## ÉCONOMÉTRIE (UGA S2)

CHAPITRE 7: ESTIMATION PAR LA MMG DANS LES SYSTÈMES D'ÉQUATION, EN PARTICULIER LINÉAIRES

Michal W. Urdanivia\*

\*Université de Grenoble Alpes, Faculté d'Économie, GAEL, e-mail: michal.wong-urdanivia@univ-grenoble-alpes.fr

25 mars 2024

#### Contenu

- 1. Approche générale
- 2. Systèmes d'équations linéaires
- 3. Estimateurs MMG optimaux dans les systèmes d'équations linéaires
- 4. Estimation « en système » versus « équation par équation »
- 5. Equations simultanées et estimateur des 3MC
- 6. Régressions empilées et estimateur SUR



## 1. Approche générale

De fait, la MMG a deux très grands avantages :

 Le premier a été illustré dans le chapitre précédent, il s'agit de l'estimation de paramètres à partir de conditions de moment sur-identifiante.

C'est en ce sens qu'elle est une Méthode des Moments Généralisée.

- Le second, qui est utilisé ici, concerne la simplicité avec laquelle elle permet de construire les estimateurs de paramètres de systèmes d'équations.
  - Probable raison de sa très large utilisation en économétrie appliquée, notamment pour les modèles de panels

## Principe de la construction des estimateurs MMG « en système »

- (i) On définit les conditions de moment estimantes équation par équation
- (ii) On les *empile en un (grand) vecteur de conditions estimantes*, celui du système « complet ».
  - (iii) Ce dernier s'utilise comme dans le cas d'une seule équation.

#### A'y'est!

## Remarque importante

On utilise des instruments efficaces (au sens de Chamberlain) ou des instruments proches de ces instruments efficaces autant que possible.

#### Système d'équations de forme générale

On considère des systèmes à M équations de la forme :

$$\begin{cases} y_{1,i} = f_1(\mathbf{x}_{1,i}; \mathbf{a}_0) + u_{1,i} & \text{et } E\left[u_{1,i}/\mathbf{z}_{1,i}\right] = 0 \\ \vdots & \vdots \\ y_{M,i} = f_M(\mathbf{x}_{M,i}; \mathbf{a}_0) + u_{M,i} & \text{et } E\left[u_{M,i}/\mathbf{z}_{M,i}\right] = 0 \end{cases}$$

Ces systèmes peuvent être également notés :

$$\begin{cases} y_{m,i} = f_m(\mathbf{x}_{m,i}; \mathbf{a}_0) + u_{m,i} & \text{et } E\left[u_{m,i}/\mathbf{z}_{m,i}\right] = 0 \\ \text{pour } m = 1, ..., M \end{cases}$$

Il n'y a pas plus général ...

... tant qu'on est dans des modèles à termes d'erreur additifs.

$$\begin{cases} y_{1,i} = f_1(\mathbf{x}_{1,i}; \mathbf{a}_0) + u_{1,i} & \text{et } E\left[u_{1,i}/\mathbf{z}_{1,i}\right] = 0 \\ \vdots & \vdots \\ y_{M,i} = f_M(\mathbf{x}_{M,i}; \mathbf{a}_0) + u_{M,i} & \text{et } E\left[u_{M,i}/\mathbf{z}_{M,i}\right] = 0 \end{cases}$$

- Les  $\mathbf{x}_{m,i}$  peuvent contenir des  $y_{\ell,i}$  avec  $\ell \neq m$ .
- $\blacksquare$  Les  $\mathbf{z}_{\scriptscriptstyle{m,i}}$  peuvent contenir des éléments des  $\mathbf{x}_{\scriptscriptstyle{\ell,i}},\,\dots$ 
  - ... voire des  $y_{\ell,i}$  avec  $\ell \neq m$ .
- La forme des  $f_m(.)$  et le contenu des  $\mathbf{z}_{m,i}$  ne sont contraints que par les conditions d'identification de  $\mathbf{a}_0$

#### 1. Construire des conditions d'orthogonalité, pour m = 1,...,M

$$y_{m,i} = f_m(\mathbf{x}_{m,i}; \mathbf{a}_0) + u_{m,i} \text{ et } E\left[u_{m,i}/\mathbf{z}_{m,i}\right] = 0$$

$$\downarrow \downarrow$$

$$E\left[\mathbf{r}_m(\mathbf{z}_{m,i})u_{m,i}(\mathbf{a}_0)\right] = \mathbf{0} \text{ où } u_{m,i}(\mathbf{a}) \equiv y_{m,i} - f_m(\mathbf{x}_{m,i}; \mathbf{a})$$

$$\downarrow \downarrow$$

$$E\left[\mathbf{g}_{m,i}(\mathbf{a}_0)\right] = \mathbf{0} \text{ où } \mathbf{g}_{m,i}(\mathbf{a}) \equiv \mathbf{r}_m(\mathbf{z}_{m,i})u_{m,i}(\mathbf{a})$$

 $\blacksquare$  Pour assurer l'identification de  $\mathbf{a}_0$ , s'assurer que (Chamberlain) :

$$\mathbf{r}_{m}(\mathbf{z}_{m,i})$$
 est « proche » de  $E\left[\frac{\partial f_{m}(\mathbf{x}_{m,i};\mathbf{a}_{0})}{\partial \mathbf{a}}/\mathbf{z}_{m,i}\right]E\left[u_{m,i}^{2}/\mathbf{z}_{m,i}\right]^{-1}$ 

■ Si on choisit des  $\mathbf{r}_m(\mathbf{z}_{m,i}, \mathbf{b}_{m,0})$ , veiller à ce que les  $\mathbf{b}_{m,0}$  puissent être estimés de manière convergente.

#### Cas particulier important : $\mathbf{z}_{m,i} = \mathbf{z}_{i}$ pour m = 1,...,M

Définir:

$$\mathbf{f}(\mathbf{x}_{i}; \mathbf{a}_{0}) \equiv \begin{bmatrix} f_{1}(\mathbf{x}_{1,i}; \mathbf{a}_{0}) \\ \vdots \\ f_{M}(\mathbf{x}_{M,i}; \mathbf{a}_{0}) \end{bmatrix}, \ \mathbf{u}_{i}(\mathbf{a}) \equiv \begin{bmatrix} u_{1,i}(\mathbf{a}) \\ \vdots \\ u_{M,i}(\mathbf{a}) \end{bmatrix} \text{ et } \mathbf{u}_{i} \equiv \begin{bmatrix} u_{1,i} \\ \vdots \\ u_{M,i} \end{bmatrix}.$$

■ Définir **g**<sub>i</sub>(**a**) par :

$$\mathbf{g}_{i}(\mathbf{a}) \equiv \mathbf{R}(\mathbf{z}_{i})\mathbf{u}_{i}(\mathbf{a})$$
 ou  $\mathbf{g}_{i}(\mathbf{a}) \equiv \mathbf{R}(\mathbf{z}_{i};\mathbf{b}_{0})\mathbf{u}_{i}(\mathbf{a})$  avec  $\mathbf{b}_{0}$  identifiable.

• Choisir  $\mathbf{R}(\mathbf{z}_i)$  (ou  $\mathbf{R}(\mathbf{z}_i; \mathbf{b}_0)$ ) de telle sorte à ce que (Chamberlain) :

$$\mathbf{R}(\mathbf{z}_i)$$
 est « proche » de  $E\left[\frac{\partial \mathbf{f}(\mathbf{x}_i; \mathbf{a}_0)'}{\partial \mathbf{a}} / \mathbf{z}_i\right] E\left[\mathbf{u}_i \mathbf{u}_i' / \mathbf{z}_i\right]^{-1}$ .

## 2. Empiler les $g_{m,i}(\mathbf{a})$ , pour m=1,...,M

$$\mathbf{g}_{i}(\mathbf{a}) \equiv \begin{bmatrix} \mathbf{g}_{1,i}(\mathbf{a}) \\ \vdots \\ \mathbf{g}_{M,i}(\mathbf{a}) \end{bmatrix} \text{ et } E \Big[ \mathbf{g}_{m,i}(\mathbf{a}_{0}) \Big] = \mathbf{0} \text{ pour } m = 1,...,M$$

$$\updownarrow$$

$$E \Big[ \mathbf{g}_{i}(\mathbf{a}_{0}) \Big] = \mathbf{0}$$

Cas particulier important: 
$$\mathbf{z}_{m,i} = \mathbf{z}_i$$
 pour  $m = 1,...,M$ 

$$E[\mathbf{g}_i(\mathbf{a}_0)] \equiv E[\mathbf{R}(\mathbf{z}_i)\mathbf{u}_i(\mathbf{a}_0)] = \mathbf{0}$$

Si tout se passe bien, alors on a :

$$E[\mathbf{g}_i(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0$$

- Cette condition d'identification globale peut être examinée ex ante dans le cas des modèles linéaires.
- C'est plus difficile dans le cas des modèles (à formes fonctionnelles) nonlinéaires ...
  - ... et souvent  $E[\mathbf{g}_i(\mathbf{a})] = \mathbf{0}$  a plusieurs solutions en  $\mathbf{a}$ .

**Astuce** : Rester dans le cadre de modèles linéaires (ou presque)

- Si plusieurs solutions (bien identifiées, i.e. avec des matrices de variancecovariance « correctes » !).
  - Définir un ensemble A compact (domaine des valeurs admissibles pour a<sub>n</sub>) tel que :

$$E[\mathbf{g}_i(\mathbf{a})] = \mathbf{0} \text{ et } \mathbf{a} \in \mathcal{A} \iff \mathbf{a} = \mathbf{a}_0.$$

- Si  $E[\mathbf{g}_i(\mathbf{a}_0)] = \mathbf{0}$  décrit une équation de score (ou une partie d'équation de score), choisir la solution en  $\mathbf{a}$  de  $\overline{\mathbf{g}}_N(\mathbf{a}) = \mathbf{0}_{K\times 1}$  qui donne la valeur maximum de la vraisemblance de l'échantillon ...
  - $\dots$  cette solution correspond à l'estimateur du Maximum de Vraisemblance de  $\mathbf{a}_0$ .
- On « balaie » l'ensemble des solutions de  $\overline{\mathbf{g}}_{N}(\mathbf{a}) = \mathbf{0}_{K \times 1}$  ou des *minima* de  $\overline{\mathbf{g}}_{N}(\mathbf{a})' \widetilde{\mathbf{W}}_{N}^{-1} \overline{\mathbf{g}}_{N}(\mathbf{a})$  en lançant la procédure de calcul à partir de différents points initiaux pour  $\mathbf{a}$ .

