Double confocal scanning microscope

Patent number:

DE10107095

Publication date:

2002-08-29

Inventor:

BEWERSDORF JOERG (DE); GUGEL HILMAR (DE);

HELL STEFAN W (DE)

Applicant:

LEICA MICROSYSTEMS (DE)

Classification:

- international:

G02B21/00

- european:

G02B21/00M4A

Application number: DE20011007095 20010214 Priority number(s): DE20011007095 20010214

Also published as:

US6891670 (B2) US2002109913 (A JP2002303798 (A) GB2372897 (A)

Report a data error he

Abstract not available for DE10107095 Abstract of corresponding document: US2002109913

The present invention concerns a double confocal scanning microscope having an illuminating beam path (1) of a light source (2) and a detection beam path (3) of a detector (4), and in order to eliminate at their cause the problems of reconstruction methods. To do so, at least one optical component (24, 25) acting on the illuminating and/or detection beam path (1, 3) is provided, and is configured in such a way that it influences the amplitude and/or phase and/or polarization of the light; and the characteristics of the double confocal illumination and/or detection are thereby modifiable.

Data supplied from the esp@cenet database - Worldwide

(9) BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift② DE 101 07 095 A 1

(5) Int. Cl.⁷: **G 02 B 21/00**

DEUTSCHES
PATENT- UND
MARKENAMT

② Aktenzeichen: 101 07 095.0
 ② Anmeldetag: 14. 2. 2001
 ③ Offenlegungstag: 29. 8. 2002

PAI ENT- OND

① Anmelder:

Leica Microsystems Heidelberg GmbH, 68165 Mannheim, DE

Wertreter:

Ullrich & Naumann, 69115 Heidelberg

(72) Erfinder:

Bewersdorf, Jörg, 69121 Heidelberg, DE; Gugel, Hilmar, 69221 Dossenheim, DE; Hell, Stefan W., Dr., 69117 Heidelberg, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Doppelkonfokales Rastermikroskop
- Die vorliegende Erfindung betrifft ein doppelkonfokales Rastermikroskop mit einem Beleuchtungsstrahlengang (1) einer Lichtquelle (2) und einem Detektionsstrahlengang (3) eines Detektors (4) und ist zur ursächlichen Vermeidung der Probleme der Rekonstruktionsmethoden dadurch gekennzeichnet, dass mindestens ein auf den Beleuchtungs- und/oder Detektionsstrahlengang (1, 3) wirkendes optisches Bauteil (24, 25) vorgesehen und derart ausgestaltet ist, dass es die Amplitude und/oder die Phase und/oder die Polarisation des Lichts beeinflusst und hierdurch die Charakteristik der doppelkonfokalen Beleuchtung und/oder Detektion veränderbar ist.

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein doppelkonfokales Rastermikroskop mit einem Beleuchtungsstrahlengang einer Lichtquelle und einem Detektionsstrahlengang eines Detektors.

[0002] Aus EP 0 491 289 A1 ist ein doppelkonfokales Rastermikroskop bekannt, bei dem Licht einer Lichtquelle in zwei Teilstrahlen aufgeteilt und jeder Teilstrahl mit Hilfe jeweils eines Mikroskopobjektivs auf einen gemeinsamen Objektpunkt fokussiert wird. Die beiden Mikroskopobjektive sind hierbei auf verschiedenen Seiten der ihnen gemeinsamen Objektebene angeordnet. Im Objektpunkt bildet sich durch diese interferometrische Beleuchtung ein Interferenzmuster aus, dass bei konstruktiver Interferenz ein Hauptma- 15 ximum und mehrere Nebenmaxima aufweist. Das Beleuchtungsmuster in Objektbereich bzw. in dem gemeinsamen Mikroskopobjektivfokus wird auch als doppelkonfokale Beleuchtungs-Punktbildfunktion (Beleuchtungs-PSF) bezeichnet. Wenn lediglich eine doppelkonfokale Beleuchtung realisiert ist, handelt es sich um ein sogenanntes doppelkonfokales Rastermikroskop vom Typ A. Von dem durch die Beleuchtungs-PSF beleuchteten Objekt geht nun Detektionslicht aus, wobei es sich bei dem Detektionslicht beispielsweise um Fluoreszenz-, Reflexions- oder Transmissionslicht 25 handeln kann. Falls nun der optische Weglängenunterschied der beiden Teilstrahlengänge kleiner als die Kohärenzlänge des Detektionslichts ist, kann das Detektionslicht seinerseits an der Detektionslochblende interferieren. Das durch die Mikroskopobjektive abgebildete, interferierende oder nicht 30 interferierende Detektionslicht bildet hierbei ein Beleuchtungsmuster, das auch als Detektions-Punktbildfunktion (Detektions-PSF) bezeichnet wird. Falls lediglich eine doppelkonfokale Detektion realisiert sein sollte, beispielsweise weil das Objekt nur mit Licht aus einem Teilstrahl beleuch- 35 tet wird, handelt es sich dann um ein sogenanntes doppelkonfokales Rastermikroskop vom Typ B. Für den Fall, dass sowohl eine doppelkonfokale Beleuchtung als auch eine doppelkonfokale Detektion realisiert ist, spricht man von einem Typ C des doppelkonfokalen Rastermikroskops.

