NEWS DATA ANALYSIS

Guide

Dr. Dipti P. Rana

Assistant Professor SVNIT. Surat

B-TECH IV Group 07

Kalp Panwala
U17CO085

Keshav Goyal
U17CO104

Raj Shah

Viren Kathiriya

Motivation

- Fake News is false information presented as news.
- Nowadays, Fake News is intentionally written to mislead readers.
- Fake News spreaded over media ecology (from newsprint to radio/television), and recently online news and social media.

The rapid spread of fake news has the potential for calamitous impacts on individual and society.

Applications

- Can stop fake news on social media.
- Detecting dishonest behaviour of retailers.
- Cannot manipulate elections by spreading fake news.

Problem Statement

The Prevalence of fake news has attracted increasing attention from researchers to politicians, our goal is to Build a solution that analyse news data i.e. fake news detection using granularity concept.

Objectives

- Detecting phony behaviour of news articles which can make an impact and maintain the social trust.
- Divide the mined attributes into respective defined granularity i.e. Coarse Grained(Topic, Sentence, Document level structures) and Fine Grained(Word Level Features).
- Apply Machine Learning techniques to analyse the result.

Literature Review

Authors	Paper Titles	Models Used	Features
Ning Cao et al. (2020)	A deceptive review detection framework	LDA-BP + TextCNN + SVM	Fine-grained and coarse-grained features
Ethan Fast, Bin Binbin Chen, Michael Bernstein(2016)	Empath: Understanding Topic Signals in Large-Scale Text	Empath,LIWC	Text classification, neural network training, 200 in-built features
Jae-Seung Shim et al (2019)	Document Summarization Technique on the Fake News Detection Model	PCA, SVM, Regression, Decision Tree	Lexrank to get 3 line summary.
Jing Li et. al (2020)	A Survey on Deep Learning for Named Entity Recognition	CNN, LSTM, encoder, Tag Decoder.	Traditional NER, Deep Learning NER with neural nets.

Literature Review

Authors	Paper Titles	Models Used	Features
Ritter et.al (2011)	Named Entity Recognition in Tweets:An Experimental Study	Named Entity Recognition.	Postagging, Shallow Parsers,LDA
Savelieva et.al (2020)	Abstractive Summarization of Spoken and Written Instructions with BERT	Text summarization	NLP,BERT,Neural Network.
Castelo et al. (2019).	A Topic-Agnostic Approach For Identifying Fake News Pages.	SVM, KNN, Random Forest	Morphological Features, Psychological Features, Readability Features, Web-Markup Features.
Kuai Xu et al. (2020)	Detecting Fake News Over Online Social Media via Domain Reputations and Content Understanding	LDA Topic Modelling	TF-IDF

Granularity Concepts

Fine Grained

- The smallest possible meaningful content in a topic model can be a word which defines Fine Grained features.
- Eg. Violence is a attribute with seed words hurt, break, bleed, broken, etc.

Coarse Grained

Explicitly defined as overall data in the text which has a tendency to split enough.

Eg. War is indeed painful. This sentence indirectly specifies
Violence.

Proposed Framework

- Dataset Selection
- Dataset Preprocessing
- Granularity
- Train
- Predict
- Test

Solution Flow [Fine Grained]

- The features of the dataset are title, text, subject, date, category.
- Lowercasing,
- Lemmatization,
- Stop-word removal.
- Missing ValueReplacement.
- Text Reduction.
- Text Normalization.

- Tool for analyzing text across lexical categories.
- Classifies into around
 200 attributes.
- sentiment score(VADER)

Train models on various dataset discussed further.

Solution Flow [Coarse Grained]

The features of the dataset are title, text, subject, date, category.

- Lowercasing,
- Lemmatization,
- Stop-word removal.
- Missing Value Replacement.
- * Text Reduction.
- Text Normalization.

- Classifies sentences into topics.
- Each topic consists of pre-defined combination of words.

Train models on various dataset discussed further.

Solution Flow [Fusion]

- The features of the dataset are title, text, subject, date, category.
- Lowercasing,
- Lemmatization,
- Stop-word removal, etc.

