MISP and Decaying of Indicators

MISP AND DECAYING OF INDICATORS

AN INDICATOR SCORING METHOD AND ONGOING IMPLE

TIAM CIRCL
INFO@CIRCLLU
AUGUST 3, 2022

MISP and Decaying of Indicators

AN INDICATOR SCORING METHOD AND ONGOING IMPLE-

TEAM CIRCL

INFO@CIRCL.LU

AUGUST 3, 2022

EXPIRING IOCS: WHY AND HOW?

Indicators - Problem Statement

- Sharing information about threats is crucial
- Organisations are sharing more and more

Contribution by unique organisation (Orgc.name) on MISPPriv:

Date	Unique Org
2013	17
2014	43
2015	82
2016	105
2017	118
2018	125
2019-10	135

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Indicators - Problem Statement

INDICATORS - PROBLEM STATEMENT

- Various users and organisations can share data via MISP, multiple parties can be involved
 - ► Trust, data quality and time-to-live issues
 - ► Each user/organisation has **different use-cases** and interests
 - Conflicting interests such as operational security, attribution,... (depends on the user)
 - → Can be partially solved with *Taxonomies*

MISP and Decaying of Indicators Expiring IOCs: Why and How?

2022

-Indicators - Problem Statement

DICATORS - PROBLEM STATEMENT

us users and organisations can share data via MISP

Each user/organisation has different use-cases and inte
 Conflicting interests such as operational security, attribu (depends on the user)

(depends on the user)

an be partially solved with Toxonomies

INDICATORS - PROBLEM STATEMENT

- Various users and organisations can share data via MISP, multiple parties can be involved
 - ► Trust, data quality and time-to-live issues
 - ► Each user/organisation has **different use-cases** and interests
 - Conflicting interests such as operational security, attribution,... (depends on the user)
 - \rightarrow Can be partially solved with *Taxonomies*
- Attributes can be shared in large quantities (more than 7.3 million on MISPPRIV)
 - Partial info about their freshness (Sightings)
 - Partial info about their **validity** (last update)
 - \rightarrow Can be partially solved with our *Decaying model*

MISP and Decaying of Indicators Expiring IOCs: Why and How?

2022

-Indicators - Problem Statement

➤ Partial info about their freshness (Sighting.

Partial info about their validity (last update)

REQUIREMENTS TO ENJOY THE DECAYING FEATURE IN MISP

- Starting from MISP 2.4.116, the decaying feature is available
- Don't forget to update the decay models and enable the ones you want
- The decaying feature has no impact on the information in MISP, it's just an overlay to be used in the user-interface and API
- Decay strongly relies on *Taxonomies* and *Sightings*, don't forget to review their configuration

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Requirements to enjoy the decaying feature

in MISP

REMENTS TO ENJOY THE DECAYING FEATURE IN

Starting from MISP 2.4.116, the decaying feature is available
 Don't forget to update the decay models and enable the

ones you want The decaying feature has no impact on the information in

Decay strongly relies on Toxonomies and Sightings, don't found to review their configuration.

SIGHTINGS - REFRESHER

Sightings add temporal context to indicators. A user, script or an IDS can extend the information related to indicators by reporting back to MISP that an indicator has been seen, or that an indicator can be considered as a false-positive

- *Sightings* give more credibility/visibility to indicators
- This information can be used to **prioritise and decay** indicators

MISP and Decaying of Indicators Expiring IOCs: Why and How? Sightings - Refresher

2022-

Significance - REFRESHER

Significance - A seasy variety or as
final fi

ORGANISATIONS OPT-IN - SETTING A LEVEL OF CONFIDENCE

MISP is a peer-to-peer system, information passes through multiple instances.

- **Producers can add context** (such as tags from *Taxonomies*, *Galaxies*) about their asserted confidence or the reliability of the data
- Consumers can have **different levels of trust** in the producers and/or analysts themselves
- Users might have other contextual needs
 - → Achieved thanks to *Taxonomies*

MISP and Decaying of Indicators Expiring IOCs: Why and How?

