The CFL Phase and m(strange): An Effective Field Theory Approach

Thomas Schaefer

North Carolina State

$\mu \to \infty$: CFL Phase

Consider
$$N_f = 3 \ (m_i = 0)$$

$$\langle q_i^a q_j^b \rangle = \phi \ (\delta_i^a \delta_j^b - \delta_j^a \delta_i^b)$$
$$\langle ud \rangle = \langle us \rangle = \langle ds \rangle$$
$$\langle rb \rangle = \langle rg \rangle = \langle bg \rangle$$

Symmetry breaking pattern:

$$SU(3)_L \times SU(3)_R \times [SU(3)]_C$$

 $\times U(1) \rightarrow SU(3)_{C+F}$

All quarks and gluons acquire a gap

 $\langle \psi_L \psi_L \rangle = -\langle \psi_R \psi_R \rangle$

The Role of the Strange Quark Mass

Include strange quark mass in gap equations

main parameter
$$x = \frac{m_s^2}{p_F \Delta}$$

$$x \sim 1$$
: transition CFL \rightarrow 2SC

But: Problems turns out to be much more difficult (even if the coupling is weak!)

additional scales

electric neutrality, gauge invariance

many gap parameters, how to find the right ansatz

Effective Field Theories

High Density Effective Theory

Quasi-particles (holes)

$$E_{\pm} = -\mu \pm \sqrt{\vec{p}^2 + m^2} \simeq -\mu \pm |\vec{p}|$$

Effective field theory on v-patches

$$\psi_{v\pm} = e^{-i\mu v \cdot x} \left(\frac{1 \pm \vec{\alpha} \cdot \vec{v}}{2} \right) \psi$$

Effective lagrangian for ψ_{v+}

$$\mathcal{L} = \sum_{v} \psi_{v}^{\dagger} (iv \cdot D) \psi_{v} - \frac{1}{4} G_{\mu\nu}^{a} G_{\mu\nu}^{a} + O(1/\mu)$$

Mass Terms: Match HDET to QCD

mass corrections to FL parameters $\hat{\mu}, v_F$ and V_0^{++--}

EFT in the CFL Phase

Consider HDET with a CFL gap term

$$\mathcal{L} = \text{Tr}\left(\psi_L^{\dagger}(iv \cdot D)\psi_L\right) + \frac{\Delta}{2} \left\{ \text{Tr}\left(X^{\dagger}\psi_L X^{\dagger}\psi_L\right) - \kappa \left[\text{Tr}\left(X^{\dagger}\psi_L\right)\right]^2 \right\}$$
$$\psi_L \to L\psi_L C^T, \quad \langle X \rangle = \langle Y \rangle = 1$$
$$+ (L \leftrightarrow R, X \leftrightarrow Y)$$

Quark loops generate a kinetic term for X, Y

$$\mathcal{L} = -\frac{f_{\pi}^{2}}{2} \left\{ \text{Tr} \left((X^{\dagger} D_{0} X)^{2} + (Y^{\dagger} D_{0} Y)^{2} \right) \right\} + \dots$$

Integrate out gluons, identify low energy fields $(\xi = \Sigma^{1/2})$

$$\Sigma = XY^{\dagger}$$
[8]+[1] GBs

$$N_L = \xi(\psi_L X^{\dagger}) \xi^{\dagger}$$
[8]+[1] Baryons

Effective chiral theory

$$\mathcal{L} = \frac{f_{\pi}^{2}}{4} \left\{ \operatorname{Tr} \left(\nabla_{0} \Sigma \nabla_{0} \Sigma^{\dagger} \right) - v_{\pi}^{2} \operatorname{Tr} \left(\nabla_{i} \Sigma \nabla_{i} \Sigma^{\dagger} \right) \right\}$$

$$+ \operatorname{Tr} \left(N^{\dagger} i v^{\mu} D_{\mu} N \right) - D \operatorname{Tr} \left(N^{\dagger} v^{\mu} \gamma_{5} \left\{ \mathcal{A}_{\mu}, N \right\} \right)$$

$$- F \operatorname{Tr} \left(N^{\dagger} v^{\mu} \gamma_{5} \left[\mathcal{A}_{\mu}, N \right] \right) + \frac{\Delta}{2} \left\{ \operatorname{Tr} \left(N N \right) - \left[\operatorname{Tr} \left(N \right) \right]^{2} \right\}$$

with $D_{\mu}N=\partial_{\mu}N+i[\mathcal{V}_{\mu},N]$

$$\mathcal{V}_{\mu} = -\frac{i}{2} \left(\xi \partial_{\mu} \xi^{\dagger} + \xi^{\dagger} \partial_{\mu} \xi \right)$$

$$\mathcal{A}_{\mu} = -\frac{i}{2} \xi \left(\partial_{\mu} \Sigma^{\dagger} \right) \xi$$

$$f_{\pi}^{2} = \frac{21 - 8\log 2}{18} \frac{\mu^{2}}{2\pi^{2}}$$
 $v_{\pi}^{2} = \frac{1}{3}$ $D = F = \frac{1}{2}$

