《嵌入式系统》课程大纲

一、课程名称:嵌入式系统

二、课程性质:选修

三、学时与学分: 32 学时, 2 学分

四、课程先导课:数字电路与逻辑设计、汇编语言程序设计、高级语言程序设计、操作系统、组成原理、数据结构等

五、课程简介

介绍基本的嵌入式系统开发方法、ARM 体系结构、嵌入式处理器结构、嵌入式操作系统特点、实时系统与实时操作系统、Android 操作系统框架、Java 开发等;让学生掌握一个典型嵌入式系统(智能手机、Android 系统)的开发过程,包括:硬件、操作系统、驱动、图形系统、上层应用的开发过程。通过实践,学习嵌入式开发的基本方式,包括:开发嵌入式操作系统核心、开发驱动程序、开发嵌入式图形系统、开发应用程序、综合设计。

六、课程目标

通过相关教学活动,帮助学生理解嵌入式系统,掌握嵌入式系统的开发方法。 通过自己动手,建立起一个可运行应用程序的嵌入式系统,提升学生嵌入式系统 的设计开发能力。

课程的具体目标包括:

目标 1: 深刻理解嵌入式系统,包括硬件组成,软件组成,嵌入式操作系统 Linux、Android 等;

目标 2: 深刻理解嵌入式系统开发方法,开发工具,开发流程,与桌面系统开发的区别等;

七、课程目标对毕业要求的支撑关系

支撑的毕业要求二级指标点	对应课程目标
1.3 能将软硬件知识、相关工程知识和模型方法用于推演和分析计算	D 1 1
机复杂工程问题	目标 1
1.4 能将软硬件知识、相关工程知识和模型方法用于计算机复杂工程	□ 1 1
问题解决方案进行比较和综合	目标 1
3.1 掌握与计算机复杂工程问题有关的工程设计和软硬件产品开发全	
周期、全流程的基本设计/开发方法和技术,了解影响设计目标和技	目标 2
术方案的多种因素	
12.1 能认识到计算机技术日新月异的发展特点,认同自主学习和	U += 2
终身学习的必要性	目标 2

八、教学设计及对课程目标的支持

第一章 硬件部分

1.教学目标

- 1) 嵌入式系统的定义: 学习嵌入式系统的特点, 与 PC 系统的区别;
- 2) 嵌入式系统的组成: 学习常用嵌入式系统硬件组成, 主要器件的特性;
- 3) CISC 与 RISC 系统结构: 学习 CISC 与 RISC 系统区别,以及嵌入式处理器的 RISC 特性;
- 4) 微控制器与微处理器: 学习嵌入式处理器的分类,及各类别之间的联系与区别:
 - 5) 边界扫描测试技术 JTAG: 学习嵌入式系统的调试手段 JTAG 技术;
 - 6) 嵌入式系统技术发展趋势: 讨论嵌入式系统发展趋势。

本章教学支持课程目标1。

2.教学重点

1) 嵌入式系统的定义

这是嵌入式系统课程的基础,要求学生能深刻理解嵌入式系统与常见 PC 系统的区别,并熟悉生活中可以接触到的各种嵌入式系统。

2) 微控制器与微处理器

熟悉嵌入式处理器的分类,对比各种嵌入式处理器的特点,结合日常生活,进行嵌入式处理器分类实践。

3.教学难点

1) 嵌入式系统与 PC 系统的区别

理解嵌入式系统与经常接触的 PC 系统的主要区别。

4.教学环节设计

围绕教学重点和教学难点,综合应用课堂讲授与讨论、课外实践、课外阅读 等教学形式。

1) 讨论

围绕不同嵌入式系统的特点、分类、区别,结合 PC 系统与嵌入式系统的特点对比分析等问题展开。

2) 课外实践

要求学生调研日常接触的嵌入式系统,对其处理器进行分类,将分析实践的结果应用于本章的课堂讨论。

3) 课外阅读

阅读关于嵌入式系统发展历史的文献。

第二章 软件部分

1.教学目标

- 1) ARM 体系结构: 学习 ARM 体系结构的发展、版本、特点、设计方法;
- 2) ARM 编程模型: 学习 ARM 处理器的工作模式、寄存器、中断过程、中断优先级、处理器工作原理等;
 - 3) ARM 指令集: 学习 ARM 的指令;
- 4)实时操作系统:学习实时操作系统的定义、特点,以及影响操作系统实时性的因素等;
 - 5) 微内核和一体化内核: 学习微内核的特点, 与一体化内核进行对比分析;
 - 6) 商用嵌入式操作系统:介绍常见商用嵌入式操作系统。

