Day8Logistic_Regression

2

4.7

笔记本: 100days **创建时间:** 2019/1/11 22:07

URL: http://localhost:8888/notebooks/Day7/Logistic_Regression.ipynb

Logistic_Regression

In [10]:					
9					
import numpy as np					
import pandas as pd					
import matplotlib.pyplot	t as plt				
%matplotlib inline					
import seaborn as sns					
import sklearn					
from sklearn.model_sele	ction import train_test_	_split			
from sklearn.preprocessi	ing import StandardSca	aler			
from sklearn.metrics imp	oort accuracy_score				
In [11]:					
1					
df = pd.read_csv('iris-da	ta.csv')				
In [12]:					
1					
df.head()					
Out[12]:					
		PETAL_LENGTH_CM			
0	5.1	3.5	1.4	0.2	Iris- setosa
1	4.9	3.0	1.4	0.2	Iris- setosa

3.2

1.3

0.2

Irissetosa

SEPAL_LENGTH_CM	SEPAL_WIDTH_CM	PETAL_LENGTH_CM 3.1	PETAL_WIDTH_CM	CLASS 0.2	Iris-
4	5.0	3.6	1.4	0.2	setosa Iris- setosa
In [13]:					
1					
df.describe()					
Out[13]:					
count mean std min 25% 50% 75% max In [5]: 1 df.info() <class 'pandas.core.fram="" (total="" 150="" 5="" co="" columns="" data="" entries,="" n="" n<="" petal_length_cm="" rangeindex:="" sepal_length_cm="" sepal_width_cm="" td=""><td>150.000000 5.644627 1.312781 0.055000 5.100000 5.700000 6.400000 7.900000 a.e. DataFrame'> a. 0 to 149 blumns): blumns): blumns loon-null float64 bon-null float64</td><td>PETAL_LENGTH_CM 150.000000 3.054667 0.433123 2.000000 3.000000 3.300000 4.400000</td><td>PETAL_WIDTH_CM 150.000000 3.758667 1.764420 1.000000 4.350000 5.100000 6.900000</td><td>145.00 1.2365 0.7550 0.1000 0.4000 1.8000 2.5000</td><td>52 58 00 00 00 00</td></class>	150.000000 5.644627 1.312781 0.055000 5.100000 5.700000 6.400000 7.900000 a.e. DataFrame'> a. 0 to 149 blumns): blumns): blumns loon-null float64 bon-null float64	PETAL_LENGTH_CM 150.000000 3.054667 0.433123 2.000000 3.000000 3.300000 4.400000	PETAL_WIDTH_CM 150.000000 3.758667 1.764420 1.000000 4.350000 5.100000 6.900000	145.00 1.2365 0.7550 0.1000 0.4000 1.8000 2.5000	52 58 00 00 00 00
In [6]:					
3					
#Removing all null value	es row				
df = df.dropna(subset=['petal_width_cm'])				

df.info()

. . .

In [8]:

1

#Plot

. . .

In [8]:

1

sns.pairplot(df, hue='class', size=2.5)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x1afc795f048>

. . .

From the plots it can be observed that there is some abnormality in the class name. Let's explore further

In [9]:

```
Out[9]:
             50
Iris-virginica
Iris-versicolor 45
Iris-setosa
             44
              5
versicolor
Iris-setossa
Name: class, dtype: int64
Two observations can be made from the above results
• For 5 data points 'Iris-versicolor' has been specified as 'versicolor'
• For 1 data points, 'Iris-setosa' has been specified as 'Iris-setossa'
In [10]:
1
df['class'].replace(["Iris-setossa","versicolor"], ["Iris-setosa","Iris-versicolor"], inplace=True)
df['class'].value_counts()
Out[10]:
Iris-virginica
             50
Iris-versicolor 50
Iris-setosa
             45
Name: class, dtype: int64
Simple Logistic Regression¶
Consider only two class 'Iris-setosa' and 'Iris-versicolor'. Dropping all other
class
In [11]:
final_df = df[df['class'] != 'Iris-virginica']
In [12]:
final_df.head()
Out[12]:
SEPAL_LENGTH_CM SEPAL_WIDTH_CM PETAL_LENGTH_CM PETAL_WIDTH_CM CLASS
0
                      5.1
                                           3.5
                                                                 1.4
                                                                                     0.2
                                                                                             Iris-
                                                                                             setosa
```

df['class'].value_counts()

