

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

DEPARTMENT OF CONTROL AND INSTRUMENTATION

LOKALIZACE ZDROJŮ AKUSTICKÉ EMISE

ACOUSTIC EMISSION SOURCE LOCALIZATION

SEMESTRÁLNÍ PRÁCE

SEMESTRAL THESIS

AUTOR PRÁCE

Jan Tomšej

AUTHOR

VEDOUCÍ PRÁCE

doc. Ing. Petr Beneš, Ph.D.

SUPERVISOR

BRNO 2025

Semestrální práce

bakalářský studijní program Automatizační a měřicí technika

Ústav automatizace a měřicí techniky

Student: Jan Tomšej ID: 256421

Ročník: 3 Akademický rok: 2025/26

NÁZEV TÉMATU:

Lokalizace zdrojů akustické emise

POKYNY PRO VYPRACOVÁNÍ:

Akustické emise (AE) je jedna z metod nedestruktivního testování. Své využití nachází například při testování tlakových nádob. Cílem práce je ověřit možnosti využití metod strojového učení pro lokalizaci zdrojů AE. Zadání práce lze rozdělit do následujících bodů:

- 1) Vypracujte přehled současného stavu metod lokalizace zdrojů AE
- 2) Vybrané algoritmy založené na čase příchodu implementujte, např. v prostředí Matlab, Python nebo LabVIEW
- 3) Na geometricky vhodném zkušebním vzorku naměřte sadu dat využitelných pro další zpracování pomocí implementovaných algoritmů
- 4) Navrhněte a realizujte metody strojového učení pro zpřesnění detekce času příchodu a zvýšení odolnosti v zašuměném prostředí.
- 5) Diskutujte možnosti lokalizace pro heterogenní nebo anizotropní prostředí.

Na semestrální práci je nutné vypracovat alespoň první tři body zadání.

DOPORUČENÁ LITERATURA:

ČSN EN 14584 Nedestruktivní zkoušení - Akustická emise - Zkoušení kovových tlakových zařízení během přejímací zkoušky -planární lokalizace zdrojů akustické emise.

Termín zadání: 15.9.2025 Termín odevzdání: 6.1.2026

Vedoucí práce: doc. Ing. Petr Beneš, Ph.D.

Ing. Miroslav Jirgl, Ph.D. předseda rady studijního programu

UPOZORNĚNÍ:

Autor semestrální práce nesmí při vytváření semestrální práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Abstrakt práce v originálním jazyce

KLÍČOVÁ SLOVA

Klíčová slova v originálním jazyce

ABSTRACT

Překlad abstraktu (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

KEYWORDS

Překlad klíčových slov (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

Vysázeno pomocí balíčku thesis verze 4.11; https://latex.fekt.vut.cz/

ROZŠÍŘENÝ ABSTRAKT

Výtah ze směrnice rektora 72/2017:

Bakalářská a diplomová práce předložená v angličtině musí obsahovat rozšířený abstrakt v češtině nebo slovenštině (čl. 15). To se netýká studentů, kteří studují studijní program akreditovaný v angličtině. (čl. 3, par. 7)

Nebude-li vnitřní normou stanoveno jinak, doporučuje se rozšířený abstrakt o rozsahu přibližně 3 normostrany, který bude obsahovat úvod, popis řešení a shrnutí a zhodnocení výsledků. (čl. 15, par. 5)

Prohlášení autora o původnosti díla

Jméno a příjmení autora: Jan Tomšej

VUT ID autora:	256421
Typ práce:	Semestrální práce
Akademický rok:	2025/26
Téma závěrečné práce:	Lokalizace zdrojů akustické emise
cí/ho závěrečné práce a s použitím které jsou všechny citovány v práci a Jako autor uvedené závěrečné práce závěrečné práce jsem neporušil autonedovoleným způsobem do cizích au a jsem si plně vědom následků poruškona č. 121/2000 Sb., o právu autora o změně některých zákonů (autora	jsem vypracoval samostatně pod vedením vedou- odborné literatury a dalších informačních zdrojů, uvedeny v seznamu literatury na konci práce. dále prohlašuji, že v souvislosti s vytvořením této orská práva třetích osob, zejména jsem nezasáhl utorských práv osobnostních a/nebo majetkových ení ustanovení § 11 a následujících autorského zá- ském, o právech souvisejících s právem autorským ský zákon), ve znění pozdějších předpisů, včetně plývajících z ustanovení části druhé, hlavy VI. díl 4
Brno	podpis autora*

^{*}Autor podepisuje pouze v tištěné verzi.

PODĚKOVÁNÍ
Rád bych poděkoval vedoucímu bakalářské/diplomové/disertační práce panu Ing. XXX YYY, Ph.D. za odborné vedení, konzultace, trpělivost a podnětné návrhy k práci.

