Nhà cao tầng- Thiết kế coc khoan nhồi

High rise building - Design of bored piles

1. Phạm vi áp dụng

Tiêu chuẩn này áp dung cho thiết kế cọc nhồi, thi công bằng phương pháp khoan tao lỗ và đổ bê tông tai chỗ.

2. Yêu cầu chung

- 2.1. Tính toán sức chiu tải của cọc phải được thực hiện theo trang thái giới han của hai
 - a) Nhóm thứ nhất:
 - Về đô bền của kết cấu coc;
 - Về sức chiu tải của đất nền;
 - Về ổn định của đất nền quanh cọc khi cọc chịu tải trọng ngang
 - b) Nhóm thứ hai:
 - Về đô lún của nền móng coc do tải trong thẳng đứng gây ra;
 - Về chuyển vi của coc (hướng thẳng đứng, nằm ngang và góc xoay của đầu coc) cùng với đất nền do tác dụng của tải trọng thẳng đứng, tải trọng ngang và mômen;
 - Về hình thành và mở rộng vết nứt trong các cấu kiên bê tông cốt thép của móng coc.
 - Đối với công trình xây chen, cần xét đến những yếu tố có ảnh hưởng bất lợi đến người và các công trình ở khu vực lân cân và dư kiến những biên pháp xử lí thích hợp.

3. Dự tính sức chịu tải của cọc

- 3.1. Vấn đề chung
 - Sức chiu tải của cọc được dư tính dưa trên kết quả thí nghiêm mẫu đất trong phòng hoặc từ kết quả khảo sát bằng thiết bị thí nghiệm hiện trường.
 - Sức chịu tải của cọc bao gồm 2 thành phần: ma sát bên và sức chống dưới mũi coc:

$$\begin{aligned} Q_{u} &= Q_{s} + Q_{p} \\ Q_{u} &= A_{s} f_{s} + A_{p} q_{p} \text{ (lb)} \end{aligned} \tag{1a}$$

$$Q_{ij} = A_s f_s + \tilde{A}_p q_p (lb) \tag{1b}$$

Trong đó:

 Q_n - Sức chịu tải cực hạn của cọc;

Q_s - Sức chịu tải cực hạn do ma sát bên;

Q_p - Sức chịu tải cực hạn do mũi cọc;

f_s- Ma sát bên đơn vị giữa cọc và đất;

q_n- Cường độ chịu tải của đắt ở mũi cọc;

A_s- Diện tích của mặt bên cọc;

A_p- Diện tích mũi cọc.

c) Sức chịu tải cho phép của cọc tính theo công thức:

$$Q_{a} = \frac{Q_{s}}{FS_{s}} + \frac{Q_{p}}{FQ_{p}}$$

$$Q_{a} = \frac{Q_{u}}{FS}$$
(2a)

Trong đó:

 FS_s , FS_p và FS là hệ số an toàn. Giá trị của FS_s FS_p hoặc FS được lựa chọn tuỳ theo phương pháp tính.

- 3.2. Đánh giá sức chịu tải của cọc từ kết quả thí nghiệm trong phòng
 - a) Ma sát trên đơn vị diện tích mặt bên của cọc, f_s , tính theo công thức:

$$f_s = c_a + \delta_v K_s \tan \varphi_a \tag{3}$$

Trong đó:

c_a- Lực dính giữa cọc và đất;

 δ_v - Úng suất theo phương thang đứng do tải trọng của cột đất;

K_s - Hệ số áp lực ngang trong đất;

φ_a - Góc ma sát giữa cọc và đất nền.

b) Cường độ chịu tải của đất ở mũi cọc, q_p, tính theo Công thức:

$$q_p = cN_c + \delta_{vp} N_q + \gamma dN_{\gamma}$$
 (4)

Trong đó

 δ_{vp} - Úng suất theo phương thẳng đứng tại độ sâu mũi cọc;

 γ - Trọng lượng thể tích của đất nền;

A_p- Diện tích mũi cọc;

d- Đường kính tiết diện cọc;

 N_c , N_q , N_γ - Hệ số sức chịu tải phụ thuộc chủ yếu vào góc ma sát trong ϕ của đất và hình dạng mũi cọc.

