This notebook is an implementation of the IBM Data Science Certificate Capstone project.

Author: Linh Nguyen

Battle of the Neighborhoods

INTRODUCTION

PROJECT MOTIVATION

As of 07/28/2020, the U.S. has 4.2 millions confirmed cases of COVID-19. New York City is the at the epicenter of the battle against the pandemics with more than 221,000 cases confirmed and approximately 56,000 cases of hospitalization.

This project aims to analyze the hospital bed density and the COVID-19 case rate for each neighborhood in the New York City. The hospital bed density is measured as the number of beds per 1,000 people. It can be considered as one of the measurement of the service availability. When pitted against the COVID-19 case rate, it can provide a better picture of the pandemic.

This project is also motivated by <u>lisu1222</u>: The battle of the neighborhoods: hospital density (https://github.com/lisu1222/The-Battle-of-Neighborhoods-New-York-Hospital-Bed-Density)

and ruddra: capstone project (https://github.com/ruddra/project-capstone-nyc-fights-pandemic)

Data

NYC Neighborhood Data is a json file dowloaded from New York City Neighborhoods Names (https://geo.nyu.edu/catalog/nyu_2451_34572). It includes latitude and longitude for each neighborhood of the 5 boroughs in NYC.

NYC Population Data includes population data per neighborhood that were scrapped from Wikipedia, and then integrated with New York Neighborhood Data.

Hospital Data is scrapped from New York State Department of Health. It contains the name, bed type and the corresponding bed numbers in each type.

NYC COVID 19 case rate data is taken from NYC health
NYC health
<a href="https://www1.nyc.gov/site/doh/covid/cov

These data sets will be processed, explored and integrated for further analysis.

METHOD

1. NYC Neighborhood and Population Data

The data contained in New York City Neighborhoods Names

(https://geo.nyu.edu/catalog/nyu_2451_34572) is in a json file. The latitude and longitude for each neighborhood of the 5 boroughs in NYC is extracted and saved into a dataframe. Beauty Soup was used to scrapped the wiki pages of each neighborhood to find the population data. These 2 datasets are then combined together as follow:

	Unnamed: 0	Borough	Neighborhood	Latitude	Longitude	Population
0	0	Bronx	Wakefield	40.894705	-73.847201	29158
1	1	Bronx	Co-op City	40.874294	-73.829939	43752
2	2	Bronx	Fieldston	40.895437	-73.905643	3292
3	3	Bronx	Riverdale	40.890834	-73.912585	48049
4	4	Bronx	Kingsbridge	40.881687	-73.902818	10669
137	137	Brooklyn	Dumbo	40.703176	-73.988753	1139
138	138	Brooklyn	Homecrest	40.598525	-73.959185	44316
139	139	Queens	Middle Village	40.716415	-73.881143	37929
140	140	Brooklyn	Erasmus	40.646926	-73.948177	135619
141	141	Manhattan	Hudson Yards	40.756658	-74.000111	70150

142 rows × 6 columns

2. Hospital Data

I used Foursquare API to explore the information of the hospital in each neighborhood, including name of the hospital, neighborhood, borough, longitude and latitude.

With ID of each hospital, I then used Beauty Soup to scrap the New York State Department of Health websites to obtain information on the name of the hospital, bed type and the corresponding bed numbers in each type.\ The package fuzzywuzzy was then used to match the information of the hospital in the dataset 1 and the dataset 2 on the name of the hospital.

After processed, this dataset is merged with the neighborhood and population data set. Then the ICU bed per Hundred people and bed per hundred people were added.

	Borough	Neighborhood	Bed Number	ICU Bed Number	Unnamed: 0	Latitude	Longitude	Population	ICU Bed Per Hundred People	Bed Per Hundred People
0	Brooklyn	Bensonhurst	204	8	34	40.611009	-73.995180	151705	0.005273	0.134472
1	Queens	Briarwood	671	24	107	40.710935	-73.811748	53877	0.044546	1.245429
2	Brooklyn	Brighton Beach	306	17	38	40.576825	-73.965094	35547	0.047824	0.860832
3	Brooklyn	Brownsville	600	28	44	40.663950	-73.910235	58300	0.048027	1.029160
4	Brooklyn	Bushwick	324	16	46	40.698116	-73.925258	129239	0.012380	0.250698

3. Covid case rate Data

NYC COVID 19 case rate data is taken from NYC health (https://www1.nyc.gov/site/doh/covid/covid-19-data.page). The data set contains case count, case rates, death rate and so on.

	MODIFIED_ZCTA	NEIGHBORHOOD_NAME	BOROUGH_GROUP	COVID_CASE_COUNT	COVID_CASE_RATE	POP_DENOMINATOR	COVID_DEATH_COUNT	CC
0	10001	Chelsea/NoMad/West Chelsea	Manhattan	420	1782.45	23563.03	25	
1	10002	Chinatown/Lower East Side	Manhattan	1229	1601.19	76755.41	160	
2	10003	East Village/Gramercy/Greenwich Village	Manhattan	515	957.22	53801.62	34	
3	10004	Financial District	Manhattan	39	1068.32	3650.61	1	
4	10005	Financial District	Manhattan	79	940.91	8396.11	2	
4								-

I decided to limit the relevant information to the case rates only.

