19 No sistema de coordenadas seguinte estão representados os gráficos de duas funções, f e q. A lei que define \mathbf{f} é $f(x) = a + b \cdot 2^x$ (**a** e **b** são constantes reais positivas) e **q** é uma função afim.

- a) Determine os valores de a e b.
- **b)** Determine o conjunto imagem de **f**.
- c) Obtenha a lei que define a função g.
- d) Determine as raízes de f e de g.
- 20 Faca o gráfico de cada uma das funções definidas de $\mathbb R$ em $\mathbb R$ pelas leis seguintes, destacando a raiz (se houver) e o respectivo conjunto imagem: **a)** $f(x) = 2^{x} - 2$ **c)** $f(x) = -4 \cdot \left(\frac{1}{2}\right)^{x}$ **b)** $f(x) = \left(\frac{1}{2}\right)^{x} + 1$ **d)** $f(x) = 3^{x} + 3$

a)
$$f(x) = 2^x - 2$$

c)
$$f(x) = -4 \cdot \left(\frac{1}{2}\right)^x$$

b)
$$f(x) = \left(\frac{1}{2}\right)^x +$$

d)
$$f(x) = 3^x + 3^x$$

- **21** Em um laboratório, constatou-se que uma colônia de certo tipo de bactéria triplicava a cada meia hora. No instante em que começaram as observações, o número de bactérias na amostra era estimado em dez mil.
 - a) Represente, em uma tabela, a população de bactérias (em milhares) nos seguintes instantes (a partir do início da contagem): 0,5 hora, 1 hora, 1,5 hora, 2 horas, 3 horas e 5 horas.
 - b) Obtenha a lei que relaciona o número (n) de milhares de bactérias, em função do tempo (t), em horas.
- 22 Grande parte dos brasileiros guarda suas reservas financeiras na caderneta de poupança. O rendimento líquido anual da caderneta de poupança gira em torno de 6%. Isso significa que, a cada ano, o saldo dessa poupança cresce 6% em relação ao saldo do ano anterior.
 - a) Álvaro aplicou hoje R\$ 2000,00 na poupança. Faça uma tabela para representar, ano a ano, o saldo dessa poupança nos próximos cinco anos.
 - b) Qual é a lei da função que relaciona o saldo (s), em reais, da poupança de Álvaro e o número de anos (\mathbf{x}) transcorridos a partir de hoje ($\mathbf{x} = 0$)?
 - c) É possível que em 10 anos o saldo dessa poupança dobre? Use $1,06^{10} \simeq 1.8$.

- 23 Uma moto foi adquirida por R\$ 12 000,00. Seu proprietário leu, em uma revista especializada, que a cada ano a moto perde 10% do valor que tinha no ano anterior. Suponha que isso realmente aconteça.
 - a) Represente, em uma tabela, o valor da moto depois de 1, 2, 3 e 4 anos da data de sua aquisição.
 - **b)** Qual o valor da moto após 7 anos da aquisição?
 - c) Determine a lei que relaciona o valor (v) da moto, em reais, em função do tempo (t), expresso em anos.
- 24 Os municípios A e B têm, hoje, praticamente o mesmo número de habitantes, estimado em 100 mil pessoas. Estudos demográficos indicam que o município **A** deva crescer à razão de 25 000 habitantes por ano e o município **B**, à taxa de 20% ao ano. Mantidas essas condições, classifique em seu caderno como verdadeira (V) ou falsa (F) as afirmações seguintes, corrigindo as falsas:
 - a) Em dois anos, a população do município B será de 140 mil habitantes.
 - **b)** Em três anos, a população do município **A** será de mais de 180 mil habitantes.
 - c) Em quatro anos, o município A será mais populoso que o município B.
 - d) A lei da função que expressa a população (y) do município **A** daqui a **x** anos é y = 25000 x.
 - e) O esboco do gráfico da função que expressa a população (y) do município B daqui a x anos é dado a seguir:

- 25 Em uma indústria alimentícia, verificou-se que, após **t** semanas de experiência e treinamento, um funcionário consegue empacotar **p** unidades de um determinado produto, a cada hora de trabalho. A lei que relaciona \mathbf{p} e \mathbf{t} é: $p(t) = 55 - 30 \cdot e^{-0.2t}$ (leia o texto da seção Aplicações, página 142).
 - a) Quantas unidades desse produto o funcionário consegue empacotar sem experiência alguma?
 - b) Qual é o acréscimo na produção, por hora, que o funcionário experimenta da 1ª para a 2ª semana de experiência? Use $e^{0.2} \simeq 1.2$.
 - c) Qual é o limite máximo teórico de unidades que um funcionário pode empacotar, por hora?

