1. tétel

Berekméri Evelin

2020. június 1.

Kivonat

Mérési adatok és a mérési hiba – Hibák és zajok, ezek forrásai. A statisztikus és a szisztematikus hiba. A hiba sztochasztikus modellezése. Adatmodellezés – A függvényillesztés alapproblémája. Magfüggvényes becslések.

Tartalomjegyzék

- 1. Mérési adatok és a mérési hiba Hibák és zajok, ezek forrásai.
- 2. Statisztikus hiba
- 3. Szisztematikus hiba
- 4. A hiba sztochasztikus modellezése
- 6. Magfüggvényes becslések (kernel smoothing)

1. Mérési adatok és a mérési hiba – Hibák és zajok, ezek forrásai.

A mérés célja a mérendő mennyiség valódi értékének meghatározása. A méréseket műszerrel végezzük, amiknek van mérési tartománya és mérési pontossága. Ha a műszer nem elég érzékeny, a mért érték egy felső korlát, ha a műszer túl érzékeny a mért érték egy alsó korlát. A mért adatok hibával terheltek, a valódi értéket csak közelíteni tudjuk a mérési adatok segítségével. A mért mennyiséget hibával együtt kell közölni. Mérési hibák típusai:

- leolvasási hiba: a műszer felbontásából ered, az utolsó értékes számjegy fele (pl. centis beosztású mérőeszköz esetén 0.5 cm)
- statisztikus hiba
- szisztematikus hiba
- (zaj: külső környezetből származó, a fizikai folyamat jellegéből származó)

2. Statisztikus hiba

A statisztikus hibák nem ismert vagy nem ellenőrizhető tényezők következményei, hatásuk kicsi, egymástól független, mérésenként változó, véletlenszerű. Ilyen tényező lehet például: külső mechanikus, elektronikus, mágneses zaj, légmozgás, hőmérsékletingadozás vagy okozhatja a műszer véletlenszerű működése. A mérendő mennyiség is lehet statisztikus jellegű: pl. a rúd átmérője ingadozik a hossza mentén, az időegység alatt elbomlott atomok száma. A statisztikus hibák esetén a mérés többszöri megismétlésével a mérendő mennyiség valódi értékét egyre jobban közelítjük az átlaggal: $\overline{y} = \frac{\sum_{i=1}^n y_i}{n}$, ahol y_i különböző mérési eredmények. Ezt az átlagot nevezik empirikus várható értéknek is. Ha a mérési hiba sok független valószínűségi változó átlagaként áll elő, akkor érvényes rá a centrális határeloszlás tétel, azaz a hiba eloszlása Gauss-eloszlást követ és a hiba nagyságát a Gauss-eloszlás szórása jellemzi. A statisztikus hibát továbbá lehet csökkenteni a külső tényezők hatásának csökkentésével, pl hűtjük a műszert vagy elektromágnesesen árnyékoljuk.

3. Szisztematikus hiba

A szisztematikus hibák a mérések többszöri megismétlésével hasonló mértékben jelentkeznek, nem véletlenszerűek, nem küszöbölhetők ki statisztikus módszerekkel. Lehet állandó (nullponti hiba) és függhet a mért értéktől is. Eredhetnek:

- a mérőeszköz pontatlanságából: pl. mérőeszköz rossz kalibrációja vagy pl ha a mérőrúd hossza 1 m helyett 99,9 cm, a mért értékék mindig eltérnek egy állandó értékkel a pontosabb rúddal mért értéktől
- a mérési módszerből: pl. ha a mágneses tér mérésekor egy ismeretlen külső forrásból eredő tér adódik hozzá a mérési eredményekhez. A szisztematikus hiba csökkenthető ebben az esetben, ha a mérést több módszerrel vagy másik laboratóriumban végezzük el.
- a mérés során ismeretlen körülmény is okozhatja.

A szisztematikus hibák felderítéséhez:

- a mérőberendezést kalibráljuk: egy hitelesített mérőeszközzel hasonlítjuk össze
- a mérőeszköz gyártója is megadhatja a mért értékre vonatkozóan hány százalék a hiba

Újabb mennyiség származtatása esetén közelítő képletet csak akkor használjuk, ha az így kapott hiba nem nagyobb az egyéb hibáknál, különben használjuk pontosabb képletet.

4. A hiba sztochasztikus modellezése

A sztochasztikus hibáról akkor beszélünk, amikor annak ellenére, hogy jó a modell és a paraméterek, a várható eredménytől különbözőt kapunk. Ez szimulációval becsülhető vagy eloszlásokból számolható.

5. Adatmodellezés – A függvényillesztés alapproblémája

Adatmodellezéskor az elméleti modell bizonyos x_i változók és a paraméterek függvényében becslést ad a mérhető fizikai mennyiségek értékeire. A modell lehet:

- matematikai: függvényillesztés (ilyenkor az x_i értékek adottak. választunk egy elméletileg megfelelő függvényalakot és a függvény paramétereit úgy állítjuk be, hogy a modell által adott $y(x_i|a)$ becslések valamilyen szempont szerint a lehető legjobban illeszkedjenek az y_i mért értékekre. $y(x_i|a) = f(x_i,a)$)
- szimulációs: numerikus algoritmus

Ha a modell szerint a mérési eredmények egymástól függetlenek, és kizárólag az x_i értékektől és az ismeretlen a paraméterektől függnek, akkor használhatjuk a maximum likelihood módszerét (2.tétel).

