README - NUS SDS DATATHON 2025 (CATEGORY B - Group 65)

Project Title: Predicting Domestic Ultimate and Global Ultimate Companies Using Machine Learning

1. Introduction

This project was developed as part of the **NUS SDS Datathon 2025 Hackathon**, where we aimed to build an **innovative**, **high-performing**, and scalable machine learning model to classify companies as **Domestic Ultimate** or **Global Ultimate**.

Accurate classification enables superior competitive analysis, strategic investment decisions, and targeted merger and acquisition strategies. We focused on designing a **practical**, **well-structured**, **and high-impact solution** that can provide meaningful insights into corporate ownership structures.

2. Environment Setup

Programming Language & Version

• Python 3.10+

Dependencies

Jupyter Notebook

Required Libraries:

pip install pandas numpy scikit-learn xgboost seaborn matplotlib imbalanced-learn

• **GPU-enabled environment recommended** for faster model training.

Hardware Requirements

- CPU-only execution is feasible, but a CUDA-enabled GPU (8GB+ VRAM recommended) significantly speeds up model training.
- Minimum 8GB RAM recommended.

3. Running the Notebook

Main Notebook File Name

• CAT_B_65.ipynb

Execution Instructions

- 1. Clone the repository or download the project files.
- Navigate to the project directory and open the Jupyter Notebook: jupyter notebook CAT_B_65.ipynb
- 3. Run the notebook **sequentially from top to bottom**.

Dataset Requirements

- **Dataset Location:** Ensure the dataset is available in the same directory as the main notebook.
- **Dataset Structure:** CSV file with the following columns:
 - Industry Classification
 - Year Founded
 - Total Sales
 - o Number of Employees
 - Ownership Status
- Expected Runtime:
 - **Training:** ~10-20 minutes (depending on hardware).
 - **Inference:** ~1-2 minutes.

4. Model Execution Instructions

Models Used

- 1. Logistic Regression (Baseline Model)
- 2. Random Forest Classifier
- 3. XGBoost Classifier (Best Performing Model)

Testing the Model

- Before running the model, ensure that the test data is processed using the preprocess_test_data(test_data, preprocessor) method.
- Once the data is preprocessed, use the model to generate predictions.

5. Key Insights & Findings

Problem Addressed

- Helps businesses and investors understand corporate ownership structures.
- Supports competitive analysis, investment decisions, and M&A strategies.

Performance Comparison

Model Comparison Table for Is Domestic Ultimate

Model	Accuracy	Precision	Recall	F1 Score	PR AUC
Logistic Regression	68.72%	66.29%	76.19%	70.89%	74.41%
Random Forest	78.24%	79.42%	76.25%	77.80%	86.24%
XGBoost	91.32%	89.21%	94.00%	91.55%	97.21%

Model Comparison Table for Is Global Ultimate

Model	Accuracy	Precision	Recall	F1 Score	PR AUC
Logistic Regression	78.46%	70.68%	27.85%	39.95%	58.92%
Random Forest	81.31%	80.86%	35.87%	49.69%	76.10%
XGBoost	93.29%	85.03%	89.73%	87.32%	93.31%

Key Takeaways

- XGBoost significantly outperformed other models, with the highest PR AUC scores.
- **Boosting Mechanism** improves classification accuracy.
- Feature selection helped reduce noise and improve prediction quality.

Limitations & Future Enhancements

- More real-world financial & economic indicators could improve classification.
- **SHAP values** should be implemented for better model interpretability.

6. Conclusion

- We successfully built a high-performing, hackathon-ready machine learning pipeline.
- XGBoost outperformed other models, achieving the best trade-off between precision and recall.
- Future improvements should focus on **expanding features**, **optimising hyperparameters**, **and enhancing model interpretability**.

7. Team Contributors

This project was developed by Team 65 - NUS SDS Datathon 2025:

- Ang Wei Cheng
- Goh Eng Ee, Koen
- Han Dexun
- Tan Wee En (Mavis)
- Keira Low Wei-Qi

Final Note:

This project is **designed for hackathons**, using cutting-edge techniques to deliver meaningful business insights.

For further inquiries, contact Group 65 - NUS SDS Datathon 2025.