Constraint Satisfaction Problem

03/03/2025

Koustav Rudra

Objective

- Problem Formulation
- Problem representation
- Solvers

AI Problem Solvers: Evolution

def solve(State state):
••••••
move(c1, c2) check(solution)
•••••••
•••••••

Brute-Force Approach

Problems:

- Very much problem specific
- Solution developed for one problem will not work for others

AI Problem Solvers: Evolution

def solve(State state):
state.isGoal()
return true
<pre>succ = state.successor()</pre>

Search Algorithms

- Can we have Truly Generic Problem Solvers?
- Yes, but for specific class of problems
 - Constraint Satisfaction Problems
- What are the implications?
 - Make isGoal and successor are problem agnostic
 - Design methods and heuristics: problem agnostic

- Overall Structure: Problem Agnostic
- Still isGoal and successor are problem specific

Revisiting Search Problems

- The world
 - Single agent, deterministic action, fully observable, discrete state
- Planning a sequence of actions
 - Important: Path to goal
 - Paths: varying costs and depths
 - Heuristics to reduce search space
- Identification of goal
 - Goal is important not path
 - All paths are at same depth
 - CSPs are identification problems

Example

Search Formulation:

- 1. Initial state: Nodes with no connection
- 2. Successor Function
 - 1. Add any one edge
 - 2. Next state: Resultant graph
- 3. Goal Test
 - 1. Whether each node has degree equal to the no. attached to the node

Path to Goal important?

Or

Configuration that satisfy certain criteria?

Constraint: Number of outgoing edges

Assignment: On/Off

Jointly all the assignments make sense or not

Combinatorial problem

Goal Identification Problem

Can we define domain independent methods to solve the problem?

Constraint Satisfaction Problems

- Standard search problems:
 - State is problem independent → Arbitrary data structures
 - Goal test: Function of state
 - Problem dependent
 - Successor: Function of state
 - Problem dependent
- Constraint Satisfaction Problems
 - Subset of search problems [Identification Problem]
 - State: $\langle Xi,Di \rangle_N$
 - Goal Test: A set of constraints
 - C1∧C2... ∧Cn
 - Legal combination of values for subset of variables

Constraint Satisfaction Problems

Map Coloring Problem

• No two adjacent states have same color

CSPs: Formulation

- CSPs Problem: <X, D, C>
- State: $X \rightarrow$ set of variables, Domain(Xi) = Di
 - $X = \{X_1, X_2, ..., X_n\}$
 - $D = \{D_1, D_2, ..., D_n\}$
- Goal Test:Set of constraints C
 - Ci = f(X') where $X' \subseteq X$
- Constraint Definition
 - A pair <scope, rel>
 - Scope defines the variables
 - Relation describes interaction among variables in scope
- Example: X_1 and X_2 have domain $\{A, B\}$
 - Constraints: $<(X_1, X_2), [(A,B), (B,A)] > [Explicit]$
 - Constraints: $\langle (X_1, X_2), X_1 \neq X_2 \rangle$ [Implicit]

CSPs: Formulation

- Solution
 - Assignment: Assigning values to some or all variables
 - Consistent Assignment: Does not violate any constraint
 - Complete Assignment: Every variable is assigned a value
 - Solution: Consistent and Complete Assignment
- General purpose algorithms with more power than standard search algorithms

Example: Sudoku

Variables: Each open square

Domain: {1,2,3,4,5,6,7,8,9}

Constraint

- 9 ways all different for columns
- 9 ways all different for rows
- 9 ways all different for regions

Constraint

- <A11 \neq A12, A11 \neq A13,...,A11 \neq A19>
- <A12 \neq A13, A12 \neq A14,...,A12 \neq A19>

Example: Map Coloring

- Variables: {WA, NT, SA, Q, NSW, V, T}
- Domain: {blue, red, green}
- Constraint: Adjacent regions have different colour
 - {WA\neq NT} or
 - (WA, NT) \in {(red, green), (red, blue), ...}

Graphs as Abstraction Tool

Constraint Graph

Binary CSP:

• constraints involve atmost two variables

Binary Constraint Graph:

- Nodes → Variables
- Arcs \rightarrow Constraints
- Claim: CSP algorithms with graph to speed up search
- Generic solvers
 - Abstraction through constraints

CSP Variations: Variables

• Discrete variables

- Finite domains
 - n variables, domain size d \rightarrow O(d^n) complete assignments
 - Example: Boolean CSP, 3-SAT
 - Worst case: Exponential size

• Infinite domains

- Integer, string
- Example: Job scheduling [start/end days for job]
- Constraint Language: start job1 + 10 < start job2

Continuous variables

- Start/End times of Hubble Space Telescope observations
- Linear programming problems

CSP Variations: Constraints

- Unary constraints single variables
 - SA ≠ green
- Binary constraints
 - $SA \neq WA$
- Higher order constraints 3 or more variables
 - Cryptarithmetic
- Soft Constraints
 - Prof. A prefers to have classes in second half
 - Optimization + CSP
 - Every solution has some values [greater if preferences are kept]

Т

CSP as Search Problem

- Initial State
 - Empty assignment {}
- Successor Function
 - Assign a value to any unassigned variable without conflict w.r.t previously assigned variables
- Goal Test
 - Current assignment complete?
- Path Cost
 - Constant cost for every step

- Incremental Formulation
- Every solution appears at depth n if there are n variables
- Search tree extends upto depth n
- Depth first search algorithms for CSP

Backtracking Search

- Do not proceed down if constraint is violated
- Backtracking search: Uninformed algorithm for CSP
- CSP is commutative
 - Order of actions does not affect the outcome
 - [SA=red then Q=green] same as [Q=green then SA=red]
- CSP can also generate successors by considering assignment for a single variable (Independence)
 - d^n unique values
- Check constraints on the go

Backtracking Search

- Expand
 - Pick a single variable to expand
 - Iterate over domain value
- Process one children
 - One children per value
- Backtrack
 - Conflicting assignment

NT

Making Backtracking more efficient

• General uninformed search facilitates huge speed gain

Ordering

- Which variable to assigned next?
- What would be the order of values?
- Filter
 - Can we detect failures early?
- Can we exploit problem structure?

Backtracking Search: Filtering

- Filtering: Take stock of the unassigned variables and filter out the bad options
- Forward checking: Cross off values that violate a constraint when added to existing assignment

Т

Constraint Propagation: Arc Consistency

• An arc $X \rightarrow Y$ is consistent iff $\forall x$ in the tail $\exists y$ in the head which could be assigned without violating any constraint

Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc consistency of CSP

• A CSP is consistent iff all the arcs are consistent

If a variable X loses a value, neighbors of X should be rechecked

Arc consistency detects failure before forward checking

- Is $V \rightarrow NSW$ consistent?
 - (Red, Blue), (Green, Blue), (Blue, Red)
- Is SA \rightarrow NSW consistent?
 - (Blue, Red)
- Is NSW \rightarrow SA consistent?
 - (Blue, ---)

Change in one variable affects the other Constraints get propagated

- How to make NSW \rightarrow SA consistent?
 - Remove blue from NSW
 - Always delete from the tail
- Is $V \rightarrow NSW$ consistent?
 - (Red, ---)

Arc consistency of CSP

- function AC-3(csp) returns CSP with reduced (possibly) domains
 - queue ← All the arcs in csp
 - while queue is not empty do
 - $(X_i, X_i) \leftarrow \text{REMOVE-FIRST(queue)}$
 - if REMOVE-INCONSISTENT-VALUES(X_i, X_i) then
 - for each X_k in NEIGHBORS[X_i] do
 - $add(X_k, X_i)$ to queue

Complexity: $O(n^2d^3)$

- function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true if succeeds
 - removed ← False
 - for each x in DOMAIN[X_i] do
 - If no value in y in DOMAIN[X_i] allows (x,y) to satisfy the constraint $X_i \rightarrow X_i$ then
 - Delete x from DOMAIN[X_i]
 - removed \leftarrow true
 - return removed

Each node has limited number of assignments

Arc Consistency: Limitations

- After enforcing arc consistency
 - Can have one solution left
 - Can have multiple solution left
 - Can have no solution left (unaware)

Thank You