Name: _____ Math 40, Section ____ HW02 Dot Products, Cross Products, Lines and Planes January 26, 2018

1 Section **1.2**

15: **In Exercises 13-16,find the distance* $d(\vec{u}, \vec{v})$ *between* \vec{u} *and* \vec{v} *in the given exercise.* Exercise 3:

$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \vec{v} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

26: *In Exercises 24-29, find the angle between \vec{u} and \vec{v} in the given exercise. Exercise 20:

$$\vec{u} = \begin{bmatrix} 4, & 3, & -1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1, & -1, & 1 \end{bmatrix}$$

46:

*Figure 1.39 suggests two ways in which vectors may be used to compute the area of a triangle. The area \mathcal{A} of the triangle in part (a) is given by

$$\frac{1}{2}\|\vec{u}\| \|\vec{v} - proj_{\vec{u}}(\vec{v})\|$$

and part (b) suggests the trigonometric form of the area of a triangle:

$$\mathcal{A} = rac{1}{2} \| \ ec{u} \| \ \| ec{v} \| sin heta$$

(We can use the identity $sin\theta = \sqrt{1 - cos^2\theta}$ to find $sin\theta$.)

In Exercises 46 and 47, compute the area of the triangle with the given vertices using both methods.

Exercise 46:

$$A = (1, -1), B = (2, 2), C = (4, 0)$$

60: Suppose we know that $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$. Does it follow that $\vec{v} = \vec{w}$? If it does, give a proof that is valid in \mathbb{R}^n ; otherwise, give a counterexample (i.e., a specific set of vectors \vec{u} , \vec{v} , and \vec{w} for which $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$ but $\vec{v} \neq \vec{w}$).

62:

(a) Prove that

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

for all vectors \vec{u} and \vec{v} in \mathbb{R}^n .

(b) Draw a diagram showing \vec{u} , \vec{v} , \vec{u} + \vec{v} , and \vec{u} - \vec{v} in \mathbb{R}^2 and use (a) to deduce a result about parallelograms.

68b:

Prove that if \vec{u} is orthogonal to both \vec{v} and \vec{w} , then \vec{u} is orthogonal to $s\vec{v} + t\vec{w}$ for all scalars s and t.

2 Section 1.3

6: *In Exercises 3-6, write the equation of the line passing through P with direction vector \vec{d} in (a) vector form and (b) parametric form.

$$P = (3, 0, -2), \vec{d} = \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$$

10: *In Exercises 9 and 1 0, write the equation of the plane passing through P with direction vectors \vec{u} and \vec{v} in (a) vector form and (b) parametric form.

$$P = (6, -4, -3), \vec{u} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \vec{v} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

16ace:

Consider the vector equation

$$\vec{x} = \vec{p} + t(\vec{q} - \vec{p})$$

where \vec{p} and \vec{q} correspond to distinct points P and Q in \mathbb{R}^2 or \mathbb{R}^3

- (a) Show that this equation describes the line segment \vec{PQ} as t varies from 0 to 1.
- (c) Find the midpoint of \overrightarrow{PQ} when P = (2, -3) and Q = (0, 1).
- (e) Find the two points that divide \vec{PQ} in part (c) into three equal parts.

18:

The line ℓ passes through the point P = (1, -1, 1) and has direction vector $\vec{d} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

For each of the following planes ${\cal P}$ determine whether ℓ and ${\cal P}$ are parallel, perpendicular, or neither:

- (a) 2x + 3y z = 1
- **(b)** 4x y + 5z = 0
- (c) x y z = 3
- (d) 4x + 6y 2z = 0

46: *In Exercises 45-46, show that the plane and line with the given equations intersect, and then find the acute angle of intersection between them.

The plane given by 4x - y - z = 6 and the line given by:

$$x = t$$

$$y = 1 + 2t$$

$$z = 2 + 3t$$
(1)

3 Page 49

- **4:** Use the cross product to help find the normal form of the equation of the plane.
- (a) The plane passing through P = (0, -1, 1), parallel to $\vec{u} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$
- **(b)** The plane passing through P = (0, -1, 1), Q = (2, 0, 2), and R = (1, 2, -1)

4 Section 2.1

34: **For Exercises 33-38, solve the linear systems in the given exercises.* Exercise 28:

$$2x_1 + 3x_2 - x_3 = 1$$

$$x_1 + x_3 = 0$$

$$-x_1 + 2x_2 - 2x_3 = 0$$
(2)

42: *In Exercises 4 1 -44, the systems of equations are nonlinear. Find substitutions (changes of variables) that convert each system into a linear system and use this linear system to help solve the given system.

Exercise 28:

$$x^{2} + 2y^{2} = 6$$

$$x^{2} - y^{2} = 3$$
(3)