МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Организация ЭВМ и систем»

ТЕМА: ТРАНСЛЯЦИИ, ОТЛАДКА И ВЫПОЛНЕНИЕ ПРОГРАММЫ НА ЯЗЫКЕ АССЕМБЛЕРА

Студент гр. 9383	 Гордон Д.А.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Применить на практике знания о работе с регистрами процессора и познакомиться с основами программирования на языке ассемблер в операционной системе DOS.

Текст задания.

Лабораторная работа 1 использует 2 готовых программы на ассемблере: hello1 — составлена с использованием сокращенного описания сегментов и hello2 — составлена с полным описанием сегментов и выводом строки, оформленным как процедура. Выполнение работы состоит из двух частей, по каждой из которых необходимо представить протокол с фиксацией всех выполняемых действий и полученных результатов, и подписать его у преподавателя.

Уточнение задания следует посмотреть в файле lr1_comp.txt каталога Задания.

Часть 1

1. Просмотреть программу hello1.asm, которая формирует и выводит на экран приветствие пользователя с помощью функции ОС MSDOS, вызываемой через прерывание с номером 21H (команда Int 21h).

Выполняемые функцией действия и задаваемые ей параметры - следующие:

- обеспечивается вывод на экран строки символов, заканчивающейся знаком "\$";
- требуется задание в регистре ah номера функции, равного 09h, а в регистре dx смещения адреса выводимой строки;
 - используется регистр ах и не сохраняется его содержимое.
- 2. Разобраться в структуре и реализации каждого сегмента программы. Непонятные фрагменты прояснить у преподавателя. Строку-приветствие преобразовать в соответствии со своими личными данными.
 - 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm.

- 4. Протранслировать программу с помощью строки
- > masm hello1.asm
- с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля.
 - 5. Скомпоновать загрузочный модуль с помощью строки
 - > link hello1.obj
 - с созданием карты памяти и исполняемого файла hello1.exe.
 - 6. Выполнить программу в автоматическом режиме путем набора строки
 - > hello1.exe

убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе.

7. Запустить выполнение программы под управлением отладчика с помощью команды

> afd hello1.exe

Часть 2

Выполнить пункты 1 - 7 части 1 настоящего задания применительно к программе hello2.asm, приведенной в каталоге Задания, которая выводит на экран приветствие пользователя с помощью процедуры WriteMsg, а также использует полное определение сегментов. Сравнить результаты прогона под управлением отладчика программ hello1 и hello2 и объяснить различия в размещении сегментов.

ПРОТОКОЛ

Часть 1.

Hello1.asm

Программа просмотрена.

Разобрался в структуре программы, данные строки-приветствия были изменены.

Файл загружен.

Ошибки обнаружены не были.

Загрузочный модуль скомпонован, карта памяти записана в файл hello1.map.

Программа завершилась корректно, на экран было выведено сообщение: «Вас приветствует ст.гр.7303 - Иванов И.И.»

Hello2.asm

Программа просмотрена.

Разобрался в структуре программы, данные строки-приветствия были изменены.

Файл загружен.

Ошибки были в строчке 28 — отсутствовали запятые при многократном вызове директивы ASSUME.

Загрузочный модуль скомпонован, карта памяти записана в файл hello2.map.

Программа завершилась корректно, на экран было выведено сообщение: «Hello Worlds! Student from 4350 - ».

