CS 458: Computer Security and Privacy

Michael Noukhovitch

Spring 2016, University of Waterloo

Notes written from Erinn Atawater's lectures.

Contents

1	Intr	roduction
	1.1	Security
	1.2	Privacy
	1.3	Terminology
	1.4	Types of Defence
		Methods of Defence
2		ogram Security Flaws, faults, and failures
_		Flaws, faults, and failures
		2.1.1 Defintions
		2.1.2 Unexpected Behaviour
	2.2	Unintentional Security Flaws
		2.2.1 Types of Flaws
	2.3	Buffer Overflow
		2.3.1 Definition

1 Introduction

1.1 Security

Security can be defined as:

confidentiality access to systems is limited to authorized

integrity getting the correct data

availability system is there when you want it

1.2 Privacy

There are many definitions but we will stick to **informational self-determination**, where you control the information about you

1.3 Terminology

assets things we want to protect

vulnerabilities weaknesses in a system that can be exploited

threats loss or harm that may befall a system

- interception
- interruption
- modification
- fabrication

threat model set of threats to defend against (who/what)

attack an action which exploits a vulnerability to execute a threat

control removing or reducing a vulnerability

1.4 Types of Defence

Defend against an attack:

- prevent stop the attack from happening
- deter make the attack more difficult
- deflect make it less attractive for attacker
- recover mitigate effects of the attack

Make sure that defence is correct with principles:

- easiest penetration system is only as strong as weakest link
- adequate protection don't spend more on defence than the value of the system

1.5 Methods of Defence

- Software controls: passwords, virus scanner ...
- Hardware controls: fingerprint reader, smart token . . .
- Physical controls: locks, guards, backups . . .
- Policies: teaching employees, password changing rules

2 Program Security

2.1 Flaws, faults, and failures

2.1.1 Defintions

flaw problem with a program

fault a potential error inside the logic

failure an actual error visible by the user

2.1.2 Unexpected Behaviour

A spec will list the things a program will do but an implementation may have additional behaviour. This can cause issues as these behaviours might not be tested and would be hard to test.

2.2 Unintentional Security Flaws

2.2.1 Types of Flaws

- intentional
 - malicious: inserted to attack system
 - nonmalicious: intentional features meant to be in the system but can cause issues
- most flaws are unintentional

2.3 Buffer Overflow

2.3.1 Definition

Most common exploited type of security flaw when program reads or writes past the bounds of the memory that it should use.

Example 2.1. Basic buffer overflow

```
#define LINELEN 1024
char buffer[LINELEN];
strcpy(buffer, argv[1]);
```