

HW3 Part 1

1. PCA Eigenvector Orthogonality

$$A\vec{x} = \lambda_1 \vec{x}$$

$$A\vec{y} = \lambda_2 \vec{y}$$

where A is a symmetric matrix, \vec{x} and \vec{y} are the eignvectors that correspond, respectively, to eigenvalues $\lambda 1$ and $\lambda 2$. Show mathematically that \vec{x} and \vec{y} must be orthogonal if the eigenvalues are different

$$\lambda_1 \vec{x^T} = A \vec{x^T}$$

$$\lambda_1 \vec{x^T} \vec{y} = \vec{x^T} A \vec{y} = \vec{x^T} \lambda \vec{y}$$

$$(\lambda_1 - \lambda_2) \vec{x^T} \vec{y} = 0$$

$$\vec{x^T} \vec{y} = 0$$