

What is claimed is:

1. A single-mode optical fiber suitable for a WDM (Wavelength Division Multiplexing) system, comprising:
 - 5 (a) a first core region positioned in the center of cross section and having a radius r_1 from the center and a relative refractive index difference Δ_1 ;
 - (b) a second core region surrounding the first core region and having a radius r_2 from the center and a relative refractive index difference Δ_2 ;
 - (c) a third core region surrounding the second core region and having a radius r_3 from the center and a relative refractive index difference Δ_3 ; and
 - 10 (d) a clad region surrounding the third core region and having a radius r_4 from the center and a relative refractive index difference Δ_4 ,
 - (e) wherein the radii of the regions have a relation of $r_1 < r_2 < r_3 < r_4$, and the relative refractive index differences of the regions have relations of $\Delta_1 > \Delta_2$, and
 - 15 $\Delta_2 < \Delta_3$;
- (here, $\Delta_1(\%) = [(n_1 - n_c)/n_c] \times 100$, $\Delta_2(\%) = [(n_2 - n_c)/n_c] \times 100$,
 $\Delta_3(\%) = [(n_3 - n_c)/n_c] \times 100$, n_1 : a reflective index of the first core region, n_2 : a reflective index of the second core region, n_3 : a reflective index of the third core region, n_c : a reflective index of the clad region)
- 20 (f) wherein the optical fiber uses a wavelength region from 1460 to 1625 nm, and has a dispersion value of 0.1 to 3.0 ps/nm-km at 1460 nm, 3.0 to 5.5 ps/nm-km at 1550 nm, and 4.5 to 8.0 ps/nm-km at 1625 nm.

2. The single-mode optical fiber according to claim 1,
wherein the optical fiber has a positive dispersion slope in the wavelength band
for use.

5 3. The single-mode optical fiber according to claim 2,
wherein the optical fiber has a dispersion slope of 0.023 to 0.05 ps/nm·km² at
1550 nm.

4. The single-mode optical fiber according to claim 3,
10 wherein the optical fiber has an effective section area of 35 to 50μm² at 1550
nm.

5. The single-mode optical fiber according to claim 3,
wherein the optical fiber has an effective section area of 35 to 50μm² at 1460
15 nm.

6. The single-mode optical fiber according to claim 4 or 5,
wherein the optical fiber has a cutoff wavelength of 1450 nm or below.

20 7. The single-mode optical fiber according to claim 4 or 5,
wherein a zero-dispersion wavelength is located at 1460 nm or below.

8. The single-mode optical fiber according to claim 4 or 5,

wherein the optical fiber has a dispersion value of 0.3 to 2.4 ps/nm-km at 1460 nm.

9. The single-mode optical fiber according to claim 4 or 5,
5 wherein the optical fiber has a dispersion value of 3.2 to 5.2 ps/nm-km at 1550 nm.

10. The single-mode optical fiber according to claim 4 or 5
wherein the optical fiber has a dispersion value of 4.8 to 7.7 ps/nm-km at 1625
10 nm.

11. The single-mode optical fiber according to claim 10,
wherein a bending loss is 0.5dB or less at 1625 nm under the condition of a
bending radius of 30mm, 100turns.
15

12. The single-mode optical fiber according to claim 1,
i) wherein the first core region has a radius $r_1=3.05\pm0.6\mu\text{m}$ and a relative
refractive index difference $\Delta_1(\%)=0.54\pm0.03\%$;
ii) wherein the second core region has a radius $r_2=5.38\pm0.6\mu\text{m}$ and a refractive
20 index difference $\Delta_2=-0.20\pm0.03\%$; and
iii) wherein the third core region has a radius $r_3=9.96\pm0.6\mu\text{m}$ and a specific
refractive index difference $\Delta_3=0.07\pm0.03\%$.

13. The single-mode optical fiber according to claim 1,

- i) wherein the first core region has a radius $r_1=3.05 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_1(\%)= 0.55 \pm 0.03\%$;
- ii) wherein the second core region has a radius $r_2=5.75 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_2 = -0.18 \pm 0.03\%$; and
- iii) wherein the third core region has a radius $r_3=10.79 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_3 = 0.09 \pm 0.03\%$.

14. The single-mode optical fiber according to claim 1,

- i) wherein the first core region has a radius $r_1=3.12 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_1(\%)= 0.53 \pm 0.03\%$;
- ii) wherein the second core region has a radius $r_2=5.56 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_2 = -0.23 \pm 0.03\%$; and
- iii) wherein the third core region has a radius $r_3=9.92 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_3 = 0.10 \pm 0.03\%$.