3. Exploiter la condition de moment :

$$E[\mathbf{g}_i(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0$$

pour construire un estimateur de la MM(G) de  $a_0$ 

Voir ce qui précède

Adapter la procédure au modèle considéré ...

... dans la suite cas des modèles linéaires.

## **Procédure** : Les 3 étapes du calcul de $\hat{\mathbf{a}}_{N}^{MMG}$

Etape 1. On détermine une matrice  $\mathbf{M}_0$ , aussi proche que possible de  $\mathbf{W}_0^{-1}$ , dont on sache directement calculer un estimateur,  $\tilde{\mathbf{M}}_N \xrightarrow{p \atop N \to +\infty} \mathbf{M}_0$ . On calcule alors un estimateur convergent de  $\mathbf{a}_0$ ,  $\tilde{\mathbf{a}}_N \equiv \hat{\mathbf{a}}_N^{MMG}(\tilde{\mathbf{M}}_N)$ :

$$\tilde{\mathbf{a}}_N \equiv \arg\min_{\mathbf{a}} \overline{\mathbf{g}}_N(\mathbf{a})' \tilde{\mathbf{M}}_N \overline{\mathbf{g}}_N(\mathbf{a}).$$

**Etape 2**. On construit, à partir de  $\tilde{\mathbf{a}}_N^{MMG}$ , un estimateur de  $\mathbf{W}_0$ :

$$\tilde{\mathbf{W}}_{N} \equiv N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{g}_{i}(\tilde{\mathbf{a}}_{N}) \mathbf{g}_{i}(\tilde{\mathbf{a}}_{N})' \xrightarrow{p \atop N \to +\infty} \mathbf{W}_{0}.$$

**Etape 3**. La matrice  $\tilde{\mathbf{W}}_N$  permet alors de calculer un estimateur MMG optimal de  $\mathbf{a}_0$ :

$$\hat{\mathbf{a}}_{N}^{MMG} \equiv \arg\min_{\mathbf{a}} \overline{\mathbf{g}}_{N}(\mathbf{a})' \tilde{\mathbf{W}}_{N}^{-1} \overline{\mathbf{g}}_{N}(\mathbf{a})$$



### 2. Systèmes d'équations linéaires

On considère des systèmes à M équations de la forme :

$$\begin{cases} y_{1,i} = \mathbf{a}'_{1,0}\mathbf{x}_{1,i} + u_{1,i} & \text{et } E\left[u_{1,i}/\mathbf{z}_{1,i}\right] = 0 \\ \vdots & \vdots \\ y_{M,i} = \mathbf{a}'_{M,0}\mathbf{x}_{M,i} + u_{M,i} & \text{et } E\left[u_{M,i}/\mathbf{z}_{M,i}\right] = 0 \end{cases}$$

Ces systèmes peuvent être également notés :

$$\begin{cases} y_{m,i} = \mathbf{a}'_{m,0} \mathbf{x}_{m,i} + u_{m,i} & \text{et } E \left[ u_{m,i} / \mathbf{z}_{m,i} \right] = 0 \\ \text{pour } m = 1, ..., M \end{cases}$$

$$\begin{cases} y_{1,i} = \mathbf{a}'_{1,0} \mathbf{x}_{1,i} + u_{1,i} & \text{et } E \left[ u_{1,i} / \mathbf{z}_{1,i} \right] = 0 \\ \vdots & \vdots \\ y_{M,i} = \mathbf{a}'_{M,0} \mathbf{x}_{M,i} + u_{M,i} & \text{et } E \left[ u_{M,i} / \mathbf{z}_{M,i} \right] = 0 \end{cases}$$

On note  $\mathbf{a}_0$  le vecteur obtenu par empilement des éléments distincts des  $\mathbf{a}_{m,0}$  pour m=1,...,M.

On note  $\mathbf{a}_0$  le vecteur obtenu par empilement des  $\mathbf{a}_{m,0}$ :

$$\mathbf{\alpha}_0 \equiv \begin{bmatrix} \mathbf{a}_{1,0} \\ \vdots \\ \mathbf{a}_{M,0} \end{bmatrix}, \quad \mathbf{a}_0 = \mathbf{s}(\mathbf{\alpha}_0) \text{ et } \dim \mathbf{\alpha}_0 \equiv K_{\alpha} = \sum_{m=1}^M K_m \ge \dim \mathbf{a}_0 \equiv K.$$

$$\begin{cases} y_{1,i} = \mathbf{a}'_{1,0} \mathbf{x}_{1,i} + u_{1,i} & \text{et } E \left[ u_{1,i} / \mathbf{z}_{1,i} \right] = 0 \\ \vdots & \vdots \\ y_{M,i} = \mathbf{a}'_{M,0} \mathbf{x}_{M,i} + u_{M,i} & \text{et } E \left[ u_{M,i} / \mathbf{z}_{M,i} \right] = 0 \end{cases}$$

#### Les systèmes considérés ici sont très généraux :

- Chaque équation a son vecteur de  $K_m$  variables explicatives, de  $K_m$  paramètres et de  $L_m$  variables instrumentales.
- Les vecteurs de variables explicatives et de variables instrumentales peuvent avoir des éléments communs, dans une et entre les équations.
- Des paramètres peuvent être liés par des contraintes (linéaires) dans une équation ou entre équation.
  - Un paramètre peut être commun à plusieurs équations.

De tels systèmes se rencontrent fréquemment en économétrie appliquée :

- Systèmes de régressions empilées
  - Formes réduites de systèmes d'équations simultanées
  - Systèmes de fonctions de demande de bien, ...
- Systèmes d'équations simultanées
- Modèles/systèmes d'équations plus spécifiques :
  - Modèles de données de panel (statique ou dynamique)
  - CO1 de programmes d'optimisation (CO1 standard en statique, équations d'Euler en dynamique ; ...).

#### Exemple : Système de fonctions de demande de biens

Systèmes estimés pour l'analyse des effets de réformes fiscales :

$$\begin{cases} coef\_budget_{1,it} = d(\mathbf{prix}_{it}, revenu_{it}, \mathbf{c}_{it}; \mathbf{a}_{1,0}) + u_{1,it} \\ coef\_budget_{2,it} = d(\mathbf{prix}_{it}, revenu_{it}, \mathbf{c}_{it}; \mathbf{a}_{2,0}) + u_{2,it} \\ \vdots \\ coef\_budget_{M,it} = d(\mathbf{prix}_{it}, revenu_{it}, \mathbf{c}_{it}; \mathbf{a}_{M,0}) + u_{M,it} \end{cases}$$

 $revenu_{ii}$ : revenu du ménage i l'année t  $coef\_budget_{m,ii}$ : part des dépenses de bien m dans le revenu  $\mathbf{prix}_{ii}$ : vecteur des indices des prix des biens  $\mathbf{c}_{ii}$ : vecteur de variables décrivant le ménage i l'année t m: agrégats de biens (alimentation, transport, logement, ...)

Supposer que les  $\mathbf{a}_{m,0}$  peuvent avoir des éléments communs pour différentes équations implique qu'on sort du simple cadre de l' « empilement » de modèles linéaires.

- Si les a<sub>m,0</sub> ont des éléments communs pour différentes équations, alors un ensemble de contraintes est implicitement imposé sur les éléments de α<sub>0</sub>.
- Les estimateurs « classiques », SUR et 3MC, « excluent » ces contraintes.
  - Ceci dit, le système demeure linéaire.

L'intérêt d'une estimation « en système » par rapport à une estimation « équation par équation » est double :

- L'estimation « en système » est plus efficace as. car elle permet de tenir compte des corrélations entre les termes d'erreur des différentes équations du système, i.e. les corrélations entre les  $u_{m,i}$ .
- L'estimation « en système » est naturelle (et parfois nécessaire) si les  $\mathbf{a}_{m,0}$  ont des éléments communs pour différentes équations.

Lorsque le vecteur des paramètres d'intérêt du modèle,  $\mathbf{a}_0$ , est simplement l'empilement des  $\mathbf{a}_{m,0}$ , *i.e.*  $\mathbf{a}_0 = \mathbf{\alpha}_0$ , le système est dit « linéaire simple » :

$$\mathbf{Syst\`eme\ lin\'eaire\ simple}$$

$$\mathbf{y}_{i} = \mathbf{X}_{i}'\mathbf{a}_{0} + \mathbf{u}_{i} \quad \text{avec} \quad E[\mathbf{u}_{i}] = \mathbf{0}$$

$$\text{avec}:$$

$$\mathbf{a}_{0} \equiv \begin{bmatrix} \mathbf{a}_{1,0} \\ \mathbf{a}_{2,0} \\ \vdots \\ \mathbf{a}_{M,0} \end{bmatrix}, \ \mathbf{y}_{i} \equiv \begin{bmatrix} y_{1,i} \\ y_{2,i} \\ \vdots \\ y_{M,i} \end{bmatrix}, \ \mathbf{u}_{i} \equiv \begin{bmatrix} u_{1,i} \\ u_{2,i} \\ \vdots \\ u_{M,i} \end{bmatrix} \text{ et } \mathbf{X}_{i} \equiv \begin{bmatrix} \mathbf{x}_{1,i} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_{2,i} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x}_{M,i} \end{bmatrix}.$$

La matrice  $[X_iX_i']$  étant bloc-diagonale, on peut aisément vérifier que :

$$rangE[\mathbf{X}_{i}\mathbf{X}'_{i}] = K = \sum_{m=1}^{M} K_{m} \iff rangE[\mathbf{x}_{m,i}\mathbf{x}'_{m,i}] = K_{m} \text{ pour } m = 1,...,M.$$

Dans le cas où des éléments des  $\mathbf{a}_{m,0}$  sont « partagés » par différentes équations du système,  $\mathbf{a}_0$  n'est plus l'empilement des  $\mathbf{a}_{m,0}$  pour m=1,...,M.

