

Web Science Lecture

22 March 2020

Sagnik Ray Choudhury

src@di.ku.dk

http://sagnik.in

UNIVERSITY OF COPENHAGEN

Organization

- Part 1: Collaborative Filtering: Better Representation Through Dimensionality Reduction: PCA and SVD
- Part2: Latent factor models: more discussions.
- Part3: Intro to DNNs for RecSys
- Acknowledgements:
 - Charu C Agarwal (<u>Recommender Systems, The Textbook</u>)
 - Jon Shlens (<u>PCA</u>).
 - Jeremy Kun (<u>SVD</u>)

Announcement

- On **March 15** you will receive a link for the course evaluation in your KU emailbox.
- The deadline to complete the course evaluation is **March 28**.
- Please remember to fill out the course evaluation, even if you do not have anything wrong to report!
- Your feedback is very important to us, so we can understand how to improve this course for the next years.

Recommender Systems: Recap

- Problem definition: Given a utility matrix (UxN, U = |Users|, N = |Items|) with some values unspecified, 1. predict the unspecified values or 2. Rank the items according to the relevance of the users.
 - 2 comes naturally from 1.
- Evaluation methods for recommender systems
 - RMSE (evaluate 1)
 - Precision, Recall, F1@k. (evaluate 2)
 - Average precision @K, MAP@K.
 - Cumulative gain, DCG and NDCG.
- Recommender system algorithms
 - Content based
 - Collaborative filtering: User-User and Item-Item.
 - Latent Factor Models

Recommender Systems: Recap

- Content-based methods:
 - Start by representing an item in a feature space.
 - Represent user by combining the item she rates -> user is represented in the item feature space.
 - For a new item, the score is calculated by a distance metric between the user and the items.
 - Feature space is manually engineered: hard to create.
- Collaborative filtering:
 - 1. For a target entry (u, i) determine the most similar rows/columns of the ratings matrix with the use of the cosine coefficient between rows/columns. For user-based methods rows are used, whereas for item-based methods, columns are used.
 - 2. Predict the target entry (u, i) using a weighted combination of the ratings in the most similar rows/columns determined in the first step.
 - Item (user) feature space is the users (items): this is sparse.

Latent Factor Models: Sparsity to Compactness

- Consider a utility matrix U x I (number of users X number of items).
- Collaborative Filtering problems:
 - Feature space for item/user is sparse: lots of redundancy.
 - But complexity is $\mathcal{O}(N^2U)$ (item-item) . Reducing N to d (d << N) would be a huge improvement.
 - Side note: This happens in word vectors as well.
- Possible solution (for user-user, works the same way for items as well):
 - Reduce the dimensionality to d where d <U and I.
 - This will produce a new representation of the data.
 - Use this to represent each user and then repeat the usual steps.
- What dimensionality reduction technique to use?
 - PCA.
 - Singular value decomposition (SVD).

Dimensionality Reduction: Refresher

- Users are represented in item space and items are represented in user space.
- It's a vector space: it has a set of *basis vectors*. The basis vectors *span* that space.
- Basis vectors are linearly independent. A span of basis vectors is a set of vectors that can be expressed as a linear combination of these basis vectors.

- There's a correlation in the data.
- There is one vector that represents user 1-3, 1 vector that can represent user 5-7, and one vector that can represent user 4. So obviously, we can represent each user by at least them.

1 1 1 1 1 -1 -1 -1 1 1 1	1	1	1	0	0	0
-1 -1 -1 1 1 1	1	1	1	1	1	1
	-1	-1	-1	1	1	1

- What is the benefit of that?
- Dimensionality is reduced to 3.
- Can we do a little better?

Is This the Best We Can Do?

- (Row/column) Rank of a matrix is the number of linearly independent vectors (they are the same, why?).
- A data matrix \mathbf{X} [$m \times n$] can be represented in a k dimensional subspace where rank(X) = k < (m, n)
- $\mathbf{X} = \mathbf{U} \times \mathbf{V}^{\mathsf{T}}$ (U = new data matrix, V new basis vectors, with $\mathbf{U} = [m \times k]$ and $\mathbf{V} = [n \times k]$)
- If rank(**X**) = k, that decomposition always exists.

