An Introduction to Non-smooth Optimization

Lecture 06 - Several Acceleration Schemes

Jingwei LIANG

Institute of Natural Sciences, Shanghai Jiao Tong University

Email: optimization.sjtu@gmail.com

Office: Room 355, No. 6 Science Building

Outline

Accelerate gradient descent

2 Accelerate proximal gradient descent

3 Accelerate ADMM

4 Accelerate fixed-point iteration

Gradient descent

Problem - Unconstrained smooth optimization

Let $F \in C_L^1(\mathbb{R}^n)$ and consider

$$\min_{\mathbf{x}\in\mathbb{R}^n} F(\mathbf{x}).$$

Algorithm - Gradient descent

Choose $\mathbf{x}^{(0)} \in \text{dom}(\mathsf{F})$ and $\gamma \in]0, 2/\mathsf{L}[$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \gamma \nabla F(\mathbf{x}^{(k)}).$$

Gradient descent

Gradient descent

Algorithm - Heavy-ball method [Polyak '64]

Choose $\mathbf{x}^{(0)} \in \mathrm{dom}(\mathbf{F})$, let a>0 and $\gamma \in]0,2/\mathsf{L}[$

$$\mathbf{y}^{(k)} = \mathbf{x}^{(k)} + a(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}),$$

$$\mathbf{x}^{(k+1)} = \mathbf{y}^{(k)} - \gamma \nabla F(\mathbf{x}^{(k)}).$$

Algorithm - Heavy-ball method [Polyak '64]

Choose
$$\mathbf{x}^{(0)}\in\mathrm{dom}(\mathbf{F})$$
, let $a>0$ and $\gamma\in]0,2/L[$
$$\mathbf{y}^{(k)}=\mathbf{x}^{(k)}+a(\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}),$$

- **\mathbf{x}^{(k)} \mathbf{x}^{(k-1)}** is called the inertial term or momentum term.
- *a* is called the inertial parameter.
- In general, no convergence rate for $F \in C_L^1$. Local rate if moreover F is twice-differentiable and strongly convex.

 $\mathbf{x}^{(k+1)} = \mathbf{y}^{(k)} - \gamma \nabla F(\mathbf{x}^{(k)}).$

Theorem - Optimal rate

Let \mathbf{x}^{\star} be a (local) minimizer of F such that $\mu \mathbf{Id} \preceq \nabla^2 F(\mathbf{x}^{\star}) \preceq L \mathbf{Id}$ and choose a, γ with $a \in [0, 1[, \gamma \in]0, 2(1+a)/L[$. There exists $\underline{\rho} < 1$ such that if $\underline{\rho} < \rho < 1$ and if $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}$ are close enough to \mathbf{x}^{\star} , one has

$$\|\mathbf{x}^{(k)}-\mathbf{x}^{\star}\|\leq C\rho^{k}.$$

Moreover, if

$$a = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2, \ \gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2} \ \text{then} \ \underline{\rho} = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}.$$

Theorem - Optimal rate

Let \mathbf{x}^{\star} be a (local) minimizer of F such that $\mu \mathbf{Id} \preceq \nabla^2 F(\mathbf{x}^{\star}) \preceq \mathbf{LId}$ and choose a, γ with $a \in [0, 1[, \gamma \in]0, 2(1+a)/L[$. There exists $\underline{\rho} < 1$ such that if $\underline{\rho} < \rho < 1$ and if $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}$ are close enough to \mathbf{x}^{\star} , one has

$$\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\| \leq C\rho^{k}.$$

Moreover, if

$$a = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2, \ \gamma = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2} \text{ then } \underline{\rho} = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}.$$

- Starting points need to close enough to x*
- Almost the optimal rate can be achieve by gradient method (or first-order method)
- Gradient descent

$$\underline{\rho} = \frac{\mathsf{L} - \mu}{\mathsf{L} + \mu}.$$

Nesterov's acceleration scheme

Algorithm - Nesterov's acceleration scheme [Nesterov '83]

