The Algebra of Logic

Tommaso Moraschini

May 31, 2023

Contents

Co	nten	ts	i
1	Latt	ices and closure operators	1
	1.1	Partially ordered sets	1
	1.2	Lattices as partially ordered sets	7
	1.3	Lattices as algebraic structures	12
	1.4	Closure operators	17
	1.5	Finitarity and compactness	22
	1.6	Algebraic lattices	26
2	Rep	resentation theorems	33
	2.1	Distributive lattices	33
	2.2	Boolean and Heyting algebras	43
	2.3	Modal algebras	52
3	Intu	uitionistic and modal logics	57
	3.1	Propositional logics	57
	3.2	Intuitionistic logic	59
	3.3	Modal logic	62
4	Uni	versal algebra	67
	4.1	Ultraproducts	67
	4.2	Universal classes	71
	4.3	Quasi-varieties	7 4
	4.4	Subdirect decomposition	7 9
5	Alg	ebraizable logics	87
	5.1	Algebraizability	87
	5.2	Deductive filters	91
	5.3	The Lindenbaum-Tarski process	94
	5.4	The isomorphism theorem	97
6	Ded		109
	6.1	Bridge theorem	109
	6.2	Quasi-varieties with EDPRC	114

()	NΊ	ľE:	NΊ	15

6.3	Sketches of structure theory												-	12	1
0.0	Sketches of structure friedry														u

Lattices and closure operators

1.1 Partially ordered sets

Given a binary relation R on a set X and $x, y \in X$, we write xRy when the ordered pair $\langle x, y \rangle$ belongs to the relation R. A binary relation R on a set X is said to be

- (i) *reflexive* when xRx for every $x \in X$;
- (ii) *transitive* when for every $x, y, z \in X$, if xRy and yRz, then xRz;
- (iii) *antisymmetric* when for every $x, y \in X$, if xRy and yRx, then x = y.

Definition 1.1. A binary relation \leq on a set X is said to be a *partial order* when it is reflexive, transitive, and antisymmetric. In this case, the pair $\mathbb{X} = \langle X; \leq \rangle$ is said to be a *poset* (a shorthand for a *partially ordered set*) and X is called the *universe* of \mathbb{X} .

Given a poset \mathbb{X} and $x, y \in X$, we will often say that x is *below* y to indicate that $x \leq y$. Furthermore, we write x < y when both $x \leq y$ and $x \neq y$, or equivalently $x \leq y$ and $y \not\leq x$. Lastly, given $x, y, z \in X$, we will write $x \leq y, z$ as a shorthand for $x \leq y$ and $x \leq z$. A similar reading applies to expressions of the form $x, y \leq z$. Notice that the universe of \mathbb{X} might be empty, in which case the relation \leq is also empty.

Definition 1.2. Let X be a poset. A set $V \subseteq X$ is said to be

(i) an *upset* of X when for every $x, y \in X$,

if
$$x \in V$$
 and $x \leq y$, then $y \in V$;

(ii) a *downset* of X when for every $x, y \in X$,

if
$$x \in V$$
 and $y \leq x$, then $y \in V$.

The families of upsets and downsets of X will be denoted by Up(X) and Down(X).

Example 1.3 (Posets). Given a set X, the *identity relation* id_X is defined for all $x, y \in X$ as

$$\langle x,y\rangle\in\mathrm{id}_X\Longleftrightarrow x=y.$$

The pair $\langle X; id_X \rangle$ is a poset, known as the *discrete poset* with universe X.

Given a poset \mathbb{X} , the pairs $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$ and $\langle \mathsf{Down}(\mathbb{X}); \subseteq \rangle$ are also posets. When $\mathbb{X} = \langle X; \mathsf{id}_X \rangle$, both $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$ and $\langle \mathsf{Down}(\mathbb{X}); \subseteq \rangle$ coincide with the poset $\langle \mathcal{P}(X); \subseteq \rangle$, which is known as the *powerset lattice* of X.

Further examples include the sets \mathbb{N} and \mathbb{Z} of natural and integer numbers, respectively, endowed with the standard order. Lastly, the set \mathbb{N} endowed with the *divisibility relation*

$$|:=\{\langle m,n\rangle\in\mathbb{N}\times\mathbb{N}: \text{there exists }k\in\mathbb{N}\text{ s.t. }n=m\cdot k\}$$

is also a poset, known as the *divisibility lattice*. However, the set \mathbb{Z} fails to be a poset when we endow it with the analogous divisibility relation. This is because the divisibility relation is not antisymmetric on \mathbb{Z} , as n and -n are distinct and divide each other, for every positive integer n.

An attractive feature of posets is that they can often be represented by pictures consisting of dots connected by lines, known as *Hasse diagrams*. This is always true for finite posets $\mathbb X$ of a manageable size, whose Hasse diagrams can be obtained as follows. First, we depict the elements of X as dots, making sure that if x < y, then the dot corresponding to x lies below that corresponding to y. Then we connect two dots with a line whenever they correspond to two points $x, y \in X$ such that x < y and that there is no $z \in X$ such that x < z < y. As a result, x < y for two elements $x, y \in X$ precisely when there exists an ascending path from x to y. The picture below illustrates this method by depicting the Hasse diagram of poset $\mathbb X$ and that of the poset $\langle \mathsf{Up}(\mathbb X); \subseteq \rangle$ of its upsets.

The left hand side of this picture indicates that X is the poset with universe $\{a, b, c, d\}$ and order relation

$$\leq = \mathrm{id}_X \cup \{\langle c, a \rangle, \langle c, b \rangle, \langle d, b \rangle\}.$$

The structure of Up(X) can be inferred in a similar way from the the right hand side of the picture.

Finite posets can be faithfully reconstructed from their Hasse diagrams. In other words, to define a finite poset it suffices to draw its Hasse diagram. As an example, the Hasse diagrams of the powerset lattices $\langle \mathcal{P}(X); \subseteq \rangle$ with X of cardinality $\leqslant 4$ are shown below.

Hasse diagrams can also be employed to describe infinite posets, provided that their structure is regular enough to be indicated by dotted lines. For instance, the posets $\langle \mathbb{N}; \leqslant \rangle$ and $\langle \mathbb{Z}; \leqslant \rangle$ are depicted below, together with a portion of the divisibility lattice $\langle \mathbb{N}; | \rangle$.

In order to relate distinct posets, it is convenient to introduce maps that preserve their structure. In this context, we will need to distinguish between the order relations of different posets. To this end, we use the symbol $\leq^{\mathbb{X}}$ to denote the order relation of a poset \mathbb{X} .

Definition 1.4. Let X and Y be posets. A map $f: X \to Y$ is said to be

(i) order preserving when for every $x, y \in X$,

if
$$x \leq^{\mathbb{X}} y$$
, then $f(x) \leq^{\mathbb{Y}} f(y)$;

(ii) order reflecting when for every $x, y \in X$,

if
$$f(x) \leq^{\mathbb{Y}} f(y)$$
, then $x \leq^{\mathbb{X}} y$;

- (iii) an order embedding when it is both order preserving and order reflecting;
- (iv) an order isomorphism when it is a surjective order embedding.

For instance, the inclusion map $i: \mathbb{N} \to \mathbb{Z}$ is an order embedding of $\langle \mathbb{N}; \leqslant \rangle$ into $\langle \mathbb{Z}; \leqslant \rangle$, while the function $f: \mathbb{Z} \to \mathbb{N}$ defined by the rule

$$f(n) :=$$
 the greatest element between 0 and n

is an order preserving map from $\langle \mathbb{Z}; \leqslant \rangle$ to $\langle \mathbb{N}; \leqslant \rangle$ that is not order reflecting.

Notice that order embeddings are necessarily injective. To prove this, consider an order embedding $f: \mathbb{X} \to \mathbb{Y}$ and two distinct elements $x, y \in X$. Since $\leq^{\mathbb{X}}$ is antisymmetric and $x \neq y$, either $x \not\leq^{\mathbb{X}} y$ or $y \not\leq^{\mathbb{X}} x$. But f is order reflecting, so either $f(x) \not\leq^{\mathbb{Y}} f(y)$ or $f(y) \not\leq^{\mathbb{Y}} f(x)$. In either case, $f(x) \neq f(y)$ by the reflexivity of the relation $\leq^{\mathbb{Y}}$, thus f is indeed injective.

As a consequence, an order isomorphism $f: \mathbb{X} \to \mathbb{Y}$ is precisely a bijection such that for every $x, y \in X$,

$$x \leqslant^{\mathbb{X}} y \iff f(x) \leqslant^{\mathbb{Y}} f(y).$$

It follows that $f: \mathbb{X} \to \mathbb{Y}$ is an order isomorphism iff so is $f^{-1}: \mathbb{Y} \to \mathbb{X}$. We will write $\mathbb{X} \cong \mathbb{Y}$ to indicate that there exists an order isomorphism between \mathbb{X} and \mathbb{Y} . For instance, let $2\mathbb{Z}$ be the set of even integers. The map $f: \mathbb{Z} \to 2\mathbb{Z}$ defined by the rule $f(n) \coloneqq 2n$ is an order isomorphism from $\langle \mathbb{Z}; \leqslant \rangle$ to the poset consisting of $2\mathbb{Z}$ ordered under the standard order.

When there exists an order embedding $f: \mathbb{X} \to \mathbb{Y}$, the poset \mathbb{Y} contains a copy of \mathbb{X} , consisting of the elements of the image f[X] endowed with the restriction of the order relation $\leq^{\mathbb{Y}}$ to f[X], as we proceed to explain.

Definition 1.5. A poset X is said to be a *subposet* of a poset Y when $X \subseteq Y$ and \leq^X is the restriction of \leq^Y to X.

In this case, if no confusion is likely to arise, we will use the same notation for the order relation of X and Y.

Proposition 1.6. A poset X is isomorphic to a subposet of Y iff there exists an order embedding $f: X \to Y$. In this case, X is isomorphic to $\langle f[X]; \leqslant \rangle$, where \leqslant is the restriction of \leqslant^Y to f[X].

Proof. First, suppose that \mathbb{X} is isomorphic to a subposet \mathbb{Z} of \mathbb{Y} . Then there exists an order isomorphism $f \colon \mathbb{X} \to \mathbb{Z}$. Since \mathbb{Z} is a subposet of \mathbb{Y} , the map $f \colon \mathbb{X} \to \mathbb{Y}$ is an order embedding. To prove the converse, consider an order embedding $f \colon \mathbb{X} \to \mathbb{Y}$ and let $\langle f[X]; \leqslant \rangle$ be the poset defined in the statement. The map $f \colon \mathbb{X} \to \langle f[X]; \leqslant \rangle$ is clearly surjective. Furthermore, it is an order embedding, since so is $f \colon \mathbb{X} \to \mathbb{Y}$. Thus, we conclude that $f \colon \mathbb{X} \to \langle f[X]; \leqslant \rangle$ is an order isomorphism.

The following notions are instrumental to comparing the elements of a given poset.

Definition 1.7. Two elements x and y of a poset X are said to be *comparable* when either $x \le y$ or $y \le x$. They are said to be *incomparable* otherwise. Accordingly, we say that X is

- (i) a *chain* when every two elements of *X* are comparable;
- (ii) an *antichain* when every two distinct elements of X are incomparable, that is, if X is the discrete poset with universe X.

By extension, a subset $Y \subseteq X$ is said to be a *chain* (resp. an *antichain*) in X when the subposet of X with universe Y is a chain (resp. an antichain). Chains are sometimes also called *linearly ordered* posets, while antichains are sometimes called *discretely ordered* posets.

For instance, the number systems $\langle \mathbb{N}; \leqslant \rangle$ and $\langle \mathbb{Z}; \leqslant \rangle$ are both chains. Most posets, however, are neither chains nor antichains. For example, the powerset lattice $\langle \mathcal{P}(X); \subseteq \rangle$ is neither a chain nor an antichain for every set X with at least two elements. To see this, consider two distinct elements $x,y\in X$. Then the sets $\{x\}$ and $\{y\}$ are incomparable elements of $\langle \mathcal{P}(X); \subseteq \rangle$, so this poset is not a chain. Similarly, \emptyset and $\{x\}$ are two distinct, but comparable elements. Consequently, $\langle \mathcal{P}(X); \subseteq \rangle$ is not an antichain.

The following special elements play a fundamental role in order theory:

Definition 1.8. An element x of a poset X is said to be

- (i) a greatest element of X when $y \le x$ for every $y \in X$;
- (ii) a *least* element of X when $x \leq y$ for every $y \in X$;
- (iii) a maximal element of X when there is no $y \in X$ such that x < y;
- (iv) a minimal element of X when there is no $y \in X$ such that y < x;
- (v) an upper bound of a set $Y \subseteq X$ in X when $y \leqslant x$ for every $y \in Y$;
- (vi) a *lower bound of a set* $Y \subseteq X$ in X when $x \leq y$ for every $y \in Y$.

When X has both a greatest and least element, it is said to be *bounded*.

Every poset has at most one greatest (resp. least) element. To prove this, let x and y be greatest elements of a poset \mathbb{X} . Since x is a greatest element of \mathbb{X} , we have $y \leqslant x$. Similarly, the assumption that y is a greatest element yields $x \leqslant y$. By antisymmetry we conclude that x = y. The case of least elements is analogous. Accordingly, when they exist, we will denote the greatest and least elements of a poset by 1 and 0.

While a greatest element is always maximal (resp. a least element is always minimal), the converse need not hold in general. For instance, every element of the poset $\langle X; \mathrm{id}_X \rangle$ is both maximal and minimal, but none of them is a greatest or least element of \mathbb{X} , provided that X has at least two elements.

In general, maximal and minimal elements need not exist. A counterexample is the poset $\langle \mathbb{Z}; \leqslant \rangle$, which lacks both maximal and minimal element. Furthermore, the existence of maximal (resp. minimal) elements does not imply the existence of a greatest (resp. least) element. For instance, the following poset has five maximal and four minimal elements, but lacks both a greatest and a least element.

As we mentioned, infinite posets, such as $\langle \mathbb{Z}; \leqslant \rangle$, may lack maximal and minimal elements. However, this cannot happen in the finite case.

Proposition 1.9. Every nonempty finite poset has both a maximal and a minimal element.

Proof. Suppose, with a view to contradiction, that a finite nonempty poset X lacks either maximal or minimal elements. We deal with the case when X has no maximal elements, as the proof of the other case is symmetric. As X is nonempty, it has an element $x_1 \in X$. Since x_1 is not maximal, there exists some $x_2 \in X$ such that $x_1 < x_2$. Similarly, since x_2 is not maximal, there exists some $x_3 \in X$ such that $x_2 < x_3$. Iterating this construction, we produce an infinite sequence

$$x_1 < x_2 < x_3 < \cdots < x_n < \cdots$$

 \boxtimes

of distinct elements of X, contradicting the assumption that X is finite.

Our proofs will often rely on the existence of a maximal element of some poset. Since a poset may lack maximal elements, the following principle plays a fundamental role in such proofs. Notably, it is equivalent (over Zermelo–Fraenkel set theory) to the Axiom of Choice.

Zorn's Lemma. Let X be a poset. If every chain in a poset X has an upper bound in X, then X has a maximal element.

An elementary observation is that if $\mathbb{X} = \langle X; \leqslant \rangle$ is a poset, then so is $\mathbb{X}^{\partial} := \langle X; \geqslant \rangle$, where $x \geqslant y$ iff $y \leqslant x$. The poset \mathbb{X}^{∂} is called the (*order*) dual of \mathbb{X} .

Similarly, each statement Φ about posets has an order dual statement Φ^{∂} obtained by replacing every occurrence of \leq (resp. \geq) in Φ by \geq (resp. \leq). Then Φ^{∂} holds in a poset $\mathbb X$ iff Φ holds in $\mathbb X^{\partial}$. This definition could be made more precise by given a formal account of what counts as a statement about posets. However, doing so would take us to far afield from the subject at hand, therefore we shall content ourselves with relying on the reader's informal understanding of what counts as a statement about posets. The purpose of introducing Φ^{∂} is that it allows us to formulate the following extremely useful principle, which will often allow us to cut our work down to half.

Duality Principle. *If a statement* Φ *is true in all posets, then* Φ^{∂} *is also true in all posets.*

Proof. If Φ holds in each poset \mathbb{X} , then in particular it holds in each poset of the form \mathbb{X}^{∂} . But Φ holds in \mathbb{X}^{∂} if and only if Φ^{∂} holds in \mathbb{X} , so Φ^{∂} indeed holds in every poset.

For example, applying the Duality Principle to Zorn's Lemma proves that if every chain in a poset X has a lower bound in X, then X has a minimal element.

1.2 Lattices as partially ordered sets

Posets in which certain optimal upper and lower bounds exist will be called *lattices*. The next definition explains what "optimal" means in this context.

Definition 1.10. Let X be a poset and $Y \subseteq X$. An element $x \in X$ is said to be

- (i) a *meet of* Y *in* X when x is the greatest lower bound of Y in X;
- (ii) a *join of* Y *in* X when x is the least upper bound of Y in X.

When the poset X is clear from the context, we simply say that x is a meet or a join of Y. The terms *infimum* and *supremum* are sometimes used as synonyms for *meet* and *join*.

Not every subset of a poset has a meet or a join. For instance, in the poset of natural numbers $\langle \mathbb{N}; \leqslant \rangle$, the join of \mathbb{N} does not exist, because \mathbb{N} has no upper bound in $\langle \mathbb{N}; \leqslant \rangle$. However, even if a set has an upper bound, the least such may not exist. For instance, while every subset of the poset \mathbb{X} depicted below has an upper bound (namely, the greatest element 1), the least upper bound of $Y := \{c, d\}$ in \mathbb{X} does not exist, because the set $\{1, a, b\}$ of upper bounds of Y lacks a least element.

While meets and joins need not exist in general, they are necessarily unique whenever they do exist.

Proposition 1.11. *Let* X *be a poset and* $Y \subseteq X$. *When the meet (resp. join) of* Y *exists, it is unique.*

Proof. Suppose that $x, y \in X$ are both meets of Y. As x is a meet of Y, it is a lower bound of Y. Moreover, being a meet of Y, the element y is the greatest lower bound of Y. As a consequence, $x \le y$. A similar argument shows that $y \le x$. As the relation \le is antisymmetric, we conclude that x = y. The case of joins is handled similarly.

Accordingly, given a poset X and a set $Y \subseteq X$,

- (i) if the meet of Y in \mathbb{X} exists, we denote it by $\bigwedge Y$;
- (ii) if the join of Y in X exists, we denote it by $\bigvee Y$.

When it is convenient to stress that these meets and joins are considered in the poset X, we will add the appropriate superscript and write

$$\bigwedge^{\mathbb{X}} Y$$
 and $\bigvee^{\mathbb{X}} Y$.

When $Y = \{x, y\}$, we will write $x \land y$ and $x \lor y$ instead of $\bigwedge Y$ and $\bigvee Y$. Lastly, given a family $\{y_i : i \in I\}$ of elements of X, we will use $\bigwedge_{i \in I} y_i$ and $\bigvee i \in Iy_i$ as a shorthand for, respectively, $\bigwedge \{y_i : i \in I\}$ and $\bigvee \{y_i : i \in I\}$.

It will often be convenient to paraphrase the definition of meets and joins in a poset X as follows. The meet of $Y \subseteq X$, when it exists, is the unique element $\bigwedge Y \in X$ such that

$$x \leqslant \bigwedge Y \iff x \leqslant y \text{ for each } y \in Y.$$

Similarly, the join of $Y \subseteq X$, if it exists, is the unique element $\bigvee Y \in X$ such that

$$\bigvee Y \leqslant x \iff y \leqslant x \text{ for each } y \in Y.$$

Definition 1.12. A nonempty poset X is said to be

- (i) a meet semilattice when the meet of $\{x,y\}$ exists for every pair of elements $x,y\in X$;
- (ii) a *join semilattice* when the join of $\{x,y\}$ exists for every pair of elements $x,y \in X$;
- (iii) a lattice when it is both a meet semilattice and a join semilattice.

Notice that if the meet (resp. join) of a set $Y \subseteq X$ exists in a poset X and equals some $y \in X$, then the join (resp. meet) of the set Y exists in the order dual poset X^{∂} and also equals y. In particular, a poset X is a meet (resp. join) semilattice iff its order dual X^{∂} is a join (resp. meet) semilattice. As a consequence, we obtain the following variant of the Duality Principle for lattices, which is a special case of the Duality Principle for posets.

Duality Principle. *If a statement* Φ *is true in all lattices, then the statement obtained by replacing* \wedge *with* \vee , \vee *with* \wedge , \leq *with* \geq , *and* \geq *with* \leq *in* Φ *is also true in all lattices.*

In a lattice X, the meet and the join of every finite nonempty set $\{x_1, \dots, x_n\} \subseteq X$ exist and coincide with

$$x_1 \wedge (x_2 \wedge \dots (x_{n-1} \wedge x_n) \dots)$$
 and $x_1 \vee (x_2 \vee \dots (x_{n-1} \vee x_n) \dots)$.

On the other hand, meet and joins of arbitrary subsets of X need not exists in X. This makes the following concept interesting:

Definition 1.13. A lattice X is said to be *complete* when $\bigwedge Y$ and $\bigvee Y$ exist for every $Y \subseteq X$.

Every complete lattice X is bounded, because $\bigvee X$ and $\bigwedge X$ are, respectively, the greatest and the least element of X.

Example 1.14 (Upsets & downsets). Given a poset \mathbb{X} , the pairs $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$ and $\langle \mathsf{Down}(\mathbb{X}); \subseteq \rangle$ are complete lattices in which meets and joins are intersections and unions. To prove that this holds for $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$, it suffices to show that

$$\bigwedge^{\mathsf{Up}(\mathbb{X})} U = \bigcap_{i \in I} U_i \ \text{ and } \bigvee^{\mathsf{Up}(\mathbb{X})}_{i \in I} U = \bigcup_{i \in I} U_i$$

for every family $U = \{U_i : i \in I\} \subseteq \mathsf{Up}(\mathbb{X})$. As an example, we detail the proof of the first equality. We need to show that $\bigcap_{i \in I} U_i$ is the greatest lower bound of U in $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$. Observe first that $\bigcap_{i \in I} U_i$ is still an upset of \mathbb{X} . Then notice that $\bigcap_{i \in I} U_i \subseteq U_j$ for all $i \in I$, so $\bigcap_{i \in I} U_i$ is a lower bound of U. To prove that it is the greatest one, consider a lower bound V of U. Then $V \subseteq U_i$ for all $i \in I$. Consequently, $V \subseteq \bigcap_{i \in I} U_i$ as desired. The proof that $\langle \mathsf{Down}(\mathbb{X}); \subseteq \rangle$ is also a complete lattice is analogous.

Now, recall that, when $\mathbb{X} = \langle X; \mathrm{id}_X \rangle$, the lattices $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$ and $\langle \mathsf{Down}(\mathbb{X}); \subseteq \rangle$ coincide with the powerset lattice $\langle \mathcal{P}(X); \subseteq \rangle$. The above discussion implies that $\langle \mathcal{P}(X); \subseteq \rangle$ is also a complete lattice in which meets and joins are intesections and unions.

Example 1.15 (Chains are lattices). Every nonempty chain \mathbb{X} is a lattice. To prove this, observe that every two elements x and y of \mathbb{X} are comparable because \mathbb{X} is a chain. Accordingly, we will prove that

 $x \land y$ = the least element among x and y; $x \lor y$ = the greatest element among x and y.

To prove the first equality above, let z be the least element among x and y. Clearly, $z \le x, y$, whence z is a lower bound of $\{x,y\}$. Then let $u \in X$ be another lower bound of $\{x,y\}$. As $z \in \{x,y\}$, this implies $u \le z$. Hence, we conclude that z is the greatest lower bound of $\{x,y\}$, that is, $z = x \land y$. The case of joins is handled similarly.

Example 1.16 (Chains need not be complete). While every nonempty chain is a lattice, it need not be a complete lattice. One reason is that every complete lattice is bounded, but a chain may lack a greatest or a least element, as in the case of $\langle \mathbb{N}; \leqslant \rangle$ and $\langle \mathbb{Z}; \leqslant \rangle$. In a chain without a greatest element, some subsets do not have a least upper bound simply because they have no upper bound at all. However, it may also happen that a subset which has an upper bound fails to have a least upper bound.

For instance, consider the chain of rational numbers $\langle \mathbb{Q}; \leqslant \rangle$ with the standard order and recall that \mathbb{Q} is *dense* in \mathbb{R} , in the sense that for every $x,y \in \mathbb{R}$ with x < y there exists $z \in \mathbb{Q}$ such that x < z < y. Then take

$$X := \{ x \in \mathbb{Q} : x^2 < 2 \} = \{ x \in \mathbb{Q} : -\sqrt{2} < x < +\sqrt{2} \}.$$

We claim that the join $\bigvee X$ does not exist in $\langle \mathbb{Q}; \leqslant \rangle$. Indeed, suppose for the sake of contradiction that this join is some $y \in \mathbb{Q}$. It cannot be that $\sqrt{2} < y$: in that case the density

of $\mathbb Q$ in $\mathbb R$ guarantees the existence of some $z \in \mathbb Q$ with $\sqrt{2} < z < y$, but then z is also an upper bound of X, so y is not the least upper bound of X. It also cannot be that $y < \sqrt{2}$: in that case the density of $\mathbb Q$ in $\mathbb R$ guarantees the existence of some positive $z \in \mathbb Q$ with $y < z < \sqrt{2}$, but then $z \in X$, so y is an an upper bound of X. We have therefore reached a contradiction, since for each rational y either $\sqrt{2} < y$ or $y < \sqrt{2}$. A similar reasoning shows that the meet $\bigwedge X$ also does not exist in $\langle \mathbb Q; \leqslant \rangle$.

The task of proving that a given poset is a complete lattice is simplified by following observation:

Proposition 1.17. *Let* X *be a poset. If* $\bigwedge Y$ (resp. $\bigvee Y$) *exists for all* $Y \subseteq X$, *then* X *is a complete lattice*

Proof. Suppose that $\bigwedge Y$ exists for all $Y \subseteq X$. It suffices to show that the join of every subset $Y \subseteq X$ exists as well. To this end, consider $Y \subseteq X$ and let U(Y) be the set of upper bounds of Y in X. By assumption, the element $x := \bigwedge U(Y)$ exists in X. We will prove that x is the join of Y in X. First, the definition of x guarantees that x is a lower bound of U(Y). Therefore, it only remains to prove that $x \in U(Y)$. Accordingly, consider an element $y \in Y$. Clearly, y is a lower bound of U(Y). Together with the assumption that x is the greatest lower bound of U(Y), this implies $y \in x$. Since $y \in U(Y)$ and $x \in y$, we obtain $x \in U(Y)$. Hence, we conclude that $x = \bigvee Y$ and, therefore, that X is a complete lattice. By the Duality Principle, the variant of the statement involving joins holds too.

In order to apply the above test to a poset X, it is sometimes useful to distinguish the case where $Y = \emptyset$ from the one in which Y is nonempty. Because of this, the following description of the meet and the join of the empty set is of special interest.

Proposition 1.18. *The following conditions hold for a poset* X:

- (i) \mathbb{X} has a greatest element 1 if and only if $\bigwedge \emptyset$ exists in \mathbb{X} . In this case, $\bigwedge \emptyset = 1$;
- (ii) \mathbb{X} has a least element 0 if and only if $\bigvee \emptyset$ exists in \mathbb{X} . In this case, $\bigvee \emptyset = 0$.

Proof. We detail only the proof of condition (i), as condition (ii) will follow from the Duality Principle. First, suppose that $\wedge \emptyset$ exists in \mathbb{X} . Since every element of \mathbb{X} is vacuously a lower bound of \emptyset in \mathbb{X} and $\wedge \emptyset$ is the greatest such lower bound, we obtain that $x \leq \wedge \emptyset$ for all $x \in X$. Hence, $\wedge \emptyset$ is the greatest element of \mathbb{X} . Conversely, suppose that \mathbb{X} has a greatest element 1. Then 1 is vacuously a lower bound of \emptyset in \mathbb{X} . Furthermore, being the greatest element of \mathbb{X} , it is obviously the the greatest such lower bound. Thus, $1 = \wedge \emptyset$ as desired.

Corollary 1.19. A poset X is a complete lattice iff it has a greatest (resp. least) element and the meet (resp. join) of every nonempty $Y \subseteq X$ exists in X.

Proof. Immediate from Propositions 1.17 and 1.18.

Corollary 1.19 is instrumental in proving that concrete posets are complete lattices, as we proceed to illustrate.

 \boxtimes

Example 1.20 (Divisibility lattice). We will prove that the divisibility lattice $\langle \mathbb{N}; | \rangle$ is complete. Since $\langle \mathbb{N}; | \rangle$ has a greatest element, namely 0, it suffices to show that every nonempty $X \subseteq \mathbb{N}$ has a meet in $\langle \mathbb{N}; | \rangle$. To this end, observe that there is a greatest common divisor n of the elements of X: if $X = \{0\}$, then n = 0, otherwise n is the (finite) product of all powers of primes p^k such that p^k divides all elements of X but p^{k+1} does not divide some element of X. The definition of the order of $\langle \mathbb{N}; | \rangle$ guarantees that n is the greatest lower bound (that is, the meet) of X.

Another family of complete lattices arises in relation to the following concept:

Definition 1.21. A *topology* on a set X is a family $\tau \subseteq \mathcal{P}(X)$ such that

- (i) \emptyset , $X \in \tau$;
- (ii) If $Y, Z \in \tau$, then $Y \cap Z \in \tau$;
- (iii) If $\{Y_i : i \in I\} \subseteq \tau$, then $\bigcup_{i \in I} Y_i \in \tau$.

In this case, the pair $\langle X; \tau \rangle$ is said to be a *topological space*. Furthermore, the elements of τ are called *open* and their complements relative to X *closed*. It follows that the collection of closed sets of a topological space $\langle X; \tau \rangle$ contains \emptyset and X and is closed under binary unions and arbitrary intersections.

Example 1.22 (Order topology). Consider a chain X. By analogy with the open intervals of the real line, we may define the *open intervals* of X to be sets of the following three kinds:

$$(x,y) := \{z \in X : x < z < y\},\$$

 $(-\infty, x) := \{z \in X : z < x\},\$
 $(x, +\infty) := \{z \in X : x < z\}.$

The collection of arbitrary unions of opens intervals of these three forms a topology called the *order topology* on X.

The order topology on the chain $\langle \mathbb{R}; \leqslant \rangle$ of the real numbers is often called the *standard topology* on \mathbb{R} . Every open set of the standard topology of \mathbb{R} is in fact a union of sets of the form (x,y), since subsets of \mathbb{R} of the form $(z,+\infty)$ and $(-\infty,z)$ can be obtained as unions of subsets of \mathbb{R} of the form (x,y) and so can the whole set \mathbb{R} .

Example 1.23 (Lattices of closed sets). Let $\langle X;\tau\rangle$ be a topological space and $Cl(X;\tau)$ the family of its closed sets. We will prove that the pair $\langle Cl(X;\tau);\subseteq\rangle$ is a complete lattice. In view of Proposition 1.17, it suffices to show that arbitrary meets exist in $\langle Cl(X;\tau);\subseteq\rangle$. But this follows immediately from the fact that the collection $Cl(X;\tau)$ is closed under arbitrary intersections. Consequently, $\langle Cl(X;\tau);\subseteq\rangle$ is a complete lattice in which arbitrary meets coincide with intersections. However, arbitrary joins in $\langle Cl(X;\tau);\subseteq\rangle$ need not coincide with unions.

As we mentioned, lattices may fail to be complete, easy counterexamples being number systems. However, this cannot happen in the finite case.

Proposition 1.24. *Every finite lattice is complete.*

Proof. In view of Proposition 1.17, it suffices to show that $\bigwedge Y$ exists in \mathbb{X} for all $Y \subseteq X$. There are two cases: either $Y = \emptyset$ or X is nonempty. Suppose first that $Y = \emptyset$. Then take an enumeration $X = \{x_1, \ldots, x_n\}$ and observe that

$$1 := x_1 \vee \cdots \vee x_n$$

is the greatest element of \mathbb{X} . By condition (i) of Proposition 1.18, we conclude that $\bigwedge Y$ exists and coincides with 1. Then we consider the case where Y is nonempty and take an enumeration $Y = \{y_1, \dots, y_m\}$. Clearly, $y_1 \wedge \dots \wedge y_m$ is the meet of Y in \mathbb{X} .

1.3 Lattices as algebraic structures

Lattices and semilattices can also be viewed as algebraic structures, as we proceed to explain. To this end, we recall some fundamentals of general algebraic systems.

Definition 1.25.

- (i) An *operation* of arity n on a set A is a function $f: A^n \to A$.
- (ii) A *type* is a map $\rho \colon \mathcal{F} \to \mathbb{N}$, where \mathcal{F} is a set of function symbols. In this case, $\rho(f)$ is said to be the *arity* of the function symbol f, for every $f \in \mathcal{F}$. Function symbols of arity zero are called *constants*.
- (iii) An *algebra* of type ρ is a pair $A = \langle A; F \rangle$ where A is a nonempty set and $F = \{f^A : f \in \mathcal{F}\}$ is a set of operations on A whose arity is determined by ρ , in the sense that each f^A has arity $\rho(f)$. The set A is called the *universe* of A.

When $\mathcal{F} = \{f_1, \dots, f_n\}$, we shall write $\langle A; f_1^A, \dots, f_n^A \rangle$ instead of $\langle A; F \rangle$. In this case, we often drop the superscripts, and write simply $\langle A; f_1, \dots, f_n \rangle$.

Example 1.26 (Groups). Classical examples of algebras are groups and rings. For instance, the type of groups ρ_G consists of a binary symbol +, a unary symbol -, and a constant symbol 0. A group is then an algebra $\langle A; +, -, 0 \rangle$ of type ρ_G in which + is associative, 0 is a neutral element for +, and - produces additive inverses. More explicitly, a group is an algebra A of type ρ_G such that for every $a, b, c \in A$,

$$a + (b + c) = (a + b) + c$$
 $a + 0 = a$ $0 + a = a$ $a + -a = 0$ $-a + a = 0$.

Many other important classes of algebras are also defined by some system of equations. It will therefore be convenient to make the notion of an equation precise.

Definition 1.27. Given a type $\rho \colon \mathcal{F} \to \mathbb{N}$ and a set of variables X disjoint from \mathcal{F} , the set of *terms of type* ρ *over* X is the least set $T_{\rho}(X)$ such that

- (i) $X \subseteq T_{\rho}(X)$;
- (ii) if $c \in \mathcal{F}$ is a constant, then $c \in T_{\rho}(X)$;

(iii) if
$$\varphi_1, \ldots, \varphi_n \in T_{\rho}(X)$$
 and $f \in \mathcal{F}$ is *n*-ary, then $f(\varphi_1 \ldots \varphi_n) \in T_{\rho}(X)$.

When f is a binary operation, such as +, we often write $\varphi_1 + \varphi_2$ instead of $f(\varphi_1, \varphi_2)$.

Definition 1.28. Given a term $\varphi \in T_{\rho}(X)$, we write $\varphi(x_1, ..., x_n)$ to indicate that the variables occurring in φ are among $x_1, ..., x_n$. Furthermore, given an algebra A of type ρ and elements $a_1, ..., a_n \in A$, we define an element

$$\varphi^A(a_1,\ldots,a_n)$$

of A by recursion on the construction of φ as follows:

- (i) if φ is a variable x_i , then $\varphi^A(a_1, \ldots, a_n) := a_i$;
- (ii) if φ is a constant c, then c^A is the interpretation of c in A;
- (iii) if $\varphi = f(\psi_1, \dots, \psi_m)$, then

$$\varphi^{\mathbf{A}}(a_1,\ldots,a_n) := f^{\mathbf{A}}(\psi_1^{\mathbf{A}}(a_1,\ldots,a_n),\ldots,\psi_m^{\mathbf{A}}(a_1,\ldots,a_n)).$$

Definition 1.29. An *equation of type* ρ *over* X is an expression of the form $\varphi \approx \psi$, where $\varphi, \psi \in T_{\rho}(X)$. An equation $\varphi \approx \psi$ is *valid* in an algebra A of type ρ when

$$\varphi^A(a_1,\ldots,a_n)=\psi^A(a_1,\ldots,a_n)$$
 for every $a_1,\ldots,a_n\in A$,

in which case we say that *A validates* $\varphi \approx \psi$. Alternatively, we say that *A satisfies* $\varphi \approx \psi$, or that the equation $\varphi \approx \psi$ *holds* in *A*.

We can now rephrase the definition of groups as follows: groups are precisely the algebras of type ρ_G that validate the equations

$$x + (y+z) \approx (x+y) + z$$
 $x + 0 \approx x$ $0 + x \approx x$ $x + -x \approx 0$ $-x + x \approx 0$.

Lattices and semilattices admit a similar definition as algebras which satisfy certain equations. The type of meet semilattices ρ_M consists of a single binary symbol \land , while the type ρ_J of join semilattices consists of a single binary symbol \lor . The type of lattices ρ_L then consists of two binary symbols \land and \lor .

Definition 1.30.

(i) A *meet semilattice* is an algebra $A = \langle A; \wedge \rangle$ of type ρ_M satisfying the equations:

$$x \wedge x \approx x$$
 (idempotent law)
 $x \wedge y \approx y \wedge x$ (commutative law)
 $x \wedge (y \wedge z) \approx (x \wedge y) \wedge z$. (associative law)

(ii) A *join semilattice* is an algebra $A = \langle A; \vee \rangle$ of type ρ_I satisfying the equations:

$$x \lor x \approx x$$
 (idempotent law)
 $x \lor y \approx y \lor x$ (commutative law)
 $x \lor (y \lor z) \approx (x \lor y) \lor z$. (associative law)

(iii) A *lattice* is an algebra $A = \langle A; \vee, \wedge \rangle$ of type ρ_L such that $\langle A; \wedge \rangle$ is a meet semilattice (that is, it satisfies the above equations for \wedge), $\langle A; \vee \rangle$ is a join semilattice (that is, it satisfies the above equations for \vee), and moreover A satisfies the equations:

$$x \wedge (y \vee x) \approx x$$
 and $x \vee (y \wedge x) \approx x$. (absorption laws)

In order to prove that this *algebraic definition* of meet and join semilattices (Definition 1.30) is equivalent to their *order theoretic definition* (Definition 1.12), we now explain how to translate between the two notions. While from a purely formal perspective, meet and join semilattices in the sense of Definition 1.30 are essentially the same objects (differing only in the symbol which represents their unique binary operation), we shall give these two classes of algebras a different order theoretic interpretation.

We first describe the translation from the algebraic definition to the order theoretic definition. Consider a meet semilattice $A = \langle A; \wedge \rangle$ in the sense of Definition 1.30. The operation \wedge determines a binary relation \leq_{\wedge} on A as follows:

$$a \leqslant_{\wedge} b \iff a \wedge b = a$$
.

We shall prove that $A^p := \langle A; \leqslant_{\wedge} \rangle$ is a poset which is a meet semilattice in the sense of Definition 1.12. Similarly, consider a join semilattice $A = \langle A; \vee \rangle$ in the sense of Definition 1.30. The operation \vee determines a binary relation \leqslant_{\vee} on A as follows:

$$a \leqslant_{\vee} b \iff a \lor b = b.$$

We shall prove that $A^p := \langle A; \leq_{\lor} \rangle$ is a poset which is a join semilattice in the sense of Definition 1.12.

In the converse direction, consider poset $\mathbb{X} = \langle X; \leqslant \rangle$ which is a meet semilattice in the sense of Definition 1.12. Taking $\wedge \colon X \times X \to X$ to be the binary operation such that $x \wedge y$ the the meet of the set $\{x,y\}$ in \mathbb{X} , we shall prove that the algebra $\mathbb{X}^a := \langle X; \wedge \rangle$ is a meet semilattice in the sense of Definition 1.30. Similarly, consider a poset $\mathbb{X} = \langle X; \leqslant \rangle$ which is a join semilattice in the sense of Definition 1.12. Taking $\vee \colon X \times X \to X$ to be the binary operation such that $x \vee y$ is the join of the set $\{x,y\}$ in \mathbb{X} , we shall prove that the algebra $\mathbb{X}^a := \langle X; \vee \rangle$ is a join semilattice in the sense of Definition 1.30.

Proposition 1.31. Let X and A be meet (resp. join) semilattices in the sense of Definitions 1.12 and 1.30, respectively. The following conditions hold:

- (i) X^a is a meet (resp. join) semilattice in the sense of Definition 1.30;
- (ii) A^p is a meet (resp. join) semilattice in the sense of Definition 1.12;
- (iii) $X = X^{ap}$ and $A = A^{pa}$.

Proof. We only prove the claims for meet semilattices. The claims for join semilattices are proved by replacing \land by \lor , \leqslant by \geqslant , and \leqslant_{\land} by \geqslant_{\lor} throughout the proof. (Notice that one cannot simply apply the Duality Principle here, because this principle only applies to the relational definition of meet and join semilattices.)

(i): Consider $x, y, z \in X$. We begin by proving that $x = x \wedge x$. To this end, recall that $x \wedge x$ is, by definition, a lower bound of $\{x\}$. Consequently, $x \wedge x \leqslant x$. Since \leqslant is reflexive, we have $x \leqslant x$, so x is also a lower bound of $\{x\}$. As $x \wedge x$ is, by definition, the greatest lower bound of $\{x\}$, this yields $x \leqslant x \wedge x$. By applying the antisymmetry of \leqslant to the inequalities $x \wedge x \leqslant x$ and $x \leqslant x \wedge x$, we conclude that $x = x \wedge x$, as desired. Hence, X^a validates the idempotent law.

The fact that X^a validates also the commutative law is an immediate consequence of the equality $\{x,y\} = \{y,x\}$.

To prove the associative law, observe that $x \land (y \land z) \leqslant x, y \land z$, as $x \land (y \land z)$ is a lower bound of $\{x, y \land z\}$. Moreover, $y \land z \leqslant y, z$, as $y \land z$ is a lower bound of $\{y, z\}$. By the transitivity of \leqslant , we obtain $x \land (y \land z) \leqslant x, y, z$. In particular, $x \land (y \land z)$ is a lower bound of $\{x, y\}$. Since $x \land y$ is the greatest such lower bound, this yields $x \land (y \land z) \leqslant x \land y$. Thus, we obtain $x \land (y \land z) \leqslant x \land y, z$, that is, $x \land (y \land z)$ is a lower bound of $\{x \land y, z\}$. Since $(x \land y) \land z$ is the greatest such lower bound, we conclude that

$$x \wedge (y \wedge z) \leq (x \wedge y) \wedge z$$
.

Similarly, we obtain $(x \land y) \land z \leqslant x \land (y \land z)$ and, therefore, $x \land (y \land z) = (x \land y) \land z$, by the antisymmetry of \leqslant . Hence, \mathbb{X}^a validates the associative law in \mathbb{X}^a .

(ii): We begin by proving that $A^p = \langle A; \leqslant_{\wedge} \rangle$ is a poset. To this end, consider $a, b, c \in A$. By the idempotent law, $a \wedge a = a$. Consequently, the definition of \leqslant_{\wedge} guarantees that $a \leqslant_{\wedge} a$ and, therefore, that \leqslant_{\wedge} is reflexive. To prove that \leqslant_{\wedge} is antisymmetric, suppose that $a \leqslant_{\wedge} b$ and $b \leqslant_{\wedge} a$. By the definition of \leqslant_{\wedge} , we have $a \wedge b = a$ and $b \wedge a = b$. Therefore, we can apply the commutative law, obtaining

$$a = a \wedge b = b \wedge a = b$$
.

To prove that \leq_{\wedge} is transitive, suppose that $a \leq_{\wedge} b$ and $b \leq_{\wedge} c$, that is,

$$a \wedge b = a$$
 and $b \wedge c = b$.

Together with the associative law, this yields

$$a \wedge c = (a \wedge b) \wedge c = a \wedge (b \wedge c) = a \wedge b = a.$$

By the definition of \leq_{\wedge} , this amounts to $a \leq_{\wedge} c$. Hence, we conclude that A^p is a poset.

To prove that A^p is a meet semilattice in the sense of Definition 1.12, it only remains to show that $a \wedge b$ is the meet of $\{a, b\}$ in A^p , for all $a, b \in A$. To this end, observe that by applying in succession the commutative, associative, and idempotent law, we obtain

$$(a \wedge b) \wedge a = a \wedge (a \wedge b) = (a \wedge a) \wedge b = a \wedge b.$$

By the definition of \leq_{\wedge} , this amounts to $a \wedge b \leq_{\wedge} a$. A similar argument yields $a \wedge b \leq_{\wedge} b$. Thus, $a \wedge b$ is a lower bound of $\{a,b\}$ in A^p . To prove that it is the greatest one, suppose that c is also a lower bound of $\{a,b\}$ in A^p , that is, $c \leq_{\wedge} a,b$. By definition of \leq_{\wedge} , this means that $c \wedge a = c$ and $c \wedge b = c$. Together with the associative law, this implies that

$$c \wedge (a \wedge b) = (c \wedge a) \wedge b = c \wedge b = c$$
.

that is, $c \leq_{\wedge} a \wedge b$. Thus, we conclude that $a \wedge b$ is the meet of $\{a, b\}$ in A^{p} .

(iii): To prove that $X = X^{ap}$, consider $x, y \in X$. We begin by showing that

$$x \leq^{\mathbb{X}} y \iff x \text{ is the meet of } \{x, y\} \text{ in } \mathbb{X}.$$
 (1.1)

Suppose first that $x \leq^{\mathbb{X}} y$. As $\leq^{\mathbb{X}}$ is reflexive, this implies that x is a lower bound of $\{x,y\}$ in \mathbb{X} . To prove that it is the greatest one, consider another such lower bound z. Then $z \leq x$, as desired. Thus, x is the meet of $\{x,y\}$ in \mathbb{X} . Conversely, if x is the meet of $\{x,y\}$ in \mathbb{X} , then clearly $x \leq^{\mathbb{X}} y$.

In view of condition (1.1), we obtain

$$x \leq^{\mathbb{X}} y \iff x \text{ is the meet of } \{x, y\} \text{ in } \mathbb{X}$$

$$\iff x = x \wedge^{\mathbb{X}^a} y$$

$$\iff x \leq^{\mathbb{X}^{ap}} y,$$

where the last two equivalences follow from the definitions of X^a and X^{ap} , respectively. Hence, we conclude that $X = X^{ap}$, as desired.

To prove that $A = A^{pa}$, consider $a, b \in A$. Since $a \wedge^{A^{pa}} b$ is the meet of $\{a, b\}$ in A^p , we have $a \wedge^{A^{pa}} b \leq_{\wedge}^{A^p} a, b$. By the definition of the relation $\leq_{\wedge}^{A^p}$, this amounts to

$$(a \wedge^{A^{pa}} b) \wedge^A a = a \wedge^{A^{pa}} b$$
 and $(a \wedge^{A^{pa}} b) \wedge^A b = a \wedge^{A^{pa}} b$.

Together with the fact that the associative law are valid in *A*, this yields

$$(a \wedge^{A^{pa}} b) \wedge^A (a \wedge^A b) = ((a \wedge^{A^{pa}} b) \wedge^A b) \wedge^A b = (a \wedge^{A^{pa}} b) \wedge^A b = a \wedge^{A^{pa}} b,$$

which, by the definition of A^p , amounts to $a \wedge^{A^{pa}} b \leq^{A^p}_{\wedge} a \wedge^A b$.

Lastly, applying in succession the commutative, associative, and idempotent law in A, we obtain

$$(a \wedge^A b) \wedge^A a = a \wedge^A (a \wedge^A b) = (a \wedge^A a) \wedge^A b = a \wedge^A b.$$

By the definition of A^p , this amounts to $a \wedge^A b \leqslant^{A^p}_{\wedge} a$. Similarly, we obtain $a \wedge^A b \leqslant^{A^p}_{\wedge} b$, so $a \wedge^A b$ is a lower bound of $\{a,b\}$ in A^p . Since $a \wedge^{A^{pa}} b$ is the greatest such lower bound, we obtain that $a \wedge^A b \leqslant^{A^p}_{\wedge} a \wedge^{A^{pa}} b$. As we already proved that $a \wedge^{A^{pa}} b \leqslant^{A^p}_{\wedge} a \wedge^A b$, we can apply the antisymmetry of $\leqslant^{A^p}_{\wedge}$, obtaining $a \wedge^A b = a \wedge^{A^{pa}} b$. Thus $A = A^{pa}$.

It remains to provide a translation between the two definitions of lattices. To this end, consider a lattice $A = \langle A; \land, \lor \rangle$ in the sense of Definition 1.30. Then

$$a \leqslant_{\wedge} b \iff a \wedge b = a \iff a \vee b = b \iff a \leqslant_{\vee} b.$$

This is a consequence of absorption: if $a \wedge b = a$, then $a \vee b = (a \wedge b) \vee b = (b \wedge a) \vee b$, and conversely if $a \vee b = b$, then $a \wedge b = a \wedge (a \vee b) = a \wedge (b \vee a) = a$. Because the two partial orders \leq_{\wedge} and \leq_{\vee} agree, we can simply talk about the partial order \leq and define the poset A^p as $A^p := \langle A; \leq \rangle$.

In the converse direction, consider a lattice $\mathbb{X} = \langle X; \leqslant \rangle$ which is a lattice in the sense of Definition 1.12. Taking again \wedge and \vee to be, respectively, the operations of taking the meet and the join of two elements in \mathbb{X} , we define $\mathbb{X}^a := \langle X; \wedge, \vee \rangle$.

Proposition 1.32. *Let* X *and* A *be lattices in the sense of Definitions 1.12 and 1.30, respectively. The following conditions hold:*

- (i) X^a is a lattice in the sense of Definition 1.30;
- (ii) A^p is a lattice in the sense of Definition 1.12;
- (iii) $X = X^{ap}$ and $A = A^{pa}$.
- *Proof.* (i): Because \mathbb{X} is both a meet and a join semilattice in the sense of Definition 1.12, by Proposition 1.31 the algebra \mathbb{X}^a satisfies idempotence, commutativity, and associativity. It remains to prove that it satisfies absorption. To this end, observe that $x \leqslant x, y \lor x$, because \leqslant is reflexive and $y \lor x$ an upper bound of $\{y, x\}$. Then x is a lower bound for $\{x, y \lor x\}$. Since $x \land (y \lor x)$ is the greatest such lower bound, this implies $x \leqslant x \land (y \lor x)$. Furthermore, we have $x \land (y \lor x) \leqslant x$, because $x \land (y \lor x)$ is a lower bound of $\{x, y \lor x\}$. By the antisymmetry of \leqslant , we conclude that $x \land (y \lor x) = x$. A similar argument shows that $x \lor (y \land x) = x$, thus establishing the validity of the absorption laws in \mathbb{X}^a . Hence, we conclude that \mathbb{X}^a is a lattice in the sense of Definition 1.30.
- (ii): Because $\langle A; \wedge \rangle$ and $\langle A; \vee \rangle$ are, respectively, a meet and a join semilattice in the sense of Definition 1.30, by Proposition 1.31 the poset A^p is both a meet and a join semilattice in the sense of Definition 1.12. In other words, it is a lattice in the sense of that definition.
- (iii): The equality $\mathbb{X} = \mathbb{X}^{ap}$ follows from the corresponding equality for either meet or join semilattices. This is because each lattice is in particular a meet and a join semilattice, and moreover if $\langle A; \vee, \wedge \rangle$ is a lattice, then the posets $\langle A; \wedge \rangle^p$ and $\langle A; \vee \rangle^p$ coincide. Likewise, the equality $A = A^{pa}$ follows from the corresponding equalities for meet semilattices and for join semilattices.

