Acknowledgement

Three Dimensional Features Palmprint Recognition with

Thesis Defense M.Sc. in Software Technology

David Zhang

Lei Zhang

Wei Li

The Hong Kong Polytechnic University Department of Computing QING Pei, 11500811G

11 July, 2012

Why?

What?

How?

Motivation

Motivation

personal authentication

password

most used

but most easily subverted

Why?

personal authentication

Motivation

personal authentication

- smartcard
- more secure
- but will you carry dozens of smartcards with you everyday?

Motivation

personal authentication

- biometrics
- fingerprint, palmprint, iris, face, voice
- code complex enough
- high availability

Motivation

personal authentication

- palmprint
- texture
- geometry

Motivation

personal authentication

- palmprint
- texture almost fully explored
- geometry <u>not yet</u>

10

What?

Verification & Recognition

based on palmprint captures

9

Research Questions

How much information lies the palmprint geometry?

 How to take advantage of the additional information?

Literature Review

Literature Review

2D techniques achieved high accuracy

Adams Kong, David Zhang, and Mohamed Kamel. A survey of palmprint recognition. Pattern Recognition, 42(7):1408–1418, July 2009.

13

14

3D devices are available

D Zhang, Guangming Lu, Wei Li, Lei Zhang, and Nan Luo. Three Drimensional Palmprint Recognishon using Structured Light Imaging. In Blometrics: Theory, Applications and Systems, 2008. BTA8.2.008. Zhd IEEE International Conference on, pages 1-6, 2008.

15

Literature Review

Texture-based methods on 3D data

- Mean Curvature Image

- Gaussian Curvature Image

D Zhang, Guangming Lu, Wei Li, Lei Zhang, and Nan Luo. Palmprint Recognition Using 3-D Information. Systems, Mart, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 36(5):505–519, 2009.

16

Literature Review

Literature Review

Geometry-based methods on 3D data

Surface Type

Fusion of texture and geometry features

W. Li, D. Zhang, L. Zhang, G. Lu, and J. Yan. 3-D palmprint recognition with joint line and orientation features. Systems Min., and Opternettics, Part C. Applications and Reviews, (EFE Transactions on, (1991–16, 2011.

17

D Zhang, Guangming Lu, Wei Li, Lei Zhang, and Nan Luo. Palmprint Recognition Using 3-D information: Systems Man, and Cybermetics, Part C: Applications and Reviews, IEEE Transactions on, 39(5):505–519, 2009.

Method

Data collection (regards to Wei Li)

How?

- Data processing
- Recognition system

Data Collection

Structural Light Imaging

20

21

Data Processing

ROI extraction

Feature extraction

Dimension reduction

Feature matching

23

24

single precision float depth matrix A Sample • 768×576

Structural Light Imaging

Data Collection

Region of Interest

400x400, down-sample to 200x200

Noise Cancellation

Gradient Threshold

$$|\nabla D| = \sqrt{\left(\frac{\partial D}{\partial x}\right)^2 + \left(\frac{\partial D}{\partial y}\right)^2}$$

Feature Extraction

- Maximum Depth
- Horizontal Cross-section Area
- Radial Line Length

56

22

Maximum Depth

Maximum Depth

Reference plane

$$d_{r} = \frac{1}{\sum_{i=R_{s}}^{R_{c}} \sum_{j=C_{s}}^{C_{c}} m_{ij}} \sum_{i=R_{s}}^{R_{c}} \sum_{j=C_{s}}^{C_{c}} (d_{ij})$$

Depth from a <u>reference plane</u> to the

deepest point

Deepest point

Maximum Depth

$$d_{max} = \max_{i=R_s} \left(\sum_{j=C_s}^{C_e} (d_{ij}) \right)$$

59

Maximum Depth

Maximum Depth (MD)

$$MD = d_{max} - d_r$$

Horizontal Cross-section Area

Horizontal Cross-section Area

Contour view

Cut the ROI

32

31

Horizontal Cross-section Area

Horizontal Cross-section Area

Horizontal Cross-section Area

Stabilization: grow while connected

$$L^{k} = \begin{cases} G^{1} & k = 1 \\ G^{k} \cap (L^{k-1} \oplus \Theta^{k-1}) & k = 2, 3, \dots, N \end{cases}$$

 $G_{ij}^k = \begin{cases} 1 & \text{if } d_{ij} > h \cdot (N-k+1)/N, \\ 0 & \text{otherwise} \end{cases}$

Group pixels to N levels

 $k = 1, 2, \dots, N; i = 1, 2, \dots, 200; j = 1, 2, \dots, 200;$

32

Radial Line Length

- Finer description of the shape of HCA at each level
- Using the length of M line segments

37

Radial Line Length

Combined Feature Vector

Dimension Reduction

- Project F to a lower dimensional sbace
- Preserve as much information as possible

$$\tilde{F} = W^T F$$

Dimension Reduction

 Orthogonal Linear Discriminant Analysis JP Ye. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning Research, 6:483–502, 2005.

40

4

F consists of MD+HCA+RLL

- F has 1+N+NxM dimensions

39

Feature Matching

Coarse-level matching

Similarity =
$$\|\tilde{F}_1 - \tilde{F}_2\| = \sum_{i=1}^{\Gamma} (f_i^1 - f_i^2)^2$$

Improved Matching

Ranking Support Vector Machine

Thorsten Joachims. Optimizing search ergines using cliektrough data. In KDD 02: Proceedings of the eighth ACM SIGKID International conference on Knowledge discovery and data mining. ACM Request Permissions, July 2002.

43

Fine-matching Feature

Experiment

Mean Curvature Image

8000 samples

4000 for training

4000 for testing

Matlab

45

4

Optimizing Parameters

Optimizing Parameters

Choosing N and M (by EER)

	M=8	M=16	M=32	M=64
N=4	14.3	19.15	14.35	14.07
N=8	14.2	16.3	12.32	12.54
N=16	18.11	18.35	15.21	14.11

And we want to reduce the dimension

to Γ

Recall that we have a feature vector

of 1+N+NxM dimensions

Optimizing Parameters

Choosing I

47

24

Performance Metrics

Error rate

error rate = $\frac{\text{number of false match}}{\text{total number of probe}} \times 100\%$

Penetration rate

penetration rate = number of accessed template

total number of template in the database $\times\,100\%$

Performance Results

20

49

21

Speed

with RSVM

with Coarse-level matching

Speed

136

Dimension reduction Feature extraction

240.86 1.56 0.86 136 0.1 Dimension reduction Total (for one probe) Feature extraction MCI matching Preprocess

Discussion

25

1.56X

292.09

Total (for one probe)

0.86

MCI matching

Preprocess

0.5 0.1

Speed

MCI only

Process	Time (ms)
Feature extraction	112
Dimension reduction	0
Preprocess	0
MCI matching	0.86
Total (for one probe)	456

23

1.9X

Limitations

Conclusions

Limitations

- Geometric features extracted
- Matching process improved

 3D devices are lower in resolution (compared to 2D ones)

• 3D depth values are more susceptible to movement than 2D textures

possible, but not as cost effective

or less user-friendly

less stable

22

26

22

Future work

Limitations

- Try different ROI
- Find geometric features with lower error rate

General biometrics authentication

limitations

Anti-counterfeiting considerations

Thank you.

29