Week 6: Assumptions in Regression Analysis

The Assumptions

- 1. The distribution of residuals is normal (at each value of the dependent variable).
- 2. The variance of the residuals for every set of values for the independent variable is equal.
 - violation is called heteroscedasticity.
- 3. The error term is additive
 - no interactions.
- 4. At every value of the dependent variable the expected (mean) value of the residuals is zero
 - No non-linear relationships

- 5. The expected correlation between residuals, for any two cases, is 0.
 - The independence assumption (lack of autocorrelation)
- 6. All independent variables are uncorrelated with the error term.
- 7. No independent variables are a perfect linear function of other independent variables (no perfect multicollinearity)
- 8. The mean of the error term is zero.

What are we going to do

. . .

- Deal with some of these assumptions in some detail
- Deal with others in passing only

Assumption 1: The Distribution of Residuals is Normal at Every Value of the Dependent Variable

Look at Normal Distributions

- A normal distribution
 - symmetrical, bell-shaped (so they say)

What can go wrong?

- Skew
 - non-symmetricality
 - one tail longer than the other
- Kurtosis
 - too flat or too peaked
 - kurtosed
- Outliers
 - Individual cases which are far from the distribution

Effects on the Mean

- Skew
 - biases the mean, in direction of skew
- Kurtosis
 - mean not biased
 - standard deviation is
 - and hence standard errors, and significance tests

Examining Univariate Distributions

- Histograms
- Boxplots
- P-P Plots

Histograms

A and B

C and D

• E & F

Histograms can be tricky

Boxplots

P-P Plots

• A & B

• C & D

• E & F

Bivariate Normality

- We didn't just say "residuals normally distributed"
- We said "at every value of the dependent variables"
- Two variables can be normally distributed – univariate,
 - but not bivariate

Couple's IQs

- male and female

-Seem reasonably normal

But wait!!

- When we look at bivariate normality
 - not normal there is an outlier
- So plot X against Y
- OK for bivariate
 - but may be a multivariate outlier
 - Need to draw graph in 3+ dimensions
 - can't draw a graph in 3 dimensions
- But we can look at the residuals instead ...

• IQ histogram of residuals

Multivariate Outliers ...

Will be explored later in the exercises

So we move on ...

What to do about Non-Normality

- Skew and Kurtosis
 - Skew much easier to deal with
 - Kurtosis less serious anyway
- Transform data
 - removes skew
 - positive skew log transform
 - negative skew square

Transformation

- May need to transform IV and/or DV
 - More often DV
 - time, income, symptoms (e.g. depression) all positively skewed
 - can cause non-linear effects (more later) if only one is transformed
 - alters interpretation of unstandardised parameter
 - May alter meaning of variable
 - May add / remove non-linear and moderator effects

Change measures

- increase sensitivity at ranges
 - avoiding floor and ceiling effects

Outliers

- Can be tricky
- Why did the outlier occur?
 - Error? Delete them.
 - Weird person? Probably delete them
 - Normal person? Tricky.

- You are trying to model a process
 - is the data point 'outside' the process
 - e.g. lottery winners, when looking at salary
 - yawn, when looking at reaction time
- Which is better?
 - A good model, which explains 99% of your data?
 - A poor model, which explains all of it
- Pedhazur and Schmelkin (1991)
 - analyse the data twice

 We will spend much less time on the other 6 assumptions Assumption 2: The variance of the residuals for every set of values for the independent variable is equal.

Heteroscedasticity

- This assumption is a about heteroscedasticity of the residuals
 - Hetero=different
 - Scedastic = scattered
- We don't want heteroscedasticity
 - we want our data to be homoscedastic
- Draw a scatterplot to investigate

- Only works with one IV
 - need every combination of IVs
- Easy to get use predicted values
 - use residuals there
- Plot predicted values against residuals
 - or standardised residuals
 - or deleted residuals
 - or standardised deleted residuals
 - or studentised residuals
- A bit like turning the scatterplot on its side

Good – no heteroscedasticity

Bad – heteroscedasticity

Predicted Value

Residual

Testing Heteroscedasticity

- White's test
 - Not automatic in SPSS (is in SAS)
 - Luckily, not hard to do
 - More luckily, we aren't going to do it
 - (In the very unlikely event you will ever have to do it, look it up.
 - Google: White's test spss)

Plot of Pred and Res

Regression Standardized Predicted Value

Magnitude of Heteroscedasticity

- Chop data into "slices"
 - 5 slices, based on X (or predicted score)
 - Done in SPSS
 - Calculate variance of each slice
 - Check ratio of smallest to largest
 - Less than 10:1
 - OK

The Visual Bander

New in SPSS 12

Variances of the 5 groups

1	.219
2	.336
3	.757
4	.751
5	3.119

• We *have* a problem

$$-3/0.2 \sim = 15$$

Assumption 3: The Error Term is Additive

Additivity

- We sum the scores in the regression equation
 - Is that legitimate?
 - can test for it, but hard work
- Have to know it from your theory
- A specification error

