Universidad de San Carlos de Guatemala Centro Universitario de Occidente División De Ciencias de la Ingeniería

Trabajo teórico proyecto 1

Rudy Adolfo Pacheco Pacheco Ing.Oliver Ernesto Sierra Pac

Token identificador

Token 1 ID

No.	Σ	Siguiente
1	[a-zA-Z]	2,3,4
2	[0-9]	2,3,4
3	[a-zA-Z]	2,3,4
4	\$	

Siguiente (1) =
$$\{2,3,4\} \partial (S0, [a-zA-Z]) = S1$$

S1={2,3,4}

Siguiente (2) = $\{1,4\}$ $\partial(S1, [0-9]) = S1$

Siguiente (3) = $\{1,4\}$ $\partial(S1, [a-zA-Z]) = S1$

Siguiente (4) = \$

1.Conjunto de estados del autómata

Q={S0,S1}

2.Estado inicial S0

3.Alfabeto

$$\sum = \{[a-zA-Z],[0-9]\}$$

4. Estados de aceptación

F={S1}

5. Funcion de transicion

 ∂ (S0,[a-zA-Z]) =S1

 ∂ (S1,[a-zA-Z]) =S1

 $\partial(S2,[0-9]) = S1$

Identificador Numero

No.	Σ	Siguiente
1	[0-9]	2,3
2	[0-9]	2,3
3	\$	

Siguiente (1) =
$$\{2,3\}$$
 ∂ (S0, [0-9]) = S1

S1={2,3}

Siguiente (2) =
$$\{2,3\} \partial (S1, [0-9]) = S1$$

Siguiente (3) = \$

Definición formal

1.Conjunto de estados del autómata

Q={S0,S1}

2.Estado inicial

S0

3.Alfabeto

 $\Sigma = \{(0-9)\}$

4.Estados de aceptación F={S1}

5.Funcion de transicion $\partial(S0,[0-9]) = S1$ $\partial(S1,[0-9]) = S1$

Token Decimal

No.	Σ	Siguiente
1	[0-9]	1,2
2		3,4
3	[0-9]	3
4	\$	

S0={1}
Siguiente (1)={1,2}
$$\partial$$
(S0, [0-9]) = S1

S1={1,2}
Siguiente (1)={1,2}
$$\partial$$
(S0, [0-9]) = S1
Siguiente (2)={2,4} ∂ (S0, [0-9]) = S2
S2={2,4}
Siguiente (2)={2,4} ∂ (S0, [0-9]) = S2

Siguiente (4)=\$

1.Conjunto de estados del autómata

Q={S0,S1,S2}

2.Estado inicial

S0

3.Alfabeto

$$\Sigma = \{(0-9), '.'\}$$

4. Estados de aceptación

F={S2}

5. Funcion de transicion

 $\partial(S0,[0-9]) = S1$

 $\partial(S1,[0-9]) = S1$

 $\partial(S1,'.') = S2$

 $\partial(S2,[0-9]) = S2$

Identificador puntuación

No.	Σ	Siguiente
1		5
2	,	5
3		5
4	·,·, ,	5
5	\$	

S0={1,2,3,4}

Siguiente (1) ={5} ∂ (S0,'.') = S1

Siguiente (2) ={5} ∂ (S0,',') = S1

Siguiente (3) ={5} ∂ (S0,':') = S1

Siguiente (4) ={5} ∂ (S0,';') = S1

1. Conjunto de estados del autómata

2.Estado inicial

S0

3.Alfabeto

$$\sum_{i=1}^{n} = \{1, 1, 1, 1, 1, \dots, 1, 1, 1, \dots, 1, 1, \dots, 1, \dots$$

4. Estados de aceptación

F={S1}

5. Funcion de transicion

 $\partial(S0,'.') = S1$

 $\partial(S0,',') = S1$

 $\partial(S0,':') = S1$

 $\partial(S0,';') = S1$

por conveniencia se representan a los signos como el conjunto P={'.',',',':';'}

Token Operador

Token 5 operador

No.	Σ	Siguiente	
1	' + '	6	
2	(_1	6	
3	·*¹	6	
4	<i>'f'</i>	6	
5	'%'	6	
6	\$		

S0={1,2,3,4.5}

Siguiente (1) ={6} ∂ (S0,'+') = S1

Siguiente (2) ={6} ∂ (S0,'-') = S1

Siguiente (3) ={6} ∂ (S0,'*') = S1

Siguiente (4) ={6} ∂ (S0,'/') = S1

Siguiente (5) ={6} ∂ (S0,'%') = S1

1. Conjunto de estados del autómata

2.Estado inicial

S0

3.Alfabeto

$$\Sigma = \{ '+', '-', '*' '/', '\%' \}$$

4. Estados de aceptación

F={S1}

5. Funcion de transicion

$$\partial(S0,'+') = S1$$

$$\partial(S0,'-') = S1$$

$$\partial(S0, \dot{}^*) = S1$$

$$\partial(S0,'') = S1$$

$$\partial(S0,'\%') = S1$$

por conveniencia se representan a los signos como el conjunto O={'+' ,'-' ,'*' '/', '%'}

Token Agrupación

No.	Σ	Siguiente
1	·('	7
2	')'	7
3	' {'	7
4	3,	7
5	T'	7
6	']'	7
7	\$	

S0={1,2,3,4.5,6}

Siguiente (1) ={7} ∂ (S0,'(') = S1

Siguiente (2) = $\{7\} \partial (S0,')') = S1$

Siguiente (3) ={7} ∂ (S0,'{'}) = S1

Siguiente (4) = $\{7\} \partial(S0,'\}') = S1$

Siguiente (5) ={7} ∂ (S0,'[') = S1

Siguiente (6) = $\{7\} \partial (S0, ']') = S1$

1. Conjunto de estados del autómata

2.Estado inicial

S0

3.Alfabeto

$$\Sigma = \{ (', ')', '\{', '\}', '[', ']' \}$$

4. Estados de aceptación

F={S1}

5. Funcion de transicion

 $\partial(S0,'(') = S1$

 $\partial(S0,')') = S1$

 $\partial(S0,'\{') = S1$

 $\partial(S0,')$ ') = S1

 $\partial(S0,'[') = S1$

 $\partial(S0,']') = S1$

por conveniencia se representan a los signos como el conjunto A={'(',')', '{', '}', '[', ']'}

AFD completo

Tabla de transición donde O={'+' ,'-' ,'*' '/', '%'} P={'.' ,',' ,':' ';'} $A=\{'(' ,')' ,'\{' '\}' , '[', ']'\}$

FT	[a-zA-Z]	[0-9]		0	Р	А
S0	S4	S1	ERROR	S5	S6	S7
S1	ERROR	S1	S2	ERROR	ERROR	ERROR
S2	ERROR	S3	ERROR	ERROR	ERROR	ERROR
S3	ERROR	S3	ERROR	ERROR	ERROR	ERROR
S4	S4	S4	ERROR	ERROR	ERROR	ERROR
S5	ERROR	ERROR	ERROR	ERROR	ERROR	ERROR
S6	ERROR	ERROR	ERROR	ERROR	ERROR	ERROR
S7	ERROR	ERROR	ERROR	ERROR	ERROR	ERROR