

DDDDDDDD DDDDDDDDD YY YY DDDDDDDDD RRRRRRRR I I I I VV VV EEEEEEEEEE RRRRRRRR
DD DD YY YY DD DD RRRRRRRR I I I I VV VV EEEEEE EEEEEE RRRRRRRR
DD DD YY YY DD DD RR RR I I I I VV VV EE EE RRRRRRRR
DD DD YY YY DD DD RR RR I I I I VV VV EE EE RRRRRRRR
DD DD YY YY DD DD RR RR I I I I VV VV EE EE RRRRRRRR
DD DD YY YY DD DD RRRRRRRR I I I I VV VV EEEEEE RRRRRRRR
DD DD YY YY DD DD RRRRRRRR I I I I VV VV EEEEEE RRRRRRRR
DD DD YY YY DD DD RR RR I I I I VV VV EE EE RR RR
DD DD YY YY DD DD RR RR I I I I VV VV EE EE RR RR
DD DD YY YY DD DD RR RR I I I I VV VV EE EE RR RR
DD DD YY YY DD DD RR RR I I I I VV VV EE EE RR RR
DD DD YY YY DDDDDDDDD RR RR I I I I VV VV EEEEEE RRRRRRRR
DD DD YY YY DDDDDDDDD RR RR I I I I VV VV EEEEEE RRRRRRRR

LL I I I I SSSSSSSS
LL I I I I SSSSSSSS
LL SS SS
LLLLLLLLLL I I I I SSSSSSSS
LLLLLLLLLL I I I I SSSSSSSS

(1)	128	EXTERNAL AND LOCAL DEFINITIONS
(1)	301	STANDARD TABLES
(1)	483	CONTROLLER INITIALIZATION ROUTINE
(1)	524	INTERNAL CONTROLLER RE-INITIALIZATION
(1)	551	UNIT INITIALIZATION ROUTINE
(1)	590	DRIVER SPECIFIC SUBROUTINES
(1)	627	FDT ROUTINES
(1)	662	START I/O ROUTINE
(1)	1530	INTERRUPT SERVICE ROUTINE
(1)	1591	REGISTER DUMP ROUTINE
(1)	1632	READ_ERROR_REGISTER - Subroutine to read hardware error data

0000 1 .TITLE DYDRIVER - VAX/VMS RX211/RX02 DISK DRIVER
0000 2 :IDENT 'V04-000'
0000 3 *
0000 4 *****
0000 5 *
0000 6 * COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
0000 7 * DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
0000 8 * ALL RIGHTS RESERVED.
0000 9 *
0000 10 * THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
0000 11 * ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
0000 12 * INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
0000 13 * COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
0000 14 * OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
0000 15 * TRANSFERRED.
0000 16 *
0000 17 * THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
0000 18 * AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
0000 19 * CORPORATION.
0000 20 *
0000 21 * DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
0000 22 * SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
0000 23 *
0000 24 *
0000 25 *****
0000 26
0000 27 ++
0000 28
0000 29 FACILITY:
0000 30
0000 31 VAX/VMS RX211/RX02 DISK DRIVER
0000 32
0000 33 AUTHOR:
0000 34
0000 35 C. FRANKS 15-FEB-80
0000 36
0000 37 MODIFIED BY:
0000 38
0000 39 V03-007 RAS0300 Ron Schaefer 27-Apr-1984
0000 40 Add DEV\$M_NNM characteristic to DECHAR2 so that these
0000 41 devices will have the "node\$" prefix.
0000 42
0000 43 V03-006 PRD0034 Paul R. DeStefano 09-Sep-1983
0000 44 Added EXE\$LCLDSKVALID to function decision table.
0000 45
0000 46 V03-005 ROW0211 Ralph O. Weber 16-AUG-1983
0000 47 Change device-dependent UCB definition base from UCBSW_BCR+2
0000 48 to UCBSK_LCL_DISK_LENGTH.
0000 49
0000 50 V03-004 KDM0059 Kathleen D. Morse 14-Jul-1983
0000 51 Change WAIT_TR macro to new macro TIMEDWAIT.
0000 52
0000 53 V03-003 ROW53099 Ralph O. Weber 17-FEB-1983
0000 54 Change timeout interval on WFIKPCH in RX211_REINIT from 2
0000 55 seconds to 3 seconds to allow more time for RX211 to
0000 56 initialize. This corrects conditions which would sometimes
0000 57 cause a transfer to successfully complete with the bytes

DYDRIVER
V04-000

- VAX/VMS RX211/RX02 DISK DRIVER E 13 16-SEP-1984 00:22:58 VAX/VMS Macro V04-00
5-SEP-1984 00:14:25 [DRIVER.SRC]DYDRIVER.MAR;1 Page 2 (1)

0000 58 :
0000 59 :
0000 60 :
0000 61 :
0000 62 :
0000 63 :
0000 64 :
0000 65 :
0000 66 :

transferred count less than the bytes requested count.

V03-002 KDM0002 Kathleen D. Morse 28-Jun-1982
Added \$DYNDEF and \$VADEF.

V03-001 KTA0100 Kerbey T. Altmann 07-Jun-1982
Add code to set UCB\$L_MEDIA_ID.

0000 68
0000 69 : ABSTRACT:
0000 70
0000 71 : THIS MODULE CONTAINS THE TABLES AND ROUTINES NECESSARY TO
0000 72 : PERFORM ALL DEVICE-DEPENDENT PROCESSING OF AN I/O REQUEST
0000 73 : FOR RX211/RX02 AND RX411/RX04 DISK TYPES ON A VAX/VMS SYSTEM.
0000 74
0000 75 : THE PHYSICAL GEOMETRY OF THE DISKETTES ARE:
0000 76
0000 77 : #CYL TRACKS/ CYLINDER SECTORS/ TRACK BYTES/ SECTOR MAXIMUM BLOCKS DISKETTE TYPE
0000 78 :
0000 79 : 80 77 1 26 128 494 RX02 (SINGLE DEN)
0000 80 : 81 77 1 26 256 988 RX02 (DOUBLE DEN)
0000 81 : 82 77 1 26 512 1976 RX04 (QUAD DEN)
0000 82 : 83 77 2 26 256 1989 *
0000 83 :
0000 84 :
0000 85 : SINCE THE SECTOR SIZE IS NOT NECESSARILY ONE BLOCK, AND SINCE
0000 86 : SECTORS ARE INTERLEAVED FOR EFFICIENCY, LOGICAL TO PHYSICAL
0000 87 : CONVERSION OF THE DISK ADDRESS IS PERFORMED IN THIS DRIVER'S
0000 88 : STARTIO ROUTINE RATHER THAN THE IOC\$CVTLOGPHY FDT ROUTINE.
0000 89 :
0000 90 : IF VIRTUAL OR LOGICAL I/O IS BEING PERFORMED, SECTOR NUMBERS
0000 91 : ARE INTERLEAVED TO OPTIMIZE DATA TRANSFER, AND A SKEW OF SIX
0000 92 : SECTORS IS ADDED FOR EACH CYLINDER TO ALLOW FOR SWITCHING TIME.
0000 93 : ALSO, THE FIRST TRACK IS SKIPPED FOR INDUSTRY COMPATIBILITY.
0000 94 :
0000 95 : SINGLE SIDED DISKETTES CAN BE RECORDED WITH SINGLE (RX01 COMPATIBLE)
0000 96 : OR DOUBLE DENSITY DATA. DISKETTE DENSITY IS CHANGED VIA THE
0000 97 : IOS FORMAT FUNCTION. EXISTING DISKETTE DENSITY CAN BE DETERMINED BY
0000 98 : EXAMINING UCB\$L_MAXBLOCK VIA THE \$GETCHN OR \$GETDEV SYSTEM SERVICES.
0000 99 :
0000 100 : THE IOS WRITEPBLK FUNCTION CAN BE ISSUED WITH A 'DELETED DATA'
0000 101 : MODIFIER WHICH WILL CAUSE A DELETED DATA ADDRESS MARK TO BE
0000 102 : WRITTEN PRIOR TO WRITING THE DATA IN EACH SECTOR. SUBSEQUENT
0000 103 : READING OF DATA FROM A SECTOR WITH A DELETED DATA ADDRESS MARK
0000 104 : WILL CAUSE THE DATA TO BE RETURNED WITH THE STATUS CODE
0000 105 : \$\$\$_RDDELETED IF SUCCESSFUL.
0000 106 :
0000 107 : IOS PACKACK MUST BE THE FIRST FUNCTION ISSUED TO A DISKETTE
0000 108 : AFTER IT HAS BEEN PLACED IN A DRIVE (TO UPDATE THE UCB
0000 109 : WITH THE DISKETTE'S DENSITY AND # SIDES).
0000 110 :
0000 111 : THE RX211 DOES NOT PERFORM EXPLICIT SEEKS, SO OVERLAPPED SEEKS
0000 112 : ARE NOT SUPPORTED BY THIS DRIVER.
0000 113 :
0000 114 : THIS DRIVER WILL ONLY SUPPORT RX211 CONTROLLERS WHOSE HARDWARE
0000 115 : SWITCH IS IN THE RX02 (NOT RX01) POSITION.
0000 116 :
0000 117 : * NOTE: CODE HAS BEEN INCLUDED FOR A FUTURE DOUBLE SIDED, DOUBLE
0000 118 : DENSITY FLOPPY. IF THIS PRODUCT BECOMES A REALITY, COMPATIBILITY
0000 119 : WITH OTHER DEC OPERATING SYSTEMS SHOULD BE CHECKED WITH REGARD TO
0000 120 : THE FOLLOWING ASSUMPTIONS MADE BY THIS DRIVER:
0000 121 : (1) THE SIX SECTOR SKEW IS APPLIED ONLY WHEN SWITCHING
0000 122 : CYLINDERS, NOT WHEN SWITCHING SURFACES.
0000 123 : (2) AS WITH OTHER DISKS, ADDRESSES ARE SPIRALLED. THAT IS, UPON
0000 124 : REACHING THE END OF TRACK, THE NEXT SURFACE IS ADDRESSED. ONLY

ABSTRACT:

THIS MODULE CONTAINS THE TABLES AND ROUTINES NECESSARY TO
PERFORM ALL DEVICE-DEPENDENT PROCESSING OF AN I/O REQUEST
FOR RX211/RX02 AND RX411/RX04 DISK TYPES ON A VAX/VMS SYSTEM.

THE PHYSICAL GEOMETRY OF THE DISKETTES ARE:

#CYL	TRACKS/ CYLINDER	SECTORS/ TRACK	BYTES/ SECTOR	MAXIMUM BLOCKS	DISKETTE TYPE
80	77	1	26	128	494 RX02 (SINGLE DEN)
81	77	1	26	256	988 RX02 (DOUBLE DEN)
82	77	1	26	512	1976 RX04 (QUAD DEN)
83	77	2	26	256	1989 *

SINCE THE SECTOR SIZE IS NOT NECESSARILY ONE BLOCK, AND SINCE
SECTORS ARE INTERLEAVED FOR EFFICIENCY, LOGICAL TO PHYSICAL
CONVERSION OF THE DISK ADDRESS IS PERFORMED IN THIS DRIVER'S
STARTIO ROUTINE RATHER THAN THE IOC\$CVTLOGPHY FDT ROUTINE.

IF VIRTUAL OR LOGICAL I/O IS BEING PERFORMED, SECTOR NUMBERS
ARE INTERLEAVED TO OPTIMIZE DATA TRANSFER, AND A SKEW OF SIX
SECTORS IS ADDED FOR EACH CYLINDER TO ALLOW FOR SWITCHING TIME.
ALSO, THE FIRST TRACK IS SKIPPED FOR INDUSTRY COMPATIBILITY.

SINGLE SIDED DISKETTES CAN BE RECORDED WITH SINGLE (RX01 COMPATIBLE)
OR DOUBLE DENSITY DATA. DISKETTE DENSITY IS CHANGED VIA THE
IOS FORMAT FUNCTION. EXISTING DISKETTE DENSITY CAN BE DETERMINED BY
EXAMINING UCB\$L_MAXBLOCK VIA THE \$GETCHN OR \$GETDEV SYSTEM SERVICES.

THE IOS WRITEPBLK FUNCTION CAN BE ISSUED WITH A 'DELETED DATA'
MODIFIER WHICH WILL CAUSE A DELETED DATA ADDRESS MARK TO BE
WRITTEN PRIOR TO WRITING THE DATA IN EACH SECTOR. SUBSEQUENT
READING OF DATA FROM A SECTOR WITH A DELETED DATA ADDRESS MARK
WILL CAUSE THE DATA TO BE RETURNED WITH THE STATUS CODE
\$\$\$_RDDELETED IF SUCCESSFUL.

IOS PACKACK MUST BE THE FIRST FUNCTION ISSUED TO A DISKETTE
AFTER IT HAS BEEN PLACED IN A DRIVE (TO UPDATE THE UCB
WITH THE DISKETTE'S DENSITY AND # SIDES).

THE RX211 DOES NOT PERFORM EXPLICIT SEEKS, SO OVERLAPPED SEEKS
ARE NOT SUPPORTED BY THIS DRIVER.

THIS DRIVER WILL ONLY SUPPORT RX211 CONTROLLERS WHOSE HARDWARE
SWITCH IS IN THE RX02 (NOT RX01) POSITION.

* NOTE: CODE HAS BEEN INCLUDED FOR A FUTURE DOUBLE SIDED, DOUBLE
DENSITY FLOPPY. IF THIS PRODUCT BECOMES A REALITY, COMPATIBILITY
WITH OTHER DEC OPERATING SYSTEMS SHOULD BE CHECKED WITH REGARD TO
THE FOLLOWING ASSUMPTIONS MADE BY THIS DRIVER:

- (1) THE SIX SECTOR SKEW IS APPLIED ONLY WHEN SWITCHING
CYLINDERS, NOT WHEN SWITCHING SURFACES.
- (2) AS WITH OTHER DISKS, ADDRESSES ARE SPIRALLED. THAT IS, UPON
REACHING THE END OF TRACK, THE NEXT SURFACE IS ADDRESSED. ONLY

DYDRIVER
V04-000

- VAX/VMS RX211/RX02 DISK DRIVER

G 13

16-SEP-1984 00:22:58 VAX/VMS Macro V04-00
5-SEP-1984 00:14:25 [DRIVER.SRC]DYDRIVER.MAR;1

Page 4
(1)

0000 125 ;--
0000 126 ;--

WHEN NO MORE SURFACES REMAIN IS THE NEXT CYLINDER ADDRESSED.

```

0000 128 .SBTTL EXTERNAL AND LOCAL DEFINITIONS
0000 129
0000 130
0000 131 ; EXTERNAL SYMBOLS
0000 132
0000 133
0000 134 $ADPDEF ;DEFINE ADAPTER CONTROL BLOCK
0000 135 $CRBDEF ;DEFINE CHANNEL REQUEST BLOCK
0000 136 $DCDEF ;DEFINE DEVICE CLASS
0000 137 $DDBDEF ;DEFINE DEVICE DATA BLOCK
0000 138 $DEVDEF ;DEFINE DEVICE CHARACTERISTICS
0000 139 $DPTDEF ;DEFINE DRIVER PROLOGUE TABLE
0000 140 $DYNDEF ;DEFINE DYNAMIC DATA STRUCTURES
0000 141 $EMBDEF ;DEFINE ERROR MESSAGE BUFFER
0000 142 $IDBDEF ;DEFINE INTERRUPT DATA BLOCK
0000 143 $IODEF ;DEFINE I/O FUNCTION CODES
0000 144 $IRPDEF ;DEFINE I/O REQUEST PACKET
0000 145 $PRDEF ;DEFINE PROCESSOR REGISTERS
0000 146 $SSDEF ;DEFINE SYSTEM STATUS CODES
0000 147 $UCBDEF ;DEFINE UNIT CONTROL BLOCK
0000 148 $VADEF ;DEFINE VIRTUAL ADDRESS FIELDS
0000 149 $VECDEF ;DEFINE INTERRUPT VECTOR BLOCK
0000 150
0000 151
0000 152 ; LOCAL MACROS
0000 153
0000 154
0000 155
0000 156 ; DISABLE INTERRUPTS AND CHECK IF POWER HAS FAILED
0000 157
0000 158
0000 159 .MACRO CKPWR ?L1
0000 160 DSBINT
0000 161 BBC #UCBSV_POWER,- ;DISABLE INTERRUPTS
0000 162 UCBSW_STS(R5),L1 ;IF CLR - NO POWER FAILURE
0000 163 ENBINT
0000 164 BRW PWRFAIL ;...
0000 165 L1: EXIT
0000 166 .ENDM RETURN FOR NO POWER FAILURE
0000 167
0000 168
0000 169 ; CHECK IF DEVICE IS OFFLINE
0000 170
0000 171
0000 172
0000 173 .MACRO CKOFL ?L2,?L3
0000 174 BSBW DY_MERGE ;MERGE UNIT,DEN,IE,GO,HS,XBA BITS IN R2
0000 175 CKPWR
0000 176 BISW3 R2,#F READSTATUS,RY_CS(R4) ;CHECK FOR PWR FAILURE & DSBINT
0000 177 WFIKPCH L2,#10 ;EXECUTE READ STATUS FUNCTION
0000 178 IOFORK ;Wait for interrupt.
0000 179 L2: ;CREATE FORK PROCESS
0000 180 SETIPL UCBSB_FIPL(R5) ; Lower IPL in case due to TIMEOUT.
0000 181 BICW #UCBSR_TIMEOUT,UCBSW_STS(R5) ;CLEAR DEVICE TIMEOUT
0000 182 BITW #RY_DB_M_DRDY,UCBSW_DY_DB(R5) ;IS DRIVE READY?
0000 183 BNEQ L3 ;IF NEQ - YES, ONLINE
0000 184 MOVZWL #SSS_MEDOFL,RO ;SET MEDIUM OFFLINE STATUS

