

Beschreibung

Hitzeschildanordnung für eine ein Heißgas führende Komponente, insbesondere für eine Brennkammer einer Gasturbine

5

Die Erfindung betrifft eine Hitzeschildanordnung für eine ein Heißgas führende Komponente, die eine Mehrzahl von unter Be- lassung eines Spalts nebeneinander an einer Tragstruktur an- geordnete Hitzeschildelemente umfasst, wobei ein Hitzeschild- 10 element auf der Tragstruktur anbringbar ist, so dass ein In- nenraum gebildet ist, der bereichsweise von einer zu kühlen- den Heißgaswand begrenzt ist, mit einem Einlasskanal zur Ein- strömung eines Kühlmittels in dem Innenraum. Die Erfindung betrifft weiterhin eine Brennkammer mit einer inneren Brenn- 15 kammerauskleidung, die eine derartige Hitzeschildanordnung aufweist sowie eine Gasturbine mit einer derartigen Brenn- kammer.

Aufgrund der in Heißgaskanälen oder anderen Heißgasräumen 20 herrschenden hohen Temperaturen ist es erforderlich, die In- nenwandung eines Heißgaskanales bestmöglichst temperatur- resistent zu gestalten. Hierzu bieten sich zum einen hoch- warmfeste Werkstoffe, wie z. B. Keramiken an. Der Nachteil keramischer Werkstoffe liegt sowohl in ihrer starken Sprö- 25 digkeit als auch in ihrem ungünstigen Wärme- und Temperatur- leitverhalten. Als Alternative zu keramischen Werkstoffen für Hitzeschilder bieten sich hochwarmfeste metallische Legierun- gen auf Eisen-, Chrom-, Nickel- oder Kobaltbasis an. Da die Einsatztemperatur von hochwarmfesten Metalllegierungen aber 30 deutlich unter der maximalen Einsatztemperatur von kerami- schen Werkstoffen liegt, ist es erforderlich, metallische Hitzeschilder in Heißgaskanälen zu kühlen.

In der EP 0 224 817 B1 ist eine Hitzeschildanordnung, insbe- 35 sondere für Strukturteile von Gasturbinenanlagen, beschrie- ben. Die Hitzeschildanordnung dient dem Schutz einer Trag- struktur gegenüber einem heißen Fluid, insbesondere zum

Schutz einer Heißgaskanalwand bei Gasturbinenanlagen. Die Hitzeschildanordnung weist eine Innenauskleidung aus hitzebeständigem Material auf, welche flächendeckend zusammenge-
setzt ist aus an der Tragstruktur verankerten Hitzeschild-
elementen. Diese Hitzeschildelemente sind unter Belassung von
Spalten zur Durchströmung von Kühlfluid nebeneinander ange-
ordnet und wärmebeweglich. Jedes dieser Hitzeschildelemente
weist nach Art eines Pilzes einen Hutteil und einen Schaft-
teil auf. Der Hutteil ist ein ebener oder räumlicher, poly-
gonaler Plattenkörper mit geraden oder gekrümmten Berandungs-
linien. Der Schaftteil verbindet den Zentralbereich des Plat-
tenkörpers mit der Tragstruktur. Der Hutteil hat vorzugsweise
eine Dreiecksform, wodurch durch identische Hutteile eine In-
nenauskleidung nahezu beliebiger Geometrie herstellbar ist.
Die Hutteile sowie gegebenenfalls sonstige Teile der Hitze-
schildelemente bestehen aus einem hochwarmfesten Werkstoff,
insbesondere aus einem Stahl. Die Tragstruktur weist Bohrun-
gen auf durch welche ein Kühlfluid, insbesondere Luft, in ei-
nen Zwischenraum zwischen Hutteil und Tragstruktur einströmen
kann und von dort durch die Spalte zur Durchströmung des
Kühlfluids in einen von den Hitzeschildelementen umgebenen
Raumbereich, beispielsweise einer Brennkammer einer Gas-
turbinenanlage, einströmen kann. Diese Kühlfluidströmung ver-
mindert das Eindringen von heißem Gas in den Zwischenraum.

In der US-5,216,886 ist eine metallische Auskleidung für eine Verbrennungskammer beschrieben. Diese Auskleidung besteht aus einer Vielzahl nebeneinander angeordneter würfelförmiger Hohlbauteile (Zellen), die an einer gemeinsamen Metallplatte angeschweißt oder angelötet sind. Die gemeinsame Metallplatte weist jeweils jeder würfelförmigen Zelle zugeordnet genau eine Öffnung zur Einströmung von Kühlfluid auf. Die würfelför-
migen Zellen sind jeweils unter Belassung eines Spaltes ne-
beneinander angeordnet. Sie enthalten an jeder Seitenwand in
der Nähe der gemeinsamen Metallplatte eine jeweilige Öffnung
zum Ausströmen von Kühlfluid. Das Kühlfluid gelangt mithin in
die Spalte zwischen benachbarte würfelförmige Zellen, strömt

durch diese Spalte hindurch und bildet an einer einem Heißgas aussetzbaren, parallel der metallischen Platte gerichteten Oberfläche der Zellen, einen Kühlfilm aus. Bei dem in der US-5,216,886 beschriebenen Aufbau einer Wandstruktur wird ein 5 offenes Kühlungssystem definiert, bei dem Kühlluft über eine Wandstruktur durch die Zellen hindurch in das Innere der Brennkammer hineingelangt. Die Kühlluft ist mithin für weitere Kühlzwecke verloren.

