

Revisão Binário, Hexadecimal e conversões

- Numeros Binarios
 - Compostos por dois algarismo, o 0 e 1

Decimal	Binário	Octal	Hexadecimal	BCD
0	0	О	0	0000
1	1	1	1	0001
2	10	2	2	0010
3	11	3	3	0011
4	100	4	4	0100
5	101	5	5	0101
6	110	6	6	0110
7	111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	A	0001 0000
11	1011	13	В	0001 0001
12	1100	14	C	0001 0010
13	1101	15	D	0001 0011
14	1110	16	E	0001 0100
	7/2			0004 0404

Revisão Binário, Hexadecimal e conversões

•
$$0 = 0$$

0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	Α
4044	4.4	Ъ

Conversão Decimal-Binário

Conversão Binário-Decimal

- $1001100_2 = 76_{10}$
- $1x2^6 = 64$
- $1x2^3 = 8$
- $1x2^2 = 4$
 - Total = 76

•378₁₀

- $3 \times 10^2 + 7 \times 10^1 + 8 \times 10^0$
- •3 centenas + 7 dezenas + 8 unidades = 378

Composição IPV4

• O Ipv4 é composto por 32 bits divididos em 4 octetos binários

- 00000000.00000000.00000000.00000000

- <u>255 . 255 . 255 . 255 .</u>

Exemplo IPV4

• 192.168.100.10 = 11000000. 10101000.01100100.0001010

```
• 128 64 32 16 8 4 2 1
```

- 1 1 0 0 0 0 0 0 = 192
- 1 0 1 0 1 0 0 0 = 168
- 0
 1
 0
 1
 0
 0
 1
 0
- 0 0 0 0 1 0 1 0 = 10

```
10011011.00110011.010101.10011111
```

```
128 64 32 16 8 4 2 1
1 1 1 1 1 = 155
1 1 1 1 = 51
```

1 1 1 = 85

1
 1
 1
 1
 1
 1

• 155.51.85.159

Classes de Endereços IPV4

• Classe A $- 0 \rightarrow 126.0.0.0$

• Classe B $- 128 \rightarrow 191.0.0.0$

• Classe C $- 192 \rightarrow 223.0.0.0$

Mascara de rede – IPV4

- a mascara determina a porção de rede e consequentemente a porção de host.
- Exemplo classe A full
- 10.0.0.0
- rede host host host
- Numero de hosts = 2^24 = 16777216

Mascara de rede – IPV4

- a mascara determina a porção de rede e consequentemente a porção de host.
- Exemplo classe B full
- 172.16.0.0
- rede rede host host
- Numero de hosts = 2^16 = 65532 hosts

Mascara de rede – IPV4

- a mascara determina a porção de rede e consequentemente a porção de host.
- Exemplo classe C full
- 192.168.0.0
- 255.255.255.0 = 11111111111111111111111111100000000
- rede rede rede host
- Numero de hosts = 2^8 = 256 hosts

- Privado classe A = 10.0.0.0 255.0.0.0
- Privado classe B = 172.16.0.0 255.255.0.0
- Privado classe C = 192.168.0.0 255.255.255.0

- Endereço padrão classe C
- 192.168.0.0 --→ 255.255.255.0

• Rede = 192.168.0.0

• 1° host = 192.168.0.1

• Ult. Host = 192.168.0.254

• Broadcast = 192.168.0.255

Rede 192.168.1.0

1° host = 192.168.1.1

ult. Host = 192.168.1.254

broadcast = 192.168.1.255

• N° de hosts = $2^8 = 256 - 2 = 254$ hosts

- Endereço padrão classe B
- 172.16.0.0 --→ 255.255.0.0

•

• Rede = 172.16.0.0

• 1° host = 172.16.0.1

• Ult host = 172.16.255.254

• Broadcast = 172.16.255.255

Rede = 172.17.0.0

1° host = 172.17.0.1

ult host = 172.17.255.254

broadcast = 172.17.255.255

• N° hosts = $2^{16} = 65536 - 2 = 65534$ hosts

- Endereço padrão classe A
- 10.0.0.0 --→ 255.0.0.0
- Rede = 10.0.0.0
- 1 host = 10.0.0.1
- Ult host = 10.255.255.254
- Broadcast = 10.255.255.255
- N° hosts = $2^24 = 16777216 2 = 16777214$ hosts

• Classe
$$A = 0 \rightarrow 127$$
 00000000 01111111

• Classe B =
$$128 \rightarrow 191 \quad 10000000 \quad 10111111$$

• Classe C =
$$192 \rightarrow 223$$
 11000000 11011111

Exercicio – determinar rede 1 host e ultimo host mais broadcast

- 210.100.37.154
- 255.255.0.0
- Rede = 210.100.0.0
- 1° host = 210.100.0.1
- Ult. Host = 210.100.255.254
- Broadcast = 210.100.255.255

HOST 192.168.3.219

Mask 255.255.254

Mask = 255.255.255.224

11111111.111111111.11111111.11100000

 $hosts = 2^5 = 32 hosts$

Rede = 192.168.3.0 Rede = 192.168.3.32

1° host = 192.168.3.1 1° host = 192.168.3.33

Ult.host = 192.168.3.30 ultimo = 192.168.3.62

Broadcast = 192.168.3.31 broad = 192.168.3.63

Rede= 192.168.3.192

1° = 192.168.3.193

ultimo= 192.168.3.222

broad = 192.168.3.223

- 179.214.49.198
- 255.192.0.0 -→ 11111111.11000000.000000000.00000000
- Rede = 179.192.0.0
- 1° host = 179.192.0.1
- Ultimo = 179.255.255.254
- Broadcast = 179.255.255.255
- N° de hosts = $2^2 2 = 4194302$ hosts

Lição de casa --- Para o Lar....

- lp 110.254.94.132
- 255.255.240.0
- ???? Rede?????
- 1 host?????
- Ult host????
- Broadcast?????