SPECTRAL BANDITS FOR SMOOTH GRAPH FUNCTIONS

Microsoft®
Research
technicolor

Tomas.Kocak@inria.fr, Michal.Valko@inria.fr, Remi.Munos@inria.fr, and Branislav.Kveton@technicolor.com

MOTIVATION - MOVIE RECOMMENDATION

- Goal: Movie recommendation based on similarities
- Challenges: Good prediction after just a few steps $(T \ll N)$
- **Prior knowledge:** The preferences of movies are smooth over a given weighted similarity graph

- Colors represent *single*-user preferences.
- Connected (similar) movies have similar user ratings

SMOOTH GRAPH FUNCTIONS

- Graph function: mapping from set of the graph vertices V(G) into real numbers
- Smoothness of a graph function $S_G(f)$:
 - eigendecomposition of graph Laplacian: $\mathcal{L} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\scriptscriptstyle\mathsf{T}}$

$$S_G(f) = \frac{1}{2} \sum_{u,v \in V(G)} w_{u,v} (f(u) - f(v))^2 = \mathbf{f}^\mathsf{T} \mathcal{L} \mathbf{f}$$
$$= \mathbf{f}^\mathsf{T} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^\mathsf{T} \mathbf{f} = \boldsymbol{\alpha}^{*\mathsf{T}} \mathbf{\Lambda} \boldsymbol{\alpha}^* = \|\boldsymbol{\alpha}^*\|_{\mathbf{\Lambda}} = \sum_{i=1}^N \lambda_i \alpha_i^2$$

- Observation: $S_G(\mathbf{q}_i) = \lambda_i$
- Smoothness and <u>regularization</u>: Small value of (a) $S_G(f)$ (b) Λ norm of α^* (c) α_i for large λ_i

EFFECTIVE DIMENSION

Definition 1. Let the **effective dimension** d be the largest d such that

$$(d-1)\lambda_d \leq \frac{T}{\log(1+T/\lambda)}.$$

- d is small when the coefficients λ_i grow rapidly above time.
- ullet d is related to the number of "non-negligible" dimensions

UPPER CONFIDENCE BOUND ALGORITHMS

- Pick an arm with the highest upper confidence bound.
- Update estimates and confidence intervals.

SETTING

- **Task:** Each time *t*, pick an action (node) to get a reward.
- Reward: $\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$ (with unknown parameter $\boldsymbol{\alpha}^*$)
 - \mathbf{x}_i is the *i*-th row of \mathbf{Q}
 - reward is a combination of smooth eigenvectors
- Goal: Minimize the cumulative regret w.r.t. the best node

$$R_T = T \max_{v} f_{\boldsymbol{\alpha}^*}(v) - \sum_{t=1}^{T} f_{\boldsymbol{\alpha}^*}(\pi(t))$$

ALGORITHM 1 - SPECTRALUCB

Input:

N: the number of nodes, T: the number of pulls

 $\{oldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\}$ spectral basis of ${\mathcal{L}}$

 λ, δ : regularization and confidence parameters B, C: upper bounds on the noise and $\|\alpha^*\|_{\Lambda}$

R,C: upper bounds on the noise and $\|\alpha^*\|_{\Lambda}$ Run:

 $\mathbf{\Lambda} \leftarrow \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}$ $d \leftarrow \max\{d : (d-1)\lambda_d \le T/\log(1+T/\lambda)\}$ **for** t = 1 **to** T **do**

Update the basis coefficients $\hat{\alpha}$:

 $\mathbf{X}_t \leftarrow [\mathbf{x}_1, \dots, \mathbf{x}_{t-1}]^\mathsf{T}$ $r \leftarrow [r_1, \dots, r_{t-1}]^\mathsf{T}$

 $\mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^\intercal + \mathbf{\Lambda}$

 $\hat{oldsymbol{lpha}}_t \leftarrow \mathbf{V}_{\underline{t}}^{-1} \mathbf{X}_{\underline{t}}^{\intercal} r$

