Introduction

Welcome to **CS188 - Data Science Fundamentals!** This course is designed to equip you with the tools and experiences necessary to start you off on a life-long exploration of datascience. We do not assume a prerequisite knowledge or experience in order to take the course.

For this first project we will introduce you to the end-to-end process of doing a datascience project. Our goals for this project are to:

- 1. Familiarize you with the development environment for doing datascience
- 2. Get you comfortable with the python coding required to do datascience
- 3. Provide you with an sample end-to-end project to help you visualize the steps needed to complete a project on your own
- 4. Ask you to recreate a similar project on a separate dataset

In this project you will work through an example project end to end. Many of the concepts you will encounter will be unclear to you. That is OK! The course is designed to teach you these concepts in further detail. For now our focus is simply on having you replicate the code successfully and seeing a project through from start to finish.

Here are the main steps:

- 1. Get the data
- 2. Visualize the data for insights
- 3. Preprocess the data for your machine learning algorithm
- 4. Select a model and train
- 5. Does it meet the requirements? Fine tune the model

Working with Real Data

It is best to experiment with real-data as opposed to aritifical datasets.

There are many different open datasets depending on the type of problems you might be interested in!

Here are a few data repositories you could check out:

- UCI Datasets
- Kaggle Datasets
- AWS Datasets

Submission Instructions

When you have completed this assignment please save the notebook as a PDF file and submit the assignment via Gradescope

Example Datascience Exercise

Below we will run through an California Housing example collected from the 1990's.

Setup

```
In [90]:
          import sys
          assert sys.version_info >= (3, 5) # python>=3.5
          import sklearn
          assert sklearn.__version__ >= "0.20" # sklearn >= 0.20
          import numpy as np #numerical package in python
          import os
          %matplotlib inline
          import matplotlib.pyplot as plt #plotting package
          # to make this notebook's output identical at every run
          np.random.seed(42)
          #matplotlib magic for inline figures
          %matplotlib inline
          import matplotlib # plotting library
          import matplotlib.pyplot as plt
          # Where to save the figures
          ROOT DIR = "."
          IMAGES PATH = os.path.join(ROOT DIR, "images")
          os.makedirs(IMAGES PATH, exist ok=True)
          def save fig(fig name, tight layout=True, fig extension="png", resolution=300):
                  plt.savefig wrapper. refer to
                  https://matplotlib.org/3.1.1/api/ as gen/matplotlib.pyplot.savefig.html
                  Args:
                      fig name (str): name of the figrue
                      tight layout (bool): adjust subplot to fit in the figure area
                      fig extension (str): file format to save the figure in
                      resolution (int): figure resolution
              path = os.path.join(IMAGES PATH, fig name + "." + fig extension)
              print("Saving figure", fig_name)
              if tight layout:
                  plt.tight layout()
              plt.savefig(path, format=fig extension, dpi=resolution)
```

```
import os
import tarfile
import urllib
DATASET_PATH = os.path.join("datasets", "housing")
```

Step 1. Getting the data

Intro to Data Exploration Using Pandas

In this section we will load the dataset, and visualize different features using different types of plots.

Packages we will use:

- Pandas: is a fast, flexibile and expressive data structure widely used for tabular and multidimensional datasets.
- Matplotlib: is a 2d python plotting library which you can use to create quality figures (you can plot almost anything if you're willing to code it out!)
 - other plotting libraries:seaborn, ggplot2

```
In [92]:
           import pandas as pd
           def load_housing_data(housing_path):
                   loads housing.csv dataset stored
                   Args:
                       housing_path (str): path to folder containing housing datased
                   Returns:
                       pd.DataFrame
               csv_path = os.path.join(housing_path, "housing.csv")
               return pd.read_csv(csv_path)
In [93]:
           pd.DataFrame
Out[93]: pandas.core.frame.DataFrame
In [94]:
           housing = load housing data(DATASET PATH) # we load the pandas dataframe
           housing.head() # show the first few elements of the dataframe
                           # typically this is the first thing you do
                           # to see how the dataframe looks like
             longitude latitude housing_median_age total_rooms total_bedrooms population households
Out[94]:
               -122.23
          0
                         37.88
                                              41.0
                                                        0.088
                                                                        129.0
                                                                                  322.0
                                                                                              126.0
          1
               -122.22
                         37.86
                                             21.0
                                                       7099.0
                                                                       1106.0
                                                                                  2401.0
                                                                                             1138.0
          2
               -122.24
                         37.85
                                             52.0
                                                        1467.0
                                                                        190.0
                                                                                  496.0
                                                                                              177.0
          3
               -122.25
                         37.85
                                             52.0
                                                        1274.0
                                                                        235.0
                                                                                  558.0
                                                                                              219.0
               -122.25
                         37.85
                                             52.0
                                                        1627.0
                                                                        280.0
                                                                                  565.0
                                                                                              259.0
```

A dataset may have different types of features

- real valued
- Discrete (integers)
- categorical (strings)

The two categorical features are essentialy the same as you can always map a categorical string/character to an integer.

In the dataset example, all our features are real valued floats, except ocean proximity which is categorical.

```
In [95]:
            # to see a concise summary of data types, null values, and counts
            # use the info() method on the dataframe
            housing.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 20640 entries, 0 to 20639
            Data columns (total 10 columns):
                 Column
            #
                                        Non-Null Count Dtype
            ____
                                          _____
                longitude 20640 non-null float64
latitude 20640 non-null float64
housing_median_age 20640 non-null float64
             0
             1
             2
            3 total_rooms 20640 non-null float64
4 total_bedrooms 20433 non-null float64
5 population 20640 non-null float64
6 households 20640 non-null float64
7 median_income 20640 non-null float64
                 median_house_value 20640 non-null float64 ocean_proximity 20640 non-null object
             8
             9
            dtypes: float64(9), object(1)
           memory usage: 1.6+ MB
In [96]:
            # you can access individual columns similarly
            # to accessing elements in a python dict
            housing["ocean proximity"].head() # added head() to avoid printing many columns.
Out[96]: 0
                 NEAR BAY
                 NEAR BAY
           1
           2 NEAR BAY
            3 NEAR BAY
            4 NEAR BAY
           Name: ocean_proximity, dtype: object
In [97]:
            # to access a particular row we can use iloc
            housing.iloc[1]
Out[97]: longitude latitude
                                      -122.22
           latitude
housing_median_age 21.0
7099.0
           total_rooms 7099.0
total_bedrooms 1106.0
population 2401.0
households 1138.0
median_income 8.3014
           median_house_value 358500.0 ocean_proximity NEAR BAY
           Name: 1, dtype: object
In [98]:
            # one other function that might be useful is
            # value counts(), which counts the number of occurences
            # for categorical features
            housing["ocean proximity"].value counts()
```

```
Out[98]: <1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean_proximity, dtype: int64

In [99]: # The describe function compiles your typical statistics for each # column
housing.describe()
```

Out[99]:		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	po
	count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640
	mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425
	std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132
	min	-124.350000	32.540000	1.000000	2.000000	1.000000	3
	25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787
	50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166
	75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725
	max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682

If you want to learn about different ways of accessing elements or other functions it's useful to check out the getting started section here

Step 2. Visualizing the data

Let's start visualizing the dataset

```
In [100...
# We can draw a histogram for each of the dataframes features
# using the hist function
housing.hist(bins=50, figsize=(20,15))
# save_fig("attribute_histogram_plots")
plt.show() # pandas internally uses matplotlib, and to display all the figures
# the show() function must be called
```


We can convert a floating point feature to a categorical feature by binning or by defining a set of intervals.

