DS 6 Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

	Un télescope unitaire du VLT		
1	Pour la lumière visible $\lambda \in [400 \text{ nm } 800 \text{ nm}]$	1	
2	La longueur d'onde est plus grande que l'intervalle visible, il s'agit	1	
	donc d'une radiation infra-rouge.		
	Miroirs sphériques		
3	schéma avec un rayon réfléchis qui repasse par lui même	1	
4	c'est un point focal donc le rayon réfléchis est parallèle à l'axe	1	
	optique.		
5	c'est un point focal donc le rayon incident est parallèle à l'axe	1	
	optique.		
	Intérêt des miroirs sphériques comparé aux lentilles		
6	recopiage, tracé de l'axe optique et placer le point focal objet côté	0,5	
	objet et le point focal image côté image		
7	Rayons passant par le point focal image sont parallèle à l'axe	1	
	optique du côté objet. D'après le théorème de Malus les surfaces		
	d'onde avant la lentille sont des plans perpendiculaires à l'axe		
	optique.		
8	on prend un rayon passant par le centre de la lentille, il n'est	1	
	pas dévié, puis on fait distance fois indice en ajoutant la partie		
	dans le verre avec le bon indice et en la soustrayant de l'air donc		
	$(FF') = f + f' - e + n_{verre}e = 2f + (n_{verre} - 1)e.$		
9	Comme le rayon passe par l'extrémité de la lentille il fait tout	1	
	son chemin dans l'air donc on ajoute la distance tout droit et la		
	distance inclinée : $(MF') = f + \sqrt{f'^2 + D^2} = f + \sqrt{f^2 + D^2}$		
10	D'après une propriété du théorème de Malus comme M et F ap-	1	
	partiennent à la même surface d'onde et que les rayons passent		
	par le même système optique on a $(MF') = (FF')$ donc $f +$		
	$\sqrt{f'^2 + D^2} = 2f + (n_{verre} - 1)e \text{ donc } e = \frac{\sqrt{f^2 + D^2} - f}{n_{verre} - 1}$. Puis appli-		
	cation numérique avec n_{verre} entre 1,3 et 1,5.		

	Montage de type Cassegrain		
11		1	
11	Le foyer est au milieu de l'intervalle formé par le sommet et le centre du miroir donc $\overline{S_1F_1} = -14, 4$ m.	1	
12	Avec le même argument on en déduit $\overline{S_2F_2} = -2,26 \text{ m}$	1	
13	Le système est afocal, l'image de l'infini est à l'infini en passant	1	
	par une image intermédiaire qui doit être à la fois le foyer image	_	
	du miroir 1 et le foyer objet du miroir 2 donc $F_1 = F_2 = F$ et		
	$\overline{S_2S_1} = \overline{S_2F} - \overline{S_1F} = 12, 14 \text{ m}.$		
14	L'image d'un objet vu à l'infini sous l'angle i_B est située dans le	1	
	plan focal image avec pour dimension $d = f_1 i_B$; elle redonne alors		
	une image à l'infini vue sous un angle $i'_B = d/f_2$ donc en valeur		
	absolue $ G = \frac{f_1}{f_2}$. le schéma montre qu'il n'y a pas inversion de		
	l'image donc $G = -\frac{\overline{S_1}F_1}{\overline{S_2}F_2} = 6,37.$		
	Résolution limitée par la diffraction		
15	La tache circulaire de diffraction ou tache d'Airy a pour demi-	1	
	angle au sommet $0.61\lambda/r_p$ où $r_p=D/2$ est le rayon de l'objet		
	diffractant. Après projection dans le plan focal image de la lentille		
	de focale $f_1' = \overline{S_1 F_1} $, on obtient donc $R = 1, 22 \frac{\lambda f_1'}{D}$. Si 0,61 est		
	remplacé par 1 et 1,22 par 2 le résultat est aussi accepté.		
16	L'ouverture angulaire correspondante en sortie est R/f_2' soit $\Delta\theta=$	1	
	$1,22\frac{\lambda}{D}G.$		
17	Il y a résolution si l'écart angulaire $i_B' - i_A'$ est, en valeur absolue,	1	
	supérieur à l'angle $\Delta\theta$ (étalement par diffraction), $ i_B' - i_A' >$		
	$\Delta \theta = 1, 22 \frac{\lambda}{D} G$. On parle du critère de Rayleigh.		
