

CODESYS V3.5

Настройка обмена с верхним уровнем

Руководство пользователя

24.05.2022

версия 3.0

Оглавление

Оглавление	3
1 Цель документа	4
2 Основные сведения о технологии ОРС	5
3 Настройка обмена через символьную конфигурацию	7
3.1 Настройка контроллера	7
3.2 Настройка CODESYS OPC Server V3	11
3.3 Особенности настройки ОРС UA-сервера	15
3.4 Подключение к облачному сервису OwenCloud	16
4 Настройка обмена по протоколу Modbus	23
4.1 Настройка контроллера	23
4.2 Настройка MasterOPC Universal Modbus Server	28
4.3 Настройка Owen OPC Server	34
5 Подключение OPC-сервера к MasterSCADA 3.x	39
5.1 Подключение OPC DA-сервера	39
5.2 Подключение OPC UA-сервера	42

1 Цель документа

Настоящее руководство описывает настройку обмена данными с верхним уровнем АСУ (SCADA-системами и другим ПО) для контроллеров OBEH с использованием технологии OPC. Руководство предназначено для пользователей с базовыми навыками работы в CODESYS V3.5, поэтому общие вопросы (например, создание и загрузка проектов) в данном документе не рассматриваются. Базовая информация приведена в руководствах CODESYS V3.5. Первый старт и CODESYS V3.5. FAQ, которые доступны на сайте OBEH в разделе CODESYS V3/Документация.

В документе рассматриваются вопросы подключения контроллеров ОВЕН, программируемых в **CODESYS V3.5**, к SCADA-системе <u>MasterSCADA 3.x</u> с использованием различных ОРС-серверов:

- CODESYS OPC Server V3 (протокол обмена символьный протокол CODESYS);
- <u>MasterOPC Universal Modbus Server</u> (протокол обмена **Modbus**);
- Owen OPC Server (протокол обмена Modbus);
- встроенный в ПЛК <u>OPC UA Server</u> (протокол обмена **OPC UA**).

Кроме того, рассматривается подключение контроллера к облачному сервису OwenCloud.

2 Основные сведения о технологии ОРС

Первая версия стандарта **OPC** была опубликована консорциумом OPC Foundation в 1996 году. Целью стандарта являлось создание унифицированного интерфейса для подключения устройств автоматизации к SCADA-системам. В то время в отрасли было относительно немного открытых промышленных протоколов, из-за чего большинство компаний разрабатывали собственные решения. Это, в свою очередь, затрудняло процесс интеграции приборов в SCADA-системы: разработчикам SCADA приходилось либо создавать и поддерживать множество коммуникационных драйверов, либо производители приборов были вынуждены разрабатывать драйвер для каждой SCADA, к которой предполагалось подключать их устройства.

Стандарт ОРС основан на технологии **OLE** (*Object Linking and Embedding*), разработанной компанией Microsoft для ОС Windows. Аббревиатура «OPC» означает OLE for Process Control (OLE для управления процессами). В стандарте описывается интерфейс обмена данными между ОРС-клиентом (SCADA-системой) и ОРС-сервером. ОРС-сервер – это специализированное программное обеспечение, установленное на ПК, которое опрашивает подключенные устройства по промышленным протоколам и предоставляет SCADA-системе доступ к данным этих устройств. Таким образом, производителям оборудования достаточно однократно разработать свой ОРС-сервер, чтобы обеспечить возможность подключения оборудования к любой SCADA-системе, поддерживающей технологию ОРС. Сейчас эту технологию поддерживает практически любая SCADA-система.

Стандарт ОРС оказал существенное влияние на рынок промышленной автоматизации. Но с развитием технологий стали проявляться некоторые его недостатки:

- привязка к технологиям Microsoft (OLE, DCOM и т.д.) сделала фактически невозможным использование OPC на других OC. Увеличение аппаратных характеристик ПЛК привело к желанию запускать OPC-серверы прямо на них но поскольку значительная часть контроллеров использует OC на базе Linux, то это желание было неосуществимо;
- сложность настройки связи OPC-сервера с OPC-клиентом, который запущен на другом ПК. Такой вариант подключения требует настройки службы DCOM, что в ряде случаев является довольно сложной задачей;
- отсутствие средств информационной безопасности. В период создания стандарта ОРС большинство систем автоматизации были локальными, и аспекты, связанные с удаленным доступом и обеспечением его защиты, практически не рассматривались.

Недостатки классической технологии ОРС привели к необходимости разработки нового стандарта. Он получил название **ОРС UA** (OPC Unified Architecture). Первая версия нового стандарта была представлена в 2006 году, и с тех пор он постоянно развивается и дополняется.

