Angepasster Semesterplan (Versuch)

Semester-Agenda CF, HS24

	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7
Fr	20.09:	27.09:	04.10:	11.10:	18.10:	25.10:	01.11:
09:05-	Einstieg,		Sicherung &	PC-Forensik-	File Systems &	Windows	Allerheiligen
11:25	Der Computer		Acquisition	Tools	Disk Forensik		
	als						
	Spurenquelle						
	SW 8	SW 9	SW 10	SW 11	SW 12	SW 13	SW 14
Fr	08.11:	15.11:	22.11:	29.11:	06.12:	13.12:	20.12:
09:05-	Linux	MacOS	Office-Files	Media-Files	Browser-	RAM-Forensik	Encryption
11:25					Artefakte &		
					Netzwerk		

CF: Sicherung & Acquisition

CF HS23

Dr. Hannes Spichiger

Departement Informatik

21.09.2023

Sicherung / Preservation

• Sicherstellen, dass sich der Zustand der Spuren nicht mehr verändert

• Dokumentieren des vorgefundenen Zustandes

Dokumentieren von Umstands-Informationen

Acquisition

Erstellen einer Kopie der Daten

• Ab diesem Schritt ist die Analyse unabhängig vom Physischen Gerät

Macht Arbeiten enorm viel einfacher

«Save State»

Sicherung eines PC

Dokumentation

Dokumentation: Was dokumentiert ihr bei der Sicherung?

- Beschreibung des Geräts
 - Identifikatoren
- Ort des Geräts
- Zustand des Geräts
 - On / Off
 - Peripherals
 - Netzwerk-Kabel

Läuft das Gerät?

• Bildschirm, Ventilator, Elektronik-Geräusche

Bewegen der Maus

- Pressen einer Taste wird nicht mehr empfohlen
 - Kann gerät aus Hibernation aufwecken

Sleep & Hibernation

Sleep:

- Das Gerät bleibt eingeschaltet
- Das Gerät führt keine Prozesse mehr aus
- Aktuell bearbeitete Informationen befinden sich im Arbeitsspeicher
- => Ausschalten führt zu einem Informationsverlust

Hibernation:

- Der Gerätezustand wird auf der Harddisk gespeichert.
 - hiberfil.sys auf Windows
- Abhängig von Einstellung auf Windows
- Standard auf MacOS
- => Trennen von Stromquelle ändert nichts

Transport ins Labor: Was nehme ich mit?

Laptop: Ladekabel

- Tower:
 - Was habe ich für Equipment im Labor?
 - Mac & Windows Peripherals sind nicht unbedingt kompatibel
 - Insb. Tastatur auf Mac für Tastenkombinationen

Erstellen eines Disk-Images

Wir bauen die Disk aus dem PC aus

• Wir erstellen direkt ein perfektes Abbild des Datenträgers

Was ist eine Forensische Kopie?

- Ziel: Perfektes Abbild des Datenträgers
 - Mit allen Partitionen
 - Mit allen Zwischenräumen
- Ansatz:
 - Wir lesen jedes Bit des Datenträgers einzeln und schreiben es in unsere Kopie
 - «Bitwise Copy»
- Relativ Zeitaufwändig
- Garantiert dass Kopie identisch ist mit Datenträger

Write Blocker

- Verhindert, dass Datenträger verändert wird
- Standard für Forensische Analysen
 - Auf Windows zwingend!
- Formate für diverse Datenträgertypen

SSD: Garbage Collection

- SSD haben einen eingebauten Mechanismus, um gelöschte Daten endgültig zu löschen.
 - «Garbage Collection»
- Dieser Prozess ist aktiv sobald die SSD Stromzufuhr hat.
- Write-Blocker stoppen diesen Prozess nicht, verlangsamen ihn jedoch
- Bei SSD lohnt es sich, Kopien so schnell wie möglich anzufertigen

Kopie erstellen

 $\longrightarrow \begin{array}{c} 101 \\ 011 \end{array}$

- Portable Kopier-Stationen
 - Built-In Write Blocker
- Forensische Software
 - dd-Befehl auf Linux
 - Guymager
 - FTK Imager
 - Autopsy
 - USW..

