

ÉCOLE POLYTECHNIQUE TUNISIE

Rapport du sujet à traiter

Étude de la Méthode des Moindres Carrés Récursifs

Élèves : HAMMEMI NASSIM

Enseignant :
DR. BENHADJ BRAIEK Naceur

TABLE DES FIGURES

1	Convergence des paramètres pour $\alpha = 10 \dots \dots \dots \dots \dots$	4
2	Convergence des paramètres pour $\alpha = 100$	4
3	Convergence des paramètres pour $\alpha = 1000$	5
4	Convergence des paramètres pour $\alpha = 10000$	5
5	L'erreur pour $\alpha = 100$	6
6	L'erreur pour $\alpha = 1000$	6
7	l'erreur pour $\alpha = 10000$	6
8	Convergence des paramètres pour $\theta o = [10; 17; 20; -10]$	7
9	Convergence des paramètres pour $\theta o = [2; 0.9; 2.5; -1.5]$	7
10	L'erreur pour $\theta_0 = [10; 17; 20; -10]$	8
11	L'erreur pour $\theta o = [2; 0.9; 2.5; -1.5]$	8
12	Convergence des paramètres pour $\lambda = 0.98$	9
13	Convergence des paramètres pour $\lambda = 0.95$	9
14	L'erreur pour $\lambda = 0.98$	10
15	L'erreur pour $\lambda = 0.98$	10
16	Évolution des paramètres au cours du temps	11

COMPTE RENDU DU SUJET À TRAITER

Partie 1:

système dynamique d'entrée u et de sortie y est décrit par une équation récurrente : y(k) + ay(k-1) + by(k-2) = cy(k-1) + by(k-2)

On étudie l'identification des paramètres a, b, c et d par la méthode des moindres carrés récursifs à partir de la mesure (u(k), y(k)), k=0,...,N.

On considère les paramètres a=1, b=0.7, c=2 et d=-1

TRAVAIL À FAIRE:

- Écrire un code Matlab qui permet de générer une entrée u(k) sous la forme d'une séquence binaire pseudo-aléatoire (SBPA).
- Simuler le système excité par l'entrée u(k) générée, et entaché d'un bruit (blanc) à la sortie (bruit de faible amplitude)
- Utiliser la méthode des moindres carrés récursifs (MCR) pour identifier les paramètres supposés inconnus a,b, c et d.
- Les variables intervenant dans la méthode MCR sont : le vecteur (des paramètres) initial $\theta 0$, la matrice initiale $P0 = \alpha$, et le facteur d'oublie λ . Étudier l'effet de ces variables sur les performances de l'algorithme d'identification MCR.

RÉPONSE:

- ci-joint la réponse des trois premier questions de la partie 1 sous forme d'un code Matlab :

Partie_{1.m}

Résultat d'exécution :

```
>> partie_1
les parmetres sont
a = 1
b = 0.70000
c = 2
d = -1
les parametres estimés sont:
a_estimated = 1.1769
b = 0.80132
c = 3.6085
d_{estimated} = -1.8815
Erreur =
 -0.17695
 -0.10132
 -1.60849
  0.88151
```

- Étude de l'effet des variables qui interviennent dans la méthode de MCR sur les performances de l'algorithme d'identification.

Etude de l'effet de α

FIGURE 1 – Convergence des paramètres pour $\alpha=10$

FIGURE 2 – Convergence des paramètres pour $\alpha=100$

FIGURE 3 – Convergence des paramètres pour $\alpha=1000$

Figure 4 – Convergence des paramètres pour $\alpha=10000$

Erreur =

- -0.175952
- -0.113957
- -0.633695
 - 0.093892

Figure 5 – L'erreur pour $\alpha = 100$

Erreur =

- -0.18646
- -0.10493
- -0.33926
- -0.32979

Figure 6 – L'erreur pour $\alpha = 1000$

Erreur =

- -0.18646
- -0.10493
- -0.33926
- -0.32979

Figure 7 – l'erreur pour $\alpha = 10000$

<u>Constatations</u>: - On peut remarquer qu'ont augmentant la valeur de α la convergence devient plus rapide. Mais on remarque aussi qu'ont augmentant cette valeur l'erreur entre les paramètres réels et les paramètres estimés devient de plus en plus grand.