```

```

0000 185 BRW FUNCXT :AND EXIT
0000 186 L3: .ENDM :RETURN FOR DEVICE ONLINE

0000 188 :
0000 189 : LOCAL SYMBOLS
0000 190 :
0000 191 :
0000 192 :
00000002 0000 193 RY_NUM_REGS =2 :NUMBER OF DEVICE REGISTERS
000001EE 0000 194 RY_SSSD =494 :S SIDED,S DENSITY MAXBLOCKS (26*76/4)
000003DC 0000 195 RY_SSDD =988 :S SIDED,D DENSITY MAXBLOCKS (26*76/2)
000007C5 0000 196 RY_DSDD =1989 :D SIDE,D DEN MXBLK (26*76/2)+(26*77/2)
00000040 0000 197 RY_SWPS =64 :SINGLE DENSITY WORDS/SECTOR
0000001A 0000 198 RY_SECTORS =26 :NUMBER OF SECTORS PER TRACK
0000004D 0000 199 RY_CYLINDERS =77 :NUMBER OF CYLINDERS
00000002 0000 200 RY_RX01SW =2 :UCBSB_DY_ER BIT FOR RX01 SW ERROR
00000001 0000 201 RY_DPPE =1 :UCBSB_DY_ER BIT FOR PURGE ERROR

0000 202 :
0000 203 ; Symbols added for RX04 support.

000007B8 0000 204 RY_SSQD =1976 :S sided,q density maxblocks (26*76)
00000080 0000 206 RY_DWPS =128 :Double density Words/sector.
00000100 0000 207 RY_QWPS =256 :Quad density WORDS/SECTOR.
00000000 0000 208 RY_DENSITY_SINGLE=0 :Value to insert in RY_CS register.
00000001 0000 209 RY_DENSITY_DOUBLE=1 :
00000002 0000 210 RY_DENSITY_QUAD=2 :

0000 211 :
0000 212 : UCB OFFSETS WHICH FOLLOW THE STANDARD UCB FIELDS
0000 213 :
0000 214 :
0000 215 $DEFINI UCB :START OF UCB DEFINITIONS
0000 216 :
000000CC 0000 217 .=UCBSK_LCL_DISK_LENGTH :BEGIN DEFINITIONS AT END OF UCB
00CC 218 $DEF UCB$W_DY_WPS .BLKW 1 :Words per sector.
00CE 219 $DEF UCB$W_DY_CS .BLKW 1 :CONTROL STATUS REGISTER
00D0 220 $DEF UCB$W_DY_DB .BLKW 1 :DATA BUFFER REGISTER
00D2 221 $DEF UCB$W_DY_DPN .BLKW 1 :DATA PATH NUMBER
00D4 222 $DEF UCB$L_DY_DPR .BLKL 1 :DATAPATH REGISTER
00D8 223 $DEF UCB$L_DY_FMPR .BLKL 1 :FINAL MAP REGISTER
00DC 224 $DEF UCB$L_DY_PMPR .BLKL 1 :PREVIOUS MAP REGISTER
00E0 225 $DEF UCB$B_DY_ER .BLKB 1 :SPECIAL ERROR REGISTER
00E1 226 .BLKB 1 :Reserved.
00E2 227 $DEF UCB$B_DY_LCT .BLKB 1 :LOOP COUNTER
00E3 228 $DEF UCB$B_DY_XBA .BLKB 1 :BUS ADDRESS EXTENSION BITS
00E4 229 $DEF UCB$W_DY_PWC .BLKW 1 :PARTIAL WORD COUNT
00E6 230 $DEF UCB$W_DY_SBA .BLKW 1 :SAVED BUFFER ADDRESS
00E8 231 $DEF UCB$L_DY_XFER .BLKL 1 :TRANSFER FUNCTION CSR BITS
00EC 232 $DEF UCB$L_DY_LMEDIA .BLKL 1 :LOGICAL MEDIA ADDRESS
00F0 233 $DEF UCB$Q_DY_EXTENDED_STATUS .BLKQ 1 : Area into which we do READ ERROR
00F0 234 .BLKQ 1 : REGISTER command.

000000F8 00F8 235 RY_EXTENDED_STATUS_LENGTH = .-UCBSQ_DY_EXTENDED_STATUS
00F8 236 :
00F8 237 :
00F8 238 $DEF UCB$Q_DY_SVAPTE TMP .BLKQ 1 : Area in which we save UCB fields -
00000100 00F8 239 UCB$L_DY_MAPREG TMP .BLKL 1 : SVAPTE, BOFF, and BCNT.
0100 240 $DEF UCB$L_DY_MAPREG TMP .BLKL 1 : Area in which we save CRB fields -
00000104 0100 241 .BLKL 1 : MAPREG, NUMREG, and DATAPATH.

```

```

0104 242 SDEF UCBSL_DY_SAVECS .BLKL 1 ; Area in which we save CS and DB regs.
0108 243
0108 244 UCBSK_DY_LEN=.
0108 245
0108 246     $DEFEND UCB ;END OF UCB DEFINITONS
0000 247
0000 248
0000 249 : RX211/RX02 REGISTER OFFSETS FROM CSR ADDRESS
0000 250 :
0000 251     $DEFINI RY ; START OF REGISTER DEFINITIONS
0000 252
0000 253 SDEF RY_CS .BLKW 1 ; CONTROL STATUS REGISTER (CSR)
0002 254     _VIELD RY_CS,0,<- ; START OF CSR BIT DEFINITIONS
0002 255 <GO,,M>,- ; GO
0002 256 <FCODE,,S>,- ; FUNCTION CODE
0002 257 <US,,M>,- ; UNIT SELECT
0002 258 <DONE,,M>,- ; DONE - FUNCTION COMPLETE
0002 259 <IE,,M>,- ; INTERRUPT ENABLE
0002 260 <TR,,M>,- ; TRANSFER REQUEST
0002 261 <DEN,2>,- ; Density
0002 262 <,1>,- ; RESERVED BIT
0002 263 <RX02,,M>,- ; DEVICE TYPE
0002 264 <XBA,2>,- ; BUS ADDRESS EXTENSION BITS
0002 265 <INIT,,M>,- ; INITIALIZE
0002 266 <ERR,,M>,- ; ERROR
0002 267 > ; END CSR BIT DEFINITIONS
0002 268
0002 269 SDEF RY_DB .BLKW 1 ; DATA BUFFER REGISTER (DBR)
0004 270     _VIELD RY_DB,0,<- ; START OF DBR BIT DEFINITIONS
0004 271 <CRC,,M>,- ; CRC ERROR
0004 272 <QDEN,,M>,- ; Quad density
0004 273 <ID,,M>,- ; INITIALIZE DONE
0004 274 <ACLO,,M>,- ; AC PWR FAILURE
0004 275 <DE,,M>,- ; DENSITY ERROR
0004 276 <DDEN,,M>,- ; DRIVE DENSITY
0004 277 <DELD,,M>,- ; DELETED DATA
0004 278 <DRDY,,M>,- ; DRIVE READY
0004 279 <US,,M>,- ; UNIT SELECT
0004 280 <RX04,,M>,- ; RX04 bit
0004 281 <WCO,,M>,- ; WORD COUNT OVERFLOW
0004 282 <NXM,,M>,- ; NON-EXISTENT MEMORY
0004 283 <,4>,- ; RESERVED BITS
0004 284 > ; END DBR BIT DEFINITIONS
0004 285
0004 286     $DEFEND RY ; END RX211/RX02,RX03 REGISTER DEFINITIONS
0000 287
0000 288
0000 289 : HARDWARE FUNCTION CODES
0000 290 :
0000 291
00000000 0000 292 F_FILLBUFFER =0*2 ; FILL BUFFER
00000002 0000 293 F_EMPTYBUFFER =1*2 ; EMPTY BUFFER
00000004 0000 294 F_WRITESECTOR =2*2 ; WRITE SECTOR
00000006 0000 295 F_READSECTOR =3*2 ; READ SECTOR
00000008 0000 296 F_SETDEN =4*2 ; SET DENSITY
0000000A 0000 297 F_READSTATUS =5*2 ; READ STATUS
0000000C 0000 298 F_WRITEDEL =6*2 ; WRITE DELETED DATA

```

DYDRIVER
V04-000

- VAX/VMS RX211/RX02 DISK DRIVER
EXTERNAL AND LOCAL DEFINITIONS

K 13

16-SEP-1984 00:22:58 VAX/VMS Macro V04-00
5-SEP-1984 00:14:25 [DRIVER.SRC]DYDRIVER.MAR;1

Page 8
(1)

0000000E 0000 299 F_READERROR =7*2

;Read Error Register.

0000 301 .SBTTL STANDARD TABLES

0000 302

0000 303 :

0000 304 : DRIVER PROLOGUE TABLE

0000 305 :

0000 306 : THE DPT DESCRIBES DRIVER PARAMETERS AND I/O DATABASE FIELDS

0000 307 : THAT ARE TO BE INITIALIZED DURING DRIVER LOADING AND RELOADING

0000 308 :

0000 309 :

0000 310 DPTAB - :DPT CREATION MACRO

0000 311 END=DY END,- :END OF DRIVER LABEL

0000 312 ADAPTER=UBA,- :ADAPTER TYPE = UNIBUS

0000 313 FLAGS=DPTSM SVP,- :SYSTEM PAGE TABLE ENTRY REQUIRED

0000 314 DEFUNITS=2 = :UNITS 0 AND 1

0000 315 UCBSIZE=UCBSK_DY_LEN,- :LENGTH OF UCB

0000 316 NAME=DYDRIVER :DRIVER NAME

0038 317

0038 318 DPT_STORE INIT :START CONTROL BLOCK INIT VALUES

0038 319 DPT_STORE DDB,DDBSL_ACPD,L,<"A\F11\> :DEFAULT ACP NAME

003F 320 DPT_STORE DDB,DDBSL_ACPD+3,B,DDBSK SLOW :ACP CLASS

0043 321 DPT_STORE UCB,UCBSB_FIPL,B,8 :FORK IPL

0047 322 DPT_STORE UCB,UCBSL_DEVCHAR,L,- :DEVICE CHARACTERISTICS

0047 323 <DEVSM_FOD- : FILES ORIENTED

0047 324 !DEVSM_DIR- : DIRECTORY STRUCTURED

0047 325 !DEVSM_AVL- : AVAILABLE

0047 326 !DEVSM_ELG- : ERROR LOGGING

0047 327 !DEVSM_SHR- : SHAREABLE

0047 328 !DEVSM_IDV- : INPUT DEVICE

0047 329 !DEVSM_ODV- : OUTPUT DEVICE

0047 330 !DEVSM_RND> : RANDOM ACCESS

004E 331 DPT_STORE UCB,UCBSL_DEVCHAR2,L,-: DEVICE CHARACTERISTICS

004E 332 <DEVSM_NNM> : PREFIX NAME WITH "node\$"

0055 333 DPT_STORE UCB,UCBSB_DEVCLASS,B,DCS_DISK :DEVICE CLASS

0059 334 DPT_STORE UCB,UCBSW_DEVBUFSIZ,W,512 :DEFAULT BUFFER SIZE

005E 335 DPT_STORE UCB,UCBSB_SECTORS,B,26 :NUMBER OF SECTORS PER TRACK

0062 336 DPT_STORE UCB,UCBSW_CYLINDERS,W,77 :NUMBER OF TRACKS PER CYLINDER

0067 337 DPT_STORE UCB,UCBSB_DIPL,B,21 :DEVICE IPL

006B 338 DPT_STORE UCB,UCBSB_ERTMÁX,B,10 :MAX ERROR RETRY COUNT

006F 339 DPT_STORE UCB,UCBSW_DEVSTS,W,- :INHIBIT LOG TO PHYS CONVERSION IN FDT

006F 340 <UCBSM_NOCNVRT> :...

0074 341

0074 342 DPT_STORE REINIT :START CONTROL BLOCK RE-INIT VALUES

0074 343 DPT_STORE CRB,CRBSL_INTD+4,D,DY INT :INTERRUPT SERVICE ROUTINE ADDRESS

0079 344 DPT_STORE CRB,CRBSL_INTD+VECSL_INITIAL,- :CONTROLLER INIT ADDRESS

0079 345 D,DY RX211 INIT

007E 346 DPT_STORE CRB,CRBSE_INTD+VECSL_UNITINIT,- :UNIT INIT ADDRESS

007E 347 D,DY RX02 INIT

0083 348 DPT_STORE DDB,DDBSE_DDT,D,DYSDDT :DDT ADDRESS

0088 349

0088 350 DPT_STORE END :END OF INITIALIZATION TABLE

0000 351

0000 352

0000 353 : DRIVER DISPATCH TABLE

0000 354 :

0000 355 : THE DDT LISTS ENTRY POINTS FOR DRIVER SUBROUTINES WHICH ARE

0000 356 : CALLED BY THE OPERATING SYSTEM.

0000 357 :

0000	358		
0000	359	DDTAB	-
0000	360	DEVNAM=DY,	: DDT CREATION MACRO
0000	361	START=DY STARTIO,-	: NAME OF DEVICE
0000	362	UNSOLIC=DY UNSOLINT,-	: START I/O ROUTINE
0000	363	FUNCTB=DY FUNCTABLE,-	: UNSOLICITED INTERRUPT
0000	364	CANCEL=0,=	: FUNCTION DECISION TABLE
0000	365	REGDMP=DY REGDUMP,-	: CANCEL=NO-OP FOR FILES DEVICE
0000	366	DIAGBF=<<RY_NUM_REGS+7+5+3+1>*4>,-	: REGISTER DUMP ROUTINE
0000	367	ERLGBF=<<<RY_NUM_REGS+7+1>*4>+<EMBSL_DV_REGSAV>>:>	: BYTES IN DIAG BUFFER
0038	368		: BYTES IN ERLGBF
0038	369	: DIAGNOSTIC BUFFER SIZE = <<2 RX02 REGISTER LONGWORDS + 7 UCB FIELD LONGWORDS	: ERRLOG BUFFER
0038	370	+ 5 IOCSDIAGBUFLILL LONGWORDS + 3 BUFFER ALLOCATION	
0038	371	LONGWORDS + 1 LONGWORD FOR # REGISTERS IN DY_REGDUMP>	
0038	372	* 4 BYTES/LONGWORD>	
0038	373		
0038	374	: ERROR LOG BUFFER SIZE = <<<2 RX02 REGISTER LONGWORDS + 7 UCB FIELD LONGWORDS	
0038	375	+ 1 LONGWORD FOR # REGISTERS IN DY_REGDUMP>	
0038	376	* 4 BYTES/LONGWORD> + BYTES NEEDED FOR ERROR LOGGER	
0038	377	TO SAVE SOFTWARE REGISTERS>	

0038 379 :
0038 380 : FUNCTION DECISION TABLE
0038 381 :
0038 382 : THE FDT LISTS VALID FUNCTION CODES, SPECIFIES WHICH
0038 383 : CODES ARE BUFFERED, AND DESIGNATES SUBROUTINES TO
0038 384 : PERFORM PREPROCESSING FOR PARTICULAR FUNCTIONS.
0038 385 :
0038 386 :
0038 387 : DY_FUNCTABLE:
0038 388 : FUNCTAB :-
0038 389 : <FORMAT,-
0038 390 : UNLOAD,-
0038 391 : PACKACK,-
0038 392 : AVAILABLE,-
0038 393 : SENSECHAR,-
0038 394 : SETCHAR,-
0038 395 : SENSEMODE,-
0038 396 : SETMODE,-
0038 397 : READLBLK,-
0038 398 : WRITELBLK,-
0038 399 : READPBLK,-
0038 400 : WRITEPBLK,-
0038 401 : READVBLK,-
0038 402 : WRITEVBLK,-
0038 403 : ACCESS,-
0038 404 : ACPCONTROL,-
0038 405 : CREATE,-
0038 406 : DEACCESS,-
0038 407 : DELETE,-
0038 408 : MODIFY,-
0038 409 : MOUNT-
0038 410 : >
0040 411 : FUNCTAB :-
0040 412 : <FORMAT,-
0040 413 : UNLOAD,-
0040 414 : PACKACK,-
0040 415 : AVAILABLE,-
0040 416 : SENSECHAR,-
0040 417 : SETCHAR,-
0040 418 : SENSEMODE,-
0040 419 : SETMODE,-
0040 420 : ACCESS,-
0040 421 : ACPCONTROL,-
0040 422 : CREATE,-
0040 423 : DEACCESS,-
0040 424 : DELETE,-
0040 425 : MODIFY,-
0040 426 : MOUNT-
0040 427 : >
0048 428 : FUNCTAB DY ALIGN,-
0048 429 : <READLBLK,-
0048 430 : READPBLK,-
0048 431 : READVBLK,-
0048 432 : WRITELBLK,-
0048 433 : WRITEPBLK,-
0048 434 : WRITEVBLK-
0048 435 :>

: LIST LEGAL FUNCTIONS
: SET MEDIA DENSITY AND REFORMAT DISK
: UNLOAD
: PACK ACKNOWLEDGE
: AVAILABLE
: SENSE CHARACTERISTICS
: SET CHARACTERISTICS
: SENSE MODE
: SET MODE
: READ LOGICAL BLOCK
: WRITE LOGICAL BLOCK
: READ PHYSICAL BLOCK
: WRITE PHYSICAL BLOCK
: READ VIRTUAL BLOCK
: WRITE VIRTUAL BLOCK
: ACCESS FILE / FIND DIRECTORY ENTRY
: ACP CONTROL FUNCTION
: CREATE FILE AND/OR DIRECTORY ENTRY
: DEACCESS FILE
: DELETE FILE AND/OR DIRECTORY ENTRY
: MODIFY FILE ATTRIBUTES
: MOUNT VOLUME

: BUFFERED FUNCTIONS
: FORMAT
: UNLOAD
: PACK ACKNOWLEDGE
: AVAILABLE
: SENSE CHARACTERISTICS
: SET CHARACTERISTICS
: SENSE MODE
: SET MODE
: ACCESS FILE / FIND DIRECTORY ENTRY
: ACP CONTROL FUNCTION
: CREATE FILE AND/OR DIRECTORY ENTRY
: DEACCESS FILE
: DELETE FILE AND/OR DIRECTORY ENTRY
: MODIFY FILE ATTRIBUTES
: MOUNT VOLUME

: TEST ALIGNMENT FUNCTIONS
: READ LOGICAL BLOCK
: READ PHYSICAL BLOCK
: READ VIRTUAL BLOCK
: WRITE LOGICAL BLOCK
: WRITE PHYSICAL BLOCK
: WRITE VIRTUAL BLOCK

