近世代数课后习题作业1部分参考解答

3. 证明: 只须证: 对 $\forall x, y \in S$, 若有 $(a \circ b) \circ x = (a \circ b) \circ y$, 则必有 x = y。

由 结 合 律 知 $(a\circ b)\circ x=a\circ (b\circ x)$, $(a\circ b)\circ y=a\circ (b\circ y)$, 从 而 $a\circ (b\circ x)=a\circ (b\circ y)$,由 a 为左消去元,则有 $b\circ x=b\circ y$,又 b 也为左消去元,所以有 x=y 。

- 4. 证明:由普通加法和乘法满足交换律知所定义的二元运算"。"满足交换律。
- 1) 证(M,o) 为幺半群
- ①由定义知二元运算"。" 显然为M上的一个二元代数运算,即(M, \circ)为一代数系;
- ②又对 $\forall (x_1, y_1), (x_2, y_2), (x_3, y_3) \in M$ 有:

 $((x_1, y_1) \circ (x_2, y_2)) \circ (x_3, y_3) = (x_1, y_1) \circ ((x_2, y_2) \circ (x_3, y_3))$, 即满足结合律。

- ③单位元: 对 $\forall (x, y) \in M$ 有 $(1,0) \circ (x, y) = (x, y) \circ (1,0) = (x, y)$
- 2) 左消去元

$$\boxplus (x_1, x_2) \circ (y_1, y_2) = (x_1y_1 + 2x_2y_2, x_1y_2 + x_2y_1)$$

$$(x_1, x_2) \circ (z_1, z_2) = (x_1 z_1 + 2x_2 z_2, x_1 z_2 + x_2 z_1)$$

若 $(x_1y_1+2x_2y_2,x_1y_2+x_2y_1)=(x_1z_1+2x_2z_2,x_1z_2+x_2z_1)$,则:

$$x_1(y_1-z_1)+2x_2(y_2-z_2)=0$$

$$x_1(y_2-z_2)+x_2(y_1-z_1)=0$$

可得:
$$2x_2^2(y_2-z_2)=x_1^2(y_2-z_2)$$
, 即 $(x_1^2-2x_2^2)(y_2-z_2)=0$

因为
$$x_1^2 - 2x_2^2 \neq 0$$
 ($\sqrt{2}$ 为无理数), 所以 $y_2 - z_2 = 0$, 同理 $y_1 - z_1 = 0$

从而
$$y_2 = z_2$$
, $y_1 = z_1$, 即 $(y_1, y_2) = (z_1, z_2)$ 。

5. 解: 推理不正确: 由 $x^{2(n-k)}x^k = x^n$ 推不出 $x^{2(n-k)} = x^{n-k}$, 这里看不出满足右消去律。

另:作业中证 $x^{2(n-k)} = x^{n-k}$ 的其它错误方法如下(n > k):

$$\mathbb{E} : x^{2(n-k)} = x^{n-k}$$

错误原因: 这里不能保证n-2k>0,从而在半群中元素 x^{n-2k} 可能无意义,因为不能保证半群中一定有逆元素。

这里解决n-2k>0的问题,可以对序列n, k 采用下面的编码:

设|S|=m,对 $\forall x\in S$: 由运算封闭性及结合律均有 $x^{2^0},x^{2^1},x^{2^2},\cdots,x^{2^m}\in S$,从而

 $\exists n, k \in [0,m]$ (设n > k), 使得 $x^{2^n} = x^{2^k}$, 则有:

$$x^{2(2^{n}-2^{k})} = x^{2^{n}+2^{n}-2\cdot 2^{k}} = x^{2^{n}} \circ x^{2^{n}-2\cdot 2^{k}}$$
$$= x^{2^{k}} \circ x^{2^{n}-2\cdot 2^{k}} = x^{2^{k}+2^{n}-2\cdot 2^{k}} = x^{2^{n}-2^{k}}$$

