```
In [1]:
          import matplotlib.pyplot as plt
          import yfinance as yf
           import numpy as np
           import pandas as pd
 In [5]:
          # Donwload closing price data for Apple, Tesla, Google, MicroSoft
           prices = yf.download(['AAPL','TSLA','GOOG','MSFT'], progress = False, period = '1y', interval = '1d')['Adj Close']
           prices.head()
 Out[5]:
                         AAPL
                                   GOOG
                                              MSFT
                                                         TSLA
               Date
          2022-06-17 130.779099 107.865501 245.279083 216.759995
          2022-06-21 135.063492 112.014999 251.310791 237.036667
          2022-06-22 134.546616 112.033997 250.706619 236.086670
          2022-06-23 137.449265 112.684502 256.381775 235.070007
          2022-06-24 140.819153 118.538002 265.137115 245.706665
In [10]:
          # Fetch the holdings data
          holdings = pd.read csv('Position.csv')
           holdings
Out[10]:
            AAPL GOOG MSFT TSLA
          0
              100
                       0
                                   0
                0
                     -20
                                   0
                           120
                                   0
          3
                       0
                             0
                                 -50
In [11]:
          # Calculate the dollar sensitivities ( holdings * spot price)
          dollar sensitivities = holdings*(prices.iloc[-1,:])
```

 ${\tt dollar_sensitivities}$

Out[11]:		AAPL	GOOG	MSFT	TSLA
-	0	18491.999817	0.000000	0.000000	0.000000
	1	0.000000	-2481.199951	0.000000	0.000000
	2	0.000000	0.000000	41079.598389	0.000000
	3	0.000000	0.000000	0.000000	-13027.000427
In [12]:	fı	r o m riskcap	import VaR,	ES	
In [13]:	mo	odel = VaR(d	ollar_sensit	ivities, pri	ces, horizon
In [14]:	mo	odel.fit()			
In [15]:	mo	odel.VaR			
Out[15]:	13	30.152804738	9977		
In [16]:	mo	odel = VaR(d	ollar_sensit	ivities, pri	ces, horizon
In [17]:	mo	odel.fit()			
In [18]:	mo	odel.VaR			
Out[18]:	22	41.172498114	0696		
In [19]:	mo	odel = ES(do	llar_sensiti	vities, pric	es, horizon =

```
In [20]: model.fit()
In [21]: model.ES
Out[21]: 1885.1687097649108
In [22]: model = ES(dollar_sensitivities, prices, horizon = 1, methodology='parametric', confidence=0.975 )
In [23]: model.fit()
In [24]: model.ES
Out[24]: 2252.2080134108555
```