Traveling Tournament Problem Simulated Annealing

Philippe Tanghe

Li Quan

16 maart 2011

Inhoudsopgave

- Inleiding
- 2 TTSA
- 3 Implementatie
- 4 Experimenten
- 6 Mogelijke verbeteringen
- 6 Conclusie

Inhoudsopgave

- Inleiding
- 2 TTSA
- Implementation
- 4 Experimenter
- Mogelijke verbeteringen
- Conclusie

Inleiding

- Aris Anagnostopoulos, Laurent Dominique Michel, Pascal Van Hentenryck en Yannis Vergados.
 - A simulated annealing approach to the traveling tournament problem. (2006)

Inleiding

- Aris Anagnostopoulos, Laurent Dominique Michel, Pascal Van Hentenryck en Yannis Vergados.
 A simulated annealing approach to the traveling tournament problem. (2006)
- Pascal Van Hentenryck en Yannis Vergados.
 A Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealing. (2006)

Inleiding

- Aris Anagnostopoulos, Laurent Dominique Michel, Pascal Van Hentenryck en Yannis Vergados.
 A simulated annealing approach to the traveling tournament problem. (2006)
- Pascal Van Hentenryck en Yannis Vergados.
 A Traveling Tournament Scheduling: A Systematic Evaluation of Simulated Annealing. (2006)

- Traveling Tournament Simulated Annealing Algorithm (TTSA)
 - SA: goede metaheuristiek voor TTP
 - duidelijk en concreet
 - P. Van Hentenryck is een Belg

Inhoudsopgave

- Inleiding
- 2 TTSA
- 3 Implementation
- 4 Experimenten
- Mogelijke verbeteringen
- Conclusie

Basisalgoritme SA

```
find random schedule S;
bestSoFar \leftarrow cost(S);
phase \leftarrow 0;
while phase ≤ maxP do
       counter \leftarrow 0;
      while counter < maxC do
              select a random move m from neighborhood(S);
              let S' be the schedule obtained from S with m;
              \Delta \leftarrow \text{cost}(S') - \text{cost}(S);
              if \Delta < 0 then
                     accept ← true;
              else
                     accept \leftarrow true with probability \exp(-\Delta/T);
              end
              if accept then
                     S ← S':
                     if cost(S') < bestSoFar then
                            counter \leftarrow 0; phase \leftarrow 0;
                            bestSoFar \leftarrow cost(S');
                     else
                            counter++;
                     end
              end
              phase++;
              T \leftarrow T \cdot \beta:
      end
end
```

• hard en soft constraints

- hard en soft constraints
- neighborhood van grootte $\mathcal{O}(n^3)$

- hard en soft constraints
- neighborhood van grootte $\mathcal{O}(n^3)$
- strategic oscillation

- hard en soft constraints
- neighborhood van grootte $\mathcal{O}(n^3)$
- strategic oscillation
- reheats

Hard en soft constraints

Voorstelling schedule

T∖R	1	2	3	4	5	6	7	8	9	10
1	6	-2	4	3	-5	-4	-3	5	2	-6
2	5	1	-3	-6	4	3	6	-4	-1	-5
3	-4	5	2	-1	6	-2	1	-6	-5	4
4	3	6	-1	-5	-2	1	5	2	-5 -6	-3
5	-2	-3	6	4	1	-6	-4	-1	3	2
6	-1	-4	-5	2	-3	5	-2	3	4	1

- T teams; R rounds
- + home; away
- constraints
 - hard: double round-robin
 - soft: atmost & norepeat

initieel random schedule

- initieel random schedule
 - eenvoudige recursieve backtrack search

- initieel random schedule
 - eenvoudige recursieve backtrack search
- ullet kies S' in neighborhood van S

- initieel random schedule
 - eenvoudige recursieve backtrack search
- kies S' in neighborhood van S
 - SwapHomes (S, T_i, T_j)
 - SwapRounds(S, r_k, r_l)
 - SwapTeams (S, T_i, T_j)
 - PartialSwapRounds(S, T_i, r_k, r_l)
 - PartialSwapTeams (S, T_i, T_j, r_k)

- initieel random schedule
 - eenvoudige recursieve backtrack search
- kies S' in neighborhood van S
 - SwapHomes (S, T_i, T_j)
 - SwapRounds(S, r_k, r_l)
 - SwapTeams (S, T_i, T_j)
 - PartialSwapRounds(S, T_i, r_k, r_l)
 - PartialSwapTeams (S, T_i, T_j, r_k)
- \bullet aanvaard of verwerp S'

Voorbeeld PartialSwapTeams

PartialSwapTeams (S, T_2, T_4, r_9)

$T \backslash R$	1	2	3	4	5	6	7	8	9	10
1	6	-2	4	3	-5	-4	-3	5	2	-6
									-1	
3	-4	5	2	-1	6	-2	1	-6	-5	4
4	3	6	-1	-5	-2	1	5	2	-6	-3
5	-2	-3	6	4	1	-6	-4	-1	3	2
6	-1	-4	-5	2	-3	5	-2	3	4	1

Voorbeeld PartialSwapTeams

PartialSwapTeams (S, T_2, T_4, r_9)

$T \backslash R$										
1	6	-2	2	3	-5	-4	-3	5	4	-6
2	5	1	-1	-5	4	3	6	-4	-6	-3
3	-4	5	4	-1	6	-2	1	-6	-5	2
4	3	6	-3	-6	-2	1	5	2	-1	-5
5	-2	-3	6	2	1	-6	-4	-1	3	4
6	-1	-4	-5	4	-3	5	-2	3	2	1