In view of Propositions 1.31 and 1.32, from now on we shall treat lattices and semilattices both as posets and algebras without further notice.

1.4 Closure operators

The following concept will play a fundamental role in this book.

Definition 1.33. A map $C: \mathcal{P}(X) \to \mathcal{P}(X)$ is said to be a *closure operator* on a set X when it satisfies the following conditions for every $Y, Z \subseteq X$:

- (i) Extensivity: $Y \subseteq C(Y)$;
- (ii) *Idempotence*: C(C(Y)) = C(Y);
- (iii) *Monotonicity*: if $Y \subseteq Z$, then $C(Y) \subseteq C(Z)$.

We say that a set $Y \subseteq X$ is *closed* when Y = C(Y).

Notice that the inclusion $C(Y) \subseteq C(C(Y))$ for all $Y \subseteq X$ follows from extensivity and monotonicity. To prove that a map $C \colon \mathcal{P}(X) \to \mathcal{P}(X)$ is a closure operator, it therefore suffices to prove extensivity, monotonicity, and the inclusion $C(C(Y)) \subseteq C(Y)$ for all $Y \subseteq X$. When no confusion shall occur, given a closure operator C on X and $x_1, \ldots, x_n \in X$, we shall write $C(x_1, \ldots, x_n)$ as a shorthand for $C(\{x_1, \ldots, x_n\})$.

Example 1.34 (Topological closure). Given a topological space $\langle X; \tau \rangle$, let

$$\overline{(-)} \colon \mathcal{P}(X) \to \mathcal{P}(X)$$

be the map defined for every $Y \subseteq X$ as

$$\overline{Y} := \bigcap \{Z \subseteq X : Z \in \mathsf{Cl}(X; \tau) \text{ and } Y \subseteq Z\}.$$

Notice that \overline{Y} is closed, as arbitrary intersections of closed are closed. Therefore, \overline{Y} is the least closed set extending Y. Because of this, \overline{Y} is called the *topological closure* of Y. It is easy to see that $\overline{(-)}$ is a closure operator on X, whose closed sets are precisely the closed sets of the topological space $\langle X; \tau \rangle$. The closure operators of this form are called *topological*.

Example 1.35 (Upward & downward closure). Given a poset X, let

$$\uparrow^{\mathbb{X}} : \mathcal{P}(X) \to \mathcal{P}(X) \text{ and } \downarrow^{\mathbb{X}} : \mathcal{P}(X) \to \mathcal{P}(X)$$

be the maps defined for every $Y \subseteq X$ as

$$\uparrow^{\mathbb{X}} Y := \{ x \in X : \text{there exists } y \in Y \text{ such that } y \leqslant x \};$$

$$\downarrow^{\mathbb{X}} Y := \{ x \in X : \text{there exists } y \in Y \text{ such that } x \leqslant y \}.$$

It is easy to see that \uparrow^X and \downarrow^X are closure operators on X. The closed sets of \uparrow^X and \downarrow^X consist, respectively, of the upsets of X and the downsets of X. Furthermore, $\uparrow^X Y$ and $\downarrow^X Y$ are, respectively, the least upset and the least downset of X containing Y.

When the poset \mathbb{X} is clear from the context, we will drop the superscripts in $\uparrow^{\mathbb{X}}$ and $\downarrow^{\mathbb{X}}$ and write simply \uparrow and \downarrow . Similarly, given $x \in X$, we will write $\uparrow^{\mathbb{X}} x$ and $\downarrow^{\mathbb{X}} x$ as a shorthand for $\uparrow^{\mathbb{X}} \{x\}$ and $\downarrow^{\mathbb{X}} \{x\}$. Lastly, an upset (resp. a downset) of \mathbb{X} will be called *principal* when it is of the form $\uparrow x$ (resp. $\downarrow x$) for some $x \in X$.

The upward and downward closure operators on a poset are in fact special cases of topological closure operators.

Example 1.36 (Upset & downset topology). The collection of all upsets of a poset X forms a topology called the *upset topology* on X. The upset topology is sometimes also called the *Alexandroff topology*. The closed sets of the upset topology are the downsets of X, since these are precisely the complements of the upsets of X. The topological closure operator associated with the upset topology is therefore \downarrow . A analogous result holds if we replace the role of upsets and downsets in this example.

Closure operators admit the following alternative presentations:

Definition 1.37. A *closure system* on a set X is a family $S \subseteq \mathcal{P}(X)$ closed under arbitrary intersections, that is, such that for every $\{Y_i : i \in I\} \subseteq \mathcal{P}(X)$,

if
$$Y_i \in \mathcal{S}$$
 for every $i \in I$, then $\bigcap_{i \in I} Y_i \in \mathcal{S}$.

The intersection of the empty family of subsets of X is understood here as $\bigcap \emptyset := X$. Consequently, the set X belongs to every closure system on X.

Definition 1.38. A *consequence relation* on a set X is a relation $\vdash \subseteq \mathcal{P}(X) \times X$ such that

- (i) *Reflexivity*: if $Y \subseteq X$ and $y \in Y$, then $Y \vdash y$;
- (ii) *Transitivity*: for all $Y, Z \subseteq X$ and $x \in X$, if $Y \vdash z$ for all $z \in Z$ and $Z \vdash x$, then $Y \vdash x$.

In this case, for every $x \in X$ and $Y, Z \subseteq X$ such that $Y \subseteq Z$ the following holds:

if
$$Y \vdash x$$
, then $Z \vdash x$. (monotonicity)

This is because from $Y \subseteq Z$ and reflexivity it follows $Z \vdash y$ for each $y \in Y$, so by transitivity $Y \vdash x$ implies $Z \vdash x$.

The next result explains how to translate between closure operators, closure systems, and consequence relations.

Theorem 1.39. *Given a set X, the following conditions hold:*

(i) If C is a closure operator on X, the family of its closed sets S_C is a closure system on X. Conversely, if S is a closure system on X, the map $C_S : \mathcal{P}(X) \to \mathcal{P}(X)$ defined as

$$C_{\mathcal{S}}(Y) := \bigcap \{Z \in \mathcal{S} : Y \subseteq Z\}$$

is a closure operator on X. These transformations are inverse to each other;

(ii) If C is a closure operator on X, the relation

$$\vdash_C := \{ \langle Y, x \rangle \in \mathcal{P}(X) \times X : x \in C(Y) \}$$

is a consequence relation on X. Conversely, if \vdash is a consequence relation on X, the map $C_{\vdash} \colon \mathcal{P}(X) \to \mathcal{P}(X)$ defined as

$$C_{\vdash}(Y) := \{x \in X : Y \vdash x\}$$

is a closure operator on X. These transformations are inverse to each other.

Proof. (i): Let $\{Y_i : i \in I\}$ be a family of closed sets of the closure operator C. We will prove that $Y := \bigcap_{i \in I} Y_i$ is also closed. By monotonicity $C(Y) \subseteq C(Y_i)$ for each $i \in I$ and thus $C(Y) \subseteq \bigcap_{i \in I} C(Y_i) = \bigcap_{i \in I} Y_i$, where the last equality holds because each Y_i is closed. Therefore, by the definition of Y we obtain $C(Y) \subseteq Y$. Since $Y \subseteq C(Y)$ by extensivity, we conclude that Y = C(Y). The closed sets of C thus form a closure system. Conversely, if S

is a closure system, then the map C_S associated with it is extensive and order preserving by definition. Moreover, if $Y \subseteq X$ and $Z \in S$, then $Y \subseteq Z$ iff $C_S(Y) \subseteq Z$. It follows that

$$C_{\mathcal{S}}(C_{\mathcal{S}}(Y)) = \bigcap \{Z \in \mathcal{S} : C_{\mathcal{S}}(Y) \subseteq Z\} = \bigcap \{Z \in \mathcal{S} : Y \subseteq Z\} = C_{\mathcal{S}}(Y).$$

To prove that these transformations are inverse to each other, let C' be the closure operator obtained from a closure operator C on X by composing the two constructions. That is,

$$C'(Y) = \bigcap \{Z \subseteq X : Y \subseteq Z \text{ and } Z = C(Z)\}.$$

Then $C'(Y) \subseteq C(Y)$ because $Y \subseteq Z = C(Z)$ holds in particular for $Z \coloneqq C(Y)$, and $C(Y) \subseteq C'(Y)$ because $Y \subseteq Z = C(Z)$ implies $C(Y) \subseteq C(Z) = Z$. Thus C' = C.

In the opposite direction, let S' be the closure system obtained from a closure system S on X by composing the two constructions. That is,

$$Y \in \mathcal{S}' \iff Y = \bigcap \{Z \in \mathcal{S} : Y \subseteq Z\}.$$

Then $Y \in \mathcal{S}$ implies $Y \in \mathcal{S}'$, since $Y \subseteq \{Z \in \mathcal{S} : Y \subseteq Z\}$ holds for each $Y \subseteq X$ and $\{Z \in \mathcal{S} : Y \subseteq Z\} \subseteq Y$ holds for each $Y \in \mathcal{S}$ because we can take $Z \coloneqq Y$. Conversely, if $Y \in \mathcal{S}'$, then Y is the intersection of a family of sets in \mathcal{S} , since $Y = \bigcap \{Z \in \mathcal{S} : Y \subseteq Z\}$. But \mathcal{S} is closed under arbitrary intersections, so $Y \in \mathcal{S}$. Thus $\mathcal{S}' = \mathcal{S}$.

(ii): If C is a closure operator on X and $y \in Y \subseteq X$, then $y \in C(Y)$ by extensivity, so $Y \vdash_C y$ holds in the associated consequence relation. Moreover, if $Y \vdash_C z$ for each $z \in Z \subseteq X$ and $Z \vdash_C x$, then $Z \subseteq C(Y)$ and $x \in C(Z)$, so $x \in C(Z) \subseteq C(C(Y)) = C(Y)$ by monotonicity and idempotence. Consequently, $Y \vdash_C x$. Conversely, if \vdash is a consequence relation on X, then the associated map C_\vdash is extensive, since by reflexivity $y \in Y \subseteq X$ implies $Y \vdash y$ and thus $y \in C_\vdash(Y)$. Moreover, $C_\vdash(Y) \vdash x$ implies $Y \vdash x$ for every $Y \subseteq X$ and $x \in X$, since by transitivity $Y \vdash z$ for each $z \in C_\vdash(Y)$ and $C_\vdash(Y) \vdash x$ imply that $Y \vdash x$. Consequently,

$$C_{\vdash}(C_{\vdash}(Y)) = \{x \in X : C_{\vdash}(Y) \vdash x\} \subseteq \{x \in X : Y \vdash x\} = C_{\vdash}(Y).$$

Finally, $Y \subseteq Z$ for $Y, Z \subseteq X$ implies $C_{\vdash}(Y) \subseteq C_{\vdash}(Z)$ by the monotonicity of \vdash .

One can immediately see from their definitions that the two transformations are inverse to each other. Let C' be the closure operator obtained from a closure operator C on X by composing the two constructions. Then $C'(Y) = \{x \in X : Y \vdash_C x\} = \{x \in X : x \in C(Y)\} = C(Y)$ for every $Y \subseteq X$. In the opposite direction, let \vdash' be the consequence relation obtained from the consequence relation \vdash on X by composing the two constructions. Then $Y \vdash' x$ iff $x \in C_{\vdash}(Y)$ iff $Y \vdash x$.

In view of the above result, given a closure operator *C* on a set *X*, we refer to

$$\mathcal{S}_C := \{Y \subseteq X : Y = C(Y)\} \text{ and } \vdash_C := \{\langle Y, x \rangle \in \mathcal{P}(X) \times X : x \in C(Y)\}$$

as to the closure system and the consequence relation *associated with C*. We will drop the subscript $(-)_C$ whenever there is no danger of confusion.

For instance, the upsets and the downsets of a poset X are precisely the closed sets of the closure operators \uparrow and \downarrow . It follows that Up(X) and Down(X) are the closure systems associated with \uparrow and \downarrow . Similarly, the closed sets of a topological space $\langle X; \tau \rangle$ are precisely the closed sets of the closure operator $\overline{(-)}$. Consequently, the family $CI(X;\tau)$ of closed sets of $\langle X;\tau \rangle$ is the closure system associated with $\overline{(-)}$.

Every closure system can be viewed as a poset ordered under the inclusion relation. This poset turns out to be a complete lattice.

Proposition 1.40. *Let* S *be the closure system associated with a closure operator* C *on a set* X. *Then* $\langle S; \subseteq \rangle$ *is a complete lattice in which meets are intersections and joins are closures of unions. That is, for every* $\{Y_i : i \in I\} \subseteq S$

$$\bigvee_{i\in I} Y_i = C(\bigcup_{i\in I} Y_i).$$

Proof. Consider a family $\{Y_i: i \in I\}$ of sets in \mathcal{S} . The intersection $Y := \bigcap_{i \in I} Y_i$ is the greatest lower bound of the family $\{Y_i: i \in I\}$ in $\langle \mathcal{P}(X); \subseteq \rangle$. Because $Y \in \mathcal{S}$, it is also the greatest lower bound of this family in $\langle \mathcal{S}; \subseteq \rangle$. It follows that the meet of Y in $\langle \mathcal{S}; \subseteq \rangle$ exists and coincides with the intersection $\bigcap Y$. To prove that the join $\bigvee_{i \in I} Y_i$ exists and equals $C(\bigcup_{i \in I} Y_i)$, it suffices to prove that each $Z \in \mathcal{S}$ satisfies the following equivalence:

$$C(\bigcup_{i\in I} Y_i) \subseteq Z \iff Y_i \subseteq Z \text{ for each } i \in I.$$

The left to right implication holds because $Y_j \subseteq \bigcup_{i \in I} Y_i \subseteq C(\bigcup_{i \in I} Y_i)$ for each $j \in I$. The right to left implication holds because if $Y_i \subseteq Z \in \mathcal{S}$ for each $i \in I$, then $\bigcup_{i \in I} Y_i \subseteq Z$, so $C(\bigcup_{i \in I} Y_i) \subseteq C(Z) = Z$.

In view of Proposition 1.40, we will often treat closure systems S as complete lattices and write S as a shorthand for $\langle S; \subseteq \rangle$. Notably, not only is every closure system a complete lattice, but (up to isomorphism) every complete lattice arises in this way.

Theorem 1.41 (Representation theorem). Every complete lattice is isomorphic to a closure system.

Proof. Consider a complete lattice X. We will show that

$$\mathcal{S} := \{ \downarrow x : x \in X \}$$

is a closure system on X such that $X \cong S$.

We begin by proving that S is a closure system on X. Notice that $S \subseteq \mathcal{P}(X)$. Now consider a family $\{ \downarrow x_i : i \in I \} \subseteq S$. We need to prove that its intersection belongs to S. To this end, observe that for every $y \in X$,

$$y \in \bigcap_{i \in I} \downarrow x_i \iff y \leqslant x_i \text{ for every } i \in I \iff y \leqslant \bigwedge_{i \in I}^{\aleph} x_i.$$

These equivalences hold even if *I* is empty. As a consequence,

$$\bigcap_{i\in I} \downarrow x_i = \downarrow \Big(\bigwedge_{i\in I}^{\times} x_i\Big) \in \mathcal{S}.$$

Hence, S is a closure system on X as desired.

It only remains to show that X is isomorphic to S. To this end, consider the map $f: X \to S$ defined by the rule

$$f(x) := \downarrow x$$
 for every $x \in X$.

Clearly, f is a well-defined surjection. Moreover, for every $x, y \in X$,

$$x \le y \iff \downarrow x \subseteq \downarrow y \iff f(x) \subseteq f(y).$$

Hence, f is an order embedding from \mathbb{X} into \mathcal{S} . Since f is surjective, we conclude that it is an order isomorphism.

1.5 Finitarity and compactness

Among all closure operators, the following are of special interest:

Definition 1.42. Given a closure operator *C* on a set *X*,

- (i) a closed set *Y* of *C* is said to be *finitely generated* when there exists a finite $Z \subseteq X$ such that Y = C(Z);
- (ii) *C* is said to be *finitary* when for every $Y \cup \{x\} \subseteq X$ such that $x \in C(Y)$ there exists a finite $Z \subseteq Y$ such that $x \in C(Z)$.

Consequently, a closure operator is finitary precisely when each of its closed sets is the union of all the finitely generated closed sets contained into it.

Example 1.43 (Upward & downward closure). Given a poset X, the closure operators

$$\uparrow : \mathcal{P}(X) \to \mathcal{P}(X)$$
 and $\downarrow : \mathcal{P}(X) \to \mathcal{P}(X)$

are finitary. This is because for every $Y \cup \{x\} \subseteq X$,

$$x \in \uparrow Y \iff$$
 there exists $y \in Y$ such that $x \in \uparrow y$; $x \in \downarrow Y \iff$ there exists $y \in Y$ such that $x \in \downarrow y$.

Example 1.44 (Topological closure). On the other hand, the closure operator of topological closure often fails to be finitary. For instance, this is the case for the standard topology on \mathbb{R} . To prove this, recall that the open sets of this topology are unions of sets of the form (y,z) for $y,z \in \mathbb{R}$. Consequently, every open set containing an element $x \in \mathbb{R}$ must also contain some element $x \in \mathbb{R}$ will prove that the closure operator $\overline{(-)} : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ is not finitary by showing that $x \in \overline{(x,+\infty)}$, but $x \notin \overline{X}$ for every finite $X \subseteq (x,+\infty)$.

First observe that the set

$$Y := \mathbb{R} - \overline{(x, +\infty)}$$

is open because $(x, +\infty)$ is closed. Moreover, Y does not contain any element > x as $(x, +\infty) \subseteq \overline{(x, +\infty)}$ and $Y \cap \overline{(x, +\infty)} = \emptyset$. Consequently, $x \notin Y$. Hence, we conclude that

$$x \in Y^c = \overline{(x, +\infty)}$$
.

Then consider a finite set $X = \{x_1, \dots, x_n\} \subseteq (x, +\infty)$ with $n \in \mathbb{N}$, with the understanding that $X = \emptyset$ if n = 0. Each singleton set $\{y\}$ with $y \in \mathbb{R}$ is closed in the standard topology in \mathbb{R} , since its complement $\mathbb{R} - \{y\} = (-\infty, y) \cup (y, +\infty)$ is open. Because the family of closed sets of any topology contains the empty set and is closed under binary unions, $X = \{x_1\} \cup \cdots \cup \{x_n\}$ is closed. That is, $\overline{X} = X$, so $x \notin \overline{X}$.

In view of Theorem 1.39, it makes sense to characterize the finitary closure operators in terms of the structure of the closure systems and consequence relations associated with them. The following concepts are instrumental to this purpose.

Definition 1.45. Given a poset X, a nonempty set $Y \subseteq X$ is said to be

- (i) upward directed in $\mathbb X$ when for every $x,y\in Y$ there exists $z\in Y$ such that $x,y\leqslant z$;
- (ii) *downward directed* in \mathbb{X} when for every $x, y \in Y$ there exists $z \in Y$ such that $z \leq x, y$.

A closure system S is said to be *inductive* when $\bigcup Y \in S$ for every family $Y \subseteq S$ that is upward directed in $\langle S; \subseteq \rangle$.

Definition 1.46. A consequence relation \vdash on a set X is said to be *finitary* when for every $Y \cup \{x\} \subseteq X$,

if
$$Y \vdash x$$
, there exists a finite $Z \subseteq Y$ such that $Z \vdash x$.

Finitary closure operators, inductive closure systems, and finitary consequence relations are related as follows:

Theorem 1.47. *The following conditions are equivalent for a closure operator C on a set X:*

- (i) C is finitary;
- (ii) The closure system associated with C is inductive;
- (iii) *The consequence relation associated with C is finitary.*

Proof. Recall that the closure system and the consequence relation associated with *C* are, respectively,

$$\mathcal{S}_C := \{Y \subseteq X : Y = C(Y)\} \text{ and } \vdash_C := \{\langle Y, x \rangle \in \mathcal{P}(X) \times X : x \in C(Y)\}.$$

(i) \Rightarrow (ii): Let $\{Y_i: i \in I\} \subseteq \mathcal{S}_C$ be an upward directed family. We need to show that $\bigcup_{i \in I} Y_i$ is a closed set of C, that is, $C(\bigcup_{i \in I} Y_i) \subseteq \bigcup_{i \in I} Y_i$. To this end, consider an element $x \in C(\bigcup_{i \in I} Y_i)$. Since the closure operator C is finitary, there is a finite $Z \subseteq \bigcup_{i \in I} Y_i$ such that $x \in C(Z)$. Furthermore, there exists a finite subfamily $\{Y_1, \ldots, Y_n\} \subseteq \{Y_i: i \in I\}$ such that $Z \subseteq Y_1 \cup \cdots \cup Y_n$, as $Z \subseteq \bigcup_{i \in I} Y_i$ and Z is finite. Lastly, the assumption that the family $\{Y_i: i \in I\}$ is upward directed in $\langle \mathcal{S}_C; \subseteq \rangle$ guarantees that existence of some $j \in I$ such that $Y_1, \ldots, Y_n \subseteq Y_j$. Consequently, $Z \subseteq Y_1 \cup \cdots \cup Y_n \subseteq Y_j$. Together with the assumption that Y_j belongs to \mathcal{S}_C and, therefore, that Y_j is a closed set of C, this yields $C(Z) \subseteq C(Y_j) = Y_j$. Since $x \in C(Z)$, we conclude that $x \in Y_j \subseteq \bigcup_{i \in I} Y_i$.

(ii) \Rightarrow (iii): Let $Y \cup \{x\} \subseteq X$ be such that $Y \vdash_C x$. By the definition of \vdash_C this means that $x \in C(Y)$. Then observe that

$$U := \{C(Z) : Z \subseteq Y \text{ is finite}\}$$

is a family of elements of \mathcal{S}_C because each C(Z) is a closed set. We will prove that U is upward directed. First, observe that U is nonempty because $C(\emptyset) \in U$. Then consider two finite subsets Z_1 and Z_2 of Y. We need to find a finite subset Z of Y such that C(Z) contains $C(Z_1)$ and $C(Z_2)$. Taking $Z := Z_1 \cup Z_2$, we are done. Therefore, U is an upward directed family of elements of \mathcal{S}_C . Since the closure system \mathcal{S}_C is inductive, we obtain $\bigcup U \in \mathcal{S}$. As \mathcal{S}_C is the family of closed sets of C, this amounts to $\bigcup U = C(\bigcup U)$.

Now, observe that $Y \subseteq \bigcup U$ because $y \in C(y)$ and $C(y) \in U$ for every $y \in Y$. Consequently, $C(Y) \subseteq C(\bigcup U) = \bigcup U$. Together with the assumption that $x \in C(Y)$, this yields $x \in \bigcup U$. Therefore, there exists a finite $Z \subseteq Y$ such that $x \in C(Z)$. By the definition of \vdash_C this amounts to $Z \vdash_C x$ as desired.

(iii) \Rightarrow (i): Let $Y \cup \{x\} \subseteq X$ be such that $x \in C(Y)$. By the definition of \vdash_C we have $Y \vdash_C x$. Since \vdash_C is finitary, there exists a finite $Z \subseteq Y$ such that $Z \vdash_C x$. Again by the definition of \vdash_C this amounts to $x \in C(Z)$.

The finitely generated closed sets of a finitary closure operator can be described in purely lattice theoretic therms, as we proceed to explain.

Definition 1.48. An element x of a complete lattice \mathbb{X} is said to be *compact* when for every $Y \subseteq X$,

if
$$x \leq \bigvee Y$$
, there exists a finite $Z \subseteq Y$ such that $x \leq \bigvee Z$.

Notably, compact elements are closed under binary joins:

Proposition 1.49 (Compact elements). The set Comp(X) of compact elements of a complete lattice X is closed under binary joins in X and contains the least element of X.

Proof. Consider $x, y \in \mathsf{Comp}(\mathbb{X})$ and a set $Z \subseteq X$ such that

$$x \lor y \leqslant \bigvee Z$$
.

Clearly, $x, y \leq \bigvee Z$. As x and y are compact, there exist finite subsets $Z_1, Z_2 \subseteq Z$ such that $x \leq \bigvee Z_1$ and $y \leq \bigvee Z_2$. Then

$$x \vee y \leqslant \bigvee (Z_1 \cup Z_2).$$

Since the union $Z_1 \cup Z_2$ is also finite, we conclude that $x \vee y \in \mathsf{Comp}(\mathbb{X})$. The least element 0 of \mathbb{X} is compact because $0 \leq \forall Y$ indeed implies $0 \leq \forall \emptyset$ for the finite set $\emptyset \subseteq Y$.

The set $\mathsf{Comp}(\mathbb{X})$ of compact elements of a complete lattice \mathbb{X} therefore becomes a join semilattice $\langle \mathsf{Comp}(\mathbb{X}); \vee \rangle$ in the sense of Definition 1.30 when we endow it with the restriction of the binary join operation of \mathbb{X} . Moreover, $\langle \mathsf{Comp}(\mathbb{X}); \vee \rangle$ is a join subsemilattice of $\langle \mathbb{X}; \vee \rangle$ with the same least element as \mathbb{X} .

Recall from Proposition 1.40 that every closure system can be viewed as a complete lattice. If the closure system is finitary, then its finitely generated closed sets and compact elements are related as follows:

Proposition 1.50. *Let* C *be a finitary closure operator on a set* X *and* S *the associated closure system. A closed set* $Y \subseteq X$ *is finitely generated iff it is a compact element of* $\langle S; \subseteq \rangle$.

Proof. Recall from Proposition 1.40 that the join of a family $\{Z_i :\in I\} \subseteq \mathcal{S}$ in $\langle \mathcal{S}; \subseteq \rangle$ can be described as follows:

$$\bigvee_{i\in I} Z_i = C(\bigcup_{i\in I} Z_i).$$

This fact will be used repeatedly in the proof.

Let *Y* be a finitely generated closed set of *C*. Then there exists a finite $Z \subseteq Y$ such that Y = C(Z). Since *Y* is closed, it belongs to *S*. Therefore, it suffices to prove that *Y* is compact in $\langle S; \subseteq \rangle$. Accordingly, let $\{Z_i : i \in I\} \subseteq S$ be such that

$$Y \subseteq \bigvee_{i \in I} Z_i = C(\bigcup_{i \in I} Z_i).$$

As $Z \subseteq C(Z) = Y$, this implies $Z \subseteq C(\bigcup_{i \in I} Z_i)$. Since C is finitary, for every $z \in Z$ there exists a finite $J_z \subseteq I$ such that

$$z \in C(\bigcup_{j \in J_z} Z_j).$$

Notice that the union $J := \bigcup \{J_z : z \in Z\}$ is also finite because Z is finite. Moreover, for every $z \in Z$,

$$z \in C(\bigcup_{j \in J_z} Z_j) \subseteq C(\bigcup_{j \in J} Z_j)$$

and, therefore, $Z \subseteq C(\bigcup_{i \in I} Z_i)$. Since Y = C(Z), this yields

$$Y = C(Z) \subseteq C(C(\bigcup_{j \in J} Z_j)) = C(\bigcup_{j \in J} Z_j) = \bigvee_{j \in J} Z_j.$$

As *J* is finite, we conclude that *Y* is compact.

Conversely, consider a compact element Y of $\langle S; \subseteq \rangle$. Since S is the family of closed sets of C, the set Y is closed. To prove that it is finitely generated, observe that

$$Y \subseteq \bigcup_{y \in Y} C(y) \subseteq C(\bigcup_{y \in Y} C(y)) = \bigvee_{y \in Y} C(y).$$

As *Y* is compact, there exists a finite $Z \subseteq Y$ such that

$$Y \subseteq \bigvee_{z \in Z} C(z) = C(\bigcup_{z \in Z} C(z)). \tag{1.2}$$

Since $C(z) \subseteq C(Z)$ for every $z \in Z$, we have $\bigcup_{z \in Z} C(z) \subseteq C(Z)$ and, therefore,

$$C(\bigcup_{z\in Z}C(z))\subseteq C(C(Z))=C(Z).$$

Together with condition (1.2), this yields $Y \subseteq C(Z)$. Moreover, $C(Z) \subseteq C(Y) = Y$ because Y is closed and $Z \subseteq Y$. Consequently, Y = C(Z). As Z is finite, we conclude that Y is finitely generated.

For instance, let \mathbb{X} be a poset. Recall that the closure operators \uparrow and \downarrow are finitary. By Theorem 1.47 the closure systems $\mathsf{Up}(\mathbb{X})$ and $\mathsf{Down}(\mathbb{X})$ associated with these closure operators are inductive. Furthermore, the compact elements of $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$ are the subsets of X that are either empty or of the form $\uparrow \{x_1, \ldots, x_n\}$ for some $x_1, \ldots, x_n \in X$ by Proposition 1.50. Similarly, the compact elements of $\langle \mathsf{Down}(\mathbb{X}); \subseteq \rangle$ are the subsets of X that are either empty of the form $\downarrow \{x_1, \ldots, x_n\}$.

1.6 Algebraic lattices

Recall from Theorem 1.41 that every complete lattice can be represented as a closure system. Therefore, it is natural to wonder which are the complete lattices isomorphic to the *inductive* closure systems. Before we describe these lattices, let us first introduce a useful auxiliary notion.

Definition 1.51. A subset D of a complete lattice $\mathbb X$ is said to be *join dense* (resp. *meet dense*) when each element of $\mathbb X$ is a join (resp. a meet) of some subset of D. That is, for each $x \in \mathbb X$ there exists some $Y \subseteq D$ such that $x = \bigvee Y$ (resp. $x = \bigwedge Y$).

The next result reviews various equivalent formulations of the notion of join density. As expected, the dual statements characterize meet density.

Proposition 1.52. The following conditions are equivalent for a subset D of a complete lattice X:

- (i) D is join dense in X;
- (ii) Each $x \in X$ is the join of all elements of D below x. That is, $x = \bigvee (\downarrow x \cap D)$;
- (iii) For every $x, y \in X$,

```
x \nleq y \iff there exists d \in D such that d \leqslant x and d \nleq y.
```

Proof. (i) \Rightarrow (ii): Consider $x \in X$. Since D is join dense in \mathbb{X} , there exists $Y \subseteq D$ such that $x = \bigvee Y$. Then $y \leqslant x$ for each $y \in Y$, so $Y \subseteq \downarrow x \cap D$. Each upper bound of the set $\downarrow x \cap D$ is therefore an upper bound of Y. Since X is an upper bound of Y and the least upper bound of Y, it must in fact be the least upper bound of Y.

(ii) \Rightarrow (iii): The right to left implication of condition (iii) always holds by transitivity. To prove the left to tight implication, consider some $x,y \in X$ such that $x \nleq y$. Because x is the join of $\downarrow x \cap D$ by condition (ii), we have $\bigvee (\downarrow x \cap D) \nleq y$. Thus, there exists $d \in D$ such that $d \leqslant x$ and $d \nleq y$.

(iii) \Rightarrow (i): Consider some $x \in X$ and let $Y := \downarrow x \cap D$. We need to prove that $x = \bigvee Y$. Clearly x is an upper bound of Y, since X is an upper bound of Y. We show that Y is the least upper bound. To this end, consider an upper bound Y of Y. By the definition of Y, we see that $X \in Y$ implies $X \in Y$ for each $X \in Y$ by condition (iii).

Having identified compact elements as the abstract counterpart of finitely generated sets in inductive closure systems (Proposition 1.50), we can now further identify the abstract counterpart of inductive closure systems as the so-called algebraic lattices.

Definition 1.53. A complete lattice X is said to be *algebraic* when the set Comp(X) of compact elements of X is join dense in X.

In order to connect algebraic lattices and inductive closure systems, a last ingredient is needed.

Definition 1.54. Let A be a join semilattice with least element 0. An *ideal* of A is a downset containing 0 such that for every $a, b \in A$,

if
$$a, b \in I$$
, then $a \lor b \in I$.

The set of ideals of A will be denoted by Id(A).

Equivalently, the ideals of *A* are the upward directed downsets of *A*.

Proposition 1.55. If A is a join semilattice with a least element, then Id(A) is an inductive closure system on A.

Proof. We begin by proving that Id(A) is a closure system. Consider a family $\{I_j : j \in J\}$ of ideals of A. We will prove that the intersection I of the various I_j is an ideal of A. Since each I_j contains the least element 0 of A, their intersection I contains 0 too. Furthermore, as each I_j is a downset and intersections of downsets are still downsets, the set I is also a downset. Lastly, consider $a, b \in I$. Then a and b belong to each I_j and so does $a \lor b$ because I_j is closed under binary joins. Thus, $a \lor b \in I$ as desired. Hence, we conclude that I is an ideal. This establishes that Id(A) is a closure system.

To prove that the closure system Id(A) is inductive, consider an upward directed family $\{I_j: j \in J\} \subseteq Id(A)$ and let I be its union. Since upward directed families are nonempty by definition, there exists some $j \in J$. As $0 \in I_j$ and $I_j \subseteq I$, we obtain $0 \in I$. To prove that I is a downset, consider $a, b \in A$ such that $a \in I$ and $b \leqslant a$. Since $a \in I$, there exists $j \in J$ such that $a \in I_j$. As I_j is a downset and $b \leqslant a$, this implies $b \in I_j \subseteq I$. It only remains to prove that I is closed under binary joins. To this end, consider $a, b \in I$. Then there are $j_1, j_2 \in J$ such that $a \in I_{j_1}$ and $b \in I_{j_2}$. Since the family $\{I_j: j \in J\}$ is upward directed, there exists $j \in J$ such that $I_{j_1}, I_{j_2} \subseteq I_j$. This implies $a, b \in I_j$ and, therefore, $a \lor b \in I_j$ because I_j is closed under binary joins. As $I_j \subseteq I$, we conclude that $a \lor b \in I$ as desired.

Let X be a complete lattice. Recall from Proposition 1.49 that $\langle \mathsf{Comp}(X); \vee \rangle$ is a join semilattice whose least element is the least element of X. Therefore, $\mathsf{Id}(\langle \mathsf{Comp}(X); \vee \rangle)$ is an inductive closure system by Proposition 1.55. Bearing this in mind, algebraic lattices and inductive closure systems are related as follows:

Theorem 1.56 (Representation theorem). Every inductive closure system is an algebraic lattice. Conversely, if X is an algebraic lattice, then $Id(\langle Comp(X); \vee \rangle)$ is an inductive closure system isomorphic to X.

Proof. Let S be an inductive closure system on a set X. By Proposition 1.40 the pair $\langle S; \subseteq \rangle$ is a complete lattice. Therefore, to prove that $\langle S; \subseteq \rangle$ is an algebraic lattice, it suffices to show that each $Y \in S$ is a join of compact elements.

To this end, recall from condition (i) of Theorem 1.39 that S is the closure system associated with some closure operator C on X. Since S is inductive, C is finitary by Theorem 1.47. Therefore, we can apply Proposition 1.50 obtaining that the compact elements of S are precisely the finitely generated closed sets of C.

Then consider an element $Y \in \mathcal{S}$. Since \mathcal{S} is the family of closed sets of C, we have Y = C(Y). In turn, this yields

$$Y = C(\bigcup_{y \in Y} C(y)) = \bigvee_{y \in Y} C(y).$$

Since each C(y) is finitely generated, it is also compact in $\langle S; \subseteq \rangle$. Consequently, Y is a join of compact elements as desired.

To prove the converse, consider an algebraic lattice \mathbb{X} . Then $\mathsf{Id}(\langle \mathsf{Comp}(\mathbb{X}); \vee \rangle)$ is an inductive closure system. We will prove that the map $f \colon \mathbb{X} \to \mathsf{Id}(\langle \mathsf{Comp}(\mathbb{X}); \vee \rangle)$ defined by the rule

$$f(x) := \{ y \in \mathsf{Comp}(\mathbb{X}) : y \leqslant x \}$$

is an order isomorphism. We begin by showing that f(x) is an ideal of $\langle \mathsf{Comp}(\mathbb{X}); \vee \rangle$ for every $x \in X$. Clearly, f(x) is a downset of $\mathsf{Comp}(\mathbb{X})$ containing the least element of $\mathsf{Comp}(\mathbb{X})$. To prove that f(x) is closed under binary joins, consider $y,z \in f(x)$. The definition of f(x) guarantees that $y,z \leq x$ and $y,z \in \mathsf{Comp}(\mathbb{X})$. From $y,z \leq x$ it follows $y \vee z \leq x$. Furthermore, since $y,z \in \mathsf{Comp}(\mathbb{X})$ and $\mathsf{Comp}(\mathbb{X})$ is closed under binary joins, we have $y \vee z \in \mathsf{Comp}(\mathbb{X})$. Hence, $y \vee z \in f(x)$ and f(x) is an ideal of $\langle \mathsf{Comp}(\mathbb{X}); \vee \rangle$ as desired. It follows that the map $f \colon \mathbb{X} \to \mathsf{Id}(\langle \mathsf{Comp}(\mathbb{X}); \vee \rangle)$ is well defined.

To prove that f is an order embedding, consider $x,y \in X$. Clearly, if $x \le y$, then $f(x) \subseteq f(y)$. To prove that $f(x) \subseteq f(y)$ implies $x \le y$, we reason by contraposition. Suppose that $x \not \le y$. Then recall that $\mathsf{Comp}(\mathbb{X})$ is join dense in \mathbb{X} because the lattice \mathbb{X} is algebraic. Therefore, we can apply condition (iii) of Proposition 1.52 to the assumption that $x \not \le y$ obtaining that there exists $z \in \mathsf{Comp}(\mathbb{X})$ such that $z \le x$ and $z \not \le y$. This implies that $z \in f(x) - f(y)$ and, therefore, $f(x) \not \subseteq f(y)$. Hence, we conclude that f is an order embedding.

It only remains to prove that f is surjective. Consider an ideal I of $\langle \mathsf{Comp}(\mathbb{X}); \vee \rangle$. We will show that f(x) = I for $x := \bigvee I$. Clearly,

$$I \subseteq \{y \in \mathsf{Comp}(\mathbb{X}) : y \leqslant \bigvee I\} = \{y \in \mathsf{Comp}(\mathbb{X}) : y \leqslant x\} = f(x).$$

To prove that $f(x) \subseteq I$, consider $y \in f(x)$. Then $y \in \mathsf{Comp}(\mathbb{X})$ and $y \leqslant x = \bigvee I$. Since y is compact, there are $z_1, \ldots, z_n \in I$ such that $y \leqslant z_1 \vee \cdots \vee z_n$. Consequently,

$$y \vee z_1 \vee \cdots \vee z_n = z_1 \vee \cdots \vee z_n \in I.$$

 \boxtimes

As *I* is an ideal, this yields $y \in I$. Thus, we conclude that f(x) = I.

Recall that the closure systems Up(X) and Down(X) are inductive for every poset X. From Theorem 1.56 it follows that they are also algebraic lattices. Powerset lattices $\langle \mathcal{P}(X); \subseteq \rangle$ are algebraic too because they coincide with the closure systems of the form

Up(X), where X is the discrete poset with universe X. Lastly, every finite lattice is algebraic because finite lattices are complete and all their elements are compact.

At this stage it is important to notice that, while algebraic lattices are precisely the posets isomorphic to inductive closure systems, there are closure systems that fail to be inductive but that nonetheless are algebraic lattices.

Example 1.57. Consider the set $X := \mathbb{N} \cup \{\infty\}$ and let $C \colon \mathcal{P}(X) \to \mathcal{P}(X)$ be the map defined for every $Y \subseteq X$ as

$$C(Y) := \begin{cases} Y & \text{if } Y \subsetneq \mathbb{N}; \\ X & \text{otherwise.} \end{cases}$$

It is easy to see that C is a closure operator on X. Furthermore, C is not finitary because $\infty \in C(\mathbb{N})$, but $\infty \notin Y = C(Y)$ for every finite $Y \subseteq \mathbb{N}$. Consequently, the closure system \mathcal{S}_C associated with C is not inductive. However, that restriction map $(-) \cap \mathbb{N} \colon \mathcal{S}_C \to \mathcal{P}(\mathbb{N})$ is an order isomorphism from \mathcal{S}_C to the powerset lattice $\langle \mathcal{P}(\mathbb{N}); \subseteq \rangle$. Since the latter is an algebraic lattice, so is the closure system \mathcal{S}_C .

We close this section with a useful result on the structure of algebraic lattices.

Definition 1.58. An element x of a lattice X is said to be

(i) *meet irreducible* in X when it is not the greatest element of X and for every $y, z \in X$,

if
$$x = y \land z$$
, then $x = y$ or $x = z$;

(ii) *join irreducible* in X when it is not the least element of X and for every $y, z \in X$,

if
$$x = y \lor z$$
, then $x = y$ or $x = z$;

(iii) completely meet irreducible in \mathbb{X} when for every $Y \subseteq X$,

if
$$x = \bigwedge Y$$
, then $x \in Y$;

(iv) *completely join irreducible* in X when for every $Y \subseteq X$,

if
$$x = \bigvee Y$$
, then $x \in Y$.

The sets of meet irreducible and completely meet irreducible elements of a poset \mathbb{X} will be denoted by $M(\mathbb{X})$ and $M_{\infty}(\mathbb{X})$. Similarly, we will denote the sets of join irreducible and completely join irreducible elements of \mathbb{X} by $J(\mathbb{X})$ and $J_{\infty}(\mathbb{X})$.

Observe that the (completely) meet irreducible elements of X are precisely the (completely) join irreducible elements of X^{∂} , and vice versa.

The meet irreducibility (resp. join irreducibility) of x can equivalently be defined as follows: for every *finite* $Y \subseteq X$, if $x = \bigwedge Y$ (resp. if $x = \bigvee Y$), then $x \in Y$. In other words, restricting to finite sets $Y \subseteq X$ in the definition of completely meet (resp. join) irreducible

elements yields precisely the meet (resp. join) irreducible elements. Indeed, if x satisfies this alternative definition of meet irreducibility, then x cannot be the greatest element of X, since otherwise $x = \bigwedge \emptyset$ but $x \notin \emptyset$. Moreover, for such an element x the equality $x = y \land z$ implies that x = y or x = z, since $x = \bigwedge \{y, z\}$ implies $x \in \{y, z\}$. Proving that conversely each meet irreducible $x \in X$ satisfies the above condition is a simple induction on the cardinality of Y. The equivalence of the two definitions of join irreducibility then follows from the Duality Principle.

The inclusion $M_{\infty}(\mathbb{X}) \subseteq M(\mathbb{X})$ and $J_{\infty}(\mathbb{X}) \subseteq J(\mathbb{X})$ are now immediate. On the other hand, meet (resp. join) irreducible elements need not be completely meet (resp. join) irreducible. For instance, every element of a chain \mathbb{X} other than the greatest element is meet irreducible. To prove this, suppose that $x \in \mathbb{X}$ is not the greatest element of \mathbb{X} and that $x = y \land z$ for some $y, z \in X$. Since \mathbb{X} is a chain, $y \land z$ is the least element between y and z. Consequently, x = y or x = z, so x is indeed meet irreducible. Similarly, every element of \mathbb{X} other than the minimum is join irreducible. On the other hand, in the chain of real numbers $\langle \mathbb{R}; \leqslant \rangle$ no element is completely meet irreducible or completely join irreducible. This is because every real number x is the meet of the set of all elements $x \in \mathbb{X}$ and the join of the set of all elements $x \in \mathbb{X}$.

Example 1.59. A lattice may lack meet and join irreducible elements altogether. For instance, the direct product $\langle \mathbb{Z}; \leqslant \rangle \times \langle \mathbb{Z}; \leqslant \rangle$ is the lattice with universe $\mathbb{Z} \times \mathbb{Z}$ and order relation \square defined as

$$\langle m_1, m_2 \rangle \sqsubseteq \langle n_1, n_2 \rangle \iff m_1 \leqslant n_1 \text{ and } m_2 \leqslant n_2.$$

No element of $\langle \mathbb{Z}; \leqslant \rangle \times \langle \mathbb{Z}; \leqslant \rangle$ is meet irreducible or join irreducible because

$$\langle m, n \rangle = \langle m, n+1 \rangle \land \langle m+1, n \rangle$$
 and $\langle m, n \rangle = \langle m, n-1 \rangle \lor \langle m-1, n \rangle$

 \boxtimes

for every $m, n \in \mathbb{Z}$.

This makes the following property of algebraic lattices appealing.

Theorem 1.60. In X an algebraic lattice, the set of completely meet irreducible elements $M_{\infty}(X)$ is meet dense.

Proof. Consider an element $x \in X$ and let

$$Y := \{ y \in M_{\infty}(\mathbb{X}) : x \leqslant y \}.$$

We will prove that $x = \bigwedge Y$. The definition of Y guarantees that $x \leqslant \bigwedge Y$. Then we turn prove that $\bigwedge Y \leqslant x$. Since $\mathbb X$ is algebraic, $\bigwedge Y$ is the join of a set of compact elements. Consequently, it suffices to show that every compact element below $\bigwedge Y$ is also below x.

Suppose, on the contrary, that there exists a compact element $y \leq \bigwedge Y$ such that $y \nleq x$. Then consider the set

$$Z := \{z \in X : x \leqslant z \text{ and } y \nleq z\}.$$

We will use Zorn's Lemma to establish the existence of a maximal element in the subposet \mathbb{Z} of \mathbb{X} with universe \mathbb{Z} . To this end, we need to prove that every chain \mathbb{C} in \mathbb{Z} has an

upper bound in \mathbb{Z} . We will do this by showing that $\bigvee C \in \mathbb{Z}$. Accordingly, consider a chain C in \mathbb{Z} . We may assume without loss of generality that $x \in C$ because x is the least element of \mathbb{Z} . As a consequence, we have $x \leqslant \bigvee C$. To prove that $\bigvee C \in \mathbb{Z}$, it only remains to show that $y \nleq \bigvee C$. Suppose the contrary, with a view to contradiction. Since y is compact and $y \leqslant \bigvee C$, there exists a finite subset $D \subseteq C$ such that $y \leqslant \bigvee D$. We may assume that $x \in D$ because $x \in C$. Then consider an enumeration $D = \{z_1, \ldots, z_n\}$. Notice that $\{z_1, \ldots, z_n\}$ is a finite chain in \mathbb{Z} because C is a chain in \mathbb{Z} and $D \subseteq C$. Therefore, $\{z_1, \ldots, z_n\}$ has a greatest element z_k . As a consequence,

$$y \leqslant \bigvee D = z_1 \vee \cdots \vee z_n = z_k.$$

On the other hand, the assumption that $z_k \in Z$ implies $y \nleq z_k$, a contraction. Hence, we conclude that $y \nleq \bigvee C$. This implies $\bigvee C \in Z$ as desired. Hence, we can apply Zorn's Lemma obtaining that \mathbb{Z} has a maximal element z.

We will prove that $z \in M_{\infty}(\mathbb{X})$. Consider therefore some $U \subseteq X$ such that $z = \bigwedge U$. Since $z \in Z$ we have $y \nleq z$. Together with $z = \bigwedge U$, this implies that there exists $u \in U$ such that $y \nleq u$. Moreover, from $z = \bigwedge U$ and $u \in U$ it follows that $z \leqslant u$. As $z \in Z$, this yields $x \leqslant z \leqslant u$. Therefore, $x \leqslant u$ and $y \nleq u$, that is, $u \in Z$. Since $z \leqslant u$ and z is maximal in \mathbb{Z} , we conclude that z = u, so $z \in U$.

Lastly, from $z \in Z$ it follows that $x \le z$. Thus, $z \in Y$. Recall that $y \le \bigwedge Y$ by assumption. As $z \in Y$, we obtain $y \le z$, a contradiction with $z \in Z$. Hence, we conclude that $\bigwedge Y \le x$ and therefore $x = \bigwedge Y$.

Example 1.61 (Completely meet irreducible upsets). Recall that $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$ is an algebraic lattice for every poset \mathbb{X} . Bearing this in mind, we will exemplify Theorem 1.60 by characterizing the completely meet irreducible elements of $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$ and explaining why every element of $\mathsf{Up}(\mathbb{X})$ is a meet of completely meet irreducible ones. More precisely, we will prove that

$$\mathsf{M}_{\infty}(\mathsf{Up}(\mathbb{X})) = \{X - \downarrow x : x \in X\} \tag{1.3}$$

and that every upset of X is an intersection of elements of $M_{\infty}(Up(X))$.

Observe that the map $i: Y \mapsto X - Y$ is an isomorphism between the poset $\langle \mathsf{Up}(\mathbb{X}); \subseteq \rangle$ and the poset $\langle \mathsf{Down}(\mathbb{X}); \subseteq \rangle^{\partial} = \langle \mathsf{Down}(\mathbb{X}); \supseteq \rangle$: if Y is an upset of \mathbb{X} , then X - Y is a downset of \mathbb{X} , and moreover $Y \subseteq Z$ for upsets Y, Z of \mathbb{X} iff $X - Y \supseteq X - Z$. An upset Y of \mathbb{X} is therefore completely meet irreducible in $\mathsf{Up}(\mathbb{X})$ iff i(Y) is completely meet irreducible in $\langle \mathsf{Down}(\mathbb{X}), \subseteq \rangle^{\partial}$, or in other words iff i(Y) is completely join irreducible in $\langle \mathsf{Down}(\mathbb{X}), \subseteq \rangle$. The completely meet irreducibles of $\mathsf{Up}(\mathbb{X})$ are therefore precisely the complements of the completely join irreducibles of $\mathsf{Down}(\mathbb{X})$.

We now show that the completely join irreducibles of $\mathsf{Down}(\mathbb{X})$ are precisely the principal downsets. We begin by proving that each principal downset $\downarrow x$ of \mathbb{X} is indeed completely join irreducible. For suppose that $\downarrow x = \bigcup_{i \in i} Y_i$ for some family $\{Y_i : i \in I\}$ of downsets of \mathbb{X} . Then $x \in Y_j$ for some $j \in I$. Since Y_j is a downset, from $x \in Y_j$ it follows $\downarrow x \subseteq Y_j$. On the other hand, $Y_j \subseteq \bigcup_{i \in i} Y_i = \downarrow x$, so indeed $Y_j = \downarrow x$. Conversely, each downset Y of \mathbb{X} is a union, and therefore a join, of principal downsets, namely $Y = \bigcup_{y \in Y} \downarrow y$. If Y is completely join irreducible, then $Y = \downarrow y$ for some $y \in Y$. In other words, each completely join irreducible downset of \mathbb{X} must be principal.

