

MTL 104, Minor 2

Indian Institute of Technology Delhi

Max. Marks: 25 Time: 1 Hour Attempt all questions. All notations are standard. All questions carry equal marks.

- 1. If V is an n-dimensional vector space over a field F and if $T \in A_{\mathbb{F}}(V)$ has all of its characteristic roots in \mathbb{F} , then prove that T satisfies a polynomial of degree at most n over F.
- 2. In each of the following cases, check if $T \in A_{\mathbb{F}}(V)$ is triangularizable, if yes determine its canonical form, also determine a regular $S \in A_{\mathbb{F}}(V)$ such that STS^{-1} is triangular.
 - (i) $V = \mathbb{R}^2_{\mathbb{R}}, W = \mathbb{R}^2, \mathbb{F} = \mathbb{R}, (x, y)T = (x + y, x)$
 - (ii) $V = \mathbb{R}^2_{\mathbb{R}}, W = \mathbb{R}^2, \mathbb{F} = \mathbb{R}, (x, y)T = (y, x)$
- 3. Let $T: \mathbb{R}^3_{\mathbb{R}} \to \mathbb{R}^3_{\mathbb{R}}$ be a linear transformation defined by $(x_1, x_2, x_3)T = (-x_2, x_1, x_3)$ and let $B = \{(1,0,0),(0,1,0),(0,0,1)\},\ B' = \{(1,1,1),(1,-1,0),(0,0,1)\}$ be two ordered bases for $\mathbb{R}^3_{\mathbb{R}}$. Find a matrix P such that $[T]_{B'} = P[T]_B P^{-1}$.
- 4. Let V be the vector space of all polynomials in x over F of degree ≤ 5 . Let $T: V \to V$ be defined by $(1)T = x^2 + x^4$, (x)T = x + 1, $(x^2)T = 1$, $(x^3)T = x^3 + x^2 + 1$, $(x^4)T = x^4 + 1$ x^4 , $(x^5)T = 0$. If W is the linear span of $\{1, x^2, x^4\}$
 - (i) Show that W is invariant under T.
 - (ii) Find the matrix of T in a suitable basis of V.
 - (iii) Find the matrix of \overline{T} in a suitable basis of $\overline{V} = \frac{V}{W}$, where $\overline{T} : \overline{V} \to \overline{V}$ defined by $(\bar{v})\bar{T} = \overline{(v)T}$
- $\widehat{\mathfrak{h}}$ Let $T: \mathbb{R}^3_{\mathbb{R}} \to \mathbb{R}^3_{\mathbb{R}}$ be a linear transformation defined as (x,y,z)T = (3x+2y+2z,x+2z)2y+2z,-x-y). Find the minimal polynomial of T, and also decompose $\mathbb{R}^3_{\mathbb{R}}$ as a direct sum of invariant subspaces.