15. Consultatie FLP

15.1. Structura examenului

- trei exercitii teoretice din lista: Unificare, Deductie naturala, Rezolutie SLD, Puncte fixe si teorema Knaster-Tarski, λ -calcul (4p);
- un exercitiu clasic in Prolog (2p);
- un exercitiu de limbaj de programare (3p):
 - se da o gramatica in BNF;
 - se va verifica daca un sir de caractere este corect conform specificatiei (daca un program scris in limbajul dat este scris corect din punctul de vedere al sintaxei);
 - se va implementa semantica in functie de limbaj poate fi sau operationala (in Prolog), sau denotationala (in Haskell).

15.2. Exercitii recapitulative

15.2.1. Algoritmul de unificare

In teoria algoritmului de unificare, cele doua cazuri de ESEC erau:

• cand incercam sa gasim un unificator intre doua simboluri de functii distincte;

$$a=f(x)\,a/0,f/1$$
 <- ESEC automat

x=g(y) daca x este variabila, atunci aici NU este un caz de ESEC

$$g(x)=f(y,z)$$
 ESEC

- cand avem o egalitate de forma x=t sau t=x, iar termenul t contine x

$$x = f(x)$$
 ESEC

$$y=g(a,b,y)$$
 ESEC

$$x = f(y)$$
 unde x variabila

Operatiile algoritmului de unificare:

DESCOMPUNE

$$f(t_1,t_2,...,t_n)=f(t_1',t_2',...,t_n') imes t_1=t_1', t_2=t_2',...,t_n=t_n'$$

SCOATE (elimina egalitatile redundante)

$$t = t$$

x=x redundant, aplic scoate si elimin egalitatea din multimea de rezolvat

REZOLVA (muta din multimea de rezolvat in multimea solutiei)

$$x=t$$
 sau $t=x$ astfel incat t sa nu contina x

se muta x=t in multimea solutiei

si toate aparitiile lui x sunt inlocuite cu t

Fie \mathcal{L} un limbaj de ordinul I unde p este un simbol de functie de aritate 3, f este un simbol de functie de aritate 2, h este un simbol de functie de aritate 1, a si b sunt constante (**adica simboluri de functii de aritate 0**), iar restul sunt variabile (x, y, z, u, v). Sa se gaseasca unificatori pentru

- f(x,y), f(h(x),x) si f(x,b);
- f(f(x,y),x), f(v,u) si f(u,h(z));
- p(x, x, z), p(f(a, a), y, y) si p(x, b, z).

Solutie

a)
$$f(x,y)$$
, $f(h(x),x)$ si $f(x,b)$

Multimea solutiei	Multimea de rezolvat	Operatie aplicata
Ø	f(x,y) = f(h(x),x) si $f(h(x),x) = f(x,b)$	DESCOMPUNE
Ø	x=h(x),y=x,h(x)=x,x=b	REZOLVA
x = y	y=h(y), h(y)=y, y=b	ESEC

Am ESEC pentru ca y=h(y) intra pe cazul x=t, iar t contine x. In concluzie, nu exista un unificator pentru acesti termeni.

b)
$$f(f(x,y),x)$$
, $f(v,u)$ si $f(u,h(z))$

Multimea solutiei Multimea de rezolv	Operatie aplicata
--------------------------------------	----------------------

Multimea solutiei	Multimea de rezolvat	Operatie aplicata
Ø	f(f(x,y),x)=f(v,u) si $f(v,u)=f(u,h(z))$	DESCOMPUNE
Ø	f(x,y)=v , $x=u$, $v=u$, $u=h(z)$	REZOLVA
x = u	f(u,y)=v,v=u,u=h(z)	REZOLVA
$egin{aligned} v &= f(u,y), \ x &= u \end{aligned}$	f(u,y)=u,u=h(z)	ESEC

Nu exista un unificator pentru termenii dati.

unify_with_occurs_check/2 % - predicat utilizat pentru a verifica existenta ur

c)
$$p(x,x,z)$$
, $p(f(a,a),y,y)$ si $p(x,b,z)$

Multimea solutiei	Multimea de rezolvat	Operatie aplicata
Ø	p(x,x,z) = p(f(a,a),y,y) si $p(f(a,a),y,y) = p(x,b,z)$	DESCOMPUNE
Ø	$x=f(a,a), x=y, z=y, f(a,a)=\ x,y=b,y=z$	REZOLVA
x=f(a,a)	f(a,a)=y, z=y, y=b	REZOLVA
$y=f(a,a), \ x=f(a,a)$	z=f(a,a), f(a,a)=b	ESEC

ESEC pentru ca am ajuns la f(a,a)=b, unde f/2, iar b/0. Nu exista un unificator pentru acesti termeni.

