

EMB-Lab, Fak. N Lineare Klassifikation 2

DLM – Deep Learning Methoden
Benjamin Kraus
Kevin Höfle, Prof. Dr. Marcus Vetter

Mannheim, 15.10.2018

- Organisatorisches
- Recap der letzten Wochen
- Loss function
 - SVM
 - Softmax
 - Regularisierung
- Optimierung anhand der Loss function
- Gradientenabstieg
- Lernraten
- Ausblick

Übersicht der Themen und Termine

Datum	Nr. Thema der Vorlesung	Themen der Praktika
01. Okt	1 Einführung in Deep Learning	Einführung in Python
08. Okt	2 Lineare Klassifikatoren	Einführung in Numpy
15. Okt	3 Loss Function Optimization & Fully Connected Layer	Übung zu Linearen Klassifikatoren
22. Okt	4 Backpropagation and neural Networks	Übung zu Backpropagation mit Numpy
29. Okt	5 Architektutren & Layer I (Conv, Drop usw.)	Keras Sequential am Beispiel von MNIST
05. Nov	Klassifikation, Regression, Segmentierung, Generation & 6 Regularisierungsmethoden	Keras mit CIFAR selbst machen
12. Nov		Keras Segmentieren Übung
19. Nov	8 Training von Convolutional Neural Network(+Transfer Learning)	LSTM mit Keras
26. Nov	9 Recap & Ausgabe Semesteraufgaben	Semesteraufgabe
03. Dez	10 Betreuung der Semesteraufgabe	<u> </u>
10. Dez	11 Betreuung der Semesteraufgabe	
17. Dez		
07. Jan	13 Präsentation der Ergebnisse	
14. Jan	14 Prüfung	

- Was ist das?
- Welche Probleme gibt es?
- Data-driven Approach
- Lineare Klassifikation
- Score Function

$$f(x, W, b) = Wx + b$$

Nochmal die Biologie:

Nochmal die Biologie:

Summe

$$\sum_{i} w_i x_i + b$$

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

- Nochmal die Biologie:
- Damit lässt sich ein lineares Klassifikationsproblem lösen!
- ...und kommt uns bekannt vor

Summe

$$\sum_{i} w_i x_i + b \qquad \sigma(x) = 1/(1 + e^{-x})$$

Sigmoid

Vorsicht mit Gehirn-Analogien:

Biologische Neuronen sind vielseitiger:

- Viele verschiedene Typen
- Dendriten können komplexe nonlineare Berechnungen realisieren
- Synapsen sind nicht ein einzelnes Gewicht sondern ein nicht-lineares dynamisches System

[Dendritic Computation. London and Hausser]

Score Function:

$$f(x, W, b) = Wx + b$$

- Funktion die Pixelwerte auf Klassen abbildet
 - Wir erhalten einen Wert pro Klasse
 - Wir fordern, dass der Wert der richtigen Klasse der Größte sein soll

Score Function:

$$f(x, W, b) = Wx + b \longrightarrow f(x, W, b) = Wx$$

0.2	-0.5	0.1	2.0
1.5	1.3	2.1	0.0
0	0.25	0.2	-0.3
\overline{W}			

56		1.1	
231	+	3.2	→
24		-1.2	
2	8	b	I
$oxed{x_i}$			

$egin{array}{cccccccccccccccccccccccccccccccccccc$				
0	0.25	0.2	-0.3	-1.2
1.5	1.3	2.1	0.0	3.2
0.2	-0.5	0.1	2.0	1.1

new, single W

 $egin{array}{c} 24 \ 2 \ \hline 1 \ x_i \end{array}$

56

231

[Andrej Karpathy, Stanford Universitiy]

Loss Function

- Dies ist aber nicht automatisch der Fall
 - Ein zufällig initialisiertes *W* liefert wahrscheinlich keine "guten Ergebnisse"
 - Wir haben noch nicht definiert was ein "gutes Ergebnis" genau ist

Lo

- Was ist ein "gutes Ergebnis"?
 - Wir brauchen ein Maß unserer (Un-) Zufriedenheit mit der aktuellen Klassifikation um weitere Schritte davon ableiten zu können

L

Loss Function

- Was ist ein "gutes Ergebnis"?
 - Wir brauchen ein Maß unserer (Un-)Zufrienheit mit der aktuellen Klassifikation um weitere Schritte davon ableiten zu können
 - Wir müssen eine Loss Function (Cost Function / Objective) definieren
 - Der Loss soll hoch sein, wenn der Klassifikator schlecht arbeitet

