

透過 SIR 模型與人口流量參數 探討縣市間疫情傳染之關係

高中地理奧林匹亞競賽

2020.09.27

新冠病毒 SARS-CoV-2

- ? 何謂優良的防疫政策?
- ? 如何降低民眾感染率?

疫情在 縣市間的傳染

SIR傳染病模型

城市引力模型

SIR傳染病模型

S: 易感者 (susceptible) I: 感染者 (infective) R: 康復者 (removed)

SIR傳染病模型

—— 單一研究區的SIR模型

$$\frac{\mathrm{dS}}{\mathrm{dt}} = -\beta \mathrm{SI}$$

$$\frac{\mathrm{dI}}{\mathrm{dt}} = \beta \mathrm{SI} - \gamma \mathrm{I}$$

$$\frac{dR}{dt} = \gamma I$$

 $\frac{dS}{dt}$ 、 $\frac{dI}{dt}$ 分別為易感者(S)、感染者(I)、康復者(R)之比例隨時間的變化量

SIR傳染病模型

一考慮多區域交互作用的SIR模型

βij則跟兩個縣市人口的互動程度有關

將劃分的研究區數目提升至 n 個 第 i 區感染人數隨時間的變化

$$\frac{\mathrm{dS_i}}{\mathrm{dt}} = -\sum_{k=1}^n \beta_{ik} S_i I_k$$

$$\frac{\mathrm{dI_i}}{\mathrm{dt}} = \sum_{k=1}^n \beta_{ik} S_i I_k - \gamma I_i$$

$$\frac{dR_i}{dt} = \gamma I_i$$

城市引力模型

—— 用於人口流量參數的計算

牛頓萬有引力定律

$$F = \frac{GM_1M_2}{r^2}$$

 $M_1 \cdot M_2$:物體質量

r : 兩物體之間距離 ······

$$C = \frac{\theta K P_1 P_2}{r^2}$$

θ、K : 人口流量參數

P₁、P₂ :城市人口數

r : 兩城市之間距離

城市引力模型

K值

- 台北市與新北市人口流量過高
- 將台北市和新北市當作基準
- K=台北市與新北市原始人口流量的倒數

	臺北市	新北市	桃園市	臺中市	臺南市	高雄市
臺北市	-	81056.9	4618.069	561.123	80.659	116.806
新北市	81056.9	-	7265.275	948.745	130.226	190.380
桃園市	4618.069	7265.275	-	934.688	90.747	127.767
臺中市	561.123	948.745	934.688	-	296.347	395.367
臺南市	80.659	130.226	90.747	296.347	-	4411.037
高雄市	116.806	190.380	127.767	395.367	4411.037	-

	臺北市	新北市	桃園市	臺中市	臺南市	高雄市
臺北市	-	1	0.057	0.007	0.001	0.001
新北市	1	-	0.090	0.012	0.002	0.002
桃園市	0.057	0.090	-	0.012	0.001	0.002
臺中市	0.007	0.012	0.012	_	0.004	0.005
臺南市	0.001	0.002	0.001	0.004	-	0.054
高雄市	0.001	0.002	0.002	0.005	0.054	-

城市引力模型

θ值

- 以倍率的方式提升或降低人口流量值
- 超過1的人口流量值在輸入模擬器前都會被還原到1
- 經過調整 θ 值來模擬不同的人口移動情形
- 觀察人口流量變化對病毒傳播的影響

	臺北市	新北市	桃園市	臺中市	臺南市	高雄市
臺北市	-	1	0.057	0.007	0.001	0.001
新北市	1	-	0.090	0.012	0.002	0.002
桃園市	0.057	0.090	-	0.012	0.001	0.002
臺中市	0.007	0.012	0.012	-	0.004	0.005
臺南市	0.001	0.002	0.001	0.004	-	0.054
高雄市	0.001	0.002	0.002	0.005	0.054	-

	南投縣	雲林縣	嘉義縣	嘉義市
南投縣	1	0.0998	0.0741	0.0356
雲林縣	0.0998	1	0.4589	0.3878
嘉義縣	0.0741	0.4589	1	1
嘉義市	0.0356	0.3878	1	1

	臺	此市	新北市	桃園	市臺	中市	臺南市	高雄市	Ħ
臺北市	5	1	1	1	0.6	5923	0.099	5 0.144	1
新北市	5	1	1	1		1	0.1607	7 0.234	9
桃園市	5	1	1	1		1	0.112	0.157	6
臺中市	5 0.6	923	1	1		1	0.365	6 0.487	8
臺南市	5 0.0	995	0.1607	0.11	2 0.3	3656	1	1	
高雄市	5 0.1	441	0.2349	0.157	⁷ 6 0.4	4878	1	1	

>>> 研究方法

人口統計資料

>>>> 參數模擬

>>> 情境模擬

各情境下調整初始案例數以及病毒傳播時間

情境一

一台灣視為單一研究區的概念

- $\theta = 60000$
- 讓縣市間人口流量還原到1
- 任何一個縣市的初始病例就等同於整個台灣本島的初始病例

感染期間內總感染人數

初始值	30天	60天	90天
10	18820	10200503	21096223
100	186493	18080738	21277574
1000	1708510	20435194	21339078

情境二

一維持正常縣市人口移動

- $\theta = 100$
- 盡可能地貼近真實縣市人口的移動量

感染期間內總感染人數

初始值	30天	60天	90天
10	228	1942	15215
100	2286	19398	149384
1000	22826	190502	1305685

情境三

——減少50%的人口流動量

- $\theta = 50$
- 情境二的狀況下,再減少50%的人口流動量
- 縣市之間人口移動限制政策的效率

感染期間內總感染人數

初始值	30天	60天	90天
10	101	332	893
100	1025	3324	8901
1000	10240	33116	87810

情境四

——各縣市之間的封城

- $\theta = 0$
- 各縣市之間的封城
- 不會有任何的互動和人口的流動

感染期間內總感染人數

初始值	30天	60天	90天
10	14	14	14
100	141	143	143
1000	1409	1430	1432

將台灣視為單一研究區

一如情境一

- 頻繁的人口流動
- 毫無預防措施
- 不到三個月就能感染幾乎全台人口
- 過去文獻多將國家視為單一研究區

初始值	30天	60天	90天
10	18820	10200503	21096223

較符合縣市人口移動真實狀況

——如情境二~四

相同情境下

一不同初始感染人數、感染時間的參數,造成的感染人數差異

 $\theta = 100$

初始值	30天	60天	90天
10	228	1942	15215
100	2286	19398	149384
1000	22826	190502	1305685

₩ 総性成長 ▼

感染時間	初始感染人數	感染人數成長
相同	不同	呈正比、 線性成長
不同	相同	更快速、 傾向指數成長

傾向指數成長

較符合縣市人口移動真實狀況

不同情境下

一相同初始感染人數、感染時間的參數,造成的感染人數差異

初始 感染人數	感染天數	θ = 100	θ = 50	$\Theta = 0$
10	30	228	101	14
100	60	19398	3324	143
1000	90	1305685	87810	1432

- 短時間內的果斷的防疫政策抉擇是相當重要的
- 最重要的參數是縣市間人口流量數值的高低
- 控制縣市之間的人口移動能有效減緩疫情的成長

- 人口流動與接觸率越高, 病毒傳播的範圍將更廣
- 流動率越低,就更能夠控制疫情的傳播
- 一個好的防疫政策是盡可能地 降低縣市間的人口流量
- 達到控制疫情的效果

謝謝各位評審的聆聽

