Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого» Институт компьютерных наук и технологий Высшая школа программной инженерии

КУРСОВОЙ ПРОЕКТ

МОДЕЛИРОВАНИЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

по дисциплине «Архитектура программных систем»

Выполнил студент гр. 3530904/80102

Андреева Е.Д.

Руководитель старший преподаватель

Гончаров А.В.

«11» декабря 2020г.

Оглавление

Оглавление	2
Введение	3
Постановка задачи	4
Sequence-диаграмма	5
Законы распределения	6
Ограничения и требуемые характеристики	6
Диаграмма классов	7
Модульная структура	8
Описание работы программы	9
Результаты работы	12
Анализ результатов:	13
Вывод	15
Исхолный кол	16

Введение

В данной курсовой работе необходимо создать модель вычислительной системы (ВС) или ее компонентов на некотором уровне детализации, описывающей и имитирующей ее структуру и функциональность.

Каждый реальный объект ВС обладает высокой сложностью, определяемой множеством состояний, внутренних и внешних связей, анализируемых характеристик. Модель дает приближенное описание объекта с целью получения требуемых результатов с определенной точностью и достоверностью. Степень приближения модели к описываемому объекту может быть различной и зависит от требований задачи.

Существуют различные типы моделей BC: аналитические, аналоговые, физические и имитационные. В данной работе будет использоваться имитационная модель BC.

Имитационная модель — программная модель системы, имитирующая ее поведение во времени, когда наблюдение за поведением обеспечивается наблюдением за изменением состояний системы или ее компонент, инициируемом соответствующими множествами входных и выходных сигналов или сообщений, которыми обмениваются компоненты, система и окружение

Одним из подходов к построению имитационной модели является построение ее в виде системы массового обслуживания (СМО)), с характерной для СМО терминологией:

- о источник (И);
- о буфер (БП);
- о прибор (П);
- о диспетчер (Д);
- о заявка.

Постановка задачи

1. ИБ ИЗ1 ПЗ2 Д1031 Д1001 Д2П1 Д2Б1 ОР2 ОД1

Источники:

ИБ — бесконечный источник;

ИЗ1 — пуассоновский закон распределения заявок;

Приборы:

ПЗ2 — равномерный закон распределения времени обслуживания;

Описание дисциплин постановки и выбора:

Буферизация:

Дисциплина отказа:

Дисциплина постановки на обслуживание:

Виды отображения результатов работы программной модели:

Динамическое отражение результатов:

ОД1 — календарь событий, буфер и текущее состояние;

Отражение результатов после сбора статистики:

OP2 — сводная таблица результатов.

Sequence-диаграмма

Законы распределения

Равномерный закон распределения:

$$F(x) = \begin{cases} 0, x < a \\ \frac{x - a}{b - a}, a \le x \le b \Rightarrow x = F(x)(b - a) + a \\ 1, x \ge b \end{cases}$$

В программе:

 $\underline{((float)qrand()/(float)RAND_MAX)*(betta - alpha) + alpha}$

Пуассоновский закон распределения:

$$\tau = -1/\lambda \cdot \operatorname{Ln}(r)$$
,

В программе:

(-1/lambda)*std::log(((float)qrand()/(float)RAND_MAX))

Ограничения и требуемые характеристики

- о Вероятность отказа не более 10%.
- о Загрузка приборов более 90%.

Диаграмма классов

Модульная структура

Работа выполнена в среде Qt Creator 4.12.0 на языке программирования C++, интерфейс с помощью графической библиотеки Qt. Приложение – объектно-ориентированное, содержит следующие классы:

- о Request описание заявки, методы для их получения;
- о Source методы создания заявки и генерации времени заявки;
- о Buffer методы проверки свободного места в буфере, добавления заявки в буфер, выбора заявки из буфера;
- Device методы проверки свободных приборов, загрузки заявки на прибор, удаления заявки из прибора;
- Interpreter запись событий и подсчеты характеристик для пошагового и автоматического отображения;
- o Controller реализует основной цикл работы системы;
- о Configure задает значения основных элементов;
- StepMode пошаговый режим, состояние системы в разные моменты времени;
- AutoMode автоматический режим, состояние системы после симуляции;
- о MainWindow запуск графического интерфейса, главная форма.

