FINAL - ÁLGEBRA

UNIDAD I: Cuerpos

<u>Definición</u>: Un **cuerpo** es un conjunto *K* con 2 operaciones,

ambas cerradas en *K*:

$$+: K \times K \rightarrow K (suma)$$

•:
$$K \times K \rightarrow K$$
 (multiplicación)

Dichas operaciones cumplen:

- i) La suma es **asociativa**. $(x + y) + x = x + (y + z), \forall x, y, z \in K$.
- ii) Existe $0 \in K$ tal que x + 0 = x (**neutro para la suma**), $\forall x \in K$.
- iii) Existe $(-x) \in K$ tal que x + (-x) = 0 (**opuesto**), $\forall x \in K$.
- iv) La suma es **conmutativa**. x + y = y + x, $\forall x, y \in K$.
- v) La multiplicación es **asociativa**. $(xy)z = x(yz), \forall x, y, z \in K$.
- vi) Existe $1 \in K$, $1 \neq 0$, tal que $1 \cdot x = x$ (neutro para la multiplicación). $\forall x \in K$.
- vii) Si $x \neq 0$, existe $x^{-1} \in K$ tal que $x \cdot x^{-1} = 1$ (**inverso**), $\forall x \in K$.
- viii) La multiplicación es **conmutativa**. xy = yx, $\forall x, y \in K$.
- ix) La multiplicación es **distributiva respecto a la suma**. $x(y+z)=xy+xz, \ \forall x,y,z\in K.$

Propiedades de los cuerpos:

- 1) El 0 es único. Si $0' \in K$, $0' + x = x \Rightarrow 0' = 0$. $\forall x \in K$
- 2) El opuesto de cualquier $x \in K$ es único. Si $\exists y \in K$ tal que $x + y = 0 \Rightarrow y = (-x)$.
- 3) El 1 es único. Si $1' \in K$, $1' \cdot x = x \Rightarrow 1' = 1$. $\forall x \in K$
- 4) El inverso de $x \in K$, $x \neq 0$ es único. Si $\exists y \in K$ tal que $xy = 1 \Rightarrow y = x^{-1}$.
- 5) Dados $x, y \in K$, se tiene que $xy = 0 \Leftrightarrow x = 0$ ó y = 0.

▶ Afirmación: \mathbb{Z}_n es un cuerpo $\Leftrightarrow n$ es primo.

Dem:

 (\Rightarrow) Supongamos que n no es primo. Entonces n=ab, 1 < a, b < n.

Luego $\bar{a}, \bar{b} \neq 0$ en \mathbb{Z}_n y $\bar{a}\bar{b} = \bar{a}\bar{b} = \bar{n} = 0$, es un absurdo. Luego n debe ser primo.

(⇐) Consideremos $m \in \mathbb{Z}_n$ con m < n. Por ser n primo tenemos que m y n son primos entre sí y por lo tanto existen enteros tales que 1 = am + bn, entonces 1 = am + bn = am + 0n = am. Luego m tiene inverso en \mathbb{Z}_n . \square

Subcuerpos

<u>Definición</u>: Un **subcuerpo** de K es un conjunto $K' \subseteq K$ que a su vez es cuerpo respecto de + y •. Es decir, si se verifican:

- a) $0,1 \in K'$.
- b) $x + y, xy \in K'$.
- c) $Si \ x \in K' \Rightarrow (-x) \in K'$.
- d) Si $x \in K'$, $x \neq 0 \Rightarrow x^{-1} \in K'$.

Ejemplos:

- 1) \mathbb{R} , +,• es un cuerpo.
- 2) \mathbb{C} , +,• es un cuerpo.
- 3) \mathbb{Q} , +,• es un cuerpo.
- Z y N no son cuerpos (no está definido el inverso).

Denotamos por \bar{a}

 $a \equiv x (n)$

UNIDAD II: Sistemas de ecuaciones lineales y matrices

Definición: Un sistema de m ecuaciones, n incógnitas y a coeficientes es un sistema en el cuerpo K del tipo:

$$(*) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots & \text{donde } a_{ij} \in K, b_j \in K \text{ (i filas, j columnas)}. \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

<u>Obs</u>:

- Cada n-upla $(x_1, ..., x_n)$ que satisface las ecuaciones de (*) se dice **solución del sistema.**
- Si $b_1 = \cdots = b_m = 0$, el sistema se dice **homogéneo**.
- Para resolver el sistema, se busca eliminar variables y escribirlas en términos de las otras.
- **Propiedad**: El conjunto de soluciones de un sistema homogéneo es subespacio de K^n .

<u>Dem</u>: Si $m=1, W=\{(x_1, ..., x_n) \in K^n: a_1x_1+\cdots+a_nx_n=0\}$ es un subespacio $(W \neq \emptyset$, pues $(0, ..., 0) \in W$ es solución)

Sean $v = (x_1, ..., x_n)$ y $w = (x_1', ..., x_n'), v, w \in W$. Entonces para cada $\lambda \in K$ se cumple que

$$v + \lambda w = (x_1 + \lambda x_1', ..., x_n + \lambda x_n') \in W$$
, ya que:

$$a_1(x_1 + \lambda x_1') + \dots + a_n(x_n + \lambda x_n') = (a_1x_1, \dots, a_nx_n) + \lambda(a_1x_1', \dots, a_nx_n')$$

Si m > 1, el conjunto de todas las soluciones es

$$W = \{(x_1, \dots, x_n) \in K^n : a_{11}x_1 + \dots + a_{mn}x_n = 0\} = \bigcap_{i=1}^m \{(x_1, \dots, x_n) \in K^n : a_{i1}x_1 + \dots + a_{in}x_n = 0\}$$

Que es un subespacio por ser intersección de subespacios.

<u>Definición</u>: Dos sistemas de ecuaciones lineales de n incógnitas son **equivalentes** si tienen el mismo conjunto de soluciones.

Operaciones que nos dan sistemas equivalentes

- 1) Intercambiar el orden de las ecuaciones.
- 2) Reemplazar una ecuación por ella misma multiplicada por un escalar $\neq 0$.
- 3) Reemplazar la i-ésima ecuación por ella misma sumada a la j-ésima multiplicada por algún escalar ≠ 0.
- 4) Quitar (o agregar) una ecuación trivial.

Matrices

<u>Definición</u>: Una **matriz** $m \times n$ sobre un cuerpo K es una función

 $A: \{(i, j): 1 \le i \le m, 1 \le j \le n\} \to K$. Se representa mediante un arreglo rectangular:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \qquad \qquad \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \text{(Sistema homogéneo)}$$

Cada elemento a_{ij} se dice la entrada (i, j). El conjunto de todas las matrices $m \times n$ se denota $M_{m \times n}(K)$.

Operaciones elementales por fila (e)

Son operaciones que nos devuelven matrices equivalentes.

- 1) Intercambiar filas.
- 2) Multiplicar una fila por un escalar no nulo.
- 3) Reemplazar la fila i por ella misma sumada a la fila j multiplicada por un escalar no nulo.

<u>Definición</u>: Dos matrices A y B se dicen equivalentes por fila si B se obtiene de A luego de un número finito de operaciones elementales por fila. Se denota $A \sim B$.

- Si $A \sim B \Rightarrow$ los sistemas homogéneos asociados a A y B son equivalentes y tienen exactamente las mismas soluciones.
- La equivalencia por filas es una relación de equivalencia:
 - i) $A \sim A$
 - ii) $A \sim B \Leftrightarrow B \sim A$
 - iii) Si $A \sim B \ v \ B \sim C \Rightarrow A \sim C$

<u>Definición</u>: Una matriz se dice **escalonada reducida por filas** (MERF) si:

- a) El primer elemento no nulo de cada fila es =1.
- b) Cada columna que tiene un 1 como en a) tiene todos sus elementos restantes =0.
- c) Las filas nulas están al final
- d) Si las filas 1, ..., r son las no nulas con el 1 en las posiciones k_1 , ..., k_r entonces $k_1 < k_2 < \cdots < k_r$.
- **Teorema**: Toda matriz $A \in M_{m \times n}(K)$ es equivalente a una M.E.R.F.
- **Teorema**: Si $A \in M_{m \times n}(K)$ y m < n (si hay más incógnitas que ecuaciones) \Rightarrow el sistema homogéneo asociado tiene soluciones no triviales.

<u>Dem</u>: Sabemos que A~B donde B es una MERF. También sabemos que el sistema asociado a B tiene las mismas soluciones. Entonces si B tiene r filas no nulas, hay r variables principales. Como $r \le m < n$ hay $n - r \ge 1$ variables libres. Si alguna de las n - r incógnitas es no nula, obtenemos una solución no trivial del sistema asociado a B y por lo tanto de A. \Box

Sea S el subespacio de soluciones del sistema homogéneo asociado a A. Entonces el conjunto de soluciones de (*) es $p + S = \{p + s : s \in S\}$

<u>Dem</u>: Llamemos M el conjunto de soluciones de (*). Sea $m \in M \subseteq K^n$, $m = (m_1, ..., m_n)$, entonces:

$$m = p + (m - p) \Rightarrow (m - p) = (m_1 - p_1, ..., m_n - p_n)$$
. Veamos que $s = (m - p) \in S$ $a_{i1}(m_1 - p_1) + \cdots + a_{in}(m_n - p_n) = (a_{i1}m_1, ..., a_{in}m_n) - (a_{i1}p_1, ..., a_{in}p_n) = b_i - b_i = 0$ $\forall i = 1, ..., m. \quad \therefore M \subseteq p + S.$

Tomemos $z \in p + S$, $z = (p_1 + s_1, ..., p_n + s_n)$; $(s_1, ..., s_n) \in S$ tq z es solución de (*)

$$a_{i1}(p_1 + s_1) + \dots + a_{in}(p_n + s_n) = (a_{i1}p_1, \dots, a_{i1}p_n) - (a_{i1}p_1, \dots, a_{in}p_n) = b_i - b_i = 0$$

 $\forall i = 1, ..., m$.

Luego, $p + S \subseteq M$?

Operaciones con matrices

Matrices canónicas y matriz identidad

• Matriz canónica: Se denota $E^{kl} \in K^{m \times n}$, $1 \le k \le m$, $1 \le l \le n$. Se define como:

$$(E^{kl})_{ij} = \begin{cases} 1, & i = k \land j = l \\ 0, & i \neq k \lor j \neq l \end{cases}$$

Ejemplo:
$$K^{2\times 2} \Rightarrow E^{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E^{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E^{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E^{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

• Matriz Identidad: Se denota Id_n . Se define como:

$$(Id_n)_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Ejemplo:
$$Id_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $Id_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

<u>Definición</u>: Suma y multiplicación por escalares de matrices.

$$+: K^{m\times n}\times K^{m\times n}\to K^{m\times n}, (A+B)_{ij}=A_{ij}+B_{ij}\;\forall\; A,B\in K^{m\times n}.$$

•:
$$K \times K^{m \times n} \to K^{m \times n}$$
, $(\lambda A)_{ij} = \lambda A_{ij} \ \forall \ \lambda \in K, A \in K^{m \times n}$.

<u>Definición</u>: Sea $A \in K^{m \times n}$, $B \in K^{n \times p}$. El **producto de A con B** es la matriz $C \in K^{m \times p}$:

$$(C)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}, \qquad 1 \le i \le m \land 1 \le j \le p.$$

Propiedades del producto entre matrices

• Asociatividad: $\forall A \in K^{m \times n}, B \in K^{n \times p} \ y \ C \in K^{p \times r} : (AB)C = A(BC)$

<u>Dem</u>: Para cada $1 \le i \le m$, $1 \le j \le r$ tenemos que:

$$((AB)C)_{ij} = \sum_{k=1}^{p} (AB)_{ik} C_{kj} = \sum_{k=1}^{p} \left(\sum_{l=1}^{n} A_{il} B_{lk}\right) C_{kj}$$

$$(A(BC))_{ij} = \sum_{l=1}^{n} A_{il}(BC)_{lj} = \sum_{l=1}^{n} A_{il} \left(\sum_{k=1}^{p} B_{lk} C_{kj}\right) \text{Notar que} ((AB)C)_{ij} = \sum_{k=1}^{p} \sum_{l=1}^{n} A_{il} B_{lk} C_{kj} = (A(BC))_{ij} \ \mathbb{Z}$$

• <u>Identidad</u>: Para cualquier matriz $A \in K^{m \times n}$, se tiene que $Id_m A = A = AId_n$. <u>Dem</u>: Para cada $1 \le i \le m, 1 \le j \le n$ tenemos que:

$$(Id_m A)_{ij} = \sum_{k=1}^m (Id_m)_{ik} A_{kj} = 0 A_{1j} + \dots + 1 A_{ij} + 0 A_{(i+1)j} + \dots = A_{ij} . \text{Luego, } Id_m A = A$$

$$(AId_n)_{ij} = \sum_{k=1}^m A_{ik} (Id_n)_{kj} = A_{i1} 0 + \dots + 1 A_{ij} + A_{i(j+1)} 0 + \dots = A_{ij} . \text{Luego, } AId_n = A \ \square$$

• <u>Distributividad</u>: $\forall A, A' \in K^{m \times n}, B, B' \in K^{n \times p}$ se tiene que (A + A')B = AB + A'B y A(B + B') = AB + AB'.

<u>Dem</u>: Para cada $1 \le i \le m$, $1 \le j \le n$ tenemos que:

$$((A + A')B)_{ij} = \sum_{k=1}^{n} (A + A')_{ik} B_{kj} = \sum_{k=1}^{n} (A_{ik} + A'_{ik}) B_{kj}$$

$$= \sum_{k=1}^{n} A_{ik} B_{kj} + A'_{ik} B_{kj} = \sum_{k=1}^{n} A_{ik} B_{kj} + \sum_{k=1}^{n} A'_{ik} B_{kj} = (AB)_{ij} + (A'B)_{ij}$$
Luego, $(A + A')B = AB + A'B$. Análogamente se obtiene que $A(B + B') = AB + AB'$. \square

• <u>Conmutatividad con escalares</u>: $\forall \lambda \in K, A \in K^{m \times n}, B \in K^{n \times p}$, se tiene que $\lambda(AB) = (\lambda A)B = A(\lambda B)$.

<u>Dem</u>: Para cada $1 \le i \le m$, $1 \le j \le n$ tenemos que:

$$\left(\lambda(AB)\right)_{ij} = \lambda(AB)_{ij} = \lambda\left(\sum_{k=1}^{n} A_{ik}B_{kj}\right) = \sum_{k=1}^{n} (\lambda A_{ik})B_{kj} = \left((\lambda A)B\right)_{ij} : \lambda(AB) = (\lambda A)B. \ \Box$$

Matrices elementales y operaciones por fila

<u>Definición</u>: Una matriz $E \in K^{n \times n}$ se dice **elemental** si se obtiene luego de realizar exactamente una operación elemental por fila a la matriz identidad correspondiente.

- a) Intercambiar filas r y s: $\left(E^{(r,s)}\right)_{ij} = \begin{cases} 1, i=j \neq s, r \\ 1, i=r, j=s \lor i=s, j=r. \\ 0, \ en \ los \ dem \'as \ casos \end{cases}$ También se puede escribir como: $E^{(r,s)} = Id_n E^{rr} E^{ss} + E^{rs} + E^{sr}$
- b) Multiplicar fila r por $c \in K$, $c \neq 0$: $\left(E_c^{(r)}\right)_{ij} = \begin{cases} 1, & i = j \neq r \\ c, & i = j = r \\ 0, & i \neq j \end{cases}$ También podemos escribir: $E_c^{(r)} = Id_n E^{rr} + cE^{rr}$.
- c) Sumar a la fila s la fila r multiplicada por $c \neq 0$: $\left(E_c^{(sr)}\right)_{ij} = \begin{cases} 1, & i = j \\ c, & i = s \lor j = r \\ 0, & en \ otro \ caso \end{cases}$ También podemos escribir: $\left(E_c^{(sr)}\right)_{ij} = Id_n + cE^{sr}$
- **Teorema**: Sea E una operación elemental por filas, e la correspondiente matriz elemental, $e \in K^{m \times m}$. Entonces E(A) = eA, $\forall A \in K^{m \times n}$.

