ДОМАШНЕЕ ЗАДАНИЕ 3 «ПРЕДЕЛЬНЫЕ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» (модуль 3). 2 КУРС, 3 СЕМЕСТР, ИУ6.

ЗАДАЧА 1.

Вариант 1. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{\xi-\eta>-1\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (0;2); \ \Sigma = \begin{pmatrix} 3 & -1,5 \\ -1,5 & 3 \end{pmatrix}$.

Найти
$$\mathsf{P}\{\xi-\eta>-1\},$$
 если $(\mathsf{M}\xi,\mathsf{M}\eta)=(0;2);$ $\Sigma=\left(\begin{array}{cc}3&-1,5\\-1,5&3\end{array}\right)$

Вариант 2. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \left(\begin{array}{cc} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{array} \right).$

Найти
$$P\{\xi - \eta > 1, 1\}$$
, если $(M\xi, M\eta) = (3; 1)$; $\Sigma = \begin{pmatrix} 1 & 0, 45 \\ 0, 45 & 0, 71 \end{pmatrix}$.

Вариант 3. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти
$$\mathsf{P}\{\xi-\eta>0\}$$
, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(-0,15;0);$ $\Sigma=\left(\begin{array}{cc}2&1\\1&1\end{array}\right).$

Вариант 4. Случайная величина (ξ,η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi,\mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{\xi-\eta>\sqrt{24}\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (0,5;0,5); \Sigma = \begin{pmatrix} 4 & -4 \\ -4 & 12 \end{pmatrix}$.

Найти
$$\mathsf{P}\{\xi-\eta>\sqrt{24}\}$$
, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(0,5;0,5);$ $\Sigma=\left(\begin{array}{cc}4&-4\\-4&12\end{array}\right)$

Вариант 5. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти
$$\mathsf{P}\{\xi-\eta>-1\}$$
, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(0;5);\ \Sigma=\left(\begin{array}{cc}16&-2\\-2&16\end{array}\right).$

Вариант 6. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти
$$P\{\eta > 2\xi\}$$
, если $(M\xi, M\eta) = (2;1); \Sigma = \begin{pmatrix} 3/4 & -3/4 \\ -3/4 & 3 \end{pmatrix}$.

Вариант 7. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{\eta > 2\xi\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (6;10); \Sigma = \begin{pmatrix} 0,5&0,5\\0,5&1 \end{pmatrix}$.

Найти
$$\mathsf{P}\{\eta>2\xi\}$$
, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(6;10);\,\Sigma=\left(egin{array}{cc}0,5&0,5\\0,5&1\end{array}
ight).$

Вариант 8. Случайная величина (ξ,η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi,\mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{\eta>2\xi\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (0,6;0,3); \ \Sigma = \begin{pmatrix} 0,25 & 0,25 \\ 0,25 & 0,81 \end{pmatrix}$.

Найти
$$P\{\eta > 2\xi\}$$
, если $(M\xi, M\eta) = (0, 6; 0, 3); \Sigma = \begin{pmatrix} 0, 25 & 0, 25 \\ 0, 25 & 0, 81 \end{pmatrix}$.

Вариант 9. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \left(egin{array}{cc} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{array} \right).$

Найти
$$\mathsf{P}\{\eta>2\xi\}$$
, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(2;1);\ \Sigma=\left(\begin{array}{cc}1&-2\\-2&13\end{array}\right).$

Вариант 10. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти
$$\mathsf{P}\{\eta > 2\xi\}$$
, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (2;7); \ \Sigma = \left(\begin{array}{cc} 4 & -1 \\ -1 & 16 \end{array} \right).$

Вариант 11. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} D\xi & \text{cov}(\xi, \eta) \\ \text{cov}(\eta, \xi) & D\eta \end{pmatrix}$.

Найти $P{3\eta-\xi>0}$, если $(M\xi,M\eta)=(3;3);$ $\Sigma=\left(\begin{array}{cc}3&-1/2\\-1/2&1/3\end{array}\right)$

Вариант 12. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти $\mathsf{P}\{3\eta-\xi>0\},$ если $(\mathsf{M}\xi,\mathsf{M}\eta)=(1;1);$ $\Sigma=\left(\begin{array}{cc}2&-1/3\\-1/3&1/9\end{array}\right).$

Вариант 13. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{3\eta - \xi > 0\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (0;-0,3); \ \Sigma = \begin{pmatrix} 1 & 1/6 \\ 1/6 & 0,09 \end{pmatrix}$.

Вариант 14. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \left(egin{array}{cc} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{array} \right).$

Найти $\mathsf{P}\{3\eta-\xi>0\},$ если $(\mathsf{M}\xi,\mathsf{M}\eta)=(4;2);$ $\Sigma=\left(egin{array}{cc}4&4/3\\4/3&4\end{array}\right).$

Вариант 15. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти $P{3\eta - \xi > 0}$, если $(M\xi, M\eta) = (0; 1)$; $\Sigma = \begin{pmatrix} 16 & -2/3 \\ -2/3 & 16/9 \end{pmatrix}$.

Вариант 16. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти $\mathsf{P}\{\xi-\eta>-1\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(0;2);$ $\Sigma=\left(\begin{array}{cc}3&-1,5\\-1,5&3\end{array}\right)$.

Вариант 17. Случайная величина (ξ,η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi,\mathsf{M}\eta)$ и ковавариант 17. Случанная воличина (S, η) риационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{\xi-\eta>1,1\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(3;1); \Sigma = \begin{pmatrix} 1 & 0,45 \\ 0,45 & 0,71 \end{pmatrix}$.

Вариант 18. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \left(\begin{array}{cc} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{array} \right)$

Найти $\mathsf{P}\{\xi-\eta>0\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(-0,15;0);$ $\Sigma=\left(egin{array}{cc}2&1\\1&1\end{array}\right)$.

Вариант 19. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти $\mathsf{P}\{\xi-\eta>\sqrt{24}\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(0,5;0,5);\ \Sigma=\left(\begin{array}{cc}4&-4\\-4&12\end{array}\right)$.

Вариант 20. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти $\mathsf{P}\{\xi-\eta>-1\},$ если $(\mathsf{M}\xi,\mathsf{M}\eta)=(0;5);$ $\Sigma=\left(\begin{array}{cc}16&-2\\-2&16\end{array}\right).$

Вариант 21. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{\eta > 2\xi\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (2;1); \ \Sigma = \begin{pmatrix} 3/4 & -3/4 \\ -3/4 & 3 \end{pmatrix}$.

Вариант 22. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \left(\begin{array}{cc} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{array} \right).$

Найти $P\{\eta > 2\xi\}$, если $(M\xi, M\eta) = (6; 10); \Sigma = \begin{pmatrix} 0, 5 & 0, 5 \\ 0, 5 & 1 \end{pmatrix}$.

Вариант 23. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и кова-Вариант 23. Случаиная величина (ξ,η) распределения $\Sigma = \begin{pmatrix} D\xi & \text{cov}(\xi,\eta) \\ \text{cov}(\eta,\xi) & D\eta \end{pmatrix}$. Найти $\mathsf{P}\{\eta>2\xi\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (0,6;0,3); \Sigma = \begin{pmatrix} 0,25 & 0,25 \\ 0,25 & 0,81 \end{pmatrix}$.

Вариант 24. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$.

Найти $P\{\eta > 2\xi\}$, если $(M\xi, M\eta) = (2; 1); \Sigma = \begin{pmatrix} 1 & -2 \\ -2 & 13 \end{pmatrix}$.

Вариант 25. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(M\xi, M\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} D\xi & \text{cov}(\xi, \eta) \\ \text{cov}(\eta, \xi) & D\eta \end{pmatrix}$.

