Cadernos de Scripts - módulo 1

LAPEI-UFG

21/06/2021

Nivelando conhecimentos sobre R

Para começar nosso curso, vamos aplicar operações básicas com o R. Insira os códigos e rode (ctrl + Enter em cima da linha) para ver os resultados.

```
# Operações básicas
5 + 5
## [1] 10
10 - 6
## [1] 4
10*2
## [1] 20
5/2
## [1] 2.5
#potência
5**2
## [1] 25
# raiz quadrada
sqrt(16)
## [1] 4
# veja que os parênteses são usados para estabelecer uma ordem de operações,
# igual aprendemos na matemática
5*(50-45)
## [1] 25
```

Operações de atribuição

Atribuições são muito importantes! Usamos o "<-" para atribuir o resultado de uma operação a uma variável. É como se eu estivesse falando assim: "R, realize essa operação e guarde em um objeto chamado x"

```
#Atribuições

x <- 5 + 5

y <- 10 - 16

a <- 9

soma <- a + x

nome <- "daniel"

certo <- TRUE
```

Operações básicas

Vamos fazer um programinha para calcular meu índice de massa corpórea (IMC).

```
pesoDaniel <- 79
alturaDaniel <- 1.78
imcDaniel <- pesoDaniel/alturaDaniel**2</pre>
```

Agora calcule o IMC de todas as pessoas.

Nome	Peso	Altura
Alice	65	1.60
Gilmar	95	1.78
Cecília	75	1.80
Bianca	77	1.68
Valentina	80	1.72
Augusto	68	1.65

Não existe um jeito mais fácil de calcular?

Vetores

Você até pode calcular o IMC de cada um individualmente.

Mas vou apresentar uma forma de resolver - existem várias formas, usando função, loops. Mas vamos usar um tipo de objeto chamado **vetor**. O vetor é um conjunto unidimensional de objetos de um mesmo tipo (ex.: números, palavras).

Traduzindo... imagina uma tabela de excel formada por várias colunas. Uma das colunas é a idade e está expressa em número. Pronto, um vetor é como se fosse uma coluna com valores de um mesmo tipo.

```
# trabalhando com vetores. Basta colocar um c e abrir parênteses
pesos <- c(65, 95, 75, 77, 80, 68)
alturas <- c(1.60, 1.78, 1.80, 1.68, 1.72, 1.65)
imc <- pesos/alturas**2
imc
```

[1] 25.39062 29.98359 23.14815 27.28175 27.04164 24.97704

Consigo arredondar os valores?

[1] 25.39 29.98 23.15 27.28 27.04 24.98

Consegue! Só usar a função round.

Matrizes

As **matrizes** possuem uma estrutura tabular, com linhas e colunas. Porém, semelhante ao vetor, todos os objetos devem ser de um mesmo tipo (ex.: tudo número, tudo caracter).

```
Matriz<-cbind(pesos,alturas,imc)
Matriz</pre>
```

```
##
        pesos alturas
## [1,]
           65
                  1.60 25.39
## [2,]
           95
                  1.78 29.98
## [3,]
           75
                  1.80 23.15
## [4,]
           77
                  1.68 27.28
## [5,]
           80
                  1.72 27.04
## [6,]
           68
                  1.65 24.98
```

Veja que tem uma aparência de tabela. Mas daqui em diante trabalharemos com outra estrutura chamada dataframe. Essa estrutura tem formato tabular e ainda permite que os objetos tenham tipos diferentes, ou seja, posso ter uma coluna numérica, outra no formato data, outra no formato de caracteres e assim por diante.

Existe um tipo de estrutura de dados chamado **lista** muito importante também. Mas entrar nele é assunto para um curso de R intermediário.

```
rownames(Matriz) <- c("Alice", "Gilmar", "Cecilia", "Bianca", "Valentina", "Augusto")
Matriz</pre>
```

```
##
             pesos alturas
                              imc
## Alice
                65
                      1.60 25.39
                      1.78 29.98
## Gilmar
                95
## Cecilia
                75
                      1.80 23.15
## Bianca
                77
                      1.68 27.28
## Valentina
                80
                      1.72 27.04
## Augusto
                      1.65 24.98
                68
```

Introduzindo funções para manipulação de dados

Aqui vamos começar a falar sobre manipulação de dados usando o pacote dplyr. É importante instalar os pacotes dplyr e gapminder, caso já não tenha feito, usando a função install.packages("dplyr"), assim como o pacote gapminder, que vai prover a base de dados para o curso.

