- 1) Elektronen werden in einer Fernsehröhre mit z.B. 15 kV beschleunigt. Wie gross ist die Wellenlänge dieser Elektronen nach de Broglie?
- 2) In einem Experiment beobachtete man Beugung von "ultrakalten" Neutronen an einem Doppelspalt. Der Abstand von Spaltmitte zu Spaltmitte betrug 126 \square m. Die Beugungsmaxima werden unter den gleichen Winkeln beobachtet wie bei einem periodischen Strichgitter. Die Maxima hatten beim Detektor in 5.0 m Distanz hinter dem Doppelspalt einen Abstand von 75 \square m. Die Wellenlänge der Neutronen war (18.45 ± 2.8) Å wobei 1 Å = 1 Ångström = 10^{-10} m ist.

[Am. J. Phys. 59(4), April 1991, p. 316-324]

- a) Welche Wellenlänge erhält man aus dem Abstand der Beugungsmaxima?
- b) Welche Temperatur erhält man aus der Wellenlängenangabe? Benützen Sie die Beziehung zwischen der mittleren Translationsenergie E_{kin} von Teilchen und deren absoluter Temperatur T aus der Wärmelehre.
- c) Welche mittlere Geschwindigkeit hatten die Neutronen?
- 3) Damit man mit einem Elektronenmikroskop Atome sehen kann, muss die Wellenlänge im Bereich 10⁻¹⁰ m liegen. Welche kinetische Energie in Joule und Elektronvolt müssen die Elektronen haben?
- 4a) Licht welcher Wellenlänge muss man auf ein Wasserstoffatom im Grundzustand einstrahlen, damit es gerade ionisiert wird?
- b) Was passiert bei grösseren und bei kleineren Wellenlängen?
- 5) Wo liegt die Seriengrenze der Balmerserie? Das ist jene Wellenlänge, bei der die Folge der Spektrallinien in ein Kontinuum übergeht.
- 6) Die Schwingungsdauer der Strahlung, welche beim Übergang zwischen zwei Hyperfeinstrukturniveaux des Cäsium-133 ausgesandt oder absorbiert wird, ist die Basis der gegenwärtig gültigen Definition der Sekunde (s. FoTa). Welchem Energieunterschied der Niveaux entspricht das in Joule und Elektronenvolt?

Lösungen:

1) $1.0 \cdot 10^{-11}$ m 2a) $1.9 \cdot 10^{-9}$ m b) 1.9 K c) 214 m/s 3) 24 aJ = 150 eV 4a) 91.2 nm b) - 5) 364.5 nm 6) $6.09110102 \cdot 10^{-24}$ J = 38.0176664 µeV