0054	436	FUNCTION +ACPSREADBLK,-	: READ FUNCTIONS
0054	437	<READLBLK,-	: READ LOGICAL BLOCK
0054	438	READPBLK,-	: READ PHYSICAL BLOCK
0054	439	READVBLK-	: READ VIRTUAL BLOCK
0054	440	>	
0060	441	FUNCTION +ACPSWRITEBLK,-	: WRITE FUNCTIONS
0060	442	<WRITELBLK,-	: WRITE LOGICAL BLOCK
0060	443	WRITEPBLK,-	: WRITE PHYSICAL BLOCK
0060	444	WRITEVBLK-	: WRITE VIRTUAL BLOCK
0060	445	>	
006C	446	FUNCTION +ACPSACCESS,-	: ACCESS FUNCTIONS
006C	447	<ACCESS,-	: ACCESS FILE / FIND DIRECTORY ENTRY
006C	448	CREATE-	: CREATE FILE AND/OR DIRECTORY ENTRY
006C	449	>	
0078	450	FUNCTION +ACPSDEACCESS,-	: DEACCESS FUNCTION
0078	451	<DEACCESS-	: DEACCESS FILE
0078	452	>	
0084	453	FUNCTION +ACPSMODIFY,-	: MODIFY FUNCTIONS
0084	454	<ACPCONTROL,-	: ACP CONTROL FUNCTION
0084	455	DELETE,-	: DELETE FILE AND/OR DIRECTORY ENTRY
0084	456	MODIFY-	: MODIFY FILE ATTRIBUTES
0084	457	>	
0090	458	FUNCTION +ACPSMOUNT,-	: MOUNT FUNCTION
0090	459	<MOUNT-	: MOUNT VOLUME
0090	460	>	
009C	461	FUNCTION +EXESLCLDISKVALID,-	: LOCAL DISK VALID FUNCTIONS
009C	462	<UNLOAD,-	: UNLOAD VOLUME
009C	463	AVAILABLE,-	: UNIT AVAILABLE
009C	464	PACKACK-	: PACK ACKNOWLEDGE
009C	465	>	
00A8	466	FUNCTION +EXESZEROPARM,-	: ZERO PARAMETER FUNCTIONS
00A8	467	<UNLOAD,-	: UNLOAD
00A8	468	PACKACK,-	: PACK ACKNOWLEDGE
00A8	469	AVAILABLE,-	: AVAILABLE
00A8	470	>	
00B4	471	FUNCTION +EXESONEPARAM,-	: ONE PARAMETER FUNCTION
00B4	472	<FORMAT-	: FORMAT
00B4	473	>	
00C0	474	FUNCTION +EXESSENSEMODE,-	: SENSE FUNCTIONS
00C0	475	<SENSECHAR,-	: SENSE CHARACTERISTICS
00C0	476	SENSEMODE-	: SENSE MODE
00C0	477	>	
00CC	478	FUNCTION +EXESSETCHAR,-	: SET FUNCTIONS
00CC	479	<SETCHAR,-	: SET CHARACTERISTICS
00CC	480	SETMODE-	: SET MODE
00CC	481	>	

00D8 483 .SBTTL CONTROLLER INITIALIZATION ROUTINE
 00D8 484
 00D8 485 :++
 00D8 486 :
 00D8 487 : DY_RX211_INIT - CONTROLLER INITIALIZATION ROUTINE
 00D8 488 :
 00D8 489 : FUNCTIONAL DESCRIPTION:
 00D8 490 :
 00D8 491 : THIS ROUTINE INITIALIZES THE RX211 CONTROLLER FOR I/O OPERATIONS.
 00D8 492 : IF THE INITIALIZATION IS NOT COMPLETE WITHIN ONE SECOND, CONTROL
 00D8 493 : IS RETURNED TO THE CALLER.
 00D8 494 :
 00D8 495 : THE OPERATING SYSTEM CALLS THIS ROUTINE:
 00D8 496 : - AT SYSTEM STARTUP
 00D8 497 : - DURING DRIVER LOADING
 00D8 498 : - DURING RECOVERY FROM POWER FAILURE
 00D8 499 : THE DRIVER CALLS THIS ROUTINE TO INIT AFTER AN NXM ERROR.
 00D8 500 :
 00D8 501 : INPUTS:
 00D8 502 :
 00D8 503 : R4 - CSR ADDRESS (CONTROLLER STATUS REGISTER)
 00D8 504 : R5 - IDB ADDRESS (INTERRUPT DATA BLOCK)
 00D8 505 :
 00D8 506 : OUTPUTS:
 00D8 507 :
 00D8 508 : THE HEADS FOR ALL DRIVES CONNECTED TO THIS CONTROLLER ARE LOCATED AT
 00D8 509 : TRACK ZERO, AND THE ERROR AND STATUS REGISTER IS CLEARED.
 00D8 510 : ALL GENERAL REGISTERS (R0 - R15) ARE PRESERVED.
 00D8 511 :
 00D8 512 :--
 00D8 513 :
 00D8 514 : DY_RX211_INIT:
 64 7E 50 7D 00D8 515 MOVQ R0,-(SP) ;RX211 CONTROLLER INITIALIZATION
 4000 8F B0 00DB 516 MOVW #RY_CS_M INIT_RY_CS(R4) ;SAVE R0-R1
 00E0 517 TIMEDWAIT TIME=#T00*1000,- ;EXECUTE RX211 INITIALIZATION
 00E0 518 INS1=<BITW #RY_CS_M DONE,RY_CS(R4),- ;ONE SECOND WAIT LOOP
 00E0 519 INS2=<BNEQ 10\$5,- ;DONE ?
 00E0 520 DONELBL=10\$;IF NEQ = YES
 50 8E 7D 0107 521 20\$: MOVQ (SP)+,R0 ;DONE LABEL
 05 010A 522 RSB ;RESTORE R0-R1
 ;RETURN

010B 524 .SBTTL INTERNAL CONTROLLER RE-INITIALIZATION
010B 525
010B 526 ++
010B 527 :+
010B 528 RX211_REINIT - Internal subroutine used to issue an Rx211 initialize function
010B 529 without hanging on at elevated IPL waiting for it to finish.
010B 530 Because the RX211 initialize does not interrupt when complete,
010B 531 we rely upon a device timeout to resume the driver thread after
010B 532 invoking the initialize.
010B 533
010B 534 INPUTS:
010B 535 R4 => RX211 CSR
010B 536 R5 => UCB
010B 537 :
010B 538
010B 539 RX211_REINIT:
53 8ED0 010B 540 POPL R3 ; Save return point.
64 4000 8F 80 010E 541 DSBINT
0114 542 MOVW #RY_CS_M_INIT,RY_CS(R4) ; Execute RX211 initialize.
0119 543 WFIKPCH 10\$,#3 ; Wait for interrupt that doesn't come.
0123 544 IOFORK ; We should never come here.
0129 545 10\$: SETIPL UCB\$B_FIPL(R5) ; Lower to fork level.
0040 8F AA 012D 546 BICW #UCBSM_TIMEOUT,- ; Clear timeout status.
64 A5 0131 547 UCB\$W_STS(R5)
63 17 0133 548 JMP (R3) ; Return to caller.

0135 551 .SBTTL UNIT INITIALIZATION ROUTINE
0135 552
0135 553 ++
0135 554
0135 555 DY_RX02_INIT - UNIT INITIALIZATION ROUTINE
0135 556
0135 557 FUNCTIONAL DESCRIPTION:
0135 558
0135 559 THIS ROUTINE SETS THE RX02 UNIT ONLINE.
0135 560
0135 561 NO ATTEMPT IS MADE TO READ THE DENSITY, OR # SIDES OF THE UNIT IN
0135 562 THIS ROUTINE SINCE THE DRIVE MUST BE LOADED WITH A DISKETTE FOR
0135 563 THAT OPERATION TO BE VALID. THESE CHARACTERISTICS CAN BE UPDATED IN
0135 564 THE UCB BY ISSUING AN IOS_PACKACK FUNCTION.
0135 565
0135 566 THE OPERATING SYSTEM CALLS THIS ROUTINE:
0135 567 - AT SYSTEM STARTUP
0135 568 - DURING DRIVER LOADING
0135 569 - DURING RECOVERY FROM POWER FAILURE
0135 570
0135 571 INPUTS:
0135 572
0135 573 R4 - CSR ADDRESS (CONTROLLER STATUS REGISTER)
0135 574 R5 - UCB ADDRESS (UNIT CONTROL BLOCK)
0135 575
0135 576 OUTPUTS:
0135 577
0135 578 THE UNIT IS SET ONLINE.
0135 579 ALL GENERAL REGISTERS (R0-R15) ARE PRESERVED.
0135 580
0135 581 ;--
0135 582
0135 583 DY_RX02_INIT: ;RX02 UNIT INITIALIZATION
0135 584
64 A5 10 A8 0135 585 BISW #UCBSM_ONLINE,UCBSW_STS(R5) ;SET UCB STATUS ONLINE
40 A5 01 90 0139 586 MOVB #DCS_DISK,UCBSB_DEVCLASS(R5) ;SET DISK DEVICE CLASS
41 A5 0B 90 013D 587 MOVB #DTS_RX02,UCBSB_DEVTYPE(R5) ;ASSUME RX02 DEVICE TYPE
05 0141 588 RSB ;RETURN

0142 590 .SBTTL DRIVER SPECIFIC SUBROUTINES
 0142 591
 0142 592
 0142 593
 0142 594
 0142 595
 0142 596
 0142 597
 0142 598
 0142 599
 0142 600
 0142 601
 0142 602
 0142 603
 0142 604
 0142 605
 0142 606
 0142 607
 0142 608
 0142 609
 0142 610 DY_MERGE:
 52 01 52 0041 8F B0 0142 611 MOVW #RY_CS_M_GO!RY_CS_M IE,R2 ;MERGE CSR BITS IN R2
 04 54 A5 F0 0147 612 INSV UCB\$W UNIT(R5),#4,NT,R2 ;SET GO AND IE BITS IN R2
 00B0 C5 01EE 8F B1 014D 613 ASSUME RY_DENSITY SINGLE EQ 0
 13 13 0154 614 CMPW #RY_SSSD,UCBSL_MAXBLOCK(R5) ;MERGE UNIT NUMBER IN R2<4>
 02 F0 0156 615 BEQL 10\$;SINGLE DENSITY?
 08 0158 616 INSV #RY_DENSITY QUAD,- ;IF EQL - YES
 52 02 0159 617 #RY_CS_V_DEN,-
 07B8 8F B1 015B 618 #RY_CS_S_DEN,R2
 00B0 C5 015F 620 CMPW #RY_SSQD,-
 05 13 0162 621 UCB\$L_MAXBLOCK(R5) ;See if indeed QUAD density.
 01 F0 0164 622 BEQL 10\$;If QUAD, then we are all set.
 08 0166 623 INSV #RY_DENSITY DOUBLE,- ;Else must be DOUBLE density so
 52 02 0167 624 #RY_CS_V_DEN,- ;setup CSR register value accordingly.
 05 0169 625 10\$: RSB ;RETURNS

016A 627 .SBTTL FDT ROUTINES
 016A 628 :++
 016A 629
 016A 630 DY_ALIGN - FDT ROUTINE TO TEST XFER BYTE COUNT
 016A 631
 016A 632 FUNCTIONAL DESCRIPTION:
 016A 633 THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER
 016A 634 TO CHECK THE BYTE COUNT PARAMETER SPECIFIED BY THE USER PROCESS
 016A 635 FOR AN EVEN NUMBER OF BYTES (WORD BOUNDARY).
 016A 636
 016A 637 INPUTS:
 016A 638
 016A 639
 016A 640 R3 - IRP ADDRESS (I/O REQUEST PACKET)
 016A 641 R4 - PCB ADDRESS (PROCESS CONTROL BLOCK)
 016A 642 R5 - UCB ADDRESS (UNIT CONTROL BLOCK)
 016A 643 R6 - CCB ADDRESS (CHANNEL CONTROL BLOCK)
 016A 644 R7 - BIT NUMBER OF THE I/O FUNCTION CODE
 016A 645 R8 - ADDRESS OF FDT TABLE ENTRY FOR THIS ROUTINE
 016A 646 4(AP) - ADDRESS OF FIRST FUNCTION DEPENDENT QIO PARAMETER
 016A 647
 016A 648 OUTPUTS:
 016A 649
 016A 650 IF THE QIO BYTE COUNT PARAMETER IS ODD, THE I/O OPERATION IS
 016A 651 TERMINATED WITH AN ERROR. IF IT IS EVEN, CONTROL IS RETURNED
 016A 652 TO THE FDT DISPATCHER.
 016A 653
 016A 654 :--
 016A 655
 016A 656 DY_ALIGN:
 01 04 AC E8 016A 657 BLBS 4(AP),10\$:CHECK BYTE COUNT AT P1(AP)
 50 034C 8F 05 016E 658 RSB :IF LBS - ODD BYTE COUNT
 00000000'GF 3C 016F 659 10\$: MOVZWL #SS\$ IVBUflen,RO :EVEN - RETURN TO CALLER
 17 0174 660 JMP G^EXE\$ABORTIO :SET BUFFER ALIGNMENT STATUS
 :ABORT I/O

0092 C5 51	90	019F	719	MOVBL	R1,UCBSB_FEX(R5)	: STORE FUNCTION DISPATCH INDEX
68 A5 02	AA	01A4	720	BICW	#UCBSM_DIAGBUF,UCBSW_DEVSTS(R5)	; CLR DIAGNOSTIC BUFFER PRESENT
04 2A 07	E1	01A8	721	BBC	#IRPSV_DIAGBUF -	; IF CLR - NO DIAG BUFFER
68 A5 02	A8	01AA	722		IRPSW_STS(R3),10\$	
04 2A A3		01AD	723	BISW	#UCBSM_DIAGBUF,UCBSW_DEVSTS(R5)	; SET DIAG BUFFER PRESENT
01B1		01B1	724			
01B1		01B1	725			
01B1		01B1	726			
01B1		01B1	727			
01B1		01B1	728			
OD 2A 08	E0	01B1	729	10\$:	BBS #IRPSV_PHYSIO,-	: IF SET - PHYSICAL I/O FUNCTION
08 64 A5	E0	01B3	730	BBS #UCBSV_VALID,-	: IF SET - VOLUME SOFTWARE VALID	
50 0254 8F	3C	01B6	731	UCBSW_STS(R5),20\$		
0613	31	01B8	732	MOVZWL #SSS_VOLINV,R0	: SET VOLUME INVALID STATUS	
51 01 91	01C0	733	BRW RESETXFR	; RESET BYTE COUNT AND EXIT		
08 13	01C3	734	CMPB #IOS_UNLOAD, R1	;Unload function?		
51 11 91	01C6	735	BEQL UNLOAD	;Branch if yes.		
03 13	01C8	736	CMPB #IOS_AVAILABLE, R1	;Available function?		
0082 31	01CB	737	BEQL AVAILABLE	;Branch if yes.		
01CD	738		BRW FEXL	;Else, branch to execute function.		
01D0	739					
01D0	740					
01D0	741					
01D0	742					
01D0	743					
01D0	744					
01D0	745					
64 A5 0800 BF	AA	01D0	746	UNLOAD: AVAILABLE:		
		01D0	747	BICW #UCBSM_VALID,-	;Clear software volume valid bit.	
		01D6	748	UCBSW_STS(R5)		
		01D6	749	: BRB NORMAL	;Then complete the operation.	
		01D6	750			
		01D6	751			
		01D6	752			
		01D6	753			
		01D6	754			
		01D6	755			
		01D6	756	NORMAL:		
0092 C5 01	3C	01D6	757	MOVZWL #SSS_NORMAL,R0	: SUCCESSFUL OPERATION COMPLETE	
0092 C5 0C	91	01D9	758	CMPB #IOS_READPBLK,UCBSB_FEX(R5)	; ASSUME NORMAL COMPLETION STATUS	
3F 12	01DE	759	BNEQ FUNCXT	; READ FUNCTION?		
50 39 00D0 C5	E1	01E0	760	BBC #RY_DB_V_DELD,-	; IF NEQ - NO	
0661 8F 32	3C	01E2	761	UCBSW_BY_DB(R5),FUNCXT	; IF CLR - NO DELETED DATA MARK	
	11	01E6	762	MOVZWL #SSS_RDDLETEDDATA,R0	: SET READ DELETED DATA STATUS	
	11	01EB	763	BRB FUNCXT	; FUNCTION EXIT	
		01ED	764			
0080 C5 97	01ED	765	RETRYERR:			
10 13	01F1	766	DECBL UCBSB_ERTCNT(R5)	: RETRIABLE ERROR		
0080 C5 01	91	01F3	767	BEQL FATALERR	; ANY RETRIES LEFT?	
03 12	01F8	768	CMPB #1_UCBSB_ERTCNT(R5)	; IF EQL - NO		
FF0E 30	01FA	769	BNEQ 10\$; See if only one more retry left.		
	01FD	770	BSBW RX211_REINIT	; If NOT, branch around.		
53 58 A5 D0	01FD	771	10\$:	; If YES, re-INITIALIZE RX211.		
4F 11	0201	772	MOVL UCB\$L_IPR(R5),R3	: Refresh R3 => IRP.		
	0203	773	BRB FEXL	; RETRY FUNCTION		
	0203	774				
	0203	775	FATALERR:	:UNRECOVERABLE ERROR		

50 01F4 8F 00	3C 0203 776	MOVZWL #SSS_PARITY, R0	:ASSUME PARITY ERROR STATUS
11 00D0 C5	E0 0208 777	BBS #RY_DB_V_CRC_-	:IF SET - CRC ERROR
50 008C 8F	3C 020A 778	UCBSW_DY_DB(R5), FUNCXT	
18 B3	020E 779	MOVZWL #SSS_DRVERR, R0	:ASSUME DRIVE ERROR STATUS
00D0 C5	0213 780	BITW #RY_DB_M_DE!RY_DB_M_ACLO,-	:DENSITY OR PWR ERROR?
05 0215 781	0218 782	UCBSW_DY_DB(R5)	
50 0054 8F	3C 021A 783	BNEQ FUNCXT	:IF NEQ - YES
	021F 784	MOVZWL #SSS_CTRLERR, R0	:SET CONTROLLER ERROR STATUS
	021F 785	FUNCXT:	
50 DD	021F 786	PUSHL R0	:FUNCTION EXIT
00000000 GF	0221 787	JSB G^IOC\$DIAGBUFFILL	:SAVE FINAL REQUEST STATUS
00D2 C5	B5 0227 788	TSTW UCBSW_DY_DPN(R5)	:FILL DIAGNOSTIC BUFFER IF PRESENT
14 13	022B 789	BEQL 10\$:ARE UBA RESOURCES ALLOCATED?
00C0 C5	A1 022D 790	ADDW3 UCBSW_BCR(R5) -	:IF EQL - NO
02 AE 32 A3	0231 791	IRPSW_BCNT(R3), 2(SP)	:CALCULATE BYTES TRANSFERRED
	0235 792	RELDPR	:AND PUT IN I/O STATUS BLOCK
	023B 793	RELMPPR	:RELEASE DATA PATH
51 D4	0241 794	RELCHAN	:RELEASE MAP REGISTERS
50 8ED0	0247 795	CLRL R1	:RELEASE CHANNEL IF OWNED
	0249 796	POPL R0	:CLEAR 2ND LONGWORD OF IOSB
	024C 797	REQCOM	:GET 1ST LONGWORD OF IOSB
			:COMPLETE REQUEST

0252 799 : FEXL - RX211 HARDWARE FUNCTION EXECUTION

0252 800
0252 801
0252 802
0252 803
0252 804
0252 805
0252 806
0252 807
0252 808
0252 809
0252 810
0252 811
0252 812
0252 813
0252 814
0252 815
0252 816
0252 817
0252 818
0252 819
0252 820
0252 821
0252 822
0252 823
0252 824
0252 825
0252 826
0252 827
0252 828
0252 829
0252 830
0252 831

INPUTS:

R3 = IRP ADDRESS (I/O REQUEST PACKET)
R5 = UCB ADDRESS (UNIT CONTROL BLOCK)
00(SP) = RETURN ADDRESS OF CALLER

OUTPUTS:

THERE ARE FOUR EXITS FROM THIS ROUTINE:

1. SPECIAL CONDITION - THIS EXIT IS TAKEN IF A POWER FAILURE OCCURS OR THE OPERATION TIMES OUT.
2. FATAL ERROR - THIS EXIT IS TAKEN IF A FATAL CONTROLLER OR DRIVE ERROR OCCURS OR IF ANY ERROR OCCURS AND ERROR RETRY IS EITHER INHIBITED OR EXHAUSTED.
3. RETRIABLE ERROR - THIS EXIT IS TAKEN IF A RETRIABLE CONTROLLER OR DRIVE ERROR OCCURS AND ERROR RETRY IS NEITHER INHIBITED NOR EXHAUSTED.
4. SUCCESSFUL OPERATION - THIS EXIT IS TAKEN IF NO ERRORS OCCUR DURING THE OPERATION.

