Les courbes en Python MatPlotLib

K. Boudjelaba k.boudjelaba@carnus.fr

$13~\mathrm{mars}~2023$

Table des matières

1	Plot	3
2	SubPlot	6
3	$\operatorname{GridSpec}$	8
4	Multiple Plot	10
5	Stem	16
6	Scatter	18
7	Echelle Log	22
8	Annexe	27

- Les détails de la librairie MatPlotLib sont disponibles [ici]
- Ou exécuter le code suivant dans Jupyter Notebook :

```
import matplotlib.pyplot as plt
help(plt)

Help on module matplotlib.pyplot in matplotlib:

NAME
matplotlib.pyplot

DESCRIPTION
  `matplotlib.pyplot` is a state-based interface to matplotlib. It provides a MATLAB-like way of plotting.

pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation::
  import numpy as np import matplotlib.pyplot as plt
```

The object-oriented API is recommended for more complex plots.

. . .

 $x \, = \, np.\,arange \, (\, 0 \, , \ \, 5 \, , \ \, 0 \, . \, 1 \,)$

y = np. sin(x)plt. plot(x, y)

1 Plot

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

t = np.arange(0, 5+.01, .01)
y = np.exp(-t)

plt.figure()
plt.plot(t, y)
plt.xlabel('Abscisses')
plt.ylabel('Ordonnées')
plt.title('Figure')
plt.grid()
plt.show()
```


FIGURE 1 – Courbe 1

Figure 2 – Courbe 2

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

x = np.arange(0,4*np.pi+0.01,0.01)
y = 2.5 * np.sin(x)
z = 1.5 * np.cos(x)

fig = plt.figure(figsize=(8,4)) #figsize pour la taille de la figure

plt.plot(x, y, linewidth=2.0, label=r'$\sin(\omega t)$')
plt.plot(x, z, 'r--', label=r'$\cos(\omega t)$')

plt.xlabel(r'$x$')
plt.xlabel('Amplitude', fontsize=14, color='magenta')
plt.title('Titre en couleur', color='#f39c12')
plt.axis([x.min()-1, x.max()+1, -3, 3.5])
plt.legend(loc='lower left')
plt.grid()
plt.show()
```


Figure 3 – Courbe 3

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

t = np.arange(0, 3+.1, .1)
y = np.exp(-t)

plt.figure()
plt.plot(t, y, 'o', color='green')
plt.xlabel('Abscisses')
plt.ylabel('Ordonnées')
plt.title('Figure')
plt.grid()
plt.show()
```


Figure 4 – Courbe 4

2 SubPlot

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0, 1+.01, .01)
y = np. sin(2*np. pi*t)
fig = plt.figure(figsize = (8,6))
plt.subplot(221)
\begin{array}{l} \text{plt.plot}\left(t\,,y\right) \\ \text{plt.text}\left(0.5\,,\ 0.5\,,\ "\text{subplot}\left(2\,,2\,,1\right)"\,,\ \text{ha='center'},\ \text{va='center'},\ \text{size='large'}) \end{array}
plt.subplot(222)
plt.plot(t,y)
plt.text(0.5, 0.5, "subplot(2,2,2)", ha='center', va='center', size='large')
plt.subplot(223)
plt.plot(t,y)
plt.text(0.5, 0.5, "subplot(2,2,3)", ha='center', va='center', size='large')
plt.subplot(224)
plt.plot(t,y)
plt.text(0.5, 0.5, "subplot(2,2,4)", ha='center', va='center', size='large')
plt.show()
```


