T- 41674 Complex Numbers

(2-51)

Applied Mathematics - I 6. Find all the values of $(1 + i)^{2/3}$ and find the continued product of (M.U. 1992)

these values. [Ans.: $2^{1/3} \left(\cos \frac{8\pi k + \pi}{6} + i \sin \frac{8\pi k + \pi}{6} \right)$, k = 0, 1, 2. Product = 2*i*.]

7. Find all the values of $(1+i)^{1/3}$ [Ans.: $2^{1/6} \left(\cos \frac{r\pi}{12} + i \sin \frac{r\pi}{12} \right)$ where r = 1, 9, 17.]

8. Find the four fourth roots of unity. [Ans.:±1,±i]

g. Solve the equations (i) $x^9 + 8x^6 + x^3 + 8 = 0$

(ii) $x^5 + 1 = 0$ (M.U. 2005) (iii) $x^4 - x^3 + x^2 - x + 1 = 0$ (M.U. 1988, 2003) (iv) $(x+1)^8 + x^8 = 0$ (M.U. 1990, 97)

(v) $x^3 = i(x-1)^3$ (M.U. 2008) (vi) $x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 = 0$ (M.U. 2012)

[Ans.: (i) $\cos(2k+1)\frac{\pi}{6} + i\sin(2k+1)\frac{\pi}{6}$, k = 0, 1, 2, 3, 4, 5 and $2^{1/3} \left[\cos(2k+1) \frac{\pi}{3} + i \sin(2k+1) \frac{\pi}{3} \right], \quad k = 0, 1, 2.$

COLLEGE OF ENGIN (ii) $\cos(2k+1)\frac{\pi}{5} + i\sin(2k+1)\frac{\pi}{5}$, k = 0, 1, 2, 3, 4.

(iii) Multiply by x + 1 $\therefore x^5 + 1 = 0$.

Answer as above, i.e., (ii).

(iv) $X = \frac{1}{[\cos(2k+1)(\pi/8) + i\sin(2k+1)(\pi/8) - 1]}$ where k = 0, 1, 2, 3, 4, 5, 6, 7

(v) $x = \frac{\cos(4k+1)\pi/6 + i\sin(4k+1)\pi/6}{\cos(4k+1)\pi/6 + i\sin(4k+1)\pi/6 - 1}$

(vi) Multiply by x + 1; $x^7 + 1 = 0$

 $\cos(2k+1)\frac{\pi}{7}+i\sin(2k+1)\frac{\pi}{7}; \quad k=0,1,2,3,4,5,6.$

MUMBAI-11 *

10. Show that the continued product of all the values of

(a) $i^{2/3}$ is -1, (b) $(-i)^{2/3}$ is -1 11. If one root of $x^4 - 6x^3 + 15x^2 - 18x + 10 = 0$ is 1 + i, find all other [Ans.: 1-i, $2\pm i$]

12. If one root of $x^4 - 6x^3 + 18x^2 - 24x + 16 = 0$ is 1 + i, find all other roots. [Ans.: 1-i, $2(1\pm i)$]

Complex Numbers

(i)
$$x^{12} - 1 = 0$$

(M.U. 2003)
(iii)
$$x^7 - x^4 + x^3 - 1 = 0$$

(iii)
$$x^7 - x^4 + x^3 - 1 = 0$$

(v) $x^7 + x^4 + ix^3 + i = 0$

(M.U. 1999)
(vii)
$$x^7 + 64x^4 + x^3 + 64 = 0$$

(ii)
$$x^7 + x^4 + x^3 + 1 = 0$$

(M.U. 1988, 95, 2002)

(iv)
$$x^7 - x^4 - x^3 + 1 = 0$$

(vi)
$$x^9 - x^5 + x^4 - 1 = 0$$

(vii)
$$x^7 + 64x^4 + x^3 + 64 = 0$$
 (M.O.
[Ans.: (i) ± 1 , $\pm i$, $\pm \left(\cos \frac{\pi}{6} \pm i \sin \frac{\pi}{6}\right)$, $\pm \left(\cos \frac{\pi}{3} \pm i \sin \frac{\pi}{3}\right)$

