TRANSMITTER ARCHITECTURES FOR HIGH EFFICIENCY AMPLIFICATION

using

PowerSDR software and Hermes firmware

Ruediger Moeller/callsign DJ1MR 2018

The dissipated heat dilemma

- Legacy linear RF power amplifiers consume large amounts of energy,
- dissipate heat take up space in RF power amplifiers,
- large heatsinks are increasing the weight and the expenses of the PA,
- fans are generating often too much noise,
- Significantly more efficient PA technology will be the future goal
- Basic requirements for future power amplifier technology
 - high linearity,
 - high efficiency
 - smaller dimensions
 - greater output power levels

1. Supply Modulated Transmitters

Principles of Supply Modulated Transmitters

- Envelope Elimination and Restoration (EER), (Kahn technique)
- Hybrid Envelope Elimination and Restoration (H-EER)
- Envelope Tracking (ET).
- EER
- EER technique combines a highly efficient, but nonlinear RF PA with a highly efficient envelope amplifier to implement a high-efficiency linear RF PA.
 - □ In its classic form, a limiter eliminates the envelope and allowing the constant-amplitude phase modulated carrier to be amplified efficiently by class-C, class-D, class-E, or class-F RF PAs.
 - Amplitude modulation of the final RF PA restores the envelope to the phase-modulated carrier creating an amplified replica of the input signal.

Transmitter based upon the Kahn EER technique

Principles of supply-modulated transmitters

ET

- the input signal of the PA is not a constant envelope signal with phase information but a complex-signal envelope
- the ET transmitter has advantages of the H-EER transmitter, such as less precise time alignment between the envelope and RF paths.
- the envelope signal injected into the PA is no longer the original envelope and is adjusted for optimized performance
- V-offset is a bit greater than the knee voltage of the power mosfets and the severely nonlinear behavior caused by nonlinear capacitance impedance mismatch of the PA is prevented
- traditionally, linear PAs such as class-AB amplifiers, are utilized in ET transmitters to obtain good linearity with high efficiency
- the burden of sufficient IMD3 lays only on the HEPA

Transmitter based upon ET technique

Modulation schemes of the power supply

- Caracteristic modulation lines
- red dashed: conventional EER/H-EER Shaping Function, increases linearly
- green continuous: starts with Uknee offset value is one Type of ET Shaping Function

2. Pulse Width Modulation (PWM) using Hermes and PowerSDR software

PWM principles, PWM spectrum

- The width of pulses is varied in proportion to the instantaneous amplitude of the SSB envelope
- The digital PWM signal has more bandwidth than the original SSB signal (25 to 32 KHz)
- Around the switching carrier and the harmonic carriers you see also the digital PWM LSB and USB

Getting PWM from Hermes board on J14/Pin2

Circuit diagram PWM adapter

PWM Two Tone and Analog PWM Envelope Signal

Digital 5 volts PWM

Filtered Analog Envelope Signal

EER menu in Power SDR software

PWM control function in PowerSDR

EER Mode

ET Mode

ET Mode

ET Mode

Time alinment between Envelope and Phase

Two types of SSB Phase Signals

Amplitude Modulate IQ

Amplitude Modulate Phase Signal

Amplitude Modulate IQ

Constant Amplitude Phase Signal

PWM Class S-modulator

- In PWM the most widely used high-level modulator is class S
- A transistor and diode act as a two-pole switch to generate a rectangular waveform with a switching frequency several times that of the output signal (for instance 240 KHz and higher).

- The width of pulses is varied in proportion to the instantaneous amplitude of the desired output signal, which is recovered by a low-pass filter.
- Class S is ideally 100% efficient and it can have high efficiency over a wide dynamic range.

