4. 표본 데이터의 요약 (1)

• 그래프를 이용한 자료의 정리

■ 히스토그램, 상자그림, 산점도, 파이그림, 막대그림 등을 이용하여 한눈에 알아볼 수 있게 자료를 정리할 수 있음.

9rp

long

■ 질적 자료인 경우

◆ 1개 변수 : 막대그림, 파이그림

◆ 2개 변수 : 스택트컬럼차트, 히트앱

■ 양적 자료인 경우

◆ 1개 변수 : 히스토그램, 상자그림 ┌두

◆ 2개 변수 : 산점도

- 도수분포표 (Frequency Distribution Table)
 - ◆ 자료의 범주와 각 범주 별 빈도를 정리한 도수분포표를 작성한 뒤, 이를 토대로 자료를 막 대그림, 파이그림, 히스토그램 등으로 표현
 - 질적 자료의 경우 범주를 그대로 표기
 - 양적 자료의 경우 각 자료값이 속하는 구간을 이용하여 범주를 정의함.

범주	빈도	상대빈도	누적빈도	누적상대빈도

- 막대그림(Bar chart)과 파이그림(Pie chart)
 - ◆ 라이트 맥주 예제
 - 어느 맥주회사의 마케팅 관리자는 라이트 맥주 판매를 분석하고자 한다. 어느 마트 고객 중 285명의 표본을 무작위로 추출하여, 다음 7개 중 가장 좋아하는 라이트 맥주를 고르도록 하였다. 응답은 각각 코드 1, 2, 3, 4, 5, 6, 7을 사용하여 기록하였다.

- 1. Budweiser Light
- 2. Busch Light
- 3. Coors Light
- 4. Michelob Light
- 5. Miller Lite
- 6. Natural Light
- 7. Other brand

Number	Brand
1	1
2	1
3	5
4	1
283	1
284	1
285	5

- 라이트 맥주 데이터(light_beer_preference_survey.csv)를 이용하여 도수분포표를 작성한 뒤, 이를 막대그림과 파이그림을 이용하여 시각화하여라.

```
> setwd("C:\\...\\ ")
> lightbeer <- read.csv('light_beer_preference_survey.csv')</pre>
> head( lightbeer )
  Number Brand Gender
```

```
> brand <- lightbeer$Brand</pre>
> brand_freq <- table(brand)</pre>
> brand_freq
brand
1 2 3 4 5 6 7
90 19 62 13 59 25 17
> freq_dist <- cbind( brand_freq, brand_freq/sum(brand_freq)*100)</pre>
> colnames( freq_dist ) <- c('freq', 'relative_freq')</pre>
> freq_dist[,2] <- round( freq_dist[,2], 2)</pre>
> freq_dist
  freq relative_freq
    90
                31.58
   19
               6.67
   62
               21.75
   13
               4.56
   59
               20.70
   25
              8.77
    17
                 5.96
```


- 히스토그램 (Histogram)
 - ◆ 통신요금 예제
 - 한 통신회사는 적절한 요금체계를 마련하고자 그 회사와 계약한 신규 가입자 중 200명의 표본을 무작위로 추출한 뒤, 각 고객 별 첫 달의 월별 청구액을 다음과 같이 수집하였다.

Subscribers	Bills
1	42.19
2	38.45
3	29.23
4	89.35
5	118.04
•••	

- 통신요금 데이터(telephone_bills.csv)을 이용하여 월 청구액에 대한 히스토그램을 도출하고 이를 해석하여라.

```
> billdata <- read.csv('telephone_bills.csv')</pre>
> head( billdata )
   Bills
  42.19
2 38.45
3 29.23
4 89.35
5 118.04
6 110.46
> bills <- billdata$Bills</pre>
> table( cut(bills, breaks=seq(0, 120, 15), include.lowest=TRUE))
   [0,15] (15,30] (30,45] (45,60] (60,75] (75,90] (90,105]
                 37
                           13
                                                10
                                                          18
                                                                     28
       71
(105, 120]
       14
```


◆ 대칭 (Symmetry)

◆ 치우침 (Skewness)

◆ Symmetric and Unimodal → 종모양 (Bell Shaped)

- ◆ 히스토그램 해석 시 주의할 점
 - 계급 구간의 수에 따라 히스토그램의 모양이 많이 달라질 수 있음.
 - 일반적으로 계급 구간의 수가 많으면 봉우리가 많아지고, 계급구간의 수가 적으면 봉우리의 수 가 적어져 평평해짐.

- ◆ 상자수염그림 작성방법
- 1) 다섯수치요약값 Q0 (minimum), Q1, Q2, Q3, Q4 (maximum)과 IQR을 구한다.
- 2) Q1, Q2, Q3를 이용하여 상자를 작성한다.
- 3) 울타리(fences) 경계값인(F1)= Q1)- 1.5×IQR 과 F2 → Q3 → 1.5×IQR를 구한다.
- 4) <u>울타리에 안쪽에</u> 있는 자료값 중 가<u>장 극단적인 두 값인 인접값(adjacent values) AV1과 A</u>V2를 구한다.
- 5) Q1부터 AV1까지, Q3부터 AV2까지 수염(whisker)를 그린다.
- 6) 이상치는 양 울타리를 넘어가는 값들로 정의된다. 이상치가 있는 경우 해당 위치에 x, o 등으로 표 기한다.

