ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ № 4

В данной работе рассматриваются следующие режимы адресации:

- регистровая;
- непосредственная;
- относительная.

Операции, которые необходимо эмулировать представлены в следующей таблице в зависимости от номера варианта.

У всех вариантов последняя операция **HALT** (останов).

Oranayya	Варианты							
Операция	1	2	3	4	5	6	7	
Пересылочные	1.1, 3, 4	1.2, 3, 4	2.1, 3, 4	1.1, 3, 4	1.2, 3, 4	2.1, 3, 4	1.2, 3, 4	
Арифметические	1.2	3.1	2.2	5.2	4.1	6.2	7.1	
и логические								
Сдвиги	3.1	4.2	1.1	2.2	3.1	4.2	5.1	
Передача	16	1	2	3	4	16	5	
управления								
Умножение,	3.1, 5	1.2.1, 6	4.2, 5	1.3.1, 6	3.2, 5	2.2.1, 6	2.3.1, 5	
деление,								
преобразование								

0	Варианты							
Операция	8	9	10	11	12	13	14	
Пересылочная	1.1, 3, 4	1.2, 3, 4	2.1, 3, 4	1.1, 3, 4	1.2, 3, 4	2.1, 3, 4	2.1, 3, 4	
Арифметические	8.2	9.1	1.2	2.2	5.1	6.2	7.2	
и логические								
Сдвиги	1.2	2.1	3.2	4.1	5.2	1.1	2.2	
Передача	19	8	9	1	16	4	19	
управления								
Умножение,	3.1, 6	1.1.2, 5	2.1.2, 6	1.1.1, 5	4.1, 6	1.4.1, 5	3.2, 6	
деление,								
преобразование								

В таблице указаны номера операций в соответствующей таблице операций.

Пересылочные операции

Первая операция содержит две цифры: первая - вид операции MOV или XCHG, вторая – режим адресации: 1 – регистровая, 2 – непосредственная.

Например, 1.2 – MOV CX, 1234h; 2.1 – XCHG CX, DX;

Все варианты эмулируют операции PUSH и POP с регистровым режимом адресации. Например, PUSH CX; POP BX.

Таблица 1 – Пересылочные операции

	Операция	Тип	Байт 1	Байт 2	Флажки
	-		7654 3210	76 543 210	SZNC
1	MOV – передать	RRM	1000 10d1	mod reg r/m	
	MOV dst, src;	RMI	1100 0111	mod reg r/m	
	$dst \leftarrow (src)$	RI	1011 1reg		
		AM	1010 00d1		
2	XCHG – обменять	RRM	1000 0111	mod reg r/m	
	XCHG dst, src;	AR	1001 Oreg		
	$(dst) \longleftrightarrow (src)$				
3	PUSH – включить в	RM	1111 1111	mod 110 r/m	
	стек	R	0101 1reg		
	PUSH src;				
	1) $SP \leftarrow SP - 2;$				
	$(SP) \leftarrow (src).$				
4	РОР – извлечь из	RM	1000 1111	mod 000 r/m	
	стека	R	0101 1reg		
	POP dst;				
	1) $(SP) \rightarrow (dst);$				
	$2)$ SP \leftarrow SP + 2.				

Арифметические и логические операции

Операция содержит две цифры: первая - вид операции, вторая – режим адресации: 1 – регистровая, 2 – непосредственная.

Например, 7.2 – TEST CX, 1h; 3.1 – INC DX;

Таблица 2 – Арифметические и логические операции

	Операция	Тип	Байт 1	Байт 2	Флажки
			7654 3210	76 543 210	SZNC
1	ADD – сложить	RRM	0000 00d1	mod reg r/m	X X X X
	ADD dst, src;	RMI	1000 00s1	mod 000 r/m	
	dst:=(dst) + (src)	AI	0000 0101		
2	SUB – вычесть	RRM	0010 10d1	mod reg r/m	X X X X
	SUB dst, src;	RMI	1010 00s1	mod 000 r/m	
	dst:=(dst) - (src)	AI	0010 1101		
3	INC – инкремент	RM	1111 1110	mod 000 r/m	X X X X
	INC src; (src):=src+1	R	0100 Oreg		
4	DEC – декремент	RM	1111 1111	mod 000 r/m	X X X X
	INC src; (src):=src-1	R	0100 1reg		
5	СМР – сравнить	RRM	0011 10d1	mod reg r/m	X X X X
	CMP dst, src; (dst) -	RMI	1011 00s1	mod 000 r/m	
	(src)	AI	0011 1101		
6	AND – объединить	RRM	0010 00d1	mod reg r/m	X X 0 0
	по И	RMI	1000 0001	mod 100 r/m	
	AND dst, src;	AI	0010 0101		
	dst:=(dst) & (src)				
7	TEST – проверить	RRM	1000 0101	mod reg r/m	X X 0 0
	TEST dst, src; (dst)	RMI	1111 0111	mod 100 r/m	
	&(src)	AI	1010 1001		
8	OR – объединить по	RRM	0000 10d1	mod reg r/m	X X 0 0
	ИЛИ	RMI	1000 0001	mod 001 r/m	
	OR dst, src;	AI	0000 1101		
	dst:=(dst) v (src)				
9	XOR – сложение по	RRM	0011 00d1	mod reg r/m	X X 0 0
	mod2	RMI	1000 0001	mod 001 r/m	
	XOR dst, src;	AI	0011 0101		
	$dst:=(dst) \oplus (src)$				

Операции сдвига

Операция содержит две цифры: первая - вид операции, вторая – количество сдвигов: 1 — сдвиг на 1 разряд, 2 — сдвиг на п разрядов, п содержится в СL. Режим адресации у всех вариантов — регистровый.