Putting the last two paragraphs together, the completely meet irreducible elements of $\langle \mathsf{Up}(\mathbb{X});\subseteq \rangle$ are precisely the complements of principal downsets of \mathbb{X} . In other words, these are the sets of the form $X-\downarrow x$ for $x\in X$.

Representation theorems

2.1 Distributive lattices

The following class of lattices plays a fundamental role in algebraic logic:

Definition 2.1. A lattice is said to be *distributive* when it validates the *distributive laws*

$$x \wedge (y \vee z) \approx (x \wedge y) \vee (x \wedge z)$$
 and $x \vee (y \wedge z) \approx (x \vee y) \wedge (x \vee z)$.

Notably, one half of any of the distributive laws suffices.

Proposition 2.2. *The following conditions are equivalent for a lattice A:*

- (i) A is distributive;
- (ii) A validates $x \land (y \lor z) \leqslant (x \land y) \lor (x \land z)$;
- (iii) A validates $(x \lor y) \land (x \lor z) \le x \lor (y \land z)$.

Proof. The implications (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are straightforward.

(ii)⇒(i): We will prove that every lattice validates the inequalities

$$(x \wedge y) \vee (x \wedge z) \leqslant x \wedge (y \vee z) \text{ and } x \vee (y \wedge z) \leqslant (x \vee y) \wedge (x \vee z).$$
 (2.1)

To this end, consider a lattice **B** and $a,b,c \in B$. Since $a \land b \leqslant a$ and $a \land b \leqslant b \leqslant b \lor c$, we obtain

$$a \wedge b \leqslant a \wedge (b \vee c). \tag{2.2}$$

Similarly, from $a \land c \leq a$ and $a \land c \leq (b \lor c)$ it follows

$$a \wedge c \leqslant a \wedge (b \vee c). \tag{2.3}$$

By conditions (2.2) and (2.3) we obtain

$$(a \wedge b) \vee (a \wedge c) \leq a \wedge (b \vee c).$$

Hence, the first inequality in condition (2.1) holds in every lattice. By the Duality Principle this is true also for the second one.

Now, suppose that condition (ii) holds. Since A validates also the inequalities in (2.1), to prove that it is distributive, it only remains to show that A validates

$$(x \lor y) \land (x \lor z) \leqslant x \lor (y \land z).$$

Consider $a, b, c \in A$. Using the assignment

$$x \longmapsto a \lor b$$
 $y \longmapsto a$ $z \longmapsto c$,

condition (ii) implies

$$(a \lor b) \land (a \lor c) \leqslant ((a \lor b) \land a) \lor ((a \lor b) \land c).$$

By the absorption law $a = (a \lor b) \land a$, so

$$(a \lor b) \land (a \lor c) \leqslant a \lor ((a \lor b) \land c) = a \lor (c \land (a \lor b)). \tag{2.4}$$

Now, applying condition (ii) to the case where

$$x \longmapsto c \qquad y \longmapsto a \qquad z \longmapsto b,$$

we obtain

$$c \wedge (a \vee b) \leq (c \wedge a) \vee (c \wedge b) = (c \wedge a) \vee (b \wedge c).$$

Since $c \wedge a \leq a$, this implies

$$c \wedge (a \vee b) \leq a \vee (b \wedge c)$$

and, therefore,

$$a \lor (c \land (a \lor b)) \leqslant a \lor a \lor (b \land c) = a \lor (b \land c).$$

Together with condition (2.1), this yields

$$(a \lor b) \land (a \lor c) \leq a \lor (b \land c).$$

(iii) \Rightarrow (i): This is obtained by applying the Duality Principle to the implication (ii) \Rightarrow (i) established above.

For the sake of simplicity, we will focus on *bounded* lattices and treat them as algebras $A = \langle A; \wedge, \vee, 0, 1 \rangle$ where 0 and 1 are constants for the least and greatest elements. In particular, this convention applies to every finite lattice because finite lattices are always bounded.

Example 2.3 (Upsets & downsets). We will prove that the structures

$$\mathsf{Up}(\mathbb{X}) := \langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \emptyset, X \rangle$$
 and $\mathsf{Down}(\mathbb{X}) := \langle \mathsf{Down}(\mathbb{X}); \cap, \cup, \emptyset, X \rangle$

are bounded distributive lattices (that, moreover, are complete) for every poset X. By the Duality Principle it suffices to show that Up(X) is a bounded distributive lattice.

First recall that, when ordered under the inclusion relation, Up(X) is a complete lattice whose meet and join operations are intersections and unions and whose least and greatest elements are \emptyset and X. Therefore, Up(X) is a well-defined bounded lattice. To prove that it is distributive, consider $U, V, Z \in Up(X)$ and $x \in X$. We have

$$x \in U \cap (V \cup Z) \iff x \in U \text{ and either } x \in V \text{ or } x \in Z$$

 \iff either $x \in U \cap V \text{ or } x \in U \cap Z$
 $\iff x \in (U \cap V) \cup (U \cap Z).$

Therefore,

$$U \cap (V \cup Z) = (U \cap V) \cup (U \cap Z).$$

Consequently, Up(X) validates the first distributive law. From Proposition 2.2 it follows that the lattice Up(X) is distributive.

Our aim is to show that Up(X) is indeed the canonical example of a bounded distributive lattice, in the sense that every bounded distributive lattice sits inside one of this form. To this end, we will need the following concepts:

Definition 2.4. Let *A* be a bounded lattice.

(i) A subset $F \subseteq A$ is said to be a *filter* when it is an upset containing 1 and for every $a, b \in A$,

if
$$a, b \in F$$
, then $a \land b \in F$;

(ii) A subset $I \subseteq A$ is said to be an *ideal* when it is a downset containing 0 and for every $a, b \in A$,

if
$$a, b \in I$$
, then $a \lor b \in I$.

We will denote the sets of filters and ideals of A by Fi(A) and Id(A).

Notice that the filters and the ideals of *A* coincide with the ideals of the join semilattices $(A; \wedge)^{\partial}$ and $(A; \vee)$, respectively.

Proposition 2.5 (Filter and ideal generation). *If* A *is a bounded lattice, then* Fi(A) *and* Id(A) *are the inductive closure systems associated with the finitary closure operators*

$$\operatorname{Fg}^A \colon \mathcal{P}(A) \to \mathcal{P}(A)$$
 and $\operatorname{Ig}^A \colon \mathcal{P}(A) \to \mathcal{P}(A)$

defined by the rules

$$\operatorname{Fg}^A(X) := \{ a \in A : either \ a = 1 \text{ or there are } b_1, \dots, b_n \in X \text{ such that } b_1 \wedge \dots \wedge b_n \leqslant a \};$$

 $\operatorname{Ig}^A(X) := \{ a \in A : either \ a = 0 \text{ or there are } b_1, \dots, b_n \in X \text{ such that } a \leqslant b_1 \vee \dots \vee b_n \}.$

Proof. Recall that the filters of A coincide with the ideals of the join semilattice $\langle A; \wedge \rangle^{\partial}$. Therefore, we can apply Proposition 1.55 obtaining that $Fi(A) = Id(\langle A; \wedge \rangle^{\partial})$ is an inductive closure system.

From Theorem 1.47 it follows that Fi(A) is the inductive closure system associated with the finitary closure operator $C \colon \mathcal{P}(A) \to \mathcal{P}(A)$ defined for every $X \subseteq A$ as

$$C(X) := \bigcap \{ F \in Fi(A) : X \subseteq F \}.$$

We will prove that $C(X) = \operatorname{Fg}^A(X)$ for every $X \subseteq A$. Since the definition of the map $\operatorname{Fg}^A(-)$ guarantees that $\operatorname{Fg}^A(X)$ is a filter of A containing X, we obtain

$$\operatorname{Fg}^{A}(X) \in \{ F \in \operatorname{Fi}(A) : X \subseteq F \}.$$

Together with the definition of C(X), this yields $C(X) \subseteq \operatorname{Fg}^A(X)$. To prove the reverse inclusion, consider $a \in \operatorname{Fg}^A(X)$. We have two cases: either a = 1 or $a \neq 1$. If a = 1, then $a \in F$ for every $F \in \operatorname{Fi}(A)$. By the definition of C(X) we conclude that $a \in C(X)$. Then suppose that $a \neq 1$. In this case, there are $b_1, \ldots, b_n \in X$ such that $b_1 \wedge \cdots \wedge b_n \leqslant a$. Let $F \in \operatorname{Fi}(A)$ be such that $X \subseteq F$. Since F is closed under binary meets and $b_1, \ldots, b_n \in X \subseteq F$, we have $b_1 \wedge \cdots \wedge b_n \in F$. As F is an upset and $b_1 \wedge \cdots \wedge b_n \leqslant a$, we obtain that $a \in F$. By the definition of C this implies $a \in C(X)$. Hence, we conclude that $C(X) = \operatorname{Fg}^A(X)$. As a consequence, $\operatorname{Fi}(A)$ is the closure system associated with the finitary closure operator $\operatorname{Fg}^A(-)$.

By the Duality Principle we obtain the same analogous result connecting $Ig^A(-)$ and Id(A).

The above description of filter and ideal generation can often be simplified. For let F and I be a filter and an ideal of a bounded lattice A. Then for every $a \in A$,

$$\operatorname{Fg}^{A}(F \cup \{a\}) = \{c \in A : \text{there is } b \in F \text{ such that } a \wedge b \leqslant c\}$$
$$\operatorname{Ig}^{A}(I \cup \{a\}) = \{c \in A : \text{there is } b \in F \text{ such that } c \leqslant a \vee b\}.$$

As an exemplification, we will motivate the first of the above equalities. The inclusion from right to left follows immediately from the description of filter generation given in Proposition 2.5. To prove the other inclusion, consider $c \in \operatorname{Fg}^A(F \cup \{a\})$. In view of Proposition 2.5, either c = 1 or there are $b_1, \ldots, b_n \in F$ such that $a \land b_1 \land \cdots \land b_n \leqslant c$. Since F is a filter, it contains the greatest element 1. Therefore, we may assume that the case where $a \land b_1 \land \cdots \land b_n \leqslant c$ holds and that $b_1 = 1$. Furthermore, $b_1 \land \cdots \land b_n \in F$ because $b_1, \ldots, b_n \in F$ and F is a filter. Consequently, letting $b := b_1 \land \cdots \land b_n$, we conclude that $b \in F$ and $a \land b \leqslant c$ as desired.

If A is a bounded lattice and $a \in A$, then $\operatorname{Fg}^A(a) = \uparrow a$ and $\operatorname{Ig}^A(a) = \downarrow a$. Accordingly, $\uparrow a$ and $\downarrow a$ will be called the *principal filter* and the *principal ideal* generated by a. In addition, a filter (resp. an ideal) of A will be called *principal* when it is of the form $\uparrow a$ (resp. $\downarrow a$) for some $a \in A$. In finite lattices, every filter and ideal is principal as we proceed to explain.

Proposition 2.6. *Let A be a finite lattice. Then*

$$\operatorname{Fi}(A) = \{ \uparrow a : a \in A \} \ \ \operatorname{and} \ \ \operatorname{Id}(A) = \{ \downarrow a : a \in A \}.$$

Proof. By the Duality Principle it suffices to prove the first equality in the statement. Furthermore, since every principal upset of *A* is a filter, it will be enough to prove the

inclusion $Fi(A) \subseteq \{ \uparrow a : a \in A \}$. Accordingly, consider $F \in Fi(A)$. Since A is finite and F nonempty, we can take an enumeration $F = \{a_1, \ldots, a_n\}$. As F is closed under binary meets, the element $a := a_1 \land \cdots \land a_n$ belongs to F. Moreover, the definition of a guarantees that $F = \{a_1, \ldots, a_n\} \subseteq \uparrow a$. As $a \in F$ and F is an upset, we also have $\uparrow a \subseteq F$, so $F = \uparrow a$ as desired.

In infinite bounded lattices, however, filters and ideals need not be principal.

Example 2.7 (Filters & ideals in chains). Recall that every bounded chain is a bounded lattice. We will show that the filters and the ideals of a bounded chain *A* can be described as follows:

$$Fi(A) = \{ U \in Up(A) : U \neq \emptyset \} \text{ and } Id(A) = \{ V \in Down(A) : V \neq \emptyset \}.$$
 (2.5)

This provides an easy method for constructing filters and ideals that are not principal. For instance, let $\langle \mathbb{Z}_{\infty}; \sqsubseteq \rangle$ be the poset where $\mathbb{Z}_{\infty} := \mathbb{Z} \cup \{-\infty, +\infty\}$ and \sqsubseteq is the relation defined for every $x, y \in \mathbb{Z}_{\infty}$ as

$$x \sqsubseteq y \iff$$
 either $x = -\infty$ or $y = +\infty$ or $x, y \in \mathbb{Z}$ and $x \leqslant y$.

Clearly, $\langle \mathbb{Z}_{\infty}; \sqsubseteq \rangle$ is a bounded chain with least element $-\infty$ and greatest element $+\infty$. Therefore, we can apply the description of filters and ideals in bounded chains in condition (2.5) obtaining that $F := \mathbb{Z}_{\infty} - \{-\infty\}$ is a filter and $I := \mathbb{Z}_{\infty} - \{+\infty\}$ an ideal of $\langle \mathbb{Z}_{\infty}; \sqsubseteq \rangle$. However, F and I are not principal because F lacks a least element and I a greatest one.

We now turn to prove condition (2.5). By the Duality Principle it suffices to show that $Fi(A) = \{U \in Up(A) : U \neq \emptyset\}$. The inclusion from left to right holds because every filter is a nonempty upset. To prove the reverse inclusion, let U be a nonempty upset of A. Then U contains the greatest element 1 of A. It only remains to show that U is closed under binary meets. Accordingly, consider $a, b \in U$. Since A is a chain either $a \leq b$ or $b \leq a$. In the first case $a = a \wedge b$ and in the second $b = a \wedge b$, therefore, $a \wedge b \in \{a, b\} \subseteq U$.

A filter or an ideal of a bounded lattice *A* is said to be *proper* when it differs from the total set *A*. Equivalently, a filter is proper when it does not contain the least element 0. Similarly, an ideal is proper when it does not contain the greatest element 1.

Definition 2.8. In a bounded lattice *A*,

(i) a filter F is said to be *prime* when it is proper and for every $a, b \in A$,

if
$$a \lor b \in F$$
, then either $a \in F$ or $b \in F$;

(ii) an ideal *I* is said to be *prime* when it is proper and for every $a, b \in A$,

if
$$a \land b \in I$$
, then either $a \in I$ or $b \in I$.

The sets of prime filters and prime ideals of A will be denoted by Pf(A) and Pi(A).

Prime filters and ideals are dual concepts in the following sense:

Proposition 2.9. For every bounded lattice A, the map $f : Pf(A) \to Pi(A)$ defined by the rule $f(F) := F^c$ is an order isomorphism from $\langle Pf(A); \subseteq \rangle$ to $\langle Pi(A); \supseteq \rangle$.

Proof. We begin by showing that

$$\mathsf{Pf}(A) = \{ F \subseteq A : F^c \in \mathsf{Pi}(A) \} \text{ and } \mathsf{Pi}(A) = \{ I \subseteq A : I^c \in \mathsf{Pf}(A) \}. \tag{2.6}$$

By the Duality Principle, not only it suffices to prove the first of the above equalities, but indeed it suffices to prove the inclusion from left to right in the first equality, that is,

$$\mathsf{Pf}(A) \subseteq \{F \subseteq A : F^c \in \mathsf{Pi}(A)\}.$$

Accordingly, consider $F \in Pf(A)$. Since F is proper, it does not contain the least element 0. Then $0 \in F^c$. Furthermore, as F is an upset, its complement F^c is a downset. Lastly, consider $a, b \in F^c$. Since F is prime, we have $a \lor b \notin F$, that is, $a \lor b \in F^c$. Hence, we conclude that F^c is an ideal. To prove that it is prime, observe that F^c is proper because F is nonempty. Then consider $a, b \in A$ such that $a \land b \in F^c$. Since F is closed under binary meets and $a \land b \notin F$, we obtain that either $a \in F^c$ or $b \in F^c$. Thus, F^c is a prime ideal of A as desired. Hence, condition (2.6) holds.

As a consequence, the map $f \colon \mathsf{Pf}(A) \to \mathsf{Pi}(A)$ in the statement is a well-defined bijection. Furthermore, for every $F, G \in \mathsf{Pf}(A)$ we have

$$F \subseteq G \iff F^c \supset G^c \iff f(F) \supset f(G)$$
.

Therefore, f is an order isomorphism from $\langle \mathsf{Pf}(A); \subseteq \rangle$ to $\langle \mathsf{Id}(A); \supseteq \rangle$.

In finite distributive lattices, prime filters and ideals admit a very transparent description as we proceed to explain. To this end, recall that the sets meet irreducible and join irreducible elements of a lattice A are denoted by M(A) and J(A).

Proposition 2.10. Let A be finite distributive lattice. Then

$$\mathsf{Pf}(A) = \{ \uparrow a : a \in \mathsf{J}(A) \} \ \ and \ \ \mathsf{Pi}(A) = \{ \downarrow a : a \in \mathsf{M}(A) \}.$$

Proof. By the Duality Principle it suffices to prove the first equality in the statement. Let $F \in \mathsf{Pf}(A)$. Since A is finite, we can apply Proposition 2.6 obtaining that $F = \uparrow a$ for some $a \in A$. We will prove that a is join irreducible. Since F is proper and $F = \uparrow a$, we know that a is not the least element 0. Then consider $b, c \in A$ such that $b \lor c = a$. From $b \lor c = a \in \uparrow a = F$ and the assumption that the filter F is prime it follows that either $b \in F$ or $c \in F$. By symmetry we may assume that $b \in F$. As $F = \uparrow a$, this implies $a \le b$. Together with $b \le b \lor c = a$, this implies a = b. Hence, we conclude that a is join irreducible.

To prove the inclusion from right to left, consider a join irreducible element a of A. Clearly, $\uparrow a$ is a filter of A. First observe that $a \neq 0$ because a is join irreducible. Therefore, $0 \notin \uparrow a$. Thus, $\uparrow a$ is a proper filter of A. Then consider $b,c \in A$ such that $b \lor c \in \uparrow a$. We have $a \leqslant b \lor c$, that is, $a = a \land (b \lor c)$. By the distributive laws this amounts to $a = (a \land b) \lor (a \land c)$. Since a is join irreducible, either $a = a \land b$ or $a = a \land c$, that is, either $a \leqslant b$ or $a \leqslant c$. As a consequence, either $b \in \uparrow a$ or $c \in \uparrow a$. Hence, we conclude that $\uparrow a$ is a prime filter of A.

Corollary 2.11. *If* $A = \langle A; \leqslant \rangle$ *is a finite distributive lattice, then*

$$\langle \mathsf{Pf}(A); \subseteq \rangle \cong \langle \mathsf{J}(A); \geqslant \rangle \ \ \text{and} \ \ \langle \mathsf{Pi}(A); \subseteq \rangle \cong \langle \mathsf{M}(A); \leqslant \rangle.$$

Proof. Consider the map $\uparrow(-)\colon J(A)\to Pf(A)$ sends each element $a\in J(A)$ to $\uparrow a$. From Proposition 2.10 it follows that $\uparrow(-)$ is a well-defined surjection. To prove that it is injective, consider $a,b\in J(A)$ such that $\uparrow a=\uparrow b$. Then $a\leqslant b$ and $b\leqslant a$ which implies a=b. Thus, $\uparrow(-)$ is a bijection. Since for every $a,b\in J(A)$ we have that $a\geqslant b$ iff $\uparrow a\subseteq \uparrow b$, we conclude that $\uparrow(-)\colon J(A)\to Pf(A)$ is an order isomorphism from $\langle J(A);\geqslant\rangle$ to $\langle Pf(A);\subseteq\rangle$. The proof that $\langle Pi(A);\subseteq\rangle\cong\langle M(A);\leqslant\rangle$ is analogous.

Proposition 2.10 and Corollary 2.11 make it easy to visualize the prime filters and ideals of a finite distributive lattice A as well as the posets $\langle Pf(A); \subseteq \rangle$ and $\langle Id(A); \subseteq \rangle$.

Example 2.12 (Prime filters & prime ideals: the finite case). The picture below showcases the same finite distributive lattice A three times. In the second and the third copy of A, respectively, the join irreducible and the meet irreducible elements have been painted in white. The easiest way to recognize the join irreducible elements of finite lattices is to apply the following rule: an element x is join irreducible iff it is not the least element and it does not posses two *immediate predecessors*, i.e., two elements y, z < x such that there is no u such that either y < u < x or z < u < x. Similarly, an element is meet irreducible iff it is neither the greatest element nor it possesses two immediate successors. This allows us to determine relatively easily whether an element of a finite lattice presented by an Hasse diagram is join or meet irreducible.

In view of Proposition 2.10, the picture above allows us to recognize the prime filters and the prime ideals of A: the prime filters are the principal filters generated by the join irreducible elements and the prime ideals are the principal ideals generated by the meet irreducible elements. Furthermore, applying Corollary 2.11 to the description of J(A) and M(A) in the picture above, we obtain the following description of the posets $\langle Pf(A); \subseteq \rangle$ and $\langle Pi(A); \subseteq \rangle$:

The prime filters and ideals of an arbitrary finite distributive lattice can be identified in a similar manner. \square

Let A be a bounded lattice. By Proposition 2.5 both Fi(A) and Id(A) are closure systems and, therefore, complete lattices in which meets are intersections. As a consequence, the meet irreducible elements of Fi(A) are the proper filters of A that cannot be obtained as the intersection of two strictly larger filters. The meet irreducible elements of Id(A) admits an analogous description. Under the assumption that A is distributive, these are precisely the prime filters and ideals of A, as we proceed to explain:

Proposition 2.13. *The following condition hold for a bounded distributive lattice A:*

- (i) The prime filters of A are the meet irreducible elements of Fi(A);
- (ii) The prime ideals of A are the meet irreducible elements of Id(A).

Proof. As usual, it suffices to prove the condition (i). Suppose, with a view to contradiction, that there exists a prime filter F of A that is not meet irreducible in Fi(A). As F is prime, it is proper and, therefore, it is not the greatest element of Fi(A). Since F is not meet irreducible, this means that there are two filters G and H different from F such that $F = G \cap H$. Thus, there are $a \in G - F$ and $b \in H - F$. As G and H are upsets and $a, b \leq a \vee b$, this yields $a \vee b \in G \cap H = F$. From the assumption that F is prime it follows that either $a \in F$ or $b \in F$, a contradiction. Thus, every prime filter of A is meet irreducible in Fi(A).

Conversely, suppose that F is meet irreducible in Fi(A). Then F is not the greatest element of Fi(A), that is, $F \neq A$. Therefore, F is proper. To prove that it is prime, consider $a, b \in A$ such that $a \lor b \in F$. We will show that

$$F = \operatorname{Fg}^{A}(F \cup \{a\}) \cap \operatorname{Fg}^{A}(F \cup \{b\}). \tag{2.7}$$

The inclusion from left to right is obvious. To prove the other one, consider $c \in \operatorname{Fg}^A(F \cup \{a\}) \cap \operatorname{Fg}^A(F \cup \{b\})$. By the description of filter generation there are $d \in F$ and $e \in F$ such that $a \wedge d \leqslant c$ and $b \wedge e \leqslant c$. Consider the element $g := d \wedge e$. Since F is closed under binary meets, we have $g \in F$. Furthermore, $a \wedge g$, $b \wedge g \leqslant c$. Consequently, $(a \wedge g) \vee (b \wedge g) \leqslant c$. Applying the distributive laws, we obtain

$$(a \lor b) \land g = (a \land g) \lor (b \land g) \leqslant c.$$

Since $g, a \lor b \in F$ and F is closed under binary meets, we have $(a \lor b) \land g \in F$. Therefore, the above inequality implies that $c \in F$ because F is an upset. This establishes condition (2.7).

Since F is meet irreducible in Fi(A), we conclude that either $F = Fg^A(F \cup \{a\})$ or $F = Fg^A(F \cup \{b\})$. Consequently, either $a \in F$ or $b \in F$.

The importance of prime filters and ideals derives from the following result.

Prime Filter Theorem. *In a bounded distributive lattice, every filter is an intersection of prime filters.*

Proof. Let A be a bounded distributive lattice and recall that Fi(A) is a complete lattice in which meets are intersections. Since Fi(A) is an inductive closure system by Proposition 2.5, it is also an algebraic lattice by Theorem 1.56. Recall that in an algebraic lattice every element is a meet of (completely) meet irreducible ones. Since meets in Fi(A) are intersection, this means that every filter of A (that is, every element of Fi(A)) is an intersection of meet irreducible elements of Fi(A). But the latter are precisely the prime filters of A by Proposition 2.13. Hence, we conclude that every filter of A is an intersection of prime filters.

By applying the Duality Principle to the Prime Filter Theorem we obtain that also every ideal of a bounded distributive lattice is an intersection of prime ideals.

Corollary 2.14. *Let* A *be a bounded distributive lattice and* $a, b \in A$. *If* $a \nleq b$, *then there exists a prime filter* F *such that* $a \in F$ *and* $b \notin F$.

Proof. Since $a \nleq b$, the element b does not belong to the filter $\uparrow a$. Therefore, we can apply the Prime Filter Theorem obtaining a prime filter F that extends $\uparrow a$ and does not contain b.

Two algebras are called *similar* when they have the same type. The following concept allows us to compare similar algebras:

Definition 2.15. Let *A* and *B* be similar algebras. A map $h: A \rightarrow B$ is said to be

(i) a homomorphism when it preserves the basic operations in the sense that $h(c^A) = c^B$ for every constant c and

$$h(f^{\mathbf{A}}(a_1,\ldots,a_n))=f^{\mathbf{B}}(h(a_1),\ldots,h(a_n)),$$

for every operation f of positive arity n and every $a_1, \ldots, a_n \in A$;

- (ii) an *embedding* when it is an injective homomorphism;
- (iii) an *isomorphism* when it is a surjective embedding.

When $h: A \to B$ is an isomorphism, the inverse map $h^{-1}: B \to A$ is also an isomorphism. Accordingly, we write $A \cong B$ to indicate that there is an isomorphism between A and B. Similarly, when there exists an embedding $h: A \to B$, we say that A *embeds* into B.

Notably, homomorphisms $h: A \to B$ preserve arbitrary terms in the sense that for every term $\varphi(x_1, \dots, x_n)$ of the common type and $a_1, \dots, a_n \in A$, we have

$$h(\varphi^{\mathbf{A}}(a_1,\ldots,a_n))=\varphi^{\mathbf{B}}(h(a_1),\ldots,h(a_n)).$$

As we mentioned, we view bounded lattices as algebras whose type comprises the operations of binary meets and joins and two constants, one for the least and one for the greatest element. Accordingly, a map $h: A \to B$ between two bounded lattices A and B is a homomorphism when for every $a, b \in A$,

$$h(a \wedge^A b) = h(a) \wedge^B h(b)$$
 $h(a \vee^A b) = h(a) \vee^B h(b)$ $h(0^A) = 0^B$ $h(1^A) = 1^B$.

Every homomorphism $h: A \to B$ between bounded lattices is order preserving. To prove this, consider $a, b \in A$ such that $a \leq^A b$. Then $a = a \wedge^A b$. Since h is a homomorphism, this yields

$$h(a) = h(a \wedge^{\mathbf{A}} b) = h(a) \wedge^{\mathbf{B}} h(b),$$

which amounts to $h(a) \leq^B h(b)$. Similarly, every embedding $h: A \to B$ is also an order embedding. For let $a, b \in A$ be such that $h(a) \leq^B h(b)$. Then $h(a) = h(a) \wedge^B h(b)$. Since h is a homomorphism, this yields

$$h(a) = h(a) \wedge^{\mathbf{B}} h(b) = h(a \wedge^{\mathbf{A}} b).$$

As h is injective, we conclude that $a = a \wedge^A b$, that is, $a \leq^A b$. Lastly, while order preserving maps (resp. order embeddings) $h \colon A \to B$ need not be homomorphisms (resp. embeddings), it is easy to see that a map $h \colon A \to B$ is an isomorphism iff it is an order isomorphism.

We are now ready to prove the representation theorem for bounded distributive lattices. To this end, recall that for every poset $\mathbb X$ the algebra $\langle \mathsf{Up}(\mathbb X); \cap, \cup, \varnothing, X \rangle$ is a bounded distributive lattice.

Birkhoff's Representation Theorem. *Let* A *be a bounded distributive lattice and* $X := \langle Pf(A); \subseteq \rangle$ *. Then the map* $\varepsilon: A \to Up(X)$ *defined by the rule*

$$\varepsilon(a) := \{ F \in \mathsf{Pf}(A) : a \in F \}$$

is an embedding of A *into* $\langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \emptyset, X \rangle$.

Proof. We begin by showing that the map ε is well defined. To this end, consider $a \in A$. We need to prove that $\varepsilon(a)$ is an upset of \mathbb{X} . Accordingly, let $F \in \varepsilon(a)$ and $G \in \mathsf{Pf}(A)$ be such that $F \subseteq G$. From $F \in \varepsilon(a)$ and the definition of ε it follows that $a \in F$. As $F \subseteq G$, this yields $a \in G$. Therefore, the definition of ε guarantees that $G \in \varepsilon(a)$ as desired.

To prove that $\varepsilon: A \to \mathsf{Up}(\mathbb{X})$ is a homomorphism, consider $a, b \in A$. We have

$$\varepsilon(a \wedge b) = \{F \in \mathsf{Pf}(A) : a \wedge b \in F\} = \{F \in \mathsf{Pf}(A) : a, b \in F\} = \varepsilon(a) \cap \varepsilon(b),$$

where the first and the third equalities hold by the definition of ε and the second because filters are closed under binary meets. Similarly,

$$\varepsilon(a \lor b) = \{F \in \mathsf{Pf}(A) : a \lor b \in F\} = \{F \in \mathsf{Pf}(A) : a \in F \text{ or } b \in F\} = \varepsilon(a) \cup \varepsilon(b),$$

where the first and the third equalities hold by the definition of ε . To prove the second, consider $F \in Pf(A)$. First suppose that $a \vee b \in F$. Since F is prime, either $a \in F$ or

 $b \in F$. Conversely, assume that F contains either a or b. As F is an upset, this implies that $a \lor b \in F$ as desired.

Lastly, since prime filters are proper and every proper filter does not contain the least element 0, we have

$$\varepsilon(0) = \{ F \in \mathsf{Pf}(A) : 0 \in F \} = \emptyset.$$

Similarly, as every filter contains the greatest element 1 of A, we have

$$\varepsilon(1) = \{ F \in \mathsf{Pf}(A) : 1 \in F \} = \mathsf{Pf}(A) = X.$$

Thus, $\varepsilon \colon A \to \mathsf{Up}(\mathbb{X})$ is a homomorphism.

To prove that it is injective, consider two distinct $a, b \in A$. We may assume without loss of generality that $a \nleq b$. From Corollary 2.14 it follows that there exists $F \in \mathsf{Pf}(A)$ such that $a \in F$ and $b \notin F$. By the definition of ε this amounts to $F \in \varepsilon(a)$ and $F \notin \varepsilon(b)$.

The embedding $\varepsilon \colon A \to \mathsf{Up}(\mathbb{X})$ in Birkhoff's Representation Theorem need not be an isomorphism, however. This is because the bounded distributive lattice A need not be complete, while $\mathsf{Up}(\mathbb{X})$ is always complete. However, when A is finite the map ε turns out to be an isomorphism, as we proceed to explain.

Corollary 2.16. Let A be a finite distributive lattice and $\mathbb{X} := \langle \mathsf{Pf}(A); \subseteq \rangle$. Then the map $\varepsilon \colon A \to \mathsf{Up}(\mathbb{X})$ is an isomorphism from $A = \langle A; \wedge, \vee, 0, 1 \rangle$ to $\langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \emptyset, X \rangle$.

Proof. In view of Birkhoff's Representation Theorem, it suffices to show that ε is surjective. To this end, consider $U \in \mathsf{Up}(\mathbb{X})$. If $U = \emptyset$, then $\varepsilon(0) = U$ because ε is a homomorphism from A to $\mathsf{Up}(\mathbb{X})$. Then we consider the case where U is nonempty. As A is finite, we can take an enumeration $U = \{F_1, \ldots, F_n\}$. Moreover, since A is finite, each filter F_i is principal by Proposition 2.6. Therefore, there are $a_1, \ldots, a_n \in A$ such that $F_i = \uparrow a_i$ for every $i \leqslant n$. We will prove that $U = \varepsilon(b)$, where

$$b := a_1 \vee \cdots \vee a_n$$
.

First consider $F_i \in U$. Since $F_i = \uparrow a_i$ and $a_i \leqslant a_1 \lor \cdots \lor a_n = b$, we obtain $b \in F_i$. By the definition of ε , this yields $F_i \in \varepsilon(b)$. To prove the other inclusion, consider $F \in \varepsilon(b)$. By the definition of ε we have $a_1 \lor \cdots \lor a_n = b \in F$. Since F is a prime filter, there exists $i \leqslant n$ such that $a_i \in F$. As F is an upset of A, this yields $F_i = \uparrow a_i \subseteq F$. Since U is an upset of $X = \langle \mathsf{Pf}(A); \subseteq \rangle$ containing F_i and $F \in \mathsf{Pf}(A)$, we conclude that $F \in U$.

Corollary 2.17. *Up to isomorphism, the finite distributive lattices are precisely the algebras of the form* $\langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \emptyset, X \rangle$ *where* \mathbb{X} *is a finite poset.*

2.2 Boolean and Heyting algebras

The following kind of lattices are the algebraic models of one of the most prominent nonclassical logics, namely, *intuitionistic logic*.

Definition 2.18. A *Heyting algebra* is an algebra $A = \langle A; \wedge, \vee, \rightarrow, 0, 1 \rangle$ that comprises a bounded lattice $\langle A; \wedge, \vee, 0, 1 \rangle$ and a binary operation \rightarrow satisfying the *residuation law*: for every $a, b, c \in A$,

$$a \land b \leqslant c \iff a \leqslant b \rightarrow c$$
.

The operation \rightarrow is often called *implication*.

Examples of Heyting algebras abound. For instance, every topological space gives rise to a Heyting algebra, as we proceed to explain.

Example 2.19 (Heyting algebras of open sets). Let $\langle X; \tau \rangle$ be a topological space. As the family of open sets of $\langle X; \tau \rangle$ contains the empty set and is closed under arbitrary unions, the greatest open set contained in a subset $U \subseteq X$, known as the *interior* of U, exists and can be described as follows:

$$int(U) := \bigcup \{ V \in \tau : V \subseteq U \}.$$

Then the family of open sets τ can be given the structure of an algebra

$$\mathsf{Op}(X;\tau) := \langle \tau; \cap, \cup, \rightarrow, \emptyset, X \rangle$$

in which \rightarrow is the binary operation defined for every $U, V \in \tau$ as

$$U \to V := \operatorname{int}(U^c \cup V).$$

We will prove that $Op(X; \tau)$ is a Heyting algebra.

First observe that the algebra $\operatorname{Op}(X;\tau)$ is well defined because τ is closed under binary intersections and unions, it contains \emptyset and X, and the interior $\operatorname{int}(U^c \cup V)$ is always open. Since $\langle \tau; \cap, \cup, \emptyset, X \rangle$ is a obviously a bounded lattice, it only remains to prove that the residuation law holds, which in this case takes the following form:

$$U \cap V \subseteq W \iff U \subseteq \operatorname{int}(V^c \cup W)$$
,

for every $U, V, W \in \tau$. To prove the implication from left to right, suppose that $U \cap V \subseteq W$. Then $U \subseteq V^c \cup W$. As $\operatorname{int}(V^c \cup W)$ is the greatest open set contained in $V^c \cup W$ and U is an open set, this implies $U \subseteq \operatorname{int}(V^c \cup W)$. Then we turn to prove the other implication. Suppose that $U \subseteq \operatorname{int}(V^c \cup W)$ and consider $x \in U \cap V$. From

$$x \in U \subset \operatorname{int}(V^c \cup W) \subset V^c \cup W$$
 and $x \in V$

 \boxtimes

it follows $x \in W$. Hence, we conclude that $U \cap V \subseteq W$.

While the definition of a Heyting algebra does not make this explicit, the residuation law implies the distributive laws.

Proposition 2.20. *Every Heyting algebra is a distributive lattice.*

Proof. By Proposition 2.2 it suffices to show that the inequality

$$x \land (y \lor z) \leqslant (x \land y) \lor (x \land z)$$

is valid in every Heyting algebra A. Accordingly, consider $a, b, c \in A$ and let

$$d := (a \wedge b) \vee (a \wedge c).$$

From $(a \land b) \lor (a \land c) \leqslant d$ it follows $a \land b, a \land c \leqslant d$. By the residuation law this yields $b, c \leqslant a \to d$ and, therefore, $b \lor c \leqslant a \to d$. With another application of the residuation law we obtain $a \land (b \lor c) \leqslant d$. By the definition of d this amounts to $a \land (b \lor c) \leqslant (a \land b) \lor (a \land c)$.

Given a poset X and a subset $Y \subseteq X$, we write max Y and min Y for the greatest and the least element of Y (when they exist, of course). The next result provides a purely lattice theoretic description of the implication of a Heyting algebra.

Proposition 2.21. *If* A *is a Heyting algebra, then for every* b, $c \in A$,

$$b \to c = \max\{a \in A : a \land b \leqslant c\}.$$

Furthermore, if A is a bounded lattice in which $\max\{a \in A : a \land b \leqslant c\}$ exists for every $b, c \in A$, then the expansion of A with the binary operation \rightarrow defined by the rule

$$b \to c := \max\{a \in A : a \land b \leqslant c\}$$

is a Heyting algebra.

Proof. First let *A* be a Heyting algebra and $b, c \in A$. From the residuation law and $b \to c \leq b \to c$ it follows $(b \to c) \land b \leq c$. Consequently,

$$b \to c \in \{a \in A : a \land b \leqslant c\}.$$

To prove that $b \to c$ is the greatest element of $\{a \in A : a \land b \le c\}$, consider some $a \in A$ such that $a \land b \le c$. By the residuation law we have $a \le b \to c$ as desired.

Then consider a bounded lattice A in which $\max\{a \in A : a \land b \leqslant c\}$ exists for every $b,c \in A$. We will prove that for every $a,b,c \in A$,

$$a \land b \leqslant c \Longleftrightarrow a \in \{d \in A : d \land b \leqslant c\} \Longleftrightarrow a \leqslant \max\{d \in A : d \land b \leqslant c\}.$$

The first of the equivalences above is straightforward and so is the implication from left to right of the second. The implication from right to left in the second equivalence above holds too because $\{d \in A : d \land b \le c\}$ is a downset. Therefore, letting

$$b \to c := \max\{d \in A : d \land b \leq c\},\$$

the above series of equivalences amounts to the validity of the residuation law $a \land b \leqslant c$ iff $a \leqslant b \rightarrow c$.

From the first half of Proposition 2.21 it follows that Heyting algebras are uniquely determined by their lattice structure. More precisely, given a Heyting algebra $A = \langle A; \wedge, \vee, \rightarrow, 0, 1 \rangle$, we will refer to $\langle A; \wedge, \vee \rangle$ as to the *lattice reduct* of A. We then have the following:

Corollary 2.22. Two Heyting algebras are equal iff they have the same lattice reduct.

The second half of Proposition 2.21 is instrumental in constructing examples of Heyting algebras. As an exemplification, we remark that each distributive algebraic lattice gives rise to a Heyting algebra.

Theorem 2.23. Every distributive algebraic lattice can be expanded with a binary operation \rightarrow that turns it into a Heyting algebra.

Proof. Let *A* be an algebraic lattice. In view of the second half of Proposition 2.21, it suffices to prove that

$$\max\{a \in A : a \land b \leq c\}$$

exists for every $b, c \in A$. Accordingly, consider $b, c \in A$. Since A is a complete lattice, the join

$$d := \bigvee \{a \in A : a \land b \leqslant c\}$$

exists. As d is an upper bound of $\{a \in A : a \land b \le c\}$ by definition, to prove that $d = \max\{a \in A : a \land b \le c\}$ it is enough to show that d belongs to $\{a \in A : a \land b \le c\}$, that is, $d \land b \le c$.

As A is an algebraic lattice, every element is the join of the compact elements below it. Consequently, $d \land b \leqslant c$ iff all the compact elements below $d \land b$ are also below c. To prove that this is the case, let e be a compact element such that $e \leqslant d \land b$. By the definition of d we obtain

$$e \leqslant b \land d = b \land \bigvee \{a \in A : a \land b \leqslant c\} \leqslant \bigvee \{a \in A : a \land b \leqslant c\}.$$

Since e is compact, there exists a finite $X \subseteq \{a \in A : a \land b \le c\}$ such that $e \le \bigvee X$. As $\{a \in A : a \land b \le c\}$ contains the least element 0, we may assume that $0 \in X$ and, therefore, that of X is nonempty. Then take an enumeration $X = \{a_1, \ldots, a_n\}$. We have

$$e \leqslant \bigvee X = a_1 \lor \cdots \lor a_n.$$

Together with the assumption that $e \le b \land d \le b$ and that A is distributive, this yields

$$e \leq b \wedge (a_1 \vee \cdots \vee a_n) = (b \wedge a_1) \vee \cdots \vee (b \wedge a_n).$$

As each a_i belongs to $\{a \in A : a \land b \le c\}$, we have $a_i \land b \le c$ and, therefore, $(b \land a_1) \lor \cdots \lor (b \land a_n) \le c$. By the inequalities above, this implies $e \le c$.

As every finite lattice is algebraic, from Theorem 2.23 we obtain:

Corollary 2.24. Every finite distributive lattice can be expanded with a binary operation \rightarrow that turns it into a Heyting algebra.

Furthermore, the expansions mentioned in Theorem 2.23 and in the above result are unique, because Heyting algebras are uniquely determined by their lattice reducts (Corollary 2.22).

Recall that the lattices of the form Up(X) are algebraic and distributive. Therefore, they can be endowed with the structure of a Heyting algebra by Theorem 2.23. The next example provides a concrete description of the implication in the Heyting algebras of this kind.

Example 2.25 (Heyting algebras of upsets). We will prove that for every poset X the algebra

$$\mathsf{Up}(\mathbb{X}) := \langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$$

where \rightarrow is the operation defined for every $U, V \in \mathsf{Up}(\mathbb{X})$ as

$$U \rightarrow V := X - \downarrow (U \cap V^c)$$

is a Heyting algebra.

Observe that Up(X) is well defined, because $X - \downarrow (U \cap V^c)$ is always an upset. As Up(X) is a bounded lattice, it only remains to prove that Up(X) satisfies the residuation law, that is,

$$U \cap V \subseteq W \iff U \subseteq X - \downarrow (V \cap W^c),$$

for every $U, V, W \in \mathsf{Up}(\mathbb{X})$. To prove the left to right implication, we reason by contraposition. Suppose that $U \nsubseteq X - \downarrow (V \cap W^c)$. Then there exists $x \in U$ such that $x \notin X - \downarrow (V \cap W^c)$. Then $x \in \downarrow (V \cap W^c)$ and there exists $y \in V \cap W^c$ such that $x \leqslant y$. Since U is an upset, from $x \leqslant y$ and $x \in U$ it follows that $y \in U$. Consequently, $y \in U \cap V$ and $y \notin W$. Hence, we conclude that $U \cap V \nsubseteq W$ as desired. We will prove the implication from right to left by contraposition too. Accordingly, suppose that $U \cap V \nsubseteq W$. Then there is some $x \in U \cap V$ such that $x \notin W$. As a consequence, $x \in V \cap W^c \subseteq \downarrow (V \cap W^c)$. Therefore, $x \notin X - \downarrow (V \cap W^c)$. Since $x \in U$, we conclude that $U \nsubseteq X - \downarrow (U \cap V^c)$.

The next result shows that Up(X) is the canonical example of a Heyting algebra.

Theorem 2.26 (Representation theorem). Let A be a Heyting algebra and $\mathbb{X} := \langle \mathsf{Pf}(A); \subseteq \rangle$. Then the map $\varepsilon \colon A \to \mathsf{Up}(\mathbb{X})$ defined by the rule

$$\varepsilon(a) := \{ F \in \mathsf{Pf}(A) : a \in F \}$$

is an embedding of A into $\langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$ *.*

Proof. Recall from Proposition 2.20 that A is a distributive lattice. Therefore, we can apply Birkhoff's Representation Theorem obtaining that the map ε is well-defined embedding of bounded lattices. It only remains to prove that it preserve the implication. Since in Up(X) the implication is defined by the rule $U \to V := X - \downarrow (U \cap V^c)$, this amounts to showing that for every $a,b \in A$,

$$\varepsilon(a \to b) = X - \downarrow (\varepsilon(a) \cap \varepsilon(b)^c).$$

To prove the inclusion from left to right, let $F \in \varepsilon(a \to b)$. By the definition of ε we have $a \to b \in F$. Then consider $G \in \varepsilon(a) \cap \varepsilon(b)^c$. We need to show that $F \nsubseteq G$. Suppose

the contrary, with a view to contradiction. Then $a \to b \in F \subseteq G$. As G is a filter containing a, this implies $a \land (a \to b) \in G$. As G is an upset and the residuation law guarantees that $a \land (a \to b) \leq b$, we conclude that $b \in G$, a contradiction. This shows that $F \nsubseteq G$ for every $G \in \varepsilon(a) \cap \varepsilon(b)^c$ and, therefore, that $F \in X - \downarrow (\varepsilon(a) \cap \varepsilon(b)^c)$ as desired.

The inclusion from right to left will be proved by contraposition. To this end, consider $F \in X - \varepsilon(a \to b)$. Then F is a prime filter of A such that $a \to b \notin F$. We will prove that the filter

$$G := \operatorname{Fg}^{A}(F \cup \{a\})$$

does not contain b. Suppose, on the contrary, that $b \in G$. By the description pf filter generation there is $c \in F$ such that $c \land a \le b$. By applying the residuation law we obtain $c \le a \to b$. Since $c \in F$ and F is a filter, this implies $a \to b \in F$, a contradiction. Therefore, we conclude that $b \notin G$.

By the Prime Filter Theorem the filter G is an intersection of prime filters. Together with $b \notin G$, this guarantees the existence of a prime filter H containing G such that $b \notin H$. As the definition of G ensures that $a \in G$, we obtain $a \in H$ as well. Therefore, H is a prime filter such that $a \in H$ and $b \notin H$. By the definition of ε we obtain $H \in \varepsilon(a) \cap \varepsilon(b)^c$. As G extends F by the definition, we also have $F \subseteq H$. Therefore, $H \in \downarrow(\varepsilon(a) \cap \varepsilon(b)^c)$ as desired.

When the Heyting algebra A in the above theorem is finite, the embedding $\varepsilon \colon A \to \mathsf{Up}(\mathbb{X})$ is a surjective and, therefore, an isomorphism by Corollary 2.16. As a consequence, we obtain the following:

Corollary 2.27. *Up to isomorphism, the finite Heyting algebras are precisely the algebras of the form* $\langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$ *where* \mathbb{X} *is a finite poset and* \rightarrow *is the binary operation defined by the rule*

$$U \rightarrow V := X - \downarrow (U \cap V^c).$$

Given an element a of a Heyting algebra A, we often write $\neg a$ as a shorthand for $a \to 0$. The element $\neg a$ will be called the *negation* of a. From the first half of Proposition 2.21 it follows that $\neg a$ is the greatest element of A whose meet with a is 0, that is,

$$\neg a = \max\{b \in A : a \land b = 0\}. \tag{2.8}$$

By extension, given a term φ in the language of Heyting algebras, we shall also write $\neg \varphi$ as a shorthand for $\varphi \to 0$.

Definition 2.28. A Heyting algebra is said to be a *Boolean algebra* when it validates the *excluded middle law* $x \lor \neg x \approx 1$.

While Heyting algebras are the algebraic models of intuitionistic logic, Boolean algebras are the algebraic models of *classical logic*. Boolean algebras can be characterized in terms of many logically meaningful equations. Among them, the *double negation elimination law* $x \approx \neg \neg x$ plays a fundamental role. Observe that every Heyting algebra A validates one half of it, in the sense that $a \leqslant \neg \neg a$ for every $a \in A$. This is because the residuation law yields that

$$a \leqslant \neg \neg a \Longleftrightarrow a \land \neg a \leqslant 0$$

and the right hand side of the above equivalence holds by condition (2.8).

Proposition 2.29. A Heyting algebra is a Boolean algebra iff it validates the double negation elimination law.

Proof. Let *A* be a Heyting algebra. Suppose first that *A* is a Boolean algebra. Since one half of the double negation elimination law holds in every Heyting algebra, it suffices to show that $\neg \neg a \leq a$ for every $a \in A$. To this end, observe that for every $a \in A$,

$$\neg \neg a = 1 \land \neg \neg a = (a \lor \neg a) \land \neg \neg a = (a \land \neg \neg a) \lor (\neg a \land \neg \neg a) = a \lor 0 = a.$$

The above equalities are justified as follows: the first holds because 1 is the greatest element of A, the second because A is a Boolean algebra and, therefore, validates the excluded middle law, the third is obtained by an application of the distributive laws, the fourth holds because $a \le \neg \neg a$ and by condition (2.8) we have $\neg a \land \neg \neg a = 0$, and the last one because 0 is the least element of A.

Conversely, suppose that the Heyting algebra A validates the double negation elimination law. We need to prove that it validates the excluded middle law as well. Consider an element $a \in A$. We begin by showing that $\neg(a \lor \neg a) = 0$. Since $\neg(a \lor \neg a)$ is the greatest element whose meet with $a \lor \neg a$ is 0 by condition (2.8), it suffices to prove that for every $b \in A$,

if
$$b \wedge (a \vee \neg a) = 0$$
, then $b = 0$.

Accordingly, suppose that $b \wedge (a \vee \neg a) = 0$. By the distributive laws we obtain $(b \wedge a) \vee (b \wedge \neg a) = 0$. As 0 is the least element of A, this amounts to $b \wedge a$, $b \wedge \neg a \leq 0$. Therefore, we can apply the residuation law obtaining $b \leq \neg a \wedge \neg \neg a$. Since $a \wedge \neg \neg a = 0$ by condition (2.8), we conclude that b = 0 as desired. This shows that $\neg (a \vee \neg a) = 0$.

Clearly, 1 is the greatest element whose meet with 0 is 0 and, therefore, $\neg 0 = 1$. Consequently, $\neg \neg (a \lor \neg a) = \neg 0 = 1$. By the double negation elimination law we conclude that $a \lor \neg a = 1$.

The primary example of a Boolean algebra is the following:

Example 2.30 (Powerset Boolean algebras). The *powerset Boolean algebra* associated with a set *X* is the algebra

$$\mathcal{P}(X) := \langle \mathcal{P}(X); \cap, \cup, \rightarrow, \emptyset, X \rangle$$

where \rightarrow is the binary operation defined by the rule

$$U \rightarrow V := U^c \cup V$$
.

We will prove that $\mathcal{P}(X)$ is indeed a Boolean algebra and that it coincides with the Heyting algebra $\mathsf{Up}(X)$ where X is the discrete poset with universe X.