IN ALL CASES IF AN ERROR OCCURS, AN ATTEMPT IS MADE TO LOG THE ERROR.
IN ALL CASES FINAL DEVICE REGISTERS ARE RETURNED VIA THE UCB.
UCBSW_BCR(R5) = NEGATIVE BYTES REMAINING TO TRANSFER

				0252 832	FEXL:		
50	24	A5	D0	0252 833	MOVL	UCBSL_CRB(R5),R0	:FUNCTION EXECUTOR
51	2C	A0	D0	0252 834	MOVL	CRBSL_INTD+VECSL_IDB(R0),R1	:GET ADDRESS OF PRIMARY CRB
04	A1	55	D1	025A 835	CMPL	R5_IDBSL_OWNER(RT)	:GET ADDRESS OF IDB
		05	12	025E 836	BNEQ	10\$:DOES THIS PROCESS OWN CHANNEL?
54	61	D0	0260	0260 837	MOVL	IDBSL_CSR(R1),R4	:IF NEQ - NO
		06	11	0263 838	BRB	20\$:SET ASSIGNED CHANNEL CSR ADDRESS
				0265 839	10\$: REQPCCHAN		:REQUEST CHANNEL (RETURNS R4 = CSR ADR)
64	0800	8F	B3	026B 840			
		13	12	026B 841	BITW	#RY_CS_M_RX02,RY_CS(R4)	:IS DEVICE RX02?
00E0	C5	02	88	0270 842	BNEQ	30\$:IF NEQ - YES
00000000	'GF	16	0272	0272 843	BISB	#RY_RX01SW,UCBSB_DY_ER(R5)	:SET ERROR BIT IN UCB
50	0054	8F	3C	027D 844	JSB	G^ERL\$DEVICERR	:ALLOCATE AND FILL ERROR MESSAGE BUFFER
		0551	31	0282 845	MOVZWL	#SSS_CTRLERR,R0	:SET CONTROLLER ERROR (RX01 SWITCH SET)
				0285 846	BRW	RESETXFR	:EXIT
0092	C5	1E	91	0285 847			
		0D	13	028A 848	CMPB	#IOS_FORMAT,UCBSB_FEX(R5)	:FORMAT FUNCTION?
0092	C5	08	91	028C 849	BEQL	FORMAT	:IF EQL - YES
		03	13	0291 850	CMPB	#IOS_PACKACK,UCBSB_FEX(R5)	:PACK ACKNOWLEDGE FUNCTION?
015E	31	0293	851	0293 851	BEQL	40\$:IF EQL - YES
00BB	31	0296	852	0296 852	BRW	XFER	:MUST BE A TRANSFER FUNCTION
				0296 853	BRW	PACKACK	:PACK ACKNOWLEDGE FUNCTION
				40\$			

0299 855 : FORMAT FUNCTION EXECUTION (SET MEDIA DENSITY)
 0299 856 :
 0299 857 : FUNCTIONAL DESCRIPTION:
 0299 858 : THIS FUNCTION CAUSES THE ENTIRE DISKETTE TO BE REASSIGNED TO A NEW
 0299 859 : DENSITY. THIS OPERATION TAKES ABOUT 15 SECONDS TO COMPLETE.
 0299 860 : IT IS ASSUMED THAT AN IOS PACKAGE HAS ALREADY BEEN PERFORMED ON THIS
 0299 861 : DISKETTE TO SET UP UCB\$B_TRACKS.
 0299 862 :
 0299 863 :
 0299 864 :
 0299 865 :
 0299 866 : THE DRIVER EXITS WITH SSS_CTRLERR STATUS IF SINGLE DENSITY FORMAT
 0299 867 : IS REQUESTED FOR A DOUBLE-SIDED DISKETTE.
 0299 868 :
 0299 869 : The Driver exits with SSS_FORMAT status if an attempt is made to reformat
 0299 870 : a quad density diskette. The diskette is not modified.
 0299 871 :
 0299 872 : INPUTS:
 0299 873 : R3 - IRP ADDRESS
 0299 874 : R4 - CSR ADDRESS
 0299 875 : R5 - UCB ADDRESS
 0299 876 :
 0299 877 :
 0299 878 : FORMAT: ;REFORMAT DISK TO NEW DENSITY
 0299 879 :
 0299 880 :
 0299 881 : SET NEW DENSITY (VIA MAXBLOCK) IN UCB
 0299 882 :
 0299 883 :
 0299 884 : MOVL IRPSL_MEDIA(R3),- ;SET PARAMETER LONGWORD IN UCB
 0299 885 : UCBSL_MEDIA(R5)
 0299 886 : CMPB UCBSB_TRACKS(R5),#2 ;IS IT DOUBLE SIDED?
 0299 887 : BLSS 10\$;IF LSS - NO
 0299 888 : MOVZWL #RY_DSDD,UCBSL_MAXBLOCK(R5) ;SET DOUBLE SIDED MAXBLOCKS
 0299 889 : CMPL UCBSL_MEDIA(R5),#2 ;IS DOUBLE DENSITY REQUESTED?
 0299 890 : BEQL 20\$;IF EQL - YES
 0299 891 : MOVZWL #SSS_CTRLERR,RO ;SET ERROR STATUS
 0299 892 : BRW FUNCXT ;AND EXIT
 0299 893 :
 0299 894 : 10\$: MOVZWL #RY_SSSD,UCBSL_MAXBLOCK(R5) ;ASSUME SINGLE DENSITY
 0299 895 : CMPL UCBSL_MEDIA(R5),#2 ;IS DOUBLE DENSITY REQUESTED?
 0299 896 : BLSS 20\$;IF LSS - NO, SINGLE DENSITY
 0299 897 : MOVZWL #RY_SSDD,UCBSL_MAXBLOCK(R5) ;SET DOUBLE DENSITY MAXBLOCKS
 0299 898 :
 0299 899 :
 0299 900 : REFORMAT DISKETTE
 0299 901 :
 0299 902 :
 0299 903 : 20\$: BSBW DY_MERGE ;MERGE GO,UNIT,IE,DEN IN R2
 0299 904 : BISW3 R2,#F SETDEN,RY_CS(R4) ;INITIATE SET DENSITY FUNCTION
 0299 905 : MOVQ R0,-(SP) ;SAVE R0-R1
 0299 906 : TIMEDWAIT TIME=#100*1000,- ;ONE SECOND WAIT TIMEOUT
 0299 907 : INS1=<BITB #RY_CS_M TR!RY_CS_M DONE,RY_CS(R4)>,- ;T/R OR DONE?
 0299 908 : INS2=<BN EQ 25\$5,- ;IF LSS - TRANSFER COMPLETE (T/R)
 0299 909 : - ;IF NON-ZERO - DONE BIT SET - ERROR
 0299 910 : - ;IF EQL - NEITHER, WAIT
 0299 911 : DONELBL=25\$
 0299 38 A3 D0 00BC C5 0299 884 :
 0299 45 A5 91 029F 029C 885 :
 0299 16 19 02A3 02A5 886 :
 0299 07C5 8F 3C 02AC 887 :
 0299 00BC C5 D1 02B1 888 :
 0299 1D 13 02B3 02B8 889 :
 0299 0054 8F 3C 02B8 890 :
 0299 FF64 31 02BB 891 :
 0299 02BB 892 :
 0299 02BB 893 :
 0299 01EE 8F 3C 02BB 894 :
 0299 00BC C5 D1 02C2 895 :
 0299 07 19 02C7 02C9 896 :
 0299 03DC 8F 3C 02C9 897 :
 0299 02D0 898 :
 0299 02D0 899 :
 0299 02D0 900 :
 0299 02D0 901 :
 0299 02D0 902 :
 0299 08 FE6F 30 02D0 903 :
 0299 52 A9 02D3 904 :
 0299 7E 50 7D 02D7 905 :
 0299 02DA 906 :
 0299 02DA 907 :
 0299 02DA 908 :
 0299 02DA 909 :
 0299 02DA 910 :
 0299 02DA 911 :

64 50 8E	7D 0302	912	MOVQ	(SP)+ R0	RESTORE R0-R1
A0 8F	93 0305	913	BITB	#RY_CS_M_TR!RY_CS_M_DONE	RY_CS(R4) : T/R OR DONE?
05 19	0309	914	BLSS	26\$: IF LSS - TRANSFER COMPLETE (T/R)
03 13	030B	915	BEQL	26\$: IF EQL - TIME HAS EXPIRED
0416 31	030D	916	BRW	RETREG	: DONE BIT SET - ERROR
	0310	917	26\$: ;NORMAL RETURN		
02 A4 0049 8F	B0	0310 918	CKPWR	;DSBINT & CHECK FOR PWR FAILURE	
		0321 919	MOVW	#^X49,RY_DB(R4)	PUT ASCII "I" IN DBR TO START FNTN
		0327 920	WFIKPCH	SPECOND, #25	WAITFOR INTERRUPT
		0331 921	IOFORK	CREATE FORK PROCESS (BJSB BACK TO ISR)	
		0337 922			
14 00CE C5	E1	0337 923	BBC	#RY_CS_V_ERR,-	; If no error at all, branch around.
04 0000 C5	E1	0339 924		UCBSW DY-CS(R5),30\$	
OE 0000 C5	E1	033D 925	BBC	#RY_DB_V-DE,-	; If no DENSITY error, branch around.
08 0000 C5	E1	033F 926		UCBSW DY-DB(R5),30\$	
50 00BC 8F	3C	0343 927	BBC	#RY_DB_V-QDEN,-	; If NOT quad density, branch around.
FECE	31	0349 929	MOVZWL	UCBSW DY-DB(R5),30\$	
		034E 930	BRW	#SSS FORMAT,R0	; If we tried to change QUAD diskette.
		0351 931	FUNCXT		; Return error and branch.
03D2 31	0351	932	BRW	RETREG	
		30\$: ;			

0354	934		PACK ACKNOWLEDGE FUNCTION EXECUTION	
0354	935		INPUTS:	
0354	936		R4	- CSR ADDRESS
0354	937		R5	- UCB ADDRESS
0354	938		FUNCTIONAL DESCRIPTION:	
0354	939		THIS OPERATION ESTABLISHES THE CURRENT DISKETTE'S DENSITY AND NUMBER OF SIDES. THIS INFORMATION IS THEN STORED IN THE UCB.	
0354	940		IOSPACKACK MUST BE THE FIRST FUNCTION ISSUED TO A DISKETTE AFTER IT HAS BEEN PLACED IN A DRIVE.	
0354	941			
0354	942			
0354	943			
0354	944			
0354	945			
0354	946			
0354	947			
0354	948			
0354	949			
0354	950			
0354	951			
0354	952		UCBSL_MAXBLOCK, UCBSB_TRACKS, UCBSB_SECTORS, UCBSW_CYLINDERS, UCBSB_DEVTYPE, AND UCBSB_DEVCLASS ARE UPDATED. UCBSV_VALID IS SET IN UCBSW_STS.	
0354	953			
0354	954			
0354	955			
0354	956			
0354	957	PACKACK:	; PACK ACKNOWLEDGE	
0800 8F	A8	0354 958	BISW	#UCBSM_VALID - UCBSW_STS(R5) ; Set software volume valid bit.
64 A5		0358 959	MOVB	#RY_SECTORS - UCBSB_SECTORS(R5) ; Set sectors/track
1A	90	035A 960	MOVZBW	#RY_CYLINDERS - UCBSW_CYLINDERS(R5) ; Set # cylinders
44 A5		035C 961	MOVB	#DCS_DISK - UCBSB_DEVCLASS(R5) ; Set disk device class
4D 8F	98	035E 962	MOVB	#DTS_RX02 - UCBSB_DEVTYPE(R5) ; Assume RX02 device type
46 A5		0361 963	MOVB	#1_UCBSB_TRACKS(R5) ; Assume single sided
01	90	0363 964	MOVL	#^X26658002 - UCBSL_MEDIA_ID(R5) ; Set media ident 'DY RX02'
40 A5		0365 965	MOVZWL	#RY_SSSD - UCBSL_MAXBLOCK(R5) ; Assume single density
0B	90	0367 966		
41 A5		0369 967		
45 A5	01	036B 968		
26658002	8F	036F 969		
008C C5		0375 970		
01EE 8F	3C	0378 971		
00B0 C5		037C 972		
FDC0		037F 973		
		037F 974	BSBW	DY_MERGE ; MERGE GO,UNIT,DEN,IE IN R2
		0382 975	CKPWR	DSBINT & CHECK FOR PWR FAILURE
64 0A 52	A9	0393 976	BISW3	R2,#F_READSTATUS,RY_CS(R4) ; EXECUTE READ STATUS FUNCTION
		0397 977	WFIKPCH	SPÉCOND,#10 ; Wait for interrupt.
		03A1 978	IOFORK	;CREATE FORK PROCESS (& JSB BACK TO ISR)
0000 C5	0080 8F	B3 03A7 980	BITW	#RY_DB_M_DRDY,UCBSW_DY_DB(R5) ; WAS DRIVE READY?
	08	12 03AE 981	BNEQ	10\$: IF NEQ - YES
50	01A4 8F	3C 03B0 982	MOVZWL	#SSS_MEDOFL,RO ; SET MEDIUM OFFLINE STATUS
	FE67	31 03B5 983	BRW	FUNCXT ; AND EXIT
14 00D0 C5	04	E5 03B8 984	BBCC	10\$: If clear, Single density so branch around.
07B8 8F		03BA 986	UCBSW_DY_DB(R5),15\$	If NOT single, setup for QUAD and
00B0 C5		03BE 987	MOVZWL	then we will test to see if so.
01	E0	03C5 988	UCBSL_MAXBLOCK(R5)	If set, then it IS quad density so
07 00D0 C5		03C7 989	BBS	we branch around next instruction.
		990	UCBSW_DY_DB(R5),15\$	

00B0 C5 03DC 8F 3C 03CB 991 15\$: MOVZWL #RY_SSDD,UCBSL_MAXBLOCK(R5) ;SET DOUBLE DENSITY IN UCB
00D0 C5 0C09 8F 07 12 03D2 992 B3 03D2 993 BITW #RY_DB_M_CRC!- ;ANY ERRORS BESIDES DENSITY ERROR?
8000 8F AA 03DB 994 03D3 995 03D3 996 03D3 997 03D3 998 03D9 999 03DF 1000 03E2 1001 03E2 1002 03E4 1003 03E8 1004 03EA 1005 03EC 1006 03F1 1007 20\$: BNEQ 20S ;IF NEQ - YES
00CE C5 09 E1 03E2 1002 0C 90 03E2 1003 03E4 1003 03E8 1004 03EA 1005 03EC 1006 03F1 1007 30\$: BBC #RY_DB_V_RX04,-
008C C5 41 A5 02 C0 03DC 992 03D2 993 03D3 994 03D3 995 03D3 996 03D3 997 03D9 998 03DB 999 03DF 1000 03E2 1001 03E4 1003 03E8 1004 03EA 1005 03EC 1006 03F1 1007 30\$: MOVB #DTS_RX04,-
0332 31 UCBSW_DY_DB(R5),30\$ ADDL #2,UCBSL_DEVTYPE(R5) ; Set proper device type.
BRW RETREG ; Set media ident 'DY_RX04'

03F4 1009 : TRANSFER FUNCTION EXECUTION
 03F4 1010 :
 03F4 1011 : FUNCTIONS INCLUDE:
 03F4 1012 :
 03F4 1013 :
 03F4 1014 : WRITE DATA, AND
 03F4 1015 : READ DATA
 03F4 1016 :
 03F4 1017 :
 03F4 1018 :
 03F4 1019 : R3 - IRP ADDRESS
 03F4 1020 : R4 - DEVICE CSR ADDRESS
 03F4 1021 : R5 - UCB ADDRESS
 03F4 1022 :
 03F4 1023 :
 03F4 1024 :
 03F4 1025 : THE LBN IS CONVERTED TO CYLINDER, TRACK, AND SECTOR, THEN SKEW AND
 03F4 1026 : INTERLEAVE FACTORS ARE CALCULATED TO ARRIVE AT A PHYSICAL MEDIA ADDRESS.
 03F4 1027 :
 03F4 1028 :
 03F4 1029 : A UNIBUS DATAPATH IS REQUESTED FOLLOWED BY THE APPROPRIATE NUMBER OF MAP
 03F4 1030 : REGISTERS REQUIRED FOR THE TRANSFER.
 03F4 1031 : SINCE THE RX211 ALLOWS A MAXIMUM DATA TRANSFER OF ONE SECTOR, SINGLE
 03F4 1032 : SECTOR TRANSFERS ARE REPEATED (VIA THE "COMXFER:" LOOP) UNTIL THE I/O
 03F4 1033 : REQUEST IS COMPLETE.
 03F4 1034 :
 03F4 1035 : EACH SECTOR TRANSFER IS ACCOMPLISHED BY A SEQUENCE OF TWO FUNCTION CODES:
 03F4 1036 : F_FILLBUFFER AND F_WRITESECTOR FOR A WRITE FUNCTION, OR
 03F4 1037 : F_READSECTOR AND F_EMPTYSUBFOR FOR A READ FUNCTION.
 03F4 1038 :
 03F4 1039 : THE CSR BITS FOR THE FIRST FUNCTION IN THE SEQUENCE ARE LOADED INTO THE
 03F4 1040 : LOWER WORD OF UCBSL_DY_XFER; THOSE FOR THE SECOND FUNCTION ARE PUT IN
 03F4 1041 : THE UPPER WORD. AFTER EXECUTING EACH FUNCTION, UCBSL_DY_XFER IS ROTATED
 03F4 1042 : SO THAT THE LOWER WORD ALWAYS CONTAINS THE CSR BITS FOR THE NEXT FUNCTION.
 03F4 1043 :
 03F4 1044 : A PROTOCOL OF LOADING THE RX211 DATA BUFFER REGISTER (DBR) WITH TWO UCB
 03F4 1045 : FIELDS IS REQUIRED AFTER LOADING THE CSR. R3 IS LOADED AND ROTATED SO
 03F4 1046 : THAT ITS LOWER WORD ALWAYS CONTAINS THE FIRST UCB OFFSET TO BE LOADED
 03F4 1047 : INTO THE DBR FOR THE CURRENT FUNCTION CODE.
 03F4 1048 :
 03F4 1049 : THE CHANNEL AND UBA RESOURCES ARE NOT RELEASED UNTIL THE ENTIRE I/O
 03F4 1050 : REQUEST IS COMPLETE.
 03F4 1051 :
 03F4 1052 : IT IS ASSUMED THAT AN IOS_PACKACK FUNCTION HAS ALREADY BEEN PERFORMED
 03F4 1053 : ON THIS DISKETTE TO SET UP UCBSB_TRACKS AND UCBSL_MAXBLOCK.
 03F4 1054 :
 03F4 1055 XFER: : TRANSFER FUNCTION EXECUTION
 03F4 1056 :
 00D2 C5 B5 03F4 1057 TSTW UCBSW_DY_DPN(R5) : IS THIS A RETRY?
 03 13 03F8 1058 BEQL 2\$: IF EQL - NO
 00C6 31 03FA 1059 BRW 15\$: DATAPATH ALREADY OWNED
 03FD 1060 :
 03FD 1061 :
 03FD 1062 : FIRST TRANSFER OF THIS I/O REQUEST
 03FD 1063 :
 03FD 1064 :
 03FD 1065 :