[0003] Eine doppelkonfokale Beleuchtungs-PSF und/oder Detektions-PSF weist Nebenmaxima auf, die im Allgemeinen entlang der optischen Achse angeordnet sind. Mit einem doppelkonfokalen Rastermikroskop kann durch die interferometrische Beleuchtung bzw. Detektion verglichen zur 45 konventionellen (Raster)-Mikroskopie eine erhöhte axiale Auflösung erzielt werden.

[0004] Ein Bild eines mit einem doppelkonfokalen Rastermikroskop aufgenommenen Objekts weist hauptsächlich einen Beitrag auf, der von dem Hauptmaximum der Beleuch- 50 tungs-PSF und/oder der Detektions-PSF resultiert. Darüber hinaus sind dem Bild jedoch Anteile überlagert, die von den Nebenmaxima der Beleuchtungs-PSF und/oder der Detektions-PSF resultieren. Da diese Bildanteile stören, werden diese im Allgemeinen mit Rekonstruktionsmethoden aus 55 dem aufgenommenen Bild nachträglich entfernt. Hierbei werden in erster Linie Methoden der inversen Filterung angewendet, die in Form von Programmmodulen auf einem Computer implementiert sind. Die Rekonstruktionsmethoden können jedoch nur dann erfolgreich angewendet wer- 60 den, wenn die Intensität der Nebenmaxima verglichen zur Intensität des Hauptmaximums der Beleuchtungs-PSF bzw. Detektions-PSF deutlich kleiner als 50% ist. Falls diese Voraussetzung nicht erfüllt ist, ist entweder der Rauschanteil des rekonstruierten Bildes zu hoch oder die Beiträge der Ne- 65 benmaxima können nicht vollständig aus dem Bild entfernt werden, so dass "Geisterstrukturen" der aufgenommenen Objektstruktur im Bild verbleiben. Eine eindeutige Objektanalyse bzw. Bildinterpretation kann erschwert oder gar unmöglich gemacht werden.

[0005] Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, die Probleme der Rekonstruktionsmethoden ursächlich zu vermeiden.

[0006] Das erfindungsgemäße doppelkonfokale Rastermikroskop der gattungsbildenden Art löst die voranstehende Aufgabe durch die Merkmale des Patentanspruchs 1. Danach ist ein solches doppelkonfokales Rastermikroskop dadurch gekennzeichnet, dass mindestens ein auf den Beleuchtungs- und/oder Detektionsstrahlengang wirkendes optisches Bauteil vorgesehen und derart ausgestaltet ist, dass es die Amplitude und/oder die Phase und/oder die Polarisation des Lichts beeinflusst und hierdurch die Charakteristik der doppelkonfokalen Beleuchtung und/oder Detektion veränderbar ist,

[0007] Erfindungsgemäß ist zunächst erkannt worden, dass eine Veränderung der Charakteristik der doppelkonfokalen Beleuchtung die detektierten Beiträge, die von den Nebenmaxima resultieren, deutlich reduziert, wenn nicht sogar eliminiert werden können. Auch eine Veränderung der Detektionscharakteristik oder der Beleuchtungs- und Detektionscharakteristik kann ebenfalls in einer Verringerung der detektierten Beiträge aus den Nebenmaxima resultieren. Durch eine Verringerung der Nebenmaxima können die Rekonstruktionsmethoden erfolgreich angewendet werden, im Idealfall kann darauf sogar verzichtet werden.

[0008] In erfindungsgemäßer Weise wird daher mindestens ein optisches Bauteil in den Strahlengang des doppelkonfokalen Rastermikroskops angeordnet, wobei das optische Bauteil entweder im Beleuchtungs- oder im Detektionsstrahlengang oder im Beleuchtungs- und Detektionsstrahlengang vorgesehen sein kann. Falls lediglich ein optisches Bauteil im Beleuchtungsstrahlengang angeordnet ist, wird hierdurch lediglich die Charakteristik der doppelkonfokalen Beleuchtung verändert. Eine Anordnung des optischen Bauteils lediglich im Detektionsstrahlengang verändert demgemäß die Charakteristik der doppelkonfokalen Detektion. Eine Anordnung des optischen Bauteils im Beleuchtungs- und Detektionsstrahlengang wirkt sich auf die Charakteristik der doppelkonfokalen Beleuchtung und Detektion aus. Das optische Bauteil ist hierbei derart ausgestaltet, dass es die Amplitude und/oder die Phase und/oder die Polarisation des Lichts beeinflußt, und zwar des Lichts, das mit dem optischen Bauteil wechselwirkt. Unter der Wechselwirkung ist beispielsweise eine Transmission, eine Reflexion oder eine Kombination von Transmission und Reflexion - beispielsweise bei einem teilweise reflektierend ausgestalteten optischen Bauteil - zu verstehen.