18	Comme $i'_B - i'_A = G(i_B - i_A)$, la condition demandée est $ i_B - i_A > 0$	1	
	i_{\min} où $i_{\min} = 1, 22 \frac{\lambda}{D} = 3 \cdot 10^{-7}$ rad soit aussi $i_{\min} = 0, 6''$.		
	Le télescope interférentiel VLTI		
	Observation d'une source ponctuelle dans la direction de		
	l'axe optique		
19	L'image d'un objet à l'infini est dans le plan focal image ; il est de	1	
	plus sur l'axe optique donc $A' = F'$.		
20	Les rayons parvenant en F' en passant par T_1 et T_2 sont symé-	1	
	triques donc $\delta_0 = 0$.		
21	S'il n'y avait pas de ligne à retard, on aurait une différence de	1	
	marche importante due au système de recombinaison des fais-		
00	ceaux.	1	
22	En l'absence de la ligne à retard, la différence de marche pourrait devenir supérieur à la longueur de cohérence.	1	
23	Le contraste est égal à 1 sous trois conditions : les deux télescopes	1	
-	doivent avoir la même intensité non nulle I_0 , la source est ponc-	_	
	tuelle (pas de brouillage due à l'élargissement spatial); la source		
	est parfaitement monochromatique (pas de brouillage due à l'élar-		
	gissement spectral).		
	i =	1	

24	On regarde dans le plan focal d'une lentille donc à l'infini. En	1	
	dessinant la surface d'onde on en déduit la différence de marche		
	$\delta = a \sin(\theta) = a\theta$. Après projection sur l'écran on a $\theta = \frac{x}{f_1}$. La		
	formule de Fresnel s'écrit alors $I = 2I_0 \left(1 + \cos \left[\frac{2\pi}{\lambda} \frac{ax}{f_1'}\right]\right)$.		
25	L'interfrange est défini comme la période de la fonction $I(x)$, donc	1	
	$i = \frac{\lambda f_1'}{a}$.		
26	On observe des franges d'interférence.	1	
	Observation d'une source ponctuelle dans une direction différente de l'axe optique		
27	= -	1	
21	On utilise le rayon qui passe par le centre de la lentille, qui donne $x_B = f_1'i_B$.	1	
28	On ajoute à la différence de marche précédente une autre	1	
	différence de marche égale à $-ai_B$; il vient donc $I =$		
	$2I_0\left(1+\cos\left[\frac{2\pi}{\lambda}\frac{a(x-x_B)}{f_1'}\right]\right)$ et on vérifie ainsi que l'ordre zéro est		
	bien atteint au niveau de l'image géométrique B' de l'étoile.		
29	Il y a seulement décalage global mais pas de modification de la	1	
	période, l'interfrange reste inchangée.		
	Observation de deux sources ponctuelles		
30	Non, deux sources spatialement distinctes sont incohérentes.	1	
31	Du fait de la question précédente, $I_{A \cup B} = I_A + I_A$	1	
	I_B donc, compte tenu de la relation trigonométrique $\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$, $I_{A\cup B} =$		
	$4I_0 \left[1 + \cos\left(\frac{\pi a x_B}{\lambda f_1'}\right) \cos\left(\frac{2\pi}{\lambda} \frac{a}{f_1'} \left(x - \frac{x_B}{2}\right)\right) \right]$		
32	Il y a brouillage des franges (perte de contraste) si $\cos\left(\frac{\pi a x_B}{\lambda f_1'}\right) = 0$	1	
	(ou $\Delta p = q + \frac{1}{2}$) donc si $\frac{\pi a x_B}{\lambda f_1'} \equiv \frac{\pi}{2} [\pi]$, ce qu'on peut aussi écrire		
	$a = \frac{\lambda}{2i_B} + q \frac{\lambda}{i_B}$ où q entier.		
33	On repère les valeurs de a où il y a brouillage et on trace le numéro	1	
	du brouillage q en fonction de a on obtient une droite $q = \frac{iB}{\lambda}a - \frac{1}{2}$		
34	dont la pente est proportionnelle à i_B . Ici $a_{\text{max}} = 100 \text{ m}$ donc si on observe un seul brouillage $\frac{1}{2} =$	1	
04	$\frac{i_{\text{min}}}{\lambda} a_{\text{max}}$ donc $i_{\text{min}} = 1,0 \cdot 10^{-8} \text{ rad} = 0,02''$. Le pouvoir de résolu-	1	
	λ dmax done λ different amélioré car il dépend maintenant du décalage		
	entre télescopes et plus du diamètre de chacun d'eux.		
