Оптика и вълни

Геометрична оптика

Вълни					
2023	Есенно	3	Сапунен мехур (ВИ). Красива практическа задача, която по-казва стандартен сценарий в непознат контекст. Нужно е внимателно прочитане на условието.		
2015	Пролетно	3.2	Нютонови пръстени (MA). Задача върху класическа установка. Решението на в) е излишно дълго. Като пояснение, има интерференция само от дадените снопове, защото разстоянието между тях е малко. При всички други двойки отразени лъчи разстоянието е много дължини на вълната. Понеже светлината никога не е идеално монохроматична, за тях би имало загуба на кохерентност, много максимуми се смесват с много минимуми.		
2010	Пролетно	3	Интерференция от клин (MA). Задача с алтернативен подход при намиране на максимуми, а именно с ъгъл между снопове при екрана. Втората част е усложнен вариант на класическата задача за интерференция между тънки слоеве.		
2012	Есенно	1	Интерференция от три процепа (?). Още една стандартна ситуация, която се решава най-лесно с векторна диаграма. Решението на а) е грешно, тъй като използва моментни стойности, а не амплитуди.		
2003	Есенно	5	Слухов апарат (?). Стандартна задача с биномно приближение и векторна диаграма.		
Вълнова оптика					
2004	Есенно	3	Назъбена пластинка (MA). Не можах да я реша сам и не разбирам нищо от решението. Или задачата е много сложна, или е грешна.		
2022	Пролетно	3	Тънка сферична леща (MA). Скучна задача с извеждане на уравнение на тънка леща и решаване на система уравнения.		
2018	Есенно	3	Небесна дъга (MA). Блъскаческа задача върху пречупване при сферична повърхност. Последната подточка се отнася за поляризация и преподава полезни формули.		
2017	Есенно	1	Планета с ядро (MA). Лека задача върху гравитация и закон на Снелиус за сеизмични вълни. Основно задача в геофизиката.		
2013	Пролетно	3	Вълнички в басейн (МА). Лесна задача за радиус на кривина.		
2010	Есенно	3	Отрицателен коефициент на пречупване (ВИ). Елементарно упражнение върху закон на Снелиус.		

които я изграждат.

Разхлабена струна (ВИ). Стандартна задача, стига да сте запознати с основната теория за вълни. Обърнете внимание, че T е фиксирано, то е същото за стоящата вълна и бягащите вълни,

2006 Пролетно 1

2016	Есенно	3	Стояща вълна и микровълнова печка (МА). Техническа задача.
			Първата част извежда уравнението на стояща вълна при опре-
			делени гранични условия. Втората част е само пресмятания.
2015	Есенно	3	Радар (ВИ). Хубава и кратка задача с лошо формулирано условие. От в) нататък се приема, че радарът излъчва изотропно в рамките на областта от б). Начинът, по който огледалната сфера разпределя мощността обратно в пространството, не е очевиден и трябва да се изведе.