Title

D. Zack Garza

Wednesday 30th September, 2020

Contents

1 Wednesday, September 30

1

1 Wednesday, September 30

Recall that we had a dominant weight $\lambda \in X(T)_+$ with

where we have a module with both a good and a Weyl filtration.

If $B \subseteq P \subseteq G$ with P parabolic and $M \in \text{Mod}(G)$, we have a "transfer theorem": maps

$$H^n(G;M) \xrightarrow{\text{Res}} H^n(P;M) \xrightarrow{\text{Res}} H^n(B;M)$$

induced by restrictions which are isomorphisms.

Proposition 1.1(?).

Let $M \in \text{Mod}(P)$ with $P \supseteq B$.

- a. If dim $M < \infty$ then dim $H^n(P; M) < \infty$.
- b. If $H^j(P; M) \neq 0$ then there exists a weight λ of M such that $-\lambda \in \mathbb{N}\Phi^+$ and $\mathrm{ht}(-\lambda) \geq j$.

Part (a) is proved in the book, we won't show it here.

Proof (of part b).

Suppose $H^j(P; M) \neq 0$, then we have an injective resolution I_* for k. Tensoring with M yields an injective resolution for M,

$$0 \to M \to I_0 \otimes M \to I_1 \otimes M \to \cdots$$
.

Since $H^j(B;M) \neq 0$, we know that the cocycles $\hom_B(k,I_j \otimes M) \neq 0$ and thus $\hom_T(k,I_j \otimes M) \neq 0$.