NORMES MATRICIELLES

Notations

Soient n et p des entiers supérieurs ou égaux à 1. \mathbb{K} désignant le corps des réels ou celui des complexes, on note $\mathcal{M}_{n,p}(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices à coefficients dans \mathbb{K} ayant n lignes et p colonnes. Lorsque p=n, $\mathcal{M}_{n,n}(\mathbb{K})$ est noté plus simplement $\mathcal{M}_n(\mathbb{K})$ et est muni de sa structure d'algèbre, I_n représentant la matrice identité.

 $0_{n,p}$ désigne la matrice nulle de $\mathcal{M}_{n,p}(\mathbb{K})$ et 0_n la matrice nulle de $\mathcal{M}_n(\mathbb{K})$.

 $\mathrm{GL}_n(\mathbb{K})$ désigne l'ensemble des matrices inversibles de $\mathrm{M}_n(\mathbb{K})$ et $\mathscr{T}_n(\mathbb{K})$ l'ensemble des matrices carrées d'ordre n triangulaires supérieures à éléments dans \mathbb{K} .

Tout vecteur $x=(x_i)_{1\leqslant i\leqslant n}$ de \mathbb{K}^n est identifié à un élément X de $\mathcal{M}_{n,1}(\mathbb{K})$ tel que l'élément de la $i^{\text{ème}}$ ligne de X soit x_i . Dans toute la suite, nous noterons indifféremment $X=(x_i)_{1\leqslant i\leqslant n}$ un élément de $\mathcal{M}_{n,1}(\mathbb{K})$ aussi bien que le vecteur de \mathbb{K}^n qui lui est associé.

Pour $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ dans $\mathcal{M}_{n,p}(\mathbb{K})$ et $X = (x_i)_{1 \le i \le p}$ dans \mathbb{K}^p , on note $(AX)_i$ le coefficient de la $i^{\text{ème}}$ ligne de AX.

Pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$, on note SpA l'ensemble des valeurs propres complexes de A et on appelle rayon spectral de A le réel $\rho(A)$ défini par :

$$\rho(A) = \max_{\lambda \in \operatorname{Sp}A} |\lambda|$$

Conformément à l'usage, on note N_{∞} la norme définie sur \mathbb{C}^n par :

$$\forall X = (x_i)_{1 \le i \le n} \in \mathbb{C}^n, N_{\infty}(X) = \max_{1 \le i \le n} |x_i|.$$

On qualifie de norme matricielle toute norme φ définie sur $\mathcal{M}_n(\mathbb{K})$ vérifiant la propriété :

$$\forall (A, B) \in (\mathcal{M}_{n(\mathbb{K})})^2, \varphi(AB) \leq \varphi(A) \cdot \varphi(B).$$

 $\mathcal{M}_n(\mathbb{K})$ étant de dimension finie, on rappelle qu'une suite de matrices $(A_k)_{k\in\mathbb{N}}$ de $\mathcal{M}_n(\mathbb{K})$ converge vers une matrice A de $\mathcal{M}_n(\mathbb{K})$ si et seulement si la convergence a lieu dans $\mathcal{M}_n(\mathbb{K})$ muni d'une norme quelconque.

Partie I

Une matrice A de $\mathcal{M}_n(\mathbb{K})$ est dite trigonalisable si et seulement si il existe $P \in GL_n(\mathbb{K})$ et $T \in \mathcal{T}_n(\mathbb{K})$ tels que $T = P^{-1}AP$.

- **I.1** Pour n fixé, on suppose que toute matrice de $\mathcal{M}_n(\mathbb{C})$ est trigonalisable et on considère une matrice M de $\mathcal{M}_{n+1}(\mathbb{C})$.
 - a) Montrer que M admet au moins une valeur propre.
 - **b)** Soit λ une valeur propre de M. Montrer qu'il existe $Q \in GL_{n+1}(\mathbb{C})$, $L \in \mathcal{M}_{1,n}(\mathbb{C})$ et $N \in \mathcal{M}_n(\mathbb{C})$ tels que :

$$Q^{-1}MQ = \begin{pmatrix} \lambda & L \\ 0_{n,1} & N \end{pmatrix}.$$

c) En déduire qu'il existe $H \in GL_n(\mathbb{C})$ et $S \in \mathcal{T}_n(\mathbb{C})$ tels que :

$$Q^{-1}MQ = \begin{pmatrix} \lambda & L \\ 0_{n,1} & HSH^{-1} \end{pmatrix}.$$

- **d)** On pose $R = \begin{pmatrix} 1 & 0_{1,n} \\ 0_{n,1} & H \end{pmatrix}$. Montrer que R est inversible et exprimer R^{-1} .
- e) Calculer R⁻¹Q⁻¹MQR et en déduire que M est trigonalisable.
- **I.2** Déduire de la question précédente que pour tout n entier supérieur ou égal à 1, toute matrice de $\mathcal{M}_n(\mathbb{C})$ est trigonalisable.
- **I.3** Soit la matrice $G = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 2 & -5 & 3 \end{pmatrix}$.

