The Homogeneous Self-Dual Method

Robert J. Vanderbei

December 14, 2005 ORF 522

Operations Research and Financial Engineering, Princeton University

The Homogeneous Self-Dual Problem

Primal-Dual Pair

$$\begin{array}{ll} \text{minimize} & b^T y \\ \text{subject to} & A^T y \geq c \\ & y \geq 0 \end{array}$$

Homogeneous Self-Dual Problem

Home Page

Title Page

Contents

Page 2 of 16

Go Back

Full Screen

Close

In Matrix Notation

$$\begin{array}{ll} \text{maximize} & 0 \\ \text{subject to} & \begin{bmatrix} 0 & -A^T & c \\ A & 0 & -b \\ -c^T & b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \phi \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ x,y,\phi \geq 0. \end{array}$$

HSD is self-dual (constraint matrix is skew symmetric).

HSD is feasible
$$(x = 0, y = 0, \phi = 0)$$
.

HSD is homogeneous—i.e., multiplying a feasible solution by a positive constant yields a new feasible solution.

Any feasible solution is optimal.

If ϕ is a null variable, then either primal or dual is infeasible (see text).

Home Page

Title Page

Contents

Page 3 of 16

Go Back

Full Screen

Close

Theorem. Let (x, y, ϕ) be a solution to HSD. If $\phi > 0$, then

- \bullet $x^* = x/\phi$ is optimal for primal, and
- $y^* = y/\phi$ is optimal for dual.

 x^* is primal feasible—obvious.

 y^* is dual feasible—obvious.

Weak duality theorem implies that $c^T x^* \leq b^T y^*$.

3rd HSD constraint implies reverse inequality.

Primal feasibility, plus dual feasibility, plus no gap implies optimality.

Home Page

Title Page

Contents

Page 4 of 16

Go Back

Full Screen

Close

Change of Notation

$$\begin{vmatrix} 0 & -A^T & c \\ A & 0 & -b \\ -c^T & b^T & 0 \end{vmatrix} \longrightarrow A \qquad \begin{vmatrix} x \\ y \\ \phi \end{vmatrix} \longrightarrow x \qquad n+m+1 \longrightarrow n$$

$$\begin{bmatrix} x \\ y \\ \phi \end{bmatrix} \longrightarrow x$$

$$n+m+1 \longrightarrow m$$

Home Page

Title Page

Contents

Page 5 of 16

Go Back

Full Screen

Close

Quit

In New Notation:

maximize 0 subject to Ax + z = 0x, z > 0

More Notation

Infeasibility:
$$\rho(x,z) = Ax + z$$

Complementarity: $\mu(x,z) = \frac{1}{n}x^Tz$

Nonlinear System

$$\begin{array}{rcl} A(x+\Delta x) + (z+\Delta z) & = & \delta(Ax+z) \\ (X+\Delta X)(Z+\Delta Z)e & = & \delta\mu(x,z)e \end{array}$$

Linearized System

$$A\Delta x + \Delta z = -(1 - \delta)\rho(x, z)$$

$$Z\Delta x + X\Delta z = \delta\mu(x, z)e - XZe$$

Home Page

Title Page

Contents

Page 6 of 16

Go Back

Full Screen

Close

Algorithm

Solve linearized system for $(\Delta x, \Delta z)$.

Pick step length θ .

Step to a new point:

$$\bar{x} = x + \theta \Delta x, \qquad \bar{z} = z + \theta \Delta z.$$

Even More Notation

$$\bar{\rho} = \rho(\bar{x}, \bar{z}), \qquad \bar{\mu} = \mu(\bar{x}, \bar{z})$$

Home Page

Title Page

Contents

Page **7** of **16**

Go Back

Full Screen

Close

Theorem 2

- 1. $\Delta z^T \Delta x = 0$.
- 2. $\bar{\rho} = (1 \theta + \theta \delta) \rho$.
- 3. $\bar{\mu} = (1 \theta + \theta \delta)\mu$.
- 4. $\bar{X}\bar{Z}e \bar{\mu}e = (1-\theta)(XZe \mu e) + \theta^2 \Delta X \Delta Ze$.

Proof.

- 1. Tedious but not hard (see text).
- 2.

$$\bar{\rho} = A(x + \theta \Delta x) + (z + \theta \Delta z)$$

$$= Ax + z + \theta (A\Delta x + \Delta z)$$

$$= \rho - \theta (1 - \delta)\rho$$

$$= (1 - \theta + \theta \delta)\rho.$$

Home Page

Title Page

Contents

Page 8 of 16

Go Back

Full Screen

Close

$$\bar{x}^T \bar{z} = (x + \theta \Delta x)^T (z + \theta \Delta z)$$

$$= x^T z + \theta (z^T \Delta x + x^T \Delta z) + \theta^2 \Delta x^T \Delta z$$

$$= x^T z + \theta e^T (\delta \mu e - X Z e)$$

$$= (1 - \theta + \theta \delta) x^T z.$$

Now, just divide by n.

4.

$$\begin{split} \bar{X}\bar{Z}e - \bar{\mu}e &= (X + \theta\Delta X)(Z + \theta\Delta Z)e - (1 - \theta + \theta\delta)\mu e \\ &= XZe - \mu e + \theta(X\Delta z + Z\Delta x + (1 - \delta)\mu e) + \theta^2\Delta X\Delta Z_{\text{EACK}} \\ &= (1 - \theta)(XZe - \mu e) + \theta^2\Delta X\Delta Ze. \end{split}$$

Home Page

Title Page

Contents

Page 9 of 16

Close

Neighborhoods of
$$\{(x,z) > 0 : x_1z_1 = x_2z_2 = \cdots = x_nz_n\}$$

$$\mathcal{N}(\beta) = \{(x, z) > 0 : ||XZe - \mu(x, z)e|| \le \beta \mu(x, z)\}$$

Note: $\beta < \beta'$ implies $\mathcal{N}(\beta) \subset \mathcal{N}(\beta')$.

