CAT 2

79546 - Stephen Ng'etich

Q1

 \mathbf{a}

$$df = n - l - 1$$

where l is the level in anova test and n is the sample size

48 = n - 1 - 1

Solve for n

n = 50

b

$$S = \sqrt{MSE}$$

$$MSE = \frac{SSE}{n-2} = \sqrt{\frac{11354}{48}} = 15.38$$

 \mathbf{c}

$$\begin{array}{ll} & \text{t-statistic} & \text{p-value} \\ H_0: \alpha = 0 \,, H_a: \alpha \neq 0 & -2.601 & -0.0123 \\ H_0: \beta_1 = 0 \,, H_a: \beta_1 \neq 0 & 9.464 & 1.490*10^{-12} \end{array}$$

 \mathbf{d}

$$MSR = \frac{SSR}{1} = \frac{21186}{1} = 21186$$

$$MSR = \frac{SSE}{n-2} = \frac{11354}{48} = 236.59166$$

$$\text{F-value} = \frac{MSR}{MSE} = \frac{21186}{236.5417} = 89.5656$$

 \mathbf{e}

$$R^2 = 0.6511$$

 $\mathbf{Q2}$

$$\begin{split} \frac{L(\theta_0)}{L(\theta_1)} &\leq k \\ \frac{\prod_{i=1}^n 2 \times x^{2-1}}{\prod_{i=1}^n 1 \times x^{1-1}} &\leq k \\ \frac{1}{2 \prod_{i=1}^n X_i} &\leq k \end{split}$$

Making x the subject of the formula

$$\frac{1}{2k} \le \prod_{i=1}^{n} x_i$$

Q4

$$f(x;\theta) = \theta^{x} (1 - \theta)^{1 - x} x = 0, 1$$

$$\frac{L(0.5)}{L(\theta)} \le k$$

$$\frac{\prod_{i=0}^{n} 0.5^{x} (1 - 0.5)^{1 - x}}{\prod_{i=0}^{n} \theta^{x} (1 - \theta)^{1 - x}} \le k$$

$$\frac{0.5^{x} \times 0.5^{n - x}}{\theta^{\sum_{i=1}^{n} x} (1 - \theta)^{n - \sum_{i=1}^{n}}} \le k$$

$$\frac{0.5^{n}}{\theta^{\sum_{i=1}^{n} x} (1 - \theta)^{n - \sum_{i=1}^{n}}} \le k$$

let $Y = \sum_{i=1}^{n}$

$$\frac{0.5^n}{\theta^y (1-\theta)^{5-y}} \le k$$
$$\frac{0.5^n (1-\theta)^y}{\theta^y (1-\theta)^5} \le k$$

Move constant to one side

$$\frac{(1-\theta)^y}{\theta^y} \le 32k(1-\theta)5$$

$$ln\left[\frac{(1-\theta)^y}{\theta^y}\right] \le ln\left[32k(1-\theta)5\right]$$

$$yln(1-\theta) + yln\theta \le ln32 + lnk + 5ln(1-\theta)$$

$$y(ln(1-\theta) + ln\theta) \le ln32 + lnk + 5ln(1-\theta)$$

$$y \le \frac{ln32 + lnk + 5ln(1-\theta)}{ln(1-\theta) + ln\theta}$$

Q5

 H_0 : proposition are equal to the one provided

$$p_1 = \frac{9}{16} = 0.5625, p_2 = \frac{3}{16} = 0.1875, p_3 = \frac{3}{16} = 0.1875, p_4 = \frac{1}{16} = 0.0625$$

 H_a : at least on the p_1 is different

Sample size:

$$= 124 + 30 + 43 + 11 = 208$$

$$\chi^2 = \frac{(O-E)^2}{E}$$

Dist.	O	E = np	O - E	$(O - E)^{2}$	$\frac{(O-E)^2}{E}$
0.5625	124	117	7	49	0.4188
0.1875	30	39	-9	81	2.0769
0.1875	43	39	4	16	0.4103
0.0625	11	13	-2	4	0.3077
Sum	208				3.2137

df = 4 - 1 = 3 and at $\alpha = 0.05$ the chi-square value is 7.81

if $\chi^2_{calc} \leq \chi^2_{critical}$ we fail to reject the null hypothesis

 $3.2137 \le 7.81$ we fail to reject the null hypothesis

Q6

 H_o : Choice of major is independent of the hand posture

 H_a : Choice of major is not independent of the hand posture

	LH	RH	Totals
RN	89	29	118
LI	5	4	9
LN	5	8	13
Totals	99	41	140

Computing Expectation using the formula $\frac{x_{\text{row total}} \times x_{\text{column total}}}{\text{sum total}}$

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$\chi^2 = \frac{(89-83.44)^2}{83.44} + \frac{(5-6.36)^2}{6.36} + \frac{(5-9.19)^2}{9.19} + \frac{(29-34.56)^2}{34.56} + \frac{(4-2.64)^2}{2.64} + \frac{(8-3.81)^2}{3.81}$$

$$\chi^2 = 0.37 + 0.29 + 1.91 + 0.89 + 0.7 + 4.6 = 8.76$$

Calculate the degrees of freedom using the formula df=(r-1)(c-1)=(3-1)(2-1)=2 χ^2_α from the table at 0.05 with df=2 is 5.99

$$\chi^2_{calc} > \chi^2_{\alpha}$$
 reject H_0

8.76 > 5.99 hence reject the null hypothesis