1 Language \mathcal{L}

In this section we define an imperative language \mathcal{L} with memory allocation and deallocation primitives, and for simplification we only use pointers as values.

The syntax of the language \mathcal{L} is as follows.

```
\begin{array}{lll} x,y,z,\dots \text{ (variables)} & \in & \mathbf{Var} \\ & s \text{ (statements)} & ::= & \mathbf{skip} \mid s_1; s_2 \mid *x \leftarrow y \mid \mathbf{free}(x) \\ & \mid & \mathbf{let} \ x = \mathbf{malloc}() \text{ in } s \mid \mathbf{let} \ x = \mathbf{null} \text{ in } s \\ & \mid & \mathbf{let} \ x = y \text{ in } s \mid \mathbf{let} \ x = *y \text{ in } s \\ & \mid & \mathbf{ifnull} \ (*x) \text{ then } s_1 \text{ else } s_2 \mid f(\vec{x}) \\ & \mid & \mathbf{const}(*x)s \mid \mathbf{endconst}(*x) \\ & d \text{ (proc. defs.)} & ::= & \{f \mapsto (x_1, \dots, x_n)s\} \\ & D \text{ (definitions)} & ::= & \langle d_1 \cup \dots \cup d_n \rangle \\ & P \text{ (programs)} & ::= & \langle D, s \rangle \\ & E \text{ (context)} & ::= & E; s \mid [] \end{array}
```

Notation \vec{x} is for a finite sequence $\{x_1, ..., x_n\}$, where we assume that each element is distinct; $[\vec{x'}/\vec{x}]s$ is for a term obtained by replacing each free occurrence of \vec{x} in s with variables $\vec{x'}$; the $\mathbf{Dom}(f)$ is a mapping from function name f to its domain; for a map f, the $f\{x \mapsto v\}$ and $f \setminus x$ are defined as follows:

$$f\{x \mapsto v\}(w) = \begin{cases} v & \text{if } x = w \\ f(w) & \text{otherwise.} \end{cases}$$
$$(f\backslash x)(w) = \begin{cases} v & \text{if } x = w \\ f(w) & \text{otherwise.} \end{cases}$$

and $filter_{-}C(C,*x)$ is defined by a pseudcode as follows:

$$filter_C(C,*x) = let C' = C - \mathbf{const}(*x) in$$

$$if \ \mathbf{const}(*x) \in C' \ then \ return \ C'$$

$$else \ return \ C' \setminus \{\mathbf{null}(*x), \neg \mathbf{null}(*x)\}$$

The Var is a countably infinite set of variables and each variable is a pointer. The statement skip means "does nothing". The statement s_1 ; s_2 is a sequential execution of s_1 and s_2 . The statement $*x \leftarrow y$ updates the content of cell which is pointed to by x with the value y. The statement free(x) deallocates a memory cell which is pointed to by pointer x. The statement let x = e in s evaluates the expression e, binds x to the result, and executes s. The expression malloc() allocates a new memory cell. The expression null evaluates to the null pointer. The expression *y means dereferencing a memory cell pointed to by y. The statement ifnull (*x)then s_1 else s_2 executes s_1 if *x is null and executes s_2 otherwise. The statement $f(\vec{x})$ expresses a procedure f with arguments \vec{x} . The statement const(*x) means (*x) is a constant in statement s; the statement endconst(*x) means from this point (*x) maybe not constant.

The *d* represents a procedure definition which maps a procedure name *f* to its procedure body $(\vec{x})s$; The *D* represents a set of procedure definitions $\langle d_1 \cup \ldots d_n \rangle$, and each definition is distinct;

The pair $\langle D, s \rangle$ represents a program, where D is a set of definitions and s is a main statement; the E represents evaluation context.

1.1 Operational semantics

In this section we introduce operational semantics of language \mathcal{L} . We assume there is a countable infinite set \mathcal{H} of heap addresses ranged over by l.

We use a configuration $\langle H, R, s, n, C \rangle$ to express a run-time state. Each elements in the configuration is as follows.

- H, a heap, is a finite mapping from \mathcal{H} to $\mathcal{H} \cup \{\mathbf{null}\}$;
- R, an *environment*, is a finite mapping from Var to $\mathcal{H} \cup \{null\}$;
- \bullet s is the statement that is being executed;
- n is a natural number that represents the number of memory cells available for allocation.
- C is a set of actions, which contains $\mathbf{const}(*x)$, $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$.

The operational semantics of the language \mathcal{L} is given by a labeled transition relation $\langle H, R, s, n, C \rangle \xrightarrow{\rho}_D \langle H', R', s', n', C' \rangle$. The label ρ is as follows.

$$\rho \text{ (label)} ::= \mathbf{malloc}(x') \mid \mathbf{free} \mid \mathbf{null}(*x) \mid \neg \mathbf{null}(*x) \mid \tau$$

The ρ , an *action*, is **malloc**, **free**, or τ . The action **malloc** expresses an allocation of a memory cell; **free** expresses a deallocation of a memory cell; τ expresses the other actions. We often omit τ in $\xrightarrow{\tau}_D$. We use a metavariable σ for a finite sequence of actions $\rho_1 \dots \rho_n$. We write $\xrightarrow{\rho_1 \dots \rho_n}_D D$ for $\xrightarrow{\rho_1}_D \xrightarrow{\rho_2}_D \dots \xrightarrow{\rho_n}_D D$. We write $\xrightarrow{\rho}_D D D D D D$. We write $\xrightarrow{\rho}_D D D D D D D$. Several important rules are listed as follows.

- Sem-Constskip: That a memory cell pointed to by x is no longer a constant is expressed by doing nothing.
- Sem-ConstSeq: That a memory cell pointed to by x should be a constant in a stamtement s is expressed by adding a statement **endconst**(*x) at the end of statement s.
- SEM-FREE: Deallocation of a memory cell pointed to by x is expressed by deleting the entry for R(x) from the heap. This action increments the number of available cells (i.e., n) by one (i.e., n + 1).
- SEM-MALLOC and SEM-OUTOFMEM: Allocation of a memory cell is expressed by adding a fresh entry to the heap. This action is allowed only if the number of available cells is positive; if the number is zero, then the configuration leads to an error state **OutOfMemory**.
- SEM-ASSIGNEXN,SEM-FREEEXN,SEM-DEREFEXN and SEM-FREEEXN: These rules express an illegal access to memory. If such action is performed, then the configuration leads to exceptional state \mathbf{MemEx} . This state \mathbf{MemEx} is not seen as an erroneous state in the current paper, hence a well-typed program may lead to these states. The command $\mathbf{free}(x)$, if x is a null pointer, leads to \mathbf{MemEx} in the current semantics, although it is equivalent to \mathbf{skip} in the C language.

• Sem-Constexn: expresses that if a constant *x is changed in s it will raise **Constex** exception.

Our goal is to guarantee total memory-leak freedom and reject memory leaks. By our language \mathcal{L} , they are formally defined as follows:

Definition 1 (total memory-leak freedom). A program $\langle D, s \rangle$ is totally memory-leak free if there is a natural number n such that it does not require more than n cells.

Definition 2 (Memory leak). A configuration $\langle H, R, s, n, C \rangle$ goes overflow if there is σ such that $\langle H, R, s, n, C \rangle \stackrel{\sigma}{\Longrightarrow} \mathbf{OutOfMemory}$. A program $\langle D, s \rangle$ consumes at least n cells if $\langle \emptyset, \emptyset, s, n, \emptyset \rangle$ goes overflow.