Choose
$$\mathbf{x}^{(0)} \in \mathrm{dom}(\mathbf{F})$$
 and $\mathbf{y}^{(0)} = \mathbf{x}^{(0)}$; Let $\phi_0 \in]0,1[$ and $\mathbf{q} = \mu/\mathbf{L}$
$$\phi_{k+1}^2 = (1-\phi_{k+1})\phi_k^2 + \mathbf{q}\phi_{k+1}$$

$$a_k = \frac{\phi_k(1-\phi_k)}{\phi_k^2 + \phi_{k+1}}$$

$$\mathbf{y}^{(k)} = \mathbf{x}^{(k)} + a_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)})$$

$$\mathbf{x}^{(k+1)} = \mathbf{y}^{(k)} - \frac{1}{l}\nabla \mathbf{F}(\mathbf{y}^{(k)})$$

Nesterov's acceleration scheme

Algorithm - Nesterov's acceleration scheme [Nesterov '83]

Choose
$$\mathbf{x}^{(0)} \in \text{dom}(\mathbf{F})$$
 and $\mathbf{y}^{(0)} = \mathbf{x}^{(0)}$; Let $\phi_0 \in]0,1[$ and $\mathbf{q} = \mu/\mathbf{L}$
$$\phi_{k+1}^2 = (1-\phi_{k+1})\phi_k^2 + \mathbf{q}\phi_{k+1}$$

$$a_k = \frac{\phi_k(1-\phi_k)}{\phi_k^2 + \phi_{k+1}}$$

$$\mathbf{y}^{(k)} = \mathbf{x}^{(k)} + a_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)})$$

$$\mathbf{x}^{(k+1)} = \mathbf{y}^{(k)} - \frac{1}{\mathbf{L}}\nabla\mathbf{F}(\mathbf{y}^{(k)})$$

Theorem - Convergence rate

Let $\phi_0 \geq \sqrt{\mu/L}$, then

$$F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{\star}) \leq \min\left\{\left(1 - \sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4L}{(2\sqrt{L} + k\sqrt{\nu})^{2}}\right\} \times \left(F(\mathbf{x}_{0}) - F(\mathbf{x}^{\star}) + \frac{\nu}{2}\|\mathbf{x}_{0} - \mathbf{x}^{\star}\|^{2}\right),$$

where $\nu = \frac{\phi_0(\phi_0 L - \mu)}{1 - \phi_0}$.

Nesterov's acceleration scheme

Algorithm - Nesterov's acceleration scheme [Nesterov '83]

Choose
$$\mathbf{x}^{(0)} \in \mathrm{dom}(\mathbf{F})$$
 and $\mathbf{y}^{(0)} = \mathbf{x}^{(0)}$; Let $\phi_0 \in]0,1[$ and $\mathbf{q} = \mu/\mathsf{L}$
$$\phi_{k+1}^2 = (1-\phi_{k+1})\phi_k^2 + \mathbf{q}\phi_{k+1}$$

$$a_k = \frac{\phi_k(1-\phi_k)}{\phi_k^2 + \phi_{k+1}}$$

$$\mathbf{y}^{(k)} = \mathbf{x}^{(k)} + a_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)})$$

$$\mathbf{x}^{(k+1)} = \mathbf{y}^{(k)} - \frac{1}{l}\nabla \mathsf{F}(\mathbf{y}^{(k)})$$

Parameter choices

$$F \in C_L^1: \phi_0 = 1,$$

$$q = 0, \quad \phi_k \approx \frac{2}{k+1} \to 0 \quad \text{ and } \quad a_k \approx \frac{1-\phi_k}{1+\phi_k} \to 1.$$

$$\blacksquare \mathsf{F} \in \mathsf{S}^1_{\mu,\mathsf{L}} : \phi_0 = \sqrt{\mu/\mathsf{L}}$$

$$q = \sqrt{\frac{\mu}{L}}, \quad \phi_k \equiv \sqrt{\frac{\mu}{L}} \quad \text{ and } \quad a_k \equiv \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}.$$

Accelerate proximal gradient descent

Proximal gradient descent

Problem - Unconstrained smooth optimization

Let $F \in C^1_L(\mathbb{R}^n), R \in \Gamma_0(\mathbb{R}^n)$ and consider

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) + R(\boldsymbol{x}).$$

Algorithm - Gradient descent

Choose $\mathbf{x}^{(0)} \in \text{dom}(\mathbf{F})$ and $\gamma \in]0, 2/L[$

$$\mathbf{x}^{(k+1)} = \text{prox}_{\gamma R} (\mathbf{x}^{(k)} - \gamma \nabla F(\mathbf{x}^{(k)})).$$

