DEVOIR 3. KÄHLER METRICS AND HOLOMORPHIC VECTOR BUNDLES

Exercises with \bigstar : hand in only these exercises (Exercises 4, 7, 8, 9, 10).

Exercises with $\star\star$: not for return, but give it a try or read some references and convince yourself. Exercises without \star : these are standard exercises; if you don't know them, it's important to learn them.

Exercise 1. Let (M,ω) be a Kähler manifold and f a C^2 compactly supported real-valued function on M. Show that for $\varepsilon \in \mathbb{R}$ small enough, $\omega + \varepsilon i \partial \bar{\partial} f$ is a Kähler metric on M.

Exercise 2. Let $U \subset \mathbb{C}^n$ be an open subset and $\omega = \frac{1}{2} \sum_{j,k=1}^n h_{j\bar{k}} dz_j \wedge d\bar{z}_k \in \mathcal{A}^{1,1}(U)$. Show that $\omega^n = (\frac{\mathrm{i}}{2})^n \det(h_{j\bar{k}}) \mathrm{d}z_1 \wedge \mathrm{d}\bar{z}_1 \wedge \cdots \wedge \mathrm{d}z_n \wedge \mathrm{d}\bar{z}_n.$

Exercise 3 (Local $\partial \bar{\partial}$ -lemma). Let $\Delta \subset \mathbb{C}^n$ be a polydisk. Given a (1,1)-form $\alpha \in \mathcal{A}^{1,1}(\Delta) \cap \mathcal{A}^2_{\mathbb{R}}(\Delta)$, $d\alpha = 0$, show that there exists $f \in \mathcal{C}^{\infty}(\Delta)$ such that $\alpha = i\partial \bar{\partial} f$.

Exercise 4. \bigstar Let (M,J,ω) be a compact Kähler manifold. Check that the following two Kähler identities are equivalent:

$$[\Lambda_{\omega}, \bar{\partial}] = -i\partial^* \qquad [\bar{\partial}^*, L_{\omega}] = i\partial.$$

Exercise 5. On \mathbb{C}^n with its standard Kähler metric and for $f \in C^2(\mathbb{C}^n, \mathbb{R})$, check that $\Delta_{\mathrm{d}} f$ is (a multiple of) the Laplacian that you learned in complex analysis or PDE courses.

Exercise 6. Let (M, J, ω) be a compact Kähler manifold. Show that Δ_d , $\Delta_{\bar{\partial}}$, $\Delta_{\bar{\partial}}$ commute with *, L_{ω} , $\Lambda_{\omega}, \, \partial, \, \partial^*, \, \bar{\partial}, \, \text{and } \bar{\partial}^*.$

Exercise 7. \bigstar Let M be a comapet Kähler manifold and let $\pi: L \to M$ be a holomorphic line bundle with a hermitian metric h, Chern connection ∇_h and curvature $F_{\nabla_h} \in \mathcal{A}^{1,1}(M) \cap \mathcal{A}^2_{\mathbb{R}}(M)$.

- (1) Given a function $f \in C^2(M,\mathbb{R})$, compute the curvature of the Chern connection associated to the hermitian metric $e^{-f}h$ in terms of $F_{\nabla h}$ and f. (2) Deduce that the class $F_{\nabla h}$ in $H_{\bar{\partial}}^{1,1}(M)$ does not depend on h.
- (3) Using the $\partial\bar{\partial}$ -lemma, show that every form in the class $[F_{\nabla_h}]$ is the curvature of a hermitian metric on L.

Exercise 8. \bigstar Let $L \to M$ be a holomorphic line bundle and L^{-1} its dual bundle. Given a connection ∇ on L we define a operator $\nabla^*: \Gamma(L^{-1}) \to \Gamma(T^*M \otimes L^{-1})$ by setting $(\nabla_X^* \sigma)(s) = X(\sigma(s)) - \sigma(\nabla_X s)$ for all $s \in \Gamma(L)$ and $X \in \Gamma(TM)$. Show that ∇^* is a connection on L^{-1} and that $F_{\nabla^*} = -F_{\nabla}$.

Exercise 9. \bigstar Given a compact complex manifold M and the set of holomorphic line bundles together with the tensor product defines an abelian group $\operatorname{Pic}(M)$. Show that the map $c_1:\operatorname{Pic}(M)\to H_{\bar\partial}^{1,1}(M)$ given by $c_1(L) = \left[\frac{i}{2\pi}F_{\nabla_h}\right]$ for any hermitian metric h on L, is a well-defined group homomorphism. In particular, $c_1(L^{\otimes k}) = kc_1(L)$.

