PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-036290

(43)Date of publication of application: 10.02.1998

(51)Int.Cl.

A61K 47/02

A61K 31/44

(21)Application number: 09-109096

(71)Applicant: TAKEDA CHEM IND LTD

(22)Date of filing:

25.04.1997

(72)Inventor: MAKINO TADASHI

TABATA TETSURO HIRAI SHINICHIRO

(54) STABILIZER FOR MEDICAL SOLID COMPOSITION AND STABILIZATION **THEREOF**

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a stabilizer for a medical solid composition that is composed of a benzimidazole compound and basic inorganic salt(s) of magnesium and/or calcium, and can physically stabilize and can physically stabilize the benzimidazole compound. SOLUTION: This stabilizer for a medical solid composition comprises (A) acid-unstable 2-[(2pyridyl)methylsulfinyl]benzimazole or its derivative {except 2-[[3-methyl-4-(2,2,2trifluoroethoxy)-2-pyridyl]methylsulfinyl]benzimidazole} which has anti-ulcerous action, and (B) basic inorganic salt(s) of magnesium and/or calcium, preferably heavy magnesium carbonate, magnesium carbonate, etc., in formulation ratio of component B to component A in the range of 0.3-20 pts.wt.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-36290

(43)公開日 平成10年(1998) 2月10日

 (51) Int.Cl.6
 識別記号
 庁內整理番号
 F I
 技術表示箇所

 A 6 1 K
 47/02
 J

 31/44
 A C L
 31/44
 A C L

審査請求 有 発明の数2 OL (全 14 頁)

(21)出願番号

特顯平9-109096

(62)分割の表示

特願平2-316379の分割

(22)出願日

昭和62年(1987) 2月12日

(71) 出願人 000002934

武田薬品工業株式会社

大阪府大阪市中央区道修町四丁目1番1号

(72) 発明者 模野 正

大阪府茨木市三島丘2丁目12番39号1

(72)発明者 田畑 哲朗

大阪府吹田市山田西3丁目52番C-407号

(72)発明者 平井 真一郎

京都府京都市下京区油小路正面下ル玉本町

201番地

(74)代理人 弁理士 朝日奈 忠夫 (外1名)

(54) 【発明の名称】 医薬固形組成物用安定化剤および安定化方法

(57)【要約】

【課題】抗潰瘍剤として有用な酸に不安定な2-[(2-ピリジル)メチルスルフィニル]ベンツイミダゾールまたはその誘導体を含有してなる医薬固形組成物用のマグネシウムおよび/またはカルシウムの塩基性無機塩からなる安定化剤を提供する。

【解決手段】抗潰瘍作用を有する酸に不安定な2ー [(2ーピリジル)メチルスルフィニル]ベンツイミダゾールまたはその誘導体(ただし、2ー [[3ーメチルー4ー(2,2,2ートリフルオロエトキシ)ー2ーピリジル]メチルスルフィニル]ベンツイミダゾールを除く)を含有してなる医薬固形組成物用であるマグネシウムおよび/またはカルシウムの塩基性無機塩からなる安定化剤。

【特許請求の範囲】

【請求項1】抗潰瘍作用を有する酸に不安定な2ー [(2ーピリジル)メチルスルフィニル]ベンツイミダゾールまたはその誘導体(ただし、2ー [[3ーメチルー4ー(2,2,2ートリフルオロエトキシ)ー2ーピリジル]メチルスルフィニル]ベンツイミダゾールを除く)を含有してなる医薬固形組成物用であるマグネシウムおよび/またはカルシウムの塩基性無機塩からなる安定化剤。

【請求項2】塩基性無機塩が重質炭酸マグネシウム,炭 10酸マグネシウム,酸化マグネシウム,水酸化マグネシウム,水及ケイ酸アルミン酸マグネシウム,ケイ酸マグネシウム,合成ヒドロタルサイト,水酸化アルミナ・マグネシウム,沈降炭酸カルシウムまたは水酸化カルシウムである請求項1記載の安定化剤。

【請求項3】マグネシウムおよび/またはカルシウムの塩基性無機塩の配合割合が、2-[(2-ピリジル)メチルスルフィニル]ベンツイミダゾールまたはその誘導体1重量部に対し、0.3ないし20重量部である請求項1記載の安定化剤。

【請求項4】固形組成物が錠剤,カプセル剤,散剤,顆 粒剤または細粒剤である請求項1記載の安定化剤。

【請求項5】固形組成物がコーティング剤でコーティングされた請求項1記載の安定化剤。

【請求項6】コーティング剤がヒドロキシプロピルメチルセルロース, エチルセルロース, ヒドロキシメチルセルロースまたはヒドロキシプロピルセルロースである請求項5記載の安定化剤。

【請求項7】コーティング剤が腸溶性コーティング剤である請求項5項記載の安定化剤。

【請求項8】腸溶性コーティング剤がセルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシメチルセルロースアセテートサクシネートまたはメタアクリル酸・アクリル酸共重合物である請求項7記載の安定化剤。

【請求項9】固形組成物が腸溶性コーティングされた錠 剤, 顆粒剤または細粒剤である請求項1ないし請求項8 のいずれか1に記載の安定化剤。

【請求項10】マグネシウムおよび/またはカルシウムの塩基性無機塩を配合してなる抗潰瘍作用を有する酸に不安定な2-[(2ーピリジル)メチルスルフィニル]ベンツイミダゾールまたはその誘導体(ただし、2-[[3ーメチルー4ー(2,2,2ートリフルオロエトキシ)-2ーピリジル]メチルスルフィニル]ベンツイミダゾールを除く)の医薬固形組成物の安定化方法。

【請求項11】マグネシウムおよび/またはカルシウムの塩基性無機塩を均一に接触させてなる請求項10記載の安定化方法。

【請求項12】塩基性無機塩が重質炭酸マグネシウム, 昭57-53406号公報, 特開昭58-135881号公報, 特開昭5 炭酸マグネシウム, 酸化マグネシウム, 水酸化マグネシ 50 8-192880号公報, 特開昭59-181277号公報などに記載

ウム,メタケイ酸アルミン酸マグネシウム,ケイ酸マグネシウム,合成ヒドロタルサイト,水酸化アルミナ・マグネシウム,沈降炭酸カルシウムまたは水酸化カルシウムである請求項10記載の安定化方法。

【請求項13】マグネシウムおよび/またはカルシウムの塩基性無機塩の配合割合が2-[(2-ピリジル)メチルスルフィニル]ベンツイミダゾールまたはその誘導体1重量部に対し、0.3ないし20重量部である請求項10記載の安定化方法。

0 【請求項14】固形組成物が錠剤,カプセル剤,散剤, 顆粒剤または細粒剤である請求項10記載の安定化方法。

【請求項15】固形組成物がコーティング剤でコーティングされた請求項10記載の安定化方法。

【請求項16】コーティング剤がヒドロキシプロピルメチルセルロース、エチルセルロース、ヒドロキシメチルセルロースまたはヒドロキシプロピルセルロースである請求項15記載の安定化方法。

【請求項17】コーティング剤が腸溶性コーティング剤である請求項15記載の安定化方法。

【請求項18】腸溶性コーティング剤がセルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシメチルセルロースアセテートサクシネートまたはメタアクリル酸・アクリル酸共重合物である請求項17記載の安定化方法。