2 Type system

2.1 Types

The syntax of the types is as follows.

```
::= \mathbf{0} \mid P_1; P_2 \mid \mathbf{free} \mid \alpha \mid \mu \alpha. P
P (behavioral types)
                                                             |  let x = y in P |  let x = malloc in P
                                                             \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P \mid \mathbf{let} \ x = *y \ \mathbf{in} \ P
                                                             |(*x)(P_1, P_2)| \mathbf{const}(*x)P | \mathbf{endconst}(*x)
Γ
     (variable type environment)
                                                            \{x_1, x_2, \ldots, x_n\}
                                                    ::=
     (dependent function type)
                                                    ::=
                                                            (\vec{x})P
\Theta (function type environment)
                                                            \{f_1:\Psi_1,\ldots,f_n:\Psi_n\}
   (constant values)
                                                            \mathbf{null}(*x) \mid \neg \mathbf{null}(*x) \mid \mathbf{const}(*x)
F
     (constant value environment)
                                                   ::=
                                                            \{k_1, ..., k_n\}
```

Behavioral types ranged over by P express the abstaction of behaviors of a program. The type $\mathbf{0}$ represents the do-nothing behavior; the type P_1 ; P_2 represents the sequential execution of P_1 and P_2 ; The type **malloc** represents an allocation of a memory cell exactly once; the type **free** represents a deallocation; the type $\mu\alpha.P$ represents the behavior of α defined by the recursive equation $\alpha = P$; the type $(*x)(P_1, P_2)$ represents that P_1 or P_2 is obtained dependent on *x; the type $P_1 + P_2$ represents the choice between P_1 and P_2 ; the α is a type variable; the type $\mathbf{const}(*x)P$ represents that *x is a constant in behavioral type P; the type $\mathbf{endconst}(*x)$ represents *x no longer be a constant from this point.

A type environments for variables ranged over by Γ is a set of variables. Since our interest is the behavior of a program, not the types of values, a variable type environment does not carry information on the types of variables.

Dependent function types ranged over by Ψ represents the behavior of a function; \vec{x} is the formal arguments of the function.

Function types ranged over by Θ is a mapping from function names to dependent function types. k represents constant values, where $\mathbf{null}(*x)$ represents (*x) is a null pointer; $\neg \mathbf{null}(*x)$ represents (*x) is not a null pointer; $\mathbf{const}(*x)$ represents (*x) is a constant.

Constant value environment ranged over by F is a set of constant variables.

```
C' = filter\_C(C, *x)
                                                \langle H, R, \mathbf{endconst}(*x), n, C \rangle \rightarrow_D \langle H, R, \mathbf{skin}, n, C' \rangle
                                                                                                                                                                        (Sem-ConstSkip)
          \langle H, R, \mathbf{const}(*x)s, n, C \rangle \rightarrow_D \langle H, R, s; \mathbf{endconst}(*x), n, C \cup \{\mathbf{const}(*x)\} \rangle (SEM-CONSTSEQ)
                                                           \langle H, R, \mathbf{skip}; s, n, C \rangle \longrightarrow_D \langle H, R, s, n, C \rangle
                                                                                                                                                                                        (SEM-SKIP)
                                                            \langle H, R, s_1, n, C \rangle \xrightarrow{\rho}_D \langle H', R', s_1', n', C' \rangle
                                                                                                                                                                                         (Sem-Seq)
                                                     \overline{\langle H, R, s_1; s_2, n, C \rangle \xrightarrow{\rho}_D \langle H', R', s'_1; s_2, n', C' \rangle}
               \frac{x'\notin\mathbf{Dom}(R)}{\langle H,\ R,\ \mathbf{let}\ x=\mathbf{null}\ \mathbf{in}\ s,n,C\rangle\longrightarrow_{D}\langle H,\ R\left\{ x'\mapsto\mathbf{null}\right\} ,\ [x'/x]\ s,n,C\rangle}\ (\text{Sem-LetNull})
                           \frac{(\text{SEM-LETEQ})}{\langle H, R, \text{ let } x = y \text{ in } s, n, C \rangle \longrightarrow_D \langle H, R \{x' \mapsto R(y)\}, [x'/x] s, n, C \rangle}
                 \frac{H(R(x)) = \mathbf{null}, \mathbf{const}(*x) \notin C}{\langle H, \ R, \ \mathbf{ifnull} \ (*x) \ \mathbf{then} \ s_1 \ \mathbf{else} \ \ s_2, \ n, C \rangle \xrightarrow{\mathbf{null}(*x)}_{D} \langle H, \ R, \ s_1, \ n, C \rangle} \text{(Sem-IfnullT)}
                                                           H(R(x)) \neq \mathbf{null}, \mathbf{const}(*x) \notin C
                 \frac{1}{\langle H, R, \text{ if null } (*x) \text{ then } s_1 \text{ else } s_2, \ n, C \rangle} \xrightarrow{\neg \text{null}(*x)} D \langle H, R, s_2, n, C \rangle} (\text{Sem-If-Null} (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle
                                                                   H(R(x)) = \mathbf{null}, \mathbf{const}(*x) \in C
           \overline{\langle H, R, \text{ ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \xrightarrow{\text{null}(*x)}}_D \langle H, R, s_1, n, C \cup \{\text{null}(*x)\} \rangle
                                                                                                                                                              (SEM-IFCONSTNULLT)
                                                                   H(R(x)) \neq \text{null}, \mathbf{const}(*x) \in C
         \overline{\langle H, R, \text{ ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \xrightarrow{\neg \text{null}(*x)} }_D \langle H, R, s_2, n, C \cup \{\neg \text{null}(*x)\} \rangle
                                                                                                                                                               (SEM-IFCONSTNULLF)
                   \frac{\mathbf{const}(*x) \notin C}{\left\langle H\{R(x) \mapsto v\}, R, *x \leftarrow y, n, C \right\rangle \longrightarrow_{D} \left\langle H\left\{R(x) \mapsto R(y)\right\}, R, \mathbf{skip}, n, C \right\rangle} \left( \text{Sem-Assign} \right)
        \frac{x'\notin\mathbf{Dom}(R)}{\langle H,\ R,\ \mathbf{let}\ x=*y\ \mathbf{in}\ s,n,C\rangle\longrightarrow_{D}\langle H,\ R\{x'\mapsto H(R(y))\}\,,\ [x'/x]\ s,n,C\rangle}\ (\text{Sem-LetDeref})
                                                                 R(x) \neq \mathbf{null} \text{ and } R(x) \in \mathbf{Dom}(H)
                          \frac{1}{\langle H\{R(x)\mapsto v\},\ R,\ \mathbf{free}(x),n,C\rangle \xrightarrow{\mathbf{free}}_{D} \langle H\backslash R(x),\ R,\ \mathbf{skip},n+1,C\rangle} \ (\text{Sem-Free})
                                                                             l \notin \mathbf{Dom}(H)
  \langle H,\ R,\ \mathbf{let}\ \overline{x = \mathbf{malloc}()\ \mathbf{in}\ s, n, C\rangle} \xrightarrow{\mathbf{malloc}(x')}_{D} \langle H\left\{l \mapsto v\right\},\ R\left\{x' \mapsto l\right\},\ [x'/x]\ s, n-1, C\rangle
\frac{D(f) = (\vec{y})s}{\langle H, \ R, \ f(\vec{x}), n, C \rangle \longrightarrow_D \langle H, \ R, \ [\vec{x}/\vec{y}] \ s, n, C \rangle}
                                                                                                                        R(x) = \mathbf{null} \text{ or } R(x) \notin \mathbf{Dom}(H)
                                                                                                       \overline{\langle H, R, \mathbf{free}(x), n, C \rangle} \xrightarrow{\mathbf{free}}_{D} \mathbf{MemEx}
         \frac{R(x) = \mathbf{null} \text{ or } R(x) \notin \mathbf{Dom}(H)}{\langle H, \ R, \ *x \leftarrow y, n, C \rangle \longrightarrow_D \mathbf{MemEx}}
                                                                                                                        R(y) = \mathbf{null} \text{ or } R(y) \notin \mathbf{Dom}(H)
                                                                                                            \overline{\langle H, R, \text{ let } x = *y \text{ in } s, n, C \rangle} \longrightarrow_D \mathbf{MemEx}
                                                              (Sem-AssignExn)
                                                                                                                                                                          (Sem-Derefexn)
                                              \frac{\forall z.\mathbf{const}(*z) \in C \text{ and } R(x) = R(z)}{\langle H\{R(x) \mapsto v\}, R, *x \leftarrow y, n, C \rangle \longrightarrow_{D} \mathbf{ConstEx}} \text{(Sem-AssignConstExn)}
                    \langle H, R, \text{ let } x = \text{malloc}() \text{ in } s, 0, C \rangle \xrightarrow{\text{malloc}(x')}_{D} \text{OutOfMemory} (\text{Sem-OutOfMem})
```

