:
$$\sum_{N}P_{k} = \sum_{N}\frac{c}{k} = 1 \Rightarrow CCH \Rightarrow t = 1 \Rightarrow C = \frac{1}{\sum_{k=1}^{N} \frac{1}{k}}$$

: $E(X_{N})_{1} = NC = \frac{N}{\sum_{k=1}^{N} \frac{1}{k}}$

$$E(X_{N})_{2}=0 \text{ as } p_{0}+1 \text{ if } p_{1}+1 \text{ sep}_{1}+\dots \text{ North } = \frac{1}{N}+2 \frac{1}{N}+3 + \frac{1}{N}+\dots \text{ 1 North } = \frac{1}{N}$$

$$= \frac{1+N}{2} \quad \text{when } N=10, \quad E(X_{N})_{1}=\frac{1}{N}=\frac{1}{$$

(c) When
$$E(N_0)$$
 | = $E(N_0 + \frac{1}{2})$, $\frac{N_0}{2N_0} = \frac{1}{2}$ => $N_0 = 1$

Shire E(Xn), i'c divoyer and the different E(Xn)2 god (enjer after cirrersection.

Not =1 is a unique statem for equality in a raye.

di

<i>i if it's sequential search:

For each element, we'll keep searching until we find a element greater than the one we're searching for paverage number of comparisons: N/2

<ii>if it's binary search: For each element, the average number of comparisons is the total layer number of binary tree, which is log(N)

(e)

<i>when the required record is present in the file: average number of comparisons is N/2

<ii>when required record is not present in the file:average number of comparisons are the number of layers of this heap is N

we have n=23,

with average storage utility 0.69, we have 23*0.69=15.87 ≈ 16

(i) Level1:

average number of nodes: 16

average number of key entries: 16*(16-1) = 16*15 = 240 average number of children pointers: 16*16 = 256

average number of nodes: 163 = 4096

average number of key entries: 163 * 15 = 61440 average number of children pointers: 164 = 65536

average number of nodes: 164 = 65536

average number of key entries: 164 * 15 = 983040 average number of children pointers: 165 = 1048576

(iv) height of tree is 2:

average number of entries = level0 key + level1 key + level2 key = 15 + 16*15 + 16*15*15 = 4095

(v) height of tree is 3:

average number of entries = level0_key + level1_key + level2_key + level3_key = 15 + 16*15 + 16*16*15 + 16*16*15 = 65535 (vi) height of tree is 4:

average number of entries = level0 key + level1 key + level2 key + level3 key + level4 key = 15 + 16*15 + 16*16*15 + 16*16*16*15 + 16*16*16*16*15 = 1048575 → average total number of entries hat such a tree:

we first have each node have a maximum of n children \rightarrow 23 here

with average storage utility of B tree 0.69, we have average children we have is $0.69n \rightarrow 0.69*23 \approx 16$ here for i^{th} layer, we have $(0.69n)^{t} * (0.69n - 1) = 16^{t} * 15$ key entries

Therefore, for the tree with height h, we have:

Q3 Insere Key3:

Insert Key 12:

In seve Key?;

Insere Key 6:

Q4

Delete Key5:

Delete Key12:

Delete Key9:

Qs

(1)
$$E(p) = E(\frac{k}{Nn}) = \frac{k}{n} E(\frac{1}{n}) = (\frac{k}{n}) \times (\frac{2n}{k}) \int_{\frac{k}{n}}^{\frac{n}{2n}} (\frac{1}{n}) dt$$

$$= 3 \cdot (\ln(\frac{n}{2n}) - \ln(\frac{1}{n})) = 3 \cdot \ln(\frac{1}{n}) = 36.3\%$$
(2) $E(p) = \frac{1}{n} \cdot \ln(\frac{1}{n}) = \frac{1$

Record#	2305	1168	2580	4871
Hash Index	1	0	4	7
	1620	2428	3943	4750
	4	4	7	6
Record#	5659	1821	1074	7115
Hash Index	3	5	2	3
	6975	4981	9280	
	7	5	0	

We have; buckery and bushet? one overflow.

: awaye # Broke outer for carondon remains $2 \times \frac{2}{15} + 1 \times \frac{13}{15} = 1.133$

 \Rightarrow

Hash Index	0	1	2	3
Records#	1168	2305	1074	5659
	9280			7115
Hash Index	4	5	6	7
Records#	2580	1821	4750	4871
	1620	4981		3943
	2428			6975

(2)

<step i> insert 2305, 1168. (2305) mod 128 = 1 = (00001)2. (1168) mod 128 = 16 = (10000)2 we have d=0, d'=0 with 2 elements in one local buckets <step ii> insert 2580, 4871. (2580) mod 128 = 20 = (10100)2. (4871) mod 128 = 7 = (00111)2 we have d=1, d'=1 with 4 elements in two local buckets <step iii> insert 5659, 1821. (5659) mod 128 = 27 = (11011)2. (1821) mod 128 = 29 = (11101)2 we have d=2,

Record#	2305	1168	2580	4871	5659	1821
Hash Index	1	16	20	7	27	29
Hash Value	00001	10000	10100	00111	11011	11101

=> global depth: d=1

global index:	Records:		local depth:
00 / 01	Record1: 2305	Record4: 4871	d' = 1
10	Record2: 1168	Record3: 2580	d' = 2
11	Record5: 5659	Record6: 1821	d' = 2