

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT YELAHANKA - BANGALORE - 64

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III INTERNAL ASSESSMENT SCHEME & SOLUTIONS, MAY - 2017

Subject: Microprocessors & Microcontrollers	Subject Code: 15CS44	Branch & Semester : CSE - 4 A & B
Max. Marks : 30 Marks	Date: 23/05/2017 Time: 2 PM - 3:30 PM	Faculty: Mr. Shankar R

Answer FIVE full questions, selecting ONE full question from each Part. (Part D & Part E are compulsory)

Q. No	Question	CO, PO, K level	Marks
	PART-A		
1.	Describe the different features of ARM instruction set that make it suitable for embedded applications. Explanation 6 marks The ARM instruction set differs from the pure RISC definition in several ways that make the ARM instruction set suitable for embedded applications: Variable cycle execution for certain instructions—Not every ARM instruction executes in a single cycle. For example, load-store-multiple instructions vary in the number of execution cycles depending upon the number of registers being transferred. The transfer can occur on sequential memory addresses, which increases performance since sequential memory accesses are often faster than random accesses. Code density is also improved since multiple register transfers are common operations at the start and end of functions. Inline barrel shifter leading to more complex instructions—The inline barrel shifter is a hardware component that pre-processes one of the input registers before it is used by an instruction. This expands the capability of many instructions to improve core performance and code density. We explain this feature in more detail in Chapters 2, 3, and 4. Thumb 16-bit instruction set—ARM enhanced the processor core by adding a second 16-bit instructions set called Thumb that permits the ARM core to execute either 16- or 32-bit fixed-length instructions. Conditional execution—An instruction is only executed when a specific condition has been satisfied. This feature improves performance and code density by reducing branch instructions. Enhanced instructions—The enhanced digital signal processor (DSP) instructions were added to the standard ARM instruction set to support fast 16×16-bit multiplier operations and saturation. These instructions allow a faster-performing ARM processor in some cases to replace the traditional combinations of a processor plus a	CO3 (PO1) K2	06
	DSP. Explain ARM core dataflow model with a neat diagram.		
2.	Diagram 2 marks Explanation 4 marks Data enters the processor core through the Data bus. The data may be an instruction to execute or a data item. Figure shows a Von Neumann implementation of the ARM—data items and instructions share the same bus. In contrast, Harvard implementations of the ARM use two different buses. The instruction decoder translates instructions	CO3 (PO1) K2	06

before they are executed. Each instruction executed belongs to a particular instruction set. The ARM processor, like all RISC processors, uses load-store architecture. This means it has two instruction types for transferring data in and out of the processor: load instructions copy data from memory to registers in the core, and conversely the store instructions copy data from registers to memory.

Data items are placed in the register file—a storage bank made up of 32-bit registers. Since the ARM core is a 32-bit processor, most instructions treat the registers as holding signed or unsigned 32-bit values. The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-bit values as they are read from memory and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single result or destination register, Rd. Source operands are read from the register file using the internal buses A and B, respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values Rn and Rm from the A and B buses and computes a result. Data processing instructions write the result in Rd directly to the register file. Load and store instructions use the ALU to generate an address to be held in the address register and broadcast on the Address bus.

One important feature of the ARM is that register Rm alternatively can be preprocessed in the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can calculate a wide range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register file using the Result bus. For load and store instructions the incrementer updates the address register before the core reads or writes the next register value from or to the next sequential memory location. The processor continues executing instructions until an exception or interrupt changes the normal execution flow.

P		

The ARM instruction set provides two instructions to directly control a program status register (psr). The MRS instruction transfers the contents of either the cpsr or spsr into a register; in the reverse direction, the MSR instruction transfers the contents of a register into the cpsr or spsr. Together these instructions are used to read and write the cpsr and spsr.

