

- Estratégia preditiva utilizando uma RNA
- Predição x interpolação
- Análise da possibilidade de equalização de canais de fase não mínima utilizando somente estatísticas de 2ª ordem

- Predição linear
 - Utilização de várias entradas: separação linear
 - Equalização: canais de fase mínima (predição direta) ou máxima (predição reversa ou retropredição)
 - Processo de super-branqueamento: independência dos símbolos transmitidos

Predição linear(cont.)

Erro de predição:

$$e_p(n) = x(n) - \hat{x}(n)$$

Predição linear(cont.)

$$\bar{x}(n) = a(n)f_0 + a(n-1)f_1 + \dots + a(n-N+1)f_{N-1}$$

$$\bar{x}(n-1) = a(n-1)f_0 + a(n-2)f_1 + \dots + a(n-N+2)f_{N-1}$$

$$\bar{x}(n-2) = a(n-2)f_0 + a(n-3)f_1 + \dots + a(n-N+3)f_{N-1}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

4

Predição neural

Predição linear(cont.)

$$\bullet e_p(n) = \underbrace{a(n)f_0 + \dots + a(n-N+1)f_{N-1} + b(n)}_{x(n)}$$

$$-\underbrace{x(n-1)p_1 + x(n-2)p_2 + \dots + x(n-M)p_M}_{\hat{x}(n)}$$

• Para M = N - 1 = 2

$$\bullet e_p(n) = a(n)f_0 + a(n-1)[f_1 - f_0p_1] + a(n-2)[f_2 - f_1p_1 - f_0p_2]$$

$$-a(n-3)[f_2p_1 + f_1p_2] - a(n-4)f_2p_2 + b(n) + b(n-1)p_1 + b(n-2)p_2$$

- Predição x interpolação:
 - Busca de uma superfície de interpolação capaz de separar as diferentes classes

- Predição x interpolação:
 - É possível implementar uma função de interpolação não linear para equalização baseado em uma estrutura preditiva com apenas uma entrada.

$$e_p(n) = x(n) - \hat{x}(n)$$
 $\hat{x}(n) = \Psi(\mathbf{x}(n-1))$

$$e_{p}(n) = \underbrace{a(n)f_{0} + a(n-1)f_{1} + \dots + a(n-N+1)f_{N-1} + b(n)}_{x(n)} - \underbrace{\Psi(x(n-1), x(n-2), x(n-3), \dots)}_{\hat{x}(n)}$$

- Predição x interpolação:
 - Toda informação necessária para retirar a redundância está contida em x(n-1), logo:

$$\Psi(a(n-1)f_0 + a(n-2)f_1 + \dots + a(n-N+2)f_{N-1} + b(n-1))$$

$$= a(n-1)f_1 + a(n-2)f_2 + \dots + a(n-N+1)f_{N-1} + b(n)$$

então o erro de predição será dado por:

$$e_p(n) = x(n) - \Psi(x(n-1))$$

 Preditor neural: equalização de canais de fase não mínima

- Preditor neural (cont.):
 - Função capaz de realizar a separação das classes pode ser escrita como:

$$\Psi_{RN}(x,\boldsymbol{\theta},\boldsymbol{\beta}) = \sum_{i} \beta_{i} \cdot \operatorname{sgn}(x - \theta_{i})$$

 A estrutura que implementa a função será denominada de "Neural Predictive Structure" (NPS)

NPS:

- Rede MLP com uma entrada e uma camada escondida
- Função de ativação: $\varphi_{NPS}(.) = sgn(.)$
- Aprendizado:
 - Capacidade de aprender os locais das transições rápidas
 - Algoritmo de localização do bias (θ_i)
 - Distribuição de probabilidade do sinal recebido

- fdp do sinal recebido:
 - Composição de gaussianas
 - Centradas nos estados do canal
 - Variância σ_b²

