# Biochemistry

Molarity, Molality, and Normality

> Asif Ali 2K21/MLT/09

# **Mass Percent**

- ✓ Solutions can also be represented as percent of solute in a specific mass of solution.
- ✓ For a solid dissolved in water, you use percent by mass which is Mass Percent.
- ✓ % by mass = mass solute x 100 mass of solution
- ✓ \*\*Mass of solution = solute mass + solvent mass
  Example 1
- If a solution that has a mass of 800.0 grams contains 20.0 grams of NaCl, what is the concentration using Percent by Mass?
  - % by mass = mass solute x 100 mass of solution
- % by mass = 20.0g NaCl x 100
  - 800.0g solution
  - = 2.50% NaCl

### Dilutions with Normality:

What if you wished to dilute a more concentrated Normal solution to a specific concentration. How would you do it ?

$$N_iV_i = N_fV_f$$

Normal Dilutions example #1:

A lab requires 500 mL of 0.20 N Sulfuric acid. You have a significant volume of 4.0 N H2SO4.

How do you prepare the desired solution?

Normal Dilutions example #2:

A lab requires 870 mL of 2.0 N Potassium hydroxide. You have a significant volume of 3.0 N KOH.

How do you prepare the desired solution?

$$N_iV_i = N_fV_f$$
  
2.0 N x 0.870 L = 3.0 N x "X"

$$"X" = 0.58 L$$

Dilute 580 mL of 3.0 N Potassium hydroxide to 870 mL.

### Example 2

If 10.0 grams of NaCl is dissolved in 90.0 grams of water, what is the concentration using Percent by Mass?

## Example 3

How many grams of sodium bromide are in 200.0g of solution that is 15.0% sodium bromide by mass?

### Molality

The number of moles of solute per kilogram of solvent.

Molality example #1: 5.67g of glucose are dissolved in 25.2g of water.

What is the Molality ?

Step #1: Determine the number of moles of solute.

Molecular weight of glucose = 180.1572 g/mol

Use "DIMO" to determine # of moles.

5.67g = 0.0315 mol of glucose

180.1572 g/mol

Step #2: Determine the mass of the solvent.

Given 25.2g =  $0.0252 \text{ Kg}_{X''}$ 

Step #3: Set up proportions to solve.

0.0315 mol glucose

0.0252 Kg solvent

X = 1.25m glucose

### Molality

The number of moles of solute per kilogram of solvent.

Molality example #1: 5.67g of glucose are dissolved in 25.2g of water. What is the Molality?

Step #1: Determine the number of moles of solute.

Molecular weight of glucose = 180.1572 g/mol

Use "DIMO" to determine # of moles.

5.67g 0.0315 mol of glucose

Step #2: Determine the mass of the solvent.

Given 25.2g =  $0.0252 \text{ Kg}_{"X"}$ 

Step #3: Set up proportions to solve.

0.0315 mol glucose

1.25m glucose X =

0.0252 Kg solvent

180.1572 g/mol

```
Molality example #3:
Fructose, C<sub>c</sub>H<sub>12</sub>O<sub>c</sub>, is a sugar found in honey and fruits. The sweetest sugar, it is nearly twice as sweet as sucrose.
How much water should be added to 1.75g of fructose to give a 0.125m solution of Fructose?
 Step #1: Determine the number of moles of solute.
  Molecular weight of Fructose =
                                                    180.1572 g/mol
  Use "DIMO" to determine # of moles.
            1.75g
                                         0.00971 mol of Fructose
     180.1572 g/mol
  Step #2: Determine the mass of the solvent.
                                                                      Step #4: Use the density of water to convert
       Given "X"g =
                                  Kg "X"
                                                                                         grams to milliliters.
 Step #3: Set up proportions to solve.
```

# Molar Solutions -Dry Chemicals

✓ Mole Mass Conversion

√Grams/L x (1/MW) = Moles/L

#### Example:

Need to know how many grams of NaOH to make 1Litre of 2M.

Rearrange equation: to show that the grams is the unknown we what to find.

- √ Grams= Moles / (1/MW)
- √ Grams = 2M / (1/40.01)
- ✓ Grams= 80.02 of NaOH /Litre of distilled water.
  - ✓ Caution this is exothermic reaction.

3



Figure 21.4. A 1 M Solution of Sodium Sulfate (Na,SO<sub>a</sub>). The FW of Na,SO<sub>c</sub> is

# Molar Solutions- Wet Chemicals

Important to remember check the label you need to know the starting strength (%)

### Grams = Density x 1000ml x %

Example: HCl comes in two different strengths 32% and 36%.

# Molar Solutions- Wet Chemicals

Next step to work out the number of moles.

Grams x (1/MW) = Moles

Rearrange to find the number Moles.

This is the strength of your HCl Now work out how many Moles is 32% HCl. Next Step is dilution.

Example: 32% HCl = 10.17 M and you need to make 500mls of 2M.

M1x V1 = M2 x V2

M1=The original number of moles of HCl 10.17

V1= How much do we need?

M2 = Moles needed 2M

V2 = Volume needed 500mls

10.17M x V1ml= 2Mx 500ml

Rearrange to find V1

V1= (2x500)/10.17 V1= 98.33ml

```
✓ Sulphuric acid. 96-98%
```

Grams = Density x 1000ml x %

M= (g x 1000ml) / (MW x ml) Step1.

