AMENDMENTS TO THE CLAIMS

- 1. (Canceled)
- (Currently Amended) The electronic circuit comprising:

 a central processing unit having a clock connection for receiving a first
 clock and a data connection;

a peripheral unit having a clock connection and a data connection; synchronization means comprising a first and a second data connection, said first data connection being connected to said data connection of said peripheral unit; and

a data bus being connected to said data connection of said central processing unit and to said second data connection of said synchronization means,

wherein said central processing unit, said peripheral unit, said synchronization means and said data bus are arranged on a common chip card having two external connection devices being arranged to be connectable to two corresponding contact connections of a terminal, a first of said external connection devices being connected to said clock connection of said peripheral unit and the second of said external connection devices being connected to said clock connection of said central processing unit so that the peripheral unit receives a second clock which is <u>independent different</u> from the first clock, and so that a ratio between a clock frequency of the first clock and a clock frequency of the second clock is irrational.

3. (Currently Amended) The electronic circuit according to claim [[1]] 18, wherein said central processing unit, said peripheral unit, said synchronization means, said data bus and said oscillator are arranged on a common chip card, and wherein said clock connection of said peripheral unit is connected to said signal output of said controllable oscillator.

Docket No.: S0193.0008

4. (Currently Amended) The electronic circuit according to claims [[1]] 18, wherein said central processing unit, said peripheral unit, said data bus, said controllable oscillator and said synchronization means are integrated into an integrated circuit.

- 5. (Currently Amended) The electronic circuit according to claim [[1]] 18, further comprising: controlling means having a control output, said control output being connected to said control input of said controllable oscillator, and said controlling means being arranged to control said controllable oscillator depending on a control parameter.
- 6. (Previously Presented) The electronic circuit according to claim 5, wherein said controlling means is arranged to control said controllable oscillator depending on energy available for said electronic circuit such that the energy available for said electronic circuit is distributed to the peripheral unit and the central processing unit.
- 7. (Currently Amended) The electronic circuit according to claim [[1]] 18, wherein said controllable oscillator is controllable to provide an output signal at a signal output, the frequency of which is faster than a frequency of a clock signal which can be fed to said clock connection of said central processing unit.
- 8. (Currently Amended) The electronic circuit according to claim [[1]] 18, wherein said controllable oscillator is controllable to provide an output signal, the frequency of which has no common divisor with a frequency of a clock signal which can be fed to said clock connection of said central processing unit.
- 9. (Currently Amended) The electronic circuit according to claim [[1]] 18, being embodied as a cryptography controller.

Docket No.: S0193.0008

Application No. 10/723,432 Docket No.: S0193.0008

10. (Currently Amended) The electronic circuit according to claim [[1]] 18, wherein said peripheral unit is one of a coprocessor for cryptographic algorithms including an asymmetrical encrypting or a symmetrical encrypting, a hash module, or a random generator.

- 11. (Currently Amended) The electronic circuit according to claim [[1]] 18, comprising a plurality of peripheral units, each peripheral unit being connectable to a separate controllable oscillator, or wherein clock signals with frequencies are fed to various of said plurality of peripheral units, these frequencies being derived from said controllable oscillator.
- 12. (Previously Presented) The electronic circuit according to claim 11, wherein a separate task is associated to each peripheral unit, the tasks being selected from a group including computing a modular multiplication, a modular addition, a hash value computation, an RSA encrypting, an encrypting based on elliptical curves, an encrypting according to the DES standard, a data exchange with a terminal, forming random numbers or checking safety-critical parameters.
- 13. (Currently Amended) A method of controlling an electronic circuit having a central processing unit (CPU) and a peripheral unit being connected to each other via a data bus, wherein said central processing unit and said peripheral unit are arranged on a common chip card, comprising:

clocking said central processing unit by a first clock <u>using an external</u> connection device of the common chip card, being arranged to be connectable to a corresponding contact connection of a terminal;

clocking said peripheral unit by a second clock <u>using a controllable</u> <u>oscillator of the electronic circuit, the controllable oscillator being controlled independent from the first clock which is different from the first clock, so that a ratio between the clock frequency of the first clock and the clock frequency of the second clock is irrational; and</u>

synchronizing data transmitted between said central processing unit and

said peripheral unit via said data bus.

14. (Currently Amended) The electronic circuit according to claim [[1]] 18, wherein said clock connection is connected to the signal output of the controllable oscillator-or to the external clock input, so that the second clock is adjustable such that the second clock is — irrespective of the unit used for representing the frequencies of

the first and the second clocks — relatively prime with respect to the first clock.

15. (Canceled)

16. (Currently Amended) An electronic circuit according to claim 18.

further comprising:

a central processing unit having a clock connection for receiving a first clock and a data connection;

a peripheral unit being a cryptography coprocessor and having a clock connection and a data connection, said clock connection being connected to a signal output of a controllable oscillator, so that the peripheral unit receives a second clock which is different from the first clock and whose clock frequency is independent from the first clock;

synchronization means comprising a first and a second data connection, said first data connection being connected to said data connection of said peripheral unit:

a data bus being connected to said data connection of said central processing unit and to said second data connection of said synchronization means; and

a controlling means being arranged to control said controllable oscillator depending on energy available for said electronic circuit such that the energy available for said electronic circuit is distributed to the peripheral unit and the central processing unit, and a computing speed with the energy available for said electronic circuit is maximized.

Docket No.: S0193.0008

Docket No.: S0193.0008

- 17. (Canceled)
- 18. (Currently Amended) [[The]] <u>An</u> electronic circuit-according to claim

 1. comprising:

<u>a central processing unit having a clock connection for receiving a first</u> <u>clock and a data connection;</u>

a peripheral unit having a clock connection and a data connection;

synchronization means comprising a first and a second data connection,

said first data connection being connected to said data connection of said peripheral
unit; and

<u>a data bus being connected to said data connection of said central</u>

<u>processing unit and to said second data connection of said synchronization means,</u>

wherein said central processing unit, said peripheral unit, said synchronization means, said data bus and said oscillator are arranged on a common chip card, said clock connection of said peripheral unit is connected to said signal output of said controllable oscillator, said clock connection of said central processing unit is coupled to an external connection device being arranged to be connectable to a corresponding contact connection of a terminal, and said controllable oscillator being controlled independent from the first clock.