Feuille d'exercices nº 3

Les produits semi-directs

Exercice 1. Déterminer un sous-groupe T de $GL_n(\mathbf{C})$ qui soit isomorphe à \mathbf{C}^* et tel que $GL_n(\mathbf{C}) = SL_n(\mathbf{C}) \rtimes T$. Le groupe T, est-il unique? De même, déterminer un sous-groupe $T < GL_n(\mathbf{R})$ tel que $SL_n(\mathbf{R}) \rtimes T = GL_n(\mathbf{R})$.

Exercice 2. Soit

$$G = \left\{ \begin{pmatrix} \alpha & 0 & u \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix} \in M_3(\mathbf{C}) \; ; \; \alpha\beta\gamma = 1 \right\};$$

vous pouvez admettre que G est un sous-groupe de $GL_3(\mathbf{C})$. Exprimer G comme $K \times H$, où $K \simeq \mathbf{C}$ et $H \simeq \mathbf{C}^* \times \mathbf{C}^*$.

Exercice 3. Soit $\langle \cdot, \cdot \rangle : \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ le produit scalaire usuel $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{i=1}^n u_i v_i$. Soit

$$O_n(\mathbf{R}) = \{ A \in GL_n(\mathbf{R}) : \langle A\boldsymbol{u}, A\boldsymbol{v} \rangle = \langle \boldsymbol{u}, \boldsymbol{v} \rangle \}$$

le groupe orthogonal.

- 1) Montrer que si $A \in O_n(\mathbf{R})$, alors det $A = \pm 1$.
- 2) Exprimer $O_n(\mathbf{R})$ comme produit semi-direct $SO_n(\mathbf{R}) \rtimes \boldsymbol{\mu}_2$, où $SO_n(\mathbf{R}) = \{A \in O_n(\mathbf{R}) : \text{det } A = 1\}$.
- 3) Montrer que si n est impair, alors $O_n(\mathbf{R}) \simeq SO_n(\mathbf{R}) \times \boldsymbol{\mu}_2$.

Exercice 4. Soit q un nombre premier et n un entier strictement positif tel que n < q. Montrer que si G est un groupe tel que $G = N \rtimes Q$, où |N| = n et |Q| = q, alors $G \simeq N \times \mu_q$.

Exercice 5. Soit G un groupe et soient s et t des éléments de G d'ordre 2. Soit Δ le sous-groupe engendré par s et t.

- 1) On désigne par r l'élément st. Montrer que $sr=r^{-1}$. En déduire que $K=\langle r\rangle$ est un sous-groupe distingué de Δ .
- 2) Montrer que $K \cap \langle s \rangle = e$.
- 3) En déduire que $\Delta = K \rtimes \langle s \rangle$.
- 4) Montrer que $\Delta \simeq \mathscr{D}_{\infty}$, ou $\Delta \simeq \mathscr{D}_{2n}$.

Exercice 6. Soit G un groupe. Soient N et H des sous-groupes de G tels que $G = N \rtimes H$. Montrer que pour chaque N < K < G, l'on a $K = N \rtimes (K \cap H)$.

Les Théorèmes de Sylow

Exercice 7. Soit G un groupe d'ordre pq, où p et q sont deux nombres premiers tels que p < q et q non congru à 1 modulo p. Montrer que G possède exactement un p-groupe de Sylow et un q-groupe de Sylow. En déduire que G est cyclique. Donner un exemple d'un groupe non-abélien d'ordre pq, où $q \equiv 1 \mod p$.

Exercice 8. Soient p < q des premiers tels que $q \equiv 1 \mod p$. Dans la suite, on s'en servira du fait que $\operatorname{Aut}(\boldsymbol{\mu}_q)$ est cyclique et d'ordre q-1.

- 1) Montrer que $\operatorname{Aut}(\boldsymbol{\mu}_q)$ possède un unique sous-groupe d'ordre p.
- 2) Utiliser les théorèmes de Sylow pour montrer que un groupe G d'ordre pq est isomorphe à un produit $\mu_q \rtimes_{\alpha} \mu_p$ pour un certain $\alpha : \mu_p \to \operatorname{Aut}(\mu_q)$.
- 3) Montrer que si G et H sont non-abéliens d'ordre pq, alors $G \simeq H$.
- 4) Construire un exemple d'un groupe non-abélien Γ d'ordre 21. Combien d'éléments d'ordre 3 possède-t-il?

Exercice 9. Soit p un nombre premier impair et G un groupe d'ordre 2p. Montrer que $G \simeq \mathcal{D}_{2p}$ ou $G \simeq \mu_{2p}$.

Exercice 10 (Trois techniques pour montrer qu'un groupe n'est pas simple). a) Soit G un groupe simple. Montrer que chaque morphisme $\rho: G \to H$ est injectif ou trivial.

- b) Soit G un groupe d'ordre 63. Montrer que G n'est pas simple.
- c) Soit G un groupe d'ordre 30. Montrer que G n'est pas simple (compter le nombre d'éléments d'ordres 2, 3, 5).
- d) Soit G un groupe d'ordre 36. Montrer que G n'est pas simple (faire opérer G sur l'ensemble des 3-Sylow).

Exercice 11. Soient p et q deux nombres premiers.

- a) On suppose p < q. Soit G un groupe d'ordre pq^{β} . Montrer que G n'est pas simple.
- b) On suppose que $p^{\alpha} < q + 1$. Soit G un groupe d'ordre $p^{\alpha}q^{\beta}$. Montrer que G n'est pas simple.
- c) On suppose que p^{α} ne divise pas (q-1)!. Soit G un groupe d'ordre $p^{\alpha}q$. Montrer que G n'est pas simple.