A voyage into the algebras

Weronika Jakimowicz 330006

Julia Walczuk 332742

2023-2024

1 Knot coloring

Let R be any commutative ring with unity and let M, N be two R-modules with a module homomorphism $\omega: M^3 \to N$.

Now, consider a link diagram D with s arcs and x crossings. To each arc assign a number from 1 to s and to each crossing - from 1 to x.

Definition 1.1 (color checking matrix). Consider modules M^s and N^x . Assign a generator of the *i*-th component of M^s to the arc labeled with *i* and a generator of the *j*-th component of N^x to the crossing labeled *j*.

Let $(0, ..., 0, a_i, 0..., 0)$, $a_i \in M$ for i = 1, 2, 3 be elements taken from components of M^s corresponding to arcs creating a crossing labeled c. Let $p_c: N^x \to N$ be a projection onto component assigned to said crossing.

A module homomorphism, understood as a matrix with entries in R,

$$D\omega: M^s \to N^x$$

such that

$$p_c(D\omega(a_1 + a_2 + a_3)) = \omega(a_1, a_2, a_3)$$

will be called a color checking matrix.

We aim to find an equivalence relation that changes $D\omega$, which in definition 1.1 is dependent on diagram D of a knot.

2 Coloring oriented diagrams

In the previous section we defined coloring of a diagram without an orientation. Such a diagram has only one type of crossing, while in a diagram for which an orientation was chosen, two types of crossings are distinguishable in any knot diagram (see fig. 1).

In the case of a diagram with orientation, we must chose which type of crossing is considered by ϕ . If not explicitly stated otherwise, we will choose ϕ to determine the rules of coloring for crossing of type + as seen in fig. 1.

If u, i, o are labels assigned to arches creating a type + crossing that constitute a coloring, then we might write

$$0 = \phi(u, i, o) = au + bi + co.$$

Figure 1: Two types of crossings in oriented knot diagram.

Taking c to be a unit, we get the following equation for the label of the arch leaving the crossing:

$$o = -c^{-1}au - c^{-1}bi.$$

Those assumption allow us to write a 2×2 matrix A_+ with terms in R such that multiplying an element $(u,i) \in M^2$ by A_+ will return $(o,u) \in M^2$. This means that $A_+ : M^2 \to M^2$ is the operator taking labels of incoming arches as input and returning labels of segments which leave the crossing.

$$A_{+} = \begin{pmatrix} -c^{-1}a & -c^{-1}b \\ 1 & 0 \end{pmatrix}$$

It is convenient to take c = -1.

Allowing the following Reidemeister's move

gives equality

$$A_{-}A_{+} = Id_2,$$

where A_+ is the matrix of operator for + type crossing and - - for the - type crossing. Take $\alpha u + \beta i + \gamma o = 0$ to be the coloring rule for crossings of type -. Once again, for the sake of convenience $\gamma = -1$ and

the matrix A_{-} must be of form

$$A_{-} = \begin{pmatrix} \beta & \alpha \\ 0 & 1 \end{pmatrix},$$

meaning that

$$\begin{cases} b\beta = 1\\ b\alpha - a = 0. \end{cases}$$

Consider another Reidemeister's move

Applying A_{\pm} to each crossing separately yields the following relations

$$\begin{cases} ba = ab \\ a(a+b) = a. \end{cases}$$

We must assume that both b and β are units. In the most general situation, we are considering coloring modules as modules over the ring

$$R = \mathbb{Z}[s, t, t^{-1}]/\{s^2 + st - s\},\$$

with a being send to s and b being send to t. However, it can be beneficial to at first assume yet another relation:

$$a+b=1$$
,

meaning that we are considering coloring as $\mathbb{Z}[t, t^{-1}]$ module.

Coloring a knot with $\mathbb{Z}[t, t^{-1}]$ module allows us to obtain information about coloring over \mathbb{Z} or many other commutative rings by sending t to a unit in the ring in question.

Example 2.1. Consider knot 4_1 with diagram D as seen in fig. 2 and ring $R = \mathbb{Z}[t, t^{-1}]$. Take function $\phi: M^3 \to M$ to be defined as

$$\phi(u, i, o) = (1 - t)u + ti - o$$

The coloring homomorphism f is then defined by the matrix

$$f = \begin{pmatrix} 1 - t & t & -1 & 0 \\ t^{-1} & -1 & 0 & 1 - t^{-1} \\ 0 & 1 - t^{-1} & t^{-1} & -1 \\ -1 & 0 & 1 - t & t \end{pmatrix}$$

Changing the coefficients in R to \mathbb{Q} yields the following Smith's normal form for f:

$$S = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & t^2 - 3t + 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Notice, that $\det S = t^2 - 3t + 1$, which is the Alexander polynomial of 4_1 .