Ключевыми особенностями нового стандарта являются:

- кроссплатформенность OPC UA не использует проприетарных технологий, поэтому клиент и сервер могут быть запущены на устройствах с любыми ОС. В связи с этим аббревиатура OPC с введением нового стандарта стала расшифровываться как «Open Platform Communications»;
- *безопасность* подключение к серверу может быть защищено логином/паролем и требовать использования сертификатов;
- *удаленный доступ* сервер и клиент могут располагаться в разных сетях и быть связаны через Интернет с использование VPN и т. д;
- *функциональность* в рамках стандарта описан набор информационных моделей для работы с данными доступ к оперативным данным, чтение архивов, передача тревог и событий и т. д. Большинство этих моделей были разработаны еще для «классической»

- технологии OPC, но в рамках OPC UA для всех них используется единообразный механизм адресации и доступа к данным;
- удобство настройки ОРС UA-клиент при подключении к серверу считывает информацию о доступных параметрах и предоставляет ее пользователю. Соответственно, программисту не требуется добавлять и настраивать каждый параметр отдельно, а только отметить параметры, которые нужно использовать;
- принципиальным преимуществом нового стандарта по сравнению с классическим ОРС является снятие с ОРС-сервера роли шлюза между устройствами автоматизации, использующими промышленные протоколы, и SCADA-системами. Фактически ОРС UA сам представляет собой промышленный протокол, который применяется для обмена данными на среднем (контроллеры, панели оператора, модули ввода-вывода и т. д.) и верхнем (SCADA, облачные сервисы и т. д.) уровнях системы автоматизации.

Контроллеры OBEH поддерживают следующие варианты настройки обмена с использованием технологии OPC:

- **1**. использование **CODESYS OPC Server V3**, который входит в дистрибутив CODESYS. Преимущество этого варианта простота настройки обмена в проекте;
- 2. использование OPC-сервера с поддержкой протокола **Modbus** (например, **Modbus Universal Master OPC Server** от компании <u>ИнСАТ</u>). Этот вариант является наиболее сложным в настройке (в частности, из-за необходимости написания кода конвертации типов данных в программе ПЛК); обычно он используется, когда такой OPC-сервер уже входит в состав системы автоматизации;
- **3**. использование протокола **OPC UA**. Этот вариант является таким же простым в настройке, как и вариант 1, но значительно более функциональным (например, поддерживается передача тревог и защищенное соединение).

3 Настройка обмена через символьную конфигурацию

3.1 Настройка контроллера

Символьная конфигурация позволяет настроить обмен с:

- CODESYS OPC Server V3;
- ОРС UA-клиентом;
- облачным сервисом OwenCloud;
- устройством, поддерживающим символьный протокол CODESYS (например, его поддерживают панели оператора Weintek).

Ниже приведена инструкция по подготовке проекта с символьной конфигурацией, который будет использоваться в примерах:

- 1. Следует создать новый проект в CODESYS V3.5 (язык программы не имеет значения).
- 2. В программе PLC_PRG объявить следующие переменные:

```
PIC_PRG X

PROGRAM PLC_PRG

VAR

// Сигнал аварии
xVar: BOOL;
// Счетчик
iVar: INT;
// Температура
rVar: REAL;
END_VAR
```

Рисунок 3.1.1 - Объявление переменных в программе PLC_PRG

3. Добавить в проект компонент Символьная конфигурация:

Рисунок 3.1.2 – Добавление компонента Символьная конфигурация

При добавлении компонента пользователь может выбрать следующие настройки:

- Включить комментарии в XML если установлена галочка, то в файл символьной конфигурации будут включены комментарии к переменным;
- Поддержка функций OPC UA если установлена галочка, то в файл символьной конфигурации добавляется дополнительная информация, необходимая для поддержки функций OPC UA сервера. ОРС UA сервер поддерживается в следующих контроллерах OBEH: CПК1xx [M01] (начиная с прошивки 1.1.0611.1056), ПЛК2xx. См. также п. 3.3;
- Размещение данных клиента пользователь может выбрать структуру файла символьной конфигурации совместимую со старыми версиями CODESYS или оптимизированную. Оптимизированная структура поддерживается начиная с CODESYS V3.5 SP7. Более подробная информация о различиях в размещении описана в справке CODESYS.
- **4.** После добавления компонента **Символьная конфигурация** следует выполнить компиляцию проекта:

Рисунок 3.1.3 – Кнопка компиляции проекта после создания символьной конфигурации

В случае добавления в проект новых переменных для внесения изменений в символьную конфигурацию требуется предварительно выполнить повторную компиляцию проекта.

Компонент имеет следующие настройки:

Таблица 2.1 – Настройки компонента Символьная конфигурация

Настройка	Описание	Рекомендуемое значение		
Вкладка Ви,	Вкладка Вид (настройки фильтрации отображаемых переменных)			
Не конфигурируется из проекта	В случае выбора фильтра – в списке будут отображаться переменные проекта, доступные для добавления в символьную конфигурацию			
Не конфигурируется из библиотеки	В случае выбора фильтра – в списке будут отображаться переменные библиотек, доступные для добавления в символьную конфигурацию			
Символы, экспортируемые атрибутами	В случае выбора фильтра – в списке будут отображаться переменные проекта с атрибутом {attribute 'symbol' := 'read'}. См. подробнее в справке CODESYS			

