

TITLE OF THE INVENTION

FILM FORMING METHOD, SEMICONDUCTOR DEVICE AND
SEMICONDUCTOR DEVICE MANUFACTURING METHOD

5 BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a film forming method, a semiconductor device and a semiconductor device manufacturing method and, more particularly, a film forming method, a semiconductor device and a semiconductor device manufacturing method for forming an interlayer insulating film having a low dielectric constant to cover a wiring.

2. Description of the Prior Art

15 In recent years, the miniaturization and the reduction in thickness of the pattern ^{have been} required with for the higher integration degree and the higher density of the semiconductor integrated circuit devices. ^{as well as for} In addition, since the higher speed of the data transfer, rate is also required.

Therefore, the insulating film having the low dielectric constant (referred to as a "low dielectric constant insulating film" hereinafter) and the small RC delay is employed. As such insulating film, there are include the SiOF film having the relative dielectric constant of 3.5 to 3.8, the porous SiO₂ film having the relative dielectric constant 3.0 to 3.1, etc., for example.

such a

However, [essentially the] low dielectric constant insulating film [takes up and passes] ready to contain the moisture, [and is] ready to pass the incoming moisture.] Therefore, if such a low dielectric constant insulating film is employed alone as the interlayer insulating film, [the] corrosion of the wiring and [the] increase in the leakage current [are] easily [caused]. In order to prevent [to them], the barrier insulating film containing Si and N or Si and C is often interposed between the wiring and the low dielectric constant insulating film.

More particularly, in [the] semiconductor device having [the] multi-layered wiring, [the] interlayer insulating film [including] containing barrier layers is formed between the upper wiring and the lower wiring. The interlayer insulating film containing barrier layers is formed by laminating the barrier insulating film containing Si and N or Si and C, the low dielectric constant insulating film, and the barrier insulating film containing Si and N or Si and C, in sequence.

However, the insulating film containing Si and N has the high relative dielectric constant. Therefore, even if such insulating film of the thinner film thickness is employed as the barrier insulating film, the dielectric constant of the overall interlayer insulating film is increased.

Also, the relative dielectric constant of the barrier insulating film containing Si and C is relatively

i.e. ~~as compared to a~~
 low, such as about 5, rather than the barrier insulating film containing Si and N. But such barrier insulating film containing Si and C cannot sufficiently suppress the increase in the leakage current.

5

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a film forming method, a semiconductor device and a semiconductor device manufacturing method, that are capable of lowering the dielectric constant of an interlayer insulating film as a whole and suppressing a change in the dielectric constant due to moisture absorption, while preventing corrosion of wiring and an increase in leakage current.

15

In the film forming method according to the present invention, the silicon-containing insulating film is formed by plasmanizing a film forming gas consisting of any one selected from a group consisting of alkoxy compound having Si-H bonds and siloxane having Si-H bonds and any one oxygen-containing gas selected from a group consisting of O₂, N₂O, NO₂, CO, CO₂, and H₂O, ^{and reacting the plasma} ^{to} ^{the} ^{resistance is low} ^{has a} ^{content} ^{has been} ^{the resulting} ^{high moisture proof, has the small amount of contained} ^{moisture in the film, and the small relative dielectric} ^{constant.}

25

Therefore, if the above silicon containing

insulating film is employed as the barrier insulating films (a lower protection layer and an upper protection layer) that constitute the interlayer insulating film interposed between the upper wiring and the lower wiring, and sandwich the low dielectric constant insulating film, the dielectric constant of the overall interlayer insulating film can be lowered while preventing the corrosion of the wiring and the increase in the leakage current.

According to the semiconductor device of the present invention, the silicon-containing insulating film whose peak of the absorption intensity of the infrared rays is in a range of the wave number 2270 to 2350 cm^{-1} , whose film density is in a range of 2.25 to 2.40 g/cm^3 , and whose relative dielectric constant is in a range of 3.3 to 4.3 is formed on the substrate.

According to the experiment of the inventors of this application, it is found that the silicon-containing insulating film having such characteristics has the high mechanical strength, is dense, is excellent in water resistance, and has the small amount of contained moisture, in the film like the silicon nitride film, and has the relative dielectric constant smaller than the silicon nitride film.

According to the configuration obtained by applying the silicon-containing insulating film of the present invention to the semiconductor device, the above

contact and

silicon-containing insulating film is formed to cover the wiring and contact to it, otherwise the above or silicon-containing insulating film is formed as the protection layer on the insulating film that covers the wiring.

5

The silicon-containing insulating film of the present invention has a low dielectric constant, has the small amount of contained moisture in the film, is dense, and has excellent water resistance. Therefore, if the silicon-containing insulating film is employed as the protection layer for covering the wirings, etc., the corrosion of the wiring can be prevented by preventing the incoming moisture from entering the semiconductor device while reducing the parasitic capacitance between the wirings.

10

15

Also, the upper and lower wirings and the interlayer insulating film interposed between the upper and lower wirings are provided on the substrate, and the interlayer insulating film is formed of the silicon-containing insulating film according to the present invention.

20

Also, the interlayer insulating film includes in order from the bottom, the lower protection layer formed of the silicon-containing insulating film according to the present invention, the main insulating film, and the upper protection layer formed of the silicon-containing insulating film according to the present invention.

25

If the main insulating film is formed of the SiOF film, the silicon-containing insulating film according to the present invention can prevent the fluorine (F) element from diffusing to the outer peripheral portions of the silicon-containing insulating film. Also, If the main insulating film is formed of a porous insulating film having the high hygroscopicity, the silicon-containing insulating film according to the present invention can prevent the ingress of moisture into the porous insulating film and thus the increase in the dielectric constant due to the moisture absorption can be prevented.

Also, since the silicon nitride film is not employed as the upper and lower protection layers of the main insulating film, but the silicon-containing insulating film having the low relative dielectric constant is employed, the dielectric constant of the overall interlayer insulating film can be reduced.

20 BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a side view showing a configuration of the plasma CVD film forming equipment employed in the film forming method according to a first embodiment of the present invention;

FIG.2A to FIG.2E are sectional views showing structures of samples employed to examined to determine characteristics of a silicon-containing insulating film

that is formed by the film forming method according to the first embodiment of the present invention, and structures of comparative samples;

FIG.3A and FIG.3B are tables showing ~~examined results of~~ a film density of the insulating film that is formed by the film forming method according to ^a the second embodiment of the present invention using the sample of FIG.2A;

FIG.4 is a graph ~~showing examined results of~~ a moisture content and ~~a~~ water resistance of the silicon-containing insulating film that is formed by the film forming method according to ^{the} a second embodiment of the present invention using the sample of FIG.2A;

FIG.5A is a graph ~~showing examined results of~~ an infrared absorption intensity of the silicon-containing insulating film that is formed by the film forming method according to ^{the} a second embodiment of the present invention using the sample of FIG.2A;

FIG.5B is a graph ~~showing examined results of~~ an infrared absorption intensity of the silicon-containing insulating film that is formed by the film forming method according to ^{the} a second embodiment of the present invention using the comparative sample of FIG.2A;

FIG.6 is a graph ~~showing examined results of~~ a water resistance of the silicon-containing insulating film that is formed by the film forming method according to ^{the} a second embodiment of the present invention using the

sample of FIG.2B;

FIG.7 is a graph showing examined results of water resistance ~~as determined by~~ due to a pressure-cooker test of the silicon-containing insulating film that is formed by the 5 film forming method according to ~~the~~ second embodiment of the present invention using the sample of FIG.2B;

FIG.8 is a table showing examined results of adhesiveness ^{for} of the silicon-containing insulating film that is formed by the film forming method according to 10 the second embodiment of the present invention, to a coated insulating film using the sample of FIG.2C;

FIG.9 is a graph showing examined results of defect generating rate due to a heat cycle using the sample of FIG.2D according to the second embodiment of the present 15 invention;

FIG.10 is a graph showing examined results of a barrier characteristic to a copper of the silicon-containing insulating film that is formed by the film forming method according to the second embodiment 20 of the present invention;

FIGS.11A and 11B are sectional views showing a semiconductor device manufacturing method according to a third embodiment of the present invention;

FIGS.12A to 12C are sectional views showing a semiconductor device manufacturing method according to 25 a fourth embodiment of the present invention;

FIGS.13A to 13F are sectional views showing a

semiconductor device manufacturing method according to a fifth embodiment of the present invention;

FIGS.14A to 14C are sectional views showing a semiconductor device manufacturing method according to 5 a sixth embodiment of the present invention; and

FIG.15 is a sectional view showing a semiconductor device manufacturing method according to ~~other~~^{another} embodiment of the present invention.

