Lecture 14

Interpolation of Spatial Data I

DSA 8020 Statistical Methods II April 18-22, 2022

Background

Gaussian Process
Spatial Model

Spatial Interpolation

Whitney Huang Clemson University

Gaussian Process

Spatial Interpolation

Background

Questian Process Spatial Model

Spatial Interpolation

Toy Examples of Spatial Interpolation

Let's consider two spatial images, each with a missing pixel

Question: What is your best guess of the value of the missing pixel, denoted as $Y(s_0)$, for each case?

Background

Gaussian Process Spatial Model

Background

Gaussian Process Spatial Model

Interpolating Paraná State Precipitation Data

Interpolation of

Background

Gaussian Process Spatial Model

Spatial Interpolation

Goal: To interpolate the values in the spatial domain

The Spatial Interpolation Problem

Given observations of a spatially varying quantity Y at n spatial locations

$$y(s_1), y(s_2), \dots, y(s_n), \qquad s_i \in \mathcal{S}, i = 1, \dots, n$$

We want to estimate this quantity at any unobserved location

$$Y(s_0), \quad s_0 \in \mathcal{S}$$

Applications

- Mining: ore grade
- Climate: temperature, precipitation, ···
- Remote Sensing: CO₂ retrievals
- Environmental Science: air pollution levels, ···

Background

Gaussian Process
Spatial Model

Mining (Krige 1951) Matheron (1960s), Forestry (Matérn 1960)

Gaussian Process
Spatial Model

patial Interpolation

Background

Questian Process Spatial Model

Spatial Interpolation

$$\boldsymbol{y} = (y(\boldsymbol{s}_1), \dots, y(\boldsymbol{s}_n))^{\mathrm{T}}$$

- Calculating this conditional distribution can be difficult
- Instead we use a linear predictor:

$$\hat{Y}(s_0) = \lambda_0 + \sum_{i=1}^n \lambda_i y(s_i)$$

• The best linear predictor is completely determined by the mean and covariance of $\{Y(s), s \in \mathcal{S}\}$

Next, we will introduce a class of spatial model where the distribution is fully determined by its mean and covariance

Gaussian Process

patial Interpolation

Background

Gaussian Process Spatial Model

patiai interpolatio

Model:

$$Y(s) = m(s) + \epsilon(s), \qquad s \in S \subset \mathbb{R}^d$$

where

Mean function:

$$m(s) = \mathrm{E}[Y(s)] = \boldsymbol{X}^T(s)\boldsymbol{\beta}$$

Covariance function:

$$\{\epsilon(s)\}_{s\in\mathcal{S}} \sim \operatorname{GP}(0, K(\cdot, \cdot)), \quad K(s_1, s_2) = \operatorname{Cov}(\epsilon(s_1), \epsilon(s_2))$$

In practice, the covariance must be estimated from the data $(y(s_1),\cdots,y(s_n))^{\mathrm{T}}$. We need to impose some structural assumptions

Stationarity:

$$K(s_1, s_2) = \operatorname{Cov}(\epsilon(s_1), \epsilon(s_2)) = C(s_1 - s_2)$$

= $\operatorname{Cov}(\epsilon(s_1 + h), \epsilon(s_2 + h)))$

Isotropy:

$$K(s_1, s_2) = \operatorname{Cov}(\epsilon(s_1), \epsilon(s_2)) = C(\|s_1 - s_2\|)$$

A covariance function is positive definite (p.d.) if

$$\sum_{i,j=1}^{n} a_i a_j C(\boldsymbol{s}_i - \boldsymbol{s}_j) \ge 0$$

for any finite locations s_1, \dots, s_n , and for any constants a_i , $i = 1, \dots, n$

Question: what is the consequence if a covariance function is NOT p.d.? ⇒ We can get a negative variance

Question: How to guarantee a $C(\cdot)$ is p.d.?

- Using a parametric covariance function (see some examples in next slide)
- Using Bochner's Theorem to construct a valid covariance function

Spatial Data I

CLEMS#N UNIVERSITY

Background

Gaussian Process Spatial Model

Spatial Interpolation

Powered exponential:

$$C(h) = \sigma^2 \exp\left(-\left(\frac{h}{\rho}\right)^{\alpha}\right), \qquad \sigma^2 > 0, \ \rho > 0, \ 0 < \alpha \le 2$$

Spherical:

$$C(h) = \sigma^2 \left(1 - 1.5 \frac{h}{\rho} + 0.5 \left(\frac{h}{\rho} \right)^3 \right) 1_{\{h \le \rho\}}, \qquad \sigma^2, \ \rho > 0$$

Note: it is only valid for 1,2, and 3 dimensional spatial domain.