- a) La matrice G est-elle diagonalisable?
- **b)** On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{C}^3 . Montrer que G admet un unique vecteur propre u dont la première composante dans la base \mathcal{B} est égale à 1 et vérifier que $\mathcal{B}_1 = (u, e_2, e_3)$ est une base de \mathbb{C}^3 .
- c) On note Q la matrice de passage de \mathscr{B} à \mathscr{B}_1 . Calculer $Q^{-1}GQ$ et en déduire, en s'inspirant de la méthode décrite aux questions **I.1** et **I.2**, $P \in GL_3(\mathbb{C})$ et $T \in \mathscr{T}_3(\mathbb{C})$ telles que $P^{-1}GP = T$.
- **I.4** Soit $A \in \mathcal{M}_n(\mathbb{C})$. Si T est une matrice triangulaire supérieure semblable à A, que représentent les éléments diagonaux de T?
- **I.5** Soit $S = (s_{i,j})$ et $T = (t_{i,j})$ deux matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{C})$.
 - a) Montrer que ST est une matrice triangulaire supérieure dont les coefficients diagonaux sont $s_{1,1}t_{1,1}$, $s_{2,2}t_{2,2}$, ..., $s_{n,n}t_{n,n}$.
 - **b)** Pour $k \in \mathbb{N}^*$, quels sont les éléments diagonaux de T^k ?
- **I.6** Montrer que pour toute matrice A de $\mathcal{M}_n(\mathbb{C})$, $\rho(A^k) = [\rho(A)]^k$.
- **I.7** Montrer que l'application $\psi: \mathscr{M}_n(\mathbb{C}) \to \mathbb{R}$, $A = (a_{i,j}) \mapsto \max_{1 \le i,j \le n} \left| a_{i,j} \right|$ est une norme sur $\mathscr{M}_n(\mathbb{C})$, mais n'est pas en général une norme matricielle sur $\mathscr{M}_n(\mathbb{C})$.
- **I.8** En admettant l'existence de normes matricielles sur $\mathcal{M}_n(\mathbb{C})$ (la suite du problème montrera effectivement cette existence), montrer que pour toute norme N définie sur $\mathcal{M}_n(\mathbb{C})$, il existe une constante C réelle positive telle que :

$$\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$$
, $N(AB) \leq C \cdot N(A)N(B)$.

- **I.9** Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices de $\mathscr{M}_n(\mathbb{C})$, $A \in \mathscr{M}_n(\mathbb{C})$ et $P \in GL_n(\mathbb{C})$. Montrer que la suite $(A_k)_{k\in\mathbb{N}}$ converge vers A si et seulement si la suite $(P^{-1}A_kP)_{k\in\mathbb{N}}$ converge vers $P^{-1}AP$.
- **I.10** a) Soit $T = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ un élément de $\mathcal{M}_2(\mathbb{C})$. Pour tout $k \in \mathbb{N}^*$, calculer T^k et en déduire que la suite $\left(T^k\right)_{k \in \mathbb{N}^*}$ converge si et seulement si $(|\lambda| < 1)$ ou $(\lambda = 1 \text{ et } \mu = 0)$.
 - **b)** Soit $A \in \mathcal{M}_2(\mathbb{C})$ diagonalisable. Donner une condition nécessaire et suffisante sur les valeurs propres de A pour que la suite $(A^k)_{k\in\mathbb{N}}$ soit convergente.
 - c) Soit $A \in \mathcal{M}_2(\mathbb{C})$ non diagonalisable. Montrer que la suite $(A^k)_{k \in \mathbb{N}}$ est convergente si et seulement si $\rho(A) < 1$. Dans ce cas, préciser $\lim_{k \to +\infty} A^k$.
 - **d)** Soit $A \in \mathcal{M}_2(\mathbb{C})$. Donner une condition nécessaire et suffisante sur $\rho(A)$ pour que la suite $(A^k)_{k \in \mathbb{N}}$ converge vers la matrice nulle.

