			0
MON	Locus	10	6

6.1)	Calculate	the	required	maximum	clock	frequency	for each	20	the	following
	data path									

(a) Single-cycle data path in Fig 6.2

Frequency = 100 ns 100 ns Hz

= [350#MHz]

(b) Multi-cycle data path in Fig 6.3

= 0.6 ns + 1.1 ns + 0.3 ns + (0.05 ns x 3)
= 2.15 ns

Maximum Frequency = 2.15 ns = 109 ns = 12.15 ns · 102 = 165, UG, 279.06977 Hz

	(4): Pipelined date path in Fig 6.4
	= Adder/Subtractor + Register
	= 1.1 ms + 0.15 ms
	= 1.25 ns
	Maximum Frequency = 1.25 ns
	$= \frac{1}{1.25 \text{ns}} \cdot \frac{10^{9} \text{ns}}{\text{Hz}}$
	= 800,000,000 Hz
	≥ 800 MHz
	(6.2) Estimate the speedup between the following data paths when generating W= 1000 quantities
-	A; + B; + C; ± D; for i = 0,1,2,, 999. Egnore the data reading and writing delays.
	(a) Problem 6.1a vs. 6.1c
	N· K
	$Specograp = \frac{K + (N-1)}{N \cdot K}$
	= 1000 · 3 3 + (1000 - 1)
	= 100.5
	= 2.994
0	

