

# **C**oncepts **LAN**

Network fundamentals, LAN architecture & Ethernet focus

Eric Gaillard – 2020

**EPITA - MAJEURES SRS & TCOM** 







### Ethernet Design Goals

- Simplicity
- Efficient use of shared resources
- Ease of reconfiguration and maintenance
- Compatibility
- Low cost



## **Ethernet and the OSI / IEEE models**





### **Ethernet Naming Conventions**







### **Ethernet Principle – CSMA/CD**

- Carrier Sense (Is someone already talking?)
- Multiple Access (I hear what you hear!)
- Collision Detection (Hey, we're both talking!)
- 1. If the medium is idle, transmit anytime.
- 2. If the medium is busy, wait and transmit right after.
- 3. If a collision occurs, backoff for a random period, then go back to 1.



### **Ethernet Operation – CSMA**









### **Ethernet Collisions – More Detail**



- The adapters have to hear the collision while they are still transmitting
- They then transmit a 32-bit jam signal
- They wait a random time before retransmission
- If there are repeated collisions the adapter tries again, up to a a maximum of 16 times
  - Uses "truncated binary exponential backoff" algorithm



## **Ethernet, Logical vs Physical**







# Format of the IEEE 802.3 frame

| _ | 7        | 1  | 6  | 6  | 2 | 46 - 1500 | 4   |
|---|----------|----|----|----|---|-----------|-----|
|   | Preamble | SD | AD | AS | L | Payload   | CRC |



### **Ethernet or MAC addresses**





### **Ethernet addresses: Broadcasts**

- Ethernet inherently supports broadcasts
- Broadcast mechanism is used frequently
  - Example ARP Address Resolution Protocol
- A Broadcast Domain is all devices that will see a broadcast frame

Broadcast frame: uses FF:FF:FF:FF:FF address





## **Ethernet implementations**

#### 10BaseT

- 2 pairs of Cat 3 UTP
- By far the most widely used specification

#### 10BaseF

2 strands of MMF

#### • 10Base2

Thin coaxial or "Thinnet" (Dead)

#### 10Base5

Thick coaxial or "Thicknet" (Dead)

#### 10Broad36

Coaxial (Dead)



### **Ethernet implementations**



d. 10BASE-FL



# **Ethernet implementations: 10Base5**



| Pin | Ethernet Circuit | Signal Name                                             |
|-----|------------------|---------------------------------------------------------|
| 3   | DO-A             | Data Out Circuit A                                      |
| 10  | DO-B             | Data Out Circuit B                                      |
| 11  | DO-S             | Data Out Circuit Shield                                 |
| 5   | DI-A             | Data In Circuit A                                       |
| 12  | DI-B             | Data In Circuit B                                       |
| 4   | DI-S             | Data In Circuit Shield                                  |
| 7   | CO-A             | Control Out Circuit A (not connected)                   |
| 15  | СО-В             | Control Out Circuit B (not connected)                   |
| 8   | CO-S             | Control Out Circuit Shield (not connected)              |
| 2   | CI-A             | Control In Circuit A                                    |
| 9   | CI-B             | Control In Circuit B                                    |
| 1   | CI-S             | Control In Circuit Shield                               |
| 6   | VC               | Voltage Common                                          |
| 13  | VP               | Voltage Plus                                            |
| 14  | VS               | Voltage Shield (L25 and M25) Shell PG Protective Ground |



### **Ethernet implementations: 10Base2**

- Thin Ethernet, Thinnet, Cheapernet, ...
- Coaxial cable 50 Ohms
- Daisy chain topology
- BNC- connector / T- Connector
- 50 ohms terminator
- Maximum segment length: 185 m
- Maximum coverage : 925 m
- Maximum number of stations per segment : 30
- Minimum distance between two stations: 0,5 m



# **Ethernet implementations: 10Base2**





## **Ethernet implementations: 10BaseT**

- Pin Signal
- 1 Transmit Data +
- 2 Transmit Data -
- 3 Receive Data +
- 4 Unused
- 5 Unused
- 6 Receive Data -
- 7 Unused
- 8 Unused







