Дефференцальные уравнения. Лекции

silvia.lesnaia

February 2025

14.02.25

1 Литература

1. В.В Степанов. Курс дифференциальных уравнений (вообще можно любые учебники использовать) 2. А.Ф Филипов Сборник задач дифференциальных уравнений

2 ВВЕДЕНИЕ

ОПР: Обыкновенные дифференциальные уравнения n-го порядка имеет вид $F(x,y,y',...y^(n))=0$ где x независимая переменная, $y'=y'(x),...y(n)=y^n(x)$,

$$F = F(t_1, t_2, ..., t_n)\varphi(x)(1)F(x, \varphi(x), \varphi'(x), ..., \varphi^n(x)) \equiv 0$$

Законы природы написаны на языке дифференциальных уравнении - Ньютон

Примеры:

- 1. Уравнение радиоактивного распада
- х время, у(х) количество рад. вещества в момент времени х

2. Уравнение малых колебаний маятника

х - время у(х)- угол отклонения от положения равен 2?? у"+ $\frac{g}{l}$ *у(х)=0

3 Дифференциальные уравнения первого порядка

ОПР: Деф.урав.1го порядка это уравнения вида F(x,y,y') = 0 или y'=f(x,y)(нормальная форма)

ОПР: Деф.урав.1го порядка в симметричной форме имеет вид A(x,y), B(x,y) = 0, где A(x,y), B(x,y) - заданные функциями.

Если
$$y=y(x)$$
, $\text{то}(2) \iff \frac{dy}{dx} = +\frac{A(x,y)}{B(x,y)}$ (3)
Если $x=x(y)$, $\text{то}(2) \iff \frac{dy}{dx} = -\frac{A(x,y)}{B(x,y)}$ (3)

Если
$$\mathbf{x} = \mathbf{x}(\mathbf{y})$$
, $\mathbf{TO}(2) \iff \frac{d\mathbf{y}}{dx} = -\frac{A(\mathbf{x},\mathbf{y})}{B(\mathbf{x},\mathbf{y})}(3)$

Можно показать

3.1Дифференциальные уравнения с разделяющимися переменным

Уравнение с разделяющимися переменными имеет вид:

$$y'=f(x,y)$$
 - общий вид

у'=х+у такое не распадется - частный случай

Алгоритм решения:

1. Переходим к дифференциалу

$$\frac{dy}{dx} = f_1(x) f_2(y) | *dx, \frac{1}{f_2(y)}$$

2. Делим переменные (Разделение переменных)

$$\frac{dy}{dx} = f_1(x) dx | \int$$

 $rac{dy}{dx} = f_1(x) dx | \int \ 3.$ Вычисляем интеграл

$$\int f_1(x)dx = F_1(x),$$

Получим $(2)F_2(y) = f_1(x) + c$ с - производная константа

4. Находим из (2)

$$\varphi(x,c)$$
 - общ.реш(1)

Замечание

Называется общим интеграл уравнения (1)

Общее решение в неявном виде:

$$J_{\frac{ay}{f_2(y)}} = F_2(y)$$

Обоснование алгоритма (доказательство):

Однородные дифференциальные уравнения 3.2

ОПР: Однородное деф.урав имеет вид

1) y'=f(x,y), где f обладает след свойств $f(\Lambda x, \lambda y)$

Алгоритм решения:

- 1. Делаем замену функции
- (2) y(x)= xu(x) \Longrightarrow y'(x) = u(x) + xu'(x), где u(x) новая неявная функция
 - 2. Подставляем эти в (1) u+xu'=f(x,xu);

$$xu'=f(x,xu)-u;$$

$$u' = \frac{1}{x} \{ f(x, xu) = u \}$$

Примечание (все z заменить на u)

O δίαμης. 2(x)=ψ(x,c).c=> y= x.ψ(x,c).