Вкладка Установки			
Поддержка функций OPC UA	Если установлена галочка, то в файл символьной конфигурации добавляется дополнительная информация, необходимая для поддержки функций ОРС UA сервера . ОРС UA сервер поддерживается в следующих контроллерах ОВЕН: СПК1хх [М01] (начиная с прошивки 1.1.0611.1056), ПЛК2хх . См. также <u>п. 3.3</u> ;	Включено	
Включить комментарии в XML	Если установлена галочка, то в XML-файл символьной конфигурации будут включены комментарии к переменным	Включено	
Включить флаги узлов в XML	Флаги узлов пространств имен предоставляют дополнительную информацию о расположении узлов. Флаги узлов всегда экспортируются в символьную конфигурацию при включенной поддержке функций ОРС UA. Однако можно отключить их экспорт в XML-файл символьной конфигурации, так как у некоторых недоработанных парсеров могут возникнуть ошибки при их разборе	Отключено	
Задать комментарии и атрибуты	Команда позволяет детально настроить комментарии и атрибуты, которые будут экспортированы в XML-файл символьной конфигурации. См более подробное описание в справке CODESYS	Все галочки включены	
Настроить синхронизацию с МЭК- задачами	См. описание в <u>справке CODESYS</u>	Не настраивать	
Расположение	Пользователь может выбрать структуру файла символьной конфигурации — совместимую со старыми версиями или оптимизированную. Оптимизированная структура поддерживается начиная с CODESYS V3.5 SP7. Более подробная информация о различиях в размещении описана в справке CODESYS.	Оптимизированное расположение	
Использовать пустые доп. имена по умолчанию (V2-совместимость)	Опция позволяет создать символьную конфигурацию, совместимую с ОРС-сервером из дистрибутива CoDeSys V2.3	Отключено	
Включить прямой доступ к I/O	Опция позволяет получить доступ к переменным символьной конфигурации по АТ-адресам. Эта возможность является потенциально опасной и не должно использоваться на этапе эксплуатации (только на этапе наладки)	Отключено	
Вызовы в функции, ФБ, методы и программы	Если установлена галочка, то ОРС UA-клиент может осуществлять вызов функций, ФБ, методов и программ контроллера, работающего в режиме ОРС UA-сервера	Включено	
Включить информацию вызов в XML	Если установлена галочка, то в XML-файл символьной конфигурации будет включена информация, необходимая для вызова функций, ФБ, методов и программ	Отключено	
Включить наборы символов	Опция позволяет создавать в символьной конфигурации различные наборы символов. Таким образом, разные клиенты символьной конфигурации будут иметь доступ только к определенным переменным контроллера. В	В зависимости от того, требуется ли защитить доступ по ОРС UA с	

	помощью логина и пароля	
Вкладка Инструменты		
Сохранить XML-файл	Команда позволяет сохранить схему (.xsd) символьной конфигурации для импорта в другое ПО	

i

ПРИМЕЧАНИЕ

XML-файл формируется в директории проекта при выполнении команд К**омпиляция** или **Генерация кода**. В рамках примеров документа он не требуется (но, например, может требоваться для настройки обмена между контроллером и другим устройством, поддерживающим символьный протокол CODESYS).

5. Пометить галочками переменные, которые будут считываться/изменяться клиентом символьной конфигурации (ОРС DA-сервером, ОРС UA-клиентом, облачным сервисом OwenCloud) и указать для каждой из них права доступа.
Для прав доступа используются следующие пиктограммы:

только запись;

🧚 – чтение/запись.

ПРИМЕЧАНИЕ

Кроме ручного выбора в списке можно добавить переменные в символьную конфигурацию с помощью атрибута {attribute 'symbol' := 'read'}. См. подробнее в справке CODESYS.

ПРИМЕЧАНИЕ

В случае подключения к <u>OwenCloud</u> параметры с типом доступа **Только чтение** добавляются в группу опроса **Оперативные**, параметры с типом доступа **Чтение и запись** – в группы **Конфигурационные** и **Управляемые**.

Рисунок 3.1.4 – Выбор переменных в компоненте Символьная конфигурация

Настройка проекта завершена (на предупреждение «Задано 3 переменных, которые не используются в МЭК-коде» не следует обращать внимание — в рамках примера эти переменные действительно не используются в программе контроллера). Загрузите проект в контроллер.

3.2 Настройка CODESYS OPC Server V3

До релиза версии **CODESYS V3.5 SP17** OPC-сервер **CODESYS OPC Server V3** входил в дистрибутив 32-битных версий CODESYS. Начиная с версии **CODESYS V3.5 SP17** он исключен из дистрибутива, но может быть загружен отдельно из <u>CODESYS Store</u>.

До релиза версии **CODESYS V3.5 SP12** OPC-сервер **CODESYS OPC Server V3** распространялся бесплатно. Начиная с версии **CODESYS V3.5 SP12** использование OPC-сервера требует приобретения лицензии. Тем не менее, сборки OPC-сервера из ранних версий CODESYS могут использоваться и при работе со свежими версиями CODESYS. Пакет таргет-файлов OBEH включает в себя скрипт, который заменяет конфигурационные файлы OPC-сервера на эти же файлы из старых версий среды.

Таким образом:

- если вы используете версию **CODESYS < V3.5 SP17**, то после установки пакета таргетфайлов OBEH вы сможете работать с **CODESYS OPC Server V3** без активации лицензии;
- если вы используете версию CODESYS V3.5 SP17, то вам потребуется установить CODESYS OPC Server V3 отдельно (ссылка) и убедиться, что в директории установки вашей версии CODESYS появилась директория CODESYS OPC Server 3. После установки пакета таргет-файлов OBEH вы сможете работать с CODESYS OPC Server V3 без активации лицензии.

