Exercise 2

2.1 Circuit for comparing two numbers (7pt)

In class you have seen an algorithm and a logical ciruit for the equality function on two n-bit numbers x and y.

a) Extend the algorithm so that it computes also which number is bigger and generates the following two-bit output:

$$bigger(x,y) = \begin{cases} (1,0) & \text{if } x > y \\ (0,1) & \text{if } x < y \\ (1,1) & \text{if } x = y \end{cases}$$

Hint: Compare the two numbers bit by bit, starting with the most significant bit.

b) Describe the corresponding circuit.

2.2 Homomorphic encryption (3pt)

Consider the Textbook-ElGamal encryption scheme for messages in a cyclic group $\mathbb G$ and the Textbook-RSA encryption scheme with public key N for messages in $\mathbb Z_N^*$. Both schemes have a homomorphic property that allows computing with encrypted messages. In other words, anyone can take two messages m_1 and m_2 encrypted under the same key and create a proper encryption of another message m_3 , using only the public key and the public parameters. Formally, there are operations \otimes and \oplus such that

$$\mathsf{Enc}(pk,m_1)\otimes \mathsf{Enc}(pk,m_2) \ = \ \mathsf{Enc}(pk,m_1\oplus m_2).$$

Notice that $m_1 \oplus m_2 = m_3$ does not necessarily have any meaning. For each of ElGamal and RSA, describe the operations \otimes and \oplus .