Analysis Qualifying Exam, Jan. 2010

Part I:

Complex Analysis questions

- 1. Find the values of the following contour integrals:
 - a) $\oint_c ze^{1/z} dz$; C is the square with vertices at z = 1, i, -1, -i, respectively, and oriented counterclock-wise.
 - b) $\int_c \text{Log}(z) dz$; Log(z) is the principle logarithmic function $(\theta = \text{Arg}(z) \in (-\pi, \pi))$ and C is the contour given by the horizontal line connecting z = i to z = 1 + i, and then the vertical line connecting z = 1 + i to z = 1.
 - c) $\int_{c} \frac{z}{(z-i)^2} dz$; C is the circle of radius 2 centered at z=i, oriented counterclock-wise.
- 2. Suppose f(z) is entire and its image lies in the left-half plane $\{x < 0\}$, describe all such functions. Prove your assertion.
- 3. Let f(z) be analytic on D(1/2, 1/2) the open disk with radius 1/2 centered at z = 1/2. Suppose f(z) has the property that $f(1/n) = 1/n^3$ for all integers $n \ge 2$. Is there only one such analytic function? If so, prove it. If not so, display at least two such functions.
- 4. Compute the integral

$$\int_0^{2\pi} \frac{d\theta}{1 + \sin^2 \theta}.$$

- 5. Let $f: D(0,1) \longrightarrow D(0,1)$ be an analytic function such that f(0) = 0, where D(0,1) is the open unit disk centered at the origin.
 - a) Prove that $|f(z)| \le |z|$ for all $z \in D(0,1)$.
 - b) Prove that if there is a point $z_0 \in D(0,1)$ such that $|f(z_0)| = |z_0|$, then f must be a rotation.

	Analysis Qualifying Exam. Jan. 2010
	Part I Real & Functional Analysis
	lour solutions to the following problems should contain enough
a a	Lebesgue Dominated Convergence Theorem, you should mention
	If you use a result that has no name or you forget the
(100.6)	name, write enough about it to show you know it.
(10points)	1. Let E_k , $k=1,2,\cdots$, be measurable sets in $[0,1]$ with $m(E_k)=1$ ("m" stands for Lebesgue neasure). Prove that $m\left(\bigcap_{k=1}^{\infty}E_k\right)=1$.
	Let {f_k(x)} be a segmence of nonnegative measurable functions defined on [0,1]. Y integers k, n > 1, clafine
	ER = { X = [0, 1] f (x) > \frac{1}{n} .
(6 pts)	(i) Let B = { x = [0, 1] lim f _k (x) \ t 0 or does not exist.
	Express B in terms of Ex (instaining "U" (union) and "N" (intersection)).
(6pb)	(ii) Show that if $f_k(x) \rightarrow 0$ are on $[0,1]$, then V fixed $n \geqslant 1$, $\lim_{k \to \infty} m(\bigcup_{k=1}^{\infty} E^k) = 0$
	1→60 k=2
	1