10 DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention will be described explained with reference to the accompanying drawings hereinafter.

First Embodiment

15 FIG.1 is a side view showing a configuration of the parallel-plate type plasma CVD film forming equipment 101 employed in a film forming method according to an embodiment of the present invention.

20 This plasma CVD film forming equipment 101 comprises a film forming portion 101A ~~that is the place~~ wherein at which a silicon-containing insulating film is formed from a gas by the plasma ~~gas~~ on a substrate 20, and a film forming gas supplying portion 101B having a plurality of gas supply sources ~~constituting~~ ^{for} the film forming gas.

25 As shown in FIG.1, the film forming portion 101A has a chamber ~~1~~ ^{wherein} whose pressure can be reduced, and ~~the~~ which chamber ~~1~~ is connected to an exhaust ~~device~~ ⁴ via an

exhaust pipe 4. A switching valve 5 for controlling the opening and closing communication between the chamber 1, and the exhaust device 6 is provided in the middle of the exhaust pipe 4. A pressure measuring means such as a vacuum gauge (not shown) for monitoring the pressure in the chamber 1 is provided to the chamber 1.

A pair of opposing upper electrode (first electrode) 2 and lower electrode (second electrode) 3 are provided to the chamber 1. A high frequency power supply (RF power supply) 7 for supplying a high frequency power having a frequency of 13.56 MHz is connected to the upper electrode 2, while a low frequency power supply 8 for supplying a low frequency power having a frequency of 380 kHz is connected to the lower electrode 3. The film forming gas is plasmanized by supplying the power to the upper electrode 2 and the lower electrode 3 from these power supplies 7, 8. The upper electrode 2, the lower electrode 3, and the power supplies 7, 8 constitute the plasma generating means for plasmanizing the film forming gas.

As the plasma generating means, there are the means for generating the plasma by the first and second electrodes 2, 3 of the parallel-plate type, the means for generating the plasma by ECR (Electron Cyclotron Resonance) method, the means for generating the helicon plasma by irradiating ion with the high frequency power from the antenna, etc., for example.

The upper electrode 2 is also used as a film forming gas distributor. A plurality of through holes are formed in the upper electrode 2, and ~~opening portions~~ ^{for} ~~of~~ the through holes in the surface opposing to the lower electrode 3 serve as discharge ports ^(inlet ports) ~~of~~ the film forming gas. The discharge ports of the film forming gas, etc. are connected to the film forming gas supplying portion 101B via a pipe 9a. Also, a heater (not shown) may be provided ⁱⁿ to the upper electrode 2, as the case may be. This is because, If the upper electrode 2 is heated at ^a the temperature of almost 100 °C during the film formation, particles ~~made~~ of reaction products ~~of the film forming gas~~, etc. can be prevented from sticking onto the upper electrode 2.

The lower electrode 3 is also used as a loading table for the substrate 20. A heater 12 for heating the substrate 20 on the loading table is provided ⁱⁿ to the lower electrode 3.

In the film forming gas supplying portion 101B, a supply source for the alkoxy compound having Si-H bonds; a supply source for the siloxane having Si-H bonds; a supply source for ~~any~~ ^{an} oxygen-containing gas selected from ~~a~~ group consisting of oxygen (O_2), nitrogen monoxide (N_2O), nitrogen dioxide (NO_2), carbon monoxide (CO), carbon dioxide (CO_2), and water (H_2O); a supply source for the hydrogen (H_2); and a supply source for the nitrogen (N_2) are provided.

As for the alkoxy compound having Si-H bonds or the siloxane having Si-H bonds as the film forming gas to which the present invention is applied, the followings may be employed as the typical examples.

10 These gases are supplied appropriately to the chamber 1 of the film forming portion 101A via branch pipes 9b to 9f and a pipe 9a to which all branch pipes 9b to 9f are connected. Flow rate controlling means 11a to 11e and switching means 10b to 10k for controlling the open and the close of the branch pipes 9b to 9f are provided in the middle of the branch pipes 9b to 9f. A switching means 10a for controlling the open and the close of the pipe 9a is provided in the middle of the pipe 9a. Also, in order to purge the residual gas ~~in~~ from the branch pipes 9b to 9e by ~~flowing~~ ^{with} the N₂ gas, switching means 10l to 10n, 10p for controlling the open and ^{int} ~~the~~ close ^{ing of communicti} between the branch pipe 9f, that is connected to the N₂ gas supply source, and remaining branch pipes 9b to 9e, are provided. The N₂ gas purges the residual gas ~~in~~ from the pipe 9a and the chamber 1 in addition to the branch pipes 9b to 9e.

Thos.
According to the film forming equipment 101
~~described above~~, the supply source for supplying at least

~~any one of the alkoxy compound having Si-H bonds and the siloxane having Si-H bonds and the oxygen-containing gas supply source are provided, and also the plasma generating means 2, 3, 7, 8 for plasmanizing the film forming gas, are provided.~~

The insulating film containing Si, O, C, H can be formed by the plasma CVD method by using the above plasma CVD equipment. Therefore, as shown in a second embodiment described in the following, it is possible to form ²¹ the insulating film that has ¹ the low dielectric constant, has ^{a low} the small amount of moisture content, is dense and ²⁵ is excellent in water resistance. Also, this insulating film has ²⁴ the good adhesiveness to ^{the} organic coating insulating film or ^{to an} the inorganic coating insulating film, and has ^{is more effective in} the higher capability for preventing the diffusion of copper (Cu).

In particular, the power supplies 7, 8 for supplying ^{at} the powers ^{respectively} having two high and low frequencies to the first and second electrodes 2, 3, of parallel plate type respectively are connected to them. Therefore, the plasma can be generated by applying the powers having these ^{at} two high and low frequencies to the electrodes 2, 3 respectively. Thus, the insulating film formed in this manner is dense.

25 Second Embodiment

The examination, made by the inventors of the present invention, about the silicon-containing

insulating film, that is formed by the above plasma CVD equipment, will be explained hereunder.

First, ^{Again, conventionally} the well-known parallel-plate type plasma CVD equipment is employed as the above plasma CVD equipment. The lower electrode 3 of the upper and lower electrodes 2, 3 is also used as a substrate holder, and the heater 12 for heating the substrate is built in the lower electrode 3.

Formation of Samples

FIGS. 2A to 2E are sectional views showing samples having the silicon oxide film (a silicon-containing insulating film) of the present embodiment invention.

As shown in FIG. 2A, a sample S1 has a silicon oxide film (this means a silicon-containing insulating film, and referred to as a "PE-CVD TMS SiO₂ film" hereinafter), ~~42a~~ ^{that is} formed by the PE-CVD method using ^a the film forming gas containing trimethoxysilane (TMS), on a silicon substrate 41. For the sake of comparison, a comparative sample CS1 ^{had} having a silicon oxide film (referred to as a "PE-CVD TEOS SiO₂ film" hereinafter) ~~51a~~ ^{that is} formed by the PE-CVD method using ^a the film forming gas containing tetraethoxysilane (TEOS) on the silicon substrate 41, and a comparative sample CS2 ^{had} having a silicon oxide film (referred to as a "PE-CVD SiH₄ SiO₂ film" hereinafter) ~~52a~~ ^{that is} formed by the PE-CVD method using the film forming gas containing monosilane (SiH₄) on the silicon substrate 41, are prepared.

As shown in FIG. 2E, a sample S1A ~~is~~^{was} formed by further forming an electrode 45 on the PE-CVD TMS SiO₂ film 42a_y of in the sample S1 in which the PE-CVD TMS SiO₂ film 42a is formed on the silicon substrate 41. A mercury probe 5 is employed as the electrode 45, and the contact area between the mercury probe and the PE-CVD TMS SiO₂ film 42a ~~is~~^{was} 0.0230 cm².

