

Le problème de la représentation des données

ullet La mémoire d'un ordinateur est composé de bits pouvant prendre uniquement les valeurs 0 et de 1

1. Introduction

Le problème de la représentation des données

- La mémoire d'un ordinateur est composé de bits pouvant prendre uniquement les valeurs 0 et de 1
- Le regroupement de 8 bits s'appelle un octet (byte en anglais) c'est l'unité minimal de mémoire :

$$1 \text{ octet } = \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

Le problème de la représentation des données

- ullet La mémoire d'un ordinateur est composé de bits pouvant prendre uniquement les valeurs 0 et de 1
- Le regroupement de 8 bits s'appelle un octet (byte en anglais) c'est l'unité minimal de mémoire :

$$1 \text{ octet } = \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ &$$

• Toutes les données doivent donc être représenté en utilisant des octets.

Le problème de la représentation des données

- La mémoire d'un ordinateur est composé de bits pouvant prendre uniquement les valeurs 0 et de 1
- Le regroupement de 8 bits s'appelle un octet (byte en anglais) c'est l'unité minimal de mémoire :

$$1 \text{ octet } = \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

- Toutes les données doivent donc être représenté en utilisant des octets.
- On s'intéresse ici à la représentation des entiers positifs et négatifs, des caractères et des flottants.

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire en utilisant 10 chiffres (0,1,2,3,4,5,6,7,8 et 9), chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire en utilisant 10 chiffres (0,1,2,3,4,5,6,7,8 et 9), chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire en utilisant 10 chiffres (0,1,2,3,4,5,6,7,8 et 9), chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

1 8 1 5

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

$$\begin{array}{c|ccccc} 10^3 & 10^2 & 10^1 & 10^0 \\ \hline 1 & 8 & 1 & 5 \\ \end{array}$$

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{11100010111}^2$:

1 1 1 0 0 0 1 0 1 1

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour 1815:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{11100010111}^2$:

	2^{10}	2^{9}	2^{8}	2^7	2^{6}	2^5	2^4	2^3	2^2	2^1	2^0	
	1	1	1	0	0	0	1	0	1	1	1	

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour 1815:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{11100010111}^2$:

2^{10}	2^9	2^{8}	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
1	1	1	0	0	0	1	0	1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour 1815:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{11100010111}^2$:

2^{10}	2^9	2^8	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
1	1	1	0	0	0	1	0	1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										

=1815

2. Entiers positifs

Ce sont des cas particuliers (avec b=10 et b=2), du théorème suivant :

Décomposition en base b

Tout entier $n \in \mathbb{N}$ peut s'écrire sous la forme :

$$n = \sum_{k=0}^{p} a_k b^k$$

avec $p \ge 0$ et $a_k \in [0; b-1]$. De plus, cette écriture est unique si $a_p \ne 0$ et s'appelle *décomposition en base b de n* et on la note $n = \overline{a_p \dots a_1 a_0}^b$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

• 10001011²

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- 10001011²
- 1101001011²

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- 10001011²
- 1101001011²
- $\overline{421}^5$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- 10001011²
- 1101001011²
- $\overline{421}^5$
- \bullet $\overline{3EA}^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- 10001011²
- 1101001011²
- $\overline{421}^5$
- $\overline{3EA}^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- $\bullet \ \overline{10001011}^2 = \overline{139}^{10}$
- 1101001011²
- $\overline{421}^5$
- $3EA^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- \bullet $\overline{10001011}^2 = \overline{139}^{10}$
- \bullet $\overline{1101001011}^2 = \overline{843}^{10}$
- $\overline{421}^5$
- \bullet $\overline{3EA}^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- \bullet $\overline{10001011}^2 = \overline{139}^{10}$
- \bullet $\overline{1101001011}^2 = \overline{843}^{10}$
- $\overline{421}^5 = \overline{111}^{10}$
- \bullet $\overline{3EA}^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- \bullet $\overline{10001011}^2 = \overline{139}^{10}$
- \bullet $\overline{1101001011}^2 = \overline{843}^{10}$
- $\overline{421}^5 = \overline{111}^{10}$
- $\bullet \ \overline{3EA}^{16} = \overline{1002}^{10}$

2. Entiers positifs

Limitations mémoire et dépassement de capacité

 \bullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\overline{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

2. Entiers positifs

Limitations mémoire et dépassement de capacité

 \bullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\frac{1}{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur

2. Entiers positifs

Limitations mémoire et dépassement de capacité

ullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\frac{1}{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $2^8 1 = 255$

2. Entiers positifs

Limitations mémoire et dépassement de capacité

ullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\overline{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t: $2^8 1 = 255$
 - uint32_t : $2^{32} 1 = 4294967295 \ (\geq 4 \text{ milliards})$

2. Entiers positifs

Limitations mémoire et dépassement de capacité

ullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\frac{1}{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t: $2^8 1 = 255$
 - uint32_t : $2^{32} 1 = 4294967295$ (≥ 4 milliards)
 - uint64_t : $2^{64} 1 = 18\,446\,744\,073\,709\,551\,615$ (\geq 18 milliards de milliards)

2. Entiers positifs

Limitations mémoire et dépassement de capacité

 \bullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\overline{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $2^8 1 = 255$
 - uint32_t : $2^{32} 1 = 4294967295 (\ge 4 \text{ milliards})$
 - uint64_t : $2^{64} 1 = 18\,446\,744\,073\,709\,551\,615$ (\geq 18 milliards de milliards)

En cas de dépassement de capacité (*overflow* ou *underflow*), le résultat obtenu est calculé modulo la plus grande valeur maximale plus 1.