Dem: Usaremos la siguiente afirmación:

$$\underline{ \textbf{Afirmación}} : E^{rs} A = \begin{pmatrix} 0 & \cdots & 0 \\ A_{s1} & \cdots & A_{sn} \\ 0 & \cdots & 0 \end{pmatrix}, 1 \leq r, s \leq m$$

Dem. de afirmación:
$$(E^{rs})_{ij} = \begin{cases} 1, & i = r, j = s \\ 0, & i \neq r \lor j \neq s \end{cases}$$

 $Si \ i \neq r, 1 \le j \le n \implies (E^{rs}A)_{ij} = \sum_{k=1}^{m} (E^{rs})_{ik} A_{kj} = \sum_{k=1}^{m} 0 A_{mj} = 0$
 $Si \ i = r, 1 \le j \le n \implies (E^{rs}A)_{ij} = \sum_{k=1}^{m} (E^{rs})_{rk} A_{kj} = A_{sj}.$

Ahora, probemos el teorema para cada operación elemental por fila.

a)
$$e^{s,r}A = (Id_m - E^{rr} - E^{ss} + E^{rs} + E^{sr})A = Id_mA - E^{rr}A - E^{ss}A + E^{sr}A + E^{rs}A$$

$$= A - \begin{pmatrix} 0 & \cdots & 0 \\ \frac{fila \ r \ de \ A}{(lugar \ r - esimo)} \end{pmatrix} - \begin{pmatrix} 0 & \cdots & 0 \\ \frac{fila \ s \ de \ A}{(lugar \ s - esimo)} \end{pmatrix} + \begin{pmatrix} 0 & \cdots & 0 \\ \frac{fila \ r \ de \ A}{(lugar \ s - esimo)} \end{pmatrix} + \begin{pmatrix} 0 & \cdots & 0 \\ \frac{fila \ s \ de \ A}{(lugar \ r - esimo)} \end{pmatrix} = E(A)$$

$$b) \ e_c^{(r)} A = (Id_m - E^{rr} + cE^{rr}) = Id_m A - E^{rr} A + cE^{rr} A = \begin{pmatrix} 0 & \cdots & 0 \\ A_{r1} & \cdots & A_{rn} \\ 0 & \cdots & 0 \end{pmatrix} + c \begin{pmatrix} 0 & \cdots & 0 \\ A_{r1} & \cdots & A_{rn} \\ 0 & \cdots & 0 \end{pmatrix} = E(A)$$

$$c) \ e_c^{(sr)} A = (Id_m + cE^{sr}) A = Id_m A + c(E^{sr}A) = A + \begin{pmatrix} 0 & \cdots & 0 \\ cA_{r1} & \cdots & cA_{rn} \\ 0 & \cdots & 0 \end{pmatrix} = E(A) \ \Box$$

$$Lugar \ s - \acute{e}simo$$

Corolario: $A \sim B \iff B = PA$, donde *P* es producto de matrices elementales.

Matrices inversibles

<u>Definición</u>: Una matriz $A \in K^{n \times n}$ se dice **inversible** si $\exists B \in K^{n \times n}$ tal que $AB = Id_n = BA$.

Obs:

- 1) No toda matriz es inversible.
- 2) Si $BA = Id_n = AC \Rightarrow B = C$

► Proposición:

- a) Id_n es inversible: $(Id_n)^{-1} = Id_n$.
- b) Si A es inversible, A^{-1} también lo es. Además, $(A^{-1})^{-1} = A$.
- c) Si A y B son inversibles \Rightarrow AB también lo es y $(AB)^{-1} = B^{-1}A^{-1}$.

Dem:

- a) Por definición, $Id_nB = Id_n \Leftrightarrow B = Id_n$. $\therefore Id_n^{-1} = Id_n$ b) Si A es inversible entonces existe $B = A^{-1}$ tal que $AA^{-1} = Id_n$. Ahora bien, A^{-1} es inversible si existe B tal que $A^{-1}B = Id_n$. Luego, multiplicando ambos lados por A: $A(A^{-1}B) = AId_n \Rightarrow Id_nB = A \Rightarrow B = A \text{ y entonces } (A^{-1})^{-1} = A.$

c) Calculamos:
$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AId_nA^{-1} = AA^{-1} = Id_n$$
. $(B^{-1}A^{-1})AB = B^{-1}(A^{-1}A)B = B^{-1}Id_nB = B^{-1}B = Id_n$ $\therefore AB$ es inversible y $(AB)^{-1} = B^{-1}A^{-1}$

<u>Corolario</u>: El producto de matrices inversibles es inversible: $(A_1 \dots A_k)^{-1} = A_k^{-1} \dots A_1^{-1}$.

► Teorema: Toda matriz elemental es inversible.

<u>Dem</u>: Sea E una operación elemental por filas, e la correspondiente matriz elemental, sea e' la matriz elemental correspondiente a la operación elemental por filas inversa a E. Por el teorema sobre matrices elementales, $\forall A \in K^{n \times n}$, se tiene que:

eA = E(A) (hacerle a A la operación elemental por filas e)

e'A = E'(A) (hacerle a A la operación elemental por filas e')

Ahora bien, $ee' = e(e'Id_n) = E(e'Id_n) = E(E'(Id_n)) = Id_n$. Análogamente con e'e. \square

- **Teorema**: Sea $A \in K^{n \times n}$, son equivalentes:
 - (i) *A* es inversible.
 - (ii) A es equivalente por filas a Id_n
 - (iii) *A* es producto de matrices elementales.

<u>Dem</u>: Sea *R* una MERF tal que $A \sim R$. Sea *r* la cantidad de filas no nulas en R, $r \leq n$, entonces hay 2 posibilidades:

- a) $r = n \Rightarrow R = Id_n$
- b) $r < n \Rightarrow$ la última fila es nula.
- $(i) \Rightarrow (ii)$ Asumimos que A es inversible. Luego, R también lo es. Supongamos que $R \neq Id_n$ con lo cual vale b), es decir, la última fila de R es nula.

$$\text{Pero } Id_n = RR^{-1} = \begin{pmatrix} r_{11} & \cdots & \cdots & r_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ r_{(n-1)1} & \cdots & \cdots & r_{(n-1)n} \\ 0 & \cdots & \cdots & 0 \end{pmatrix} \begin{pmatrix} s_{11} & \cdots & \cdots & s_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ s_{(n-1)1} & \cdots & \cdots & s_{(n-1)n} \end{pmatrix} = \begin{pmatrix} * & \cdots & \cdots & * \\ \vdots & \vdots & \vdots & \vdots \\ * & \cdots & \cdots & * \\ 0 & \cdots & \cdots & 0 \end{pmatrix} \begin{bmatrix} n-1 \\ \text{Deber\'{a} ser 1.} \\ \text{Absurdo} \end{bmatrix}$$

Luego, $R = Id_n$

 $(ii) \Rightarrow (iii)$ Si $A \sim Id_n$, por el corolario que dice que $A \sim B \Leftrightarrow B = PA$, tenemos que $Id_n = PA$ donde P es producto de matrices elementales $P = E_1 \dots E_k$.

$$Id_n = E_1 \dots E_k A \Rightarrow E_1^{-1} Id_n = E_1^{-1} E_1 \dots E_k A \Rightarrow E_1^{-1} = E_2 \dots E_k A \Rightarrow E_2^{-1} E_1^{-1} = E_3 \dots E_k A$$

 $Id_n = E_1 \dots E_k A \Rightarrow E_1^{-1} Id_n = E_1^{-1} E_1 \dots E_k A \Rightarrow E_1^{-1} = E_2 \dots E_k A \Rightarrow E_2^{-1} E_1^{-1} = E_3 \dots E_k A$ Siguiendo se obtiene $E_k^{-1} \dots E_1^{-1} = A$. Cada E_i^{-1} es una matriz elemental, con lo cual A es producto de matrices elementales.

 $(iii) \Rightarrow (i)$ Asumimos que $A = E_1 \dots E_k$, donde cada E_i es una matriz elemental. Por teorema, toda matriz elemental es inversible, y producto de matrices elementales es inversible. Por lo tanto, al ser A producto de matrices inversibles, A es inversible. \square

Corolario: Sean $A, B \in K^{m \times n}$. Entonces $A \sim B \Leftrightarrow \exists P \in K^{m \times m}$ inversible tal que B = PA.

- **Teorema**: Sea $A \in K^{n \times n}$. Las siguientes son equivalentes:
- A es inversible.
- (ii) El sistema homogéneo AX = 0 tiene única solución X = 0.
- (iii) $\forall b \in K^{n \times 1}$, el sistema AX = b tiene solución.

Dem:

 $(i)\Rightarrow (ii)$ Asumimos que A es inversible. Si $X_0\in K^{n\times 1}$ es solución, entonces:

$$X_0 = Id_n X_0 = (AA^{-1})X_0 = A^{-1}(AX_0) \Rightarrow A^{-1} \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Luego, la única solución para el sistema es la trivial.

- $(ii) \Rightarrow (i)$ Por el contrarrecíproco. Asumimos que A no es inversible, entonces $A \sim R$, donde R es escalonada reducida por filas, con una fila nula. Luego, el sistema RX = 0 tiene soluciones no triviales, porque hay al menos una variable libre. Entonces AX = 0 también tiene soluciones no triviales.
- $(i) \Rightarrow (iii)$ Asumimos que A es inversible. Para cada $b \in K^{n \times 1}$, veamos que $X_0 = A^{-1}b \in K^{n \times 1}$ es solución del sistema AX = b

$$AX_0 = A(A^{-1}b) = (AA^{-1})b = Id_nb = b$$

 $(iii) \Rightarrow (i)$ Por el contrarrecíproco. Asumimos que A no es inversible. entonces $A \sim R$, donde R es escalonada reducida por filas, con la última fila nula. Luego, A = PR, P inversible. Como la última fila

de R es nula,
$$RX = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$
 no tiene solución. De hecho, $(RX)_{n1} = \sum_{k=1}^{n} R_{nk} X_{k1} = 0 \neq 1$. \square

Corolario: Sea $A \in K^{n \times n}$. Son equivalentes:

- (i) A es invertible
- (ii) El sistema AX = b tiene única solución $\forall b \in K^{n \times 1}$

Dem:

Asumimos que A es inversible. Si, $AX = b \Rightarrow A^{-1}AX = A^{-1}b \Rightarrow Id_nX = A^{-1}b$

 $X=A^{-1}b$. Así, existe solución. Para la unicidad, tomamos $U\in K^{n\times 1}$. Si U es solución, AU=b. Multiplicando ambos lados por A^{-1} , se tiene que $A^{-1}AU=A^{-1}b\Rightarrow U=A^{-1}b$. $\mathbb Z$

Aplicación: Invertir matriz

- 1) Ampliar la matriz A (debe ser cuadrada) a invertir con Id_n : $(A|Id_n)$.
- 2) Reducir por filas. Si llego a algo de la forma $(Id_n|B) \Rightarrow B = A^{-1}$. Si obtengo alguna fila de ceros, la matriz no es inversible.

UNIDAD III: Espacios vectoriales y bases

Espacios y subespacios vectoriales

<u>Definición</u>: Sea K un cuerpo, V un conjunto no vacío, $+: V \times V \to V$, $\bullet: K \times V \to V$. Decimos que la terna $(V, +, \bullet)$ es un **k-espacio vectorial** (k-ev) si:

- 1) La suma satisface para $u, v, w \in V$:
 - (i) (u + v) + w = u + (v + w).
 - (ii) u + v = v + u.
 - (iii) Existe $0 \in V$ tal que 0 + v = v.
 - (iv) Para cada $v \in V$, existe -v tal que v + (-v) = 0.
- 2) La multiplicación por escalares satisface para $v, w \in V$; $a, b \in K$:
 - (i) Existe $1 \in V$ tal que 1v = v.
 - (ii) a(bv) = (ab)v.
 - (iii) a(v+w) = av + aw.
 - (iv) (a+b)v = av + bv.

Los elementos de *V* son **vectores** y los elementos de *K* son **escalares**.

Obs: Si K' es un subconjunto de K, entonces K es un K'-espacio vectorial.

- **Propiedad**: Sea V un k-ev, $v \in V$ y $c \in K$.
 - a) $cv = 0 \Leftrightarrow c = 0 \lor v = (0, ..., 0)$
 - b) -v = (-1)v

Dem:

a) $(\Leftarrow) \ 0 \cdot v = (0+0)v = 0 \cdot v + 0 \cdot v$. Luego, $0 = 0 \cdot v + (-0 \cdot v) = (0 \cdot v + 0 \cdot v) + (-0 \cdot v) = 0 \cdot v + (0 \cdot v + (-0 \cdot v))$

$$=0\cdot v+0=0\cdot v.$$

- $0 = 0 \cdot v$. Análogamente $c \cdot 0 = 0$
- (⇒) Sea $v \in V$, $c \in K$ tal que cv = 0. Si c = 0, ya está. Asumimos $c \neq 0$.

Como $c \neq 0, \exists c^{-1} \in K$ tal que $cc^{-1} = 1$. Entonces, $c^{-1} \cdot 0 = c^{-1}vc$. Ya probamos que $c^{-1} \cdot 0 = 0$. Entonces $0 = c^{-1}vc = c^{-1}cv = 1 \cdot v = v$.

b) Sabemos que v + (-v) = 0. Tenemos que $v + (-1)v = 1 \cdot v + (-1)v$ = $(1 + (-1))v = 0 \cdot v = 0$. Como el opuesto es único, $(-1) \cdot v = -v$

Subespacios

<u>Definición</u>: Sea V un k-ev. Un subconjunto $W \subseteq V$ se dice **subespacio** de V si es un espacio vectorial respecto de V •. Es decir, si se verifican:

- a) $0 \in W$.
- b) $v, w \in W \Rightarrow v + w \in W$.
- c) $\lambda \in K, w \in W \Rightarrow \lambda w \in W$.
- **Teorema**: Un subconjunto $W \subseteq V$ no vacío es un subespacio $\Leftrightarrow (*)v + \lambda w \in W$,

 $v, w \in W, \lambda \in K$.

Dem:

(\Leftarrow) Sea W un subespacio. Tomemos $v, w \in W$ y $\lambda \in K$. Por definición de subespacios, $\lambda w \in W$ y $v + \lambda w \in W$.

(⇒) Sea $W \neq \emptyset$ un subconjunto tal que vale (*). Tomemos $u \in W$. $u + (-1) = 0 \in W$ ($v = u, w = u, \lambda = -1$) Por (*), $v + w \in W$ ($v, w, \lambda = 1$). Por último, si tomamos v = 0, obtenemos que $0 + \lambda w = \lambda w \in W$. \square

Proposición: Sea V un k-ev, W_1 , ..., W_n subespacios de V.

Entonces
$$W = \bigcap_{i=1}^{n} W_i$$
 es un subespacio.

Obs: La unión de subconjuntos no es necesariamente un subespacio.

<u>Dem</u>: Tenemos que $W \neq \emptyset$, ya que los W_i son subespacios y por ende $0 \in W$.

Dados $v, w \in W, \lambda \in K$ se tiene que $v, w \in W_i \ \forall i \Rightarrow v + \lambda w \in W_i \ \forall i \Rightarrow v + \lambda w \in W$. \square

Dependencia lineal

<u>Definición</u>: Sea V un k-ev. Dados $\{v_1, \dots, v_n\} \subset V$ subconjunto, una **combinación lineal del conjunto** es una suma de la forma $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$, con $\lambda_1, \dots, \lambda_n \in K$.

El conjunto de todas las combinaciones lineales de los vectores $< v_1, ..., v_n > \subseteq V$ es un subespacio (subespacio generado por $v_1, ..., v_n$).

<u>**Obs**</u>: Si $S \subseteq V$, S no finito $\Rightarrow < S > = \{combinaciones lineales de finitos elementos de <math>S$ }.

<u>Definición</u>: Un conjunto $\{v_1, \dots, v_n\}$ se dice **linealmente dependiente** (LD) si existe una combinación lineal que da cero de manera no trivial, o sea $\exists \lambda_1, \dots, \lambda_n$ no todos nulos tal que $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = \vec{0}$

Obs: Si $\vec{0}$ está en el conjunto de vectores, éstos son automáticamente LD.

<u>Definición</u>: Un conjunto $\{v_1, ..., v_n\}$ se dice **linealmente independiente** (LI) si no es LD.

Proposición:
$$\{v_1, \dots, v_m\} \subseteq K^n$$
 son LD \Leftrightarrow el sistema $A \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ donde $A = (v_1 | \cdots | v_m) \in K^{n \times m}$ tiene solución no nula.

<u>Dem</u>: Por definición, $(v_1, ..., v_m)$ son LD $\Leftrightarrow \exists x_1, ..., x_m$ no todos nulos tal que $x_1v_1 + \cdots + x_mv_m = \vec{0}$. Tenemos que:

$$\begin{bmatrix} v_1 = \left(v_1^{(1)}, \dots, v_1^{(n)}\right) x_1 \end{bmatrix} + \begin{bmatrix} v_2 = \left(v_2^{(1)}, \dots, v_2^{(n)}\right) x_2 \end{bmatrix} + \dots + \begin{bmatrix} v_m = \left(v_m^{(1)}, \dots, v_m^{(n)}\right) x_m \end{bmatrix} = \\ \left(v_1^{(1)} x_1 + \dots + v_m^{(1)} x_m, v_1^{(2)} x_1 + \dots + v_m^{(2)} x_m, \dots, v_1^{(n)} x_1 + \dots + v_m^{(n)} x_m \right) \\ \begin{bmatrix} v_1^{(1)} x_1 + \dots + v_m^{(1)} x_m = 0 \\ v_1^{(2)} x_1 + \dots + v_m^{(2)} x_m = 0 \\ \vdots & \vdots & \vdots \\ v_1^{(n)} x_1 + \dots + v_m^{(n)} x_m = 0 \end{bmatrix} \rightarrow A = \begin{pmatrix} v_1^{(1)} & \dots & v_m^{(1)} \\ \vdots & \vdots & \vdots \\ v_1^{(n)} & \dots & v_m^{(n)} \end{pmatrix} \text{ es la matriz del sistema. } \square$$

<u>Obs</u>: Si $\{v_1, ..., v_m\} \subseteq K^n \text{ y } m > n \Rightarrow \text{son LD}.$

Obs 2: En K^n hay n vectores LI, pues tenemos que:

 $e_i = (0, ..., 1, ..., 0), 1 \le i \le n$. Si planteamos la matriz del conjunto $\{e_1, ..., e_n\}$, tenemos que:

$$\begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} = Id_n \implies Id_n \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow \text{son LI. (Y además } K^n = < e_1, \dots, e_n >)$$

Bases y dimensión

<u>Definición</u>: Sea *V* un k-ev. Llamamos **base** *B* al subconjunto de *V* que satisface:

- 1) B genera a V, es decir, $V = \langle B \rangle$ (todos los vectores de V son combinación lineal de B).
- 2) *B* es LI.