Le vecteur des paramètres d'intérêt  ${\bf a}_0$  contient alors les éléments distincts des  ${\bf a}_{m,0}$  pour m=1,...,M.

On peut alors considérer que  $\mathbf{a}_0$  est un vecteur de paramètres dits *contraints*, *i.e.* résultant de l'imposition de contraintes sur un vecteur de paramètres dits *libres*.

On définit ici ce vecteur de paramètres libres  $a_0$  en empilant simplement les vecteurs  $a_{m,0}$  définis pour chacune des équations, bien entendu on a :

$$\dim \boldsymbol{\alpha}_0 = K_{\alpha} > K = \dim \mathbf{a}_0.$$

Le vecteur  $\mathbf{q}_0$  est lié à  $\mathbf{a}_0$ , le vecteur de paramètres d'intérêt, par une fonction linéaire représentée par une matrice  $\mathbf{S}$  de dimension  $K_{\alpha} \times K$ :

$$\boldsymbol{\alpha}_0 \equiv \begin{bmatrix} \boldsymbol{\alpha}_{1,0} \\ \boldsymbol{\alpha}_{2,0} \\ \vdots \\ \boldsymbol{\alpha}_{M,0} \end{bmatrix}_{K_o \times 1} \text{ et } \boldsymbol{\alpha}_0 = \mathbf{S} \mathbf{a}_0 = \begin{bmatrix} \mathbf{S}_1 \\ \mathbf{S}_2 \\ \vdots \\ \mathbf{S}_M \end{bmatrix} \mathbf{a}_0 = \begin{bmatrix} \mathbf{a}_{1,0} \\ \mathbf{a}_{2,0} \\ \vdots \\ \mathbf{a}_{M,0} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_1 \mathbf{a}_0 \\ \mathbf{S}_2 \mathbf{a}_0 \\ \vdots \\ \mathbf{S}_2 \mathbf{a}_0 \end{bmatrix}$$

La matrice **S** est une matrice de sélection composée de 0 et de 1. La matrice **S** permet de construire  $a_0$  à partir de  $a_0$ , en particulier on a :

$$\mathbf{a}_{m,0} = \mathbf{S}_{m} \mathbf{a}_{0} \text{ pour } m = 1,...,M$$
,

*i.e.* la matrice  $S_m$  ( $K_m \times K$ ) sélectionne les éléments de  $\mathbf{a}_0$  qui se trouvent dans  $\mathbf{a}_{m,0}$ .

La même technique peut définir  $\mathbf{a}_0$  à partir de contraintes linéaires sur  $\mathbf{\alpha}_0$ .

Bien entendu:

$$rang \mathbf{S}_m = \dim \mathbf{a}_{m,0} = K_m \le \dim \mathbf{a}_0 = K$$

L'intérêt de cette formulation est qu'on peut alors écrire le système d'équations :

$$\begin{cases} y_{m,i} = \mathbf{x}'_{m,i} \mathbf{a}_{m,0} + u_{m,i} & \text{et } E \left[ u_{m,i} / \mathbf{z}_{m,i} \right] = 0 \\ \text{pour } m = 1, ..., M \end{cases}$$

sous la forme:

$$\begin{cases} y_{m,i} = \mathbf{x}'_{m,i} \mathbf{\alpha}_{m,0} = \mathbf{x}'_{m,i} \mathbf{S}_m \mathbf{a}_0 + u_{m,i} & \text{et } E \left[ u_{m,i} / \mathbf{z}_{m,i} \right] = 0 \\ \text{pour } m = 1, ..., M \end{cases}$$

On a alors:

$$\mathbf{y}_i = \mathbf{X}_i' \mathbf{S} \mathbf{a}_0 + \mathbf{u}_i \quad \text{avec} \quad E[\mathbf{u}_i] = \mathbf{0},$$

**Rmq.** Il n'est pas toujours possible d'estimer  $\mathbf{a}_0$  à partir de chaque équation.

$$\mathbf{y}_i = \mathbf{X}_i' \mathbf{S} \mathbf{a}_0 + \mathbf{u}_i \quad \text{avec} \quad E[\mathbf{u}_i] = \mathbf{0},$$

*i.e.* même lorsque des éléments des  $\mathbf{a}_{m,0}$  sont « partagés » par différentes équations du système, le système peut s'écrire sous la forme général d'un système linéaire, moyennant la définition de la matrice de sélection  $\mathbf{S}$ .

La matrice **S** est de dimension  $K_{\alpha} \times K$  et de rang K. Ceci implique que :

$$rangE[\mathbf{S}'\mathbf{X}_{i}\mathbf{X}_{i}'\mathbf{S}] = rang(\mathbf{S}'E[\mathbf{X}_{i}\mathbf{X}_{i}']\mathbf{S}) = K.$$

On montrera que l'estimateur MMG optimal de  $\mathbf{a}_0$  peut être écrit sous forme explicite, que ce soit dans le cas linéaire ou dans le cas linéaire avec égalités inter-équations (sur les paramètres).

#### Rmq. Il est possible que :

- (i)  $\mathbf{S}'E[\mathbf{X}_{i}\mathbf{X}'_{i}]\mathbf{S}$  soit de rang K et que les  $\mathbf{S}'_{m}E[\mathbf{x}_{m,i}\mathbf{x}'_{m,i}]\mathbf{S}_{m}$  soient également tous de rang K. Dans ce cas  $\mathbf{a}_{0}$  peut être identifiable dans chacune des équations du système.
- (ii)  $\mathbf{S'}E[\mathbf{X}_{i}\mathbf{X}'_{i}]\mathbf{S}$  soit de rang K sans qu'aucun des  $\mathbf{S'}_{m}E[\mathbf{x}_{m,i}\mathbf{x}'_{m,i}]\mathbf{S}_{m}$  soit de rang K. Dans ce cas,  $\mathbf{a}_{0}$  n'est identifiable dans aucune équation du système mais peut l'être dans le système.

$$\mathbf{S}'E[\mathbf{X}_{i}\mathbf{X}'_{i}]\mathbf{S} = \begin{bmatrix} \mathbf{S}'_{1}E[\mathbf{x}_{1,i}\mathbf{x}'_{1,i}]\mathbf{S}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}'_{2}E[\mathbf{x}_{2,i}\mathbf{x}'_{2,i}]\mathbf{S}_{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{S}'_{M}E[\mathbf{x}_{M,i}\mathbf{x}'_{M,i}]\mathbf{S}_{M} \end{bmatrix}$$

## 3. Estimateurs MMG optimaux dans les systèmes

d'équations linéaires

# 3. Estimateurs MMG optimaux dans les systèmes d'équations linéaires

On reprend ici le principe de construction des estimateurs MMG optimaux.

On obtient un estimateur de la MMG de a<sub>0</sub> en :

- i. construisant les conditions d'orthogonalité équation par équation,
- ii. en empilant les conditions de moment ainsi obtenues en une seule condition de moment

et:

*iii.* en construisant un estimateur de  $\mathbf{a}_0$  à partir de cette condition de moment dans le cadre d'inférence que procure la MMG.

#### 3.1. Construction des conditions d'orthogonalité

Dans tous les cas, les conditions d'orthogonalité sont d'abord construites équation par équation. Ici on choisit :

$$E\left[\mathbf{z}_{m,i}(y_{m,i} - \mathbf{x}'_{m,i}\mathbf{a}_{m,0})\right] = \mathbf{0}_{L_m \times 1} \text{ pour } m = 1,...,M$$

ou:

$$E\left[\mathbf{g}_{m,i}(\mathbf{a}_{m,0})\right] = \mathbf{0}_{L_m \times 1} \text{ avec } \mathbf{g}_{m,i}(\mathbf{a}_m) \equiv \mathbf{z}_{m,i}(y_{m,i} - \mathbf{x}'_{m,i}\mathbf{a}_m) \text{ pour } m = 1,...,M.$$

Puis on empile les conditions de moment estimantes obtenues pour obtenir :

$$E[\mathbf{g}_{i}(\mathbf{a}_{0})] = \mathbf{0}_{L \times 1} \text{ avec } \mathbf{g}_{i}(\mathbf{a}) \equiv \begin{bmatrix} \mathbf{g}_{1,i}(\mathbf{a}_{2}) \\ \vdots \\ \mathbf{g}_{M,i}(\mathbf{a}_{M}) \end{bmatrix}_{I \times 1}$$

dans le cas général. Dans les cas linéaire et linéaire « avec égalités interéquations », on a :

## Condition de moment, cas du système linéaire simple

$$E[\mathbf{Z}_{i}(\mathbf{y}_{i}-\mathbf{X}_{i}'\mathbf{a}_{0})]=\mathbf{0}_{L\times 1}$$

et:

Condition de moment, cas du système linéaire avec égalités inter-équations

$$E[\mathbf{Z}_{i}(\mathbf{y}_{i}-\mathbf{X}_{i}'\mathbf{S}\mathbf{a}_{0})]=\mathbf{0}_{L\times\mathbf{I}}$$

avec:

$$\mathbf{Z}_{i} \equiv \begin{bmatrix} \mathbf{z}_{1,i} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{z}_{2,i} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{z}_{M,i} \end{bmatrix}.$$

#### 3.2. Examen de la forme de W<sub>0</sub>

Dans le cas général on a :

$$\mathbf{W}_0 \equiv E[\mathbf{g}_i(\mathbf{a}_0)\mathbf{g}_i(\mathbf{a}_0)']$$

et:

$$\mathbf{W}_0 \equiv E\big[\mathbf{Z}_i \mathbf{u}_i \mathbf{u}_i' \mathbf{Z}_i'\big]$$

dans les cas linéaires, avec ou sans égalités inter-équations dans les paramètres.