[0009] In einer konkreten Ausführungsform kann durch das optische Bauteil die Form der doppelkonfokalen Beleuchtungs-PSF und/oder Detektions-PSF verändert werden. Hierbei ist insbesondere vorgesehen, dass die Form der axial angeordneten Nebenmaxima der doppelkonfokalen Beleuchtungs-PSF und/oder Detektions-PSF gezielt verändert wird, eine Veränderung des Hauptmaximums ist ebenfalls denkbar. Für den Fall, das der Betrieb des doppelkonfokalen Rastermikroskops auf das Vorliegen einer destruktiven Interferenz ausgerichtet ist, könnte das optische Bauteil auch die Form der beiden, durch die destruktive Interferenz ausgebildeten Hauptmaxima verändern.

[0010] Weiterhin ist vorgesehen, dass die axial angeordneten Nebenmaxima der Beleuchtungs-PSF und/oder Detektions-PSF in ihrer Position veränderbar sind. So könnte vorgesehen sein, dass das optische Bauteil derart ausgestaltet ist, dass es die Position der axial angeordneten Nebenmaxima der Beleuchtungs-PSF und/oder Detektions-PSF dahingehend verändert, dass der Abstand zwischen dem

3

Hauptmaximum der Beleuchtungs-PSF und/oder Detektions-PSF und der Nebenmaxima veränderbar, vorzugsweise vergrößerbar ist. Falls nämlich der Abstand zwischen dem Hauptmaximum und der Nebenmaxima vergrößert werden kann, kann der durch die Nebenmaxima hervorgerufene Detektionsbeitrag verringert bzw. minimiert werden, da diese Detektionsbeiträge dann durch das konfokale Detektionspinhole weitestgehend ausgeblendet werden. Dies ist deshalb möglich, da mit kleinerem Durchmesser des Detektionspinholes sich der axiale Detektionsbereich des doppelkonfokalen Rastermikroskops verringert. Eine Veränderung der Form und der Position der doppelkonfokalen Beleuchtungs-PSF und/oder Detektions-PSF ist ebenfalls vorgeseben

[0011] Das optische Bauteil ist in besonders bevorzugter 15 Weise derart ausgestaltet, dass durch dessen Verwendung die Intensität der Nebenmaxima der Beleuchtungs-PSF und/oder Detektions-PSF verringerbar ist. Hierdurch können in besonders vorteilhafter Weise die durch die Nebenmaxima der Beleuchtungs-PSF und/oder Detektions-PSF hervorgerufenen detektierten Beiträge in gleicher Weise verringert werden.

[0012] In ganz besonders bevorzugter Weise ist vorgesehen, dass durch das optische Bauteil die Nebenmaxima der Beleuchtungs-PSF und der Detektions-PSF an unterschied- 25 lichen Orten liegen. Da - wie bei der konfokalen Rastermikroskopie – bei der doppelkonfokalen Rastermikroskopie die Gesamt-PSF durch das Produkt aus der Beleuchtungs-PSF mit der Detektions-PSF gegeben ist, kann die Intensität der Nebenmaxima der Gesamt-PSF in besonders vorteilhaf- 30 ter Weise dadurch reduziert bzw. minimiert werden, dass die Hauptmaxima der Beleuchtungs-PSF und der Detektions-PSF am gleichen Ort liegen, die Nebenmaxima der Beleuchtungs-PSF und der Detektions-PSF jedoch an unterschiedlichen Orten liegen. Somit werden durch die Produktbildung 35 lediglich das Hauptmaximum, nicht jedoch die Nebenmaxima einen hohen Intensitätswert aufweisen. Da die Nebenmaxima bei der doppelkonfokalen Rastermikroskopie insbesondere entlang der optischen Achse - d. h. in axialer Richtung - angeordnet sind, können die Nebenmaxima der 40 Beleuchtungs-PSF und der Detektions-PSF insbesondere dann in ihrer Intensität verringert werden, wenn die Nebenmaxima an unterschiedlichen axialen Orten liegen.

[0013] In einer besonders bevorzugten Ausführungsform sind mehrere optische Bauteile zur Beeinflussung der Am- 45 plitude und/oder der Phase und/oder der Polarisation des Lichts vorgesehen. So könnte beispielsweise in dem einen Teilstrahlengang des doppelkonfokalen Rastermikroskops ein anderes optisches Bauteil als in dem anderen Teilstrahlengang angeordnet sein. Weiterhin könnte im Beleuch- 50 tungsstrahlengang ein anderes optisches Bauteil als im Detektionsstrahlengang vorgesehen sein. Letztendlich sind in diesen Fällen die optischen Bauteile derart auszugestalten. dass die Charakteristik der doppelkonfokalen Beleuchtung und/oder Detektion hinsichtlich der Signalausbeute sowie 55 der Minimierung der Abbildungsartefakte optimiert wird. [0014] Zur Veränderung der Charakteristik der doppelkonfokalen Beleuchtung und/oder Detektion ist vorgesehen, dass das optische Bauteil die Wellenfront des Beleuchtungslichts und/oder des Detektionslichts moduliert. Hierbei kann 60 es sich um eine zeitliche und/oder räumliche Modulation handeln, wobei jedoch eine räumliche Modulation bevorzugt wird. So ware es beispielsweise denkbar, dass bei einer Verwendung von zwei optischen Bauteilen die durch die Bauteile hervorgerufene räumliche Modulation des Lichts 65 zeitlich variierbar ist. Insbesondere könnte dann vorgesehen sein, dass ein Objekt zweimal mit dem erfindungsgemäßen doppelkonfokalen Rastermikroskop aufgenommen wird,