This dataset is then integrated into the hospital data set to obtain the nyc final data set by matching on the neighborhood variable.

(At this stage, I applied a rather greedy matching process which result in duplicated data. This will be discussed as a limitation of the project)

	Borough	Neighborhood	Bed Number	ICU Bed Number	Unnamed: 0	Latitude	Longitude	Population	ICU Bed Per Hundred People	Bed Per Hundred People	COVID_CASE_RATE
0	Brooklyn	Bensonhurst	204	8	34	40.611009	-73.995180	151705	0.005273	0.134472	2.70541
1	Queens	Briarwood	671	24	107	40.710935	-73.811748	53877	0.044546	1.245429	2.98974
2	Brooklyn	Brighton Beach	306	17	38	40.576825	-73.965094	35547	0.047824	0.860832	2.96039
3	Brooklyn	Brownsville	600	28	44	40.663950	-73.910235	58300	0.048027	1.029160	2.59078
4	Brooklyn	Bushwick	324	16	46	40.698116	-73.925258	129239	0.012380	0.250698	1.80722

4. Neighborhood Clustering Analysis

We will use K-means to cluster NYC neighborhoods.

First we select features for clustering: ICU Bed Per Hundred People and Bed Per Hundred People and COVID_CASE_RATE (per hundred). Data such as Population is already included in other variables and thus, I chose to leave it out. We then normalize the data since K-Means algorithm requires standardized dataset to calculate distances.

Then we use elbow method to find the optimum number of clusters and the output optimum number of k is 7.

Optimal number of components is:

Examine clusters

nyc_final[(nyc_final['Cluster Labels'] == 0)]

	Cluster Labels	Borough	Neighborhood	Bed Number	ICU Bed Number	Unnamed: 0	Latitude	Longitude	Population	ICU Bed Per Hundred People	Bed Per Hundred People	COVID_CASE_RATE
4	0	Brooklyn	Bushwick	324	16	46	40.698116	-73.925258	129239	0.012380	0.250698	1.80722
6	0	Manhattan	Chelsea	212	12	76	40.744035	-74.003116	47325	0.025357	0.447966	1.78245
7	0	Manhattan	Chinatown	180	13	64	40.715618	-73.994279	47844	0.027172	0.376223	1.60119
8	0	Brooklyn	Crown Heights	287	13	40	40.670829	-73.943291	143000	0.009091	0.200699	2.36551
13	0	Queens	Forest Hills	312	28	89	40.725264	-73.844475	83728	0.033442	0.372635	2.16008
14	0	Brooklyn	Fort Greene	598	31	49	40.688527	-73.972906	28335	0.109405	2.110464	1.80855
15	0	Brooklyn	Gravesend	371	22	37	40.595260	-73.973471	29436	0.074738	1.260361	1.80214
16	0	Manhattan	Inwood	196	6	66	40.867684	-73.921210	58946	0.010179	0.332508	1.87818
26	0	Queens	Ridgewood	348	12	95	40.708323	-73.901435	69317	0.017312	0.502041	2.29379
29	0	Brooklyn	Sunset Park	364	24	35	40.645103	-74.010316	126000	0.019048	0.288889	1.81818
30	0	Manhattan	Upper East Side	632	15	70	40.775639	-73.960508	124231	0.012074	0.508730	1.38991
31	0	Brooklyn	Williamsburg	69	0	45	40.707144	-73.958115	78700	0.000000	0.087675	2.05622

nyc_final[(nyc_final['Cluster Labels'] == 1)]

	Cluster Labels	Borough	Neighborhood	Bed Number	ICU Bed Number	Unnamed: 0	Latitude	Longitude	Population	ICU Bed Per Hundred People	Bed Per Hundred People	COVID_CASE_RATE
20	1	Manhattan	Murray Hill	2270	221	75	40.748303	-73.978332	10864	2.034242	20.894698	1.5193

nyc_final[(nyc_final['Cluster Labels'] == 2)]

	Cluster Labels	Borough	Neighborhood	Bed Number	ICU Bed Number	Unnamed: 0	Latitude	Longitude	Population	ICU Bed Per Hundred People	Bed Per Hundred People	COVID_CASE_RATE
0	2	Brooklyn	Bensonhurst	204	8	34	40.611009	-73.995180	151705	0.005273	0.134472	2.70541
1	2	Queens	Briarwood	671	24	107	40.710935	-73.811748	53877	0.044546	1.245429	2.98974
2	2	Brooklyn	Brighton Beach	306	17	38	40.576825	-73.965094	35547	0.047824	0.860832	2.96039
3	2	Brooklyn	Brownsville	600	28	44	40.663950	-73.910235	58300	0.048027	1.029160	2.59078
19	2	Bronx	Morrisania	170	0	21	40.823592	-73.901506	16863	0.000000	1.008124	2.93872
23	2	Bronx	Pelham Parkway	421	22	9	40.857413	-73.854756	30073	0.073155	1.399927	3.11771
27	2	Queens	South Ozone Park	247	11	99	40.668550	-73.809865	75878	0.014497	0.325523	2.52710
33	2	Bronx	Woodlawn	321	16	5	40.898273	-73.867315	42483	0.037662	0.755596	3.40335

