(=>
$$A^{2} - 4 = 0$$
 (=> $A^{2} = 4$ (=> $A = \pm \sqrt{4} = \pm \omega$)

i. $A_{1} = -\omega$ e $A_{2} = \omega$ são os autovoloses de T .

Ex al) $v = (x,y) = (x,y) = 0$

(=> $(T - AI)(v) = 0$

(=> $(T - AI)(v) = 0$

(=> $(T - AI)(x) = 0$

(=> $(T$

Ex 3)
$$T(x,y) = (x+3y, x-y)$$
 i diagonalizabel?

Opcino 1'. Ex 1 e tx a

Pelo Gx 1, tomos que todos en naize de py (1)

são reais $(\lambda_1 = -\alpha \cdot \lambda_1 = \alpha)$.

Pelo Ex a, temos que multiplicadore algébrica de cada λ i e' aqual a dim $(V(\lambda_i))$.

Diante do exporto, tomos que T e' diagonalizable

Obs: $[T]_B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

Opção d', i) Ex 1 e ii) Ex a

iii) $P = [N_1 \ N_2] = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix}$ e' ama matite

de autovetores de T .

iv) $det(P) = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} = 1 - (-3) = 4 \neq 0 \Rightarrow 3 \neq 0$
 $P = P^{-1}[T]_C P = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$
 $P = P^{-1}[T]_C P = \begin{pmatrix} x_1 & x_2 \\ x_4 & x_4 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 1 & -1 & 1 \end{pmatrix}$
 $= exercícia$
 $= \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$

. Té diagonalizável. 055: B = 5 ~ 2, ~ 2 (= 3 (1, -1) , (3, 1) / e' uma bene de autouetores de T. $\Rightarrow [T]_{\mathcal{B}} = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$ Ex4) (P2,+,+), p, q & P2 = 92 be + as be + ao bo $p_1 = x^2 - 2x + 3 - p_2 = 3x - 9 = 0x^2 + 3x - 9$ (0) 0 = /p1/1/21/1 Note gre < p1, pa > = < x -2x +3, 0 x +3x-4> = 1.0 + (-2).3 + 3.(-4) = 0-6-12 = -18 $||p_1|| = \sqrt{\langle p_1, p_1 \rangle'} = \sqrt{\langle 1 \times^2 - 2 \times + 3, 1 \times^2 - 2 \times + 3 \rangle}$ $= \sqrt{1.1 + (-2) \cdot (-2)} + 3.3' =$ $= \sqrt{1 + 4 + 9'} = \sqrt{14'}$ 11p211= V < 0xx+3x-4, 0xx+3x-4 > = 50+9+16 = \(\as \) = 5

$$(-c_{S}) = -18 - 2 - 0.96$$

$$\sqrt{3} \cdot \sqrt{3} \cdot$$