[STAT 4400] Exam-1

Michael Ghattas

2/22/2022

Part 1:

(1)

True

(2)

False

(3)

True

(4)

True

(5)

False

(6)

True

(7)

True

(8)

True

(9)

True

(10)
False
(11)
True
(12)
False
(13)
False
(14)
True
(15)
False
(16)
True
(17)
True (IF by reflects we mean cause! As discussed with Bhawneet.)
(18)
True
(19)
False
(20)

False (Correlated Explanatory Variables: If there are very many variables, it is likely that they will be highly correlated, meaning that some variables or sets of variables are measuring similar things. As discussed with Bhawneet.)

Part 2:

Problem - 1

```
library(ggplot2)
head(msleep)
## # A tibble: 6 x 11
             genus vore order conservation sleep total sleep rem sleep cycle
     name
##
awake
             <chr> <chr> <chr> <chr> <chr>
##
     <chr>>
                                                     <dbl>
                                                                <dbl>
                                                                             <dbl>
<dh1>
## 1 Cheetah Acin... carni Carn... lc
                                                      12.1
                                                                 NΑ
                                                                            NΑ
11.9
## 2 Owl mo... Aotus omni Prim... <NA>
                                                      17
                                                                  1.8
                                                                            NΔ
                                                      14.4
## 3 Mounta... Aplo... herbi Rode... nt
                                                                  2.4
                                                                            NA
9.6
## 4 Greate... Blar... omni Sori... lc
                                                      14.9
                                                                  2.3
                                                                             0.133
9.1
## 5 Cow
             Bos
                    herbi Arti... domesticated
                                                       4
                                                                  0.7
                                                                             0.667
20
## 6 Three-... Brad... herbi Pilo... <NA>
                                                                  2.2
                                                                             0.767
                                                      14.4
## # ... with 2 more variables: brainwt <dbl>, bodywt <dbl>
(1)
df <- na.omit(msleep)</pre>
lmod = lm(sleep total ~ brainwt, data = df)
ggplot(df, aes(brainwt, sleep_total, color = name)) +
  geom point() +
  geom_smooth(method = lm, color = "red") +
  theme_bw() + xlab("Average Brain Weight in KG") +
                                                       ylab("Total Amount of
Sleep in Hrs") +
  ggtitle("Sleep Times vs. Average Brain Weights")
## `geom smooth()` using formula 'y ~ x'
```



```
## -2.356e-15 -4.496e-16 1.575e-16 5.642e-16 1.660e-15
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.400e+01 8.801e-16 2.727e+16 < 2e-16 ***
## awake
             -1.000e+00 7.642e-17 -1.309e+16 < 2e-16 ***
## bodvwt
          -1.090e-16 3.313e-17 -3.289e+00 0.00497 **
## sleep cycle 5.005e-15 1.652e-15 3.029e+00 0.00846 **
## awake:bodywt 4.777e-18 1.608e-18 2.970e+00 0.00953 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.046e-15 on 15 degrees of freedom
## Multiple R-squared:
                          1, Adjusted R-squared:
## F-statistic: 8.968e+31 on 4 and 15 DF, p-value: < 2.2e-16
plot(lmod)
```


Fitted values Im(sleep_total ~ awake + +bodywt + awake:bodywt + sleep_cycl

Theoretical Quantiles Im(sleep_total ~ awake + +bodywt + awake:bodywt + sleep_cycl

Im(sleep_total ~ awake + +bodywt + awake:bodywt + sleep_cycl

Im(sleep_total ~ awake + +bodywt + awake:bodywt + sleep_cycl

```
lmod = lm(logitSR ~ log(brainwt), data = df)
summarv(lmod)
##
## Call:
## lm(formula = logitSR ~ log(brainwt), data = df)
##
## Residuals:
##
        Min
                  10
                        Median
                                     30
                                             Max
## -0.034601 -0.002356 0.001764 0.004298 0.013635
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
               ## (Intercept)
## log(brainwt) -0.0029465 0.0009222 -3.195 0.00502 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01004 on 18 degrees of freedom
## Multiple R-squared: 0.3619, Adjusted R-squared: 0.3264
## F-statistic: 10.21 on 1 and 18 DF, p-value: 0.005018
```

