Learning Behavior Profiles from Noisy Sequences

SHARADA VALIVETI

Contents

- Introduction
- Learning by Abstraction
- Regular Expressions
- String alignment and Flexible Matching
- The Learning Algorithm
- Ω_1 Operator
- Basic Learning Cycle
- Refreshment Cycle
- Evaluation on Artificial Traces
- User Profiling
- Conclusions

Introduction

- Capturing abstract pattern of temporal evolution process
- Profiles modeled as Finite State Stochastic Automata
 - Using Hidden Markov Models
- Agent profiling is used in IDS and FDS
 - Is an Abstract characterization of agent activity
 - o Can be used to check for normal or anomalous behaviors
- Learning by induction from logs of agent behavior
- Agent behavior is short sequence of actions
 - Execution
 - Interleaving with phases
 - Where activities cannot be modeled because it is non-repetitive

Introduction

- Attributes are used to set constraints on atomic events
 - Problem of discovering structure of profile turns to the problem of learning probabilistic regular expressions from sequences containing gaps and noises
- Inference of regular expressions from data is done using
 - Computational learning theory
 - Neural networks
 - Syntactic pattern recognition
 - Probabilistic automata

Introduction

Abstraction mechanism

- Allows a process behavior to be seen at different levels of granularity
 - Exploited by learning algorithm
 - Method for detection and learning recurrent structures inside an event is novel in presence of noise
- A real agent profiling task is designed
 - Challenge is to characterize behavior of a user typing on keyboard
- Algorithm was successful in discovering profiles, which identify an user from another

Learning by Abstraction

- Difficulty in discovering and modeling profiles
 - o Presence of long gaps, filled by irrelevant facts
 - Statistical correlations are difficult to detect
 - o Complexity of mining algorithm increases with length of portion of sequence to be searched to detect such correlations
- Strategy is to cope with such kind of problems
- By replacing a sub-expression with a new symbol, an abstract expression is obtained
- Profiles can be described by means of regular expressions extended with attributes
- It can be abstracted or de-abstracted

Learning by Abstraction

- Scheme of algorithm used for discovering profiles hidden in a set *II* (Learning Sequences)
 - Constructs an abstraction hierarchy, layer after layer (Bottom-up)
 - o Identify episodes (characterized by \mathscr{R}) occurring with a relevant frequency in \mathscr{LS}
 - Detected episodes are named by a new symbol
 - \circ These names become alphabet for describing $\mathscr{L}\mathscr{S}$ at next abstraction level
 - \circ Every sequence in $\mathscr{L}\mathscr{S}$ is rewritten by replacing every episode instance occurring in it with corresponding episode name
 - Subsequences of consecutive atomic events which have not been included in any episode are replaced with symbol denoting gap

Learning by Abstraction

- Gaps between episodes are considered special kind of episodes
- Subsequences of irrelevant facts may become consecutive
- Important aspects to consider for statistical correlation between consecutive atomic events
 - Event duration and distance from one another
 - Correlation between two event A and B
- Every atomic event E is
 - Denoted by a name (Symbol)
 - An attribute l_E reporting the length (duration) of E on unabstracted sequence

Regular Expressions

- Regular language syntax contains
 - Metasymbols
 - ➤ To denote disjunction (|) and iteration
 - × ε − Null Symbol
 - Repetition (denoted by superscript on a symbol)
 - Constraints on event / gap length may be set by annotating symbols in regular expressions

- Key role in abstraction process is played by approximate matching of strings and of regular expressions
- Global Alignment
 - o For s_1 and s_2 , let s_1 and s_2 be two strings obtained from s_1 and s_2 , inserting arbitrary number of spaces such that atomic events in both can be put in one to one correspondence
 - Local and multi-alignment must be defined
- Local Alignment
 - O Any global alignment between a pair of substrings r_1 and r_2 extracted from 2 strings s_1 and s_2 respectively is local alignment LA(s_1 , s_2)

Multi-alignment

o A multi-alignment MA(S) on S is a set S' of strings, where every string s ϵ S generates a corresponding string s' ϵ S' by inserting a proper number of spaces, and every pair of strings (s₁',s₂') is a global alignment A(s₁,s₂) of the corresponding strings s₁, s₂ in set S

Scoring Function

o n is length of the alignment

$$\int (s_1, s_2) = \sum_{i=1}^n \int (s_1'(i), s_2'(i))$$

- Hidden Markov Model (Profile HMM)
 - Has three types of states
 - Match states (emission corresponds to expected nominal symbol)
 - Null emission states (modeling deletion errors)
 - Insertion states (Modeling insertion errors)

Profile HMM obtained from the string "PARIS".

