Universidad Nacional de Colombia Sede Manizales Mecánica de sólidos Tercer examen parcial (10%) Martes 18 de octubre de 2022 Solución

- (1) [+2.0]Para cada una de las siguientes afirmaciones diga si es verdadera V o falsa F. Las respuestas **no** deben ser justificadas. Por cada respuesta mala se anula una buena, por lo que, solo responda si está seguro(a).
 - (a) El círculo de Mohr 2D es una curva paramétrica que se grafica en el sentido negativo en función de θ , mientras el sólido cambia su sistema de coordenadas en función de θ en el sentido positivo. **Falso**, porque si el cambia su sistema de coordenadas en función de θ , entonces la gráfica se hace en función de 2θ .
 - (b) En el círculo de Mohr 2D, si $\sigma_x > \sigma_y$ y $\tau_{xy} = 0$, entonces el esfuerzo axial máximo es σ_x y el mínimo es σ_y . **Verdadero**, porque $\underline{\sigma} = \begin{bmatrix} \sigma_x & 0 \\ 0 & \sigma_y \end{bmatrix}$, siendo $\sigma_1 = \sigma_x$ y $\sigma_2 = \sigma_y$ $(\sigma_1 > \sigma_2)$, es decir, los esfuerzos axiales máximo y mínimo, respectivamente.
 - (c) En el círculo de Mohr 2D, si $\tau_{max} = \frac{\sigma_x \sigma_y}{2}$, entonces $\sigma_1 = \sigma_y$ y $\sigma_2 = \sigma_x$. Falso, porque siempre se cumple que $\tau_{max} = R$ y $R = \sqrt{(\frac{\sigma_x \sigma_y}{2})^2 + \tau_{xy}^2}$, es decir, $\frac{\sigma_x \sigma_y}{2} = \sqrt{(\frac{\sigma_x \sigma_y}{2})^2 + \tau_{xy}^2}$. Luego, elevando ambos lados al cuadrado: $(\frac{\sigma_x \sigma_y}{2})^2 = (\frac{\sigma_x \sigma_y}{2})^2 + \tau_{xy}^2$, y esto solo es posible si $\tau_{xy} = 0$. Por lo tanto, $\sigma_1 = \sigma_x$ y $\sigma_2 = \sigma_y$ (ya que $\tau_{max} = \frac{\sigma_x \sigma_y}{2}$ es una cantidad positiva, es decir, $\sigma_x > \sigma_y$).
 - (d) En el círculo de Mohr 3D, si $\sigma_x = \sigma_y = \sigma_z > 0$ y $\tau_{xy} \neq 0$, entonces las circunferencias C_1 , C_2 y C_3 se reducen a un punto (cualquier dirección es principal). Falso, porque a pesar de que $\sigma_x = \sigma_y = \sigma_z > 0$, $\tau_{xy} \neq 0$, es decir, $\underline{\sigma} = \begin{bmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & \sigma_z \end{bmatrix}$. De $\underline{\sigma}$ se concluye que $\sigma_1 \neq \sigma_2 \neq \sigma_3$. Luego, las circunferencias C_1 , C_2 y C_3 son diferentes.
 - (e) En el círculo de Mohr 3D, si $\sigma_1 = \sigma_2$, entonces la circunferencia $[\sigma_n \frac{1}{2}(\sigma_1 + \sigma_3)]^2 + \tau_n^2 = [\frac{1}{2}(\sigma_1 \sigma_3)]^2$ representa todas las combinaciones de esfuerzos posibles. **Verdadero**, porque $C_1 : [\sigma_n \frac{1}{2}(\sigma_1 + \sigma_3)]^2 + \tau_n^2 \ge [\frac{1}{2}(\sigma_1 \sigma_3)]^2$, $C_2 : [\sigma_n \frac{1}{2}(\sigma_1 + \sigma_3)]^2 + \tau_n^2 \le [\frac{1}{2}(\sigma_1 \sigma_3)]^2$ y $C_3 : (\sigma_1, 0)$. Uniendo C_1 , C_2 y C_3 queda la circunferencia $[\sigma_n \frac{1}{2}(\sigma_1 + \sigma_3)]^2 + \tau_n^2 = [\frac{1}{2}(\sigma_1 \sigma_3)]^2$.
 - (f) Los esfuerzos principales en 2D son los esfuerzos axiales máximos y mínimos posibles. **Verdadero**, porque si el centro del círculo de Mohr es $(\frac{\sigma_x + \sigma_y}{2}, 0) = (C, 0)$ y $R = \sqrt{(\frac{\sigma_x \sigma_y}{2})^2 + \tau_{xy}^2}$. Se puede demostrar que $\sigma_1 = C + R$ y $\sigma_2 = C R$, es decir, el máximo y mínimo posible en el eje horizontal.
 - (g) El centro del círculo de Mohr 2D tiene coordenadas $(\frac{\sigma_1+\sigma_2}{2},0)=(\frac{\sigma_x+\sigma_y}{2},0)$. Verdadero, porque igualando las coordenadas horizontales, tenemos: $\frac{\sigma_1+\sigma_2}{2}=\frac{\sigma_x+\sigma_y}{2}$ y 0=0. En particular, $\frac{\sigma_1+\sigma_2}{2}=\frac{\sigma_x+\sigma_y}{2}$, remplazando con $\sigma_1=\frac{\sigma_x+\sigma_y}{2}+\sqrt{(\frac{\sigma_x-\sigma_y}{2})^2+\tau_{xy}^2}$ y $\sigma_2=\frac{\sigma_x+\sigma_y}{2}$

