ระบบคาดการณ์ผลลัพธ์การผลิตบัณฑิตของหลักสูตร จากข้อมูลผลการเรียนของ นักศึกษา

Curriculum output prediction from student academic data

ณิชกานต์ สุขุมจิตพิทโยทัย นรวิชญ์ อยู่บัว

ปริญญานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตร์บัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ปีการศึกษา 2565 ปริญญานิพนธ์ปี การศึกษา 2565 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง เรื่อง ระบบคาดการณ์ผลลัพธ์การผลิตบัณฑิตของหลักสูตร จากข้อมูลผลการเรียนของนักศึกษา Curriculum output prediction from student academic data ผู้จัดทำ

นางสาวณิชกานต์ สุขุมจิตพิทโยทัย รหัสนักศึกษา 62010299
 นายนรวิชญ์ อยู่บัว รหัสนักศึกษา 62010465

 	_อาจารย์ที่ปรึกษา
(ผศ. คร.	ธนัญชัย ตรีภาค)

ระบบคาดการณ์ผลลัพธ์การผลิตบัณฑิตของหลักสูตร จากข้อมูลผล การเรียนของนักศึกษา

นางสาวณิชกานต์ สบุมจิตพิทโยทัย 62010299

นายนรวิชญ์ อยู่บัว 62010465

ผศ. คร. ธนัญชัย ตรีภาค อาจารย์ที่ปรึกษา

ปีการศึกษา 2565

บทคัดย่อ

โครงงานนี้จัดทำขึ้นเพื่อ พัฒนาระบบประมวลผลข้อมูลผลการเรียนของนักศึกษาใน อดีต ข้อมูลของรายวิชาต่างๆ และข้อมูลจากแบบสำรวจการมีงานทำของบัณฑิต เพื่อนำเสนอ ข้อมูลสถิติต่างๆ วิเคราะห์ข้อมูลผลการผลิตบัณฑิตเพื่อให้ได้ผลลัพธ์ว่าที่ผ่านมาหลักสูตร สามารถผลิตบัณฑิตกลุ่มใดได้บ้าง มีจำนวนมากน้อยเพียงใด สามารถพยากรณ์ว่าในอนาคต หลักสูตรสามารถผลิตบัณฑิตกลุ่มใดได้เป็นจำนวนเท่าใด เพื่อเป็นประโยชน์และอำนวย ความสะดวกให้กรรมการหลักสูตรในการวางแผนการบริหารหลักสูตรในอนาคต และแสดง เป็นแผนภาพกราฟิกในการอำนวยความสะดวกให้หน่วยงานภายนอกได้รับทราบว่า หลักสูตรปัจจุบันของสถาบันสามารถผลิตบุคลากรที่มีความชำนาญด้านใดได้บ้าง

Curriculum output prediction from student academic data

Ms. Nichakan Sukhumjitpitayotai 62010299

Mr. Narawich Youbua 62010465

Mr. Thanunchai Threepak Advisor

Academic Year 2022

Abstract

The project was created to develop a data processing system that will measure the process of processing academic performance data from former students, data from various courses, and data from graduate employment surveys. We can present statistics and analyze graduate data to figure out which graduate groups have already been generated. It can forecast how many graduate groups that program will generate in the future based on historical data. This can help and facilitate course directors in future course administration planning, and it can be displayed as a graphical diagram in course management. The purpose of showing as a graphical representation is to let external agencies understand how the institution's existing curriculum can generate employees with expertise in any field.

กิตติกรรมประกาศ

โครงงานในภาคการศึกษานี้สำเร็จลุล่วงได้ด้วยดีจากความช่วยเหลือจากหลากหลายบุคคล โครงงานในภาคการศึกษานี้จะผ่านไปไม่ได้หากปราสจากความช่วยเหลือจากบุคคลเหล่านี้ขอขอบคุณ อาจารย์ที่ปรึกษา ผศ. คร. ธนัญชัย ตรีภาค ที่ให้ความช่วยเหลือในเรื่องต่าง ๆ ไม่ว่าจะเป็นการให้ คำแนะนำถึงแนวทางการทำงานที่ดี การให้คำปรึกษาเพื่อหาทางออกเมื่อพบเจอกับปัญหา รวมถึงให้ ความรู้เกี่ยวกับตัวงานทำให้งานต่าง ๆ เมื่อเจอปัญหาก็สามารถผ่านไปได้ด้วยดี

ขอขอบกุณกณาจารย์ในภาควิชาวิศวกรรมคอมพิวเตอร์ ที่ประสาทวิชาการความรู้มาตลอด 4 ปี ซึ่ง ความรู้หลาย ๆ แขนงก็ถูกใช้เป็นพื้นฐาน และเป็นส่วนหนึ่งของโครงงานนี้

ขอขอบคุณเพื่อน ๆ วิศวกรรมคอมพิวเตอร์ที่ให้คำปรึกษา และแลกเปลี่ยนความรู้ซึ่งกันและกัน รวมถึงการรับฟังปัญหา

สุดท้ายนี้ขอขอบคุณบิดา มารดาและครอบครัว ที่เลี้ยงคูอบรมสั่งสอนและให้ความรู้คุณธรรม จริยธรรม และให้การสนับสนุนด้านการศึกษาจนได้มีโอกาสมาทำโครงงานนี้

> ณิชกานต์ สุขุมจิตพิทโยทัย นรวิชญ์ อยู่บัว

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	
บทคัดย่อภาษาอังกฤษ	II
กิตติกรรมประกาศ	III
สารบัญ	IV
สารบัญตาราง	VI
สารบัญรูป	VII
บทที่ 1 บทนำ	
1.1 ความเป็นมาของปัญหา	1
1.2 วัตถุประสงค์	
1.3 ประโยชน์ของโครงงาน	
1.4 ข้อจำกัดของโครงงาน	2
1.5 แผนการคำเนินงาน	3
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	
2.1 ทฤษฎีที่เกี่ยวข้อง	4
2.2 เครื่องมือที่เกี่ยวข้อง	12
2.3 งานวิจัยที่เกี่ยวข้อง <u></u>	
บทที่ 3 การออกแบบ	
3.1 โครงสร้างและการทำงานของระบบ	19
3.2 การทำงานของระบบ <u></u>	19
3.3 Use Case Diagram	22
3.4 Sequence Diagram	30

สารบัญ(ต่อ)

	หน้า
3.5 การออกแบบฐานข้อมูล	36
บทที่ 4 ผลการดำเนินงาน	
4.1 การสร้าง Django Framework เชื่อมต่อ MariaDB	39
4.2 การเตรียม Server ที่ใช้สำหรับ Deploy Application	42
4.3 การใช้งานฐานข้อมูลร่วมกับ Application	43
4.4 การพัฒนา Similarity Model	46
4.5 การนำชุดข้อมูลวิชาที่จัดกลุ่มไปใช้กับ Similarity Model	48
4.6 การพัฒนา Job Classification Model	52
4.7 การพัฒนาหน้าต่างผู้ใช้งานของ Application	53
4.8 การนำ Model และการเรียกใช้ลงบน Django Application	58
4.9 การใช้งานหน้า Web Application	60
บทที่ 5 สรุป	
5.1 บทสรุป	62
5.2 ปัญหาและอุปสรรคที่พบ	
5.3 แนวทางในการพัฒนาต่อ	60
5.4 แนวทางในการพัฒนาต่อ	60
เอกสารอ้างอิง	61

สารบัญตาราง

ตาราง	หน้า
ตาราง 3.1 Use Case ดูผลลัพธ์สายงานของบัณฑิตย้อนหลัง	23
ตาราง 3.2 Use Case คาคการณ์ผลลัพธ์สายงานที่ทำได้ของบัณฑิตในอนาคต	23
ตาราง 3.3 Use Case กรอกแบบฟอร์มเกรคสำหรับการวิเคราะห์ข้อมูล	24
ตาราง 3.4 Use Case แสดงค่าความถนัดของนักศึกษา	24
ตาราง 3.5 Use Case คาดการณ์เกรดแต่ละวิชาของนักศึกษา	25
ตาราง 3.6 Use Case แนะนำวิชาเลือกภาคให้แก่นักศึกษา	25
ตาราง 3.7 Use Case ให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร	26
ตาราง 3.8 Use Case อัปเคตข้อมูลนักศึกษาโคยไม่ระบุตัวตนและข้อมูลหลักสูตร	26
ตาราง 3.9 Use Case ลบข้อมูลนักศึกษาโคยไม่ระบุตัวตนและข้อมูลหลักสูตร	27
ตาราง 3.10 Use Case ล็อกอินเข้าใช้งาน	27
ตาราง 3.11 Use Case ทำนายพยากรณ์ผลลัพธ์และคาดการณ์	28
ตาราง 3.12 Use Case จัดเตรียมข้อมูล	28
ตาราง 3.13 Use Case กรอกข้อมูลอาชีพ	29

สารบัญรูป

រូ ป	หน้า
รูป 1.1 แผนการดำเนินงาน	3
รูป 2.1 ประเภทของ Machine Learning	6
รูป 2.2 รูปแบบของ Content-based Filtering	10
รูป 2.3 รูปแบบของ Memory-based	11
รูป 2.4 การทำงานของแอปพลิเคชันต่าง ๆ บน Docker Engine	13
รูป 2.5 ประเภทของ Machine Learning	17
รูป 3.1 โครงสร้างการทำงานของระบบ	19
รูป 3.2 Use Case Diagram	22
รูป 3.3 Sequence diagram สำหรับ UC-01	30
รูป 3.4 Sequence diagram สำหรับ UC-02	30
รูป 3.5 Sequence diagram สำหรับ UC-03	31
รูป 3.6 Sequence diagram สำหรับ UC-04	31
รูป 3.7 Sequence diagram สำหรับ UC-05	32
รูป 3.8 Sequence diagram สำหรับ UC-06	32
รูป 3.9 Sequence diagram สำหรับ UC-07	33
รูป 3.10 Sequence diagram สำหรับ UC-08	33
รูป 3.11 Sequence diagram สำหรับ UC-09	34
รูป 3.12 Sequence diagram สำหรับ UC-10	34
รูป 3.13 Sequence diagram สำหรับ UC-11	35
รูป 3.14 Sequence diagram สำหรับ UC-12	35
รูป 3.15 Sequence diagram สำหรับ UC-13	36
วูป 3.16 Data Schema	36
รูป 4.1 File Requirements	39
วูป 4.2 Docker file	40
31 4.3 File Docker - compose.yml	41

สารบัญรูป(ต่อ)

ฐป	หน้า
รูป 4.4 ภาพรวมของการตรวจสอบการทำงานของระบบ	41
รูป 4.5 Directory ที่เกี่บ Django Application	42
รูป 4.6 ผลลัพธ์การสร้าง Docker Compose บน Server	43
รูป 4.7 ผลลัพธ์การค้นหาข้อมูลผ่าน API	44
รูป 4.8 ผลลัพธ์การแก้ไขข้อมูลผ่าน API	44
รูป 4.9 ผลลัพธ์การเพิ่มข้อมูลผ่าน API	45
รูป 4.10 ผลลัพธ์การลบข้อมูลผ่าน API	45
รูป 4.11 ชุดข้อมูลในการทคลอง	46
รูป 4.12 ชุดข้อมูลหลังจากผ่านการเตรียมข้อมูล	47
รูป 4.13 ตัวอย่างข้อมูล Data Subject	48
รูป 4.14 ข้อมูล Data Subject หลังจากตัดรหัสวิชาที่ซ้ำออก	49
รูป 4.15 ข้อมูล Data Subjectหลังจากจัดแต่งบทคัดย่อ	49
รูป 4.16 Coding การเทียบค่า Similarity	50
รูป 4.17 ชุดข้อมูลหลังจากผ่านการเตรียมข้อมูลผลลัพธ์จาก NLP	51
รูป 4.18 ผลลัพธ์การทคลองร่วมกับ NLP	51
รูป 4.19 ชุดข้อมูลแบบสอบถามการมีงานทำของบัณฑิต	52
รูป 4.20 ชุดข้อมูลที่ผ่านการ Transpose	53
รูป 4.21 Dockerfile React Project	54
ฐป 4.22 docker-compose.yml React Project	54
รูป 4.23 ภาพรวมของการตรวจสอบการทำงานของ React Project	55
รูป 4.24 ภาพรวมของ React Project และ Django Application ที่เรียกดูผ่าน Web Browser	56
รูป 4.25 ทคสอบการติดต่อระหว่าง React Project และ Django Application	56
รูป 4.26 React Project ที่นำขึ้นไปยัง Server ที่เตรียมไว้	57
รูป ก1 แผนภาพการทำงาน โดยรวมของระบบ	64

บทที่ 1

บทน้ำ

1.1 ความเป็นมาของปัญหา

Data Analytics เป็นการวิเคราะห์ข้อมูลที่มีอยู่ตั้งแต่อดีตจนถึงปัจจุบัน ในกรณีที่ข้อมูล เพียงพอและเหมาะสมจะสามารถนำมาคาคการณ์แนวโน้ม ทำนายอนาคตที่เป็นประโยชน์ พยากรณ์สิ่งที่กำลังจะเกิดขึ้นหรือน่าจะเกิดขึ้นโดยใช้ข้อมูลในอดีตกับแบบจำลองทางสถิติ รวมถึงการให้คำแนะนำทางเลือกต่าง ๆ และผลของแต่ละทางเลือก

จากปัญหาที่ทางผู้จัดทำเล็งเห็นความสำคัญคือการนำข้อมูลผลการเรียนของนักศึกษาใน อดีตมาใช้ประโยชน์ในการบริหารหลักสูตร และ นำมาวิเคราะห์ผลเพื่อช่วยในการวางแผนการ เรียนของนักศึกษา ซึ่งการวางแผนในการเรียนของหลักสูตรจะสามารถช่วยอาจารย์และบุคลากร ที่เกี่ยวข้องกับการศึกษาในด้านของการบริหารหลักสูตร เพื่อวางแผนการเพิ่มหรือลดจำนวน ผู้เรียนในรายวิชาต่าง ๆ ซึ่งส่งผลต่อการผลิตบัณฑิตด้านต่าง ๆ ได้

ดังนั้นผู้จัดทำจึงได้เห็นถึงความสำคัญการประเมินสถานะขอหลักสูตร ของระบบแนะนำ การวางแผนการคาดการณ์จากการใช้ความรู้ทางด้าน Data Analytics, Prediction และ Recommendation โดยใช้ข้อมูลผลการเรียนของนักศึกษาในอดีต เพื่อพัฒนาระบบช่วยเหลือ และตอบโจทย์ให้แก่นักศึกษาและบุคลากรทางการศึกษาหรือบุคคลที่เกี่ยวข้องได้

1.2 วัตถุประสงค์

- เพื่อนำข้อมูลของผลการเรียนของนักศึกษาในอดีตและข้อมูลจากแบบสำรวจการมีงาน ทำของบัณฑิตมาใช้ ในการวางแผนการเรียนหรือประเมินอาชีพในอนาคตของ นักศึกษาได้
- 2) ประมวลผลข้อมูลผลการเรียนของนักศึกษาในอดีต และข้อมูลจากแบบสำรวจการมี งานทำของบัณฑิต และทำแผนภาพกราฟิกเพื่อนำเสนอข้อมูล อำนวยความสะควกให้ กรรมการหลักสูตรในการวางแผนการ ทำงาน
- 3) เพื่อนำข้อมูลผลการเรียนของนักศึกษาในอดีต มาพัฒนาเป็นระบบแนะนำและวาง แผนการเรียนตัวของ นักศึกษาได้

4) เพื่อนำข้อมูลการพยากรณ์อาชีพในอนาคตของนักศึกษาในสถาบันมาแสดงเป็น แผนภาพกราฟิกในการ อำนวยความสะดวกให้หน่วยงานภายนอกได้รับทราบว่า หลักสูตรปัจจุบันของสถาบันสามารถผลิต บุคลากรที่มีความชำนาญด้านใดได้บ้าง

1.3 ประโยชน์ของโครงงาน

- 1) ได้ระบบรวบรวมข้อมูลผลการเรียนของนักศึกษาและข้อมูลแบบสำรวจการทำงานของ บัณฑิต แล้วนำมาวิเคราะห์และนำเสนอข้อมูลที่เป็นประโยชน์ในการบริหารหลักสูตร ของกรรมการหลักสูตร
- 2) มีระบบที่สามารถแนะนำ วางแผน และประเมินอาชีพในอนาคตจากผลการเรียนของ นักศึกษา

