0. Erori

0.1. Erori de trunchiere Fie x un parametru reprezentat prin valoarea sa exactă, F o funcție în

CONTINUTUL CURSULUI #1: Frori

- 0.1. Erori de trunchiere.
- 0.2. Erori de rotunjire.
- I.1. Metoda bisectiei
- I.2. Metoda Newton-Raphson.
- Metode de aproximare a solutiilor ecuatiilor neliniare.
- 13 Metoda secantei I.4. Metoda pozitiei false.

Definitia (0.1.)

Definim $e_t(x) = F(x) - F_t(x)$ si numim eroare de trunchiere.

baza căreia se evaluează exact o formulă matematică si F_t o functie obtinută în urma operației de trunchiere a formulei exacte.

Teorema (0.1. Dezvoltarea în serie Taylor

Fig $f: I \to \mathbb{R}$ o function de infinit ori derivabilă pe intervalul $I, x_0 \in I$ fixat. Atunci.

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

Notăm cu F(x) formula exactă prin intermediul căreia se evaluează

Teorema (0.1. (reprezentarea restului sub forma Lagrage))

Mai mult, dacă f este derivabilă de n+1 ori, pentru orice $x \in I$, $\exists \mathcal{E}$ cuprins între x₀ și x, astfel încât: $f(x) = f(x_0) + \frac{f'(x_0)}{11}(x - x_0) + \frac{f''(x_0)}{21}(x - x_0)^2 + \dots$

$$+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$$

$$+\frac{r^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{r^{(n+2)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$$

Exemplul #1 Fie x = e, numărul Euler și formula matematică exactă de calcul a valorii acestui număr, obținută în baza dezvoltării în serie Taylor a funcției ex în

jurul punctului $x_0 = 0$ și evaluată în x = 1. Întrucat, derivata funcției ex rămâne la fel, dezvoltarea în serie Taylor a funcției $f(x) = e^x$ în jurul puncțului x_0 este:

$$\begin{split} e^x &= e^{x_0} + e^{x_0}(x - x_0) + \frac{e^{x_0}}{2!}(x - x_0)^2 + ... + \frac{e^{x_0}}{n!}(x - x_0)^n + ... \\ &= \sum_{l=1}^{\infty} \frac{e^{x_0}}{l!}(x - x_0)^k \end{split}$$

 $e = \sum_{k} \frac{1}{k!}$

Fie
$$F_t(x)$$
 formula trunchiată de forma:
$$F_t(x) = \sum_{k=0}^{n} \frac{e^{x_0}}{k!} (x - x_0)^k \tag{1}$$

October 20, 2020 4 / 22

deci, numărul e poate fi aproximat cu

valoarea e^x pentru un x dat, astfel e = F(1) sau

 $e \approx F_t(1) = \sum_{k=1}^{\infty} \frac{1}{k!}$

Eroarea de trunchiere a acestei aproximări se determină prin formula: $e_t(1) = F(1) - F_t(1) = \sum_{i=1}^{\infty} \frac{1}{i!}$

sau, folosind formula de reprezentare Lagrange a restului din dezvoltarea Taylor, obţinem: $e_t(1) = \frac{e^s}{(n+1)!}$ cu ξ între 0 și 1.

cu reprezentarea restului sub forma Lagrange, putem scrie:

$$g(x+h) = g(x) + g'(x)h + g''(\xi)\frac{h^2}{2}, \ \xi \in (x,x+h)$$

Din expresia de mai sus, putem deduce o formulă prin intermediul căreia se poate calcula prima derivată

Exemplul #2 Fie $g \in C^2([a,b])$, $x \in (a,b)$ si h > 0 astfel încât x + h

rămâne în intervalul (a, b). Conform formulei de dezvoltare în serie Tavlor.

$$g'(x) = \frac{g(x+h) - g(x)}{h} - g''(\xi)\frac{h^2}{2}$$

Întrucât, nu întotdeauna putem calcula analitic derivata funcției, formula de mai sus poate fi trunchiată la:

$$g'(x) \approx \frac{g(x+h) - g(x)}{h}$$

cu eroarea de trunchiere $e_t(x) = -g''(\xi)\frac{h^2}{2}$

Exemplul #3 Să se afle numărul mașină cu 5 cifre semnificative al numărului $\pi = 3.14159265...$

Numărul π scris în reprezentarea normalizată are forma

$$\pi = +0.31415965...\times 10^{1}$$

iar numărul masină cu 5 cifre semnificative asociat este

$$+0.31416 \times 10^{1}$$

Definitia (0.2.)