- Square nodes represent *match states*
- Circles represent null emission states and diamonds represents insertion states
- Transitions, from one state to another, and
- Emissions are governed by probability distributions not shown in the figure
- States labeled by s and e are the initial and final state, respectively

- In dynamic Programming, it can be solved in O(nm)
- Regular expressions can be translated into HMMs by following augmentations:
 - Extra states added to deal with insertion and deletion errors
 - Cycles in regular expressions need to be unrolled into a feed forward graph to model probability distributions
- Impact on final alignment will depend on the specific scoring function
- Iterations in excess will be considered as (insertion or deletion) errors

- ω_s and ω_I used for Basic Cycle and Refinement Cycle
- ω_s constructs regular expressions non containing iterative constructs
- $\omega_{\rm I}$ aims at discovering and abstracting iterative constructs
- Abstraction hierarchy is obtained by interleaving two operators

• ω_s Operator

- Takes set S of similar substrings, detected using a local alignment algorithm and constructs an abstract atomic event defined as a pair < \mathref{R}, E>

 - **E** is abstract event associated to *R*

Algorithm ω_s

- o Construct the multi-alignment MA(S) table for strings in S
 - Columns contain symbols put in correspondence by alignment algorithm
- Construct the match graph MG(S)
 - Removal of noise from MA(S)
- o Transform MG(S) into an equivalent regular expression
 - If there is at least one row in MA(S) where a match symbol x follows a match symbol y, immediately or after one or more spaces; a link from x to y is set in MG(S)

Paris

Party

Part -

Parys

Pray -

Pay - -

Example of noniterative expression obtained from string set

Retained Alternatives

Par(is|ty)

Final Regular Expression

ω_I operator

- Explicitly searches for contiguous repetitions of a same substring inside a given string s
- By computing self-correlation of string similarity function
- \circ W_i = reference window
- o w_i = sliding window
- o s = Size of sliding window and reference window
- o n=length of s minus length of W_i
- o SC is a triangular matrix of size n²/2
- o SC(i, j) indicates i, j element of SC

Self correlation Algorithm

- 1. Set i = 1
- For j=i to n, evaluate $SC(i, j) = \int (W_i, W_j)$ between substrings selected by W_i and w_i , respectively
- Set i=i+1
- 4. If i is smaller than n, goto step 2, otherwise continue
- 5. Detect chains of maxima on SC, where maximum value is close to maximum possible similarity value between two substrings W_i, w_j . A substring r of s, laying in between two consecutive maxima, is an iterated substring
- 6. For every different iterated substring r construct a new hypothesis for an iterated episode
- Complexity of algorithm is O(n²/2)

Basic Learning cycle

- \circ Non iterative episode detection (Using operator ω_s)
- o Iterative episode detection (Using operator $ω_I$)
- Model construction (An HMM is constructed for every abstracted episode when necessary)
- Sequence abstraction (input sequences are rewritten using as new alphabet the names of abstract episodes)
 - × Every sequence s is scanned left-to-right searching for instances of episodes detected and abstracted in previous steps
 - × Presence of episode E is decided by matching corresponding regular expression \mathcal{R}_E to s.

The Learning Algorithm (Example)

accacbbbbsthsturlmzacacbbbbbbbststuhbnacacbbbbbbstfstubkku	B::=(b) ^{4, 7} accacBsthsturlmzacacBststuhbn acacBstfstubkku
Iterated Symbols are detected and replaced with name of corresponding regular expression	
accacBsthsturlm Zac acBst stuhbn	accacBsthstu acacBststu

Local alignments are detected and similar substrings are clustered together

acacBstfstu

accacBsthstu ac_acBst_stu ac_acBstfstu ac_acBstfstu ac_acBstfstu $ac(c|\epsilon)acBst(h|f|\epsilon)stu$

...zacacBst_stuhbn..

... acacBstfstubkku ...

From multiple alignment of elements in a same cluster a regular expression is obtained

Refinement Cycle

- o May be activated at abstraction layer L_i every time new episodes are detected and modeled at a level higher than i
 - when an episode E is hypothesized and characterized at an abstraction level L_i , the context i.e. presence of other episodes before or after E, is not considered
 - \mathbf{x} The context is considered later when the episodes of Layer L_i are linked together into an episode at level l_{i+1}
 - Regular expression describing E are re-learned using instances that have been retained

User Profiling

- Widely used to detect intrusions in computer or in telephony networks
- Possibility of automatically building profile for users or for network services reflecting temporal behavior would offer a significant help to the deployment of adaptive IDS
- Assumption is that every user has a different way of typing
- 2 experiments were performed

User Profiling

Key Phrase Typing Model

- Goal was to construct a model for a user typing a key phrase, discriminant enough to recognize user among others
- Selected sentence of 22 syllables typed many times on same keyboard
- An algorithm recorded, for every typed key, the duration of each stroke and the delay between two consecutive strokes
- Every repetition of sentence generated a sequence, where every key stroke corresponded to an atomic event; delay between two strokes was represented as a gap, whose length was set to the corresponding duration
- User profile based on a key phrase is too restricted

User Profiling

Text Typing Model

- Modeling a user during a text editing activity
- An entire set of data to enter was selected where user would type from the set of Newspapers in different session and at different times
- Results have been obtained without requiring any tuning of algorithm
- Model is robust and easy to apply to such problems

Conclusions

- Agent behavior modeled by means of probabilistic regular expressions
- Agent model is an abstract characterization of agent activity used to check for normal behavior or anomalous behaviors
- Cascade of regular expressions generated by abstraction mechanism leads to a Hierarchical Hidden Markov Model that offers a framework which is powerful enough to model many real world problems
- Has affordable computational complexity