Matérn:

$$C(h) = \sigma^2 \frac{\left(\sqrt{2\nu}h/\rho\right)^{\nu} \mathcal{K}_{\nu}\left(\sqrt{2\nu}h/\rho\right)}{\Gamma(\nu)2^{\nu-1}}, \qquad \sigma^2 > 0, \, \rho > 0, \, \nu > 0$$

"Use the Matérn model" - Stein (1999, pp. 14)

1-D Realizations from Matérn Model with Fixed σ^2 , ρ

Figure: courtesy of Rasmussen & Williams 2006

The larger ν is, the smoother the process is

atial Interpolation

Background

Gaussian Process
Spatial Model

Spatial Interpolation

Background

Gaussian Process Spatial Model

Spatial Interpolation

Conditional Distribution of Multivariate Normal

Interpolation of Spatial Data I

Background

Gaussian Process
Spatial Model

Spatial Interpolation

lf

$$\begin{pmatrix} \boldsymbol{Y}_1 \\ \boldsymbol{Y}_2 \end{pmatrix} \sim \mathrm{N} \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu_1} \\ \boldsymbol{\mu_2} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \end{pmatrix}$$

Then

$$egin{bmatrix} [m{Y}_1|m{Y}_2 = m{y}_2] \sim \mathrm{N}\left(m{\mu_{1|2}}, \Sigma_{1|2}
ight) \end{split}$$

where

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (y_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Background

Gaussian Process

Spatial Interpolation

If $\{Y(s)\}_{s\in\mathcal{S}}$ follows a GP, then

$$\begin{pmatrix} Y_0 \\ \boldsymbol{Y} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} m_0 \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & k^T \\ k & \Sigma \end{pmatrix} \right)$$

We have

$$[Y_0|\mathbf{Y}=\mathbf{y}] \sim \mathrm{N}\left(m_{Y_0|\mathbf{Y}=\mathbf{y}}, \sigma^2_{Y_0|\mathbf{Y}=\mathbf{y}}\right)$$

where

$$m_{Y_0|\mathbf{Y}=\mathbf{y}} = m_0 + k^{\mathrm{T}} \Sigma^{-1} (\mathbf{y} - \mathbf{m})$$

$$\sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

Next, we are going to revisit our toy examples

$$m_{Y_0|Y=y} = 0 + k^{\mathrm{T}} \Sigma^{-1} (y - 0), \quad \sigma_{Y_0|Y=y}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

$$\sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

Spatial uncorrelated field:

$m_{Y_0|Y} = 0$

$$\bullet \ \sigma^2_{Y_0|\boldsymbol{Y}=\boldsymbol{y}} = \sigma^2_0$$

Spatial correlated field:

$$\bullet \ m_{Y_0|\boldsymbol{Y}} = k^{\mathrm{T}} \Sigma^{-1} \boldsymbol{y}$$

$$\bullet \ \sigma_{Y_0|\boldsymbol{Y}=\boldsymbol{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

In practice, we would like to predict the values at many locations. The Gaussian conditional distribution formula can still be used:

$$ig[oldsymbol{Y}_0|oldsymbol{Y}=oldsymbol{y}ig] \sim \mathrm{N}\left(oldsymbol{m}_{oldsymbol{Y}_0|oldsymbol{Y}=oldsymbol{y}}, \Sigma_{oldsymbol{Y}_0|oldsymbol{Y}=oldsymbol{y}}
ight)$$

where

$$egin{aligned} m{m}_{m{Y}_0|m{Y}=m{y}} &= m{m}_0 + m{k}^{\mathrm{T}} \Sigma^{-1} \left(m{y} - m{m}
ight) \ & \Sigma_{m{Y}_0|m{Y}=m{y}} &= \Sigma_0 - m{k}^{\mathrm{T}} \Sigma^{-1} m{k} \end{aligned}$$

Interpolation of Spatial Data I

Background

Spatial Model

Spatial Interpolation

CLEMS N

Background

Gaussian Process
Spatial Model

opatiai interpolation

If $\{Y(s)\}_{s\in S}$ follows a GP, then

$$\begin{pmatrix} \boldsymbol{Y}_0 \\ \boldsymbol{Y} \end{pmatrix} \sim \mathrm{N} \left(\begin{pmatrix} \boldsymbol{m}_0 \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_0 & \boldsymbol{k}^{\mathrm{T}} \\ \boldsymbol{k} & \boldsymbol{\Sigma} \end{pmatrix} \right)$$

We have

$$[Y_0|Y=y] \sim N(m_{Y_0|Y=y}, \Sigma_{Y_0|Y=y})$$

where

$$egin{aligned} oldsymbol{m_{Y_0|Y=y}} &= oldsymbol{m}_0 + oldsymbol{k}^{\mathrm{T}} \Sigma^{-1} \left(oldsymbol{y} - oldsymbol{m}
ight) \ & \Sigma_{Y_0|Y=y} &= \Sigma_0 - oldsymbol{k}^{\mathrm{T}} \Sigma^{-1} oldsymbol{k} \end{aligned}$$

Question: what if we don't know $m(s; \beta), c(h; \theta)$?

 \Rightarrow We need to estimate the mean and covariance from the data y.

Bochner's Theorem

UNIVERSIT

Gaussian Process Spatial Model

spatial interpolation

A complex-valued function C on \mathbb{R}^d is the covariance function for a weakly stationary mean square contituous complex-valued random process on \mathbb{R}^d if and only if it can be represented as

$$C(\boldsymbol{h}) = \int_{\mathbb{R}^d} \exp(i\omega^{\mathrm{T}} \boldsymbol{h}) F(d\boldsymbol{\omega}),$$

with F a positive finite measure. When F has a density with respect to Lebesgue measure, we have the spectral density f and

$$f(\omega) = \frac{1}{2\pi} \int_{\mathbb{R}^d} \exp(-i\omega^{\mathrm{T}} \boldsymbol{h}) C(\boldsymbol{h}) d\boldsymbol{h}$$