 $c_t \leftarrow 2R\sqrt{d\log(1+t/\lambda) + 2\log(1/\delta)} + C$

Choose the node v_t (\mathbf{x}_{v_t} -th row of \mathbf{Q}):

 $v_t \leftarrow \arg\max_v \left(f_{\hat{\boldsymbol{\alpha}}}(v) + c_t \|\mathbf{x}_v\|_{\mathbf{V}_t^{-1}} \right)$

Observe the reward r_t

end for

ALGORITHM 2 - SPECTRALELIMINATOR

Input:

 \overline{N} : the number of nodes, T: the number of pulls

 $\{oldsymbol{\Lambda}_{\mathcal{L}}, \mathbf{Q}\}$ spectral basis of ${\mathcal{L}}$

 λ : regularization parameter

 β , $\{t_j\}_j^J$ parameters of the elimination and phases

 $A_1 \leftarrow \{\mathbf{x}_1, \dots, \mathbf{x}_K\}.$ for j = 1 to J do

 $\mathbf{V}_{t_i} \leftarrow \gamma \mathbf{\Lambda}_{\mathcal{L}} + \lambda \mathbf{I}$

for $t = t_j$ to $\min(t_{j+1} - 1, T)$ do

Play $\mathbf{x}_t \in A_j$ with the largest width to observe r_t :

 $\mathbf{x}_t \leftarrow \arg\max_{\mathbf{x} \in A_j} \|\mathbf{x}\|_{\mathbf{V}_{\perp}^{-1}}$

 $\mathbf{V}_{t+1} \leftarrow \mathbf{V}_t + \mathbf{x}_t \mathbf{x}_t^{\mathsf{T}}$

end for

Eliminate the arms that are not promising:

 $\hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_j}, \dots, \mathbf{x}_t][r_{t_j}, \dots, r_t]^{\mathsf{T}}$

 $p \leftarrow \max_{\mathbf{x} \in A_j} \left[\langle \hat{\boldsymbol{\alpha}}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{\mathbf{V}_t^{-1}} \beta \right]$

 $A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \hat{\boldsymbol{\alpha}}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{V_t^{-1}} \beta \ge p \right\}$

end for

MAIN RESULTS

SpectralUCB regret bound

Theorem 1. Let be the minimum eigenvalue of Λ . If $\|\alpha^*\|_{\Lambda} \leq C$ and for all \mathbf{x}_v , $\langle \mathbf{x}_v, \alpha^* \rangle \in [-1, 1]$, then the cumulative regret of SpectralUCB is with probability at least $1 - \delta$ bounded as

$$R_T \le \left[8R\sqrt{d\log(1+T/\lambda)} + 2\log(1/\delta) + 4C + 4 \right]$$
$$\times \sqrt{dT\log(1+T/\lambda)} \approx d\sqrt{T}$$

Setting $\Lambda = \mathbf{I}$ we recover LinUCB. Since $\log(|\mathbf{V}_T|/|\Lambda|)$ can be upperbounded by $D\log T$ [1], we obtain $\tilde{\mathcal{O}}(D\sqrt{T})$ for LinUCB.

SpectralEliminator regret bound

Theorem 2. Choose the phases starts as $t_j = 2^{j-1}$. Assume all rewards are in [0,1] and $\|\alpha^*\|_{\Lambda} \leq C$. For any $\delta > 0$, with probability at least $1 - \delta$, the cumulative regret of SpectralEliminator algorithm run with parameter $\beta = 2R\sqrt{14\log(2K\log_2 T/\delta)} + C$ is bounded as:

$$R_T \le \frac{4}{\log 2} \left(2R\sqrt{14\log \frac{2K\log_2 T}{\delta}} + C \right) \sqrt{dT \log \left(1 + \frac{T}{\lambda} \right)} \approx \sqrt{dT}$$

If $\Lambda = I$, we get a competitor to SupLinRel [2], with $\tilde{\mathcal{O}}(\sqrt{DT})$ regret, with significantly more elegant algorithm and analysis.

