

Towards Real-world X-ray Security Inspection: A High-quality Benchmark and Lateral Inhibition Module for Prohibited Items Detection

Renshuai Tao^{1,2} Yanlu Wei¹ Xiangjian Jiang¹ Hainan Li¹ Haotong Qin¹ Jiakai Wang¹ Yuqing Ma¹ Libo Zhang³ Xianglong Liu^{1*} ¹State Key Laboratory of Software Development Environment, Beihang University ²iFLYTEK Research ³Institute of Software Chinese Academy of Sciences

{rstao, weiyanlu, hainan, qinhaotong, jk_buaa_scse, mayuqing, xlliu}@buaa.edu.cn silencejiang12138@gmail.com, libo@iscas.ac.cn

> 陶仁帅 软件开发环境国家重点实验室 北京航空航天大学 科大讯飞AI研究院

个人主页: rstao95.github.io

Background

AI Security Inspection?

Difficulties and Related Works

Difficulties:

- (1) Various
- (2) Small
- (3) Randomly stacked
- (4) Heavily overlapped

Related Works:

Dataset	Year	Category	N_p	Annotation Co		Color	Task	Data Source		
			P	Bounding Box	Number	Professional				
GDXray [23]	2015	3	8,150	✓	8,150	Х	Gray-scale	Detection	Unknown	
SIXray [25]	2019	6	8,929	×	×	×	RGB	Classification	Subway Station	
OPIXray [40]	2020	5	8,885	✓	8,885	✓	RGB	Detection	Artificial Synthesis	
HiXray	2021	8	45,364	✓	102,928	✓	RGB	Detection	Airport	

High-quality X-ray (HiXray) security inspection image dataset

Category	PO1	PO2	WA	LA	MP	TA	CO	NL	Total
Training Testing									82,452 20,476
Total	12,421	7,788	3,092	10,042	53,835	4,918	9,949	883	102,928

The distribution of instances per category.

N_i	1	2	3	4	5	6	7	8	9	10
Training Testing										
Total	15,953	13,627	8,565	4,096	1,875	747	308	132	43	13

The distribution of instances per image.

Potential Tasks

Small object detection

Category	Total	Large	Medium	Small
PO2	2,502	587	986	929
MP	10,631	3,547	4,248	2,836

Table 5. The category distribution of "Portable Charger 2" and "Mobile Phone" (PO2 and MB for short) when the two thresholds are set as 0.1% and 0.2%.

Occluded object detection

OL I (no or slight occlusion)

(partial occlusion)

OL 3 (severe or full occlusion)

Few shot Detection

Category	PO1	PO2	WA	LA	MP	TA	СО	NL	Total
Training Testing	9,919 2,502	6,216 1,572	2,471 621	8,046 1,996	43,204 10,631	3,921 997	7,969 1,980	706 177	82,452 20,476
Total	12,421	7,788	3,092	10,042	53,835	4,918	9,949	883	102,928

Dataset Access

https://github.com/HiXray-author/HiXray rstao@buaa.edu.cn

LIM Model

出发点:

- 1. 我们认为, X光成像下, 最大程度 地保留了物体的形状特征, 而这种 形状特征通过边缘的形式最大化地 进行了体现。因此, 我们想到在卷 积神经网络中强化边缘的操作。
- 2. X光成像过程中,待检测物体周围 有很多噪音,我们要赋予网络更多 的特征学习的能力,最大程度筛选 掉这些噪音信息。

LIM Model

双向传播的左侧:

$$\mathbf{A}^{l} = \mathcal{V}\left(\mathcal{F}^{l}(\mathbf{x})\right) + \sum_{m=1}^{L-l} \mathcal{U}^{m}\left(\mathbf{A}^{l+m}\right), \tag{1}$$

双向传播的右侧:
$$\mathbf{C}_{\mathrm{t}}^{l} = \mathcal{V}\left(\mathbf{B}^{l}\right) + \sum_{m=1}^{l-1} \mathcal{D}^{m}\left(\mathbf{C}_{\mathrm{t}}^{l-m}\right),$$
 (2)

左右聚合:

$$\mathbf{C}^l = \mathbf{C}_t^l + \mathcal{F}^l(\mathbf{x}),\tag{3}$$

边界激活操作:
$$\mathbf{B}_{ijc}^{l} = \begin{cases} \mathbf{A}_{iWc}^{l} & \text{if } j = W, \\ \max\left\{\mathbf{A}_{ijc}^{l}, \mathbf{A}_{i(j+1)c}^{l}, \dots, \mathbf{A}_{iWc}^{l}\right\} & \text{otherwise,} \end{cases}$$
(4)