2. Entiers positifs

Limitations mémoire et dépassement de capacité

ullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\overline{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $2^8 1 = 255$
 - uint32_t : $2^{32} 1 = 4294967295$ (≥ 4 milliards)
 - uint64_t : $2^{64} 1 = 18\,446\,744\,073\,709\,551\,615$ (\geq 18 milliards de milliards)

En cas de dépassement de capacité (*overflow* ou *underflow*), le résultat obtenu est calculé modulo la plus grande valeur maximale plus 1.

Par exemple, Les dépassement de capacité sur un uint8_t sont calculés modulo 256.

2. Entiers positifs

Limitations mémoire et dépassement de capacité

ullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\overline{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $2^8 1 = 255$
 - uint32_t : $2^{32} 1 = 4294967295$ (> 4 milliards)
 - uint64_t : $2^{64} 1 = 18\,446\,744\,073\,709\,551\,615$ (\geq 18 milliards de milliards)

En cas de dépassement de capacité (*overflow* ou *underflow*), le résultat obtenu est calculé modulo la plus grande valeur maximale plus 1.

Par exemple, Les dépassement de capacité sur un uint8_t sont calculés modulo 256.

• En OCaml, il n'y a pas nativement de type entier non signé.

2. Entiers positifs

Exemple

```
#include <stdio.h>
    #include <stdint.h>
    int main()
        uint8_t n1 = 240;
        uint32_t n2 = 0;
        n1 = n1 + 20;
        n2 = n2 - 1;
        printf("valeur de n1 = \frac{u}{n}, n1);
10
        printf("valeur de n2 = \frac{u}{n}, n2);
11
12
```

Quel est l'affichage produit par le programme ci-dessus? Expliquer.

2. Entiers positifs

Correction

```
#include <stdio.h>
    #include <stdint.h>
    int main()
        uint8_t n1 = 240; // 8 bits donc valeur maximale 255
        uint32_t n2 = 0; // valeur minimale 0 (non signé)
        n1 = n1 + 20; // overflow : 260
        n2 = n2 - 1; // underflow : -1
        printf("valeur de n1 = %u\n",n1); // 4 (car 260 = 4 modulo 256)
10
        printf("valeur de n2 = %u\n",n2); // 4294967295 (car -1 =
11
        4294967295 modulo 4294967296)
12
```


3. Représentation des entiers négatifs

Complément à deux

• La stratégie qui consiste à prendre un bit de signe et à représenter la valeur absolue de l'entier sur les autres présente deux difficultés : 0 est représenté deux fois et surtout l'addition binaire bit à bit ne fonctionne pas.

3. Représentation des entiers négatifs

Complément à deux

- La stratégie qui consiste à prendre un bit de signe et à représenter la valeur absolue de l'entier sur les autres présente deux difficultés : 0 est représenté deux fois et surtout l'addition binaire bit à bit ne fonctionne pas.
- La méthode utilisée est celle du complément à 2, sur n bits, on compte négativement le bit de poids 2^{n-1} et positivement les autres.

3. Représentation des entiers négatifs

Complément à deux

- La stratégie qui consiste à prendre un bit de signe et à représenter la valeur absolue de l'entier sur les autres présente deux difficultés : 0 est représenté deux fois et surtout l'addition binaire bit à bit ne fonctionne pas.
- La méthode utilisée est celle du complément à 2, sur n bits, on compte négativement le bit de poids 2^{n-1} et positivement les autres.

Par exemple, sur 8 bits :

• De façon générale, sur n bits, la valeur en complément à deux de la suite bits $(b_{n-1}\dots b_0)$ est :

$$-b_{n-1} 2^{n-1} + \sum_{k=0}^{n-2} b_k 2^k$$

3. Représentation des entiers négatifs

Conséquences de la représentation en complément à 2

• Les difficultés de la stratégie du un bit de signe sont levées.

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- Le plus petit représentable sur n bits est alors -2^{n-1} et le plus grand $2^{n-1}-1$

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- Le plus petit petit représentable sur n bits est alors -2^{n-1} et le plus grand $2^{n-1}-1$
- En C, les valeurs extrêmes représentables sont :

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $[-2^7; 2^7 1] = [-128; 127]$

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t: $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$
 - uint64_t : $[-2^{63}; 2^{63} 1]$

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t: $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$
 - uint64_t : $[-2^{63}; 2^{63} 1]$
 - ⚠ Un dépassement de capacité est un comportement indéfini.

3. Représentation des entiers négatifs

Conséquences de la représentation en complément à 2

- Les difficultés de la stratégie du un bit de signe sont levées.
- Le plus petit petit représentable sur n bits est alors -2^{n-1} et le plus grand $2^{n-1}-1$
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$
 - uint64_t : $[-2^{63}; 2^{63} 1]$

⚠ Un dépassement de capacité est un comportement indéfini.

• En OCaml, les entiers sont codés sur 64 bits mais un bit est réservé par le langage, l'intervalle représentable est donc $[-2^{62}; 2^{62} - 1]$.

3. Représentation des entiers négatifs

Conséquences de la représentation en complément à 2

- Les difficultés de la stratégie du un bit de signe sont levées.
- Le plus petit petit représentable sur n bits est alors -2^{n-1} et le plus grand $2^{n-1}-1$
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t: $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$
 - uint64_t : $[-2^{63}; 2^{63} 1]$

Un dépassement de capacité est un comportement indéfini.

