The height measure of p-adic balls

Ottavio G. Rizzo

1st February 2008

Abstract

In this paper we give the height measure of p-adic balls. In other words, given any $x \in \mathbf{Q}_p$, we give the chance that a random rational number r satisfies $|r-x|_p \leqslant \varepsilon$. **MSC 2000:** 11B05, 11G50, 11S80, 28C10

Let $H(m/n) = \max\{|m|, n\}$ be the *height* of the rational number m/n, where $m \in \mathbf{Z}$, $n \in \mathbf{N}$ and $\gcd(m, n) = 1$. Given $U \subseteq \mathbf{Q}$, consider the limit

$$\lim_{t \to \infty} \frac{\#\{r \in U : H(r) \leqslant t\}}{\#\{r \in \mathbf{Q} : H(r) \leqslant t\}}.$$

If it exists, we denote its value $\mu(U)$: the height density of U.

More in general, if U is a subset of a completion K of \mathbf{Q} and the limit

$$\mu(U) = \lim_{t \to \infty} \frac{\#\{r \in \bar{U} \cap \mathbf{Q} : H(r) \le t\}}{\#\{r \in \mathbf{Q} : H(r) \le t\}}$$

$$\tag{1}$$

exists, we say that U is μ -measurable and call $\mu(U)$ the height measure of U.

In [3] we proved that any interval $(a, b) \subset \mathbf{R}$ is μ -measurable and gave a simple formula for its value. If p is a finite place of \mathbf{Q} , denote as usual v_p the associated valuation, $|\cdot|_p$ the norm and \mathbf{Q}_p the completion. Let $B(x, p^{-e}) = \{r \in \mathbf{Q}_p : |x - r|_p \leq p^{-e}\}$ be the (closed) p-adic ball of centre x and radius p^{-e} . In this paper we prove that:

Theorem 1. For any $x \in \mathbb{Q}_p$, the p-adic ball $B(x, p^{-e})$ is μ -measurable. Moreover:

• if $e \leqslant v(x)$:

$$\mu(B(x, p^{-e})) = \begin{cases} \frac{p^{1-e}}{p+1} & \text{if } e \ge 0, \\ 1 - \frac{p^e}{p+1} & \text{if } e \le 0; \end{cases}$$

• while, if e > v(x):

$$\mu(B(x, p^{-e})) = \begin{cases} \frac{p^{1-e}}{p+1} & \text{if } v(x) \ge 0\\ \frac{p^{1-e}}{|x|_p^2 (p+1)} & \text{if } v(x) < 0 \end{cases}$$

In particular,

$$\mu(\{r \in \mathbf{Q} : v(r-x) = e\}) = \begin{cases} p^{-|e|} \frac{p-1}{p+1} & \text{if } e \leqslant v(x) \text{ or } e \geqslant 0; \\ \frac{p}{p+1} \left(\frac{p}{|x|_p^2} - 1\right) & \text{if } v(x) < e = -1; \\ \frac{p^{-e}}{|x|_p^2} \frac{p-1}{p+1} & \text{if } v(x) < e < -1. \end{cases}$$

1 A dutiful note on measure theory

Unfortunately, Eq. (1) does not define what is usually called a measure: indeed, \mathbf{Q} is not σ -additive, so no function on it may be σ -additive. For example, $\mathbf{Q} = \bigcup_{r \in \mathbf{Q}} \{r\}$, but

$$1 = \mu(\mathbf{Q}) \neq \sum_{r \in \mathbf{Q}} \mu(\{r\}) = 0.$$

This is not a serious problem, since we can easily define a real (pun intended!) measure on \mathbf{Q}_p which agrees, on p-adic balls, with our definition:

Definition. Let p be a finite or infinite place of **Q**. For any $E \subset \mathbf{Q}_p$ and $\delta > 0$, let

$$\mu_{\delta}(E) = \inf_{\substack{|B_i| \leqslant \delta \\ |B_i \supset E}} \sum \mu(B_i),$$

where the B_i are p-balls and the unions are countable. Furthermore, let

$$\mu^*(E) = \sup_{\delta > 0} \mu_{\delta}(E).$$

Theorem 2. For any place p of \mathbf{Q} , the set function μ^* is a σ -additive measure on \mathbf{Q}_p , the Borel sets are measurable and $\mu^*(B) = \mu(B)$ for any p-ball.