?- unify_with_occurs_check(p(X, X, Z), p(f(a, a), Y, Y)), unify_with_occurs_ch false.

% daca in loc de b am fi avut o variabila T, atunci ar fi existat unificatorul ?- unify_with_occurs_check(p(X, X, Z), p(f(a, a), Y, Y)), unify_with_occurs_ch X = Z, Z = Y, Y = T, T = f(a, a).

15.2.2. Deductia naturala

Sa se demonstreze ca urmatorul secvent este un secvent valid in logica propozitionala:

$$p o q, r o s dash (p ee r) o (q ee s)$$

Demonstram, de fapt, ca formula $(p \lor r) \to (q \lor s)$ se poate demonstra din ipotezele de deductie din stanga,

- p o q,
- $oldsymbol{\cdot}$ r
 ightarrow s

utilizand sistemul de deductie naturala.

- (1) p o q [ipoteza de deductie]
- (2) r o s [ipoteza de deductie]
- (3) $\mid p \lor r$ [asumptie]
- (4) | | p [asumptie]
- (5) $\mid \mid q \mid \rightarrow e(4,1) \mid$
- (6) | | $q \lor s \ [\lor i(5)]$
- (7) | | r [asumptie]
- (8) | | $s \mapsto e(7,2)$]
- (9) $| | q \lor s [\lor i(8)]$
- (10) | $q \lor s$ [$\lor e(3,4-6,7-9)$]
- (11) $(p \lor r) o (q \lor s)$

$$p o q, r o sdash (p\wedge r) o (qee s)$$

- (1) p
 ightarrow q [ipoteza de deductie]
- (2) r
 ightarrow s [ipoteza de deductie]
- (3) | $p \wedge r$ [asumptie]

(4) |
$$p$$
 [$\wedge e(3)$]

(5)
$$| q [\rightarrow e(4,1)]$$

(6)
$$\mid q \vee s \mid (5) \mid$$

(7)
$$(p \wedge r) o (q ee s)$$

putem demonstra chiar

$$p o q, r o s dash (p \wedge r) o (q \wedge s)$$

15.2.3. Rezolutia SLD

Fie urmatorul program scris in Prolog:

```
1. p(d, b).
```

- 2. p(d, f).
- 3. p(e, c).
- 4. q(a, b).
- 5. q(a, c).
- 6. r(X, Y) := q(X, Z), p(Y, Z).

Sa se gaseasca o SLD-respingere pentru tinta ?- r(a, X).

Solutie

Primul pas in rezolutia SLD este sa transformam codul Prolog in formule din logica de ordinul I.

- facts din Prolog se transforma direct in termeni in logica de ordinul I;
- regulile de deductie se transforma conform urmatoarei reguli:

Echivalentul in formula logica este urmatorul:

$$arphi
ightarrow \psi := \neg arphi \lor \psi \
abla (arphi \land \psi) = \neg arphi \lor \neg \psi$$

$$egin{aligned} Q_1 \wedge Q_2 \wedge ... \wedge Q_n &
ightarrow P \ &\equiv \lnot (Q_1 \wedge Q_2 \wedge ... \wedge Q_n) \lor P \end{aligned}$$

$$\equiv \neg Q_1 \lor \neg Q_2 \lor ... \lor \neg Q_n \lor P$$

Translatarea programului in formule logice:

```
1. p(d,b)
2. p(d,f)
3. p(e,c)
4. q(a,b)
5. q(a,c)
6. \neg q(X,Z) \lor \neg p(Y,Z) \lor r(X,Y)

P:- Q1; Q2, Q3.
% echivalente
P:- Q1.
```

P:- Q2, Q3.