Partie II

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$ et N une norme quelconque sur \mathbb{C}^n . On pose :

$$M_{A} = \max_{1 \leq i \leq n} \sum_{i=1}^{n} |a_{i,j}|.$$

- **II.1** a) Montrer que pour tout $X \in \mathbb{C}^n : N_{\infty}(AX) \leq M_A N_{\infty}(X)$.
 - **b)** Montrer qu'il existe une constante réelle C_A telle que :

$$\forall X \in \mathbb{C}^n$$
, $N(AX) \leq C_A N(X)$.

c) Montrer que l'ensemble $\left\{\frac{\mathrm{N}(\mathrm{AX})}{\mathrm{N}(\mathrm{X})} \operatorname{tq} \mathrm{X} \in \mathbb{C}^n \setminus \{0\}\right\}$ possède une borne supérieure dans \mathbb{R} . On notera dans la suite :

$$\tilde{N}(A) = \sup_{X \in \mathbb{C}^n \setminus \{0\}} \frac{N(AX)}{N(X)}.$$

- **d)** Montrer que : $\widetilde{N_{\infty}}(A) \leq M_A$.
- e) On reprend dans cette question la matrice G introduite en I.3. Déterminer un vecteur X_0 de \mathbb{C}^3 tel que $N_{\infty}(X_0) = 1$ et $N_{\infty}(GX_0) = 10$. En déduire la valeur de $\widetilde{N_{\infty}}(G)$.

II.2 Soit i_0 un entier compris entre 1 et n tel que $\sum_{j=1}^n \left| a_{i_0,j} \right| = M_A$. En considérant le vecteur Y de \mathbb{C}^n de composantes y_j définies par :

$$y_j = \frac{\overline{a_{i_0,j}}}{|a_{i_0,j}|} \text{ si } a_{i_0,j} \neq 0 \text{ et } y_j = 1 \text{ si } a_{i_0,j} = 0$$

montrer que $M_A \leq \widetilde{N_\infty}(A)$ et en déduire $\widetilde{N_\infty}(A) = M_A$

II.3 Montrer:

- a) $\tilde{N}(A) = 0 \Leftrightarrow A = 0_n$.
- **b)** $\forall \lambda \in \mathbb{C}, \tilde{N}(\lambda A) \leq |\lambda| \tilde{N}(A).$
- c) En déduire : $\forall \lambda \in \mathbb{C}$, $\tilde{N}(\lambda A) = |\lambda| \tilde{N}(A)$.
- **d**) $\forall B \in \mathcal{M}_n(\mathbb{C}), \tilde{N}(A+B) \leq \tilde{N}(A) + \tilde{N}(B).$
- e) $\forall X \in \mathbb{C}^n$, $N(AX) \leq \tilde{N}(A)N(X)$.
- **f)** Déduire de ces résultats que \tilde{N} est une norme matricielle sur $\mathcal{M}_n(\mathbb{C})$. On lui donne le nom de norme matricielle subordonnée à la norme N.
- **II.4** a) En considérant une valeur propre λ de A telle que $|\lambda| = \rho(A)$, montrer que :

$$\rho(A) \leq \tilde{N}(A)$$
.

- **b)** Donner un exemple simple de matrice A non nulle vérifiant $\rho(A) = \widetilde{N_{\infty}}(A)$.
- c) Montrer que si A est nilpotente non nulle, on a l'inégalité stricte :

$$\rho(A) < \tilde{N}(A)$$
.

II.5 Montrer que si $\lim_{k\to+\infty} A^k = 0_n$, alors $\rho(A) < 1$.

Dans toute la suite du problème, on admettra que, réciproquement, si $\rho(A) < 1$, alors $\lim_{k \to +\infty} A^k = 0_n$.

- **II.6** a) Montrer que pour tout k entier naturel non nul : $\rho(A) \leq \left[\tilde{N}\left(A^{k}\right)\right]^{\frac{1}{k}}$.
 - **b)** Montrer que pour tout $\alpha \in \mathbb{C}$, $\rho(\alpha A) = |\alpha| \rho(A)$.
 - c) Soit $\varepsilon > 0$ et $A_{\varepsilon} = \frac{A}{\rho(A) + \varepsilon}$. Vérifier que $\rho(A_{\varepsilon}) < 1$ et en déduire l'existence d'un entier naturel k_{ε} tel que :

$$\forall k \in \mathbb{N}, (k \geqslant k_{\varepsilon} \Rightarrow \tilde{N}(A^{k}) \leqslant (\rho(A) + \varepsilon)^{k}).$$

d) En déduire $\lim_{k \to +\infty} \left[\tilde{N} \left(A^k \right) \right]^{\frac{1}{k}} = \rho(A)$.