Proof. Recall that μ is an additive set function by theorem 4 of [3], hence by general measure theory on metric spaces (see for example theorem 23 of [4]) μ^* is a σ -additive measure on \mathbf{Q}_p and the Borel sets are measurable.

We are left to prove that μ^* coincides with μ on p-balls. If $p = \infty$, since by theorem 4 of [3] $\mu(B)$ is essentially the length of the interval B, this is a classical result: see, for example, §5 of [4]. Suppose now that $p < \infty$: we claim that

$$\mu_{\delta}(B) = \mu(B), \quad \text{for every } \delta > 0.$$
 (2)

Fix such a δ , and let $\{B_i\}_{i\in I}$ be p-balls with $|B_i| \leq \delta$ and $\bigcup B_i \supset B$. Since B is compact and each B_i is open, we may suppose that I is finite. For every $i \in I$, we may clearly suppose that $B_i \cap B \neq \emptyset$; if $x_i \in B_i \cap B$, then we can take x_i to be the centre of both; so either $B_i \subset B$ or $B_i \supset B$, the latter being an uninteresting case. Similarly, we may assume that the B_i are all pairwise disjoint. Therefore, we have $B = \bigcup B_i$ where the union is finite and disjoint; equation (2) now follows from the additivity of μ .

2 Preliminary results

From now on we fix a finite prime p.

Definition. In analogy to Euler's φ function, we define for any positive integer t and any positive number x, a function

$$\varphi(t,x) = \#\{\text{positive integers} \leq x \text{ which are relatively prime to } t\}$$

We proved in [3] that:

Proposition 3. Denote d(n) the number of divisors of n. Then, for any x, t > 0 we have that

$$\varphi(t,x) = \frac{x}{t}\varphi(t) \pm d(t),$$

where $a = b \pm \delta$ means that $|a - b| \leq \delta$.

Lemma 4. Suppose t, a, e are integer numbers with t > 1 and fix T > 0. Then

$$\#\{n \in \mathbf{Z} : 0 \leqslant n \leqslant T, \gcd(n,t) = 1, \ v(n-at) \geqslant e\}$$

$$= \begin{cases} p^{-\max\{0,e\}} \frac{T}{t} \varphi(t) \pm 2d(t) & \text{if } p \nmid t, \\ \frac{T}{t} \varphi(t) \pm d(t) & \text{if } p \mid t \text{ and } e \leqslant 0, \\ 0 & \text{if } p \mid t \text{ and } e > 0. \end{cases}$$

Proof. Clearly, if e < 0, we may replace the condition $v(n - at) \ge e$ with $v(n - at) \ge 0$; in other words, we may suppose e non negative.

Suppose $p \mid t$: if e > 0, the statement is obvious; if e = 0, it follows from Proposition 3. Suppose now that $p \nmid t$. Then

$$\#\{n \in \mathbf{Z} : 0 \leqslant n \leqslant T, \gcd(n,t) = 1, \ v(n-at) \geqslant e\}
= \#\left\{ \begin{aligned} n &= p^e n' + at : n' \in \mathbf{Z}, \ -\frac{at}{p^e} \leqslant n' \leqslant \frac{T-at}{p^e}, \\ \gcd(p^e n' + at, t) &= 1, \ v(p^e n') \geqslant e \end{aligned} \right\}
= \#\left\{ n' \in \mathbf{Z} : -\frac{at}{p^e} \leqslant n' \leqslant \frac{T-at}{p^e}, \gcd(n',t) = 1 \right\}.$$
(3)

Suppose $a \ge 0$ and $T \ge at$, then equation (3) becomes

$$=\varphi\left(t,\frac{T-at}{p^e}\right)+\varphi\left(t,\frac{at}{p^e}\right);$$

by proposition 3, this is

$$= p^{-e} \frac{T}{t} \varphi(t) \pm 2d(t). \tag{4}$$

If T < at or a < 0, it is a trivial calculation to verify that equation (4) still holds true. \square

Remark 5. The Lemma holds even if $a \in \mathbf{Z}_p$: it suffices to write $a = a' + O(p^{\eta})$ with $a' \in \mathbf{Z}$ and η large enough so that, for every positive $n \leq T$, v(n - at) = v(n - a't). In particular, it holds if $a \in \mathbf{Q}$ with $v_p(a) \geq 0$.

Lemma 6. Suppose m and n are relatively prime integers. Then

$$v(m/n) \geqslant e$$
 if and only if
$$\begin{cases} v(m) \geqslant e & \text{if } e > 0, \\ v(n) \leqslant -e & \text{if } e \leqslant 0. \end{cases}$$

Proof. Obvious.

