Exercício 1

Considere a função polinomial definida em \mathbb{R} por $p(x) = x^3 - 3x - 2$.

a)

Mostre, usando a regra de Ruffini, que $p(x)=(x+1)(x^2-x-2)$, para qualquer $x\in\mathbb{R}$.

Portanto, $p(x) = (x+1)(x^2 - x - 2)$

b)

Determine, sob a forma de intervalo ou união de intervalos, o conjunto de números reais que verificam a condição $\frac{p(x)}{x} \leq 0$.

$$\frac{(x+1)(x^2-x-2)}{x}$$

x	$-\infty$	-1		0		2	$+\infty$
x+1	_	0	+	+	+	+	+
$x^2 - x - 2$	+	0	_	_	_	0	+
x	_	_	_	0	+	+	+
$\frac{p(x)}{x}$	+	0	+		ı	0	+

Zero Decrescente

$$C.S=\{-1\}\cup]0,2]$$

Exercício 2

Resolva, em \mathbb{R} , a inequação $\log(x-4) - \log(10-x) \ge 0$.

Exercício 3

Caracterize a função inversa da função g definida por $g(x) = \log(2x + 5) + 1$.

Exercício 4

Considere a função real, de variável real, definida por $f(x) = 2 - e^x$.

a)

Calcule as coordenadas do ponto de interseção do gráfico da função f com a reta de equação y=-5.

b)

Determine o contradomínio da função f.

c)

Mostre que a reta tangente ao gráfico de f no ponto de abcissa 0 tem declive -1.