

Guia para realizar la inicialización exitosa de la plataforma de robótica de enjambre

Introducción

Esta plataforma esta pensada para ser usada en algoritmos de robótica de enjambre, por lo cual esta guía únicamente sirve como apoyo para poder activar los diferentes módulos ya implementados.

Los módulos disponibles son:

- -Control de la velocidad y sentido de los motores
- -Accionamiento del servo motor y activación de los sensores ultrasónicos
- -Activación de los comandos para el uso de la cámara
- -Explicación del módulo de comunicación

Sistema de movimiento

Librerías necesarias

from gpiozero import PWMOutputDevice from gpiozero import DigitalOutputDevice from time import sleep

Comandos disponibles

Comando	Función
AllStop()	Detiene el movimiento de ambos motores
forwardDrive()	Ambos motores van hacia adelante a maxima velocidad
reverseDrIve()	Ambos motores van hacía atras a maxima velocidad
spinLeft()	Se cambia de posición hacía la izquierda
spinRight()	Se cambia de posición hacía la derecha
forwardTurnRight()	Se avanza hacía la izquierda
forwardTurnLeft()	Se avanza hacía la derecha

El valor del PWM esta en 1000, este puede llegar a cambiarse según los valores maximos de la Raspberry

Aunque los pines de los motores ya se encuentran soldados si se desea de cambiar el lugar de los motores se puede hacer, unicamente se deben de cambiar los pines utilizados en la programación, el pin Stanby debe tener una señal positiva para activar el driver, si la señal esta en low no existe respuesta de los motores

```
PWM_DRIVE_LEFT = 21  # ENA - H-Bridge enable pir

FORWARD_LEFT_PIN = 26  # IN1 - Forward Drive

REVERSE_LEFT_PIN = 19  # IN2 - Reverse Drive

# Motor B, Right Side GPIO CONSTANTS

PWM_DRIVE_RIGHT = 5  # ENB - H-Bridge enable pir

FORWARD_RIGHT_PIN = 13  # IN1 - Forward Drive

REVERSE_RIGHT_PIN = 6  # IN2 - Reverse Drive
```

e imagenes

erías necesarias

```
flask import Flask, render_template, Response, request
plcamera import PiCamera
gpiozero import LED
threading import Condition
t time
t os
t id
t logging
t socketserver
http import server
```

nandos disponibles

nando	Función	
ito()	Toma una foto en resolución 640X480	
leo(X)	La 'X' simboliza la cantidad de tiempo que se desea realizar para tomar el video	
tam()	Esta función inicializa todo el stream	

o stream se hizo en forma de ón, pero en el codigo principal de mandar a llamar el strean de ir el comando output = mingOutput()

```
if numero == 3:
   output = StreamingOutput()
   Stream()
```

ress = ('', 8000)

En address debemos seleccionar un puerto (8000) para conectarnos al server, este numero debe ser diferente al numero puesto para el puerto en la comunicación entre servidor y cliente

se debe poner en el navegador para poder ver la transmisión en directo basta con colocarse en la conexión Wifi y yer el numero de IP

sensores ultrasonico

Librerías necesarías

```
import time
import threading
from threading import Condition
from gpiozero import Servo
import RP1.GPIO as GPIO
```

Comando disponibles

Comando	Función
measureX(Y)	Esta función pone en funcionamieto la detección de objetos, 'X' corresponde al sensor que se esta midiendo γ 'Y' a la cantidad de tiempo entre cada medición
servo.min	El servo se pone en la posición minima disponible
servo.mid	El servo se pone en la posición media
servo.max	El servo se pone en la posición maxima disponible
mov(x)	El servo se mueve a X posición dentro de los limites

Los sensores ultrasonicos puede llegar a tomar mediciónes cada 50ms

La unica recomendacíon es no forzar los limites del servomotor para evitar fallas mecanicas con el tiempo

tema de nunicación

```
as necesarías
or
ocket
```

los disponibles

```
Función

() Función para poder enviar un mensaje desde el servidor
```

dor se inicia desde la Raspoerry y este ecutarse de primero para que la conexió er existosa

e debe de conectarsea la direcciór idor y debe de ser enel puero cado

```
:ket = socket.socket()
:ket.connect(('192.168.0.18',6000))
```

idor debe establecer una nueva dirección en la alojará el servidor y establecer un nuevo puerto unicación, este debe ser diferente al de la

```
cket = socket.socket()
cket.bind( ('0.0.0.0',6000))
```