$0 = \chi \left(\frac{1}{4} \times (5+1)\right) = \chi(4)$ M=15 Q3 = 9((3/5+1)) 그래프에 의한 기술통계 $Q_{5} = \mathcal{N}(\frac{1}{2}(15+1)) = \mathcal{N}(8)$ - ((iz) - 다음은 15명의 학생들의 한달 용돈 자료이다. 이에 대한 상자그림을 작성하여라. 5,8, 20, 24,25, 26, 28, 30, 30, 30, 30, 35, 37, 40, 100 IQR=03-01 = 1. F1= 24-15×11 IO2=11. 1,5 IOR 1,5 Iar = n, T F2= 35 \$15×11 = 51,5 F2. 100-40 24 FB

- 드라이브스루 서비스를 제공하는 패스트푸드 레스토랑 다섯 군데(Popeyes, Wendys, McDonals, Hardees, Jack.in.Box)에서 드라이브스루 고객을 100명씩 무작위로 선택한 뒤 각 고객 별로 주문 부터 픽업까지 소요된 시간을 기록하였다. 드라이브스루 데이터 (serving_times_of_drive_throughs.csv)에 기록된 데이터를 토대로 장자그림을 도출한 뒤 5개 레스토랑 별 소요시간이 어떠한가를 비교하여라.

OUI

>		read.cs	v('serving	_times_of	_drive_throughs	.csv')
(cDonalds Ha	ardees Ja	ck.in.Box	
1	150	173	198	158	289	
2	/ 197	95	131	195	273	
3	186	154	158	177	254	
4	166	104	123	147	282	
5	196	183	139	181	235	
6	192	120	160	192	245	
						(17)
				bo xplot	(VI)	1 (- T.
	· · · · · · · · · · · · · · · · · · ·			7		

■ 스택트컬럼차트 (Stacked Column Chart)

◆ 신문 예제

- 선호하는 신문과 직업군 간에 연관성이 있는지를 파악하고자 한다. 354명을 무작위로 선택하여 어느 직업군에 속하는지와 어느 신문을 선호하는지를 조사하였다. 선호하는 신문은 Globe and Mail(1), Post(2), Star(3), Sun(4) 중 하나로, 직업군은 blue-collar worker(1), white-collar worker(2), professional(3) 중 하나의 항목으로 입력하였다.

VI V2 V3 V4

-	<u>J</u>	
Reader	Occupation	Newspaper
<u>/ (1)</u>	_2	2
2	1	4
3	2	1

1 केरिटी प्रमाण कराया किरिटी किरी किरिटी किरी किरिटी किरी किरिटी किरिटी किरिटी किरिटी किरिटी किरिटी किरिटी किरिटी किरिटी

354

◆ 분할표(contingency table) 두 개의 범주형 변수에 관한 요약

- 신문과 직업군에 관한 자료 (newspaper_readership_survey.csv)를 이용하여 분할표를 작성하고 어를 스택트컬럼차트를 이용하여 시각화하여라.

```
_news_reader 
/- read.csv('newspaper_readership_survey.csv')

> head( news_reader )
  Reader Occupation Newspaper
                  table ( Y
```

21


```
ctgc_tab) <= table( news_reader$Newspaper) news_reader$Occupation )
colnames (ctgc_tab) <- c("Blue Collar",
                                                          "Professional")
                                         "while <u>collar",</u>
rownames(ctgc_tab)<- c("G&M", "Post", "Star", "Sun")
ctgc_tab
                                              table (PFSN, DFSO.)
      Blue Collar While Collar Professional
                                           33
G&M
                             29
                                           51
               18
                             43
Post
               38
                                           22
                             21
Star
               37
                             15
                                           20
Sun/
```


- 산점도 (Scatter Plot)
 - ◆ 주택가격 예제

한 부동산 중개인은 집의 가격과 크기의 연관성에 대해 알아보고자 한다. 이를 위해 최근에 팔린 12채의 주택을 표본으로 뽑아 각 주택의 가격(단위: 1000달러)과 크기(단위: 100제곱피트)를 기록하였다.

X	4
Size	Price
S 23	315
18 /	229
26	355
20	261
22	234
14	216
33	308
28	306
23	289
20	204
27	265
18	195

◆ 산점도에서 관찰되는 주요 패턴

◆ 주택가격 데이터(price_and_size_of_houses.csv)를 이용하여 주택 크기와 가격에 대한 산점 도를 도출하여라.

```
> house <- read.csv("price_and_size_of_houses.csv")</pre>
> head( house )
  Siže Price
    23 315
   18
       229
       355
   26
   20 261
   22 234
       216
   14
```


Live chart

- 시계열 그림 (Time Series plot)
 - ◆ 시계열 자료(Time-Series data) vs 횡단면 자료(Cross-Sectional data)
 - 시계열자료 : 시간의 순서에 따라 기록한 자료
 - 횡단면자료 : 동일한 시점에 수집된 자료
 - ◆ 가솔린 가격 예제
 - 1978년부터 매달 순차적으로 수집된 월평균 가솔린 가격(price_of_gasoline.csv) 자료로 시계열 그림을 도출하여라.

그래프에 의한 기술통계 Gasoline")