First observe that the upsets of the discrete poset X are precisely the subsets of X. Moreover, for every $U, V \in \mathcal{P}(X)$ we have

$$X - \downarrow (U \cap V^c) = X - (U \cap V^c) = U^c \cup V$$

where the second equality follows from the fact that the order of \mathbb{X} is the identity relation and, therefore, $\downarrow (U \cap V^c) = U \cap V^c$. Together with the definition of the implication in $Up(\mathbb{X})$ and $\mathcal{P}(X)$, this implies that the powerset Boolean algebra $\mathcal{P}(X)$ coincides with the Heyting algebra $Up(\mathbb{X})$.

Therefore, to prove that $\mathcal{P}(X)$ is a Boolean algebra, it only remains to show that it validates the excluded middle law. To this end, it is convenient to observe that for every $U \in \mathcal{P}(X)$,

$$\neg U = U \rightarrow \emptyset = U^c \cup \emptyset = U^c$$
.

As a consequence,

$$U \cup \neg U = U \cup U^c = X$$

for every $U \in \mathcal{P}(X)$, which means precisely that $\mathcal{P}(X)$ validates the excluded middle law.

The representation theory of Boolean algebras is based on the following concept:

Definition 2.31. A proper filter F of a Heyting algebra A is said to be an *ultrafilter* when either $a \in F$ or $\neg a \in F$, for every $a \in A$.

We say that a subset $F \subseteq A$ is a *maximal proper filter* of a Heyting algebra A when F is a proper filter of A and for every other proper filter G of A, if $F \subseteq G$, then F = G.

Proposition 2.32. *The ultrafilters of a Heyting algebra are precisely its maximal proper filters.*

Proof. Let A be a Heyting algebra. First consider an ultrafilter F of A and let G be a proper filter of A such that $F \subseteq G$. We have to prove that F = G. Suppose, on the contrary, that there exists some $a \in G - F$. Since F is an ultrafilter, from $a \notin F$ it follows that $\neg a \in F$. Consequently, $\neg a \in F \subseteq G$ and, therefore, G contains both G and G and G is a filter, this implies G is a filter, this implies G is a filter, this yields G is the greatest element of G whose meet with G is 0 by condition (2.8), this yields G is G is 1. It follows that G is not proper, a contradiction.

To prove the converse, consider a maximal proper filter F of A and consider an element $a \in A$. To prove that F is an ultrafilter, we need to show that $a \in F$ or $\neg a \in F$. If $\neg a \in F$, we are done. Then we consider the case where $\neg a \notin F$. We will prove that the filter $G := \operatorname{Fg}^A(F \cup \{a\})$ is proper. Suppose, on the contrary, that G = A. Then $0 \in \operatorname{Fg}^A(F \cup \{a\})$. By the description of filter generation there exists $b \in F$ such that $a \land b \leqslant 0$. By applying the residuation law we obtain $b \leqslant a \to 0 = \neg a$. Since F is a filter containing b, this implies $\neg a \in F$, a contradiction. Hence, we conclude that G is proper. As $F \subseteq G$ by the definition of G, the assumption that F is a maximal filter implies F = G. Since the definition of G guarantees that $a \in G$, we conclude that $a \in F$.

From Proposition 2.32 it follows that the ultrafilters of a Heyting algebra A are meet irreducible in Fi(A). Since the meet irreducible elements of Fi(A) are precisely the prime filters of A by Proposition 2.13, we obtain the following:

Corollary 2.33. *Every ultrafilter is prime: if* A *is a Heyting algebra, then* $\mathsf{Ultr}(A) \subseteq \mathsf{Pf}(A)$.

The reverse inclusion $Ultr(A) \supseteq Pf(A)$ holds precisely when A is a Boolean algebra:

Proposition 2.34. *The following conditions are equivalent for a Heyting algebra A:*

- (i) A is a Boolean algebra;
- (ii) Pf(A) = Ultr(A);
- (iii) The poset $\langle \mathsf{Pf}(A); \subseteq \rangle$ is discrete.

Proof. (i) \Rightarrow (ii): By Corollary 2.33 it suffices to prove that $Pf(A) \subseteq Ultr(A)$. Let F be a prime filter of A. As F is prime, it is also proper. Then consider an element $a \in A$. Since A validates the excluded middle law, we have $a \vee \neg a = 1 \in F$. Because F is prime, this implies that either $a \in F$ or $\neg a \in F$ as desired.

(ii) \Rightarrow (iii): Since Pf(A) = Ultr(A), it suffices to prove that the poset $\langle Ultr(A); \subseteq \rangle$ is discrete. To this end, consider $F, G \in Ultr(A)$ such that $F \subseteq G$. Since F is a maximal proper filter by Proposition 2.32 and G is a proper filter by assumption, we obtain F = G. Thus, the poset $\langle Ultr(A); \subseteq \rangle$ is discrete.

(iii) \Rightarrow (i): We need to prove that A validates the excluded middle law. Suppose the contrary, with a view to contradiction. Then there exists some $a \in A$ such that $a \vee \neg a < 1$. Since 1 is the greatest element of A, this yields $1 \nleq a \vee \neg a$. Then we can apply Corollary 2.14 obtaining a prime filter F such that $a \vee \neg a \notin F$. As F is a prime filter implies that $a, \neg a \notin F$. Therefore, F is not an ultrafilter of A. Since F is proper, we can apply Proposition 2.32 obtaining that there exists a prime filter G such that $F \subsetneq G$. But this contradicts the assumption that the poset $\langle \mathsf{Pf}(A); \subseteq \rangle$ is discrete.

Recall that every Boolean algebra A is a bounded distributive lattice by Proposition 2.20. Therefore, every filter of A is an intersection of prime filters by the Prime Filter Theorem. As the prime filters of A are precisely the ultrafilters of A by Proposition 2.34, we obtain the following:

Ultrafilter Theorem. *In a Boolean algebra, every filter is an intersection of ultrafilters.*

We are now ready to show that powerset Boolean algebras are indeed canonical examples of Boolean algebras.

Theorem 2.35 (Representation theorem). Let A be a Boolean algebra and X := Ultr(A). Then the map $\varepsilon \colon A \to \mathcal{P}(X)$ defined by the rule

$$\varepsilon(a) \coloneqq \{ F \in \mathsf{Ultr}(A) : a \in F \}$$

is an embedding of A into the powerset Boolean algebra $\langle \mathcal{P}(X); \cap, \cup, \rightarrow, \emptyset, X \rangle$.

Proof. Let $\mathbb{X} := \langle \mathsf{Pf}(A); \subseteq \rangle$ and $\mathsf{Up}(\mathbb{X})$ the Heyting algebra of upsets of \mathbb{X} . Since A is a Heyting algebra, from Theorem 2.26 it follows that the map $\varepsilon^* \colon A \to \mathsf{Up}(\mathbb{X})$ defined by the rule $\varepsilon^*(a) := \{F \in \mathsf{Pf}(A) : a \in F\}$ is an embedding. As A is a Boolean algebra, the poset \mathbb{X} is discrete and $\mathsf{Pf}(A) = \mathsf{Ultr}(A)$ by Proposition 2.34. As $\mathsf{Pf}(A) = \mathsf{Ultr}(A)$, the map ε^* coincides with the map ε in the statement. Furthermore, since the poset \mathbb{X} is discrete, the Heyting algebra $\mathsf{Up}(\mathbb{X})$ coincides with the powerset Boolean algebra $\mathcal{P}(X)$. Consequently, the fact that $\varepsilon^* \colon A \to \mathsf{Up}(\mathbb{X})$ is an embedding amounts to the fact that the map ε in the statement is an embedding of A into $\mathcal{P}(X)$ as desired.

Since the map ε in the above theorem coincides with that in Corollary 2.16, when a Boolean algebra A is finite, the embedding ε : $A \to \mathcal{P}(X)$ is a surjective and, therefore, an isomorphism.

Corollary 2.36. *Up to isomorphism, the finite Boolean algebras are precisely the powerset Boolean algebras* $\langle \mathcal{P}(X); \cap, \cup, \rightarrow, \emptyset, X \rangle$ *where X is a finite set.*

2.3 Modal algebras

The algebraic models of *modal logic* are the following:

Definition 2.37. A *modal algebra* is an algebra $A = \langle A; \land, \lor, \rightarrow, \Box, 0, 1 \rangle$ that comprises a Boolean algebra $\langle A; \land, \lor, \rightarrow, 0, 1 \rangle$ and a unary operation \Box such that for every $a, b \in A$,

$$\Box(a \land b) = \Box a \land \Box b$$
 and $\Box 1 = 1$.

In this case, for every $a \in A$ we will write $\lozenge a$ as a shorthand for $\neg \Box \neg a$.

The unary operations \square and \diamondsuit are often called *box* and *diamond*.

Since Boolean algebras (and, therefore, modal algebras) validate the double negation elimination law, for every $a \in A$ we have

$$\Box a = \neg \neg \Box \neg \neg a = \neg \Diamond \neg a.$$

Therefore, box and diamond are interdefinable as

$$\Diamond a = \neg \Box \neg a \text{ and } \Box a = \neg \Diamond \neg a.$$

In fact, modal algebras can be equivalently defined as algebra $A = \langle A; \land, \lor, \rightarrow, \diamondsuit, 0, 1 \rangle$ where $\langle A; \land, \lor, \rightarrow, 0, 1 \rangle$ is a Boolean algebra and \diamondsuit a unary operation such that for every $a, b \in A$,

$$\Diamond(a \lor b) = \Diamond a \lor \Diamond b$$
 and $\Diamond 0 = 0$.

Much as in the case of Heyting algebras, every topological space gives rise to a modal algebra, as we proceed to explain.

Example 2.38 (Modal algebras and topological spaces). With every topological space $\langle X; \tau \rangle$ we associate an algebra

$$\mathsf{M}(X;\tau) \coloneqq \langle \mathcal{P}(X); \cap, \cup, \rightarrow, \square, \emptyset, X \rangle$$

where $\langle \mathcal{P}(X); \cap, \cup, \rightarrow, \emptyset, X \rangle$ is a powerset Boolean algebra and \square is the operation of taking the interior of a set, that is, for every $U \subseteq X$,

$$\square U := \operatorname{int}(U)$$
.

We will prove that $M(X;\tau)$ is a modal algebra in which \diamondsuit is the operation of taking the closure of a set, that is, $\diamondsuit U = \overline{U}$.

We begin by proving that $M(X;\tau)$ is a modal algebra. As $\langle \mathcal{P}(X); \cap, \cup, \rightarrow, \emptyset, X \rangle$ is a (powerset) Boolean algebra, it suffices to show that for every $U, V \subseteq X$,

$$int(U \cap V) = int(U) \cap int(V)$$
 and $int(X) = X$.

Clearly, X is the greatest open set contained in X. Consequently, $\operatorname{int}(X) = X$. Then we turn to prove the other equation above. From $U \cap V \subseteq U$, V it follows that the interior of $U \cap V$ is contained in those of U and V, that is, $\operatorname{int}(U \cap V) \subseteq \operatorname{int}(U) \cap \operatorname{int}(V)$. To prove the reverse inclusion, observe that both $\operatorname{int}(U)$ and $\operatorname{int}(V)$ are open sets and, therefore, so is their intersection $\operatorname{int}(U) \cap \operatorname{int}(V)$. Moreover, from $\operatorname{int}(U) \subseteq U$ and $\operatorname{int}(V) \subseteq V$ it follows $\operatorname{int}(U) \cap \operatorname{int}(V) \subseteq U \cap V$. Hence, $\operatorname{int}(U) \cap \operatorname{int}(V)$ is an open set contained in $U \cap V$. By the definition of the interior of a set this impies $\operatorname{int}(U) \cap \operatorname{int}(V) \subseteq \operatorname{int}(U \cap V)$. This establishes that $\operatorname{M}(X;\tau)$ is a modal algebra.

It only remains to prove that $\lozenge U = \overline{U}$ for every $U \subseteq X$. First observe that

$$\Diamond U = \neg \Box \neg U = (\operatorname{int}(U^c))^c. \tag{2.9}$$

As a consequence, $\Diamond U$ is the complement of the open set $int(U^c)$ and, therefore, a closed set. We will prove that for every closed set V,

$$U \subseteq V \iff \Diamond U \subseteq V. \tag{2.10}$$

This is proved through the series of equivalences

$$U \subseteq V \Longleftrightarrow V^c \subseteq U^c \Longleftrightarrow V^c \subseteq \operatorname{int}(U^c) \Longleftrightarrow \operatorname{int}(U^c)^c \subseteq V \Longleftrightarrow \Diamond U \subseteq V,$$

the first and the third of which are straightforward, the second holds because V^c is open (as V^c is closed), and the fourth by condition (2.9).

In order to prove that $\lozenge U = \overline{U}$, it suffices to show that $U \subseteq \lozenge U \subseteq \overline{U}$ because $\lozenge U$ is closed and \overline{U} is the least closed set containing U. Since $\lozenge U$ is closed, we can apply the right to left implication in condition (2.10) to the case where $V := \lozenge U$ obtaining $U \subseteq \lozenge U$. On the other hand, since \overline{U} is a closed set containing U, we can apply the left to right implication in condition (2.10) to the case where $V := \overline{U}$ obtaining $\lozenge U \subseteq \overline{U}$. Hence, we conclude that $\lozenge U = \overline{U}$ as desired.

The structure theory of modal algebras is based on the following concept.

Definition 2.39. A *Kripke frame* is a pair $\mathbb{X} = \langle X; R \rangle$ where X is a set and R a binary relation on it. The set X is called the *universe* of \mathbb{X} .

Every Kripke frame gives rise to a modal algebra, as we proceed to explain.

Example 2.40 (Complex algebras). With every Kripke frame X we associate an algebra

$$\mathcal{P}(X) := \langle \mathcal{P}(X); \cap, \cup, \rightarrow, \square, \emptyset, X \rangle$$

where $\langle \mathcal{P}(X); \cap, \cup, \rightarrow, \emptyset, X \rangle$ is a powerset Boolean algebra and for every $U \subseteq X$,

$$\Box U := \{ x \in X : \text{if } xRy, \text{ then } y \in U \}.$$

The structure $\mathcal{P}(X)$ is called the *complex algebra* of X. We will prove that it is a modal algebra in which

$$\Diamond U = \{x \in X : xRy \text{ for some } y \in U\}.$$

We begin by proving that $\mathcal{P}(X)$ is a modal algebra. As $\langle \mathcal{P}(X); \cap, \cup, \rightarrow, \emptyset, X \rangle$ is a (powerset) Boolean algebra, it suffices to show that for every $U, V \subseteq X$,

$$\Box(U \cap V) = \Box U \cap \Box V$$
 and $\Box X = X$.

Applying in succession the definition of \square in $\mathcal{P}(\mathbb{X})$ and the fact that X is the total set, we obtain

$$\Box X = \{x \in X : \text{if } xRy, \text{ then } y \in X\} = X.$$

On the other hand, we have

$$\Box(U \cap V) = \{x \in X : \text{if } xRy, \text{ then } y \in U \cap V\}$$

$$= \{x \in X : \text{if } xRy, \text{ then } y \in U\} \cap \{x \in X : \text{if } xRy, \text{ then } y \in V\}$$

$$= \Box U \cap \Box V.$$

The first and the third equalities above follow from the definition of \square in $\mathcal{P}(\mathbb{X})$ and the second is straightforward. Hence, we conclude that $\mathcal{P}(\mathbb{X})$ is indeed a modal algebra. Lastly, the definition of \square in $\mathcal{P}(\mathbb{X})$ guarantees that

$$\Diamond U = \neg \Box \neg U = \{x \in X : \text{if } xRy, \text{ then } y \in U^c\}^c = \{x \in X : xRy \text{ for some } x \in U\}.$$

Not only does every Kripke frame \mathbb{X} determine a modal algebra (namely, the complex algebra $\mathcal{P}(\mathbb{X})$), but the converse is also true. More precisely, every modal algebra determines a Kripke frame as follows:

Definition 2.41. With every modal algebra A we associate the Kripke frame K(A) with universe the set Ultr(A) of ultrafilters of A and with relation

$$R_A := \{ \langle F, G \rangle \in \mathsf{Ultr}(A) : \Box a \in F \text{ implies } a \in G \text{, for every } a \in A \}.$$

We will refer to K(A) as to the Kripke frame associated with A.

This concept allows us to prove that complex algebras are indeed canonical examples of modal algebras.

Theorem 2.42 (Representation theorem). Let A be a modal algebra and X := K(A). Then the map $\varepsilon \colon A \to \mathcal{P}(X)$ defined by the rule

$$\varepsilon(a) := \{ F \in \mathsf{Ultr}(A) : a \in F \}$$

is an embedding of A into the complex algebra $(\mathcal{P}(X); \cap, \cup, \rightarrow, \square, \emptyset, X)$.

Proof. Since modal algebras are Boolean algebras, we can apply Theorem 2.35 obtaining that $\varepsilon \colon A \to \mathcal{P}(\mathbb{X})$ is an embedding of Boolean algebras. Therefore, it only remains to prove that ε preserves the operation \square , i.e., that for every $a \in A$,

$$\varepsilon(\Box^A a) = \Box^{\mathcal{P}(X)} \varepsilon(a).$$

By the definition of ε and of the operation \square in the complex algebra $\mathcal{P}(\mathbb{X})$, this amounts to the demand that for every $F \in \mathsf{Ultr}(A)$,

$$\Box^A a \in F \iff$$
 for every $G \in \mathsf{Ultr}(A)$, FR_AG implies $a \in G$.

To prove the implication from left to right holds, suppose that $\Box^A a \in F$ and consider $G \in Ultr(A)$ such that FR_AG . Since $\Box^A a \in F$ and FR_AG , the definition of R_A guarantees that $a \in G$.

To prove the implication from right to left, we reason by contraposition. Suppose that $\Box^A a \notin F$. We will prove that the set

$$G := \{b \in A : \Box^A b \in F\}$$

is a filter of A. As A is a modal algebra and F a filter, we have $\Box^A 1 = 1 \in F$. Therefore, G contains 1. To prove that G is an upset, consider $b, c \in A$ such that $b \in G$ and $b \leqslant c$. From $b \leqslant c$ it follows $b = b \land c$. As A is a modal algebra, this implies

$$\Box^{A}b = \Box^{A}(b \wedge c) = \Box^{A}b \wedge \Box^{A}c,$$

that is, $\Box^A b \leqslant \Box^A c$. Moreover, from the assumption that $b \in G$ and the definition of G it follows $\Box^A b \in F$. Since F is an upset and $\Box^A b \leqslant \Box^A c$, this yields $\Box^A c \in F$ and, therefore, $c \in G$. It only remains to show that G is closed under binary meets. Let $b, c \in G$. By the definition of G, we have $\Box^A b, \Box^A c \in F$. Since A is a modal algebra and F is closed under binary meets,

$$\Box^{A}(b \wedge c) = \Box^{A}b \wedge \Box^{A}c \in F.$$

By the definition of G this implies $b \land c \in G$ as desired. This shows that G is a filter of A. Recall that we assumed that $\Box^A a \notin F$. By the definition of G this amounts to $a \notin G$. Since G is a filter of A and A is a Boolean algebra, we can apply the Ultrafilter Theorem obtaining that G is an intersection of ultrafilters. Since $a \notin G$, this means that there exists an ultrafilter G^+ such that $G \subseteq G^+$ and $a \notin G^+$. From $G \subseteq G^+$ and the definition of G it follows that $\Box^A b \in F$ implies $b \in G^+$, for every $b \in A$. By the definition of R_A this amounts to FR_AG^+ . Hence, we obtained an ultrafilter G^+ such that FR_AG^+ and $a \notin G^+$ as desired.

At this stage, it should not come as a surprise that in the finite case the map ε in the above theorem is surjective and, therefore, an isomorphism.

Corollary 2.43. *Up to isomorphism, the finite modal algebras are precisely the complex algebras* $\langle \mathcal{P}(\mathbb{X}); \cap, \cup, \rightarrow, \square, \emptyset, X \rangle$ *where* \mathbb{X} *is a finite Kripke frame.*

Intuitionistic and modal logics

3.1 Propositional logics

In the context of logic, the term algebra $T_{\rho}(Var)$ is often called the *algebra of formulas* (of type ρ) and its elements are referred to as *formulas*. An *endomorphism* of an algebra A is a homomorphism whose domain and codomain is A. Endomorphisms of the algebra of formulas play a fundamental role in logic.

Definition 3.1. A *substitution* of type ρ is an endomorphism σ of $T_{\rho}(Var)$.

When the type ρ is clear from the context, we will simply say that σ is a substitution.

In view of the fact that $T_{\rho}(Var)$ is freely generated by Var, every function $\sigma \colon Var \to T_{\rho}(Var)$ can be uniquely extended to a substitution σ^+ of type ρ , namely the function defined by the rule

$$\varphi(x_1,\ldots,x_n)\longmapsto \varphi(\sigma(x_1),\ldots,\sigma(x_n)).$$

Because of this, substitutions can be presented by exhibiting functions σ : $Var \to T_{\rho}(Var)$.

Definition 3.2. A *logic* of type ρ is a consequence relation \vdash on the set of formulas $T_{\rho}(Var)$ that, moreover, is *substitution invariant* in the sense that for every substitution σ of type ρ and every set of formulas $\Gamma \cup \{\phi\} \subseteq T_{\rho}(Var)$,

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$.

Furthermore, we will assume that logics are *finitary* in the sense that for all $\Gamma \cup \{\varphi\} \subseteq T_{\rho}(Var)$,

if
$$\Gamma \vdash \varphi$$
, then there exists $\Gamma' \subseteq \Gamma$ s.t. $\Gamma' \vdash \varphi$.

Remark 3.3. As mentioned above, $\Gamma \vdash \varphi$ should be read as " Γ proves φ " or " φ follows from Γ ". The requirement that \vdash is substitution invariant, instead, is intended to capture the idea that logical inferences are true only in virtue of their form (as opposed to their content).

Example 3.4 (Hilbert calculi). We work within a fixed, but arbitrary, type ρ . A *rule* is an expression of the form $\Gamma \rhd \varphi$, where $\Gamma \cup \{\varphi\} \subseteq T_{\rho}(Var)$ is a finite set. In this case, Γ is said to be the set of *premises* of the rule and φ the *conclusion*. When $\Gamma = \emptyset$, the rule $\Gamma \rhd \varphi$ is sometimes called an *axiom*. A rule $\Gamma \rhd \varphi$ is said to be *valid* in a logic \vdash , when $\Gamma \vdash \varphi$. A *Hilbert calculus* is a set of rules.

Every Hilbert calculus H induces a logic, as we proceed to explain. Consider a set of formulas $\Gamma \cup \{\varphi\} \subseteq T_{\rho}(Var)$. A proof of φ from Γ in H is a finite sequence $\langle \psi_n : n \leq m \rangle$ of formulas $\psi_n \in T_{\rho}(Var)$ whose last element ψ_m is φ and such that, for every $n \leq m$, either $\psi_n \in \Gamma$ or there exist a substitution σ and a rule $\Delta \rhd \delta$ in H such that the formulas in $\sigma[\Delta]$ occur in the initial segment $\langle \psi_k : k < n \rangle$ and $\psi_n = \sigma(\delta)$.

The logic \vdash_{H} induced by H is defined, for every $\Gamma \cup \{\varphi\} \subseteq T_{\varrho}(Var)$, as

$$\Gamma \vdash_{\mathsf{H}} \varphi \iff$$
 there exists a proof of φ from Γ in H .

As expected, \vdash_H is a logic in the sense of Definition 3.2. Furthermore, it is the least logic \vdash such that $\Gamma \vdash \varphi$, for every rule $\Gamma \rhd \varphi$ in H.

A logic \vdash is said to be *axiomatized* by a Hilbert calculus H when it coincides with \vdash_H . Notice that every logic \vdash is vacuously axiomatized by the Hilbert calculus

$$\{\Gamma \rhd \varphi : \Gamma \vdash \varphi\}.$$

Because of this, axiomatizations in terms of Hilbert calculi H acquire special interest when H is finite or, at least, recursive.

When no confusion shall arise, given a sequence \vec{a} and a set A, we write $\vec{a} \in A$ to indicate that the elements of the sequence \vec{a} belong to A. The following concept is instrumental to exhibit further examples of logics.

Definition 3.5. Let K be a class of similar algebras We define a binary relation $\vDash_{\mathsf{K}} \subseteq \mathcal{P}(E_{\varrho}(Var)) \times E_{\varrho}(Var)$ as follows:

$$\Theta \vDash_{\mathsf{K}} \varepsilon \approx \delta \iff \text{for every } A \in \mathsf{K} \text{ and every } \vec{a} \in A,$$

$$\text{if } \varphi^A(\vec{a}) = \psi^A(\vec{a}) \text{ for all } \varphi \approx \psi \in \Theta, \text{ then } \varepsilon^A(\vec{a}) = \delta^A(\vec{a}).$$

The relation \vDash_{K} is known as the equational consequence relative to K .

Example 3.6 (Equationally defined logics). We work within a fixed, but arbitrary, type ρ . Given a set of equations $\tau(x)$ in a single variable x and a set of formulas $\Gamma \cup \{\phi\} \subseteq T(Var)$, we abbreviate

$$\{\varepsilon(\varphi) pprox \delta(\varphi) \colon \varepsilon pprox \delta \in \tau\} \text{ as } \tau(\varphi), \text{ and } \bigcup_{\gamma \in \Gamma} \tau(\gamma) \text{ as } \tau[\Gamma].$$

Given a class of algebras K and a set of equations $\tau(x)$, we define a logic $\vdash_{K,\tau}$ as follows: for every $\Gamma \cup \{\varphi\} \subseteq T(Var)$,

$$\Gamma \vdash_{\mathsf{K},\tau} \varphi \Longleftrightarrow \tau[\Gamma] \vDash_{\mathsf{K}} \tau(\varphi).$$

When K is a quasi-variety, it is easy to prove that $\vdash_{K,\tau}$ is indeed a logic in the sense of Definition 3.2. Notice that, in this case, \vdash is related to K by a *completeness theorem* witnessed by the set of equations $\tau(x)$ that allows to translate formulas into equations and, therefore, to interpret $\vdash_{K,\tau}$ into \vDash_K .

For instance, the completeness theorem of classical propositional logic CPC with respect to the class of Boolean algebras BA states precisely that CPC coincides with $\vdash_{\mathsf{BA},\tau}$ where $\tau = \{x \approx 1\}$. Similarly, the completeness theorem of intuitionistic propositional logic IPC with respect to the class of Heyting algebras HA states precisely that IPC coincides with $\vdash_{\mathsf{HA},\tau}$ where $\tau = \{x \approx 1\}$. Because of this, CPC and IPC can be defined as follows: for every set of formulas $\Gamma \cup \{\varphi\}$ of the appropriate type,

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \Longleftrightarrow \tau[\Gamma] \vDash_{\mathsf{BA}} \tau(\varphi)$$

$$\Gamma \vdash_{\mathsf{IPC}} \varphi \Longleftrightarrow \tau[\Gamma] \vDash_{\mathsf{HA}} \tau(\varphi),$$

3.2 Intuitionistic logic

where $\tau = \{x \approx 1\}$.

Motivated by the philosophy of constructivism in mathematics, intuitionistic logic identifies the principles of constructive reasoning. In this section we review its algebra-based and Kripke semantics. To this end, let ρ_I be the type of Heyting algebras.

Definition 3.7. Intuitionistic propositional logic IPC is the logic of type ρ_I axiomatized by the following Hilbert calculus, denoted by H:

Remark 3.8. Since the set of premises of every rule in H is finite, for every $\Gamma \cup \{\phi\} \subseteq T(Var)$, we have

$$\Gamma \vdash_{\mathsf{IPC}} \varphi \iff \mathsf{there} \ \mathsf{exists} \ \mathsf{a} \ \mathsf{finite} \ \mathsf{proof} \ \mathsf{of} \ \varphi \ \mathsf{from} \ \Gamma \ \mathsf{in} \ \mathsf{H}.$$

Definition 3.9. We denote by HA the variety of Heyting algebras.

We recall that IPC and HA are related as follows:

Theorem 3.10. *Let* $\tau = \{x \approx 1\}$ *. For every* $\Gamma \cup \{\phi\} \subseteq T(Var)$ *, we have*

$$\Gamma \vdash_{\mathsf{IPC}} \varphi \Longleftrightarrow \tau[\Gamma] \vDash_{\mathsf{HA}} \tau(\varphi).$$

Consequently, the logics IPC *and* $\vdash_{HA,\tau}$ *coincide.*

Intuitionistic propositional logic admits also a Kripke semantics, as we proceed to explain. A *valuation* in a poset \mathbb{X} is a function $v \colon Var \to \mathsf{Up}(\mathbb{X})$. Given a valuation v on a poset \mathbb{X} , we define a notion of *validity* of a formula $\varphi \in T(Var)$ at a point $w \in X$ under v, in symbols $w, v \Vdash \varphi$, by recursion on the construction of φ as follows. For variables $x \in Var$ we set

$$w,v \Vdash x \iff w \in v(x)$$
, for $x \in Var$

and for constant symbols

$$w,v \Vdash 1$$
 and $w,v \not\Vdash 0$.

For complex formulas we set

$$w, v \Vdash \alpha \land \beta \iff w, v \Vdash \alpha \text{ and } w, v \Vdash \beta$$
 $w, v \Vdash \alpha \lor \beta \iff w, v \Vdash \alpha \text{ or } w, v \Vdash \beta$
 $w, v \Vdash \alpha \to \beta \iff \text{ for every } u \in X \text{ such that } w \leqslant u, \text{ if } u, v \Vdash \alpha, \text{ then } u, v \Vdash \beta.$

Given a set of formulas Γ , we write $w, v \Vdash \Gamma$ to indicate that $w, v \Vdash \gamma$, for every $\gamma \in \Gamma$.

We define two logics $\vdash_{\mathsf{Pos}}^{\ell}$ and $\vdash_{\mathsf{Pos}}^{\mathsf{g}}$ associated with the class of all posets as follows: for every $\Gamma \cup \{\varphi\} \subseteq T(Var)$,

$$\Gamma \vdash^{\ell}_{\mathsf{Pos}} \varphi \Longleftrightarrow \text{for every poset } \mathbb{X}, \text{ every valuation } v \text{ in } \mathbb{X}, \text{ and every } w \in X,$$

$$\text{if } w, v \Vdash \Gamma, \text{ then } w, v \Vdash \varphi; \text{ and}$$

$$\Gamma \vdash^{g}_{\mathsf{Pos}} \varphi \Longleftrightarrow \text{ for every poset } \mathbb{X} \text{ and every valuation } v \text{ in } \mathbb{X},$$

$$\text{if } w, v \Vdash \Gamma \text{ for every } w \in X, \text{ then } w, v \Vdash \varphi \text{ for every } w \in X.$$

The logics \vdash_{Pos}^{ℓ} and \vdash_{Pos}^{g} are known, respectively, as the *local* and the *global consequence* relations associated with the class of posets.

Theorem 3.11. *For every set of formulas* $\Gamma \cup \{\varphi\} \subseteq T(Var)$ *,*

$$\Gamma \vdash_{\mathsf{IPC}} \varphi \Longleftrightarrow \Gamma \vdash^{\ell}_{\mathsf{Pos}} \varphi \Longleftrightarrow \Gamma \vdash^{g}_{\mathsf{Pos}} \varphi.$$

Proof. As usual, the nontrivial part of the proof consists in showing that if $\Gamma \nvdash_{\mathsf{IPC}} \varphi$, then $\Gamma \nvdash_{\mathsf{Pos}}^{\ell} \varphi$ and $\Gamma \nvdash_{\mathsf{Pos}}^{g} \varphi$. From the definition of $\vdash_{\mathsf{Pos}}^{\ell}$ and $\vdash_{\mathsf{Pos}}^{g}$ it follows immediately that $\Gamma \nvdash_{\mathsf{Pos}}^{g} \varphi$ implies $\Gamma \nvdash_{\mathsf{Pos}}^{\ell} \varphi$. Therefore, it suffices to show that $\Gamma \nvdash_{\mathsf{IPC}} \varphi$ implies $\Gamma \nvdash_{\mathsf{Pos}}^{g} \varphi$.

Accordingly, suppose that $\Gamma \nvdash_{\mathsf{IPC}} \varphi$. By Theorem 3.10 there exist a Heyting algebra A and a homomorphism $f \colon T(\mathit{Var}) \to A$ such that $f[\Gamma] \subseteq \{1\}$ and $f(\varphi) \neq 1$. Let $\mathbb{X} \coloneqq \langle \mathsf{Pf}(A); \subseteq \rangle$ and recall from the representation theorem for Heyting algebras that the map $\varepsilon \colon A \to \mathsf{Up}(\mathbb{X})$ defined by the rule

$$\varepsilon(a) := \{ F \in \mathbb{X} : a \in F \}$$

is an embedding between Heyting algebras. Therefore, the composition $\varepsilon \circ f \colon T(Var) \to Up(\mathbb{X})$ is a homomorphism between Heyting algebras.

Since $f[\Gamma] \subseteq \{1\}$ by assumption, for each $\gamma \in \Gamma$ we have

$$\varepsilon(f(\gamma)) = \varepsilon(1) = X.$$
 (3.1)

On the other hand, since $f(\varphi) \neq 1$ and $\varepsilon \colon A \to \mathsf{Up}(\mathbb{X})$ is an embedding, we have

$$\varepsilon(f(\varphi)) \neq X.$$
 (3.2)

Now, consider the poset X and the valuation $v: Var \to Up(X)$ defined by the rule

$$v(x) := \varepsilon(f(x)).$$

We claim that, for every formula $\psi \in T(Var)$,

$$\varepsilon(f(\psi)) = \{ F \in \mathbb{X} : F, v \Vdash \psi \}.$$

The proof proceeds by induction on the construction of ψ . For variables $x \in Var$ and the constant symbols 0 and 1 we have

$$\varepsilon(f(x)) = v(x) = \{ F \in \mathbb{X} : F, v \Vdash x \}$$

$$\varepsilon(f(0)) = \varepsilon(0^A) = \emptyset = \{ F \in \mathbb{X} : F, v \Vdash 0 \}$$

$$\varepsilon(f(1)) = \varepsilon(1^A) = \mathbb{X} = \{ F \in \mathbb{X} : F, v \Vdash 1 \}.$$

Then we turn to the induction step. We have three cases:

- (i) $\psi = \psi_1 \wedge \psi_2$;
- (ii) $\psi = \psi_1 \vee \psi_2$;
- (iii) $\psi = \psi_1 \rightarrow \psi_2$.
- (i): In this case, we have

$$\begin{split} \varepsilon(f(\psi_1 \wedge \psi_2)) &= \varepsilon(f(\psi_1)) \cap \varepsilon(f(\psi_2)) \\ &= \{ F \in \mathbb{X} : F, v \Vdash \psi_1 \} \cap \{ F \in \mathbb{X} : F, v \Vdash \psi_2 \} \\ &= \{ F \in \mathbb{X} : F, v \Vdash \psi_1 \text{ and } F, v \Vdash \psi_2 \} \\ &= \{ F \in \mathbb{X} : F, v \Vdash \psi_1 \wedge \psi_2 \}. \end{split}$$

The first equality above follows from the fact that $\varepsilon \circ f \colon T(Var) \to \mathsf{Up}(\mathbb{X})$ is a homomorphism, the second from the inductive hypothesis, the third is straightforward, while the last one is a consequence of the definition of \Vdash .

(ii): Analogous to case (i).

(iii): In this case, we have

```
\begin{split} & \varepsilon(f(\psi_1 \to \psi_2)) \\ &= X \smallsetminus \downarrow (\varepsilon(f(\psi_1)) \smallsetminus \varepsilon(f(\psi_2))) \\ &= \{F \in \mathbb{X} : \text{for all } G \in \mathbb{X} \text{ such that } F \subseteq G, \text{ if } G \in \varepsilon(f(\psi_1)), \text{ then } G \in \varepsilon(f(\psi_2))\} \\ &= \{F \in \mathbb{X} : \text{for all } G \in \mathbb{X} \text{ such that } F \subseteq G, \text{ if } G, v \Vdash \psi_1, \text{ then } G, v \Vdash \psi_2\} \\ &= \{F \in \mathbb{X} : F, v \Vdash \psi_1 \to \psi_2\}. \end{split}
```

Again, the first equality above follows from the fact that $\varepsilon \circ f \colon T(Var) \to \mathsf{Up}(\mathbb{X})$ is a homomorphism, the second is straightforward, the third from the inductive hypothesis, and the last one is a consequence of the definition of \Vdash . This concludes the proof of the claim.

By applying the claim to conditions (3.1) and (3.2), we obtain that

$$F, v \Vdash \Gamma$$
, for all $F \in \mathbb{X}$, but there exists $F \in \mathbb{X}$ such that $F, v \nvDash \varphi$.

 \boxtimes

Hence, we conclude that $\Gamma \nvdash_{\mathsf{Pos}}^{g} \varphi$, as desired.

3.3 Modal logic

Let ρ_M be the type of modal algebras.

Definition 3.12. Let K be the least subset Σ of $T_{\rho_M}(Var)$ such that:

- (i) Σ contains the tautologies of CPC;
- (ii) Σ contains $\square(x \to y) \to (\square x \to \square y)$;
- (iii) Σ is closed under substitutions: $\sigma(\varphi) \in \Sigma$, for every substitution σ and $\varphi \in \Sigma$;
- (iv) Σ is closed under modus ponens: $\psi \in \Sigma$, for every $\varphi, \varphi \to \psi \in \Sigma$;
- (v) Σ is closed under necessitation: $\square \varphi \in \Sigma$, for every $\varphi \in \Sigma$.

The set K is sometimes called the *least normal modal logic*.

Notice that, strictly speaking, K is not a logic, because it is a set of formulas, as opposed to a consequence relation. However, it is possible to associate two logics with K, as we proceed to explain.

Definition 3.13. Let K_{ℓ} and K_{g} be the logics of type ρ_{M} defined as follows:

(i) The *local consequence* K_{ℓ} of K is the logic axiomatized by the Hilbert calculus

$$\emptyset \rhd \varphi$$
, for all $\varphi \in \mathsf{K}$ $x, x \to y \rhd y$.

(ii) The *global consequence* K_g of K is the logic axiomatized by the Hilbert calculus

$$\emptyset \rhd \varphi$$
, for all $\varphi \in \mathsf{K}$ $x, x \to y \rhd y$ $x \rhd \Box x$.

The rule $x \triangleright \Box x$ is sometimes called the *necessitation rule*.

We recall that MA and K_g are related as follows:

Theorem 3.14. *Let* $\tau = \{x \approx 1\}$ *. For every* $\Gamma \cup \{\phi\} \subseteq T(Var)$ *, we have*

$$\Gamma \vdash_{\mathsf{K}_{\sigma}} \varphi \Longleftrightarrow \tau[\Gamma] \vDash_{\mathsf{MA}} \tau(\varphi).$$

Consequently, the logics K_g and $\vdash_{MA,\tau}$ coincide.

Similarly, MA and K_{ℓ} are related as follows:

Theorem 3.15. *For every* $\Gamma \cup \{\varphi\} \subseteq T(Var)$ *, we have*

$$\Gamma \vdash_{\mathsf{K}_{\ell}} \varphi \iff$$
 for every $A \in \mathsf{MA}$, $a \in A$, and homomorphism $f \colon T(Var) \to A$, if $a \leqslant f(\gamma)$ for each $\gamma \in \Gamma$, then $a \leqslant f(\varphi)$.

As a consequence, we obtain the following:

Corollary 3.16. *The logics* K_{ℓ} *and* K_{g} *are different.*

Proof. Consider the four-element Boolean algebra A with universe $\{a, c, 0, 1\}$. We endow it with a unary operation \square defined as follows:

$$\Box(b) := \begin{cases} 1 & \text{if } b = 1 \\ 0 & \text{otherwise.} \end{cases}$$

The resulting structure B is a modal algebra. Consider any homomorphism $f: T(Var) \rightarrow B$ such that f(x) := a. We have

$$f(\Box x) = \Box^B f(x) = \Box^B a = 0 < a = f(x).$$

By Theorem 3.15 this implies $x \nvDash_{\mathsf{K}_{\ell}} \Box x$. Furthermore, since the Hilbert calculus that axiomatizes K_g contains the necessitation rule, we obtain $x \vdash_{\mathsf{K}_g} \Box x$. Hence, we conclude that the logics K_{ℓ} and K_g are indeed different.

Both the local and global consequences of K admit a Kripke semantics, as we proceed to explain. A *valuation* in a Kripke frame $\mathbb X$ is a function $v\colon Var\to \mathcal P(X)$. Given a valuation v in a Kripke frame $\mathbb X$, we define a notion of *validity* of a formula $\varphi\in T(Var)$ at a point $w\in X$ under v, in symbols $w,v\Vdash \varphi$, by recursion on the construction of φ as follows. For variables $x\in Var$ we set

$$w,v \Vdash x \iff w \in v(x)$$
, for $x \in Var$

and for constant symbols

$$w, v \Vdash 1$$
 and $w, v \nvDash 0$.

For complex formulas we set

$$w, v \Vdash \alpha \land \beta \iff w, v \Vdash \alpha \text{ and } w, v \Vdash \beta$$

$$w, v \Vdash \alpha \lor \beta \iff w, v \Vdash \alpha \text{ or } w, v \Vdash \beta$$

$$w, v \Vdash \neg \alpha \iff w, v \nvDash \alpha$$

$$w, v \Vdash \Box \alpha \iff u, v \Vdash \alpha, \text{ for every } u \in X \text{ such that } \langle w, u \rangle \in R.$$

Given a set of formulas Γ , we write $w, v \Vdash \Gamma$ to indicate that $w, v \Vdash \gamma$, for every $\gamma \in \Gamma$.

We define two logics $\vdash^{\ell}_{\mathsf{Frm}}$ and $\vdash^{\mathsf{g}}_{\mathsf{Frm}}$ associated with the class of all Kripke frames as follows: for every $\Gamma \cup \{\varphi\} \subseteq T(Var)$,

$$\Gamma \vdash^{\ell}_{\mathsf{Frm}} \varphi \iff$$
 for every Kripke frame \mathbb{X} , every valuation v in \mathbb{X} , and every $w \in X$, if $w, v \Vdash \Gamma$, then $w, v \Vdash \varphi$; and

$$\Gamma \vdash^g_{\mathsf{Frm}} \varphi \iff$$
 for every Kripke frame $\mathbb X$ and every valuation v in $\mathbb X$, if $w,v \Vdash \Gamma$ for every $w \in X$, then $w,v \Vdash \varphi$ for every $w \in X$.

The logics $\vdash_{\mathsf{Frm}}^{\ell}$ and $\vdash_{\mathsf{Frm}}^{\mathsf{g}}$ are known, respectively, as the *local* and the *global consequence* relations associated with the class of Kripke frames.

Theorem 3.17. *For every set of formulas* $\Gamma \cup \{\varphi\} \subseteq T(Var)$ *,*

$$\Gamma \vdash_{\mathsf{K}_{\ell}} \varphi \Longleftrightarrow \Gamma \vdash_{\mathsf{Frm}}^{\ell} \varphi \text{ and } \Gamma \vdash_{\mathsf{K}_{g}} \varphi \Longleftrightarrow \Gamma \vdash_{\mathsf{Frm}}^{g} \varphi.$$

Proof. Consider $\Gamma \cup \{\varphi\} \subseteq T(Var)$. We begin by proving that

$$\Gamma \vdash_{\mathsf{K}_{\ell}} \varphi \Longleftrightarrow \Gamma \vdash_{\mathsf{Frm}}^{\ell} \varphi. \tag{3.3}$$

The implication from left to right follows from a standard soundness argument. To prove the other implication, we reason by contraposition. Suppose that $\Gamma \nvdash_{\mathsf{K}_{\ell}} \varphi$. In view of Theorem 3.15, there exist a modal algebra A, a homomorphism $f : T(Var) \to A$, and an element $a \in A$ such that

$$a \leqslant f(\gamma)$$
 for each $\gamma \in \Gamma$ and $a \nleq f(\varphi)$.

Then the filter $\uparrow a$ does not contain $f(\varphi)$. By the Ultrafilter Theorem there exists an ultrafilter F such that $a \in F$ and $f(\varphi) \notin F$. Then let \mathbb{X} be the Kripke frame K(A) and consider the embedding $\varepsilon \colon A \to \mathcal{P}(\mathbb{X})$ given by the representation theorem for modal algebras. We have

$$F \in \varepsilon(f(\gamma))$$
 for each $\gamma \in \Gamma$ and $F \notin \varepsilon(f(\varphi))$. (3.4)

Now, consider the valuation $v: Var \to \mathcal{P}(X)$ is the Kripke frame X defined by the rule

$$v(x) := \{G \in \mathbb{X} : \varepsilon(f(x)) \in G\}.$$

We claim that for every formula $\psi \in T(Var)$,

$$\varepsilon(f(\psi)) = \{G \in \mathbb{X} : G, v \Vdash \psi\}.$$

We reason by induction on the construction of ψ . The base case is handled as in the case of IPC and the same applies to the inductive cases for the connectives \wedge and \vee . Therefore, it only remains to consider the following cases:

- (i) $\psi = \neg \alpha$;
- (ii) $\psi = \Box \alpha$.
- (i): We have

$$\varepsilon(f(\neg \alpha)) = \neg^{\mathcal{P}(\mathbb{X})} \varepsilon(f(\alpha))
= \mathbb{X} - \varepsilon(f(\alpha))
= \{G \in \mathbb{X} : G, v \not\vdash \alpha\}
= \{G \in \mathbb{X} : G, v \vdash \neg \alpha\}.$$

The above equalities can be justified as follows. The first follows holds because $\varepsilon \circ f \colon T(Var) \to \mathcal{P}(\mathbb{X})$ is a homomorphism, the second follows from the definition of \neg in $\mathcal{P}(\mathbb{X})$, the third from the inductive hypothesis, and the last one from the definition of \Vdash .

(ii): In this case, we have

$$\varepsilon(f(\square \alpha)) = \square^{\mathcal{P}(\mathbb{X})} \varepsilon(f(\alpha))$$

$$= \{G \in \mathbb{X} : \text{for all } H \in \mathbb{X}, \text{ if } \langle G, H \rangle \in R_A, \text{ then } H \in \varepsilon(f(\alpha))\}$$

$$= \{G \in \mathbb{X} : \text{for all } H \in \mathbb{X}, \text{ if } \langle G, H \rangle \in R_A, \text{ then } H, v \Vdash \alpha\}$$

$$= \{G \in \mathbb{X} : G, v \Vdash \square \alpha\}.$$

The above equalities can be justified as follows. The first follows holds because $\varepsilon \circ f \colon T(Var) \to \mathcal{P}(\mathbb{X})$ is a homomorphism, the second follows from the definition of \square in $\mathcal{P}(\mathbb{X})$, the third from the inductive hypothesis, and the last one from the definition of \square . This concludes the proof of the claim.

From the claim and (3.4) it follows that

$$F, v \Vdash \Gamma$$
 and $F, v \not\Vdash \varphi$.

Hence, we conclude that $\Gamma \nvDash_{\mathsf{Frm}}^{\ell} \varphi$, as desired. This establishes (3.3).

The proof of the equivalence

$$\Gamma \vdash_{\mathsf{K}_{g}} \varphi \Longleftrightarrow \Gamma \vdash_{\mathsf{Frm}}^{g} \varphi \tag{3.5}$$

is analogous. Accordingly, we shall sketch only the proof of the implication from right to left. As usual, we reason by contraposition. Suppose that $\Gamma \nvdash_{\mathsf{K}_g} \varphi$. By Theorem 3.14 there exist a modal algebra A and a homomorphism $f \colon T(Var) \to A$ such that

$$f(\gamma) = 1$$
 for each $\gamma \in \Gamma$ and $f(\varphi) \neq 1$.

By the Ultrafilter Theorem, this implies that

$$\varepsilon(f(\gamma))=\mathbb{X}$$
 for each $\gamma\in \Gamma$ and $\varepsilon(f(\varphi))\neq \mathbb{X}$.

Then we consider the valuation v in \mathbb{X} defined in the previous case. From the claim and the above display it follows that

 $F, v \Vdash \Gamma$ for each $\gamma \in \Gamma$ and $F \in X$, and there exists $F \in X$ such that $F, v \not \Vdash \varphi$.

Hence, we conclude that $\Gamma \nvdash_{\mathsf{Frm}}^{g} \varphi$.

Universal algebra

4.1 Ultraproducts

In order to understand the relation between logic and algebra, we need to take a detour in universal algebra and the theory of quasi-varieties. We begin by reviewing a product-like construction known as *ultraproduct*. First, recall that ultrafilters on powerset Boolean algebras $\mathcal{P}(X)$ are also called *ultrafilters on X*. Then let $\{A_i: i \in I\}$ be a family of similar algebras. The *equalizer* $[\vec{a} = \vec{c}]$ of a pair of elements $\vec{a}, \vec{c} \in \prod_{i \in I} A_i$ is the set of indexes on which the sequences \vec{a} and \vec{c} agree, that is,

$$[\![\vec{a}=\vec{c}\,]\!] \coloneqq \{i \in I : \vec{a}(i) = \vec{c}(i)\}.$$

Moreover, given an ultrafilter U on the index set I, let θ_U be the binary relation on the Cartesian product $\prod_{i \in I} A_i$ defined as

$$\theta_U := \{\langle \vec{a}, \vec{c} \rangle : [\![\vec{a} = \vec{c}]\!] \in U\}.$$

Proposition 4.1. *If* $\{A_i : i \in I\}$ *is a family of similar algebras and U an ultrafilter on I, then* θ_U *is a congruence of* $\prod_{i \in I} A_i$.

Proof. We begin by proving that θ_U is an equivalence relation on $\prod_{i \in I} A_i$. To this end, consider $\vec{a}, \vec{b}, \vec{c} \in \prod_{i \in I} A_i$. We have

$$[\![\vec{a} = \vec{a}]\!] = \{i \in I : \vec{a}(i) = \vec{a}(i)\} = I.$$

Observe that $I \in \mathcal{U}$, since U is a nonempty upset of $\mathcal{P}(I)$. Together with the above display, this yields $[\![\vec{a} = \vec{a}]\!] \in \mathcal{U}$ and, therefore, $\langle \vec{a}, \vec{a} \rangle \in \theta_U$. It follows that θ_U is reflexive. To prove that it is symmetric, suppose that $\langle \vec{a}, \vec{c} \rangle \in \theta_U$. Then $[\![\vec{a} = \vec{c}]\!] \in \mathcal{U}$. Since $[\![\vec{a} = \vec{c}]\!] = [\![\vec{c} = \vec{a}]\!]$, this implies $[\![\vec{c} = \vec{a}]\!] \in \mathcal{U}$ and, therefore, $\langle \vec{c}, \vec{a} \rangle \in \theta_U$. Lastly, to prove that θ_U is transitive, suppose that $\langle \vec{a}, \vec{b} \rangle, \langle \vec{b}, \vec{c} \rangle \in \theta_U$, that is, $[\![\vec{a} = \vec{b}]\!], [\![\vec{b} = \vec{c}]\!] \in \mathcal{U}$. Since U is closed under binary meets,

$$[\vec{a} = \vec{b}] \cap [\vec{b} = \vec{c}] \in U$$

Clearly, $[\![\vec{a} = \vec{b}]\!] \cap [\![\vec{b} = \vec{c}]\!] \subseteq [\![\vec{a} = \vec{c}]\!]$. Since U is an upset of $\mathcal{P}(I)$, we obtain that $[\![\vec{a} = \vec{c}]\!] \in U$, whence $\langle \vec{a}, \vec{c} \rangle \in \theta_U$. We conclude that θ_U is an equivalence relation.