Proposition 7. For any T > 0 we have

$$\sum_{n\leqslant T} \varphi(n) = \frac{1}{2\zeta(2)} T^2 + O\left(T\log T\right), \qquad \sum_{n\leqslant T} d(n) = T\log T + O\left(T\right),$$

$$\sum_{n\leqslant T} \varphi(n) = \frac{1}{2\zeta(2)(p+1)} T^2 + o\left(T^2\right), \qquad \sum_{n\leqslant T} \varphi(n) = \frac{p}{2\zeta(2)(p+1)} T^2 + o\left(T^2\right).$$

Proof. The first and second assertions are very well known (see, e.g., [1, Chapter 3]) while the third clearly follows from the last one. Let

$$\varphi'(n) = \begin{cases} \varphi(n) & \text{if } p \nmid n, \\ 0 & \text{if } p \mid n. \end{cases}$$

Since φ' , as well as φ , is multiplicative, we have for Re(s) > 2:

$$\sum_{\substack{n=1\\ n\nmid n}}^{\infty} \frac{\varphi(n)}{n^s} = \sum_{n=1}^{\infty} \frac{\varphi'(n)}{n^s} = \frac{p^s - p}{p^s - 1} \sum_{n=1}^{\infty} \frac{\varphi(n)}{n^s} = \frac{p^s - p}{p^s - 1} \cdot \frac{\zeta(s-1)}{\zeta(s)}.$$

In particular, the LHS is regular on the line Re(s) = 2 with the exception of a pole of first order at s = 2 with residue $p/(p+1)\zeta(2)$. Thanks to the Tauberian theorem for Dirichlet series (see [2, XV, §3]) it follows that, after a change of coordinate $s \mapsto s - 1$,

$$\sum_{n=1}^{T} \frac{\varphi'(n)}{n} = \frac{p}{p+1} \cdot \frac{T}{\zeta(2)} + o(T).$$

Applying the following "integration" lemma, we get the proposition. Note that, actually, the error term for the two last assertions is $O(T \log T)$: since we will not need this improved estimate, we will content ourselves with the simpler previous proof.

Lemma 8. Let $\{b_n\}_{n\in\mathbb{N}}$ be complex numbers and let $B(T) = \sum_{n=1}^T b_n$. Suppose that there is $\beta \in \mathbb{C}$ such that $B(T) = \beta T + o(T)$. Then

$$\sum_{n=1}^{T} nb_n = \frac{\beta}{2}T^2 + o\left(T^2\right).$$

3 Slices

In order to prove Theorem 1, we count how many rational points in $B(x, p^e)$ have a given height, then we use the previous Lemma to sum over all heights.

Definition. For any $x \in \mathbf{Q}_p$ and $e \in \mathbf{Z}$, let $B(x, p^e; T) = B(x, p^e) \cap \mathbf{Q}(T)$, where $\mathbf{Q}(T) = \{t \in \mathbf{Q} : H(t) = T\}$.

Lemma 9. For every positive integer $T: \#\mathbf{Q}(T) = 4\varphi(T)$.

$$Proof.$$
 Obvious

Proposition 10. Fix $x \in \mathbf{Q}_p$ and $e \in \mathbf{Z}$ such that $v(x) \ge e$, then for any $t \in \mathbf{Z}^{>0}$ we have:

1. if e > 0,

$$\#B(x, p^{-e}; t) = \begin{cases} 2p^{-e}\varphi(t) \pm 4d(t) & \text{if } v(t) = 0, \\ 0 & \text{if } 0 < v(t) < e, \\ 2\varphi(t) & \text{if } v(t) \ge e; \end{cases}$$

2. if $e \leq 0$,

$$\#B(x, p^{-e}; t) = \begin{cases} 2(2 - p^{e-1})\varphi(t) \pm 4d(t) & \text{if } v(t) = 0, \\ 4\varphi(t) & \text{if } 0 < v(t) < 1 - e, \\ 2\varphi(t) & \text{if } v(t) \ge 1 - e. \end{cases}$$

Proof. Since $0 \in B(x, p^{-e})$, we have $B(x, p^{-e}) = B(0, p^{-e})$ and thus, for any $t, B(x, p^{-e}; t) = B(0, p^{-e}; t)$. Therefore, we may as well suppose that x = 0. Write $B(0, p^{-e}; t)$ as

$$\left\{ \frac{m}{n} : (m,n) \in \mathbf{Z} \times \mathbf{Z}^{>0}, \ \max\{|m|,n\} = t, \ \gcd(m,n) = 1, \ v(m/n) \geqslant e \right\}.$$
 (5)