• En OCaml, les entiers sont codés sur 64 bits mais un bit est réservé par le langage, l'intervalle représentable est donc $[-2^{62}; 2^{62}-1]$. Les dépassements de capacité sont calculés modulo 2^{63} puis ramené dans l'intervalle précédent.

3. Représentation des entiers négatifs

Méthode pratique

Pour obtenir la représentation en complément à deux sur n bits d'un entier négatif on pourra utiliser la méthode suivante :

3. Représentation des entiers négatifs

Méthode pratique

Pour obtenir la représentation en complément à deux sur n bits d'un entier négatif on pourra utiliser la méthode suivante :

on commence par écrire la représentation binaire de la valeur absolue de ce nombre

3. Représentation des entiers négatifs

Méthode pratique

Pour obtenir la représentation en complément à deux sur n bits d'un entier négatif on pourra utiliser la méthode suivante :

- on commence par écrire la représentation binaire de la valeur absolue de ce nombre
- on inverse tous les bits de cette représentation

3. Représentation des entiers négatifs

Méthode pratique

Pour obtenir la représentation en complément à deux sur n bits d'un entier négatif on pourra utiliser la méthode suivante :

- on commence par écrire la représentation binaire de la valeur absolue de ce nombre
- on inverse tous les bits de cette représentation
- on ajoute 1, sans tenir compte de la dernière retenue éventuelle

3. Représentation des entiers négatifs

Méthode pratique

Pour obtenir la représentation en complément à deux sur n bits d'un entier négatif on pourra utiliser la méthode suivante :

- on commence par écrire la représentation binaire de la valeur absolue de ce nombre
- on inverse tous les bits de cette représentation
- on ajoute 1, sans tenir compte de la dernière retenue éventuelle

La justification de cette méthode sera vue en TD.

Exemples

• Quel est le nombre codé en complément à 2 sur 8 bits par $\overline{10110001}^2$?

3. Représentation des entiers négatifs

Méthode pratique

Pour obtenir la représentation en complément à deux sur n bits d'un entier négatif on pourra utiliser la méthode suivante :

- on commence par écrire la représentation binaire de la valeur absolue de ce nombre
- on inverse tous les bits de cette représentation
- on ajoute 1, sans tenir compte de la dernière retenue éventuelle

La justification de cette méthode sera vue en TD.

Exemples

- Quel est le nombre codé en complément à 2 sur 8 bits par $\overline{10110001}^2$?
- ② Donner l'écriture en complément à 2 sur 8 bits de -12.

3. Représentation des entiers négatifs

Méthode pratique

Pour obtenir la représentation en complément à deux sur n bits d'un entier négatif on pourra utiliser la méthode suivante :

- on commence par écrire la représentation binaire de la valeur absolue de ce nombre
- on inverse tous les bits de cette représentation
- on ajoute 1, sans tenir compte de la dernière retenue éventuelle

La justification de cette méthode sera vue en TD.

Exemples

- Quel est le nombre codé en complément à 2 sur 8 bits par $\overline{10110001}^2$?
- ② Donner l'écriture en complément à 2 sur 8 bits de -12.
- **3** Donner l'écriture en complément à 2 sur 8 bits de -75.

3. Représentation des entiers négatifs

Correction

 $\bullet \ \, \text{En complément à 2 sur 8 bits, } \ \, \overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - 1. On écrit 12 = (8+4) en binaire sur 8 bits :

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- **2** Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8 + 4) en binaire sur 8 bits : 00001100

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8 + 4) en binaire sur 8 bits : 00001100
 - 2. On inverser tous les bits :

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8 + 4) en binaire sur 8 bits : 00001100
 - **2.** On inverser tous les bits : 11110011

3. Représentation des entiers négatifs

- $\bullet \ \, \text{En complément à 2 sur 8 bits, } \overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8+4) en binaire sur 8 bits : 00001100
 - **2.** On inverser tous les bits : 11110011
 - **3.** On ajoute 1 :

3. Représentation des entiers négatifs

Correction

• En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$

2 Ecriture en complément à 2 sur 8 bits de -12.

1. On écrit 12 = (8+4) en binaire sur 8 bits : 00001100

2. On inverser tous les bits : 11110011

3. On ajoute 1 : 11110100

3. Représentation des entiers négatifs

Correction

• En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$

2 Ecriture en complément à 2 sur 8 bits de -12.

1. On écrit 12 = (8+4) en binaire sur 8 bits : 00001100

2. On inverser tous les bits : 11110011

3. On ajoute 1 : 11110100

3 Ecriture en complément à 2 sur 8 bits de -75.

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8+4) en binaire sur 8 bits : 00001100
 - **2.** On inverser tous les bits : 11110011
 - **3.** On ajoute 1 : 11110100
- **3** Ecriture en complément à 2 sur 8 bits de -75.
 - **1.** On écrit 75 = 64 + 8 + 2 + 1 en binaire sur 8 bits :

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8+4) en binaire sur 8 bits : 00001100
 - **2.** On inverser tous les bits : 11110011
 - **3.** On ajoute 1 : 11110100
- **3** Ecriture en complément à 2 sur 8 bits de -75.
 - **1.** On écrit 75 = 64 + 8 + 2 + 1 en binaire sur 8 bits : 01001011

