

Diagrammi polari, di Nyquist e di Nichols

Diagramma di Nichols

Definizione (1/2)

Il diagramma di Nichols (DdNic) di una fdt consiste nella rappresentazione grafica di

$$|G(s)|_{s=i\omega} = G(j\omega) = M(\omega)e^{j\varphi(\omega)}, \text{ per } \omega \in (0,\infty)$$

sul piano cartesiano

$$\phi_{\text{gradi}} \, \otimes \, \, M_{\text{dB}}$$

Definizione (2/2)

- Nel DdNic la variabile indipendente ω diventa la coordinata curvilinea (un punto sul piano φ⊗M per ciascun valore di ω)
- Per ovvi motivi i valori dell'ascissa possono essere limitati (ma non è obbligatorio) tra −180° e +180° oppure tra 0° e +360° oppure tra −360° e 0°; nel prosieguo si opterà preferibilmente per l'intervallo −360° ÷ 0°

Esempio (1/2)

$$G(s) = \frac{10(s+1)}{s^{2}(s+2)(s+4)}$$

$$\frac{100}{50}$$

$$\frac{100}{-50}$$

$$\frac{100}{-360}$$

$$\frac{100}{-360}$$

$$\frac{100}{-315}$$

$$\frac{100}{-225}$$

$$\frac{100}{-135}$$

$$\frac{100}{-350}$$

Esempio in Matlab

```
>> s=tf('s')
Transfer function:
>> G=10*(s+1)/s^2/(s+2)/(s+4)
Transfer function:
                                               Figure No. 1
                                               File Edit View Insert Tools Window Help
      10 s + 10
                                                DEBB NAZZ DEO
s^4 + 6 s^3 + 8 s^2
                                                                  Nichols Chart
>> nichols(G)
>> set(gca, 'XGrid', 'on')
>> set(gca, 'YGrid', 'on')
>>
                                                                Open-Loop Phase (deg)
```

Lettura di m_G sul DdNic

Il margine di guadagno può essere letto anche sul diagramma di Nichols di G_a(jω), osservando che il punto A corrisponde all'intersezione del diagramma con l'asse verticale a fase -180°

Lettura di m_o sul DdNic

Il margine di fase può essere letto anche sul diagramma di Nichols di G_a(jω), osservando che il punto C corrisponde all'intersezione del diagramma con l'asse orizzontale a 0 dB

Margini di stabilità

La carta di Nichols

La carta di Nichols (1/2)

I luoghi a M (modulo) costante e a N (fase) costante possono essere tracciati anche sul piano di Nichols: il loro insieme costituisce la carta di Nichols

Generata in Matlab con il comando: ngrid('new')

La carta di Nichols (2/2)

- Sovrapponendo alla carta di Nichols il diagramma di Nichols della funzione d'anello $G_a(j\omega)$, è possibile ricavare il valore di modulo e fase di $W_y(j\omega)$ per ogni ω
- Sono di particolare interesse i luoghi a modulo costante, poiché permettono di trovare un legame fra M_r e m_φ e fra M_r e m_G

I luoghi a M costante sul piano di Nichols

Legame fra M_r e m_{ϕ} (1/3)

 $ightharpoonup M < M_{r,lim} \Rightarrow DdNic di G_a$ esterno alla curva $M_{r,lim}$

Legame fra M_r e m_{ϕ} (2/3)

Legame fra M_r e m_{ϕ} (3/3)

- La condizione che il diagramma di Nichols di $G_a(j\omega)$ risulti esterno alla curva $M=M_{r,lim}$ è necessaria e sufficiente a garantire $M_r < M_{r,lim}$
- La condizione $m_{\phi} > m_{\phi,lim}$ (ove $m_{\phi,lim}$ è il margine di fase letto in corrispondenza della curva $M = M_{r,lim}$) è **necessaria ma non sufficiente** per garantire $M_r < M_{r,lim}$
- Se il DdNic di G_a (j_{ω}) interseca la curva $M=M_{r,lim}$ a pulsazioni inferiori alla ω_c (alla quale viene letto m_{ϕ}), la $W_y(j_{\omega})$ presenta $M_r > M_{r,lim}$ anche quando $m_{\phi} > m_{\phi,lim}$

