DANIEL RALSTON

(607) 544-4162 ♦ danielralston@math.ucsb.edu ♦ dralston78.github.io ♦ github.com/dralston78/

EDUCATION

University of California Santa Barbara

Goleta, CA PhD, Mathematics 2021 - Present

Bowdoin College Brunswick, ME 2017 - 2021 BA Magna Cum Laude

Mathematics (major), English (minor), GPA: 3.92

Coding Experince

Diffusion Mapping Project

Summer 2022

UCSB, advised by Professor Paul Atzberger

- Experimented with new variations on the diffusion mapping algorithm (a manifold dimension reduction algorithm) by incorporating k-NN algorithm and different metric assumptions of underlying dataset
- Currently investigating convergence of Laplacian-Beltrami Operator (the function that provides mathematical rigor to the algorithm) under different norms

Stochastic Neighborhood Embedding Project

Fall 2020, Summer 2022

- Wrote basic stochastic neighborhood embedding algrithm from ground up, the underlying process behind the t-SNE and UMAP dimension reduction methods
- Prepared detailed report comparing the t-SNE and UMAP algorithms based off of original the papers, specifically explaining their similarities which are presented from different mathematical persectives

Machine Learning on MRI Data

Summer 2020

Harvey Mudd College, advised by Professor Weiging Gu

• Introduction to machine learning and data science best practices working with convolutional neural network architectures on volumetric MRI brain scan data

MATHEMATICS EXPERINCE

PhD Progress

- Graduate coursework in statistical machine learning, probability and stochastics, topology, and algebra
- Passed qualfying exams in topology and analysis (real and complex) at the PhD level
- Teaching Assitant experince in differential equations, linear algebra, and differential and integral calculus (all course evaluations available on request)

Toroidal Circle Packing

Summer 2019

National Science Foundation, advised by Professor William Dickinson

• Identified optimal packings of two circles with radius ratio $\sqrt{2}-1$ on any flat torus; further details availible on dralston78.github.io/projects/

TECHNICAL STRENGTHS

Scripting Languages: Python (Libraries: Numpy, Scipy, Pandas, Matplotlib)

Database Management: SQL (SQLite)

Modeling and Analysis: Mathematica, MATLAB