Real Numbers

Definition

• The set of *rational* numbers is given by:

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z} \text{ and } q \neq 0 \right\}$$

- A number that is not rational is called *irrational*.
- The set of *real* numbers, denoted \mathbb{R} , is the union of the sets of rational and irrational numbers.

The set of irrational numbers is often denoted: $\mathbb{R} - \mathbb{Q}$.

Note that $\mathbb{Z} \subset \mathbb{Q}$ because $\forall n \in \mathbb{Z}, n = \frac{n}{1}$.

Definition

• To say that $\alpha \in \mathbb{R}$ is *algebraic* means that it is a zero of some polynomial with integer coefficients:

$$\exists a_k, \sum_{k=0}^n a_k \alpha^k = 0$$

• A number that is not algebraic is called *transcendental*.

Theorem

Q is closed under addition and multiplication.

Proof

Assume
$$a,b\in\mathbb{Q}$$
 Let $a=\frac{p}{q}$ and $b=\frac{r}{s}$ where $p,q,r,s\in\mathbb{Z}$ and $p,q\neq 0$

$$\begin{aligned} a+b &= \frac{p}{q} + \frac{r}{s} = \frac{ps+qr}{qs} \\ ps &+ qr \in \mathbb{Z} \\ qs &\in \mathbb{Z} \text{ and } qs \neq 0 \\ \therefore a+b &\in \mathbb{Q} \end{aligned}$$

$$\begin{array}{l} ab = \frac{p}{q} \cdot \frac{r}{s} = \frac{pr}{qs} \\ pr \in \mathbb{Z} \\ qs \in \mathbb{Z} \text{ and } qs \neq 0 \\ \therefore ab \in \mathbb{Q} \end{array}$$

Example

Prove that $\sqrt{2}$ is irrational.

Proof 1

ABC: $\sqrt{2}$ is rational

$$\exists a,b \in \mathbb{Z}^+, \frac{a}{b} = \sqrt{2}$$
 and either a or b not even

$$\begin{array}{l}
 \frac{a^2}{b^2} = 2 \\
 a^2 = 2b^2
 \end{array}$$

 a^2 is even, so a is even, so b must be odd

Let
$$a = 2k, k \in \mathbb{Z}$$

$$(2k)^2 = 4k^2 = 2(2k^2) = b^2$$

 b^2 is even, so b is even

CONTRADICTION!

 $\therefore \sqrt{2}$ is irrational.

Proof 2

ABC: $\sqrt{2}$ is rational

$$\exists\, a,b\in\mathbb{Z}^+, \tfrac{a}{b} = \sqrt{2}$$

Let
$$S = \{k\sqrt{2} \mid k, k\sqrt{2} \in \mathbb{Z}^+\}$$

Note that $S \neq \emptyset$ because $a = b\sqrt{2}$

By the well-ordering principle, S has a minimum

Let
$$s = \min S \in \mathbb{Z}^+$$

Let
$$s=t\sqrt{2}, t\in\mathbb{Z}^+$$

$$s\sqrt{2} - s = s\sqrt{2} - t\sqrt{2} = (s - t)\sqrt{2}$$

 $s\sqrt{2} = (t\sqrt{2})\sqrt{2} = 2t \in \mathbb{Z}^+$

$$s\sqrt{2} = (t\sqrt{2})\sqrt{2} = 2t \in \mathbb{Z}^+$$

Since
$$\sqrt{2} > 1$$
, $s\sqrt{2} > s$ and $s\sqrt{2} - s > 0$

$$(s-t)\sqrt{2} > 0$$

$$s - t > 0$$

So
$$(s-t)\sqrt{2} \in S$$

But
$$s\sqrt{2} - s = s(\sqrt{2} - 1) < s$$

CONTRADICTION (of the minimality of s)!

 $\therefore \sqrt{2}$ is irrational.

Proof 3

Let
$$x = \sqrt{2}$$

$$x^2 = 2$$

$$x^2 - 2 = 0$$

$$\sqrt{2}$$
 is algebraic

The only possible rational zeros are ± 2

$$(\pm 2)^2 - 2 = 4 - 2 = 2 \neq 0$$

So there are no rational zeros

 $\therefore \sqrt{2}$ is irrational.