

図 7A.1: $x_R(t)$ の ROC と $x_L(t)$ の ROC. 両者に重なりがあるとしてかいた. 重なりは, $x(t) = x_R(t) + x_L(t)$ の ROC である.

付録 7.A ラプラス変換補足

本付録では、ラプラス変換の性質と収束領域の特徴についてあげる。それらの証明については参考文献をみていただきたい。

7.A.1 ラプラス変換の収束領域の特徴

特徴 1.

X(s) の ROC は s 平面内の $j\omega$ 軸に平行な帯からなる.

この性質は、X(s) の ROC が、 $x(t)e^{-\sigma t}$ のフーリエ変換が収束する $s = \sigma + j\omega$ の値からなっており、したがって ROC が s の実数部のみに依存しているという事実からきている.

特徴 2.

ラプラス変換が有理関数のとき, ROC は極を1つも含まない.

X(s) は極で無限大であるから,ラプラス変換の積分は極で収束しない.したがって,ROC は s のそのような値を含むことはできない.

特徴 3.

x(t) の継続時間が有限で、ラプラス変換が収束する点が s 平面上にすくなくとも 1 つあるならば、ROC は全 s 平面になる.

特徴 4.

x(t) が右側信号であり直線 $\text{Re}(s) = \sigma_0$ が ROC の中にあるならば、 $\text{Re}(s) > \sigma_0$ であるすべての s は ROC 中にある.

特徴5

x(t) が左側信号であり、 $Re(s) = \sigma_0$ が ROC の中に存在するならば、 $Re(s) < \sigma_0$ であるすべての s は ROC に存在する.

特徴 6.

x(t) が両側信号であり、しかも直線 $\text{Re}(s) = \sigma_0$ が ROC の中に存在しているならば、ROC は s 平面上 $\text{Re}(s) = \sigma_0$ を 1 つ含む帯からなる(図 7A.1).