1.4 ข้อจำกัดของโครงงาน

- 1) ข้อมูลผลการเรียนในอดีตย้อนหลังมีเพียง 2 ปี
- 2) ข้อมูลผลการเรียนในอดีตจะได้จากสำนักทะเบียนและประมวลผล โดยกรรมการ หลักสูตรจะเป็นผู้ร้องขอข้อมูลดังกล่าวและนำเข้าระบบ
- 3) การทำนายต่าง ๆ จะใช้ข้อมูลเพียง 2 แหล่งคือข้อมูลผลการเรียนของนักศึกษาจาก สำนักทะเบียนและประมวลผล และแบบสอบถามการมีงานทำของบัณฑิตเท่านั้น

1.5 แผนการดำเนินงาน

แผนการดำเนินงานในการพัฒนาโครงงานตลอดระยะเวลา 2 ภาคการศึกษา ตั้งแต่เคือน สิงหาคม พ.ศ. 2565 - มีนาคม พ.ศ. 2566 แสดงดังรูป 1.1

รูป 1.1 แผนการดำเนินงาน

บทที่ 2

ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 ทฤษฎีที่เกี่ยวข้อง

2.1.1 Classification and Predict

Classification and Prediction คือการจำแนกประเภทของข้อมูลหรือการนำชุด ข้อมูลที่มีความใกล้เกียงกันมาจัดเข้าด้วยกัน โดยจะนำมาใช้ในการวิเคราะห์ข้อมูล ซึ่ง กระบวนการดั่งกล่าวสามารถแบ่งได้เป็น 2 ส่วน

2.1.1.1 Training Data

Training Data คือการนำข้อมูลมาที่ได้มาทำการเรียนรู้ให้กับคอมพิวเตอร์ เพื่อนำไปสร้างเป็นโมเคลแบบจำลองและวัคประสิทธิภาพของโมเคลแบบจำลองนั้น เป็นระบบ ที่ใช้ในการสอนระบบ โดยจะทำการสร้างโมเคลซึ่งจะมีด้วยกันหลายวิธี เช่น Decision Tree, Naive Bayes, K Nearest Neighbors และ Neural Network เป็นต้น

2.1.1.2 Predict

Predict คือการนำข้อมูลใหม่ที่รับมานำเข้าโมเคลแบบจำลองที่เป็นผลลัพธ์ จากการผ่านกระบวนการ Training Data ไปทำการคำนวณหรือพยากรณ์ประเภทของปัญหาใน ด้าน Classification

- 1) Binary classification (การจำแนกแบบใบนารี)
 คือตัวแปรที่อยู่ในรูปแบบสองหมวดหมู่ที่มีแค่ 2 ผลลัพธ์ เช่น ผลลัพธ์
 แบบ ใช่ หรือ ไม่ใช่ ตก หรือ ผ่าน หากเปรียบในรูปแบบของตัวเลขก็
 คือ 0 กับ 1 อัลกอริทึมที่ใช้คู่กับการจำแนกแบบใบนารี จะมีดังนี้ kNearest Neighbors Decision Trees หรือ Naive Bayes
- 2) Multi-Class Classification (การจำแนกประเภทหลายคลาส)
 ในการจำแนกรูปแบบนี้จะต่างกับการจำแนกแบบใบนารี โดยจะมี
 ผลลัพธ์หรือหมวดหมู่มากกว่า 2 ผลลัพธ์ ตัวอย่างของการจำแนก
 ประเภทนี้ เช่น รูปภาพที่มีองค์ประกอบคล้ายคลึงกับรูปภาพที่อยู่ใน
 ฐานข้อมูลเพื่อค้นหาคำศัพท์ที่คาดว่าจะพิมพ์ใน predictive keyboard
 โดยผลลัพธ์ที่อาจเกิดนั้นจะมีได้มากกว่า 2 หมวดหมู่ อัลกอริทึมที่ใช้คู่

กับการจำแนกประเภทนี้สามารถใช้อัลกอริทึมคล้ายกับการจำแนก แบบใบนารีได้

- 3) Multi-Label Classification (การจำแนกประเภทหลายเลเบล)
 เปรียบให้เข้าใจง่ายโดยการยกตัวอย่างเช่น รูปภาพรูปหนึ่งสามารถมี
 รูปดอกไม้ ท้องฟ้าก้อนเมฆได้ แต่รูปภาพรูปนั้นจะจัดว่าเป็นหมวดหมู่
 รูปวาด รูปถ่าย หรือรูปเสีย Multi-Label Classification ก็คือการทำเล
 เบลให้กับชุดข้อมูล หรือการติดฉลากให้รูปนั้น ๆ ว่ามีดอกไม้หรือ
 เปล่ามีก้อนเมฆหรือไม่ส่วน Multi-Class Classification จะจำแนกว่า
 รูปนั้นเป็นรูปที่เกิดจากการวาดหรือรูปที่เกิดจากการถ่ายหรือรูปเสีย
- 4) Imbalanced Classification (การจำแนกแบบข้อมูล ไม่เท่าเทียม)
 กือปัญหาที่เกิดจากข้อมูลที่มี ไม่เท่าเทียมกัน (Imbalanced dataset)
 ตัวอย่างเช่นข้อมูลของการทุจริต โดยข้อมูลส่วนใหญ่ย่อมเป็นข้อมูลที่
 จัดว่า "ไม่ทุจริต" และจะมีเปอร์เซ็นต์น้อยที่จัดว่าเป็น "ทุจริต" เป็นต้น
 โดยจะเปรียบ โดยง่ายคือกรณีที่ชุดข้อมูลมีการแยกประเภทกันแต่
 จำนวนของประเภทนั้นมีอัตราส่วนของข้อมูลที่ห่างกันค่อนข้างมาก

2.1.2 Machine Learning

Machine Learning คือ การทำให้ระบบคอมพิวเตอร์มีความสามารถเรียนรู้ได้ด้วย ตนเอง โดยจะใช้ข้อมูล ด้วยวิธีการใส่ข้อมูลและผลลัพธ์เข้าไป เหมือนกันเป็นการสอนระบบ คอมพิวเตอร์ เพื่อทำให้โปรแกรมนำผลลัพธ์นั้นไปประมวลผลและพยากรณ์ Output และ Input ของข้อมูลใหม่ โดยแบ่ง Machine Learning ออกได้เป็น 3 ประเภท คือ

- 1) Supervised Learning คือการเรียนรู้ ที่เครื่องจักรหรือคอมพิวเตอร์ นั้น จำเป็นต้องอาศัยข้อมูลในการฝึกฝน ซึ่งจำเป็นที่จะต้องอาศัยชุดของข้อมูล ที่ จะประกอบไปด้วยชุดของข้อมูลและชุดของผลลัพธ์ของข้อมูลที่ต้องการจะ นำมาให้เครื่องจักรหรือคอมพิวเตอร์ใช้ในการเรียนรู้
- 2) Unsupervised Learning เป็นการเรียนรู้ที่ให้เครื่องจักรหรือคอมพิวเตอร์นั้น สามารถเรียนรู้ได้ด้วยตนเองแบบไม่ต้องมีผู้สอน โดยไม่จำเป็นต้องมีค่า เป้าหมายหรือผลลัพธ์ของแต่ละชุดข้อมูล ซึ่งวิธีการนี้คือการที่มนุษย์นั้นจะ เป็นผู้ใส่ชุดข้อมูล และกำหนดสิ่งที่ต้องการจากชุดข้อมูลเหล่านั้น โดยให้

- เครื่องจักรหรือคอมพิวเตอร์วิเคราะห์จากการจำแนกและทำการสร้างแบบ แผนจากข้อมูลที่ได้รับมา
- 3) Reinforcement Learning คือการเรียนรู้สิ่งต่างๆ โดยลองผิดลองถูกต่างๆ ภายใต้แนวคิดที่ว่าจะเลือกกระทำสิ่งใดที่ทำให้ได้ผลลัพธ์มากที่สุด โดยจะทำ การเรียนรู้จากในสถานการณ์ในอดีตหรือระบบจำลองและพยายามที่จะ พัฒนาระบบการตัดสินใจของตัวเองให้ดีขึ้นอย่างต่อเนื่อง โดยที่อาจจะ สามารถพัฒนาด้วยการพยายามสร้างแบบจำลองสถานการณ์ต่าง ๆ ขึ้นมา

รูป 2.1 ประเภทของ Machine Learning

(ที่มา: medium.com, 2018)

2.1.3 Extract-Transform-Load (ETL)

Extract-Transform-Load คือ กระบวนการหนึ่งที่อยู่ในระบบของ Data Warehouse ซึ่งระบบนี้จะทำการออกแบบมาเพื่อให้สามารถคึงข้อมูลมาจากหลายๆแหล่งมาใช้ งานได้ โดยจะนำกระบวนการตรวจสอบคุณภาพของชุดข้อมูลมาประยุกต์ร่วมใช้ ซึ่งมีการ เชื่อมโยงและปรับชุดของข้อมูลให้เป็นไปในรูปแบบเคียวกันทั้งหมดเพื่อให้ ชุดของข้อมูลจาก หลากหลายแหล่งสามารถใช้งานร่วมกันได้ และทำการส่งมอบ

2.1.3.1 Extract

เป็นกระบวนการเริ่มต้นของระบบที่คึงข้อมูลจากแหล่งของข้อมูล จะ ประกอบค้วยข้อมูลจากหลากหลายแหล่งที่มา ข้อมูลที่อยู่ต่างที่กันนั้นอาจจะอยู่ในรูปแบบที่ แตกต่างกัน ยกตัวอย่างเช่น อาจจะอยู่ในรูปแบบของฐานข้อมูลคนละชนิค หรือ ไม่ใช่ฐานข้อมูล แท้จริงซึ่งอาจจะเป็นระบบไฟล์ข้อมูลธรรมคา

2.1.3.2 Transforming

Transforming ขั้นตอนการแปลงรูปแบบของข้อมูลนี้จะมีการใช้กฎหรือ ฟังก์ชัน (Function) มากมายเพื่อที่จะแปลงข้อมูลให้ได้อยู่ในรูปแบบตามที่ต้องการก่อนที่จะนำ ข้อมูลเหล่านั้นเข้าไปยังปลายทาง ข้อมูลจากต้นทางนั้นบางแหล่งข้อมูลมีความจำเป็นน้อยมาก หรือแทบจะไม่ต้องการ การแปลงข้อมูลเลย แต่ในบางแหล่งอาจจะต้องการกระบวนการที่ ซับซ้อนในการแปลงข้อมูล ซึ่งจะกินทรัพยากรของระบบที่ใช้และเวลาในการประมวลผลของ ระบบ ซึ่งความซับซ้อนของข้อมูลจะขึ้นอยู่กับความต้องการของเชิงธุรกิจ หรือ เป้าหมายของ การนำข้อมูลไปใช้งาน โดยจะมีกระบวนการตัวอย่างต่อไปนี้

- 1) Selection คือ การเลือก Column ที่ต้องการที่จะนำไปใช้งานหรือ
 เก็บลงฐานข้อมูล โดยยกตัวอย่าง เช่น ถ้าต้นทางของข้อมูลมีอยู่
 ด้วยกัน 3 Column หรือ 3 attributes เช่น enroll_num, age และ
 salary จะมีการแปลงข้อมูล เกิดขึ้นและ เลือกที่จะไม่มีการแปลง
 ข้อมูลหากพบว่า record นั้นมีค่าของข้อมูล column salary เป็นค่า
 ว่าง
- 2) Translation คือ การแปลข้อมูล ตัวอย่างเช่น หากข้อมูลต้นทางนั้นมี การเก็บข้อมูลของเพศโดยให้ 1 เป็นเพศชาย และ 2 เป็นเพศหญิง จะต้องมีการแปลจากชุดตัวเลขที่กำหนดก่อนหน้านี้ให้ 1 = Male และ 2 = Female กระบวนการนี้เรียกว่า data cleaning หรือ กระบวนการทำความสะอาดข้อมูล
- 3) Encoding free form การ mapping ค่าจากค่าหนึ่งสู่อีกค่าหนึ่งเพื่อให้ ง่ายต่อการใช้งาน
- 4) Filtering คือ กระบวนการกรองเฉพาะข้อมูลที่กำหนด
- 5) Sorting คือ กระบวนการเรียงข้อมูลที่ต้องการ
- 6) Joining คือ กระบวนการเชื่อมโยงข้อมูลระหว่างตารางข้อมูล

- 7) Aggregation คือ การหาผลรวมของชุดข้อมูลหรือหาผลรวมของ ผลลัพธ์
- 8) Transposing or pivoting คือการสลับทิศทางตำแหน่งของการแสดง ข้อมูล เช่นการย้ายระเบียบไปเป็น Column หรือ ย้าย Column มา เป็นระเบียบ เพื่อให้ง่ายต่อการนำข้อมูลไปใช้

2.1.3.3 Loading

Loading กระบวนการ โหลดข้อมูลเข้า ไปยังฐานข้อมูลเช่น นำข้อมูลเข้า ไปในระบบ Data Warehouse ทั้งนี้ขึ้นอยู่กับความต้องการของ บางงานจะมีการสะสมของข้อมูล ความถี่ของการนำข้อมูลเข้าสู่ระบบ อาจจะมีการล้างข้อมูลแล้วทับข้อมูลใหม่

2.1.4 Natural Language Processing (NLP)

Natural Language Processing (NLP) เป็นเครื่องมือที่ให้คอมพิวเตอร์เข้าใจภาษา ของมนุษย์ที่มีความซับซ้อน เป็นศาสตร์หนึ่งที่สำคัญทางด้าน Machine Learning โดยเป็น สาขาวิชาหนึ่งที่ประกอบด้วยองค์ความรู้จากหลากหลายแขนง อาทิ ภาษาศาสตร์ (Linguistics) วิทยาการคอมพิวเตอร์ (Computer Science) ปัญญาประดิษฐ์ (Artificial Intelligence: AI) รวมไป ถึงสถิติ (Statistics) โดย NLP มีมาตั้งแต่ช่วงกลางศตวรรษที่ 19 และมีการพัฒนามาเรื่อย ๆ จนถึง ปัจจุบัน โดยแบ่งออกเป็น 3 ยุค ดังนี้

- 1) ยุค Rule-based Method (ช่วง ค.ศ.1950-1990)
 ในยุคแรกของ NLP มีการใช้งานตามกฎ (Rule-based Method) โดย
 นักภาษาศาสตร์ผู้มีความเชี่ยวชาญโครงสร้างของภาษาที่สนใจ จะเป็นผู้เขียน
 กฎต่าง ๆ ขึ้นมาเพื่อให้คอมพิวเตอร์สามารถคำนวณข้อความของโจทย์ต่างๆ
 ได้
- 2) ยุค Machine Learning (ช่วง ค.ศ.1990-2010) ในยุคนี้ พบว่ามีการเขียนกฎด้วยมือ ไม่สามารถตอบ โจทย์ที่มีความซับซ้อน ได้ จึงมีสิ่งที่ ได้มาทดแทนในยุคนี้คือ ความสามารถของเครื่องคอมพิวเตอร์ รวมถึงความรู้ทางด้านสถิติ และ Machine Learning ซึ่ง ได้ถูกนำมาพัฒนาเพื่อ ใช้ในการทำงานด้าน NLP โดยมีการนำเข้าข้อมูลเพื่อให้คอมพิวเตอร์ สามารถเรียนรู้ด้วยตนเองแทนการใช้ผู้เชี่ยวชาญทางด้านภาษา
- 3) ยุค Deep Learning (ช่วง ค.ศ.2010-ปัจจุบัน)

ในยุคปัจจุบัน ด้วยพลังการคำนวณของคอมพิวเตอร์ที่มีการพัฒนาสูงขึ้น อย่างต่อเนื่อง ทำให้เทคโนโลยีที่มีความซับซ้อนสูงอย่าง การเรียนรู้เชิงลึก (Deep Learning) ถูกนำมาใช้งานแทนที่ Machine Learning ซึ่งใช้ความรู้ ทางค้านสถิติแบบคั้งเดิมอย่างแพร่หลายมากขึ้น รวมถึงในงานค้าน NLP ค้วย เช่นกัน อาทิ การสร้างแบบจำลองทางภาษา (Language Model) และการ วิเคราะห์โครงสร้างของข้อความ (Parsing)

