Deep Learning for NLP

Oliver Guhr1833 SS2019

How is the pace of the lectures so far?

too slow / too fast / just right

a brief recap of the last lecture Word Representations

Encoding

Instead of encoding single characters

h	0	0	0	1
е	0	0	1	0
1	0	1	0	0
0	1	0	0	0

You can also encode words, this is also called "Bag-Of-Words (BOW)"

hello	0	0	0	1
my	0	0	1	0
name	0	1	0	0
is	1	0	0	0

Now a network can distinguish between positive and negative words by learning a

$$v_{ok} = [0.75, 0.15]$$

$$v_{nice} = [0.85, 0.50]$$

$$v_{poor} = [0.15, 0.18]$$

$$v_{terrible} = [0.10, 0.91]$$

Distributional Hypothesis

Words that occur in the same contexts tend to have similar meanings.

Harris (1954)

A word is characterized by the company it keeps. Firth (1957)

Skip-Gram

Supervised and unsupervised learning

- Supervised Learning uses a set of labeled training examples.
 - List of e-mails that are labeled as span / not spam
- Unsupervised Learning generates training examples from a plain –unlabeled- text corpus, so the training becomes a supervised problem.
 - Predict context words (Skip Gram)
 - Predict center words (Cbow)
 - Predict masked words (Bert)

Preprocessing

- Format you text to be predictable and analyzable
- It often has a significant impact on the performance
- Depending on the domain and your model different steps may be required
- For example:
 - Cleaning not useful characters and word
 - Transform words into a standardized form
 - Clipping your data to equal length

Scores: Accuracy

• Accuracy =
$$tp + tn$$

 $tp+tn+fp+fn$

 Accuracy = number correctly predicted samples total number of samples

Scores: F1

$$precision = \frac{true \ positives}{true \ positives + false \ positives}$$

$$recall = \frac{true \ positives}{true \ positives + false \ negatives}$$

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

How to optimize:

- 1) create a train/test split
- 2) Train your model (start with a simple model!)
- 3) measure its performance
- 4) optimize your model
- 5) Go to 2:)

Identify offensive language

using word vectors and FastText

Goal for Today

- Look we look at deep language models
 - How do they perform?
 - How do they work?
 - Some of the basic ideas behind those models.
 - How to use these models.
 - Applications :)

Deep Language Models

GLUE Benchmark Results

GLUE Leaderboard: https://gluebenchmark.com/leaderboard

SQUAD 2.0

Deep Language Models

- In 2018 several Ideas led to new models
 - Semi-supervised Sequence Learning Andrew Dai, Quoc Le
 - ELMo Peters et al.
 - ULMFiT Howard, Ruder
 - OpenAl Transformer Radford, Narasimhan, Salimans, Sutskever
 - Transformer Vaswani et al.

Deep Language Models

- Google's BERT (October 2018)
 - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Google/CMU's Transformer-XL (January 2019)
 - Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
- OpenAl's GPT (June, 2018)
 - Improving Language Understanding by Generative Pre-Training
- OpenAl's GPT-2 (February, 2019)
 - Language Models are Unsupervised Multitask Learners

Model Parameters

Model	Parameters
Medium LSTM	10 Million
ELMo	90 Million
GTP	110 Million
Bert Base	110 Million
Bert Large	340 Million
GTP-2	1500 Million

BERT

Bidirectional

Encoder

Representations from

Transformers

Bert

- What can you do with Bert?
- Some applications:
 - Named Entity Recognition
 - Text Classification
 - Fact Checking
 - Text Summarization
 - Text Generation
 - Question Answering (Full Text and Multiple Choice)
 - Translation

Bert

- Training Process
 - Pre-train a model on plain text
 - Choose a task specific labeled data set
 - Retrain the model with this data set

- Use the same pre trained model for all tasks
 - Classification
 - Named Entity Recognition
 - Question Answering etc.

