

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος | 📞 : 26610 20144 | 📮 : 6932327283 - 6955058444

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΘΕΩΡΙΑ, ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 26 Μαρτίου 2024

Γ' ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Αποδείξεις Θεωρημάτων

ΑΠΟ ΟΛΗ ΤΗΝ ΥΛΗ

 Θ εώρημα 1: Συμμετρία C_f και $C_{f^{-1}}$

Να αποδείξετε ότι οι γραφικές παραστάσεις C_f και $C_{f^{-1}}$ των συναρτήσεων f και f^{-1} είναι συμμετρικές ως προς την ευθεία y=x που διχοτομεί τις γωνίες $x\,\hat{O}\,y$ και $x'\,\hat{O}\,y'$.

ΑΠΟΔΕΙΞΗ

Έστω μια συνάρτηση f η οποία είναι 1-1 άρα και αντιστρέψιμη. Θα ισχύει γι αυτήν ότι

$$f(x) = y \Rightarrow x = f^{-1}(y)$$

Αν θεωρήσουμε ένα σημείο $M(a,\beta)$ που ανήκει στη γραφική παράσταση της f τότε

$$f(a) = \beta \Rightarrow a = f^{-1}(\beta)$$

κάτι που σημαίνει ότι το σημείο $M'(\beta,a)$ ανήκει στη γραφική παράσταση της f^{-1} . Τα σημεία όμως M και M' είναι συμμετρικά ως προς της ευθεία y=x που διχοτομεί τις γωνίες $x\,\hat{O}\,y$ και $x;\,\hat{O}\,y'$. Άρα οι C_f και $C_{f^{-1}}$ είναι συμμετρικές ως προς την ευθεία αυτή.

Θεώρημα 2 : Όριο πολυωνυμικής συνάρτησης - Σελ. 167

Δίνεται ένα πολυώνυμο $P(x) = P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0}$ και $x_{0} \in \mathbb{R}$. Να αποδείξετε ότι $\lim_{x \to x_{0}} P(x) = P(x_{0})$.

ΑΠΟΔΕΙΞΗ

Έστω πολυώνυμο $P(x)=a_{\nu}x^{\nu}+a_{\nu-1}x^{\nu-1}+\ldots+a_{1}x+a_{0}$ και $x_{0}\in\mathbb{R}$. Σύμφωνα με τις ιδιότητες των ορίων έχουμε ότι:

$$\lim_{x \to x_0} P(x) = \lim_{x \to x_0} \left(a_{\nu} x^{\nu} + a_{\nu-1} x^{\nu-1} + \dots + a_1 x + a_0 \right) =$$

$$= \lim_{x \to x_0} a_{\nu} x^{\nu} + \lim_{x \to x_0} a_{\nu-1} x^{\nu-1} + \dots + \lim_{x \to x_0} a_1 x + \lim_{x \to x_0} a_0 =$$

$$= a_{\nu} \lim_{x \to x_0} x^{\nu} + a_{\nu-1} \lim_{x \to x_0} x^{\nu-1} + \dots + a_1 \lim_{x \to x_0} x + \lim_{x \to x_0} a_0 =$$

$$= a_{\nu}x_0^{\nu} + a_{\nu-1}x_0^{\nu-1} + \ldots + a_1x_0 + a_0 = P(x_0)$$

Άρα ισχύει $\lim_{x\to x_0} P(x) = P(x_0)$.

Θεώρημα 3 : Όριο ρητής συνάρτησης - Σελ. 167

Aν
$$f:A\to\mathbb{R}$$
 με $f(x)=\dfrac{P(x)}{Q(x)}$ είναι μια ρητή συνάρτηση και $x_0\in A$, να αποδείξετε ότι
$$\lim_{x\to x_0}\dfrac{P(x)}{Q(x)}=\dfrac{P(x_0)}{Q(x_0)}$$
 εφόσον $Q(x_0)\neq 0$.

ΑΠΟΔΕΙΞΗ

Έστω $f(x)=\frac{P(x)}{Q(x)}$ μια ρητή συνάρτηση όπου P(x), Q(x) είναι πολυώνυμα και έστω $x_0\in\mathbb{R}$ τέτοιο ώστε $Q(x_0)\neq 0.$ Σύμφωνα με το προηγούμενο θεώρημα προκύπτει ότι:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{\lim_{x \to x_0} P(x)}{\lim_{x \to x_0} Q(x)} = \frac{P(x_0)}{Q(x_0)}$$

Επομένως ισχύει $\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}.$

Θεώρημα 4 : Διατύπωση 1 Θεώρημα Bolzano - Σελ. 192

Να διατυπώσετε το θεώρημα Bolzano και να δώσετε τη γεωμετρική ερμηνεία του.

ΑΠΑΝΤΗΣΗ

ί. Θεώρημα

Θεωρούμε μια συνάρτηση f ορισμένη σε ένα κλειστό διάστημα $[a, \beta]$. Αν

α. η f συνεχής στο κλειστό διάστημα [a, β] και

$$\beta$$
. $f(a) \cdot f(\beta) < 0$

τότε θα υπάρχει τουλάχιστον ένας αριθμός $x_0 \in (a, \beta)$ έτσι ώστε να ισχύει $f(x_0) = 0$.

ii. Γεωμετρική ερμηνεία

Για μια συνεχή συνάρτηση f στο διάστημα $[a,\beta]$ η συνθήκη $f(a)\cdot f(\beta)<0$ σημαίνει ότι οι τιμές αυτές θα είναι ετερόσημες οπότε τα σημεία A(a,f(a)) και $B(\beta,f(\beta))$ θα βρίσκονται εκατέρωθεν του άξονα x'x. Αυτό σημαίνει ότι η γραφική παράσταση C_f , λόγω της συνέχειας, θα τέμνει τον άξονα σε τουλάχιστον ένα σημείο με τετμημένη $x_0\in(a,\beta)$.

