INTEGRATED CIRCUITS

DATA SHEET

74HC74; 74HCT74 Dual D-type flip-flop with set and reset; positive-edge trigger

Product specification Supersedes data of 1998 Feb 23 2003 Jul 10

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

FEATURES

- Wide supply voltage range from 2.0 to 6.0 V
- · Symmetrical output impedance
- · High noise immunity
- · Low power dissipation
- · Balanced propagation delays
- ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.

GENERAL DESCRIPTION

The 74HC/HCT74 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT74 are dual positive-edge triggered, D-type flip-flops with individual data (D) inputs, clock (CP) inputs, set $(\overline{S}D)$ and reset $(\overline{R}D)$ inputs; also complementary Q and \overline{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

f _{max}	PARAMETER >	CONDITIONS	TYF	TYPICAL	
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} /t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	nCP to nQ, nQ	lectronic Design	14	15	ns
	$n\overline{S}D$ to nQ , $n\overline{Q}$		15	18	ns
	$n\overline{R}D$ to nQ , $n\overline{Q}$		16	18	ns
f _{max}	maximum clock frequency		76	59	MHz
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	24	29	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

fo = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = total load switching outputs;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

2. For 74HC74 the condition is $V_I = GND$ to V_{CC} .

For 74HCT74 the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$.

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

FUNCTION TABLES

Table 1 See note 1

	INPUT				PUT
SD	RD	СР	D	Q	Q
L	Н	Х	Х	Н	L
Н	L	Х	Х	L	Н
L	L	X	Х	Н	Н

Table 2 See note 1

	INPUT				PUT	
SD	RD	СР	D	Qn+1 Qn+1		
Н	Н	1	L	L	Н	
Н	Н	1	Н	Н	L	

Note

1. H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

 \uparrow = LOW-to-HIGH CP transition;

Qn+1 = state after the next LOW-to-HIGH CP transition.

ORDERING INFORMATION

			PACKAGE		
TYPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
74HC74N	–40 to +125 °C	14	DIP14	plastic	SOT27-1
74HCT74N	–40 to +125 °C	14	DIP14	plastic	SOT27-1
74HC74D	–40 to +125 °C	14	SO14	plastic	SOT108-1
74HCT74D	–40 to +125 °C	14	SO14	plastic	SOT108-1
74HC74DB	–40 to +125 °C	14	SSOP14	plastic	SOT337-1
74HCT74DB	–40 to +125 °C	14	SSOP14	plastic	SOT337-1
74HC74PW	–40 to +125 °C	14	TSSOP14	plastic	SOT402-1
74HCT74PW	–40 to +125 °C	14	TSSOP14	plastic	SOT402-1
74HC74BQ	–40 to +125 °C	14	DHVQFN14	plastic	SOT762-1
74HCT74BQ	-40 to +125 °C	14	DHVQFN14	plastic	SOT762-1

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

PINNING

PIN	SYMBOL	DESCRIPTION
1	1RD	asynchronous reset-direct input (active LOW)
2	1D	data input
3	1CP	clock input (LOW-to-HIGH, edge-triggered)
4	1SD	asynchronous set-direct input (active LOW)
5	1Q	true flip-flop output
6	1Q	complement flip-flop output
7	GND	ground (0 V)
8	2Q	complement flip-flop output
9	2Q	true flip-flop output
10	2SD	asynchronous set-direct input (active LOW)
11	2CP	clock input (LOW-to-HIGH, edge-triggered)
12	2D	data input
13	2RD	asynchronous reset-direct input (active LOW)
14	V _{CC}	positive supply voltage

Fig.1 Pin configuration DIP14, SO14 and (T)SSOP14.

(1) The die substrate is attached to this pad using conductive die attach material. It can not be used as a supply pin or input.

Fig.2 Pin configuration DHVQFN14.

