

4325 Verdigris Cir, San Jose, CA 95134

□ (617)620-5992 | ■ pravindngl@gmail.com | □ pravindngl | ► Pravin Dangol

Education

Northeastern University

Boston, MA Dec 2021

M.S. ELECTRICAL AND COMPUTER ENGINEERING

• Concentration in Computer Vision, Machine Learning and Algorithm

St. Cloud State University

St. Cloud, MN

Dec. 2016

B.S. IN MECHANICAL ENGINEERING

• Graduated Summa Cum Laude in the honors program.

Work Experience ____

Intrinsic AI, an Alphabet company

Mountain View, CA

Jan 2022 - Present

ROBOTICS SOFTWARE ENGINEER II

- Deployed applications for vision guided warehouse automation on manipulator robots, coupled with HIL/SIL system integration test.
- Containerized application for faster deployments, and automated container builds and deployment on robot lines.
- Simulated high-level robot-line interactions to optimize performance and maximize peak throughput.

The Mathworks Inc.

Natick, MA

SOFTWARE ENGINEER INTERN

May 2021 - Sept 2021

- Involved in the development of DDS/ROS middleware toolbox for the Simulink product line.
- Projects involve auto-generating and building C++ code from Simulink models for all supported vendors, which can be deployed by users.
- Created unit tests to check for failure and ensure generated code matched DDS standards.
- Assisted with creating an inference model to predict whether individual tests are likely to pass or fail given a changelist.

SiliconSynpase Lab, Northeastern University

Boston, MA

RESEARCH ASSISTANT

Sept. 2018 - May 2021

- Led projects that deal with the design and control of bio-inspired legged and aerial robots.
- Designed and assembled a lightweight quadrupedal robot. Implemented agile walking gaits through state estimation, motion planning, and hierarchical control strategies; deployed on the hardware through a real-time OS.
- Implemented a robust closed-loop controller with optimized dynamic gaits for a thruster-assisted bipedal robot. Designed running and walking gaits based on the Hybrid Zero Dynamics framework.
- Created data-driven models to classify flapping patterns and estimate unknown aerodynamics forces acting on the wings of a flapping wing robot.

Electrolux St Cloud, MN

PRODUCT DEVELOPMENT ENGINEER

Jan. 2017 - Jul. 2017

- Managed and led projects aimed at increasing reliability, quality, and reducing the manufacturing costs of commercial kitchen appliances.
- Designed mass-produced components to extend the product life cycle of the existing appliance line.
- Managed sub-projects dealing sheet metal fabrication, injection molding, extrusion, thermoforming, and tooling required for large volume production.

TLC Electronics Inc. St Paul, MN

AUTOMATION INTERN

May 2016 - Aug. 2016

- Automated assembly lines to improve build times for parts used in the electronics and medical device in-
- Prototyped and designed test fixtures to increase efficiency in the assembly process and electrical testing.

PRAVIN DANGOL · CV

Hutchinson Technology Inc.

Hutchinson, MN

RESEARCH AND DEVELOPMENT ENGINEER CO-OP

Jan. 2015 - Aug. 2015

- Involved with design, process development, and research for shape-metal alloy based optical image stabilizers used in smart-phones.
- Worked on design for manufacturability of electro-mechanical assemblies, designed fixtures, tested and analyzed parts to optimize performance and power consumption.

Projects_

Compression of a Hand Gesture Detection Model

- Implemented and compared various model compression techniques on a large multi-hand gesture detection model. The end goal was to reduce model size and improve inference speed while preserving initial accuracy.
- The model was pruned by promoting sparsity in the CNN layers then partially retrained, this was process was carried out in an iterative process to maximize compression.

Online quadruped trajectory update through model free RL

- Utilized SOTA TD3 algorithm to control body posture, regulate walking speed and ground contact on a quadruped with limited observations.
- Timing based gaits with feet end position control, state and touchdown estimates were first used to create baseline dynamics gaits at a high bandwidth. The RL scheme was then used as a trajectory update law at a lower bandwidth to maximize training efficiency.
- This combined hierarchical structure resulted in more stable and robust gaits without needing to use complex model based controller or any costly online optimization methods.

ML based ground dynamics estimation for bipeds

- The purpose of this project was to demonstrate techniques learned in an advanced machine learning course. A paper was recreated to estimate ground dynamics for bipeds traversing unknown terrains.
- The unknown dynamics of the ground reaction forces were modeled as Gaussian Process, the intractable posterior distribution was estimated through forward-backward pass variational inference method to account for inherent instability of dynamics systems.

Image guided micro manipulation

- The project involved vision based feedback on a 3 axis (RRP) micro-manipulator to characterize carbon nanotubes and tissue samples.
- Utilized modern computer vision tools to navigate a manipulators' end effector around obstacles in order to grab the object of interest.

Skills_

Robotics Machine learning Controls & State Estimation

Robotics Kinematics & Dynamics modeling, Motion Planning, ROS, Gazebo, AWS RoboMaker **Machine learning** Reinforcement learning, PyTorch, Tensorflow, CNN, Transformers, OpenCV, Pruning

Controls & State Estimation Linear, Optimal, MPC, Robust, Adaptive, Non-linear, Kalman filter

Programming C, C++, Python, MATLAB, OOP, Unit testing

Publications

- P. Dangol, E. Sihite, and A. Ramezani, "Control of Thruster-Assisted, Bipedal Legged Locomotion of the Harpy Robot," *Frontiers in Robotics and AI*, 2021
- E. Sihite, P. Dangol and A. Ramezani, "Optimization-free Ground Contact Force Constraint Satisfaction in Quadrupedal Locomotion," *Control Systems Society Conference (CDC)*, Austin, Texas, 2021
- A. Ramezani, P. Dangol, E. Sihite, A. Lessieur, and P. Kelly, "Generative Design of NU's Husky Carbon: A Morpho-Functional, Legged-Aerial Robot," *International Conference on Robotics and Automation (ICRA*), Xi'an, China, 2021
- P. Dangol and A. Ramezani, "Performance and Robustness Satisfaction in a Thruster-assisted Legged Robot," *International Federation of Automatic Control (IFAC)*, Berlin, Germany, 2020
- P. Dangol, A. Ramezani and N. Jalili, "Performance satisfaction in Midget, a thruster-assisted bipedal robot," *American Control Conference (ACC)*, Denver, CO, 2020