00CC C5 0040 BF B0 03FD 1066 : DETERMINE SECTOR SIZE
 01EE BF 00B0 C5 B1 0404 1067 :
 00CC C5 0080 BF B0 040D 1068 :
 03DC 8F 00B0 C5 B1 0414 1069 2\$: MOVW #RY_SWPS,UCBSW_DY_WPS(R5) ; Assume single dens. WORDS/SECTOR
 07 15 040B 1070 CMPW UCB\$L_MAXBLOCKTR5,\$RY_SSDD ; SINGLE DENSITY?
 00CC C5 0080 BF B0 041B 1071 BLEQ 5\$ IF LEQ - YES
 03DC 8F 00B0 C5 B1 041D 1072 MOVW #RY_DWPS,UCBSW_DY_WPS(R5) ; Assume double dens. WORDS/SECTOR
 07 15 041B 1073 CMPW UCB\$L_MAXBLOCKTR5,\$RY_SSDD ; Double density?
 00CC C5 0100 BF B0 0424 1074 BLEQ 5\$ If LEQ - yes.
 0424 1075 MOVW #RY_QWPS,UCBSW_DY_WPS(R5) ; Adjust for QUAD density.

0424 1076
 0424 1077 : CONVERT LOGICAL BLOCK NUMBER TO CYLINDER, TRACK, AND SECTOR
 0424 1078 :
 0424 1079 : LBN = LBN * (SECTORS/BLOCK)
 0424 1080 : LBN/(SECTORS/TRACK) = D + SECTOR
 0424 1081 : D/(TRACKS/CYLINDER) = CYLINDER + TRACK
 0424 1082 :
 0424 1083 :
 0424 1084 :
 00EC C5 38 A3 D0 0424 1085 5\$: MOVL IRP\$L_MEDIA(R3),UCBSL_DY_LMEDIA(R5) ;ASSUME PHYSICAL I/O
 08 E0 042A 1086 BBS #IRPSV_PHYSIO,- ;IF SET - PHYSICAL I/O
 2F 2A A3 042C 1087 IRP\$W_STS(R3),10\$
 50 00CC C5 3C 042F 1088 MOVZWL UCB\$W_DY_WPS(R5),R0 ;Get words per sector.
 0100 8F 50 A7 0434 1089 DIVW3 R0,#256,R0 ;FORM SECTORS/BLOCK IN R0
 50 38 A3 C4 043A 1090 MULL IRP\$L_MEDIA(R3),R0 ;SCALE LBN IN R0
 52 44 A5 9A 043E 1091 MOVZBL UCB\$B_SECTORS(R5),R2 ;PUT SECTORS/TRACK IN R2
 51 50 52 7B 0442 1092 CLRL R1 ;CLEAR HIGH PART OF DIVIDEND
 52 45 A5 9A 0444 1093 EDIV R2,R0,R0,UCBSL_DY_LMEDIA(R5) ;CALCULATE SECTOR NUMBER AND STORE
 50 50 52 7B 044F 1094 MOVZBL UCB\$B_TRACKS(R5),R2 ;PUT TRACKS/CYLINDER IN R2
 00ED C5 51 90 0454 1095 EDIV R2,R0,R0,R1 ;CALCULATE TRACK AND CYLINDER
 00EE C5 50 B0 0459 1096 MOVB R1,UCBSL_DY_LMEDIA+1(R5) ;STORE TRACK NUMBER
 0459 1097 MOVW R0,UCBSL_DY_LMEDIA+2(R5) ;STORE CYLINDER NUMBER

045E 1098
 045E 1099 : Output of above code is to produce the logical sector number in UCB\$L_DY_LMEDIA
 045E 1100 in the following format:
 045E 1101
 045E 1102 31 16 15 8 7 0
 045E 1103
 045E 1104
 045E 1105
 045E 1106 cylinder track sector
 045E 1107 # # #
 045E 1108 (always see
 045E 1109 0 to 76 : zero) : below :
 045E 1110
 045E 1111
 045E 1112 : Sector number ranges:
 045E 1113 : Physical I/O 1 to 26
 045E 1114 : Logical I/O 0 to 25

51 44 A5 9A 045E 1115 10\$: MOVZBL UCB\$B_SECTORS(R5), R1 ;Get maximum sectors information.
 00EC C5 51 B1 0462 1116 CMPW R1, UCB\$L_DY_LMEDIA(R5) ;Maximum sector exceeded?
 04 2A A3 08 E0 0467 1117 BBS #IRPSV_PHYSIO,- ;Separate the logical from the
 12 1B 046C 1118 IRP\$W_STS(R3), 110\$ physical I/O; branch if physical.
 08 11 046E 1119 BLEQU 190\$ Branch if too big for logical I/O.
 0E 1F 0470 1120 BRB 130\$ All ok, so far, continue tests.
 1122 110\$: BLSSU 190\$ Branch if physical sector too big.

00EC C5 D5 0472 1123 TSTL UCB\$L_DY_LMEDIA(R5) ; Zero physical sector is also illegal.
 08 13 0476 1124 BEQL 190\$ Branch if zero physical sector.
 00EE C5 46 A5 B1 0478 1125 130\$: CMPW UCB\$W_CYLINDERS(R5) - Check for, maximum cylinder exceeded.
 08 1A 047E 1126 BGTRU 128 Branch if max. cylinder not exceeded.
 50 0134 8F 3C 0480 1128 190\$: MOVZWL #SSS, IVADDR, R0 Otherwise, give invalid address
 FD97 31 0485 1129 BRW FUNCXT status and kill request.
 0488 1130
 0488 1131 : ALLOCATE UBA RESOURCES
 0488 1132
 0488 1133 :
 0488 1134
 0488 1135 12\$: REQDPR ; REQUEST DATAPATH
 048E 1136 REQMPR ; REQUEST MAP REGISTERS
 0494 1137 LOADUBA ; LOAD UNIBUS MAP REGISTERS
 51 24 A5 D0 049A 1138 MOVL UCB\$L_CRB(R5), R1 ; GET CRB ADDRESS
 05 00 EF 049E 1139 EXTZV #VEC\$0_DATAPATH, #VEC\$0_DATAPATH - ; EXTRACT DATAPATH NUMBER -
 50 37 A1 04A1 1140 CRBSL_INTD+VEC\$B_DATAPATH(R1), R0 ; FOR UBA RESOURCE FLAG
 00D2 C5 50 B0 04A4 1141 MOVW R0, UCB\$W_DY_DPN(R5) ; INDICATE UBA RESOURCES ALLOCATED
 50 7C A5 3C 04A9 1142 MOVZWL UCB\$W_BOFF(R5), R0 ; GET BYTE OFFSET IN PAGE
 34 A1 F0 04AD 1143 INSV CRBSL_INTD+VEC\$W_MAPREG(R1), - ; INSERT HIGH 7 BITS OF ADDRESS
 50 07 09 04B0 1144 #9, #7, R0 ;
 00E6 C5 50 B0 04B3 1145 MOVW R0, UCB\$W_DY_SBA(R5) ; PUT BUFFER ADDRESS IN UCB
 50 34 A1 02 07 EF 04B8 1146 EXTZV #7, #2, CRBSL_INTD+VEC\$W_MAPREG(R1), R0 ; GET MEMORY EXTENSION BITS
 00E3 C5 50 90 04BE 1147 MOVB R0, UCB\$B_DY_XBA(R5) ; AND SAVE THEM IN THE UCB
 04C3 1148
 04C3 1149 : Output of above section of code is put the UNIBUS Virtual Address of the
 transfer into UCB\$W_DY_SBA and the two high order bits of this UNIBUS
 Virtual Address into UCB\$B_DY_XBA.
 04C3 1150 :
 04C3 1151 :
 04C3 1152 :
 04C3 1153 :
 04C3 1154 :
 04C3 1155 :
 04C3 1156 : SET CSR BITS IN UCB\$L_DY_XFER
 04C3 1157 : SET UCB OFFSETS IN R3 FOR USE AS POINTERS DURING DEVICE DBR PROTOCOL
 04C3 1158 :
 04C3 1159 :
 FC7C 30 04C3 1160 15\$: BSBW DY_MERGE ; SET GO,IE,UNIT,DEN BITS IN R2
 04C6 1161
 04C6 1162
 53 E4 8F 9A 04C6 1163 MOVZBL #UCBSW_DY_PWC,R3 ; SET UCB OFFSETS IN R3
 04CA 1164
 53 53 10 78 04CA 1165 ASHL #16, R3, R3 ; ASSUME WC OFFSET AS POINTER TO UCB-
 53 BC 8F 90 04CE 1166 MOVB #UCBSL_MEDIA,R3 ; FIELDS FOR 2ND FUNCTION CODE
 04D2 1167
 04D2 1168
 0092 C5 OC 91 04D2 1169 CMPB #IO\$_READPBLK, UCB\$B_FEX(R5) ; READ FUNCTION?
 0E 12 04D7 1170 BNEQ 20\$; IF NEQ - NO, MUST BE WRITE
 04D9 1171
 04D9 1172
 00EB C5 52 06 A9 04D9 1173 BISW3 #F READSECTOR, R2, - ; READ FUNCTION
 04DF 1174 UCB\$L_DY_XFER(R5) ; SET READ SECTOR AS 1ST FUNCTION
 00EA C5 52 02 A9 04DF 1175 BISW3 #F EMPTYBUFFER, R2, - ; SET EMPTY BUFFER AS 2ND FUNCTION
 20 11 04E5 1176 UCB\$L_DY_XFER+2(R5) ;
 04E5 1177 BRB COMXFER ;
 04E7 1178
 04E7 1179 20\$: ; WRITE FUNCTION

00E8 C5	53	53	10	9C	04E7	1180	ROT	#16,R3,R3	:SHIFT ORDER OF UCB OFFSETS FOR WRITE
				A9	04EB	1181	BISW3	#F FILLBUFFER,R2,-	:SET FILL BUFFER AS 1ST FUNCTION
00EA C5	52	52	04	A9	04F1	1182		UCBSL_DY_XFER(R5)	
					04F7	1183	BISW3	#F WRITESECTOR,R2,-	:ASSUME WRITE SECTOR AS 2ND FUNCTION
0A 009A C5	06	E1	04F7		04F9	1185	BBC	#IOSV_DE[DATA,-	:IF CLR - NOT WRITE DELETED DATA
00EA C5	00EA C5	B4	04FD		04FD	1186		UCBSW_FUNC(R5),COMXFER	:CLEAR 2ND FUNCTION FIELD
00EA C5	52	52	0C	A9	0501	1187	CLRW	UCBSL_DY_XFER+2(R5)	:SET WRITE DELETED DATA AS 2ND FUNCTION
					0501	1188	BISW3	#F WRITEDEL,R2,-	
					0507	1189		UCBSL_DY_XFER+2(R5)	
					0507	1190			
					0507	1191			
					0507	1192			
					0507	1193			
					0507	1194			
					0507	1195			
					0507	1196			
					0507	1197			
					0507	1198			
					0507	1199			
					0507	1200			
					0507	1201			
					0507	1202			
					0507	1203			
					0507	1204	R3	- UCB OFFSETS FOR DEVICE DBR PROTOCOL	
					0507	1205	R4	- DEVICE CSR ADDRESS	
					0507	1206	R5	- UCB ADDRESS	
					0507	1207	UCBSL_DY_XFER	- LOW WORD: FCODE, GO, IE, DENSITY, UNIT FOR 1ST FUNCITON	
					0507	1208		- HIGH WORD: FCODE, GO, IE, DENSITY, UNIT FOR 2ND FUNCTION	
					0507	1209			
					0507	1210			
					0507	1211			
					0507	1212			
					0507	1213			
					0507	1214			
					0507	1215			
					0507	1216			
					0507	1217			
					0507	1218			
					0507	1219			
					0507	1220			
51	58	A5	D0	0507	1221		MOVL	UCBSL_IPR(R5),R1	:GET ADDRESS OF REQUEST PACKET
52 00BC C5	C5	9E	050B	1222			MOVAB	UCBSL_MEDIA(R5),R2	:POINT TO PHYSICAL MEDIA ADDRESS
62 00EC C5	C5	D0	0510	1223			MOVL	UCBSL_DY_LMEDIA(R5),(R2)	:COPY LOGICAL ADDRESS
		08	E0	0515	1224		BBS	#IRPSV_PHRYSIO,-	:IF SET - PHYSICAL I/O
40 2A A1			0517	1225				IRPSW_STS(R1),10\$	
50 51 62	62	9A	051A	1226			MOVZBL	(R2),R1	:GET CURRENT LOGICAL SECTOR
51 51 01	01	78	051D	1227			ASHL	#1,R1,R0	:2* Current Logical Sector => R0 needed
			0521	1228					: in case of QUAD density to compute
			0521	1229					: interleave factor of four.
51 0C	91	0521	1230				CMPB	#12,R1	:SET C IF SECTOR > 12
51 51	D8	0524	1231				ADWC	R1,R1	:DOUBLE SECTOR #, ADD INTERLEAVE FACTOR
0100 8F	B1	0527	1232				CMPW	#RY_QWPS,-	: See if this is a QUAD density diskette
00CC C5	C5	052B	1233					UCBSW_DY_WPS(R5)	
		03	12	052E	1234		BNEQ	SS	: If NOT, branch around.
51 50	C0	0530	1235				ADDL	RO,R1	: If QUAD, add in 2*Sector for interleave
		0533	1236						: factor of 4.

COMMON TRANSFER POINT - LOOP POINT FOR INDIVIDUAL SECTOR TRANSFERS

NOTE: CODE IN THIS LOOP IS IN-LINE AS MUCH AS POSSIBLE TO DECREASE EXECUTION TIME IN ORDER THAT THE NEXT INTERLEAVED SECTOR ON THE DISKETTE IS NOT MISSED (WHICH WOULD CAUSE A WAIT FOR AN ENTIRE DISKETTE REVOLUTION).

INPUTS TO LOOP:

R3	- UCB OFFSETS FOR DEVICE DBR PROTOCOL
R4	- DEVICE CSR ADDRESS
R5	- UCB ADDRESS
UCBSL_DY_XFER	- LOW WORD: FCODE, GO, IE, DENSITY, UNIT FOR 1ST FUNCITON
	- HIGH WORD: FCODE, GO, IE, DENSITY, UNIT FOR 2ND FUNCTION

;START TRANSFER LOOP

CALCULATE SKEW AND INTERLEAVE FACTORS

IF THE PHYSICAL I/O FLAG IS SET, THE ADDRESS IN UCBSL_DY_LMEDIA IS MOVED TO UCBSL_MEDIA.
IF LOGICAL I/O IS BEING PERFORMED, THE LOGICAL ADDRESS IN UCBSL_DY_LMEDIA IS CONVERTED TO A PHYSICAL DISK ADDRESS BY APPLYING INTERLEAVE AND SKEW FACTORS, AND THE FIRST TRACK (RESERVED FOR INDUSTRY COMPATIBILITY) IS SKIPPED. THE RESULT IS PLACED IN UCBSL_MEDIA.