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8+4) en binaire sur 8 bits : 00001100
 - **2.** On inverser tous les bits : 11110011
 - **3.** On ajoute 1 : 11110100
- 3 Ecriture en complément à 2 sur 8 bits de -75.
 - **1.** On écrit 75 = 64 + 8 + 2 + 1 en binaire sur 8 bits : 01001011
 - 2. On inverser tous les bits :

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8+4) en binaire sur 8 bits : 00001100
 - **2.** On inverser tous les bits : 11110011
 - **3.** On ajoute 1 : 11110100
- **3** Ecriture en complément à 2 sur 8 bits de -75.
 - **1.** On écrit 75 = 64 + 8 + 2 + 1 en binaire sur 8 bits : 01001011
 - **2.** On inverser tous les bits : 10110100

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8+4) en binaire sur 8 bits : 00001100
 - **2.** On inverser tous les bits : 11110011
 - **3.** On ajoute 1 : 11110100
- **3** Ecriture en complément à 2 sur 8 bits de -75.
 - **1.** On écrit 75 = 64 + 8 + 2 + 1 en binaire sur 8 bits : 01001011
 - **2.** On inverser tous les bits : 10110100
 - **3.** On ajoute 1 :

3. Représentation des entiers négatifs

- En complément à 2 sur 8 bits, $\overline{10110001}^2 = -2^7 + 2^5 + 2^4 + 2^0 = -78$
- 2 Ecriture en complément à 2 sur 8 bits de -12.
 - **1.** On écrit 12 = (8 + 4) en binaire sur 8 bits : 00001100
 - **2.** On inverser tous les bits : 11110011
 - **3.** On ajoute 1 : 11110100
- 3 Ecriture en complément à 2 sur 8 bits de -75.
 - **1.** On écrit 75 = 64 + 8 + 2 + 1 en binaire sur 8 bits : 01001011
 - **2.** On inverser tous les bits : 10110100
 - **3.** On ajoute 1 : 10110101

4. Nombre en virgule flottante

Ecriture dyadique

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives, par exemple :

4. Nombre en virgule flottante

Ecriture dyadique

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives, par exemple :

$$\frac{14,05^{10}}{14,05^{10}} =
\frac{10^{1}}{1} \frac{10^{0}}{4}, \frac{10^{-1}}{0} \frac{10^{-1}}{1}$$

4. Nombre en virgule flottante

Ecriture dyadique

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives, par exemple :

$$\frac{14,05^{10}}{14,05^{10}} = \begin{array}{c|cccc}
\hline
10^1 & 10^0 & , & 10^{-1} & 10^{-2} \\
\hline
1 & 4 & , & 0 & 5
\end{array}$$

En écriture binaire (ou dyadique) les chiffres après la virgule correspondent aux puissances négatives de 2 :

4. Nombre en virgule flottante

Ecriture dyadique

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives, par exemple :

En écriture binaire (ou dyadique) les chiffres après la virgule correspondent aux puissances négatives de 2 :

$$\overline{10,01}^2 = \begin{array}{|c|c|c|c|c|c|}\hline 2^1 & 2^0 & , & 2^{-1} & 2^{-2} \\\hline 1 & 0 & , & 0 & 1 \\\hline \end{array}$$

4. Nombre en virgule flottante

Ecriture dyadique

De la même façon que les chiffres après la virgule d'un nombre en écriture décimal utilisent les puissances de 10 négatives, par exemple :

En écriture binaire (ou dyadique) les chiffres après la virgule correspondent aux puissances négatives de 2 :

et donc $\overline{10,01}^2 = \overline{2,25}^{10}$

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

 Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

Par exemple si on veut écrire $\overline{0,59375}^{10}$ en binaire :

• $0,59375 \times 2 = 1,1875 \ge 1$ donc on ajoute 1 à l'écriture dyadique

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

- $0,59375 \times 2 = 1,1875 \geq 1$ donc on ajoute 1 à l'écriture dyadique
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

- $0,59375 \times 2 = 1,1875 \geq 1$ donc on ajoute 1 à l'écriture dyadique
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique
- $0,375 \times 2 = 0,75 < 1$ donc on ajoute 0 à l'écriture dyadique

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

- $0,59375 \times 2 = 1,1875 \geq 1$ donc on ajoute 1 à l'écriture dyadique
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique
- $0,375 \times 2 = 0,75 < 1$ donc on ajoute 0 à l'écriture dyadique
- $0,75 \times 2 = 1,5 > 1$ donc on ajoute 1 à l'écriture dyadique

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

- $0,59375 \times 2 = 1,1875 \geq 1$ donc on ajoute 1 à l'écriture dyadique
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique
- $0,375 \times 2 = 0,75 < 1$ donc on ajoute 0 à l'écriture dyadique
- $0,75 \times 2 = 1,5 \ge 1$ donc on ajoute 1 à l'écriture dyadique
- ullet $0,5 \times 2 = 1,0 \geq 1$ donc on ajoute 1 à l'écriture dyadique

4. Nombre en virgule flottante

Méthode : du décimal au dyadique

Pour traduire une partie décimale en écriture dyadique :

- Multiplier la partie décimale par 2. Si ce produit est supérieur ou égal à 1, ajouter 1 à l'écriture dyadique sinon ajouter 0.
- Recommencer avec la partie décimale de ce produit tant qu'elle est non nul.

