1

2

3

1

2

3

4

1

2

3

4

1

2

1.1.

WHAT IS CLAIMED IS:

1	 A method comprising: 			
2	fabricating a first plurality of FPGA integrated circuits with a first secret			
3	key embedded by way of a first mask set; and			
4	fabricating a second plurality of FPGA integrated circuits with a second			
5	secret key embedded by way of a second mask set.			
1	2. The method of claim 1 wherein a first secure bitstream will			
2	configure properly user-configurable logic of the first plurality of FPGA integrated			
3	circuits, but not the second plurality of FPGA integrated circuits.			

- 3. The method of claim 1 further comprising:
- loading an unencrypted bitstream into one of the first plurality of FPGA integrated circuits to generate a secure bitstream using the first secret key.
- 4. The method of claim 1 wherein the first plurality of FPGA integrated circuits with the first secret key are assigned to a first geographic area and the second plurality of FPGA integrated circuits with the second secret key are assigned to a second geographic area.
- 5. The method of claim 1 wherein the first plurality of FPGA integrated circuits with the first secret key are fabricated in a first time period and the second plurality of FPGA integrated circuits with the second secret key are fabricated in a second time period, different from the first time period.
- 1 6. The method of claim 1 wherein only one mask differs between the
 2 first and second mask sets
- 1 7. The method of claim 1 wherein the first plurality of FPGA
 2 integrated circuits with the first secret key are assigned exclusively to a first customer.
 - The method of claim 5 wherein the first time period is about the same duration as the second time period.
- The method of claim 5 wherein the first time period is a different duration from the second time period.

1		10.	The method of claim 6 wherein the one mask is a contact mask.	
1		11.	The method of claim 1 wherein there are random differences	
2	between artwo	rk of th	ne first and second plurality of FPGA integrated circuits in addition	
3	to the different	embe	dded secret keys.	
,		1.2		
1		12.	The method of claim 1 wherein the first and second secret keys are	
2	presented on w duration.	ires of	respective plurality of FPGA integrated circuits for only a limited	
3	duration.			
1		13.	The method of claim 1 wherein the first secret key is embedded by	
2	setting an initia	al state	of a selection of memory cells in a device configuration memory of	
3	the FPGA integrated circuit.			
1		14.	The method of claim 1 wherein the first secret key is embedded by	
2				
3	changes to a relatively large block of logic in the first plurality of FPGA integrated circuits and its value extracted using a CRC algorithm.			
3	circuits and its	value	extracted using a CRC argorithm.	
1		15.	The method of claim 13 further comprising:	
2		extract	ting the first secret key by using a CRC algorithm to compute a	
3	checksum of th	e initia	al state of the device configuration memory.	
1		16.	The method of claim 1 further comprising:	
2		loadin	g an unencrypted bitstream into one of the first plurality of FPGA	
3			generate a secure bitstream based on the first secret key and an on-	
4	chip generated		•	
1		17.	The method of claim 1 further comprising:	
2			g an unencrypted bitstream into one of the first plurality of FPGA	
3	_		generate a secure bitstream based on the first secret key and an on-	
4			n number, wherein the secure bitstream includes a message	
5	authentication	code.		
1		18.	A method comprising:	
2		embed	ding a first secret key within the artwork of an FPGA integrated	
3	circuit;			

4	storing a user-defined second secret key within an encrypted FPGA			
5	bitstream stored in an external nonvolatile memory accessible by the FPGA;			
5	decrypting the user-defined second secret key using the first secret key;			
7	and			
3	setting up a secure network link between the FPGA and a server using the			
9	user-defined second secret key.			
	aser defined second societies.			
1	19. The method of claim 18 further comprising:			
2	downloading an FPGA bitstream using the secure network link;			
3	encrypting the downloaded FPGA bitstream using the first secret key; and			
4	storing the encrypted downloaded bitstream in the external memory.			
1	20. The method of claim 18 wherein the secure network link is created			
2	using a standard internet security protocol.			
1	21. The method of claim 18 further comprising:			
2	configuring the FPGA using the encrypted downloaded bitstream stored in			
3	the external memory.			
	•			
1	22. A method comprising:			
2	storing a first secret key on an FPGA chip;			
3	causing the FPGA to calculate a message authentication code (MAC)			
4	corresponding to a user design; and			
5	storing the message authentication code with bitstream information in a			
6	nonvolatile memory.			
1	23. The method of claim 22 further comprising:			
2	storing copyright messages with the bitstream information;			
3	detecting unauthorized alterations to the bitstream using the message			
4	authentication code; and			
5	preventing bitstreams which have been altered from being used to			
6	configure an FPGA.			
1	24. The method of claim 22 further comprising:			
2	recording the message authentication code along with corresponding			
3	identification information for a product containing the FPGA; and			

examining the message authentication code stored in the nonvolatile
memory of a product containing a pirated FPGA design, which will enable determining
the identity of the customer to whom the pirated FPGA was originally supplied using a
record of MACs and corresponding product identification