$$\frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}, \text{ obtenemos: } \frac{\frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}}{2} + \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}} = \frac{\sigma_x + \sigma_y}{2},$$
 simplificando:
$$\frac{\frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x + \sigma_y}{2}}{2} = \frac{\sigma_x + \sigma_y}{2}.$$
 Finalmente,
$$\frac{\sigma_x + \sigma_y}{2} = \frac{\sigma_x + \sigma_y}{2}.$$

- (h) Siempre se cumple en el círculo de Mohr 2D que $\tau_{min} = \frac{\sigma_2 \sigma_1}{2}$. Verdadero, porque $\tau_{min} = -R$, y el R (el radio) es una cantidad postiva definida por $R = \frac{\sigma_1 \sigma_2}{2}$ (con $\sigma_1 \geq \sigma_2$). Luego, $-R = \frac{\sigma_2 \sigma_1}{2}$ (una cantidad negativa).
- (i) En el círculo de Mohr 2D, si $\sigma_x = -\sigma_y$, entonces $\tau_{max} = \sigma_1$. Verdadero, porque teniendo en cuenta que $\sigma_1 = C + R$ y $\sigma_2 = C R$ y $C = \frac{\sigma_x + \sigma_y}{2}$, pero $\sigma_x = -\sigma_y$, entonces C = 0. Luego, $\sigma_1 = R$ y $\sigma_2 = -R$, y se cumple que $\tau_{max} = R$, es decir, $\tau_{max} = \sigma_1$.
- (j) En el círculo de Mohr 3D, si $\sigma_1 = \sigma_3$, entonces es un estado de esfuerzos sin cortante. **Verdadero**, porque la desigualdad $\sigma_1 \geq \sigma_2 \geq \sigma_3$ obliga a que $\sigma_2 = 0$. Es decir, C_1 , C_2 y C_3 se reducen a único punto $(\sigma_1, 0)$ con cortante nulo (esto se observa muy bien analizando gráficamente).
- (2) [+1.5] Diga detalladamente cuál es la interpretación física del círculo de Mohr en dos dimensiones para un punto $(x,y) \in \Omega$. Utilice los elementos más importantes del gráfico y/o las ecuaciones.
 - * +1.0 si explicaba que el círculo de Mohr en dos dimensiones es una curva parámetrica que indica todas las posibles combinaciones de esfuerzos cortantes y axiales en un punto (x, y) de un sólido.
- (3) [+1.5] Explique detalladamente cómo llegar a partir de: $\alpha^2 = \frac{\sigma_2 \sigma_3 \sigma_2 \sigma_n \sigma_3 \sigma_n + \sigma_n^2 + \tau_n^2}{(\sigma_1 \sigma_2)(\sigma_1 \sigma_3)}$, $\beta^2 = -\frac{\sigma_1 \sigma_3 \sigma_1 \sigma_n \sigma_3 \sigma_n + \sigma_n^2 + \tau_n^2}{(\sigma_1 \sigma_2)(\sigma_2 \sigma_3)}$ y $\gamma^2 = \frac{\sigma_1 \sigma_2 \sigma_1 \sigma_n \sigma_2 \sigma_n + \sigma_n^2 + \tau_n^2}{(\sigma_1 \sigma_3)(\sigma_2 \sigma_3)}$ a las designal-dades: $[\sigma_n \frac{1}{2}(\sigma_2 + \sigma_3)]^2 + \tau_n^2 \ge [\frac{1}{2}(\sigma_2 \sigma_3)]^2$

