Számsorozatok 3.

2020. szeptember 16.

Határérték (ism.)

Definíció. Az (a_n) sorozat KONVERGENS és HATÁRÉRTÉKE A, ha

$$\forall \varepsilon > 0$$
-hoz $\exists \mathit{N} = \mathit{N}(\varepsilon)$ (küszöbindex) melyre

$$n > N \implies |a_n - A| < \varepsilon.$$

Jelölés: $\lim_{n\to\infty} a_n = A$.

Definíció. Ha (a_n) nem konvergens, akkor DIVERGENS

- 1. típusú divergencia. $(a_n) \pm \infty$ -HEZ TART (divergál!).
- 2. típusú divergencia. (a_n) elemei TÖBB PONT KÖRÜL TORLÓDNAK.

Konvergencia és korlátosság (ism.)

Állítás. Ha (a_n) konvergens, akkor korlátos.

Állítás.

- 1. Ha $(a_n) \nearrow \acute{e}s$ felülről korlátos, akkor konvergens.
- 2. Ha $(a_n) \setminus \text{\'es alulr\'ol korl\'atos}$, akkor konvergens.

Bolzano-Weierstrass tétel.

Minden $korlátos(a_n)$ sorozatnak van konvergens részsorozata.

Cauchy sorozat

Definíció. (a_n) eleget tesz a CAUCHY FELTÉTELnek (vagy CAUCHY KRITÉRIUMnak), ha:

$$\forall \varepsilon > 0$$
-hoz $\exists N = N(\varepsilon)$ küszöbindex, melyre $\forall n, m \geq N$ esetén $|a_n - a_m| < \varepsilon$.

Ha (a_n) kielégíti a Cauchy feltételt, akkor CAUCHY SOROZAT.

Cauchy sorozat és konvergencia

Tétel. Ha (a_n) konvergens, akkor Cauchy sorozat.

Bizonyítás. Tfh (a_n) konvergens, és $\lim_{n\to\infty} a_n = A$...

Legyen $\varepsilon > 0$ tetszőleges.

Ekkor ∃N küszöbindex, melyre

$$\forall n, m > N : |a_n - A| < \frac{\varepsilon}{2}, |a_m - A| < \frac{\varepsilon}{2}.$$

Ekkor

$$|a_n-a_m|=|(a_n-A)+(A-a_m)|\leq |a_n-A|+|a_m-A|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Tétel. (Az előző Tétel megfordítása) Ha (a_n) Cauchy sorozat, akkor konvergens.

Bizonyítás. Két Lemmán múlik. Ezek bizonyítása a jegyzetben van.

- 1. Lemma. Ha (a_n) eleget tesz a Cauchy kritériumnak, akkor korlátos.
- 2. Lemma. **Ha** az (a_n) Cauchy sorozatnak *van konvergens* (a_{n_k}) *részsorozata*, és $\lim_{k\to\infty} a_{n_k} = A$,

akkor (a_n) is konvergens, és $\lim_{n\to\infty} a_n = A$.

A Tétel bizonyítása.

Tfh (a_n) Cauchy-sorozat.

- 1. 1. Lemma \Longrightarrow korlátos.
- 2. A *B-W tétel* miatt $\exists (a_{n_k})$ konvergens részsorozata.
- 3. 2. Lemma \implies az eredeti sorozat is konvergens.
- (a_n) konvergens \iff (a_n) Cauchy sorozat.

Cauchy sorozat, példa

$$a_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}.$$

Becsüljük meg az *n*-dik és 2*n*-dik tag különbségét:

$$a_{2n} - a_n = \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{1}{2n} = \frac{1}{2}.$$

$$\implies a_{2n}-a_n>\frac{1}{2} \qquad \forall n.$$

$$\varepsilon = \frac{1}{2}$$
 esetén Cauchy kritérium. \implies (a_n) nem konvergens.