Mass Terms: Match HDET to CFL χ Th

Kinetic term: $\psi_L^{\dagger} X_L \psi_L + \psi_R^{\dagger} X_R \psi_R$

$$D_0 N = \partial_0 N + i[\Gamma_0, N], \qquad \Gamma_0 = \mathcal{V}_0 + \frac{1}{2} \left(\xi X_R \xi^\dagger + \xi^\dagger X_L \xi \right)$$

$$\nabla_0 \Sigma = \partial_0 \Sigma + i X_L \Sigma - i \Sigma X_R$$

vector (axial) potentials

Contact term: $(\psi_R^{\dagger} M \psi_L)(\psi_R^{\dagger} M \psi_L)$

$$\mathcal{L} = \frac{3\Delta^2}{4\pi^2} \left\{ [\text{Tr}(M\Sigma)]^2 - \text{Tr}(M\Sigma M\Sigma) \right\}$$

meson mass terms

Phase Structure and Spectrum

Phase structure determined by effective potential

$$V(\Sigma) = \frac{f_{\pi}^{2}}{2} \operatorname{Tr} \left(X_{L} \Sigma X_{R} \Sigma^{\dagger} \right) - A \operatorname{Tr} (M \Sigma^{\dagger}) - B_{1} \left[\operatorname{Tr} (M \Sigma^{\dagger}) \right]^{2} + \dots$$

$$V(\Sigma_0) \equiv min$$

Fermion spectrum determined by

$$\mathcal{L} = \operatorname{Tr}\left(N^{\dagger}iv^{\mu}D_{\mu}N\right) + \operatorname{Tr}\left(N^{\dagger}\gamma_{5}\rho_{A}N\right) + \frac{\Delta}{2}\left\{\operatorname{Tr}\left(NN\right) - \left[\operatorname{Tr}\left(N\right)\right]^{2}\right\},\,$$

$$\rho_{V,A} = \frac{1}{2} \left\{ \xi \frac{M^{\dagger} M}{2p_F} \xi^{\dagger} \pm \xi^{\dagger} \frac{M M^{\dagger}}{2p_F} \xi \right\} \qquad \xi = \sqrt{\Sigma_0}$$

Phase Structure and Spectrum

meson condensation: CFLK

$$m_s(crit) \sim m_u^{1/3} \Delta^{2/3}$$

gapless modes? (gCFLK)

$$\mu_s(crit) \sim \frac{4\Delta}{3}$$

Figures: Kaplan & Reddy (2002)

Kryjevski & Schäfer (2005)

Instabilities

Consider meson current

$$\Sigma(x) = U_Y(x)\Sigma_K U_Y(x)^{\dagger}$$
 $U_Y(x) = \exp(i\phi_K(x)\lambda_8)$

$$\vec{\mathcal{V}}(x) = \frac{\vec{\nabla}\phi_K}{4}(-2\hat{I}_3 + 3\hat{Y}) \quad \vec{\mathcal{A}}(x) = \vec{\nabla}\phi_K(e^{i\phi_K}\hat{u}^+ + e^{-i\phi_K}\hat{u}^-)$$

Gradient energy

$$\mathcal{E} = \frac{f_{\pi}^2}{2} v_{\pi}^2 j_K^2 \quad \vec{j}_k = \vec{\nabla} \phi_K$$

Fermion spectrum

$$\omega_l = \Delta + \frac{l^2}{2\Delta} - \frac{4\mu_s}{3} - \frac{1}{4}\vec{v} \cdot \vec{\jmath}_K$$

$$\mathcal{E} = \frac{\mu^2}{2\pi^2} \int dl \int d\hat{\Omega} \ \omega_l \Theta(-\omega_l)$$

Stability lost

$$m_V^2 = \frac{\partial^2 \mathcal{E}}{\partial \jmath^2} \Big|_{\jmath=0}$$

$$\mathcal{E} = Cf_h(x)$$
 $x = \frac{j_k}{a\Delta}$ $h = \frac{3\mu_s - 4\Delta}{a\Delta}$

$$f_h(x) = x^2 - \frac{1}{x} \left[(h+x)^{5/2} \Theta(h+x) - (h-x)^{5/2} \Theta(h-x) \right]$$

see also: Son & Stephanov cond-mat/0507586, Kryjevski hep-ph/0508180

Energy Functional

$$\frac{3\mu_s - 4\Delta}{\Delta}\Big|_{crit} = ah_{crit} \qquad h_{crit} = -0.067 \qquad a = \frac{2}{15^2 c_\pi^2 v_\pi^4}$$

[Figures include baryon current $j_B = \alpha_B/\alpha_K j_K$]

Stability found

$$m_V^2 = \left. \frac{\partial^2 \mathcal{E}}{\partial \jmath^2} \right|_{\jmath_0}$$

$$m_V^2 = \frac{\partial^2 \mathcal{E}}{\partial j^2} \bigg|_{j=0}$$

$$\mathcal{E} = Cf_h(x)$$
 $x = \frac{j_k}{a\Delta}$ $h = \frac{3\mu_s - 4\Delta}{a\Delta}$.

Notes

No net current, meson current canceled by backflow of gapless modes

$$(\delta \mathcal{E})/(\delta \nabla \phi) = 0$$

Instability related to "chromomagnetic instability"

CFL phase: gluons carry $SU(3)_F$ quantum numbers

Meson current equivalent to a color gauge field

P-wave meson condensate continuously connected to LOFF?

Additional currents?

Higher order corrections to $\mu_s|_{crit} = (4 + ah_{crit})\Delta/3$?