МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №6

по дисциплине 'ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ'

Вариант: 668

Выполнил: Студент группы Р3113 Кулинич Ярослав Вадимович Преподаватель: Афанасьев Дмитрий Борисович

Содержание

1	Зад	ание	3
		Условие	3
2	Тек	ст программы	4
3	Опі	исание программы	9
	3.1	Назначение программы	9
	3.2	Область представления и область допустимых значений исходных данных и результата.	9
		3.2.1 Область представления	9
		3.2.2 Область допустимых значений	
	3.3	Расположение в памяти ЭВМ программы, исходных данных и результатов	9
	0.0	3.3.1 Исходные данные и результат	9
		3.3.2 Программа	
	3.4	Адреса первой и последней исполняемой команд.	
4	Mer	тодика проверки	10
	4.1	Основная программа	10
	4.2	Обработчик ВУ-2	
	4.3	Обработчик ВУ-3	
	4.4	Обработчик по умолчанию	
5	Вы	вол	14

1 Задание

1.1 Условие

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных BY (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на BY модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

Enter task variant 668

- 1. Основная программа должна увеличивать на 2 содержимое X (ячейки памяти с адресом 01D₁₆) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=3X-1 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'И' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

2 Текст программы

```
ORG 0x0 ; Блок инициализации векторов
VECTOR_O:
           WORD $DEF_HAND, Ох18О; прерывания
VECTOR_1: WORD $DEF_HAND, 0x180
VECTOR_2: WORD $INT2, 0x180
VECTOR_3: WORD $INT3, 0x180
VECTOR_4: WORD $DEF_HAND, 0x180
VECTOR_5: WORD $DEF_HAND, 0x180
VECTOR_6: WORD $DEF_HAND, 0x180
VECTOR_7: WORD $DEF_HAND, 0x180
DEF_HAND: PUSH ; Дефолтный обработчик прерываний
ED1_HAND: IN 3 ; для ВУ-1 и ВУ-4
           AND #0x40
           BEQ ED4_HAND
           CLA
           OUT 2
ED4_HAND: IN OxA
           AND #0x40
           BEQ END_HAND
           IN 9
END_HAND: POP
           IRET
           ORG 0x1D ; Блок инициализации начального,
X:
           WORD 0 ; макс. и мин. значений X
MIN_X:
           WORD OxFFD6
MAX_X:
           WORD Ox2A
START:
           DI ; Начало программы
INIT_MR:
                         ; Блок привязывания MR всех
           LD #8
                         ; КВУ к векторам прерывания
           OUT 3
           LD #OxA
            OUT 5
           CLA
           OUT 6
           LD #0xB
           OUT 7
           LD #9
            OUT OxB
EXEC:
           EI ; Начало основного щикла
           NOP ;
OPER:
           DI ; Блок операции увеличения X на 2
           LD X; и сохранения результата по адресу X,
           ADD #0x2 ; если X превысит MAX_X, CMP MAX_X ; то X будет присвоено MIN_X
```

```
ST TMP_X_MID ; Сохранение промежуточных
           PUSHF
                         ; ХиРЅ
           LD &0
           ST TMP_PS_MID
           LD TMP_X_MID
           POPF
           BLT SAVE_X
           BEQ SAVE_X
           LD MIN_X
SAVE_X:
           ST X
           PUSHF
           LD &0
           ST TMP_PS
           POPF ; 3F
           LD MAIN_LEN ; Блок сохранения промежуточных и
           BEQ NEXT
                         ; конечных X и PS в таблицу
           LD TMP_X_MID ; Сохранение промежуточного X
           ST (MAIN_CUR)+
           LD TMP_PS_MID; Coxpaneenue промежуточного
           ST (MAIN_CUR)+ ; содержимого PS
           ST (MAIN_CUR)+; Coxpanenue конечного X
           LD TMP_PS; Coxpanenue конечного
           ST (MAIN_CUR)+; содержимого PS
           LOOP MAIN_LEN
            JUMP NEXT
           HLT ; БРЕЙКПОИНТ, для оставки после
                 ; заполнения всей отладочной таблицы
NEXT:
           ΕI
            NOP ; БРЕЙКПОИНТ
            JUMP OPER
                       ; Зацикливание увеличения Х на 2
TMP_X_MID: WORD O
TMP_PS_MID:WORD O
TMP_PS:
          WORD O
INT2:
           PUSH ; Блок обработчика прерывания ВУ-2
           LD X ; Осуществляет операцию побитого И
           PUSH ; содержимого РДВУ-2 и X,
                    ; а результат присваевает Х
```

```
IN Ox4
            PUSH
            AND X
            ST X
            CLA
            IN 5
            PUSH
            PUSHF
            LD INT2_LEN ; Сохранение отладочной информации
            BEQ NEXT_INT2
            LD &3
            ST (INT2_CUR)+
