Chapitre: Lois à densité

I°) Loi uniforme sur [a; b]

A°) Variable aléatoire de loi uniforme

<u>Définition</u>: Soit a et b deux nombres réels tels que a < b. Une variable aléatoire X suit la loi uniforme sur [a;b] quand pour tout intervalle [c;d] inclus dans [a;b], la probabilité de l'événement « $X \in [c;d]$ » est

•
$$P(\langle X \in [c;d] \rangle) = \int_{c}^{d} f(x).dx$$
 avec $f(x) = \frac{1}{b-a}$ pour tout x dans [a; b].

Remarque : La fonction f ainsi définie est appelée fonction de densité de la loi uniforme sur [a ; b].

Propriété essentielle de la loi uniforme : Soit X une variable aléatoire suivant la loi uniforme sur [a ; b]. Pour tout intervalle [c ; d] inclus dans [a; b] on a alors :

•
$$P(\ll X \in [c;d] \gg) = \frac{d-c}{b-a}$$

Remarque : il suffit d'intégrer $\int_{c}^{d} f(x).dx$ pour obtenir $\frac{d-c}{b-a}$.

Remarque : On a bien
$$\int_{a}^{b} f(x).dx = \frac{b-a}{b-a} = 1.$$

Exemple:

Ici, la fonction de densité est la fonction f définie sur [0; 5] par $f(x) = \frac{1}{5-0} = \frac{1}{5}$ pour tout x dans [0; 5].

Donc par exemple la probabilité qu'un véhicule tombe en panne entre 0 et 2 km est donnée par

$$P(X \in [0; 2]) = \frac{2-0}{5-0} = \frac{2}{5}$$
.

II°) Espérance et variance d'une variable aléatoire de loi uniforme

<u>Définitions</u>: Soit X une variable aléatoire suivant la loi uniforme sur [a ; b] et f une fonction de densité de la loi uniforme sur [a ; b].

• L'espérance et la variance de X sont les nombres réels, notés E(X) et V(X) définis par :

$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-a)^2}{12}$

• L'écart-type $\sigma(X) = \sqrt{V(X)}$

Exemple : Si X suit la loi uniforme sur [2;5], alors : $E(X) = \frac{2+5}{2} = \frac{7}{2}$ et $V(X) = \frac{3}{4}$

III°) Rappels sur la loi binomiale

Ce III°) fait partie du chapitre Loi à densité mais présente une loi ici sans densité, rappels de première.

1°) Schéma de Bernoulli

2°) Variable aléatoire, espérance et variance

Exemple : Si on jette 10 fois un dé à 6 faces équilibré de manière identique et indépendante, on a un schéma de Bernoulli de paramètre n = 10 et $p = \frac{1}{6}$. Soit X la variable aléatoire qui compte le nombre de fois où le dé tombe sur 5 (succès). X suit alors une loi binomiale de paramètres 10 et $\frac{1}{6}$ et P(X = 3) est alors la probabilité d'obtenir 3 succès, c'est à dire celle d'obtenir 3 fois la face 5 sur les 10 lancers.

Propriétés : Soit X une variable aléatoire suivant la loi binomiale de paramètres n et p.

- L'espérance mathématique de X, notée E(X) est donnée par E(X) = np.
- La variance de X, notée V(X) est donnée par V(X) = np(1-p)
- On en déduit l'écart-type noté $\sigma(X)$, qui vérifie $\sigma(X) = \sqrt{np(1-p)}$

IV°) Loi exponentielle

1°) Variable aléatoire de loi exponentielle

<u>Définition</u>: Soit λ un nombre réel tel que $\lambda > 0$. Une variable aléatoire X suit la loi exponentielle de paramètre λ si pour tout intervalle [c;d] inclus dans $[0;+\infty[$ la probabilité de l'événement $(X, X) \in [c;d]$ est :

•
$$P(\ll X \in [c;d] \gg) = \int_{c}^{d} f(x) dx$$
 avec $f(x) = \lambda e^{-\lambda x}$ pour tout x dans $[0;+\infty[$.

Remarque : La fonction f ainsi définie est appelée fonction de densité de la loi exponentielle de paramètre λ .

Propriété : Soit X une variable aléatoire suivant la loi exponentielle de paramètre λ . Pour tout intervalle [c; d] inclus dans $[0;+\infty[$ on a P ($c \le X \le d$) = $e^{-\lambda c} - e^{-\lambda d}$.