Chú thích: Một số phương pháp tính toán p_q và f_s trong một số điều kiện thường gặp được trình bày trong mục 3.2.1 và 3.32.2

- 3.2.1. Sức chiu tải của coc trong đất dính
 - a) Sức chịu tải của mũi cọc trong đất dính được tính theo công thức:

$$q_p = N_c c_u \tag{5}$$

Trong đó:

- c_u- Sức chống cắt không thoát nước của đất nền, xác định theo kết quả thí nghiệm trong phòng hoặc thí nghiệm cắt cánh tại hiện trường;
- N_c- Hệ số sức chịu tải, lấy bằng 6,0.
 - b) Ma sát bên cọc trong đất dính tính theo công thức:

$$f_s = \alpha c_u \tag{6}$$

Trong đó:

 α - Hệ số không thứ nguyên, lấy bằng $0.3 \div 0.45$ cho sét dẻo cứng và bằng $0.6 \div 0.8$ cho sét dẻo mềm;

Chú thích: Trị giới hạn của fs trong đất dính lấy bằng 1kg/cm².

c) Hệ số an toàn khi sử dụng phương pháp nêu trong mục này lấy bằng;

$$FS = 2.5 \div 3.0$$

$$FSs = 2.0 \div 2.5$$

$$FSb 2.5 \div 3.0$$

- 3.2.2. Sức chịu tải của cọc trong đất rời
 - a) Sức chịu tải của mũi cọc trong đất rời được xác định theo công thức:

$$q_p = \delta_v N_q \tag{7}$$

Trong đó:

q_n – Cường độ chịu tải của đất dưới mũi cọc;

 δ_v - Úng suất hữu hiệu theo phương thẳng đứng tại độ sâu mũi cọc;

N_a- Hệ số sức chịu tải của cọc, xác định theo hình 1.

Chú thích: Giá trị của trong hình 1 lấy bằng $\varphi = \varphi_l - 3^0$ trong đó φ_l là góc ma sát trong của đất nền trước khi thi công cọc.

b) Ma sát bên của cọc trong đất rời được tính bằng:

$$f_s = K_s \delta_v \tan \varphi_a \tag{8}$$

Trong đó:

K_s- Hệ số áp lực ngang trong đất;

 $\delta_{\rm v}$ - Úng suất hữu hiệu tại độ sâu tính toán ma sát bên;

 $\varphi_{\rm a}$ - Góc ma sát giữa đất nền và mặt bên cọc.

c) Giá trị của $K_s \tan \varphi_a$ - xác định theo hình 3.

Chú thích: Giá trị của φ trong hình 2 lấy bằng $\varphi = \varphi'_1 - 3^0$ trong đó φ'_1 là góc ma sát trong của đất nền trước khi thi công cọc.

d) Cường độ chịu tải của đất dưới mũi cọc, q_p , và ma sát bên của cọc, f_s trong đất rời ở những độ sâu lớn hơn độ sâu tới hạn z_c được lấy bằng các giá trị tương ứng ở đô sâu tới han:

$$f_s (z > z_c) = f_s (z = z_c)$$

$$q_p (z > z_c) = q_p (z = z_c)$$

Chú thích: Độ sâu tới hạn xác định theo góc ma sát trong của đất nền (hình 2).

e) Hệ số an toàn khi sử đụng phương pháp nêu trong mục này có thể lấy bằng

$$FS = 2.5 \div 3.0$$

$$FS_c = 2.0 \div 2.5$$

$$FS_b = 2.0 \div 3.0$$

3.3. Đánh giá sức chiu tải của cọc theo kết quả xuyên tĩnh

- 3.3.1. Sức chịu tải của cọc trong đất dính
 - a) Tương quan giữa sức chống cắt không thoát nước của và sức chống xuyên q_c là:

$$c_{u} = q_{c} / 15 \tag{9}$$

Với giá trị của c_u xác định từ tương quan trên, sức chịu tải của cọc được tính toán theo phong pháp trình bày trong mục 3.2.1.

b) Hệ số an toàn khi sử dụng phương pháp nêu trong mục này có thể lấy bằng:

$$FS = 2.0 \div 3.0$$

$$FS_s = 1.5 \div 2.0$$

$$FS_b = 2.0 \div 3.0$$

- 3.3.2. Sức chịu tải của cọc trong đất rời
 - a) Ma sát đơn vị tác dụng lên mặt bên cọc, f_s kg/m², được dự tính từ sức chống xuyên đầu mũi, q_c dưới dạng:

$$f_s = n_s q_c \tag{10}$$

Trong đó: n_s là hệ số tương quan thực nghiệm, xác định theo bảng l.

