Quiz 1 EECE4040 Spring 2022

Due Jan 19 at 11:59pm

Points 10

Questions 10

Available Jan 19 at 10am - Jan 19 at 11:59pm about 14 hours

Time Limit 15 Minutes

Instructions

Good luck!

This quiz was locked Jan 19 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	6 minutes	7 out of 10

Score for this quiz: **7** out of 10 Submitted Jan 19 at 7:44pm This attempt took 6 minutes.

	Question 1	1 / 1 pts
	The problem of computing n from b , p and b^n mod p is known as	the
Correct!	Discrete Logarithm Problem	
	Cryptography Problem	
	O Powers Problem	
	Discrete Exponentiation Problem	

Modular Exponentiation Problem

0 / 1 pts
-to-right binary method for s about:
pinary representation osition. In the worst case for a total of $2(n - 2) = 2n$ the number of binary e p is the exponent, but as in terms of the g answer.
oi c f t

Question 3 1 / 1 pts

Which best describes an algorithm?

Correct!

Sequence of steps for solving a problem
Logarithm for solving a problem
Application of the problem
Search engine
Methodology for the problem

	Question 4	1 / 1 pts
	A formal definition of an algorithm uses the following concept:	
	O Tour machine	
	O Phat machine	
Correct!	Turing machine	
	Algorithm machine	
	Al machine	

Question 5	1 / 1 pts
The number of octal digits of an integer n is approximately	/ equal to:
○ log ₂ n	
○ 2 ⁿ	

Data structure that can used to implement recursion and convert any recursive algorithm, i.e., involving recursive calls to itself, to a non-recursive implementation of the algorithm: priority queue list queue binary tree stack

Question 7

Which is not a major algorithm design strategy

Divide-&-Conquer

Algorithm Paradigm

Branch-&-Bound

Correct!

Greedy Method		
O Dynamic Programming		

Major design strategies that apply recursion. Genetic Algorithms, Dynamic Programming, Backtracking Heuristic Paradigm, Divide-&-Conquer, Dynamic Programming Backtracking, Dynamic Programming, Algorithm Paradigm Divide-&-Conquer, Dynamic Programming, Backtracking Branch-&-Bound, Divide-&-Conquer, Backtracking

	Question 9 0 / 1	pts	
	The cryptographic key K that Bob and Alice compute using their private numbers m and n respectively, is		
orrect Answer	b ^{mn} mod p		
ou Answered			
	None of the above		
	○ b ^p mod (mn)		

orrect Answer

ou Answered

b^p mod (m + n)

 $(x \rightarrow x^2 \rightarrow x^4 \rightarrow x^8 \rightarrow x^{16} \rightarrow x^{32} \rightarrow x^{33})$

Quiz Score: 7 out of 10