Problème de tomographie discrète (LU3IN003)

Sira-Lina Achouri & Ina Elena Campan

Le 20 novembre, 2023

$$T(j,l) = T(j-1,l)$$
 ou $T(j-s_l-1,l-1)$

Introduction

Une des relations de récurrence permettant de calculer les T(j,l)

1. Langage choisi: Python

- 2. Variables et structures du code
- 3. Résolution par une méthode incomplète
- 4. Résolution par une méthode complète

∨ TOMOGRAPHIE LU3IN003 > html > instances affichage.py ■ desktop.ini lecture.py main.py methode_complete.py methode_incomplete.py Rapport_LU3IN003.pdf (i) README.md **≡** temps.txt tests.py

Structure du code

Tests

1. **Première partie** : sur les instances de 1 à 10.txt

(figure 1: Instance 9.txt)

- 2. **Deuxième partie** : toutes les instances
- 3. **Complexité** des algorithmes et lien avec le temps de calcul

Fichier .txt	Temps de calcul (s) pour la méthode incomplète*	Temps de calcul (s) pour la méthode complète*
n°1	0.00028	0.00102
n°2	0.04785	0.04741
n°3	0.03069	0.02962
n°4	0.09043	0.08654
n°5	0.06890	0.06605
n°6	0.15881	0.15343
n°7	0.09880	0.09510
n°8	0.15145	0.14568
n°9	1.74070	1.67313
n°10	1.72551	1.67609
n°11	0.00005	0.00010
n°12	0.14893	0.15694
n°13	0.19433	0.18637
n°14	0.12141	0.12458
n°15	0.08767	0.16317
n°16	0.33182	18.39279

Première méthode :

complexité polynomiale

Deuxième méthode :

complexité exponentielle

Difficultés & Conclusion

- 1. Compréhension du sujet
- 2. Vitesse du processeur qui varie selon la machine
- 3. On a beaucoup aimé les images retrouvées

Instance 15.txt