Hashing

- Wir verwenden Hashes, um Authentizität und Vollständigkeit einer Kopie zu überprüfen
- Hashes werden Dokumentiert, um Authentizität bis vor Gericht zu garantieren (Chain of Custody)

Dateiformate von Forensischen Kopien

- Raw
 - .raw / .dd
 - Enthält Daten in Rohformat
 - Grösse Kopie = Grösse Datenträger
 - Hash der Kopie = Hash Datenträger

- Evidence- / Encase-Format
 - .E01
 - Komprimiert
 - In mehrere 640MB-Teile aufgeteilt
 - Grösse Kopie < Grösse Datenträger
 - Enthält Metadaten zu Acquisition
 - De-Facto Standard
 - Hash der Datei != Hash des Datenträgers

https://www.forensicsware.com/blog/e01-file-format.html

Herausforderung: Moores Law

- Datenmenge wächst exponentiell
- Sichern als Kopie von allen Datenträgern benötigt unglaublich viel Speicherplatz
 - Mehr als die meisten Polizeien sich leisten können
- Im allgemeinen werden Abbilder nur bei Datenträgern durchgeführt, welche als Beweismittel verwendet werden

Hard drive capacity

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/m/Moore%2527s_Law.htm

Ansätze gegen Moores Law: Live Analyse

• Die Analyse wird (mit Write-Blocker) direkt auf der Disk durchgeführt

• Es werden nur Disks kopiert, welche auch als Beweismittel verwendet werden

Vorteile:

Sehr Effizient

Nachteile:

Nicht genial mit SSDs (Garbage Collection)

Risiko, dass Disk während Analyse stirbt

Ansätze gegen Moores Law: Triage

Nach der Kopie wird eine schnelle Analyse durchgeführt und entschieden, ob das Image behalten wird

Bei negativ-Entscheid wird das Image gelöscht

Vorteile:

Disk wird nur minimal belastet.

Nachteile:

Viel Kopier- & Löschzeit

Risiko einer initialen Fehleinschätzung

Ansätze gegen Moores Law: Incremental Imaging

- Beim Erstellen der Kopie wird die Kopie in einzelne Dateien aufgesplittet
- In einer zentralen Datenbank werde für jedes File die Datei, der Hash, sowie Infos über den Ort auf der Disk & Metadaten gespeichert
- Tauchen in einem 2. Fall dieselben Dateien wieder auf, werden nur die Metadaten kopiert.

Vorteile:

Optimiert für Speicherplatz-Nutzung trotz vollständigen Daten

Nachteile:

- Erfordert entsprechende Infrastruktur
- Führt zu einer Durchmischung der Falldaten
- Disk image muss rekonstruiert werden

Geräte-Eigenschaften, die Forensische Kopie verhindern

- Aufgelötete Speicher-Chips
- Wir haben keinen Adapter für den Datenträger
- Disk ist nicht ausbaubar
 - Zum. Nicht mit verhältnismässigem Aufwand
- Encryption (je nach Ebene der Verschlüsselung)

(Gerät ist ein Mac)

Boot auf anderes OS

- Erstellen eines Bootable USB-Stick mit Forensic OS
 - Kali
 - CAINE
 - Parrot Sec
 - Cellebrite Digital Collector (Mac)
- Boot auf USB-Stick
 - Unterbrechen der Boot-Sequenz
 - Starten in den Boot-Manager
 - Auswählen des Sticks als Boot-Quelle

Bedingt manchmal mehrere Re-boots

Starten des Boot-Managers

Gerät	Start des Boot Managers
Asus	`F8'
Acer	`Esc', `F12' oder `F9'
Apple	`~ option'
Compaq	`F10'
Dell	`F11'
HP	`F10', `F2' oder `F6'
Lenovo	`F12'
MSI	`F11'
Samsung	`F10'
Toshiba	`F12' oder `F2'

Boot Manager: Windows 10 & 11

- Auf Windows 10 und 11 ist es möglich, dass der Boot Manager deaktiviert ist.
 - PC normal starten
 - Unter 'Settings > Recovery > Advanced Startup

/!\ Dies hinterlässt viele Spuren und ist aus Spurenerhaltungs-Sicht nicht ideal /!\

Windows: UEFI / BIOS Passwort

- Falls Passwort bekannt:
 - Eingeben des Passworts

- Falls Passwort unbekannt:
 - Je nach Hersteller können spezifische Resets existieren
- CMOS Reinitialisieren:
 - CMOS jumper
 - CMOS-Batterie entfernen
 - => Macht das nur, wenn ihr sicher seid, was ihr macht!

