Throw Down an Al Challenge

Todd W. Neller, Gettysburg College Ingrid Russell, University of Hartford Zdravko Markov, Central Connecticut State University

Beginnings

- Recall your introduction to CS.
- Which experiences attracted your interest?
- Which dialog is more likely?
 - "I was really excited to be able to print different patterns of asterisks on the screen. And that Fibonacci sequence assignment... Wow!"
 - "I remember programming a text adventure. My code was a mess in retrospect, but I really enjoyed the accomplishment."

Lessons from Game Al and Fitness Coaching

- The goal of Al and Game Al differs significantly:
 - Al researchers: play optimally so as to win maximally, or play humanly so as to build better cognitive models.
 - Game Al developers: play engagingly so as to push the human opponents to their best play... and yet lose to them.
- Weight training: Lift so as to stress and build muscle, but do not lift to failure.

Throw Down a Challenge

- Dale Carnegie: "throw down a challenge"
- Students more likely to pursue CS if early challenges are relevant, exciting, and/or interesting.
- Such challenges should be
 - difficult enough to engage
 - not so difficult to lead most students to failure/loss.
- How can Al play a part in engaging students early?

A New Perspective on Al

- Al the really interesting miscellaneous pile of Computer Science
 - Control beyond classical Control Engineering ->
 Robotics
 - Knowledge beyond Database expressivity >> Knowledge Representation & Reasoning
- If it takes intelligence and doesn't fit elsewhere...
- Al can give intro students a vision of the expansive possibilities of CS!

MLEXAI

- Machine Learning Experiences in AI (MLExAI)
 - NSF grant DUE CCLI-A&I Award Number 0409497
- Goals:
 - Enhance the student learning experience in the AI course.
 - Increase student interest and motivation to learn AI.
 - Introduce students to an increasingly important research area, thus motivating them to pursue further study.
 - Increase student interest and motivation to build AI applications by allowing them to develop learning systems where they can implement the various concepts covered in the AI course.
- Developed six adaptable, hands-on laboratory projects that can be closely integrated into a one-term AI course
- Phase 2 underway with 20 faculty members contributing

Project: The Game of Clue

- Popular boardgame Clue (a.k.a. Cluedo) serves as a fun focus problem
 - Learn fundamentals of propositional logic and KR&R terminology
 - Solve basic logic problems with and without the aid of a satisfiability solver
 - Implement expert reasoner for deducing Clue case file contents.
 - Several possible advanced projects as well

Minimalist Introduction to Logic

- Build on what they know: Boolean variables
 → atomic sentences
- Propositional logic allows simple yet rich discussion of logic, e.g.:
 - atomic sentences, operators, literals, truth assignments, (un)satisfiability, models, validity, tautologies, entailment, and logical equivalence.
- Project materials feature brief introduction

Example Problem

- Amy says, "Bob is a liar." Bob says, "Cal is a liar." Cal says, "Amy and Bob are liars." Who is telling the truth?
- {A⇔¬B, B⇔¬C, C⇔(¬A∧¬B)}
- Conjunctive Normal Form: {{¬A,¬B}, {B,A}, {¬B,¬C}, {C,B}, {¬C,¬A}, {¬C,¬B}, {A,B,C}}
- Project features set of propositional logic word problems
- Conversion to CNF by instructor?

Satisfiability Reasoning

- Student project feedback:
 - Reasoning "black box" unsatisfactory
 - Student desire to implement reasoner
- How many lines of code would it take to implement a simple...
 - ... stochastic local satisfiability search?
 - ... resolution theorem prover?
- Answer: ~100 lines of Java code each

Input Format

- CNF: {{¬A,¬B}, {B,A}, {¬B,¬C}, {C,B}, {¬C,¬A}, {¬C,¬B}, {A,B,C}}
- Corresponding input file format:

```
-1 -2
1 2
-2 -3
2 3
-3 -1
-3 -2
3 1 2
```

Simple WalkSAT Variant

- Generate a random model
- Find all unsatisfied clauses for the model
- iterations = 0
- While there are unsatisfied clauses and iterations < max:
 - Pick a random variable of a random unsatisfied clause and negate it in the model
 - Find all unsatisfied clauses for the new model
 - If more clauses are unsatisfied then revert to the previous model with high probability p
 - iterations = iterations + 1
- Return whether or not clauses are still unsatisfied

Simple Set of Support

- While no contradiction derived
 - Pick the next clause c2 in the support set
 - For each clause c1 before c2:
 - Attempt to resolve c1 and c2, adding result to support set if successful, checking for contradiction

Resolution:

- Seek complementary literal in each clause pair
- For resolved clause, omit
 - Tautologies (contains complementary literals)
 - Subsumed clauses

Project: Solving the Dice Game Pig

- Using the computation of optimal play for the jeopardy dice game
 Pig as a central challenge problem, we introduce:
 - dynamic programming, with worked examples, and relevant exercises
 - value iteration, with worked example and exercises
 - several possible advanced projects

Best Pedagogical Games

- The best games for teaching
 - Have interesting play, non-trivial decisions
 - Simple rules with few exceptions: easy to learn, requiring little code

Examples:

- Solitaire deterministic: Peg Solitaire, Lunar Lockout, SameGame, Minesweeper
- Two player deterministic: Nim, Checkers, Hex
- Two player bluff: Liar's Dice, Simplified Poker
- Jeopardy: Blackjack, Pig

Pig Rules

- The first player reaching 100 points wins.
- On each turn, a player rolls a die as many times as desired until either the player holds and scores the sum of the rolls, or rolls a 1 and scores nothing.


```
// Initialize variables
while () { // Turn not over
    // Roll die
    if () { // 1 rolled
        // Reset turn total and end turn
    else (
        // Add roll to turn total
```



```
Random random = new Random();
int turnTotal = 0:
boolean pigRolled = false;
while (!pigRolled && turnTotal < 20) {</pre>
    int roll = random.nextInt(6) + 1;
    System.out.println("Roll: " + roll);
    pigRolled = (roll == 1);
    if (pigRolled)
        turnTotal = 0;
    else
        turnTotal += roll:
System.out.println("Score gain: " + turnTotal);
```

Bottom-Up Design

- Simulate a single hold-at-20 turn.
- Given the current score, additionally hold at goal score
- Simulate solitaire game with hold-at-20-orgoal
- Extend to two-player game simulation
- Replace one hold-at-20-or-goal player with a human player.

Object Oriented Design

- Objects:
 - Game
 - Die
 - Player
 - Human player
 - Computer player

Competition

- Such assignments lend themselves to interesting follow-on possibilities:
 - Policy design: Beat hold-at-20-or-goal
 - Design evaluation: Monte Carlo simulation
 - Fun competition: Interface implementation
- Hook: An optimal policy has been computed.
 Want to know how it's done? → Pig project

More MLExAl Projects

- More MLExAI projects exist:
 - Web User Profiling and Web Document Classification
 - Character Recognition Using Neural Networks
 - Solving the N-Puzzle Problem
 - And more in phase 2!
- More introductory challenges in paper

Conclusion

- Key engaging learning experiences are:
 - Challenging (but not overly challenging)
 - Relevant, exciting, interesting
- Al opens doors to possibilities beyond databases, networking, etc.
- Al's challenge: intro-level assignments
 - Engage with difficult play but do not defeat
 - Stress but do not tear mental muscle