Pneumonia Decection

with Chest X-Ray images

pneumonia

Pneumonia is an inflammation of lung tissue and can cause fluid to build up in the chest

Symptoms include:

- cough
- fever
- chest pain
- loss of appetite
 - Rarely: coughing up blood

Those at increased risk include:

- babies and very young children
- the elderly
- people who smoke

Severe cases of pneumonia can lead to:

- pleurisy
- a lung abscess
- blood poisoning

Can be fatal

Pneumonia can be detected either from blood tests or X-Rays

CHEST X-RAY IMAGES

normal

pneumonia

Resolution: 128x128

HOW TO WORK WITH PICTURES?

Resolution: 128x128

> 16384 pixels arranged in a square grid

WHAC IS A PIXEL?

> greyscale: a number, 0-255,

> rgb: 3 numbers, 0-255

Each number denotes the brightness:

> 0 - Black

> 255 - White

0	0	0	61	87	120
0	0	0	72	106	123
0	0	64	90	122	0
0	64	89	117	0	0
68	89	114	0	0	0
89	114	0	7	0	3

Dense Neural Network Consist of layers of nodes c Each node is a calculation 02 performed on the input 01 03 Every input goes to every Every node's output is an node in the layer input for every node in the 04 next layer

CONVOLUCIONAL NEURAL NEUWORK (CNN)

Kernel outputs, Layers

transfer Learning

Models can often be improved with:

- More time
- More layers
- More kernels
- More data

Shortcut:

- Use a large pretrained neural network as a base
- Add an appropriate head for the model you want
- Only the train the small head and a few of the top layers

Results (Test set)

Traded accuracy for Detection

