1) Выбор параметров симуляции

- 1. Симуляция GPS данных или загрузка заранее записанных значений
- 2. Симуляция показаний IMU: ADIS16405, или загрузка заранее записанных значений
- 3. Выполнить интеграцию INS/GPS для IMU: ADIS16405, или загрузка заранее записанных значений
- 4. Вывод графиков или нет

2) Задание констант

- 1. Гравитационная постоянная G
- 2. **Перевод G в м/с^2 –** G2MSS
- 3. Перевод м/ c^2 в G MSS2G
- 4. Перевод градусов в радианы D2R
- **5.** Перевод радианов в градусы R2D
- 6. Перевод узлов в M/c KT2MS
- 7. Перевод м/с в узлы MS2KMH

3) Загрузка эталонных данных из генератора траектории

Переменная	Размерность ячеек	Описание	
t	Nx1	time vector (seconds)	
lat	Nx1	latitude (radians)	
lon	Nx1	longitude (radians)	
h	Nx1	altitude (m)	
vel	Nx3	North-East-Down velocities	
		(m/s)	
roll	Nx1	roll angles (radians)	
pitch	Nx1	pitch angles (radians)	
yaw	Nx1	yaw angle vector (radians)	
kn	1x1	number of elements of ref time	
		vector	
DCMnb	Nx9	Direct Cosine Matrix nav-to-	
		body. Each row contains the	
		elements of one DCM matrix	
		ordered by columns as [a11 a21	
		a31 a12 a22 a32 a13 a23 a33]	
Freq	1x1	sampling frequency (Hz)	

4) Загрузка профиля ошибок IMU: ADIS16405

Переменная	Размерность ячеек	Описание
t	lx1	time vector (seconds)
fb	lx1	accelerations vector in body
		frame XYZ (m/s^2)
wb	lx1	turn rates vector in body frame
		XYZ (radians/s)
arw	1x3	angle random walks
		(rad/s/root-Hz)
arrw	1x3	angle rate random walks
		(rad/s^2/root-Hz)
vrw	1x3	velocity random walks
	1v2	(m/s^2/root-Hz)
vrrw	1x3	velocity rate random walks (m/s^3/root-Hz)
gb_std	1x3	gyros standard deviations
gb_std	1/43	(radians/s)
ab_std	1x3	accrs standard deviations
<u>_</u> 000		(m/s^2)
gb_fix	1x3	gyros static biases or turn-on
		biases (radians/s)
ab_fix	1x3	accrs static biases or turn-on
		biases (m/s^2)
gb_drift	1x3	gyros dynamic biases or bias
		instabilities (radians/s)
ab_drift	1x3	accrs dynamic biases or bias
		instabilities (m/s^2)
gb_corr	1x3	gyros correlation times
		(seconds)
ab_corr	1x3	accrs correlation times
ah aad	12	(seconds)
gb_psd	1x3	gyros dynamic biases PSD (rad/s/root-Hz)
ab_psd	1x3	accrs dynamic biases PSD
au_psu	1/2	(m/s^2/root-Hz)
freq	1x1	sampling frequency (Hz)
ini_align	1x3	initial attitude at t(1), [roll pitch
~		yaw] (rad)
ini align err	1x3	initial attitude errors at t(1),
		[roll pitch yaw] (rad)

- 1. Задание параметров IMU: ADIS16405
- 2. Задание шага времени
- 3. Коррекция единиц профиля ошибок в систему СИ imu si errors
- 4. Задание «Initial attitude align errors» матрицы Р фильтра Калмана, [roll pitch yaw] (radians)
- 5. Задание «Initial attitude align» в момент t(1) (radians)

5) Задание профиля ошибок GPS

Переменная	Размерность ячеек	Описание
t	Mx1	time vector (seconds)
lat	Mx1	latitude (radians)
lon	Mx1	longitude (radians)
h	Mx1	altitude (m)
vel	Mx3	NED velocities (m/s)
std	1x3	position standard deviations,
		[lat lon h] (rad, rad, m)
stdm	1x3	position standard deviations,
		[lat lon h] (m, m, m)
stdv	1x3	velocity standard deviations,
		[Vn Ve Vd] (m/s)
larm	3x1	lever arm (x-right, y-fwd, z-
		down) (m)
freq	1x1	sampling frequency (Hz)

Задание стандартных отклонений позиций GPS, [lat lon h] (meters)

- 1. Задание стандартных отклонений скоростей GPS, [Vn Ve Vd] (meters/s)
- 2. GPS lever arm from IMU to GPS, X-fwd, Y-right, Z-down (meters)
- 3. Задание частоты работы GPS, Hz

6) Симуляция работы GPS

Если установлен флаг GPS DATA, то:

- 1. Преобразование единиц измерения GPS-датчиком в систему СИ gps err profile
- 2. Создание набора данных GPS из эталонного набора данных gps gen
- 3. Сохранение сгенерированных данных

Иначе – загрузка предварительно сгенерированных данных

7) Симуляция работы IMU

Если установлен флаг IMU DATA, то:

- 1. Симуляция показания акселерометра по эталонным данным и профилю ошибок IMU acc gen
- 2. Симуляция показания гироскопа по эталонным данным и профилю ошибок IMU gyro_gen
- 3. Сохранение сгенерированных данных

Иначе – загрузка предварительно сгенерированных данных

8) Интеграция INS/GPS с использованием IMU

Если установлен флаг IMU INS, то:

1. Прогон данных на предмет гарантированного выполнения условия gps.t(1) < IMU.t(1) < gps.t(2)

- 2. Прогон данных на предмет гарантированного выполнения условия IMU.t(end-1) < gps.t(end) < IMU.t(end)
- 3. Интеграция IMU и измерений GPS с использованием расширенного фильтра Калмана ins gps
- 4. Сохранение сгенерированных данных

Иначе – загрузка предварительно сгенерированных данных

9) Интерполяция набора данных INS/GPS

- 1. Интерполяция данных IMU е с использованием вектора эталонного времени
- 2. Интерполяция данных gps с использованием вектора эталонного времени

10) Вывод времени сеанса навигации

11) Вывод среднеквадратических ошибок (Root Mean Squared Errors – RMSE)

- 1. между INS/GPS и эталонными данными print rmse
- 2. между данными чисто GPS и эталонными данными

12) Вывод графиков

Если установлен флаг РЬОТ, то:

1.	Траектория движения эталонных данных REF		Longitude [deg.],
	Latitude [deg.], Altitude [m]		
2.	Положение ROLL, PITCH и YAW для REF и IMU	XY	Time [s], [deg]
3.	Ошибка положений ROLL, PITCH и YAW для IMU и 3 sigma	XY	Time [s], [deg]
4.	Скорости N, E, D для REF, GPS и IMU	XY	Time [s], [m/s]
5.	Ошибка скоростей N, E, D для GPS, IMU и 3 sigma	XY	Time [s], [m/s]
6.	Позиция LAT, LON, ALT для REF, GPS и IMU	XY	Time [s], [deg]
7.	Ошибка позиций LAT, LON, ALT для GPS, IMU и 3 sigma	XY	Time [s], [deg]