# Econometrics 871 Time Series

**TOPIC 4: TUTORIAL** 

Replicating the Dickey-Fuller distribution

## Review of asymptotic results and hypothesis testing

Consider the simplest linear regression on a sample of n observations:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, with  $\varepsilon_i \sim (0, \sigma^2)$ 

OLS estimatpr

$$\hat{\beta}_{1,OLS} = \frac{cov(y,x)}{var(x)}$$

• If the standard OLS assumptions hold then OLS is consistent:

$$\lim_{n\to\infty}\hat{\beta}_{1,OLS}=\beta_1$$

- In a finite sample,  $\hat{eta}_{1,OLS}$  is a random variable
  - If  $\varepsilon_i$  is i.i.d. normal, then  $\hat{\beta}_{1,OLS}$  is also normal with  $var(\hat{\beta}_{1,OLS}) = \frac{\sigma^2}{n \ var(x)}$
  - Even if  $\varepsilon_i$  is i.i.d. but not normal, the central limit theorem proves:

$$\lim_{n\to\infty} \sqrt{n} (\hat{\beta}_{1,OLS} - \beta_1) \sim N\left(0, \frac{\sigma^2}{n \ var(x)}\right)$$

## Review of asymptotic results and hypothesis testing

• the central limit theorem proves:

$$\lim_{n\to\infty} \sqrt{n} (\hat{\beta}_{1,OLS} - \beta_1) \sim N\left(0, \frac{\sigma^2}{n \ var(x)}\right)$$

• Thus, we might use the small sample **approximation** for hypothesis tests:

$$\frac{\left(\hat{\beta}_{1,OLS} - \beta_1\right)}{\sqrt{var(\hat{\beta}_{1,OLS})}} \sim N(0,1)$$

• However, we do not know  $\sigma^2$  - it must be estimated with

$$s^2 = \frac{1}{n} \sum \varepsilon_i^2$$

Then we use the standard t-distribution

$$\frac{\left(\hat{\beta}_{1,OLS} - \beta_1\right)}{\sqrt{\frac{s^2}{n \ var(x)}}} \sim t(n-k)$$



# **Fundamental Setting**

#### Given an unknown AR(1) process:

$$y_t = a_1 y_{t-1} + \varepsilon_t$$

- If  $|a_1| < 1$ 
  - The process is stationary
  - An OLS regression of  $y_t$  on  $y_{t-1}$  yields a consistent (but biased) estimate of  $a_1$
  - Let the sample be of size T
  - Biased means:  $E(\hat{a}_1) \neq a_1$
  - Consistent means:  $\lim_{T\to\infty} \hat{a}_1 = a_1$
- If  $a_1 = 1$ 
  - The process is non-stationary
  - An OLS regression of  $y_t$  on  $y_{t-1}$  yields an inconsistent estimate of  $a_1$ :  $\lim_{T\to\infty} \hat{a}_1 \neq a_1$
  - In this setting:  $\lim_{T \to \infty} \hat{a}_1 < a_1$

## Test equation:

• Subtracting  $y_{t-1}$  from both sides yields the test equation:

$$\Delta y_t = (a_1 - 1)y_{t-1} + \varepsilon_t$$
$$= \gamma y_{t-1} + \varepsilon_t$$

- If  $|a_1| < 1 \Leftrightarrow \gamma < 0$ ,
  - $y_t$  is stationary, thus so is  $\Delta y_t$
  - a regression of  $\Delta y_t$  on  $y_{t-1}$  yields a consistent estimate of  $\gamma$ , with standard distributional results (i.e.  $\frac{\widehat{\gamma}_{OLS}-\gamma}{s.e.(\widehat{\gamma})}$  has an asymptotic t-distribution centred at zero)
  - Consistency:  $\lim_{T\to\infty} \hat{\gamma}_{OLS} = \gamma$
  - However, in a small sample  $\hat{\gamma}_{OLS}$  will be biased because  $y_{t-1}$  is not exogenous with respect to  $\varepsilon_t$ : I.e. the condition  $\mathrm{E}(y_t \varepsilon_s) = 0 \, \forall t, s$  does not hold

## Test equation:

• Subtracting  $y_{t-1}$  from both sides yields the test equation:

$$\Delta y_t = (a_1 - 1)y_{t-1} + \varepsilon_t$$
$$= \gamma y_{t-1} + \varepsilon_t$$

- If  $a_1 = 1 \Leftrightarrow \gamma = 0$ 
  - the I(1) term,  $y_{t-1}$ , falls out of the regression at the null of a unit root, so the regression is valid, but  $\hat{\gamma}_{OLS}$  has a non-standard distribution
  - We will show that the *mode* of the distribution of  $\hat{\gamma}_{OLS}$  is equal to  $\gamma$ , but the mean and median are not, so  $\lim_{T\to\infty}\hat{\gamma}_{OLS}\neq\gamma$
  - Moreover, the distribution is non-standard  $(\frac{\widehat{\gamma}_{OLS}-\gamma}{s.e.(\widehat{\gamma})}$  does not have a t-distribution)
  - Thus the critical values of a hypothesis test are different from those of a t-distribution at the null hypothesis of a unit root (i.e.  $H_0$ :  $\gamma = 0$ )

# Exercise for the day:

- Construct a Monte Carlo simulation that reconstructs the Dickey Fuller distribution and critical values for the t-test of a null of a unit root
- We will do a general simulation, for any value of  $\gamma$  (unit root and no unit root)
- We will show that:
  - If  $\gamma < 0$ ,  $\hat{\gamma}_{OLS}$  is on average correct/consistent and the distribution of the test of  $H_0$ :  $\hat{\gamma}_{OLS} = \gamma$  has an approximate t-distribution *only if* the sample of observations T is large enough
    - This raises a subtle point not often discussed: for near-unit root processes, small sample test statistics can be misleading
  - If  $\gamma=0$ ,  $\hat{\gamma}_{OLS}$  is on average incorrect/inconsistent and the distribution of the test of  $H_0$ :  $\hat{\gamma}_{OLS}=0$  does not have a t-distribution no matter how large the sample of observations is

### **Monte Carlo Simulation**

• For a process defined by a given AR coefficient  $a_1$ :

$$y_t = a_1 y_{t-1} + \varepsilon_t$$

- Generate N different time-paths of length T
- For each time-path  $i \in N$ ,
  - do the OLS regression of the test equation:

$$\Delta y_t = \gamma y_{t-1} + \varepsilon_t$$

- Store  $\hat{\gamma}_{OLS}$  and  $\frac{\hat{\gamma}_{OLS} \gamma}{s.e.(\hat{\gamma})}$
- Approximate the density function of  $\hat{\gamma}_{OLS}$  and  $\frac{\hat{\gamma}_{OLS} \gamma}{s.e.(\hat{\gamma})}$
- Compare the density function of  $\frac{\widehat{\gamma}_{OLS}-\gamma}{s.e.(\widehat{\gamma})}$  to that of a standard t-distribution
- Compute the empirical critical t-statistic and compare to the theoretical t-statistic of an  $\alpha$  significance level
- Study the impact of varying  $a_1$  and T