Biomedical Text Mining using Neural Networks

[Appendix] Techniques for Deep Learning – Part 1

서울대학교병원 정보화실

고태훈 (taehoonko@snuh.org)

최세원 (<u>swc@snuh.org</u>)

Other activation functions

Other activation functions

Name	Plot	Equation	Derivative	Range
Identity		f(x)=x	f'(x)=1	$(-\infty,\infty)$
Binary step		$f(x) = egin{cases} 0 & ext{for} & x < 0 \ 1 & ext{for} & x \geq 0 \end{cases}$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for} & x eq 0 \ ? & ext{for} & x = 0 \end{array} ight.$	{0,1}
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1+e^{-x}}$	f'(x) = f(x)(1-f(x))	(0,1)
TanH		$f(x)= anh(x)=rac{2}{1+e^{-2x}}-1$	$f'(x)=1-f(x)^2$	(-1,1)
ArcTan		$f(x)= an^{-1}(x)$	$f'(x) = \frac{1}{x^2+1}$	$(-\frac{\pi}{2},\frac{\pi}{2})$
Softsign ^{[7][8]}		$f(x) = \frac{x}{1+ x }$	$f'(x)=\frac{1}{(1+ x)^2}$	(-1,1)
Rectifier ^[9]		$f(x) = \left\{egin{array}{ll} 0 & ext{for} & x < 0 \ x & ext{for} & x \geq 0 \end{array} ight.$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for} & x < 0 \ 1 & ext{for} & x \geq 0 \end{array} ight.$	$[0,\infty)$
Parameteric Rectified Linear Unit (PReLU) ^[10]		$f(x) = \left\{egin{array}{ll} lpha x & ext{for} & x < 0 \ x & ext{for} & x \geq 0 \end{array} ight.$	$f'(x) = \left\{egin{array}{ll} lpha & ext{for} & x < 0 \ 1 & ext{for} & x \geq 0 \end{array} ight.$	$(-\infty,\infty)$
Exponential Linear Unit (ELU) ^[11]		$f(x) = \left\{ egin{array}{ll} lpha(e^x-1) & ext{for} & x < 0 \ & x & ext{for} & x \geq 0 \end{array} ight.$	$f'(x) = \left\{ egin{array}{ll} f(x) + lpha & ext{for} & x < 0 \ 1 & ext{for} & x \geq 0 \end{array} ight.$	$(-lpha,\infty)$
SoftPlus ^[12]		$f(x) = \log_e(1+e^x)$	$f'(x) = \frac{1}{1+e^{-x}}$	$(0,\infty)$

Other activation functions

Name	Plot	Equation	Derivative	Range
Bent identity		$f(x)=\frac{\sqrt{x^2+1}-1}{2}+x$	$f'(x) = \frac{x}{2\sqrt{x^2+1}} + 1$	$(-\infty,\infty)$
SoftExponential ^[13]		$f(lpha,x) = \left\{ egin{array}{ll} -rac{\log_e(1-lpha(x+lpha))}{lpha} & ext{for} & lpha < 0 \ & x & ext{for} & lpha = 0 \ & rac{e^{lpha x}-1}{lpha} + lpha & ext{for} & lpha > 0 \end{array} ight.$	$f'(lpha,x) = \left\{ egin{array}{ll} rac{1}{1-lpha(lpha+x)} & ext{for} & lpha < 0 \ e^{lpha x} & ext{for} & lpha \geq 0 \end{array} ight.$	$(-\infty,\infty)$
Sinusoid		$f(x)=\sin(x)$	$f'(x) = \cos(x)$	[-1, 1]
Sinc	√	$f(x) = \left\{egin{array}{ll} 1 & ext{for} & x = 0 \ rac{\sin(x)}{x} & ext{for} & x eq 0 \end{array} ight.$	$f'(x) = \left\{ egin{array}{c} 0 & ext{for} & x=0 \ rac{\cos(x)}{x} - rac{\sin(x)}{x^2} & ext{for} & x eq 0 \end{array} ight.$	[pprox217234,1]
Gaussian		$f(x)=e^{-x^2}$	$f'(x)=-2xe^{-x^2}$	(0,1]

Gradient descent, Learning rate and Momentum

Gradient descent

- 기울기 하강: Gradient descent
 - 함수의 테일러 전개

$$f(x + \Delta x) = f(x) + \frac{f'(x)}{1!} \Delta x + \frac{f''(x)}{2!} \Delta x^2 + \cdots$$

○ 목적함수가 최소화인 경우 함수의 1차 도함수 값이 0이 아니면 1차 도함수의 반대 방향으로 이동해야 목적함수의 값을 감소시킬 수 있음

$$x_{new} = x_{old} - \eta f'(x), \quad where \quad 0 < \eta < 1$$

◦ 이동 후의 새로운 함수 값은 이동 전의 함수 값보다 작음

$$f(x_{new}) = f(x_{old} - \eta f'(x)) \cong f(x_{old}) - \eta |f'(x)|^2 < f(x_{old})$$

• Imagine that you had a red ball inside of a rounded bucket like in the picture below.

The red ball moves in the opposite direction of the gradient.

It moves in the direction x increases.

It moves in the direction x decreases.

• If the absolute value of gradient is large, the red ball moves a lot.

- The red ball moves in the opposite direction of the gradient.
- If the absolute value of gradient is large, the red ball moves a lot.

$$x_{t+1} = x_t - \eta f'(x_t)$$

 η : Learning rate $(\eta \in [0,1])$

Learning rate (학습률)

Why the learning rate is used?

- Sometimes, calculated gradients are too big so that the ball may not arrive at the destination(global minimum).
- The learning rate is used to reduce the gradient gradually.

Learning rate (학습률)

In neural networks, users set the learning rate as

- a constant
 - When the learning rate is tiny, the derivatives almost never changed direction and the weights ended up being reasonably small too.
 - When it is huge, the derivatives changed directions a medium amount and the weights got huge too.

a value that decreases over iterations

- In the beginning of training process, randomly initialized weights should be updated a lot.
- As the number of iteration increases, the learning rate decreases.

How to avoid local minimums: Momentum

- The momentum method is a technique for accelerating gradient descent that accumulates a velocity vector in directions of persistent reduction in the objective across iterations.
- 현재 gradient가 업데이트되고 있는 속도를 고려하겠다는 의미
- 최근 많이 이용되는 딥러닝 학습 방법들에서 모멘텀이 자주 이용됨

$$x_{t+1} = x_t - \eta f'(x_t)$$

$$x_{t+1} = x_t + v_{t+1}$$

$$v_{t+1} = \mu v_t - \eta f'(x_t)$$

 v_{t+1} : Update value to x_t

 μ : weight of the previous update ($\mu \in [0,1]$)