MRS	copy program status register to a general-purpose register	Rd — psr
MSR	move a general-purpose register to a program status register	pst(field) — Rm
MSR	move an immediate value to a program status register	pst(field) - tmmedtate

In the syntax you can see a label called fields. This can be any combination of control (c), extension (x), status (s), and flags (f). These fields relate to particular byte regions in a psr, as shown in Figure.

Syntax:

MRS{<cond>} Rd,<cpsr | spsr>
MSR{<cond>} <cpsr | spsr>_<fields>,Rm
MSR{<cond>} <cpsr | spsr>_<fields>,#immediate

The c field controls the interrupt masks, Thumb state, and processor mode.

The following Example shows how to enable IRQ interrupts by clearing the I mask. This operation involves using both the MRS and MSR instructions to read from and then write to the cpsr.

The MSR first copies the cpsr into register r1. The BIC instruction clears bit 7 of r1. Register r1 is then copied back into the cpsr, which enables IRQ interrupts. You can see from this example that this code preserves all the other settings in the cpsr and only modifies the I bit in the control field.

PRE cpsr = nzcvqIFt_SVC MRS r1, cpsr BIC r1, r1, #0x80; 0b01000000

MSR cpsr_c, r1

POST cpsr = *nzcvqiFt_SVC*

This example is in SVC mode. In user mode you can read all cpsr bits, but you can only update the condition flag field f.

With example, illustrate how following instructions work? LDRSH STRB LDMDA STMIA

Each instruction 1.5 marks *4 - 6 marks

4. 1. LDRSH

The LDRSH instruction loads a halfword from addr_mode into dest. The halfword is sign-extended into a 32-bit word enabling 16-bit memory data to be manipulated. It also enables PC-relative addressing if used as a base register. The condition needs to be

CO4 (PO1) K3

06

a valid value; else the instruction is rendered an NOP. Suntax LDR[condition]SH dest, addr_mode LDRSH R2, [R0] 2. STRB save byte from a register - Rd -> mem8[address] 3. LDMDA load multiple registers 4. STMIA save multiple registers $\{Rd\}^*N \rightarrow mem32[Rn + 4^*N]$, $Rn = Rn + 4^*N$ PART-C What are banked registers? Show how the banked registers are utilized when the user mode changes to IRQ mode? User and system r2r3 Fast r5 interrupt r6 request r8 r8_fiq r9 r9_fiq r10 r10_fiq r11 r11_fiq Undefined Supervisor Abort request r12 r12_fiq r13_irq r13_undef r13 sp r13_svc r14 lr r15 pc cpsr spsr_fiq spsr_irq spsr_svc spsr_undef Complete ARM register set. The above figure shows all 37 registers in the register file. Of those, 20 registers are hidden from a program at different times. These registers are called banked registers and are identified by the shading in the diagram. They are available only when the processor is in a particular mode; for example, abort mode has banked registers CO3 r13_abt, r14_abt and spsr_abt. Banked registers of a particular mode are denoted by 5. 06 (PO2) an underline character post-fixed to the mode mnemonic or **_mode**. K3 For example, when the processor is in the interrupt request mode, the instructions you execute still access registers named r13 and r14. However, these registers are the banked registers r13_irq and r14_irq. The user mode registers r13_usr and r14_usr are not affected by the instruction referencing these registers. A program still has normal access to the other registers r0 to r12. User mode r0 rl r2 r3 r4 r5 r6 r7 r8 r9 Interrupt r10 request r11 mode r13 sp r13_irq r14 lr r14_irq r15 pc spsr_irq Changing mode on an exception.