- fdp do sinal recebido (cont.):
 - O sinal na saída do canal modelado por:

$$x(n) = \overline{x}(n) + b(n)$$

em que $\bar{x}(n) = \mathbf{a}^{T}(n)\mathbf{f}$ e b(n) apresenta uma fdp dada por

$$p(b(n)) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left(-\frac{|b(n)|^2}{2\sigma_b^2}\right)$$

sendo $b(n) = x(n) - \overline{x}(n)$

$$p(x(n)) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \sum_{i=1}^{S} \exp\left(-\frac{|x(n) - \mathbf{a}_i^T \mathbf{f}|^2}{2\sigma_b^2}\right) \Pr(\mathbf{a}(n) = \mathbf{a}_i)$$

Aprendizado da NPS:

- Localização correta dos bias
- Algoritmo auto organizado
- Capacidade de encontrar os vales entre as gaussianas que compõem a fdp do sinal recebido
- Ajuste dos parâmetros β_i
 - Algoritmo supervisionado
 - Adaptação clássica de parâmetros lineares

- Algoritmo auto organizado
 - Princípio: medida de similaridade de funções.
 - Função utilizada: função módulo (*N(x,d)*).
 - Contraste:

Algoritmo auto organizado

• Funcional:
$$J_1(d) = \int p(x) \cdot N(x, d) dx$$
$$J_1(d) = E\{N(x, d)\}$$

Resultados:

- Algoritmo auto organizado
 - Melhorar estreiteza da função: ln(N(x,d))

• Functional:
$$J_2(d) = \int p(x) \cdot \ln(N(x,d)) dx$$

$$J_2(d) = E\{\ln(N(x,d))\}$$

• Corresponde à divergência de Kullback-Leibler (KLD) eliminando-se os termos independentes de N(x,d)

- Algoritmo auto organizado
 - Resultados:

"Self-Organized for Finding Valleys Algorithm" (SOFVA)

- Algoritmo supervisionado: dois casos
 - Minimização do erro de predição (MEP)

$$E\left\{\left|e_{p}(n)\right|^{2}\right\}$$

Denominada NPS-MPE

Critério do módulo constante (CMC)

$$E\left\{\left(\left|y(n)\right|^{2}-R_{2}\right)^{2}\right\}$$

Denominada NPS-CMC

- Simulações:
 - Canais de fase mínima: $\mathbf{f}_1 = \begin{bmatrix} 1 & 0.6 & 0.2 \end{bmatrix}^T$

- Canais de fase mínima: $\mathbf{f}_1 = \begin{bmatrix} 1 & 0.6 & 0.2 \end{bmatrix}^T$
 - Melhoria com inicialização LS

• Superfícies de interpolação $\mathbf{f}_1 = \begin{bmatrix} 1 & 0.6 & 0.2 \end{bmatrix}^T$

NPS-MPE

NPS-MPE-LS

NPS-CMC

SNR = 40 dB

• Canais de fase mínima: $\mathbf{f}_2 = \begin{bmatrix} 1 & 0.8 & 0.4 \end{bmatrix}^T$

- Canais de fase mínima: $\mathbf{f}_2 = \begin{bmatrix} 1 & 0.8 & 0.4 \end{bmatrix}^T$
 - Inicialização LS

• Superfícies de separação $\mathbf{f}_2 = \begin{bmatrix} 1 & 0.8 & 0.4 \end{bmatrix}^T$

NPS-MPE

NPS-MPE-LS

NPS-CMC

SNR = 40 dB

• Canais de fase não mínima: $\mathbf{f}_3 = \begin{bmatrix} 0.5 & 1 & -0.6 \end{bmatrix}^T$

Superfícies de interpolação:

NPS-MPE

NPS-CMC

SNR = 40 dB

• Canais de fase não mínima: $\mathbf{f}_4 = \begin{bmatrix} 0.4 & 1 & 0.4 \end{bmatrix}^T$

- Limites:
 - Ruído
 - Posição dos zeros do canal
- Características
 - Possibilidade de determinação do número ótimo (NO) de neurônios para uma entrada
 - No. entradas ↑, No. Neurônios < NO</p>
 - Possibilidade de extensão para casos não estacionários