P-value distribution

February 28, 2017

0.1 P-value distribution

In this notebook we examine the p-value distribution of cancer driver gene prediction methods. The divergence of p-values from the expected null uniform distribution can indicate problematic assumptions in a model. We first quantify this divergence through the mean log fold change (MLFC) metric, and, second, graphically examine through a qq plot.

0.1.1 Load data

The first step is to load in the p-values for each method. Since it only makes sense to compare the p-value distribution under the null hypothesis, we remove genes which are significant from 3 cases and those found in the Cancer Gene Census (CGC). After this filtering step, we assume the substantial majority of remaining genes reflect passenger genes.

0.1.2 Mean log fold change (MLFC)

The following functions compute the mean absolute log2 fold change for the p-value distribution compared to the expected uniform distribution under the null hypothesis. We define P(i) = i'th smallest p-value and $q(i) = \frac{i}{n}$, then

$$MLFC = \frac{1}{n} \sum_{i=1}^{n} \left| log_2 \frac{P(i)}{q(i)} \right|$$

where P represents the observed p-value, q is the corresponding expected p-value from a uniform distribution, n is the total number of genes, and MLFC is the average difference of observed and theoretical p-values. Values of MLFC near zero indicate smaller discrepancies, and therefore better statistical modeling of the passenger gene null distribution.

```
In [2]: def mean_log_fold_change(data):
            """Mean log fold change function
            Parameters
            _____
            data : pd.Series
                a series of p-values
            Returns
            _____
            mlfc : float
               mean log fold change.
            tmp = data.copy()
            tmp.sort_values(ascending=True, inplace=True)
            tmp[tmp==0] = tmp[tmp>0].min() # avoid infinity in log by avoiding zer
            dist_quant = np.arange(1, len(tmp)+1)/float(len(tmp))
            mlfc = np.mean(np.abs(np.log2(tmp/dist_quant)))
            return mlfc
        def compute_mlfc(df, meth_name, config):
            """Convenience function to compute mean log fold change from data frame
            This is a convenience wrapper to compute the mean log fold change direct
            from the result output for each method. It uses a configuration file
            to correctly parse which columns hold the p-values.
            Parameters
            _____
            df : pd.DataFrame
                data frame containing p-value column
            meth name : str
                method name for the data frame, should match the config file
            config : dict
                yaml config file loaded as a dictionary
            Returns
            _____
            mean_mlfc : float
```

```
mean log fold change for method
"""

# check whether there is custom p-value columns
if utils.is_valid_config(config, meth_name, 'pvalue'):
    pval_cols = config[meth_name]['pvalue']

else:
    pval_cols = ['pvalue']

# calculate the mlfc scores for each pvalue column
mlfc_score_list = []
for pval_col in pval_cols:
    pvals = df[pval_col].dropna().copy()
    tmp_score = mean_log_fold_change(pvals)
    mlfc_score_list.append(tmp_score)

# calculate the mean score, if multiple values
mean_mlfc = np.mean(mlfc_score_list)
```

0.1.3 Compute MLFC scores

Next, we will compute the MLFC scores for each method

```
In [48]: # compute MLFC scores
        mlfc_result = {m: compute_mlfc(full_data[m], m, config)
                       for m in full_data}
        mlfc_series = pd.Series(mlfc_result)
        mlfc_series
Out[48]: 2020+
                          0.138615
        ActiveDriver
                         1.242893
        MuSiC
                          2.564325
                         1.152682
        MutsigCV
        OncodriveClust
                         1.476567
        OncodriveFM
                          1.747076
        OncodriveFML
                         0.860177
        TUSON
                          0.740439
        dtype: float64
```

0.1.4 Plot results

```
In [53]: def plot_mlfc_score(mlfc, custom_order=None):
    """Bar plot of MLFC scores.

Params
-----
mlfc : pd.Series
    pandas series containing MLFC scores
```

```
custom_oder : list or None
       custom order for methods in bar plot
    # order mlfc values
    if custom order is None:
        mlfc.sort_values(inplace=True, ascending=False)
    else:
        mlfc = mlfc[custom_order]
    # make mlfc bar plot
   with sns.axes_style('ticks'), sns.plotting_context('talk', font_scale=
        sns.barplot(mlfc.index, mlfc, color='black')
        sns.despine()
        plt.gca().set_xticklabels(mlfc.index, rotation=45, ha='right')
        plt.ylabel('Mean Log2 Fold Change')
        plt.gcf().set_size_inches(7, 7)
        plt.gca().tick_params(axis='x', which='major', pad=0)
        plt.title('P-value divergence from uniform')
   plt.tight_layout()
order = ['ActiveDriver', 'OncodriveFM', 'OncodriveFML',
         'OncodriveClust', 'MuSiC', 'TUSON', 'MutsigCV', '2020+']
plot_mlfc_score(mlfc_series, custom_order=order)
```


0.2 QQ plot

A q-q plot is a graphical way to examine two distributions. In this case we compare the p-value distribution to the expected uniform distribution. We plot the p-values as a blue line, while a perfect uniform distribution is the red line.