Figure 1: Operational semantics of \mathcal{L} .

Figure 2 depicts semantics of behavioral types with dependent types, and they are given by the labeled transition system. The relation $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$ means that P can make an action ρ , and P turns into P' after it makes action ρ ; F and F' record constant value environment before and after action ρ respectively.

Notation $filter_T(F, *x)$ is defined by a pseudcode as follows:

$$\begin{array}{ll} filter_T(F,*x) & = & let \ F' = F - \mathbf{const}(*x) \ in \\ & if \ \mathbf{const}(*x) \notin \ F' \ then \ return \ (F' \setminus \{\mathbf{null}(*x), \neg \mathbf{null}(*x)\}) \\ & else \ return \ F' \end{array}$$

2.2 Typing rules

The type judgment for statements is of the form Θ ; $\Gamma \vdash s : P$, which represents that under the function type environment Θ and the variable type environment Γ , the abstracted behavioral type of statement s is P.

Before showing typing rules for statements in Figure 3, we need explain several important definitions. The first one is $OK_n(P, F)$, a predicate, where P represents the behavior of a program which consumes at most n memory cells.

Definition 3 $(\sharp_{\rho}(\sigma))$. $\sharp_{\rho}(\sigma)$ is the number of ρ in the sequence σ .

Definition 4. $OK_n(P, F)$ holds if, (1) $\forall P'$ and σ . if $\langle P, F \rangle \xrightarrow{\sigma} \langle P', F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F)

Definition 5. OK(F) holds if F does not contain both $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$.

Definition 6 (Subtyping). $F \vdash P_1 \leq P_2$ is the largest relation such that, for any P_1' , F' and ρ , if $\langle P_1, F \rangle \xrightarrow{\rho} \langle P_1', F' \rangle$, then there exists P_2' such that $\langle P_2, F \rangle \xrightarrow{\rho} \langle P_2', F' \rangle$ and $F' \vdash P_1' \leq P_2'$. We write $P_1 \leq P_2$ if $F \vdash P_1 \leq P_2$ for any F.

2.3 Type soundness

Theorem 2.1. If $\vdash \langle D, s \rangle$: n for some n, then $\langle D, s \rangle$ is totally memory-leak free.

The proof is based on the following lemmas: preservation and lack of immediate overflow.

Definition 7. we write $\Theta: \Gamma \vdash \langle H, R, s, n, C \rangle : \langle P, F \rangle$, if $\Theta: \Gamma \vdash s : P$ and $OK_n(P, F)$ with $C \approx F$.

Lemma 2.2 (Preservation). suppose that $\Theta; \Gamma \vdash \langle H, R, s, n, C \rangle : \langle P, F \rangle$. If $\langle H, R, s, n, C \rangle \xrightarrow{\rho} \langle H', R', s', n', C' \rangle$ then $\exists P', F'$ s.t. (1) $\Theta; \Gamma \vdash \langle H', R', s', n', C' \rangle : \langle P', F' \rangle$ and (2) $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$.

Lemma 2.3 (Lack of immediate overflow). If Θ ; $\Gamma \vdash \langle H, R, s, n, C \rangle : \langle P, F \rangle$, then $\langle H, R, s, n, C \rangle \xrightarrow{\mathbf{malloc}}$ OutOfMemory.

$$\langle \mathbf{0}; P, F \rangle \rightarrow \langle P, F \rangle \qquad (\text{TR-Skip})$$

$$\langle \mathbf{free}, F \rangle \xrightarrow{\mathbf{free}} \langle \mathbf{0}, F \rangle \qquad (\text{TR-Free}) \qquad \langle \mu \alpha. P, F \rangle \rightarrow \langle [\mu \alpha. P/\alpha]P, F \rangle (\text{TR-Rec})$$

$$\langle P_1 + P_2, F \rangle \rightarrow \langle P_1, F \rangle (\text{TR-CHOICEL}) \qquad \langle P_1 + P_2, F \rangle \rightarrow \langle P_2, F \rangle (\text{TR-CHOICER})$$

$$\frac{\langle P_1, F \rangle \xrightarrow{P} \langle P_1', F' \rangle}{\langle P_1; P_2, F \rangle \xrightarrow{P} \langle P_1'; P_2, F' \rangle} \qquad (\text{TR-CHOICER})$$

$$\langle \mathbf{let} \ x = \mathbf{malloc} \ \mathbf{in} \ P, F \rangle \xrightarrow{\mathbf{malloc}(x')} \langle [x'/x]P, F \rangle \qquad (\text{TR-LETMALLOC})$$

$$\langle \mathbf{let} \ x = y \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-LETXY})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-NOTCONST})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-NOTCONST})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-NOTCONST})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-NOTCONST})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-NOTCONST})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-NOTCONST})$$

$$\langle \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ P, F \rangle \rightarrow \langle [x'/x]P, F \rangle \qquad (\text{TR-NOTCONST})$$

$$\langle \mathbf{let} \ x = \mathbf{null}$$

Figure 2: semantics of behavioral types with dependent types.

$$\Theta; \Gamma \vdash \mathbf{skip} : \mathbf{0} \qquad (\text{T-Skip}) \qquad \frac{\Theta; \Gamma \vdash s_1 : P_1 \quad \Theta; \Gamma \vdash s_2 : P_2}{\Theta; \Gamma \vdash s_1 ; s_2 : P_1 ; P_2} \quad (\text{T-Seq})$$

$$\Theta; \Gamma, x, y \vdash *x \leftarrow y : \mathbf{0} \quad (\text{T-Assign}) \qquad \Theta; \Gamma, x \vdash \text{free}(x) : \text{free} \quad (\text{T-Free})$$

$$\Theta; \Gamma, x \vdash s : P \qquad \Theta; \Gamma \vdash \text{let } x = \text{malloc}() \text{ in } s : \text{let } x = \text{malloc in } P \\ \text{(T-MALLOC)} \qquad \Theta; \Gamma, x, y \vdash s : P \qquad \Theta; \Gamma, x \vdash s : P \qquad (\text{T-LetNull})$$

$$\Theta; \Gamma, x \vdash \text{endconst}(*x) : \text{endconst}(*x) \qquad (\text{T-Endconst})$$

