## Preview of Global dimension

Proj, Inj and Global dimension.

proj.dim(M) 
$$\leq m$$
  $\Leftrightarrow Ext_{A}^{P+1}(M,-) = 0$   $\forall p \geq m$   $\Leftrightarrow Ext_{A}^{m+1}(M,S) = 0$   $\forall simple S$  inj.dim(M)  $\leq m$   $\Leftrightarrow Ext_{A}^{m+1}(-,M) = 0$   $\forall p \geq m$   $\Leftrightarrow Ext_{A}^{m+1}(-,M) = 0$   $\forall simple S$   $\forall simple S$   $\forall dim(A) \leq m$   $\Leftrightarrow Ext_{A}^{m+1}(S,M) = 0$   $\forall p \geq m$   $\Leftrightarrow Ext_{A}^{m+1}(S,M) = 0$   $\forall p \geq m$   $\Leftrightarrow Ext_{A}^{m+1}(S,M) = 0$   $\forall p \geq m$   $\Leftrightarrow Ext_{A}^{m+1}(S,S) = 0$   $\Leftrightarrow Ext_{A}^{m+1}(S,S) = 0$   $\Leftrightarrow Ext_{A}^{m+1}(S,S) = 0$   $\Leftrightarrow Ext_{A}^{m+1}(S,S) = 0$ 

Cor. 1. gldim(A) = sup sproj dim (M) = sup sinj dim (M) }
2. We totally understand the proj resolution:

$$0 \longrightarrow U \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$$
  
 $proj.dim(M) > n \iff U \text{ non-proj} \qquad e.p. pd(V) = pd(M) - n$   
 $proj.dim(M) \leqslant n \iff U \text{ proj} \qquad e.p. pd(M) = n \Leftrightarrow U \hookrightarrow P \text{ nonsplit}.$ 

Understanding phenomenous in different glodim.
glodim A = 0 semisimple, best of all (In this table, glodim A + 0)

| gl. dim A             | 1                                       | 2                                                                                                                                                 | 3~n                      | ∞                                                 |
|-----------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|
| Name                  | hereditary                              |                                                                                                                                                   |                          |                                                   |
| KQ/1 quasi-hereditary | each                                    | ∃+!                                                                                                                                               | į.                       | each!                                             |
| Cartan matrix         | $C_p$ , $C_1$ , $<$ , path: $<$ , $> Q$ | > <sub>A</sub>                                                                                                                                    |                          | Idet Cp € [1,-1], then a                          |
| A. f.g comm k-alg     | regular, Kro                            | lim (R)=q1.                                                                                                                                       | dim(R)                   | not regular dom.dim(A)=+00                        |
| 1                     | path                                    | ,                                                                                                                                                 |                          | dom. dim (A)=+00                                  |
| Special ring          | ,                                       | ·                                                                                                                                                 | cycle quiver             | 1 0                                               |
| Special properties    | ind *proj => proj >proj                 | lom.dim(A)<br><gl.dim(a)=1 =<="" td=""><td>=in.dim(A)<br/>inj.dim(4)</td><td>dom.dim(A) sinj.dim (A) fin.dim(A) so can be done</td></gl.dim(a)=1> | =in.dim(A)<br>inj.dim(4) | dom.dim(A) sinj.dim (A) fin.dim(A) so can be done |
| Conjecture            |                                         |                                                                                                                                                   |                          | Finististic, Govenstein<br>Nakayama               |

rep.dim(A)

Symmetry: For f.d. ring A,

 $gl.dim(A) = gl.dim(A^{\circ P})$   $rep.dim(A) = rep.dim(A^{\circ P})$   $fin.dim(A) \neq fin.dim(A^{\circ P})$   $dom.dim(A) = dom.dim(A^{\circ P})$   $inj.dim(A) \stackrel{?}{=} inj.dim(A^{\circ P})$   $inj.dim(D(A^{\circ P})) \stackrel{?}{=} proj.dim(D(A))$ 

| gl.din with different $I = \frac{g(Q) < d(Q)^n}{q}$                                |                                                                     |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| $g(Q) < \infty \Rightarrow d(Q) < \infty$                                          | $g(Q) < \infty? d(Q) < \infty?$ $d(Q) < \infty?$                    |
| $\exists f. N \rightarrow  N  s.t$ $A \cdot f.d                                  $ | If $g.l.dim(KQ/I) < \infty$ , then $gl.dim(KQ/I) < dim_{K}(KQ/I)$ ? |
| without loop=) I st gl.dim(kW1)<2                                                  |                                                                     |

Cartan matrix, Euler form, and Euler form of path alg.

(0) Cartan matrix conj.  $g(\cdot dm(A) < \infty \implies \det C_p \in \{1, -\frac{1}{2}\}\}$ (1) For  $A: g(\cdot dim(A) < \infty \in X, Y)_A := \sum_{k=0}^{d} (-1)^k dim_k Ext_A^k(X, Y)$ 

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} [X:S(i)][Y:S(j)] \langle S(i), S(j) \rangle_{A}$   $= \sum_{i=1}^{n} \sum_{j=1}^{n} [X:S(i)][X:S(i)] \langle S(i), S(i) \rangle_{A}$   $= \sum_{i=1}^{n} \sum_{j=1}^{n} [X:S(i)] \langle S(i), S(i) \rangle_{A}$ 

 $\langle X, Y \rangle_{\alpha} = \langle \underline{dim}_{\alpha}(X), \underline{dim}_{\alpha}(Y) \rangle_{\alpha} = \langle X, Y \rangle_{A}$  $q_{\alpha}(X) := q_{\alpha}(\underline{\dim}_{\alpha}(X)) = \langle X, X \rangle_{A}$ 

(3) Relations: <X, Y> = <X, Y> but <x, y> +<x, y> e ⇒different matrix also, dim X + dima (X)

After that, we works on  $g(dim(A) = \infty)$ , Afd. No loop ∃S, Extá(S,S) ≠ 0 ⇒ gl.dim(S) = ∞ ⇒ proj. dim(S) = ∞

 \[
\begin{align\*}
 \begin{align\*}
 \text{Sim}(S,S) \div 0 & infinite m
 \end{align\*} Fin.din @ for monomial + gl.dim < + \in (Quite a lot!)

@ Fin.dim(A) \neq fin.dim(A) \neq fin.dim(A^{op}) findin(A)=0 HomA(D(AA),S) #0 same Loewy length Fin.dim (A) =0 generalized local local (i) If right, then a lot of other conjs are right. Finitistic Gorenstein Symmetry Conj. Dimension Conj. almost complete tilting Strong modules have only finitely

