Prof. Dr. Andreas Wipf Dr. Luca Zambelli

Problems in Advanced Quantum Mechanics

Problem Sheet 5

Problem 11: Clebsch-Gordan coefficients

6 points

1

Consider a system composed of two subsystems with angular momenta $j_1 = 1$ and $j_2 = 1$. The z-components of these angular momenta are denoted by m_1 and m_2 . The states of the total system are characterized by the total angular momentum j and corresponding magnetic quantum number m. Compute the Clebsch-Gordan coefficients for the quantum numbers given in the following tables (the cases m = 0 and m = 1) and in addition for m = 2.

m=0	j=2	j = 1	j = 0
$m_1=1, m_2=-1$	AIJA.	1/12	11/3
$m_1 = 0, m_2 = 0$	12/137	0	-1/13
$m_1 = -1, m_2 = 1$	1110	-1/1/21	11/37

m=1	j=2	j = 1
$m_1=1, m_2=0$	1/121	1/12
$m_1 = 0, m_2 = 1$	1/12	-1/127

Hint: Use both the normalization condition and the recursive formulas given in the lectures for the Clebsch-Gordan coefficients.

Problem 12: Coupling of three angular momenta

2+2=4 points

Consider the eigenvectors of the total angular momentum

$$\boldsymbol{J}=\boldsymbol{J}_1+\boldsymbol{J}_2+\boldsymbol{J}_3,$$

where the individual angular momenta are all 1. An eigenvalue of J^2 is written as $\hbar^2 j(j+1)$.

- 1. What are the possible values of j? How many linearly independent eigenstates belong to each possible value of j?
 - Hint: the tensor product and the direct sum are associative and the tensor product distributes over the direct sum, $\mathfrak{h}_1 \otimes (\mathfrak{h}_2 \oplus \mathfrak{h}_3) = (\mathfrak{h}_1 \otimes \mathfrak{h}_2) \oplus (\mathfrak{h}_1 \otimes \mathfrak{h}_3)$
- 2. Construct the state with j = 0 explicitly. If a, b and c are vectors in \mathbb{R}^3 , then there is one multilinear scalar, namely $a \cdot (b \times c)$. Find a connection between this fact and your result for the state with j = 0.

Hint: you may use the relation between cartesian and spherical components of a vector given in the lecture.

Submission date: Thursday, 23. November 2017, before the lecture begins