: nyc_final[(nyc_final['Cluster Labels'] == 3)]

ICU Bed Per Hundred People Bed Per Hundred COVID_CASE_RATE People Bed Number ICU Bed Unnamed: Number 0 Cluster Labels Borough Neighborhood Latitude Longitude Population Carroll Gardens Brooklyn 48 40.680540 -73.994654 0.225628 4.162452 1.23531 10 0.077352 2.045874 0.95722 3 Manhattan East Village 1296 49 78 40.727847 -73.982226 63347 42 40.656946 -73.980073 0.190585 3.997522 0.95807 Terrace 71 40 775930 -73 947118 0.292439 4 082792 1.05381 34 Yorkville 1438 103 35221 3 Manhattan

nyc_final[(nyc_final['Cluster Labels'] == 4)]

	Cluster Labels	Borough	Neighborhood	Bed Number	ICU Bed Number	Unnamed: 0	Latitude	Longitude	Population	ICU Bed Per Hundred People	Bed Per Hundred People	COVID_CASE_RATE
18	4	Bronx	Melrose	1118	59	16	40.819754	-73.909422	24913	0.236824	4.487617	3.51015
21	4	Bronx	Norwood	1169	80	6	40.877224	-73.879391	40494	0.197560	2.886847	3.68015
28	4	Bronx	Spuyten Duyvil	306	20	27	40.881395	-73.917190	10279	0.194571	2.976943	3.07488

nyc_final[(nyc_final['Cluster Labels'] == 5)]

	Cluster Labels	Borough	Neighborhood	Bed Number	ICU Bed Number	Unnamed: 0	Latitude	Longitude	Population	ICU Bed Per Hundred People	Bed Per Hundred People	COVID_CASE_RATE
11	5	Queens	Far Rockaway	257	8	116	40.603134	-73.754980	60035	0.013326	0.428084	3.96702
17	5	Queens	Jackson Heights	545	20	85	40.751981	-73.882821	108152	0.018492	0.503920	4.30115
22	5	Bronx	Pelham Bay	225	0	28	40.850641	-73.832074	11931	0.000000	1.885844	3.93496
25	5	Queens	Queens Village	25	0	109	40.718893	-73.738715	52504	0.000000	0.047615	3.62179

nyc_final[(nyc_final['Cluster Labels'] == 6)]

	Cluster Labels	Borough	Neighborhood	Bed Number	ICU Bed Number	Unnamed: 0	Latitude	Longitude	Population	ICU Bed Per Hundred People	Bed Per Hundred People	COVID_CASE_RATE
9	6	Manhattan	East Harlem	3906	250	69	40.792249	-73.944182	115921	0.215664	3.369536	2.46317
12	6	Bronx	Fordham	1029	70	13	40.860997	-73.896427	43394	0.161313	2.371296	2.74438
24	6	Brooklyn	Prospect Lefferts Gardens	2080	197	60	40.658420	-73.954899	99287	0.198415	2.094937	2.14862

Visualization of clusters

Finally, I visualized the clusters on the New York map with the radius corresponding to the Covid_case_rate of each neighborhood.

Discussion

Looking into the results, we find that the algorithm classifies the neighborhoods into 7 clusters with extensive logics as follow:

COVID rate	Bed	ICU	
low	low	low	1
low	high	high	2
medium	medium	low	3
low	high	low	4
high	high	low	5
high	low	low	6
medium	high	low	7

However, even though the rate of group 1 is low, the rate of beds over the rate of cases (less than 1 in most cases) may indicate that group 1 can not meet the demand at some points. Thus, group 2, group 4 and group 7 may provide better service availability. Among them, group 2, Murray Hill of Manhattan has the highest availability.

Limitations

- The hospital beds data we collected from New York State Department of Health may not include the latest information.
- The NYC population data we collected from Wikipedia pages are from 2010, that is not very accurate.

- The COVID dataset initially contains an extensive neighborhood data. During the process, I
 essentially reduced this information to match with the neighborhood data from the hospital
 dataset using a strict approach. Some data was lost at this point. If there is a way to preserve
 this data, we can conduct a more extensive clustering experiment.
- In this project, I used K-mean clustering. The result was reasonable. However, there can be other methods to cluster the dataset that worth trying.

Conclusion

This project aims at clustering the neighborhood in New York city based on the data of the ICU and hospital beds and COVID rate case of the neighborhoods. To do so, collecting, cleaning, transforming and processing the data was necessary. In the end, we identify 7 clusters of neighborhoods.