Vajon
$$a_n = \sum_{k=1}^n \frac{1}{k} \rightarrow ?$$

Konvergencia monotonitása

Állítás. Tegyük fel, hogy az (a_n) és (b_n) sorozatok konvergensek,

$$\lim_{n\to\infty}a_n=A,\qquad \lim_{n\to\infty}b_n=B.$$

Ha

$$a_n < b_n \qquad \forall n \in \mathbb{N},$$

akkor $A \leq B$.

Bizonyítás. Triviális.

Konvergencia monotonitása, kiegészítések

1. Megjegyzés.

$$a_n < b_n \quad \forall n \in \mathbb{N}, \implies A \leq B$$

Bár a feltételben szigorú egyenlőtlenség van, mégis A = B lehet.

Példa:

$$a_n = \frac{1}{n^2}$$
 < $\frac{1}{n} = b_n$, $n > 1$

2. *Megjegyzés.* $a_n < b_n \qquad \forall n \in \mathbb{N}$ helyett elegendő

$$a_n < b_n \qquad \forall n \geq N$$

Rendőr-elv

Tétel. Tfh (a_n) és (b_n) közrefog egy harmadik sorozatot:

$$a_n \leq c_n \leq b_n \qquad \forall n \in \mathbb{N}.$$

Tfh (a_n) és (b_n) konvergensek:

$$\lim_{n\to\infty}a_n=A,\qquad \lim_{n\to\infty}b_n=A.$$

Ekkor (c_n) is konvergens, és $\lim_{n\to\infty} c_n = A$.

Rendőr-elv, bizonyítás

arepsilon > 0 tetszőleges. Ekkor létezik $\exists N_1$ küszöbindex, melyre

$$|a_n - A| < \varepsilon \quad \text{ha } n \ge N_1,$$

speciálisan $a_n > A - \varepsilon$.

Hasonlóan $\exists N_2$, melyre

$$|b_n - A| < \varepsilon \quad \text{ha } n \ge N_2,$$

speciálisan $b_n < A + \varepsilon$.

Ekkor $n \ge \max(N_1, N_2)$ esetén

$$A - \varepsilon < a_n \le c_n \le b_n < A + \varepsilon \implies \lim_{n \to \infty} c_n = A.$$

Példa

$$a_n = \sqrt[n]{n}$$
. Hova tart? Tipp?

Belátjuk, hogy $\lim_{n\to\infty} a_n = 1$.

$$1 < a_n \ \forall n > 1$$
-re. Ekkor

$$1 < a_n = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \dots \cdot 1} \le \frac{\sqrt{n} + \sqrt{n} + 1 \dots + 1}{n} =$$

$$= \frac{2\sqrt{n}}{n} + \frac{n-2}{n} = \frac{2}{\sqrt{n}} + \frac{n-2}{n} < \frac{2}{\sqrt{n}} + 1.$$

$$\implies 1 < a_n < \frac{2}{\sqrt{n}} + 1.$$

$$b_n \equiv 1 \text{ és } c_n = \frac{2}{\sqrt{n}} + 1.$$

$$b_n < a_n < c_n \ \forall n$$
, és $\lim_{n \to \infty} b_n = 1$, $\lim_{n \to \infty} c_n = 1$

$$\implies \lim_{n\to\infty} a_n = 1.$$

Az előző példa következménye

$$p>0$$
 tetszőleges, $a_n:=\sqrt[n]{p}$. (Már láttuk, hogy $\lim_{n\to\infty}\sqrt[n]{p}=1$, most másképp is belátjuk.) $\forall p>0$ -hoz $\exists N$ index,
$$1/n $\Longrightarrow \qquad \sqrt[n]{\frac{1}{n}} < \sqrt[n]{p} < \sqrt[n]{n},$$$

és emiatt $1 \leq \lim_{n \to \infty} \sqrt[n]{p} \leq 1$.

Nullsorozatok

Definíció. Az (a_n) konvergens sorozat NULLSOROZAT, ha határértéke 0.

Azaz
$$\forall \varepsilon > 0$$
-hoz $\exists \mathit{N} = \mathit{N}(\varepsilon)$ küszöbindex, hogy

$$\forall n \geq N \qquad |a_n| < \varepsilon$$

Nullsorozatok tulajdonságai

Állítás.