                                   ; Сохранение начального Х
                                   ; Сохранение пользовательского
            LD &2
            ST (INT2_CUR)+
                                   ; ввода в РДВУ-2
            LD X
            ST (INT2_CUR)+
                                   ; Сохранение нового значения Х
            LD &0
            ST (INT2_CUR)+
                                   ; Сохранение содержимого PS
            LD &1
            ST (INT2_CUR)+
                                   ; Сохранение содержимого РСВУ-2
            OR -(INT2_LEN)
NEXT_INT2: POPF
            POP
            POP
            POP
            POP
            IRET
INT3:
            PUSH ; Блок обработчика прерывания ВУ-3
            LD X ; Осуществляет подсчет функции F(X)=3X-1
            PUSH ; И выводит в РДВУ-3
            ASL
            ADD X
            DEC
            OUT 0x6
            PUSH
            CLA
            IN 7
            PUSH
            PUSHF
```

```
LD INT3_LEN
                                  ; Сохранение отладочной информации
                 BEQ NEXT_INT3
                 LD &3
                 ST (INT3_CUR)+
                                 ; Сохранение переменной Х
                 LD &2
                 ST (INT3_CUR)+
                                  ; Сохранение результата вычисления F(
                 LD &0
                 ST (INT3_CUR)+
                                  ; Сохранение содержимого PS
                 LD &1
                 ST (INT3_CUR)+
                                  ; Сохранение содержимого РСВУ-3
                 OR -(INT3_LEN)
NEXT_INT3:
                 POPF
                 POP
                 POP
                 POP
                 POP
                 IRET
                 ORG 0x90
MAIN_CUR:
                 WORD $MSTEP_1_X_MID
MAIN_LEN:
                 WORD 10 ; Указывает количество сохранений в таблицу
MSTEP_1_X_MID: WORD 0; Начало блока отладочных ячеек
MSTEP_1_PS_MID: WORD 0; для основного цикла программы
MSTEP_1_X: WORD O
MSTEP_1_PS: WORD O
MSTEP_2_X_MID: WORD O
MSTEP_2_PS_MID: WORD O
MSTEP_2_X: WORD O
MSTEP_2_PS: WORD O
MSTEP_3_X_MID: WORD O
MSTEP_3_PS_MID: WORD O
MSTEP_3_X: WORD O
MSTEP_3_PS: WORD O
MSTEP_4_X_MID: WORD O
MSTEP_4_PS_MID: WORD O
MSTEP_4_X: WORD O
MSTEP_4_PS: WORD O
MSTEP_5_X_MID: WORD O
MSTEP_5_PS_MID: WORD O
MSTEP_5_X: WORD O
MSTEP_5_PS: WORD O
MSTEP_6_X_MID: WORD O
MSTEP_6_PS_MID: WORD O
MSTEP_6_X: WORD O
MSTEP_6_PS: WORD O
MSTEP_7_X_MID: WORD O
MSTEP_7_PS_MID: WORD O
MSTEP_7_X: WORD O
MSTEP_7_PS: WORD O
MSTEP_8_X_MID: WORD O
MSTEP_8_PS_MID: WORD O
MSTEP_8_X: WORD O
MSTEP_8_PS: WORD 0
MSTEP_9_X_MID: WORD O
MSTEP_9_PS_MID: WORD O
MSTEP_9_X: WORD O
MSTEP_9_PS: WORD O
```

```
MSTEP_10_X_MID: WORD O
MSTEP_10_PS_MID: WORD O
MSTEP_10_X: WORD 0; Конец блока отладочных
MSTEP_10_PS: WORD 0; ячеек для основного цикла программы
INT2_CUR: WORD $INT2STEP_1_X_OLD; Начало блока отладочных ячеек
INT2_LEN: WORD 5; для обработчика прерываний ВУ-2
INT2STEP_1_X_OLD: WORD O
INT2STEP_1_SX: WORD O
INT2STEP_1_X_NEW: WORD O
INT2STEP_1_PS: WORD O
INT2STEP_1_SR: WORD O
INT2STEP_2_X_OLD: WORD O
INT2STEP_2_SX: WORD O
INT2STEP_2_X_NEW: WORD O
INT2STEP_2_PS: WORD O
INT2STEP_2_SR: WORD O
INT2STEP_3_X_OLD: WORD O
INT2STEP_3_SX: WORD O
INT2STEP_3_X_NEW: WORD O
INT2STEP_3_PS: WORD O
INT2STEP_3_SR: WORD O
INT2STEP_4_X_OLD: WORD O
INT2STEP_4_SX: WORD O
INT2STEP_4_X_NEW: WORD O
INT2STEP_4_PS: WORD O
INT2STEP_4_SR: WORD 0
INT2STEP_5_X_OLD: WORD O
INT2STEP_5_SX: WORD O
INT2STEP_5_X_NEW: WORD O
INT2STEP_5_PS: WORD 0; Конец блока отладочных ячеек
INT2STEP_5_SR: WORD 0; для обработчика прерываний ВУ-2
INT3_CUR: WORD $INT3STEP_1_X; Начало блока отладочных ячеек
INT3_LEN: WORD 5; для обработчика прерываний ВУ-3
INT3STEP_1_X: WORD O
INT3STEP_1_SX: WORD O
INT3STEP_1_PS: WORD O
INT3STEP_1_SR: WORD O
INT3STEP_2_X: WORD O
INT3STEP_2_SX: WORD O
INT3STEP_2_PS: WORD 0
INT3STEP_2_SR: WORD O
INT3STEP_3_X: WORD O
INT3STEP_3_SX: WORD 0
INT3STEP_3_PS: WORD O
INT3STEP_3_SR: WORD O
INT3STEP_4_X: WORD O
INT3STEP_4_SX: WORD O
INT3STEP_4_PS: WORD O
INT3STEP_4_SR: WORD O
INT3STEP_5_X: WORD O
INT3STEP_5_SX: WORD O
INT3STEP_5_PS: WORD 0; Конец блока отладочных ячеек
INT3STEP_5_SR: WORD 0; для обработчика прерываний ВУ-3
```