Gut:

Schlecht:

- Es gibt viele Varianten solch eine Funktion zu definieren
- Zu den Gebräuchlichsten zählen:
 - Multiclass SVM Loss (Hinge Loss)
 - Softmax (Multinomial Logistic Regression)

Ein Bild x_i sei dem Klassen-Label y_i zugeordnet

Der Funktionswert von $f(x_i, W)$ sei s

wobei S_j der Score von x_i für die Klasse j ist,

und s_{y_i} der Score von x_i für die Klasse y_i ist.

$$L_i = \sum_{j \neq y_i} \max(0; s_j - s_{y_i} + \Delta)$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:		

- Wie kann man sich das vorstellen?
 - Hinge Loss ist dann Ideal wenn zwischen der richtigen Klasse und allen anderen Klassen mindestens der Abstand Δ liegt

$$L_i = \sum_{j \neq y_i} \max(0; s_j - s_{y_i} + \Delta)$$

Ein Bild x_i sei dem Klassen-Label y_i zugeordnet

Der Funktionswert von $f(x_i, W)$ sei s

wobei S_j der score von x_i für die Klasse j ist,

und s_{y_i} der score von x_i für die Klasse y_i ist.

$$L_i = \sum_{j \neq y_i} \max(0; s_j - s_{y_i} + \Delta)$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:		

Hyperparameter, $\Delta = 1$ funktioniert fast immer

Ein Bild x_i sei dem Klassen-Label y_i zugeordnet

Der Funktionswert von $f(x_i, W)$ sei s

wobei S_i der score von \mathcal{X}_i für die Klasse j ist,

und S_{y_i} der score von x_i für die Klasse y_i ist.

$$L_i = \sum_{j \neq y_i} \max(0; s_j - s_{y_i} + 1)$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:		

Ein Bild x_i sei dem Klassen-Label y_i zugeordnet

Der Funktionswert von $f(x_i, W)$ sei s

wobei S_j der score von x_i für die Klasse j ist,

und s_{y_i} der score von x_i für die Klasse y_i ist.

$$L_i = \sum_{j \neq y_i} \max(0; s_j - s_{y_i} + 1)$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:	0,2	

Ein Bild x_i sei dem Klassen-Lable y_i zugeordnet

Der Funktionswert von $f(x_i, W)$ sei s

wobei S_i der score von x_i für die Klasse j ist,

und S_{y_i} der score von x_i für die Klasse y_i ist.

$$L_i = \sum_{j \neq y_i} \max(0; s_j - s_{y_i} + 1)$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:	0,2	1,6

Ein Bild x_i sei dem Klassen-Lable y_i zugeordnet

Der Funktionswert von $f(x_i, W)$ sei s

wobei S_j der score von \mathcal{X}_i für die Klasse j ist,

und s_{y_i} der score von x_i für die Klasse y_i ist.

$$L_i = \sum_{j \neq y_i} \max(0; s_j - s_{y_i} + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:	0,2	1,6

Loss über alle Trainingsdaten: (0,2+1,6)/2 = 0,9

Fragen:

Was ist der minimale Loss und wann wird dieser erreicht?

$L_i = \sum_{j \neq y_i} \max(0; s_j -$	$-s_{y_i}+1$
---	--------------

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:	0,2	1,6

Fragen:

Was ist der minimale Loss und wann wird dieser erreicht?

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:	0,2	1,6

Fragen:

Was bedeutet das für das Beispiel s1?

$L_i =$	\sum	max(0;	$s_j - s_{y_i}$	+1)
	$j \neq y_i$			

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:	0,2	1,6

Fragen:

Was bedeutet das für das Beispiel s1?

Obwohl die Klassifikation richtig war, wird weiter optimiert.

$$L_i = \sum_{j \neq y_i} \max(0; s_j - s_{y_i} + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

Classes	s1	s2
Cat (i=1)	1,0	2,5
Dog (i=2)	0,2	3,1
Car (i=3)	-0,5	-0,1
Losses:	0,2	1,6

Code:

$$f(x, W) = Wx$$

$$L_i = \sum_{j \neq y_i} \max(0; s_j - s_{y_i} + 1)$$

```
def L i vectorized(x, y, W):
  scores = W.dot(x)
  margins = np.maximum(0, scores - scores[y] + 1)
  margins[y] = 0
  loss i = np.sum(margins)
  return loss i
```


- Multinomial Logistic Regression
- Normalisierte Exponentiale
- Cross-entropy loss

- Ziel:
 - Die Loss Function soll besser interpretierbar sein.
 - Ist ein hinge loss von 3,5 gut oder schlecht?

