# The Euler-Lagrange Equation

Forest Kobayashi

Harvey Mudd College

April 1st, 2018





### Airlines

•000000

A Motivating Problem

► Time is fuel; fuel is money.





### Airline

000000

A Motivating Problem

Figure: Flight 1 (UPS9859), Saturday 03/23/2019





## Airline, cont.

A Motivating Problem

0000000

Figure: Flight 2 (FDX50252), Friday 03/22/2019





#### Some statistics:

- ► Total flight distance:
  - Flight 1: 4551km
  - Flight 2: 4670km
- ► Total flight time:
  - Flight 1: 5h 30min 7s
  - Flight 2: 5h 14min 6s
- ▶ Flight 2 went  $\sim 100$ km further, but arrived  $\sim 15$  faster!





## The difference:

A Motivating Problem

0000000





### The difference:

A Motivating Problem

0000000

Figure: Wind patterns at 70hPa during Flight 1





### The difference:

A Motivating Problem

000000

Figure: Wind patterns at 70hPa during Flight 2





## What's essential about this problem?

- ▶ Object of interest: a path  $\mathbf{x}(t) = (x(t), y(t), z(t))$ .
- ► Givens:
  - Region we can fly over (Pacific Ocean)
  - Start/end points (Honolulu/Anchorage)
  - Drag function:  $\mathbf{F}_D(t, \mathbf{x}(t), \dot{\mathbf{x}}(t))$
- ▶ Goal: find  $\mathbf{x}(t)$  minimizing total travel time.





## What's essential about this problem?

- ▶ Object of interest: a path  $\mathbf{x}(t) = (x(t), y(t), z(t))$ .
- ► Givens:
  - Region we can fly over (Pacific Ocean)
  - Start/end points (Honolulu/Anchorage)
  - Drag function:  $\mathbf{F}_D(t, \mathbf{x}(t), \dot{\mathbf{x}}(t))$
- ▶ Goal: find  $\mathbf{x}(t)$  minimizing total travel time.
  - Important: total travel time is an "accumulated cost"





# Translating to the General Case

### Flight Optimization:

- ▶ Object of interest:
  - Path  $\mathbf{x}(t)$
- ► Givens:
  - Domain: region of globe
  - End points: HNL, ANC
  - Drag:  $\mathbf{F}(t, \mathbf{x}(t), \mathbf{v}(t))$
- ► Goal: find  $\mathbf{x}(t)$  minimizing travel time





# Translating to the General Case

### Flight Optimization:

- ▶ Object of interest:
  - Path  $\mathbf{x}(t)$
- ► Givens:

A Motivating Problem

- Domain: region of globe
- End points: HNL, ANC
- Drag:  $\mathbf{F}(t, \mathbf{x}(t), \mathbf{v}(t))$
- Goal: find  $\mathbf{x}(t)$  minimizing travel time

### General:

- ▶ Object of interest
  - $\blacksquare$  A path  $\boldsymbol{q}:[t_0,t_f]\to X$
- ► Givens:
  - $\blacksquare$  Domain: some space X
  - End points:  $q(t_0)$ ,  $q(t_f)$
  - Cost func:  $\mathcal{L}(t, \boldsymbol{q}(t), \dot{\boldsymbol{q}}(t))$





### Overview

A Motivating Problem

 $\blacktriangleright$  We want to find some optimal path q(t) satisfying





## Wind



Figure: Wind Vector Field





Proof Sketch

000000

## "Cost" function



Formalizing the Problem





Proof Sketch

000000

### Shortest Time Path







000000

## Shortest Path



#### The statement

A Motivating Problem

### Theorem (Euler-Lagrange)

Let  $q(t): \mathbb{R} \to \mathbb{R}^n$  be a path. Then if q(t) is an extreme value of the functional

$$S(\mathbf{q}) = \int_a^b \mathcal{L}(t, \mathbf{q}(t), \dot{\mathbf{q}}(t)) dt$$

then q is a solution to the differential equation

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \right) = 0$$