For example, to bin the households based on median_income we can use the pd.cut function

```
labels=[1, 2, 3, 4, 5])
housing["income_cat"].value_counts()
```

```
Out[102... 3 7236
2 6581
4 3639
5 2362
1 822
Name: income_cat, dtype: int64
```

```
In [103... housing["income_cat"].hist()
```

Out[103... <matplotlib.axes._subplots.AxesSubplot at 0x7fb38bbb3910>

Next let's visualize the household incomes based on latitude & longitude coordinates

```
## here's a not so interestting way of plotting it housing.plot(kind="scatter", x="longitude", y="latitude") save_fig("bad_visualization_plot")
```

Saving figure bad_visualization_plot


```
In [105...  # we can make it look a bit nicer by using the alpha parameter,
```

```
# it simply plots less dense areas lighter.
housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1)
save_fig("better_visualization_plot")
```

Saving figure better_visualization_plot


```
In [106...
          # A more interesting plot is to color code (heatmap) the dots
          # based on income. The code below achieves this
          # load an image of california
          images_path = os.path.join('./', "images")
          os.makedirs(images path, exist ok=True)
          filename = "california.png"
          import matplotlib.image as mpimg
          california img=mpimg.imread(os.path.join(images path, filename))
          ax = housing.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7),
                                 s=housing['population']/100, label="Population",
                                 c="median_house_value", cmap=plt.get_cmap("jet"),
                                 colorbar=False, alpha=0.4,
          # overlay the califronia map on the plotted scatter plot
          # note: plt.imshow still refers to the most recent figure
          # that hasn't been plotted yet.
          plt.imshow(california img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5,
                     cmap=plt.get_cmap("jet"))
          plt.ylabel("Latitude", fontsize=14)
          plt.xlabel("Longitude", fontsize=14)
          # setting up heatmap colors based on median house value feature
          prices = housing["median house value"]
          tick_values = np.linspace(prices.min(), prices.max(), 11)
          cb = plt.colorbar()
          cb.ax.set yticklabels(["$%dk"%(round(v/1000)) for v in tick values], fontsize=14
          cb.set label('Median House Value', fontsize=16)
          plt.legend(fontsize=16)
          save_fig("california_housing_prices_plot")
          plt.show()
```


Not suprisingly, we can see that the most expensive houses are concentrated around the San Francisco/Los Angeles areas.

Up until now we have only visualized feature histograms and basic statistics.

When developing machine learning models the predictiveness of a feature for a particular target of intrest is what's important.

It may be that only a few features are useful for the target at hand, or features may need to be augmented by applying certain transformations.

None the less we can explore this using correlation matrices. If you need to brush up on correlation take a look here.

```
In [107...
          corr matrix = housing.corr() # compute the correlation matrix
In [108...
          # for example if the target is "median_house_value", most correlated features ca
          # which happens to be "median income". This also intuitively makes sense.
          corr matrix["median house value"].sort values(ascending=False)
Out[108... median_house_value
                               1.000000
                               0.688075
         median income
                               0.134153
         total rooms
         housing median age 0.105623
         households
                               0.065843
         total bedrooms
                               0.049686
```

population -0.024650 longitude -0.045967 latitude -0.144160 Name: median_house_value, dtype: float64

```
Saving figure scatter_matrix_plot
```



```
# median income vs median house vlue plot plot 2 in the first row of top figure housing.plot(kind="scatter", x="median_income", y="median_house_value", alpha=0.1)

plt.axis([0, 16, 0, 550000])

save_fig("income_vs_house_value_scatterplot")
```

Saving figure income_vs_house_value_scatterplot

Augmenting Features

New features can be created by combining different columns from our data set.

