2018-2019	Contest #3

Junior Division - Stretch

考号/Exam Code:	4d. / 100	20/4 1 ≥ 1 1	
左号/Fyam (Ode:	姓名/Name:	学校/School:	
- J J/Exam Couc	AL'D/Numci	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

PROBLEM: Given a rectangular grid and the 3 types of pieces shown below, the object of Stretch is to place pieces in the grid so that they form a connected path from the left side to the right side.

- A piece cannot be rotated or flipped.
- A piece can only connect to the last piece that was placed and one column to the right of that piece.
- A piece can connect only at a tile with a circle and the tiles with the circles are the only tiles that are allowed to touch.
- All tiles of the connecting piece must be to the right of all previously placed pieces.
- A piece cannot be placed in the grid such that it would cover any part of another piece, cover a blocked cell, or extend beyond the grid.
- The one and only tile allowed to touch the starting side is a circle tile.
- The one and only tile allowed to touch the opposite side is a circle tile.
- Pieces are placed in alphabetical order. If a piece does not fit, skip it and use the next piece that fits. When Piece C is either used or skipped, then begin again with Piece A.
- Grid cells are numbered consecutively starting with 1 in the upper left corner as shown.
- We guarantee that if a piece can be placed, then that will be the only location it can be placed.

EXAMPLE: The following example is a 6 x 10 grid with a starting cell of 11. There are blocked cells at cells 23 and 37. Piece A is placed at 11. Piece B can only be placed at 14. The next piece must connect at 26. Piece C cannot be placed at 26 because there is a blocked cell at 37. Therefore, Piece C is skipped. Piece A is placed at Location 26. The next piece must connect at 29. Piece B is placed at 29 and touches the right side at 40. Therefore, the path is ABAB.

1	2	3	4	5	6	7	8	9	10
0	Α	0	•	15	16	17	18	19	20
21	22		В	0	0	Α	0	•	30
31	32	33	34	35	36		38	В	•
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60

INPUT: There will be 5 lines of data. Each line will contain the numbers: r, c, s, n, followed by n numbers. r indicates the number of rows in the grid. c indicates the number of columns in the grid. s indicates the starting cell number for the first piece. n indicates the number of blocked cells, and the next n numbers are the cells that are designated as blocked.

2018-2019 _____ Contest #3

Junior Division - Stretch

OUTPUT: Form a path from the starting cell on the left side of the grid to a single cell on the opposite edge of the grid using the algorithm above. Print the sequence of pieces that were used to form the path.

SAMPLE INPUT

- 6 10 11 1 37
- 4 9 1 1 16
- 4 10 1 0
- 6 11 1 1 42
- 4 8 17 1 21

SAMPLE OUTPUT

- 1. ABAB
- 2. ABBB
- 3. ABCA
- 4. ABCBB
- 5. ABA

TEST INPUT

- 7 12 25 2 40 55
- 5 10 1 1 14
- 6 9 10 2 22 34
- 5 15 16 4 35 38 41 44
- 6 10 21 0

2018-2019 _____ Contest #3

Junior Division - Stretch

考号/Exam Code:	姓名/Name:	学校/School:
与与/Exam Code	姓石/Name	子仅/301001

PROBLEM(问题): 给定矩形网格和下面显示的 3 种类型的连接部件,要将连接部件放入在网格中,以便它们形成从左侧到右侧的连接路径。

- 部件不能旋转或翻转。
- 一个部件只能连接到最后一个放置的部件和该部件右侧的一列。
- 一个部件只有圆圈部分才能与另一个部件的圆圈部分连接。
- 连接部件必须位于之前所有放置部件的右侧。
- 在网格中,一个部件不能覆盖另一个部件的任何部分,不能覆盖阻塞的单元,也 不能延伸到网格之外。
- 唯一允许接触的起始点部分是一个部件的圆圈部分。
- 唯一允许接触的下一个部件部分也是部件的圆圈部分。
- 部件按英文字母顺序排列。如果一个部件不合适,则跳过它,使用下一个合适的。 当部件 C 被使用或跳过时,再次从部件 A 开始。
- 网格单元从左上角的1开始连续编号,如图所示。
- 我们保证,如果一个部件可以放置,那么这将是唯一可以放置的位置。

EXAMPLE(**示例**): 下例为 6 x 10 网格, 起始单元格为 11。单元格 23 和 37 处有阻塞的单元格。部件 A 放置在 11。部件 B 只能放置在 14。下一块必须在 26 连接。部件 C 不能放置在 26,因为 37 处有一个阻塞的单元格。因此,跳过部件 C。部件 A 位于位置 26。下一块必须在 29 连接。部件 B 放置在 29 处,与右侧 40 处接触。因此,该路径是 ABAB。

1	2	3	4	5	6	7	8	9	10
0	Α	0	0	15	16	17	18	19	20
21	22		В	0	0	Α	0	0	30
31	32	33	34	35	36		38	В	0
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60

INPUT (输入): 将有 5 行输入数据。每一行将包含数字: r、c、s、n,后跟 n 个数字。r 表示网格中的行数。c 表示网格中的列数。s 表示第一个单元格的开始编号。n 表示阻塞的单元格数。接下来的 n 个数字表示具体阻塞的单元格。

2018-2019 Contest #3

Junior Division - Stretch

OUTPUT (输出):使用上述算法,形成一条从网格左侧的起始单元格到网格另一侧的单 个单元格的路径。输出用于形成路径的序列。

SAMPLE INPUT (示例输入)

6 10 11 1 37

4 9 1 1 16

4 10 1 0

6 11 1 1 42

4 8 17 1 21

SAMPLE OUTPUT (示例输出):

- 1. ABAB
- 2. ABBB
- 3. ABCA
- 4. ABCBB
- 5. ABA

TEST INPUT

7 12 25 2 40 55

5 10 1 1 14

6 9 10 2 22 34

5 15 16 4 35 38 41 44

6 10 21 0