Additivity and Theory

Two IVs

- Alcohol has sedative effect
 - A bit makes you a bit tired
 - A lot makes you very tired
- Some painkillers have sedative effect
 - A bit makes you a bit tired
 - A lot makes you very tired
- A bit of alcohol and a bit of painkiller doesn't make you very tired
- Effects multiply together, don't add together

- If you don't test for it
 - It's very hard to know that it will happen
- So many possible non-additive effects
 - Cannot test for all of them
 - Can test for obvious
- In medicine
 - Choose to test for salient non-additive effects
 - e.g. sex, race

Assumption 4: At every value of the dependent variable the expected (mean) value of the residuals is zero

Linearity

- Relationships between variables should be linear
 - best represented by a straight line
- Not a very common problem in social sciences
 - except economics
 - measures are not sufficiently accurate to make a difference
 - R2 too low
 - unlike, say, physics

Relationship between speed of travel and fuel used

- $R^2 = 0.938$
 - looks pretty good
 - know speed, make a good prediction of fuel

BUT

- look at the chart
- if we know speed we can make a perfect prediction of fuel used
- $-R^2$ should be 1.00

Detecting Non-Linearity

- Residual plot
 - just like heteroscedasticity
- Using this example
 - very, very obvious
 - usually pretty obvious

Residual plot

Linearity: A Case of Additivity

- Linearity = additivity along the range of the IV
- Jeremy rides his bicycle harder
 - Increase in speed depends on current speed
 - Not additive, multiplicative
 - MacCallum and Mar (1995).
 Distinguishing between moderator and quadratic effects in multiple regression. *Psychological Bulletin*.

Assumption 5: The expected correlation between residuals, for any two cases, is 0.

The independence assumption (lack of autocorrelation)

Independence Assumption

- Also: lack of autocorrelation
- Tricky one
 - often ignored
 - exists for almost all tests
- All cases should be independent of one another
 - knowing the value of one case should not tell you anything about the value of other cases

How is it Detected?

- Can be difficult
 - need some clever statistics (multilevel models)
- Better off avoiding situations where it arises
- Residual Plots
- Durbin-Watson Test

Residual Plots

- Were data collected in time order?
 - If so plot ID number against the residuals
 - Look for any pattern
 - Test for linear relationship
 - Non-linear relationship
 - Heteroscedasticity

How does it arise?

Two main ways

- time-series analyses
 - When cases are time periods
 - weather on Tuesday and weather on Wednesday correlated
 - inflation 1972, inflation 1973 are correlated
- clusters of cases
 - patients treated by three doctors
 - children from different classes
 - people assessed in groups

Why does it matter?

- Standard errors can be wrong
 - therefore significance tests can be wrong
- Parameter estimates can be wrong
 - really, really wrong
 - from positive to negative
- An example
 - students do an exam (on statistics)
 - choose one of three questions
 - IV: time
 - DV: grade

Result, with line of best fit

- Result shows that
 - people who spent longer in the exam, achieve better grades
- BUT ...
 - we haven't considered which question people answered
 - we might have violated the independence assumption
 - DV will be autocorrelated
- Look again
 - with questions marked

Now somewhat different

- Now, people that spent longer got lower grades
 - questions differed in difficulty
 - do a hard one, get better grade
 - if you can do it, you can do it quickly
- Very difficult to analyse well
 - need multilevel models

Assumption 6: All independent variables are uncorrelated with the error term.

Uncorrelated with the Error Term

- A curious assumption
 - by definition, the residuals are uncorrelated with the independent variables (try it and see, if you like)
- It is about the DV
 - must have no effect (when the IVs have been removed)
 - on the DV

- Problem in economics
 - Demand increases supply
 - Supply increases wages
 - Higher wages increase demand
- OLS estimates will be (badly) biased in this case
 - need a different estimation procedure
 - two-stage least squares
 - simultaneous equation modelling

Assumption 7: No independent variables are a perfect linear function of other independent variables

no perfect multicollinearity

No Perfect Multicollinearity

- IVs must not be linear functions of one another
 - matrix of correlations of IVs is not positive definite
 - cannot be inverted
 - analysis cannot proceed
- Have seen this with
 - age, age start, time working
 - also occurs with subscale and total

- Large amounts of collinearity
 - a problem (as we shall see)
 sometimes
 - not an assumption

Assumption 8: The mean of the error term is zero.

You will like this one.

Mean of the Error Term = 0

- Mean of the residuals = 0
- That is what the constant is for
 - if the mean of the error term deviates from zero, the constant soaks it up

$$Y = \beta_0 + \beta_1 x_1 + \varepsilon$$

$$Y = (\beta_0 + 3) + \beta_1 x_1 + (\varepsilon - 3)$$

 note, Greek letters because we are talking about population values