DETAILED DESCRIPTION OF ELECTRICAL DIAGRAM

1. POWER SYSTEM

Main Power Source

- Battery: 12V DC
- Main Switch (SW1): Controls entire system power via ON/OFF switch that interrupts battery positive terminal

Voltage Regulation

- LM2596 Step-Down Module:
 - o Input: 12V from main bus (after switch)
 - o Output: Adjustable 5V via potentiometer
 - o Type: Buck switching converter (high efficiency ~92%)
 - o Includes operation indicator LED
 - o Powers servo motor exclusively

Power Distribution

- 12V Bus: Directly powers:
 - o L298N Motor Driver (VS terminal)
 - o Arduino R4 WiFi (via DC Jack)
 - o LM2596 regulator input
- Arduino 5V Bus: Powers:
 - o 3 HC-SR04 sensors
 - o Pixy Camera
 - Start button pull-up

2. MAIN CONTROLLER

Arduino UNO R4 WiFi

- Processor: Renesas RA4M1 (ARM Cortex-M4 @ 48MHz)
- Integrated WiFi connectivity
- Power: 12V via DC Jack (internal regulation to 5V)
- Provides regulated 5V for peripherals

3. MOTION SYSTEM

DC Motor

• Controlled by L298N driver

- L298N Connections:
 - \circ ENB \rightarrow Pin D6 (PWM speed control)
 - \circ IN3 \rightarrow Pin D8 (direction)
 - \circ IN4 \rightarrow Pin D7 (direction)
 - \circ OUT3/OUT4 \rightarrow DC motor terminals
 - \circ VS \rightarrow 12V from main bus
 - \circ **GND** \rightarrow Common ground

Servo Motor SG90

- Vehicle steering control
- Connections:
 - \circ **PWM** \rightarrow Pin D9 (control signal)
 - \circ VCC \rightarrow 5V from LM2596 regulator (dedicated power)
 - \circ **GND** \rightarrow Common ground

4. SENSOR SYSTEM

Three HC-SR04 Ultrasonic Sensors

1. RIGHT Sensor:

- TRIG \rightarrow Pin D2
- ECHO \rightarrow Pin D3
- VCC → Arduino 5V
- GND → Common ground

2. LEFT Sensor:

- TRIG \rightarrow Pin D4
- ECHO \rightarrow Pin D5
- VCC → Arduino 5V
- GND → Common ground

3. FRONT Sensor:

- TRIG \rightarrow Pin A1
- ECHO \rightarrow Pin A2
- $VCC \rightarrow Arduino 5V$
- GND → Common ground

Pixy Camera (CMUcam5)

- SPI interface for computer vision
- SPI Connections:
 - \circ MISO \rightarrow Pin D12

- \circ **MOSI** \rightarrow Pin D11
- \circ **SCK** \rightarrow Pin D13
- \circ SS \rightarrow Pin A0
- \circ VCC \rightarrow Arduino 5V
- \circ **GND** \rightarrow Common ground

5. CONTROL SYSTEM

START Button

- Connected to Pin D10
- $10k\Omega$ pull-up resistor to 5V
- Pressing connects pin to ground (inverse logic)
- Allows robot program initialization

6. DETAILED CONNECTIONS

Digital Pins Used:

- D2: Right sensor TRIG
- D3: Right sensor ECHO
- D4: Left sensor TRIG
- D5: Left sensor ECHO
- D6: Motor ENB (PWM)
- D7: Motor IN4
- D8: Motor IN3
- D9: Servo PWM
- D10: Start button
- D11: MOSI (SPI Pixy)
- D12: MISO (SPI Pixy)
- D13: SCK (SPI Pixy)

Analog Pins Used:

- A0: SS (Pixy Camera)
- A1: Front sensor TRIG
- A2: Front sensor ECHO

7. POWER FLOW

- 1. 12V Battery \rightarrow ON/OFF Switch \rightarrow 12V Bus
- 2. **12V Bus** splits to:
 - o → Arduino DC Jack (internal regulation)
 - $\circ \rightarrow L298N VS \text{ (motor power)}$
 - $\circ \rightarrow LM2596 IN$ (to generate 5V)
- 3. Arduino 5V pin → HC-SR04 Sensors + Pixy + Pull-up

4. LM2596 OUT → Servo motor (dedicated 5V)

8. IMPORTANT FEATURES

Common Ground (GND)

- All components share same ground reference
- Ground bus connects: battery, Arduino, L298N, LM2596, sensors, servo, and Pixy

Protections

- Main switch for complete power cutoff
- Separate regulation for servo (prevents voltage drops)
- Pull-up on Start button (prevents erratic readings)

Diagram Color Codes

Thick black: Main power lines
Thin black: Digital signals
Blue: Motor control signals
Green: Ultrasonic sensor signals

• Orange: Servo PWM signal

• **Purple**: Pixy SPI bus

• Red: 5V from regulator to servo

9. DESIGN ADVANTAGES

- 1. Robust power supply: Separate regulation prevents interference
- 2. Modular: Easy to add/remove components
- 3. **Diagnostics**: LED on LM2596 indicates operation
- 4. Flexibility: Integrated WiFi allows remote control
- 5. Safety: Main switch cuts all power
- 6. Complete navigation: 3 sensors cover 180° vision

This design enables an autonomous navigation robot capable of detecting obstacles in three directions, with computer vision and precise motion control, all with a robust and well-organized electrical architecture.