To prove that θ_U is a congruence, it only remains to show that it preserves the basic operations. Accordingly, let f be a basic n-ary operation and $\vec{a}_1, \ldots, \vec{a}_n, \vec{c}_1, \ldots, \vec{c}_n \in \prod_{i \in I} A_i$ such that

$$\langle \vec{a}_1, \vec{c}_1 \rangle, \ldots, \langle \vec{a}_n, \vec{c}_n \rangle \in \theta_U.$$

By definition of θ_U , this amounts to $[\![\vec{a}_1 = \vec{c}_1]\!], \dots, [\![\vec{a}_n = \vec{c}_n]\!] \in U$. Since U is a filter, it is closed under finite meets, whence

$$[\vec{a}_1 = \vec{c}_1] \cap \cdots \cap [\vec{a}_n = \vec{c}_n] \in U.$$
 (4.1)

We will show that

$$[\![\vec{a}_1 = \vec{c}_1]\!] \cap \dots \cap [\![\vec{a}_n = \vec{c}_n]\!] \subseteq [\![f^{\prod_{i \in I} A_i}(\vec{a}_1, \dots, \vec{a}_n) = f^{\prod_{i \in I} A_i}(\vec{c}_1, \dots, \vec{c}_n)]\!]. \tag{4.2}$$

To this end, consider $j \in [\![\vec{a}_1 = \vec{c}_1]\!] \cap \cdots \cap [\![\vec{a}_n = \vec{c}_n]\!]$. We have

$$\vec{a}_1(j) = \vec{c}_1(j), \dots, \vec{a}_n(j) = \vec{c}_n(j).$$

Consequently,

$$f^{\prod_{i \in I} A_i}(\vec{a}_1, \dots, \vec{a}_n)(j) = f^{A_j}(\vec{a}_1(j), \dots, \vec{a}_n(j))$$

= $f^{A_j}(\vec{c}_1(j), \dots, \vec{c}_n(j))$
= $f^{\prod_{i \in I} A_i}(\vec{c}_1, \dots, \vec{c}_n)(j),$

that is, $j \in [f^{\prod_{i \in I} A_i}(\vec{a}_1, \dots, \vec{a}_n) = f^{\prod_{i \in I} A_i}(\vec{c}_1, \dots, \vec{c}_n)]$. This establishes (4.2). Since U is an upset of $\mathcal{P}(I)$, from (4.1) and (4.2) it follows

$$[\![f^{\prod_{i\in I} A_i}(\vec{a}_1,\ldots,\vec{a}_n) = f^{\prod_{i\in I} A_i}(\vec{c}_1,\ldots,\vec{c}_n)]\!] \in U.$$

Hence, we conclude that $\langle f^{\prod_{i\in I} A_i}(\vec{a}_1,\ldots,\vec{a}_n), f^{\prod_{i\in I} A_i}(\vec{c}_1,\ldots,\vec{c}_n)\rangle \in \theta_U$, as desired.

In view of the above result, we can make the following definition.

Definition 4.2. An *ultraproduct* of a family of similar algebras $\{A_i : i \in I\}$ is an algebra of the form $\prod_{i \in I} A_i / \theta_U$, for some ultrafilter U on I.

Given a class of similar algebras K, we set

 $\mathbb{I}(\mathsf{K}) \coloneqq \{A : A \text{ is isomorphic to some member of } \mathsf{K}\}$

 $\mathbb{S}(\mathsf{K}) \coloneqq \{A : A \text{ is a subalgebra of some member of } \mathsf{K}\}\$

 $\mathbb{P}_{U}(\mathsf{K}) \coloneqq \{A : A \text{ is an ultraproduct of a family } \{B_i : i \in I\} \subseteq \mathsf{K}\}.$

The importance of ultraproducts is largely due to the following result.

Łoś' Theorem 4.3. Let $\{A_i : i \in I\}$ be a family of similar algebras, U an ultrafilter on I and $\phi(x_1, \ldots, x_n)$ a first order formula. For every $\vec{a}_1, \ldots, \vec{a}_n \in \prod_{i \in I} A_i$,

$$\prod_{i\in I} A_i/\theta_U \vDash \phi(\vec{a}_1/\theta_U,\ldots,\vec{a}_n/\theta_U) \Longleftrightarrow \{i\in I: A_i \vDash \phi(\vec{a}_1(i),\ldots,\vec{a}_n(i))\} \in U.$$

Corollary 4.4. Let $\{A_i : i \in I\}$ be a family of similar algebras, U an ultrafilter on I and ϕ a sentence. If ϕ is valid in all the A_i , then it is valid in $\prod_{i \in I} A_i / \theta_U$.

In view Łos' Theorem, ultraproducts are instrumental to construct nonstandard models of first order theories. For instance, let $\mathbb{N} = \langle \mathbb{N}; s, +, \cdot, 0 \rangle$ be the standard model of Peano Arithmetic. If U is an ultrafilter on \mathbb{N} , the ultraproduct $\prod_{n \in \mathbb{N}} \mathbb{N}_n / U$ is *elementarily equivalent* to \mathbb{N} , that is, it satisfies the same sentences as \mathbb{N} . On the other hand, it is not hard to see that if U is free (i.e., nonprincipal), $\prod_{n \in \mathbb{N}} \mathbb{N}_n / U$ is uncountable and, therefore, contains many "infinite" (or nonstandard) natural numbers.

For the present purpose, however, we will not need the full strength of Łoś' Theorem and, therefore, we shall omit its proof. Instead, we shall focus on a particular embedding theorem for ultraproducts that depends on the following notion.

Definition 4.5. A *local subgraph* of an algebra $A = \langle A; \{g_i : i \in I\} \rangle$ is a pair $\mathbb{X} = \langle X; \{g_i |_X : i \in I\} \rangle$ where X is finite subset of A, J is a finite subset of I, and for each $i \in J$ we have that $g_i |_X$ is the partial function obtained by restricting g_i to X.

In this case, X is a finite *partial* algebra of finite type (even when the type of A is infinite). Let A and B be similar algebras and X a local subgraph of A. A map $f: X \to B$ is said to be an *embedding* of X into B if it is injective and, for every basic n-ary operation g of the type of X and $a_1, \ldots, a_n \in X$ such that $g^A(a_1, \ldots, a_n) \in X$,

$$f(g^{\mathbf{A}}(a_1,\ldots,a_n)) = g^{\mathbf{B}}(f(a_1),\ldots,f(a_n)).$$

Theorem 4.6. Let $K \cup \{A\}$ be a class of similar algebras. If every local subgraph of A can be embedded into some member of K, then $A \in \mathbb{ISP}_U(K)$.

Proof. Let I be the set of local subgraphs of A. By assumption, for every $X \in I$ there are an algebra $B_X \in K$ and an embedding $h_X \colon X \to B_X$. We define a partial order \sqsubseteq on I as follows:

$$\mathbb{X} \subseteq \mathbb{Y} \iff X \subseteq Y$$
 and the type of \mathbb{Y} extends that of \mathbb{X} .

Then, for every $X \in I$, define

$$J_{\mathbb{X}} := \{ \mathbb{Y} \in I \colon \mathbb{X} \sqsubseteq \mathbb{Y} \}.$$

Moreover, let \mathcal{F} be the filter of $\mathcal{P}(I)$ generated by $\{J_X : X \in I\}$. Recall that

$$\mathcal{F} = \{ Y \subseteq I : J_{\mathbb{X}_1} \cap \cdots \cap J_{\mathbb{X}_n} \subseteq Y, \text{ for some } \mathbb{X}_1, \ldots, \mathbb{X}_n \in I \}.$$

We will prove that \mathcal{F} is proper. To this end, consider $\mathbb{X}_1, \ldots, \mathbb{X}_n \in I$. Then let \mathbb{Y} be the local subgraph of A with universe $Y := X_1 \cup \cdots \cup X_n$ and whose type in the union of the types of the various \mathbb{X}_i . Then

$$X_i \subseteq Y$$
, for every $i \leq n$,

that is, $\mathbb{Y} \in J_{\mathbb{X}_1} \cap \cdots \cap J_{\mathbb{X}_n}$. It follows that $\emptyset \notin \mathcal{F}$ and, therefore, that \mathcal{F} is proper. As \mathcal{F} is a proper filter, by the Ultrafilter Theorem it can be extended to an ultrafilter U on I.

Now, consider a map

$$f\colon A\to\prod_{\mathbb{X}\in I}B_{\mathbb{X}}$$

such that $f(a)(X) = h_X(a)$, for every $a \in A$ and $X \in I$ such that $a \in X$. Moreover, let

$$f^* \colon A \to \prod_{X \in I} B_X / \theta_U$$

be the map defined by the rule

$$f^*(a) := f(a)/\theta_U$$
.

We will show f^* is an embedding of A into $\prod_{X \in I} B_X / \theta_U$.

In order to prove that f^* is injective, consider a pair of distinct elements $a, c \in A$. Consider a local subgraph \mathbb{Y} of A containing a and c. We will show that

$$J_{\mathbb{Y}} \subseteq \{ \mathbb{X} \in I : f(a)(\mathbb{X}) \neq f(c)(\mathbb{X}) \}$$

$$\tag{4.3}$$

Consider $X \in J_Y$. Then $Y \sqsubseteq X$ and, therefore, $a, c \in Y \subseteq X$. Since $a, c \in X$, we have

$$f(a)(X) = h_X(a)$$
 and $f(c)(X) = h_X(c)$.

Furthermore, $h_X(a) \neq h_X(c)$, because h_X is injective and $a \neq c$. This yields $f(a)(X) \neq f(c)(X)$, establishing (4.3).

Recall that the definition of U guarantees that $J_{\mathbb{Y}} \in \mathcal{F} \subseteq U$. Therefore, since U is an upset of $\mathcal{P}(I)$, we can apply (4.3) obtaining

$$I \setminus \llbracket f(a) = f(c) \rrbracket = \{ \mathbb{X} \in I : f(a)(\mathbb{X}) \neq f(c)(\mathbb{X}) \} \in U.$$

Since *U* is a proper filter, this implies

$$[f(a) = f(c)] \notin U$$

and, therefore,

$$f^*(a) = f(a)/\theta_U \neq f(c)/\theta_U = f^*(c).$$

Hence, we conclude that f^* is injective.

To prove that it is a homomorphism, consider a basic n-ary operation g and $a_1, \ldots, a_n \in A$. Then consider a local subgraph $\mathbb Y$ of A whose universe contains $a_1, \ldots, a_n, g^A(a_1, \ldots, a_n)$ and whose type contains g. We will prove that

$$J_{\mathbb{Y}} \subseteq [\![f(g^{\mathbf{A}}(a_1,\ldots,a_n)) = g^{\prod_{\mathbf{X}\in I} \mathbf{B}_{\mathbb{X}}}(f(a_1),\ldots,f(a_n))]\!].$$
 (4.4)

Consider $\mathbb{V} \in J_{\mathbb{Y}}$. Since $\mathbb{Y} \subseteq \mathbb{V}$, the type of \mathbb{V} contains g and $a_1, \ldots, a_n, g^A(a_1, \ldots, a_n) \in V$. Since $a_1, \ldots, a_n, g^A(a_1, \ldots, a_n) \in V$, we have

$$f(a_1)(\mathbb{V}) = h_{\mathbb{V}}(a_1)$$

$$\vdots$$

$$f(a_n)(\mathbb{V}) = h_{\mathbb{V}}(a_n)$$

$$f(g^A(a_1, \dots, a_n))(\mathbb{V}) = h_{\mathbb{V}}(g^A(a_1, \dots, a_n)).$$

Furthermore, as the type of \mathbb{V} contains g,

$$h_{\mathbb{V}}(g^{\mathbf{A}}(a_1,\ldots,a_n))=g^{\mathbf{B}_{\mathbb{V}}}(h_{\mathbb{V}}(a_1),\ldots,h_{\mathbb{V}}(a_n)).$$

From the above displays it follows

$$f(g^{A}(a_{1},...,a_{n}))(\mathbb{V}) = g^{B_{\mathbb{V}}}(f(a_{1})(\mathbb{V}),...,f(a_{n})(\mathbb{V})) = g^{\prod_{X \in I} B_{X}}(f(a_{1}),...,f(a_{n}))(\mathbb{V}),$$

that is, $\mathbb{V} \in [\![f(g^A(a_1,\ldots,a_n)) = g^{\prod_{X \in I} B_X}(f(a_1),\ldots,f(a_n))]\!]$. This establishes (4.4). Lastly, as $J_Y \in U$ and U is an upset of $\mathcal{P}(I)$, condition (4.4) implies

$$[f(g^{A}(a_{1},...,a_{n})) = g^{\prod_{X \in I} B_{X}}(f(a_{1}),...,f(a_{n}))] \in U,$$

and, therefore,

$$f^{*}(g^{A}(a_{1},...,a_{n})) = f(g^{A}(a_{1},...,a_{n}))/\theta_{U}$$

$$= g^{\prod_{X \in I} B_{X}}(f(a_{1}),...,f(a_{n}))/\theta_{U}$$

$$= g^{\prod_{X \in I} B_{X}/\theta_{U}}(f(a_{1})/\theta_{U},...,f(a_{n})/\theta_{U})$$

$$= g^{\prod_{X \in I} B_{X}/\theta_{U}}(f^{*}(a_{1}),...,f^{*}(a_{n})).$$

Hence, we conclude that f^* is a homomorphism and, therefore, an embedding of A into $\prod_{Y \in I} B_Y / \theta_U$. As a consequence,

$$A \in \mathbb{ISP}_{U}(\{B_{\mathbb{X}} : \mathbb{X} \in I\}) \subseteq \mathbb{ISP}_{U}(\mathsf{K}).$$

Corollary 4.7. Every algebra embeds into an ultraproduct of its finitely generated subalgebras.

4.2 Universal classes

Definition 4.8. A sentence is said to be *universal* if it is of the form $\forall x_1, \dots, x_n \varphi$ for some quantifier free formula φ . Accordingly, a class of similar algebras is said to be *universal* if it can be axiomatized by a set of universal sentences.

The following concept is instrumental in describing universal classes.

Definition 4.9. Let X be a local subgraph of an algebra A and assume that the universe and the type of X are, respectively, $\{a_1, \ldots, a_n\}$ and f_1, \ldots, f_t .

(i) The *positive atomic diagram* of X is the set of equations

$$\mathcal{D}^+(\mathbb{X}) := \{ f_i(x_{m_1}, \dots, x_{m_k}) \approx x_j : m_1, \dots m_k, j \leqslant n \text{ and } i \leqslant t \text{ and } f_i^A(a_{m_1}, \dots, a_{m_k}) = a_j \}.$$

(ii) The *negative atomic diagram* of X is the set of negated equations

$$\mathcal{D}^{-}(\mathbb{X}) := \{ x_m \not\approx x_k : m, k \leqslant n \}.$$

Theorem 4.10 (Łoś). A class of similar algebras is universal if and only if it is closed under \mathbb{I} , \mathbb{S} and $\mathbb{P}_{\mathbb{I}}$.

Proof. The implication from left to right follows from the easy observation that the validity of universal sentences is preserved by \mathbb{I} , \mathbb{S} , and \mathbb{P}_U . To prove the converse, consider a class K of similar algebras closed under \mathbb{I} , \mathbb{S} , and \mathbb{P}_U . Moreover, let $Th_{\forall}(K)$ be the set of universal sentences valid in K and let K_{\forall} be the class of algebras axiomatized by $Th_{\forall}(K)$. In order to conclude the proof, it suffices to show that $K = K_{\forall}$.

The inclusion $K \subseteq K_{\forall}$ follows immediately from the fact that $K \models Th_{\forall}(K)$. To prove the other inclusion, consider $A \in K_{\forall}$. We will show that every local subgraph of A embeds into an element of K. To this end, consider a local subgraph X of A with universe $\{a_1, \ldots, a_n\}$ and take the sentence

$$\Phi := \exists x_1, \ldots, x_n \Big(\mathcal{X} \mathcal{D}^+(\mathbb{X}) \& \mathcal{X} \mathcal{D}^-(\mathbb{X}) \Big).$$

Suppose that $K \models \neg \Phi$, with a view to contradiction. Since $\neg \Phi$ is equivalent to a universal sentence and $A \models \operatorname{Th}_{\forall}(K)$, we obtain $A \models \neg \Phi$. But this is false, as witnessed by the assignment $x_1 \longmapsto a_1, \ldots, x_n \longmapsto a_n$ in A. Thus, we conclude that $K \nvDash \neg \Phi$. Consequently, there exists an element $B \in K$ such that $B \models \Phi$. Let then b_1, \ldots, b_n be the elements that witness the validity of the existential part of Φ in B. The map $f: X \to B$ defined by the rule $a_i \longmapsto b_i$ is an embedding of X into B, as desired.

Since every local subgraph of A can be embedded into a member of K, we can apply Theorem 4.6 obtaining that $A \in \mathbb{ISP}_U(K)$. As by assumption K is closed under \mathbb{I} , \mathbb{S} , and \mathbb{P}_U , this yields $A \in K$. Hence, we conclude that $K_{\forall} \subseteq K$.

Given a class of similar algebras K, the least universal class extending K exists and will be denoted by $\mathbb{U}(K)$ and called the universal class *generated* by K.

Corollary 4.11. If K is a class of similar algebras, then $\mathbb{U}(K) = \mathbb{ISP}_{\mathbb{U}}(K)$.

Proof. From Theorem 4.10 and the fact that $\mathbb{U}(\mathsf{K})$ is a universal class it follows that it is closed under \mathbb{I}, \mathbb{S} , and \mathbb{P}_{U} , whence $\mathbb{ISP}_{\mathsf{U}}(\mathsf{K}) \subseteq \mathbb{U}(\mathsf{K})$. To prove the reverse inclusion, observe that $\mathbb{U}(\mathsf{K})$ is the class of all algebras satisfying all the universal sentences valid in K . In the proof of Theorem 4.10, we showed that this guarantees the inclusion $\mathbb{U}(\mathsf{K}) \subseteq \mathbb{ISP}_{\mathsf{U}}(\mathsf{K})$. \boxtimes

Corollary 4.12. Let $K \cup \{A\}$ be a class of similar algebras. Then $A \in \mathbb{U}(K)$ iff every local subgraph of A embeds into some member of K.

Proof. The implication from left to right is established in the second part of the proof of Theorem 4.10, while the implication from right to left follows from Theorem 4.6 and Corollary 4.11.

The following provides an algebraic path to the strong finite model property in logic.

Definition 4.13. A class of similar algebras K is said to have the *finite embeddability property* (FEP, for short) if every local subgraph of a member of K can be embedded into a finite member of K.

Given a class of algebras K, we denote by $K^{<\omega}$ the class of its finite members.

Proposition 4.14. A universal class K has the FEP if and only if $K = \mathbb{U}(K^{<\omega})$.

Proof. Suppose first that K has the FEP. Then

$$\mathsf{K} \subseteq \mathbb{ISP}_{\mathsf{U}}(\mathsf{K}^{<\omega}) = \mathbb{U}(\mathsf{K}^{<\omega}).$$

The first inclusion in the above display follows from Theorem 4.6 and the second from Corollary 4.11. Furthermore, since K is a universal class, $\mathbb{U}(K^{<\omega})\subseteq K$. Therefore, we conclude that $K=\mathbb{U}(K^{<\omega})$. To prove the converse, suppose that $K=\mathbb{U}(K^{<\omega})$. By Corollary 4.12, every local subgraph of a member of K can be embedded into some element of $K^{<\omega}$, that is, K has the FEP.

The *universal theory* $Th_{\forall}(K)$ of a class of algebras K is the set of universal sentences valid in K. $Th_{\forall}(K)$ is said to be *decidable* when so is the problem of determining whether a universal sentence is valid in K. Furthermore, we say that a class of algebras is *finitely axiomatizable* if it can be axiomatized by finitely many sentences.

Proposition 4.15. Let K be a finitely axiomatizable class of algebras. If K has the FEP, then $Th_{\forall}(K)$ is decidable.

Proof. In order to prove that $Th_{\forall}(K)$ is decidable it suffices to show that

- (i) the problem of determining whether a universal sentence belongs to $Th_{\forall}(K)$ is semidecidable; and
- (ii) the problem of determining whether a universal sentence does not belong to $Th_{\forall}(K)$ is semidecidable.

Condition (i) holds, because K is finitely axiomatizable. Therefore, it only remains to prove (ii). To this end, let Σ be a finite set of axioms for K and $\{f_1, \ldots, f_n\}$ the function symbols that appear in Σ . Given a universal sentence Φ , we enumerate the finite models $A_1, A_2 \ldots$ of Σ in the type $\{f_1, \ldots, f_n, g_1, \ldots, g_m\}$, where g_1, \ldots, g_m are the function symbols that occur in Φ . This can be done mechanically, because Σ is finite. Our algorithm tests if Φ fails in some A_n . If this is the case, it stops and answers that Φ does not belong to $Th_{\forall}(K)$, otherwise it runs forever.

In order to establish (ii), it suffices to prove that the algorithm stops if and only if $\Phi \notin \operatorname{Th}_{\forall}(\mathsf{K})$. First, it if stops, then Φ fails in some A_n . Let then B be an algebra of the type of K obtained by expanding A_n with an arbitrary interpretation of the missing function symbols. From $A_n \nvDash \Phi$ it follows $B \nvDash \Phi$. Moreover, since $A_n \vDash \Sigma$, we obtain $B \vDash \Sigma$ and, therefore, $B \in K$ (as Σ axiomatizes K). Hence, we conclude that $\Phi \notin \operatorname{Th}_{\forall}(K)$.

To prove the converse, consider a universal sentence $\forall \vec{x} \varphi$ that fails in K. Then there exist $B \in K$ and $b_1, \ldots, b_n \in B$ such that $B \nvDash \varphi(b_1, \ldots, b_n)$. Let X be the local subgraph of B whose universe is

$$\{\psi^{B}(b_1,\ldots,b_n): \psi \text{ is a subterm of a term occurring in } \varphi\}$$

and whose type consists of the function symbols occurring in φ . Since K has the FEP, there is an embedding $f: \mathbb{X} \to C$, for some $C \in \mathsf{K}^{<\omega}$. It follows that $C \nvDash \varphi(f(b_1), \ldots, f(b_n))$. Let C^- be the reduct of C is the language \mathscr{L} consisting of the function symbols occurring in $\Sigma \cup \{\varphi\}$. Clearly, $C^- \nvDash \varphi(f(b_1), \ldots, f(b_n))$ and, therefore, $\forall \vec{x} \varphi$ fails in C^- . As C^- is a

finite model of Σ in the language \mathscr{L} , there must be some $n \in \mathbb{N}$ such that $C^- \cong A_n$. It follows that $\forall \vec{x} \varphi$ fails in A_n , whence the algorithm stops, as desired.

Example 4.16 (Lattices). We will prove that the class Latt of all lattices has the FEP. For consider a lattice A and let X be one of its local subgraphs. Let also

$$B := \{a_1 \wedge^A \cdots \wedge^A a_n : a_1, \dots, a_n \in X \text{ and } n \in \mathbb{N}\}.$$

Since the operation \wedge^A is idempotent, commutative and associative, the set B is finite. furthermore, B can be viewed as a subposet of A. Let B^+ be the poset obtained extending $\langle B; \leqslant \rangle$ with a new top element. Since B^+ is a finite meet semilattice with maximum, it is also a lattice. Furthermore, $\mathbb X$ embeds into B^+ . Hence, Latt has the FEP. By Propositions 4.15 and 4.14, $\operatorname{Th}_{\forall}(\mathsf{Latt})$ is decidable and $\mathsf{Latt} = \mathbb{U}(\mathsf{Latt}^{<\omega})$. On the other hand, the first order theory of distributive lattices (and, therefore, of any nontrivial equational class of lattices) is undecidable.

Example 4.17 (Modal algebras). We will prove that the class MA of modal algebras has the FEP. Let X be a local subgraph of a modal algebra A. Moreover, let B be the Boolean subalgebra of A generated by $X \cup \{ \Box 0 \}$. We consider the algebra algebra B^+ obtained by endowing B with a unary operation \Box defined as follows:

$$\Box^{B^+}b := \bigvee^B \{\Box^A a \in B : \Box^A a \in B \text{ and } a \leqslant b\}.$$

It is not hard to see that B^+ is a modal algebra and that $\mathbb X$ embeds into B^+ via the identity map. Consequently, MA has the FEP, $\operatorname{Th}_{\forall}(\mathsf{MA})$ is decidable, and $\mathsf{MA} = \mathbb{U}(\mathsf{MA}^{<\omega})$. As a consequence, both the logics K_g and K_ℓ are decidable.

4.3 Quasi-varieties

Given a class of similar algebras K, we let

 $\mathbb{P}(\mathsf{K}) := \{A : A \text{ is the direct product of a family of members of } \mathsf{K}\}.$

Definition 4.18. A class of similar algebras closed under \mathbb{I} , \mathbb{S} , \mathbb{P} , and \mathbb{P}_{U} is said to be a *quasi-variety*.

Examples of quasi-varieties include the classes of Boolean, Heyting, and modal algebras, as well as the class of (bounded) distributive lattices and groups. Our aim will be to prove that quasi-varieties are precisely the classes of algebras axiomatized by the following kind of first order formulas.

Definition 4.19. A quasi-equation of type ρ is an expression Φ of the form

$$(\varphi_1 \approx \psi_1 \& \dots \& \varphi_n \approx \psi_n) \Longrightarrow \varepsilon \approx \delta,$$

where $\{\varphi_1 \approx \psi_1, \dots, \varphi_n \approx \psi_n, \varepsilon \approx \delta\}$ is a set of equations of type ρ . Then Φ is *valid* in an algebra A of type ρ when so is its universal closure $\forall \vec{x} \Phi$, that is, for every $\vec{a} \in A$,

if
$$\varphi_1^A(\vec{a}) = \psi_1^A(\vec{a}), \dots, \varphi_n^A(\vec{a}) = \psi_n^A(\vec{a})$$
, then $\varepsilon^A(\vec{a}) = \delta^A(\vec{a})$.

In this case, we often say that *A satisfies* Φ and write $A \models \Phi$. A quasi-equation is said to be an *equation* when its antecedent is empty.

Notably, for every class K of algebras and equations $\varphi_1 \approx \psi_1, \dots, \varphi_n \approx \psi_n, \varepsilon \approx \delta$,

$$\mathsf{K} \vDash (\underbrace{\&}_{i \leqslant n} \varphi_i \approx \psi_i) \Longrightarrow \varepsilon \approx \delta \text{ iff } \{\varphi_1 \approx \psi_1, \ldots, \varphi_n \approx \psi_n\} \vDash_{\mathsf{K}} \varepsilon \approx \delta.$$

Remark 4.20. The reader might have noticed that expressions of the form $\varepsilon \approx \delta$ and $\emptyset \Longrightarrow \varepsilon \approx \delta$ are both called *equations*. This is not a problem, because they are synonyms, in the sense that an algebra satisfies $\varepsilon \approx \delta$ if and only if it satisfies $\emptyset \Longrightarrow \varepsilon \approx \delta$. Because of this, we will continue to denote equations by $\varepsilon \approx \delta$, while keeping in mind that they can be viewed as quasi-equations whose antecedent is empty.

The aim of this section is to prove the following classical result.

Maltsev Theorem 4.21. A class of similar algebras is a quasi-variety if and only if it can be axiomatized by a set of quasi-equations.

Proof. The "only if" part follows from the fact that the validity of quasi-equations is preserved by the class operators \mathbb{I} , \mathbb{S} , \mathbb{P} and \mathbb{P}_U . To prove the converse, consider a quasi-variety K and let Σ the set of quasi-equations valid in K. Let also K⁺ be the class of algebras axiomatized by Σ . Our aim is to prove that K = K⁺.

The inclusion $K \subseteq K^+$ is straightforward. To prove the other one, consider an algebra $A \in K^+$. In view of Theorem 4.6, in order to show that $A \in K$, it suffices to prove that every local subgraph of A embeds in some members of K. This is because, in this case, $A \in \mathbb{ISP}_U(K)$. Since K is closed under \mathbb{I} , \mathbb{S} , and \mathbb{P}_U , this implies $A \in K$, as desired.

Then consider a local subgraph X of A with universe $\{a_1, \ldots, a_n\}$. Observe that both $\mathcal{D}^+(X)$ and $\mathcal{D}^-(X)$ are finite sets. Then take an enumeration

$$\mathcal{D}^{-}(\mathbb{X}) = \{ \varepsilon_1 \not\approx \delta_1, \dots, \varepsilon_t \not\approx \delta_t \}.$$

Moreover, for each $i \leq t$, consider the quasi-equation

$$\Phi_i := \left(\mathcal{E}_{\mathbf{X}} \mathcal{D}^+(\mathbf{X}) \right) \Longrightarrow \varepsilon_i \approx \delta_i.$$

As witnessed by the assignment

$$x_1 \longmapsto a_1, \ldots, x_n \longmapsto a_n$$

the quasi-equations Φ_1, \dots, Φ_t fail in A. Since A satisfies all the quasi-equations valid in K, this implies that each Φ_i fails in some $B_i \in K$ under an assignment

$$a_1 \longmapsto b_1^i, \dots, a_n \longmapsto b_n^i.$$
 (4.5)

Now, consider the map $h: X \to B_1 \times \cdots \times B_t$, defined by the rule

$$a_1 \longmapsto \langle b_1^1, \dots, b_1^t \rangle, \dots, a_n \longmapsto \langle b_n^1, \dots, b_n^t \rangle.$$

We will prove that h is an embedding of \mathbb{X} into the direct product $B_1 \times \cdots \times B_t$. To prove that h is injective, consider two distinct elements $a_p, a_q \in X$. Then the formula $x_p \not\approx x_q$ belongs to $\mathcal{D}^-(\mathbb{X})$. Consequently, there exists $i \leqslant t$ such that

$$\Phi_i = \left(\mathcal{X} \mathcal{D}^+(X) \right) \Longrightarrow x_p \approx x_q.$$

Since Φ_i fails in B_i under the assignment in (4.5), we obtain $b_p^i \neq b_q^i$. As a consequence,

$$h(a_p)(i) = b_p^i \neq b_q^i = h(a_q)(i)$$

and, therefore, $h(a_p) \neq h(a_q)$. Hence, h is injective. To prove that it preserves the partial operations, consider a basic m-ary operation f in the type of $\mathbb X$ and $a_{k_1},\ldots,a_{k_m}\in X$ such that $f^A(a_{k_1},\ldots,a_{k_m})\in X$. Then there exists some $p\leqslant n$ such that $a_p=f^A(a_{k_1},\ldots,a_{k_m})$. Moreover, the equation

$$f(x_{k_1},\ldots,x_{k_m})\approx x_p$$

belongs to $\mathcal{D}^+(\mathbb{X})$. As each quasi-equation Φ_i fails under the assignment in (4.5), the same assignment satisfies the antecedent of Φ_i , namely $\mathcal{D}^+(\mathbb{X})$. It follows that

$$f^{\mathbf{B}_i}(b^i_{k_1},\ldots,b^i_{k_m})=b^i_p$$
, for each $i\leqslant t$.

As a consequence, for every $i \leq t$,

$$h(f^{A}(a_{k_{1}},...,a_{k_{m}}))(i) = h(a_{p})(i)$$

$$= b_{p}^{i}$$

$$= f^{B_{i}}(b_{k_{1}}^{i},...,b_{k_{m}}^{i})$$

$$= f^{B_{i}}(h(a_{k_{1}})(i),...,h(a_{k_{m}})(i))$$

$$= f^{B_{1}\times \cdots \times B_{t}}(h(a_{k_{1}}),...,h(a_{k_{m}}))(i).$$

Thus, $h(f^A(a_{k_1}, \ldots, a_{k_m})) = f^{B_1 \times \cdots \times B_t}(h(a_{k_1}), \ldots, h(a_{k_m}))$. We conclude that $h: \mathbb{X} \to (B_1 \times \cdots \times B_t)$ is an embedding. Since $B_1, \ldots, B_t \in K$ and K is closed under \mathbb{P} , the direct product $B_1 \times \cdots \times B_t$ belongs to K. Hence, K embeds into some member of K, as desired.

Exercise 4.22. In view of Łoś' Theorem quasi-equations persist in ultraproducts. If you are not familiar with the proof of Łoś' Theorem, offer a direct proof of this fact. \square

Given a class of similar algebras K, the least quasi-variety extending K exists. It will be denoted by $\mathbb{Q}(K)$ and called the quasi-variety *generated* by K.

Corollary 4.23. *Let* K *be a class of similar algebras. Then* $\mathbb{Q}(K) = \mathbb{ISPP}_U(K)$. *If in addition* K *is a finite set of finite algebras,* $\mathbb{Q}(K) = \mathbb{ISP}(K)$.

Proof. The inclusion $\mathbb{ISPP}_U(\mathsf{K}) \subseteq \mathbb{Q}(\mathsf{K})$ is straightforward. To prove the other one, consider $A \in \mathbb{Q}(\mathsf{K})$. By Maltsev's Theorem, $\mathbb{Q}(\mathsf{K})$ is the class of all algebras satisfying the quasi-equations valid in K . The proof of the hard part of Maltsev's Theorem show that $A \in \mathbb{ISP}_U\mathbb{P}(\mathsf{K})$. Therefore, it only remains to show that $\mathbb{P}_U\mathbb{P}(\mathsf{K}) \subseteq \mathbb{ISPP}_U(\mathsf{K})$, which is left as an exercise. This shows that $\mathbb{Q}(\mathsf{K}) = \mathbb{ISPP}_U(\mathsf{K})$.

To prove the second part of the statement, suppose that K is a finite set of finite algebras. This guarantees that $\mathbb{P}_{U}(K) \subseteq \mathbb{I}(K)$ (see Exercise ??). As a consequence, $\mathbb{Q}(K) = \mathbb{ISPP}_{U}(K) = \mathbb{ISPP}_{U}(K)$, as desired.

Exercise 4.24. Prove that if K is a class of similar algebras, then $\mathbb{P}_{U}\mathbb{P}(K) \subseteq \mathbb{ISPP}_{U}(K)$.

Example 4.25 (Quasi-varieties). In view of Examples 4.16 and 4.17 and one of your exercises, we know that

$$\mathsf{Latt} = \mathbb{ISP}_{\mathsf{U}}(\mathsf{Latt}^{<\omega}) \ \ \text{and} \ \ \mathsf{HA} = \mathbb{ISP}_{\mathsf{U}}(\mathsf{HA}^{<\omega}) \ \ \text{and} \ \ \mathsf{MA} = \mathbb{ISP}_{\mathsf{U}}(\mathsf{MA}^{<\omega}).$$

This implies that Latt $\subseteq \mathbb{Q}(\mathsf{Latt}^{<\omega})$, $\mathsf{HA} \subseteq \mathbb{Q}(\mathsf{HA}^{<\omega})$, and $\mathsf{MA} \subseteq \mathbb{Q}(\mathsf{MA}^{<\omega})$. Since Latt, HA , and MA are closed under \mathbb{I} , \mathbb{S} , \mathbb{P} and $\mathbb{P}_{\mathbb{I}}$, this yields

Latt =
$$\mathbb{Q}(\mathsf{Latt}^{<\omega})$$
 and $\mathsf{HA} = \mathbb{Q}(\mathsf{HA}^{<\omega})$ and $\mathsf{MA} = \mathbb{Q}(\mathsf{MA}^{<\omega})$.

Let BA be the class of Boolean algebras and B the two-element Boolean algebra. Since powerset Boolean algebras are up to isomorphism the Boolean algebras of the form B^{κ} , from Stone Representation Theorem for Boolean algebras it follows that BA $\subseteq \mathbb{ISP}(B)$. Since BA is closed under \mathbb{I} , \mathbb{S} , and \mathbb{P} , we obtain BA $= \mathbb{ISP}(B)$. Together with the equality $\mathbb{Q}(B) = \mathbb{ISP}(B)$, this yields BA $= \mathbb{Q}(B)$.

The next observation will be needed later on.

Theorem 4.26. *If* K *is a quasi-variety, the consequence relation* \vDash_{K} *is finitary.*

Proof. In view of Maltsev's Theorem, K can be axiomatized by a set Σ of quasi-equations. Formally speaking, this means that K is the class of models of the set of sentences

$$\Sigma_{\forall} := \{ \forall \vec{x} \, \varphi : \varphi(\vec{x}) \in \Sigma \}.$$

Let then $\Theta \cup \{\varphi \approx \psi\} \subseteq E(Var)$ be such that $\Theta \vDash_{\mathsf{K}} \varphi \approx \psi$. Moreover, let $\{a_n : n \in \mathbb{N}\}$ be a set of new constants. Given a formula $\varphi(x_1, \ldots, x_n)$, we write

$$\varphi(\vec{a})$$
 as a shorthand for $\varphi(a_1,\ldots,a_n)$.

Since Σ_{\forall} axiomatizes K, the fact that $\Theta \vDash_{\mathsf{K}} \varphi \approx \psi$ is equivalent to the demand that

$$\Sigma_{\forall} \cup \{ \varepsilon(\vec{a}) \approx \delta(\vec{a}) : \varepsilon \approx \delta \in \Theta \} \vdash_{\mathsf{FOL}} \varphi(\vec{a}) \approx \psi(\vec{a}),$$

where \vdash_{FOL} is the derivability symbol of classical first order logic. Consequently, by the Compactness Theorem, there exists a finite $\Delta \subseteq \Theta$ such that

$$\Sigma_{\forall} \cup \{ \varepsilon(\vec{a}) \approx \delta(\vec{a}) : \varepsilon \approx \delta \in \Delta \} \vdash_{\mathsf{FOL}} \varphi(\vec{a}) \approx \psi(\vec{a}).$$

Since Σ_{\forall} axiomatizes K, this means that $\Delta \vDash_{\mathsf{K}} \varphi \approx \psi$, as desired.

Given a class of similar algebras K, let

$$\mathbb{H}(\mathsf{K}) := \{A : A \text{ is a homomorphic image of a member of } \mathsf{K}\}.$$

Observe that $\mathbb{I}(K) \cup \mathbb{P}_U(K) \subseteq \mathbb{HP}(K)$. Because of this, the following classes of algebras are also quasi-varieties.

 \boxtimes

Definition 4.27. A class of similar algebras closed under \mathbb{H} , \mathbb{S} , and \mathbb{P} is said to be a *variety*. Notably, varieties coincide with equational classes of algebras.

Birkhoff Theorem 4.28. A class of similar algebras is a variety if and only if it can be axiomatized by a set of equations.

Given a class of similar algebras K, the least variety extending K exists. It will be denoted by V(K) and called the variety *generated* by K.

Corollary 4.29. *Let* K *be a class of similar algebras. Then* $V(K) = \mathbb{HSP}(K)$.

As a consequence, examples of varieties include the classes of (distributive) lattices, Heyting, Boolean and modal algebras. While every variety is a quasi-variety, the converse is not true in general, as we proceed to explain.

Example 4.30 (Lattices). Consider the lattices A and B depicted below. We will show that the quasi-variety $\mathbb{Q}(B)$ is not closed under \mathbb{H} and, therefore, is not a variety.

To this end, let $\mathcal{D}^+(A)$ be the positive atomic diagram of A written with the variables x_1, \ldots, x_8 corresponding to the elements a_1, \ldots, a_8 and consider the quasi-equation

$$\Phi = \mathcal{E} \mathcal{D}^+(A) \Longrightarrow x_1 \approx x_8.$$

Notice that B validates Φ . To prove this, consider an assignment $f: \{x_1, \ldots, x_8\} \to B$ that validates $\mathcal{D}^+(A)$ in B. Using the definition of $\mathcal{D}^+(A)$, it is easy to see that the map $h: A \to B$ that sends a_i to $f(a_i)$ is a homomorphism from A to B. Since $\mathsf{Con}(A) = \{\mathsf{id}_A, A \times A\}$, the kernel $\mathsf{Ker}(h)$ is either id_A or $A \times A$. Notice that there is no embedding of A into B. Therefore, $\mathsf{Ker}(h)$ cannot be the identity relation. It follows that $\mathsf{Ker}(h) = A \times A$. In particular, $\langle a_1, a_8 \rangle \in \mathsf{Ker}(h)$ and, therefore, $f(x_1) = h(a_1) = f(a_8) = f(x_8)$. Hence, we conclude that $B \models \Phi$, as desired. Moreover, Φ fails in A, as witnessed by the assignment

$$x_1 \longmapsto a_1, \ldots, x_8 \longmapsto a_8.$$

In brief, Φ holds in B but fails in A. By Maltsev's Theorem, we conclude that A does not belong to the quasi-variety $\mathbb{Q}(B)$ generated by B. On the other hand, A is a homomorphic image of B (obtained by glueing two pairs of elements of B). Thus, the quasi-variety $\mathbb{Q}(B)$ is not closed under \mathbb{H} .

4.4 Subdirect decomposition

Our aim is to prove a general representation theorem for quasi-varieties, based on the following concept.

Definition 4.31. A subalgebra B of a direct product $\prod_{i \in I} A_i$ is said to be a *subdirect product* of $\{A_i : i \in I\}$ if the projection map p_i is surjective, for every $i \in I$. Similarly, an embedding $f : B \to \prod_{i \in I} A_i$ is said to be *subdirect* when f[B] is a subdirect product of the family $\{A_i : i \in I\}$.

Given a class of similar algebras K, we set

$$\mathbb{P}_{SD}(\mathsf{K}) := \{A : A \text{ is a subdirect direct product of a family } \{B_i : i \in I\} \subseteq \mathsf{K}\}.$$

As usual, when $K = \{A\}$, we write $\mathbb{P}_{SD}(A)$ as a shorthand for $\mathbb{P}_{SD}(\{A\})$. Clearly, $\mathbb{P}_{SD}(K) \subseteq \mathbb{SP}(K)$. Therefore, quasi-varieties are closed under \mathbb{P}_{SD} .

The next result provides a systematic way to construct subdirect embeddings.

Proposition 4.32. *For every algebra A and* $\{\theta_i : i \in I\} \cup \{\phi\} \subseteq Con(A)$ *,*

if
$$\phi = \bigcap_{i \in I} \theta_i$$
, then $A/\phi \in \mathbb{IP}_{SD}(\{A/\theta_i : i \in I\})$.

Proof. Suppose that $\phi = \bigcap_{i \in I} \theta_i$ and consider the map

$$f \colon A/\phi \to \prod_{i \in I} A/\theta_i$$

defined by the rule

$$a/\phi \longmapsto \langle a/\theta_i : i \in I \rangle$$
.

We will prove that *f* is a subdirect embedding.

Clearly, the map $p_i \circ f : A \to A/\theta_i$ is surjective for each $i \in I$. Therefore, it suffices to show that f is an embedding. Accordingly, consider an n-ary connective g and $a_1, \ldots, a_n \in A$. For every $j \in I$, we have

$$f(g^{A/\phi}(a_{1}/\phi,...,a_{n}/\phi))(j) = f(g^{A}(a_{1},...,a_{n})/\phi)(j)$$

$$= g^{A}(a_{1},...,a_{n})/\theta_{j}$$

$$= g^{A/\theta_{j}}(a_{1}/\theta_{j},...,a_{n}/\theta_{j})$$

$$= g^{A/\theta_{j}}(f(a_{1}/\phi)(j),...,f(a_{n}/\phi)(j))$$

$$= g^{\prod_{i \in I} A/\theta_{i}}(f(a_{1}/\phi),...,f(a_{n}/\phi))(j).$$

The first equality above holds by the definition of A/ϕ , the second and the fourth by the definition of f, the third by the definition of A/θ_j , and the fifth by the definition of $\prod_{i \in I} A/\theta_i$. Hence, f is a homomorphism.

To prove that it is injective, consider a pair $a,b \in A$ such that $a/\phi \neq b/\phi$. Then $\langle a,b \rangle \notin \phi$. Since we assumed that $\phi = \bigcap_{i \in I} \theta_i$, there exists $i \in I$ such that $\langle a,b \rangle \notin \theta_i$. Therefore,

$$f(a/\phi)(i) = a/\theta_i \neq b/\theta_i = f(b/\phi)(i),$$

whence $f(a/\phi) \neq f(b/\phi)$. Thus, we conclude that f is injective and, therefore, an embedding.

As we mentioned, quasi-varieties need not be closed under homomorphic images. In particular, if K is a quasi-variety and θ a congruence of some $A \in K$, the algebra A/θ need not belong to K. This makes the following concept useful.

Definition 4.33. Let $K \cup \{A\}$ be a class of similar algebras. A congruence $\theta \in Con(A)$ is said to be a K-congruence of A if $A/\theta \in K$. We denote the poset of K-congruences of A, ordered under the inclusion relation, by $Con_K(A)$.

Notice that if K is closed under \mathbb{H} , then $Con_K(A) = Con(A)$, for all $A \in K$. Under some minimal assumptions, the converse is also true.

Proposition 4.34. *Let* K *be a class of similar algebras closed under* \mathbb{I} . *Then* K *is closed under* \mathbb{H} *if and only if* $Con(A) = Con_K(A)$, *for all* $A \in K$.

Proof. First, suppose that $Con(A) = Con_K(A)$, for all $A \in K$. Then consider an algebra $B \in \mathbb{H}(K)$. By the First Isomorphism Theorem there exists $A \in K$ and a congruence θ of A such that $B \cong A/\theta$. Since $\theta \in ConA = Con_KA$, then $A/\theta \in K$. As K is closed under the formation of isomorphic copies, we conclude that $B \in K$, as desired.

Conversely, suppose that K is closed under \mathbb{H} . Consider $A \in K$. Since A/θ is a homomorphic image of A, we obtain $A/\theta \in \mathbb{H}(A) \subseteq \mathbb{H}(K) \subseteq K$. Thus, $\theta \in \mathsf{Con}_K A$.

If K is a quasi-variety, the K-congruences of an algebra A can be described as follows:

Proposition 4.35. Let K be a quasi-variety axiomatized by a set Σ of quasi-equations and A an algebra. A congruence θ of A is a K-congruence iff for every quasi-equation $\&_{i \leq n} \varphi_i \approx \psi_i \Longrightarrow \varepsilon \approx \delta$ in Σ and every homomorphism $h \colon T(Var) \to A$,

if
$$\langle h(\varphi_i), h(\psi_i) \rangle \in \theta$$
 for each $i \leq n$, then $\langle h(\varepsilon), h(\delta) \rangle \in \theta$.

 \boxtimes

Proof. Immediate from the universal property of term algebras.

Notably, when K is a quasi-variety, the K-congruences of an algebra \boldsymbol{A} form an algebraic lattice.

Theorem 4.36. Let K be a quasi-variety and A an algebra. Then $Con_K(A)$ is an inductive closure system on $A \times A$. As a consequence, $Con_K(A)$ is an algebraic lattice.

Proof. We begin by proving that $Con_K(A)$ is a closure system. Consider a family $\{\theta_i : i \in I\} \subseteq Con_K(A)$. By Proposition 4.32,

$$A/\bigcap_{i\in I} heta_i\in \mathbb{IP}_{ ext{ iny SD}}(\{A/ heta_i:i\in I\}).$$

Observe that $\{A/\theta_i: i \in I\} \subseteq K$, since the various θ_i are K-congruences of A. Together with the above display and the assumption that K is closed under \mathbb{I} and \mathbb{P}_{SD} , this yields $A/\bigcap_{i \in I} \theta_i \in K$, whence $\bigcap_{i \in I} \theta_i \in \mathsf{Con}_K(A)$. It follows that $\mathsf{Con}_K(A)$ is a closure system.

To prove that it is inductive, consider an upward directed family $\{\theta_i: i \in I\} \subseteq \mathsf{Con}_\mathsf{K}(A)$ and let θ be its union. It is easy to see that θ is a congruence of A. To prove that θ is also a K-congruence, we rely on Proposition 4.35. Accordingly, let $\&_{i \leqslant n} \varphi_i \approx \psi_i \Longrightarrow \varepsilon \approx \delta$ be a quasi-equation valid in K and $h\colon T(Var) \to A$ a homomorphism such that $\langle h(\varphi_m), h(\psi_m) \rangle \in \theta$ for each $m \leqslant n$. Since θ is the union of the upward directed family $\{\theta_i: i \in I\}$, there exists $i \in I$ such that $\langle h(\varphi_m), h(\psi_m) \rangle \in \theta_i$ for each $m \leqslant n$. As θ_i is a K-congruence of A by assumption, we can apply 4.35 obtaining that $\langle h(\varepsilon), h(\delta) \rangle \in \theta_i \subseteq \theta$. Hence, we conclude that θ is a K-congruence of A and, therefore, that the closure system $\mathsf{Con}_\mathsf{K}(A)$ is inductive. This implies that, when ordered under the inclusion relation, $\mathsf{Con}_\mathsf{K}(A)$ is an algebraic lattice.

Let K be a quasi-variety and A an algebra. Since $Con_K(A)$ is an inductive closure system on $A \times A$, the operation of K-congruence generation on A is a finitary closure operator that we denote as follows:

$$Cg_{\kappa}^{A} \colon \mathcal{P}(A \times A) \to \mathcal{P}(A \times A).$$

When $a, b \in A$ we will write $Cg_K^A(a, b)$ as a shorthand for $Cg_K^A(\{\langle a, b \rangle\})$.

A K-congruence θ of A is said to be *finitely generated* when there is a finite set $X \subseteq A \times A$ such that $\theta = \operatorname{Cg}_K^A(X)$.

Corollary 4.37. Let K be a quasi-variety and A an algebra. The compact elements of the algebraic lattice $Con_K(A)$ are precisely the finitely generated K-congruences of A.

Corollary 4.38. *Let* K *be a quasi-variety and* $A \in K$. *Every* K-congruence of A is the intersection of a family of K-congruences of A that are completely meet irreducible in $Con_K A$.

Proof. Every element of an algebraic lattice is a meet of a family of completely meet irreducible elements. Therefore, the result follows immediately from Theorem 4.36.

Another fundamental ingredient of the general representation theorem we are going to prove is the co-called Correspondence Theorem. Given an algebra A and $\theta, \phi \in \mathsf{Con}(A)$ such that $\theta \subseteq \phi$, we let

$$\phi/\theta \coloneqq \big\{ \big\langle a/\theta, b/\theta \big\rangle \in A/\theta \times A/\theta : \big\langle a, b \big\rangle \in \phi \big\}.$$

Correspondence Theorem 4.39. *Let* K *be a quasi-variety and* $A \in K$. *Given a* K-congruence θ *of* A, the sublattice of $Con_K(A)$ with universe $\uparrow \theta$ is isomorphic to $Con_K(A/\theta)$ under the map $f: \uparrow \theta \to Con_K(A/\theta)$ defined by the rule $f(\phi) := \phi/\theta$.