(ii)
$$\pm \left(\frac{1}{\sqrt{2}} \pm i \cdot \frac{1}{\sqrt{2}}\right), \frac{1}{2} \pm i \cdot \frac{\sqrt{3}}{2}, -1$$

(iii) 1,
$$-\frac{1}{2}(1\pm i\sqrt{3})$$
, $\pm \left(\frac{1}{\sqrt{2}}\pm i\cdot \frac{1}{\sqrt{2}}\right)$

(iv)
$$\pm 1$$
, $\pm i$, $-\frac{1}{2}(1\pm i\sqrt{3})$

(v)
$$\pm \left(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8}\right)$$
, $\pm \left(\cos \frac{\pi}{8} - i \sin \frac{\pi}{8}\right)$, $\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$, -1

(vi)
$$\cos(2k+1)\frac{\pi}{5} + i\sin(2k+1)\frac{\pi}{5}$$
; $k = 0, 1, 2, 3, 4$
 $\cos\frac{2k\pi}{4} + i\sin\frac{2k\pi}{4}$, $nk = 0, 1, 2, 3$.

(vii) -4,
$$2(1 \pm i\sqrt{3}), \pm \left(\frac{1}{\sqrt{2}}\right)(1 \pm i).$$

14. Find all the value of
$$\left(\frac{2+3i}{1+i}\right)^{1/4}$$
.

[Ans. :
$$(13)^{1/4} \left[\cos \left(\frac{2\pi k + \theta}{4} \right) + i \sin \left(\frac{2\pi k + \theta}{4} \right) \right]$$
 (M.U. 1985)

(M.U. 2010)

where,
$$\theta = \tan^{-1} (1/5)$$
, $k = 0, 1, 2, 3.$

15. If
$$\alpha$$
, α^2 , α^3 , ..., α^6 are the roots of $x^7 - 1 = 0$, find them and prove that

$$(1-\alpha)(1-\alpha^2)....(1-\alpha^6)=7.$$

16. Use De Moivre's Theorem to solve the equation

(i)
$$x^4 - x^2 + 1 = 0$$
 (M.U. 1996)

(ii)
$$x^4 + x^2 + 1 = 0$$

[Ans.: (i)
$$\cos(2k+1)\frac{\pi}{6} + i\sin(2k+1)\frac{\pi}{6}$$
, $k=0, 1, 2, 3, 4, 5$.

(ii)
$$x = \cos \frac{2k\pi}{6} + i \sin \frac{2k\pi}{6}$$
, $k = 0, 1, 2, 3, 4, 5.$

Applied Mathematics - I

$$x^{14} + 127 x^7 - 128 = 0.$$

(M.U. 1998)

$$17. \frac{\text{Solve } x}{[\text{Ans.}: } x = 2 \left[\cos(2k+1) \frac{\pi}{7} + i \sin(2k+1) \frac{\pi}{7} \right], x = 0, 1, 2, 3, 4, 5, 6$$

and
$$x = \cos \frac{2k\pi}{7} + i \sin \frac{2k\pi}{7}$$
, $k = 0, 1, 2, 3, 4, 5, 6.$

and
$$x = \cos \frac{\pi}{7} + 7 \sin \frac{\pi}{7}$$
, $x = 0, 1, 2, 0, 4, 5, 0$
18. Show that the roots of $(x - 1)^5 = 32(x + 1)^5$ are given by
$$\frac{2n\pi}{3} = \frac{2n\pi}{3} = \frac{2n\pi}{3$$

Show that the roots
$$4\pi$$
, $x = \left(-3 + 4i\sin\frac{2n\pi}{5}\right) / \left(5 - 4\cos\frac{2n\pi}{5}\right)$.

