Extra Slides: LIS and LCS

Sec 101: MW 3:00-4:00pm DOW 1018

IA: Eric Khiu

- \blacktriangleright Given a sequence of numbers S, an increasing subsequence of S is a subsequence such that the elements are in strictly increasing order.
 - o One LIS of S = [0, 8, 4, 12, 5, 6, 3] would be [0, 4, 5, 6]
- ► Goal: Return the **length** of LIS of a given sequence
- ▶ **Discuss:** Why can't we solve this using divide and conquer?
 - Overlapping subproblem!

- Step 0: Dimensionality
 - ▶ 1-dimensional

	x_1 x_2		2	x_3		•••		x_{n-2}		x_{n-1}		x_n	
x_1		x ₂		<i>x</i> ₃				x_{n-2}		x_{n-1}		x_n	
	x_1	x_2		<i>x</i> ₃		•••	х	n-2		x_{n-1}		x_n	

- Step 1: Subject of recurrence
 - ▶ Attempt 1: L[i] = Length of LIS on subarray S[1, ..., i]
 - ▶ Problem: The subsequence chosen can be *very* ambiguous
 - **Example:** In [0, 8, 4, 12, 5], L[5] = 3, do we want [0, 4, 5] or [0, 8, 12]?
 - ▶ Problematic because when we consider the next element, 6, we can only append it to [0,4,5] and have L[6] = 4. If my L[5] means [0,8,12], then my L[6] is still 3
 - ▶ Reminder: In DP, we don't want to re-solve the same subproblem again

- Step 0: Dimensionality
 - ▶ 1-dimensional

	x_1		<i>x</i> ₃		x_n	1-2	x_{n-1}	x_n	
x_1		<i>x</i> ₂	<i>x</i> ₃	•••	$ x_{n-} $	x_1	n-1	x_n	
x_{i}	1	x_2	x_3	•••	$ x_{n-2} $	x_{i}	n-1	x_n	

- Step 1: Subject of recurrence
 - ▶ Attempt 2: L(i) = Length LIS on subarray S[1, ..., i] that ends at S[i]
 - ▶ Using the same example: [0, 8, 4, 12, 5], L[5] = 3
 - When we consider any future element at position k, we only have to check if it's greater than L[i] to decide if we want to append S[k] to that LIS ending at S[i]
- ► Step 2: Base case(s)
 - \blacktriangleright i = 1: L[i] = 1 (only one element)

L(i) = Length LIS on subarray S[1, ..., i] that ends at S[i]

- Step 3: Optimal Sub-solution
 - ▶ (1) We can append S[i] to any subsequence ending at S[j], j < i
 - \blacktriangleright (2) Only append if it is an increasing subsequence, i.e., S[j] < S[i]
 - ▶ [Optimal] Which subsequence to append to? The longest one! (across all j < i) $\max_{j:j < i} \{L(j): S[j] < S[i]\}$
- Therefore, we have the recurrence relation

$$L(i) = \begin{cases} 1 & \text{if } i = 1\\ 1 + \max_{j:j < i} \{L(j): S[j] < S[i]\} & \text{otherwise} \end{cases}$$

or equivalently,

$$L(i) = 1 + \begin{cases} 0 & \text{if } i = 1\\ \max_{j:j < i} \{L(j): S[j] < S[i]\} & \text{otherwise} \end{cases}$$

- What's next? From cookbook:
 - ► To fill in cell, which other cells do I look at? L[j] for all j < i
 - ▶ Which cell(s) contain the final answer? $\max_{i \in [1,n]} L[i]$

```
LIS(S[1,...,n]):
   allocate L[1,...,n]
   L[1] \leftarrow 1
   O(n^2)

for i=2,...,n do
   L[i] \leftarrow 1 + \max_{j:j < i} \{L(j) : S[j] < S[i]\} We need a for loop here

return \max_{i:1 \le i \le n} L[i]
```