Dans ces derniers cas, l'expression de se simplifie sous l'hypothèse d'homoscédasticité des  $\mathbf{u}_i$ , *i.e.* si :

$$E[\mathbf{u}_i\mathbf{u}_i'/\mathbf{z}_i] = E[\mathbf{u}_i\mathbf{u}_i'] \equiv \mathbf{\Omega}_0$$

où  $\mathbf{z}_i$  est le vecteur contenant les éléments distincts des  $\mathbf{z}_{m,i}$  pour m=1,...,M.

## Remarque. Forme de $W_0 \equiv E[Z_i u_i u_i' Z_i']$

$$E[\mathbf{Z}_{i}\mathbf{u}_{i}\mathbf{u}_{i}'\mathbf{Z}_{i}'] = \begin{bmatrix} E[\mathbf{z}_{1,i}u_{1,i}^{2}\mathbf{z}_{1,i}'] & E[\mathbf{z}_{1,i}u_{1,i}u_{2,i}\mathbf{z}_{2,i}'] & \cdots & E[\mathbf{z}_{1,i}u_{1,i}u_{M,i}\mathbf{z}_{M,i}'] \\ E[\mathbf{z}_{2,i}u_{2,i}u_{1,i}\mathbf{z}_{1,i}'] & E[\mathbf{z}_{2,i}u_{2,i}\mathbf{z}_{2,i}'] & \cdots & E[\mathbf{z}_{2,i}u_{2,i}u_{M,i}\mathbf{z}_{M,i}'] \\ \vdots & \vdots & \ddots & \mathbf{0} \\ E[\mathbf{z}_{M,i}u_{M,i}u_{1,i}\mathbf{z}_{1,i}'] & E[\mathbf{z}_{M,i}u_{M,i}u_{2,i}\mathbf{z}_{2,i}'] & \cdots & E[\mathbf{z}_{M,i}u_{M,i}^{2}\mathbf{z}_{M,i}'] \end{bmatrix}$$

- Les corrélations entre les éléments de  $\mathbf{u}_i$  font que  $\mathbf{W}_0 \equiv E[\mathbf{Z}_i \mathbf{u}_i \mathbf{u}_i' \mathbf{Z}_i']$  est très rarement bloc-diagonale.
- L'hypothèse d'homoscédasticité de  $\mathbf{u}_i$  apparaît relativement « étrange » si les vecteurs d'instruments, les  $\mathbf{z}_{m,i}$ , diffèrent d'une équation à l'autre.

■ Si  $E[u_{\ell,i}/\mathbf{z}_{m,i}] = \eta_{\ell}(\mathbf{z}_{m,i}) \neq 0$ , *i.e.* si  $\mathbf{z}_{m,i}$  est (au moins partiellement) endogène par rapport à  $u_{\ell,i}$  alors il est vraisemblable que :

$$E\left[\mathbf{z}_{m,i}u_{m,i}u_{\ell,i}\mathbf{z}_{\ell,i}'\right]\neq\omega_{m\ell}E\left[\mathbf{z}_{m,i}\mathbf{z}_{\ell,i}'\right].$$

- L'homoscédasticité de  $\mathbf{u}_i$  est plus vraisemblable si  $\mathbf{z}_{m,i} = \mathbf{z}_i$  pour m = 1, ..., M.
- Pour cette dernière raison, nous considérerons le cas hétéroscédastique pratiquement tout au long de ce chapitre,
  - Sauf pour présenter deux estimateurs classiques : l'estimateur SUR et l'estimateur des 3MC.

$$\mathbf{W}_0 \equiv E\left[\mathbf{Z}_i \mathbf{u}_i \mathbf{u}_i' \mathbf{Z}_i'\right]$$

On a :

$$\mathbf{W}_0 \equiv E\left[\mathbf{Z}_i \mathbf{u}_i \mathbf{u}_i' \mathbf{Z}'\right] = E\left[\mathbf{Z}_i (\mathbf{y}_i - \mathbf{X}_i' \mathbf{S} \mathbf{a}_0) (\mathbf{y}_i - \mathbf{X}_i' \mathbf{S} \mathbf{a}_0)' \mathbf{Z}_i'\right],$$

aussi on pourra estimer  $\mathbf{W}_0 \equiv E[\mathbf{Z}_i \mathbf{u}_i \mathbf{u}_i' \mathbf{Z}_i']$  si on dispose d'un estimateur convergent de  $\mathbf{a}_0$ ,  $\tilde{\mathbf{a}}_N$ , avec :

$$\tilde{\mathbf{W}}_{N} \equiv N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{Z}_{i} (\mathbf{y}_{i} - \mathbf{X}_{i}' \mathbf{S} \tilde{\mathbf{a}}_{N}) (\mathbf{y}_{i} - \mathbf{X}_{i}' \mathbf{S} \tilde{\mathbf{a}}_{N})' \mathbf{Z}_{i}' \xrightarrow{p} \mathbf{W}_{0}$$

■ La matrice la plus proche de  $E[\mathbf{Z}_i\mathbf{u}_i\mathbf{u}_i'\mathbf{Z}_i']$  dont on sache calculer directement un estimateur convergent est  $E[\mathbf{Z}_i\mathbf{Z}_i']$  puisque :

$$N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{Z}'_{i} \xrightarrow{p} E[\mathbf{Z}_{i} \mathbf{Z}'_{i}].$$

#### 3.3. Estimateurs MMG optimaux des systèmes linéaires

Dans le cas général, les estimateurs MMG optimaux de  $\mathbf{a}_0$  sont de la forme :

$$\hat{\mathbf{a}}_{N}^{MMG} \equiv \arg\min_{\mathbf{a}} \left( N^{-1} \sum_{i=1}^{N} \mathbf{g}(\mathbf{w}_{i}; \mathbf{a})' \right) \tilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{g}(\mathbf{w}_{i}; \mathbf{a}) \right)$$

avec:

$$\tilde{\mathbf{W}}_{N} \xrightarrow{p \atop N \to +\infty} E[\mathbf{g}_{i}(\mathbf{a}_{0})\mathbf{g}_{i}(\mathbf{a}_{0})'].$$

Dans le cas linéaire, on a :

$$\hat{\mathbf{a}}_{N}^{MMG} \equiv \arg\min_{\mathbf{a}} \left( N^{-1} \sum\nolimits_{i=1}^{N} (\mathbf{y}_{i} - \mathbf{X}_{i}'\mathbf{S}\mathbf{a})'\mathbf{Z}_{i}' \right) \tilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{Z}_{i}(\mathbf{y}_{i} - \mathbf{X}_{i}'\mathbf{S}\mathbf{a}) \right)$$

avec:

$$\tilde{\mathbf{W}}_{N} \xrightarrow{p \atop N \to +\infty} E[\mathbf{Z}_{i}\mathbf{u}_{i}\mathbf{u}_{i}'\mathbf{Z}'] = E[\mathbf{Z}_{i}(\mathbf{y}_{i} - \mathbf{X}_{i}'\mathbf{S}\mathbf{a}_{0})(\mathbf{y}_{i} - \mathbf{X}_{i}'\mathbf{S}\mathbf{a}_{0})'\mathbf{Z}_{i}']$$

et:

$$S = I_K$$
 dans le cas linéaire simple.

Les CO1 de:

$$\min_{\mathbf{a}} \left( N^{-1} \sum_{i=1}^{N} (\mathbf{y}_{i} - \mathbf{X}_{i}' \mathbf{S} \mathbf{a})' \mathbf{Z}_{i}' \right) \widetilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} (\mathbf{y}_{i} - \mathbf{X}_{i}' \mathbf{S} \mathbf{a}) \right)$$

sont données par :

$$-2\times \left(N^{-1}\sum\nolimits_{i=1}^{N}\mathbf{S'}\mathbf{X}_{i}\mathbf{Z}_{i}'\right)\tilde{\mathbf{W}}_{N}^{-1}\left(N^{-1}\sum\nolimits_{i=1}^{N}\mathbf{Z}_{i}(\mathbf{y}_{i}-\mathbf{X}_{i}'\mathbf{S}\hat{\mathbf{a}}_{N}^{MMG})\right)=\mathbf{0}_{K\times 1}.$$

On en déduit que :

$$\hat{\mathbf{a}}_{N}^{MMG} = \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \tilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}'_{i} \mathbf{S} \right) \right]^{-1} \times \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \tilde{\mathbf{W}}_{N}^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{y}_{i}$$

On retrouve ici la structure d'un estimateur des 2MC.

# Propriété. Estimateurs MMG optimaux de a<sub>0</sub> dans les systèmes linéaires

Soit un système d'équations linéaires tel que :

$$\mathbf{y}_i = \mathbf{X}_i' \mathbf{S} \mathbf{a}_0 + \mathbf{u}_i \quad \text{avec} \quad E[\mathbf{u}_i] = \mathbf{0}$$

et:

$$E[\mathbf{Z}_{i}(\mathbf{y}_{i} - \mathbf{X}_{i}'\mathbf{S}\mathbf{a}_{0})] = \mathbf{0}_{L \times 1} \text{ avec } rang E[\mathbf{Z}_{i}\mathbf{X}_{i}'\mathbf{S}] = K.$$

Alors les estimateurs de la MMG optimaux de  $\mathbf{a}_0$  sont définis par :

$$\hat{\mathbf{a}}_{N}^{MMG} = \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \tilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}'_{i} \mathbf{S} \right) \right]^{-1} \times \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \tilde{\mathbf{W}}_{N}^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{y}_{i}$$

où:

$$\tilde{\mathbf{W}}_{N} \xrightarrow{p} E[\mathbf{Z}_{i}\mathbf{u}_{i}\mathbf{u}_{i}'\mathbf{Z}'] = E[\mathbf{Z}_{i}(\mathbf{y}_{i} - \mathbf{X}_{i}'\mathbf{S}\mathbf{a}_{0})(\mathbf{y}_{i} - \mathbf{X}_{i}'\mathbf{S}\mathbf{a}_{0})'\mathbf{Z}_{i}'].$$

La matrice  $\tilde{\mathbf{W}}_N$  peut être calculée à partir des deux étapes suivantes :