$$[\sigma_n - \frac{1}{2}(\sigma_2 + \sigma_3)]^2 + \tau_n^2 \ge [\frac{1}{2}(\sigma_2 - \sigma_3)]^2$$

$$[\sigma_n - \frac{1}{2}(\sigma_1 + \sigma_3)]^2 + \tau_n^2 \le [\frac{1}{2}(\sigma_1 - \sigma_3)]^2$$

$$[\sigma_n - \frac{1}{2}(\sigma_1 + \sigma_2)]^2 + \tau_n^2 \ge [\frac{1}{2}(\sigma_1 - \sigma_2)]^2$$

¿Qué representan gráfica y físicamente dichas desigualdades?

Pista: Sumar $\frac{1}{4}(\sigma_2 + \sigma_3)^2 - \sigma_2\sigma_3$, $\frac{1}{4}(\sigma_1 + \sigma_3)^2 - \sigma_1\sigma_3$ y $\frac{1}{4}(\sigma_1 + \sigma_2)^2 - \sigma_1\sigma_2$.

- * +0.25 si hacía un análisis de signos de las ecuaciones y extraía las desigualdades de los numeradores.
- * +0.25 si hacía los cálculos detallados para llegar a las inecuaciones de las circunferencias C1, C2 y C3
- * +0.25 si hacía una interpretación gráfica de las ecuaciones.
- * +0.25 si hacía una interpretación física de los resultados.
- (4) [+1.0] De forma rigurosa diga todo lo que sabe acerca de la función atan2(). ¿Cómo se implementa en Python?
 - * +0.33 si daba la definición explítica de atan2(y, x) igual a seis condiciones. O si decía que es una función para determinar el ángulo correcto entre un vector $[x, y]^T$ y el eje x positivo.

- * +0.33 si exponía una aplicación en el contexto del círculo de Mohr en 2D, ya sea diciendo que sirve para hallar los ángulos en los que actúan los esfuerzos axiales máximos y mínimo (explicando sus correspondientes ecuaciones) o para hallar los ángulos en los que actúan los esfuerzos cortantes máximo y mínimo (explicando sus correspondientes ecuaciones).
- * +0.33 si explicaba por qué $atan(\frac{y}{x}) \neq atan(\frac{-y}{-x})$, o alternativamente planteaba la discusión sobre los vectores en los diferentes cuadrantes y cómo atan() calcula la dirección, pero no el sentido.
- * +0.33 si explicaba cómo llamar correctamente en Python (en numpy o sympy) la función atan2(), además, de explicar su funcionamiento (por ejemplo, decir que es una función de dos argumentos).

«Cum cogitaveris quot te antecedant, respice quot sequantur» Séneca