ตัวอย่างการประยุกต์ใช้ NLP ในด้านต่าง ๆ

- 1) ค้านการทำงานวิจัย การวิจัยมีแหล่งของข้อมูลทางภาษาขนาดใหญ่ ซึ่งทำให้

 NLP สามารถเข้ามามีบทบาทได้อย่างหลากหลาย ตัวอย่างเช่น การใช้ Topic

 Model ในการจัดหมวดหมู่บทความ
- 2) ค้านพาณิชย์อิเล็กทรอนิกส์ การซื้อของผ่านช่องทางออนไลน์ เข้ามามี บทบาทสำคัญเป็นอย่างมากในระบบเศรษฐกิจ ซึ่งทำให้เกิดปริมาณธุรกรรม ขนาดใหญ่ ไม่ว่าจะเป็น คำอธิบายสินค้าและบริการ การแสดงความคิดเห็น ของผู้บริโภค รวมถึงการสนทนากันระหว่างผู้ซื้อและผู้ขายผ่านทางช่องแช็ต
- 3) ด้านการแพทย์ ข้อมูลทางการแพทย์มีการบันทึกข้อมูลด้วยข้อความ ตัวอย่างเช่น บทสนทนาระหว่างแพทย์และผู้ป่วย การวินิจฉัยโรคโดยแพทย์ และประวัติการรักษาของผู้ป่วย
- 4) ด้านกฎหมาย สำหรับงานด้าน มีข้อมูลทางด้านภาษาที่แตกต่างและ หลากหลาย เช่นเดียวกัน เช่น ประมวลกฎหมายต่าง ๆ คำร้องต่อสาล คำให้การของคู่ความ และคำพิพากษาของสาล ซึ่งสามารถประยุกต์ใช้ เครื่องมือ NLP ได้ในหลายมิติไม่ว่าจะเป็นการใช้ PoS Tagging และ NER เพื่อช่วยในการตีความประมวลกฎหมาย

2.1.5 Recommendation System

Recommendation System เป็นระบบที่จะทำการแนะนำสิ่งที่ผู้ใช้งานมีความ สนใจไม่ว่าจะเป็น เนื้อหา เพลง course เรียน ไปจนถึงสินค้าที่ขายในร้าน online โดยสามารถ แนะนำได้ผ่านโมเคลที่ส่วนใหญ่มักจะถูกใช้กันมีอยู่ด้วยกันสามประเภท ได้แก่

2.1.5.1 Content-based Filtering

เป็นรูปแบบของโมเคลที่จะแนะนำลักษณะของตัวบริการหรือสินค้าเป็น ตัวตั้งและทำการแนะนำสิ่งค้าที่มีลักษณะที่คล้ายกัน

รูป 2.2 รูปแบบของ Content-based Filtering

(ที่มา: towardsdatascience.com, 2018)

2.1.5.2 Collaborative Filtering

เป็นรูปแบบโมเดลที่เรียนรู้จากพฤติกรรมของผู้ใช้กับผู้ใช้คนอื่น ๆ ที่ คล้ายคลึงกัน

> 1) Memory-based เป็นการคูข้อมูลแล้วหาความสัมพันธ์ ระหว่างผู้ใช้ หรือ สินค้าจากข้อมูลโดยตรง

รูป 2.3 รูปแบบของ Memory-based

(ที่มา: towardsdatascience.com, 2018)

- 2) Model-based ใช้เทคนิกของ machine learning เพื่อหา user embedding และ item embedding มาทำการทำนาย rating ที่ผู้ใช้จะ ให้กับสินค้า หรือ relevance score
- 3) Hybrid ใช้หลาย ๆ วิธีการมารวมกัน Hybrid system เป็นการมัด รวมทั้งสองอัลกอริทึมของ Model-based และ Memory-based เอาไว้ เพื่อทำให้ระบบการแนะนำสมบูรณ์ขึ้น ซึ่งระบบนี้ถูกนำไปใช้ใน ปัจจุบันมากที่สุดแทบจะทุกแพลตฟอร์มใหญ่ที่มีการแนะนำสินค้า และบริการ

2.1.5.3 Hybrid system

เป็นการมัครวมทั้งสองระหว่าง Content-based Filtering และ Collaborative Filtering เพื่อทำให้ระบบการแนะนำสมบูรณ์ขึ้น

2.2 เครื่องมือที่เกี่ยวข้อง

2.2.1 Docker

Docker เป็นเครื่องมือแบบ open-source ที่ช่วยจำลองสภาพแวคล้อม ในการรัน service หรือ server โดยการสร้าง container เพื่อจัดการกับ library ต่างๆ และยังช่วยจัดการใน เรื่องของ version control เพื่อให้ง่ายต่อการจัดการกับปัญหาต่างๆ ที่เกิดขึ้นองค์ประกอบต่างๆ ของ Docker

1) Docker image

คือแม่พิมพ์หรือต้นแบบของ Container โดยจะเป็นระบบปฏิบัติการ Linux ที่มีการติดตั้ง Application และจะมีการ Configuration tool ต่างๆเอาไว้ ซึ่งเกิดจากการ build ไฟล์ Docker file ขึ้นมาเป็น image

2) Docker container

เป็นสิ่งที่ถูกสร้างขึ้นมาจาก Docker Image ที่เป็นต้นแบบหรือแม่พิมพ์ เกิดเป็น container และจะได้ Service หรือ Application ที่สามารถเรียกใช้งานได้ทันที

3) Docker registry

การสร้าง Docker Image แล้วนำไปเก็บรวบรวมไว้บน server ลักษณะเคียวกับ การเก็บ Source Code ไว้บน (Github) โดยมี Docker Hub เป็น Docker registry หลักในการเรียกใช้(pull) Docker Image และนอกจากนี้ยังมีผู้ให้บริการ docker registry อื่นๆด้วย

รูป 2.4 การทำงานของแอปพลิเคชันต่าง ๆ บน Docker Engine

(ที่มา : docker.com)

2.2.2 Django

Django Framework เป็นชุด Framework สำหรับ การพัฒนาเว็บไซต์ โดยใช้ภาษา
Python ในการพัฒนา โดยทุกวันนี้ Framework สำหรับการเขียนเว็บไซต์ด้วยภาษา Python มี
ค่อนข้างที่จะเยอะ ซึ่ง Django Framework ก็เป็นหนึ่งใน Framework สำหรับการพัฒนาเว็บไซต์
และทำเว็บไซต์ด้วยภาษา Python ด้วยเช่นกัน

กุณสมบัติของ Django Framework

- 1) Object-relational mapper ใช้ในการทำงานค้านข้อมูล และช่วยสนับสนุน dynamic database-access API
- 2) Automatic admin interface ช่วยในการสร้าง Interface อัตโนมัติสำหรับการ add, edit, delete และ search
- 3) Elegant URL design ทำให้ URL มีความสั้น กระชับ สามารถสื่อความหมาย ของหน้านั้น ๆ ได้อย่างชัดเจน
- 4) Template system มีการออกแบบ Template Language เพื่อการเขียนแยกส่วน ระหว่าง Design และ Business Logic
- 5) Cache system สามารถบันทึก หรือจัดการข้อมูลที่มีการดาวน์โหลดไปแล้ว เพื่อ เพิ่มประสิทธิภาพการทำงานของเว็บไซต์ด้านความเร็ว และด้านอื่น ๆ
- 6) Internationalization คือ Django สนับสนุน Application ที่มีความหลากหลาย ค้านภาษาในการแสดงผล

2.2.3 Scikit-learn

Scikit-learn เป็นแพ็กเกจที่รวบรวม Library ด้าน การเรียนรู้ของเครื่อง (Machine Learning) เอาไว้ โดยใช้ภาษา Python ในการพัฒนา และถูกออกแบบมาให้ทำงานร่วมกับ Library อย่าง NumPy และ SciPy

Scikit-learn ยังเป็น Open Source ที่เปิดให้สามารถเข้าไปพัฒนาต่อยอดได้และเป็น แหล่งรวม Library และอัลกอริทึมที่เน้นไปในด้านของ การเรียนรู้ของเครื่อง (Machine Learning) ซึ่งมีส่วนในการทำ แบบจำลองข้อมูล (Data Modeling) อีกหนึ่งปัจจัยที่ทำให้มีผู้ใช้ เยอะ เพราะเป็น Interface ระดับสูง ทำให้มือใหม่สามารถเข้าใจภาพรวมและ ขั้นตอนการทำงาน ของการเรียนรู้ของเครื่อง (Machine Learning) ได้เครื่องมือที่ผู้ใช้งานสามารถนำไปใช้ได้

2.2.4 MariaDB

MariaDB คือ เป็น Open Source สำหรับจัดการกับฐานข้อมูล MariaDB ถูก พัฒนาขึ้นโดยนักพัฒนาเดิมของ MySQL เนื่องจากความกังวลที่เกิดขึ้นเมื่อ MySQL ถูกซื้อโดย Oracle Corporation ในปี 2009

MariaDB ใค้รับการพัฒนาเป็นซอฟต์แวร์โอเพนซอร์ส และเป็นฐานข้อมูลเชิง สัมพันธ์แบบ SQL สำหรับการเข้าถึงข้อมูล เวอร์ชันล่าสุดของ MariaDB มีคุณลักษณะ GIS และ JSON

MariaDB เปลี่ยนข้อมูลเป็นฐานข้อมูลที่มีโครงสร้างในหลากหลายแอปพลิเคชัน เป็นการปรับปรุงและแทนที่ด้วยการแทนที่ของ MySQL เพราะมีความรวดเร็วและสามารถปรับขนาดได้ มีระบบแวดล้อมที่อุดมไปด้วยปลั๊กอินส์เอนจินและเครื่องมืออื่น ๆ ทำให้สามารถใช้ งานได้หลากหลาย

2.2.5 React

React เป็น Library ของภาษา JavaScript โดยใช้สำหรับการสร้าง user interface ทำ ให้สามารถเขียนโค้ดในการสร้าง UI ที่มีความซับซ้อนแบ่งเป็นส่วนเล็กๆออกจากกันได้ ซึ่งแต่ ละส่วนสามารถแยกการทำงานออกจากกันได้อย่างอิสระ และทำให้สามารถนำชิ้นส่วน UI เหล่านั้นไปใช้ซ้ำได้

2.2.6 Node.JS

Node.js เป็น open-source และ cross-platform ของภาษา JavaScript โดยทำงาน แบบ asynchronous สามารถใช้ Node.js ในการพัฒนาแอปพลิเคชันแบบ Command line แอป พลิเคชัน Desktop หรือแม้แต่เว็บเซิร์ฟเวอร์ได้ โดยที่ Node.js จะมี APIs ที่จะสามารถใช้สำหรับ ทำงานกับระบบปฏิบัติการ เช่น การรับค่าและการแสดงผล การอ่านเขียนไฟล์ และการทำงาน กับเน็ตเวิร์ก และยังเป็นเป็นโปรแกรมที่สามารถใช้ได้ทั้งบน Windows, Linux และ Mac OS X โดยสามารถเขียนโปรแกรมในภาษา JavaScript และนำไปรันได้ทุกระบบปฏิบัติการที่ สนับสนุนโดย Node.js

2.3 งานวิจัยที่เกี่ยวข้อง

2.3.1 การสร้างรายการเพลงโดยใช้การกรองร่วมแบบเซสชั่นที่เพิ่มขึ้นด้วยกลไกการลืม และการวิเคราะห์สถิติเชิงมุม

สุเมธ คาราพิสุท นำเสนองานวิจัยเรื่อง การสร้างรายการเพลงโดยใช้การกรองร่วม แบบเซสชั่นที่เพิ่มขึ้นด้วยกลไกการลืมและการวิเคราะห์สถิติเชิงมุม โดยใช้ 2 วิธีร่วมกัน 1 การ สร้างรายการเพลงจะพิจารณาการฟังเพลงในเซสชั่นปัจจุบันที่คล้ายกับเซสชั่นในอดีตของผู้ฟัง 2 สร้างรายการเพลงแนะนำโดยพิจารณาช่วงเวลา เฉพาะในการฟังเพลงซึ่งแตกต่างจากช่วงเวลา อื่นอย่างมีนัยสำคัญทางสถิติในรอบวันของผู้ฟังโดยใช้ การวิเคราะห์สถิติเชิงมุม และวัด ประสิทธิภาพโดย ประสิทธิภาพ Hit Ratio และ Precision จากการทดลองพบว่าการใช้ 2 วิธี แยกกันนั้นได้ผลลัพธ์ที่น้อยกว่านำมาใช้ร่วมกัน 0.18-0.22 % โดยวัตถุประสงค์ในการทำเพื่อ วิเคราะห์ปัญหาที่เกิดขึ้นในการสร้างรายการเพลงแนะนำแบบออฟไลน์ พัฒนาขั้นตอนวิธีการ สร้างรายเพลงแนะนำให้มีประสิทธิภาพเพิ่มขึ้นทั้งทางด้านความเร็วและความถูกต้องในการ สร้างรายการเพลง

โดยในโครงงานของผู้จัดทำนั้นได้นำสวนของการออกแบบ Diagram ในงานวิจัยนี้ มาใช้งาน โดยใช้วิธีที่ เซึ่งของผู้จัดทำจะเป็น 1 หาความคล้ายคลึงของหมวดหมู่วิชา 2 เลือก สมาชิกข้างเคียง 3 ทำนายค่าผลลัพธ์การเรียนหรือเกรด 4 นำไปสร้างรายการสำหรับขั้นตอน ต่อไป

รูป 2.5 ประเภทของ Machine Learning

(ที่มา: คาราพิสุทธิ์, 2016)

2.3.2 ระบบแนะนำสินค้าอาหารโดยใช้ระบบแนะนำแบบผสมผสาน

นิภาภรณ์ พันธ์นาม นำเสนองานวิจัย ระบบแนะนำสินค้าอาหารโดยใช้ระบบ แนะนำแบบผสมผสาน ใช้เทคนิค Content based filtering แบบหลักการ Cosine และสร้าง แบบจำลองโดยใช้ lib Surprise ซึ่งมีอัลกอริทึม SVD, NMF, Baseline และ KNN และวัด ประสิทธิภาพโดย RMSE, MAE จากการทดลองพบว่า 1 เทคนิคการกรองแบบอิงเนื้อหานำ วิธีการ TF-IDF เข้ามาช่วยในการทำ Vectorization ส่วนใหญ่ค่าความเหมือนออกมาค่อนข้างที่ จะตำเนื่องมาจากข้อมูลที่น้อยเกินไป 2 เทคนิคการกรองข้อมูลแบบพึ่งพาผู้ใช้ร่วม ผ่าน library Surprise ของ Scikitlearn ซึ่งโมเดลที่มีผลคะแนนโดยรวมดีที่สุดคืออัลกอริทึมของ SVD ซึ่ง ได้ ค่ำ RMSE 1.2528 และ MAE 0.9376 และ 3 ระบบแนะนำแบบผสมผสาน โดยผลลัพธ์นั้นจะไม่ ชัดเจนเนื่องจากวิธีนี้ได้มีการทำนายค่า Rating ซึ่งวิธีการของระบบแนะนำแบบผสมผสานนั้น ได้มีนำเทคนิคการกรองแบบอิงเนื้อหา ที่ไม่ได้มีการทำนายค่าอะไรมารวมในการทำงานของ แบบจำลองด้วย ซึ่งถ้าต้องการวัดผลลัพธ์สามารถอ้างอิงจากค่า RMSE, MAE ได้

โดยในงานโครงงานของผู้จัดทำนั้นได้นำผลลัพธ์การทดลองของงานวิจัยนี้ที่สรุป ได้ว่าผลคะแนนโดยรวมดีที่สุดคืออัลกอริทึม SVD เป็นตัวตัดสินในการเลือกใช้อัลกอริทึมนี้ และ ได้นำวิธีการการวัดประสิทธิภาพของแบบจำลองนี้จากงานวิจัยมาปรับใช้ในรูปแบบ เดียวกันกับตัวโครงงาน