10 In der DE 35 42 532 A1 ist eine Wand, insbesondere für Gasturbinenanlagen, beschrieben, die Kühlfluidkanäle aufweist. Die Wand ist vorzugsweise bei Gasturbinenanlagen zwischen einem Heißraum und einem Kühlfluidraum angeordnet. Sie ist aus einzelnen Wandelementen zusammengefügt, wobei jedes der Wand- 15 elemente ein aus hochwarmfesten Material gefertigter Plattenkörper ist. Jeder Plattenkörper weist über seine Grundfläche verteilte, zueinander parallele Kühlkanäle auf, die an einem Ende mit einem Kühlfluidraum und an dem anderen Ende mit dem Heißraum kommunizieren. Das in den Heißraum einströmende, 20 durch die Kühlfluidkanäle geführte Kühlfluid bildet auf der dem Heißraum zugewandten Oberfläche des Wandelements und/oder benachbarter Wandelemente einen Kühlfluidfilm.

In der GB-A-849255 ist ein Kühlungssystem zur Kühlung einer 25 Brennkammerwand gezeigt. Die Brennkammerwand ist durch Wandelemente gebildet. Jedes Wandelement weist eine Heißgaswand mit einer heißgas-beaufschlagbaren Außenseite und mit einer Innenseite auf. Senkrecht zur Innenseite sind Düsen angeordnet. Aus diesen Düsen tritt Kühlfluid in Form eines konzentrierten Stroms aus und trifft auf die Innenseite. Dadurch 30 wird die Heißgaswand gekühlt. Das Kühlfluid wird in einer Sammelkammer gesammelt und aus der Sammelkammer abgeführt.

Zusammenfassend liegt all diesen Hitzeschildanordnungen ins- 35 besondere für Gasturbinen-Brennkammern das Prinzip zugrunde, dass Verdichterluft als Kühlmedium für die Brennkammer und deren Auskleidung, sowie als Sperrluft benutzt wird. Die

- Kühl- und Sperrluft tritt in die Brennkammer ein, ohne an der Verbrennung teilgenommen zu haben. Diese kalte Luft vermischt sich mit dem Heißgas. Dadurch sinkt die Temperatur am Brennkamераausgang. Daher sinkt die Leistung der Gasturbine und
- 5 der Wirkungsgrad des thermodynamischen Prozesses. Die Kompen-sation kann teilweise dadurch erfolgen, dass eine höhere Flammtemperatur eingestellt wird. Hierdurch jedoch ergeben sich sodann Werkstoffprobleme und es müssen höhere Emissions-werte in Kauf genommen werden. Ebenfalls nachteilig an den
- 10 angegebenen Anordnungen ist es, dass sich durch den Eintritt eines nicht unerheblichen Kühlfluidmassenstroms in die Brennkammer bei der dem Brenner zugeführten Luft Druckverluste er-gaben.
- 15 Um jegliches Ausblasen von Kühlmittel in die Brennkammer zu verhindern, sind aufwendige Systeme mit Kühlfluidrückführung bekannt, bei denen das Kühlfluid in einem geschlossenen Kreislauf mit einem Zufuhrsystem und einem Rückfuhrsystem ge-führt wird. Solche geschlossenen Kühlungskonzepte mit Kühl-
- 20 fluidrückführung sind beispielsweise in der WO 98/13645 A1, der EP 0 928 396 B1 sowie der EP 1 005 620 B1 beschrieben.

Aufgabe der Erfindung ist es, eine Hitzeschildanordnung, die mit einem Kühlmittel kühlbar ist, anzugeben, so dass bei ei-
25 ner Kühlung der Hitzeschildanordnung allenfalls ein geringer Verlust an Kühlfluid auftritt. Die Hitzeschildanordnung soll in einer Brennkammer einer Gasturbine einsetzbar sein.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Hitze-schildanordnung für eine ein Heißgas führende Komponente, die eine Mehrzahl von unter Belassung eines Spalts nebeneinander an einer Tragstruktur angeordneten Hitzeschildelemente um-fasst, wobei ein Hitzeschildelement auf der Tragstruktur anbringbar ist, so dass ein Innenraum gebildet ist, der be-reichsweise von einer zu kühlenden Heißgaswand begrenzt ist,
35 mit einem Einlasskanal zur Einströmung eines Kühlmittels in den Innenraum, wobei zum kontrollierten Austritt von Kühlmit-

tel aus dem Innenraum ein Kühlmittelauslasskanal vorgesehen ist, der von dem Innenraum in den Spalt einmündet.

