

3 [R"NH]⁻, carboxamides [R"C(O)NR"]⁻, carbanions [R"]⁻, carbonate [CO₃]⁻², sulfate [SO₄]⁻²,
4 phosphate [PO₄]⁻³, biphasphate [HPO₄]⁻², phosphorus ylides [R"4P]⁻, nitrate [NO₃]⁻, borate
5 [B(OH)₄]⁻, cyanate [OCN]⁻, fluoride [F]⁻, hypochlorite [OCl]⁻, silicate [SiO₄]⁻⁴, stannate [SnO₄]⁻⁴,
6 basic metal oxides comprising Al₂O₃, CaO, and ZnO, amines R"3N and amine oxides R"3NO,
7 and organometallics comprising R"Li, R"2Zn, R"2Mg, and R"MgX', where R" represents an
8 organic substituent and multiple organic substituents need not be identical, and X' represents an
9 inorganic substituent.

1 32. (Once amended) The process of claim 31, wherein the co-reagent is selected from the
2 group consisting of common Grignard reagents R"MgX, alkalihalides, zinc compounds
3 comprising ZnI₂, ZnBr₂, ZnCl₂, and ZnF₂, aluminum compounds comprising Al₂H₆, LiAlH₄,
4 AlI₃, AlBr₃, AlCl₃, and AlF₃, and boron compounds comprising R"B(OH)₂, BI₃, BBr₃, BCl₃,
5 and BF₃, where R" represents an organic substituent and X' represents an inorganic substituent.

1 46. (Twice amended) A process of converting a plurality of POSS fragments into a POSS
2 compound, comprising:

3 mixing an effective amount of a base with the plurality of POSS fragments in a solvent to
4 produce a basic reaction mixture, the base reacting with the POSS fragments to produce the
5 POSS compound,

6 wherein the POSS fragments have the formula (RSiO_{1.5})_m(RXSiO_{1.0})_n and contain from 1
7 to 7 silicon atoms and no more than 3 rings, and the POSS compound is selected from the group
8 consisting of homoleptic nanostructure compounds having the formula [(RSiO_{1.5})_n]_{Σ#},
9 heteroleptic nanostructure compounds having the formula [(RSiO_{1.5})_m(R'SiO_{1.5})_n]_{Σ#},
10 functionalized homoleptic nanostructure compounds having the formula
11 [(RSiO_{1.5})_m(RXSiO_{1.0})_n]_{Σ#}, functionalized heteroleptic nanostructure compounds having the
12 formula [(RSiO_{1.5})_m(R'SiO_{1.5})_n(RXSiO_{1.0})_p]_{Σ#}, and expanded POSS fragments having the
13 formula (RSiO_{1.5})_m(RXSiO_{1.0})_n, where R and R' each represents an organic substituent, X
14 represents a functionality substituent, m, n and p represent the stoichiometry of the formula, Σ
15 indicates nanostructure, and # represents the number of silicon atoms contained within the
16 nanostructure.

1 53. (Once amended) The process of claim 52, wherein the base is selected from the group
2 consisting of hydroxide [OH]⁻, organic alkoxides [R"O]⁻, carboxylates [R"COO]⁻, amides
3 [R"NH]⁻, carboxamides [R"C(O)NR"]⁻, carbanions [R"]⁻, carbonate [CO₃]⁻², sulfate [SO₄]⁻²,
4 phosphate [PO₄]⁻³, biphosphate [HPO₄]⁻², phosphorus ylides [R"₄P]⁻, nitrate [NO₃]⁻, borate
5 [B(OH)₄]⁻, cyanate [OCN]⁻, fluoride [F]⁻, hypochlorite [OCl]⁻, silicate [SiO₄]⁻⁴, stannate [SnO₄]⁻⁴,
6 basic metal oxides comprising Al₂O₃, CaO, and ZnO, amines R"₃N and amine oxides R"₃NO,
7 and organometallics comprising R"Li, R"₂Zn, R"₂Mg, and R" MgX', where R" represents an
8 organic substituent and multiple organic substituents need not be identical, and X' represents an
9 inorganic substituent.

1 58. (Once amended) The process of claim 47, wherein the co-reagent is selected from the
2 group consisting of common Grignard reagents R"MgX, alkalihalides, zinc compounds
3 comprising ZnI₂, ZnBr₂, ZnCl₂, and ZnF₂, aluminum compounds comprising Al₂H₆, LiAlH₄,
4 AlI₃, AlBr₃, AlCl₃, and AlF₃, and boron compounds comprising R"B(OH)₂, BI₃, BBr₃, BCl₃,
5 and BF₃, where R" represents an organic substituent and X' represents an inorganic substituent.

1 67. (Once amended) The process of claim 66, wherein the base is selected from the group
2 consisting of hydroxide [OH]⁻, organic alkoxides [R"O]⁻, carboxylates [R"COO]⁻, amides
3 [R"NH]⁻, carboxamides [R"C(O)NR"]⁻, carbanions [R"]⁻, carbonate [CO₃]⁻², sulfate [SO₄]⁻²,
4 phosphate [PO₄]⁻³, biphosphate [HPO₄]⁻², phosphorus ylides [R"₄P]⁻, nitrate [NO₃]⁻, borate
5 [B(OH)₄]⁻, cyanate [OCN]⁻, fluoride [F]⁻, hypochlorite [OCl]⁻, silicate [SiO₄]⁻⁴, stannate [SnO₄]⁻⁴,
6 basic metal oxides comprising Al₂O₃, CaO, and ZnO, amines R"₃N and amine oxides R"₃NO,
7 and organometallics comprising R"Li, R"₂Zn, R"₂Mg, and R" MgX', where R" represents an
8 organic substituent and multiple organic substituents need not be identical, and X' represents an
9 inorganic substituent.