Exemple

- $0,59375 \times 2 = 1,1875 \geq 1$ donc on ajoute 1 à l'écriture dyadique
- $0,1875 \times 2 = 0,375 < 1$ donc on ajoute 0 à l'écriture dyadique
- $0,375 \times 2 = 0,75 < 1$ donc on ajoute 0 à l'écriture dyadique
- $0,75 \times 2 = 1,5 \ge 1$ donc on ajoute 1 à l'écriture dyadique
- $0, 5 \times 2 = 1, 0 \ge 1$ donc on ajoute 1 à l'écriture dyadique
- On s'arrête car la partie décimale du produit est 0 et $\overline{0,59375}^{10} = \overline{0,10011}^2$

4. Nombre en virgule flottante

Exemples

• Donner l'écriture décimale de $\overline{1101,0111}^2$

4. Nombre en virgule flottante

Exemples

• Donner l'écriture décimale de $\overline{1101,0111}^2$

$$\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$$

4. Nombre en virgule flottante

- Donner l'écriture décimale de $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13.4375}^{10}$
- 2 Donner l'écriture dyadique 3, 5

4. Nombre en virgule flottante

Exemples

① Donner l'écriture décimale de $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13.4375}^{10}$

2 Donner l'écriture dyadique 3,5 $\overline{3.5}^{10} = \overline{11.1}^2$

4. Nombre en virgule flottante

- Donner l'écriture décimale de $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$
- ② Donner l'écriture dyadique 3, 5 $\overline{3.5}^{10} = \overline{11.1}^{2}$
- \odot Donner l'écriture dyadique 0,1

4. Nombre en virgule flottante

- Donner l'écriture décimale de $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$
- ② Donner l'écriture dyadique 3, 5 $\overline{3.5}^{10} = \overline{11.1}^{2}$
- \odot Donner l'écriture dyadique 0,1

4. Nombre en virgule flottante

- **Onner l'écriture décimale de** $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$
- ② Donner l'écriture dyadique 3, 5 $\overline{3.5}^{10} = \overline{11.1}^{2}$
- 3 Donner l'écriture dyadique 0, 1
 - $\mathbf{0}$ $0, 1 \times 2 = 0, 2 < 1$ donc on ajoute 0 à l'écriture dyadique

4. Nombre en virgule flottante

- ① Donner l'écriture décimale de $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$
- ② Donner l'écriture dyadique 3, 5 $\overline{3.5}^{10} = \overline{11.1}^2$
- 3 Donner l'écriture dyadique 0, 1
 - $\mathbf{0}$ $0, 1 \times 2 = 0, 2 < 1$ donc on ajoute 0 à l'écriture dyadique
 - $\textbf{0} \ \ 0,2\times 2=0,4<1 \ \ \text{donc on ajoute 0 à l'écriture dyadique }$

4. Nombre en virgule flottante

- ① Donner l'écriture décimale de $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$
- ② Donner l'écriture dyadique 3, 5 $\overline{3.5}^{10} = \overline{11.1}^2$
- \odot Donner l'écriture dyadique 0,1
 - $\mathbf{0}$ $0, 1 \times 2 = 0, 2 < 1$ donc on ajoute 0 à l'écriture dyadique
 - $\textbf{0} \ \ 0,2\times 2=0,4<1 \ \ \text{donc on ajoute 0 à l'écriture dyadique }$
 - $\textbf{ 0} \ \ 0,4\times 2=0,8<1 \ \ \text{donc on ajoute 0 à l'écriture dyadique }$

4. Nombre en virgule flottante

- **Onner l'écriture décimale de** $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$
- ② Donner l'écriture dyadique 3, 5 $\overline{3.5}^{10} = \overline{11.1}^2$
- 3 Donner l'écriture dyadique 0,1
 - $\mathbf{0}$ $0, 1 \times 2 = 0, 2 < 1$ donc on ajoute 0 à l'écriture dyadique
 - $\textbf{0} \ \ 0,2\times 2=0,4<1 \ \ \text{donc on ajoute 0 à l'écriture dyadique }$
 - $\textbf{ 0} \ \ 0,4\times 2=0,8<1 \ \text{donc on ajoute 0 à l'écriture dyadique }$
 - $\mathbf{0}$ $0,8 \times 2 = 1,6 \ge 1$ donc on ajoute 1 à l'écriture dyadique

4. Nombre en virgule flottante

- ① Donner l'écriture décimale de $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$
- ② Donner l'écriture dyadique 3, 5 $\overline{3.5}^{10} = \overline{11.1}^2$
- 3 Donner l'écriture dyadique 0,1
 - $\mathbf{0}$ $0, 1 \times 2 = 0, 2 < 1$ donc on ajoute 0 à l'écriture dyadique
 - ② $0,2 \times 2 = 0,4 < 1$ donc on ajoute 0 à l'écriture dyadique
 - $\mathbf{0}$ $0,4\times2=0,8<1$ donc on ajoute $\mathbf{0}$ à l'écriture dyadique
 - $0, 8 \times 2 = 1, 6 \ge 1$ donc on ajoute 1 à l'écriture dyadique
 - $\ \, \mathbf{0}, 6 \times 2 = 1, 2 \geq 1 \ \mathrm{donc} \ \mathrm{on} \ \mathrm{ajoute} \ 1 \ \mathrm{\grave{a}} \ \mathrm{l'\acute{e}criture} \ \mathrm{dyadique}$