Die Erfindung geht von der Überlegung aus, dass aufgrund der sehr hohen Flammtemperaturen in Heißgaskanälen oder anderen Heißgasräumen, beispielsweise in Brennkammern von stationären Gasturbinen, die Heißgas führenden Komponenten aktiv gekühlt werden müssen. Hierzu können verschiedenste Kühlungstechnologien - auch in Kombination - eingesetzt werden. Die am häufigsten angewandten Kühlungskonzepte sind dabei die Konvektionskühlung, die Konvektionskühlung mit Turbulenz erhöhenden Maßnahmen sowie die Prallkühlung. Aufgrund der sehr intensiven Bemühungen insbesondere die Schadstoffemissionen von offen gekühlten Systemen, beispielsweise von offen gekühlten Brennkammern von Gasturbinen, zu reduzieren, ist die Einsparung von Kühlluft ein besonders wichtiger Faktor zur Erreichung dieser Ziele - hier eine verstärkte NO_x-Reduktion. Das Ziel für offen gekühlte Kühlungskonzepte ist daher die Minimierung des erforderlichen Kühlluftmassenstroms. Bei den bereits weiter oben diskutierten herkömmlichen, offenen Kühlungskonzepten entweicht die Kühlluft nach der erfolgten Külaufgabe letztendlich durch den Spalt benachbarter Hitzeschildelemente, um anschließend in den Brennraum zu gelangen. Die Ausströmung der Kühlluft schützt das System vor Eindringen von Heißgas in die Spalte. Durch das unkontrollierte Ausblasen der Kühlluft wird jedoch mehr Kühlluft zum Sperren der Spalte eingesetzt, als für die Külaufgabe erforderlich ist. Diese Überdosierung führt zu einem überhöhten Kühlluftverbrauch mit nachteiligen Folgen für den gesamten Anlagenwirkungsgrad und die Schadstoffemissionen des das Heißgas erzeugende Verbrennungssystems.

Ausgehend von dieser Erkenntnis wird nunmehr mit der Hitzeschildanordnung der Erfindung erstmals ein kontrollierter und gezielter Austritt des Kühlmittels nach Verrichtung der Külaufgabe an der zu kühlenden Heißgaswand für ein offenes Kühl- system vorgeschlagen. Die Hitzeschildanordnung ist dabei be-

sonders einfach realisierbar und gegenüber den geschlossenen Kühlungskonzepten mit Kühlmittelrückführung konstruktiv mit erheblich geringerem Fertigungsaufwand verbunden. Durch den kontrollierten Kühlmittelaustritt in den Spalt kann gegenüber 5 den herkömmlichen Konzepten Kühlmittel, z. B. Kühlluft, eingespart werden sowie zugleich eine deutliche Reduzierung der Schadstoffemission bewirkt werden, insbesondere der NO_x-Emission. Dies wird dadurch erzielt, dass zum kontrollierten Aus-10 tritt von Kühlmittel aus dem Innenraum ein Kühlmittelauslass-kanal vorgesehen ist, der von dem Innenraum in den Spalt ein-mündet.

Vorteilhafterweise wird hierdurch in dem Spalt durch die gezielte und dosierte Beaufschlagung des Spalts mit Kühlmittel 15 eine besonders hohe Kühleffizienz und Sperrwirkung des Kühlmittels gegenüber einem Heißgasangriff in den Spalt auf die Tragstruktur erreicht. Der kontrollierte Austritt von Kühlmittel aus dem Innenraum kann dabei in einfacher Weise durch entsprechende Dimensionierung des Kühlmittelauslasskanals, 20 beispielsweise hinsichtlich des Kanalquerschnitts und der Kanallänge, vorgenommen werden.

In bevorzugter Ausgestaltung weist das Hitzeschildelement eine Seitenwand auf, die gegenüber der Heißgaswand in Richtung 25 der Tragstruktur geneigt ist. Hierdurch ist das Hitzeschildelement in seiner Grundgeometrie als ein einschaliger Hohlkörper ausgebildet, der an der Tragstruktur anbringbar ist, wobei der Innenraum gebildet ist. Der Innenraum ist dabei in genau einer Richtung von der Tragstruktur und in den anderen 30 Raumrichtungen durch das Hitzeschildelement selbst begrenzt bzw. festgelegt.