Часть 2. hello1.exe CS = 1A05, DS = 19F5, ES = 19F5, SS = 1A0A, SP = 0100

Адрес	Символический	16-ричный код	Содержимое регистров и яч	
команды	код команды	команды	памяти	
			До	После
			выполнения	выполнения
0010	MOV AX, 1A07	B8071A	AX = 0000 IP = 0010	AX = 1A07 $IP = 0013$
0013	MOV DS, AX	8ED8	AX = 1A07	AX = 1A07

			DS = 19F5 IP = 0013	DS = 1A07 $IP = 0015$
0015	MOV DX. 0000	BA0000	DX = 0000 IP = 0015	DX = 0000 IP = 0018
0018	MOV AH, 09	B409	AH = 1A $IP = 0018$	AH = 09 $IP = 001A$
001A	INT 21	CD21	IP = 001A	IP = 001C
001C	MOV AH, 4C	B44C	AH = 09 $IP = 001C$	AH = 4C $IP = 001E$
001E	INT 21	CD21	IP = 001E	

 $\label{eq:cs} \textbf{hello2.exe}$ CS = 1A0A, DS = 19F5, ES = 19F5, SS = 1A05, SP = 0018

Адрес команды	Символический код команды	16-ричный код команды	Содержимое регистров и яч	
			До выполнения	После выполнения
0005	PUSH DS	1E	DS = 19F5 SP = 0018	DS = 19F5 SP = 0016
0006	SUB AX, AX	2BC0	AX = 0000	AX = 0000
0008	PUSH AX	50	AX = 0000 $SP = 0016$	AX = 0000 $SP = 0014$
0009	MOV AX, 1A07	B8071A	AX = 0000	AX = 1A07
000C	MOV DS, AX	8ED8	DS = 19F5	DS = 1A07
000E	MOV DX, 0000	BA0000	DX = 0000	DX = 0000
0011	CALL 0000	E8ECFF	AX = 1A07 $SP = 0014$	AX = 0907 $SP = 0012$
0000	MOV AH, 09	B409	AH = 1A	AH = 09
0002	INT 21	CD21		
0004	RET	C3	SP = 0012	SP = 0014
0014	MOV DX, 0010	BA1000	DX = 0000	DX = 0010

0017	CALL 0000	E8E6FF	SP = 0014	SP = 0012
0000	MOV AH, 09	B409	AH = 09	AH = 09
0002	INT 21	CD21		
0004	RET	C3	SP = 0012	SP = 0014
001A	RET Far	СВ	CS = 1A0A	CS = 19F5
0000	INT 20	CD20		

PUSH – занести значение регистров и ячеек памяти в стек по адресу SS:SP

MOV A, B – переместить значение из $B \rightarrow A$

RET – возврат в программу

RET FAR – процедуры FAR вы можете вызывать

вне сегмента, в котором они определяются. Вызов FAR заносит в стек адрес в виде сегмента и смещения, а затем устанавливает

CS:IP в адрес процедуры. Когда процессор обнаруживает возврат дальнего типа, он извлекает из стека сегмент и смещение адреса возврата и устанавливает в него CS:IP.

RET NEAR — возвращает в тот сегмент, где была определена процедура. Вызов ближнего типа заносит адрес возврата в стек и устанавливает IP в значение смешения процедуры.

SUB A, B - из A вычесть B и записать в A.

CALL x – передаёт управление команде, находящейся по адресу x.

DB – байт.

PSP – структура данных, где хранится состояние программы. Адрес хранится в DS.

INT 21h – функция DOS -- вызов прерывания (считывает из АН номер прерывания).

OFFSET- адрес переменной

выводы

Познакомился с основами программирования на языке Assembly.