本章教学支持课程目标1、目标2。

2. 教学重点

1) ARM 体系结构与编程模型

由于在嵌入式系统中使用的广泛性,ARM 体系结构是嵌入式系统课程的核心内容,要求学生能深刻理解并掌握 ARM 体系结构的特征,以及其与编程相关的知识。

2) 实时操作系统

掌握实时操作系统的定义、特点,及对其实时性能产生影响的因素;了解其 在嵌入式系统中的作用。

3.教学难点

1) ARM 编程模型

理解 ARM 体系结构的工作原理,包括处理器工作模式、中断过程、寄存器的用法、基本编程语言。

4. 教学环节设计

围绕教学重点和教学难点,综合应用课堂讲授与讨论、课外实践、课外阅读 等教学形式。

1) 讨论

围绕不同体系结构的特点,列举 ARM 体系结构的特点、优点。

2) 课外实践

要求学生自己学习 ARM 体系结构书籍,与之前学过的 IA、MIPS 体系结构进行对比,找出 ARM 体系结构的优点。

3) 课外阅读

阅读关于ARM、实时操作系统的发展历史的文献。

第三章 Linux&Android 部分

1.教学目标

- 1) 嵌入式 Linux 概述: 学习嵌入式 Linux 操作系统的特点;
- 2) 嵌入式 Linux 开发: 学习嵌入式 Linux 的开发过程与方法;
- 3) Android 概述: 学习 Android 操作系统的特点;
- 4) Android 开发: 学习 Android 的开发过程与方法。

本章教学支持课程目标1、目标2。

2.教学重点

1) 嵌入式 Linux 的开发过程与方法

由于在嵌入式系统中使用的广泛性,嵌入式 Linux 是嵌入式系统课程的核心内容,要求学生能深刻理解并掌握嵌入式 Linux 操作系统的特征,以及使用嵌入式 Linux 进行开发的方法。

2) Android 的开发过程与方法

由于在嵌入式系统中使用的广泛性,Android 也是嵌入式系统课程的核心内容,要求学生能深刻理解并掌握 Android 操作系统的特征,以及使用 Android 进行开发的方法。

3.教学难点

1) 嵌入式 Linux 的开发过程与方法

由于嵌入式开发与学生之前掌握的所有开发方式存在较大的不同,所以需要学生深刻理解嵌入式 Linux 的开发过程与方法,掌握基本的开发模式,了解 Linux 操作系统的基本原理,掌握驱动程序开发的方法,掌握基本的开发工具。

4. 教学环节设计

围绕教学重点和教学难点,综合应用课堂讲授与讨论、课外实践、课外阅读等教学形式。

1) 讨论

围绕嵌入式 Linux、Android 开发方法,对比二者相同与不同的地方,同时与过往学习的开发方式进行对比讨论。

2) 课外实践

要求学生熟悉交叉编译器等工具,尝试编译嵌入式 Linux 核心。

3) 课外阅读

阅读关于 Linux 核心原理、Android 操作系统框架原理的文献。

第四章 实验部分

1.教学目标

- 1) 硬件平台:介绍实验的硬件平台,包括开发机、嵌入式板子;
- 2) 处理器结构: 学习嵌入式板子的处理器的架构;
- 3) 实验注意事项: 学习嵌入式实验的注意事项;
- 4) 软件平台: 学习实验需要使用的操作系统、开发工具、开发环境;
- 5) 实验内容: 学习每一个实验的步骤。目前实验包括:

实验一:核心编译,系统烧录,简单应用程序开发;

实验二: Linux Framebuffer 界面显示开发: 点、线、矩形区域显示;

实验三:图片显示(不透明图片和半透明图片);文本显示(矢量字体);

实验四: Linux 多点触摸开发;