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	74HC74				74HCT74		
STWIBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	_	V _{CC}	0	_	V _{CC}	V
Vo	output voltage		0	_	V _{CC}	0	_	V _{CC}	V
T _{amb}	operating ambient temperature		-40	+25	+125	-40	+25	+125	°C
t _r , t _f	input rise and fall	V _{CC} = 2.0 V	_	_	1000	_	_	500	ns
	times	V _{CC} = 4.5 V	_	6.0	500	_	6.0	500	ns
		V _{CC} = 6.0 V	_	_	400	_	_	500	ns

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input diode current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V};$ note 1	_	±20	mA
I _{OK}	output diode current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V};$ note 1	_	±20	mA
Io	output source or sink current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$; note 1	_	±25	mA
I _{CC} , I _{GND}	V _{CC} or GND current	学生电子设施	_	±100	mA
T _{stg}	storage temperature	"graduate Electronic b	-65	+150	°C
P _{tot}	power dissipation	$T_{amb} = -40 \text{ to } +125 ^{\circ}\text{C}; \text{ note } 2$	_	500	mW

Notes

- 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. For SO14 packages: above 70 °C derate linearly with 8 mW/K.

For SSOP14 and TSSOP14 packages: above 60 °C derate linearly with 5.5 mW/K.

For DHVQFN14 packages: above 60 °C derate linearly with 4.5 mW/K.

For DIP14 packages: above 70 °C derate linearly with 12 mW/K.

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

DC CHARACTERISTICS

Family 74HC

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

CVMDOL		TEST CONDITI	ONS	BAINI	TVD	MAX.	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	WAX.	UNIT
T _{amb} = -40 to	• +85 °C; note 1				•		•
V _{IH}	HIGH-level input		2.0	1.5	1.2	_	V
	voltage		4.5	3.15	2.4	_	V
			6.0	4.2	3.2	_	V
V _{IL}	LOW-level input voltage		2.0	_	0.8	0.5	V
			4.5	_	2.1	1.35	V
			6.0	_	2.8	1.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
voltage	voltage	$I_{O} = -4.0 \text{ mA}$	4.5	3.84	4.32	_	V
		$I_{O} = -5.2 \text{ mA}$	6.0	5.34	5.81	_	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}					
voltage	$I_{O} = 4.0 \text{ mA}$	4.5	_	0.15	0.33	V	
		$I_{O} = 5.2 \text{ mA}$	6.0	_	0.16	0.33	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND	6.0	_	-	±1.0	μΑ
I _{CC}	quiescent supply	$V_I = V_{CC}$ or GND;	6.0	_	-	40	μΑ
	current	I ₀ = 0	E IT Y COLL				
T _{amb} = -40 to	+125 °C	ndergraduate Electro	nic Design				
V _{IH}	HIGH-level input		2.0	1.5	_	_	V
	voltage		4.5	3.15	_	_	V
			6.0	4.2	-	_	V
V _{IL}	LOW-level input voltage		2.0	_	-	0.5	V
			4.5	_	_	1.35	V
			6.0	_	-	1.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	$I_{O} = -4.0 \text{ mA}$	4.5	3.7	_	_	V
		$I_{O} = -5.2 \text{ mA}$	6.0	5.2	_	_	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	I _O = 4.0 mA	4.5	_	_	0.4	V
		I _O = 5.2 mA	6.0	_	_	0.4	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND	6.0	_	_	±1.0	μΑ
I _{CC}	quiescent supply	$V_I = V_{CC}$ or GND;	6.0	_	_	80	μΑ
	current	$I_{O} = 0$					

Note

1. All typical values are measured at T_{amb} = 25 °C.

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

Family 74HCT

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

CVMDOL	DADAMETER	TEST CONDITIONS		MIN.	TVD	MAY	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	IVIIIN.	TYP.	MAX.	UNIT
T _{amb} = -40 to	+85 °C; note 1			•	-1		
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	1.6	_	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	_	1.2	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = -4.0 \text{ mA}$	4.5	3.84	4.32	_	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = 4.0 \text{ mA}$	4.5	0.33	0.15	_	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	5.5	_	_	±1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	_	_	40	μА
ΔI_{CC}	additional quiescent supply current per input	$V_I = V_{CC} - 2.1 \text{ V other}$ inputs at V_{CC} or GND; $I_O = 0$	4.5 to 5.5	_	100	450	μΑ
$T_{amb} = -40 \text{ to}$	+125 °C						
V _{IH}	HIGH-level input voltage	THE COLUMN	4.5 to 5.5	2.0	-	-	V
V _{IL}	LOW-level input voltage	Tong X Way - T	4.5 to 5.5	_	_	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $I_O = -4.0$ mA	4.5	3.7	_	_	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $I_O = 4.0$ mA	4.5	_	_	0.4	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND	5.5	_	_	±1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	_	_	80	μΑ
Δl _{CC}	additional quiescent supply current per input	$V_I = V_{CC} - 2.1 \text{ V other}$ inputs at V_{CC} or GND; $I_O = 0$	4.5 to 5.5	_	_	490	μΑ

Note

1. All typical values are measured at T_{amb} = 25 °C.

Remark to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table.

