QUY NHON UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS

Probability and Distributions

Nguyen Quoc Duong

Master's Student, Department of Mathematics and Statistics, Quy Nhon University

April 1, 2023

Roadmap

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

Roadmap

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

Modeling: Approximate reality with a simple (mathematical) model

Experiment

Flip two coins

Modeling: Approximate reality with a simple (mathematical) model

Experiment

- Flip two coins
- Observation: a random outcome \circ for example, (H, H)

Modeling: Approximate reality with a simple (mathematical) model

- Experiment
- Observation: a random outcome \circ for example, (H, H)
- All outcomes

- Flip two coins
- $\circ \{(H,H),(H,T),(T,H),(T,T)\}$

Modeling: Approximate reality with a simple (mathematical) model

Experiment

- Flip two coins
- Observation: a random outcome
- \circ for example, (H, H)

- $\circ \{(H,H),(H,T),(T,H),(T,T)\}$
- Our goal: Build up a for an experiment with random outcomes

Modeling: Approximate reality with a simple (mathematical) model

Experiment

- Flip two coins
- Observation: a random outcome \circ for example, (H, H)

- $\circ \{(H,H),(H,T),(T,H),(T,T)\}$
- Our goal: Build up a probabilistic model for an experiment with random outcomes

Modeling: Approximate reality with a simple (mathematical) model

Experiment

- Flip two coins
- Observation: a random outcome \circ for example, (H, H)

- $\circ \{(H,H),(H,T),(T,H),(T,T)\}$
- Our goal: Build up a probabilistic model for an experiment with random outcomes
- Probabilistic model?
 - Assign a number to each outcome or a set of outcomes
 - Mathematical description of an uncertain situation

Modeling: Approximate reality with a simple (mathematical) model

Experiment

- Flip two coins
- Observation: a random outcome \circ for example, (H, H)

- $\circ \{(H,H),(H,T),(T,H),(T,T)\}$
- Our goal: Build up a probabilistic model for an experiment with random outcomes
- Probabilistic model?
 - Assign a number to each outcome or a set of outcomes
 - Mathematical description of an uncertain situation
- Which model is good or bad?

Goal: Build up a probabilistic model. Hmm... How? The first thing:

Goal: Build up a probabilistic model. Hmm... How? The first thing: What are the *elements* of a probabilistic model?

Goal: Build up a probabilistic model. Hmm... How? The first thing: What are the *elements* of a probabilistic model?

Elements of Probabilistic Model

- All outcomes of my interest:
- 2 Assigned numbers to each outcome of Ω :

Goal: Build up a probabilistic model. Hmm... How? The first thing: What are the *elements* of a probabilistic model?

Elements of Probabilistic Model

- **1** All outcomes of my interest: Sample Space Ω
- **2** Assigned numbers to each outcome of Ω :

Goal: Build up a probabilistic model. Hmm... How? The first thing: What are the *elements* of a probabilistic model?

Elements of Probabilistic Model

- **1** All outcomes of my interest: Sample Space Ω
- **2** Assigned numbers to each outcome of Ω : Probability Law $\mathbb{P}(\cdot)$

Goal: Build up a probabilistic model. Hmm... How? The first thing: What are the *elements* of a probabilistic model?

Elements of Probabilistic Model

- **1** All outcomes of my interest: Sample Space Ω
- **2** Assigned numbers to each outcome of Ω : Probability Law $\mathbb{P}(\cdot)$

Question: What are the conditions of Ω and $\mathbb{P}(\cdot)$ under which their induced probability model becomes "legitimate"?

The set of all outcomes of my interest

The set of all outcomes of my interest

• Mutually exclusive

• Toss a coin. What about this? $\Omega = \{H, T, HT\}$

The set of all outcomes of my interest

- Mutually exclusive
- 2 Collectively exhaustive

- Toss a coin. What about this? $\Omega = \{H, T, HT\}$
- ② Toss a coin. What about this? $\Omega = \{H\}$

The set of all outcomes of my interest

- Mutually exclusive
- Collectively exhaustive
- At the right granularity (not too concrete, not too abstract)
- Toss a coin. What about this? $\Omega = \{H, T, HT\}$
- ② Toss a coin. What about this? $\Omega = \{H\}$
- (a) Just figuring out prob. of H or T.

$$\Longrightarrow \Omega = \{H, T\}$$

(b) The impact of the weather (rain or no rain) on the coin's behavior.

$$\Longrightarrow \Omega = \{(H, R), (T, R), (H, NR), (T, NR)t\},\$$

where R(Rain), NR(No Rain).

Examples: Sample Space Ω

Examples: Sample Space Ω

 Discrete case: Two rolls of a tetrahedral die

-
$$\Omega = \{(1,1), (1,2), \dots, (4,4)\}$$

Examples: Sample Space Ω

 Discrete case: Two rolls of a tetrahedral die

$$-\Omega = \{(1,1), (1,2), \dots, (4,4)\}$$

 Continuous case: Dropping a needle in a plain

$$-\Omega = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x, y \le 1\}$$

Probability Law

- Assign numbers to what? Each outcome?
- What is the probability of dropping a needle at (0.5, 0.5) over the 1×1 plane?
- Assign numbers to each subset of Ω : A subset of Ω : an event
- $\mathbb{P}(A)$: Probability of an event A.
 - This is where probability meets set theory.
 - Roll a dice. What is the probability of odd numbers? $\mathbb{P}(\{1,3,5\}), \text{ where } \{1,3,5\} \subset \Omega \text{ is an event.}$
- Event space A: The collection of subsets of Ω . For example, in the discrete case, the power set of Ω .
- Probability Space $(\Omega, \mathcal{A}, \mathbb{P}(\cdot))$

Random Variable: Idea

- In reality, many outcomes are numerical, e.g., stock price.
- Even if not, very convenient if we map numerical values to random outcomes, e.g., '0' for male and '1' for female.

Random Variable: More Formally

- Mathematically, a random variable X is a _____ which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables X, Y,, etc can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(w) = x\}$
- Generally,

$$\mathbb{P}_X(S) = \mathbb{P}(X \in S) = \mathbb{P}(X^{-1}(S)) = \mathbb{P}\Big(\{\omega \in \Omega : X(w) \in S\}\Big)$$

Random Variable: More Formally

- Mathematically, a random variable X is a _____ which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables X, Y,, etc can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(w) = x\}$
- Generally,

$$\mathbb{P}_X(S) = \mathbb{P}(X \in S) = \mathbb{P}(X^{-1}(S)) = \mathbb{P}\Big(\{\omega \in \Omega : X(w) \in S\}\Big)$$

Random Variable: More Formally

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables X, Y,, etc can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(w) = x\}$
- Generally,

$$\mathbb{P}_X(S) = \mathbb{P}(X \in S) = \mathbb{P}(X^{-1}(S)) = \mathbb{P}\Big(\{\omega \in \Omega : X(w) \in S\}\Big)$$

Conditioning: Motivating Example

- Pick a person a at random
 - event A: a's age ≤ 20
 - event B: a is married
- (Q1) What is the probability of A?
- \circ (Q2) What is the probability of A, given that B is true?
- Clearly the above two should be different.
- Question. How should I change my belief, given some additional information?
- Need to build up a new theory, which we call conditional probability.

Conditional Probability

- $\mathbb{P}(A \mid B)$: $\mathbb{P}(\cdot \mid B)$ should be a new probability law.
- Definition.

