使用 Python

曾喜仙 G06350028

Agenda

- Python 基本元件
 - Variables, Booleans and None
 - String
 - If, else and elif
 - Lists and tuples
 - Loops
 - Dictionary
- Pyhon 套件介紹
 - Pandas
 - Matplotlib & Seabon

Python 基本元件

Variables, Booleans and None

Assignment

```
a = 1
b = c = 2
a, b, c = 1, 2.0, 'john'
```

- Data type
 - type(1) # <class 'int'>
 - type(2.0) # <class 'float'>
 - type(True) # <class 'bool'>
 - type('john') #<class 'str'>
 - type(None) # <class 'NoneType'>

Operator

- Arithmetic operator
 - +, -, *, /
 - % is mod
 - // is floor division
 - ** is to the power of
- Comparison operator
 - ==
 - ! =
 - >
 - <
 - >=
 - <=

String

• a = 'Hello word! '

- Index and slicing
 - a[0] # H
 - a[1:3] # ell
 - a[-1:-3] # ld!

- Built-in function
 - a.upper() # HELLO WORLD!
 - a.lower() # hello world!

後率統計 6

If, else and elif

```
b = 1
result = a - b
if result > 0:
    print("a is bigger than b")
elif result = 0:
   print("a is equal than b")
else:
   print("a is smaller than b")
```

Lists and tuples

- List
 - names = ['wub_wub', 'theelous3', 'Nitori', 'RubyPinch']
- Index and slicing
 - names[0] # wub wub
 - names[1:3] # ['theelous3', 'Nitori']
- Check element
 - 'wub_wub' in names # True
 - 'Ruby' in names # False
 - ['Alan', 'Bob'] in names # False, do not use like it

Add and remove

names.append("Alan")# ['wub_wub', 'theelous3', 'Nitori', 'RubyPinch', 'Alan']names.remove("Alan")

• # ['wub wub', 'theelous3', 'Nitori', 'RubyPinch']

Tuples

• thing = (1, 2, 3) # (1,2,3)

thing.append(4) # Error !!!

Tuples is read-only lists

Loops

For loops

```
sentences = ['Hi', ',', 'I', 'am', 'Alan']
for s in sentences:
    print(s)
Hi
am
Alan
```

For loops in string

```
for c in 'Hakuma matata':
    print(c)
Н
u
m
а
```

Loops

While loops

```
i = 0
while i < 10:
    print(i, "is too small")
    i += 1
print(i, "is big enough")
0 is too small
1 is too small
2 is too small
3 is too small
4 is too small
5 is too small
6 is too small
7 is too small
8 is too small
9 is too small
10 is big enough
```

Dictionary

- Key-Value structure
- favorite_pets['Alan'] # cat
- Add element
 - favorite_pets['Denny'] = 'duck'
- Remove element
 - del favorite pets['Alan']

```
favorite_pets = {
    'Alan': 'cat',
    'Bob': 'dog',
    'Cindy': 'cat',
}
```

For loop in dictionary

terate keys only

```
for n in favorite_pets:
    print(n, 'favorite pet is', favorite_pets[n])
```

Alan favorite pet is cat Bob favorite pet is dog Cindy favorite pet is cat Denny favorite pet is duck

Pyhon 套件介紹

機率統計 16

Pandas

- 提供較進階的資料處理
 - 自動匯入 CSV 檔
 - 內建方法的資料運算
 - 視覺化整合

"sepal.length", "sepal.width", "petal.length", "petal.width", "variety"
5.1,3.5,1.4,.2, "Setosa"
4.9,3,1.4,.2, "Setosa"
4.7,3.2,1.3,.2, "Setosa"
4.6,3.1,1.5,.2, "Setosa"
5,3.6,1.4,.2, "Setosa"
5.4,3.9,1.7,.4, "Setosa"

		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
(0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
:	2	4.7	3.2	1.3	0.2
;	3	4.6	3.1	1.5	0.2
-	4	5.0	3.6	1.4	0.2

Matplotlib & Seabon

• 視覺化資料套件

```
print(death_year)
print(death_tumor)
print(death_heart)

[1986. 1987. 1988. 1989. 1990. 1991. 1992. 1993. 1994. 1995. 1996. 1997.
1998. 1999. 2000. 2001. 2002. 2003. 2004. 2005. 2006. 2007. 2008. 2009.
2010. 2011. 2012. 2013.]
[118.3 118.9 121.1 121.7 115.3 117.8 121.9 125.5 126.9 136.4 143.5 144.3
140.5 138.3 141.6 143.1 144.2 143.1 142.8 141.2 139.3 142.6 133.7 132.5
131.6 132.2 131.3 130.4]
[87.4 94.3 87.3 82.2 83.9 84.1 86.4 79.8 72.6 64.7 62.2 56.8 55.4 54.5
48.8 48.8 48.5 47.9 50.1 48.3 43.8 44.4 51.7 47.7 47.4 47.9 47.9 47.7]
```

```
plt.plot(death_tumor)
plt.plot(death_heart)
plt.xticks(range(death_year.shape[0]), death_year.astype(np.int), rotation=80)
plt.show()
```


機率統計 20