Written more explicitly (good practice for actual coding)

```
LIS(S[1, ..., n]):
       allocate L[1,...,n]
       L[1] \leftarrow 1
       for i = 2, ..., n do
               m \leftarrow 0 // to keep track of max over j's
               for j = 1, ..., i - 1
                        if S[j] < S[i] and L[j] > l then
                                m \leftarrow L[j]
                L[i] \leftarrow 1 + m
       l \leftarrow 0
       for i = 1, ..., n do
               if L[i] > l then l \leftarrow L[i]
        return l
```

```
L(i) = \begin{cases} 1 & \text{if } i = 1 \\ 1 + \max_{j:j < i} \{L(j) : S[j] < S[i] \} & \text{otherwise} \end{cases} \text{LIS}(S[1, \dots, n]): \text{allocate } L[1, \dots, n] L[1] \leftarrow 1 \text{for } i = 2, \dots, n \text{ do} L[i] \leftarrow 1 + \max_{j:j < i} \{L(j) : S[j] < S[i] \} \text{return } \max_{i:1 \le i \le n} L[i]
```


- \blacktriangleright Given two strings A and B a common subsequence is a sequence that can be derived from both arrays in the same order without rearranging them.
- For example, A = "Go_Blue" and B = "Wolverines", a longest common subsequence is "ole"
- ► Goal: Return the **length** of LCS between the two strings

- Step 0: Dimensionality
 - ▶ 2-dimensional: One "pointer" for each string
- Step 1: Subject of Recurrence
 - ► L(i,j) = Length of LCS between A[1,...,i] and B[1,...,j]
 - ▶ Unlike LIS, we do not enforce the subsequence to end at A[i] nor B[j]
- ► Step 2: Base Case(s)
 - ▶ If i = 0 or $j = 0 \Rightarrow$ One of the string is empty $\Rightarrow L(i, j) = 0$

- Step 3: (Optimal) Sub-Solution
 - \blacktriangleright When considering L(i,j), we have two possibilities
 - ▶ (1) A[i] = B[j] Hooray the common subsequence is now longer! +1 and recurse into L(i-1, j-1)
 - ▶ (2) $A[i] \neq B[j]$ Discuss: Why is it not a good idea to just recurse into L(i-1,j-1) here?

A[i] or B[j] might still be part of the LCS!

- ▶ Two choices here: (a) Recurse into L(i, j 1) or (b) Recurse into L(i 1, j 1)
- ▶ Which one to choose? The **best** one!
- ► [Optimal] Maximization problem: Use max

```
L(i,j) = \max\{L(i-1,j), L(i,j-1)\}
```

▶ Putting everything together, we have the recurrence relation

$$L(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ 1 + L(i-1,j-1) & \text{if } A[i] = B[j] \\ \max\{L(i-1,j), L(i,j-1)\} & \text{otherwise} \end{cases}$$

- ▶ Sanity check: To fill in L(i,j), which cells do I (potentially) need to look at?
 - ► L(i-1,j-1), L(i-1,j), L(i,j-1)
- Now, suppose we have the DP table for L(i,j), which cell contains the final solution (length of LCS)?
 - ▶ L(n,m): Length of LCS between A[1,...,n] and B[1,...,m]

$$L(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ 1 + L(i-1,j-1) & \text{if } A[i] = B[j] \\ \max\{L(i-1,j), L(i,j-1)\} & \text{otherwise} \end{cases}$$

```
LCS(A[1, ..., n], B[1, ..., m]):
      Initialize an (n + 1) \times (m \times 1) table L
      L[0][j] \leftarrow 0 \text{ for } j = 1, ..., m
      L[i][0] \leftarrow 0 \text{ for } i = 1, \dots, n
      for i = 1, \dots, n do
            for i = 1, ..., m do
                  if A[i] = B[j] then L[i][j] \leftarrow 1 + L[i-1][j-1]
                  else L[i][j] \leftarrow \max\{L[i-1][j], L[i][j-1]\}
      return L[n][m]
```

		W	0	1	٧	е	r	i	n	е	s
	0	0	0	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	→ 1	1	1	1	1	1	1
	0	0	1	1	1	1	1	1	1	1	1
b	0	0	(1)	1	1	1	1	1	1	1	1
Ι	0	0	1	2	2	2	2	2	2	2	2
u	0	0	1	2	2	2	2	2	2.	2	2
e	0	0	1	2	2	* 3	3	3	3	3	3
!	0	0	1	2	2	3	3	3	3	3	→ 3

Runtime: O(nm)

Space Complexity: O(nm)