Plan du cours

I.	Div	ision euclidienne	1							
11.	Multiples, diviseurs et nombres premiers									
	1.	Multiples et diviseurs	1							
	2.	Critères de divisibilité	2							
	3.	Nombres premiers	3							
	4.	Diviseurs communs	3							
Ш.	Déc	composition en produit de facteurs premiers	4							
	1.	Définition	4							
	2.	Notion de PGCD	5							
	3.	Application aux fractions irréductibles	5							

Mes objectifs:

- → Je dois savoir si un entier est ou n'est pas multiple ou diviseur d'un autre entier. Et savoir reconnaître un nombre premier,
- → Je dois connaître et savoir utiliser les critères de divisibilité (par exemple par 2, 3, 5, 4, 9 ou 10),
- → Je dois savoir simplifier une fraction donnée pour la rendre irréductible.

I. Division euclidienne

Propriété

Effectuer la division euclidienne d'un entier **a (le dividende)** par un entier **b (le diviseur)** non nul, c'est trouver deux entiers **q (le quotient)** et **r (le reste)** tels que :

$$a = b \times q + r$$

Exemple: Effectuer la division euclidienne de 185 par 7.

II. Multiples, diviseurs et nombres premiers

1. Multiples et diviseurs

Définition

Un entier naturel est un nombre entier positif ou nul.

 $\mathbb{N} = \{0; 1; 2; 3; ...\}$

Définition

Dire que l'entier naturel a est **un multiple** de l'entier naturel b signifie qu'il existe un entier k tel que $a = k \times b$. On dit aussi que b est **un diviseur** de a et a est **divisible** par b.

Exemple: $15 = 3 \times 5$ donc 15 est un multiple de 5 - 15 est un multiple de 3.

5 et 3 sont des diviseurs de 15.

Remarque:

- Tout nombre est multiple de 1 donc 1 est un diviseur de tout nombre entier naturel.
- Tout nombre est multiple de lui-même donc tout nombre est divisible par lui-même.

2. Critères de divisibilité

• Un nombre est divisible par 2 si il est pair, donc si il se termine par 0, 2, 4, 6 ou 8.

Exemple: 326 est divisible par 2 mais pas 987.

• Un nombre est divisible par 5 si il se termine par 0 ou 5.

Exemple: 125 est divisible par 5 mais pas 431.

• Un nombre est divisible par 3 si la somme de ses chiffres est un multiple de 3.

Exemple : 43 281 est divisible par 3, car 4 + 3 + 2 + 8 + 1 = 18 et 18 est un multiple de 3.

<u>DÉMONSTRATION</u>: On va essayer de justifier cette règle de manière générale.

Tout nombre entier peut être décomposé en somme de ses différents ordres. Un exemple :

$$43281 = 40000 + 3000 + 200 + 80 + 1$$

Or,
$$40000 = 4 \times 10000 = 4 \times (9999 + 1) = 4 \times 9999 + 4$$

De même, $3000 = 3 \times 1000 = 3 \times (999 + 1) = 3 \times 999 + 3$
 $200 = 2 \times 100 = 2 \times (99 + 1) = 2 \times 99 + 2$
 $80 = 8 \times 10 = 8 \times (9 + 1) = 8 \times 9 + 8$

$$43281 = \underbrace{(4 \times 9999 + 4) + (3 \times 999 + 3) + (2 \times 99 + 2) + (8 \times 9 + 8) + 1}_{\text{Multiple de 9 donc de 3}} + \underbrace{(4 \times 9999 + 3 \times 999 + 2 \times 99 + 8 \times 9)}_{\text{Multiple de 3}} + \underbrace{(4 + 3 + 2 + 8 + 1)}_{\text{Multiple de 3}}$$

La question de savoir si 43 281 est multiple de 3 revient donc à savoir si (4+3+2+8+1) est multiple de 3.

• Un nombre est divisible par 9 si la somme de ses chiffres est un multiple de 9.

Exemple: 738 est divisible par 9, car 7 + 3 + 8 = 18 et 18 est un multiple de 9.

• Un nombre est divisible par 10 si il se termine par 0.

Exemple: 350 est divisible par 10.

Activité n°1 : Jouer au jeu de Juniper Green

3. Nombres premiers

Définition

Un nombre premier est un entier naturel qui admet exactement 2 diviseurs distincts, 1 et lui-même.

Attention, 1 n'est pas un nombre premier car il n'a qu'un seul diviseur, lui-même.

