

Universidade Federal de Santa Catarina Campus Araranguá - ARA Centro de Ciências, Tecnologias e Saúde Departamento de Computação Plano de Ensino

SEMESTRE 2021.1

I. IDENTIFICAÇÃO DA DI	SCIPLINA
------------------------	----------

CÓDIGO	NOME DA DISCIPLINA	N° DE HORAS-AULA SEMANAIS - TEÓRICAS	N° DE HORAS-AULA SEMANAIS - PRÁTICAS
DEC7546	Circuitos Digitais	4	0
TOTAL DE HORAS- AULA SEMESTRAI S	HORÁRIO TURMAS TEÓRICAS	HORÁRIO TURMAS PRÁTICAS	MODALIDADE
72	01655 – 3.1420-2 5.1420-2 06655 – 3.1010-2 5.1010-2		Remota Assíncrona e Síncrona

II. PROFESSOR(ES) MINISTRANTE(ES)

Prof. Fábio Rodrigues de la Rocha, Dr.

Fabio.rocha.ufsc@gmail.com

Horário de atendimento: Segunda-feira e Quarta-feira das 10:00 às 12:00 por vídeo conferência (sala virtual a ser definida)

III. PRÉ-REQUISITO(S)

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Bacharelado em Engenharia de Computação

V. JUSTIFICATIVA

Entender a estrutura dos sistemas computacionais e realizar operações utilizando diversos sistemas de numeração

VI. EMENTA

Sistemas Numéricos. Álgebra de Boole (teoremas). Portas lógicas. Circuitos combinacionais. Técnicas de minimização de hardware. Implementação de dispositivos elementares de memória (latchs e flip-flops). Circuitos Sequenciais. Implementação de módulos básicos. Ambiente de simulação.

VII. OBJETIVOS

Representar equações lógicas, efetuar simplificações por mapas de Karnaugh; Implementar funções lógicas utilizando portas lógicas; Projetar circuitos eletrônicos fazendo dos principais dispositivos; Compreender o funcionamento de registradores, memórias e fazer associações em série e em paralelo; Conhecer o funcionamento interno dos principais dispositivos.

VIII. CONTEÚDO PROGRAMÁTICO

UNIDADE 1: Sistema de numeração e códigos especiais [08 horas-aula]

- * Sistema numérico decimal
- * Sistema decimal, binário, hexadecimal, conversão de bases
- * operações Aritméticas básicas
- * Representação de números negativos

UNIDADE 2: Álgebra de Boole [20 horas-aula]

- * Representar funções lógicas por meio de equações
- * Realizar simplificações aplicando teoremas fundamentais e mapas K (minimização)
- * Implementar funções lógicas através de portas lógicas

UNIDADE 3: Circuitos Combinacionais Básicos [8 horas-aula]

* Estudar os dispositivos fundamentais: multiplexadores, demultiplexadores, decodificadores, comparadores e codificadores.

UNIDADE 4: somadores [08 horas-aula]

- * Circuitos aritméticos somadores, subtratores
- * Projeto de circuitos lógicos combinacionais
- * Codificadores e decodificadores

UNIDADE 5: Circuitos Sequenciais [16 horas-aula]

- * latches, flipflops
- * máquinas de estado

UNIDADE 6: Registradores [4 horas-aula]

- * série, paralelo, associação
- * Cis

UNIDADE 7: Contadores [4 horas-aula]

- * Up, Down, reversível
- * Síncrono, assíncrono, sequencia não natural

UNIDADE 8: Memória [04 horas-aula]

- * Tipos de memória e seu funcionamento interno.
- * Associação de memória

IX. COMPETÊNCIAS/HABILIDADES

Entender a estrutura dos sistemas computacionais e realizar operações utilizando diversos sistemas de numeração.

X. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Aulas teóricas: desenvolvidas em sala e com emprego de meios audiovisuais tais como transparências e apresentações sobre PC portátil de produção própria expostas com projetor. Todo o material didático estará disponível "a priori" para os alunos na página do professor: fabiodelarocha.paginas.ufsc.br

Requisitos de infraestrutura necessários para ministrar as aulas:

- Acesso à Internet;
- Ambiente Virtual de Aprendizagem Moodle;
- Disponibilidade de um sistema de vídeo conferência.