Geschützte Firmware: Mac

- Auf Mac kann die Firmware mit Passwort geschützt werden
 - Dies deaktiviert alternative Boot-Methoden
- Falls Passwort bekannt:
 - '\\(\mathcal{H}'\) + 'R' während Boot um Passwort zu entfernen
- Falls Passwort unbekannt:
- NVRAM reinitialisieren:
 - RAM-Menge verändern während OFF
 - Boot während die Tasten '\mathbb{H}' + '\mathbb{--}' + 'P' + 'R' gedrückt sind
 - Gerät 4x starten lassen
 - Beim 4. Startup ist das Passwort gelöscht

Boot auf Forensic OS

- Forensic OS verwendet Hardware des analysierten Geräts
 - Disks des Geräts werden nicht verändert
 - Disks des Geräts sind für das Forensic OS zugänglich
- Wir können eine Forensische Kopie der Disks erstellen
- Forensic OS enthalten Tools zum Erstellen von Images
 - dd-command, Guymager...
- Typischerweise benötigen wir einen 2. Datenträger auf den wir das Image schreiben können
 - Benötigt zusätzlichen USB-Port / USB-Hub
 - Je nach dem kann das schreiben sehr langsam sein

RAM-Capture

- Verwendung eines spezifischen Programms
 - Eg. FTK Imager
- Programm wird direkt von USB aus ausgeführt
- Dump wird auf USB-Stick gesichert (Integrität der Disk)
- Sicherungsprozess wird Spuren hinterlassen:
 - USB-Stick-ID in Registry
 - Programmausführung in Logs, Systemdateien & RAM
- RAM verändert sich während der Sicherung
 - Es ist möglich, dass der Start und das Ende des Dumps nicht konsistent sind.

Alternative Live-Capture Methoden

- Wir können eine Reihe von Informationen vom laufenden System sammeln
 - Laufende Prozesse
 - Netzwerk-Konfig
 - Aktive Nutzer
 - •
- Wir können dies entweder über Command-Line Skripts oder mit extra Programmen machen
- Auch dies wird auf dem Gerät Spuren hinterlassen

RAM vs. Live-Capture

RAM ist die vollständigere Variante.

Wenn ihr den Verdacht habt, dass die Maschine mit Malware infiziert ist, lohnt sich Sicherung der RAM.

Ansonsten ist Live-Capture meistens mehr als ausreichend.

Disk-Encryption

- BitLocker on?
 - Control Panel > System and Security > Bitlocker Drive Encryption

- Hinweise auf Crypto-Drives?
 - PGP, VeraCrypt o.ä. auf dem PC?
 - Namen der Drives?

Andere Gründe gegen Shutdown?

- Der Shutdown des Geräts würde weitreichende negative Konsequenzen nach sich ziehen
 - Kritische Infrastruktur
 - Medizinalgeräte

- Operationelle Gründe
 - Die Maschine ist Teil eines kriminellen Netzwerks
 - Abschalten der Maschine könnte Komplizen alarmieren

Gerät ausschalten

- Je abrupter desto besser
 - Führt zu weniger Veränderungen
 - Bei einem modernen PC werden alle Methoden zu Veränderungen führen
- Kabel ziehen
- Lange Power-Button drücken
- Shutdown über Menu

Live Kopie

• Erstellen eines Disk-Images direkt auf dem zu Analysierenden System

Ausführen eines Kopier-Tools von USB-Stick aus

Kopieren auf 2. externen Datenträger

Nachteile einer Live-Kopie

Kombiniert Nachteile aus der Live-Capture und dem Forensic OS:

- Erzeugt Spuren der Sicherung
 - USB, Speicher-Disk, Programm Launch
- Daten werden während Kopie verändert
 - Inkonsistenzen sind möglich
- Benötigt mind. Verfügbare USB-Ports oder Hub
 - Kann relativ langsam sein

Auf Mac / Linux meist weniger ein Problem als auf Windows

Fragen?

Hochschule Luzern
Informatik
Dr. Hannes Spichiger
Dozent

T direkt +41 41 349 31 24 Hannes.spichiger@hslu.ch