Proof. We begin by proving that for every $\phi \in Con_K(A)$ such that $\theta \subseteq \phi$ and $a, b \in A$,

$$\langle a, b \rangle \in \phi \iff \langle a/\theta, b/\theta \rangle \in \phi/\theta.$$
 (4.6)

The implication from left to right is an immediate consequence of the definition of f. To prove the other implication, suppose that $\langle a/\theta,b/\theta\rangle\in\phi/\theta$. By the definition of ϕ/θ there exists a pair $\langle c,d\rangle\in\phi$ such that $a/\theta=c/\theta$ and $b/\theta=d/\theta$. Since ϕ is an equivalence relation extending θ , this implies $\langle a,b\rangle\in\phi$ as desired.

Then we turn to prove that f is well defined. Consider $\phi \in \mathsf{Con}_\mathsf{K}(A)$ such that $\theta \subseteq \phi$. The fact that ϕ/θ is a congruence of A/θ is an easy consequence of condition (4.6) and the assumption that ϕ is a congruence of A. For instance, to prove that ϕ/θ is transitive, consider $a,b,c\in A$ such that $\langle a/\theta,b/\theta\rangle,\langle b/\theta,c/\theta\rangle\in\phi/\theta$. By condition (4.6) we have $\langle a,b\rangle,\langle b,c\rangle\in\phi$, which implies $\langle a,c\rangle\in\phi$ because ϕ is transitive. By the definition of ϕ/θ we conclude that $\langle a/\theta,c/\theta\rangle\in\phi/\theta$. Thus, ϕ/θ is transitive. The other conditions in the definition of a congruence of ϕ/θ are proved similarly.

Therefore, it only remains to show that $A/(\phi/\theta) \in K$. We will rely on Proposition 4.35. Accordingly, consider a quasi-equation $\&_{i < n} \varphi_i \approx \psi_i \Longrightarrow \varepsilon \approx \delta$ valid in K and a homomorphism $h \colon T(Var) \to A/\theta$ such that $\langle h(\varphi_i), h(\psi_i) \rangle \in \phi/\theta$ for each i < n. We need to prove that $\langle h(\varepsilon), h(\delta) \rangle \in \phi/\theta$. By the universal property of the term algebra there exists a homomorphism $g \colon T(Var) \to A$ such that $\pi_\theta \circ g = h$, where $\pi_\theta \colon A \to A/\theta$ is the canonical homomorphism defined by the rule $\pi_\theta(a) := a/\theta$. Then for each i < n we have

$$\langle g(\varphi_i)/\theta, g(\psi_i)/\theta \rangle = \langle \pi_\theta \circ g(\varphi_i), \pi_\theta \circ g(\psi_i) \rangle = \langle h(\varphi_i), h(\psi_i) \rangle \in \phi/\theta.$$

By condition (4.6) this amounts to $\langle g(\varphi_i), g(\psi_i) \rangle \in \phi$ for each i < n. Since ϕ is a K-congruence of A, we can apply Proposition 4.35 obtaining that $\langle g(\varepsilon), g(\delta) \rangle \in \phi$. As by the definition of ϕ/θ this implies $\langle g(\varepsilon)/\theta, g(\delta)/\theta \rangle \in \phi/\theta$ and

$$\langle g(\varepsilon)/\theta, g(\delta)/\theta \rangle = \langle \pi_{\theta} \circ g(\varepsilon), \pi_{\theta} \circ g(\delta) \rangle = \langle h(\varepsilon), h(\delta) \rangle,$$

we conclude that $\langle h(\varepsilon), h(\delta) \in \phi/\theta$ as desired. Hence, we conclude that ϕ/θ is a K-congruence of A/θ and that f is well defined.

Then consider ϕ , $\eta \in Con_K(A)$ such that $\theta \subseteq \phi$, η . We have

$$\phi \subseteq \eta \iff f(\phi) \subseteq f(\eta).$$

The implication from left to right is an immediate consequence of the definition of f. To prove the other implication, suppose that $f(\phi) \subseteq f(\eta)$ and consider a pair $\langle a,c \rangle \in \phi$. We have $\langle a/\theta,c/\theta \rangle \in f(\phi) \subseteq f(\eta)$. With an application of condition (4.6), we obtain $\langle a,c \rangle \in \eta$, as desired. Hence, f is an order embedding.

To prove that it is surjective, consider a K-congruence ϕ of A/θ and consider the canonical homomorphisms $\pi_{\theta} \colon A \to A_{\theta}$ and $\pi_{\phi} \colon A \to \theta \to (A/\theta)/\phi$. Since the composition $\pi_{\phi} \circ \pi_{\theta} \colon A \to (A/\theta)/\phi$ is a surjective homomorphism, by the first isomorphism theorem of universal algebra we obtain $A/\text{Ker}(\pi_{\phi} \circ \pi_{\theta}) \cong (A/\theta)/\phi$. As $(A/\theta)/\phi \in K$ (because ϕ is a K-congruence of A/θ) and K is closed under \mathbb{I} , this implies $\text{Ker}(\pi_{\phi} \circ \pi_{\theta}) \in \text{Con}_{K}(A)$. Furthermore, $\theta \subseteq \text{Ker}(\pi_{\phi} \circ \pi_{\theta})$ because for each pair $\langle a,b \rangle \in \theta$ we have $\pi_{\theta}(a) = \pi_{\theta}(b)$ and, therefore, $\pi_{\phi}(\pi_{\theta}(a)) = \pi_{\phi}(\pi_{\theta}(b))$, i.e., $\langle a,b \rangle \in \text{Ker}(\pi_{\phi} \circ \pi_{\theta})$.

Therefore, it only remains to prove that $f(\text{Ker}(\pi_{\phi} \circ \pi_{\theta}))) = \phi$. To this end, consider $a, b \in A$. We have

$$\begin{split} \langle a/\theta,b/\theta \rangle \in f(\mathrm{Ker}(\pi_{\phi} \circ \pi_{\theta}))) &\iff \langle a,b \rangle \in \mathrm{Ker}(\pi_{\phi} \circ \pi_{\theta}) \\ &\iff \pi_{\phi}(\pi_{\theta}(a)) = \pi_{\phi}(\pi_{\theta}(b)) \\ &\iff \pi_{\phi}(a/\theta) = \pi_{\phi}(b/\theta) \\ &\iff \langle a/\theta,b/\theta \rangle \in \phi, \end{split}$$

where the first equivalence follows from condition (4.6). Hence, f is surjective and, therefore, a lattice isomorphism.

Definition 4.40. Let K be a quasi-variety. A member A of K is said to be *subdirectly irreducible relative to* K when for every subdirect embedding $f: A \to \prod_{i \in I} B_i$ with $\{B_i: i \in I\} \subseteq K$ there exists some $i \in I$ such that the composition $p_i \circ f: A \to B_i$ is an isomorphism. The class of all subdirectly irreducible algebras relative to K will be denoted by K_{RSI} .

An algebra A is said to be *subdirectly irreducible* (in the absolute sense) when it is subdirectly irreducible relative to the quasi-variety of all algebras of its type. The class of subdirectly irreducible member of a class of algebras K will be denoted by K_{SI} .

The next result connects subdirect irreduciblity with congruence lattices.

Proposition 4.41. *Let* K *be a quasi-variety. An algebra* $A \in K$ *is subdirectly irreducible relative to* K *if and only if* id_A *is completely meet irreducible in the lattice* $Con_K(A)$.

Proof. Suppose first that id_A is not completely meet irreducible in $Con_K(A)$. Then there exists a family $\{\theta_i : i \in I\} \subseteq Con_K(A) \setminus \{id_A\}$ whose intersection is id_A . By Proposition 4.32 there exists a subdirect embedding $f : A \to \prod_{i \in I} A/\theta_i$ defined by the rule

$$a \longmapsto \langle a/\theta_i : i \in I \rangle$$
.

We will show that for each $i \in I$ the map $p_i \circ f$ fails to be injective. To this end, consider $i \in I$. By the definition of f we have $\operatorname{Ker}(p_i \circ f) = \theta_i$. Since θ_i is not the identity relation, we obtain $\operatorname{Ker}(p_i \circ f) \neq \operatorname{id}_A$, so $p_i \circ f$ is not injective as desired. It follows that A is not subdirectly irreducible relative to K.

To prove the other implication, suppose that id_A is completely meet irreducible in $\mathsf{Con}_\mathsf{K}(A)$. Then consider a subdirect embedding $f\colon A\to \prod_{i\in I} B_i$ with $\{B_i\colon i\in I\}\subseteq \mathsf{K}$. For each $i\in I$ we consider the congruence $\mathsf{Ker}(p_i\circ f)$ of A. Since the homomorphism $p_i\circ f$ is sujective (because f is subdirect), we can apply the first isomorphism theorem of universal algebra obtaining that $A/\mathsf{Ker}(p_i\circ f)\cong B_i$ and, therefore, $A/\mathsf{Ker}(p_i\circ f)\in \mathsf{K}$. It follows that $\mathsf{Ker}(p_i\circ f)\in\mathsf{Con}_\mathsf{K}(A)$. We will show that

$$id_A = \bigcap_{i \in I} Ker(p_i \circ f). \tag{4.7}$$

To this end, consider $a, b \in A$. We have

$$\langle a,b \rangle \in \mathrm{id}_A \Longleftrightarrow a = b$$

 $\iff f(a) = f(b)$
 $\iff f(a)(i) = f(b)(i) \text{ for every } i \in I$
 $\iff p_i \circ f(a) = p_i \circ f(b) \text{ for every } i \in I$
 $\iff \langle a,b \rangle \in \mathrm{Ker}(p_i \circ f) \text{ for every } i \in I$
 $\iff \langle a,b \rangle \in \bigcap_{i \in I} \mathrm{Ker}(p_i \circ f),$

where the second equivalence follows from the injectivity of f. From condition (4.7) and the assumption that id_A is completely meet irreducible in $\mathsf{Con}_\mathsf{K}(A)$ it follows that there exists $i \in I$ such that $\mathrm{id}_A = \mathsf{Ker}(p_i \circ f)$. Therefore, the homomorphism $p_i \circ f \colon A \to B_i$ is injective. As it is also surjective because f is subdirect, we conclude that it is an isomorphism. Hence, A is subdirectly irreducible relative to K .

Corollary 4.42. An algebra A is subdirectly irreducible if and only if id_A is completely meet irreducible in Con(A).

Remark 4.43. Let K be a quasi-variety and $A \in K$. In view of Proposition 4.41, A is subdirectly irreducible relative to K precisely when there exists $\phi \in \mathsf{Con}_K(A) \setminus \{\mathsf{id}_A\}$ such that every element of $\mathsf{Con}_K(A) \setminus \{\mathsf{id}_A\}$ extends ϕ . In this case, ϕ is sometimes called the *relative monolith* of A.

To prove the above equivalence, observe that if such a ϕ exists, then id_A is clearly completely meet irreducible in $\mathsf{Con}_\mathsf{K}(A)$ and, therefore, A is subdirectly irreducible relative to K , by Proposition 4.41. Conversely, suppose that A is subdirectly irreducible and, therefore, that id_A is completely meet irreducible in $\mathsf{Con}_\mathsf{K}(A)$. Then the K -congruence

$$\phi \coloneqq \bigcap \{\theta \in \mathsf{Con}_\mathsf{K}(A) : \theta \neq \mathrm{id}_A\}$$

is different from identity relation id_A . Furthermore, every element of $Con_K(A) \setminus \{id_A\}$ extends ϕ , as desired.

Notice that the monolith ϕ is a always principal K-congruence, i.e, there are $a, b \in A$ such that

$$\phi = \operatorname{Cg}_{\mathsf{K}}^{A}(a,b).$$

Furthermore, in this case $a \neq b$. This is because, since the monolith ϕ differs from id_A , it must contain a pair $\langle a,b \rangle$ with $a \neq b$. Therefore, $\mathrm{Cg}^A_{\mathsf{K}}(a,b) \subseteq \phi$. But since ϕ is the least K-congruence of A other than id_A , this implies that $\phi = \mathrm{Cg}^A_{\mathsf{K}}(a,b)$.

A special kind of relative subdirectly irreducible algebras is the following.

Definition 4.44. Let K be a quasi-variety. An algebra $A \in K$ is *simple relative to* K if it has exactly two K-congruences.

In this case, $Con_K(A) = \{id_A, A \times A\}$ and $id_A \neq A \times A$, whence A is nontrivial. Moreover, $Con_K(A)$ is the two-element chain with minimum id_A and, therefore, id_A is completely meet irreducible in $Con_K(A)$. Therefore, by Proposition 4.41, we obtain the following.

Corollary 4.45. If an algebra A is simple relative to a quasi-variety K, it is also subdirectly irreducible relative to K.

As for the case of subdirect irreducibility, the notion of a simple algebra admits an absolute variant. More precisely, an algebra A is simple (in the absolute sense) if Con(A) has precisely two elements.

Example 4.46 (Distributive lattices). Recall that the class of distributive lattices DL coincides with $\mathbb{IP}_{SD}(B)$, where B is the two-element distributive lattice. It follows that the class of (relative) subdirectly irreducible members of DL is included into $\mathbb{I}(B)$. Furthermore, notice

that ConB is a two-element chain with maximum $B \times B$ and minimum id_B . Consequently, B is simple and, therefore, subdirectly irreducible. It follows that $\mathbb{I}(B)$ is the class of all (relative) subdirectly irreducible members of DL.

A similar argument shows that the (relative) subdirectly irreducible members of the class of Boolean algebras are the two-element chains.

Example 4.47 (More lattices). The following lattices are called, respectively, M_3 and N_5 .

Their importance is related to two classical result. The first, due to Dedekind, states that a lattice is nonmodular if and only if N_5 embeds into it. The second, due to Birkhoff, states that a lattice fails to be distributive precisely when M_3 or N_5 can be embedded into it.

Find the congruence lattices of M_3 and N_5 and use them to convince yourself that both M_3 and N_5 are subdirectly irreducible. Prove also that M_3 is simple, but N_5 is not.

Example 4.48 (Heyting algebras). Let A be a Heyting algebra. We shall prove that a Heyting algebra A is subdirectly irreducible if and only if there exists an element $a \in A \setminus \{1\}$ such that $A = \{1\} \cup \downarrow a$. To this end, we will rely on the fact that the lattice Fi(A) of filters of A is isomorphic to Con(A).

Suppose first that A is subdirectly irreducible. In view of Remark 4.43, there exists the least congruence θ of A different from the identity. Since $Fi(A) \cong Con(A)$, there exists also the least filter F of A different from the minimum $\{1\}$ of Fi(A). Since $F \neq \{1\}$, there exists some $a \in F \setminus \{1\}$. As $\uparrow a$ is a filter different from $\{1\}$ and F is the least such, we obtain $F \subseteq \uparrow a$. On the other hand, as $a \in F$, the other inclusion holds, whence $F = \uparrow a$. Then consider an element $c \in A \setminus \{1\}$. Since $\uparrow c$ is a filter different from $\{1\}$ and F is the least such, we obtain $\uparrow a = F \subseteq \uparrow c$, that is, $c \leqslant a$. Hence, $A = \{1\} \cup \downarrow a$, as desired.

To prove the converse, suppose that there exists an element $a \in A \setminus \{1\}$ such that $A = \{1\} \cup \downarrow a$. In this case, $\uparrow a$ is the least filter of A different from the minimum filter $\{1\}$. Since $Fi(A) \cong Con(A)$, there exists also the least congruence of A different from the identity relation. But, by Remark 4.43, this implies that A is subdirectly irreducible.

The following representation theorem is as an application of lattice theory to general algebra, its main ingredient being the observation that every element of an algebraic lattice can be obtained as a meet of completely meet irreducible ones.

Subdirect Decomposition Theorem 4.49. *If* K *is a quasi-variety, then* $K = \mathbb{IP}_{SD}(K_{RSI})$.

Proof. Consider an algebra $A \in K$. By Corollary 4.38, there exists a family $\{\theta_i : i \in I\} \subseteq \mathsf{Con}_K(A)$ such that each θ_i is completely meet irreducible in $\mathsf{Con}_K(A)$ and, moreover,

$$\mathrm{id}_A = \bigcap_{i \in I} \theta_i.$$

By Proposition 4.32, $A \in \mathbb{IP}_{SD}(\{A/\theta_i : i \in I\})$.

Now, we know that each A/θ_i belongs to K, because θ_i is a K-congruence of A. Therefore, to conclude the proof, it only remains to show that A/θ_i is subdirectly irreducible relative to K. By the Correspondence Theorem, $\operatorname{Con}_{\mathsf{K}}(A/\theta_i)$ is isomorphic to the upset generated by θ_i in $\operatorname{Con}_{\mathsf{K}}A$. Moreover, this isomorphism sends θ_i to $\operatorname{id}_{A/\theta_i}$. Therefore, from the assumption that θ_i is completely meet irreducible in $\operatorname{Con}_{\mathsf{K}}(A)$, it follows that $\operatorname{id}_{A/\theta_i}$ is completely meet irreducible in $\operatorname{Con}_{\mathsf{K}}(A/\theta_i)$. By Proposition 4.41, we conclude that A/θ_i is subdirectly irreducible relative to K.

Corollary 4.50. Every algebra is isomorphic to a subdirect product of subdirectly irreducible algebras.

Example 4.51 (Subdirect decomposition). Birkhoff's representation of distributive lattices as subdirect products of the two-element chain and Stone's representation of Boolean algebras as subdirect products of the two-element Boolean algebra are special instances of the Subdirect Decomposition Theorem. An example from classical algebra is the following: every finite Abelian group is a direct product of cyclic groups of prime power order. The latter happen to be precisely the finite subdirectly irreducible Abelian groups.

Since relative subdirectly irreducible algebras form the building blocks of quasivarieties, it is natural to wonder how do they arise. The next results provides an answer in terms of the generators of a quasi-variety.

Proposition 4.52. *If* K *is a class of similar algebras, then* $\mathbb{Q}(K)_{RSI} \subseteq \mathbb{ISP}_{U}(K)$.

Proof. Consider an algebra $A \in \mathbb{Q}(\mathsf{K})_{\mathsf{RSI}}$. Recall that $\mathbb{Q}(\mathsf{K}) = \mathbb{ISPP}_{\mathsf{U}}(\mathsf{K})$. Moreover, it is easy to see that $\mathbb{ISPP}_{\mathsf{U}}(\mathsf{K}) = \mathbb{IP}_{\mathsf{SD}}\mathbb{SP}_{\mathsf{U}}(\mathsf{K})$, whence $\mathbb{Q}(\mathsf{K}) = \mathbb{IP}_{\mathsf{SD}}\mathbb{SP}_{\mathsf{U}}(\mathsf{K})$. In particular, this implies $A \in \mathbb{IP}_{\mathsf{SD}}\mathbb{SP}_{\mathsf{U}}(\mathsf{K})$. Accordingly, there exists a subdirect embedding $f \colon A \to \prod_{i \in I} B_i$ with $\{B_i \colon i \in I\} \subseteq \mathbb{SP}_{\mathsf{U}}(\mathsf{K})$. As A is subdirectly irreducible relative to $\mathbb{Q}(\mathsf{K})$ and $\mathbb{SP}_{\mathsf{U}}(\mathsf{K}) \subseteq \mathbb{Q}(\mathsf{K})$, there exists $i \in I$ such that $p_i \circ f \colon A \to B_i$ is an isomorphism. Thus, $A \in \mathbb{I}(B) \subseteq \mathbb{ISP}_{\mathsf{U}}(\mathsf{K})$.

Corollary 4.53. If K is a finite set of finite similar algebras, then $\mathbb{Q}(K)_{RSI} \subseteq \mathbb{IS}(K)$.

Example 4.54 (Closure under \mathbb{H}). Consider the lattices A and B defined at the beginning of Section 4.4. There, we prove that the quasi-variety $\mathbb{Q}(B)$ is not closed under \mathbb{H} . We are now in the position of offering a simpler proof that, moreover, can be easily adapted to other cases.

First, observe that $A \in \mathbb{H}(B)$ and, therefore, it suffices to show that $A \notin \mathbb{Q}(B)$. Suppose the contrary. Since A is simple and, therefore, subdirectly irreducible, it must be also subdirectly irreducible relative to $\mathbb{Q}(B)$. Therefore, $A \in \mathbb{IS}(B)$, by Corollary 4.53. This contradicts the fact that there cannot be any embedding of A into B (look at their Hasse diagrams to convince you of this).

Algebraizable logics

5.1 Algebraizability

We are now ready to introduce a robust theory of algebraization that will account for the relation between logic and algebra. To this end, for every set of formulas $\Delta(x,y)$ and set of equations $\Theta \cup \{\varepsilon \approx \delta\}$, we shall abbreviate

$$\{varphi(\varepsilon,\delta)\colon \varphi(x,y)\in \Delta\} \text{ as } \Delta(\varepsilon,\delta), \text{ and } \bigcup_{\varphi\approx\psi\in\Theta}\Delta(\varphi,\psi) \text{ as } \Delta[\Theta].$$

Definition 5.1 (Blok & Pigozzi). A finitary logic \vdash is said to be *algebraizable* if there are a finite set of equations $\tau(x)$, a finite set of formulas $\Delta(x,y)$, and a quasi-variety K such that

$$\Gamma \vdash \varphi \Longleftrightarrow \tau[\Gamma] \vDash_{\mathsf{K}} \tau(\varphi) \tag{Alg1}$$

$$\Theta \vDash_{\mathsf{K}} \varepsilon \approx \delta \Longleftrightarrow \Delta[\Theta] \vdash \Delta(\varepsilon, \delta) \tag{Alg2}$$

$$\varphi \dashv \vdash \Delta[\tau(\varphi)]$$
 (Alg3)

$$\varepsilon \approx \delta = | \vdash_{\mathsf{K}} \tau[\Delta(\varepsilon, \delta)]$$
 (Alg4)

for every set of formulas $\Gamma \cup \{\varphi\}$ and every set of equations $\Theta \cup \{\varepsilon \approx \delta\}$. In this case, K is said to be an *equivalent algebraic semantics* for \vdash . In addition, we say that τ, Δ and K *witness* the algebraizability of the logic \vdash .

Condition (Alg1) expresses the demand that K is a τ -algebraic semantics for \vdash , namely, that \vdash can be interpreted into \vDash_{K} by means of the set of equations $\tau(x)$ that allows to translate a set of formulas Γ into a set of equations $\tau[\Gamma]$. Condition (Alg2) states that this interpretation can be *reversed*, in the sense that \vDash_{K} can also be interpreted into \vdash by means of the set of formulas $\Delta(x,y)$ that allows to translate sets of equations Θ into sets of formulas $\Delta[\Theta]$. Lastly, conditions (Alg3) and (Alg4) guarantee that these two interpretations are *inverses of each other* up to provability equivalence.

The definition of an algebraizable logic can be made more concise as follows.

Proposition 5.2. *The following conditions are equivalent for a finitary logic* \vdash :

- (i) \vdash *is algebraizable;*
- (ii) There are a set of equations $\tau(x)$, a set of formulas $\Delta(x,y)$ and a quasi-variety K that satisfy (Alg1) and

$$x \approx y = \models_{\kappa} \tau[\Delta(x, y)];$$
 (Alg4*)

(iii) There are a set of equations $\tau(x)$, a set of formulas $\Delta(x,y)$ and a quasi-variety K that satisfy (Alg2) and

$$x \dashv \vdash \Delta[\tau(x)].$$
 (Alg3*)

In this case, τ *,* Δ *, and* K *witness the algebraizability of* \vdash *.*

Proof. The implication (i) \Rightarrow (ii) is straightforward. To prove (ii) \Rightarrow (iii), observe that (Alg4*) implies that, for every $\varphi \approx \psi \in \tau$,

$$\varphi \approx \psi = \models_{\mathsf{K}} \tau[\Delta(\varphi, \psi)].$$

Since $\tau[\Delta[\tau(x)]] = \bigcup \{\tau[\Delta(\varphi, \psi)] : \varphi \approx \psi \in \tau\}$, this yields

$$\tau(x) = \models_{\mathsf{K}} \tau[\Delta[\tau(x)]].$$

By (Alg1), we conclude that $x \dashv \vdash \Delta[\tau(x)]$. Then consider a set of equations $\Theta \cup \{\varepsilon \approx \delta\}$. We have

$$\Theta \vDash_{\mathsf{K}} \varepsilon \approx \delta \Longleftrightarrow \tau[\Delta[\Theta]] \vDash_{\mathsf{K}} \tau[\Delta(\varepsilon, \delta)] \Longleftrightarrow \Delta[\Theta] \vdash \Delta(\varepsilon, \delta),$$

where the first equivalence follows from (Alg4*) and the second from (Alg1).

(iii) \Rightarrow (i): Since \vdash is finitary and $\Delta[\tau(x)] \vdash x$, there exists a finite $\tau' \subseteq \tau$ such that $\Delta[\tau(x)] \vdash x$. Together with the assumption that $x \vdash \Delta[\tau(x)]$, this yields $x \dashv \vdash \Delta[\tau'(x)]$. Therefore, the pair τ' and Δ satisfy conditions (Alg2) and (Alg3*). Furthermore, a proof similar to the one of the implication (ii) \Rightarrow (iii) establishes (Alg1) and (Alg4*) for τ' and Δ .

Now, by (Alg4*), we have $x \approx y = \models_{\mathsf{K}} \tau'[\Delta(x,y)]$. Since, by Theorem 4.26, the relation \models_{K} is finitary, there exists a finite $\Delta' \subseteq \Delta$ such that $x \approx y = \models_{\mathsf{K}} \tau'[\Delta'(x,y)]$. Therefore, the pair τ' and Δ' satisfy conditions (Alg1) and (Alg4*). Furthermore, a proof similar to the one of the implication (ii) \Rightarrow (iii) establishes (Alg2) and (Alg3*) for τ' and Δ' . As a consequence, the pair of finite sets τ' and Δ' satisfy (Alg1), (Alg2), (Alg3*) and (Alg4*). Since conditions (Alg3*) and (Alg4*) imply (Alg3) and (Alg4), respectively, we conclude that \vdash is algebraizable and that its algebraizability is witnessed by τ , Δ , and K .

Example 5.3 (Algebraizable logics). Consider the following sets of equations and formulas, respectively,

$$\tau(x) \coloneqq \{x \approx 1\} \text{ and } \Delta(x,y) \coloneqq \{x \to y, y \to x\}.$$

We shall prove that IPC is algebraizable and that its algebraizability is witnessed by τ , Δ and the variety HA of Heyting algebras. First, recall that HA is a τ -algebraic semantics for IPC. Moreover, observe that

$$x \approx y = \models_{\mathsf{H}\Delta} \{x \to y \approx 1, y \to x \approx 1\}.$$
 (5.1)

To prove this, consider a Heyting algebra A and $a, c \in A$. Using the residuation law and the fact that 1 is the maximum of A, we obtain

$$a = c \iff (a \leqslant c \text{ and } c \leqslant a)$$

 $\iff (1 \land a \leqslant c \text{ and } 1 \land c \leqslant a)$
 $\iff (1 \leqslant a \to c \text{ and } 1 \leqslant c \to a)$
 $\iff a \to c = 1 \text{ and } c \to a = 1.$

This establishes (5.1), which is precisely (Alg4*). Hence, IPC satisfies (Alg1) and (Alg4*) with respect to τ , Δ and HA. By Proposition 5.2, we conclude that IPC is algebraizable and that its algebraizability is witnessed by τ , Δ and HA.

A similar argument shows that K_g is algebraizable and that its algebraizability is witnessed by τ , Δ and the class of modal algebras MA. Similarly, CPC is algebraizable and its algebraizability is witnessed by τ , Δ and the class of Boolean algebras BA.

As we mentioned, the theory of algebraizable logics allows to associate with a logic a unique *distinguished* algebraic semantics.

Theorem 5.4. *If* τ_1 , Δ_1 , K_1 *and* τ_2 , Δ_2 , K_2 *witness the algebraizability of a logic* \vdash , *then*

$$\mathsf{K}_1 = \mathsf{K}_2 \qquad \tau_1(x) = \models_{\mathsf{K}_1} \tau_2(x) \qquad \Delta_1(x,y) \dashv \vdash \Delta_2(x,y).$$

Proof. We begin by proving $\Delta_1(x,y) \dashv \vdash \Delta_2(x,y)$. By symmetry, it suffices to prove $\Delta_1(x,y) \vdash \Delta_2(x,y)$. To this end, consider $\varphi \in \Delta_2$. Since $\tau_1, \Delta_1, \mathsf{K}_1$ witness the algebraizability of \vdash , from (Alg4) and (Alg1) it follows

$$\tau_1(x), x \approx y \vDash_{\mathsf{K}_1} \tau_1(y) \Longleftrightarrow \tau_1(x), \tau_1[\Delta_1(x,y)] \vDash_{\mathsf{K}_1} \tau_1(y) \Longleftrightarrow x, \Delta_1(x,y) \vdash y$$

and

$$x \approx y \vDash_{\mathsf{K}_1} \varphi(x, x) \approx \varphi(x, y) \Longleftrightarrow \Delta_1(x, y) \vdash \Delta_1(\varphi(x, x), \varphi(x, y)).$$

Since $\tau_1(x)$, $x \approx y \vDash_{\mathsf{K}_1} \tau_1(y)$ and $x \approx y \vDash_{\mathsf{K}_1} \varphi(x, x) \approx \varphi(x, y)$, we obtain that

$$x, \Delta_1(x, y) \vdash y$$
 and $\Delta_1(x, y) \vdash \Delta_1(\varphi(x, x), \varphi(x, y))$.

Moreover, by substitution invariance, we get $\varphi(x,x)$, $\Delta_1(\varphi(x,x),\varphi(x,y)) \vdash \varphi(x,y)$. Together with the above display, we conclude that

$$\varphi(x,x)$$
, $\Delta_1(x,y) \vdash \varphi(x,y)$.

Furthermore, it is not hard to see that the fact that τ_2 , Δ_2 , K_2 witness the algebraizability of \vdash guarantees that $\emptyset \vdash \Delta_2(x,x)$. As a consequence, $\emptyset \vdash \varphi(x,x)$. Together with the above display, this yields $\Delta_1(x,y) \vdash \varphi(x,y)$ and, therefore, $\Delta_1(x,y) \vdash \Delta_2(x,y)$. Hence, we conclude that $\Delta_1(x,y) \dashv \vdash \Delta_2(x,y)$, as desired.

Then we turn to prove that $K_1 = K_2$. Since K_1 and K_2 are quasi-varieties, it suffices to show that they satisfy the same quasi-equations with variables in Var. To prove this,

consider a finite set of equation $\Theta \cup \{\varepsilon \approx \delta\} \subseteq E(Var)$. We have

$$\begin{split} \mathsf{K}_1 \vDash & & & \mathsf{\&} \Theta \Longrightarrow \varepsilon \approx \delta \Longleftrightarrow \Theta \vDash_{\mathsf{K}_1} \varepsilon \approx \delta \\ & & & \Longleftrightarrow \Delta_1[\Theta] \vdash \Delta_1(\varepsilon, \delta) \\ & & & \Longleftrightarrow \Delta_2[\Theta] \vdash \Delta_2(\varepsilon, \delta) \\ & & & \Longleftrightarrow \Theta \vDash_{\mathsf{K}_2} \varepsilon \approx \delta \\ & & & \Longleftrightarrow \mathsf{K}_2 \vDash & & \mathsf{\&}_{\mathbf{T}} \Theta \Longrightarrow \varepsilon \approx \delta. \end{split}$$

The above equivalence can be justified as follows. The first and the last are straightforward, the second from (Alg2) and the assumption that $\tau_1, \Delta_1, \mathsf{K}_1$ witness the algebraizability of \vdash , the third from $\Delta_1(x,y) \dashv \vdash \Delta_2(x,y)$ and the fourth from the assumption that $\tau_2, \Delta_2, \mathsf{K}_2$ witness the algebraizability of \vdash . Hence, we conclude that $\mathsf{K}_1 = \mathsf{K}_2$.

It only remains to prove that $\tau_1(x) = \models_{\mathsf{K}_1} \tau_2(x)$. To prove this, observe that

$$\tau_{1}(x) = \models_{\mathsf{K}_{1}} \tau_{2}(x) \iff \Delta_{1}[\tau_{1}(x)] \dashv \vdash \Delta_{1}[\tau_{2}(x)]$$
$$\iff \Delta_{1}[\tau_{1}(x)] \dashv \vdash \Delta_{2}[\tau_{2}(x)]$$
$$\iff x \dashv \vdash x.$$

The above equivalence can be justified as follows. The first follows from (Alg2) and the assumption that τ_1 , Δ_1 , K_1 witness the algebraizability of \vdash , the third from $\Delta_1(x,y) \dashv \vdash \Delta_2(x,y)$ and the last from (Alg3) and the fact that both τ_1 , Δ_1 , K_1 and τ_2 , Δ_2 , K_2 witness the algebraizability of \vdash . Since $x \dashv \vdash x$, we conclude that $\tau_1(x) = \models_{K_1} \tau_2(x)$.

 \boxtimes

Corollary 5.5. Every algebraizable logic has a unique equivalent algebraic semantics.

Proof. Immediate from Theorem 5.4.

Example 5.6 (Equivalent algebraic semantics). In view of Example 5.3,

- (i) The unique equivalent algebraic semantics of CPC is BA;
- (ii) The unique equivalent algebraic semantics of IPC is HA;
- (iii) The unique equivalent algebraic semantics of K_g is MA.

In particular, while CPC has various algebraic semantics (for instance, BA and HA), the class of Boolean algebras is its unique equivalent algebraic semantics.

Definition 5.7. Given two logics \vdash and \vdash * of the same type. Then \vdash * is said to be

- (i) an *extension* of \vdash if, $\Gamma \vdash^* \varphi$, for every $\Gamma \cup \{\varphi\} \subseteq T(Var)$ such that $\Gamma \vdash \varphi$; and
- (ii) an *axiomatic extension* of \vdash if there exists a set of formulas Σ such that $\sigma[\Sigma] \subseteq \Sigma$ for every substitution σ and, for every $\Gamma \cup \{\varphi\} \subseteq T(Var)$,

$$\Gamma \vdash^* \varphi \iff \Gamma, \Sigma \vdash \varphi.$$

In this case, we say that Σ axiomatizes \vdash^* relative to \vdash .

Axiomatic extensions of IPC have been called *superintuitionistic logics* in the literature.

Remark 5.8. Notice that when a logic \vdash * is an axiomatic extension of a logic \vdash , axiomatized relative to \vdash by Σ , it can be axiomatized by extending any Hilbert axiomatization for \vdash with the set of axioms $\{\emptyset \rhd \varphi : \varphi \in \Sigma\}$.

Definition 5.9. Let K and M be quasi-varieties of the same type. Then M is said to be

- (i) a subquasi-variety of K if $M \subseteq K$; and
- (ii) a relative subvariety of K if it is axiomatized relative to K by a set of equations.

Notice that the relative subvarieties of a variety are precisely its subvarieties.

Given a finitary logic \vdash , the posets $fEx(\vdash)$ and $aEx(\vdash)$ of finitary and axiomatic extensions of \vdash , respectively, ordered under the inclusion relation form two complete lattices. Similarly, given a quasi-variety K, the posets sQ(K) and sV(K) of subquasi-varieties and relative subvarieties of K, respectively, ordered under the inclusion relation form two complete lattices. In view of the next result, axiomatic extensions of an algebraizable logic can be studied through the lenses of the relative subvarieties of its equivalent algebraic semantics, which, in turn, are amenable to the methods of model theory, universal algebra and duality theory.

Theorem 5.10. Let \vdash be an algebraizable logic and K its equivalent algebraic semantics. The lattices $fEx(\vdash)$ and sQ(K) are dually isomorphic under the map that sends a finitary extension of \vdash to its equivalent algebraic semantics. This dual isomorphism restricts to one between $aEx(\vdash)$ and sV(K).

Remark 5.11. Notice that the above result implicitly states that algebraizability persists under the formation of finitary extensions. Moreover, it generalizes the well-known fact that the lattices of superintuitionistic logics and of normal modal logics are dually isomorphic to those of varieties of Heyting and modal algebras, respectively.

5.2 Deductive filters

Deductive closed sets of formulas have been called theories. This notion can be extended as follows.

Definition 5.12. A subset *F* of the universe of an algebra *A* is said to be a *deductive filter* of a logic \vdash on *A* when, for every $\Gamma \cup \{\varphi\} \subseteq T(Var)$,

if
$$\Gamma \vdash \varphi$$
, then for every homomorphism $f \colon T(Var) \to A$, if $f[\Gamma] \subseteq F$, then $f(\varphi) \in F$.

We denote by $Fi_{\vdash}(A)$ the set of deductive filters of \vdash on A.

The following observations is a direct consequence of the definition of a deductive filter.

Proposition 5.13. *If* \vdash *is a logic and* A *an algebra, then* $\mathsf{Fi}_{\vdash}(A)$ *is an inductive closure system and, therefore, an algebraic lattice in which meets are intersections.*

Recall that the set of theories of a logic \vdash is denoted by $\mathsf{Th}(\vdash)$. When convenient, we regard $\mathsf{Th}(\vdash)$ as a lattice ordered under inclusion.

Proposition 5.14. *If* \vdash *is a logic, the lattice* $\mathsf{Th}(\vdash)$ *of theories of* \vdash *coincides with the lattice* $\mathsf{Fi}_{\vdash}(T(Var))$ *of filters of* \vdash *on the formula algebra* T(Var).

Proof. Consider a set of formulas Γ. Suppose first that Γ is a theory of ⊢. Then consider a set of formulas $\Sigma \cup \{\varphi\}$ such that $\Sigma \vdash \varphi$ and a homomorphism $\sigma \colon T(Var) \to T(Var)$ such that $\sigma[\Sigma] \subseteq \Gamma$. Notice that σ is a substitution. Consequently, as ⊢ is substitution invariant, $\sigma[\Sigma] \vdash \sigma(\varphi)$. Now, since $\sigma[\Sigma] \subseteq \Gamma$, we have $\Gamma \vdash \sigma[\Sigma]$. Together with $\sigma[\Sigma] \vdash \sigma(\varphi)$ and the Cut principle, this implies $\Gamma \vdash \sigma(\varphi)$. Since Γ is a theory of ⊢, this yields $\sigma(\varphi) \in \Gamma$. Hence, we conclude that Γ is a filter of ⊢ on T(Var).

Conversely, suppose that Γ is a filter of \vdash on T(Var). Then consider a formula φ such that $\Gamma \vdash \varphi$ and let $id \colon T(Var) \to T(Var)$ be the identity homomorphism. Since $id[\Gamma] = \Gamma$ and $\Gamma \vdash \varphi$, the assumption that Γ is a filter of \vdash on T(Var) guarantees that $\varphi = id(\varphi) \in \Gamma$. Hence, we conclude that Γ is a theory of \vdash .

The next observation is instrumental to describe deductive filters in concrete cases.

if
$$f[\Gamma] \subseteq F$$
, then $f(\varphi) \in F$.

Proof. The "only if" part is straightforward. To prove the "if" one, suppose that F is closed under the interpretation of the rules in H. Then consider a set of formulas $\Gamma \cup \{\varphi\}$ such that $\Gamma \vdash \varphi$ and a homomorphism $f \colon T(Var) \to A$ such that $f[\Gamma] \subseteq F$. Since H axiomatizes \vdash , there exists a formal proof $\langle \psi_n : n \leqslant m \rangle$ of φ from Γ in H. We will prove, by complete induction on n, that $f(\psi_n) \in F$. Accordingly, assume that $\{f(\psi_k) : k < n\} \subseteq F$. Then we have two cases: either $\psi_n \in \Gamma$ or there exists a rule $\Sigma \rhd \delta$ in H and a substitution σ such that $\sigma[\Delta] \subseteq \{\psi_k : k < n\}$ and $\sigma(\delta) = \psi_n$. If $\psi_\alpha \in \Gamma$, then it is clear that $f(\psi_n) \in f[\Gamma] \subseteq F$. Then we consider the second case. By the inductive hypothesis, we have

$$f(\sigma[\Delta]) \subseteq \{ f(\psi_k) : k < n \} \subseteq F.$$

Furthermore, consider the homomorphism $f \circ \sigma \colon T(Var) \to A$. From the above display it follows $f \circ \sigma[\Delta] \subseteq F$. Since F is closed under the interpretation of the rules in H (and, in particular, under $\Delta \rhd \delta$), this yields

$$f(\psi_n) = f(\sigma(\delta)) = f \circ \sigma(\delta) \in F.$$

This concludes the inductive proof. Since $\varphi = \psi_n$, we obtain that $f(\varphi) \in F$ and, therefore, that F is a deductive filter of \vdash on A.

Example 5.16 (Deductive filters). We will prove that

- (i) The deductive filters of IPC on a Heyting algebra A are the lattice filters of A;
- (ii) The deductive filters of CPC on a Boolean algebra A are the lattice filters of A;
- (iii) The deductive filters of K_g on a modal algebra A are the open filters of A.
- (i): Consider a subset F of A. Suppose first that F is a deductive filter of IPC. As $\emptyset \vdash_{\mathsf{IPC}} 1$ and F is a deductive filter of IPC on A, we obtain $1 \in F$. Then consider $a, c \in A$. To prove that F is an upset, suppose that $a \in F$ and $a \leq c$. From the residuation law it follows

$$a \leqslant c \Longrightarrow 1 \land a \leqslant c \Longrightarrow 1 \leqslant a \to c \Longrightarrow a \to c = 1.$$

Since $1 \in F$, this yields $a, a \to c \in F$. Together with $x, x \to y \vdash_{\mathsf{IPC}} y$ and the assumption that F is a deductive filter of IPC on A, this yields $c \in F$, as desired. Lastly, to prove that F is closed under binary meets, suppose that $a, c \in F$. Since F is a deductive filter of IPC on A, the fact that $x, y \vdash_{\mathsf{IPC}} x \land y$ and $a, c \in F$ implies $a \land c \in F$. Hence, we conclude that F is a lattice filter of A.

Conversely, suppose that F is a lattice filter of A. In view of Proposition 5.15, it suffices to show that F is closed under the interpretation of the rules of an Hilbert calculus axiomatizing IPC. Accordingly, let H be the Hilbert calculus whose set of axioms is

$$\{\emptyset \rhd \varphi : \varphi \in T(Var) \text{ and } \emptyset \vdash_{\mathsf{IPC}} \varphi\}$$

and whose sole rule is modus ponens $x, x \to y \rhd y$. As H axiomatizes IPC, it only remains to prove that F is closed under the interpretation of its rules. Let then $\emptyset \rhd \varphi(x_1, \ldots, x_n)$ be an axiom of H. Clearly, $\emptyset \vdash_{\mathsf{IPC}} \varphi(x_1, \ldots, x_n)$. Since the class of Heyting algebras is an $\{x \approx 1\}$ -algebraic semantics for IPC, it follows that, for all $a_1, \ldots, a_n \in A$,

$$\varphi^A(a_1,\ldots,a_n)=1\in F.$$

The only rule in H is modus ponens $x, x \to y \rhd y$. To prove that F is closed under its interpretation, consider $a, c \in A$ such that $a, a \to c \in F$. Since F is closed under binary meets, $a \land (a \to c) \in F$. Moreover, by the residuation law,

$$a \to c \leqslant a \to c \iff a \land (a \to c) \leqslant c$$
.

Since $a \to c \leqslant a \to c$ always holds, we get $a \land (a \to c) \leqslant c$. As F is an upset that contains $a \land (a \to c)$, we obtain that $c \in F$. This shows that F is a deductive filter of IPC on A.

- (ii): Analogous to the proof of (i).
- (iii): Consider a subset F of A. Suppose first that F is a deductive filter of K_g on A. The proof that F is a lattice filter of A is analogous to the one detailed in the case of (i). In order to prove that F is also closed under \square , consider $a \in F$. Since $x \vdash_{K_g} \square x$, the fact that F is a deductive filter of K_g on A and $a \in F$ implies that $\square a \in F$. Hence, we conclude that F is an open filter of A, as desired.

To prove the converse, suppose that F is an open filter of A. In view of Proposition 5.15, it suffices to show that F is closed under the interpretation of the rules in the Hilbert calculus axiomatizing K_g . Accordingly, let H be the Hilbert calculus whose set of axioms is

$$\{\emptyset \rhd \varphi : \varphi \in T(Var) \text{ and } \emptyset \vdash_{\mathsf{K}_{\sigma}} \varphi\}$$

and whose rules are modus ponens $x, x \to y \rhd y$ and necessitation $x \rhd \Box x$. As H axiomatizes K_g , it only remains to show that F is closed under the interpretation of its rules. The proof that F is closed under the interpretation of the axioms in H and of modus ponens is analogous to the one detailed for the case of (i). Therefore, it only remains to prove that F is closed under the interpretation of the necessitation rule $x \rhd \Box x$. But this is an immediate consequence of the fact that the filter F is open.

5.3 The Lindenbaum-Tarski process

Algebraizable logics can be described in purely syntactic terms. More precisely, our aim is to prove the following:

Theorem 5.17. A logic \vdash is algebraizable if and only if there are a finite set of equations τ and a finite set of formulas Δ such that for every n-ary connective f,

The proof of this fact is based on an abstract version of the Lindenbaum-Tarski process. We begin by the following useful observation.

Proposition 5.18. *Let* \vdash *be a logic with a set of formulas* Δ *such that for every n-ary connective* f *,*

Then

$$\Delta(x,y) \vdash \Delta(y,x)$$
 and $\Delta(x,y), \Delta(y,z) \vdash \Delta(x,z)$.

Proof. We begin by proving that $\Delta(x,y) \vdash \Delta(y,x)$. To this end, consider $\delta(x,y) \in \Delta(x,y)$. We need to prove that $\Delta(x,y) \vdash \delta(y,x)$. From the third rule in the statement it follows $\Delta(x,y), \Delta(x,x) \vdash \Delta(\delta(x,x),\delta(y,x))$. By the first rule in the statement this simplifies to $\Delta(x,y) \vdash \Delta(\delta(x,x),\delta(y,x))$. Moreover, $\emptyset \vdash \delta(x,x)$. Together with the second rule in the statement and $\Delta(x,y) \vdash \Delta(\delta(x,x),\delta(y,x))$, this yields $\Delta(x,y) \vdash \delta(y,x)$. Hence, $\Delta(x,y) \vdash \Delta(y,x)$ as desired.

To prove that $\Delta(x,y)$, $\Delta(y,z) \vdash \Delta(x,z)$, consider $\delta(x,y) \in \Delta(x,y)$. We need to prove that $\Delta(x,y)$, $\Delta(y,z) \vdash \delta(x,z)$. From $\Delta(x,y) \vdash \Delta(y,x)$ and the third rule in the statement it follows $\Delta(x,y)$, $\Delta(y,z) \vdash \Delta(\delta(y,y),\delta(x,z))$. Therefore, an argument similar to the one detailed above yields $\Delta(x,y)$, $\Delta(y,z) \vdash \delta(x,z)$.

We are now ready to prove the main result:

Proof of Theorem 5.17. The implication from left to right is an easy consequence of the definition of an algebraizable logic (just let K, τ , Δ be any triple witnessing the algebraizability of \vdash).

To prove the implication from right to left, suppose that there are τ and Δ as in the statement. Then consider an Hilbert calculus H that axiomatizes \vdash . Notice that such a calculus always exists, e.g., $\mathsf{H} = \{\Gamma \rhd \varphi : \Gamma \cup \{\varphi\} \subseteq T(Var) \text{ is finite and such that } \Gamma \vdash \varphi\}$. Let K be the quasi-variety axiomatized by the quasi-equations

$$x \approx y \Longrightarrow \tau[\Delta(x,y)] \text{ and } \tau[\Delta(x,y)] \Longrightarrow x \approx y$$
 (5.2)

and

$$\mathcal{E}_{\Gamma} \tau[\Gamma] \Longrightarrow \tau(\varphi), \tag{5.3}$$

where $\Gamma \rhd \varphi$ is a rule that belongs to H. Notice that this is a small abuse of notation, as, technically speaking, the each of above expressions is a *set* of quasi-equations (as opposed to a single quasi-equation). We will prove that the triple K, τ , Δ witnesses the algebraizability of \vdash .

In view of Proposition 5.2, it will be enough to show that conditions (Alg1) and (Alg4*) hold. The definition of K guarantees the validity of (Alg4*) holds. In order to prove (Alg1), consider a set of formulas $\Gamma \cup \{\varphi\}$. First suppose that $\Gamma \vdash \varphi$. Then there exists a proof $\langle \psi_n : n \leqslant m \rangle$ of φ from Γ in H. We will prove by complete induction on n that $\tau[\Gamma] \vDash_K \tau(\psi_n)$ for each $n \leqslant m$. Accordingly, suppose that $\tau[\Gamma] \vDash_K \tau(\psi_k)$, for all k < n. We have two cases: either $\psi_n \in \Gamma$ or there exist a rule $\Sigma \rhd \delta$ in H and a substitution such that $\sigma[\Sigma] \subseteq \{\psi_k : k < n\}$ and $\sigma(\delta) = \psi_n$. If $\psi_n \in \Gamma$, then obviously $\tau[\Gamma] \vDash_K \tau(\psi_n)$. Then we consider the second case. Since the rule $\Sigma \rhd \delta$ and $\sigma(\delta) = \psi_n$, by definition of K we have $\tau[\Sigma] \vDash_K \tau(\delta)$ and, therefore, $\tau[\sigma[\Sigma]] \vDash_K \tau(\psi_n)$. As, by inductive hypothesis, $\tau[\Gamma] \vDash_K \tau[\sigma[\Sigma]]$, we conclude that $\tau[\Gamma] \vDash_K \tau(\psi_n)$. This concludes the inductive argument. Since $\psi_m = \varphi$, we conclude that $\tau[\Gamma] \vDash_K \tau(\varphi)$.

To prove the other implication in (Alg1), we will utilize a general version of the Lindenbaum-Tarski process. We begin by the following observation:

Claim 5.19. For every algebra A and $F \in Fi_{\vdash}(A)$, the relation

$$\mathbf{\Omega}^{\mathbf{A}}F := \{ \langle a, b \rangle \in A \times A : \Delta^{\mathbf{A}}(a, b) \subseteq F \}$$

is a K-congruence of A.

Proof of the Claim. By the assumption and Proposition 5.18 we know that

$$\Delta(x,y) \vdash \Delta(y,x)
\Delta(x,y), \Delta(y,z) \vdash \Delta(x,z)
\Delta(x_1,y_1) \cup \cdots \cup \Delta(x_n,y_n) \vdash \Delta(f(x_1,\ldots,x_n),f(y_1,\ldots,y_n)),$$

for every n-ary connective f. Since F is a deductive filter of \vdash on A, this easily implies that $\Omega^A F$ is a congruence of A.

