AMENDMENTS TO THE CLAIMS

1. (Currently Amended) An off-line feed rate scheduling method of a CNC machining process that is performed according to workpiece geometry and a given set of NC code provided from a CAD/CAM system, the method comprising:

selecting a constraint variable and inputting a reference value related to the constraint variable;

estimating a cutting configuration where a maximum constraint variable value (CVV) occurs through ME Z-map modeling;

obtaining the estimated cutting configuration and estimating a specific rotation angle (ϕ_s) where the maximum constraint variable value occurs through constraint variable modeling;

calculating a feed rate that satisfies the reference value of <u>related to</u> the constraint variable at the estimated specific rotation angle; and applying the calculated feed rate to the NC code.

2. (Original) The method of claim 1, wherein the calculating a feed rate comprises:

inputting specific feed rates f_1 and f_2 ($f_1 < f_2$);

calculating maximum constraint variable values CVV₁ and CVV₂ corresponding to the feed rates f₁ and f₂, respectively, at the specific rotation angle;

approximating a feed rate f_{next} that corresponds to a reference value RV of a constraint variable value using the formula,

$$f_{next} = f_1 + \frac{(RV - CVV_1)(f_2 - f_1)}{CVV_2 - CVV_1}$$

calculating a constraint variable $\mathsf{CVV}_{\mathsf{next}}$ in the case where the feed rate is $\mathsf{f}_{\mathsf{next}}$; and

determining using the formula below if the constraint variable value CVV_{next} when compared to the reference value RV is less than an error limit, applying the feed rate f_{next} to the NC code when it is less than the error limit, replacing the feed rate f_2 by f_{next} and repeating the process of obtaining f_{next} when this value is not less than the error limit and the reference value RV is greater than the constraint variable value CVV_{next} , and replacing the feed rate f_1 by f_{next} and repeating the process of obtaining

 f_{next} when this value is not less than the error limit and the reference value is not greater than the constraint variable value CVV_{next} ,

where

$$\frac{CVV_{next} - RV}{RV} < \text{Error Limit}$$

3. (Currently Amended) The method of claim 1, wherein computing cutting configurations through ME Z-map modeling comprises:

searching for node points located in a cutting area;

identifying whether a target node is an edge node (a node closest to a cutter edge) or not;

calculating and updating a height value of each node in the cutting area;

moving a target node if it is an edge node and storing movement direction angles;

computing the cutting configurations using the stored angles.

- 4. (Currently Amended) The method of claim 3, wherein the cutting configurations computed through ME Z-map modeling include <u>at least one of</u> an entry angle, an exit angle, <u>and</u> an axial depth of cut and so on.
- 5. (Original) The method of claim 3, wherein in the case where a difference between a distance from a tool center to a target node and a tool radius is smaller than a movement limit, this node is designated as an edge node.
- 6. (Original) The method of claim 1, wherein one of cutting force and machined surface error is selected as a constraint variable.

7. (Currently Amended) An off-line feed rate scheduling method for adjusting a cutting force of a CNC machining process that is performed according to workpiece geometry and a given set of NC code <u>instructing paths of a tool</u> provided from a CAD/CAM system, the method comprising:

inputting a reference cutting force;

estimating a cutting configuration where a maximum cutting force occurs through ME Z-map modeling;

receiving the estimated cutting configuration and estimating a specific rotation angle where the maximum cutting force occurs through cutting force modeling;

calculating a feed rate that satisfies the reference cutting force at the estimated specific rotation angle; and

applying the calculated feed rate to the NC code.

8. (Currently Amended) The method of claim 7, wherein the reference cutting force is selected from a reference cutting force RF₁ established to prevent breaking of a tool shank, and a reference cutting force RF₂ established to prevent damage to an edge portion of a tool, RF₁ and RF₂ being calculated by the formulae

$$RF_1 = SF \cdot TRS \cdot S_1$$

$$RF_2 = SF \cdot TRS \cdot S_2$$

where RF_1 represents the reference cutting force considered to avoid breakage of tool shank and RF_2 indicates the reference cutting force to prevent breakage of tool edge; SF means safety factor, which is used to make up for unpredictable factors such as cutter geometry error or cutter material variation; and TRS means transverse rupture strength of the <u>a_tool</u> material.

