1. Given
$$T_{pq} \Rightarrow \begin{bmatrix} -4 & 2 & 3 \\ 2 & 3 & 1 \\ 4 & 3 & 1 \end{bmatrix}$$
 $u_i \Rightarrow (0, -1, 2)$ $v_i \Rightarrow (1, -2, -3)$

- (a) What index (indices) should be associated with w in each of the following equations:
- (i) $w_? = T_{ik}v_k$ (ii) $w_? = u_kv_p$ (iii) $w_? = T_{km}v_ku_m$ (iv) $w_? = T_{ps}u_p$ (v) $w_? = T_{rs}u_sv_r$ (vi) $w_? = T_{nn}$ (vii) $w_? = T_{pq}T_{qr}$ (viii) $w_? = T_{pq}T_{pr}$ (ix) $w_? = T_{AB}T_{AB}$ (x) $w_? = T_{pq}T_{qp}$
- (b) For each case obtain the set of numbers associated with w₂.
- (c) For each case construct the corresponding matrix expression.
- 2. What is wrong with each of the following indicial equations:

(a)
$$w_i = b_{ik} u_i v_k$$
 (b) $\phi = b_{ik} u_i$ (c) $\phi_{jp} = R_{ijkl} T_{kl} u_p$

Give forms that are correct.

3. Show that the ε - δ identity ε_{ijk} $\varepsilon_{irs} = \delta_{jr}$ $\delta_{ks} - \delta_{js}$ δ_{kr} holds when the free indices assume the following values:

$$(j,k,r,s) = (1,1,1,1), (1,1,1,2), (1,1,1,3), (1,1,2,1), (1,1,2,2), (1,1,2,3)$$
 and $(1,2,2,3)$.

4. Show that the alternating symbol-determinant identity

$$\varepsilon_{ijk}a_{il}a_{jm}a_{kn} = \varepsilon_{lmn} [a]$$

holds when (l, m, n) = (1, 2, 3).

- 5. Using the alternating symbol-determinant identity, prove that the determinant of the product of two matrices equals the product of the determinants of the matrices.
- 6. Use the cofactor matrix approach to find the inverse of [T].