- rooms_per_household = total_rooms / households
- bedrooms_per_room = total_bedrooms / total_rooms
- etc.

```
In [111...
          housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
          housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
          housing["population_per_household"]=housing["population"]/housing["households"]
In [112...
          # obtain new correlations
          corr matrix = housing.corr()
          corr matrix["median house value"].sort values(ascending=False)
Out[112... median_house value
                                      1.000000
         median income
                                      0.688075
         rooms per household
                                      0.151948
         total rooms
                                      0.134153
         housing_median_age
                                      0.105623
         households
                                      0.065843
         total bedrooms
                                      0.049686
         population per household
                                     -0.023737
         population
                                     -0.024650
         longitude
                                     -0.045967
         latitude
                                     -0.144160
         bedrooms per room
                                     -0.255880
         Name: median_house_value, dtype: float64
In [113...
          housing.plot(kind="scatter", x="rooms per household", y="median house value",
                       alpha=0.2)
          plt.axis([0, 5, 0, 520000])
          plt.show()
```


In [115... housing.describe()

Out[115		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	ро
	count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640
	mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425
	std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132
	min	-124.350000	32.540000	1.000000	2.000000	1.000000	3
	25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787
	50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166
	75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725
	max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682

Step 3. Preprocess the data for your machine learning algorithm

Once we've visualized the data, and have a certain understanding of how the data looks like. It's time to clean!

Most of your time will be spent on this step, although the datasets used in this project are relatively nice and clean... in the real world it could get real dirty.

After having cleaned your dataset you're aiming for:

- · train set
- · test set

In some cases you might also have a validation set as well for tuning hyperparameters (don't worry if you're not familiar with this term yet..)

In supervised learning setting your train set and test set should contain (feature, target) tuples.

- **feature**: is the input to your model
- target: is the ground truth label
 - when target is categorical the task is a classification task
 - when target is floating point the task is a regression task

We will make use of **scikit-learn** python package for preprocessing.

Scikit learn is pretty well documented and if you get confused at any point simply look up the function/object!

Dealing With Incomplete Data

```
# have you noticed when looking at the dataframe summary certain rows
# contained null values? we can't just leave them as nulls and expect our
# model to handle them for us so we'll have to devise a method for dealing with
sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()
sample_incomplete_rows
```

Out[116		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househo
	290	-122.16	37.77	47.0	1256.0	NaN	570.0	21
	341	-122.17	37.75	38.0	992.0	NaN	732.0	25
	538	-122.28	37.78	29.0	5154.0	NaN	3741.0	127
	563	-122.24	37.75	45.0	891.0	NaN	384.0	14
	696	-122.10	37.69	41.0	746.0	NaN	387.0	16

```
In [117... sample_incomplete_rows.dropna(subset=["total_bedrooms"]) # option 1: simply d
```

In [118	sam	ple_incom	plete_ro	ws.drop("total_bed	rooms", axi	s=1)	# option 2	2: drop the
Out[118		longitude	latitude	housing_median_age	total_rooms	population	households	median_inco
	290	-122.16	37.77	47.0	1256.0	570.0	218.0	4.37
	341	-122.17	37.75	38.0	992.0	732.0	259.0	1.6 ⁻
	538	-122.28	37.78	29.0	5154.0	3741.0	1273.0	2.57
	563	-122.24	37.75	45.0	891.0	384.0	146.0	4.94
	696	-122.10	37.69	41.0	746.0	387.0	161.0	3.90
In [119	med sam	ian = hou	plete_ro	otal_bedrooms"].med ows["total_bedrooms		edian, inp	lace =True)	# option 3
In [119 Out[119	med sam	ian = hou ple_incom ple_incom	plete_ro plete_ro	ws["total_bedrooms	"].fillna(m	· -		-
	med sam	ian = hou ple_incom ple_incom	plete_ro plete_ro	ws["total_bedrooms ws	"].fillna(m	total_bedro	oms populat	-
	med sam	ian = hou ple_incom ple_incom longitude	plete_ro	ws["total_bedrooms ws housing_median_age	"].fillna(m total_rooms	total_bedro	oms populat	tion househo
	med sam sam	ian = hou ple_incom ple_incom longitude -122.16	plete_roplete_	housing_median_age	"].fillna(m total_rooms 1256.0	total_bedro	oms populat 35.0 57 35.0 73	tion househo
	med sam sam sam	ian = houple_incomple	plete_roplete_romagnerical plete_romagnerical plete	housing_median_age 47.0 38.0	"].fillna(m total_rooms 1256.0 992.0	total_bedro	oms populat 35.0 57 35.0 73 35.0 374	70.0 21