$$\frac{\Theta; \Gamma, x \vdash s : P}{\Theta; \Gamma, x \vdash \text{const}(*x) s : \text{const}(*x) P} \qquad (\text{T-Const})$$

$$\frac{\Theta; \Gamma, x \vdash s : P}{\Theta; \Gamma, x \vdash \text{iffull}(*x) \text{ then } s_1 \text{ else } s_2 : (*x)(P_1, P_2)} \qquad (\text{T-Ifnull})$$

$$\frac{\Theta; \Gamma \vdash s : P_1 \qquad \Theta; \Gamma, x \vdash s : P}{\Theta; \Gamma \vdash s : P_2} \qquad (\text{T-Call})$$

$$\frac{\Theta; \Gamma \vdash s : P_1 \qquad P_1 \leq P_2}{\Theta; \Gamma \vdash s : P_2} \qquad (\text{T-Sub})$$

$$\frac{\Theta(f) = (\vec{x})P \qquad \text{Dom}(D) = \text{Dom}(\Theta) \qquad \Theta; x_1, \dots, x_n \vdash s : P \text{ for each } f \mapsto (x_1, \dots, x_n) \in D}{P \vdash D : \Theta} \qquad (\text{T-Def})$$

$$\frac{\vdash D : \Theta \qquad \Theta; \emptyset \vdash s : P \qquad OK_n(P, F)}{\vdash \langle D, s \rangle : n} \qquad (\text{T-Program})$$

Figure 3: typing rules

3 Proof of Lemmas

Lemma 3.1. If $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$ and OK(F), then OK(F')

Proof. By induction on $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$.

• Case $P = \mathbf{0}; P'$ and $\langle \mathbf{0}; P', F \rangle \rightarrow \langle P', F \rangle$

We need to prove OK(F'). From assumption, we have that OK(F) holds, and in this case F' is the same as F. Therefore, OK(F') holds.

- Case $P = \text{let } x = \text{malloc in } P' \text{ and } \langle \text{let } x = \text{malloc in } P', F \rangle \xrightarrow{\text{malloc}(x')} \langle [x'/x]P', F \rangle$ Similiar to above.
- Case $P = \mathbf{let} \ x = y \ \mathbf{in} \ P'$ and $\langle \mathbf{let} \ x = y \ \mathbf{in} \ P', F \rangle \to \langle [x'/x]P', F \rangle$ Similiar to above.
- Case $P = \mathbf{let} \ x = *y \mathbf{in} \ P'$ and $\langle \mathbf{let} \ x = *y \mathbf{in} \ P', F \rangle \to \langle [x'/x]P', F \rangle$ Similiar to above.
- Case P = let x = null in P' and $\langle \text{let } x = \text{null in } P', F \rangle \rightarrow \langle [x'/x]P', F \rangle$ Similiar to above.
- Case P =free and \langle free, $F \rangle \xrightarrow{\text{free}} \langle$ **0**, $F \rangle$ Similar to above.
- Case $P=(*x)(P_1,P_2)$ and $\cfrac{\operatorname{\mathbf{const}}(*x)\not\in F}{\langle (*x)(P_1,P_2),F\rangle \xrightarrow{\operatorname{\mathbf{null}}(*x)} \langle P_1,F\rangle}$ We need to prove OK(F). From the assumption, OK(F) holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\mathbf{const}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \xrightarrow{\neg \mathbf{null}(*x)} \langle P_2, F \rangle}$ We need to prove OK(F). From the assumption, OK(F) holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{null}(*x) \in F}{\langle (*x)(P_1, P_2), F \rangle \to \langle P_1, F \rangle}$ We need to prove OK(F). From the assumption, OK(F) holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\neg \mathbf{null}(*x) \in F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle}$ We need to prove OK(F). From the assumption, it holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\mathbf{null}(*x), \neg \mathbf{null}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \xrightarrow{\mathbf{null}(*x)} \langle P_1, F \cup \mathbf{null}(*x) \rangle}} \langle P_1, F \cup \mathbf{null}(*x) \rangle$

We need to prove $OK(F \cup \mathbf{null}(*x))$. From the assumption, we have OK(F) and $\neg \mathbf{null}(*x) \notin F$. Therefore $OK(F \cup \mathbf{null}(*x))$ holds.

• Case $P = (*x)(P_1, P_2)$ and $\frac{\mathbf{null}(*x), \neg \mathbf{null}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle} \xrightarrow{\neg \mathbf{null}(*x)} \langle P_2, F \cup \neg \mathbf{null}(*x) \rangle}$

We need to prove $OK(F \cup \neg \mathbf{null}(*x))$. From the assumption, we have OK(F) and $\mathbf{null}(*x) \notin F$. Therefore $OK(F \cup \neg \mathbf{null}(*x))$ holds.

- Case $P = \mathbf{const}(*x)P'$ and $\langle \mathbf{const}(*x)P', F \rangle \to \langle P'; \mathbf{endconst}(*x), F \cup \{\mathbf{const}(*x)\} \rangle$ We need to prove $OK(F \cup \{\mathbf{const}(*x)\})$. From the assumption, we have OK(F) holds. Also, $F \cup \{\mathbf{const}(*x)\}$ does not contain both $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$. Therefore, $OK(F \cup \{\mathbf{const}(*x)\})$ holds.
- Case $P = \mathbf{endconst}(*x)$ and $\frac{F' = filter \cdot T(F, *x)}{\langle \mathbf{endconst}(*x), F \rangle \rightarrow \langle \mathbf{0}, F' \rangle}$ we need to prove OK(F'). Form assumption, we have OK(F) which means F does not contain both $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$. By the definition of filter function, we have $F' = F \setminus \{\mathbf{null}(*x), \neg \mathbf{null}(*x)\}$ or $F \mathbf{const}(*x)$, which means F' does not contain both $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$. Therefore, OK(F') holds.
- Case $P = \mu \alpha . P'$ and $\langle \mu \alpha . P', F \rangle \rightarrow \langle [\mu \alpha . P'] P', F \rangle$ We need to prove OK(F). From the assumption, we have that OK(F) holds.
- Case $P = P_1$; P_2 and $\frac{\langle P_1, F \rangle \stackrel{\rho}{\longrightarrow} \langle P_1', F' \rangle}{\langle P_1; P_2, F \rangle \stackrel{\rho}{\longrightarrow} \langle P_1'; P_2, F' \rangle}$ We need to prove OK(F'). By IH, we have $\langle P_1, F \rangle \stackrel{\rho}{\longrightarrow} \langle P_1', F' \rangle$ and OK(F) holds, then OK(F') holds.

Lemma 3.2. If $OK_n(P,F)$ and $\langle P,F \rangle \xrightarrow{\rho} \langle P',F' \rangle$, then

- $OK_{n-1}(P', F')$ if $\rho =$ malloc,
- $OK_{n+1}(P', F')$ if $\rho =$ free,
- $OK_n(P', F')$ if $\rho = Otherwise$

Proof. By induction on $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$.

• Case $P = \mathbf{0}$; P' and $\langle \mathbf{0}; P', F \rangle \to \langle P', F \rangle$ We need to prove $OK_n(P', F)$. Assume that $OK_n(P', F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P', F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, $\sharp_m(\sigma) - \sharp_f(\sigma) > n$ or (2) OK(F) does not hold.

From the definition of that $OK(\mathbf{0}; P', F)$ holds, we have (1) if $\langle \mathbf{0}; P', F \rangle \to \langle P', F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F), which are in contradiction to the assumption. Therefore, $OK_n(P', F)$ holds.