Exercise 10 (The tautological line bundle, again). \bigstar Let $L = \mathcal{O}_{\mathbb{P}^n}(-1)$ be the tautological line bundle $\pi: L \to \mathbb{P}^n$ whose fibers L_x over the point $x \in \mathbb{P}^n$ is the complex line $x \in \mathbb{C}^{n+1}$.

- (1) Check that L is naturally a holomorphic subbundle of the trivial bundle $\mathbb{P}^n \times \mathbb{C}^{n+1}$ and thus that the standard hermitian metric on \mathbb{C}^{n+1} provides a hermitian metric on L.
- (2) Compute the associated Chern curvature on L and show that it gives $\lambda\omega_{\rm FS}$ for some negative constant $\lambda < 0$ (here ω_{FS} is the Fubini-Study metric on \mathbb{P}^n). (Some guide: You can look in Voisin's book for example.)
- (3) Deduce the curvature of the Chern connection induced on the dual $L^{-1} = \mathcal{O}_{\mathbb{P}^n}(1)$ is a positive multiple of the Fubini-Study metric (cf. Exercise 8).

Exercise 11. Let M be the blow-up of \mathbb{C}^{n+1} at the origin (see Devoir 1). Give a biholomorphism between M and the total space of the tautological line bundle over \mathbb{P}^n .

Exercise 12. Let E_1 and E_2 be two vector bundles on M endowed with connections ∇^{E_1} and ∇^{E_2} respectively. Let s_1 and s_2 be local sections of E_1 and E_2 , respectively. Define

$$\nabla^{E_1 \oplus E_2}(s_1 \oplus s_2) = \nabla^{E_1}(s_1) \oplus \nabla^{E_2}(s_2), \quad \text{and} \quad \nabla^{E_1 \otimes E_2}(s_1 \otimes s_2) = \nabla^{E_1}(s_1) \otimes s_2 + s_1 \otimes \nabla^{E_2}(s_2).$$

(1) Check that $\nabla^{E_1 \oplus E_2}$ and $\nabla^{E_1 \otimes E_2}$ are connections on $E_1 \oplus E_2$ and $E_1 \otimes E_2$ respectively.

DEVOIR 3

- (2) Show that $F_{\nabla^{E_1 \oplus E_2}} = F_{\nabla^{E_1}} \oplus F_{\nabla^{E_2}}$, and $F_{\nabla^{E_1 \otimes E_2}} = F_{\nabla^{E_1}} \otimes \operatorname{Id}_{E_2} + \operatorname{Id}_{E_1} \otimes F_{\nabla^{E_2}}$.
- (3) Note that $\operatorname{End}(E) = E \otimes E^*$. Deduce that $F_{\nabla^{\operatorname{End}}(E)} = [F_{\nabla^E}, \bullet]$.

Exercise 13 (You can follow Huybrechts's book section 4.A). $\bigstar \bigstar$ Let (M, J, ω) be a Kähler manifold. Show that the $\nabla^{\mathbb{C}}$ the Chern connection on $T^{1,0}M$ correspond to $\nabla^{\mathbb{LC}}$ the Levi-Civita connection on TM under the isomorphism $TM \simeq T^{1,0}M$ induced by $X \mapsto \frac{1}{2}(X - iJX)$.

Exercise 14 (Projective bundles (you can follow Voisin's book section 3.3.2)). $\bigstar \bigstar$ Let $\pi: E \to M$ be a rank r+1 holomorphic bundle over a compact complex manifold M and denote E^{\times} the bundle over M obtained by removing the zero section of E, i.e. $E^{\times} = E \setminus \{0\}$ -section. We define $\mathbb{P}(E)$ to be the quotient of E^{\times} by the natural fiberwise \mathbb{C}^* -action.