Could you think of another plausible imputation for this dataset? (Not graded)

Prepare Data

Recall we are trying to predict the median house value, our features will contain longitude, latitude, housing_median_age... and our target will be median_house_value

Out[121		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households
	0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.(
	2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0
	3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0
	4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.(

```
# This cell implements the complete pipeline for preparing the data
# using sklearns TransformerMixins
# Earlier we mentioned different types of features: categorical, and floats.
# In the case of floats we might want to convert them to categories.
# On the other hand categories in which are not already represented as integers
# feeding to the model.
# Additionally, categorical values could either be represented as one-hot vector
# Here we encode them using one hot vectors.
# DO NOT WORRY IF YOU DO NOT UNDERSTAND ALL THE STEPS OF THIS PIPELINE. CONCEPTS
# ONE-HOT ENCODING ETC. WILL ALL BE COVERED IN DISCUSSION
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.base import BaseEstimator, TransformerMixin
imputer = SimpleImputer(strategy="median") # use median imputation for missing v
housing_num = housing_features.drop("ocean_proximity", axis=1) # remove the cate
# column index
rooms_idx, bedrooms_idx, population_idx, households_idx = 3, 4, 5, 6
class AugmentFeatures(BaseEstimator, TransformerMixin):
    implements the previous features we had defined
    housing["rooms per household"] = housing["total rooms"]/housing["households"
    housing["bedrooms per room"] = housing["total bedrooms"]/housing["total room
    housing["population per household"]=housing["population"]/housing["household
    def init (self, add bedrooms per room = True):
       self.add_bedrooms_per_room = add_bedrooms_per_room
    def fit(self, X, y=None):
        return self # nothing else to do
    def transform(self, X):
        rooms per household = X[:, rooms idx] / X[:, households idx]
        population per household = X[:, population idx] / X[:, households idx]
        if self.add bedrooms per room:
            bedrooms_per_room = X[:, bedrooms_idx] / X[:, rooms_idx]
            return np.c [X, rooms per household, population per household,
                         bedrooms_per_room]
        else:
            return np.c [X, rooms per household, population per household]
attr adder = AugmentFeatures(add bedrooms per room=False)
housing_extra_attribs = attr_adder.transform(housing.values) # generate new feat
# this will be are numirical pipeline
# 1. impute, 2. augment the feature set 3. normalize using StandardScaler()
num pipeline = Pipeline([
        ('imputer', SimpleImputer(strategy="median")),
        ('attribs_adder', AugmentFeatures()),
        ('std_scaler', StandardScaler()),
```

Splitting our dataset

First we need to carve out our dataset into a training and testing cohort. To do this we'll use train_test_split, a very elementary tool that arbitrarily splits the data into training and testing cohorts.

```
from sklearn.model_selection import train_test_split
    data_target = housing['median_house_value']
    train, test, target, target_test = train_test_split(housing_prepared, data_targe)
```

Select a model and train

Once we have prepared the dataset it's time to choose a model.

As our task is to predict the median_house_value (a floating value), regression is well suited for this.

```
In [124...
          from sklearn.linear model import LinearRegression
          lin reg = LinearRegression()
          lin reg.fit(train, target)
          # let's try the full preprocessing pipeline on a few training instances
          data = test
          labels = target test
          print("Predictions:", lin reg.predict(data)[:5])
          print("Actual labels:", list(labels)[:5])
         Predictions: [207828.06448011 281099.80175494 176021.36890539 93643.46744928
          304674.47047758]
         Actual labels: [136900.0, 241300.0, 200700.0, 72500.0, 460000.0]
In [125...
          from sklearn.metrics import mean squared error
          preds = lin_reg.predict(test)
          mse = mean squared error(target test, preds)
          rmse = np.sqrt(mse)
          rmse
```

TODO: Applying the end-end ML steps to a different dataset.

