PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-188598

(43)Date of publication of application: 30.07.1993

(51)Int.CI.

G03F 7/11 H01L 21/027

(21)Application number: 04-128453

(71)Applicant: INTERNATL BUSINESS MACH

CORP (IBM)

(22)Date of filing:

21.05.1992

(72)Inventor: BRUNSVOLD WILLIAM R

HEFFERON GEORGE J LYONS CHRISTOPHER F MOREAU WAYNE M WOOD ROBERT L

(30)Priority

Priority number: 91 722773

Priority date: 28.06.1991

Priority country: US

(54) SURFACE ANTIREFLECTION COATING FORMING COMPOSITION AND ITS USE (57)Abstract:

PURPOSE: To enable the high-fidelity pattern transfer of a water-developable photoresist compsn. by coating a photoresist with a fluorine-contg. surface reflection material having the refractive index approximately equal to the square root of the refractive index of the photoresist existing in the lower side.

CONSTITUTION: The surface antireflection coating is optimized in its refractive index, simultaneously maintains water treatability, has the refractive index nearly equal to the square root of the photoresist existing thereunder, is applied at a thickness of a quarter wavelength and is removed at the time of developing the photoresist on the lower side thereof. The compsn. is a two-component system composed of a film formable polymer binder soluble or dispersing in the water in a suitable solvent for application or aq. alkaline soln, and lowrefractive index fluorocarbon which need be compatible with each other. The ratio in the compsn. is so adjusted as to yield the film having a required thickness and refractive index.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-188598

(43)公開日 平成5年(1993)7月30日

(51)Int.Cl.5

識別記号

庁内整理番号

G03F 7/11 H01L 21/027 503

FΙ

技術表示箇所

7352-4M

H 0 1 L 21/30

361 T

審査請求 有 請求項の数4(全 6 頁)

(21)出願番号

特願平4-128453

(22)出願日

平成 4年(1992) 5月21日

(31)優先権主張番号 722773

(32)優先日

1991年6月28日

(33)優先権主張国

米国(US)

(71)出願人 390009531

インターナショナル・ビジネス・マシーン

ズ・コーポレイション

INTERNATIONAL BUSIN

ESS MASCHINES CORPO

RATION

アメリカ合衆国10504、ニューヨーク州

アーモンク (番地なし)

(72)発明者 ウイリアム・アール・プランズボウルド

アメリカ合衆国ニューヨーク州12603。ポ

キープシ。クローバーヒルロード22

(74)代理人 弁理士 頓宮 孝一 (外2名)

最終頁に続く

(54)【発明の名称】 表面反射防止コーティングフィルム

(57)【要約】

【目的】 水性現像可能なフォトレジストに使用するた めの反射防止コーティングの提供。

【構成】 その下にあるフォトレジストの屈折率の平方 根にほぼ等しい屈折率をもつフッ素を含有する、表面反 射防止コーティングにより、水性現像可能なフォトレジ スト組成物の高忠実度なパターン転写が達成され、この コーティングはフォトレジストの現像に際してとり除か れる。

【特許請求の範囲】

【請求項1】 水性-処理可能なフィルム形成性のフッ 素-含有組成物からなり、この組成物は水性現像可能な フォトレジスト組成物の屈折率の平方根とほぼ等しい屈 折率をもち、そしてレジストパターンの現像に際して除 去可能なものである、水性現像可能なフォトレジスト組 成物に使用するための反射防止コーティング。

【請求項2】 前記水性現像可能なフォトレジスト組成 物とは混和しない溶剤をさらに含むものである、請求項 1 に記載の反射防止コーティング。

【請求項3】 水または水性アルカリ溶液中に可溶性も しくは分散性であるフィルム形成性ポリマーバインダー と、水または水性アルカリ溶液中に可溶性もしくは分散 性である低屈折率のフルオロカーボン化合物との2成分 系で構成されるものである、請求項1に記載の反射防止 コーティング。

