Individual task #2 (Topics 5, 6 & 7)

Revealing physical properties of an early-type galaxy from deep spectroscopy

A deep spectroscopic exposure of 3570 s (~1 hour) with the 10.4 m Gran Telescopio Canarias (GTC) on 27 March 2014 led to spectra for three objects A, B and G along the spectroscopic slit (see attached figure). Here, we focus on the optically-faintest source G, which was tentatively identified as an early-type galaxy

ABGspec.dat

The redshift of G can be estimated by matching its optical spectrum with a shifted version of the spectral template for early-type galaxies in the SDSS database at http://classic.sdss.org/dr5/algorithms/spectemplates/spDR2-023.gif

Q1: Compare the GTC data of G and the spectral template for an early-type galaxy at zero redshift. Use a cross-correlation technique to estimate the redshift of G (z_G). After doing the cross-correlation measurement of z_G , identify some main absorption features in the spectrum of G: CaII HK doublet, G-band, and H β and MgIb lines. Show the spectrum of G along with the redshifted spectral template, indicating the absorption features that you have identified (see figure above)

Q2: Analysing the spectrum of G, do you find evidence of oxygen emission [OII] at 372.7 nm? Taking the typical spectrum of an HII region into account (see figure below), is there evidence of star formation in G?

Software tool for interpreting galaxy spectra

https://github.com/HinLeung622/pipes_vis

Introducing a Real-time Interactive GUI Tool for Visualization of Galaxy Spectra by Ho-Hin Leung, Vivienne Wild, Adam Carnall, and Michail Papathomas

Res. Notes AAS 5 171 (July 2021)

Very recently, Leung et al. (2021) have introduced a python tool to model the observed spectrum of a galaxy considering its star formation history (SFH) from the beginning of the Universe to $z = z_G$. The tool provides predictions (realistic spectra) from complex SFHs, accounting for dust extinction/emission and emission lines generated in HII regions. The code relies on a Λ CDM cosmology with $\Omega_{\rm M} = 0.3$, $\Omega_{\Lambda} = 0.7$ and h = 0.7

For generating model galaxy spectra, read: https://bagpipes.readthedocs.io/en/latest/index.html

total stellar mass formed prior to the time of observation (red vertical line)

See the Jupyter notebook: pipes_vis_example.ipynb

Cardelli et al. 1989 (ApJ 345, 245): MW-like dust-extinction with only a free parameter A_V

- Q3: Assuming a metallicity $Z_* = Z_{\odot}$, use the pipes_vis software to discuss physical scenarios that are consistent with the observed spectrum of G in the wavelength range [570, 870] nm, i.e., if $F = F_{\lambda}$ (10⁻¹⁷ erg cm⁻² s⁻¹ A⁻¹), then there are three main observational constraints: (i) presence of CaII HK doublet, G-band, and H β and MgIb lines at $z = z_G$, (ii) $F_{\min} \approx 1.1$, and (iii) $F_{\max}/F_{\min} \approx 2.3$.
- (a) As a starting point, take $\log (M_*/M_\odot) = 10$ (low-mass elliptical), a single starburst with exponential decay ($\tau = 0.1$ Gyr) when the Universe was very young ($t_{\rm form} = 1$ Gyr), and a Cardelli et al.'s dust-extinction law with $A_V = 0.1$ mag. Are you able to reproduce the observational behaviour (i) + (ii) + (iii)? how will modify the model spectrum the presence of a second starburst within the last 2 Gyr?
- (b) Compare the results with those from similar single bursts at $t_{\text{form}} = 4$ Gyr and $t_{\text{form}} = 6$ Gyr. How does the maximum-to-minimum flux ratio change?
 - (c) Take a single burst at $t_{\rm form} = 6$ Gyr ($\tau = 0.1$ Gyr), and then discuss the role that M_* plays. For example, consider a typical and a massive elliptical galaxy, having log $(M_*/M_\odot) = 11.3$ and log $(M_*/M_\odot) = 12$, respectively, and compare the new results and those for the low-mass elliptical. Can you account for the observations using the three masses and $A_V = 0.1$ mag?
 - (d) If you think an accurate dust extinction plays a role, decide about the total mass in stars and the A_V value that are required to account for the observed spectrum [*Hint*: in addition to $A_V = 0.1$, consider the three dust scenarios $A_V = 0$ (no dust; zero extinction), $A_V = 0.25$, and $A_V = 1.2$ (high extinction)]