General linear groups

Lemma 0.1 (Iwasawa). If finite group G satisfies the following conditions, then G is simple.

i.
$$G' = G$$
;

ii. G is primitive on some set Ω ;

iii. $\exists A \leq G_{\alpha}$ such that A is solvable;

iv.
$$G = A^G$$
.

i.e. A perfect primitive group G, being the normal closure of an abelian normal subgroup A of its point stabilizer, is simple.

Proof. Suppose that $1 \neq N \leq G$. Then, by primitivity, N is transitive on Ω and hence $G = G_{\alpha}N$. For any $g \in G$, g = hn for some $h \in G_{\alpha}$ and $n \in N$.

Then $a^g = a^{hn} = a^n$, $\forall a \in A$, since $A \subseteq G_\alpha$. Moreover, $a^n = a(n^{-1})^a n \in AN$ since $N \subseteq G$. Thus $G = A^G = AN$.

Now, $G/N = AN/N = A/(A \cap N)$ is solvable. Meanwhile, (G/N)' = G'N/N = GN/N = G/N. Thus G/N = 1 and G = N, G is simple.