Üzleti Intelligencia 5. Előadás: *Q*-tanulás

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 1.félév

Bevezetés a Q-tanulásba

A megerősítéses tanulásban a $Q_\pi(s,a)$ minőségfüggvény megadja, hogy mennyire jövedelmező az ügynöknek, ha s állapotban állva, a cselekvést végrehajtva majd onnan π politikát követve mekkora a várható hozam.

Ha adott minden állapotra és cselekvésre az optimális Q(s,a) érték, onnan levezethető a π_* optimális politika, amelynek várható hozama maximális.

Q-tanulás: politikafüggetlen TD irányítás

A megerősítéses tanulásban az egyik nagy áttörést egy politikafüggetlen TD algoritmus kifejlesztése hozta el.

Ebben az esetben a becsült állapot-cselekvés minőség függvény, Q, direkten becsüli meg Q_* optimális állapot-cselekvés minőség függvényt a követett politikától teljesen függetlenül.

Q-tanulás

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \underset{a'}{max} Q(s', a') - Q(s, a) \right]$$

Az egyetlen különbség a SARSA algoritmusától, hogy a referencia a következő állapotból (s') elérhető legjobb minőségű cselekvés értéke: maxQ(s',a').

images/q1_2.png

Q-tanulás eljárása

A Q-tanulás folyamata

graphs/ql_1.png

Példa Q-táblára:

		-		
	a_0	a_1	a_2	a_3
s_0	0.76	0.41	0.92	-0.14
s_1	-0.65	0.31	-0.07	0.55
s_2	0.23	-0.99	0.67	-0.43
s_3	-0.81	0.79	-0.58	0.17
s_4	0.62	-0.28	0.96	-0.72
s_5	-0.36	0.08	-0.51	0.64

A Q-tábla tárolja el a Q(s,a) értékeket minden $s \in S$ és $a \in A$ párosra.

Q-tanulás eljárása

A Q-tanulás folyamata

 $graphs/ql_1.png$

Tehát az optimális politika:

		•	•	
	a_0	a_1	a_2	a_3
s_0	0.76	0.41	0.92	-0.14
s_1	-0.65	0.31	-0.07	0.55
s_2	0.23	-0.99	0.67	-0.43
s_3	-0.81	0.79	-0.58	0.17
s_4	0.62	-0.28	0.96	-0.72
s_5	-0.36	0.08	-0.51	0.64

 ${s_0: a_2, s_1: a_3, s_2: a_2, s_3: a_1, s_4: a_2, s_5: a_3}$

Algoritmus 1: Q-tanulás algoritmusa $\pi pprox \pi_*$ megbecslésére

```
Input: \alpha tanulási sebesség
```

```
Q(s,a) \leftarrow random() \text{ for } s \in S, \ a \in A; \qquad /* \ Q \text{ \'ert\'ekek in\'icializ\'al\'asa */} \\ Q(s_T,\cdot) \leftarrow 0; \qquad /* \text{ Termin\'alis \'allapot $0$-ra \'all\'it\'asa */}
```

for $i=0 \to max_i$ do

end

A politikát a Q-tábla határozza meg.

Dupla Q-tanulás

A kettős tanulás ötlete természetes módon kiterjed a teljes MDP algoritmusaira. A Q-tanulásban a becsült Q-értékek torzítottak lehetnek, ha alacsony a minta számossága, vagy zaj van a rendszerben. Egy módja a Q-tanulás regularizálásának, ha egy helyet **két** Q-táblát tart nyilván az algoritmus, Q_1 -et és Q_2 -t.