- Text Summarization with around 20 topics (CG) and Empath with around 200 features (FG).
- The features from fine grain and coarse grained are mixed.

Train models on various dataset discussed further.

Algorithm Overview

Fine Grained

- Empath Analytics
- VADER score

Coarse Grained

- LDA Topic Modeling
- Text Summarization
- Named EntityRecognition
- Doc2Vec

<u>Fusion</u>

- Text Summarization(number of topics = [20])
 - + Empath Analytics

Dataset Analysis

- The Experimentation was carried out on three standard publicly available datasets.
 - Kaggle News Dataset
 - Covid19FN
 - Politifact

Dataset	Real	Fake	Total
Kaggle	4000	4000	8000
Covid19FN	1230	1591	2821
Politifact	374	514	888

Explainability

- Technique used to extract which features in the data are most important, how much does each feature effect the prediction.
- A single column of the validation data is randomly shuffled, leaving the target and all other columns in place, and the accuracy of predictions is then checked.
- A column on which model relied heavily for predictions is shuffled then accuracy suffers quite a lot.

Explainability

```
Weight
                     Feature
0.0893 \pm 0.0052
                     ['think', 'want', 'right', 'tweet', 'america']
0.0228 \pm 0.0003
                     ['post', 'facebook', 'covid', 'claim', 'social']
                     messaging
0.0225 \pm 0.0042
0.0170 \pm 0.0025
                     speaking
0.0137 \pm 0.0025
                     ['government', 'administration', 'unite', 'fund', 'company']
0.0054 \pm 0.0028
                     ['north', 'korea', 'trade', 'south', 'unite']
0.0045 \pm 0.0011
                     ['clinton', 'hillary', 'campaign', 'election', 'vote']
0.0039 \pm 0.0006
                     ['senate', 'vote', 'republican', 'republicans', 'democrats']
                     swearing terms
0.0025 \pm 0.0012
0.0020 \pm 0.0016
                     aivina
0.0020 \pm 0.0007
                     ['obama', 'barack', 'administration', 'years', 'claim']
0.0019 \pm 0.0013
                     ridicule
0.0018 \pm 0.0008
                     worship
0.0017 \pm 0.0014
                     leader
0.0016 \pm 0.0010
                     ['video', 'police', 'claim', 'share', 'man']
0.0016 \pm 0.0009
                     morning
0.0015 \pm 0.0006
                     eating
0.0015 \pm 0.0007
                     hate
0.0014 \pm 0.0015
                     healing
0.0014 \pm 0.0009
                     clothing
```

Analysis Of Results [Fine Grained]

Analysis Of Results [Coarse Grained - TS]


```
{0: ['women', 'know', 'right', 'don', 'going'],
1: ['senate', 'republicans', 'vote', 'committee', 'senator'],
2: ['russia', 'russian', 'intelligence', 'moscow', 'putin'],
3: ['state', 'department', 'government', 'budget', 'federal'],
4: ['tax', 'percent', 'reform', 'taxes', 'plan'],
5: ['obamacare', 'insurance', 'healthcare', 'health', 'care'],
6: ['realdonaldtrump', '2017', 'twitter', 'pic', 'com'],
7: ['comey', 'fbi', 'investigation', 'director', 'james'],
8: ['court', 'supreme', 'judge', 'case', 'justice'],
9: ['ban', 'order', 'muslim', 'countries', 'united'],
10: ['clinton', 'hillary', 'election', 'campaign', 'voters'],
11: ['obama', 'barack', 'administration', 'years', 'rules'],
12: ['trade', 'china', 'united', 'agreement', 'deal'],
13: ['korea', 'north', 'nuclear', 'sanctions', 'china'],
14: ['news', 'fox', 'media', 'fake', 'press']}
```

Analysis Of Results [Coarse Grained - NER]