9. (Currently Amended) The method of claim 7, wherein the tool is a flat end milling tool, and cutting force components of each <u>axial</u> direction <u>of three-dimensional</u> <u>Cartesian coordinate</u> according to a rotational angle of the tool are obtained using

$$\begin{split} F_x(j) &= \sum_k \sum_i F_x(i,j,k) \\ F_y(j) &= \sum_k \sum_i F_y(i,j,k) \\ F_z(j) &= \sum_k \sum_i F_z(i,j,k) \end{split}$$

where

$$F_{x}(i,j,k) = [C_{1}K_{n}\cos(\phi - \alpha_{r}) + K_{f}K_{n}C_{3}\cos\phi - K_{f}K_{n}C_{4}\sin(\phi - \alpha_{r})]t_{c}(\phi)B_{1}$$

$$F_{y}(i,j,k) = [C_{1}K_{n}\sin(\phi - \alpha_{r}) + K_{f}K_{n}C_{3}\sin\phi + K_{f}K_{n}C_{4}\cos(\phi - \alpha_{r})]t_{c}(\phi)B_{1}$$

$$F_{z}(i,j,k) = [-C_{2}K_{n} + K_{f}K_{n}C_{5}]t_{c}(\phi)B_{1}$$

and where C₁, C₂, C₃, C₄, and C₅ in the above are calculated by the following:

$$C_1 = \frac{\cos \theta_h}{\sin \theta_{tk}}, \quad C_2 = \frac{\sin \theta_h}{\sin \theta_{tk}} \cdot \cos \alpha_r$$

$$C_3 = \sin \theta_h (\sin \theta_c - \cos \theta_c \cot \theta_{th})$$

$$C_4 = \frac{\cos \theta_c}{\sin \theta_{tk}}$$

$$C_5 = \cos\theta_h(\sin\theta_c - \cos\theta_c\cot\theta_{th})$$

and

$$\cos\theta_{th} = \sin\alpha_r \cdot \sin\theta_{h_1}$$

where i is a cutter tooth index, j is an index of a cutter rotation angle, k is an index of a z-axis disk element, $\underline{\varphi}$ is an angle position of a cutter edge, $\underline{\alpha}_r$ is a rake angle, $\underline{t}_c(\underline{\varphi})$ is uncut chip thickness, $\underline{\theta}_h$ is a helix angle, $\underline{\theta}_c$ is a chip flow angle, and \underline{K}_0 , \underline{K}_1 , and \underline{B}_1 are constants.

10. (Currently Amended) The method of claim 9, wherein K_n , K_f , and θ_c may be obtained by the following formulae,

$$\ln(K_n(i,j,k)) = A_1 - (A_1 - A_2)e^{-(A_3t_c(i,j,k))^{A_4}}$$

$$K_f(i,j,k) = B_1 - (B_1 - B_2)e^{-(B_3t_c(i,j,k))^{B_4}}$$

$$\theta_c(i,j,k) = C_1 - (C_1 - C_2)e^{-(C_3t_c(i,j,k))^{C_4}}$$

where A₁, A₂, A₃, A₄, B₁, B₂, B₃, B₄, C₁, C₂, C₃, and C₄ are constants.