As shown in FIG. 2B, samples S2, S3 ~~are~~^{were} formed by forming a BPSG film 43 ~~having an amount of contained~~¹⁴⁰ phosphorus of 7 mol% and a film thickness of about 500 nm and a PE-CVD TMS SiO₂ film 42b, to be tested in sequence, on the silicon substrate (Si substrate) 41. A film thickness of the PE-CVD TMS SiO₂ film 42b ~~is set to~~^{was} 100 nm in the sample S2, and the thickness of the PE-CVD TMS SiO₂ film 42b ~~is set to~~^{was} 200 nm in the sample S3. For comparison, a comparative sample CS3 employing a PE-CVD TEOS SiO₂ film 51b having a film thickness of 200 nm in place of the PE-CVD TMS SiO₂ film 42b, a comparative sample CS4 employing a PE-CVD SiH₄ SiO₂ film 52b having a film thickness of 200 nm similarly, and a comparative sample CS5 employing a silicon nitride film (referred to as a "PE-CVD SiN film" hereinafter) 53, that is formed by the plasma CVD method using the film forming gas containing SiH₄, NH₃ and N₂ ~~similarly to have a film thickness of~~^{and had a} 200 nm, are prepared.

As shown in FIG. 2C, samples S4, S5 ~~are formed by~~^{had} forming low dielectric constant insulating films 44a,

formed

44b and a PE-CVD TMS SiO₂ film 42c in sequence on the silicon substrate (Si substrate) 41. An inorganic coating insulating film 44a ^{was} employed as the low dielectric constant insulating film in the sample S4, and an organic coating insulating film 44b ^{was} employed similarly in the sample S5. For comparison, comparative samples CS6, CS7 employing ^{ed} a PE-CVD TEOS SiO₂ film 51c in place of the PE-CVD TMS SiO₂ film 42c, ~~are formed~~. The inorganic coating insulating film 44a ^{was} employed as the low dielectric constant insulating film in the comparative sample CS6, and the organic coating insulating film 44b ^{was} employed similarly in the comparative sample CS7.

The inorganic coating insulating film is ~~such an~~ ^{was}
 15 ~~insulating film that is formed by coating the coating~~
 liquid such as HSQ (product name: manufactured by Dow Corning Co., Ltd.), MSQ (product name), R7 (product name: Hitachi Chemical Co., Ltd.), etc. ^{In the foregoing, a} The compound having one carbon or less ^{was used} ~~is distinctively contained as the~~
 20 ~~component compound~~ in the coating liquid. The organic coating insulating film ^{was from a} ~~is formed by~~ ^{of} ~~coating the coating~~
 liquid such as FLARE (product name: manufactured by Allied Signal Co., Ltd.), SiLK (product name: manufactured by The Dow Chemical Co.), etc. ^{The} ~~in which a~~
 25 compound having two carbons or more is ~~distinctively~~ contained as ~~the component compound~~ in the coating liquid.

was of, in sequence)

As shown in FIG. 2D, a sample S6 is formed by forming a PE-CVD TMS SiO₂ film (lower protection layer) 42d having a film thickness of about 150 nm, a coating insulating film (main insulating film) 44c having a film thickness of about 200 nm, and a PE-CVD TMS SiO₂ film (upper protection layer) 42e having a film thickness of about 200 nm ~~in sequence~~ on the silicon substrate 41. The coating insulating film 44c *was* formed by spin-coating the coating liquid (FOx (product name)), that is produced by dissolving HSQ (Hydrogen silsesquioxane) ~~in~~ the solvent, then baking the coated liquid at the temperatures of 150, 200, and 350 °C for one minute in ~~the~~ nitrogen, respectively, and then curing ~~the resultant~~ at the temperature of 400 °C for 50 minutes in ~~the~~ nitrogen.

For comparison, a comparative sample CS8 ~~in which~~ had a PE-CVD TEOS SiO₂ film 51d ~~is~~ formed in place of the PE-CVD TMS SiO₂ film 42d as the lower protection layer and a comparative sample CS9 ~~in which~~ had PE-CVD TEOS SiO₂ films 51d, 51e ~~are~~ formed in place of the PE-CVD TMS SiO₂ films 42d, 42e as the upper and lower protection layers ~~are prepared.~~

The PE-CVD TMS SiO₂ films 42a to 42e of the samples S1 to S6 ~~were~~ ^{were described} formed by using the above plasma CVD ^{apparatus} equipment under following film forming conditions.

Film forming gas: TMS+N₂O

TMS gas flow rate: 100 sccm

N₂O gas flow rate: 3000 sccm

Gas pressure: 0.7 Torr

Plasmanizing conditions

Power density applied to the upper electrode 2:

0.3 W/cm²

5 (frequency 13.56 MHz)

Power density applied to the lower electrode 3:

0.3 W/cm²

(frequency 380 kHz)

In this film-forming apparatus, these power
10 densities correspond ^{to the applied power} ~~750W~~ 750W to the
electrodes, respectively.

Substrate temperature: 300 to 400 °C

Film forming thickness: t nm

The above plasma CVD apparatus 101 ^{was} is also employed
15 for forming the PE-CVD TEOS SiO₂ film 51a of the
comparative sample CS1, the PE-CVD SiH₄ SiO₂ film 52a of
the comparative sample CS2, the PE-CVD TEOS SiO₂ films
51b to 51e of the comparative samples CS3, CS4, CS6 to
51f to 51k of the comparative samples CS3, CS4, CS6 to
CS9, ^{was} the PE-CVD SiN film 53 of the comparative sample
20 CS5.

Following characteristics of the PE-CVD TMS SiO₂
25 film^s 42a to 42e formed as above ^{were} are examined.

(i) Basic characteristic

The film forming rate of the above film forming
25 conditions ^{was in} is at the range of about 160 to 170 nm/min.

Also, the refractive index of the formed PE-CVD TMS
SiO₂ film ^{was in} is at the range of 1.477 to 1.48, and the film

^{w25}
stress ~~is~~ -250 Mpa or 3.0×10^9 dyne/cm². ^{An} ~~The~~ ellipsometer
^{w25}
using the He-Ne laser having a wavelength of 6338 angstroms
^{w25}
~~is~~ employed to measure the refractive index. Also, the
optilever laser scanning system ^{w25}~~is~~ employed to measure
the film stress.

5 Also, the film thickness (*t*) ~~is~~ 500 nm, and the
relative dielectric constant of the PE-CVD TMS SiO₂ film
^{w25}~~is~~ 3.9. The sample C1A ^{w25}~~is~~ employed as a sample to examine
the relative dielectric constant.

10 The relative dielectric constant ^{w25}~~is~~ determined
based on the result that is obtained by superposing a
small signal having a frequency of 1 MHz onto the DC
voltage (*V*) applied between the Si substrate 41 and the
electrode 45 in the examined sample S1A, and then
15 measuring the change in ~~a~~ capacitance (*C*) in response
to the change in the DC voltage (*V*).

(ii) Concentration of Carbon and Nitrogen in the
film

20 A concentration of carbon and nitrogen in the PE-CVD
TMS SiO₂ film 42a ^{w25}~~is~~ measured by the auger electron
spectroscopy method (AES method) using the sample S1.

According to the ~~measuring~~ results, the
concentration of carbon ^{w25}~~is~~ 1.0 ^{atomic}_{atoms}%, and the
concentration of carbon is 2.1 ^{atomic}_{atoms}%.

25 (iii) Film density

The film density of the PE-CVD TMS SiO₂ film 42a
^{w25}~~is~~ examined employing the sample S1 by the well-known

X-ray interference method or weight measuring method.

By way of comparison, similar examinations^{w2} are carried out^{for} to the thermal SiO₂ film, the comparative sample CS1 of the PE-CVD TEOS SiO₂ film 51a, and the comparative sample CS2 of the PE-CVD SiH₄ SiO₂ film 52a in place of the PE-CVD TMS SiO₂ film 42a.

As shown in FIGS.3A and 3B, it^{was} is found that the PE-CVD TMS SiO₂ film 42a has the high film density of 2.33 rather than other insulating films, and^{w2} is dense.

(iv) Amount of contained moisture in the film

The amount of contained moisture in both the film that is obtained immediately after the formation (as deposited) and the film that is left for two weeks in the air^{was} is measured employing the sample S1 by the TDS (Thermal Desorption Mass Spectroscopy) method. This TDS method is the way of heating the sample and then measuring^{heats} the molecules emitted from the sample. For the sake of comparison, the similar examination^{w2} is carried out^{for} to the comparative sample CS1 employing the PE-CVD TEOS SiO₂ film 51a.

The examination^{was also} was carried out by heating the sample from the room temperature to 800 °C by the TDS analysis equipment and then quantitating^{using} the amount of moisture extracted from the sample.

FIG.4 is a graph showing the examined results. In FIG.4, the ordinate denotes the amount of moisture (wt%) represented^{on} in a linear scale and the abscissa denotes

the temperature (°C) represented ^{on} in a linear scale.