50 51 50 02 A2 9A 0533 1237 5\$: MOVZBL 2(R2),R0 ;GET CYLINDER NUMBER
 51 7E 50 06 7A 0537 1239 EMUL #6,R0,R1,R0 ;COMPUTE SKEW (6 * CYL + SECTOR)
 51 50 44 A5 9A 053C 1240 MOVZBL UCB\$B_SECTORS(R5),-(SP) ;GET SECTORS/TRACK
 51 50 8E 7B 0540 1241 EDIV (SP)+,R0,R0,R1 ;MODULO SECTOR INTO SECTORS PER TRACK
 51 51 D6 0545 1242 INCL R1 ;OFFSET SECTOR NUMBER BY ONE
 62 51 90 0547 1243 MOVBL R1,(R2) ;SAVE SECTOR NUMBER IN UCB
 45 A5 01 A2 96 054A 1244 INCBL 1(R2) ;INCREMENT PAST RESERVED TRACK
 45 A5 01 A2 91 054D 1246 CMPBL 1(R2),UCBSB_TRACKS(R5) ;STILL WITHIN DISK DIMENSIONS?
 06 19 0552 1247 BLSS 10\$;IF LSS - YES
 01 A2 94 0554 1248 CLRBL 1(R2) ;RESET TRACK ADDRESS
 02 A2 96 0557 1249 INCBL 2(R2) ;INCREMENT CYLINDER ADDRESS
 055A 1250
 055A 1251 : CALCULATE WORD COUNT FOR THIS TRANSFER
 055A 1252
 055A 1253
 055A 1254
 00C0 C5 AE 055A 1255 10\$: MNEGW UCBSW_BCR(R5),- ;GET BYTES LEFT TO TRANSFER AND -
 00E4 C5 00E4 C5 055E 1256 UCBSW_DY_PWC(R5) ;ASSUME ONLY ONE TRANSFER NEEDED
 00E4 C5 02 A6 0561 1257 DIVW #2,UCBSW_DY_PWC(R5) ;FORM WORDS LEFT TO TRANSFER
 00E4 C5 B1 0566 1258 CMPW UCBSW_DY_PWC(R5),-
 00CC C5 056A 1259 UCBSW_DY_WPS(R5) ;Are additional transfers required?
 00CC C5 07 1B 056D 1260 BLEQU 20\$;IF LEQU - NO
 00CC C5 B0 056F 1261 MOVW UCBSW_DY_WPS(R5),- ;Set word count for one sector.
 00E4 C5 0573 1262 UCBSW_DY_PWC(R5) ;...
 00E8 C5 00E3 C5 F0 0576 1264 20\$: INSV UCBSB_DY_XBA(R5),- ;PUT EXTENDED BA IN 1ST FUNCTION<13:12>
 02 0C 057A 1265 #12,#2,UCBSL_DY_XFER(R5) ;...
 00E9 C5 90 057F 1266 MOVBL UCBSL_DY_XFER+1(R5),- ;PUT XBA AND HS IN 2ND FUNCTION TOO
 00EB C5 0583 1267 UCBSL_DY_XFER+3(R5) ;...
 0586 1268
 0586 1269 : EXECUTE TRANSFER FUNCTION
 0586 1270
 0586 1271
 0586 1272 INPUTS:
 0586 1273
 0586 1274 UCB\$L_DY_XFER :.....CSR2.....:CSR1.....:
 0586 1275:.....:.....:.....:
 0586 1276 R3 :.....DBR3.....:DBR1.....:
 0586 1277:.....:.....:.....:
 0586 1278
 0586 1279
 0586 1280
 0586 1281
 0586 1282
 0586 1283 : FUNCTIONAL DESCRIPTION:
 0586 1284 THE CSR IS LOADED WITH THE LOW WORD OF UCB\$L_DY_XFER.
 0586 1285 THE DBR IS LOADED WITH THE UCB FIELD SPECIFIED BY THE UCB OFFSET
 0586 1286 IN THE LOW WORD OF R3.
 0586 1287 THE DBR IS THEN LOADED WITH THE NEXT SEQUENTIAL UCB FIELD.
 0586 1288 AFTER THE INTERRUPT, UCB\$L_DY_XFER AND R3 ARE ROTATED, AND THE
 0586 1289 : PROCESS IS REPEATED FOR FUNCTION 2.
 0586 1290
 0586 1291
 00E2 C5 02 90 0586 1292 MOVBL #2,UCBSB_DY_LCT(R5) ;SET LOOP COUNTER
 0588 1293 30\$:

64 00E8 C5 B0 058B 1294
 7E 50 7D 0590 1295
 0593 1296
 0593 1297
 0593 1298
 0593 1299
 0593 1300
 0593 1301
 64 50 A0 8E 7D 05BB 1302
 05 19 93 05BE 1303
 03 13 05C2 1304
 015D 31 05C4 1305
 05C6 1306
 05C9 1307 33\$: 05C9 1308
 05C9 1309
 50 53 3C 05C9 1310
 50 55 C0 05CC 1311
 02 A4 80 B0 05CF 1312
 7E 50 7D 05D3 1313
 05D6 1314
 05D6 1315
 05D6 1316
 05D6 1317
 05D6 1318
 05D6 1319
 64 50 A0 8E 7D 05FE 1320
 05 19 93 0601 1321
 03 13 0605 1322
 011A 31 0607 1323
 0609 1324
 060C 1325 37\$: 060C 1326
 060C 1327
 060C 1328
 06 64 A5 05 E1 0612 1329
 0617 1330
 02 A4 01C6 31 061A 1331
 60 B0 061D 1332 35\$: 0621 1333
 062B 1334
 53 53 10 9C 0631 1335
 00E8 C5 10 9C 0635 1336
 00E8 C5 063A 1337
 063D 1338
 03 00CE C5 OF E1 063D 1339
 0088 31 0643 1340
 0646 1341
 00E2 C5 97 0646 1342 40\$: 0646 1343
 03 15 064A 1343
 FF3C 31 064C 1344
 064F 1345
 064F 1346
 064F 1347 : UPDATE BUFFER ADDRESS, DISK ADDRESS, AND BYTES REMAINING FOR NEXT SECTOR
 064F 1348 :
 064F 1349 :
 064F 1350 : UPDATE BYTES REMAINING TO TRANSFER

MOVW UCB\$L_DY_XFER(R5),RY_CS(R4) ;PUT FUNCTION IN CSR
 MOVQ R0,-(SP) ;SAVE R0-R1
 TIMEDWAIT TIME=#100*1000,- ;ONE SECOND WAIT TIMEOUT
 INS1=<BITB #RY_CS_M_TR!RY_CS_M_DONE,RY_CS(R4)>,- ;T/R OR DONE?
 INS2=<BNEQ 32\$, - ;IF LSS - TRANSFER COMPLETE (T/R)
 - ;IF NON-ZERO - DONE BIT SET - ERROR
 - ;IF EQL - NEITHER, WAIT
 DONELBL=32\$
 MOVQ (SP)+,R0 ;RESTORE R0-R1
 BITB #RY_CS_M_TR!RY_CS_M_DONE,RY_CS(R4) ;T/R OR DONE?
 BLSS 33\$;IF LSS - TRANSFER COMPLETE (T/R)
 BEQL 33\$;IF EQL - TIME HAS EXPIRED
 BRW RETREG ;DONE BIT SET - ERROR
 ;NORMAL RETURN
 :LOAD WORD COUNT OR SECTOR ADR IN DBR
 :GET UCB OFFSET
 :CALCULATE UCB FIELD ADDRESS
 :PUT UCB FIELD IN DBR
 :SAVE R0-R1
 TIMEDWAIT TIME=#100*1000,- ;ONE SECOND WAIT TIMEOUT
 INS1=<BITB #RY_CS_M_TR!RY_CS_M_DONE,RY_CS(R4)>,- ;T/R OR DONE?
 INS2=<BNEQ 36\$, - ;IF LSS - TRANSFER COMPLETE (T/R)
 - ;IF NON-ZERO - DONE BIT SET - ERROR
 - ;IF EQL - NEITHER, WAIT
 DONELBL=36\$
 MOVQ (SP)+,R0 ;RESTORE R0-R1
 BITB #RY_CS_M_TR!RY_CS_M_DONE,RY_CS(R4) ;T/R OR DONE?
 BLSS 37\$;IF LSS - TRANSFER COMPLETE (T/R)
 BEQL 37\$;IF EQL - TIME HAS EXPIRED
 BRW RETREG ;DONE BIT SET - ERROR
 ;NORMAL RETURN
 :LOAD BUS ADR OR CYLINDER ADR IN DBR
 DSBINT BBC #UCBSV_POWER,UCBSW_STS(R5),35\$;IF CLR - NO POWER FAILURE
 ENBINT ENBINT ;ENABLE INTERRUPTS
 BRW PWRFAIL ;HANDLE POWER FAILURE
 MOVW (R0),RY_DB(R4) ;PUT NEXT UCB FIELD IN DBR
 WFIKPCH SPECOND,#2 ;WAIT FOR INTERRUPT
 IOFORK ;CREATE FORK PROCESS (BJSB BACK TO ISR)
 ROTL #16,R3,R3 ;SETUP UCB FIELDS FOR NEXT FUNCTION
 ROTL #16,UCBSL_DY_XFER(R5),- ;SET UP NEXT FUNCTION
 UCB\$L_DY_XFER(R5) ;...
 BBC #RY_CS_V_ERR,UCBSW_DY_CS(R5),40\$;IF CLR - NO ERRORS
 BRW DY_PURGE ; Error - Goto Purge datapath
 DECB UCB\$B_DY_LCT(R5) ;DECREMENT LOOP COUNTER
 BLEQ 45\$;IF LEQ - DONE, DON'T LOOP AGAIN
 BRW 30\$;LOOP FOR 2ND FUNCTION

50 00E4 C5 3C 064F 1351 45\$: MOVZWL UCBSW_DY_PWC(R5),R0 ;GET WORDS TRANSFERRED
 50 02 C4 0654 1352 MULL #2,R0 ;FORM BYTES TRANSFERRED
 00C0 C5 50 A0 0657 1353 ADDW R0,UCBSW_BCR(R5) ;UPDATE NEG BYTES REMAINING TO TRANSFER
 065C 1354
 065C 1355
 51 02 10 00E6 C5 3C 065C 1356 MOVZWL UCBSW_DY_SBA(R5),R1 ;UPDATE BUFFER ADDRESS
 51 51 50 CO 0661 1357 INSV UCBSB_DY_XBA(R5),#16,#2,R1 ;GET ORIGINAL BUFFER ADDRESS IN R1
 50 51 02 10 EF 0668 1358 ADDL R0,R1 ;INSERT EXTENDED BITS
 00E3 C5 50 90 0670 1360 EXTZV #16,#2,R1,R0 ;UPDATE BA WITH BYTES TRANSFERRED
 00E6 C5 51 B0 0675 1361 MOVB R0,UCBSB_DY_XBA(R5) ;GET NEW MEMORY EXTENSION BITS
 067A 1362 MOVW R1,UCBSW_DY_SBA(R5) ;AND SAVE IN UCB
 067A 1363
 067A 1364
 067A 1365 Here we update the disk address contained in UCBSL_DY_LMEDIA.
 067A 1366 If we are doing LOGICAL I/O then we simply add one to
 067A 1367 the logical sector number and if the sum of this addition
 067A 1368 is EQUAL to the # of sectors on a track (26) we have an
 067A 1369 overflow condition so we zero the logical sector # and bump
 067A 1370 the logical track #. We do the same for the logical track #
 067A 1371 and the logical cylinder number.
 067A 1372
 067A 1373
 067A 1374
 067A 1375
 067A 1376
 067A 1377
 067A 1378
 067A 1379
 52 00EC C5 9E 067A 1380 MOVAB UCBSL_DY_LMEDIA(R5),R2 ;R2 => Logical Media Address.
 51 44 A5 9E 067F 1381 MOVAB UCBSB_SECTORS(R5),R1 ;R1 => disk dimensions.
 50 58 A5 D0 0683 1382 MOVL UCBSL_IRP(R5),R0 ;R0 => IRP.
 08 E0 0687 1383 BBS #IRPSV PHYSIO,-
 11 2A A0 0689 1384 IRPSW_STS(R0),60\$;If SET this IS PHYSICAL I/O so
 50 02 D0 068C 1385 50\$: MOVL #2,R0 branch to special treatment.
 62 96 068F 1386 INCB (R2)
 81 62 91 0691 1387 CMPB (R2),(R1)+
 2F 1F 0694 1388 BLSSU 80\$ Set loop count for LOGICAL I/O case.
 82 94 0696 1389 CLR B (R2)+ Increment sector, track or cyl. #
 F4 50 F4 0698 1390 SOBGEQ R0,50\$ Test against limit for field.
 1A 11 069B 1391 BRB 70\$ LSSU implies NO overflow - so goto OK
 069D 1392 60\$: Overflow, so reset to zero and
 62 96 069D 1393 INCB (R2) if GEQ loop to increment next field
 81 62 91 069F 1394 CMPB (R2),(R1)+ If we overflowed cylinders, branch.
 21 15 06A2 1395 BLEQ 80\$ Special PHYSICAL I/O case.
 82 01 90 06A4 1396 MOVB #1,(R2)+ Increment sector #.
 62 96 06A7 1397 INCB (R2) Compare to limit.
 81 62 91 06A9 1398 CMPB (R2),(R1)+ If < or = to 26 - OK so branch.
 17 1F 06AC 1399 BLSSU 80\$ If overflow reset to 1 for sectors.
 82 94 06AE 1400 CLR B (R2)+ And bump tracks.
 62 96 06B0 1401 INCB (R2) Compare to limit.
 61 62 91 06B2 1402 CMPB (R2),(R1)+ If < OK so branch out.
 OE 1F 06B5 1403 BLSSU 80\$ Clear overflowed track field and
 06B7 1404 70\$: INCB (R2) increment cylinders.
 06B7 1405 CMPB (R2),(R1) Test if we overflowed cylinders.
 06B7 1406 BLSSU 80\$ If NOT, branch around to OK.
 00C0 C5 B5 06B7 1407 TSTW UCBSW_BCR(R5) Here we have overflowed the cylinder
 field, but if the XFER is done it
 doesn't matter.
 Beyond last LBN - is XFER complete?

50 0134 11 13 06BB 1408 BEQL DY PURGE
FB5A 8F 3C 06BD 1409 MOVZWL #55\$ IVADDR, R0
31 06C2 1410 BRW FUNCXT
06C5 1411
06C5 1412 80\$: TSTW UCB\$W BCR(R5)
00C0 C5 85 06C5 1413 BEQL DY PURGE
03 13 06C9 1414 BRW COMXFER
FE39 31 06CB 1415
06CE 1416
06CE 1417
06CE 1418
06CE 1419
06CE 1420
06CE 1421
06CE 1422 : PURGE DATAPATH
06CE 1423 :
06CE 1424
00000000'GF 16 06CE 1425 DY_PURGE:
04 50 E8 06D4 1426 JSB G^IOCSPURGDATA
00E0 C5 96 06D7 1427 BLBS RO,DY_SAVE
06DB 1428 INCB UCB\$B_DY_ER(R5)
06DB 1429
06DB 1430
06DB 1431 : SAVE UBA REGISTERS FOR REGDUMP ROUTINE
06DB 1432 :
06DB 1433 :
06DB 1434 DY_SAVE:
00D4 C5 51 D0 06DB 1435 MOVL R1,UCBSL_DY_DPR(R5)
51 00E6 C5 3C 06E0 1436 MOVZWL UCB\$W_DY_SBA(R5),R1
10 00E3 C5 F0 06E5 1437 INSV UCB\$B_DY_XBA(R5),#16,#2,R1
50 7E A5 A1 06EE 1438 CLRL R0
00C0 C5 06F1 1439 ADDW3 UCB\$W_BCNT(R5),-
50 02 A6 06F5 1440 UCB\$W_BCR(R5),R0
50 50 C0 06F8 1441 DIVW #2,R0
51 50 78 06FB 1442 ADDL R0,R1
50 01EF 8F B1 0700 1443 ASHL #-7 R1,R0
50 05 18 0705 1444 CMPW #495,R0
50 01EF 8F 3C 0707 1445 BGEQ 10\$
00DB C5 6240 D0 070C 1446 MOVZWL #495,R0
00DC C5 D4 0712 1447 10\$: MOVL (R2)[R0],UCBSL_DY_FMPR(R5)
50 D7 0716 1448 CLRL UCB\$L_DY_PMPR(R5)
OF 00 EC 0718 1449 DECL R0
50 34 A3 071B 1450 CMPV #VEC\$V_MAPREG,#VECSS_MAPREG,-
06 14 071E 1451 CRBSL_INTD+VECSW_MAPREG(R3),R0 :...
00DC C5 6240 D0 0720 1452 BGTR RETREG
0726 1453 MOVL (R2)[R0],UCBSL_DY_PMPR(R5) :SAVE PREVIOUS MAP REGISTER
0726 1454
0726 1455 : DETERMINE EXIT - SPECIAL CONDITION, FATAL ERROR, RETRIABLE ERROR, OR SUCCESS
0726 1456 :
0726 1457 :
0726 1458 :
05 00CE C5 OF E0 0726 1459 RETREG:
72 00E0 C5 E9 072C 1460 BBS #RY CS V_ERR,UCBSW_DY_CS(R5),2\$;IF SET - DEVICE ERROR
0731 1461 BLBC UCB\$B_DY_ER(R5),10\$;IF CLR - NO PURGE ERROR
0731 1462 2\$: ASSUME UCBSW_DY_DB EQ UCBSW_DY_CS(R5),-
00CE C5 D0 0731 1463 MOVL UCBSW_DY_CS(R5),- ;Remembēr values before reading

0104 C5	0735	1465		UCBSL_DY_SAVECS(R5)	: extended sense.
013D	30	0738	1466	BSBW READ_ERROR_REGISTER	: Read hardware error data into UCB.
0104 C5	D0	077E	1468	CKOFL MOVL	: Check if device is offline.
00CE C5		0782	1469	UCBSL_DY_SAVECS(R5),-	: Restore values after reading
00000000'GF	16	0785	1470	UCBSW_DY_CS(R5)	: extended sense.
18 009A C5 OF	E0	078B	1471	JSB G^ERL\$DEVICERR	: ALLOCATE AND FILL ERROR MESSAGE BUFFER
OF 00D0 C5 08	E0	0791	1472	BBS #IOSV_INHRETRY,UCBSW_FUNC(R5),20S	: IF SET - RETRY INHIBITED
03 00D0 C5 00	E0	0797	1473	BBS #RY_DB_V_NXM,UCBSW_DY_DB(R5),15S	: IF SET - NONEXISTENT MEMORY
F96B	30	079D	1474	BBS #RY_DB_V_CRC,UCBSW_DY_DB(R5),5S	: IF SET - CRC ERROR
			07A0	RX2T1_REINIT	: Else go try to reset RX211.
			07A0	1475	
			07A0	1476	: RETRIABLE ERROR EXIT
			07A0	1477	
FA4A	31	07A0	1480	5\$: BRW RETRYERR	: RETRY EXIT
		07A3	1481		
		07A3	1482		
		07A3	1483	: SUCCESSFUL OPERATION EXIT	
		07A3	1484		
		07A3	1485		
FA30	31	07A3	1486	10\$: BRW NORMAL	: SUCCESSFUL EXIT
		07A6	1487		
		07A6	1488		
		07A6	1489	: FATAL ERROR EXIT	
		07A6	1490		
		07A6	1491		
		07A6	1492	15\$:	: NXM ERROR - INIT TO CLEAR
F962	30	07A6	1493	BSBW RX211_REINIT	: Execute RX211 initialize.
FA57	31	07A9	1494	20\$: BRW FATALERR	: FATAL ERROR EXIT
		07AC	1495		
		07AC	1496		
		07AC	1497	: SPECIAL CONDITION EXIT (POWER FAILURE OR DEVICE TIMEOUT)	
		07AC	1498		
		07AC	1499		
		07AC	1500	SPECOND:	
32 64 A5	05	E0	07AC	BBS #UCBSV_POWER,-	: IF SET - POWER FAILURE
00000000'GF	16	07AE	1502	UCBSW_STS(R5),PWRFAIL	: IF CLR - DEVICE TIMEOUT
		07B1	1503	JSB G^ERL\$DEVICETMO	: LOG DEVICE TIMEOUT
		07B7	1504	SETIPL UCBSB_FIPL(R5)	: LOWER TO FORK LEVEL
50 F94D	30	07BB	1505	BSBW RX211_REINIT	: Execute RX211 initialize.
022C 8F	3C	07BE	1506	MOVZWL #SSS_TIMEOUT,R0	: SET DEVICE TIMEOUT STATUS
0080 C5	97	07C3	1507	DEC B UCBSB_ERTCNT(R5)	: ANY ERROR RETRIES REMAINING?
	OD	13	07C7	BEQL RESETXFR	: IF EQL - NO
64 A5 0040 8F	AA	07C9	1509	BICW #UCBSM_TIMEOUT,UCBSW_STS(R5)	: CLEAR TIMEOUT STATUS
53 58 A5	DO	07CF	1510	MOVL UCBSL_IRP(R5),R3	: RESTORE IRP ADDRESS
FATC	31	07D3	1511	BRW FEXL	: RETURN
		07D6	1512		
		07D6	1513	RESETXFR:	
00C0 C5 32 A3	DO	07D6	1514	MOVL UCBSL_IRP(R5),R3	: RESET TRANSFER BYTE COUNT
FA3C	AE	07DA	1515	MNEG W IRPSW_BCNT(R3),UCBSW_BCR(R5)	: GET ADDRESS OF I/O PACKET
	31	07E0	1516	BRW FUNCXT	: RESET BYTE COUNT
		07E3	1517		: EXIT
		07E3	1518	PWRFAIL:	
64 A5 00D2 C5	AA	07E3	1519	BICW #UCBSM_POWER,UCBSW_STS(R5)	: POWER FAILURE
OC	B5	07E7	1520	TSTW UCBSW_DY_DPN(R5)	: CLEAR POWER FAILURE BIT
	13	07EB	1521	BEQL 10\$: ARE UBA RESOURCES ALLOCATED?
					: IF EQL - NO

