International Rectifier

HEXFET® Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- For Automatic Insertion
- End Stackable
- 175°C Operating Temperature
- Fast Switching
- Ease of Paralleling
- Lead-Free

IRFD110PbF

Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The 4-pin DIP package is a low cost machine-insertable case style which can be stacked in multiple combinations on standard 0.1 inch pin centers. The dual drain serves as a thermal link to the mounting surface for power dissipation levels up to 1 watt.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, VGS @ 10 V	1.0		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10 V	0.71	Α	
I _{DM}	Pulsed Drain Current ①	8.0		
P _D @ T _C = 25°C	Power Dissipation	1.3	W	
	Linear Derating Factor	0.0083	W/°C	
V _{GS}	Gate-to-Source Voltage	±20	V	
Eas	Single Pulse Avalanche Energy ②	140	mJ	
I _{AR}	Avalanche Current ①	1.0	Α	
EAR	Repetitive Avalanche Energy ①	0.13	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.5	V/ns	
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to +175	°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Reya	Junction-to-Ambient			120	°C/W

IRFD110PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100	_	-	٧	V _{GS} =0V, I _D = 250μA	
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	_	0.12	-	V/°C	Reference to 25°C, ID= 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance	-	_	0.54	Ω	V _{GS} =10V, I _D =0.60A @	
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	٧	V _{DS} =V _{GS} , I _D = 250μA	
g _{fs}	Forward Transconductance	0.80	_		S	V _{DS} =50V, I _D =0.60A ④	
	Duain to Course Leakers Current	_		25	μΑ	V _{DS} =100V, V _{GS} =0V	
loss	Drain-to-Source Leakage Current	_	_	250		V _{DS} =80V, V _{GS} =0V, T _J =150°C	
Loss	Gate-to-Source Forward Leakage	_	-	100	nA	V _{GS} =20V	
IGSS	Gate-to-Source Reverse Leakage	-	1-	-100	II/A	V _{GS} =-20V	
Qg	Total Gate Charge	-	_	8.3		I _D =5.6A	
Q _{gs}	Gate-to-Source Charge	_	_	2.3	nC	V _{DS} =80V	
Q_{gd}	Gate-to-Drain ("Miller") Charge	_	1—	3.8		V _{GS} =10V See Fig. 6 and 13 @	
t _{d(on)}	Turn-On Delay Time	_	6.9	_		V _{DD} =50V	
tr	Rise Time	_	16		ns	I _D =5.6A	
t _{d(off)}	Turn-Off Delay Time		15	-	1.0	R _G =24Ω	
t _f	Fall Time	-	9.4	_		R _D =8.4Ω See Figure 10 @	
Lp	Internal Drain Inductance	-	4.0	_	nН	Between lead, 6 mm (0.25in.)	
Ls	Internal Source Inductance	-	6.0	-	111.1	from package and center of die contact	
Ciss	Input Capacitance	_	180	_		V _{GS} =0V	
Coss	Output Capacitance	_	81	_	рF	V _{DS} = 25V	
Crss	Reverse Transfer Capacitance	I —	15	_		f=1.0MHz See Figure 5	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
	Farameter	IVIII I.	Typ.	Wax.	Offics	1,500
ls	Continuous Source Current (Body Diode)	-	_	1.0	A	MOSFET symbol showing the
Ism	Pulsed Source Current (Body Diode) ①		-	8.0		integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage	_	_	2.5	٧	T _J =25°C, I _S =1.0A, V _{GS} =0V @
t _{rr}	Reverse Recovery Time	_	100	200	ns	T _J =25°C, I _F =5.6A
Qrr	Reverse Recovery Charge	_	0.44	0.88	μC	di/dt=100A/μs ④
ton	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+LD)			

Notes:

2

- Repetitive rating; pulse width limited by max. junction temperature (See Figure 11)
- ③ IsD≤5.6A, di/dt≤75A/ μ s, VDD≤V(BR)DSS, TJ≤175°C
- $\ \ \, \mathbb{Q} \ \ V_{DD} = 25 \text{V}, \ \text{starting T}_J = 25 ^{\circ} \text{C}, \ L = 52 \text{mH} \\ \ \ \, \text{R}_G = 25 \Omega, \ I_{AS} = 2.0 \text{A} \ \ \text{(See Figure 12)}$
- ④ Pulse width ≤ 300 µs; duty cycle ≤2%.

Fig 1. Typical Output Characteristics, T_C=25°C

Fig 2. Typical Output Characteristics, T_C=175°C

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com 3

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

4

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

5

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit www.irf.com

IRFD110PbF

Peak Diode Recovery dv/dt Test Circuit

- * Reverse Polarity for P-Channel
- ** Use P-Channel Driver for P-Channel Measurements

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig -14 For N Channel HEXFETS

www.irf.com 7

IRFD110PbF

International
Rectifier

Hexdip Package Outline

Dimensions are shown in millimeters (inches)

Hexdip Part Marking Information

EXAMPLE: THIS IS AN IRFD120

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 10/04

www.irf.com