INPUT	UNIT LOAD COEFFICIENT
nD	0.70
nRD	0.70
nŜD	0.80
nCP	0.80

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

AC CHARACTERISTICS

Family 74HC

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF.

CVMDOL	DADAMETED	TEST CONDITIO	NS	NAIN!	TVD	MAX.	UNIT
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.		
T _{amb} = -40 to	o +85 °C	,	•	'	'	1	•
t _{PHL} /t _{PLH}	propagation delay	see Fig.7	2.0	_	47	220	ns
	nCP to nQ, $n\overline{Q}$		4.5	_	17	44	ns
			6.0	_	14	37	ns
	propagation delay	see Fig.8	2.0	_	50	250	ns
	$n\overline{S}D$ to nQ , $n\overline{Q}$		4.5	_	18	50	ns
			6.0	_	14	43	ns
propagation de nRD to nQ, nG	propagation delay	see Fig.8	2.0	_	52	250	ns
	nRD to nQ, nQ		4.5	_	19	50	ns
			6.0	_	15	43	ns
t _{THL} /t _{TLH}	output transition time	see Fig.7	2.0	_	19	95	ns
			4.5	_	7	19	ns
			6.0	-	6	16	ns
tw	clock pulse width HIGH or LOW	see Fig.7	2.0	100	19	_	ns
		Tall A	4.5	20	7	_	ns
		70人学生由子说	6.0	17	6	_	ns
	set or reset pulse width	see Fig.8 Graduate Electron	2.0	100	19	_	ns
	LOW		4.5	20	7	_	ns
			6.0	17	6	_	ns
rem	removal time set or	see Fig.8	2.0	40	3	_	ns
	reset		4.5	8	1	_	ns
			6.0	7	1	_	ns
su	set-up time nD to nCP	see Fig.7	2.0	75	6	_	ns
			4.5	15	2	_	ns
			6.0	13	2	_	ns
h	hold time nCP to nD	see Fig.7	2.0	3	-6	_	ns
			4.5	3	-2	_	ns
			6.0	3	-2	_	ns
: max	maximum clock pulse	see Fig.7	2.0	4.8	23	_	MHz
	frequency		4.5	24	69	_	MHz
			6.0	28	82	_	MHz

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

CVMDOL	PARAMETER	TEST CONDITIONS		NAIN!	TVD	MAY	
SYMBOL		WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40 to	+125 °C		· '	•	-!	-1	!
t _{PHL} /t _{PLH}	propagation delay	see Fig.7	2.0	_	_	265	ns
	nCP to nQ, nQ		4.5	_	_	53	ns
			6.0	_	_	45	ns
	propagation delay	see Fig.8	2.0	_	_	300	ns
	$n\overline{S}D$ to nQ , $n\overline{Q}$		4.5	_	_	60	ns
			6.0	_	_	51	ns
	propagation delay	see Fig.8	2.0	_	_	300	ns
	$n\overline{R}D$ to nQ , $n\overline{Q}$		4.5	_	_	60	ns
			6.0	_	_	51	ns
t _{THL} /t _{TLH}	output transition time	see Fig.7	2.0	_	_	110	ns
			4.5	_	_	22	ns
			6.0	_	_	19	ns
t _W	clock pulse width HIGH or LOW	see Fig.7	2.0	120	_	_	ns
			4.5	24	_	_	ns
			6.0	20	_	_	ns
t _W	set or reset pulse width	see Fig.8	2.0	120	_	_	ns
	LOW	Z K	4.5	24	_	_	ns
		学生由子	6.0	20	_	_	ns
t _{rem}	removal time set or	see Fig.8 Graduate Electro	2.0	45	_	_	ns
	reset		4.5	9	_	_	ns
			6.0	8	_	_	ns
t _{su}	set-up time nD to nCP	see Fig.7	2.0	90	_	_	ns
			4.5	18	_	_	ns
			6.0	15	_	_	ns
t _h	hold time nCP to nD	see Fig.7	2.0	3	_	_	ns
			4.5	3	_	_	ns
			6.0	3	_	_	ns
f _{max}	maximum clock pulse	see Fig.7	2.0	4.0	_	_	MHz
	frequency		4.5	20	_	_	MHz
			6.0	24	_	_	MHz

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

Family 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$.