A Q-tanulással analóg dupla Q-tanulás nevű kettős tanulási algoritmus két részre osztja az időlépéseket, **minden lépésnél egy érmét feldobva**. Ha az érme fejre esik, a frissítés a következő:

$$Q_1(s, a) \leftarrow Q_1(s, a) + \alpha \left[r + \gamma Q_2 \left(s', \underset{a'}{argmax} Q_1(s', a') \right) - Q_1(s, a) \right]$$

Ha az érme pedig írásra esik, akkor ugyanez a frissítés Q_1 és Q_2 felcserélésével történik, így Q_2 frissül. A két közelítő értékfüggvényt teljesen szimmetrikusan kezeli az algoritmus. Például egy ε -mohó politika a dupla tanulás esetében az egyes cselekvési értékbecslések **átlagára vagy összegére épülhet**.

Dupla Q-tanulás eljárása

Mivel két Q táblát kell nyilván tartania, az algoritmus memóriaigénye megkétszereződik. A becsült értékek viszont jóval torzítatlanabbak lesznek, mint az egyszeres Q tanulás esetében. A lépésenkénti számításigény nem növekszik az extra Q-tábla bevonásával.

graphs/ql_2.png

```
Algoritmus 2: Dupla Q-tanulás algoritmusa
Input: \alpha tanulási sebesség
Q_1(s,a) \leftarrow random(), \ Q_2(s,a) \leftarrow random() \ \text{for } s \in S, \ a \in A;
Q_1(s_T,\cdot)\leftarrow 0,\ Q_2(s_T,\cdot)\leftarrow 0; /* Terminális állapotok 0-ra állítása */
for i = 0 \rightarrow max_i do
    s inicializálása:
    while s \neq s_T do
        a végrehajtása, r és s' megfigyelése;
         if p > 0.5 then
```

```
a \leftarrow \pi(s): /* Cselekvés választása \pi szerint, pl. \varepsilon-mohó */
     Q_1(s, a) \leftarrow Q_1(s, a) + \alpha \left[ r + \gamma Q_2 \left( s', argmaxQ_1(s', a') \right) - Q_1(s, a) \right]
      Q_2(s, a) \leftarrow Q_2(s, a) + \alpha \left[ r + \gamma Q_1 \left( s', argmaxQ_2(s', a') \right) - Q_2(s, a) \right]
                                                                                  /* s frissítése */
```

Függvény illesztés alapjai

A függvény illesztés eljárása szerint valamely x független változóból vett minta alapján szeretnénk előre jelezni egy y függő változó értékét azért, hogy feltárja az adatpontok közötti mintázatokat.

Két eljárása ismert:

- Regresszió: tárgya egy folytonos változó
- Osztályozás: tárgya egy diszkrét változó

A függvény illesztés eredménye a modell.

images/ql_8.png

Függvény illesztés alapjai

Az illesztett modell alakját és viselkedését a paraméterei határozzák meg, amelyek együtthatókként viselkednek a modell egyenletében. A lineáris modell egyenlete:

$$y_i = \theta_0 + \theta_1 x_i + \varepsilon_i$$

Ahol:

- ullet $heta_0$: az y tengely metszéspontja, vagy eltolás
- ullet $heta_1$: az egyenes meredeksége
- ε: a véletlen hiba, amit a modell nem tud előre jelezni

$$\boldsymbol{\theta} = [\theta_0, \theta_1, ..., \theta_n]$$
 a paraméterek vektora.

 $images/ql_9.png$

Függvény illesztés több paraméterrel

Függvényt lehetséges nemlineáris adatokra is illeszteni. Ebben a példában a minta adatpontok kvadratikusak, nem írhatók le egy lineáris egyenlettel. A modellnek ebben az esetben 3 paramétere van: θ_0 , θ_1 és θ_2 . Az illesztett modell egyenlete:

$$y = 1.78 + 0.93x + 0.56x^2$$

Tehát ebben az esetben $\theta_0=1.78$, $\theta_1=0.93$ és $\theta_2=0.56$.