Для настройки OPC-сервера CODESYS OPC Server V3 следует:

1. Запустить приложение OPC Configurator (из меню Пуск или папки CODESYS OPC Server 3, расположенной в директории установки CODESYS).

Рисунок 3.2.1 – Запуск приложения OPC Configurator

2. Нажать ПКМ на узел Server и в контекстном меню выбрать команду Append PLC:

Рисунок 3.2.2 – Добавление контроллера в ОРС-сервер

3. На вкладке **PLC1** указать интерфейс, по которому будут связаны контроллер и OPC-сервер – **GATEWAY3** (Ethernet).

Рисунок 3.2.3 - Выбор интерфейса связи контроллера и ОРС-сервера

OPCConfig - C:\ProgramData\CoDeSysOPC\OPCServer.ini File Edit ? = ... Server Settings for connection to PLC1 PLC1 Edit Expert Connection Gateway: TCP/IP Address: localhost Port: 1217 Device: Parameter Value Comment
IpAddress 10.2.11.174 PLC address PLC address X Gateway ОК localhost IP address 1217 Port 0000 PLC name or address 굣 Use TCP/IP blockdriver 10.2.11.174 IP address of PLC IP port of PLC

4. На вкладке Connection нажать кнопку Edit и указать IP-адрес контроллера.

Рисунок 3.2.4 – Указание ІР-адреса контроллера

5. Сохранить настройки ОРС-сервера:

Рисунок 3.2.5 - Сохранение настроек ОРС-сервера

Настройка OPC-сервера завершена. Приложение OPC Configurator можно закрыть.

Теперь можно переходить к подключению OPC-сервера к SCADA-системе – см. п. 5.1.

ПРИМЕЧАНИЕ

При добавлении OPC-сервера **CODESYS OPC Server V3** в SCADA-систему может возникнуть следующая ошибка:

Рисунок 3.2.6 – Ошибка при добавлении OPC-сервера CODESYS OPC Server V3 в SCADAсистему

Это означает, что используемая версия ОРС-сервера требует лицензирования. См. информацию в начале пункта.

3.3 Особенности настройки ОРС UA-сервера

Для использования OPC UA-сервера достаточно при добавлении <u>символьной конфигурации</u> установить галочку **Поддержка функций OPC UA**. Других настроек в общем случае не требуется. После <u>п. 3.1</u> можно сразу переходить к подключению OPC UA-сервера к SCADA-системе – см. <u>п. 5.2</u>.

Дополнительная информация и ссылки:

- порт ОРС UA-сервера 4840;
- поддерживается аутентификация через логин/пароль и сертификат безопасности. См. видеопример и информацию по ссылке;
- начиная с версии V3.5 SP17 в полном объеме (начиная с V3.5 SP11 с ограничениями) поддерживается профиль OPC UA Alarm&Conditions для передачи тревог из компонента Конфигурация тревог в OPC UA-клиент. Единственное, что для этого требуется добавить в проект библиотеку CmpOPCUAProviderAlarmConfiguration. См. видеопример и информацию по ссылке;
- начиная с версии **V3.5 SP17** поддерживается профиль **OPC UA Methods** для вызова функций, ФБ, методов и программ контроллера со стороны OPC UA-клиента. См. видеопример;
- профиль **OPC UA Historical Access** в данный момент не поддерживается;
- вопросы производительности OPC UA-сервера рассмотрены в этой и этой статьях.

3.4 Подключение к облачному сервису OwenCloud

Облачный сервис OwenCloud не имеет никакого отношения к технологии OPC, но так как его настройка тоже выполняется через <u>символьную конфигурацию</u> – то разумно рассмотреть пример подключения к нему контроллера в рамках данного документа.

Для подключения контроллеров OBEH, программируемых в **CODESYS V3.5**, к сервису **OwenCloud** не требуется использования сетевых шлюзов линейки <u>Пх210</u>. Доступ к облачному сервису осуществляется через подключение контроллера к локальной сети с доступом в Интернет.

ПРИМЕЧАНИЕ

Для контроллеров **СПК1хх [M01]** подключение к **OwenCloud** через символьную конфигурацию поддерживается начиная с прошивки **1.1.0611.1056.** В более ранних версиях использовалось подключение через Modbus TCP — этот способ описан в предыдущих версиях документа и не поддерживается в актуальных прошивках. Для контроллеров **ПЛК2хх** подключение к **OwenCloud** поддерживается только через символьную конфигурацию.

Для подключения к OwenCloud следует:

1. Проверить сетевые настройки контроллера. В web-конфигураторе на вкладке Сеть/Интерфейсы для интерфейса, через который осуществляется подключение к OwenCloud, должен быть задан IP-адрес шлюза и DNS-сервера (например, Google Public DNS). Узнать адрес шлюза и локального DNS-сервера можно у сетевого администратора.

Рисунок 3.4.1 – Настройка IP-адреса шлюза и DNS-сервера в web-конфигураторе

Если контроллер имеет корректные сетевые настройки, то при выполнении пинг-запроса (вкладка **Сеть/Диагностика**) для адреса **gate.owencloud.ru** будут получены ответы:

Рисунок 3.4.2 - Результат выполнения пинг-запроса

В случае отсутствия ответа следует проверить сетевые настройки контроллера и коммутационного оборудования, к которому он подключен.

