Porównanie wydajności i możliwości współczesnych silników do gier komputerowych

Krzysztof Rudnicki

Promotor

dr inż. Michał Chwesiuk

7 marca 2024

Plan prezentacji

- Definicje
- Narzędzia
- Žródła

Gra komputerowa

Aplikacja dostępna na platformie "Steam"oznaczona typem "Game"

Silnik do gier

Oprogramowanie zaprojektowane i stworzone do kreacji gier komputerowych

Nowoczesne

Ponad 1000 gier w tej dekadzie na platformie "Steam"

₩	
Technologies	
③ SteamDB detects used tech	
Engine.	
Engine.Unity	24964
Engine.Unreal	7569
Engine.GameMaker	2631
Engine.RPGMaker	1683
Engine.PyGame	1550
Engine.RenPy	1520
Engine.Godot	1032
Engine.Cocos	391
Engine.XNA	355
Engine.KiriKiri	178

Wybrane silniki - start

Ren'Py

Wybrane silniki

- Wyeliminowanie nie generycznych -Ren'Py, RPGMaker
- Wybór najpopularniejszych Unity, Unreal

Wydajność silnika

- Klatki na sekundę (FPS)
- Zużycie CPU, GPU, RAM i VRAM
- Liczba draw calls
- Czas ładowania assetów
- Czas odpowiedzi na interakcję gracza

Możliwości Silnika

- Renderowanie grafiki
- Silnik Fizyczny
- Multiplatformowość (VR)
- Skryptowanie logiki gier (AI)
- Gry online
- Sklepy z assetami

Nsight - Analiza FPS

Frame duration (Target FPS: 30 Hz)

Showing 108 of 2113 CPU frames | avg 4.08ms | min 2.82ms | max 6.98ms | FPS 245.09 | 99%<6.64ms

CPU frame duration

GeForce RTX 2080 Ti

Nsight - Analiza FPS

Nsight - Analiza FPS

FPU VRAM (0000:01:00.0 - Quadro T1000 0) (Y axis 3.51 GiB)

GPU WDDM SYSMEM (0000:01:00.0 - Quadro T1000 0) (Y axis 196.35 MiB)

Jak porównywać?

- Stworzenie gry na obu
- Porównywanie istniejących gier
- Porównanie samych edytorów

Wybór gatunku

FPS:

- Wystarczająco skomplikowany
- Grafika
- Fizyka
- Klasyczny benchmark

Problem

Inklinacja Silnika

- $\frac{2478}{39713} \approx 6\%$ gier Unity to FPS
- ullet $\frac{1765}{11158} pprox 15\%$ gier Unreal to FPS

Źródło: steamdb.info

Wybór gatunku

Bullet hell:

- Wystarczająco skomplikowany
- Grafika
- Czas jest ważny

Wyzwania

- Sprzęt
- Umiejętności
- Podobne wersje silnika
- Inklinacja Silnika (3% Unity, 2.4% Unreal)

Ocena łatwości użycia

- Dokumentacja
- Intuicyjność
- Materialy
- Zasoby (Assety)
- Dostępne funkcje

Po stworzeniu

Przejść obie gry, monitorując używając Nvidia Nsight i porównać wyniki

Źródła

- https://steamdb.info/
- https://docs.nvidia.com/nsightsystems
- An Overview Study of Game Engines, Faizi Noor Ahmad
- Game Engine Architecture, Jason Gregory

Źródła obrazów

- Crysis kanał youtube Thronefull
- BulletHell kanał youtube Beat that boss