

Helmholtz Equation Informed Learning Methods for Radio Map Construction

Xiucheng Wang

School of Telecommunications Engineering, Xidian University

Mar 31, 2025

Challenge from 6G

(a) The scale of MIMO is growing from 64 into over 1024 antennas.

(b) The dense of network is also dramatically increasing.

The time consumed by channel estimation will exceed 100% of the total slot resources^[1].

It is the very time to propose pilot-free/semi free channel estimation method.

Why Radio Map

(1) Empirical channel model fail to preciously model the wireless channel features

(a) COST 231 model

(b) ITU P.1411 model

(c) Ground truth

Is Radio Map Powerful Enough?

YES!

James Clerk Maxwell (1831-1879)

$$abla \times \mathbf{E} = iw\mathbf{B},$$
 $abla \times \mathbf{H} = -iw\mathbf{D},$
 $abla \cdot \mathbf{D} = 0,$
 $abla \cdot \mathbf{B} = 0.$

All features of EM waves in steady scenarios can be calculated.

Is Radio Map Powerful Enough?

$$abla \times \boldsymbol{E} = iw\boldsymbol{B},$$
 $abla \times \boldsymbol{H} = -iw\boldsymbol{D},$
 $abla \cdot \boldsymbol{D} = 0,$
 $abla \cdot \boldsymbol{B} = 0.$

Too hard to calculate

(1821-1894)

It's my time.

$$\nabla^2 E + k^2 E = 0$$
Helmholtz Equation

Analysis of Helmholtz Equation

$$\nabla^2 \boldsymbol{E} + k^2 \boldsymbol{E} = 0$$

- (a) $k = w^2 \mu \epsilon$ for uniform medium
- (b) $k^2 > 0$ for propagation wave free space or waveguide.
- (c) $k^2 < 0$ for fleeting wave waveguide cut-off, surface wave, tunneling wave.

Helmholtz Equation Informed NN

Original Data Set Data Augmentation Data Label Radio Map Field Strength Map Map Outline

Helmholtz Equation Informed NN

Helmholtz Equation Informed NN

TABLE I: Performance Comparison on DPM.

HEINN

TABLE II: Performance Comparison on IRT.

RadioUNet

Method	NMSE↓	RMSE↓	PSNR↑	SSIM↑
RadioUNet w/o PDE	0.0204	0.0415	28.02	0.9049
RadioUNet w/ PDE	0.0323	0.0536	25.71	0.8615
HEINN w/o PDE	0.0102	0.0299	30.83	0.9473
HEINN w/ PDE	0.0133	0.0348	<u>29.40</u>	0.9395

Analysis of Helmholtz Equation

$$\nabla^2 \boldsymbol{E} + k^2 \boldsymbol{E} = 0$$

Johann Peter Gustav Lejeune Dirichlet (1805-1859)

Dirichlet Boundary Theorem:

Give u(i,j) = c(i,j), where $u \in \Omega$, the Helmholtz equation has unique solution.

Fig.1 PDF of sampling ratio

Fig.2 Generated RM

TABLE III: Performance Comparison

Method	NMSE	RMSE	PSNR	SSIM
Dirichlet Sampling	0.0037	0.0215	33.34	0.9674
RME-GAN	0.0115	0.0303	30.54	0.9323
UVM-Net	0.0085	0.0304	30.34	0.9320
RadioDiff	0.0049	0.0190	35.13	0.9691

Fig.3 GT

Fig.4 Predicted RM

TABLE III: Performance Comparison

Method	NMSE	RMSE	PSNR	SSIM
Dirichlet Sampling	<u>0.0060</u>	0.0371	28.61	0.9549
RME-GAN	0.0115	0.0303	30.54	0.9323
UVM-Net	0.0085	0.0304	30.34	0.9320
RadioDiff	0.0049	0.0190	35.13	0.9691

Thanks for Listening

Xiucheng Wang

School of Telecommunications Engineering, Xidian University

Mar 31, 2024