Proposición: $\{v_1, ..., v_n\} \in K^n$ es base de $K^n \Leftrightarrow$ la matriz del sistema $A = (v_1 | ... | v_n)$ es inversible.

<u>Dem</u>: (⇒) Si es base, genera. Es decir, $\forall (w_1, ..., w_n) \in K^n$, el sistema $A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$ tiene solución ⇒ A es inversible por teorema. (Sólo chequeamos una propiedad de base porque la matriz es cuadrada)

- (⇐) Chequeamos que cumpla las condiciones de base:
- 1) Como A es inversible, el sistema $A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$ tiene solución $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = A^{-1} \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$ para cualquier $w_i \in K^n$ y por lo tanto genera.
- 2) Como $A \begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ tiene única solución $\begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix} = A^{-1} \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$, son LI.

 $: \{v_1, \dots, v_n\}$ es base de K^n . \square

Obs: Si *B* es base de *V*, todo elemento $v \in V$ se escribe de manera **única** como combinación lineal de elementos de B.

<u>Dem</u>: Supongamos que $v = a_1v_1 + \cdots + a_nv_n$, $v = b_1v_1 + \cdots + b_nv_n$, $v_i \in V$; $a_i, b_i \in B$.

Entonces $0 = (a_1 - b_1)v_1 + \cdots + (a_n - b_n)v_n$. Como B es LI, $(a_i - bi) = 0$ y, por lo tanto, $a_i = b_i$ $\forall i \in \{1, ..., n\}. \ \boxed{2}$

Teorema: Sea V un k-ev, $\langle v_1, ..., v_n \rangle = V$ y $\{w_1, ..., w_m\} \subseteq V$ LI. Entonces $n \geq m$.

<u>Dem</u>: Como $\{v_1, ..., v_n\}$ generan a V, dado w_i ∈ V lo podemos escribir como combinación lineal:

$$\begin{aligned} w_1 &= a_{11}v_1 + \dots + a_{n1}v_n \\ &\vdots \\ &\to \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1m} & \dots & a_{nm} \end{pmatrix} \end{aligned}$$

$$w_m = a_{1m}v_1 + \dots + a_{nm}v_n \qquad \nearrow$$

Sea $A \in K^{n \times m}$. Si n < m, el sistema $A \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ tiene alguna solución no trivial $(b_1, \dots, b_m) \neq (0, \dots, 0)$. Como los $\{w_1, \dots, w_m\}$ son LI, $\begin{cases} a_{11}b_1 + \dots + a_{n1}b_m = 0 \\ \vdots \\ a_{1m}b_1 + \dots + a_{nm}b_m = 0 \end{cases}$

los
$$\{w_1, ..., w_m\}$$
 son LI,
$$\begin{cases} a_{11}b_1 + \cdots + a_{n1}b_m = 0 \\ \vdots \\ a_{1m}b_1 + \cdots + a_{nm}b_m = 0 \end{cases}$$

$$(0,\dots,0)\neq w=b_1w_1+\dots+b_mw_m=b_1(a_{11}v_1+\dots+a_{n1}v_n)+\dots+b_m(a_{1m}v_1+\dots+a_{nm}v_n)$$

$$=v_1(b_1a_{11}+\cdots+b_ma_{n1})+\cdots+v_n(b_1a_{11}+\cdots+b_ma_{n1})=v_1\cdot 0+\cdots+v_n\cdot 0=(0,\dots,0). \ \text{[Absurdot]}$$

Luego, $n \ge m$. 2

<u>Corolario</u>: Si V es un k-ev y B_1 , B_2 son bases finitas de $V \Rightarrow B_1$ y B_2 tienen la misma cantidad de elementos.

Dem:

 $B_1 = \{v_1, ..., v_n\}$. Como B_1 es base, generan y como B_2 es base, son LI $\Rightarrow n \ge m$.

 $B_2 = \{w_1, \dots, w_m\}$. Como B_2 es base, generan y como B_1 es base, son LI $\Rightarrow m \ge n$. $\therefore n = m$. \square

<u>Definición</u>: Si V es un k-ev con finitos generadores, definimos su **dimensión** como el número de vectores que tiene cualquier base. Se denota dim(V).

Proposición: Sea V un k-ev, $B = \{v_1, \dots, v_n\} \subseteq V$ generadores $\Rightarrow \exists B' \subseteq B$ que es base del espacio.

<u>Dem</u>: Si $\{v_1, ..., v_n\}$ es LI, entonces es una base de V. Si no es LI, alguno de los vectores del conjunto es combinación lineal de los otros. Supongamos que

 $v_i \in \langle v_1, ..., v_{i-1}, v_{i+1}, ..., v_n \rangle$ para algún $i \in \{1, ..., n\}$. Consideramos ahora

 $B' = \langle v_1, ..., v_{i-1}, v_{i+1}, ..., v_n \rangle$ un sistema de generadores de V. Si B' fuera LD, podemos seguir quitando los vectores que son combinación lineal de los demás hasta obtener una base. \square

Proposición: Sea $W \subseteq V$, $S \subseteq W$ un conjunto LI. Si W tiene dimensión finita $\Rightarrow S$ es finito y se extiende a una base. Es decir, si $S = \{v_1, \dots, v_r\}$, $\exists v_{r+1}, \dots, v_n \in W$ tal que $\{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$ es base de W.

<u>Dem</u>: Similar a la demostración anterior pero agregando vectores que no sean combinación lineal de los otros.

Suma de subespacios

<u>Definición</u>: Sean *U*, *W* subespacios de *V*. La suma es el conjunto

 $U + W = \{u + w : u \in U, w \in W\}$, y cumple:

- (i) U + W es subespacio de V.
- (ii) U + W es el menor subespacio (con la inclusión) que contiene a U y W.
- (iii) Si $\{u\}_{i\in I}$ y $\{w_j\}_{j\in J}$ son generadores de U y W respectivamente, entonces $\{u_i\} \cup \{w_i\}$ genera a U+W.

Dem:

- (i) Como U y W son subespacios, $0 \in U$, $0 \in W \Rightarrow 0 + 0 \in U + W \Rightarrow$ la suma no es vacía. Sean $v, v' \in U + W$, $\lambda \in K$, veamos que $v + \lambda v' \in U + W$: Como $v, v' \in U + W$, existen $u, u' \in U$ y $w, w' \in W$ tal que v = u + w, v' = u' + w'. Entonces $v + \lambda v' = (u + w) + \lambda (u' + w')$ = $u + w + \lambda u' + \lambda w'$. Si asociamos y conmutamos, tenemos que $u + \lambda u' \in U$ (por ser U un subespacio) y que $w + \lambda w' \in W$ (porque W es subespacio). Luego, $v + \lambda v' \in U + W$.
- (ii) Para cada $u \in U$ tenemos que $u = u + 0 \in U + W$, ya que $0 \in W$. Luego, $U \subseteq U + W$. Análogamente, $W \subseteq U + W$. Sea Y un subespacio de V que contiene a U y W. Queremos ver que $U + W \subseteq Y$. Sea $v \in U + W$. Por definición, $\exists u \in U, w \in W$ tal que v = u + w. Como $U \subseteq Y$ y $W \subseteq Y$ se tiene que $u, w \in Y$. Como Y es un subespacio, $u + w \in Y \Rightarrow v \in Y$. Luego, $U + W \subseteq Y$.
- (iii) Sea $v \in U + W$ tal que v = u + w, $u \in U$, $w \in W$. Como $\{u_i\}_{i \in I}$ genera a U, existen $a_i \in K$ $(i \in I)$ con $a_i = 0$ salvo para finitos $i \in I$ tales que

$$u = \sum_{i \in I} a_i u_i$$
. De la misma manera, existen $b_j \in K \ (j \in J)$ tales que $w = \sum_{j \in J} b_j w_j$

Luego, $v = \sum_{i \in I} a_i u_i + \sum_{i \in I} b_i w_i$ resulta una combinación lineal de $\{u\}_{i \in I} \cup \{w_i\}_{j \in J} \subseteq U + W$. \square

Teorema: Sean $U, W \subseteq V$ subespacios de dimensión finita. Entonces U + W es de dimensión finita $y \dim(U + W) + \dim(U \cap W) = \dim(U) + \dim(W)$.

<u>Dem</u>: Como U y W tienen dim. finita, $\exists S_u$, S_w conjuntos finitos de generadores de U y W respectivamente. Por el teorema de la suma de subespacios, $S = S_u + S_w$ genera a U + W. Como S es finito por ser unión de conjuntos finitos, se tiene que U + W es de dim finita. Si $U = 0 \Rightarrow U + W = W$ y $U \cap W = 0 \Rightarrow$ vale el teorema. Lo mismo si W = 0.

Supongamos ahora que $U,W\neq 0$. Sea $\{v_1,\ldots,v_r\}$ base de $U\cap W\Rightarrow dim(U\cap W)=r$. Como $\{v_1,\ldots,v_r\}\subseteq U$ es LI, $\exists u_{r+1},\ldots,u_m\in U$ tal que $\{v_1,\ldots,v_r,u_{r+1},\ldots,u_m\}$ es base de U,y por lo tanto dim(U)=m. Análogamente, $\exists w_{r+1},\ldots,w_n\in W$ tal que $\{v_1,\ldots,v_r,w_{r+1},\ldots,w_n\}$ es base de W y por ende dim(W)=n.

<u>Afirmación</u>: $B = \{v_1, ..., v_r, u_{r+1}, ..., u_m, w_{r+1}, ..., w_n\}$ es base de U + W.

Dem de afirmación:

$$\textit{Como} \ \{v_1, \dots, v_r, u_{r+1}, \dots, u_m\} \ \textit{es base de} \ U \ \Rightarrow u = \sum_{i=1}^r a_i v_i + \sum_{i=r+1}^m a_i u_i$$

Como
$$\{v_1, ..., v_r, w_{r+1}, ..., w_n\}$$
 es base de $W \Rightarrow w = \sum_{i=1}^r b_i v_i + \sum_{i=r+1}^n b_i w_i$

$$\Rightarrow v = \left(\sum_{i=1}^{r} a_i v_i + \sum_{i=r+1}^{m} a_i u_i\right) + \left(\sum_{i=1}^{r} b_i v_i + \sum_{i=r+1}^{n} b_i w_i\right) = \sum_{i=1}^{r} (a_i + b_i) v_i + \sum_{i=r+1}^{m} a_i u_i + \sum_{i=r+1}^{n} b_i w_i.$$

 $Luego, U + W = \langle B \rangle$. Veamos que B es LI. Sean $a_i, b_i, c_k \in K$ tales que

$$0 = \sum_{i=1}^r a_i v_i + \sum_{j=r+1}^m b_j u_j + \sum_{k=r+1}^n c_k w_k \Rightarrow \sum_{i=1}^r a_i v_i + \sum_{j=r+1}^m b_j u_j = \sum_{k=r+1}^n -c_k w_k \Rightarrow \sum_{k=r+1}^n -c_k w_k \in U \cap W.$$

$$Como \{v_1, \dots, v_r\} \ es \ base \ de \ U \cap W, \exists d_i \in K \ tal \ que \ \sum_{k=r+1}^n -c_k w_k = \sum_{k=r+1}^n d_i v_i$$

$$\Rightarrow 0 = \sum_{k=r+1}^{n} d_{i}v_{i} + \sum_{k=r+1}^{n} c_{k}w_{k} \cdot Como\{v_{1}, \dots, v_{r}, w_{r+1}, \dots, w_{n}\} es LI \Rightarrow d_{1} = \dots = d_{r} = 0$$

$$y \ 0 = c_{r+1}, \dots, c_n$$
. Reemplazando:
$$\sum_{i=1}^r a_i v_i + \sum_{j=r+1}^m b_j u_j = 0$$

Como
$$\{v_1, ..., v_r, u_{r+1}, ..., u_m\}$$
 es $LI \Rightarrow a_1 = \cdots = a_r = 0 = b_1 = \cdots = b_m$

Luego, $dim(U + W) = |B| = r + (m - r) + (n - r) = m + n - r = dim(U) + dim(W) - dim(U \cap W)$

Suma directa

<u>Definición</u>: Sean U, W dos subespacios de V. Decimos que V es la **suma directa de** U Y W si V = U + W, $U \cap W = 0$. Se denota $V = U \oplus W$.

Proposición: Si $V = U \oplus W \Rightarrow \text{Cada } v \in V \text{ se escribe de modo único como } v = u + w, \ u \in U, w \in W.$

<u>Dem</u>: Como V=U+W sabemos que cada $v\in V$ se escribe $v=u+w,\ u\in U, w\in W$. Veamos la unicidad Fijamos $v\in V$ tal que v=u+w, v=u'+w' donde $u,u'\in U$ y $w,w'\in W$. Entonces,

$$u - u' = w - w' \in U \cap W = \{0\}$$
. Luego, $u = u' y w = w'$. \square

Aplicación: Calcular Base

- 1) Si tenemos $V = \langle v_1, ..., v_n \rangle$, sólo basta ver que sean LI. Para ello, colocar $v_1, ..., v_n$ como filas de una matriz y reducir. Si no obtengo filas nulas, son LI. Si hubiera filas nulas, las quito y me quedo con las filas no nulas, que serán base de V.
- 2) Si tenemos *V* caracterizado por ecuaciones, las igualamos a 0, armamos la matriz y resolvemos el sistema. Los vectores obtenidos serán LI y generarán *V*.

Aplicación: Pasar de base a ecuaciones

- 1) Si $S = \langle v_1, ..., v_n \rangle$, primero vemos que sean LI. Si alguno es combinación lineal de los demás, lo quitamos. De los restantes, los colocamos como columnas de una matriz y ampliarla con las variables necesarias:
- $\begin{pmatrix} v_1 & \cdots & v_n & \vdots \\ x_n & \ddots & \vdots \\ x_n & \ddots & \vdots \end{pmatrix}$. Reducir la matriz. Las ecuaciones igualadas a 0 son las ecuaciones que caracterizan a S.

UNIDAD IV: Transformaciones lineales y cambios de base

<u>Definición</u>: Sean V, W dos k-ev. Una **transformación lineal de** V **en** W (TL) es una función $f: V \to W$ tal que:

a)
$$f(v + v') = f(v) + f(v') \forall v, v' \in V$$
.

b)
$$f(\lambda v) = \lambda f(v) \ \forall v \in V, \lambda \in K$$
.

Obs: Si $f: V \to W$ es una TL $\Rightarrow f(0_v) = 0_w$ y $f(-v) = -f(v) \ \forall v \in V$.

Dem:
$$f(0_v) = f(0_v + 0_v) = f(0_v) + f(0_v) \Rightarrow f(0_v) = 0_w$$
.

$$f(-v) = f((-1)v) = (-1)f(v) = -f(v)$$
.

- **Proposición**: Sea $f: V \to W$ una TL.
 - a) Si *U* es un subespacio de $V \Rightarrow f(U)$ es subespacio de *W*.
 - b) Si Z es subespacio de $W \Rightarrow f^{-1}(Z)$ es subespacio de V.

Dem:

- a) Como $U \neq \emptyset \Rightarrow f(U) \neq \emptyset$. Sean $w, w' \in f(U)$: $\exists u, u' \in U$ tal que w = f(u), w' = f(u'). Entonces para cada $\lambda \in K, w + \lambda w' = f(u) + \lambda f(u') = f(u) + f(\lambda u') = f(u + \lambda u')$. Como U es un subespacio, $u + \lambda u' \in U$. Luego, $w + \lambda w' = f(u + \lambda u') \in f(U)$. Por el teorema que caracteriza subespacios, f(U) es subespacio de W.
- b) Como $f(0_v) = 0_w \in Z$, tenemos que $0_v \in f^{-1}(Z)$. Sean $v, v' \in f^{-1}(Z)$, $\lambda \in K$. Por definición, $f(v), f(v') \in Z$. Como Z es un subespacio, $f(v) + \lambda f(v') \in Z$. Por ser f una TL, $f(v) + \lambda f(v') = f(v + \lambda v') \Rightarrow v + \lambda v' \in f^{-1}(Z)$. Por el mismo teorema que en a), $f^{-1}(Z)$ es subespacio de $V.\mathbb{Z}$
- **Proposición**: Sea V un k-ev de dimensión finita, $n = \dim(V)$. Sea $B = \{v_1, ..., v_n\}$ una base de V. Para cada $x \in V$, existen únicos $a_1, ..., a_n \in K$ tq $x = a_1v_1 + \cdots + a_nv_n$

Dem:

Sea $x \in V$. Como B genera a V, existen $a_1, \dots, a_n \in K$ que verifican $x = \sum_{i=1}^n a_i v_i$

Supongamos que existen $b_1, \dots, b_n \in K$ tales que $x = \sum_{i=1}^n b_i v_i \Rightarrow 0 = x - x = \sum_{i=1}^n a_i v_i - \sum_{i=1}^n b_i v_i$

$$=\sum_{i=1}^n(a_iv_i-b_iv_i)=\sum_{i=1}^n(a_i-b_i)v_i \text{ .Como } v_1,\ldots,v_n \text{ es LI, se tiene que } a_i-b_i=0 \Rightarrow a_i=b_i. \text{ } \mathbb{Z}$$

<u>Definición</u>: Si $B = \{v_1, \dots, v_n\}$, $x = a_1v_1 + \dots + a_nv_n$, el vector $(a_1, \dots, a_n) \in K^n$ se dice **vector de coordenadas de** x **en la base** B. Se denota $(x)_B$.

$$\underline{\mathbf{Obs}}: (v+v')_B = (v)_B + (v')_B; (\lambda v)_B = \lambda(v)_B \ \forall v, v' \in V; \ \lambda \in K. \ \mathrm{Es \ decir}, (\bullet)_B : V \to K^n \ \mathrm{es \ una \ TL}.$$

<u>Dem</u>: Fijemos $v, v' \in V, \lambda \in K$. Sea $(a_1, ..., a_n) = (v)_B, (b_1, ..., b_n) = (v')_B$. Entonces tenemos que:

$$v = \sum_{i=1}^{n} a_i v_i, v' = \sum_{i=1}^{n} b_i v_i \rightarrow v + v' = \sum_{i=1}^{n} (a_i + b_i) v_i. \quad \therefore (v + v')_B = (a_1 + b_1, \dots, a_n + b_n)$$

$$= (a_1, ..., a_n) + (b_1, ..., b_n) = (v)_B + (v')_B. \text{Ahora, } \lambda v = \lambda (\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n \lambda (a_i v_i) = \sum_{i=1}^n (\lambda a_i) v_i$$

$$\div (\lambda v)_B = (\lambda a_1, \dots, \lambda a_n) = \lambda(a_1, \dots, a_n) = \lambda(v)_B. \mathbb{Z}$$

Teorema: Sean V, W dos k-ev, dim(V) = n (finito). Sean $B = \{v_1, ..., v_n\}$ una base de V y $w_1, ..., w_n \in W$ arbitrarios. Entonces **existe una única TL** $f: V \to W$ tal que $f(v_i) = w_i$. **Dem**: Veamos que para cada $v \in V$, f(v) tiene un único valor posible. Como B es base de V, podemos

escribir cada elemento de V como $v = \sum_{i=1}^{n} a_i v_i$ de modo único (por teorema sobre bases

y combinación lineal). Si existiera
$$f$$
, $f(v) = f\left(\sum_{i=1}^n a_i v_i\right) = \sum_{i=1}^n a_i f(v_i) = \sum_{i=1}^n a_i w_i$.

