

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL CARRERA DE SOFTWARE

CICLO ACADÉMICO: MARZO - JULIO 2025

EJERCICIOS GRUPO#4

I. PORTADA

Tema: Aplicaciones geométricas de la integral: Área,

volúmenes, superficies

Unidad de Organización Curricular: BÁSICA

Nivel y Paralelo: 2do Software "B" Alumnos participantes: Lizano Christian

Asignatura: Calculo Integral

Docente: Ing. Gabriel León, Mg.

II. INFORME DE GUÍA PRÁCTICA

2.1 Objetivos

General:

Aplicar los criterios analíticos de integración múltiple para el cálculo de áreas bajo una superficie en la resolución de ejercicios.

2.2 Listado de equipos, materiales y recursos

Listado de equipos y materiales generales empleados en la guía práctica:

- Inteligencia artificial
- TAC, Calculadora
- Texto de trabajo
- Hojas y esferos
- Software matemático (GeoGebra)
- Formulario.

TAC (Tecnologías para el Aprendizaje y Conocimiento) empleados en la guía práctica:

- ⊠Plataformas educativas
- ⊠Simuladores y laboratorios virtuales
- ☐ Aplicaciones educativas
- ☐ Recursos audiovisuales
- ☐ Gamificación
- ⊠Inteligencia Artificial
- Otros (Especifique):

2.3 Actividades por desarrollar

Utilizando plano Polar calcular el área por medio de integrales definidas:

1.
$$3 * \cos(5\theta)$$

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(x)]^2 d\theta$$

$$A = \frac{1}{2} \int_{\frac{11\pi}{6}}^{\frac{\pi}{6}} [3 * \cos(5\theta)]^2 d\theta$$

$$A = \frac{1}{2} \int_{\frac{11\pi}{6}}^{\frac{\pi}{6}} 3^2 * [\cos(5\theta)]^2 d\theta$$

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL CARRERA DE SOFTWARE

$$A = \frac{1}{2} * 9 \int_{\frac{11\pi}{6}}^{\frac{\pi}{6}} [\cos{(5\theta)}]^2 d\theta$$

$$A = \frac{9}{2} \int_{\frac{11\pi}{6}}^{\frac{\pi}{6}} \frac{1 + \cos(5 * 2\theta)}{2} d\theta$$

$$A = \frac{9}{4} \int_{\frac{11\pi}{6}}^{\frac{\pi}{6}} 1 + \cos(10\theta) \, d\theta$$

$$A = \frac{9}{4} \int_{\frac{11\pi}{6}}^{\frac{\pi}{6}} d\theta + \frac{9}{4} \int_{\frac{11\pi}{6}}^{\frac{\pi}{6}} \cos(10\theta) d\theta$$

$$A = \frac{9\theta}{4} + \frac{9}{4} \int_{\frac{11\pi}{6}}^{\frac{\pi}{6}} \cos(10\theta) d\theta$$

$$u = 10\theta$$
 $du = 10 * d\theta$ $d\theta = \frac{du}{10}$

$$A = \frac{9\theta}{4} + \frac{9}{4} \int_{\frac{11\pi}{6}}^{\frac{\pi}{6}} \cos(u) \frac{d\theta}{10}$$

$$A = \frac{9\theta}{4} + \frac{9}{40} \int_{\frac{11\pi}{\epsilon}}^{\frac{\pi}{6}} \cos(u) \, du$$

$$A = \frac{9\theta}{4} + \frac{9sen(10\theta)}{40} |_{\frac{11\pi}{6}}$$

$$A = \left[\frac{\frac{9\pi}{6}}{4} + \frac{9sen\left(\frac{10\pi}{6}\right)}{40} \right] - \left[\frac{\frac{9*11\pi}{6}}{4} + \frac{9sen\left(\frac{10*11\pi}{6}\right)}{40} \right]$$

$$A = \left[\frac{9\pi}{24} + \frac{9sen\left(\frac{5\pi}{3}\right)}{40} \right] - \left[\frac{99\pi}{24} + \frac{9sen\left(\frac{55\pi}{3}\right)}{40} \right]$$

$$A = [1.1986] - [13.1490]$$

$$A = |-11.9504|$$

$$A total = 11.9504 * 5$$

$$A total = 59.7521$$

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL CARRERA DE SOFTWARE

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(x)]^2 d\theta$$

$$A = \frac{1}{2} \int_0^{2\pi} [3 + 2sen(\theta)]^2 d\theta$$

$$A = \frac{1}{2} \int_{0}^{2\pi} 9 + 12sen(\theta) + 4[sen(\theta)]^{2} d\theta$$

