gln	aga Arg	cac His 160	atc Ile	cag Gln	536
cgg Arg	gga Gly	cca Pro 165	cct Pro	cac His	ctg Leu	cag Gln	att Ile 170	aga Arg	ccc Pro	cca Pro	agc Ser	caa Gln 175	gac Asp	ctg Leu	aag Lys	584
gat Asp	ggg Gly 180	acc Thr	cag Gln	gag Glu	gag Glu	gcc Ala 185	aca Thr	aaa Lys	agg Arg	caa Gln	gaa Glu 190	gcc Ala	cct Pro	gtg Val	gat Asp	632
ccc Pro 195	cgc Arg	ccg Pro	gaa Glu	gga Gly	gat Asp 200	ccg Pro	cag Gln	agg Arg	aca Thr	gtc Val 205	atc Ile	agc Ser	tgg Trp	agg Arg	gga Gly 210	680
gcg Ala	gtg Val	atc Ile	gag Glu	cct Pro 215	gag Glu	cag Gln	ggc Gly	acc Thr	gag Glu 220	ctc Leu	cct Pro	tca Ser	aga Arg	aga Arg 225	gca Ala	728
gaa Glu	gtg Val	ccc Pro	acc Thr 230	aag Lys	cct Pro	ccc Pro	ctg Leu	cca Pro 235	ccg Pro	gcc Ala	agg Arg	aca Thr	cag Gln 240	ggc Gly	aca Thr	776
cca Pro	gtg Val	cat His 245	ctg Leu	aac Asn	tat Tyr	cgc Arg	cag Gln 250	aag Lys	ggc Gly	gtg Val	att Ile	gac Asp 255	gtc Val	ttc Phe	ctg Leu	824
cat His	gca Ala 260	tgg Trp	aaa Lys	gga Gly	tac Tyr	cgc Arg 265	aag Lys	ttt Phe	gca Ala	tgg Trp	ggc Gly 270	cat His	gac Asp	gag Glu	ctg Leu	872
aag Lys 275	cct Pro	gtg Val	tcc Ser	agg Arg	tcc Ser 280	ttc Phe	agt Ser	gag Glu	tgg Trp	ttt Phe 285	ggc Gly	ctc Leu	ggt Gly	ctc Leu	aca Thr 290	920
ctg Leu	atc Ile	gac Asp	gcg Ala	ctg Leu 295	gac Asp	acc Thr	atg Met	tgg Trp	atc Ile 300	ttg Leu	ggt Gly	ctg Leu	agg Arg	aaa Lys 305	gaa Glu	968
ttt Phe	gag Glu	gaa Glu	gcc Ala 310	Arg	aag Lys	tgg Trp	gtg Val	tcg Ser 315	aag Lys	aag Lys	tta Leu	cac His	ttt Phe 320	gaa Glu	aag Lys	1016
gac Asp	gtg Val	gac Asp 325	gtc Val	aac Asn	ctg Leu	ttt Phe	gag Glu 330	agc Ser	acg Thr	atc Ile	cgc Arg	atc Ile 335	ctg Leu	ggg Gly	ggg Gly	1064
ctc Leu	ctg Leu	agt Ser	gcc Ala	tac Tyr	cac His	ctg Leu	tct Ser	ggg Gly	Asp	agc Ser ge 5	ctc Leu	ttc Phe	ctg Leu	agg Arg	aaa Lys	1112