Egy adott mért érték valamilyen $P(y_i)$ valószínűséggel fordul elő. A $P(y_i)$ valószínűség eloszlása megismételt mérésekkel megbecsülhető, standard hiba esetében ez normális eloszlás, a mérési hibának megfelelő σ szórással (a modell része az is, hogy a hiba milyen eloszlású).

Függvényillesztésnél gyakran érdemes megszabadulni a kilógó pontoktól (outlierektől), amik 3σ -n kívűl esnek.

5.1. Legkisebb négyzetek módszere

A legkisebb négyezetek módszerét a mért mennyiségek közötti függvénykapcsolat analitikus alakjának meghatározásához használjuk. Van n db (x_i, y_i) mérési pontunk. Az x, y mért mennyiségek között lineáris kapcsolatot feltételezünk:

$$y = mx + b$$
.

A mérés célja az m meredekség és b tengelymetszet meghatározása és a lineáris kapcsolat igazolása. A legkisebb négyzetek módszere főképp akkor alkalmazható, ha csak az y értékek rendelkeznek statisztikus hibával és az y_i értékek szórása minden x_i pontban azonos és az x értékeknek nincs hibája. Ez a gyakorlatban általában azt jelenti, hogy az x értékeket pontosabban tudjuk mérni.

$$y = \hat{m}x + \hat{b}$$

egyenest, amely a legjobban illeszkedik a mért n db pontra, \hat{m} és \hat{b} a valódi egyenes m és b paramétereinek becslései a mérési pontok alapján, mivel az (x_i, y_i) mért értékpárok hibával rendelkeznek. Az x_i pontban az egyenes az

$$y_i * = \hat{m}x_i + \hat{b}$$

értéket veszi fel. Az eltérés a mért pontok és az egyenes pontjai között

$$y_i - y_i * = y_i - (\hat{m}x + \hat{b}).$$

Akkor illeszkedik a legjobban az egyenesen a pontokra, ha az eltérések négyzetösszege minimális, tehát keressük

$$S(\hat{m}, \hat{b}) = \sum_{i=1}^{n} (y_i - (\hat{m}x + \hat{b}))^2$$

minimumát \hat{m} és \hat{b} függvényében:

$$\frac{\partial S(\hat{m}, \hat{b})}{\partial \hat{m}} = 0, \frac{\partial S(\hat{m}, \hat{b})}{\partial \hat{b}} = 0.$$

Innen \hat{m}, \hat{b} kiszámolható. Részletesen levezetés: [2]. Az így kapott paraméterekkel megrajzolt egyenes regressziós egyenes, az eljárás neve pedig lineáris regresszió. A legkisebb négyzetek módszere a maximum likelihood speciális esete, amikor σ konstans, normális eloszlású és kiemelhető a χ^2 -ből. Ez részletesebben: 2.tétel vagy [1].

A legkisebb négyzetek módszere akkor is alkalmazható, ha a kapcsolat az x és y értékek között nem lineáris. Ilyenkor többnyire nem lineáris egyenletrendszerekkel megoldásával keressük a paramétereket. De van lehetőség bizonyos összefüggéseket lineárissá alakítani, például logaritmussá alakítással. Pl. $y = ae^{bx} \rightarrow \ln y = \ln a + bx$.

Az illesztés lineáris regresszió jóságát jellemzi a korrelációs együttható:

$$r = \frac{\sigma_{i=1}^n(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sigma_{i=1}^n(x_i - \overline{x})^2 \sigma_{i=1}^n(y_i - \overline{y})^2}}.$$

 $|r| \le 1$ és r
 előjele megegyezik az illesztett egyenes meredekségével. Ha minden pont az egyenes
en van |r| = 1.

6. Magfüggvényes becslések (kernel smoothing)

Diszkrét mintavételezéssel történő megfigyeléssel önmagában nem jellemezhetjük jól a folytonosan leírható jelenségeket.

A $K: R \to [0, \infty]$ függvényt magfüggvénynek nevezzük, ha K korlátos, folytonos, szimmetrikus sűrűségfüggény, melyre teljesülnek a következő feltételek:

$$\lim_{|x|\to\infty} |x|K(x) = 0, \int_{-\infty}^{\infty} x^2 K(x) dx < \infty.$$

Adott egy f(x) függvény, melyből az [a,b] intervallumon veszünk n db mintát (X_i) . Legyen h_n pozitív egész szám, melyet sávszélességnek nevezünk. A magfüggvény becslés alakja a következő:

$$\hat{f}_n(x) = (nh_n)^{-1} \sum_{i=1}^n K(\frac{x - X_i}{h_n}) = n^{-1} \sum_{i=1}^n K_h(x - X_i),$$

ahol $K_h(u) = h_n^{-1} K(u/h_n)$.

A magfüggvény becslés technika alkalmazható:

- az elméleti összefüggést leíró folytonos függvény becslésésére véges, diszkrét mintapontokból
- adat simításra, a mintavételezési eljárás során fellépő hibák csillapítására, a mérési folyamat során átszűrődő zaj kiszűrésére
- neurális hálózatok betanítási fázisában.

Hivatkozások

- [1] http://www.vo.elte.hu/~dobos/teaching/fiznum2019/slides/02.pdf, http://www.vo.elte.hu/~dobos/teaching/fiznum2019/slides/01.pdf
- [2] http://metal.elte.hu/oktatas/klaszfizlab/klasszikus_labor_anyaga.pdf