Department of Mathematics & Statistics

MTH-102A Ordinary Differential Equations

Assignment VI

1. \star Using the exapansion

$$\frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n$$

show that the Legendre Polynomials $P_n(x)$ satisfy the following.

- (i) $P_n(1) = 1$ (ii) $P_n(-1) = (-1)^n$
- (iii) $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) nP_{n-1}(x)$ (iv) $nP_n(x) = xP'_n(x) P'_{n-1}(x)$

- 2. * Show that (i) $\int_{-1}^{1} x^m P_n(x) dx = 0$ if m < n (ii) $\int_{-1}^{1} x^m P_n(x) dx = 0$ if m > n and m n is odd. What happens if m n is even?
 - (iii) $\int_{-1}^{1} P_n^2(x) dx = \frac{2}{2n+1}$.

3. \star The Bessel function $J_p(x)$, for any real number p, is defined as

$$J_p(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(x/2)^{2n+p}}{n!(n+p)!}.$$

Using this expression of $J_p(x)$, show that (i) $\frac{d}{dx} [x^p J_p(x)] = x^p J_{p-1}(x)$ (iii) $J_p'(x) + \frac{p}{x} J_p(x) = J_{p-1}(x)$

- (ii) $\frac{d}{dx}[x^{-p}J_p(x)] = -x^{-p}J_{p+1}(x)$ (iv) $J'_p(x) \frac{p}{x}J_p(x) = J_{p+1}(x)$.

4. \star Show that, for every real number p, the Bessel function $J_p(x)$ has infinitely many positive

5. \star For a given a real number p, we let λ_n denote the positive zeros of the Bessel function $J_p(x)$. Show that

(i)
$$\int_0^1 x J_p(\lambda_m x) J_p(\lambda_n x) = 0$$
 if $m \neq n$ and (ii) $\int_0^1 x J_p(\lambda_m x)^2 = \frac{1}{2} \left[J_p'(\lambda_n) \right]^2 = \frac{1}{2} \left[J_{p+1}(\lambda_n) \right]^2$.

6. Let $p,q,r:(a,b)\to\mathbb{R}$ be continuous function. Show that any nontrivial solution y of y'' + py' + qy = 0 has only finitely many zeros in any closed interval $[\alpha, \beta] \subseteq (a, b)$

7. Find the first four terms a_n of the expansion $f(x) = \sum_{n \geq 0} a_n P_n(x)$, if (i) f(x) = x|x| for $|x| \leq 1$ and (ii) $f(x) = \begin{cases} 0 & \text{if } -1 \leq x < 0 \\ x & \text{if } 0 \leq x \leq 1. \end{cases}$

(i)
$$f(x) = x|x|$$
 for $|x| \le 1$

(ii)
$$f(x) = \begin{cases} 0 & \text{if } -1 \le x < 0 \\ x & \text{if } 0 \le x \le 1. \end{cases}$$

8. Let a, b, c, d be real numbers such that $ad - bc \neq 0$. Show that the zeros of the functions $a \sin x + b \cos x$ and $c \sin x + d \cos x$ are distinct and occur alternately.

1