	340					373					330					
gct Ala 355	gag Glu	gat Asp	ttt Phe	gga Gly	aat Asn 360	cgg Arg	cta Leu	atg Met	cct Pro	gcc Ala 365	ttc Phe	aga Arg	aca Thr	cca Pro	tcc Ser 370	1160
aag Lys	att Ile	cct Pro	tac Tyr	tcg Ser 375	gat Asp	gtg Val	aac Asn	atc Ile	ggt Gly 380	act Thr	gga Gly	gtt Val	gcc Ala	cac His 385	ccg Pro	1208
cca Pro	cgg Arg	tgg Trp	acc Thr 390	tcc Ser	gac Asp	agc Ser	act Thr	gtg Val 395	gcc Ala	gag Glu	gtg Val	acc Thr	agc Ser 400	att Ile	cag Gln	1256
ctg Leu	gag Glu	ttc Phe 405	cgg Arg	gag Glu	ctc Leu	tcc Ser	cgt Arg 410	ctc Leu	aca Thr	ggg Gly	gat Asp	aag Lys 415	aag Lys	ttt Phe	cag Gln	1304
gag Glu	gca Ala 420	gtg Val	gag Glu	aag Lys	gtg Va1	aca Thr 425	cag Gln	cac His	atc Ile	cac His	ggc Gly 430	ctg Leu	tct Ser	ggg Gly	aag Lys	1352
aag Lys 435	gat Asp	ggg Gly	ctg Leu	gtg Val	ccc Pro 440	atg Met	ttc Phe	atc Ile	aat Asn	acc Thr 445	cac His	agt Ser	ggc Gly	ctc Leu	ttc Phe 450	1400
acc Thr	cac His	ctg Leu	ggc Gly	gta Val 455	ttc Phe	acg Thr	ctg Leu	ggc Gly	gcc Ala 460	agg Arg	gcc Ala	gac Asp	agc Ser	tac Tyr 465	tat Tyr	1448
gag Glu	tac Tyr	ctg Leu	ctg Leu 470	aag Lys	cag Gln	tgg Trp	atc Ile	cag Gln 475	ggc Gly	ggg Gly	aag Lys	cag Gln	gag Glu 480	aca Thr	cag Gln	1496
ctg Leu	ctg Leu	gaa Glu 485	gac Asp	tac Tyr	gtg val	gaa Glu	gcc Ala 490	atc Ile	gag Glu	ggt Gly	gtc Val	aga Arg 495	acg Thr	cac His	ctg Leu	1544
ctg Leu	cgg Arg 500	cac His	tcc Ser	gag Glu	ccc Pro	agt Ser 505	aag Lys	ctc Leu	acc Thr	ttt Phe	gtg Val 510	ggg Gly	gag Glu	ctt Leu	gcc Ala	1592
cac His 515	ggc Gly	cgc Arg	ttc Phe	agt Ser	gcc Ala 520	aag Lys	atg Met	gac Asp	cac His	ctg Leu 525	gtg Val	tgc Cys	ttc Phe	ctg Leu	cca Pro 530	1640
								cac His								1688
gag Glu	ctg Leu	gcc Ala	cag Gln 550	gag Glu	ctc Leu	atg Met	gag Glu	act Thr 555	tgt Cys	tac Tyr	cag Gln	atg Met	aac Asn 560	cgg Arg	cag Gln	1736
atg Met	gag Glu	acg Thr 565	ggg Gly	ctg Leu	agt Ser	ccc Pro	gag Glu 570	atc Ile	gtg Val	cac His	ttc Phe	aac Asn 575	ctt Leu	tac Tyr	ccc Pro	1784
cag Gln	ccg Pro 580	ggc Gly	cgt Arg	cgg Arg	gac Asp	gtg Val 585	gag Glu	gtc Val	aag Lys	cca Pro	gca Ala 590	gac Asp	agg Arg	cac His	aac Asn	1832
ctg Leu	ctg Leu	cgg Arg	cca Pro	gag Glu	acc Thr	gtg Val	gag Glu	agc Ser	Leu	ttc Phe je 6	tac Tyr	ctg Leu	tac Tyr	cgc Arg	gtc Val	1880

1928

1976

ttc agc cga ttc aca cgg gtc ccc tcg ggt ggc tat tct tcc atc aac Phe Ser Arg Phe Thr Arg Val Pro Ser Gly Gly Tyr Ser Ser Ile Asn

aat gtc cag gat cct cag aag ccc gag cct agg gac aag atg gag agc Asn Val Gln Asp Pro Gln Lys Pro Glu Pro Arg Asp Lys Met Glu Ser 2024 650

ttc ttc ctg ggg gag acg ctc aag tat ctg ttc ttg ctc ttc tcc gat Phe Phe Leu Gly Glu Thr Leu Lys Tyr Leu Phe Leu Leu Phe Ser Asp 2072 665 660

gac cca aac ctg ctc agc ctg gac gcc tac gtg ttc aac acc gaa gcc Asp Pro Asn Leu Leu Ser Leu Asp Ala Tyr Val Phe Asn Thr Glu Ala 2120 680

2167 cac cct ctg cct atc tgg acc cct gcc tagggtggat ggctgctggt His Pro Leu Pro Ile Trp Thr Pro Ala 695

2227 gtggggactt cgggtgggca gaggcacctt gctgggtctg tggcattttc Caaggcccac gtagcaccgg caaccgccaa gtggcccagg ctctgaactg gctctgggct cctcctcgtc tctgctttaa tcaggacacc gtgaggacaa gtgaggccgt cagtcttggt gtgatgcgg gtgggctggg ccgctggagc ctccgcctgc ttcctccaga agacacgaat catgactcac gattgctgaa gcctgagcag gtctctgtgg gccgaccaga ggggggcttc gaggtggtcc ctggtactgg gccgaccaga gggtcagac tctgcccggg ctcgtgaagc 2287 2347 2407 2467 2527 ctcagrtgtc cccaatccaa gggtctggag gggctgccgt gactccagag gcctgaggct ccagggctgg ctctggtgtt tacaagctgg actcagggat cctcctggcc gccccgcagg gggcttggag ggctggacgg caagtccgtc tagctcacgg gcccctccag tggaatgggt 2587 2647 2707 2739 cttttcggtg gagataaaag ttgatttgct ct

