Decision Tree Algorithm

The **decision tree** is a very specific type of probability tree that enables you to plan about some kind of process. It is used to break down complex problems or branches. Each branch of the decision tree could be a possible outcome.

- Supervised
- Classification/Regression
- Information Gain (IG)
- Entropy
- Gini Index

5 October 2024

Tree in Data Structure

A decision tree is a particular type of probability tree that enables you to decide about some kind of process. It is used to break down complex problems or branches. Each branch of the decision tree could be a possible outcome.

Explanations:

- Root: The top node (A) from which all other nodes descend.
- Parent Node: A node with child nodes (B is the parent of D).
- Child Node: A node that is a descendant of another node (D is a child of B).
- Siblings: Nodes with the same parent (F and G are siblings).
- Leaf Node: A node with no children (G, F, E, H, and I).
- **Sub-tree:** A part of the tree that can be considered its tree (the subtree rooted at D).

Problem Statement:

Class

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

Solving Logarithms:

1. Direct Evaluation:

If the argument of the log is a power of the base, directly evaluate.

• Example: $\log_2 8 = 3$ because $2^3 = 8$.

2. Base Change Rule:

To change the base of a logarithm, use the formula:

 $\log_b a = rac{\log_c a}{\log_c b}$, where c is any positive number.

$$ullet$$
 Example: $\log_2 10 = rac{\log_{10} 10}{\log_{10} 2} = rac{1}{\log_{10} 2}.$

3. Product Rule:

The log of a product is the sum of the logs:

$$\log_b(MN) = \log_b M + \log_b N.$$

• Example: $\log_2(3 \times 4) = \log_2 3 + \log_2 4$.

Solving Logarithms:

4. Quotient Rule:

The log of a quotient is the difference of the logs:

$$\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N.$$

• Example: $\log_2\left(\frac{6}{3}\right) = \log_2 6 - \log_2 3$.

5. Power Rule:

The log of a power is the exponent times the log of the base:

$$\log_b(M^k) = k \cdot \log_b M.$$

• Example: $\log_2(8^2) = 2 \cdot \log_2 8 = 2 \cdot 3 = 6$.

6. Inverse Rule:

The base raised to the log of a number is just the number:

$$b^{\log_b a} = a$$
.

ullet Example: $2^{\log_2 9}=9$.

Wear Jacket?					
No 4 times					
Yes	3 times				

$$IG(Y,X) = E(Y) - E(Y|X)$$

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Gini index =
$$1 - \sum_{i=1}^{n} p_i^2$$

E(Y) = Entropy Before Partition E(Y|X) = Entropy After Partition Target, E(Y) >> E(Y|X)

Entropy Before Partition:

Entropy of Wear Jacket:

- = Entropy (4, 3) = Entropy (- (Pi log₂ Pi) + (- Pi log₂ Pi))
- = $(-4/7 \log_2 4/7) + (-3/7 \log_2 3/7)$ = $(-.57 \log_2 .57) + (-.43 \log_2 .43)$
- = .985 (Entropy Before Partition)

Explanation:

- It starts with "Entropy (4, 3)," which indicates that there are two outcomes with 4 occurrences of the first outcome and 3 of the second.
- The formula for entropy used is $-\sum (p_i \log_2 p_i)$, where p_i represents the probabilities of the different outcomes.
- \bullet The probabilities are calculated as fractions of the total occurrences: 4/7 and 3/7 .
- The entropy is then computed as $-((4/7)\log_2(4/7) + (3/7)\log_2(3/7))$.
- It simplifies further to $-0.57\log_2.57$ for the first term and $-0.43\log_2.43$ for the second term.
- The final numerical result is given as .985, which is labeled as "(Entropy Before Partition)."

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Outlook
E (Outlook, Sunny) =
-(1/4 log ₂ ¼ + ¾ log ₂ ¾)
= .812
E (Outlook, Cloudy) =
-(2/3 log ₂ 2/3 + 1/3 log ₂ 1/3)
= .918
Info Gain (S, Outlook) =
E(S) - (4/7 * .812) - (3/7 * .918)
= .985 - (4/7 * .812) - (3/7 * .918)
= .127

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Temperature
E (Temperature, Cold) = -(1/4 log ₂ ¼ + ¾ log ₂ ¾) = .812
E (Temperature, Warm) = -(0/3 log ₂ 0/3 + 3/3 log ₂ 3/3) = 0.00
Info Gain (S, Temperature) = E(S) – (4/7 * .812) – (3/7 * 0) = .985 – (4/7 * .812) – (3/7*0) =.520

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Routine			
E (Routine, Indoor) = -(1/4 log ₂ ¼ + ¾ log ₂ ¾) = .812			
E (Routine, Outdoor) = -(2/3 log ₂ 2/3 + 1/3 log ₂ 1/3) = .918			
Info Gain (S, Routine) = E(S) - (4/7*.812) - (3/7 * .918) = .985 - (4/7*.812) - (3/7 * .918) =.127			

