OBJETIVOS:

- Conocer los diferentes teoremas más usuales para calcular el área de una región triangular.
- Identificar los elementos necesarios para poder aplicar los teoremas.
- Reconocer los teoremas para calcular la razón de áreas de dos o más regiones triangulares.
- Aplicar lo aprendido en la resolución de problemas.

ÁREAS DE REGIONES TRIANGULARES

- DEFINICIÓN.
- TEOREMAS FRECUENTES.
- TEOREMAS DE RAZONES DE ÁREAS.

NOCIONES PREVIAS

En la imagen mostrada, observamos que se ha lotizado un terreno para su posterior venta. Esta es una situación cotidiana, seguramente serán terrenos de $120\,m^2$ o quizás $150m^2$ o tal vez más, pero que entendemos de esta situación, la delimitación del terreno que nos representa, ¿El área o la región?, ¿Que significa m^2 ?.

Éste terreno (porción de tierra), nos representa a una región, el valor numérico que cuantifica el tamaño de esa región, por ejemplo $120m^2$, nos representa el área, y m^2 es la unidad de medida.

NOTA:

Ten en cuenta que; se denominan regiones equivalentes a aquellas que tienen áreas iguales.

TEOREMA (Fórmula básica)

El área de una región triangular es igual al semiproducto entre la longitud de uno de sus lados con la longitud de la altura relativa a dicho lado.

Donde:

 \mathbb{A}_{ABC} , se lee: Área de la región triangular ABC

TEOREMA (Fórmula trigonométrica)

El área de una región triangular es igual al semiproducto entre las longitudes de dos de sus lados con el seno de la medida angular que éstos determinan.

 $\mathbb{A}_{ABC} = \frac{a \cdot b}{2} (sen\phi)$

 Por fórmula básica, sabemos:

$$\mathbb{A}_{ABC} = \frac{b \cdot h}{2} \dots (i)$$

• En el $\triangle ABH$:

$$h = a \cdot sen\phi \dots (ii)$$

• Reemplazamos (ii) en (i):

$$\therefore \mathbb{A}_{ABC} = \frac{a \cdot b}{2} (sen\phi)$$

• En el gráfico, se cumple:

$$\mathbb{A}_{MNL} = \frac{m \cdot n}{2} (sen\alpha)$$

EXAMEN DE ADMISIÓN UNI 2013-II

Se tiene un triángulo equilátero ABC inscrito en una circunferencia de radio r=6cm, si M es el punto que divide al arco AB en partes iguales $(M \neq C)$, entonces el área de la región triangular AMB en cm^2 es:

- A) $8\sqrt{3}$
- B) $9\sqrt{3}$
- *C*) $10\sqrt{3}$

D) $11\sqrt{3}$

E) $12\sqrt{3}$

RESOLUCIÓN Piden \mathbb{A}_{AMB}

Como M es punto medio del arco AB:

$$\rightarrow m\widehat{BM} = m\widehat{MA} = 60^{\circ}$$

Por circunferencia, sabemos:

$$MB = MA = 6$$

Además, como △AMBC es inscrito

$$\rightarrow m \sphericalangle AMB = 120^{\circ}$$

• Por fórmula trigonométrica:

$$\mathbb{A}_{AMB} = \frac{6 \cdot 6}{2} sen120^{\circ}$$

$$\sqrt{3/2}$$

$$\therefore \mathbb{A}_{AMB} = 9\sqrt{3}$$

TEOREMAS (En función de sus radios asociados)

> Cálculo del área en función a la longitud del inradio.

Se cumple:

$$\mathbb{A}_{ABC} = p \cdot r$$

Donde:

$$p = \frac{a+b+c}{2}$$

Cálculo del área en función a la longitud del circunradio.