To prove that it is also a K-congruence, we utilize Proposition 4.35. Consider a homomorphism $h\colon T(Var)\to A$. Then let $\Gamma\rhd \varphi$ be a rule in H and suppose that $h[\tau[\Gamma]]\subseteq \Omega^A F$. By the definition of $\Omega^A F$ this amounts to $h[\Delta[\tau[\Gamma]]]\subseteq F$. From the assumption that $x\dashv\vdash \Delta[\tau(x)]$, we obtain

$$\Gamma \dashv \vdash \Delta[\tau[\Gamma]]$$
 and $\varphi \dashv \vdash \Delta[\tau(\varphi)]$.

As *F* is a deductive filter of \vdash on *A*, this implies

$$(h[\Gamma] \subseteq F \text{ iff } h[\Delta[\tau[\Gamma]]] \subseteq F) \text{ and } (h(\varphi) \in F \text{ iff } h[\Delta[\tau(\varphi)]] \subseteq F)$$

Since $h[\Delta[\tau[\Gamma]]] \subseteq F$, the first of the above equivalences yields $h[\Gamma] \subseteq F$. As $\Gamma \vdash \varphi$ and F is a deductive filter, this yields $h(\varphi) \in F$. Therefore, from the second of the equivalences above we obtain $h[\Delta[\tau(\varphi)]] \subseteq F$. By the definition of $\Omega^A F$ this amounts to $\tau(\varphi) \subseteq \Omega^A F$ as desired.

Similarly, we obtain

$$\langle h(x), h(y) \rangle \in \mathbf{\Omega}^A F \iff h[\Delta(x,y)] \subseteq F$$

 $\iff h[\Delta[\tau[\Delta(x,y)]]] \subseteq F$
 $\iff h[\tau[\Delta(x,y)]] \subseteq \mathbf{\Omega}^A F.$

The first and the last of the above equivalences hold by the definition of $\Omega^A F$, while the second follows from the assumption that $x \dashv \vdash \Delta[\tau(x)]$ and that F is a deductive filter. By Proposition 4.35 we conclude that $\Omega^A F$ is a K-congruence of A.

We are now ready to prove the implication from right to left in (Alg1). As usual, we reason by contraposition. Suppose that $\Gamma \nvdash \varphi$. Then consider the theory of \vdash generated by Γ , namely

$$Cn_{\vdash}(\Gamma) := \{ \varphi \in T(Var) : \Gamma \vdash \varphi \}.$$

By Proposition 5.14, the theory $Cn_{\vdash}(\Gamma)$ is a deductive filter of \vdash on T(Var). Therefore, $\Omega Cn_{\vdash}(\Gamma)$ is a K-congruence of T(Var) by the Claim. Then consider the canonical projection $\pi \colon T(Var) \to T(Var)/\Omega Cn_{\vdash}(\Gamma)$. Since $\Gamma \nvdash \varphi$, we can use the assumption that $x \dashv \vdash \Delta[\tau(x)]$ to conclude that

$$\Gamma \vdash \Delta[\tau[\Gamma]]$$
 and $\Gamma \nvdash \Delta[\tau(\varphi)]$.

By the definition of $Cn_{\vdash}(\Gamma)$ this amounts to

$$\Delta[\tau[\Gamma]] \subseteq Cn_{\vdash}(\Gamma)$$
 and $\Delta[\tau(\varphi)] \nsubseteq Cn_{\vdash}(\Gamma)$.

Therefore, the definition of $\Omega Cn_{\vdash}(\Gamma)$ guarantees that

$$\tau[\Gamma] \subseteq \mathbf{\Omega} Cn_{\vdash}(\Gamma)$$
 and $\tau(\varphi) \nsubseteq \mathbf{\Omega} Cn_{\vdash}(\Gamma)$.

But this means that the set of equations $\tau[\Gamma]$ holds in $T(Var)/\Omega Cn_{\vdash}(\Gamma)$ under the assignment h, while $\tau(\varphi)$ does not. Since $T(Var)/\Omega Cn_{\vdash}(\Gamma) \in K$, we conclude that $\tau[\Gamma] \nvDash_K \tau(\varphi)$. Hence, we conclude that (Alg1) holds.

Corollary 5.20. Algebraizability persists under the formation of extensions.

The proof of Theorem 5.17 provides a general method for transforming the axiomatization of an algebraizable logic into an axiomatization of its equivalent algebraic semantics.

Corollary 5.21. *Let* \vdash *be an algebraizable logic whose algebraizability is witnessed by* K, τ , Δ *with* τ *and* Δ *finite. If* H *is an Hilbert calculus that axiomatizes* \vdash , *then* K *can be axiomatized by the quasi-equations of the following form, where* $\Gamma \rhd \varphi$ *is a rule in* H,

Another useful consequence of the proof of Theorem 5.17 is the following:

Proposition 5.22. *Let* \vdash *be an algebraizable logic whose algebraizability is witnessed by* K, τ, Δ . *For every algebra* A *and* $F \in \mathsf{Fi}_{\vdash}(A)$ *, the relation*

$$\mathbf{\Omega}^{\mathbf{A}}F := \{ \langle a, b \rangle \in A \times A : \Delta^{\mathbf{A}}(a, b) \subseteq F \}$$

is a K-congruence of A.

5.4 The isomorphism theorem

The notion of a deductive filter can be extended to relative equational consequences as follows.

Definition 5.23. Let $K \cup \{A\}$ be a class of similar algebras. A set $\theta \subseteq A \times A$ is said to be a *deductive filter* of \vDash_K on A when, for every $\Theta \cup \{\varepsilon \approx \delta\} \subseteq E(Var)$,

$$\begin{split} \text{if } \Theta \vDash_{\mathsf{K}} \varepsilon &\approx \delta \text{, then for every homomorphism } f \colon T(\mathit{Var}) \to A, \\ &\text{if } \langle f(\varphi), f(\psi) \rangle \in \theta \text{ for all } \varphi \approx \psi \in \Theta \text{, then } \langle f(\varepsilon), f(\delta) \rangle \in \theta. \end{split}$$

Proposition 5.24. Let K be a quasi-variety and A an algebra of the same type. The deductive filters of \vdash_{K} on A are precisely the K-congruences of A.

Proof. Immediate by Proposition 4.35.

Definition 5.25. Let K be a quasi-variety. A set of equations $\Theta \subseteq E(Var)$ is said to be a *theory* of \vDash_K when, for every $\varepsilon \approx \delta \in E(Var)$,

if
$$\Theta \vDash_{\mathsf{K}} \varepsilon \approx \delta$$
, then $\varepsilon \approx \delta \in \Theta$.

When ordered under the inclusion relation, the theories of \vDash_K form a lattice that we denote by $\mathsf{Th}(\vDash_K)$.

Recall that, formally speaking, equations are ordered pairs of formulas, e.g., the expression $\varepsilon \approx \delta$ is a suggestive notation for the ordered pair $\langle \varepsilon, \delta \rangle$. The following result builds on this observation.

 \boxtimes

Proposition 5.26. *If* K *is a quasi-variety, the lattice* $\mathsf{Th}(\vDash_\mathsf{K})$ *of theories of* \vDash_K *coincides with the lattice* $\mathsf{Con}_\mathsf{K}(T(Var))$ *of* K-congruences of the formula algebra T(Var).

Proof. An argument analogous to the one detailed in the proof of Proposition 5.14 shows that $\mathsf{Th}(\vDash_{\mathsf{K}})$ coincides with the lattice of deductive filters of \vDash_{K} on T(Var). But, in view of Proposition 5.24, the latter coincides with $\mathsf{Con}_{\mathsf{K}}(T(Var))$.

Deductive filters are closed under inverse endomorphisms, as we proceed to explain. First, the set of *endomorphism* of an algebra A will be denoted by End(A). Then, given an endomorphism σ and a congruence θ of A, we set

$$\sigma^{-1}[\theta] := \{ \langle a, c \rangle \in A \times A \colon \langle \sigma(a), \sigma(c) \rangle \in \theta \}.$$

Lemma 5.27. *Let* \vdash *be a logic,* K *a quasi-variety,* A *an algebra and* $\sigma \in \mathsf{End}(A)$.

- (i) If $F \in Fi_{\vdash}(A)$, then $\sigma^{-1}[F] \in Fi_{\vdash}(A)$.
- (ii) If $\theta \in \mathsf{Con}_{\mathsf{K}}(A)$, then $\sigma^{-1}[\theta] \in \mathsf{Con}_{\mathsf{K}}(A)$.

Proof. (i): Suppose that $F \in \mathsf{Fi}_{\vdash}(A)$. Then consider $\Gamma \cup \{\varphi\} \subseteq T(Var)$ such that $\Gamma \vdash \varphi$ and a homomorphism $f \colon T(Var) \to A$ such that $f[\Gamma] \subseteq \sigma^{-1}[F]$. Clearly, $\sigma \circ f[\Gamma] \subseteq F$. Since $\sigma \circ f \colon T(Var) \to A$ is a homomorphism and $F \in \mathsf{Fi}_{\vdash}(A)$, this implies $\sigma \circ f(\varphi) \subseteq F$. Hence, we conclude $f(\varphi) \subseteq \sigma^{-1}[F]$, as desired.

(ii): Recall from Proposition 5.24 that $\mathsf{Con}_{\mathsf{K}}(A)$ is the set of deductive filters of \vDash_{K} on A. Because of this, we can mimic the proof detailed for condition (i) and obtain that $\sigma^{-1}[\theta] \in \mathsf{Con}_{\mathsf{K}}(A)$, for every $\theta \in \mathsf{Con}_{\mathsf{K}}(A)$.

Remark 5.28. Conditions (i) and (ii) in the above lemma can be generalized as follows. Let \vdash be a logic, K a quasi-variety and $f: A \rightarrow B$ a homomorphism.

- (i) If *F* is a deductive filter of \vdash on *B*, then $f^{-1}[F]$ is a deductive filter of \vdash on *A*; and
- (ii) If θ is a K-congruence of B, then $f^{-1}[\theta]$ is a K-congruence of A.

 \boxtimes

In view of Lemma 5.27, given a logic \vdash and an algebra A, the lattice $\mathsf{Fi}_{\vdash}(A)$ of deductive filters of \vdash on A can be expanded with the unary operations $\{\sigma^{-1}: \sigma \in \mathsf{End}(A)\}$. Similarly, given a quasi-variety K , the lattice $\mathsf{Con}_{\mathsf{K}}(A)$ of K -congruences of A can also be expanded with the unary operations $\{\sigma^{-1}: \sigma \in \mathsf{End}(A)\}$. Accordingly, we set

$$\begin{split} \operatorname{Fi}_{\vdash}(A)^+ &:= \langle \operatorname{Fi}_{\vdash}(A); \land, \lor, \{\sigma^{-1} : \sigma \in \operatorname{End}(A)\} \rangle \\ \operatorname{Con}_{\mathsf{K}}(A)^+ &:= \langle \operatorname{Con}_{\mathsf{K}}(A); \land, \lor, \{\sigma^{-1} : \sigma \in \operatorname{End}(A)\} \rangle. \end{split}$$

The above structures can be viewed as algebras whose type comprises two binary operations \land and \lor an a family of unary operations $\{\sigma^{-1}: \sigma \in \operatorname{End}(A)\}$. From this perspective, an isomorphism from $\operatorname{Fi}_{\vdash}(A)^+$ to $\operatorname{Con}_{\mathsf{K}}(A)^+$ is a lattice isomorphism $\Phi\colon \operatorname{Fi}_{\vdash}(A) \to \operatorname{Con}_{\mathsf{K}}(A)$ that commutes with inverse endomorphisms, in the sense that

$$\Phi(\sigma^{-1}[F]) = \sigma^{-1}[\Phi(F)]$$
, for every $\sigma \in \operatorname{End}(A)$.

Recall from Propositions 5.14 and 5.26 that

$$\mathsf{Th}(\vdash) = \mathsf{Fi}_{\vdash}(T(Var)) \text{ and } \mathsf{Th}(\models_{\mathsf{K}}) = \mathsf{Con}_{\mathsf{K}}(T(Var)).$$
 (5.4)

Because of this, when A = T(Var), we will denote $Fi_{\vdash}(A)^+$ and $Con_{\mathsf{K}}(A)^+$ by

$$\mathsf{Th}(\vdash)^+$$
 and $\mathsf{Th}(\models_{\mathsf{K}})^+$.

The importance of these structures will become apparent in the next part of this section.

In many familiar examples the congruences of an algebra correspond to certain distinguished subsets of its universe. This happens, for instance, in the algebra of logic, where the congruence lattice $\mathsf{Con}(A)$ of a Heyting algebra A is isomorphic to the lattice $\mathsf{Fi}(A)$ of its filters. Similarly, the congruence lattice of a modal algebra A is isomorphic to the the lattice $\mathsf{Op}(A)$ of its open filters. Analogous correspondences can be found in classical algebra, where the congruences of a group are related to normal subgroups in a similar manner. As we shall see, all these correspondences can be viewed as consequences of the algebraization of some logic.

Isomorphism Theorem 5.29 (Blok & Pigozzi). *The following conditions are equivalent for a finitary logic* \vdash *and a quasi-variety* K :

- (i) \vdash is algebraizable with equivalent algebraic semantics K;
- (ii) $\operatorname{Fi}_{\vdash}(A)^+ \cong \operatorname{Con}_{\mathsf{K}}(A)^+$, for every algebra A of the suitable type;
- (iii) $Th(\vdash)^+ \cong Th(\models_{\mathsf{K}})^+$.

In view of the implication (i) \Rightarrow (ii) in the Isomorphism Theorem, every algebraizable logic induces an isomorphism between lattices of deductive filters and of K-congruences. Most of the known correspondences between congruences and distinguished sets are consequences of this fact, as we proceed to explain.

Corollary 5.30. *The following conditions hold:*

- (i) If A is a Heyting algebra, Con(A) is isomorphic to the lattice of filters of A;
- (ii) If A is a modal algebra, Con(A) is isomorphic to the lattice of open filters of A;
- (iii) If A is a group, Con(A) is isomorphic to the lattice of normal subgroups of A;
- (iv) If A is a ring, Con(A) is isomorphic to the lattice of two-sided ideals of A.

Proof. (i): Let *A* be a Heyting algebra. As detailed in Example 5.16, the deductive filters of IPC on *A* are precisely the lattice filters of *A*, in symbols,

$$Fi_{IPC}(A) = Fi(A)$$
.

Since IPC is algebraizable and its equivalent algebraic semantics is the class HA of Heyting algebras, the implication (i) \Rightarrow (ii) in the Isomorphism Theorem guarantees that the lattices

 $\mathsf{Fi}_{\mathsf{IPC}}(A)$ and $\mathsf{Con}_{\mathsf{HA}}(A)$ are isomorphic. Furthermore, since A is a Heyting algebra and HA is a variety, we have $\mathsf{Con}_{\mathsf{HA}}(A) = \mathsf{Con}(A)$, whence

$$\mathsf{Fi}(A) = \mathsf{Fi}_{\mathsf{IPC}}(A) \cong \mathsf{Con}_{\mathsf{HA}}(A) = \mathsf{Con}(A).$$

Thus, we conclude that $Fi(A) \cong Con(A)$, as desired.

The proof of condition (ii) is analogous to that of (i), because K_g is algebraizable with equivalent algebraic semantics the variety of modal algebras and the deductive filters of K_g on a modal algebra A are precisely the open filters of A (see Example 5.16).

It only remains to prove conditions (iii) and (iv). We will outline only the proof of (iii), as the one of (iv) is analogous. Let Gr be the variety of groups in the type $\langle \cdot, (-)^{-1}, 1 \rangle$. We will show that Gr is the equivalent algebraic semantics of an algebraizable logic. To this end, consider the sets

$$\tau(x) := \{x \approx 1\} \text{ and } \Delta(x,y) := \{x \cdot y^{-1}\}$$

and observe that $x \approx y = \models_{\mathsf{Gr}} x \cdot y^{-1} \approx 1$, that is,

$$x \approx y = | \sqsubseteq_{\mathsf{Gr}} \tau[\Delta(x, y)].$$
 (5.5)

The *logic of groups* **G** is defined, for every set of formulas $\Gamma \cup \{\varphi\}$, as follows:

$$\Gamma \vdash_{\mathbf{G}} \varphi \Longleftrightarrow \tau[\Gamma] \vDash_{\mathsf{Gr}} \tau(\varphi).$$

This definition and condition (5.5) imply that G, τ , Δ and G satisfy the conditions (Alg1) and (Alg4*). By Proposition 5.2, we conclude that G is algebraizable with equivalent algebraic semantics the variety of groups Gr.

Furthermore, the deductive filters of G on a group A are precisely the normal subgroups of A. On the one hand, every deductive filter of G on A is a normal subgroup, because the following rules are valid in G:

$$x,y\rhd x\cdot y \qquad x\rhd x^{-1} \qquad \varnothing\rhd 1 \qquad x\rhd y\cdot (x\cdot y^{-1}).$$

On the other hand, every deductive filter is a normal subgroup. For if F is a normal subgroup of A, we have $F = \pi^{-1}[\{1\}]$, where $\pi \colon A \to A/\theta_F$ the canonical homomorphism and θ_F the congruence of A induced by F. Now, the definition of G guarantees that $\{1\}$ is a deductive filter of G on A/θ_F . In view of Remark 5.28, its inverse image $\pi^{-1}[\{1\}]$ is a deductive filter of G on A. Since $F = \pi^{-1}[\{1\}]$, we are done.

Therefore, we can apply the implication (i) \Rightarrow (ii) in the Isomorphism Theorem, obtaining that the lattice of normal subgroups of A is isomorphic to $Con_{Gr}(A)$. But, as Gr is a variety, $Con(A) = Con_{Gr}(A)$.

The implication (i) \Rightarrow (ii) in the Isomorphism Theorem is also instrumental to disprove that certain logics are algebraizable.

Example 5.31. Recall that the logic K_ℓ is not algebraizable. We will present an alternative proof of this fact, based on the Isomorphism Theorem. Suppose, with a view to contradiction, that K_ℓ is algebraizable and let K be its equivalent algebraic semantics. Then consider the modal algebra $A = \langle \{0, a, c, 1\}; \land, \lor, \neg, \Box, 0, 1 \rangle$ such that

$$\langle \{0, a, c, 1\}; \wedge, \vee, \neg, 0, 1 \rangle$$

is the four-element Boolean algebra with minimum 0 and maximum 1 and

$$\square 0 = \square a = \square c = 0$$
 and $\square 1 = 1$.

As the deductive filters of K_ℓ on a modal algebra are precisely the lattice filters, we know that $\operatorname{Fi}_{K_\ell}(A)$ is a four-element set. On the other hand, $\operatorname{Con}(A) = \{\operatorname{id}_A, A \times A\}$. Consequently, $\operatorname{Con}_K(A)$ has cardinality at most two. On cardinality grounds, it follows that the lattices $\operatorname{Fi}_{K_\ell}(A)$ and $\operatorname{Con}_K(A)$ cannot be isomorphic. As this contradicts the Isomorphism Theorem, we conclude that K_ℓ is not algebraizable.

The role of the inverse endomorphisms in the structures $Fi_{\vdash}(A)^+$ and $Con_{\mathsf{K}}(A)^+$ becomes apparent in the following example.

Example 5.32 (Implication free fragments). We will prove that also the $\langle \land, \lor, \neg \rangle$ -fragment of IPC, in symbols IPC $_{\land \lor \lnot}$, fails to be algebraizable. Suppose the contrary, with a view to contradiction. Then consider the algebra $A = \langle A; \land, \lor, \neg \rangle$, where $\langle A; \land, \lor \rangle$ is the lattice with order 0 < c < a < 1 and \neg is the unary operation defined as follows:

$$\neg 1 = \neg a = \neg c = 0$$
 and $\neg 0 = 1$.

By inspection, we see that A has precisely five congruences, namely, id_A , $A \times A$ and

 $\theta_1 := \text{ the congruence whose equivalence classes are } \{1, a\}, \{c\}, \{0\};$

 $\theta_2 := \text{ the congruence whose equivalence classes are } \{1\}, \{a, c\}, \{0\};$

 $\theta_3 := \text{ the congruence whose equivalence classes are } \{1, a, c\}, \{0\}.$

Therefore, Con(A) is the lattice depicted below.

Then consider the endomorphism $\sigma_1 \colon A \to A$ and $\sigma_2 \colon A \to A$ such that

$$\sigma_1(1) = \sigma_1(a) = 1$$
 $\sigma_1(c) = c$ $\sigma_1(0) = 0$

and

$$\sigma_2(1) = 1$$
 $\sigma_2(a) = \sigma_2(c) = c$ $\sigma_2(0) = 0$

and observe that

$$\theta_1 = \sigma_1^{-1}[\theta_2] \text{ and } \theta_2 = \sigma_2^{-1}[\theta_1].$$
 (5.6)

We claim that if K is a quasi-variety and the lattice underlying $\mathsf{Con}_\mathsf{K}(A)^+$ contains a four-element chain, then $\mathsf{Con}_\mathsf{K}(A)$ has cardinality five. To prove this, observe that, since $\mathsf{Con}_\mathsf{K}(A)$ is a subposet of $\mathsf{Con}(A)$ and $\mathsf{Con}(A)$ is the lattice depicted above, if $\mathsf{Con}_\mathsf{K}(A)^+$ has a four-element chain, then

$$\mathsf{Con}(A) \setminus \{\theta_1\} \subseteq \mathsf{Con}_{\mathsf{K}}(A) \text{ or } \mathsf{Con}(A) \setminus \{\theta_2\} \subseteq \mathsf{Con}_{\mathsf{K}}(A).$$

Since $Con_K(A)^+$ is closed under the unary operations σ_1^{-1} and σ_2^{-1} , from (5.6) it follows that $\theta_1, \theta_2 \in Con_K(A)^+$. Together with the above display, this yields $Con(A) = Con_K(A)$ and, therefore, that $Con_K(A)$ has precisely five elements.

Lastly, as A is the $\langle \wedge, \vee, \neg \rangle$ -reduct of a Heyting algebra, it is not hard to see that the deductive filters of IPC $_{\wedge\vee\neg}$ on A are precisely the lattice filters of A. Therefore, the lattice of deductive filters of IPC $_{\wedge\vee\neg}$ on A is a four-element chain. By the Isomorphism Theorem, the lattice of K-congruences of A is also a four-element chain, where K is equivalent algebraic semantics of IPC $_{\wedge\vee\neg}$. But, by the claim, this implies that $\mathsf{Con}_\mathsf{K}(A)$ is a five element set, a contradiction.

We shall now present a proof of the Isomorphism Theorem.

Proof. (i) \Rightarrow (ii): Let τ and Δ be the sets of equations and formulas that, together with K, witness the algebraizability of \vdash . Moreover, let A be an algebra of the appropriate type. For every $F \in \mathsf{Fi}_{\vdash}(A)$ and $\theta \in \mathsf{Con}_{\mathsf{K}}(A)$, we define

$$\Omega^{A}F := \{ \langle a, c \rangle \in A \times A : \Delta^{A}(a, c) \subseteq F \}
\mathsf{S}^{A}(\theta) := \{ a \in A : \langle \varphi(a), \psi(a) \rangle \in \theta, \text{ for all } \varphi \approx \psi \in \tau \}.$$

We will show that the maps

$$\Omega^A \colon \mathsf{Fi}_{\vdash}(A)^+ o \mathsf{Con}_{\mathsf{K}}(A)^+ \ \ \text{and} \ \ \mathsf{S}^A \colon \mathsf{Con}_{\mathsf{K}}(A)^+ o \mathsf{Fi}_{\vdash}(A)^+$$

are well-defined isomorphisms, one inverse to the other.

As the map Ω^A is well defined by Proposition 5.22, we turn to prove that S^A is also well defined. Consider $\theta \in \mathsf{Con}_\mathsf{K}(A)$. To prove that $\mathsf{S}^A(\theta)$ is a deductive filter of \vdash on A, consider $\Gamma \cup \{\varphi\} \subseteq T(Var)$ and a homomorphism $h \colon T(Var) \to A$ such that $h[\Gamma] \subseteq \mathsf{S}^A(\theta)$. By the definition of $\mathsf{S}^A(\theta)$ this amounts to $h[\tau[\Gamma]] \subseteq \theta$. From $\Gamma \vdash \varphi$ it follows $\tau[\Gamma] \vDash \tau(\varphi)$. As θ is a K-congruence and $h[\tau[\Gamma]] \subseteq \theta$, this implies $h[\tau(\varphi)] \subseteq \theta$, that is, $h(\varphi) \in \mathsf{S}^A(\theta)$. Therefore, the map $\mathsf{S}^A \colon \mathsf{Con}_\mathsf{K}(A)^+ \to \mathsf{Fi}_\vdash(A)^+$ is well defined.

To conclude the proof, it only remains to show that

$$\Omega^A \colon \mathsf{Fi}_{\vdash}(A)^+ \to \mathsf{Con}_{\mathsf{K}}(A)^+ \text{ and } \mathsf{S}^A \colon \mathsf{Con}_{\mathsf{K}}(A)^+ \to \mathsf{Fi}_{\vdash}(A)^+$$
 (5.7)

are isomorphisms, one inverse to the other. To this end, consider $F \in Fi_{\vdash}(A)$. We have

$$S^{A}(\Omega^{A}F) = \{ a \in A : \langle \varphi(a), \psi(a) \rangle \in \Omega^{A}F, \text{ for all } \varphi \approx \psi \in \tau \}$$

$$= \{ a \in A : \Delta^{A}(\varphi(a), \psi(a)) \subseteq F, \text{ for all } \varphi \approx \psi \in \tau \}$$

$$= \{ a \in A : \Delta^{A}[\tau^{A}(a)] \subseteq F \}$$

$$= F.$$

The first and the third equalities above are straightforward, the second follows from the definition of $\Omega^A F$, and the fourth follows from condition (Alg3) in the definition of an algebraizable logic and the fact that F is a deductive filter of \vdash . A similar argument shows that $\theta = \Omega^A(S^A(\theta))$, for every $\theta \in Con_K(A)$. Hence, we conclude that that the maps in (5.7) are bijections, one inverse to the other.

It is straightforward to see that they are order preserving. Then consider $F, G \in F_{\vdash}(A)$ such that $\Omega^A F \subseteq \Omega^A G$. Since S^A is order preserving, we obtain $S^A(\Omega^A F) \subseteq S^A(\Omega^A G)$. As Ω^A and S^A are one inverse to the other, we conclude that

$$F = S^A(\Omega^A F) \subseteq S^A(\Omega^A G) = G.$$

It follows that Ω^A : $\operatorname{Fi}_{\vdash}(A)^+ \to \operatorname{Con}_{\mathsf{K}}(A)^+$ is also order reflecting and, therefore, an order embedding. As it is surjective, we conclude that it is a lattice isomorphism. To prove that it commutes with inverse endomorphism, consider $F \in \operatorname{Fi}_{\vdash}(A)$, a pair $a,c \in A$ and $\sigma \in \operatorname{End}(A)$. We have

$$\langle a,c\rangle \in \sigma^{-1}[\mathbf{\Omega}^A F] \iff \langle \sigma(a),\sigma(c)\rangle \in \mathbf{\Omega}^A F$$

$$\iff \Delta^A(\sigma(a),\sigma(c)) \subseteq F$$

$$\iff \sigma[\Delta^A(a,c)] \subseteq F$$

$$\iff \Delta^A(a,c) \subseteq \sigma^{-1}[F]$$

$$\iff \langle a,c\rangle \in \mathbf{\Omega}^A \sigma^{-1}[F].$$

The first and the fourth equivalences above are straightforward, the second holds by definition of $\Omega^A F$, and the third because σ is an endomorphism. The last equivalence follows from the definition of Ω^A too, because $\sigma^{-1}[F]$ is a deductive filter, by Lemma 5.27. Hence, we conclude that Ω^A : $\operatorname{Fi}_{\vdash}(A)^+ \to \operatorname{Con}_{\mathsf{K}}(A)^+$ is an isomorphism and, therefore, that $\operatorname{Fi}_{\vdash}(A)^+ \cong \operatorname{Con}_{\mathsf{K}}(A)^+$.

(ii) \Rightarrow (iii): In view of condition (5.4), when A = T(Var), we obtain $Fi_{\vdash}(A)^+ = Th(\vdash)^+$ and $Con_K(A)^+ = Th(\vdash_K)^+$. Therefore, condition (iii) is a special instance of (ii).

(iii) \Rightarrow (i): Consider an isomorphism Φ : Th(\vdash) $^+ \rightarrow$ Th(\models _K) $^+$. Let also

$$Cn_{\vdash} : \mathcal{P}(T(Var)) \to \mathcal{P}(T(Var)) \text{ and } Cn_{\mathsf{K}} : \mathcal{P}(E(Var)) \to \mathcal{P}(E(Var))$$

be the closure operators associated with the consequence relations \vdash and \vDash_K (equiv. with the closure systems $\mathsf{Th}(\vdash)$ and $\mathsf{Th}(\vDash_K)$), respectively. The proof proceeds through a series of technical claims.

Claim 5.33. For every set of formula Γ , set of equations Θ , and substitution σ ,

$$\begin{split} &\Phi(Cn_{\vdash}(\sigma[\varGamma])) = Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}\varGamma)]) \\ &\Phi^{-1}[Cn_{\mathsf{K}}(\sigma[\Theta])] = Cn_{\vdash}(\sigma[\Phi^{-1}(Cn_{\mathsf{K}}(\Theta))]). \end{split}$$

Proof of the Claim. We detail the proof of the first equality only, as that of the second is analogous. First, since Cn_K is a closure operator, we have

$$\sigma[\Phi(Cn_{\vdash}(\Gamma))] \subseteq Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}(\Gamma))])$$

and, therefore,

$$\Phi(\operatorname{Cn}_{\vdash}(\Gamma)) \subseteq \sigma^{-1}[\operatorname{Cn}_{\mathsf{K}}(\sigma[\Phi(\operatorname{Cn}_{\vdash}(\Gamma))])]. \tag{5.8}$$

We will prove that the two sets in the above display are theories of \vDash_K . For $\Phi(Cn_\vdash(\varGamma))$ this is a consequence of the fact that $Cn_\vdash(\varGamma) \in Th(\vdash)$ and Φ sends theories of \vdash to theories of \vDash_K . To prove that $\sigma^{-1}[Cn_K(\sigma[\Phi(Cn_\vdash(\varGamma))])]$ is also a theory of \vDash_K , observe that $Cn_K(\sigma[\Phi(Cn_\vdash(\varGamma))]) \in Th(\vDash_K)$. Since $Th(\vDash_K)$ is closed under inverse substitutions (as the structure $Th(\vDash_K)^+$ is well defined), this yields the desired result.

Since the two sets in (5.8) are theories of \vDash_{K} and $\Phi^{-1} \colon \mathsf{Th}(\vDash_{\mathsf{K}})^+ \to \mathsf{Th}(\vdash)^+$ is also an isomorphism, from (5.8) it follows

$$\begin{split} Cn_{\vdash}(\varGamma) &= \Phi^{-1}\Phi(Cn_{\vdash}(\varGamma)) \\ &\subseteq \Phi^{-1}(\sigma^{-1}[Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}(\varGamma))])]) \\ &= \sigma^{-1}[\Phi^{-1}(Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}(\varGamma))]))]. \end{split}$$

Consequently,

$$\sigma[Cn_{\vdash}(\varGamma)] \subseteq \Phi^{-1}(Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}(\varGamma))])).$$

Notice that the right hand side of the above display belongs to $Th(\vdash)$, because Φ^{-1} sends theories of \vdash_K to theories of \vdash . Therefore, we obtain

$$Cn_{\vdash}(\sigma[Cn_{\vdash}(\Gamma)]) \subseteq \Phi^{-1}(Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}(\Gamma))])). \tag{5.9}$$

Lastly,

$$\begin{split} \Phi(Cn_{\vdash}(\sigma[\Gamma])) &\subseteq \Phi(Cn_{\vdash}(\sigma[Cn_{\vdash}(\Gamma)])) \\ &\subseteq \Phi\Phi^{-1}(Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}(\Gamma))])) \\ &= Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}(\Gamma))]). \end{split}$$

The inclusions above are justified as follows. To prove the first, notice that $\sigma[\Gamma] \subseteq \sigma[Cn_{\vdash}(\Gamma)]$. Since both Cn_{\vdash} and Φ are order preserving, this yields $\Phi(Cn_{\vdash}(\sigma[\Gamma])) \subseteq \Phi(Cn_{\vdash}(\sigma[Cn_{\vdash}(\Gamma)]))$, as desired. The second inclusion follows from (5.9) and the fact that Φ is order preserving, while the last equality follows from the fact that Φ is a bijection.

This establishes the left to right inclusion of the first equality in the statement of the Claim. To prove the other inclusion, observe that $\sigma[\Gamma] \subseteq Cn_{\vdash}(\sigma[\Gamma])$ and, therefore, $\Gamma \subseteq \sigma^{-1}[Cn_{\vdash}(\sigma[\Gamma])]$. This, in turn, yields $Cn_{\vdash}(\Gamma) \subseteq Cn_{\vdash}(\sigma^{-1}[Cn_{\vdash}(\sigma[\Gamma])])$. As $Th(\vdash)$ is closed under inverse substitutions (because $Th(\vdash)^+$ is well defined), we obtain that $\sigma^{-1}[Cn_{\vdash}(\sigma[\Gamma])]$ is also a theory of \vdash . Consequently,

$$\operatorname{Cn}_{\vdash}(\Gamma) \subseteq \operatorname{Cn}_{\vdash}(\sigma^{-1}[\operatorname{Cn}_{\vdash}(\sigma[\Gamma])]) = \sigma^{-1}[\operatorname{Cn}_{\vdash}(\sigma[\Gamma])].$$

As at the left and right hand sides of the above displays we have two theories of \vdash and Φ is order preserving and commutes with inverse substitutions, we obtain

$$\Phi(\mathsf{Cn}_{\vdash}(\varGamma)) \subseteq \Phi(\sigma^{-1}[\mathsf{Cn}_{\vdash}(\sigma[\varGamma])]) = \sigma^{-1}[\Phi(\mathsf{Cn}_{\vdash}(\sigma[\varGamma]))].$$

Consequently, $\sigma[\Phi(Cn_{\vdash}(\Gamma))] \subseteq \Phi(Cn_{\vdash}(\sigma[\Gamma]))$ and, therefore,

$$Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}(\Gamma))]) \subseteq Cn_{\mathsf{K}}(\Phi(Cn_{\vdash}(\sigma[\Gamma]))) = \Phi(Cn_{\vdash}(\sigma[\Gamma])),$$

where the last equality follows from the assumption that Φ sends theories of \vdash to theories of \vdash_{K} . This establishes the right to left inclusion of the first equality in the Claim.

We will rely on the following formulation of substitution invariance.

Claim 5.34. For every set of formulas Γ , set of equations Θ and substitution σ ,

$$Cn_{\vdash}(\sigma[Cn_{\vdash}(\Gamma)]) = Cn_{\vdash}(\sigma[\Gamma]) \ \ \text{and} \ \ Cn_{\mathsf{K}}(\sigma[Cn_{\mathsf{K}}(\Theta)]) = Cn_{\mathsf{K}}(\sigma[\Theta]).$$

Proof of the Claim. We detail the proof of the first equality. As $\Gamma \subseteq Cn_{\vdash}(\Gamma)$, we have $\sigma[\Gamma] \subseteq \sigma[Cn_{\vdash}(\Gamma)]$ and, therefore, $Cn_{\vdash}(\sigma[\Gamma]) \subseteq Cn_{\vdash}(\sigma[Cn_{\vdash}(\Gamma)])$. To prove the reverse inclusion, it suffices to show that $\sigma[Cn_{\vdash}(\Gamma)] \subseteq Cn_{\vdash}(\sigma[\Gamma])$. To this end, consider $\varphi \in \sigma[Cn_{\vdash}(\Gamma)]$. Then there exists $\psi \in Cn_{\vdash}(\Gamma)$ such that $\varphi = \sigma(\psi)$. Moreover, $\Gamma \vdash \psi$. As \vdash is substitution invariant, this yields $\sigma[\Gamma] \vdash \sigma(\psi)$, that is, $\sigma[\Gamma] \vdash \varphi$. Hence, $\varphi \in Cn_{\vdash}(\sigma[\Gamma])$.

Now, let σ_x (resp. $\sigma_{x,y}$) be the substitution that sends all variables to x (resp. all variables other than y to x, and leaves y untouched). We define a set of equations $\tau(x)$ and a set of formulas $\Delta(x,y)$ as follows:

$$\tau(x) \coloneqq \sigma_x[\Phi(\mathsf{Cn}_{\vdash}(\{x\}))] \text{ and } \Delta(x,y) \coloneqq \sigma_{x,y}[\Phi^{-1}(\mathsf{Cn}_{\mathsf{K}}(\{x \approx y\}))].$$

Our aim is to prove that τ , Δ and K witness the algebraizability of \vdash .

Claim 5.35. *For every formula* φ *,*

$$\Phi(\mathrm{Cn}_{\vdash}(\{\varphi\}))=\mathrm{Cn}_{\mathsf{K}}(\tau(\varphi)).$$

Proof of the Claim. From Claim 5.33 it follows

$$\Phi(\operatorname{Cn}_{\vdash}(\{x\})) = \Phi(\operatorname{Cn}_{\vdash}(\{\sigma_x(x)\})) = \operatorname{Cn}_{\mathsf{K}}(\sigma_x[\Phi(\operatorname{Cn}_{\vdash}(\{x\}))]) = \operatorname{Cn}_{\mathsf{K}}(\tau(x)). \tag{5.10}$$

Now, consider a formula φ and let σ be any substitution such that $\sigma(x) = \varphi$. We have

$$\begin{split} \Phi(Cn_{\vdash}(\{\varphi\})) &= \Phi(Cn_{\vdash}(\{\sigma(x)\})) \\ &= Cn_{\mathsf{K}}(\sigma[\Phi(Cn_{\vdash}(\{x\}))]) \\ &= Cn_{\mathsf{K}}(\sigma[Cn_{\mathsf{K}}(\tau(x))]) \\ &= Cn_{\mathsf{K}}(\sigma[\tau(x)]) \\ &= Cn_{\mathsf{K}}(\tau(\varphi)). \end{split}$$

The above equalities are justified as follows. The first holds by the definition of σ , the second follows from Claim 5.33, the third from (5.10), the fourth from Claim 5.34, and the last one from the definition of σ .

Claim 5.35 can be extended to sets of formulas as follows.

Claim 5.36. *For every set of formulas* Γ *,*

$$\Phi(Cn_{\vdash}(\Gamma)) = Cn_{\mathsf{K}}(\tau[\Gamma]).$$

Proof of the Claim. We have

$$\Phi(Cn_{\vdash}(\varGamma)) = \Phi(\bigvee_{\gamma \in \varGamma}^{\mathsf{Th}(\vdash)} Cn_{\vdash}(\{\gamma\})) = \bigvee_{\gamma \in \varGamma}^{\mathsf{Th}(\models_{\mathsf{K}})} \Phi(Cn_{\vdash}(\{\gamma\})) = \bigvee_{\gamma \in \varGamma}^{\mathsf{Th}(\models_{\mathsf{K}})} Cn_{\mathsf{K}}(\tau(\gamma)).$$

The first and the equality above follows from the basic properties of closure operators, the second from the assumption that $\Phi \colon \mathsf{Th}(\vdash)^+ \to \mathsf{Th}(\models_{\mathsf{K}})^+$ is an isomorphism (and, therefore, preserves arbitrary joins), and the third from Claim 5.35.

Furthermore, we have

$$\bigvee_{\gamma \in \varGamma}^{\mathsf{Th}(\vDash_{\mathsf{K}})} \mathsf{Cn}_{\mathsf{K}}(\tau(\gamma)) = \mathsf{Cn}_{\mathsf{K}}(\bigcup_{\gamma \in \varGamma} \tau(\gamma)) = \mathsf{Cn}_{\mathsf{K}}(\tau[\varGamma]).$$

The first equality above follows from the description of joins in closure systems and the second from the definition of $\tau[\Gamma]$.

In view of Proposition 5.2, in order to prove that τ , Δ and K witness the algebraizability of \vdash , it suffices to check that conditions (Alg1) and (Alg4*) hold. To prove (Alg1), consider a set of formulas $\Gamma \cup \{\varphi\}$. Applying the fact that Φ is an order isomorphism and Claim 5.36, we obtain

$$\begin{split} \varGamma \vdash \varphi &\iff Cn_{\vdash}(\{\varphi\}) \subseteq Cn_{\vdash}(\varGamma) \iff \Phi(Cn_{\vdash}(\{\varphi\})) \subseteq \Phi(Cn_{\vdash}(\varGamma)) \\ &\iff Cn_{\mathsf{K}}(\tau(\varphi)) \subseteq Cn_{\mathsf{K}}(\tau[\varGamma]) \iff \tau[\varGamma] \vDash_{\mathsf{K}} \tau(\varphi). \end{split}$$

This establishes (Alg1). To prove condition (Alg4*), observe that

$$\begin{aligned} \operatorname{Cn}_{\mathsf{K}}(\{x \approx y\}) &= \operatorname{Cn}_{\mathsf{K}}(\sigma_{x,y}[\{x \approx y\}]) \\ &= \operatorname{Cn}_{\mathsf{K}}(\sigma_{x,y}[\operatorname{Cn}_{\mathsf{K}}(\{x \approx y\})]) \\ &= \Phi\Phi^{-1}(\operatorname{Cn}_{\mathsf{K}}(\sigma_{x,y}[\operatorname{Cn}_{\mathsf{K}}(\{x \approx y\})])) \\ &= \Phi(\operatorname{Cn}_{\vdash}(\sigma_{x,y}[\Phi^{-1}(\operatorname{Cn}_{\mathsf{K}}(\{x \approx y\}))])) \\ &= \Phi(\operatorname{Cn}_{\vdash}(\Delta(x,y)) \\ &= \operatorname{Cn}_{\mathsf{K}}(\tau[\Delta(x,y)]). \end{aligned}$$

The equalities above are justified as follows. The second follows from Claim 5.34, the fourth from Claim 5.33, and the sixth from Claim 5.36. From the above display it follows $(Alg4^*)$, thus concluding the proof.

Corollary 5.37. Let \vdash be a logic whose algebraizability is witnessed by τ , Δ and K. For every algebra A of the suitable type the map Ω^A : $Fi_{\vdash}(A)^+ \to Con_K(A)^+$, defined by the rule

$$\mathbf{\Omega}^A F := \{ \langle a, c \rangle \in A \times A : \Delta^A(a, c) \subseteq F \},$$

is an isomorphism.

Deduction theorems

6.1 Bridge theorem

Definition 6.1. A logic \vdash has a *deduction-detachment theorem* (DDT) if there exists a finite set I(x,y) of formulas such that for every set of formulas $\Gamma \cup \{\varphi,\psi\}$,

$$\Gamma, \varphi \vdash \psi \iff \Gamma \vdash I(\varphi, \psi).$$

In this case, we say that I(x, y) witnesses the DDT for \vdash .

It is well known that, for every set of formulas $\Gamma \cup \{\varphi, \psi\}$,

$$\Gamma, \varphi \vdash_{\mathsf{IPC}} \psi \Longleftrightarrow \Gamma \vdash_{\mathsf{IPC}} \varphi \rightarrow \psi.$$

Therefore, IPC has a DDT witnessed by $I(x,y) := \{x \to y\}$. The same holds for K_{ℓ} . On the other hand, we will prove that K_g lacks any DDT.

Let K be a quasi-variety and A an algebra. Recall that the closure operator of K-congruence generation on A is denoted by

$$Cg_{K}^{A} \colon \mathcal{P}(A \times A) \to \mathcal{P}(A \times A).$$

Furthermore, given $a, c \in A$, we abbreviate $\operatorname{Cg}_{\mathsf{K}}^A(\{\langle a, c \rangle \})$ as $\operatorname{Cg}_{\mathsf{K}}^A(a, c)$. Accordingly, the K-congruences of A of the form $\operatorname{Cg}_{\mathsf{K}}^A(a, c)$ will be called *principal*.

When K is a variety and $A \in K$, we drop the subscript K in Cg_K^A , because $Cg_K^A(X)$ is the least congruence of A extending X.

Definition 6.2. A quasi-variety K is said to have *equationally definable principal relative congruences* (EDPRC) when there exists a finite set of equations $\Phi(x, y, z, v)$ such that, for every $A \in K$ and $a, b, c, d \in A$,

$$\langle a,b\rangle\in \mathsf{Cg}^A_\mathsf{K}(c,d)\Longleftrightarrow A\vDash\Phi(c,d,a,b).$$

In this case, we say that Φ *witnesses* EDPRC for K. When K is a variety, it is common to use the expression *equationally definable principal congruences* (EDPC), as opposed to (EDPRC).

Example 6.3. For every Heyting algebra *A* and $c, d \in A$,

$$Cg^{A}(c,d) = \{\langle a,b \rangle \in A \times A : c \leftrightarrow d \leqslant a \leftrightarrow b\}.$$

Use this fact to infer that the set of equations

$$\Phi(x, y, z, v) := \{x \leftrightarrow y \leqslant z \leftrightarrow v\}$$

witnesses EDPC for the variety of Heyting algebras. As EDPC persists in subvarieties, this shows that every variety of Heyting algebras has EDPC.

Example 6.4. The case of modal algebras is more complex. For every $n \in \mathbb{N}$, we define

$$\boxplus^n x := x \wedge \Box x \wedge \Box \Box x \wedge \cdots \wedge \Box^n x.$$

Prove that, for every modal algebra A and $c, d \in A$,

$$\operatorname{Cg}^{A}(c,d) = \{ \langle a,b \rangle \in A \times A : \text{there exists } n \in \mathbb{N} \text{ such that } \boxplus^{n} (c \leftrightarrow d) \leqslant a \leftrightarrow b \}.$$

A variety K of modal algebras is said to be weakly transitive if

$$\mathsf{K} \vDash \boxplus^n x \leqslant \square^{n+1} x$$
, for some $n \in \mathbb{N}$.

Prove that every weakly transitive variety of modal algebras has EDPC. Hint: use sets of equations of the form

$$\Phi(x,y,z,v) := \{ \boxplus^n (x \leftrightarrow y) \leqslant z \leftrightarrow v \}.$$

As shown in Theorem 6.46, the converse is also true, whence the varieties of modal algebras with EDPC are precisely the weakly transitive ones. \square

Our aim is to prove the following bridge theorem, connecting the DDT on the logic side with EDPRC on the algebra side.

Theorem 6.5 (Blok & Pigozzi). *An algebraizable logic has a DDT if and only if its equivalent algebraic semantics has EDPRC.*

To this end, it is convenient to extend the definition of a DDT to relative equational consequences.

Definition 6.6. Given a quasi-variety K, we say that \vDash_{K} has a *deduction-detachment theorem* (DDT) if there exists a finite set of equations $\Phi(x, y, z, v)$ such that, for every $\Theta \cup \{\varphi \approx \psi, \varepsilon \approx \delta\} \subseteq E(Var)$,

$$\Theta, \varphi \approx \psi \vDash_{\mathsf{K}} \varepsilon \approx \delta \iff \Theta \vDash_{\mathsf{K}} \Phi(\varphi, \psi, \varepsilon, \delta).$$

In this case, we say that Ψ witnesses the DDT for \vDash_{K} .

Proposition 6.7. *An algebraizable logic* \vdash *has a DDT if and only if the equational consequence* \vDash_{K} *relative to its equivalent algebraic semantics* K *has one.*

Proof. We shall detail only the proof of the "only if" part, as the other one is analogous. To this end, assume that \vdash has a DDT witnessed by a finite set of formulas I(x,y). For every $n \in \mathbb{N}$, we define a set $I_n(x_1, \ldots, x_n, y)$ recursively by the following rule:

$$I_0(y) := \{y\}$$

$$I_{k+1}(x_1, \dots, x_{k+1}, y) := \bigcup \{I(x_1, \varphi) \colon \varphi \in I_k(x_2, \dots, x_{k+1}, y)\}.$$

A straightforward inductive argument shows that for every $n \in \mathbb{N}$ and every set of formulas $\Gamma \cup \{\psi\} \cup \{\varphi_i : i < n\}$,

$$\Gamma \cup \{\varphi_i : i < n\} \vdash \psi \iff \Gamma \vdash I_n(\varphi_0, \dots, \varphi_{n-1}, \psi).$$
 (6.1)

As \vdash is algebraizable, there are a finite set of equations $\tau(x)$ and a finite set of formulas $\Delta(x,y)$ such that the triple τ , Δ and K witnesses the algebraizability of \vdash . As Δ is finite, it has the form $\{\delta_i \colon i < n\}$ for some $n \in \mathbb{N}$. Then, consider the following set of equations

$$\Phi(x,y,z,v) := \bigcup_{i < n} \tau[I_n(\delta_0(x,y),\ldots,\delta_{n-1}(x,y),\delta_i(z,v))].$$

Observe that Φ is finite, as so are Δ and τ . We shall see that Φ witnesses a DDT for \vDash_{K} . To this end, consider a set of equations $\Theta \cup \{\varphi \approx \psi, \alpha \approx \beta\} \subseteq E(Var)$. We have

$$\begin{split} \Theta, \varphi &\approx \psi \vDash_{\mathsf{K}} \alpha \approx \beta \Longleftrightarrow \Delta[\Theta], \Delta(\varphi, \psi) \vdash \Delta(\alpha, \beta) \\ &\iff \Delta[\Theta] \cup \{\delta_i(\varphi, \psi) \colon i < n\} \vdash \delta_j(\alpha, \beta), \text{ for all } j < n \\ &\iff \Delta[\Theta] \vdash \bigcup_{i < n} I_n(\delta_0(\varphi, \psi), \dots, \delta_{n-1}(\varphi, \psi), \delta_i(\alpha, \beta)) \\ &\iff \tau[\Delta[\Theta]] \vDash_{\mathsf{K}} \bigcup_{i < n} \tau[I_n(\delta_0(\varphi, \psi), \dots, \delta_{n-1}(\varphi, \psi), \delta_i(\alpha, \beta))] \\ &\iff \Theta \vDash_{\mathsf{K}} \bigcup_{i < n} \tau[I_n(\delta_0(\varphi, \psi), \dots, \delta_{n-1}(\varphi, \psi), \delta_i(\alpha, \beta))] \\ &\iff \Theta \vDash_{\mathsf{K}} \Phi(\varphi, \psi, \alpha, \beta). \end{split}$$

The above equivalences justified as follows: the first follows from (Alg2), the second is obvious, the third holds because I witnesses a DDT for \vdash , the fourth follows from (Alg1), the fifth from (Alg4) and the last one from the definition of Φ . Hence, we conclude that Φ witnesses a DDT for \vDash_K , as desired.

Accordingly, in order to establish Theorem 6.5, it suffices to prove the following.

Proposition 6.8. A quasi-variety K has EDPRC if and only if \vDash_{K} has a DDT.

To this end, we rely on two technical lemmas. Observe that for every quasi-variety K and $A \leq B$ with $a, b \in A$, we have

$$\operatorname{Cg}_{\mathsf{K}}^{A}(a,b) \subseteq \operatorname{Cg}_{\mathsf{K}}^{B}(a,b).$$
 (6.2)

This is because $Cg_K^B(a,b)$ is a K-congruence of A containing the pair $\langle a,b\rangle$.

