Algebra 2 Chapter 2 Assignment (Focus on Proofs)

Problems

- 21. Prove: If $b \neq 0$ and $d \neq 0$, then $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

 (Hint: Use Exercise 20. We will assume Exercise 20 is the property that for $b \neq 0, d \neq 0$, it has been proven that $\frac{1}{b} \cdot \frac{1}{d} = \frac{1}{bd}$.)
 - 1. Definition of Division
 - $\frac{a}{b} \cdot \frac{c}{d} = a \cdot \frac{1}{b} \cdot c \cdot \frac{1}{d}$
 - 2. Commutative Property
 - $a \cdot \frac{1}{b} \cdot c \cdot \frac{1}{d} = ac \cdot \frac{1}{b} \cdot \frac{1}{d}$
 - 3. Previous Property (From Exercise 20)
 - $ac \cdot \frac{1}{b} \cdot \frac{1}{d} = ac \cdot \frac{1}{bd}$
 - 4. Commutative Property
 - $ac \cdot \frac{1}{bd} = \boxed{\frac{ac}{bd}}$
- 22. Prove: If $c \neq 0$ and $d \neq 0$, then $\frac{1}{\frac{c}{d}} = \frac{d}{c}$.
 - 1. Definition of Division
 - $\frac{1}{\frac{c}{d}} = \frac{1}{c \cdot d^{-1}}$
 - 2. Previous Property (From Exercise 20)

$$\frac{1}{c \cdot d^{-1}} = \frac{1}{c} \cdot \frac{1}{d^{-1}} = \frac{1}{c} \cdot (d^{-1})^{-1}$$

- 3. Proving Inverse of an Inverse
- $d^{-1} \cdot (d^{-1})^{-1} = 1$ (Multiplicative Inverse Property)
- $d^{-1} \cdot d = 1$ (Multiplicative Inverse Property)

Thus, $(d^{-1})^{-1}$ and d are equivalent.

4. Inverse of an Inverse and Commutative Property

$$\frac{1}{c} \cdot (d^{-1})^{-1} = \frac{1}{c} \cdot d = \boxed{\frac{d}{c}}$$

- 23. Prove: If $b \neq 0$, $c \neq 0$ and $d \neq 0$, then $\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$.
 - 1. Commutative Property

$$\frac{a}{b} \div \frac{c}{d} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{1}{\frac{c}{d}}$$

- 2. Previous Property (From Exercise 22)
- $\frac{a}{b} \cdot \frac{1}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c}$
- 3. Previous Property (From Exercise 21)

$$\frac{a}{b} \cdot \frac{d}{c} = \boxed{\frac{ad}{bc}}$$

Solutions

Proof for Exercise 21

Statements	Reasons
1. $b \neq 0$ and $d \neq 0$	1. Given
2. $\frac{a}{b} = a \cdot \frac{1}{b}$ and $\frac{c}{d} = c \cdot \frac{1}{d}$	2. Definition of division
3. $\frac{a}{b} \cdot \frac{c}{d} = \left(a \cdot \frac{1}{b}\right) \cdot \left(c \cdot \frac{1}{d}\right)^d$	3. Substitution
$4. = (a \cdot c) \cdot \left(\frac{1}{b} \cdot \frac{1}{d}\right)$	4. Commutative and Associative properties of
	multiplication
$5. = ac \cdot \frac{1}{bd}$	5. Assumed from Exercise 20
$6. = \frac{ac}{bd}$	6. Definition of division
$7. \ \therefore \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$	7. Transitive property of equality

Proof for Exercise 22

StatementsReasons1. $c \neq 0$ and $d \neq 0$ 1. Given2. $\frac{1}{\frac{c}{d}} = 1 \div \frac{c}{d}$ 2. Definition of fraction bar as division3. The reciprocal of a nonzero number x is $\frac{1}{x}$. The reciprocal of $\frac{c}{d}$ is $\frac{1}{\frac{c}{d}}$.3. Definition of a reciprocal.4. $\frac{c}{d} \cdot \frac{d}{c} = \frac{cd}{dc} = 1$ 4. Proof from exercise 21.5. The reciprocal of $\frac{c}{d}$ is $\frac{d}{c}$ 5. Definition of a reciprocal $(a \cdot b = 1)$ 6. $\frac{1}{\frac{c}{d}} = \frac{d}{c}$ 6. Substitution

Proof for Exercise 23

Statements	Reasons
1. $b \neq 0, c \neq 0, d \neq 0$	1. Given
$2. \ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{1}{\frac{c}{d}}$	2. Definition of division
3. $\frac{1}{\frac{c}{d}} = \frac{d}{c}$	3. Result from Exercise 22
4. $\frac{\ddot{a}}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$ 5. $= \frac{ad}{bc}$	4. Substitution
$5. = \frac{ad}{bc}$	5. Result from Exercise 21
$6. \therefore \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$	6. Transitive property of equality