19. Find all the roots of $x^{12} - 1 = 0$ and identify the roots which are also the roots of $x^4 - x^2 + 1 = 0$.

[Ans.: $x = \cos(2m+1)\frac{\pi}{6} + i\sin(2m+1)\frac{\pi}{6}$,

$$m = 0, 2, 3, 5$$
 give common roots.]

$$20. \text{ If } (1+x)^6 + x^6 = 0 \text{ show that } x = -\frac{1}{2} - i\cot\frac{\theta}{2} \text{ where } \theta = (2k+1)\frac{\pi}{6},$$

$$k = 0, 1, 2, 3, 4, 5.$$
(M.U. 2003)
$$21. \text{ If } (x+1)^6 = x^6, \text{ show that } x = -\frac{1}{2} - i\cot\frac{\theta}{2}, \text{ where } \theta = \frac{2k\pi}{6}, k = 0, 1,$$

22. Show that the continued product of all the values of 2, 3, 4, 5.

(i)
$$(1+i)^{n/3}$$
 is $2(1+i)^{n/3}$ (iv) $(1-i)^{1/5}$ is $1-i$.

23. Find the cube roots of unity. Prove further that if α , β are complex roots then $\alpha^{3n} + \beta^{3n} = 2$ where *n* is any integer.

24. Find the cube roots of $1 - \cos \theta - i \sin \theta$.

[Ans.:
$$\left(2\sin\frac{\theta}{2}\right)^{1/3}\left[\cos\left(\frac{(2n-1)\pi-\theta}{6}\right)+i\sin\left(\frac{(2n-1)\pi-\theta}{6}\right)\right]$$

25. Find all the roots of the equation $z^n = (z + 1)^n$ and show that the real part of all the roots is -1/2.

Use of Exponential Form of a Complex Number 6.

We shall now solve some problems based on Exponential form of a Complex Number. We know that

$$z = x + iy$$
 (Cartesian Form)

$$z = r(\cos \theta + i \sin \theta)$$
 (Polar Form)
 $z = re^{i\theta}$ (Exponential Form)

$$z = re^{i\theta}$$
 (Exponential Form

Note

Note the following representations:

(i)
$$1 = \cos 2n\pi + i \sin 2n\pi = e^{i2n\pi}$$
 (ii) $i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{i\pi/2}$

(iii)
$$\sqrt{i} = \left[\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right]^{1/2} = \left[e^{i\pi/2}\right]^{1/2} = e^{i\pi/4}$$

Class (a): 3 Marks

Example 1 (a): Prove that i^i is real and find the value of $\sin \log_e i^i$.

Sol. : We have
$$i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{i\pi/2}$$

$$i^{i} = (e^{i\pi/2})^{i} = e^{i^{2}\pi/2} = e^{-\pi/2}$$

$$\therefore i^i = e^{-\pi/2}$$

This shows that i^{i} is real.

Now,
$$\operatorname{sinlog} i^i = \operatorname{sinlog}_e(e^{-\pi/2}) = \sin\left(-\frac{\pi}{2}\right) = -1$$

$$\therefore 1 + \sin \log i^i = 0.$$

Similarly, we get
$$\sin \log i^{-i} = 1$$
.

(M.U. 2003)

Cor.:
$$(i^i)^n = (e^{-\pi/2})^n = e^{-n\pi/2}$$

e.g., $i^{3i} = e^{-3\pi/2}$; $i^{-5i} = e^{5\pi/2}$

Example 2 (a) : Separate into real and imaginary parts $(\sqrt{i})^{\sqrt{i}}$.

(M.U. 2004)

Sol. : We shall use exponential form for base \sqrt{i} and standard form for exponent \sqrt{i} .

