William Friend

Hands-on Exercise #2: Run-time Analysis

For each of the following program fragments,

- 1. count the total number of operations. What is the big O value?
- 2. What is the return value if $A = \{1, 2, 3\}$ and $B = \{1, 3, 5\}$?

1) Algorithm Ex1(A):

Input: An array A storing $n \ge 1$ integers.

Output: The sum of the elements in A.

 $s \leftarrow A[0]$

for $i \leftarrow 1$ to n - 1 **do**

 $s \leftarrow s + A[i]$

return s

Action	# of operations	Current total	Simplified total	Big O
s ← A[0]	1	1	1	
for $i \leftarrow 1$ to $n - 1$ do	(n-1)	1+(n-1)	n	
$s \leftarrow s + A[i]$	(n-1)	1+(n-1) + (n- 1)	n + (n-1)	
return s	1	1+(n-1) + (n- 1) + 1	2n	n

$A = \{1, 2, 3\}$		S	i	n
1, 2, 3	1		1	3
	1+2=3		2	
	3+3=6			

2) Algorithm Ex2(A):

Input: An array A storing $n \ge 1$ integers.

Output: The sum of the elements at even cells in A.

 $s \leftarrow A[0]$

for $i \leftarrow 2$ to n - 1 by increments of 2 **do**

 $s \leftarrow s + A[i]$

return s

Action	# of operations	Current total	Simplified	Big O
			total	
$s \leftarrow A[0]$	1	1	1	
for $i \leftarrow 2$ to n	(n-1)	1+(n-1)	n	
- 1 by				
increments of				
2 do				
$s \leftarrow s + A[i]$	(n-1)	1+(n-1)+(n-1)	n + (n-1)	

		1)		
return s	1	1+(n-1)+(n-1)	2n	n
		1) + 1		

$A = \{1, 2, 3\}$	S	i	n
1, 2, 3	1	2	3
1, 2, 3	1+3=4	2	

3) Algorithm Ex3(A):

Input: An array A storing $n \ge 1$ integers.

Output: The sum of the prefix sums in A.

 $s \leftarrow 0$

for $i \leftarrow 0$ to n - 1 **do**

 $s \leftarrow s + A[0]$

for $j \leftarrow 1$ to i do

 $s \leftarrow s + A[j]$

return s

$A = \{1, 2, 3\}$	S	i	j	n
1, 2, 3	0	0	?	3
$s \leftarrow s + A[0]$	0+1=1	0	?	
$s \leftarrow s + A[j]$	1+2=3	0	1	
$s \leftarrow s + A[0]$	3+1=4	1	1	
$s \leftarrow s + A[j]$	4+1=5	1	1	
$s \leftarrow s + A[0]$	5+1=6	2	1	
$s \leftarrow s + A[j]$	6+1=7	2	1	
$s \leftarrow s + A[j]$	7+2=9	2	2	
$s \leftarrow s + A[0]$	9+1=10	3	2	
$s \leftarrow s + A[j]$	10+1=11	3	1	
$s \leftarrow s + A[j]$	11+2=13	3	2	
$s \leftarrow s + A[j]$	11+3=16	3	3	

Action	# of operations	Current total	Simplified	Big O
			total	
s ← 0	1	1	1	
for $i \leftarrow 0$ to n	(n-1)	1+(n-1)	n	
- 1 do				
$s \leftarrow s + A[0]$	(n-1)	1+(n-1)+(n-1)	n + (n-1)	
		1)		
for $j \leftarrow 1$ to i	(n-1)	[1+(n-1)+(n-1)]		
do		1)] * *[(n-1)]		

$s \leftarrow s + A[j]$		[1+(n-1) + (n- 1)] * *[(n-1) +(n-1)]		
return s	1	[1+(n-1) + (n- 1)] * *[(n-1) +(n-1)] + 1	n * n	N^2

4) Algorithm Ex4(A):

Input: An array A storing $n \ge 1$ integers.

Output: The sum of the prefix sums in A.

 $s \leftarrow A[0]$

 $t \leftarrow s$

for $i \leftarrow 1$ to n - 1 **do**

 $s \leftarrow s + A[i]$

 $t \leftarrow t + s$

return t

$A = \{1, 2, 3\}$	S	i	t	n
$s \leftarrow A[0]$ $t \leftarrow s$	1	0	1	3
t ← s				
$s \leftarrow s + A[i]$	1+2=3	1	1	
$t \leftarrow t + s$	3	1	1+3=4	
$s \leftarrow s + A[i]$	3+3=6	2	4	
$t \leftarrow t + s$	6	2	4+6=10	

Action	# of operations	Current total	Simplified total	Big O
s ← A[0]	1	1	1	
t ← s	1	1+1+(n-1)	n	
for $i \leftarrow 1$ to $n - 1$ do	(n-1)	1+1+(n-1)	n + (n-1)	
$s \leftarrow s + A[i]$	(n-1)	1+1+(n-1) + (n-1)		
$t \leftarrow t + s$	(n-1)	1+1+(n-1) + (n-1) +(n-1)		
return t	1	1+1+(n-1) + (n-1) +(n-1) +1	n	O(n)

5) Algorithm Ex5(A):

Input: Arrays A and B each storing $n \ge 1$ integers.