In besonders bevorzugter Ausgestaltung durchdringt der Kühlmittelauslasskanal die Seitenwand. Der Kühlmittelauslasskanal 35 kann dabei einfach als Bohrung durch die Seitenwand ausgeführt sein, wobei der Innenraum mit dem durch den Spalt gebildeten Spaltraum verbunden ist. Somit kann Kühlmittel auf-

grund der Druckdifferenz zwischen dem Innenraum und dem durch den Spalt definierten Spaltraum in kontrollierter Weise aus dem Innenraum durch den Kühlmittelauslaufkanal austreten.

- 5 Vorzugsweise ist zur Vermeidung von residualen Kühlmittel-leckagen aus dem Innenraum ein Dichtelement zwischen der Seitenwand und der Tragstruktur angebracht. Durch die Neigung der Seitenwand in Richtung der Tragstruktur kann bei einer lösbarer Befestigung des Hitzeschildelements an der Trag-
10 struktur aus thermomechanischen Gründen ein Spalt vorgesehen sein, der zu unerwünschten Kühlmittelleckagen führen kann. Daher ist es besonders vorteilhaft, jegliche Spalte, die zu einem unkontrollierten Ausblasen von Kühlmittel aus dem Innenraum führen können, durch geeignete Dichtungsmaßnahmen ab-zudichten. Hierdurch wird eine dichte Verbindung zwischen dem
15 Hitzeschildelement und der Tragstruktur bereitgestellt ist. Das Dichtelement zwischen der Seitenwand und der Tragstruktur ist dabei eine besonders einfache aber wirksame Maßnahme, um den Kühlmittelverbrauch weiter zu reduzieren. Überdies kann
20 das Dichtelement je nach Ausgestaltung zusätzlich eine Dämp-fungsfunktion übernehmen, so dass die Hitzeschildelemente der Hitzeschildanordnung mechanisch gedämpft auf der Tragstruktur angebracht sind.
- 25 Bevorzugt ist dem Innenraum eines Hitzeschildelements eine Prallkühleinrichtung zugeordnet, so dass die Heißgaswand mit-tels Prallkühlung kühlbar ist. Die Prallkühlung ist dabei ei-ne besonders wirkungsvolle Methode der Kühlung der Hitze-schildanordnung, wobei das Kühlmittel in einer Vielzahl von
30 diskreten Kühlmittelstrahlen senkrecht zur Heißgaswand auf die Heißgaswand aufprallt und die Heißgaswand entsprechend vom Innenraum her effizient kühlt.
- Vorzugsweise ist dabei die Prallkühleinrichtung durch eine
35 Vielzahl von Einlasskanälen für Kühlmittel gebildet, die in die Tragstruktur eingebracht sind. Durch eine entsprechende Vielzahl von Einlasskanälen, die in einen Innenraum eines

Hitzeschildelements münden, wird bereits auf einfacher Weise eine Prallkühleinrichtung realisiert. Die Tragstruktur hat neben der Funktion die Hitzeschildanordnung zu tragen zugleich eine Kühlmittelverteilungsfunktion durch die Vielzahl von Einlasskanälen für das Kühlmittel, die in die Tragstruktur eingebracht sind. Die Einlasskanäle können dabei als Bohrungen in der Wand der Tragstruktur ausgeführt sein.

In bevorzugter Ausgestaltung besteht das Hitzeschildelement aus einem Metall oder aus einer Metalllegierung. Hierzu bieten sich insbesondere hochwarmfeste metallische Legierungen auf Eisen-, Chrom-, Nickel-, oder Kobaltsbasis an. Da sich Metalle oder Metalllegierungen gut für einen Gießprozess eignen, ist das Hitzeschildelement vorteilhafterweise als ein Gussteil ausgestaltet.

Die Hitzeschildanordnung ist in besonders bevorzugter Ausgestaltung geeignet für den Einsatz bei einer Brennkammerauskleidung einer Brennkammer. Eine derartige mit einer Hitzeschildanordnung versehene Brennkammer eignet sich bevorzugt als Brennkammer einer Gasturbine, insbesondere einer statischen Gasturbine.

Die Vorteile einer solchen Gasturbine und einer solchen Brennkammer ergeben sich entsprechend den obigen Ausführungen zur Hitzeschildanordnung.

Die Erfindung wird nachfolgend beispielhaft anhand der Zeichnungen näher erläutert.

Es zeigen hierbei schematisch und teilweise stark vereinfacht:

Figur 1 einen Halbschnitt durch eine Gasturbine,

Figur 2 eine Schnittansicht einer Hitzeschildanordnung gemäß der Erfindung,

Figur 3 in einer Detailansicht die Einzelheit III der in Figur 2 gezeigten Hitzeschildanordnung, und

5 Figur 4 eine alternative Ausgestaltung der in Figur 3 gezeigten Hitzeschildanordnung.

Gleiche Bezugszeichen haben in den einzelnen Figuren die gleiche Bedeutung.

