Конспект по курсу В. Меласа «Дополнительные главы оптимального планирования эксперимента»

Собрано 1 декабря 2015 г. в 11:00

Содержание

1	Асимптотические свойства нелинейного метода наименьших квадратов	2
2	Постановка задачи оптимального планирования для нелинейных моделей. Теорема эквивалентности для локально оптимальных планов.	4
3	Системы Чебышева. Два эквивалентных определения.	6
4	Системы Чебышева. Метод проверки, основанный на последовательном дифференцировании. Примеры применения (экспоненциальные модели.) 4.1 Пример: Экспоненциальная регрессия	7 8 8
5	Расширенные системы Чебышева.	8
6	Неотрицательные многочлены с заданными нулями	8
	6.1 Теорема о числе нулей	8
	6.2. Неотрицательные многочлены с запанными нулями	10

1. Асимптотические свойства нелинейного метода наименьших квадратов

Изложение материала данного вопроса имеется в разделе 1.2 Учебного Пособия: «Локально Оптимлаьные Планы Эксперимента». Для данного вопроса необходимо понимать, как устроена нелинейная регрессионная модель (вопрос 2).

Устройство нелинейной модели и основные понятия. Заданы $N \in \mathbb{N}$ (объем выборки), $m \in \mathbb{N}$, $\Theta \in \mathbb{R}^m$ (неизвестный многомерный параметр), \mathcal{X} — некоторое множество¹. Пусть происходит «эксперимент», в котором наблюдаются (одномерные) «результаты эксперимента» $y_1, y_2, \ldots, y_N \in \mathbb{R}^1$. Рассмотрим отображение $\eta : \mathcal{X} \times \mathbb{R}^m \mapsto \mathbb{R}^1$. Аналитическое задание отображения η как функции двух аргументов нам известно.

Модель эксперимента задается следующим образом: для всех $j \in 1:N$

$$y_{i} = \eta(x_{i}, \Theta) + \varepsilon_{i}, \tag{1}$$

где $x_1, x_2, \ldots, x_N \in \mathcal{X}$ — «условия эксперимента», $\Theta = (\theta_1, \theta_2, \ldots, \theta_m)^{\mathrm{T}} \in \mathbb{R}^m$, а $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N$ — некоррелированные, центрированные, гомоскедастичные случайные величины, т.е. $\mathbb{E}\varepsilon_j = 0$ и $\mathbb{D}\varepsilon_j = \sigma^2$ для всех $j \in 1$: N.

Задача: оценить параметр Θ . Ясно, что задача является регрессионной, причем функция η является регрессией.

Нужно формально объяснить, что значит «нелинейная модель», то есть чем эта модель отличается от «линейной». Будем говорить, что параметр θ_j , где $j\in 1:m$, входит нелинейно в модель (1), если при фиксированном x

$$\frac{\partial \eta(x,\cdot)}{\partial \theta_i}(\theta_j)$$

существует и не является постоянной. Если же указанная функция является постоянной, то говорим, что параметр θ_j входит в модель линейно. Если есть хотя бы один параметр θ_j который входит в модель нелинейно, то модель (1) называют нелинейной. Регрессию η в таком случае тоже называют нелинейной (по параметрам).

Для того, чтобы определить неизвестный многомерный параметр Θ , нужно выбрать эксперементальные условия x_1, x_2, \dots, x_N и метод оценивания параметров. Определимся сначала с первым вопросом.

Определение. Любой набор из (не обязательно различных) N элементов множества \mathcal{X} будем называть точным планом эксперимента.

Определение. Пусть $n-\phi$ иксированное натуральное число. Приближенным планом эксперимента называют дискретную вероятностную³ меру, задаваемую таблицей

$$\xi = \{x_1, x_2, \dots, x_n; \mu_1, \mu_2, \dots, \mu_n\},\tag{2}$$

где x_i различные, $\mu_i > 0$ для всех i, а $\sum_{i=1}^n \mu_i = 1^4$.

Заметим, что все условия, наложенные на меру являются простыми (необременняющими) и естественными.

¹ В самом общем описании, никакие условия на это множество не накладываются.

