Mesure de conductance

Situation-problème

L'eau de mer est un bon conducteur de l'électricité , contrairement à l'eau pure.

- Comment mesurer la conductance d'une solution aqueuse? et quelle est l'importance de cette mesure en chimie?
- Quelle sont les facteurs influençant la conductance d'une solution électrolytique?

Objectifs

- Définir la solution électrolytique.
- Savoir mesurer la conductance d'une portion d'une solution électrolytique.
- Connaître la relation entre la conductance et la résistance d'une portion d'une solution électrolytique,
- Savoir que la conductance d'une portion d'une solution électrolytique dépend d'une part des dimensions de la cellule conductimétrique et d'autre part des propriétés de la solution.
- Construire la courbe d'étalonnage et savoir l'exploiter pour déterminer la conductance d'une solution électrolytique
- 🤏 Définir la conductivité d'une solution électrolytique .

Conductance d'une solution aqueuse

- 1 Nature du courant électrique dans les solutions électrolytiques
 - Activité

On introduit dans un tube en U une solution de dichromate de potassium $(2K_{(aq)}^+ + Cr_2O_{7(aq)}^{2-})$ et une solution de sulfate de cuivre II $(Cu_{(aq)}^{2+} + SO_{4(aq)}^{2-})$

On émerge dans chaque extrémité du tube, une électrode de graphite. Ensuite on brache les deux électrodes à un générateur électrique à un instant t=0 min.

- Quelle est l'espèce chimique responsable de la couleur bleue dans la solution de sulfate de cuivre?
- Quelle est l'espèce chimique responsable de la couleur jaune dans la solution de dichromate de potassium?
- 🟮 Quelles sont les observations expérimentales mises en évidence par cette expérience ?
- Oéterminer le sens de déplacement des différents porteurs de charge dans la solution
- 6 Déduire la nature du courant électrique dans les solutions électrolytiques .

② Conductance d'une solution électrolytique

* Activité

On immerge la cellule conductimétrie dans bécher contenant une solution de chlorure de sodium puis on applique une tension alternative sinusoïdale à l'aide d'un GBF. On fixe la fréquence de GBF à une grande valeur (F = 500Hz), puis fait varier la tension du GBF et à chaque fois on enregistre la valeur de la tension efficace U aux bornes des électrodes de la cellule et l'intensité du courant I qui les traverse.(la figure I)

L'ensemble des résultats obtenus ont permet de tracer la courbe I0 (la figure I2)

- Pourquoi la fréquence du générateur a-t-elle été fixée à une grande valeur?
- 2 La loi d'Ohm est-elle validée pour cette solution électrolytique?
- 3 Calculer la résistance de la portion de la solution qui se trouve entre les deux plaques, et déduire sa conductance.

Chimie 1BAC Page 140

❖ Conclusion
❖ La cellule conductimétrique
G V
A A
Solution
ionique
❖ Application
La tension efficace entre les plaques d'une cellule conductimétrique est $U = 1, 2V$ et
l'intensité de courant efficace qui traverse la solution entre ces deux plaques est $I = 13,7mA$
• Calculer la conductance de la portion de la solution contenue entre les deux plaques est
déduire sa résistance

① Facteurs associés à la cellule conductimétrique

Activité

Manipulation 1

On fixe la distance entre les plaques de la cellule conductimétrique sur la valeur L=1cm et on les plonge dans bécher contenant une solution de chlorure de sodium de concentration $C=10^{-3}mol.\,L^{-1}$ puis on applique une tension alternative sinusoïdale à l'aide d'un GBF.

On fixe la fréquence de *GBF* à une grande valeur, puis fait varier la surface immergée, en déplaçant les plaques verticalement dans la solution et à chaque fois on enregistre la valeur de la tension efficace *U* ente ces deux plaques et l'intensité du courant *I* qui les traverse.(la figure ci-contre).

L'ensemble des résultats obtenus ont permet d'obtenir le tableau suivant.

$S(cm^2)$	$S(cm^2)$ 1		3	4
U(V)	2,3	2,3	2,3	2,3
I(mA)	0,30	0,61	0,90	1,20
G(mS)				
$\frac{G}{S}(S.m^{-2})$				

O Compléter le tableau dans la page précédente .
Que peut-on déduire de cette manipulation.

Manipulation 2

On garde le même montage expérimental précédant et on fixe la surface immergée à la valeur $S = 2cm^2$.

