Requisitos

Teorema 1 (Bolzano-Weierstrass). Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión acotada en \mathbb{R}^n . Entonces, $(x^k)_{k\in\mathbb{N}}$ tiene una subsucesión convergente.

Corolario 2. Sea $X \subseteq \mathbb{R}^n$. Entonces, X es cerrado si y solo si existe una sucesión de elementos de X, $(x^k)_{k\in\mathbb{N}}$, tal que $\lim_{k\to\infty} x^k = a$.

Proposición 3. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R}^n . Entonces, $(x^k)_{k\in\mathbb{N}}$ es de Cauchy, si y solo si, $(x^k)_{k\in\mathbb{N}}$ es convergente.

Conjuntos compactos

El objetivo de esta sección es conocer a los conjuntos compactos y demostrar el teorema de Heine-Borel.

Definición 4 (Cubierta de un conjunto). Sea $X \subseteq \mathbb{R}^n$ y $(U_{\alpha})_{\alpha \in I}$ una familia de conjuntos abiertos en \mathbb{R}^n . Decimos que $(U_{\alpha})_{\alpha \in I}$ es cubierta abierta de X si

$$X \subseteq \bigcup_{\alpha \in I} U_{\alpha}.$$

Si $J \subseteq I$, $y(U_{\alpha})_{\alpha \in J}$ es cubierta de X, decimos que $(U_{\alpha})_{\alpha \in J}$ es subcubierta de $(U_{\alpha})_{\alpha \in I}$.

Definición 5 (Conjuntos compactos). Sea $K \subseteq \mathbb{R}^n$. Decimos que K es compacto si para toda cubierta abierta de K, $(U_{\alpha})_{\alpha \in I}$, existen $m \in \mathbb{N}$ y $\alpha_1, \ldots, \alpha_m \in I$ tales que $(U_{\alpha_j})_{j=1}^m$ es cubierta de K.

Note que para demostrar que un conjunto K es compacto, debemos dar una cubierta abierta arbitraria de K y encontrar una subcubierta finita.

Definición 6 (Conjuntos secuencialmente compactos). Sea $K \subseteq \mathbb{R}^n$. Si toda sucesión de elementos de K, $(x^k)_{k \in \mathbb{N}}$, tiene una subsucesión $(x^{\alpha(k)})_{k \in \mathbb{N}}$ tal que $\lim_{k \to \infty} x^{\alpha(k)} \in K$, decimos que K es secuencialmente compacto.

Lema 7. Sea $X \in \mathbb{R}^n$ secuencialmente compacto. Entonces, para todo $\varepsilon > 0$ existen $m \in \mathbb{N}$ y $x_1, \ldots, x_m \in X$ tales que

$$X \subseteq \bigcup_{j=1}^{m} B(x_j, \varepsilon).$$

Demostración. Supongamos que no se satisface el lema. Es decir, que existe $\varepsilon_0 > 0$ tal que para cada $m \in \mathbb{N}$ y para cada $x_1, \ldots, x_m \in X$,

$$X \not\subseteq \bigcup_{j=1}^m B(x_j, \varepsilon).$$

Sea $x^1 \in X$. Por la suposición inicial, $X \nsubseteq B(x_1, \varepsilon_0)$. Luego, existe $x^2 \in X$ tal que $x^2 \notin B(x^1, \varepsilon_0)$ y $X \nsubseteq \bigcup_{j=1}^2 B(x^j, \varepsilon_0)$. Supongamos que hemos escogido k elementos de X de manera que si $l, m \in \{1, \ldots, k\}$ y $l \neq k$, entonces $||x^l - x^m|| \ge \varepsilon_0$ y $X \nsubseteq \bigcup_{j=1}^k B(x^j, \varepsilon_0)$. Escogemos $x^{k+1} \in X$ tal que $x^{k+1} \notin \bigcup_{j=1}^k B(x^j, \varepsilon_0)$. Así, de manera inductiva construimos una sucesión $(x^k)_{k \in \mathbb{N}}$ de elementos de X tal que para todo $m \in \mathbb{N}$, si l < m, entonces

$$||x^m - x^k|| \ge \varepsilon_0, \qquad X \not\subseteq \bigcup_{j=1}^m B(x^j, \varepsilon_0).$$