บทที่ 3

การออกแบบ

3.1 โครงสร้างการทำงานของระบบ

โครงสร้างการทำงานของระบบได้อธิบายถึงการเชื่อมต่อระหว่างส่วนต่างๆของระบบ เริ่ม ตั้งแต่ส่วนของ Input ที่ทำหน้าที่รับข้อมูลเข้ามา แล้วเก็บไว้ในส่วนของ Database จากนั้นส่วน ของ Prepare Data จะนำข้อมูลจากส่วนของ Database เมื่อทำเสร็จแล้ว จะทำการส่งกลับไปอัป เคตยัง Database ส่วนของ Process and Prediction จะนำข้อมูลที่ได้ไปเข้าอัลกอริทึมเพื่อ Process ผลลัพธ์ออกมาแสดงผลบน Web Application

รูป 3.1 โครงสร้างการทำงานของระบบ

3.2 การทำงานของระบบ

จากรูป 1 โครงสร้างการทำงานของระบบนั้นประกอบไปด้วยองค์ประกอบทั้งหมด 6 ส่วน ซึ่งมีรายละเอียด ดังนี้

3.2.1 Login

เป็นส่วนสำหรับไว้ให้กรรมการหลักสูตรได้ทำการล็อกอินเข้าสู่ระบบเพื่อให้ กรรมการหลักสูตรป้อนข้อมูลเกรคของนักศึกษาปัจจุบัน เกรคและอาชีพของบัณฑิต และข้อมูล ของหลักสูตร

3.2.2 Input

เป็นส่วนที่ทำการรับข้อมูลของนักศึกษาและบัณฑิต ข้อมูลของหลักสูตร แล้วเก็บ เข้ายังส่วนของ Database และข้อมูลการกรอกฟอร์มของนักศึกษาจะส่งข้อมูลไปยังส่วนของ Process and Prediction โดยตรง

3.2.3 Database

ทำหน้าที่ในการจัดเก็บและบันทึกข้อมูล โดยจะประกอบไปด้วย Table User, Subject_Data, DataCSV, Graduate, Student

3.2.4 Prepare Data

ทำหน้าที่เตรียมพร้อมข้อมูลเพื่อให้พร้อมต่อการนำไปใช้ในส่วนของ Prediction and Prediction โดยแบ่งออกเป็น 2 ส่วนย่อย ดังนี้

- 1) Clean and Transform Data
- เป็นการเรียกข้อมูลจากใน Database มาทำให้ข้อมูลมีความถูกต้อง ครบถ้วน สมบูรณ์ ไม่มีค่าที่ผิดปกติ เพื่อเตรียมพร้อมสำหรับการประมวลผลข้อมูล โดยเลือก เฉพาะข้อมูลที่เกี่ยวข้องกับวัตถุประสงค์ของการวิเคราะห์ และ ประมวลผล พร้อม ทั้งตัดข้อมูลส่วนที่ไม่ได้นำมาใช้ออก
- 2) NLP หรือ Natural Language Processing นำข้อมูลรหัสวิชามาเข้ากระบวนการ NLP เพื่อทำการหาค่า Similarity ของกลุ่มวิชา ที่สามารถอยู่ในกลุ่มเดียวกันได้ โดยใช้บทคัดย่อของแต่ละวิชา เพื่อลดปัญหาการ เปลี่ยนรหัสวิชาระหว่างหลักสูตร เมื่อทำเสร็จกระบวนการแล้วจะนำข้อมูลที่ได้ กลับไปอัปเดตที่ Database

3.2.5 Process and Prediction

เป็นส่วนการประมวลผลหลักของระบบ ประกอบไปด้วย Process 3 ส่วนดังนี้

1) Similarity Model

มีหน้าที่ในการทำนายผลลัพธ์ของเกรดในรายวิชาที่ไม่ได้มีการลงทะเบียนของ ผู้ใช้งานตามที่ผู้ใช้งานต้องผ่านการเทียบความคล้ายคลึงของ User Behavior จาก File ผลลัพธ์เกรดที่ผู้ใช้งานได้นำเข้ามาในระบบ โดยใช้กระบวนการหลัก คือการทำ Recommender Systems และใช้ Library Surprise ของ Scikit ใน ภาษา Python เป็นตัวช่วยในการ เทียบความคล้ายคลึงของ User Behavior

2) Job Classification

มีหน้าที่ทำนายผลลัพธ์กลุ่มของสายงานอาชีพที่เป็นไปได้ของผู้ใช้งานหรือ กลุ่มของนักศึกษาที่มีข้อมูลในระบบผ่านการวิเคราะห์เชิงสธิติ โดยใช้ กระบวนการหลักคือการทำ Classification และใช้ Library Scikit-learn ใน ภาษา Python เป็นตัวช่วยในการทำ Classification

3) Elective Subject
มีหน้าที่ประมวลผลจัดกลุ่มของวิชาเลือกภาค เพื่อนำไปแนะนำให้แก่นักศึกษา
ที่มีความสนใจเฉพาะจุดได้

3.2.6 Web Application

เป็นส่วนที่ทำหน้าที่ในการแสดงผลข้อมูลและเป็น interface สำหรับผู้ใช้งาน

3.3 Use Case Diagram

การใช้งานระบบจะแบ่งผู้ใช้ออกเป็น 4 ประเภท ได้แก่ บุคคลทั่วไปหรือนักศึกษา กรรมการหลักสูตร และ แอดมิน

- 1. บุคคลทั่วไปหรือนักศึกษา มีสิทธิ์เข้าถึงการดูข้อมูลการทำนายผล
- 2. กรรมการหลักสูตร มีสิทธ์เข้าถึงในการส่งไฟล์ข้อมูลของนักศึกษา
- 3. แอดมิน มีสิทธ์เข้าถึงการทำงานทั้งหมดของระบบวิเคราะห์ และ พยากรณ์

ฐป 3.2 Use Case Diagram

ตาราง 3.1 Use Case ดูผลลัพธ์สายงานของบัณฑิตย้อนหลัง

Use Case: ดูผลลัพธ์สายงานของบัณฑิตย้อนหลัง

Use Case ID: UC-01

Actor: บุคคลทั่วไปหรือนักศึกษา

Description: สามารถดูผลลัพธ์สายงานของบัณฑิตย้อนหลังได้

Precondition: เข้า web application หน้าผลลัพธ์สายงานของบัณฑิตข้อนหลัง

Flow of Events:

1. เลือกหน้าดูผลลัพธ์สายงานของบัณฑิตย้อนหลัง

2. เลือกปีที่ต้องการดู

3. เลือกหลักสูตรที่ต้องการดู

Postcondition: หน้าเว็บแสดงผลผลลัพธ์สายงานของบัณฑิตย้อนหลัง

ตาราง 3.2 Use Case คาดการณ์ผลลัพธ์สายงานที่ทำได้ของบัณฑิตในอนาคต

Use Case: คาดการณ์ผลลัพธ์สายงานที่ทำได้ของบัณฑิตในอนาคต

Use Case ID: UC-02

Actor: บุคคลทั่วไปหรือนักศึกษา

Description: สามารถดูผลลัพธ์สายงานที่ทำได้ของบัณฑิตในอนาคตได้

Precondition: เข้า web application หน้าผลลัพธ์สายงานที่ทำได้ของบัณฑิตในอนาคต

Flow of Events:

1. เลือกหน้าดูผลลัพธ์สายงานที่ทำได้ของบัณฑิตในอนาคต

2. เลือกปีที่ต้องการดู

3. เลือกหลักสูตรที่ต้องการดู

Postcondition: หน้าเว็บแสดงผลผลลัพธ์สายงานที่ทำได้ของบัณฑิตในอนาคต

ตาราง 3.3 Use Case กรอกแบบฟอร์มเกรดสำหรับการวิเคราะห์ข้อมูล

Use Case: กรอกแบบฟอร์มเกรคสำหรับการวิเคราะห์ข้อมูล

Use Case ID: UC-03

Actor: บุคคลทั่วไปหรือนักศึกษา

Description: สามารถกรอกแบบฟอร์มการวิเคราะห์ข้อมูลได้

Precondition: เข้า web application หน้าสำหรับการวิเคราะห์ข้อมูลของนักศึกษา

Flow of Events:

1. เลือกหน้าสำหรับการวิเคราะห์ข้อมูลของนักศึกษา

2. เลือกปีการศึกษา

3. เลือกหลักสูตร

4. โหลดแบบฟอร์มสำหรับการวิเคราะห์ข้อมูล

5. อัปโหลดแบบฟอร์มสำหรับการวิเคราะห์ข้อมูล

Postcondition: Redirect ไปหน้าแสดงผลวิเคราะห์ข้อมูลนักศึกษา

ตาราง 3.4 Use Case แสดงค่าความถนัดของนักศึกษา

Use Case: แสดงค่าความถนัดของนักศึกษา

Use Case ID: UC-04

Actor: บุคคลทั่วไปหรือนักศึกษา

Description: สามารถคูผลแสดงค่าความถนัดของนักศึกษาได้

Precondition: เข้า web application หน้าแสดงผลวิเคราะห์ข้อมูลนักศึกษา

Flow of Events:

1. เลือกหน้าแสดงผลสำหรับการวิเคราะห์ข้อมูลของนักศึกษา

Postcondition: หน้าเว็บแสดงผลผลลัพธ์การวิเคราะห์ข้อมูลค่าความถนัดของนักศึกษา

ตาราง 3.5 Use Case คาดการณ์เกรดแต่ละวิชาของนักศึกษา

Use Case: คาคการณ์เกรคแต่ละวิชาของนักศึกษา

Use Case ID: UC-05

Actor: บุคคลทั่วไปหรือนักศึกษา

Description: สามารถดูผลแสดงค่าคาดการณ์เกรดแต่ละวิชาของนักศึกษาได้

Precondition: เข้า web application หน้าแสดงผลวิเคราะห์ข้อมูลนักศึกษา

Flow of Events:

1. เลือกหน้าแสดงผลสำหรับการวิเคราะห์ข้อมูลของนักศึกษา

Postcondition: หน้าเว็บแสดงผลผลลัพธ์การวิเคราะห์ข้อมูลค่าคาดการณ์เกรดแต่ละวิชาของนักศึกษา

ตาราง 3.6 Use Case แนะนำวิชาเลือกภาคให้แก่นักศึกษา

Use Case: แนะนำวิชาเลือกภาคให้แก่นักศึกษา

Use Case ID: UC-06

Actor: บุคคลทั่วไปหรือนักศึกษา

Description: สามารถดูผลแนะนำวิชาเลือกให้ภาคให้แก่นักศึกษาได้

Precondition: เข้า web application หน้าแนะนำวิชาเลือกภาค

Flow of Events:

1. เลือกหน้าแนะนำวิชาเลือกภาค

2. เลือกสิ่งที่สนใจภายในตัวเลือกที่มีให้

Postcondition: หน้าเว็บแนะนำวิชาเลือกภาค

ตาราง 3.7 Use Case ให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Use Case: ให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Use Case ID: UC-07

Actor: กรรมการหลักสูตร

Description: ให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตรได้

Precondition: เข้า web application หน้าให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Flow of Events:

1. เลือกหน้าให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

2. อัปโหลดไฟล์ CSV

3. กดปุ่มอัปโหลด

Postcondition: อัปโหลดข้อมูลสำเร็จ

ตาราง 3.8 Use Case อัปเดตข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Use Case: อัปเคตข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Use Case ID: UC-08

Actor: กรรมการหลักสูตร

Description: อัปเคตนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตรได้

Precondition: เข้า web application หน้าให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Flow of Events:

- 1. เลือกหน้าให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร
- 2. อัปเคตไฟล์ CSV
- 3. กดปุ่มอัปโหลด

Postcondition: อัปเคตข้อมูลสำเร็จ

ตาราง 3.9 Use Case ลบข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Use Case: อัปเคตข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Use Case ID: UC-09

Actor: กรรมการหลักสูตร

Description: ลบนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตรได้

Precondition: เข้า web application หน้าให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Flow of Events:

1. เลือกหน้าให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

2. ลบไฟล์ CSV

3. กดปุ่มยืนยัน

Postcondition: ลบข้อมูลสำเร็จ

ตาราง 3.10 Use Case ล็อกอินเข้าใช้งาน

Use Case: ให้ข้อมูลนักศึกษาโดยไม่ระบุตัวตนและข้อมูลหลักสูตร

Use Case ID: UC-10

Actor: กรรมการหลักสูตร

Description: กรรมการหลักสูตรสามารถลี่อกอินเข้าใช้งานได้

Precondition: เป้า web application หน้า login

Flow of Events:

1. กรอกข้อมูล username และ password

2. กดปุ่ม Login

Postcondition: Redirect ไปหน้าหลัก

ตาราง 3.11 Use Case ทำนายพยากรณ์ผลลัพธ์และคาดการณ์

Use Case: ทำนายพยากรณ์ผลลัพธ์และคาคการณ์

Use Case ID: UC-11

Actor: แอคมิน

Description: แอคมินสามารถทำนายพยากรณ์ผลลัพธ์และคาคการณ์ได้

Precondition: เป็นแอคมิน

Flow of Events:

1. ทำการทำนายพยากรณ์และคาดการณ์

2. ส่งออกผลลัพธ์ไปยังหน้าเว็บ

Postcondition: ทำนายพยากรณ์ผลลัพธ์และคาดการณ์ได้สำเร็จ

ตาราง 3.12 Use Case จัดเตรียมข้อมูล

Use Case: จัดเตรียมข้อมูล

Use Case ID: UC-12

Actor: แอคมิน

Description: จัดเตรียมข้อมูลสำหรับการทำนายและคาดการณ์ได้

Precondition: เป็นแอดมิน

Flow of Events:

1. นำเข้าข้อมูล

2. จัดรูปแบบข้อมูล

3. เก็บเข้าฐานข้อมูล

Postcondition: จัดเตรียมข้อมูลสำหรับการทำนายและคาดการณ์ได้สำเร็จ

ตาราง 3.13 Use Case กรอกข้อมูลอาชีพ

Use Case: กรอกข้อมูลอาชีพ

Use Case ID: UC-13

Actor: นักศึกษา

Description: กรอกข้อมูลอาชีพแรกของการทำงานได้

Precondition: เข้า web application หน้ากรอกข้อมูลอาชีพ

Flow of Events:

1. เลือกหน้ากรอกข้อมูลอาชีพ

2. ใส่รหัสนักศึกษา

3. ใส่ตำแหน่งอาชีพ

4. กดยืนยัน

Postcondition: กรอกข้อมูลอาชีพสำเร็จ

3.4 Sequence Diagram

รูป 3.3 Sequence Diagram สำหรับ UC-01

รูป 3.4 Sequence Diagram สำหรับ UC-02

รูป 3.5 Sequence Diagram สำหรับ UC-03

รูป 3.6 Sequence Diagram สำหรับ UC-04

ฐป 3.7 Sequence Diagram สำหรับ UC-05

รูป 3.8 Sequence Diagram สำหรับ UC-06

รูป 3.9 Sequence Diagram สำหรับ UC-07

รูป 3.10 Sequence Diagram สำหรับ UC-08

รูป 3.11 Sequence Diagram สำหรับ UC-09

รูป 3.12 Sequence Diagram สำหรับ UC-10

รูป 3.13 Sequence Diagram สำหรับ UC-11

รูป 3.14 Sequence Diagram สำหรับ UC-12

ฐป 3.15 Sequence Diagram สำหรับ UC-13

3.5 การออกแบบฐานข้อมูล

ระบบฐานข้อมูลของโครงงานนี้ผู้จัดทำได้เลือกใช้ MariaDB ซึ่งเป็นฐานข้อมูลแบบ SQL ที่ ถูกพัฒนามาเพื่อสำหรับเก็บข้อมูล โดยฐานข้อมูลของระบบประกอบไปด้วยทั้งหมด 5 ตาราง ดัง รูป

