Notes on Doubly Periodic Functions

Xiaorui YIN as "WOLAOBAIXING"

June 2023

1 Doubly Periodic Functions

For any meromorphic function f let M_f denote the set of all its periods, i.e.

$$M_f = \{ \omega \in \mathbb{C} \mid f(z + \omega) = f(z) \text{ for any } z \in \mathbb{C} \}.$$

Prop 1.1. M_f forms a free \mathbb{Z} -module.

Sketch of Proof. $M_f \in \mathbb{C} \Rightarrow \text{no torsion}$

Prop 1.2. f non-constasnt $\Longrightarrow M_f$ is isolated in \mathbb{C} ; rank $M_f \leq 2$.

Sketch of Proof. $f|_{M_f}$ is const. By the uniqueness we know that M_f cannot have an accumulation since f is non-constant. By Prop1.1 we take a base $(\omega_i)_{i\in I}$ of M_f . If it contains 3 elements there exist $r_1, r_2 \in \mathbb{R}$ so that $r_1\omega_1 + r_2\omega_2 = \omega_3$. Note that $(\omega_i)_{i=1}^3$ are \mathbb{Z} -independent, both of r_1 and r_2 cannot be rational. WLOG $r_1 \notin \mathbb{Q}$. Then

$$\{nr_1\omega_1 + mr_2\omega_2 \mid m, n \in \mathbb{Z}\}\$$

drops infinitely many times into the segment connecting 0 and ω_3 , a contradiction!

remark. Therefore there are any 3 cases of $\operatorname{rank} M_f$. The case 0 is to say that f is not periodic; the case 1 can be studied by its Fourier expansion; hence we will be interested when $\operatorname{rank} M_f = 2$. Such f is said to be a doubly periodic function or eliptic function. In the following part we will write DPF for short.

Let f be a DPF. By the periodicity we can naturally consider f as a map over $\mathbb{C}/M_f \simeq T^2$ (the torus).

Thm 1.1. The sum of residues of a DPF on T^2 is zero.

Sketch of Proof. Choose a "fundamental parallelogram" P of f whose boundary contains no poles. Then the sum of residues of f on T^2 is equal to

$$\frac{1}{2\pi i} \int_{\partial P} f \mathrm{d}z = 0 \ .$$

Cor 1.2. A DPF can not have only one pole on T^2 .

Sketch of Proof. A single pole must have a non-zero residue.

Cor 1.3. A DPF has equally many zeros and poles on T^2 .

Sketch of Proof. Note that f'/f is a DPF having the same periodic module.

A more exact result.

Thm 1.4. Let $(a_i)_{i=1}^n$ be all its zeros in T^2 and $(b_i)_{i=1}^n$ be all its poles in T^2 , then

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i \mod M_f.$$

Sketch of Proof. Do some calculations. By the residue theorem

$$\frac{1}{2\pi i} \int_{\partial P} \frac{zf'(z)}{f(z)} dz = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i.$$

Cor 1.5. All complex values are assumed the same times by a DPF on T^2 .

Sketch of Proof. f(z) - c has the same poles as f.

Def 1.1. The order of a DPF: $Ord(f) := number of its poles on <math>T^2$.

2 Weierstrass \wp

In this section we introduce the "simplest" nonconst DPF: the Weierstrass \wp .

Def 2.1. Fix a free \mathbb{Z} -module M contained in \mathbb{C} of rank 2. Define

$$\wp(z; M) = \frac{1}{z^2} + \sum_{\omega \in M - \{0\}} \frac{1}{(z - \omega)^2} - \frac{1}{\omega^2}.$$

Lemma 2.1. The series

$$\sum_{\omega \in M - \{0\}} \omega^{-s}$$

converges iff s > 2.

Sketch of Proof. There exists $\Delta > \delta > 0$ such that for all pair of integers (m, n)

$$\Delta |m\omega_1 + n\omega_2|^2 > m^2 + n^2 > \delta |m\omega_1 + n\omega_2|^2$$
.

Therefore $\sum_{\omega \in M - \{0\}} \omega^{-s}$ converges iff

$$\sum_{(m,n)\in\mathbb{Z}\times\mathbb{Z}-\{0\}} (m^2 + n^2)^{-s/2}$$

converges, which is equivalent to

$$\iint_{x^2+y^2 \ge 1} \frac{\mathrm{d}x \mathrm{d}y}{(x^2+y^2)^{-s/2}} = \int_0^{2\pi} \int_1^{+\infty} \frac{\mathrm{d}r \mathrm{d}\theta}{r^{s-1}}.$$

2

Lemma 2.2. $\wp(z;M)$ defines an even meromorphic function of order 2 whose poles situated in M.