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \quad \textit{for} \quad \mathbb{P}(B) > 0.$$

- Note that this is a definition, not a theorem.
- All other properties of the law $\mathbb{P}(\cdot)$ is applied to the conditional law $\mathbb{P}(\cdot|B)$.
- For example, for two disjoint events A and C,

$$\mathbb{P}(A \cup C \mid B) = \mathbb{P}(A \mid B) + \mathbb{P}(C \mid B)$$

Roadmap

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

Discrete Random Variables

- The values that a random variable X takes is discrete (i.e., finite or countably infinite).
- Then, $p_X(x) := \mathbb{P}(X = x) := \mathbb{P}\Big(\{\omega \in \Omega \mid X(w) = x\}\Big)$, which we call probability mass function (PMF).
- Examples: Bernoulli, Uniform, Binomial, Poisson, Geometric

Only binary values

Only binary values

$$X = egin{cases} 0, & \text{w.p.}^1 & 1-p, \ 1, & \text{w.p.} & p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

Only binary values

$$X = egin{cases} 0, & \text{w.p.}^1 & 1-p, \ 1, & \text{w.p.} & p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

 Models a trial that results in binary results, e.g., success/failure, head/tail

Only binary values

$$X = egin{cases} 0, & \text{w.p.}^1 & 1-p, \ 1, & \text{w.p.} & p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an ______ of an event A.

Bernoulli X with parameter $p \in [0, 1]$

Only binary values

$$X = egin{cases} 0, & \text{w.p.}^1 & 1-p, \ 1, & \text{w.p.} & p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an indicator rv of an event A. Define a rv 1_A as:

$$1_A = egin{cases} 1, & ext{if } A ext{ occurs}, \ 0, & ext{otherwise} \end{cases}$$

• integers a, b, where $a \le b$

- integers a, b, where $a \leq b$
- Choose a number of $\Omega = \{a, a+1, \ldots, b\}$ uniformly at random.

- integers a, b, where $a \leq b$
- Choose a number of $\Omega = \{a, a+1, \ldots, b\}$ uniformly at random.
- $p_X(i) = \frac{1}{b-a+1}, i \in \Omega.$

- integers a, b, where $a \le b$
- Choose a number of $\Omega = \{a, a+1, \ldots, b\}$ uniformly at random.
- $p_X(i) = \frac{1}{b-a+1}, i \in \Omega.$

• Models complete ignorance (I don't know anything about X)

Binomial X with parameter n, p

Binomial X with parameter n, p

 Models the number of successes in a given number of independent trials

Binomial X with parameter n, p

- Models the number of successes in a given number of independent trials
- n independent trials, where one trial has the success probability
 p.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

April 1, 2023

• Binomial(n, p): Models the number of successes in a given number of independent trials with success probability p.

- Binomial(n, p): Models the number of successes in a given number of independent trials with success probability p.
- Very large n and very small p, such that $np = \lambda$

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

- Binomial(n, p): Models the number of successes in a given number of independent trials with success probability p.
- Very large *n* and very small *p*, such that $np = \lambda$

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

Is this a legitimate PMF?

$$\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \left(1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} \dots \right) = e^{-\lambda} e^{\lambda} = 1$$

- Binomial(n, p): Models the number of successes in a given number of independent trials with success probability p.
- Very large *n* and very small *p*, such that $np = \lambda$

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

Is this a legitimate PMF?

$$\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \left(1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} \dots \right) = e^{-\lambda} e^{\lambda} = 1$$

• Prove this:

$$\lim_{n\to\infty} p_X(k) = \binom{n}{k} (1/n)^k (1-1/n)^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

Geometric X with parameter p

 Experiment: infinitely many independent Bernoulli trials, where each trial has success probability p

Geometric X with parameter p

- Experiment: infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.

Geometric X with parameter p

- Experiment: infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.
- Models waiting times until something happens.

$$p_X(k) = (1-p)^{k-1}p$$

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X=Y)=1/20+4/20+3/20=$$

For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$\mathbb{P}\Big(\{X=x\}\cap\{Y=y\}\Big)$$

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 =$$

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) := \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 =$$

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) := \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

 $\bullet \sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 =$$

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) := \mathbb{P}\Big(\{X=x\} \cap \{Y=y\}\Big)$$

- $\bullet \sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$

$$p_X(x) = \sum_y p_{X,Y}(x,y),$$

$$p_Y(y) = \sum_{x} p_{X,Y}(x,y)$$

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 =$$

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) := \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

- $\bullet \sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$
- Marginal PMF.

$$p_X(x) = \sum_{y} p_{X,Y}(x,y),$$
$$p_Y(y) = \sum_{x} p_{X,Y}(x,y)$$

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 =$$

Conditional PMF

Multiplication rule.

$$p_{X,Y}(x,y) =$$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

Conditional PMF

$$p_{X|Y}(x|y) := \mathbb{P}(X = x|Y = y) = \frac{p_X}{\mu}$$
 for y such that $p_Y(y) > 0$.

Multiplication rule.

$$p_{X,Y}(x,y) =$$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

Conditional PMF

$$p_{X|Y}(x|y) := \mathbb{P}(X=x|Y=y) = \frac{p_X}{f}$$

for y such that $p_Y(y) > 0$.

- $\bullet \ \sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) =$$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

Conditional PMF

$$p_{X|Y}(x|y) := \mathbb{P}(X=x|Y=y) = \frac{p_{X,y}}{p_{X,y}}$$

for y such that $p_Y(y) > 0$.

- $\bullet \ \sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

Conditional PMF

$$p_{X|Y}(x|y) := \mathbb{P}(X=x|Y=y) = \frac{p_{X,y}}{p_{X,y}}$$

for y such that $p_Y(y) > 0$.

- $\bullet \ \sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

 $p_{X,Y,Z}(x,y,z) =$ $p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

- Many cases when random variable have "continuous values", e.g., velocity of a car

- Many cases when random variable have "continuous values", e.g., velocity of a car

Continuous Random Variable

A rv X is continuous if \exists a function f_X , called

probability density function (PDF), s.t.

$$\mathbb{P}(X \in B) = \int_B f_X(x) dx$$

- Many cases when random variable have "continuous values", e.g., velocity of a car

Continuous Random Variable

A rv X is continuous if \exists a function f_X , called

probability density function (PDF) , s.t.

$$\mathbb{P}(X \in B) = \int_{B} f_{X}(x) dx$$

 $\mathbb{P}(X \in B) = \int_{B} f_X(x) dx$ - All of the concepts and methods (expectation, PMFs, and conditioning) for discrete rvs have continuous counterparts

- Many cases when random variable have "continuous values", e.g., velocity of a car

Continuous Random Variable

A rv X is continuous if \exists a function f_X , called

probability density function (PDF), s.t.

$$\mathbb{P}(X \in B) = \int_{B} f_X(x) dx$$

- All of the concepts and methods (expect'a lion, PMFs, and conditioning) for discrete rvs have continuous counterparts

- $\mathbb{P}(a \le X \le b) = \sum_{x:a \le x \le b}^{-} p_X(x)$ $p_X(x) \ge 0, \sum_{x} p_X(x) = 1$

- Many cases when random variable have "continuous values", e.g., velocity of a car

Continuous Random Variable

A rv X is continuous if \exists a function f_X , called

probability density function (PDF) , s.t.

$$\mathbb{P}(X \in B) = \int_{B} f_{X}(x) dx$$

- All of the concepts and methods (expect'a Bion, PMFs, and conditioning) for discrete rvs have continuous counterparts

- $\mathbb{P}(a \le X \le b) = \sum_{x:a \le x \le b} p_X(x)$ $p_X(x) \ge 0, \sum_x p_X(x) = 1$

- $\mathbb{P}(a \leq X \leq b) = \int_a^b f_X(x) dx$
- $f_X(x) \geq 0$, $\int_{-\infty}^{\infty} f_X(x) dx = 1$

PDF and Examples

•
$$\mathbb{P}(a \leq X \leq a + \delta) \approx$$

Examples

PDF and Examples

•
$$\mathbb{P}(a \leq X \leq a + \delta) \approx f_X(a) \cdot \delta$$

Examples

PDF and Examples

•
$$\mathbb{P}(a \leq X \leq a + \delta) \approx \boxed{f_X(a) \cdot \delta}$$

•
$$\mathbb{P}(X = a) = 0$$

Examples

PDF and Examples

•
$$\mathbb{P}(a \leq X \leq a + \delta) \approx \boxed{f_X(a) \cdot \delta}$$

•
$$\mathbb{P}(X = a) = 0$$

Examples

Discrete: PMF, Continuous: PDF

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

• always well defined, because we can always compute the probability for the event $\{X \leq x\}$