Para la existencia, definimos la función $f: V \to W$, $f(v) = \sum_{i=1}^{n} a_i w_i$, donde $(a_1, ..., a_n) = (v)_B$

Para cada $i \in \{1, ..., n\}, v_i = 0v_1, ..., 1v_i, 0v_{i+1}, ..., 0v_n \Rightarrow (v_i)_B = (0, ..., 1, 0, ..., 0) \Rightarrow (v_i)_B = (0, ..., 1, 0, ..., 0)$

$$f(v_i) = 0w_1, \dots, 1w_i, 0w_{i+1}, \dots, 0w_n = w_i.$$

Ahora falta ver que f es TL. Sea $v, v' \in V$; $\lambda \in K$, $(v)_B = (a_1, ..., a_n)$; $(v')_B = (b_1, ..., b_n)$.

$$f(v+v') = \sum_{i=1}^{n} (a_i + b_i)w_i = \sum_{i=1}^{n} a_i w_i + \sum_{i=1}^{n} b_i w_i = (v)_B + (v')_B$$

$$f(\lambda v) = \sum_{i=1}^{n} \lambda a_i w_i = \lambda \sum_{i=1}^{n} a_i w_i = \lambda (v)_B$$
 Luego, f es una TL tal que $f(v_i) = w_i \ \forall i \in \{i, ..., n\}$. \square

Núcleo e Imagen de una TL

<u>Definición</u>: Sean V, W dos k-ev, $f: V \to W$ una TL. Llamamos **núcleo de** f al conjunto $Nu(f) = \{v \in V: f(v) = 0\}$ (también se denota Ker(f)).

 $\underline{\mathbf{Obs}}$: Nu(f) es un subespacio de V

<u>Definición</u>: Llamamos **imagen de** f al conjunto Im(f) = f(v), o sea:

$$Im(f) = \{(x_1, ..., x_n) \in \mathbb{R}^n : \exists v_1, ..., v_n \ con \ f(v_1, ..., v_n) = x_1, ..., x_n\}.$$

<u>Definición</u>: Sea $f: V \to W$, entonces:

- (i) f se dice un **monomorfismo** si es inyectiva.
- (ii) f se dice un **epimorfismo** si es suryectiva.
- (iii) f se dice un **isomorfismo** si es biyectiva.
- **Proposición**: $f: V \to W$ es un isomorfismo $\Leftrightarrow Nu(f) = 0$.

<u>Dem</u>: (\Rightarrow) Asumimos que f es inyectiva. Como f(0) = 0, si $v \in Nu(f) \Rightarrow f(v) = 0 \Leftrightarrow v = 0$ porque f es inyectiva. Luego, Nu(f) = 0

$$(\Leftarrow)$$
 Asumimos que $Nu(f)=0$. Sean $v,v'\in V$ tal que $f(v)=f(v')$. Luego, $0=f(v0-f(v'))$

$$\Rightarrow v - v' \in Nu(f) = 0$$
. Luego, $v = v'$ y así f es inyectiva. $\mathbb Z$

Proposición: Sea $f: V \to W$ una TL. Si $\{v_1, ..., v_n\}$ es un sistema de generadores de $V \Rightarrow \{f(v_1), ..., f(v_n)\}$ es un sistema de generadores de Im(f).

<u>Dem</u>: Tenemos que probar que $Im(f) = \langle \{f(v_1), ..., f(v_n)\} \rangle$

 (\subseteq) Si $w \in Im(f)$, $\exists v \in V$ tal que f(v) = w. Como $\{v_1, \dots, v_n\}$ genera a V, $\exists a_1, \dots, a_n \in K$ tales que

$$v = \sum_{i=1}^{n} a_i v_i, \qquad w = f\left(\sum_{i=1}^{n} a_i v_i\right) = \sum_{i=1}^{n} a_i f(v_i) \in \langle \{f(v_1), \dots, f(v_n)\} \rangle.$$

(⊇) Como cada $f(v_i) \in Im(f)$ para cada $i \in \{1, ..., n\}$, vale la inclusión. \square

Composición e inversa de una TL

Proposición: Sean V, W, Z k-ev, $f: V \to W, g: W \to Z$ dos $TL \Rightarrow g \circ f: V \to Z$ es una TL.

<u>Dem</u>: Tomamos $v, v' \in V, \lambda \in K$.

$$g \circ f(v + v') = g(f(v + v')) = g(f(v) + f(v')) = g(f(v)) + g(f(v')) = g \circ f(v) + g \circ f(v')$$
$$g \circ f(\lambda v) = g(f(\lambda v)) = g(\lambda f(v)) = \lambda g(f(v)) = \lambda g \circ f(v)$$

Proposición: Sean V, W dos k-ev, $f: V \to W$ un isomorfismo. Entonces $f^{-1}: W \to V$ es una TL.

<u>Dem</u>: Ya sabemos que f^{-1} es biyectiva. Veamos que es TL. Fijamos $w, w' \in W$, $\lambda \in K$. Como f es biyectiva, $\exists v, v' \in V$ tal que f(v) = w, f(v') = w'. O sea, $f^{-1}(w) = v$, $f^{-1}(w') = v'$.

Ahora,
$$w + w' = f(v) + f(v') = f(v + v') \Rightarrow f^{-1}(w + w') = v + v' = f^{-1}(w) + f^{-1}(w')$$

Por otro lado,
$$\lambda w = \lambda f(v) = f(\lambda v) \Rightarrow f^{-1}(\lambda w) = \lambda v = \lambda f^{-1}(w)$$
. \square

Espacios vectoriales de dimensión finita

Teorema: Sean V, W dos k-ev, V de dimensión finita, $f: V \to W$ una TL. Entonces dim(V) = dim(Nu(f)) + dim(Im(f))

<u>Dem</u>: Sean n = dim(V), m = dim(Nu(f)). Entonces $0 \le m \le n$. Sea $\{v_1, ..., v_m\}$ una base de Nu(f). Como $\{v_1, ..., v_m\}$ es LI, $\exists v_{m+1}, ..., v_n \in V$ tal que $\{v_1, ..., v_m, v_{m+1}, ..., v_n\}$ es base de V.

Ahora bien, como $\{f(v_1), \dots, f(v_m), f(v_{m+1}), \dots, f(v_n)\}$ generan Im(f) y $f(v_1) = \dots = f(v_n) = 0$ porque $v_1, \dots, v_n \in Nu(f)$, se tiene que $\{f(v_{m+1}), \dots, f(v_n)\}$ genera a Im(f). Sean $a_{m+1}, \dots, a_n \in K$ tal que $0 = a_{m+1}f(v_{m+1}) + \dots + a_nf(v_n) \Rightarrow f(a_{m+1}v_{m+1} + \dots + a_nv_n) = 0$, es decir,

$$v = a_{m+1}v_{m+1} + \cdots + a_nv_n$$
. Sean $b_1, \dots, b_m \in K$ tal que $v = b_1v_1 + \cdots + b_mv_m$

Ahora,
$$0 = v - v = (b_1v_1 + \dots + b_mv_m) - (a_{m+1}v_{m+1} + \dots + a_nv_n)$$

 $=b_1v_1+\cdots+b_mv_m+(-a_{m+1})v_{m+1}+\cdots+(-a_n)v_n$. Como $\{v_1,\ldots,v_m,v_{m+1},\ldots,v_n\}$ es base de V, tenemos que $b_1=\cdots=b_m=0=a_{m+1}=\cdots=a_n$. Luego, $\{f(v_{m+1}),\ldots,f(v_n)\}$ es LI y por lo tanto es base de Im(f).

Ahora,
$$dim(Im(f)) = n - m = dim(V) - dim(Nu(f))$$
.

Corolario: Sean V, W dos k-ev de dimensión $n, f: V \to W$ una TL. Entonces son equivalentes:

- (a) f es un isomorfismo.
- (b) *f* es un monomorfismo.
- (c) f es un epimorfismo.

Dem:

- $(a) \Rightarrow (b)$ Si f es biyectiva, también es inyectiva.
- $(b) \Rightarrow (c)$ Asumimos que f es inyectiva tal que $Nu(f) = 0 \Rightarrow dim(Im(f)) = n$. Pero Im(f) es un subespacio de W, y dim(W) = n. Entonces Im(f) = W y por lo tanto f es suryectiva.
- $(c) \Rightarrow (a)$ Asumimos que f es suryectiva, falta ver que es inyectiva. Sabemos que $Im(f) = W \Rightarrow dim(Nu(f)) = dim(V) dim(Im(f)) = n n = 0$. Luego, Nu(f) = 0, y por la propiedad que relaciona núcleo de TL e inyectividad, f es inyectiva. \square

Obs: El corolario no vale si la dimensión no es finita.

Matrices y transformaciones lineales

<u>Definición</u>: Sean V, W dos k-ev de dimensión finita, $B_1 = \{v_1, \dots, v_n\}$ y $B_2 = \{w_1, \dots, w_m\}$ bases de V y W respectivamente. Sea $f: V \to W$ una TL.

Para cada j = 1, ..., n, $f(r_j) = \sum_{j=1}^m a_{ij} w_i$, la matriz de f con respecto a las bases

$$B_1 y B_2 es [f]_{B_2}^{B_1} = (a_{ij}) \in K^{mxn}$$
.

<u>**Obs**</u>: En general, si $A \in K^{m \times m}$ y consideramos la TL $f: K^n \rightarrow K^m$:

 $f_A(X) = AX \Rightarrow$ la matriz de f_A con respecto a las bases B_1 y $B_2 \in K^n$ y K^m es $[f_A]_{B_2}^{B_1} = A$

Proposición: Sean V, W k-ev de dimensión finita, B_1 y B_2 las respectivas bases ⇒ para cada $x \in V$, $(f_{(x)})_{B_2} = [f]_{B_2}^{B_1}(x)_{B_1}$

Dem:

Sea
$$B_1 = \{v_1, ..., v_n\}, B_2 = \{w_1, ..., w_m\}$$
. Fijemos $x \in V$ tal que $x = \sum_{j=1}^n x_j v_j$

$$(x)_{B_1} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. Llamemos $[f]_{B_2}^{B_1} = (a_{ij}) \rightarrow f(v_j) = \sum_{i=1}^m a_{ij} w_i$.

$$f(x) = f\left(\sum_{j=1}^{n} x_j v_j\right) = \sum_{j=1}^{n} x_j f(v_j) = \sum_{j=1}^{n} x_j \left(\sum_{i=1}^{m} a_{ij} w_i\right) = \sum_{j=1}^{n} \sum_{i=1}^{m} x_j a_{ij} w_i = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} x_j a_{ij}\right) w_i$$

$$\Rightarrow \left(f(x)\right)_{B_{2}} = \begin{cases} \sum_{j=1}^{n} a_{1j}x_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{mj}x_{j} \end{cases} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = [f]_{B_{2}}^{B_{1}}(x)_{B_{1}}. \square$$

Matriz de la composición y matriz de la inversa

Proposición: Sean V, W, U k-ev de dimensión finita, $B_1, B_2 y B_3$ las respectivas bases, $f: V \to W$, $g: W \to U$ dos TL. Entonces $[g \circ f]_{B_3}^{B_1} = [g]_{B_3}^{B_2} [f]_{B_2}^{B_1}$.

$$f(v_j) = \sum_{i=1}^m a_{ij} w_i$$
, $g(w_i) = \sum_{k=1}^r b_{ki} u_k$, $g \circ f(v_j) = \sum_{k=1}^r c_{kj} u_k$

$$\Rightarrow g(f(v_j)) = g(\sum_{i=1}^m a_{ij}w_i) = \sum_{i=1}^m a_{ij}g(w_i) = \sum_{i=1}^m a_{ij}\left(\sum_{k=1}^r b_{ki}u_k\right) = \sum_{i=1}^m \sum_{k=1}^r a_{ij}b_{ki}u_k$$

$$=\sum_{k=1}^r \left(\sum_{i=1}^m a_{ij}b_{ki}\right)u_k$$
. Como la expresión de $g\circ f(v_j)$ en la base B_3 es única, se tiene que:

$$c_{kj} = \sum_{i=1}^{m} a_{ij} b_{ki} = (BA)_{ij} \Rightarrow C = BA. \, \boxed{2}$$

Corolario: Sean V, W dos k-ev de dimensión finita y $f: V \to W$ un isomorfismo. Sean B_1 y B_2 las respectivas bases de V y W. Entonces $[f^{-1}]_{B_1}^{B_2} = ([f]_{B_2}^{B_1})^{-1}$.

 $\underline{\mathbf{Dem}}: B_1 = \{v_1, \dots, v_n\}, B_2 = \{w_1, \dots, w_m\}. \text{ Notar que } [Id_V]_{B_1}^{B_1} = Id_n = [Id_W]_{B_2}^{B_2}. \text{ Como } f \text{ es un isomorfismo, } f \circ \mathbf{P}_{\mathbf{v}} = \{v_1, \dots, v_n\}, B_2 = \{v_1, \dots, v_m\}.$ $f^{-1} = Id_W$; $f^{-1} \circ f = Id_V$. Usando la proposición de la matriz compuesta de TL, tenemos que $[f]_{B_2}^{B_1} \circ [f^{-1}]_{B_1}^{B_2} =$ $[f\circ f^{-1}]_{B_2}^{B_2}=Id_n\ y\ [f^{-1}]_{B_1}^{B_2}\circ [f]_{B_2}^{B_1}=[f^{-1}\circ f]_{B_1}^{B_1}=Id_n.\ \square$

Cambio de base

 $\underline{\textbf{Definición}} : \text{Sea } V \text{ un k-ev de dimensión } n, B_1 = \{v_1, \dots, v_n\} \ y \ B_2 = \{w_1, \dots, w_n\} \ \text{dos bases de } V.$

Para cada
$$j=1,...,n$$
 escribimos $v_j=\sum_{i=1}^n a_{ij}w_i$, $a_{ij}\in K$.

La matriz de cambio de base de B_1 a B_2 es la matriz $C_{B_2}^{B_1} = a_{ij} \in K^{n \times n}$ (la j-ésima columna de $C_{B_2}^{B_1}$ son las coordenadas de v_i en la base B_2)

Obs:
$$C_{B_2}^{B_1} = [Id_V]_{B_2}^{B_1}$$

Proposición: Sea V un k-ev de dimensión finita, B_1 y B_2 bases de V. Para cada

$$x \in V, (x)_{B_2} = C_{B_2}^{B_1}(x)_{B_1}.$$

Dem:
$$C_{B_2}^{B_1}(x)_{B_1} = [Id_V]_{B_2}^{B_1}(x)_{B_1} = [Id_V(x)]_{B_2} = (x)_{B_2}$$
.

Proposición: Sea V un k-ev de dimensión finita, B_1 , B_2 , B_3 bases de V.

a) $C_{B_3}^{B_1} = C_{B_3}^{B_2} C_{B_2}^{B_1}$

a)
$$C_{B_3}^{B_1} = C_{B_3}^{B_2} C_{B_2}^{B_1}$$

b)
$$C_{B_1}^{B_2} = (C_{B_2}^{B_1})^{-1}$$

Dem:

$$(a)C_{B_3}^{B_1} = [Id_V]_{B_3}^{B_1} = [Id_V \circ Id_V]_{B_3}^{B_1} = [Id_V]_{B_3}^{B_2} [Id_V]_{B_2}^{B_1} = C_{B_3}^{B_2} C_{B_2}^{B_1}.$$

(b)
$$C_{B_1}^{B_2} = [Id_V]_{B_1}^{B_2} = [(Id_V)^{-1}]_{B_1}^{B_2} = ([Id_V]_{B_2}^{B_1})^{-1} = (C_{B_2}^{B_1})^{-1}$$
. \square

Proposición: Sean V, W dos k-ev de dimensión finita, B_1 , B_1' dos bases de V; B_2 , B_2' dos bases de W; $f: V \to W$ una TL entonces: $[f]_{B'_2}^{B'_1} = C_{B'_2}^{B_2} [f]_{B_2}^{B_1} C_{B_1}^{B'_1}$

Proposición: Sean V, W dos k-ev de dimensión finita, $f: V \to W$ TL. Entonces f es un isomorfismo $\Leftrightarrow \exists B_1, B_2$ bases de V y W tal que $[f]_{B_2}^{B_1}$ es inversible.