Найти $\mathsf{P}\{\eta>2\xi\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(2;7);\ \Sigma=\left(\begin{array}{cc}4&-1\\-1&16\end{array}\right).$

Вариант 26. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{3\eta - \xi > 0\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (3;3); \ \Sigma = \begin{pmatrix} 3 & -1/2 \\ -1/2 & 1/3 \end{pmatrix}$.

Вариант 27. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{3\eta - \xi > 0\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (1;1); \ \Sigma = \begin{pmatrix} 2 & -1/3 \\ -1/3 & 1/9 \end{pmatrix}$.

Вариант 28. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковавариант 28. Случаиная величина (ξ, η) распределена по порымлянем, риационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi, \eta) \\ \mathsf{cov}(\eta, \xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{3\eta - \xi > 0\}$, если $(\mathsf{M}\xi, \mathsf{M}\eta) = (0; -0, 3); \ \Sigma = \begin{pmatrix} 1 & 1/6 \\ 1/6 & 0, 09 \end{pmatrix}$.

Вариант 29. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{3\eta-\xi>0\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta)=(4;2); \Sigma = \begin{pmatrix} 4 & 4/3 \\ 4/3 & 4 \end{pmatrix}$.

Вариант 30. Случайная величина (ξ, η) распределена по нормальному закону с математическим ожиданием $(\mathsf{M}\xi, \mathsf{M}\eta)$ и ковариационной матрицей $\Sigma = \begin{pmatrix} \mathsf{D}\xi & \mathsf{cov}(\xi,\eta) \\ \mathsf{cov}(\eta,\xi) & \mathsf{D}\eta \end{pmatrix}$. Найти $\mathsf{P}\{3\eta - \xi > 0\}$, если $(\mathsf{M}\xi,\mathsf{M}\eta) = (0;1); \ \Sigma = \begin{pmatrix} 16 & -2/3 \\ -2/3 & 16/9 \end{pmatrix}$.

ЗАДАЧА 2.

Вариант 1. Математическое ожидание числа солнечных дней в году для определённой местности равно 150 дням. Найти вероятность того, что в данном году здесь будет не менее 200 солнечных дней. Как изменится искомая вероятность, если будет известно, что среднее квадратичное отклонение числа солнечных дней равно 10?

Вариант 2. Математическое ожидание годового количества осадков для данной местности равно 600 мм. Каково минимальное количество осадков за год следует ожидать с вероятностью, не превышающей величины 0,8?

Вариант 3. Ежегодная потребность в электроэнергии для НИИ составляет и среднем 500 кВт/ч. Какой расход электроэнергии можно ожидать в любой день недели с вероятностью не менее 0,85? Как изменится ответ задачи, если будет известно, что значение среднего квадратичного отклонения ежегодного расхода электроэнергии составит 50 кВт/ч? (Институт потребляет энергию 365 дней в году).

Вариант 4. Математическое ожидание скорости ветра на высоте 10км равно 30 км/ч, а среднее квадратичное отклонение 5 км/ч. Какую скорость ветра на этой высоте можно ожидать с вероятностью не меньшей 0,85?

Вариант 5. Генератор обеспечивает выходное напряжение, которое может отклоняться от номинального на значение, не превышающее 1В, с вероятностью 0,95. Какие значения дисперсии выходного напряжения можно ожидать ?

Вариант 6. Математическое ожидание суточного расхода воды в лаборатории составляет 10 м³. Оценить вероятность того, что в некоторый день расход воды будет находиться в интервале $8-12\,\mathrm{m}^3$, если среднее квадратичное отклонение суточного расхода составит 1 м³?

Вариант 7. Используя неравенство Чебышёва, оценить вероятность того, что частота появления грани с номером 6 при бросании правильной игральной кости 200 раз отклонится от вероятности её появления не более, чем на 0,05. Найденный ответ сравнить с результатом, полученным с помощью интегральной теоремы Муавра — Лапласа.

Вариант 8. Используя неравенство Чебышёва, оценить вероятность того, что частота появления грани с чётным номером при бросании правильной игральной кости отклонится от вероятности её появления по абсолютной величине не более, чем на 0,01, если будет произведено 10000 испытаний. Сравнить эту величину с оценкой, полученной с помощью интегральной теоремы Муавра — Лапласа.

Вариант 9. Произведено 200 измерений некоторой случайной величины. Известно, что дисперсия измерения для каждой случайной величины не превосходит 4. Оценить вероятность того, что отклонение среднего арифметического этих случайных величин от среднего арифметического их математических ожиданий не превзойдет 0,2.

Вариант 10. Чтобы определить среднее сопротивление *n-p* перехода транзистора, в партии из 50 одинаковых коробок проверено по одному транзистору из каждой коробки. Оценить вероятность того, что отклонение среднего арифметического значения сопротивления *n-p* перехода в выбранной совокупности от среднего значения во всей партии не превзойдет 10 ом, если среднее квадратичное отклонение значения сопротивления *n-p* перехода не превышает 6 ом.

Вариант 11. За значение некоторой величины принимают среднее арифметическое 500 измерений. Предполагая, что среднее квадратичное отклонение возможных результатов каждого измерения не превосходит 0,5, оценить вероятность того, что отклонение найденного таким образом значения величины от истинного не превосходит 0,2.

Вариант 12. В конденсаторе с вероятностью 0,01 возможен дефект диэлектрика и, независимо от первого, с вероятностью 0,005 дефект корпуса. Проверена партия в 1000 конденсаторов. В каких границах с вероятностью 0,997 заключается число бракованных конденсаторов? Решить задачу, используя неравенство Чебышёва и интегральную теорему Муавра — Лапласа.

Вариант 13. Пусть ξ_1 — число выпадений герба при 10 подбрасываниях монеты, а ξ_2 — число выпавших очков на грани тетраэдра (грани перенумерованы числами 1, 2, 3, 4) при его однократном подбрасывании. Оценить вероятность осуществления неравенства $\xi_1 + \xi_2 < 10$. Решить задачу, используя 1-е и 2-е неравенства Чебышёва.

Вариант 14. Стрелок поражает мишень с вероятностью 0,9. Оценить вероятность того, что при 100 выстрелах число попаданий будет не менее 85 и не более 95?

Вариант 15. Дана последовательность независимых случайных величин $\xi_1, \xi_2, \dots, \xi_n, \dots$ Случайная величина ξ_n задана $x_n - n\lambda = 0$ $n\lambda$

Можно ли применить к данной последовательности закон больших чисел?

Вариант 16. Дана последовательность независимых случайных величин $\xi_1, \xi_2, \dots, \xi_n, \dots$ Случайная величина ξ_n задана

Можно ли применить к данной последовательности закон больших чисел?

Вариант 17. Дана последовательность независимых случайных величин $\xi_1, \xi_2, \dots, \xi_n, \dots$ Случайная ξ_n величина задана

следующим образом: $x_n - y_n$ $P\{\xi_n = x_n\}$

Можно ли применить к данной последовательности закон больших чисел?

Вариант 18. Правильная монета 1000 раз бросается вверх. Определить такое число x, чтобы с вероятностью 0,85 количество попыток, когда монета ляжет гербом вверх, заключалось между 400 и x.

Вариант 19. 80% изготовленных заводом электроламп выдерживают гарантийный срок службы. Оценить вероятность того, что в партии из 500 электроламп число выдержавших гарантийный срок службы находится в пределах от 380 до 420. Использовать неравенство Чебышёва и интегральную теорему Муавра — Лапласа.

Вариант 20. Вероятность случайного события равна 0,9. Выполнено 6400 испытаний. Оценить вероятность того, что наблюдаемая частота случайного события лежит в интервале (0,89; 0,91). Решить задачу, используя неравенство Чебышёва и интегральную теорему Муавра — Лапласа.