According to the measurement executed immediately after ~~the~~ film formation (as deposited), when the temperature is ^{raised} ~~risen~~ from ~~the~~ room temperature to 800 °C,

5 the amount of moisture in the PE-CVD TMS SiO₂ film 42a ^{was} ~~is~~ 0.11 wt%, whereas the amount of moisture in the PE-CVD TEOS SiO₂ film 51a ^{was} ~~is~~ 0.49 wt%. In addition, according to the measurement executed two weeks later, the amount of moisture in the PE-CVD TMS SiO₂ film 42a ~~is~~ increased
10 merely by +0.2 to 0.3 wt% and thus the amount of moisture ~~is~~ seldom varied.

As described above, it is found that both the structural water (the moisture contained in the film due to the film forming gas and the film structure immediately after the film formation) and the ^{water} ~~physical adsorption~~
15 ~~water (the incoming moisture that is adsorbed and absorbed physically)~~ in the PE-CVD TMS SiO₂ film 42a ^{were} ~~are~~ small in contrast to the PE-CVD TEOS SiO₂ film 51a.

(v) FT-IR Absorption Intensity

20 Then, examined ~~for~~ results ^{for} of the infrared rays absorption intensity in the sample S1 by the FT-IR analysis method (Fourier Transform Infrared analysis method) are shown in FIG.5A. Similarly, ~~examined~~ ^{for} results in the comparative samples CS1, CS2 are shown
25 in FIG.5B.

The ~~an~~ ordinate of FIG.5A denotes the absorption intensity expressed ^{on} in a linear scale (arbitrary unit),

and ~~an~~^{the} abscissa denotes the wave number expressed ~~in~~^{on} a linear scale (cm^{-1}). Similarly, this is true of FIG.5B.

As shown in FIG.5A, the peak of the infrared rays absorption intensity having a center wave number in a range of 2270 to 2350 cm^{-1} is confirmed. In contrast, 5 as shown in FIG.5B, such ~~a~~^{peak} is not ~~watched~~^{seen for} in the comparative samples CS1, CS2.

(vi) Water Resistance

The water resistance of the PE-CVD TMS SiO_2 film 42b was examined. 10 is exemplified by the high pressure humidifying test (pressure-cooker test) while using the samples S2, S3 shown in FIG.2B. By way of comparison, the similar examination was applied to the comparative sample CS3 employing the PE-CVD TEOS SiO_2 film 51b in place of the PE-CVD TMS SiO_2 film 42b and the comparative sample CS5 15 employing the PE-CVD SiN film 53, similarly.

The conditions of the high pressure humidifying test are given as follows. The leaving time^{of exposure was} is used as a parameter.

20 Temperature: 121°C

Pressure: 2.0 atm

Humidity: 100 % R.T. (Room Temperature)

Evaluation of the water resistance was carried out 25 by evaluating ~~an~~^{the} amount of P=O bonds contained in the examined insulating film after the high pressure humidifying test. In order to evaluate the amount of P=O bonds contained in the BPSG film 43, the P=O

absorption coefficient ^{w₂} is measured by the FT-IR analysis method. If the moisture enters into the BPSG film 43, the P=O bonds in the film react with the moisture ^{2nd are} to thereby destroyed. In this case, if the PE-CVD TMS SiO₂ film 42b ~~for~~ covering the BPSG film 43 has ~~the~~ high water ^{s//ow} resistance, such film does not pass through the moisture to and thus the P=O bonds in the BPSG film 43 are never not destroyed. As a result, it is possible to say that, if as the time dependent change of the P=O absorption coefficient becomes smaller, the water resistance becomes higher.

FIG.6 is a graph showing the time dependent change of the amount of contained phosphorus in the insulating film after the high pressure humidifying test is carried out. The ordinate denotes the P=O absorption coefficient (arbitrary unit) expressed ^{on} a linear scale, and the abscissa denotes the leaving time (H (hour)) expressed on a linear scale.

Based on the results shown in FIG.6, it is found that, even after both the samples S2, S3 are left for 150 hours as they are, their P=O absorption coefficients are seldom changed from the initial P=O absorption coefficient, regardless of the magnitude of the thickness of the PE-CVD TMS SiO₂ film 42b, like the PE-CVD SiN film 53 in the comparative sample CS5, i.e., the PE-CVD TMS SiO₂ film 42b has the water resistance equivalent to the PE-CVD SiN film 53.

was

Also, the water resistance is examined by another high pressure humidifying test while using the examined sample S3 and the comparative samples CS3, CS4.

The conditions of the high pressure humidifying test
 5 were are the same as above.

The results are shown in FIG.7. An ordinate of FIG.7 denotes the water resistance (%) expressed on a linear scale, and an abscissa denotes the leaving time (H (hour)) expressed on a linear scale. The sample S3
 10 and the comparative samples CS3, CS4 are used as a parameter.

In the manner described like the above, the evaluation of the water resistance is carried out by evaluating an amount of P=O bonds contained in the examined insulating film after the high pressure humidifying test. The water resistance in FIG.7 is derived by calculating the P=O absorption coefficient obtained after the high pressure humidifying test on the basis of the P=O absorption coefficient before the leaving-off, that is assumed as
 15 20 100.

was

As shown in FIG.7, it is found that the sample S3 has the water resistance of 97.4 % (100 H), that exceeds that of the comparative samples CS3, CS4.

(vii) Leakage current of the film
 25 A was formed as
 The examined sample S1A shown in FIG.2E is formed. That is, the electrode 45 is formed on the PE-CVD TMS
 1/e. on SiO₂ film 42 having a film thickness (t) of 200 nm in the

sample S1 according to the present invention.

The leakage current flowing through the silicon substrate 41 and the electrode 45 ^{was} is measured by applying ~~the~~ voltage between the silicon substrate 41 and the electrode 45. The silicon substrate 41 ^{was} is grounded, and ^{was} the negative voltage ^{was} is applied to the electrode 45.

According to the results, the leakage current of the PE-CVD TMS SiO₂ film 42a as ~~the single substance~~ ^{was} is on the order of 10⁻⁸ A/cm² at ³¹ the electric field strength of 5 MV/cm, and the breakdown voltage ^{was} is about 10 MV/cm in terms of the electric field.

(viii) Adhesiveness of the film

The adhesiveness between the PE-CVD TMS SiO₂ film 42c according to the present invention and the underlying low dielectric constant insulating film 44a, 44b ^{was} is examined employing ^{for} the samples S4, S5. Also, ^a the sample which ^{was} is subjected to the surface treatment prior to the film formation and ³ the sample which ^{was} is not subjected to the surface treatment ^{were} prepared, and then ^{were} the similar ^{examined in} fashion ^{fashion}. The surface treatment executed prior to the film formation ^{was} is the treatment for reforming ^{of} the surface of the processed film ^{by} employing ^a the plasma of N₂, NH₃, H₂, etc.

By way of comparison, the PE-CVD TEOS SiO₂ film 51c ^{was} is employed in place of the PE-CVD TMS SiO₂ film 42c, and similar examinations ^{were} are carried out employing the inorganic coating insulating film 44a (the comparative

sample CS6) and the organic coating insulating film 44b (the comparative sample CS7) as the low dielectric constant insulating film.

5 As the test for examining the adhesiveness of the film, the peel test ~~by~~³ using the tape and the peel test by the CMP (Chemical Mechanical Polishing) ~~over~~^{over} the entire surface of the wafer ~~were~~^{were} carried out. ^{of examination}

10 According to the examined results^{use}, regardless of the presence of the surface treatment prior to the film formation, the PE-CVD TMS SiO₂ film 42c ~~has~~^{showed} the good adhesiveness to the inorganic coating insulating film 44a and the organic coating insulating film 44b. In contrast, ~~the~~ degree of the adhesiveness of the PE-CVD TEOS SiO₂ film 51c ~~was~~^{that of} inferior to the PE-CVD TMS SiO₂ film 42c
15 as a whole. ~~Then~~^{and} difference in the adhesiveness differed according appeared in response to whether or not the surface treatment ~~was~~^{was} applied prior to the film formation. That is, the sample which ~~is~~^{was} subjected to the surface treatment prior to the film formation had ~~the~~^{the} higher adhesiveness than the sample which ~~is~~^{was} not subjected to the surface treatment.
20

(ix) Defect Generating Rate due to Heat Cycle

25 The defect generating ~~rate~~^{ion} due to the heat cycle for about the sample S6 and the comparative samples CS8, CS9 was examined. Respective samples ~~were~~^{were} sealed in the package. Test conditions of the heat cycle ~~are~~^{were} given as follows. The cycle number is used as a parameter.