- Ansatz :
 - Wir möchten, dass unser Klassifikator Wahrscheinlichkeiten ausgibt.
 - Wir wollen also die Scores zu normierten Wahrscheinlichkeiten zuordnen $\sum_{i=1}^{N} P(y_i) = 1$

Die richtige Klasse soll ideal eine log Wahrscheinlichkeit von

$$P(y_1|x_1;W) \approx 1$$
 haben

- Vorgehen:
 - Die Scores wie gehabt berechnen s = f(x, W)

Classes	S	
Cat (i=1)	2,5	
Dog (i=2)	3,1	
Car (i=3)	-0,1	

- Vorgehen:
 - Die Scores als nicht normaliserte log Wahrscheinlichkeiten der Klassen betrachten:

	e^{s}	y _i	
Classes	S		
Cat (i=1)	2,5		
Dog (i=2)	3,1		
Car (i=3)	-0,1		

- Vorgehen:
 - Die Scores als nicht normaliserte **log** Wahrscheinlichkeiten der Klassen betrachten:

- Vorgehen:
 - Die Scores als **nicht normaliserte** log Wahrscheinlichkeiten der Klassen betrachten:

N		
∇	$D(\alpha_i)$	1
\angle	$P(y_i) =$	1
$\overline{i=1}$		

- Vorgehen:
 - Die Scores als **nicht normaliserte** log Wahrscheinlichkeiten der Klassen betrachten:

	$e^{s_{y_i}} \qquad \frac{1}{\sum_i e^{s_{y_i}}}$		
Classes	S	exp(s)	Р
Cat (i=1)	2,5	12,2	0,3453
Dog (i=2)	3,1	22,2	0,6291
Car (i=3)	-0,1	0,9	0,0172

$$1/(\exp(3,1) + \exp(2,5) + \exp(-0,1)) = 0.0283$$

- Vorgehen:
 - Die Scores als nicht normaliserte log Wahrscheinlichkeiten der Klassen betrachten:

	e^{s}	$e^{s_{y_i}} \qquad \frac{1}{\sum_i e^{s_{y_i}}}$		
Classes	S	exp(s)	Р	
Cat (i=1)	2,5	12,2	0,3453	
Dog (i=2)	3,1	22,2	0,6291	
Car (i=3)	-0,1	0,9	0,0172	

$$1/(\exp(3,1) + \exp(2,5) + \exp(-0,1)) = 0.0283$$

$$\sum_{i=1}^{N} P(y_i) = 1$$

- Vorgehen:
 - Die Scores als nicht normaliserte log Wahrscheinlichkeiten der Klassen betrachten:

	e^{s}	$e^{s_{y_i}} \qquad \frac{1}{\sum_i e^{s_{y_i}}}$		
Classes	S	exp(s)	Р	
Cat (i=1)	2,5	12,2	0,3453	
Dog (i=2)	3,1	22,2	0,6291	
Car (i=3)	-0,1	0,9	0,0172	

$$1/(\exp(3,1) + \exp(2,5) + \exp(-0,1)) = 0.0283$$

$$\sum_{i=1}^{N} P(y_i) = 1$$

$$P = \left(\frac{e^{s_{y_i}}}{\sum_i e^{s_{y_i}}}\right)$$

$$P = \left(\frac{e^{s_{y_i}}}{\sum_i e^{s_{y_i}}}\right)$$

- Eine hohe Warscheinlichkeit für die richtige Klasse entspricht also einem geringen Loss.
 - Wir müssen unsere Formel nur noch leicht anpassen um dies zu erreichen:

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_i e^{s_{y_i}}}\right)$$

$$P = \left(\frac{e^{s_{y_i}}}{\sum_i e^{s_{y_i}}}\right)$$

- Eine hohe Warscheinlichkeit für die richtige Klasse entspricht also einem geringen Loss.
 - Wir müssen unsere Formel nur noch leicht anpassen um dies zu erreichen:

$$L_i = -\log\left(\frac{e^{sy_i}}{\sum_i e^{sy_i}}\right)$$
 Welchen Wert nimmt $\log(x)$ für 1 und 0 an?

