Submission 1.2

be nice dude!!

September 6, 2023

1 Problem 1

$$\begin{array}{c} R \Longrightarrow \neg M \\ \neg R \Longrightarrow \neg M \end{array}$$

Smith's assertion is false. No matter whether taxes are raised or not, there is a premise that will handle it, so it is impossible that both are false because $(A \land \neg A) = \text{True}$.

2 Problem 2

(c) and (e) can follow because of the contrapositive of the original argument.

3 Problem 3

 $S \Longrightarrow (R \Longrightarrow X) \forall X \ge \$3,560$

- (a) You do not have to file a tax return.
- (b) Nothing follows; they do not have to file a tax return under IRS Publication 17 or commit tax fraud.
- (c) You have to file a tax return.
- (d) X<\$3,650.
- (e) Nothing follows; their income could be anything.

4 Problem 4

KP∨M ¬KP ∴.M M [DS]

5 Problem 5

$$\begin{array}{c} R \Longrightarrow F \\ F \Longrightarrow \neg R \\ \hline \\ \therefore \neg R \\ \\ \neg F \Longrightarrow \neg R \text{ [ContraPos]} \\ \neg R \text{ [MP]} \end{array}$$

6 Problem 6

$$S \Longrightarrow C$$

$$\neg S$$

$$\therefore \neg C$$

$$\neg S \lor C \text{ [CDis]}$$

$$C \text{ [MP]}$$

7 Problem 7

$$\begin{array}{c} A \Longrightarrow \neg G \\ M \Longrightarrow A \\ \hline \\ \therefore G \Longrightarrow \neg M \\ \\ G \Longrightarrow \neg A \text{ [ContraPos]} \\ \neg A \Longrightarrow \neg M \text{ [ContraPos]} \\ G \Longrightarrow \neg M \text{ [HS]} \\ \end{array}$$

8 Problem 8

$$\begin{split} & \underset{M \wedge \neg H}{\longrightarrow} & \\ & \xrightarrow{M \wedge \neg H} \\ & \xrightarrow{} \\ & \vdots E \end{split}$$

$$& \underset{E \text{ [ContraPos]}}{\longrightarrow}$$

9 Problem 9

10 Problem 10

 \wedge is associative:

 \lor is associative:

 \implies is not associative:

 \leftrightarrow is associative:

11 Problem 11

In this argument A and B have to be either a tautology or a contradiction because those are the only cases where A and B will logically have the same value. (T and T, F and F)

12 Problem 12

This statement will always be contingent and never a tautology or contradiction because in those 2 cases A and B have the same value, so they would be logically equivalent.

13 Problem 13

This statement cannot be a contradiction or tautology because then they would be logically equivalent and so it has to be contingent only.

14 Problem 14

$$\text{-} \neg A \Longrightarrow B \text{-} \neg (A \Longrightarrow \neg B) \text{-} (A \Longrightarrow B) \land (B \Longrightarrow A)$$

15 Problem 15

-
$$\neg(\neg A \lor \neg B)$$
 - $(\neg A \lor B)$ - $(A \Longrightarrow B) \land (B \Longrightarrow A)$