<u>Dem</u>:(⇒) Sabemos que si f es un isomorfismo, ⇒ $[f]_{B_2}^{B_1}$ es inversible para cualquier par de bases B_1 , B_2 de V y W respectivamente.

(⇐) Asumimos que existen bases B_1 , B_2 de V y W respectivamente tal que $[f]_{B_2}^{B_1}$ es inversible. En particular, como $[f]_{B_2}^{B_1}$ es cuadrada, dim(V) = n = dim(W). Para ver que es un isomorfismo, basta ver que sea un monomorfismo (Nu(f) = 0).

Sean
$$B_1 = \{v_1, \dots, v_n\}, B_2 = \{w_1, \dots, w_n\}, [f]_{B_2}^{B_1} = (a_{ij}) \ 0 \le i, j \le n = A.$$
 Sea $v \in Nu(f)$ tal que

$$v = \sum_{j=1}^{n} x_j v_j, \ x_j \in K \Rightarrow (v)_{B_1} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}. \text{Como } v \in Nu(f) \Rightarrow f(v) = 0$$

$$\Rightarrow \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} f(v) \end{pmatrix}_{B_2} = [f]_{B_2}^{B_1}(v)_{B_1} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}. \text{ Como } A \text{ es inversible, } \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow v = 0. \ \square$$

Rango fila de una matriz

Sea $A \in K^{m \times n}$ entonces escribimos $A = \begin{pmatrix} F_1 \\ \vdots \\ F_n \end{pmatrix}$ como filas; $A = \begin{pmatrix} C_1 & \cdots & C_n \end{pmatrix}$ como columnas $\to F_i \in K^{1 \times n} \simeq K^n$, $C_i \in K^{m \times 1} \simeq K^m$

- El **espacio fila** de A es el subespacio de K^n generado por $F_1, ..., F_n$
- El **espacio columna** de A es el subespacio de K^n generado por C_1, \dots, C_n
- El **rango fila** de A es la dimensión del espacio fila. Se denota vgf(A).
- El **rango columna** de A es la dimensión del espacio columna. Se denota vqc(A).

Teorema: Si $A \sim B \Rightarrow$ los espacios fila de A y B coinciden $\Rightarrow vgf(A) = vgf(B)$.

<u>Dem</u>: Si B se obtiene a partir de A mediante operaciones por fila, las filas de B son combinaciones lineales de las filas de A. Entonces cualquier combinación lineal de las filas de B es automáticamente una combinación lineal de las filas de A. Entonces $vgf(B) \subseteq vgf(A)$. Como las operaciones por fila son reversibles, haciendo el mismo proceso obtenemos que $vgf(A) \subseteq vgf(B)$. Luego, vgf(A) = vgf(B). \square

Lema:
$$A \in K^{m \times n}$$
, $S = \{x \in K^n : Ax = 0\} \Rightarrow dim(S) = n - vgc(A)$

<u>Dem</u>: Consideremos $f_A: K^n \to K^m$, $f_A(x) = AX$. Notar que $S = Nu(f_A)$.

Como $C_i = Ae_i - f_A(e_i)$ y $\{e_1, ..., e_n\}$ es una base de $K^n \Rightarrow \{f_A(e_1) = C_1, ..., f_A(e_n) = C_n\}$ genera $Im(f_A)$, es decir, $Im(f_A)$ es el espacio columna de A y por lo tanto $vgc(A) = dim(Im(f_A)) = n - dim(Nu(f_A)) = n - dim(S)$. \square

<u>Definición</u>: El rango de A es vg(A) = vgf(A) = vgc(A)

Teorema: Sea
$$A \in K^{m \times n} \Rightarrow vgf(A) = vgc(A)$$

<u>Dem</u>: Sea $S = \{x \in K^n : AX = 0\}$. Sea R una MERF tal que $A \sim R$ y tal que vgf(A) = vgf(R), (teorema sobre matrices equivalentes por filas y rango fila) y además $S = \{x \in K^n : RX = 0\}$.

Escribimos $R = \begin{pmatrix} F_1' \\ \vdots \\ F_r' \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ donde r es el número de filas no nulas de R. Como R es MERF, vgf(R) = r ya que

 F_1', \dots, F_r' son LI, sus elementos principales están en las posiciones $k_1 < \dots < k_r$. Ahora, dim(S) coincide con el mismo número de variables libres n-r.

Por lema, vgc(A) = n - dim(S) = n - (n - r) = r = vgf(R) = vgf(A).

<u>Lema</u>: Sean V, V', V'' k-ev, $f: V \to V'$, $g: V'' \to V$ dos $TL \Rightarrow Nu(f) \cap Im(g) = g(Nu(f \circ g))$

<u>Dem</u>: (\subseteq) Sea $v \in Nu(f) \cap Im(g)$ tal que f(v) = 0 y $\exists x \in V''$ tal que v = g(x). Ahora, $f \circ g(x) = f(g(x)) = f(v) = 0 \Rightarrow x \in Nu(f \circ g)$.

(⊇) Sea $v \in g(Nu(f \circ g))$ tal que $\exists x \in Nu(f \circ g)$ tal que v = g(x). Entonces $v \in Im(g)$ y $f(v) = f(g(x)) = f \circ g(x) = 0 \Rightarrow v \in Nu(f \circ g)$ \bigcirc

Aplicación: Calcular núcleo e Imagen de una TL.

- 1) Para el núcleo. Si tenemos $T: V \to W$, proponemos $Nu(f) = \{v \in V: f(v) = 0\}$. Obtener las ecuaciones planteando un sistema homogéneo y resolverlo.
- 2) Para la imagen. Debemos calcular una base $B = \{b_1, ..., b_n\}$ de V y aplicarle T a sus elementos. Luego, $Im(T) = \langle T(b_1), ..., T(b_n) \rangle$.

Aplicación: ¿Cómo hacer cambios de base?

- 1) Si tengo la transformación lineal T(v) = w, $T: V \to V$
 - La matriz de cambio de base con respecto a la base canónica es:

 $[T]_{\mathcal{C}}^{\mathcal{C}} = (T_{(e_1)} \quad \dots \quad T_{(e_n)}) \to \text{Aplicar T a la base canónica de V y ponerlos como columna.}$

- Si tengo una base $B = \{v_1, ..., v_n\}$: $[I]_C^B = (v_1 ... v_n) \rightarrow \text{poner los vectores de B como columna.}$ $[I]_B^C = ([I]_C^B)^{-1}$
- Si me piden $[T]_D^B \Rightarrow debo\ calcular: [I]_D^C [T]_C^C [I]_C^B$
- 2) T(v) = w, $T: V \to W$
 - $[T]_D^B \to \text{debo calcular: } [I]_D^{C'}[T]_{C'}^C[I]_C^B \text{ donde } C \text{ es base de } V \text{ y } C' \text{ es base de } W.$
 - $[T]_{C'}^{C} \rightarrow$ aplicar Ta C. Colocar vectores en columna.
 - $[I]_C^B \rightarrow$ poner los vectores de B como columna (B y C son bases del mismo espacio)
 - $[I]_D^{C'}$ debo calcular $[I]_{C'}^D \to \text{poner los vectores de D como columna y luego invertir la matriz.}$

Aplicación: Decidir si existe una TL $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(1,1,0) = (4,3,5),

$$f(0,1,2) = (2,3,1).$$

- 1) Notar que $\{(1,1,0),(0,1,2)\}$ es LI. Podemos extenderlo a una base de \mathbb{R}^3 : $B = \{(1,1,0),(0,1,2),(0,1,0)\}$
- 2) Usando el teorema, existe $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(1,1,0) = (4,3,5), f(0,1,2) = (2,3,1) y f(0,1,0) = (1,3,2) (este último es arbitrario)
- 3) Luego, $(x, y, z) = a(1,1,0) + b(0,1,2) + c(0,1,0) = (a, a + b + c, 2b) \Rightarrow a = x$,

$$b = \frac{z}{2}, c = -x - y - \frac{z}{2}$$

$$f(x, y, z) = xf(1,1,0) + \frac{z}{2}f(0,1,2) + \left(-x - y - \frac{z}{2}\right)f(0,1,0)$$

$$f(x, y, z) = x(4,3,5) + \frac{z}{2}(2,3,1) + \left(-x - y - \frac{z}{2}\right)(1,3,2)$$

$$f(x, y, z) = \left(3x + y + \frac{z}{2}, 3y, 3x + 2y - \frac{z}{2}\right)$$

UNIDAD V: Formas multilineales y determinantes

<u>Definición</u>: Una **forma bilineal** de V en W (k-ev) es una función $f: V \to W$ que es "lineal en cada variable".

$$f(v+v',u) = f(v,u) + f(v',u); f(\lambda v,u) = \lambda f(v,u) \forall v,v',u \in V; \lambda \in K$$

$$f(v, u + u') = f(v, u) + f(v, u'); f(v, \lambda u) = \lambda f(v, u) \forall v, u, u' \in V; \lambda \in K$$

Obs: Muchas veces se considera el caso V = W.

Lema:
$$f(u, v) = [u]_B^t [f]_B [v]_B$$

<u>Definición</u>: F se dice **no degenerada** si $[F]_B$ es invertible (no depende de la base).

<u>Definición</u>: Una función $F: V \times ... \times V \rightarrow K$ se dice **r-multilineal** si es lineal en cada entrada:

$$F(v_1, ..., v_i + v'_i, ..., v_r) = F(v_1, ..., v_i, ..., v_r) + F(v_1, ..., v'_i, ..., v_r)$$

$$F(v_1, ..., \lambda v_i ..., v_r) = \lambda F(v_1, ..., v_i, ..., v_r)$$

Una forma multilineal $F: V \times ... \times V \to K$ se dice **alternada** si al evaluarla en una r-upla con dos entradas iguales, nos da 0.

$$F(v_1, ..., v_i, ..., v_i, ..., v_r) = 0 \text{ si } v_i = v_i$$

$$\underline{\mathbf{Obs}} : F(v, u) = -F(u, v)$$

Propiedades:

Sea $F: V \times ... \times V \rightarrow K$ una forma r-multilineal alternada:

- 1) $F(v_1, ..., 0, ..., v_r) = 0$
- 2) $F(v_1, ..., v_i, ..., v_j, ..., v_r) = -F(v_1, ..., v_i, ..., v_i, ..., v_r), i < j$.
- 3) $F(v_1, ..., v_i + \alpha v_j, ..., v_j ..., v_r) = F(v_1, ..., v_i, ..., v_j, ..., v_r)$

Dem:

- 1) Sea $v \in V$, $F(v_1, ..., 0, ..., v_r) = F(v_1, ..., 0v, ..., v_r) = 0$ $F(v_1, ..., v, ..., v_r) = 0$
- 2) $0 = F(v_1, ..., v_i + v_j, ..., v_i, ..., v_j, ..., v_r) = F(v_1, ..., v_i, ..., v_i, ..., v_r) + F(v_1, ..., v_i, ..., v_j, ..., v_r) + F(v_1, ..., v_j, ..., v_r) + F(v_1, ..., v_j, ..., v_r) + F(v_1, ..., v_j, ..., v_r).$
- 3) $F(v_1, ..., v_i + \alpha v_j, ..., v_j ..., v_r) = F(v_1, ..., v_i, ..., v_j, ..., v_r) + \alpha F(v_1, ..., v_j, ..., v_j, ..., v_r) = F(v_1, ..., v_i, ..., v_i, ..., v_j, ..., v_r).$

<u>Definición</u>: Una función $F: K^{n \times n} \to K$ se dice **multilineal alternada** si lo es pasando a cada matriz $A \in K^{n \times n}$ como una n-upla de vectores columna de K^n

$$A = (C_1, \dots, C_n), C \in K^n \to F(A) = F(C_1, \dots, C_n)$$

Por ejemplo,
$$F\begin{pmatrix} a & b \\ c & d \end{pmatrix} = F\left(\begin{pmatrix} a \\ c \end{pmatrix}, \begin{pmatrix} b \\ d \end{pmatrix}\right)$$

Teorema: Sea $\lambda \in K \Rightarrow$ Existe una única forma multilineal alternada $F: K^{n \times n} \to K$ tal que $F(Id_n) = \lambda$.

<u>Definición</u>: La única forma multilineal alternada $F: K^{n \times n} \to K$ tal que $F(Id_n) = 1$ se denomina **determinante**. La notación es det(A), $A \in K^{n \times n}$.

• En
$$K^{2\times 2}$$
, $det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$

• En
$$K^{3\times3}$$
, $det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + dhc + gbf - ceg - fha - idb$

<u>Definición</u>: Dada $A \in K^{n \times n}$, $1 \le i, j \le n$, se denota por A(i|j) a la matriz que se obtiene de quitar la i-ésima fila y la j-ésima columna de A.

Propiedad: Sea $A \in K^{n \times n}$, $i \in \{1, ..., n\}$

$$\blacksquare det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det(A(i|k)) \rightarrow \text{Desarrollo por la i - \'esima fila}$$

$$\blacksquare det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{ki} det(A(k|i)) \rightarrow \text{Desarrollo por la i} - \text{\'esima columna}$$

Proposición: Sea $A \in K^{n \times n} \Rightarrow det(A^t) = det(A)$

<u>**Dem**</u>: Por inducción en n. $(A^t)_{ij} = A_{ji}$. Para n = 1, no hay que probar nada. Asumimos que vale para n. Sea $A ∈ K^{(n+1)\times(n+1)}$, notar que $A^t(i|j) = (A(j|i))^t$, con lo cual:

$$det(A^{t}) = \sum_{k=1}^{n+1} \frac{\text{Desarrollo por la } 1^{er} \text{ fila}}{(-1)^{1+k} (A^{t})_{1k} det(A^{t}(1|k))} = \sum_{k=1}^{n+1} (-1)^{1+k} (A)_{k1} det(A(1|k))^{t}$$

$$= \sum_{k=1}^{n+1} (-1)^{1+k} (A)_{k1} det(A(k|1)) = det(A)$$

$$= \sum_{k=1}^{n+1} (-1)^{1+k} (A)_{k1} det(A(k|1)) = det(A)$$

Obs: A partir de la proposición anterior, los cálculos que hacíamos por columnas los llevamos a cálculos por filas.

- a) Si A tiene 2 filas iguales $\Rightarrow det(A) = 0$
- b) Intercambiar 2 filas nos cambia el signo del determinante $\Rightarrow det(E^{ij}) = -1$
- c) Multiplicar fila por λ nos altera el determinante en $\lambda \Rightarrow det(E^i_{\lambda}) = \lambda$
- d) Si a la fila i le sumo la fila j multiplicada por un escalar, el determinante no cambia $\Rightarrow det\left(E_{\lambda}^{(i,j)}\right) = 1$

Proposición: Si
$$A \in K^{n \times n}$$
 es triangular superior o inferior: $A = \begin{pmatrix} a_{11} & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{pmatrix}$ ⇒

$$det(A) = \prod_{i=1}^{n} a_{ii}$$
 (producto de la diagonal).

<u>Dem</u>: Por inducción en n. Para n=1 es trivial. Asumimos n y tomamos $A=\begin{pmatrix} a_{11} & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{(n+1)(n+1)} \end{pmatrix}$

Desarrollando la última fila (notar que $a_{(n+1)k}=0$ excepto para k=n+1)

$$det(A) = \sum_{k=1}^{n+1} (-1)^{(n+1)+k} a_{(n+1)k} det \Big(A(n+1|k) \Big) = (-1)^{2n+2} a_{(n+1)(n+1)} det \begin{pmatrix} a_{11} & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{pmatrix}$$

$$= a_{(n+1)(n+1)} \prod_{i=1}^{n} a_{ii} = \prod_{i=1}^{n+1} a_{ii} \ 2$$

<u>Lema</u>: Sea $F: K^{n \times n} \to K$ forma multilineal alternada tal que $F(Id_n) = \alpha \in K \Rightarrow F(X) = \alpha det(X)$

Proposición: Sean A, B \in K^{n×n} \Rightarrow det(AB) = det(A) det(B)

<u>Dem</u>: Fijamos $A \in K^{n \times n}$. Definimos $f: K^{n \times n} \to f_A(X) = det(AX)$. Queremos probar que

 $f_A(X) = det(A)det(X)$. Veamos que A es multilineal alternada y que $f_A(Id_A) = det(A)$

- a) $f_A(Id_n) = det(AId_n) = det(A)$.
- b) $f_A(X_1,...,\lambda X_i,...,X_n) = \det(A(X_1,...,\lambda X_i,...,X_n)) = \det(AX_1,...,A\lambda X_i,...,AX_n) = \lambda \det(AX_1,...,AX_i,...,AX_n) = \lambda f_A(X_1,...,X_i,...,X_n) (X_1,...,X_n) columnas de X).$
- c) $f_A(X_1, ..., X_i + X_i', ..., X_n) = det(AX_1, ..., A(X_i + X_i'), ..., AX_n) = det(AX_1, ..., AX_i + AX_i', ..., AX_n) = det(AX_1, ..., AX_i, ..., AX_n) + det(AX_1, ..., AX_i', ..., AX_n) = f_A(X_1, ..., X_i, ..., X_n) + f_A(X_1, ..., X_i', ..., X_n).$
- d) $f_A(X_1, ..., X_i, ..., X_i, ..., X_n) = det(AX_1, ..., AX_i, ..., AX_i, ..., AX_n) = 0$ (alternada)
- **Teorema**: Sea $A \in K^{n \times n} \Rightarrow A$ es inversible $\Leftrightarrow det(A) \neq 0$

<u>Dem</u>: (⇒) Asumimos que A es inversible. Luego, $\exists B \in K^{n \times n}$ tal que $AB = Id_n$. Entonces $1 = det(Id_n) = det(AB) = det(A)det(B)$.