We will apply what we've learnt to another dataset (airbnb dataset). We will predict airbnb price based on other features.

[35 pts] Visualizing Data

[5 pts] Load the data + statistics

- · load the dataset
- display the first few rows of the data

Out[126...

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	٠
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	

• pull up info on the data type for each of the data fields. Will any of these be problemmatic feeding into your model (you may need to do a little research on this)? Discuss:

In [127...

airbnb.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 16 columns):
    Column
                                    Non-Null Count Dtype
                                    -----
 0
    id
                                    48895 non-null int64
    name
 1
                                    48879 non-null object
 2
    host id
                                    48895 non-null int64
    host name
                                    48874 non-null object
 4
    neighbourhood_group
                                    48895 non-null object
 5
                                    48895 non-null object
    neighbourhood
 6
    latitude
                                    48895 non-null
                                                   float64
 7
    longitude
                                    48895 non-null float64
 8
                                    48895 non-null object
    room_type
 9
                                    48895 non-null int64
    price
 10 minimum nights
                                    48895 non-null int64
 11 number_of_reviews
                                    48895 non-null int64
 12 last_review
                                    38843 non-null object
                                                   float64
 13 reviews_per_month
                                    38843 non-null
    calculated_host_listings_count 48895 non-null int64
 15
    availability_365
                                    48895 non-null
                                                   int64
dtypes: float64(3), int64(7), object(6)
memory usage: 6.0+ MB
```

[Response here] I think the problemmatic feeding into the model is the object Dtype. It might need to be converted into other primitive types before directly feed into the medel.

- drop the following columns: name, host_id, host_name, and last_review
- display a summary of the statistics of the loaded data

```
In [128... airbnb = airbnb.drop(["name", "host_id", "host_name", "last_review"], axis=1)
In [129... airbnb.describe()
```

number_of_	minimum_nights	price	longitude	latitude	id	
48895.	48895.000000	48895.000000	48895.000000	48895.000000	4.889500e+04	count
23.	7.029962	152.720687	-73.952170	40.728949	1.901714e+07	mean
44.	20.510550	240.154170	0.046157	0.054530	1.098311e+07	std
0.	1.000000	0.000000	-74.244420	40.499790	2.539000e+03	min
1.	1.000000	69.000000	-73.983070	40.690100	9.471945e+06	25%
5.	3.000000	106.000000	-73.955680	40.723070	1.967728e+07	50%
24.	5.000000	175.000000	-73.936275	40.763115	2.915218e+07	75 %
629.	1250.000000	10000.000000	-73.712990	40.913060	3.648724e+07	max

[5 pts] Boxplot 3 features of your choice

plot boxplots for 3 features of your choice

Out[129...

```
In [130... airbnb.boxplot(['price', 'minimum_nights', 'number_of_reviews'])
```

Out[130... <matplotlib.axes._subplots.AxesSubplot at 0x7fb397f78fa0>

• describe what you expected to see with these features and what you actually observed

[Response here] Since the boxplot is a standardized way of displaying the distribution of data based on "minimum", first quartile (Q1), median, third quartile (Q3), and "maximum". I expected it to tell me about the outliers and values of the three features "price", "min_nights", and "number_of_reviews" I chose. However, according to the result generated from the plot, all the points are closely printed which is difficult for me to distinguish them. I think it might because the data is not evenly distributed.

High variability in price with long tail values, review numbers much more compact, however availability has a wider variance.

[10 pts] Plot average price of a listing per neighbourhood_group