FISTA (Fast Iterative Soft-Thresholding Algorithm)

Algorithm - FISTA [Beck & Teboulle '09]

Choose
$$\mathbf{x}^{(0)} \in \mathrm{dom}(\mathbf{F})$$
 and $\mathbf{y}^{(0)} = \mathbf{x}^{(0)}$; Let $t_0 = 1$ and $\gamma = 1/L$
$$t_k = \frac{1 + \sqrt{1 + 4t_{k-1}^2}}{2}$$

$$a_k = \frac{t_{k-1} - 1}{t_k}$$

$$\mathbf{y}^{(k)} = \mathbf{x}^{(k)} + a_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)})$$

$$\mathbf{x}^{(k+1)} = \mathrm{prox}_{\gamma R} \big(\mathbf{y}^{(k)} - \gamma \nabla \mathbf{F}(\mathbf{y}^{(k)}) \big)$$

- A special case of inertial proximal gradient descent.
- Inertial parameters

$$t_k \approx \frac{k+1}{2}$$
 and $a_k \to 1$.

FISTA (Fast Iterative Soft-Thresholding Algorithm)

Algorithm - FISTA [Beck & Teboulle '09]

Choose
$$\mathbf{x}^{(0)} \in \mathrm{dom}(\mathbf{F})$$
 and $\mathbf{y}^{(0)} = \mathbf{x}^{(0)}$; Let $t_0 = 1$ and $\gamma = 1/L$
$$t_k = \frac{1 + \sqrt{1 + 4t_{k-1}^2}}{2}$$

$$a_k = \frac{t_{k-1} - 1}{t_k}$$

$$\mathbf{y}^{(k)} = \mathbf{x}^{(k)} + a_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)})$$

$$\mathbf{x}^{(k+1)} = \mathrm{prox}_{\gamma_R} \big(\mathbf{y}^{(k)} - \gamma \nabla \mathbf{F}(\mathbf{y}^{(k)}) \big)$$

Theorem - Convergence rate

Let
$$\mathbf{x}^* \in \operatorname{Argmin}(F + R)$$
,

$$(F+R)(\mathbf{x}^{(k)}) - (F+R)(\mathbf{x}^{\star}) \le \frac{L\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^2}{2(k+1)^2}.$$

Restarting FISTA

Restarting FISTA

Why FISTA oscillates

- for LSE, leading eigenvalue of the system is complex.
- over extrapolation, momentum beats gradient.

Algorithm - Restarting FISTA [O'Donoghue & Candés '12]

repeat:

- 1. Run FISTA iteration
- **2.** If $\langle \mathbf{y}^{(k)} \mathbf{x}^{(k+1)} \mid \mathbf{x}^{(k)} \mathbf{x}^{(k-1)} \rangle > 0$: $t_k = 1, \mathbf{y}^{(k)} = \mathbf{x}^{(k)}$.

Restarting FISTA

Accelerate ADMM

Alternating direction method of multipliers

Problem

$$\label{eq:force_equation} \begin{split} \min_{\boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{y} \in \mathbb{R}^m} \ F(\boldsymbol{x}) + R(\boldsymbol{y}), \\ \text{such that } \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{y} = \boldsymbol{f}. \end{split}$$

Algorithm - ADMM [Gabay, Mercier, Glowinski, Marrocco '76]

$$\begin{split} & \mathbf{x}^{(k+1)} \in \operatorname{Argmin}_{\mathbf{x}} \mathbf{F}(\mathbf{x}) + \frac{\rho}{2} \| \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{y}^{(k)} - \mathbf{f} + \mathbf{u}^{(k)} / \rho \|^2, \\ & \mathbf{y}^{(k+1)} \in \operatorname{Argmin}_{\mathbf{y}} \mathbf{R}(\mathbf{y}) + \frac{\rho}{2} \| \mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{B} \mathbf{y} - \mathbf{f} + \mathbf{u}^{(k)} / \rho \|^2, \\ & \mathbf{u}^{(k+1)} = \mathbf{u}^{(k)} + \rho (\mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{B} \mathbf{y}^{(k+1)} - \mathbf{f}). \end{split}$$

Fast ADMM under strong convexity

9/12

Assumption

■ Both F and R are strongly convex.