On fait varier la distance L séparant les deux plaques et à chaque fois on enregistre la valeur de la tension efficace U ente ces deux plaques et l'intensité du courant I qui les traverse. Le tableau suivant montre les résultats obtenus.

L(cm)	1	1,5	2	2,5
U(V)	2,3	2,3	2,3	2,3
I(mA)	0,60	0,40	0,3	0,24
G(mS)				
$G.L(S.m\times 10^{-6})$				

- **3** Compléter le tableau ci-dessus
- 4 Que peut-on déduire de cette manipulation.

❖ Conclusion							
_ ഉ	Facteurs as	sociés	à la soli	ution			
		8001C3	a la sun	ation			
•	Activité						
•	Manipulati	on 1					
(On fix les dimen	sions de	la cellule	de mesure s	sur les vale	ars suivantes: $S = 2cm^2$ et $L = 1cm$	
¦ F	ouis on mesure l	a condu	ctance de l	a portion d	e la solutio	n contenue entre les deux plaques	
r	our des solution	ns de ch	lorure de s	odium de c	oncertation	ns différentes et on enregistre les	
r	ésultats obtenus	s dans le	e tableau			G	
	solution	S_1	S_2	S_3	S_4	VA	
	$C(mmol.L^{-1})$	1	2	3	4		
	G(mS)	0,26	0,52	0,78	0, 104	Solution ionique	
1.3 Tracer sur le document ci-contre l'évolution .				1,3 \(G(mS) \)			
i I I	de la conductance en fonction de la concentration				1,04		
	Q Quelle est la nature de la courbe $G = f(C)$?						

0,52

0,26

 $C(mmo.L^{-1})$

3

3 Comment la conductance change-t-elle avec la

concentration?

Manipulation 2							
On fix les dimensions de la cellule de mesure sur les valeurs suivantes: $S = 2cm^2$ et $L = 1cm^2$							
puis on mesure la conductance de la portion de la solution contenue entre les deux plaques							
our deux solutions (S) et (S') de même solution tel que	solution	(S)	(S ')				
• (S) est une solution de $(H_3^+0 + Cl^-)$.	$C(mmol.L^{-1})$	1,5	1,5				
• (S') est une solution de $(Na^+ + HO^-)$	G(mS)	0,85	0,74				
es résultats obtenus sont enregistrés dans le tableau							
Comparer les conductivités des deux solutions et con-							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion							
Conclusion La courbe d'étalonnage ❖ Définition							

❖ Les limites de la courbe d'étalonnage
La conductivité molaire d'une solution électrolytique
① Définition

* Remarque						
Application						
Une cellule conductimétrique plongée dans une solution électrolytique et branchée à un						
générateur délivrant une tension électrique alternative sinusoïdale .La mesure de la tension						
aux bornes de cette cellule et de l'intensité de courant qui la traverse donne : $U = 4,7V$ et						
I=14,3mA						
Calculer la conductance de la portion de la solution contenue entre les deux plaques est						
déduire sa résistance .						
2 Déduire la valeur de la conductivité de la solution étudiée .						
On donne la constante de la cellule conductimétrique : $K = 0,03m$						
2 La relation entre la conductivité et la concentration						

*	* Remarques								
*	1								
I		uivant donne les valeurs de la conduc		aire ionique de quelques ions à 25°C					
	L'ion	La conductivité molaire ionique en $S.m^2.mol^{-1}$	L'ion	La conductivité molaire ionique en $S.m^2.mol^{-1}$					
		S.M. Mot		ch s.m. mot					
	H^+	$3,50\times10^{-2}$	HO ⁻	$1,98 \times 10^{-2}$					
	Na ⁺	$5,01\times10^{-3}$	нсоо-	$5,46 \times 10^{-3}$					
	NH_4^+	$7,35 \times 10^{-3}$	Br ⁻	$7,81 \times 10^{-3}$					
	K ⁺	$7,35 \times 10^{-3}$	Cl ⁻	$7,63 \times 10^{-3}$					
÷	• Applic	ation							
1	<i></i>	e d'une solution d'hydroxyde de sodi	 um (<i>Na</i> ⁺ +	· H0 ⁻) de concentration molaire					
1	_	$10^{-2} mol. L^{-1}$	`	ŕ					
1	1 Exprim	er la conductivité de cette solution e	en fonction	de λ_{HO^-} , λ_{Na^+} et C .					
į	2 Calcule	er la conductivité de cette solution.							
i									
1									
l									
i									
i									
1									
į									
_									