고명찬, 이승호. (2013). 한국의 도시 규모별 습도 변화에 관한 연구

1. 선행연구 및 연구 목적

도시는 도사화로 인해 기온이 상승, 강수량 증가, 상대습도는 작다. 상대습도는 도시-비도시간 차이가 작으며 기온에 의해 크게 좌우된다. 한국에서는 대도시 대상으로 도시화에 의한 상대습도 변화경향 분석. 1) <u>도시 규모별</u> 습도변화를 분석, 습도의 시기별 변화를 파악. 2) 도시효과에 의한 기온상승이 도시 규모별로 상대습도에 미친 영향 분석 3) 상대습도의 변화가 수증기량의 변화에서도 나타나는지.

2. 데이터

연구 기간	1954년~2011년 (58년) 전반기 : 1954~1982 / 후반기 : 1983~2011
관측지점	대도시 : 서울, 부산, 대구, 인천, 광주, 울산(6개) 중소도시 : 포항, 전주, 목포, 제주, 강릉, 여수 (6개)
	비도시 : 추풍령, 울릉도 (2개)
데이터	기상청 일평균기온, 일평군 상대습도, 일평균 수증기압
분석 방법	1. 상대습도와 수증기압 전반기, 후반기로 구분하여 시계열 분석.
	2. 도시화에 의한 기온상승이 상대습도에 영향을 미치는지 파악하기 위해 기온-상대습도의 상관관계
	분석

3. 결과

1) 연평균 상대습도의 변화

도시 규모가 클수록 상대습도는 낮으며 연평균 상대습도의 감소폭이 크다. 전반기보다 후반기로 갈수록 상대습도의 도시 규모별 차이가 커졌다. (대도시와 비도시 차이 1.1% -> 6.5%) 연평균 상대습도의 변화율도 도시규모가 클수록 감소율도 크며 통계적으로 유의하다. 감소 경향은 도시규모에 따라 차이가 있다.

2) 시기별 상대습도의 변화

-평균 상대습도는 아래와 같고, 변화율은 봄, 겨울에 뚜렷. 대체로 대도시, 중소도시에서 통계적으로 유의하게 감소하는 경향을 보인다.

봄	도시규모 관계없이 1970 중반까진 뚜렷한 변화 X, 1980s 이후 감소경향 뚜렷
여름	대도시 중소도시에서 완만한 감소경향. 비도시에서는 1970s 중반까지 상승경향, 이후 감소, 다시
	1980년 중반까지 상승경향, 2000년대 초반 급격한 감소경향
가을, 겨울	1970년대 초반까지 증가, 이후 감소. 비도시에서는 증감의 반복.

3) 연평균 수증기압의 변화

- 분석기간 동안 도시규모별 연평균 수증기압은 명확하게 차이 X. 변화율은 도시규모별로 차이가 있지만 통계적으로 유의하지 않다.
- 대체로 해안에서 내륙으로 갈수록 수증기압의 감소경향 우세-> 지리적 위치에 따라 더 큰 영향을 받음.

4) 시기별 수증기압의 변화

- 수증기압은 봄에 가장 큰 감소경향. 도시>비도시 뚜렷함. 변화율은 도시규모에 따른 차이가 명확 X.
- 겨울철 평균 수증기압 대도시에서 감소 중소도시, 비도시에서 증가. 규모에 따른 뚜렷한 특징 X. 변화율은 경향이 명확하지 않고 통계적 유의성 X. 지리적 위치에 더 큰 영향을 받는 것으로 보임.

5) 습윤일과 건조일의 변화

- 분석지점에서 연평균 습윤일은 전반적으로 감소, 건조일은 증가. 습윤일 감소율 < 건조일 증가율. 도시 규모가 클수록 습윤일 감소율과 건조일 증가율이 크다. 도시규모에 따른 건조경향 잘 나타냄.

4. 결론

- 도시 규모가 클수록 연평균 상대습도 변화는 뚜렷하게 감소한다. 도시화가 급격히 진행된 후반기에 뚜렷하고 여름철 에는 변화율이 작다.
- 연평균 수증기압은 도시규모에 의한 차이가 명확 X. 관측지의 지리적 조건에 더 큰 영향을 받는다.
- 도시 규모가 클수록 평균기온과 상대습도의 상관관계가 높다. 상대습도와 수증기압의 상관관계는 도사규모에 따라 명확하지 않다.
- 지리적 위치와 주/야간 일변화에 의한 습도변화 차이의 연구가 필요하다.

Figure 12. Correlations of annual relative humidity and mean temperature by city size. 도시 규모별 연평균 상대습도와 평균기온의 관계 (a: 대도시, b: 중소도시, c: 비도시)

Figure 13. Correlations of annual relative humidity and water vapor pressure by city size. 도시 규모별 연평균 상대습도와 수증기압의 관계 (a: 대도시, b: 중소도시, c: 비도시)