Interpreting the results of our coefficients, we can see a negative correlation between the brain weight of the animal and the amount of sleep. For every additional KG of weight, there is a decrease of approximately 0.3% of sleep time needed per 24 hours.

```
df$sleep_ratio <- (df$sleep_ratio * 24)
lmod = lm(sleep_total ~ sleep_ratio, data = df)
coef(lmod)

## (Intercept) sleep_ratio
## 3.177644e-15 1.000000e+00

logitSR = (1 / (1 + exp(-1 * (3.177644e-15 + (1.000000e+00 *
df$sleep_ratio))))); logitSR

## [1] 0.9999997 0.9820138 0.9999589 0.9999173 0.9999963 0.9998883 1.0000000
## [8] 1.0000000 1.0000000 0.9478464 0.9999589 0.9999963 0.9999994 0.99999963
## [15] 0.9997752 0.9999977 0.99997752 0.9999990 0.9998883 0.9878716</pre>
```

```
lmod = lm(logitSR ~ log(brainwt), data = df)
summarv(lmod)
##
## Call:
## lm(formula = logitSR ~ log(brainwt), data = df)
##
## Residuals:
##
        Min
                  10
                       Median
                                     30
                                             Max
## -0.034601 -0.002356 0.001764 0.004298 0.013635
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
               ## (Intercept)
## log(brainwt) -0.0029465 0.0009222 -3.195 0.00502 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01004 on 18 degrees of freedom
## Multiple R-squared: 0.3619, Adjusted R-squared: 0.3264
## F-statistic: 10.21 on 1 and 18 DF, p-value: 0.005018
```

We can see that returning from 24 hors to hours do not change our results and mantain the sleep time between 0 and 24, though never reaching 0 or 24.

```
(4)
```

```
ggplot(df, aes(log(df$brainwt), df$sleep_ratio)) +
    geom_point() +
    geom_smooth(method = lm, color = "red") +
    theme_bw() + xlab("Brain Weight in e^(KG)") + ylab("Total Sleep in Hrs")
+
    ggtitle("Sleep Time per Day vs. Log(Brain Weight)")
## Warning: Use of `df$brainwt` is discouraged. Use `brainwt` instead.
## Warning: Use of `df$sleep_ratio` is discouraged. Use `sleep_ratio` instead.
## Warning: Use of `df$brainwt` is discouraged. Use `brainwt` instead.
```

Warning: Use of `df\$sleep_ratio` is discouraged. Use `sleep_ratio`
instead.

`geom_smooth()` using formula 'y ~ x'

Sleep Time per Day vs. Log(Brain Weight)

Problem - 2

homeheat = read.csv('/Users/Home/Documents/Michael_Ghattas/School/CU_Boulder/
2022/Spring 2022/STAT - 4400/Data/homeheat.csv')
head(homeheat)

idcase depvar ic.gc ic.gr ic.ec ic.er ic.hp oc.gc oc.gr oc.ec oc.er ## 1 1 gc 866.00 962.64 859.90 995.76 1135.50 199.69 151.72 553.34 505.60 ## 2 2 gc 727.93 758.89 796.82 894.69 968.90 168.66 168.66 520.24 486.49

```
## 3
                gc 599.48 783.05 719.86 900.11 1048.30 165.58 137.80 439.06
          3
404.74
## 4
                er 835.17 793.06 761.25 831.04 1048.70 180.88 147.14 483.00
          4
425.22
                er 755.59 846.29 858.86 985.64 883.05 174.91 138.90 404.41
## 5
          5
389.52
                gc 666.11 841.71 693.74 862.56 859.18 135.67 140.97 398.22
## 6
          6
371.04
      oc.hp income agehed rooms region
##
## 1 237.88
                 7
                       25
                               6 ncost1
## 2 199.19
                 5
                       60
                               5 scostl
## 3 171.47
                 4
                       65
                               2 ncost1
## 4 222.95
                 2
                       50
                              4 scostl
## 5 178.49
                 2
                       25
                               6 vallev
## 6 209.27
                               7 scostl
                 6
                       65
(1)
library("mlogit")
## Loading required package: dfidx
##
## Attaching package: 'dfidx'
## The following object is masked from 'package:stats':
##
##
       filter
H <- dfidx(homeheat, choice = "depvar", varying = c(3:12))</pre>
m <- mlogit(depvar ~ ic + oc | 0, H)
summary(m)
##
## Call:
## mlogit(formula = depvar ~ ic + oc | 0, data = H, method = "nr")
##
## Frequencies of alternatives:choice
##
         ec
                  er
                            gc
                                     gr
## 0.071111 0.093333 0.636667 0.143333 0.055556
```

```
##
## nr method
## 4 iterations, 0h:0m:0s
## g'(-H)^-1g = 1.56E-07
## gradient close to zero
##
## Coefficients :
## Estimate Std. Error z-value Pr(>|z|)
## ic -0.00623187  0.00035277 -17.665 < 2.2e-16 ***
## oc -0.00458008  0.00032216 -14.217 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -1095.2</pre>
```