	shows to when a processoregister	the core changing from user mode in interrupt request occurs due to a for core. This change causes user re is are replaced with registers r13_ is the return address and r13_ird	interrupt forces a mode change. The figure to interrupt request mode, which happen to external device raising an interrupt to the egisters r13 and r14 to be banked. The use irq and r14_irq, respectively. Note r14_ir to contains the stack pointer for interrup	5 2 7	
	program the diag return spsr_ire	n status register (spsr), which stor gram the cpsr being copied into sps instruction is used that instructs t g and bank in the user registers r	ring in interrupt request mode: the saven es the previous mode's cpsr. You can see in r_irq. To return back to user mode, a specia the core to restore the original cpsr from th 13 and r14. Note that the spsr can only b ere is no spsr available in user mode.	1 	
	_		uctions. How Barrel shifter is used		
	with A	Arithmetic instructions?			
	_	nation of both -3 marks * 2 -	- 6 marks		
		netic Instructions		.	
		•	dition and subtraction of 32-bit signed and	i	
		ed values.			
	Syntax:	<instruction>{<cond>}{S} Rd, Rn, N</cond></instruction>			
	ADC	add two 32-bit values and carry	Rd = Rn + N + carry		
	ADD	add two 32-bit values	Rd = Rn + N		
	RSB	reverse subtract of two 32-bit values	Rd = N - Rn		
	RSC	reverse subtract with carry of two 32-bit values	Rd = N - Rn - !(carry flag)		
	SBC	subtract with carry of two 32-bit values	Rd = Rn - N - !(carry flag)		
	SUB	subtract two 32-bit values	Rd = Rn - N		
	N is the r	result of the shifter operation. The syntax of sh	ifter operation is shown in Table		
6.	Barrel	Shifter		CO3	06
о.		•	d N can be more than just a register o	(PO2) K2	06
		•	Rm that has been preprocessed by the barre		
		2	processing instruction. Data processing		
		,	ithmetic logic unit (ALU). A unique and		
		•	the ability to shift the 32-bit binary pattern		
	in one	of the source registers left or right	by a specific number of positions before i	<u>t</u>	
			ower and flexibility of many data processing	3	
	operatio	ons.			
	MUL (,	t do not use the barrel shift, for example, the ros), and QADD (signed saturated 32-bi		
	1				

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly useful for loading constants into a register and achieving fast multiplies

or division by a power of 2.

Barrel shifter and ALU.

Example

7.

We apply a logical shift left (LSL) to register Rm before moving it to the destination register. This is the same as applying the standard C language shift operator to the register. The MOV instruction copies the shift operator result N into register Rd. N represents the result of the LSL operation described in Table.

PRE
$$r5 = 5$$

 $r7 = 8$
 $MOV r7, r5, LSL \#2$; $r7 = r5*4 = (r5 << 2)$
POST $r5 = 5$
 $r7 = 20$

The example multiplies register r5 by four and then places the result into register r7.

PART-D

Analyze the ARM processor that we use in BMSIT&M in terms of interrupts or exceptions. How are those exceptions handled?

We use Phillips NXP LPC2148 ARM Processor – 1 Mark Exceptions handling – 5 marks

When an exception or interrupt occurs, the processor sets the pc to a specific memory address. The address is within a special address range called the vector table. The entries in the vector table are instructions that branch to specific routines designed to handle a particular exception or interrupt.

The memory map address 0x00000000 is reserved for the vector table, a set of 32-bit words. On some processors the vector table can be optionally located at a higher address in memory (starting at the offset 0xffff0000).

When an exception or interrupt occurs, the processor suspends normal execution and starts loading instructions from the exception vector table (see Table 2.6). Each vector table entry contains a form of branch instruction pointing to the start of a specific routine:

- Reset vector is the location of the first instruction executed by the processor when power is applied. This instruction branches to the initialization code.
- Undefined instruction vector is used when the processor cannot decode an instruction.
- Software interrupt vector is called when you execute a SWI instruction. The SWI instruction is frequently used as the mechanism to invoke an operating system routine.
- Prefetch abort vector occurs when the processor attempts to fetch an instruction from an address without the correct access permissions. The actual abort occurs in the decode stage.
- Data abort vector is similar to a prefetch abort but is raised when an instruction attempts to access data memory without the correct access permissions.