Θεώρημα 5 : Θεώρημα ενδιάμεσων τιμών - Σελ. 194

Να διατυπώσετε και να αποδείξετε το θεώρημα ενδιάμεσων τιμών.

ΘΕΩΡΗΜΑ

Θεωρούμε μια συνάρτηση f ορισμένη σε ένα κλειστό διάστημα $[a,\beta]$. Αν

i. η f συνεχής στο κλειστό διάστημα [a, β] και

ii.
$$f(a) \neq f(\beta)$$

τότε υπάρχει τουλάχιστον ένα $x_0 \in (a, \beta)$ ώστε για κάθε αριθμό η μεταξύ των f(a), $f(\beta)$ να ισχύει $f(x_0) = \eta$.

ΑΠΟΔΕΙΞΗ

Θεωρούμε τη συνάρτηση $g(x) = f(x) - \eta$ με $x \in [a, \beta]$ και η είναι ένας πραγματικός αριθμός τέτοιος ώστε να ισχύει $f(a) < \eta < f(\beta)^{(1)}$. Γι αυτήν θα ισχύει ότι:

- i. είναι συνεχής στο διάστημα [a, β] και επιπλέον
- ii. $g(a) = f(a) \eta < 0$ και $g(\beta) = f(\beta) \eta > 0$ άρα παίρνουμε $g(a) \cdot g(\beta) < 0$.

Σύμφωνα λοιπόν με το θεώρημα Bolzano θα υπάρχει τουλάχιστον ένα $x_0 \in (a,\beta)$ ώστε να ισχύει

$$g(x_0) = 0 \Rightarrow f(x_0) - \eta = 0 \Rightarrow f(x_0) = \eta$$

Θεώρημα 6 : Παραγωγίσιμη ⇒ Συνεχής - Σελ. 217

Να αποδείξετε ότι αν μια συνάρτηση f είναι παραγωγίσιμη σ ' ένα σημείο x_0 τότε είναι και συνεχής στο σημείο αυτό.

ΑΠΟΔΕΙΞΗ

Θεωρούμε τη συνάρτηση $f:A\to\mathbb{R}$ η οποία είναι παραγωγίσιμη σε ένα σημείο $x_0\in A$. Για κάθε $x\neq x_0$ έχουμε ότι:

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) \Rightarrow$$

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) \right] =$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0)$$

$$= f'(x_0) \cdot 0$$

Οπότε παίρνουμε $\lim_{x \to x_0} (f(x) - f(x_0)) = 0 \Rightarrow \lim_{x \to x_0} f(x) = f(x_0)$ άρα η f είναι συνεχής στο x_0 .

Θεώρημα 7 : Παράγωγος σταθερής συνάρτησης. - Σελ 223

Nα αποδείξετε ότι (c)'=0.

ΑΠΟΔΕΙΞΗ

Έστω f(x)=c μια σταθερή συνάρτηση και $x_0\in\mathbb{R}$. Για κάθε $x\neq x_0$ θα έχουμε ότι:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{c - c}{x - x_0} = 0$$

Επομένως παίρνοντας το όριο της παραγώγου θα είναι:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} 0 = 0$$

Άρα προκύπτει ότι (c)'=0.

⁽¹⁾ Μπορούμε ισοδύναμα να θεωρήσουμε $f(\beta) < \eta < f(a)$

Θεώρημα 8 : Παράγωγος ταυτοτικής συνάρτησης. - Σελ. 223

Nα αποδείξετε ότι (x)' = 1.

ΑΠΟΔΕΙΞΗ

Θεωρούμε την ταυτοτική συνάρτηση f(x)=x και $x_0\in\mathbb{R}$. Για κάθε $x\neq x_0$ ισχύει ότι:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x - x_0}{x - x_0} = 1$$

Επομένως η παράγωγος της f στο x_0 θα είναι:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} 1 = 1$$

Έτσι για κάθε x θα ισχύει ότι (x)' = 1.

Θεώρημα 9 : Παράγωγος δύναμης - Σελ. 224

Nα αποδείξετε ότι $(x^{\nu})' = \nu x^{\nu-1}$.

ΑΠΟΔΕΙΞΗ

Δίνεται η συνάρτηση $f(x) = x^{\nu}$ με $\nu \in \mathbb{N} - \{0,1\}$ και έστω $x_0 \in \mathbb{R}$. Για κάθε $x \neq x_0$ θα έχουμε:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^{\nu} - x_0^{\nu}}{x - x_0} = \frac{(x - x_0) \left(x^{\nu - 1} + x^{\nu - 2} x_0 + \dots + x x_0^{\nu - 2} + x_0^{\nu - 1}\right)}{x - x_0} = x^{\nu - 1} + x^{\nu - 2} x_0 + \dots + x x_0^{\nu - 2} + x_0^{\nu - 1}$$

Παίρνοντας λοιπόν το όριο της παραγώγου θα έχουμε:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \left(x^{\nu - 1} + x^{\nu - 2} x_0 + \dots + x x_0^{\nu - 2} + x_0^{\nu - 1} \right) =$$

$$= x_0^{\nu - 1} + x_0^{\nu - 1} + \dots + x_0^{\nu - 1} + x_0^{\nu - 1} = \nu \cdot x_0^{\nu - 1}$$

Έτσι η παράγωγος της f, για κάθε $x \in D_f$ θα είναι $(x^{\nu})' = \nu x^{\nu-1}$.

