

reference gode attached to a voltage source.

Looks like 3 nodes, with one (v3) fixed at 10v. We may write

Node
$$V_1$$
: $\frac{V_1 - V_2}{2} + \frac{V_1 - 10}{5} + (-1) = 0$

Node
$$V_2$$
: $V_2 - V_1 + V_2 - 0 + \frac{V_2 - 10}{5} = 0$

Can simplify to standard form:

node |
$$(x \cdot 10)$$
 $5V_1 - 5V_2 + 2V_1 - 20 + (-10) = 0$
 $7V_1 - 5V_2 = 30$ (1)

node 2 (x10)
$$5V_2 - 5V_1 + 2V_2 + V_2 - 10 = 0$$

 $+ 5V_1 + 8V_2 = 10$ (2)

Solving ...

From (1),
$$V_1 = \frac{30 + 5V_2}{7}$$

And from (2) $-5\left(\frac{30 + 5V_2}{7}\right) + 8V_2 = 10$
 $-\frac{150}{7} - \frac{25}{7}V_2 + 8V_2 = 10$

4.429 $V_2 = 51.429$

so $V_2 = 7.097 \sqrt{2}$

And from (3), $V_1 = 9.35$

Example 2: Solve for node voltages

Three nodes again, one fixed by the voltage source $V_2 = 10v$. At nodes 1, 3:

Node 1:
$$\frac{V_1 - 0}{5} + \frac{V_1 - V_2}{2} + (-2i_X) = 0$$

Node 3: $\frac{V_3 - 0}{10} + \frac{V_3 - V_2}{5} + 2i_X = 0$
this will be $-i_X$

Simplifying with 1/2 = 10

1 (x10)
$$2V_1 + 5(V_1 - 10) - 20i_X = 0$$

 $7V_1 - 50 - 20i_X = 0$ (1)

$$2(x10)$$
 $\sqrt{3} + 2(\sqrt{3}-10) + 20i_{x} = 0$ (2)

We also have the dependent current source's controlling current ix. Near to express this in terms of node vortages.

For the direction indicated,

$$i_{x} = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$$

$$i_{x} = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$$

$$(3)$$

Substitute (3) into (1) and (2)

$$7V_1 - 50 - 4(10 - V_3) = 0$$

 $7U_1 + 4V_3 = 90$
 $3V_3 - 20 + 4(10 - V_3) = 0$
 $-V_3 = -20$
equations fully in terms of node voltages.

so
$$V_3 = 20 \text{ V}$$

and $V_1 = 10/7 \text{ V}$.

Three node voltages, where we know $V_2 = 2V_X$.

By rearranging, we see another important pattern in this equation:

Node 1:
$$-1 + \frac{V_1}{5} + \frac{V_1 - V_2}{15} + \frac{V_1 - V_3}{10} = 0$$

Current sources connected to 1

 $V_1 \left(\frac{1}{5} + \frac{1}{15} + \frac{1}{10} \right) - V_2 \left(\frac{1}{15} \right) - V_3 \left(\frac{1}{10} \right) - 1 = 0$

node 1.

Sum of all conductances conductance conductance connecting nodes connecting nodes

1 and 2 1 and 3

Node 3:
$$\frac{V_3 - V_1}{10} + \frac{V_3 - V_2}{5} - 2 = 0$$

And we also have the dependence.

$$V_1 = V_3 - V_1$$