Etude de l'effet de θo

FIGURE 8 – Convergence des paramètres pour $\theta o = [10; 17; 20; -10]$

Figure 9 – Convergence des paramètres pour $\theta o = [2; 0.9; 2.5; -1.5]$

Erreur =

-0.21133

-0.10835

-13.85185

13.14815

FIGURE 10 – L'erreur pour $\theta_0 = [10; 17; 20; -10]$

Erreur =

- -0.19800
- -0.10389
- -0.86981
 - 0.13019

FIGURE 11 – L'erreur pour $\theta o = [2; 0.9; 2.5; -1.5]$

<u>Constatations</u>: - On peut remarquer que si on ne canonnait pas les systèmes et on commence par des valeurs de paramètres loin des valeurs réelles des paramètres(ta10; 17; 20; -]) on obtient une erreur très grande. Contrairement si on cannait à peu près le système et ces paramètres et on commence par des valeurs proches des valeurs réelles, l'estimation devient plus exacte.

Partie 2:

Travail à faire :

— Étudier le cas où les paramètres a, b, c et d ne sont pas constants mais convergents vers des valeurs constantes.

<u>Réponse</u>:

- ci-joint la réponse de la partie 2 sous forme d'un code Matlab :

Partie 2.m

Étude de l'effet du facteur d'oubli

Figure 12 – Convergence des paramètres pour $\lambda=0.98$

Figure 13 – Convergence des paramètres pour $\lambda=0.95$

```
>> Partie_2

a_estimated = 1.1646
b_estimated = 0.81068
c_estimated = 2.0384
d_estimated = -0.41219

Erreur =

-0.164609
-0.110679
-0.038448
-0.587814
```

Figure 14 – L'erreur pour $\lambda = 0.98$

```
>> Partie_2

a_estimated = 1.1237

b_estimated = 0.81955

c_estimated = 1.8973

d_estimated = -0.24003

Erreur =

-0.12366
-0.11955
0.10271
-0.75997
```

FIGURE 15 – L'erreur pour $\lambda = 0.98$

-On remarque qu'ont augmentant la valeur du facteur d'oubli λ de 0.95 à 0.98 l'algorithme converge plus rapidement et l'erreur diminue.

-En effet les coefficients sont variables mais ils convergent au bout d'un certain temps d'où la nécessité de facteur d'oubli dans ce cas qui favorise les mesures récentes.

Partie 3:

Travail à faire :

— Écrire un programme Matlab ou Matlab/Simulink permettant d'implémenter la méthode d'identification MCR en ligne (en temps réel) : identification des paramètres au fur et à mesure de l'évolution du système.

<u>RÉPONSE</u>:

- ci-joint la réponse de cette partie sous forme d'un code Matlab :

Partie 3.m

On propose l'algorithme MCR à <u>trace constant</u>.

Voici la résultat de ce algorithme :

```
>> Partie_3

a_estimated = 1.1873

b_estimated = 0.81213

c_estimated = 2.2309

d_estimated = -0.51076

Erreur =

-0.18735
-0.11213
-0.23093
-0.48924
```


Figure 16 – Évolution des paramètres au cours du temps

Partie 4:

On se propose de décrire le système étudié par un modèle du troisième ordre : y(k)+ay(k-1)+by(k-2)+cy(k-3)=du(k-1)+eu(k-2)+fu(k-3)

TRAVAIL À FAIRE:

— Identifier les paramètres a, b, c, d, e et f et conclure (on pourra traiter le cas du système sans bruit puis le cas du système entaché d'un bruit).

RÉPONSE:

- ci-joint la réponse de cette partie sous forme d'un code Matlab :

Partie 4.m

Résultat d'exécution

```
>> partie_4
les parametres sont :
b = 0.70000
c = 0.80000
d = -1
e = 1.5000
f = 1
  lère cas : avec bruit
a nb = 0.99982
b nb = 0.69983
c_nb = -0.00012025
d_nb = -1.0000
e nb = 1.5002
f_nb = 0.19971
    2ème cas : avec bruit
a_b = 0.32914
b_b = 0.047225
c_b = -0.46235
d_b = -1.0344
e_b = 2.1956
f b = -0.79859
```

```
Erreur_san_bruit =

0.0001796721
0.0001703066
0.8001202498
0.0000043576
-0.0001740213
0.8002850369

Erreur_avec_bruit =

0.670863
0.652775
1.262346
0.034352
-0.695550
1.798587
```

- On constate que l'erreur entre les paramètres réelles et les paramètres estimés calculé par une sortie non bruité est très inférieur par rapport la deuxième erreur(sortie bruitée).

Conclusion:

- -Il faut toujours tenir compte l'impacte du bruit au cours de la processus d'identification du système.
- -On peut utiliser des algorithme qui tient compte au bruit (Méthode des moindres carrés généralisés)