Bảng 1 - Hệ số n_s

Loại đất	Sức chống xuyên q _c (kg/cm²)			
	25	100	200	
Cát sỏi	0,0125	0,008	0,0055	
Cát thô, cát trung	0,01	0,006	0,0043	
Cát mịn	0,007	0,005	0,003	

b) Cường độ chịu tải của đất dưới mũi cọc q_p được tính từ sức chống xuyên đầu mũi q_c theo tương quan:

$$q_p = n_p q_c \tag{11}$$

Trong đó: n_p là hệ số tương quan được xác định theo bảng 2

Bảng 2 - Hệ số n_p

T: #64	Sức chống xuyên q _c (kg/cm²)					
Loại đất	25	50	75	100	150	200
Cát sỏi	0,08	0,65	0,54	0,45	0,35	0,3
Cát hạt thô, cát hạt trung	0,70	0,55	0,45	0,36	0,27	0,23
Cát mịn, bụi	0,60	0,47	0,39	0,31	0,22	0,18

c) Hệ số an toàn khi sử dụng phương pháp nêu trong mục này có thể lấy bằng:

$$FS = 2.0 \div 3.0$$

$$FS_s = 1.5 \div 2.0$$

$$FS_b = 2.0 \div 3.0$$

3.4. Đánh giá sức chịu tải của cọc từ kết quả xuyên tiêu chuẩn (SPT)

Tuỳ theo điều kiện đất nền, sức chịu tải của cọc được tính theo các công thức nêu trong mục 3.4.1 hoặc 3.4.2.

- 3.4.1. Sức chịu tải của cọc trong đất rời.
 - a) Ma sát đơn vị tác dụng lên mặt bên cọc trong lớp đất có chỉ số xuyên tiêu chuẩn N được tính theo các tương quan:
 - * f_s = 0,018N (kg/cm²) cho cọc trong cát thô, cát trung, không sử dụng dung dịch f_s = 0,03N +0,1 (kg/cm²) cho cọc trong cát thô, cát trung, có sử dụng dung dịch bentonit.
 - b) Cường độ chiu tải của đất dưới mũi cọc được tính theo công thức:
 - * $q_p = K_1 N \text{ (kg/cm}^2) \text{ trong dó } K_1 \text{ là hệ số lấy theo bảng } 3$

Bảng 3 - Hệ số K₁

Loại đất	K ₁	Trị giới hạn của q _c (kg/cm²)
Cát sỏi	1,40	70
Cát hạt thô, cát hạt trung	1,10	55
Cát mịn, bụi	0,80	40

c) Hê số an toàn khi sử dung phương pháp nêu trong mục này có thể lấy bằng:

$$FS = 2.5 \div 3.0$$

$$FS_s = 2.0 \div 2.5$$

$$FS_b = 2.5 \div 3.0$$

3.4.2. Sức chịu tải cho phép của cọc, Q_a tấn, trong nền gồm các lớp đất dính và đất rời tính theo công thức:

(12)

$$Q_a = 1.5\overline{N}A_p + (0.15N_cL_c + 0.43N_sL_s)\Omega - W_p$$

Trong đó:

- N Chỉ số xuyên tiêu chuẩn của đất;
- N Chỉ số xuyên tiêu chuẩn trung bình <u>của</u> đất trong khoản<u>g</u> 1d dưới mũi cọc và 4d dưới mũi cọc. Nếu N > 60, khi tính toán N lấy N = 60; nếu N > 50 thì trong công thức (12) lấy N = 50;
- N_c Giá trị trung bình của chỉ số xuyên tiêu chuẩn trong lớp đất rời;
- $N_{\rm s}$ Giá trị trung bình của chỉ số xuyên tiêu chuẩn trong lớp đất dính;
- Ap Diện tích tiết diện mũi cọc, m²;
- Ls Chiều dài phần thân cọc nằm trong lớp đất dính, m;
- Lc Chiều dài phần thân cọc nằm trong lớp tất rời, m;
- $\boldsymbol{\Omega}\,$ Chu vi tiết diện cọc, m;
- Wp Hiệu số giữa trọng lượng cọc và trọng lượng của trụ đất nền do cọc thay thế, tấn.

4. Sức chịu tải của cọc theo vật liệu

- a) Cọc được thiết kế như cấu kiên chiu nén đúng tâm.
- b) Các chỉ tiêu tính toán của vật liệu và các yêu cầu về cấu tạo được lấy phù hợp với 'Tiêu chuẩn thiết kế kết cấu bê tông cốt thép kết hợp với các hệ số xét đến điều kiện thi công được quy định trong Tiêu chuẩn thiết kế móng cọc hiện hành.
- c) Sức chịu tải của vật liệu cọc, P, tính theo công thức

$$P = R_u A + R_{an} F_a \tag{13}$$

Trong đó:

 R_u - Cường độ tính toán của bêtông cọc nhồi, xác định như sau:

Đối với cọc đổ bê tông dưới nước hoặc dung dịch sét, $R_u = R/4,5$ nhưng không lớn hơn 60kg/cm^2 ;