Algorithm - Fast ADMM [Goldstein et al '14]

Let
$$\mathbf{y}^{(0)} \in \mathbb{R}^n$$
, $\mathbf{\bar{y}}^{(0)} = \mathbf{y}^{(0)}$ and $\mathbf{u}^{(0)} \in \mathbb{R}^p$, $\mathbf{\bar{u}}^{(0)} = \mathbf{u}^{(0)}$; Let $\rho > 0$ and $t_0 = 1$:
$$\mathbf{x}^{(k+1)} \in \operatorname{Argmin}_{\mathbf{x}} \mathbf{F}(\mathbf{x}) + \frac{\rho}{2} \| \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{\bar{y}}^{(k)} - \mathbf{f} + \mathbf{\bar{u}}^{(k)}/\rho \|^2,$$

$$\mathbf{y}^{(k+1)} \in \operatorname{Argmin}_{\mathbf{y}} \mathbf{R}(\mathbf{y}) + \frac{\rho}{2} \| \mathbf{A}\mathbf{x}^{(k+1)} + \mathbf{B}\mathbf{y} - \mathbf{f} + \mathbf{\bar{u}}^{(k)}/\rho \|^2,$$

$$\mathbf{u}^{(k+1)} = \mathbf{\bar{u}}^{(k)} + \rho (\mathbf{A}\mathbf{x}^{(k+1)} + \mathbf{B}\mathbf{y}^{(k+1)} - \mathbf{f})$$

$$\mathbf{t}_k = \frac{1 + \sqrt{1 + 4t_{k-1}^2}}{2}$$

$$\mathbf{\bar{y}}^{(k+1)} = \mathbf{y}^{(k)} + \frac{t_{k-1} - 1}{t_k} (\mathbf{y}^{(k)} - \mathbf{y}^{(k-1)})$$

$$\mathbf{\bar{u}}^{(k+1)} = \mathbf{u}^{(k)} + \frac{t_{k-1} - 1}{t_k} (\mathbf{u}^{(k)} - \mathbf{u}^{(k-1)})$$

Accelerate fixed-point iteration

Accelerations: two approaches

Algorithm - Inertial technique [Polyak '64, Nesterov '83, Beck & Teboulle '09]

$$\label{eq:continuity} \begin{bmatrix} \boldsymbol{\bar{x}}^{(k)} = \boldsymbol{x}^{(k)} + a_k(\boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)}), \\ \boldsymbol{x}^{(k+1)} = \mathcal{F}(\boldsymbol{\bar{x}}^{(k)}). \end{bmatrix}$$

Accelerations: two approaches

Algorithm - Successive over-relaxation [Richardson '1911, Young '50]

$$\mathbf{x}^{(k+1)} = (1 - \lambda_k)\mathbf{x}^{(k)} + \lambda_k \mathcal{F}(\mathbf{x}^{(k)}) \xrightarrow{\underline{a_k = \lambda_k - 1}} \begin{bmatrix} \mathbf{\bar{x}}^{(k)} = \mathbf{x}^{(k)} + a_k(\mathbf{x}^{(k)} - \mathbf{\bar{x}}^{(k-1)}), \\ \mathbf{x}^{(k+1)} = \mathcal{F}(\mathbf{\bar{x}}^{(k)}). \end{bmatrix}$$

Problem - Sum of two Γ_0 functions

$$\min_{\mathbf{x}\in\mathbb{R}^n} F(\mathbf{x}) + R(\mathbf{x}).$$

Let $\gamma > 0$

$$\mathcal{F}_{\mathrm{DR}} \stackrel{\mathrm{def}}{=} \frac{1}{2} \big(\mathbf{Id} + (2\mathrm{prox}_{\gamma R} - \mathbf{Id})(2\mathrm{prox}_{\gamma F} - \mathbf{Id}) \big).$$

Problem - Sum of two Γ_0 functions

$$\min_{\mathbf{x}\in\mathbb{R}^n} F(\mathbf{x}) + R(\mathbf{x}).$$

Let $\gamma > 0$

$$\mathcal{F}_{\mathrm{DR}} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \frac{1}{2} \big(\mathbf{Id} + (2\mathrm{prox}_{\gamma \mathit{R}} - \mathbf{Id}) \big(2\mathrm{prox}_{\gamma \mathit{F}} - \mathbf{Id} \big) \big).$$

Douglas-Rachford splitting [Douglas & Rachford '56]

$$\mathbf{z}^{(k+1)} = \mathcal{F}_{\mathrm{DR}}(\mathbf{z}^{(k)}),$$

■ Sequence $o(1/\sqrt{k})$, objective NA.