11. (Currently Amended) The method of claim 7, wherein the tool is a ball end milling tool, and cutting force components of each <u>axial</u> direction <u>of three-</u>

dimensional Cartesian coordinate according to a rotational angle of the tool are obtained using

$$\begin{cases}
F_x \\
F_y \\
F_z
\end{cases} =
\begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix}
\begin{bmatrix}
K_1 \\
K_2 \\
K_3
\end{bmatrix}$$

where

where
$$K_1 = K_n$$

$$K_2 = \cos\theta_c K_n K_f$$

$$K_3 = \sin\theta_c K_n K_f$$

$$A_{11} = B_1 \sum_k \sum_i (\cos\alpha_r \cos\phi \cos\theta_k + \sin\alpha_r \sin\phi) \cdot t_c(\phi)$$

$$A_{12} = B_1 \sum_k \sum_i (\sin\alpha_r \frac{1}{f_2} \cos\phi \cos\theta_k - \frac{1}{f_2} \cos\alpha_r \sin\phi - \frac{f_1}{f_2} \cos\alpha_r \cos\phi \sin\theta_k) \cdot t_c(\phi)$$

$$A_{13} = B_1 \sum_k \sum_i (-\frac{f_1}{f_2} \sin\phi + \frac{1}{f_2} \cos\phi \sin\theta_k) \cdot t_c(\phi)$$

$$A_{21} = B_1 \sum_k \sum_i (\cos\alpha_r \sin\phi \cos\theta_k - \sin\alpha_r \cos\phi) \cdot t_c(\phi)$$

$$A_{22} = B_1 \sum_k \sum_i (\sin\alpha_r \frac{1}{f_2} \sin\phi \cos\theta_k + \frac{1}{f_2} \cos\alpha_r \cos\phi - \frac{f_1}{f_2} \cos\alpha_r \sin\phi \sin\theta_k) \cdot t_c(\phi)$$

$$A_{23} = B_1 \sum_k \sum_i (\frac{f_1}{f_2} \cos\phi + \frac{1}{f_2} \sin\phi \sin\theta_k) \cdot t_c(\phi)$$

$$A_{31} = B_1 \sum_k \sum_i (-\sin\theta_k \cos\alpha_r) \cdot t_c(\phi)$$

$$A_{32} = B_1 \sum_k \sum_i (-\sin\alpha_r \frac{1}{f_1} \sin\theta_k - \frac{f_1}{f_1} \cos\alpha_r \cos\theta_k) \cdot t_c(\phi)$$

where i is a cutter tooth index, j is an index of a cutter rotation angle, k is an index of a z-axis disk element, φ is an angle position of a cutter edge, α_r is a rake angle, $t_c(\varphi)$ is uncut chip thickness, θ_h is a helix angle, θ_c is a chip flow angle, and K_n, K_f, B₁, f₁ and f₂ are constants.

12. (Currently Amended) The method of claim 11, wherein K_n , K_f , and θ_c may be obtained by the following formulae:

$$K_n = K_1$$

$$\theta_c = \tan^{-1}(\frac{K_3}{K_2})$$

$$K_f = \frac{K_2}{\cos \theta_c K_n}$$

where K₁, K₂ and K₃ are constants.

13. (Original) An off-line feed rate scheduling method for adjusting a machined surface error of a CNC machining process that is performed according to workpiece geometry and a given set of NC code provided from a CAD/CAM system, the method comprising:

inputting a reference surface error;

estimating a cutting configuration where a maximum surface error occurs through ME Z-map modeling;

receiving the estimated cutting configuration and estimating a specific rotation angle where the maximum surface error occurs through machined surface error modeling;

calculating a feed rate that satisfies the reference surface error at the estimated specific rotation angle; and

applying the calculated feed rate to the NC code.

14. (Original) The method of claim 13, wherein the tool is a flat end milling tool, and a cusp error C_h is calculated using the formula

$$C_h = R - \sqrt{R^2 - (\frac{f_t}{2})^2}$$

where R is a tool radius and ft is an edge feed rate.

15. (Currently Amended) The method of claim 13, wherein the tool is a ball end milling tool, and a cusp error C_h is calculated using the formula,

$$C_h = R - \sqrt{R^2 - (\frac{D}{2})^2}$$

where $D = \sqrt{(TPD^2 + f_t^2)}$, TPD being an interval between a tool path, R being a tool radius and f_t being an edge feed rate.