## **Ethernet implementations: 10BaseFL**



Source : B. Forouzan



### L1, L2 and L3 equipments







**CD = Collision Domain** 

BD = Broadcast Domain



 A hub is a simple OSI layer 1 device: a hub just repeats the incoming signal







...the hub simply repeats that signal - all devices connected to the hub will see the frame



### **Crossover Cables**

- A "crossover" or "crossed" cable may be used to directly connect two Ethernet devices
  - Transmit/Receive reversed at one end
  - Crossover cables can be made or bought



Pin 1 on right when looking at RJ-45 connector with tab on bottom and contacts on top





EPITA 2020 - Majeures SRS & TCOM - Concepts LAN



- Hubs may be connected or "cascaded"
  - Connected hubs behave like one "big" hub







Essentially, a LAN Switch is a faster more modern version of a Bridge



# **Bridges operation**



| Address      | Port |
|--------------|------|
| 712B13456141 | 1    |
| 712B13456142 | 1    |
| 642B13456112 | 2    |
| 642B13456113 | 2    |

Bridge table



Source : B. Forouzan





| Address | Port |
|---------|------|
|         |      |
|         |      |
|         |      |

a. Original

| Address | Port |
|---------|------|
| A       | 1    |
|         |      |
|         |      |

a frame to D

Port Address Α 3 Е

a frame to A

Address Port Α Е

b. After A sends c. After E sends d. After B sends a frame to C



# **Bridges: learning process**



EPITA 2020 - Majeures SRS & TCOM - Concepts LAN



# **LAN Switch Operation**

- Flooding
- Learning
- Forwarding
- Filtering



### **LAN Switch Operation**

 Having learned about destination addresses on the network the switch will forward frames intelligently on the basis of their MAC address







Half-duplex Ethernet (Typical situation)



Full-duplex Ethernet





### **Loop problem**



Source : B. Forouzan



















- STP takes 30 –50 seconds to converge, with default settings
- Rapid Spanning Tree Protocol
- IEEE 802.1w
- Full-duplex mode
- No shared links
- RSTP has two more port designations
  - Alternate Port—backup for Root Port
  - Backup port—backup for Designated Port on the segment
- In RSTP, all bridges send BPDUs automatically
  - in STP, the root triggers BPDUs
- In RSTP, bridges act to bring the network to convergence
  - While in STP, bridges passively wait for time-outs before changing port states



#### **Fast Ethernet Essentials**

#### 10BaseT and 100BaseT

- Both use CSMA/CD
- Frame formats and frame lengths the same
- Usually deployed over Category 5 UTP
- Interconnections made with hubs, switches, routers etc.
- Standard defined by IEEE 802.3u

#### 10BaseT vs 100BaseT

- Transmits 10 times as much data in the same time
- New physical standards
- Interframe gap .96 microseconds instead of 9.6 microseconds (unchanged at 96 bit times)



## **Fast Ethernet Essentials**

#### 100Base-TX

| Pin | Signal          |
|-----|-----------------|
| 1   | Transmit Data + |
| 2   | Transmit Data - |
| 3   | Receive Data +  |
| 4   | Unused          |
| 5   | Unused          |
| 6   | Receive Data -  |
| 7   | Unused          |
| 8   | Unused          |





#### **Fast Ethernet: 100BaseT Specifications**

#### 100BaseTX

- 2 pairs of Cat 5 UTP or Cat 1 STP
- By far the most widely used specification (95%+)

#### 100BaseFX

2 strands of SMF or MMF

#### 100BaseT4

4 pairs of Cat 3/4/5 UTP

#### 100BaseT2

2 pairs of Cat 3/4/5 UTP





### **Fast Ethernet : Matching Interfaces**







#### **Fast Ethernet : Auto-Negotiation**



Useful if unsure what you're plugging in to - AND when upgrading to a 100BASE-T hub

