Hands-on training session 4

BLCMs for Se & Sp estimation with covariates

Sonja Hartnack Eleftherios Meletis 2020-02-12

estimation with covariates

Session 4: BLCMs for Se & Sp

Overview

Date/time:

- 20th February 2020
- **1**6.00 17.00

Teachers:

- Sonja Hartnack (presenter)
- Eleftherios Meletis

Recap

We looked at a GLM-type formulation of this model yesterday:

```
model{
1
2
      for(i in 1:N){
3
         Status[i] ~ dcat(prob[i, ])
4
5
           prob[i,1] <- (prev[i] * ((1-se[1])*(1-se[2]))) +
6
                        ((1-prev[i]) * ((sp[1])*(sp[2])))
7
           prob[i,2] \leftarrow (prev[i] * ((se[1])*(1-se[2]))) +
8
                        ((1-prev[i]) * ((1-sp[1])*(sp[2])))
9
           prob[i,3] \leftarrow (prev[i] * ((1-se[1])*(se[2]))) +
10
                        ((1-prev[i]) * ((sp[1])*(1-sp[2])))
11
           prob[i,4] \leftarrow (prev[i] * ((se[1])*(se[2]))) +
12
                        ((1-prev[i]) * ((1-sp[1])*(1-sp[2])))
13
14
           logit(prev[i]) <- intercept +</pre>
15
           → population_effect[Population[i]]
      }
16
17
      intercept \sim dnorm(0.0.33)
1.8
```

We can think of "Population" as a covariate, and add others. For example:

```
se1 <- 0.9
    sp1 < -0.95
2
    sp2 < -0.99
3
    se2 <- 0.8
4
5
    int < -1.5
6
    pop_eff <- c(0, 1.5, 3)
7
    sex_eff <- c(0, 0.2)
8
    age_eff <- 0.1
9
    N <- 300
10
11
12
    simdata <- data.frame(</pre>
      Population = sample(seq_along(pop_eff), N, replace=TRUE),
13
      Sex = sample(seq_along(sex_eff), N, replace=TRUE),
14
      Age = runif(N, -3, 3)
15
16
    simdata$logitprob <- with(simdata, int + pop_eff[Population] +</pre>
17

    sex_eff[Sex] + age_eff*Age)
```

18

We can cheat a bit and use template.jags to help set up part of the model:

You can then run the model using run.jags("glmtemplate.bug",

data=data) - where "data" is the same data frame specified to

 \hookrightarrow highly advisable to examine the model syntax to be sure it is

 \hookrightarrow the template.jags function

 \hookrightarrow as intended

The lines you need from this auto-generated model are #17:

And also lines 21:27 - changing priors as needed:

```
## intercept ~ dnorm(0, 0.1)
## Age_coefficient ~ dnorm(0, 0.1)
## Population_effect[1] <- 0  # Factor level "Pop_1"
## Population_effect[2] ~ dnorm(0, 0.1)  # Factor level "Pop_2"
## Population_effect[3] ~ dnorm(0, 0.1)  # Factor level "Pop_3"
## Sex_effect[1] <- 0  # Factor level "female"
## Sex_effect[2] ~ dnorm(0, 0.1)  # Factor level "male"</pre>
```

Line 33 may also be helpful (we don't need deviance, dic or resid.sum.sq):

And lines 39-57 for initial values:

```
## inits{
    ## "intercept" <- 1
    ## "Age_coefficient" <- -1
3
    ## "Population_effect" <- c(NA, -1, -1)
4
    ## "Sex_effect" <- c(NA, 1)
5
    ## }
6
    ##
    ## inits{
8
    ## "intercept" <- 1
9
    ## "Age_coefficient" <- -1
10
    ## "Population_effect" <- c(NA, -1, -1)
11
    ## "Sex_effect" <- c(NA, -1)
12
    ## }
13
```

Combine the two models, add initial values for se and sp, and also add a '#data# N, Status, Age, Population, Sex´ block, and modify the priors for test1 se/sp as estimated from session 1.

To run the model:

```
results <- run.jags('HW_GLM_coefs.bug', data=simdata)
results
```

```
##
    ## JAGS model summary statistics from 20000 samples (chains = 2;
        adapt+burnin = 5000):
    ##
3
    ##
                             Lower95 Median Upper95
4
    ## intercept
                             -2.5118 -1.8129 -1.1484 -1.8198
5
    ## Age_coefficient
                             -0.06389 0.11134 0.28753 0.11173
6
    ## Population_effect[1]
                                   0
7
    ## Population_effect[2] 1.0971 1.8202 2.6101 1.8276
8
    ## Population_effect[3]
                              1.5928
                                      2.3509 3.0997
9
    ## Sex_effect[1]
10
    ## Sex_effect[2] -0.048858 0.52302 1.1071 0.52299
11
    ## se[1]
                             0.84597 0.88955 0.9296 0.88868
12
   ## se[2]
                             0.73011 0.80753 0.88197 0.80619
13
                             0.92561 0.95236 0.97479 0.95117
    ## sp[1]
14
    ## sp[2]
                             0.89179 0.94748 0.9951
15
    ##
16
17
    ##
                                  SD
                                       Mode
                                                 MCerr MC%ofSD
18
    ## intercept
                            0.34224 - 1.8047
                                              0.008943
                                                           2.6
    ## Age_coefficient
                             0.08933 0.10934 0.00082667
                                                           0.9
19
20
    ## Population_effect[1]
                                   0
                                          0
    ## Population_effect[2]
                            0.38769 1.8211 0.0086571
                                                           2.2
21
                                                                       11
    ## Population_effect[3]
                            0.38546
                                     2.3499
                                             0.0087032
                                                           2.3
22
```

Compare these to the simulation parameters:

```
1 ## int: -1.5
1 ## age_eff: 0.1
1 ## pop_eff: 0, 1.5, 3
1 ## sex_eff: 0, 0.2
1 ## se1: 0.9
1 ## se2: 0.8
1 ## sp1: 0.95
1 ## sp2: 0.99
```

Exercise

Instructions here

Summary

Take-away points