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event $\{X \leq x\}$
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event $\{X \le x\}$
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event $\{X \le x\}$
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

CDF Properties

CDF Properties

Non-decreasing

CDF Properties

- Non-decreasing
- $F_X(x)$ tends to 1, as $x \to \infty$
- $F_X(x)$ tends to 0, as $x \to -\infty$

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases} ext{ or } F_X(x) = 1 - e^{-\lambda x}$$

• A rv X is called exponential with λ , if

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases}$$
 or $F_X(x) = 1 - e^{-\lambda x}$

Models a waiting time

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases}$$
 or $F_X(x) = 1 - e^{-\lambda x}$

- Models a waiting time
- CCDF $\mathbb{P}(X \ge x) = e^{-\lambda x}$ (waiting time decays exponentially)

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases}$$
 or $F_X(x) = 1 - e^{-\lambda x}$

- Models a waiting time
- CCDF $\mathbb{P}(X \ge x) = e^{-\lambda x}$ (waiting time decays exponentially)
- $\mathbb{E}[X] = 1/\lambda$, $\mathbb{E}[X^2] = 2/\lambda^2$, $var[X] = 1/\lambda^2$

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases}$$
 or $F_X(x) = 1 - e^{-\lambda x}$

- Models a waiting time
- CCDF $\mathbb{P}(X \ge x) = e^{-\lambda x}$ (waiting time decays exponentially)
- $\mathbb{E}[X] = 1/\lambda$, $\mathbb{E}[X^2] = 2/\lambda^2$, $var[X] = 1/\lambda^2$
- (Q) What is the discrete rv whic $\int_{A}^{A} f_X(x)$

Jointly Continuous

Two continuous rvs are if a non-negative function $f_{X,Y}(x,y)$ (called joint PDF) satisfies: for every subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

Jointly Continuous

Two continuous rvs are **jointly continuous** if a non-negative function $f_{X,Y}(x,y)$ (called joint PDF) satisfies: for **every** subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

Jointly Continuous

Two continuous rvs are **jointly continuous** if a non-negative function $f_{X,Y}(x,y)$ (called joint PDF) satisfies: for **every** subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

The joint PDF is used to calculate probabilities

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

Our particular interest: $B = \{(x, y) \mid a \le x \le b, c \le y \le d\}$

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

3. The joint CDF is defined by $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$, and determines the joint PDF as:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{x,y}}{\partial x \partial y}(x,y)$$

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

3. The joint CDF is defined by $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$, and determines the joint PDF as:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{x,y}}{\partial x \partial y}(x,y)$$

4. A function g(X, Y) of X and Y defines a new random variable, and

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

• Remember: For a fixed event A, $\mathbb{P}(\cdot|A)$ is a legitimate probability law.

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Remember: For a fixed event A, $\mathbb{P}(\cdot|A)$ is a legitimate probability law.
- Similarly, For a fixed y, $f_{X|Y}(x|y)$ is a legitimate PDF, since

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) \frac{dx}{dx} = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx}{f_{Y}(y)} = 1$$

Sum Rule and Product Rule

Sum Rule

$$p_X(x) = \begin{cases} \sum_{y \in \mathcal{Y}} p_{X,Y}(x,y) & \text{if discrete} \\ \int_{y \in \mathcal{Y}} f_{X,Y}(x,y) dy & \text{if continuous} \end{cases}$$

• Generally, for $X = (X_1, X_2, \dots, X_D)$,

$$p_{X_i}(x_i) = \int p_X(x_1, \ldots, x_i, \ldots, x_D) d\mathbf{x}_{-i}$$

- Computationally challenging, because of high-dimensional sums or integrals
- Product Rule

$$p_{X,Y}(x,y) = p_X(x) \cdot p_{Y|X}(y|x)$$

joint dist. = marginal of the first \times conditional dist. of the second given

• Same as $p_Y(y) \cdot p_{X|Y}(x|y)$

Bayes Rule

- X: state/cause/original value $\rightarrow Y$: result/resulting action/noisy measurement
- Model: $\mathbb{P}(X)$ (prior) and $\mathbb{P}(Y|X)$ (cause \to result)
- Inference: $\mathbb{P}(X|Y)$?

$$\underbrace{p_{X|Y}(x|y)}_{\text{posterior}} = \underbrace{\frac{p_{Y|X}(y|x)}{p_{X}(x)}}_{\substack{p_{Y}(y) \\ \text{evidence}}} \underbrace{p_{Y}(y)}_{\substack{\text{evidence}}}$$

Bayes Rule

- X: state/cause/original value $\rightarrow Y$: result/resulting action/noisy measurement
- Model: $\mathbb{P}(X)$ (prior) and $\mathbb{P}(Y|X)$ (cause \to result)
- Inference: $\mathbb{P}(X|Y)$?

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)$$

$$= p_Y(y)p_{X|Y}(x|y)$$

$$p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{p_Y(y)}$$

$$p_Y(y) = \sum_{x'} p_X(x')p_{Y|X}(y|x')$$

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$$

$$= f_Y(y)f_{X|Y}(x|y)$$

$$f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{f_Y(y)}$$

$$f_Y(y) = \int f_X(x')f_{Y|X}(y|x')dx'$$

$$p_{X|Y}(x|y) = \frac{\overbrace{p_{Y|X}(y|x)}_{p_{X}(x)}}{\underbrace{p_{Y}(y)}_{p_{X}(x)}}$$
posterior
$$\underbrace{p_{Y|X}(y|x)}_{p_{X}(x)}$$
evidence

K: discrete, *Y*: continuous

K: discrete, *Y*: continuous

• Inference of *K* given *Y*

• Inference of *Y* given *K*

K: discrete, Y: continuous

• Inference of *K* given *Y*

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

• Inference of Y given K

K: discrete, Y: continuous

Inference of K given Y

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

• Inference of Y given K

$$f_{Y|K}(y|k) = \frac{f_{Y}(y)p_{K|Y}(k|y)}{p_{K}(k)}$$
$$p_{K}(k) = \int f_{Y}(y')p_{K|Y}(k|y')dy'$$

Roadmap

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

 Occurrence of A provides no new information about B. Thus, knowledge about A does no change my belief about B.

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

 Occurrence of A provides no new information about B. Thus, knowledge about A does no change my belief about B.

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

 Occurrence of A provides no new information about B. Thus, knowledge about A does no change my belief about B.

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

Independence of A and B,

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

 Occurrence of A provides no new information about B. Thus, knowledge about A does no change my belief about B.

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

Independence of A and B, $A \perp \!\!\! \perp B$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

 Occurrence of A provides no new information about B. Thus, knowledge about A does no change my belief about B.

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

Independence of A and B, $A \perp \!\!\! \perp B$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

• Q1. A and B disjoint $\Longrightarrow A \perp\!\!\!\perp B$?

 Occurrence of A provides no new information about B. Thus, knowledge about A does no change my belief about B.

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

Independence of A and B, $A \perp \!\!\! \perp B$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

• Q1. A and B disjoint $\Longrightarrow A \perp\!\!\!\perp B$? No. Actually, really dependent, because if you know that A occurred, then, we know that B did not occur.

 Occurrence of A provides no new information about B. Thus, knowledge about A does no change my belief about B.

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

Independence of A and B, $A \perp \!\!\! \perp B$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

- Q1. A and B disjoint $\Longrightarrow A \perp\!\!\!\perp B$? No. Actually, really dependent, because if you know that A occurred, then, we know that B did not occur.
- Q2. If $A \perp \!\!\!\perp B$, then $A \perp \!\!\!\!\perp B^c$?

 Occurrence of A provides no new information about B. Thus, knowledge about A does no change my belief about B.

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

Independence of A and B, $A \perp \!\!\! \perp B$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

- Q1. A and B disjoint $\Longrightarrow A \perp\!\!\!\perp B$? No. Actually, really dependent, because if you know that A occurred, then, we know that B did not occur.
- Q2. If $A \perp \!\!\!\perp B$, then $A \perp \!\!\!\!\perp B^c$? Yes.