Suppose e > 0: then (5) becomes, using Lemma 6,

$$B(0, p^{-e}; t)$$

$$= \{ m/n : (m, n) \in \mathbf{Z} \times \mathbf{Z}^{>0}, \max\{|m|, n\} = t, \gcd(m, n) = 1, v(m) \ge e \}$$

$$= \{ \pm t/n : n \in \mathbf{Z}, 1 \le n \le t, \gcd(n, t) = 1, v(t) \ge e \}$$

$$\cup \{ m/t : m \in \mathbf{Z}, -t \le m \le t, \gcd(m, t) = 1, v(m) \ge e \}.$$

The first part of the proposition now follows from Lemma 4. In order to prove the second part, notice that

$$\mathbf{Q}(T) = B(0, p^{-e}; t) \cup \{r \in \mathbf{Q} : H(r) = T, v(r) \leqslant e - 1\}$$

and that $r \mapsto 1/r$ induces a 1-to-1 correspondence

$$\{r \in \mathbf{Q} : H(r) = T, v(r) \leqslant e - 1\} \longleftrightarrow \{r \in \mathbf{Q} : H(r) = T, v(r) \geqslant 1 - e\}$$

Thus $\#B(0, p^{-e}; t) = \#\mathbf{Q}(T) - \#B(0, p^{-(1-e)}; t)$ and part (2) follows from part (1) and Lemma 9.

Proposition 11. Fix $x \in \mathbf{Q}_p$ and $e \in \mathbf{Z}$ such that v(x) < e, then for any $t \in \mathbf{Z}^{>0}$ we have:

1. if v(x) > 0,

$$\#B(x, p^{-e}; t) = \begin{cases} 2p^{-e}\varphi(t) \pm 4d(t) & \text{if } v(t) = 0, \\ 2\frac{p^{1+v(x)-e}}{p-1}\varphi(t) \pm 4d(t) & \text{if } v(t) = v(x), \\ 0 & \text{otherwise}; \end{cases}$$

2. if
$$v(x) = 0$$
,
$$\#B(x, p^{-e}; t) = \begin{cases} 4p^{-e}\varphi(t) \pm 8d(t) & \text{if } v(t) = 0, \\ 0 & \text{if } v(t) \neq 0; \end{cases}$$

3. if v(x) < 0,

$$\#B(x, p^{-e}; t) = \begin{cases} 2p^{2v(x)-e}\varphi(t) \pm 4d(t) & \text{if } v(t) = 0, \\ 2\frac{p^{1+v(x)-e}}{p-1}\varphi(t) \pm 4d(t) & \text{if } v(t) = -v(x), \\ 0 & \text{otherwise.} \end{cases}$$

Proof. We have that

$$B(x, p^{-e}; t)$$

$$= \begin{cases} m/n : (m, n) \in \mathbf{Z} \times \mathbf{Z}^{>0}, \max\{|m|, n\} = t, \gcd(m, n) = 1, \\ v\left(\frac{m}{n} - x\right) \geqslant e \end{cases}$$

$$= \left\{ \pm t/n : n \in \mathbf{Z}, \ 1 \leqslant n \leqslant t, \gcd(n, t) = 1, \ v\left(\frac{\pm t}{n} - x\right) \geqslant e \right\}$$

$$\bigcup \left\{ m/t : m \in \mathbf{Z}, \ -t \leqslant m \leqslant t, \gcd(m, t) = 1, \ v\left(\frac{m}{t} - x\right) \geqslant e \right\}.$$

Let us call these two sets respectively B_1 and B_2 .

Consider B_2 . We have

$$v\left(\frac{m}{t} - x\right) \geqslant e \iff v(m - xt) \geqslant e + v(t).$$
 (6)

Suppose v(t) = 0.

- If $v(x) \ge 0$, we can apply Lemma 4: since e > v(x), we get $\#B_2 = 2p^{-e}\varphi(t) \pm 4d(t)$.
- If v(x) < 0, we get v(m xt) = v(x) < e, hence Eq. (6) is false and $\#B_2 = 0$.

Suppose now v(t) > 0. Then gcd(m, t) = 1 implies that v(m) = 0.