Вариант 21. Вероятность случайного события равна 0,81. Выполнено 5000 испытаний. В каком интервале с вероятностью ≥ 0,97 лежит наблюдаемая частота случайного события? Решить задачу, используя неравенство Чебышёва и интегральную теорему Муавра — Лапласа.

Вариант 22. Вероятность случайного события равна 0,67. Сколько нужно провести испытаний, чтобы с вероятностью, не менее, чем 0,98, можно было ожидать, что наблюдаемая частота случайного события отклонится от его вероятности не более чем на 0,01? Решить задачу двумя способами: используя неравенство Чебышёва и интегральную теорему Муавра — Лапласа.

Вариант 23. Вероятность появления бракованной детали в партии из 1000 деталей равна 0,05. Найти нижнюю и верхнюю границы числа дефектных деталей в этой партии с вероятностью 0,9.

Вариант 24. Игральный кубик подбрасывается n = 360 раз. С какой вероятностью можно утверждать, что число выпадений шестёрки при этом не менее a) 60, б) 50?

Вариант 25. Пусть ξ_1 — число выпадений герба при 10 подбрасываниях монеты, а ξ_2 — число выпавших очков при бросании игральной кости. Оценить вероятность осуществления неравенства $\xi_1 + \xi_2 < 14$. Решить задачу, используя первую и вторую

формы неравенства Чебышёва.

Вариант 26. Пусть вероятность того, что покупателю обувного магазина необходимы туфли размера 41, равна 0,15. Определить (в %) верхнюю и нижнюю границы предполагаемого количества покупателей, которым нужны такие туфли, среди 2000 покупателей магазина, если вероятность нахождения искомой цифры между верхней и нижней границей составит 0,98.

Вариант 27. В Москве рождается каждый день в среднем 335 детей, т.е. в год около 122500 детей. Считая вероятность рождения мальчика 0,51, оценить вероятность того, что число мальчиков, которые родятся в Москве в текущем году, превысит число девочек не менее чем на 1500.

Вариант 28. Математическое ожидание скорости ветра у земли в данной местности составляет 8 км/ч. Оценить вероятность того, что скорость ветра превысит 20 км/ч и что она будет меньше 50 км/ч. Как изменятся искомые вероятности, если будет известно, что среднее квадратичное отклонение скорости ветра равно 2 км/ч?

Вариант 29. Каждая повторная передача сигнала по каналу связи увеличивает вероятность искажения сигнала на 0,1%. При передаче 1-го сигнала эта вероятность равна 0,95. Передано 100 сигналов. Найти границы, в которых с вероятностью 0,9 заключено число переданных без искажения сигналов.

Вариант 30. Стрельба по цели ведется поочередно из трёх орудий, причём вероятности попадания в цель равны соответственно 0,2; 0,3; 0,5. Таким образом произведено 300 выстрелов. Оценить «снизу» вероятность того, что при этих данных частота попаданий отличается от средней вероятности попадания по абсолютной величине не более чем на 0,1.

ЗАДАЧА 3.

Вариант 1. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. При производстве ЧИПов их выводы устанавливаются автоматически; изогнутость выводов является важным показателем при сборке готовой продукции.

Данные измерения изогнутости выводов ЧИПов, 10^{-1} мм.

данные	данные измерения изогнутости выводов читов, то мм.													
20	31	116	32	100	28	130	97	11	27	122	29			
28	44	12	46	47	52	31	15	21	32	14	19			
45	52	91	35	53	92	38	03	06	37	142	117			
07	57	46	66	63	51	56	52	34	43	29	40			
35	61	71	74	83	68	84	67	47	52	54	46			
52	76	86	85	78	60	68	60	72	59	61	67			
17	62	69	82	75	19	62	69	83	67	70	50			
15	58	41	44	53	02	54	42	35	75	36	18			
124	30	52	39	34	23	36	21	28	99	22	16			
32	96	116	27	96	30	25	98	10	67	118	90			
67	75	65	66											

Вариант 2. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Данные о пределе текучести для 100 образцов из титанового сплава при 1000 фунт/кв. дюйм .

Фунт (pound) -единица веса, равная ~ 4,54 H;

дюйм (inch) – единица длины, равная 2,54 см.

152	154	147	142	132	164	154	173	164	160
166	139	161	163	152	150	156	154	160	135
164	150	141	155	153	135	144	148	150	148
148	166	148	149	154	156	150	153	151	138
149	158	139	146	136	155	145	151	154	141
160	138	163	156	166	142	150	144	158	145
147	171	152	146	158	154	156	136	169	151
167	158	168	157	136	147	130	141	147	158
164	136	153	160	143	156	137	147	152	156
150	159	125	144	139	139	134	146	155	144

Вариант 3. Для заданной выборки:

1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;

- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

Чувствительность канала изображения телевизора в метровом диапазоне, мкВ.

•							-	-							
20,5	15,0	21,5	20,0	19,0	21,5	19,0	19,0	24,0	28,0	24,0	28,0	24,0	25,0	29,0	25,0
28,0	37,5	26,0	29,0	23,4	12,6	20,6	27,0	23,2	22,6	28,5	23,0	27,2	25,2	21,0	24,2
24,2	24,2	25,2	21,6	21,0	21,6	20,8	22,2	30,2	25,0	28,0	25,0	27,0	17,4	25,8	24,2
23,2	21,2	26,6	27,0	31,0	33,4	26,0	27,0	21,6	30,2	22,8	26,4	25,8	25,2	29.0	25,0
25,2	25,2	25,0	27,3	20.4	22,7	21,0	26,0	20,0	21,6	24,0	22,0	27,0	24,2	25,8	26,2
30,0	31,0	25,0	26,2	20,6	25.2	23,0	25,0	27,0	25,1	22,0	29,2	24,0	30,0	24,5	21,5
29,0	23,4	23,5	25,9	22,6	25,0	30,0	30,2	32,6	23,8	39,2	25,0	27,2	25.6	23,4	26,2
21,9	26,9	23,6	26,9	23,1	19,9	23,4	19,2	14,4	20,7	29,2	21,9	21,0	21,9	30,0	22,6
24,6	24,1	20,6	27,8	22,7	23,4	21,6	24,6	21,9	23.8	27,2	34,0	25,4	23.2	27,7	23,0
30,0	25,1	22,7	27,8	27,0	22,6	20,7	19,4	21,4	23,0	21,0	24,3	23,0	23,2	29,2	24,4
24,4	21,8	29,4	30,0	29,7	29,2	23,0	23,4	23,0	25,9	24,6	22,6	29,2	23,4	28,8	25,4
23,8	30,0	27,8	21,0	28,6	27,2	23,1	26,9	25,9	24,2	31,2	25,9	23,1	27,6	26,2	22,2
25,9	27,6	20,0	27,0												

Вариант 4. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Точность измерительного прибора, систематическая ошибка которого практически равна нулю, м.

381	421	372	418	392	427	385	358	370
412	411	386	395	382	376	380	383	395
391	430	391	377	372	406	429	429	376
431	405	430	382	429	413	421	395	413
430	373	393	375	364	449	382	375	371
411	427	362	388	409	400	392	378	421
399	396	384	373	391	340	410	428	382
397	389	403	440	418	412	378	398	418
365	399	418	400	402	405	410	423	373
399	389	440	429	369	394	432	390	409
351	384	425	407	383	415	418	456	343
398	420	418	404	400	383	425	422	388
388	421	437	418	379	383	347	428	388
395	429	363	410	384	416	380	433	398

Вариант 5. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Расстояние безотказной работы тепловозов (расстояние, пройденное тепловозами до выхода из строя одного из его контрольных приборов), тыс. км.