 $^{^{\}text{2}}\textsc{E}\textsc{c}\textsc{T}\textsc{B}\textsc{e}\textsc{H}\textsc{i}$ играют роль ошибок измерения, шума.

³то есть нормированную на единицу.

 $^{{}^{4}}$ Подразумевается, что $\xi(x_{i})=\mu_{i}$ для всех i

Выбор «наилучшего» плана является отдельной задачей. Пусть план фиксирован, тогда в качестве метода оценивания параметров рассмотрим (нелинейный) метод наименьших квадратов. Будем обозначать $\hat{\Theta}$ — решение экстремальной задачи МНК:

$$\sum_{j=1}^{N} (\eta(x_j, \Theta) - y_j)^2 \to \min_{\Theta \in \mathbb{R}^m}.$$

Оценки $\hat{\Theta}$ обладают хорошими асимптотическими свойствами.

Асимптотические свойства МНК-оценок. В данном разделе мы начинаем вводить ограничения на множества Ω и \mathcal{X} . Пусть Ω — ограниченное замкнутое множество в \mathbb{R}^m , \mathcal{X} — ограниченное замкнутое множество в \mathbb{R}^k , где $k \in \mathbb{N}$.

Пусть функция регрессии $\eta_{(x,\Theta)}$ нелинейна по параметрм и определена при всех $x \in \mathcal{X}$, $\Theta \in \Omega$. Через Θ_u будем обозначать истинное значение вектора параметров, т.е. такое значение Θ , при котором верна модель (1).

Под планом в дальнейшем всегда подразумеваем приближенный. Для дискретных мер $\xi = \{x_1, x_2, \dots, x_n; \mu_1, \mu_2, \dots, \mu_n\}$ используем стандартную запись (интеграл по мере, 2 курс):

$$\int_{\mathcal{X}} g(x) d\xi(x) = \sum_{i=1}^{n} g(x_i) \mu_i,$$

где g — произвольная функция, определенная на \mathcal{X}^5 . Введем предположения:

- 1. регрессия $\eta(x,\Theta)$ непрерывна на множестве $\mathcal{X} \times \Omega$;
- 2. имеется слабая сходимость распределений $\mathcal{L}(\xi_N) \Rightarrow \mathcal{L}(\xi)$, где ξ некоторый план, то есть для любой функции $g \in C(\mathcal{X})$ имеет место сходимость

$$\int_{\mathcal{X}} g(x) d\xi_N(x) = \int_{\mathcal{X}} g(x) d\xi(x);$$

3. для $\Theta, \overline{\Theta} \in \Omega$ величина

$$\int_{\mathcal{X}} \left(\eta(x, \Theta) - \eta(x, \overline{\Theta}) \right)^2 d\xi(x)$$

равна нулю только при $\Theta = \overline{\Theta}^{\scriptscriptstyle 6};$

- 4. Частные производные первого и второго порядка регрессии η по параметру существуют и непрерывны на $\mathcal{X} \times \Omega$, то есть $\eta \in \mathrm{C}^2_\Theta(\mathcal{X} \times \Omega)$.
- 5. Истинное значение параметра $\Theta_{\!\scriptscriptstyle u}$ является внутренней точкой $\Omega^{\scriptscriptstyle 7}.$
- 6. Матрица⁸

$$M(\xi, \Theta) = \int_{\mathcal{X}} f(x, \Theta) f^{\mathsf{T}}(x, \Theta) d\xi(x), \tag{3}$$

⁵На самом деле тут должна быть измеримость по мере, почему мы ее не требуем?

⁶тогда и только тогда, правда?

 $^{^{7}}$ то есть не принадлежит frac(Ω). Это существенно, так как множество Ω является замкнутым.

⁸Убедитесь, что понимаете, что это, действительно, матрица.

$$f(x,\Theta) = \left(\frac{\partial \eta(x,\Theta)}{\partial \theta_1}, \frac{\partial \eta(x,\Theta)}{\partial \theta_2}, \dots, \frac{\partial \eta(x,\Theta)}{\partial \theta_m}\right)^{\mathrm{T}}$$

не вырождена при $\Theta = \Theta_u$.