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [w \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

Objectieffunctie

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [w \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

cost(S): afstandskost

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [w \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

- cost(S): afstandskost
- nbv(S): # violations (soft) constraints

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [w \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

- cost(S): afstandskost
- nbv(S): # violations (soft) constraints
- w: gewichtsfactor

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [w \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

- cost(S): afstandskost
- nbv(S): # violations (soft) constraints
- w: gewichtsfactor
- $f(v) = 1 + (\sqrt{v} \ln v)/\lambda$

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [w \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

- cost(S): afstandskost
- nbv(S): # violations (soft) constraints
- w: gewichtsfactor
- $f(v) = 1 + (\sqrt{v} \ln v)/\lambda$
 - sublineair, eerste violation kostelijker (f(1) = 1)

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [w \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

- cost(S): afstandskost
- nbv(S): # violations (soft) constraints
- w: gewichtsfactor
- $f(v) = 1 + (\sqrt{v} \ln v)/\lambda$
 - sublineair, eerste violation kostelijker (f(1) = 1)
 - $(\lambda = 2 \text{ voor kleine } n; \lambda = 1 \text{ voor grote } n)$

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [\mathbf{w} \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [\mathbf{w} \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

- gewichtsfactor w variëren
- feasible $w \leftarrow w/\theta$; infeasible $w \leftarrow w \cdot \delta$

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [\mathbf{w} \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

- gewichtsfactor w variëren
- feasible $w \leftarrow w/\theta$; infeasible $w \leftarrow w \cdot \delta$
- reheating

$$C(S) = \begin{cases} cost(S) & \text{als } S \text{ feasible is,} \\ \sqrt{cost(S)^2 + [\mathbf{w} \cdot f(nbv(S))]^2} & \text{anders.} \end{cases}$$

- gewichtsfactor w variëren
- feasible $w \leftarrow w/\theta$; infeasible $w \leftarrow w \cdot \delta$
- reheating
 - lokale minima op lage temperaturen
 - eenvoudig reheating schema

Inhoudsopgave

- Inleiding
- 2 TTSA
- 3 Implementatie
- 4 Experimenter
- Mogelijke verbeteringen
- Conclusie

Implementatie

Matlab

- + snelle implementatie
- + matrix- en vectoroperaties
- + snel testen
- efficiëntie (?)

Inhoudsopgave

- Inleiding
- 2 TTSA
- 3 Implementation
- 4 Experimenten
- Mogelijke verbeteringen
- Conclusie

Experimenten

- random schedule generatie
- parameters

Random schedule

eenvoudig recursieve backtracking

- goed voor NL4-8
- ok voor NL10-12
- traag voor NL14–16

Random schedule

eenvoudig recursieve backtracking

- goed voor NL4–8
- ok voor NL10-12
- traag voor NL14–16

n	min (s)	avg (s)	max (s)	std (s)
4	0.004	0.006	0.009	0.002
6	0.011	0.017	0.044	0.010
8	0.020	1.889	18.558	5.857
10	0.031	14.271	112.291	35.549
12	0.055	8.795	51.114	16.583
14	0.089	96.782	612.953	195.414
16	1.088	286.021	823.226	360.467

Tabel: Tijd nodig om een random schedule te maken via een recursief backtrack algoritme (N = 10).

Parameters

 T_0 , β , maxC, maxP, maxR, δ , θ , w_0 ???

- TTSA
 - traag ⇒ weinig experimenten
- TTSA (Fast Cooling)
 - beperkte tijd ⇒ meer experimenten
 - goede resultaten

Figuur: TTSA NL4.

Figuur: TTSA vs TTSA(FC) NL6.

Figuur: TTSA NL8 (logaritmische tijdsas).

Figuur: TTSA NL12 (logaritmische tijdsas).

Figuur: TTSA NL14 (logaritmische tijdsas).

Figuur: TTSA NL16 (logaritmische tijdsas).

Inhoudsopgave

- Inleiding
- 2 TTSA
- 3 Implementation
- 4 Experimenter
- 6 Mogelijke verbeteringen
- 6 Conclusie

beter algoritme initieel schedule

beter algoritme initieel schedule

- beter algoritme initieel schedule
- parameters SA

- beter algoritme initieel schedule
- parameters SA
- random restart

- beter algoritme initieel schedule
- parameters SA
- random restart
- neighborhood

- beter algoritme initieel schedule
- parameters SA
- random restart
- neighborhood
- hybride algoritme, population-based SA
 Van Hentenryck en Vergados.
 Population-based simulated annealing for traveling tournaments. (2007)

- beter algoritme initieel schedule
- parameters SA
- random restart
- neighborhood
- hybride algoritme, population-based SA
 Van Hentenryck en Vergados.
 Population-based simulated annealing for traveling tournaments. (2007)
- . . .

Inhoudsopgave

- 1 Inleiding
- 2 TTSA
- 3 Implementation
- 4 Experimenter
- Mogelijke verbeteringen
- 6 Conclusie

matige resultaten TTSA

- matige resultaten TTSA
- goede resultaten TTSA(FC)

- matige resultaten TTSA
- goede resultaten TTSA(FC)
- empirisch bepalen parameters

n	cost	best (2002)	TTSA (2003)	best (2010)
4	8276	8276	8276	8276
6	23916	23916	23916	23916
8	39721	39721	39721	39721
10	63667	61608	59583	59436
12	118499	118955	112800	110729
14	203979	205894	190368	188728
16	288089	281660	267194	261687