LINEAR ALGEBRA

REFERENCE BOOKS

- 1) D. Poole (2010), "Linear Algebra: A Modern Introduction", Brooks/Cole, 3rd Edition.
- 2) S. Lipschutz(2017), "Linear Algebr", Schaum's Outlines, 3rd Edition.
- 3) K. Hoffman, R. Kunze(1997),"Linear Algebra", *Prentice Hall,2*nd *Edition*.
- 4) S. Kumaresan, "Linear Algebra A Geometric Approach", Prentice Hall India.
- 5) Geza Schay, "Introduction to Linear Algebra", Narosa Publishing House.

4.1 Vector Space, Linear independence of vectors, basis, dimension

VECTOR SPACE

Definition: Let V be a non-empty set of objects whose elements will be called as 'vectors' and let \mathbb{R} be the set of real numbers whose elements will be called as 'scalars'. V is called as 'vector space' over real field \mathbb{R} if and only if the following conditions/axioms are satisfied

A1) Closure under vector addition :

$$u+v\in V \quad \forall u,v\in V$$

i.e. to every pair of elements ${\bf u}$ and ${\bf v}$ in ${\bf V}$ there corresponds a unique ${\bf u}+{\bf v}$ in ${\bf V}$

A2) Associativity Property of vector addition:

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} \quad \forall \ \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}$$

A3) Existence of additive identity element w.r.t. vector addition:

There exist a vector called as 'the zero vector' denoted by '0' in V st $\mathbf{u} + 0 = \mathbf{u} = 0 + \mathbf{u} \quad \forall \ \mathbf{u} \in V$

VECTOR SPACE

A4) Existence of inverse element w.r.t. vector addition:

Given any u in V there exist a vector denoted by '-u' in V such that

$$u + (-u) = 0 = (-u) + u \quad \forall u \in V$$

A5) Commutativity property of vector addition:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \qquad \forall \ \mathbf{u}, \mathbf{v} \in \mathbf{V}$$

A6) Closure under scalar multiplication:

$$\alpha \mathbf{u} \in \mathbf{V} \quad \forall \ \mathbf{u} \in \mathbf{V} \text{ and } \forall \alpha \in \mathbb{R}$$

i.e. for any scalar α in R and u in V there corresponds a unique vector 'α u' in V, this operation is known as 'scalar multiplication'

VECTOR SPACE

A7) Distributivity property:

$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v} \quad \forall \, \mathbf{u}, \mathbf{v} \in \mathbf{V} \text{ and } \alpha \in \mathbf{R}$$

and
$$(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u} \quad \forall \ \mathbf{u} \in \mathbf{V} \text{ and } \alpha, \beta \in \mathbb{R}$$

A8)
$$\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u} \quad \forall \mathbf{u} \in \mathbf{V} \text{ and } \alpha, \beta \in \mathbb{R}$$

A9) For any u in V,
$$|u = u|$$
, where 1 is the unity of field \mathbb{R}

Let n be fixed positive integer and

$$\mathbb{R}^n = \{ (x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}, 1 \le i \le n \}$$
, \mathbb{R}^n is set of all n -tuples of real numbers.

Let
$$u = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$
 and

$$v = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$$
, define vector addition as

$$u + v = (x_1+y_1, x_2+y_2, \dots, x_n+y_n)$$
 and for any scalar

 $\alpha \in \mathbb{R}$ define scalar multiplication as

$$\alpha u = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$$
. Prove that \mathbb{R}^n is vector space

over \mathbb{R} under these operations.

Let $M_{m \times n}(\mathbb{R})$ denote the set of all $m \times n$ matrices with

real entries. Define for
$$A = (a_{ij}), B = (b_{ij}),$$

$$A + B = (a_{ij} + b_{ij})$$
 and $\alpha A = (\alpha a_{ij})$ where $\alpha \in \mathbb{R}$.

Determine whether $M_{m n}(\mathbb{R})$ is a vector space under the

above operations. Ans: yes

Let P_2 denote the set of all polynomials of degree less than or equal to 2, with real coefficients. Define Addition and Scalar multiplication in the usual way: If $p(x) = a_0 + a_1x + a_2x^2$ and $q(x) = b_0 + b_1x + b_2x^2$, then

$$p(x) = a_0 + a_1 x + a_2 x^2$$
 and $q(x) = b_0 + b_1 x + b_2 x^2$, then

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$
 and

for any
$$\alpha \in \mathbb{R}$$
, $\alpha f(x) = \alpha a_0 + \alpha a_1 x + \alpha a_2 x^2$.

Show that P_2 is a vector space over \mathbb{R} .

- # Let F be set of all real valued functions i.e. $F = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is a function } \}$.
 - Define (f+g)(x)=f(x)+g(x) and $(\alpha f)(x)=\alpha f(x)$, then prove that F is a vector space over $\mathbb R$.