Теперь пусть

$$\xi_N = \{x_1, x_2, \dots, x_N; 1/N, 1/N, \dots 1/N\},\$$

где x_i — необязательно различные точки,

$$\hat{\Theta}_N = \underset{\Theta \in \Omega}{\arg \min} \sum_{i=1}^N (\eta(x_i, \Theta) - y_i)^2. \tag{4}$$

Теорема (без доказательства). Если случайные ошибки $\{\varepsilon_i\}_{i=1}^N$ некоррелированы, одинаково распределены и являются центрированными и гомоскедастичными, результаты экспериментов описываются уравнением (1) и выполнены предположения 1–3, то последовательность МНКоценок сильно состоятельна, т. е. при $N \to \infty$

$$\hat{\Theta}_N \to \Theta_n$$

с вероятностью 1, где $\hat{\Theta}_N$ определено формулой (4).

Если дополнительно выполняются предположения 4–6, то последовательность случайных векторов $\sqrt{N}(\hat{\Theta}_N - \Theta_u)$ имеет асимптотически нормальное распределение с нулевым вектором средних и ковариационной матрицей $\sigma^2 M^{-1}(\xi,\Theta_u)$.

Матрицу $M(\xi, \Theta_u)$ называют информационной матрицей для нелинейных по параметрам регрессионных моделей.

2. Постановка задачи оптимального планирования для нелинейных моделей. Теорема эквивалентности для локально оптимальных планов.

Пусть $N \in \mathbb{N}, y_1, ..., y_N \in \mathbb{R}, x_1, ..., x_N \in \mathbb{X}$, где \mathbb{X} некоторое множество, обычно \mathbb{R}^k , а $y_1, ..., y_N, x_1, ..., x_N$ — наши «наблюдения», которые мы будем называть результатами эксперимента.

Введем множество параметров Θ и предположим, что наблюдения описываются следующей моделью:

$$y_i = \eta(x_i, \theta) + \varepsilon_i, \tag{5}$$

где $\theta \in \Theta$ — параметр, значения которого мы и будем пытаться в дальнейшем оценить, а ε_i — случайный шум, про который мы предположим, что

$$E\varepsilon = 0$$
, $E\varepsilon^2 = \sigma^2$

Будем предполагать, что $\Theta \subset \mathbb{R}^m$.

 $^{^{\}circ}$ Вспомните, откуда тут σ .

Определение. Будем говорить, что параметр θ_j входит в (5) нелинейным образом, если для фиксированного $x \in \mathbb{X}$ существует и не является постоянной функция

$$\phi_{j,x}(\theta) = \frac{\partial \eta(x,\theta)}{\theta_j}$$

Eсли $\phi_{j,x}(\theta) = const$, то θ_j входит в модель линейным образом.

Определение. Под точным планом эксперимента будем понимать N точек $x_1,...,x_N \in \mathbb{X}$

Определение. Под приближенным планом эксперимента будем понимать $n \in \mathbb{N}$ пар (x_i, μ_i) , где

$$x_i \in \mathbb{X}, x_i \neq x_i, i \neq j,$$

$$\mu_i > 0, \ \sum_{i=1}^n \mu_i = 1,$$

Пусть N — доступное число «ресурсов» (кол-во экспериментов, которое можно провести). Тогда при использование приближенного плана рекомендуется в точке x_j провести $\mu_j N$ экспериментов. В итоге получится точный план, как работать с которым уже ясно.

Определение. При фиксированном плане для оценки θ будем использовать метод наименьших квадратов:

$$\hat{\theta} = \underset{\theta \in \Theta}{\arg\min} \sum_{j=1}^{N} \left(\eta(x_j, \theta) - y_j)^2 \right)$$

Наша задача — выбрать некоторым образом точки $x_1, ..., x_N$, чтобы МНК-оценка была в некотором смысле оптимальной.