- 2. В CODESYS создать проект с символьной конфигураций согласно п. 3.1.
- 3. В узле OwenCloud на вкладке Конфигурация указать пароль, которым будут шифроваться передаваемые данные. Этот пароль потребуется при добавлении прибора в облачный сервис. На вкладке Соотнесение входов/выходов можно привязать переменные для диагностики связи с OwenCloud.

Рисунок 3.4.3 – Выбор пароля для шифрования данных

Таблица 3.1 – Описание каналов узла OwenCloud

Канал	Тип	Описание	
	Вкладка Конфигурация		
IP Address	ARRAY [03] OF BYTE	IP-адрес интерфейса контроллера, через который осуществляется связь OwenCloud . Значение 0.0.0.0 означает, что для связи может быть использован любой интерфейс	
Port	UINT	Порт контроллера, через который осуществляется связь с OwenCloud	
Password	STRING(64)	Пароль шифрования данных, который также указывается в OwenCloud при добавлении контроллера	
Server Address	STRING(40)	URL сервера OwenCloud. Параметр используется только при отладке, поэтому его значение следует редактировать только по рекомендации технической поддержки OBEH	
Archive update interval	UINT (1065535)	Период записи данных в архив (в секундах). Архив вычитается облачным сервисом после разрыва и восстановления связи с контроллером. В архив включаются параметры символьной конфигурации с типом доступа Только чтение	
Archive size	UINT (202000)	Размер архива в килобайтах. Для записи одной переменной (включая метку времени) используется от 20 до 34 байт (в зависимости от типа переменной)	
Timeout	UINT(1560)	Таймаут ожидания запросов от OwenCloud, который используется для детектирования отсутствия связи	
	Вкладка Соотнесение входов/выходов		
OwenCloud enabled	BOOL	Флаг «запущен сервис связи с облачным сервисом»	
Folder Error	BOOL	Ошибка превышения максимального количества папок в проекте. Под «папкой» в данном контексте подразумевается элемент пространства имен в символьной конфигурации — то есть если в символьной конфигурации привязаны переменные одной программы, то это соответствует одной папке, а если переменные пяти разных программ — то пяти папкам. Максимально допустимое число папок — 100	
Symbol Error	BOOL	Ошибка превышения максимального количества переменных, привязанных в символьной конфигурации. Максимально допустимое число переменных – 1000	
No Symbol Config	BOOL	TRUE — в проекте отсутствует компонент Символьная конфигурация , который необходим для обмена с OwenCloud, или в символьной конфигурации не выбрано ни одной переменной	
Status	OwenTypes. CLOUD_STATUS	Статус связи с облачным сервисом. Возможные значения: CONNECT – выполняется подключение к OwenCloud; COMM_OK – наличие обмена данными с OwenCloud; COMM_ERROR – отсутствие обмена данными с OwenCloud в течение таймаута (см. параметр Timeout); NO_COMM – связь с OwenCloud отключена (канал Enable OwenCloud имеет значение FALSE);	
Enable OwenCloud	BOOL	TRUE – связь с облачным сервисом включена, FALSE – связь с облачным сервисом отключена. Значение по умолчанию: TRUE	

- 4. Подключиться к контроллеру и загрузить в него проект с символьной конфигурацией.
- **5.** Зайти на главную страницу сервиса **OwenCloud**. Если вы еще не зарегистрированы в сервисе необходимо пройти процедуру регистрации.
- **6.** Перейти на страницу **Администрирование**, открыть вкладку **Приборы**, нажать кнопку **Добавить прибор** () и указать следующие настройки:
 - **Идентификатор** ввести заводской номер прибора (указан на корпусе прибора и отображается в web-конфигураторе на вкладке **Система/Состояние**);
 - Тип прибора выбрать тип **Автоопределяемые приборы ОВЕН/Программируемый контроллер**;
 - Название прибора ввести название прибора;
 - Категории выбрать категории, к которым будет принадлежать прибор;
 - Часовой пояс указать часовой пояс, в котором находится прибор.

Рисунок 3.4.4 – Окно добавления прибора

Нажать кнопку Добавить.

Управление прибором: SPK1xx Test Общие данные Настройки событий Настройки параметров Базовые настройки Расположение на карте Текущий идентификатор 80699181032410550 Тип прибора Программируемый контроллер Новый идентификатор Введите какое-либо из следующих значений: заводской номер прибора Пароль 123456 Название прибора* SPK1xx Test Категории

7. На вкладке Общие данные/Базовые настройки следует ввести пароль из пп. 2:

Рисунок 3.4.5 - Ввод пароля шифрования данных

GMT+3:00

Часовой пояс*

- 8. Следует нажать на пиктограмму , чтобы перейти к просмотру значений параметров прибора. Список переменных контроллера будет автоматически выгружен в OwenCloud.

v

Время на странице прибора будет смещаться в зависимости от часового

9. Изменить значения переменных в CODESYS и наблюдать соответствующие изменения в **OwenCloud**. В случае необходимости изменить значения из облачного сервиса следует перейти на вкладку **Запись параметров**.