		07ED	1522	RELDPR	:RELEASE DATA PATH
		07F3	1523	RELMPR	:RELEASE MAP REGISTERS
		07F9	1524	10\$:	:RELEASE CHANNEL IF OWNED
53	58 A5	D0	07FF	1525	MOVL UCBSL_IRP(R5),R3
2C A3	7D	0803	1526	MOVQ IRPSL_SVAPTE(R3),-	:GET ADDRESS OF I/O PACKET
78 A5		0806	1527	UCBSL_SVAPTE(R5)	:RESTORE TRANSFER PARAMETERS
F96F	31	0808	1528	BRW DY_STARTIO	:START REQUEST OVER

080B 1530 .SBTTL INTERRUPT SERVICE ROUTINE
 080B 1531 :++
 080B 1532 : DY_INT - RX211 INTERRUPT SERVICE ROUTINE
 080B 1533 :
 080B 1534 : FUNCTIONAL DESCRIPTION:
 080B 1535 :
 080B 1536 : THIS ROUTINE IS ENTERED VIA A JSB INSTRUCTION WHEN AN INTERRUPT
 080B 1537 : OCCURS ON AN RX211 DISK CONTROLLER. IF THE INTERRUPT IS NOT EXPECTED,
 080B 1538 : THE UNSOLICITED INTERRUPT ROUTINE DISMISSES THE INTERRUPT. IF
 080B 1539 : THE INTERRUPT IS EXPECTED, DEVICE REGISTERS ARE SAVED AND THE
 080B 1540 : DRIVER IS CALLED AT ITS INTERRUPT RETURN ADDRESS. THE DRIVER FORKS,
 080B 1541 : CAUSING A RETURN TO THIS ROUTINE, WHICH RESTORES GENERAL REGISTERS
 080B 1542 : AND DISMISSES THE INTERRUPT.
 080B 1543 :
 080B 1544 : INPUTS:
 080B 1545 :
 080B 1546 : 00(SP) - POINTER TO ADDRESS OF THE IDB
 080B 1547 : 04(SP) - SAVED R0
 080B 1548 : 08(SP) - SAVED R1
 080B 1549 : 12(SP) - SAVED R2
 080B 1550 : 16(SP) - SAVED R3
 080B 1551 : 20(SP) - SAVED R4
 080B 1552 : 24(SP) - SAVED R5
 080B 1553 : 28(SP) - PC AT THE TIME OF THE INTERRUPT
 080B 1554 : 32(SP) - PSL AT THE TIME OF THE INTERRUPT
 080B 1555 :
 080B 1556 :
 080B 1557 : OUTPUTS:
 080B 1558 :
 080B 1559 : DEVICE REGISTERS ARE SAVED, IPL IS LOWERED TO FORK LEVEL, THE
 080B 1560 : INTERRUPT IS DISMISSED, ALL REGISTERS EXCEPT R0-R5 ARE PRESERVED.
 080B 1561 :--
 080B 1562 DY_INT:: : INTERRUPT SERVICE ROUTINE
 53 9E D0 080B 1563 MOVL a(SP)+,R3 ; REMOVE ADDRESS OF IDB FROM STACK
 080E 1564 ASSUME IDBSL_CSR
 080E 1565 ASSUME IDBSL_OWNER EQ 0
 54 63 7D 080E 1566 MOVQ (R3),R4 ; GET ADDRESS OF CSR AND UCB
 55 D5 0811 1567 TSTL R5 ; Make sure we have OWNER.
 3D 13 0813 1568 BEQL DY_UNSOLNT ; EQL implies RX controller has NO owner.
 00CE C5 64 B0 0815 1569 MOVW RY_CS(R4),UCBSW_DY_CS(R5) ; SAVE CONTROL STATUS REGISTER
 53 03 9A 081A 1570 MOVZBL #F-READSECTOR/2,R3- ; GET READ SECTOR FUNCTION CODE
 00E8 C5 01 ED 081D 1571 CMPZV #1-#3,UCBSL_DY_XFER(R5),R3 ; WAS THIS A READ SECTOR FUNCTION?
 08 12 0824 1572 BNEQ 10\$; IF NEQ - NO, SAVE ORIGINAL DELD BIT
 00D0 C5 02 A4 B0 0826 1573 MOVW RY_DB(R4),UCBSW_DY_DB(R5) ; SAVE DATA BUFFER REGISTER
 13 11 082C 1574 BRB 20\$;
 FFBF 8F AA 082E 1575 10\$: BICW #^C<RY_DB M DELD>,- ; SAVE DELETED DATA BIT NOW IN UCB
 00D0 C5 0040 8F AB 0835 1577 UCBSW_DY_DB(R5)
 64 4041 8F AA 083C 1578 BICW3 #RY_DB M-DELD,RY_DB(R4),R3 ; GET ALL BUT DELD BIT FROM DBR
 00D0 C5 53 A8 083C 1578 BISW R3,UCBSW_DY_DB(R5) ; SAVE DATA BUFFER REGISTER
 07 64 A5 01 E5 0846 1580 BICW #RY_CS M-IE TRY CS M GO!- ; DISABLE FURTHER INTERRUPTS
 0846 1581 BBCC #UCBSV_INT_- ; IF CLR - INTERRUPT NOT EXPECTED
 0848 1582 UCBSW_STS(R5),DY_UNSOLNT ;...
 084B 1583
 53 10 A5 7D 084B 1584 MOVL UCBSL_FR3(R5),R3 ; RESTORE DRIVER CONTEXT
 0C B5 16 084F 1585 JSB UCBSL_FPC(R5) ; CALL DRIVER AT INTERRUPT RETURN ADDRESS
 0852 1586

DYDRIVER
V04-000

- VAX/VMS RX211/RX02 DISK DRIVER
INTERRUPT SERVICE ROUTINE

N 15

16-SEP-1984 00:22:58 VAX/VMS Macro V04-00
5-SEP-1984 00:14:25 [DRIVER.SRC]DYDRIVER.MAR;1

Page 37
(1)

3F 0852 1587 DY_UNSOLNT:
BA 0852 1588 POPR #^M<R0,R1,R2,R3,R4,R5> ;UNSOLICITED INTERRUPT
02 0854 1589 REI ;RESTORE R0-R5
;RETURN FROM INTERRUPT

0855 1591

.SBTTL REGISTER DUMP ROUTINE

0855 1592 ++

0855 1593

DY_REGDUMP - REGISTER DUMP ROUTINE

0855 1595

FUNCTIONAL DESCRIPTION:

0855 1597

THIS ROUTINE IS CALLED TO SAVE THE DEVICE REGISTERS AND UBA RESOURCE
REGISTERS IN A SPECIFIED BUFFER. IT IS CALLED FROM THE DEVICE ERROR
LOGGING ROUTINE AND FROM THE DIAGNOSTIC BUFFER FILL ROUTINE.

0855 1601

INPUTS:

0855 1602

R0 - ADDRESS OF REGISTER SAVE BUFFER

0855 1603

R4 - ADDRESS OF DEVICE CONTROL STATUS REGISTER (CSR)

0855 1604

R5 - ADDRESS OF UNIT CONTROL BLOCK (UCB)

0855 1605

UCBSB_DY_ER - SPECIAL ERRORS: BIT 0 - DATAPATH PURGE ERROR

0855 1606

BIT 1 - RX211 SWITCH SET FOR RX01

0855 1607

0855 1608

0855 1609

0855 1610

OUTPUTS:

0855 1611

THE DEVICE AND UBA REGISTERS ARE SAVED IN THE SPECIFIED BUFFER.
R0 CONTAINS THE ADDRESS OF THE NEXT EMPTY LONGWORD IN THE BUFFER.
ALL REGISTERS EXCEPT R1 AND R2 ARE PRESERVED.

0855 1612

0855 1613

0855 1614

0855 1615

0855 1616

0855 1617

0855 1618

DY_REGDUMP:

0855 1619

MOVL #<RY_NUM_REGS+7>, (R0)+

REGISTER DUMP ROUTINE

Insert number of registers.

0855 1620

MOVAL UCBSQ_DY_CS(R5), R1

GET ADDRESS OF SAVED DEVICE REGISTERS

0855 1621

MOVZWL (R1)+, (R0)+

DUMP DEVICE CONTROL STATUS REGISTER

0855 1622

MOVZWL (R1)+, (R0)+

DUMP DEVICE DATA BUFFER REGISTER

0855 1623

MOVZWL (R1)+, (R0)+

DUMP DATAPATH NUMBER

0855 1624

MOVL (R1)+, (R0)+

DUMP DATAPATH REGISTER

0855 1625

MOVL (R1)+, (R0)+

DUMP FINAL MAP REGISTER

0855 1626

MOVL (R1)+, (R0)+

DUMP PREVIOUS MAP REGISTER

0855 1627

MOVZBL (R1)+, (R0)+

DUMP SPECIAL ERROR REGISTER

51	80 09 DO	0855 1628
	00CE C5 DE	0858 1629
	80 81 3C	085D 1630
	80 81 3C	0860 1631
	80 81 3C	0863 1632
	80 81 DO	0866 1633
	80 81 DO	0869 1634
	80 81 DO	086C 1635
	80 81 9A	086F 1636
80	00FO C5	0872 1637
	7D	1628
	05	0877 1630

ASSUME RY_EXTENDED_STATUS LENGTH EQ 8

; Copy ERROR REGISTER data.

MOVQ UCBSQ_DY_EXTENDED_STATUS(R5), (R0)+

;RETURN

0878 1632 .SBTTL READ_ERROR_REGISTER - Subroutine to read hardware error data
0878 1633
0878 1634
0878 1635 : READ_ERROR_REGISTER - subroutine called after a hardware error condition and
0878 1636 used to issue the READ ERROR REGISTER command.
0878 1637
0878 1638 The Read Error Register command performs a DMA transfer of 4 words (8 bytes)
0878 1639 of hardware error status. In order to accomplish our task here we must:
0878 1640
0878 1641 1. Save CRB and UCB fields having to do with the data transfer I/O
0878 1642 operation in progress. These fields are:
0878 1643
0878 1644 a) CRBSL_INTD+VECSW_MAPREG - the first UBA map register used
0878 1645 to map the I/O buffer in Unibus virtual space.
0878 1646 b) CRBSL_INTD+VECSB_NUMREG - the number UBA map registers
0878 1647 currently allocated to map the I/O buffer.
0878 1648 c) CRBSL_INTD+VECSB_DATAPATH - the UBA datapath being used for
0878 1649 the transfer in progress.
0878 1650 d) UCB\$L_SVAPTE, UCB\$W_BOFF, and UCB\$W_BCNT.
0878 1651
0878 1652 2. Load a zero into CRBSL_INTD+VECSB_DATAPATH since the DMA transfer
0878 1653 of 8 bytes can easily make use of the direct datapath.
0878 1654
0878 1655 3. Load UCB\$L_SVAPTE with the system virtual address of the page table
0878 1656 entry which maps the UCB\$Q_DY_EXTENDED_STATUS field, the field
0878 1657 into which we will do the DMA transfer of the 8 bytes.
0878 1658
0878 1659 4. Load UCB\$W_BOFF with the offset in its page of UCB\$Q_DY_EXTENDED_STATUS.
0878 1660
0878 1661 5. Load UCB\$W_BCNT with the length of UCB\$Q_DY_EXTENDED_STATUS (8 bytes).
0878 1662
0878 1663 6. Once the above fields (steps 2-6) are loaded we can make use of
0878 1664 system routines to:
0878 1665
0878 1666 a) REQMPR - request UBA map registers to map
0878 1667 UCB\$Q_DY_EXTENDED_STATUS.
0878 1668 b) LOADUBA - Load the allocated map registers with the
0878 1669 appropriate data to realize the mapping.
0878 1670
0878 1671 7. Calculate the Unibus virtual address of UCB\$Q_DY_EXTENDED_STATUS
0878 1672 and produce the values to insert into the RX211 (RX4T1)
0878 1673 registers, according to protocol, to effect the Read Error
0878 1674 Register command.
0878 1675
0878 1676 8. Execute the command.
0878 1677
0878 1678 9. Release UBA map registers and restore CRB and UCB fields.
0878 1679
0878 1680 10. If no TIMEOUT or POWERFAIL occurred, return to caller, else branch
0878 1681 to SPECOND.
0878 1682
0878 1683 INPUTS:
0878 1684 R4 => CSR
0878 1685 R5 => UCB
0878 1686
0878 1687 OUTPUTS:
0878 1688 Error Register data in UCB\$Q_DY_EXTENDED_STATUS.

0878 1689 :
 0878 1690 : Registers R0, R1 and R2 are modified.
 0878 1691 :
 0878 1692 :
 0878 1693 :
 0878 1694 READ_ERROR REGISTER:
 009C C5 8ED0 0878 1695 POPL UCB\$L_DPC(R5) ; Save caller's return address.
 087D 1696 :
 087D 1697 ASSUME VEC\$W_MAPREG+2 EQ VEC\$B_NUMREG
 50 24 A5 D0 087D 1698 ASSUME VEC\$B_NUMREG+1 EQ VEC\$B_DATAPATH
 34 A0 D0 0881 1700 MOVL UCB\$L_CRB(R5),R0 ; R0 => CRB.
 0100 C5 0884 1701 MOVL CRBSL_INTD+VEC\$W_MAPREG(R0),- ; Save MAPREG, NUMREG, and
 37 A0 94 0887 1702 CLRBL UCBSL_DY_MAPREGTMP(R5) ; DATAPATH of current operation
 088A 1703 CLRB CRBSL_INTD+VEC\$B_DATAPATH(R0) ; Insure direct path for READERROR
 088A 1704 ASSUME UCB\$L_SVAPTE+4 EQ UCB\$W_BOFF
 78 A5 7D 088A 1705 ASSUME UCB\$W_BOFF+2 EQ UCB\$W_BCNT
 00F8 C5 088D 1706 MOVQ UCB\$L_SVAPTE(R5),- ; Save contents of UCBSL_SVAPTE,
 0890 1707 MOVQ UCB\$Q_DY_SVAPTEM(R5) ; UCB\$W_BOFF, and UCB\$W_BCNT.
 0890 1708 :
 0890 1709 :
 0890 1710 : Upto here we have saved all relevant data from the CRB and UCB. Now we
 0890 1711 : doctor up those fields in the CRB and UCB in order to:
 0890 1712 :
 0890 1713 : 1. Request UBA map registers to map the 4 word field
 0890 1714 : in the UCB which will serve as the target of the
 0890 1715 : READ ERROR REGISTER command.
 0890 1716 :
 0890 1717 : 2. Load these UBA map registers with the UBA Virtual Address
 0890 1718 : of this target area.
 0890 1719 :
 0890 1720 :
 7E 08 B0 0890 1721 MOVW #RY_EXTENDED_STATUS_LENGTH,- ; Put length of target area so
 7E A5 0892 1722 UCB\$W_BCNT(R5) ; to allocate correct number
 0894 1723 : of UBA map registers.
 0894 1724 :
 7C A5 50 00F0 C5 9E 0894 1725 MOVAB UCB\$Q_DY_EXTENDED_STATUS(R5),R0 ; R0 => target area.
 50 50 FEO0 8F AB 0899 1726 BICW3 #^XFEO0,R0,UCBSW_BOFF(R5) ; Put offset in page of target.
 50 50 15 09 EF 08A0 1727 EXTZV S^#VASS_VPN,S^#VASS_VPN,R0,R0 ; R0 = VPN of target's page in
 08A5 1728 : system space.
 08A5 1729 :
 51 00000000'GF 78 A5 6140 DO 08A5 1730 MOVL G^MMG\$GL_SPTBASE,R1 ; R1 => base of SO page table.
 08AC 1731 MOVAL (R1)[R0],UCBSL_SVAPTE(R5) ; NOT SURE IF THIS SHOULDN'T BE
 08B1 1732 : INDIRECT MOV.*****
 08B1 1733 :
 08B1 1734 REQMPR ; Request map registers.
 08B7 1735 LOADUBA ; Load map registers with proper
 08BD 1736 : contents to map the target.
 08BD 1737 :
 08BD 1738 :
 08BD 1739 : Now we calculate the UBA virtual address of the target so as to be able to
 08BD 1740 : issue the proper device command.
 08BD 1741 :
 52 F882 30 08BD 1742 BSBW DY_MERGE ; Merge GO BIT, IE, etc into R2.
 0E A8 08C0 1743 BISW #F_READERROR,R2 ; Or in the command.
 08C3 1744 :
 51 24 A5 DO 08C3 1745 MOVL UCB\$L_CRB(R5),R1 ; R1 => CRB.

50 7C A5 3C 08C7 1746 MOVZWL UCBSW_BOFF(R5),R0 ; R0 = page offset of target.

50 07 34 A1 F0 08CB 1747 INSV CRBSL_INTD+VECSW_MAPREG(R1),- #9,#7,R0 ; Place low order 7 bits of map reg number into R0 giving low order 16 bits of UBA virtual address of target.