Например, 1.2 – SHL DX, CL; 3.1 – SAR DX, 1;

Таблица 3 – Сдвиги

1	SHL – сдвиг	RM	1101 00v1	mod 100 r/m	XXXX
	логический влево				
2	SHR – логический	RM	1101 00v1	mod 101 r/m	XXXX
	сдвиг вправо				
3	SAR –	RM	1101 00v1	mod 111 r/m	XXXX

	арифметический сдвиг				
	вправо				
4	ROL – циклический	RM	1101 00v1	mod 000 r/m	XXXX
	сдвиг влево				
5	ROR – циклический	RM	1101 00v1	mod 001 r/m	XXXX
	сдвиг вправо				

Операции передачи управления

Операция передачи управления содержит 1 цифру – вид операции. Например, 2 – JNZ Metka1; 16 – LOOP Metka2;

Таблица 5 – Операции передачи управления

	Мнемоника	Код	Операция	Коды условия
1	JMP	1110 1011	Безусловный переход	-
2	JNZ	0111 0011	Переход по неравенству нулю	Z=0
3	JZ	0111 0100	Переход по равенству нулю	Z=1
4	JNS	0111 1001	Переход по плюсу	S=0
5	JS	0111 1000	Переход по минусу	S=1
6	JNO	0111 0001	Переход по непереполнению	V=0
7	JO	0111 0000	Переход по переполнению	V=1
8	JNC	0111 1011	Переход по переносу	C=0
9	JC	0111 1010	Переход по отсутствию	C=1
			переноса	
10	JNL	0111 1101	Переход, если больше или равно	S⊕V=0
11	JL	0111 1100	Переход, если меньше	S⊕V=1
12	JNLE	0111 1111	Переход, если больше	$Z\lor(S\oplus V)=0$
13	JLE	0111 1110	Переход, если меньше или равно	$Z\lor(S\oplus V)=1$
14	JNBE	0111 0111	Переход, если больше	C∨Z=0
			(без знака)	
15	JBE	0111 0110	Переход, если меньше или равно	C∨Z=1
			(без знака)	
16	LOOP	1110 0010	Зациклить	CX≠0
17	LOOPZ	1100 0001	Зациклить, пока нуль или равно	Z=1 и СХ≠0
18	LOOPNZ	1110 0000	Зациклить, пока нуль или не	Z=0 и СХ≠0
			равно	
19	JCXZ	1110 0011	Перейти, если CX=0	CX=0
20	HALT	1111 1111	Останов	

Операции умножения, деления и преобразования

Операция УМНОЖЕНИЕ содержит 3 цифры: первая – вид операции, вторая – алгоритм операции умножения или деления:

- 1 умножение с анализом младшего разряда множителя со сдвигом СЧП;
- 2 умножение с анализом старшего разряда множителя со сдвигом СЧП;
- 3 умножение с анализом младшего разряда множителя со сдвигом множимого;
- 4 умножение с анализом старшего разряда множителя со сдвигом множимого.

третья – размер операндов и результата:

- 1 операнды байты, результат слово;
- 2 операнды –слова, результат двойное слово.

Например, **2.1.2** – **IMUL BX**; – умножение чисел со знаком, операнды – слова, результат – двойное слово. Множимое находится в регистре AX, множитель – в BX, результат в 2-х регистрах: старшая часть в DX, младшая – в AX: $DX.AX \leftarrow AX * (src)$.

При эмуляции используется алгоритм умножения с анализом младшего разряда множителя со сдвигом СЧП.

Операция ДЕЛЕНИЯ содержит 2 цифры: первая – вид операции, вторая – алгоритм операции деления:

- 1 деление без восстановления остатка;
- 2 деление с восстановлением остатка.

Для всех операций деления делимое – слово, делитель и частное – байт.

Например, 3.2 - DIV BL; — беззнаковое деление: делимое находится в AX, делитель в BL, результат (частное) в AL. AL \leftarrow AX / BL.

При эмуляции используется алгоритм деления с восстановлением остатка.

Таблица 4 – Операции умножения, деления и преобразования

1	MUL src – умножение	RM	1111 011w	mod 100 r/m	XXXX
	чисел без знака		1111 011w	11 100 reg	
	$AX \leftarrow AL * (src)$				
	$DX.AX \leftarrow AX * (src)$				
2	IMUL src – умножение	RM	1111 011w	mod 101 r/m	X X X X
	чисел со знаком		1111 011w	11 101 reg	
	$AX \leftarrow AL * (src)$				
	$DX.AX \leftarrow AX * (src)$				
3	DIV src – беззнаковое	RM	1111 011w	mod 110 r/m	X X X X
	деление		1111 011w	11 110 reg	
	$AL \leftarrow AX / (src)$				
	$AX \leftarrow DX.AX / (src)$				

4	IDIV src –деление	RM	1111 011w	mod 111 r/m	XXXX
	чисел со знаком		1111 011w	11 111 reg	
	$AL \leftarrow AX / (src)$				
	$AX \leftarrow DX.AX / (src)$				
5	BLD src –	RM	1111 1111	mod 011 r/m	
	преобразовать BCD-				
	число в двоичное				
6	XLAT – команда		1101 0111		
	преобразования				

Таким образом, задание по варианту № 14 можно представить в следующем виде, упорядочив операции в удобном для рассмотрения порядке:

1 часть лабораторной работы:

PUSH AX; 3

POP BX; 4

M: XCHG BX, CX; 2.1

SHR DX, CX; 2.2

TEST CX, 0h; 7.2

JCXZ M; 19

HALT; 20

2 часть лабораторной работы:

BLD AX; 5

HALT; 20