Problem - Sum of two Γ_0 functions

$$\min_{\mathbf{x}\in\mathbb{R}^n}\,F(\mathbf{x})+R(\mathbf{x}).$$

Let $\gamma > 0$

$$\mathcal{F}_{\mathrm{DR}} \stackrel{\scriptscriptstyle\mathrm{def}}{=} \frac{1}{2} \big(\mathbf{Id} + (2\mathrm{prox}_{\gamma \mathit{R}} - \mathbf{Id}) \big(2\mathrm{prox}_{\gamma \mathit{F}} - \mathbf{Id} \big) \big).$$

Inertial Douglas-Rachford [Bot, Csetnek & Hendrich '15]

$$egin{aligned} & \mathbf{ar{z}}_k = \mathbf{z}^{(k)} + a_k(\mathbf{z}^{(k)} - \mathbf{z}^{(k-1)}), \ & \mathbf{z}^{(k+1)} = \mathcal{F}_{\mathrm{DR}}(\mathbf{ar{z}}_k). \end{aligned}$$

■ No rates available, may fail to provide acceleration.

Problem - Feasibility problem in \mathbb{R}^2

Let $\mathsf{T}_1,\mathsf{T}_2\subset\mathbb{R}^2$ be two subspaces such that $\mathsf{T}_1\cap\mathsf{T}_2
eq\emptyset$,

Find $x \in \mathbb{R}^2$ such that $x \in T_1 \cap T_2$.

Define

$$\mathcal{F}_{\mathrm{DR}} \stackrel{\mathrm{def}}{=} \frac{1}{2} (\mathbf{Id} + (2\mathcal{P}_{\mathsf{T}_1} - \mathbf{Id})(2\mathcal{P}_{\mathsf{T}_2} - \mathbf{Id})).$$

Problem - Feasibility problem in \mathbb{R}^2

Let $T_1, T_2 \subset \mathbb{R}^2$ be two subspaces such that $T_1 \cap T_2 \neq \emptyset$,

Find $\mathbf{x} \in \mathbb{R}^2$ such that $\mathbf{x} \in T_1 \cap T_2$.

Douglas-Rachford:

$$\bar{\mathbf{z}}_k = \mathbf{z}^{(k)},$$

$$\mathbf{z}^{(k+1)} = \mathcal{F}_{\mathrm{DR}}(\mathbf{\overline{z}}_k).$$

Problem - Feasibility problem in \mathbb{R}^2

Let $T_1, T_2 \subset \mathbb{R}^2$ be two subspaces such that $T_1 \cap T_2 \neq \emptyset$,

Find $x \in \mathbb{R}^2$ such that $x \in T_1 \cap T_2$.

Inertial Douglas-Rachford:

$$\begin{split} & \overline{\boldsymbol{z}}_k = \boldsymbol{z}^{(k)} + \boldsymbol{a}(\boldsymbol{z}^{(k)} - \boldsymbol{z}^{(k-1)}), \\ & \boldsymbol{z}^{(k+1)} = \mathcal{F}_{\mathrm{DR}}(\overline{\boldsymbol{z}}_k). \end{split}$$

■ 1-step inertial: a = 0.3.

References

- B. Polyak. "Introduction to optimization". Optimization Software, 1987.
- Y. Nesterov. "Introductory lectures on convex optimization: A basic course". Vol. 87. Springer Science & Business Media, 2013.
- A. Beck and M. Teboulle. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems". SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
- B. O'Donoghue and E. J. Candés. "Adaptive restart for accelerated gradient schemes".
 Foundations of Computational Mathematics, pages 1–18, 2012.
- T. Goldstein, B. O'Donoghue, S. Setzer, R. Baraniuk. "Fast alternating direction optimization methods". SIAM Journal on Imaging Sciences, pages 1588-1623, 2014.
- A. Beck: First-order methods in optimization, Vol. 25. SIAM, 2017.
- H. H. Bauschke and P. L. Combettes: Convex analysis and monotone operator theory in Hilbert spaces, Vol. 408. New York: Springer, 2011.