Exemple : Début de la liste des nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, ... (Pour une liste plus détaillée voir l'activité sur le crible d'Erathostène)

Activité n°2 : Le crible d'Erathostène

Cette activité met en œuvre un algorithme appelé "le crible d'Erathostène" permettant de trouver tous les nombres premiers inférieurs à 100.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- 1. (a) Expliquer pourquoi le nombre 1 n'est pas premier puis le barrer dans la grille.
- (b) Le nombre 2 ne possède aucun diviseur autre que 1 et lui-même. 2 est donc un nombre premier. Entourer le nombre 2.
- (c) Barrer tous les multiples de 2, qui ne sont donc pas des nombres premiers.
- 2. (a) Entourer le plus petit nombre non barré et barrer tous ses multiples.
- (b) Poursuivre de la même façon jusqu'à ce que le plus petit nombre non barré soit supérieur à 10. Tous les nombres non barrés dans la liste, sont les nombres qui n'ont pas d'autre diviseur que 1 ou eux-mêmes. **On obtient tous les nombres premiers inférieur à 100.**
 - 3. Écrire tous les nombres premiers inférieur à 100.

4. Diviseurs communs

Définition

Dire que d est **un diviseur commun** de deux nombres a et b signifie que a et b sont divisibles par d.

Exemple: Quels sont les diviseurs communs de 12 et 18?

 $D_{18} = \{1; 2; 3; 6; 9; 18\}$ et $D_{12} = \{1; 2; 3; 4; 6; 12\}$

Les diviseurs communs de 12 et de 18 sont : 1, 2, 3 et 6.

Définition

Dire que deux nombres entiers naturels sont **premiers entre eux** signifie que leur seul diviseur commun est 1.

Exemple: Montrer que 12 et 35 sont premiers entre eux.

$$D_{12} = \{1; 2; 3; 4; 6; 12\}$$
 et $D_{35} = \{1; 5; 7; 35\}$

Le seul diviseur commun de 12 et 35 est 1 donc 12 et 35 sont premiers entre eux.

III. Décomposition en produit de facteurs premiers

1. Définition

Propriété

Un nombre entier supérieur ou égal à 2 se décompose en produit de facteurs premiers. cette décomposition est unique, à l'ordre des facteurs près.

Exemple : Décomposons 1014 en produit de facteurs premiers :

$$1014 = 2 \times 507$$

$$1014 = 2 \times (3 \times 169)$$

$$1014 = 2 \times (3 \times (13 \times 13))$$

$$1014 = 2 \times 3 \times 13 \times 13.$$
Donc,
$$1014 = 2 \times 3 \times 13^{2}$$

588

Exercice d'application 1

24

2 100

Décomposer les nombres suivants en produit de facteurs premiers.

2. Notion de PGCD

D C C III	
Définition	าท
	2/11/1

Soient a et b deux entiers naturels. Leur plus grand diviseur commun est noté PGCD(a; b).

Exemple : 1. Donner le PGCD de 35 et 60 à l'aide de la liste des diviseurs de chacun des nombres.
2. Donner le PGCD de 144 et 48 en utilisant la décomposition en produit de facteurs premiers.
Exercice d'application 2
On a 126 croissants et 180 pains au chocolat que l'on veut répartir dans des corbeilles ayant toutes le même contenu.
Combien de corbeilles peut-on prévoir au maximum?

3. Application aux fractions irréductibles

Définition

Soient a et b deux entiers. On dit que la fraction $\frac{a}{b}$ est irréductible lorsque a et b sont premiers entre eux.

Exemple : $\frac{5}{7}$ est une fraction irréductible car 5 et 7 sont premiers entre eux.

Remarque : On peut simplifier facilement une fraction et la rendre irréductible en décomposant son numérateur et son dénominateur en produits de facteurs premiers.

Exemple: On veut simplifier la fraction $\frac{120}{84}$:

On sait que $120 = 12 \times 10 = 2 \times 2 \times 2 \times 3 \times 5$

et
$$84 = 2 \times 42 = 2 \times 2 \times 21 = 2 \times 2 \times 3 \times 7$$

Donc
$$\frac{120}{84} = \frac{2 \times 2 \times 2 \times 3 \times 5}{2 \times 2 \times 3 \times 7} = \frac{2 \times 5}{7} = \frac{10}{7}$$

Exercices 27, 34 et 33 du livres