Figure 5 – Courbe 5

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0, 1+.01, .01)
y = np. sin(2*np. pi*t)
fig = plt.figure(figsize = (8,6))
plt.subplot(221)
plt.plot(t,y)
plt.text(0.5, 0.5, "subplot(2,2,1)", ha='center', va='center', size='large')
plt.subplot(222)
plt.plot(t,y)
plt.text(0.5, 0.5, "subplot(2,2,2)", ha='center', va='center', size='large')
plt.subplot(234)
plt.plot(t,y)
plt.text(0.5, 0.5, "subplot(2,3,4)", ha='center', va='center', size='large')
plt.subplot(235)
plt.plot(t,y)
plt.text(0.5, 0.5, "subplot(2,3,5)", ha='center', va='center', size='large')
plt.subplot(236)
plt.plot(t,y)
plt.text(0.5, 0.5, "subplot(2,3,6)", ha='center', va='center', size='large')
plt.show()
```


FIGURE 6 - Courbe 6

3 GridSpec

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
t = np.arange(0, 1+.01, .01)
y = np. sin(2*np. pi*t)
fig = plt.figure(figsize = (8,6))
grid = GridSpec(3, 4)
\texttt{plt.subplot}\left(\,\texttt{grid}\,[\,0\,\,,\,\,:-\,1\,]\,,\,\,\,\texttt{xticks}\,=\,[\,]\,\,,\,\,\,\texttt{yticks}\,=\,[\,]\,\right)
plt.text(0.5, 0.5, "grid[0,:-1]", ha='center', va='center', size='large')
plt.subplot(grid[:-1, -1], xticks=[], yticks=[])
plt.plot(t,y)
plt.text(0.5, 0.5, "grid[:-1, -1]", ha='center', va='center', size='large')
\verb|plt.subplot(grid[1, 0], xticks=[], yticks=[])|\\
plt.plot(t,y)
plt.text(0.5, 0.5, "grid[1, 0]", ha='center', va='center', size='large')
plt.subplot(grid[1, 1:3], xticks = [], yticks = [])
plt.plot(t,y)
plt.text(0.5, 0.5, "grid[1, 1:3]", ha='center', va='center', size='large')
plt.subplot(grid[-1, :-1])
plt.plot(t,y)
plt.text(0.5, 0.5, "grid[-1, :-1]", ha='center', va='center', size='large')
plt.grid(True)
plt.subplot(grid[-1, -1], xticks = [], yticks = [])
plt.plot(t,y)
plt.text(0.5, 0.5, "grid[-1, -1]", ha='center', va='center', size='large')
plt.show()
```


FIGURE 7 - Courbe 7

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from\ matplot lib.\ grid spec\ import\ Grid Spec
t = np.arange(0, 1+.01, .01)
y = 0.5 + np. sin(2*np.pi*t)
fig = plt.figure()
grid = GridSpec(3, 4)
ax1 = fig.add\_subplot(grid[0, :-1], xticks = [], yticks = [])
ax1.plot(t,y)
ax1.text(0.5, 0.5, "grid[0,:-1]", ha='center', va='center', size='large')
ax2 = fig.add\_subplot(grid[:-1, -1], xticks=[], yticks=[])
ax2.plot(t,y)
ax2.text(0.5, 0.5, "grid[:-1, -1]", ha='center', va='center', size='large')
ax3 = fig.add_subplot(grid[1, 0], xticks=[], yticks=[])
ax3.plot(t,y)
ax3.text(0.5, 0.5, "grid[1, 0]", ha='center', va='center', size='large')
ax4 = fig.add_subplot(grid[1, 1:3], xticks=[], yticks=[])
ax4.plot(t,y)
ax4.text(0.5, 0.5, "grid[1, 1:3]", ha='center', va='center', size='large')
ax5 = fig.add\_subplot\left(grid\left[-1, :-1\right], \ xticks = [], \ yticks = []\right)
ax5.text(0.5, 0.5, "grid[-1,:-1]", ha='center', va='center', size='large')
ax6 = fig.add\_subplot(grid[-1, -1], xticks = [], yticks = [])
ax6.plot(t,y)
ax6.text(0.5, 0.5, "grid[-1, -1]", ha='center', va='center', size='large')
plt.show()
```


Figure 8 – Courbe 8

4 Multiple Plot

```
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
t = np.linspace(0, 2*np.pi)
fig, ax = plt.subplots(2, 3, sharex='col', sharey='row')
ax[1,1].plot(t,np.cos(t))
ax[1,1].grid()
plt.show()
```


Figure 9 – Courbe 9

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

def f(t):
    return np.sin(20*np.pi*t) * (1 + 0.75*np.cos(2*np.pi*t))

t = np.arange(0.0, np.pi, 0.01)

ax1 = plt.subplot(211)
    ax1.margins(0.05)
    ax1.plot(t, f(t))
    ax1.set_title('Tracé normal')

ax2 = plt.subplot(223)
    ax2.margins(.5, .5)
    ax2.plot(t, f(t))
    ax2.set_title('Tracé reculé')

ax3 = plt.subplot(224)
    ax3.margins(x = -1, y = -.3)
    ax3.plot(t, f(t))
    ax3.set_title('Tracé avancé')

plt.tight_layout()
    plt.show()
```


FIGURE 10 – Courbe 10

```
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

ax = plt.subplot(111)
t = np.arange(.0, 2*np.pi+.01, .01)
for n in [1, 2, 3]:
    plt.plot(t, np.sin(n*t), label=r'$s_%d=sin(%d*t)$'%(n,n))
ax.set(ylim=(-1.6,1.1))
leg = plt.legend(loc='best', ncol=2, mode="expand", shadow=True, fancybox=True)
leg.get_frame().set_alpha(0.5)
plt.show()
```


FIGURE 11 - Courbe 11

```
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import colors
from matplotlib.ticker import PercentFormatter
%matplotlib inline
Nbp = 100
nb = 10
x = np.random.randn(Nbp)
\label{eq:fig_star} \textit{fig} \;,\;\; axs \;=\; \texttt{plt.subplots} \; (1 \,,\;\; 2 \,,\;\; \texttt{tight\_layout=True} \,,\;\; \texttt{figsize} = (8 \,, 4) \,)
axs[0].hist(x, bins=nb)
N, bins, patches = axs[1].hist(x, bins=nb)
fracs = N / N.max()
norm = colors.Normalize(fracs.min(), fracs.max())
for frac, patch in zip(fracs, patches):
     color = plt.cm. viridis (norm(frac))
     patch.set_facecolor(color)
axs\,[\,1\,]\,.\;hist\,(\,x\,,\;\;bins\!=\!nb\,,\;\;density\!=\!True\,)
axs[1].yaxis.set_major_formatter(PercentFormatter(xmax=1))
plt.show()
```


FIGURE 12 - Courbe 12

FIGURE 13 - Courbe 13

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0, 5.0+.01, .01)
data1 = np.sin(2 * np.pi * t)
data2 = 0.8*np.exp(-t)*np.cos(2 * np.pi * t)
\mathrm{fig}\ ,\ \mathrm{ax1}\ =\ \mathrm{plt.subplots}\left(\,\mathrm{figsize}\,{=}\,(8\,,5)\,\right)
color = 'tab:red'
ax1.set_xlabel('temps (s)')
ax1.set_ylabel(r'$sin(\omega t)$', color=color)
ax1.plot(t, data1, color=color)
ax1.tick_params(axis='y', labelcolor=color)
ax2 = ax1.twinx()
color = 'tab:blue'
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout()
plt.show()
```


FIGURE 14 - Courbe 14

```
fig , ax = plt.subplots()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0)) # Régler la position de l'axe x sur x=0

ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0)) # Régler la position de l'axe y sur y=0

xx = np.linspace(-0.75, 1., 100)
ax.plot(xx, xx**3);
plt.show()
```


FIGURE 15 – Courbe 15

5 Stem

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

n = np.arange(0,2*np.pi,0.2)
x = np.sin(n)

plt.figure(figsize=(8,5))
plt.stem(n,x,'r','rs',use_line_collection=True)
plt.axis([0,n.max(),-1.15,1.15])
plt.grid()
plt.show()
```


Figure 16 – Courbe 16

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

n = np.arange(0,2*np.pi+0.2,0.2)
x = np.sin(n)

plt.figure(1)
markerline, stemlines, baseline = plt.stem(n,x, '--',use_line_collection=True)
plt.setp(stemlines, 'color', 'b', 'linewidth', 2)
#plt.setp(baseline, 'color', 'b', 'linewidth', 0.5)
plt.setp(baseline, visible=False)
plt.ylim([-1.2,1.2])
plt.xlim([n.min(),n.max()])
plt.xlabel('$n$')
plt.ylabel('$sin[n]$')
plt.ylabel('$sin[n]$ avec stem')
plt.grid(True)

plt.show()
```


 $Figure\ 17-Courbe\ 17$

6 Scatter

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

t = np.arange(0, 3+.1, .1)
y = np.exp(-t)

plt.figure()
plt.scatter(t, y)
plt.xlabel('Abscisses')
plt.ylabel('Ordonnées')
plt.title('Figure')
plt.grid()
plt.show()
```


