CLAIM AMENDMENTS

Please amend the claims as follows:

1. - **61**.(canceled)

1	62 .(new)	A method of processing colloidal size polytetrafluoroethylene resin
2	particles by plu	g flow in an unmelted state while in a hydrostatic coalescible condition to
3	produce biaxial	ly-planar oriented structures comprising the steps of:
4	a. re	eleasing said colloidal size polytetrafluoroethylene resin particles from
5	co	pagulated dispersion aggregates at high shear in a solvent to create a
6	m	nixture, wherein said particles are approximately 5 to 10 microns in size
7	aı	nd said solvent is capable of wetting polytetrafluoroethylene surfaces;
8	b. sı	abjecting said mixture to high shear mixing;
9	c. fi	ltering said mixture to retain approximately 17 to 20 percent liquid to form
10	a	hydrostatic pressure coalescible filter cake;
11	d. u	niaxially paste extruding said filter cake composition to produce a uniaxial
12	pl	lanar oriented polytetrafluoroethylene structure containing approximately
13	1	7 to 20 percent lubricant;
14	e. aj	pplying a means of re-orienting said uniaxially planar oriented
15	po	olytetrafluoroethylene structure containing approximately 17 to 20 percent
16	lu	abricant approximately 90 degrees to the initial uniaxial extrusion
17	di	irection.
•		
·1	63 .(new)	The method of claim 62 wherein the means of re-orienting is rolling.
1	64 .(new)	The method of claim 62 wherein the means of re-orienting is
2		calendering.
1	65 .(new)	The method of claim 62 wherein the means of re-orienting is
2.		blowing.

1	66 .(new)	The method of claim 62 wherein the means of re-orienting is re-
2		extrusion.
1	67 .(new)	The method of claim 62 wherein said biaxial planar oriented
2		polytetrafluoroethylene structure is a sheet.
•		
1	68 .(new)	The method of claim 62 wherein biaxial planar oriented
2		polytetrafluoroethylene structure is a tube.
1	69 .(new)	The method of claim 68 further comprising steps after step f of:
2	g. slitting	g said biaxial planar oriented polytetrafluoroethylene tubular
3	structi	are; and
4	h. laying	open said structure to form a sheet.
1	70 .(new)	The method of claim 62 further comprising the step after step b of:
1		g solid particulates approximately less than 25 microns in size during
2		
3	mixin	g to consist of up to 90 percent of a total solids volume.
1	71.(new)	A biaxially planar oriented structure formed by releasing said
2	colloidal size polyte	trafluoroethylene resin particles from coagulated dispersion
3	aggregates at high s	hear in a solvent to create a mixture, wherein said particles are
4	approximately 5 to	10 microns in size and said solvent is capable of wetting
·5	polytetrafluoroethyl	ene surfaces; subjecting said mixture to high shear mixing; adding
6	solid particulates approximately less than 25 microns in size during mixing to consist of	
7	up to 90 percent of	a total solids volume; filtering said mixture to retain approximately 17
8	to 20 percent liquid	to form a hydrostatic pressure coalescible filter cake; uniaxially paste
0	evtruding said filter	cake composition to produce a uniaxial planar oriented

polytetrafluoroethylene structure containing approximately 17 to 20 percent lubricant;

applying a means of re-orienting said uniaxially planar oriented polytetrafluoroethylene

10

11

structure containing approximately 17 to 20 percent lubricant approximately 90 degrees to the initial uniaxial extrusion direction wherein:

said means of re-orienting is rolling.

72.(new) A biaxially planar oriented structure formed by releasing said colloidal size polytetrafluoroethylene resin particles from coagulated dispersion aggregates at high shear in a solvent to create a mixture, wherein said particles are approximately 5 to 10 microns in size and said solvent is capable of wetting polytetrafluoroethylene surfaces; subjecting said mixture to high shear mixing; adding solid particulates approximately less than 25 microns in size during mixing to consist of up to 90 percent of a total solids volume; filtering said mixture to retain approximately 17 to 20 percent liquid to form a hydrostatic pressure coalescible filter cake; uniaxially paste extruding said filter cake composition to produce a uniaxial planar oriented polytetrafluoroethylene structure containing approximately 17 to 20 percent lubricant; applying a means of re-orienting said uniaxially planar oriented polytetrafluoroethylene structure containing approximately 17 to 20 percent lubricant approximately 90 degrees to the initial uniaxial extrusion direction wherein:

said means of re-orienting is calendering.