【請求項19】 固形組成物が腸溶性コーティングされた 錠剤, 顆粒剤または細粒剤である請求項10ないし請求 項18のいずれか1に記載の安定化方法。

【発明の詳細な説明】

30 [0001]

【発明の属する技術分野】本発明は、抗潰瘍剤として有用な酸に不安定な2ー[(2ーピリジル)メチルスルフィニル]ベンツイミダゾールまたはその誘導体(以下、ベンツイミダゾール系化合物と略称することもある。)を含有してなる医薬固形組成物用のマグネシウムおよび/またはカルシウムの塩基性無機塩からなる安定化剤およびその安定化剤を用いる安定化方法に関する。

[0002]

【従来の技術】ベンツイミダゾール系化合物は、最近、胃酸分泌抑制剤として臨床的に研究されている。本化合物の薬理効果は(H⁺ + K⁺)ーATPase阻害作用に基づく胃酸分泌の抑制を主作用とする消化性潰瘍の治療剤であり、シメチジン、ラニチジン等のヒスタミンH₂受容体拮抗剤にくらべ作用は強力で長時間持続し、また、胃粘膜防御作用も併有しているため次世代の強力な消化性潰瘍治療剤として注目をあびている。抗潰瘍作用を有するベンツイミダゾール系化合物としては、たとえば特開昭52-62275号公報、特開昭54-141783号公報、特開昭57-53406号公報、特開昭58-135881号公報、特開昭58-192880号公報、特開昭59-181277号公報などに記載

された化合物が知られている。

【0003】しかしながら、これらの化合物の安定性は 悪く、固体状態では温度、湿度、光に対して不安定で、 また、水溶液又は懸濁液では、pHが低いほど不安定で ある。一方、製剤すなわち、錠剤、散剤、細粒剤、顆粒 剤、カプセル剤での安定性は化合物単独以上に製剤処方 中の他成分との相互作用が強いため、不安定になり、製 造時および経日的に含量低下、着色変化が著しい。安定 性に悪影響を及ぼす製剤成分としては、たとえば微結晶 セルロース,ポリビニルピロリドン(PVP), カルボキ シメチルセルロースカルシウム、ポリエチレングリコー ル6000、プルロニックF68(ポリオキシエチレン ーポリオキシプロピレン共重合物)等が挙げられる。更 にこれらの製剤のうち錠剤、顆粒剤にコーティングを施 す場合には、たとえばセルロースアセテートフタレー ト, ヒドロキシプロピルメチルセルロースフタレート, ヒドロキシプロピルメチルセルロースアセテート, サク シネート、オイドラギッド(メタアクリル酸・アクリル 酸共重合物)等の腸溶性基剤との配合性も悪く、含量低 下および着色変化を生じる。しかしながら経口用製剤を 製造する場合には、これらの成分の一種あるいは二種以 上の配合が必須であるにもかかわらず前記した如く安定 性に悪影響を及ぼすため、製剤化に困難をきたしてい た。これらの不安定性を解消するために、従来は、ベン ツイミダゾール系化合物をリチウム、ナトリウム、カリ ウム、マグネシウム、カルシウム、チタニウムなどの塩 にしたものを用いた。(特開昭59-167587号公報)

[0004]

【発明が解決しようとする課題】しかし、前記の方法によると、ベンツイミダゾール系化合物を安定化するために、あらかじめ前記した塩にするという工程が必要であった。

[0005]

【課題を解決するための手段】本発明者らは、この様な 事情に鑑み、ベンツイミダゾール系化合物含有製剤の安 定化について検討した結果、本発明を完成するにいたっ た。すなわち、本発明は、(1)抗潰瘍作用を有する酸に 不安定な2-[(2-ピリジル)メチルスルフィニル]ベン ツイミダゾールまたはその誘導体(ただし、2-[[3 ーメチルー4ー(2,2,2ートリフルオロエトキシ)ー 2ーピリジル] メチルスルフィニル] ベンツイミダゾー ルを除く)を含有してなる医薬固形組成物用であるマグ ネシウムおよび/またはカルシウムの塩基性無機塩から なる安定化剤および(2)マグネシウムおよび/またはカ ルシウムの塩基性無機塩を配合してなる抗潰瘍作用を有 する酸に不安定な2- [(2-ピリジル)メチルスルフ ィニル]ベンツイミダゾールまたはその誘導体(ただ し、2-[[3-メチル-4-(2,2,2-トリフルオ ロエトキシ) -2-ピリジル] メチルスルフィニル] ベ ンツイミダゾールを除く)の医薬固形組成物の安定化方 50

法に関する。

【0006】本発明で用いられる抗潰瘍作用を有するベンツイミダゾール系化合物としては、前記の各公開公報等に記載された化合物であって、次の一般式(I)で示される。

【化1】

$$(R^{1})_{m} \xrightarrow{R^{2}} CH_{2} \xrightarrow{R^{5}} (I)$$

[式中、 R^1 は水素、アルキル、ハロゲン、シアノ、カルボキシ、カルボアルコキシ、カルボアルコキシアルキル、カルバモイル、カルバモイルアルキル、トリフルオロメチル、アシル、カルバモイルオキシ、ニトロ、アシルオキシ、アリール、アリールオキシ、アルキルチオまたはアルキルスルフィニルを、 R^2 は水素、アルキル、アシル、カルバモイル、アルキルカルバモイル、ジアルキルカルバモイル、アルキルカルバモイル、アルキルカルボニルメチル、アルコキシカルボニルメチル、アルコキシを、 R^3 および R^5 は同一または異って水素、アルキル、アルコキシまたはアルコキシアルコキシを、 R^4 は水素、アルキル、フッ素化されていてもよいアルコキシまたはアルコキシを、 R^4 は水素、アルキル、フッ素化されていてもよいアルコキシまたはアルコキシを、 R^4 はないし 4の整数をそれぞれ示す。]

一般式(I)の化合物は前記公開公報に記載された方法またはそれに準じた方法により製造することができる。

【0007】一般式(I)における公知化合物の置換基に ついて以下に簡単に説明する。上記式中、R¹で示され るアルキルとしては、炭素数1ないし7のものが、カル ボアルコキシのアルコキシとしては炭素数1ないし4の ものが、カルボアルコキシアルキルのアルコキシとして は炭素数1ないし4のものが、アルキルとしては炭素数 1ないし4のものが、カルバモイルアルキルのアルキル としては炭素数1ないし4のものが、アルコキシとして は炭素数1ないし5のものが、ヒドロキシアルキルのア ルキルとしては炭素数1ないし7のものが、アシルとし ては炭素数1ないし4のものが、アシルオキシのアシル としては炭素数1ないし4のものが、アリールとしては フェニルが、アリールオキシのアリールとしてはフェニ ルが、アルキルチオのアルキルとしては炭素数1ないし 6のものが、アルキルスルフィニルのアルキルとしては 炭素数 1 ないし 6 のものがあげられる。また、 R^2 で示 されるアルキルとしては炭素数1ないし5のものが、ア シルとしては炭素数1ないし4のものが、カルボアルコ キシのアルコキシとしては炭素数1ないし4のものが、 アルキルカルバモイルのアルキルとしては炭素数1ない し4のものが、ジアルキルカルバモイルのアルキルとし てはそのアルキルがそれぞれ炭素数1ないし4のもの