We have
$$\sqrt{i} = i^{1/2} = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^{1/2}$$

= $\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} + i \cdot \frac{1}{\sqrt{2}}$

Also
$$\sqrt{i} = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^{1/2} = (e^{i\pi/2})^{1/2} = e^{i\pi/4}$$

$$(\sqrt{i})^{\sqrt{i}} = \left\{ e^{i\pi/4} \right\} \left(\frac{1}{\sqrt{2}} + i \cdot \frac{1}{\sqrt{2}} \right) = e^{i\pi/4\sqrt{2}} - \pi/4\sqrt{2}$$

$$= e^{-\pi/4\sqrt{2}} \cdot e^{i\pi/4\sqrt{2}} = e^{-\pi/4\sqrt{2}} \left(\cos \frac{\pi}{4\sqrt{2}} + i \sin \frac{\pi}{4\sqrt{2}} \right)$$

Real part =
$$e^{-\pi/4\sqrt{2}} \cos\left(\frac{\pi}{4\sqrt{2}}\right)$$

Imaginary part = $e^{-\pi/4\sqrt{2}} \sin\left(\frac{\pi}{4\sqrt{2}}\right)$

(For another method see Ex. 3 on page 4-12.)

Example 3 (a): Separate into real and imaginary parts

$$z^z$$
 where $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$.

$$z = \frac{1}{2} + i \frac{\sqrt{3}}{2} = \cos 60^{\circ} + i \sin 60^{\circ}$$

= $\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} = e^{i\pi/3}$

$$z^{2} = (e^{i\pi/3})^{(1/2)+i(\sqrt{3}/2)} = e^{(i\pi/6)-(\pi/2\sqrt{3})}$$

$$= e^{-(\pi/2\sqrt{3})+i(\pi/6)} = e^{-(\pi/2\sqrt{3})} \cdot e^{i\pi/6}$$

$$= e^{-\pi/2\sqrt{3}} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) = e^{-\pi/2\sqrt{3}} \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right).$$

Real part =
$$e^{-\pi/2\sqrt{3}} \cdot \frac{\sqrt{3}}{2}$$
; Imaginary part = $e^{-\pi/2\sqrt{3}} \cdot \frac{1}{2}$.

Example 4 (a): If $i^{i ext{....ad. inf.}} = A + iB$, prove that

$$A^2 + B^2 = e^{i\pi B}$$
 and $\tan\left(\frac{\pi}{2}A\right) = B$. (M.U. 1999, 2002)

Sol.: We have by data $i^{A+iB} = A + iB$

$$\therefore \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^{A+iB} = A + iB$$

:
$$e^{(i\pi/2)(A+iB)} = A+iB$$
 :: $e^{-\pi(B/2)} \cdot e^{i\pi A/2} = A+iB$

$$\therefore e^{-\pi B/2} \left[\cos \left(\frac{\pi}{2} A \right) + i \sin \left(\frac{\pi}{2} A \right) \right] = A + iB.$$

$$\therefore e^{-\pi B/2} \cdot \cos\left(\frac{\pi}{2}A\right) = A \text{ and } e^{-\pi B/2} \cdot \sin\left(\frac{\pi}{2}A\right) = B$$

$$A^2 + B^2 = e^{-\pi B} \text{ and } \tan\left(\frac{\pi}{2}A\right) = \frac{B}{A}.$$

Example 5 (a): Prove that

$$\sqrt{1 + \csc(\theta/2)} = (1 - e^{i\theta})^{-1/2} + (1 - e^{-i\theta})^{-1/2}$$
 (M.U. 2004, 05, 06)

Sol.: We have to show that

$$\sqrt{1 + \csc{\frac{\theta}{2}}} = \frac{1}{\sqrt{(1 - e^{i\theta})}} + \frac{1}{\sqrt{(1 - e^{-i\theta})}}$$

Squaring both sides, we get

$$1 + \csc \frac{\theta}{2} = \frac{1}{1 - e^{i\theta}} + \frac{1}{1 - e^{-i\theta}} + \frac{2}{\sqrt{(1 - e^{i\theta})(1 - e^{-i\theta})}}$$

We shall prove this result.

