

Introduction to Machine Learning

Bassem Ben Hamed

bassem.benhamed@enetcom.usf.tn

Al vs ML vs DL

Use cases for ML

Healthcare

- Medical Imagining and diagnostics
- Personalized medicine
- Predictive approach to treatment

Finance

- Algorithmic trading
- Fraud detection and prevention
- Portfolio management

Telecom

- Anomaly detection
- Predictive maintenance
- Churn prediction

Manufacturing

- Energy consumption forecasting
- Predictive quality and yield
- Supply chain management

Traditional Programming vs ML

Machine Learning: Field of study gives computers the ability to learn without being explicitly programmed.

Arthur Samuel

• What is ML?

Learning is any process by which a system improves performance from experience.

Herbet Simon

Machine Learning is the study of algorithms that

- Imporve their performance P
- At some task T
- With experience E

As well-defined learning task is given by $\langle P,T,E\rangle$.

Tom Mitchell

Task vs Performance vs Experience

Improve on task T, with respect to performance metric P, based on experience E

- T: Recognizing hand-written words
- P: Percentage of words corrected classified
- E: Database of human-labeled images of handwritten words
- T: Categorize email messages as spam or legitime
- P: Percentage of email messages correctly classified
- E: Database of emails, some with human-given labels
- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself

Twitter sentiment analysis example

Types of Learning

Supervised (inductive) learning

Given training data + desired outputs (labels)

Unsupervised learning

Given training data (without desired outputs)

Semi-supervised learning

Given training data + a few of desired outputs

Reinforcement learning

Rewards from sequence of actions

Supervised Learning: Regression

Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ Learn a function f(x)to predict y given x

y is real-valued == regression

Supervised Learning: Regression

Stock Price Prediction

Housing prices

Sales Forecasting

Risk Analysis

Supervised Learning: Classification

Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ Learn a function f(x) to predict y given x

y is categorical == classification

Supervised Learning: Classification

Customer Churn Prediction

Email Spam Detection

Intrusion Detection System

Sentiment Analysis

Unsupervised Learning

Given $x_1, x_2, ..., x_n$ (without labels) Output hidden structure behind the x's

• E.g., clustering

Unsupervised Learning

Market segmentation

Social network analysis

Organize computing clusters

Group individuals by genetic similarity

Reinforcement Learning

Given a sequence of states and actions with (delayed) rewards, output a policy

 Policy is a mapping from states to actions that tells you what to do in a given state

Examples:

- Trading and finance
- News recommandation
- Natural Language Processing
- Helthcare
- Gaming
- Marketing and advertising

Agent-Environment Interface

Agent and environment interact at discret time steps: t = 0,1,...,k

Agent observes state at step t: $s_t \in S$ produces action at step t: $a_t \in A(S)$ gets resulting reward: $r_{t+1} \in R$ and resulting next state: s_{t+1}

Al learns to Park

https://www.youtube.com/watch?v=VMp6pq6_Qjl

ML Life Cycle

1. Gathering Data

- Identify various data sources
 - Collect data
 - Integrate the data

6. Deployment

 Deploy the model in the real system

6. Test Model

 Testing the model and determines some metrics

5. Train Model

 Understand the various patterns, rules, and features

2. Data Preparation

- Data exploration
- Data pre-processing

3. Data Wrangling

- Missing values
- Duplicate data
- Invalid data
 - Noise

4. Data Analysis

Selection of analytical techniques

B. Ben Hamed Building models Review the result

References

C. Albon, Python Machine Learning Cookbook, O'Reilly (2018) https://cutt.ly/oJ5tSll

A.C. Müller, S. Guido, Introduction to Machine Learning with Python, O'Reilly (2017) https://cutt.ly/6J5tB9m

A. Géron, Hands-On Machine Learning with Scikit-Learn & TensorFlow, O'Reilly (2017) https://cutt.ly/2J5ytqJ