$$P = \left(\frac{e^{s_{y_i}}}{\sum_i e^{s_{y_i}}}\right)$$

- Eine hohe Warscheinlichkeit für die richtige Klasse entspricht also einem geringen Loss.
 - Wir müssen unsere Formel nur noch leicht anpassen um dies zu erreichen:

$$L_i = -\log\left(\frac{e^{Sy_i}}{\sum_i e^{Sy_i}}\right) \text{ Welchen Werte nimmt } \log(x) \text{ für 1 und 0 an?}$$

$$\log(1) = 0 \text{ und } \log(0) \to -\infty$$

- Vorgehen:
 - Die Scores als **nicht normaliserte** log Wahrscheinlichkeiten der Klassen betrachten:

$$L_i = -\log(0.3453) = 1.0635$$

$$L=rac{1}{N}\sum_{i=1}^{N}L_i+R(W)$$

- Score Function:
 - Wie teilt der Klassifikator Features zu Klassen ein

$$f(x, W) = Wx$$

$$L_i = \sum_{i \neq 0}^{\bullet} \text{Loss Function:}$$

$$L_i = \sum_{i \neq 0}^{\bullet} \max(0; s_j - s_{y_i} + 1)$$

(0;
$$s_j - s_{y_i} + 1$$
)
$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_i e^{s_{y_i}}}\right)$$

- Was fehlt?
 - Eine Strategie wie W zu verbessern ist

- Gute Weights W erzeugen ein Minimum in der Loss Function.
- Also ein Optimierungsproblem! W sei 1-Dim, L ist eine Funktion von W , den Daten x und den Hyperparametern λ

- Gute Weights W erzeugen ein Minimum in der Loss Function.
- Also ein Optimierungsproblem!
 W sei 1-Dim, L ist eine Funktion von W, den Daten x und den Hyperparametern λ → Hiervon ist nur W eine Variable im Sinne der Optimierung

- 3
- Wir sind am Punkt p, wir wollen zum Minimum.
- In welche Richtung müssen wir?

- Wir sind am Punkt p, wir wollen zum Minimum.
- In welche Richtung müssen wir?
- Ableitung: Die Steigung der Funktion berechnen
 W in Richtung der negativen Steigung anpassen

- Wir sind am Punkt p, wir wollen zum Minimum.
- In welche Richtung müssen wir?
- Ableitung: Die Steigung der Funktion berechnen
 W in Richtung der negativen Steigung anpassen

In höheren Dimensionen funktioniert das ebenso

- In höheren Dimensionen funktioniert das ebenso
 - ... wird aber schnell unübersichtlich

- Es gibt zwei Möglichkeiten dies zu berechnen:
 - Numerisch
 - Analytisch

- Numerischer Gradientenabstieg:
- Für jeden Trainingsschritt
 - Wähle einen kleinen Wert δ
 - Modifiziere eine Komponente von W_{alt} mit δ
 - Berechne $L(W_{neu}) L(W_{alt})$
 - Modifiziere W mit dem negativen Gradienten, so dass L im n\u00e4chsten Trainingsschritt kleiner wird.

$$\frac{dL(W)}{dW} = \lim_{\delta \to 0} \frac{L(W + \delta) - L(W)}{\delta}$$

- Einfach zu programmieren
- Ist nur approximativ
- Langsam

$$\frac{dL(W)}{dW} = \lim_{\delta \to 0} \frac{L(W + \delta) - L(W)}{\delta}$$

```
1 \text{ W} = \text{np.arange}(1,7).reshape}(2,3)
 3 Lvalue = L(W)
                                      # L berechen
 4 gradient = np.zeros like(W)
 5 \text{ delta} = 0.00001
                                      # Delta festlegen
 7 w iterator = np.nditer(W, flags=['multi index'], op flags=['readwrite'])
 8 while not w iterator.finished:
      index = w_iterator.multi_index
      W_at_index = W[index] # Den aktuellen Wert von W speichern
10
      W[index] = W at index + delta # Delta anwenden
11
12
                                      # Funktionswert von L(W+delta) bestimmen
      newL = L(W)
13
      gradient[index] = (newL - Lvalue)/delta # Komponente berechen
14
15
      W[index] = W at index # Ursprünglichen Wert in W wiederherstellen
      w iterator.iternext() # In der nächsten Dimension weitermachen
16
17
18
```


$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

Man Kann davon eine Ableitung analytisch bestimmen

Tatsächlich ist die Loss Funktion nur eine Funktion von W

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

- Man Kann davon eine Ableitung analytisch bestimmen
 - Sehr Schnell
 - Keine Approximation, echte Werte da $\lim_{\delta \to 0}$
 - Fehleranfällig, wenn man es selbst berechnen muss

- Numerisch:
 - Einfach zu programmieren
 - Ist nur approximativ
 - Langsam
- Analytisch:
 - Schnell
 - Keine Approximation
 - Fehleranfällig

- Numerisch:
 - Einfach zu programmieren
 - Ist nur approximativ
 - Langsam
- Analytisch:
 - Schnell
 - Keine Approximation
 - Fehleranfällig
- Praktisch:
- Immer den analytische Ansatz benutzen, aber mit dem numerischen Ansatz überprüfen → Gradient Check
- Caffe und andere Tool Kits haben uns das für ihre Layer bereits abgenommen!