Prove that set of all real valued differentiable functions on (a, b) is a vector space over $\mathbb R$.

Vector Subspaces

Definition: Let V be a vector space over field R. A non-empty subset W of V is subspace of V iff

- i) Closure under vector addition : for any $u, v \in W$, $u + v \in W$
- ii) Closure under scalar multiplication : for any $a \in R$ and $u \in W$, au $\in W$ Alternatively,

Subset W of vector space V is called as subspace iff au + by ∈ W ∀ u, v ∈ W & a,b ∈ R

Note that for a subset to become a subspace, it is necessary that it must contain the zero vector.

e.g. The set C of complex numbers is a vector space over R and as $R \subset C$ and R itself is vector space over R, R is a subspace of C over R

Let $W = \{ (x, y) \in \mathbb{R}^2 / ax + by = 0 \}$ Show that W is subspace of \mathbb{R}^2 .i.e. Show that every line passing through the origin is a subspace of \mathbb{R}^2 .

Let $W = \{ (x, y, z) \in \mathbb{R}^3 / ax + by + cz = 0 \}$ Show that W is subspace of \mathbb{R}^3 . i.e. Show that every plane passing through the origin is a subspace of \mathbb{R}^3 . Let $S = \{ (x, y, z) \in \mathbb{R}^3 / ax = by = cz \}$ Show that S is subspace of \mathbb{R}^3 .i.e. Show that every line passing through the origin is a subspace of \mathbb{R}^3 .

Solve the system of equations:
$$\frac{3x+4y+z=0}{x+y+z=0}$$
. Let V

denote the set of all solutions to the above system. Show that V is a vector subspace of \mathbb{R}^3 .

LINEAR SPAN OF A SET

Definition: Let $S = \{u_1, u_2, \dots, u_n\}$ be a non-empty subset of a vector space V. The linear span of S is denoted by L(S) and it is defined as

$$L(S) = \left\{ a_1 u_1 + a_2 u_2 + \ldots + a_n u_n / a_1, a_2, \ldots, a_n \in \mathbb{R}, u_1, u_2, \ldots, u_n \in S, n \in \mathbb{N} \right\}$$

Definition: Let S be a non-empty subset of a vector space V.

We say that S spans the vector space V iff

i.e. if every vector in V can be expressed as linear combinations of elements of S

Linear dependence and independence of sets

Definition: Let $S = \{u_1, u_2, ..., u_n\}$ be a subset of vector space V. S is said to be linearly dependent if there exists a non-trivial (non-zero) solution to the homogeneous system

$$a_1u_1 + a_2u_2 + ... + a_nu_n = 0$$
,

where
$$a_1, a_2, \ldots, a_n \in \mathbb{R}$$

If the linear system has unique (zero) solution then the set S is known as linearly independent set of vectors.

Examine whether the vectors (4,9,5) (1,1,0) (1,3,2) in \mathbb{R}^5 are linearly dependent.

In the vector space P_2 , determine whether the vectors

$$3-2x+4x^2$$
, $4-x+6x^2$ and $7-8x+8x^2$ are

linearly dependent. Ans: L.D.

Basis and dimension of vector space

Let V be a vector space. A finite subset S of V is called a basis of V iff

- i) S is linearly independent set
- and ii) S spans V i.e. L(S) = V

The number of elements in basis set (i.e. cardinality of basis set) of vector space V is known as dimension of vector space V.

Show that the set $S = \{ (1, 0), (0, 1) \}$ is a basis of vector space \mathbb{R}^2 [Infact it is the standard/Euclidean basis of \mathbb{R}^2]

Show that the set $S = \{ (1, 0, 0), (0, 1, 0), (0, 0, 1) \}$ is a basis of vector space \mathbb{R}^3 [Infact it is the standard/Euclidean basis of \mathbb{R}^3]

Show that the set $S = \{1, x, x^2\}$ is basis of vector space

 P_2 [Infact it is the standard basis of P_2]

Show that
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 is basis of

 $M_{2\times 2}(\mathbb{R})$

Show that the set

$$S = \{-4 + x + 3x^2, 6 + 5x + 2x^2, 8 + 4x + x^2\}$$
 is a basis of P_2 .

