SVKM'S NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING

Academic Year: 2024-2025

SET-E

Program: B. Tech. Integrated Stream: All Year: III Semester: V

Subject: Calculus Time: 45 Minutes.

Date: : 23/08/2024 Max. Marks: 10

Test-I

Instructions: Candidates should read carefully the instructions.

1) Q1 is compulsory

2) Answer any two from Q2-Q4

3) Figures in brackets on the right hand side indicate full marks.

4) Assume Suitable data if necessary.

Q1.	Answer briefly. Each question carries 02 marks.	[04]	
a.	Evaluate $\lim_{x\to 0} [\tan x \cdot \log x]$		CO- 2; SO1; BL-2
b.	Verify Rolle's Theorem for $f(x) = x^3 - 4x$ in [-2, 2].		CO-1; SO1, BL-2
Q2.	If $u = e^r$, $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = e^r (1 + \frac{1}{r})$	[03]	CO- 1; SO1, BL-3
Q3.	Considering the functions $\frac{1}{x^2}$ and $\frac{1}{x}$, Find 'c' of Cauchy's mean value theorem in the interval [a, b] where a, b > 0.	[03]	CO- 1; SO1; BL-
Q4.	(a) Test the convergence of the sequence $a_n = 1 + \frac{\left(-1\right)^n}{n}$ (b) Expand $f(x) = \cos x$ about the point $x = \pi$. (Upto three non-zero terms in the series)	[01+ 02]	CO-2; SO1; BL- 2

SVKM'S NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT&

ENGINEERING

Academic Year: 2024-2025

SET-F

Program: B. Tech. Integrated Stream: All Year: III Semester: V

Subject: Calculus Time: 45 Minutes.

Date: 23/08/2024 Max. Marks: 10

Test-I

Instructions: Candidates should read carefully the instructions.

1) Q1 is compulsory

2) Answer any two from Q2-Q4

3) Figures in brackets on the right hand side indicate full marks.

4) Assume Suitable data if necessary.

Q1.	Answer briefly. Each question carries 02 marks.	[04]	
a.	Evaluate $\lim_{x \to 0} \left[\frac{1}{x} - \frac{1}{e^x - 1} \right]$		CO- 2; SO1; BL-2
b.	Verify Rolle's Theorem for $f(x) = \sin x$ in $[0, 2\pi]$.		CO-1; SO1, BL-2
Q2.	If If $u = \sin r$, $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\sin r + \frac{1}{r}\cos r.$	[03]	CO- 1; SO1, BL-3
Q3.	Verify and find c in Cauchy's MVT for $f(x) = e^x$ and $g(x) = e^{-x}$ in [a, b], a, b > 0	[03]	CO- 1;SO1; BL- 3
Q4.	a) Test the convergence of the sequence $a_n = \left(\frac{n}{n-1}\right)^2$ b) Expand $f(x) = \frac{1}{1-x}$ about $x = -2$, (upto third degree terms in the series)	[01+ 02]	CO-2; SO1; BL- 2