Рисунок 3.4.6 - Просмотр параметров прибора

10. При импорте переменных в облачный сервис в качестве имен используются комментарии (русскоязычные комментарии поддерживаются). В случае отсутствия комментария в качестве имени параметра в облачном сервисе используется имя переменной из CODESYS.

Для возможности импорта комментариев в качестве имен следует в **установках** символьной конфигурации выбрать пункт **Задать комментарии и атрибуты** и установить все галочки:

Рисунок 3.4.7 – Настройка импорта комментариев переменных OwenCloud

Для изменения названия параметров в OwenCloud следует открыть меню **Управление прибором** и перейти на вкладку **Настройки параметров**. Для изменения имени параметра следует нажать пиктограмму . В этом же меню можно настроить отображение параметра на графиках, в таблицах и событиях. Для изменения названия папки следует нажать на пиктограмму.

Рисунок 3.4.8 - Просмотр параметров прибора

i

ПРИМЕЧАНИЕ

Количество допустимых параметров контроллера, импортируемых в OwenCloud, ограничено **1000**. При превышении этого значения часть параметров не будет импортирована и в узле **OwenCloud** на вкладке **Соотнесение входов-выходов** канал **Symbol error** примет значение **TRUE**.

i

ПРИМЕЧАНИЕ

Количество папок в конфигурации ограничено **100**. Под папкой подразумевается пространство имен в пути к параметру – например, имя программы. При превышении этого значения параметры из некоторых папок не будут импортированы и в узле **OwenCloud** на вкладке **Соотнесение входов-выходов** канал **Folder error** примет значение **TRUE**.

i

ПРИМЕЧАНИЕ

Поддерживается импорт только элементарных типов данных (за исключением STRING, WSTRING, DT, DATE, TOD, TIME, LTIME). Импорт перечислений, структур и их элементов, ФБ и их элементов, указателей, ссылок и т. п. не поддерживается.

i

ПРИМЕЧАНИЕ

Максимальная поддерживаемая длина комментария/имени переменной при импорте в OwenCloud – **32 символа**. В случае превышения этого значения лишние символы будут отсечены.

ПРИМЕЧАНИЕ

Параметры с типом доступа **Только чтение** добавляются в OwenCloud в группу опроса **Оперативные**, параметры с типом доступа **Чтение и запись** – в группы **Конфигурационные** и **Управляемые**.

4 Настройка обмена по протоколу Modbus

4.1 Настройка контроллера

В ряде случаев требуется настроить обмен между контроллером и OPC-сервером по протоколу **Modbus**. Обычно в этом случае контроллер используется в режиме **Modbus Slave**, а OPC-сервер выполняет роль **Modbus Master'a**.

В рамках примера рассматривается настройка обмена со следующими ОРС-серверами:

- MasterOPC Universal Modbus Server;
- Owen OPC Server.

Настройка с другими OPC-серверами по протоколу Modbus производится аналогичным образом.

Ниже приведена обзорная инструкция по подготовке проекта с **Modbus TCP Slave**, который будет использоваться в примерах. Более подробная информация по настройке компонентов Modbus приведена в документе **CODESYS V3.5. Протокол Modbus**.

- 1. Следует создать новый проект CODESYS V3.5 (язык программы не имеет значения).
- 2. Добавить в проект объединение с именем Real_Word (это связано с тем, что стандартные Modbus-компоненты CODESYS поддерживают только привязку переменных типа BOOL и WORD):

Рисунок 4.1.1 – Добавление в проект объединения

В объединении объявить переменную **rRealValue** типа **REAL** и массив **awModbusReal** типа **WORD**, содержащий два элемента:

```
Real_Word X

TYPE Real_Word :

UNION

realValue :REAL;

awModbusReal :ARRAY [0..1] OF WORD;

END_UNION

END_TYPE
```

Рисунок 4.1.2 – Объявление переменных объединения

3. В программе PLC PRG объявить следующие переменные:

```
PLC_PRG X
          PROGRAM PLC PRG
\Box
     3
              xDiscreteInput0:
                                   BOOL;
              xDiscreteInputl:
                                   BOOL;
     5
              wInputRegister0:
                                   WORD;
              uInputRegister12:
                                   Real_Word;
     8
     9
              xCoil0:
                                   BOOL;
    10
              xCoill:
                                   BOOL;
    11
    12
              wHoldingRegister0: WORD;
              uHoldingRegister12: Real_Word;
    13
    14
          END VAR
```

Рисунок 4.1.3 - Объявление переменных программы PLC_PRG

4. Добавить в проект компонент **Ethernet**.

$oxed{\mathbf{i}}$

ПРИМЕЧАНИЕ

Версия компонента не должна превышать версию таргет-файла контроллера.

Рисунок 4.1.4 – Добавление компонента Ethernet

Затем следует установить соединение с контроллером на вкладке **Device**.

Для этого нужно на вкладке **Конфигурация Ethernet** выбрать нужный сетевой адаптер контроллера:

Рисунок 4.1.5 – Настройки компонента Ethernet

5. В компонент Ethernet добавить компонент Modbus TCP Slave Device.

i

ПРИМЕЧАНИЕ

Версия компонента не должна превышать версию target-файла контроллера.