Obsah

U۶	vod		23				
Cí	le pi	ráce	25				
1	Úvo	od do problematiky testování materiálů, metody vlastního tes-					
		tování, metoda akustické emise					
	1.1	Nedestruktivní testování	27				
	1.2	Metody nedestruktivního testování	27				
	1.3	Metoda AE. Její výhody, limity	28				
	1.4	Postupy použití metody AE u složitějších struktur	29				
		1.4.1 Techniky založené na modelech	29				
		1.4.2 Techniky založené na strojovém učení	29				
	1.5	Komerční použití neuronových sítí pro lokalizaci AE	30				
		1.5.1 Software od firmy Vallen	30				
		1.5.2 Software od firmy Physical acoustic (MISTRAS)	33				
	1.6	Případný vývoj	34				
	1.7	Experiment	34				
2	Výs	ledky studentské práce	35				
	2.1	Programové řešení	35				
	2.2	Výsledky měření	35				
		2.2.1 Etiam quis quam	35				
Zá	ivěr		39				
Li	terat	sura	41				
Se	znar	n symbolů a zkratek	43				
Se	znar	n příloh	45				
${f A}$	Něl	steré příkazy balíčku thesis	47				
		Příkazy pro sazbu veličin a jednotek	47				
		Příkazy pro sazbu symbolů	47				
В	Dru	ıhá příloha	49				
\mathbf{C}	Pří	klad sazby zdrojových kódů	51				
	C.1	Balíček listings	51				

Seznam obrázků

1.1	Signál akustické emise pro vzdálenost senzoru od zdroje 3 cm $[8]$	31
1.2	Signál akustické emise pro vzdálenost senzoru od zdroje 6 cm $[8]$	31
1.3	Signál akustické emise pro vzdálenost senzoru od zdroje 11 cm $[8]$	32
1.4	Frekvenční analýza pro signál AE z obrázku 1.1 [8]	32
1.5	Fisherovy poměry pro všechny třídy (nahoře), pro vybrané třídy (dole)	
	[8]	33
1.6	Fisherovy poměry pro všechny třídy (nahoře), pro vybrané třídy (dole)	
	$[8] \dots \dots$	34
B.1	Alenčino zrcadlo	49

Seznam tabulek

A.1	Přehled p	ríkazů																													4	Ŀ 7
-----	-----------	--------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	-----

Seznam výpisů

C.1	Ukázka sazby zkratek	51
C.2	Příklad Schur-Cohnova testu stability v prostředí Matlab	52
C.3	Příklad implementace první kanonické formy v jazyce C	53

Úvod

Úvod studentské práce, např...

Nečíslovaná kapitola Úvod obsahuje "seznámení" čtenáře s problematikou práce. Typicky se zde uvádí: (a) do jaké tematické oblasti práce spadá, (b) co jsou hlavní cíle celé práce a (c) jakým způsobem jich bylo dosaženo. Úvod zpravidla nepřesahuje jednu stranu. Poslední odstavec Úvodu standardně představuje základní strukturu celého dokumentu.

Tato práce se věnuje oblasti **DSP!** (**DSP!**), zejména jevům, které nastanou při nedodržení Nyquistovy podmínky pro *symfvz!* (symfvz!).¹

Šablona je nastavena na *dvoustranný tisk*. Nebuďte překvapeni, že ve vzniklém PDF jsou volné stránky. Je to proto, aby důležité stránky jako např. začátky kapitol začínaly po vytisknutí a svázání vždy na pravé straně. Pokud máte nějaký závažný důvod sázet (a zejména tisknout) jednostranně, nezapomeňte si přepnout volbu twoside na oneside!

¹Tato věta je pouze ukázkou použití příkazů pro sazbu zkratek.

Cíle práce

Konkrétní specifikace cílů, které má autor v práci vyřešit. Tato kapitola je $voliteln\acute{a}$ – pokud váš studijní program nevyžaduje zvláštní kapitolu s cíli, cíle specifikujte v rámci Úvodu.

1 Úvod do problematiky testování materiálů, metody vlastního testování, metoda akustické emise

1.1 Nedestruktivní testování

V technické praxi jsou struktury namáhány mnoha vnějšími vlivy, čímž se mění jejich materiálové vlastnosti. Například, u laminátových kontrukcí v leteckém průmyslu může vlivem sil nárazu pevnost v tlaku klesnout až o 80%, i když se materiál jeví jako nepoškozený [1].

Pro posouzení stavu materiálu je proto nutné provádět pravidelné testování. Za účelem stanovení mezních vlastností materiálu jako pevnosti v tlaku, pevnosti v tahu, lomové houževnatosti, atd., bývá prováděno destruktivní testování (DT). Zahrnuje např. zkoušku tahem, tlakem, nebo ohybem. K těmto zkouškám jsou používány speciální stroje – kladiva, trhačky, ohýbačky, aj. Jak je z názvu přímo patrné, vlastní destruktivní zkoušení končí nevratným poškozením vzorku.

Pro již hotové konstrukce (např. svařované konstrukce v zámečnické výrobě, betonové pilíře v oblasti stavebnictví) nebo komponenty (hřídele, ozubená kola, kolejnice, atd.) se metody DT zpravidla nepoužívají, jelikož by takové zkoušení bylo příliš nákladné. Nabízí se proto použití metod nedestruktivní testování (NDT). Počátky NDT sahají do 19. století, kdy pomocí tzv. akustického poklepového testování byly detekovány praskliny na železničních kolech [2].