が、アルキルカルボニルメチルのアルキルとしては炭素 数1ないし4のものが、アルコキシカルボニルメチルの アルコキシとしては炭素数1ないし4のものが、アルキ ルスルホニルのアルキルとしては炭素数1ないし4のも のがあげられる。R³,R¹およびR⁵で示されるアルキル としては炭素数1ないし4のものが、アルコキシとして は炭素数1ないし8のものが、アルコキシアルコキシの アルコキシとしては炭素数1ないし4のものがあげられ る。また'R⁴で示されるフッ素化されていてもよいアル コキシのアルコキシとしては炭素数1ないし8のものが 10 あげられる。

【0008】上記式(I)で表わされる化合物のうち、① R'が水素.メトキシまたはトリフルオロメチルで、R'が水素で、R³およびR⁵が同一または異なって水素また はメチルで、R⁴がフッ素化された炭素数2ないし5の アルコキシでかつmが1である化合物、②R¹が水素、フ ッ素,メトキシまたはトリフルオロメチルで、R⁴が水素 で、R³が水素またはメチルで、R⁴が炭素数3ないし8 のアルコキシで、R⁵が水素でかつmが1である化合物お よび③R」が水素、フッ素、メトキシまたはトリフルオロ-20-3。- 反応温度は氷冷下から用いた溶媒の沸点付近まで、 メチルで、 R^2 が水素で、 R^3 が炭素数1ないし8のアル コキシで、R¹が炭素数1ないし8のフッ素化されてい てもよいアルコキシで、R³が水素でかつmが1である化 合物は新規の化合物である。

【0009】上記新規化合物である置換基についてくわ しく説明する。R³で示される低級アルコキシ基として は、炭素数1ないし8の低級アルコキシ基が好ましく、 例としてメトキシ,エトキシ,プロポキシ,イソプロポキ シ,ブトキシ,イソブトキシ,ペンチルオキシ,ヘキシルオ キシ,ヘプチルオキシ,オクチルオキシ等が挙げられ、な 30 かでも炭素数1ないし4の低級アルコキシ基が好まし い。R¹で示されるフッ素化されていてもよい低級アル コキシ基における低級アルコキシ基としては、炭素数1 ないし8の低級アルコキシ基が挙げられ、その好ましい 例としては上記のR³と同様のアルコキシ基が挙げられ る。またフッ素化されていている低級アルコキシ基とし ては、例として2,2,2ートリフロロエトキシ,2,2, チル)-2,2,2-トリフロロエトキシ,2,2,3,3-テトラフロロプロポキシ, 2, 2, 3, 3, 4, 4, 4 ー 4 タフロロブトキシ, 2, 2, 3, 3, 4, 4, 5, 5ーオクタフ ロロペントキシなとが挙げられるが、炭素数2ないし4 のフッ素化されている低級アルコキシ基が好ましい。R の位置としては、4位および5位が挙げられ、そのう ち5位が好ましい。

【0010】次に上記の新規化合物[以下式(I')と称す る]の製造法について述べる。該化合物は一般式 【化2】

[式中、 $R^1 \sim R^5$ は前記と同意義を有する。]で表わされ る化合物を酸化反応に付すことにより製造することがで きる。ここで用いられる酸化剤としては、たとえばメタ クロロ過安息香酸,過酢酸,トリフロロ過酢酸,過マレイ ン酸のような過酸あるいは、亜臭素酸ナトリウム,次亜 塩素酸ナトリウム等が挙げられる。反応に用いられる溶 媒としては、クロロホルム、ジクロルメタン等のハロゲ ン化炭化水素、テトラヒドロフラン、ジオキサンのような エーテル類,ジメチルホルムアミド等のアミド類,あるい は水等があげられ、単独または混合して用いることがで きる。該酸化剤の使用量は、化合物(II)に対してほぼ当 量ないしやや過剰量が好適である。 すなわち、約1ない し3当量、さらに好ましくは約1ないし1.5当量であ 通常、氷冷下から室温下で、さらに好ましくは約0℃な いし10℃で行なわれる。反応時間は、通常約0.1な いし24時間、さらに好ましくは約0.1ないし4時間 である。上記の反応により生成した新規目的化合物 (I')は、再結晶、クロマトグラフィー等の慣用の手段に より単離,精製することができる。

【0011】該化合物は、通常用いられる手段により薬 理学的に許容され得る塩にしてもよい。該塩としては、 たとえば塩酸塩,臭素酸塩,沃素酸塩,リン酸塩,硝酸塩, 硫酸塩、酢酸塩、クエン酸塩などが挙げられる。

【0012】また化合物(II)は、一般式

【化3】

[式中、R およびR は前記と同意義を有する。]で表わ される原料化合物と一般式

【化4】

$$\mathbb{R}^3$$
 \mathbb{R}^4
 \mathbb{R}^6
 \mathbb{R}^6
 \mathbb{R}^6

[式中、 $R^3 \sim R^5$ は前記と同意義を有し、X はハロゲン 原子を示す。]で表わされる原料化合物とを反応させる ことにより製造できる。Xで示されるハロゲン原子とし ては、たとえば塩素,臭素,ヨウ素などが挙げられる。

【0013】本反応は、塩基の存在下に行なうと好都合

である。該塩基としては、たとえば水素化ナトリウム,水素化カリウムのような水素化アルカリ金属,金属ナトリウムのようなアルカリ金属,ナトリウムメトキシド,ナトリウムエトキシドのようなナトリウムアルコラートや、炭酸カリウム,炭酸ナトリウムのようなアルカリ金属の炭酸塩,トリエチルアミンのような有機アミン類等が挙げられる。また反応に用いられる溶媒としては、たとえばメタノール,エタノールのようなアルコール類やジメチルホルムアミド等があげられる。上記反応に用いられる塩基の量は、通常当量よりやや過剰量であるが、大過剰の塩基を用いてもよい。すなわち、約2ないし10当量、さらに好ましくは約2ないし4当量である。上*

$$\begin{array}{c|c}
R^3 & R^5 & R^{4'} \text{ OH (VI)} \\
\hline
CH_3 & & & \\
\hline
(V)
\end{array}$$