1. (a_n) konvergens és $\lim_{n\to\infty} a_n = A$

$$(b_n) = (a_n - A)$$
 nullsorozat.

2. Tfh. (a_n) nullsorozat, (b_n) korlátos sorozat.

Ekkor az (a_nb_n) is nullsorozat, azaz

$$\lim_{n\to\infty}a_nb_n=0.$$

3. Tfh. (a_n) divergens és $\lim_{n\to\infty} a_n = \infty$. Legyen

$$b_n := \left\{ egin{array}{ll} \displaystyle rac{1}{a_n}, & \mathrm{ha} & a_n > 0 \\ & & & & \\ 0, & \mathrm{ha} & a_n \leq 0 \end{array}
ight.$$

Ekkor $\lim_{n\to\infty}b_n=0$, azaz (b_n) nullsorozat.

- 4. (a_n) nullsorozat \iff $(|a_n|)$ nullsorozat.
- 5. Tfh. $\lim_{n\to\infty} a_n = \infty$. Tfh. (b_n) -re $\exists k > 0$: $b_n \ge k \ \forall n$.

Ekkor: $\lim_{n\to\infty} a_n b_n = \infty$.

Bizonyítás.

2. Ha (a_n) nullsorozat, (b_n) korlátos, akkor $\lim_{n \to \infty} a_n b_n = 0$.

Egyrészt
$$(b_n)$$
 korlátos $\Longrightarrow |b_n| \le K$, $\forall n$.

Másrészt $\forall \varepsilon > 0 \; \exists N$:

$$\forall n \geq N : |a_n| < \frac{\varepsilon}{K}.$$

Együtt
$$\Longrightarrow$$
 $|a_nb_n|=|a_n||b_n|\leq \frac{\varepsilon}{K}K=\varepsilon.$

Bizonyítás.

3.

$$\lim_{n\to\infty} a_n = \infty \quad \Rightarrow \quad b_n := \left\{ \begin{array}{ccc} \frac{1}{a_n}, & \mathrm{ha} & a_n > 0 \\ & & & \\ 0, & \mathrm{ha} & a_n \leq 0 \end{array} \right\} \quad \text{nullsorozat}$$

$$\forall \varepsilon > 0$$
 esetén $K = \frac{1}{\varepsilon}$ -hoz $\exists N = N(K)$ küszöbindex:

$$\forall n \geq N : a_n \geq K(>0)$$

Ekkor

$$|b_n| = \frac{1}{a_n} \le \frac{1}{K} = \varepsilon$$

Többi bizonyítás HF.

Összehasonlító kritériumok

Állítás.

1. (Majoráns kritérium.)

Ha (a_n) nullsorozat, és $|b_n| \le |a_n| \ \forall n$ -re (vagy rögzített N mellett minden n > N-re), akkor $\lim_{n \to \infty} b_n = 0$.

2. (Minoráns kritérium.)

Tfh.
$$\lim_{n\to\infty} a_n = +\infty$$
, és $b_n \ge a_n$

Ekkor
$$\lim_{n\to\infty} b_n = +\infty$$
.

Alappélda

A $\lim_{n\to\infty} a_n b_n = "\infty\cdot 0"$ típusú határérték "bármi" lehet. $(-\infty \ is?)$

1. Példa.
$$a_n = np^n$$
. Tfh. $0 . $\lim_{n \to \infty} np^n = ?$.$

Átírjuk ilyen alakba: $a_n = np^n = (\sqrt[n]{np})^n$.

Mivel $\lim_{n\to\infty} \sqrt[n]{n} = 1$, ezért $\exists N$

$$\sqrt[n]{n} < \frac{1}{p} \qquad \forall n \geq N$$

Ezekre az *n*-ekre

$$|\sqrt[n]{n}p|<\frac{1}{p}p=1.$$

Tehát létezik 0 < q < 1, melyre

$$\sqrt[n]{n}p < q < 1.$$

Ezért $0 < a_n < q^n$, ha $n \ge N$, így a rendőrelv alapján $\lim_{n \to \infty} a_n = 0$.