This matrix has rank 2. Verify.

basis ved	ctors,
1	0
1	0
1	0
1	1
-1	1
-1	1
-1	1

NERO	Julius Caes	Patriot	Sleepless S	Pretty Wor	Casablance
1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	1	1	1
-1	-1	-1	1	1	1
-1 -1	-1	-1	1	1	1
-1	-1	-1	1	1	1

Seattle

	values	
	nged to	
	1]. That is	
/. V	ve neeu	

Ratings

and 1.

values

between -1

No missing

Here, the basis vectors are changed to [1, 1, 1, 0, 0, 0] and [0, 0, 0, 1, 1, 1]. That is a reduction from 6 to 2. Now, we need exactly 2 dimensions to represent the data.

1	1	1	0	0	0
0	0	0	1	1	1

Is This the Best We Can Do?: Contd.

1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	1	1	1
-1	-1	1	1	1	1
-1	-1	-1	1	1	1
-1	-1	-1	1	1	1

Previously, we had rank 2. This means, we could represent the data with 2 basis vectors. Now, we have a matrix of rank 3, so we will need at least 3 such vectors. Equivalently, We can not completely represent this with 2 dimensions, so there will be some error.

ui	1116113101	113, 30 ti	ıC	I C VV		. 301	110	
	1	0		1	1	1	0	0
\Rightarrow	1	0		0	0	1	1	1
	1	0				V	/ T	
	1	1		U				
	-1	1		U				
	-1	1						

1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0
1	1	2	1	1	1
-1	-1	0	1	1	1
-1	-1	0	1	1	1
-1	-1	0	1	1	1

 $\mathbf{U} \times \mathbf{V}^{\mathsf{T}}$

• But how do we find out these matrices U and V?

Let's assume we are okay

with losing some information.

• If the data matrix had rank k, not hard to reduce the ranks. But what happens when we want to *approximate* k?

PCA: we will find out a projection matrix \mathbf{P} such that $\mathbf{XP} = \mathbf{Y}$.

Original formulation was $X = UV^T$. Not hard to see that $(V^T)^{-1}$ would be **P**.

PCA

• We are projecting the data to a new space with a *linear* transformation.

• This is the same as changing the basis vectors (these new basis vectors spans the new space, and we are okay with some error).

• What are the properties we would want in such a transformation?

We want to minimize the reconstruction error.

• We want to project the data in the directions of highest variance.

• User 1-3 (5-7) are similar to each other. But User 3,4,5 are dissimilar.

- If there's one dimension, you would want to have 3 numbers each significantly different.
- As you can see, that is not possible in this data. You need at least 2 dimensions to express that.
- Turns out, we can choose a projection matrix that satisfies both this criteria.
 - We showed how in the last class, but we will do that here again.

1	0
1	0
1	0
1	1
-1	1
-1	1
-1	1

Covariance

Variance: how do the values of a variable vary across itself [X takes values $(x_1..x_n)$, bars indicates mean]

$$S^2 = rac{\sum (x_i - ar{x})^2}{n-1}$$

Two variables, $X(x_{1...}x_n)$ and $Y(y_{1...}y_n)$, how do the values vary across themselves?

$$cov_{x,y} = rac{\sum (x_i - ar{x})(y_i - ar{y})}{N-1}$$

Data matrix

Covariance Matrix

$$Cov(X_i, X_j) = \frac{\sum_{k=1}^{m} (X_{ik} - \bar{X}_i)(X_{jk} - \bar{X}_j)}{m-1}$$

- $\mathbf{M} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix} \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \dots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n X_2) & \dots & \operatorname{Var}(X_n) \end{bmatrix}$
- Each feature is a random variable that is represented in a column (called X_i).
- Each X_i takes values X_{i1} to X_{im} .
- There are n such columns (random variables), X_1 to X_n .