Sketch of Proof. For $|\omega| \geq 2|z|$ we have

$$\left| \frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right| = \frac{|z||(z-2\omega)|}{|z-\omega|^2|\omega|^2} \le \frac{4|z|}{|\omega|^3}.$$

Hence it converges uniformly in any compact.

Prop 2.1.

$$\wp'(z;M) = -2\sum_{\omega \in M} \frac{1}{(z-\omega)^3}$$

defines an odd DPF of order 3 whose poles situated in M.

Sketch of Proof. odd trival; order 3 trival;

Thm 2.3. $\wp(z;M)$ defines an even DPF of order 2 whose poles situated in M.

Sketch of Proof. We only need to check its periodicity. Let ω be 1/2 generator of M we have $\wp'(z+\omega) = \wp'(z)$, hence $\wp(z+\omega) - \wp(z)$ is constant. Let $z = -\frac{1}{2}\omega \notin M$ we get $\wp(z+\omega) - \wp(z) = \wp(\frac{1}{2}\omega) - \wp(-\frac{1}{2}\omega) = 0$. \square Note that there is an odd periodic function we can give some immediate properties.

Prop 2.2. $\wp'(z; M)$ has 3 simply zeros on T^2 .

Sketch of Proof. Write $M = \operatorname{Span}(\omega_1, \omega_2)$. Note that $\operatorname{Ord}(\wp') = 3$ and that $\omega_1/2$, $\omega_2/2$, $(\omega_1 + \omega_2)/2$ are 3 different zeros.

remark. As a corollary $\omega_1/2$, $\omega_2/2$, $(\omega_1 + \omega_2)/2$ is independent of the choice of the base of M (?).

Thm 2.4. Define $\wp(\omega_1/2) = e_1$, $\wp(\omega_2/2) = e_2$, $\wp((\omega_1 + \omega_2)/2) = e_3$. Then

$$(\wp')^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3).$$

Sketch of Proof. Prop2.2 tells us that

$$\frac{(\wp')^2}{(\wp - e_1)(\wp - e_2)(\wp - e_3)}$$

is holomorphic a la fois doubly periodic. Hence it must be a constant. We determine this const by viewing the coefficients of their Laurent expansion around 0...

By the similar method one can construct all DPF using \wp . Clearly all DPF having the periodic module M forms a field. We denote it by E(M).

Thm 2.5.

$$E(M) = \mathbb{C}(\wp) + \wp' \mathbb{C}(\wp)$$

Sketch of Proof. Note that for any $F \in E(M)$ we can write F as a sum of an odd function F_o and an even function F_e , and that F_o/\wp' is even, we only need to prove that even DPF having period M is given by $\mathbb{C}(\wp)$. We choose a fundamental parallelogram of F. Clearly $\mathrm{Ord}(F)$ is even. Let $(a_i, -a_i)_{i=1}^n$ be all its zeros and $(b_i, -b_i)_{i=1}^n$ be all its poles. Let

$$G(z) = \frac{\prod_{i=1}^{n} (\wp(z) - \wp(a_i))}{\prod_{i=1}^{n} (\wp(z) - \wp(b_i))}.$$

Recall that \wp is of order 2, hence G has exactly the same zeros and poles as F. Therefore F/G is constant. \square

Determine the Laurent expansion of \wp around 0. Note that $\wp(z) - \frac{1}{z^2}$ is holomorphic when $0 < |z| < \min_{\omega \in M} |\omega|$. Write

$$\wp(z) - \frac{1}{z^2} = f(z) = \sum_{i=1}^{\infty} a_{2n} z^{2n}.$$

Knowing that

$$f^{(n)}(z) = (-1)^n (n+1)! \sum_{\omega} \frac{1}{(z-\omega)^{n+2}},$$

hence $a_2 n = \frac{f^{(2n)}(0)}{(2n)!} = (2n+1) \sum_{\omega} \frac{1}{\omega^{2n+2}}$.

Prop 2.3. For z near 0 we have

$$\wp(z) = \frac{1}{z^2} + \sum_{k=1}^{\infty} (2k+1)E_{2k+2}z^{2k},$$

where

$$E_k = \sum_{\omega \in M - \{0\}} \omega^{-k}.$$

 E_k is called the Eisenstein series of order k.

Sketch of Proof. \uparrow

Some properties of the Eisenstein series.