46,0	120,0	122,5	93,5	69,5	102,5	76,5	37,5	22,5	77,0
107,0	123,0	48,5	78,5	108,5	127,5	51,5	80,0	112,5	131,5
53,0	81,5	113,5	132,0	54,6	82,0	116,0	134,0	57,5	83,0
117,0	66,5	84,0	118,5	68,0	91,5	119,0	38,5	66,0	43,5
60,5	91,5	39,0	65,5	137,5	40,5	99,5	52,5	143,0	89,5
94,5	80,5	79,0	62,0	87,5	97,5	62,5	64,0	23,5	78,5
61,0	98,0	62,5	97,5	70,0	65,5	71,5	99,0	72,5	63,5
47,0	77,0	76,5	64,0	63,5	56,5	77,0	63,5	72,0	66,0
87,6	66,5	55,0	108,5	99,0	110,0	86,6	88,0	66,0	105,5

Вариант 6. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Процентное содержание триоксида серы в горной породе некоторого региона, %.

15,6	15,8	15,7	15,8	15,7	16,0	15,7	15,9	15,7	15,8	15,7
15,8	15,4	15,8	15,7	15,7	15,9	16,0	15,7	16,0	15,7	16,0
15,9	15,8	15,5	16,0	15,7	15,7	15,7	15,9	15,7	15, 8	15, 8
15,1	15,8	16,0	16,2	15,7	15,5	15,9	15,7	15,7	15, 3	15, 6
16,1	15,7	16,1	15,9	15,8	16,0	15,0	15,7	15,6	15, 5	15,8
15,6	15,8	15,8	15,5	15,6	15,6	15,9	15,8	15,9	15, 8	15,7
15,5	15,7	15,8	15,9	15,4	15.8	15,3	15,4	15,5	15, 7	15,6
15,8	15,9	15,4	15,9	15,6	15,7	15,6	15,7	15,7	15, 7	15, 7
15,3	16,1	15,6	16,0	16. 1	15,6	15,5	15,6	15,7	15, 5	16,1
15,8	15,7	15,4	16,3	15,7	15,6	16,2	15,6	15,6	15, 3	15, 5
15,4	15,9	15,6	16,0	15,7	15,8	15,9	16,0	16,1	15, 8	15,9
15,7	15,6	15,7	15,9	16,0	16,1	15,5				

Вариант 7. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Результаты измерения обхвата грудной клетки120 женщин, см.

95	93	89	100	94	95	94	101	90	95
103	98	99	91	95	94	95	94	89	93
98	95	93	89	100	107	100	98	101	97
90	95	103	98	99	91	94	95	94	89
93	98	93	96	101	97	102	97	106	101
96	96	94	100	95	92	93	96	97	98
99	97	104	101	98	109	98	104	95	100
102	98	95	99	98	92	97	99	98	102
98	94	98	97	94	90	95	97	103	100
97	91	96	108	100	91	93	106	93	97
93	90	95	97	97	99	93	96	101	96
100	106	105	94	102	91	94	106	96	100

Вариант 8. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Результаты измерения обхвата грудной клетки 123 мужчин, см.

98	92	101	102	99	109	101	104	94	96	104	100	100	97	106
101	101	102	99	109	101	104	93	96	104	100	110	97	106	101
101	99	103	101	99	93	100	103	98	108	102	103	88	97	116
97	105	103	110	102	96	109	104	112	97	98	114	105	116	102
101	109	98	109	98	105	103	101	97	92	106	109	98	103	104
100	101	91	99	101	101	105	97	110	99	93	107	88	103	94
111	98	90	100	116	97	108	104	112	96	92	110	103	105	87
96	109	98	109	101	102	110	105	109	103	98	108	106	92	97
101	103	105												

Вариант 9. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

Результаты определения выносливости шерстяной ткани при многократном растяжении при заданной циклической деформации 8%, число циклов.

102	99	102	113	91	101	107	94	109	111	106	95	103	87	97
106	101	93	98	95	105	98	101	88	99	100	107	108	97	92
104	102	97	114	101	97	111	101	104	111	101	103	101	92	102
110	106	105	95	96	103	108	93	112	96	99	116	100	112	101
103	112	102	97	95	94	100	107	103	99	105	104	110	108	98
97	103	102	89	92	99	89	109	98	111	106	102	99	110	86
97	106	105	97	101	109	96	104	103	109	103	85	105	100	102
100	100	98	103	100	110	99	96	94	103	110	103	109	99	102
91	100	97	93	110	109	104	103	101	103	106	87	105	96	101
101	93	98	103	111	102	92	98	109	104	114	108	103	101	70
108	99	102	103	106	101	105	97	116	102	109	98	97	100	95

Вариант 10. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

Результаты измерения стойкости резца из Т15К6 при скорости резания 0,33 м/с и подаче 0,12 мм/об, мин.

162	143	170	162	163	151	164	161	163	165	159	163	170	166	168
155	164	165	174	159	165	170	158	159	160	158	160	162	166	163
164	165	165	158	158	160	163	164	170	169	170	172	170	165	158
164	171	176	170	158	165	160	164	167	170	161	160	165	165	158
170	168	168	160	164	158	160	162	156	170	163	160	163	168	162
165	163	163	165	158	168	164	171	166	160	160	162	164	155	169
165	165	165	165	166	164	164	150	165	170	175	160	165	166	162
168	164	164	170	164	167	160	168	158	170	165				

Вариант 11. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

Результаты измерений максимальной скорости испытаний спортивного самолета, м/с.

431	398	423	401	423	404	389	428	402	404
427	398	422	409	420	422	397	458	403	411
398	408	438	414	413	404	426	434	430	397
383	415	418	438	394	417	412	404	389	398
431	423	401	423	435	427	428	405	414	415
439	409	391	416	419	401	372	395	418	413
407	445	428	420	429	395	433	406	402	398
399	432	405	412	425	417	424	416	396	403
432	402	431	419	423	441	424	410	424	413
393	412	302	408	437	416	436	415	421	407
404	404	403	434	412	419	405	402	394	423
398	415	401	398	428	416	453	371	424	417

Вариант 12. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

168	163	160	170	160	155	158	157	157	159	155	155	160	163
164	168	173	170	163	160	156	158	163	164	165	164	171	163
172	168	165	168	170	168	159	172	166	154	165	164	164	168
165	154	167	159	160	164	165	164	169	158	163	156	170	174
179	172	163	162	160	164	170	174	167	167	154	164	170	160
167	167	165	168	158	156	167	155	162	170	170	170	164	168
160	166	162	164	162	165	157	166	155	158	160	162	163	167
157	164	163	158	168	158	164	162	164	166	170	162	168	169
167	174	169	175	168	166	168	168	168	166	170	160	165	170
168	162	155	168	164	163	166	168	164	165	166	156	165	164
159	156	163	164	165	165	157	170	166					

Вариант 13. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Масса одного колоса пшеницы сорта *Sonnora* (Япония) при плотности посева 15×2,5 см, г.

1,80	1,40	1,12	2,30	2,70	3,30	1,30	1,13	1,70	1,40
1,25	1,90	1,64	1,47	1,65	1,50	1,85	1,68	1,51	1,48
1,95	0,80	2,80	2,40	2,95	2,50	2,30	2,90	1,84	2,20
1,68	2,50	2,52	1,29	3,30	1,85	2,10	3,60	2,40	2,55
1,50	1,29	1,85	1,58	1,31	1,69	1,28	1,90	1,87	1,70
1,49	2,10	1,90	1,49	1,80	2,45	2,30	3,00	3,10	3,10
1,60	1,88	2,20	1,63	0,80	1,63	1,45	1,29	1,47	2,55
1,49	2,40	2,55	1,26	0,80	1,25	2,10	0,70	2,00	1,85
0,90	1,90	2,10	2,55	2,55	2,40	0,60	2,10	0,40	2,50
1,50	1,69	2,70	1,48	1,50	1,69	1,46	1,48	1,52	1,30

Вариант 14. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

Масса одного колоса пшеницы сорта Sonnora (Япония) при плотности посева 15×5 см, г.

