

Fault Tolerant Runtime Research @ ANL

Wesley Bland
Joint Lab for Petascale Computing Workshop
November 26, 2013

Brief History of FT

- Checkpoint/Restart (C/R) has been around for quite a while
 - Guards against process failure
 - Won't talk too much about this
- Algorithm Based Fault Tolerance (ABFT)
 - Spawned a new class of "naturally fault-tolerant" applications (linear algebra, Monte Carlo, etc.)
 - Requires libraries to be fault tolerant as well
 - FT-MPI
 - MPI/RT
- Soft Errors cause silent incorrect answers (cosmic rays, overheating, etc.)
 - Sometimes they're caught by ECC checking, other times not.
 - Don't cause process failures, but may require handling anyway
- Some FT methods are trying to handle everything at once
 - Containment domains

Overview

- Process Fault Tolerance Work
 - MPI-3
 - MPI-<next>
- Soft Errors
 - GVR / LRDS
 - VOCL-FT
- Future Work

Process Fault Tolerance Pre-MPI-3

- Process failure -> Application Failure
- Few implementations support MPI_Errhandlers
 - Previous Work:Checkpoint-on-Failure

Process Fault Tolerance MPI-3

- Still no explicit FT
- New non-collective communicator creation
 - MPI_COMM_CREATE_GROUP
 - Provides a functionally complete FT model
 - Expensive to use

MPIXFT

- Proof of concept for FT in MPI3.0
- Virtualize MPI objects
- Transparently map "virtual" user objects to "physical" objects

MPIXFT

- Add transparent metadata to MPI objects and cache when used
- Because (almost) everything has a NB equivalent, we can do notification
- Communicators are rebuilt via MPI_COMM_CREATE_GROUP

MPI_COMM original

MPI_COMM current
Ranks table
Notification request

MPIXFT Early Results

- MCCK Mini-app
 - Domain decomposition communication kernel
 - Each process has 4
 outstanding requests at a time
- Up to 256 nodes

MCCK Mini-app

Wesley Bland, Argonne National Laboratory

Failure-free Ring

- Non-blocking ring test
 - More tokens taxes request caching system
 - Extreme case with lots of outstanding requests
- 10 nodes

Process Fault Tolerance MPI-<next> (User Level Failure Mitigation)

- Enable application-level recovery by providing minimal FT API to prevent deadlock and enable recovery
- Don't do recovery for the application, but let the application (or a library) do what is best.
- Only handling process failures currently

ULFM Overview

- Failure Notification
 - Error codes
 - New API for getting group of failed processes
- Failure Propagation
 - Local notification
 - New API for notifying other processes
- Failure Recovery
 - Point-to-point
 - Nothing required
 - Wildcard
 - New API to re-enable MPI_ANY_SOURCE
 - Communicator
 - New API to create communicator without failed processes

ULFM Mechanisms

- Minimal API
 - 5 main functions
- Encourages FT libraries to sit on top of MPI and provide high level recovery abstractions

Failure Notification Failure Propagation Failure Recovery MPI_Send MPI_Send MPI_Send Recv(1) Failed Revoked Revoked Revoked Revoked Revoked Recv(0) Send(2) Recv(0) Send(2)

ULFM Continued

- RMA Windows & Files must be recreated after failures
- Minimal additions to encourage FT libraries rather than direct usage
 - Doesn't restrict use cases
- Reference implementation complete
 - MPICH implementation in progress
- Standardization in progress

Application

Checkpoint/ Restart

Uniform Collectives

Others

FAILURE_ACK | REVOKE |
SHRINK | AGREE

MPI

Soft Errors GVR (Global View Resilience)

Parallel Computation proceeds from phase to phase logical versions

Rollback & re-compute if uncorrected error

Phases create new logical versions

App-semantics based recovery

- Multi-versioned, distributed memory
 - Application commits "versions" which are stored by a backend
 - Versions are coordinated across entire system
- Different from C/R
 - Don't roll back full application stack, just the specific data.

Soft Errors LRDS (Local Reliable Data Storage)

- Backend data store for GVR
- Provides versioning across all kinds of storage
 - In-memory
 - NVRAM
 - Disk
- Uses dirty-bit tracking to create deltas between versions

Soft Errors **VOCL: Transparent Remote GPU Computing**

- Transparent utilization of remote GPUs
- Efficient GPU resource management:
 - Migration (GPU / server)
 - Power Management: pVOCL

VOCL Model

Efficient Virtualization of Accelerators with VOCL

Migration Overhead

- P Lama, Y Li, AM Aji, P Balaji, JS Dinan, S Xiao, Y Zhang, W Feng, RS Thakur, and X Zhow. "pVOCL: power-aware dynamic placement and migration in virtualized GPU environments". In ICDCS 2013.
- S Xiao, P Balaji, JS Dinan, Q Zhu, RS Thakur, S Coghlan, H Lin, G Wen, J Hong, and W Feng. "Transparent accelerator migration in a virtualized GPU environment". In CCGrid 2012.
- S Xiao, P Balaji, Q Zhu, RS Thakur, S Coghlan, H Lin, G Wen, JH Hong, and W Feng. "VOCL: an optimized environment for transparent virtualization of graphics processing units". In InPar 2012.

Soft Errors VOCL-FT (Fault Tolerant Virtual OpenCL)

Synchronous Detecting Model

Asynchronous Detecting Model

VOCL-FT: Single and Double Bit Error Detection Overhead

Wesley Bland, Argonne National Laboratory

Future Work Performance Faults

- What is the effect of a noncatastrophic error on performance?
 - Link failure
 - Corrected memory failures
- Is it better to mask these faults or perform a recovery action?

Unbalanced

