

Resumen de la reunión para Geocomputación para aplicaciones ambientales: uso de GDAL y GRASS.

From Meeting Summary with AI Companion <no-reply@zoom.us>

Date Thu 12/19/2024 12:19 PM

To Amatulli, Giuseppe <giuseppe.amatulli@yale.edu>

El resumen de la reunión con Al Companion ahora admite idiomas adicionales en Obtener más vista previa.

Obtener más información

Resumen de la reunión para Geocomputación para aplicaciones ambientales: uso de GDAL y GRASS. (12/19/2024)

Resumen rápido

Giuseppe dirigió una clase sobre modelado de distribución de especies, explicando conceptos básicos de aprendizaje automático, preparación de datos y evaluación de modelos, con énfasis en la clasificación binaria y el uso de Random Forest. La clase cubrió aspectos prácticos como la obtención y procesamiento de datos climáticos y topográficos, así como la implementación de modelos utilizando herramientas como GRASS GIS y bibliotecas de Python. Se discutieron también técnicas avanzadas para incorporar información geográfica en los modelos y la importancia de la validación cruzada en la evaluación del rendimiento.

Siguientes pasos

- Giuseppe: Preparar y compartir el sílabo y las fechas del próximo curso de Machine Learning para enero.
- Giuseppe: Organizar una reunión con Saverio en Matera en enero para discutir el curso.
- Giuseppe: Subir los videos del curso actual a YouTube y actualizar la página web con el material.
- Giuseppe: Enviar certificados de asistencia a los participantes del curso.
- Giuseppe: Avisar a los participantes cuando se abran las inscripciones para el próximo curso de Machine Learning en otoño.
- Participantes: Revisar los videos y materiales del curso en la página web de Spatial Ecology para seguir practicando.

• Juana: Estar atenta a las consultas o requerimientos adicionales de los participantes después del curso.

Resumen

Modelado De Distribución De Especies.

Giuseppe dirige una clase sobre el modelado de distribución de especies, explicando conceptos básicos de aprendizaje automático y regresión. Se enfoca en la clasificación binaria utilizando datos de presencia y ausencia de especies, como el ejemplo del pájaro Budbecker en Sudamérica. Giuseppe describe los dos principales grupos de modelos en aprendizaje automático: modelos de ensamble y redes neuronales, mencionando ejemplos como Random Forest y árboles de decisión.

Preparación Y Evaluación De Modelos De Aprendizaje Automático.

Giuseppe explica los conceptos básicos de los modelos de aprendizaje automático, enfocándose en la preparación de datos, extracción de tablas, creación de modelos y predicción. Discute la importancia de dividir los datos en conjuntos de entrenamiento y prueba, así como el uso de matrices de confusión y curvas ROC para evaluar el rendimiento del modelo. Giuseppe también aborda la interpretación de los resultados, incluyendo la importancia de las variables en modelos de bosques aleatorios y la necesidad de considerar correlaciones complejas entre variables.

Descarga Y Uso De Datos Climáticos.

Giuseppe explica cómo descargar y utilizar datos climáticos, centrándose en el uso de climatologías y la función de "bounding box" para obtener datos específicos de una región. Discute la descarga de datos de precipitación, temperatura máxima y mínima, y cómo calcular promedios mensuales. Pablo contribuye aclarando que los valores junto a "Rosedin" corresponden a latitud y longitud del área de estudio.

Climatic and Topographic Data Modeling

Giuseppe explica cómo crear un modelo simplificado utilizando variables climáticas y topográficas, detallando el uso de herramientas como PkTools para calcular estadísticas y aplicar máscaras a los datos. Describe el proceso de manejo de diferentes tipos de datos, incluyendo la gestión de valores nulos y la importancia de mantener la consistencia en el formato de los archivos. Paul hace una pregunta sobre cómo trabajar con rásteres independientes en un mismo directorio, a lo que Giuseppe responde explicando cómo identificar y procesar múltiples archivos.

Preparación De Datos Para El Análisis

Giuseppe explica la importancia de preparar los datos correctamente para el análisis, enfatizando la necesidad de mantener el mismo tamaño de píxel, resolución y máscara para todos los archivos. Hugo sugiere una alternativa para crear la máscara mediante la rasterización de un vector de Sudamérica, a lo que Giuseppe está de acuerdo siempre que se mantenga la consistencia. Después de una pausa, Giuseppe continúa discutiendo la preparación de datos y la transición a la fase de modelado.

Random Forest Con Skiller

Giuseppe explica el uso de Skiller, una biblioteca de Python para machine learning, centrándose en la clasificación con Random Forest. Discute la preparación de datos, incluyendo cómo manejar variables geográficas y categóricas. Enfatiza que Random Forest no es un modelo espacial verdadero y advierte sobre la evaluación de residuales. Giuseppe también menciona técnicas para incorporar información geográfica, como usar coordenadas como covariables o aplicar Kernel Density.

SIG Y Aprendizaje Automático Para Modelos De Distribución De Especies.

Giuseppe explica cómo utilizar herramientas de SIG y aprendizaje automático para crear modelos de distribución de especies, enfocándose en el uso de GRASS GIS y Random Forest. Describe el proceso de importar datos raster y vectoriales, crear variables derivadas, y configurar el modelo de aprendizaje automático. Giuseppe también responde preguntas sobre la naturaleza de los datos de presencia-ausencia y el número óptimo de árboles en Random Forest, sugiriendo entre 400 y 500 árboles para obtener resultados confiables.

Random Forest en GRASS GIS

Giuseppe explica el uso de Random Forest en GRASS GIS para el análisis de imágenes y la importancia de la validación cruzada en la evaluación del modelo. Destaca la flexibilidad de trabajar con Python para realizar análisis más detallados y la relevancia de variables como elevación y precipitación en los modelos. También menciona la necesidad de migrar a Python para obtener mayor flexibilidad en el análisis de aprendizaje automático.

El contenido creado con IA puede ser inexacto o engañoso. Verifique siempre su exactitud.

Califique la precisión de este resumen. 🖒 👨

Compartir resumen

Editar

Atentamente,

Zoom

+1.888.799.9666

©2024 Zoom Communications, Inc.

Visitar <u>zoom.us</u> 55 Almaden Blvd San Jose, CA 95113