1	73.(new) A biaxially planar oriented structure formed by releasing said		
2	colloidal size polytetrafluoroethylene resin particles from coagulated dispersion		
3	aggregates at high shear in a solvent to create a mixture, wherein said particles are		
4	approximately 5 to 10 microns in size and said solvent is capable of wetting		
5	polytetrafluoroethylene surfaces; subjecting said mixture to high shear mixing; adding		
6.	solid particulates approximately less than 25 microns in size during mixing to consist of		
7	up to 90 percent of a total solids volume; filtering said mixture to retain approximately 17		
8	to 20 percent liquid to form a hydrostatic pressure coalescible filter cake; uniaxially paste		
9	extruding said filter cake composition to produce a uniaxial planar oriented		
10	polytetrafluoroethylene structure containing approximately 17 to 20 percent lubricant;		
11	applying a means of re-orienting said uniaxially planar oriented polytetrafluoroethylene		
12	structure containing approximately 17 to 20 percent lubricant approximately 90 degrees to		
13	the initial uniaxial extrusion direction wherein:		
14	said means of re-orienting is re-extrusion.		
1	74.(new) The biaxially planar oriented structure of claim 71 further		
2	comprising at least one electrically conductive particulate.		
1	75.(new) The biaxially planar oriented structure of claim 74 wherein:		
2	said at least one electrically conductive particulate is from a group of carbon,		
3	graphite and ceramic oxides.		
·1	76.(new) The biaxially planar oriented structure of claim 71 further		
2	comprising:		
3	inert particles.		
1	77.(new) The biaxially planar oriented structure of claim 72 further		
2	comprising:		
3	inert particles.		

1	7 8 .(new)	The biaxially planar oriented structure of claim 73 further
2		comprising:
3	inert particl	es.
1	79 .(new)	The biaxially planar oriented structure of claim 71 further
2		comprising polymeric resin particles.
1	80 .(new)	The biaxially planar oriented structure of claim 72 further
2		comprising polymeric resin particles.
1	81 .(new)	The biaxially planar oriented structure of claim 73 further
2		comprising polymeric resin particles.
1	82 .(new)	The method of claim 67 wherein said means of re-orienting is
2	rolling, further con	nprising a step after step b of:
3 ·	c. addii	ng solid particulates approximately less than 25 microns in size during
4	mixi	ng to consist of up to 90 percent of a total solids volume; and further
5	comp	prising a step after step f of:
6	g. lami	nating said biaxial planar oriented polytetrafluoroethylene structure by
. 7	comp	pression.
1	83 .(new)	The method of claim 67 wherein said means of re-orienting is
·2 ·	calendering, furthe	er comprising the step after step b of adding solid particulates
3	approximately less than 25 microns in size during mixing to consist of up to 90 percent of	
4	a total solids volun	ne, further comprising the step after step f of laminating said biaxial
5	planar oriented pol	lytetrafluoroethylene structure by compression.

1	84 .(new)	The method of claim 67 wherein said means of re-orienting is re-
2	extrusion, further con	mprising the step after step b of adding solid particulates
3	approximately less th	nan 25 microns in size during mixing to consist of up to 90 percent of
4	a total solids volume	, further comprising the step after step f of laminating said biaxial
5	planar oriented polyt	etrafluoroethylene structure by compression.
•		
1	85 .(new)	The method of claim 82 wherein said compression is at a pressure
2	ranging from 100 to	1,000 psi.
	•	
1	86 .(new)	The method of claim 83 wherein said compression is at a pressure
2	ranging from 100 to	1,000 psi.
1	,	The method of claim 84 wherein said compression is at a pressure
2	ranging from 100 to	1,000 psi.
	00 (The weether the Calaine 93 fearth an accommissing a stop of tar stop hofe
1	` ,	The method of claim 82 further comprising a step after step h of:
2	• •	ng heat up to 300 degrees Centigrade to plasticize and assist the
3	formin	g and shaping of the sheet.
1	89 .(new)	The method of claim 83 further comprising a step after step h of:
2	•	ng heat up to 300 degrees Centigrade to plasticize and assist the
3		g and shaping of the sheet.
J	10111111	g und shaping of the sheet.
1	90 .(new)	The method of claim 84 further comprising a step after step h of:
2	i. applyir	ng heat up to 300 degrees Centigrade to plasticize and assist the
3	formin	g and shaping of the sheet.