• Remember: for a probability law $\mathbb{P}(\cdot)$, given, say B, $\mathbb{P}(\cdot|B)$ is a new probability law.

- Remember: for a probability law $\mathbb{P}(\cdot)$, given, say B, $\mathbb{P}(\cdot|B)$ is a new probability law.
- Thus, we can talk about independence under $\mathbb{P}(\cdot|B)$.

- Remember: for a probability law $\mathbb{P}(\cdot)$, given, say B, $\mathbb{P}(\cdot|B)$ is a new probability law.
- Thus, we can talk about independence under $\mathbb{P}(\cdot|B)$.
- Given that C occurs, occurrence of A provides no new information about B.

$$\mathbb{P}(B|A\cap C)=\mathbb{P}(B|C)$$

- Remember: for a probability law $\mathbb{P}(\cdot)$, given, say B, $\mathbb{P}(\cdot|B)$ is a new probability law.
- Thus, we can talk about independence under $\mathbb{P}(\cdot|B)$.
- Given that C occurs, occurrence of A provides no new information about B.

$$\mathbb{P}(B|A\cap C)=\mathbb{P}(B|C)$$

Conditional Independence of A and B given C,

$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|C) \times \mathbb{P}(B|C)$$

- Remember: for a probability law $\mathbb{P}(\cdot)$, given, say B, $\mathbb{P}(\cdot|B)$ is a new probability law.
- Thus, we can talk about independence under $\mathbb{P}(\cdot|B)$.
- Given that C occurs, occurrence of A provides no new information about B.

$$\mathbb{P}(B|A\cap C)=\mathbb{P}(B|C)$$

Conditional Independence of A and B given C, $A \perp\!\!\!\perp B \mid C$

$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|C) \times \mathbb{P}(B|C)$$

- Remember: for a probability law $\mathbb{P}(\cdot)$, given, say B, $\mathbb{P}(\cdot|B)$ is a new probability law.
- Thus, we can talk about independence under $\mathbb{P}(\cdot|B)$.
- Given that C occurs, occurrence of A provides no new information about B.

$$\mathbb{P}(B|A\cap C)=\mathbb{P}(B|C)$$

Conditional Independence of A and B given C, $A \perp\!\!\!\perp B \mid C$

$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|C) \times \mathbb{P}(B|C)$$

• Q1. If $A \perp \!\!\! \perp B$, then $A \perp \!\!\! \perp B | C$? Suppose that A and B are independent. If you heard that C occurred, A and B are still independent?

- Remember: for a probability law $\mathbb{P}(\cdot)$, given, say B, $\mathbb{P}(\cdot|B)$ is a new probability law.
- Thus, we can talk about independence under $\mathbb{P}(\cdot|B)$.
- Given that C occurs, occurrence of A provides no new information about B.

$$\mathbb{P}(B|A\cap C)=\mathbb{P}(B|C)$$

Conditional Independence of A and B given C, $A \perp\!\!\!\perp B \mid C$

$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|C) \times \mathbb{P}(B|C)$$

- Q1. If $A \perp \!\!\! \perp B$, then $A \perp \!\!\! \perp B | C$? Suppose that A and B are independent. If you heard that C occurred, A and B are still independent?
- Q2. If $A \perp \!\!\!\perp B \mid C$, $A \perp \!\!\!\!\perp B$?

- Two independent coin tosses
 - H_1 : 1st toss is a head
 - H_2 : 2nd toss is a head
 - D: two tosses have different results.

- Two independent coin tosses
 - H_1 : 1st toss is a head
 - H_2 : 2nd toss is a head
 - D: two tosses have different results.
- $\mathbb{P}(H_1|D) = 1/2, \, \mathbb{P}(H_2|D) = 1/2$

- Two independent coin tosses
 - H_1 : 1st toss is a head
 - H_2 : 2nd toss is a head
 - D: two tosses have different results.
- $\mathbb{P}(H_1|D) = 1/2, \, \mathbb{P}(H_2|D) = 1/2$
- $\bullet \ \mathbb{P}(H_1 \cap H_2|D) = 0,$
- No.

• Two coins: Blue and Red. Choose one uniformly at random, and proceed with two independent tosses.

- Two coins: Blue and Red. Choose one uniformly at random, and proceed with two independent tosses.
- $\mathbb{P}(\text{head of blue}) = 0.9 \text{ and } \mathbb{P}(\text{head of red}) = 0.1$ H_i : i-th toss is head, and B: blue is selected.

- Two coins: Blue and Red. Choose one uniformly at random, and proceed with two independent tosses.
- $\mathbb{P}(\text{head of blue}) = 0.9 \text{ and } \mathbb{P}(\text{head of red}) = 0.1$ H_i : i-th toss is head, and B: blue is selected.
- $H_1 \perp \!\!\!\perp H_2 \mid B$? Yes

$$\mathbb{P}(H_1 \cap H_2|B) = 0.9 \times 0.9, \quad \mathbb{P}(H_1|B)\mathbb{P}(H_2|B) = 0.9 \times 0.9$$

- Two coins: Blue and Red. Choose one uniformly at random, and proceed with two independent tosses.
- $\mathbb{P}(\text{head of blue}) = 0.9 \text{ and } \mathbb{P}(\text{head of red}) = 0.1$ H_i : i-th toss is head, and B: blue is selected.
- $H_1 \perp \!\!\!\perp H_2 \mid B$? Yes

$$\mathbb{P}(H_1 \cap H_2|B) = 0.9 \times 0.9, \quad \mathbb{P}(H_1|B)\mathbb{P}(H_2|B) = 0.9 \times 0.9$$

H₁ ⊥⊥ H₂? No

- Two coins: Blue and Red. Choose one uniformly at random, and proceed with two independent tosses.
- $\mathbb{P}(\text{head of blue}) = 0.9 \text{ and } \mathbb{P}(\text{head of red}) = 0.1$ H_i : i-th toss is head, and B: blue is selected.
- $H_1 \perp \!\!\!\perp H_2 \mid B$? Yes

$$\mathbb{P}(H_1 \cap H_2|B) = 0.9 \times 0.9, \quad \mathbb{P}(H_1|B)\mathbb{P}(H_2|B) = 0.9 \times 0.9$$

• $H_1 \perp \!\!\!\perp H_2$? No $\mathbb{P}(H_1) = \mathbb{P}(B)\mathbb{P}(H_1|B) + \mathbb{P}(B^c)\mathbb{P}(H_1|B^c)$ $= \frac{1}{2}0.9 + \frac{1}{2}0.1 = \frac{1}{2}$ $\mathbb{P}(H_2) = \mathbb{P}(H_2)$ (because of symmetry)

- Two coins: Blue and Red. Choose one uniformly at random, and proceed with two independent tosses.
- $\mathbb{P}(\text{head of blue}) = 0.9 \text{ and } \mathbb{P}(\text{head of red}) = 0.1$ H_i : i-th toss is head, and B: blue is selected.
- $H_1 \perp \!\!\!\perp H_2 \mid B$? Yes

$$\mathbb{P}(H_1 \cap H_2|B) = 0.9 \times 0.9, \quad \mathbb{P}(H_1|B)\mathbb{P}(H_2|B) = 0.9 \times 0.9$$

• $H_1 \perp \!\!\!\perp H_2$? No $\mathbb{P}(H_1) = \mathbb{P}(B)\mathbb{P}(H_1|B) + \mathbb{P}(B^c)\mathbb{P}(H_1|B^c)$ $= \frac{1}{2}0.9 + \frac{1}{2}0.1 = \frac{1}{2}$ $\mathbb{P}(H_2) = \mathbb{P}(H_2)$ (because of symmetry) $\mathbb{P}(H_1 \cap H_2) = \mathbb{P}(B)\mathbb{P}(H_1 \cap H_2|B) + \mathbb{P}(B^c)\mathbb{P}(H_1 \cap H_2|B^c)$ $= \frac{1}{2}(0.9 \times 0.9) + \frac{1}{2}(0.1 \times 0.1) \neq \frac{1}{2}$

