EC Utbildning Data Science October 2024

Predictive
Maintenance
Project
Overview

OVERVIEW

Predictive Maintenance Project

This project aims to develop a predictive maintenance system using the <u>Predictive Maintenance: Time-Series Forecasting</u> dataset from Kaggle, progressing from data storage in SQL to machine learning model development and visualization.

Predictive Maintenance and Its Impact Across Industries

- Manufacturing
- Security
- Healthcare
- •Cost Efficiency: Reduces maintenance costs by 10–30% annually.
- •Operational Uptime: Cuts unplanned downtime by up to 50%.
- •Annual Savings: Can save companies €1M–€5M per facility.

Role of Time Series Analysis

Forecasting: Predict future outcomes to enable proactive planning.

Anomaly Detection: Identify unusual patterns to respond quickly (e.g., machine spikes)

Collaborative Model Development

Data Prep: Modules

Agile EDA:
Understand &
Redefine

Model Build:
From Linear
Light to
Nuclear Neural

Parallel push to Deployment Deadline

Agile Methodology & Scrum Roles

Scrum Master Robert Shaw

Product Owners
Missi Hansson & Jakob Rask

Dev Team:
Jakob Rask,
Missy Hansson
& Robert Shaw

 Kanban Board:
 Trello for task management.

Tools

Version Control:
 Git for code
 teamwork and
 tracking.

Scrum-based Timeline

Sprint 1: Setup & Data Acquisition – Set up the project and pull initial data.

Deliverable: Dataset ready for analysis.

Sprint 2: Data Exploration & Feature Engineering – Explore data and

create features.

Deliverable: Initial features for model.

Sprint 3: Model Building & Evaluation – Build and test the model.

Deliverable: Prototype model with performance metrics.

Sprint 4: Model Refinement & Dashboard – Refine model and build dashboard.

Deliverable: Improved model and working dashboard.

Sprint 5: Final Refinement & Presentation – Finalize model and prepare presentation.

Deliverable: Complete project ready for delivery.

Technical Implementation

Data Handling: SQL integration for structured data storage.

ML Models: Random Forest, Neural Networks, ARIMA.

Version Control:

Git workflow with branches and pull requests for code management.

Which model and target

Remaining Useful Life (RUL) Prediction Using LSTM

What is RUL?

 RUL: Predicts time remaining before a machine fails, allowing proactive maintenance and cost savings.

Why LSTM?

- Captures Long-Term
 Dependencies: Ideal for sequential data like RUL.
- Handles Nonlinear Patterns:
 More effective than ARIMA for complex time-series data

Handling RUL & Missing Data

Challenge:

Missing RUL values from lack of recent failure data, leading to inaccuracies.

Solution:

- Machine-Specific Means:
 Filled NaNs with machine-specific mean RULs, using a countdown.
- Similarity-Based Imputation: Used average RUL from similar machines (age/model) for machines without failure data.

Predicitve Power!!

We managed to create a magical model ready for our streamlit app