1.2 Metody nedestruktivního testování

Velká výhoda metod NDT spočívá v možnosti zkoušení v kterékoliv části životního cyklu produktu, u některých metod dokonce i v průběhu vykonávání vlastní činnosti výrobku. Díky tomu dostáváme přesné informace o poloze a závažnosti případného defektu ve struktuře materiálu. V současné době na trhu dominuje pět metod nedestruktivního testování – zkoušení magnetickými částicemi, radiografické zkoušení, ultrazvukové zkoušení, zkoušení vířivými proudy a zkoušení metodou akustické emise (dále AE).

Zkoušení magnetickými částicemi spočívá ve vystavení feromagnetických materiálů magnetickému poli. Díky vysoké permeabilitě feromagnetického materiálu se magnetické domény orientují ve směru působení magnetického pole, tvoří tak souvislé čáry. V případě nespojitosti materiálu dojde k tzv. úniku magnetického pole – čáry v bodě defektu nebudou spojité. Pro snadnou viditelnost těchto nespojitostí

je použit prášek oxidu železitého, který zmíněné čáry a nespojitosti kopíruje [4]. Mezi limity spadá možnost použití jen pro feromagnetické materiály (železo, kobalt, nikl, ferity, gadolinium, aj.) [3].

Radiografické zkoušení je postup založen na snímání obrázků s využitím radio-aktivního zdroje záření. Záření je pohlcováno materiálem a dochází tak k útlumu. Defekty na těchto snímcích lze rozpoznat jako místa s menším útlumem záření [4]. Limity představuje nutnost radiační ochrany a nevhodnost použití pro porézní materiály (např. beton, dřevo, sádra, keramiky, kosti aj.) [3]

Při zkoušení ultrazvukem je používáno zvukových vln. Piezoelektrický snímač generuje pulzy, které se šíří materiálem. Cestují-li tyto pulzy nepoškozenou, spojitou strukturou, nemění se jejich parametry (především tedy rychlost). Při defektu dochází ke změně rychlosti pulzů.[4].

Během zkoušení vířivými proudy je kovový materiál umístěn do fluktuujího magnetického pole, které je vytvářeno cívkou. V kovovém materiálu jsou indukovány proudy s vířivou povahou (proto vířivé proudy). Těmito vířivými proudy je vytvořeno sekundární magnetické pole, které ovlivňuje pole cívky. S defektem ve struktuře materiálu dojde tedy ke změně i vířivých proudů, což ovlivní i primární magnetické pole cívky [4].

1.3 Metoda AE. Její výhody, limity

V případě, že je kovový materiál deformován, uvolňuje se energie ve formě tzv. elastických vln. Tyto elastické vlny jsou vlny vysoké frekvence, které cestují směrem k povrchu materiálu. Na povrchu tato data sbírají snímače AE. Souřadnice zdrojů AE jsou nejčastěji stanovovány pomocí známého triangulačního algoritmu (podle normy ČSN 14584 [5]) dle časových diferencí příchodů signálů k jednotlivým snímačům. Tyto snímače jsou na zkoušeném vzorku umístěny v husté síti.

Oproti ultrazvukovému testování je velkou výhodou zkoušení AE možnost nepřetržitého monitorování komponent – při ultrazvukovém zkoušení je potřeba externí zdroj zvuku o vysoké frekvenci. Metodou *akustická emise* (AE) se kromě toho nabízí testovat i nekovové nebo porézní materiály a najde tak uplatnění i v netechnických a medicínských oborech (např. diagnostika kostí a kloubů v ortopedii).

Limit metody AE spočívá hlavně v interpretaci dat u komplikovanějších struktur – analytické vzorce pro lokalizace zdrojů AE jsou známé jen pro tenkou, izotropní desku [6]. Navíc, instalace senzorů na všech požadovaných místech je mnohdy nesnadná. Může tomu tak být z důvodu nepřístupnosti do určitých lokalit konstrukcí (např. některé koutové sváry). Umístění snímačů dokáže mimo to nežádoucím způsobem ovlivnit dynamické vlastnosti konstrukce.

1.4 Postupy použití metody AE u složitějších struktur

Z pohledu systémové teorie můžeme testování materiálů metodou AE formulovat dvěma základními způsoby; při **dopředné úloze** je stanovována odezva dle známých vstupů (sil nárazů). Nelze-li snadno získat hodnotu vstupu, je formulován problém zpětný – ze změřené odezvy se dopočítávají hodnoty vstupů. Tento způsob řešení nazveme **inverzním algoritmem**.

Ve vědeckých studiích bývají tyto inverzní algoritmy k rekonstrukci působení vnějších sil hojně využívány. Podle implementace již zmíněné inverzní algoritmy jde rozdělit na techniky založené na modelech a techniky založené na strojovém/hlubokém učení.

1.4.1 Techniky založené na modelech

Při testování materiálu je odezva (signál AE) zpracovaná předem vytvořeným modelem. Tento model dle zpracované odezvy stanovuje vstupní hodnotu a následně polohu nespojitosti materiálu. Výhoda této techniky spočívá v nízké výpočetní náročnosti. V používání limituje nutnost tvorby přesného modelu pro přepočty – jak již bylo výše uvedeno, pro stanovení vad u komplikovanějších anizotropních materiálů nejsou známé analytické vzorce, a je proto velmi obtížné tvořit modely pro testování těchto materiálů. Proto probíhá snaha uplatnit při lokalizaci zdrojů AE algoritmy strojového učení.

