Kryptographische Verfahren Klausur Haupttermin Lösungen

03. Februar 2016

Erlaubte Hilfsmittel sind: Taschenrechner, Cäsarscheibe, Vigenère Tabelle

Aufgabe 1 — 5 Punkte

Pro richtiger Antwort gibt es einen Punkt, falsche Antworten geben Abzug, die minimal zu erreichende Punktzahl ist 0 Punkte

Fragen	Antworten
1. In jedem perfekt sicheren Kryptosystem gibt es echt weniger Klartexte als Schlüssel	₫ falsch
	□ wahr
2. Ein Public Key Kryptosystem ist genau dann polynomiell CPA sicher, wenn es polynomiell sicher gegen einen passiven Angreifer ist	☐ falsch
	🗹 wahr
3. Nachrichten sollte man erst veschlüsseln und dann authentifizieren	Ø falsch
	□ wahr
4. Für Signatur und Verschlüsselung sollte der identische Schlüssel verwendet werden	₫ falsch
	□ wahr
5. Φ(375) ist 210	₫ falsch
	□ wahr

Aufgabe 2 — 5 Punkte

Entschlüssele den Kryptotext NFNYSNKCLZRVOA, welcher mit dem Vigenère Verfahren und dem Schlüssel DRWHO verschlüsselt wurde.

⊳ KORREKTGELOEST

Aufgabe 3 - 3 + 4 Punkte

Berechne ohne technische Hilfsmittel und dokumentiere jeden Schritt gut

- größter gemeinsamer Teiler von 1528 und 4052
- 46¹¹³ mod 55

$$a = 4052, b = 1528$$

1)
$$r = 996, a = 1528, b = r$$

2)
$$r = 532$$
, $a = 996$, $b = r$

3)
$$r = 464, a = 532, b = r$$

4)
$$r = 68$$
, $a = 464$, $b = r$

5)
$$r = 56$$
, $a = 68$, $b = r$

6)
$$r = 12, a = 56, b = r$$

7)
$$r = 8, a = 12, b = r$$

8)
$$r = 4, a = 8, b = r$$

9)
$$r = 0, b = \text{Ergebnis} = 4$$

$> 46^{113} \mod 55 = 41$

$$b = 46, e = 113, n = 55, z = 1$$

1)
$$e$$
 ungerade, $z = [1.46]_{55} = 46, b = [46^2]_{55} = 26, e = 56$

2)
$$e$$
 gerade, $b = [26^2]_{55} = 16, e = 28$

3)
$$e$$
 gerade, $b = [16^2]_{55} = 36, e = 14$

4)
$$e$$
 gerade, $b = [36^2]_{55} = 31, e = 7$

5)
$$e$$
 ungerade, $z = [46 \cdot 31]_{55} = 51, b = [31^2]_{55} = 26, e = 3$

6)
$$e$$
 ungerade, $z = [51 \cdot 26]_{55} = 6, b = [26^2]_{55} = 16, e = 1$

7)
$$e$$
 ungerade, $z = [6 \cdot 16]_{55} = 41, b = [16^2]_{55} = 36, e = 0$

z = Ergebnis = 41

Aufgabe 4 — 5 Punkte

Wenn beim One Time Pad der Schlüssel $K = 0^n$ ist, dann ist $Enc_k(m) = m$. Daher wird oft vorgeschlagen, nur Schlüssel $K \neq 0^n$ zu benutzen, also gleichmäßig aus allen anderen Schlüsseln zu wählen. Ist dieses modifizierte One Time Pad noch perfekt sicher?

Aufgabe 5 — 5 Punkte

Eine Hashfunktion (Gen, H) sei kollisionsresistent und längenerhaltend, dh $|x| = |H^s(x)|$ für alle Schlüssel s und Eingabe x. Zeigen Sie, dass dann auch (Gen, Ĥ) mit $\hat{H}^s(x) = H^s(H^s(x))$ kollisionsresistent ist.

Aufgabe 6 — 4 + 5 Punkte

Sei $\Box = (Gen, Enc, Dec)$ CPA sicher und $\Box' = (Gen, Enc', Dec')$ mit $Enc'_k(m) = (r, Enc_k(Enc_r(m)))$ mit $r = Gen(1^n)$ und $Dec'_k(c) = Dec_r(Dec_k(c))$

- Beschreiben Sie ein Zufallsexperiment um ein Kryptosystem auf CPA Sicherheit zu überprüfen. Definieren Sie, wann ein Kryptosystem CPA sicher ist.
- Zeigen Sie, dass ⊓' CPA sicher ist.

Der Angriff mit gewähltem Klartext

Das Kryptosystem ist $\Pi = (Gen, E_k, D_k)$ und der Angreifer ist ein PPT Algorithmus A.

- **1** Das Orakel generiert einen Schlüssel $k = Gen(1^n)$.
- ② Der Angreifer generiert zwei Klartexte $m_0, m_1 \in \mathcal{M}$ mit $|m_0| = |m_1|$ und schickt sie an das Orakel.
- **3** Das Orakel wählt gleichverteilt ein zufälliges Bit $b \in \{0,1\}$ und sendet $c = E_k(m_b)$ an den Angreifer.
- **4** A kann beliebige Klartexte m' and as Orakel senden und erhält stets $c' = E_k(m')$ zurück.
- **5** \mathcal{A} berechnet ein Bit $b' \in \{0,1\}$.
- Wir setzen $Att_{\mathcal{A},\Pi}^{CP}(n)=1$ falls b=b' und 0 sonst.

Definition

Ein Kryptosystem ist **polynomiell sicher gegen einen Angriff mit gewählten Klartexten**, wenn für jeden PPT-Algorithmus $\mathcal A$ mit Zugriff auf das Orakel eine vernachlässigbare Funktion ν existiert mit

$$P\left(Att_{\mathcal{A},\Pi}^{CP}(n)=1\right)\leq \frac{1}{2}+\nu(n)$$

wobei η eine vernachlässigbare Funktion ist.