3,91	4,21	1,73	2,70	1,57	2,00	4,00	1,10	1,62	1,30
2,50	1,10	2,60	3,90	0,70	1,45	1,51	1,97	1,46	3,82
1,42	1,62	2,45	0,78	3.50	3,75	1,39	2,40	3,80	2,48
1,10	2,03	1,47	5,40	0,71	1,41	1,40	1,48	1,49	5,20
2,35	1,49	1,61	1,44	3,40	0,75	2,60	2,95	3,00	2,08
1,49	2,85	1,58	3,90	1,59	1,98	0,80	2,80	1,49	1,90
5,10	1,49	2,01	3,65	2,08	1,48	3,25	1,50	4,19	0,94
1,95	2,03	0,80	1,58	1,90	2,02	1,53	0,84	1,85	2,01
2,02	2,38	1,96	2,10	2,47	1.41	2,07	1,50	0,80	1,45
3,80	1.50	1,49	3.98	1,98	2,78	3,95	2,91	2,50	1,90
1,35	2,10	0,74	1,28	0,75	1,59	1,50			

Вариант 15. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

Процентное содержание лавсанового волокна в хлопко-лавсановой пряже (данные чулочно-носочной фабрики им. В.Н.Ногина)

13,39	13,43	13,54	13,64	13,40	13,55	13,40	13,26	13,42	13,50
13,32	13,31	13,28	13,52	13,46	13,63	13,38	13,44	13,52	13,53
13,37	13,33	13,24	13,13	13,53	13,53	13,39	13,57	13,51	13,34
13,39	13,47	13,51	13,48	13,62	13,58	13,57	13,33	13,51	13,40
13,30	13,48	13,40	13,57	13,51	13,40	13,52	13,56	13,40	13,34
13,23	13,37	13,48	13,48	13,62	13,35	13,40	13,36	13,45	13,48
13,29	13,58	13,44	13,56	13,38	13,20	13,54	13,62	13,46	13,47
13,59	13,29	13,43	13,30	13,56	13,51	13,47	13,40	13,29	13,20
13,46	13,44	13,42	13,29	13,41	13,39	13,50	13,48	13,53	13,34
13,45	13,42	13,29	13,38	13,45	13,50	13,56	13,33	13,32	13,69
13,46	13,32	13,48	13,29						

Вариант 16. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

Глубина вдавливания (глубокий отпуск) стальных образцов, мм

9,57	10,07	10,77	10,24	9,98	9,65	9,30	10,33	11,51	9,23
10,32	9,12	10,33	9,28	10,57	10,24	10,62	10,18	10,85	11,02
9,78	10,42	10,90	10,23	9,45	10,50	10,48	11,11	9,53	10,05
11,58	9,72	10,59	9,68	10,92	9,87	10,27	10,22	10,97	10,82
10,66	10,69	10,80	9,42	10,69	10,54	10,85	10,24	10,48	10,35
11,07	9,54	11,18	9,67	11,43	9,80	10,86	11,25	10,23	10,08
9,75	11,05	10,07	10,03	10,57	10,27	9,97	9,92	10,62	10,87
10,47	10,12	10,08	9,99	9,96	9,85	9,85	10,63	10.22	9,30
9,83	10,75	10,65	10,20	9,57	9,89	10,17	10,05	10,02	10,35
10,34	10,22	9,75	10,00	9,85	10,77	11,23	10,05	10,30	10,03
10,73	9,79	10,88	10,03	10,17	10,22	9,10	10,02	11,53	11.40
9,80	9,80	9,83	10,13	10,23	10,50	11,45	10,51	10,67	10,48
10,77	9,97	10,72	10,55	10,42	11,66	9,31	9,46	10,00	11,35
9,33	10,05	10,27	10,38	10,24	10,43	10,30	11,61	10,22	9,08
10,34	10,41	11,22	11,28	9,85	9,63	10,03	10,40	10,93	10,46

Вариант 17. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

Содержание влаги в 80 кирпичах, используемых для футеровки печи, после хранения их течение месяца, %

7,1	6,7	7,0	7,3	7.2	7,1	6,9	6,8	7,5	7,0
7,0	7,1	7,1	6,8	7,2	7,0	7,2	6,9	6,7	6,9
6.9	7,0	7,0	6,8	6,9	7,0	7,0	7,1	6,8	7,1
7,2	7,1	6,9	6,7	7,1	6,9	6,9	7,1	7,0	7,3
6,8	7,3	7,4	6,8	7,2	7,2	6,8	6,7	7,3	7,1
6,9	7,6	7,0	6,5	7,1	7,2	7,0	7,0	6,9	7,0
6,7	6,8	7,1	7,2	7,1	7,5	7,1	6,8	6,9	7,2
7,2	6,9	7,1	7,5	7,0	7,1	7,0	7,1	6,8	7,0

Вариант 18. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

381	388	384	418	373	364	376	383	432	428	413	412	395	420
440	440	409	406	416	418	398	371	391	421	421	425	400	391
413	385	425	423	421	431	429	411	418	429	418	449	380	347
390	382	430	372	430	437	407	402	400	429	380	456	418	411
385	405	363	404	369	340	421	358	422	373	399	391	373	418
418	383	412	382	383	428	409	397	427	430	395	410	400	405
392	376	433	363	365	395	393	377	392	379	394	410	385	370
388	399	389	362	382	382	384	415	378	375	395	388	361	399
384	375	372	427	385	410	378	392	398	398	389	403	388	429

Вариант 19. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Время безотказной работы некоторого прибора, тыс.ч

		1		1		,					
26,7	94,2	74,8	88,7	93,2	78,7	90,5	73,3	76,3	71,9	80,3	27,3
73,3	69,8	69,1	81,9	67,7	57,7	68,4	96,1	67,0	64,4	92,3	67,0
39,9	53,8	79,5	74,1	63,8	77,1	86,9	87,8	81,1	61,3	97,0	5.5
41,5	48,7	95,1	71,2	58,3	53,3	49,2	55.4	50,7	47,7	52,7	60,0
13,5	50,2	77,9	60,6	45,4	98,0	100	72,6	44,9	59,5	56,5	56,0
16,5	42,7	70,5	43,2	41,9	85,2	38,7	48,2	39,1	44,5	9,5	39,5
26,1	49,7	99,0	45,8	40,3	82,7	86,1	51,7	83,5	43,6	52,2	51,2
22,3	30,2	89,6	39,9	33,3	91,4	38,3	26,2	37,6	36,8	28,3	37,9
65,0	13,5	84,4	27,3	24,7	66,4	58,9	54,9	46,8	61,9	47,2	65,7
30,0	42,3	75,6	63,1	62,5	40,7	41,1	46,3	44,0	37,2	57,1	54,9

Вариант 20. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Результаты определения плотности в петлях трикотажного полотна, петл./5 см.

67 65 65 62 63 66 68 71 68 64	4 61 63 60
71 64 64 69 59 65 64 64 65 64	4 66 64 62
64 68 65 67 67 67 67 71 68 71	69 65 67
62 68 70 67 64 65 65 64 61 66	6 67 61 65
64 70 64 68 60 61 68 65 60 67	7 65 63 65
65 63 64 66 62 65 65 68 61 65	5 61 64 62
68 69 70 71 70 69 70 71 65 71	70 71 69
70 64 71 70 70 68 70 62 66 69	70 71 69
72 73 74 73 70 63 67 65 63 68	3 70

Вариант 21. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Результаты определения поверхностной плотности асбестового полотна, г/м².

