FAQ

Module-6	
Question 1.	What is the primary purpose of a Trie in string
	operations?
Answer	The Trie data structure is a tree-based data structure
	that is often used for the purpose of storing a dynamic
	collection of strings. It enables rapid searching of words
	and retrieval of prefixes. It may be quite advantageous
	for applications such as dictionaries or auto-complete
	functionalities.
Question 2.	What is the role of Huffman Coding in the field of
	data compression?
Answer	The Huffman Coding algorithm is a lossless method of
	data compression that involves the assignment of
	variable-length codes to input characters, with thelength
	of each code determined by the frequency of the
	corresponding letter. In the context of coding, it is
	observed that characters with higher frequency tend to
	be assigned shorter codes, whilst characters with lower
	frequency are assigned longer codes. The variation in

	code length leads to effective storageand data
	compression.
Question 3.	In the context of words and their relationships,
	why are Graphs useful?
Answer	Graphs may be used to depict the connections or
	associations between different items. Graphs are a
	useful tool for representing various linguistic links, such
	as synonyms, antonyms, translations, and so on. In this
	system, nodes are used to represent individual words,
	while edges are used to denote the links between these
	words. This graphical representation facilitates the
	visualisation and processing of queries relating to
	words.
Question 4.	What are the differences between storing graphs
	and other datastructures?
Answer	The storage of graphs might vary based on the specific
	use case. Adjacency matrices and adjacency lists are two
	widely used techniques in the field. Theadjacency matrix
	is a two-dimensional array in which the element at
	position[i][j] is assigned the value '1' (or 'true') if there
	exists an edge between vertices i and j. Conversely, if

	•
	there is no edge between vertices i and j, the element is
	assigned the value '0' (or 'false'). In contrast, an
	adjacency list is a data structure consisting of an array
	that contains many lists. The list located at index 'i'
	comprises all vertices that are next to the vertex
	denoted by index
	i. The selection between the two options is mostly
	contingent upon the density of the graph and the
	required procedures.
Question 5.	What are the fundamental traversal techniques
	used in Graph theory?
Answer	used in Graph theory? Depth-First Search (DFS) and Breadth-First Search (BFS)
Answer	
Answer	Depth-First Search (DFS) and Breadth-First Search (BFS)
Answer	Depth-First Search (DFS) and Breadth-First Search (BFS) are the two primary traversal techniques used in graph
Answer	Depth-First Search (DFS) and Breadth-First Search (BFS) are the two primary traversal techniques used in graph theory. The Depth-First Search (DFS) algorithm is
Answer	Depth-First Search (DFS) and Breadth-First Search (BFS) are the two primary traversal techniques used in graph theory. The Depth-First Search (DFS) algorithm is characterised by its approach of exploring a branch as
Answer	Depth-First Search (DFS) and Breadth-First Search (BFS) are the two primary traversal techniques used in graph theory. The Depth-First Search (DFS) algorithm is characterised by its approach of exploring a branch as much as possible before backtracking. In contrast, the
Answer	Depth-First Search (DFS) and Breadth-First Search (BFS) are the two primary traversal techniques used in graph theory. The Depth-First Search (DFS) algorithm is characterised by its approach of exploring a branch as much as possible before backtracking. In contrast, the Breadth-First Search (BFS) algorithm is distinguished by