10 Die Gasturbine 1 gemäß Figur 1 weist einen Verdichter 2 für die Verbrennungsluft, eine Brennkammer 4 sowie eine Turbine 6 zum Antrieb eines Verdichters 2 und eines nicht näher dargestellten Generators oder eine Arbeitsmaschine auf. Dazu sind
15 die Turbine 6 und der Verdichter 2 auf einer gemeinsamen, auch als Turbinenläufer bezeichneten Turbinenwelle 8 angeordnet, mit der auch der Generator bzw. die Arbeitsmaschine verbunden ist, und die um ihre Mittelachse 9 drehbar gelagert ist. Die in der Art einer Ringbrennkammer ausgeführte Brennkammer 4 ist mit einer Anzahl von Brennern 10 zur Verbrennung
20 eines flüssigen oder gasförmigen Brennstoffs bestückt.

Die Turbine 6 weist eine Anzahl von mit der Turbinenwelle 8 verbundenen, rotierbaren Laufschaufeln 12 auf. Die Laufschaufeln 12 sind kranzförmig an der Turbinenwelle 8 angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst die Turbine 6 eine Anzahl von feststehenden Leitschaufeln 14, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an einem Innengehäuse 16 der Turbine 6 befestigt sind. Die Laufschaufeln 12 dienen dabei zum Antrieb der Turbinenwelle durch Impulsübertrag vom die Turbine 6 durchströmenden heißen Medium, dem Arbeitsmedium oder dem Heißgas M. Die Leitschaufeln 14 dienen hingegen zur Strömungsführung des Arbeitsmediums M zwischen jeweils zwei in
30 Strömungsrichtung des Arbeitsmediums M gesehen aufeinanderfolgenden Laufschaufelreihen oder Laufschaufelkränzen. Ein aufeinander folgendes Paar aus einem Kranz von Leitschaufeln
35

14 oder einer Leitschaufel 3 und aus einem Kranz von Laufschaufeln 12 oder einer Laufschaufelreihe wird dabei auch als Turbinenstufe bezeichnet.

5 Jede Leitschaufel 14 weist eine auch als Schaufelfuß bezeichnete Plattform 18 auf, die zur Fixierung der jeweiligen Leitschaufel 14 am Innengehäuse 16 der Turbine 6 als Wandelement angeordnet ist. Die Plattform 18 ist dabei ein thermisch vergleichsweise stark belastetes Bauteil, das die äußere Begrenzung eines Heißgaskanals für das die Turbine 6 durchströmende Arbeitsmedium M bildet. Jede Laufschaufel 12 ist in analoger Weise über eine auch als Schaufelfuß bezeichnete Plattform 20 an der Turbinenwelle 8 befestigt.

15 Zwischen den beabstandet voneinander angeordneten Plattformen 18 der Leitschaufeln 14 zweier benachbarter Leitschaufelreihen ist jeweils ein Führungsring 21 am Innengehäuse 16 der Turbine 6 angeordnet. Die äußere Oberfläche jedes Führungsringes 21 ist dabei ebenfalls dem heißen, die Turbine 6 durchströmenden Arbeitsmedium M ausgesetzt und in radialer Richtung vom äußeren Ende 22 der ihm gegenüberliegenden Laufschaufel 12 durch einen Spalt beabstandet. Die zwischen benachbarten Leitschaufelreihen angeordneten Führungsringe 21 dienen dabei insbesondere als Abdeckelemente, die die Innenwand 16 oder andere Gehäuse-Einbauteile vor einer thermischen Überbeanspruchung durch das die Turbine 6 durchströmende heiße Arbeitsmedium M, dem Heißgas, schützt.

30 Die Brennkammer 4 ist von einem Brennkammergehäuse 29 begrenzt, wobei brennkammerseitig eine Brennkammerwand 24 gebildet ist. Im Ausführungsbeispiel ist die Brennkammer 4 als eine so genannte Ringbrennkammer ausgestaltet, bei deren Vielzahl von in Umfangsrichtung um die Turbinenwelle 8 herum angeordneten Brennern 10 in einem gemeinsamen Brennkammerraum 35 münden. Dazu ist die Brennkammer 4 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 8 herum positioniert ist.

Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1200 °C bis 1500 °C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebspa-
5 rametern eine vergleichsweise lange Betriebsdauer zu ermög-
lichen, ist die Brennkammerwand 24 auf ihrer dem Arbeitsmedi-
um M zugewandten Seite mit einer Hitzeschildanordnung 26 ver-
sehen, die eine Brennkammerauskleidung bildet. Aufgrund der
hohen Temperaturen im Inneren der Brennkammer 4 ist zudem für
10 die Hitzeschildanordnung 26 ein Kühlungssystem vorgesehen. Das
Kühlungssystem basiert dabei auf dem Prinzip der Prallkühlung,
bei dem Kühlluft als Kühlmittel K unter ausreichend hohem
Druck an einer Vielzahl von Stellen an das kühlende Bauteil
senkrecht seiner Bauteilloberfläche unter Druck geblasen wird.
15 Alternativ kann das Kühlungssystem auch auf dem Prinzip einer
konvektiven Kühlung basieren oder sich dieses Kühlungsprinzip
zusätzlich neben der Prallkühlung zunutze machen.