Se cumple:

$$\mathbb{A}_{ABC} = \frac{a \cdot b \cdot c}{4R}$$

TEOREMA (Cálculo del área en función a la longitud de sus lados)

* Fórmula de Herón

ALGUNAS DEMOSTRACIONES

Veamos:

Se cumple:

$$\mathbb{A}_{ABC} = p \cdot r$$

Donde:

$$p = \frac{a+b+c}{2}$$

Unimos el incentro con los vértices y calculamos el área total como la suma de las regiones triangulares parciales

Se cumple:

$$\mathbb{A}_{ABC} = \frac{a \cdot b \cdot c}{4R}$$

Aplicamos la fórmula básica y luego para relacionar al circunradio, aprovechamos el teorema del producto de dos lados.

$$\mathbb{A}_{ABC} = \frac{b \cdot h}{2} \quad \dots (i)$$

• Luego: $h(2R) = a \cdot c$

$$\rightarrow h = \frac{a \cdot c}{2R}$$
 ... (ii)

Reemplazamos (ii) en (i):

$$\therefore \mathbb{A}_{ABC} = \frac{a \cdot b \cdot c}{4R}$$

TEOREMAS ADICIONALES

Prueba:

Sabemos: m = p - a, n = p - c, $r \cdot cot\left(\frac{b}{2}\right) = p - b$

Por fórmula de Herón:

$$\mathbb{A}_{ABC} = \sqrt{p(p-a)(p-b)(p-c)}$$

Reemplazamos:

$$\mathbb{A}_{ABC} = \sqrt{\mathbf{p} \cdot \mathbf{m} \cdot (\mathbf{r} \cdot \cot \frac{\theta}{2}) \cdot \mathbf{n} \dots (i)}$$

También: $\mathbb{A}_{ABC} = \mathbf{p} \cdot \mathbf{r} \dots (ii)$

Igualamos (i)
$$y$$
 (ii): $\mathbb{A}_{ABC} = \sqrt{\frac{p \cdot r}{\mathbb{A}_{ABC}}} \cdot m \cdot n \cdot \cot \frac{\theta}{2}$ Elevamos al cuadrado

$$(\mathbb{A}_{ABC})^2 = \mathbb{A}_{ABC} \cdot m \cdot n \cdot \cot \frac{\theta}{2}$$

$$\mathbb{A}_{ABC} = m \cdot n \cdot cot \left(\frac{\theta}{2}\right)$$

TEOREMAS

Se cumple:

$$\frac{S_1}{S_2} = \frac{a}{b}$$

EJEMPLOS

2a

5a

3*a*

- Trazamos la tercera mediana y tenemos que, las seis regiones triangulares determinadas son equivalentes
- Se observa: $S_1 = S_2 = 2M$

$$\therefore \frac{S_1}{S_2} = 1$$

PROBLEMA

En el gráfico mostrado, si I es incentro de ΔBAC indique la relación entre $S_1, S_2 \ y \ S_3$.

RESOLUCIÓN

Piden relación entre las áreas.

• Igualamos (i) y (ii)
$$\frac{S_3}{S_1} = \frac{S_3 + S_2}{S_2}$$

$$\therefore \frac{1}{S_1} = \frac{1}{S_2} + \frac{1}{S_3}$$

TEOREMAS

 \Box En el gráfico, si $\omega = \phi$ ó $\omega + \phi = 180^{\circ}$... (*)

Prueba: De (*), se tiene que: $sen\omega = sen\phi$

Por fórmula trigonométrica:

$$S_{1} = \frac{a \cdot b}{2} sen\omega$$

$$S_{2} = \frac{c \cdot d}{2} sen\phi$$

$$(\div) \quad \therefore \frac{S_{1}}{S_{2}} = \frac{a \cdot b}{c \cdot d}$$

☐ Razón de áreas para regiones triangulares semejantes.

Se cumple:

$$\frac{S_1}{S_2} = \frac{b^2}{m^2} = \frac{h^2}{n^2} = \frac{R^2}{r^2} \dots$$

La razón de áreas de regiones semejantes es igual a la razón de longitudes de elementos homólogos elevados al cuadrado.

APLICACIÓN

En el gráfico el área de la región sombreada es 9, si 5(MN) = 3(AC), calcule el área de la región ABC.

RESOLUCIÓN

Piden $\mathbb{A}_{ABC} = S$

Del dato: MN = 3a, AC = 5a3aM 5*a*

- Notamos que:
 \(\simeq ANMC \) es un cuadrilátero inscriptible
- Completando medidas angulares, tenemos que:

• Por razón de regiones semejantes:

$$\frac{S}{9} = \frac{(5a)^2}{(3a)^2} = \frac{25}{9}$$

$$\therefore S = 25$$

RETO DEL TEMA

En el gráfico mostrado, PQ = AM, QR = BN y PR = CL, calcule la razón entre las áreas de las regiones triangulares ABC y PQR

