Piani di trattamento del rischio

Traccia

Un'azienda subisce 6 data breach ogni 2 anni, in cui l'80% del contenuto viene esfiltrato per un valore complessivo del dataset di 100.000€. L'attaccante riesce a portare a termine il data breach nel 90% dei casi.

Calcolare:

- SLE
- ARO
- ALE
- GL

Per ogni soluzione, valutare:

- mALE
- CBA
- ROSI (con rapporto di mitigazione)
- mv (probabilità di riuscita dopo la mitigazione)

Utilizzare:

 $\lambda = ALE$

t = EF

Valutare se il costo delle contromisure rientra nell'investimento consigliato da Gordon-Loeb

Soluzione	1	2	3	4	5
Mitigation ratio	50%	65%	43%	62%	80%
ACS	63000	70000	60000	69000	100000

SLE = AV * EF = 100.000€ * 0,8 = 80.000€

ARO = 6 / 2 = 3

ALE = SLE * ARO = 240.000€

d= $\lambda * t * v$ = 240.000€ * 0,8 * 0,9 = 172.800€

GL = 0,37 * *d* = 63.936€

mALE = ALE * (100% - Mitigation Ratio)

CBA = ALE - mALE - ACS

ROSI = CBA / ACS

mv = Differenza % successo attacco e Mitigation Ratio

Soluzione	1	2	3	4	5
Mitigation ratio	50%	65%	43%	62%	80%
ACS	63000	70000	60000	69000	100000
ALE	240000	240000	240000	240000	240000
mALE	120000	84000	136800	91200	48000
СВА	57000	86000	43200	79800	92000
ROSI	90%	123%	72%	116%	92%
mv	57%	32%	71%	37%	12%