Q.- value?

The p-value is a direct measure of how plausible it is to obtain a sample like the current one if it is true H_0 . Small values indicate that it is very infrequent to obtain a sample like the current one, while high values are frequent. The p-value is used to indicate how much (or how little) the alternative hypothesis contradicts the current sample.

Reporting what the *p-value is* has the advantage of allowing anyone to decide which hypothesis to accept based on their **own level of risk** α . This is not possible when reporting, as has been traditional, indicating only the result of the decision, that is, whether His accepted or rejected₀ with a fixed α .

By providing the *p-value* obtained with the current sample, the decision will be made according to the following rule:

if $p_{\nu} \leq \alpha$, accept H₁

if $p_{\nu} > \alpha$, accept H_0

Entering the practical field, some statistical packages They provided in their listings the *significance* level, literally meaning *significance* level, when often actually refer to the *p-value* (p-value).