Probability and Statistics

2 - Probability

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

October 13, 2023

Intro

How to determine a probability?

• Eg.: What is the probability p_6 of getting a 6 when you roll a die?

• https://www.randomservices.org/random/apps/Dice.html

Intro

How to determine a probability?

• A tempting approach: roll the dice repeatedly, and if a_n gives the number of successes after n rolls, define:

$$p_6 := \lim_{n\to\infty} \frac{a_n}{n}$$

• But: This is NOT a meaningful definition!

thath.: Civen $\varepsilon > 0$ that exists some $n_{\varepsilon,1} \le 1 \cdot |p_{\varepsilon} - \frac{\alpha_{\eta}}{\eta}| < \varepsilon$ for all $\eta \ge \eta_{\varepsilon}$

Intro

Axiomatic Approach

• A. N. Kolmogorow (1903 - 1987)

Power Sets

Definition (2.1)

Let Ω be a set. The *power set* of Ω is defined by:

$$\mathcal{P}(\Omega) := \{ S \mid S \subseteq \Omega \}$$

Example

The power set of $\Omega = \{0,1\}$ is given by:

$$\mathcal{P}(\Omega) = \{\{0,\lambda\}, \{0\}, \{\lambda\}, \emptyset\}$$

Definition (2.3)

Let Ω be a set and \mathcal{A} be a subset of the power set of Ω :

$$\mathcal{A} \subseteq \mathcal{P}(\Omega)$$

 \mathcal{A} is called a σ -algebra over Ω , if the following holds:

- (i) $\Omega \in \mathcal{A}$
- (ii) $A_i \in \mathcal{A}$ for $i \in \mathbb{N}$ \Longrightarrow $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- (iii) $A \in \mathcal{A} \implies \overline{A} := A^c := (\Omega \setminus A) \in \mathcal{A}$

Example (2.4)

(i) For every set Ω ,

$$\mathcal{A} = \mathcal{P}(\Omega)$$

is a σ -algebra over Ω .

(ii) For every set Ω ,

$$\mathcal{A} = \{\emptyset, \Omega\}$$

is a σ -algebra over Ω .

(iii) For
$$\Omega = \{1, 2, 3\}$$
,

$$\mathcal{A}=\{\emptyset,\{1\},\{2,3\},\Omega\}$$

is a σ -algebra over Ω .

Lemma (2.5)

Let A be a σ -algebra over Ω . Then:

(i)
$$A_i \in \mathcal{A}$$
 for $i \in \mathbb{N} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$

Lemma (2.5)

Let A be a σ -algebra over Ω . Then:

(ii)
$$A, B \in \mathcal{A} \implies A \cup B, A \cap B, A \setminus B \in \mathcal{A}$$

$$(A, B, B, ---) = : (A, A, A, ---)$$

$$-, \quad A \cup B = \bigcup_{i=1}^{n} A_i \quad \in A$$

$$A \cap B = \bigcup_{i=1}^{n} A_i \quad \in A$$

$$A \cup B = \bigcup_{i=1}^{n} A_i \quad \in A$$

Definition (2.6)

Let Ω be a set of possible outcomes of a random experiment and $\underline{\mathcal{A}} \subseteq \mathcal{P}(\Omega)$ be a $\underline{\sigma}$ -algebra. Then Ω is called the <u>sample space</u> of the experiment and \mathcal{A} is the <u>set of events</u> considered in the experiment. For some $x \in \Omega$ it is said that the event $E \in \mathcal{A}$ occurs if and only if $x \in E$.

Remark

If Ω is finite or countable infinite, all subsets of Ω are usually considered to be events, i.e.:

$$\mathcal{A} = \mathcal{P}(\Omega)$$

Example (2.8)

Throwing a die can be considered to be a random experiment with sample space:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

In this example, the subset $A = \{2, 4, 6\}$ of Ω is the event, that an even number has been thrown.

Example (2.9)

Throwing two dice can be considered to be a random experiment with sample space

$$\Omega = \{(i,j) \mid i,j \in \{1,2,3,4,5,6\}\}$$

where i denotes the result from the first die and j the result from the second die. (Assuming that the dice are distinguishable.)

If diec are not disting-inhable
$$\mathcal{D} = \{ \{A_1AS, \{A_1SS, ---, \{S, SS\} \} | \mathcal{D}_1 = \{S \} \} \in \{S \} \}$$

Example (2.10)

Throwing a die, until a specific face, say six, shows up, can be considered to be a random experiment with sample space:

$$\Omega = \mathbb{N}$$

In this example, the subset $A = \{1, 2, 3, 4, 5, 6, 7\}$ of Ω is the event, that six shows up after the die has been thrown for at most seven times.

Example (2.11)

The durations of cell-phone calls can be considered to be samples of a random experiment with sample space:

$$\Omega = [0, \infty)$$

Probability Measures

Definition (2.12)

A probability measure (or simply a probability) is a mapping

$$\mathsf{Pr}:\mathcal{A}\to\mathbb{R}$$

defined on a set of events $\mathcal A$ of a sample space Ω , such that:

- (i) $Pr(A) \geq 0$ for all $A \in A$
- (ii) $Pr(\Omega) = 1$

$$\Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \Pr(A_i)$$

Probability Measures

Theorem (2.13)

Let Pr be a probability measure defined on a set of events A of a sample space Ω and let $A, B, A_i \in \mathcal{A}$ (i = 1, ..., n), then the following statements are true:

(i)
$$Pr(\emptyset) = 0$$
 $Pr(\phi) = Pr(\phi) = Pr(\phi) = \infty$ if $Pr(\phi) \neq 0$

(ii)
$$\Pr\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \Pr(A_{i})$$
 if $A_{i} \cap A_{j} = \emptyset$ for all $i \neq j$

(iii)
$$Pr(A^c) = 1 - Pr(A)$$

$$\Re = A \cup (\Re A) = A$$

$$(iv) A \subset B \implies Pr(A) < Pr(B) = R - A \circ (BA) = Pr(B) = Pr(A) + Pr(BA)$$

(iv)
$$A \subseteq B \implies \Pr(A) \leq \Pr(B)$$
 $\mathcal{B} = A \circ (\mathcal{B} \setminus A) = \Pr(B) = \Pr(A) + \Pr(B \setminus A)$

(vii)
$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$Pr(A \cap B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$Pr(A \cup B) = Pr(A) + Pr(B) + Pr(B)$$

Probability Measures

Theorem (2.13 (viii))

$$\Pr\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\emptyset \neq I \subseteq \{1,2,...,n\}} (-1)^{|I|+1} \Pr\left(\bigcap_{i \in I} A_{i}\right)$$

$$= \sum_{i=1}^{n} \Pr(A_{i}) - \sum_{i_{1} < i_{2}} \Pr(A_{i_{1}} \cap A_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} \Pr(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}})$$

 $-\sum \mathsf{Pr}(A_{i_1}\cap A_{i_2}\cap A_{i_3}\cap A_{i_4})$

 $+\cdots+(-1)^{n+1}\Pr(A_1\cap A_2\cap\cdots\cap A_n)$

11<12<13<14