CMPS1134 Fundamentals of Computing

Data Storage 1

Computer Science: An Overview
Eleventh Edition

J. Glenn Brookshear
Chapter 1

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Chapter 1: Data Storage

- □ Bits and Their Storage
- Main Memory
- Mass Storage
- □ Representing Information as Bit Patterns
- ☐ The Binary System
- □ Storing Integers
- □ Storing Fractions
- □ Data Compression
- □ Communications Errors

Bits and Bit Patterns

Inside today's computers information is encoded as patterns of 0s and 1s.

- ☐ **Bit:** Binary Digit (0 or 1)
- ☐ **Bit Patterns** are used to represent information.
 - Numbers
 - Text characters
 - Images
 - Sound
 - And others

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Boolean Operations

- Boolean Operation: An operation that manipulates one or more true/false values
- □ Specific operations
 - AND
 - OR
 - XOR (exclusive or)
 - NOT

Figure 1.1 The Boolean operations AND, OR, and XOR (exclusive or)

The AND operation

The OR operation

$$\frac{\mathsf{OR}}{\mathsf{OR}} \quad \frac{\mathsf{O}}{\mathsf{O}}$$

The XOR operation

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Gates

- ☐ **Gate:** A device that computes a Boolean operation
 - Often implemented as (small) electronic circuits
 - Provide the building blocks from which computers are constructed

Flip-flops

- □ **Flip-flop:** A circuit built from gates that can store one bit.
 - One input line is used to set its stored value to 1
 - One input line is used to set its stored value to 0
 - While both input lines are 0, the most recently stored value is preserved
- VLSI (Very Large Scale Integration)
 - □ Allows millions of electrical components to be constructed on a wafer (called a chip).
 - ☐ Used to create miniature devices that contains millions of flip-flops along with their controlling circuitry
 - Chips used as abstract tools in the construction of computer systems
 - ☐ In some cases VLSI is used to create entire computer systems on a single chip

A long string of bits (often called a	Bit pattern	Hexadecimal representation
stream) are difficult for the		
human mind to comprehend.	0000	0
□ Heyedesimal metation, ∧	0001	1
☐ Hexadecimal notation: A	0010	2
shorthand notation for long bit	0011	3
patterns	0100	4
Also called base 16, or hex	0101	5
•	0110	6
 Divides a pattern into groups 	0111	7
of four bits each	1000	8
Represents each group by a	1001	9
single symbol (0-9, A-F)	1010	A
	1011	В
□ Example:	1100	C
10100011 becomes A3	1101	D _
	1110 1111	E F

Main Memory Cells

Computers contain large collections of circuits (such as flipflops) for the purpose of storing data. This bit reservoir is known as the machine's **main memory**.

- Cell: A unit of main memory (typically <u>8 bits</u> which is one byte)
 - **Most significant bit:** the bit at the left (**high-order**) end of the conceptual row of bits in a memory cell
 - **Least significant bit:** the bit at the right (**low-order**) end of the conceptual row of bits in a memory cell

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Main Memory Addresses

- □ Address: A "name" that uniquely identifies one cell in the computer's main memory
 - The names are actually numbers.
 - These numbers are assigned consecutively starting at zero.
 - Numbering the cells in this manner associates an order with the memory cells.

Memory Terminology

- □ Random Access Memory (RAM): Memory in which individual cells can be easily accessed in any order
- ☐ Other than flip-flops, RAM in modern computers is constructed with technologies that provide greater miniaturization and faster response time.
 - They store bits as tiny electrical charges that dissipate quickly
 - They require a refresh circuit to repeatedly replenish the charges many times a second
 - This volatile memory is often called **dynamic memory**
 - Dynamic Memory (DRAM): RAM composed of volatile memory
 - Synchronous DRAM (SDRAM): DRAM that applies additional technologies to decrease the time needed to retrieve the contents from its memory cells

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Measuring Memory Capacity

□ Kilobyte:

- 1 Kilobyte = 1024 bytes
- Example: 3 KB = 3 x 1024 bytes

■ Megabyte:

- 1 Megabyte = 1,048,576 bytes
- Example:
 - $3 MB = 3 \times 1,048,576$ bytes

□ Gigabyte:

- 1 Gigabyte = 1,073,741,824 bytes
- Example:
 - $3 GB = 3 \times 1,073,741,824$ bytes
- □ Terra, Peta, Exa, Zetta, Yotta, Bronto, ...