```
In [131...
    meanGrouped = airbnb.groupby(['neighbourhood_group']).mean()['price']
    meanGrouped.plot(kind='bar', rot=0)
    plt.ylabel("Price", fontsize=12)
    plt.xlabel("Neighbourhood Group", fontsize=12)
    plt.title("Average Price of a Listing per Neighbourhood Group", fontsize=12)
```

Out[131... Text(0.5, 1.0, 'Average Price of a Listing per Neighbourhood Group')

describe what you expected to see with these features and what you actually observed

[Response here] What I expected here is that the average price of the listings are different depending on the varies Neighorhood group, since the most important element for gaining more is the location of the houses. According to the actually generated plot, we can see the price are in the range from about 75 to 200 because of their different neighbourhood group, and it's clearly that Manhattan's average price is higher than other areas such as Bronx.

• So we can see different neighborhoods have dramatically different pricepoints, but how does the price breakdown by range. To see let's do a histogram of price by neighborhood to get a better sense of the distribution.

[5 pts] Plot map of airbnbs throughout New York (if it gets too crowded take a subset of the data, and try to make it look nice if you can:)).

```
In [133...
          # load an image of new york
          images path = os.path.join('./', "images")
          os.makedirs(images_path, exist_ok=True)
          filename = "newyork.png"
          import matplotlib.image as mpimg
          newYork img=mpimg.imread(os.path.join(images path, filename))
          ax = airbnb.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7),
                                 s=airbnb['price']/100, label="price",
                                 c="price", cmap=plt.get cmap("jet"),
                                 colorbar=False, alpha=0.4,
          # overlay the new york map on the plotted scatter plot
          # note: plt.imshow still refers to the most recent figure
          # that hasn't been plotted yet.
          plt.imshow(newYork img, extent=[-74.24, -73.71, 40.488, 40.91], alpha=0.5,
                     cmap=plt.get cmap("jet"))
          plt.ylabel("Latitude", fontsize=14)
          plt.xlabel("Longitude", fontsize=14)
          # setting up heatmap colors based on price feature
          prices = airbnb["price"]
          tick values = np.linspace(prices.min(), prices.max(), 11)
          cb = plt.colorbar()
          cb.ax.set yticklabels(["$%dk"%(round(v/1000)) for v in tick values], fontsize=14
          cb.set_label('Price', fontsize=16)
```

```
plt.legend(fontsize=16)
save_fig("ny_housing_prices_plot")
plt.show()
```

Saving figure ny_housing_prices_plot

[5 pts] Plot average price of room types who have availability greater than 180 days and neighbourhood_group is Manhattan

```
avgPriceGt180InMht = airbnb[(airbnb['availability_365'] > 180) & (airbnb['neighb
avgPriceGt180InMht.plot(kind='bar', rot= 0)
plt.ylabel("Average Price")
plt.xlabel("Room Types")
plt.title("Average Price of Room Types who have Availability Greater than 180 Da
```

Out[134... Text(0.5, 1.0, 'Average Price of Room Types who have Availability Greater than 1 80 Days in Manhattan')

Average Price of Room Types who have Availability Greater than 180 Days in Manhattan

[5 pts] Plot correlation matrix

- which features have positive correlation?
- which features have negative correlation?

[Response here] Reviews_per_month and number_of_reviews has positive correlation. Price

and minimum_nights has negative correaltion. Price and number_of_reviews has negative correaltion. Price and reviews_per_month has negative correaltion.

[30 pts] Prepare the Data

[5 pts] Augment the dataframe with two other features which you think would be useful

```
# price minimum_nights number_of_reviews reviews_per_month calculat
airbnb['review_monthly_rate'] = airbnb['number_of_reviews'] / airbnb['reviews_pe
airbnb['book_status'] = airbnb['availability_365'] / airbnb['minimum_nights']
```

[5 pts] Impute any missing feature with a method of your choice, and briefly discuss why you chose this imputation method