รูป 3.16 แสดงความสัมพันธ์ระหว่างตารางของฐานข้อมูลในระบบ

3.5.1 ตาราง Rec User

เป็นตารางที่ใช้เก็บข้อมูลผู้ใช้งานในระบบ โดยจะมี Attribute ดังนี้

1. user_id : UUID สำหรับเก็บ id ของผู้ใช้

2. username : VARCHAR สำหรับเก็บ username ของผู้ใช้

3. password : VARCHAR สำหรับเก็บ password ของผู้ใช้

3.5.2 ตาราง Subject_Data

เป็นตารางที่ใช้เก็บข้อมูลหลักสูตรวิชา โดยจะมี Attribute ดังนี้

1. subject id : UUID สำหรับเก็บ id ของรหัสวิชา

2. subject_name_thai : VARCHAR สำหรับเก็บชื่อรายวิชาภาษาไทย

3. subject_name_eng : VARCHAR สำหรับเก็บชื่อรายวิชาภาษาอังกฤษ

4. abstract : VARCHAR สำหรับเก็บบทคัดย่อรายวิชา

5. subject_key : VARCHAR สำหรับเก็บ Keyword ของรายวิชาเลือกภาค

6. subject_class : VARCHAR สำหรับเก็บหมวดหมู่ของแต่ละวิชา

7. year : VARCHAR สำหรับเก็บปีของเล่มหลักสูตรวิชา

3.5.3 ตาราง Student_Grade

เป็นตารางที่ใช้เก็บข้อมูลเกรคนักศึกษาโดยจะมี Attribute ดังนี้

1. student_id : UUID สำหรับเก็บ id encrypt ของนักศึกษา

2. subject_id : VARCHAR สำหรับเก็บ id ของรหัสวิชา

3. grade : VARCHAR สำหรับเก็บเกรดแต่ละรายวิชา

4. semester : VARCHAR สำหรับเก็บเทอมที่ลงเรียนรายวิชาของนักศึกษา

5. year : VARCHAR สำหรับเก็บปีที่ลงเรียนรายวิชาของนักศึกษา

3.5.4 ตาราง Student Data

เป็นตารางที่ใช้เก็บข้อมูลนักศึกษาโคยจะมี Attribute ดังนี้

1. student_id : UUID สำหรับเก็บ id encrypt ของนักศึกษา

2. curriculum : VARCHAR สำหรับเก็บรายชื่อหลักสูตรที่เรียนของนักศึกษา

3. status : VARCHAR สำหรับเก็บสถานะการเป็นนักศึกษา

4. career : VARCHAR สำหรับเก็บรายชื่อตำแหน่งอาชีพแรกของนักศึกษา

5. start_year : VARCHAR สำหรับเก็บปีการศึกษาของนักศึกษา

6. curriculum_year : VARCHAR สำหรับเก็บปีของหลักสูตรของนักศึกษา

3.5.5 ตาราง CSV File

เป็นตารางที่ใช้เก็บข้อมูลไฟล์ CSV โดยจะมี Attribute ดังนี้

- 1. data_id : UUID สำหรับเก็บ id ของไฟล์ CSV
- 2. name : VARCHAR สำหรับเก็บชื่อของไฟล์ CSV
- 3. upload_date : TIMESTAMP สำหรับเก็บเวลาและวันที่อัปโหลดไฟล์ CSV
- 4. update_date : TIMESTAMP สำหรับเก็บเวลาและวันที่อัปเดตไฟล์ CSV
- 5. del_flag : VARCHAR สำหรับเก็บสถานะไฟล์ CSV (0 = ไฟล์ยังมือยู่, 1 = ไฟล์ ถูกลบ)
- 6. type_data : VARCHAR สำหรับเก็บประเภทข้อมูลของ Data
- 7. file : BINARY สำหรับเก็บไฟล์ CSV

3.5.6 ตาราง SurpriseModel

เป็นตารางที่ใช้เก็บ Surprise Model โดยจะมี Attribute ดังนี้

- 1. model id : UUID สำหรับเก็บ id ของไฟล์ Model
- 2. name : VARCHAR สำหรับเก็บชื่อของ Model
- 3. curriculum : VARCHAR สำหรับเก็บรายชื่อหลักสูตรที่เรียนของนักศึกษา
- 4. year : VARCHAR สำหรับเก็บปีของหลักสูตรของชุดข้อมูลที่ใช้สร้าง
- 5. rmse : VARCHAR สำหรับเก็บค่าความแม่นยำของ Model
- 6. create_date : TIMESTAMP สำหรับเก็บเวลาและวันที่สร้าง Model
- 7. update_date : TIMESTAMP สำหรับเก็บเวลาและวันที่อัปเคต Model
- 8. del_flag : VARCHAR สำหรับเก็บสถานะ Model (0 = Modelยังมือยู่, 1 = Model ถูกลบ)
- 9. type_pred : VARCHAR สำหรับเก็บประเภทของ Model
- 10. rec_model : BINARY สำหรับเก็บตัว Model

3.5.7 ตาราง CareerModel

เป็นตารางที่ใช้เก็บ Job Classification Model โดยจะมี Attribute คังนี้

- 1. model id: UUID สำหรับเก็บ id ของไฟล์ Model
- 2. name : VARCHAR สำหรับเก็บชื่อของ Model
- 3. curriculum : VARCHAR สำหรับเก็บรายชื่อหลักสูตรที่เรียนของนักศึกษา
- 4. year : VARCHAR สำหรับเก็บปีของหลักสูตรของชุดข้อมูลที่ใช้สร้าง
- 5. accuracy : VARCHAR สำหรับเก็บค่าความแม่นยำของ Model

- 6. create_date : TIMESTAMP สำหรับเก็บเวลาและวันที่สร้าง Model
- 7. update_date : TIMESTAMP สำหรับเก็บเวลาและวันที่อัปเคต Model
- 8. del_flag : VARCHAR สำหรับเก็บสถานะ Model (0 = Modelยังมือยู่, 1 = Model ถูกลบ)
- 9. train_set_cols : BINARY สำหรับเก็บ Columns ของชุดข้อมูลที่ใช้สร้าง Model
- 10. career_model : BINARY สำหรับเก็บตัว Model

บทที่ 4

ผลการดำเนินงาน

ในบทนี้จะอธิบายถึงการทดลองที่ได้ทำในภาคการศึกษานี้ เพื่อแสดงให้เห็นถึง ความก้าวหน้าในโครงงาน

4.1 การสร้าง Django Framework และเชื่อมต่อฐานข้อมูล MariaDB บน Docker Compose

โดยการทดลองการสร้างจะตัว Django Project ให้เชื่อมต่อกับ Maria DB ได้นั้น ทาง ผู้จัดทำได้ทำการเตรียม requirements.txt ซึ่งเป็น File เพื่อให้ Docker นั้นจัดเตรียม Environment ของตัวระบบดังรูปที่ 4.1

ฐป 4.1 File Requirements

หลังจากได้มีการเตรียม File Requirements แล้วทางผู้จัดทำได้ทำการสร้าง Docker File เพื่อ นำ Requirements ที่ได้มาจัดสรร Library ที่จำเป็นต่อการพัฒนาโครงงาน โดยได้กำหนด Version ของ Python เป็น 3.7.14 ดังรูปที่ 4.2

```
You, last month | 1 author (You)
FROM python:3.7.14

ENV PYTHONUNBUFFERED 1
You, 3 months ago * Little set up of RUN mkdir /requirements
WORKDIR /requirements
COPY requirements.txt /requirements/
RUN pip install -r requirements.txt

RUN mkdir /code
WORKDIR /code
```

ฐป 4.2 Docker file

ต่อมาผู้จัดทำใค้สร้าง File Docker Compose ขึ้นมาเพื่อนำ Docker Container ในส่วนของ Django Application และ MariaDB นำมารวมเป็น Docker Compose โดยกำหนด Internal Port ของ MariaDB เป็น 3306 และ External Port เป็น 3308 เพื่อจัดระเบียบในการใช้งานของ ฐานข้อมูล โดยทางผู้จัดทำออกแบบให้ Django Application ติดต่อกับฐานข้อมูลผ่าน Internal Port โดยกำหนด Port ของ Django Application เป็น 8000 ทั้ง Internal และ External Port ดังรูป ที่ 4.3

ฐป 4.3 File Docker - compose.yml

ซึ่งเมื่อหลังจากการสร้าง Docker Compose ขึ้นมาทางผู้จัดทำจะตรวจสอบการทำงานของ ระบบทั้งหมดผ่าน Application Docker Desktop ร่วมกับ Log Terminal ของ Visual Studio Code ดังรูปที่ 4.4

รูป 4.4 ภาพรวมของการตรวจสอบการทำงานของระบบ

จากผลการทดลองที่ 4.1 พบว่าการการสร้าง Django Framework และเชื่อมต่อฐานข้อมูล MariaDB บน Docker Compose พบว่าการทำงานของ Container ทั้ง Django Application และ MariaDB Database นั้นทำงานร่วมกันเป็นไปอย่างราบรื่น และการตรวจสอบการทำงานของ Docker Compose ผ่าน Docker Desktop นั้นทำให้การทำงานและการตรวจสอบได้สะควกยิ่งขึ้น

4.2 การเตรียม Server ที่ใช้สำหรับ Deploy Application

โดยทางผู้จัดทำได้ทำการทดลองการใช้งาน Server สำหรับ Deploy โดยได้ทำการสร้าง Directory ของผู้ทดลองขึ้นมาและได้ทำการทดลองติดตั้ง Program ที่จำเป็นในการรองรับการ ทำงานของ Application มี Python, MariaDB

ผลการทดลองพบว่าไม่สามารถติดตั้ง Python Version 3.10.2 ที่ผู้จัดทำต้องการได้ซึ่งปัญหา เกิดจากการแตก File Python ที่ติดตั้งไม่สำเร็จ

โดยทางผู้จัดทำจึงแก้ปัญหาโดยการนำ Docker Container ไป Deploy บน Server แทนโดย ทางผู้จัดทำได้ทำการนำ Directory ที่เก็บ Django Application รวมทั้ง Docker File, requirements.txt และ docker-compose.yml โคลนผ่าน Github ลงไปยัง server ที่เตรียมไว้ ดังรูป ที่ 4.5

```
[analytic@itanalytic1 ~]$ ls
62010465 mariadb_repo_setup
[analytic@itanalytic1 ~]$ cd 62010465/
[analytic@itanalytic1 62010465]$ ls
project test.py
[analytic@itanalytic1 62010465]$ cd project
[analytic@itanalytic1 project]$ ls
APS_CE tempFol
[analytic@itanalytic1 project]$ cd APS_CE
[analytic@itanalytic1 APS_CE]$ ls
django project
```

รูป 4.5 Directory ที่เก็บ Django Application

โดยต่อมาทางผู้จัดทำได้ทำการทดลองใช้คำสั่งในการสร้าง Docker Compose ขึ้นมาใน Server โดยจะสร้าง Docker Compose ผ่านการอ่าน File Docker File, requirements.txt และ docker-compose.yml ที่มากับ Directory ของ Django Application ดังรูปที่ 4.6

```
Successfully built feffeffeffala

Successfully taged spaceholemd vebilatest

MANIMA: Taged envice web was built because it did not already exist. To rebuild this image you must use 'docker-compose build' or 'docker-compose up --Creating apscebacker

Creating apscebackered deb.1 ... come

Creating apscebackered deb.1 ... come

Creating apscebackered deb.1 ... come

Attaching to apscebackered deb.1 ... come

Creating apscebackered deb.1 ... come

Attaching to apscebackered deb.1 ... come

Attaching to apscebackered deb.1 ... come

Attaching to apscebackered deb.1 ... come

Land to apscebackered de
```

รูป 4.6 ผลลัพธ์การสร้าง Docker Compose บน Server

จากผลการทดลองที่ 4.2 พบว่าสามารถนำ Django Application มาบน Server ที่เตรียมไว้ได้ และสามารถสร้าง Docker Compose ได้

4.3 การใช้งานฐานข้อมูลร่วมกับ Application

โดยการทดลองการใช้งานร่วมกันของฐานข้อมูลกับ Application นั้นทางผู้จัดทำได้ทำการ ทดลองการใช้งานผ่านทางเครื่องคอมพิวเตอร์ส่วนบุคคลของผู้จัดทำเองในรูปแบบ Local Host ซึ่งการทำงานร่วมกันของฐานข้อมูลกับ Application นั้นทางผู้จัดทำได้ทดลองเป็นการทำงานใน รูปแบบการใช้ API ในการติดต่อระหว่างฐานข้อมูลกับ Application ทั้งกระบวนการค้นหาข้อมูล ดังรูปที่ 4.7, เพิ่มข้อมูลดังรูปที่ 4.8, แก้ไขข้อมูลดังรูปที่ 4.9 และ การลบข้อมูลดังรูปที่ 4.10

รูป 4.7 ผลลัพธ์การค้นหาข้อมูลผ่าน API

รูป 4.8 ผลลัพธ์การแก้ไขข้อมูลผ่าน API

```
Post v http://localhost:8000/students...

Params Authorization Headers (8) Body Pre-request Script Tests Settings

none form-data x-www-form-urlencoded raw binary GraphQL JSON v

1 2 .... "student_id":"62010346",
3 .... "subject_id":"91096931",
4 .... "grade":"0+",
5 .... "semester":"2",
6 .... "year":"2560",
7 @curriculum": "วิศวกรรมคอมพิวเตอร์"
8 Body Cookies Headers (8) Test Results

Pretty Raw Preview Visualize JSON v 🖘

1 "Added Successfully"
```

รูป 4.9 ผลลัพธ์การเพิ่มข้อมูลผ่าน API

DELI	ETE	~	http://loca	lhost:800	0/studen	its/62010	346				
Param	ns A	Authoriza	tion He	aders (6)	Bod	y Pre	-reque	st Scri	pt 1	ests	
Quer	y Parai	ms									
	KEY										
Dorder	Ocale		-d (0)	Took Door							
Body	COOK	ies Hea	aders (8)	rest kes	uits						
Pre	tty	Raw	Preview	Visu	alize	JSON		₽			
1	"De	elete Co	mplete"								

รูป 4.10 ผลลัพธ์การลบข้อมูลผ่าน API

จากการทดลองที่ 4.3 พบว่าการทำงานร่วมกันของ Application ในส่วนของ Backend และ ฐานข้อมูลเป็นไปได้ด้วยดี

4.4 การพัฒนา Similarity Model สำหรับการทำนายเกรดของผู้ใช้งานตามที่ต้องการ

โดยการทดลองการพัฒนา Similarity Model นี้ทางผู้จัดทำใด้ทำการทดลองใน Google Colab โดยทางผู้จัดทำใด้เลือกใช้อัลกอริทึม SVD ของ Surprise จาก Library ของ Scikit-Learn โดยการทดลองนี้ผู้จัดทำใด้นำชุดข้อมูลผลลัพธ์การเรียนของบัณฑิตปีการศึกษา 2560 และ 2561 มาทดลองโดยผลลัพธ์ที่พึงประสงค์ของ Similarity Model ที่ผู้จัดทำคาดหวังคือ ทำนายข้อมูล ผลลัพธ์การเรียนของบัณฑิตในวิชาที่บัณฑิตผู้นั้นไม่ได้ลงทะเบียนไว้จากหลักการของ อัลกอริทึม SVD โดยผู้จัดทำใด้กำหนด Parameter ว่า Ratings คือ Grade ของบัณฑิต UserID คือ รหัสนักศึกษาของบัณฑิต และ ProductID คือรหัสวิชา โดยชุดข้อมูลที่ได้มานั้นประกอบไปด้วย ข้อมูลของบัณฑิตหลายหลักสูตรด้วยกันโดยทางผู้จัดทำได้เลือกใช้แค่เพียงหลักสูตร วิศวกรรม กอมพิวเตอร์ และ วิศวกรรมคอมพิวเตอร์ (ต่อเนื่อง) ดังรูปที่ 4.11 โดยจะแบ่งส่วนของการ ทดลองออกเป็น 2 ส่วนคือ การเตรียมข้อมูลการทดลอง และ การ Train Model

di	Α	В	С	D	E	F	G
1	student_id	subject_id	grade	semester	year	curriculum	
2	f31df81d0	1006028	C+	1	2560	วิศวกรรมคอ	มพิวเตอร์
3	f31df81d08	1006030	D	1	2560	วิศวกรรมคอ	มพิวเตอร์
4	f31df81d08	1076001	C	1	2560	วิศวกรรมคอ	มพิวเตอร์
5	f31df81d08	1076002	B+	1	2560	วิศวกรรมคอ	มพิวเตอร์
6	f31df81d08	90201001	C+	1	2560	วิศวกรรมคอ	มพิวเตอร์
7	f31df81d08	90306003	B+	1	2560	วิศวกรรมคอ	มพิวเตอร์
8	f31df81d08	1006031	F	2	2560	วิศวกรรมคอ	มพิวเตอร์
9	f31df81d08	1076003	D	2	2560	วิศวกรรมคอ	มพิวเตอร์
10	f31df81d08	1076004	D+	2	2560	วิศวกรรมคอ	มพิวเตอร์
11	f31df81d08	1076012	D	2	2560	วิศวกรรมคอ	มพิวเตอร์
12	f31df81d08	90201002	C	2	2560	วิศวกรรมคอ	มพิวเตอร์
13	f31df81d08	90402008	C+	2	2560	วิศวกรรมคอ	มพิวเตอร์
14	f31df81d08	1006031	D+	3	2560	วิศวกรรมคอ	มพิวเตอร์
15	f31df81d00	3456227	Α	3	2560	วิศวกรรมคอ	มพิวเตอร์
16	f31df81d00	1076006	D+	1	2561	วิศวกรรมคอ	มพิวเตอร์
17	f31df81d00	90108007	В	1	2561	วิศวกรรมคอ	มพิวเตอร์
18	f31df81d00	90201026	В	1	2561	วิศวกรรมคอ	มพิวเตอร์
19	f31df81d00	1076005	D+	2	2561	วิศวกรรมคอ	มพิวเตอร์
20	f31df81d08	90106002	В	2	2561	วิศวกรรมคอ	มพิวเตอร์
21	f31df81d08	90306008	F	2	2561	วิศวกรรมคอ	มพิวเตอร์
22	f31df81d08	90401013	B+	2	2561	วิศวกรรมคอ	มพิวเตอร์
23	f31df81d00	3456216	Α	3	2561	วิศวกรรมคอ	มพิวเตอร์
24	f31df81d00	90201016	В	3	2561	วิศวกรรมคอ	มพิวเตอร์
25	f31df81d08	1076008	C+	1	2562	วิศวกรรมคอ	มพิวเตอร์
26	f31df81d08	1076032	F	1	2562	วิศวกรรมคอ	มพิวเตอร์
27	f31df81d08	1076263	C+	1	2562	วิศวกรรมคอ	มพิวเตอร์
28	f31df81d08	1076013	C	2	2562	วิศวกรรมคอ	มพิวเตอร์
29	f31df81d08	1076014	B+	2	2562	วิศวกรรมคอ	มพิวเตอร์
30	f31df81d08	1076023	Α	2	2562	วิศวกรรมคอ	มพิวเตอร์
31	f31df81d08	1076423	B+	2	2562	วิศวกรรมคอ	มพิวเตอร์
	- · · · · · · · · · · · · · · · · · · ·		-	-		^	^ -