4. Nombre en virgule flottante

- **Onner l'écriture décimale de** $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$
- ② Donner l'écriture dyadique 3, 5 $\overline{3.5}^{10} = \overline{11.1}^2$
- Donner l'écriture dyadique 0, 1
 - $\mathbf{0}$ $0, 1 \times 2 = 0, 2 < 1$ donc on ajoute $\mathbf{0}$ à l'écriture dyadique
 - ② $0,2 \times 2 = 0,4 < 1$ donc on ajoute 0 à l'écriture dyadique
 - $\textbf{ 0} \ \ 0,4\times 2=0,8<1 \ \text{donc on ajoute 0 à l'écriture dyadique }$
 - $0, 8 \times 2 = 1, 6 \ge 1$ donc on ajoute 1 à l'écriture dyadique
 - **6** $0, 6 \times 2 = 1, 2 \ge 1$ donc on ajoute 1 à l'écriture dyadique
 - Le processus se poursuit indéfiniment car on est revenu à l'étape 2.

4. Nombre en virgule flottante

- **1** Donner l'écriture décimale de $\overline{1101,0111}^2$ $\overline{1101,0111}^2 = 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} + 2^{-4} = \overline{13,4375}^{10}$
- ② Donner l'écriture dyadique 3, 5 $\overline{3.5}^{10} = \overline{11.1}^2$
- \odot Donner l'écriture dyadique 0,1
 - $\mathbf{0}$ $0, 1 \times 2 = 0, 2 < 1$ donc on ajoute 0 à l'écriture dyadique
 - ② $0,2 \times 2 = 0,4 < 1$ donc on ajoute 0 à l'écriture dyadique
 - $\mathbf{3} \ \ 0,4\times 2=0,8<1$ donc on ajoute 0 à l'écriture dyadique
 - $0, 8 \times 2 = 1, 6 \ge 1$ donc on ajoute 1 à l'écriture dyadique
 - $\mathbf{6} \ \ 0,6 \times 2 = 1,2 \geq 1$ donc on ajoute 1 à l'écriture dyadique
 - Le processus se poursuit indéfiniment car on est revenu à l'étape 2.

$$\overline{0,1}^{10} = \overline{0,0001100110011\dots}^2$$

4. Nombre en virgule flottante

Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

4. Nombre en virgule flottante

Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

4. Nombre en virgule flottante

Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

• avec $a \in [1;10[$, appelée mantisse (l'écriture décimal de a n'a qu'un seul chiffre non nul à gauche de la virgule)

4. Nombre en virgule flottante

Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

- avec $a \in [1; 10[$, appelée mantisse (l'écriture décimal de a n'a qu'un seul chiffre non nul à gauche de la virgule)
- et $n \in \mathbb{Z}$ appelée exposant.

4. Nombre en virgule flottante

Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

- avec $a \in [1; 10[$, appelée mantisse (l'écriture décimal de a n'a qu'un seul chiffre non nul à gauche de la virgule)
- et $n \in \mathbb{Z}$ appelée exposant.

Exemples

4. Nombre en virgule flottante

Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

- avec $a \in [1; 10[$, appelée mantisse (l'écriture décimal de a n'a qu'un seul chiffre non nul à gauche de la virgule)
- et $n \in \mathbb{Z}$ appelée exposant.

- \bullet 0,0000054 = 5,4 × 10⁻⁶.

4. Nombre en virgule flottante

Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

- avec $a \in [1; 10[$, appelée mantisse (l'écriture décimal de a n'a qu'un seul chiffre non nul à gauche de la virgule)
- et $n \in \mathbb{Z}$ appelée exposant.

- \bullet 0,0000054 = 5,4 × 10⁻⁶.
- 0 ne peut pas s'écrire en notation scientifique.

4. Nombre en virgule flottante

Virgule flottante

Les nombres non entiers en informatique, sont représentés en virgule flottante. Cette représentation :

• se fonde sur l'écriture scientifique et utilise la base 2, c'est à dire l'écriture dyadique en utilisant une mantisse et un exposant de taille limitée.

4. Nombre en virgule flottante

Virgule flottante

Les nombres non entiers en informatique, sont représentés en virgule flottante. Cette représentation :

- se fonde sur l'écriture scientifique et utilise la base 2, c'est à dire l'écriture dyadique en utilisant une mantisse et un exposant de taille limitée.
- La norme IEEE-754 définit deux formats codés respectivement sur 32 et 64 bits et stockés dans l'ordre signe/exposant/mantisse :

4. Nombre en virgule flottante

Virgule flottante

Les nombres non entiers en informatique, sont représentés en virgule flottante. Cette représentation :

- se fonde sur l'écriture scientifique et utilise la base 2, c'est à dire l'écriture dyadique en utilisant une mantisse et un exposant de taille limitée.
- La norme IEEE-754 définit deux formats codés respectivement sur 32 et 64 bits et stockés dans l'ordre signe/exposant/mantisse :

	Signe	Exposant	Mantisse	С	OCaml
32 bits	1 bit	8 bits	23 bits	float	×
64 bits	1 bit	11 bits	52 bits	double	float

4. Nombre en virgule flottante

Virgule flottante

Les nombres non entiers en informatique, sont représentés en virgule flottante. Cette représentation :

- se fonde sur l'écriture scientifique et utilise la base 2, c'est à dire l'écriture dyadique en utilisant une mantisse et un exposant de taille limitée.
- La norme IEEE-754 définit deux formats codés respectivement sur 32 et 64 bits et stockés dans l'ordre signe/exposant/mantisse :

	Signe	Exposant	Mantisse	С	OCaml
32 bits	1 bit	8 bits	23 bits	float	×
64 bits	1 bit	11 bits	52 bits	double	float

• L'exposant est décalé de façon à toujours être stocké sous la forme d'un entier positif. Ce décalage est de $127(=2^8-1)$ pour le format 32 bits et de $1023(=2^{11}-1)$ pour le format 64 bits.

