# LC Introduction to Probability and Statistics

MSci Physics w/ Particle Physics and Cosmology University of Birmingham

> Year 1, Semester 1 Ash Stewart

# Lectures Index

| Lecture 1: | Introdution and Descriptive Statistics | <br> | <br>1 |
|------------|----------------------------------------|------|-------|
| Lecture 2: | Population Statistics                  | <br> | <br>2 |

#### Wed 01 Oct 2025 12:00

## Lecture 1 - Introdution and Descriptive Statistics

#### Course Welcome

• First half of the semester: Statistics

• Second hald the of semester: Probability

• All slides and notes on Canvas.

Why Descriptive Statistics? If we want to share an interesting bit of data, sharing the whole data is going to be confusing. Instead, we can share a small number of stats which describe and summarise the data.

### Sample Statistics

One of the most simple is the number of samples (N), and the sample mean:

Sample Mean: 
$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

We can also calculate the sample standard deviation as the average of mean squared error across the points in the sample:

Sample STDev: 
$$s_n^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

We can also use median or mode as measures of central tendancy. The mode is a poor estimator however (as it massively depends on how binning is done, for a continuous measurement), while the median is more resistant to outliers.

Thu 02 Oct 2025 09:00

## Lecture 2 - Population Statistics

#### Accuracy and Precision

We usually take measurements to determine some kind of true value. Usually, we can't actually know what this true value is, but if we could there are two bits of terminology that is particularly important:

Accuracy: Accuracy is the 'closeness' between our value and the 'true' value.

**Precision:** Precision is the 'closeness' between our measurements, i.e. how spread out are our various measurements.

## Error

Random Error: is uncertainty related to the fact that our measurements are only a finite sample, so is not going to be immediately representative of the true value. The smaller this error, the more precise the measurement is.

Systematic Error: is related to some kind of issue with the measurement or the equipment. This shifts all values, and negatively affects accuracy (but leaves precision unchanged)

Taking many repeat measurements decreases the effects of random error, but the effects of systematic error are much harder to combat.

Ideally, we want to be both precise and accurate, however accuracy is arguably more important. This is because a value which is precise, but not accurate may lead to false conclusions around the inaccurate value.