Linear Transformations Part I

Linear Transformations (1)

Definition: A **linear transformation** is a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ satisfying the following two properties:

- T(u+v) = T(u) + T(v)
- ightharpoonup T(cu) = cT(u), for all vectors u, v in \mathbb{R}^n and all scalars c.

Let
$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 be a matrix transformation defined by $T(x) = Ax$ then $T(u+v) = A(u+v) = Au + Av = T(u) + T(v)$

$$T(cu) = A(cu) = cAu = cT(u)$$

So, a matrix transformation is a linear transformation.

Properties of linear transformations. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then

- \succ T(0) = 0 (application of the second defining property with c = 0)
- For any vectors $v_1, v_2, ..., v_k$ in \mathbb{R}^n and any scalars $c_1, c_2, ..., c_k$ we have $T(c_1v_1 + c_2v_2 + \cdots + c_kv_k) = c_1T(v_1) + c_2T(v_2) + \cdots + c_kT(v_k)$ (application of the first and second defining properties)

Linear Transformations (2)

Example 1

- (a) Let $T: \mathbb{R} \to \mathbb{R}$ be defined by T(x) = x 1. Is T a linear transformation? $\mathcal{N} \circ \mathcal{T}(o) = -1 \neq 0$
- **(b)** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x) = 2x. Is T a linear transformation? T(u+v) = 2(u+v) = 2u + 2v = T(u) + T(v) T(uu) = 2(uu) = c(uu) = cT(u) v
- (c) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x) = the vector x rotated counterclockwise by the angle θ . Is T a linear transformation?

Linear Transformations (3)

Example 2

Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 be defined by $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x - y \\ y \end{bmatrix}$. Is T a linear transformation? $Y \in S$

$$T \left(\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix} \right) = T \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3(x + y) - (y + y) \\ y +$$

Linear Transformations (4)

Example 3

(a) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} |x| \\ y \end{bmatrix}$. Show that T is not linear.

$$T(-1\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = T[-1] = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1$$

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \overline{xy} \\ y \end{bmatrix}$. Show that T is not linear.

$$T(c[x]) = T[cx] = [cxy] + cT[x]$$

(c) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x + 2 \\ x - 2y \end{bmatrix}$. Show that T is not linear.

$$T\begin{bmatrix}0\\0\end{bmatrix} = \begin{bmatrix}2\\0\end{bmatrix}$$