3 Описание программы

3.1 Назначение программы

Увеличение переменной X на 2 в основной программе в бесконечном цикле. Если переменная X превысит MAX_X, то установить X как MIN_X. При готовности BУ-3 вывести на РДВУ-3 значение F(X)=3X-1. При готовности BУ-2 выполнить операцию побитого И содержимого РДВУ-2 и X, а результат сохранить в переменную X.

3.2 Область представления и область допустимых значений исходных данных и результата

3.2.1 Область представления

 X, MAX_X, MIN_X - 8-разрядные знаковые числа с фиксированной запятой. Диапазон значений формата $-2^7\dots 2^7-1$

Содержимое РДВУ-2 - набор из 8 логических значений 1 или 0.

3.2.2 Область допустимых значений

Для вывода результата F(X) используется 8-битный РДВУ-3, поэтому область значений функции равен $-2^7\dots 2^7-1$

Или

$$-2^{7} \le 3X - 1 \le 2^{7} - 1$$
$$\frac{-2^{7} + 1}{3} \le X \le \frac{2^{7}}{3}$$

Теперь в нужном формате:

$$D6 \le X \le 2A$$

3.3 Расположение в памяти ЭВМ программы, исходных данных и результатов

3.3.1 Исходные данные и результат

X(1D) - переменная

90...В9 - отладочная таблица для основного цикла программы

ВА... D4 - отладочная таблица для обработчика прерываний ВУ-2

D5...EA - отладочная таблица для обработчика прерываний BУ-3

3.3.2 Программа

 $0 \dots F$ - блок инициализации векторов прерывания

 $10\dots 1B$ - обработчик прерываний по умолчанию

MIN~~X(1E), MAX~~X0(1F) - константы

 $20\dots 4F$ - основная программа

50, 51, 52 - локальные переменные

53...70 - обработчик прерываний ВУ-2

71...8D - обработчик прерываний ВУ-3

3.4 Адреса первой и последней исполняемой команд.

