Suite Solution Devoir Econométrie

Tests

(v) Effectuer le test de significativité individuelle de Student

D'aprés ce qui précède

$$\hat{y}_{i} = 10.5 - 0.5x_{i1} - 2x_{i2}$$

$$\hat{A} = \begin{bmatrix} \hat{a}_{0} \\ \hat{\mathbf{a}}_{1} \\ \hat{\mathbf{a}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{10.5} \\ -\mathbf{0.5} \\ -\mathbf{2.0} \end{bmatrix}$$

$$\hat{V}_{\hat{A}} = \begin{bmatrix} 25.25 & -7.25 & -5.5 \\ -7.25 & \mathbf{2.75} & \mathbf{1.0} \\ -5.5 & 1.0 & \mathbf{2.0} \end{bmatrix}$$
a) Avec $\mathbf{H}_{0}: a_{1} = 0$ contre $\mathbf{H}_{1}: a_{1} \neq 0$

La statistique du test est $t_c = \frac{|\hat{a}_1|}{\hat{\sigma}(\hat{a}_1)}$ qu'on compare avec $t_{\alpha,n-(p+1)}$ Student de de degré de liberté n-(p+1) où n est le nombre d'observations et p nombre de variables explicatives(p+1 étant le nombre de paramètres)

notre cas n=4, p=2

Calcul: On a: $t_c = \frac{|\hat{a}_1|}{\hat{\sigma}(\hat{a}_1)} = \frac{|-0.5|}{\sqrt{2.75}} = 0.30151$ pour a_1

Notation: $q_{1-\alpha}(T_{\nu=1})$ est le quantile de loi de Student de degré de liberté $\nu=1$ d'ordre 1- α

Lecture la Table: $t_{\alpha,n-(p+1)} = t_{0.05,1} = q_{0.950}(T_1) = 6.314$ pour le test unilatérale

 $t_{\alpha/2,n-(p+1)} = t_{0.025,1} = q_{1-\alpha/2}(T_{\nu=1}) = q_{0.975}(T_1) = 12.706$ pour le test bilatérale

Conclusion

comme $\mathbf{t}_c < t_{\alpha}$ on accepte l'hypothèse \mathbf{H}_0

b) Avec: $H_0: a_2 = 0$ contre $H_1: a_2 \neq 0$

$$t_c = \frac{|\hat{a}_2|}{\hat{\sigma}(\hat{a}_2)} = \frac{|-2|}{\sqrt{2}} = 1.4142$$

Meme conclusion: On accepte H_0 .

(vi) Effectuer le test de significativité globale de Fischer.

 $H_0: a_1 = a_2 = 0$ Aucune variable exogène (explicative) x_1, x_2 n'est pertinente pour expliquer

 $H_1: \exists i=1,2 \text{ tel que } a_i \neq 0 \text{ (une au moins des variables } x_1,x_2 \text{ peut expliquer y)}$

La statistique du test:
$$F_c = \frac{SC \exp/p}{SCresid/n - p - 1} = \frac{CM \exp l}{CMresid}$$
 Calcul:
$$F_c = \frac{SC \exp/p}{SCresid/n - p - 1} = \frac{9.5/2}{4.5/1} = \frac{4.75}{4.5} = 1.0556$$

$$\frac{CM \exp l}{CMresid} = \frac{4.75}{4.5} = 1.0556$$

Qu'on compare avec F_t =Fisher(p,n-p-1)

Lecture Table

 F_t =Fisher(p,n-p-1)=F(2,1) Distribution Théorique sous H_0

$$F_{\alpha=0.05}(2,1) = 198$$

Conclusion:

comme $F_c < F_t$ On accepte H_0 .

Concusion générale:

Le choix de x_1 et x_2 pour expliquer y **est mauvais.**

(vii) Effectuer le test de Durbin Watson(D.W)

Le test de Durbin Watson cherche à vérifier la significativité du coefficient de corrélation ρ

 H_0 :Corrélation nulle $\rho=0$

contre $H_1: \rho \neq 0$

La statistique du test DW=
$$\frac{\sum_{i=2}^{n} (\epsilon_i - \epsilon_{i-1})}{\sum_{i=1}^{n} \epsilon_i^2}$$

calcul:
$$\epsilon = Y - \hat{Y} = \begin{bmatrix} 6 \\ 4 \\ 5 \\ 9 \end{bmatrix} - \begin{bmatrix} i=1 \\ 7 \\ 3.5 \\ 6 \\ 7.5 \end{bmatrix} = \begin{bmatrix} -1 \\ 0.5 \\ -1 \\ 1.5 \end{bmatrix}$$

$$\epsilon_i \quad \epsilon_{i-1} \quad (\epsilon_i - \epsilon_{i-1})^2 \quad \epsilon_i^2$$

$$0.5 \quad -1 \quad (1.5)^2 = 2.25 \quad 0.25$$

$$-1 \quad 0.5 \quad (-1.5)^2 = 2.25 \quad 1$$

$$1.5 \quad -1 \quad (2.5)^2 = 6.25 \quad 2.25$$

$$\sum$$
 10.75 4.50

$$DW = \frac{\sum_{i=2}^{n} (\epsilon_i - \epsilon_{i-1})^2}{\sum_{i=1}^{n} \epsilon_i^2} = \frac{10.75}{4.50} = 2.3889$$

Remarque: la table commence à partir de n=6.On ne dispose pas de la valeur pour la statistique de Durbbin Watson dw

Néamons on peut faire la conclusion suivante selon la valeur de dw.

Notation: d_L la valeur inférieur(Lower value)

 d_U valeur supérieur(uper value)

 $d_L < d_U$

Conclusion: On a: $DW=dw \in (0,4)$ Le bon modèle est celui où dw est proche de 2

Les variables sont bien spécifiées lorsque DW=dw \in (d_U, 4-d_U)c'est où dw est proche de

2: Absence d'autorrélation des erreurs (un bon modèle)

Remarque:

L'Existence d'autocorrélation des erreurs positive ou négative **signifie** qu'il y'a un problème dans le modèle(Mauvais Modèle)

Pour remedier ou réparer cette anomalie on augmente n la taille de l'échantillon.