(\Leftarrow)Por el contrarrecíproco. Asumimos que A no es inversible. Entonces $A \sim E$, donde E es una MERF con su última fila nula. Por lo visto antes, A = PE donde P es producto de marices elementales. Además, det(E) = 0 (E tiene una fila nula) $\Rightarrow det(A) = det(PE) = det(P)det(E) = 0$, absurdo. \square

Corolario: Si A es inversible $\Rightarrow det(A^{-1}) = (det(A))^{-1}$

<u>**Obs**</u>: Mediante operaciones elementales por fila, $A \sim B$ donde B es triangular superior o inferior. Usando el cálculo de determinantes de matrices elementales y en matrices triangulares, obtenemos un método alternativo para calcular determinantes:

$$A \sim A_1 \sim \cdots \sim B \Rightarrow B = E_n \cdots E_1 A \Rightarrow det(B) = det(E_n) \dots det(E_1) det(A)$$

Aplicación: Interpolación y matriz de Vandermonde

Dados $\alpha_1, \ldots, \alpha_n \in K$ distintos, y $\beta_1, \ldots, \beta_n \in K$ arbitrarios, queremos decidir si existe un polinomio de grado $\leq n-1$) tal que $P(a_i)=\beta_i \ \forall i=1,\ldots,n$. Es decir, hallar a_0,\ldots,a_n coeficientes de

$$P(t) = a_0 + a_1 t + \dots + a_{n-1} t^{n-1}$$
 tal que:

$$\begin{cases} \beta_{1} = a_{0} + a_{1}\alpha_{1} + \dots + a_{n-1}\alpha_{1}^{n-1} \\ \vdots \\ \beta_{n} = a_{0} + a_{1}\alpha_{n} + \dots + a_{n-1}\alpha_{n}^{n-1} \end{cases} \rightarrow \begin{pmatrix} 1 & \alpha_{1} & \dots & \alpha_{1}^{n-1} \\ 1 & \alpha_{2} & \dots & \alpha_{2}^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_{n} & \dots & \alpha_{n}^{n-1} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{pmatrix}$$

La matriz
$$A = \begin{pmatrix} 1 & \cdots & 1 \\ \alpha_1 & \cdots & \alpha_n \\ \alpha_1^2 & \cdots & \alpha_n^2 \\ \alpha_1^{n-1} & \cdots & \alpha_n^{n-1} \end{pmatrix}$$
 se llama matriz de Vandermonde.

Afirmación: Sea A=
$$\begin{pmatrix} 1 & \cdots & 1 \\ \alpha_1 & \cdots & \alpha_n \\ \alpha_1^2 & \cdots & \alpha_n^2 \\ \alpha_1^{n-1} & \cdots & \alpha_n^{n-1} \end{pmatrix} \Rightarrow det(A) = \prod (\alpha_j - \alpha_i), 1 \le i \le j \le n$$

UNIDAD VI: Autovectores y autovalores

<u>Definición</u>: Sean $A, B \in K^{n \times n}$. Decimos que A y B son **semejantes** si $\exists C \in K^{n \times n}$ inversible tal que $A = CBC^{-1}$. Se denota $A \sim B$

<u>**Obs**</u>: Sea $f: V \rightarrow V$ TL, B_1, B_2 bases de V, entonces:

$$[f]_{B_2} = C_{B_2}^{B_1}[f]_{B_1}C_{B_1}^{B_2} = C_{B_2}^{B_1}[f]_{B_1}(C_{B_2}^{B_1})^{-1} \Rightarrow [f]_{B_1} \sim [f]_{B_2}$$

<u>Definición</u>: Sea V un k-ev, $f: V \rightarrow V$ una TL, entonces:

- i) $\lambda \in K$ se dice un **autovalor** de f si $\exists v \in V, v \neq 0$ tal que $f(v) = \lambda v$.
- ii) Si λ es un autovalor de f, cada vector $v \in V$ tal que $f(v) = \lambda v$ se dice **autovector** de f de autovalor λ . El conjunto de todos los autovectores de autovalor λ se es el **autoespacio** y se denota V_{λ} (que es subespacio de V)

<u>Definición</u>: Sea $A \in K^{n \times n}$. λ se dice **autovalor** de A si $\exists v \in K^n$ tal que $Av = \lambda v$

Dado λ autovalor de A, $v \in K^n$ se dice **autovector** de A de autovalor λ si $Av = \lambda v$

Obs: λ es autovalor de $f \Leftrightarrow \forall B$ base de V, λ es autovalor de $[f]_B = [f]_B^B$

- **Teorema**: Sea $f: V \to V$ TL, entonces son equivalentes:
 - (i) λ es autovalor de f
 - (ii) Para cada base B de V, λ es autovalor de $[f]_B$
 - (iii) Para cada base B de V, $det(\lambda Id_n [f]_B) = 0$

Dem:

 $(i) \Rightarrow (ii)$. Sea $f: V \to V$ TL, B_1, B_2 bases de V, entonces $[f]_{B_2} = C_{B_2}^{B_1}[f]_{B_1}C_{B_1}^{B_2} = C_{B_2}^{B_1}[f]_{B_1}\left(C_{B_2}^{B_1}\right)^{-1} \Rightarrow [f]_{B_1} \sim [f]_{B_2}$. Luego, los autovalores de $[f]_{B_1}$ y $[f]_{B_2}$ están asociados a la misma TL

 $(ii) \Rightarrow (iii)$ Sea B una base de V. Entonces λ es un autovalor de $[f]_B \Leftrightarrow \exists x \in K^n, x \neq 0$ tal que

$$[f]_Bx=\lambda x \Leftrightarrow \exists x\in K^n, x\neq 0 \ tal \ que \ 0=\lambda Id_n-[f]_Bx=(\lambda Id_n-[f]_B)x$$

$$\Leftrightarrow \lambda Id_n - [f]_B \ no \ es \ inversible \ \Leftrightarrow det(\lambda Id_n - [f]_B) = 0 \ \square$$

Definición:

- a) Sea V un k-ev, $f: V \to V$ una TL. Se dice que f es **diagonalizable** si $\exists B$ base de V tal que $[f]_B$ es diagonal: $[f]_B = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda \end{pmatrix}$, $\lambda_i \in K$
- b) $A \in K^{n \times n}$ es diagonalizable si A es semejante a una matriz diagonal.
- **Proposición**: $f: V \to V$ es diagonalizable $\Leftrightarrow \exists B$ base de V tal que cada elemento de B es un autovector.

<u>Definición</u>: Sea $A \in K^{n \times n}$. El polinomio característico P_A de A es el polinomio

$$P_A = det(XId_n - A) \in K_{[x]}.$$

Obs: λ es autovalor de $A \Leftrightarrow \lambda$ es raíz de P_A .

Proposición: Si $A \sim A' \Rightarrow P_A = P_{A'}$.

<u>Definición</u>: Sea V un k-ev de dimensión finita, $f: V \to V$ una TL. El polinomio característico de f es $P_f = P_{[f]_R}$, donde B es base de V.

Obs:

- 1) Por lo anterior, P_f no depende de la base elegida: supongamos que T y T_0 son dos matrices asociadas a una $TL f: V \to V$, respecto a bases diferentes. Entonces sabemos que T y T_0 son semejantes, es decir, existe una matriz C inversible tal que $T_0 = CTC^{-1}$. Ahora: $det(\lambda Id_n T_0) = det(\lambda CId_nC^{-1} CTC^{-1}) = det(C(\lambda Id_n T)C^{-1})$ $= det(C)det(\lambda Id_n T)det(C^{-1}) = det(\lambda Id_n T)$
- 2) λ es un autovalor de $f \Leftrightarrow \lambda$ es raíz de P_f

Caracterización de matrices/transformaciones lineales diagonalizables

<u>Definición</u>: Sean $S_1, ..., S_k$ subespacios de un k-ev W. Decimos que W es la **suma directa** de $S_1, ..., S_r$ $(W = S_1 \oplus ... \oplus S_r)$ si $W = S_1 + ... + S_r \coloneqq \{s_1 + ... + s_r : s_i \in S_i\}$ y para cada $w \in W$ existen únicos $s_1 \in S_1, ..., s_r \in S_r$ tal que $w = s_1 + ... + s_r$.

- **Proposición**: Sea W un k-ev, S_1 , ..., S_r subespacios de W, son equivalentes:
 - i) $W = S_1 \oplus ... \oplus S_r$
 - ii) $W = S_1 + \dots + S_r y \forall j = 1, \dots, r; S_j \cap (S_1 + \dots + S_{j-1} + S_{j+1} + \dots + S_r) = 0$
 - iii) Si B_1, \dots, B_r son bases de S_1, \dots, S_r respectivamente $\Rightarrow B = B_1 \cup \dots \cup B_r$ es una base de W.
 - iv) Si $W = S_1 + \dots + S_r \Rightarrow dim(W) = dim(S_1) + \dots + dim(S_r)$

<u>Lema</u>: Sea $f: V \to V$ una TL, $\lambda_1, \dots, \lambda_r$ autovalores distintos de $f, V_i = V_{\lambda i}$ los autoespacios asociados y $W = V_1 + \dots + V_r \Rightarrow W = V_1 \oplus \dots \oplus V_r$

<u>Dem</u>: Como $W=V_1+\dots+V_r$, sólo basta ver que $V_j\cap \left(V_1,\dots,V_{j-1},V_{j+1},\dots,V_r\right)=0$. Por inducción en r: Si r=2, veamos que $V_1\cap V_2=0$. Sea $v\in V_1\cap V_2$. Como $v\in V_1$, $f(v)=\lambda_1v$ y como $v\in V_2$, $f(v)=\lambda_2v$. Entonces $0=\lambda_1v-\lambda_2v=(\lambda_1-\lambda_2)v$ y como $(\lambda_1-\lambda_2)\neq 0\Rightarrow v=0$.

Para el paso inductivo, asumimos que la suma de r autoespacios es directa. Veamos que

$$V_j \cap (V_1, \dots, V_{j-1}, V_{j+1}, \dots, V_r) = 0$$
. Sea $v \in V_j \cap (V_1, \dots, V_{j-1}, V_{j+1}, \dots, V_r)$.

Por un lado, $f(v) = \lambda_i v$, y por otro lado, $v = v_1 + \dots + v_{r+1}, v_i \in V_i$.

$$\vdots \ f(v) = f(v_1) + f \Big(v_{j-1} \Big), f \Big(v_{j+1} \Big) + \dots + f(v_{r+1}) = \lambda_1 v_1 + \dots + \lambda_{j-1} v_{j-1} + \lambda_{j+1} v_{j+1} + \lambda_{r+1} v_{r+1}$$

$$\Rightarrow f(v) - f(v) = 0 = \lambda_1 v_1 + \dots + \lambda_{j-1} v_{j-1} + \lambda_{j+1} v_{j+1} + \lambda_{r+1} v_{r+1} - \lambda_j (v_1 + \dots + v_{r+1}) = (\lambda_1 - \lambda_j) v_1 + \dots + (\lambda_{j-1} - \lambda_j) v_{j-1} + (\lambda_{j+1} - \lambda_j) v_{j+1} + \dots + (\lambda_{r+1} - \lambda_j) v_{r+1}.$$

Notar que $(\lambda_i - \lambda_j) \in V_i$ para $i \in \{1, ..., j - 1, j + 1, ..., r + 1\}$

Entonces tenemos por HI que $V_1 + \cdots + V_{i-1} + V_{i+1} + \cdots + V_{r+1} = V_1 \oplus ... \oplus V_{i-1} \oplus V_{i+1} \oplus ... \oplus V_{r+1}$

$$\Rightarrow (\lambda_i - \lambda_j)v_i = 0 \ \forall i \neq j \ \Rightarrow v_i = 0 \ \forall i \neq j \Rightarrow v = 0. \ \boxed{2}$$

- **Teorema**: Sea $f: V \to V$ una TL, V un k-ev de dimensión finita. Sean $\lambda_1, \ldots, \lambda_r$ autovalores distintos de f y $V_i = V_{\lambda i}$ los autoespacios asociados. Son equivalentes:
 - i) f es diagonalizable.
 - ii) El polinomio característico de f es $P_q = (x \lambda_1)^{d_1} \dots (x \lambda_r)^{d_r}$, $d_i = dim(V_i)$
 - iii) $dim(V_1) + \dots + dim(V_r) = dim(V)$
 - iv) $V = V_1 \oplus ... \oplus V_r$

 $\underline{\mathbf{Dem}}: (i) \Rightarrow (ii) \text{ Asumimos que } f \text{ es diagonalizable} \Rightarrow \exists B = \{v_1, \dots, v_n\} \text{ base de autovectores. A menos de reordenar los } v_i, \text{ podemos asumir que } v_1, \dots, v_{d_1} \text{ son autovectores de autovalor } \lambda_1, v_{d_1+1}, \dots, v_{d_1+d_2} \text{ son autovectores de autovalor } \lambda_2, \text{ etc.}$

$$=(x-\lambda_1)^{d_1}(x-\lambda_2)^{d_2}\dots(x-\lambda_r)^{d_r}$$

 $(ii)\Rightarrow (iii)$ Notemos que $gr(P_q)=dim(V)=n$. Asumimos que $P_q=(x-\lambda_1)^{d_1}\dots(x-\lambda_r)^{d_r}\Rightarrow n=d_1+\dots+d_r$, que es lo que había que probar.

 $(iii) \Rightarrow (iv)$ Asumimos que $dim(V_1) + \cdots + dim(V_r) = dim(V)$. Sea $W = V_1 + \cdots + V_r$. Como los autovalores son distintos, $W = V_1 \oplus ... \oplus V_r$. Por ser suma directa, $dim(W) = dim(V_1) + \cdots + dim(V_r)$

= dim(V) por hipótesis.

 $(iv)\Rightarrow (i)$ Asumimos que $V=V_1\oplus ...\oplus V_r$. Sea B_i una base de cada V_i . Cada elemento de B_i es un autovector de autovalor λ_i . Por la proposición sobre sumas directas, $B=B_1\cup ...\cup B_r$ es base de V que consta de autovectores \Rightarrow es diagonalizable. \square

Obs: Sea λ una raíz de un polinomio P, entonces $P(\lambda) = 0 \Leftrightarrow x - \lambda | P \Rightarrow P = (x - \lambda)Q, Q \in K_{[x]}$

La **multiplicidad** de λ es el entero $m \geq 1$ tal que $(x - \lambda)^m | P$, pero $(x - \lambda)^{m+1} \nmid P$

Es equivalente a $P = (x - \lambda)^m Q$

Sea λ un autovalor de f tal que λ es una raíz de P_q . Sea m la multiplicidad de λ en $P_q \Rightarrow m \geq dim(V_\lambda)$

Polinomios y teorema de Cayley-Hamilton

Dado un polinomio $P=a_0+a_1x+\cdots+a_nx^n\in K_{[x]}$ y una matriz $A\in K^{nxn}\Rightarrow$

$$P(A) = a_0 I d_n + a_1 A + \dots + a_n A^n$$

Ejemplos:

1) Sea
$$A = \begin{pmatrix} d_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_m \end{pmatrix} \Rightarrow A^r = \begin{pmatrix} d_1^r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_m^r \end{pmatrix}$$
 (Sólo si A es diagonal)

2) Sea
$$P = a_0 + a_1 x + \dots + a_n x^n \Rightarrow$$

$$P(A) = \begin{pmatrix} a_0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_0 \end{pmatrix} + \begin{pmatrix} a_1 d_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_1 d_m \end{pmatrix} + \cdots + \begin{pmatrix} a_1 d_1^n & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n d_m^n \end{pmatrix} = \begin{pmatrix} P_{(d_1)} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & P_{(d_m)} \end{pmatrix}$$

Aplicación: Calcular autovalores, autovectores y autoespacios de una TL.

- 1) Sea $T: V \to V$. Si tenemos $T(x_1, ..., x_n)$, buscamos $[T]_C$.
- 2) Calcular $det(\lambda Id_n [T]_C)$, que es el polinomio característico. Luego buscar sus raíces calculando $(\lambda Id_n [T]_C) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$. Cada raíz λ del polinomio es un autovalor de $[T]_C$.
- 3) Una vez obtenidos los autovalores λ_i , buscamos los autovectores. Tenemos que $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in V_{\lambda_i} \Leftrightarrow (\lambda_i I d_n [T]_C) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ donde V_{λ_i} es el autoespacio asociado. Para los autovectores, solo basta obtener una base B_i de V_{λ_i} . Cada elemento de la base es un autovector.
- 4) Si queremos ver si T es diagonalizable, hay que chequear que $dim(V_{\lambda_1}) + \cdots + dim(V_{\lambda_n}) = dim(V)$. Luego $B = \{B_1 \cup ... \cup B_n\}$ es la base en donde T es diagonalizable, ya que cada B_i está formada por autovectores de T.