Etape 1 : Calcul de  $\tilde{\mathbf{a}}_N$ , estimateur MMG non optimal de  $\mathbf{a}_0$ 

$$\begin{split} \tilde{\mathbf{a}}_{N} = & \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{Z}'_{i} \right)^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}'_{i} \mathbf{S} \right) \right]^{-1} \\ \times & \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{Z}'_{i} \right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{Y}_{i} \end{split}$$

Etape 2 : Calcul de  $\tilde{W}_{N}$ 

$$\tilde{\mathbf{W}}_{N} \equiv N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{Z}_{i} \tilde{\mathbf{u}}_{N,i} \tilde{\mathbf{u}}_{N,i}' \mathbf{Z}_{i}' \xrightarrow{p \atop N \rightarrow +\infty} E \left[ \mathbf{Z}_{i} \mathbf{u}_{i} \mathbf{u}_{i}' \mathbf{Z}_{i}' \right]$$

avec:

$$\tilde{\mathbf{u}}_{N,i} \equiv \mathbf{y}_i - \mathbf{X}_i' \mathbf{S} \tilde{\mathbf{a}}_N \xrightarrow{p \atop N \to +\infty} \mathbf{u}_i$$

# Etape 3 : Calcul de $\hat{\mathbf{a}}_{N}^{MMG}$

$$\hat{\mathbf{a}}_{N}^{MMG} = \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \tilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}'_{i} \mathbf{S} \right) \right]^{-1} \times \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \tilde{\mathbf{W}}_{N}^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{y}_{i}$$

avec:

$$\tilde{\mathbf{u}}_{N,i} \equiv \mathbf{y}_i - \mathbf{X}_i' \mathbf{S} \tilde{\mathbf{a}}_N \xrightarrow[N \to +\infty]{p} \mathbf{u}_i$$

D'après les propriétés des estimateurs MMG optimaux on sait :

$$\sqrt{N}(\hat{\mathbf{a}}_{N}^{MMG} - \mathbf{a}_{0}) \xrightarrow{L} \mathcal{N}(\mathbf{0}; \boldsymbol{\Sigma}_{0})$$

avec:

$$\boldsymbol{\Sigma}_{0} \equiv \left( E[\mathbf{S}'\mathbf{X}_{i}\mathbf{Z}'_{i}] E[\mathbf{Z}_{i}\mathbf{u}_{i}\mathbf{u}'_{i}\mathbf{Z}'_{i}]^{-1} E[\mathbf{Z}_{i}\mathbf{X}'_{i}\mathbf{S}] \right)^{-1}.$$

et:

$$\hat{\boldsymbol{\Sigma}}_{N} \equiv \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \hat{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}'_{i} \mathbf{S} \right) \right]^{-1} \xrightarrow{P \longrightarrow \infty} \boldsymbol{\Sigma}_{0}$$

avec:

$$N^{-1} \sum_{i=1}^{N} \mathbf{S'} \mathbf{X}_{i} \mathbf{Z'}_{i} \xrightarrow{p \atop N \to +\infty} E[\mathbf{S'} \mathbf{X}_{i} \mathbf{Z'}]$$

et

$$\hat{\mathbf{W}}_{N} \equiv N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \hat{\mathbf{u}}_{N,i} \hat{\mathbf{u}}'_{N,i} \mathbf{Z}'_{i} \xrightarrow{p \atop N \to +\infty} E[\mathbf{Z}_{i} \mathbf{u}_{i} \mathbf{u}'_{i} \mathbf{Z}'_{i}] \text{ où } \hat{\mathbf{u}}_{N,i} \equiv \mathbf{y}_{i} - \mathbf{X}'_{i} \mathbf{S} \hat{\mathbf{a}}_{N}^{MMG}.$$

**Rmq**. On recalcule un estimateur de  $\mathbf{W}_0 \equiv E[\mathbf{Z}_i \mathbf{u}_i \mathbf{u}_i' \mathbf{Z}_i']$ ,  $\hat{\mathbf{W}}_N$ , à partir de  $\hat{\mathbf{a}}_N^{MMG}$ . Cet estimateur est (en général) plus efficace que  $\tilde{\mathbf{a}}_N$ .

# 4. Estimation « en système » versus « équation par

équation »

### 4. Estimation « en système » versus « équation par équation »

Le premier cas particulier important est celui du système linéaire sans contraintes inter-équations sur les paramètres. Ce système est caractérisé par :

$$\mathbf{y}_i = \mathbf{X}_i' \mathbf{a}_0 + \mathbf{u}_i$$
 avec  $E[\mathbf{u}_i] = \mathbf{0}$  et  $E[\mathbf{Z}_i(\mathbf{y}_i - \mathbf{X}_i' \mathbf{a}_0)] = \mathbf{0}_{L \times I}$ 

Ces systèmes sont importants pour deux raisons :

- Ils permettent de comparer les logiques d'estimation « en système » et « équation par équation », cette dernière n'ayant pas grand intérêt lorsqu'il existe des égalités inter-équations de paramètres.
- Deux systèmes d'équations linéaires classiques, analysés dans la suite, sont des cas particuliers de ces systèmes : les systèmes d'équations simultanées « standards » et les systèmes de régression empilées « standards ».

L'estimateur MMG de **a**<sub>0</sub> dans ces systèmes est donné par :

$$\begin{split} \hat{\mathbf{a}}_{N}^{MMG} &\equiv \arg\min_{\mathbf{a}} \left( N^{-1} \sum\nolimits_{i=1}^{N} (\mathbf{y}_{i} - \mathbf{X}_{i}' \mathbf{a})' \mathbf{Z}_{i}' \right) \tilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{Z}_{i} (\mathbf{y}_{i} - \mathbf{X}_{i}' \mathbf{a}) \right) \\ &\text{avec}: \\ &\tilde{\mathbf{W}}_{N} \xrightarrow{\frac{p}{N \rightarrow +\infty}} E \left[ \mathbf{Z}_{i} \mathbf{u}_{i} \mathbf{u}_{i}' \mathbf{Z}' \right], \end{split}$$

c'est un estimateur « en système ».

- Il exploite conjointement l'information contenue dans l'ensemble des données et dans l'ensemble des équations du système.
- En particulier, il tient compte des *corrélations potentielles entre les éléments de*  $\mathbf{u}_i$  *via*  $\tilde{\mathbf{W}}_N \xrightarrow{P \atop N \to +\infty} E[\mathbf{Z}_i \mathbf{u}_i \mathbf{u}_i' \mathbf{Z}']$

En revanche, l'estimateur utilisé pour le calcul de  $\tilde{\mathbf{W}}_N$ :

$$\tilde{\mathbf{a}}_{N} = \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{Z}'_{i} \right)^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}'_{i} \mathbf{S} \right) \right]^{-1} \\ \times \left( N^{-1} \sum_{i=1}^{N} \mathbf{S}' \mathbf{X}_{i} \mathbf{Z}'_{i} \right) \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{Z}'_{i} \right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{y}_{i}$$

est un estimateur « équation par équation » lorsque  $S = I_K$ .

En effet, on montre que  $\tilde{\mathbf{a}}_N$  est l'empilement des estimateurs des 2MC des  $\mathbf{a}_{m,0}$ :

$$\hat{\mathbf{a}}_{m,N}^{2MC} = \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{x}_{m,i} \mathbf{z}'_{m,i} \right) \left( N^{-1} \sum_{i=1}^{N} \mathbf{z}_{m,i} \mathbf{z}'_{m,i} \right)^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{z}_{m,i} \mathbf{x}'_{m,i} \right) \right]^{-1} \\
\times \left( N^{-1} \sum_{i=1}^{N} \mathbf{x}_{m,i} \mathbf{z}'_{m,i} \right) \left( N^{-1} \sum_{i=1}^{N} \mathbf{z}_{m,i} \mathbf{z}'_{m,i} \right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{z}_{m,i} y_{m,i}$$

pour m = 1,...,M, en utilisant :

$$N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{Z}'_{i} \equiv \begin{bmatrix} N^{-1} \sum_{i=1}^{N} \mathbf{x}_{1,i} \mathbf{z}'_{1,i} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & N^{-1} \sum_{i=1}^{N} \mathbf{x}_{M,i} \mathbf{z}'_{M,i} \end{bmatrix},$$

$$N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{y}_{i} \equiv \begin{bmatrix} N^{-1} \sum_{i=1}^{N} \mathbf{z}_{1,i} y_{1,i} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & N^{-1} \sum_{i=1}^{N} \mathbf{z}_{M,i} y_{M,i} \end{bmatrix}$$

et:

$$\left[ N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime} \right]^{-1} \equiv \begin{bmatrix} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{1,i} \mathbf{Z}_{1,i}^{\prime} \end{bmatrix}^{-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \left[ N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{M,i} \mathbf{Z}_{M,i}^{\prime} \right]^{-1} \end{bmatrix}.$$

L'estimateur  $\tilde{\mathbf{a}}_N$  n'est pas l'estimateur MMG « équation par équation » optimal de  $\mathbf{a}_0$ . De fait, en présence d'hétéroscédasticité potentielle des  $\mathbf{u}_i$ , l'estimateur MMG « équation par équation » optimal de  $\mathbf{a}_0$  est  $\hat{\mathbf{a}}_{E,N}^{MMG}$ :

# Estimateur MMG « équation par équation » optimal de $\mathbf{a}_0$

$$\hat{\mathbf{a}}_{\mathbf{E},N}^{MMG} \equiv \begin{bmatrix} \hat{\mathbf{a}}_{1,N}^{2MCH} \\ \vdots \\ \hat{\mathbf{a}}_{M,N}^{2MCH} \end{bmatrix}$$

où:

$$\hat{\mathbf{a}}_{m,N}^{2MCH} = \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{x}_{m,i} \mathbf{z}'_{m,i} \right) \tilde{\mathbf{W}}_{m,N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{z}_{m,i} \mathbf{x}'_{m,i} \right) \right]^{-1} \times \left( N^{-1} \sum_{i=1}^{N} \mathbf{x}_{m,i} \mathbf{z}'_{m,i} \right) \tilde{\mathbf{W}}_{m,N}^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{z}_{m,i} y_{m,i} \mathbf{z}'_{m,i}$$

avec:

$$\tilde{\mathbf{W}}_{m,N} \equiv N^{-1} \sum_{i=1}^{N} \tilde{u}_{N,m,i}^2 \mathbf{z}_{m,i} \mathbf{z}_{m,i}' - \frac{p}{N \to +\infty} \to E \left[ u_{m,i}^2 \mathbf{z}_{m,i} \mathbf{z}_{m,i}' \right] \text{ et } \tilde{u}_{N,i} \equiv y_i - \mathbf{x}_i' \mathbf{a}_N^{2MC}.$$