```
In [137... airbnb_incomplete_rows = airbnb[airbnb.isnull().any(axis=1)].head()
    airbnb_incomplete_rows
```

Out[137		id	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimı
	2	3647	Manhattan	Harlem	40.80902	-73.94190	Private room	150	
	19	7750	Manhattan	East Harlem	40.79685	-73.94872	Entire home/apt	190	
	26	8700	Manhattan	Inwood	40.86754	-73.92639	Private room	80	
	36	11452	Brooklyn	Bedford- Stuyvesant	40.68876	-73.94312	Private room	35	
	38	11943	Brooklyn	Flatbush	40.63702	-73.96327	Private room	150	

airbnb["reviews_per_month"].fillna(median, inplace=True)
airbnb["review_monthly_rate"].fillna(median, inplace=True)
I choose to replace na values with median values instead of drop the feature of the fine order to avoid the missing data and preserve as more data as possible.
airbnb

Out[138		id	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price
	0	2539	Brooklyn	Kensington	40.64749	-73.97237	Private room	149
	1	2595	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225
	2	3647	Manhattan	Harlem	40.80902	-73.94190	Private room	150
	3	3831	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89

price	room_type	longitude	latitude	neighbourhood	neighbourhood_group	id	
80	Entire home/apt	-73.94399	40.79851	East Harlem	Manhattan	5022	4
							•••
70	Private room	-73.94995	40.67853	Bedford- Stuyvesant	Brooklyn	36484665	48890
40	Private room	-73.93317	40.70184	Bushwick	Brooklyn	36485057	48891
115	Entire home/apt	-73.94867	40.81475	Harlem	Manhattan	36485431	48892
55	Shared room	-73.99112	40.75751	Hell's Kitchen	Manhattan	36485609	48893
90	Private room	-73.98933	40.76404	Hell's Kitchen	Manhattan	36487245	48894

48895 rows × 14 columns

[15 pts] Code complete data pipeline using sklearn mixins

```
In [139...
          airbnb df = load air data(AIR PATH).drop(
              ["name", "host_id", "host_name", "last_review", "id", "latitude", "longitude
          imputer = SimpleImputer(strategy="median")
          categorical features = ["neighbourhood group", "neighbourhood", "room type"]
          feature drop = airbnb df.drop(categorical_features, axis=1)
          min nights id, num reviews id, review per month id, availability id, = 1, 2, 3,
          class NewAugmentFeatures(BaseEstimator, TransformerMixin):
              def __init__(self):
                 pass
              def fit(self, X, y=None):
                  return self
              def transform(self, X):
                  review monthly rate = X[:, num reviews id] / X[:, review per month id]
                  book_status = X[:, availability_id] / X[:, min_nights_id]
                  return np.c [X, review_monthly_rate, book_status]
          num pipeline = Pipeline([
              ('imputer', SimpleImputer(strategy="median")),
              ('attribs_adder', NewAugmentFeatures()),
              ('std scaler', StandardScaler()),
          full pipeline = ColumnTransformer([
              ("num", num pipeline, list(feature drop)),
              ("cat", OneHotEncoder(), categorical features),
          air drop = load air data(AIR PATH).drop(
              ["id", "latitude", "longitude", "name", "host id", "host name", "last review
          airbnb prepared = full pipeline.fit transform(air drop)
          xtest = air drop['price']
```

[5 pts] Set aside 20% of the data as test test (80% train, 20% test).

```
In [140... from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(airbnb_prepared, xtest, test
```

[15 pts] Fit a model of your choice

The task is to predict the price, you could refer to the housing example on how to train and evaluate your model using MSE. Provide both test and train set MSE values.

```
In [142...
          from sklearn.linear_model import LinearRegression
          lin reg = LinearRegression()
          lin_reg.fit(x_train, y_train)
          xpreds= lin_reg.predict(x_test)
          print("Predict result: ", xpreds[:5])
          print("Actual result:", list(y_test)[:5])
          mse = mean_squared_error(y_test, xpreds)
          print("Test MSE: ", mse)
          ypreds= lin_reg.predict(x_train)
          tmse = mean_squared_error(y_train, ypreds)
          print("Train MSE: ", tmse)
         Predict result: [225.00000194 649.00000525 299.99999951 26.00000882 125.000000
         01]
         Actual result: [225, 649, 300, 26, 125]
         Test MSE: 3.1165441874167874e-10
         Train MSE: 5.876895228476491e-10
 In [ ]:
```