Caterpillar Tube Pricing

Adam Cone and Ismael Cruz
Capstone Project
NYCDSA Bootcamp 005

Introduction

kaggle Host Competitions Datasets Scripts Jobs Community → IsmaelCruz Logout

Completed • \$30,000 • 1,323 teams

Caterpillar Tube Pricing

Mon 29 Jun 2015 - Mon 31 Aug 2015 (9 months ago)

Competition Details » Get the Data » Make a submission

Model quoted prices for industrial tube assemblies

Introduction

Introduction


```
bill of materials df = pd.read csv('../competition data/bill of materials.csv')
comp adaptor df = pd.read csv('../competition data/comp adaptor.csv')
comp_boss_df = pd.read_csv('../competition_data/comp_boss.csv')
comp elbow df = pd.read csv('../competition data/comp elbow.csv')
comp float df = pd.read csv('../competition data/comp float.csv')
comp hfl df = pd.read csv('../competition data/comp hfl.csv')
comp nut df = pd.read csv('../competition data/comp nut.csv')
comp other df = pd.read csv('../competition data/comp other.csv')
comp_sleeve_df = pd.read_csv('../competition data/comp sleeve.csv')
comp straight df = pd.read csv('../competition data/comp straight.csv')
comp tee df = pd.read csv('../competition data/comp tee.csv')
comp threaded df = pd.read csv('../competition data/comp threaded.csv')
components df = pd.read csv('../competition data/components.csv')
specs df = pd.read csv('../competition data/specs.csv')
test set df = pd.read csv('../competition data/test set.csv')
train set df = pd.read csv('../competition data/train set.csv')
tube end form df = pd.read csv('../competition data/tube end form.csv')
tube df = pd.read csv('../competition data/tube.csv')
type component df = pd.read csv('../competition data/type component.csv')
type connection df = pd.read csv('../competition data/type connection.csv')
type end form df = pd.read csv('../competition data/type end form.csv')
```


data issue	solution

data issue	solution
NaNs in categorical data	new NaN factor level

data issue	solution
NaNs in categorical data	new NaN factor level
NaNs in numerical data 30 of 60,000 in bend_radius	impute with mean

data issue	solution
NaNs in categorical data	new NaN factor level
NaNs in numerical data 30 of 60,000 in bend_radius	impute with mean
factor variables can't be used for analysis	convert to dummy variables

data issue	solution
NaNs in categorical data	new NaN factor level
NaNs in numerical data 30 of 60,000 in bend_radius	impute with mean
factor variables can't be used for analysis	convert to dummy variables
order date format can't be used for analysis	convert to days since earliest date

data issue	solution
NaNs in categorical data	new NaN factor level
NaNs in numerical data 30 of 60,000 in bend_radius	impute with mean
factor variables can't be used for analysis	convert to dummy variables
order date format can't be used for analysis	convert to days since earliest date
tube assemblies have different components	feature engineering (summary & detailed)

training data frame features

basic	components
158	169
basic FE	basic FE & detailed FE

- 1. decision trees
- 2. random forest
- 3. gradient boosting

Expectations

Expectations

1. component > basic

Expectations

- 1. component > basic
- 2. GB > RF > DT

Expectations

- 1. component > basic
- 2. GB > RF > DT

more data didn't clearly improve performance

- more data didn't clearly improve performance
- RF, GB didn't clearly outperform DT

- more data didn't clearly improve performance
- RF, GB didn't clearly outperform DT
- tuning parameter issues:

- more data didn't clearly improve performance
- RF, GB didn't clearly outperform DT
- tuning parameter issues:
 - which parameters to tune?

- more data didn't clearly improve performance
- RF, GB didn't clearly outperform DT
- tuning parameter issues:
 - which parameters to tune?
 - consequences of suboptimal parameter values

- more data didn't clearly improve performance
- RF, GB didn't clearly outperform DT
- tuning parameter issues:
 - which parameters to tune?
 - consequences of suboptimal parameter values
- importance of logging tuning runs and model fits

more detailed and diligent logging

- more detailed and diligent logging
- tree splits and parameter selection based on Kaggle metric

- more detailed and diligent logging
- tree splits and parameter selection based on Kaggle metric
- Spark

Component Count Histogram

Specifications Count Histogram

Cost Histogram

	tube_assembly_id	supplier	quote_date	annual_usage	min_order_quantity	bracket_pricing	quantity	cost
0	TA-00002	S-0066	2013-07-07	0	0	Yes	1	21.905933
1	TA-00002	S-0066	2013-07-07	0	0	Yes	2	12.341214
2	TA-00002	S-0066	2013-07-07	0	0	Yes	5	6.601826
3	TA-00002	S-0066	2013-07-07	0	0	Yes	10	4.687770
4	TA-00002	S-0066	2013-07-07	0	0	Yes	25	3.541561
5	TA-00002	S-0066	2013-07-07	0	0	Yes	50	3.224406
6	TA-00002	S-0066	2013-07-07	0	0	Yes	100	3.082521
7	TA-00002	S-0066	2013-07-07	0	0	Yes	250	2.999060
8	TA-00004	S-0066	2013-07-07	0	0	Yes	1	21.972702
9	TA-00004	S-0066	2013-07-07	0	0	Yes	2	12.407983
10	TA-00004	S-0066	2013-07-07	0	0	Yes	5	6.668596
11	TA-00004	S-0066	2013-07-07	0	0	Yes	10	4.754539
12	TA-00004	S-0066	2013-07-07	0	0	Yes	25	3.608331
13	TA-00004	S-0066	2013-07-07	0	0	Yes	50	3.291176

Decision Tree Tuning Basic

Attempt	min_sample s_leaf	min_sample s_split	test_size	max_leaf_n odes
A1	2	2	0.20	-
A2	2	23.3	0.01	-
A3	3	7.3	0	-
A4	-	_	0	280

Decision Tree Tuning Components

Attempt	min_sample s_leaf	min_sample s_split	test_size	max_leaf_n odes
A1	4	2	0.20	-
A2	4	23.3	0.01	-
A3	2	18	0	_
A4	-	_	0	9

Random Forest Tuning Basic

Attempt	min_sam ples_leaf	min_sam ples_split	test_size	n_estimat ors	max_leaf_ nodes
A1	1	2	0	100	-
A2	_	_	0	1000	700

Random Forest Tuning Components

Attempt	min_sam ples_leaf	min_sam ples_split	test_size	n_estimat ors	max_leaf_ nodes
A1	1	2	0	100	_
A2	<u>-</u>	-	0	1000	650

Gradient Boosting Tuning Basic

Attempt	learning_ rate	min_sam ples_split	test_size	n_estimat ors	max_leaf_ nodes
A1	0.01	_	0	100	2

Gradient Boosting Tuning Components

Attempt	learning_ rate	min_sam ples_split	test_size	n_estimat ors	max_leaf_ nodes
A1	0.01	_	0	100	2