Feuille d'exercice n° 06 : Valeurs propres et vecteurs propres – Corrigé

I. Valeurs propres et vecteurs propres

Exercise 1 Pour $(x, y) \in \mathbb{R}^2$, notons

$$A = \left(\begin{array}{ccc} x & 1 & 1 \\ 1 & y & 1 \\ 1 & 1 & 0 \end{array}\right), U = \left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right).$$

On, a, puisque $U \neq 0$: $U\overrightarrow{vp}$ de $A \iff \exists \lambda \in \mathbb{R}, AU = \lambda U$

$$\iff \exists \lambda \in \mathbb{R}, \begin{cases} x+5=\lambda \\ 2y+4=2\lambda \\ 3=3\lambda \end{cases}$$

$$\iff \begin{cases} x+5=1 \\ 2y+4=2 \end{cases} \iff \begin{cases} x=-4 \\ y=-1. \end{cases}$$

On conclut qu'il y a un couple (x, y) convenant et un seul, (x, y) = (-4, -1).

Exercice 2 1ère méthode : Utilisation de la définition :

Puisque $U \neq 0$ et $V \neq 0, A$ admet U et V pour vecteurs propres si et seulement si : AU est colinéaire à U, et AV est colinéaire à V. On a : $AU = \begin{pmatrix} 1 & a \\ 1 & a \end{pmatrix}$

$$\begin{pmatrix} 1 & a \\ -1 & b \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2+a \\ -2+b \end{pmatrix}, \text{ donc } : AU \text{ colinéaire à } U$$

$$\iff \begin{vmatrix} 2+a & 2\\ -2+b & 1 \end{vmatrix} = 0 \iff a-2b+6 = 0.$$

Et :
$$AV = \begin{pmatrix} 1 & a \\ -1 & b \end{pmatrix} \binom{1}{1} = \binom{1+a}{-1+b}$$
, donc : AV colinéaire à V

$$\iff \begin{vmatrix} 1+a & 1\\ -1+b & 1 \end{vmatrix} = 0 \iff a-b+2 = 0.$$

Enfin: $\begin{cases} a-2b+6=0 \\ a-b+2=0 \end{cases} \iff \begin{cases} a=2 \\ b=4. \end{cases}$ On conclut qu'il y a un couple (a,b) convenant et un seul, (a,b)=(2,4). 2^e méthode: Utilisation d'une matrice de passage: Notons $P=\begin{pmatrix} U & V \end{pmatrix}=\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Il est clair que P est inversible et $P^{-1}=\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$. La matrice A admet U et V pour vecteurs propres si et seulement si $P^{-1}AP$ est diagonale. On calcule le produit $P^{-1}AP$ et on obtient:

$$P^{-1}AP = \begin{pmatrix} 4+a-b & 2+a-b \\ -6-a+2b & -3-a+2b \end{pmatrix}.$$

On a : $P^{-1}AP$ diagonale

$$\iff \left\{ \begin{array}{l} 2-a+b=0 \\ -6-a+2b=0 \end{array} \right. \iff \left\{ \begin{array}{l} a=2 \\ b=4. \end{array} \right.$$

II. Espaces propres

Exercice 4 - Puisque A (resp. B) est triangulaire, les valeurs propres de A (resp. B) se lisent sur sa diagonale, donc : les valeurs propres de A (resp. B) sont 0 (double) et 1 (simple). - Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{M}_{3,1}(\mathbb{R})$. On a :

1)
$$*X \in SEP(A, 0) \iff AX = 0$$

$$\iff \left\{ \begin{array}{l} y+z=0 \\ z=0 \end{array} \right. \iff \left\{ \begin{array}{l} y=0 \\ z=0, \end{array} \right.$$

donc SEP
$$(A, 0)$$
 = Vect $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, dim SEP $(A, 0) = 1$

$$*X \in SEP(A, 1) \iff AX = X$$

$$\begin{cases} y + z = x \\ z = y \end{cases} \iff \begin{cases} x = 2y \\ z = y. \end{cases}$$

donc SEP
$$(A, 1)$$
 = Vect $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, dimSEP $(A, 1) = 1$.

2)
$$*X \in \text{SEP}(B,0) \iff BX = 0 \iff y + z = 0,$$

 $\text{donc SEP}(B,0) = \text{Vect}\left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}\right), \dim \text{SEP}(B,0) = 2.$
 $*X \in \text{SEP}(B,1) \iff BX = X \iff \begin{cases} y = x \\ z = 0 \end{cases} \text{ donc SEP}(B,1) = 1.$
 $\text{Vect}\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \dim \text{SEP}(B,1) = 1.$

Remarque : Il en résulte que A n'est pas diagonalisable dans $\mathbf{M}_3(\mathbb{R})$, et que B est diagonalisable dans $\mathbf{M}_3(\mathbb{R})$.