UNIDAD VII: Espacio Dual y Ortogonalidad

<u>Definición</u>: Sea *V* un k-ev Dado que *K* es un k-ev definimos al **espacio dual** como:

$$V^* = Hom(V, K) = \{f: V \rightarrow K : f \text{ es una transformación lineal}\}$$

Obs: V* es un k-ev Sean $f, g \in Hom(V, K)$, entonces:

- $(f+g)_{(v)} = f(v) + g(v) \forall v \in V$
- $(\lambda f)_{(v)} = \lambda f(v) \ \forall v \in V, \lambda \in K$

 $Hom(V, K) \simeq K^{1\times n} \Rightarrow dim(V^*) = dim(V)$

Proposición: Sea V un k-ev de dimensión $n, B = \{v_1, \dots, v_n\}$ una base de V. Existen únicos elementos $\varphi_1, \dots, \varphi_n \in V^*$ tales que $\varphi_j(v_i) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$ y

 $B^* = \{\varphi_1, ..., \varphi_n\}$ es una base de V^* . A tal B^* se la denomina **base dual de V**. Cada elemento $f \in V^*$ se llama **función lineal de V**.

<u>Dem</u>: Fijemos $j \in \{1, ..., n\}$. Sea $\varphi_j : V \to K$ una TL definida por $\varphi_j(v_j) \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$. Como dim $(V^*) = n$, para ver que $\varphi_1, ..., \varphi_n$ forman una base de V^* , basta verificar que son LI. Sean $a_1, ..., a_n \in K$ tales que $a_1\varphi_1 + \cdots + a_n\varphi_n = 0$. Para cada $i \in \{1, ..., n\}, 0 = 0(v_i) = (a_1\varphi_1 + \cdots + a_n\varphi_n)v_i = a_1\varphi_1(v_i) + \cdots + a_n\varphi_n(v_i) = a_i \therefore a_i = 0 \ \forall i \in \{1, ..., n\} \ y \ B^* = \{\varphi_1, ..., \varphi_n\}$ es base de V^* . Supongamos que $\{\varphi'_1, ..., \varphi'_n\}$ es otra base de V^* . Entonces tenemos que para cada $i, j \in \{1, ..., n\}$:

- $\varphi_i'(v_i) = 0 = \varphi_i(v_i)$ si $i \neq j$
- $\varphi_i'(v_i) = 1 = \varphi_i(v_i) \text{ si } i = j$

Es decir, φ_i' y φ_i son dos TL que coinciden sobre una base. En consecuencia $\varphi_i' = \varphi_i \ \forall i \in \{1,..,n\}$

<u>Lema</u>: Sea $B = \{v_1, ..., v_n\}$ una base de $V, B^* = \{\varphi_1, ..., \varphi_n\}$ una base dual, entonces:

- a) $(v)_B = (\varphi_1(v), \dots, \varphi_n(v)), \forall v \in V$
- b) $(f)_{B^*} = (f_{(v_1)}, \dots, f_{(v_n)}), \forall f \in V^*$

<u>Definición</u>: Sean V, W dos k-ev, $T: V \rightarrow W$ una TL.

La **transpuesta** de T es la función $T^*: W^* \to V^*$ dada por: $T^*(f)_{(v)} = f(T_{(v)}), f \in W^*, v \in V$.

Espacios vectoriales y producto interno

<u>Definición</u>: Un **producto interno** sobre V k-ev es una función $\langle \cdot, \cdot \rangle$: $V_x V \to \mathbb{R}$ que cumple:

- a) $\langle v + w, u \rangle = \langle v, u \rangle + \langle w, u \rangle \, \forall v, w, u \in V$
- b) $\langle \lambda v, u \rangle = \lambda \langle v, u \rangle \ \forall v, u \in V, \lambda \in \mathbb{R}$
- c) $\langle v, w \rangle = \langle w, v \rangle \ \forall v, w \in V$
- d) $\langle v, v \rangle > 0$ si $v \neq 0 \forall v \in V$

Un R-espacio vectorial V provisto de un producto interno se dice **espacio euclídeo**.

Obs: $\langle \cdot, \cdot \rangle$ es una forma bilineal simétrica.

Producto interno en C: Sea V un C-espacio vectorial, cuyo producto interno (o forma hermitiana) es $\langle \cdot, \cdot \rangle$: $V_x V \to \mathbb{C}$ y que cumple a), b), c') $\langle v, w \rangle = \overline{\langle w, v \rangle}$, d).

Con esta condición, $\langle \cdot, \cdot \rangle$ es sesquilineal:

• $\langle v, u + w \rangle = \langle v, u \rangle + \langle v, w \rangle$

• $\langle v, \lambda u \rangle = \lambda \langle v, u \rangle$

Ejemplos:

- 1) Producto interno canónico en \mathbb{R}^n : $\langle (x_1, ..., x_n), (y_1, ..., y_n) \rangle = x_1 y_1 + \cdots + x_n y_n$
- 2) Producto interno canónico en \mathbb{C}^n : $\langle (x_1, ..., x_n), (y_1, ..., y_n) \rangle = x_1 \overline{y_1} + \cdots + x_n \overline{y_n}$
- 3) Producto interno en $\mathbb{R}^{m \times n}$: $\langle A, B \rangle = tr(AB^t)$ donde tr es la suma de la diagonal principal (traza).

<u>Definición</u>: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo. Para cada $v \in V$ se define la **norma** de v como $||v|| = \sqrt{\langle v, v \rangle}$. Así tenemos una función $||\cdot||: V \to \mathbb{R}_{\geq 0}$.

Proposición:

- (i) Para cada $v \in V$, $||v|| \ge 0$ y $||v|| = 0 \Leftrightarrow v = 0$
- (ii) Para cada $\alpha \in \mathbb{R}, v \in V, ||\alpha v|| = |\alpha| ||v||$.
- (iii) $|\langle v, w \rangle| \le ||v|| ||w||$ (Designaldad de Cauchy-Schwartz).
- (iv) $||v + w|| \le ||v|| + ||w||$ (designaldad triangular).

<u>Dem</u>: Sea $v = (v_1, ..., v_n) \in V, w = (w_1, ..., w_n) \in V, \alpha \in \mathbb{R}$

(i) Tenemos que
$$\|v\| = \sqrt{\langle v, v \rangle} = \sqrt{\langle (v_1, \dots, v_n), (v_1, \dots, v_n) \rangle} = \sqrt{v_1^2 + \dots + v_n^2} = 0 \Leftrightarrow v_1^2 + \dots + v_n^2 = 0 \Leftrightarrow v_1 + \dots + v_n = 0 \Leftrightarrow v_1 = \dots = v_n = 0.$$

$$(ii) \|\alpha v\| = \sqrt{\langle \alpha v, \alpha v \rangle} = \sqrt{\alpha^2 v_1^2 + \dots + \alpha^2 v_n^2} = \sqrt{\alpha^2 (v_1^2 + \dots + v_n^2)} = \sqrt{\alpha^2} \sqrt{v_1^2 + \dots + v_n^2} = |\alpha| \|v\|.$$

(iii) Si w = 0, ya está. Asumamos que $w \neq 0$.

Entonces
$$0 \le \langle v - \frac{\langle v, w \rangle}{\|w\|^2} w, v - \frac{\langle v, w \rangle}{\|w\|^2} w \rangle = \langle v, v \rangle - \frac{\langle v, w \rangle}{\|w\|^2} \langle v, w \rangle - \frac{\langle v, w \rangle}{\|w\|^2} \langle w, v \rangle + \frac{\langle v, w \rangle^2}{\|w\|^4} \langle w, w \rangle$$

$$= \|v\|^2 - 2\frac{\langle v, w \rangle^2}{\|w\|^2} + \frac{\langle v, w \rangle^2}{\|w\|^2}. \text{ Es decir, } 0 \le \|v\|^2 - \frac{\langle v, w \rangle^2}{\|w\|^2} \Rightarrow \frac{\langle v, w \rangle^2}{\|w\|^2} \le \|v\|^2$$

$$(iv) \text{Obs: } ||v+w||^2 = \langle v+w, v+w \rangle = \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$

$$= ||v||^2 + 2\langle v, w \rangle + ||w||^2 \le ||v||^2 + 2|\langle v, w \rangle| + ||w||^2 \le ||v||^2 + 2||v||||w|| + ||w||^2$$

$$||v + w||^2 \le (||v|| + ||w||)^2 \Rightarrow ||v + w|| \le ||v|| + ||w||$$

Obs: en (*iii*), si
$$v, w \neq 0 \Rightarrow -1 \leq \frac{\langle v, w \rangle}{\|v\| \|w\|} \leq 1$$
.

El **ángulo** entre v y w es $arccos\left(\frac{\langle v,w\rangle}{\|v\|\|w\|}\right) \in [0,\pi]$

Matriz de producto interno

<u>Definición</u>: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, una base de V. La matriz de $\langle \cdot, \cdot \rangle$ respecto a B es:

$$|\langle \cdot, \cdot \rangle|_B = (\langle v_i, w_j \rangle), con \ 1 \le i, j \le n$$

Ejemplo: En
$$\mathbb{R}^2$$
, $B = \{e_1, e_2\}$, $e_1 = (1,0)$, $e_2 = (0,1) \rightarrow \begin{pmatrix} \langle e_1, e_1 \rangle & \langle e_1, e_2 \rangle \\ \langle e_2, e_1 \rangle & \langle e_2, e_2 \rangle \end{pmatrix}$

Proposición: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, B una base de V. Entonces $\langle v, w \rangle = (v)_B^t |\langle \cdot, \cdot \rangle|(w)_B$

<u>Dem</u>: Sea $B = \{v_1, ..., v_n\}$. Dados $v, w \in V$, los escribimos en términos de la base:

$$v = \sum_{i=1}^{n} a_i v_i, \quad w = \sum_{i=1}^{n} b_j v_j \Rightarrow (v)_B = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, (w)_B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$\Rightarrow \langle v, w \rangle = \langle \sum_{i=1}^n a_i v_i, \sum_{j=1}^n b_j v_j \rangle = \sum_{i=1}^n \sum_{j=1}^n a_i b_j \langle v_i, v_j \rangle = \sum_{i=1}^n a_i \left(\sum_{j=1}^n b_j \langle v_i, v_j \rangle \right) = (a_1, \dots, a_n) \begin{pmatrix} \sum_{j=1}^n b_1 \langle v_1, v_j \rangle \\ \vdots \\ \sum_{j=1}^n b_n \langle v_n, v_j \rangle \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$=(a_1,\ldots,a_n)\begin{pmatrix}\langle v_1,v_1\rangle&\cdots&\langle v_1,v_n\rangle\\ \vdots&\ddots&\vdots\\ \langle v_n,v_1\rangle&\cdots&\langle v_n,v_n\rangle\end{pmatrix}\begin{pmatrix}b_1\\ \vdots\\ b_n\end{pmatrix}=(v)_B^t(|\langle\cdot,\cdot\rangle|)_B(w)_B.\mathbb{Z}$$

Ortogonalidad

- a) Dos **vectores** se dicen ortogonales (o perpendiculares) si $\langle v, w \rangle = 0$.
- b) Un **subconjunto** $S \subseteq V$ es ortogonal si $\langle v, w \rangle = 0 \ \forall \ v, w \in S$.
- c) Un **subconjunto** $S \subseteq V$ es **ortonormal** si es ortogonal y además $||v|| = 1 \ \forall \ v \in S$.

$$\underline{\mathbf{Obs}} \text{: Si } S = \{v_1, \dots, v_n\} \text{ es ortogonal y } v_i \neq 0 \ \forall i \ \Rightarrow \ S = \left\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\right\} \text{ es ortonormal }$$

<u>**Obs 2**</u>: Si $B = \{v_1, ..., v_n\}$ es una base ortogonal de V ⇒

$$|\langle \cdot, \cdot \rangle|_{B} = \begin{pmatrix} \langle v_{1}, v_{1} \rangle & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \langle v_{n}, v_{n} \rangle \end{pmatrix} \text{ es diagonal.}$$

Si B es ortonormal $\Rightarrow |\langle \cdot, \cdot \rangle|_B = Id_n$

Proposición: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, $S = \{v_1, \dots, v_r\}$ un subconjunto ortogonal de V tal que $v_i \neq 0 \ \forall i = 1, \dots, r \Rightarrow S$ es LI.

<u>Dem</u>: Sean $a_1, ..., a_r \in \mathbb{R}$ tal que $a_1v_1 + \cdots + a_rv_r = 0$. Para cada j = 1, ..., r se tiene que:

$$0 = \langle v_j, 0 \rangle = \langle v_j, a_1 v_1 + \dots + a_r v_r \rangle = a_1 \langle v_j, v_1 \rangle + \dots + a_r \langle v_j, v_r \rangle. \text{ Como } S \text{ es ortogonal, tenemos que } \langle v_j, v_i \rangle = 0 \text{ si } i \neq j, \text{ con lo cual } 0 = a_j \langle v_j, v_j \rangle = a_j \|v_j\|^2. \text{ Como } v_j \neq 0 \ \Rightarrow a_j = 0. \text{ Luego } a_1, \dots, a_r = 0 \text{ y } S \text{ es LI. } \mathbb{Z}$$

Proposición: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, $B = \{v_1, \dots, v_n\}$ una base ortogonal de V.

Entonces
$$v = \sum_{j=1}^{n} \frac{\langle v, v_j \rangle}{\|v_j\|^2} \ \forall v \in V.$$

<u>Dem</u>: Dado que *B* es base de *V*, para cada $v \in V$ podemos escribir:

$$v = \sum_{i=1}^{n} a_i v_i$$
. Como B es ortogonal, para cada $j = 1, \dots, n$ tenemos que $\langle v, v_j \rangle = \langle \sum_{i=1}^{n} a_i v_i, v_j \rangle$

$$= \sum_{j=1}^{n} a_i \langle v_i, v_j \rangle = a_j \langle v_j, v_j \rangle = a_j \|v_j\|^2 \Rightarrow \langle v, v_j \rangle = a_j \|v_j\|^2 \Rightarrow a_j = \frac{\langle v, v_j \rangle}{\|v_j\|^2}.$$

Corolario: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo, $B = \{v_1, \dots, v_n\}$ una base ortonormal de V.

a)
$$\forall v \in V: v = \sum_{j=1}^{n} \langle v, v_j \rangle v_j$$

b)
$$\forall v, w \in V: \langle v, w \rangle = \sum_{j=1}^{n} \langle v, v_j \rangle \langle w, v_j \rangle$$

c)
$$\forall v \in V: ||v|| = \sqrt{\sum_{j=1}^{n} \langle v, v_j \rangle^2}$$

Dem:

a) Por la proposición sobre bases ortogonales y coordenadas de un vector, $v = \sum_{j=1}^{n} \frac{\langle v, v_j \rangle}{\|v_j\|^2}$.

Como B es ortonormal, tenemos que $||v_j|| = 1 \Rightarrow ||v_j||^2 = 1$ y por lo tanto $v = \sum_{j=1}^n \langle v, v_j \rangle v_j$

b) Usando a):
$$\langle v, w \rangle = \langle \sum_{i=1}^{n} \langle v, v_i \rangle v_i, \sum_{j=1}^{n} \langle w, v_j \rangle v_j \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle v, v_i \rangle \langle w, v_j \rangle \langle v_i, v_j \rangle = \sum_{i=1}^{n} \langle v, v_i \rangle \langle w, v_i \rangle \langle v_i, v_i \rangle$$

c) Si consideramos
$$v = w$$
: $\langle v, v \rangle = ||v||^2 = \langle \sum_{i=1}^n \langle v, v_i \rangle v_i, \sum_{i=1}^n \langle v, v_i \rangle v_i \rangle = \sum_{i=1}^n \sum_{i=1}^n \langle v, v_i \rangle \langle v,$

$$=\sum_{i=1}^n \langle v,v_i\rangle^2 \|v_i\|^2 \ \Rightarrow \frac{\|v\|^2}{\|v_i\|^2} = \sum_{i=1}^n \langle v,v_i\rangle^2 \ \Rightarrow \mathsf{Como}\, B \ \text{ es ortonormal, } \|v_i\|^2 = 1 \Rightarrow \|v\|^2 = \sum_{i=1}^n \langle v,v_i\rangle^2$$

$$\Rightarrow \|v\| = \sqrt{\sum_{i=1}^{n} \langle v, v_i \rangle^2} \quad \boxed{2}$$

Teorema: Método de ortonormalización Gram-Schmidt

Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo, $B = \{v_1, \dots, v_n\}$ una base de V, entonces:

a) Existe una base ortogonal $B' = \{w_1, ..., w_n\}$ tal que $\langle v_1, ..., v_k \rangle = \langle w_1, ..., w_k \rangle$ $\forall k = 1, ..., n$. Los w_i 's se definen recursivamente como:

$$w_j = v_j - \sum_{j=1}^n \frac{\langle v_j, w_k \rangle}{\|w_k\|^2} w_k$$

b) Existe una base ortonormal $B^{\prime\prime}=\{w^{\prime}_{1},\ldots,w^{\prime}_{n}\}$ con la misma propiedad.

<u>Dem</u>: Ya que b) se sigue de modo directo de a), solo basta probar a). Por inducción: tenemos que probar que si $\{w_1, \dots, w_k\}$ es una base ortogonal entonces $< w_1, \dots, w_k > = < v_1, \dots, v_k >$.

