Abstract Submitted for the APR05 Meeting of The American Physical Society

Sorting Category: E10. (T)

The number of J=0 pairs in 44,46,48 Ti LARRY ZAMICK, ALBERTO ESCUDEROS and ARAM MEKJIAN

(Rutgers University)

In the single j-shell, the configuration of an even—even Ti isotope consists of 2 protons and n neutrons. The I=0 wave function can be written as

$$\psi = \sum_{Jv} D(J, Jv) [(j^2)_{\pi}^J (j^n)_{\nu}^J]^{I=0},$$

where v is the seniority quantum number. There are several states with isospin $T_{\min} = |(N-Z)/2|$, but only one with $T_{\max} = T_{\min} + 2$. By demanding that the T_{\max} wave function be orthogonal to the T_{\min} ones, we obtain the following relation involving a one-particle coefficient of fractional parentage:

$$D(00) = \frac{n}{2j+1} \sum_{J} D(J, Jv) (j^{n-1}(jv=1)j|j^n J) \sqrt{2J+1}.$$

This leads to the following simple expressions for the number of J=0 np pairs in these Ti isotopes:

- For $T = T_{\min}$, # of pairs $(J_{12} = 0) = 2|D(00)|^2/n$
- For $T = T_{\text{max}}$, # of pairs $(J_{12} = 0) = 2n|D(00)|^2 = \frac{2n(2j+1-n)}{(2j+1)(n+1)}$

For $^{44}\mathrm{Ti}$ we have also the results for even J_{12}

of nn pairs = # of pp pairs = # of np pairs = $|D(J_{12}, J_{12})|^2$.