The following qqplot function creates a p-value qq-plot with that expected from a uniform distribution. As input it takes a pandas series object of p-values for a method.

```
"""Function for qq-plot with uniform distribution.
    Parameters
    _____
    data : pd.Series
        p-values from each method
    n n n
    # sort p-values
    tmp = data.copy()
    tmp.sort_values(inplace=True)
    # expected p-values
    dist_quant = np.arange(1, len(tmp)+1)/float(len(tmp)+1)
        log_quant = -np.log10(dist_quant)
        if ax is None:
            plt.plot(log_quant, -np.log10(tmp),'o', markersize=3, **kwargs
            plt.plot([0, log_quant[0]], [0, log_quant[0]], ls="-", color="
        else:
            ax.plot(log_quant, -np.log10(tmp),'o', markersize=3, **kwargs)
            ax.plot([0, log_quant[0]], [0, log_quant[0]], ls="-", color='1
        # set axis labels
        if use xlabel:
            if ax is None: plt.xlabel('Theoretical ($-log_{10}(p)$)')
            else: ax.set_xlabel('Theoretical ($-log_{10}(p)$)')
        if use_ylabel:
            if ax is None: plt.ylabel('Observed ($-log_{10}(p)$)')
            else: ax.set_ylabel('Observed ($-log_{10}(p)$)')
    else:
        if ax is None:
            plt.plot(dist_quant, tmp,'o', markersize=3, **kwargs)
            plt.plot([0, 1], [0, 1], ls="-", color='red')
        else:
            ax.plot(dist quant, tmp, 'o', markersize=3, **kwarqs)
            ax.plot([0, 1], [0, 1], ls="-", color='red')
            ax.set_ylabel('p-value')
        if use xlabel:
            if ax is None: plt.xlabel('Theoretical Quantile')
            else: ax.set_xlabel('Theoretical Quantile')
        if use_ylabel:
            if ax is None: plt.ylabel('Observed Quantile')
            else: ax.set_ylabel('Observed Quantile')
    if title:
        ax.set_title(title)
    sns.despine()
def set_axes_label(fig, xlab, ylab,
```

```
ylab_yoffset=.55, ylab_xoffset=0.04,
                   xlab_yoffset=.04, xlab_xoffset=0.5):
    """Function to modify the axis labels for the qq plot"""
    txt1 = fig.text(xlab_xoffset, xlab_yoffset, xlab, ha='center', size=22
    txt2 = fig.text(ylab_xoffset, ylab_yoffset, ylab, ha='center', size=22
    return txt1, txt2
def get_pvalues(df, meth_name, config):
    """Convenience function to get correct column for p-values.
    Parameters
    _____
    df : pd.DataFrame
        data frame containing p-value column
   meth_name : str
       method name for the data frame, should match the config file
    config : dict
        yaml config file loaded as a dictionary
    Returns
    _____
    pval df list : list
        list of data frames with pvalue column
    # check whether there is custom p-value columns
    if utils.is_valid_config(config, meth_name, 'pvalue'):
        pval_cols = config[meth_name]['pvalue']
    else:
        pval_cols = ['pvalue']
    # data frames for p-values of each method
   pval_df_list = []
    for pval_col in pval_cols:
        # get p-values
        pvals = df[pval_col].dropna().copy()
        # make a new formatted df
        tmp_df = pd.DataFrame({'pvalue': pvals, 'method': meth_name + ' '
        pval_df_list.append(tmp_df)
```

We first format the data for making the qq plots. We put the p-values into a tidy data frame with one column containing all the p-values and the second column containing the corresponding method which generated that p-value.

return pval_df_list

```
for m in full_data:
             data_list.extend(get_pvalues(full_data[m], m, config))
         pvalue_df = pd.concat(data_list)
         # format the names
         rename_dict = {'TUSON TUSON.combined.pvalue.TSG': 'TUSON TSG', 'TUSON TUSON
                        'ActiveDriver pvalue': 'ActiveDriver', 'OncodriveClust pval
                        'MuSiC pvalue': 'MuSiC', 'OncodriveFML pvalue': 'OncodriveF
                        'OncodriveFM pvalue': 'OncodriveFM', '2020+ driver p-value
                        'MutsigCV pvalue': 'MutsigCV'}
         pvalue_df['method'] = pvalue_df.method.replace(rename_dict)
         # show the data frame
         pvalue_df.head()
Out [51]:
                  method
                          pvalue
         O ActiveDriver 0.029069
         1 ActiveDriver 0.021281
         2 ActiveDriver 1.000000
         3 ActiveDriver 1.000000
         4 ActiveDriver 1.000000
```

Using the qqplot function, we make a panel of qq plots for each method's p-values.

```
In [52]: # make qq plots
         with sns.axes_style('ticks'), sns.plotting_context('paper', font_scale=2.5
             g = sns.FacetGrid(pvalue_df, col="method", col_wrap=3, sharey=False, a
             g.map(qqplot, "pvalue")
             plt.tight_layout()
             txt_tuple = set_axes_label(g.fig, 'Theoretical p-value', 'Observed p-v
                                         ylab_xoffset=-0.02, ylab_yoffset=.62, xlab_
             g.set_titles('{col_name}')
             # set ylabel
             g.axes[0].set_ylabel('p-value')
             g.axes[3].set_ylabel('p-value')
             g.axes[6].set_ylabel('p-value')
             # set xlim, change limits to focus
             # on different regions
             for myax in q.axes:
                 myax.set_xlim((0, 1))
                 myax.set_ylim((0, 1))
```

