

Dual Approach: DINO and CLIP for Lung and Colon Cancer Image Analysis

Presenters:

Hananeh Shirzadnia Remziye Maral Demirsecen Viraat Saaran

Winter Term 2024/2025

Motivation

- Improving early and accurate lung and colon cancer detection
- Handling the complexity of histopathological images
- Comparing the results of DINO and CLIP to determine which model yields more precise results.

Contents

01	Related Work
02	Key Contributions
03	Methodology: DINO
04	Performance Insights: DINO
05	Methodology: CLIP
06	Performance Insights: CLIP
07	Summary

Related Work

- **Self-supervised learning:** Analyzing large and unlabeled histopathological image datasets
- Vision Transformers (ViTs): Modeling local and global features in tissue images
- **TransPath**: Pre-training vision transformers for robust histopathological classification
- Virchow Foundation Model: Pan-cancer detection with large-scale pre-training

Key Contributions

Objectives

- Applying **DINO** (self-supervised learning) for feature extraction in histopathological images of lung and colon cancer
- Utilizing CLIP to understand the semantic relationship between histopathology images and text pairs

Methodology

LC25000 Dataset

- **Images**: 25,000 total, equally distributed across 5 classes
- Colon classes: adenocarcinoma, normal
- Lung classes: adenocarcinoma, squamous cell carcinoma, normal

Methodology: DINO

- Combining transformers and CNNs for better performance
- Grouping similar features effectively
- Learning from unlabeled image data

Methodology: CLIP

- Learning from image-text pairs
- Applying transformers for text and Vision Transformers (ViT) for images
- Aligning embeddings in a shared space through contrastive learning

Performance Insights: CLIP

Performance Insights: CLIP

Classification Analysis

	precision	recall	f1-score	support	
colon_aca colon_n lung_aca lung_n lung_scc	0.99 0.98 0.91 1.00 0.95	0.98 1.00 0.94 0.99 0.91	0.99 0.99 0.93 1.00 0.93	500 500 500 500 500	
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	2500 2500 2500	

Summary

- Pretraining DINO and CLIP models on 25,000 histopathology images from lung and colon tissues
- Applying clustering and t-SNE for visual insights
- Achieving 92% classification accuracy using Random Forest
- Attaining 96% classification accuracy with the CLIP model

Thank you!

Any Questions?

Resources

Dataset:

<u>Lung and Colon Cancer Histopathological Images</u>

Image:

DINO Model

Papers:

- Kumar, R. et al., "Detection and Classification of Cancer from Microscopic Biopsy Images," *BioMed Research International*, 2015.
- Deininger, L. et al., "A Comparative Study Between Vision Transformers and CNNs in Digital Pathology," *F. Hoffmann-La Roche AG*, 2023.
- Wang, X. et al., "TransPath: Transformer-based Self-supervised Learning for Histopathological Image Classification," CVPR, 2021.
- Vorontsov, E. et al., "A Foundation Model for Clinical-Grade Computational Pathology and Rare Cancers Detection," *arXiv preprint arXiv:2309.07778*, 2023.
- Borkowski, A. A. et al., "Lung and Colon Cancer Histopathological Image Dataset (LC25000)," *arXiv preprint arXiv:1912.12142*, 2019.