- Wir haben den Gradienten unserer Gewichte
- Jetzt die Gewichte updaten!

```
while True:
    grad_W = eval_gradient(X, y, W)
    W += grad_w
```


- Wir haben den Gradienten unserer Gewichte
- Jetzt die Gewichte updaten!

```
while True:
    grad W = eval_gradient(X, y, W)
    += grad M
```


- Wir haben den Gradienten unserer Gewichte
- Jetzt die Gewichte updaten!

```
while True:
    grad_W = eval_gradient(X, y, W)
    W += -grad_w
```

 Der Gradientenabstieg sagt uns in welche "Richtung" wir laufen müssen Aber wie weit?

- Wir berechen einen Gradienten an p
 - Die Steigung ist stark negativ!

 Wir möchten die Gewichte in Richtung des negativen Gradienten anpassen

 Der Gradientenabstieg sagt uns in welche "Richtung" wir laufen müssen Aber wie weit?

```
while True:
    grad_W = eval_gradient(X, y, W)
W += -grad_w
```


- Wir sind weit in Richtung des negativen Gradienten gegangen
 - Der Loss Wert steigt!

- Der Gradientenabstieg sagt uns in welche Richtung wir laufen müssen
 - Aber wie weit?
- Wir führen einen Skalierungsfaktor ein
- Die Learning Rate

```
while True:
    grad_W = eval_gradient(X, y, W)
    W += - learning_rate * grad_W
```


- Der Gradientenabstieg sagt uns in welche Richtung wir laufen müssen
 - Aber wie weit?
- Wir führen einen Skalierungsfaktor ein
- Die Learning Rate

```
while True:
    grad_W = eval_gradient(X, y, W)
    W += - learning rate * grad W
```


- Die Learning Rate ist einer der wichtigsten Hyperparameter
- Es gibt sehr schlaue Verfahren die Lerning anzupassen
 - Dazu mehr in späteren Vorlesungen!

```
while True:
    grad_W = eval_gradient(X, y, W)
    W += - learning rate * grad W
```


- Loss functions
 - Ist W gut?

- Optimierung
 - Wie wird W besser?

- Backpropagation
 - Wie verbessere ich W über mehrere Schichten hinweg?
- CNN
- Gibt es bessere Score Functions f(x, W) für Bilder
- DNN
- Mehr Layer!

- Fully Connected Layer (Forward Path)
- Grobe Idee wie der Lernvorgang abläuft
 - Nächste Vorlesung: Backpropagation und Neuronale Netze

[convnet from Krizhevsky et al.'s NIPS 2012 ImageNet classification paper]

- Convolutional Layer (Faltungsschichten)
 - Die Funktion f(x, W) ändert sich, den Rest beherrschen sie bereits!
- Pooling Layer
 - Sind sehr einfach!

[convnet from Krizhevsky et al.'s NIPS 2012 ImageNet classification paper]

hochschule mannheim

Extras

Fragen:

Wenn ein W gefunden wird für das L=0 gilt, ist diese Lösung einzigartig?

Nein! Wenn W einen loss L=0 erzeugt dann tut das auch 2*W und beliebig viele andere Lösungen.

In der Praxis wird hier eine Regularisierung durchgeführt.

$$egin{aligned} f(x,W) &= Wx \ L &= rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1) \end{aligned}$$

Regularisierung:

$$f(x, W) = Wx$$

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

λ → Hyperparameter

Regularisierung:

$$f(x, W) = Wx$$

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

L2 Regularisierung:

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

Von Lösungen mit gleichem SVM-Loss wird die mit dem W bevorzugt, deren L2 Distanz zu 0 am kleinsten ist.

Regularisierung:

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + R(W)$$

Regularisierung:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + R(W)$$

Data Loss Abhängig von *W*

Regularisierungs Loss Abhängig von *W*