Inspecionando o dataframe

```
library(gapminder)
library(dplyr)
basePaises <- gapminder
# inspecionando a estrutura da base
str(basePaises)
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
  $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
  $ continent: Factor w/ 5 levels "Africa", "Americas", ...: 3 3 3 3 3 3 3 3 3 3 ...
             : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
  $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
##
   gog $
               : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 163
   $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
# inspecionando as 6 primeiras observações
head(basePaises)
## # A tibble: 6 x 6
                                              pop gdpPercap
##
     country
                continent year lifeExp
     <fct>
                 <fct> <int> <dbl>
                                                      <dbl>
##
                                            <int>
## 1 Afghanistan Asia
                           1952
                                    28.8 8425333
                                                       779.
## 2 Afghanistan Asia
                           1957
                                    30.3 9240934
                                                       821.
## 3 Afghanistan Asia
                           1962
                                    32.0 10267083
                                                       853.
## 4 Afghanistan Asia
                           1967
                                    34.0 11537966
                                                       836.
## 5 Afghanistan Asia
                           1972
                                    36.1 13079460
                                                       740.
## 6 Afghanistan Asia
                            1977
                                    38.4 14880372
                                                       786.
# inspecionando as 10 últimas observações
tail(basePaises, n = 10)
## # A tibble: 10 x 6
                                            pop gdpPercap
##
      country continent year lifeExp
##
      <fct>
               <fct>
                         <int>
                                 <dbl>
                                                    <dbl>
                                          <int>
##
   1 Zimbabwe Africa
                         1962
                                  52.4 4277736
                                                     527.
  2 Zimbabwe Africa
                                  54.0 4995432
                                                     570.
                         1967
   3 Zimbabwe Africa
                         1972
                                  55.6 5861135
                                                     799.
##
  4 Zimbabwe Africa
                         1977
                                  57.7 6642107
                                                     686.
  5 Zimbabwe Africa
                         1982
                                  60.4 7636524
                                                     789.
  6 Zimbabwe Africa
                                  62.4 9216418
##
                         1987
                                                     706.
   7 Zimbabwe Africa
                         1992
                                  60.4 10704340
                                                     693.
## 8 Zimbabwe Africa
                         1997
                                  46.8 11404948
                                                     792.
## 9 Zimbabwe Africa
                         2002
                                  40.0 11926563
                                                     672.
## 10 Zimbabwe Africa
                         2007
                                  43.5 12311143
                                                     470.
```

```
# estatísticas descritivas da base
summary(basePaises)
##
          country
                         continent
                                         year
                                                     lifeExp
##
  Afghanistan: 12
                      Africa :624
                                  Min. :1952 Min.
                                                         :23.60
## Albania
            : 12
                      Americas:300
                                    1st Qu.:1966
                                                  1st Qu.:48.20
              : 12
## Algeria
                      Asia
                             :396
                                    Median:1980
                                                   Median :60.71
## Angola
             : 12
                      Europe :360
                                    Mean :1980
                                                  Mean
                                                        :59.47
## Argentina : 12
                      Oceania: 24
                                    3rd Qu.:1993
                                                   3rd Qu.:70.85
## Australia : 12
                                    Max.
                                           :2007
                                                   Max. :82.60
##
   (Other)
              :1632
##
                        gdpPercap
        pop
                      Min. : 241.2
## Min. :6.001e+04
                      1st Qu.: 1202.1
## 1st Qu.:2.794e+06
## Median :7.024e+06
                      Median: 3531.8
                      Mean : 7215.3
## Mean :2.960e+07
## 3rd Qu.:1.959e+07
                       3rd Qu.: 9325.5
## Max. :1.319e+09
                      Max.
                             :113523.1
##
# Acessando uma variável da base
head(basePaises$continent,20)
## [1] Asia
              Asia
                     Asia
                           Asia
                                  Asia
                                         Asia
                                                Asia
                                                      Asia
                                                             Asia
                     Europe Europe Europe Europe Europe Europe Europe
## [11] Asia
              Asia
## Levels: Africa Americas Asia Europe Oceania
# Acessando elementos únicos
unique(basePaises$year)
## [1] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007
# Verificando a média do vetor de expectativa de vida
mean(basePaises$lifeExp)
## [1] 59.47444
# A função glimpse permite dar uma olhadinha nos dados. Parece muito com a
# função str(), mas é do pacote dplyr
glimpse(basePaises)
## Rows: 1,704
## Columns: 6
              <fct> "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", ~
## $ country
## $ continent <fct> Asia, ~
## $ year
              <int> 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, ~
## $ lifeExp
              <dbl> 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.8~
```