CVMDOL	DADAMETED	TEST CONDIT	IONS	BAINI	TVD	MAX.	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	WAX.	UNIT
T _{amb} = -40 t	o +85 °C		'	-	•	•	•
t _{PHL} /t _{PLH}	propagation delay nCP to nQ, $n\overline{Q}$	see Fig.7	4.5	_	18	44	ns
	propagation delay n $\overline{S}D$ to n Q , n \overline{Q}	see Fig.8	4.5	_	23	50	ns
	propagation delay $n\overline{R}D$ to nQ , $n\overline{Q}$	see Fig.8	4.5	_	24	50	ns
t _{THL} /t _{TLH}	output transition time	see Fig.7	4.5	_	7	19	ns
t _W	clock pulse width HIGH or LOW	see Fig.7	4.5	23	9	_	ns
	set or reset pulse width LOW	see Fig.8	4.5	20	9	_	ns
t _{rem}	removal time set or reset	see Fig.8	4.5	8	1	_	ns
t _{su}	set-up time nD to nCP	see Fig.7	4.5	15	5	-	ns
t _h	hold time nCP to nD	see Fig.7	4.5	+3	-3	-	ns
f _{max}	maximum clock pulse frequency	see Fig.7	4.5	22	54	-	MHz
T _{amb} = -40 t	o +125 °C	Undergraduate Electric	aic Design		·!	· ·	-
t _{PHL} /t _{PLH}	propagation delay nCP to nQ, nQ	see Fig.7	4.5	_	_	53	ns
	propagation delay nSD to nQ, nQ	see Fig.8	4.5	_	-	60	ns
	propagation delay nRD to nQ, nQ	see Fig.8	4.5	_	-	60	ns
t _{THL} /t _{TLH}	output transition time	see Fig.7	4.5	_	_	22	ns
t _W	clock pulse width HIGH or LOW	see Fig.7	4.5	27	-	_	ns
	set or reset pulse width LOW	see Fig.8	4.5	24	-	_	ns
t _{rem}	removal time set or reset	see Fig.8	4.5	9	-	_	ns
t _{su}	set-up time nD to nCP	see Fig.7	4.5	18	_	_	ns
t _h	hold time nCP to nD	see Fig.7	4.5	3	_	_	ns
f _{max}	maximum clock pulse frequency	see Fig.7	4.5	18	-	_	MHz

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

74HC74: V_M = 50%; V_I = GND to V_{CC} .

74HCT74: $V_M = 1.3 \text{ V}$; $V_I = \text{GND to 3 V}$.

Fig.7 The clock (nCP) to output (nQ, $n\overline{Q}$) propagation delays, the clock pulse width, the nD to nCP set-up, the nCP to nD hold times, the output transition times and the maximum clock pulse frequency.

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

TEST	S1
t _{PZH}	GND
t _{PZL}	V _{CC}
t _{PHZ}	GND
t _{PLZ}	V _{CC}

Definitions for test circuit:

R_L = Load resistor.

 $\ensuremath{C_L}$ = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

Fig.9 Load circuitry for switching times.

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

PACKAGE OUTLINES

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E (1)	e	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001	SC-501-14			99-12-27 03-02-13

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

Note

mm

inches

1.75

0.069

0.010

0.004

0.057

0.049

0.01

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.019 0.0100 0.014 0.0075

OUTLINE		EUROPEAN	ISSUE DATE				
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT108-1	076E06	MS-012				99-12-27 03-02-19	

1.27

0.05

0.244

0.228

0.039

0.016

0.041

0.028

0.024

3.8

0.16

0.15

0.35

0.34

0.25

0.01

0.25

0.01

0.004

0°

0.028

0.012

2003 Jul 10 17

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

SOT337-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT337-1		MO-150				99-12-27 03-02-19

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

		(٠,												
UI	TIV	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
m	ım	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT402-1		MO-153				99-12-27 03-02-18

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Dual D-type flip-flop with set and reset; positive-edge trigger

74HC74; 74HCT74

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: http://www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2003

SCA75

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613508/03/pp22

Date of release: 2003 Jul 10

Document order number: 9397 750 11259

Let's make things better.

