

Classification and Prediction

——Classification by Neural Networks——

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

1

Classification and Prediction

- Basic Concepts
- Issues Regarding Classification and Prediction
- Decision Tree
- Bayesian Classification
- Neural Networks
- Support Vector Machine
- K-Nearest Neighbor
- Associative classification
- Classification Accuracy

Classification: A Mathematical Mapping

- Classification:
 - predicts categorical class labels
- E.g., Personal homepage classification
 - $x_i = (x_1, x_2, x_3, ...), y_i = +1 \text{ or } -1$
 - ⋆ x₁: the number of a word "homepage"
 - ◆ x₂: the number of a word "welcome"
- Mathematically
 - $x \in X = \Re^n, y \in Y = \{+1, -1\}$
 - ♦ We want a function f: X -> Y

3

Linear Classification

- Binary Classification problem
- The data above the blue line belongs to class 'x'
- The data below blue line belongs to class 'o'
- Examples:

SVM, Perceptron,

Discriminative(判别式的) Classifiers

- Advantages
 - prediction accuracy is generally high
 - (as compared to Bayesian methods in general)
 - robust, works when training examples contain errors
 - fast evaluation of the learned target function
 - (Bayesian networks are normally slow)
- Criticism
 - long training time
 - difficult to understand the learned function (weights)
 - (Bayesian networks can be used easily for pattern discovery)
 - not easy to incorporate domain knowledge
 - (easy in the form of priors on the data or distributions)

5

Neural Networks

- Analogy to Biological Systems (Indeed a great example of a good learning system)
- Massive Parallelism allowing for computational efficiency
- The first learning algorithm came in 1959 (Rosenblatt) who suggested that if a target output value is provided for a single neuron with fixed inputs, one can incrementally change weights to learn to produce these outputs using the perceptron learning rule

A Neuron (= a perceptron)

 The n-dimensional input vector x is mapped into variable y by means of the scalar product(内积) and a nonlinear function mapping

Input weight weighted Activation vector x vector w sum Function(激活函数)

Network Training

- The ultimate objective of training
 - obtain a set of weights that makes almost all the tuples in the training data classified correctly
- Steps
 - Initialize weights with random values
 - Feed the input tuples into the network one by one
 - For each unit
 - · Compute the net input to the unit as a linear combination of all the inputs to the unit
 - Compute the output value using the activation function
 - Compute the error
 - · Update the weights and the bias

One example (1)

- **Input:** X={1,0,1}, output: 1
 - x1=1, x2=0, x3=1; w14=0.2, w15=-0.3; w24=0.4, w25=0.1; w34=-0.5, w35=0.2; w46=-0.3; w56=-0.2,
- **Bias:** node 4:-0.4, node 5: 0.2, node 6: 0.1
- Learning rate I=0.9
- Node 4:
 - input:w14*x1+w24*x2+w34*x3+bias of node 4=1*0.2+0.4*0-0.5*1-0.4=-0.7
 - output: O4=0.332 $O_j = \frac{1}{1 + e^{-I_j}}$
- The same: node 5: input: 0.1, output:0.525
- Node 6:
 - input:w46*o4+w56*o5+bias of node 6=-0.3*0.332-0.2*0.525+0.1=-0.105
 - output:0.474

13

One example (2)

- Node 6: $Err_j = O_j(1 O_j)(T_j O_j)$ 0.474*(1-0.474)*(1-0.474)=0.1311
- Node 5: $Err_j = O_j(1 O_j) \sum_k Err_k w_{jk}$ • 0.525*(1-0.525)*0.1311*(-0.2)=-0.0065
- Node 4:-0.0087
 - W_{46} : $W_{ij} = W_{ij} + (l) Err_{ij} O_{i}$ -0.3+(0.9)(0.1311)(0.332)=-0.261
- Other W_{ij} is the same with w₄₆
- Bias of node 6: $\theta_j = \theta_j + (l)Err_j$
 - 0.1+(0.9)*(0.1311)=0.218
- Other bias is the same with node 6

Network Pruning and Rule Extraction

Network pruning

- Fully connected network will be hard to articulate
- N input nodes, h hidden nodes and m output nodes lead to h(m+N) weights
- Pruning: Remove some of the links without affecting classification accuracy of the network

Extracting rules : replace individual activation value by the cluster average trained network

- Discretize activation values maintaining the network accuracy
- Enumerate the output from the discretized activation values to find rules between activation value and output
- Find the relationship between the input and activation value
- Combine the above two to have rules relating the output to input