Описание работы программы

При запуске программы появляется окно:

Мы находимся на вкладке «Init». Здесь необходимо задать параметры для СМО и нажать кнопку «START» для запуска программы. На вкладках «Auto mode» и «Step mode» будут отображены результаты работы нашей системы в итоговых таблицах и состояниях на каждом шаге соответственно.

Вкладка «Auto mode»:

При нажатии на кнопки «UPDATE» происходит симуляция работы и все аналитические данные появляются в таблицах.

Вкладка «Step mode»:

В данном окне можно переходить к предыдущему или следующему шагу выполнения в системе, чтобы увидеть состояние системы. Для появления результатов так же необходимо нажать «UPDATE».

Результаты работы

Количество реализаций, необходимое для получения нужной точности при заданной доверительной вероятности, можно оценивать по формуле:

$$N = \frac{t_{\alpha}^2 (1 - p)}{p \delta^2}$$

где р — вероятность отказа заявкам в обслуживании, t_{α} =1.643 для α = 0.9, δ = 0.1 — относительная точность.

По результатам работы программы получено, что в большинстве случаев для достижения заданной точности необходимо около 3000 заявок. Однако, в случаях, когда р мало (<0.05) для достижения точности в 10% может потребоваться существенно больше заявок (6000-7000).

Анализ результатов:

Так как целью моделирования является выбор конфигурации системы, требующей наименьшее количество ресурсов и обрабатывающей максимальный поток информации, то начнем с проверки конфигурации с максимальным числом источников, минимальным числом приборов и максимальным размером буфера.

Sources	Devices	Buffer	Alpha	Betta	Lambda	Workload	Pr. Failure
15	1	20	1.1	1.2	0.5	100%	99%
12	2	15	1.1	1.2	0.5	99%	75%
9	3	10	1.1	1.2	0.5	98%	36%

Мы получили необходимые показатели загруженности приборов, но величина вероятности отказа еще слишком высока, несмотря на уменьшение числа источников и увеличения приборов. Пусть прибор с этими показателями производительности будет второго класса. Попробуем добавить еще приборов.

Медленные приборы второго класса:

Sources	Devices	Buffer	Alpha	Betta	Lambda	Workload	Pr. Failure
9	3	10	1.1	1.2	0.5	98%	36%
9	4	10	1.1	1.2	0.5	98%	23%
9	5	10	1.1	1.2	0.5	97%	8%

Так как загруженность уменьшается, то можно попробовать:

- о Увеличить количество источников;
- о Заменить эти приборы на меньшее количество приборов с большей производительностью.

Увеличим производительность приборов, быстрые приборы первого класса:

Sources	Devices	Buffer	Alpha	Betta	Lambda	Workload	Pr. Failure
9	3	10	1.0	1.0	0.5	100%	35%
9	4	10	1.0	1.0	0.5	100%	12%
9	5	10	1.0	1.0	0.5	96%	2%

Доменом системы выбрана часть парка аттракционов. Прибор — тележка с сахарной ватой. Заявки — люди, которые хотят получить сахарную вату. Вместо ожидания в очереди им предлагается кататься на колесе обозрения. Таким образом буфер — колесо обозрения. Источник — калитка в заборе, который ограждает эту территорию.

Основываясь на полученных данных, можно сделать вывод, что оптимальное соотношение количества калиток, к количеству кабинок на колесе, к числу тележек с сахарной ватой составляет 9:10:5.

Рассчитаем примерную стоимость приборов.

Прибор	Производительность	Стоимость
Второй класс	Медленные	1000 руб
Первый класс	Быстрые	2000 руб

Как можно увидеть из таблиц мы получаем итоговую стоимость всех приборов 5000 руб., а при использовании приборов с более высокой производительностью получаем итоговую стоимость 10000 руб.

Увеличение скорости работы тележек приведёт к уменьшению вероятности отказов, однако при этом уменьшится загруженность. Также более эффективные тележки стоят В два раза дороже И увеличение производительности почти не сказывается на загруженности и вероятности отказа. Если увеличить число калиток, то возрастет загруженность на прибор и получится большая вероятность отказа, от которой мы старались уйти. Следовательно исходное соотношение 9:10:5 и использование использовать приборы второго класса более выгодно.

Вывод

В ходе курсовой работы была написана система массового обслуживания на языке программирования C++ с использованием графической библиотеки Qt. С помощью данной программы была проанализирована реальная система и подобрана наиболее выгодная конфигурация данной системы.

Исходный код

https://github.com/eliizaveta/SMO