• Case P = let x = malloc in P' and $\langle \text{let } x = \text{malloc in } P', F \rangle \xrightarrow{\text{malloc}(x')} \langle [x'/x]P', F \rangle$ we need to prove $OK_{n-1}([x'/x]P', F)$. Assume that $OK_{n-1}([x'/x]P', F)$ does not hold. Then we have (1) $\exists \sigma$ and Q s.t. $\langle [x'/x]P', F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m \sigma - \sharp_f \sigma > n$ or (2) OK(F) does not hold.

From the definition of $OK_n(P,F)$, we have (1) $\langle \text{let } x = \text{malloc in } P',F \rangle \xrightarrow{\text{malloc}(x')} \langle [x'/x]P',F \rangle \xrightarrow{\sigma} \langle Q,F' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n-1$ and (2) OK(F) holds. Therefore, we get the contradiction, and the $OK_{n-1}([x'/x]P',F)$ holds.

• Case $P = \mathbf{let} \ x = y \ \mathbf{in} \ P'$ and $\langle \mathbf{let} \ x = y \ \mathbf{in} \ P', F \rangle \rightarrow \langle [x'/x]P', F \rangle$ Similar to the above. • Case $P = \text{let } x = *y \text{ in } P' \text{ and } \langle \text{let } x = *y \text{ in } P', F \rangle \rightarrow \langle [x'/x]P', F \rangle$ Similar to the above.

holds.

- Case P = let x = null in P' and $\langle \text{let } x = \text{null in } P', F \rangle \rightarrow \langle [x'/x]P', F \rangle$ Similar to the above.
- Case P =free and $\langle \text{free}, F \rangle \xrightarrow{\text{free}} \langle \mathbf{0}, F \rangle$ We need to prove $OK_{n+1}(\mathbf{0}, F)$, which means we need to prove (1) $\forall \sigma$ and Q if $\langle \mathbf{0}, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F) holds. There is no Q and σ s.t. $\langle \mathbf{0}, F \rangle \xrightarrow{\sigma} \langle Q, F \rangle$, so (1) holds. OK(F) holds from Lemma 3.1. Therefore, $OK(\mathbf{0}, F)$ holds.
- Case $P = \mathbf{endconst}(*x)$ and $\frac{F' = filter \cdot T(F, *x)}{\langle \mathbf{endconst}(*x), F \rangle \rightarrow \langle \mathbf{0}, F' \rangle}$ We need to prove $OK_n(\mathbf{0}, F')$, which means we need to prove (1) $\forall \sigma$ and Q if $\langle \mathbf{0}, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F') holds. There is no Q and σ s.t. $\langle \mathbf{0}, F \rangle \xrightarrow{\sigma} \langle Q, F \rangle$, so (1) holds. From the assumption $OK_n(P, F)$, we have OK(F), which means F does not contain both $\mathbf{null}(*x)$ and $\neg \mathbf{null}(*x)$. By the definition of function $filter \cdot T$, we have $F' = F \setminus \{\mathbf{null}(*x), \neg \mathbf{null}(*x)\}$ or $F - \mathbf{const}(*x)$. Therefore OK(F') holds. So $OK_n(\mathbf{0}, F')$
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{const}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \xrightarrow{\operatorname{null}(*x)} \langle P_1, F \rangle}$ We need to prove $OK_n(P_1, F)$. Assume that $OK_n(P_1, F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P_1, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \xrightarrow{\operatorname{null}(*x)} \langle P_1, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_1, F)$ holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{const}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \to \langle P_2, F \rangle}$ We need to prove $OK_n(P_2, F)$. Assume that $OK_n(P_2, F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P_2, F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \stackrel{\neg \operatorname{null}(*x)}{\longrightarrow} \langle P_2, F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_2, F)$ holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\operatorname{null}(*x) \in F}{\langle (*x)(P_1, P_2), F \rangle \to \langle P_1, F \rangle}$ We need to prove $OK_n(P_1, F)$. Assume that $OK_n(P_1, F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P_1, F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$ and $\sharp_m(\sigma) \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \to \langle P_1, F \rangle \stackrel{\sigma}{\longrightarrow} \langle Q, F' \rangle$, then $\sharp_m(\sigma) \sharp_f(\sigma) \leq n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_1, F)$ holds.

- Case $P = (*x)(P_1, P_2)$ and $\frac{\neg \mathbf{null}(*x) \in F}{\langle (*x)(P_1, P_2), F \rangle \to \langle P_2, F \rangle}$ We need to prove $OK_n(P_2, F)$. Assume that $OK_n(P_2, F)$ does not hold. Then we have (1) $\exists \sigma$ and Q s.t. $\langle P_2, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m(\sigma) \sharp_f(\sigma) > n$ or (2) OK(F) does not hold. From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \to \langle P_2, F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) \sharp_f(\sigma) \leq n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_2, F)$ holds.
- Case $P = (*x)(P_1, P_2)$ and $\frac{\mathbf{null}(*x), \neg \mathbf{null}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \xrightarrow{\mathbf{null}(*x)} \langle P_1, F \cup \{\mathbf{null}(*x)\} \rangle} \langle P_1, F \cup \{\mathbf{null}(*x)\} \rangle}$

We need to prove $OK_n(P_1, F \cup \{\mathbf{null}(*x)\})$. Assume that $OK_n(P_1, F \cup \{\mathbf{null}(*x)\})$ does not hold. Then we have (1) $\exists \sigma$ and Q s.t. $\langle P_1, F \cup \{\mathbf{null}(*x)\} \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$ or (2) $OK(F \cup \{\mathbf{null}(*x)\})$ does not hold.

From the definition of that $OK_n((*x)(P_1, P_2), F)$ holds, we have (1) if $\langle (*x)(P_1, P_2), F \rangle \xrightarrow{\mathbf{null}(*x)} \langle P_1, F \cup \{\mathbf{null}(*x)\} \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F) holds. By OK(F) and $\mathbf{null}(*x), \neg \mathbf{null}(*x) \notin F$, we have $OK(F \cup \{\mathbf{null}(*x)\})$ holds. Therefore, we get the contradiction and $OK_n(P_1, F \cup \{\mathbf{null}(*x)\})$ holds.

- Case $P = (*x)(P_1, P_2)$ and $\frac{\mathbf{null}(*x), \neg \mathbf{null}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \xrightarrow{\neg \mathbf{null}(*x)} \langle P_2, F \cup \{\neg \mathbf{null}(*x)\} \rangle}$ Similar to the above.
- Case $P = \mathbf{const}(*x)P'$ and $\langle \mathbf{const}(*x)P', F \rangle \to \langle P'; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x) \rangle$ We need to prove $OK_n(P'; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x))$. Assume that $OK_n(P'; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x))$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle P'; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x) \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$ or (2) $OK(F \cup \mathbf{const}(*x))$ does not hold. From the definition of that $OK_n(\mathbf{const}(*x)P', F)$ holds, we have (1) if $\langle \mathbf{const}(*x)P', F \rangle \to \mathcal{Const}(*x)P'$

From the definition of that $OK_n(\mathbf{const}(*x)P', F)$ holds, we have (1) if $\langle \mathbf{const}(*x)P', F \rangle \rightarrow \langle P; \mathbf{endconst}(*x), F \cup \mathbf{const}(*x) \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F) holds, which are in contradiction to the assumption. Therefore, $OK_n(P_1, F)$ holds.

