

Introduction to Deep Learning (I2DL)

Exercise 8: Autoencoder

Today's Outline

- Exam
 - Mock Exam
- Hyperparameter tuning
- Fxercise 8
 - Batch Normalization & Dropout
 - Transfer Learning
 - Autoencoder
- Personal: Github/Exposure

Mock Exam & Update

- Exam Structure via Mock Exam
 - Multiple Choice
 - Written Questions
 - No coding

Introduction to Deep Learning (I2DL) Mock Exam

IN2346 - SoSe 2020

Technical University of Munich

Problem		Full Points	Your Score
1	Multiple Choice	10	
2	Short Questions	12	
3	Backpropagation	9	
Total		31	

Total Time: 31 Minutes
Allowed Ressources: None

- Exam
 - No concrete information from the university
 - We will keep you posted
 - Additional questions after CNNs and once we have more info

Hyperparameter Tuning

Source: https://images.deepai.org/glossary-terms/05c646fe1676490aa0b8cab0732a02b2/hyperparams.png

Hyperparameter Tuning

- Slides on Piazza
 - Check them out if you haven't done it yet

- It is important
 - Regardless of your resources
 - There is no all in one recipe
 - If you need more practice: optional submission on CIFAR10 (Solutions will be discussed next week)

Improve your training!

Batch Normalization

All we want is that our activations do not die out

Batch Normalization

Wish: Unit Gaussian activations

Mean of your mini-batch examples over feature k $\widehat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E\big[\boldsymbol{x}^{(k)}\big]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$ Unit gaussian

Batch Normalization

• 1. Normalize

$$\widehat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E[\boldsymbol{x}^{(k)}]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$$

• 2. Allow the network to change the range

The network can learn to undo the normalization

$$\gamma^{(k)} = \sqrt{Var[\mathbf{x}^{(k)}]}$$
$$\beta^{(k)} = E[\mathbf{x}^{(k)}]$$

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$
backprop

Dropout

Using half the network = half capacity

Transfer Learning: Example Scenario

- Need to build a Cat classifier
- Only have a few images ~10 000

- Problem Statement:
 - Training a Deep Neural Network needs a lot of data
 - Collecting much data is expensive or just not possible
- Idea:
 - Some problems/ tasks are closely related
 - Can we transfer knowledge from one task to another?
 - Can we re-use (at least parts of) a pre-trained network for the new task?

Coloring Legend:

Untrained

Trained

Coloring Legend:

Untrained

Trained

Coloring Legend:

Untrained

Trained

Application: Autoencoder (Sub 8)

Autoencoder

- Task
 - Reconstruct the input given a lower dimensional bottleneck
 - Loss: L1/L2 per pixel
- Actually need no labels!
- Without non-linearities: similar to PCA

Transfer Using an Autoencoder

• Step 1:

 Train an Autoencoder on a large (maybe unlabeled) dataset very similar to your target dataset

• Step 2:

 Take pre-trained Autoencoder and use it as the first part of a classification architecture for your target dataset

Personal Note: Github/Exposure

- Posting I2DL solutions is not a helpful git for you
 - Maybe among other students...
- What is useful?
 - Something to talk about in interviews
- Projects:
 - internships/ guided research/ any task basically
 - Document your process (blog), show and visualize your data processing, discuss design decisions and publish code

See you next week!