Введем еще несколько обозначений:

Определение. Пусть ξ — дискретная вероятностная мера с носителем $x_1, ..., x_n$. Тогда

$$\int_{Y} g(x)d\xi(x) = \sum_{i=1}^{n} g(x_i)\xi_i$$

Определение. Пусть $f(x,\theta)^{\mathrm{T}} = \left(\frac{\partial \eta(x,\theta)}{\partial \theta_1}, ..., \frac{\partial \eta(x,\theta)}{\partial \theta_1}\right)$. Пусть $\theta^u - u$ стинной значение оцениваемого параметра. Тогда информационной матрицей будем называть

$$M(\xi, \theta_u) = \int_{\mathbb{R}} f(x, \theta) f(x, \theta)^{\mathrm{T}} d\xi(x)$$

Заметим, что $M(\xi,\theta_u)$ в случае, когда все параметры входят линейно, не зависит от θ_u и т.к. обратная к информационной матрице — «нижняя оценка» на дисперсию оцениваемого параметра (в многомерном случае под дисперсией понимается ковариационная матрица), то можно естественным образом ввести различные понятия оптимальности, опираясь на собственные числа информационной матрицы. Например, D-критерий предлагает выбирать планы, максимизирующие определитель информационной матрицы.

В нелинейном случае все сложнее. Информационная матрица зависит от «истинного» значения параметра, которое неизвестно. Предположим, что у нас есть некоторое приближение θ^0 «истинного» параметра. Тогда будем называть план, максимизирующий определитель матрицы $M(\xi,\theta^0)$ локально D-оптимальным.

Разложим η в ряд Тейлора в окресности $\theta^0 \in \Theta \subset \mathbb{R}^m$:

$$\eta(x,\theta) = \eta(x,\theta^0) + (\theta - \theta^0)^{\mathrm{T}} f(x,\theta^0) + r(x,\theta)$$

Введем следующие обозначения:

$$f(x)^{\mathrm{T}} = f(x, \theta^{0})^{\mathrm{T}} = \left(\frac{\partial(x, \theta^{0})}{\partial(\theta_{i})}, \dots, \frac{\partial x, \theta_{0}}{\theta_{m}}\right)$$
$$M(\xi) = M(\xi, \theta^{0}) = \int_{\mathbb{X}} f(x)f(x)d\xi(x)^{\mathrm{T}}$$
$$d(x, \xi) = f(x)^{\mathrm{T}}M^{-1}(\xi)f(x)$$

Для данных обозначение будет верна следующая теорема:

Теорема (Эквивалентности). План ξ^* является локально D-оптимальным для модели (5) тогда и только тогда, когда

$$m = \max_{x \in \mathbb{X}} d(x, \theta^*)$$

Кроме того,

$$\max_{x \in \mathbb{X}} d(x, \theta^*) = \inf_{\xi} \max_{x \in \mathbb{X}} d(x, \theta)$$

Функция $d(x, \xi^*)$ достигает максимального значение во всех точках любого локального D-оптимального плана. Информационные матрицы всех локально D-оптимального планов совпадают.

Доказательство. Без доказательства. Является переформулировкой теоремы Кифера-Вольфовица (которая видимо была раньше). \Box

3. Системы Чебышева. Два эквивалентных определения.

Определение (Конструктивное). Пусть $u_0, ..., u_n$ — заданные непрерывные вещественные функции на [a,b]. Система называется системой функций Чебышева, если определители

$$U\left(\begin{array}{cccc} 0 & 1 & \dots & n \\ t_0 & t_1 & \dots & t_n \end{array}\right) = \det \left(\begin{array}{cccc} u_0(t_0) & \dots & u_0(t_n) \\ u_1(t_0) & \dots & u_1(t_n) \\ \dots & \dots & \dots \\ u_n(t_0) & \dots & u_n(t_n) \end{array}\right)$$

строго положительны для $\forall a \leq t_0 < t_1 < \ldots < t_n \leq b$. 10

Здесь нужно рассказать о (по всей видимости) естественности такой штуки через определитель Вандермонда, но я пока сам не понимаю.

Определение. Обобщенным многочленом называется функция $u(t) = \sum_{i=0}^{n} a_i u_i(t), a_i \in \mathbb{R}$. ¹¹

Определение. Многочлен называется нетривиальным, если $\sum_{i=0}^{n} a_i^2 \neq 0$. **Придирка**: Это условие глядится странновато. На u_i задана упорядоченность или нет? Если да, значит обобщенные многочлены не просто так названы многочленами. У любого нормального многочлена есть степень! Тут она тоже должна быть, иначе термин обобщенный многочлен слишком натянут. А если есть степень, то разумно требовать, чтобы коэффициент при старшем члене был не 0.