$$A = \frac{9}{2} \int_0^{2\pi} d\theta + \frac{12}{2} \int_0^{2\pi} sen(\theta) \, d\theta + \frac{4}{2} \int_0^{2\pi} [sen(\theta)]^2 \, d\theta$$

$$A = \frac{9\theta}{2} - 6\cos(\theta) + 2\int_{0}^{2\pi} \frac{1 - \cos(2\theta)}{2} d\theta$$

$$A = \frac{9\theta}{2} - 6\cos(\theta) + \frac{2}{2} \int_{0}^{2\pi} 1 - \cos(2\theta) \, d\theta$$

$$A = \frac{9\theta}{2} - 6\cos(\theta) + \int_0^{2\pi} d\theta - \int_0^{2\pi} \cos(2\theta) d\theta$$

$$A = \frac{9\theta}{2} - 6\cos(\theta) + \theta - \int_0^{2\pi} \cos(2\theta)d\theta$$

$$u = 2\theta$$
 $du = 2d\theta$ $d\theta = \frac{du}{2}$

$$A = \frac{9\theta}{2} - 6\cos(\theta) + \theta - \int_0^{2\pi} \cos(u) \frac{du}{2}$$

$$A = \frac{9\theta}{2} - 6\cos(\theta) + \theta - \frac{1}{2} \int_0^{2\pi} \cos(u) du$$

$$A = \frac{9\theta}{2} - 6\cos(\theta) + \theta - \frac{sen(2\theta)}{2} \Big|_{0}^{2\pi}$$

$$A = \frac{11\theta}{2} - 6\cos(\theta) - \frac{sen(2\theta)}{2}\Big|_{0}^{2\pi}$$

$$A = \left[\frac{11(2\pi)}{2} - 6\cos(2\pi) - \frac{sen(4\pi)}{2} \right] - \left[\frac{11(0)}{2} - 6\cos(0) - \frac{sen(0)}{2} \right]$$

$$A = [28.4847] - [-6]$$

$$A = 11\pi = 34.4847$$

CARRERA DE SOFTWARE

3.
$$2 - 4\cos(\theta)$$

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(x)]^{2} d\theta$$

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [2 - 4\cos(\theta)]^{2} d\theta$$

$$A = \frac{1}{2} \int_{\alpha}^{\beta} 4 - 16\cos(\theta) + 16[\cos(\theta)]^{2} d\theta$$

$$A = \frac{1}{2} \int_{\alpha}^{\beta} 4 - 16\cos(\theta) + 16\left[\frac{1 + \cos(2\theta)}{2}\right] d\theta$$

$$A = \frac{4}{2} \int_{\alpha}^{\beta} d\theta - \frac{16}{2} \int_{\alpha}^{\beta} \cos(\theta) d\theta + \frac{16}{2} \int_{\alpha}^{\beta} \left[\frac{1 + \cos(2\theta)}{2}\right] d\theta$$

$$A = 2 \int_{\alpha}^{\beta} d\theta - 8 \int_{\alpha}^{\beta} \cos(\theta) d\theta + \frac{8}{2} \int_{\alpha}^{\beta} [1 + \cos(2\theta)] d\theta$$

$$A = 2 \int_{\alpha}^{\beta} d\theta - 8 \int_{\alpha}^{\beta} \cos(\theta) d\theta + 4 \int_{\alpha}^{\beta} d\theta + 4 \int_{\alpha}^{\beta} [\cos(2\theta)] d\theta$$

$$A = 2\theta - 8sen(\theta) + 4\theta + 4 \int_{\alpha}^{\beta} [\cos(2\theta)] d\theta$$

$$u = 2\theta du = 2d\theta d\theta = \frac{du}{2}$$

$$A = 2\theta - 8sen(\theta) + 4\theta + 4 \int_{\alpha}^{\beta} [\cos(u)] \frac{du}{2}$$

$$A = 2\theta - 8sen(\theta) + 4\theta + 4 \int_{\alpha}^{\beta} [\cos(u)] \frac{du}{2}$$

$$A = 2\theta - 8sen(\theta) + 4\theta + 4 \int_{\alpha}^{\beta} [\cos(u)] \frac{du}{2}$$