### Propriété. Estimation « en système » et « équation par équation »

- (i) L'estimateur « en système »  $\hat{\mathbf{a}}_{N}^{MMG}$ , est égal à l'estimateur « équation par équation  $\hat{\mathbf{a}}_{E,N}^{MMG}$ , i.e.  $\hat{\mathbf{a}}_{E,N}^{MMG} = \hat{\mathbf{a}}_{N}^{MMG}$ , si dim  $\mathbf{z}_{m,i} = \dim \mathbf{a}_{m,0}$  pour m = 1,...,M. C'est-à-dire si chaque  $\mathbf{a}_{m,0}$  est juste-identifié dans son équation.
- (ii) On a:  $\hat{\mathbf{a}}_{N}^{MMG} \hat{\mathbf{a}}_{E,N}^{MMG} \xrightarrow{p} \mathbf{0}_{K \times 1}$ , i.e. les estimateurs  $\hat{\mathbf{a}}_{N}^{MMG}$  et  $\hat{\mathbf{a}}_{E,N}^{MMG}$  sont as. équivalents, si:

$$E[\mathbf{Z}_{i}\mathbf{u}_{i}\mathbf{u}_{i}'\mathbf{Z}_{i}'] = \begin{bmatrix} E[\mathbf{z}_{1,i}u_{1,i}^{2}\mathbf{z}_{1,i}'] & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & E[\mathbf{z}_{2,i}u_{2,i}^{2}\mathbf{z}_{2,i}'] & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \cdots & E[\mathbf{z}_{M,i}u_{M,i}^{2}\mathbf{z}_{M,i}'] \end{bmatrix}$$

(iii) Dans les autres cas  $\hat{\mathbf{a}}_{N}^{MMG}$  est as. plus efficace que  $\hat{\mathbf{a}}_{E,N}^{MMG}$ .

### Condition (i).

Les estimateurs  $\hat{\mathbf{a}}_{N}^{MMG}$  et  $\hat{\mathbf{a}}_{E,N}^{MMG}$  sont des estimateurs MMG qui ne diffèrent que par la matrice de pondération du critère MMG, *i.e.* avec l'inverse de  $\tilde{\mathbf{W}}_{N}$  pour  $\hat{\mathbf{a}}_{E,N}^{MMG}$  Pour  $\hat{\mathbf{a}}_{E,N}^{MMG}$  on a :

$$\hat{\mathbf{a}}_{E,N}^{MMG} = \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{Z}_{i}^{\prime} \right) \tilde{\mathbf{W}}_{E,N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}_{i}^{\prime} \right) \right]^{-1} \times \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{Z}_{i}^{\prime} \right) \tilde{\mathbf{W}}_{E,N}^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{y}_{i}$$

avec:

$$\tilde{\mathbf{W}}_{\mathbf{E},N} = \begin{bmatrix} \tilde{\mathbf{W}}_{1,N} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{W}}_{2,N} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \cdots & \tilde{\mathbf{W}}_{M,N} \end{bmatrix}.$$

Dans les cas juste-identifié, ces matrices n'ont aucun effet. En fait, on a dans ce cas :

$$\hat{\mathbf{a}}_{N}^{MMG} = \hat{\mathbf{a}}_{E,N}^{MMG} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{y}_{i},$$

i.e.  $\hat{\mathbf{a}}_{N}^{MMG}$  et  $\hat{\mathbf{a}}_{E,N}^{MMG}$  sont des estimateurs de la MM (« non généralisée »).

De fait, les estimateurs  $\hat{\mathbf{a}}_{N}^{MMG}$  et  $\hat{\mathbf{a}}_{E,N}^{MMG}$  sont obtenus comme l'empilement des estimateurs des VI des  $\mathbf{a}_{m,0}$  pour m=1,...,M:

$$\hat{\mathbf{a}}_{m,N}^{VI} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{z}_{m,i} \mathbf{x}_{m,i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{z}_{m,i} y_{m,i}.$$

### Condition (ii).

Les estimateurs  $\hat{\mathbf{a}}_N^{MMG}$  et  $\hat{\mathbf{a}}_{E,N}^{MMG}$  ont la même matrice de variance covariance as. lorsque :

$$\mathbf{W}_0 \equiv E\left[\mathbf{Z}_i \mathbf{u}_i \mathbf{u}_i' \mathbf{Z}_i'\right] = \begin{bmatrix} \mathbf{W}_{1,0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{W}_{2,0} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{W}_{M,0} \end{bmatrix}$$

où  $\mathbf{W}_{m,0} \equiv p \lim_{N \to +\infty} \tilde{\mathbf{W}}_{m,N}$  pour m = 1,...,M en effet dans ce cas :

$$p \lim\nolimits_{N \to +\infty} \tilde{\mathbf{W}}_{\mathbf{E},N} = p \lim\nolimits_{N \to +\infty} \tilde{\mathbf{W}}_{N} = \mathbf{W}_{0}.$$

Rmq. Cette condition (ii) se rencontre de manière exceptionnelle en pratique.

### Condition (iii).

Dans tous les autres cas, l'estimateur  $\hat{\mathbf{a}}_N^{MMG}$  est as. plus efficace que  $\hat{\mathbf{a}}_{E,N}^{MMG}$  car  $\hat{\mathbf{a}}_{E,N}^{MMG}$  n'est pas un estimateur MMG optimal de  $\mathbf{a}_0$ :

- (a) a<sub>0</sub> est sur-identifié par les conditions de moment utilisé, ce qui implique que les matrices de pondération utilisées pour le calcul des estimateurs de a<sub>0</sub> affectent leur distribution as.
- (b)  $\hat{\mathbf{a}}_{\mathbf{E},N}^{MMG}$  est calculé à partir d'une matrice de pondération,  $\tilde{\mathbf{W}}_{\mathbf{E},N}$ , blocdiagonale alors que  $\mathbf{W}_0 \equiv E\left[\mathbf{Z}_i\mathbf{u}_i\mathbf{u}_i'\mathbf{Z}_i'\right]$  n'est pas bloc-diagonale.  $\hat{\mathbf{a}}_{\mathbf{E},N}^{MMG}$  ne peut donc être optimal au sens de la MMG.

### et:

(c)  $\hat{\mathbf{a}}_{N}^{MMG}$  est optimal par construction.

### Remarques : « système » vs « équation par équation »

- Estimation « en système » *plus efficace* que « équation par équation »
  - Parce que l'estimation « en système » tient compte de la corrélation potentielle (et réelle dans l'immense majorité des cas rencontrés en pratique) des éléments de u<sub>i</sub>.
- Les estimateurs « en système » exploitent, *via* le calcul du critère utilisé par la MMG  $Q_N(\mathbf{a}; \tilde{\mathbf{W}}_N^{-1})$ , l'*ensemble des conditions de moment* déterminées à partir des équations du système pour construire un estimateur optimal de chacun des  $\mathbf{a}_{m,0}$ 
  - Si une seule équation du système, disons m, est incorrecte alors  $\hat{\mathbf{a}}_N^{MMG}$  peut être as. biaisé pour l'ensemble des éléments de  $\mathbf{a}_0$ .  $\hat{\mathbf{a}}_{E,N}^{MMG}$  n'est biaisé que pour  $\hat{\mathbf{a}}_{m,N}^{2MCH}$ .

### Arbitrage habituel : efficacité (+ risqué) versus robustesse (- précis)

### Remarques

# Sur-identification : contraintes sur les paramètres et hétéroscédasticité

Lorsqu'on choisit les :

$$\mathbf{g}_{m,i}(\mathbf{a}_m) \equiv \mathbf{z}_{m,i}(y_{m,i} - \mathbf{x}'_{m,i}\mathbf{a}_m)$$
 pour  $m = 1,...,M$ 

il convient de faire attention lorsque les éléments des  $\mathbf{a}_{m,0}$  sont liés par des contraintes inter-équations.

 Plus les a<sub>m,0</sub> sont liés par des contraintes inter-équations et plus la condition de moment :

$$E\big[\mathbf{g}_i(\mathbf{a}_0)\big] = \mathbf{0}_{G \times 1}$$

sur-identifie  $\mathbf{a}_0$ .

 Cette sur-identification peut générer des biais d'estimation importants comme le suggèrent les études sur les 2MC.

- On peut essayer de limiter la sur-identification de a<sub>0</sub> en jouant sur le fait que certains de des éléments de a<sub>0</sub> :
  - Sont « naturellement » identifiés dans certaines équations du système...
  - ... alors qu'ils sont simplement utilisés dans d'autres, ces autres équations permettant d'identifier d'autres éléments de a<sub>0</sub>.
- On peut essayer de limiter la sur-identification de a<sub>0</sub> en utilisant des instruments inspirés des instruments optimaux au sens de Chamberlain.
- Autrement, lorsque l'estimation équation par équation est possible (et simple) il peut être préférable :
  - D'estimer une version sans contrainte de  $\mathbf{a}_0$ , *i.e.*  $\mathbf{\alpha}_0$ ,
  - Puis d'imposer les contraintes sur α<sub>0</sub> pour obtenir a<sub>0</sub> (voir le Chapitre 28).