Θεώρημα 10 : Παράγωγος άρρητης συνάρτησης. - Σελ. 224

Να αποδείξετε ότι $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$.

ΑΠΟΔΕΙΞΗ

Θεωρούμε τη συνάρτηση $f(x) = \sqrt{x}$ με $x \ge 0$ και $x_0 \in \mathbb{R}$. Εξετάζουμε αν η f είναι παγαγωγίσιμη στο 0.

$$\lim_{x \to 0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to 0^+} \frac{\sqrt{x} - \sqrt{0}}{x - 0} = \lim_{x \to 0^+} \frac{\sqrt{x}}{x} = \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty$$

άρα η f δεν είναι παραγωγίσιμη στο 0. Στη συνέχεια για κάθε $x \neq x_0 > 0$ θα ισχύει ότι:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0} = \frac{\left(\sqrt{x} - \sqrt{x_0}\right)\left(\sqrt{x} + \sqrt{x_0}\right)}{\left(x - x_0\right)\left(\sqrt{x} + \sqrt{x_0}\right)} = \frac{x - x_0}{\left(x - x_0\right)\left(\sqrt{x} + \sqrt{x_0}\right)} = \frac{1}{\sqrt{x} + \sqrt{x_0}}$$

Άρα θα έχουμε ότι

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{1}{\sqrt{x} + \sqrt{x_0}} = \frac{1}{2\sqrt{x_0}}$$

4

Επομένως για κάθε x>0 η συνάρτηση f είναι παραγωγίσιμη με $f'(x)=\left(\sqrt{x}\right)'=\frac{1}{2\sqrt{x}}$.

Θεώρημα 11 : Παράγωγος αθροίσματος. - Σελ. 229

Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο x_0 , τότε η συνάρτηση f+g είναι παραγωγίσιμη στο x_0 και ισχύει:

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

ΑΠΟΔΕΙΞΗ

Δίνονται οι συναρτήσεις f, g και $x_0 \in \mathbb{R}$. Ορίζουμε τη συνάρτηση S = f + g και για κάθε $x \neq x_0$ θα έχουμε:

$$\frac{S(x) - S(x_0)}{x - x_0} = \frac{(f + g)(x) - (f + g)(x_0)}{x - x_0} =$$

$$= \frac{f(x) + g(x) - f(x_0) - g(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} + \frac{g(x) - g(x_0)}{x - x_0}$$

Έτσι για την παράγωγο της συνάρτησης S θα έχουμε ότι:

$$S'(x_0) = (f+g)'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(x_0) + g'(x_0)$$

Επομένως η παράγωγος της συνάρτησης f+g στο x_0 θα είναι η $(f+g)'(x_0)=f'(x_0)+g'(x_0)$.

Θεώρημα 12 : Παράγωγος γινομένου - Σελ.

Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο x_0 , τότε η συνάρτηση $f \cdot g$ είναι παραγωγίσιμη στο x_0 και ισχύει:

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

ΑΠΟΔΕΙΞΗ

Θεώρημα 13 : Παράγωγος γινομένου τριών συναρτήσεων - Σελ. 229

Να αποδείξετε ότι η παράγωγος της συνάρτησης $f(x) \cdot g(x) \cdot h(x)$ του γινομένου τριών παραγωγίσιμων συναρτήσεων ισούται με

$$[f(x) \cdot g(x) \cdot h(x)]' = f'(x) \cdot g(x) \cdot h(x) + f(x) \cdot g'(x) \cdot h(x) + f(x) \cdot g(x) \cdot h'(x)$$

ΑΠΟΔΕΙΞΗ

Χρησιμοποιούμε τον κανόνα παραγώγισης γινομένου δύο συναρτήσεων και έχουμε ότι:

$$[(f(x) \cdot g(x)) \cdot h(x)]' = (f(x) \cdot g(x))' \cdot h(x) + (f(x) \cdot g(x)) \cdot h'(x) =$$

$$= [f'(x) \cdot g(x) + f(x) \cdot g'(x)] \cdot h(x) + f(x) \cdot g(x) \cdot h'(x) =$$

$$= f'(x) \cdot g(x) \cdot h(x) + f(x) \cdot g'(x) \cdot h(x) + f(x) \cdot g(x) \cdot h'(x)$$

Θεώρημα 14 : Παράγωγος δύναμης με αρνητικό εκθέτη - Σελ. 231-232

Να αποδείξετε ότι η συνάρτηση $f(x) = x^{-\nu}$ είναι παραγωγίσιμη στο \mathbb{R}^* και ισχύει $f'(x) = -\nu x^{-\nu-1}$, δηλαδή

$$(x^{-\nu})' = -\nu x^{-\nu-1}$$

ΑΠΟΔΕΙΞΗ

Σύμφωνα με τον κανόνα παραγώγισης πηλίκου δύο συναρτήσεων θα έχουμε για κάθε $x \neq 0$ ότι:

$$f'(x) = (x^{-\nu})' = \left(\frac{1}{x^{\nu}}\right)' = \frac{(1)' \cdot x^{\nu} - 1 \cdot (x^{\nu})'}{x^{2\nu}} = \frac{-\nu x^{\nu-1}}{x^{2\nu}} = -\nu x^{-\nu-1}$$