50 07 09 08CE 1748 08D1 1750 08D1 1751 08D1 1752 EXTZV #7,#2,- CRBSL_INTD+VECSW_MAPREG(R1),R1 ; Get high order 2 bits of map register number.
51 02 34 A1 F0 08D4 1754 08D7 1755 08DA 1756 08DC 1757 INSV R1,#RY_CS_V_XBA,= #RY_CS_S_XBA,R2 ; Or in the high order two bits of the UBA virtual address.

64 52 B0 08DC 1758 08DF 1759 MOVW R2,RY_CS(R4) ; Move command to hardware reg.

7E 50 7D 08DF 1760 08E2 1761 08E2 1762 08E2 1763 08E2 1764 08E2 1765 MOVQ R0,-(SP) ;SAVE R0-R1 TIMEDWAIT TIME=#100*1000,- ;ONE SECOND WAIT TIMEOUT
INS1=<BITB #RY_CS_M_TR!RY_CS_M_DONE,RY_CS(R4),- ;T/R OR DONE?
INS2=<BN EQ 5\$,- ;IF LSS - TRANSFER COMPLETE (T/R)
- ;IF NON-ZERO - DONE BIT SET - ERROR
- ;IF EQL - NEITHER, WAIT

64 50 8E 7D 090A 1767 090D 1768 0911 1769 0913 1770 0915 1771 0917 1772 6\$: 0917 1773 0917 1774 :
0917 1775 : Now we load the UBA virtual address into the hardware DB register and wait for the interrupt to occur.
0917 1776 :
0917 1777 :
0917 1778 :
0917 1779 DSBINT
05 64 A5 05 E1 091D 1780 BBC #UCBSV_POWER,UCBSW_STS(R5),10\$; If clear, then proceed.
1C 11 0922 1781 ENBINT
0925 1782 BRB 30\$; Branch around if POWERFAIL.
0927 1783 0927 1784 10\$:
02 A4 50 B0 0927 1785 092B 1786 092B 1787 092B 1788 0935 1789 WFIKPCH 30\$,#2 IOFORK
06 11 093B 1790 093D 1791 20\$: BRB 30\$; Branch around timeout re-entry.
64 A5 0040 8F AB 093D 1792 0943 1793 30\$: BISW #UCBSM_TIMOUT,UCBSW_STS(R5) ; Set timeout flag.
0943 1794 0947 1795 0947 1796 :
0947 1797 : Now we deallocate the Unibus map register we allocated above to map the target area and then we restore the UCB and CRB fields to their original values.
0947 1798 :
0947 1799 :
0947 1800 :
0947 1801 :
0947 1802 RELMPR ; Lower IPL in case TIMEOUT.

		094D	1803				
	00F8 C5	7D	094D	1804	MOVQ	UCBSQ_DY_SVAPTE TMP(R5),-	: Restore UCBSL_SVAPTE,
	78 A5		0951	1805		UCBSL_SVAPTE(R5)	: UCBSW_BOFF and UCBSW_BCNT.
50	24 A5	D0	0953	1806	MOVL	UCBSL_CRB(R5),R0	: R0 => CRB
	0100 C5	D0	0957	1807	MOVL	UCBSL_DY_MAPREGTMP(R5),-	: Restore MAPREG, NUMREG and
	34 A0		095B	1808		CRBSL_INTD+VECSW_MAPREG(R0)	: DATAPATH.
			095D	1809			
	0060 8F	B3	095D	1810	BITW	#UCBSM_TIMOUT!UCBSM_POWER,-	: See if we had a POWERFAIL
	64 A5		0961	1811		UCBSW_STS(R5)	or a TIMEOUT.
	03	13	0963	1812	BEQL	40\$: EQL implies NO - so branch.
	FE44	31	0965	1813	BRW	SPECOND	: Branch out if POWER or TIMEOUT.
			0968	1814	40\$:		
009C D5	17	0968	1815		JMP	@UCBSL_DPC(R5)	; Return to caller.
		096C	1816	DY_END:			
		096C	1817		.END		; ADDRESS OF LAST LOCATION IN DRIVER

SSS	= 00000020	R	02	EXE\$LCLDISKVALID	*****	X	03
SSOP	= 00000002			EXE\$ONEPARM	*****	X	03
ACPSACCESS	*****	X	03	EXE\$SENSEMODE	*****	X	03
ACPSDEACCESS	*****	X	03	EXE\$SETCHAR	*****	X	03
ACPSMODIFY	*****	X	03	EXE\$ZEROPARM	*****	X	03
ACPSMOUNT	*****	X	03	FATALERR	00000203	R	03
ACPSREADBLK	*****	X	03	FEKL	00000252	R	03
ACPSWRITEBLK	*****	X	03	FORMAT	00000299	R	03
ATS UBA	= 00000001			FUNCTIONTAB_LEN	= 000000A0		
AVAILABLE	000001D0	R	03	FUNCXT	0000021F	R	03
COMXFER	00000507	R	03	F-EMPTYBUFFER	= 00000002		
CRBSL_INTD	= 00000024			F-FILLBUFFER	= 00000000		
DCS_DISK	= 00000001			F-READERROR	= 0000000E		
DDBSK_SLOW	= 00000003			F-READSECTOR	= 00000006		
DDBSL_ACPD	= 00000010			F-READSTATUS	= 0000000A		
DDBSL_DDT	= 0000000C			F-SETDEN	= 00000008		
DEVSM_AVL	= 00040000			F-WRITEDEL	= 0000000C		
DEVSM_DIR	= 00000008			IDB\$L_CSR	= 00000000		
DEVSM_ELG	= 00400000			IDB\$L_OWNER	= 00000004		
DEVSM_FOD	= 00004000			IOSV_DELDATA	= 00000006		
DEVSM_IDV	= 04000000			IOSV_INHRETRY	= 0000000F		
DEVSM_NNM	= 00000200			IOS_ACCESS	= 00000032		
DEVSM_ODV	= 08000000			IOS_ACPCONTROL	= 00000038		
DEVSM_RND	= 10000000			IOS_AVAILABLE	= 00000011		
DEVSM_SHR	= 00010000			IOS_CREATE	= 00000033		
DPTSC_LENGTH	= 00000038			IOS_DEACCESS	= 00000034		
DPTSC_VERSION	= 00000004			IOS_DELETE	= 00000035		
DPTSINITAB	00000038	R	02	IOS_FORMAT	= 0000001E		
DPTSM_SVP	= 00000002			IOS MODIFY	= 00000036		
DPTSREINITAB	00000074	R	02	IOS_MOUNT	= 00000039		
DPTSTAB	00000000	R	02	IOS_PACKACK	= 00000008		
DTS_RX02	= 0000000B			IOS_READBLK	= 00000021		
DTS_RX04	= 0000000C			IOS_READPBLK	= 0000000C		
DYSDDT	00000000	RG	03	IOS_READVBLK	= 00000031		
DYNSC_CRB	= 00000005			IOS_SENSECHAR	= 000001B		
DYNSC_DDB	= 00000006			IOS_SENSEMODE	= 00000027		
DYNSC_DPT	= 0000001E			IOS_SETCHAR	= 000001A		
DYNSC_UCB	= 00000010			IOS_SETMODE	= 00000023		
DY_ALIGN	0000016A	R	03	IOS_UNLOAD	= 00000001		
DY_END	0000096C	R	03	IOS_VIRTUAL	= 0000003F		
DY_FUNCTABLE	00000038	R	03	IOS_WRITEBLK	= 00000020		
DY_INT	0000080B	RG	03	IOS_WRITEPBLK	= 0000000B		
DY_MERGE	00000142	R	03	IOS_WRITEVBLK	= 00000030		
DY_PURGE	000006CE	R	03	IOC\$DIAGBUFILE	*****	X	03
DY_REGDUMP	00000855	R	03	IOC\$LOADUBAMAP	*****	X	03
DY_RX02_INIT	00000135	R	03	IOC\$MNTPVER	*****	X	03
DY_RX21T_INIT	000000D8	R	03	IOC\$PURGDATA	*****	X	03
DY_SAVE	000006DB	R	03	IOC\$RELCHAN	*****	X	03
DY_STARTIO	0000017A	R	03	IOC\$RELDATAP	*****	X	03
DY_UNSOLNT	00000852	R	03	IOC\$RELMAPREG	*****	X	03
EMBSL DV REGSAV	= 0000004E			IOC\$REQCOM	*****	X	03
ERLSDEVICERR	*****	X	03	IOC\$REQDATAP	*****	X	03
ERLSDEVICTMO	*****	X	03	IOC\$REQMAPREG	*****	X	03
EXESABORTIO	*****	X	03	IOC\$REQPCHANL	*****	X	03
EXESGL_TENUSEC	*****	X	03	IOC\$RETURN	*****	X	03
EXESGL_UDELAY	*****	X	03	IOC\$WFIKPCH	*****	X	03
EXESIOPORK	*****	X	03				

IRPSL_MEDIA	= 00000038		RY_QWPS	= 00000100
IRPSL_SVAPTE	= 0000002C		RY_RX01SW	= 00000002
IRPSS_FCODE	= 00000006		RY_SECTORS	= 0000001A
IRPSV_DIAGBUF	= 00000007		RY_SSDD	= 000003DC
IRPSV_FCODE	= 00000000		RY_SSQD	= 000007B8
IRPSV_PHYSIO	= 00000008		RY_SSSD	= 000001EE
IRPSW_BCNT	= 00000032		RY_SWPS	= 00000040
IRPSW_FUNC	= 00000020		SIZ:	= 00000004
IRPSW_STS	= 0000002A	X 03	SPECOND	000007AC R 03
MASKH	= 00000008		SSS_CTRLERR	= 00000054
MASKL	= 04000000		SSS_DRVERR	= 0000008C
MMGSQL_SPTBASE	***** X 03		SSS_FORMAT	= 000000BC
NORMAL	000001D6	R 03	SSS_IVADDR	= 00000134
PACKACK	00000354	R 03	SSS_IVBUFLEN	= 0000034C
PRS_IPL	= 00000012		SSS_MEDOFL	= 000001A4
PWRFAIL	000007E3	R 03	SSS_NORMAL	= 00000001
READ_ERROR_REGISTER	00000878	R 03	SSS_PARITY	= 000001F4
RESETXFR	000007D6	R 03	SSS_RDDELDATA	= 00000661
RETREG	00000726	R 03	SSS_TIMEOUT	= 0000022C
RETRYERR	000001ED	R 03	SSS_VOLINV	= 00000254
RX211_REINIT	0000010B	R 03	UCBSB_DEVCLASS	= 00000040
RY_CS	00000000		UCBSB_DEVTYPE	= 00000041
RY_CS_M_DONE	= 00000020		UCBSB_DIPL	= 0000005E
RY_CS_M_ERR	= 00008000		UCBSB_DY_ER	= 000000E0
RY_CS_M_GO	= 00000001		UCBSB_DY_LCT	= 000000E2
RY_CS_M_IE	= 00000040		UCBSB_DY_XBA	= 000000E3
RY_CS_M_INIT	= 00004000		UCBSB_ERTCNT	= 00000080
RY_CS_M_RX02	= 00000800		UCBSB_ERTMAX	= 00000081
RY_CS_M_TR	= 00000080		UCBSB_FEX	= 00000092
RY_CS_S_DEN	= 00000002		UCBSB_FIPL	= 0000000B
RY_CS_S_XBA	= 00000002		UCBSB_SECTORS	= 00000044
RY_CS_V_DEN	= 00000008		UCBSB_TRACKS	= 00000045
RY_CS_V_ERR	= 0000000F		UCBSK_DY_LEN	= 00000108
RY_CS_V_XBA	= 0000000C		UCBSK_LCE_DISK_LENGTH	= 000000CC
RY_CYLINDERS	= 0000004D		UCBSL_CRB	= 00000024
RY_DB	00000002		UCBSL_DEVCHAR	= 00000038
RY_DB_M_ACLO	= 00000008		UCBSL_DEVCHAR2	= 0000003C
RY_DB_M_CRC	= 00000001		UCBSL_DPC	= 0000009C
RY_DB_M_DE	= 00000010		UCBSL_DY_DPR	= 000000D4
RY_DB_M_DELD	= 00000040		UCBSL_DY_FMPR	= 000000D8
RY_DB_M_DRDY	= 00000080		UCBSL_DY_LMEDIA	= 000000EC
RY_DB_M_NXM	= 00000800		UCBSL_DY_MAPREGTMP	= 00000100
RY_DB_M_WCO	= 00000400		UCBSL_DY_PMPR	= 000000DC
RY_DB_V_CRC	= 00000000		UCBSL_DY_SAVECS	= 00000104
RY_DB_V_DE	= 00000004		UCBSL_DY_XFER	= 000000E8
RY_DB_V_DELD	= 00000006		UCBSL_FPC	= 0000000C
RY_DB_V_NXM	= 0000000B		UCBSL_FR3	= 00000010
RY_DB_V_QDEN	= 00000001		UCBSL_IRP	= 00000058
RY_DB_V_RX04	= 00000009		UCBSL_MAXBLOCK	= 000000B0
RY_DENSITY_DOUBLE	= 00000001		UCBSL_MEDIA	= 000000BC
RY_DENSITY_QUAD	= 00000002		UCBSL_MEDIA_ID	= 0000008C
RY_DENSITY_SINGLE	= 00000000		UCBSL_SVAPTE	= 00000078
RY_DPPE	= 00000001		UCBSM_DIAGBUF	= 00000002
RY_DSDD	= 000007C5		UCBSM_NOCNVRT	= 00000004
RY_DWPS	= 00000080		UCBSM_ONLINE	= 00000010
RY_EXTENDED_STATUS_LENGTH	= 00000008		UCBSM_POWER	= 00000020
RY_NUM_REGS	= 00000002		UCBSM_TIMEOUT	= 00000040

DYDRIVER
Symbol table

- VAX/VMS RX211/RX02 DISK DRIVER

I 16

16-SEP-1984 00:22:58 VAX/VMS Macro V04-00
5-SEP-1984 00:14:25 [DRIVER.SRC]DYDRIVER.MAR;1Page 45
(1)

UCBSM_VALID = 00000800
 UCBSQ_DY_EXTENDED_STATUS = 000000F0
 UCBSQ_DY_SVAPTE TMP = 000000F8
 UCBSV_INT = 00000001
 UCBSV_POWER = 00000005
 UCBSV_VALID = 0000000B
 UCBSW_BCNTR = 00000007E
 UCBSW_BCR = 0000000C0
 UCBSW_BOFF = 00000007C
 UCBSW_CYLINDERS = 000000046
 UCBSW_DEVBUFSIZ = 000000042
 UCBSW_DEVSTS = 000000068
 UCBSW_DY_CS = 0000000CE
 UCBSW_DY_DB = 0000000D0
 UCBSW_DY_DPN = 0000000D2
 UCBSW_DY_PWC = 0000000E4
 UCBSW_DY_SBA = 0000000E6
 UCBSW_DY_WPS = 0000000CC
 UCBSW_FUNC = 00000009A
 UCBSW_STS = 000000064
 UCBSW_UNIT = 000000054
 UNLOAD = 000001D0 R 03
 VASS_VPN = 00000015
 VASV_VPN = 00000009
 VEC\$B_DATAPATH = 00000013
 VEC\$B_NUMREG = 00000012
 VEC\$L_IDB = 00000008
 VEC\$L_INITIAL = 0000000C
 VEC\$L_UNITINIT = 00000018
 VEC\$S_DATAPATH = 00000005
 VEC\$S_MAPREG = 0000000F
 VEC\$V_DATAPATH = 00000000
 VEC\$V_MAPREG = 00000000
 VEC\$W_MAPREG = 00000010
 XFER = 000003F4 R 03

+-----+
! Psect synopsis !
+-----+

PSECT name

.ABS .
\$ABSS
\$\$S105_PROLOGUE
\$\$S115_DRIVER

	Allocation	PSECT No.	Attributes															
.ABS .	000000000	(0.)	00 (0.)	NOPIC	USR	CON	ABS	LCL	NOSHR	NOEXE	NORD	NOWRT	NOVEC	BYTE				
\$ABSS	00000108	(264.)	01 (1.)	NOPIC	USR	CON	ABS	LCL	NOSHR	EXE	RD	WRT	NOVEC	BYTE				
\$\$S105_PROLOGUE	00000089	(137.)	02 (2.)	NOPIC	USR	CON	REL	LCL	NOSHR	EXE	RD	WRT	NOVEC	BYTE				
\$\$S115_DRIVER	0000096C	(2412.)	03 (3.)	NOPIC	USR	CON	REL	LCL	NOSHR	EXE	RD	WRT	NOVEC	LONG				

+-----+
! Performance indicators !
+-----+

Phase

Initialization
Command processing
Pass 1
Symbol table sort

Phase	Page faults	CPU Time	Elapsed Time
Initialization	32	00:00:00.04	00:00:00.43
Command processing	140	00:00:00.39	00:00:03.97
Pass 1	591	00:00:18.19	00:01:09.87
Symbol table sort	0	00:00:02.33	00:00:08.72

DYDRIVER
VAX-11 Macro Run Statistics

- VAX/VMS RX211/RX02 DISK DRIVER

J 16

16-SEP-1984 00:22:58 VAX/VMS Macro V04-00
5-SEP-1984 00:14:25 [DRIVER.SRC]DYDRIVER.MAR;1

Page 46
(1)

Pass 2	324	00:00:04.32	00:00:13.52
Symbol table output	31	00:00:00.16	00:00:00.33
Psect synopsis output	2	00:00:00.02	00:00:00.02
Cross-reference output	0	00:00:00.00	00:00:00.00
Assembler run totals	1122	00:00:25.46	00:01:36.87

The working set limit was 2400 pages.

153208 bytes (300 pages) of virtual memory were used to buffer the intermediate code.

There were 120 pages of symbol table space allocated to hold 2222 non-local and 76 local symbols.

1817 source lines were read in Pass 1, producing 22 object records in Pass 2.

53 pages of virtual memory were used to define 49 macros.

+-----+
! Macro library statistics !
+-----+

Macro library name

\$255\$DUA28:[SYS.OBJ]LIB.MLB;1
\$255\$DUA28:[SYSLIB]STARLET.MLB;2
TOTALS (all libraries)

Macros defined

34
10
44

2470 GETS were required to define 44 macros.

There were no errors, warnings or information messages.

MACRO/LIS=LI\$:DYDRIVER/OBJ=OBJ\$:DYDRIVER MSRC\$:DYDRIVER/UPDATE=(ENH\$:DYDRIVER)+EXECML\$/LIB

0111 AH-BT13A-SE
VAX/VMS V4.0

DIGITAL EQUIPMENT CORPORATION
CONFIDENTIAL AND PROPRIETARY