431 470 431 432 434 450 449 437 448 445 351 3 370 361 360 362 368 361 369 411 412 413 412 4
370 361 360 362 368 361 369 411 412 413 412 4
429 425 424 427 402 429 411 419 414 417 429 4
421 420 419 429 427 424 430 420 421 421 429 4
415 414 413 411 391 392 398 400 410 409 406 4
399 397 396 409 408 410 400 405 407 406 400 4
404 405 410 410 405 401 402 407 406 391 392 3
405 407 407 402 371 372 390 385 380 381 382 3
380 375 374 380 379 379 372 374 377 376 3
373 374 376 378 376 378 379 380 381 382 3
383 383 371 372 372 390 378 400 399 390 387 4

Вариант 22. Для заданной выборки:

1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;

- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Горизонтальное отклонение от цели при испытаниях 190 ракет, м.

•					•		-			
	4,3	-29,3	20,5	27,3	-20,8	-28,7	26,4	-30,1	20,8	-27,3
	11,2	9,5	-5,3	19,2	5,2	-6,0	2,6	4,9	-0,8	0,2
	7.5	15,1	8,0	17,9	10,3	11,4	5,1	14,8	17,8	-8,3
	2,5	-5,8	56,9	9,0	-5,9	1,2	19,2	-22,4	19,4	-19,5
	21,3	19,8	-32,2	48,1	-21,1	-21,3	-8,8	10,2	-37,2	-0,3
	14,5	26,3	-1,9	26,3	-1,9	12,4	14,9	18,2	1,5	1,6
	1,7	-10,5	1,7	2,7	16,1	1,8	3,2	32,1	-50,8	6,9
	51,2	31,3	-47,9	53,4	30,2	-56,1	14,0	11,8	-7,5	18,4
	11,5	-5,0	-6,2	-11,2	18,6	16,7	-12,3	17,1	-12,3	25,3
	1,9	-16,3	-54,3	-32,7	-19,3	3,7	2,0	3,8	0,1	0
	13,5	0,3	6,8	46,2	42,3	-40,1	22,3	27,1	-23,0	21,8
	0	-2,5	0,8	-5,2	2,9	6,0	18,8	-8,1	-20,0	-23,7
	23,4	5,4	4,2	-9,0	23,8	4,4	-18,3	15,7	5,0	-3,2
	10,8	7.2	12,8	13,0	-7,3	7,8	17,3	7,9	13,9	12,0
	7,8	-13,2	8,1	24,3	-16,5	-14,2	-12,3	-15,2	8,8	-6,8
	13,8	-20,8	15,5	8,9	15,3	8,7	-6,5	9,3	18,8	-17,7
	10,0	24,8	-8,1	19,9	0	9,8	-10,0	16,9	25,8	-7,2
	16,5	-14,8	-33,5	-6,9	12.4	-26,2	27,8	28,5	29,5	-27,3
	29,8	30,0	-24,8	-46,3	-25,2	-34,5	38,3	-37,5	37,4	42,3

Вариант 23. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Распределение скорости автомобилей на одном из участков шоссе, км/ч.

65	85	78	73	80	76	81	70	80	80	77	90	75	69	77	87	78	84
79	75	79	67	80	95	83	68	72	76	83	89	76	84	79	85	74	86
79	74	78	81	92	81	66	81	82	59	87	58	75	88	77	79	80	77
73	69	79	72	80	78	75	73	101	73	83	89	97	83	103	73	94	79
74	91	79	76	63	74	92	78	84	80	83	99	78	82	59	79	61	78
94	92	79	85	82	84	68	76	71	79	73							

Вариант 24. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Результаты определения разрывной нагрузки асбестовых нитей, сН.

780	860	820	860	600	720	720	600	800	820
980	1020	600	760	1220	1060	1240	1020	860	740
660	600	580	780	500	800	680	600	760	1160
880	1040	960	800	760	980	840	840	700	1000
640	620	1000	1000	1040	740	640	860	840	1000
1040	820	920	900	880	840	700	1120	900	660
860	680	1080	920	780	700	660	640	580	640
720	720	580	840	840	920	940	900	500	980
760	620	580	1040	1080	840	920	900	660	1040
520	900	860	1060	980	900	860	980	1300	1160
880	780	580	880	900	880	900	720	640	660
820	930	680	500	780	910	700	760	780	660
740	300	760	780	860	780	560	560	900	700
740	740	1300	740	940	940	740	900	900	1220

Вариант 25. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;

4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Результаты определения долговечности шерстяной пряжи при самоистирании в петле на приборе ИПП, число циклов.

288	284	291	268	265	280	382	290	335	353	440	353	400
366	338	315	384	367	328	388	348	360	409	311	336	280
290	335	353	400	335	300	361	360	325	345	349	307	344
323	360	397	379	334	399	352	349	361	385	333	377	347
321	359	449	356	343	391	332	375	345	358	320	342	420
352	368	331	373	357	339	319	309	341	335	367	375	371
292	356	317	340	329	334	366	383	332	354	313	328	425
295	355	345	339	334	365	379	349	401	367	364	386	318
407	381	337	289	366	369	384	347	405	360	344	336	306
350	369	403	346	362	326	346	340	385	419	351	356	377

Вариант 26. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Результаты измерений геометрического размера изделий, мм.

14,12	14,55	14,26	14,43	14,50	14,46	14,15	14,40	14,22	14,61
14,24	14,42	14,03	14,35	14,18	14,48	14,51	14,52	14,62	14,45
14,32	14,14	14,59	14,51	14,54	14,38	14,27	14,53	14,54	14,64
14,37	14,58	14,56	14,80	14,60	14,48	14,44	14,50	14,38	14,63
14,45	14,46	14,36	14,52	14,33	14,65	14,82	14,61	14.49	14,78
14,81	14,40	14,88	14,47	14,57	14,94	14,60	14,59	14,64	14,70
14,80	14,62	14,43	14,96	14,53	14,58	14,85	14,44	14,41	14,79
14,92	14,55	15,84	14,67	14,57	14,95	14,50	15,06	14,66	14,65
14,71	14.51	14,66	14,94	14,67	15,14	14,56	14,86	14,69	14,77
15,04	14,71	14,79	14,73	14,68	14,78	14,93	14,68	14,75	14,70

Вариант 27. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Результаты измерений боковой ошибки наводки при стрельбе с самолета по наземной цели, тыс. доли радиана.

-0,5	-1,8	0,2	1,5	-2,4	-1,0	-1,8	-0,6	0,3	0,7	-0,5
1,8	-1,9	-0,9	-0,7	0,2	3,4	1,9	0,7	2,7	1,6	1,0
-0,2	-2,7	1,7	2,7	-0,2	-1,5	1,5	1,7	-1,9	-2,5	3,0
0,8	2,5	-1,8	-0,1	-1,7	-0,9	-0,9	3,3	2,5	-2,9	-0,9
-1,9	-2,6	0,9	1,8	-2,0	-2,6	-0,8	0,2	0,4	1,9	2,0
-1,2	-1,4	-2,4	2,9	-1,6	-1,4	2,3	-1,7	-2,4	-2,4	-1,8
-2,3	-0,7	2,9	-3,8	1,8	-1,9	-1,4	-0,8	-1,5	2,8	-1,5
-2,2	-1,5	-3,4	1,9	-0,1	-0,6	-0,1	1,4	-0,9	-1,3	2,6
-1,6	-0,8	0,2	0,4	-1,7	1,9	0,2	1,7	0,3	1,5	-1,9
-0,7	1,5	1,7	0,7	1,8	-0,8	-0,9	-0,7	1,6	-0,9	-1,0
0,9	0,8	0,5	-0,7	0,3	0,7	-0,8	0,7	-0,6	-0,8	0.8
-0,5	-0,6	-0,5	-0,4	-0,9	1,5	1,8	-0,4	1,9	-0,3	-0,6
0,5	-0,3	-0,5	1,9	0,2	-0,4	-0,6	-0,8	0,7	-0,7	-0,9
-0,2	0,8	-0,6	1,2	0,3	1,8	-0,8	-0,6	-0,7	1,7	1,8
0,7	-0,7	0,6	-0,3	0,6	0,3	-0,2	0,3	-0,5	-0,4	0,5

Вариант 28. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Предел прочности образцов сварного шва, Н/мм².