wobei die Modulation der beiden optischen Bauteile bei der zweiten Objektdetektion jeweils gerade umgekehrt ausgeführt wird, so dass aus den beiden detektierten Objektdatensätze rechnerisch ein optimaler Objektdatensatz extrahiert

werden kann.

[0015] In besonders bevorzugter Weise ist das optische Bauteil in einer Mikroskopobjektivpupille angeordnet. Aufgrund der schlechten Zugänglichkeit der Pupillenebene eines Mikroskopobjektivs, die in der Regel im Objektiv selbst liegt, wird bevorzugt als Filterort eine zur Pupillenebene optisch konjugierte Ebene gewählt. Bei einer solchen Anordnung kann das Design bzw. die Ausgestaltung der optischen Bauteile einfacher berechnet werden. Grund hierfür ist, dass man sich dann die Methoden der Fourieroptik zunutze machen kann, wenn die das Licht beeinflussenden optischen Bauteile in der Mikroskopobjektivpupille bzw. in einer dazu optisch konjugierten Ebene angeordnet sind. Selbstverständlich ist es auch möglich, das optische Bauteil an einem beliebigen Ort im Beleuchtungs- und/oder Detektionsstrahlengang anzuordnen, jedoch ist für diesen Fall eine gegebenenfalls kompliziertere Berechnung des optischen Bauteils erforderlich.

[0016] Als optisches Bauteil könnte konkret ein Amplituden- und/oder eine Phasenfilter vorgesehen sein. Dieses Filter beeinflußt entsprechend die Amplitude und/oder die Phase des Lichts. Es ist vorgesehen, dass der Filter quer zur optischen Achse unterschiedliche Amplituden- bzw. Phaseneigenschaften aufweist. Weiterhin können als optische Bauteile Verzögerungs- und/oder Phasenplatten dienen.

[0017] Im Hinblick auf eine besonders bevorzugte Ausgestaltung könnte als optisches Bauteil eine LCD-Anordnung (Liquid-Crystal-Device) vorgesehen sein. Die Verwendung von LCD-Anordnungen ermöglicht in besonders vorteilhafter Weise eine flexible und variable Λusgestaltung des optischen Bauteils. Bei der Verwendung einer farbigen LCD-Anordnung kann in besonders vorteilhafter Weise Licht einzelner Wellenlängen bzw. einzelner Wellenlängenbereiche selektiv beeinflußt werden.

[0018] Weiterhin können als optische Bauteile partiell amplitudenverändernde Elemente dienen. Hierbei kann es sich insbesondere um ein Graufilter handeln, das bereichsweise unterschiedliche Filtereigenschaften aufweist.

[6019] Nun ist es ganz allgemein denkbar, dass als optisches Bauteil andere, die Wellenfront des Beleuchtungsund/oder Detektionslichts verändernde Elemente vorgesehen sein können. Beispielsweise sei an dieser Stelle erwähnt, dass als optisches Bauteil eine adaptive Optik vorgesehen sein könnte. Hierbei könnte es sich im Konkreten um einen deformierbaren Spiegel handeln. Der deformierbare Spiegel könnte beispielsweise derart ausgebildet sein, dass zwischen einer verformbaren Spiegelschicht und einer Basisplatte Piezoelemente angeordnet sind, die einzeln unterschiedlich angesteuert werden können. In Abhängigkeit der Ansteuerung der unterschiedlichen Piezoelemente kann somit die Spiegelfläche deformiert werden.

[0020] Weiterhin ist vorgesehen, dass das optische Bauteil auf Licht unterschiedlicher Polarisation und/oder Wellenlängen unterschiedliche Wirkungen hat. So könnte das optische Bauteil – über seine die Amplitude, die Phase und/oder die Polarisation verändernden Eigenschaften hinaus – auf Licht einer bestimmten Polarisationsrichtung – zumindest bereichsweise – reflektierende Wirkung haben. Das optische Bauteil könnte – ebenfalls zumindest bereichsweise – die Polarisation des Lichts derart beeinflussen, dass Licht eines Polarisationszustands in einen anderen überführt wird. Hierbei könnte es sich um eine einfache Drehung der Polarisationsrichtung des Lichts handeln, eine Überführung von einer zirkularen zu einer elliptischen oder linearen Polarisierung

4

und umgekehrt ist ebenfalls denkbar. Das optische Bauteil könnte aber auch als dichroitisches Filter ausgeführt sein, so dass dessen Filterwirkung nur auf Licht eines bestimmten Wellenlängenbereichs wirkt.