SEPAL_LENGTH_CM SEPAL_WIDTH_CM PETAL_LENGTH_CM PETAL_WIDTH_CM CLASS

1	4.9	3.0	1.4	0.2	Iris- setosa
2	4.7	3.2	1.3	0.2	Iris- setosa
3	4.6	3.1	1.5	0.2	Iris- setosa
4	5.0	3.6	1.4	0.2	Iris- setosa

. .

Outlier Check¶

In [13]:

1

sns.pairplot(final_df, hue='class', size=2.5)

Out[13]:

<seaborn.axisgrid.PairGrid at 0x1afc9d13ba8>

. . .

From the above plot, sepal_width and sepal_length seems to have outliers. To confirm let's plot them seperately

SEPAL LENGTH

In [14]:

1

final_df.hist(column = 'sepal_length_cm',bins=20, figsize=(10,5))

Out[14]:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000001AFCA702128>]], dtype=object)

. . .

It can be observed from the plot, that for 5 data points values are below 1 and they seem to be outliers. So, these data points are considered to be in 'm' and are converted to 'cm'.

In [15]:

1

final_df.loc[final_df.sepal_length_cm < 1, ['sepal_length_cm']] = final_df['sepal_length_cm']*100

final_df.hist(column = 'sepal_length_cm',bins=20, figsize=(10,5))

C:\Users\saish\Anaconda2\envs\tensorflow\lib\site-packages\pandas\core\indexing.py:517: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self.obj[item] = s

Out[15]:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000001AFCA731D68>]], dtype=object)

. . .

SEPAL WIDTH

In [16]:

 $final_df = final_df.drop(final_df['class'] == "Iris-setosa") \ \& \ (final_df['sepal_width_cm'] < 2.5)].index)$

. . .

In [17]:

1

sns.pairplot(final_df, hue='class', size=2.5)

Out[17]:

<seaborn.axisgrid.PairGrid at 0x1afcaeef2b0>

Successfully removed outliers!!

Label Encoding¶

In [18]:

1

final_df['class'].replace(["Iris-setosa","Iris-versicolor"], [1,0], inplace=True)

. . .

In [19]:

1

final_df.head()

Out[19]:

	SEPAL_WIDTH_CM	PETAL_LENGTH_CM		CLASS	
0	5.1	3.5	1.4	0.2	1
1	4.9	3.0	1.4	0.2	1
2	4.7	3.2	1.3	0.2	1
3	4.6	3.1	1.5	0.2	1
4	5.0	3.6	1.4	0.2	1
Model Co	nstructio	n¶			
In [20]:					
1					
inp_df = final_df.drop(fin	nal_df.columns[[4]], axis	:=1)			
out_df = final_df.drop(fi	nal_df.columns[[0,1,2,3]], axis=1)			
#					
scaler = StandardScaler()				
inp_df = scaler.fit_transf	orm(inp_df)				
#					
X_train, X_test, y_train, y	_test = train_test_split(i	np_df, out_df, test_size=	0.2, random_state=42)		
In [21]:					
1					
X_tr_arr = X_train					
X_ts_arr = X_test					
y_tr_arr = y_train.as_mat	rix()				
y_ts_arr = y_test.as_matr	rix()				
In [22]:					
1					
print('Input Shape', (X_tı	_arr.shape))				
print('Output Shape', X_	test.shape)				
Input Shape (75, 4)					
Output Shape (19, 4)					
• • •					