【請求項4】 前記のフィルム形成性ポリマーバインダ ーがポリ(ビニルアルコール)、ポリ(アクリル酸)、 ボリ (ビニルピロリドン)、ボリ (ビニルスルホン酸ナ トリウム塩)、ポリ(ビニルメチルエーテル)、ポリ (エチレングリコール)、ポリ (α-トリフルオロメチ ルアクリル酸)、ポリ(ビニルメチルエーテル-コ-無 水マレイン酸)、ポリ(エチレングリコールーコープロ ピレングリコール)、およびポリ (メタアクリル酸) よ りなる群から選ばれたものであり、前記の低屈折率のフ ルオロカーボン化合物がパーフルオロオクタン酸-アン モニウム塩、パーフルオロオクタン酸-テトラメチルア ンモニウム塩、C-7とC-10のパーフルオロアルキ ルスルホン酸のアンモニウム塩、C-7とC10のパー フルオロアルキルスルホン酸のテトラメチルアンモニウ 30 の問題を克服するため試みられたものである。 ム塩、フッ素化アルキル4級アンモニウムアイオダイ ド、パーフルオロアジピン酸、およびパーフルオロアジ ピン酸の4級アンモニウム塩よりなる群から選ばれたも のである、請求項3に記載の反射防止コーティング。

【発明の詳細な説明】

[0001]

【技術分野】本発明は、バターン化される製品中にある 非平面的な外見上の反射により生じるバターンの歪みを 実質上除去することにより、水性現像可能なフォトレジ ストの性能を強化するような組成物に関するものであ る。さらに詳細に、本発明は表面塗布可能な反射防止用 組成物に向けられたもので、このものは付与が容易であ り、画像形成のより良好なプロセス制御を与え、また水 可溶性で現存のリソグラフ処理中に除去可能なもので、 かつ環境的な危険性は最小であり、そして工程コストを 著しく高めることのないものである。

[0002]

【背景技術】写真用レンズおよびその他の器機のような 光学的装置に反射防止コーティングを用いることは良く 知られている。これらのコーティングはフレネルの式で 述べられる関係を利用している。それは上にある材料の 屈折率はその下にある材料の屈折率のおよそ平方根であ るべきで、またコーティングあるいは層の厚みは入射光 波長の4分の1、いわゆる「4分の1波長厚み」の奇数 の整数倍であるべきことが充分に確定されている。

【0003】Y-T. Yen に対する米国特許第4,759, 10 990号において、反射防止コーティングの考えは光学 的な薄膜エレメント、つまりペリクル (pellicle) の使 用にまで拡張され、このものは半導体ウエハーの製造に 用いることもできる。このペリクル材料は代表的にニト ロセルローズフィルムであり、これはペリクルホルダー (直立リングまたは類似の)上で伸長されている。最初 のコーティング層としてのポリビニルナフタレン、ポリ メチルスチレンまたはポリスチレンのような芳香族ビニ ルポリマーを使用し、ついで3M社のFC-721また はFC-77のようなフルオロカーボン層を使用するこ 20 とは開示されている。ペリクルはそれらが機械的な破損 または表面の汚染のいずれかをうけるまで多数回使用す ることができる。かかるベリクルは清浄にされるかまた はとり替えられる。

[0004] Tanaka らの J. Electrochem. Soc., 137, 3900(1990)(Tanaka I)にはレジスト表面上の反射防止 コーティング(ARCOR)を直接に付与する技術が開 示されている。この技術は、0.5ミクロン以下のジオ メトリーのULSIを達成するための試みにおいて、バ ターン密度の程度を高めるとき反射により遭遇する多く

【0005】光の干渉はライン幅を変動させ、そしてア ーク列(alignment marks)のレンズを通じて(TT L)の検知を低下させる。Tanaka I はレジストフィル ム中の入射光のくり返し反射による多重干渉効果を抑制 するのに充分な、レジスト表面上の反射防止フィルムの 形成を開示している。このARCORフィルムは透明で 最適化された厚みと屈折率とをもち、そしてフォトレジ ストの塗布とベーキングの各工程を必要とする通常の方 式の方法中で用いられ、このフォトレジスト上にARC 40 OR材料のフィルムをスピン塗布し、この複合構造体を イメージングし、ARCORフィルムをとり除き、そし てフォトレジストを現像する。このARCOR法はAR CORフィルムのスピン塗布とその除去の各工程が追加 される。

【0006】以下の材料はつぎのように特性づけられ る:

【表1】

ARCOR材料	屈折率*	dLW ファクター**
(1) パーフルオロアルキルポリエーテル	1.29	1 0 ×
ポリシロキサン	1.43	2. 5 ×
(2) ポリエチルビニルエーテル	1.48	1.7×
ポリビニルアルコール	1.52	1.4×