FIGURE 18 – Courbe 18

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

t = np.arange(0, 3+.1, .1)
y = np.exp(-t)

plt.figure()
plt.scatter(t, y, c=y, cmap='Spectral')
plt.colorbar()
plt.xlabel('Abscisses')
plt.ylabel('Ordonnées')
plt.title('Figure')
plt.grid()
plt.show()
```


FIGURE 19 - Courbe 19

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

t = np.arange(0, 3+.1, .1)
y = np.exp(-t)
z = np.sin(t)

plt.figure()
plt.scatter(t, y)
plt.scatter(t, y, color='blue', marker= '*', label='Exp')
plt.scatter(t, z, color= 'red', marker='v', label='Sin')
plt.xlabel('Abscisses')
plt.ylabel('Ordonnées')
plt.title('Figure')
plt.legend(loc='best')
plt.grid()
plt.show()
```


Figure 20 – Courbe 20

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

t = np.arange(0, 3+.1, .1)
y = np.exp(-t)
z = np.sin(t)

plt.figure()
plt.scatter(t, y)
plt.scatter(t, y, s=130, c='yellow', marker='*', edgecolors='green', label='Exp')
plt.scatter(t, z, s=110, c='red', marker='v', edgecolors='blue', label='Sin')
plt.xlabel('Abscisses')
plt.ylabel('Ordonnées')
plt.title('Figure')
plt.legend(loc='best')
plt.legend(loc='best')
plt.grid()
plt.show()
```


Figure 21 – Courbe 21

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

t = np.arange(0, 3+.1, .1)
y = np.exp(-t)
#s = np.random.rand(100)*200
plt.figure(figsize=(6,4))
plt.scatter(t, y, s=y*50,color='red')
plt.show()
```


FIGURE 22 – Courbe 22

7 Echelle Log

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

x = np.logspace(-1,5,10000)
y = 1/(np.sqrt(1+(x**2/10000)))

fig = plt.figure(figsize=(10,5))

plt.subplot(121)
plt.plot(x,y)
plt.title("Echelle linéaire")
plt.grid()

plt.subplot(122)
plt.semilogx(x,y)
plt.title("Echelle Log (Axe des x)")
plt.grid()
```


FIGURE 23 – Courbe 23

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

t = [0,1,2,3,4,5,6]
v = [1,0.1,1,10,30,10000,100]

fig = plt.figure(figsize=(10,5))

plt.subplot(121)
plt.plot(t,v)
plt.title("Echelle linéaire")
plt.grid()

plt.subplot(122)
plt.semilogy(t,v)
plt.title("Echelle Log (axe des y)")
plt.grid()
```


Figure 24 - Courbe 24

```
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

x = np.linspace(1, 10, 10000)
y = x**8

fig = plt.figure(figsize=(10,5))

plt.subplot(121)
plt.plot(x,y)
plt.title("Echelle linéaire")
plt.grid()

plt.subplot(122)
plt.loglog(x,y)
plt.title("Echelle LogLog (axe des x et y)")
plt.grid()

plt.grid()
```


Figure 25 – Courbe 25

```
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
%matplotlib inline

x = np.linspace(1, 5, 100)
y = x**2

fig , ax = plt.subplots()
ax.loglog(x,y, basex=np.e, basey=np.e)

def ticks(y, pos):
    return r'$e^{{:.0f}$'.format(np.log(y))}

ax.xaxis.set_major_formatter(mtick.FuncFormatter(ticks))
ax.yaxis.set_major_formatter(mtick.FuncFormatter(ticks))
plt.show()
```


Figure 26 – Courbe 26

```
import matplotlib.pyplot as plt
import numpy as np
f, ax = plt.subplots()
ax.set_xscale('log')
ax.set_yscale('log')
ax.scatter(2**np.arange(10), 2**np.arange(10))
plt.show()
```


