3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

ullet f is strictly convex if $\operatorname{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{dom} f$, $x \neq y$, $0 < \theta < 1$

Examples on R

t. R->R XER

f(x) = ax + b f(y) = ay + b

convex:

• affine: ax + b on \mathbf{R} , for any $a, b \in \mathbf{R}$

• exponential: e^{ax} , for any $a \in \mathbf{R}$

• powers:
$$x^{\alpha}$$
 on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$

 $H(x) = \times \log \frac{1}{x}$

• powers of absolute value: $|x|^p$ on \mathbb{R} , for $p \geq 1$ • negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

• affine: ax + b on **R**, for any $a, b \in \mathbf{R}$

• powers: x^{α} on \mathbf{R}_{++} , for $0 \le \alpha \le 1$

• logarithm: $\log x$ on \mathbf{R}_{++}

$$f: \mathbb{R}^n \to \mathbb{R}, \quad n \in \mathbb{R}^{m \times n} \to \mathbb{R}.$$

Examples on R^n and $R^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on
$$R^{n*}f(x) = \langle a, x \rangle + b$$

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_\infty = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function
$$f(X) = \langle A \times \rangle + B$$

$$f(X) = \mathbf{tr}(A^T X) + B = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

$$f: \mathbb{R}^{n} \to \mathbb{R}$$

First-order condition $f(x) = \frac{\partial f(x)}{\partial x} = \frac{\partial f(x)}{\partial x} = \frac{\partial f(x)}{\partial x} = \frac{\partial f(x)}{\partial x}$

f is **differentiable** if $\operatorname{dom} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right) \in \mathbb{R}^{n}$$

exists at each $x \in \operatorname{dom} f$

1st-order condition: differentiable f with convex domain is convex iff

first-order approximation of f is global underestimator

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$f: \mathbb{R}^{n} \to \mathbb{R}$$
. Second-order conditions

f is **twice differentiable** if $\operatorname{\mathbf{dom}} f$ is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{dom} f$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

nly if
$$\nabla^2 f(x) \succeq 0 \text{ for all } x \in \operatorname{dom} f$$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

- MAX+ BIT

quadratic function: $f(x) = (1/2)x^TPx + q^Tx + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \underline{\nabla^2 f(x) = P}$$
 convex if $P \succeq 0$
$$P \in S_+$$

$$||\alpha|/2 = < \alpha, \alpha >$$

least-squares objective: $f(x) = ||Ax - b||_2^2 = \langle A \times -b, A \times -b \rangle$ $= \langle A \times A \times -b \rangle - 2 \langle A \times A \times -b \rangle$

$$\nabla f(x) = 2A^{T}(Ax - b), \qquad \nabla^{2} f(x) = 2A^{T}A \in \mathcal{S}_{+}^{N}$$

convex (for any A) $-\int_{(x)} = 1|Ax - b|^2 + \frac{1}{2}||x||^2$

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{\mathbf{diag}}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{\left(\sum_{k} z_{k} v_{k}^{2}\right) \left(\sum_{k} z_{k}\right) - \left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \ge 0$$

since $(\sum_k v_k z_k)^2 \le (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality) $|\langle \mathbf{Q}, \mathbf{b} \rangle| \le |\langle \mathbf{Q}, \mathbf{b} \rangle| \le |\langle$

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave (similar proof as for log-sum-exp)

Epigraph and sublevel set

$$C_{\alpha} = \{x \in \operatorname{dom} f \mid f(x) \le \alpha\}$$

sublevel sets of convex functions are convex (converse is false)

• epigraph of $f: \mathbf{R}^n \to \mathbf{R}$:

$$\mathbf{epi}\,f = \{(x,t) \in \mathbf{R}^{n+1} \mid x \in \mathbf{dom}\,f, \ f(x) \le t\}$$

f is convex if and only if epi f is a convex set

$$f(x) = \chi(y(x))$$
, $f(x) = \chi(y(x))$

convex
$$f(x) = -\log x$$
, 1×50

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

$$-\left|m\left(\frac{1}{z}x+\frac{1}{2}y\right)\right| \leq -\frac{1}{z}\left|ayx-\frac{1}{z}\right|ay$$