* e-線(546nm)、g-線(436nm) およびi -線(365nm) での屈折率

** 反射によるライン幅変動の低下

【0007】フレネルの式を用いて、Tanaka I ではA R COR材料の屈折率は、使用されたイメージング材料の屈折率の平方根とほぼ等しくあるべきであるとされた。Tanaka I は1.64の屈折率をもつレジストを使用し、そして理想的なARCORの屈折率は1.28であるとしている。Tanaka らの材料は次の2つのカテゴリーに入る: (1)反射の影響を抑制し、そして有機溶剤ストリップを必要とするもの;および(2)水でとり去ることができるが効果をほとんど与えないもの(屈折率≧1.48)。

【0008】 Tanaka らの、<u>J. Appl. Phys.</u>, 67, 2617 (1990) (Tanaka II) には、界面の反射性を制御するための単一層と重層フィルム用のARCOR材料として、ガラス板上にスピンしたパーフルオロアルキルポリエーテルおよびジープロポキシービス(アセチルーアセトネート)チタニウムの使用と、同じくこのような反射性に適応させる方法が開示されている。 Tanaka IIは提案されたARCORの1層および2層を固定するためベーキン 30 グ工程の使用を必要とする。後露光と現像法に関して、またARCOR層の除去があるとしても何も示されてはいない。

【0009】Tanaka らの、Chem. Abs. 107:87208y(1987)(Tanaka III)は日本国特許62-62,520号の主題、すなわち反射防止コーティングによってフォトレジストを被覆する方法に向けられたもので、パーフルオロアルキルーポリエーテル、パーフルオロアルキルアミン、またはパーフルオロアルキルーポリエーテルーパーフルオロアルキルアミン混合フィルムなどを含んでいる。との反射ー防止性フィルムはパターン様の露光をした後フレオン(クロローフルオロカーボン化合物)溶剤を用いてとり除かれる。

【0010】所要の屈折率を有するこの Tanaka の材料は、使用するためにはより高価なものである。第1に、このARCOR材料を除去するためには追加的な処理工程を必要とする。第2に、この除去は作るにも/購入するにも高価な有機溶剤を必要とし、また安全にとり扱うためにもそれをすてるためにも費用を必要とする。第3に、CFCのような Tanaka の溶剤の性質は環境的な被

害の対策上特別な注意を必要とするのである。Tanaka の反射 - 防止用材料の廃棄物管理の問題はその実用化に 対し重い荷重を課すものとなる。

【0011】Grunwald らの米国特許第4,701,39 0号には、基板上に形成されたフォトレジストイメージ 層を熱的に安定化する方法が示されており、ことでイメ ージ層は後現像ベークをする前に、フォトレジストに結 合するが、後ベークをした後は露光済基板から容易に洗 い去られ、フォトレジスト画像の最後の除去も含めて、 パターン生成の引き続く各工程のどの所要の操作をも妨 害しないものである保護用材料で被覆される。この保護 用材料 (熱的安定化) はクロモトロピック酸 (chromotro pic acid)、パーフルオロカーボンカルボン酸、パーフ ルオロカーボンスルホン酸、パーフルオロカーボンリン 酸、そしてこれら酸のアルカリ金属塩、アンモニウム塩 およびアミン塩、エトキシル化パーフルオロカーボンア ルコール、およびN-パーフルオロ-N',N"ジアル キルアミンの第4級アンモニウム塩から選ばれた化合物 または2種あるいはそれ以上の化合物の混合物である。 [0012]

【発明の要点】背景技術中で記載した表面反射防止方法と材料の欠点を克服するために、本発明はその下にあるフォトレジストの屈折率の平方根にほぼ等しい屈折率をもつコーティング組成物を提供するものでそしてとの組成物は4分の1波長の厚みで付与することができ、さらにその下にあるフォトレジストの現像の際にとり除かれうるものである。

【0013】好ましい表面反射防止コーティング組成物は適当な塗布用溶剤中の水または水性アルカリ溶液中に可溶性もしくは分散性であるフィルム形成性ポリマーバインダーと、水または水性アルカリ溶液中に可溶性もしくは分散性である低屈折率フルオロカーボンとの2成分系のものである。これらの各成分は互に相溶性のものでなければならず、また組成物中でのその割合は所要の厚みと屈折率とをもつフィルムを与えるように調整される。この2成分系はその成分が互に反応する異なった官能基をもつ、官能性の成分またはポリマーの混合物とすることもできる。

【0014】 〔好ましい具体例の説明〕改良されたARCOR法はイメージング工程にわずか1つの処理工程の追加で達成しうることが認められ、これは有害な環境上の影響やまた廃棄物処理コストの増大などの可能性を加えることなしに、リソグラフ工程中で経済的に作ることのできる反射防止フィルムの使用を可能とするものである。

