ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФГАОУ ВО НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Прикладная математика и информатика»

Отчет о программном проекте Нейросеть с нуля на тему: Выполнил: Студент группы БПМИ211 Д. А. Сорокин Подпись И.О.Фамилия 05.02.2023Дата Принял: Руководитель проекта Дмитрий Витальевич Трушин Имя, Отчество, Фамилия доцент, к.ф.-м.н. Должность, ученое звание ФКН НИУ ВШЭ Место работы (Компания или подразделение НИУ ВШЭ) Дата проверки 12.06 2023 11 Подпись Оценка (по 10-ти бальной шкале)

Содержание

1	Введение	2
2	Описание структуры нейронной сети	2
3	Описание алгоритма обучения	2
4	Описание функциональных и нефункциональных требований к программному проекту	4
5	Инструменты, используемые в проекте	4

1 Введение

Основная задача данного проекта это изучить базовые принцыпы работы нейронных сетей и создать собственную реализацию библиотеки для работы с нейронными сетями на языке C++. В данном случае под нейронной сетью подразумевается метод машинного обучения, который широко используется для построения моделей и прогнозирования. Нейронная сеть представляет слои, состоящие из вычислительных узлов, связанных между собой.

Спектр применения нейронных сетей крайне велик, но мы рассмотрим общую формулировку: Есть векторные пространства \mathbb{R}^n , \mathbb{R}^m и неизвестная функция $\phi: \mathbb{R}^n \to \mathbb{R}^m$, так же есть множество примеров - пары $(x_i, y_i = \phi(x_i))$ наша цель научиться предсказывать $\phi(x_i)$ наиболее точно.

Результатом работы будет являться библиотека на языке C++, для построения и обучения своих нейронных сетей.

Прежде чем переходить к описанию программной части, стоит дать более точное описания нашего алгоритма.

2 Описание структуры нейронной сети

Для начала введем функцию потерь - это функция будет показывать насколько наше предсказание близко к искомой функции, например можем использовать среднее арифметическое отклонений на каждой паре тестовых данных:

$$\sum_{i=1}^{n} \frac{L(\psi(x_i), y_i)}{n}$$

Наша цель - минимизировать функцию потерь.

Нейронная сеть будет состоять из линейных слоев, устроенных следующим образом:

Это функция $\phi'(x): \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}, \phi'(x) = Ax + b$, где A и b являются параметрами. Также после каждого линейного слоя идет нелинейный:

$$\sigma(x)\mathbb{R}^n \to \mathbb{R}^n$$

$$\sigma\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} \sigma(x_1) \\ \sigma(x_2) \\ \dots \\ \sigma(x_n) \end{pmatrix}$$

Где $\sigma(x)$ некоторая нелинейная функция, подробнее про конкретные примеры σ в програмной части. Нелинейные слои необходимы, иначе комбинация слоев будет всегда являться линейной функцией. Комбинация слоев и будет являться нейронной сетью. Осталось определить процесс обучения.

3 Описание алгоритма обучения

Воспользуемся градиентным спуском - идея в том, что нашу нейронную сеть можно представить как сложную функцию зависящую от многих параметров $(A_i, b_i$ в линейных слоях) тогда если мы посчитаем производную

функции потерь от этих переменных и сдвинемся в сторону противоположную градиенту, мы уменьшим значение функции потерь. Повторив так некоторое количество раз, мы окажемся в локальном минимуме.

Теперь посчитаем градиент, основываясь только на одной паре x_i, y_i :

 $\phi(F(x_i),y_i)$ - наша функция потерь, F - композиция всех слоев сети, θ - все параметры сети, $\phi(x_i)=\omega_i$

$$\frac{\delta}{\delta\theta}\phi(F(x_i), y_i) = \frac{\delta\phi}{\delta\theta}(w_i, y_i)\frac{\delta F}{\delta\theta}(x_i)$$
$$\frac{\delta\phi}{\delta\theta}(w_i, y_i) = u_i$$

Рассмотрим последний слой нейронной сети, состоящий из композиции линейного и нелинейного:

$$\mathbb{R}^m \xrightarrow{g} \mathbb{R}^n \xrightarrow{\sigma} \mathbb{R}^n$$
$$z_i \to Az_i + b \to \sigma(Az_i + b)$$

Где z_i - результат преобразования x_i предыдущими слоями.

$$d(\sigma(Az+b)) = d\sigma(dAz + Adz + db)$$

Вернемся к $\frac{\delta}{\delta\theta}\phi(F(x_i),y_i)$:

$$\frac{\delta}{\delta\theta}\phi(F(x_i), y_i) = u_i * d\sigma(dAz + Adz + db)$$

Перепишем это в таком формате:

$$u_i d(\sigma) d(A)z + u_i d(\sigma) A d(z) + u_i d(\sigma) db$$

Т.к это одномерное выражение справедливо:

$$u_i d(\sigma) d(A) z = tr(u_i d(\sigma) d(A) z) = tr(z u_i d(\sigma) d(A))$$

Тогда по правилам матричного дифференцировния $(zu_i d(\sigma))^T = \frac{d(F \circ \phi)}{dA}$

$$(u_i d(\sigma))^T = \frac{d(F \circ \phi)}{n}$$

 $(u_i d(\sigma))^T = \frac{d(F \circ \phi)}{db}$ И наконец $u_i' = u_i d(\sigma) A$ - значение u_i которое будет использовано для вычисления градиента в предыдущих

 $d(\sigma)$ в свою очередь является диагональной матрицей в силу устройства σ и значения на диагонали вычисляются по формуле $\sigma'(Az_i + b)_i$.

Так мы научились последовательно вычислять градиент по слоям для одной пары (x_i, y_i) .

Заметем, что вычисления градиента по батчу пар не сложнее - достаточно вычислить градиент для k пар, затем сложить градиенты и поделить на k.

4 Описание функциональных и нефункциональных требований к программному проекту

Результатом проекта является библиотек для создания/обучения нейронных сетей, написанная на языке C++. Нейронная сеть состоит из следующих частей:

- **Линейный слой** класс представления линейного слоя нейронной сети, обладающий следующими методами:
 - CalculateByX(x) применяет слой к вектору x и возвращает результат вычисления
 - CalculateDerivative(u) вычисляет dA, db и u' по посчитанному ранее u.
- **Нелинейный слой** класс предстатвления нелинейного слоя, на основе одной из нелинейных функций. Методы:
 - CalculateByX(x) применяет слой к вектору x и возвращает результат вычисления
 - CalculateDerivative(x) вычисляет производную
- **Класс представления нейронной сети** создает нейронную сеть, с заданным количеством слоев и заданными нелинейными функциями. Методы:
 - **Train** реализация градиентного спуска
- Вспомогательные классы
 - Классы поддерживаемых нелинейных функций
 - Классы для функций потерь

5 Инструменты, используемые в проекте

При выполнении проекта мы необходима документация C++. Так же будет использоваться библиотека для матричных вычислений Eigen.

Список литературы