Units of Computer Memory Measurement 1 Bit = Binary Digit Amosbyte = 1024 Kryatbytes Pectrolbyte = 1024 Amosbytes 8 Bits = 1 bytes Bolgerbyte = 1024 Pectrolbytes 1024 Bytes = 1 Kilobytes Sambobyte = 1024 Bolgerbytes 1024 Kilobytes = 1 Megabytes Quesabyte = 1024 Sambobytes 1024 Megabytes = 1 Gigabytes Kinsabyte = 1024 Quesabytes 1024 Gigabytes = 1 Terabytes Rutherbyte = 1024 Kinsabytes 1024 Terabytes = 1 Petabytes Dubnibyte = 1024 Rutherbytes 1024 Petabytes = 1 Exabytes Seaborgbyte = 1024 Dubnibytes 1024 Exabytes = 1 Zettabytes Bohrbyte = 1024 Seaborgbytes 1024 Zettabytes = 1 Yottabytes Hassiubyte = 1024 Bohrbytes 1024Yottabytes = 1 Brontobytes Meitnerbyte = 1024 Hassiubytes 1024 Brontobytes = 1 Geophytes Darmstadbyte = 1024 Meitnerbytes 1024 Geopbyte=1 Saganbytes Roentbyte = 1024 Darmstadbytes 1024 Saganbyte=1 Pijabytes Coperbyte = 1024 Roentbytes Alphabyte = 1024 Pijabytes Kryatbyte = 1024 Alphabytes

Mass Storage

- □ On-line versus off-line
- Mass Storage Systems:
 - Magnetic Systems e.g. Disk, Tape
 - Optical Systems e.g. CD, DVD
 - **Solid-state** e.g. flash drives, Secure Digital (SD) memory card, Solid-State Disks (SSD)
- □ Advantages over main memory
 - Less volatility
 - Larger storage capacities
 - Low cost
 - In many cases can be removed

Major Disadvantage

 Typically require mechanical motion which causes significantly slower storage and retrieval time than main memory where all activities are electronic

Solid State Storage

- □ Flash Memory circuits that traps electrons in tiny silicon dioxide chambers
- ☐ Repeated erasing slowly damages the media
- Mass storage of choice for:
 - Digital cameras
 - Smartphones
- □ Flash Drives portable units with capacities of up to a few hundred GBs, are typically connected via USB ports
- ☐ Secure Digital (SD) Cards provide GBs of storage
- □ Solid State Disks (SSD)

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Files

- ☐ **File:** A unit of data stored in mass storage system
- Physical record versus Logical record
- Logical records often consist of smaller units called **fields** (e.g. name, address, etc.)
- Logical records may be uniquely identified by a key field, whose value is called a key
- Buffer: A memory area used for the temporary storage of data (usually as a step in transferring the data)

Logical records correspond to natural divisions within the data

Physical records correspond to the size of a sector

Representing Text

- Each character (letter, punctuation, etc.) is assigned a unique bit pattern.
 - **ASCII**: The original 128 character codes uses patterns of 7-bits to represent most symbols used in written English text. DOS extended this to 256 characters (8-bit).
 - International Organization for Standardization (ISO) developed a number of 8 bit extensions to ASCII, each designed to accommodate a major language group
 - Unicode: Uses patterns of 16-bits to represent the major symbols used in languages world wide

Representing Numeric Values

- ☐ **Binary notation**: Uses bits to represent a number in base two
- ☐ Limitations of computer representations of numeric values
 - Overflow: occurs when a value is too big to be represented
 - Truncation: occurs when a value cannot be represented accurately

2	56	
2	28	— 0
2	14	0
2	7	<u> </u>
2	3	1
2	1	1
	0	1

56 = 111000

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Representing Images

- Pixel: short for "picture element"
- Bit map techniques
 - The image is encoded as a collection of encoded pixels
 - RGB (3 byte color encoding)
 - Luminance and chrominance
 - □ Luminance Brightness (white light: R+G+B)
 - ☐ Chrominance Two color component
 - Blue chrominance (Diff of Luminance and B light)
 Red chrominance (Diff of Luminance and R light)
 - Images cannot be rescaled easily (enlargement results in "pixelation")
- Vector techniques
 - Image described as collection of geometric structures
 - Scalable
 - TrueType, PostScript, CAD, ...

Representing Sound

- Sampling techniques
 - Used for high quality recordings
 - Records actual audio
 - Telephone communication: 8000 samples/second
 - High-fidelity music recordings: 44,100 samples/ second

■ MIDI

- Used in music synthesizers
- Records "musical score"
- What instrument for what time duration
- Clarinet playing D note for 2 seconds:
 - □ Sampling: >2 million bits
 - ☐ MIDI: 3 bytes (24 bits)

Sound wave represented by sequence: 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0