【0015】このARCOR材料はほぼUV-光の、i-、g-またはh-線パンドもしくは深UV域の露光用放射線に対し実質上光学的に透明である。この透明性は 10 その下にあるレジストのパターン化を容易とするために必要なものである。

【0016】〔水性処理可能な、低屈折率コーティング用材料〕本発明の表面反射防止(TAR)コーティングは、TARの屈折率が最適化されていると同時にTAR材料の水処理可能性の保持の両方を有しているのが特徴である。

【0017】フルオロカーボンボリマーが、ほぼ理想的な屈折率(1.3~1.4のオーダーの)を与えるけれども、水性の媒体中では溶解性またはストリップ性を示さないという欠点を克服するため、多数のさまざまな組成物について試験をした。

【0018】I. 一般に2つの成分をもつマルチ成分系は、水溶解性、水分散性を示すかまたは水ストリップ性をもつバインダーと官能性のフルオロカーボンとの混合物からなるフィルム形成性の組成物である。2成分系は水または水性アルカリ溶液中に可溶性もしくは分散性であるフィルム形成性ポリマーバインダーと、水または水性アルカリ溶液中に可溶性もしくは分散性である低屈折率のフルオロカーボン化合物とから構成される。

【0019】ポリマーバインダーの特定のものの例は: ポリ(ビニルアルコール)、ポリ(アクリル酸)、ポリ (ビニルピロリドン)、ポリ(ビニルスルホン酸ナトリ ウム塩)、ポリ(ビニルメチルエーテル)、ポリ(エチ レングリコール)、ポリ(α-トリフルオロメチルアク リル酸)、ポリ(ビニルメチルエーテル-コー無水マレ イン酸)、ポリ(エチレングリコールーコープロピレン グリコール)、およびポリ (メタアクリル酸) である。 【0020】フルオロカーボン化合物の特定のものの例 は:パーフルオロオクタン酸-アンモニウム塩、パーフ ルオロオクタン酸-テトラメチルアンモニウム塩、C-7とC-10のパーフルオロアルキルスルホン酸アンモ ニウム塩(それぞれフルオロラドFC-93とFC-1 20の商標名の下に販売されている)、C-7とC-1 0のパーフルオロアルキルスルホン酸テトラメチルアン モニウム塩、フッ素化アルキル第4級アンモニウムアイ オダイド(フルオラドFC-135)、パーフルオロア ジビン酸、およびパーフルオロアジビン酸の第4級アン モニウム塩などである。

【0021】かかる組成物の各成分は単なる混合物とし 50 ルオロアルデヒドポリマーのような材料が含まれる。

て存在することができ、あるいは官能化されたフルオロカーボンとポリマーバインダー間の塩の形とすることもできる。実例にはフルオロアルキルスルホネート、カルボキシレートなどと、ポリビニルアルコールまたはスルホネート、ポリアクリル酸および関連するコポリマー、ポリエチレンおよびボリプロピレングリコールのホモボリマーとコポリマー、ポリビニルメチルエーテルおよびボリエチレンイミンなどのような水溶性を有する脂肪族系ポリマーとの混合物が含まれる。

【0022】単なる混合物の1つの例は、パーフルオロ有機酸の塩(パーフルオロオクタン酸アンモニウム塩のような)とポリアクリル酸(水溶性ポリマー)の組み合わせである。フルオロカーボンとポリマー間に形成される塩の1つの例は、パーフルオロアルキル第4級アンモニウムカチオンと、ポリアクリル酸のようなアニオン性ポリマーとの組み合わせにより形成されたものである。付加的な利点がパインダーポリマー中にフッ素が導入されることによりまた得られるであろう。

【0023】II. 官能性フルオロカーボンと脂肪族ポリマー間の縮合反応の結果である単一成分で大部分構成された系、一成分系は水性媒体中で本来溶解しないが、水性の塩基性現像液が触媒源であるような所で、塩基触媒により可溶性とされる低屈折率のポリマーを使用する。