Presupunem că x* reprezintă aproximarea numărului x. Notăm cu

$$e_2 := |x - x^*|$$

și numim eroarea absolută a aproximării. Notăm cu

$$e_r := \frac{|x - x^*|}{|x|}$$

Curs #1

October 20, 2020

si numim eroarea relativă.

0.2. Erori de rotuniire

Un număr mașină poate fi reprezentat în baza 10 cu virgulă mobilă normalizată sub forma:

$$x^* = \pm 0.d_1d_2...d_k \times 10^n$$
 (2)

$$0 \le d_1, d_2, ..., d_k \le 9, \ d_1 \ne 0 \tag{3}$$

cifrele $d_1, d_2, ..., d_k$ se numesc cifre semnificative. Observatie: Reprezentarea se numeste normalizată deoarece cifra care precede virgula este zero.

Un număr real x, din punct de vedere matematic, se reprezintă cu o infinitate de cifre semnificative

$$x = \pm 0.d_1 d_2 ... d_k ... \times 10^n \tag{4}$$

Acest număr poate fi asimilat cu numărul masină cu k cifre semnificative după următoarea regulă:

$$x^* = \begin{cases} \pm 0.d_1 d_2...d_k \times 10^n, \text{ dacă } d_{k+1} < 5 \\ \pm 0.d_1 d_2...(d_k + 1) \times 10^n, \text{ dacă } d_{k+1} \ge 5 \end{cases}$$

$$(5)$$
Cusher 20, 2020 6/

Exemplul #4 Să se determine erorile absolută și relativă, dacă x este aproximarea lui x^* , unde $x = 0.3000 \times 10^4$, $x^* = 0.3100 \times 10^4$. Eroarea absolută $e_a = 0.01 \times 10^4 = 100$, iar eroarea relativă $e_r = \frac{100}{3 \times 10^3} = 0, 1.$

înmulteste cu 100%. Definitia (0.3.)

Spunem că numărul x* aproximează numărul x cu k cifre semnificative. dacă k este cel mai mare număr cu proprietatea

$$e_r = \frac{|x - x^*|}{1 + 1} < 5 \times$$

$$e_r = \frac{|x - x^*|}{|x|} \le 5 \times 10^{-k}$$

Curs #1

October 20, 2020

(6)

Observatie: Dacă x* este numărul masină asociat numărului x după regula (5), atunci are loc estimarea (6), Într-adevăr, fie $x = \pm 0.d_1d_2...d_k... \times 10^n$ si x^* definit prin:

$$x^* = \left\{ \begin{array}{l} \pm 0.d_1 d_2 ... d_k \times 10^n, \; \mathrm{dac\check{a}} \; d_{k+1} < 5 \\ \pm 0.d_1 d_2 ... (d_k + 1) \times 10^n, \; \mathrm{dac\check{a}} \; d_{k+1} \geq 5 \end{array} \right.$$

Vom considera cele două cazuri separat. Cazul 1. $d_{k+1} < 5$:

$$\frac{|\mathbf{x} - \mathbf{x}^*|}{|\mathbf{x}|} = \frac{|0.0 \cdots 0d_{k+1} \cdots | \times 10^n}{|0.d_1 d_2 \cdots d_k \cdots | \times 10^n} \le \frac{d_{k+1} \times 10^{-(k+1)}}{0.1}$$
$$= d_{k+1} \times 10^{-k} \le 5 \times 10^{-k}$$

Cazul 2. $d_{k+1} \ge 5$: (sau, echivalent $d'_{k+1} := 10 - d_{k+1} \le 5$)

$$\begin{aligned} \frac{|x-x^*|}{|x|} &= \frac{|0.0\cdots 0(10-d_{k+1})\cdots|\times 10^n}{|0.d_1d_2\cdots d_k\cdots|\times 10^n} \leq \frac{d'_{k+1}\times 10^{-(k+1)}}{0.1} \\ &= d'_{k+1}\times 10^{-k} < 5\times 10^{-k} \end{aligned}$$

Figure: Metoda bisectiei

I. Metode de aproximare a solutiilor ecuatiilor neliniare I.1. Metoda bisecției Fie $f:[a,b]\to\mathbb{R}$ o funcție continuă, astfel încât f(a)f(b)<0. Atunci