Un esempio (1/3)

$$F(s) = \frac{2(s+5)(s+12)}{s(s+4)(s^2+7.2s+16)}; \quad C(s) = 100 \frac{(1+0.07s)^2}{(1+0.0175s)^2}$$

Si vorrebbe ottenere in catena chiusa: $M_r < 2 \text{ dB}$

DdB della fdt d'anello:

$$G_a(s) = C(s)F(s)$$

Un esempio (2/3)

$$F(s) = \frac{2(s+5)(s+12)}{s(s+4)(s^2+7.2s+16)}; \quad C(s) = 100 \frac{(1+0.07s)^2}{(1+0.0175s)^2}$$

 m_{ϕ} soddisfa la condizione necessaria per avere $M_{r} < 2$ dB:

 $m_{\phi} > 48^{\circ}$

Nonostante ciò, il DdNic di Ga(jω) interseca la curva M = 2 dB

Un esempio (3/3)

$$F(s) = \frac{2(s+5)(s+12)}{s(s+4)(s^2+7.2s+16)}; \quad C(s) = 100 \frac{(1+0.07s)^2}{(1+0.0175s)^2}$$

Il picco di risonanza della fdt in catena chiusa è superiore a 2 dB

Legame fra M_r e m_g (1/4)

■ M < $M_{r,lim}$ ⇒ DdNic di G_a esterno alla curva $M_{r,lim}$

Legame fra M_r e m_g (2/4)

Legame fra M_r e m_G (3/4)

- La condizione $m_G > m_{G,lim}$ (ove $m_{G,lim}$ è il margine di guadagno letto in corrispondenza della curva $M = M_{r,lim}$) è **necessaria ma non sufficiente** per garantire $M_r < M_{r,lim}$
- Se il DdNic di G_a (j_{ω}) interseca la curva $M=M_{r,lim}$ a pulsazioni inferiori alla ω_{π} (alla quale viene letto m_G), la $W_y(j_{\omega})$ presenta $M_r > M_{r,lim}$ anche quando $m_G > m_{G,lim}$

Legame fra M_r e m_G (4/4)

- Poiché $m_{G,lim}$ risulta contenuto anche per piccoli valori di $M_{r,lim}$, il soddisfacimento di $m_G > m_{G,lim}$ risulta spesso insufficiente a garantire $M_r < M_{r,lim}$
- Nell'esempio precedente il margine di guadagno era infinito e quindi superiore a qualunque m_{G,lim} considerato, indipendentemente dall'effettivo picco di risonanza

N.B.: Nella pratica dinamiche di alta frequenza trascurate nel modello e vincoli tecnologici impediscono al margine di guadagno di essere infinito

Relazioni numeriche fra margini e M_r

I legami fra picco di risonanza e margini di stabilità ricavati dalla carta di Nichols possono essere espressi numericamente come:

$$m_{\phi,lim} = arctan \left(\frac{\sqrt{4M_{r,lim}^2 - 1}}{2M_{r,lim}^2 - 1} \right), \quad m_{G,lim} = \frac{M_{r,lim}}{M_{r,lim} + 1}$$

con $m_{\phi,lim}$ in rad, $M_{r,lim}$ e $m_{G,lim}$ in unità naturali

$$\left(m_{_{\phi,lim}}\right)_{gradi}\cong 60^{\circ}-5\left(M_{_{r,lim}}\right)_{dB}$$
 $\left(m_{_{G,lim}}\right)_{dB}\cong 6-0.4\left(M_{_{r,lim}}\right)_{dB}$

Approssimazioni valide per

 $0dB < M_{r,lim} < 6dB$

Osservazioni conclusive

- La condizione $M_r < M_{r,lim}$, se rispettata, garantisce una buona robustezza della stabilità, con soddisfacenti margini di fase e di guadagno (rispettivamente pari almeno a $m_{\phi,lim}$ e $m_{G,lim}$)
- Le condizioni $m_{\phi} > m_{\phi,lim}$ e $m_{G} > m_{G,lim}$ non garantiscono con assoluta certezza che il picco di risonanza risulti inferiore a $M_{r,lim}$, anche se il suo valore è comunque contenuto in presenza di buoni margini di stabilità