Trabalho 1 - Heurísticas e Metaheurísticas

```
#define TRABALHO 1
#define PROFESSOR "Guilherme Pena"
#define ESTUDANTE "Gabriel de Paula"
```

Metaheurísticas

Três metaheurísticas foram desenvolvidas para resolver dois problemas clássicos de otimização combinatória: o TSP (Problema do Caixeiro Viajante) e o KP (Problema da Mochila).

Simulated Annealing

Um algoritmo de otimização inspirado no processo de resfriamento de metais, que busca minimizar uma função de custo explorando soluções de forma probabilística, aceitando até mesmo soluções piores temporariamente para evitar ficar preso em ótimos locais.

Parâmetros	Temperatura Inicial	Temperatura Mínima	Coeficiente de Resfriamento	Iterações
Constantes	T_INICIAL	T_MINIMO	А	SA_ITERACOES

Busca Tabu

Uma técnica de otimização iterativa que utiliza uma lista de movimentos proibidos (tabu) para evitar ciclos e explorar o espaço de soluções de forma mais eficiente, frequentemente usada em problemas de otimização combinatória.

Parâmetros	Iterações	Tamanho da Lista Tabu
Constantes	ITERACOES	LISTA_TABU_MAX

GRASP

Um algoritmo de busca heurística que combina duas fases: uma construção gulosa, que constrói uma solução de forma iterativa, e uma fase de aprimoramento, que tenta melhorar a solução utilizando técnicas de busca local.

Parâmetros	Iterações GRASP	Iterações Busca Local	Coeficiente de Aceitação
Constantes	ITERACOES_GRASP	ITERACOES_BUSCA_LOCAL	A

Compilar todos os executáveis em modo otimizado:

make

Compilar todos os executáveis em modo otimizado, imprimindo todas as soluções aceitas:

make debug

Programas gerados:

Algoritmo	Problema	Programa
Simulated Annealing	TSP	sa-tsp
Simulated Annealing	KP	sa-kp
Busca Tabu	TSP	bt-tsp
Busca Tabu	KP	bt-kp
GRASP	TSP	grasp-tsp
GRASP	KP	grasp-kp

Para executar um programa é necessário fornecer os valores numéricos dos parâmetros conforme indicado anteriormente.

```
./bin/<programa> <parametro1> <...> <parametroN>
```

Exemplo de como executar um programa 50 vezes para gerar relatórios:

```
for i in {1..50}; do ./bin/crame < color < colo
```

Resultados

Solução ótima TSP (min) = 426

Solução ótima KP (max) = **9147**

Simulated Annealing - TSP

É possível observar uma característica comum entre os melhores resultados obtidos: Coeficiente de redução de temperatura próximo de 1 e número máximo de iterações.

Parâmetros	Valor médio	Tempo médio
(100, 0.1, 0.999, 100)	453.38	0.6234 s
(1000, 0.001, 0.999, 100)	457.02	1.2246 s
(10000, 0.1, 0.999, 100)	458.39	1.0618 s
(10000, 0.01, 0.999, 100)	455.42	1.2613 s
(10000, 0.001, 0.999, 100)	459.19	1.4437 s

Contudo, é possível obter bons resultados com tempos médios de execução menores reduzindo o valor da temperatura inicial.

Parâmetros	Valor médio	Tempo médio
(100, 0.1, 0.999, 50)	469.69	0.3269
(100, 0.1, 0.999, 100)	453.38	0.6234
(100, 0.01, 0.999, 50)	468.25	0.4218
(100, 0.01, 0.999, 100)	463.18	0.8081
(100, 0.001, 0.999, 50)	469.77	0.5100