对外接口

添加数据

- 1.申请存储族,或设置 key
- 2.写数据
- 3.提交数据
- 4.返回操作结果

删除数据

- 1 . 设置 key
- 2.设置删除方式
- 3.提交数据
- 4.返回操作结果

读数据

- 1.设置 key
- 2.设置选择读取存储族还是单条数据
- 3. 提交读取数据
- 4.返回读取数据

更改数据

- 1 . 设置 key
- 2.设置更改方式
- 3.提交数据
- 4.返回操作结果

key 的组成

Device Code	IP	Save speed	isFull
1	192.168.1.1	5	0
2	192.168.2.1	5	0
3	192.168.2.2	6	0

head_id	组成员	存储族数量	存储片大小	sub_id
1	192.168.1.1 x 192.168.2.1 x 192.168.2.2 x	1024	4M	1
1	192.168.1.1 x 192.168.2.1 x 192.168.2.2 x	1024	4M	2

存储族表

Id = (head_id << 16) + sub_id

存储原则:

1.就近存储

总控原则

1. 不主动连接控制层

控制原则:

- 1. 树形组织控制层
- 2. 新结点容纳旧树
- 3. 上层主动连接下层

总控层

控制层

被控/控制层

被控/控制层

. . .

被控层

(也是下一层的控制层)

控制模块特点

上层拥有下层数据 下层懒加载上层或同层拓扑表

控制层形成的过程 - 单个结点的进入

控制层形成的过程 - 多个结点的进入

容纳旧结点后,更新设备 id

存储族的形成

按照最近原则,在数据的入口处寻找最近的设备,确定设备码,由此设备分配存储族。

此设备查找拓扑表,寻找速度最快的两个设备,形成存储族。

存储族由三个存储单元构成,区分等级。由最高等级者维护三者关系。

一个存储族由三个存储单元构成