# Order:

- 1. 1000BaseT FDX
- 2. 100BaseT2 FDX
- 3. 100BaseT2 HDX
- 4. 100BaseTX FDX
- 5. 100BaseT4
- 6. 100BaseTX
- 7. 10BaseT FDX
- 8. 10BaseT

Algorithm used to negotiate common data service Common RJ-45 connector for 1 of 8 services Fast link pulses (FLP) similar to link integrity (LI)

Hub/NIC adjust speed to highest common mode



#### **Fast Ethernet: Flow control**





# **Fast Ethernet implementations**





c. 100BASE-T4

Source : B. Forouzan



# **Gigabit Ethernet Essentials**

- Latest extension to Ethernet
- 1000 Mbit/s 10 times faster than fast Ethernet
- Compatible with existing Ethernet



## **Gigabit Ethernet Essentials**





# **Gigabit Ethernet : IEEE / ANSI convergence**





## **Gigabit Ethernet: Carrier Extend**





#### **Gigabit Ethernet: Frame Bursting**

- Frame Bursting is a means to reduce the Inefficiency of Carrier Extension
- The first frame is transmitted using the normal procedures for gigabit Ethernet.
- A frame burst timer is started to allow transmissions of up to 64 Kbits.
- If additional frames are queued for transmission and the 64 Kbit timer has not expired, two things happen
  - The first frame is followed by carrier extend
  - The next frame is transmitted



### **Gigabit Ethernet: technology family**



Source : Gigabit Ethernet Alliance



## **Gigabit Ethernet implementations**

- 1000BaseLX
  - 2 strands of SMF or MMF
- 1000BaseSX
  - 2 strands of SMF
- 1000BaseCX
  - 2 pairs of twinax
- 1000BaseT
  - 4 pairs of Cat 5 UTP





# **Gigabit Ethernet implementations**







b. 1000BASE-T

Source : B. Forouzan

# **Ethernet Comparison**

| Parameter          | Ethernet,<br>802.3 | Fast Ethernet<br>802.3u | Gigabit<br>Ethernet,<br>802.3z |
|--------------------|--------------------|-------------------------|--------------------------------|
| Inter Frame<br>Gap | 96 bit times       | 96 bit times            | 96 bit times                   |
| Attempt<br>Limit   | 16 tries           | 16 tries                | 16 tries                       |
| Max Frame<br>Size  | 1518 Bytes         | 1518 Bytes              | 1518 Bytes                     |
| Min Frame<br>Size  | 64 Bytes           | 64 Bytes                | 512 Bytes                      |
| Address Size       | 48 bits            | 48 bits                 | 48 bits                        |



# IP over Ethernet v2 (1/2)









# IP over Ethernet: LLC encapsulation (1/2)





# IP over Ethernet: LLC encapsulation (2/2)





## **IP over Ethernet : SNAP/LLC encapsulation**





# **IP over Ethernet : ARP**

| 0 | 7                                                 | 15 |                       |                        |
|---|---------------------------------------------------|----|-----------------------|------------------------|
|   | Nature du réseau = 1                              |    | [                     |                        |
|   | Type de protocole = 0x800                         |    | Entête trame physique |                        |
|   | Longueur des adresses physiques = 6               | _  |                       |                        |
|   | Longueur des adresses réseau = 4                  |    |                       | I<br>Trame<br>physique |
|   | Code opératoire : Req = 1 / Rep = 2               |    | Paquet                |                        |
|   | Adresse physique source (48 bits)                 |    | ARP                   |                        |
|   | Adresse du protocole réseau source (32 bits)      |    |                       |                        |
|   | Adresse physique destination (48 bits)            |    |                       |                        |
|   | Adresse du protocole réseau destination (32 bits) |    |                       | <del>\</del>           |



- A VLAN is a logical grouping of nodes (clients and servers) residing in a common broadcast domain
- The broadcast domain has been artificially created within a LAN switch
- IEEE 802.1p
- Extension of the frame size of the Ethernet standard by four bytes:
   IEEE 802.3ac





