Lesson 12

Implementing Host Security Solutions

Topic 12A

Implement Secure Firmware

Syllabus Objectives Covered

- 1.2 Given a scenario, analyze potential indicators to determine the type of attack
- 3.2 Given a scenario, implement host or application security solutions
- 5.3 Explain the importance of policies to organizational security

Hardware Root of Trust

- Hardware root of trust/trust anchor
- Attestation
- Trusted Platform Module (TPM)
 - Hardware-based storage of cryptographic data
 - Endorsement key
 - Subkeys used in key storage, signature, and encryption operations
 - Ownership secured via password

Boot Integrity

Screenshot used with permission from HP.

- Unified extensible firmware interface (UEFI)
- Secure boot
 - Validate digital signatures before running boot loader or OS kernel
- Measured boot
 - Use TPM to measure hashes of boot files at each stage
- Attestation
 - Report boot metrics and signatures to remote server

Drive Encryption

- Full disk encryption (FDE)
 - Encryption key secured with user password
 - Secure storage for key in TPM or USB thumb drive
- Self-encrypting drives (SED)
 - Data/media encryption key (DEK/MEK)
 - Authentication key (AK) or key encrypting key (KEK)
 - Opal specification compliant

Screenshot used with permission from Microsoft.

USB and Flash Drive Security

- BadUSB
 - Exposes potential of malicious firmware
 - Malicious USB cable
 - Malicious flash drive
- Sheep dip
 - Sandbox system for testing new/suspect devices
 - Isolated from production network/data

Third-party Risk Management

- Supply chain and vendors
 - End-to-end process of supplying, manufacturing, distributing, and finally releasing goods and services to a customer
 - Could malicious actors within supply chain introduce backdoor access via hardware/firmware components?
 - Most companies must depend on governments/security services to ensure trustworthiness of market suppliers
 - Consider implications of using second-hand equipment
- Vendors versus business partners

End of Life Systems and Lack of Vendor Support

- Support lifecycles
- End of life (EOL)
 - Product is no longer sold to new customers
 - Availability of spares and updates is reduced
- End of service life (EOSL)
 - Product is no longer supported
- Lack of vendor support
 - Abandonware
 - Software and peripherals/devices

Organizational Security Agreements

- Memorandum of understanding (MOU)
 - Intent to work together
- Business partnership agreement (BPA)
 - Establish a formal partner relationship
- Non-disclosure agreement (NDA)
 - Govern use and storage of shared confidential and private information
- Service level agreement (SLA)
 - Establish metrics for service delivery and performance
- Measurement systems analysis (MSA)
 - Evaluate data collection and statistical methods used for quality management

Topic 12B

Implement Endpoint Security

Syllabus Objectives Covered

• 3.2 Given a scenario, implement host or application security solutions

Host Hardening

- Reducing attack surface
- Interfaces
 - Network and peripheral connections and hardware ports
- Services
 - Software that allows client connections
- Application service ports
 - TCP and UDP ports
 - Disable application service or use firewall to control access
 - Detect non-standard usage
- Encryption for persistent storage

Baseline Configuration and Registry Settings

Screenshot used with permission from Microsoft.

- OS/host role
 - Network appliance, server, client,
 ...
- Configuration baseline template
- Registry settings and group policy objects (GPOs)
- Malicious registry changes
- Baseline deviation reporting

Patch Management

- All types of OS, application, and firmware code potentially contains vulnerabilities
- Patch management essential for mitigating these vulnerabilities as they are discovered
- Update policies and schedule
 - Apply all latest auto-update
 - Only apply specific patches
 - Third-party patches
- Scheduling updates
- Managing unpatchable systems

Endpoint Protection

- Antivirus (A-V)/anti-malware
 - Signature-based detection of all malware/PUP types
- Host-based intrusion detection/prevention (HIDS/HIPS)
 - File integrity monitoring and log/network traffic scanning
 - Prevention products can block processes or network connections
- Endpoint Protection Platform (EPP)
 - Consolidate agents for multiple functions
 - Combine A-V, HIDS, host firewall, content filtering, encryption, ...
- Data loss prevention (DLP)
 - Block copy or transfer of confidential data
- Endpoint protection deployment

Next-Generation Endpoint Protection

- Endpoint detection and response (EDR)
 - Visibility and containment rather than preventing malware execution
 - User and entity behavior analytics driven by cloud-hosted machine learning
- Next-generation firewall integration
 - Use endpoint detection to alter network firewall policies
 - Block fileless threats and covert channels
 - Prevent lateral movement