$$\begin{array}{ccc}
& R^4 \\
& R^5 \\
& CH_3COCH_2 \\
& (VIII)
\end{array}$$

【0015】一般式(V)で示されるニトロ化合物[式 中、R³, R³は前記と同意義を表わす]に塩基の存在下、 アルコール誘導体 R'' O H (VI) [式中、R'' はフッ素化 された炭素数2ないし5のアルキルまたは炭素数3ない し8のアルキルを示す。]を反応させることにより、一般 式(VII) [式中、R³, R⁴, R⁵は前記と同意義を表わす]の アルコキシ誘導体を得ることができる。反応に用いられ る塩基としては、たとえばリチウム,ナトリウム,カリウ ムのようなアルカリ金属,水素化ナトリウム,水素化カリ ウムのような水素化アルカリ金属、tーブトキシカリウ ム.プロポキシナトリウムのようなアルコラートや炭酸 カリウム,炭酸リチウム,炭酸ナトリウム,炭酸水素カリ ウム,炭酸水素ナトリウムのようなアルカリ金属の炭酸 あるいは炭酸水素塩,カリウム,ナトリウム,リチウムの ようなアルカリ金属,水酸化ナトリウム,水酸化カリウム のような水酸化アルカリ等が挙げられる。 反応に用い られるアルコール誘導体としては、たとえば、プロパノ ール,イソプロパノール,ブタノール,ペンタノール,へキ サノール,2,2,2ートリフロロエタノール,2,2,3, 3.3-ペンタフロロプロパノール, 2, 2, 3, 3ーテト ラフロロプロパノール,1-(トリフロロメチル)-2, 2,2-トリフロロエタノール, 2,2,3,3,4,4,4 ーヘプタフロロブタノール、2,2,3,3,4,4,5,5 ーオクタフロロペンタノール等が挙げられる。 反応に 用いられる溶媒としては、R^{''}OHそのもののほか、テ *記反応温度は、通常約0 $^{\circ}$ ないし用いた溶媒の沸点付近までであり、さらに好ましくは約20 $^{\circ}$ ないし80 $^{\circ}$ である。反応時間は、約0.2ないし24時間、さらに好ましくは約0.5ないし2時間である。

【0014】次に原料化合物(IV)の製造法について説明する。化合物(IV)のうち、R³およびR⁵が同一または異って水素またはメチルで、R⁴がフッ素化された炭素数2ないし5のアルコキシまたは炭素数3ないし8のアルコキシである化合物は次のようにして製造できる。

10 製法 1)

【化5】

$$\begin{array}{ccc}
 & \mathbb{R}^4 \\
 & \mathbb{R}^5 \\
 & \mathbb{R}^5
\end{array}$$

$$\begin{array}{c}
 & \mathbb{R}^5 \\
 & \mathbb{R}^5
\end{array}$$

$$\begin{array}{c}
 & \mathbb{R}^5
\end{array}$$

$$\begin{array}{c}
 & \mathbb{R}^5
\end{array}$$

トラヒドロフラン,ジオキサン等のエーテル類,アセトン,メチルエチルケトンのようなケトン類の他にアセトニトリル,ジメチルホルムアミド,ヘキサメチルリン酸トリアミド等が挙げられる。反応温度は氷冷下ないし溶媒の沸点付近までの適宜の温度が選ばれる。反応時間は、約1ないし48時間である。

【0016】このようにして得られた化合物(VII)を無 水酢酸単独もしくは、硫酸,過塩素酸等の鉱酸の存在下 に加熱(約80ないし120℃)することにより一般式(V III)で示される2ーアセトキシメチルピリジン誘導体 [式中、R³, R⁴, R³は前記と同意義を表わす。]が得ら れる。反応時間は、通常約0.1ないし10時間であ る。ついで、化合物(VIII)をアルカリ加水分解すること により一般式(IX)で示される2-ヒドロキシメチルピリ ジン誘導体を製造することができる。該アルカリとして は、たとえば水酸化ナトリウム,水酸化カリウム,炭酸カ リウム,炭酸ナトリウムなどが挙げられる。用いられる 溶媒としては、たとえばメタノール,エタノール,水など が挙げられる。反応温度は通常約20ないし60℃、反 応時間は約0.1ないし2時間である。さらに化合物(I X)を塩化チオニルのような塩素化剤でハロゲン化するこ とにより一般式(IV)で示される2-ハロゲノメチルピリ ジン誘導体[式中、R³, R⁴, R⁵は前記と同意義を表わ し、Xは塩素、臭素またはヨウ素を表わす。]を製造する 50 ことができる。用いられる溶媒としてはたとえば、クロ

* 【0017】 また化合物(IV)のうち、R³が炭素数1な

いし8の低級アルコキシ、R⁴がフッ素化されていても

よいアルコキシ、R°が水素である化合物は次のように

して製造することができる。

ロホルム,ジクロルメタン,テトラクロロエタンなどが挙げられる。反応温度は通常約20ないし80℃であり、反応時間は約0.1ないし2時間である。製造した化合物(IV)は、用いたハロゲン化剤のハロゲン化水素酸塩であるが、これは通常直ちに化合物(III)との反応に用いるのが好ましい。

【0018】マルトール(X)にR³'Xで表わされるハ ロゲン化アルキルを酸化銀等の存在下に反応させると、 化合物(XI)が得られ、(XI)をアンモニア水と反応させる ことによりピリドン誘導体(XII)が製造出来る。化合物 (XII)は直接ハロゲン化アルキルによりアルキル化する ことにより、あるいはオキシ塩化リンのようなハロゲン 化剤によりハロゲン誘導体(XIV)にし、次いで塩基の存 在下にR¹OHで表わされる低級アルコールを反応させ ることにより化合物(XIII)に誘導される。次に化合物(X III)をNープロムコハク酸イミドや塩素等により直接ハ 40 ロゲン化して化合物(IV)にするか、II-クロロ過安息香 酸のような酸化剤で化合物(XV)とし、無水酢酸と反応さ せて化合物(XVI)とし、次いで加水分解することにより 化合物(XVII)を製造し、これを塩化チオニルのようなハ ロゲン化剤により化合物(IV)に導くこともできる。化合 物(XI)の製造の際に用いられるハロゲン化アルキルとし ては、ヨウ化メチル,ヨウ化エチル,ヨウ化プロピル,ヨ ウ化イソプロピル,ヨウ化ブチル,ヨウ化ペンチル,ヨウ 化ヘキシル等が、化合物(XIII)の製造の際に用いられる ハロゲン化アルキルとしては、化合物(XI)の製造の際に

 $(IV) \in$

用いられるハロゲン化アルキルと同様のものに加えて、たとえば 2,2,2ートリフロロエチルヨーダイド,2,2,3,3,3ーペンタフロロプロピルヨーダイド,2,2,3,3ーテトラフロロプロピルヨーダイド,1ー(トリフロロメチル)ー2,2,2ートリフロロエチルヨーダイド,2,2,3,3,4,4,4ーヘプタフロロブチルヨーダイド,2,2,3,3,4,4,5,5ーオクタフロロペンチルヨーダイド等が挙げられ、使用量は約1~10当量である。また脱酸剤としては、酸化銀,炭酸カリウム,炭酸ナトリウム等が、溶媒としてはジメチルホルムアミド,ジメチルアセタミド等が挙げられ、反応条件は通常室温が用いられる。

【0019】化合物(XIV)の製造の際に用いられるハロゲン化剤としては、オキシ塩化リン,五塩化リン,三臭化リン等が挙げられ、使用量は当量~大過剰が用いられ、反応温度は約50~150℃程度である。化合物(XIV)から化合物(XIII)への反応に用いられるアルコールとしては、メタノール,エタノールおよび製法 1で用いられるアルコール誘導体と同様のものが挙げられ、使用量は当量~大過剰であり、また塩基としてはそれぞれのアル