\$ gdpPercap <dbl> 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, ~

\$ pop

<int> 8425333, 9240934, 10267083, 11537966, 13079460, 14880372, 12~

Abrindo um parêntese

Veja que o glimpse mostra o tipo das variáveis (int, fct, dbl). Existem vários tipos de variáveis no R e compreendê-los é importante, pois determinam possíveis visualizações e técnicas de análise. Apresentei três tipos importantes:

- dbl (double) valores numéricos e contínuos ("quebrados")
- int (integer) valores numéricos discretos ("inteiros")
- fct (factor) uma palavra.

Se alguém a série Stranger Things, da Netflix, vai lembrar o nome dessa menininha: Eleven. Nesse caso, Eleven é um nome, portanto, representaria um factor.

Função filter

Função para filtrar observações de uma base conforme algumas condições. Nesse caso, países cujo continente corresponde à Ásia.

```
basePaises %>%
 filter(continent == "Asia")
## # A tibble: 396 x 6
##
      country
                  continent year lifeExp
                                                pop gdpPercap
      <fct>
                  <fct>
                             <int>
                                     <dbl>
                                                         <dbl>
                                              <int>
    1 Afghanistan Asia
                             1952
                                                          779.
                                      28.8 8425333
    2 Afghanistan Asia
                             1957
                                      30.3
                                            9240934
                                                          821.
   3 Afghanistan Asia
                             1962
                                      32.0 10267083
                                                          853.
   4 Afghanistan Asia
                             1967
                                      34.0 11537966
                                                          836.
   5 Afghanistan Asia
                             1972
                                      36.1 13079460
                                                          740.
```

```
6 Afghanistan Asia
                             1977
                                      38.4 14880372
                                                          786.
## 7 Afghanistan Asia
                              1982
                                                         978.
                                      39.9 12881816
## 8 Afghanistan Asia
                              1987
                                      40.8 13867957
                                                         852.
## 9 Afghanistan Asia
                              1992
                                      41.7 16317921
                                                         649.
## 10 Afghanistan Asia
                              1997
                                      41.8 22227415
                                                         635.
## # ... with 386 more rows
basePaises %>%
  filter(continent == "Americas" & year>1990)
## # A tibble: 100 x 6
                                               pop gdpPercap
##
      country
                continent year lifeExp
                                             <int>
##
      <fct>
                <fct>
                                   <dbl>
                                                       <dbl>
                          <int>
   1 Argentina Americas
                           1992
                                    71.9
                                          33958947
                                                       9308.
                           1997
                                   73.3
##
   2 Argentina Americas
                                          36203463
                                                      10967.
##
   3 Argentina Americas
                           2002
                                    74.3
                                          38331121
                                                       8798.
## 4 Argentina Americas
                           2007
                                   75.3 40301927
                                                      12779.
## 5 Bolivia
                           1992
                                    60.0
               Americas
                                           6893451
                                                       2962.
## 6 Bolivia
                                    62.0
                Americas
                           1997
                                           7693188
                                                       3326.
## 7 Bolivia
                Americas
                           2002
                                    63.9
                                           8445134
                                                       3413.
## 8 Bolivia
                Americas
                           2007
                                    65.6
                                           9119152
                                                       3822.
## 9 Brazil
                Americas
                           1992
                                    67.1 155975974
                                                       6950.
## 10 Brazil
                           1997
                                    69.4 168546719
                                                       7958.
                Americas
## # ... with 90 more rows
Nesse caso, precisamos de todas observações, com exceção do continente Oceania. Veja como fica:
# != diferente
basePaises %>%
  filter(continent != "Oceania")
## # A tibble: 1,680 x 6
##
      country
                  continent year lifeExp
                                                pop gdpPercap
##
      <fct>
                  <fct>
                             <int>
                                     <dbl>
                                              <int>
                                                        <dbl>
##
  1 Afghanistan Asia
                             1952
                                      28.8 8425333
                                                         779.
  2 Afghanistan Asia
                             1957
                                      30.3 9240934
                                                         821.
## 3 Afghanistan Asia
                             1962
                                      32.0 10267083
                                                         853.
## 4 Afghanistan Asia
                             1967
                                      34.0 11537966
                                                         836.
## 5 Afghanistan Asia
                                      36.1 13079460
                                                         740.
                             1972
## 6 Afghanistan Asia
                             1977
                                      38.4 14880372
                                                         786.
                                                         978.
## 7 Afghanistan Asia
                             1982
                                      39.9 12881816
## 8 Afghanistan Asia
                              1987
                                      40.8 13867957
                                                         852.
## 9 Afghanistan Asia
                              1992
                                      41.7 16317921
                                                         649.
## 10 Afghanistan Asia
                                      41.8 22227415
                                                          635.
                              1997
```

... with 1,670 more rows

baseAsia <- basePaises %>%
filter(continent == "Asia")

Você pode armazenar sua consulta em outro objeto

Função select

A função select é muito útil para você selecionar apenas as variáveis que precisa trabalhar. O PSED (base que usaremos no módulo 3) tem mais de 8000 colunas. É prudente usar a função select para separar apenas o que você precisa depois que tiver estudado os dados.

```
basePaises %>%
select(year,country,gdpPercap)
```

```
## # A tibble: 1,704 x 3
##
      year country
                       gdpPercap
##
      <int> <fct>
                            <dbl>
   1 1952 Afghanistan
##
                            779.
   2 1957 Afghanistan
                            821.
   3 1962 Afghanistan
                            853.
##
  4 1967 Afghanistan
##
                            836.
##
  5 1972 Afghanistan
                            740.
  6 1977 Afghanistan
                            786.
##
  7 1982 Afghanistan
##
                            978.
##
  8 1987 Afghanistan
                            852.
  9 1992 Afghanistan
                             649.
## 10 1997 Afghanistan
                             635.
## # ... with 1,694 more rows
```

Quando usamos o - pegamos qualquer variável menos aquela de interesse, nesse caso lifeExp.

```
basePaises %>%
select(-lifeExp)
```

```
## # A tibble: 1,704 x 5
##
                  continent year
                                       pop gdpPercap
      country
##
      <fct>
                  <fct>
                            <int>
                                     <int>
                                               <dbl>
##
                             1952 8425333
                                                779.
  1 Afghanistan Asia
  2 Afghanistan Asia
                             1957 9240934
                                                821.
## 3 Afghanistan Asia
                             1962 10267083
                                                853.
## 4 Afghanistan Asia
                             1967 11537966
                                                836.
## 5 Afghanistan Asia
                             1972 13079460
                                                740.
## 6 Afghanistan Asia
                             1977 14880372
                                                786.
## 7 Afghanistan Asia
                                                978.
                             1982 12881816
## 8 Afghanistan Asia
                                                852.
                             1987 13867957
## 9 Afghanistan Asia
                             1992 16317921
                                                649.
## 10 Afghanistan Asia
                             1997 22227415
                                                635.
## # ... with 1,694 more rows
```

Função select + filter

Olha que legal, as funções conversam entre si! Então eu posso fazer dois procedimentos - filtrar e depois selecionar - em um só conjunto de comandos.

```
basePaises %>%
  filter(continent == "Americas" & year>1990) %>%
  select(year,country,gdpPercap)
```

```
## # A tibble: 100 x 3
##
       year country
                      gdpPercap
##
      <int> <fct>
                          <dbl>
##
    1 1992 Argentina
                          9308.
##
       1997 Argentina
                         10967.
    3 2002 Argentina
##
                          8798.
   4 2007 Argentina
##
                         12779.
##
    5 1992 Bolivia
                          2962.
##
    6 1997 Bolivia
                          3326.
   7 2002 Bolivia
##
                          3413.
   8 2007 Bolivia
                          3822.
   9 1992 Brazil
                          6950.
##
## 10 1997 Brazil
                          7958.
## # ... with 90 more rows
```

Função mutate

A função mutate serve para criar uma nova variável. Nesse primeiro exemplo, criei uma variável chamada GDP (PIB), que é resultado da multiplicação entre as variáveis gdpPercap (PIB per capita) e pop (população).

```
basePaises <- basePaises %>%
  mutate(GDP = gdpPercap * pop)

basePorte <- basePaises %>%
  filter(year == 1992) %>%
  mutate(porte = if_else(pop>median(pop), "G", "P"))

head(basePorte)
```

```
## # A tibble: 6 x 8
                                                pop gdpPercap
##
     country
                 continent year lifeExp
                                                                         GDP porte
                                                        <dbl>
                                                                       <dbl> <chr>
##
     <fct>
                 <fct>
                            <int>
                                    <dbl>
                                              <int>
## 1 Afghanistan Asia
                             1992
                                     41.7 16317921
                                                         649.
                                                               10595901589. G
## 2 Albania
                 Europe
                             1992
                                     71.6 3326498
                                                        2497.
                                                                 8307722183. P
                             1992
## 3 Algeria
                 Africa
                                     67.7 26298373
                                                        5023. 132102425043. G
## 4 Angola
                 Africa
                             1992
                                     40.6 8735988
                                                        2628.
                                                               22956828370. G
## 5 Argentina
                 Americas
                             1992
                                     71.9 33958947
                                                        9308. 316104097627. G
## 6 Australia
                                                       23425. 409511234952. G
                 Oceania
                             1992
                                     77.6 17481977
```

Funções group by e summarize

A função group_by geralmente é aplicada associada a outra função, nesse caso, vamos usar associada ao summarize.

```
basePaises %>%
  group_by(country) %>%
  summarize(meanLE=mean(lifeExp),meanPop=mean(pop),meanGpc=mean(gdpPercap))

## # A tibble: 142 x 4

## country meanLE meanPop meanGpc
```

```
##
      <fct>
                   <dbl>
                             <dbl>
                                     <dbl>
##
  1 Afghanistan 37.5 15823715.
                                      803.
  2 Albania
                   68.4 2580249.
                                     3255.
  3 Algeria
##
                   59.0 19875406.
                                     4426.
##
   4 Angola
                   37.9 7309390.
                                     3607.
  5 Argentina
                   69.1 28602240.
##
                                     8956.
   6 Australia
                   74.7 14649312.
                                    19981.
  7 Austria
                   73.1 7583298.
##
                                    20412.
##
   8 Bahrain
                    65.6
                           373913.
                                    18078.
## 9 Bangladesh
                   49.8 90755395.
                                      818.
## 10 Belgium
                   73.6 9725119.
                                    19901.
## # ... with 132 more rows
```

Veja como ela funciona: vamos agrupar todas as observações cuja variável *country* for a mesma e, em sequência, aplicar um cálculo de média sobre o agrupamento.

country	continent	year	lifeExp	рор	gdpPercap
Afghanistan	Asia	1952	28,801	8425333	779,4453
Afghanistan	Asia	1957	30,332	9240934	820,853
Afghanistan	Asia	1962	31,997	10267083	853,1007
Afghanistan	Asia	1967	34,02	11537966	836,1971
Afghanistan	Asia	1972	36,088	13079460	739,9811
Afghanistan	Asia	1977	38,438	14880372	786,1134
Afghanistan	Asia	1982	39,854	12881816	978,0114
Afghanistan	Asia	1987	40,822	13867957	852,3959
Afghanistan	Asia	1992	41,674	16317921	649,3414
Afghanistan	Asia	1997	41,763	22227415	635,3414
Afghanistan	Asia	2002	42,129	25268405	726,7341
Afghanistan	Asia	2007	43,828	31889923	974,5803
Albania	Europe	1952	55,23	1282697	1601,056
Albania	Europe	1957	59,28	1476505	1942,284
Albania	Europe	1962	64,82	1728137	2312,889
Albania	Europe	1967	66,22	1984060	2760,197
Albania	Europe	1972	67,69	2263554	3313,422
Albania	Europe	1977	68,93	2509048	3533,004
Albania	Europe	1982	70,42	2780097	3630,881
Albania	Europe	1987	72	3075321	3738,933
Albania	Europe	1992	71,581	3326498	2497,438
Albania	Europe	1997	72,95	3428038	3193,055
Albania	Europe	2002	75,651	3508512	4604,212
Albania	Europe	2007	76,423	3600523	5937,03
Algeria	Africa	1952	43,077	9279525	2449,008
Algeria	Africa	1957	45,685	10270856	3013,976
Algeria	Africa	1962	48,303	11000948	2550,817
Algeria	Africa	1967	51,407	12760499	3246,992
Algeria	Africa	1972	54,518	14760787	4182,664
Algeria	Africa	1977	58,014	17152804	4910,417
Algeria	Africa	1982	61,368	20033753	5745,16
Algeria	Africa	1987	65,799	23254956	5681,359
Algeria	Africa	1992	67,744	26298373	5023,217
Algeria	Africa	1997	69,152	29072015	4797,295

Country	lifeExp	рор	gpdPercap
Afghanistan	37,47	15823715	802,67
Albania	68,43	2580249	3255,367
Algeria	59,03	19875406	4426,026

Veja que posso agrupar usando mais de uma variável. Nesse caso, agrupamos todos as observações iguais de continente e ano.

```
basePaises %>%
  group_by(continent,year) %>%
  summarize(meanLE=mean(lifeExp),meanPop=mean(pop),meanGpc=mean(gdpPercap))

## `summarise()` has grouped output by 'continent'. You can override using the `.groups` argument.

## # A tibble: 60 x 5

## # Groups: continent [5]

## continent year meanLE meanPop meanGpc

## <fct> <int> <dbl> <dbl> <dbl>
```

```
##
    1 Africa
                  1952
                         39.1 4570010.
                                            1253.
##
    2 Africa
                  1957
                         41.3
                               5093033.
                                            1385.
##
    3 Africa
                  1962
                         43.3
                               5702247.
                                            1598.
##
    4 Africa
                  1967
                         45.3
                                6447875.
                                            2050.
##
    5 Africa
                  1972
                         47.5
                                7305376.
                                            2340.
##
    6 Africa
                  1977
                         49.6
                               8328097.
                                            2586.
    7 Africa
                  1982
                         51.6 9602857.
                                            2482.
##
                                            2283.
##
    8 Africa
                  1987
                         53.3 11054502.
##
    9 Africa
                  1992
                         53.6 12674645.
                                            2282.
## 10 Africa
                  1997
                         53.6 14304480.
                                            2379.
## # ... with 50 more rows
```

Funções top_n e arrange

A função top_n serve para selecionar os n maiores valores que desejar. Já a arrange permite ordenar em ordem descendente ou ascedente (padrão).

```
basePaises %>%
  filter(year == 2007) %>%
  top_n(5,pop) %>%
  arrange(desc(pop))
```

```
## # A tibble: 5 x 7
##
     country
                                                    pop gdpPercap
                                                                       GDP
                    continent year lifeExp
##
     <fct>
                    <fct>
                              <int>
                                       <dbl>
                                                  <int>
                                                             <dbl>
                                                                     <dbl>
## 1 China
                                                             4959. 6.54e12
                    Asia
                               2007
                                       73.0 1318683096
## 2 India
                    Asia
                               2007
                                        64.7 1110396331
                                                             2452. 2.72e12
## 3 United States Americas
                               2007
                                                            42952. 1.29e13
                                       78.2
                                             301139947
                                              223547000
## 4 Indonesia
                    Asia
                               2007
                                       70.6
                                                             3541. 7.92e11
## 5 Brazil
                               2007
                                             190010647
                                                             9066. 1.72e12
                    Americas
                                       72.4
```

As próximas funções de manipulação são os joins, que servem para juntar duas bases. São funções importantíssimas. Vamos falar somente sobre dois tipos de joins (left_join e inner_join). Existem outros, mas esses são os que mais usamos no cotidiano. Para isso, vamos usar duas bases: o Índice de Cidades Empreendedoras (ICE), desenvolvido pela ENAP e Endeavor, e a base MUNIC do IBGE.

Base ICE

Tabela ICE 2020

Confira a seguir a tabela completa do Índice de Cidades Empreendedoras de 2020.

Fonte: Índice de Cidades empreendedoras

Base MUNIC

Fonte: MUNIC

Baixando as bases direto do meu github

```
munic <- read.csv("https://raw.githubusercontent.com/danielppagotto/R_empreendedorismo1/main/arquivos%2
ice <- read.csv("https://raw.githubusercontent.com/danielppagotto/R_empreendedorismo1/main/arquivos%20d</pre>
```

Inspecionando as bases

\$ capital_humano

```
glimpse(munic)
## Rows: 195
## Columns: 9
## $ cod cidade
                                                                            <int> 1100155, 1100189, 1100205, 1100254, 1100262, 1200385, ~
## $ reducao_iptu
                                                                           <chr> "Não", "Sim", "Não", "Não", "Sim", "Sim", "Não", "Não"~
                                                                            <chr> "Sim", "Sim", "Não", "Não", "Sim", "Não", "Não", "Sim"~
## $ isencao_iptu
## $ reducao_issqn <chr> "Não", "Não", "Sim", "Não", "Não", "Não", "Não", "Não"~
                                                                           <chr> "Não", "Não", "Não", "Não", "Não", "Não", "Sim", "Não"~
## $ isencao_issqn
                                                                             <chr> "Não", "Não", "Não", "Não", "Sim", "Sim", "Não", "Não"~
## $ isencao_taxas
## $ cessao_terrenos <chr> "Sim", "Sim", "Não", "Nã
## $ doacao_terrenos <chr> "Não", "Sim", "Não", "Não", "Sim", "Não", "Nã
## $ outros
                                                                              <chr> "Não", "Não", "Não", "Sim", "Não", "Não", "Não", "Não"~
glimpse(ice)
## Rows: 100
## Columns: 11
## $ cidade
                                                                                                    <chr> "São Paulo", "Florianópolis", "Osasco", "Vitória~
                                                                                                    <chr> "SP", "SC", "SP", "ES", "DF", "SP", "SP", "SP", ~
## $ UF
                                                                                                    <int> 3550308, 4205407, 3534401, 3205309, 5300108, 354~
## $ cod_ibge
                                                                                                    <dbl> 9.51, 8.12, 7.94, 7.91, 7.58, 7.54, 7.52, 7.46, ~
## $ ICE
## $ ambiente_regulatorio <dbl> 7.97, 6.60, 7.01, 8.90, 4.14, 7.14, 6.63, 6.39, ~
## $ infraestrutura
                                                                                                    <dbl> 9.76, 7.15, 6.93, 5.65, 7.35, 6.71, 8.13, 7.48, ~
                                                                                                    <dbl> 7.70, 6.19, 7.55, 6.20, 8.30, 8.13, 7.18, 8.64, 
## $ mercado
                                                                                                    <dbl> 11.33, 8.43, 10.06, 7.32, 6.82, 5.74, 6.11, 6.04~
## $ acesso_capital
## $ inovacao
                                                                                                    <dbl> 7.22, 8.52, 6.27, 7.26, 6.39, 7.56, 7.67, 6.52, ~
```

Vamos juntar as bases por meio das colunsa cod cidade e cod ibge.

Um ponto **muito importante**: ambas variáveis devem ser do mesmo tipo. No caso, ambas estão como int. Caso uma fosse factor e a outra int, o join geraria uma mensagem de erro.

\$ cultura_empreendedora <dbl> 5.54, 5.26, 5.96, 4.33, 3.95, 5.95, 5.90, 6.46, ~

<dbl> 5.82, 8.88, 5.94, 8.05, 6.56, 6.98, 6.40, 7.31, ~

Vamos supor que o cod_ibge da base ice estive em formato fct (factor, lembra da Eleven do Stranger Things). Para transformá-lo para o formato int seria necessário aplicar o seguinte comando.

```
ice$cod_ibge <- as.integer(ice$cod_ibge)</pre>
```

$inner_join$

Cidade	UF	cod_ibge	ICE	
São Paulo	SP	3550308	9.51	
Florianópolis	SC	4205407	8.12	
Osasco	SP	3534401	7.94	

inner_join


```
inner <- munic %>%
  inner_join(ice, by = c("cod_cidade"="cod_ibge"))
```

left_join

left_join


```
left <- munic %>%
  left_join(ice, by = c("cod_cidade"="cod_ibge"))
```

Introduzindo funções para visualização de dados

Dica de leitura

Preparando nosso ambiente

Antes de começar, vamos chamar alguns pacotes e preparar uma base que usaremos! Caso ainda não tenha algum dos pacotes abaixo, terá que instalar usando o comando install.packages("nome do pacote").

```
library(ggplot2)
library(dplyr)
library(gapminder)
base <- gapminder %>%
  filter(year == 2007)
glimpse(base)
## Rows: 142
## Columns: 6
               <fct> "Afghanistan", "Albania", "Algeria", "Angola", "Argentina", ~
## $ country
## $ continent <fct> Asia, Europe, Africa, Africa, Americas, Oceania, Europe, Asi~
## $ year
               <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, ~
## $ lifeExp
               <dbl> 43.828, 76.423, 72.301, 42.731, 75.320, 81.235, 79.829, 75.6~
               <int> 31889923, 3600523, 33333216, 12420476, 40301927, 20434176, 8~
## $ pop
## $ gdpPercap <dbl> 974.5803, 5937.0295, 6223.3675, 4797.2313, 12779.3796, 34435~
```

GGPlot2 - a base de tudo

 ${\cal O}$ R por si só possui funções para gerar gráficos, porém o g
gplot2 é um pacote que fornece um conjunto bem extenso de possibilidades

hist(base\$lifeExp)

Histogram of base\$lifeExp

Vamos criar um histograma sobre a variável expectativa de vida.

```
ggplot(base, aes(x = lifeExp)) + geom_histogram()
```


Densidade

 $\label{thm:control} \mbox{Vamos criar um gráfico de densidade sobre a variável expectativa de vida. Veja outra forma de usar a função ggplot.}$

```
base %>%
  ggplot(aes(x = lifeExp)) + geom_density()
```


Boxplot

Vamos criar um boxplot sobre a variável expectativa de vida.

```
base %>%
  ggplot(aes(y = lifeExp)) + geom_boxplot()
```


Vamos criar outro boxplot sobre a variável expectativa de vida.

```
base %>%
  ggplot(aes(x = continent, y = lifeExp)) + geom_boxplot()
```


Gráfico de colunas

Vamos criar um gráfico de barras da variável expectativa de vida. Nesse caso, vamos manter os 10 países da Ásia com maior taxa de expectativa de vida.

```
base %>%
filter(continent == "Asia") %>%
top_n(n = 10, wt = lifeExp) %>%
ggplot(aes(x = country, y = lifeExp)) + geom_col()
```


$\mathbf{Coord_flip}$

Veja como melhorar a visualização com um simples argumento:

```
base %>%
  filter(continent == "Asia") %>%
  top_n(n = 10, wt = lifeExp) %>%
  ggplot(aes(x = country, y = lifeExp)) + geom_col() + coord_flip()
```


Mas consigo deixar em ordem?

Sim, para isso, vamos usar uma função do pacote forcats.

```
library(forcats)
base %>%
  filter(continent == "Asia") %>%
  top_n(n = 10, wt = lifeExp) %>%
  ggplot(aes(x = fct_reorder(country,lifeExp), y = lifeExp)) + geom_col() + coord_flip()
```


Labels

Adicionando labels

```
base %>%
  filter(continent == "Asia") %>%
  top_n(n = 10, wt = lifeExp) %>%
  ggplot(aes(x = fct_reorder(country,lifeExp), y = lifeExp)) + geom_col() +
  geom_label(aes(label=round(lifeExp))) + coord_flip()
```


Linhas

Para fazer esse gráfico, vamos usar a base original, gapminder, e filtrar apenas o Brasil.

```
gapminder %>%
  filter(country == "Brazil") %>%
  ggplot(aes(x = year, y = lifeExp)) + geom_line()
```


Argumento col

Veja que legal é o argumento col dentro do aes! Nesse caso pegamos Brasil e Argentina. Olha como estamos filtrando... Primeiro criamos um vetor com o nome dos países e depois aplicamos o filter usando o %in.

```
paises <- c("Brazil", "Argentina")
gapminder %>%
  filter(country %in% paises) %>%
  ggplot(aes(x = year, y = lifeExp, col = country)) + geom_line()
```


Usando argumento fill

Vamos ver como funciona o argumento fill.

```
base %>%
  top_n(10) %>%
  ggplot(aes(x = fct_reorder(country,gdpPercap), y=gdpPercap, fill = continent)) + geom_col() + coord_f
```


Podemos customizar mais elementos?

Dá para customizar uma muitos outros elementos: cores de fundo, de linhas, tamanho de letras, posição da legenda e assim por diante.

Vamos trabalhar com duas variáveis

Vamos relacionar duas variáveis: PIB per capita e expectativa de vida

```
ggplot(base,aes(x=log(gdpPercap),y=lifeExp)) + geom_point() +
labs(x = "PIB per capita (log)", y = "Expectativa de vida") + theme_bw()
```


Mais uma camada

Argumento col

Argumento size

Facet

Criando gráficos com Esquisse

O esquisse permite visualizar gráficos no estilo g
gplot2 usando point n' click. É uma ótima ferramenta para "estudar" o g
gplot2.

```
library(esquisse)
esquisser(viewer = "browser")
```


Gerando gráficos interativos

Vamos resgatar um gráfico que fizemos lá atrás.

Para aprender mais

Ao clicar será direcionad@ para a página indicada

- GGPlot2 cheat sheet
- GGPlot2 LAPEI
- Plotly
- Blog Datanovia
- Datavis with R
- Live Curso-R sobre extensões do ggplot2
- The R graph gallery
- Documentação dplyr
- Documentação ggplot2

Obrigado

Se encontrou algum erro ou tem alguma sugestão de melhoria pode entrar em contato. Se foi útil também avise! Ah... e pode passar adiante. Quanto mais gente tendo acesso a esse conhecimento melhor!

 ${\bf Daniel\ Pagotto}\ |\ {\bf danielppagotto@gmail.com}\ |\ {\bf LinkedIn}$

LAPEI - UFG | lapeiufg@gmail.com. | No instagram: lapeiufg