Experiments

Comparing with detection methods:

Method			J	HiXray	Dataset	(Ours)				OPIXray Dataset [40]					
Method	AVG	PO1	PO2	WA	LA	MP	TA	CO	NL	AVG	FO	ST	SC	UT	MU
SSD [20]	71.4	87.3	81.0	83.0	97.6	93.5	92.2	36.1	0.01	70.9	76.9	35.0	93.4	65.9	83.3
SSD+DOAM [40]	72.1	88.6	82.9	83.6	97.5	94.1	92.1	38.2	0.01	74.0	81.4	41.5	95.1	68.2	83.8
SSD+LIM	73.1	89.1	84.3	84.0	97. 7	94.5	92.4	42.3	0.1	74.6	81.4	42.4	95.9	71.2	82.1
FCOS [35]	75.7	88.6	86.4	86.8	89.9	88.9	88.9	63.0	13.3	82.0	86.4	68.5	90.2	78.4	86.6
FCOS+DOAM [40]	76.2	88.6	87.5	87.8	89.9	89.7	88.8	63.5	12.7	82.4	86.5	68.6	90.2	78.8	87.7
FCOS+LIM	77.3	88.9	88.2	88.3	90.0	89.8	89.2	69.8	14.4	83.1	86.6	71.9	90.3	79.9	86.8
YOLOv5 [14]	81.7	95.5	94.5	92.8	97.9	98.0	94.9	63.7	16.3	87.8	93.4	67.9	98.1	85.4	94.1
YOLOv5+DOAM [40]	82.2	95.9	94.7	93.7	98.1	98.1	95.8	65.0	16.1	88.0	93.3	69.3	97.9	84.4	95.0
YOLOv5+LIM	83.2	96.1	95.1	93.9	98.2	98.3	96.4	65.8	21.3	90.6	94.8	77.6	98.2	88.9	93.8

Comparing with Pyramid Networks:

Method	AVG	PO1	PO2	WA	LA	MP	TA	СО	NL
SSD [20]	71.4	87.3	81.0	83.0	97.6	93.5	92.2	36.1	0.01
+FPN [17] +PANet [39]									
+LIM	73.1								

Ablation Studies:

Method	AVG	PO1	PO2	WA	LA	MP	TA	CO	NL
SSD [20]	71.4	87.3	81.0	83.0	97.6	93.5	92.2	36.1	0.01
+SP	72.1	87.9	82.3	83.8	97.9	92.4	92.6	38.8	0.63
+BP	72.6	88.1	83.4	83.9	97.8	93.8	92.8	40.3	0.03
+BP+BA	73.1	89.1	84.3	84.1	97.7	94.5	92.4	42.3	0.1

Visualization

Visualization of SSD and SSD+LIM

Visualization of the boundary aggregation

一、课题组其他相关X光工作:

1. 遮挡X光目标检测(ACM MM 2020)

研究内容:我们研究不同遮挡程度对检测性能的影响,构建了OPIXray遮挡分级数据集,并提出DOAM模块,通过特定的注意力机制来提高模型在遮挡情境下的性能。

2. 不同X光机上模型迁移检测(研究中)

研究内容:由于不同X光机成像差异,导致模型在不同X光机间的迁移性能很差。在没有大量目标机器图片标注的情况下,如何提升模型跨域检测的性能?

3. X光对抗攻防(研究中)

研究内容: 在X光安检场景下, 通过打印贴片放进行李箱的方式, 是否使违禁品逃脱检测模型的识别?

二、联合工业界探讨:人工智能时代下,AI安检离我们还有多远?

PRCV 2021 专题论坛之

X光安检场景下的违禁品检测

万方,中国科学院大学;陶仁帅,北京航空航天大学;

王伯英,中国科学院大学:金博伟,科大讯飞股份有限公司

Thank you for listening!

陶仁帅 软件开发环境国家重点实验室 博士生 北京航空航天大学 个人主页: rstao95.github.io

刘祥龙 教授、博士生导师、国家优青获得者 北京航空航天大学 个人主页: sites.nlsde.buaa.edu.cn/~xlliu

For more information, welcome to click on our home page!