Problema dello Zaino Frazionario (o Continuo)

Vincenzo Russo (vincenzo.russo@neminis.org)

Sommario

In questo documento ci occuperemo di dimostrare che il problema dello zaino frazionario (o continuo) soddisfa la proprietà di sottostruttura ottima e la proprietà della scelta greedy.

1 Formalizzazione del problema

Sia $O = \{o_1, o_2, ..., o_n\}$ un insieme di n oggetti. Indicheremo con p_i il peso dell'imo oggetto e con c_i il valore. Indicheremo con $v_i = \frac{c_i}{p_i}$ il profitto dell'oggetto o_i .

Sia P la capacità di uno zaino.

Vogliamo trovare una configurazione $X = \langle x_1, x_2, ..., x_n \rangle$, con $0 \le x_i \le 1$ rappresentante la porzione di oggetto o_i inserita nello zaino (ovvero la percentuale di peso) tale che:

- 1. $\sum_{i=1}^{n} x_i p_i \leq P$ (vincolo di ammissibilità)
- 2. $\max \sum_{i=1}^{n} x_i v_i$ (vincolo di ottimalità)

Dato che possiamo prendere porzioni di oggetti, il vincolo di ammissibilità si traduce in realtà in uguaglianza esatta:

$$\sum_{i=1..n} x_i p_i = P$$

Il problema dello zaino frazionario, quindi, ammette sempre una soluzione massimale, al contrario del problema dello zaino discreto, del quale lo zaino frazionario è il rilassamento continuo.

2 Risoluzione del problema

Il problema dello zaino frazionario può essere risolto con tecnica greedy, ordinando gli oggetti in ordine non crescente rispetto al profitto v_i e inserendo gli oggetti nello zaino in questo ordine finché, per qualche j $(1 \le j \le n)$, p_j non è maggiore della capacità residua dello zaino, P_r . A questo punto inseriremo nello zaino una porzione $x_j = \frac{P_r}{p_j}$ dell'oggetto p_j (che chiameremo oggetto critico).

3 Correttezza della soluzione

Indicheremo nel seguito con $Q_{n,P}$ il problema con n oggetti e zaino di capacità P. Inoltre indicheremo con X_n una soluzione al problema $Q_{n,P}$, tale che $X_n = \langle x_1, x_2, ..., x_n \rangle$.

Consideriamo quindi il problema $Q_{n,P}$ e una sua soluzione arbitraria X_n . In quanto soluzione, X_n rispetta il vincolo di ammissibilità $\sum_{i=1..n} x_i p_i = P$. Consideriamo ora il problema $Q_{n-1,P-x_np_n}$, il sottoproblema di $Q_{n,P}$ con n-1 oggetti e uno zaino di capacità $P-x_np_n$, con p_n peso dell'oggetto eliminato per creare il sottoproblema di dimensione n-1.

Sia Y_{n-1} una soluzione aribitraria del sottoproblema appena esposto, tale che la soluzione rispetti il vincolo di ammissibilità. Allora $Y_{n-1} \oplus x_n^2$ è una soluzione per il problema $Q_{n,P}$.

Dimostrazione. Per il problema $Q_{n,P-x_np_n}$ abbiamo che $\sum_{i=1..n-1} y_i p_i = P - x_n p_n$. Concatenando Y_{n-1} a x_n otteniamo $x_n p_n + \sum_{i=1..n-1} y_i p_i = P - x_n p_n + x_n p_n = P$.

4 Caratterizzazione della struttura di una solzuzione ottima

Sia X_n una soluzione ottima per $Q_{n,P}$. Indichiamo con $C_{n,P}$ il valore di una soluzione ottima per $Q_{n,P}$. Esso è definito come $C_{n,P} = \sum_{i=1..n} x_i v_i$ ed è il massimo valore, essendo X_n ottima. Allora si dimostra che X_{n-1} è una soluzione ottima per $Q_{n-1,P-x_np_n}$, tale che $C_{n-1,P-x_np_n} = \sum_{i=1..n-1} x_i v_i$ è massimo.

Dimostrazione. Se X_{n-1} non fosse ottima, allora sarebbe possibile trovare una soluzione X_{n-1}' tale che $C_{n-1,P-x_np_n}' = \sum_{i=1..n-1} x_i'v_i < C_{n-1,P-x_np_n} = \sum_{i=1..n-1} x_iv_i$; questo porterebbe a calcolare un $C_{n,P}' = C_{n-1,P-x_np_n}' + x_nv_n < C_{n,P}$, ma ciò ci indurrebbe in contraddizione, poiché la soluzione $X_n' = X_{n-1}' \oplus x_n^3$ sarebbe migliore di X_n che era stata supposta ottima. Pertanto X_{n-1} deve essere necessariamente ottima.

