

A filtering framework for Finite Volume / Element schemes

Julia Docampo, Matthew Picklo, Soraya Terrab and Jennifer K. Ryan

Post-processing data with SIAC filters

- **1** Superconvergence: for a DG/FEM solution of degree *p*
 - Proven 2p + 1 order (L^2 and L_{∞} norms) for linear PDEs
 - Observed 2p + 1 order for non-linear PDEs
- **2** Smoothness: the filtered data is a (local) 2p + 1 polynomial
 - Removes oscillations in the error
 - Recovers continuity levels across element interfaces

Applications

Flow visualization
Shock detection
Multiresolution analysis
Cut cells

Post-processing data with SIAC filters

Goal:

- > Establish a filtering framework for general purpose
- > Create a standalone tool for general applications

> Overview of the SIAC kernel

Basis functions, moment preservation and superconvergence

- > Filtering challenges
- > The software package

Overview of the Smoothness-Increasing Accuracy-Conserving (SIAC) filter

We post-process our data via convolution:

$$\mathsf{data}^\star(x) = \int_{\mathbb{R}} \mathbf{K}(y-x) \cdot \mathsf{data}(y) dy$$

SIAC kernel:
$$K^{(r+1,n)}(\cdot) = \sum_{\gamma=1}^{r+1} c_{\gamma} \cdot B_{\tau_{\gamma},n}(\cdot)$$

- > c: kernel weights chosen to maintain r moments
- > $B_{T,n}$: n^{th} -order central **B-spline** with knot sequence **T**

SIAC kernel weights:
$$K^{(r+1,n)} = \sum_{j=1}^{r+1} c_{\gamma} \cdot B_{\tau_{\gamma},n}$$

Filtering principle: preserve the accuracy in the data

Choose the c_{γ} 's to satisfy

$$\int_{\mathbb{R}} K(x) dx = 1, \qquad \int_{\mathbb{R}} K(x) x^j dx = 0, \quad j = 1, 2, \dots, r$$
Consistency + Moment Conditions

This is equivalent to impose polynomial reproduction

$$\int_{\mathbb{R}} K(x-y) \cdot y^j dx = x^j, \quad j = 0, 1, \dots, r$$

To extract 2p + 1 order, the kernel must satisfy 2p moments

SIAC kernel basis functions: $K^{(r+1,n)} = \sum_{\gamma=1}^{r+1} c_{\gamma} \cdot B_{\tau_{\gamma},n}$

Properties:

- ➤ Compact support (smaller integral region)
- \triangleright Smoothness of n-2 (remove oscillations)
- ➤ Derivatives as divided differences (superconvergence theory)

SIAC Kernel: $K^{(r+1,n)}(\cdot) = c_{\gamma} c_{\gamma} B_{\tau_{\gamma},n}(\cdot)$

Polynomial functions: filtering linear data (p = 1)

Docampo, Jacobs, Li, Ryan (CAF 2020)

The SIAC kernel recovers the exact function for the L^2 -projected data!

SIAC filtering: superconvergence for DG solutions

- ✓ Reduces oscillations
- ✓ General error reduction

Post-processing data with SIAC filters

✓ Overview of the SIAC kernel

Moment preservation + B-splines + L^2 -initialization \Rightarrow **provable** 2p+1 **superconvergence**

- Filtering challenges
 Multidimensional data, domain boundaries and kernel scaling
- > The software package

Traditional SIAC filter: tensor product structure

2D data:
$$K = k_x \otimes k_y$$

$$data^{*}(\overline{x,y}) = \frac{1}{h_{x} \cdot h_{y}} \int_{\mathbb{R}} \int_{\mathbb{R}} k_{x}(\overline{x} - x) \cdot k_{y}(\overline{y} - y) data(x,y) dy dx$$

Computation: split integral based on elements and spline breaks

Total number of Integrals

64

196

LSIAC filter: a computationally efficient kernel

Docampo, Mirzargar, Ryan, Kirby (SISC 2017)

2D case:
$$K = k_{\Gamma}$$
,

$$data^{*}(\overline{x,y}) = \frac{1}{h} \int_{\mathbb{R}^{n}} k_{\Gamma}(t) data(\Gamma(t)) dt. \qquad \Gamma = \overline{(x,y)} + h(\cos\theta, \sin\theta)$$