Θεώρημα 15 : Παράγωγος εφαπτομένης - Σελ. 232

Να αποδείξετε ότι η συνάρτηση f(x)= εφx είναι παραγωγίσιμη στο σύνολο $A=\{x\in\mathbb{R}|$ συν $x\neq 0\}$ και ισχύει $f'(x)=\frac{1}{\text{συν}^2x}.$

ΑΠΟΔΕΙΞΗ

Γνωρίζουμε ότι για κάθε $x \in A$ ισχύει εφ $x = \frac{\eta \mu x}{\sigma \upsilon v x}$. Έτσι, σύμφωνα με τον κανόνα παραγώγισης πηλίκου θα έχουμε για κάθε $x \in A$ ότι

$$f'(x) = (\varepsilon \varphi x)' = \left(\frac{\eta \mu x}{\sigma \upsilon v x}\right)' =$$

$$= \frac{(\eta \mu x)' \cdot \sigma \upsilon v x - \eta \mu x \cdot (\sigma \upsilon v x)'}{\sigma \upsilon v^2 x} = \frac{\sigma \upsilon v^2 x + \eta \mu^2 x}{\sigma \upsilon v^2 x} = \frac{1}{\sigma \upsilon v^2 x}$$

Θεώρημα 16 : Παράγωγος συνεφαπτομένης - Σελ. 232

Να αποδείξετε ότι η συνάρτηση f(x)= σφx είναι παραγωγίσιμη στο σύνολο $A=\{x\in\mathbb{R}|\eta\mu x\neq 0\}$ και ισχύει $f'(x)=-\frac{1}{\eta\mu^2x}.$

ΑΠΟΔΕΙΞΗ

Γνωρίζουμε ότι για κάθε $x \in A$ ισχύει σφ $x = \frac{\text{συν}x}{\text{ημ}x}$. Έτσι, σύμφωνα με τον κανόνα παραγώγισης πηλίκου θα έχουμε για κάθε $x \in A$ ότι

$$f'(x) = (\sigma \varphi x)' = \left(\frac{\sigma \upsilon v x}{\eta \mu x}\right)' = \frac{(\sigma \upsilon v x)' \cdot \eta \mu x - \sigma \upsilon v x \cdot (\eta \mu x)'}{\eta \mu^2 x} = \frac{-\eta \mu^2 x - \sigma \upsilon v^2 x}{\eta \mu^2 x} = -\frac{1}{\eta \mu^2 x}$$

Θεώρημα 17 : Παράγωγος δύναμης με μη ακέραιο εκθέτη - Σελ. 234

Να αποδείξετε ότι η συνάρτηση $f(x) = x^a$ με $a \in \mathbb{R} - \mathbb{Z}$ είναι παραγωγίσιμη στο $(0, +\infty)$ με $f'(x) = ax^{a-1}$.

ΑΠΟΔΕΙΞΗ

Η αρχική συνάρτηση έχει πεδίο ορισμού το διάστημα $(0, +\infty)$ και για κάθε $x \in (0, +\infty)$, μετασχηματίζεται ως εξής:

$$f(x) = x^a = e^{\ln x^a} = e^{a \ln x}$$

Οπότε η παράγωγός της θα ισούται με

$$f'(x) = (e^{a \ln x})' = e^{a \ln x} \cdot (a \ln x)' = e^{a \ln x} \cdot \frac{a}{x} = a \frac{x^a}{x} = a x^{a-1}$$

6

Θεώρημα 18 : Παράγωγος εκθετικής συνάρτησης - Σελ. 234-235

Να αποδείξετε ότι η εκθετική συνάρτηση $f(x) = a^x$ με $0 < a \ne 1$ είναι παραγωγίσιμη στο $\mathbb R$ με $f'(x) = a^x \cdot \ln a$.

ΑΠΟΔΕΙΞΗ

Το πεδίο ορισμού της συνάρτησης είναι το $\mathbb R$ ενώ η συνάρτηση μπορεί να γραφτεί στη μορφή

$$f(x) = a^x = e^{\ln a^x} = e^{x \ln a}$$

Έτσι, για κάθε $x \in \mathbb{R}$ θα έχουμε ότι

$$f'(x) = (a^x)' = (e^{x \ln a})' = e^{x \ln a} \cdot (x \ln a)' = a^x \cdot \ln a$$

Θεώρημα 19 : Παράγωγος λογαρίθμου - Σελ. 235

Δίνεται η συνάρτηση $f(x) = \ln |x|$ με πεδίο ορισμού το \mathbb{R}^* . Να δείξετε ότι η f είναι παραγωγίσιμη στο \mathbb{R}^* με $f'(x) = \frac{1}{x}$.