Рисунок 4.1.6 – Добавление компонента Modbus TCP Slave Device

В настройках компонента на вкладке **Страница конфигурации** следует установить галочки **Запись** (для возможности изменения coils и holding-регистров из программы контроллера) и **Дискретные битовые области** (для выделения coils и discrete Inputs в отдельные области памяти — по умолчанию они наложены на области holding-регистров/input-регистров соответственно).

Рисунок 4.1.7 – Настройки компонента Modbus TCP Slave Device

На вкладке Modbus TCP Slave Device Соотнесение входов/выходов привязать к регистрам переменные программы. У параметра Всегда обновлять переменные следует установить значение Включено 2.

Рисунок 4.1.8 - Привязка переменных к регистрам

В результате в контроллере будет сформирована следующая карта регистров:

Таблица 4.1 – Карта регистров контроллера

Область памяти	Адрес	Переменная	Тип переменной
Holding-регистры	0	wHoldingRegister0	WORD
	1-2	rHoldingRegister12	REAL (Real_Word)
Input-регистры	0	wHoldingRegister0	WORD
	1-2	rHoldingRegister12	REAL (Real_Word)
Coils	0	xCoil0	BOOL
	1	xCoil1	BOOL
Discrete Inputs	0	xDiscreteInput0	BOOL
	1	xDiscreteInput1	BOOL

Более подробно вопросы настройки и особенности работы компонента **Modbus Slave** рассмотрены в документе **CODESYS V3.5. Протокол Modbus**.

Созданный в данном пункте проект доступен для скачивания: Example_OpcModbus.zip

ПРИМЕЧАНИЕ

В рамках примера рассматривается обмен по протоколу Modbus TCP. В случае необходимости использовать протокол Modbus RTU следует вместо компонентов Ethernet и Modbus TCP Slave Device использовать компоненты Modbus COM и Modbus Serial Slave Device. Более подробная информация приведена в руководстве CODESYS V3.5. Протокол Modbus.

ПРИМЕЧАНИЕ

В режиме отладки значения переменных, привязанных к области coils и holding-регистров, можно изменить только с помощью команды **Фиксировать значения** (но не **Записать значения**). После записи фиксацию можно отключить. Это связанно с особенностями работы компонента **Modbus Slave Device** при установленной галочке **Запись**.

4.2 Настройка MasterOPC Universal Modbus Server

Для настройки ОРС-сервера следует:

- 1. Установить и запустить MasterOPC Universal Modbus Server.
- **2.** Нажать **ПКМ** на узел **Server** и добавить коммуникационный узел. В его настройках указать тип **TCP/IP** и сетевые настройки (**IP-адрес** и **порт**). Сетевые настройки должны соответствовать настройкам контроллера (см. <u>п. 4.1</u>, рисунки 4.1.5 и 4.1.7).

Рисунок 4.2.1 – Добавление коммуникационного узла

3. Нажать **ПКМ** на коммуникационный узел и добавить устройство. В настройках устройства указать адрес (если контроллер программируется в версии **CODESYS V3.5 SP16 Patch 3**, следует обязательно указать для **Modbus TCP Slave** адрес **0** или **255** (см. <u>подробности</u>); в более старых и новых версиях CODESYS можно указать любой адрес). По умолчанию период опроса устройства составляет 1000 мс – в случае необходимости можно изменить это значение.

Рисунок 4.2.2 – Добавление устройства

4. Нажать **ПКМ** на устройство и добавить 8 тегов в соответствии с <u>таблицей 4.1</u>. Настройки тегов приведены ниже.

Рисунок 4.2.3 – Добавление тегов в ОРС-сервер

Рисунок 4.2.4 – Настройки тега wHoldingRegister0

Рисунок 4.2.5 – Hастройки тега wHoldingRegister12 (порядок байт во Float отличается в ПЛК и OPC, поэтому требуется перестановка)

Рисунок 4.2.6 - Настройки тега wInputRegister0

Рисунок 4.2.7 – Hастройки тега wInputRegister12 (порядок байт во Float отличается в ПЛК и OPC, поэтому требуется перестановка)

Рисунок 4.2.8 – Настройки тегов xCoil0 и xCoil1 (для xCoil1 – адрес 1)

Рисунок 4.2.9 – Настройки тегов xDiscreteInput0 и xDiscreteInput1 (для xDiscreteInput1 – адрес 1)

Для проверки связи можно запустить OPC-сервер. Если OPC уже подключен к SCADA-системе, то он будет автоматически запущен при старте проекта SCADA.

Рисунок 4.2.10 - Команда запуска ОРС-сервера

Рисунок 4.2.11 – Успешный обмен между ПЛК и ОРС-сервером

ПРИМЕЧАНИЕ

Совместное использование **MasterOPC Universal Modbus Server** и библиотеки **OwenCommunication** для реализации в ПЛК **Modbus TCP Slave позволяют** организовать считывание с ПЛК файлов архивов и передачу их в SCADA-систему с помощью технологии OPC HDA.

См. следующие ссылки:

- пункт СПК1xx [M01] (Modbus TCP Slave) чтение файлов с помощью 20 функции Modbus в документе CODESYS V3.5 Протокол Modbus;
- демонстрацию данного функционала в рамках <u>вебинара про библиотеку</u> <u>OwenCommunication</u>;
- описание формата архивных файлов;
- пример создания архивного файла.