$$A = 2\theta - 8sen(\theta) + 2sen(2\theta)$$

$$Area externa = \left[\frac{6 * 5\pi}{3} - 8sen(\frac{5\pi}{3}) + 2sen(\frac{2 * 5\pi}{3})\right] - \left[\frac{6\pi}{3} - 8sen(\frac{\pi}{3}) + 2sen(\frac{2\pi}{3})\right]$$

$$Area\ externa = \left[\frac{6*5\pi}{3} - 8sen\left(\frac{5\pi}{3}\right) + 2sen\left(\frac{2*5\pi}{3}\right)\right] - \left[\frac{6\pi}{3} - 8sen\left(\frac{\pi}{3}\right) + 2sen\left(\frac{2\pi}{3}\right)\right]$$

$$Area\ externa = [31.0493] - [6.2100]$$

 $Area\ externa = 24.8392$

$$Area\ interna = \left[\frac{6*4\pi}{3} - 8sen\left(\frac{4\pi}{3}\right) + 2sen\left(\frac{2*4\pi}{3}\right)\right] - \left[\frac{6*2\pi}{3} - 8sen\left(\frac{2\pi}{3}\right) + 2sen\left(\frac{2*2\pi}{3}\right)\right]$$

$$Area\ interna = \left[24.8397\right] - \left[12.4200\right]$$

$$Area\ interna = 12.4196$$

$$Area\ externa\ sin\ area\ interna = 24.8392 - 12.4196$$

$$Area\ externa\ sin\ area\ interna = 12.4201$$

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL CARRERA DE SOFTWARE

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(x)]^2 d\theta$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{2}} [4 \operatorname{sen}(2\theta)]^2 d\theta$$

$$A = \frac{1}{2} \int_0^{\frac{\pi}{2}} 16[sen(2\theta)]^2 d\theta$$

$$A = \frac{16}{2} \int_0^{\frac{\pi}{2}} \frac{1 - \cos(4\theta)}{2} d\theta$$

$$A = \frac{16}{4} \int_0^{\frac{\pi}{2}} d\theta - \frac{16}{4} \int_0^{\frac{\pi}{2}} \cos{(4\theta)} d\theta$$

$$A = 4\theta - 4\int_0^{\frac{\pi}{2}} \cos(4\theta)d\theta$$

$$u = 4\theta$$
 $du = 4d\theta$ $d\theta = \frac{du}{4}$

$$A = 4\theta - 4\int_0^{\frac{\pi}{2}} \cos(u) \frac{du}{4}$$

$$A = 4\theta - \frac{4}{4} \int_0^{\frac{\pi}{2}} \cos(u) \, du$$

$$A = 4\theta - sen(4\theta)|\frac{\pi}{2}$$

$$A = \left[\frac{4\pi}{2} - sen\left(\frac{4\pi}{2}\right) \right] - [4(0) - 2sen(0)]$$

$$A = [2\pi - sen(2\pi)] + 2 sen(0)$$

$$A = [2\pi - sen(2\pi)] + 0$$

$$A = 6.1737$$

$$A total = 6.1737 * 4$$

$$A total = 8\pi = 24.6949$$

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL CARRERA DE SOFTWARE

CICLO ACADÉMICO: MARZO – JULIO 2025

5. Encontrar la longitud de arco de la curva $y = \frac{(x-2)^2}{6}$ en un intervalo (-2, 2)

$$L = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^{2}} dx$$

$$L = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^{2}} dx$$

$$f(x) = \frac{(x-2)^{2}}{6}$$

$$f'(x) = \frac{2}{6} * (x-2) * 1$$

$$f'(x) = \frac{x-2}{3}$$

$$L = \int_{-2}^{2} \sqrt{1 + (\frac{x-2}{3})^{2}} dx$$

$$L = \int_{-2}^{2} \sqrt{1 + \frac{x^{2} - 4x + 4}{9}} dx$$

$$L = \int_{-2}^{2} \sqrt{\frac{9 + x^{2} - 4x + 4}{9}} dx$$

$$L = \int_{-2}^{2} \sqrt{\frac{x^{2} - 4x + 13}{9}} dx$$

$$L = \int_{-2}^{2} \sqrt{\frac{x^{2} - 4x + 13}{9}} dx$$

$$L = \frac{1}{3} \int_{-2}^{2} \sqrt{(x-2)^{2} + 9} dx$$

$$u = x - 2 \quad du = dx$$

Aplicando la formula directa obtenemos:

$$L = \frac{1}{3} \left[\frac{u}{2} \sqrt{u^2 + 9} + \frac{9}{2} \ln(u + \sqrt{u^2 + 9}) \right]$$
$$L = \left[\frac{u}{6} \sqrt{u^2 + 9} + \frac{9}{6} \ln(u + \sqrt{u^2 + 9}) \right]$$