- If v(xt) > 0, then v(m xt) = v(m) = 0 with 0 < v(x) + v(t) < e + v(t). Hence Eq. (6) is false.
- If v(xt) = 0, let $\eta = v(t) > 0$, $x' = xp^{\eta}$ and $t' = tp^{-\eta}$. Hence

$$\#B_2 = \#\{m : -t \leqslant m \leqslant t, \gcd(m, t) = 1, v(m - x't') \geqslant e + \eta\}.$$

We can replace the condition $gcd(m, p^{\eta}t') = 1$ with gcd(m, t') = 1, since $p \mid m$ would imply v(m - x't') = 0 = v(x) + v(t) < e + v(t). Lemma 4 yields

$$\#B_2 = 2p^{-e-\eta} \frac{t}{t'} \varphi(t') \pm 4d(t) = 2\frac{p^{1-e-\eta}}{p-1} \varphi(t) \pm 4d(t).$$

• If v(xt) < 0, then v(m - xt) = v(xt) = v(x) + v(t) < e + v(t); Eq. (6) is therefore false.

Putting everything together, we have

$$\#B_2 = \begin{cases} 2p^{-e}\varphi(t) \pm 4d(t) & \text{if } v(t) = 0 \text{ and } v(x) \geqslant 0, \\ 2\frac{p^{1-e-v(t)}}{p-1}\varphi(t) \pm 4d(t) & \text{if } v(t) > 0 \text{ and } v(x) = -v(t), \\ 0 & \text{otherwise.} \end{cases}$$

Consider now B_1 . Write $x = x'p^{\eta}$ with $x' \in \mathbf{Z}_p$ and $\eta = v(x)$. Since v(x) < e and $v(\pm t/n - x) \ge e$ we have

$$v(t/n) = v(x) = \eta$$
, with the constraint $gcd(t, n) = 1$ (7)

Assume that $\eta \geqslant 0$, then Eq. (7) implies that $v(t) = \eta$ and v(n) = 0; in particular $B_1 = \emptyset$ if $v(t) \neq v(x)$. Suppose thus $v(t) = \eta$ and write $t = t'p^{\eta}$. Then

$$v\left(\pm\frac{t}{n}-x\right) = \eta + v\left(nx' \mp t'\right) = \eta + v(n \mp x'^{-1}t')$$

and, since v(n) = 0,

$$B_1 = \{ \pm t/n : n \in \mathbf{Z}, \ 1 \leqslant n \leqslant t, \ \gcd(n, t') = 1, \ v(n \mp x'^{-1}t') \geqslant e - \eta \}.$$

It follows, by lemma 4, that

$$#B_1 = 2p^{\eta - e} \frac{t}{t'} \varphi(t') \pm 4d(t) = \begin{cases} 2\frac{p^{1+\eta - e}}{p-1} \varphi(t) \pm 4d(t) & \text{if } v(t) = v(x) > 0, \\ 2p^{-e} \varphi(t) \pm 4d(t) & \text{if } v(t) = v(x) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Assume now that $\eta < 0$, then equation (7) implies that v(t) = 0 and $v(n) = -\eta$; in particular, $B_1 = \emptyset$ if v(t) > 0. Suppose not and write $n = n'p^{-\eta}$. Then

$$v\left(\pm\frac{t}{n}-x\right)=\eta+v(\pm t-n'x').$$

Since $e - \eta > 0$ and $v(x'^{-1}t) = 0$, we have

$$#B_{1} = #\left\{ \begin{array}{l} \pm t/n'p^{-\eta} : n' \in \mathbf{Z}, \ 1 \leqslant n' \leqslant p^{\eta}t, \ \gcd(n', t) = 1, \\ v(n' \mp x'^{-1}t) \geqslant e - \eta \end{array} \right\}$$
$$= 2p^{\eta - e} \frac{p^{\eta}t}{t} \varphi(t) \pm 4d(t) = 2p^{2\eta - e} \varphi(t) \pm 4d(t).$$

The Proposition follows.