コールのナトリウムあるいはカリウムアルコラートやカ リウム tーブトキシド、水素化ナトリウム等が用いられ る。反応温度は室温~用いたアルコールの沸点までの適 官の温度が選ばれる。化合物(XIII)を直接Nーブロモコ ハク酸で臭素化する場合には、光照射下に反応を行うの が好ましく、溶媒としては四塩化炭素,クロロホルム,テ トラクロロエタン等が用いられる。化合物(XIII)から化 合物(XV)の反応に用いられる酸化剤としては、たとえば メタクロロ過安息香酸,過酢酸,トリフロロ過酢酸,過マ レイン酸のような過酸、過酸化水素等が挙げられる。 反 応に用いられる溶媒としては、クロロホルム,ジクロル メタン等のハロゲン化炭化水素,テトラヒドロフラン,ジ オキサンのようなエーテル類、ジメチルホルムアミド等 のアミド類、酢酸あるいは水等があげられ、単独または 混合して用いることが出来る。該酸化剤の使用量は、化 合物(XIII)に対してほぼ当量ないし過剰量が好適であ る。好ましくは約1ないし10当量である。反応温度は 氷冷下から用いた溶媒の沸点付近までの適宜の温度で行 なわれる。反応時間は、通常約0.1ないし24時間、 さらに好ましくは約0.1ないし4時間である。

11

【0020】化合物(XV)より化合物(XVI)の製造は、化 合物(XV)を無水酢酸単独もしくは、硫酸,過塩素酸等の 鉱酸の存在下に加熱(約80ないし120℃)することに より行なわれる。反応時間は通常0.1ないし10時間 である。化合物(XVI)をアルカリ加水分解することによ り化合物(XVII)が製造出来るが、用いられるアルカリと しては、たとえば水酸化ナトリウム,水酸化カリウム,炭 酸カリウム,炭酸ナトリウムなどが挙げられる。用いら れる溶媒としては、たとえばメタノール,エタノール,水 などが挙げられる。反応温度は通常約20ないし60 ℃、反応時間は約0.1ないし2時間である。化合物(X VII)より化合物(IV)を製造するには塩化チオニルのよう な塩素化剤や、メタンスルホニルクロリド,pートルエン スルホニルクロリドや、ジフェニルフォスフォリルクロ リドのような有機スルホン酸あるいは有機リン酸の酸塩 化物を用いることにより行われる。塩化チオニルのよう な塩素化剤の場合には、化合物(XVII)に対し塩素化剤の 当量~大過剰量が用いられる。また用いられる溶媒とし てはたとえば、クロロホルム,ジクロルメタン,テトラク ロロエタンなどが挙げられる。 反応温度は通常約20な いし80℃であり、反応時間は約0.1ないし2時間で ある。有機スルホン酸あるいは有機リン酸の酸塩化物の 場合には、化合物(XVII)に対し塩化物の当量~小過剰量 が用いられ、通常塩基の存在下に反応が行われる。用い られる塩基としてはトリエチルアミン,トリブチルアミ ンのような有機塩基,炭酸ナトリウム,炭酸カリウム,炭 酸水素ナトリウムのような無機塩基があげられ、使用量 は当量~小過剰量である。用いられる溶媒としては、ク ロロホルム,ジクロルメタン,四塩化炭素,アセトニトリ ル等が挙げられ、反応温度,反応時間は氷冷下~沸点付

【0021】前記の新規なベンツイミダゾール系化合物 は、優れた胃酸分泌抑制作用,胃粘膜防禦作用,抗潰瘍作

近、および数分間~数時間の適当な条件が選ばれる。

用を示し、また毒性は低いので、哺乳動物(例えば、マ ウス,ラット,ウサギ,イヌ,ネコ,ヒトなど)の消化器潰瘍

の治療に用いることができる。

【0022】次に本発明で用いられるマグネシウムおよ びカルシウムの塩基性無機塩について説明する。該マグ ネシウムの塩基性無機塩としては、たとえば、重質炭酸 マグネシウム,炭酸マグネシウム,酸化マグネシウム.水 酸化マグネシウム,メタケイ酸アルミン酸マグネシウム, ケイ酸アルミン酸マグネシウム,ケイ酸マグネシウム,ア ルミン酸マグネシウム,合成ヒドロタルサイト [Mg A l₂(OH)₁₅ ・CO₃・4H₂O],水酸化アルミナ・マグネ シウム[2. 5 MgO・Al₂O₃・xH₂O]などが、また該 カルシウムの塩基性無機塩としては、たとえば沈降炭酸 カルシウム,水酸化カルシウムなどが挙げられ、これら のマグネシウムおよびカルシウムの塩基性無機塩はその 1%水溶液あるいは懸濁液のpHが塩基性(pH7以上)を 示すものであればよい。該マグネシウムおよびカルシウ ムの塩基性無機塩の配合は1種あるいは2種以上の組み 合せでもよく、その配合量はその種類により変動する が、ベンツイミダゾール系化合物1重量部に対して約 0. 3ないし20重量部、好ましくは約0. 6ないし7 重量部である。

【0023】本発明安定化剤は、さらに添加剤と共に用 いてもよく、例えば賦形剤(例えば、乳糖、コーンスター チ,軽質無水ケイ酸,微結晶セルロース,白糖など),結合 剤(例えば α 化デンプン,メチルセルロース,カルボキシ メチルセルロース,ヒドロキシプロピルセルロース,ヒド ロキシプロピルメチルセルロース,ポリビニルピロリド ンなど),崩壊剤(例えばカルボキシメチルセルロースカ ルシウム,デンプン,低置換度ヒドロキシプロピルセルロ ースなど),界面活性剤(例えばツイーン80(花王アトラ ス社製),プルロニックF68(旭電化工業社製,ポリオキ シエチレン・ポリオキシプロピレン共重合物など),抗酸 化剤(例えば L ーシステイン, 亜硫酸ナトリウム, アスコ ルビン酸ナトリウムなど),滑沢剤(例えばステアリン酸 マグネシウム,タルクなど)などが添加剤として用いられ 40

【0024】本発明の安定化方法は、上記のベンツイミ ダゾール系化合物,マグネシウムおよび/またはカルシ ウムの塩基性無機塩および上記の添加剤を均一に混和す ることによってなされるが、その混和方法は、たとえば あらかじめベンツイミダゾール系化合物にマグネシウム および/またはカルシウム塩基性無機塩を混和したもの に添加剤を混和してもよいし、ベンツイミダゾール系化 合物に添加剤を混和したものにマグネシウムおよび/ま たはカルシウムの塩基性無機塩を混和してもよく、最終 50 的にベンツイミダゾール系化合物にマグネシウムおよび

13

/またはカルシウムの塩基性無機塩が均一に接触する方 法であればよい。該混合物を自体公知の手段に従い、た とえば錠剤,カプセル剤,散剤,顆粒剤,細粒剤などの経口 投与に適した剤形に製剤化することができる。錠剤,顆 粒剤,細粒剤に関しては、味のマスキング,腸溶性あるい は持続性の目的のため自体公知の方法でコーティングし てもよい。そのコーティング剤としては、例えばヒドロ キシプロピルメチルセルロース,エチルセルロース,ヒド ロキシメチルセルロース,ヒドロキシプロピルセルロー ス,ポリオキシエチレングリコール,ツイーン80,プル ロニックF68,セルロースアセテートフタレート,ヒド ロキシプロピルメチルセルロースフタレート,ヒドロキ シメチルセルロースアセテートサクシネート,オイドラ ギット(ローム社製,西ドイツ,メタアクリル酸・アクリ ル酸共重合物)および酸化チタン,ベンガラ等の色素が用 いられる。