Linear vs. Spectral bandits

Linear	Spectral
$\begin{array}{c} \textbf{LinUCB} \\ D\sqrt{T \ln T} \end{array}$	$\begin{array}{c} \textbf{SpectralUCB} \\ d\sqrt{T \ln T} \end{array}$
$\frac{\textbf{SupLinRel}}{\sqrt{DT \ln T}}$	$Spectral Eliminator \ \sqrt{dT \ln T}$

ANALYSES SKETCH

• Derivation of the confidence ellipsoid for estimate $\hat{\alpha}$.

By self-normalized bound of [1]: w. p. $1 - \delta$:

$$|x^{\mathsf{T}}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)| \le ||x||_{\mathbf{V}_t^{-1}} \left(R \sqrt{2 \log \left(\frac{|\mathbf{V}_t|^{1/2}}{\delta |\mathbf{\Lambda}|^{1/2}} \right)} + C \right)$$

• Our key result coming from spectral properties of V_t :

$$\log \frac{|\mathbf{V}_t|}{|\mathbf{\Lambda}|} \le 2d \log \left(1 + \frac{T}{\lambda}\right)$$

SpectralUCB

• Regret in one time step: $\mathbf{x}_*^{\mathsf{T}} \boldsymbol{\alpha}^* - \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* \leq 2c_t \|\mathbf{x}_{\pi(t)}\|_{\mathbf{V}_t^{-1}}$

SpectralEliminator

- Divide time into sets $(t_1 = 1 \le t_2 \le ...)$ to introduce independence for Azuma-Hoeffding inequality and observe $R_T \le \sum_{j=0}^J (t_{j+1} t_j) \left[\langle \mathbf{x}^* \mathbf{x}_t, \hat{\boldsymbol{\alpha}}_j \rangle + (\|\mathbf{x}^*\|_{\mathbf{V}_j^{-1}} + \|\mathbf{x}_t\|_{\mathbf{V}_j^{-1}}) \beta \right]$
- Bound $\langle \mathbf{x}^* \mathbf{x}_t, \hat{\boldsymbol{\alpha}}_j \rangle$ for each phase
- No bad arms: $\langle \mathbf{x}^* \mathbf{x}_t, \hat{\boldsymbol{\alpha}}_j \rangle \leq (\|\mathbf{x}^*\|_{\mathbf{V}_i^{-1}} + \|\mathbf{x}_t\|_{\mathbf{V}_i^{-1}})\beta$
- By algorithm: $\|\mathbf{x}\|_{\mathbf{V}_{j}^{-1}}^{2} \leq \frac{1}{t_{j}-t_{j-1}} \sum_{s=t_{j-1}+1}^{t_{j}} \|\mathbf{x}_{s}\|_{\mathbf{V}_{s-1}^{-1}}^{2}$
- $\sum_{s=t_{j-1}+1}^{t_j} \min\left(1, \|\mathbf{x}_s\|_{\mathbf{V}_{s-1}^{-1}}^2\right) \leq \log \frac{|\mathbf{V}_j|}{|\mathbf{\Lambda}|}$

EXPERIMENTS

Synthetic Experiment

Barabási-Albert (BA) model with the degree parameter 3.

Movie Experiment

MovieLens dataset of 6k users who rated one million movies.

Improving the running time: reduced eigenbasis

- **Reduced basis:** We only need first few eigenvectors.
- Getting J eigenvectors: $\mathcal{O}(Jm\log m)$ time for m edges
- Computationally less expensive, comparable performance.

REFERENCES

- [1] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved Algorithms for Linear Stochastic Bandits. In *Neural Information Processing Systems*. 2011.
- [2] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine Learning Research*, 3:397–422, March 2002.

ACKNOWLEDGMENTS