4 Proof of Theorem 1

Let e be a strictly positive integer. Then, by Proposition 7,

$$\sum_{\substack{t \leqslant T \\ p^e \mid t}} \varphi(t) = p^{e-1} \sum_{\substack{t \leqslant T/p^{e-1} \\ p \mid t}} \varphi(t) = \frac{p^{1-e}}{2\zeta(2)(p+1)} T^2 + O\left(T \log T\right). \tag{8}$$

It follows that, the sum being over positive terms,

$$\sum_{\substack{t \leqslant T \\ v(t) = e}} \varphi(t) = \sum_{\substack{t \leqslant T \\ p^e \mid t}} \varphi(t) - \sum_{\substack{t \leqslant T \\ p^{e+1} \mid t}} \varphi(t) = p^{-e} \frac{p-1}{2\zeta(2)(p+1)} T^2 + O\left(T \log T\right). \tag{9}$$

Suppose now that $0 < e \le v(x)$. Then Proposition 10 yields

$$\sum_{t \leqslant T} \#B(x, p^{-e}; t) = \sum_{t \leqslant T} \left(\frac{2}{p^e} \varphi(t) \pm 4d(t) \right) + \sum_{t \leqslant T} 2\varphi(t)$$

$$= \frac{2p^{1-e}}{2\zeta(2)(p+1)} T^2 + \frac{2p^{1-e}}{2\zeta(2)(p+1)} T^2 + O\left(T \log T\right)$$

$$= \frac{4p^{1-e}}{2\zeta(2)(p+1)} T^2 + O\left(T \log T\right);$$

therefore

$$\mu(B(x, p^{-e})) = \lim_{T \to +\infty} \frac{\sum_{t \leqslant T} \#B(x, p^{-e}; t)}{\sum_{t \leqslant T} \#\mathbf{Q}(t)} = \frac{p^{1-e}}{p+1}.$$

If $e \leq 0$ and $e \leq v(x)$ we have, instead:

$$\begin{split} \sum_{t \leqslant T} \#B(x, p^{-e}; t) &= \sum_{t \leqslant T} 4\varphi(t) - 2 \sum_{\substack{t \leqslant T \\ p \nmid t}} \left(p^{e-1} \varphi(t) \pm 4d(t) \right) - 2 \sum_{\substack{t \leqslant T \\ p^{1-e} \mid t}} \varphi(t) \\ &= \frac{4}{2\zeta(2)} T^2 - \frac{2p^e}{2\zeta(2)(p+1)} T^2 - \frac{2p^e}{2\zeta(2)(p+1)} T^2 + O\left(T \log T\right) \\ &= 4 \left(1 - \frac{p^e}{p+1} \right) \frac{1}{2\zeta(2)} T^2 + O\left(T \log T\right). \end{split}$$

Thus

$$\mu(B(x, p^{-e})) = 1 - \frac{p^e}{p+1}.$$

Suppose now e > v(x) > 0. Then Proposition 11 and Eq. (9) yield

$$\sum_{t \leqslant T} \#B(x, p^{-e}; t) = \sum_{\substack{t \leqslant T \\ p \nmid t}} \left(\frac{2}{p^e} \varphi(t) \pm 4d(t) \right) + \sum_{\substack{t \leqslant T \\ v(t) = v(x)}} \left(2 \frac{p^{v(x) - e}}{1 - 1/p} \varphi(t) \pm 4d(t) \right)$$

$$= \frac{4p^{1 - e}}{2\zeta(2)(p + 1)} T^2 + O\left(T \log T\right);$$

so that $\mu(B(x, p^{-e})) = p^{1-e}/(p+1)$. If e > v(x) = 0, the calculation clearly gives the same result. Suppose at last that e > v(x) with v(x) < 0. Then

$$\begin{split} \sum_{t\leqslant T}\#B(x,p^{-e};t) &= \sum_{t\leqslant T} \left(2p^{2v(x)-e}\varphi(t)\pm 4d(t)\right) \\ &+ \sum_{t\leqslant T} \left(2\frac{p^{1+v(x)-e}}{p-1}\varphi(t)\pm 4d(t)\right) \end{split}$$

$$= \frac{4p^{1+2v(x)-e}}{2\zeta(2)(p+1)}T^2 + O(T\log T);$$

hence $\mu(B(x, p^{-e})) = p^{1+2v(x)-e}/(p+1)$.

References

[1] T. M. Apostol. *Introduction to analytic number theory*. UTM. Springer-Verlag, New York, 1976.

- [2] S. Lang. Algebraic Number Theory. Addison-Wesley, Reading, Massachusetts, 1970. Republished in 1986 by Springer-Verlag, New York, in the GTM series.
- [3] O. G. Rizzo. Average root numbers in families of elliptic curves. *Proc. Amer. Math. Soc.*, 127(6):1597–1603, 1999.
- [4] C. A. Rogers. Hausdorff Measures. Cambridge University Pres, Cambridge, 1970.