[6021] Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die dem Patentanspruch 1 nachgeordneten Patentansprüche und andererseits auf die nachfolgende Erläuterung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Zeichnung 10 zu verweisen. In Verbindung mit der Erläuterung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Zeichnung werden auch im Allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert. In der Zeichnung zeigen

[0022] Fig. 1 eine schematische Darstellung eines ersten Ausführungsbeispiels der vorliegenden Erfindung,

[0023] Fig. 2 eine schematische Darstellung des Ausführungsbeispiels aus Fig. 1, wobei hier der Strahlengang der Filterabbildung eingezeichnet ist.

[0024] Fig. 3 in einem Diagramm die Beleuchtungs-PSF eines doppelkonfokalen Rastermikroskops,

[0025] Fig. 4 in einem Diagramm die Beleuchtungs-PSF eines doppelkonfokalen Rastermikroskops bei Verwendung eines erfindungsgemäßen optischen Bauteils,

[0026] Fig. 5 in einem Diagramm die Gesamt-PSF eines doppelkonfokalen Rastermikroskops vom Typ C,

[0027] Fig. 6 in einem Diagramm die Transmissionseigenschaft eines optischen Bauteils und

[0028] Fig. 7 in einem Diagramm der Phasenshift des optischen Bauteils.

[6029] Fig. 1 zeigt ein doppelkonfokales Rastermikroskop mit einem Beleuchtungsstrahlengang 1 einer Lichtquelle 2 und einem Detektionsstrahlengang 3 eines Detektors 4.

[0030] Licht der Lichtquelle 2 wird mittels der Linse 5 auf 35 das Beleuchtungspinhole 6 fokussiert. Das Beleuchtungspinhole 6 wird mit Hilfe der Linsen 7, 8 einer ersten Zwischenabbildung unterzogen. Das Licht des Beleuchtungsstrahlengangs 1 wird sodann von dem dichroitischen Strahlteiler 9 in Richtung Strahlablenkeinrichtung 10 reflektiert. Zwischen dem dichroitischen Strahlteiler 9 und der Strahlablenkeinrichtung 10 ist eine den Strahlengang kollimierende Linse 12 vorgesehen. Die Strahlablenkeinrichtung 10 weist einen Spiegel auf, der das Beleuchtungslicht reflektiert. Der Spiegel der Strahlablenkeinrichtung 10 ist um 45 zwei Achsen schwenkbar gelagert, so dass durch geeignetes Schwenken des Spiegels das Beleuchtungslicht abgelenkt bzw. gescannt werden kann. Zwischen der Strahlablenkeinrichtung 10 und dem Strahlteiler 11 sind zwei Linsen 13, 13 angeordnet. Der Strahlteiler 11 teilt den Beleuchtungsstrah- 50 lengang 1 in zwei Teilstrahlengänge 14, 15 auf. Das diese Teilstrahlengänge 14, 15 durchlaufende Licht wird jeweils an den Spiegeln 16, 17 reflektiert. Die beiden Mikroskopobjektive 18, 19 sind jeweils im Teilstrahlengang 14, 15 angeordnet. Beide Mikroskopobjektive 18, 19 fokussieren das 55 Beleuchtungslicht des Beleuchtungsstrahlengangs 1 auf das in der gemeinsamen Objektebene angeordnete Objekt 20. Bei dem schematisch angedeuteten Objekt 20 handelt es sich um ein biologisches Objekt, das mit Fluoreszenzfarbstoffen spezifisch markiert wurde. Das Beleuchtungslicht 60 geeigneter Wellenlänge regt die Fluoreszenzfarbstoffe zur Fluoreszenz an. Das vom Objekt 20 emittierte Fluoreszenzlicht, das von den Mikroskopobjektiven 18, 19 aufgesammelt wird, durchläuft den Beleuchtungsstrahlengang in umgekehrter Richtung, bis es zu dem dichroitischen Strahlteiler 65 9 gelangt. Aufgrund des Stokes-Shifts des Fluoreszenzlichts kann dieses den dichroitischen Strahlteiler 9 passieren, so dass das Detektionslicht über die beiden Linsen 21, 22 auf

das Detektionspinhole 23 fokussiert wird. Das Licht aus der Fokalebene der beiden Mikroskopobjektive 18, 19 kann das Detektionspinhole 23 passieren und letztendlich vom Detektor 4 detektiert werden.

[0031] Der Beleuchtungsstrahlengang verläuft also von Lichtquelle 2 über den dichroitischen Strahlteiler 9 zur Strahlablenkeinrichtung 10, zum Strahlteiler 11. Des weiteren zählen zum Beleuchtungsstrahlengang die beiden Teilstrahlengänge 14, 15, die sich bis zum Objekt erstrecken.
 Der Detektionsstrahlengang verläuft vom Objekt 20 zum Strahlteiler 11 – beinhaltet also die beiden Teilstrahlengänge 14, 15 –. Der nutzbare Teil des Detektionsstrahlengangs 3 verläuft dann zur Strahlablenkeinrichtung 10 bis hin zum Detektor 4.

