Proof: By Case

For any integer n, by the Division Theorem, it can be

$$n=3q+r(q\in\mathcal{Z},0\leq r\leq 2)$$

if r = 0, n = 3q, so n is divisible by 3.

if
$$r = 1$$
, $n + 2 = 3q + 1 + 2 = 3(q+1)$, so $n + 2$ is divisible by 3.

if
$$r = 2$$
, $n + 4 = 3q + 2 + 4 = 3(q+2)$, so $n + 4$ is divisible by 3.

The argument has been proved.