Operating System

Ch01: Introduction

BeomSeok Kim

Department of Computer Engineering KyungHee University passion0822@khu.ac.kr

Computer system components (Abstract view)

Computer system organization

Modern PC architecture

Operating Systems?

- OS is a resource manager
 - √ Abstraction
 - ✓ Sharing
 - > Time multiplexing
 - > Space multiplexing
 - ✓ Protection
 - ✓ Fairness
 - ✓ Performance
- Definition in textbook
 - ✓ Resource allocator
 - ✓ Control program
 - √ Kernel

Resources

- CPU
- Memory
- I/O devices
- <u>-</u> ...

SW which manages 'Computer HW' resources for

- 1) convenience
- 2) efficiency

Computer HW architecture (Abstract view)

- CPU operation
 - ✓ Von Neumann architecture
 - ✓ Instructions
 - > Arithmetic instructions: add, subtract, multiply, divide, ...
 - ➤ Logical instructions: and, or, xor, not, shift, ...
 - > Control flow instructions: goto, if, call, return, ...
 - > Data instructions: load, store, move, input, output, ...

Bootstrapping in Linux

- ✓ The CPU initializes itself and then execute an instruction at a fixed location (0xffffff0).
- ✓ This instruction jumps into the BIOS/UEFI.
 - BIOS (Basic Input/Output System)
 - UEFI (Unified Extensible Firmware Interface)
- ✓ The BIOS/UEFI finds a boot device and fetches Boot Loader(LILO/GRUB).
 - MBR (Master Boot Record) in BIOS
 - ESP (Efi System Partition) in UEFI
- ✓ The BIOS/UEFI loads and transfers control to LILO/GRUB.
- ✓ LILO/GRUB loads the compressed kernel.
- ✓ The compressed kernel decompresses itself and transfers control to the uncompressed kernel.

CPU

- ✓ Instruction Set Architecture (ISA)
 - > CISC vs. RISC
 - ➤ Intel, SPARC, MIPS, PowerPC, ARM, Alpha, ...
- √ Pipelining
 - > Fetch, Decode, Execute, Write Back, etc.
- ✓ Instruction-Level Parallelism (ILP)
 - Superscalar vs. VLIW
 - > Simultaneous multithreading
 - > Multi-core

Multi-core architecture

Symmetric multiprocessing architecture

✓ Cf) NUMA (Non-Uniform Memory Access) multiprocessing architecture

- Clustered system architecture
 - √ Cf) Parallel vs. Distributed system

- I/O operation
 - ✓ I/O request via I/O instruction
 - Direct I/O vs. Memory-mapped I/O
 - ➤ Communicates with registers in I/O controller
 - > Typically, IR (Instruction Register) & DR (Data Register)
 - √ I/O method
 - Programmed I/O
 - > Interrupt
 - DMA (Direct Memory Access)

Interrupt-driven I/O cycle

I/O mode from the perspective of application processes

- Interrupt
 - ✓ Generated by hardware devices (asynchronous)
 - ✓ E.g.) timer interrupt, keyboard interrupt, etc.
- Trap
 - √ Generated by application processes (synchronous)
 - ✓ E.g.) system calls
- Fault (Exception)
 - ✓ Generated by CPU instructions (synchronous)
 - ✓ Divide-by-zero, page fault, protection fault, etc.
- Hardware interrupt vs. Software interrupt

Six steps process to perform DMA transfer

Storage hierarchy

Memory hierarchy

- Caching
 - ✓ Cache management policy
 - Write-through vs. Write-back
 - ✓ Cache coherency

- Physical hard disk structure (HDD)
 - ✓ platters
 - √ surfaces
 - √ tracks
 - √ sectors
 - √ cylinders
 - ✓ arm
 - √ heads

Compact Flash card internals (SSD)

- System call
 - √ Cf) Function call

- Hardware protection
 - ✓ CPU protection
 - > Timer (periodic interrupt, 10ms in Linux)
 - ✓ Memory protection
 - Protection fault (E.g. segmentation violation in Linux)
 - √ I/O protection
 - > Dual mode operation in CPU
 - > Privileged instructions only in kernel mode

- OS takes control of the system
 - √ Bootstrapping
 - √ System calls
 - ✓ Interrupts

- 1st Generation (1945-55)
 - √ Vacuum Tubes and Plugboards
 - ✓ No OS
 - ✓ No Programming Languages
 - √ No Assembly Languages

