Error in Estimates & Probability Distributions

For loops in the Wild

Sample Properties: Variance

How variable was that population?

$$s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}{N-1}$$

- ► Sums of Squares over n-1
- ▶ n-1 corrects for both sample size and sample bias
- $ightharpoonup \sigma^2$ if describing the population
- ▶ Units in square of measurement...

Sample Properties: Standard Deviation

$$s = \sqrt{s^2}$$

- Units the same as the measurement
- ▶ If distribution is normal, 67% of data within 1 SD
- ▶ 95% within 2 SD
- $ightharpoonup \sigma$ if describing the population

Remember Samples and Populations?

How representative of our population are the estimates from our sample?

Remember Samples and Populations?

We've seen that we get variation in point estimates at any sample size

What does that variation look like?

Consider a population with some distribution (rnorm, runif, rgamma)

- Consider a population with some distribution (rnorm, runif, rgamma)
- ▶ Think of the mean of one sample as an individual replicate

- Consider a population with some distribution (rnorm, runif, rgamma)
- ▶ Think of the mean of one sample as an individual replicate
- ▶ Take many (50) 'replicates' from this population of means

- Consider a population with some distribution (rnorm, runif, rgamma)
- ▶ Think of the mean of one sample as an individual replicate
- ▶ Take many (50) 'replicates' from this population of means
- ▶ What does the distribution of means look like? Use hist

- Consider a population with some distribution (rnorm, runif, rgamma)
- Think of the mean of one sample as an individual replicate
- ▶ Take many (50) 'replicates' from this population of means
- ▶ What does the distribution of means look like? Use hist
- How does it depend on sample size (within replicates) or distribution type?

- Consider a population with some distribution (rnorm, runif, rgamma)
- Think of the mean of one sample as an individual replicate
- ▶ Take many (50) 'replicates' from this population of means
- ▶ What does the distribution of means look like? Use hist
- How does it depend on sample size (within replicates) or distribution type?

Extra: Show the change in distributions with sample size in one figure.

Central Limit Theorem

The distribution of means converges on normality

Central Limit Theorem Simulation

```
set.seed(697)
n <- 3
mvec <- rep(NA, times = 100)
# simulate sampling events!
for (i in 1:length(mvec)) {
    mvec[i] <- mean(runif(n, 0, 100))
}
hist(mvec, main = "n=3")</pre>
```

Estimating Variation Around a Mean

Great, so, if we can draw many replicated means from a larger population, we can the standard deviation of an estimate!

Estimating Variation Around a Mean

Great, so, if we can draw many replicated means from a larger population, we can the standard deviation of an estimate!

This standard deviation of the estimate of the mean is the **Standard Error**.

Estimating Variation Around a Mean

Great, so, if we can draw many replicated means from a larger population, we can the standard deviation of an estimate!

This standard deviation of the estimate of the mean is the **Standard Error.**

But for a single study, we only have one sample...

A Bootstrap Simulation Approach to Standard Error

- Our sample is representative of the entire population
- ► Therefore, we can resample it with replacement for 1 simulated sample
- ▶ We use our sample size as the new sample size as well

We set the replace argument in sample = TRUE Try sampling from the bird data with replacement.

A Bootstrap Simulation Approach to Standard Error

```
sample(bird$Count, replace = T, size = nrow(bird))
##
   [1] 297 2 625 230 13
                        33 25
                                12 4
                                      28 297 2 12
  Γ15]
          1 18 28 297 1 282
                                              2 33 1
        3
                                15 300 148 23
## [29] 625 282 77 23 12 25 297
                                    2 33 230 135
                                                 67
                                                    18
                                2
## [43] 77
```

Standard Error

$$SE_{\bar{Y}} = \frac{s}{\sqrt{n}}$$

 \bar{Y} - sample mean s - sample standard deviation n - sample size

95% Confidence Interval and SE

► Recall that 95% of the data in a sample is within 2SD of its mean

95% Confidence Interval and SE

- ► Recall that 95% of the data in a sample is within 2SD of its mean
- ► So, 95% of the times we sample a population, the *true* mean will lie within 2SE of our estimated mean

95% Confidence Interval and SE

- ► Recall that 95% of the data in a sample is within 2SD of its mean
- ► So, 95% of the times we sample a population, the *true* mean will lie within 2SE of our estimated mean
- ► This is the 95% Confidence Interval

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

▶ Draw 20 simulated samples with n=10 from a normal distribution of mean 0

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

- ▶ Draw 20 simulated samples with n=10 from a normal distribution of mean 0
- Calculate the upper and lower confidence interval for each

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

- ▶ Draw 20 simulated samples with n=10 from a normal distribution of mean 0
- Calculate the upper and lower confidence interval for each
- ▶ Compare the 95% CIs to the true value of the mean

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

- ▶ Draw 20 simulated samples with n=10 from a normal distribution of mean 0
- Calculate the upper and lower confidence interval for each
- ▶ Compare the 95% CIs to the true value of the mean
- ► Extra: graph it with segments

Tip: To bind two vectors together as columns, use cbind

```
set.seed(697)
n <- 20
upperCIvec <- rep(NA, n)
lowerCIvec <- rep(NA, n)

# loop and calculate the 95% CI
for (i in 1:n) {
    samp <- rnorm(10)
    upperCIvec[i] <- mean(samp) + 2 * sd(samp)/sqrt(n)
    lowerCIvec[i] <- mean(samp) - 2 * sd(samp)/sqrt(n)
}</pre>
```

```
# examine the numbers
cbind(upperCIvec, lowerCIvec)[1:10, ]
##
       upperCIvec lowerCIvec
##
   [1,] 0.75237 -0.09638
   [2,] 0.39117 -0.66417
##
   [3,] 0.38746 -0.81584
##
##
   [4,] 0.67183 -0.14438
##
   [5,] 0.23227 -0.30878
##
   [6,] -0.15508 -1.25684
##
   [7,] 0.28960 -0.41992
##
   [8,] 0.29285 -0.83584
##
   [9,] 0.46890 -0.18128
## [10,] -0.05229 -0.84528
```


 Many SEs and CIs of estimates have formulae and well understood properties

- Many SEs and CIs of estimates have formulae and well understood properties
- ► For those that do not, we can bootstrap the SE of any estimate e.g., the median

- Many SEs and CIs of estimates have formulae and well understood properties
- ► For those that do not, we can bootstrap the SE of any estimate e.g., the median
- Bootstrapped estimates (mean of simulated replicates) can be used to assess bias

- Many SEs and CIs of estimates have formulae and well understood properties
- ► For those that do not, we can bootstrap the SE of any estimate e.g., the median
- Bootstrapped estimates (mean of simulated replicates)
 can be used to assess bias
- Bootstrapping is not a panacea requires a good sample size to start

Distributions!

Frequency Distributions Make Intuitive Sense

Frequencies Can be Turned Into Probabilities

Just divide by total # of observations

Frequencies Can be Turned Into Probabilities

Just divide by total # of observations But - we have binned observations...

Frequencies of Individual Observations

Frequencies of Individual Observations

Can we turn these into probabilities?

Probabilities of Individual Measurements

Probabilities of Individual Measurements

Many probabilities small, and what about the gaps?

Continuous Probability Distributions

Continuous Probability Distributions

Any individual observation has a probability density.

Probability as Integral Under the Curve

Probability as Integral Under the Curve

We obtain probabilities of observations between a range of values by integrating the distribution over selected values.

The Normal Distribution

The Normal Distribution

- Defined by it's mean and standard deviation.
- Y ~N(μ, σ)
- ► Single mode
- Symmetric

67% of Values within 1 SD

95% of Values within 2 (1.96) SD

How to Get A Probability Density in R

How to Get A Probability Density in R

dnorm(Y, mean = 0, sd = 1)

The Probability of a Value or More Extreme Value

The Probability of a Value or More Extreme Value

pnorm(Y, mean = 0, sd = 1)

The Cummulative Distribution/Quantile Function

The Cummulative Distribution/Quantile Function

qnorm(p, mean = 0, sd = 1)

The Cummulative Distribution/Quantile Function

pnrm an dqnorm are the inverse of one another

```
pnorm(-1)
## [1] 0.1587
qnorm(pnorm(-1))
## [1] -1
qnorm(0.025)
## [1] -1.96
```

The Lognormal Distribution

- An exponentiated normal
- Defined by the mean and standard deviation of its log.
- ightharpoonup Y ~LN(μ_{log} , σ_{log})
- Generated by multiplicative processes

dlnorm(Y, meanlog = 0, sdlog = 1)

The Gamma Distribution

- Defined by number of events(shape) average time to an event (scale)
- ► Can also use rate (1/scale)
- Y ~G(shape, scale)
- ► Think of time spent waiting for a bus to arrive

dgamma(Y, shape = 2, scale = 2)

Waiting for more events

Longer average time per event

The Poisson Distribution

- Defined by λ the mean and variance
- Y ~ P(lambda)

When Lambda is Large, Approximately Normal

The Binomial Distribution

- Results from multiple coin flips
- Defined by size (# of flips) and prob (probability of heads)
- Y ~ B(size, prob)
- bounded by 0 and size

dpois(Y, size, prob)

Increasing Probability Shifts Distribution

The Negative Binomial Distribution

- Distribution of number of failures before n number of successes in k trials
- Or mean # of counts,
 μ, with an
 overdispersion
 parameter, size
- Y ~ NB(μ, size)

dnbin(Y, mu, size)

Exercise

- Explore the distributions we have discussed
- Examine how changing parameters shifts the output of probability function
- Compare curves generated using density functions (e.g., dnorm) and large number of random draws (e.g. from rnorm)
- Overlay these in plots if you can (hist, lines, etc.)
- ► Challenge: graphically show integration under the different types of distribution curves