Билет №13

Методы расчета цепей постоянного тока

Расчет эквивалентных сопротивлений

При последовательном подключении резисторов

$$I_1 = I_2 = ... = I_i$$

$$U_{
m o 6 m} = U_1 + U_2 + ... + U_i$$

Из закона Ома:

$$R_{ ext{ofiii}} = R_1 + R_2 + ...R_i$$

При параллельном подключении резисторов

$$I_{\text{обш}} = I_1 + I_2 + ... + I_i$$

$$U_1 = U_2 = ... = U_i$$

Из закона Ома:

$$rac{1}{R_{
m o 6 m}} = rac{1}{R_1} + rac{1}{R_2} + ... + rac{1}{R_i}$$

Правила Кирхгофа

Первое

Формулировка: Векторная сумма токов при любом узле цепи равна нулю.

Это правило значит, что ни в каком узле цепи заряд не накапливается

Втрое

Формулировка: В любом замкнутом контуре электрической цепи алгебраическая сумма падений напряжений равна алгебраической сумме ЭДС, действующих в этом же контуре.

Его так же называют обобщенным законом Ома.

Метод узловых потенциалов

Основан на первом правиле Кирхгофа.

Его суть заключается в том, что для расчета некоторой цепи можно присвоить каждой точке потенциал и выразить его через токи, входящие и выходящие из этого узла.

Метод контурных токов

Основан на втором правиле Кирхгофа.

Его суть заключается в том, что для расчета некоторой цепи можно выбрать несколько замкнутых контуров и записать для них обобщенный закон Ома.

Цепи с заданной вольт-амперной характеристикой

На картинке изображена ВАХ лампочки. По этому графику мы можем определить ток, который через нее течет, если мы знаем напряжение.

Для нелинейных элементов все еще применимы законы Кирхгофа.

Делитель напряжения и потенциометр

Делителем напряжения называют следующую конструкцию:

Резисторы соединены последовательно, значит через них

Билет №13

течет одинаковый ток. Запишем закон ома для двух резисторов:

$$U=U_1+U_2=IR_1+IR_2$$
 $I=rac{U}{R_1+R_2}$

Таким образом:

$$U_1=Urac{R_1}{R_1+R_2}$$
 in $U_2=Urac{R_2}{R_1+R_2}$

А потенциометр — измерительный прибор, который используют для измерения напряжения путем сравнения его с известным ЭДС (U_0). Он представляет собой делитель напряжения с переменным сопротивлением.

Пусть нам надо найти напряжение U_x

O — гальванометр. Регулируя сопротивление переменного резистрора добьемся, чтобы через него не тек ток, т.е. $U_x = U_k$

По формуле, которую мы получили выше:

$$U_x = U_k = U_0 rac{R_1}{R_0} = U_0 rac{R_1}{R_1 + R_2}$$

Так же потенциометр можно использовать в других целях. Например, разделить известное напряжение на два одинаковых.