รูป 4.11 ชุดข้อมูลในการทดลอง

4.4.1 การเตรียมข้อมูลการทดลอง

โดยในทุกรูปแบบการทดลองทางผู้จัดทำจะ ทำการจัดการเตรียมการชุดข้อมูลใน รูปแบบเดียวกัน โดยทางผู้จัดทำจะ ทำการนำข้อมูลชุดที่ไม่ใช้งานออกในที่นี้คือชุดข้อมูลของ บัณฑิตที่ไม่ได้อยู่ในหลักสูตรวิสวกรรมคอมพิวเตอร์ และ วิสวกรรมคอมพิวเตอร์ (ต่อเนื่อง) และ ได้ทำการเปลี่ยนรูปแบบของข้อมูล Column Grade จากรูปแบบของตัวอักษรให้อยู่ในรูปแบบของตัวเลข และแยกส่วนของชุดข้อมูลออกตามหลักสูตร วิสวกรรมคอมพิวเตอร์ และ วิสวกรรมคอมพิวเตอร์ (ต่อเนื่อง) เพื่อทำการสร้าง Model ให้ทั้งสองหลักสูตร โดยจะทำการจัดรูปแบบของ Column ของข้อมูลตามนี้ student_id, subject_id, grade, semesters, year, curriculum และ job ดัง รูปที่ 4.12

รูป 4.12 ชุดข้อมูลหลังจากผ่านการเตรียมข้อมูล

4.4.2 การ Train Model

หลังจากที่ผู้จัดทำได้ทำการเตรียมชุดข้อมูลเรียบร้อยแล้วจะนำชุดข้อมูลที่ได้มาทำ การ Tuning Hyperparameter ด้วย Gird Search โดยช่วงของ Parameter ที่ได้กำหนดสำหรับ อัลกอริทึม SVD มีดังนี้ n_factors = [20, 50, 100] และ n_epochs = [5, 10, 20] และ ได้ทำการแบ่ง ชุดข้อมูลในการทดสอบออกเป็น 80 (สำหรับ Train) ต่อ 20 (สำหรับทดสอบ) ส่วน และทำการวัดประสิทธิภาพโดยใช้ค่า RMSE

จากผลลัพธ์การทดลองที่ 4.4 พบว่าชุดข้อมูลในส่วนของหลักสูตร วิศวกรรม คอมพิวเตอร์ มีค่า RMSE อยู่ที่ 0.6319 และ ในส่วนของหลักสูตร วิศวกรรม คอมพิวเตอร์(ต่อเนื่อง) คอมพิวเตอร์ มีค่า RMSE อยู่ที่ 0.7871 ซึ่งเมื่อวัดจากช่วงของ Rating หรือ Grade ของชุดข้อมูลที่อยู่ตั้งแต่ 0 ถึง 4

ซึ่งยังไม่เป็นที่น่าพอใจทางผู้จัดทำเลยทำการสันนิษฐานว่าการที่จำนวนของวิชาที่มี จำนวนที่มากนั้นอาจจะส่งผลต่อการคำนวณของอัลกอริทึม จึงแก้ปัญหาโดยการจัดกลุ่มวิชา

4.5 การพัฒนา NLP สำหรับการจับกลุ่มวิชา

เนื่องจากการทำนายผลเกรดของนักศึกษานั้น ต้องประกอบไปด้วยข้อมูล subject_id หรือ ข้อมูลรหัสของรายวิชานั้นๆ ซึ่งหลักสูตรรายวิชามีการถูกปรับทุกๆ 4 ปี จึงทำให้เกิดปัญหาใน การ Train Model เพราะมีข้อมูลรหัสรายวิชาที่ไม่เหมือนกัน แต่ว่าตัววิชานั้นมีความคล้ายคลึง กับตัววิชาเดิม ทางผู้จัดทำจึงนำบทคัดย่อของรายวิชามาจัดกลุ่มวิชา โดยการหาค่า Similarity ผ่านกระบวนการ NLP ความคล้ายคลึงของบทคัดย่อแต่ละวิชา โดยมีตัวอย่างของข้อมูลดังรูปที่ 4.13

-4	A	В	C	D	E	F
1	subject_id_subject_name_thai		subject_name_eng	abstract	subject_key	year
2	1006030 แดลดูลัส 1		CALCULUS 1		Mathematical induction, Introduction to derivative, Differ	
3	1006031 แคลคูลัส 2		CALCULUS 2		ns, Vector algebra in three dimensions, Polar coordinate	
4	1006032 สมการอนุพันธ์และพืช	คณิตเชิงเส้นพื้นฐาน	ELEMENTARY DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA		and space, Matrices, Solution of linear equations by ma	
5	1006004 การฝึกงานอุดสาหกรรม		INDUSTRIAL TRAINING		are required to complete a short-term industrial placeme	
6	1006028 เดรียมความพร้อมสำห	รับวิศวกร	PRE-ENGINEER ACTIVITIES		of Engineering of advising and preparing students for su	
7	1076003 วงจรไฟฟ้าและอีเล็กท	รอนิกส์	CIRCUITS AND ELECTRONICS		I's law, Thevenin's and Norton's theorems, superposition	
8	1076253 ความน่าจะเป็นและสถิเ	A	PROBABILITY AND STATISTICS	Introduction to probability and statistics; probability	y; random variables; discrete probability distributions; co	oı 2560

รูป 4.13 ตัวอย่างข้อมูล Data Subject

ขั้นตอนแรกทำการนำเข้าข้อมูลจาก Table subject_data สำหรับการหาค่า Similarity ใน Table subject_data เป็นการรวมข้อมูลรายวิชาของแต่หลายหลักสูตร จึงทำให้มีรหัสวิชาบาง รายวิชาซ้ำ ใช้วิธีการแก้ไขโดยการ Drop Record ที่ซ้ำออก แล้วเก็บ Record แรกเอาไว้ ผลลัพธ์ ดังรูปที่ 4.14

	index	subject_id	subject_name_thai	subject_name_eng	abstract	subject_key	year
		1006030	แคลคูลัส 1	CALCULUS 1	Function, Limit, Continuity and their applicat	NaN	2560
		1006031	แคลคูลัส 2	CALCULUS 2	Functions of several variables and theirs appl	NaN	2560
		1006032	สมการอนุพันธ์และพีชคณิคเชิงเส้นพื้นฐาน	ELEMENTARY DIFFERENTIAL EQUATIONS AND LINEAR A	Systems of linear equations and solutions, vec	NaN	2560
		1006004	การฝึกงานอุคสาหกรรม	INDUSTRIAL TRAINING	During their four-year selected studies, stude	NaN	2560
		1006028	เดรียมความพร้อมสำหรับวิศวกร	PRE-ENGINEER ACTIVITIES	Participates in activities organized by the Fa	NaN	2560
110		1076635	เครือข่ายสวิตช์ใอพี	IP SWITCHED NETWORKS	The main objective of this course is to provid	โครงสร้างพื้นฐานของระบบ,เน็ตเวิร์ค	2564
111		1076592	ผู้ประกอบการกับวิศวกร	ENTREPRENEURSHIP AND THE ENGINEER	Discusses basic concepts of marketing, busines	วิชามูรณาการ	2564
		1076422	การประกอบการและการจัดการด้านเทคโนโลยีสารสนเทศ	IT ENTREPRENEURSHIP AND MANAGEMENT	This course covers the basic of IT entrepreneu	วิชาบูรณาการ	2564
113		1076423	การวางแผนเชิงกลยุทธ์โดยใช้บอร์ดและการ์ดเกบ	STRATEGIC PLANNING USING BOARD AND CARD GAME	This course covers the strategic planning, stu	วิชาบูรณาการ	2564
114		1076577	การจัดการโครงการเทคโนโลยีสารสนเทศ	IT PROJECT MANAGEMENT	Meaning of Project; Importance of information	วิชาบูรณาการ	2564

รูป 4.14 ข้อมูล Data Subject หลังจากตัดรหัสวิชาที่ซ้ำออก

หลังจากนั้นตัวบทคัดย่อที่จะนำไปหาค่า Similarity นั้น มีคำเชื่อมต่างๆไว้ ซึ่งส่งผลต่อการ นำไปหาค่า NLP จึงนำคำเชื่อมเหล่านั้นออกจากตัวบทคัดย่อของแต่ละหลายวิชา เพื่อให้เหลือแต่ คำที่เฉพาะเจาะจงมากขึ้น ผลลัพธ์คังรูปที่ 4.15

	index	subject_id	subject_name_thai	subject_name_eng	abstract	subject_key	year	
		1006030	แคลคูลัส 1	CALCULUS 1	Mathematical Limit derivative functions series	NaN	2560	
		1006031	แคลคูลัส 2	CALCULUS 2	line - valued functions theory etc. planes coo	NaN	2560	
		1006032	สมการอนุพันธ์และพืชคณิตเชิงเส้นพื้นฐาน	ELEMENTARY DIFFERENTIAL EQUATIONS AND LINEAR A	linear z-transformation initial Solution serie	NaN	2560	
		1006004	การฝึกงานอุตสาหกรรม	INDUSTRIAL TRAINING	takes short-term environments. put This reflec	NaN	2560	
		1006028	เตรียมความพร้อมสำหรับวิศวกร	PRE-ENGINEER ACTIVITIES	technology preparing Laboratory project educat	NaN	2560	
110		1076635	เครือข่ายสวิตช์ใอพี	IP SWITCHED NETWORKS	Spanning 3 teaches This security building also	โครงสร้างพื้นฐานของระบบ,เน็ดเวิร์ค	2564	
111		1076592	ผู้ประกอบการกับวิศวกร	ENTREPRENEURSHIP AND THE ENGINEER	products implementation appreciate entrepreneu	วิชาบูรณาการ	2564	
		1076422	การประกอบการและการจัดการด้านเทคโนโลยีสารสนเทศ	IT ENTREPRENEURSHIP AND MANAGEMENT	including This investment business Self-learni	วิชาบูรณาการ	2564	
113	149	1076423	การวางแผนเชิงกลยุทธ์โดยใช้บอร์ดและการ์ดเกม	STRATEGIC PLANNING USING BOARD AND CARD GAME	application strategic. board game card compute	วิชาบูรณาการ	2564	
114		1076577	การจัดการโครงการเทคโนโลยีสารสนเทศ	IT PROJECT MANAGEMENT	resource technology integration information pr	วิชาบูรณาการ	2564	
115 rd	ws×7c	olumns						

รูป 4.15 ข้อมูล Data Subjectหลังจากจัดแต่งบทคัดย่อ

เมื่อบทคัดย่อมีความพร้อมต่อการนำเข้าหาค่า NLP แล้ว ต่อมาทำการสร้าง Dict เอาไว้ โดย ให้ค่า Key เป็นเลขกลุ่ม โดยเริ่มจาก o ค่า Value ทำการเก็บเป็น List ของรหัสวิชาต่างๆที่อยู่ใน กลุ่มเดียวกัน ต่อมาได้ทำการวนลูปตามจำนวนของวิชาทั้งหมด และทำการเทียบค่า Similarity ของแต่ละวิชา โดยจะจัดกลุ่มจากค่า Similarity ที่มีค่ามากกว่าเท่ากับ 0.90 ให้อยู่ในกลุ่มเดียวกัน และสร้าง Column เพิ่ม เพื่อเก็บค่าเลขกลุ่มเอาไว้ ตัวอย่างของ code ดังรูปที่ 4.16

```
thisdict = {}
all docs = [nlp(row) for row in df['abstract']]
for i in range(len(all_docs)):
 check = 0
  sims = []
  if list(thisdict.keys()) == []:
    thisdict[num] = [df.loc[df.index == i, 'subject_id'].iloc[0]]
    for x in thisdict:
      temp = df.loc[df['subject_id'] == thisdict[x][0], 'abstract'].iloc[0]
      sim = all_docs[i].similarity(nlp(temp))
      sims.append(sim)
    maxsim = max(sims)
    for x in thisdict:
      temp = df.loc[df['subject_id'] == thisdict[x][0], 'abstract'].iloc[0]
      sim = all_docs[i].similarity(nlp(temp))
      if sim >= 0.90 and sim == maxsim:
        thisdict[x].append(df.loc[df.index == i, 'subject_id'].iloc[0])
        check = 1
        break
    if check != 1:
      thisdict[num] = [df.loc[df.index == i, 'subject_id'].iloc[0]]
```

รูป 4.16 Coding การเทียบค่า Similarity

การนำชุดข้อมูลวิชาที่จัดกลุ่มไปใช้กับ Similarity Modelโดยการเตรียมข้อมูลในการ ทดลองนั้นจำเป็นต้องนำชุดข้อมูลกลุ่มของวิชามารวมกับชุดข้อมูลของผลลัพธ์การเรียนของ บัณฑิต แล้วรวมกลุ่มข้อมูลของผลลัพธ์การเรียนของบัณฑิต

ในวิชาที่อยู่ในกลุ่มเคียวกันโคยรวมข้อมูลผ่านการทำค่าเฉลี่ย แล้วจึงนำข้อมูลไปทดลอง กับการ Train แบบจำลอง Similarity Model โดยจะทำการจัดรูปแบบของ Column ของข้อมูล ตามนี้ student_id, grade, semesters, year, curriculum, subjectTypes และ job ผลลัพธ์ดังรูปที่ 4.17