# **VLAN:** frame tagging

#### TAG 802.1P/Q

802.1P used for QoS / 802.1Q used for VLAN

| •••                  | 4            |
|----------------------|--------------|
| Destination Address  | 6 Byte       |
| Source Address       | 6 Byte       |
| Length/Type          | 2 Byte       |
| Data                 | 46-1500 Byte |
|                      |              |
| Frame Check Sequence | 4 Byte       |
|                      | -            |

| ***                  |              |
|----------------------|--------------|
| Destination Address  | 6 Byte       |
| Source Address       | 6 Byte       |
| VLAN tag             | 4 Byte       |
| Length/Type          | 2 Byte       |
| Data                 | 46-1500 Byte |
|                      |              |
| Frame Check Sequence | 4 Byte       |

Standard Ethernet Frame (1518 Byte)

Tagged VLAN Frame (1522 Byte)

#### Structure of the 4 bytes-802.1P/Q Tag

| TPID (Tag Protocol Identifier) |                                            | TCI (Tag Control Information) |         |                 |
|--------------------------------|--------------------------------------------|-------------------------------|---------|-----------------|
|                                | Identification for the VLAN header: 0x8100 | User Priority: 0-7            | CFI     | VLAN ID: 0-4095 |
|                                | (16 Bit)                                   | (3 Bit)                       | (1 Bit) | (12 Bit)        |





Source : B. Forouzan



#### Switch with VLAN software



Source : B. Forouzan







### **10 Gigabit Ethernet Alliance**

- 802.3ae
- Membres fondateurs
  - 3Com Corporation
  - Cisco Systems
  - Extreme Networks
  - Intel Corporation
  - Nortel Networks
  - Sun Microsystems
  - World Wide Packets
- Q2 03 finalisation du standard
- Q1 99 formation d'un groupe d'étude



## **10 Gigabit Ethernet**





#### **10 Gigabit Ethernet**





### **10 Gigabit Ethernet implementations**

- 10GBase-SR
  - 300m sur fibre noire
- 10GBase-SW
  - 300m sur SONET
  - 850nm, multimode
- 10GBase-LR
  - 2m à 10km sur fibre noire
- 10GBase-LW
  - 2m-10km sur SONET
  - 1310nm, fibre monomode
- 10Base-ER
  - 2m à 40km sur fibre noire
- 10Base-EW
  - 2m 40km sur SONET
  - Both 1550nm, single mode fiber
- 10GBase-LX4
  - 4 parallel wavelengths over single multi- or single-mode fiber pair at 1310nm



### **Resilient Packet Ring**

- MAC protocol based on a ring topology
- IEEE 802.17
- An efficient use of network bandwidth (statistical multiplexing not time division multiplexing)
- A resilient network (< 50ms recovery time)</li>
- Can have up to 128 nodes in a ring

| Network Layer   | IP       | I     | P        | IP    |
|-----------------|----------|-------|----------|-------|
| Data Link Layer | Ethornot | RI    | PR       | PPP   |
| Physical Layer  | Ethernet | SONET | Ethernet | SONET |



### **Exercice: frame decoding**

```
00 5A 57 49 54 08
                                     07
                          00
                              38
                                  03
                                          43
                                             08
           49
               49
                   35
                      00
                                          85
                          00
                              1D
                                  06
                                     C8
       00
       B8
                      00
                          15
                              51
              52
                   0C
                                  0C
                                          12
               50
                   18
                      10
                              F3
                                             33
           19
                          00
                                  FF
                                      00
                                          00
   20
               73
                   73
                          6F
                              72
                                  64
                                      20
       50
           65
               64
                  20
                      66
                          6F
                              72
                                  20
                                      6A
                                          65
2E
   0D 0A
```