Prop 2.4.

$$(\wp')^2 = 4\wp^3 - 60E_4\wp - 140E_6.$$

Sketch of Proof. $(\wp')^2 - 4\wp^3 + 60E_4\wp + 140E_6$ is holomorphic near 0 and s'annule at 0.

Thm 2.6. Given M, $(a_i)_{i=1}^n$ and $(b_i)_{i=1}^n$ in T^2 . There exists a DPF of period M having zeros $(a_i)_{i=1}^n$ and poles $(b_i)_{i=1}^n$ in T^2 iff

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i \mod M.$$

Sketch of Proof. \Rightarrow Thm1.4. \Leftarrow Imagine that we have an entire function σ having one simply zero at 0 + M, then

$$F(z) = \frac{\prod_{i=1}^{n} \sigma(z - a_i)}{\prod_{i=1}^{n} \sigma(z - b_i)}$$

has the zeros and poles required. To get the periodicity note that

$$F(z+\omega)/F(z) = \frac{\prod_{i=1}^{n} \sigma(z+\omega-a_i)/\sigma(z-a_i)}{\prod_{i=1}^{n} \sigma(z+\omega-b_i)/\sigma(z-b_i)}$$

we may ask $\sigma(z+\omega)/\sigma(z)=e^{u(\omega)z+t(\omega)}$ and choose some parallelogram so that $\sum_{i=1}^n a_i=\sum_{i=1}^n b_i$, then

$$F(z+\omega)/F(z) = \frac{\prod_{i=1}^{n} e^{u(\omega)(z-a_i)+t(\omega)}}{\prod_{i=1}^{n} e^{u(\omega)(z-b_i)+t(\omega)}} = e^{u(\omega)(\sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i)} = 1.$$

Then we give the definition of σ . Define

$$\sigma(z) = z \prod_{\omega \in M - \{0\}} (1 - \frac{z}{\omega}) e^{P(z/\omega)}$$

where $P(z) = z + \frac{z^2}{2}$. We will explique the reason why σ satisfies our require.

Because \wp has zero residues it is the derivative of a single-valued function. We denote it by $-\zeta$.

Prop 2.5.

$$\sum_{\omega \in M - \{0\}} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right)$$

converges near 0.

Sketch of Proof. derivate

Def 2.2.

$$\zeta(z) = \frac{1}{z} + \sum_{\omega \in M - \{0\}} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right).$$

Prop 2.6. $\zeta'(z) = \wp(z)$; $\zeta(z + \omega) = \zeta(z) + \eta(\omega)$ for $\omega \in M$.

Sketch of Proof. T

Prop 2.7. Let ω_1, ω_2 be a base of M and $\eta_i = \zeta(z + \omega_i) - \zeta(z)$ for i = 1, 2. Then

$$\det \begin{pmatrix} \eta_1 & \omega_1 \\ \eta_2 & \omega_2 \end{pmatrix} = 2\pi i.$$

Sketch of Proof. Choose some parallelogram P. By the residue theorem

$$\frac{1}{2\pi i} \int_{\partial P} \zeta dz = 1.$$

Prop 2.8. $\sigma'/\sigma = \zeta$.

Sketch of Proof. Do some calculations!

This yields

$$\frac{\sigma'(z+\omega)}{\sigma(z+\omega)} = \frac{\sigma'(z)}{\sigma(z)} + \eta$$

therefore $\log \sigma(z + \omega) = \log \sigma(z) + \eta z + C_1$ for some C_1 (we now complete Thm2.6). On setting $z = \omega/2$ we get:

Prop 2.9.

$$\sigma(z+\omega) = -\sigma(z)e^{\eta(z+\omega/2)}$$
.

Sketch of Proof. ↑

Thm 2.7. Given M and $z, u \in \mathbb{C} - M$. We have

$$\wp(z+u) = 0.25 \left(\frac{\wp'(z) - \wp'(u)}{\wp(z) - \wp(u)} \right)^2 - \wp(z) - \wp(u).$$

Sketch of Proof. In fact we can check this formula by directly check their Laurent developpemenets, but I choose to copy the book of Ahlfors. By the usual way one can proof that

$$\wp(z) - \wp(u) = -\frac{\sigma(z - u)\sigma(z + u)}{\sigma(z)\sigma(u)\sigma(z)\sigma(u)}.$$

Taking logarithmic derivative to turn σ into ζ . Then derivate and symmetrize it.

Equivalently (?)