Organisations opt-in - setting a level of confidence

ANISATIONS OPT-IN - SETTING A LEVEL OF FIDENCE

MISP is a peer-to-peer system, information passes through multiple instances.

- Producers can add context (such as tags from Toxonomies Galaxies) about their asserted confidence or the reliability the data
 Consumers can have different levels of trust in the
- producers and/or analysts themselves
- Users might have other contextual need
 - → Achieved thanks to

TAXONOMIES - REFRESHER (1)

Taxonomies « previous 1 2 next » Description Version Enabled Required Active Tags Actions Workflow support language is a common language to support intelligence analysts to perform their analysis on data and information. 5/5 - o i vocabulaire-des-probabilites-estimatives Ce vocabulaire attribue des valeurs en pourcentage à certains énoncés de probabilité 179 threats-to-dns An overview of some of the known attacks related to DNS as described by Torabi, S., + 🕢 🗑 Boukhtouta, A., Assi, C., & Debbabi, M. (2018) in Detecting Internet Abuse by Analyzing Passive DNS Traffic: A Survey of Implemented Systems. IEEE Communications Surveys & Tutorials, 1-1, doi:10.1109/comst.2018.2849614 targeted-threat-index The Targeted Threat Index is a metric for assigning an overall threat ranking score to email 2 - @ i messages that deliver malware to a victim's computer. The TTI metric was first introduced at SecTor 2013 by Seth Hardy as part of the talk "RATastrophe: Monitoring a Malware Menagerie" along with Katie Kleemola and Greg Wiseman

- Tagging is a simple way to attach a classification to an *Event* or an *Attribute*
- Classification must be globally used to be efficient

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Taxonomies - Refresher (1)

2022

| Name | Section | Section

TAXONOMIES - REFRESHER (2)

→ Cherry-pick allowed *Tags*

MISP and Decaying of Indicators —Expiring IOCs: Why and How?

2022

—Taxonomies - Refresher (2)

TAXONOMIES - REFRESHER (3)

- Some taxonomies have numerical_value
 - \rightarrow Can be used to prioritise Attributes

Description	value
Completely reliable	100
Usually reliable	75
Fairly reliable	50
Not usually reliable	25
Unreliable	0
Reliability cannot be judge	d 50 ?
Deliberatly deceptive	0?

Description	Value
Confirmed by other sources	100
Probably true	75
Possibly true	50
Doubtful	25
Improbable	0
Truth cannot be judged	50 ?

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Taxonomies - Refresher (3)

Scoring Indicators: Our solution

score(Attribute) = base score(Attribute, Model) • decay(Model, time)

Where.

- $score \in [0, +\infty]$
- \blacksquare base score \in [0, 100]
- decay is a function defined by model's parameters controlling decay speed
- Attribute Contains Attribute's values and metadata (Taxonomies, Galaxies, ...)
- Model Contains the *Model*'s configuration

MISP and Decaying of Indicators Expiring IOCs: Why and How?

-Scoring Indicators: Our solution

- Model Contains the Model's configuration

CURRENT IMPLEMENTATION IN MISP

IMPLEMENTATION IN MISP: Event/view

- Decay score toggle button
 - ► Shows Score for each *Models* associated to the *Attribute* type

MISP and Decaying of Indicators

—Current implementation in MISP

-Implementation in MISP: Event/view

IMPLEMENTATION IN MISP: API RESULT

/attributes/restSearch

```
"Attribute": [
    "category": "Network activity",
    "type": "ip-src",
    "to_ids": true,
    "timestamp": "1565703507",
    "value": "8.8.8.8",
    "decay score": [
        "score": 54.475223849544456,
        "decayed": false,
        "DecayingModel": {
          "id": "85",
          "name": "NIDS Simple Decaying Model"
```

MISP and Decaying of Indicators

—Current implementation in MISP

—Implementation in MISP: API result

IMPLEMENTATION IN MISP: PLAYING WITH MODELS

- Automatic scoring based on default values
- **User-friendly UI** to manually set *Model* configuration (lifetime, decay, etc.)
- **Simulation** tool
- Interaction through the API
- Opportunity to create your **own** formula or algorithm