ΑΠΟΔΕΙΞΗ

Διακρίνουμε τις εξής περιπτώσεις:

- i. Αν x>0 τότε $f(x)=\ln|x|=\ln x$ επομένως παίρνουμε $f'(x)=(\ln x)'=\frac{1}{x}$ για κάθε $x\in(0,+\infty)$.
- ii. Αν x<0 τότε η f γίνεται $f(x)=\ln|x|=\ln(-x)$ και άρα η παράγωγός της, για κάθε $x\in(-\infty,0)$ θα ισούται με

$$f'(x) = (\ln(-x))' = \frac{1}{-x} \cdot (-x)' = -\frac{1}{x} \cdot (-1) = \frac{1}{x}$$

Επομένως σε κάθε περίπτωση για κάθε $x \in \mathbb{R}^*$ ισχύει $f'(x) = \frac{1}{x}$.

Θεώρημα 20 : Θεώρημα Rolle - Σελ. 246

Να διατυπώσετε και να δώσετε τη γεωμετρική ερμηνεία του θεωρήματος Rolle.

ΑΠΑΝΤΗΣΗ

ί. Θεώρημα

Δίνεται μια συνάρτηση f ορισμένη σε ένα κλειστό διάστημα $[a, \beta]$. Αν η f είναι

- α. συνεχής στο διάστημα [a, β],
- β. παραγωγίσιμη στο διάστημα (a, β) και ισχύει
- γ . $f(a) = f(\beta)$

τότε υπάρχει τουλάχιστον ένα $\xi \in (a, \beta)$ ώστε $f'(\xi) = 0$.

ii. Γεωμετρική ερμηνεία

Αν εφαρμόζεται το θεώρημα Rolle στο $[a,\beta]$ τότε υπάρχει τουλάχιστον ένας αριθμός $\xi\in(a,\beta)$ ώστε η εφαπτόμενη ευθεία της C_f στο σημείο $(\xi,f(\xi))$ να είναι παράλληλη με τον άξονα x'x.

Θεώρημα 21 : Θεώρημα μέσης τιμής - Σελ. 246-247

Να διατυπώσετε και να δώσετε τη γεωμετρική ερμηνεία του Θ.Μ.Τ.

ΑΠΑΝΤΗΣΗ

ί. Θεώρημα

Δίνεται μια συνάρτηση f ορισμένη σε ένα κλειστό διάστημα $[a,\beta].$ Αν αυτή είναι

- α. συνεχής στο διάστημα [a, β] και
- β. παραγωγίσιμη στο διάστημα (a, β)

τότε υπάρχει ένα τουλάχιστον $\xi \in (a, \beta)$ έτσι ώστε

$$f'(\xi) = \frac{f(\beta) - f(a)}{\beta - a}$$

ii. Γεωμετρική ερμηνεία

Αν για τη συνάρτηση f εφαρμόζεται το Θ.Μ.Τ. στο διάστημα $[a, \beta]$, τότε η εφαπτόμενη ευθεία στο σημείο $M(\xi, f(\xi))$ είναι παράλληλη με το ευθύγραμμο τμήμα AB που ενώνει τα σημεία A(a, f(a)) και $B(\beta, f(\beta))$ στα άκρα του διαστήματος.

Θεώρημα 22 : Συνέπειες του Θ.Μ.Τ. 1 - Σελ. 251

Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ . Να αποδείξετε ότι αν

- i. η f είναι συνεχής στο Δ και ισχύει
- ii. f'(x) = 0 σε κάθε εσωτερικό σημείο του διαστήματος

τότε η f είναι σταθερή σε όλο το διάστημα Δ .

ΑΠΟΔΕΙΞΗ

Θα δείξουμε ότι για οποιαδήποτε $x_1, x_2 \in \Delta$ ισχύει $f(x_1) = f(x_2)$. Διακρίνουμε τις εξής περιπτώσεις:

- i. Av $x_1 = x_2$ τότε $f(x_1) = f(x_2)$.
- ii. Αν $x_2 \neq x_2$ θεωρούμε ότι είναι $x_1 < x_2$ και εφαρμόζοντας το Θ.Μ.Τ. στο διάστημα $[x_1, x_2]$ έχουμε ότι
 - α. Η f είναι συνεχής στο διάστημα $[x_1, x_2]$ και
 - β. παραγωγίσιμη στο διάστημα (x_1, x_2) .

Έτσι θα υπάρχει τουλάχιστον ένα $\xi \in (x_1, x_2)$ ώστε να ισχύει:

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Γνωρίζουμε όμως από την υπόθεση ότι για κάθε εσωτερικό σημείο $x \in \Delta$ ισχύει f'(x) = 0 οπότε και $f'(\xi) = 0$. Άρα παίρνουμε ότι

$$f'(\xi) = 0 \Rightarrow \frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0 \Rightarrow f(x_2) - f(x_1) = 0 \Rightarrow f(x_1) = f(x_2)$$

Ομοίως και για $x_1>x_2$ καταλήγουμε στο ίδιο συμπέρασμα οπότε σε κάθε περίπτωση η f είναι σταθερή σε όλο το διάστημα Δ .

8

Θεώρημα 23 : Συνέπειες του Θ.Μ.Τ. 2 - Σελ. 251

Δίνονται δύο συναρτήσεις f, g ορισμένες σε ένα διάστημα Δ . Να αποδείξετε ότι αν

- i. οι συναρτήσεις f, g είναι συνεχείς στο διάστημα Δ και
- ii. f'(x) = g'(x) σε κάθε εσωτερικό σημείο του Δ

τότε υπάρχει σταθερά c τέτοια ώστε να ισχύει f(x) = g(x) + c για κάθε $x \in \Delta$.

