Physics 471 – Fall 2023

Homework #5 – due Wednesday, October 4 at 11:30am

Point values for each problem are in square brackets

1. [2] Commutators:

Using the matrix representations of the spin operators \hat{S}_x , \hat{S}_y , and \hat{S}_z , show that $[\hat{S}_x, \hat{S}_y] = i\hbar \hat{S}_z$.

2. [6] Uncertainty:

Consider a general quantum state $|\psi\rangle = a|+\rangle + b|-\rangle$, where a and b are complex numbers.

- a) [3] Calculate the "expectation" value $\langle \hat{S}_z \rangle$ and the uncertainty $\Delta \hat{S}_z$ in terms of a and b.
- b) [3] In what situation is the uncertainty a <u>minimum</u>? A <u>maximum</u>? Write down the values of the expectation value and the uncertainty in those cases. <u>Do these make sense? Explain.</u>

3. [8] Expectation values and uncertainties:

- a) [3] Given $|\psi\rangle = |-\rangle$, find $\langle \hat{S}_z \rangle$, $\Delta \hat{S}_z$, $\langle \hat{S}_x \rangle$ and $\Delta \hat{S}_x$. Also, sketch a histogram like Figure 2.8 in the textbook. (One histogram for the Z measurements, and another for the X measurements). Do these calculations make sense to you? Briefly, comment.
- b) [2] $|\psi\rangle = |-\rangle_y$. You only need to find $\langle \hat{S}_z \rangle$ and $\Delta \hat{S}_z$, sketch the histogram, and comment.
- c) [3] $|\psi\rangle = \frac{1}{\sqrt{5}}(2|+\rangle i|-\rangle)$. Again find $\langle \hat{S}_z \rangle$, $\Delta \hat{S}_z$, sketch the histogram, and comment.

4. [4] Compatible measurements and commutators:

- a) [2] Are there any quantum states for which you could simultaneously know with certainty the results of measurements of \hat{S}_x and \hat{S}_z ? Show this mathematically and describe your answer in words also. Both answers should be very brief!
- b) [2] Calculate the commutator $[\hat{S}_x, \hat{S}_z^2]$ using the matrix representations for these operators (in the z-basis). This might initially seem very strange give what you found in part (a). How do you reconcile this result with your answer to part (a)?