Das Kühlungssystem ist bei einem einfachen Aufbau für eine zuver-
20 lässige, flächendeckende Beaufschlagung der Hitzeschildanord-
nung mit Kühlmittel K und zudem zu einem besonders gerin-
gen Kühlmittelverbrauch ausgelegt.

Zur näheren Illustration und zur Erläuterung des Kühlungs-
25 konzepts der Erfindung zeigt Figur 2 eine Hitzeschildanord-
nung 26, wie sie für den Einsatz als hitzebeständige Ausklei-
dung einer Brennkammer 4 einer Gasturbine 1 besonders geeig-
net ist. Die Hitzeschildanordnung 26 umfasst Hitzeschildele-
mente 26A, 26B, die unter Belassung eines Spalts 45 nebenein-
ander an einer Tragstruktur 31 angeordnet sind. Die Hitze-
schildelemente 26A, 26B weisen eine zu kühlende Heißgaswand
39 auf, die eine dem Heißgas M zugewandte und im Betrieb von
dem Heißgas M beaufschlagte Heißseite 35 sowie eine der Heiß-
seite 35 gegenüberliegende Kaltseite 33 aufweist.

35 Zur Kühlung werden die Hitzeschildelemente 26A, 26B von ihrer
Kaltseite 33 her durch ein Kühlmittel K, beispielsweise Kühl-

luft, gekühlt, die dem zwischen den Hitzeschildelementen 26A, 26B und der Tragstruktur 31 gebildeten Innenraum 37 durch geeignete Einlasskanäle 41, 41A, 41B, 41C zugestellt wird und in eine Richtung senkrecht zur Kaltseite 33 eines jeweiligen Hitzeschildelements 26A, 26B geleitet wird. Hierbei wird das Prinzip der offenen Kühlung verwendet. Nach Abschluss der Kühllaufgabe an den Hitzeschildelementen 26A, 26B wird die zumindest teilweise erwärme Luft dem Heißgas M zugemischt. Für einen kontrollierten Austritt und eine präzise Dosierung von Kühlmittel K aus dem Innenraum 37 ist ein Kühlmittelauslasskanal 43 vorgesehen, der von dem Innenraum 37 in den Spalt 45 einmündet. Auf diese Weise ist dem Spalt 45 ein genau vorbestimmter Massenstrom an Kühlmittel K zustellbar. Die Vielzahl von Einlasskanälen 41, 41A, 41B, 41C, die jeweils einem Innenraum 37 eines jeweiligen Hitzeschildelements 26A, 26B zugeordnet sind, bilden eine Prallkühleinrichtung 53, so dass die Heißgaswand 39 besonders effektiv mittels Prallkühlung kühlbar ist. Die Einlasskanäle 41, 41A, 41B, 41C für das Kühlmittel K sind hierbei durch entsprechende Bohrungen in die Wand 47 der Tragstruktur eingebbracht. Die Einlasskanäle 41, 41A, 41B, 41C münden dabei so in den Innenraum 37, dass eine senkrechte Beaufschlagung der Heißgaswand 39 erreicht ist. Nach der Prallkühlung der Heißgaswand 39 strömt das Kühlmittel K aus dem Innenraum 37 in kontrollierter Weise durch den entsprechend dimensionierten Kühlmittelauslasskanal 43 in den Spalt 45, wo eine Sperrwirkung gegenüber dem Heißgas M erzielt wird, die die kritische Komponenten, wie beispielweise die Tragstruktur 31, schützt.

Figur 3 zeigt in einer vergrößerten Darstellung die Einzelheit III der in Figur 2 dargestellten Hitzeschildanordnung. Das Hitzeschildelement 26A weist eine Seitenwand 49 auf, die gegenüber der Heißgaswand 39 in Richtung der Tragstruktur 31 geneigt ist. Das zum Hitzeschildelement 26A benachbart angeordnete Hitzeschildelement 26B ist in gleicher Weise mit einer Seitenwand 49 ausgestaltet. Der Kühlmittelauslasskanal 43 ist als Bohrung durch die Seitenwand 43 des Hitzeschildele-

ments 26A ausgeführt, die die Seitenwand 43 unter einem schrägen, leicht in Richtung der Heißseite 35 ansteigenden Winkel in den Spalt 45 einmündet. Durch die schräge Einmündung wird erreicht, dass das Kühlmittel K nach Verrichtung 5 einer Sperrwirkung im Spalt 45 den Spalt 45 möglichst unter Ausbildung eines Kühlfilms aus Kühlmittel K entlang der Heißseite 35 des zum Hitzeschildelement 26A benachbarten Hitzeschildelement 26B verlässt. Durch diese zusätzliche Filmkühlwirkung, die mit der gezielten Zufuhr des Kühlmittels K in 10 den Spalt 45 erreicht ist, ist vorteilhafterweise eine Mehrfachnutzung des Kühlmittels K für unterschiedliche Kühlzwecke in der Hitzeschildanordnung 26 gegeben.