3.3 Линейные дифференциальные уравнения первого порядка

O Π P: (1) 21.02.25

Теорема 1

Метод вариации производьной постоянной

y' + p(x)y = y(x)

Теорема Общее решение $y = e^{(Sp(x)ex)}$ ($Se^{(Sp(x)cx)} * q(xdx + c)$)

Іэт. Решение соотв. однородное уравнение

Y' + P(X)Y = 0, с разд, перем

ПРИМЕЧАНИЕ! Уравниния решаются только методом варианции

4.1 Дефференцальные уравнения полных дефферен-

Опр: Рассмотрим дифф.ур-ие M(x,y)dx + N(x,y)dy = 0 - 1

Уравнение 1 назывется Уравнением в полных дифф-лах, если

Считаем что у=y(x), $N(x,y)\neq 0$ Тогда получаем по опр (1) эквив. уравнению (3) $\frac{dy}{dx}=-\frac{M(x,y)}{N(x,y)}$

Алгоритм решения

- 1 Пусть выполняется (2)
- 2 Найдем вспомогательную функцию $\Phi(x,y)$ как решение след. системы уравнения

- 3 Рассмотрим 1-е Уравнение в(*) решаем у. Тогда получем $\frac{d\Phi(x,y)}{dx} =$ M(x,y)
 - $\Phi(x,y)=\int M(x,y)dx=\int_x 0x$ (винзу x0 и x сверху) тут надо дополнить
 - 4 Подставялем эту
 - 5 Решим уравнение (отн.у) (**)

Теорема 2

Обноснования алгоритма

Рассмотрим уравнение в симметрической форме Уравнением в дифференциалах называется уравнение

- (1) A(x, y) dx + B(x, y) dy = 0, $\frac{\partial A}{\partial y} \neq \frac{\partial B}{\partial x}$ (1) Не явяелтся ур-ием полных дефференцалов

Теорема Сущ-ие ф-ия $\mu(x,y) \neq 0$, т, (2) $\mu(x,y)$

Опр: Функция $\mu(x,y)$ интегрируевым множитилем для yp(1)Пример:

Основаная теорема и единсвтенности 28.02.25

Оснвовная теорема Коши Если f(x,y) $\frac{\vartheta f(x,y)}{\vartheta y}$ - непр, то задача Коши (1 -2) имеет единтсвенное решение

Док-во: I этап. Сведение 1 - 2 кинт уравнению (3) у(х)
$$y_0 + \int_{x_0}^x f(t,y(t))dt$$
 Мы доказали, что

1 - $2 \Leftrightarrow (3)$ (их решенеия совп)

II этап. Решение (3)

Строится последовательность функции

$$\varphi_0(x) = y_0, \varphi_1(x) = y_0 + \int_{x_0}^x f(t, \varphi_0(t)) dt$$

$$\varphi_2(x) = y_0 + \int_{x_0}^x f(t, \varphi_0(t)) dt$$

(*)
$$\varphi_{n+1}(x) = y_o + \int_{x_0}^x f(t, \varphi_n(t)) dt$$

 $\varphi_0(x)=y_0, \varphi_1(x)=y_0+\int_{x_0}^x f(t,\varphi_0(t))dt$ $\varphi_2(x)=y_0+\int_{x_0}^x f(t,\varphi_0(t))dt$ (*) $\varphi_{n+1}(x)=y_o+\int_{x_0}^x f(t,\varphi_n(t))dt$ Получем последовательность непрерывной функции