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente - FS), ficando nela reprovado o aluno que não comparecer a mais de 25% das atividades (Frequência Insuficiente - FI).
- A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com Frequência Suficiente (FS) e média das notas de avaliações do semestre MF entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A Nota Final (NF) será calculada por meio da média aritmética entre a média das notas das

avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

•
$$NF = \frac{(MF + REC)}{2}$$

• Ao aluno que não efetuar às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações

MF = (Trabalho T1 + Trabalho T2) /2

Trabalho 1 (T1) (atividade assíncrona)

Trabalho 2 (T2) (atividade assíncrona)

O registro de frequência será efetuado para aulas assíncronas e síncronas. No primeiro caso serão disponibilizadas atividades com tempo de execução de 48 horas em que, a partir da execução destas, os alunos terão a presença registrada. Para o segundo caso ao final das aulas será realizado o registro. Na eventual impossibilidade do aluno estar presente será aplicada a regra da aula assíncrona.

Observações:

Avaliação de recuperação

Não há avaliação de recuperação nas disciplinas de **caráter prático** que envolve atividades de laboratório (Res.17/CUn/97).

Nova avaliação

8^a

• O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá formalizar pedido à Chefia do Departamento de Ensino ao qual a disciplina pertence, dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de nova avaliação deverá ser formalizado na Secretaria Integrada de Departamentos.

XII. CRONOGRAMA **SEMANA DATAS ASSUNTO** 1^a 14/06/2021 a 19/06/2021 Apresentação do plano de ensino, site da disciplina, sistemas numéricos (aula síncrona) 2^a 21/06/2021 a 26/06/2021 Sistemas numéricos, Postulados, Lei da dualidade, Teoremas fundamentais, Funções Booleanas, Portas lógicas (aula assíncrona e síncrona) 3^a Equivalência de portas (aula assíncrona e síncrona) 28/06/2021 a 03/07/2021 Equivalente à porta "NAND", Equivalente à porta "NOR" Equivalente à porta "NOT", Equivalente à porta "AND" Equivalente à porta "OR" **4**a 05/07/2021 a 10/07/2021 Implementação de funções (aula assíncrona e síncrona) 5^a 12/07/2021 a 17/07/2021 Formas padrões , Equivalente decimal, Notações simplificadas Forma padrão x Tabela verdade (aula assíncrona e síncrona) 6^a 19/07/2021 a 24/07/2021 Minimização de funções , Mapa para quatro variáveis , Nomenclatura das celas, Grupo de celas (aula assíncrona e síncrona) 26/07/2021 a 31/07/2021 **7**a Teoria dos conjuntos e os mapas, Representação de função no mapa , Minimização de funções , Mapas para 2, 3, 5 e 6 variáveis , Funções incompletas (aula assíncrona e síncrona)

Exercícios

sobre a matéria

assíncrona)

(aula

02/08/2021 a 07/08/2021

		Multiplexadores Circuitos Multiplexadores MSI: 74XX153/253, 74XX157/257, 74XX151, 74XX150/251, Aplicações de Multiplexadores: Geração de funções booleanas, Associação, Seletor de palavras, Demultiplexadores
9ª	09/08/2021 a 14/08/2021	Demultiplexador: Circuitos Integrados MSI, Circuito Integrado 74155. Uso como Demultiplexador. Exercícios sobre multiplexadores. (aula assíncrona) Trabalho T1 (atividade assíncrona)
10ª	16/08/2021 a 21/08/2021	Decodificadores (aula assíncrona) Projeto de um Decodificador 2/4: Decodificador Decimal: Circuito Integrado 7442, 74XX42 Decodificador Hexadecimal Associação de Decodificadores Decodificadores para Sete Segmentos Comparadores Codificador: Circuito codificador com 3 saídas 74LS148
11ª	23/08/2021 a 28/08/2021	Circuitos Aritméticos e Códigos Especiais (aula assíncrona) Adição Projeto do Somador para quatro "bits": Somador Incompleto, Somador Completo ("Full-Adder") Somador Paralelo
12ª	30/08/2021 a 04/09/2021	Circuito Integrado – 74LS83 (aula assíncrona) Subtração Trabalho T2 (atividade assíncrona)
13ª	06/09/2021 a 11/09/2021	Análise e Síntese de Circuitos Seqüenciais (aula assíncrona) "Latch" RS, "Latch" RS Síncrono, "Latch" D, "Flip-Flop" D "Flip- Flop" JK "Edge-Triggered", "Flip-Flop" JK "Master-Slave"
14ª	13/09/2021 a 18/09/2021	Duplo "flip-flop" D: 74LS74, 74HC/HCT74 (aula assíncrona) Quádruplo "Latches" D: 74LS75, 74HC/HCT75 Duplo "flip-flop" JK "edge-triggered":7476, 74LS76, 74C76, 74HC/HCT76 Duplo "Flip-Flop" JK "edge-triggered" com "Set" e "Reset": 74LS112, 74F112, 74LVC112 Duplo "Flip-Flop" JK "edge-triggered" com "Set" e "Reset": 74LS109, 74F109, 74LVC109 Seis "flip-flops" D: 74LS174, 74HC/HCT174 Contadores Análise e Síntese de Circuitos Seqüências Síncronos Modelos de Máquinas Seqüenciais de Estado. Análise de uma FSM de Mealy com "Flip-flop" D Análise de uma FSM de Moore com "Flip-flop" D Análise de uma FSM de Mealy com "Flip-flop" JK (aula assíncrona)
15ª	20/09/2021 a 25/09/2021	Registradores (aula assíncrona) Memórias RAM Memória RAM Estática SRAM Síncrona SRAM Síncrona, Sinais na Leitura/Escrita, Memórias ROM, ROM com Matriz de Diodos ROM programável pelo usuário – PROM, ROM Programável e Apagável pelo Usuário, "EPROM", EEPROM
16ª	27/09/2021 a 02/10/2021	Memórias RAM (aula assíncrona) Memória RAM Estática SRAM Síncrona SRAM Síncrona, Sinais na Leitura/Escrita, Memórias