1.4.2 Techniky založené na strojovém učení

V posledních letech se algoritmy strojového učení stávají velmi vhodnými při rekonstrukci dat AE – dají se aplikovat i tehdy, když základní mechanismy pro nás nejsou zcela známé a nedovedeme tak správně sestavit model. Nicméně, pro správné uplatnění technik strojového učení představuje omezení nutnost velkého objemu tréninkových dat.

Neexistuje žádná záruka, že tréninková data získaná pro jednu strukturu přinesou smysluplné výsledky i u struktur odlišných. V posledních letech jsou prozkoumávány proto metody tzv. hlubokého učení (nebo také deep learningu), které umožňují použití dat i v surové podobě. S použitím metod hlubokého učení lze tak interpretovat dokonce i vícerozměrné signály AE.

Důležitým algoritmem, na kterém stojí velká většina modelů hlubokého učení, je **umělá neuronová síť**. Stejně jako ostatní metody hlubokého učení potřebují ke své funkci velký objem tréninkových dat. Studie (například [7]) se v současné době snaží pomocích neuronových sítí identifikovat vnější síly, které způsobují deformační

změny na kompozitních panelech. Výhodou neuronových sítí je nepotřeba předchozích znalostí poloh zdrojů deformace. Ve výše uvedené studii jsou aplikovány dvě neuronové sítě – jedna pro deformace o vyšších amplitudách, druhá pro deformace o amplitudách menších.

Navzdory obrovskému potenciálu nejsou umělé neuronové sítě v nelineárních strukturách zcela široce využívány. Způsobují to fakta, že nejčastěji používaná architektura umělých neuronových sítí pracuje s dvourozměrnými vstupy. Prvním parametrem je rozsah datového setu, který je k dispozici k trénování sítě. Druhým je samotný příznak čili měřená data, která neuronové síti přidělíme k učení. Tyto parametry nezahrnují čas, jenž je k rekonstrukci zdroje deformace nezbytný.

Navíc, pro výběr kvalitních příznaků do učící sady je nezbytná lidská expertíza. Tvorba učící sady je poměrně náročná a nelze ji nijak efektivně automatizovat. Při rekonstrukci zdroje deformace mimo jiné představuje problém již výše popsaný u technik založených na modelech – pro získání kvalitních dat je nutné rozmístit senzory v husté síti, a to zhoršuje dynamické parametry konstrukce.

1.5 Komerční použití neuronových sítí pro lokalizaci AE

AE bývá někdy označována jako pasivní ultrazvuk. Ultrazvukové snímače oproti snímačům AE potřebují pro správnou lokalizaci zdroj zvuku o frekvenci, která je vyšší než hranice slyšitelná člověkem (přes 20 kHz). Proto se mnozí výrobci ultrazvukových snímačů a defektoskopů úzce specializují i na diagnostiku metodou AE (např. Olympus).

Velkým výrobcem, který je kromě jiných metod zaměřen i na AE, je MISTRAS group (patří k nim Physical Acoustic). Menší firma vyrábějící kvalitní a uznávané systémy, snímače a předzesilovače pro testování metodou AE, je Vallen Systeme. Jde tak o velkého konkurenta firmy MISTRAS group. Tito dva největší výrobci mimo jiné ladí a vyvíjejí software pro lokalizaci zdrojů AE pomocí algoritmů neuronových sítí.

1.5.1 Software od firmy Vallen

Program VisualClass od společnosti Vallen umí rozeznat podobnosti a rozdíly mezi změřenými vlnami AE. Jak je z názvu přímo patrné, umí tato data klasifikovat – každé vlně přidělí určité číslo třídy. V každé z těchto přidělených tříd klasifikuje podobnost se vzorovými daty. Funkcí, která představuje míru podobnosti mezi vlastní změřenou

vlnou a vzorem, je poměr vzdáleností. Čím nižší je poměr vzdáleností, tím lépe odpovídá aktuální průběh přidělené třídě. Výsledky těchto klasifikátorů mohou být pro každý dílčí detekovaný zásah v programu VisualAE (program od společnosti Vallen pro analýzu dat AE. Zpracovává jak dvojrozměrná, tak trojrozměrná data, počítá hodnoty nejistot měření, atd.) spojeny s odpovídajícími parametry. Klasifikované výsledky lze tak i statisticky zpracovat.

Výše zmíněný klasifikátor (čili kritérium, kterým jsou vlnové průběhy přidělovány do tříd) lze chápat jako výsledek procesu učení. V rámci procesu učení je brán určitý počet datových (učících) sad. Byla-li data vybrána uživatelem, hovoří se o **řízeném učení** (supervised learning). Pokud byly tyto sady vybrány automaticky nějakým výkonným algoritmem shlukování (tzv. clustering), jde potom o učení **neřízené** (unsupervised learning).

Průběhy uvedené na obrázcích 1.1, 1.2 a 1.3 byly změřeny shodným senzorem, zpracování proběhlo softwarem od VisualClass. Vzdálenost zdroje AE od snímače jsou 3, 6 a 11 cm. Pro každou z níže uvedených pozic bylo generováno deset pulzů.