NER False Words

NER True Words

Web Flowchart

Simulation & Results

Model Type			Kaggl	e Dataset	Covid Dataset		PolitiFact		
Algorithm ML-Models			Accuracy	F1-Score	Accuracy	F1-Score	Accuracy	F1-Score	
	Doc2Vec		Random Forest	0.5733	0.5159	0.7905	0.7906	0.7078	0.6804
			Logistic Regression	0.9160	0.9154	0.8047	0.8051	0.8127	0.8137
			Gradient Boosting	0.7926	0.7865	0.8059	0.8006	0.7790	0.7805
			KNN-3	0.8903	0.89	0.9004	0.91	0.7865	0.79
		Topic = 10	Random Forest	0.9056	0.91	0.9218	0.92	0.8464	0.85
			Gradient Boosting	0.905	0.90	0.9194	0.92	0.8464	0.85
			KNN-3	0.893	0.891	0.911	0.91	0.8089	0.81
		Topic = 15	Random Forest	0.920	0.921	0.923	0.92	0.8576	0.86
			Gradient Boosting	0.923	0.922	0.928	0.93	0.8614	0.86
			KNN-3	0.8833	0.88	0.9102	0.91	0.8352	0.84
Coarse	Text	Topic = 20	Random Forest	0.9203	0.92	0.9445	0.94	0.8726	0.87
	Summarization		Gradient Boosting	0.913	0.91	0.9397	0.94	0.8576	0.86
		Topic = 25	KNN-3	0.8563	0.86	0.8902	0.89	0.8089	0.81
			Random Forest	0.9193	0.92	0.9327	0.93	0.8614	0.86
			Gradient Boosting	0.9203	0.92	0.9327	0.93	0.8389	0.84
		Topic = 30	KNN-3	0.8593	0.86	0.8795	0.88	0.7827	0.78
			Random Forest	0.9176	0.92	0.9397	0.94	0.8127	0.81
			Gradient Boosting	0.9167	0.92	0.9421	0.94	0.8614	0.86
			Gradient Boosting	0.890	0.892	0.936	0.94	0.8775	0.88
	N	ER	Random Forest	0.931	0.930	0.952	0.95	0.9149	0.91
			Linear SVM	0.949	0.951	0.947	0.95	0.8673	0.87
			LDA	0.901	0.901	0.889	0.89	0.8277	0.83
	Empath Analytics		Random Forest	0.908	0.910	0.923	0.92	0.8127	0.81
Fine	Fine		Gradient Boosting	0.928	0.931	0.921	0.92	0.8726	0.87
Fine		LDA	0.9073	0.91	0.888	0.89	0.8127	0.81	
Empath + VADER		Random Forest	0.9086	0.91	0.925	0.93	0.8314	0.83	
			Gradient Boosting	0.9326	0.93	0.921	0.92	0.8764	0.88
			LDA	0.884	0.880	0.891	0.89	0.7902	0.79
Fusion	Text Summariz	zation + Empath	Random Forest	0.895	0.900	0.926	0.93	0.8389	0.84
			Gradient Boosting	0.896	0.900	0.926	0.93	0.8352	0.84

Simulations & Results

Model Type			All Merged		
	Algorithm ML-Mod	Accuracy	F1-Score		
		KNN-3		0.87	
Coarse	se Text Summarization	Random Forest	0.8842	0.88	
	Topic = 20	Gradient Boosting	0.8751	0.88	
		LDA	0.8340	0.83	
Fine	Empath Analytics	Random Forest	0.8699	0.87	
		Gradient Boosting	0.8732	0.87	
		LDA	0.8881	0.89	
Fusion	Text Summarization + Empath	Random Forest	0.8988	0.9	
		Gradient Boosting	<u>0.9056</u>	<u>0.91</u>	

Merged Dataset Analysis

Baseline Comparison

- We have list down the efficiency and approach we executed to attain the same.
- Fake and Real News Dataset(Kaggle) and Liar Dataset are used for the basis of comparison with referenced papers.