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

Root Node Selection Table

Outlook	Temperature	Routine	
E (Outlook, Sunny) = -(1/4 log ₂ ¼ + ¾ log ₂ ¾)	E (Temperature, Cold) = -(1/4 log ₂ ¼ + ¾ log ₂ ¾)	E (Routine, Indoor) = -(1/4 log ₂ ¼ + ¾ log ₂ ¾)	
= .812	= .812	= .812	
E (Outlook, Cloudy) = -(2/3 log ₂ 2/3 + 1/3 log ₂ 1/3) = .918	E (Temperature, Warm) = -(0/3 log ₂ 0/3 + 3/3 log ₂ 3/3) = 0.00	E (Routine, Outdoor) = -(2/3 log ₂ 2/3 + 1/3 log ₂ 1/3) = .918	
Info Gain (S, Outlook) = E(S) - (4/7 * .812) - (3/7 * .918) = .985 - (4/7 * .812) - (3/7 * .918) = .127	Info Gain (S, Temperature) = E(S) - (4/7 * .812) - (3/7 * 0) = .985 - (4/7 * .812) - (3/7*0) =.520	Info Gain (S, Routine) = E(S) - (4/7*.812) - (3/7 * .918) = .985 - (4/7*.812) - (3/7 * .918) =.127	

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Warm	Outdoor	No
3	Cloudy	Warm	Indoor	No
4	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2 🗱	Sunny	Warm	Outdoor	No
3 🗱	Cloudy	Warm	Indoor	No
4 **	Sunny	Warm	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes

Entropy of New Subset:

S2 = Entropy(1,3)

= Entropy (- (Pi log₂ Pi) + (- Pi log₂ Pi))

 $= (-1/4 \log_2 1/4) + (-3/4 \log_2 3/4)$

 $= (-.25 \log_2 .25) + (-.75 \log_2 .75)$

= .812 (Entropy for New Subset)

	✓	Problem Data Set	√	√
Days	Outlook	Temperature	Routine	Wear Jacket?
1	Sunny	Cold	Indoor	No
2	Sunny	Wa'rm 💥	Outdoor	No
3	Cloudy	Warm 💥	Indoor	No
4	Sunny	Wa'm 💥	Indoor	No
5	Cloudy	Cold	Indoor	Yes
6	Cloudy	Cold	Outdoor	Yes
7	Sunny	Cold	Outdoor	Yes
	1 2 3 4 5	Days Outlook 1 Sunny 2 Sunny 3 Cloudy 4 Sunny 5 Cloudy Cloudy	Days Outlook Temperature 1 Sunny Cold 2 Sunny Warm 3 Cloudy Warm 5 Cloudy Cold 6 Cloudy Cold	Days Outlook Temperature Routine 1 Sunny Cold Indoor 2 Sunny Warm Outdoor 3 Cloudy Warm Indoor 4 Sunny Warm Indoor 5 Cloudy Cold Indoor 6 Cloudy Cold Outdoor

Entropy of New Subset:

S2 = Entropy(1,3)

= Entropy (- (Pi log₂ Pi) + (- Pi log₂ Pi))

 $= (-1/4 \log_2 1/4) + (-3/4 \log_2 3/4)$

 $= (-.25 \log_2 .25) + (-.75 \log_2 .75)$

= .812 (Entropy for New Subset)

Days	Outlook	Routine	Wear Jacket?
1	Sunny	Indoor	No
5	Cloudy	Indoor	Yes
6	Cloudy	Outdoor	Yes
7	Sunny	Outdoor	Yes

E (Routine, Indoor) =

E(S2) - 2/4 * 1 - 2/4 *0

= .812 - 2/4 * 1 - 2/4 *0

= .312

-(1/2 log₂ ½ + 1/2 log₂ 1/2) = 1 E (Routine, Outdoor) = -(2/2 log₂ 2/2 + 0/2 log₂ 0/2) = 0 Info Gain (S2, Routine) =

Days	Outlook		Routine	Wear Jacket?
1	Sunny	-	Indoor	No
	•			,
5	Cloudy		Indoor	Yes
6	Cloudy	-	Outdoor	Yes
7	Sunny	-	Outdoor	Yes
	•	_		

E (Outlook, Sunny) = -(1/2 log₂ ½ + 1/2 log₂ 1/2) = 1 E (Outlook, Cloudy) = -(2/2 log₂ 2/2 + 0/2 log₂ 0/2) = 0 Info Gain (S2, Outlook) = E(S2) - 2/4 * 1 - 2/4 *0

= .812 - 2/4 * 1 - 2/4 *0

= .312

Days	Outlook	Routine	Wear Jacket?
1	Sunny	Indoor	No
5	Cloudy	Indoor	Yes
6	Cloudy	Outdoor	Yes
7	Sunny	Outdoor	Yes

Sunny, Cold , Indoor= ??

	Days	Outlook	Wear Jacket?
1		Sunny	No
		ol	V
5)	Cloudy	Yes