ΑΠΟΔΕΙΞΗ

Ορίζουμε τη συνάρτηση h=f-g με h(x)=f(x)-g(x) για κάθε $x\in \Delta$. Γι αυτήν θα ισχύει

$$h'(x) = f'(x) - g'(x) = 0$$

σε κάθε εσωτερικό σημείο του διαστήματος Δ . Έτσι η h θα είναι σταθερή άρα θα υπάρχει σταθερά c τέτοια ώστε για κάθε $x \in \Delta$ να ισχύει

$$h(x) = c \Rightarrow f(x) - g(x) = c \Rightarrow f(x) = g(x) + c$$

Θεώρημα 24 : Κριτήριο μονοτονίας συνάρτησης - Σελ. 253

Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ . Να αποδείξετε ότι αν

- i. αν ισχύει f'(x) > 0 σε κάθε εσωτερικό σημείο του διαστήματος, τότε η f είναι γνησίως αύξουσα σε όλο το Δ .
- ii. αν ισχύει f'(x) < 0 σε κάθε εσωτερικό σημείο του διαστήματος, τότε η f είναι γνησίως φθίνουσα σε όλο το Δ .

ΑΠΟΔΕΙΞΗ

Εργαζόμαστε για την περίπτωση f'(x)>0 και ομοίως αποδεικνύεται και για f'(x)<0. Θεωρούμε δύο οποιαδήποτε $x_1,x_2\in \Delta$ με $x_1< x_2$. Εφαρμόζοντας το Θ.Μ.Τ. για τη συνάρτηση f στο διάστημα $[x_1,x_2]$ έχουμε ότι

- i. η f είναι συνεχής στο διάστημα $[x_1, x_2]$ και
- ii. παραγωγίσιμη στο διάστημα (x_1, x_2)

οπότε θα υπάρχει $\xi \in (x_1, x_2)$ τέτοιο ώστε να ισχύει

$$f'(\xi) = \frac{(x_2) - f(x_1)}{x_2 - x_1}$$

Σύμφωνα όμως με την υπόθεση έχουμε f'(x)>0 για κάθε εσωτερικό σημείο του Δ άρα προκύπτει

$$f'(\xi) > 0 \Rightarrow \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0 \xrightarrow{x_1 < x_2} f(x_1) < f(x_2)$$

Επομένως η f είναι γνησίως αύξουσα στο διάστημα Δ .

Θεώρημα 25 : Θεώρημα Fermat - Σελ. 260

Να αποδείξετε το θεώρημα του Fermat:

Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ . Αν

- i. x_0 είναι ένα εσωτερικό σημείο του Δ
- ii. η f παρουσιάζει τοπικό ακρότατο στο x_0 και
- iii. είναι παραγωγίσιμη στο x₀ τότε

$$f'(x_0) = 0$$

ΑΠΟΔΕΙΞΗ

Θεωρούμε ότι η f παρουσιάζει στο x_0 τοπικό μέγιστο. Θα υπάρχει έτσι ένας θετικός αριθμός $\delta>0$ ώστε για κάθε $x\in(x_0-\delta,x_0+\delta)$ να ισχύει $f(x_0)\geq f(x)$. Επίσης η f είναι παραγωγίσιμη στο x_0 οπότε

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Εξετάζουμε τις εξής περιπτώσεις:

i. Αν $x < x_0 \Rightarrow x - x_0 < 0$ τότε από την τελευταία σχέση παίρνουμε ότι

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0 \Rightarrow f'(x_0) \ge 0 \tag{1}$$

ii. Αν $x>x_0\Rightarrow x-x_0>0$ τότε παίρνουμε ομοίως ότι

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0 \Rightarrow f'(x_0) \le 0 \tag{2}$$

Συνδυάζοντας τις σχέσεις (1) και (2) καταλήγουμε στο συμπέρασμα ότι $f'(x_0) = 0$. Εργαζόμαστε αναλόγως και για την περίπτωση όπου η f παρουσιάζει τοπικό ελάχιστο στο x_0 .

Θεώρημα 26 : Κριτήριο τοπικών ακρότατων - Σελ. 262

Δίνεται μια συνάρτηση f η οποία είναι παραγωγίσιμη σ' ένα διάστημα (a, β) , με εξαίρεση ίσως ένα σημείο του x_0 , στο οποίο όμως είναι συνεχής. Να αποδείξετε ότι

- i. αν f'(x) > 0 για κάθε $x \in (a, x_0)$ και f'(x) < 0 για κάθε $x \in (x_0, \beta)$ τότε η f παρουσιάζει τοπικό μέγιστο στο x_0 .
- ii. αν f'(x) < 0 για κάθε $x \in (a, x_0)$ και f'(x) > 0 για κάθε $x \in (x_0, \beta)$ τότε η f παρουσιάζει τοπικό ελάχιστο στο x_0 .
- iii. αν η f' διατηρεί το πρόσημό της σε κάθε $x \in (a, x_0) \cup (x_0, \beta)$ τότε είναι γνησίως μονότονη στο (a, β) και δεν παρουσιάζει τοπικό ακρότατο στο x_0 .