Predictor-Corrector Algorithm

Odd Iterations-Predictor Step

Assume $(x, z) \in \mathcal{N}(1/4)$.

Compute $(\Delta x, \Delta z)$ using $\delta = 0$.

Compute θ so that $(\bar{x}, \bar{z}) \in \mathcal{N}(1/2)$.

Even Iterations—Corrector Step

Assume $(x, z) \in \mathcal{N}(1/2)$.

Compute $(\Delta x, \Delta z)$ using $\delta = 1$.

Put $\theta = 1$.

Home Page

Title Page

Contents

Page 10 of 16

Go Back

Full Screen

Close

Predictor-Corrector Algorithm

In Complementarity Space

Let

$$u_j = x_j z_j \qquad j = 1, 2, \dots, n.$$

Home Page

Title Page

Contents

Page 11 of 16

Go Back

Full Screen

Close

Well-Definedness of Algorithm

Home Page

Title Page

Contents

Page 12 of 16

Go Back

Full Screen

Close

Quit

Must check that preconditions for each iteration are met.

Technical Lemma.

- 1. If $\delta = 0$, then $\|\Delta X \Delta Z e\| \leq \frac{n}{2}\mu$.
- 2. If $\delta = 1$ and $(x, z) \in \mathcal{N}(\beta)$, then $\|\Delta X \Delta Z e\| \leq \frac{\beta^2}{1-\beta} \mu/2$.

Proof. Tedious and tricky. See text.

Theorem.

- 1. After a predictor step, $(\bar{x}, \bar{z}) \in \mathcal{N}(1/2)$ and $\bar{\mu} = (1 \theta)\mu$.
- 2. After a corrector step, $(\bar{x}, \bar{z}) \in \mathcal{N}(1/4)$ and $\bar{\mu} = \mu$.

Proof.

1. $(\bar{x}, \bar{z}) \in \mathcal{N}(1/2)$ by definition of θ .

$$\bar{\mu} = (1 - \theta)\mu$$
 since $\delta = 0$.

2. $\theta = 1$ and $\beta = 1/2$. Therefore,

$$\|\bar{X}\bar{Z}e - \bar{\mu}e\| = \|\Delta X\Delta Ze\| \le \mu/4.$$

Need to show also that $(\bar{x}, \bar{z}) > 0$. Intuitively clear (see earlier picture) but proof is tedious. See text.

Home Page

Title Page

Contents

Page 13 of 16

Go Back

Full Screen

Close

Complexity Analysis

Progress toward optimality is controlled by the stepsize θ .

Theorem. In predictor steps, $\theta \ge \frac{1}{2\sqrt{n}}$.

Proof.

Consider taking a step with step length $t \le 1/2\sqrt{n}$:

$$x(t) = x + t\Delta x,$$
 $z(t) = z + t\Delta z.$

From earlier theorems and lemmas,

$$\begin{split} \|X(t)Z(t)e - \mu(t)e\| & \leq (1-t)\|XZe - \mu e\| + t^2 \|\Delta X \Delta Ze\| \\ & \leq (1-t)\frac{\mu}{4} + t^2 \frac{n\mu}{2} \\ & \leq (1-t)\frac{\mu}{4} + \frac{\mu}{8} \\ & \leq (1-t)\frac{\mu}{4} + (1-t)\frac{\mu}{4} \\ & = \frac{\mu(t)}{2}. \end{split}$$

Therefore $(x(t), z(t)) \in \mathcal{N}(1/2)$ which implies that $\theta \geq 1/2\sqrt{n}$.

Home Page

Title Page

Contents

Page 14 of 16

Go Back

Full Screen

Close

 $\mu^{(2k)} = (1 - \theta^{(2k-1)})(1 - \theta^{(2k-3)}) \cdots (1 - \theta^{(1)})\mu^{(0)}$ and $\mu^{(0)} = 1$, we see from the previous theorem that

$$\mu^{(2k)} \le \left(1 - \frac{1}{2\sqrt{n}}\right)^k.$$

$$\mu^{(2k)} \leq \left(1-\frac{1}{2\sqrt{n}}\right) \ .$$
 Hence, to get a small number, say 2^{-L} , as an upper bound for $\mu^{(2k)}$

Since

it suffices to pick k so that:

$$\left(1 - \frac{1}{2\sqrt{n}}\right)^k \le 2^{-L}.$$

This inequality is implied by the following simpler one:

 $k > 2\log(2)L\sqrt{n}$.

Since the number of iterations is
$$2k$$
, we see that $4\log(2)L\sqrt{n}$ iterations will suffice to make the final value of μ be less than 2^{-L} .

Of course,

$$\rho^{(k)} = \mu^{(k)} \rho^{(0)}$$

so the same bounds guarantee that the final infeasibility is small too.

Full Screen

Close

Back to Original Primal-Dual Setting

Just a final remark: If primal and dual problems are feasible, then algorithm will produce a solution to HSD with $\phi>0$ from which a solution to original problem can be extracted. See text for details.