Eniac, John Von 1940's Newman

- 2nd Generation (1955-65)
 - ✓ Transistors and Mainframes
 - ✓ Batch systems
 - ➤ OS is called "Resident Monitor"
 - > CPU is underutilized due to the bottleneck in I/O

operating system

user program area

- 3rd Generation (1965-80)
 - ✓ Integrated Circuits (ICs)
 - ✓ Architectural advances
 - ➤ The notion of "Computer Architecture"
 - ➤ IBM System/360 family
 - ✓ Multiprogramming systems
 - > Increased CPU utilization
 - ✓ Time-sharing systems
 - > Improved response time
 - > Traditional OS features

- 4th Generation (1980-)
 - ✓ LSIs & VLSIs
 - ✓ Architectural advances
 - Microprocessors: smaller and faster
 - > Storages: larger and faster
 - > CPU work is offloaded to I/O devices
 - Personal computers (Desktop system)
 - ✓ Modern OS Features
 - ➤ GUI (Graphical User Interface)
 - Multimedia
 - Internet & Web
 - Networked / Distributed, etc.

- Traditional computing
 - ✓ Mainframe system
 - > Batch system
 - Multiprogramming system
 - > Time-sharing system
 - ✓ Desktop system
- Mobile computing
 - √ Hand-held system
 - Limited memory
 - Slow processors
 - Small display screens
- Real-time embedded computing
 - ✓ Real-time systems
 - > Hard real-time vs. Soft real-time
 - ✓ Embedded systems

- Client-server computing
 - ✓ Large-scale server in data center
 - ✓ Clustered server
 - ➤ Parallel + Distributed + Storage

- Peer-to-peer computing
 - ✓ Discovery protocol
 - ✓ Napster, Gnutella, VoIP, etc.

- Cloud computing
 - ✓ Infrastructure as a Service (laaS)
 - ✓ Platform as a Service (PaaS)
 - ✓ Software as a Service (SaaS)

- Virtualization
 - ✓ VMM or Hypervisor

Virtual machine examples

Windows Processes	Linux Processes	Java Threads		
	Linux	JVM		
	VMWare			
Windows				
Hardware				

Mac Processes	Windows Processes	Linux Processes	Java Threads	
	Windows	Linux	17.78.4	
	Parallels	Parallels	JVM	
Mac OS X				
Hardware				

Java

- ✓ JVM executes "platform-neutral byte-codes"
- √ JIT (Just-In-Time) compilers increase performance

- Distributed computing
 - ✓ Collection of separate, possibly heterogeneous, systems networked together
 - ✓ Network operating systems provides illusion of a single system
 - ✓ E.g.) Hadoop

OS History

A long time ago, in a galaxy far, far away, ...

- IBM OS/360: Multiprogramming
- MIT CTSS (Compatible Time-Sharing System)
- MIT, Bell Labs, GE, MULTICS
 (MULTiplexed Information and Computing Service)

And Unix was born in 1969

OS History: Unix (1969-85)

Figure 1.1 The UNIX system family tree, 1969-1985

OS History: Unix (1985-96)

Figure 1.2 The UNIX system family tree, 1986-1996

OS History: Unix (1997-)

- Sun Solaris
- HP HP-UX
- IBM AIX
- Caldera (SCO) Unixware
- Compaq (Digital) Tru64
- SGI Irix
- Linux, FreeBSD, NetBSD
- Apple Mac OS X, etc.
- Cf) POSIX

OS History: Windows & Linux

OS History: Windows & Linux

OS History: Linux

- **1983**
 - ✓ Richard Stallman, GNU project and free software concept
 - ✓ gcc, gdb, glibc, and other tools
- **1991**
 - ✓ Linus Tovalds, Linux kernel project
 - ✓ Completely free operating system: Linux/GNU
- **1995**
 - ✓ Linux is more and more popular on server systems
- **2000**
 - ✓ Linux is more and more popular on embedded systems
- **2008**
 - ✓ Linux is more and more popular on mobile devices
- **2010**
 - ✓ Linux is more and more popular on phones

OS History: Linux

- Television
- Personal router
- PoS (Point of Sales) terminal
- Laser cutting machine
- Viticulture machine

OS History: Taxonomy

- Mainframe systems
 - ✓ CTS, MULTICS, IBM MVS, VM
- Desktop systems
 - ✓ DOS, Windows, MacOS, Unix/Linux
- Distributed systems
 - ✓ Amoeba(Vrije Univ.), Locus(UCLA), Grapevine(Xerox), V(Stanford), Eden(U. of Washington), Chorus/Nucleus(Inria)
- Embedded systems
 - ✓ Vertex, pSOS, VxWorks, OSE, Windows-CE, Embedded Linux
 - ✓ Company-proprietary OS (Cisco, Qualcomm, Palm, Cellvic)
- Real-time systems
 - ✓ Real-Time Linux, Spring(U. of Massachusetts), HARTS(U. of Michigan), MARUTI(U. of Maryland)

Thank You! Q&A