Thm 2.8.

$$\det \begin{pmatrix} \wp(z) & \wp'(z) & 1\\ \wp(u) & \wp'(u) & 1\\ \wp(z+u) & -\wp'(z+u) & 1 \end{pmatrix} = 0.$$

Sketch of Proof. This can be viewed as a corollary of Thm2.7, However we have the following shougeki no shinjitsu. Define

$$F(w) = \det \begin{pmatrix} \wp(z) & \wp'(z) & 1\\ \wp(u) & \wp'(u) & 1\\ \wp(w) & \wp'(w) & 1 \end{pmatrix}$$

Clearly F has form $A + B\wp(w) + C\wp'(w)$ with $C = \wp(z) - \wp(u) \neq 0$. Hence F is a DPF of order 3. Note that the poles of F are in M and that F(z) = F(u) = 0, therefore by Thm2.6 its third zero is -(u+z). I really want to stay at your house.

remark. If we consider this theorem geometrically we may get a more shougeki no shinjitsu. This fact is so shougeki that I will start a new section.

3 Shougeki no Shinjitsu

An eliptic curve appears naturally in Prop2.4/Thm2.4. We shall study un peu its structure. Recall: \wp and E_k is determined uniquely by M.

Prop 3.1. Fix M. Let $g_2 = 60E_4$ and $g_3 = 140E_6$ and

$$X = X(g_2, g_3) = \{(z.w) \in \mathbb{C}^2 \mid w^2 = 4z^3 - g_2z - g_3\}.$$

Then we have the bijection

$$T^2 - \{0\} \to X(g_2, g_3), \ z + M \mapsto (\wp(z), \wp'(z)).$$

Sketch of Proof. Trival.

We consider X in \mathbb{CP}^n (all 1-dimensional linear subspace of \mathbb{C}^{n+1}) and $\mathbb{A}^n(\mathbb{C})$ (of form $z_0:(z_1:z_2:...:z_n)$). Define

$$\hat{X} = \hat{X}(g_2, g_3) = \{ (z : w : u) \in \mathbb{A}^2(\mathbb{C}) \mid w^2 u = 4z^3 - g_2 z u^2 - g_3 u^3 \}.$$

Then we got the bijection

$$\Phi: \mathbb{C}/M \to \hat{X}, \ z + M \mapsto (\wp(z): \wp'(z): 1).$$

Horonable mention: $\Phi(M) = (1:0:0)$. Note that \mathbb{C}/M is an abelian group. Thus we can define a group structure on \hat{X} such that Φ is an isomorphism. Its neutre element $O = \Phi(M) = (1:0:0)$. This definition explains clearly the group structure of an eliptic curve.

Thm 3.1. For $P, Q, R \in \hat{X}$,

$$P + Q + R = O$$
 iff P, Q, R on a straight line

Sketch of Proof. Let $\Phi^{-1}(P) = (1 : \wp(p), \wp'(p))$, cyc. P, Q, R on a straight line \Leftrightarrow

$$\det \begin{pmatrix} \wp(p) & \wp'(p) & 1\\ \wp(q) & \wp'(q) & 1\\ \wp(r) & \wp'(r) & 1 \end{pmatrix} = 0$$

by Thm 2.8 \Leftrightarrow $p+q+r \in M \Leftrightarrow P+Q+R=\Phi(p+q+r+M)=\Phi(M)=0.$

Moreover Φ is an homeomorphism(?). To make sure that this explanation is general we need to check that: for all(?) pairs $(u, v) \in \mathbb{C} \times \mathbb{C}$ there exists a periodic module M so that $(g_2, g_3) = (u, v)$. We start a new section.

4 Unimodular Transformations

In this section we study the transformation between different periodic module. We consider an equivalent relation: periodic module $M_1 \sim M_2$ iff there exists $\alpha \in \mathbb{C}$ so that $M_1 = \alpha M_2$. A DPF F(z) of period M_1 induce a DPF of M_2 by $F(z/\alpha)$.

Lemma 4.1. Each periodic module is equivalent to some

$$M(\tau) = \mathbb{Z} \oplus \mathbb{Z}\tau, \ \tau \in \mathbb{H}.$$

Sketch of Proof. T

Now suppose that $M(\tau) = \alpha M(\rho)$.

