MA 108 - Ordinary Differential Equations

Suresh Kumar

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 76 suresh@math.iitb.ac.in

May 14, 2022

Outline of the lecture

- Lipschitz continuity
- Existence & uniqueness
- Picard's iteration

Recall

 Let f be defined on D, where D is either a domain or a closed domain of the xy- plane. The function f is said to satisfy Lipschitz condition (with respect to y) in D if ∃ a constant M > 0 such that

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

for every $(x, y_1), (x, y_2)$ which belong to D. The constant M is called the Lipschitz constant.

• If f satisfies Lipschitz condition with respect to y in D, then for each fixed x, the resulting function of y is a continuous function of y, for all (x, y) in D.

Does Continuity w.r.t. second variable ⇒ Lipschitz condtn. w.r.t. second variable?

Continuity w.r.t. second variable \implies Lipschitz condtn. w.r.t. second variable.

Example: Consider $f(x, y) = \sqrt{|y|}$.

f is continuous for all y.

Note that f doesn't satisfy Lipschitz condition in any region that includes y=0 as for $y_1=0,\ y_2>0$, we have

$$\frac{|f(x, y_1) - f(x, y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{|y_2|} = \frac{1}{\sqrt{y_2}}$$

which can be made as large as we want by making y_2 smaller. The Lipschitz condition requires that the quotient should be bounded by a fixed constant K.

4/1

Sufficiency

Result : If f is such that $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x,y)\in D$, then f satisfies Lipschitz condition w.r.t. y in D, where the Lipschitz constant

$$M = l.u.b._{(x,y)\in D} |\frac{\partial f}{\partial y}(x,y)|.$$

Proof: Mean value theorem

$$\Longrightarrow f(x,y_1)-f(x,y_2)=(y_1-y_2)\frac{\partial f}{\partial y}(x,\xi),\ \xi\in(y_1,y_2).$$

$$|f(x, y_1) - f(x, y_2)| = |y_1 - y_2| \frac{\partial f}{\partial y}(x, \xi)|$$

$$\leq |y_1 - y_2| l.u.b._{(x,y) \in D} \frac{\partial f}{\partial y}(x, y)|.$$

That is, f satisfies Lipschitz condition.

Example

Consider

$$f(x, y) = y^2$$
 defined in $D: |x| \le a, |y| \le b$.

 $f_y = 2y$ is bounded in D. The Lipschitz contant is

$$M = l.u.b._{(x,y)\in D} \left| \frac{\partial f}{\partial y}(x,y) \right| = l.u.b._{(x,y)\in D} |2y| = 2b.$$

(Verify Lipschitz condition directly!)

Bounded derivative - sufficient condition

Consider

$$f(x, y) = x|y|$$
 defined in $D: |x| \le a, |y| \le b$.

 $\frac{\partial f}{\partial y}$ doesn't exist for any point $(x,0) \in D$. (Why?) Now f satisfies Lipschitz condition :

$$|f(x, y_1) - f(x, y_2)| = |x|y_1| - x|y_2| |$$

$$= |x| ||y_1| - |y_2|| |$$

$$\leq |x| |y_1 - y_2| |$$

$$< a|y_1 - y_2|$$

Existence of bounded derivative f_y is a sufficient condition for Lipschitz condition to hold true (not necessary).

Existence - Uniqueness Theorem

Let R be a rectangle containing (x_0, y_0) in the domain D,

- f(x, y) be continuous at all points (x, y) in $R: |x x_0| < a$, $|y y_0| < b$ and
- bounded in R, that is, $|f(x,y)| \le K \ \forall (x,y) \in R$.

Then, the IVP y' = f(x, y), $y(x_0) = y_0$ has at least one solution y(x) defined for all x in the interval $|x - x_0| < \alpha$, where

$$\alpha = \min \left\{ a, \frac{b}{K} \right\}.$$

In addition to the above conditions, if f satisfies the Lipschitz condition with respect to y in R, that is,

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2| \ \forall (x, y_1), (x, y_2) \text{ in } R,$$

then, the solution y(x) defined at least for all x in the interval $|x-x_0| < \alpha$, with α defined above is unique ¹.

A quick check!

- Is $f(x) = \sin x$ Lipschitz continuous over \mathbb{R} ? Yes.
- ② Is $f(x) = x^2$ globally Lipschitz continuous over \mathbb{R} ? No. (Hint: $\left| \frac{f(x_1) f(x_2)}{x_1 x_2} \right| = |x_1 + x_2|$)

However, it is Lipschitz continuous over any closed interval of \mathbb{R} . We say that it is locally Lipschitz continuous over \mathbb{R} .

Is $f(x) = \frac{1}{x^2}$ globally Lipschitz continuous on $[\alpha, \infty)$ for any $\alpha > 0$? Yes.

Example 1

Consider

$$y' = y^{1/3}$$
 $y(0) = 0$ in $R: |x| \le a, |y| \le b$.

f(x, y) is continuous in R and hence existence is guaranteed.