Output: The number of elements in B equal to the sum of the prefix sums in A.

$$\begin{aligned} c &\leftarrow 0 \\ \textbf{for} \ i \leftarrow 0 \ to \ n-1 \ \textbf{do} \\ s &\leftarrow 0 \\ \textbf{for} \ j \leftarrow 0 \ to \ i \ \textbf{do} \\ s &\leftarrow s+A[0] \\ \textbf{for} \ k \leftarrow 1 \ to \ j \ \textbf{do} \\ s &\leftarrow s+A[k] \\ \textbf{if} \ B[i] = s \ \textbf{then} \\ c &\leftarrow c+1 \\ \textbf{return} \ \textbf{c} \end{aligned}$$

	Б	(4	_
•			•

A={1,2,3}	B={1,3,5}	c	i	j	k	S
$\mathbf{c} \leftarrow 0$		0	0	?	?	0
for $i \leftarrow 0$						
to n - 1 do						
$s \leftarrow 0$						
for $j \leftarrow 0$	0	0	0	0	?	0
to i do						
$s \leftarrow s +$		0	0	0	?	0+1=1
A[0]						
for $k \leftarrow 1$		0	0	0	1	
to j do						
s ← s +						
A[k]						
if $B[i] = s$	B[0]=1					
then						
$c \leftarrow c + 1$						
for $i \leftarrow 0$	0	0	1	0	?	0
to n - 1 do						
s ← 0			1	0		0
for $j \leftarrow 0$			1	0		0
to i do						
s ← s +			1	0		0+1=1
A[0]						
Skip to						
s ← s +			1	1		1+1=2
A[0]						
for $k \leftarrow 1$			1	1	1	
to j do						
s ← s +			1	1	1	2+2=4
A[k]						
if $B[i] = s$	B[1]=3					
then						
$c \leftarrow c + 1$						
for $i \leftarrow 0$			2	1	1	
to n - 1 do						
s ← 0			2	1	1	0
			5			

					1.4	
for $j \leftarrow 0$			2	0	1	
to i do						
$s \leftarrow s +$						
A[0]						
Skip to						
$s \leftarrow s +$			2	1	1	
A[0]						
for $k \leftarrow 1$			2	1	1	
to j do						
$s \leftarrow s +$			2	1	1	0+3=3
A[k]						
if $B[i] = s$	B[3]=n/a					
then						
$c \leftarrow c + 1$						
for $j \leftarrow 0$			2	2	1	
to i do						
s ← s +			2	2	1	3+1=4
A [0]						
for $k \leftarrow 1$			2	2	1	
to j do						
s ← s +			2	2	1	4+2=6
A[k]						
$\mathbf{if} \; \mathbf{B[i]} = \mathbf{s}$	B[2]=5		2	2	1	6
then						
c ← c + 1						
for $k \leftarrow 1$			2	2	2	
to j do						
s ← s +			2	2	2	6+3=9
A[k]						
$\mathbf{if} \mathbf{B}[\mathbf{i}] = \mathbf{s}$						
then						
c ← c + 1						
		0				
L				1	L	

Action	# of operations	Current total	Simplified	Big O
			total	
c ← 0	1	1	1	
for $i \leftarrow 0$ to n	(n-1)	1+(n-1)	n	
- 1 do				
s ← 0	(n-1)	1+(n-1) +(n-1)	n + (n-1)	
for $j \leftarrow 0$ to i	(n-1)	1+(n-1)+(n-1)		
do		1) +(n-1) *(n-		
		1)		
$s \leftarrow s + A[0]$	(n-1)	1+(n-1)+(n-1)		
		1) +(n-1) *(n-		
		1) +(n-1)		

for k ← 1 to j do	1	1+(n-1) + (n- 1) +(n-1) *(n- 1) +(n-1) *(n- 1)	n	O(n)
$s \leftarrow s + A[k]$		1+(n-1) + (n- 1) +(n-1) *(n- 1) +(n-1) *(n- 1) +(n-1)		
if B[i] = s then	1	1+(n-1) + (n- 1) +(n-1) *(n- 1) +(n-1) *(n- 1) +(n-1) +1		
c ← c + 1	1	1+(n-1) + (n- 1) +(n-1) *(n- 1) +(n-1) *(n- 1) +(n-1) +1 +1		
return c	1	1+(n-1) + (n- 1) +(n-1) *(n- 1) +(n-1) *(n- 1) +(n-1) +1 +1 +1	n*n*n	O(n^3)