- $Cov(X_i, X_j) = Cov(X_j, X_i)$ (verify) => The matrix is symmetric.
- If you subtract the column means from the column values, $Cov(\mathbf{X}) = (\mathbf{X}^T\mathbf{X})/m-1$ (Under the assumption that the rows are data points and columns are features.).
- We will just take the numerator from now on because the denominator does not depend on **X** values.

What is the Relationship with PCA?

- If two vectors (X_i, X_j) are highly correlated (think one as the multiple of the other), the covariance is high.
 - Also, if we had one of them as the basis vector, would we need the other?
- If the correlation is low (think two perpendicular vectors) the covariance is low (0 when the vectors are perpendicular to each other).
- PCA definition: XP = Y
- In the covariance matrix of $Y(C_{\gamma})$, we would want the diagonal entries (variances) to be high, and the non diagonal entries (covariances) to be low.
- In other words, we would want C_v to be a *diagonal matrix*.
- What is the projection matrix P that makes this happen?

Finding the Proper P

- Eigenvector of a matrix \mathbf{A} is a vector \mathbf{X} such that: $\mathbf{A}\mathbf{X} = c\mathbf{X}$ (c is a constant).
 - What does that mean, intuitively?
 - A matrix is a rotation + scaling transformation on a vector. Eigenvectors are those vectors which only gets scaled by this operation.
 - We only consider the *normalized* ones, because if E is an eigenvector, so is dE (d=constant)
- A symmetric matrix is diagonalized by an orthonormal matrix of its eigenvectors.

 Let's assume this is true for now, I will upload the proof separately
 - If there is a symmetric matrix **A** with associated eigenvectors $\{e_1, e_2, \dots, e_n\}$, and **E** is a matrix such that the ith column of E is e_i , then there exists a diagonal matrix **D** such that **A** = **EDE**^T.
- We are looking for a **P** that makes C_{Y} (Covariance matrix of **Y**) diagonal.
- The trick: Let us select P to be the matrix where each column is the eigen vector
 of C_v.

Finding the Proper P, Contd.

Unit vectors, product of each other 0

- If there is a symmetric matrix **A** with associated *orthonormal* eigenvectors $\{e_1, e_2, \dots, e_n\}$ (they are always orthogonal if A is symmetric, *why*?), and **E** is a matrix such that the ith column of E is e_i , then there exists a diagonal matrix **D** such that $\mathbf{A} = \mathbf{EDE^T}$.
- We are looking for a **P** that makes $C_{\mathbf{y}}$ (Covariance matrix of **Y**) diagonal.
- The trick: Let us select **P** to be the matrix where each column is the orthonormal eigen vectors of C_X . Then we can write C_X as **PDP**^T.

Not considering denominators, hence approximate

```
C_{Y} = Cov(Y) = Cov(XP) \stackrel{\checkmark}{\sim} (XP)^{T}(XP) = P^{T}X^{T}XP = P^{T}C_{X}P
If I make P according to the last condition, we can write C_{X} = PDP^{T}. Replace C_{X} with this.
C_{Y} = P^{T} (PDP^{T}) P. Now, P is orthonormal, therefore, P^{T}P = I. Therefore, C_{Y} = D (which we wanted to do).
```

PCA, Finally.

- We would call the columns of **P** (the projection vectors) the principal components.
- This is obtained by diagonalizing $C_{\mathbf{v}}$: this could be done in multiple ways.
- PCA is one such diagonalization where each projection vector is orthonormal.
- We also have a way to judge the importance of these dimensions (by the variance) .
- Dimensions
 - Data (**X**) dimensions: $m \times n$
 - Cov matrix $\mathbf{C}_{\mathbf{X}}$: $n \times n$
 - Rank(C_X) = r => r orthonormal eigenvectors (which will come to be the principal components). You will choose the top k (The ones with the highest variance). This will make the projection matrix **P**.
- We have found a way of dimensionality reduction that not only removes redundancy but also projects the data in an interesting subspace (variance maximization and covariance minimization).
- The principal components are orthonormal: which helps to cast it as the problem of finding eigenvectors of the covariance matrix.
- Still, computing that covariance matrix is time consuming: matrix multiplication (what is the complexity?) and over/underflow.