 $^{^1\}mathrm{Si}$ sottrae a Pla quantità x_np_n in modo da considerare in una sola espressione tutti i possibili sottoproblemi. Infatti, se $x_n=0$ allora abbiamo un problema dello zaino frazionario con n-1 oggetti e capacità P, mentre se $0< x_n \leq 1$ allora la capacità P viene decurtata di una quantità pari alla percentuale di peso inserita nello zaino dell'oggetto o_n .

 $^{^2}$ L'operatore \oplus indica la concatenazione tra gli elementi della soluzione Y_{n-1} e l'elemento x_n

 $^{^{^{\}prime\prime}}{^3}{\rm La}$ composizione è possibile per la già dimostrata correttezza della soluzione.

5 Proprietà della scelta greedy

Supponiamo che o_h sia l'oggetto con miglior rapporto $\frac{c_h}{p_h} = v_h$ e ipotizziamo $p_h < P^4$.

Consideriamo il problema $Q_{n,P}$ e un'arbitraria soluzione ottima ad esso $X_n=< x_1,x_2,...,x_h,...,x_n>$ tale che $C_{n,P}=\sum_{i=1...n}x_iv_i.$

Vogliamo dimostrare che:

- 1. l'oggetto o_h deve essere interamente contenuto in ogni soluzione ottima
- 2. l'oggetto o_h può essere sempre scelto per primo

Dimostrazione. Supponiamo $x_h < 1$ (ovvero l'oggetto o_h non è stato preso interamente nella soluzione ottima X_n). Consideriamo un oggetto o_j con $j \neq h$ e tale che $0 < x_j \le 1$ e $p_j \ge p_h - x_h p_h$. Senza perdita di generalità, supponiamo j = h - 1. Immaginiamo ora di eliminare una certa percentuale t con $0 < t \le 1 - x_h$ da x_j e la stessa percentuale l'aggiungiamo a x_h , in modo da avere una nuova soluzione $X_n' = < x_1, x_2, ..., x_j - t, x_h + t, ...x_n >$ tale che

$$C'_{n,P} = \sum_{i=1..j-1} x_i v_i + (x_j - t) v_j + (x_h + t) v_h + \sum_{i=h+1..n} x_i v_i.$$

Possiamo riscrivere $C_{n,P}$ come

$$C_{n,P} = \sum_{i=1...i-1} x_i v_i + x_j v_j + x_h v_h + \sum_{i=h+1...n} x_i v_i$$

e dimostrare che $C'_{n,P} > C_{n,P}$, arrivando a contraddire l'ipotesi di ottimalità di X_n e dimostrando, pertanto, che $x_h = 1$ se X_n è ottima.

Infatti ci basta dimostrare che $(x_j - t)v_j + (x_h + t)v_h > x_jv_j + x_hv_h$,

ovvero
$$x_i v_i - t v_i + x_h v_h + t v_h > x_i v_i + x_h v_h$$
,

ovvero $tv_h > tv_i$,

ovvero $t \frac{c_h}{p_h} > t \frac{c_j}{p_j}$,

ovvero $\frac{c_h}{p_h} > \frac{c_j}{p_j}$

che è banalmente vero, poiché abbiamo supposto o_h l'oggetto con migliore profitto. Da questo, segue l'asserto 1.

L'asserto 2 segue banalmente, poiché se o_h è stato scelto in posizione $k \neq 1$, sarà sempre possibile sceglierlo come primo oggetto, poiché l'ordine degli oggetti nella soluzione non influisce sull'ammissibilità e l'ottimalità della stessa.

 $^{^4}$ Si ipotizza, in pratica, che l'oggetto con miglior profitto non sia l'oggetto critico, al fine di semplificare i passaggi matematici a favore di una maggior chiarezza nell'esposizione. Non è arduo, ad ogni modo, effettuare la dimostrazione nel caso in cui l'oggetto o_h sia in effetti l'oggetto critico.

Riferimenti bibliografici

- [1] Thomas H. Cormen et al., Introduction to algorithms, Second Edition, MIT Press, 2001
- $[2] \begin{tabular}{ll} $Rilassamenti~ed~euristiche \\ (http://it.wikipedia.org/wiki/Ricerca_operativa\#Rilassamenti_ed_Euristiche) \end{tabular}$