CSci 423 Homework 4

Due: 12:30 pm, Thursday, 10/10/19 Daniel Quiroga

- 1. (1, 6, 2 points) Determine whether or not the following languages are regular. Justify your answers with proofs.
 - (a) $L_1 = \{0^n 1^n \mid n \ge 0\} \cup \{0^n 1^m \mid m, n \ge 0\}$

The first language is a subset to the second language. Therefore the union would depend on the second. The second language can be written as 0*1* in RE therefore the language is regular.

(b) $L_2 = \{0^n 1^n \mid n \ge 0\} \cup \{0^n 1^{n+2} \mid n \ge 0\}$

From the class notes, we know that the left side is non-regular. The second one can be dispproved using the pumping lemma

Assume the language is a RL, Then PL apples to the language.

There exist a constant P

select $s = 0^P 1^{P+2}$ which is an element of the language and has length greater than (or equal to P).

$$= 0..0(p length)1..1(P + 2 length) = xyz$$

where
$$|y| > 0$$
, $|xy| \le p$, $xy^i z \in L$ for any $i > 0$

say xy is in the first block of O if we set i = 1000..0 (infinite), then there will be a string that has more Os than 1s and thus would be a contradiction. meaning that the second language is non-regular.

since we know that there will always be a definite amount of 0^n and the union would accept either 1^n or 1^{n+2} amount of 1s. we can say that the union of these two languages will also be non-regular since whichever case is chosen the language can be disproven using the pumping lemma either from class or above.

(c) $L_3 = \{0^m 1^n \mid 0 \le m \le 50 \text{ and } n \ge 100\}$

 L_3 can be written as $(\varepsilon \ U \ 0 \ U \ 000 \ U ... U \ 0^{50})1^{100}(1)^*$ there it is regular since it can be written as a RE.

Collaborators: Ethan Young, Will Elliot and Yang Zhang

- 2. (3, 6 points) Consider the following similarly defined languages.
 - (a) Let $B = \{1^k w \mid w \in \{0,1\}^* \text{ and } w \text{ contains at least } k \text{ 1s, for any } k \geq 1\}$. Prove that B is a regular language by giving its simple regular expression. $1^k (0^*1)^k (0U1)^*$
 - (b) Let $C = \{1^k w \mid w \in \{0,1\}^* \text{ and } w \text{ contains at most } k \text{ 1s, for any } k \geq 1\}$. Prove by the pumping lemma that C is not regular.

Assume the language is a RL, Then PL apples to the language.

There exist a constant P, where P = k - 1

select $s = 1^P w$ which is an element of the language and has length greater than (or equal to P).

$$= 1..1 (P length)w (at most has P 1s) = xyz$$

where
$$|y| > 0$$
, $|xy| <= p$, $xy^iz \in L$ for any $i >= 0$

consider y = 1 and z = w. If we choose i = 3. The string xy^3z would yield a string that would have more 1s in the first block of 1s and the string in z would never be able to match that same number of 1s therefore the string would not be able to be accepted by the language and thus is a contradiction to the pumping lemma.

Collaborators: Ethan Young, Will Elliot and Yang Zhang

3. (6 points) Let $\Sigma = \{0, 1, +, =\}$ and

$$ADD = \{x = y + z \mid x, y, z \text{ are binary numbers and } x \text{ is the sum of } y \text{ and } z\}.$$

For example, $110 = 01 + 101 \in ADD$. Prove by the pumping lemma that ADD is not regular. (Hint: Select a string, where x = z and y = 0.)

Assume the language is a RL, Then PL apples to the language.

There exist a constant P

select $s = 1^P = 0 + 1^P$ which is an element of the language and has length greater than (or equal to P). = 1..1(plength) = 0 + 1..1(plength) = xyz where |y| > 0, |xy| <= p, $xy^iz \in L$ for any i >= 0

say $y = 1^+$ and we set i = 0 then the string xy^0z would be $1^{P'} = 0 + 1^P \notin ADD$ (P' < P) A contradiction

Collaborators: Ethan Young, Will Elliot and Yang Zhang

4. (6 points) Prove by the pumping lemma that $B = \{vgv \mid v, g \in \{0, 1\}^+\}$ is not regular. Note that $\{0, 1\}^+ = \{0, 1\}^* - \varepsilon$. (Hint: Select s = v1v for some simple string v.)

Assume the language is a RL, Then PL apples to the language.

There exist a constant P

select $s = 0^p 10^p$ which is an element of the language and has length greater than (or equal to P).

= 0..0(plength)10..0(Plength) = xyz

where |y| > 0, $|xy| \le p$, $xy^i z \in L$ for any i > 0

consider $x = 0^{P-k}y = 0^k$ say we set i = 0 then we would have xy^0z would be $0^{P'}10^P \notin ADD$ (P' = P - k < P) A contradiction

Collaborators: Ethan Young, Will Elliot and Yang Zhang