 $\exists x^* \in (a, b)$, astfel încât $f(x^*) = 0$. Metoda bisecției generează un sir de aproximări $(x_k)_{k>0}$ convergent către solutia exactă x^* a ecuatiei f(x) = 0 (i.e. $\lim_{k \to \infty} x_k = x^*$, unde x^*

verifică ecuatia f(x) = 0). Metoda bisecției constă în înjumătățirea la fiecare pas k a intervalului [a, b] și selectarea acelui interval notat prin $[a_k, b_k]$ în care se află x^* . Şirurile $(a_k)_{k\geq 0}$, $(b_k)_{k\geq 0}$ şi $(x_k)_{k\geq 0}$ se construiesc conform schemei:

$$(a_k, b_k, x_k) = \begin{cases} a_k = a_{k-1}, b_k = b_{k-1}, x_k = x_{k-1}, & \text{daca} & f(x_{k-1}) = 0 \\ a_k = a_{k-1}, b_k = x_{k-1}, x_k = \frac{a_k + b_k}{2}, & \text{daca} & f(a_{k-1})f(x_{k-1}) < 0 \\ a_k = x_{k-1}, b_k = b_{k-1}, x_k = \frac{a_k + b_k}{2}, & \text{daca} & f(a_{k-1})f(x_{k-1}) > 0, \end{cases}$$

$$(9)$$

$$\left(\begin{array}{c} a_k = x_{k-1}, b_k = b_{k-1}, x_k = \frac{a_k + b_k}{2}, & \text{dacă} \quad f(a_{k-1})f(x_{k-1}) > 0, \\ \\ \text{unde } a_0 = a, b_0 = b, x_0 = \frac{a_0 + b_0}{2}. \end{array} \right.$$

Teorema (I.1.) Fie $f:[a,b] \to \mathbb{R}$ continuă, f(a)f(b) < 0. Dacă f admite soluție unică

(7)

 $x^* \in (a, b)$ atunci şirul $(x_k)_{k>0}$ este convergent la x^* şi $|x^*-x_k|\leq \frac{b-a}{2k+1}, \forall k\geq 0$

$$|x^* - x_k| \le \frac{\omega}{2^{k+1}}, \forall k \ge 0$$
 (10) Demonstratie:

$$|x^* - x_k| \le \frac{1}{2} |a_k - b_k| = \begin{cases} \frac{1}{2} |a_{k-1} - x_{k-1}|, f(a_{k-1}) f(x_{k-1}) < 0\\ \frac{1}{2} |x_{k-1} - b_{k-1}|, f(a_{k-1}) f(x_{k-1}) > 0 \end{cases}$$
(11)

Constatăm că
$$\frac{1}{2}|a_{k-1}-x_{k-1}|=\frac{1}{2}|a_{k-1}-\frac{a_{k-1}+b_{k-1}}{2}|=\frac{1}{4}|a_{k-1}-b_{k-1}| \qquad (12)$$

Analog $\frac{1}{2}|x_{k-1} - b_{k-1}| = \frac{1}{4}|a_{k-1} - b_{k-1}|$

Astfel că, din (11) rezultă
$$0 \le |x^* - x_k| \le \frac{1}{4} |a_{k-1} - b_{k-1}| = \frac{1}{8} |a_{k-2} - b_{k-2}| = \dots = \frac{1}{2^{k+1}} |a_0 - b_0|$$
 (14)

 $\frac{b-a}{2N+1} < \varepsilon \Leftrightarrow N > log_2(\frac{b-a}{\varepsilon}) - 1 \Leftrightarrow N = \lceil log_2(\frac{b-a}{\varepsilon}) \rceil$; Definitia (I.1.) Fie şirul $(x_k)_{k\geq 0}$ convergent la x^* . Spunem că şirul $(x_k)_{k\geq 0}$ converge cel

putin liniar la x^* , dacă există sirul de numere reale pozitive $(\varepsilon_{\nu})_{\nu>0}$ convergent la zero si $\alpha \in (0,1)$ astfel încât

$$|x_k - x^*| \le \varepsilon_k, \quad k \ge 0 \quad \text{si} \quad \lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k} = \alpha$$
 (15)

- Dacă relația (15) are loc pentru $\alpha = 0$, atunci spunem că șirul $(x_k)_{k>0}$ converge superliniar;

sau $|x^* - x_k| \le \frac{1}{2k+1} |a - b|$ de unde rezultă $\lim_{k \to \infty} x_k = x^*$. \square

Criteriul de oprire: Fiind dat $\varepsilon > 0$, se caută $N \in \mathbb{N}$ astfel încât

- Dacă relația (15) are loc pentru $\alpha \in (0,1)$ și $\varepsilon_k = |x_k - x^*|, k > 0$. atunci spunem că sirul $(x_k)_{k>0}$ converge liniar: - Dacă (15) are loc pentru $\alpha = 1$ si $\varepsilon_{\nu} = |x_{\nu} - x^*|$, atunci viteza de

convergentă este mai lentă decât cea liniară și spunem că sirul $(x_k)_{k>0}$ converge subliniar.