Two rvs

$$\mathbb{P}(\{X=x\} \cap \{Y=y\}) = \mathbb{P}(X=x) \cdot \mathbb{P}(Y=y), \text{ for all } x, y$$

$$\mathbb{P}(\{X=x\} \cap \{Y=y\} | \mathbf{C}) = \mathbb{P}(X=x | \mathbf{C}) \cdot \mathbb{P}(Y=y | \mathbf{C}), \text{ for all } x, y$$

Two rvs

$$\mathbb{P}(\{X=x\} \cap \{Y=y\}) = \mathbb{P}(X=x) \cdot \mathbb{P}(Y=y), \text{ for all } x, y$$
$$p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$$

$$\mathbb{P}(\{X=x\} \cap \{Y=y\} | C) = \mathbb{P}(X=x | C) \cdot \mathbb{P}(Y=y | C), \text{ for all } x, y$$
$$p_{X,Y|C}(x,y) = p_{X|C}(x) \cdot p_{Y|C}(y)$$

Expectation/Variance

Expectation

$$\mathbb{E}[X] = \sum_{x} x p_X(x), \quad \mathbb{E}[X] = \int_{x} x f_X(x) dx$$

- Variance, Standard deviation
 - Measures how much the spread of PMF/PDF is

$$var[X] = \mathbb{E}[(X - \mu)^2]$$
$$\sigma_X = \sqrt{var[X]}$$

Properties

- $\mathbb{E}[aX + bY + c] =$ $a\mathbb{E}[X] + b\mathbb{E}[Y] + c$
- $var[aX + b] = a^2 var[X]$
- var[X + Y] = var[X] + var[Y] $X \perp \!\!\!\perp Y$ (generally not equal)

- Goal: Given two rvs X and Y, quantify the degree of their dependence
 - Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)

- Goal: Given two rvs X and Y, quantify the degree of their dependence
 - Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
 - Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$

- Goal: Given two rvs X and Y, quantify the degree of their dependence
 - Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
 - Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- What about $\mathbb{E}[XY]$? Seems good.

- Goal: Given two rvs X and Y, quantify the degree of their dependence
 - Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
 - Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- What about $\mathbb{E}[XY]$? Seems good.
- $ullet \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0$ when $X \perp \!\!\! \perp Y$

- ullet Goal: Given two rvs X and Y, quantify the degree of their dependence
 - Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
 - Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- What about $\mathbb{E}[XY]$? Seems good.
- $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0$ when $X \perp \!\!\! \perp Y$
- More data points (thus increases) when xy > 0 (both positive or negative)

ullet Solution: Centering. $X o X - \mu_X$ and $Y o Y - \mu_Y$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E} ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y]) ig]$$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

Covariance

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E} \Big[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y]) \Big]$$

• After some algebra, $cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E} ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y]) ig]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E}ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])ig]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp \!\!\!\perp Y$? NO.

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])\Big]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp \!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E} \Big[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y]) \Big]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp \!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are uncorrelated.

Example: cov(X, Y) = 0, but not independent

•
$$p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4.$$

Example: cov(X, Y) = 0, but not independent

- $p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4.$
- ullet $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, $\operatorname{cov}(X,Y) = 0$

Example: cov(X, Y) = 0, but not independent

- $p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4.$
- $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, cov(X, Y) = 0
- Are they independent? No, because if X = 1, then we should have Y = 0.

$$cov(X,X)=0$$

$$cov(X,X)=0$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X,X)=0$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$cov(X,X)=0$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$var[X + Y] = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 = var[X] + var[Y] - 2cov(X, Y)$$

ullet Always bounded by some numbers, e.g., [-1,1]

ullet Always bounded by some numbers, e.g., [-1,1]

- ullet Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How?
 but by what?

- ullet Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How? Normalization, but by what?

- ullet Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X-\mu_X)}{\sigma_X} \cdot \frac{Y-\mu_Y}{\sigma_Y}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- ullet Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X-\mu_X)}{\sigma_X} \cdot \frac{Y-\mu_Y}{\sigma_Y}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

• $-1 \le \rho \le 1$

- ullet Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X - \mu_X)}{\sigma_X} \cdot \frac{Y - \mu_Y}{\sigma_Y}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- $-1 \le \rho \le 1$
- $|\rho| = 1 \Longrightarrow X \mu_X = c(Y \mu_Y)$ (linear relation, VERY related)

Extension to Random Vectors
$$\boldsymbol{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

Expectation, Covariance, Variance

$$ullet \mathbb{E}(oldsymbol{X}) := egin{pmatrix} \mathbb{E}(X_1) \ dots \ \mathbb{E}(X_n) \end{pmatrix}$$

• Covariance of $\boldsymbol{X} \in \mathbb{R}^n$ and $\boldsymbol{Y} \in \mathbb{R}^m$

$$\mathsf{cov}(oldsymbol{X},oldsymbol{Y}) = \mathbb{E}(oldsymbol{X}oldsymbol{Y}^\mathsf{T}) - \mathbb{E}(oldsymbol{X})\mathbb{E}(oldsymbol{Y})^\mathsf{T} \in \mathbb{R}^{n imes m}$$

• Variance of X: var $(X) = \text{cov}(X, X) \in \mathbb{R}^{n \times n}$, often denoted by Σ_X (or simply Σ):

$$\Sigma_{\boldsymbol{X}} := \text{var}[\boldsymbol{X}] = \begin{pmatrix} \text{cov}(X_1, X_1) & \text{cov}(X_1, X_2) & \cdots & \text{cov}(X_1, X_n) \\ \vdots & & \vdots & & \vdots \\ \text{cov}(X_n, X_1) & \text{cov}(X_n, X_2) & \cdots & \text{cov}(X_n, X_n) \end{pmatrix}$$

• We call Σ_X covariance matrix of X.

Data Matrix and Data Covariance Matrix

- N: number of samples, D: number of measurements (or original features)
- iid dataset $\mathcal{X} = \{x_1, \dots, x_N\}$ whose mean is 0 (well-centered), where each $x_i \in \mathbb{R}^D$, and its corresponding data matrix

$$m{X} = (m{x}_1 \ \cdots \ m{x}_N) = egin{pmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,N} \ X_{2,1} & X_{2,2} & \cdots & X_{2,N} \ & dots & & \ & dots \ & X_{D,1} & X_{D,2} & \cdots & X_{D,N} \end{pmatrix} \in \mathbb{R}^{D \times N}$$

(data) covariance matrix

L10(1)

$$oldsymbol{S} = rac{1}{oldsymbol{N}} oldsymbol{X} oldsymbol{X}^{\mathsf{T}} = rac{1}{oldsymbol{N}} \sum_{n=1}^{oldsymbol{N}} oldsymbol{x}_n oldsymbol{x}_n^{\mathsf{T}} \in \mathbb{R}^{D imes D}$$

Covariance Matrix and Data Covariance Matrix

- Question. Relation between covariance matrix and data covariance matrix?
- Covaiance matrix for a random vector $\mathbf{Y} = (Y_1, \dots, Y_D)^T$,

$$\Sigma_{\mathbf{Y}} = \begin{pmatrix} \operatorname{cov}(Y_1, Y_1) & \operatorname{cov}(Y_1, Y_2) & \cdots & \operatorname{cov}(Y_1, Y_D) \\ \vdots & \vdots & & \vdots \\ \operatorname{cov}(Y_D, Y_1) & \operatorname{cov}(Y_n, Y_2) & \cdots & \operatorname{cov}(Y_D, Y_D) \end{pmatrix}$$

- Data convariance matrix $\boldsymbol{S} \in \mathbb{R}^{D \times D}$
 - Each Y_i has N samples $(x_{i,1} \cdots x_{i,N})$

$$S_{ij} = \text{cov}(Y_i, Y_j) = \frac{1}{N} \sum_{k=1}^{N} x_{i,k} \cdot x_{j,k}$$

$$= \text{average covariance (over samples) btwn feastures}$$

For two random vectors $\boldsymbol{X}, \boldsymbol{Y} \in \mathbb{R}^n$,

•
$$\mathbb{E}(\boldsymbol{X} + \boldsymbol{Y}) = \mathbb{E}(\boldsymbol{X}) + \mathbb{E}(\boldsymbol{Y}) \in \mathbb{R}^n$$

- $var(\boldsymbol{X} + \boldsymbol{Y}) = var(\boldsymbol{X}) + var(\boldsymbol{Y}) \in \mathbb{R}^{n \times n}$
- Assume $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$.