Figure 27 – Courbe 27

8 Annexe

Line properties

Property	Description	Appearance											
alpha (or a)	alpha transparency on 0-1 scale												
antialiased	True or False - use antialised rendering	Aliased Anti-aliased											
color (or c)	matplotlib color arg	111111111											
linestyle (or ls)	see Line properties												
linewidth (or lw)	float, the line width in points	- I I I I I I I I I I I I I I I I I I I											
solid_capstyle	Cap style for solid lines												
solid_joinstyle	Join style for solid lines	~ ~ ~											
dash_capstyle	Cap style for dashes												
dash_joinstyle	Join style for dashes												
marker	see Markers												
markeredgewidth (mew)	line width around the marker symbol												
markeredgecolor (mec)	edge color if a marker is used	0 0 0 0 0 0 0 0 0											
markerfacecolor (mfc)	face color if a marker is used												
markersize (ms)	size of the marker in points												

 ${\tt Figure~28-Arguments~de~la~fonction~plot}$

Line styles

Symbol	Description	Appearance										
-	solid line	_										_
-	dashed line	-										
	dash-dot line	•	• • •		• • •	• • • •		• • • •	• • •		• • •	
	dotted line											
	points		P	0	•	•	•	•	0	0	0	ı
,	pixels											
0	circle		•	•			•		•	•	•	(
^	triangle up		A	A	A		A	A	A	A	A	4
v	triangle down		\triangledown	∇	∇	∇	\triangledown	\triangledown	\triangledown	\triangledown	\triangledown	7
<	triangle left		4	4	4	4	4	4	4	4	4	4
>	triangle right		>							>	>	Þ
S	square											ı
+	plus		+	+	+	+	+	+	+	+	+	-
x	cross		×	×	×	×	×	×	×	×	×	>
D	diamond		\rightarrow	\	\rightarrow	\	\	\rightarrow	\	\	\	•
d	thin diamond		♦	♦	♦	♦	♦	♦	\	♦	\	(
1	tripod down		Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	`
2	tripod up		\succ	}	>	>	\succ	>	}	≻	≻	
3	tripod left		\prec	\prec	\prec	\prec	\prec	\prec	\prec	\prec	\prec	-
4	tripod right		Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	
h	hexagon			•	•	•	•	•		•		•
Н	rotated hexagon											•
р	pentagon											1
	vertical line	1	ı					ı		ı		
	horizontal line		-	-	-	-	-	-	-	-	-	-

FIGURE 29 – Styles de ligne

Markers

Symbol	Description	Appearance										
0	tick left		-	-	-	-	-	-	-	-	-	-
1	tick right	-	-	-	_		-	-	-	-	-	
2	tick up											
3	tick down					1				ī		
4	caret left	4	4	4	4	4	4	4	4	4	4	
5	caret right		>	•	>	>	>	>	•	>	•	•
6	caret up		<u> </u>	A	_	<u> </u>	<u> </u>	_	_	<u> </u>	<u> </u>	a.
7	caret down		~	~	~	~	~	~	~	~	~	٧
0	circle		•	0	0	0		0	0	0	•	(
D	diamond		\langle	\langle	\	\langle	\	\	\	\langle	\	•
h	hexagon 1		•	•	•	•	•	•	•	•	•	•
Н	hexagon 2		•	•	•	•	•	•	•	•	•	•
	horizontal line		-	-	-	-	-	-	-	-	-	-
1	tripod down		Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	
2	tripod up		>-)-	>-)-	>-	>-	>-	>-	>-	
3	tripod left		~	~	~	~	~	~	~	\prec	~	-
4	tripod right		Ţ	Ţ	Ţ	Ţ		Ţ	Ţ	Ţ	Ţ	
8	octagon		•	•	•	•	•	•	•	•	•	•
p	pentagon					•			•			1
^	triangle up		A	▲	A	▲	A	A	A	Δ	A	4
v	triangle down		\triangledown	\triangledown	∇	\triangledown	∇	∇	∇	\triangledown	\blacksquare	٧
<	triangle left		4	4	4	4	4	4	4	4	4	4
>	triangle right		>	>		>				>		
d	thin diamond		♦	♦	♦	♦	•	♦	♦	♦	\	-
,	pixel											
+	plus		+	+	+	+	+	+	+	+	+	-
	point		ø	ø	0	P	o	Đ	•	•	•	t
S	square											ı
*	star		☆	*	*	*	*	*	×	*	*	4
	vertical line	1	1	1	-			-	1			
x	cross		×	×	×	×	×	×	×	×	×	>
r'\$\sqrt{2}\$'	any latex expression		√2	√2	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	√2	$\sqrt{2}$	v

 ${\tt FIGURE~30-Styles~de~marqueur}$