34,0	39,4	36,3	34,1	39,1	33,1	40,1	35,3	39,2	38,7	38,4
41,5	34,9	38,8	36,9	41,1	33,8	38,0	37,8	42,3	35,2	35,4
35,4	36,4	32,9	37,3	36,5	30,2	30,0	30,4	30,1	40,7	35,9
37,0	40,9	35,8	37,2	31,1	36,9	36,9	37,4	40,8	38,1	33,5
30,8	38,2	32,5	41,1	33,2	38,9	39,9	38,9	38,3	35,3	37,1
35,5	37,1	43,9	35,0	32,6	28,9	34,4	29,0	33,9	32,8	40,4
28,1	31,8	39,5	33,4	42,3	35,5	39,6	37,8	39,9	37,6	29,4
32,4	40,0	34,6	28,3	32,3	38,7	28,7	29,8	34,8	38,6	41,8
31,9	43,1	30,4	41,9	30,6	38,8	32,7	42,8	39,7	33,3	34,5
40,0	31,6	36,8	31,3	39,8	37,2					

Вариант 29. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Точность измерительного прибора, систематическая ошибка которого практически равна нулю, м.

381	421	372	418	392	427	385	358	370
412	411	386	395	382	376	380	383	395
391	430	391	377	372	406	429	429	376
431	405	430	382	429	413	421	395	413
430	373	393	375	364	449	382	375	371
411	427	362	388	409	400	392	378	421
399	396	384	373	391	340	410	428	382
397	389	403	440	418	412	378	398	418
365	399	418	400	402	405	410	423	373
399	389	440	429	369	394	432	390	409
351	384	425	407	383	415	418	456	303
398	420	418	404	400	383	425	422	388
388	421	437	418	379	383	347	428	388
395	429	363	410	384	416	380	433	398

Вариант 30. Для заданной выборки:

- 1) постройте: а) статистический ряд; б) интервальный статистический ряд, предварительно определив число интервалов;
- 2) найдите значения точечных оценок математического ожидания и дисперсии;
- 3) постройте гистограмму;
- 4) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности. Время безотказной работы некоторого прибора, тыс.ч

26,7	94,2	74,8	88,7	93,2	78,7	90,5	73,3	76,3	71,9	80,3	27,3
73,3	69,8	69,1	81,9	67,7	57,7	68,4	96,1	67,0	64,4	92,3	67,0
39,9	53,8	79,5	74,1	63,8	77,1	86,9	87,8	81,1	61,3	97,0	5.5
41,5	48,7	95,1	71,2	58,3	53,3	49,2	55.4	50,7	47,7	52,7	60,0
13,5	50,2	77,9	60,6	45,4	98,0	100	72,6	44,9	59,5	56,5	56,0
16,5	42,7	70,5	43,2	41,9	85,2	38,7	48,2	39,1	44,5	9,5	39,5
26,1	49,7	99,0	45,8	40,3	82,7	86,1	51,7	83,5	43,6	52,2	51,2
22,3	30,2	89,6	39,9	33,3	91,4	38,3	26,2	37,6	36,8	28,3	37,9
65,0	13,5	84,4	27,3	24,7	66,4	58,9	54,9	46,8	61,9	47,2	65,7
30,0	42,3	75,6	63,1	62,5	40,7	41,1	46,3	44,0	37,2	57,1	54,9

ЗАДАЧА 4.

Вариант 1. Глубина моря измеряется прибором, систематическая ошибка измерения которого равна 0, а случайные ошибки распределены нормально со средним квадратичным отклонением 10 м. Сколько надо сделать независимых измерений, чтобы определить глубину с абсолютной погрешностью не более 5 м при доверительной вероятности 90%?

Вариант 2. Расстояние от места измерения до навигационного знака оценивают средним арифметическим результатов независимых измерений данного расстояния, выполненных дальномерами в количестве *n* шт. Измерения не содержат систематической ошибки и производятся каждым дальномером 1 раз, а случайные ошибки распределены нормально со средне-квадратическим отклонением 10 м. Сколько надо иметь дальномеров, чтобы абсолютная величина ошибки при определении расстояния до навигационного знака с вероятностью 0,9 не превышала 10 м?

- **Вариант 3.** В результате проведённых испытаний получены (в м/с) следующие значения начальной скорости снаряда: 422.2; 418.7; 425.6; 420.3; 425.8; 423.1; 431.5; 428.2; 438.3; 434.0; 411.3; 423.0. Определить точечные оценки математического ожидания и среднего квадратичного отклонения начальной скорости, а также построить для указанных параметров 90%-ные доверительные интервалы, считая распределение начальной скорости нормальным.
- **Вариант 4.** Среднее арифметическое значение расстояния между двумя геодезическими пунктами, полученное по данным обработки 9 независимых измерений, составляет 3000 м. Значения ошибки дальномерного устройства подчинены нормальному закону распределения и характеризуются средним квадратичным отклонением 30 м. Построить для истинного расстояния между пунктами 90%-ный доверительный интервал.
- **Вариант 5.** При определении прочности стержня на разрыв испытывались 8 образцов. В результате испытаний получены следующие значения усилия разрыва (в кг): 500; 510; 545; 600; 560; 530; 525; 540. Требуется определить доверительные интервалы уровня доверия 0,95 для среднего значения прочности и её среднего квадратичного отклонения, если закон распределения прочности нормальный.
- **Вариант 6.** Средняя квадратичная ошибка измерения угла теодолитом составляет 7". Сколько независимых измерений следует произвести, чтобы с вероятностью 0,95 гарантировать измерение угла с ошибкой, по абсолютной величине не превышающей 5"? Предполагается, что ошибки измерений распределены по нормальному закону.
- **Вариант 7.** С помощью 5 секундомеров, позволяющих производить измерения со средним квадратичным отклонением 0,15 м/с, найдены такие значения времени вывода космического аппарата на орбиту (в м/с): 425.5; 425.3; 426.1; 425.7; 425.9. Полагая, что ошибки измерения секундомеров подчинены нормальному закону распределения, построить 90%-ный доверительный интервал для истинного времени вывода аппарата на орбиту.
- **Вариант 8.** Оценка дисперсии, полученная путём обработки результатов 8 независимых наблюдений нормально распределённой случайной величины X, равна 5,75. С какой вероятностью можно утверждать, что среднее значение заключено в интервале (25;37.4), если середина этого интервала совпадает с выборочным средним значением X?
- **Вариант 9.** В результате 16 испытаний инерционного звена среднее арифметическое измерений постоянной времени ξ равно 120,1 с, а исправленная выборочная дисперсия равна 9.64 с². Полагая закон распределения случайной величины нормальным, построить для математического ожидания и дисперсии ξ доверительные интервалы уровней доверия 0,95 и 0,90.
- **Вариант 10.** Среднее значение дальности до ориентира, полученное по результатам 10 независимых измерений, равно 3230 м, среднее квадратичное отклонение ошибки измерения дальномера составляет 8 м. Найти 95%-ный доверительный интервал для дальности до ориентира, если ошибка измерения распределена по нормальному закону с нулевым средним значением.
- **Вариант 11.** По 15 независимым равноточным измерениям рассчитаны оценки математического ожидания 427,7 м/с и среднего квадратичного отклонения 8,7 м/с максимальной скорости самолета. Определить доверительные границы для математического ожидания и среднего квадратичного отклонения при доверительной вероятности 0,9.
- **Вариант 12.** На основании 20 измерений было установлено, что в среднем для выполнения операции требуется 1,5 мс, а оценка среднего квадратичного отклонения времени операции равна 2,1 мс. Полагая, что время операции подчиняется нормальному закону распределения, определить доверительные границы для математического ожидания и среднего квадратичного отклонения времени операции, отвечающих доверительным вероятностям 0,95 и 0,90 соответственно.
- **Вариант 13.** В результате пусков 10 ракет получены (в км) такие значения боковых отклонений точек попадания от точки прицеливания:

N ракеты	1	2	3	4	5	6	7	8	9	10
Значение отклонения	1.0	0.2	1.0	-0.1	-0.5	5.0	-1.0	3.0	0.5	1.0

Необходимо оценить среднее значение бокового отклонения и построить для него 99%-ный доверительный интервал, считая случайное отклонение нормально распределённым.