Für eine wärmedehnungstolerante Befestigung der Hitzeschildelemente 26A, 26B liegen die Seitenwände 49 nicht direkt auf der Tragstruktur 31 auf, sondern sind über ein jeweiliges Dichtelement 51 mit der Tragstruktur 31 verbunden. Die Dichtelemente 51 erfüllen dabei sowohl eine Dichtfunktion für das Kühlmittel K als auch eine mechanische Dämpfungsfunktion für 20 die Hitzeschildanordnung 26. Durch das Dichtelement 51 wird verhindert, dass Kühlmittel K in unkontrollierter Weise aus dem Innenraum 37 in den Spalt 45 gelangen und ausgeblasen in Richtung der Heißseite 35 werden kann. Vielmehr bewirkt das Dichtelement 51 eine zusätzliche Verringerung des Bedarfs an 25 Kühlmittel K zur Kühlung der Hitzeschildanordnung 26. Durch die Kombination des Dichtelements 51 mit dem Kühlmittelauslasskanal 43 wird eine besonders günstige Kühlmittelbilanz erzielt. Weiterhin wird eine Längsunterströmung entlang der dem Innenraum 37 zugewandten Wand 47 der Tragstruktur 31 30 durch die jeweils am Innenraum 37 zugeordneten Dichtelemente 51 erreicht. Die dichte Verbindung zwischen dem Hitzeschildelement 26A, 26B und der Tragstruktur 31 über die Dichtelemente 51 ist eine besonders einfache und wirksame Maßnahme, den Kühlmittelverbrauch weiter zu reduzieren.

35

Es ist auch möglich, wenn auch fertigungstechnisch aufwendiger, - wie in Figur 4 dargestellt -, dass sich der Kühlmit-

14

telauslasskanal 43 durch die Wand 47 der Tragstruktur 31 er-
streckt. Auch mit dieser Ausführungsform ist eine gezielte
Zustellung des Kühlmittels K in den Spalt 45 nach Verrichtung
der Kühlaufgabe an einen Hitzeschildelement 26A möglich. Der
5 Spalt 45 und die den Spalt 45 in der Nähe der Mündung des
Kühlmittelauslasskanals 43 begrenzenden Dichtelemente 51 wer-
den hierdurch gekühlt. Insbesondere werden die den Spalt 45
begrenzenden Seitenwände 49 zusätzlich konvektiv gekühlt.

10

Patentansprüche

1. Hitzeschildanordnung (26) für eine ein Heißgas (M) führende Komponente, die eine Mehrzahl von unter Belassung eines Spalts (45) nebeneinander an einer Tragstruktur (31) angeordneten Hitzeschildelemente (26A, 26B) umfasst, wobei ein Hitzeschildelement (26A, 26B) auf der Tragstruktur (31) anbringbar ist, so dass ein Innenraum (37) gebildet ist, der bereichsweise von einer zu kühlenden Heißgaswand (39) begrenzt ist, mit einem Einlaßkanal (41) zur Einströmung eines Kühlmittels (K) in den Innenraum (37), dadurch gekennzeichnet, dass zum kontrollierten Austritt von Kühlmittel (K) aus dem Innenraum (37) ein Kühlmittelauslasskanal (43) vorgesehen ist, der von dem Innenraum (37) in den Spalt (45) einmündet.
2. Hitzeschildanordnung (26) nach Anspruch 1, dadurch gekennzeichnet, dass das Hitzeschildelement (26A, 26B) eine Seitenwand (49) aufweist, die gegenüber der Heißgaswand (39) in Richtung der Tragstruktur (31) geneigt ist.
3. Hitzeschildanordnung (26) nach Anspruch 2, dadurch gekennzeichnet, dass der Kühlmittelauslasskanal (43) die Seitenwand (49) durchdringt.
4. Hitzeschildanordnung (26) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass zur Vermeidung von residualen Kühlmittelleckagen aus dem Innenraum (37) ein Dichtelement (51) zwischen der Seitenwand (49) und der Tragstruktur (31) angebracht ist.
5. Hitzeschildanordnung (26) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Innenraum (37) eines Hitzeschildelements (26A, 26B) eine Prall-

16

kühleinrichtung (53) zugeordnet ist, so dass die Heisgaswand (39) mittels Prallkühlung kühlbar ist.