Now, r.h.s. =
$$\frac{1 - e^{-i\theta} + 1 - e^{i\theta}}{1 - e^{-i\theta} - e^{i\theta} + 1} + \frac{2}{\sqrt{1 - e^{-i\theta} - e^{i\theta} + 1}}$$

$$= 1 + \frac{2}{\sqrt{2 - (e^{i\theta} + e^{-i\theta})}}$$

$$= 1 + \frac{2}{\sqrt{2 - 2\cos\theta}}$$
 [See (6), page 1-11]
$$= 1 + \frac{2}{\sqrt{2(1 - \cos\theta)}} + \frac{2}{\sqrt{4\sin^2(\theta/2)}}$$

$$= 1 + \frac{2}{2\sin(\theta/2)} = 1 + \csc\frac{\theta}{2} = I.h.s.$$

Example 6 (a): If $i^z = z$ where z = x + iy, prove that $|i^z|^2 = e^{-(4n+1)\pi}$ where n = 0, 1, 2, ...(M.U. 1989, 9

Sol.:
$$i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = \cos \left(2n\pi + \frac{\pi}{2} \right) + i \sin \left(2n\pi + \frac{\pi}{2} \right)$$

= $e^{i(2n\pi + (\pi/2))}$, $n = 0, 1, 2, ...$

$$= e^{i(2n\pi + (\pi/2))}, \quad n = 0, 1, 2,$$

$$\therefore i^{z} = e^{i(2n\pi + (\pi/2)) \cdot z} = e^{i(2n\pi + (\pi/2))(x+iy)}$$

$$= e^{i(2n\pi + (\pi/2)) \cdot x} \cdot e^{-(2n\pi + (\pi/2))y}$$

$$\therefore |i^{z}| = e^{-(4n+1)\pi y/2} \quad \therefore |i^{z}|^{2} = e^{-(4n+1)\pi y}$$

EXERCISE - V

Class (a) : 3 Marks

- 1. Prove that i^{-i} is real and hence show that $\sin \log (i^{-i}) = 1$.
- 2. Separate into real and imaginary parts $(\sqrt{-i})^{\sqrt{-i}}$

Ans.:
$$e^{-\pi/4\sqrt{2}} \left(\cos \frac{\pi}{4\sqrt{2}} - i \sin \frac{\pi}{4\sqrt{2}} \right)$$

(M.U. 200

3. Prove that

prove that

(i)
$$\sqrt{1-\csc(\theta/2)} = (1-e^{i\theta})^{-1/2} - (1-e^{-i\theta})^{-1/2}$$

(i) $\sqrt{1-\cos(\theta/2)} = (1+e^{i\theta})^{-1/2} + (1+e^{-i\theta})^{-1/2}$

(i)
$$\sqrt{1-\csc(\theta/2)} = (1-\theta^{-1})^{-1/2} - (1-\theta^{-1})^{-1/2}$$

(ii) $\sqrt{1+\sec(\theta/2)} = (1+\theta^{-1})^{-1/2} + (1+\theta^{-1})^{-1/2}$
(iii) $\sqrt{1+\sec(\theta/2)} = (1+\theta^{-1})^{-1/2} - (1+\theta^{-1})^{-1/2}$

(ii)
$$\sqrt{1 + \sec(\theta/2)} = (1 + \theta^{-1})^{-1/2} + (1 + \theta^{-1})^{-1/2}$$

(iii) $\sqrt{1 - \sec(\theta/2)} = (1 + e^{-1/2})^{-1/2} - (1 + e^{-1/2})^{-1/2}$

EXERCISE - VI

Short Answer Questions : Class (a) : 3 Marks

[Ans.:
$$e^{-\pi/2}$$
]

1. Find the value of i^i .

[Ans.: $\pm 1, \pm i$]