- Un des avantages de la juste-identification est qu'elle permet d'éviter le calcul de  $\tilde{\mathbf{W}}_N$ .
- Autrement, il convient d'être prudent dans l'utilisation des estimateurs robustes à l'hétéroscédasticité de a<sub>0</sub> lorsque ce paramètre est sur-identifié par les conditions de moment employées.
  - Cette robustesse à l'hétéroscédasticité peut générer des biais d'estimation importants comme le suggèrent les études sur les 2MCH.
  - Il est peut être préférable d'utiliser des versions simples des estimateurs en système, *i.e.* utilisant des estimateurs de  $E\left[\mathbf{Z}_{i}E\left[\mathbf{u}_{i}\mathbf{u}_{i}'\right]\mathbf{Z}_{i}'\right]^{-1}$  pour matrice de pondération plutôt que des estimateurs de  $\mathbf{W}_{0}^{-1} \equiv E\left[\mathbf{Z}_{i}\mathbf{u}_{i}\mathbf{u}_{i}'\mathbf{Z}_{i}'\right]^{-1}$  (*mais c'est juste une intuition*).

| 5. Equations simultanées et estimateur des | s 3MC |
|--------------------------------------------|-------|
|                                            |       |

## 5. Equations simultanées et estimateur des 3MC

Les systèmes d'équations simultanées (linéaires) standards sont définis par :

$$\begin{cases} y_{1,i} = \mathbf{a}'_{1,0}\mathbf{x}_{1,i} + u_{1,i} & \text{et } E\left[u_{1,i}/\mathbf{z}_i\right] = 0 \\ y_{2,i} = \mathbf{a}'_{2,0}\mathbf{x}_{2,i} + u_{2,i} & \text{et } E\left[u_{2,i}/\mathbf{z}_i\right] = 0 \\ \vdots & \vdots & \vdots \\ y_{M,i} = \mathbf{a}'_{M,0}\mathbf{x}_{M,i} + u_{M,i} & \text{et } E\left[u_{M,i}/\mathbf{z}_i\right] = 0 \end{cases}$$

Par rapport aux cas traités ci-dessus, ils ont trois caractéristiques :

- Les paramètres des différentes équations ne sont pas liés.
- Toutes les équations du système ont le *même vecteur d'instruments* z<sub>i</sub>.
- Le vecteur des termes d'erreur du système est *homoscédastique*.

Dans ce cas, on a:

$$\mathbf{Z}_{i} = \mathbf{I}_{M} \otimes \mathbf{z}_{i}$$

et donc:

$$E\left[\mathbf{Z}_{i}\mathbf{Z}_{i}^{\prime}\right] = \mathbf{I}_{M} \otimes E\left[\mathbf{z}_{i}\mathbf{z}_{i}^{\prime}\right] \text{ et } N^{-1}\sum_{i=1}^{N}\mathbf{Z}_{i}\mathbf{Z}_{i}^{\prime} = \mathbf{I}_{M} \otimes \left(N^{-1}\sum_{i=1}^{N}\mathbf{z}_{i}\mathbf{z}_{i}^{\prime}\right),$$

$$E[\mathbf{Z}_{i}\mathbf{u}_{i}\mathbf{u}'\mathbf{Z}_{i}'] = \mathbf{\Omega}_{0} \otimes E[\mathbf{z}_{i}\mathbf{z}_{i}'] \text{ et } E[\mathbf{Z}_{i}\mathbf{u}_{i}\mathbf{u}'\mathbf{Z}_{i}']^{-1} = \mathbf{\Omega}_{0}^{-1} \otimes E[\mathbf{z}_{i}\mathbf{z}_{i}']^{-1}$$

et:

$$N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \tilde{\boldsymbol{\Omega}}_{N}^{-1} \mathbf{Z}_{i}^{\prime} = \tilde{\boldsymbol{\Omega}}_{N}^{-1} \otimes \left( N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} \mathbf{z}_{i}^{\prime} \right)^{-1}.$$

L'estimateur MMG optimal de  $\mathbf{a}_0$  est un estimateur connu depuis bien avant la MMG.

Cet estimateur est obtenu en remplaçant les formules précédentes dans celle de  $\hat{\mathbf{a}}_{_N}^{MMG}$ .

### Définition. Estimateur des 3MC

Soit un système d'équations simultanées linéaires tel que :

$$\mathbf{y}_i = \mathbf{X}_i' \mathbf{a}_0 + \mathbf{u}_i$$
 avec  $E[\mathbf{u}_i / \mathbf{z}_i] = \mathbf{0}$  et  $E[\mathbf{u}_i \mathbf{u}_i' / \mathbf{z}_i] = \mathbf{\Omega}_0$ .

L'estimateur MMG optimal de  $\mathbf{a}_0$  est l'estimateur des 3MC :

$$\begin{aligned} \hat{\mathbf{a}}_{N}^{3MC} = & \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{Z}_{i}^{\prime} \right) \tilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}_{i}^{\prime} \right) \right]^{-1} \\ & \times \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{Z}_{i}^{\prime} \right) \tilde{\mathbf{W}}_{N}^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{y}_{i} \end{aligned}$$

où:

$$\mathbf{Z}_{i} \equiv \mathbf{I}_{M} \otimes \mathbf{z}_{i} \text{ et } \tilde{\mathbf{W}}_{N}^{-1} \equiv \tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \left(N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} \mathbf{z}_{i}'\right)^{-1}$$

avec:

$$\tilde{\Omega}_N \equiv N^{-1} \sum_{i=1}^N \tilde{\mathbf{u}}_{i,N} \tilde{\mathbf{u}}'_{i,N}$$
 et  $\tilde{\mathbf{u}}_{i,N} \equiv \mathbf{y}_i - \mathbf{X}'_i \hat{\mathbf{a}}_{\mathbf{E},N}^{2MC}$ ,

 $\hat{\mathbf{a}}_{E,N}^{2MC}$  étant l'estimateur de  $\mathbf{a}_0$  obtenu en empilant les estimateurs des 2MC des  $\mathbf{a}_{m,0}$  pour m=1,...,M.

L'estimateur  $\hat{\mathbf{a}}_{N}^{3MC}$  est donc calculé en trois étapes.

**Etape 1.** Calcul des  $\hat{\mathbf{a}}_{m,N}^{2MC}$  pour m = 1,...,M.

Etape 2. Calcul de  $\tilde{\Omega}_N \equiv N^{-1} \sum_{i=1}^N \tilde{\mathbf{u}}_{i,N} \tilde{\mathbf{u}}'_{i,N}$  à partir des :

$$\tilde{u}_{\scriptscriptstyle m,i,N} \equiv y_{\scriptscriptstyle m,i} - \mathbf{x}_{\scriptscriptstyle m,i}' \hat{a}_{\scriptscriptstyle m,N}^{\scriptscriptstyle 2MC} \ \ \text{et} \ \ \tilde{\mathbf{u}}_{\scriptscriptstyle i,N} \equiv \begin{bmatrix} \tilde{u}_{\scriptscriptstyle 1,i,N} \\ \vdots \\ \tilde{u}_{\scriptscriptstyle M,i,N} \end{bmatrix}$$

**Etape 3**. Calcul de  $\hat{\mathbf{a}}_{N}^{3MC}$ .

 Le Système d'Equations Simultanées Linéaires simple s'écrit sous la forme :

$$\mathbf{y}_i = \mathbf{X}_i' \mathbf{a}_0 + \mathbf{u}_i \quad \text{avec} \quad E[\mathbf{u}_i | \mathbf{z}_i] = \mathbf{0} \quad \text{et} \quad E[\mathbf{u}_i \mathbf{u}_i' / \mathbf{z}_i] = \mathbf{\Omega}_0$$

• Il peut se résumer sous la forme de la condition de moment conditionnelle :

$$E[(\mathbf{y}_i - \mathbf{X}_i' \mathbf{a}_0) | \mathbf{z}_i] = \mathbf{0}_{M \times 1}$$

pour laquelle l'instrument optimal de Chamberlain est de la forme :

$$\mathbf{R}^{+}(\mathbf{z}_{i}) = E[\mathbf{X}_{i} | \mathbf{z}_{i}] \mathbf{\Omega}_{0}^{-1}.$$

■ En notant  $\mathbf{X}_i = \mathbf{S}(\mathbf{I}_M \otimes \mathbf{x}_i)$  où S est une matrice de sélection on montre alors que :

$$\mathbf{R}^{+}(\mathbf{z}_{i}) = \mathbf{S}E[(\mathbf{I}_{M} \otimes \mathbf{x}_{i}) | \mathbf{z}_{i}] \mathbf{\Omega}_{0}^{-1} = \mathbf{S}(\mathbf{\Omega}_{0}^{-1} \otimes E[\mathbf{x}_{i} | \mathbf{z}_{i}]).$$

En utilisant :

$$\begin{split} \hat{\mathbf{a}}_{N}^{3MC} = & \left[ \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{Z}_{i}^{\prime} \right) \tilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{X}_{i}^{\prime} \right) \right]^{-1} \\ & \times \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{Z}_{i}^{\prime} \right) \tilde{\mathbf{W}}_{N}^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{Z}_{i} \mathbf{y}_{i} \end{split}$$

avec:

$$\mathbf{X}_{i} = \mathbf{S}(\mathbf{I}_{M} \otimes \mathbf{x}_{i}), \ \mathbf{Z}_{i} \equiv \mathbf{I}_{M} \otimes \mathbf{z}_{i} \text{ et } \widetilde{\mathbf{W}}_{N}^{-1} \equiv \widetilde{\mathbf{\Omega}}_{N}^{-1} \otimes \left(N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} \mathbf{z}_{i}'\right)^{-1}$$

on obtient:

$$\widehat{\mathbf{a}}_{N}^{3MC} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{S} \left(\widetilde{\mathbf{\Omega}}_{N}^{-1} \otimes \widehat{EL}_{N} \left[\mathbf{x}_{i} \mid \mathbf{z}_{i}\right]\right) \mathbf{X}_{i}^{\prime}\right)^{-1}$$

$$\times N^{-1} \sum_{i=1}^{N} \mathbf{S} \Big( \widetilde{\mathbf{\Omega}}_{N}^{-1} \otimes \widehat{EL}_{N} \big[ \mathbf{x}_{i} \mid \mathbf{z}_{i} \big] \Big) \mathbf{y}_{i}$$

où:

$$\widehat{EL}_{N}\left[\mathbf{x}_{i} \mid \mathbf{z}_{i}\right] \equiv \left(N^{-1} \sum_{i=1}^{N} (\mathbf{x}_{i} \mathbf{z}_{i}^{\prime})\right) \left(N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} \mathbf{z}_{i}^{\prime}\right)^{-1} \mathbf{z}_{i}.$$