15 [0032] Erfindungsgemäß ist ein auf den Beleuchtungsstrahlengang 1 wirkendes optisches Bauteil 24 vorgesehen, das derart ausgestaltet ist, dass es die Amplitude und die Phase des Lichts des Beleuchtungsstrahlengangs 1 beeinflußt. Weiterhin ist in erfindungsgemäßer Weise ein im Detektionsstrahlengang 3 angeordnetes optisches Bauteil 25 vorgesehen, dass ebenfalls die Amplitude und die Phase des Detektionslichts beeinflußt.

[0033] Fig. 2 zeigt das doppelkonfokale Rastermikroskop aus Fig. 1, wobei hier die den optischen Strahlengang aufzeigenden durchgezogenen Linien den Strahlengang der Abbildung der optischen Bauteile 24 und 25 bis zu den Mikroskopobjektivpupillen 26 zeigen.

[0034] Fig. 3 zeigt in einem Diagramm die normierte Intensität der Beleuchtungs-PSF des doppelkonfokalen Rastermikroskops aus Fig. 1, jedoch ohne Verwendung der beiden optischen Bauteile 24, 25. In dem Diagramm ist die normierte Intensität des Beleuchtungslichts als Funktion der Ortskoordinate entlang der in Fig. 1 gestrichelt eingezeichneten optischen Achse 27 im Fokusbereich der beiden Mikroskopobjektive 18, 19 gezeigt. Bei der z-Koordinate 300 ist das Hauptmaximum der Beleuchtungs-PSF erkennbar, dass den normierten Intensitätswert 1 aufweist. Links und Rechts neben dem Hauptmaximum sind die beiden ersten Nebenmaxima erkennbar, die einen normierten Intensitätswert von ungefähr 0,5 aufweisen.

[0035] Fig. 4 zeigt im Unterschied zu Fig. 3 die Beleuchtungs-PSF des doppelkonfokalen Rastermikroskops, wenn in erfindungsgemäßer Weise das optische Bauteil 24 im Beleuchtungsstrahlengang angeordnet ist. Auch hier ist die normierte Intensität des Beleuchtungslichts als Funktion der Ortskoordinate entlang der optischen Achse 27 - z-Richtung - gezeigt. In erfindungsgemäßer Weise ist das optische Bauteil 24 derart ausgestaltet, dass es die Amplitude und die Phase des Beleuchtungslichts beeinflusst, wodurch die Charakteristik der doppelkonfokalen Beleuchtung verändert wird. So ist Fig. 4 entnehmbar, dass durch das optischen Bauteil 24 die Form der doppelkonfokalen Beleuchtungs-PSF gegenüber der Form der Beleuchtungs-PSF aus Fig. 3 verändert ist. Fig. 4 ist weiterhin entnehmbar, dass bei der z-Koordinate 300 ein Hauptmaximum mit einem normierten Intensitätswert von 1 vorliegt. Dieses Hauptmaximum hat gegenüber dem Hauptmaximum aus Fig. 3 eine leicht verbreiterte Halbwertsbreite (FWHM; Full-Width-Half-Maximum). Weiterhin sind neben dem Hauptmaximum aus Fig. 4 mehrere Nebenmaxima erkennbar, insbesondere die beiden dem Hauptmaximum benachbarten Nebenmaxima bei den z-Koordinaten von ungefähr 210 bzw. 390. Diese beiden Nebenmaxima sind in ihrer Form gegenüber den beiden Nebenmaxima aus Fig. 3 verändert. Auch deren Position ist verglichen zu der Beleuchtungs-PSF aus Fig. 3 verändert. Darüberhinaus sind noch jeweils zwei weitere Nebenmaxima erkennbar, wobei zwei Nebenmaxima mit einem normierten Intensitätswert von ca. 0,9 bei den z-Koordinaten

ungefähr von 150 bzw. 450 angeordnet sind. Die beiden Nebenmaxima mit einem normierten Intensitätswert von ungefähr 0,25 sind bei den z-Koordinaten 50 bzw. 550 angeord-

[0036] Vergleicht man die Beleuchtungs-PSF der Fig. 4 mit der der Fig. 3, so ist erkennbar, dass der Abstand zwischen dem Hauptmaximum und der Nebenmaxima in Fig. 4 vergrößert ist. Bereits diese Vergrößerung der Abstände zwischen dem Hauptmaximum und den beiden ersten Nebenmaxima würde - für sich gesehen - eine FWHM des 10 Hauptmaximums von ca. 100 nm ergeben, da sämtliche in Fig. 4 gezeigten Nebenmaxima aufgrund der Detektionslochblende 23 reduziert werden. Dementsprechend liegt das axiale Auflösungsvermögen eines solchen doppelkonfokalen Rastermikroskops bei ungefähr 100 nm. Die rechnerge- 15 stützten Entfaltungsoperationen bzw. inversen Filterungen der detektierten Bilddaten werden durch die geringen Nebenmaxima erheblich vereinfacht.