•
$$\mathbb{E}(\mathbf{Y}) = \mathbf{A}\mathbb{E}(\mathbf{X}) + \mathbf{b}$$

•
$$var(\mathbf{Y}) = var(\mathbf{AX}) = \mathbf{A} var(\mathbf{X}) \mathbf{A}^{\mathsf{T}}$$

$$ullet$$
 cov $(oldsymbol{X},oldsymbol{Y})=oldsymbol{\Sigma}_{oldsymbol{X}}oldsymbol{A}^{\mathsf{T}}$ (Please prove)

Roadmap

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

Normal (also called Gaussian) Random Variable

- Why important?
 - Central limit theorem (중심극한정리)
 - One of the most remarkable findings in the probability theory
 - Convenient analytical properties
 - Modeling aggregate noise with many small, independent noise terms
 - Standard Normal $\mathcal{N}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

- $\mathbb{E}[X] = 0$ var[X] = 1

Normal (also called Gaussian) Random Variable

- Why important?
 - Central limit theorem (중심극한정리)
 - One of the most remarkable findings in the probability theory
 - Convenient analytical properties
 - Modeling aggregate noise with many small, independent noise terms
 - Standard Normal $\mathcal{N}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

- $\mathbb{E}[X] = 0$
- var[X] = 1

• General Normal $\mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

•
$$\mathbb{E}[X] = \mu$$

•
$$\operatorname{var}[X] = \sigma^2$$

Gaussian Random Vector

- $\pmb{X}=(X_1,X_2,\cdots,X_n)^{\sf T}$ with the mean vector $\pmb{\mu}=\begin{pmatrix}\mathbb{E}(X_1)\\\vdots\\\mathbb{E}(X_n)\end{pmatrix}$ and the covariance matrix $\pmb{\Sigma}$.
- A Gaussian random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)^T$ has a joint pdf of the form:

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

where Σ is symmetric and positive definite.

• We write $m{X} \sim \mathcal{N}(m{\mu}, m{\Sigma}), ext{ or } p_{m{X}}(m{x}) = \mathcal{N}(m{x} \mid m{\mu}, m{\Sigma}).$

Power of Gaussian Random Vectors

- Marginals of Gaussians are Gaussians
- Conditionals of Gaussians are Gaussians
- Products of Gaussian Densities are Gaussians.
- A sum of two Gassuaians is Gaussian if they are independent
- Any linear/affine transformation of a Gaussian is Gaussian.

Marginals and Conditionals of Gaussians

- X and Y are Gaussians with mean vectors μ_X and μ_Y , respectively.
- ullet Gaussian random vector $m{Z} = egin{pmatrix} m{X} \\ m{Y} \end{pmatrix}$ with $m{\mu} = egin{pmatrix} m{\mu} \\ m{\mu} \\ m{Y} \end{pmatrix}$ and the

covarance matrix $\Sigma_{\pmb{Z}} = \begin{pmatrix} \Sigma_{\pmb{X}} & \Sigma_{\pmb{X}\pmb{Y}} \\ \Sigma_{\pmb{Y}\pmb{X}} & \Sigma_{\pmb{Y}} \end{pmatrix}$, where $\Sigma_{\pmb{X}\pmb{Y}} = \text{cov}(\pmb{X},\pmb{Y})$.

- Marginal.

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \int f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})d\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{x}},\boldsymbol{\Sigma}_{\boldsymbol{X}})$$

- Conditional.

$$m{X} \mid m{Y} \sim \mathcal{N}(m{\mu_{X|Y}}, m{\Sigma_{X|Y}}),$$

$$egin{aligned} \mu_{oldsymbol{X}|oldsymbol{Y}} &= \mu_{oldsymbol{X}} + \Sigma_{oldsymbol{X}oldsymbol{Y}}\Sigma_{oldsymbol{Y}}^{-1}(oldsymbol{Y} - \mu_{oldsymbol{Y}}) \ \Sigma_{oldsymbol{X}|oldsymbol{Y}} &= \Sigma_{oldsymbol{X}} - \Sigma_{oldsymbol{X}oldsymbol{Y}}\Sigma_{oldsymbol{Y}}\Sigma_{oldsymbol{Y}} \ \end{array}$$

Product of Two Gaussian Densities

- Lemma. Up to recaling, the pdf of the form $\exp(-\frac{1}{2}ax^2 2bx + c)$ is $\mathcal{N}(\frac{b}{a}, \frac{1}{a})$.
- Using the above Lemma, the product of two Gaussians $\mathcal{N}(\mu_0, \nu_0)$ and $\mathcal{N}(\mu_1, \nu_1)$ is Gaussian up to rescaling.

Proof.

$$\exp\left(-(x-\mu_{0})^{2}/2\nu_{0}\right) \times \exp\left(-(x-\mu_{1})^{2}/2\nu_{1}\right)$$

$$= \exp\left[-\frac{1}{2}\left(\left(\frac{1}{\nu_{0}} + \frac{1}{\nu_{1}}\right)x^{2} - 2\left(\frac{\mu_{0}}{\nu_{0}} + \frac{\mu_{1}}{\nu_{1}}\right)x + c\right)\right]$$

$$\implies \mathcal{N}\left(\underbrace{\frac{-\nu}{\nu_{0}^{-1} + \nu_{1}^{-1}}}_{\nu_{0}^{-1} + \nu_{1}^{-1}}, \nu\left(\frac{\mu_{0}}{\nu_{0}} + \frac{\mu_{1}}{\nu_{1}}\right)\right) = \mathcal{N}\left(\frac{\nu_{1}\mu_{0} + \nu_{0}\mu_{1}}{\nu_{0} + \nu_{1}}, \frac{\nu_{0}\nu_{1}}{\nu_{0} + \nu_{1}}\right)$$

Product of Two Gaussian Densities for Random Vectors

- Similar results for the matrix version.
- The product of the densities of two Gaussian vectors $\mathcal{N}(\mu_0, \Sigma_0)$ and $\mathcal{N}(\mu_1, \Sigma_1)$ is Gaussian up to rescaling.
- The resulting Gaussian is given by:

$$\mathcal{N} \Bigg(\mathbf{\Sigma}_1 (\mathbf{\Sigma}_0 + \mathbf{\Sigma}_1)^{-1} oldsymbol{\mu}_0 + \mathbf{\Sigma}_0 (\mathbf{\Sigma}_0 + \mathbf{\Sigma}_1)^{-1} oldsymbol{\mu}_1, \mathbf{\Sigma}_1 (\mathbf{\Sigma}_0 + \mathbf{\Sigma}_1)^{-1} \mathbf{\Sigma}_0 \Bigg)$$

Compare the above to this:

$$\mathcal{N}\left(\frac{\nu_1\mu_0 + \nu_0\mu_1}{\nu_0 + \nu_1}, \frac{\nu_0\nu_1}{\nu_0 + \nu_1}\right)$$

Formula: Conditional and Marginal Gaussians

If we have a marginal Gaussian distribution for \mathbf{x} and a conditional Gaussian distribution for \mathbf{y} given \mathbf{x} in the form

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
 (B.42)

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$$
 (B.43)

then the marginal distribution of y, and the conditional distribution of x given y, are given by

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}})$$
 (B.44)

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\mathbf{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y}-\mathbf{b})+\mathbf{\Lambda}\boldsymbol{\mu}\},\mathbf{\Sigma})$$
 (B.45)

where

$$\Sigma = (\Lambda + \mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A})^{-1}. \tag{B.46}$$