Obr. 1.1: Signál akustické emise pro vzdálenost senzoru od zdroje 3 cm [8]

Obr. 1.2: Signál akustické emise pro vzdálenost senzoru od zdroje 6 cm [8]

Pro takto změřené signály AE potom VisualClass dokáže zobrazovat spektra krátkodobé frekvenční analýzy (zobrazení spektrogramu). Příklad frekvenční analýzy pro průběh uvedený na obrázku 1.1 je uveden na obrázku 1.4. Jak lze na ob-

Obr. 1.3: Signál akustické emise pro vzdálenost senzoru od zdroje 11 cm [8]

Obr. 1.4: Frekvenční analýza pro signál AE z obrázku 1.1 [8]

rázku 1.4 vidět, je signál rozdělen na malé časové segmenty. Každý z těchto časových segmentů je zobrazen pomocí Hammingova okna, abychom se vyhnuli strmým hranám oken. Tyto hrany totiž zkreslují skutečné průběhy. Následně se pro každý v horní části obrázku 1.4 vyznačený časový segment pomocí algoritmu FFT stanoví vlastní spektrum, jak lze vidět ve spodní části obrázku 1.4.

Počet časových segmentů, počet vzorků na segment nebo rozsah harmonických, jsou parametry nastavitelné uživatelem společně se stovkami dalších funkcí pro signálové operace. Jak dobře změřený signál a jeho vlastnosti odpovídají vzoru, udávají tzv. Fischerovy poměry. Sledované vlastnosti lze vybrat přímo, nebo automaticky. Na obrázku 1.5 vidíme příklad těchto poměrů, kde červené tečky představují klasifikátor, se kterým se právě pracuje.

Působivou utilitou softwaru VisualClass pro srovnávání několika naměřených

Obr. 1.5: Fisherovy poměry pro všechny třídy (nahoře), pro vybrané třídy (dole) [8]

průběhů navzájem mezi sebou je schopnost tzv. feature-feature projekce. Každý změřený průběh AE patřící k jedné třídě značí barevný symbol. Díky tomuto zobrazení lze snadno ověřit rozdíly jak mezi signály stejné třídy, tak mezi několika třídami. Zobrazení tzv. feature-feature demonstruje obrázek 1.6

1.5.2 Software od firmy Physical acoustic (MISTRAS)

Software NOESIS klasiikuje data podobně, jako VisualClass. Umožňuje také tvorbu celých stránek s nastavitelnými parametry – statistiky, RMS, algoritmus FFT, atd. (TODO: rozhodnout, zda má smysl shánět nějaké materiály od Physical acoustic,

Obr. 1.6: Fisherovy poměry pro všechny třídy (nahoře), pro vybrané třídy (dole) [8] jinak uzavřít.)

1.6 Případný vývoj

TODO: Dokončit, kam by se mohly ubírat přípravky pro neuronové sítě.

1.7 Experiment

První experiment byl proveden dne 31. října 2025 na duralové desce s rozměry 430 x 513 x 2,75 mm. Byl prováděn tzv. pentest - od snímače AE značky Olympus byla lámána tuha o tloušťce 0,3 mm a tvrdosti 2H (dle normy ČSN 14584[5]) ve vzdálenostech 5, 10, 15, 20, 25, 30, 35 a 40 cm. Data ze snímače AE zpracovávala dvoukanálová měřicí ústředna značky Dakel.

2 Výsledky studentské práce

Praktická část a výsledky studentské práce vhodně rozdělené do částí.

2.1 Programové řešení

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nulla pulvinar eleifend sem. Integer in sapien. Etiam sapien elit, consequat eget, tristique non, venenatis quis, ante. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit. Aliquam erat volutpat. Nullam faucibus mi quis velit [?].

2.2 Výsledky měření

Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. Fusce tellus. Morbi scelerisque luctus velit. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Quisque porta. Fusce suscipit libero eget elit. Nulla non lectus sed nisl molestie malesuada. Phasellus faucibus molestie nisl. Integer vulputate sem a nibh rutrum consequat. Proin mattis lacinia justo. Phasellus et lorem id felis nonummy placerat. Etiam ligula pede, sagittis quis, interdum ultricies, scelerisque eu. Cras elementum. Aenean placerat. Donec ipsum massa, ullamcorper in, auctor et, scelerisque sed, est. Aliquam ante. Integer imperdiet lectus quis justo. Vivamus ac leo pretium faucibus. Nullam faucibus mi quis velit.

2.2.1 Etiam quis quam

Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Aliquam erat volutpat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit [?, ?]. Nunc auctor. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Maecenas lorem. Maecenas libero. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Nullam rhoncus aliquam metus.

Integer rutrum orci vestibulum

Integer rutrum, orci vestibulum ullamcorper ultricies, lacus quam ultricies odio, vitae placerat pede sem sit amet enim. Ut enim ad minim veniam, quis nostrud

exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. Nullam eget nisl. Nunc auctor. Etiam dui sem, fermentum vitae, sagittis id, malesuada in, quam. Fusce dui leo, imperdiet in, aliquam sit amet, feugiat eu, orci. Curabitur vitae diam non enim vestibulum interdum. Aliquam erat volutpat. Pellentesque sapien. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit.