[0037] Fig. 5 zeigt eine Gesamt-PSF eines doppelkonfokalen Rastermikroskops vom Typ C. Hierbei wurde ledig- 20 4 Detektor lich das optische Bauteil 24 im Beleuchtungsstrahlengang 1 verwendet, ein weiteres optisches Bauteil ist hierzu nicht vorgesehen. Somit liegt der in Fig. 5 gezeigten Gesamt-PSF einerseits die Beleuchtungs-PSF aus Fig. 4 und andererseits eine der Fig. 3 vergleichbaren PSF - d. h. einer Detektions-PSF - zugrunde. Das Produkt der Beleuchtungs-PSF und der Detektions-PSF ergibt die in Fig. 5 gezeigte Gesamt-PSF, wobei in dem Diagramm ebenfalls die normierte Intensität der Gesamt-PSF als Funktion der z-Koordinate entlang der optischen Achse 27 aufgetragen ist. Hierbei ist beson- 30 14 Teilstrahlengang ders deutlich erkennbar, dass nunmehr lediglich ein Hauptmaximum - ebenfalls bei der z-Koordinate 300 - mit einem normierten Intensitätswert von 1 vorhanden ist. Die Nebenmaxima aus Fig. 5 spielen verglichen zu den PSFs aus den Fig. 3 und 4 - eine untergeordnete bzw. vernachlässigbare 35 19 Mikroskopobjektiv Rolle. Dies ist insbesondere darauf zurückzuführen, dass die Nebenmaxima der Beleuchtungs-PSF aus Fig. 4 und der aus Fig. 3 vergleichbaren Detektions-PSF zugrundeliegenden Nebenmaxima an unterschiedlichen axialen Orten liegen. Demgemäß wird durch die Produktbildung der Beleuchtungs-PSF mit der Detektions-PSF das Hauptmaximum weitaus mehr verstärkt wird als das bei den Nebenmaxima der Fall ist.

[0038] In dem Ausführungsbeispiel aus den Fig. 1 und 2 sind zwei optische Bauteile 24 und 25 vorgesehen, wobei 45 das optische Bauteil 24 des Beleuchtungsstrahlengangs 1 ein anderes ist als das optische Bauteil 25 des Detektionsstrahlengangs 3.

[0039] Aus Fig. 2 ist besonders deutlich erkennbar, dass die beiden optischen Bauteile 24, 25 in einer zur Mikroskop- 50 objektivpupille 26 optisch konjugierten Ebene angeordnet sind.

[0040] Die Fig. 6 und 7 zeigen die optischen Eigenschaften des optischen Bauteils 24. Bei dem optischen Bauteil 24 handelt es sich um ein die Phase sowie die Amplitude des 55 Beleuchtungslichts beeinflussendes Filter. In dem Diagramm aus Fig. 6 ist die Transmissionseigenschaft des rotationssymetrischen ausgestalteten optischen Bauteils 24 als Funktion von dessen Radius r geteilt durch die Brennweite des Mikroskopobjektivs dargestellt. So ist dem Diagramm 60 entnehmbar, dass die Transmission bei dem radialen Wert 0 - also am Ort der optischen Achse 27 - einen Transmissionswert von 0,2 aufweist. Weiterhin ist erkennbar, dass an zwei unterschiedlichen Orten eine Transmission von 0 vorliegt, nämlich zwischen 0,4 und 0,8. Schließlich hat das op- 65 tische Bauteil 24 bei einem Abstand von der optischen Achse geteilt durch die Brennweite des Mikroskopobjektivs von 1 eine Transmission mit dem Wert 1.

[0041] In dem Diagramm aus Fig. 7 ist die Phasenshift des rotationssymetrischen Bauteils 24 pro Wellenlänge ebenfalls als Funktion des Radius r geteilt durch die Brennweite des Mikroskopobjektivs aufgetragen. Es ist erkennbar, dass die Phasenshift pro Wellenlänge einen Wert von 0,5 an den Orten zwischen den beiden Minima des Diagramms aus Fig. 6 beträgt. An allen anderen Stellen des optischen Bauteils 24 tritt kein Phasenshift auf.

[0042] Abschließend sei ganz besonders darauf hingewiesen, dass die voranstehend erörterten Ausführungsbeispiele lediglich zur Beschreibung der beanspruchten Lehre dienen, diese sich jedoch nicht auf die Ausführungsbeispiele einschränken.