Figure 2: Coloring of knot 4_1 with elements from \mathbb{Z}_5 .

Now, consider a homomorphism $\mathbb{Z}[t, t^{-1}] \to \mathbb{Z}$ defined by $t \mapsto -1$. This yields a new matrix for f, with Smith's normal form:

$$f = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The matrix above hints at existence of a coloring with elements from \mathbb{Z}_5 , one of which is presented in fig. 2.

3 Reducing normal form of a matrix

In \ref{Matter} we defined the coloring module of a diagram D as the kernel of coloring homomorphism. We might also want to extend this homomorphism to a short exact sequence

$$0 \longrightarrow \ker f \longrightarrow M^s \stackrel{f}{\longrightarrow} M^s \longrightarrow \operatorname{coker} f \longrightarrow 0$$

and ask what information can be obtained from studying coker f.

In ???? and example 2.1 nontrivial coloring was admissible only in modules M/\mathfrak{a} , where \mathfrak{a} is the ideal spanned by a portion of terms that appear on the diagonal of Smith's normal form of f. In the same examples, we observe also that coker $f = \mathbb{R}^k \oplus \mathbb{R}/\mathfrak{a}$. For the knot 3_1 it was coker $f = \mathbb{Z} \oplus \mathbb{Z}_3$, while in the case of knot 4_1 coker $f = \mathbb{Z} \oplus \mathbb{Z}_5$.

Proposition 3.1. Let f be a coloring homomorphism of an oriented diagram D. If coker $f = R/\mathfrak{a}_1 \oplus ... \oplus R/\mathfrak{a}_k$ then D can be colored with elements from R/\mathfrak{a}_i for i = 1,...,k.

Proof. To się powinno sprowadzić do rozwiązywania układu równań przy pomocy macierzy. \Box

The coloring homomorphism f of a diagram D carries a lot of information about the knot whose diagram it is. However, f in itself is not a knot invariant. The dimensions of its matrix will change if a new crossing is created, see the following example.

Example 3.1. We take knot 3_1 with additional crossing, $R = \mathbb{Z}[t, t^{-1}]$ and $M = \mathbb{Z}[t, t^{-1}]$ with ϕ as in example 2.1. The coloring homomorphism has matrix

$$\begin{pmatrix} 1-t & t & -1 & 0 \\ t & -1 & 0 & 1-t \\ -1 & 1-t & 0 & t \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

with normal form

$$\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -t^2 + t - 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

which after evaluation at t = -1 yields

$$\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

which differs from matrix obtained in ?? by just one trivial.

Figure 3: Diagram of knot 3_1 with additional crossing.

The nontrivial term on the diagonal in example 3.1 is the same as in ??. The difference between matrices obtained in those two examples are their dimensions.

Definition 3.1. Let A, B be matrices with entries from a PID ring R. We will say that they are equivalent $(A \sim B)$ if and only if their Smith's normal form has the same nonzero and nonunit terms.

Example 3.2. Matrices of coloring homomorphisms over the ring \mathbb{Z} of knot 3_1 presented in ????? and example 3.1 are both equivalent to a 1×1 matrix (3).

Theorem 3.2. Equivalence class of matrices under relation \sim defined in definition 3.1 is a knot invariant.

Example 3.3. First, consider the knot 6_1 with diagram as seen in fig. 4, ring $R = \mathbb{Z}[t, t^{-1}]$ and M = R. We calculate that

Figure 4: Diagram of knot 6_1 .

$$f = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & t & 0 & 0 & 0 \\ 0 & 0 & 0 & t & 0 & 0 \\ 0 & 0 & 0 & 0 & -2t^{-2} + 5t^{-1} - 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

which agrees with the Alexander polynomial of 6_1 . Now, the reduced form of f would be

$$\left(-2t^{-2} + 5t^{-1} - 2\right)$$

 $a\ 1\times 1$ matrix.

There is another knot with Alexander polynomial equal $-2t^{-2} + 5t^{-1} - 2$: 9_{46} . Using diagram in fig. 5 it can be calculated that

Figure 5: Diagram of knot 9_{46} .

where

$$\det f = (2t - t^2)(t^{-2} - 2t^{-1}) = 2t^{-1} - 5 + 2t$$

is also the Alexander polynomial. The reduced form of f is

$$\begin{pmatrix} 2t - t^2 & 0 \\ 0 & t^{-2} - 2t^{-1} \end{pmatrix}$$

which is significantly different than the one for $\mathbf{6}_1$.

TO DO: sprawdzić te węzły wyżej za pomocą pow. Seiferta, czy mają różne moduły Alexandera

References