K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam

JULY 2021

Max. Marks: 50

Duration: 1 hr 45 min + (15 min for uploading)

Semester: IV Class: SY

Name of the course: ITVC Course Code: 2UCC301

Branch: Comp

Instructions:

1. All questions are compulsory.

2. Draw neat diagrams.

3. Assume suitable data if necessary.

3. Assu		uitable data if necessary.	Max	
	Questions			
Q:1 (A)	Choose One correct Option for the following Questions			
	i)	$L\{\cos t \cos 2t \cos 3t\}$ at s=1 is	2	
		(a) 1.29 (b) 0.64 (c) 0.32 (d) 0.16		
	ii)	Parseval's identity for half range sine series for the function $f(x)$ in $(0, c)$ is	2	
		(a) $\int_0^{2c} [f(x)]^2 dx = c \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right]$		
		(b) $\int_0^c [f(x)]^2 dx = \frac{c}{2} \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2) \right]$		
		(c) $\int_0^{2c} [f(x)]^2 dx = \frac{c}{2} \left[\sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right]$		
		(d) $\int_0^c [f(x)]^2 dx = \frac{c^2}{2} \left[\sum_{n=1}^\infty (b_n^2) \right]$		
	iii)	Region of convergence for Z-transform of discrete unit step function is	2	
		(a) $ z > 1$ (b) $ z < 1$		
		(c) $ z \neq 0$ (d) entire z-plane		
	iv)	If $\bar{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ then $\nabla \log(r)$ is	2	
		(a) $\frac{\bar{r}}{r}$ (b) $\frac{\bar{r}}{r^2}$ (c) $f'(u) \frac{\bar{r}}{r^3}$ (d) $-\frac{\bar{r}}{r^3}$		
	v)	Which of the following expressions represents Stokes's Theorem-	2	
		(a) $\int_{C} P dx + Q dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$		
		(b) $\oint \vec{F} \cdot \vec{dr} = \iint_{S} \text{curl } \vec{F} \cdot \hat{n} ds$		
		(c) $\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} ds = \iiint_{V} \operatorname{div} \vec{F} dV$		
		(d) $\iint_{S} \vec{F} \cdot \hat{n} ds = \iiint_{V} div \vec{F} dV$		
Q: 1(B)	Attempt any FIVE of the following.			
	i)	Find $L^{-1}\left(\frac{e^{-3s}}{(s+4)^3}\right)$	2	
	ii)	If $x \sin x = -1 - \frac{1}{2} \cos x + \pi \sin x + \sum_{n=2}^{\infty} \frac{2 \cos nx}{n^2 - 1}$	2	
		For which value of x we get the following series $\sum_{n=2}^{\infty} \frac{1}{n^2-1} = \frac{3}{4}$.		

	iii)	If $Z[\sin \alpha k] = \frac{z \sin \alpha}{z^2 - 2z \cos \alpha + 1}$, $k \ge 0$ then find Z-transform of $c^k \sin \alpha k$,	2
		$k \ge 0$	
	iv)	Find curl of $\overline{F} = x^2 z i - 2y^3 z^3 j + xy^2 z^2 k$ at (1,-1,1)	2
	v)	If $\vec{A} = (3x^2 + 6y)\hat{\imath} - 14yz\hat{\jmath} + 20xz^2\hat{k}$, evaluate $\oint \vec{A} \cdot \vec{dr}$ from (0,0,0) to (1,1,1) along the curve $x = t$, $y = t^2$, $z = t^3$	2
	vi)	For the Fourier Series of the function $f(x) = \begin{cases} x & \text{if } 0 < x < 2 \\ 2 & \text{if } -2 < x < 0 \end{cases}$ defined in (-2,2) then find value of a_4 .	2
	vii)	If $L\{f(t)\} = \frac{\sqrt{3}/2}{s^2 + (\frac{3}{4})}$ find $L\{e^{t/2}f(t)\}$	2
Q:2	A	Using Laplace Transforms, Solve the following Differential equation- $(D^2 + D)y = t^2 + 2t, \ y(0) = 4, y'(0) = -2$	6
		Using Laplace Transforms, evaluate $\int_0^\infty (1 + 2t - 3t^2) H(t - 2) dt$	4
	В	OR	
		Find Inverse Transform of $log(s^2 + 4)$	4
Q:3	A	Find the Fourier expansion of $f(x) = 2x - x^2$ in the interval (0,3) and whose period is 3.	6
		Find Z-transform of $\left\{ \left(\frac{1}{2}\right)^{ k } \right\}$ and its Region of convergence.	4
	В	OR	
		Find Inverse Z-Transform of $\frac{1}{(z-5)^3}$, $ z > 5$.	4
Q:4	A	Find the values of a, b, c if the directional derivative of	6
		$\phi = axy^2 + byz + cz^2x^3$ at (1,2,-1) has magnitude 64 in the direction parallel to the z –axis.	
		Using Green's Theorem, find the work done in moving a particle once round the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ in the plane $z = 0$ in the force field given by	4
		$\vec{F} = (3x - 2y)\hat{i} + (2x + 3y)\hat{j} + y^2\hat{k} .$	
	В	OR	
		If a vector field $\overline{F} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k$ is irrotational, find its scalar potential	4
	•	•	•