

Dérivée d'une fonction

Cours sur la dérivée d'une fonction en première S avec son signe et les variations d'une fonction en première s ainsi que les propriétés.

On considère, dans cette leçon, une fonction f définie sur un intervalle I de \mathbb{R} et ^{C}I sa courbe représentative.

I.Nombre dérivé et tangente à une courbe

Définition: accroissement moyen.

On considère deux réels distincts x_1 et x_2 appartenant à I.

On appelle accroissement moyen de f entre x_1 et x_2 la quantité suivante :

$$\frac{\Delta_{i}f}{\Delta_{i}s}(x_{1};x_{2}) = \frac{f(s_{2})-f(s_{1})}{s_{2}-s_{1}}$$

En notant $x_1=a$ et $x_2=a+h$ avec h>0, on obtient :

$$\frac{\Delta f}{\Delta x}(a) = \frac{f(a+h)-f(a)}{h}$$

Définition: nombre dérivé.

Si, lorsque h se rapproche de zéro, $\frac{\Delta_{l,l}}{\Delta_{l,s}}(a)$ se rapproche d'un réel l, alors :

On dit que la fonction f est dérivable en a.

Le réel l est appelé le nombre dérivé de f en a, que l'on note f'(a).

On écrit alors:

$$\lim_{harrow,0} \frac{f(a+h)-f(a)}{h} = f'(a)$$

Définition : tangente à une courbe.

Soient A et M deux points distincts d'une courbe.

Géométriquement, la tangente à la courbe au point A est la position limite de la sécante (AM)

lorsque M se rapproche de A

Propriété : coefficient directeur de la tangente.

Le nombre dérivé f'(a) est le **coefficient directeur** de la tangente à la courbe CI au point d'abscisse a.

Courbe C_f et sa tangente Δ au point d'abscisse a.

Propriété : équation réduite de la tangente.

Soit f une fonction dérivable en a de courbe représentative C1.

L'équation réduite de la tangente à CI en a est donnée par la formule suivante :

$$y = f'(a)(x-a) + f(a)$$
.

II.La dérivée d'une fonction

Définition:

Si, pour tout réel $a \in I_{ii} f'(a)$ existe, on dit que f est dérivable en I.

On définit alors, une nouvelle fonction f' sur I par $f':x_i \to_i f'(x)$.

Propriété : dérivées des fonctions usuelles.

Fonction	Domaine de définition	Domaine de dérivabilité	Fonction dérivée
f(x) = mx + p	R	\mathbb{R}	f'(x) = m
f(x) = p	\mathbb{R}	\mathbb{R}	f'(x) = 0
$f(x) = x^2$	\mathbb{R}	\mathbb{R}	f'(x) = 2x
$f(x) = x^n, n \in \mathbb{N}$	\mathbb{R}	\mathbb{R}	$f'(x) = nx^{n-1}$
$f(x) = \frac{1}{x}$	I R*	\mathbb{R}^{\star}	$f'(x) = -\frac{1}{x^2}$
$f(x) = \sqrt{x}$	[0; +∞[]0; +∞[$f'(x) = \frac{1}{2\sqrt{x}}$

Propriété : dérivée d'une somme ou produit.

Soient $\, u \,$ et $\, \nu \,$ deux fonctions définies et dérivables sur I un intervalle de R et k un nombre réel.

- La fonction $u+v:x_1\to_1 u(x)+v(x)$ est dérivable sur I et on a (u+v)'=u'+v'.
- La fonction $ku:x_1 \to k \times u(x)$ est dérivable sur I et on a $(ku)' = k \times u'$.
- La fonction $uv:x_1 \to_1 u(x) \times_1 v(x)$ est dérivable sur I et on a $(u_1v)' = u'v + uv'$.

Propriété : dérivée de l'inverse et d'un quotient.

Soient $\, u \,$ et $\, v \,$ deux fonctions définies et dérivables sur I un intervalle de R telle que $\, v \,$ ne s'annule pas sur I.

- La fonction $\frac{1}{\bar{u}}:x_1 \to \frac{1}{\bar{u}(x)}$ est dérivable sur I et on a $(\frac{1}{\bar{u}})' = -\frac{\bar{u}'}{\bar{u}^2}$.
- La fonction $\frac{u(x)}{v(x)}$ est dérivable sur I et on a $(\frac{u}{v})' = \frac{u/v uv}{v^2}$.