4. Nombre en virgule flottante

Virgule flottante

Les nombres non entiers en informatique, sont représentés en virgule flottante. Cette représentation :

- se fonde sur l'écriture scientifique et utilise la base 2, c'est à dire l'écriture dyadique en utilisant une mantisse et un exposant de taille limitée.
- La norme IEEE-754 définit deux formats codés respectivement sur 32 et 64 bits et stockés dans l'ordre signe/exposant/mantisse :

		Signe	Exposant	Mantisse	C	OCaml
	32 bits	1 bit	8 bits	23 bits	float	×
ſ	64 bits	1 bit	11 bits	52 bits	double	float

- L'exposant est décalé de façon à toujours être stocké sous la forme d'un entier positif. Ce décalage est de $127(=2^8-1)$ pour le format 32 bits et de $1023(=2^{11}-1)$ pour le format 64 bits.
- Certaines valeurs spéciales de l'exposant et de la mantisse servent à représenter des valeurs particulières (infinis, zéros, NaN).

Année scolaire 2023-2024

4. Nombre en virgule flottante

Exemple 1

Donner le représentation sur 32 bits du nombre -168,75

4. Nombre en virgule flottante

Exemple 1

Donner le représentation sur 32 bits du nombre -168,75

Le nombre est négatif, donc le bit de signe est 1.

4. Nombre en virgule flottante

Exemple 1

Donner le représentation sur 32 bits du nombre -168,75

- Le nombre est négatif, donc le bit de signe est 1.
- $\overline{168,75}^{10} = \overline{10101000,11}^2$

4. Nombre en virgule flottante

Exemple 1

Donner le représentation sur 32 bits du nombre -168,75

- Le nombre est négatif, donc le bit de signe est 1.
- $\overline{168,75}^{10} = \overline{10101000,11}^2$
- La mantisse est décalée de façon à n'avoir qu'un chiffre non nul avant la virgule :

$$\frac{6}{168,75}^{10} = \overline{1,010100011}^2 \times 2^7$$

4. Nombre en virgule flottante

Exemple 1

Donner le représentation sur 32 bits du nombre -168,75

- Le nombre est négatif, donc le bit de signe est 1.
- $\overline{168.75}^{10} = \overline{10101000.11}^{2}$
- La mantisse est décalée de façon à n'avoir qu'un chiffre non nul avant la virgule:

 $\frac{168.75^{10}}{168.75^{10}} = \frac{1.010100011^2}{1.010100011^2} \times 2^7$

■ L'exposant est donc 7, et avec le décalage il est stocké sous la forme 7+127 = 134. C'est à dire $10\,000\,110$ en base 2.

4. Nombre en virgule flottante

Exemple 1

Donner le représentation sur 32 bits du nombre -168,75

- Le nombre est négatif, donc le bit de signe est 1.
- $\overline{168,75}^{10} = \overline{10101000,11}^2$
- La mantisse est décalée de façon à n'avoir qu'un chiffre non nul avant la virgule : $\frac{168.75^{10}}{1.010100011^2} \times 2^7$
 - $\overline{168,75}^{10} = \overline{1,010100011}^2 \times 2^7$
- **○** L'exposant est donc 7, et avec le décalage il est stocké sous la forme 7+127 = 134. C'est à dire $10\,000\,110$ en base 2.
- On complète la mantisse par des zéros de façon à avoir 23 bits et le 1 initial n'est pas stocké afin d'économiser un bit. La mantisse est donc $\boxed{01\,010\,001\,100\,000\,000\,000\,000}$

4. Nombre en virgule flottante

Exemple 1

Donner le représentation sur 32 bits du nombre -168,75

- Le nombre est négatif, donc le bit de signe est 1.
- $\overline{168.75}^{10} = \overline{10101000.11}^{2}$
- La mantisse est décalée de façon à n'avoir qu'un chiffre non nul avant la virgule:
 - $\frac{5}{168.75^{10}} = \frac{1,010100011^2}{1,010100011^2} \times 2^7$
- L'exposant est donc 7, et avec le décalage il est stocké sous la forme 7+127 = 134. C'est à dire $10\,000\,110$ en base 2.
- On complète la mantisse par des zéros de façon à avoir 23 bits et le 1 initial n'est pas stocké afin d'économiser un bit. La mantisse est donc 01 010 001 100 000 000 000 000

Le nombre -168,75 est donc stocké sous la forme :

4. Nombre en virgule flottante

Exemple 2

Donner le représentation sur 32 bits du nombre 0,1

4. Nombre en virgule flottante

Exemple 2

Donner le représentation sur 32 bits du nombre 0, 1

• Le nombre est positif, donc le bit de signe est 0.

4. Nombre en virgule flottante

Exemple 2

Donner le représentation sur 32 bits du nombre 0,1

- Le nombre est positif, donc le bit de signe est 0.