Como X es secuencialmente compacto, la sucesión $(x^k)_{k\in\mathbb{N}}$ tiene una subsuseción convergente $(x^{\alpha(k)})_{k\in\mathbb{N}}$. Por la proposición 3 $(x^{\alpha(k)})_{k\in\mathbb{N}}$ es de Cauchy. Entonces, existe $N\in\mathbb{N}$ tal que si n,m>N,

$$||x^{\alpha(n)} - x^{\alpha(m)}|| < \frac{\varepsilon_0}{2}.$$

Por otro lado, si n > m, $||x^{\alpha(n)} - x^{\alpha(m)}|| \ge \varepsilon_0$. Lo cual es una contradicción.

Lema 8. Sea $X \subseteq \mathbb{R}^n$ secuencialmente compacto $y(U_{\alpha})_{\alpha \in I}$. Entonces, existe ε_0 tal que para toda $x \in X$ existe $\alpha_x \in I$ tal que $B(x, \varepsilon) \subseteq U_{\alpha_x}$.

Demostración. Supongamos que no se satisface el lema. Esto es, para todo $\varepsilon > 0$ existe $x \in X$ tal que para todo $\alpha \in I$, $B(x,\varepsilon) \not\subseteq U_{\alpha}$. Entonces, para cada $k \in \mathbb{N}$ existe $a^k \in X$ tal que para todo $\alpha \in I$, $B(a^k,\frac{1}{k}) \not\subseteq U_{\alpha}$. Consideramos la sucesión $(a^k)_{k \in \mathbb{N}}$. Como X es secuencialmente compacto, $(a^k)_{k \in \mathbb{N}}$ tiene una subsuseción convergente $(a^{\beta(k)})_{k \in \mathbb{N}}$ tal que $\lim_{k \to \mathbb{N}} a^{\beta(k)} \in X$. Sea $a := \lim_{k \to \mathbb{N}} a^{\beta(k)}$. Como $(U_{\alpha})_{\alpha \in I}$ es cubierta de X, existe $\alpha_0 \in I$ tal que $a \in U_{\alpha_0}$. Además, U_{α_0} es abierto, por lo que existe r > 0 tal que $B(a, r) \subseteq U_{\alpha_0}$.

Recordemos que $(a^{\beta(k)})_{k\in\mathbb{N}}$ es convergente. Entonces, existe $N_1\in\mathbb{N}$ tal que para todo $n>N_1$,

$$||x^{\beta(n)} - a|| < \frac{r}{2}.$$

Sea $x \in B(a^{\beta(l)}, \frac{1}{\beta(l)})$. Por la propiedad arquimediana, existe $N_2 \in \mathbb{N}$ tal que $\frac{1}{\beta(N_2)} < \frac{r}{2}$. Sea $N := \max\{N_1, N_2\}$ y l > N.

$$||a - x^{\beta(l)}|| < \frac{1}{\beta(l)} < \frac{r}{2}.$$

Por otro lado,

$$||x - a|| \le ||x - x^{\beta(k)}|| + ||x^{\beta(k)} - a|| < r.$$

Es decir, $x \in B(a,r)$. Por lo tanto, $B(a^{\beta(l)}, \frac{1}{\beta(l)}) \subseteq B(a,r) \subseteq U_{\alpha_0}$. Lo cual es una contradicción.

Teorema 9 (Heine–Borel). Sea $K \subseteq \mathbb{R}^n$. Entonces, son equivalentes

- i) K es compacto.
- ii) K es cerrado y acotado.
- iii) K es secuencialmente compacto.

Demostración. Realizaremos la demostración siguiendo $i) \implies ii)$, $ii) \implies iii)$ y $iii) \implies i)$.

 $i) \implies ii)$ Suponemos que K es compacto. Veamos que K es acotado.

Consideramos la familia de bolas $(B(0,n))_{n\in\mathbb{N}}$. Esta familia es cubierta de K. Como K es compacto, existen $N\in\mathbb{N}$ y $k_1,\ldots,k_N\in\mathbb{N}$ tales que

$$K \subseteq \bigcup_{j=1}^{N} B(0, k_j).$$

Haceindo $r := \max\{k_1, \dots, k_N\}$, tenemos que $K \subseteq B(0, r)$. Es decir, K es acotado.

