Recitation 5

DS-GA 1013 Mathematical Tools for Data Science

1. Which of the following cosine functions all have a period of 2π ?

- A. $cos(t), cos(t/2), cost(t/3), \dots$
- B. $cos(\pi t), cos(2\pi t), cos(3\pi t), \dots$
- C. cos(t), cos(2t), cos(3t)...

2. What is the fundamental period of

- 1. $sin(\pi t/3)$
- 2. |sin(t)|
- 3. $cos^2(3t)$
- 4. f(t) = cos(t) + cos(2t) + cos(3t)?

3. Express the following sinusoidal function in the form $A\cos(\omega t - \varphi)$ where $A \in \mathbb{R}^+ \cup \{0\}$ and $\omega, \varphi \in \mathbb{R}$

- 4. Now express the sinusoid above as $\sum_j r_j e^{i\varphi_j} e^{i\omega_j t}$ where $r_j \in \mathbb{R}^+ \cup \{0\}$ and $\omega_j, \varphi_j \in \mathbb{R}$
- 5. What's the fundamental period of $e^{j\omega t}$? What is the projection of $e^{j\omega t}$ to both the axes on complex plane? Animation. Negative frequency.

Here we list some useful facts about complex numbers. Below $z \in \mathbb{C}$ and $a, b \in \mathbb{R}$.

- $z = a + bi = \operatorname{Re}(z) + i\operatorname{Im}(z)$
- (a+bi)(c+di) = ac bd + (ad+bc)i
- $|a+bi|^2 = a^2 + b^2 = (a+bi)(a-bi) = (a+bi)(\overline{a+bi})$
- $|zw| = |z||w|, |z+w| \le |z| + |w|$
- $e^{a+bi} = e^a(\cos(b) + i\sin(b)), e^z e^w = e^{z+w}$

- $\bullet ||e^{a+bi}| = e^a$
- $z = \overline{z}$ if and only if $z \in \mathbb{R}$
- $z + \overline{z} = 2 \operatorname{Re}(z)$ and $z \overline{z} = 2i \operatorname{Im}(z)$
- $\langle \vec{x}, \vec{y} \rangle = \overline{\langle \vec{y}, \vec{x} \rangle}$
- $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$ and $\langle \vec{x}, c\vec{y} \rangle = \overline{c} \langle \vec{x}, \vec{y} \rangle$
- $\|\vec{x}\|^2 = \langle \vec{x}, \vec{x} \rangle$
- For $\vec{x} \in \mathbb{C}^n$, $\vec{x}^* := \overline{(\vec{x})}^T$
- For $A \in \mathbb{C}^{m \times n}$, $A^* = \overline{A}^T$
- For $\vec{x}, \vec{y} \in \mathbb{C}^n$, $\langle \vec{x}, \vec{y} \rangle = \vec{y}^* \vec{x} = \sum_{i=1}^n \overline{\vec{y}[i]} \vec{x}[i]$
- 6. Compute $z = 1 + e^{2\pi i/n} + e^{4\pi i/n} + \cdots + e^{2(n-1)\pi i/n}$ where $n \ge 1$. Explain your answer geometrically.
- 7. For $z, z_1, z_2 \in \mathbb{C}$, if

$$\left|z - \left(\frac{z_1 + z_2}{2}\right)\right| = \frac{|z_1 - z_2|}{2}$$

then show that

$$|z - z_1|^2 + |z - z_2|^2 = |z_1 - z_2|^2$$

- 8. Show that $|r_1e^{it} r_2e^{is}| \ge |r_1 r_2|$ for all $r_1, r_2 > 0$ and $t, s \in \mathbb{R}$.
- 9. Prove that Cauchy-Schwarz holds in a complex inner product space:

$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| ||\vec{y}||.$$

10. (Sines and cosines) Let $x: [-1/2, 1/2) \to \mathbb{R}$ be a real-valued square-integrable function defined on the interval [-1/2, 1/2), i.e. $x \in L_2[-1/2, 1/2)$. The Fourier series coefficients of x, are given by

$$\hat{x}[k] := \langle x, \varphi_k \rangle = \int_{-1/2}^{1/2} x(t) \exp\left(-i2\pi kt\right) dt, \quad k \in \mathbb{Z},$$
(1)

and the corresponding Fourier series of order k_c equals

$$\mathcal{F}_{k_c}\{x\}(t) = \sum_{k=-k}^{k_c} \hat{x}[k] \exp(i2\pi kt).$$
 (2)

As we will discuss in class, this is a representation of x in a basis of complex exponentials. In this problem we show that for real signals the Fourier series is equivalent to a representation in terms of cosine and sine functions.

- 1. Prove that $\hat{x}[k] = \overline{\hat{x}[-k]}$ for all $k \in \mathbb{Z}$. [Hint: What is $\overline{e^{it}}$?]
- 2. Show that the Fourier series of x of order k_c can be written as

$$\mathcal{F}_{k_c}\{x\}(t) = a_0 + \sum_{k=1}^{k_c} a_k \cos(2\pi kt) + b_k \sin(2\pi kt),$$

for some $a_0, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{R}$. [Hint: Group terms in $\mathcal{F}_{k_c}\{x\}(t)$ corresponding to $\pm k$ and use previous part. What is the real part of zw for $z, w \in \mathbb{C}$?]

- 3. Give expressions for the coefficients a_k, b_k for $k \geq 1$ from the previous part as real integrals. Interpret them in terms of inner products.
- 4. Suppose $x(t) = \cos(2\pi(t+\varphi))$ for some fixed $\varphi \in \mathbb{R}$. What are the Fourier coefficients of x?
- 5. Suppose that f is also even (i.e., x(-t) = x(t)). Prove that the Fourier coefficients are all real (i.e., that $\hat{x}[k] \in \mathbb{R}$ for all $k \in \mathbb{Z}$).