High temperature (holding time): 150 °C (20 minutes)

Low temperature (holding time): -55 °C (20 minutes)

5 Cycle number: 100, 200, 300, 500 °C

The results are shown in FIG.9. ~~The~~ An ordinate ⁱⁿ ion of FIG.9 denotes the defect generating rate (%) expressed ~~on~~ in a linear scale, and an abscissa denotes the types of ~~the~~ sample. The types of the sample ^{s were} ~~are~~ the sample S6, 10 and the comparative samples CS8/CS9, as explained above, in order from the left side. The partition area indicated by a bar graph denotes ~~a~~ the fraction defective ~~for~~ at a particular cycle number, the partition area hatched by lateral lines denotes the fraction defective at 100 °C, 15 the partition area hatched by vertical lines denotes the fraction defective at 200 °C, the partition area hatched by oblique lines denotes the fraction defective at 300 °C, and the white partition area on a black ground denotes 20 the fraction defective at 500 °C.

As shown in FIG.9, in ~~the~~ sample S6 employing ~~the~~ silicon oxide film of the present invention as both the upper protection layer and the lower protection layer, ~~the~~ defect ^{s were} generated at 300 °C or more, but the defects generating ^{amount of} ~~rate is~~ about 2 to 3 % even if the defects generating rates at 300 °C and 500 °C are added. In the 25 comparative sample CS8 employing the silicon oxide film 52d of the present invention only as the lower protection

layer out of the upper protection layer and the lower protection layer, the defect ^{were} generated almost uniformly from 100 °C to 500 °C, and the defect generating ^{ed were} rate is about 25 % in total. In the comparative sample CS9 not employing the silicon oxide film 42d, 42e of the present invention ^{as both} the upper protection layer and ^{as} the lower protection layer, the defect ^{were} generated from 100 °C to 500 °C. In particular, the defect generating ^{ed} at 300 °C and ^{at} 500 °C ^{so that} increased, and the defect generating ^{generated totalled} rate is about 53 %.
 in total.

Cu

(x) Examination of the barrier characteristic ~~to~~
 the copper (Cu)

(a) TDDB (Time Dependent Dielectric Breakdown) test
 The TDDB test measures ^{the} time required to come up to the dielectric breakdown when ^{the} voltage is applied to the sample.

The examined sample ~~is~~ prepared by stacking the PE-CVD TMS SiO₂ film according to the present invention and the Cu film on the Si substrate in sequence. By way ^{was} For comparison, the similar examination ~~is applied to the~~ sample employing the PE-CVD TEOS SiO₂ film in place of the PE-CVD TMS SiO₂ film, and ^a the sample interposing the TiN film between the Cu film and the PE-CVD TEOS SiO₂ film. ^{were utilized}

According to the examined results, ^{The} the breakdown lifetime of 10×10^5 seconds ~~is~~ obtained at ^{an} electric field strength of 8 MV/cm.

In contrast, in the sample employing the PE-CVD TEOS SiO₂ film, ~~the electric field strength is 8 MV/cm to get~~ ⁱⁿ resulted in ~~the~~ breakdown lifetime on the order of 10×10^5 seconds. This means that the breakdown lifetime of the sample employing the PE-CVD TMS SiO₂ film ^{was} ~~is~~ longer by almost six figures than the sample employing the PE-CVD TEOS SiO₂ film.

5 In the sample interposing the TiN film between the Cu film and the PE-CVD TEOS SiO₂ film, ~~the electric field strength is 7.5 MV/cm to get~~ ⁱⁿ resulted in ~~the~~ breakdown lifetime on the order of 10×10^5 seconds.

10 With the above, it is possible to say that the sample employing the PE-CVD TMS SiO₂ film has ^a ~~the~~ longer breakdown lifetime by almost six figures than the sample employing the PE-CVD TEOS SiO₂ film and ~~has~~ ^{serves as a} barrier characteristic to Cu, ~~that is equivalent to or more than~~ ^{exceeding that of} the TiN film.

15 (b) Examination of heat resistance

As shown in FIG.10, ~~the examined sample is prepared by stacking the PE-CVD TMS SiO₂ film of 125 nm thickness according to the present invention and the Cu film on the Si substrate (not shown) to contact with each other.~~ ^{was} ~~The examination is made by measuring the Cu concentration distribution state in the PE-CVD TMS SiO₂ film on the basis of the state obtained immediately after the film formation (indicated by a dotted line in FIG.10), after the sample is processed for a predetermined time~~ ^{the distribution of}

~~(three types)~~ i.e., 1 hour (chain double-dashed line), 7 hours (solid line), and 15 hours (dot-dash line) at ~~the~~ the temperature of 470 °C.

FIG.10 is a graph showing the ~~examined~~ results. In FIG.10, ~~the~~ ^{the} ordinate on the left side denotes ~~of~~ Cu concentration and ~~of~~ Si concentration (cm^{-3}) represented ~~on~~ ⁱⁿ a logarithmic scale. ~~An~~ ^{The} abscissa denotes ~~of~~ depth (nm) measured from one surface of the PE-CVD TMS SiO_2 film toward the Cu film side and represented ^{is} ~~on~~ in a linear scale.

As shown in FIG.10, the distribution ~~is~~ seldom changed ^{so} ~~that~~ from the ~~distribution~~ obtained immediately after the film formation. In other words, it is found that the PE-CVD TMS SiO_2 film has ^{is} ~~the~~ sufficient ^{ly good} barrier ~~characteristic~~ to ~~the~~ Cu.

In the above, the alkoxy compound (ex. TMS) having Si-H bonds is employed as the silicon-containing gas in the film forming gas. But ^{etc} ~~the~~ siloxane having Si-H bonds may be employed.

^{While} ~~Also~~ N_2O is employed as the oxygen-containing gas in the above, ^{etc} ~~But~~ any ^{gas} ~~one~~ selected from the group consisting of oxygen (O_2), nitrogen dioxide (NO_2), carbon monoxide (CO), carbon dioxide (CO_2) and water (H_2O) may be employed.

In addition, if ~~any one selected from the group~~ ~~consisting of~~ hydrogen (H_2) ^{or} and nitrogen (N_2) is added to the above film forming gas, the density can be further enhanced.

Third Embodiment

Next, a semiconductor device and a method of manufacturing the same according to a third embodiment of the present invention will be explained with reference to FIGS.11A and 11B hereunder.

~~FIG.11B is a sectional view showing a semiconductor device according to a third embodiment of the present invention.~~

As shown in FIG.11B, ^a the silicon oxide film (the silicon-containing insulating film) 24 according to the present invention is formed on the substrate 20a. ~~In~~ ^{consists of} The substrate 20a~~s~~ the underlying insulating film 22 and the wiring 23, ^{both} ~~are~~ formed on the base substrate 21. The silicon oxide film 24 covers the wirings 23. In the silicon oxide film 24 according to the present invention, ~~the peak of an absorption intensity of an infrared rays was~~ ^{was} in a range of a wave number 2270 to 2350 cm⁻¹, ~~a~~ film density ^{was} in a range of 2.25 to 2.40 g/cm³, and ~~a~~ relative dielectric constant ^{was} in a range of 3.3 to 4.3.

In this case, the silicon substrate or the base substrate obtained by forming the wirings ~~and~~ and the insulating film on the silicon substrate may be employed as the base substrate 21. ^A The conductive material such as aluminum, copper, etc. may be employed as the material of the wirings 23.

~~In this manner,~~ ^{Thus} the silicon oxide film 24 according to the present invention may be employed as the insulating

film that covers the wirings 23 made of the conductive material, such as aluminum, copper, etc.

According to the semiconductor device of the third embodiment, the silicon-containing insulating film 24 according to the present invention is formed ~~to come into contact with the wirings 23 and to cover the wirings 23.~~

The above silicon-containing insulating film 24 has qualities such that the insulating film is dense, is excellent ~~in the~~ water resistance, and has the small amount of ~~contained~~ moisture ~~in the~~ film, which are equivalent to ~~the~~ silicon nitride film, and also has the smaller relative dielectric constant than ~~the~~ silicon nitride film. As a result, if the silicon-containing insulating film according to the present invention is employed as the protection layer 24 for covering the wirings 23, etc., the corrosion of the wirings 23 can be prevented by preventing ~~the~~ permeation of ~~the incoming moisture~~ between the wirings 23.

