Проективная двойственность

Для векторного пространства V точки в $\mathbb{P}(V^*)$ — это гиперплоскости в $\mathbb{P}(V)$, и наоборот. Данное соответствие сохраняет отношение инцидентности и называется проективной двойственностью. При фиксировании билинейной формы происходит отождествление пространств V и V^* — это полярное соответствие, переводящее полюс в поляру. В данном листке $\dim V = 3$.

- 1. Какая теорема двойственна теореме Паппа? (Папп) Пусть A, B, C три точки на одной прямой, A', B', C' три точки на другой прямой. Пусть три прямые AB', BC', CA' пересекают три прямые A'B, B'C, C'A соответственно в точках X, Y, Z. Тогда точки X, Y, Z лежат на одной прямой.
- **2.** При каких a являются параллельными прямые, заданные уравнениями

$$ax_1 - x_2 + 3ix_0 = 0$$
, $-aix_0 + x_1 - ix_2 = 0$, $3ix_2 + 5x_0 + x_1 = 0$?

- 3. (параметризация пучка гиперплоскостей) Пусть $H \subset \mathbb{P}(V)$ подпространство коразмерности 2. Пусть F_H пучок гиперплоскостей, содержащих H, а t прямая, трансверсальная к F_H , то есть не пересекающая H. Докажите, что отображение $f_t \colon t \to F_H$, переводящее точку $p \in t$ в гиперплоскость $\langle p, H \rangle$ проективный изоморфизм.
- **4.** Пусть $P_1, P_2 \in \mathbb{P}(\mathbb{R}^2)$, а F_1, F_2 пучки прямых, проходящих через P_1, P_2 соответственно. Возьмём произвольное отображение $f \colon F_1 \to F_2$. Докажите эквивалентность условий:
 - f проективный изоморфизм, сохраняющий прямую $\langle P_1, P_2 \rangle$;
 - существует такая прямая r, не проходящая через P_1, P_2 , что $f(s) = \langle s \cap r, P_2 \rangle$ для любой прямой $s \in F_1$.
- **5.** При проективной двойственности (применяемой к касательным кривой) коника на проективной плоскости переходит в конику.
- 6. Множество точек, лежащих на своей поляре, образует самодвойственную конику.
- 7. (*, *теорема Шаля*) Точки пересечения сторон треугольника с полярами противоположных вершин лежат на одной прямой.