Eger rutrum orci westibulum

Fusce dui leo, imperdiet in, aliquam sit amet, feugiat eu, orci. Maecenas aliquet accumsan leo. Aliquam ornare wisi eu metus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam erat volutpat. Donec iaculis gravida nulla. Sed elit dui, pellentesque a, faucibus vel, interdum nec, diam. Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Nulla non arcu lacinia neque faucibus fringilla. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit. Praesent vitae arcu tempor neque lacinia pretium [?, ?, ?].

Aliquam erat volutpat. Quisque porta. Integer imperdiet lectus quis justo. Nullam justo enim, consectetuer nec, ullamcorper ac, vestibulum in, elit. Nullam faucibus mi quis velit. Fusce tellus. Fusce consectetuer risus a nunc. Cras pede libero, dapibus nec, pretium sit amet, tempor quis. Morbi imperdiet, mauris ac auctor dictum, nisl ligula egestas nulla, et sollicitudin sem purus in lacus [?, ?, ?]. Mauris elementum mauris vitae tortor. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Quisque porta. Integer vulputate sem a nibh rutrum consequat. Nulla pulvinar eleifend sem. Praesent id justo in neque elementum ultrices [?].

Fusce suscipit libero eget elit. Integer vulputate sem a nibh rutrum consequat. Aliquam erat volutpat. Etiam neque. Nulla turpis magna, cursus sit amet, suscipit a, interdum id, felis. Nullam rhoncus aliquam metus. Etiam dui sem, fermentum vitae, sagittis id, malesuada in, quam. Nunc auctor. Nunc dapibus tortor vel mi dapibus sollicitudin. Praesent in mauris eu tortor porttitor accumsan. Nulla non arcu lacinia neque faucibus fringilla. Nullam lectus justo, vulputate eget mollis sed, tempor sed magna. Maecenas lorem. Aenean placerat. Donec vitae arcu. Maecenas lorem. Donec iaculis gravida nulla. Nulla non lectus sed nisl molestie malesuada.

Duis pulvinar. Nulla est. Duis condimentum augue id magna semper rutrum. Integer pellentesque quam vel velit. Aliquam ante. Nulla quis diam. Proin mattis lacinia justo. Aenean fermentum risus id tortor. Nunc auctor. Nullam justo enim, consectetuer nec, ullamcorper ac, vestibulum in, elit. In dapibus augue non sapien.

Etiam bibendum elit eget erat. In sem justo, commodo ut, suscipit at, pharetra vitae, orci. Maecenas libero.

Nulla non lectus sed nisl molestie malesuada. Donec vitae arcu. Aenean fermentum risus id tortor. Praesent in mauris eu tortor porttitor accumsan. Nulla pulvinar eleifend sem. Duis viverra diam non justo. Integer imperdiet lectus quis justo. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In rutrum. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Nulla non lectus sed nisl molestie malesuada. Aliquam erat volutpat. Mauris tincidunt sem sed arcu. Duis bibendum, lectus ut viverra rhoncus, dolor nunc faucibus libero, eget facilisis enim ipsum id lacus. Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. In enim a arcu imperdiet malesuada. Nulla non lectus sed nisl molestie malesuada. Proin mattis lacinia justo.

Aliquam in lorem sit amet leo accumsan lacinia. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Duis sapien nunc, commodo et, interdum suscipit, sollicitudin et, dolor. Suspendisse sagittis ultrices augue. Nullam lectus justo, vulputate eget mollis sed, tempor sed magna. In convallis. Praesent id justo in neque elementum ultrices. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

Pellentesque pretium lectus id turpis. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Curabitur ligula sapien, pulvinar a vestibulum quis, facilisis vel sapien. Praesent dapibus. Sed elit dui, pellentesque a, faucibus vel, interdum nec, diam. Duis viverra diam non justo. Duis ante orci, molestie vitae vehicula venenatis, tincidunt ac pede. Phasellus rhoncus. Maecenas fermentum, sem in pharetra pellentesque, velit turpis volutpat ante, in pharetra metus odio a lectus. Proin pede metus, vulputate nec, fermentum fringilla, vehicula vitae, justo. Fusce aliquam vestibulum ipsum. Nullam at arcu a est sollicitudin euismod.

Závěr

Shrnutí studentské práce.