FIGS.11A and 11B are sectional views showing the method for manufacturing the semiconductor device according to the third embodiment of the present invention. TMS+N₂O is employed as the film forming gas for the PE-CVD TMS SiO₂ film according to the present invention.

First, as shown in FIG.11A, an underlying insulating film 22 made of the PE-CVD TMS SiO₂ film is formed on the

silicon substrate 21 by the plasma CVD method using TMS+N₂O as the film forming gas.

In order to form the PE-CVD TMS SiO₂ film, first the silicon substrate 21 is loaded into the chamber 1 of the plasma film forming apparatus 101 and held by the substrate holder 3. Then, the silicon substrate 21 is heated to maintain a temperature of 350 °C. TMS and the N₂O gas are introduced into the chamber 1 of the plasma film forming apparatus 101 shown in FIG.1 at flow rates of 100 sccm and 3000 sccm respectively to hold the pressure at 0.7 Torr. Then, the power 0.3 W/cm² having the frequency of 380 kHz is applied to the lower electrode 3 and also the power 0.3 W/cm² having the frequency of 13.56 MHz is applied to the upper electrode 2, thereby converting the Accordingly, TMS and N₂O into a plasma. A PE-CVD TMS SiO₂ film 22 of about 200 nm thickness is formed while holding this condition for a predetermined time. According to the examination, the formed PE-CVD TMS SiO₂ film 22 was found to have a relative dielectric constant of about 3.9 that is measured at the frequency of 1 MHz, and the leakage current of 10⁻⁸ A/cm² at the electric field strength of 5 MV/cm.

Then, the wiring (lower wiring) 23 is formed on the underlying insulating film 22. Then, as shown in FIG.11B, the PE-CVD TMS SiO₂ film 24 of about 500 nm thickness was formed by the plasma CVD method that is used to form the above described PE-CVD TMS SiO₂ film 22.

As described above, according to the third embodiment of the present invention, the underlying insulating film 22 is formed on the silicon substrate 21 before the wiring 23 is formed. The PE-CVD TMS SiO₂ film is dense, has ~~the~~ good water resistance, and has ~~the~~ small amount of contained moisture in the film.

Therefore, the underlying insulating film 22 can prevent the moisture in the underlying insulating film 22 and the incoming moisture from reaching the silicon substrate 21.

Also, since the leakage current between the wiring 23 and the silicon substrate 21 ~~can be suppressed~~, the transistors, the capacitances ^{ors} of the memory elements, etc. are covered with the PE-CVD TMS SiO₂ film ~~in case~~ they are formed on the silicon substrate 21. Therefore, the flowing ^{leakage} out of the accumulated charge can be prevented and thus the reliability of the device can be improved.

In addition, since the PE-CVD TMS SiO₂ film 24 is formed after the wiring 23 is covered, the corrosion of the wiring 23 due to ~~the~~ moisture in the film 24 and ~~the~~ ambient incoming moisture can be prevented.

Further, since the PE-CVD TMS SiO₂ film 24 has ² ~~the~~ lower relative dielectric constant than the silicon nitride film and ~~the~~ small leakage current, the leakage current between the wirings ^{wires as the} ~~can be suppressed~~ and the parasitic capacitance between the ^{wires} ~~wirings~~ can be reduced.

both for
~~in the situation that a plurality of wirings are provided
wires and for
adjacently or the multi-layered wiring is formed.~~

Fourth Embodiment

Next, a semiconductor device and a method of manufacturing the same according to a fourth embodiment of the present invention will be explained with reference to FIGS.12A to 12C ~~hereunder~~.

FIG.12C is a sectional view showing a semiconductor device according to a fourth embodiment of the present invention.

As shown in FIG.12C, the low dielectric constant insulating film 25 such as ~~the~~ porous insulating film, ~~the~~ SiOF film, or the like is formed to cover the wirings 23, and then the protection layer 26 made of the silicon oxide film (silicon-containing insulating film) of the present invention is formed on the insulating film 25.

In the silicon oxide film 26 of the present invention, the peak of the absorption intensity of the infrared rays is in the range of a wave number 2270 to 2350 cm^{-1} , the film density is in the range of 2.25 to 2.40 g/cm^3 , and the relative dielectric constant is in the range of 3.3 to 4.3 .

Thus, The
~~The above silicon oxide film 26 has the qualities~~
~~which are equivalent to the silicon nitride film. The~~
~~silicon oxide film 26 has the small relative dielectric~~
~~constant, is dense, has excellent water resistance,~~
~~and has the small amount of contained moisture in the~~

~~film~~. Accordingly, if the silicon-containing insulating film according to the present invention is employed as the protection layer 26 that covers the wirings 23, etc., ~~the~~ corrosion of the wirings 23 can be prevented by preventing the permeation of ~~the incoming~~ moisture, while reducing the parasitic capacitance between the wirings 23.

In particular, if ~~the~~ porous insulating film having ~~the~~ high hygroscopicity is employed as the insulating film 25 that covers the wirings 23, ~~the ingress~~ of the moisture into the porous insulating film can be prevented and also the increase in the dielectric constant due to ~~the~~ moisture absorption can be prevented.

FIGS.12A to 12C are sectional views showing the method of manufacturing the same according to the fourth embodiment of the present invention. TMS+N₂O is used as the film forming gas.

First, as shown in FIG.12A, like the third embodiment, ~~the~~ underlying insulating film 22 made of the PE-CVD TMS SiO₂ film is formed on the silicon substrate (base substrate) 21 by the plasma CVD method using TMS+N₂O as the film forming gas. The formed PE-CVD TMS SiO₂ film 22 had ~~the~~ relative dielectric constant of about 3.9 that is measured at ~~the~~ frequency of 1 MHz, and ~~the~~ leakage current of 10^{-8} A/cm² ^{in an} at ~~the~~ electric field strength of 5 MV/cm.

Then, the wiring (lower wiring) 23 is formed on the

Next

underlying insulating film 22. Then, as shown in FIG.12B, a porous insulating film 25 having ~~the~~ low dielectric constant and ~~the~~ film thickness of about 500 nm is formed by the ~~well known~~^{conventional} method. ~~To complete~~ These elements 5 constitute a substrate 20b.

Then, as shown in FIG.12C, a protection film 26 made of the PE-CVD TMS SiO₂ film ~~and~~ having ~~the~~ film thickness of about 200 nm is formed by the plasma CVD method that is used to form the above PE-CVD TMS SiO₂ film 22.

As described above, according to the fourth embodiment, the protection film 26 made of the (PE-CVD TMS SiO₂ film) is formed on the porous insulating film 25 that covers the wiring 23. The PE-CVD TMS SiO₂ film is dense, has ~~the~~ good water resistance, and has the ~~small~~ 15 amount of ~~contained moisture~~^{is low} in the film^{ambient}.

Therefore, the protection film 26 can prevent the ~~incoming~~ moisture from reaching the wiring 23. Also, the leakage current of the overall interlayer insulating film, including the porous insulating film 25, can be 20 ~~reduced~~ suppressed.

Fifth Embodiment

Next, a semiconductor device and a method of manufacturing the same according to a fifth embodiment of the present invention will be explained with reference 25 to FIGS.13A to 13F hereunder.

No P → FIGS.13A to 13F are sectional views showing the semiconductor device and the method of manufacturing the

~~same according to the fifth embodiment of the present invention. In this case, like the third embodiment, TMS+N₂O is used as the film forming gas.~~

5 FIG.13F is a sectional view showing a semiconductor device according to a fifth embodiment of the present invention.

10 As shown in FIG.13F, in the semiconductor device, an underlying insulating film 32 is formed on a base substrate 31, and ~~a lower wiring 33 is formed thereon. Further, an interlayer insulating film is formed to contact to the lower wiring 33 and to cover the lower wiring 33.~~ The same base substrate as the base substrate 21 in FIG.11B may be employed as the base substrate 31.

15 The interlayer insulating film is formed by laminating a lower protection layer 34, formed of the silicon-containing insulating film according to the present invention, a main insulating film 35, and an upper protection layer 36, formed of the silicon-containing insulating film according to the present invention, in sequence from the lower layer. In the silicon-containing insulating film according to the present invention, ~~the infrared~~ a peak of the absorption intensity of the infrared rays is in a range of the wave number of 2270 to 2350 cm⁻¹, a film density is in a range of 2.25 to 2.40 g/cm³, and a relative dielectric constant is in a range of 3.3 to 4.3.

20

25

In this case, the porous insulating film or the SiOF

film, that is the insulating film having ~~the~~ ^a low dielectric constant, may be employed as the main insulating film 35.