【0024】実例はポリビニルアルコールのようなヒド ロキシ基官能性ポリマーのフルオロアルキルカルボキシ レートまたはスルホネートである。水によるストリップ 性はエステル結合の加水分解不安定性により促進され る。カーボネート、無水物および関連するグループもま 30 たポリマーとフルオロカーボン間の適当な結合である。 【0025】III. フルオロカーボングループとポリマ 一性バインダー間の結合を切断するか、またはフルオロ ポリマーを解重合する触媒を用い、反応生成物が水スト リップ性または部分的もしくは十分に揮発性となるよう な系。2成分系に対する別のアプローチには、水性媒体 中に始めは不溶性であるが、酸のような触媒の作用によ り処理中溶解性となるようなポリマーバインダーと、低 屈折率フルオロカーボン化合物との組み合わせが含まれ る。このようなポリマーの例はポリ(t-ブチルメタア クリレート)、ポリ (ノナフルオロー t - ブチルメタア クリレート) のようなポリメタアクリルエステルであ る。前記したパーフルオロアルキルスルホン酸の1つと 組み合わせるとこのポリマーは通常のレジストベーキン グ工程の際に、エステル基の酸触媒切断により水性溶液 中に可溶性のものとなることができ、そのためレジスト の現像工程に際して容易に除去される。t-boc基の ような酸切断可能基をもつその他のポリマーも同じよう に使用することができる。この例にはカーボネートポリ マーのフルオローt-ブチルエステルおよび酸触媒とフ

[0026] 実施例1

1 当量のテトラメチルアンモニウムハイドロオキサイド 5 水和物(18g)を水中で0.1 当量のパーフルオロオクタン酸(41g)と反応させて、テトラメチルアンモニウムパーフルオロオクタノエートの5 重量% 濃度の溶液を作った。

7

【0027】実施例2

分子量2000のポリ(アクリル酸)を水中に5重量% の溶液の濃度で溶解した。

【0028】実施例3

実施例1の溶液の10gを実施例2の溶液の5gに添加した。この混合物をシリコン基板上にスピン塗布したそ。屈折率1.413の透明な極めて均一なフィルムが得られた。このフィルムは水で容易に洗い去られる。【0029】実施例4

実施例1の溶液12.5gを実施例2の溶液5gに添加した。この混合物をシリコン基板上にスピン塗布した。屈折率1.407の透明な極めて均一なフィルムが得られた。このフィルムは水で容易に洗い去られる。

【0030】実施例5

シリコン基板をポジチブ作動のジアゾナフトキノンフォトレジストでコートした。得られた厚みは10,000~12,000オングストロームの範囲である。試料に実施例3の溶液を厚み650オングストロームの層を形成するようにオーバーコートした。この試料はGCAステップとリピートアライナーを使用して365nmの放射線に対して露光をした。現像に際してフィルムが完全に除去されるのに必要な露光エネルギーの量(透明化線量)(dose to clear)を測定した。この透明化線量は反射率が変ることによりもとのレジストの厚み範囲を越えて14%変化した。650オングストロームのオーバーコートのない試料で、この透明化線量はもとのレジストの厚み範囲を越えて36%変化した。

【0031】実施例6

シリコン基板は実施例5のようにして調製した。各試料は等間隔のライン-スペースパターンの解像力ターゲットマスクを使用し、365 nmの露光波長によってGCAステップとリピートアライナー上でパターン化した。得られたフォトレジスト像の0.7ミクロンのマスクパターン像のサイズを走査電子顕微鏡により測定をした。0.7ミクロンのマスクパターン像のサイズは反射率が変ることによりもとのレジストの厚み範囲を越えて0.06ミクロン変化した。650オングストロームのオーバーコートのない試料で、この0.7ミクロンのマスクパターン像のサイズは反射率が変ることによりもとのレジスト厚みの範囲を越えて0.15ミクロン変化した。従って、反射率の変化による画像サイズの変動は、この水性処理可能な反射防止材料の使用で2.5×ファクターで低下した。

[0032] 実施例7

熱的に生長させたS i O,の種々の厚みのシリコン基板 を調製し、ポジチブ作動のDQNフォトレジストをコー トした。各試料を実施例3の溶液でオーバーコートし た。フォトレジストは等間隔のライン-スペースパター ンの解像力ターゲットマスクを使用し、365nmの露光 波長によりGCAステップとリピートアライナー上でバ ターン化した。得られた像の0.5ミクロンマスクパタ ーン像のサイズを走査電子顕微鏡によって測定した。 0.5ミクロンマスクパターン像のサイズは反射率が変 10 ることにより熱SiO,厚みの範囲を越えて0.04ミク ロン変化した。650オングストロームの反射防止オー バーコート層のない試料で、この0.5ミクロンマスク パターン像のサイズは反射率が変ることにより熱SiO ₂厚みの範囲を越えて0.18ミクロンに変化した。従っ て、反射率の変化による画像サイズの変動は、この水性 処理可能な反射防止材料の使用で4.5×ファクターで 低下した。