即
$$x^{2(2^n-2^k)} = x^{2^n-2^k}$$
,则有 $x^{(2^n-2^k)} \circ x^{(2^n-2^k)} = x^{(2^n-2^k)}$

//这里可以看出当n > k时, $2^n - 2 \cdot 2^k > 0$ 。

//依次类推, 当n > k 时可将底数换为大于 2 的, 如: $3^n - 2 \cdot 3^k > 0$, $4^n - 2 \cdot 4^k > 0$ 等。

6. 证明: 设(S, \circ) 为有限半群,且|S|=n。设b\inS,则可得: b^1 , b^2 ,..., b^n , b^{n+1} $\in S$ 则由S 的有限性知, $\exists i, j \in [1, n+1]$ 使得 $b^j = b^i$,不妨设j > i,即 j = i + k,k > 0。从而有: $b^i \circ b^k = b^i$,则两边同时连续左乘b 可得 $b^p \circ b^k = b^p$,且满足 $p = q \cdot k$,从而运用递归调用可得 $b^p = (b^p \circ b^k) \circ b^k = b^p \circ b^{2k} = \dots = b^p \circ b^{qk}$,即 $b^p \circ b^p = b^p$,令 $a = b^p$ 即可。

- 7. 证明:
- I. 证(M.*)为半群:
- 1) 由"*"定义知(*M*,*)为代数系;
- 2) 显然"*"满足结合律。

II. 设 e' 为 (M,*) 的单位元,则对 $\forall a \in M$,有 a*e'=e'*a=a ,即 $a \circ m \circ e'=a$, $e' \circ m \circ a=a$,由结合律: $a \circ (m \circ e')=a$, $(e' \circ m) \circ a=a$,由 a 的任意性知 $m \circ e'$ 与 $e' \circ m$ 为 M 关于 " \circ " 运算的左右单位元,而 (M,\circ,e) 为 么 半 群,故有 $m \circ e'=e$, $e' \circ m=e$,则由逆元素的定义知 e' 为 m 关于 " \circ " 运算的逆元素,即为 m 满足的条件。

8. 证明:由"。"的扩充定义知封闭性满足,而且显然有元素u即为扩充后的单位元,因此只需要验证结合律仍然成立即可。

- 9. 证明: 显然(2°,Δ)为代数系:
- 1) 结合律:由集合论知识知集合的对称差运算" Δ "满足结合律,故(2^s , Δ)为半群;//这里结合律可以直接调用,不用再验证。
- 2) 单位元: 对 $\forall A \in 2^{S}$ 有 $\phi \Delta A = A \Delta \phi = A$;
- 3) 逆元: 对 $\forall A \in 2^s$ 有 $A\Delta A = A\Delta A = \phi$, 即为自身。

故 $(2^s, \Delta)$ 为群。

11. 证明: 先证 $x \circ x = x$

由己知得: 对 $\forall x \in S$ 有 $x \circ e_1 = e_1 \circ x = x$, $x * e_2 = e_2 * x = x$

则有
$$x \circ x = (x * e_2) \circ (x * e_2) = x * (e_2 \circ e_2)$$
,下证 $e_2 \circ e_2 = e_2$

因为
$$e_2 = e_1 \circ e_2 = (e_1 * e_2) \circ e_2 = (e_1 \circ e_2) * (e_2 \circ e_2) = e_2 * (e_2 \circ e_2) = e_2 \circ e_2$$

所以 $x \circ x = x * e_2 = x$

再证x*x=x

$$x * x = (x \circ e_1) * (x \circ e_1) = x \circ (e_1 * e_1), \quad \text{Till } e_1 * e_1 = e_1$$

因为
$$e_1 = e_2 * e_1 = (e_1 \circ e_2) * e_1 = (e_1 * e_1) \circ (e_2 * e_1) = (e_1 * e_1) \circ e_1 = e_1 * e_1$$

所以 $x*x=x\circ e_1=x$ 。