	Préparation d'un substrat préalablement à un essai de		
	pelage		
	Etude d'une étape de la synthèse de l'acide sulfurique		
	Optimisation des conditions expérimentales		
35	La conversion du dioxyde de soufre en trioxyde de soufre est opti-	1	
	male: à basse température et haute pression selon la figure 4, pour		
	un mélange initialement enrichi en O2 par rapport à SO2 selon la figure 6, pour un mélange initialement enrichi en O2 par rapport		
	à N2 selon la figure 5. Cependant si on travaille à suffisamment		
	basse température, $\theta < 425$ °C, le taux de conversion est proche		
	de 1 et l'influence des autres paramètres est moindre.		

	Choix de la température - Approche théorique		
36	Dans le cadre de l'approximation d'Ellingham $\Delta_r G^{\circ}(T) =$	1	
	$\Delta_r H^{\circ} - T \Delta_r S^{\circ}$ est une droite affine de T puisque $\Delta_r H^{\circ}$ et $\Delta_r S^{\circ}$		
	sont indépendants de T . En notant $\Delta_r G^{\circ}(T) = -R(k_2 + k_1 T)$, la		
0.7	relation $\Delta_r G^{\circ}(T) = -RT \ln(K^{\circ})$ donne $\ln(K^{\circ}) = k_1 + \frac{k_2}{T}$.	1	
37	Loi de Hess : $\Delta_r H^\circ = \Delta_f H^\circ_{SO_{3(g)}} - \frac{1}{2} \Delta_f H_{O_{2(g)}} - \Delta_f H^\circ_{SO_{2(g)}} =$	1	
	$-k_2 R = -99 \text{ kJ.mol}^{-1}$. Par définition : $\Delta_r S^{\circ} = s_{SO_{3(g)}}^{\circ} - \frac{1}{2} s_{O_{2(g)}}^{\circ} -$		
	$s_{SO_{2(g)}}^{\circ} = k_1 R = -93.5 \text{ J.K}^{-1}.\text{mol}^{-1}. \text{ Finalement } k_1 = -11.2 \text{ et}$		
	$k_2 = 11, 9 \cdot 10^3 \text{ K}.$		
38	Selon la loi de Van't Hoff, une baisse de température déplace	1	
	l'équilibre dans le sens exothermique, ici le sens direct car k_2 po-		
	sitif; cette loi est effectivement vérifiée sur les courbes 4, 5 et 6.		
	Choix de la composition du système - Approche théorique		
39	On fait un tableau d'avancement : initialement $SO_{2(g)}$ est présent	1	
	avec n et $SO_{3(g)}$ est absent. L'avancement $\xi = \alpha n$, donc à l'équi-		
	libre il reste $(1-\alpha)n$ de $SO_{2(g)}$ et on a produit αn de $SO_{3(g)}$. On		
	en déduit la constante d'équilibre $K^{\circ} = \frac{\alpha}{1-\alpha} \left(\frac{P^{\circ}}{P_{O_2}}\right)^{1/2}$		
40	À partir d'une situation d'équilibre initiale, si on ajoute du dioxy-	1	
	gène P_{O_2} augmente, mais à T fixée $K^{\circ}(T)$ reste constant, donc α		
	augmente. L'ajout de dioxygène permet donc d'optimiser l'oxyda-		
	tion de SO_2 .		
41	on obtient $Q = \frac{n_{SO_3}}{n_{SO_2}} \left(\frac{n_{gaz}^{tot} + dn_{N_2}}{n_{O_2}} \times \frac{P^{\circ}}{P} \right)^{1/2}$	1	
42	A T et P fixée, ceci fait croître Q . Dans la situation initiale il est	1	
	égal à K° donc $Q > K^{\circ}$. Selon le critère d'évolution, $Q \to K^{\circ}$,		
	donc Q diminue on forme des réactifs ce qui nuit à l'oxydation de		
40	SO_2 .	1	
43	L'analyse précédente montre que la présence de N_2 réduit l'oxy-	1	
	dation de SO_2 , l'utilisation de dioxygène pur est donc souhai-		
	table thermodynamiquement. Elle n'est probablement pas utilisée		
	à cause de choix économiques : coût d'élimination du dioxygène comparé à juste une diminution de la température.		
	compare a juste une unimution de la temperature.		