A gasi o SLD-respingere inseamna ca tinta poate fi satisfacuta. In cazul nostru, tinta era ?-r(a, X).

Daca as fi avut o tinta de forma $\,$?- $\,$ r(a, X), $\,$ q(X, $\,$ b) atunci $G_0=\neg r(a,X)\lor \neg q(X,b).$

Avem
$$G_0$$
: $\neg r(a,X_1)$ avem G_0 : $\neg r(a,X_1) \lor \neg p(Y,Z) \lor r(X,Y)$ Alegem literalul $\neg r(a,X_1)$ si trebuie sa unifice cu $r(X,Y)$. $r(a,X_1)=r(X,Y)$ $X=a$ si $Y=X_1$: $\theta(X)=a$, $\theta(Y)=X_1$ $\neg q(a,Z) \lor \neg p(X_1,Z)$

 $G_0 =
eg r(a,X_1)$ (am aplicat o redenumire $\dim X$ in X_1 pentru a nu avea conflicte cu r(X,Y) de la 6)

$$G_1 =
eg q(a,Z) ee
eg p(X_1,Z)$$
 aplicand (6) cu substitutiile $heta(X) = a$, $heta(Y) = X_1$

$$G_2=
eg p(X_1,b)$$
 aplicand (4) cu substitutiile $heta(Z)=b$ $G_3=\square$ aplicand (1) cu substitutia $heta(X_1)=d$

$$G_2'=
eg p(X_1,c)$$
 aplicand (5) cu subtitutia $heta(Z)=c$ $G_3'=\square$ aplicand (3) cu substitutia $heta(X_1)=e$

15.2.4. λ -calcul

Sa se calculeze β -formele normale pentru urmatorii λ -termeni.

- $(\lambda x.xy)(\lambda z.z)$
- $(\lambda a.a)(\lambda b.b)(\lambda c.cc)(\lambda d.d)$

Solutii

Pentru a calcula β -forma normala unui λ -termen trebuie sa efectuam β -reductii succesive, pana cand nu mai putem aplica o β -reductie termenului curent. β -reductia nu era nimic altceva decat aplicarea functiilor.

$$\lambda x.t$$
 poate fi vazut ca un $f(x)=t$ $(f(x)=t)(u)=f(u)$ $(f(x)=x+1)(2)=2+1=3$ $(\lambda x.t)u=[u/x]t$

Reamintiri de notatii:

- $\lambda xy.xyz$ in loc de $\lambda x.\lambda y.xyz$;
- $t_1t_2t_3$ in loc de $(t_1t_2)t_3$

a)
$$(\lambda x.xy)(\lambda z.z) o_{eta} [\lambda z.z/x]xy =_{lpha} (\lambda z.z)y o_{eta} [y/z]z =_{lpha} y$$
 este eta -formal normala

b)
$$(\lambda a.a)(\lambda b.b)(\lambda c.cc)(\lambda d.d) \rightarrow_{\beta} (\lambda b.b)(\lambda c.cc)(\lambda d.d) \rightarrow_{\beta} (\lambda c.cc)(\lambda d.d) \rightarrow_{\beta} [\lambda d.d/c]cc =_{\alpha} (\lambda d.d)(\lambda d.d) =_{\alpha} (\lambda d.d)(\lambda e.e) \rightarrow_{\beta} [\lambda e.e/d]d =_{\alpha} \lambda e.e$$
 este β -forma normala

$$(\lambda a.a)(\lambda b.b)
ightarrow_{eta} [\lambda b.b/a] a =_{lpha} \lambda b.b \ (\lambda b.b)(\lambda c.cc)
ightarrow_{eta} [\lambda c.cc/b] b =_{lpha} \lambda c.cc$$

$$f(x) = x + t$$

$$f(y)=y+t$$

$$f(x) = x + 1$$

$$f(y)=y+1$$

c)
$$(\lambda xy.xyz)(\lambda t.tu) =_{\alpha} (\lambda x.\lambda y.xyz)(\lambda t.tu) \rightarrow_{\beta} [\lambda t.tu/x](\lambda y.xyz) =_{\alpha} \lambda y.(\lambda t.tu)yz \rightarrow_{\beta} \lambda y.([y/t]tu)z =_{\alpha} \lambda y.yuz$$