ПРИЛОЖЕНИЕ

Hello1.asm:

```
DOSSEG
                              ; Задание сегментов под ДОС
 .MODEL SMALL
                                   ; Модель памяти-SMALL(Малая)
 .STACK 100h
                                ; Отвести под Стек 256 байт
 .DATA
                             ; Начало сегмента данных
Greeting LABEL BYTE
                                    ; Текст приветствия
 DB 'Вас приветствует ст.гр. 7303 - Иванов И.И.', 13, 10, '$'
 .CODE
                         ; Начало сегмента кода
 mov ax, @data
                            ; Загрузка в DS адреса начала
 mov ds, ax
                          ; сегмента данных
 mov dx, OFFSET Greeting
                                 ; Загрузка в dx смещения
                      ; адреса текста приветствия
DisplayGreeting:
 mov ah, 9
                          ; # функции ДОС печати строки
 int 21h
                        ; вывод на экран приветствия
 mov ah, 4ch
                           ; # функции ДОС завершения программы
 int 21h
                        ; завершение программы и выход в ДОС
 END
Hello1.lst:
                       DOSSEG
                      ; Задание сегментов под ДОС
                        .MODEL SMALL
                      ; Модель памяти-SMALL(Малая)
                        .STACK 100h
                      ; Отвести под Стек 256 байт
                        .DATA
                      ; Начало сегмента данных
0000
                      Greeting LABEL BYTE
                      ; Текст приветствия
0000 82 A0 E1 20 AF E0
                             DB 'Вас приветствует ст.гр.7303 - Иванов И.И
                      .',13,10,'$'
   A8 A2 A5 E2 E1 E2
   A2 E3 A5 E2 20 E1
   E2 2E A3 E0 2E 37
   33 30 33 20 2D 20
   88 A2 A0 AD AE A2
   20 88 2E 88 2E 0D
   0A 24
                        .CODE
                                                ; Начал
```

о сегмента кода

0000 B8 ---- Rmov ax, @data; Загрузка в DS адреса началаузка в DS адреса начала0003 8E D8mov ds, ax; сегмента данныхента данных0005 BA 0000 Rmov dx, OFFSET Greeting; Загрузка в dx смещения

Microsoft (R) Macro Assembler Version 5.10 Page 1-2

10/6/20 15:45:00

; адрес

	, адј	pec
	а текста приветствия	
0008	DisplayGreeting:	
0008 B4 09	mov ah, 9	;# фy
	нкции ДОС печати строки	
000A CD 21	int 21h	; вывод
	на экран приветствия	
000C B4 4C	mov ah, 4ch	;#фу
	нкции ДОС завершения про	ограммы
000E CD 21	int 21h	; завер
	шение программы и выход	в ДОС
	END	

Length

Segments and Groups:

Name

	N a III C	Lengi	.11	Aligi	Come	mic Class	
_DATA	JP		0100	UP WOR PARA WOR	A	PUBLIC STACK PUBLIC	CK'
Symbols	s:						
	Name	Type	Valu	e	Attr		

AlignCombine Class

DISPLAYGREETING L NEAR 0008 _TEXT

GREETING L BYTE 0000 _DATA

@CODE TEXT _TEXT

@CODESIZE TEXT 0

@CPU TEXT 0101h

@DATASIZE TEXT 0

@FILENAME TEXT hello1

TEXT 510

33 Source Lines

@VERSION

- 33 Total Lines
- 19 Symbols

48006 + 461301 Bytes symbol space free

- 0 Warning Errors
- 0 Severe Errors

Hello2.asm:

```
; HELLO2 - Учебная программа N2 лаб.раб.#1 по дисциплине "Архитектура
компьютера"
     Программа использует процедуру для печати строки
   ТЕКСТ ПРОГРАММЫ
EOFLine EQU '$'
                    ; Определение символьной константы
                "Конец строки"
; Стек программы
AStack SEGMENT STACK
     DW 12 DUP(?) ; Отводится 12 слов памяти (массив из 12
неинициализированных по 2 байт, т.е. 24 байт)
AStack ENDS
; Данные программы
DATA
        SEGMENT
; Директивы описания данных
         DB 'Hello Worlds!', 0AH, 0DH, EOFLine ;массив?
HELLO
GREETING DB 'Student from 4350 - $'
DATA
        ENDS
; Код программы
CODE
        SEGMENT
     ASSUME CS:Code DS:DATA SS:AStack
; Процедура печати строки
WriteMsg PROC NEAR
     mov AH,9
     int 21h; Вызов функции DOS по прерыванию
     ret
WriteMsg ENDP
; Головная процедура
Main
       PROC FAR
                ;\ Сохранение адреса начала PSP в стеке
     push DS
     sub AX,AX ; > для последующего восстановления по
     push AX
                ;/ команде ret, завершающей процедуру.
```

то АХ, ДАТА ; Загрузка сегментного

mov DS, AX ; регистра данных.

mov DX, OFFSET HELLO ; Вывод на экран первой

call WriteMsg ; строки приветствия.

mov DX, OFFSET GREETING; Вывод на экран второй

call WriteMsg ; строки приветствия. ret ; Выход в DOS по команде,

; находящейся в 1-ом слове PSP.

