

Trigonometry

A branch of mathematics which deals with the problems related to right angled triangles.

It is the study of relationship between the sides and angles of a right angled triangle.

$$AC^2 = AB^2 + BC^2$$

Reciprocal Ratio's

$$\sin\theta = \frac{1}{\operatorname{Cosec}\theta}$$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$Tan\theta = \frac{1}{Cot\theta}$$

$$Cosec\theta = \frac{1}{Sin\theta}$$

$$\underline{\operatorname{Sec}}\theta = \frac{1}{\operatorname{Cos}\theta}$$

$$Cot\theta = \frac{1}{Tan\theta}$$

$$tan\theta = \frac{sin\theta}{cos\theta}$$
$$cot\theta = \frac{cos\theta}{sin\theta}$$

QUESTION

In Triangle ABC, right-angled at B, If $\tan A = \frac{1}{\sqrt{3}}$ Then what is the value of

(i) sin(A)cos C + cos A sin C 4

$$\frac{1}{2} \times \frac{1}{2} + \frac{13}{2} \times \frac{13}{2}$$

$$\frac{1}{1} + \frac{3}{2}$$

Trigonometry Table

Z A	0°	(30°)	(45°)	60°	90°
sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan A	0	$\frac{1}{\sqrt{3}}$	1	√3	Not defined
cosec A	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec A	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
cot A	Not defined	√3	1	$\frac{1}{\sqrt{3}}$	0

QUESTION

What is the value of $sin60^{\circ}cos30^{\circ} + sin30^{\circ}cos60^{\circ}$

PBB

HHB

Trigonometric Identities

$$\sin^2\theta + \cos^2\theta = 1$$

$$(\sec^2\theta) = 1 + \tan^2\theta$$

$$cosec^2\theta = 1 + cot^2\theta$$

$$0 \frac{H^{2}}{H^{2}} = \frac{\Gamma^{2}}{H^{2}} + \frac{B^{2}}{H^{2}}$$

$$0 \frac{H^{2}}{H^{2}} = \frac{\Gamma^{2}}{H^{2}} + \frac{B^{2}}{H^{2}}$$

$$0 \frac{H^{2}}{H^{2}} = \frac{\Gamma^{2}}{H^{2}} + \frac{B^{2}}{H^{2}}$$

$$0 \frac{H^{2}}{H^{2}} = \frac{\Gamma^{2}}{P^{2}} + \frac{B^{2}}{P^{2}}$$

$$0 \frac{H^{2}}{P^{2}} = \frac{\Gamma^{2}}{P^{2}} + \frac{B^{2}}{P^{2}} + \frac{B^{2}}{P^$$

$$\int_{\mathbb{R}^{2}} \left(\frac{\Gamma}{\mu}\right)^{2} + \left(\frac{\beta}{\mu}\right)^{2}$$

$$\frac{H^2}{B^2} = \frac{\Gamma^2}{B^2} + \frac{B^2}{B^2}$$

$$\left(\frac{H}{B}\right)^2 = \left(\frac{P}{B}\right)^2 +$$

$$\frac{H}{H^{2}} = \frac{\Gamma}{H^{2}} + \frac{B}{H^{2}}$$

$$\frac{H}{H^{2}} = \frac{\Pi}{H^{2}} +$$

QUESTION

Choose the correct option for $\frac{1+tan^2A}{1+Cot^2A}$ =

$$\frac{\operatorname{Sec}^{2} A}{\operatorname{Cosr}^{2} A} \Rightarrow \frac{1}{\operatorname{Cos}^{2} A} \Rightarrow \frac{1}{\operatorname{Cos}^{2} A} \times \frac{\operatorname{Sin}^{2} A}{\operatorname{I}} = \frac{\operatorname{Sin}^{2} A}{\operatorname{Cos}^{2} A} \Rightarrow \left(\frac{\operatorname{Tan}^{2} A}{\operatorname{Cos}^{2} A} \right)$$

Prove that $(sinA + cosecA)^2 + (cosA + secA)^2 = 7 + tan^2A + cot^2A$