• Case $P = \mu \alpha.P'$ and $\langle \mu \alpha.P', F \rangle \rightarrow \langle [\mu \alpha.P'/\alpha]P', F \rangle$ We need to prove $OK_n([\mu \alpha.P'/\alpha]P', F)$. Assume that $OK_n([\mu \alpha.P'/\alpha]P', F)$ does not hold. Then, we have (1) $\exists \sigma$ and Q s.t. $\langle [\mu \alpha.P'/\alpha]P', F \rangle \xrightarrow{\sigma} \langle Q, F' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n$ or (2) OK(F) does not hold.

From the definition of that $OK_n(\mu\alpha.P',F)$ holds, we have (1) if $\langle \mu\alpha.P',F\rangle \to \langle [\mu\alpha.P'/\alpha]P',F\rangle \xrightarrow{\sigma} \langle Q,F'\rangle$, then $\sharp_m(\sigma)-\sharp_f(\sigma)\leq n$, which is a contradiction; and (2) OK(F) holds. From the Lemma 3.1, $OK(F\cup\neg\mathbf{null}(*x))$ holds. Therefore, $OK([\mu\alpha.P'/\alpha]P',F)$ holds.

• Case $P = P_1; P_2$ and $\frac{\langle P_1, F \rangle \Longrightarrow \langle P_1', F' \rangle}{\langle P_1; P_2, F \rangle \Longrightarrow \langle P_1'; P_2, F' \rangle}$

We need to prove $OK_{n'}(P'_1; P_2, F)$, where n' is determined by

$$n' = \begin{cases} n+1 & \rho = \mathbf{free} \\ n-1 & \rho = \mathbf{malloc} \\ n & \text{Otherwise.} \end{cases}$$

Assume that $OK_{n'}(P'_1; P_2, F')$ does not hold. Then, we have (1) $\exists \sigma, Q \text{ and } F'' \text{ s.t. } \langle P'_1; P_2, F \rangle \xrightarrow{\sigma} \langle Q, F'' \rangle$ and $\sharp_m(\sigma) - \sharp_f(\sigma) > n' \text{ or (2) } OK(F') \text{ does not hold.}$

From the definition of that $OK_n(P_1; P_2, F)$ holds, we have (1) if $\langle P_1; P_2, F \rangle \stackrel{\rho}{\Longrightarrow} \langle P_1'; P_2, F' \rangle \stackrel{\sigma}{\Longrightarrow} \langle Q, F'' \rangle$, then $\sharp_m(\rho\sigma) - \sharp_f(\rho\sigma) \leq n$ and (2) OK(F) holds.

From (1), we get $n' + \sharp_m(\rho) - \sharp_f(\rho) < \sharp_m(\rho) + \sharp_m(\sigma) - \sharp_f(\rho) - \sharp_f(\sigma) \leq n$. For any ρ , the $n' + \sharp_m(\rho) - \sharp_f(\rho) = n$, therefore we get a contradiction. By IH, we have OK(F') holds, which is a contradiction. Therefore, $OK_{n'}(P_1; P_2, F')$ holds.

Proof of Lemma 2.2: By induction on the derivation of $\langle H, R, s, n, C \rangle \xrightarrow{\rho} \langle H', R', s', n', C' \rangle$.

• Case: $\langle H, R, \mathbf{const}(*x)s, n, C \rangle \to \langle H, R, s; \mathbf{endconst}(*x), n, C \cup \{\mathbf{const}(*x)\} \rangle$ From the assumption $\Theta; \Gamma \vdash \langle H, R, \mathbf{const}(*x)s, n, C \rangle : \langle P, F \rangle$, we have $\Theta; \Gamma \vdash \mathbf{const}(*x)s : P$ and $OK_n(P, F)$. From the inversion of typing rules, we get $\Theta; \Gamma \vdash s : P''$ and $\mathbf{const}(*x)P'' \leq P$ for some P''. By subtyping, we have P''; $\mathbf{endconst}(*x) \leq Q$ and $\langle P, F \rangle \Longrightarrow \langle Q, F \cup \{\mathbf{const}(*x)\} \rangle$ for some Q.

we need to find P' and F' s.t. Θ ; $\Gamma \vdash s$; $\mathbf{endconst}(*x) : P'$, $OK_n(P', F')$ and $\langle P, F' \rangle \Longrightarrow \langle P', F' \rangle$. Taking Q as P' and $F \cup \{\mathbf{const}(*x)\}$ as F'. Therefore $\langle P, F \rangle \to \langle P', F' \rangle$ holds, and $OK_n(P', F')$ holds from Lemma 3.2. From Θ ; $\Gamma \vdash s$; $\mathbf{endconst}(*x) : P''$; $\mathbf{endconst}(*x) : P''$; $\mathbf{endconst}(*x) \le Q$ and T-Sub, Θ ; $\Gamma \vdash s$; $\mathbf{endconst}(*x) : P'$ holds.

- Case: $\langle H, R, \mathbf{endconst}(*x), n, C \rangle \to \langle H, R, \mathbf{skip}, n, C' \rangle$ where C' = filter C(C, *x)From the assumption $\Theta; \Gamma \vdash \langle H, R, \mathbf{endconst}(*x), n, C \rangle : \langle P, F \rangle$, we have $\Theta; \Gamma \vdash \mathbf{endconst}(*x) : P$ and $OK_n(P, F)$. From the inversion of typing rules, we get $\Theta; \Gamma \vdash \mathbf{endconst}(*x) : \mathbf{endconst}(*x)$ and $\mathbf{endconst}(*x) \leq P$. By subtyping and function filter T(F, *x), we get $0 \leq Q$ and $\langle P, F \rangle \to \langle Q, F'' \rangle$ for some Q. we need to find P' and F' s.t. $\Theta; \Gamma \vdash \mathbf{skip} : P', OK_n(P', F')$ and $\langle P, F \rangle \Longrightarrow P', F' \rangle$. Taking Q as P' and F'' as F' therefore $F' \approx C'$ from functions filter T(F, *x) and filter C(C, *x); $\langle P, F \rangle \to \langle P', F' \rangle$ and $OK_n(P', F')$ hold. From T-SKIP, T-SUB and $0 \leq Q$, then $\Theta; \Gamma \vdash \mathbf{skip} : P'$ holds.
- Case: $\langle H, R, \mathbf{free}(x), n, C \rangle \xrightarrow{\mathbf{free}} \langle H', R, \mathbf{skip}, n+1, C \rangle$ From the assumption $\Theta; \Gamma \vdash \langle H, R, \mathbf{free}(x), n, C \rangle : \langle P, F \rangle$, we have $OK_n(P, F)$ and $\Theta; \Gamma \vdash \mathbf{free}(x) : P$. From inversion of the typing rules, we have $\Theta; \Gamma \vdash \mathbf{free}(x) : \mathbf{free}$ and $\mathbf{free} \leq P$. By the subtyping, we have $\langle P, F \rangle \xrightarrow{\mathbf{free}} \langle Q, F \rangle$ and $\mathbf{0} \leq Q$ for some Q.