5 ~~Also, A via hole 37 is formed in the interlayer insulating film over the lower wiring 33, The lower wiring 33 and the upper wiring 38 are connected through this via hole 37.~~

10 As described above, according to ~~the~~ ^{this} fifth embodiment, since the lower protection layer 34 made of the PE-CVD TMS SiO₂ film ~~is formed to cover~~ the lower wiring 33, the corrosion of the lower wiring 33 due to the moisture contained in the lower protection layer 34 and the ~~incoming~~ ^{ambient} moisture can be prevented.

15 Further, the upper and lower protection layers 34, 36 made of the PE-CVD TMS SiO₂ film ~~are formed to put~~ ^{sandwich} the main insulating film 35 therebetween.

20 If the main insulating film 35 is formed of ~~the~~ SiOF ~~film~~, the diffusion of ~~the~~ ^{elements} fluorine (F) ~~element~~ into the outer peripheral portions of the upper and lower protection layers 34, 36 can be prevented.

25 ~~In contrast~~
~~Otherwise,~~ if the main insulating film 35 is ~~formed~~ ² of ~~the~~ porous insulating film, ~~the~~ hygroscopicity is high and the dielectric constant ~~is ready to~~ vary due to the moisture absorption. However, if the main insulating film 35 is sandwiched ~~by~~ ^{between} the upper and lower protection layers 34, 36, the permeation of ~~the incoming~~ ^{ambient} moisture into the main insulating film 35 can be ~~suppressed~~ ^{reduced} and

thus the dielectric constant of the interlayer insulating film can be stabilized with low value. Also, the leakage current of the overall interlayer insulating film containing the porous insulating film 35 can be suppressed.

Because
 Furthermore, the PE-CVD TMS SiO₂ films 34, 36 ~~has~~ have the ~~small~~ ^{is at 2} relative dielectric constant rather than the ~~silicon nitride film~~, and has the ~~small~~ ^{low} leakage current, ~~the of~~ ^{the of} Therefore, in case a plurality of wirings ~~are~~ are arranged closely or a multi-layered wiring is formed, the leakage current between the wirings can be suppressed and also the parasitic capacitance between the wirings can be reduced.

In this case, If the underlying insulating film 32 is formed on the base substrate 31 is formed of the PE-CVD TMS SiO₂ film according to the present invention, the ~~permeation~~ ^{is} reaching of the moisture in the underlying insulating film 32 and the incoming moisture to the base substrate 31 can be prevented. Also, if the silicon substrate is employed as the base substrate 31, the leakage current between the lower wiring 33 and the base substrate 31 is reduced. Therefore, in case the transistors, the capacitors of the memory devices, etc. are formed on the silicon substrate, they are covered with the PE-CVD TMS SiO₂ film ^{2nd}. As a result, the flowing out of the accumulated charges can be prevented and thus the reliability of the device can be improved.

;Illustrating steps 1~n

FIGS.13A to 13F are sectional views showing the method of manufacturing the semiconductor device according to the fifth embodiment of the present invention. In this case, like the third embodiment, TMS+N₂O is used as the film forming gas.

FIG.13A is a sectional view showing the state after the wiring is formed. In FIG.13A, ~~a reference~~ 31 denotes a silicon substrate(base substrate); 32, an underlying insulating film; and 33, ~~a~~ wiring (lower wiring). If the wiring 33 is ~~the~~ copper ~~wiring~~, a TaN film serving as ~~the~~ copper barrier ~~for~~ to the underlying insulating film 22 and a Cu film formed by ~~the~~ sputter, although not shown, are formed between the underlying insulating film 32 and the wiring (lower wiring) 33 ~~from the bottom~~. These films constitute the substrate 20c.

In this state, as shown in FIG.13B, a barrier insulating film (lower protection layer) 34 ~~made of the~~ PE-CVD TMS SiO₂ ~~film having a~~ having a film thickness of about 50 nm is formed on the wiring 33 by the plasma CVD method using TMS+N₂O.

The barrier insulating film 34 is formed by the same manufacturing method as the underlying insulating film 22 in the third embodiment. The same film forming conditions are employed, their explanation will be omitted herein. According to the examination, the formed barrier insulating film 34 ~~was found to have a~~ has the relative dielectric constant of about 3.9 ~~that is measured at a~~

frequency of 1 MHz, and the leakage current of 10^{-8} A/cm² at the electric field strength of 5 MV/cm.

Then, as shown in FIG.13C, a porous insulating film 35 having a low dielectric constant and the film thickness of about 500 nm is formed by the well known plasma CVD method. As the method of forming the porous insulating film, there are the method of forming a multi-layered insulating film by repeating the film formation by the low pressure thermal CVD method and the film formation by the plasma CVD method, the method of laminating the organic film and the SiO₂ film alternatively and then removing the organic film by ashing using the oxygen plasma, etc., for example.

Next
Then, as shown in FIG.13D, a thin and highly dense NSG film (silicon oxide film not containing the impurity), that serves as a protection film (upper protection layer) 36 for the porous insulating film 35 in the ashing and the etching, is formed. If no protection film 36 is formed, the quality of the porous insulating film 35 is altered by the processing gas when the ashing of the photoresist film is executed or when the barrier insulating film 34 under the porous silicon-containing insulating film 35 is etched, and thus there is the possibility that the low dielectric constant characteristic is degraded. The protection film 36 may be omitted, as the case may be.

Then, as shown in FIG.13E, a photoresist film (not

~~with~~
 shown) is formed and then an opening portion is formed in the via-hole forming-area ~~of~~ the photoresist film by patterning the photoresist film. Then, first the protection film 36 is etched and removed ~~via~~ the opening portion in the photoresist film by the reactive ion etching (RIE) using ~~the plasmatized mixed gas containing~~ $\text{CF}_4 + \text{CHF}_3$. Then, the porous insulating film 35 is etched and removed by using ~~a~~ ^a of the mixed gas containing $\text{CF}_4 + \text{CHF}_3$, whose composition ratio is different than that of ~~the~~ the gas used in the etching of the protection film 36. Accordingly, an opening portion is formed to expose the barrier insulating film 34. Then, the ashing of the photoresist film is executed. At this time, the barrier insulating film 34 has ~~the etching~~ ^{then removed by ashing.} resistance against the etching gas for the porous insulating film 35 and the ashing gas for the photoresist film. As a result, the wiring 33 is not ~~badly~~ ^{adversely} affected by the etching gas, etc. The concentration of the mixed gas containing $\text{CF}_4 + \text{CHF}_3$ may be adjusted by adding $\text{Ar} + \text{O}_2$, etc. ~~in addition to etching~~
 gas.

Then, the barrier insulating film 34 is etched and removed via the opening portion in the protection film 36 and the opening portion in the porous insulating film 35 by ~~the~~ reactive ion etching (RIE) using ~~the plasmatized~~ ^a of ~~the~~ mixed gas containing $\text{CF}_4 + \text{CHF}_3$, that has the same composition ~~ratio~~ as the gas used in the etching of the above protection film 36. Accordingly, a via hole is

formed to expose the barrier insulating film 34 from its bottom portion. At this time, the lower wiring 33 has ~~protected from~~^{is} the etching resistance against the etching gas for the above barrier insulating film 34. As a result, the lower wiring 33 is not badly affected by the etching gas. In this case, ~~the~~^{and, as} surface of the lower wiring 33 is oxidized. But such oxide film may be removed by exposing to the hydrogen plasma diluted with a reducing gas, e.g., an inert gas such as NH₃, argon, nitrogen, or the like after the ashing step of the photoresist film and the etching step of the barrier film are completed.

Then, as shown in FIG. 13F, a conductive film is then filled in the via hole 37. Next, an upper wiring 38 made of copper or aluminum is formed to be connected to the lower wiring 33 through the hole 37 via the conductive film. If the upper wiring 38 is the copper wiring, an underlying conductive film consisting of a barrier metal film, e.g., such as a tantalum nitride (TaN) and a copper film formed by the sputter method is provided in the via hole 37, and then the conductive film is formed thereon.

With the above, the formation of the upper wiring 38 is completed. The upper wiring 38 is connected to the lower wiring 33 through the via holes in the protection film 36, the porous insulating film 35, and the barrier insulating film 34.

As described above, according to the fifth embodiment, the lower wiring 33 is covered with the

barrier insulating film 34 made of the PE-CVD TMS SiO₂ film to which the present invention is applied.