Lemma 6.9. Let K be a quasi-variety, A an algebra and $a, b \in A$. Then

$$\operatorname{Cg}_{\mathsf{K}}^{A}(a,b) = \bigcup \{\operatorname{Cg}_{\mathsf{K}}^{B}(a,b) \colon B \in \mathbb{S}(A) \text{ is finitely generated and } a,b \in B\}.$$

Proof. The inclusion from right to left follows condition (6.2). To prove the reverse inclusion, it suffices to show that

$$\phi := \bigcup \{ \mathsf{Cg}_{\mathsf{K}}^{B}(a,b) \colon B \in \mathbb{S}(A) \text{ is finitely generated and } a,b \in B \}$$

is a K-congruence of A containing the pair $\langle a,b \rangle$. Since ϕ obviously contains $\langle a,b \rangle$, we will only detail the proof that it is a K-congruence of A, i.e., a deductive filter of \vDash_K . To this end, consider a quasi-equation $\&_{i \leqslant n} \varphi_i \approx \psi_i \Longrightarrow \varepsilon \approx \delta$ valid in K and a homomorphism $h \colon T(Var) \to A$ such that $\langle h(\varphi_i), h(\psi_i) \rangle \in \phi$ for all $i \leqslant n$. Then for each $i \leqslant n$ there exists a finitely generated subalgebra B_i of A such that $\langle h(\varphi_i), h(\psi_i) \rangle \in Cg_K^{B_i}(a,b)$. Let B be the subalgebra of A generated by $B_1 \cup \cdots \cup B_n$. Clearly, B is finitely generated. Furthermore, from condition (6.2) it follows that $Cg_K^{B_i}(a,b) \subseteq Cg_K^B(a,b)$ for every $i \leqslant n$. Therefore,

$$\langle h(\varphi_i), h(\psi_i) \rangle \in Cg_K^B(a, b)$$
 for every $i \leq n$.

As $Cg_{K}^{B}(a,b)$ is a deductive filter of \vDash_{K} on K, this implies $\langle h(\varepsilon), h(\delta) \rangle \in Cg_{K}^{B}(a,b)$. Hence, we conclude that $\langle h(\varepsilon), h(\delta) \rangle \in \phi$ because $Cg_{K}^{B}(a,b) \subseteq \phi$.

Lemma 6.10. *Let* K *be a quasi-variety and* A *and algebra. If* $\theta \in \mathsf{Con}_{\mathsf{K}}(A)$ *and* $a, b \in A$, then

$$\operatorname{Cg}_{\mathsf{K}}^{A}(\theta \cup \{\langle a,b\rangle\}) = \{\langle c,d\rangle \in A \times A : \langle c/\theta,d/\theta\rangle \in \operatorname{Cg}_{\mathsf{K}}^{A/\theta}(a/\theta,b/\theta)\}.$$

Proof. Immediate from the Correspondence Theorem.

We are now ready to prove Proposition 6.8.

Proof. In order to prove the "if" part, suppose that \vDash_{K} has a DDT witnessed by a finite set of equations $\Phi(x, y, z, v)$. We shall see that Φ witnesses EDPRC for K . In view of Lemma 6.9, it suffices to show that for every *finitely generated* $A \in \mathsf{K}$ and $a, b, c, d \in A$,

$$\langle a, b \rangle \in \operatorname{Cg}_{\mathsf{K}}^{A}(c, d) \Longleftrightarrow A \vDash \Phi(c, d, a, b).$$
 (6.3)

 \boxtimes

Suppose first that $\langle a, b \rangle \in \operatorname{Cg}_{\mathsf{K}}^A(c, d)$. Since A is finitely generated, we can choose some generators e_1, \ldots, e_n for it. Then there are $\varphi_a, \varphi_b, \varphi_c$ and φ_d in variables x_1, \ldots, x_n such that

$$\varphi_a^A(e_1, \dots, e_n) = a$$

$$\varphi_b^A(e_1, \dots, e_n) = b$$

$$\varphi_c^A(e_1, \dots, e_n) = c$$

$$\varphi_d^A(e_1, \dots, e_n) = d.$$

Furthermore, consider the set of equations

$$\Theta := \{ \varepsilon(x_1, \dots, x_n) \approx \delta(x_1, \dots, x_n) \in E(Var) : \varepsilon^A(e_1, \dots, e_n) = \delta^A(e_1, \dots, e_n) \}.$$

We claim that

$$\Theta$$
, $\varphi_c \approx \varphi_d \vDash_{\mathsf{K}} \varphi_a \approx \varphi_b$.

To prove this, consider an algebra $B \in K$ and elements $p_1, \ldots, p_n \in B$ such that

$$\varepsilon^{B}(p_{1},...,p_{n}) = \delta^{B}(p_{1},...,p_{n}) \text{ and } \varphi^{B}(p_{1},...,p_{n}) = \varphi^{B}_{d}(p_{1},...,p_{n}),$$
 (6.4)

for every $\varepsilon \approx \delta \in \Theta$. Moreover, let $f: A \to B$ be the map defined, for every formula $\gamma(x_1, \ldots, x_n)$, by the rule

$$\gamma^{\mathbf{A}}(e_1,\ldots,e_n)\longmapsto \gamma^{\mathbf{B}}(p_1,\ldots,p_n).$$

From the left hand side of (6.4) and the fact that A is generated by e_1, \ldots, e_n it follows that f is a well-defined homomorphism from A to B. Therefore, Ker(f) is a congruence of A. Furthermore, as $A/Ker(f) \in \mathbb{IS}(B)$ and $B \in K$, we obtain that Ker(f) is a K-congruence of A. We have that

$$f(a) = f(\varphi_a^{\mathbf{A}}(e_1, \dots, e_n)) = \varphi_a^{\mathbf{B}}(p_1, \dots, p_n)$$

$$f(b) = f(\varphi_b^{\mathbf{A}}(e_1, \dots, e_n)) = \varphi_b^{\mathbf{B}}(p_1, \dots, p_n)$$

$$f(c) = f(\varphi_c^{\mathbf{A}}(e_1, \dots, e_n)) = \varphi_c^{\mathbf{B}}(p_1, \dots, p_n)$$

$$f(d) = f(\varphi_d^{\mathbf{A}}(e_1, \dots, e_n)) = \varphi_d^{\mathbf{B}}(p_1, \dots, p_n).$$

Therefore, the right hand side of (6.4) guarantees that $\langle c,d\rangle\in {\sf Ker}(f)$. As a consequence, ${\sf Ker}(f)$ is a K-congruence of A containing the pair $\langle c,d\rangle$. It follows that ${\sf Cg}_{\sf K}^A(c,d)\subseteq {\sf Ker}(f)$. Together with the assumption that $\langle a,b\rangle\in {\sf Cg}_{\sf K}^A(c,d)$, this implies

$$\varphi_a^{\mathbf{B}}(p_1,\ldots,p_n) = f(a) = f(b) = \varphi_b^{\mathbf{B}}(p_1,\ldots,p_n),$$

establishing the claim.

As Φ witnesses a DDT for \vDash_{K} , the claim implies

$$\Theta \vDash_{\mathsf{K}} \Phi(\varphi_c, \varphi_d, \varphi_a, \varphi_b).$$

Now, the definition of Θ guarantees that $\varepsilon^A(e_1,\ldots,e_n)=\delta^A(e_1,\ldots,e_n)$, for every $\varepsilon\approx\delta\in\Theta$. Together with the above display, this yields

$$A \models \Phi(\varphi_c(e_1,\ldots,e_n),\varphi_d(e_1,\ldots,e_n),\varphi_a(e_1,\ldots,e_n),\varphi_b(e_1,\ldots,e_n)),$$

i.e., $A \models \Phi(c, d, a, b)$. This establishes the implication from left to right in (6.3).

To prove the other implication in (6.3), notice that from $\Phi(x,y,z,v) \models_{\mathsf{K}} \Phi(x,y,z,v)$ and the assumption that Φ witnesses a DDT for \models_{K} , it follows

$$x \approx y, \Phi(x, y, z, v) \vDash_{\mathsf{K}} z \approx v.$$
 (6.5)

Suppose that $A \models \Phi(c,d,a,b)$. Then the set of premises of the above display is valid in $A/Cg_K^A(c,d)$ under the assignment

$$x \longmapsto c/\operatorname{Cg}_{\mathsf{K}}^{A}(c,d) \quad y \longmapsto d/\operatorname{Cg}_{\mathsf{K}}^{A}(c,d)$$

 $z \longmapsto a/\operatorname{Cg}_{\mathsf{K}}^{A}(c,d) \quad v \longmapsto b/\operatorname{Cg}_{\mathsf{K}}^{A}(c,d).$

Therefore, by (6.5), we obtain that $a/Cg_K^A(c,d) = b/Cg_K^A(c,d)$, i.e., $\langle a,b \rangle \in Cg_K^A(c,d)$. As this establishes (6.3), we conclude that K has EDPRC.

To prove the "only if" part of the statement, suppose that K has EDPRC witnessed by set $\Phi(x, y, z, v)$. We shall see that Φ witnesses a DDT for \vDash_{K} .

Recall from Proposition 5.26 that the closure systems $Con_K(T(Var))$ and $Th(\models_K)$ coincide. Accordingly, the closure operators

$$Cg_{K}^{T(Var)} \colon \mathcal{P}(Eq) \to \mathcal{P}(Eq)$$
 and $Cn_{K} \colon \mathcal{P}(Eq) \to \mathcal{P}(Eq)$

associated with them coincide too. Bearing this in mind, consider a set of equations $\Theta \cup \{\varphi \approx \psi, \varepsilon \approx \delta\}$ and define

$$\theta := \mathsf{Cg}_{\mathsf{k}}^{T(\mathit{Var})}(\Theta).$$

Bearing in mind that equations are ordered pairs of formulas, we obtain

$$\begin{split} \Theta, \varphi &\approx \psi \vDash_{\mathsf{K}} \varepsilon \approx \delta \Longleftrightarrow \varepsilon \approx \delta \in \mathsf{Cn}_{\mathsf{K}}(\Theta \cup \{\varphi \approx \psi\}) \\ &\iff \langle \varepsilon, \delta \rangle \in \mathsf{Cg}_{\mathsf{K}}^{T(\mathit{Var})}(\Theta \cup \{\langle \varphi, \psi \rangle\}) \\ &\iff \langle \varepsilon, \delta \rangle \in \mathsf{Cg}_{\mathsf{K}}^{T(\mathit{Var})}(\theta \cup \{\langle \varphi, \psi \rangle\}) \\ &\iff \langle \varepsilon/\theta, \delta/\theta \rangle \in \mathsf{Cg}_{\mathsf{K}}^{T(\mathit{Var})/\theta}(\varphi/\theta, \psi/\theta) \\ &\iff T(\mathit{Var})/\theta \vDash \Phi(\varphi/\theta, \psi/\theta, \varepsilon/\theta, \delta/\theta) \\ &\iff \Phi(\varphi, \psi, \varepsilon, \delta) \subseteq \theta \\ &\iff \Phi(\varphi, \psi, \varepsilon, \delta) \subseteq \mathsf{Cg}_{\mathsf{K}}^{T(\mathit{Var})}(\Theta) \\ &\iff \Phi(\varphi, \psi, \varepsilon, \delta) \subseteq \mathsf{Cn}_{\mathsf{K}}(\Theta) \\ &\iff \Theta \vDash_{\mathsf{K}} \Phi(\varphi, \psi, \varepsilon, \delta). \end{split}$$

The above equivalences are justified as follows. The first and the latter are obvious, the second and second to last follow from the the fact that the closure operators $Cg_K^{T(Var)}$ and Cn_K coincide, and the third and the third to last from the definition of θ and the fact that $Cg_K^{T(Var)}$ is a closure operator. Lastly, the fourth equality is a consequence of Lemma 6.10, while the fifth and the sixth are immediate applications of the definitions.

6.2 Quasi-varieties with EDPRC

The aim of this section is to prove that the demand that a quasi-variety K has EDPRC is equivalent to a purely order theoretic property of lattices of K-congruences.

Definition 6.11. Let *A* be a complete lattice.

(i) An element $a \in A$ is said to be *compact* if for every $X \subseteq A$,

if
$$a \leq \bigvee X$$
, then there is a finite $Y \subseteq X$ such that $a \leq \bigvee Y$.

(ii) *A* is said to be *algebraic* if every element is a join of compact elements.

We denote by C(A) the set of compact elements of A.

In order to present canonical examples of algebraic lattices, recall that a *semilattice* is an algebra $A = \langle A; * \rangle$ such that * is a binary idempotent, commutative and associative operation. Every semilattice A can be associated with two partial orders on A, namely the $meet\ order \leqslant_m$ and the $join\ order \leqslant_j$, defined respectively by the following rules:

$$a \leq_m c \iff a * c = a \text{ and } a \leq_i c \iff a * c = c.$$

Accordingly, we say that A is a *meet semilattice* (resp. *join semilattice*) when we give priority to the meet order (resp. join order), which, in this case, will be denoted simply by \leq .

Example 6.12 (Algebraic lattices). Let A be a join semilattice with minimum element. A set $I \subseteq A$ is said to be an *ideal* of A if it is a nonempty downset such that if $a, c \in I$, then $a * c \in I$. The poset $\mathcal{I}(A)$ of ideals of A ordered under the inclusion relation is an algebraic lattice, whose compact elements are the principal downsets of A.

We will prove that every algebraic lattice arises in this way (Theorem 6.14). To this end, we rely on the following immediate consequence of the definition of a compact element.

Proposition 6.13. *If A is a complete lattice and 0 its minimum element, then*

if
$$a, c \in C(A)$$
, then $a \lor c \in C(A)$ *.*

Consequently, C(A) can be viewed as a join semilattice with minimum $(C(A); \vee, 0)$, whose order coincides with the restriction of the order of A to C(A).

As a consequence, we obtain a representation theorem for algebraic lattices.

Theorem 6.14. A poset is an algebraic lattice if and only if it is isomorphic to the lattice of ideals of a join semilattice with minimum.

Proof. The "if" part is supplied in Example 6.12. To prove the "only if" part, consider an algebraic lattice A. In view of Proposition 6.13, C(A) is a join semilattice with minimum. It is not hard to prove that the map $f: A \to \mathcal{I}(C(A))$, defined by the rule

$$a \longmapsto \mathsf{C}(A) \cap \downarrow a$$

is an isomorphism.

 \boxtimes

Exercise 6.15. Complete the above proof by showing that f is indeed an isomorphism. \boxtimes Algebraic lattices play a central role in algebra, partly because of the next observation.

Proposition 6.16. Let K be a quasi-variety. If A is an algebra of the same type, $Con_K(A)$ is an algebraic lattice, whose compact elements are precisely the finitely generated K-congruences of A, i.e., the K-congruence of the form $Cg_K^A(X)$ for some finite $X \subseteq A \times A$.

Remark 6.17. Notably, nothing more can be said about lattices of K-congruences in general, as every algebraic lattice is isomorphic to the congruence lattice of some algebra [?].

Exercise 6.18. Prove Proposition 6.16.

s with ED-

 \boxtimes

The following semilattices are instrumental to characterize quasi-varieties with ED-PRC.

Definition 6.19. A *dually Brouwerian semilattice* is an algebra $A = \langle A; \lor, \leftarrow \rangle$ such that $\langle A; \lor \rangle$ is a join semilattice and \leftarrow a binary operation such that, for every $a, b, c \in A$,

$$c \leq a \vee b \iff c \leftarrow b \leq a$$
.

Typical examples of dually Brouwerian semilattices arise from Heyting algebras. More precisely, if A is a Heyting algebra with order \leq , the join order of the semilattice $\langle A; \wedge \rangle$ is the dual relation \geq . Because of this, from the residuation law it follows that $\langle A; \wedge, \rightarrow \rangle$ is a dually Brouwerian semilattice.

Our aim is to establish the following result [?].

Theorem 6.20 (Köhler & Pigozzi). A quasi-variety K has EDPRC if and only if, for every algebra $A \in K$, the join semilattice $C(Con_K(A))$ can be endowed with a binary operation \leftarrow that turns it into a dually Brouwerian semilattice.

In order to prove Theorem 6.20, we rely on the following observation.

Lemma 6.21. Let A be a join semilattice generated by a set $X \subseteq A$. Suppose that for every $b, c \in X$ there exists an element $c \leftarrow -b \in A$ such that for all $a \in A$,

$$c \leq a * b \iff c \longleftarrow b \leq a$$
.

Then there is a binary operation \leftarrow on A such that $\langle A; *, \leftarrow \rangle$ is a dually Brouwerian semilattice.

Proof. As X generates A, it suffices to show that, for every $b_1, \ldots, b_n \in X$ and $c \in A$, there exists an element $c \leftarrow (b_1 * \cdots * b_n) \in A$ such that, for all $a \in A$,

$$c \leqslant a * (b_1 * \cdots * b_n) \iff c \leftarrow (b_1 * \cdots * b_n) \leqslant a.$$

We will prove this by induction on n.

For the base case, consider two elements $b \in X$ and $c \in A$. As X generates $\langle A; * \rangle$, there are $c_1, \ldots, c_n \in X$ such that $c = c_1 * \cdots * c_n$. We set

$$c \leftarrow b := (c_1 \leftarrow -b) * \cdots * (c_n \leftarrow -b).$$

Observe that for all $a \in A$,

$$c \leqslant a * b \iff c_1 * \cdots * c_n \leqslant a * b$$
 $\iff c_i \leqslant a * b$, for all $i \leqslant n$
 $\iff c_i \longleftarrow b \leqslant a$, for all $i \leqslant n$
 $\iff (c_1 \longleftarrow b) * \cdots * (c_n \longleftarrow b) \leqslant a$
 $\iff c \longleftarrow b \leqslant a$.

For the induction step, consider $b_1, \dots, b_{k+1} \in X$ and $c \in A$. By the inductive hypothesis, we can define

$$c \leftarrow (b_1 * \cdots * b_{k+1}) := (c \leftarrow (b_1 * \cdots * b_k)) \leftarrow b_{k+1}.$$

For every $a \in A$, we have

$$c \leqslant a * (b_1 * \cdots * b_{k+1}) \iff c \leqslant (a * b_{k+1}) * (b_1 * \cdots * b_k)$$

$$\iff c \leftarrow (b_1 * \cdots * b_k) \leqslant a * b_{k+1}$$

$$\iff (c \leftarrow (b_1 * \cdots * b_k)) \leftarrow b_{k+1} \leqslant a$$

$$\iff c \leftarrow (b_1 * \cdots * b_{k+1}) \leqslant a.$$

The above equivalences can be justified as follows. The first holds because * is idempotent and commutative, the second follows from the induction hypothesis for the case n = k, the third from the induction hypothesis for the case n = 1, and the last from the definition of $c \leftarrow (b_1 * \cdots * b_{k+1})$.

We are now ready to prove Theorem 6.20.

Proof. To prove the "only if" part, suppose that K has EDPRC and consider an algebra $A \in K$. Moreover, let \vee be the join operation of the lattice $\mathsf{Con}_K(A)$. Recall from Proposition 6.13 that $\langle \mathsf{C}(\mathsf{Con}_K(A)); \vee \rangle$ is a join semilattice, whose order is the inclusion relation. Furthermore, in view of Proposition 6.16, the elements of $\mathsf{C}(\mathsf{Con}_K(A))$ are precisely the finitely generated K-congruences of A. Therefore, the semilattice $\langle \mathsf{C}(\mathsf{Con}_K(A)); \vee \rangle$ is generated by the principal K-congruences of A, because for every finite $X \subseteq A \times A$,

$$Cg_{\mathsf{K}}^{A}(X) = \bigvee_{\langle a,c \rangle \in X} Cg_{\mathsf{K}}^{A}(a,c).$$

By Lemma 6.21, to conclude the proof it suffices to show that for every $a,b,c,d \in A$, there exists an element $\operatorname{Cg}_K^A(a,b) \leftarrow \operatorname{Cg}_K^A(c,d) \in \operatorname{C}(\operatorname{Con}_K(A))$ such that for all $\theta \in \operatorname{C}(\operatorname{Con}_K(A))$,

$$Cg_{K}^{A}(a,b) \subseteq \theta \vee Cg_{K}^{A}(c,d) \iff Cg_{K}^{A}(a,b) \leftarrow Cg_{K}^{A}(c,d) \subseteq \theta.$$
 (6.6)

To this end, consider $a,b,c,d \in A$ and let $\Phi(x,y,z,v)$ be the finite set of equations witnessing EDPRC for K. We will work under the identification of $\Phi^A(c,d,a,b)$ with the following subset of $A \times A$:

$$\{\langle \varphi^A(c,d,a,b), \psi^A(c,d,a,b)\rangle : \varphi \approx \psi \in \Phi\}.$$

Bearing this in mind, we define

$$Cg_{\mathsf{K}}^{A}(a,b) \leftarrow Cg_{\mathsf{K}}^{A}(c,d) := Cg_{\mathsf{K}}^{A}(\Phi^{A}(c,d,a,b)).$$

Since $\Phi^A(c,d,a,b)$ is finite, $\operatorname{Cg}_K^A(a,b) \leftarrow \operatorname{Cg}_K^A(c,d)$ is a finitely generated K-congruence of A and, therefore, a compact element of $\operatorname{Con}_K(A)$, by Proposition 6.16. In brief,

$$Cg_{\kappa}^{A}(a,b) \leftarrow Cg_{\kappa}^{A}(c,d) \in C(Con_{K}(A)).$$

Now, for every $\theta \in C(Con_K(A))$, we have

$$\begin{split} \operatorname{Cg}_{\mathsf{K}}^{A}(a,b) &\subseteq \theta \vee \operatorname{Cg}_{\mathsf{K}}^{A}(c,d) \iff \langle a,b \rangle \in \theta \vee \operatorname{Cg}_{\mathsf{K}}^{A}(c,d) \\ &\iff \langle a,b \rangle \in \operatorname{Cg}_{\mathsf{K}}^{A}(\theta \cup \{\langle c,d \rangle\}) \\ &\iff \langle a/\theta,b/\theta \rangle \in \operatorname{Cg}_{\mathsf{K}}^{A/\theta}(c/\theta,d/\theta) \\ &\iff \Phi^{A}(c,d,a,b) \subseteq \theta \\ &\iff \operatorname{Cg}_{\mathsf{K}}^{A/\theta}(\Phi^{A}(c,d,a,b)) \subseteq \theta \\ &\iff \operatorname{Cg}_{\mathsf{K}}^{A}(a,b) \leftarrow \operatorname{Cg}_{\mathsf{K}}^{A}(c,d) \subseteq \theta. \end{split}$$

The above equivalences are justified as follows. The first, second and fifth hold because Cg_K^A is a closure operator. The third is a consequence of Lemma 6.10, while the fourth holds because Φ witnesses EDPRC for K. Finally, the last one is a consequence of the definition of $Cg_K^A(a,b) \leftarrow Cg_K^A(c,d)$. This establishes (6.6), whence $C(Con_K(A))$ can be turned into a dually Brouwerian semilattice.

To prove the "if" part of the statement, let θ be the minimum of $\mathsf{Con}_{\mathsf{K}}(T(\mathit{Var}))$ and consider the algebra $F := T(\mathit{Var})/\theta$. Clearly, $F \in \mathsf{K}$. By assumption the join semilattice $\langle \mathsf{C}(\mathsf{Con}_{\mathsf{K}}(F)); \lor \rangle$ can be endowed with a binary operation \leftarrow that turns it into a dually Brouwerian semilattice. As the K-congruences $\mathsf{Cg}^F_{\mathsf{K}}(x/\theta,y/\theta)$ and $\mathsf{Cg}^F_{\mathsf{K}}(z/\theta,v/\theta)$ are finitely generated, they belong to $\mathsf{C}(\mathsf{Con}_{\mathsf{K}}(F))$, by Proposition 6.16. Thus,

$$Cg_{K}^{F}(z/\theta, v/\theta) \leftarrow Cg_{K}^{F}(x/\theta, y/\theta)$$

is a well-defined compact K-congruence of F. By Proposition 6.16, it also finitely generated, i.e., there is a finite set of pairs of formulas

$$\Phi = \{ \langle \varepsilon_i(x, y, z, v, w_1, \dots, w_n), \delta_i(x, y, z, v, w_1, \dots, w_n) \rangle \colon i < m \}$$

such that

$$Cg_{K}^{F}(z,v) \leftarrow Cg_{K}^{F}(x,y) = Cg_{K}^{F}(\{\langle \varepsilon_{i}/\theta, \delta_{i}/\theta \rangle : i < m\}).$$

We will prove that the set of equations

$$\Psi := \{ \varepsilon_i(x, y, z, v, x \dots x) \approx \delta_i(x, y, z, v, x, \dots, x) : i < m \}$$

witnesses EDPRC for K.

First, in view of Lemma 6.9, it suffices to prove that for every finitely generated $A \in K$ and $a, b, c, d \in A$,

$$\langle a,b\rangle \in \operatorname{Cg}_{\mathsf{K}}^A(c,d) \Longleftrightarrow A \vDash \Psi(c,d,a,b).$$

Accordingly, consider a finitely generated $A \in K$ and $a, b, c, d \in A$. The proof will proceed through a series of claims.

Claim 6.22. There exists a surjective homomorphism $g: F \to A$ such that

$$g(x/\theta) = c$$
 $g(y/\theta) = d$ $g(z/\theta) = a$ $g(v/\theta) = b$

and $g(w_i/\theta) = c$, for every $i \leq n$.

Proof of the Claim. Let $\{e_1, \ldots, e_k\}$ be a set of generators for A. Then consider a function $f: Var \to A$ such that $\{e_1, \ldots, e_n\} \subseteq f[Var]$,

$$f(x) = c$$
 $f(y) = d$ $f(z) = a$ $f(v) = b$.

and $f(w_i) = c$, for every $i \le n$. By the universal property of the term algebra, f can be extended to a homomorphism $f^* \colon T(Var) \to A$. Since $T(Var)/\ker(f^*) \in \mathbb{IS}(A) \subseteq K$, we obtain $\ker(f^*) \in \operatorname{Con}_K(T(Var))$. As θ is the minimum of $\operatorname{Con}_K(T(Var))$, this implies $\theta \subseteq \ker(f^*)$. Because of this, the map $g \colon F \to A$, defined by the rue

$$\varphi/\theta \longmapsto f^*(\varphi),$$

is a well-defined homomorphism such that

$$g(x/\theta) = c$$
 $g(y/\theta) = d$ $g(z/\theta) = a$ $g(v/\theta) = b$

and $g(w_i/\theta) = c$, for every $i \le n$. Furthermore, g is surjective because $g[Var/\theta]$ contains the generators e_1, \ldots, e_k of A.

Claim 6.23. *The following equivalence holds:*

$$\langle a,b\rangle\in \operatorname{Cg}^A_{\mathsf{K}}(c,d)\Longleftrightarrow \langle z/\theta,v/\theta\rangle\in \operatorname{Ker}(g)\vee^{\operatorname{Con}_{\mathsf{K}}(F)}\operatorname{Cg}^F_{\mathsf{K}}(x/\theta,y/\theta).$$

Proof of the Claim. Since $g: F \to A$ is a sujective homomorphism, from the Homomorphism Theorem it follows that the map $h: F/\text{Ker}(g) \to A$, defined by the rule

$$(\varphi/\theta)/\mathrm{Ker}(g) \longmapsto g(\varphi/\theta),$$

is an isomorphism. As a consequence, $\langle a,b\rangle\in \operatorname{Cg}^A_K(c,d)$ if and only if

$$\langle (z/\theta)/\mathsf{Ker}(g), (v/\theta)/\mathsf{Ker}(g) \rangle \in \mathsf{Cg}_{\mathsf{K}}^{F/\mathsf{Ker}(g)}((x/\theta)/\mathsf{Ker}(g), (y/\theta)/\mathsf{Ker}(g)).$$

In view of Lemma 6.10, the above display is equivalent to

$$\langle z/\theta, v/\theta \rangle \in \mathsf{Cg}^{\mathsf{F}}_{\mathsf{K}}(\mathsf{Ker}(g) \cup \{\langle x/\theta, y/\theta \rangle\}).$$

Hence, we conclude that

$$\langle a, b \rangle \in \operatorname{Cg}_{\mathsf{K}}^{A}(c, d) \iff \langle z/\theta, v/\theta \rangle \in \operatorname{Cg}_{\mathsf{K}}^{F}(\operatorname{Ker}(g) \cup \{\langle x/\theta, y/\theta \rangle\})$$
$$\iff \langle z/\theta, v/\theta \rangle \in \operatorname{Ker}(g) \vee^{\operatorname{Con}_{\mathsf{K}}(F)} \operatorname{Cg}_{\mathsf{K}}^{F}(x/\theta, y/\theta),$$

as desired.

Claim 6.24. The following equivalence holds:

$$\operatorname{Cg}_{\mathsf{K}}^F(z/\theta,v/\theta) \leftarrow \operatorname{Cg}_{\mathsf{K}}^F(x/\theta,y/\theta) \subseteq \operatorname{Ker}(g) \Longleftrightarrow A \vDash \Psi(c,d,a,b).$$

Proof of the Claim. We have

$$Cg_{\mathsf{K}}^{F}(z/\theta, v/\theta) \leftarrow Cg_{\mathsf{K}}^{F}(x/\theta, y/\theta) \subseteq \mathsf{Ker}(g)$$

$$\iff Cg_{\mathsf{K}}^{F}(\{\langle \varepsilon_{i}/\theta, \delta_{i}/\theta \rangle : i < m\}) \subseteq \mathsf{Ker}(g)$$

$$\iff \{\langle \varepsilon_{i}/\theta, \delta_{i}/\theta \rangle : i < m\} \subseteq \mathsf{Ker}(g)$$

$$\iff g(\varepsilon_{i}(x, y, z, v, w_{1}, \dots, w_{n})/\theta) = g(\delta_{i}(x, y, z, v, w_{1}, \dots, w_{n})/\theta), \text{ for all } i < m$$

$$\iff \delta_{i}^{A}(c, d, a, b, c, \dots, c) = \varepsilon_{i}^{A}(c, d, a, b, c, \dots, c), \text{ for all } i < m$$

$$\iff A \vDash \Psi(c, d, a, b).$$

The above equivalences are justified as follows. The first holds by the definition of $Cg_K^F(z/\theta, v/\theta) \leftarrow Cg_K^F(x/\theta, y/\theta)$, the second because Cg_K^F is a closure operator, the third follows from the definition of g, the fourth from Claim 6.22, and the last from the definition of Ψ .

In view of Claims 6.23 and 6.24, to conclude the proof, it suffices to show that

$$\langle z/\theta, v/\theta \rangle \in \mathsf{Ker}(g) \vee \mathsf{Cg}^F_\mathsf{K}(x/\theta, y/\theta) \Longleftrightarrow \mathsf{Cg}^F_\mathsf{K}(z/\theta, v/\theta) \leftarrow \mathsf{Cg}^F_\mathsf{K}(x/\theta, y/\theta) \subseteq \mathsf{Ker}(g).$$

This follows from the following series of equivalences:

$$\begin{split} \langle z/\theta,v/\theta\rangle &\in \mathsf{Ker}(g) \vee \mathsf{Cg}^F_\mathsf{K}(x/\theta,y/\theta) \\ \iff &\mathsf{Cg}^F_\mathsf{K}(z/\theta,v/\theta) \subseteq \mathsf{Ker}(g) \vee \mathsf{Cg}^F_\mathsf{K}(x/\theta,y/\theta) \\ \iff &\mathsf{Cg}^F_\mathsf{K}(z/\theta,v/\theta) \subseteq \mathsf{Cg}^F_\mathsf{K}(\Sigma) \vee \mathsf{Cg}^F_\mathsf{K}(x/\theta,y/\theta), \text{ for some finite } \Sigma \subseteq \mathsf{Ker}(g) \\ \iff &\mathsf{Cg}^F_\mathsf{K}(z/\theta,v/\theta) \leftarrow \mathsf{Cg}^F_\mathsf{K}(x/\theta,y/\theta) \subseteq \mathsf{Cg}^F_\mathsf{K}(\Sigma), \text{ for some finite } \Sigma \subseteq \mathsf{Ker}(g) \\ \iff &\mathsf{Cg}^F_\mathsf{K}(z/\theta,v/\theta) \leftarrow \mathsf{Cg}^F_\mathsf{K}(x/\theta,y/\theta) \subseteq \mathsf{Ker}(g). \end{split}$$

The first equivalence follows from the fact that Cg_K^F is a closure operator, the second and the last from the compactness of $Cg_K^F(z/\theta,v/\theta)$ and $Cg_K^F(z/\theta,v/\theta) \leftarrow Cg_K^F(x/\theta,y/\theta)$. Lastly, the third follows from the fact that $\langle C(Con_K(F)); \lor, \leftarrow \rangle$ is a dually Brouwerian semilattice.

Remark 6.25. The proof of Claim 6.22 can be slightly simplified by observing that F is the free algebra of K with a denumerable set of free generators. However, since we did not introduce the notion of a free algebra, we opted for spelling the details in full.

Remark 6.26. In view of Theorem 6.20, EDPRC can be viewed as a property of lattices of K-congruences. Since their structure is preserved by category equivalences between quasi-varieties, this implies that EDPRC is preserved by category equivalences too. As a consequence, if two algebraizable logics \vdash and \vdash have categorically equivalent algebraic semantics, then \vdash has a DDT if and only if so does \vdash . This kind of observations have been exploited, for instance, in [?, ?].

6.3 Sketches of structure theory

We shall now review some basic properties of quasi-varieties with EDPRC.

Definition 6.27. A quasi-variety K is said to be *relatively congruence distributive* when $Con_K(A)$ is a distributive lattice, for every $A \in K$. When K is a variety, we drop the adverb "relatively" and say that K is *congruence distributive*.

Theorem 6.28 (Köhler & Pigozzi). *Quasi-varieties with EDPRC are relatively congruence distributive.*

Proof. Let K be a quasi-variety with EDPRC and consider an algebra $A \in K$. By Proposition 6.16, the lattice $Con_K(A)$ is algebraic. Since the proof of Proposition 6.14 shows that every algebraic lattice B is isomorphic to $\mathcal{I}(C(B))$, we obtain

$$\mathsf{Con}_{\mathsf{K}}(A) \cong \mathcal{I}(\mathsf{C}(\mathsf{Con}_{\mathsf{K}}(A))).$$

Therefore, it will be enough to show that the lattice $\mathcal{I}(\mathsf{C}(\mathsf{Con}_\mathsf{K}(A)))$ is distributive.

We will prove a more general result, namely, that if B is a dually Brouwerian semilattice, then $\mathcal{I}(B)$ is a distributive lattice. Since $\mathsf{C}(\mathsf{Con}_\mathsf{K}(A))$ is a dually Brouwerian semilattice by Theorem 6.20, this will conclude the proof.

Accordingly, let B be a dually Brouwerian semilattice. As B has a minimum (namely, $a \leftarrow a$, for any $a \in B$), the poset of ideals $\mathcal{I}(B)$ is a well-defined lattice. To prove that it is distributive, it suffices to show that, for every $I, J, L \in \mathcal{I}(B)$,

$$(I \vee J) \cap (I \vee L) \subseteq I \vee (J \cap L),$$

where the join \vee is computed in $\mathcal{I}(B)$. To this end, consider an element $a \in (I \vee J) \cap (I \vee L)$. Then there are $b \in I$, $c \in J$ and $d \in L$ such that

$$a \le b * c$$
 and $a \le b * d$.

As *B* is dually Brouwerian, this implies

$$a \leftarrow b \leq c \text{ and } a \leftarrow b \leq d$$

whence $a \leftarrow b \in J \cap L$. Since $b \in I$, this yields

$$b * (a \leftarrow b) \in I \lor (I \cap L).$$

As **B** is dually Brouwerian, from $a \leftarrow b \le a \leftarrow b$ it follows $a \le b * (a \leftarrow b)$. Together with the above display, this implies $a \in I \lor (J \cap L)$, as desired.

Relative congruence distributivity has a number interesting consequences related to axiomatization problems.

Definition 6.29. A quasi-variety is said to be *finitely based* when it can be axiomatized by a finite set of quasi-equations.

Remark 6.30. In view of the Compactness Theorem of first order logic, if a variety is finitely based as a quasi-variety, then it can be axiomatized by a finite set of *equations* too.

⊠

Given a finite set K of finite algebras of finite type, there is no guarantee that $\mathbb{V}(\mathsf{K})$ or $\mathbb{Q}(\mathsf{K})$ are finitely based. For varieties, this was shown first by Lyndon. In fact a transparent characterization of the finite algebras A of finite type for which $\mathbb{V}(A)$ is finitely based seems out of reach, in part because the problem of determining whether $\mathbb{V}(A)$ is finitely based is undecidable, as shown by McKenzie. This makes the following result appealing.

Theorem 6.31 (Pigozzi). Let K be a finite set of finite algebras of finite type. If $\mathbb{Q}(K)$ is relatively congruence distributive, then it is finitely based.

Remark 6.32. The above result subsumes the classical Baker's Finite Basis Theorem for varieties.

⊠

In view of Theorem 6.28, we obtain the following.

Corollary 6.33. *Let* K *be a finite set of finite algebras of finite type. If* $\mathbb{Q}(K)$ *has* EDPRC, then it is finitely based.

This result admits a logical reading. A logic \vdash is said to be *finitely axiomatizable* if it can be axiomatized by a finite Hilbert calculus.

Corollary 6.34. Let \vdash be an algebraizable logic of finite type and K its equivalent algebraic semantics. If \vdash has a DDT and $K = \mathbb{Q}(M)$ for a finite set of finite algebras M, then \vdash is finitely axiomatizable.

Proof. From Theorem 6.5 it follows that K has EDPRC. Therefore, we can apply Corollary 6.33, obtaining that K is axiomatized by a finite set Σ of quasi-equations. Let τ and Δ be the sets of equations and formulas that, together with K, witness the algebraizability of \vdash . It is easy to show that \vdash can be axiomatized by the Hilbert calculus consisting of the rules

$$x \rhd \Delta[\tau(x)]$$

$$\Delta[\tau(x)] \rhd$$

$$\Delta(\varphi_1, \psi_1) \cup \cdots \cup \Delta(\varphi_n, \psi_n) \rhd \Delta(\varepsilon, \delta),$$

for every quasi-equation $(\varphi_1 \approx \psi_1 \& \dots \& \varphi_n \approx \psi_n) \Longrightarrow \varepsilon \approx \delta$ in Σ .

Exercise 6.35. Prove that the Hilbert calculus in the above proof axiomatizes \vdash .

Example 6.36 (Tabular superintuitionistic logics). A superintuitionistic logic is said to be *tabular* if its equivalent algebraic semantics is a variety of the form $\mathbb{V}(A)$, for a finite Heyting algebra A. We will prove that every tabular intermediate logic is finitely axiomatizable. Accordingly, let \vdash be tabular and $\mathbb{V}(A)$ its equivalent algebraic semantics (where A is a finite Heyting algebra). In view of Jónsson's Lemma, the subdiretcly irreducible members of $\mathbb{V}(A)$ form a finite set \mathbb{K} of finite algebras. Therefore, $\mathbb{V}(A) = \mathbb{P}_{SD}(\mathbb{K}) \subseteq \mathbb{Q}(\mathbb{K})$. As the inclusion $\mathbb{Q}(\mathbb{K}) \subseteq \mathbb{V}(A)$ is obvious, we conclude that $\mathbb{V}(A) = \mathbb{Q}(\mathbb{K})$. Since \vdash has a DDT, we can apply Corollary 6.34, obtaining that \vdash is finitely axiomatizable.

Exercise 6.37. Prove that if K is a finite set of finite algebras, there exists a finite algebra A such that $\mathbb{V}(\mathsf{K}) = \mathbb{V}(A)$. On the other hand, exhibit a finite set K of finite algebras for which there is no algebra A (finite or infinite) such that $\mathbb{Q}(\mathsf{K}) = \mathbb{Q}(A)$.

Theorem 6.28 can be used to disprove that certain quasi-varieties have EDPRC.

Example 6.38 (Groups). As an exemplification, we will prove that the variety Gr of groups lacks EDPC. Let A be the *Klein four-group*, i.e., the direct product $\mathbb{Z}_2 \times \mathbb{Z}_2$, where \mathbb{Z}_2 is the groups of integers modulo two. The congruence lattice of A is isomorphic to the following nondistributive diamond.

Hence, the variety Gr is not congruence distributive. By 6.28, this implies that Gr lacks EDPC, as desired. In view of the bridge theorem between the DDT and EDPRC, the algebraizable logic of groups G, defined in the proof of Corollary 5.30, lacks any DDT.

Principal K-congruences (and, therefore, EDPRC) are also related to the building blocks of quasi-varieties, as we proceed to explain.

Definition 6.39. Let K be a quasi-variety. A member A of K is said to be *subdirectly irreducible relative to* K when for every subdirect embedding $f: A \to \prod_{i \in I} B_i$ with $\{B_i: i \in I\} \subseteq K$, there exists some $i \in I$ such that the composition $p_i \circ f: A \to B_i$ is an isomorphism. The class of all subdirectly irreducible algebras relative to K will be denoted by K_{RSI} and its elements are called the RSI members of K.

As we will see, the definability of principal K-congruences influences the model theoretic properties of the class of RSI members of a quasi-variety K. To make this precise, it is convenient to introduce the following concept.

Definition 6.40. A quasi-variety K is said to have *definable principal relative congruences* (DPRC) if there exists a first order formula $\phi(x,y,z,v)$ such that, for every $A \in K$ and $a,b,c,d \in A$,

$$\langle a,b\rangle\in \operatorname{Cg}_{\mathsf{K}}^{A}(c,d)\Longleftrightarrow A\vDash\phi(c,d,a,b).$$

When K is a variety, it is common to use the expression *definable principal congruences* (DPC), as opposed to (DPRC).

Clearly, every quasi-variety with EDPRC has DPRC, while the converse need not be true in general. For instance, an argument analogous to the one detailed in Example 6.38 shows that the variety CR of commutative rings with unit lacks EDPC. On the other hand, the formula

$$\phi(x,y,z,v) := \exists w(w(x-y) \approx z - v)$$

witnesses DPC for CR.

A class of structures is said to be *elementary* when it can be axiomatized by a set of sentences.

Theorem 6.41. If K is a quasi-variety with DPRC, then K_{RSI} and K_{RS} are elementary classes.

Proof. We detail the proof for the case of K_{RSI} and leave that of K_{RS} as an exercise. Let $\phi(x,y,z,v)$ be the formula witnessing DPRC for K. Then consider the sentence

$$\varphi := \exists x, y (x \not\approx y \& \forall z, v (z \not\approx v \to \phi(z, v, x, y))). \tag{6.7}$$

Let also Σ be the set of universal the closures of the quasi-equations valid in K. We will prove that $\Sigma \cup \{\varphi\}$ axiomatizes K_{RSI} .

In view of Maltsev's Theorem, Σ axiomatizes K. Therefore, as φ witnesses DPRC, $\Sigma \cup \{\varphi\}$ axiomatizes the members A of K that contain two distinct a,b such that $\langle a,b\rangle \in \operatorname{Cg}_{\mathsf{K}}^A(c,d)$, for every pair of distinct $c,d\in A$. In view of Proposition 4.41, these are precisely the RSI members of K.

As a consequence of Löwenheim-Skolem Theorem, we obtain the following.

Corollary 6.42. Let K be a quasi-variety with DPRC whose language has cardinality κ . If K has an infinite RSI member, then it also has an RSI member of cardinality λ , for every $\lambda \geqslant \kappa + \aleph_0$.

Theorem 6.28 can be used to disprove that certain quasi-varieties have EDPRC.

Example 6.43 (Modal algebras). As an exemplification, we will prove that the variety MA of modal algebras lacks DPC and, therefore, EDPC. Notably, in view of Theorem 6.5, this implies that the logic K_g lacks any DDT. By Theorem 6.41, it suffices to prove that the class of simple modal algebras is not elementary. We will do this, by showing that it is not closed under ultraproducts (see Corollary 4.4, if necessary). To this end, recall that a modal algebra A is simple when it is nontrivial and for every element $a \in A \setminus \{1\}$ there is $n \in \mathbb{N}$ such that $\coprod^n a = 0$.

For every $n \in \mathbb{N}$, consider the Kripke frame $\langle W_n, R_n \rangle$ with universe $W_n = \{x_1, \dots, x_n\}$ and accessibility relation R_n defined as follows:

$$\langle y, z \rangle \in R_n \iff \text{ either } y = z \text{ or } (y = x_i \text{ and } z = x_{i+1}) \text{ or } (y = x_n \text{ and } z = x_1).$$

Furthermore, let A_n be the complex algebra of $\langle W_n, R_n \rangle$. It is easy to prove that A_n is simple. Furthermore, for every $n \in \mathbb{N}$, there exists an element $a_n \in A_{n+2} \setminus \{1\}$ such that

$$\boxplus^{nA_{n+2}}a_n\neq 0^{A_{n+2}}.$$

Suppose, with a view to contradiction, that the class simple modal algebras is closed under ultraproducts. Then consider a free ultrafilter U on \mathbb{N} and take the ultrapower

$$B \coloneqq \prod_{n \in \mathbb{N}} A_n / \theta_U.$$

By assumption, B is a simple modal algebra. Then consider an element $\vec{b} \in \prod_{n \in \mathbb{N}} A_n$ such that $\vec{b}(n+2) = a_n$, for every $n \in \mathbb{N}$. Since B is simple, there is $m \in \mathbb{N}$ such that

$$\boxplus^{m\mathbf{B}}\vec{b}/\theta_U=0^{\mathbf{B}}.$$

By Łoś' Theorem, this implies that U contains a finite subset of \mathbb{N} . But this contradicts the assumption that U is free.

At this stage, it is natural to wonder how restrictive is EDPRC with respect to DPRC. To answer this question, it is convenient to introduce the following concept.

Definition 6.44. A quasi-variety K is said to have the *relative congruence extension property* (RCEP) if for every $B \le A \in K$ and $\theta \in Con_K(B)$ there exists $\phi \in Con_K(A)$ such that $\theta = \phi \cap (B \times B)$. When K is a variety, $Con_K(A)$ and $Con_K(B)$ can be replaced, respectively, by Con(A) and Con(B), and K is said to have the *congruence extension property* (CEP).

Theorem 6.45 (Fried, Grätzer & Quackenbush). *A quasi-variety has EDPRC if and only if it is relatively congruence distributive and it has DPRC and the RCEP.*

As the majority of quasi-varieties in the algebra of logic have the RCEP and are relatively congruence distributive, in this setting it is often that case that EDPRC is equivalent to DPRC. For instance, as all varieties of modal algebras have the CEP and are congruence distributive, EDPC and DPC coincide for them.

We conclude our journey with a description of varieties of modal algebras with EDPC.

Theorem 6.46 (Blok & Pigozzi). A variety of modal algebras has EDPC if and only if it is weakly transitive.

Proof. Recall that weakly transitive varieties have EDPC. Therefore, it only remains to prove the converse. Accordingly consider variety K of modal algebras with EDPC. By Theorem 5.10, it is the equivalent algebraic semantics of an axiomatic extension \vdash of K $_g$. As any other axiomatic extension of K $_g$, the logic \vdash has the following property: for every $\Gamma \cup \{\varphi, \psi\} \subseteq T(Var)$,

$$\Gamma, \varphi \vdash \psi \iff \text{there is } n \in \mathbb{N} \text{ such that } \Gamma \vdash \boxplus^n \varphi \to \psi.$$
 (6.8)

Furthermore, \vdash has a DDT, by Theorem 6.5. Let then I(x,y) be the set witnessing the DDT for \vdash . Since I is finite, we can assume that it has cardinality at most one, for if $I = \{\varphi_1, \ldots, \varphi_n\}$, we can replace I with $I^* = \{\varphi_1 \land \cdots \land \varphi_n\}$. Furthermore, we can also assume that I contains a tautology and, therefore, that it is nonempty. Accordingly, we will assume that $I = \{x \multimap y\}$, for some formula $x \multimap y$ in two variables x and y. Therefore, the DDT amounts to the statement that, for every set of formulas $\Gamma \cup \{\varphi, \psi\}$,

$$\Gamma, \varphi \vdash \psi \iff \Gamma \vdash \varphi \multimap \psi.$$

Now, observe that $x \multimap y \vdash x \multimap y$. In view of the DDT, this yields $x, x \multimap y \vdash y$. By (6.8) there exists $n \in \mathbb{N}$ such that

$$\emptyset \vdash \boxplus^n (x \land (x \multimap y)) \rightarrow y.$$

Observe that in the class of modal algebras MA the equation $\boxplus^n(x \wedge y) \approx \boxplus^n x \wedge \boxplus^n y$ holds. Therefore,

$$\mathsf{MA} \vDash \Big(\boxplus^n (x \land (x \multimap y)) \to y \Big) \to \Big((\boxplus^n x \land \boxplus^n (x \multimap y)) \to y \Big) \approx 1.$$

By Theorem 3.14, this yields

$$\emptyset \vdash_{\mathsf{K}_g} \left(\boxplus^n (x \land (x \multimap y)) \to y \right) \to \left((\boxplus^n x \land \boxplus^n (x \multimap y)) \to y \right).$$
 (6.9)

Since \vdash is an extension of K_g , by applying modus ponens to the above display and (6.9), we obtain

$$\emptyset \vdash (\boxplus^n x \land \boxplus^n (x \multimap y)) \rightarrow y.$$

Recall that in CPC every formula of the form $((\alpha \land \beta) \to \gamma) \to (\beta \to (\alpha \to \gamma))$ is a tautology. Therefore, the same is true in \vdash . As the formula above have the form $(\alpha \land \beta) \to \gamma$, by modus ponens we obtain

$$\boxplus^n (x \multimap y) \vdash \boxplus^n x \to y.$$

As \vdash in substitution invariant, we can replace y by $\square^{n+1}x$ in the above deduction and obtain

$$\boxplus^{n} (x \multimap \square^{n+1} x) \vdash \boxplus^{n} x \to \square^{n+1} x. \tag{6.10}$$

Lastly, since \vdash is an extension of K_g , we have $x \vdash \Box^{n+1}x$. By the DDT, this yields $\emptyset \vdash x \multimap \Box^{n+1}x$. Together with $x \vdash \Box x$ and substitution invariance, this yields

$$\emptyset \vdash \coprod^n (x \multimap \Box^{n+1} x).$$

By (6.10), we conclude that

$$\emptyset \vdash \boxplus^n x \to \square^{n+1} x.$$

Since the algebraizability of \vdash is witnessed by $\tau = \{x \approx 1\}$, $\Delta = \{x \leftrightarrow y\}$ and K, from the above display it follows $K \models \boxplus^n x \to \Box^{n+1} x \approx 1$, that is, $K \models \boxplus^n x \leqslant \Box^{n+1} x$. Hence, we conclude that K_g is weakly transitive.

Corollary 6.47. An axiomatic extension of K_g has the DDT if and only if its equivalent algebraic semantics is a weakly transitive variety of modal algebras.