ITD105 Laboratory Exercises #2

Data Collections

Name: <u>Clint Joshua O. Velasquez</u> Subject & Section: <u>ITD105</u> – IT4D

1. Public Dataset. Look for at least 4 published public datasets (2 for classification and 2 for regression) in websites such as Kaggle, UCI Machine Learning Repository, Google Dataset search, and data.gov.

Output:

Title	Type (Classification/	Description	Source Link
	Regression)		
1. Car Price Prediction (Linear Regression - RFE)	Regression	This model is intended to help the management team gain insights into how car prices are influenced by these independent factors. By analyzing this relationship, the management can make informed decisions regarding car design, business strategies, and other aspects to achieve specific price targets.	https://www.kaggl e.com/code/goyal shalini93/car- price-prediction- linear-regression- rfe/notebook
2. Car Price Prediction	Regression	This dataset contains information about used cars.	https://www.kaggl e.com/code/moha iminul101/car- price- prediction/notebo ok
3. Statlog (Vehicle Silhouettes)	Classification	of four types of vehicles, using a set of features extracted from the silhouette. The vehicle may be viewed from one of many different angles.	https://archive.ics. uci.edu/dataset/1 49/statlog+vehicle +silhouettes
4. Car Evaluation	Classification	Car Evaluation Database was derived from a simple hierarchical decision model originally developed for the demonstration of DEX, M. Bohanec, V. Rajkovic: Expert system for decision making. Sistemica 1(1), pp. 145-157, 1990.). The model evaluates cars according to the a set of concept structures.	uci.edu/dataset/1

2. Web Scraping

a. Scrape table in $\underline{\text{https://pokemondb.net/pokedex/all}} \text{ to create a dataset.}$

Instruction link:

https://drive.google.com/drive/folders/1uLjA2fObzVtl1m0LaN2lKaPWadZfovZO?usp=sharing

Note: Use MSEdge driver and follow the updated code.

Output:

Video the python code and output.

Video Link:

Gdrive: https://drive.google.com/file/d/1KioZ9JnD6ne04h2xT1mBFYCyaHKcUomA/view?usp=drive_link

Youtube: https://youtu.be/iKA7tunKGpQ

Source Code:

https://github.com/kiyojiii/WebScraping

b. Select a Philippine website. Scrape the data and create a dataset.

Output:

- Video the python code and output.
- Provide the sample dataset with its features and label in excel.
- Identify what type of dataset (Classification/ Regression).

Type of Dataset: Classification

Video Link:

Gdrive: https://drive.google.com/file/d/11Pg-n-EWLHI_bnVJ3wPmP5zS5VsAuhKZ/view?usp=sharing

Youtube: https://youtu.be/GeG4Nbk9WIE

Sample Dataset Link:

https://docs.google.com/spreadsheets/d/1a6C2LwL50uFNFHbuFITSgEiqsMsr8uTw/edit?usp=sharing&ouid=108608604768269683518&rtpof=true&sd=true

Source Code:

https://github.com/kiyojiii/WebScraping

c. Surveys and Questionnaires.

Output:

Create a survey questionnaire that collects specific data from people. Provide the sample dataset with its features and label in excel (at least 20 records). Identify what type of dataset (Classification/ Regression).

Type of Dataset: Classification

Survey Questionnaire Link:

https://forms.gle/CdV6PYSfAEuvrkTv7

Sample Dataset Link:

https://docs.google.com/spreadsheets/d/1L 37L37x11tNNE7lp1Ndb0DmNAPUt3hQb2jKV tn3kE/edit?usp=sharing

Bonus:

Using API, collect data programmatically in any websites (Twitter API, Google Maps API, or financial market data APIs). Provide the sample dataset with its features and label in excel. Identify what type of dataset (Classification/Regression).

Type of Dataset: Classification

Sample Dataset Link:

 $\underline{https://docs.google.com/spreadsheets/d/1UIZcIW8V5Utox43kN1549DOeTYIOjxYa/edit?usp=sharing\&ouid=108608604768269683518\&rtpof=true\&sd=true$

Source Code:

https://github.com/kiyojiii/WebScrapingUsingAPI

Video and Output:

Gdrive: https://drive.google.com/file/d/16zmq8kyQ5lMVUAr5XX_6L77vH-Kskvns/view?usp=drive_link

Youtube: https://youtu.be/P4nRf3wi2lo