<210> 19 <211> 699

595

<212> PRT

<213> Artificial Sequence

<220> <223> Peptide

<400> 19 Met Ala Ala Cys Glu Gly Arg Arg Ser Gly Ala Leu Gly Ser Ser Gln 10 Ser Asp Phe Leu Thr Pro Pro Val Gly Gly Ala Pro Trp Ala Val Ala 20 25 30 25 20 Thr Thr Val Val Met Tyr Pro Pro Pro Pro Pro Pro Pro Pro His Arg Asp 40 45 Phe Ile Ser Val Thr Leu Ser Phe Gly Glu Ser Tyr Asp Asn Ser Lys 55 Ser Trp Arg Arg Arg Ser Cys Trp Arg Lys Trp Lys Gln Leu Ser Arg 65 70 75 80 70 Leu Gln Arg Asn Met Ile Leu Phe Leu Leu Ala Phe Leu Leu Phe Cys 90 Gly Leu Leu Phe Tyr Ile Asn Leu Ala Asp His Trp Lys Ala Leu Ala 105 110 100 Phe Arg Leu Glu Glu Glu Gln Lys Met Arg Pro Glu Ile Ala Gly Leu 115 120 125 Pro Ala Asn Pro Pro Val Leu Pro Ala Pro Gln Lys Ala Asp Thr 140 135 Pro Glu Asn Leu Pro Glu Ile Ser Ser Gln Lys Thr Gln Arg His 155 150 Ile Gln Arg Gly Pro Pro His Leu Gln Ile Arg Pro Pro Ser Gln Asp Page 7

52310-seq listing Leu Lys Asp Gly Thr Gln Glu Glu Ala Thr Lys Arg Gln Glu Ala Pro Val Asp Pro Arg Pro Glu Gly Asp Pro Gln Arg Thr Val Ile Ser Trp
195 200 205 Arg Gly Ala Val Ile Glu Pro Glu Gln Gly Thr Glu Leu Pro Ser Arg 210 215 220 Arg Ala Glu Val Pro Thr Lys Pro Pro Leu Pro Pro Ala Arg Thr Gln 230 Gly Thr Pro Val His Leu Asn Tyr Arg Gln Lys Gly Val Ile Asp Val Phe Leu His Ala Trp Lys Gly Tyr Arg Lys Phe Ala Trp Gly His Asp 260 265 270 Glu Leu Lys Pro Val Ser Arg Ser Phe Ser Glu Trp Phe Gly Leu Gly 275 _ 280 _ 285 _ Leu Thr Leu Ile Asp Ala Leu Asp Thr Met Trp Ile Leu Gly Leu Arg Lys Glu Phe Glu Glu Ala Arg Lys Trp Val Ser Lys Lys Leu His Phe Glu Lys Asp Val Asp Val Asn Leu Phe Glu Ser Thr Ile Arg Ile Leu Gly Gly Leu Leu Ser Ala Tyr His Leu Ser Gly Asp Ser Leu Phe Leu Arg Lys Ala Glu Asp Phe Gly Asn Arg Leu Met Pro Ala Phe Arg Thr 355 360 365 Pro Ser Lys Ile Pro Tyr Ser Asp Val Asn Ile Gly Thr Gly Val Ala 370 375 380 His Pro Pro Arg Trp Thr Ser Asp Ser Thr Val Ala Glu Val Thr Ser 385 390 395 400 Ile Gln Leu Glu Phe Arg Glu Leu Ser Arg Leu Thr Gly Asp Lys Lys 41Ŏ Phe Gln Glu Ala Val Glu Lys Val Thr Gln His Ile His Gly Leu Ser Gly Lys Lys Asp Gly Leu Val Pro Met Phe Ile Asn Thr His Ser Gly Leu Phe Thr His Leu Gly Val Phe Thr Leu Gly Ala Arg Ala Asp Ser Tyr Tyr Glu Tyr Leu Leu Lys Gln Trp Ile Gln Gly Gly Lys Gln Glu Thr Gln Leu Leu Glu Asp Tyr Val Glu Ala Ile Glu Gly Val Arg Thr His Leu Leu Arg His Ser Glu Pro Ser Lys Leu Thr Phe Val Gly Glu 500 505 510 Leu Ala His Gly Arg Phe Ser Ala Lys Met Asp His Leu Val Cys Phe 515 520 525 Leu Pro Gly Thr Leu Ala Leu Gly Val Tyr His Gly Leu Pro Ala Ser His Met Glu Leu Ala Gln Glu Leu Met Glu Thr Cys Tyr Gln Met Asn Arg Gln Met Glu Thr Gly Leu Ser Pro Glu Ile Val His Phe Asn Leu Tyr Pro Gln Pro Gly Arg Arg Asp Val Glu Val Lys Pro Ala Asp Arg
580 _ 585 _ 590 His Asn Leu Leu Arg Pro Glu Thr Val Glu Ser Leu Phe Tyr Leu Tyr Arg Val Thr Gly Asp Arg Lys Tyr Gln Asp Trp Gly Trp Glu Ile Leu Gln Ser Phe Ser Arg Phe Thr Arg Val Pro Ser Gly Gly Tyr Ser Ser Ile Asn Asn Val Gln Asp Pro Gln Lys Pro Glu Pro Arg Asp Lys Met Glu Ser Phe Phe Leu Gly Glu Thr Leu Lys Tyr Leu Phe Leu Leu Phe Ser Asp Asp Pro Asn Leu Leu Ser Leu Asp Ala Tyr Val Phe Asn Thr Glu Ala His Pro Leu Pro Ile Trp Thr Pro Ala 10/10