20 - адрес первой исполняемой команды

4 Методика проверки

4.1 Основная программа

Исходные данные: X = 20

Ожидаемое выходное значение X: FFDE

- Загрузить комплекс программ в БЭВМ
- Загрузить в ячейку 1D значение 20 (присвоение X=20)
- Загрузить в ячейку 91 значение A (присвоение $MAIN_LEN = A$)
- Проверить наличие команды НLТ по адресу 4С
- Запустить программу и дождаться ее остановки
- Если программа слишком долго работает, то из-за неопределенной внутренней ошибки произошло зацикливание и проверка провалена
- Если после остановки программы IP не равен 4D, то проверка провалена
- Обратиться к ячейкам памяти 92...B9 и заполнить таблицу ниже. При наличии расхождений, проверка провалена. Если все сошлось, проверка была осуществлена успешно.

Имя ячейки	Адрес ячейки	Значение после проверки	Ожидаемое значение
MSTEP_1_X_MID	92		0022
MSTEP_1_PS_MID	93		0188
MSTEP_1_X	94		0022
MSTEP_1_PS	95		0188
MSTEP_2_X_MID	96		0024
MSTEP_2_PS_MID	97		0188
MSTEP_2_X	98		0024
MSTEP_2_PS	99		0188
MSTEP_3_X_MID	9A		0026
MSTEP_3_PS_MID	9B		0188
MSTEP_3_X	9C		0026
MSTEP_3_PS	9D		0188
MSTEP_4_X_MID	9E		0028
MSTEP_4_PS_MID	9F		0188
MSTEP 4 X	A0		0028
MSTEP 4 PS	A1		0188
MSTEP 5 X MID	A2		$002\mathrm{A}$
MSTEP 5 PS MID	A3		0185
MSTEP 5 X	A4		$002\mathrm{A}$
MSTEP_5_PS	A5		0185
MSTEP 6 X MID	A6		002C
MSTEP_6_PS_MID	A7		0181
MSTEP_6_X	A8		FFD6
MSTEP_6_PS	A9		0189
MSTEP_7_X_MID	AA		FFD8
MSTEP 7 PS MID	AB		0189
MSTEP 7 X	AC		FFD8
MSTEP 7 PS	AD		0189
MSTEP 8 X MID	AE		FFDA
MSTEP 8 PS MID	AF		0189
MSTEP 8 X	В0		FFDA
MSTEP 8 PS	B1		0189
MSTEP 9 X MID	B2		FFDC
MSTEP_9_PS_MID	В3		0189
MSTEP_9_X	B4		FFDC
MSTEP_9_PS	B5		0189
MSTEP_10_X_MID	B6		FFDE
MSTEP_10_PS_MID	B7		0189
MSTEP_10_X	B8		FFDE
MSTEP_10_PS	В9		0189

4.2 Обработчик ВУ-2

Исходные данные: X = 20

Значение 1: FF Значение 2: BA Значение 3: E9 Значение 4: DE Значение 5: AD

- Загрузить комплекс программ в БЭВМ
- Загрузить в ячейку 1D значение 20 (присвоение X=20)
- Загрузить в ячейку 91 значение A (присвоение $MAIN\ LEN = A$)
- Загрузить в ячейку ВВ значение 5 (присвоение INT2 LEN = 5)
- Проверить наличие команды НLТ по адресу 4С
- Запустить программу
- Записать в ВУ-2 "Значение 1"и установить "Готовность ВУ-2"
- Дождаться отмены "готовности ВУ-2"
- Повторить предыдушие 2 шага еще 4 раза, каждый раз используя новое "Значение"
- Дождаться остановки программы
- Если программа слишком долго работает, то из-за неопределенной внутренней ошибки произошло зацикливание и проверка провалена
- Если после остановки программы IP не равен 4D, то проверка провалена
- Обратиться к ячейкам памяти $BC \dots D4$ и заполнить таблицу ниже. При наличии расхождений, проверка провалена. Ячейки с прочерком подразумевают трудно предсказуемый результат, поэтому проверяющему нужно самому осуществить операцию побитового "И"X_OLD и SX, а после сравнить с X_NEW. Если SR не равно ожидаемому значению, то можно предположить что проверяющий слишком часто устанавливал "Готовность ВУ-2".