Dataset	Author	Author's Approach	Paper's Accuracy	Our Approach	Our Accuracy
Fake and Real News Dataset(Kaggle)	Ahmed, H. et. al.	n-gram features and the LSVM algorithm	87.0	Empath + Text Summarization fusion	<u>89.6</u>
Liar Dataset	Wang, W. Y. et. al.	SVM, Bi-LSTMs	26.1	Text Summarization + SVM	<u>55.6</u>

Conclusion

- Data Preprocessing was a core part along with feature extraction.
- We conclude granularity concepts and its implementations, ie. Fine Grain and Coarse Grain on textual news.
- Comprehensive experiments were designed and implemented based on three existing standard datasets.
- Link to Report :- Click here

Journal Name	Journal of Ambient Intelligence and Humanized Computing
Journal Link	https://www.springer.com/journal/12652/updates/18861560
Status	Under Review

Accomplished Future Works

References

- [1] B. Markines, C. Cattuto, F. Menczer, "Social spam detection", in Proceedings of the 5th International Workshop on Adversarial Information Retrieval on the Web (ACM, 2009), pp. 41-48.
- [2] Ning Cao, Shujuan Ji, Dickson K.W. Chiu, Mingxiang He, Xiaohong Sun, "A deceptive review detection framework: Combination of coarse and fine-grained features, Expert Systems with Applications", Volume 156, 2020, 113465, ISSN 0957-4174.
- [3] Qazvinian, Vahed, Emily Rosengren, Dragomir R. Radev and Q. Mei. Rumor has it: Identifying Misinformation in Microblogs., in Proceedings of the Conference on Empirical Methods in Natural Language Processing (Association for Computational Linguistics, 2011), pp. 1589-1599
- [4] Gupta, Aditi Lamba, Hemank Kumaraguru, Ponnurangam. (2013). "1.00 per RT Boston Marathon PrayForBoston: Analyzing fake content on Twitter" eCrime Researchers Summit, eCrime. 1-12. 10.1109/eCRS.2013.6805772.
- [5] Ahmed, Hadeer Saad, Sherif. (2017). "Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques." 127-138.10.1007/978-3-319-69155-8/9.
- [6] Conroy, Nadia Rubin, Victoria Chen, Yimin. (2015). "Automatic Deception Detection: Methods for Finding Fake News." Conference: ASIST 2015: St. Louis, MO, USA.
- [7] Chhabra S, Aggarwal A, Benvenuto F, Kumaraguru P (2011) "Phi.sh/social: the phishing landscape through short urls", In: Annual collaboration, electronic messaging, anti-abuse and spam conference (CEAS), Perth, pp. 92-101.
- [8] "Empath:Understanding Topic Signals in Large-Scale Text", ACM Classification Keywords H.5.2. Information Interfaces and Presentation: Group and Organization Interfaces.
- [9] Prasanna, P. Rao, Dr. (2018), "Text classification using artificial neural networks", International Journal of Engineering and Technology(UAE). 7. 603-606. 10.14419/ijet.v7i1.110785.
- [10] Chaitanya Naik, Vallari Kothari, Zankhana Rana, Document Classification using Neural Networks Based on Words, In: International Journal of Advanced Research in Computer Science, 2015.
- [11] Snyder, B., and Barzilay, R. 2007. "Multiple aspect ranking using the good grief algorithm" In Proceedings of NAACL HLT, pp. 300-307.
- [12] Schapire R.E. (2003) "The Boosting Approach to Machine Learning: An Overview" In:Denison D.D., Hansen M.H., Holmes C.C., Mallick B., Yu B. (eds) Nonlinear Estimation and Classification. Lecture Notes in Statistics, vol 171. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21579-29
- [13] Whitehead, Matthew Yaeger, Larry. (2008). "Sentiment Mining Using Ensemble Classification Models", Innovations and Advances in Computer Sciences and Engineering. 509-514. 10.1007/978-90-481-3658-289.
- [14] James W Pennebaker, Martha E Francis, and Roger J Booth. "Linguistic inquiry and word count: LIWC" 2001. In Mahway: Lawrence Erlbaum Associates 71 2001.
- [15] Visa, Sofia Ramsay, Brian Ralescu, Anca Knaap, Esther. (2011), "Confusion Matrix-based Feature Selection" CEUR Workshop Proceedings. 710.120-127.
- [16] Oehmichen, Axel Hua, Kevin Lopez, Julio Molina-Solana, Miguel Gómez-Romero, Juan Guo, Yike. (2019). "Not All Lies Are Equal. A Study Into the Engineering of Political Misinformation in the 2016 US Presidential Election." IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2938389.
- [17] Bhaya, Wesam, "Review of Data Preprocessing Techniques in Data Mining" Journal of Engineering and Applied Sciences. 12. 4102-4107. 2017.

