Pontificia Universidad Católica del Perú.

Escuela de Posgrado: Maestría en Matemáticas

<u>Temas de Geometría</u> (MAT 747)

Tarea 1: parte 2

Primer Semestre 2019

Indicaciones Generales:

Fecha de Entrega: 11 de Junio, 2019.

Problema 1. Considere la esfera de Whitney $S_W^n \subset \mathbb{R}^{2n}$ definida como la imagen de la esfera $S^n \subset \mathbb{R}^{n+1}$ vía la aplicación

$$F: \mathbb{R}^{n+1} \to \mathbb{R}^{2n}$$

definida vía $(x_0, ..., x_n) \mapsto (x_1, ..., x_n, 2x_0x_1, ..., 2x_0x_n)$.

- 1. Muestre que F restringido a S^n es una inmersión.
- 2. Muestre que S_W^n es un lagrangiano en (\mathbb{R}^{2n},ω) con ω la forma simpléctica estándar en \mathbb{R}^{2n} .
- 3. Considere la imagen de S^n en \mathbb{R}^{2n+1} vía el mapa $(x_0, \ldots, x_n) \mapsto (2x_0x_1, \ldots, 2x_0x_n, x_1, \ldots x_n, x_0 4/3(x_0)^3)$. Muestre que este mapa es un encaje.
- 4. Muestre que la imagen de la esfera vía este mapa, la esfera de Whitney de contacto es un legendriano en $(\mathbb{R}^{2n+1}, \eta)$ con la estructura de contacto estándar de \mathbb{R}^{2n+1} .

Problema 2. Muestre que una variedad M con una 1-forma $\eta \in \Omega(M)$ define una estructura de contacto si y solo si la 2-forma $d(r^2\eta)$ define una estructura simpléctica sobre el cono $C(M) = M \times \mathbb{R}^+$. (Sugerencia: ver el problema 6 –inmediatamente después del problema 5–de la parte 1 de la tarea 1.)

Problema 3. Considere Sp(2n), O(2n) y $GL(n, \mathbb{C})$. Muestre que la intersección de cualquiera dos de ellos es igual a U(n).

Problema 4. Muestre que toda variedad casi compleja es orientable.

Problema 5. Muestre que todo función holomorfa definida globalmente sobre una variedad compleja compacta es constante. (Sugerencia: use el principio del módulo máximo.)

Problema 6. Muestre el grassmaniano complejo tiene estructura de variedad compleja.

San Miguel, 4 de mayo, 2019.