C)		student_id	grade	semester	year	curriculum	subjectTypes	job	1
	0	0197dc3d32f1d32bbff2a3bff89e69f9	4.0	1	2562	วิศวกรรมคอมพิวเตอร์	4	None	
	1	0197dc3d32f1d32bbff2a3bff89e69f9	3.0	1	2562	วิศวกรรมคอมพิวเตอร์	อื่นๆ	None	
	2	025f749d7a5d9b5c3f3d57b68e1de9e9	2.0	2	2562	วิศวกรรมคอมพิวเตอร์	0	None	
	3	025f749d7a5d9b5c3f3d57b68e1de9e9	1.0	3	2560	วิศวกรรมคอมพิวเตอร์	1	None	
	4	025f749d7a5d9b5c3f3d57b68e1de9e9	0.0	1	2562	วิศวกรรมคอมพิวเตอร์	10	None	
	4026	fe38534f82b88c58b9acc94cd2280246	3.5	2	2561	วิศวกรรมคอมพิวเตอร์	5	None	
	4027	fe38534f82b88c58b9acc94cd2280246	3.0	2	2562	วิศวกรรมคอมพิวเตอร์	6	None	
	4028	fe38534f82b88c58b9acc94cd2280246	3.0	1	2561	วิศวกรรมคอมพิวเตอร์	7	None	
	4029	fe38534f82b88c58b9acc94cd2280246	4.0	1	2561	วิศวกรรมคอมพิวเตอร์	8	None	
	4030	fe38534f82b88c58b9acc94cd2280246	3.5	1	2563	วิศวกรรมคอมพิวเตอร์	9	None	
		/lib/python3.7/dist-packages/ipyl 030', '1076028', '1076564', '107							

รูป 4.17 ชุดข้อมูลหลังจากผ่านการเตรียมข้อมูลผลลัพธ์จาก NLP

จากผลลัพธ์การทดลองที่ 4.5 พบว่าชุดข้อมูลในส่วนของหลักสูตร วิศวกรรมคอมพิวเตอร์ มีค่า RMSE อยู่ที่ 0.5751 และ ในส่วนของหลักสูตร วิศวกรรมคอมพิวเตอร์ (ต่อเนื่อง) คอมพิวเตอร์ มีค่า RMSE อยู่ที่ 0.7351 ซึ่งเมื่อวัดจากช่วงของ Rating หรือ Grade ของชุดข้อมูลที่ อยู่ตั้งแต่ 0 ถึง 4 ดังรูปที่ 4.18

```
Evaluating RMSE, MAE of algorithm SVD on 10 \mathsf{split}(\mathsf{s}).
                 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Mean
RMSE (testset)
                0.5513 0.6143 0.6097 0.5788 0.5607
                                                      0.6176
                                                                     0.5890
                                                                             0.5866 0.5837 0.5851
                                                                                                    0.0224
                0.4304 0.4778 0.4643 0.4506 0.4521 0.4797 0.4408
                                                                      0.4513 0.4684
                                                                                    0.4575 0.4573
                                                                                                    0.0148
Fit time
                                                                      0.10
                                                                             0.10
                                                                                                    0.06
Test time
                        0.01
                                                              0.01
RMSE: 0.5751
0.5751494925828684
Evaluating RMSE, MAE of algorithm SVD on 10 split(s).
                 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Mean
RMSE (testset)
                 0.6924 0.8274 0.7174 0.8376 0.8569 0.8976 0.8220 0.8543 0.7384 0.6775 0.7922
                                                                                                    0.0741
MAE (testset)
                 0.5158 0.6480 0.5949 0.6754 0.6342 0.7137
                                                             0.6487
                                                                     0.6766 0.5898 0.5484 0.6246
                                                                                                    0.0584
Fit time
                0.02
                       0.02
                                              0.02
                                                      0.02
                                                              0.02
                                                                      0.02
                                                                                            0.02
Test time
RMSE: 0.7352
0.7351639239250
```

รูป 4.18 ผลลัพธ์การทดลองร่วมกับ NLP

จากผลลัพธ์ที่ได้เลยสามารถสรุปได้ว่าการสันนิษฐานของผู้จัดทำในเรื่องของจำนวนวิชาที่ มีมากเกินไปทำให้ค่า RMSE เพิ่มขึ้นนั้นถูกต้อง และผลลัพธ์ที่ได้ออกมาเป็นที่น่าพอใจเพียงพอ แล้ว สรุปผลการนำไปปรับใช้งานจริง เนื่องด้วยการ prediction ที่ใช้การจับกลุ่มของรายวิชานั้น ไม่มีความสามารถที่จะตอบรับความต้องการของการใช้งานจริงได้เนื่องด้วยการใช้งานจริงนั้น ได้ทำการกำหนดผลลัพธ์การทำนายไว้ว่าจำเป็นต้องแสดงผลการทำนายออกมาเป็นรายวิชาแต่ การทำนายในรูปแบบของการทดลองนี้นั้นจะได้เป็นผลลัพธ์ของกลุ่มรายวิชาแทนซึ่งไม่ สอดคล้องกับที่ต้องการ ทำให้การปรับใช้งานจริงของแบบจำลองนั้นจะใช้ตามการทดลองที่ 4.4

4.6 การพัฒนา Job Classification Model

โดยการทดลองนี้จะเป็นการทดลองการสร้างแบบจำลองการทำนายผลลัพธ์สายงานอาชีพ โดยมีข้อมูลที่ใช้จะเป็นข้อมูลที่ได้จากการเก็บแบบสอบถามการมีงานทำจากบัณฑิตหลักสูตร วิสวกรรมคอมพิวเตอร์หลักสูตรปกติและต่อเนื่อง 2560 ปีการศึกษา 2560 และ 2561ดังรูปที่ 4.19

โดยการทดลองนี้ได้ใช้อัลกอริทึมในการสร้าง Model ด้วยกันสองอัลกอริทึมคือ KNN Classifier และ Decision Tree Classifier จาก Library Scikit-learn โดยชุดข้อมูลที่ใช้จะมี ชุด ข้อมูลที่เป็นผลลัพธ์เกรดของบัณฑิตในระบบ และชุดข้อมูลแบบสอบถามการมีงานทำของ บัณฑิต โดยการวัดประสิทธิภาพของ Model จะใช้ค่า Accuracy ที่ได้จากการคำนวณของ Function Metrics Accuracy จาก Library Scikit-Learn

รูป 4.19 ชุดข้อมูลแบบสอบถามการมีงานทำของบัณฑิต

โดยขั้นตอนต่อมาคือการเตรียมข้อมูล ทางผู้จัดทำได้ทำการนำผลลัพธ์เกรดของบัณฑิตใน ระบบมาทำการรวมข้อมูลของสองชุดข้อมูลเข้าด้วยกัน โดยใช้ student_id ในการรวมกันของ สองชุดข้อมูล โดยถ้าในชุดข้อมูลผลลัพธ์เกรดของบัณฑิตในระบบไม่มีข้อมูลรหัสนักศึกษาที่ชุด ข้อมูลแบบสอบถามการมีงานทำของบัณฑิตจะไม่นำมาเป็นข้อมูลในการสร้าง Model หลังจาก นั้นจะทำการ Transpose ข้อมูลให้อยู่ในรูปแบบดังรูปที่ 4.20 เพื่อนำไป Train Model

	student id	9	1	2	3	4	5	6	7		 23	25	31	33	35	42	50	E4	อื่นๆ	job
10					4.0													3.48	3.50	
12	0a079386e7934625831ece1087ae915f			4.0		2.5	3.0					3.40		3.12						Mobile Developer
19	0f6119a28800d31fbb88ceddb6554573							2.00						3.12					3.73	Data Engineer
20	0faeb665c628f8c3a41f327a57a8575c													3.28						Software Tester
24	15eef5c71ce09039ae9c104849bd3a47													3.12						Software Engineer
38	1e288fce0b96e3c2028f79cb33365db1													3.15						IT Infrastructure
55	2b25ba620f6313a62a0727fdae38d13e													3.07						Software Engineer
72	3ac00e4c4710ac58f180405f45da8205	2.50	3.00	4.0	4.0	2.5	3.5	3.25	3.5	3.0	3.40	3.57	3.30	3.26	4.00	3.54	3.27	3.75	3.84	Software QA
75	3b387161d63eca3a4f643b339c2072a0	3.00	3.50	4.0	4.0	2.5	3.5	4.00	4.0	3.5	3.55	3.64	3.43	3.42	3.62	3.60	3.43	3.75	4.00	Software Engineer
83	44ae02b1e659304d4c84bbbe9a0d2ed5	3.00	3.00					3.50			3.33	3.46	3.19		3.50	3.43		3.54	3.00	Software Engineer
95	52a5ed08a47d50ed4a4cad3b7ac6d312	3.00	3.50					3.75			3.62	3.86	3.63	3.55	3.73	3.92	3.00	4.00	4.00	Mobile Developer
117	63ff5b2e627f0162eb706e16098a6001										3.50									Software Tester
121	65365996c5164fe1983a09e6fef3687e	2.00	2.00					1.50				3.41	3.17	2.96	3.50	3.23	3.08	3.49	3.75	UX UI Designer
136	732d85012d4d210e0b85b353c494326d							2.75				3.49				3.48				UX UI Designer
140	78fee4606c034f47f85e9e1a827e4fca	3.50	4.00					4.00			3.76	4.00	3.65	3.72	3.50	4.00	3.82	4.00	4.00	Software Engineer
143	7d52033d2dd37502c500d662a47a1644							3.75									3.64			Software Engineer
154	839f9b47419d9b8f442514d1da429e34	1.50	3.00					3.00				3.52				3.41		3.58	3.78	Software Engineer
190	a00b4a2d58030dede1e0020f47521ae6																	3.42		UX UI Designer
192	a208cc29835c203e85bd2e42897b654f	3.50	3.00									3.50			3.00	3.52	3.35	3.78	3.50	Data Engineer
227	bb4e051171993c63c9e0717260052615																			Software Engineer
236	c7605751af1a39f5d7e35159038b5211	2.00	2.00	4.0							3.67	3.96	3.56	3.43	3.74	4.00	3.53	3.91	4.00	Software Engineer
238	c8a67d514a86e641f8abce6a7cdb1cb5																			Study on Masterlis degree
260	d7f1edbe586f9b607c1a18b04e60310f	3.00	2.50	4.0	4.0			2.00			3.38	3.49	3.15		3.50	3.46	3.24	3.57	3.50	Software Engineer
288	f1897be137c1342811f9007fbf100416															3.47				Mobile Developer
23 row	rs × 34 columns																			

รูป 4.20 ชุดข้อมูลที่ผ่านการ Transpose

จากผลลัพธ์การทดลองที่ 4.6 พบว่าค่า Accuracy ของอัลกอริทึม KNN Classifier อยู่ที่ 0.4 และ Accuracy ของอัลกอริทึม Decision Tree Classifier อยู่ที่ 0.2 จากคะแนนเต็ม 1 ซึ่งการทาง ผู้จัดทำได้สันนิษฐานว่าข้อผิดพลาดที่เกิดขึ้นมาจากจำของชุดข้อมูลแบบสอบถามการมีงานทำ ของบัณฑิตที่มีน้อยเกินไปรวมทั้งจำนวนของทั้งกลุ่มของผลลัพธ์สายอาชีพและจำนวนวิชาที่ มากเกินไป

4.7 การพัฒนาเพิ่มประสิทธิภาพของ Job Classification Model

เนื่องด้วยข้อสันนิษฐานจากการทดลองที่ 4.6 ทางผู้จัดทำจึงได้ทำการเปลี่ยนรูปแบบการ ทดลองใหม่โดยได้ทำการเปลี่ยนอัลกอริทึมในการสร้าง Model โดยใช้เป็น Random Forest Classification และทำการปรับกลุ่มของรายอาชีพใหม่เพื่อทำการลดจำนวนกลุ่มของอาชีพ เช่น จาก Study on master Degree เป็น Software Engineer, Mobile Developer เป็น Software Developer, Data Engineer และ Data Analytic เป็น Data Career ดังรูปภาพที่ 4.21

รูป 4.21 ชุดข้อมูลแบบสอบถามการมีงานทำของ บัณฑิต ที่ทำการลดจำนวนกลุ่ม

หลังจากนั้นทางผู้จัดทำได้ทำการทดลองแล้ววัดผลลัพธ์ด้วยการใช้ค่า Accuracy เช่นเดิม โดยได้ทำการ Hyperparameter Tuning ด้วย parameter ดังนี้ 'n_estimators': [50, 100, 200, 500, 1000], 'max_features': ['auto', 'sqrt', 'log2', None], 'max_depth': [5, 10, 20, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] และได้ทำการแบ่งชุดข้อมูลด้วยใน การสร้างและทดสอบแบบจำลองออกเป็น 9:1 โดยสร้าง 9 ส่วนและทดสอบ 1 ส่วน

จากผลลัพธ์การทดลองที่ 4.7 พบว่าค่า Accuracy ของอัลกอริทึม Random Forest Classification ร่วมกับการปรับลดจำนวนของกลุ่มผลลัพธ์นั้นออกมาอยู่ที่ 0.75 หรือคิดเป็น 75% ความถูกต้องซึ่งเป็นผลลัพธ์ที่น่าพึงพอใจแล้ว แล้วจะนำกระบวนการนี้ไปปรับใช้กับระบบจริง

4.8 การพัฒนาหน้าต่างผู้ใช้งานของ Application

โดยจะแบ่งส่วนของการทดลองออกเป็น 3 ส่วนคือ การทดลองสร้าง React Project โดย Docker Compose, การทดลองการทำงานร่วมกันของ React Project และ Django Application และ การนำ Docker Compose ของ React Project ขึ้นไปอยู่บน Server

4.7.1 การทดลองสร้าง React Project โดย Docker Compose

โดยการทดลองนี้ทางผู้จัดทำได้ทำการเตรียม File สำหรับการสร้างโดยมี Dockerfile ที่ระบุการสร้าง Directory ของ React Project และ Version ของ NodeJS ดังรูปที่ 4.22 ต่อมาลือ File docker-compose.yml ดังรูปที่ 4.23

```
You, 3 months ago | 1 author (You)

# base image
FROM node

# set working directory
RUN mkdir /usr/src/app

WORKDIR /usr/src/app

# add `/usr/src/app/node_modules/.bin` to $PATH
ENV PATH /usr/src/app/node_modules/.bin:$PATH

# install and cache app dependencies
COPY package.json /usr/src/app/package.json
RUN npm install
RUN npm install
RUN npm install react-scripts -g
EXPOSE 3000
# start app

CMD ["npm", "start"] You, 3 months ago • ...
```

ฐป 4.22 Dockerfile React Project

ฐป 4.23 docker-compose.yml React Project

ซึ่งเมื่อหลังจากการสร้าง docker compose ขึ้นมาทางผู้จัดทำจะตรวจสอบการ ทำงานของระบบทั้งหมดผ่าน Application Docker Desktop ร่วมกับ log terminal ของ Visual Studio Code ดังรูปที่ 4.24 โดยได้กำหนด Port ในการเข้าถึงทั้งภายนอกและภายในเป็น 3000

รูป 4.24 ภาพรวมของการตรวจสอบการทำงานของ React Project

จากผลการทคลองที่ 4.8.1 พบว่าสามารถสร้าง Docker Compose ของ React Project ได้ และสามารถตรวจสอบการทำงานต่างๆ ของ React Project ผ่าน Visual Studio Code Terminal และ Application Docker Desktop ได้

4.7.2 การทดลองการทำงานร่วมกันของ React Project และ Django Application

โดยในการทดลองนี้ทางผู้จัดทำได้กำหนดสภาพแวดล้อมของการทดลองโดยให้ทั้ง สองส่วน (React Project และ Django Application) ทำงานอยู่บนเครื่องคอมพิวเตอร์ส่วนบุคคล ในรูปแบบ Local Host ดังรูปที่ 4.25 โดยด้านซ้ายคือหน้าหลักของ React Project และด้านขวา คือหน้าของ Django Application

รูป 4.25 ภาพรวมของ React Project และ Django Application ที่เรียกดูผ่าน Web Browser

จากผลลัพธ์การทดลองที่ 4.8.2 พบว่าทั้งสองสามารถติดต่อส่งข้อมูลให้กันและกัน ได้ราบรื่น โดย React Project จะติดต่อกับ Django Application ผ่าน Port 8000 และ Django Application จะติดต่อกับ React Project ผ่าน Port 3000 ผลลัพธ์ดังรูปที่ 4.26

รูป 4.26 ทดสอบการติดต่อระหว่าง React Project และ Django Application

4.7.3 การนำ Docker Compose ของ React Project ขึ้นไปอยู่บน Server

โดยในขั้นตอนนี้ทางผู้จัดทำได้นำ Directory ของ React Project ไปยัง Server ที่ได้ จัดเตรียมไว้ โดยจะเป็น Server เดียวกันกับในหัวข้อการทดลอง 4.2 ผลลัพธ์ดังรูปที่ 4.27

```
[analytic@itanalytic1 Ars_ct]; to disanger project]
[analytic@itanalytic1 django project]$ cd aps_ce_frontend/
[analytic@itanalytic1 aps_ce_frontend]$ ls
Dockerfile package.json package-lock.json public README.md src
[analytic@itanalytic1 aps_ce_frontend]$ nano docker-compose.yml
[analytic@itanalytic1 aps_ce_frontend]$ [anal
```