Literatura

- [1] KALHORI, H., TASHAKORI, C., HALKON, B. et al. Advances in impact force identification: A comprehensive review of techniques and mathematical innovations. Results in Engineering. 2025, č. 26 [online]. Dostupné z: https://www.sciencedirect.com/science/article/pii/S259012302501638X
- [2] HELAL, J., SOFI, M. a MENDIS, P. Non-Destructive Testing of Concrete: A Review of Methods. Electronic Journal of Structural Engineering. 2015, č. 14 [online]. Dostupné z: https://ejsei.com/EJSE/article/view/193.
- [3] DWIVEDIA, S. K.; VISHWAKARMAB, M.; SONIC, A.; Advances and Researches on Non Destructive Testing: A Review[online]. 2017. Dostupné z: https://www.sciencedirect.com/
- [4] MRIDUL G., MUHSIN, A. K., RAVI B. et al. Advances in applications of Non-Destructive Testing (NDT): A review. Advances in Materials and Processing Technologies [online]. 2021. ISSN 2374 0698. Dostupné z: https://www.tandfonline.com/journals/tmpt20?src=pdf
- [5] ČSN EN 14584 (01 5089) Nedestruktivní zkoušení Kvalifikace a certifikace personálu nedestruktivního zkoušení Doplňující požadavky pro certifikaci podle EN ISO 9712 pro pracovníky provádějící akustickou emisní zkoušku kovových tlakových zařízení během provozu. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví (ÚNMZ), 2013.
- [6] CHLADA, M., BLAHÁČEK, M., PŘEVOROVSKÝ Z. Aplikace časových profilů při lokalizaci zdrojů AE pomocí neuronových sítí[online]. Dostupné z: https://www.ndt.net/?id=8781
- [7] GHAJARI, M., SHARIF-KHODAEI, ALIABADI, M. H. Identification of impact force for smart composite stiffened panels [online]. Dostupné z: https://iopscience.iop.org/article/10.1088/0964-1726/22/8/085014
- [8] VALLEN-Systeme GmbH. Vallen VisualClassTM The AE tool for recognizing waveform similarities. Icking (Munich): Vallen-Systeme GmbH, 2002. 4 s. Dostupné z: http://www.vallen.de

Seznam symbolů a zkratek

DT destruktivní testování

NDT nedestruktivní testování

AE akustická emise

Seznam příloh

A	Některé příkazy balíčku thesis 4		
	A.1 Příkazy pro sazbu veličin a jednotek	47	
	A.2 Příkazy pro sazbu symbolů	47	
В	Druhá příloha	49	
\mathbf{C}	Příklad sazby zdrojových kódů	51	
	C.1 Balíček listings	51	
D	Obsah elektronické přílohy	55	

A Některé příkazy balíčku thesis

A.1 Příkazy pro sazbu veličin a jednotek

Tab. A.1: Přehled příkazů pro matematické prostředí

Příkaz	Příklad	Zdroj příkladu	Význam
	β_{\max}	<pre>\$\beta_\textind{max}\$</pre>	textový index
	$\mathrm{U_{in}}$	<pre>\$\const{U}_\textind{in}\$</pre>	konstantní veličina
	$u_{ m in}$	<pre>\$\var{u}_\textind{in}\$</pre>	proměnná veličina
	$oldsymbol{u}_{ m in}$	<pre>\$\complex{u}_\textind{in}\$</pre>	komplexní veličina
	y	\$\vect{y}\$	vektor
	Z	\$\mat{Z}\$	matice
	kV	$\$ \unit{kV}\ \cdot \unit{kV}	jednotka

A.2 Příkazy pro sazbu symbolů

- \E, \eul sazba Eulerova čísla: e,
- \J, \jmag, \I, \imag sazba imaginární jednotky: j, i,
- \dif sazba diferenciálu: d,
- \sinc sazba funkce: sinc,
- \mikro sazba symbolu mikro stojatým písmem¹: μ,
- \uppi sazba symbolu π (stojaté řecké pí, na rozdíl od \pi, což sází π).

Všechny symboly jsou určeny pro matematický mód, vyjma \mikro, jenž je použitelný rovněž v textovém módu.

¹znak pochází z balíčku textcomp

B Druhá příloha

Obr. B.1: Zlepšené Wilsonovo proudové zrcadlo.

Pro sazbu vektorových obrázků přímo v ĽTĘXu je možné doporučit balíček TikZ. Příklady sazby je možné najít na TĘXample. Pro vyzkoušení je možné použít programy QTikz nebo TikzEdt.

C Příklad sazby zdrojových kódů

C.1 Balíček listings

Pro vysázení zdrojových souborů je možné použít balíček listings. Balíček zavádí nové prostředí lstlisting pro sazbu zdrojových kódů, jako například:

```
\section{Balíček lstlistings}
Pro vysázení zdrojových souborů je možné použít
  balíček \href{https://www.ctan.org/pkg/listings}%
  {\texttt{listings}}.
Balíček zavádí nové prostředí \texttt{lstlisting} pro
  sazbu zdrojových kódů.
```

Podporuje množství programovacích jazyků. Kód k vysázení může být načítán přímo ze zdrojových souborů. Umožňuje vkládat čísla řádků nebo vypisovat jen vybrané úseky kódu. Např.:

Zkratky jsou sázeny v prostředí acronym:

6 \begin{acronym}[KolikMista]

Sířka textu volitelného parametru KolikMista udává šířku prvního sloupce se zkratkami. Proto by měla být zadávána nejdelší zkratka nebo symbol. Příklad definice zkratky symfvz! je na výpisu C.1.

Výpis C.1: Ukázka sazby zkratek

```
21 \acro{NDT}  % název

22  % [\ensuremath{f_\textind{vz}}]  % symbol

23  {nedestruktivní testování}  % popis
```

Ukončení seznamu je provedeno ukončením prostředí:

26 {akustická emise}

Poznámka k výpisům s použitím volby jazyka czech nebo slovak:

Pokud Váš zdrojový kód obsahuje znak spojovníku -, pak překlad může skončit chybou. Ta je způsobená tím, že znak - je v českém nebo slovenském nastavení balíčku babel tzv. aktivním znakem. Přepněte znak - na neaktivní příkazem \shorthandoff{-} těsně před výpisem a hned za ním jej vratte na aktivní příkazem \shorthandon{-}. Podobně jako to je ukázáno ve zdrojovém kódu šablony.

