

Universidad Nacional Autonoma de México

SERVICIO SOCIAL - LABORATORIO VIRTUAL

Dr. Victor Manuel Lomas Barrie

Documento de Servicio Social

Entrega para contenedor

Santos Jimenez Alejandro Tapia Garcia Andrés

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Ciudad Universitaria, 24 de septiembre del 2025

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Inst	alaciòn de vivado en un docker
	1.1.	Configuración e instalación de Docker con su contenedor
	1.2.	habilitar entorno gráfico dentro del Contenedor
	1.3.	Instalación de Vivado dentro del contenedor
	1.4.	Comandos para Ejecutar Vivado desde el contenedor con archivo .tlc

Objetivo

El objetivo de este documento es Documentar los cambios y actividades realizadas a lo largo del Servicio con el Doctor Víctor Manuel Lomas Barrie, donde estaremos ayudando a la creacion y manteminimiento de un laboratorio virtual con microcontroladores fisicos, para el uso de los estudiantes.

Material Necesario

GitHub de control de cambios y versiones

https://github.com/TapiaKaz/ServicioUbuntu

Docker Hub primera version del contenedor con vivado (imagen)

https://hub.docker.com/repository/docker/kaztg/vivadocontainer/general

Horarios

1. Instalación de vivado en un docker

1.1. Configuración e instalación de Docker con su contenedor

Lo primero que se hizo fue instalar docker en la computadora de la estación 5, comenzando con desisntalar versiones antiguas:

```
sudo apt-get remove docker docker-engine docker.io contanerd runc
```

se instala docker y se comprobó que funcionara

```
sudo docker run hello-world
```

después de comprobar que funcionara se creo un contenedor con la imagen de ubunto 24.04:

sudo docker run -it ubuntu # Esto descargo la version LTS actual de ubuntu (Ubuntu 24.03)

1.2. habilitar entorno gráfico dentro del Contenedor

Para poder acceder a una GUI desde el contenedor tuvimos que realizar los siguientes pasos: Habilitar permisos en la maquina host

```
xhost + ubuntu::vivadocontainer
```

unas vez habilitado el display de la maquina host se acceso al contenedor

```
sudo docker start vivadocontainer sudo docker attach vivadocontainer
```

una vez adentro del contenedor se instalaron algunas paqueterías para que funcionara el entorno gráfico para ejecutar vivado

1.3. Instalación de Vivado dentro del contenedor

Creamos una cuenta dentro de https://www.xilinx.com/support/download.html descargamos la version para linux, y lo pasamos al contenedor con el comando:

```
sudo docker cp /directorio/de/instalador.bin vivadocontainer:/test/
```

De esta manera pasamos el instalador que estaba de forma local al contendor vivadocontainer

Ejecutamos el .bin con los siguientes comandos

```
chmod +x archivoDeInstalacion.bin # Darle permisos de ejecución al archivo
./archivoDeInstalación.bin # Ejecución del archivo para instalar vivado
```

lo que nos abrio la GUI para proceder con la instalación de vivado con las configuraciones del profesor correspondientes.

1.4. Comandos para Ejecutar Vivado desde el contenedor con archivo .tlc

Le pedimos a una IA ayuda para la prueba del documento .tcl para la prueba de vivado:

```
testVivado.tcl=
# Part que queremos usar
set desired_part "xc7a35tcpg236-1"
# Verificar si está disponible
set available_parts [list_parts]
if {[lsearch -exact $available_parts $desired_part] >= 0} {
    set part_to_use $desired_part
    puts "♦~Z| ♦~O Part $desired_part no encontrado, usando otro disponible..."
    # Busca uno de la misma familia Artix-7, si existe
    set artix_parts [list_parts {xc7a*}]
    if {[llength $artix_parts] > 0} {
        set part_to_use [lindex $artix_parts 0]
     else {
        # Como último recurso, agarra el primer part disponible
        set part_to_use [lindex $available_parts 0]
puts "♦~\~E Usando part: $part_to_use"
# Crear Proyecto
create_project test_hola /tmp/test_hola -part $part_to_use
# Agregar archivo Verilog
add_files /tmp/hola.v
# Definir módulo top
set_property top hola [current_fileset]
# Ejecutar síntesis
launch_runs synth_1 -jobs 1
wait_on_run synth_1
 testVivado.tcl" 38L, 1002B
```

Creamos este codigo dentro del contenedor con vim (opción adcional: crearlo de forma local y con sudo docker cp pasarlo al contenedor)

Con este archivo.tcl ejecutamos el siguiente comando dentro del contenedor:

```
/tools/Xilinx/2025.1/Vivado/bin/vivado -mode tcl -source /test/testVidado.tcl
```

Pero si fuera necesario de forma local podemos hacer uso del comando sudo docker exec:

```
sudo docker cp /home/iimas/TapiaServicio/testVivado.tcl
affectionate_kalam:/test/ | sudo docker exec -d affectionate_kalam
/tools/Xilinx/Downloads/2025.1/bin/vivado -mode tcl -source /test/testVidado.tcl
```