รูป 4.27 React Project ที่นำขึ้นไปยัง Server ที่เตรียมไว้

โดยต่อมาได้ทำการทดลองโดยการสร้าง Docker Compose ของ React Project ขึ้นมา โดยจากผลลัพธ์การทดลองที่ 4.8.3 พบว่าสามารถสร้าง Docker Compose ของ React Project ได้สำเร็จและตัว React Project สามารถดำเนินการได้อย่างราบรื่น

จากผลลัพธ์การทดลองที่ 4.8 พบว่าสามารถสร้าง React Project จาก Docker Compose ได้และติดต่อกับ Django Application ได้อย่างราบรื่น และสามารถนำ React Project Directory ขึ้นไปสร้าง Docker Compose บน Server ได้และตัว React Project เองสามารถทำงาน ได้เป็นปกติ

4.8 การนำกระบวนการสร้าง Model และการเรียกใช้ลงบน Django Application

โดยในการทคลองนี้ทางผู้จัดทำจะนำกระบวนการสร้างและเรียกใช้ที่ได้ทำการทคลองไป ในการทคลองที่ 4.4, 4.5 และ 4.6 ซึ่งจะนำกระบวนการสร้างและเรียกใช้ Similarity Model และ NLP ให้อยู่ในรูปแบบของ API และ Call Function โดยกระบวนการทำงาน และ การเรียกใช้ งานของ Similarity Model และ NLP มีดังนี้

4.8.1 กระบวนการ การทำงานของ NLP

- 1) ผู้ใช้งานนำ File CSV ของรายวิชาที่ต้องการเพิ่มในระบบ Upload เข้าไป
- 2) ได้ผลลัพธ์ออกมาเป็น List ของ Dictionary ที่เก็บ Class และวิชาใน Class
- 3) นำ List ที่ได้มารวมกับตารางจาก File CSV ที่ผู้ใช้งาน Upload
- 4) รูปให้ข้อมูลอยู่ในรูปแบบที่สามารถเพิ่มลงในฐานข้อมูลได้
- 5) ข้อมูลเพิ่มเข้าฐานข้อมูล
- 6) แสดงผลลัพธ์การเรียกใช้งาน API

4.8.2 กระบวนการ การสร้าง Similarity Model

- 1) ผู้ใช้งานเลือกรูปแบบของ Model ที่จะสร้าง (หลักสูตร, รูปแบบการพยากรณ์ รายวิชา หรือ กลุ่มของวิชา)
- 2) ค้นหาข้อมูลของบัณฑิตในฐานข้อมูล
- 3) นำข้อมูลมาสร้าง Model
- 4) แปลงรูปแบบข้อมูลของ Model ให้อยู่ในรูป Pickeled File
- 5) คำนวณหา RMSE ของ Model นั้น
- 6) จัดรูปให้ข้อมูลอยู่ในรูปแบบที่สามารถเพิ่มลงในฐานข้อมูลได้
- 7) นำข้อมูลเพิ่มเข้าฐานข้อมูล
- 8) แสดงผลลัพธ์การเรียกใช้งาน API

4.8.3 กระบวนการ การเรียกใช้งาน Similarity Model

- 1) ผู้ใช้งาน Upload File CSV ผลลัพธ์การเรียนของตน
- 2) ผู้ใช้งานเลือกหลักสูตรและปีของหลักสูตร
- 3) ระบบคึงข้อมูลรายวิชาจากฐานข้อมูล
- 4) ระบบดึงข้อมูลเกรคนักศึกษา
- 5) ระบบคึงข้อมูลนักศึกษา
- 6) ระบบนำข้อมูลของผู้ใช้งานและข้อมูลตามข้อ 4 และ 5 มารวมกัน
- 7) ระบบสร้างแบบจำลอง Similarity ขึ้นมาจากข้อมูลตามข้อที่ 6
- 8) ระบบทำนายผลรายวิชาที่ต้องการของผู้ใช้งาน
- 9) แสดงผลลัพธ์การเรียกใช้งาน API

4.8.4 กระบวนการ การสร้าง Job Classification Model

- 1) ผู้ใช้งานใส่ชื่อ Model เลือกหลักสูตรและปีของหลักสูตรสำหรับการใช้งาน
- 2) ระบบดึงข้อมูลของบัณฑิตจากในระบบ
- 3) นำข้อมูลมาสร้าง Model
- 4) แปลงรูปแบบข้อมูลของ Model ให้อยู่ในรูป Pickeled File
- 5) คำนวณหา Accuracy ของ Model นั้น
- 6) จัดรูปให้ข้อมูลอยู่ในรูปแบบที่สามารถเพิ่มลงในฐานข้อมูลได้
- 7) นำข้อมูลเพิ่มเข้าฐานข้อมูล
- 8) แสดงผลลัพธ์การเรียกใช้งาน API

4.8.5 กระบวนการเรียกใช้งาน Job Classification Model

1) ผู้ใช้งาน Upload File CSV ผลลัพธ์การเรียนของตน

- 2) ผู้ใช้งานเลือกหลักสูตรและปีของหลักสูตร
- 3) ระบบดึง Model จากฐานข้อมูล
- 4) ระบบแปลงข้อมูลของผู้ใช่งานให้สอดคล้องกับ Model
- 5) ระบบทำการทำนายผลลัพธ์ของสายงานอาชีพของผู้ใช้งาน
- 6) แสดงผลลัพธ์การเรียกใช้งาน API

จากผลลัพธ์การทดลองที่ 4.8 พบว่าทั้งสามกระบวนการการทำงานนั้นสามารถทำงานได้ บน Django Application ได้อย่างราบรื่น

4.9 การใช้งานหน้า Web Application

ในส่วนของหน้าหลักจะมีถิงค์แบบสำรวจการเก็บข้อมูลอาชีพของบัณฑิตที่จบการศึกษา

ในส่วนของหน้าสายงานบัณฑิต การเป็นการโชว์ข้อมูลสถิติทางด้านสายงานของนักศึกษา โดยจะแบ่งเป็นสองส่วนคือ ส่วนสถิติในอดีตของนักศึกษา จะเป็นการดึงข้อมูลด้านสายงานและจำนวน ในแต่ละปีจากฐานข้อมูลมาแสดงผ่านกราฟ ส่วนที่สองส่วนคาดการณ์สถิติบัณฑิต จะเป็นการส่งข้อมูลปี ที่ต้องการคาดการณ์ไปเข้าโมเคลเพื่อทำนายสายงานในอนาคตของนักศึกษาปีที่เลือกออกมา โดยแสดง ผ่านกราฟ

ในส่วนของหน้าพยากรณ์นักศึกษา จะมีให้เลือกหลักสูตรและปีที่เรียน เพื่อคาวน์โหลด แบบฟอร์มรูปแบบ CSV ในการทำการกรอกเกรค เพื่อนำไปทำนายผล เมื่อทำการกรอกเสร็จ จะมีปุ่มให้ อัปโหลดไฟล์เพื่อกดพยากรณ์

ในส่วนของหน้าผลลัพธ์การพยากรณ์นักศึกษา จะโชว์เกรควิชาที่นักศึกษาต้องการจะทำนาย เกรค และอาชีพที่เป็นไปได้ที่นักศึกษาสามารถทำได้

ในส่วนของหน้าแนะนำวิชาเลือกภาค จะทำการเลือกคณะและหลักสูตรที่เรียน ระบบจะทำการโชว์ key ของแต่ละรายวิชาเลือกภาคขึ้นมา เพื่อให้นักศึกษาทำการเลือกสิ่งที่สนใจ และกดปุ่มแนะนำเพื่อประมวลผลวิชาเลือกภาคที่นักศึกษามีความสนใจโดยจะมีบอกรายละเอียดรหัสวิชาและบทคัดของวิชานั้นๆ

ในส่วนของหน้าเข้าสู่ระบบจะมีการเข้าสู่ระบบด้วยสองสถานะ คือกรรมการหลักสูตร และ นักศึกษา สถานะของกรรมการหลักสูตรมีไว้เพื่อเข้าถึงหน้าอัพโหลดไฟล์ สถานะของนักศึกษามีไว้เพื่อกรอก ข้อมูลอาชีพของนักศึกษาที่จบไปแล้ว

ในส่วนของหน้าอัปโหลดไฟล์ จะมีให้อัปโหลดไฟล์ CSV 2 ประเภท คือ ข้อมูลของ นักศึกษาและข้อมูลหลักสูตรวิชา หน้าเว็บจะทำการโชว์ไฟล์ในระบบที่มีเพื่อโชว์ให้ดูและสามารถ ลบ และแก้ไขไฟล์นั้นได้

ในส่วนของหน้าแก้ไขไฟล์ จะสามารถลบ แก้ไข เพิ่ม record ได้

ในส่วนของหน้านักศึกษาจะมีให้กรอกข้อมูลรหัสนักศึกษาและอาชีพของนักศึกษาที่เรียน จบไปแล้ว เพื่อนำไปเทรนตัวโมเคล

บทที่ 5

สรุป

5.1 บทสรุป

โครงงานนี้มีวัตถุประสงค์เพื่อพัฒนาระบบประมวลผลข้อมูลผลการเรียนของนักศึกษาใน อดีต ข้อมูลของรายวิชาต่างๆ และข้อมูลจากแบบสำรวจการมีงานทำของบัณฑิต เพื่อนำเสนอ ข้อมูลสถิติต่างๆ วิเคราะห์ข้อมูลผลการผลิตบัณฑิตเพื่อให้ได้ผลลัพธ์ว่าที่ผ่านมาหลักสูตร สามารถผลิตบัณฑิตกลุ่มใดได้บ้าง มีจำนวนมากน้อยเพียงใด สามารถพยากรณ์ว่าในอนาคต หลักสูตรสามารถผลิตบัณฑิตกลุ่มใดได้เป็นจำนวนเท่าใด เพื่อเป็นประโยชน์และอำนวยความ สะดวกให้กรรมการหลักสูตรในการวางแผนการบริหารหลักสูตรในอนาคต และแสดงเป็น แผนภาพกราฟิกในการอำนวยความสะดวกให้หน่วยงานภายนอกได้รับทราบว่าหลักสูตร ปัจจุบันของสถาบันสามารถผลิตบุคลากรที่มีความชำนาญด้านใดได้บ้าง โดยการทำงานของ Application นี้มี Web Application, Server, Database

5.1.1 การทำงานในส่วนของ Web Application

- 1) Web Application มีระบบสร้าง File CSV Template สำหรับให้ผู้ใช้งานใส่ ผลลัพธ์การเรียนของตน
- 2) Web Application สามารถสร้าง Job Classification Model แล้วนำลงฐานข้อมูล ได้
- 3) Web Application สามารถนำเข้ารายวิชาแล้วเรียกใช้การจับกลุ่มรายวิชาด้วย NPL ได้
- 4) Web Application สามารถนำเข้าแบบสำรวจการมีงานทำของบัณฑิตแล้วแก้ไข ข้อมูลของบัณฑิตคนนั้นในฐานข้อมูลได้
- 5) Web Application สามารถนำเข้า File CSV ผลลัพธ์การเรียนของผู้ใช้งานได้
- 6) Web Application มีระบบรองรับการร้องขอผลลัพธ์การพยากรณ์ได้
- 7) Web Application สามารถติดต่อกับ Database ได้
- 8) Web Application สามารถจัดเก็บ File ในระบบได้
- 9) Web Application สามารถแก้ใจ File ในระบบได้
- 10) Web Application สามารถลบ File ในระบบได้
- 11) Web Application สามารถกู้คืน File ในระบบได้
- 12) Web Application สามารถลบ File ในระบบได้อย่างถาวร

13) Web Application สามารถ login ใช้งานด้วยสิทของกรรมการหลักสูตรได้

5.1.2 การทำงานในส่วนของ Server

- 1) Server สามารถรัน Web Application ผ่าน Docker ใค้
- 2) Server สามารถสร้าง Database ผ่าน Docker ได้

5.1.3 การทำงานในส่วนของ Database

- 1) Database สามารถเก็บข้อมูลผลลัพธ์การเรียนของบัณฑิตได้
- 2) Database สามารถเก็บข้อมูลรายวิชาได้
- 3) Database สามารถเก็บข้อมูลของ Model ได้
- 4) Database สามารถเก็บข้อมูลของ File CSV ในระบบได้

5.2 ปัญหาและอุปสรรคที่พบ

1) ข้อมูลจากแบบสอบถามการมีงานทำของบัณฑิตที่มีน้อยเกินไปทำให้ผลลัพธ์ของสาย งานอาชีพในการทำนายนั้นออกมาไม่ได้หลากหลายตามที่ต้องการ โดยได้วางแนวทาง ในการแก้ไขปัญหาไว้โดยได้ทำการเพิ่ม QR Code ในการกรอกแบบฟอร์มการมีงาน ทำของบัณฑิตเอาไว้ และมี function ในการให้กรรมการหลักสูตรอัปเดตข้อมูล ดังกล่าวลงยังฐานข้อมูล

5.3 ข้อเสนอแนะ

- 1) ค่าผลลัพธ์ Accuracy ของ Model Job Classification นั้นควรอยู่ที่ 0.9
- 2) ข้อมูลของนักศึกษาที่ใช้ในการ Train ควรมีมากกว่านี้

บรรณานุกรม

- สุเมธ คาราพิสุทธิ์. 2559. "การสร้างรายการเพลงโคยใช้การกรองร่วมแบบเซสชั่นที่เพิ่มขึ้นค้วย กลไกการลืมและการวิเคราะห์สถิติเชิงมุม." วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาการคอมพิวเตอร์, มหาวิทยาลัยบูรพา.
- นิภาภรณ์ พันธ์นาม. 2563. "ระบบแนะนำสินค้าอาหารโดยใช้ระบบแนะนำแบบผสมผสาน." สารนิพนธ์วิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาการข้อมูล, มหาวิทยาลัยศรีนครินทรวิโรฒ.

Punna Rirkvaleekul. 2020. Machine Learning – คำศัพท์ที่ควรรู้. [Online].

Available: https://twinsynergy.co.th/machine-learning.

พิพัฒน์ สมโลก. 2020. Machine Learning สิ่งใกล้ตัวแห่งโลกยุคใหม่. [Online].

Available: https://www.depa.or.th/th/article-view/article11-2563.

อาทิตย์ สกุลเมือง. 2022. Natural Language Processing (NLP): เครื่องมือที่ช่วยให้คอมพิวเตอร์ เข้าใจภาษามนุษย์. [Online]. Available : https://bigdata.go.th/big-data-101/what-is-natural-language-processing.

DUSADEEVIROJ. 2020. REVIEW ETL PROCESS. [Online].

Available: https://www.fusionsol.com/blog/review-etl-process.

LDA. 2019. Recommendation System ระบบผู้ช่วยแนะนำที่รู้ใจเรามากกว่าตัวเราเอง. [Online]. Available: https://www.ldaworld.com/recommendation-system-lda.

สรรพโชค สิงหสุวรรณ. 2022. การใช้งาน Docker เบื้องต้น. [Online].

Available: https://race.nstru.ac.th/home_ex/blog/topic/show/4200

Pattanapong Cherthong. 2016. ทำความรู้จัก Docker และ Software Container. [Online].

Available: https://medium.com/@teamteam

2013. เริ่มต้นการเขียนเว็บไซต์ ทำเว็บไซต์ด้วยภาษา Python กับ Django Framework. [Online].

Available: https://www.amplysoft.com/knowledge/what-is-django-framework-

python.html

Pavarudh. 2022. ระบบจัดการฐานข้อมูล MariaDB คืออะไร. [Online].

Available: https://km.cc.swu.ac.th/archives/4177.

Pavarudh. 2021. ทำความรู้จักกับ Node.js. [Online].

Available: http://marcuscode.com/tutorials/nodejs/introducing-nodejs.

ภาคผนวก ก

การพิจารณาปริมาณงานขั้นต่ำสำหรับโครงงานที่ 1

รอแคปหน้าเว็บ