- (1) Check that the map π descends as well-defined map $\hat{\pi}: \mathbb{P}(E) \to M$ so that $\hat{\pi}^{-1}(p)$ coincides with the set of complex lines in the fiber $E_p = \pi^{-1}(p)$ of E. In particular, $\hat{\pi}^{-1}(p) \simeq \mathbb{P}^r$.
- (2) Check that a holomorphic atlas $\{U_i\}_{i\in I}$ of M trivialising E provides identifications $\hat{\pi}^{-1}(U_i) \simeq U_i \times \mathbb{P}^r$ and that the projective morphism associated to the transition maps of E give transition maps of the atlas $\hat{\pi}^{-1}(U_i)$ on $\mathbb{P}(E)$.
- (3) Deduce that this provides a complex structure on $\mathbb{P}(E)$ such that $\hat{\pi}: \mathbb{P}(E) \to M$ is holomorphic.
- (4) Consider a holomorphic line bundle $p: \hat{\pi}^*E \to \mathbb{P}(E)$. Remember that the fibers of $\hat{\pi}^*E$ over $x \in \mathbb{P}(E)$ are $E_{\hat{\pi}(x)}$. Convince yourself that $\mathcal{O}_{\mathbb{P}(E)}(-1) := \{\xi \in \hat{\pi}^*E \mid \xi \in p(\xi)\}$ is a holomorphic line bundle over $\mathbb{P}(E)$ and show that for $p \in M$ the pull-back of $\mathcal{O}_{\mathbb{P}(E)}(-1)$ on the fiber $\mathbb{P}(E)_p = \hat{\pi}^{-1}(p) \simeq \mathbb{P}^r$ coincides with the tautological line bundle of \mathbb{P}^r .
- (5) Consider now a hermitian metric h on E. Show that it provides a hermitian metric, still denoted h, on $\mathcal{O}_{\mathbb{P}(E)}(-1)$.
- (6) Show that the restriction of $-F_{\nabla_h}$ to a fiber $\mathbb{P}(E)_p$ is positive for any $p \in M$.
- (7) Conclude that if (M, ω) is compact and Kähler there exists $\lambda > 0$ such that $\lambda \pi^* \omega F_{\nabla_h}$ is Kähler on $\mathbb{P}(E)$.

Exercise 15 (Blow-ups, again (you can follow Voisin's book section 3.3.3)). $\bigstar \bigstar$ Let X be an n-dimensional complex manifold and $Y \subset X$, a closed complex submanifold of dimension m = n - k < n. We have defined \widetilde{X}_Y the blow-up of X along Y with the blow-down map $\pi : \widetilde{X}_Y \to X$ (in Exercises sheet 1).

- (1) We denote the inclusion $\iota: Y \hookrightarrow X$. Show that the normal bundle $N_{Y/X} := \iota^* TX/TY$ is a holomorphic bundle over Y (it is a standard fact that the quotient of a holomorphic vector bundle by its subbundle is still holomorphic).
- (2) Let $U \subset X$ be an open set such that $U \cap Y = Z(f_1^U) \cap \cdots \cap Z(f_k^U)$ where $f^U = (f_1^U, \cdots, f_k^U)$: $U \to \mathbb{C}^k$ is holomorphic (and 0 is a regular value). Show that $\{df_i\}_{i=1,\dots,k}$ gives a frame of the dual bundle of the normal bundle over $U \cap Y$.
- (3) Assume k=1. Show that there is a line bundle $L \to X$ which is trivial on $X \setminus Y$ and agrees with the dual bundle of the normal bundle $N_{Y/X}$ over Y. (*Hint: use the transition functions.*)
- (4) Show that $\pi^{-1}(Y) \simeq \mathbb{P}(N_{Y/X})$ as complex manifolds.
- (5) Show that $\mathcal{O}_{\mathbb{P}(N_{Y/X})}(-1) \simeq N_{\pi^{-1}(Y)/\widetilde{X}_Y}$ as holomorphic bundle over $\pi^{-1}(Y)$.
- (6) Convince yourself that $\pi^{-1}(Y)$ is a closed complex submanifold of complex codimension 1 in \widetilde{X}_Y . Using (3) show that there exists a line bundle $\mathcal{L} \to \widetilde{X}_Y$ whose restriction on $\pi^{-1}(Y)$ coincides with $\mathcal{O}_{\mathbb{P}(N_{Y/X})}(-1)$.
- (7) Using (6), assuming (X, ω) is compact Kähler, show that there exists a hermitian metric h on \mathcal{L}^{-1} and $\lambda > 0$ such that $F_{\nabla_h} + \lambda \pi^* \omega$ is a Kähler metric on \widetilde{X}_Y .