Démonstration: P (
$$c \le X \le d$$
) = $\int_{c}^{d} \lambda e^{-\lambda x} . dx = e^{-\lambda c} - e^{-\lambda d}$

Propriété : Si une variable aléatoire X suit la loi exponentielle de paramètre λ alors pour tout x positif ou nul on a $P(X \le x) = 1 - e^{-\lambda x}$.

Démonstration:
$$P(X \le x) = P(0 \le X \le x) = \int_{0}^{x} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}$$

Exemple: Si X suit la loi exponentielle de paramètre $\lambda = 0.5$ alors :

- P(X = 3) = 0
- P($3 \le X \le 4$) = $e^{-3 \times 0.5} e^{-4 \times 0.5}$
- P($X \le 4$) = $1 e^{-4 \times 0.5}$

2°) Espérance d'une variable aléatoire de loi exponentielle

<u>Définition</u>: Soit X une variable aléatoire suivant la loi exponentielle de paramètre λ et de densité f.

L'espérance de X est le réel défini par $E(X) = \frac{1}{\lambda}$.

Exemple: Si X est une variable aléatoire suivant la loi exponentielle de paramètre $\lambda = 0.04$ alors :

•
$$E(X) = \frac{1}{0.04} = 25$$

Interprétation : Lorsqu'une expérience aléatoire faisant intervenir une variable aléatoire X de loi exponentielle de paramètre λ est répétée un très grand nombre de fois, la moyenne des valeurs prises par X se rapproche de $\frac{1}{\lambda}$.

III°) Loi normale

1°) Variable aléatoire de loi normale

<u>Définition</u>: Soit μ et σ deux réels tels que $\sigma > 0$.

Une variable aléatoire X suit la loi normale de paramètres μ et σ si, pour tout intervalle [c; d] borné inclus dans IR, la probabilité de l'événement « $X \in [c;d]$ » est :

•
$$P(\ll X \in [c;d]\gg) = \int_{c}^{d} f(x).dx$$
 avec $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-1}{2}\times(\frac{x-\mu}{\sigma})^{2}}$
pour tout x dans $[0;+\infty[$.

La fonction f ainsi définie est appelée fonction de densité de la loi normale de paramètres μ et σ . Cette loi est notée $N(\mu, \sigma)$.

Propriétés (admises): Si X est un variable aléatoire suivant la loi normale $N(\mu, \sigma)$, alors:

- La courbe représentative de la densité f est symétrique par rapport à la droite D d'équation $x = \mu$.
- $P(X \le \mu) = P(X \ge \mu) = 0.5.$

Propriété (admise): Si X est une variable aléatoire suivant la loi normale $N(\mu, \sigma)$, alors:

- $E(X) = \mu$
- $\sigma(X) = \sigma$

2°) Calcul de P($X \le d$) à la calculatrice :

Comme certaines calculatrices ne fournissent pas $P(X \le d)$ mais seulement $P(c \le X \le d)$, on peut procéder comme indiqué ci-dessous.

Sinon, on peut:

- Pour calculer P(X < a), demander à la calculatrice de calculer $P(-10^99 < X < a)$
- Pour calculer P(X > a), demander à la calculatrice de calculer $P(a < X < 10^99)$

<u>3°) Intervalles remarquables</u>

Propriété (admise) : Si X est une variable aléatoire suivant la loi normale $N(\mu, \sigma)$, alors :

- $P(\mu \sigma, \mu + \sigma) \approx 0.683$
- $P(\mu 2\sigma, \mu + 2\sigma) \approx 0.954$
- $P(\mu 3\sigma, \mu + 3\sigma) \approx 0.997$

4°) Approximation d'une loi binomiale par une loi normale

Propriété (admise) : Lorsque $n \ge 30$, $np \ge 5$ et $n(1-p) \ge 5$, la loi binomiale B(n; p) peut être approchée par la loi normale N(μ , σ), de même espérance et de même écart-type avec $\mu = np$ et $\sigma = \sqrt{np(1-p)}$.

Comme certaines calculatrices ne fournissent pas $P(X \le d)$ mais seulement $P(c \le X \le d)$, on peut procéder comme indiqué ci-dessous.

Comme certaines calculatrices ne fournissent pas $P(X \le d)$ mais seulement $P(c \le X \le d)$, on peut procéder comme indiqué ci-dessous.

Comme certaines calculatrices ne fournissent pas $P(X \le d)$ mais seulement $P(c \le X \le d)$, on peut procéder comme indiqué ci-dessous.