Вариант 14. Давление в баке с горючим измерено 8 раз манометром. Результаты измерений зафиксированы в таблице:

· · · · · · · · · · · · · · · · · · ·	. I	1		1 .	J		. I.	- · · I
N измерения	1	2	3	4	5	6	7	8
Давление, Па	3.25	2.82	3.07	3.12	2.93	2.87	3.09	3.17

Полагая ошибки измерений подчинёнными нормальному закону распределения, определить по этим результатам оценки математического ожидания, дисперсии и среднего квадратичного отклонения давления в баке, а также построить для них 90%-ный доверительный интервал.

- **Вариант 15.** При помощи вольтметра, точность которого характеризуется средним квадратичным отклонением 0,2 В, произведено 10 измерений напряжения бортовой батареи. Среднее арифметическое результатов измерения, имеющих нормальный закон распределения составляет 50,2 В. Найти интервал, который с вероятностью 0,95 «накроет» истинное значение напряжения батареи.
- **Вариант 16.** По результатам 25 измерений скорости V получена оценка среднего квадратичного отклонения 5.8 м/с. Построить 90%-ный доверительный интервал для дисперсии и среднего квадратичного отклонения, считая величину V распределённой по нормальному закону.
- **Вариант 17.** Оценка дисперсии нормально распределённой ошибки измерения гидротеодолита, вычисленная в результате обработки 20 измерений азимута неизвестного ориентировочного направления, оказалась равной 20 с. Найти доверительный интервал для дисперсии, отвечающий доверительной вероятности 0,8.
- Вариант 18. В результате 15 независимых измерений давления в топливном баке найдена оценка дисперсии давления, равная

- 0,2 Па. Построить доверительный интервал для дисперсии, если математическое ожидание значения давления неизвестно, а доверительная вероятность 0,8.
- **Вариант 19.** Из большой партии транзисторов одного типа были случайным образом отобраны и проверены 100 шт. Коэффициент усиления 36 транзисторов оказался меньше 10. Найти 95%-ный доверительный интервал для доли таких транзисторов во всей партии.
- **Вариант 20.** На контрольных испытаниях 16 осветительных ламп были определены оценки математического ожидания и среднеквадратического отклонения их срока службы, которые оказались равными соответственно 3000 ч и 20 ч. Считая, что срок службы каждой лампы является нормальной случайной величиной, определить значения границ доверительного интервала для среднего квадратичного отклонения при доверительной вероятности 0,9.
- **Вариант 21.** На основании 100 опытов определили, что в среднем для производства детали требуется 5,5 с, а оценка среднеквадратического отклонения составила 1,7 с. Сделав допущение, что время для производства детали есть нормальная случайная величина, определить границы, в которых лежит истинное значение среднеквадратического отклонения с доверительной вероятностью 90%.
- **Вариант 22.** Среднеквадратическое отклонение ошибки высотомера равно 15 м. Сколько надо иметь таких приборов на самолете, чтобы с достоверностью 0,99 ошибка средней высоты была меньше 30 м? При этом случайные ошибки распределены по нормальному закону, а систематические ошибки отсутствуют.
- Вариант 23. Оценка величины сопротивления для большой партии однотипных резисторов, определённая по результатам измерений 100 случайно отобранных экземпляров, равна $10 \, \text{кОм}$. Считая, что среднеквадратическое отклонение ошибки измерений сопротивления равно $1 \, \text{кОм}$, найти вероятность того, что для резисторов всей партии значения сопротивления лежат в пределах $10 \pm 0.1 \, \text{кОм}$.
- **Вариант 24.** Построить 90%-ный доверительный интервал для вероятности попадания снаряда в цель, если после 220 выстрелов в цель попало 75 снарядов.
- Вариант 25. Известно, что измерительный прибор не имеет систематических ошибок, а случайные ошибки каждого измерения подчиняются одному и тому же закону нормального распределения. Сколько надо провести измерений для определения оценки значения измеряемой величины, чтобы с доверительной вероятностью 0.7 абсолютное значение ошибки в определении этой величины было не более 20% от среднеквадратического отклонения σ ?

Вариант 26. Результаты 11 измерений постоянной величины даны в таблице:

№ измерений	1	2	3	4	5	6	7	8	9	10	11
X_j , м	9,9	12,5	10,3	9,2	6,0	10,9	10,3	11,8	11,6	9,8	14,0

Ошибки измерений некоторой величины распределены по нормальному закону, систематические ошибки отсутствуют. Определить: а) оценку \bar{X} математического ожидания и оценку s среднеквадратического отклонения измеряемой величины; б) вероятность того, что абсолютное значение ошибки при определении истинного значения измеряемой величины меньше 2% от \bar{X} .

- **Вариант 27.** Расстояние от станции слежения до точки падения ракеты определяется тремя различными способами: радиотехническим, акустическим и фототеодолитным. Средние квадратичные отклонения измерений этими способами равняются 120 м, а результаты измерений, имеющих нормальный закон распределения, равны 10500, 10700 и 10800 м соответственно. Найти значение оценки расстояния от станции слежения до точки падения ракеты, а также среднее квадратичное отклонение этой оценки, характеризующее точность её определения с доверительной вероятностью 0,9.
- **Вариант 28.** По результатам 10 измерений емкости конденсатора прибором, не имеющим систематической ошибки, получили следующие отклонения от номинального значения (пФ): 5,4; -13,9; -11; 7,2; -15,6; 29,2; 1,4; -0,3; 6,6; -9,9. Найти 90%-ный доверительный интервал для дисперсии и среднего квадратичного отклонения.
- **Вариант 29.** На контрольных испытаниях 16 осветительных ламп была определена оценка среднеквадратического отклонения их срока службы, которая оказалась равной 20 ч. Считая, что срок службы каждой лампы является нормальной случайной величиной, определить значения границ доверительного интервала для среднего квадратичного отклонения при доверительной вероятности 0,9.
- Вариант 30. Плотность распределения вероятности случайного времени τ между последовательными отказами радиоэлектронной аппаратуры задана формулой $f(t) = \frac{1}{T}e^{-t/T}, \ t \geqslant 0$, где T математическое ожидание τ . В теории надежности параметр T носит название «средняя наработка на отказ». Для оценки параметра T провели испытания n образцов радиоэлектронной аппаратуры до появления d отказов. Общая продолжительность S работы c начала испытания до последнего отказа для образцов оказалась равной 1600 ч. Определить границы доверительного интервала для параметра T по результатам опыта при таких данных: доверительная вероятность 0,8; количество отказов d = 5. Воспользоваться тем, что величина 2S/T имеет χ^2 -распределение c 2d степенями свободы.