ALGORITM (Metoda bisectiei)

Date de intrare: f, a, b, ε ;

Date de intrare:
$$f, a, b, \varepsilon$$
;
Date de iesire: x_{aprox} ;

Xanrox: STEP 1: $a_0 = a$; $b_0 = b$; $x_0 = \frac{a_0 + b_0}{2}$;

STEP 1:
$$a_0 = a$$
; $b_0 = b$; $x_0 = \frac{a_0 + a}{c}$
 $N = \left[log_2(\frac{b - a}{c}) - 1\right] + 1$;

STEP 2: for $k = 1 \cdot N$ do

 $x_{aprox} = x_k$.

if $f(x_{k-1}) = 0$ then $x_k = x_{k-1};$ hreak elseif $f(a_{k-1})f(x_{k-1}) < 0$ then $a_k = a_{k-1}$; $b_k = x_{k-1}$; $x_k = \frac{a_k + b_k}{2}$;

elseif $f(a_{k-1})f(x_{k-1}) > 0$ then

 $a_k = x_{k-1}$; $b_k = b_{k-1}$; $x_k = \frac{a_k + b_k}{2}$; endif

Curs #1

endfor

Fie sirul $(x_k)_{k>0}$ convergent la x^* . Spunem că șirul $(x_k)_{k>0}$ converge la x^* cu ordinul de convergență cel puțin egal cu r > 1, dacă există un șir $(\varepsilon_k)_{k>}$ de numere reale pozitive convergent la 0 și $\alpha>0$ astfel încât

$$|x_k - x^*| \le \varepsilon_k, \quad k \ge 0 \quad \text{si} \quad \lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k'} = \alpha \tag{16}$$

Dacă (16) are loc pentru $\varepsilon_k = |x_k - x^*|, k \ge 0$, atunci spunem că sirul $(x_k)_{k>0}$ converge la x^* cu **ordinul** r **de convergentă**. În particular, dacă r=2 atunci spunem că $(x_k)_{k>0}$ converge **pătratic.**

Obs.: Datorită faptului că în cazul metodei bisecției avem estimarea $|x^* - x_k| \le \frac{1}{2^{k+1}}(b-a)$ putem considera $\varepsilon_k = \frac{1}{2^{k+1}}(b-a)$. Atunci

> $\lim_{k\to\infty}\frac{\varepsilon_{k+1}}{\varepsilon_{k}}=\frac{1}{2}\in(0,1),$ (17)

deci convergența este cel puțin liniară.

Definitia (1.2.)

I.2. Metoda Newton-Raphson

Fie $f:[a,b]\to\mathbb{R}$ o funcție derivabilă astfel încât f(a)f(b)<0. Metoda

N-R presupune construcția șirului $(x_k)_{k>0}$ conform următoarei scheme grafice: la pasul k, aproximarea x_k a solutiei exacte x^* a ecuatiei f(x) = 0se obtine prin intersecția cu axa Ox a tangentei T la graficul funcției f în punctul $(x_{k-1}, f(x_{k-1}))$.

$$T: y = f'(x_{k-1})(x - x_{k-1}) + f(x_{k-1})$$
$$\{x_k\} = T \cap Ox \Rightarrow f'(x_{k-1})(x_k - x_{k-1}) + f(x_{k-1}) = 0 \Rightarrow f(x_{k-1})$$

Curs #1

 $x_k = x_{k-1} - \frac{f(x_{k-1})}{f(x_{k-1})}$ (19)

(18)

Figure: Metoda Newton

Teorema (I.2)

Presupunem că $f \in C^2([a,b]), f', f''$ nu se anulează pe [a,b] și f(a)f(b) < 0. Fie $x_0 \in [a,b]$ astfel încât să aibă loc condiția

$$f(x_0)f''(x_0) > 0$$
 (20)

Atunci ecuația f(x)=0 are o soluție unică $x^*\in(a,b)$, iar șirul $(x_k)_{k\geq 0}$ construit prin metoda Newton-Raphson, rămâne în [a,b] și converge pătratic la x^* .