But
$$\phi_1(x) = 0$$
 and $\phi_2(x) = \begin{cases} (\frac{2}{3}x)^{3/2} & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$ are solutions in $-\infty < x < \infty$.

Does this imply Lipschitz condition won't be satisfied?

$$\frac{|f(x,y_1)-f(x,y_2)|}{|y_1-y_2|}=\frac{|y_1^{1/3}-y_2^{1/3}|}{|y_1-y_2|}.$$

Choosing $y_1 = \delta$, $y_2 = -\delta$, we see that the quotient is unbounded for small values of δ and hence Lipschitz condition is not satisfied.

Solution exists, but not unique.

Example 2

Consider $y' = y^2$, y(1) = -1. Find α in the existence & uniqueness theorem.

$$(1-a,-1+b)$$
 $(1+a,-1+b)$ $(1,-1)$ $(1-a,-1-b)$

 $f(x, y) = y^2$, $f_y = 2y$ are continuous in the closed rectangle $R: |x-1| \le a, |y+1| \le b$.

$$|f(x,y)| = |y|^2 \le |(-b-1)|^2 \le (b+1)^2$$
 (1)

Now,
$$\alpha = \min \left\{ a, \frac{b}{(b+1)^2} \right\}$$
.

Example 2 (contd..)

Consider

$$F(b)=\frac{b}{(b+1)^2}.$$

$$F'(b) = \frac{1-b}{(b+1)^3}$$
 \Longrightarrow the maximum value of $F(b)$ for $b > 0$ occurs at $b = 1$ (Why?); and we find $F(1) = \frac{1}{4}$.

Hence, if
$$a \ge 1/4$$
, $F(b) = \frac{b}{(b+1)^2} \le a$ for all $b > 0$ and

$$\alpha = \min\{a, F(b)\} = F(b) = \frac{b}{(b+1)^2} \le 1/4$$
, whatever be a.

If
$$a < 1/4$$
, then certainly $\alpha < 1/4$. Thus in any case, $\alpha \le 1/4$. For $b = 1$, $a \ge 1/4$, $\alpha = \min\{a, 1/4\} = 1/4$.

Thus the best possible α from the theorem gives that the IVP has a unique solution in $|x-1| \le 1/4 \Longrightarrow 3/4 \le x \le 5/4$.

Example 2 - Remarks

- The theorem guarantees existence and uniqueness only in a very small interval!
- The theorem DOES NOT give the largest interval where the solution is unique.
- What is the solution in this case by separation of variables and where is it valid? Can you think of extending the solution to a larger interval?
 - (Ans. xy = -1. Largest interval where solution exist is $(0, \infty)$)

Picard's iteration method

² AIM : To solve

$$y' = f(x, y), \ y(x_0) = y_0$$
 (2)

METHOD

1. Integrate both sides of (2) to obtain

$$y(x) - y(x_0) = \int_{x_0}^{x} f(t, y(t)) dt$$
$$y(x) = y_0 + \int_{x_0}^{x} f(t, y(t)) dt$$
(3)

Note that any solution of (2) is a solution of (3) and vice-versa.

²Picard used this in his existence-uniqueness proof

Picard's method

2. Solve (3) by iteration:

$$y_1(x) = y_0 + \int_{x_0}^{x} f(t, y_0) dt$$

$$y_2(x) = y_0 + \int_{x_0}^{x} f(t, y_1(t)) dt$$

$$\vdots$$

$$y_n(x) = y_0 + \int_{x_0}^{x} f(t, y_{n-1}(t)) dt$$

3. Under the assumptions of existence-uniqueness theorem, the sequence of approximations converges to the solution y(x) of (2). That is,

$$y(x) = \lim_{n \to \infty} y_n(x).$$

Example: Picard's

Solve : y' = xy, y(0) = 1 using Picard's iteration method.

• The integral equation is

$$y(x) = 1 + \int_{x_0}^x ty \, dt.$$

② The successive approximations are :

$$y_1(x) = 1 + \int_0^x t \cdot 1 \, dt = 1 + \frac{x^2}{2}.$$

$$y_2(x) = 1 + \int_0^x t(1 + \frac{t^2}{2}) \, dt = 1 + \frac{x^2}{2} + \frac{x^4}{2 \cdot 4}.$$

:

$$y_n(x) = 1 + (\frac{x^2}{2}) + \frac{1}{2!}(\frac{x^2}{2})^2 + \dots + \frac{1}{n!}(\frac{x^2}{2})^n$$
. (By induction)

$$y(x) = \lim_{n \to \infty} y_n(x) = e^{x^2/2}.$$

Exercises

- Does uniform continuity \Longrightarrow Lipschitz continuity ? (No, consider $f(x) = \sqrt{x}, x \in [0, 2]$.)
- ② The value of n such that the curves $x^n + y^n = C$ are the orthogonal trajectories of the family

$$y = \frac{x}{1 - Kx}$$

is?

(Ans. DE for the given family of curves is $\frac{dy}{dx} = (\frac{y}{x})^2$. Finally, we get n=3).