If we have a joint Gaussian distribution $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$ with $\boldsymbol{\Lambda} \equiv \boldsymbol{\Sigma}^{-1}$ and we define the following partitions

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{pmatrix}, \quad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{pmatrix} \tag{B.47}$$

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix}$$
(B.48)

then the conditional distribution $p(\mathbf{x}_a|\mathbf{x}_b)$ is given by

$$p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{a|b}, \boldsymbol{\Lambda}_{aa}^{-1})$$
 (B.49)

$$\boldsymbol{\mu}_{a|b} = \boldsymbol{\mu}_a - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab} (\mathbf{x}_b - \boldsymbol{\mu}_b)$$
 (B.50)

and the marginal distribution $p(\mathbf{x}_a)$ is given by

$$p(\mathbf{x}_a) = \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa}). \tag{B.51}$$

Sum of Gaussians

ullet $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu_X}, oldsymbol{\Sigma_X})$ and $oldsymbol{Y} \sim \mathcal{N}(oldsymbol{\mu_Y}, oldsymbol{\Sigma_Y})$

$$\implies$$
 $a\mathbf{X} + b\mathbf{Y} \sim \mathcal{N}(a\mu_{\mathbf{X}} + b\mu_{\mathbf{Y}}, a^2\Sigma_{\mathbf{X}} + b^2\Sigma_{\mathbf{Y}})$

Mixture of Two Gaussian Densities

- $f_1(x)$ is the density of $\mathcal{N}(\mu_1, \sigma_1^2)$ and $f_2(x)$ is the density of $\mathcal{N}(\mu_2, \sigma_2^2)$
- Question. What are the mean and the variance of the random variable Z which has the following density f(x)?

$$f(x) = \alpha f_1(x) + (1 - \alpha) f_2(x)$$

Answer:

$$\mathbb{E}(Z) = \alpha \mu_1 + (1 - \alpha)\mu_2$$

$$\text{var}(Z) = \left(\alpha \sigma_1^2 + (1 - \alpha)\sigma_2^2\right) + \left(\left[\alpha \mu_1^2 + (1 - \alpha)\mu_2^2\right] - \left[\alpha \mu_1 + (1 - \alpha)\mu_2\right]^2$$

• Linear transformation² preserves normality

Linear transformation of Normal

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then for $a \neq 0$ and $b, Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

²Strictly speaking, this is affine transformation.

• Linear transformation² preserves normality

Linear transformation of Normal

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then for $a \neq 0$ and $b, Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

²Strictly speaking, this is affine transformation.

• Linear transformation² preserves normality

Linear transformation of Normal

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then for $a \neq 0$ and $b, Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

• Thus, every normal rv can be standardized:

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $\boxed{Y = rac{X - \mu}{\sigma}} \sim \mathcal{N}(0, 1)$

²Strictly speaking, this is affine transformation.

• Linear transformation² preserves normality

Linear transformation of Normal

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then for $a \neq 0$ and $b, Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

- Thus, every normal rv can be standardized: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Y = \frac{X \mu}{\sigma} \sim \mathcal{N}(0, 1)$
- Thus, we can make the table which records the following CDF values:

$$\Phi(y) = \mathbb{P}(Y \le y) = \mathbb{P}(Y < y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt$$

²Strictly speaking, this is affine transformation.

Linear Transformation for Random Vectors

ullet $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$

• Y = AX + b, where $X \in \mathbb{R}^n$, $Y, b \in \mathbb{R}^m$, and $A = \mathbb{R}^{m \times n}$

 \implies $m{Y} \sim \mathcal{N}(m{A}m{\mu} + m{b}, m{A}m{\Sigma}m{A}^{\mathsf{T}})$

Roadmap

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

Conjugate Prior: Motivation

Bayesian Inference

$$\underline{p(\theta \mid D)} = \underbrace{\frac{p(D \mid \theta)}{p(\theta)}}_{posterior} \underbrace{\frac{p(D \mid \theta)}{p(\theta)}}_{evidence}$$

- The forms of likelihood and prior come from a model.
- Question. Given a form of likelihood, how can I choose a prior such that the resulting posterior has the same form as the prior?
 - Such prior is called conjugate prior (to the given likelihood)
 - Pros: Algebraic calculation of posterior and even analytical description is often possible.
 - Cons: A restricted form of prior, which may lead to distorted understanding about data interpretation.

Conjugate Priors: Definition and Examples

- Definition. A prior is conjugate for the likelihood function if the posterior is of the same form/type as the prior.
- Representative conjugate priors

Likelihood	Prior	Posterior
Poisson	Gamma	Gamma
Bernoulli	Beta	Beta
Binomial	Beta	Beta
Normal	Normal/inverse Gamma	Normal/inverse Gamma
Normal	Normal/inverse Wishart	Normal/inverse Wishart
Exponential	Gamma	Gamma
Multinomial	Dirichlet	Dirchlet

Beta Distribution

Beta distribution

A continuous rv Θ follows a beta distribution with integer parameters $\alpha, \beta > 0$, if

$$f_{\Theta}(\theta) = \begin{cases} \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}, & 0 < \theta < 1, \\ 0, & \text{otherwise,} \end{cases}$$

where $B(\alpha, \beta)$, called Beta function, is a normalizing constant, given by

$$B(\alpha, \beta) = \int_0^1 \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta = \frac{(\alpha - 1)!(\beta - 1)!}{(\alpha + \beta - 1)!}$$

• Beta distribution models a continuous random variable over a finite interval [0,1].

Beta Distribution

Beta distribution

A continuous rv Θ follows a beta distribution with integer parameters $\alpha, \beta > 0$, if

$$f_{\Theta}(\theta) = \begin{cases} \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}, & 0 < \theta < 1, \\ 0, & \text{otherwise,} \end{cases}$$

where $B(\alpha, \beta)$, called Beta function, is a normalizing constant, given by

$$B(\alpha, \beta) = \int_0^1 \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta = \frac{(\alpha - 1)!(\beta - 1)!}{(\alpha + \beta - 1)!}$$

- Beta distribution models a continuous random variable over a finite interval [0,1].
- A special case of Beta(1,1) is Uniform[0,1]

Example: Beta-Binomial Conjugacy

- Assume that the parameter $\Theta \sim \text{Beta}(\alpha, \beta)$ (prior): $p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$
- $\theta \sim \Theta$ and $X \sim \text{Bin}(N, \theta)$. Thus, $p(x \mid \theta) = \binom{N}{x} \theta^x (1 \theta)^{N x}$ (likelihood)

$$p(\theta \mid x = h) \propto {N \choose h} \theta^h (1 - \theta)^{N-h} \times \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$= \theta^{h+\alpha - 1} (1 - \theta)^{(N-h)+\beta - 1}$$

$$\sim \text{Beta}(h + \alpha, N - h + \beta)$$

Sufficient Statistics

- \bullet A statistic of a random variable X is a deterministic function of X.
- Example. For $\mathbf{X} = \begin{pmatrix} X_1 & X_2 & \dots & X_n \end{pmatrix}^\mathsf{T}$, the sample mean $T(\mathbf{X}) = \frac{1}{N}(X_1 + \dots + X_n)$ is a statistic.
- Question. Does a statistic contain all the information for the inference from data? (e.g., the parameter estimation of a distribution based on data)
- Sufficient statistics: carry all the information for the inference
- Definition. A statistic T = T(X) is said to be sufficient for X with its pdf or pmf $p_X(x;\theta)$,³ if the conditional distribution of X given T(X) = t is independent of θ for all t.

³The parameter can be a vector, but we do not use θ for simplicity. $\Rightarrow \forall \exists \rightarrow \exists$

Poisson Example

- X_1, X_2 : independent Poisson variables with common parameter λ which is the expectation.
- Claim. $T(X) = X_1 + X_2$ is a sufficient statistic for inference of λ .
- Joint distribution

$$\mathbb{P}(x_1, x_2) = \frac{\lambda^{x_1 + x_2}}{x_1! x_2!} e^{-2\lambda}$$

• Conditional dist. of X_1 given $X_1 + X_2 = t$

$$\mathbb{P}(x_1|X_1+X_2=t)=\frac{1}{x_1!(t-x_1)!}\left(\frac{1}{\sum_{y=0}^t\frac{1}{y!(t-y)!}}\right)^{-1}$$

• Independent of $\lambda \implies T$ is a sufficient statistic.