1. Find the value of 7.

2. Find the roots of
$$x^4 = 1$$
.

3. If $x = \cos \theta + i \sin \theta$, find the value of $x^n - \frac{1}{x^n}$. [Ans.: $2i \sin n\theta$]

3. If
$$x = \cos \theta + i \sin \theta$$
, then find the value of $x^6 + \frac{1}{x^6}$.

[Ans.: $2 \cos 6\theta$]

5. If
$$x = e^{i\theta}$$
, $y = e^{-i\theta}$, then find the value of $x^n - y^n$. [Ans.: $2i \sin n\theta$]

5. If
$$x = e^{i\theta}$$
, $y = e^{-i\theta}$, then find the value of $x' - y'$. [Ans.: 27sin $n\theta$]
6. If $x = \cos \theta + i \sin \theta$, $y = \cos \theta - i \sin \theta$, then find the value of $x^n + y^n$.

[Ans.: $2 \cos n\theta$]

[Ans.:
$$\sqrt{2}$$
, $\pi/4$]

7. Find the modulus and amplitude of
$$1 + i$$
. [Ans.: $\sqrt{2}$, $\pi/4$]
8. Find the modulus of $\tan \alpha + i$. [Ans.: $\sec \alpha$]
[Ans.: 2 , $\pi/6$]

8. Find the modulus of tanks [Ans.: 2,
$$\pi/6$$
]
9. Find the modulus and amplitude of $\sqrt{3} + i$.

9. Find
$$\sin \frac{\pi}{3} + i \cos \frac{\pi}{3} = \sin \frac{\pi}{3}$$
 [Ans.: $\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$]

11. Find
$$(\sqrt{i})^{i}$$
.

[Ans.: $e^{-\pi/4}$]

11. Find
$$(\nabla^i)^i$$
.

[Ans. : $-e^2$]

12. Find the real part of \sqrt{i} .

[Ans. : $1/\sqrt{2}$]

12. Find the real part of
$$\sqrt{i}$$
.

[Ans.: $1/\sqrt{2}$]

13. Find the real part of \sqrt{i} .

[Ans.: $-\frac{\pi}{2}$]

14. Find the value of $\log(i^i)$.

14. Find the value of
$$i^{60} + i^{62}$$
. [Ans. : 0]

Summary

1. De Moivre's Theorem

(cos
$$\theta + i \sin \theta$$
)ⁿ = cos $n\theta + i \sin n\theta$
(cos $\theta - i \sin \theta$)ⁿ = cos $n\theta - i \sin n\theta$

Applied Mathematics - I

(2)
$$\frac{1}{(\cos\theta + i\sin\theta)^{n}} = \cos n\theta - i\sin n\theta$$

$$\frac{1}{(\cos\theta + i\sin\theta)^{n}} = (\cos\theta + i\sin\theta)^{-n}$$

$$(\cos\theta - i\sin\theta)^{n} = (\cos\theta + i\sin\theta)^{-n}$$

$$(\cos\theta + i\sin\theta)^{n} = {}^{n}C_{0}\cos^{n}\theta + {}^{n}C_{1}\cos^{n-1}\theta (i\sin\theta)$$

$$+ {}^{n}C_{2}\cos^{n-2}\theta (i\sin\theta)^{2} +$$

$$= [{}^{n}C_{0}\cos^{n}\theta - {}^{n}C_{2}\cos^{n-2}\theta \sin^{2}\theta +]$$

$$+ i[{}^{n}C_{1}\cos^{n-1}\theta - {}^{n}C_{3}\cos^{n-3}\theta \sin^{3}\theta +]$$

$$+ i[{}^{n}C_{1}\cos^{n-1}\theta - {}^{n}C_{3}\cos^{n-3}\theta \sin^{3}\theta +]$$
(3)
$$(\cos\theta + i\sin\theta)^{1/n} = \cos\left(\frac{2k\pi + \theta}{n}\right) + i\sin\left(\frac{2k\pi + \theta}{n}\right)$$

CHAPTER

30300303030303030

Intro In this

and then de how to ser

公公公

Cir

Ву

function