Para $k=1, w_1=v_1$ cumple la condición. Asumimos que vale para k. Queremos ver que $\langle w_i, w_j \rangle = 0$ para $i, j \in \{1, \dots, k+1\}, i \neq j$. Como por hipótesis inductiva esto vale para $i, j \in \{1, \dots, k\}$ basta probar que $\langle w_{k+1}, w_j \rangle = 0$ $\forall j \leq k$.

$$\langle w_{k+1}, w_j \rangle = \langle v_{k+1} - \sum_{i=1}^k \frac{\langle v_{k+1}, w_i \rangle w_i}{\|w_i\|^2}, w_j \rangle = \langle v_{k+1}, w_j \rangle - \sum_{i=1}^k \frac{\langle v_{k+1}, w_i \rangle}{\|w_i\|^2} \langle w_i, w_j \rangle$$

$$=\langle v_{k+1},w_j\rangle - \frac{\langle v_{k+1},w_i\rangle}{\|w_i\|^2}\langle w_j,w_j\rangle = 0.$$

Ahora, falta probar $< w_1, \dots, w_{k+1} > = < v_1, \dots, v_{k+1} >$. Asumimos que $< w_1, \dots, w_k > = < v_1, \dots, v_k >$. Notar que $< w_1, \dots, w_{k+1} > = < w_1, \dots, w_k > + < w_{k+1} > y < v_1, \dots, v_{k+1} > = < v_1, \dots, v_k > + < v_{k+1} >$.

Para probar que $< w_1, \dots, w_{k+1} > = < v_1, \dots, v_{k+1} >$, basta ver que $v_{k+1} \in < w_1, \dots, w_{k+1} >$ y que $w_{k+1} \in < v_1, \dots, v_{k+1} >$.

$$w_{k+1} \in < v_1, \dots, v_{k+1} > \text{se deduce de } w_{k+1} = v_{k+1} - \sum_{i=1}^k \frac{\langle v_{k+1}, w_i \rangle}{\|w_i\|^2} w_i. \text{ Análogamente con } v_{k+1} \text{ } \text{?}$$

Complemento ortogonal

Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo, S \subseteq V un subconjunto de V. El **complemento ortogonal** de S es el conjunto $S^{\square} = \{ v \in V : \langle v, s \rangle = 0 \ \forall s \in S \}$

<u>Obs</u>: $S^{\mathbb{Z}}$ es un subespacio de V, en efecto $0 \in S^{\mathbb{Z}}$ (puedo tomar v = 0). Si $v, v' \in S^{\mathbb{Z}}$, $\lambda \in \mathbb{R}$, $\langle v + \lambda v', s \rangle = \langle v, s \rangle + \lambda \langle v', s \rangle$

Obs: $S^{2} = < S >^{2}$

Proposición: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, $W \subseteq V$ un subespacio de $V \Rightarrow V = W \oplus W^{\square}$.

<u>Dem</u>: Sea $V \in W \cap W^{\perp}$. Como $v \in W^{\perp}$, se tiene que $\langle v, w \rangle = 0$, $\forall w \in W$

En particular, tomando m = v, tenemos $\langle v, v \rangle = 0 \Rightarrow ||v||^2 = 0$, por lo tanto, v = 0.

Sea $\{v_1, \dots, v_r\}$ una base de W (r = dim(W)) Podemos completarla a una base $\{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$ de V (dim(V) = n). Aplicando Gram-Schmidt a esta base, se obtiene la base ortogonal $\{w_1, \dots, w_n\}$ tal que $\langle v_1, \dots, v_k \rangle = \langle w_1, \dots, w_k \rangle$, $\forall k = 1, \dots, n$. En particular, para $k = r, w = \langle v_1, \dots, v_r \rangle = \langle w_1, \dots, w_r \rangle \Rightarrow \{w_1, \dots, w_r\}$ es una base ortogonal de W, y cada $W_j, j > r$, está en W^\perp . Así, $\{w_{r+1}, \dots, w_n\}$ es un subconjunto LI de $W^\perp \Rightarrow dim(W^\perp) \geq n - r$.

Ahora $n \leq dim(W) + dim(W^{\perp}) = dim(W + W^{\perp}) + dim(W \cap W^{\perp}) = n$, por lo tanto, $dim(W + W^{\perp}) = n \Rightarrow W + W^{\perp} = V \, \square$

Proposición: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, W⊆V un subespacio de $V, \Rightarrow (W^{\square})^{\square} = W$

 $\underline{\text{Dem:}}(W^{\square})^{\square} = \{v \in V : \langle v, x \rangle = 0, \forall x \in W^{\square}\} \text{ si } w \in W \Rightarrow \langle w, x \rangle = 0, \forall x \in W^{\square} \Rightarrow w \in (W^{\square})^{\square}. \text{ Luego,}$

 $W \subseteq (W^{\mathbb{Z}})^{\mathbb{Z}}$. Por otro lado, $dim(W^{\mathbb{Z}})^{\mathbb{Z}} = dim(V) - dim(W^{\perp}) = dim(V) - \left(dim(V) - dim(W)\right) = dim(W) \Rightarrow W = (W^{\mathbb{Z}})^{\mathbb{Z}}$. \mathbb{Z}

<u>Definición</u>: Dado $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo, $v \in V$. Definimos $f_v: V \to \mathbb{R}$,

 $f_v(w) = \langle w, v \rangle, w \in V \text{ una TL el } (f_v \in V^*)$:

- $f_v(w+w') = \langle w+w',v\rangle = \langle w,v\rangle + \langle w',v\rangle = f_v(w) + f_v(w'), \forall v,w' \in V$
- $f_n(\lambda w, v) = \langle \lambda w, v \rangle = \lambda \langle w, v \rangle = \lambda f_n(w), \forall w \in V, \lambda \in \mathbb{R}.$
- **Teorema**: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, la función

 $F: V \to V^*$, $F(v) = f_v$ es un isomorfismo. En particular, $\forall f \in V^* \exists ! v \ tal \ que \ f(w) = \langle w, v \rangle \ \forall w \in W \ (f = f_v)$.

<u>Dem:</u> Veamos que F es una transformación lineal. Tomemos $v, v' \in V, \lambda \in K$:

$$F(v+v')(w) = f_{v+v'}(w) = \langle w, v+v' \rangle = \langle w, v \rangle + \langle w+v' \rangle = f_v(w) + f_v'(w) = F(v)(w) + F(v')(w)$$

$$F(\lambda v)(w) = f_{\lambda v}(w) = \langle w, \lambda v \rangle = \lambda \langle w, v \rangle = \lambda f_v(w) = \lambda F(v)(w)$$

Para ver que F es un isomorfismo, basta probar que F es un monomorfismo ya que $dim(V) = dim(V^*)$. Sea $v \in Nu(F)$: es decir, F(v) = 0, con lo cual F(v)(w) = 0, $\forall w \in V$. En particular, $0 = F(v)(v) = \langle v, v \rangle \Rightarrow v = 0$

Teorema: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita. Sea $T: V \to V$ una TL.

Existe una única TL $T^*: V \to V$ tal que $\langle T_{(w)}, v \rangle = \langle w, T_{(v)}^* \rangle \ \forall v, w \in V$. Tal T^* se dice **adjunta** de T.

<u>Dem:</u> Sea $w \in V$ definimos $g_w: V \to K$, $g_w(v) = \langle T_{(v)}, w \rangle$, $v \in V$. Veamos que $g_w \in V^*$ (es decir, que es una TL):

$$g_w(v+v') = \langle T_{(v+v')}, w \rangle = \langle T_{(v)} + T_{(v')}, w \rangle = \langle T_{(v)}, w \rangle + \langle T_{(v')}, w \rangle = g_w(v) + g_w(v')$$

$$g_w(\lambda v) = \langle T_{(\lambda v)}, w \rangle = \langle \lambda T_{(v)}, w \rangle = \lambda \langle T_{(v)}, w \rangle = \lambda g_w(v)$$

Dado el isomorfismo $F: V \to V^*$: $\exists \widetilde{w} \in V$ tal que $g_w = F(\widetilde{w})$.

Entonces podemos definir una función $T^*: V \to V$, $T^*(w) = F^{-1}(g_w) = \widetilde{w}$ ¿Qué propiedad tiene?

Por el teorema anterior, $F(\widetilde{w})(v) = \langle v, \widetilde{w} \rangle, \forall v \in V$. Es decir, $T^*(w) = \widetilde{w}$ es el único elemento de V tal que: $\langle v, T^*(w) \rangle, \Rightarrow g_w(v) = \langle T_{(v)}, w \rangle, \forall v \in V (\star)$

Veamos que T* es una transformación lineal: dados $w, w' \in V, \lambda \in \mathbb{R}, T^*(w + w') = \langle v, T^*_{(w+w')} \rangle = (\star)$

$$\langle T_{(v)}, w + w' \rangle = \langle T_{(v)}, w \rangle + \langle T_{(v)}, w' \rangle = (\bigstar) \, \langle v, T^*_{(w)} + T^*_{(w')} \rangle, \forall v \in V$$

Usando nuevamente \star , tenemos que $T^*(w+w') = T^*(w) + T^*(w')$

Proposición: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dim finita, $T: V \to V$ una transformación lineal, B una base de V. Entonces, $[T]_B = ([T^*]_B)^t$

<u>Dem</u>: Sean $B = \{v_1, ..., v_n\}$, $[T]_B = (a_{ij})$, $[T^*]_B = (b_{ji})$. Por definición, queremos probar que $a_{ij} = b_{ji}$, $\forall i, j = 1, ..., n$.

Por definición
$$T(v_k) = \sum_{i=1}^n a_{ik} \, v_i$$
 , $T^*(v_k) = \sum_{i=1}^n b_{ik} \, v_i$.

Como B es una base ortonormal, $a_{ik} = \langle T(v_k), v_i \rangle \Rightarrow a_{ij} = \langle v_j, T^*(v_i) \rangle = \langle v_j, \sum_{l=1}^n b_{li} v_l \rangle$

$$= \sum_{l=1}^{n} b_{li} \langle v_j, v_l \rangle = b_{ji} \langle v_j, v_j \rangle = b_{ji} \mathbb{Z}$$

<u>Definición</u>: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita. Una TL $T: V \to V$ se dice autoadjunta si $T^* = T$ Es decir, si $\langle T_{(v)}, w \rangle = \langle v, T_{(w)} \rangle$, $\forall v, w \in V$

- **Proposición:** Sea $(V, \langle \cdot, \cdot \rangle)$, un espacio euclídeo de dim finita, $T: V \to V$ una TL son equivalentes:
 - a) T es autoadjunta
 - b) $\forall B$ base ortonormal $[T]_B$ es simétrica
 - c) $\exists B$ base ortonormal tal que $[T]_B$ es simétrica

<u>Dem:</u> La equivalencia de los tres enunciados se deduce de la proposición y la definición de transformación lineal autoadjunta.

Diagonalización de matrices simétricas reales

<u>**Obs:**</u> Todo polinomio con coeficientes complejos admite raíces complejas, es decir, si $p(x) \in \mathbb{C}_{[x]}$, $\exists \lambda \in \mathbb{C}$ tal que $p(x) = 0 \Leftrightarrow x - \lambda \mid p(x) \Leftrightarrow \exists q(x) \in \mathbb{C}_{[x]}$ tal que $p(x) = (x - \lambda)q(x)$.

Luego, cada polinomio $p(x) \in \mathbb{C}_{[x]}$ se puede factorizar $f(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_n), n = gr(p)$

Proposición: Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica. Entonces, las raíces de P_A son todas reales $P_A = (x - \lambda_1) \dots (x - \lambda_n)$, $\lambda_i \in \mathbb{R}$ (los $\lambda's$ no son necesariamente distintos).

<u>Idea de la prueba</u>: Podemos pensar a $A \in \mathbb{C}^{n \times n}$, $f_A : \mathbb{C}^n \to \mathbb{C}^n$, $f_A(v) = Av$, tomamos el producto interno canónico de \mathbb{C}^n , $\langle v, w \rangle = v \overline{w}$ Para este producto, f_A es autoadjunta (porque A es simétrica), $\lambda \in \mathbb{C}$ una raíz de $P_A \to X$ es un autovalor de f_A .

Sea $v \neq 0$, un autovector de autovalor λ , $\lambda ||v||^2 = \lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle f_A(v), v \rangle$ Para ver f_A autoadjunta, $\langle v, f_A(v) \rangle = \langle v, \lambda v \rangle = \bar{\lambda} \langle v, v \rangle = \bar{\lambda} ||v||^2 \Rightarrow \lambda = \bar{\lambda} \Rightarrow \lambda \in \mathbb{R}$

Recordar: $A \in \mathbb{R}^{nxn}$ se dice diagonalizable si $A \sim D$, D diagonal $\Leftrightarrow \exists C$ invertible tal que $A = CDC^{-1}$ **Definición:** Una matriz O se dice ortogonal si $O \in \mathbb{R}^{nxn}$ es invertible y $O^{-1} = O^t$

<u>Lema:</u> Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dim finita, B, B' dos bases ortonormales $\Rightarrow C_{B'}^B$ es ortogonal. <u>Corolario:</u> Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica $(A = A^t)$ Entonces existe una matriz ortogonal $O \in \mathbb{R}^{n \times n}$ tal que OAO^t es diagonal \Rightarrow A es diagonalizable.

<u>Dem:</u> A partir de A miramos $f_A: \mathbb{R}^n \to \mathbb{R}^n$ $f_A(v) = Av$. Como A es simétrica, f_A es autoadjunta para el producto interno canónico. Por el teorema anterior, $\exists B$ una base ortonormal de autovectores de $f_A \Rightarrow [f_A]_B = D$ es diagonal.

Ahora, $A = [f_A]_C = C_C^B[f_A]_B C_B^C$ (0 es ortogonal por el lema) $\Rightarrow D = 0A0^t$

Distancia entre vectores

<u>Definición</u>: Sea X un conjunto no vacío. Una **distancia** en X es una función $d: X_x X \to \mathbb{R}_{\geq 0}$ que cumple:

- i) $d(x, y) = d(y, x) \forall x, y \in X$
- ii) $d(x, y) = 0 \Leftrightarrow x = y$
- iii) $d(x,y) + d(y,z) \ge d(x,z)$

Obs: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo $\Rightarrow \|.\|: V \to \mathbb{R}_{\geq 0}, \|v\| = \sqrt{\langle v, v \rangle}$ entonces $d: V_x V \to \mathbb{R}_{\geq 0}$ tal que $d(x, y) = \|x - y\|$ es una distancia.

Obs: En
$$(\mathbb{R}^n, \langle \cdot, \cdot \rangle \ canónico), d((x_1, ..., x_n), (y_1, ..., y_n)) = ||(x_1 - y_1) + ... + (x_n - y_n)|| = \sqrt{(x_1 - y_1)^2 + ... + (x_n - y_n)^2}$$

Provección ortogonal

<u>Definición</u>: Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo, S⊆V un subconjunto de V. La **proyección ortogonal** sobre S es la TL P_S : $V \to V$ tal que $P_S(t) = t \ \forall t \in S \ y \ P_S(x) = 0 \ \forall x \in S^{\square}$

Obs: Sea $B = \{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$ una base ortogonal de V tal que $\{v_1, \dots v_r\}$ es una base ortonormal de $S \Rightarrow \{v_{r+1}, \dots, v_n\}$ es una base ortonormal de S^{\square}

Obs: $P_S + P_{S^{\square}} = Id_v$. En efecto,

$$P_{S^{\square}}(v) = \sum_{i=r+1}^{n} \langle v, v_i \rangle v_i \text{ y además } v = \sum_{i=1}^{r} \langle v, v_i \rangle v_i \Rightarrow P_S(v) + P_{S^{\square}}(v) = v \ \forall v \in V$$

Distancia de un punto a un subespacio

<u>Definición:</u> Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo, $S, S' \subseteq V$ subconjuntos de V

- a) La distancia de $v \in V$ a S es $d(v,s) = inf \{ d(v,s) : s \in S \}$
- b) La distancia entre S y S' es $d(S,S') = inf \{ d(s,s') : s \in S, s' \in S' \}$
- **Proposición:** Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclideo de dim finita, $S \subseteq V$ un subespacio. Para cada $v \in V$, $d(v,s) = ||v Ps_{(v)}|| = ||Ps^t_{(v)}||$ Más aún, $Ps_{(v)}$ es el único punto de S en la distancia d(v,s) ($Ps_{(v)}$ es el punto de S más cercano a V).

<u>Dem</u>: Sea $B = \{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$ una base ortonormal de V tal que $\{v_1, \dots, v_r\}$ es una base de S. Fijemos $v \in V$.

Para cada
$$s \in S$$
, $v - s = \sum_{i=1}^{n} \langle v, v_i \rangle v_i - \sum_{i=1}^{r} \langle s, v_i \rangle v_i = \sum_{i=1}^{r} \langle v - s, v_i \rangle v_i + \sum_{i=1}^{n} \langle v, v_i \rangle v_i$

$$\Rightarrow \|r - s\|^2 = \langle v - s, v - s \rangle = \sum_{i=1}^r |\langle v - s, v_i \rangle|^2 + \sum_{i=1}^n |\langle v, v_i \rangle|^2 \ge \sum_{i=1}^n |\langle v, v_i \rangle|^2 = \|Ps^{\perp}(v)\|^2$$

Luego, $d(v,s) = \|v - s\|^2$, $\|Ps^{\perp}(v)\|$ y vale la igualdad $\Leftrightarrow \langle v - s, v_i \rangle = 0$, $\forall i = 1, ..., r \Leftrightarrow s = Ps(v)$