Mid-Term Review

Mid-Term

Saturday June 17, 9.00a.m CT

Submit on Tuesday June 20, 11.00p.m. CT

 Text book, Live session notes, Labs, HWs, asynchronous videos (week1-week5).

Office hour: Friday 6.30p.m.-7.30p.m. CT

Mid-Term

- Multiple choice questions
- Sampling Distribution calculations
- SAS/R
- Excel
- Conceptual Questions

Lab 04

```
data strsizes;
input stratum total;
datalines;
1 N1
2 N2
3 N3 Yes!
4 N4
5 N5
proc surveymeans data = neysample sum clsum total = strsizes
mean sum CLSUM;
var sales;
weight SamplingWeight;
strata stratum;
title "Neyman allocation";
run;
```

Read CSV file

```
data industry2;
infile "C:\MSDS 6370 FALL2016\Live session
04\MSDS6370Lab4.csv"
dlm="," firstobs=2;
input industry UnitId mos stratum Sales ;
run;
```

HW4

1) Sampling distribution of a finite population

Name	GPA	35
A	3.5	
В	2.7	40
C	3.1	
D	3.2	- 554 - 25
E	2.4	92.4

How many possible samples of size 3?

$$\binom{5}{3} = \frac{5!}{(2)!3!} = \frac{20}{2} = 10$$

HW4-10 possible samples

Sample id	sample members	Sample mean
1	ABC	3.10
2	ABD	3.13
3	ABE	2.87
4	ACD	3.27
5	ACE	3.00
6	ADE	3.03
7	BCD	3.00
8	BCE	2.73
9	BDE	2.77
10	CDE	2.90

HW4-Sampling Distribution of sample means

Sample mean	Probability
2.73	0.1
2.77	0.1
2.87	0.1
2.90	0.1
3.00	0.2
3.03	0.1
3.10	0.1
3.13	0.1
3.27	0.1

2.98

MEAN OF A DISCRETE RANDOM VARIABLE

Suppose that *X* is a discrete random variable whose distribution is

Value of <i>X</i>	x_1	x_2	x_3	• • •	x_k
Probability	<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃		p_k

To find the mean of *X*, multiply each possible value by its probability, then add all the products:

$$\mu_X = x_1 p_1 + x_2 p_2 + \dots + x_k p_k$$
$$= \sum_i x_i p_i$$

VARIANCE OF A DISCRETE RANDOM VARIABLE

Suppose that *X* is a discrete random variable whose distribution is

Value of X	x_1	x_2	x_3		x_k
Probability	p_1	p_2	<i>p</i> ₃	• • •	p_k

and that μ is the mean of X. The variance of X

$$\sigma_X^2 = (x_1 - \mu_X)^2 p_1 + (x_2 - \mu_X)^2 p_2 + \dots + (x_k - \mu_X)^2 p_k$$

= $\sum (x_i - \mu_X)^2 p_i$

The standard deviation σ_X of X is the square root of the variance.

HW4

What is the standard error of the sampling distribution of sample means?

0.158

Sample mean	Probability	
2.73	0.1	$(2.73 - 2.98)^2 0.1$
2.77	0.1	$(2.77 - 2.98)^2 0.1$
2.87	0.1	$(2.87 - 2.98)^2 0.1$
2.90	0.1	$(2.90 - 2.98)^2 0.1$
3.00	0.2	$(3.00 - 2.98)^2 0.2$
3.03	0.1	$(3.03 - 2.98)^2 0.1$
3.10	0.1	$(3.10 - 2.98)^2 0.1$
3.13	0.1	$(3.13 - 2.98)^2 0.1$
3.27	0.1	$(3.27 - 2.98)^2 0.1$

Alternative Way

$$\sigma_{\bar{y}} = \sqrt{\frac{S^2}{n} \left(1 - \frac{n}{N}\right)},$$

where
$$S^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{Y})^2$$

Name	GPA
A	3.5
В	2.7
C	3.1
D	3.2
Е	2.4

$$S^2 = 0.187 (Var.s)$$

$$\sigma_{\overline{y}} = \sqrt{\frac{0.187}{3} \left(1 - \frac{3}{5}\right)} = 0.158$$