Main ENDP CODE ENDS END Main

Hello2.lst:

Page 1-1

; HELLO2 - Учебная программа N2 лаб.раб.#1 по

дисциплине "Архитектура компьютера"

; Программа использует процедуру для п

ечати строки

,

ТЕКСТ ПРОГРАММЫ

= 0024 EOFLine EQU '\$' ; Определение символь

ной константы

; "Конец строки"

; Стек программы

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?) ; Отводится 12 слов п

амяти (массив из 12 неинициализированных по 2 б

айт, т.е. 24 байт)

????

]

0018 AStack ENDS

; Данные программы

0000 DATA SEGMENT

; Директивы описания данных

0000 48 65 6C 6C 6F 20 HELLO DB 'Hello Worlds!', 0AH, 0DH,EOFLine

;массив?

57 6F 72 6C 64 73

21 0A 0D 24

0010 53 74 75 64 65 6EGREETING DB 'Student from 4350 - \$'

74 20 66 72 6F 6D

20 34 33 35 30 20

2D 20 24

0025 DATA ENDS

; Код программы

0000 CODE SEGMENT

ASSUME CS:Code DS:DATA SS:AStack

hello2.asm(28): warning A4001: Extra characters on line

; Процедура печати строки

0000 WriteMsg PROC NEAR 0000 B4 09 mov AH,9

0002 CD 21 int 21h; Вызов функции DOS по пре

рыванию

0004 C3 ret

0005 WriteMsg ENDP

; Головная процедура

0005 Main PROC FAR

0005 1E push DS ;\ Сохранение адреса

начала PSP в стеке

Microsoft (R) Macro Assembler Version 5	5.10	10/6/20 15:45:52
Page	1-2	

0006 2B C0	sub AX,AX ; > для последующего в
	осстановления по
0008 50	push AX ;/ команде ret, завер
	шающей процедуру.
0009 B8 R	mov AX,DATA ; Загрузка
	сегментного
000C 8E D8	mov DS,AX ; регистра
	данных.
000E BA 0000 R	mov DX, OFFSET HELLO ; Вывод на
	экран первой
0011 E8 0000 R	call WriteMsg ; строки пр
	иветствия.
0014 BA 0010 R	mov DX, OFFSET GREETING; Вывод на
	экран второй
0017 E8 0000 R	call WriteMsg ; строки пр
	иветствия.
001A CB	ret ; Выход в D
	OS по команде,
	; находящей
	ся в 1-ом слове PSP.
001B	Main ENDP
001B	CODE ENDS
	END Main

Segments and Groups:

	N a m e	Leng	th	Alig	nComb	oine Class		
CODE.	K	•		PAR	A A A	STACK NONE NONE		
Symbols	s:							
	N a m e	Type	Valu	e	Attr			
EOFLIN	VE		NUM	BER	0024			
GREET	ING		LBY	TE	0010	DATA		
HELLO			LBY	TE	0000	DATA		
MAIN.			F PRO	OC	0005	CODE	Length:	= 0016
WRITE	MSG		N PR	OC	0000	CODE	Length :	= 0005
	 NAME		TEXT					

- 51 Source Lines
- 51 Total Lines
- 13 Symbols

48014 + 461293 Bytes symbol space free

@VERSION TEXT 510

- 1 Warning Errors
- 0 Severe Errors