PARTE A (TEORIA)

[T1] Rispondere ad almeno una delle seguenti domande.

a) Siano y e z due soluzioni dell'equazione differenziale lineare omogenea a coefficienti costanti $y'' + ay' + by = 0$. Quale delle seguenti affermazioni è l'unica corretta? Giustificare la risposta.
$\square \ y$ e z differiscono per una costante
\Box il prodotto yz è soluzione dell'equazione differenziale
$\square \ y$ e z sono funzioni continue
\Box Il Wronskiano di y e z è sempre diverso da zero
b) Sia f una funzione reale definita in un sottoinsieme aperto X di ${\bf R}^2$. Quale delle seguenti affermazioni è l'unica corretta? Giustificare la risposta.
\square Se f è dotata di derivate parziali prime in X , allora è differenziabile in $X.$
\square Se f è dotata di derivate parziali prime in $X,$ allora è continua in $X.$
\square Se f è differenziabile in X , allora è continua in X .
\square Se f è continua in X , allora è differenziabile in X .
[T2] Enunciare e dimostrare almeno uno dei seguenti teoremi:
a) Formula di De Moivre
b) Teorema di Fermat per le funzioni di due variabili.

PARTE B (ESERCIZI)

[E1] Risolvere almeno uno dei seguenti esercizi.

a) Calcolare il seguente integrale indefinito

$$\int \frac{1}{x \log x (\log x - 1)^2} \mathrm{d}x.$$

b) Data la funzione definita dalla legge

$$f(x,y) = 4xy^2 - x - 3y$$

i) determinarne gli estremi relativi in \mathbb{R}^2 ;

ii) determinarne gli estremi assoluti nel triangolo di vertici (0,0), (2,0) e (0,2).

[E2] Risolvere almeno uno dei seguenti esercizi.

a) Studiare, al variare del parametro reale x, il carattere delle seguenti serie numeriche

$$\sum_{n=1}^{+\infty} \frac{1}{n} \left(\frac{1}{x^2 + 1} \right)^n,$$

$$\sum_{n=1}^{+\infty} \frac{(2n)!}{4^n (n!)^2} (|x|+4)^n.$$

b) Data la funzione definita dalla legge

$$f(x,y) = \begin{cases} \frac{x(y^2+1)}{2x^2+3y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

studiarne la continuitá e l'esistenza delle derivate parziali prime nel punto (0,0).