Singular Value Decomposition: Concepts

- $\mathbf{X} = m \times n$.
- $v_1, v_2, \dots v_r$ is the set of orthonormal eigenvectors of **X^TX** with eigenvalues (e₁, e₂, ..., e_r).
 - $(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{v}_{\mathsf{i}} = \mathbf{e}_{\mathsf{i}}\mathbf{v}_{\mathsf{i}}$, \mathbf{v}_{i} has a dimension of $n \times 1$;
 - As before, X^TX is symmetric with rank r, therefore has r real eigenvalues and associated eigenvectors.
 - Let's define $s_i = \text{sqrt}(e_i)$. We will call them singular values.
- Can you see that $\mathbf{X}v_i$ (dimension $m \times 1$) and $\mathbf{X}v_j$ are orthogonal (for any i,j)?
 - It turns out we can get a set $\{u_1, \dots, u_r\}$ of orthonormal vectors such that $\mathbf{X}v_i = s_i u_i$
- This is interesting.
 - {v_i} and {u_i} are orthonormal sets of vectors that span the column space **and** the row space.
 - For PCA, we got a set of orthonormal vectors that spanned one of row/ column space (depending on how you represent the data).

SVD, Construction.

We add a diagonal matrix Σ

- $\{v_i\}$ and $\{u_i\}$ are orthonormal sets of vectors that span the column space **and** the row space.
- Both sets have cardinality r where rank(X^TX) = r
- Let's build the matrices: $\mathbf{X}v_i = s_i u_i$ or, $\mathbf{X}v_i = u_i s_i$.

	•						$s_1 = 1$	$, S_2 =$	1		
	1	2	3		1	2	_	22		28	
	4	5	6		3	4		49		64	
	7	8	9		5	6					
	10	11	12			1/		76		100	
					V_1	V_2		103		136	
$X (4 \times 3)$ u_1								U_2			
٧	What happens when $s_1 = 5$, $s_2 = 3$? 5 0										

1	2	22	28	These are not
Τ	2	22		orthonormal
3	4	49	64	vectors, here
5	6	76	100	just to explain
/		103	136	the
- (3)	(2)	U (4	x2)	construction!

By column stacking, we can write these equations more concisely!, or XV = U

- In the diagonal matrix, the values will be in decreasing order (this would require u and v columns to be rearranged appropriately), and finally, $XV = U \Sigma$.
- Multiplying both side by V^{-1} , $X = U \Sigma V^{-1} = > X = U \Sigma V^{T}$. ($V^{T} = V^{-1}$ because V is orthonormal).

3

This is the SVD formulation.

SVD: Implications

- We know that a data matrix **X** ($m \times n$) can be written as **X** = **U** Σ **V**^T, where:
 - U is a set of orthonormal basis vectors ($\mathbf{U} = m \times r$).
 - V is another set of orthonormal basis vectors ($\mathbf{V} => n \times r$).
 - Σ is a diagonal matrix, of some sort.
- What is really happening?

	A	isha	Bob	Chandrika	a
${ m Up}$	/	2	5	3	١
Skyfall		1	2	1	١
Thor		4	1	1	١
Amelie		3	5	2	-
Snatch		5	3	1	-
Casablanca		4	5	5	-
Bridesmaids		2	4	2	-
Grease	/	2	2	5	J

SVD is a method to do this so that these two discoveries happen simultaneously.

Moreover, you can choose a rank k approximation of the data, by choosing r=k

- Some person rates a movie. It's a complex process. We have no idea about the process, but we have data that says 3 people rated 8 movies.
- With this data we will represent movies in a 3d space, and people in an 8d space.
- New movie comes in, we would want to represent it as a linear combination of existing movies and vice versa.
- We want to discover a special list of vectors v1···v8 to do just that (we did something similar in PCA). The Same goes for the people p1, p2···p3.