Gen 2 PWM circuit diagram for Hermes transceivers

PWM-30-12-2017

Impulses on HS PIN UCC27714

Gen 2 1KW PWM Prototype

PWM control driver modul

Realized 160 m - 6 m 1 KW ET amplifier

IMD3 with linearity 750 W out

nHPSDR mRX PS v3.4.9 (3/19/18)

Linearity correction with PowerSDR

- AmpView ET PA 750 Watt
- No memory effect

3. Helpful entry in PWM technology using CREE Evaluation Boards

CREE Evaluation Board for Buck Converter

KIT8020-CRD-5FF0917P-2

Evaluation Board for Cree's SiC MOSFET in a TO-247-4 Package

Figure 5. Block Diagram of Cree KIT8020-CRD-5FF0917P-2 evaluation board

CREE Evaluation Board for Buck Converter

Figure 2. CRD8FF1217P-1 Block diagram with ACPL-W346

Full bridge converter with two CREE boards

Option Seven:

H bridge topology configuration using two EVL boards

- Full bridge converter with Phase shift or resonant
- single phase DC/AC inverter

Usable Carbide Power Mosfets from CREE

Usable Carbide Power Mosfets from CREE

CREE 🕏

C3M0065100K

Silicon Carbide Power MOSFET C3M MOSFET Technology

N-Channel Enhancement Mode

Features

- New C3M[™] SiC MOSFET technology
- Optimized package with separate driver source pin
- 8mm of creepage distance between drain and source
- High blocking voltage with low on-resistance
- High-speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Q_{rr})
- Halogen free, RoHS compliant

Benefits

- Reduce switching losses and minimize gate ringing
- · Higher system efficiency
- · Reduce cooling requirements
- Increase power density
- Increase system switching frequency

Applications

- · Renewable energy
- EV battery chargers
- High voltage DC/DC converters
- Switch Mode Power Supplies

\mathbf{V}_{DS}	1000 V
I _D @ 25°C	35 A
$\boldsymbol{R}_{\mathrm{DS(on)}}$	65 mΩ
_	

Package

Part Number	Package	Marking
C3M0065100K	TO 247-4	C3M0065100K

4. Optional: Switch Mode PA technology

Switch mode PA technology

- the main idea behind switch-mode PA technology is to operate the transistor in saturation,
- either voltage or current, depending on amplifier class, is switched on and off.
- For our discussion of fundamental properties,
 - the transistor can be replaced by a switch.
 - □ when the switch is open, only voltage is present over the transistor.
 - when closed, current flows through it.
- Since there is no overlap in time between voltage and current, power is not dissipated and one obtains 100% theoretical efficiency.

Class E RF amplifier

Class E RF amplifier simulation with Tonne freeware

E-RF Power amplifier 750 Watt 80 meters

Prototype E-RF power amplifier 750 Watt 80 meters

E RF amplifier coupled with PWM

PCB layout E RF power amplifier

EER-PA DJ1MR 100×160 mm für 80 Meter

IMD3-E RF power amplifier 750 Watt out without PD

Basic requirements on switch mode Rf amp

- In reality, a transistor is not a perfect switch and overlap does, in fact, limit efficiency.
- In the switch-mode power amplifier, an output resonator helps to shape the waveform by blocking harmonic components of the voltage and current and to keeps these components from reaching the load.
- Consequently, only fundamental current is passed to the load and only fundamental voltage is generated over the resonator.
- A flywheel effect is created generating sinusoidal voltage and current in the load.

Class-E/F Family of ZVS switching amplifiers

The new class-E/F amplifier family is a method of achieving such a hybrid tuning between E and F-1.

Circuit diagram 800 watts E/F power amplifier

PA Endstufe 3,7 MHz/1KW DJ1MR 14.02.2014

auf 3,7 MHz Resonanz abgleichen bei 120 Volt

zum Vortreiber

Some design problems of E/F switching power ampl.

- practical PA design problem is the nonlinear behavior of the output capacitance as a function of the supply voltage
- allows proper output matching only for a limited drain voltage range.
- Tank circuit Q, capacitively or magneticly coupled 1:1 to the load,
- means Q=3,6
 - Very high RF current in the tank circuit
- egress coupling balanced to unbalanced with Guanella transformer
- low pass filtering, diplex circuit
- ingress matching with LC lpf to compensate the gate-source capacity of the power mosfets
- overvoltage protection

Realzed 80 meters 800 watts EF switching amplifier

Circuit diagram of a two stage driver amplifier

two stage driver amplifier

Priver signals in limiting mode

limited 80 meter carrier

limited two-tone signal

THANK YOU

QUESTIONS?

- URL for more information:
- http://www.dl0sdr.de/forum/