 $^{^{10}}$ На самом деле, ничего ведь страшного, если все определители будут строго отрицательны? Это используется в теореме этого билета, обратите на это внимание.

¹¹Здесь не накладывается никаких дополнительных ограничений! Просто произвольная линейная комбинация.

Количество нулей обобщенного многочлена u обозначим Z(u).

Определение (Аксиоматическое). Система вещественных, непрерывных функций $\{u_i\}_{i=0}^n$, определенных на отрезке [a,b] называется системой Чебышева если $Z(u) \leq n$ для любого нетривиального обобщенного многочлена u, построенного по этой системе.

Теорема. Пусть $\{u_i\}_{i=0}^n$ — система вещественных непрерывных функций, определенных на отрезке [a,b]. СУР:

- 1. Система $\{u_i\}_{i=0}^n$ с точностью до знака некоторых из u_i^{12} образует систему Чебышева 3.
- 2. Система $\{u_i\}_{i=0}^n$ образует систему Чебышева 3.

Доказательство. Пусть $a=(a_0,\dots,a_n)^{\rm T}\in\mathbb{R}^{n+1}$ такой, что $\sum_{i=1}^n a_i^2\neq 0$.. Рассмотрим обобщенный многочлен $u(t)=\sum_{i=0}^n a_i u_i(t)$. Для произвольного набора точек $\{t_i\}_{i=0}^n\subset [a,b]$ введем матрицу

$$\mathbf{U}(t_0, t_1, \dots, t_n) = \begin{pmatrix} u_0(t_0) & \dots & u_0(t_n) \\ u_1(t_0) & \dots & u_1(t_n) \\ \dots & \dots & \dots \\ u_n(t_0) & \dots & u_n(t_n) \end{pmatrix}.$$

- $1 \to 2$. Пусть $Z(u) \geqslant n+1$ и t_0, t_1, \dots, t_n первые n+1 нулей многочлена u. Тогда $\mathbf{U}(t_0, t_1, \dots, t_n) a = \mathbf{0}^{13}$, что противоречит невырожденности \mathbf{U} .
- $2 \to 1$. Пусть система $\{u_i\}_{i=0}^n$ не чебышевская в смысле определения 3. Тогда найдется такой набор точек t_0, t_1, \ldots, t_n , матрица $\mathbf{U} = \mathbf{U}(t_0, t_1, \ldots, t_n)$ и вектор $a = (a_0, a_1, \ldots, a_n)^\mathrm{T} \in \mathbb{R}^{n+1}$, что $\mathbf{U}a = \mathbf{0}$. То есть существует обобщенный многочлен, имеющий не менее n+1 нуля. Противоречие.

4. Системы Чебышева. Метод проверки, основанный на последовательном дифференцировании. Примеры применения (экспоненциальные модели.)

Пусть u_0, u_2, \dots, u_k — некоторая система функций. Мы хотим проверить, что она является Чебышевской. Рассмотрим следующий набор функций:

$$F_{00}(t) = u_0(t), \dots, F_{0k}(t) = u_n(t)$$

$$F_{11}(t) = \left(\frac{F_{01}}{F_{00}}\right)', \dots, F_{1k}(t) = \left(\frac{F_{0k}}{F_{00}}\right)'$$

$$F_{22}(t) = \left(\frac{F_{1k}}{F_{11}}\right)', \dots, F_{2k}(t) = \left(\frac{F_{1k}}{F_{11}}\right)'$$

$$\dots$$

$$F_{kk} = \left(\frac{F_{k-1,k}}{F_{k-1,k-1}}\right)'$$

Теорема. Если существуют все функции F_{ij} и $F_{ii} > 0$, то система $u_0, ..., u_k$ является системой Чебышева.

¹²Наверное это нужно написать формально, но мне не приходят в голову изящные способы

¹³Здесь времененный шрифт.

