CSE623 Machine Learning

Project 9: Athlete Profiling NCAA

Group 10

Anant Kedia	AU2220040
Maanit Shah	AU2220043
Samarth Bankar	AU2220001
Ayush Chaurasia	AU2220032
Viraj Bhatia	AU2220038

18th March, 2025

The objective of this project is to analyze the NEC and MAAC conference game data (including all players and teams) for over the past four years and perform athlete profiling. This framework will be helpful for the recruiters to match player against their team specifications and select accordingly.

Deliverables

Identification of individual team strengths and weaknesses (offense/defense).

The objective of this project is to analyze the NEC and MAAC conference game data (including all players and teams) for over the past four years and perform athlete profiling. This framework will be helpful for the recruiters to match player against their team specifications and select accordingly.

Deliverables

- Identification of individual team strengths and weaknesses (offense/defense).
- Identification of athlete strengths and weaknesses.

The objective of this project is to analyze the NEC and MAAC conference game data (including all players and teams) for over the past four years and perform athlete profiling. This framework will be helpful for the recruiters to match player against their team specifications and select accordingly.

Deliverables

- Identification of individual team strengths and weaknesses (offense/defense).
- Identification of athlete strengths and weaknesses.
- Based on opponent, identified strengths and weaknesses and game score, predict optimal athlete lineup for a team against each opponent.

The objective of this project is to analyze the NEC and MAAC conference game data (including all players and teams) for over the past four years and perform athlete profiling. This framework will be helpful for the recruiters to match player against their team specifications and select accordingly.

Deliverables

- Identification of individual team strengths and weaknesses (offense/defense).
- Identification of athlete strengths and weaknesses.
- Based on opponent, identified strengths and weaknesses and game score, predict optimal athlete lineup for a team against each opponent.
- Athlete clusters report general patterns.

Literature Review

Paper Name	Approach	Key Features	Limitations
Wang, J. (2023, October). Predictive Analysis of NBA	Different ML approaches, such	Comprehensive	The approaches do
Game Outcomes through Machine Learning. In	as Logistic Regression, Support	evaluation of	not capture real world
Proceedings of the 6th International Conference on	Vector Machines, Deep Neural	various different	factors like player injuries,
Machine Learning and Machine Intelligence (pp. 46-55).	Networks, and Random Forests.	ML models.	and team dynamics.
Islam, M. R., Ahmed, M. U., & Begum, S. (2024).	iXGB, an approach to enhance		The approximation of
iXGB: improving the interpretability of XGBoost using	XGBoost's interpretability by	Enhances model	decision rules may not
decision rules and counterfactuals. In 16th International	approximating decision rules from	interpretability.	capture all the
Conference on Agents and Artificial Intelligence	its internal structure and	interpretability.	complexities of the
(ICAART 2024) (Vol. 3, pp. 1345-1353).	generating counterfactuals.		model.
Ouyang, Y., Li, X., Zhou, W., Hong, W., Zheng, W.,		Predictive ability	The performance indicators
Qi, F., & Peng, L. (2024). Integration of machine		of XGBoost	(e.g., field goal percentage,
learning XGBoost and SHAP models for NBA game	XGBoost with SHAP.	integrated with	defensive rebounds) are
outcome prediction and quantitative analysis		SHAP to improve	not universally applicable.
methodology. Plos one, 19(7), e0307478.		interpretability.	, .,
Chen, W. J., Jhou, M. J., Lee, T. S., & Lu, C. J.	Hybrid model with different	Hybrid model to	Interpretability due to
(2021). Hybrid basketball game outcome prediction	approaches including KNN,	improve prediction	the complex nature of
model by integrating data mining methods for the	XGBoost, and SGB.	accuracy.	the proposed hybrid
national basketball association. Entropy, 23(4), 477.	Acceptant one	,	model.
Hu, H., Dimitrov, G., Menn, D., & Wu, S.		Player interactions	Quantifying synergies for
NBA Player Performance Prediction Based on	XGBoost	quantified as	a larger set of players is
XGBoost and Synergies.	7.55555	synergies to enhance	difficult. Also, the method is
		the prediction model.	extremely sensitive to outliers.

