Advice for Applying Machine Learning

Sidharth Baskaran

June 2021

Improving algorithm

- If there are large errors in predictions
 - More training examples
 - Smaller set of features
 - Additional features
 - Add polynomial features (i.e. x_1x_2, x_1^2, x_2^2)
 - Decrease or increase λ
- Machine learning diagnostic
 - Test run to understand performance of algorithm

Evaluating a Hypothesis

- Low training error does not mean good $h_{\theta}(x)$
- Hard to plot hypothesis as $n \to \text{large}$
- Split data into 2 parts \rightarrow test and training
- Training/testing procedure for linear regression
 - Leanr parameter θ from training data (minimize training error $J(\theta)$
 - Compute test error
 - * $J_{\mathrm{test}}(\theta) = \frac{1}{2m_{\mathrm{test}}} \sum_{i=1}^{m_{\mathrm{test}}} (h_{\theta}(x_{\mathrm{test}}^{(i)}) y_{\mathrm{test}}^{(i)})^2$
 - * Change appropriately for logistic regression

 - Misclassification error (0/1 misclassification error) * Test error = $\frac{1}{m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} \text{err}(h_{\theta}(x_{\text{test}}^{(i)}), y_{\text{test}}^{(i)})$ · Is proportion of misclassified test data

$$\operatorname{err}(h_{\theta}(x),y) = \begin{cases} \mathbf{1} \ y = 0 \ \text{if} \ h_{\theta}(x) \geq 0.5 \ \mathbf{or} \ y = 1 \ \text{if} \ h_{\theta}(x) < 0.5 \\ \mathbf{0} \ \text{otherwise} \end{cases}$$

Model Selection and training/validation/test sets

- Error of parameters as measured to fit to a set of data < than actual generalization error
- Let there be a list of hypotheses of varying polynomial degree d and $i \in \text{range}(1,d)$
 - Calculate $J_{\text{test}}(\theta^{(i)})$ in range
 - Lowest J_{test} means best model \rightarrow but not fair estimate of generalization \rightarrow optimistic choice
- Split data set into 3 parts
 - E.g. 60% training, 20% cross-validation (CV), 20% test
 - Determine $J_{\text{train}}, J_{\text{CV}}, J_{\text{test}}$
 - In list of polynomial models find lowest $J_{\rm CV}$ from CV set
 - Estimate generalization error from polynomial indexed d with lowest CV error

Bias vs. Variance

- Increase degree d of polynomial \rightarrow decreases training error of polynomial
 - Test error very similar
- Cross-validation error initially decreases then increases as overfitting begins to occur
- **High bias** problem \rightarrow low d and a high error
 - High $J_{\text{train}}(\theta)$ and $J_{\text{CV}}(\theta) \approx J_{\text{train}}(\theta)$
- **High variance** problem \rightarrow high d and a high error

 - $\begin{array}{l} -\ J_{\rm train}(\theta) \ {\rm is} \ {\rm low} \\ -\ J_{\rm CV}(\theta) \gg J_{\rm train}(\theta) \end{array}$

Regularization and bias/variance

- High λ means penalized parameters θ so high bias \rightarrow underfit
- Intermediate $\lambda \to \text{optimal}$
- Small $\lambda \to \text{high variance}$ and overfit
- Choosing regularization parameter λ
 - $J_{\text{train}}(\theta), J_{\text{CV}}(\theta), J_{\text{test}}(\theta)$ all do not have regularization term but $J(\theta)$ does
 - Try a range of $\lambda,$ e.g. in multiples of 2 and calculate the corresponding $J_{\rm CV}(\theta)$
 - * Pick choice with lowest CV error
 - Then apply to $J_{\text{test}}(\theta)$ to check for good generalization
- Can then plot $J_{\mathrm{train}}(\theta)$ and $J_{\mathrm{CV}}(\theta)$ as a function of λ
 - $-J_{\text{train}}(\theta)$ will increase
 - $-J_{\rm CV}(\theta)$ will be upward parabolic

Learning Curves

- Plot either training or CV error
- A small training set size m means virtually no error
 - As m increwases, avg. training error of hypotheses increases
- CV error is high (low generalization) \rightarrow small m
 - Tend to decrease with m
- More training data does not help case of high bias
- High variance problem
 - CV error will decrease with higher m
- As m increases, $J_{\rm CV}(\theta)-J_{\rm train}(\theta)$ and both curves approach each other

High bias

Value of m	$J_{\mathrm{train}}(\theta)$	$J_{\mathrm{CV}}(\theta)$
Low	Low	High
High	High	Low

High variance

Value of m	$J_{\mathrm{train}}(\theta)$	$J_{\mathrm{CV}}(\theta)$
Low	Low	High
High	Increases	Decreases

Debugging learning algorithm

- Choices
 - More training examples (m) \rightarrow fixes high variance
 - Smaller sets of features \rightarrow fixes high variance
 - Additional features \rightarrow fixed high bias
 - Adding polynomial features \rightarrow fixes high bias
 - Decreasing $\lambda \to \text{fixes high bias}$
 - Increasing $\lambda \to \text{fixed high variance}$
- Small neural network \rightarrow prone to underfitting due to less parameters, computationally cheaper
- Large neural network \rightarrow prone to overfitting and computationally expensive
 - Can address with λ