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

Dataset:

Model:

Objective:

2 - Supervised training on a specific task with a labeled dataset.

Two pre-trained sizes

Pre Trained Bert

English

- BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Large, Cased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Uncased: 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Cased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Cased: 24-layer, 1024-hidden, 16-heads, 340M parameters

Multi Language

- BERT-Base, Multilingual Cased (New, recommended): 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Base, Multilingual Uncased (Orig, not recommended) (Not recommended, use Multilingual Cased instead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

Chinese

BERT-Base, Chinese: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters

Pre Trained Bert

Explained on the next slides

English

- BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Large, Cased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Uncased: 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Cased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Cased: 24-layer, 1024-hidden, 16-heads, 340M parameters

Multi Language

- BERT-Base, Multilingual Cased (New, recommended): 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Base, Multilingual Uncased (Orig, not recommended) (Not recommended, use Multilingual Cased instead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

Chinese

- BERT-Base, Chinese: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters

Bert

- Issues with non English models
 - One model for 102 languages
 - Pre-trained on Wikipedia content
 - English Models are pre-trained on books and Wikipedia
 - Train you own language model will cost ca. 500\$
 - Collecting this data for German language would be a great task fo a research seminar:)

Text Classification

Two sizes

Bert Model

Bert Model

How to process sequences?

How to process sequences?

This Bert model can process sequences up to 512 tokens.

The Illustrated BERT, Jay Alammar: http://jalammar.github.io/illustrated-bert/

Bert

Bert

Each token generates a vector with the length of the hidden size.

The Illustrated BERT, Jay Alammar: http://jalammar.github.io/illustrated-bert/

Classification with Bert

Attention and Transformer

Berts Encoder

Attention Is All You Need, Vaswani et al. https://arxiv.org/abs/1706.03762

Attention Is All You Need, Vaswani et al. https://arxiv.org/abs/1706.03762

Transfromer

Transformer Attention

$$A(Q,K,V) = softmax(QK^T)V$$
Query Key Value

Take the current word or token, find the most similar Key and return the corresponding value.

Transformer: Multi Head Attention

Transformer

- Paper
 - Attention is all you need. Vaswani et al.
- Good Read
 - Jay Alammars The Illustrated Transformer

- Conference Talk:
 - Attention is all you need attentional neural network mo dels by Łukasz Kaiser

Similarity to Conv Nets

Training Bert

Pre Training Bert

- pre trained models are also called language models
- Compared to FastText Berts language model can distinguish between contexts
 - "river bank" vs "financial bank"
- To create them, Bert used two methods:
 - Task One: Mask Words
 - Task Two: Next Sentence Prediction

0.1% Aardvark Use the output of the Possible classes: masked word's position Improvisation All English words 10% to predict the masked word 0% Zyzzyva FFNN + Softmax 2 3 5 **BERT** Randomly mask 15% of tokens Let's stick to [MASK] in this skit [CLS]

stick

[CLS]

to improvisation in

skit

Input

Input

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Traing Bert

- Pre Training takes 14 days on a TPUv2 (500\$)
- Bert Large Models (24 Layers) can only be trained on TPUs
- Fine-tuning a model with 1GB of text takes serveral hours on a single GPU (1080 / 2080)

Bert as Embedding

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

Bert as Embedding

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

The Illustrated BERT, Jay Alammar: http://jalammar.github.io/illustrated-bert/

Summary

- Pre-Trained on unlabeled data, fine tune on domain specific data
- Better language understanding
 - Context matters!
- Better results with less data
 - Latest hotness MT-DNN Liu et al.
 - No need for vast amounts of training data

Identify offensive language

using word vectors and FastText

Identify offensive language

using word vectors and FastText

using Bert

WHKJobs

- Do cutting edge deep learning:
 - Dialog Systems aka Chat Bots
 - Speech Recognition
 - Speech Synthesis
 - Text Classification / Generation
 - Build Alexa and Mycroft skills