ΑΠΟΔΕΙΞΗ

i. Γνωρίζουμε ότι f'(x) > 0 για κάθε $x \in (a, x_0]$. Σύμφωνα με το κριτήριο μονοτονίας η f θα είναι γνησίως αύξουσα στο $(a, x_0]$. Έτσι για κάθε $x \in (a, x_0]$ θα ισχύει

$$x \le x_0 \stackrel{f_3}{\Longrightarrow} f(x) \le f(x_0)$$

Επίσης από το γεγονός ότι f'(x) < 0 για κάθε $x \in [x_0, \beta)$ παίρνουμε ότι f θα είναι γνησίως φθίνουσα στο $[x_0, \beta)$. Άρα προκύπτει

$$x \ge x_0 \stackrel{f_4}{\Longrightarrow} f(x) \le f(x_0)$$

Έτσι σε κάθε περίπτωση για κάθε $x \in (a, \beta)$ παίρνουμε ότι $f(x) \leq f(x_0)$ άρα η f παρουσιάζει τοπικό μέγιστο στο x_0 .

- Εργαζόμαστε όπως προηγουμένως.
- iii. Θεωρούμε ότι ισχύει f'(x) > 0 για κάθε $x \in (a, x_0) \cup (x_0, \beta)$. Έτσι η συνάρτηση f θα είναι αύξουσα σε καθένα από τα διαστήματα $(a, x_0]$ και $[x_0, \beta)$ οπότε

$$yia \ x_1 < x_0 < x_2 \Rightarrow f(x_1) < f(x_0) < f(x_2)$$

άρα η f δεν παρουσιάζει ακρότατο στο x_0 . Θα αποδείξουμε τώρα ότι η συνάρτηση είναι γνησίως αύξουσα σε όλο το διάστημα (a, β) . Διακρίνουμε τις εξής περιπτώσεις:

- α. Αν $x_1, x_2 \in (a, x_0]$ με $x_1 < x_2$ τότε προκύπτει $f(x_1) < f(x_2)$ αφού η f είναι γνησίως αύξουσα στο διάστημα αυτό.
- β. Ομοίως αν $x_1, x_2 \in [x_0, \beta)$ με $x_1 < x_2$ τότε προκύπτει επίσης $f(x_1) < f(x_2)$.
- γ. Τέλος αποδείξαμε προηγουμένως ότι $x_1 < x_0 < x_2 \Rightarrow f(x_1) < f(x_0) < f(x_2)$.

Έτσι σε κάθε περίπτωση ισχύει $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ άρα η f είναι γνησίως αύξουσα σε όλο το διάστημα (a, β) . Εργαζόμαστε αναλόγως και για f'(x) < 0.

Θεώρημα 27 : Αρχική συνάρτηση - Σελ. 304

Δίνεται μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και έστω F μια παράγουσα της f στο Δ . Να αποδείξετε ότι

ί. όλες οι συναρτήσεις της μορφής

$$G(x) = F(x) + c$$

είναι παράγουσες της f στο Δ και ότι

ii. κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή

$$G(x) = F(x) + c$$

για κάθε $x \in \Delta$, με $c \in \mathbb{R}$.

ΑΠΟΔΕΙΞΗ

i. Για να είναι η G παράγουσα της f στο διάστημα Δ θα πρέπει να ισχύει G'(x) = f(x) για κάθε $x \in \Delta$. Έχουμε λοιπόν

$$G'(x) = (F(x) + c)' = F'(x) + (c)' = f(x), x \in \Delta$$

ii. Έστω G μια άλλη παράγουσα της f στο διάστημα Δ . Θα ισχύει γι αυτήν ότι G'(x)=f(x). Από την υπόθεση γνωρίζουμε επίσης ότι F'(x)=f(x) άρα παίρνουμε G'(x)=F'(x) οπότε θα υπάρχει σταθερά c ώστε

$$G'(x) = F'(x) \Rightarrow G(x) = F(x) + c$$

σύμφωνα με το πόρισμα του Θ.Μ.Τ.

Θεώρημα 28 : Θεμελιώδες θεώρημα ολοκληρωτικού λογισμού - Σελ. 334-335

Δίνεται μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα $[a, \beta]$. Να αποδείξετε ότι αν G είναι μια παράγουσα της f στο διάστημα $[a, \beta]$ τότε ισχύει

$$\int_{a}^{\beta} f(x) \, \mathrm{d}x = G(\beta) - G(a)$$

ΑΠΟΔΕΙΞΗ

Σύμφωνα με το θεώρημα της αρχικής συνάρτησης, η $F(x) = \int_a^x f(x) dx$ είναι μια αρχική συνάρτηση της f στο $[a, \beta]$. Έτσι κάθε άλλη παράγουσα της γράφεται ως G(x) = F(x) + c. Θέτοντας όπου x = a παίρνουμε:

$$G(a) = F(a) + c \Rightarrow G(a) = \int_a^a f(x) dx + c \Rightarrow c = G(a)$$

Θέτοντας επίσης όπου $x = \beta$ προκύπτει ότι:

$$G(\beta) = F(\beta) + c \Rightarrow G(\beta) = \int_{a}^{\beta} f(x) dx + G(a) \Rightarrow \int_{a}^{\beta} f(x) dx = G(\beta) - G(a)$$

Θεώρημα 29 : Εμβαδόν χωρίου μεταξύ γραφικών παραστάσεων 1 - Σελ. 343

Δίνονται δύο συναρτήσεις f,g ορισμένες σε ένα διάστημα $[a,\beta]$ τέτοιες ώστε

- i. $f(x) \ge g(x)$ για κάθε $x \in [a, \beta]$ και
- ii. f, g μη αρνητικές στο [a, β].

