2

3

4

CLAIMS

What is claimed is:

1	1.	A method for producing a lithographically printed image having a reduced critical		
2	dime	dimension, the method comprising the steps of:		
3		(a) providing a semiconductor substrate optionally having at least a hardmask		
4	defin	defined thereon;		
5		(b) providing an underlayer on said hardmask wherein said underlayer is		
6	subst	substantially free of any element that forms a non-volatile oxide;		
7		(c) providing a PR layer on said underlayer, wherein said photoresist comprises a		
8	mate	material capable of forming a non-volatile, etch-resistant oxide;		
9		(d) imagewise exposing said PR layer to radiation forming an image in said PR;		
10		(e) transferring said image into said underlayer; and		
11		(f) performing a controlled overetch of said underlayer.		
12		plasma etching said underlayer, wherein the reactive species of said plasma		
13	comp	comprises oxygen; and		
14		performing a controlled lateral thinning of said underlayer.		
1	2.	A method for reducing the critical dimension of a lithographically printed feature,		
2	accor	rding to claim 1, wherein said underlayer comprises less than 9% silicon.		
1	3.	A method for reducing the critical dimension of a lithographically printed feature,		
2	acco	rding to claim 1, wherein said underlayer comprises a tuned polymer.		
1	4.	A method for reducing the critical dimension of a lithographically printed feature,		

according to claim 1, wherein said underlayer is substantially free of any element that

silicon, boron, phosphorous, germanium, and aluminum.

forms a non-volatile oxide wherein said element is selected from the group consisting of

- 1 5. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said photoresist comprises an element capable of forming a
- 3 non-volatile, etch-resistant oxide selected from the group consisting of silicon, boron,
- 4 phosphorous, germanium, and.
- 1 6. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein the reactive species of said plasma comprises an element
- 3 selected from the group consisting of oxygen, hydrogen, fluorine, and chlorine.
- 1 7. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said underlayer comprises a tuned polymer comprising
- 3 carbon, hydrogen, and oxygen.
- 1 8. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said underlayer comprises an antireflective coating.
- 1 9. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said PR comprises a radiation-sensitive acid generator.
- 1 10. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said photoresist comprises a polymer having acid-cleavable
- 3 moieties bound thereto.
- 1 11. A method for reducing the critical dimension of a lithographically printed feature,
- according to claim 1, wherein said photoresist comprises a polymer formed by
- 3 polymerizing one or more monomers selected from the group consisting of acrylate,
- 4 methacrylate, hydroxystyrene optionally substituted with C₁₋₆-alkyl, C₅₋₂₀ cyclic olefin

- 5 monomers, and combinations thereof, the polymer having acid-cleavable moieties bound
- 6 thereto, wherein all such moieties are silylethoxy groups optionally substituted on the
- 7 ethoxy portion thereof with C_{l-6} -alkyl, phenyl, or benzyl.
- 1 12. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said radiation is selected from the group consisting of
- electromagnetic radiation, 157-365 nm ultraviolet radiation, euv, electron beam radiation,
- 4 and hard and soft x-ray radiation.
- 1 13. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said radiation comprises ultraviolet radiation or extreme
- 3 ultraviolet radiation.
- 1 14. A method for reducing the critical dimension of a lithographically printed feature,
- according to claim 1, wherein said ultraviolet radiation comprises substantially
- monochromatic radiation having a wavelength of from about 157 nm to about 365 nm.
- 1 15. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said ultraviolet radiation comprises substantially
- 3 monochromatic radiation having a wavelength selected from the group consisting of 157,
- 4 193, 248, 254, and 365 nm.
- 1 16. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said radiation comprises x-ray radiation.
- 1 17. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said photoresist comprises a stable, etch-resistant, non-

- 3 volatile oxide-forming material selected from the group consisting of silicon, phosphorous,
- 4 germanium, aluminum, and boron.
- 1 18. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said plasma comprises a reactive species selected from the
- group consisting of oxygen, hydrogen, fluorine, and chlorine.
- 1 19. A method for reducing the critical dimension of a lithographically printed feature,
- 2 according to claim 1, wherein said tuned polymer comprises an organic polymer selected
- from the group consisting of phenolic polymers, novolacs, epoxies, and diamond-like
- 4 carbon.
- 1 20. A method for producing a lithographically printed image having a reduced critical
- dimension, according to claim 1, wherein transferring said image comprises plasma
- 3 reactive-ion etching.
- 1 21. A method for producing a lithographically printed image having a reduced critical
- dimension, according to claim 18, wherein said reactive species comprise neutrals and
- ions.
- 1 22. A method for producing a lithographically printed image having a reduced critical
- dimension, according to claim 1, wherein performing controlled overetch comprises
- 3 controlling the etch rate.
- 1 23. A method for producing a lithographically printed image having a reduced critical
- dimension, according to claim 22, wherein controlling said etch rate comprises adding a
- 3 non-reactive diluent gas to said plasma.

6

1	24.	A method for producing a lithographically printed image having a reduced critical	
2	dimension, according to claim 23, wherein said non-reactive diluent gas comprises		
3	nitrogen and noble gasses.		
1	25.	A method for producing a lithographically printed image having a reduced critical	
2	dimension, according to claim 22, wherein controlling said etch rate comprises regulating		
3	process parameters.		
1	26.	A method for producing a lithographically printed image having a reduced critical	
2	dimension, according to claim 22, wherein said process parameters consist of variables		
3	selected from the group consisting of the duration of etch, the rf power, operating		
4	pressure, gas flowrates, backside He pressure, electrode temperature, and wall		
5	temperature.		
1	27.	The reduced critical dimension bilayer resist image comprising:	
2		a semiconductor substrate;	
3		an organic layer provided on said substrate; and a photoresist layer provided on	
4	said organic layer, wherein said photoresist layer has a first image developed therein, and		
5	wherein said organic layer has a second image, of reduced critical dimension and		
6	congruent with said first image, developed therein.		
1	28.	A method of using a reduced critical dimension bilayer resist image comprising	
2	the steps of:		
3		(a) providing a substrate;	
4		(b) forming a reduced critical dimension bilayer resist image on said substrate;	
5		(c) transferring said image into said substrate forming a circuit image; and	

(d) forming circuit element materials in said circuit image.

- 1 29. A method of using the reduced critical dimension bilayer resist image, according
- 2 to claim 25 wherein said circuit element materials comprise materials selected from the
- group consisting of dielectric, conductor, semiconductor, and doped semiconductor
- 4 materials.
- 1 30. The semiconductor device fabricated using a reduced critical dimension bilayer
- 2 resist image.