CO3 (PO1,PO2) K4

06

	cpsr. Fast interrupt request vecto hardware requiring faster responsible to the cpsr.					
	The vector table.	_				
	Exception/interrupt	Shorthand	Address	High		
	Reset Undefined instruction	RESET UNDEF	0x00000000 0x00000004	0xff 0xff		
	Software interrupt	SWI	0x00000008	0xff		
	Prefetch abort Data abort	PABT DABT	0x0000000c 0x00000010	0xff		
	Reserved Interrupt request Fast interrupt request	IRQ FIQ	0x00000014 0x00000018 0x0000001c	0xff 0xff 0xff		
		PAR				
	r2 = 0b0101 BIC r0,r1,r2					
	BIC r0,r1,r2 What can be the alternate of the control of the contr	ırks	c of the above cas	e?		
8.	BIC r0,r1,r2 What can be the alternate POST value calculation - 3 ma	ırks	c of the above cas	e?	CO4,CO5 (PO2,PO3) K5	06
8.	BIC r0,r1,r2 What can be the alternate POST value calculation – 3 marks alternate instruction – 3 marks	rl = 0b1111		e?	(PO2,PO3)	06
8.	BIC r0,r1,r2 What can be the alternate POST value calculation – 3 marks alternate instruction – 3 marks	r1 = 0b1111 r2 = 0b0101 BIC r0, r1,		e?	(PO2,PO3)	06
8.	BIC r0,r1,r2 What can be the alternate POST value calculation – 3 marks alternate instruction – 3 marks PRE	r1 = 0b1111 r2 = 0b0101 BIC r0, r1,		e?	(PO2,PO3)	06
8.	BIC r0,r1,r2 What can be the alternate POST value calculation – 3 marks alternate instruction – 3 marks PRE	r1 = 0b1111 r2 = 0b0101 BIC r0, r1, r0 = 0b1010	r2	e?	(PO2,PO3)	06
	BIC r0,r1,r2 What can be the alternate POST value calculation - 3 marks alternate instruction - 3 marks PRE POST This	r1 = 0b1111 r2 = 0b0101 BIC r0, r1, r0 = 0b1010 s is equivalent to Rd = Rn AND N	r2	e?	(PO2,PO3)	06
ourse	BIC r0,r1,r2 What can be the alternate POST value calculation – 3 marks alternate instruction – 3 marks PRE	r1 = 0b1111 r2 = 0b0101 BIC r0, r1, r0 = 0b1010 s is equivalent to Rd = Rn AND N	r2 OT(N)		(PO2,PO3) K5	
ourse	BIC r0,r1,r2 What can be the alternal POST value calculation - 3 marks alternate instruction - 3 marks PRE POST This Coutcomes: Students will be Describe the architecture of	rl = 0b1111 r2 = 0b0101 BIC r0, r1, r0 = 0b1010 s is equivalent to Rd = Rn AND N able to of X86 Microprocess	or(N) sors and have an	introduction	to Assembly	Languag
ourse CO1 CO2 CO3	BIC r0,r1,r2 What can be the alternal POST value calculation – 3 marks alternate instruction – 3 marks PRE POST This Outcomes: Students will be Describe the architecture of Programming. Discuss the Instruction Set of Understand ARM philosophy	r1 = 0b1111 r2 = 0b0101 BIC r0, r1, r0 = 0b1010 s is equivalent to Rd = Rn AND N able to of X86 Microprocessor and its Instruction S	oT(N) sors and have an and so and extend it to interest.	introduction	to Assembly	Languag
	BIC r0,r1,r2 What can be the alternal POST value calculation – 3 marks alternate instruction – 3 marks PRE POST This Coutcomes: Students will be Describe the architecture of Programming. Discuss the Instruction Set of	r1 = 0b1111 r2 = 0b0101 BIC r0, r1, r0 = 0b1010 s is equivalent to Rd = Rn AND N able to of X86 Microprocessor and its Instruction S le in Assembly Langue	oT(N) sors and have an and extend it to interest. age, ARM.	introduction erface various	to Assembly devices to X8	Languag