In [23]:

```
def weightInitialization(n_features):
w = np.zeros((1,n_features))
return w,b
In [24]:
1
def sigmoid_activation(result):
final_result = 1/(1+np.exp(-result))
return final_result
In [25]:
17
def model_optimize(w, b, X, Y):
 m = X.shape[0]
#Prediction
  final\_result = sigmoid\_activation(np.dot(w,X.T)+b)
Y_T = Y.T
cost = (-1/m)*(np.sum((Y_T*np.log(final\_result))) + ((1-Y_T)*(np.log(1-final\_result)))))
  #Gradient calculation
  dw = (1/m)*(np.dot(X.T, (final_result-Y.T).T))
db = (1/m)*(np.sum(final_result-Y.T))
  grads = {"dw": dw, "db": db}
return grads, cost
In [26]:
1
```

```
def model_predict(w, b, X, Y, learning_rate, no_iterations):
costs = []
for i in range(no_iterations):
     grads, cost = model_optimize(w,b,X,Y)
     dw = grads["dw"]
     db = grads["db"]
     #weight update
     w = w - (learning_rate * (dw.T))
     b = b - (learning_rate * db)
     if (i % 100 == 0):
       costs.append(cost)
       #print("Cost after %i iteration is %f" %(i, cost))
  #final parameters
  coeff = {"w": w, "b": b}
  gradient = {"dw": dw, "db": db}
  return coeff, gradient, costs
In [27]:
1
def predict(final_pred, m):
y_pred = np.zeros((1,m))
for i in range(final_pred.shape[1]):
     if \ final\_pred[0][i] > 0.5: \\
     y_pred[0][i] = 1
return y_pred
In [28]:
```

plt.plot(costs)

```
#Get number of features
n_features = X_tr_arr.shape[1]
print('Number of Features', n_features)
w, b = weightInitialization(n_features)
#Gradient Descent
coeff, \ gradient, \ costs = model\_predict(w, \ b, \ X\_tr\_arr, \ y\_tr\_arr, \ learning\_rate = 0.0001, no\_iterations = 4500)
#Final prediction
w = coeff["w"]
b = coeff["b"]
print('Optimized weights', w)
print('Optimized intercept',b)
final_train_pred = sigmoid_activation(np.dot(w,X_tr_arr.T)+b)
final_test_pred = sigmoid_activation(np.dot(w,X_ts_arr.T)+b)
m_tr = X_tr_arr.shape[0]
m_ts = X_ts_arr.shape[0]
y_tr_pred = predict(final_train_pred, m_tr)
print('Training Accuracy',accuracy_score(y_tr_pred.T, y_tr_arr))
y_ts_pred = predict(final_test_pred, m_ts)
print('Test Accuracy',accuracy_score(y_ts_pred.T, y_ts_arr))
Number of Features 4
Optimized weights [[-0.13397714 0.13130132 -0.18248682 -0.18319564]]
Optimized intercept -0.0241346319213
Training Accuracy 1.0
Test Accuracy 1.0
In [29]:
```

```
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title('Cost reduction over time')
plt.show()
                      Cost reduction over time
   0.70
   0.65
   0.60
 ost
   0.55
   0.50
                       20 30
iterations (per hundreds)
                                                    40
In [30]:
1
from sklearn.linear_model import LogisticRegression
In [31]:
clf = LogisticRegression()
In [32]:
1
clf.fit(X_tr_arr, y_tr_arr)
C:\Users\saish\Anaconda2\envs\tensorflow\lib\site-packages\sklearn\utils\validation.py:547: DataConversionWarning: A column-vector y was passed when a 1d array v
y = column_or_1d(y, warn=True)
Out[32]:
Logistic Regression (C=1.0, class\_weight=None, dual=False, fit\_intercept=True, \\
      intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
      penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
      verbose=0, warm_start=False)
```

print (clf.intercept_, clf.coef_)

In [33]:

1

[-0.32958987] [[-0.65118738 1.21001434 -1.38924001 -1.46364162]]
•••
In [34]:
1
pred = clf.predict(X_ts_arr)
From Impromote English
In [35]:
1
print ('Accuracy from sk-learn: {0}'.format(clf.score(X_ts_arr, y_ts_arr)))
Accuracy from sk-learn: 1.0
•••
In []:
1