Yes, the t-statistics are greater than 1.96, which is the critical level for 95% confidence level.

```
(2)
coef(m)["oc"]/coef(m)["ic"]
## oc
## 0.7349453
```

The model implies that the decision-maker is willing to pay 73 cents in higher installation cost in order to reduce annual operating costs by \$1.

```
(3)
mc <- mlogit(depvar ~ ic + oc, H, reflevel = 'hp')</pre>
summary(mc)
##
## Call:
## mlogit(formula = depvar ~ ic + oc, data = H, reflevel = "hp",
       method = "nr")
##
##
## Frequencies of alternatives:choice
         hp
                   ec
                            er
                                      gc
                                               gr
## 0.055556 0.071111 0.093333 0.636667 0.143333
##
```

```
## nr method
## 6 iterations, 0h:0m:0s
## g'(-H)^-1g = 9.58E-06
## successive function values within tolerance limits
##
## Coefficients :
##
                   Estimate Std. Error z-value Pr(>|z|)
## (Intercept):ec 1.65884594 0.44841936 3.6993 0.0002162 ***
## (Intercept):er 1.85343697 0.36195509 5.1206 3.045e-07 ***
## (Intercept):gc 1.71097930 0.22674214 7.5459 4.485e-14 ***
## (Intercept):gr 0.30826328 0.20659222 1.4921 0.1356640
## ic
                -0.00153315    0.00062086    -2.4694    0.0135333 *
                ## oc
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -1008.2
## McFadden R^2: 0.013691
## Likelihood ratio test : chisq = 27.99 (p.value = 8.3572e-07)
applv(fitted(mc, outcome = FALSE), 2, mean)
          hp
                    ec
                               er
                                         gc
## 0.05555556 0.07111111 0.09333333 0.63666667 0.14333333
```

Exact match: alternative-specific constants in a logit model insure that the average probabilities equal the observed shares.

```
## oc
## 0.2191356
```

The willingness to pay is USD(4.56) for a \$1 year stream of savings. The decision-maker applies a 22% discount rate, thus the results are certainly more reasonable than in the previous model.

```
(5)
Hn <- H
Hn[idx(Hn, 2) == "hp", "ic"] <- 0.88 * Hn[idx(Hn, 2) == "hp", "ic"]
apply(predict(mc, newdata = Hn), 2, mean)

## hp ec er gc gr
## 0.06640050 0.07031239 0.09228286 0.62933328 0.14167096
```

The share is predicted to rise to about 6.64% when rebates are given.

```
(6)
plot1 = ggplot(homeheat, aes(ic.gc + ic.gr + ic.ec + ic.er + ic.hp, oc.gc +
oc.gr + oc.ec + oc.er + oc.hp, color = idcase)) +
geom_point() +
geom_smooth(method = lm, color = "red") +
theme_bw() + xlab("Installation Cost") + ylab("Annual Operating Cost") +
ggtitle("Installation vs. Operational Cost")

plot2 = ggplot(homeheat, aes(agehed, income)) +
geom_point(shape = 21, color = "darkgoldenrod4", fill = "darkgoldenrod3",
size = 5) +
theme_light() + xlab("Age") + ylab("Income Class") +
ggtitle("House-Head Age vs. Income Class")

library(gridExtra)
grid.arrange(plot1, plot2, ncol = 2)
## `geom_smooth()` using formula 'y ~ x'
```