4.3 Настройка Owen OPC Server

Для настройки ОРС-сервера следует:

- 1. Установить и запустить Owen OPC Server.
- **2.** Нажать **ПКМ** на узел **Сервер** и добавить коммуникационный узел. В его настройках указать тип **Modbus TCP/IP**.

Рисунок 4.3.1 – Добавление коммуникационного узла

3. Нажать **ПКМ** на коммуникационный узел и добавить устройство. В настройках устройства указать сетевые настройки (**IP-адрес** и **порт** – см. <u>п. 4.1</u>, рисунки 4.1.5 и 4.1.7) и адрес (если контроллер программируется в версии **CODESYS V3.5 SP16 Patch 3**, следует обязательно указать для **Modbus TCP Slave** адрес **0** или **255** (см. <u>подробности</u>); в более старых и новых версиях CODESYS можно указать любой адрес). По умолчанию период опроса устройства составляет 1000 мс – в случае необходимости можно изменить это значение.

Рисунок 4.3.2 – Добавление устройства

4. Нажать **ПКМ** на устройство и добавить 8 тегов в соответствии с <u>таблицей 4.1</u>. Настройки тегов приведены ниже.

Рисунок 4.3.3 – Добавление тегов в ОРС-сервер

Рисунок 4.3.4 – Настройки тега wHoldingRegister0

Рисунок 4.3.5 – Hacтройки тега wHoldingRegister12 (порядок байт во Float отличается в ПЛК и OPC, поэтому требуется перестановка)

Рисунок 4.3.6 - Настройки тега wInputRegister0

Рисунок 4.3.7 – Hастройки тега wInputRegister12 (порядок байт во Float отличается в ПЛК и OPC, поэтому требуется перестановка)

Рисунок 4.3.8 – Настройки тегов xCoil0 и xCoil1 (для xCoil1 – адрес 1)

Рисунок 4.3.9 – Настройки тегов xDiscreteInput0 и xDiscreteInput1 (для xDiscreteInput1 – адрес 1)

Для проверки связи можно запустить OPC-сервер. Если OPC уже подключен к SCADA-системе, то он будет автоматически запущен при старте проекта SCADA.

Рисунок 4.3.10 - Команда запуска ОРС-сервера

Рисунок 4.3.11 – Успешный обмен между ПЛК и ОРС-сервером

5 Подключение OPC-сервера к MasterSCADA 3.x

5.1 Подключение OPC DA-сервера

Для подключения OPC DA-сервера к MasterSCADA 3.x следует:

- 1. Запустить MasterSCADA 3.x и создать новый или открыть существующий проект.
- 2. Нажать ПКМ на узел Система и добавить Компьютер (если он отсутствует в проекте).

Рисунок 5.1.1 – Добавление компьютера в проект SCADA

3. Нажать **ПКМ** на узел **Компьютер**, использовать команду **Вставить ОРС-сервер** и выбрать нужный ОРС DA-сервер:

Рисунок 5.1.2 - Добавление ОРС-сервера

4. Нажать **ПКМ** на добавленный ОРС-сервер и использовать команду **Вставить – ОРС переменные** или **Все переменные и группы**. В случае использования команды **ОРС переменные** потребуется в открывшемся окно выделить нужные переменные.

Рисунок 5.1.3 - Импорт тегов ОРС-сервера

5. В результате теги ОРС будут добавлены в дерево системы. Для проверки связи с ОРС следует запустить на исполнение проект SCADA.

Рисунок 5.1.4 – Отображение добавленных тегов в дереве системы

Для изменения значения тега следует два раза нажать **ЛКМ** на его текущее значение.

Рисунок 5.1.5 – Успешный обмен между SCADA и OPC-сервером

5.2 Подключение OPC UA-сервера

Для подключения OPC UA-сервера к MasterSCADA 3.x следует:

- 1. Запустить MasterSCADA 3.x и создать новый или открыть существующий проект.
- 2. Нажать ПКМ на узел Система и добавить Компьютер (если он отсутствует в проекте).

Рисунок 5.2.1 – Добавление компьютера в проект SCADA

3. Нажать **ПКМ** на узел **Компьютер** и использовать команду **Вставить ОРС UA сервер**:

Рисунок 5.2.2 - Добавление OPC UA-сервера

4. Перейти на вкладку **Настройки**, нажать кнопку **Настройки** и указать IP-адрес контроллера и порт OPC UA-сервера (4840). Нажать кнопку **Ок**. В случае необходимости защищенного подключения на этой же вкладке можно выбрать настройки безопасности и аутентификации (эти же настройки должны быть сделаны в проекте ПЛК).

Рисунок 5.2.3 – Настройки подключения к ОРС UA-серверу

5. Нажать кнопку **Подключиться**, дождаться импорта тегов, выделить нужные теги галочками и нажать **Применить**.

Рисунок 5.2.4 - Импорт тегов ОРС UA-сервера

6. В результате теги ОРС будут добавлены в дерево системы. Для проверки связи с ОРС следует запустить на исполнение проект SCADA.

Рисунок 5.2.5 – Отображение добавленных тегов в дереве системы

Для изменения значения тега следует два раза нажать ЛКМ на его текущее значение.

Рисунок 5.2.6 – Успешный обмен между SCADA и OPC-сервером