Grams= 1.84g/mlx 1000mlx 96% Grams=1.84g x 1000ml x0.98

Grams=1803.2

Step 2. M= (1803.2 x1000ml) / (96.07x/1000ml) M= 18.85

Then dilute to suit the moles you require.

- ✓ When mixing solutes what is the final Mole?

  ✓ Example: 50ml of 0.5M NaOH with 250ml of 1M NaOH What is the final molar
- Example: 50ml of 0.5M NaOH with 250ml of 1M NaOH What is the final molar strength.

#### M1V1+M2V2= M3V3

M1= 0.5M; V1 = 50ml; M2 = 1.0; V2 = 250ml

M3 = unknown; V3 = 300ml

Rearrange to find M3

M3= (0.5Mx50ml+1.0M x 250ml) /300

M3= (0.5Mx50ml+1.0M x 250ml) /300 M3=0.92M

U.9ZIVI

# Always Check.

#### ✓ Does the Chemical have water added?

This needs to be taken into consideration when considering the Molecular Weight (MW).

✓ Read the information on the Chemical container label.

Example. Copper Sulphate comes in Anhydrous CuSO4(pale green to white powder) and Pentahydrate. CuSO4.5H2O (bright blue powder)

CuSO4 =159.62g/mol CuSO4. 5H2O = 249.70g/mol

This will affect your accuracy of your chemical solution.

Liquids chemicals always check the % and density

What if I don't want a litre of solution?

NaOH example: 80.02g/L to make 2M

You only need 250mls.

Therefore you need 20.005g of NaOH to make up 250mls.

### Concentration Expressions (Most Common)

PARTS (Common in environmental sciences, for example)

Amounts of solutes expressed as "parts"

- a. Parts per Million (ppm)
- b. Parts per Billion (ppb)
- c. Might see parts per Thousand (ppt)
- d. Percents are same category (pph %)

Parts may have any units but must be the same for all components of the mixture.

### Example:

#### A solution is 3:2:1 ethylene:chloroform:isoamyl alcohol

Might combine:

3 liters ethylene

2 liters chloroform

1 liter isoamyl alcohol

Two Other Forms Of %

v/v <u>mL solute</u>

100 mL solution

w/w <u>g solute</u> 100 g solution Weight/weight

How would you make 500 g of a 5% solution of NaCl by weight (w/w)? Percent strength is 5% w/w, total weight desired is 500g.

5% = 5g/100g

0.05g X 500 g = 25 g = NaCl needed

500 g - 25 g = 475 g = amount of solvent needed

Dissolve 25 g of NaCl in 475 g of water.

### Weight / Volume

Means a fraction with:

weight of solute in numerator total volume in denominator

2 mg/mL proteinase K

Means 2 mg of proteinase K in each mL of solution.

Example: How much proteinase K is required to make 50 mL of solution at a concentration of 2 mg/mL?

Can Solve as A Proportion Problem

2 mg proteinase K = X 1 mL solution = 50 mL solution

X = 100 mg = amount proteinase K needed. Volume / Volume Means a fraction with:

volume of solute in numerator
total volume in denominator
Usually the "solute" here is a liquid as well
Remember that volume in the denominator is the total
volume of the solution

# Example

- √ You are to make 50 mL of a 8% v/v solution of diluted dish soap.
- How many mLs of concentrated dish soap must be added to how many mLs of water?
- ✓ Weight / Weight
- ✓ Means a fraction with:

#### mass of solute in numerator

total mass in denominator

- ✓ Most times the "solute" here is a solid and sometimes the "solution" is also a solid
- Remember that mass in the denominator is the total mass of the solution

- Example:
- You are to prepare 4 kg of specific soil sample which is to be 8% w/w sand and 5% w/w clay in which the remainder is top soil.
- ✓ How many grams of each sand and clay need to be added to the soil to make the solution?

### Ppm And Ppb

- ✓ ppm: The number of parts of solute per 1 million parts of total solution.
- ✓ ppb: The number of parts of solute per billion parts of solution.

#### Ppm Example

5 ppm chlorine = 5 g of chlorine in 1 million g of solution, or 5 mg chlorine in 1 million mg of solution, or 5 pounds of chlorine in 1 million pounds of solution

#### Conversions

To convert ppm or ppb to simple weight per volume expressions:

5 ppm chlorine

To convert ppm or ppb to simple weight per volume expressions:

5 ppm chlorine = 5 g chlorine = 5 g chlorine 10<sup>6</sup> g water 10<sup>6</sup> mL water

- 5 mg/1 L water
- = 5 X 10<sup>-6</sup> g chlorine/ 1 mL water
- = 5 micrograms/mL

### PPM To Micrograms/ml

For any solute:

1 ppm in water = 1 microgram

mL

Each star represents 1 mg of dioxin.

What is the concentration of dioxin in the beaker expressed as ppm (parts per million)? \_\_\_\_\_

What is the total amount of dioxin in beaker?



500 m

Each star represents 1 mg of dioxin.

What is the total amount of dioxin in tube? 25 mg

What is the concentration of dioxin in tube expressed as ppm?

1 ppm in water = 25 mg/500 mL = 0.05 mg/mL= 50 µg/mL so the concentration is 50 ppm