Να αποδείξετε ότι το εμβαδόν του χωρίου Ω μεταξύ των γραφικών παραστάσεων C_f , C_g και των ευθειών $x=a, x=\beta$ δίνεται από τον τύπο

$$E(\Omega) = \int_{a}^{\beta} (f(x) - g(x)) dx$$

ΑΠΟΔΕΙΞΗ

Γνωρίζουμε ότι το εμβαδόν των χωρίων Ω_1,Ω_2 μεταξύ της C_f και αντίστοιχα της C_g , του άξονα x'x και των ευθειών $x=a,x=\beta$ ομοίως και για την C_g είναι

$$E(\Omega_1) = \int_a^\beta f(x) dx$$
, $E(\Omega_2) = \int_a^\beta g(x) dx$

Έτσι το ζητούμενο εμβαδόν του χωρίου Ω θα είναι

$$E(\Omega) = E(\Omega_1) - E(\Omega_2) =$$

$$= \int_a^\beta f(x) dx - \int_a^\beta g(x) dx = \int_a^\beta (f(x) - g(x)) dx$$

Θεώρημα 30 : Εμβαδόν χωρίου μεταξύ γραφικών παραστάσεων 2 - Σελ. 344

Δίνονται δύο συναρτήσεις f, g ορισμένες σε ένα διάστημα $[a, \beta]$ τέτοιες ώστε $f(x) \geq g(x)$ για κάθε $x \in [a, \beta]$. Να αποδείξετε ότι το εμβαδόν του χωρίου Ω μεταξύ των γραφικών παραστάσεων C_f, C_g και των ευθειών $x = a, x = \beta$ δίνεται από τον τύπο

$$E(\Omega) = \int_{a}^{\beta} (f(x) - g(x)) dx$$

ΑΠΟΔΕΙΞΗ

Για τις συνεχείς συναρτήσεις f, g θα υπάρχει ένας θετικός αριθμός c τέτοιος ώστε να ισχύει

$$f(x) + c \ge g(x) + c \ge 0.$$

Επομένως, το εμβαδόν του χωρίου Ω μεταξύ των γραφικών παραστάσεων των f(x) + c, g(x) + c από x = a έως $x = \beta$ θα είναι:

$$E(\Omega) = \int_{a}^{\beta} \left[(f(x) + c) - (g(x) + c) \right] dx = \int_{a}^{\beta} \left[f(x) + c - g(x) - c \right] dx = \int_{a}^{\beta} \left(f(x) - g(x) \right) dx$$

Θεώρημα 31 : Εμβαδόν χωρίου από αρνητική συνάρτηση - Σελ. 344

Δίνεται συναρτήση g ορισμένη σε ένα διάστημα $[a,\beta]$ τέτοια ώστε $g(x) \leq 0$ για κάθε $x \in [a,\beta]$. Να αποδείξετε ότι το εμβαδόν του χωρίου Ω μεταξύ της C_g , του άξονα x'x και των ευθειών $x=a,x=\beta$ δίνεται από τον τύπο

$$E(\Omega) = -\int_{a}^{\beta} g(x) \, \mathrm{d}x$$

ΑΠΟΔΕΙΞΗ

Θεωρούμε τη μηδενική συνάρτηση f(x)=0 για κάθε $x\in [a,\beta]$ παίρνουμε ότι το εμβαδόν του χωρίου μεταξύ των C_f,C_g και των ευθειών $x=a,x=\beta$ θα είναι:

$$E(\Omega) = \int_{a}^{\beta} (f(x) - g(x)) dx = \int_{a}^{\beta} (0 - g(x)) dx = -\int_{a}^{\beta} g(x) dx$$

Θεώρημα 32 : Εμβαδόν χωρίου μεταξύ γραφικών παραστάσεων 3 - Σελ. 344-345

Δίνονται δύο συναρτήσεις f,g ορισμένες σε ένα διάστημα $[a,\beta]$. Να αποδείξετε ότι το εμβαδόν του χωρίου Ω μεταξύ των γραφικών παραστάσεων C_f , C_g και των ευθειών $x=a,x=\beta$ δίνεται από τον τύπο

$$E(\Omega) = \int_a^\beta |f(x) - g(x)| \, \mathrm{d}x$$

ΑΠΟΔΕΙΞΗ

Η διαφορά f(x)-g(x) δεν έχει σταθερό πρόσημο. Θεωρούμε ότι μηδενίζεται σε δύο εσωτερικά σημεία γ,δ του διαστήματος $[a,\beta]$. Το εμβαδόν του χωρίου Ω θα ισούται με το άθροισμα των εμβαδών των χωρίων $\Omega_1,\Omega_2,\Omega_3$ μεταξύ των C_f,C_g και των ευθειών $x=a,x=\gamma,x=\delta,x=\beta$.

$$E(\Omega) = E(\Omega_{1}) + E(\Omega_{2}) + E(\Omega_{3}) = \frac{\int_{a}^{\gamma} (f(x) - g(x)) dx + \int_{\gamma}^{\delta} (g(x) - f(x)) dx + \int_{\delta}^{\beta} (f(x) - g(x)) dx = \int_{a}^{\gamma} |f(x) - g(x)| dx + \int_{\gamma}^{\delta} |f(x) - g(x)| dx + \int_{\delta}^{\beta} |f(x) - g(x)| dx = \int_{a}^{\beta} |f(x) - g(x)| dx$$