SVD and PCA

- We don't have time to discuss how SVD is implemented.
 - In the QA session, we will go through a very basic solution.
- For now, let's assume very efficient algorithms exist for SVD.
- Can we use SVD to compute PCA?
- We know the principal components of X are the eigen vectors of C_x .
- Since C_x is symmetric, we can also write $C_x = EDE^T$, where E is the eigenvectors of $\mathbf{C}_{\mathbf{x}}$.
- $C_x = X^TX/n-1$. According to SVD, $X = USV^T$.
- $C_x = (USV^T)^T(USV^T)/n-1 = VS^TU^TUSV^T/n-1 = V(S^2/n-1)V^T$? (Why does U^TU cancel out)?
- Not difficult to see V constitutes the principal components of X.

Summary

- Utility matrices are a special kind of data matrices
 - Typically, you would want to change the representation of the data points among the feature dimension, but here both dimensions are important.
- We have seen two linear methods of dimensionality reduction commonly used in the recommender systems: PCA and SVD.
 - The crux of linear dimensionality reduction is finding new basis vectors.
 - PCA can be thought of changing the basis vector for the row/column space (depending on how you put the data) but SVD does that simultaneously.
- But they are on fully specified matrices: that's not the case for recommender systems:
 - Subtract row mean to convert a sparse utility matrix to a fully specified data matrix.

What is The Problem In Such Conversions?

- We have a data matrix X (m x n), we want to reduce it to m x k.
- If m is users and n is movies, it will give us a compact representation of users in movie space.
- We can use PCA.
- Also, to get the compact movie representation in terms of users, we can just transpose the matrix and run PCA again.
- SVD will do this jointly.

User Index	Godfather	Gladiator	Nero
1	1	1	1
2	7	7	7
3	3	1	1
4	5	7	7
5	3	1	?
6	5	7	?
7	3	1	?
8	5	7	?
9	3	1	?
10	5	7	?
11	3	1	?
12	5	7	?

- Correlation between Gladiator is Nero is extremely high.
- Correlation between Gladiator is Godfather is low.
- It's not possible to do PCA on this matrix because it is not fully specified.
- Let's make it fully specified by using the **average score** (column mean) for Nero which is 4.
- What happens to the covariance matrix?

	Godfather	Gladiator	Nero
Godfather	2.55	4.36	2.18
Gladiator	4.36	9.82	3.27
Nero	2.18	3.27	3.27

 Gladiator and Nero has low correlation, and Gladiator and Godfather has high correlation!

Latent Factor Models to the Rescue

- PCA could be thought as a matrix factorization:
- In general, we can factorize a data matrix.
 - You can factorize a matrix \mathbf{X} (m x n) in $\mathbf{U}\mathbf{V}^{\mathsf{T}}$.
 - **U** has dimensions mxk and **V** has dimensions nxk (if k is the rank of the matrix, such factorization will always exist).
 - U is a lower dimensional representation of X.
 - PCA can be thought of a factorization with some constraints: in U, covariances are minimized and variances are maximized.
 - SVD was $\mathbf{X} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{T}}$. You can see by putting the values $\boldsymbol{\Sigma}$ inside \mathbf{U} or \mathbf{V} , this is again the same formulation. The constraints are \mathbf{U} and \mathbf{V} are orthonormal. Then we will take those \mathbf{U} and \mathbf{V} columns that corresponds to the highest k values of $\boldsymbol{\Sigma}$ (to get a k rank approximation of the original matrix)
- We will assume the factorization will discover the latent properties in the data (for movies-users, this can be the genre).
- How to find U and V? How to handle missing values?

PCA: we will find out a projection matrix **P** such that $\mathbf{XP} = \mathbf{Y}$.

Original formulation was $\mathbf{X} = \mathbf{UV}^{\mathsf{T}}$.

Not hard to see that $(V^T)^{-1}$ would be **P**.