Computation: split integral based on elements and spline breaks

Total number of Integrals

(tensor: 64)

(tensor: 196)

11 / 25

Integral region Mesh

Filters performance: errors for a non-linear equation

Error contours for inviscid Burgers equation with exact solution $u(x, y, t = 1.0) = \sin(x + y - t)$ using 40° elements:

The non-symmetric RKLV (\$1AC) kernel

Ryan, Li, Kirby, Vuik (SISC 2014)

Symmetric filter: equal amount of information from both sides.

What if the filter doesn't fit?

One-sided filters: shift the knot matrix

RKLV kernel: filtering near boundaries

Less effective than the symmetric kernel. Yet increased order and error reduction.

2D advection for p = 4 and 80×80 elements, Ryan, Li, Kirby, Vuik, (SISC 2014).

Flow visualization: filtering (backwards) along streamlines

Docampo (PhD thesis 2017)

Footprint: kernel structure and scaling

Kernel size: determined by the number & order of the B-splines

Theoretical scaling (h) for uniform meshes: element size

Filter performance linked to the underlying geometry

For non-uniform meshes remains an open problem:

- Optimal scaling only found numerically
- In practise: use maximum / local element size

Post-processing data with SIAC filters

✓ Overview of the SIAC kernel

Moment preservation + B-splines + L^2 -initialization \Rightarrow **provable** 2p+1 **superconvergence**

✓ Filtering challenges

Higher dimension: tensor (accuracy) vs. line (CPU efficiency)

Domain boundaries: shifted kernels (accuracy loss) Filter scaling: non-trivial for non-uniform meshes

> The software package

Code structure, geometry and tool capabilities

A standalone tool written in julia

```
Mesh file Data file Filter options = Filtered file
```

```
function filter_data (mesh, data, parameters)
  modes = 12_projection(data)
  kernel = set_kernel(parameters)
  for point in data
        map = find_kernel_breaks(mesh, point, kernel)  # Footprint
        point* = sum( gauss(map, kernel, modes))  # Convolution
  end
end
```

- ➤ Need data file sampled at quadrature points to recover the modal form (12 projection)
- > Most CPU time spent finding the filter footprint

Handling the geometry: the mesh data structure

Task: collect all spline breaks and element interfaces

LSIAC example

$$K^{(3,2)}$$

Sorted knot matrix

$$egin{pmatrix} 2 & -1 & 0 \ -1 & 0 & 1 \ 0 & 1 & 2 \end{pmatrix} \qquad egin{pmatrix} \mathsf{T}_- = (-2, -1) \ \mathsf{T}_+ = (0, 1, 2) \end{pmatrix}$$

```
19 20 21 22

1 12 13 14 15 11 15 6 7 8 11
```

```
for t \in (\mathsf{T}_-, \mathsf{T}_+) do
    x_p = \text{eval point}, \quad e = 13
    for i \in t do
       x_n = k_{dir} \cdot h \cdot i
       S_{pn} = segment(x_p, x_n)
       if x_n \in elmt[e] then
            store(x_n, elmt[e])
           x_p = x_n
       else
            (j, x_p) = intersect(S_{pn}, elmt[13])
            store(x_p, e, elmt[e].neigh[j])
            e = elmt[e].neigh[j] #8
        end if
    end for
end for
```

Examples on non-uniform meshes: quads

Wrapping up: hopefully you will remember...

SIAC filtering: increased smoothness and reduced errors

- \triangleright Optimal superconvergent rate: 2p+1
- > Theory: equations (linearity), mesh type & domain boundaries

Challenging implementation. Our tool currently supports:

Post-processing the DG solution (p=2) to the double Mach reflection problem. Raw data: **Théa Vuik** and **Sora**ya **Terrab**.

Grazas !!

Acknowledgements

Contributors to this talk: Matthew Picklo , Jennifer K. Ryan, Soraya Terrab and Abel Gargallo.

This filtering project is a joint initiative with Jennifer K. Ryan.

This project has received funding from The European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 893378.

