Problem: find the expression of $i_1(t)$, $i_6(t)$ for t > 0.

Solution

- Time constant: $\tau = \frac{2}{7}$ s;
- Initial conditions before switching: $i_1(0^-) = \frac{2}{19} A$;
- Initial conditions after switching: $i_1(0^+) = \frac{2}{19} \text{ A}$; $i_6(0^+) = \frac{2}{19} \text{ A}$;
- Steady-state solution: $i_1(\infty) = \frac{2}{7} A$; $i_6(\infty) = \frac{2}{7} A$;
- Solution for t > 0:

$$i_1(t) = \left(-0.18 \, \mathrm{e}^{-t/ au} + rac{2}{7}
ight) \, \mathsf{A}$$

$$i_6(t) = \left(-0.18 \, \mathrm{e}^{-t/ au} + rac{2}{7}
ight) \, \mathsf{A}$$