 $\varphi_0(x), \varphi_1(x), \varphi_n(x)$

```
Noncomer, and equative equation g_{o}(x).

Now smood parent page: g_{o}(x) + lg_{o}(x) - g_{o}(x) + lg_{o}(x) - g_{o}(x) + ... + lg_{o}(x) - g_{o}(x) - g_{o}(x
```

```
III этап. Единсвтенность решения Имеем \varphi(x) реш (3) Пусть \varphi_1(x) точка решения (3) т.е \varphi(x) \equiv y_0 + \int_{x_0}^x f(t, \varphi(t) dt) \varphi_1(x) \equiv y_0 + \int_{x_0}^x f(t, \varphi_1(t) dt) (4) \varphi(x) - \varphi_1(x) \equiv \int_{x_0}^x \left[ f(t, \varphi(t)) - f(t, \varphi) \right] dt Теорема о среднем Если g(x) - диф. функ, то g(x_1) - g(x) = g'(\varepsilon)(x_1 - x_1) \varepsilon каждая точка между Из (4) ... ... ...
```

5 2 Раздел. Линейные дифференциальные уравнения n-го порядка

Опр: Линейное обыкновенное дифференциальное уравнение n-го порядка $a_0(x)y^{(n)}+a_1(x)y^{(n-1)}+...a_n(x)y=f(x), a \le x \le b, y=y(x)$ — низв. $a_0(x), a_1(x),...a_n(x)$ заданные непр функции

Опр: Линейнре уравнение назывется однорондным, если $f(x) \equiv 0$,, Ли-

нейнре уравнение назывется неоднорондным, если $f(x) \neq 0$,

Опр: Функция $\varphi(x)$ нызвается решением (частный) уравнения (1), если $a_0(x)y^n(x)+...+a_n(x)y(x)=f(x)$.

Решение:

Короче надо будет запонлнить пробелы тут

07.03.25

Опр: Линейно зависимые и линейно независимое функции $\varphi_1(x),...\varphi_m(x)$ на [a,b]

Теорема 2 Если $\varphi_1(x),...\varphi_m$ - линейно зависима на [a,b], то $\mathrm{W}(\mathrm{x}){=}0$ Доказательство: Пусть $\varphi_1(x),...\varphi_m(x)$ линейно зависимана на [a,b] $\exists \alpha_1,...,\alpha_m$ не всеравно Об т.ч

$$\alpha_1, \varphi_1(x) + , ..., \alpha_m, \varphi_m(x) \equiv 0 \Leftrightarrow \alpha_i = 0 \quad i = 1, m$$

Рассмотрим линейное однородное уравнение $(1)y^{(n)}+a_1(x)y^{(n-1)}+,...,a_n(x)y=0,$ или l(y)=0 $a\leq x\leq b$

Доказательство: Предположим противное : $\exists x_0 \in [a,b]W(x_0) = 0$ По теории из алгберы столбцы определителя $W(x_0)$ линейно зависимы: $\exists \alpha_1,...\alpha_n$ числа не все 0, такие что

$$\begin{cases} A_{i}(h_{i})^{2} + A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} + A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} + A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} + A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} + A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} + A_{i} \cdot \begin{pmatrix} B_{i} \\ A_{i} \end{pmatrix} - A_{i} \cdot \begin{pmatrix} B_{i} \\ A$$

Отступление

Теорема о существовании решенеия задачи Коши для линейного уравнения

Имеет единтсвенное решения для линейного уравнения имеет единтсвенное решение $\forall x_0 \in [a,b], y_0, y_0', \dots$

Конец отступления

Тут нужно везде заполнить пробелы, в крайнем случае попросить людей которые лучше конспектировали лекцию

Теорема 4

14.03.25

Теорема 6

Обоснования метода варианции

21.03.25

6 Линейные уравненияс постоянными коэффицентами

 $(1)a_0y^{(n)'} + a_1y^{(n-1)'} + \dots a_ny = 0$

Метод Эйлера

Ищем решение в (1) в виде у = $e^{\lambda x}\lambda$ — пока неизвестное число $y'=\lambda e^{\lambda x},y''=\lambda^2 e^{\lambda x},...y^n=\lambda^n e^{\lambda x}$

Подставим в (1)

28.03.25

7 Линейные уравнения второго порядка

$$(1)y'' + a_1(x)y' + a_2(x)y = 0$$