Partie III

Une matrice A de $\mathcal{M}_{n,p}(\mathbb{R})$ est dite positive (resp. strictement positive) et on note A \geqslant 0 (resp. A > 0) si et seulement si tous ses coefficients sont positifs ou nuls (resp. strictement positifs). Si A et B sont deux matrices de $\mathcal{M}_{n,p}(\mathbb{R})$, on note A \geqslant B (resp. A \leqslant B, A > B, A < B) si et seulement si A-B \geqslant 0 (resp. B-A \geqslant 0, A-B>0, B-A>0).

Notons que grâce à l'identification de \mathbb{R}^n et $\mathcal{M}_{n,1}(\mathbb{R})$, on pourra parler de vecteur de \mathbb{R}^n positif ou strictement positif.

- III.1 Donner un exemple de matrice A montrant que les conditions $A\geqslant 0$ et $A\neq 0$ n'impliquent pas nécessairement A>0.
- **III.2** A, B, A', B' désignent des matrices de $\mathcal{M}_n(\mathbb{R})$.
 - a) Montrer que si $0 \le A \le B$ et $0 \le A' \le B'$, alors $0 \le AA' \le BB'$.
 - **b)** Montrer que si $0 \le A \le B$, alors pour tout $k \in \mathbb{N}^*$, $0 \le A^k \le B^k$.
 - c) Montrer que si $0 \le A \le B$, alors $\widetilde{N_{\infty}}(A) \le \widetilde{N_{\infty}}(B)$.
 - **d)** Montrer que si $0 \le A \le B$, alors $\rho(A) \le \rho(B)$.
 - e) Montrer que si $0 \le A < B$, il existe $c \in]0,1[$ tel que $A \le cB$ et en déduire $\rho(A) < \rho(B)$.

III.3 Soit A une matrice positive de $\mathcal{M}_n(\mathbb{R})$ telle que la somme des termes de chaque ligne soit constante égale à α . Montrer que α est valeur propre de A et que :

$$\rho(A) = \alpha = \widetilde{N_{\infty}}(A).$$

III.4 Soit A une matrice positive de $\mathcal{M}_n(\mathbb{R})$. Pour tout $i \in \{1,...,n\}$, on note α_i la somme des termes de la $i^{\grave{e}me}$ ligne de A et $\alpha = \min_{1 \le i \le n} \alpha_i$. On définit la matrice $B = (b_{i,j})$ par $B = 0_n$ si $\alpha = 0$ et $b_{i,j} = \frac{\alpha}{\alpha_i} a_{i,j}$ si $\alpha > 0$. Montrer à l'aide de la matrice B ainsi construite que :

$$\min_{1 \leq i \leq n} \left(\sum_{j=1}^{n} a_{i,j} \right) \leq \rho(\mathbf{A}) \leq \max_{1 \leq i \leq n} \left(\sum_{j=1}^{n} a_{i,j} \right).$$

III.5 Soit A une matrice positive de $\mathcal{M}_n(\mathbb{R})$ et $X = (x_i)$ un vecteur strictement positif de \mathbb{R}^n . On note D_x la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ avant pour termes diagonaux x_1, x_2, \dots, x_n . Calc

On note D_x la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ ayant pour termes diagonaux $x_1, x_2, ..., x_n$. Calculer les éléments de la matrice $D_x^{-1}AD_x$ et en déduire :

$$\min_{1 \leqslant i \leqslant n} \frac{(AX)_i}{x_i} \leqslant \rho(A) \leqslant \max_{1 \leqslant i \leqslant n} \frac{(AX)_i}{x_i}.$$

III.6 Soit A une matrice positive de $\mathcal{M}_n(\mathbb{R})$. Montrer que si A admet un vecteur propre strictement positif, alors la valeur propre associée est $\rho(A)$ et :

$$\rho(A) = \sup_{X>0} \left(\min_{1 \le i \le n} \frac{(AX)_i}{x_i} \right) = \inf_{X>0} \left(\max_{1 \le i \le n} \frac{(AX)_i}{x_i} \right).$$

Fin de l'énoncé