1 72. (Once amended) The process of claim 71, wherein the co-reagent is selected from the
2 group consisting of common Grignard reagents R"MgX, alkalihalides, zinc compounds

3 comprising ZnI₂, ZnBr₂, ZnCl₂, and ZnF₂, aluminum compounds comprising Al₂H₆, LiAlH₄,
4 AlI₃, AlBr₃, AlCl₃, and AlF₃, and boron compounds comprising R''B(OH)₂, BI₃, BBr₃, BCl₃,
5 and BF₃, where R'' represents an organic substituent and X' represents an inorganic substituent.

1 86. (Twice amended) A process of converting an unfunctionalized POSS nanostructure
2 compound into a functionalized POSS nanostructure compound, comprising:

3 mixing an effective amount of a base with the unfunctionalized POSS nanostructure
4 compound in a solvent to produce a basic reaction mixture, the base reacting with the
5 unfunctionalized POSS nanostructure compound to produce the functionalized POSS
6 nanostructure compound,

7 wherein the unfunctionalized POSS nanostructure compound is selected from the group
8 consisting of homoleptic nanostructure compounds having the formula [(RSiO_{1.5})_n]_{Σ#} and
9 heteroleptic nanostructure compounds having the formula [(RSiO_{1.5})_m(R'SiO_{1.5})_n]_{Σ#}, and the
10 functionalized POSS nanostructure compound is selected from the group consisting of
11 functionalized homoleptic nanostructure compounds having the formula
12 [(RSiO_{1.5})_m(RXSiO_{1.0})_n]_{Σ#} and functionalized heteroleptic nanostructure compounds having the
13 formula [(RSiO_{1.5})_m(R'SiO_{1.5})_n(RXSiO_{1.0})_p]_{Σ#}, where R and R' each represents an organic
14 substituent, X represents a functionality substituent, m, n and p represent the stoichiometry of the
15 formula, Σ indicates nanostructure, and # represents the number of silicon atoms contained
16 within the nanostructure.

1 93. (Once amended) The process of claim 92, wherein the base is selected from the group
2 consisting of hydroxide [OH]⁻, organic alkoxides [R''O]⁻, carboxylates [R''COO]⁻, amides
3 [R''NH]⁻, carboxamides [R''C(O)NR'']⁻, carbanions [R'']⁻, carbonate [CO₃]⁻², sulfate [SO₄]⁻²,
4 phosphate [PO₄]⁻³, biphosphate [HPO₄]⁻², phosphorus ylides [R''4P]⁻, nitrate [NO₃]⁻, borate
5 [B(OH)₄]⁻, cyanate [OCN]⁻, fluoride [F]⁻, hypochlorite [OCl]⁻, silicate [SiO₄]⁻⁴, stannate [SnO₄]⁻⁴,
6 basic metal oxides comprising Al₂O₃, CaO, and ZnO, amines R''₃N and amine oxides R''₃NO,
7 and organometallics comprising R''Li, R''₂Zn, R''₂Mg, and R''MgX', where R'' represents an
8 organic substituent and multiple organic substituents need not be identical, and X' represents an
9 inorganic substituent.

1 97. (Twice amended) The process of claim 86, further comprising mixing a co-reagent with
2 the base and the unfunctionalized POSS nanostructure compound in the solvent.

D¹⁴

1 98. (Once amended) The process of claim 97, wherein the co-reagent is selected from the
2 group consisting of common Grignard reagents R" MgX, alkalihalides, zinc compounds
3 comprising ZnI₂, ZnBr₂, ZnCl₂, and ZnF₂, aluminum compounds comprising Al₂H₆, LiAlH₄,
4 AlI₃, AlBr₃, AlCl₃, and AlF₃, and boron compounds comprising R" B(OH)₂, BI₃, BBr₃, BCl₃,
5 and BF₃, where R" represents an organic substituent and X' represents an inorganic substituent.

1 114. (Once amended) A process of converting a polymeric silsesquioxane into a POSS
2 nanostructure compound, comprising:

3 mixing an effective amount of a base with the polymeric silsesquioxane in a solvent to
4 produce a basic reaction mixture, the base reacting with the polymeric silsesquioxane to produce
5 the POSS nanostructure compound,

D¹⁵

6 wherein the polymeric silsesquioxane has the formula [RSiO_{1.5}]_∞, and the POSS
7 nanostructure compound is [(RSiO_{1.5})₄(RXSiO_{1.0})₃]_{Σ7}, where R represents an organic substituent,
8 X represents a functionality substituent, ∞ represents the degree of polymerization and is a
9 number greater than or equal to 1, m, n and p represent the stoichiometry of the formula, Σ
10 indicates nanostructure, and # represents the number of silicon atoms contained within the
11 nanostructure.

D¹⁶

1 128. (Twice amended) A compound having the formula [(XSiO_{1.5})_n]_{Σ#}, where X represents a
2 functionality substituent, n represents the stoichiometry of the formula, Σ indicates
3 nanostructure, and # represents the number of silicon atoms contained within the nanostructure.
