Solutions to Roman's Advanced Linear Algebra

By:

Dustin Smith

Contents

10	Dasic Linear Algebra	•
1.	Vector Spaces	-

Part I. Basic Linear Algebra

1. Vector Spaces

1. Let V be a vector space over F. Prove that 0v = 0 and r0 = 0 for all $v \in V$ and $v \in V$. Describe the different 0's in these equations. Prove that if v = 0, then v = 0 or v = 0. Prove that v = v implies that v = 0 or v = 1.

With 0ν , we scalar multiplication; that is, $0 \in F$ and $\nu \in V$. Therefore, $0 \cdot \nu_i$ for i = 1, 2, ... and where ν_i is the i-th position of ν . Now, $0 \cdot \nu_i = 0$ for i so $0\nu = 0$ where 0 is the zero vector. In the case of r0 where $r \in F$ and $0 \in V$, we have for each i-th position of the zero vector a zero. Thus, $r \cdot 0_i \Rightarrow 0$ for each i again leaving us with the zero vector. In the first problem, where we have 0ν , zero was a scalar in the field F; however, the solution to $0\nu = 0$ was the zero vector in V. In second problem, where we have r0, zero was a vector in V and the solution r0 = 0 was also the zero vector in V.

Suppose on the contrary that rv = 0, $r \neq 0$, and $v \neq 0$. Since $r \neq 0$, we can divide out by r so $rv = 0 \iff v = 0$. Thus, we have reached a contradiction; therefore, if rv = 0, then either r = 0 or v = 0.

Let v_i be the i-th component of v. Then $rv_i = v_i$ for all i. Now, suppose on the contrary that rv = 0, $r \neq 1$, and $v \neq 0$. Now, the equation $rv_i = v_i \iff r = 1$ or $v_i = 0$. Hence, we have reached a contradiction, and if rv = v, then either r = 1 or v = 0.

2. Prove theorem 1.3 : The set S(V) of all subspaces of a vector space V is a complete lattice under set inclusion, with smallest element $\{0\}$, largest element V, meet

$$glb\{S_i\colon i\in K\}=\bigcap_{i\in K}S_i$$

and join

$$lub\{S_i\colon i\in K\}=\sum_{i\in K}S_i.$$

We are given that the maximal and minimal elements of S(V) are V and $\{0\}$, respectively. Therefore, we only need to show that each pair of elements has a meet and a join. If $S_i \not\subset S_j$ for all $i, j \in K$, then $\bigcap_i S_i = \emptyset$ so the meet is the empty set, $\{0\}$. Since $\emptyset \in S_i$ trivial for all $i \in K$, the set inclusion property is satisfied. For the join, we have $\sum_i S_i = \bigcup_i S_i$ so the join is the union of the sets. Now is $S_j \in \bigcap_i S_i$, then $S_j \subset \bigcap_i S_i$ so the set inclusion property is satisfied. Suppose $S_j \neq \emptyset$ and $S_j \subset S_i$ for some $i, j \in K$. Then $\bigcap_i S_i = S_j$ for S_j the smallest set of the union; that is, $S_j \subset S_1$, $S_j \subset S_2$, and so on where either $S_i \not\subset S_{i+1}$ or $S_i \subset S_{i+1}$ for $i \neq j$. Therefore, the meet is the smallest set $S_j = \bigcap_i S_i$. Again, the join is simple the union of all the sets in $\sum_i S_i$ which could be the maximal element V. Thus, S(V) is a complete lattice.

- 3. (a) Find an abelian group V and a field F for which V is a vector space over F in at least two different ways, that is, there are two different definitions of scalar multiplication making V a vector space over F.
 - (b) Find a vector space V over F and a subset S of V that is (1) a subspace of V and (2) a vector space using operations that differ from those of V.
- 4. Suppose that V is a vector space with basis $\mathcal{B} = \{b_i : i \in I\}$ and S is a subspace of V. Let $\{B_1, \ldots, B_k\}$ be a partition of \mathcal{B} . Then is it true that

$$S = \bigoplus_{i=1}^{k} (S \cap \langle B_i \rangle)$$

What if $S \cap \langle B_i \rangle \neq \emptyset$ for all i?