Linear Dimensionality Reduction and Affect

August 5, 2022

Word Embeddings as Features

Words can be represented by semantic embeddings.

- Words that appear in similar contexts have similar word embeddings, and a thus a higher cosine similarity.
 - This apple tastes good. This apple tastes bad. CosSim(good, bad) = 0.74
 - This apple tastes good. This apple tastes terrorist. CosSim(good, terrorist) = 0.43
- Embeddings can be created for words using different encoders: the most famous being Word2Vec, GloVE, ELMo, and BERT.
- These embeddings can be used as feature vectors for different downstream tasks.

BERT

- BERT is unique in that it uses transformers in determining the embedding of a word.
 This allows BERT to use context to give more contextually accurate word embeddings and disambiguate between homonyms.
- The success of BERT as an encoder has led to many variants: we are using a XLM-RoBERTa (XLMR) longformer.
 - RoBERTa (Robustly Optimized BERT Approach) is similar to BERT, but trained longer, on more data, and with a modified learning objective.
 - XLM-RoBERTa is a multilingual version of RoBERTa.
 - A longformer takes more input tokens.

Affect

- Words have three different affect dimensions:
 - Sentiment (Valence): goodness/badness
 - Agency (Arousal): activeness/passiveness
 - Power (Dominance): strength/weakness
- This gives us the ability to more finely distinguish between synonyms.
- Hypothesis: Derog can be defined to be a combination of different affect dimensions.

Dimension	Word	Score [↑]	Word	Score
valence	love	1.000	toxic	0.008
	happy	1.000	nightmare	0.005
	happily	1.000	shit	0.000
arousal	abduction	0.990	mellow	0.069
	exorcism	0.980	siesta	0.046
	homicide	0.973	napping	0.046
dominance	powerful	0.991	empty	0.081
	leadership	0.983	frail	0.069
	success	0.981	weak	0.045

Table 2: The terms with the highest (\uparrow) and lowest (\downarrow) valence (V), arousal (A), and dominance (D) scores in the VAD Lexicon.

Entity-Level Derog

- Architecture: input sentence \rightarrow **BERT** \rightarrow entity embedding(s) \rightarrow **decoder** \rightarrow affect scores
- Decoders: Field and Tsvetkov proposes two models for decoding:
 - Kernel Ridge Regression (KRR): similar to SVM, where a RBF kernel is used.
 - Affect Subspace Projection (ASP): uses extreme-valued words and linear decomposition to project scores.
- Why use ASP when KRR performs better?
 - Confounds are words that "trick" or "confuse" a model into learning incorrectly. For
 example, for agency, the KRR might learn to differentiate between animate and inanimate
 objects instead of high and low agency words.
 - ASP allows us to control for confounds, by selecting the most extreme-valued words, and "measuring" words of interest along the axis separating the two extremes.

ASP

- For each affect dimension:
 - igotimes From the lexicon, find the embeddings for the $|\mathcal{H}|$ highest-valued words and $|\mathcal{L}|$ lowest-valued words.
 - \bigcirc Use cosine similarity to find the N most similar pairs between \mathcal{H} and \mathcal{L} .
 - Subtract each embedding by the average of itself and its pair, and construct a matrix M out of all the embedding pairs.
 - Linearly decompose the matrix into a subspace of one dimension with the highest variance.
 - For each entity, project its embedding onto the subspace.

Linear Decomposition

- Currently, ASP is using the first principle of principle component analysis (PCA) as its method of linear decomposition.
- There may be more suitable methods of linear decomposition than PCA, like UMAP.
- Objective: determine if UMAP or any other decomposition technique is better suited for ASP than PCA.

