

1 1. An electrical contact for a microelectronic
2 device comprising:
3 a first contact pad; and
4 a resinous member having conductive particles,
5 said member extending upwardly from said first contact pad.

1 2. The contact of claim 1 wherein said member is
2 in the form of an upstanding annular shape.

1 3. The contact of claim 2 wherein said annular
2 shape tapers as it extends upwardly.

1 4. The contact of claim 3 including metallic
2 flakes dispersed through a polymeric resin.

1 5. The contact of claim 4 wherein said resin is
2 thermoplastic.

1 6. An electrical connector for a microelectronic
2 device comprising:
3 a first contact pad;
4 a resinous member having conductive particles
5 dispersed through said member and having upper and lower
6 ends; and
7 a second contact pad connected to the upper end
8 of said member, said first contact pad connected to the
9 lower end of said member.

1 7. The connector of claim 6 wherein said member is
2 formed of a thermoplastic resin having dispersed metallic
3 particles.

1 8. The connector of claim 7 wherein said
2 thermoplastic resin has been connected to said first and
3 second pads by curing said resin above its glassy transition
4 temperature.

1 9. The connector of claim 6 wherein said member is
2 of an annular configuration..

1 10. The connector of claim 6 wherein said resinous
2 member includes a resin having a thixotropic index of about
3 6 or greater.

1 11. The connector of claim 10 wherein said resinous
2 member has a viscosity of approximately 200,000 centipoise.

1 12. The connector of claim 10 wherein said
2 conductive particles are silver flakes.

1 13. The connector of claim 12 wherein said silver
2 flakes have a particle size of 1/4 to 1 mil.

1 14. The connector of claim 6 wherein said resinous
2 member has a height of from about 3 to about 10 mil.

1 15. An electrical contact for a semiconductor
2 device comprising an annular member formed of conductive
3 particles in a resinous matrix, said member adapted to
4 physically and electrically connect to conductive
5 terminations.

1 16. A method of electrically contacting a surface
2 comprising the steps of:
3 depositing an annular member formed of

4 conductive particles in a resinous matrix; and
5 physically connecting said member between a
6 pair of conductive surfaces.

1 17. The method of claim 16 including the steps of
2 forming a stencil with an annular opening therethrough and
3 forcing a resinous material through said stencil opening to
4 form said annular member.

1 18. The method of claim 17 including the step of
2 causing the conductive particles to align with one another
3 to form an electrical connection along a surface of said
4 member.

1 19. The method of claim 18 including the steps of
2 heating said member to its glassy transition temperature and
3 causing said member to bond to a contact surface.

1 20. A method of making electrical contact
2 comprising the steps of:
3 forming an upstanding conductive, annular
4 member on a first contact surface;
5 contacting a second contact surface with said
6 member; and
7 heating said member to bond said member to said
8 second contact surface.

1 21. The method of claim 20 including the step of
2 forming said member by depositing a resinous matrix having
3 dispersed conductive particles.

1 22. The method of claim 20 including the step of
2 using said member as a guide to center and align a
3 conductive bump to be contacted by said member.

1 23. The method of claim 21 including the step of
2 curing said member above its glassy transition temperature
3 in contact with said second contact surface.

1 24. A stencil for forming a deposit for making an
2 electrical contact comprising:

3 an annular opening formed in said stencil; and
4 at least one bridge element across said annular
5 opening.

1 25. The stencil of claim 24 having a thickness of
2 from about 3 to about 10 mils.

1 26. The stencil of claim 25 wherein said annular
2 opening has a radial width of about 1 mil.

1 27. A method of forming a deposit in making
2 semiconductor devices comprising the steps of:

3 forming at least one annular opening in a plate
4 creating an inner member inward of said opening and an outer
5 member outward of said opening; and
6 maintaining a physical connection between said
7 inner and outer members.

1 28. The stencil of claim 27 having a thickness of
2 from about 3 to about 10 mils.

1 29. The stencil of claim 28 wherein said annular
2 opening has a radial width of about 1 mil.

1 30. A resinous electrically conductive material
2 comprising:

3 a resinous body having an edge surface; and
4 a plurality of electrically conductive
5 particles lapping one another along said edge surface so as
6 to form an electrically conductive path along said edge
7 surface.

1 31. The material of claim 30 wherein said body is
2 formed of a thermoplastic polymer.

1 32. The material of claim 31 wherein said particles
2 are metallic flakes.

1 33. The material of claim 30 including at least two
2 edge surfaces to provide at least two separate conductive
3 paths.