References

- [18] Tijare, Poonam, "A Study on Fake News Detection Using Naïve Bayes, SVM, Neural Networks and LSTM": Journal of Adv Research in Dynamical Control Systems, Vol. 11, 06-Special Issue, 2019.
- [19] Mckinney, Wes. (2011). "pandas: a Foundational Python Library for Data Analysis and Statistics. Python High Performance Science Computer", http://pandas.sourceforge.net.
- [20] Drif, Ahlem Ferhat Hamida, Zineb Giordano, Silvia. "Fake News Detection Method Based on Text-Features", proceedings of The Ninth International Conference on Advances in Information Mining and Management, Aug-2019.
- [21] Zhu M. (2011) "Research on Data Preprocessing in Exam Analysis System" In: Ma M.(eds) Communication Systems and Information Technology. Lecture Notes in Electrical Engineering, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21762-343
- [22] K. Xu, F. Wang, H. Wang and B. Yang, "Detecting fake news over online social media via domain reputations and content understanding," in Tsinghua Science and Technology, vol.25, no. 1, pp. 20-27, Feb. 2020, doi: 10.26599/TST.2018.9010139.
- [23] Castelo, Sonia Almeida, Thais Elghafari, Anas Santos, Aécio Nakamura, Eduardo Freire, Juliana. (2019). A Topic-Agnostic Approach For Identifying Fake News Pages.
- [24] Allahyari, Mehdi Pouriyeh, Seyedamin Assefi, Mehdi Safaei, Saeid Trippe, Elizabeth Gutierrez, Juan Kochut, Krys. (2017). Text Summarization Techniques: A Brief Survey. International Journal of Advanced Computer Science and Applications. 8. 397-405. 10.14569/IJACSA.2017.081052.
- [25] Jae-Seung Shim, Ha-Ram Won, Hyunchul Ahn. (2019). A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model. Journal of Intelligence and Information Systems, Vol -25 No-3, 2019.
- [26] Ii, Jing Sun, Aixin Han, Ray Li, Chenliang. (2020). A Survey on Deep Learning for Named Entity Recognition, IEEE Transactions on Knowledge and Data Engineering. PP.1-1. 10.1109/TKDE.2020.2981314.
- [27] Alan Ritter, Sam Clark, Mausam, Oren Etzioni, Named Entity Recognition in Tweets: An Experimental Study, in the Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing Pp 1524-1534, July-2011.
- [28] Savelieva, Alexandra Au-Yeung, Bryan Ramani, Vasanth. (2020). "Abstractive Summarization of Spoken and Written Instructions with BERT."
- [29] Bíró I., Szabó J. (2009) "Latent Dirichlet Allocation for Automatic Document Categorization." In: Buntine W., Grobelnik M., Mladeni D., Shawe-Taylor J. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2009. Lecture Notes in Computer Science, vol 5782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04174-728.
- [30] Fuller, C. M., Biros, D. P., Wilson, R. L. (2009). "Decision support for determining veracity via linguistic-based cues. Decision Support Systems", 46(3), 695-703.
- [31] Sriram, S. (2020). "An Evaluation of Text Representation Techniques for Fake News Detection Using: TF-IDF, Word Embeddings, Sentence Embeddings with Linear Support Vector Machine".
- [32] Le, Q., Mikolov, T. (2014, June). "Distributed representations of sentences and documents" In International conference on machine learning (pp. 1188-1196). PMLR.
- [33] Fake and Real News Dataset(Kaggle) Ahmed, H., Traore, I., Saad, S. (2018). Detecting opinion spam and fake news using text classification. Security and Privacy, 1(1), e9.
- [34] Wang, W. Y. (2017). " liar, liar pants on fire": A new benchmark dataset for fake news detection. arXiv preprint arXiv:1705.00648.
- [35] Ahmed H, Traore I, Saad S. (2017) "Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques. In: Traore I., Woungang I., Awad A. (eds) Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments. ISDDC 2017. Lecture Notes in Computer Science, vol 10618. Springer, Cham (pp. 127-138).

Thanks!