4. Nombre en virgule flottante

Exemple 2

Donner le représentation sur 32 bits du nombre 0,1

- Le nombre est positif, donc le bit de signe est 0.
- $\overline{0,1}^{10} = \overline{0,000110011001100...}^2$
- La mantisse est décalée de façon à n'avoir qu'un chiffre non nul avant la virgule :

$$\overline{0,1}^{10} = \overline{1,10011001100\dots^2} \times 2^{-4}$$

4. Nombre en virgule flottante

Exemple 2

Donner le représentation sur 32 bits du nombre 0,1

- Le nombre est positif, donc le bit de signe est 0.
- $\overline{0,1}^{10} = \overline{0,000110011001100...}^2$
- La mantisse est décalée de façon à n'avoir qu'un chiffre non nul avant la virgule :

$$\frac{3}{0,1}^{10} = \frac{1,10011001100...^2}{10011001100...^2} \times 2^{-4}$$

• L'exposant est donc -4, et avec le décalage il est stocké sous la forme -4 + 127 = 123. C'est à dire 01111011 en base 2.

4. Nombre en virgule flottante

Exemple 2

Donner le représentation sur 32 bits du nombre 0,1

- Le nombre est positif, donc le bit de signe est 0.
- $\overline{0,1}^{10} = \overline{0,000110011001100...}^{2}$
- La mantisse est décalée de façon à n'avoir qu'un chiffre non nul avant la virgule :

$$\overline{0,1}^{10} = \overline{1,10011001100\dots^2} \times 2^{-4}$$

- L'exposant est donc -4, et avec le décalage il est stocké sous la forme -4 + 127 = 123. C'est à dire 01111011 en base 2.
- ◆ La mantisse est infinie, on la limite au 23 premiers bits (c'est un arrondi et non une troncature) le 1 initial n'est pas stocké afin d'économiser un bit. La mantisse est donc 10 011 001 100 110 011 001 101

4. Nombre en virgule flottante

Exemple 2

Donner le représentation sur 32 bits du nombre $0,1\,$

- Le nombre est positif, donc le bit de signe est 0.
- $\overline{0,1}^{10} = \overline{0,000110011001100\dots^2}$
- La mantisse est décalée de façon à n'avoir qu'un chiffre non nul avant la virgule :

$$\overline{0,1}^{10} = \overline{1,10011001100...}^2 \times 2^{-4}$$

- L'exposant est donc -4, et avec le décalage il est stocké sous la forme -4 + 127 = 123. C'est à dire 01111011 en base 2.
- ullet La mantisse est infinie, on la limite au 23 premiers bits (c'est un arrondi et non une troncature) le 1 initial n'est pas stocké afin d'économiser un bit. La mantisse est donc ullet $10\,011\,001\,100\,110\,011\,001\,101$

Le nombre 0,1 est donc stocké sous la forme :

0 01 111 011 10 011 001 100 110 011 001 101

4. Nombre en virgule flottante

Exemple 3

- - Le bit de signe est 0, le nombre est positif

4. Nombre en virgule flottante

Exemple 3

- - 1 Le bit de signe est 0, le nombre est positif
 - ② L'exposant est $\overline{10000100}^2 = \overline{132}^{10}$, c'est à dire 5 en soustrayant le décalage de 127.

4. Nombre en virgule flottante

Exemple 3

- - 1 Le bit de signe est 0, le nombre est positif
 - ② L'exposant est $\overline{10000100}^2 = \overline{132}^{10}$, c'est à dire 5 en soustrayant le décalage de 127.

4. Nombre en virgule flottante

Exemple 3

- - 1 Le bit de signe est 0, le nombre est positif
 - ② L'exposant est $\overline{10000100}^2 = \overline{132}^{10}$, c'est à dire 5 en soustrayant le décalage de 127.

 - **9** Ce nombre est donc $1,33203125 \times 2^5 = 42,625$.

5. Conséquences de l'arithmétique à virgule flottante

Attention!

Cette représentation approximative des nombres réels induit des conséquences importantes:

5. Conséquences de l'arithmétique à virgule flottante

Attention!

Cette représentation approximative des nombres réels induit des conséquences importantes :

• Les tests d'égalité entre flottants ne sont pas pertinents. On doit les éviter ou les effectuer à un ε près.

5. Conséquences de l'arithmétique à virgule flottante

! Attention!

Cette représentation approximative des nombres réels induit des conséquences importantes :

• Les tests d'égalité entre flottants ne sont pas pertinents. On doit les éviter ou les effectuer à un ε près.

A titre d'exemple le test 0.1 + 0.2 == 0.3 renvoie faux

5. Conséquences de l'arithmétique à virgule flottante

A

Attention!

Cette représentation approximative des nombres réels induit des conséquences importantes :

- Les tests d'égalité entre flottants ne sont pas pertinents. On doit les éviter ou les effectuer à un ε près.
 - A titre d'exemple le test 0.1 + 0.2 == 0.3 renvoie faux
- Les valeurs calculées par un programme peuvent être très éloignés des valeurs théoriques d'un algorithme.

5. Conséquences de l'arithmétique à virgule flottante

Attention !

Cette représentation approximative des nombres réels induit des conséquences importantes :

- Les tests d'égalité entre flottants ne sont pas pertinents. On doit les éviter ou les effectuer à un ε près.
 - A titre d'exemple le test 0.1 + 0.2 == 0.3 renvoie faux
- Les valeurs calculées par un programme peuvent être très éloignés des valeurs théoriques d'un algorithme.
 - Des exemples seront vus en TP.