 $L = \frac{1}{3} \int_{0}^{2} \sqrt{u^2 + 9} \, du$

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL CARRERA DE SOFTWARE

CICLO ACADÉMICO: MARZO – JULIO 2025

Reemplazamos el valor de u:

$$L = \left[\frac{x-2}{6} \sqrt{(x-2)^2 + 9} + \frac{3}{2} \ln((x-2) + \sqrt{(x-2)^2 + 9}) \right]$$

Evaluamos la integral en los puntos (-2, 2):

$$L = \left[\frac{2-2}{6}\sqrt{(2-2)^2+9} + \frac{3}{2}\ln((2-2)+\sqrt{(2-2)^2+9})\right] \\ - \left[\frac{-2-2}{6}\sqrt{(-2-2)^2+9} + \frac{3}{2}\ln((-2-2)+\sqrt{(-2-2)^2+9})\right] \\ - \left[\frac{-2}{6}\sqrt{(-2-2)^2+9} + \frac{3}{2}\ln((-4)+\sqrt{(-2-2)^2+9})\right] \\ - \left[\frac{-4}{6}\sqrt{(-4)^2+9} + \frac{3}{2}\ln((-4)+\sqrt{(-4)^2+9})\right] \\ - \left[\frac{-4}{6}\sqrt{(-4)^2+9} + \frac{3}{2}\ln((-4)+\sqrt{(-4)^2+9})\right] \\ L = \left[\frac{3}{2}\ln(3)\right] - \left[\frac{-4}{6}\sqrt{16+9} + \frac{3}{2}\ln((-4)+\sqrt{16+9})\right] \\ L = \left[\frac{3}{2}\ln(3)\right] - \left[\frac{-4}{6}(5) + \frac{3}{2}\ln((-4)+\sqrt{25})\right] \\ L = \left[\frac{3}{2}\ln(3)\right] - \left[\frac{-4}{6}(5) + \frac{3}{2}\ln((-4)+5)\right] \\ L = \left[\frac{3}{2}\ln(3)\right] - \left[\frac{-20}{6} + \frac{3}{2}\ln(1)\right] \\ L = \left[\frac{3}{2}\ln(3) - \ln(1)\right] + \frac{10}{3} \\ L = \frac{3}{2}[\ln(3) - \ln(1)] + \frac{10}{3} \\ L = \frac{3}{2}[\ln(3)] + \frac{10}{3} \\ L = \frac{3}{2}[\ln(3)] + \frac{10}{3} \\ L = \frac{3 \ln(3)}{2} + \frac{10}{3} \\ L = \frac{3 \cdot (1.0986)}{2} + 3.3333 \\ L = 1.6479 - 3.3333 \\ L = 4.9812$$

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL CARRERA DE SOFTWARE

CICLO ACADÉMICO: MARZO - JULIO 2025

- 6. Área, volumen y centroide, dada la región acotada por las gráficas de $y = \ln(x)$ con límites a=1 y b=e
 - Calcular el área de la región
 - El volumen del solido generado al girar la región alrededor del eje de las x
 - El volumen del solido generado al girar la región alrededor del eje de las y
 - El centroide de la región
- 7. Encontrar el volumen del solido formado al hacer girar la región acotada por las funciones $y^2 = x$, x = 2y alrededor del eje de las y.

2.4 Resultados obtenidos

El estudiante al concluir la práctica será capaz de Identificar fórmulas y procesos de la integral definida para la resolución de problemas geométricos en el plano y espacio

2.5 Habilidades blandas empleadas en la práctica

\boxtimes	Liderazgo
X	Trabajo en equipo
	Comunicación asertiva
	La empatía
\boxtimes	Pensamiento crítico
	Flexibilidad
	La resolución de conflictos
	Adaptabilidad
\boxtimes	Responsabilidad

2.6 Conclusiones

Los estudiantes desarrollaron destrezas para la resolución de ejercicios relacionados con problemas sobre aplicaciones geométricas de las integrales

2.7 Anexos