Имя ячейки	Адрес ячейки	Значение после проверки	Ожидаемое значение
INT2STEP_1_X_OLD	BC		_
INT2STEP_1_SX	BD		00FF
INT2STEP_1_X_NEW	BE		_
INT2STEP_1_PS	BF		_
INT2STEP_1_SR	C0		0000
INT2STEP_2_X_OLD	C1		_
INT2STEP_2_SX	C2		00BA
INT2STEP_2_X_NEW	C3		_
INT2STEP_2_PS	C4		_
INT2STEP_2_SR	C5		0000
INT2STEP_3_X_OLD	C6		_
INT2STEP_3_SX	C7		00E9
INT2STEP_3_X_NEW	C8		_
INT2STEP_3_PS	С9		_
INT2STEP_3_SR	CA		0000
INT2STEP_4_X_OLD	CB		_
INT2STEP_4_SX	CC		00DE
INT2STEP_4_X_NEW	CD		_
INT2STEP_4_PS	CE		_
INT2STEP_4_SR	CF		0000
INT2STEP_5_X_OLD	D0		_
INT2STEP_5_SX	D1		00AD
INT2STEP_5_X_NEW	D2		_
INT2STEP_5_PS	D3		_
INT2STEP_5_SR	D4		0000

4.3 Обработчик ВУ-3

Исходные данные: X = 20

- Загрузить комплекс программ в БЭВМ
- Загрузить в ячейку 1D значение 20 (присвоение X=20)
- Загрузить в ячейку 91 значение A (присвоение $MAIN\ LEN = A$)
- Загрузить в ячейку D6 значение 5 (присвоение $INT3_LEN = 5$)
- Проверить наличие команды НLТ по адресу 4С
- Запустить программу
- Установить "Готовность ВУ-3"
- Дождаться отмены "готовности ВУ-3"
- Повторить предыдушие 2 шага еще 4 раза
- Дождаться остановки программы
- Если программа слишком долго работает, то из-за неопределенной внутренней ошибки произошло зацикливание и проверка провалена
- Если после остановки программы IP не равен 4D, то проверка провалена
- Обратиться к ячейкам памяти D7...EA и заполнить таблицу ниже. При наличии расхождений, проверка провалена. Ячейки с прочерком подразумевают трудно предсказуемый результат, поэтому проверяющему нужно самому подсчитать значение F(X) для X и сравнить со значением в SX. Если SR не равно ожидаемому значению, то можно предположить что проверяющий слишком часто устанавливал "Готовность BV-3".

Имя ячейки	Адрес ячейки	Значение после проверки	Ожидаемое значение
INT3STEP_1_X	D7		_
INT3STEP_1_SX	D8		_
INT3STEP_1_PS	D9		_
INT3STEP_1_SR	DA		0000
INT3STEP_2_X	DB		_
INT3STEP_2_SX	DC		_
INT3STEP_2_PS	DD		_
INT3STEP_2_SR	DE		0000
INT3STEP_3_X	DF		_
INT3STEP_3_SX	E0		_
INT3STEP_3_PS	E1		_
INT3STEP_3_SR	E2		0000
INT3STEP_4_X	E3		_
INT3STEP_4_SX	E4		_
INT3STEP_4_PS	E5		_
INT3STEP_4_SR	E6		0000
INT3STEP_5_X	E7		_
INT3STEP_5_SX	E8		_
INT3STEP_5_PS	E9		_
INT3STEP_5_SR	EA		0000

4.4 Обработчик по умолчанию

- Загрузить комплекс программ в БЭВМ
- Проверить наличие команды НLТ по адресу 4С
- Запустить программу
- Установить "Готовность ВУ-1"
- Дождаться сброса "Готовность ВУ-1 если этого не происходит длительное время, программа зациклена, проверка провалена.

Проверить BV-4 не представляется возможным, ибо при нажатии на соответсвующую кнопку BV-4 не открывается.

5 Вывод

В ходе выполнения лабораторной работы я изучил организацию ввода-вывода при помощи прерываний в БЭВМ, разработал программу, в которой реализовал тривиальные обработчики прерываний, а также разработал методику проверки работоспособности своей работы.