• L'estimateur  $\hat{\mathbf{a}}_N^{3MC}$  est également un estimateur de la MM qui utilise une matrice d'instruments estimés qui est un estimateur convergent de la matrice :

$$\mathbf{S}(\mathbf{\Omega}_0^{-1} \otimes EL[\mathbf{x}_i \mid \mathbf{z}_i]).$$

# 6. Régressions empilées et estimateur SUR

### 6. Régressions empilées et estimateur SUR

Les systèmes de régression empilées (linéaires) standards sont définis par :

$$\begin{cases} y_{1,i} = \mathbf{a}'_{1,0}\mathbf{x}_{1,i} + u_{1,i} & \text{et } E\left[u_{1,i}/\mathbf{x}_i\right] = 0 \\ y_{2,i} = \mathbf{a}'_{2,0}\mathbf{x}_{2,i} + u_{2,i} & \text{et } E\left[u_{2,i}/\mathbf{x}_i\right] = 0 \\ \vdots & \vdots & \vdots \\ y_{M,i} = \mathbf{a}'_{M,0}\mathbf{x}_{M,i} + u_{M,i} & \text{et } E\left[u_{M,i}/\mathbf{x}_i\right] = 0 \end{cases}$$

où  $\mathbf{x}_i$  est le vecteur composé des éléments distincts des  $\mathbf{x}_{m,i}$  pour m=1,...,M.

Par rapport aux cas traités ci-dessus, ils ont quatre caractéristiques :

- Les paramètres des différentes équations ne sont pas liés.
- Le système est composé de *modèles de régression*.
- Les variables explicatives de toutes les équations sont exogènes dans le système complet, et non seulement dans l'équation où elles apparaissent. C'est-à-dire qu'on a :

$$E[u_{m,i}/\mathbf{x}_{\ell,i}] = 0 \text{ pour } m = 1,...,M \text{ et } \ell = 1,...,M.$$

Ce qui implique que  $\mathbf{x}_i$  est un vecteur d'instruments valide pour les M équations du système.

Le vecteur des termes d'erreur du système est *homoscédastique*.

### Ceci implique que:

- Ce système est un cas (très) particulier de système d'équations simultanées : celui où z<sub>i</sub> = x<sub>i</sub> (i.e. un système d'équations simultanées sans variables explicatives endogènes)
- L'estimateur MMG optimal de a<sub>0</sub> dans un système de régressions empilées est un cas (très) particulier d'estimateur des 3MC.

Dans ce cas, on a:

$$\mathbf{Z}_{i} = \mathbf{I}_{M} \otimes \mathbf{x}_{i}$$

et l'estimateur MMG optimal de  $\mathbf{a}_0$  est un estimateur connu depuis bien avant la MMG.

Il s'agit de l'estimateur des régressions empilées ou estimateur SUR, pour « seemingly unrelated regressions ».

Le nom estimateur SUR, dû à Zellner, provient de ce que les régressions du système :

 ne sont pas liées par des contraintes inter-équations sur les paramètres (relations « évidentes » entre les équations)

### mais

• peuvent être liées *via* les corrélations de leurs termes d'erreur.

Cet estimateur est obtenu en remplaçant les formules précédentes dans celle de  $\hat{\mathbf{a}}_{_N}^{MMG}$ .

Il est important de noter que  $\mathbf{X}_i = \mathbf{I}_M \otimes \mathbf{x}_i$  si seulement si  $\mathbf{x}_i = \mathbf{x}_{m,i}$  pour m = 1, ..., M.

### Définition. Estimateur SUR ou des régressions empilées.

Soit un système de régressions linéaires empilées tel que :

$$\mathbf{y}_i = \mathbf{X}_i' \mathbf{a}_0 + \mathbf{u}_i$$
 avec  $E[\mathbf{u}_i / \mathbf{x}_i] = \mathbf{0}$  et  $E[\mathbf{u}_i \mathbf{u}_i' / \mathbf{x}_i] = \mathbf{\Omega}_0$ .

L'estimateur MMG optimal de  $\mathbf{a}_0$  est l'estimateur SUR:

$$\begin{aligned} \hat{\mathbf{a}}_{N}^{SUR} = & \left\{ \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}') \right) \tilde{\mathbf{W}}_{N}^{-1} \left( N^{-1} \sum_{i=1}^{N} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}) \mathbf{X}_{i}' \right) \right\}^{-1} \\ & \times \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}') \right) \tilde{\mathbf{W}}_{N}^{-1} N^{-1} \sum_{i=1}^{N} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}) \mathbf{y}_{i} \end{aligned}$$

où:

$$\tilde{\mathbf{W}}_{N}^{-1} \equiv \tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}'\right)^{-1}, \ \tilde{\mathbf{\Omega}}_{N} \equiv N^{-1} \sum_{i=1}^{N} \tilde{\mathbf{u}}_{i,N} \tilde{\mathbf{u}}_{i,N}' \text{ et } \tilde{\mathbf{u}}_{i,N} \equiv \mathbf{y}_{i} - \mathbf{X}_{i}' \hat{\mathbf{a}}_{\mathbf{E},N}^{MCO}, \\ \hat{\mathbf{a}}_{\mathbf{E},N}^{MCO} \text{ étant l'estimateur de } \mathbf{a}_{0} \text{ obtenu en empilant les estimateurs des MCO des } \\ \mathbf{a}_{m,0} \text{ pour } m = 1, ..., M.$$

L'estimateur  $\hat{\mathbf{a}}_N^{SUR}$  est donc calculé en trois étapes.

**Etape 1**. Calcul des  $\hat{\mathbf{a}}_{m,N}^{MCO}$  pour m = 1,...,M.

**Etape 2.** Calcul de  $\tilde{\Omega}_N \equiv N^{-1} \sum_{i=1}^N \tilde{\mathbf{u}}_{i,N} \tilde{\mathbf{u}}'_{i,N}$  à partir des :

$$\tilde{u}_{\scriptscriptstyle m,i,N} \equiv y_{\scriptscriptstyle m,i} - \mathbf{x}_{\scriptscriptstyle m,i}' \hat{a}_{\scriptscriptstyle m,N}^{\scriptscriptstyle MCO} \ \ \text{et} \ \ \tilde{\mathbf{u}}_{\scriptscriptstyle i,N} \equiv \begin{bmatrix} \tilde{u}_{\scriptscriptstyle 1,i,N} \\ \vdots \\ \tilde{u}_{\scriptscriptstyle M,i,N} \end{bmatrix}$$

**Etape 3**. Calcul de  $\hat{\mathbf{a}}_{N}^{SUR}$ .

Un résultat, connu depuis bien avant la MMG, décrit les cas où les MCO équation par équation sur as. efficaces dans un système de régressions empilées.

### Propriété. Théorème de Zellner

- (i) L'estimateur SUR  $\hat{\mathbf{a}}_N^{SUR}$ , est égal à l'estimateur des MCO « équation par équation »  $\hat{\mathbf{a}}_{E,N}^{MCO}$  si  $\mathbf{x}_{m,i} = \mathbf{x}_i$  pour m = 1,...,M.
- (ii) On a :  $\sqrt{N}(\hat{\mathbf{a}}_N^{SUR} \hat{\mathbf{a}}_{E,N}^{MCO}) \xrightarrow{p} \mathbf{0}_{K \bowtie 1}$ , *i.e.* les estimateurs  $\hat{\mathbf{a}}_N^{SUR}$  et  $\hat{\mathbf{a}}_{E,N}^{MCO}$  sont *as. équivalents*, si  $\Omega_0$  est diagonale. Dans ce cas, les régressions sont vraiment « *unrelated* ».
- (iii) Dans les autres cas  $\hat{\mathbf{a}}_{N}^{SUR}$  est as. plus efficace que  $\hat{\mathbf{a}}_{E,N}^{MCO}$ .

Cette propriété est un cas particulier du résultat général présenté ci-avant.

**Rmq**. Le Théorème de Zellner est un résultat important car les estimateurs MCO ont de bonnes propriétés à distance finie, i.e. pour de petits « N ».

# Remarque. Définition de $\hat{\mathbf{a}}_N^{SUR}$

■ En remarquant que  $\mathbf{X}_i$  peut s'écrire à partir de la matrice  $\mathbf{I}_M \otimes \mathbf{x}_i$  sous la forme :

$$\mathbf{X}_i = \mathbf{S}(\mathbf{I}_M \otimes \mathbf{x}_i)$$

avec S pour matrice de sélection on peut aisément montrer que :

$$\mathbf{X}_{i}\tilde{\mathbf{\Omega}}_{N}^{-1} = \mathbf{S}(\mathbf{I}_{M} \otimes \mathbf{x}_{i})\tilde{\mathbf{\Omega}}_{N}^{-1} = \mathbf{S}(\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \mathbf{x}_{i})$$

et:

$$\mathbf{X}_{i}\tilde{\mathbf{\Omega}}_{N}^{-1}\mathbf{X}_{i}' = \mathbf{S}(\mathbf{I}_{M} \otimes \mathbf{x}_{i})\tilde{\mathbf{\Omega}}_{N}^{-1}(\mathbf{I}_{M} \otimes \mathbf{x}_{i}')\mathbf{S}' = \mathbf{S}(\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes (\mathbf{x}_{i}\mathbf{x}_{i}'))\mathbf{S}'.$$

Il suffit d'utiliser  $\tilde{\Omega}_N^{-1} = \tilde{\Omega}_N^{-1} \otimes 1$  et la propriété de « coagulation » de  $\otimes$ .

• On montre alors que :

$$\hat{\mathbf{a}}_{N}^{SUR} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \tilde{\mathbf{\Omega}}_{N}^{-1} \mathbf{X}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \tilde{\mathbf{\Omega}}_{N}^{-1} \mathbf{y}_{i},$$

ce qui est la forme la plus « standard » de  $\hat{\mathbf{a}}_{N}^{SUR}$ .