Matrix Factorization

- A matrix X (m x n) with rank k (k < min(m, n)) can always be factorized as X = $\mathbf{U}\mathbf{V}^{\mathsf{T}}$ where \mathbf{U} is mxk and \mathbf{V} is nxk.
- If we want a lower rank approximation (<k), we can still do the same, now $X \approx UV^T$
- How to find U and V?
- How to handle missing values?
- Let's try an iterative process:
 - Start with random matrices \mathbf{U} and \mathbf{V} ($\mathbf{U}\mathbf{V}^{\mathsf{T}}$ will obviously not equal \mathbf{X}).
 - At each step, calculate the approximation error: $J = 0.5 ||\mathbf{X} \mathbf{U}\mathbf{V}^{\mathsf{T}}||^2$ Frobenius norm
 - Depending on the error: adjust **U** and **V**.
 - Continue until E is less than a certain value.

What is the Error?

- $E = 0.5||X-UV^T||^2$
- Let's call UV^T as **D**. What is the dimension of **D**? m x n.
- What is an element of \mathbf{D} ? $\mathbf{r'}_{ij} = \sum_{s=1}^{n} u_{is} \cdot v_{js}$ What is J then? $\frac{1}{2} \sum_{s=1}^{m} \sum_{s=1}^{n} (r_{ij} \sum_{s=1}^{n} u_{is} v_{js})^2$
- But all values are not observed! in other words, you can not take that external sums.
 - Let's assume the set of observed values in **X** is S.
 - Then the sum becomes: $\frac{1}{2} \sum_{(i,j) \in S} \left(r_{ij} \sum_{s=1}^{k} u_{is} \cdot v_{js} \right)^2$
 - If we can find u_{is} and v_{js} from this, we have solved the unseen ratings problem!

How to Adjust U and V?

- Gradient descent: $\theta_{new} = \theta_{old} + \alpha \nabla E$
- Suppose I have a parameter θ . (with a value)
- I will find the gradient of the error with respect to θ .
- My new value for the parameter will be in the direction of the gradient, multiplied with some constant.
- This will give me the new value for the parameters.
- What are my parameters here? U and V themselves, more specifically, the values u_{is} and v_{is} .
- remember, $J = \frac{1}{2} \sum_{(i,j) \in S} e_{ij}^2 = \frac{1}{2} \sum_{(i,j) \in S} \left(r_{ij} \sum_{s=1}^k u_{is} \cdot v_{js} \right)^2$
- We will find out $\frac{\partial J}{\partial u_{iq}}$ and $\frac{\partial J}{\partial v_{jq}}$

Formal Algorithm for Matrix Factorization

Let's look at the informal version first:

Start with random matrices **U** and **V** (**UV**^T will obviously not equal **X**).

At each step, calculate the approximation error: J =

 $0.5||\mathbf{X} - \mathbf{U}\mathbf{V}^{\mathsf{T}}||^2$

Depending on the error: *adjust* **U** and **V**.

Continue until E is less than a certain value.

```
Algorithm GD(\text{Ratings Matrix: }R, \text{ Learning Rate: }\alpha) begin

Randomly initialize matrices U and V;

S = \{(i,j): r_{ij} \text{ is observed}\};

while \text{not}(\text{convergence}) do

begin

Compute each error e_{ij} \in S as the observed entries of R - UV^T;

for each user-component pair (i,q) do u_{iq}^+ \Leftarrow u_{iq} + \alpha \cdot \sum_{j:(i,j) \in S} e_{ij} \cdot v_{jq};

for each item-component pair (j,q) do v_{jq}^+ \Leftarrow v_{jq} + \alpha \cdot \sum_{i:(i,j) \in S} e_{ij} \cdot u_{iq};

for each user-component pair (i,q) do u_{iq} \Leftarrow u_{iq}^+;

for each item-component pair (j,q) do v_{jq} \Leftarrow v_{jq}^+;

Check convergence condition;

end

end
```

$$J = \frac{1}{2} \sum_{(i,j) \in S} e_{ij}^2 = \frac{1}{2} \sum_{(i,j) \in S} \left(r_{ij} - \sum_{s=1}^k u_{is} \cdot v_{js} \right)^2$$

$$\frac{\partial J}{\partial u_{iq}} = \sum_{j:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-v_{jq}) \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}$$

$$= \sum_{j:(i,j)\in S} (e_{ij})(-v_{jq}) \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}$$

$$\frac{\partial J}{\partial v_{jq}} = \sum_{i:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-u_{iq}) \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}$$

$$= \sum_{i:(i,j)\in S} (e_{ij})(-u_{iq}) \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}$$

What are the Possible Improvements?