Dataset Discussion

The dataset consists of NEC and MAAC conference Basketball match data from 25/11/20 to 25/03/24. Each match is represented by the two teams playing it, and the teams' respective information such as the athletes participating in the match, various statistics of their performance in the match (points scored, assists, steals, blocks, etc.). Furthermore, the teams' total score in the match and whether they won or lost is present in the data. Finally, an aggregate score of each athlete's performance, called the Game Score is displayed. This quantity is calculated as follows:

Dataset Discussion

The dataset consists of NEC and MAAC conference Basketball match data from 25/11/20 to 25/03/24. Each match is represented by the two teams playing it, and the teams' respective information such as the athletes participating in the match, various statistics of their performance in the match (points scored, assists, steals, blocks, etc.). Furthermore, the teams' total score in the match and whether they won or lost is present in the data. Finally, an aggregate score of each athlete's performance, called the Game Score is displayed. This quantity is calculated as follows:

Game Score =
$$PTS + (0.4 \cdot FGM) - (0.7 \cdot FGA) - (0.4 \cdot (FTA - FTM)) + (0.7 \cdot OREB) + (0.3 \cdot DREB) + STL + (0.7 \cdot AST) + (0.7 \cdot BLK) - (0.4 \cdot PF) - TO.$$

This is known as Hollinger's Game Score.

Approaches

K-means Clustering

We applied k-means clustering to the dataset on individual athletes' statistics (averaged over all their appearances) and estimated the ideal k value to be 11 via the "Elbow Method", however other unsupervised clustering metrics showed the performance of the algorithm to be unsatisfactory. Similar results were obtained after dimensionality reduction via PCA to 2 components/features. We assume that the poor results are due to the Curse of Dimensionality, as k-means utilizes distances.

We also implemented DBSCAN for clustering, however we got similarly disappointing results.

Approaches

K-means Clustering

We applied k-means clustering to the dataset on individual athletes' statistics (averaged over all their appearances) and estimated the ideal k value to be 11 via the "Elbow Method", however other unsupervised clustering metrics showed the performance of the algorithm to be unsatisfactory. Similar results were obtained after dimensionality reduction via PCA to 2 components/features. We assume that the poor results are due to the Curse of Dimensionality, as k-means utilizes distances.

We also implemented DBSCAN for clustering, however we got similarly disappointing results.

Fuzzy C-means Clustering and ANFIS

We used Fuzzy C-Means (FCM) to cluster athletes based on key performance metrics (FG%, PTS, 3P%, AST, REB, STL, BLK) and assigned soft membership scores to five basketball positions (PG, SG, SF, PF, C). Then, we trained an ANFIS model to predict a player's position membership based on these features, helping recruiters understand player strengths and fit within a team.

Random Forest Prediction

We applied random forest prediction to dataset on individual athletes' statistics (averaged over all their appearances) and trained the model over their number of wins. The model had a R^2 value of 0.45, which is undesirable. This is most definitely due to the fact that it match wins are a result of team efforts, and the statistics of individual athletes is not enough to predict them.

Random Forest Prediction

We applied random forest prediction to dataset on individual athletes' statistics (averaged over all their appearances) and trained the model over their number of wins. The model had a R^2 value of 0.45, which is undesirable. This is most definitely due to the fact that it match wins are a result of team efforts, and the statistics of individual athletes is not enough to predict them.

Future Work

XGboost based winner prediction.

Random Forest Prediction

We applied random forest prediction to dataset on individual athletes' statistics (averaged over all their appearances) and trained the model over their number of wins. The model had a R^2 value of 0.45, which is undesirable. This is most definitely due to the fact that it match wins are a result of team efforts, and the statistics of individual athletes is not enough to predict them.

Future Work

- XGboost based winner prediction.
- Improving the explainability of the clusters created.

Random Forest Prediction

We applied random forest prediction to dataset on individual athletes' statistics (averaged over all their appearances) and trained the model over their number of wins. The model had a R^2 value of 0.45, which is undesirable. This is most definitely due to the fact that it match wins are a result of team efforts, and the statistics of individual athletes is not enough to predict them.

Future Work

- XGboost based winner prediction.
- Improving the explainability of the clusters created.
- Possible approaches to explore in order to improve explainability: SHAP, Neurosymbolic AI, LIME

Random Forest Prediction

We applied random forest prediction to dataset on individual athletes' statistics (averaged over all their appearances) and trained the model over their number of wins. The model had a R^2 value of 0.45, which is undesirable. This is most definitely due to the fact that it match wins are a result of team efforts, and the statistics of individual athletes is not enough to predict them.

Future Work

- XGboost based winner prediction.
- Improving the explainability of the clusters created.
- Possible approaches to explore in order to improve explainability: SHAP, Neurosymbolic AI, LIME
- Explore potential ensemble learning approaches to improve prediction accuracy

References

- "Glossary Basketball-Reference.com," Basketball-Reference.com. https://www.basketball-reference.com/about/glossary.html (accessed Mar. 17, 2025).
- ANFIS GitHub Repository Tim, "https://github.com/twmeggs/anfis" (accessed Mar. 17, 2025).