Capstone Project-2 (Employee Churn Prediction) Group-11

F-1295 Victor

F-1380 Habip

F-1470 Aziz

F-1491 Brian

F-1328 Firat

F-1382 Halil

Table of Contents

- Introduction to Employee Churn
- Key Takeaways and Assumptions
- EDA
- Data Visualization
- Data Pre-Processing
- Cluster Analysis
- Model Building
- Model Deployment

Introduction to Employee Churn

- In customer churn, you can predict who and when a customer will stop buying.
- Employee churn is similar to customer churn.
- It was found that employee churn will be affected by age, tenure, pay, job satisfaction, salary, working conditions, growth potential and employee's perceptions of fairness.
- Some other variables such as gender, ethnicity, education, and marital status were essential factors in the prediction of employee churn.
- In some cases such as the employee with niche skills are harder to replace.
- Acquiring new employees as a replacement has its costs such as hiring costs and training costs.
- Organizations tackle this problem by applying machine learning techniques to predict employee churn, which helps them in taking necessary actions.

Introduction to Employee Churn

- Business chooses the employee to hire someone while in marketing you don't get to choose your customers.
- Employees will be the face of your company, and collectively, the employees produce everything your company does.
- Losing a customer affects revenues and brand image. Acquiring new customers is difficult and costly compared to retain the existing customer. Employee churn also painful for companies an organization. It requires time and effort in finding and training a replacement.

• Employee churn has unique dynamics compared to customer churn. It helps us in designing better employee retention plans and improving employee satisfaction. Data

science algorithms can predict the future churn.

Key Takeaways and Assumptions

- A Clean DF (How lucky we are!

 ↓).
- There are no duplicated value.
- There are remarkable amount of niche employees.
- Clustering does not work for our project.
- XGBoost Model
- Model Deployment —> Streamlit

EDA

1.

2. We chose not to delete duplicated rows

"groupby" function by
["work_accident",
"promotion",
"department",
"salary", "left"]

df.groupby("work_accident").mean() # promotion, left satisfaction last_eval num_of_projects avg_monthly_hours experience promotion left work_accident 0.717 3.805 0.019 0.265 0.607 201.259 3.497 0.035 0.078 0.648 0.713 3.789 199.818 3.506 Then, let's analyze employees according to their promotion status. df.groupby("promotion").mean() # work accident, left satisfaction last_eval num_of_projects avg_monthly_hours experience work_accident left promotion 3.484 0.143 0.242 0.612 0.716 3.804 201.076 0.656 0.706 3.752 199.850 4.166 0.238 0.060

Analyze df In [238... Column by Out [238... 35]

```
num_of_projects
In [237...
          df.num_of_projects.value_counts()
               4365
Out [237...
               4055
               2761
               2388
               1174
                256
         Name: num of projects, dtype: int64
          df.num_of_projects.value_counts(normalize=True)
              0.291
              0.270
              0.184
              0.159
              0.078
              0.017
         Name: num_of_projects, dtype: float64
In [239...
          df.num_of_projects.describe()
                  14999.000
         count
Out [239...
                      3.803
          mean
                      1.233
         std
                      2.000
         min
                      3.000
         25%
          50%
                      4.000
         75%
                      5.000
         Mame: num_of_projects, dtype: float64
                      7.000
```


Data Visualization

1.

2.

Data Visualization

Data Visualization

Data Pre-Processing

OneHotEncoder ["department"]
OrdinalEncoder ["salary"]
MinMaxScaler —> Remainder

For Ku3, 0 labelled cluster is below the average siltouette score. For Ku3, 0 and 3 labelled clusters are below the average Let's see How 8 is when Ku2 (According to our target variable clusters).

Cluster Analysis

As seen above, the columns in the data set do not separate from each other. All columns are intertwined with each other.

As seen above it is visually obvious that clustering is not a good approach to our dataset.

From now on we are going to use classification models to make churn predictions.

Logistic Regression

Test Set				
Test Set				
[[873 270]				
[75 282]]				
	precision	recall	f1-score	support
0	0.92	0.76	0.84	1143
1	0.51	0.79	0.62	357
accuracy			0.77	1500
macro avg	0.72	0.78	0.73	1500
weighted avg	0.82	0.77	0.78	1500
Train_Set				
_				
[[7616 2669]				
[693 2521]]				
	precision	recall	f1-score	support
0	0.92	0.74	0.82	10285
_1	0.49	0.78	0.60	3214
accuracy			0.75	13499
macro avg	0.70	0.76	0.71	13499
weighted avg	0.81	0.75	0.77	13499

Test Set	J				
[[1101	42]				
\$3.50° 10	342]]				
•		ecision	recall	f1-score	support
	0	0.99	0.96	0.97	1143
	1	0.89	0.96	0.92	357
accui	racy			0.96	1500
macro	avg	0.94	0.96	0.95	1500
weighted	avg	0.96	0.96	0.96	1500
Train_Set	0 J 3214 J J				
1 0		ecision	recall	f1-score	support
	0	1.00	1.00	1.00	10285
	1	1.00	1.00	1.00	3214
accui	racy			1.00	13499
macro	avg	1.00	1.00	1.00	13499
weighted	avg	1.00	1.00	1.00	13499

KNN

RainForest

1				
Test Set				
[[2239 23]				
[38 700]]				
	precision	recall	fl-score	support
0	0.98	0.99	0.99	2262
1	0.97	0.95	0.96	738
accuracy			0.98	3000
macro avg	0.98	0.97	0.97	3000
weighted avg	0.98	0.98	0.98	3000
The second secon				
[[9098 68]	precision	recall	f1-score	support
[[9098 68]	precision 0.99	recall 0.99	f1-score	3410401 -1
[[9098 68] [137 2696]]				9166
[[9098 68] [137 2696]]	0.99	0.99	0.99	9166
[137 2696]] 0 1	0.99	0.99	0.99	9166 2833 11999

XGBoost

Test_Set				
[[2257 5]				
[15 723]]				
	precision	recall	f1-score	support
0	0.99	1.00	1.00	2262
1	0.99	0.98	0.99	738
accuracy			0.99	3000
macro avg	0.99	0.99	0.99	3000
weighted avg	0.99	0.99	0.99	3000
Train Set				
[[9166 0]				
[0 2833]]				
	precision	recall	f1-score	support
0	1.00	1.00	1.00	9166
1	1.00	1.00	1.00	2833
accuracy			1.00	11999
macro avg	1.00	1.00	1.00	11999
weighted avg	1.00	1.00	1.00	11999

A	

47/47 [===	====			===] - 0s	1ms/step
[[1098	45]				
[28 3	29]]				
		precision	recall	f1-score	support
	0	0.98	0.96	0.97	1143
	1	0.88	0.92	0.90	357
accur	acy			0.95	1500
macro a	avg	0.93	0.94	0.93	1500
weighted a	avg	0.95	0.95	0.95	1500

Model Comparing

Model Deployment

Employee Churn Prediction App

Whether your employees will continue to work with you or not ? Let's See!

Please fill the attributes on the left hand side to make run the model properly.

	satisfaction	last_eval	num_of_projects	avg_monthly_hours	work_accident	experience	promotion
0	0.0900	0.3600	1	1	1	1	31

Check the features you selected from the table above. If correct, press the Predict button.

Your employee will ** leave.**

Any question/feedback?

Thank you!