Assignment 1 – K-Means (Sub-Optimal)

Problem Statement:

You work in XYZ Company as a Python developer. The company officials want you to write code for a clustering problem. Dataset: customers.csv

Tasks To Be Performed:

- 1. K-Means Clustering:
- Load customer data
- Check the number of cells in each column with null values
- Create a scatter plot with Age as X and Spending Score as Y
- Draw a scatter plot displaying data points colored on the basis of clusters
- import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline
 import seaborn as sns
 from sklearn.cluster import KMeans
 import warnings
 warnings.filterwarnings('ignore')
- In [2]: df = pd.read_csv(r"csv files/customers.csv")

Out[2]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows × 5 columns

In [3]: df.isna().sum()

Out[3]: CustomerID 0
Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

In [4]: sns.scatterplot(x=df['Age'], y=df['Spending Score (1-100)'])

In [5]: f1 = df['Age'].values
f2 = df['Spending Score (1-100)'].values

In [6]: X = np.array(list(zip(f1, f2)))

In [7]: k = 3 #No. of cluster
kmeans = KMeans(n_clusters=k)
kmeans.fit(X)

Out[7]: ▼ KMeans

KMeans(n_clusters=3)

In [8]: labels = kmeans.predict(X)
 centroids = kmeans.cluster_centers_
 print(centroids)

[[29.56451613 80.74193548] [42.95744681 14.59574468] [43.05494505 47.78021978]]

In [9]: #Scatter plot
for i in range(k):

 $plt.scatter(f1[labels == i], f2[labels == i], s=7, label=f'Cluster {i}') # Scatter plot for each cluster$

plt.scatter(centroids[:, 0], centroids[:, 1], marker='*', c='black', s=100, label='Centroids') # Centroids
plt.legend()
plt.show()

