- f: [a,b]\ $\{x_0\}$ ->
- Wenn $\varepsilon > 0$ $\delta > 0$ x [a,b]: $0 < |x-x_0| < \delta ==> |f(x)-A| < \varepsilon$
 - $-\ A = \lim\nolimits_{x \to x_0} f(x)$
- TODO Image missing
 - $A = \lim_{x \to x_0} f(x) \ll f'$ ist stetig in x_0
 - $A=\lim_{x\to x_0}f(x)$ <==> für jede Folge x_n mit $x0=\lim_{n\to\infty}x_n$ gilt
 - * $A = \lim_{n \to \infty} f(x_n)$

Einseitiger Grenzwert

- f: [a,b]\ $\{x_0\}$ ->
 - A- heißt linksseitiger Grenzwert von f in x0 + $A_- = \lim x \to x_0 f(x)$ + wenn $\epsilon > 0$ $\delta > 0$
 - x (x0- δ ,x-): |f(x)-A-| $\leq \epsilon$
 - * A+ heißt rechtsseitiger Grenzwert von f in x0
 - $A_+ = \lim x \to x_0 + f(x)$
 - wenn $\varepsilon > 0$ $\delta > 0$ x $(x0,x0+\delta)$: $|f(x)-A+| < \varepsilon$
- + $A = \lim_{x \to x_0} f(x)$ existiert, wenn A+ und A- existiern und gleich A

Uneigentlicher Grenzwert

- $\lim x \to x_0 + f(x) = +\infty \le M > 0$ $\delta > 0$ $\delta > 0$ $\delta > 0$ $\delta < 0$
- $\bullet \; \lim x \to x_0 f(x) = -\infty <==> \;\; \text{M} > 0 \quad \delta > 0 \quad \text{x [a,b]: } 0 < |x x_0| < \delta ==> |f(x) A| < -M = 0$
- $\lim x \to +\infty f(x) = A <==>$ $\epsilon > 0$ M x>M: $|f(x)-A| < \epsilon$
- $\lim x \to -\infty f(x) = A <==>$ $\epsilon > 0$ M x<-M: $|f(x)-A| < \epsilon$

[[Funktionen]]