 We need to find P' and F' such that $\langle P, F \rangle \xrightarrow{\mathbf{free}} \langle P', F' \rangle$, $\Theta; \Gamma \vdash \mathbf{skip} : P'$, and $OK_{n+1}(P', F')$. Take Q as P' and F as F'. Then, $\langle P, F \rangle \xrightarrow{\mathbf{free}} \langle P', F' \rangle$ holds, and $OK_{n+1}(P', F')$ holds from Lemma 3.2. We also have $\Theta; \Gamma \vdash \mathbf{skip} : P'$ from T-SKIP, $\mathbf{0} \leq Q$ and T-SUB.
- Case: $\langle H, R, \mathbf{let} \ x = \mathbf{malloc}() \ \mathbf{in} \ s, n, C \rangle \xrightarrow{\mathbf{malloc}(x')} \langle H', R', [x'/x]s, n-1, C \rangle$ From the assumption $\Theta; \Gamma \vdash \langle H, R, \mathbf{let} \ x = \mathbf{malloc}() \ \mathbf{in} \ s, n, C \rangle : \langle P, F \rangle$, we have $\Theta; \Gamma \vdash \mathbf{let} \ x = \mathbf{malloc}() \ \mathbf{in} \ s : P \ \mathbf{and} \ OK_n(P, F)$. By the inversion of typing rules, we have

 $\Theta; \Gamma, x \vdash s : P''$ and let x = malloc in $P'' \leq P$ for some P''. By subtyping, we get $\langle P, F \rangle \xrightarrow{\text{malloc}(x')} \langle Q, F \rangle$ and $[x'/x]P'' \leq Q$ for some Q.

We need to find P' and F' such that $\Theta; \Gamma, x' \vdash [x'/x]s : P'$ and $\langle P, F \rangle \xrightarrow{\mathbf{malloc}(x')} \langle P', F' \rangle$ and $OK_{n-1}(P', F')$. Take Q as P' and F as F'. Then $\langle P, F \rangle \xrightarrow{\mathbf{malloc}(x')} \langle P', F' \rangle$ holds, and $OK_{n-1}(P', F')$ holds by Lemma 3.2. From $\Theta; \Gamma, x \vdash s : P''$ and $\mathbf{let}\ x = \mathbf{malloc}\ \mathbf{in}\ P'' \leq P$, we have $\Theta; \Gamma, x'' \vdash [x''/x]s : [x''/x]P''$ and $\mathbf{let}\ x'' = \mathbf{malloc}\ \mathbf{in}\ [x''/x]P'' \leq P$, and then by the definition of subtyping we have $[x''/x]P'' \leq Q'$ for some Q'. Therefore, we get $\Theta; \Gamma, x'' \vdash [x''/x]s : Q'$. Take x'' as x' and Q' as P', then $\Theta; \Gamma, x' \vdash [x'/x]s : P'$ holds.

• Case: $\langle H, R, \mathbf{skip}; s, n, C \rangle \rightarrow \langle H, R, s, n, C \rangle$

From the assumption Θ ; $\Gamma \vdash \langle H, R, \mathbf{skip}; s, n, C \rangle : \langle P, F \rangle$, we have Θ ; $\Gamma \vdash \mathbf{skip}; s : P$ and $OK_n(P, F)$. From the inversion of the typing rules, we get Θ ; $\Gamma \vdash s : P''$ and $0 : P'' \leq P$. From the definition of subtyping, we have $\langle P, F \rangle \Longrightarrow \langle Q, F \rangle$ and $P'' \leq Q$ for some Q.

We need to find P' and F' such that $\Theta; \Gamma \vdash s : P'$ and $\langle P, F \rangle \to \langle P', F' \rangle$ and $OK_n(P', F')$. Take Q as P' and F as F'. Then $\langle P, F \rangle \Longrightarrow \langle P', F' \rangle$ and $OK_n(P', F')$ hold. We also have $\Theta; \Gamma \vdash s : P'$ from T-Sub, $\Gamma \vdash s : P''$ and $P'' \leq Q$.

• Case: $\langle H, R, *x \leftarrow y, n, C \rangle \rightarrow \langle H', R, \mathbf{skip}, n, C \rangle$ From the assumption $\Theta : \Gamma \vdash \langle H, R, *x \leftarrow y, n, C \rangle : \langle P, F \rangle$, we have $\Theta : \Gamma \vdash *x \leftarrow y : P$ and $OK_n(P, F)$. From the inversion of typing rules, we have 0 < P.

We need to find P' such that Θ ; $\Gamma \vdash \mathbf{skip} : P'$, $\langle P, F \rangle \Longrightarrow \langle P', F' \rangle$ and $OK_n(P', F')$. Take P as P' and F as F'. Then, $\langle P, F \rangle \Longrightarrow \langle P', F' \rangle$ and $OK_n(P', F')$ hold. We also have Θ ; $\Gamma \vdash \mathbf{skip} : P'$ from T-SKIP, $0 \le P$ and T-SUB.

• Case: $\langle H, R, \mathbf{let} \ x = y \ \mathbf{in} \ s, n, C \rangle \rightarrow \langle H, R', [x'/x]s, n, C \rangle$

From the assumption Θ ; $\Gamma \vdash \langle H, R, \mathbf{let} \ x = y \ \mathbf{in} \ s, n, C \rangle : \langle P, F \rangle$, we have Θ ; $\Gamma, y \vdash \mathbf{let} \ x = y \ \mathbf{in} \ s : P$ and $OK_n(P, F)$. From the inversion of typing rules, we have Θ ; $\Gamma, x, y \vdash s : P''$ and $\mathbf{let} \ x = y \ \mathbf{in} \ P'' \le P$ for some P''. By subtying, we have $\langle P, F \rangle \to \langle Q, F \rangle$ and $[x'/x]P'' \le Q$ for some Q.

We need to find P' and F' such that $\Theta; \Gamma, x', y \vdash [x'/x]s : P'$, $\langle P, F \rangle \rightarrow \langle P', F' \rangle$ and $OK_n(P', F')$. Take Q as P' and F as F'. Then $\langle P, F \rangle \Longrightarrow \langle P', F' \rangle$ and $OK_n(P', F')$ hold. From $\Theta; \Gamma, x, y \vdash s : P''$ and let x = y in $P'' \leq P$, we have $\Theta; \Gamma, x'', y \vdash [x''/x]s : [x''/x]P''$ and let x'' = y in $[x''/x]P'' \leq P$, and then by subtying we have $[x''/x]P'' \leq Q'$ for some Q'. Therefore, we have $\Theta; \Gamma, x'', y \vdash [x''/x]s : Q'$. Take x'' as x' and x'' as x'' and x'' and x'' as x'' and x'' and x'' and x'' and x'' as x'' and x'' as x'' and x''

- Case: $\langle H, R, \mathbf{let} \ x = \mathbf{null} \ \mathbf{in} \ s, n \rangle \to \langle H, R', [x'/x]s, n \rangle$ Similar to the above.
- Case: $\langle H, R, \mathbf{let} \ x = *y \ \mathbf{in} \ s, n \rangle \to \langle H, R', [x'/x]s, n \rangle$ Similar to the above.
- Case: $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \xrightarrow{\text{null}(*x)} \langle H, R, s_1, n, C \rangle \text{ if } H(R(x)) = \text{null and } \text{const}(*x) \notin C$

From assumption Θ ; $\Gamma \vdash \langle H, R$, if null (*x) then s_1 else $s_2, n, C \rangle : \langle P, F \rangle$, we have Θ ; $\Gamma \vdash finull (*x)$ then s_1 else $s_2 : P$ and $OK_n(P, F)$. From the inversion of typing rules, we have Θ ; $\Gamma \vdash s_1 : P_1$, Θ ; $\Gamma \vdash s_2 : P_2$ and $(*x)(P_1, P_2) \leq P$. By subtyping and $const(*x) \notin C$, which means $const(*x) \notin F$, we get $\langle P, F \rangle \xrightarrow{null(*x)} \langle Q, F \rangle$ and $P_1 \leq Q$ for some Q.