Exercice 5 Cherchons $V = (x, y, z, t)^{\top}$ tel que AV = iV. Cela s'écrit

$$\begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = i \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \Longleftrightarrow \begin{cases} -z = ix \\ -t & = iy \\ x & = iz \\ y = it \end{cases} \iff \begin{cases} x = iz \\ y = it \end{cases}.$$

Ainsi $V \in \text{Ker}(A - iI_4)$ si et seulement si il existe $(z,t) \in \mathbb{C}^2$ tel que $V = \begin{pmatrix} iz \\ it \\ z \\ t \end{pmatrix}$. Finalement $\text{Ker}(A - iI_4) = \text{Vect}\begin{pmatrix} i \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ i \\ 0 \\ 1 \end{pmatrix}$.

En résolvant le système AV = -iV, on vérifie de la même façon que

$$\operatorname{Ker}(A+iI_4) = \operatorname{Vect}\left(\begin{pmatrix} -i \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -i \\ 0 \\ 1 \end{pmatrix}\right)$$
. Comme la somme des dimensions

des sous-espaces propres est égale à la dimension de l'espace vectoriel \mathbb{C}^4 , il n'y pas d'autre sous-espace propre.

Remarques - On aurait pu remarquer que $A \in \mathcal{M}_4(\mathbb{R})$ et utiliser que $AV = iV \Leftrightarrow A\bar{V} = -i\bar{V}$.

- On aurait pu également effectuer un résolution à l'aide d'une écriture par blocs $V = {X \choose Y}$ où X et Y sont dans $\mathcal{M}_{2,1}(\mathbb{C})$.

III. Polynôme caractéristique

Exercice 9 D'abord, il est clair que f est un endomorphisme de E. $I^{\rm re}$ méthode : Étude matricielle Formons la matrice M de f dans la base canonique $\mathscr{B} = (\mathrm{E}_{11}, \mathrm{E}_{12}, \mathrm{E}_{21}, \mathrm{E}_{22})$ de $\mathbf{M}_2(\mathbb{R})$. On a : $f(\mathrm{E}_{11}) = \mathrm{E}_{22}, f(\mathrm{E}_{12}) = -\mathrm{E}_{12}$, d'où :

$$f(\mathbf{E}_{21}) = -\mathbf{E}_{21}, \quad f(\mathbf{E}_{22}) = \mathbf{E}_{11},$$

$$M = \begin{pmatrix} 0 & 0 & 0 & 1\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

On calcule le polynôme caractéristique de M, par exemple en développant par rapport à la première colonne :

$$\chi_M(\lambda) = \begin{vmatrix}
-\lambda & 0 & 0 & 1 \\
0 & -1 - \lambda & 0 & 0 \\
0 & 0 & -1 - \lambda & 0 \\
1 & 0 & 0 & -\lambda
\end{vmatrix}$$

$$= -\lambda \begin{vmatrix}
-1 - \lambda & 0 & 0 \\
0 & -1 - \lambda & 0 \\
0 & 0 & -\lambda
\end{vmatrix} - \begin{vmatrix}
0 & 0 & 1 \\
-1 - \lambda & 0 & 0 \\
0 & -1 - \lambda & 0
\end{vmatrix}$$

$$= (-\lambda)^2 (-1 - \lambda)^2 - (-1 - \lambda)^2$$

$$= (1 + \lambda)^2 (\lambda^2 - 1) = (\lambda - 1)(\lambda + 1)^3.$$

On déduit que les valeurs propres de M sont $\,:\,$ -1 (triple) et 1 (simple). On a,

pour toute
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbf{M}_{4,1}(\mathbb{R}) :$$

$$\cdot MX = -X \iff x_4 = -x_1, \text{ donc } :$$

$$\begin{split} & \operatorname{SEP}(M,-1) = \operatorname{Vect}\left(\left(\begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}\right), \\ & \operatorname{SEP}(f,-1) = \operatorname{Vect}\left(\left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array}\right), \left(\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{c} 0 & 0 \\ 1 & 0 \end{array}\right) \right) \end{split}$$

$$-MX = X \iff (x_1 = x_4, x_2 = 0, x_3 = 0) \text{ donc}$$

$$SEP(M,1) = Vect \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, SEP(f,1) = Vect \begin{pmatrix} 1&0\\0&1 \end{pmatrix}.$$

 2^e méthode : Utilisation d'un polynôme annulateur (PC, PSI) On remarque que, pour toute $A=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$:

$$f^{2}(A) = f \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = A,$$

donc : $f^2 = \mathrm{Id}_{\mathbf{M}_2(\mathbb{R})}$. Remarque : f est une symétrie. Ainsi, le polynôme $X^2 - 1$ est annulateur de A. Il en résulte : $\mathrm{Sp}(f) \subset \{-1,1\}$. On a, pour toute $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

$$\begin{split} &-f(A) = -A \Longleftrightarrow d = -a, \mathrm{donc} \\ &\mathrm{SEP}(f,-1) = \mathrm{Vect}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)\right) \\ &-f(A) = A \Longleftrightarrow (d = a, b = 0, c = 0), \ \mathrm{donc} \ : \\ &\mathrm{SEP}(f,1) = \mathrm{Vect}\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right). \end{split}$$

Exercice 10

1) On a facilement b) \Rightarrow c) et c) \Rightarrow a). Pour montrer a) \Rightarrow b), on utilise qu'il existe une base dans laquelle un endomorphisme nilpotent a une matrice triangulaire sup à diagonale nulle.