15. The single-mode optical fiber according to claim 1,

- i) wherein the first core region has a radius $r_1=3.24 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_1(\%)= 0.48 \pm 0.03\%$;
- ii) wherein the second core region has a radius $r_2=5.72 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_2 = -0.17 \pm 0.03\%$; and
- iii) wherein the third core region has a radius $r_3=8.54 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_3 = 0.12 \pm 0.03\%$.

refractive index difference $\Delta_3 = 0.15 \pm 0.03\%$.

16. The single-mode optical fiber according to claim 1,

- i) wherein the first core region has a radius $r_1=3.37 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_1(\%)= 0.50 \pm 0.03\%$;
- 5 ii) wherein the second core region has a radius $r_2=5.77 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_2 = -0.25 \pm 0.03\%$; and
- iii) wherein the third core region has a radius $r_3=9.35 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_3 = 0.14 \pm 0.03\%$.

10

17. The single-mode optical fiber according to claim 1,

- i) wherein the first core region has a radius $r_1=3.18 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_1(\%)= 0.51 \pm 0.03\%$;
- ii) wherein the second core region has a radius $r_2=6.18 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_2 = -0.19 \pm 0.03\%$; and
- 15 iii) wherein the third core region has a radius $r_3=8.65 \pm 0.6\mu\text{m}$ and a relative refractive index difference $\Delta_3 = 0.14 \pm 0.03\%$.

20 18. A single-mode optical fiber suitable for a WDM (Wavelength Division Multiplexing) system, comprising:

- (a) a first core region positioned in the center of cross section and having a radius r_1 from the center and a relative refractive index difference Δ_1 ;

- (b) a second core region surrounding the first core region and having a radius r_2 from the center and a relative refractive index difference Δ_2 ;
- (c) a third core region surrounding the second core region and having a radius r_3 from the center and a relative refractive index difference Δ_3 ; and
- 5 (d) a clad region surrounding the third core region and having a radius r_4 from the center and a relative refractive index difference Δ_4 ,
- (e) wherein the radii of the regions have a relation of $r_1 < r_2 < r_3 < r_4$, and the relative refractive index differences of the regions have relations of $\Delta_1 > \Delta_2$, and $\Delta_2 < \Delta_3$;
- 10 (here, $\Delta_1(\%) = [(n_1 - n_c)/n_c] \times 100$, $\Delta_2(\%) = [(n_2 - n_c)/n_c] \times 100$, $\Delta_3(\%) = [(n_3 - n_c)/n_c] \times 100$, n_1 : a reflective index of the first core region, n_2 : a reflective index of the second core region, n_3 : a reflective index of the third core region, n_c : a reflective index of the clad region)
- (f) wherein the optical fiber uses wavelength region from 1460 to 1625 nm, and
- 15 has a dispersion value of 0.1 to 3.0 ps/nm-km at 1460 nm, 3.0 to 5.5 ps/nm-km at 1550 nm, and 4.5 to 8.0 ps/nm-km at 1625 nm;
- (g) wherein a dispersion slope at 1550 nm is 0.023 to 0.05 ps/nm-km²;
- (h) wherein an effective section area at 1550 nm is 35 to 50 μm^2 .

20 19. The single-mode optical fiber according to claim 18,
 wherein the optical fiber has an effective section area of 35 to 50 μm^2 at 1460 nm.

20. The single-mode optical fiber according to claim 18,
wherein the optical fiber has a cutoff wavelength of 1450 nm or below.

5 21. The single-mode optical fiber according to claim 18,
wherein a zero-dispersion wavelength is located at 1460 nm or below.

22. The single-mode optical fiber according to claim 18,
wherein the optical fiber has a dispersion value of 0.3 to 2.4 ps/nm-km at 1460
nm.

10 23. The single-mode optical fiber according to claim 18,
wherein the optical fiber has a dispersion value of 3.2 to 5.2 ps/nm-km at 1550
nm.

15 24. The single-mode optical fiber according to claim 18,
wherein the optical fiber has a dispersion value of 4.8 to 7.7 ps/nm-km at 1625
nm.

20 25. The single-mode optical fiber according to claim 18,
wherein a bending loss is 0.5dB or less at 1625 nm under the condition of a
bending radius of 30mm, 100turns.

26. An optical transmission line in which the single-mode optical fiber

defined in any of claims 1 to 18 is adopted.

27. An optical transmission system in which the optical transmission line defined in claim 26 is adopted in at least a part of an optical transmission path.