Výpis C.2: Příklad Schur-Cohnova testu stability v prostředí Matlab.

```
%% Priklad testovani stability filtru
1
2
  % koeficienty polynomu ve jmenovateli
4 \mid a = [5, 11.2, 5.44, -0.384, -2.3552, -1.2288];
  disp( 'Polynom:'); disp(poly2str( a, 'z'))
7 | disp('Kontrola⊔pomoci⊔korenu⊔polynomu:');
  zx = roots( a);
  if ( all( abs( zx) < 1))
      disp('System i je i stabilni')
10
  else
11
      disp('Systemujeunestabilniunebounaumeziustability');
12
  end
13
14
15 disp('u'); disp('KontrolaupomociuSchur-Cohn:');
16 ma = zeros( length(a)-1,length(a));
17 \mid ma(1,:) = a/a(1);
  for (k = 1: length(a) - 2)
18
      aa = ma(k, 1: end - k + 1);
19
      bb = fliplr( aa);
20
      ma(k+1,1:end-k+1) = (aa-aa(end)*bb)/(1-aa(end)^2);
21
  end
22
23
  if( all( abs( diag( ma.'))))
24
      disp('System _ je _ stabilni')
25
26
  else
      disp('System je nestabilni nebo na mezi stability');
27
  end
28
```

Výpis C.3: Příklad implementace první kanonické formy v jazyce C.

```
// první kanonická forma
                                                                    1
                                                                    2
short fxdf2t( short coef[][5], short sample)
                                                                    3
{
  static int v1[SECTIONS] = {0,0}, v2[SECTIONS] = {0,0};
                                                                    4
  int x, y, accu;
                                                                    5
                                                                    6
  short k;
                                                                    7
  x = sample;
                                                                    8
  \underline{for}(k = 0; k < SECTIONS; k++){
                                                                    9
    accu = v1[k] >> 1;
                                                                    10
    y = _sadd(accu, _smpy(coef[k][0], x));
                                                                    11
    y = _sshl(y, 1) >> 16;
                                                                    12
                                                                    13
    accu = v2[k] >> 1;
                                                                    14
    accu = _sadd( accu, _smpy( coef[k][1], x));
                                                                    15
    accu = _sadd( accu, _smpy( coef[k][2], y));
                                                                    16
    v1[k] = _sshl( accu, 1);
                                                                    17
                                                                    18
    accu = \_smpy(coef[k][3], x);
                                                                    19
    accu = _sadd( accu, _smpy( coef[k][4], y));
                                                                    20
    v2[k] = _sshl(accu, 1);
                                                                    21
                                                                    22
                                                                    23
    x = y;
                                                                    24
                                                                    25
  return( y);
                                                                    26
}
```

D Obsah elektronické přílohy

Elektronická příloha je často nedílnou součástí semestrální nebo závěrečné práce. Vkládá se do informačního systému VUT v Brně ve vhodném formátu (ZIP, PDF...).

Nezapomeňte uvést, co čtenář v této příloze najde. Je vhodné okomentovat obsah každého adresáře, specifikovat, který soubor obsahuje důležitá nastavení, který soubor je určen ke spuštění, uvést nastavení kompilátoru atd. Také je dobře napsat, v jaké verzi software byl kód testován (např. Matlab 2018b). Pokud bylo cílem práce vytvořit hardwarové zařízení, musí elektronická příloha obsahovat veškeré podklady pro výrobu (např. soubory s návrhem DPS v Eagle).

Pokud je souborů hodně a jsou organizovány ve více složkách, je možné pro výpis adresářové struktury použít balíček dirtree.

/	kořenový adresář přiloženého archivu
ļ	logologa školy a fakulty
	BUT_abbreviation_color_PANTONE_EN.pdf
	BUT_color_PANTONE_EN.pdf
	FEEC_abbreviation_color_PANTONE_EN.pdf
	FEKT_zkratka_barevne_PANTONE_CZ.pdf
	UTKO_color_PANTONE_CZ.pdf
	UTKO_color_PANTONE_EN.pdf
	VUT_barevne_PANTONE_CZ.pdf
	VUT_symbol_barevne_PANTONE_CZ.pdf
	VUT_zkratka_barevne_PANTONE_CZ.pdf
-	obrazkyostatní obrázky
	soucastky.png
	spoje.png
	ZlepseneWilsonovoZrcadloNPN.png
	ZlepseneWilsonovoZrcadloPNP.png
ļ	pdf pdf stránky generované informačním systémem
	student-desky.pdf
	student-titulka.pdf
	student-zadani.pdf
ļ	<u>text</u> zdrojové textové soubory
	literatura.tex
	prilohy.tex
	reseni.tex
	uvod.tex
	vysledky.tex
	zaver.tex
	zkratky.tex
-	<u>sablona-obhaj.tex</u> hlavní soubor pro sazbu prezentace k obhajobě
-	sablona-prace.texhlavní soubor pro sazbu kvalifikační práce
ļ	thesis.stybalíček pro sazbu kvalifikačních prací