Antivirus Response

- Signature-based detection and heuristics
- Malware identification and classification
 - Common Malware Enumeration (CME)
- Manual remediation advice
- Advanced malware tools
 - Manually identify file system changes and network activity
- Sandboxing
 - Execute malware for analysis in a protected environment

Topic 12C

Explain Embedded System Security Implications

Syllabus Objectives Covered

• 2.6 Explain the security implications of embedded and specialized systems

Embedded Systems

- Computer system with dedicated function
- Static environment
- Cost, power, and compute constraints
 - Single-purpose devices with no overhead for additional security computing
- Crypto, authentication, and implied trust constraints
 - Limited resource for cryptographic implementation
 - No root of trust
 - Perimeter security
- Network and range constraints
 - Power constrains range
 - Emphasize low data rates, but minimize latency

Logic Controllers for Embedded Systems

- Programmable logic controller (PLC)
- System on chip (SoC)
 - Processors, controllers, and devices all provided on single package
 - Raspberry Pi
 - Arduino
- Field programmable gate array (FPGA)
 - End customer can configure programming logic
- Real-time operating system (RTOS)
 - Designed to be ultra-stable
 - Prioritizes real-time scheduling

Embedded Systems Communications Considerations

- Operational Technology (OT) networks
 - Serial data and Industrial Ethernet
- Cellular networks/baseband radio
 - Narrowband-IoT (NB-IoT)
 - LTE Machine Type Communication (LTE-M)
 - 4G versus 5G
 - Subscriber identity module (SIM) cards
 - Encryption and backhaul
- Z-Wave and Zigbee
 - Low-power wireless over ~900 MHz and 2.4 GHz
 - Encryption and pairing

Industrial Control Systems (1)

- Availability, integrity, confidentiality (AIC triad)
- Workflow and process automation
 - Industrial control systems (ICSs)
 - Plant devices and embedded PLCs
 - OT network
 - Electromechanical components and sensors
 - Human machine interface (HMI)
 - Data historian
- Supervisory Control and Data Acquisition (SCADA)
 - Runs on PCs to gather data and perform monitoring
 - Manage large-scale, multiple site installations over WAN communications

Industrial Control Systems (2)

- Energy
 - Power generation and distribution
- Industrial
 - Mining and refining raw materials
- Fabrication and manufacturing
 - Creating components and assembling them into products
- Logistics
 - Moving things
- Facilities
 - Site and building management systems
 - Heating, ventilation, and air conditioning (HVAC)

Internet of Things

- Machine to Machine (M2M) communication
- Hub/control system
 - Communications hub
 - Control system for headless devices
 - Smart hubs and PC/smartphone controller apps
- Smart devices
 - IoT endpoints
 - Compute, storage, and network functions and vulnerabilities
- Wearables
- Sensors
- Vendor security management
 - Weak defaults
 - Patching and updates

Specialized Systems for Facility Automation

- Building automation system (BAS)
 - Smart buildings
 - Process and memory vulnerabilities
 - Credentials embedded in application code
 - Code injection
- Smart meters
- Surveillance systems
 - Physical access control system (PACS)
 - Risks from third-party provision
 - Abuse of cameras

Specialized Systems in IT

Screenshot used with permission from shodan.io.

- Multifunction printer (MFP)
 - Hard drives and firmware represent potential vulnerabilities
 - Recovery of confidential information from cached print files
 - Log data might assist attacks
 - Pivot to compromise other network devices
- Voice over IP
- Shodan

Specialized Systems for Vehicles and Drones

- Unmanned Aerial Vehicles (UAV)/drones
- Computer-controlled or assisted engine, steering, and brakes
- In-vehicle entertainment and navigation
- Controller area network (CAN) serial communications buses
 - Onboard Diagnostics (OBD-II) module
 - Access via cellular or Wi-Fi

Specialized Systems for Medical Devices

- Used in hospitals and clinics but also at home by patients
- Potentially unsecure protocols and control systems
- Use compromised devices to pivot to networks
 - Stealing Protected Health Information (PHI)
- Ransom by threatening to disrupt services
- Kill or injure patients

Security for Embedded Systems

- Network segmentation
 - Strictly restrict access to OT networks
 - Increased monitoring for SCADA hosts
- Wrappers
 - Use IPSec for authentication and integrity and confidentiality
- Firmware code control
 - Supply chain risks
- Inability to patch
 - Inadequate vendor support
 - Time-consuming patch procedures
 - Inability to schedule downtime

Lesson 12

Summary

