Отчёт по лабораторной работе №5

Модель хищник-жертва

Ишанова А.И. группа НФИБД-02-19

Содержание

1	Цель работы	4
2	Задание 2.1 Вариант 18	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Вывод	10
6	Список литературы	11

List of Figures

4.1	Код программы	7
4.2	График модели хищник-жертва	8
4.3	параметрический график модели хищник-жертва	8
4.4	Код для стационарного состояния системы	9
4.5	График для стационарного состояния	9

1 Цель работы

Научиться строить модель хищник-жертва.

2 Задание

- 1. Построить график зависимости x от y и графики функций x(t), y(t).
- 2. Найти стационарное состояние системы.

2.1 Вариант 18

$$\begin{cases} \frac{dx}{dt} = -0.37x(t) + 0.038x(t)y(t) \\ \frac{dy}{dt} = 0.36y(t) - 0.037x(t)y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=9, y_0=20$. Найдите стационарное состояние системы.

3 Теоретическое введение

Система «хищник — жертва» — сложная экосистема, для которой реализованы долговременные отношения между видами хищника и жертвы, типичный пример коэволюции. Отношения между хищниками и их жертвами развиваются циклически, являясь иллюстрацией нейтрального равновесия.[1]

Наша модель описывается следующим уравнением:

$$\begin{cases} \frac{dx}{dt} = -ax(t) + bx(t)y(t) \\ \frac{dy}{dt} = cy(t) - dx(t)y(t) \end{cases}$$

где

a - коэффициент естественной смертности хищников

b - коэффициент естественного прироста жертв

c - коэффициент увеличения числа хищников

d - коэффициент смертности жертв

Стационарное состояние системы (положение равновесия, не зависящее от времени решение) будет в точке: $x_0=\frac{b}{d}, y_0=\frac{a}{c}$. Если начальные значения задать в стационарном состоянии $x(0)=x_0,y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0), y(0). Колебания совершаются в противофазе.[2]

4 Выполнение лабораторной работы

1. Пишем код для начальных условий $x_0=9, y_0=20. {
m (fig.\ 4.1)}$

```
model HunterPrey
parameter Real a = 0.37;
parameter Real b = 0.038;
parameter Real c = 0.36;
parameter Real d = 0.037;
//начальные условия
parameter Real x0 = 9;
parameter Real y0 = 20;
parameter Real y0 = 20;
Real x(start=x0);
Real y(start=y0);
equation
der(x)=-a*x+b*x*y;
der(y)=c*y-d*x*y;
end HunterPrey;
```

Figure 4.1: Код программы

2. Компилируем, моделируем и получаем графики. (fig. 4.2 и fig. 4.3)

Figure 4.2: График модели хищник-жертва

Figure 4.3: параметрический график модели хищник-жертва

3. Пишем код для стационарного случая. (fig. 4.4)

```
1 model HunterPrey
 2
   parameter Real a = 0.37;
 3 parameter Real b = 0.038;
   parameter Real c = 0.36;
 5
   parameter Real d = 0.037;
 6
   //начальные условия
   parameter Real x0 = 9;
   parameter Real y0 = 20;
9
   Real x(start=c/d);
10 Real y(start=a/b);
   equation
11
12
   der(x) = -a*x+b*x*y;
13
   der(y) = c*y - d*x*y;
14
   end HunterPrey;
```

Figure 4.4: Код для стационарного состояния системы

4. Компилируем, моделируем и получаем график. (fig. 4.5)

Figure 4.5: График для стационарного состояния

5 Вывод

В ходе выполнения лабораторной работы мы познакомились с моделью хищникжертва, постороили графики для этой модели при заданных начальных условиях и при стационарном состоянии.

6 Список литературы

- 1. Wikipedia: Система «хищник жертва» (https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1 %C2%AB%D1%85%D0%B8%D1%89%D0%BD%D0%B8%D0%BA %E2%80%94_%D0%B6%D0%B5
- 2. Теоретические материалы курса.[2]