Demonstrație: EXISTENȚA: Existența soluției ecuației f(x) = 0 este asigurată de conditia f(x)f(x) < 0

condiția f(a)f(b) < 0. **UNICITATEA:** Presupunem că $\exists y^* \in (a,b)$ cu $x^* \neq y^*$ și $f(y^*) = 0$. Cum $f(x^*) = f(y^*) = 0$, atunci conform Teoremei lui Rolle rezultă că $\exists c \in (x^*, y^*)$ astfel încât f'(c) = 0, contradicție, deoarece am presupus cu a f' este nenulă pe intervalul [a,b].

CONVERGENȚA: Fără a restrânge generalitatea vom considera f', f'' strict pozitive, i.e. $f'(x) > 0, f''(x) > 0, \forall x \in [a, b]$. Celelalte cazuri se tratează în mod analog.

Fie $x_0 \in [a, b]$ cu proprietatea (20), atunci $f(x_0) > 0 = f(x^*)$. Deoarece f'(x) > 0, $\forall x \in [a, b]$ rezultă că f este strict crescătoare, astfel că $x^* < x_0 < b$ sau $x_0 \in (x^*, b]$.

Presupunem în continuare $x_k \in (x^*,b]$, i.e. $x^* < x_k \le b$. Dezvoltăm în serie Taylor funcția f în jurul punctului x_k și evaluăm funcția în punctul x^* :

$$f(x^*) = f(x_k) + (x^* - x_k)f'(x_k) + \frac{1}{2}(x^* - x_k)^2 f''(\xi_k), \quad \xi_k \in [x^*, x_k]$$
 (21)

Împărțim această relație la $f'(x_k)$, ținem cont că $f(x^*) = 0$ și $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$. Obținem:

$$x_{k+1} - x^* = \frac{1}{2}(x^* - x_k)^2 \frac{f''(\xi_k)}{f'(x_k)}, \quad \xi_k \in [x^*, x_k]$$
 (22)

Din monotonia funcției f rezultă $f(x_k) > 0 = f(x^*)$. Din (19) rezultă $x_{k+1} < x_k$, iar conform formulei (22) rezultă $x_{k+1} > x_k$,

deci $x^* < x_{k+1} < x_k \le b$. Am obținut că șirul $(x_k)_{k \ge 0}$ este descrescător și mărginit, deci convergent.

Fie $y^* = \lim_{k \to \infty} x_k$, atunci trecând la limită în formula (19) rezultă:

$$y^* = y^* - \frac{f(y^*)}{f'(y^*)} \Rightarrow f(y^*) = 0,$$
 (23)

deci y^* este soluție a ecuației f(x) = 0, iar din unicitatea soluției avem $x^* = y^*$.

Din relația (22) rezultă

$$\frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \frac{1}{2} \frac{f''(\xi_k)}{f'(\chi_k)}$$
(24)

Dacă $\varepsilon_k = |x_k - x^*|$ atunci

$$\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k^2} = \lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \lim_{k \to \infty} \frac{1}{2} \frac{|f''(\xi_k)|}{|f'(x_k)|}$$
(25)

 $=\frac{1}{2}\frac{|f''(x^*)|}{|f'(x^*)|}\in(0,\infty)$ (26)

Rezultă că $(x_k)_{k>0}$ converge **pătratic** la x^* .

Deoarece f', f'' nu se anulează pe intervalul [a, b], atunci funcția trebuie să fie monotonă (crescătoare sau descrescătoare) și să nu-și schimbe concavitatea pe intervalul dat.

Strategie de lucru: Din punct de vedere computational se alege conform graficului funcției un interval în care funcția să fie monotonă și să nu-și schimbe concavitatea. Valoarea xo se alege în modul următor:

Dacă f este convexă $(f''(x_0) > 0)$, atunci $f(x_0) > 0$; 2. Dacă f este concavă $(f''(x_0) < 0)$, atunci $f(x_0) < 0$.

Pentru metoda N-R ca și criteriu de oprire vom alege una din următoarele

condiții: - $|f(x_k)| < \varepsilon$;

 $-\frac{|x_k-x_{k-1}|}{|x_{k-1}|}<\varepsilon.$

Date de ieşire:
$$x_{aprox}$$
;
STEP 1: $k = 0$;

STEP 1: k = 0:

EP 1:
$$k = 0$$
;
EP 2: do $k = k + 1$;

 $x_{aprox} = x_k$

$$k = 0$$

ALGORITM (Metoda Newton-Raphson)

 f, f', x_0, ε :

 $x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})};$

while $\frac{|x_k - x_{k-1}|}{|x_{k-1}|} \ge \varepsilon$;

$$k = 0$$

October 20, 2020 21 / 22