We need to find P' and F' such that $\Theta; \Gamma \vdash s_1 : P', \langle P, F \rangle \xrightarrow{\mathbf{null}(*x)} \langle P', F' \rangle$ and $OK_n(P', F')$. Take Q as P' and F as F'. Then $\langle P, F \rangle \xrightarrow{\mathbf{null}(*x)} \langle P', F' \rangle$ and $OK_n(P', F')$ hold. We also have $\Theta; \Gamma \vdash s_1 : P'$ from T-Sub, $\Theta; \Gamma \vdash s_1 : P_1$ and $P_1 \leq Q$.

- Case: $\langle H, R, \mathbf{ifnull} \ (*x) \ \mathbf{then} \ s_1 \ \mathbf{else} \ s_2, n, C \rangle \xrightarrow{\neg \mathbf{null} \ (*x)} \langle H, R, s_1, n, C \rangle \ \mathbf{if} \ H(R(x)) \neq \mathbf{null}$ and $\mathbf{const} \ (*x) \notin C$ Similar to the above.
- Case: $\langle H, R, \mathbf{ifnull} \ (*x) \mathbf{then} \ s_1 \mathbf{else} \ s_2, n, C \rangle \xrightarrow{\mathbf{null} (*x)} \langle H, R, s_1, n, C' \rangle \mathbf{if} \ H(R(x)) = \mathbf{null}, \mathbf{const} (*x) \in C \mathbf{and} \ C' = C \cup \{\mathbf{null} (*x)\}$

From assumption Θ ; $\Gamma \vdash \langle H, R, \mathbf{ifnull} \ (*x) \mathbf{then} \ s_1 \mathbf{else} \ s_2, n, C \rangle : \langle P, F \rangle$, we have Θ ; $\Gamma \vdash \mathbf{ifnull} \ (*x) \mathbf{then} \ s_1 \mathbf{else} \ s_2 : P \mathbf{and} \ OK_n(P, F)$. From the inversion of typing rules, we have Θ ; $\Gamma \vdash s_1 : P_1, \ \Theta$; $\Gamma \vdash s_2 : P_2 \mathbf{and} \ (*x)(P_1, P_2) \leq P$. By subtyping and $\mathbf{const}(*x) \in C$, we get $\langle P, F \rangle \xrightarrow{\mathbf{null}(*x)} \langle Q, F \cup \{\mathbf{null}(*x)\} \rangle$ and $P_1 \leq Q$ for some Q.

We need to find P' and F' such that $\Theta; \Gamma \vdash s_1 : P', \langle P, F \rangle \xrightarrow{\mathbf{null}(*x)} \langle P', F' \rangle$ and $OK_n(P', F')$. Take Q as P' and $F \cup \{\mathbf{null}(*x)\}$ as F'. Then $C' \approx F', \langle P, F \rangle \xrightarrow{\mathbf{null}(*x)} \langle P', F' \rangle$ and $OK_n(P', F')$ hold. We also have $\Theta; \Gamma \vdash s_1 : P'$ from T-SUB, $\Theta; \Gamma \vdash s_1 : P_1$ and $P_1 \leq Q$.

- Case: $\langle H, R, \text{ifnull } (*x) \text{ then } s_1 \text{ else } s_2, n, C \rangle \xrightarrow{\neg \text{null}(*x)} \langle H, R, s_2, n, C' \rangle \text{ if } H(R(x)) \neq \text{null},$ $\text{const}(*x) \in C \text{ and } C' = C \cup \{\neg \text{null}(*x)\}$ Similar to the above proof.
- Case: $\langle H, R, s_1; s_2, n, C \rangle \rightarrow \langle H', R', s_1'; s_2, n', C' \rangle$

From the assumption Θ ; $\Gamma \vdash \langle H, R, s_1; s_2, n, C \rangle : \langle P, F \rangle$, we have Θ ; $\Gamma \vdash s_1; s_2 : P$ and $OK_n(P, F)$ with $C \approx F$. By inversion of typing rules, we have Θ ; $\Gamma \vdash s_1 : P_1$, Θ ; $\Gamma \vdash s_2 : P_2$ and $P_1; P_2 \leq P$ for some P_1 and P_2 .

By IH on $\langle H, R, s_1, n, C \rangle$ with derivation $\langle H, R, s_1, n, C \rangle \xrightarrow{\rho} \langle H', R', s'_1, n', C' \rangle$, we have $\exists P'_1, F'_1 \text{ s.t. } \Theta; \Gamma \vdash \langle H', R', s'_1, n', C' \rangle : \langle P'_1, F'_1 \rangle \text{ and } \langle P_1, F \rangle \xrightarrow{\rho} \langle P'_1, F'_1 \rangle.$

By subtyping we have $\langle P, F \rangle \xrightarrow{\rho} \langle Q, F_1' \rangle$ and $P_1'; P_2 \leq Q$ for some Q.

We need to find P' and F' s.t. $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$, $OK_n(P', F')$ and $\Theta; \Gamma \vdash s_1'; s_2 : P' \rangle$. Take Q as P' and F_1' as F', $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$ and $OK_n(P', F')$ hold. By T-Sub, $\Theta; \Gamma \vdash s_1'; s_2 : P_1'; P_2$ and $P_1'; P_2 \leq Q$, we have $\Theta; \Gamma \vdash s_1'; s_2 : P'$ holds.

We write $\langle H, R, s, n, C \rangle \xrightarrow{\rho}$ if there is a transition $\xrightarrow{\rho}$ from $\langle H, R, s, n, C \rangle$.

Lemma 3.3. If Θ ; $\Gamma \vdash \langle H, R, s, n, C \rangle : \langle P, F \rangle$ and $\langle H, R, s, n, C \rangle \xrightarrow{\rho}$ and $\rho \in \{ \mathbf{malloc}(x'), \mathbf{free}, \mathbf{null}(*x), \neg \mathbf{null}(*x) \}$, then there exists P' and F' such that $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$.

Proof. Induction on the derivation of Θ ; $\Gamma \vdash \langle H, R, s, n, C \rangle : \langle P, F \rangle$.

Proof of Lemma 2.3:

By contradiction. Assume $\langle H, R, s, n, C \rangle \xrightarrow{\rho} \mathbf{OutOfMemory}$. Then, n is 0 and $\rho = \mathbf{malloc}(x')$ from Sem-OutOfMem. From the assumption we have $\Theta; \Gamma \vdash s : P$ and $OK_0(P, F)$. From Lemma 3.3, there exists P' and F' such that $\langle P, F \rangle \xrightarrow{\mathbf{malloc}(x')} \langle P', F' \rangle$. However, this contradicts $OK_0(P, F)$.

Proof of Theorem 2.1:

We have Θ ; $\emptyset \vdash s : P, \vdash D : \Theta$ and $OK_n(P, F)$.

Suppose that there exists σ such that $\langle \emptyset, \emptyset, s, n, C \rangle \xrightarrow{\sigma} \langle H', R', s', n', C' \rangle \xrightarrow{\rho} \mathbf{OutOfMemory}$. Then, n' = 0 and $\rho = \mathbf{malloc}(x')$. From Lemma 2.2, there exists P' and F' such that $\Theta; \Gamma' \vdash s' : P'$, $\langle P, F \rangle \xrightarrow{\sigma} \langle P', F' \rangle$, and $OK_0(P', F')$; hence $\langle H', R', s', 0 \rangle \xrightarrow{\mathbf{malloc}(x')}$. However, this contradicts Lemma 2.3.