Determine a basis and dimension of the solution space of following homogeneous systems

$$x_1 + 3x_2 + x_3 + x_4 = 0$$

$$2x_1 - 2x_2 + x_3 + 2x_4 = 0$$

$$x_1 + 11x_2 + 2x_3 + x_4 = 0$$

4.2 Linear transformations (maps)

LINEAR TRANSFORMATION

A Linear Transformation from a vector space V to vector space W is a mapping $T:V\to W$ such that, for all v_1 and v_2 in V and for all scalars c ($c\in\mathbb{R}$),

$$T(v_1+v_2) = T(v_1) + T(v_2)$$

&

$$T(cv_1) = cT(v_1)$$

#

Show that the following mappings are linear transformations:

- 1. $T: \mathbb{R} \to \mathbb{R}, T(x) = 4x$.
- 2. $T: \mathbb{R}^2 \to \mathbb{R}, T(x,y) = 2x + 3y$.
- 3. $T: \mathbb{R}^3 \to \mathbb{R}^2, T(x, y, z) = (2x + z, x 3y)$.
- 4. $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x + 2y 3z, 2x y + z, -x + 2y + z).
- 5. Let A be a 3×3 matrix. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$, T(X) = AX where X = (x, y, z).
- 6. Let F denote the set of all differentiable real valued functions defined on the real <u>line</u> \mathbb{R} . <u>Let</u> $T: F \to F$, $T(f) = \frac{df}{dr}$.
- 7. Let C denote the set of all continuous real valued functions defined on the real line. Let $T:C\to C$, $T(f)=\int_{-1}^{1}f(x)\,dx$.

#

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map such that T(4,1) = (1,1), T(1,1) = (3,-2). Compute T(1,0). Find T(x,y), where $(x,y) \in \mathbb{R}^2$.

4.3 Matrix associated with a linear map.

Matrix associated with a linear map.

Let V and W be vector spaces of dimension n and m respectively Let $\{v_1, v_2,, v_n\}$ be a basis of V and $\{w_1, w_2,, w_m\}$ be a basis of WLet $T: V \to W$ be a linear map. As $T(v_1), T(v_2),, T(v_n)$ are

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$T(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

where a_{ij} are scalars.

elements of W, we have

Matrix associated with a linear map.

The matrix

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

is called the matrix associated with T with respect to the bases

$$\{v_1, v_2,, v_n\}$$
 and $\{w_1, w_2,, w_m\}$.

Let

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (2x - 3y, -x + y)$$

Find the matrix associated with T wrt standard basis.

Let

$$T: \mathbb{R}^3 \to \mathbb{R}^2, T(x, y, z) = (2x - z, y + 2z)$$

Find the matrix associated with T wrt standard basis.

Let
$$T: \mathbb{R}^3 \to \mathbb{R}^2, T(x, y, z) = (x-2y, x+y-3z)$$
. Let

$$B = \{e_1, e_2, e_3\}$$
 and $C = \{e_2, e_1\}$ be bases for \mathbb{R}^3 and \mathbb{R}^2

respectively. Find the matrix M with respect to B and C.

Verify that
$$M$$
 $\begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} = T(1,3,-2)$.

Ans:
$$\begin{pmatrix} 1 & 1 & -3 \\ 1 & -2 & 0 \end{pmatrix}$$
, $T(1,3,-2) = (-5,10)$

#

Let $D: P_3 \to P_2$ be the differential operator D(P(x)) = p'(x). Let $B = \{1, x, x^2, x^3\}$, $C = \{1, x, x^2\}$ be bases for P_3 and P_2 respectively.

- a) Find the matrix M of D with respect to B and C.
- b) Compute $D(2x^3 x + 5)$ using part a).

Let $T: P_3 \to P_5$ be the linear transformation given by $T(p(x)) = (1+2x-x^2)p(x)$. Find the matrix of T relative to the standard bases of P_3 and P_5 .

$$Ans: \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 2 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

4.4 Range and kernel of a linear map, Rank-nullity theorem

Range of a Linear Transformation

The range $\underset{W}{\underline{of}}_{T}$, denoted as range(T), is the set of all vectors in W that are images of vectors in V under T. That is

$$range(T) = \{T(v) : v \in V\}$$
$$= \{w \in W : w = T(v) \text{ for some } v \in V\}$$

Kernal of a Linear Transformation

Let V and W be vector spaces. Let $T:V \to W$ be any linear transformation. The *Kernel* of T, denoted as $\ker(T)$, is the set of all vectors in V, that are mapped by T to 0 in W. That is

$$ker(T) = \{v \in V : T(v) = 0\}$$

Null Space and Column Space

Let A be a $m \times n$ matrix.

- **The null space** of A is the subspace of \mathbb{R}^n , consisting of solutions of the homogeneous linear system AX = 0. It is denoted by null(A).
- **The column space** of A is the subspace col(A) of \mathbb{R}^m spanned by the columns of A.

Note: The kernel of a linear <u>transformation</u> T, (<u>ker</u>(T)) is a subspace of V; and the range of T(range(T)) is a subspace of W.