【0025】錠剤、顆粒剤、散剤、細粒剤、カプセル剤 については、通常の方法(例えば第10改正,日本薬局方 の製剤総則に記載されている方法)により製造できる。 すなわち、錠剤の場合は、ベンツイミダゾール系化合物 20- II)を製造した。 と賦形剤、崩壊剤にマグネシウムおよび/またはカルシ ウムの塩基性無機塩を加え、混合し、結合剤を加えて、 顆粒としこれに滑沢剤等を加えて打錠して錠剤とする。 また顆粒剤においても錠剤とほぼ同様の方法で押し出し 造粒を行なうか、あるいはノンパレル(白糖75%(W/ W)およびコーン・スターチ25%(W/W)を含む)に、 水または、白糖,ヒドロキシプロピルセルロース,ヒドロ キシプロピルメチルセルロース等の結合剤溶液(濃度:約 0.5~70%(W/V)を噴霧しながら、ベンツイミダ ゾール系化合物、マグネシウムおよび/またはカルシウ ムの塩基性無機塩および添加剤(例、白糖,コーンスター チ,結晶セルロース,ヒドロキシプロピルセルロース,メ チルセルロース,ヒドロキシプロピルセルロース,ポリビ ニルピロリドン等)を含有してなる粉状散布剤をコーテ ィングすることにより得られる。カプセル剤の場合は、 単に混合して充填すればよい。このようにして得られた 製剤は、長期間保存しても、外観変化は少なく含量の低 下もほとんどない優れた安定性を示す。

【0026】このようにして得られる安定化された医薬 固形組成物は優れた胃酸分泌抑制作用,胃粘膜防禦作用, 抗潰瘍作用を示し、また毒性は低いので、哺乳動物(例 えば、マウス,ラット,ウサギ,イヌ,ネコ,ブタ,ヒトな ど)の消化器潰瘍の治療に用いることができる。該医薬 固形組成物を哺乳動物の消化器潰瘍の治療に用いる場合 には前記の如く薬理学的に許容され得る担体,賦形剤,希 釈剤などと混合し、カプセル剤,錠剤,顆粒剤などの剤型 にして経口的に投与することができる。その投与量は、 ベンツイミダゾール系化合物として約0.01mg~30 mg/kg/日、好ましくは約0.1mg~3mg/kg/日量で ある。

[0027]

【発明の実施の形態】以下に参考例,実施例および実験 例をあげて本発明をさらに詳しく説明するが、これら は、本発明を限定するものではない。

参考例1

2,3-ジメチルー4-ニトロピリジン-1-オキシド (2. 0g),メチルエチルケトン(30ml),2,2,3,3, 3-ペンタフロロプロパノール(3.05ml),無水炭酸 カリウム(3.29g),ヘキサメチルリン酸トリアミド (2.07g)の混合物を70~80℃で4.5日間加熱 撹拌したのち、不溶物をろ去し、濃縮した。残留物に水 を加え、酢酸エチルエステルで抽出し、硫酸マグネシウ ムで乾燥後、溶媒を留去し、残留物をシリカゲル(50 g)のカラムにかけ、クロロホルムーメタノール(10: 1)で溶出し、酢酸エチルエステルーヘキサンより再結 晶すると、2,3-ジメチル-4-(2,2,3,3,3-ペ ンタフロロプロポキシ)ピリジンー1ーオキシドの無色 針状晶2. 4gが得られた。融点148~149℃ 上記と同様の方法により、原料化合物(V)より化合物(V

化合物(VII)

R3 R^5 \mathbb{R}^4 融点(℃) CH₃ H OCH2 CFa 131.0~131.5 注1) H H OCH2 CH2 CH3 油状 H OCH2 CH2 CH3 注2) CH₃ 油状

注1) NMRスペクトル(CDCl₃) δ: 1.01(3H, t, J=7Hz). 1.81(2H, m), 2.50(3H, s), 3.93(2H, t, J=7Hz), 6.50-6.80(2H, m), 8.10(1H, d, J=7Hz)注2) NMRスペクトル(CDCl₃) δ: 1.07(3H, t, J=7.5H z), 1.65-2.02(2H, m),2.21(3H, s), 2.52(3H, s), 3.9 9(2H, t, J=6Hz), 6.68(1H, d, J=6Hz), 8.15(1H, d,J = 6Hz

【0028】参考例2

2,3-ジメチル-4-(2,2,3,3,3-ペンタフロロ プロポキシ)ピリジン-1-オキシド(2.5g),無水酢 酸(8 ml)の溶液に濃硫酸(2滴)を加え、110℃で2時 間かきまぜたのち、濃縮した。残留物をメタノール(3 0 ml)に溶かし、2 N - 水酸化ナトリウムの水(2 0 ml) 溶液を加え、室温で2時間かきまぜた。濃縮後水を加 え、酢酸エチルエステルで抽出した。硫酸マグネシウム で乾燥後、溶媒を留去し、シリカゲル(50g)のカラム にかけ、クロロホルムーメタノール(10:1)で溶出 し、イソプロピルエーテルより再結晶すると、2ーヒド ロキシメチルー3ーメチルー4ー(2,2,3,3,3-ペ ンタフロロプロポキシ)ピリジンの褐色油状物 1. 6gが 得られた。

NMRスペクトル(CDCl₃) δ : 2.07(3H, s), 4.28 (1H, 50 brs), 4.49(2H, t, J=12Hz), 4.67(2h, s), 6.69(1H,

d, J=5Hz), 8.34(1H, d, J=5Hz) 上記と同様の方法により、化合物(VII)より化合物(IX) を製造した。

15

化合物(IX)

R ⁸	R ⁵	R ⁴	(プ)点語
CHa	H	OCH ₂ CF ₃	93.5~94.0
注1) H	H	OCH2 CH2 CH3	油状
注2) CH ₃	H	OCH ₂ CH ₂ CH ₃	油状

注1) NMRスペクトル(CDCl₃) δ: 1.0(3H, t, J=7.5Hz), 1.79(2H,m), 3.92(2H, t, J=6Hz), 4.51-4,90(1H, b r), 4.68(2H, s), 6.68(1H, dd, J=2 及び 6Hz), 6.80 (1H, d, J=2Hz), 8.28(1H, d, J=6Hz) 注2) NMRスペクトル(CDCl₃) δ: 1.03(3H, t, J=7.5H z), 1.82(2H, m), 2.02(3H, s), 3.95(2H, t, J=6Hz), 4.62(2H, s), 5.20 (1H, brd. s), 6.68(1H, d, J=6Hz), 8.25 (1H, d, J=6Hz)