Fisher-Neyman Factorization Theorem

Factorization Theorem

A necessary and sufficient condition for a statistic T to be sufficient for X with its pdf or pmf $p_X(x;\theta)$ is that there exist non-negative functions g_θ and h such that

$$p_{\mathbf{X}}(\mathbf{x};\theta) = g_{\theta}(T(\mathbf{x}))h(\mathbf{x}).$$

• Example. Continuing the Poisson example, suppose that X_1, \ldots, X_n are iid according to a Poisson distribution with parameter λ . Then, with $\boldsymbol{X} = (X_1, \ldots, X_n)$,

$$\mathbb{P}_{\boldsymbol{X}}(x_1,\ldots,x_n) = \lambda^{\sum x_i} e^{-n\lambda} / \prod (x_i!)$$

• $T(X) = \sum X_i$ is a sufficient statistic.

Exponential Family: Motivation

- Three levels of abstraction when we use a distribution to model a random phenomenon
- **L1.** Fix a particular named distribution with fixed parameters
 - Example. Use a Gaussian with zero mean and unit variance, $\mathcal{N}(0,1)$
- L2. Use a parametric distribution and infer the parameters from data
 - Example. Use a Gaussian with unknown mean and variance, $\mathcal{N}(\mu, \sigma^2)$, and infer (μ, σ^2) from data
- L3. Consider a family of distributions which satisfy "nice" properties
 - Example. Exponential family

Exponential Family: Definition

An exponential family if a family of probability distributions, parameterized by $\boldsymbol{\theta} \in \mathbb{R}^D$, has the form

$$p_{\mathbf{X}}(\mathbf{x}; \boldsymbol{\theta}) = h(\mathbf{x}) \exp \left(\langle \boldsymbol{\theta}, T(\mathbf{x}) \rangle - A(\boldsymbol{\theta}) \right),$$

where $\pmb{X} \in \mathbb{R}^n$ and $T(\pmb{x}) : \mathbb{R}^n \mapsto \mathbb{R}^D$ is a vector of sufficient statistics.

- ullet Nothing but a a particular form of $g_{m{ heta}}(\cdot)$ in the F-N factorization theorem
- \bullet $\langle \theta, T(x) \rangle$ is an inner product, e.g., the standard dot product.
- Essentially, it is of the form: $p_{\mathbf{X}}(\mathbf{x}; \boldsymbol{\theta}) \propto \exp(\boldsymbol{\theta}^{\mathsf{T}} T(\boldsymbol{\theta}))$
- $A(\theta)$: normalization constant, called log-partition function.
- Why Useful?
 - Parametric form of conjugate priors (see pp. 190 in the text), offering sufficient statistics, etc.

Example

• Gaussian as exponential family, a random variable $X \sim \mathcal{N}(\mu, \sigma^2)$.

• Let
$$T(\mathbf{x}) = \begin{pmatrix} x \\ x^2 \end{pmatrix}$$
 and $\boldsymbol{\theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} = \begin{pmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{pmatrix}$

$$p(\mathbf{x} \mid \boldsymbol{\theta}) \propto \exp\left(\boldsymbol{\theta}^{\mathsf{T}} T(\mathbf{x})\right) = \exp\left(\frac{\mu x}{\sigma^2} - \frac{x^2}{2\sigma^2}\right) = \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$

Roadmap

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

Knowing Distributions of Functions of RVs

- If $X \sim \mathcal{N}(0,1)$, what is the distribution of $Y = X^2$?
- If $X_1, X_2 \sim \mathcal{N}(0,1)$, what is the distribution of $Y = \frac{1}{2}(X_1 + X_2)$?
- Two techniques
 - CDF-based technique
 - Change-of-Variable technique
- In this lecture note, we focus on the case of univarate random variables for simplicity.

CDF-based Technique

- **S1.** Find the CDF: $F_Y(y) = \mathbb{P}(Y \leq y)$
- **S2.** Differentiate the CDF to get the pdf $f_Y(y)$: $f_Y(y) = yF_Y(y)$
 - Example. $f_X(x) = -3x^2$, $0 \le x \le 1$. What is the pdf of $Y = X^2$?

$$F_{Y}(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X^{2} \le y) = \mathbb{P}(X \le \sqrt{y}) = F_{X}(\sqrt{y})$$

$$= \int_{0}^{\sqrt{y}} 3t^{2} dt = y^{\frac{3}{2}}, \quad 0 \le y \le 1$$

$$f_{Y}(y) = yF_{Y}(y) = \frac{3}{2}\sqrt{y}, \quad 0 \le y \le 1$$

How to Get Random Samples of a Given Distribution? (1)

- Assume that $X \sim \exp(1)$, i.e., $f_X(x) = e^{-x}$ and $F_X(x) = 1 e^{-x}$. How to make a programming code that gives random samples following the distribution X?
- Theorem. Probability Integral Theorem. Let X be a continuous rv with a strictly monotonic CDF $F(\cdot)$. Then, if we define a new rv U as U := F(X), then U follows the uniform distribution over [0.1].
- Proof. Will show that $F_U(u) = u$, which is the CDF of a standard uniform rv.

$$F_U(u) = \mathbb{P}(U \le u) = \mathbb{P}(F(X) \le u) \stackrel{(*)}{=} \mathbb{P}(X \le F^{-1}(u)) = F(F^{-1}(u)) = u$$

where (*) is due to the strict monotonicity of $F(\cdot)$.

How to Get Random Samples of a Given Distribution? (2)

Pseudo Code of getting a random sample with the distribution $F(\cdot)$.

Step 1. Get a random sample u over [0,1] (most of software packages include this capability of generating a random number generation)

Mathematics for Machine Learning

Step 2. Get a value $x = F^{-1}(u)$.

Change-of-Variables Technique: Univariate

- Chain rule of calculus: $\int f(g(x))g'(x)dx = \int f(u)du$, where u = g(x).
- Consider a rv $X \in [a, b]$ and an invertible, strictly increasing function U.

$$F_{Y}(y) = \mathbb{P}(Y \le y) = \mathbb{P}(U(X) \le y) = \mathbb{P}(X \le U^{-1}(y)) = \int_{a}^{U^{-1}(y)} f_{X}(x) dx$$

$$f_{Y}(y) = y \int_{a}^{U^{-1}(y)} f_{X}(x) dx = y \int_{a}^{U^{-1}(y)} f_{X}(U^{-1}(y)) U^{-1'}(y) dy$$

$$= f_{X}(U^{-1}(y)) \cdot y U^{-1}(y)$$

Including the case when U is strcitly decreasing,

$$f_Y(y) = f_X(U^{-1}(y)) \cdot |yU^{-1}(y)|$$

Change-of-Variables Technique: Multivariate

• Theorem. Let $f_{\mathbf{X}}(\mathbf{x})$ is the pdf of multivariate continuous random vector \mathbf{X} . If $\mathbf{Y} = U(\mathbf{X})$ is differentiable and invertible, the pdf of \mathbf{Y} is given as:

$$f(\mathbf{y}) = f_{\mathbf{X}}(U^{-1}(\mathbf{y})) \cdot \left| \det \left(\mathbf{y} U^{-1}(\mathbf{y}) \right) \right|$$

Example. For a bivariate rv X with its pdf

$$f(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \frac{1}{2\pi} \exp\left(-\frac{1}{2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right)$$
, consider $\mathbf{Y} = \mathbf{AX}$, where

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then, we have the following pdf of \mathbf{Y} :

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}\mathbf{y}^{\mathsf{T}}(\mathbf{A}^{-1})^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{y}\right) |ad - bc|^{-1}$$

THANKS FOR YOUR ATTENTION

Discussions

