Kết quả nghiên cứu tuần 1 Phòng thí nghiệm Thông tin Vô tuyến

Tín Vũ

tinvu1309@gmail.com

Muc luc

1 Tài liệu tham khảo

- Các kết quả cơ bản
 - Tích phân đường
 - Tích phân đường vô hướng
 Tích phân đường có hướng
 - Tích phân mặt
 - Diện tích mặt
 - Tích phân mặt vô hướng
 - Tích phân mặt có hướng

Tài liệu tham khảo được sử dụng để nghiên cứu gồm: Calculus 7E (James Stewart), Antenna Theory (A.Balanis).

- Tích phân đường
- Tích phân đường vô hướng

Hình: Scalar line integral

- Tích phân đường có hướng

Hình: Green's theorem for Flow

Chúng ta sẽ chứng minh lại định lý Green cho trường hợp đơn giản nhất, xét đường đơn liên kín C như hình vẽ sau:

Hình: Proof of Green's theorem for Flow

Để cho đơn giản, ta chỉ chứng minh đẳng thức:

$$\oint_C P dx = -\iint_D \frac{\partial P}{\partial y} dA$$

$$\oint_C Pdx = \int_a^b P(x, g_1(x)) + \int_b^a P(x, g_2(x))dx = \int_a^b P(x, g_1(x))dx - \int_a^b P(x, g_2(x))dx$$

$$\iint_D \frac{\partial P}{\partial y} dA = \int_a^b \int_{g_1(x)}^{g_2(x)} \frac{\partial P}{\partial y} dydx = \int_a^b P(x, g_2(x))dx - \int_a^b P(x, g_1(x))dx$$

$$\Rightarrow \oint_C Pdx = -\iint_D \frac{\partial P}{\partial y} dA$$

Chứng minh tương tự, ta cũng thu được

$$\oint_C Qdy = \iint_D \frac{\partial Q}{\partial x} dA \Rightarrow \oint_C Pdx + Qdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Ta viết lại công thức Green dạng curl:

$$\oint_C Pdx + Qdy = \iint_D \mathbf{curl} \, \overrightarrow{F} \, \hat{k} dA = \iint_D (\nabla \times \overrightarrow{F}) \hat{k} dA$$

Hình: Green's theorem for Flux

• Diện tích mặt

Mọi mặt phẳng bất kì đều có thể được biểu diễn rất dễ dàng qua hàm vector

$$\overrightarrow{r(u,v)} = x(u,v)\hat{i} + y(u,v)\hat{j} + z(u,v)\hat{k}$$

Ta xét một mặt bất kì được biểu diễn bởi hàm vector trên, với $(u, v) \in D$, ta muốn tìm diện tích mặt này.

Hình: Surface Area

Như đã thảo luận ở slide trước, ta có thể dễ dàng thấy rằng $\overrightarrow{r_u}$, $\overrightarrow{r_v}$ chính là 2 vector đạo hàm riêng lần lượt của biến u và v. Dây chính là cặp vector tiếp tuyến của các đường cong C_1 và C_2 (đã chứng minh ở slide trước), với:

$$\overrightarrow{r_u} = \frac{\partial x(u,v)}{\partial u}\hat{i} + \frac{\partial y(u,v)}{\partial u}\hat{j} + \frac{\partial z(u,v)}{\partial u}\hat{k}$$

$$\overrightarrow{r_{v}} = \frac{\partial x(u,v)}{\partial v}\hat{i} + \frac{\partial y(u,v)}{\partial v}\hat{j} + \frac{\partial z(u,v)}{\partial v}\hat{k}$$

Ta có thể ước lượng xấp xỉ vi phân diện tích một mặt chữ nhật rất nhỏ:

$$dA(S) = |\overrightarrow{r_u}du) \times (\overrightarrow{r_v}dv)| = |\overrightarrow{r_u} \times \overrightarrow{r_v}|dA$$

Vậy ta thu được diện tích toàn bộ mặt phẳng có thể được biểu diễn bằng tổng Riemann trực tiếp, ta viết lại đơn giản hơn như sau:

$$A(S) = \sum_{i=1}^{m} \sum_{j=1}^{n} |\overrightarrow{r_u} \times \overrightarrow{r_v}| = \iint_D |\overrightarrow{r_u} \times \overrightarrow{r_v}| dA$$

Đây là kết quả cực kì quan trọng, sẽ liên tục được sử dụng trong phần tích phân mặt.

Tích phân mặt vô hướng

Like triple integral, it's impossible to visualize scalar surface integral (4 dimensions needed)

Using same idea to shape its formula from line integral

$$\iint_{S} \frac{f(x,y,z)dS}{\text{Density}} = \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} f(P_{ij}^{*}) \Delta S_{ij} = \iint_{D} f(\overline{r(u,v)}) |\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}| dA$$
Area

Thin sheet

We can calculate its mass

Hình: Scalar surface integral

Tích phân mặt có hướng

We don't define Flow for surface integral

The same idea of calculating Flux in line integral can be applied here

Convert surface S equation from Cartesian coordinate to uv coordinate

$$\mathbf{Flux} = \iint_S \overrightarrow{F} \hat{n} dS = \iint_D \overrightarrow{F} (\overrightarrow{r_u} \times \overrightarrow{r_v}) dA$$

Hình: Flux in surface integral

Chúng ta tổng quát hóa định lý Green cho Flux và Flow trong không gian 3 chiều:

Định lý Green trong không gian 2 chiều

$$\begin{aligned} & \mathbf{Flux} = \oint_{C} \overrightarrow{F} \overrightarrow{n} \, ds = \iint_{D} \mathbf{div} \overrightarrow{F} \, dA = \iint_{D} \nabla \cdot \overrightarrow{F} \, dA \\ & \mathbf{Flow} = \oint_{C} \overrightarrow{F} \overrightarrow{T} \, ds = \iint_{D} \mathbf{curl} \overrightarrow{F} \, \hat{k} \, dA = \iint_{D} (\nabla \times \overrightarrow{F}) \hat{k} \, dA \end{aligned}$$

Định lý Green trong không gian 3 chiều

• Định lý phân kỳ (divergence theorem):

$$\mathbf{Flux} = \iint_{S} \overrightarrow{F} \, \hat{n} dS = \iint_{S} \overrightarrow{F} \, d\overrightarrow{S} = \iiint_{E} \mathbf{div} \, \overrightarrow{F} \, dV$$

• Định lý Stoke:

$$Flow = \int_{C} \overrightarrow{F} \overrightarrow{T} dS = \iint_{S} curl \overrightarrow{F} d\overrightarrow{S}$$