Ahora, veamos que K es cerrado. Para esto verificamos que K^c es abierto. Sea $a \in K^c$. Para cada $y \in K$, hacemos $r_y := \frac{\|y-a\|}{2}$. La familia de bolas $(B(y, r_y))_{y \in K}$ es cubierta de K. Como K es compacto, existe $N \in \mathbb{N}$ y $y_1, \ldots, y_N \in K$ tales que

$$K \subseteq \bigcup_{j=1}^{N} B(y_j, r_{y_j}).$$

Sean $\varepsilon := \min\{r_{y_1}, \dots, r_{y_N}\}\ y \ x \in K$. Entonces, existe $l \in \{1, \dots, N\}$ tal que $x \in B(y_l, r_{y_l})$. Luego, $||x - y_l|| < r_l$. Por otro lado, de la desigualdad del triángulo, $||x - y_l|| \le ||x - a|| + ||y_l - a||$. Entonces, tenemos las siguientes desigualdades

$$||x - a|| \ge ||y_l - a|| - ||x - y_l||$$

$$\ge ||y_l - a|| - r_l$$

$$= ||y_l - a|| - \frac{||y_l - a||}{2} = r_{y_l} \ge \varepsilon.$$

Es decir, $x \notin B(a, \varepsilon)$. Como x fue arbitrario, $K \subseteq B(a, \varepsilon)^c$. Luego, $B(a, \varepsilon) \subseteq K^c$.

- $ii) \implies iii)$ Suponemos que K es cerrado y acotado. Sea $(x^k)_{k \in \mathbb{N}}$ una sucesión de elementos de K. Como K es acotado, por el teorema 1 $(x^k)_{k \in \mathbb{N}}$ tiene una subsucesión $(x^{\alpha(k)})_{k \in \mathbb{N}}$ convergente. Sea $a \coloneqq \lim_{k \to \infty} x^{\alpha(k)}$. Como K es cerrado, por el corolario $2, a \in K$. Por lo tanto, K es secuencialmente compacto.
- $iii) \implies i$) Suponemos que K es secuencialmente compacto. Sea $(U_{\alpha})_{\alpha \in I}$ una cubierta abierta de K. Por el lema 8 existe ε_0 tal que para cada $x \in K$ existe $\alpha \in I$ tal que $B(x, \varepsilon_0) \subseteq U_{\alpha}$. Por el lema 7 existen $s \in \mathbb{N}$ y $x_1, \ldots, x_s \in K$ tales que $X \subseteq \bigcup_{j=1}^s B(x, \varepsilon_0)$. Luego, para cada $j \in \{1, \ldots, s\}$ existe $\alpha_j \in I$ tal que $B(x_j, \varepsilon_0) \subseteq U_{\alpha_j}$. Por lo tanto,

$$K \subseteq \bigcup_{j=1}^{s} U_{\alpha_j}.$$

Ejercicios

- 1. Sea $a \in \mathbb{R}^n$. Demuestre que $\{a\}$ es compacto.
- 2. Sean $m \in \mathbb{N}$ y $a_1, \ldots, a_m \in \mathbb{R}^n$. Demuestre que $\{a_1, \ldots, a_m\}$ es compacto.
- 3. Sean $a \in \mathbb{R}^n$ $(x^k)_{k \in \mathbb{N}}$ una sucesión en \mathbb{R}^n tal que $\lim_{k \to \infty} x^k = a$. Demuestre que $\{x^k\}_{k \in \mathbb{N}} \bigcup \{a\}$ es un conjunto compacto.
- 4. Sean A y B conjuntos compactos. Demuestre que $A \cup B$ es compacto.
- 5. Sean $n \in \mathbb{N}$ y A_1, \ldots, A_n conjuntos compactos. Demuestre que $\bigcup_{j=1}^n A_j$ es compacto.
- 6. Sea $(K_{\alpha})_{\alpha \in I}$ una familia de conjuntos compactos. Demuestre que $\bigcap_{\alpha \in I} K_{\alpha}$ es compacto.
- 7. Sea K un conjunto compacto en \mathbb{R}^n y $V\subseteq K$ cerrado. Utilizando la definición 5, demuestre que V es compacto.
- 8. Sea K un conjunto compacto en \mathbb{R}^n y $V\subseteq K$ cerrado. Utilizando el teorema 9, demuestre que V es compacto.