- **18.** a) 3 b) 18
- **c)** 3
- **19.** a) a = 1 e b = 2.
 - **b)** Im = $\{y \in \mathbb{R} \mid y > 1\}$
 - **c)** $g(x) = -\frac{1}{2}x + \frac{3}{2}$
 - d) f: não possui raízes reais.
- 20. a)

d)

21. a)

u)						
t (horas)	0,5	1,0	1,5	2	3	5
Número de milhares de bactérias	30	90	270	810	7290	590 490

b)
$$n(t) = 10 \cdot 3^{2t}$$

Anos	1	2	3	4	5
Saldo (R\$)	2 120,00	2 247,20	2382,03	2 524,95	2 676,45

- **b)** $s(x) = 2000 \cdot 1,06^x$
- c) Não.

23. a)

Anos	1	2	3	4
Valor (R\$)	10800	9720	8748	7873,20

- b) Aproximadamente R\$ 5740,00.
- **c)** $v(t) = 12000 \cdot 0.9^t$
- 24. a) F; será de 144000.
 - b) F; será de 175000.
 - c) F; o município A terá 200 mil habitantes e o **B**, 207360 habitantes.
 - **d)** \mathbf{F} ; y = 100000 + 25000x
 - e) V
- **25.** a) 25 unidades. c) 55 unidades.
 - b) 4 unidades.
- **26.** a) $S = \{4\}$
- **g)** S = {4}
- **b)** $S = \{8\}$
- **h)** $S = \{-1\}$
- c) $S = \{1\}$ **d)** $S = \{5\}$
- i) S = {2}
- **e)** S = {1}
- j) S = ∅ k) $S = \emptyset$
- **f)** $S = \left\{ \frac{5}{3} \right\}$
- **27.** a) $S = \left\{ \frac{4}{3} \right\}$

- **d)** $S = \{2\}$
- 28. 7,5 meses.
- **29.** a) R\$ 250 000,00
 - **b)** R\$ 12500.00
 - c) R\$ 330 625,00
 - d) 37 anos.
- **30.** a) a = 3000 eb = 1.5.
 - **b)** 6 000 pessoas.
 - c) 192 000 pessoas.
 - **d)** 7 dias.
- **31.** a) $S = \left\{ \frac{1}{2} \right\}$
- **c)** $S = \{-1\}$
- **b)** $S = \{-14\}$ **d)** $S = \{-\frac{1}{2}; -2\}$
- **32.** a) S = {3}
- **b)** $S = \{0\}$
- **d)** $S = \{2\}$
- **33.** a) $S = \{(1, -2)\}$
 - **b)** $S = \{(8, 18)\}$
- **34.** a) A: 122 mil reais e B: 249,5 mil reais. b) B

 - c) 8 anos.
- **35.** a) k = -1 b) 33 750 habitantes.
- **36.** a) R\$ 5000,00
- **b)** 25 anos.

Desafio

- **a)** $\alpha = 54 \text{ e } \beta = -\frac{1}{90}$.
- b) 360 minutos.

Função logarítmica

Exercícios

- **c)** 4 **e)** 5 **d)** 3 **f)** 2 **1.** a) 4 **b)** 2
- **g)** 5 **h)** 3
- **2.** a) −2
- e) $\frac{1}{4}$
- **i)** −2

j) -1

- 3. B < D < C < A
- **4.** a) 0
- **c)** 6
- f) $\frac{3}{2}$
- **b)** -2 **d)** 5
- **5.** a) −2 **b**) $-\frac{1}{2}$
- **d)** 1 **e)** 3
- **c)** -1
- **f)** -4
- **6. a)** x = 16
 - **d)** $x = \frac{11}{6}$
- 7. a) x = 81
 - **d)** x = 4

c) x = 1

- **b)** x = 4**e)** $0 < x e x \neq 1$.
- **c)** x = 2 **f)** x = 5
- **8.** a) −2 **c)** 12
 - **b**) $\frac{1}{7}$
- **9.** m = 16; a raiz é -2. **10.** a) 128 **c)** 343

11. a) 1

- **b**) $\frac{5}{4}$ **d)** 16

 - **e)** -1
 - i) 2e² **f)** 3 **j)** -6
- **b)** 0 c) -1 **g)**8
- **d)** 8 **h)** 25
- **12.** a) 1 **c)** 0
 - **d)** 7
- e) $-\frac{3}{2}$ **f)** 4

e) −1

e) $\sqrt{7}$

- **b)** -5