1	91 .(new)	The methods of claims 63, 64, 65 and 66 and 82 - 90 and 92 - 100
2		comprising drying and then sintering the fabricated structure at a
3		temperature above 342 not to exceed 400 degrees Centigrade.
1	92 .(new)	Methods of shaping hydrostatic pressure coalescible biaxially planar
2.		oriented polytetrafluoroethylene resin sheet structures, containing 17
3		to 20 percent lubricant, prepared by the process of 62 by the process
4		of claims 63, 64 and 66 and 82 - 90; by deep draw, vacuum and
5		compression; further assisted by the methods of claims 85 - 90.
1	93 .(new)	Deep drawing hydrostatic coalescible sheet containing 17 to 20
2		percent lubricant; prepared by claims 62, 63 and 66 and 82 - 90; by
3		fastening the sheet to the lip of a porous matched mold cavity and
4		slowly apply pressure to the male component to draw down and
5		conform the sheet to the mold cavity; dry the formed shape and free
6		sinter at 380 degrees Centigrade for 20 minutes; the part is form
7		stable and has a tensile strength of 5000 psi in any planar dimension.
1	94 .(new)	Vacuum forming lubricated sheet prepared by the methods of claims
2		64, 65 and 66 and 82 - 90 in a porous metal female mold cavity
3		similar to claim 79; the sheet is snuggly fastened to the lip of the
4		mold; a vacuum force applied through the porous metal to force the
.5		sheet to conform to the mold geometry; said formed sheet processed
6		further as in 79 with equivalent results.
1	95 .(new)	A method of forming a biaxially planar oriented diaphragm with
2		convex, concave, concentric ribs one inch in depth; in a porous metal
3		matched pair mold; by compressing a sheet of hydrostatic pressure
4		coalescible product of claims 63, 64 or 66 made according to the

5		method of claim 62; then dried and sintered as in 77; said	
6		diaphragms have exceptional flex fatigue life of the order of 10 times	
7		that of diaphragms that are not biaxially planar oriented.	
·1	96 .(new)	Porous biaxially planar oriented polytetrafluoroethylene matrix	
2.		structures employing the principles of claim 70 employing the	
3		fabrication methods of claims 63, 64, 66, 67 and 68 and 82 - 90	
4		wherein the particulate components are fugitive and added during	
5		claim 70 as part c; said fugitive pore formers are removable by	
6		dissolving in water (such as sodium chloride), chemical reaction	
7		(such as hydrochloric acid on calcium carbonate) or by thermal	
8		decomposition during sintering (such as methyl methacrylate);	
9		porosities of up to 90 percent are possible.	
1	97 .(new)	Biaxially planar oriented porous structures of claim 96 comprising at	
2	least one fugitive p	oore former.	
1	98 .(new)	Biaxially planar oriented porous structures of claim 96 containing a	
2	ceramic oxide, carbon or graphite (all electrically conductive materials).		
1	99 .(new)	The method of claims 96 and 97 wherein the fugitive pore former	
2	additive particle si	ze determines the resulting pore size.	
. 1	100 .(new)	A porous membrane structure of biaxially planar oriented	
2	polytetrafluoroethy	vlene of claim 96 wherein the structure contains polymeric particulate	
3	additives.		

i	101.(new) An asymmetric porous structure of biaxially planar oriented	
2	polytetrafluoroethylene accomplished during steps d and e of claim 62 employing two	
3	different particle size fugitive pore formers as in claims 97 - 99 added in steps d and e of	
4	claim 62; processing said composition according to claim 66; concluded by sintering said	
5	structure as in claim 91; removing fugitive pore former by leaching or chemical reaction	
5.	as in claim 96.	
1	102.(new) Product of 62 biaxially planar oriented with tensile strengths in all	
2	planar dimensions essentially equal.	
1	103.(new) Product of 62 containing solid particulate material homogeneously	
2	dispersed and free of a multiplicity of discrete lamellae oriented parallel to faces of	
3	processed structure, which may act as planar faults between lamellae.	
1	104.(new) Improvement of at least 20 percent in the burst strength of biaxially	
2	planar oriented tubing processed according to claim 68.	
1	105.(new) Product made according to claims 82 - 90 and formed by claims 92 -	
2	95, which posses exceptional form and dimensional stability as formed as well as after	
3	sintering; shrinkages in the plane of the surface range from 1 to 4 percent; the major	
4	shrinkage occurs in thickness, which has little influence on product shape.	

.1

2

Product made according to claim 62 possessing excellent resistance

to tear, and a constant rate of elongation with no detectable yield to failure in tension.