

Hans Verbeeck, Elizabeth Kearsley, Félicien Meunier, Marc Peaucelle

 $2020 \hbox{-} 05 \hbox{-} 27$

Introduction

Soil-Plant-Atmosphere continuum: the central role of vegetation

Why do we need modelling?

Components of a model

The history of vegetation models

Early history of vegetation modelling

The first DVGMs centered around carbon fluxes

A new generation of DGVMs centered around vegetation functioning

Model types

Structure of the course

2

Figure 1.1: Here is the structure of the course!

(PART) Biophysical and physiological models

Modelling plant basic processes

Photosynthesis and stomatal models

Respiration models

Transpiration

Upscaling from leaf to canopy

Modelling light penetration, vegetation canopy representation, and energy balance

Representing canopy structure in models

Direct and diffuse light

Ecosystem energy balance

Temporal and seasonal dynamics

Leaf phenology

Drivers of seasonality and phenology

(PART) Modelling vegetation dynamics

Modelling growth, timber production and Carbon allocation

Empirical growth modelling: growth curves

Process-based growth modelling: C-allocation models

Modelling vegetation dynamics and demography

Seed dispersal and recruitment

 ${\bf Mortality}$

Gap models, individual and cohort based models

Modelling biogeochemical cycles in vegetation

Carbon cycle models: stocks and fluxes

Nutrient cycle models: soil biogeochemical models

Water balance

(PART) Upscaling and applications

Representing biodiversity in vegetation models

Functional diversity

Competition models

Communities

Spatial heterogeneity, landscape scale, metapopulations

Patch dynamics

Land-use changes

Fire and disturbance

Upscaling from leaf/tree to globe

Land surface models

DVGMs as a part of Earth system models

Model projections and scenario analysis

Climate scenarios

Land-use scenarios

Management scenarios

(PART) Practicals

Supporting material

Crash course, basic programming (R), theory about model evaluation etc.

Practical A

PC-room, supervised exercise

Simple model on diurnal variation in solar angle, radiation extinction and photosynthesis in vegetation types with different and canopy structure and LAI: grassland, broadleaved forest, coniferous forest

Scale: aggregated stand level (big leaf model)

 $\label{eq:model} \mbox{Methodological focus: model formulation: translating a few equations into code}$

Methodological focus: compiling code, running model, reading input-output

18

Practical B

Group work, report, PC room

Modelling diurnal cycle of carbon and water fluxes for flux tower sites (Savanna's Sahel)

Scale: aggregated stand level

Methodological focus: model-data comparison (goodness-of-fit), simple parameter optimisation

Practical C

PC-room, supervised exercise

Modelling the size structure of a temperate forest (stand diameter distribution)

Scale: forest stand

 ${\bf Methodological\ focus:\ initial\ conditions}$

Practical D

Group work, report, PC room

Modelling carbon stocks (above and belowground) and fluxes

Scale: ecosystem

 $\label{lem:methodological} \mbox{ Methodological focus: Spinup and sensitivity analysis (testing which climate variables have strongest impact on stocks)$

Practical E

PC-room, supervised exercise

Simulating forest succession, meta-analysis of trait dataset to prescribe vegetation functional composition (using PEcAn-framework)

Scale: landscape

Methodological focus: parameter meta-analysis (PFT construction), data assimilation

Practical F

PC-room, group work, microteaching

Climate/land use/management scenario analysis

Scale: site/globe? (Pecan framework) each group choses a question and a model

Methodological focus: sensitivity and uncertainty analysis