MISP and Decaying of Indicators

Current implementation in MISP

Implementation in MISP: Playing with Models

1/4

DECAYING MODELS IN DEPTH

When scoring indicators¹, multiple parameters² can be taken into account. The **base score** is calculated with the following in mind:

- Data reliability, credibility, analyst skills, custom prioritisation tags (economical-impact), etc.
- Trust in the source

base
$$score = \omega_{ta} \cdot tags + \omega_{sc} \cdot source_confidence$$

Where,

$$\omega_{sc} + \omega_{ta} = 1$$

MISP and Decaying of Indicators Decaying Models in Depth

-Scoring Indicators: base_score (1)

 Data reliability, credibility, analyst skills, custon prioritisation tags (economical-impact), etc. $base_score = \omega_{to} \cdot togs + \omega_{sc} \cdot source_confidence$

Paper available: https://arxiv.org/pdf/1803.11052

²at a variable extent as required

Scoring Indicators: base_score (2)

Current implentation ignores source_confidence:

$$\rightarrow$$
 base_score = tags

	Computation			
Tag	Eff. Ratio		numerical_value	Result
admiralty-scale:source-reliability="Completely reliable"	0.50	*	100.00	50.00
phishing:psychological-acceptability="high"	0.50	*	75.00	37.50
				87.50

ightarrow The base_score can be use to prioritize attribute based on their attached context and source

MISP and Decaying of Indicators

Decaying Models in Depth

Scoring Indicators: base_score (2)

SCORING INDICATORS: DECAY SPEED (1)

score(Attribute) = base score(Attribute, Model) • decay(Model, time)

The decay is calculated using:

- The lifetime of the indicator
 - ► May vary depending on the indicator type
 - ► short for an IP, long for an hash
- The decay rate, or speed at which an attribute loses score over time
- The time elapsed since the latest update or sighting

MISP and Decaying of Indicators

Decaying Models in Depth

Scoring Indicators: decay speed (1)

ting Indicators: decay speed (1)

e(stribute) = base_score(stribute, mobil) • decay(mobil

- decay is calculated using:
- May vary depending on the indicator to short for an IP long for an bash
- The decay rate, or speed at which an attribute loses so over time
- m The time elapsed since the latest update or sighting

18

SCORING INDICATORS: PUTTING IT ALL TOGHETHER

 \rightarrow decay rate is **re-initialized upon sighting** addition, or said differently, the score is reset to its base score as new sightings are applied.

$$score = base_score \cdot \left(1 - \left(\frac{t}{\tau}\right)^{\frac{1}{\delta}}\right)$$

- $au au = ext{lifetime}$
- \bullet $\delta = \text{decay speed}$

IMPLEMENTATION IN MISP: MODELS DEFINITION

$$\Rightarrow$$
 score = base_score $\cdot \left(1 - \left(\frac{t}{\tau}\right)^{\frac{1}{\delta}}\right)$

2022-

Models are an instanciation of the formula where elements can be defined:

- Parameters: lifetime, decay rate, threshold
- base score
- default base score
- formula
- associate Attribute types
- creator organisation

MISP and Decaying of Indicators -Decaying Models in Depth -Implementation in MISP: Models definition

 associate Attribute type m creator organisation

IMPLEMENTATION IN MISP: MODELS TYPES

Multiple model types are available

- **Default Models**: Models created and shared by the community. Available from misp-decaying-models repository³.
 - ► → Not editable
- **Organisation Models**: Models created by a user belonging to an organisation
 - ► These models can be hidden or shared to other organisation
 - ► → Editable

MISP and Decaying of Indicators

Decaying Models in Depth

-Implementation in MISP: Models Types

IMPLEMENTATION IN MISP: MODELS TYPES

ultiple model types are available

 Default Models: Models created and shared by the community. Available from misp-decaying-models repository³.