Đối với cọc đổ bê tông trong lỗ khoan khô, $R_u = R/4,0$ nhưng không lớn hơn 70kg/m^2

R - Mác thiết kế của bê tông cọc, kg/cm²;

F_b - Diện tích tiết diện cọc

F_a - Diện tích tiết diện cốt thép dọc trục;

R_{an} - Cường độ như toán của cốt thép, xác định như sau:

- Đối với thép nhỏ hơn Φ 28mm, $R_{an} = R_c / l$,5 nhưng không lớn hơn 2200kg/cm²;
- Đối với thép lớn hơn Φ 28mm, $R_{an} = R_c / l$,5 nhưng không lớn hơn 2000kg/cm²

R_c - Giới hạn chảy của cốt thép, kg/cm²

Chú thích: Nên lựa chọn chiều sâu hạ cọc sao cho sức chịu tải của vật liệu cọc tương đương với sức chịu tải tính theo điều kiện đất nền.

5. Dự tính độ lún của công trình

- 5.1. Vấn đề chung
 - a) Độ lún của công trình khi thiết kế sơ bộ có thể được tính theo công thức thực nghiệm (điều 5.2.);
 - b) Trong thiết kế kĩ thuật độ lún công trình được dự tính bằng phương pháp bản tương đương (điều 5.3).
- 5.2. Phương pháp thực nghiệm
 - a) Độ lún của cọc đơn, p, m, với mũi cọc tựa vào lớp đất có sức chịu tải cao có thể dự tính theo công thức thực nghiệm:

$$\rho = d/100 + \left(Q_{ap} + \alpha Q_{as}\right) \frac{L}{AE_p}$$
(14)

Trong đó:

d- Đường kính cọc, m;

 α - Hệ số, phụ thuộc vào quy luật phân bố ma sát bên ở cấp tải trọng thiết kế (hình 4);

qap- Tải trọng truyền đến mũi cọc ở tải trọng thiết kế, tấn;

qas - Ma sát bên cọc ở tải trọng thiết kế, tấn;

L- Chiều dài cọc, m;

A- Diện tích tiết diện của cọc, t/m²;

 $E_{\rm p}$ - mô
đun đàn hồi của vật liệu cọc, t/m².

b) Độ lún của nhóm cọc, ρG được như theo công thức thực nghiệm:

$$p_G = \alpha_G. p \tag{15}$$

Trong đó:

 α_G - Hệ s lấy to bảng 4;

p Độ lún của cọc đơn, tính theo công thức 14.

Bảng 4- Hệ số α_G

B/d	1	5	10	20	40	60
$\alpha_{\scriptscriptstyle G}$	1	3,5	5	7,5	10	12

Chú thích: B là bề rộng của nhóm cọc

- 5.3. Phương pháp móng tương đương
 - a) Kích thước và độ sâu bản móng tương đương xác định theo hình 5.
 - b) Độ lún của móng tính theo công thức:

$$p_{G} = per + P_{c} \tag{16}$$

Trong đó:

per - Độ lún của đất phía dưới bản tương đương;

 $p_{\rm r}$ - Độ lún đàn hồi của cọc phía trên bản tương đương (giả thiết móng cọc dài cao).

c) Độ lún per được tính theo công thức;

$$\rho_{er} = F_0 \sum_{i=1}^n \varepsilon_1 h_1$$

(17)

Trong đó

 ϵ_{i} - Biến dạng tương đối của lớp phân tố i;

h_i- Chiều dày của lớp phân tố i;

 $F_{\scriptscriptstyle 0}$ - Hệ số điều chỉnh độ sâu đặt móng, xác định theo hình 6.

Hình 1 : Hệ số $N_{\rm q}$

Hình 2 : Quan hệ giữa $Z_{\rm c}/D$ và φ

của đất trước khi hạ cọc.

Cọc đóng : $\varphi = 0.75 \varphi_{\rm l}^{\prime} + 10^{\rm o}$

trong đó : $\varphi_{\mathbf{1}}'$ là góc ma sát trong

Cọc nhối : $\varphi = \varphi_1' - 3^{\circ}$

Hình 3 : Quan hệ giữa $K_s tan \varphi_a$ và φ 1. Cọc đóng ; 2. Cọc ép ; 3. Cọc nhồi.

Hình 4 : Hệ số a theo quy luật phân bố ma sát bên.

Hình 5: Móng tương đương;

- a. Nhóm cọc ma sát;
- b. Nhóm cọc đóng qua đất yếu vào đất cúng;
- c. Nhóm cọc chống.

Hình 6: Hệ số hiệu chỉnh Fo (theo Fox, 1948)