Exercice 11

(iii) \Rightarrow (ii) 1 n'est pas valeur propre sinon il existe x non nul tel que Mx = x donc $M^p x = x$ et par passage à la limite quand $M^p \to 0$, x = 0: absurde. Donc (I - M) est inversible.

alors
$$\sum_{k=0}^{p} M^k = (I - M^{p+1}) (I - M)^{-1} \to (I - M)^{-1}$$
.

- (ii) \Rightarrow (i) Soit x un vecteur propre. Alors $(\sum_{k=0}^{p} M^k)(x) = \sum_{k=0}^{p} (M^k(x)) = \sum_{k=0}^{p} a^k x = (\sum_{k=0}^{p} a^k) x$. Or cette somme converge donc $\sum_{k=0}^{p} a^k$ converge, donc |a| < 1.
- (i) \Longrightarrow (iii) On écrit M=aI+N, alors N est nilpotente, donc $N^n=0$, ainsi que toutes les puissances suivantes. Comme I et N commutent, avec Newton : $M^p=(aI+N)^p=\sum_{k=0}^{n-1}a^{p-k}\binom{p}{p-k}N^k$. Mais $a^{p-k}\binom{p}{p-k}\leqslant \frac{p^k}{k!}a^{p-k}\to 0$ par croissances comparées.

Exercice 14 Soit v l'endomorphisme de Im u induit par u sur Im u. Soit $P = X\chi_v$, où χ_v est le polynôme caractéristique de v. Alors deg P = 1 + r. D'après le théorème de Cayley-Hamilton, pour tout $x \in E$:

$$P(u)(x) = \chi_v(u)(u(x)) = \chi_v(v)(u(x)) = 0.$$

Ceci assure que P est un polynôme annulateur de u de degré r+1.

Exercice 16 Formons le polynôme caractéristique χ_M de M:

$$\chi_M(X) = \det \begin{pmatrix} I_n - XI_n & I_n \\ A & A - XI_n \end{pmatrix}.$$

En multipliant les colonnes numéros n+1 à 2n par (1-X), on obtient :

$$(1-X)^n \chi_M(X) = \det \left(\begin{array}{cc} (1-X)\mathbf{I}_n & (1-X)\mathbf{I}_n \\ A & (1-X)\left(A-X\mathbf{I}_n\right) \end{array} \right).$$

En, faisant $C_j \leftarrow C_j - C_{j-n}$ pour $j = n+1, \dots 2n$, on a :

$$(1-X)^{n}\chi_{M}(X)$$

$$= \det \begin{pmatrix} (1-X)I_{n} & 0 \\ A & (1-X)(A-XI_{n}) - A \end{pmatrix}$$

$$= \det ((1-X)I_{n}) \det (-XA - X(1-X)I_{n})$$

$$= (1-X)^{n}(-X)^{n} \det (A - (X-1)I_{n})$$

$$= (1-X)^{n}(-X)^{n}\chi_{A}(X-1).$$

Ainsi : $(1-X)^n (\chi_M(X) - (-X)^n \chi_A(X-1)) = 0$. Comme l'anneau K[X] est intègre et que $(1-X)^n \neq 0$, on peut simplifier et on conclut :

$$\chi_M(X) = (-X)^n \chi_A(X-1)$$

On pouvait aussi utiliser que si C et D commutent, $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \det(AD - BC)$.

Exercice 17 Puisque A est inversible, toute valeur propre de A est non nulle. Soit $\lambda \in \mathbb{K}^*$,

$$\chi_{A^{-1}}(\lambda) = \det\left(A^{-1} - \lambda I_n\right) = \det\left(-\lambda A^{-1} \left(-\frac{1}{\lambda} I_n + A\right)\right)$$
$$= (-\lambda)^n \frac{1}{\det A} \det\left(A - \frac{1}{\lambda} I_n\right) = (-\lambda)^n \frac{1}{\det A} \chi_A\left(\frac{1}{\lambda}\right).$$

Conclusion : $\chi_{A^{-1}}(X) = \frac{(-1)^n}{\det A} X^n \chi_A\left(\frac{1}{X}\right)$. On peut remarquer que le polynôme $X^n \chi_A\left(\frac{1}{X}\right)$ a ses coefficients écrits dans l'ordre inverse de ceux du polynôme $\chi_A(X)$.