6. Hitzeschildanordnung (26) nach Anspruch 5,

5 dadurch gekennzeichnet, dass die Prallkühleinrichtung (53) durch eine Vielzahl von Einlasskanälen (41, 41A, 41B, 41C) für Kühlmittel (K) gebildet ist, die in die Tragstruktur (31) eingebracht sind.

10 7. Hitzeschildanordnung (26) nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass das Hitzeschildelement (26A, 26B) aus einem Metall oder einer Metalllegierung besteht.

15

8. Brennkammer (4) mit einer Hitzeschildanordnung (26) nach einem der vorhergehenden Ansprüche.

9. Gasturbine (1) mit einer Brennkammer (4) nach Anspruch 8.

20

25

FIG 1

FIG 2

FIG 3

FIG 4

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/008116

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 F23R3/00 F23M5/02 F23M5/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 F23R F23M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 470 685 B2 (SPOONER MICHAEL P ET AL) 29 October 2002 (2002-10-29) column 3, line 53 - column 4, line 48; figures 2-7	1-3,7-9
A	column 3, line 53 - column 4, line 48; figures 2-7	4
X	GB 2 298 266 A (ROLLS ROYCE PLC) 28 August 1996 (1996-08-28) page 7, line 1 - line 11 page 8, line 12 - page 9, column 7; figure 2	1-4,7-9
A	EP 0 224 817 B (SIEMENS AG) 12 July 1989 (1989-07-12) cited in the application the whole document	1,5-9
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

• "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

• "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

• "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

• "&" document member of the same patent family

Date of the actual completion of the international search

29 October 2004

Date of mailing of the International search report

05/11/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Coli, E

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/008116

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 216 886 A (EWING JOSEPH H) 8 June 1993 (1993-06-08) cited in the application the whole document -----	1,8,9
A	EP 1 005 620 B (SIEMENS AG) 3 July 2002 (2002-07-03) cited in the application the whole document -----	4-6

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/008116

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6470685	B2	18-10-2001	GB US	2361303 A 2001029738 A1		17-10-2001 18-10-2001
GB 2298266	A	28-08-1996		NONE		
EP 0224817	B	10-06-1987	DE EP IN JP JP JP US	3664374 D1 0224817 A1 165091 A1 1872806 C 5081740 B 62131928 A 4749029 A		17-08-1989 10-06-1987 12-08-1989 26-09-1994 16-11-1993 15-06-1987 07-06-1988
US 5216886	A	08-06-1993		NONE		
EP 1005620	B	07-06-2000	DE DE EP JP US WO	29714742 U1 59804685 D1 1005620 A1 2001515197 T 6276142 B1 9909354 A1		17-12-1998 08-08-2002 07-06-2000 18-09-2001 21-08-2001 25-02-1999

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F23R3/00 F23M5/02 F23M5/08

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F23R F23M

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationales Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 6 470 685 B2 (SPOONER MICHAEL P ET AL) 29. Oktober 2002 (2002-10-29) Spalte 3, Zeile 53 – Spalte 4, Zeile 48; Abbildungen 2-7 -----	1-3, 7-9
A	Spalte 3, Zeile 53 – Spalte 4, Zeile 48; Abbildungen 2-7 -----	4
X	GB 2 298 266 A (ROLLS ROYCE PLC) 28. August 1996 (1996-08-28) Seite 7, Zeile 1 – Seite 11 Seite 8, Zeile 12 – Seite 9, Spalte 7; Abbildung 2 -----	1-4, 7-9
A	EP 0 224 817 B (SIEMENS AG) 12. Juli 1989 (1989-07-12) in der Anmeldung erwähnt das ganze Dokument -----	1, 5-9
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

29. Oktober 2004

05/11/2004

Name und Postanschrift der internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Coli, E

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 5 216 886 A (EWING JOSEPH H) 8. Juni 1993 (1993-06-08) in der Anmeldung erwähnt das ganze Dokument -----	1,8,9
A	EP 1 005 620 B (SIEMENS AG) 3. Juli 2002 (2002-07-03) in der Anmeldung erwähnt das ganze Dokument -----	4-6

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/008116

im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 6470685	B2	18-10-2001	GB US	2361303 A 2001029738 A1		17-10-2001 18-10-2001
GB 2298266	A	28-08-1996		KEINE		
EP 0224817	B	10-06-1987	DE EP IN JP JP JP US	3664374 D1 0224817 A1 165091 A1 1872806 C 5081740 B 62131928 A 4749029 A		17-08-1989 10-06-1987 12-08-1989 26-09-1994 16-11-1993 15-06-1987 07-06-1988
US 5216886	A	08-06-1993		KEINE		
EP 1005620	B	07-06-2000	DE DE EP JP US WO	29714742 U1 59804685 D1 1005620 A1 2001515197 T 6276142 B1 9909354 A1		17-12-1998 08-08-2002 07-06-2000 18-09-2001 21-08-2001 25-02-1999