Regularization

- Raters might have bias: some raters will always provide less score than the others.
- Movies might have bias: some movies will be popular across the board.
- These biases are unknown: you need to discover them from the data!
- Can we change the error function itself to capture this?
- Previously, $\mathbf{r'}_{ij} = \sum_{s=1}^{\kappa} u_{is} \cdot v_{js}$
- Now, $r'_{ij} = v_{o_i} + p_j + \sum_{s=1}^k u_{is} \cdot v_{js}$ o_i is the rater bias, p_j is the popularity bias.

 With that, we want to minimize: $\frac{1}{2} \sum_{i,j \in S} (r_{ij} o_i p_j \sum_{s=1}^k u_{is} v_{js})^2$ Note, o_i and p_j won't cancel out!

Constraints

If you cast SVD as a factorization problem, then you would want to have the constraints that **U** and **V** are orthonormal sets.

Summary

 Latent factor models work on a basic assumption: if you factorize a matrix and provide a low rank approximation, these low dimensional vectors would capture the latent reason for the data generation.

NERO	Julius Caesar	Patriot	Sleepless Seattle	Pretty Woman	Casablanca
1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	1	1	1
-1	-1	-1	1	1	1
-1	-1	-1	1	1	1
-1	-1	-1	1	1	1

3	11 3
history	romance
1	0
1	0
1	0
1	1
-1	1
-1	1
-1	1

User to genre mapping

Movie to genre mapping						
history	1	1	1	0	0	0
romance	0	0	0	1	1	1

Discovery of latent factors is equivalent of finding new basis vectors.

This is what brings everything together,.

Summary

- A basic latent factor model is equivalent of linear dimensionality reduction techniques with some caveats.
 - Does not hold the provable guarantees of PCA.
 - The basis vectors are not orthonormal, hard to come to a nice solution mathematically (remember for PCA we had to compute the eigen vectors of a matrix?).
 - Therefore, needs to be computed through iterative method.
- However, they are more general.
 - With addition of constraints, most linear dimensionality reduction techniques can be cast as a latent factor model.
 - Also, solves the problem of missing values nicely!

DNNs for Recommender Systems: A Very Basic Intro

- What is a DNN good for?
 - Finding representation in an unsupervised way.
 - Fusing different modalities (text, image, ratings).
- In content-based recommender systems, you can use a DNN to find a k dimensional representation.
 - This is same as finding the representation for a sentence from text.
- You can also fuse multiple modalities:
 - Because DNNs represent each image/text as a vector, it's not difficult to combine them (typically with a concatenation but other functions can be used).
- Collaborative filtering can also be improved using DNNs.

Lecture/Course Summary

This lecture

- There is a unified view of matrix factorization, linear dimensionality reduction.
- SVD and PCA are powerful tools, but understanding the underlying mathematics is also important.
 - This gives us the intuition to create new methods.

Course:

- **Sentiment Analysis**: What is the most complex part of the problem? Handling the context. "You are so bad, man!" . Also, going from word to sentence representation using ConvNet.
- **Dimensionality reduction and representation**: Representation is challenging; nonlinear methods (Word2Vec) are often better than the linear ones but hard to interpret and comes with no guarantee. Linear methods (PCA) has a nice guarantee of residual error minimization and variance maximization: but does not perform so well on words.
- **Recommender Systems**: Why they are important, SVD (joint optimization of basis vectors for row and column space), gradient descent (sort of).