Clearly $\alpha M(\rho) \subset M(\tau)$ is equivalent to, for some $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $a, b, c, d \in \mathbb{Z}$,

$$\alpha \begin{pmatrix} \rho \\ 1 \end{pmatrix} = X \begin{pmatrix} \tau \\ 1 \end{pmatrix}.$$

 $M(\tau) \subset \alpha M(\rho) \text{ is equivalent to, for some } Y = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}, \, a', b', c', d' \in \mathbb{Z},$

$$\alpha Y \begin{pmatrix} \rho \\ 1 \end{pmatrix} = \begin{pmatrix} \tau \\ 1 \end{pmatrix}.$$

Therefore

$$YX \begin{pmatrix} \tau \\ 1 \end{pmatrix} = \alpha Y \begin{pmatrix} \rho \\ 1 \end{pmatrix} = \begin{pmatrix} \tau \\ 1 \end{pmatrix}.$$

Note that elements of YX are real, thus YX has 2 independent eigenvectors of eigenvalue 1, which yields

$$YX = I$$

. Moreover we can do some calculations to prove that for $\text{Im}\rho > 0$ we must have $\det X = 1$. Therefore we have proven the following

Thm 4.2. $M(\rho) \sim M(\tau)$ iff there exists

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma = \mathrm{SL}_2(\mathbb{Z})$$

such that $\rho = X\tau$.

Sketch of Proof. \uparrow

remark. We shall write $\rho = X\tau$ to express $\rho = \frac{a\tau + b}{c\tau + d}$ when no confuse.

To solve the problem in section 3 we need to study some general properties of Eisenstein series.

Prop 4.1. Given M and $\alpha \in \mathbb{C}$. $E_k(\alpha M) = \alpha^{-k} E_k(M)$.

Sketch of Proof. T

Prop 4.2. For $k \geq 3$ Define $E_k(\tau) = E_k(\mathbb{Z} \oplus \mathbb{Z}\tau)$. Then $E_k(\tau)$ is holomorphic in \mathbb{H} .

Sketch of Proof. T

Prop 4.3. For $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma = \mathrm{SL}_2(\mathbb{Z})$ we have $E_k(X\tau) = (c\tau + d)^k E_k(\tau)$.

Sketch of Proof. T

Prop 4.4. For even $k \geq 4$

 $\lim_{\mathbf{I} \to \infty} E_k(\tau) = 2\zeta(\tau).$

Sketch of Proof. ?

Prop 4.5. For all $\tau \in \mathbb{H}$ there exists $X \in \Gamma$ s.t.

$$|X\tau| \ge 1; -1/2 \le \text{Re}X\tau \le 1/2.$$

Sketch of Proof. T

Thm 4.3. There exists periodic module M so that $(g_2(M), g_3(M)) = (u, v)$ if $u^3 - 27v^2 \neq 0$.

Sketch of Proof. Define

$$j(M) = \frac{g_2^3(M)}{g_2^3(M) - 27g_3^2(M)};$$

by Prop4.1 $j(\alpha M) = j(M)$. Therefore we can well define

$$j(\tau) = j(\mathbb{Z} \oplus \mathbb{Z}\tau).$$

By Prop4.2 j is holomorphic in \mathbb{H} . By Prop4.3 $j(X\tau)=j(\tau)$ for $X\in\Gamma$. Knowing that $j(\mathbb{H})$ is open, to have $j:\mathbb{H}\to\mathbb{C}$ is surjective we only need to check that $j(\mathbb{H})$ is closed. Take a convergent seuquence $(j(\tau_n))_{n\in\mathbb{N}}$. Note the mysterious fact that

$$\lim_{\mathrm{Im}\tau\to\infty} j(\tau) = \frac{?}{(60\pi^4/90)^3 - 27(140\pi^6/645)} = \infty.$$

and by Prop4.5 one can check that $(\tau_n)_{n\in\mathbb{N}}$ must be bounded... Thus for $u^3-27v^2\neq 0$ there exists τ s.t

$$j(\tau) = \frac{u^3}{u^3 - 27v^2}.$$

Hence there exists M s.t. $g_2^3(M)/g_3^2(M)=u^3/v^2$. By Prop4.1 replace M by some αM and we have done.

5 Reference

On considering the fact that I am lazy and these books are all very classical, wonderful and important, I will only list the name of the books and authors...

Complex Analysis, Lars Ahlfors ...

Complex Analysis, Elias M.Stein, Rami Shakarchi ...

SURON I: Fermat No Yume To RUITAIRON, Kazuya Kato, Nobushige Kurokawa, Takeshi Saito ...

A First Course in Modular Forms, Fred Diamonds, Jerry Shurman ...

Elementary Algebraic Geometry, Klaus Hulek ...

https://zhuanlan.zhihu.com/p/606042770