【0033】実施例8

実施例1の溶液の20gをポリ(メタアクリル酸)の5重 20 量%溶液の5gに添加した。この溶液をシリコン基板上 にスピンコートした。屈折率1.401の透明な極めて 均一なフィルムが得られた。このフィルムは水で容易に 洗い去られた。

【0034】実施例9

パーフルオロC,スルホン酸のアンモニウム塩(商標名 FC-93,3M社製)と、エチレンとプロピレンオキサイドのコポリマー(商標名プルロニックF127,バズフ社製)とを、水中に65:35の重量比で全固体含量5重量%に含む溶液を作った。この溶液をシリコン基板上にスピンコートした。屈折率1.43の透明なフィルムが得られた。このフィルムは水で容易に洗い去られた。

【0035】本発明の好ましい具体例だけを以上に記載したが、この開示を読んだときにこの技術分野の熱達者には一般的な概念内に入る多数の潜在的な変更がなしうるであろう。ここに記載したものと機能的に均等なこのような変更は請求項中に示された本発明の教示内のものである。

【0036】以上、本発明を詳細に説明したが、本発明 40 はさらに次の実施態様によってこれを要約して示すこと ができる。

【0037】(1) 水性-処理可能なフィルム形成性のフッ素-含有組成物からなり、この組成物は水性現像可能なフォトレジスト組成物の屈折率の平方根とほぼ等しい屈折率をもち、そしてレジストパターンの現像に際して除去可能なものである、水性現像可能なフォトレジスト組成物に使用するための反射防止コーティング。 【0038】(2) 前記水性現像可能なフォトレジスト組成物とは混和しない溶剤をさらに含むものである、

50 前項1に記載の反射防止コーティング。

9

【0039】(3) 水または水性アルカリ溶液中に可溶性もしくは分散性であるフィルム形成性ポリマーバインダーと、水または水性アルカリ溶液中に可溶性もしくは分散性である低屈折率のフルオロカーボン化合物との2成分系で構成されるものである、前項1に記載の反射防止コーティング。

【0040】(4) 前記のフィルム形成性ポリマーバインダーがポリ(ビニルアルコール)、ポリ(アクリル酸)、ポリ(ビニルピロリドン)、ポリ(ビニルスルホン酸ナトリウム塩)、ポリ(ビニルメチルエーテル)、ポリ(エチレングリコール)、ポリ(αートリフルオロメチルアクリル酸)、ポリ(ビニルメチルエーテルーコー無水マレイン酸)、ポリ(エチレングリコールーコープロピレングリコール)、およびポリ(メタアクリル酸)よりなる群から選ばれたものである、前項3に記載*

*の反射防止コーティング。

【0041】(5) 前記の低屈折率のフルオロカーボン化合物がパーフルオロオクタン酸ーアンモニウム塩、パーフルオロオクタン酸ーテトラメチルアンモニウム塩、C-7とC-10のパーフルオロアルキルスルホン酸のアンモニウム塩、C-7とC10のパーフルオロアルキルスルホン酸のテトラメチルアンモニウム塩、フッ素化アルキル4級アンモニウムアイオダイド、パーフルオロアジビン酸、およびパーフルオロアジビン酸の4級70でよりなる群から選ばれたものである、前項3に記載の反射防止コーティング。

10

【0042】(6) 前記のコーティングはその下にあるレジスト組成物のための露光用放射線に対し実質上光学的に透明なものである、前項1に記載の反射防止コーティング。

フロントページの続き

(72)発明者 ジヨージ・ジェイ・ヘフェロン アメリカ合衆国ニユーヨーク州12534. フ イツシユキル. ハイビユーロード. アー ル・ディー3. ボツクス43

(72)発明者 クリストフアー・エフ・ライアンズ アメリカ合衆国ニユーヨーク州12540. ラ グレインジビル. ビーバーロード5 (72)発明者 ウエイン・エム・モロー

アメリカ合衆国ニユーヨーク州12590. ウ オツピンガーズフオールズ. リデイアドラ イブ10

(72)発明者 ロバート・エル・ウツド

アメリカ合衆国ニユーヨーク州12603. ポキープシ. アージェントドライブ6