FAST SOFTMAX ON RV32IM No FPU, No Problem

Software-Level Approximation of exp(x)

for AI Inference on RISC-V Embedded Cores

Fast Softmax on RV32IM: Overview

- Problem
 - Softmax relies on exp(), which is slow on RV32IM (without F)
- Proposed method
 - Taylor 3rd-order approximation with Horner's method
 - Optional LUT-based range decomposition (x = n + f)
- Impact
 - Accelerates softmax computation

Method	Time Reduction (512, fp32)	Max Error (input value [0, 10))
glibc::expf (basedline)	0%	0
Taylor 3 rd (no LUT)	69%	0.0132
Taylor 3 rd + LUT	58%	0.0003

Table 1.1, Experiment results

How glibc Calculate expf(x)

- Special Case Handling
 - Detect overflow (x > 88.72) and under flow (x < -103.97)
 - NaN, \pm Inf, \pm 0 all handled explicitly
- Decompose and range reduction (Eq.2.1, Eq.2.2)
 - Decompose $exp(x) = 2^n * exp(r)$, n = round(x / ln(2))
 - Compute residual r = x n * ln(2)
- LUT for 2^n
 - 2ⁿ realized via precomputed 2^k table
- Polynomial Approximation for r
 - Use 3rd Taylor series on small r
- Resource Cost
 - Division for n, multiplication for r
 - Table lookup overhead
 - Float-to-int conversion

$$e^{x} = e^{\left(\frac{ln2}{N}K + \frac{ln2}{N}r\right)} = e^{\left(\frac{ln2}{N}K\right)}e^{\left(\frac{ln2}{N}r\right)}$$
Eq.2.1

$$e^{\left(\frac{\ln 2}{N}K\right)} = e^{\left(\frac{\ln 2}{N}(i*N+j)\right)} = 2^{i+\frac{j}{N}}$$
Eq.2.2

$$2^i \longrightarrow Bit-shift$$

$$e^{\left(\frac{\ln 2}{N}r\right)} \longrightarrow e^{\left(\frac{\ln 2}{N}r\right)} = 1 + \frac{\ln 2}{N}r + \frac{(\ln 2)^2}{2!}r^2 + \frac{(\ln 2)^3}{3!}r^3$$

Fig.2.1, Overview of glibc strategy

How Cephes Calculate expf(x)

- Special Case Handling
 - Similar overflow / underflow guard as glibc
 - Early exit for x smaller than minimum, trun 0.0f
- Decompose and range reduction (Eq.3.1)
 - Decompose $exp(x) = 2^n * exp(r)$
 - n = floor(x / ln(2))
- LUT for 2^n
 - Bit shift to handle 2ⁿ
- Polynomial Approximation for r (Eq.3.2)
 - Use Pade approximation, better accuracy in larger range
- Resource Cost
 - Avoid LUT, which helps memory
 - Pade approximation use division and rational

$$e^x = e^{f+kln(2)} = e^f \times 2^k$$

 $k = floor\left(\frac{x}{ln(2)} + 0.5\right)$
Eq.3.1

$$e^{f} \approx \frac{P(f)}{Q(f)} = \frac{120 + 60f + 12f^{2} + f^{3}}{120 - 60f + 12f^{2} - f^{3}}$$
Eq.3.2

$$2^{k} \longrightarrow \text{Bit-shift}$$

$$e^{f} \longrightarrow e^{f} = \frac{P(f)}{Q(f)}$$

Fig.3.2, Overview of Cephes strategy

Proposed Strategy

Fig.4.1, Overview of proposed strategy

- Input Decomposition
 - x = n + f, where n = int(x) and f = x n
- LUT
 - Precomputed exp(n) for integer part in target range
 - Use n as index
- Taylor Approximation
 - 3^{rd} degree polynomial over $f \in [0,1)$
- Horner's Method
 - Reduce multiplication overhead of Taylor approximation (Eq.4.1)

$$e^f \approx \left((T_3 f + T_2) f + T_1 \right) f + 1$$
Eq.4.1

Conclusion and Future Work

- Problem
 - Costly exp(x) on RV32IM without FPU
- Solution
 - Decompose input to int and fraction
 - Use LUT for int part
 - Use Taylor-3 approx. for fraction

- Benefit
 - Reduce computation cycles
- Future work
 - Explore log-sum-exp softmax
 - Deploy on RV32IM with HW counter

Method	Time Reduction (512, fp32)	Max Error (input value [0, 10))
glibc::expf (basedline)	0%	0
Taylor 3 rd (no LUT)	69%	0.0132
Taylor 3 rd + LUT	58%	0.0003

Table 1.1, Experiment results