Projeto e Análise de Algoritmos

Teorema Mestre

Prof. Rodrigo de Barros Paes rodrigo@ic.ufal.br

O que é?

Fornece uma "receita" para resolver recorrências da forma:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

onde:

$$a >= 1$$

f(n) é assintoticamente > 0

O método

Comparar f(n) com
$$n^{\log_b a}$$

CASO 1:

SE
$$f(n) = O(n^{\log_b a - \varepsilon})$$
, $para \varepsilon > 0$
ENTÃO $T(n) = \theta(n^{\log_b a})$

f(n) não é apenas menor. Ela é assintoticamente menor por um fator n^{ε} . Ou seja, ela é polinomialmente menor.

O método

Comparar f(n) com
$$n^{\log_b a}$$

CASO 2:

SE
$$f(n) = \theta(n^{\log_b a})$$

ENTÃO
$$T(n) = \theta(n^{\log_b a} \lg n)$$

O método

Comparar f(n) com
$$n^{\log_b a}$$

CASO 3:

SE (
$$f(n) = \Omega(n^{\log_b a + \varepsilon}), para \varepsilon > 0$$
)

$$(af(n/b) \le cf(n)$$
, para c<1)

ENTÃO
$$T(n) = \theta(f(n))$$

Exemplo de uso

$$T(n) = 9T\left(\frac{n}{3}\right) + n$$

$$a = 9$$

 $b = 3$

f(n) = n

Comparar f(n) com $n^{\log_b a}$:

$$n^{\log_3 9}$$

$$= n^2$$

logo, f(n) é assintoticamente menor que n². \implies CASO 1 \implies $T(n) = \theta(n^2)$

"cola" do método

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

$$n^{\log_b a}$$

$$T(n) = T(\frac{2n}{3}) + 1$$

$$T(n) = T(\frac{n}{\frac{3}{2}}) + 1$$

$$b = 3/2$$
 $f(n) = 1$

Comparar f(n) com $n^{\log_b a}$:

$$= n^{\log_{\frac{3}{2}} 1} = n^0 = 1$$

"cola" do método $T(n) = aT\left(rac{n}{b}
ight) + f(n)$ $n^{\log_b a}$

CASO 2

$$T(n) = \theta(n^{\log_b a} \lg n)$$
$$T(n) = \theta(1 \times \lg n)$$

$$T(n) = \theta(lgn)$$

$$T(n) = 3T(\frac{n}{4}) + n \lg n$$

a = 3b = 4

 $f(n) = n \lg n$

Comparar f(n) com $n^{\log_b a}$:

 $n^{\log_4 3}$

 $n^{0.793}$

Será que ...

$$n \lg n = \Omega(n^{0.793 + \epsilon})?$$

"cola" do método

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

$$n^{\log_b a}$$

Por exemplo, se $\varepsilon \approx 0.2$, teríamos n¹, ou seja, n é polinomialmente menor que n lg n.

Resta saber se a segunda condição do caso 3 se aplica.

$$af(n/b) \leq cf(n)$$

Exemplo 3 (cont.)

$$af(n/b) \le cf(n)$$

$$3f(\frac{n}{4}) \le cf(n)$$

$$\therefore 3(\frac{n}{4}\lg \frac{n}{4}) \le cnlgn$$

$$\therefore \frac{3}{4}n \lg \frac{n}{4} \le cn \lg n$$

Lembrando que C < 1

$$\therefore \frac{3}{4}n\lg\frac{n}{4} \le \frac{3}{4}n\lg n$$

$$\therefore \lg \frac{n}{4} \le \lg n$$

Verdade para n grande

$$T(n) = 2T(n/2) + n \lg n$$

$$a = 2$$

 $b = 2$

$$f(n) = n \lg n$$

Comparar f(n) com $n^{\log_b a}$:

$$n^{\log_2 2}$$

$$\therefore n^1$$

Logo f(n) é assintoticamente maior que n.

Mas precisamos que seja polinomialmente maior

"cola" do método

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

$$n^{\log_b a}$$

$$n^{\log_b a}$$

$$n \lg n = \Omega(n^{1+\epsilon})$$

Nesse caso, qualquer que seja o ε (ε >0), teríamos a n^{1+ε} assintoticamente maior que n Ign. Ou seja, é maior, mas não é polinomialmente maior.

Exemplo: $\varepsilon = 0.01$

https://github.com/r0drigopaes/paa/blob/mas ter/polinomialmente maior.ods

Polinomialmente maior

Basta dividir uma função por outra e verificar se o resultado é assintoticamente do que a variável elevada a alguma constante positiva.

Exemplo:

$$f(x) = x^3$$

$$g(x) = x^2$$

f(x) é polinomialmente maior que g(x)?

$$\chi^5/\chi^2 = \chi^3$$

 x^3 é maior que x^{ϵ} ? sim, para qualquer ϵ <3

$$\chi^3/\chi^2 = \chi^1$$

 x^1 é maior que x^{ϵ} ? sim, para qualquer $0 < \epsilon < 1$

$$\chi^{3}/\chi^{3} = 1$$

1 é maior que x^{ϵ} ? Não. Não existe esse $\epsilon > 0$.

$$nlgn / n = lgn$$

Ign é maior que n^{ϵ} ? Não, é assintoticamente menor para qualquer $\epsilon > 0$

$$T(n) = 2T(n/2) + \Theta(n)$$

Alunos, vou trocar isso aqui por algo mais didático em breve.

$$T(n) = 2T(n/2) + \Theta(n) ,$$

characterizes the running times of the divide-and-conquer algorithm for both the maximum-subarray problem and merge sort. (As is our practice, we omit stating the base case in the recurrence.) Here, we have a=2, b=2, $f(n)=\Theta(n)$, and thus we have that $n^{\log_b a}=n^{\log_2 2}=n$. Case 2 applies, since $f(n)=\Theta(n)$, and so we have the solution $T(n)=\Theta(n \lg n)$.

$$T(n) = 8T(n/2) + \Theta(n^2)$$

Esse aqui também

describes the running time of the first divide-and-conquer algorithm that we saw for matrix multiplication. Now we have a=8, b=2, and $f(n)=\Theta(n^2)$, and so $n^{\log_b a}=n^{\log_2 8}=n^3$. Since n^3 is polynomially larger than f(n) (that is, $f(n)=O(n^{3-\epsilon})$ for $\epsilon=1$), case 1 applies, and $T(n)=\Theta(n^3)$.

$$T(n) = 7T(n/2) + \Theta(n^2)$$

Esse foi o último

which describes the running time of Strassen's algorithm. Here, we have a=7, b=2, $f(n)=\Theta(n^2)$, and thus $n^{\log_b a}=n^{\log_2 7}$. Rewriting $\log_2 7$ as $\lg 7$ and recalling that $2.80<\lg 7<2.81$, we see that $f(n)=O(n^{\lg 7-\epsilon})$ for $\epsilon=0.8$. Again, case 1 applies, and we have the solution $T(n)=\Theta(n^{\lg 7})$.

Exercícios

- a. T(n) = 2T(n/4) + 1.
- **b.** $T(n) = 2T(n/4) + \sqrt{n}$.
- c. T(n) = 2T(n/4) + n.
- **d.** $T(n) = 2T(n/4) + n^2$.

Por que o teorema mestre funciona?

Caso 1: o custo é dominado pelos custos das folhas (f(n) é assintoticamente menor) Caso 2: o custo está igualmente distribuído entre os níveis da árvore Caso 3: os custos são dominados pelo custo da raiz