Доказательство. Пусть это не так. Тогда $\exists u(t) = \sum_{i=0}^k a_i u_i$, обращающийся в 0 в k+1 точках. Не умаляя общности будем считать, что все $a_i > 0$. Тогда

$$f_0(t) = a_0 u_0(t) \left(1 + \frac{a_1}{a_0} \frac{u_1(t)}{u_0(t)} + \dots \frac{a_k}{a_0} \frac{u_k(t)}{u_0(t)} \right)$$

По условию, $u_0(t)>0$, а значит вторая скобка обращатся в 0 в k+1 точках. Вспоминаем теорему Ролля — между двумя корнями непрерывной функции есть корень ее производной. Отсюда следует, что функция $f_1(t)=\left(1+\frac{a_1}{a_0}\frac{u_1(t)}{u_0(t)}+\dots\frac{a_k}{a_0}\frac{u_k(t)}{u_0(t)}\right)'$ — обращется в ноль в k точках. Заметим, что количество слагаемых уменьшилось на 1. Итерируя процесс, получим последовательность функций $f_0(t), f_1(t), \dots, f_k(t)$. В $f_i(t)$ будет k-i+1 ненулевых слагаемых и k-i нулей. Таким образом, $f_k(t)=\alpha F_{kk}$, где α — некоторое ненулевое число — имеет хотя бы один ноль. Противоречие, т.к. по предположению $f_k(t)=F_{kk}(t)>0$ \forall t

4.1. Пример: Экспоненциальная регрессия

Пусть $\eta(t,\theta) = \sum_{i=1}^k b_i e^{\lambda_i t}, \, b_i \in \mathbb{R}, \, \lambda_i \in \mathbb{R}, \, \lambda_i \neq \lambda_j \, i \neq j$. В данной модели параметрами

являются b_i и λ_i и они входят нелинейно. Рассмотрим систему функций $\left\{\frac{\partial \eta(t,\theta)}{\partial \lambda_i}, \frac{\partial \eta(t,\theta)}{\partial b_i}\right\}_{i=1}^k$. Оказывается, данная система является системой Чебышева. Для доказательства достаточно повторить рассуждение, легшее в основу доказательства прошлой теоремы (4) и воспользоваться тем, что $e^{\lambda t}>0 \forall \lambda \in R$.

4.2. Пример: модель Михаэлина-Менте

 $\eta(t,\theta) = \frac{at}{t+b}$ на [a,b], a>0. Производные $\left\{\frac{\partial \theta}{\theta_i}\right\}$ также образуют систему Чебышева. Действительно,

$$\frac{\partial \eta}{a} = u_0(t) = \frac{t}{t+b}$$

$$\frac{\partial \eta}{b} = u_1(t) = \frac{-at}{(t+b)^2}$$

Пусть имеется $u(t) = \alpha_0 u_0(t) - \alpha_1 u_1(t)$. Вынесем $-u_1(t)$ за скобку и получим

$$u(t) = \frac{at}{(t+b)^2} \left(\alpha_0(t+b) + \alpha_1 \right)$$

Вспомним, что a > 0, а значит t > 0 и $\frac{at}{(t+b)^2} > 0$. Второе слагаемое — линейная функция, про которую мы и без дифференцирования знаем, что у нее имеется не более одного нуля.

5. Расширенные системы Чебышева.

6. Неотрицательные многочлены с заданными нулями

6.1. Теорема о числе нулей

Определение. Пусть u — некоторая функция (непрерывная) на [a,b]. Тогда Z(u) — число нулей u на [a,b].

¹⁴я наверно не правильно распарсил имена, надо поправить

Определение. Ноль называется узловым, если

- Он совпадает с граничной точкой (либо а, либо b)
- Функция меняет знак, проходя через этот ноль

В противном случае ноль называется неузловым.

Определение. $\overline{Z(u)}$ — число нулей функции и, где неузловые нули засчитываются дважды.

Теорема. Если система функций $\left\{u_i\right\}_{i=0}^n$ - Чебышевская на [a,b], то для любого нетривиального многочлена $\overline{Z}(u) \leq n$.