By the way, as indicated by the examined results obtained in the second embodiment, the PE-CVD TMS SiO₂ film according to the present invention has the qualities equivalent to those of a silicon nitride film. The PE-CVD TMS SiO₂ is dense, is excellent in the water resistance, and has the small amount of contained moisture in the film. Accordingly, the corrosion of the lower wiring 33 can be prevented by preventing the permeation of the incoming moisture.

In addition, if the underlying insulating film 32 is formed of the PE-CVD TMS SiO₂ film according to the present invention, all peripheral portions of the lower wiring 33 can be protected by the PE-CVD TMS SiO₂ film. Therefore, the corrosion of the lower wiring 33 can be prevented much more by preventing the permeation of the moisture from the peripheral portions of the lower wiring 33.

Further, upper and lower surfaces of the porous insulating film 35 having the low dielectric constant are protected by the barrier insulating film 34 formed of the PE-CVD TMS SiO₂ film and the protection film 36 formed of the PE-CVD TMS SiO₂ film. Accordingly, the permeation of the incoming moisture into the porous insulating film 35 can be prevented. Therefore, variation in the relative dielectric constant due to the

moisture contained in the porous insulating film 35 ⁱ⁵ can be suppressed.

Furthermore, if ~~the~~ moisture is contained in the porous insulating film 35 ^{as formed} from ~~the~~ beginning, the ~~out-SiO₂~~
5 flowing ~~out~~ of such moisture ~~to~~ the peripheral portions can be prevented and thus ~~the~~ corrosion of the lower wiring 33, etc. can be prevented.

Besides, the PE-CVD TMS SiO₂ film has ~~the quality~~ ^z of the density ^{that of z}, that is equivalent to the silicon nitride film, but has ~~the quality of~~ ^z er the small relative dielectric constant, ~~that is largely different from the silicon nitride film.~~ Accordingly, if the PE-CVD TMS SiO₂ film is employed as the interlayer insulating film, the smaller relative dielectric constant can be maintained.
10
15 In particular, if the PE-CVD TMS SiO₂ film is employed as the barrier insulating film and the protection film ^{respectively} that protect the upper and lower surfaces of the porous insulating film 35, the smaller relative dielectric constant can be maintained ^{for the whole} ~~as the overall~~ interlayer
20 insulating film ^{made up of} containing all of them.

In the above fifth embodiment, a thermal oxide film formed by heating ~~it~~ ^{in the} oxygen-containing atmosphere to oxidize the silicon substrate 31, an NSG film formed by the CVD method using ~~the~~ ^{an} organic silicon-containing gas, a BPSG film (BoroPhosphoSilicate Glass), etc. ~~may~~ ^{easy be} be employed as ~~the underlying insulating film 32.~~ But the PE-CVD TMS SiO₂ film which is formed by the plasma

3/50

CVD method according to the present invention may be employed.

~~Sixth Embodiment~~

FIGS.14A to 14C are sectional views showing a semiconductor device and a method of manufacturing the same according to a sixth embodiment of the present invention.

FIG.14C is a sectional view showing a semiconductor device according to a sixth embodiment of the present invention.

of this sixth embodiment differs
~~In this~~ semiconductor device, a difference from the ~~that of~~
~~fifth embodiment~~ is that a side wall of the via hole 37
 is covered with a PE-CVD TMS SiO₂ film 39a of the present
 invention and thus the porous insulating film 35 is not
 exposed from the inner surface of the via hole 37.

In this manner, if a sidewall protection layer 39a ~~the structure shown in~~
~~made~~ of the PE-CVD TMS SiO₂ film is added to FIG.13F, the
 porous insulating film 35 can be shielded almost
~~completely~~ ~~ambient atmosphere~~
~~perfectly~~ from the outside by the PE-CVD TMS SiO₂ film
 according to the present invention. Therefore, the
 advantage ~~about the entering and discharging of the~~
~~connection with~~ moisture explained in the fifth embodiment ~~can be~~
 enhanced ~~much more~~.

In order to implement the above structure, as shown in FIG.14A, the PE-CVD TMS SiO₂ film 39 to which the present invention is applied is formed on the protection film 36 so as to cover the via hole 37 after the step

shown in FIG.13E. Then, as shown in FIG.14B, the PE-CVD TMS SiO₂ film 39 is etched by ~~the~~ anisotropic etching to leave the PE-CVD TMS SiO₂ film 39a on the sidewall of the via hole 37. Then, as shown in FIG.14C, the upper wiring 38 made of copper or aluminum is formed ~~to be~~ connected to the lower wiring 33 via the conductive film.

5 While
 above With the above, the present invention is explained
 with reference to various
 in detail based on the embodiments, ~~but~~ the scope of the
 present invention is not limited to examples given
 10 concretely in the above embodiments. Variations ~~of~~ the
 above embodiments may be contained in the scope of the
 present invention without departing from the gist ~~of the~~
 present invention.

Other Embodiments

15 For example, as shown in FIG.15, the underlying insulating film 22 or 32^{is} formed only of the PE-CVD TMS SiO₂ film ^{and} is formed directly on the silicon substrate 21 or 31; however, an ~~but~~ the underlying insulating film 22 or 32 having ~~a~~ the multi-layered structure consisting of double layers, ~~that~~ are formed by laminating the BPSG film or the thermal oxide film 61 and the PE-CVD TMS SiO₂ film 62 in sequence from the bottom, ~~or more~~ may be formed. In this case, it is important to arrange the PE-CVD TMS SiO₂ film ^{utilized} at the uppermost layer.

20 Further, as shown in FIG.16, a single interlayer insulating film 63^{is} interposed between the lower wiring 33 and the upper wiring 65 ~~may be~~ formed on the substrate

20c. In this case, the interlayer insulating film 63 is made of the silicon-containing insulation film. Moreover, the lower wiring 33 and the upper wiring 65 may be connected via an opening ~~portion~~ 64 ^{penetrating} formed to ~~perforate~~ the interlayer insulating film 63.

As described above, according to the present invention, the silicon-containing insulating film is formed on the substrate. In the silicon-containing insulating film according to the present invention, ^{the} peak ^{infrared} of the absorption intensity of the infrared rays is in a range of the wave number 2270 to 2350 cm^{-1} , ^{the} film density is in a range of 2.25 to 2.40 g/cm^3 , and ^{the} relative dielectric constant is in a range of 3.3 to 4.3.

The silicon-containing insulating film is formed by ~~converting into a plasma, ^{is}~~ plasmatizing the film forming gas, that ~~consists of~~ ^{contains a} any one selected from the group consisting of ^{the} alkoxy compound having Si-H bonds and ^{the} siloxane having Si-H bonds and any one oxygen-containing gas selected from the group consisting of oxygen (O_2), nitrogen monoxide (N_2O), nitrogen dioxide (NO_2), carbon monoxide (CO), carbon dioxide (CO_2), and water (H_2O). ~~to react~~ According ^{IT has been} to the experimentally ^{shown that} the silicon-containing insulating film in the above range ~~for~~ ^{infrared} of the peak of the absorption intensity of the infrared rays and in the above range ~~of~~ ^{for} the film density is dense, ~~has~~ ^a small relative dielectric constant, and has ~~the~~ ^{a low} small amount of contained moisture in the film. ~~And that~~

film formed in the above manner is same.

Therefore, if the above silicon-containing insulating film is employed as the insulating film ~~to~~ cover ^{ings} wirings or as the barrier insulating film ~~to~~ sandwich ^{ing} the low dielectric constant insulating film that constitutes the interlayer insulating film interposed between the upper wiring and the lower wiring, the dielectric constant of the insulating film ~~to~~ covering ~~the~~ wirings or that of the overall interlayer insulating film can be lowered while preventing ~~the~~ corrosion of the ^{preventing} wiring and ~~the~~ increase in the leakage current.

ABSTRACT OF THE DISCLOSURE

The present invention relates to a film forming method of forming an interlayer insulating film having a low dielectric constant ~~for~~ to cover ~~ing~~ wiring. In
5 ~~the~~ construction, ~~an~~ insulating film ~~for~~ covering ~~of~~ wiring ~~is formed on the substrate by plasmanizing a film forming~~ ~~converting into a plasma and reacting~~ ~~including a component~~ ~~that consists of any one selected from the group~~ consisting of alkoxy compound^s having Si-H bonds and siloxane having Si-H bonds and ~~any one oxygen-containing~~ ~~in~~ gas selected from ~~the~~ group consisting of O₂, N₂O, NO₂, CO,
10 CO₂, and H₂O₂ ~~to react~~.