【0029】参考例3

2ーヒドロキシメチルー3ーメチルー4ー(2,2,3,3,3ーペンタフロロプロポキシ)ピリジン(350mg)のクロロホルム溶液(10ml)に塩化チオニル(0.2ml)を加え、30分間加熱還流したのち濃縮し、残留物をメタノール(5ml)にとかし、2ーメルカプトベンツイミダゾール(200mg),28%ナトリウムメトキシド溶液(1m1),メタノール(6ml)に加え、30分間加熱還流した。メタノールを留去し、水を加えて酢酸エチルエステルで抽出し、稀水酸化ナトリウム溶液で洗滌後、硫酸マグネシウムで乾燥した。溶媒を留去後シリカゲル(20g)のカラムにかけ、酢酸エチルエステルーへキサン(2:1)で溶出し、酢酸エチルーステルーへキサン(2:1)で溶出し、酢酸エチルーステルーステルーステルーでもサン(2:1)で溶出し、酢酸エチルーステルーステルーステリカゲル(2:1)で溶出し、酢酸エチルーステルーステルーステリカゲル(2:1)で溶出し、酢酸エチルーステルーステルーストサン(2:1)で溶出し、酢酸エチルーステルーストサンより再結晶すると、2ー[[3ーメチルー4ー(2,2,3,3,3ーペンタフロロプロポキシ)-2ーピリジル]メチルチオ]ベンツイミダゾール・1/2水和物の無色板状晶370mgが得られ*

* た。融点145~146℃。以下、上記と同様にして化 合物(III)と(IV)とを反応させ、化合物(II)を製造し た。

化合物(II)

16

		R1	R²	R ⁸	R ⁵	R ⁴	融点(℃)
		H	H	CH ₃	H	OCH ₂ CF ₃	149~150
		H	H	H	H	OCH2 CH2 CH3	84~ 86
10	注)	H	H	CH ₃	H	OCH2 CH2 CH3	油状

注)NMRスペクトル(CDC1₃) δ : 0.98 (3H, t, J=7.5H z), 1.54-1.92(2H,m), 2.15(3H, s),3.80(2H, t, J=6H z), 4.43(2H,s), 6.55(1H,d, J=6Hz), 7.09(2H, m), 7.50 (2H, m), 8.21(1H, d, J=6Hz)

【0030】参考例4

2ー [[3ーメチルー4ー(2,2,3,3,3,3ーペンタフロロプロポキシ)ー2ーピリジル]メチルチオ] ベンツイミダゾール(2,2g)のクロロホルム(20ml)溶液に氷冷下、mークロロ過安息香酸(1,3g)のクロロホルム(15ml)溶液を30分かけて滴下したのち、反応液を飽和炭酸水素ナトリウム水溶液で洗滌した。硫酸マグネシウムで乾燥後濃縮し、シリカゲル(50g)のカラムにかけ、酢酸エチルエステルで溶出し、アセトンーイソプロピルエーテルより再結晶すると、2ー [[3ーメチルー4ー(2,2,3,3,3ーペンタフロロプロポキシ)ー2ーピリジル]メチルスルフィニル] ベンツイミダゾール(以下、化合物(A)と称することもある。)の微黄色プリズム晶1.78gが得られた。融点161~163℃(分解)

30 以下同様の方法で化合物(II)より化合物(I)(以下、それぞれ化合物(B),化合物(C),化合物(D)と称することもある)を製造した。

化合物(I)

R' R² R³ R⁵ R⁴ 融点(℃)

(B) H H CH₃ H OCH₂ CF₃

178~182(decomp.)

(C) H H H OCH₂ CH₂ CH₃ 123~125(decomp.)

(D) H H CH₃ H OCH₂ CH₂ CH₃ 81~83

【0031】実施例1

下記の組成のうち化合物(A),水酸化マグネシウム,Lーシステイン,コーンスターチおよび乳糖を混合し、さらに1/2量の微結晶セルロース,軽質無水ケイ酸,ステアリン酸マグネシウムを加えよく混合したのち乾式造粒機(ローラーコンパクター,フロイント社製,日本)で圧縮成型した。このものを乳鉢で粉砕し、丸篩(16メッシュ)を通過させたのち残量の微結晶セルロース,軽質無水ケイ酸,ステアリン酸マグネシウムを加え混合し、ロータ

リー式打錠機(菊水製作所製)で1錠当り250mgの錠剤を 製造した。

50

30

3.0mg

250.0mg

26 mg

(0.1ml)

200 mg

	17	
1 錠中の組成		
化合物(A)		50 mg
水酸化マグネシウム		30 mg
Lーシステイン		20 mg
コーンスターチ		20 mg
乳糖		65.2mg
微結晶セルロース		60 mg
軽質無水ケイ酸		1.8mg

【0032】実施例2

ステアリン酸マグネシウム

実施例1の方法において、化合物(A)の代りにオメプラゾール(5-メトオキシー2-[(4-メトオキシー3,5-ジメチルー2-ピリジル)メチルスルフィニル]ベンツイミダゾール)を用いて錠剤を製造した。

【0033】実施例3

下記の組成のうち化合物(B),沈降炭酸カルシウム,コーンスターチ,乳糖およびヒドロキシプロピルセルロースを混合し、それに水を加え練合をおこなったのち40 ℃,1-6.時間真空乾燥し、乳鉢で粉砕し、1-6.メッシュー20の篩を通し顆粒とした。これにステアリン酸マグネシウムを加え、ロータリー式打錠機(菊水製作所製)で1錠当り200mgの錠剤を製造した。

1錠中の組成

and the state of t	
化合物 (B)	30 mg
沈降炭酸カルシウム	50 mg
コーンスターチ	40 mg
乳糖	73.4mg
ヒドロキシプロピルセルロース	6 mg
ステアリン酸マグネシウム	'0.6mg
水	(0.05ml)
計	200.0mg

【0034】実施例4

実施例3の方法において、化合物(B)の代りにチモプラゾール([(2-ピリジル)メチルスルフィニル]ベンツイミダゾール)を用いて錠剤を製造した。

【0035】実施例5

下記組成割合の物質をよく混合したのち、水を加えて練合し、押出し造粒機(菊水製作所製,スクリーン径1.0mmφ)で造粒し、ただちにマルメライザー(富士パウダル社 40製,1000rpm)で球型顆粒としたのち 40℃,16時間真空乾燥し、丸篩で篩過し12~42メッシュの顆粒を得た。

顆粒200mg中の組成	₹			
化合物(B)		30	mg	
軍職性外沙山	20 mg			
コーンスターチ		80	mg	
微結晶セルロー	ス	20	mg	
カルボキシメチ	ルセルロースカルシウム	10	mg	
ヒドロキシプロ	ピルセルロース	10	mg	
プルロニックF	6.8	4	mg	

18

計 【0036】実施例6

乳糖

水

実施例5の方法において、化合物(B)の代わりに化合物(D)を用いて顆粒を製造した。

【0037】実施例7

実施例3で得た顆粒に下記組成の腸溶性コーティング液を流動噴霧乾燥機(大河原社製)中で給気温度50°、顆粒温度40°の条件でコーティングし腸溶性顆粒を得た。このもの260mgをカプセル充填機(パークデービス社製、米国)で1号硬カプセルに充填しカプセル剤を製造した。

オイドラギットLー30D	138mg(固型成分41.4mg)
タルク	4.1mg
ポリエチレングリコール	6000 12.4mg
ツィーン 80	2.1mg
水	$276\mu\mathrm{l}$
腸溶性顆粒の組成	
実施例5の顆粒	200mg
膈溶性皮膜	60mg
計	260mg
力才小角旗或	
超到 260mg	•
1号硬カプセル	76mg
計	336mg

