Civilingeniøruddannelsen i velfærdsteknologi

COS Computersystemer

Lektion #2

Funktioner af enkelte bit

"Ikke" funktionen. Negationen. (NOT).

$$F = \overline{X} = NOT X$$

"Eller" funktionen. (OR).

$$F = X + Y = X OR Y$$

"Og" funktionen. (AND).

$$F = X \cdot Y = X AND Y$$

X	F
0	1
1	0

 X	Y	F
0	0	0
0	1	1
1	0	1
1	1	1

X	Y	F
0	0	0
0	1	0
1	0	0
1	1	1

Kombinerede funktioner

$$F = \overline{X} + Y \cdot Z$$

:
)

NOR og NAND

NOR - Not OR

 I	n		Out
 A		С	F
 0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

NAND - Not AND

 In			Out
 A	В	С	F
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

XOR

OR: "Den ene eller den anden eller begge to".

XOR: "Den ene eller den anden med ikke begge to".

XOR: De to input er forskellige.

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

$$F = A \oplus B = A XOR B$$

Logiske gates

Logiske Gates og deres sandhedstabeller:

Input	Output
I	F
0	1
1	0

In	puts		Output
	Α	В	F
	0	0	0
-65	1	0	0
10	0	1	0
	1	1	1

Inputs		Output
Α	В	F
0	0	1
1	0	1
0	1	1
1	1	0

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
Α	В	F
0	0	1
1	0	0
0	1	0
1	1	0

/

Inputs	Output	
Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

EXCLUSIVE NOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

Se:

Note på BB.

EXCLUSIVE OR

Feed-back

$$F := f(S, R, F)$$

$$\Downarrow$$

$$Hukommelse (Memory)$$

Flip-flops. 2 almindeligt forekommende flip-flop's

SR flip-flop:

Ing	out	Output
S	R	Q
0	0	Last Q
0	1	0
1	0	1
1	1	Udefineret

D flip-flop:

Ir	nput	Output
D	CLK	Q
X	0	Last Q
X	1	Last Q
0	1	0
1		1

D-flip-flop

En abstraktion

8 flip-flop's – 8 bit

Bits, bytes og main memory

bit 0/1

Bit:

- Mindst mulige mængde information.
- Kan antage 1 ud af 2 mulige værdier:
- 0 eller 1

Byte:

- Består af 8 bit.
- Kan antage 1 ud af 2⁸ mulige værdier.
- =256 mulige, forskellige værdier, mønstre eller koder.

Main memory

- Består af en række celler
- Hver celle kan indeholde 8 bit information
- Hver celle har en adresse

Repræsentation af tekst

- 1 byte kan antage 256 forskellige værdier.
- Der er 28 karakterer i alfabetet.
- Store og små karakterer + tal + special tegn + kontroltegn -> ca.
 127 forskellige tegn.
- For en nemheds skyld bruger vi 8 bit/karakter.
- ASCII tabel.
- For at skrive en tekst skal vi altså bruge en byte pr. tegn => En memorycelle pr. tegn.

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
32	00100000	040	20	SP	64	01000000	100	40	@
33	00100001	041	21	1	65	01000001	101	41	Α
34	00100010	042	22	•	66	01000010	102	42	В
35	00100011	043	23	#	67	01000011	103	43	С
36	00100100	044	24	\$	68	01000100	104	44	D
37	00100101	045	25	%	69	01000101	105	45	E
38	00100110	046	26	&	70	01000110	106	46	F
39	00100111	047	27		71	01000111	107	47	G
40	00101000	050	28	(72	01001000	110	48	Н
41	00101001	051	29)	73	01001001	111	49	I
42	00101010	052	2A		74	01001010	112	4A	J
43	00101011	053	2B	+	75	01001011	113	4B	K
44	00101100	054	2C		76	01001100	114	4C	L
45	00101101	055	2D	-	77	01001101	115	4D	M
46	00101110	056	2E		78	01001110	116	4E	N
47	00101111	057	2F	1	79	01001111	117	4F	0
48	00110000	060	30	0	80	01010000	120	50	P
49	00110001	061	31	1	81	01010001	121	51	Q
50	00110010	062	32	2	82	01010010	122	52	R
51	00110011	063	33	3	83	01010011	123	53	S
52	00110100	064	34	4	84	01010100	124	54	Т
53	00110101	065	35	5	85	01010101	125	55	U
54	00110110	066	36	6	86	01010110	126	56	V
55	00110111	067	37	7	87	01010111	127	57	W
56	00111000	070	38	8	88	01011000	130	58	X
57	00111001	071	30	٥	80	01011001	131	50	V

Talsystemer

10-tals systemet (decimal)

Basetal = 10

Det binære talsystem

Basetal = 2

16 talsystemet

Basetal = 16

10 ²	10^{1}	100

16² 16¹ 16⁰

Hexadecimale cifre

	В	it		Hex
3	2	1	0	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Α
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	Е
1	1	1	1	F

8 bit binære koder

- 8 bit: bit 0 bit 7
- 2⁸ = 256 mulige koder.
- Mindst mulige tal: $0 = 00000000_2$
- Størst mulige tal: $255 = 111111111_2$
- Eks.: $10100011_2 = 128 + 32 + 2 + 1 = 163$

Binær addition

Brøker (Fixed point)

Brøker i 10-tals systemet:

123,78

Brøker i det binære system: 4.4 system:

 $101,101_2 = 4 + 1 + 0,5 + 0,125 = 5,625$

Størst mulige tal: $15,9375 = 111111111_2$

Mindst mulige tal: $0 = 000000000_2$

2's complement

- Mulighed for negative tal
 - Størst mulige tal: 127 = 011111111₂
 - Mindst mulige tal: $-128 = 10000000_2$
- Addition
- Overflow

Computersystemer

Excess koder

Bit mønster	Værdi					
1111	7					
1110	6					
1101	5					
1100	4					
1011	3					
1010	2					
1001	1					
1000	0					
0111	-1					
0110	-2					
0101	-3					
0100	-4					
0011	-5					
0010	-6					
0001	-7					
0000	-8					
4 bit Excess 8 tab	4 bit Excess 8 tabel					

Bit mønster	Værdi			
111	3			
110	2			
101	1			
100	0			
011	-1			
010	-2			
001	-3			
000	-4			
3 bit Excess 4 tabel				

Floating point

$$V \approx rdi = s \cdot m \cdot 2^e$$

Eks.:

$$110111100_2 = -1.5$$

$$-1 \cdot 0.75 \cdot 2^1 = 1.5$$

Range:

7,5..0,0039, 0, -0,0039..7,5

Pas på afrunding!

Eks.:

$$3,125 \approx 01101100_2 = 3,00$$

$$3,125 \approx 01101101_2 = 3,25$$

Side 19

Spørgsmål?