	ROM, ROM com Matriz de Diodos ROM programável pelo usuário – PROM, ROM Programável e Apagável pelo Usuário, "EPROM", EEPROM
	Trabalho T2 (atividade assíncrona)
	Prova de recuperação e divulgação das notas (atividades assíncrona)

Obs: O caléndario está sujeito a pequenos ajustes de acordo com as necessidades das atividades

XIII. FERIADOS PREVISTOS PARA O SEMESTRE		
04/09/2021	Data reservada ao Vestibular 2021.2	
05/09/2021	Data reservada ao Vestibular 2021.2	
06/09/2021	Data reservada ao Vestibular 2021.2	
07/09/2021	Independência do Brasil	

XIV. BIBLIOGRAFIA BÁSICA

- 1. Introduction to Digital Eletronics, John Crowe and Barrie Hayes-Gill, ISBN 978-0-340-64570-3, Elsevier, 1998, acesso disponível pela UFSC no site https://www.sciencedirect.com/book/9780340645703/introduction-to-digital-electronics
- 2. Lessons In Electric Circuits, Tony R. Kuphaldt, 2015, Volume IV Digital 4th Edition, disponível gratuitamente em: http://www.ibiblio.org/kuphaldt/electricCircuits/
- 3. Digital Circuit Projects: An Overview of Digital Circuits Through Implementing Integrated Circuits, Charles W. Kann, Gettysburg College

2014, Publisher: Gettysburg College. Disponível gratuitamente em:

https://open.umn.edu/opentextbooks/textbooks/digital-circuit-projects-an-
br>overview-of-digital-circuits-through-implementing-integrated-circuits

XV. BIBLIOGRAFIA COMPLEMENTAR

- . FERREIRA, José Manuel Martins. Introdução ao projeto com sistemas digitais e microcontroladores. Porto: FEUP, 1998. 371 p. ISBN 9727520324
- 2. WILSON, Peter. The circuit designer's companion. 3rd ed. Amsterdam: Elsevier, 2012. xv, 439 p. ISBN 9780080971384
- 3. PEDRONI, Volnei A. Eletrônica digital moderna e VHDL. Rio de Janeiro: Elsevier, c2010. 619 p. ISBN 9788535234657
- 4. IDOETA, Ivan V.; CAPUANO, Francisco G. Elementos de eletrônica digital. 41. ed. rev. e atual. São Paulo: Livros Erica Ed., c2012. 544 p. ISBN 9788571940192
- ARAUJO, Celso de; CRUZ, Eduardo Cesar Alves; CHOUERI JUNIOR, Salomão.
 Eletrônica digital. 1. ed. São Paulo: Érica, c2014. 168 p. (Série Eixos Controle e processos industriais). ISBN 9788536508177.

Os livros acima citados constam na Biblioteca Universitária e Setorial de Araranguá. Algumas bibliografias também podem ser encontradas no acervo da disciplina, via sistema Moodle.

também podem ser encontradas no acervo da disciplina, vi	a sistema Moodie.
Aprovado na Pounião do Cologiado do Curso em:	Fábio Rodrigues de la Rocha
Aprovado na Reunião do Colegiado do Curso em: //	Coordenador do Curso