# Appendice: assigned values for the type field

| 0000-05DC | IEEE802.3 Length Field    |
|-----------|---------------------------|
| 0101-01FF | Experimental              |
| 0200      | XEROX PUP (see 0A00)      |
| 0201      | PUP Addr Trans (see 0A01) |
| 0400      | Nixdorf                   |
| 0600      | XEROX NS IDP              |
| 0660      | DLOG                      |
| 0661      | DLOG                      |
| 0800      | Internet IP (IPv4)        |
| 0801      | X.75 Internet             |
| 0802      | NBS Internet              |
| 0803      | ECMA Internet             |
| 0804      |                           |
|           | Chaosnet                  |
| 0805      | X.25 Level 3              |
| 0806      | ARP                       |
| 0807      | XNS Compatability         |
| 081C      | Symbolics Private         |
| 0888-088A | Xyplex                    |
| 0900      | Ungermann-Bass net debugr |
| 0A00      | Xerox IEEE802.3 PUP       |
| 0A01      | PUP Addr Trans            |
| 0BAD      | Banyan Systems            |
| 1000      | Berkeley Trailer nego     |
| 1001-100F | Berkeley Trailer encap/IP |
| 1600      | Valid Systems             |
| 4242      | PCS Basic Block Protocol  |
| 5208      | BBN Simnet                |
| 6000      | DEC Unassigned (Exp.)     |
| 6001      | DEC MOP Dump/Load         |
| 6002      | DEC MOP Remote Console    |
| 6003      | DEC DECNET Phase IV Route |
| 6004      | DEC LAT                   |
| 6005      | DEC Diagnostic Protocol   |
| 6006      | DEC Customer Protocol     |
| 6007      | DEC LAVC, SCA             |
| 6008-6009 | DEC Unassigned            |
| 6010-6014 | 3Com Corporation          |
| 7000      | Ungermann-Bass download   |
| 7002      | Ungermann-Bass dia/loop   |
| 7020-7029 | LRT                       |
| 7030      | Proteon                   |
| 7034      | Cabletron                 |
| 8003      | Cronus VLN                |
| 8004      | Cronus Direct             |
| 8005      | HP Probe                  |
| 8006      | Nestar                    |
| 8008      | AT&T                      |
| 8010      | Excelan                   |
| 8013      |                           |
|           | SGI diagnostics           |
| 8014      | SGI network games         |
| 8015      | SGI reserved              |
| 8016      | SGI bounce server         |
| 8019      | Apollo Computers          |
| 802E      | Tymshare                  |
| 802F      | Tigan, Inc.               |
| 8035      | Reverse ARP               |
| 8036      | Aeonic Systems            |
| 8038      | DEC LANBridge             |
| 8039-803C | DEC Unassigned            |
|           |                           |

| 803D         | DEC Ethernet Encryption          |
|--------------|----------------------------------|
| 803E         | DEC Unassigned                   |
| 803F         | DEC LAN Traffic Monitor          |
| 8040-8042    | DEC Unassigned                   |
| 8044         | Planning Research Corp.          |
| 8046         | AT&T                             |
| 8047         | AT&T                             |
| 8049         | ExperData                        |
| 805B         | Stanford V Kernel exp.           |
| 805C         | Stanford V Kernel prod.          |
| 805D         | Evans & Sutherland               |
| 8060         | Little Machines                  |
| 8062         | <b>Counterpoint Computers</b>    |
| 8065         | Univ. of Mass. @ Amhers          |
| 8066         | Univ. of Mass. @ Amhers          |
| 8067         | Veeco Integrated Auto.           |
| 8068         | General Dynamics                 |
| 8069         | AT&T                             |
| 806A         | Autophon                         |
| 806C         | ComDesign                        |
| 806D         | Computgraphic Corp.              |
| 806E-8077    | Landmark Graphics Corp.          |
| 807A         | Matra                            |
| 807B         | Dansk Data Elektronik            |
| 807C         | Merit Internodal                 |
| 807D-807F    | Vitalink Communications          |
| 8080         | Vitalink TransLAN III            |
| 8081-8083    | Counterpoint Computers           |
| 809B         | Appletalk                        |
| 809C-809E    | Datability                       |
| 809F         | Spider Systems Ltd.              |
| 80A3         | Nixdorf Computers                |
| 80A4-80B3    | Siemens Gammasonics              |
| Inc.         |                                  |
| 80C0-80C3    | DCA Data Exchange                |
| Cluster      | Danier Contains                  |
| 80C4         | Banyan Systems                   |
| 80C5<br>80C6 | Banyan Systems<br>Pacer Software |
| 80C7         | Applitek Corporation             |
| 80C8-80CC    | Intergraph Corporation           |
| 80CD-80CE    | Harris Corporation               |
| 80CF-80D2    | Taylor Instrument                |
| 80D3-80D4    | Rosemount Corporation            |
| 80D5         | IBM SNA Service on Ether         |
| 80DD         | Varian Associates                |
| 60DD         | Variati Associates               |
|              |                                  |
|              |                                  |
|              |                                  |
|              |                                  |
|              |                                  |
|              |                                  |
|              |                                  |