【0038】実施例8

下記組成のうち化合物 (B),炭酸マグネシウム,白糖,コーンスターチおよび結晶セルロースをよく混合し、散布剤とした。遠心流動型コーティング造粒装置(フロイント産業株式会社製,CF-360)にノンパレルを入れ、ヒドロキシプロピルセルロース溶液(4%:W/V)を噴霧しながら上記の散布剤をコーティングし球形顆粒を得た。該球形顆粒を40℃,16時間真空乾燥し、丸篩で篩過し12~32メッシュの顆粒を得た。

顆粒 190 嘘中の組成 ノンパレル 7 5 mg 化合物 (B) 15mg 炭酸マグネシウム 15mg 白 糖 2 9 mg コーンスターチ 27mg 結晶セルロース 2 7 mg ヒドロキシプロピルセルロース $2\,\mathrm{ng}$ (0.05ml)計 190mg

* 実施例 8 で得た顆粒に、下記組成の腸溶性コーティング液を流動噴霧乾燥機(大河原社製)中で給気温度 5 0 ℃, 顆粒温度 4 0 ℃の条件でコーティングし腸溶性顆粒を得た。該顆粒 2 4 0 mgをカプセル充填機(パークデービス社製)で 2 号硬カプセルに充填しカプセル剤を製造した。

【0039】実施例9

腸溶性コーティング液組成

オイドラギット L-30D

104.7mg(固型成分 31.4mg)

タルク

ポリエチレングリコール6000

ツィーン 80

1.6 mg

9.6 mg

3.2 mg

酸化チタン

4.2 mg

 $(220 \mu 1)$

10

腸溶性顆粒の組成

 場合性類型の組成 実施例8の顆粒
 190 ㎡

 腸溶性皮膜
 50 ㎡

 計
 240 ㎡

 カプセル剤の組成 腸溶性顆粒
 240 ㎡

 2号硬カプセル
 65 ㎡

 計
 305 ㎡
 【0040】実験例1

20 実施例5の方法に準じ顆粒を製造し50℃,75%RH, 1週間後の外観変化を観察した。ただし重質炭酸マグネ シウムを乳糖に変えたもの、あるいは下記添付物に変え たものも同様に製造し経日変化させた。

【表1】

<u></u>					
		50℃, 7	75%]	RH, 13	週間
	添加物質	外観変	化		
	重質炭酸マグネシウム			•	
本	酸化マグネシウム		-	-	
.	メタケイ酸アルミン酸マグネシ		_	-	
	ウム				
発	合成ヒドロタルサイト		-	-	
	水酸化アルミナ・マグネシウム		-	-	
	ケイ酸マグネシウム		-	-	
明	沈降炭酸カルシウム		-		
	水酸化マグネシウム		-		
	炭酸ナトリウム	+	(黄	色変	化)
	炭酸カリウム	+	(")
対	炭酸水素ナトリウム	+	(")
	塩化マグネシウム	++	(紫	色変	化)
	硫酸マグネシウム	++	(")
照	塩化カルシウム	++	(#)
	ケイ酸アルミニウム	+	(")
	無添加(乳糖)	++	(")

- : 外観変化なし

+ : " あり

++: " はげしい

以上の結果、本発明の安定化剤を加えたものについては 外観変化はほとんど認められなかった。

【0041】実験例2

実施(B) を化合物 (A) 、化合物 (C) 、化合物 (D) 、オメプラゾール、チモプ

ラゾールに変えた顆粒を製造し、50℃,75%RH,1 30 週間後の外観変化を観察した。また対照として重質炭酸マグネシウムを乳糖に変えたものも製造し同様に経日変化させた。

【表2】

23

			r
化合物	ž	添加物質	50℃,75%RH, 1週間,外観変化
化合物(A)	本発明	重質炭酸マグネ シウム	-
	対照	乳糖	++
オメプラゾール	本発明	重質炭酸マグネ シウム	_
	対照	乳糖	++
チモプラゾール	本発明	重質炭酸マグネ シウム	<u>.</u>
	対照	乳糖	++
化合物(C)	本発明	重質炭酸マグネ シウム	-
	対照	乳糖	++
化合物(D)	本発明	重質炭酸マグネ シウム	manufacturing a Medical for Market and Market and American
	対照	乳糖	++

-: 外観変化なし

++: はげしい

以上の結果、化合物(A),オメプラゾール、チモプラ ゾール, 化合物 (C), 化合物 (D) のいずれも本発明 30 えたもの、さらには実施例7の各製剤を製造し50℃, の安定化剤を配合した組成物は安定であった。

【0042】実験例3

実施例3および5において塩基性のMg無機塩あるいは

Ca無機塩を種々変えたものまたは対照として乳糖に変 75% RH,1週間および 40℃,6 ケ月保存後の外観 変化および含量(残存率)を測定した。

【表3】

2	E
۷	ູ

				50℃, 75	40℃
	添加物質		Initial	%RH, 1週	6ケ月
	重質炭酸マグネ	外観	白色	変化なし	変化なし
本	シウム	含量	100%	98.0	99. 5
発	沈降炭酸カルシ	外観	白色	変化なし	変化なし
明	ウム	含量	100%	97.4	96. 5
	ケイ酸マグネシ	外観	白色	変化なし	変化なし
	ウム	含量	100%	94. 5	95.0
対	無添加(乳糖)	外観	淡紫色	濃紫色	濃紫色
照		合量	100%	73. 5	82. 1
	重質炭酸マグネ	外観	白色	変化なし	変化なし
本	シウム	含量	100%	98. 2	99. 1
発	沈降炭酸カルシ	外観	白色	変化なし	変化なし
明	ウム	含量	100%	97. 2	98. 6
	酸化マグネシウ	外観	白色	変化なし	変化なし
	4	含量	100%	99. 4	99. 0
対	無添加(乳糖)	外観	淡紫色	濃紫色	濃紫色
照		含量	100%	84. 2	89. 4
1					
本		外観	白色	変化なし	変化なし
発	重質炭酸マグネ				
明	シウム				
		含量	100%	98. 4	99. 1
	発明 対照 本発明 対照 本発	本発明 重 が	本発明 シウム 含量 外倉銀 会量 対	添加物質 Initial 重度炭酸マグネ 外観 白色 100% 含量 100% 分量 100% 分量 100% クタム ウム 含量 100% クタム ウム (乳糖) 外観 白色 100% クタム (乳糖) クター	重質炭酸マグネ 外観 白色 変化なし 98.0 分量 100% 98.0 98.0 外観 白色 変化なし ウム 外観 白色 含量 100% 97.4 ケイ酸マグネシ 外観 白色 含量 100% 94.5 満紫色 含量 100% 73.5 回質炭酸マグネ 外観 白色 変化なし ウム

以上の結果、本発明の安定化剤を配合した組成物は外観変化もなく、含量も安定であることが明らかとなった。 【0043】

【発明の効果】本発明において、ベンツイミダゾール系

化合物にマグネシウムおよび/またはカルシウムの塩基 性無機塩からなる安定化剤を配合することにより物理的 に安定な医薬固形組成物を得ることができる。