1) The problem of stacking cubes can obviously generalized asking for stacking "suitable" prisms; where, obviously, suitable means that the base of the prism can tile the plane.

Formula $C_2(1) \leq 4$ still holds true when the base is the isoscele right triangle (figure "tria.gif") and the hexagon (figure "hexa.gif"); while I was not able to prove the formula when the base is the equilateral triangle.

2) Another (very week) generalization is concerned with figure "fake.gif": in the sentence "the boundary of level i+1 is contained within the interior of the boundary of level i" the term "contained" is weakened in the form "contained but a finite number of points".

 $C_3(1) \leq 10$ gives a second solution for $C_2(3) \leq 9$

 $C_3(2) \leq 13$ gives a second solution for $C_2(4) \leq 11$

 $C_4(1) \le 20$ gives a second solution (and $C_3(3) \le 19$ gives a third) for $C_2(6) \le 16$

 $C_3(7) \leq 31$ gives a second solution for $C_2(10) \leq 24$

while suppressing the bottom-floor we have e.g.:

 $C_3(4) \leq 21$ gives a second solution for $C_2(4) \leq 11$

 $C_4(2) \le 24$ gives a second solution for $C_3(4) \le 13$

In some cases the second solution looks nicer than the original one; on the other hand, in my opinion, double and triple solutions can be useful...

³⁾ Some results can be proved in a lot of ways; e.g., with respect to the pictures presented on august 2^{nd} , we can somewhere suppress the topmost floor thus getting: