Chapitre 4

Marges de stabilité et performances des systèmes linéaires asservis

GE2

Robustesse de la stabilité (1)

Introduction

- Caractéristiques des critères de Routh et de Nyquist
 - > Déterminer si le système est stable, oscillant ou instable en BF
 - Déterminer les conditions limite de stabilité
 - Ne permettent pas de dire si le système stable en BF est plus ou moins proche de l'instabilité (point critique)
- Concept de marges de stabilité (système à stabilité absolue)
 - Intuitivement, la stabilité est satisfaisante si le lieu de Nyquist ou de Black du système en BO passe loin du point critique -1

Automatique

Robustesse de la stabilité (2)

Marges de stabilité

Elles permettent d'estimer la proximité de la réponse fréquentielle $H_{BO}(j\omega)$ du point critique -1

lacktriangle Marge de phase m_{ϕ}

Soit ω_{c0} la pulsation telle que $|H_{BO}(j\omega_{c0})|=1$. La marge de phase est la différence entre $\varphi_{BO}(\omega_{c0})$ et $-\pi$

$$m_{\varphi} = \varphi_{BO}(\omega_{c0}) + \pi$$
 avec $\varphi_{BO}(\omega_{c0}) = \arg(H(j\omega_{C0}))$

Marge de gain m_g

Soit $\omega_{-\pi}$ la pulsation telle que $\arg H_{BO}(j\omega_{-\pi}) = -\pi$. La marge de gain est l'écart entre 0dB et le gain à la pulsation $\omega_{-\pi}$

$$m_g = -20 \log_{10} |H_{BO}(j\omega_{-\pi})|$$
 avec $\phi_{BO}(\omega_{-\pi}) = -\pi$

Robustesse de la stabilité (3)

- Interprétation des marges de stabilité
 - Un système est stable en BF si la marge de phase est positive
 - La marge de gain correspond au gain supplémentaire maximum que l'on peut donner au système en BO sans risquer de le rendre instable en BF
 - Plus les marges sont grandes, plus robuste est la stabilité

Remarques

■ Pour une bonne stabilité: $m_{\phi} = \pi/4$ à $\pi/3$ (45° à 60°) et $m_g = 10 \text{dB}$ à 15dB

Automatique 4

Robustesse de la stabilité (4)

Détermination des marges de stabilité

Précision et rapidité des systèmes asservis.

Nous supposerons dans l'étude qui suit que les systèmes asservis étudiés sont stables.

Les deux critères de performance étudiés sont:

La précision La rapidité

Estimer la précision d'un système asservi c'est mesurer ou prédire l'évolution temporelle de l'écart entre la consigne d'entrée et la sortie du système :

$$\varepsilon(t) = yc(t) - y(t).$$

Le but étant de minimiser $\varepsilon(t)$.

Le système est susceptible d'évoluer sous l'effet d'une modification de la consigne yc(t) ou de l'apparition de perturbations extérieures n(t).

$$Y(p) = \underbrace{A(p).B(p)}_{FTBO \ en \ l'absence \ de \ perturbation} \underbrace{S(p) + B(p).N(p)}_{Y(p).N(p)}$$

$$Y(p) = T(p)[Y_c(p) - Y(p)] + B(p).N(p)$$

$$Y(p) = T(p)[Y_c(p) + B(p).N(p)]$$

$$Y(p) = \underbrace{T(p)}_{FTBF} Y_c(p) + \underbrace{B(p)}_{1+T(p)} N(p)$$

L'étude de la précision se décompose en deux:

L'étude de la poursuite : évolution de l'erreur pour les variations de la consigne en l'absence de perturbations,

L'étude en régulation : évolution de l'erreur en présence de perturbations pour une consigne fixe.

a – Précision statique en poursuite – Erreur en régime permanent.

L'erreur en régime permanent est :

$$\lim_{t\to+\infty} \varepsilon(t) = \varepsilon_s$$

d'après le théorème de la valeur finale

Avec

$$\varepsilon_s = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p)$$

$$\varepsilon(p) = Y_c(p) - Y(p)$$

$$\varepsilon(p) = Y_c(p) - \frac{T(p)}{1 + T(p)} Y_c(p)$$

$$\varepsilon(p) = \frac{Y_c(p)}{1 + T(p)}$$

D'où

$$\varepsilon_s = \lim_{p \to 0} \frac{p Y_c(p)}{1 + T(p)}$$

T(p) est la FTBO,

i. Erreur statique pour une entrée échelon

Si l'entrée vaut :
$$E(p) = \frac{E_0}{p}$$

Donc

$$\epsilon_{S} = \lim_{p \to 0} \left(p. \frac{E(p)}{1 + FTBO(p)} \right) = \frac{E_{0}}{1 + \lim_{p \to 0} FTBO(p)}$$

$$\epsilon_s = \frac{E_0}{1 + K_e}$$
 Avec $K_e = \lim_{p \to 0} FTBO(p) = Constante d'erreur statique d'échelon$

ou gain statique en Boucle ouverte

ii. Erreur statique (ou erreur de traînage) pour une entrée

rampe

L'entrée vaut :

$$E(p) = \frac{E_0}{p^2}$$

$$\epsilon_S = \lim_{p \to 0} \Biggl(p. \frac{E(p)}{1 + \mathsf{FTBO}(p)} \Biggr) = \lim_{p \to 0} \Biggl(\frac{E_0}{p + p.\mathsf{FTBO}(p)} \Biggr) = \frac{E_0}{\lim_{p \to 0} p.\mathsf{FTBO}(p)}$$

$$\varepsilon_s = \frac{E_0}{K_v}$$

Avec $K_v = \lim_{p \to 0} p.FTBO(p) = Constante d'erreur statique de vitesse$

Exemple

Soit le système asservi suivant.

Calculons ses différentes erreurs statiques pour différentes entrées canoniques (échelon unitaire et rampe)

b – Précision statique en régulation (c'est-à-dire en présence de perturbations).

On a
$$\varepsilon(p) = \frac{1}{1 + T(p)} Y_c(p) - \underbrace{\frac{B(p)}{1 + T(p)} N(p)}_{erreur\ en\ r\'egulation}$$

En considérant Yc (p) = 0 et en faisant abstraction du signe on écrira :

$$\varepsilon(p) = \frac{B(p)}{1 + T(p)} N(p)$$

On considère une perturbation assimilable à un échelon unitaire

$$N(p) = 1/p.$$

D'où, d'après le théorème de la valeur finale :

$$\varepsilon_s = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \cdot \frac{B(p)}{1 + T(p)} \cdot \frac{1}{p} = \lim_{p \to 0} \frac{B(p)}{1 + T(p)}$$

c. Critères de performance.

on considère un système stable dont l'erreur statique en réponse à un échelon est nulle

La meilleure précision est obtenue pour l'faible.

$$I = \int_0^{+\infty} \varepsilon^2(t) dt$$

2. Rapidité des systèmes.

On cherche à obtenir des systèmes asservis une réponse rapide aux variations de la consigne et une aptitude à effacer rapidement les perturbations.

Le temps de réponse à 5% donne une bonne évaluation de la rapidité d'un système, il exprime le temps mis par le processus soumis à un échelon pour atteindre sa valeur de régime permanent à ±5% près (et y rester).

