PREDICCIÓN DEL SCORE CREDITICIO MEDIANTE TÉCNICAS DE APRENDIZAJE SUPERVISADO

Integrantes:

Paula Cárdenas Sebastián Giraldo Alejandro Rendón Alejandro Velásquez

Agenda

- 1. Comprensión del negocio
- 2. Comprensión de los datos
- 3. Preparación de los datos
- 4. Modelado
- 5. Evaluación
- 6. Conclusiones

1. Comprensión del negocio

Compañía financiera

Información básica de las personas y créditos en un banco de Estados Unidos (Kaggle)

Planteamiento del problema

Clasificación del score crediticio con técnicas de aprendizaje supervisado ¿Cuál es el mejor clasificador?

Objetivo

Disminuir el riesgo crediticio Mejor asignación de recursos Reducir esfuerzos manuales

2. Comprensión de los datos

Registros

Transacciones de 12.500 clientes en una ventana temporal de 8 meses.

100.000 registros

Variable objetivo

Poor

Standard

Good

Variables

Categóricas

Profesión

Tipo de préstamo

Comportamiento de pago

Numéricas

Edad

Ingresos mensuales

Tasa interés

Número de pagos retrasados

Exploración de datos

Exploración de datos

Análisis multivariante

3. Preparación de los datos

ID Cliente	Mes	Nombre	Edad	Ocupación	Salario mensual (USD)	Historial crediticio	Comportamiento de pago	Balance mensual
CUS_0xd40	January	Aaron Maashoh	23	Scientist	1.824	22 Years and 1 Months	High spent - Small value	31.249
CUS_0xd40	February	Aaron Maashoh	23	Scientist		NA	Low spent - Large value	28.462
CUS_0xd40	March	Aaron Maashoh	-500	Scientist		22 Years and 3 Months	Low spent - Medium value	33.120
CUS_0xd40	April	Aaron Maashoh	23	Scientist		22 Years and 4 Months	Low spent - Small value	22.345
CUS_0xd40	May	Aaron Maashoh	23	Scientist	1.824	22 Years and 5 Months	High spent - Medium value	34.248
CUS_0xd40	June	Aaron Maashoh	23			22 Years and 6 Months	!@9#%8	34.047
CUS_0xd40	July	Aaron Maashoh	23	Scientist	1.824	22 Years and 7 Months	Low spent - Small value	24.456
CUS_0xd40	August		23	Scientist	1.824	NA	High spent - Medium value	35.812

Datos atípicos

Ingeniería de características

Cantidad de Variables

Variables iniciales: 25

One-hot Encoding

Variables finales: 46

Principal Component Analysis (PCA)

Factor Analysis of Mixed Data

Variance ratio: 80%

PCA: 27

¿Vale la pena hacer PCA?

4. Modelado

Entrenamiento

Train Test

70% 30%

GroupShuffleSplit

Grid Search

Hiperparámetros óptimos para predicciones más precisas.

- ✓ Sesgo
- ✓ Varianza

Modelos

Regresión Logística

C=0.25, penalty='11'

Random Forest

max_depth=20

LightGBM

max_depth=15

XGBoost

max_depth=5

5. EVALUACIÓN

Matriz de Confusión – SIN PCA

LGBM

```
[[6692 975 1110]
 [3637 8793 3617]
 [ 126 796 4254]]
              precision
                          recall f1-score
                                             support
                0.76245
                         0.64008
                                   0.69592
                                               10455
                0.54795
                         0.83236
                                   0.66085
                                               10564
                0.82187
                         0.47367
                                   0.60097
                                                8981
    accuracy
                                   0.65797
                                                30000
                         0.64870
   macro avg
                0.71076
                                   0.65258
                                                30000
weighted avg
                0.70471
                         0.65797
                                   0.65515
                                                30000
```

Precisión en test

Para la clase – Poor (0)

SIN PCA						
Modelo	Precisión					
Regresión Logística	0,66					
Random Forest	0,70					
LGBM	0,76					
XGBoost	0,63					

CON PCA					
Modelo	Precisión				
Regresión Logística	0,70				
Random Forest	0,68				
LGBM	0,70				
XGBoost	0,60				

Feature importance - LGBM

SIN PCA

CONCLUSIONES

- Las técnicas usadas para el tratamiento de datos disminuyen la probabilidad de perdida de información, por tanto, los métodos abordados son una forma de reconstrucción de información.
- Aplicar técnicas de reducción de dimensionalidad en matrices con pocas características es innecesario, ya que genera perdida de interpretabilidad.
- Con la generación de todos los modelos se comprueba que el Grid Search sí mejora la precisión.
- Las técnicas de Gradient Boosting fueron más precisas que las técnicas lineales y el random forest tradicional.
- LGBM es mejor que XGBoost por ser más rápido y preciso, además de tener menos costo computacional.
- Los modelos generados son para clientes que ya tienen historial crediticio en la entidad financiera.
- Aplicar redes neuronales con el volumen de datos actual es costoso computacionalmente y la precisión no mejora sustancialmente.

GRACIAS