extension: if f is convex, then

$$y = -f \cdot conacte$$

$$g(EE) \ge Eg(E)$$

for any random variable
$$z$$

$$f(\mathbf{E}z) \leq \mathbf{E}f(z) \qquad \qquad f(\mathbf{E}z) \qquad f(\mathbf{E}z) \qquad \qquad f(\mathbf{E}z) \leq \mathbf{E}f(z) \qquad \qquad f(\mathbf{E}z) \qquad f(\mathbf{E}z) \qquad f(\mathbf{E}z) \qquad f(\mathbf{E}z) \qquad f(\mathbf{E}z) \qquad f(\mathbf{E}z) \qquad \qquad$$

basic inequality is special case with discrete distribution $|\langle x,y \rangle| \leq ||x||_{\gamma}$

$$\operatorname{prob}(z=x)=\theta, \quad \operatorname{prob}(z=y)=1-\theta$$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$

3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine functionpointwise maximum and supremum
 - composition
 - minimization
 - perspective

negative lay - --

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+b) is convex if f is convex (f(x)) = -(f(x)) + (f(x)) +

$$\left(f(x) = -(ny \times) \right)$$

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x),$$
 dom $f = \{x \mid a_i^T x < b_i, i \neq 1, \dots, m\}$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x^T + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]}$ is ith largest component of x)

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then $g(x) = \sup_{x \in \mathcal{A}} f(x,y)$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} ||\underline{x - y}||$$

maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}_{_}^{n}$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} \underbrace{y^T X y}_{\text{in}} = \sum_{\text{in}} \underbrace{y_{\text{in}}}_{\text{in}} \underbrace{y_{\text{in}}}_{$$

Composition with scalar functions

composition of $g: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x)) = \log (x)$$

$$f(x) = \log$$

$$f''(x) = h''(g(x))g'(x)^{2} + h'(g(x))g''(x)$$

ullet note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- ullet 1/g(x) is convex if g is concave and positive

The conjugate function

the **conjugate** of a function f is

maximum gap between y'x and fix)

$$f^*(y) = \sup_{x \in \mathbf{dom} \, f} (y^T x - f(x))$$

- is convex (even if f is not)
 - will be useful in chapter 5

examples

• negative logarithm $f(x) = -\log x$

$$f(y) = \sup_{x>0} (xy + \log x) \quad \text{concave in } \\ = \begin{cases} -1 - \log(-y) & y < 0 \\ \infty & \text{otherwise} \end{cases}$$

• strictly convex quadratic $f(x) = (1/2)x^TQx$ with $Q \in \mathbf{S}_{++}^n$

$$f^*(y) = \sup_{x} \underbrace{(y^T x - (1/2)x^T Q x)}_{\text{CD N(QUL in } \times}$$
$$= \frac{1}{2} y^T Q^{-1} y$$
$$\text{U - Qx = 7}$$

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1-\theta)y) = f(x)^{\theta} f(y)^{1-\theta} \quad \text{for } 0 \le \theta \le 1$$
 f is log-convex if $\log f$ is convex

- powers: x^a on \mathbf{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

ullet cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

Properties of log-concave functions

ullet twice differentiable f with convex domain is log-concave if and only if

$$f(x)\nabla^2 f(x) \leq \nabla f(x)\nabla f(x)^T$$

for all $x \in \operatorname{\mathbf{dom}} f$

• integration: if $f: \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ is log-concave, then

$$g(x) = \int f(x, y) \ dy$$

is log-concave (not easy to show)

$$f: \mathbb{R}^n \to \mathbb{R}$$
. $f(Ax+(1-A)y) = Of(x) + (1-O)f(y)$: $f: convex$

Convexity with respect to generalized inequalities

$$f(\theta x + (1-\theta)y) \preceq_K \theta f(x) + (1-\theta)f(y)$$

 $f(\theta x + (1-\theta)y) \preceq_K \theta f(x) + (1-\theta)f(y)$ for $x, y \in \operatorname{dom} f, 0 \le \theta \le 1$ $\operatorname{xample} f: \mathbf{S}^m \to \mathbf{S}^m, \ f(X) = X^2 \text{ is } \mathbf{S}^m_+\text{-convex}$ of: for fixed $z \in \mathbf{R}^m$

$$z^{T}(\theta X + (1 - \theta)Y)^{2}z \le \theta z^{T}X^{2}z + (1 - \theta)z^{T}Y^{2}z$$

for $X, Y \in \mathbf{S}^m$, $0 < \theta < 1$

therefore $(\theta X + (1-\theta)Y)^2 \leq \theta X^2 + (1-\theta)Y^2$