Доказательство. Пусть $(Z)(u) \ge n+1$ для некоторого нетривиального u. Обозначим различные нули u через t_1, \ldots, t_k . Добавим для первого неузлового нуля точки $t_i - \varepsilon, t_i + \varepsilon$, а для остальных неузловых нулей точки $t_i - \varepsilon$. Выбрав ε достаточно маленьким, можно получить, что все точки будут содержаться в [a,b]. Пусть у нас было m_1 узловых и m_2 неузловых нулей. Тогда после проделанной операции мы получили $m_1 + 2m_2 + 1 \ge n + 2$ точек $(m_1 + 2m_2 \ge n + 1)$. Переобозначим получившиеся точки за s_i и возьмем первые n+2 из них. Не умаляя общности, можем считать, что $u(s_i) \ge 0$ для четных $i, u(s_i) \le 0$ для нечетных i^{15} . Отсюда получаем, что следующий определитель равен 0 (т.к. первая стручка — линейная комбинация следующих):

$$\begin{vmatrix} u(s_0) & u(s_1) & \dots & u(s_{n+1}) \\ u_0(s_0) & u_0(s_1) & \dots & u_0(s_{n+1}) \\ \dots & \dots & \dots & \dots \\ u_n(s_0) & u_n(s_1) & \dots & u_n(s_{n+1}) \end{vmatrix} = 0$$
(6)

Далее $\{u_i\}$ — система Чебышева, а значит

$$\begin{vmatrix} u_0(t_0) & u_0(s_1) & \dots & u_0(t_n) \\ \dots & \dots & \dots & \dots \\ u_n(t_0) & u_n(t_1) & \dots & u_n(t_n) \end{vmatrix} > 0$$

для любых $t_0 < t_1 < \ldots < t_n$. Поэтому, разложив определитель (6) по первой сточке, получим 16, что

$$\sum_{i=0}^{n+1} \alpha_i u(s_i) = 0,$$

где α_i строго чередуются в знаке. Кроме того, $u(s_i)$ совпадают по знаку с α_i . Таким образом, суммируются неотрицательные слагаемые. Значит $\forall i \ u(s_i) = 0$. Получили противоречие с одним из определений системы Чебышева(3)

Теорема. Обратно, если для любого нетривиального многочлена u(t) верно, что $\overline{Z}(u) \leq n$, то система является Чебышевской

Доказательство. Следует из второго определения чебыщевской системы¹⁷ 3:

$$Z(u) \le \overline{Z}(u) \le n$$

¹⁵Проверьте это. Достаточно нарисовать рисунок и все станет ясно.

¹⁶как мы все помним, при разложение определителя знаки перед минорами чередуются, а сами миноры у нас положительны

 $^{^{\}scriptscriptstyle{17}}Z(u)$ ведь количество нулей многочлена

6.2. Неотрицательные многочлены с заданными нулями

Задача: построить неотрицательный многочлен, имеющий нули в точках $t_1 < t_2 < \ldots < t_k$. Многочлен неотрицательный, поэтому все внутренние нули должны быть неузловыми. Введем функцию ω :

$$\omega(t) = \begin{cases} \omega(a) = 1 \\ \omega(b) = 1 \\ \omega(t_i) = 2, i \in (a,b) \end{cases}$$

Теорема. Пусть $t_1, ..., t_k$ — различные и такие, что $\sum_{i=1}^k \omega(t_i) \le n$. Пусть $\{u_i\}_{i=0}^n$ — чебышевская.

Тогда $\exists u(t)$, который обращается в ноль в этих и только этих точках, за исключением случая, когда n=2m и одна из точек совпадает с граничной точкой 18

Доказательство. Докажем для n = 2m + 1 и $a < t_1 < \dots < t_k < b^{19}$.

 $^{^{18}}$ Исключение получается по следующей простой причине: до этого мы доказали теорему о том, что число нулей $\overline{Z} \leq n$. Если n=2m, и одна точка совпадает с граничной, то k < m и 2k+1 < 2m, а значит возможна ситуация, что во второй граничной точке также будет ноль.

¹⁹Остальные случаи получаются аналогично с небольшими модификациями.