► → Not editable

■ Optimization Models: Mod

an organisation

These models can be hidden or shared to other organisation

Phttps://github.com/MISP/misp-decaying-model

³https://github.com/MISP/misp-decaying-models.git

IMPLEMENTATION IN MISP: INDEX

View, update, add, create, delete, enable, export, import

MISP and Decaying of Indicators -Decaying Models in Depth 2022

View, update, add, create, delete, enable, export, import

-Implementation in MISP: Index

IMPLEMENTATION IN MISP: FINE TUNING TOOL

Create, modify, visualise, perform mapping

MISP and Decaying of Indicators

└─Decaying Models in Depth

-Implementation in MISP: Fine tuning tool

IMPLEMENTATION IN MISP: base_score TOOL

MISP and Decaying of Indicators

Decaying Models in Depth

MALMARIATION IN MISS? base_score TOOL

-Implementation in MISP: base_score tool

IMPLEMENTATION IN MISP: SIMULATION TOOL

Simulate Attributes with different Models

MISP and Decaying of Indicators

Decaying Models in Depth

-Implementation in MISP: simulation tool

Simulate Attributes with different Models

IMPLEMENTATION IN MISP: API QUERY BODY

/attributes/restSearch

```
"includeDecayScore": 1,
"includeFullModel": 0,
"excludeDecayed": 0,
"decayingModel": [85],
"modelOverrides": {
    "threshold": 30
}
"score": 30,
}
```

MISP and Decaying of Indicators

Decaying Models in Depth

-Implementation in MISP: API query body

IMPLEMENTATION IN MISP, API QUERY BODY

ALTERISTICS*(**)
Included system(*)
**Included system*(*)
**In

CREATING A NEW DECAY ALGORITHM (1)

The current architecture allows users to create their **own** formulae.

- 1. Create a new file \$filename in app/Model/DecayingModelsFormulas/
- 2. Extend the Base class as defined in DecayingModelBase
- 3. Implement the two mandatory functions computeScore and isDecayed using your own formula/algorithm
- 4. Create a Model and set the formula field to \$filename

Use cases:

- Add support for **more feature** (expiration taxonomy)
- Query external services then influence the score
- Completely **different approach** (i.e streaming algorithm)

MISP and Decaying of Indicators Decaying Models in Depth

-Creating a new decay algorithm (1)

The current architecture allows users to create their on

CREATING A NEW DECAY ALGORITHM (2)

```
1 <?php
include_once 'Base.php';
4 class Polynomial extends DecayingModelBase
      public const DESCRIPTION = 'The description of your new
      decaying algorithm';
      public function computeScore($model, $attribute, $base_score,
      $elapsed time)
         // algorithm returning a numerical score
      public function isDecayed($model, $attribute, $score)
          // algorithm returning a boolean stating
          // if the attribute is expired or not
18
```

MISP and Decaying of Indicators

Decaying Models in Depth

Creating a new decay algorithm (2)

COLLECTION A NEW DECOM COLLOCATION (27)

COLLECTION AND DECOM COLLOCATION (27)

COLLECTION (18)

COLLECTION

DECAYING MODELS 2.0

- Improved support of *Sightings*
 - ► False positive *Sightings* should somehow reduce the score
 - Expiration Sightings should mark the attribute as decayed
- Potential *Model* improvements
 - ► Instead of resetting the score to base_score once a Sighting is set, the score should be increased additively (based on a defined coefficient); thus **prioritizing surges** rather than infrequent Sightings
 - ► Take into account related *Tags* or *Correlations* when computing score
- Increase *Taxonomy* coverage
 - ► Users should be able to manually override the numerical value of *Tags*
- For specific type, take into account data from other services
 - ► Could fetch data from BGP ranking, Virus Total, Passive X for IP/domain/... and adapt the score

MISP and Decaying of Indicators └─Decaying Models in Depth

Decaying Models 2.0

DECAYING MODELS 2.0

- Improved support of Sightings
- Potential Model improvements

 Instead of resetting the score to base_score once a Significant is set, the score should be increased additive
- Sighting is set, the score should be increased additively (based on a defined coefficient); thus prioritizing surrather than infrequent Sightings
 - Take into account related Togs or Correlations who computing score
 Increase Toxonomy coverage
- Users should be able to manually override to numerical_value of Togs
- For specific type, take into account data from other servi

 Could fetch data from BGP ronking, Virus Total, Possive X :

 19 (domnin) and advant the service.