RANK AND NULLITY

- *****Let $T:V \to W$ be any linear transformation. The rank of T is the dimension of the range of T, and is denoted by $\operatorname{rank}(\tau)$.
- **The nullity of** T is the dimension of the kernel of T, and is denoted by nullity(T).

RANK NULLITY THEOREM

Let $T: V \rightarrow W$ be any linear transformation, then:

$$DimV = Rank(T) + Nullity(T)$$

Let

$$T: \mathbb{R}^2 \to \mathbb{R}^3, T(x, y) = (x - y, x + y, y)$$

Find the kernal and range. Also verify Rank nullity theorem..

#Let
$$T: R^3 \to R^3$$
, $T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z)$

Find the kernal and range. Also verify Rank nullity theorem..

Let

$$D: P_3 \rightarrow P_2, D(p(x) = p'(x))$$

Find the kernal and range. Also verify Rank nullity theorem..

#Let

$$T: M_{22} \to M_{22}, T \begin{bmatrix} a, b \\ c, d \end{bmatrix} = \begin{bmatrix} a - b, & 0 \\ 0, & c - d \end{bmatrix}$$

Find the kernal and range. Also verify Rank nullity theorem..

4.5 Composition of linear maps, Inverse of a linear transformation

Composition of Linear Transformation

<u>Let U, V and W be vector spaces of dimension n, m and r respectively.</u>

Let $T: U \to V$ and $S: V \to W$ be linear maps.

Then, $S \circ T : U \to W$ is also a linear map.

Composition of Linear Transformation

Matrix associated with the composite linear transformation

Let U, V and W be a vector spaces with bases $B_1 = \{u_1, u_2, \dots, u_n\}$, $B_2 = \{v_1, v_2, ..., v_m\}$ and $B_3 = \{w_1, w_2, ..., w_r\}$ respectively. Let $T: U \to V$ and $S: V \to W$ be linear maps. Let us denote the matrix associated with the linear map, $T: U \to V$ with respect to the bases B_1 and B_2 as $[A]_{B,\leftarrow B}$; and the matrix associate with $S:V\to W$ with respect to the bases B_2 and B_3 as $[B]_{B_1 \leftarrow B_2}$ respectively. Then, the matrix associated with the linear map $S \circ T : U \to W$, denoted by $[C]_{R \leftarrow R}$ satisfies

$$\begin{bmatrix} C \end{bmatrix}_{B_3 \leftarrow B_1} = \begin{bmatrix} B \end{bmatrix}_{B_3 \leftarrow B_2} \begin{bmatrix} A \end{bmatrix}_{B_2 \leftarrow B_1} .$$

(Right hand side of the above equation is the product of two matrices.)

#

Let

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x + y, x - y)$$

$$S: \mathbb{R}^2 \to \mathbb{R}, S(a,b) = a+b$$

Find SoT(x,y)

#

Let

$$T: \mathbb{R}^2 \to P_1, T(y,z) = y + (y+z)x$$

$$S: P_1 \rightarrow P_2, S(p(x)) = xp(x)$$

Find SoT(x,y)

#

Let

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (2x + y, -y)$$

$$S: \mathbb{R}^2 \to M_{22}, S(a,b) = \begin{bmatrix} a+b, & b \\ 0, & a-b \end{bmatrix}$$

Find SoT(x,y)

#

Let

$$T: \mathbb{R}^3 \to \mathbb{R}^2, T(x, y, z) = (x + 2z, 3x - z)$$

$$S: \mathbb{R}^2 \to \mathbb{R}^3, S(x, y) = (x, x + y, y)$$

Find SoT(x,y) and ToS(x,y).

Write matrices of T, S, SoT and ToS wrt standard basis.

Inverse of a linear transformation

Let U and V be vector spaces and $T:U\to V$ be a linear map. A linear map $T^{-1}:V\to U$ is the inverse of T if

$$T \circ T^{-1} = T^{-1} \circ T = I$$
.

- $T^{-1}: V \to U$ is also linear.
- **A** linear map $T: U \rightarrow V$ which has inverse is called <u>invertible</u> or nonsingular transformation or an isomorphism.
- **A** linear transformation is said to be invertible if the map $T: U \to V$ is one- one and onto.

Inverse of a linear transformation

T is one to one if Nullity (T)=0

and

T is onto if Rank(T)=Dim U

#

Let
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

$$T(x, y, z) = (2x - y + z, x + y, y + 3x + z)$$

Show that T is invertible.

#

Let

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

$$T(x, y, z) = (x + y + z, x + 2y - z, 5y + 3x - z)$$

Is T is invertible?

Find u if T is nonsingular. If not find u such that Tu=0

Find a linear map

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

For which

$$T(1,2)=(2,3)$$

And

$$T(0,1)=(1,4).$$

Is T invertible?.

If so find inverse of T.