Bezugszeichenliste

- 1 Beleuchtungsstrahlengang
- 2 Lichtquelle
- 3 Detektionsstrahlengang
- - 5 Linse
 - 6 Beleuchtungspinhole
 - 7 Linse
 - 8 Linse
- 9 dichroitischer Strahlteiler
 - 10 Strahlablenkeinrichtung
 - 11 Strahlteiler
 - 12 Linse
 - 13 Linse

 - 15 Teilstrahlengang
 - 16 Spiegel
 - 17 Spiegel

 - 18 Mikroskopobjektiv
- - 20 Objekt
 - 21 Linse
 - 22 Linse
- 23 Detektionspinhole
- 24 optisches Bauteil
- 25 optisches Bauteil
- 26 Mikroskopobjektivpupille
- 27 optische Achse

Patentansprüche

- 1. Doppelkonfokales Rastermikroskop mit einem Beleuchtungsstrahlengang (1) einer Lichtquelle (2) und einem Detektionsstrahlengang (3) eines Detektors (4), dadurch gekennzeichnet, dass mindestens ein auf den Beleuchtungsstrahlengang und/oder Detektionsstrahlengang (1, 3) wirkendes optisches Bauteil (24, 25) vorgesehen und derart ausgestaltet ist, dass es die Amplitude und/oder die Phase und/oder die Polarisation des Lichts beeinflusst und hierdurch die Charakteristik der doppelkonfokalen Beleuchtung und/oder Detektion veränderbar ist.
- 2. Rastermikroskop nach Anspruch 1, dadurch gekennzeichnet, dass durch das optische Bauteil (24, 25) die Form der doppelkonfokalen Beleuchtungs- und/ oder Detektions-Punktbildfunktion (PSF) veränderbar
- 3. Rastermikroskop nach Anspruch 2, dadurch gekennzeichnet, dass die axial angeordneten Nebenmaxima der Beleuchtungs-PSF und/oder Detektions-PSF in ihrer Form und/oder Position veränderbar sind.
- 4. Rastermikroskop nach Anspruch 3, dadurch gekennzeichnet, dass durch das optische Bauteil (24, 25)

der Abstand zwischen dem Hauptmaximum der Beleuchtungs-PSF und/oder Detektions-PSF und der Nebenmaxima veränderbar, vorzugsweise vergrößerbar ist

- Rastermikroskop nach Anspruch 3 oder 4, dadurch 5 gekennzeichnet, dass durch das optische Bauteil (24, 25) die Intensität der Nebenmaxima der Beleuchtungs-PSF und/oder Detektions-PSF verringerbar ist.
- 6. Rastermikroskop nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass durch das optische Bauteil (24, 25) die Nebenmaxima der Beleuchtungs-PSF und der Detektions-PSF an unterschiedlichen vorzugsweise axialen Orten liegen.
- 7. Rastermikroskop nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mehrere optische Bau- 15 teile (24, 25) vorgesehen sind.
- 8. Rastermikroskop nach Anspruch 7, dadurch gekennzeichnet, dass im Beleuchtungsstrahlengang 1 ein anderes optisches Bauteil (24, 25) als im Detektionsstrahlengang 3 vorgesehen ist.
- Rastermikroskop nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das optisches Bauteil (24, 25) die Wellenfront des Beleuchtungslichts und/ oder Detektionslichts moduliert.
- 10. Rastermikroskop nach einem der Ansprüche 1 bis 25 9, dadurch gekennzeichnet, dass das optische Bauteil (24, 25) in einer Mikroskopobjektivpupille (26) oder in einer dazu optisch konjugierten Ebene angeordnet ist.
- 11. Rastermikroskop nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das optische Bauteil 30 (24, 25) an einem beliebigen Ort im Beleuchtungsstrahlengang (1) und/oder Detektionsstrahlengang (3) angeordnet ist.
- Rastermikroskop nach einem der Ansprüche 1 bis
 dadurch gekennzeichnet, dass als optisches Bauteil 35
 (24, 25) ein Amplituden- und/oder ein Phasenfilter vorgesehen ist.
- Rastermikroskop nach einem der Ansprüche 1 bis
 dadurch gekennzeichnet, dass als optisches Bauteil
 (24, 25) eine Verzögerungs- und/oder ein Phasenplatte
 vorgesehen ist.
- 14. Rastermikroskop nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass als optisches Bauteil (24, 25) eine LCD-Anordnung (Liquid-Crystal-Device) vorgesehen ist.
- 15. Rastermikroskop nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass als optisches Bauteil (24, 25) partiell amplitudenverändernde Elemente vorgesehen sind.
- 16. Rastermikroskop nach einem der Ansprüche 1 bis 50 15, dadurch gekennzeichnet, dass als optisches Bauteil (24, 25) andere, die Wellenfront des Beleuchtungs-und/oder Detektionslichts verändernde Elemente vorgesehen sind.
- 17. Rastermikroskop nach Anspruch 16, dadurch gekennzeichnet, dass als optisches Bauteil (24, 25) eine adaptive Optik vorgesehen ist, vorzugsweise in Form eines deformierbaren Spiegels.
- 18. Rastermikroskop nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das optische Bauteil 60 (24, 25) auf Licht unterschiedlicher Polarisation und/oder Wellenlängen unterschiedliche Wirkungen hat.
- 19. Rastermikroskop nach Anspruch 18, dadurch gekennzeichnet, dass das optische Bauteil (24, 25) als dichroitischer Filter ausgeführt ist, der vorzugsweise im 65 Beleuchtungsstrahlengang (1) und Detektionsstrahlen-

gang (3) angeordnet ist.

Hierzu 5 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 101 07 095 A1 G 02 B 21/00**29. August 2002

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7