| 0005 0005              | Internated Columbia and TDEC               |
|------------------------|--------------------------------------------|
| 80DE-80DF<br>80E0-80E3 | Integrated Solutions TRFS<br>Allen-Bradley |
| 80E4-80F0              | Datability                                 |
| 80F2                   | Retix                                      |
| 80F3                   |                                            |
| 80F4-80F5              | AppleTalk AARP (Kinetics) Kinetics         |
| 80F7                   | Apollo Computer                            |
| 80FF-8103              | Wellfleet Communications                   |
| 8107-8109              | Symbolics Private                          |
| 8130                   | Hayes Microcomputers                       |
| 8131                   | VG Laboratory Systems                      |
| 8132-8136              | Bridge Communications                      |
| 8137-8138              | Novell, Inc.                               |
| 8139-813D              | KTI                                        |
| 8148                   | Logicraft                                  |
| 8149                   | Network Computing Devices                  |
| 814A                   | Alpha Micro                                |
| 814C                   | SNMP                                       |
| 814D                   | BIIN                                       |
| 814E                   | BIIN                                       |
| 814F                   | Technically Elite Concept                  |
| 8150                   | Rational Corp                              |
| 8151-8153              | Qualcomm                                   |
| 815C-815E              | Computer Protocol Pty Ltd                  |
| 8164-8166              | Charles River Data System                  |
| 817D-818C              | Protocol Engines                           |
| 818D                   | Motorola Computer                          |
| 819A-81A3              | Qualcomm                                   |
| 81A4                   | ARAI Bunkichi                              |
| 81A5-81AE              | RAD Network Devices                        |
| 8187-8189              | Xyplex                                     |
| 81CC-81D5              | Apricot Computers<br>Artisoft              |
| 81D6-81DD<br>81E6-81EF | Polygon                                    |
| 81F0-81F2              | Comsat Labs                                |
| 81F3-81F5              | SAIC                                       |
| 81F6-81F8              | VG Analytical                              |
| 8203-8205              | Quantum Software                           |
| 8221-8222              | Ascom Banking Systems                      |
| 823E-8240              | Advanced Encryption Syste                  |
| 827F-8282              | Athena Programming                         |
| 8263-826A              | Charles River Data System                  |
| 829A-829B              | Inst Ind Info Tech                         |
| 829C-82AB              | Taurus Controls                            |
| 82AC-8693              | Walker Richer & Quinn                      |
| 8694-869D              | Idea Courier                               |
| 869E-86A1              | Computer Network Tech                      |
| 86A3-86AC              | Gateway Communications                     |
| 86DB                   | SECTRA                                     |
| 86DE                   | Delta Controls                             |
| 86DF                   | ATOMIC                                     |
| 86E0-86EF<br>8700-8710 | Landis & Gyr Powers<br>Motorola            |
| 8A96-8A97              | Invisible Software                         |
| 9000                   | Loopback                                   |
| 9001                   | 3Com(Bridge) XNS Sys Mgmt                  |
| 9002                   | 3Com(Bridge) TCP-IP Sys                    |
| 9003                   | 3Com(Bridge) loop detect                   |
| FF00                   | BBN VITAL-LanBridge cache                  |
|                        | 1000 1 0                                   |

ISC Bunker Ramo

FF00-FF0F