实验五/六: 蓝牙无线互联通讯/综合实验:

本章教学支持课程目标 2。

2. 教学重点

1) 嵌入式实验的软硬件平台

熟悉实验的硬件环境:硬件平台、处理器架构、各种设备及其连接方式;熟悉实验的软件环境:操作系统、开发工具、开发环境。

2) 嵌入式实验的步骤

学习嵌入式实验过程,逐步理解嵌入式实验的每一个步骤,包括硬件特性,使用的工具,实验的方式,代码流程,效果展示,考察要求等。

3.教学难点

1) 嵌入式实验的软硬件环境及步骤

由于嵌入式开发与学生之前掌握的所有开发方式存在较大的不同,所以需要学生深刻理解嵌入式实验的软硬件环境、常用工具、一般步骤等。

4.教学环节设计

围绕教学重点和教学难点,综合应用课堂讲授与讨论、课外实践、课外阅读 等教学形式。

1) 讨论

围绕嵌入式开发使用的软硬件及工具,对比二者相同与桌面系统开发不同的地方,同时与过往学习的开发方式进行对比讨论。

2) 课外实践

要求学生熟悉嵌入式开发软硬件环境、尝试使用自己的手机系统开发。

3)课外阅读

阅读关于 Linux、Android 操作系统框架原理及开发的文献。

九、教与学

1.教学方法

主要的教学环节包括课堂授课、研讨、实验等环节。本课程的教学设计特色主要体现在如下三个方面:

- 1)基于问题的教学方法。将围绕课程教学的重、难点,精心设计若干探究性问题,引导同学深入思考,加深所学重、难点知识的理解和应用。
- 2)强调理论与实践相结合。强调理论与实践相结合,是软硬件结合类课程最基本的教学方法;将学生在操作系统、组成原理等课程学到的内容,与嵌入式实践相结合,在实验的过程中,温习并强化前面课程所学的知识,实现理论与实践的结合。
- 3)强调动手实践。该课程的教学与独立设置的课程实验相配合,实验内容与理论课程教学进度同步,通过实验加深对所学理论知识的理解,提升学生应用理论知识解决复杂问题的能力,通过实验也可以检验理论课程的学习效果。

2.学习方法

"嵌入式系统"是一门理论性、技术性和实践性都很强的课程,学习过程中,首先要注重对课程基本理论的钻研,要引导学生积极参与课堂讨论、深刻理解原理和技术本质;其次,要站在系列课程的角度学习,将操作系统、组成原理、编译原理、编程语言等科目串联起来,实现嵌入式系统的学习和掌握;第三,独立完成课程配套开设的独立实验,通过实验,加强对课程理论知识的理解,同时,训练学生发现问题、分析问题和解决问题的能力。

十、学时分配

序号	主要内容	学时分配
1	第一章 硬件部分	2
2	第二章 软件部分	2
3	第三章 Linux&Android	2
4	第四章 实验部分讲解	2
5	实验部分	24
	总计	32

十一、课程考核与成绩评定

1. 课程成绩构成

课程最终成绩由六次实验成绩综合而成,各部分成绩的比例如下:

1)实验报告成绩: 15%。考察学生对于实验过程的理解,以及书写实验报告的能力。

2)实验成绩:85%。四次实验,每次10%;两次综合实验,一共40%。考察学生每次实验做的质量,通过查看实验结果、代码,同时对学生过程进行提问,综合进行评分。

课程考核成绩评定如表1所示。

表 1 嵌入式系统课程考核与成绩评定

课程目标	考核与评价方式及成绩比例(约)		
冰性日初	实验报告	实验	
1	5	35	
2	10	50	

2.考核与评价标准

1) 评价标准

表 2 嵌入式系统成绩评定

评价标准					
优秀	良好	中-及格	不及格		
按时完成实验,质量	按时完成实验,实验	按时完成实验,实践	未按时完成实验,实		
较高,实验报告论述	报告论述清晰,质量	报告基本准确,有缺	验报告欠准确,有缺		
清晰,质量较高,层	较高,层次分明,全	勤。	勤。		
次分明,全勤。	勤。				

嵌入式系统课程组 2015年6月制定 2019年12月修订 2021年4月修订 2021年10月修订