### 혼자 공부하며 함께 만드는

혼공 용어 노트

# 목차 가나다순

| 경로 path                                     | 24 | 보조기억장치 secondary storage          | 06 |
|---------------------------------------------|----|-----------------------------------|----|
| 고급 언어 high-level programming language       | 08 | 부모 프로세스 parent process            | 18 |
| 고립형 입출력 isolated I/O                        | 16 | 비순차적 명령어 처리 기법                    |    |
| 공유 자원 shared resource                       | 20 | OoOE; Out-of-order execution      | 11 |
| 교착 상태 deadlock                              | 21 | <b>∐</b> <u></u> bit              | 07 |
| 교착상태 검출 후 회복 deadlock detection & recovery  | 21 | 비휘발성 저장장치 non-volatile memory     | 12 |
| 교착 상태 예방 deadlock prevention                | 21 | 산술연산장치 ALU; Arithmetic Logic Unit | 09 |
| 교착 상태 회피 deadlock avoidance                 | 21 | 색인 할당 indexed allocation          | 24 |
| 논리 주소 logical address                       | 13 | 선점형 스케줄링 preemptive scheduling    | 19 |
| 대기큐 waiting queue                           | 19 | 세마포 semaphore                     | 20 |
| 데이터 data                                    | 06 | 섹터 sector                         | 14 |
| 데이터 접근 시간 data access time                  | 15 | 슈퍼스칼라 superscalar                 | 11 |
| 동기화 synchronization                         | 20 | 스래싱 thrashing                     | 23 |
| 디렉터리 directory                              | 24 | 스레드 thread                        | 11 |
| 레지스터 register                               | 09 | 스와핑 swapping                      | 21 |
| 멀티스레드 multithread                           | 19 | 스택 주소 지정 방식 stack addressing mode | 10 |
| 멀티스레드 프로세서 multithread processor            | 11 | 시스템 버스 system bus                 | 07 |
| 멀티프로세스 multi-process                        | 19 | 시스템 호출 system call                | 17 |
| 메모리 관리 장치 MMU; Memory Management Unit       | 13 | 실린더 cylinder                      | 14 |
| 메모리 맵 입출력 memory-mapped I/O                 | 16 | 십육진법 hexadecimal                  | 07 |
| 메인보드 main board                             | 07 | 연결 할당 linked allocation           | 24 |
| 명령어 instruction                             | 06 | 연속 할당 contiguous allocation       | 24 |
| 명령어 사이클 instruction cycle                   | 10 | 예외 exception                      | 10 |
| 명령어 집합 구조 ISA; Instruction Set Architecture | 12 | 외부 단편화 external fragmentation     | 22 |
| 명령어 파이프라이닝 instruction pipelining           | 11 | 요구 페이징 demand paging              | 23 |
| 모니터 monitor                                 | 20 | 우선순위 priority                     | 19 |
| 문맥 교환 context switching                     | 18 | 운영체제 operating system             | 17 |
| 문자 집합 character set                         | 07 | 유닉스 파일 시스템 UNIX file system       | 24 |
| 물리 주소 physical address                      | 13 | 이중 모드 dual mode                   | 17 |
| 뮤텍스 락 mutex lock                            | 20 | 이진법 binary                        | 07 |
| 변위 주소 지정 방식 displacement addressing mode    | 10 | 인터럽트 interrupt                    | 10 |
| 변환 색인 버퍼 TLB; Translation Lookaside Buffer  | 23 | 인터럽트 기반 입출력 interrupt-driven I/O  | 16 |
|                                             |    |                                   |    |

| 인터프리터 언어 interpreter language          | 08 | 프레임 할당 frame allocation               | 23 |
|----------------------------------------|----|---------------------------------------|----|
| 임계 구역 critical section                 | 20 | 프로그램 입출력 programmed I/O               | 16 |
| 입출력 버스 input/output bus                | 16 | 프로세스 process                          | 17 |
| 입출력장치 I/O(input/output) device         | 06 | 프로세스 상태 process state                 | 18 |
| 장치 드라이버 device driver                  | 15 | 프로세스 제어 블록 PCB; Process Control Block | 18 |
| 장치 컨트롤러 device controller              | 15 | 플래터 platter                           | 14 |
| 저장 장치 계층 구조 memory hierarchy           | 13 | 하드웨어 인터럽트 hardware interrupt          | 10 |
| 제어장치 Control Unit                      | 09 | 한계 레지스터 limit register                | 13 |
| 주기억장치 main memory                      | 06 | 휘발성 저장장치 volatile memory              | 12 |
| 주소 지정 방식 addressing mode               | 09 |                                       |    |
| 준비 큐 ready queue                       | 19 |                                       |    |
| 중앙처리장치 CPU; Central Processing Unit    | 06 |                                       |    |
| 참조 지역성의 원리 locality of reference       | 14 |                                       |    |
| 최악 적합 worst fit                        | 22 |                                       |    |
| 최적 적합 best fit                         | 22 |                                       |    |
| 최초 적합 first fit                        | 22 |                                       |    |
| 캐시 메모리 cache memory                    | 14 |                                       |    |
| 커널 kernel                              | 17 |                                       |    |
| 컴파일 언어 compile language                | 08 |                                       |    |
| 코어 core                                | 11 |                                       |    |
| 클럭 속도 clock speed                      | 11 |                                       |    |
| 트랙 track                               | 14 |                                       |    |
| 파일 file                                | 23 |                                       |    |
| 파일 속성 file attribute                   | 24 |                                       |    |
| 파티셔닝 partitioning                      | 24 |                                       |    |
| 페이지 교체 알고리즘 page replacement algorithm | 23 |                                       |    |
| 페이지 테이블 page table                     | 22 |                                       |    |
| 페이지 테이블 베이스 레지스터                       |    |                                       |    |
| PTBR; Page Table Base Register         | 22 |                                       |    |
| 페이지 폴트 page fault                      | 23 |                                       |    |
| 페이징 paging                             | 22 |                                       |    |
| 포매팅 formatting                         | 24 |                                       |    |

# 목차 ABC순

| addressing mode 주소 지정 방식               | 09 | directory 디렉터리                        | 24 |
|----------------------------------------|----|---------------------------------------|----|
| ALU; Arithmetic Logic Unit 산술연산장치      | 09 | displacement addressing mode          |    |
| best fit 최적 적합                         | 22 | 변위 주소 지정 방식                           | 10 |
| binary 이진법                             | 07 | DRAM; Dynamic Random Access Memory    | 12 |
| bit 비트                                 | 07 | dual mode 이중 모드                       | 17 |
| cache memory 캐시 메모리                    | 14 | exception ଜାସ                         | 10 |
| character set 문자 집합                    | 07 | exec system call exec 시스템 호출          | 18 |
| CISC; Complex Instruction Set Computer | 12 | external fragmentation 외부 단편화         | 22 |
| clock speed 클럭 속도                      | 11 | FAT file system FAT 파일 시스템            | 24 |
| compile language 컴파일 언어                | 08 | file 파일                               | 23 |
| context switching 문맥 교환                | 18 | file attribute 파일 속성                  | 24 |
| contiguous allocation 연속 할당            | 24 | first fit 최초 적합                       | 22 |
| Control Unit 제어장치                      | 09 | fork system call fork 시스템 호출          | 18 |
| core 코어                                | 11 | formatting 포매팅                        | 24 |
| CPU scheduling CPU 스케줄링                | 19 | frame allocation 프레임 할당               | 23 |
| CPU scheduling algorithm CPU 스케줄링 알고리즘 | 19 | hardware interrupt 하드웨어 인터럽트          | 1( |
| CPU; Central Processing Unit 중앙처리장치    | 06 | hexadecimal 십육진법                      | 0  |
| critical section 임계구역                  | 20 | high-level programming language 고급 언어 | 08 |
| cylinder 실린더                           | 14 | I/O(input/output) device 입출력장치        | 0  |
| data 데이터                               | 06 | indexed allocation 색인 할당              | 24 |
| data access time 데이터 접근 시간             | 15 | input/output bus 입출력 버스               | 16 |
| DDR SDRAM; Double Data Rate SDRAM      | 13 | instruction 명령어                       | 0  |
| deadlock 교착 상태                         | 21 | instruction cycle 명령어 사이클             | 10 |
| deadlock avoidance 교착 상태 회피            | 21 | instruction pipelining 명령어 파이프라이닝     | 11 |
| deadlock detection & recovery          |    | interpreter language 인터프리터 언어         | 08 |
| 교착 상태 검출 후 회복                          | 21 | interrupt 인터럽트                        | 10 |
| deadlock prevention 교착 상태 예방           | 21 | interrupt-driven I/O 인터럽트 기반 입출력      | 16 |
| demand paging 요구 페이징                   | 23 | ISA; Instruction Set Architecture     |    |
| device controller 장치 컨트롤러              | 15 | 명령어 집합 구조                             | 12 |
| device driver 장치 드라이버                  | 15 | isolated I/O 고립형 입출력                  | 16 |
| Direct Memory Access I/O DMA 입출력       | 16 | kernel 커널                             | 17 |
|                                        |    |                                       |    |

| limit register 한계 레지스터                 | 13 | process 프로세스                               | 17   |
|----------------------------------------|----|--------------------------------------------|------|
| linked allocation 연결 할당                | 24 | process state 프로세스 상태                      | 18   |
| locality of reference 참조 지역성의 원리       | 14 | programmed I/O 프로그램 입출력                    | 16   |
| logical address 논리 주소                  | 13 | PTBR; Page Table Base Register             |      |
| main board 메인보드                        | 07 | 페이지 테이블 베이스 레지스터                           | 22   |
| main memory 주기억장치                      | 06 | RAID; Redundant Array of Independent Disks | : 15 |
| memory-mapped I/O 메모리 맵 입출력            | 16 | ready queue 준비 큐                           | 19   |
| memory hierarchy 저장 장치 계층 구조           | 13 | register 레지스터                              | 09   |
| MMU; Memory Management Unit            |    | RISC; Reduced Instruction Set Computer     | 12   |
| 메모리 관리 장치                              | 13 | SDRAM; Synchronous DRAM                    | 13   |
| monitor 모니터                            | 20 | secondary storage 보조기억장치                   | 06   |
| multi-process 멀티프로세스                   | 19 | sector 섹터                                  | 14   |
| multithread 멀티스레드                      | 19 | semaphore 세미포                              | 20   |
| multithread processor 멀티스레드 프로세서       | 11 | shared resource 공유자원                       | 20   |
| mutex lock 뮤텍스 락                       | 20 | SLC; Single Level Cell                     | 15   |
| non-volatile memory 비휘발성 저장장치          | 12 | SRAM; Static Random Access Memory          | 12   |
| OoOE; Out-of-order execution           |    | stack addressing mode 스택 주소 지정 방식          | 10   |
| 비순차적 명령어 처리 기법                         | 11 | superscalar 슈퍼스칼라                          | 11   |
| operating system 운영체제                  | 17 | swapping এপ্র                              | 21   |
| page fault 페이지 폴트                      | 23 | synchronization 동기화                        | 20   |
| page replacement algorithm 페이지 교체 알고리즘 | 23 | system bus 시스템 버스                          | 07   |
| page table 페이지 테이블                     | 22 | system call 시스템 호출                         | 17   |
| paging 페이징                             | 22 | thrashing 스래싱                              | 23   |
| parent process 부모프로세스                  | 18 | thread 스레드                                 | 11   |
| partitioning 파티셔닝                      | 24 | TLB; Translation Lookaside Buffer          |      |
| path 경로                                | 24 | 변환 색인 버퍼                                   | 23   |
| PCB; Process Control Block 프로세스 제어 블록  | 18 | track 트랙                                   | 14   |
| physical address 물리 주소                 | 13 | UNIX file system 유닉스 파일 시스템                | 24   |
| platter 플래터                            | 14 | volatile memory 휘발성 저장장치                   | 12   |
| preemptive scheduling 선점형 스케줄링         | 19 | waiting queue 대기 큐                         | 19   |
| priority 우선순위                          | 19 | worst fit 최악 적합                            | 22   |
|                                        |    |                                            |      |

|          | 01<br>장 컴퓨터 구조 시작하기                                |           |
|----------|----------------------------------------------------|-----------|
| □데이터     | data                                               | [01장 37쪽] |
|          | 컴퓨터와 주고받는 숫자, 문자, 이미지, 동영상과 같은 정보나 컴퓨터에 계          | 어장된 정보    |
|          |                                                    |           |
| □ 명령어    | instruction                                        | [01장 37쪽] |
|          | 데이터를 움직이고 컴퓨터를 실질적으로 동작시키는 정보                      |           |
|          |                                                    |           |
| □ 주기억장치  | main memory (참고용어) 메모리                             | [01장 40쪽] |
|          | 실행되는 프로그램의 명령어와 데이터를 저장하는 부품                       |           |
|          | 크게 RAM(Random Access Memory)과 ROM(Read Only Memory | ory) 두 가  |
|          | 지가 있으며, 메모리라는 용어는 보통 RAM을 지칭                       |           |
|          |                                                    |           |
| □ 중앙처리장치 | CPU; Central Processing Unit                       | [01장 41쪽] |
|          | 메모리에 저장된 명령어를 읽어 들이고, 읽어 들인 명령어를 해석하고              | , 실행하는    |
|          | 부품                                                 |           |
|          | CPU 내부 구성 요소 중 가장 중요한 세 가지                         |           |
|          | 산술면산장치, 레지스터, 제어장치                                 |           |
| □ 보조기억장치 | secondary storage                                  | [01장 45쪽] |
|          | 전원이 꺼져도 저장된 내용을 기억할 수 있는 장치                        |           |
|          | 하드 디스크 드라이브, SSD, USB 메모리, DVD, CD-ROM 등           |           |
|          |                                                    |           |
| □ 입출력장치  | I/O(input/output) device                           | [01장 46쪽] |
|          | 컴퓨터 외부에 연결되어 컴퓨터 내부와 정보를 교환할 수 있는 장치               |           |
|          | 마이크, 스피커, 프린터, 마우스, 키보드 등                          |           |
|          |                                                    |           |

| □ 메인보드   | main board                              | [01장 47쪽]                                    |
|----------|-----------------------------------------|----------------------------------------------|
|          | 여러 컴퓨터 부품을 부착할 수 있는 부품                  |                                              |
|          | 마더보드(mother board)라고도 부름                |                                              |
| □ 시스템 버스 | system bus                              | [01장 47쪽]                                    |
|          | 컴퓨터 네 가지 핵심 부품(CPU, 메모리, 보조기억장          | 치, 입출력장치)을 연결하는                              |
|          | 가장 주요한[버스]                              |                                              |
|          | 주소 버스, 데이터 버스, 제어 버스                    |                                              |
|          |                                         |                                              |
|          |                                         |                                              |
|          | U 스장 데이터 CPU가 하                         |                                              |
|          |                                         | 번에 처리할 수 있는 데이터<br>가 처리할 수 있는 비트 수에          |
| •        |                                         | 크기는 달라질 수 있음                                 |
| 미비트      | bit 참고용에 워드(word)                       | [02장 55쪽]                                    |
|          | 0과 1을 나타내는 가장 작은 정보 단위. 여덟 개의 비트        | 트를 묶어 바이트라고 함                                |
|          | lutol트(lbyte) = 2                       | 8⊌l트(8bīt)                                   |
|          |                                         | 1,000바이트(1,000byte)<br>= 1,000킬로바이트(1,000kB) |
|          | 17174461트(IGB) =                        | 1,000메가바이트(1,000MB)                          |
|          |                                         | = 1,0007(7h#や1三(1,000GB)                     |
| □ 이진법    | binary (참고용어) 이진수                       | [02장 57쪽]                                    |
|          | 1을 넘어가는 시점에 자리 올림하여 0과 1만으로 모든          | - 숫자를 표현하는 방법                                |
|          | 이진수. 십진수 8을 이진수로                        | ¥<br>표현하면 1000('일덩덩덩'으로 읽는                   |
| □ 십육진법   | hexadecimal                             | [02장 60쪽]                                    |
|          | 15를 넘어가는 시점에 자리 올림하여 수를 표현하는 병          |                                              |
|          | 십육진법 체계에서는 10, 11, 12, 13, 14, 15를 A, B | C. D. E. F로 표기                               |
|          |                                         | , 0, 2, 2, 1                                 |
|          |                                         | , 5, 2, 2, 1                                 |
| □ 문자 집합  | character set                           | [02장 67쪽]                                    |

- 문자 인코딩: 문자 집합에 속한 문자를 컴퓨터가 이해할 수 있는 0과 1로 변 환하는 것 • 문자 디코딩: 인코딩의 반대. 0과 1로 이루어진 문자 코드를 사람이 이해할 수 있는 문자로 변환하는 것 □ 고급 언어 high-level programming language [03장 79쪽] 프로그램을 만들 때 컴퓨터가 이해하는 언어가 아닌 사람이 이해하고 작성하기 쉽 C, C++, Java, Python 등 게 만들어진 언어 ↔ 저급 언어(low–level programming language) 기계어, 어센블리어
  - □ 컴파일 언어

### compile language

[03장 84쪽]

컴파일러에 의해 소스 코드 전체가 저급 언어로 변환되어 실행되는 고급 언어

□ 인터프리터 언어

#### interpreter language

[03장 84쪽]

인터프리터에 의해 소스 코드를 한 줄씩 저급 언어로 변환하여 실행하는 고급 언어

### 그것이 알고싶다 컴파일러 vs 인터프리터

| 인터프리터                                  | 컴파일러                            |
|----------------------------------------|---------------------------------|
| 컴퓨터와 대화하듯 한 줄씩 실행                      | 소스 코드 전체를 저급 언어로 변환하여<br>실행     |
| N번째 줄에 문법 오류가 있어도 N−1번<br>째까지는 올바르게 수행 | 코드 내에 오류가 하나라도 있으면 컴파<br>일이 불가능 |
| 대표 언어 Python                           | 대표 언어 C                         |
|                                        |                                 |

| □ 명령어      | instruction [03장 91쪽]                                                            |
|------------|----------------------------------------------------------------------------------|
|            | 연산 코드와 오퍼랜드로 구성                                                                  |
| 덩덩어가 수히    | ♥ 보고                                         |
|            |                                                                                  |
|            | 연산 코드 오퍼랜드                                                                       |
|            |                                                                                  |
| □ 주소 지정 방식 | addressing mode [03장 95쪽]                                                        |
|            | 오퍼랜드 필드에 데이터가 저장된 위치를 명시할 때 연산에 사용할 데이터 위치를                                      |
|            | 찾는 방법                                                                            |
|            |                                                                                  |
|            |                                                                                  |
|            | $\cap$ 1                                                                         |
|            | 나 CPU의 작동 원리                                                                     |
|            |                                                                                  |
| [라디사的스/시 □ | ALLI: Avithmentia Logia Unit                                                     |
| □ 산술연산장치   | ALU; Arithmetic Logic Unit [04장 105쪽] CPU 내부에서 레지스터와 제어장치로부터 받아들인 피연산자와 제어 신호로 산 |
|            | CFU 대구에서 대시그리와 제약경시도구나 원약을 한 최산전자와 제약 전호도 한<br>                                  |
|            | 2 UU, UU 0 9 0 U UU2 1 89 U 0 9                                                  |
| □ 제어장치     | Control Unit [04장 107쪽]                                                          |
|            | 제어 신호를 내보내고 명령어를 해석하는 부품                                                         |
|            | • 제어장치가 받아들이는 정보: 클럭 신호, 명령어, 플래그 값, 제어 신호 등                                     |
|            |                                                                                  |
| □ 레지스터     | register [04장 113쪽]                                                              |
|            | 프로그램 속 명령어와 데이터가 실행 전후로 저장되는 CPU 내부의 작은 임시 저                                     |
|            | 키. 키.하                                                                           |
|            | 장 장치                                                                             |
|            | 상 장시  • 레지스터의 종류: 프로그램 카운터, 명령어 레지스터, 메모리 주소 레지스터,                               |



|               | → CPU 성능 향상 기법                          |            |
|---------------|-----------------------------------------|------------|
|               |                                         |            |
| □ 클럭 속도       | clock speed (참고용어) 클럭                   | [05장 145쪽] |
|               | 1초에 클릭이 몇 번 반복되는지를 나타내는 단위. 헤르츠(Hz)로 측정 |            |
|               | ㅎ 클럭 속도가 높은 CPU가 일반적으로 빠르게 동작           |            |
|               | 모든 부품을 일사불관하게<br>있게 하는 시간 단위            |            |
| □코어           | core                                    | [05장 147쪽] |
|               | CPU 내에서 명령어를 실행하는 부품 → 멀티코어 프로세서란 여러    | 개의 코어를     |
|               | 포함하고 있는 CPU                             |            |
|               |                                         |            |
| □ 스레드         | thread                                  | [05장 148쪽] |
|               | 실행 흐름의 단위로, 하드웨어적 스레드와 소프트웨어적 스레드가 있다   | ł.<br>     |
| □ 멀티스레드       | multithread processor                   | [05장 149쪽] |
| 프로세서          | 멀티스레드 CPU라고도 하며, 하나의 코어로 여러 명령어를 동시     |            |
|               | СРИ                                     |            |
|               |                                         |            |
| □ 명령어         | instruction pipelining                  | [05장 158쪽] |
| 파이프라이닝        | 동시에 여러 개의 명령어를 겹쳐 실행하는 기법               |            |
|               |                                         |            |
| □ 슈퍼스칼라       | superscalar                             | [05장 160쪽] |
|               | 여러 개의 명령어 파이프라인을 두는 기법                  |            |
|               |                                         |            |
| □ 비순차적<br>명령어 | OoOE; Out-of-order execution            | [05장 161쪽] |
| 처리 기법         | 파이프라인의 중단을 방지하기 위해 명령어를 순차적으로 처리하지 읺    | 는 기법       |

| □ 명령어    | ISA; Instruction Set Architecture  | [05장 167쪽] |
|----------|------------------------------------|------------|
| 집합 구조    | CPU의 언어이자 하드웨어가 소프트웨어를 어떻게 이해할지에 다 | H한 약속      |
|          |                                    |            |
| □ CISC   | Complex Instruction Set Computer   | [5장 170쪽]  |
|          | CISC는 복잡하고 다양한 수의 가변 길이 명령어 집합을 활용 |            |
|          | 파이프라이니에 불리                         |            |
|          |                                    | []         |
| RISC     | Reduced Instruction Set Computer   | [5장 172쪽]  |
|          | RISC는 단순하고 적은 수의 고정 길이 명령어 집합을 활용  |            |
|          | ઁ 파이프라이닝에 유리                       |            |
|          |                                    |            |
|          |                                    |            |
|          |                                    |            |
|          | U 0 장 메모리와 캐시 메모리                  |            |
|          |                                    |            |
| □휘발성     | volatile memory                    | [6장 179쪽]  |
| 저장장치     | 전원을 끄면 저장된 내용이 사라지는 저장 장치          |            |
|          |                                    |            |
| □ 비휘발성   | non-volatile memory                | [6장 179쪽]  |
| 저장장치     | 전원이 꺼져도 저장된 내용이 유지되는 저장 장치         |            |
|          |                                    |            |
| □ DRAM   | Dynamic Random Access Memory       | [6장 181쪽]  |
|          | 시간이 지나면 저장된 데이터가 점차 사라지는 RAM       |            |
|          | 주기억강치로 사용                          |            |
| □SRAM    | Static Random Access Memory        | [6장 182쪽]  |
| U Shaivi |                                    | [VÖ 102号]  |
|          | 시간이 지나도 저장된 데이터가 사라지지 않는 RAM       |            |
|          | 캐시 메모리로 사용                         |            |

| □ SDRAM   | Synchronous DRAM                   | [6장 182쪽] |
|-----------|------------------------------------|-----------|
|           | 클릭과 동기화된 DRAM                      |           |
|           |                                    |           |
| □ DDR     | Double Data Rate SDRAM             | [6장 183쪽] |
| SDRAM     | SDR SDRAM에 비해 대역폭이 두 배 넓은 SDRAM    |           |
|           | 한 물럭에 한 번 데이터를 주고받는 RAM            |           |
| □ 물리 주소   | physical address                   | [6장 187쪽] |
|           | 메모리 하드웨어상의 주소                      |           |
|           |                                    |           |
| □ 논리 주소   | logical address                    | [6장 187쪽] |
|           | CPU와 실행 중인 프로그램이 사용하는 주소           |           |
|           |                                    |           |
| □ 메모리     | MMU; Memory Management Unit        | [6장 189쪽] |
| 관리 장치     | 논리 주소를 물리 주소로 변환하는 장치              |           |
|           |                                    |           |
| □ 한계 레지스터 | limit register                     | [6장 191쪽] |
|           | 실행 중인 프로그램의 논리 주소의 최대 크기를 저장       |           |
|           | for. 叫 <b>坚</b> 礼 보호               |           |
| □ 저장 장치   | memory hierarchy                   | [6장 197쪽] |
| 계층 구조     | 각기 다른 용량과 성능의 저장 장치들을 계층화하여 표현한 구조 |           |
|           | # 전 비산 보고 기억장기 보고 기억장기 스킬 글 저렴     |           |

캐시 정중률이 높으면 CPU의 메모리 ♂ 접근 횟수를 훨일 수 있다.

| □ 캐시 메모리  | cache memory 참고용에 캐시 적중률                | [6장 198쪽] |
|-----------|-----------------------------------------|-----------|
|           | CPU의 연산 속도와 메모리 접근 속도의 차이를 줄이기 위한 저장 장치 | ]         |
|           | 에모리                                     |           |
| □ 참조 지역성의 | locality of reference                   | [6장 202쪽] |
| 원리        | CPU가 메모리에 접근할 때의 주된 경향을 바탕으로 만들어진 원리    |           |
|           | • CPU가 최근에 접근했던 메모리 공간에 다시 접근하려는 경향     |           |
|           | • CPU가 접근한 메모리 공간 근처를 접근하려는 경향          |           |
|           | 장보조기억장치                                 |           |
| □ 플래터     | platter                                 | [7장 209쪽] |
|           | 하드 디스크에서 데이터가 저장되는 원판                   |           |
| □트랙       | track                                   | [7장 210쪽] |
|           | 플래터를 여러 동심원으로 나누었을 때 그중 하나의 원           |           |
|           |                                         |           |
| □ 섹터      | sector                                  | [7장 210쪽] |
|           | 트랙을 여러 조각으로 나눈 한 조각. 하드 디스크의 가장 작은 전송 단 | 위         |
|           |                                         |           |
| □ 실린더     | cylinder                                | [7장 210쪽] |
|           | 여러 겹의 플래터상에서 같은 트랙이 위치한 곳을 모아 연결        |           |

|           | <b>臺</b> 對时 <b>트</b> 對                           | I EI             |
|-----------|--------------------------------------------------|------------------|
|           |                                                  | - ·<br>통 형태의 논리저 |
| □데이터      | data access time                                 | [7장 211쪽]        |
| 접근 시간     | 탐색 시간, 회전 지연, 전송 시간으로 구분                         |                  |
|           | • 탐색 시간: 헤드를 접근하고자 하는 데이터가 저장된 트랙까지 ㅇ            | 동하는 시간           |
|           | • 회전 지연: 헤드가 있는 곳으로 플래터를 회전시키는 시간                |                  |
|           | • 전송 시간: 하드 디스크와 컴퓨터 간에 데이터를 전송하는 시간             |                  |
|           |                                                  |                  |
| □SLC      | Single Level Cell (참고용어) MLC, TLC                | [7장 215쪽]        |
|           | 한 셀에 한 비트를 저장할 수 있는 플래시 메모리의 종류                  |                  |
|           |                                                  | [mm] occurs      |
| □ RAID    | Redundant Array of Independent Disks             | [7장 221쪽]        |
|           | 데이터의 안전성 혹은 성능을 위해 여러 하드 디스크나 SSD를 하나의<br>용하는 기술 | 생시처럼 사           |
|           | 중이는 기물                                           |                  |
|           |                                                  |                  |
|           | 00<br>장 입출력장치                                    |                  |
|           |                                                  |                  |
| □ 장치 컨트롤러 | device controller                                | [8장 234쪽]        |
|           | 입출력장치와 CPU 사이의 통신을 중개하는 장치                       |                  |
| □ 장치 드라이버 | device driver                                    | [8장 236쪽]        |
|           | 장치 컨트롤러가 컴퓨터 내부와 정보를 주고받을 수 있게 하는 프로그            | .램               |

단위

| □ 프로그램    | programmed I/O                                                           |                     | [8장 241쪽]         |
|-----------|--------------------------------------------------------------------------|---------------------|-------------------|
| 입출력       | 프로그램 속 명령어로 입출력 작업을 하는 방식                                                |                     |                   |
|           |                                                                          |                     |                   |
| □ 메모리 맵   | memory-mapped I/O [8장 242쪽]<br>메모리에 접근하기 위한 주소 공간과 입출력장치에 접근하기 위한 주소 공간을 |                     |                   |
| 입출력       |                                                                          |                     |                   |
|           | 하나의 주소 공간으로 간주하는 입출                                                      | 력 방식                |                   |
|           |                                                                          |                     |                   |
| □ 고립형 입출력 | isolated I/O                                                             |                     | [8장 243쪽]         |
|           | 메모리에 접근하기 위한 주소 공간되                                                      | <b>사 입출력장치에 접</b> 급 | 근하기 위한 주소 공간을     |
|           | 별도의 주소 공간으로 분리하는 입출                                                      | 력 방식                |                   |
|           | 주소 공간                                                                    | 2                   | 우소 공간             |
|           | 메모리를 위한                                                                  |                     |                   |
|           | 주소 광산                                                                    | 메모리를 위한             | <b>입출력장</b> 치를 위한 |
|           | V5                                                                       | 주소 공간               | 주소 공간             |
|           | 입물력강치를 위한<br>주소 공간                                                       |                     |                   |
|           | 미네오기 아시 하는 조건                                                            |                     |                   |
|           | 메도리 땐 이물컥 고집형 이물컥                                                        |                     |                   |
|           |                                                                          |                     |                   |
| □ 인터럽트 기반 | Interrupt-Driven I/O                                                     |                     | [8장 245쪽]         |
| 입출력       | 인터럽트로써 입출력을 수행하는 방법                                                      | ]                   |                   |
|           |                                                                          |                     |                   |
| □ DMA 입출력 | Direct Memory Access I/O                                                 |                     | [8장 249쪽]         |
|           | CPU를 거치지 않고 메모리와 입출력장치 간에 데이터를 주고받는 입출력 '                                |                     |                   |
|           |                                                                          |                     |                   |
| □ 입출력 버스  | input/output bus                                                         |                     | [8장 252쪽]         |
|           | 입출력장치와 컴퓨터 내부를 연결 짓는 통로<br>입출력 작업의 시스템 버스 사용 횟수를 줄인다.                    |                     |                   |
|           |                                                                          |                     |                   |
|           |                                                                          |                     |                   |
|           |                                                                          |                     |                   |

|          | 00<br>장 운영체제 시작하기                     |            |
|----------|---------------------------------------|------------|
|          |                                       |            |
| □ 운영체제   | operating system                      | [9장 261쪽]  |
|          | 실행할 프로그램에 필요한 자원을 할당하고, 프로그램이 올바르게 실  | ]행되도록 돕    |
|          | 는 특별한 프로그램                            |            |
|          |                                       |            |
| □ 커널     | kernel                                | [9장 269쪽]  |
|          | 운영체제의 핵심 기능을 담당하는 영역                  |            |
|          |                                       |            |
| □ 이중 모드  | dual mode                             | [9장 272쪽]  |
|          | CPU가 명령어를 실행하는 모드를 커널 모드와 사용자 모드로 구분하 | 는 방식       |
|          | • 사용자 모드: 운영체제 서비스를 제공받을 수 없는 실행 모드   |            |
|          | • 커널 모드: 운영체제 서비스를 제공받을 수 있는 실행 모드    |            |
|          |                                       |            |
| □ 시스템 호출 | system call                           | [9장 273쪽]  |
|          | 운영체제의 서비스를 제공받기 위해 커널 모드로 전환하기 위한 요청  |            |
|          |                                       |            |
|          |                                       |            |
|          | 10                                    |            |
|          | 장 프로세스와 스레드                           |            |
|          |                                       |            |
| □ 프로세스   | process                               | [10장 284쪽] |
|          | 실행 중인 프로그램                            | [100 2044] |
|          | E00E                                  |            |
|          |                                       |            |

| □ 프로세스                                          | PCB; Process Control Block                                                     |            |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------|------------|--|--|
| 제어 블록                                           | 운영체제가 여러 프로세스를 관리하기 위한 자료 구조<br>프로세스 ID(PID), 사용한 레지스터 값, 프로세스 상태, CPU 스케줄링 정보 |            |  |  |
|                                                 |                                                                                |            |  |  |
|                                                 | 모리 정보 등을 포함                                                                    |            |  |  |
|                                                 | 하나의 프로세스 수행을                                                                   |            |  |  |
| □ 문맥 교환                                         | → 재개하기 위해 기억해야 할 정보<br>context switching (참고용이 문맥)                             | [10장 290쪽] |  |  |
|                                                 | 프로세스 간에 실행을 전환하는 것                                                             |            |  |  |
|                                                 |                                                                                |            |  |  |
| □ 프로세스 상태                                       | process state                                                                  | [10장 297쪽] |  |  |
|                                                 | 대표적으로 생성, 준비, 실행, 대기, 종료 상태가 있다.                                               |            |  |  |
|                                                 | <b>444</b> 李直                                                                  |            |  |  |
|                                                 | 타이머                                                                            |            |  |  |
|                                                 | 인터뉩트                                                                           | •          |  |  |
|                                                 | 준비 디스페치                                                                        |            |  |  |
|                                                 | 이물 <b>적 완</b> 료                                                                |            |  |  |
|                                                 | <b>□</b> □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                   |            |  |  |
|                                                 | → HP 172 /1142 H=1 /4/1                                                        |            |  |  |
| □ 부모 프로세스                                       | parent process 참고용에 지식 프로세스 부모 프로세스로부터 생성                                      | [10장 298쪽] |  |  |
|                                                 | 프로세스를 생성한 프로세스                                                                 |            |  |  |
|                                                 | 그것이 알고싶다 프로세스 계층 구조                                                            |            |  |  |
|                                                 | 많은 운영체제는 프로세스가 프로세스를 낳는 계층적인 구조로 프로세스들을 관리한다.                                  |            |  |  |
|                                                 |                                                                                |            |  |  |
| □ fork                                          | fork system call                                                               | [10장 301쪽] |  |  |
| <b>시스템 호출</b> 자신의 복제본을 자식 프로세스로 생성하는 시스템 호출     |                                                                                |            |  |  |
|                                                 |                                                                                |            |  |  |
| □ exec                                          | exec system call                                                               | [10장 301쪽] |  |  |
| <b>시스템 호출</b> 자신의 메모리 공간을 다른 프로그램으로 교체하는 시스템 호출 |                                                                                |            |  |  |
|                                                 |                                                                                |            |  |  |
|                                                 |                                                                                |            |  |  |

| □ 멀티프로세스     | multi-process 기본적으로 자원 공유하지 않음           | [10장 309쪽] |
|--------------|------------------------------------------|------------|
|              | 여러 프로세스를 동시에 실행하는 것                      |            |
|              |                                          |            |
| □ 멀티스레드      | multithread                              | [10장 309쪽] |
|              | 여러 스레드로 프로세스를 동시에 실행하는 것<br>기본적으로 자원 공유함 |            |
|              | → 기본적으로 자원 <del>설</del> 유함               |            |
|              |                                          |            |
|              | 11<br>장 CPU 스케줄링                         |            |
| 3            |                                          |            |
| □ CPU 스케줄링   | CPU scheduling                           | [11장 316쪽] |
|              | 공정하고 합리적으로 CPU 자원을 배분하는 방법               |            |
|              |                                          |            |
| □ 우선순위       | priority                                 | [11장 317쪽] |
|              | CPU를 할당받을 수 있는 우선순위                      |            |
|              | 운영체제는 프로세스별로 부여된 우선순위를 보고 CPU 스케줄링을      | · 수행<br>   |
|              |                                          | [44.7]     |
| □ 준비 큐       | ready queue  CPU 할당을 기다리는 프로세스들을 위한 큐    | [11장 321쪽] |
|              | GFU 필정될 기억되는 프로세프ョョ 귀한 개                 |            |
| □ 대기 큐       | waiting queue                            | [11장 321쪽] |
|              | 입출력장치를 기다리는 프로세스들을 위한 큐                  |            |
|              | → 베닷을 수 없는                               |            |
| □ 선점형        | preemptive scheduling ↔ 비선점형 스케줄링 [11장 3 |            |
| 스케줄링         | 프로세스가 이용 중인 자원을 빼앗을 수 있는 스케줄링 방식         |            |
|              |                                          |            |
| □ CPU        | CPU scheduling algorithm                 | [11장 328쪽] |
| 스케줄링<br>알고리즘 | 선입 선처리, 최단 작업 우선, 라운드 로빈, 최소 잔여 시간 우선,   | 우선순위, 다단   |
| E16          | 계 큐, 다단계 피드백 큐 스케줄링 알고리즘 등               |            |

### □ 동기화 synchronization [12장 341쪽] 사호 배제를 위한 동기화 프로세스들 사이의 수행 시기를 맞추는 것 특정 자원에 접근할 때 하나의 프로세스만 접근하게 하거나 프로세스를 올바른 순 서대로 실행하게 하는 것 실행 수서 제어를 위하 동기화 □ 공유 자원 shared resource [12장 345쪽] 여러 프로세스가 공동으로 사용하는 자원 전역 변수가 될 수도, 파일이 될 수도, 입출력장치, 보조기억장치가 될 수도 있다. □ 임계 구역 critical section [12장 346쪽] 공유 자원에 접근하는 코드 중 동시에 실행하면 문제가 발생하는 코드 영역 레이스 컨디션 □ 뮤텍스 락 mutex lock [12장 351쪽] 임계 구역을 잠금으로써 프로세스 간의 상호 배제를 이루는 동기화 도구 □ 세마포 semaphore [12장 353쪽] 공유 자원이 여러 개 있는 임계 구역 문제도 해결할 수 있는 동기화 도구 □모니터 monitor [12장 358쪽] 세마포에 비해 사용자가 사용하기 편리한 동기화 도구로 조건 변수를 사용

|            | 19                                         |                      |
|------------|--------------------------------------------|----------------------|
|            | <b>→</b> 장 교착 상태                           |                      |
| =          |                                            |                      |
| □ 교착 상태    | deadlock                                   | [13장 366쪽]           |
|            | 일어나지 않을 사건을 기다리며 무한히 대기하는 현상               |                      |
|            | ▲ 자원 할당 그래프를 이용해 교차 /                      | 상태를 표현               |
| □ 교착 상태 예방 | deadlock prevention                        | [13장 377쪽]           |
|            | 교착 상태의 발생 조건 중 하나를 충족하지 못하게 하는 방법          |                      |
|            | 상호 배제, 전유와 대기, 비선전, 원령 대기                  |                      |
|            |                                            |                      |
| □ 교착 상태 회피 | deadlock avoidance                         | [13장 380쪽]           |
|            | 안전 상태를 유지할 수 있는 경우에만 자원을 할당하는 방법           |                      |
|            |                                            |                      |
| □ 교착 상태    | deadlock detection & recovery              | [13장 384쪽]           |
| 검출 후 회복    | 교착 상태 발생 여부를 주기적으로 검사하고, 발생 시 그때그때 회복하     | 하는 방식                |
|            | 선전을 통한 회복과 프로세스 강제 종료를 통한 회복이 있다           |                      |
|            |                                            |                      |
|            | 1/                                         |                      |
|            | <b>4장</b> 가상 메모리                           |                      |
| <u> </u>   |                                            |                      |
| A OITI     |                                            | [447]                |
| □ 스와핑      | swapping                                   | [14장 391쪽]           |
|            | 메모리에서 사용되지 않는 일부 프로세스를 보조기억장치로 내보내고(스왑 아웃) |                      |
|            | 실행할 프로세스를 메모리로 들여보내는(스왑 인) 메모리 관리 기법       |                      |
| □ 치굿 저하    | first fit                                  | [4AZ- 202 <u>Z</u> ] |
| □ 최초 적합    |                                            | [14장 393쪽]           |
|            | 최초로 발견한 적재 가능한 빈 공간에 프로세스를 배치하는 방식         |                      |

| □ 최적 적합          | best fit [14장 394쪽]                            |  |  |
|------------------|------------------------------------------------|--|--|
|                  | 프로세스가 적재될 수 있는 가장 작은 공간에 프로세스를 배치하는 방식         |  |  |
|                  |                                                |  |  |
| □ 최악 적합          | worst fit [14장 395쪽]                           |  |  |
|                  | 프로세스가 적재될 수 있는 가장 큰 공간에 프로세스를 배치하는 방식          |  |  |
|                  | 보는 서울 보고   |  |  |
| □ 외부 단편화         | external fragmentation [14장 397쪽]              |  |  |
|                  | 프로세스를 할당하기 어려울 만큼 작은 메모리 공간으로 인해 메모리가 낭비되는     |  |  |
|                  | 현상                                             |  |  |
|                  |                                                |  |  |
| □페이징             | paging [14장 403쪽]                              |  |  |
|                  | 물리 주소 공간을 프레임 단위로 자르고 프로세스의 논리 주소 공간을 페이지 단위   |  |  |
|                  | 로 자른 뒤 각 페이지를 프레임에 할당하는 가상 메모리 관리 기법           |  |  |
|                  |                                                |  |  |
| □ 페이지 테이블        | page table [14장 405쪽]                          |  |  |
|                  | 페이지 번호와 프레임 번호뿐만 아니라 유효 비트, 보호 비트, 접근 비트, 수정 비 |  |  |
|                  | 트 등이 있다.                                       |  |  |
|                  |                                                |  |  |
| □ 페이지 테이블<br>베이스 | PTBR; Page Table Base Register [14장 407쪽]      |  |  |
| 레지스터             | 각 프로세스의 페이지 테이블이 적재된 주소를 가리킨다.                 |  |  |
|                  | TIDIT                                          |  |  |
| □ 변환 색인 버퍼       | TLB; Translation Lookaside Buffer [14장 409쪽]   |  |  |
|                  | 페이지 테이블의 캐시 메모리 역할을 수행(페이지 테이블의 일부를 저장)        |  |  |
|                  |                                                |  |  |

| □ 페이지 폴트 | page fault                                 |                                           | [14장 413쪽]    |
|----------|--------------------------------------------|-------------------------------------------|---------------|
|          | 메모리에 적재되지 않은 페이기                           | 지를 참조할 경우 발생하는 인터럽트                       |               |
|          | ,                                          | S TLB에 원하는 페이지가 있으면 TLB 히트, &             | 1으면 TLB 미스    |
| □ 요구 페이징 | demand paging                              |                                           | [14장 425쪽]    |
|          | 페이지가 필요할 때에만 메모리                           | 리에 적재하는 기법                                |               |
|          | 9 0                                        | 호비트가 0인 페이지                               |               |
| □ 페이지 교체 | page replacement algorith                  | m                                         | [14장 426쪽]    |
| 알고리즘     | 사용되지 않은 페이지를 보조기                           | 기억장치로 내보내고 적재될 페이지를 미                     | 베모리에 적재       |
|          | 하는 알고리즘 → FIFO, 최적                         | , LRU 페이지 교체 알고리즘 등                       |               |
|          |                                            |                                           |               |
| □ 스래싱    | thrashing                                  |                                           | [14장 431쪽]    |
|          | 지나치게 빈번한 페이지 교체되                           | 로 인해 CPU 이용률이 낮아지는 문제                     |               |
|          |                                            | 균등 할당, 비례 할당, 장업 집합 모델                    | 벨 기바 I3·ll이 5 |
| □ 프레임 할당 | frame allocation                           |                                           |               |
| 10 20    | frame anocation                            | 페이지 폴트율 기반 프레잎 할당 등                       | [14장 433쪽]    |
|          | 프로세스에게 적절한 프레임을                            | <u> </u>                                  | [14장 433쪽]    |
|          | 프로세스에게 적절한 프레임을                            | <u> </u>                                  | [14장 433쪽]    |
| □파일      | 프로세스에게 적절한 프레임을                            | · 배분하는 (방법)                               | [14장 433쪽]    |
|          | 프로세스에게 적절한 프레임을                            | 날 비분하는 방법 )<br>일 시스템                      |               |
|          | 프로세스에게 적절한 프레임을 대응 전략 프레임을 대응 전략 프라일       | 날 비분하는 방법 )<br>일 시스템                      |               |
| □ 파일     | 프로세스에게 적절한 프레임을 다음 다음 다음 기가 있고 관련 있는 정보를 모 | 살 배분하는 방법 )<br>일 <b>시스템</b><br>(은 논리적인 단위 | [15장 441쪽]    |
| □ 파일     | 프로세스에게 적절한 프레임을 다음 기가 있고 관련 있는 정보를 모       | 살 배분하는 방법 )<br>일 <b>시스템</b><br>(은 논리적인 단위 | [15장 441쪽]    |
| □ 파일     | 프로세스에게 적절한 프레임을 다음 기가 있고 관련 있는 정보를 모       | 보 보 보 보 보 보 보 보 보 보 보 보 보 보 보 보 보 보 보     | [15장 441쪽]    |

| □ 경로         | path                  | 후트 디렉터리부터 시작하는 경로      | [15장 444쪽]          |
|--------------|-----------------------|------------------------|---------------------|
|              | 디렉터리를 이용해 파일의 9       | 위치를 특정 짓는 정보. 크게 절대 경토 | 라와 상대 경로가           |
|              | 있다.                   | 상대 경로는 현재 디렉터리         | ♥<br>부터 시작하는 겨로입니다. |
|              |                       | •                      |                     |
| □ 파티셔닝       | partitioning          |                        | [15장 453쪽]          |
|              | 하드 디스크나 SSD처럼 용       | 량이 큰 저장 장치를 하나 이상의 논리  | 기적인 여러 단위           |
|              | 로 구획하는 작업             | 파티션(partitio           | on)                 |
|              |                       |                        |                     |
| □ 포매팅        | formatting            |                        | [15장 454쪽]          |
|              | 파일 시스템을 결정하는 작업       |                        |                     |
|              |                       |                        |                     |
| □ 연속 할당      | contiguous allocation | 외부 단편화 야기              | [15장 457쪽]          |
|              | 파일을 보조기억장치에 연속        | 적인 블록으로 할당하는 방식        |                     |
|              |                       |                        |                     |
| □ 연결 할당      | linked allocation     |                        | [15장 458쪽]          |
|              | 각 블록 일부에 다음 블록의       | 주소를 저장하여 블록들을 연결 리스트   | 트로 관리               |
|              |                       |                        |                     |
| □ 색인 할당      | indexed allocation    |                        | [15장 460쪽]          |
|              | 파일의 모든 블록 주소를 색       | 인 블록에 모아 관리하는 방식       |                     |
|              |                       |                        |                     |
| □ <b>FAT</b> | FAT file system       |                        | [15장 463쪽]          |
| 파일 시스템       | FAT를 이용하는 연결 할당       | 기반의 파일 시스템             |                     |
|              |                       |                        |                     |
| □유닉스         | UNIX file system      |                        | [15장 467쪽]          |
| 파일 시스템       | i–node를 이용하는 색인 할     | 당 기반의 파일 시스템           |                     |
|              |                       |                        |                     |
|              |                       |                        |                     |
|              |                       |                        |                     |
|              |                       |                        |                     |