 $images/ql_10.png$

A költségfüggvény

A modell illesztő algoritmusok mindegyike úgy találja meg az optimális függvényt, hogy valamilyen költségfüggvényt minimalizál. A leggyakoribb ilyen költségfüggvény az **átlagos négyzetes** hiba:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x)_i)^2$$

- y_i: Megfigyelt adatpont
- $f(x)_i$: Modell által adott becslés

images/ql_11.png

A gradiens

A függvény illesztés célja, hogy megtalálja azt a modellt, ami a legjobban illeszkedik az adatpontokra, tehát minimalizálja a költségfüggvényt (MSE).

Gradiens

Olyan vektor, amely megmutatja hogyan változik a függvény, és megadja a legnagyobb változás irányát minden dimenzióban.

$$df = \nabla f * dx$$

A gradiens segítségével meg lehet határozni, merre és mennyivel érdemes változtatni a paramétereket a célfüggvény images/ql_12.png

Gradiens ereszkedés

A gradiens ereszkedés egy iteratív minimalizálási algoritmus egy tetszőleges függvény lokális minimum helyének megtalálására. Az algoritmus lépésről lépésre mozog a függvény értékének csökkentése érdekében.

Tanulási sebesség (α vagy η)

A tanulási sebesség meghatározza, mennyire nagy lépéseket tesz a gradiens ereszkedés az optimalizációs folyamat során. images/ql_13.png

Gradiens ereszkedés

A gradiens ereszkedés paraméter frissítése:

$$\theta' \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$$

- $\theta = [\theta_0, \theta_1, ..., \theta_n]$: Paraméterek vektora
- ullet $\alpha \in [0,1]$: Tanulási sebesség
- ∇_{θ} : Költségfüggvény gradiense (θ szerinti derivált)
- $J(\theta)$: Költségfüggvény θ szerint (pl. MSE)

images/ql_20.png

Túl alacsony tanulási sebesség

Túl magas tanulási sebesség

images/ql_19.png

Egyéb problémák

A gradiens ereszkedés nem garantálja, hogy elér egy globális minimumot, hiszen a gradiens operátora csak lokális változásokat vesz figyelembe. Ebből adódóan az algoritmus beragadhat egy lokális minimumon

Vannak esetek, amikor a gradiens nem meghatározható (szaturál), például amikor elér egy fennsíkot a függvényen. Ebben az esetben a futás vagy nagyon lassú lesz, vagy nem halad semerre. $images/ql_16.png$

A neuron

A neurális hálózatot **neuronok összessége** alkotja. Az egyes neuronok egyszerű elemi műveleteket végeznek. A neuronnak több inputja (kapcsolata) van, és mindegyikhez egy súly tartozik.

A neuron kiszámítja az inputjainak a súlyozott összegét:

$$z=x_1w_1+x_2w_2+...+x_nw_n$$

majd ezt az értéket behelyettesíti

egy aktivációs függvénybe:

images/ql_21.png

Többrétegű hálózatok

Ebben az esetben a neuronok rétegekben foglalnak helyet. A kapcsolataik az előző réteg kimeneteivel állnak összeköttetésben. A legelső réteg neuronjai a bemeneti adattal állnak összeköttetésben, bemeneti jellemzőnként egy neuronnal.

Teljesen becsatolt neuronréteg kimenete

$$h_{Wb}(X) = \varphi(XW + b)$$

- X: Input jellemzők mátrixa
- W: Kapcsolati súlyok mátrixa
- b: Torzítások vektora
- φ: Aktivációs függvény

../../7_dl/doc/graphs/dl_0.png

A Q-hálózat (DQN)

A Q-hálózat egy természetes kiterjesztése a hagyományos Q-tanulásnak. A naív Q-hálózat inputja a **környezetet leíró változók** vektora vagy mátrixa, és az outputja pedig az ügynök számára elérhető **cselekvések** Q(s,a) **értéke** minden $a_1,a_2,...,a_n$ cselekvéshez tartozóan.

A cselekvés választáshoz az ügynök kiválasztja a legnagyobb becsült Q értéket, és az ahhoz tartozó cselekvést fogja végrehajtani.

Miután először bemutatták 2013-ban, hamar kiderült hogy a naív Q-hálózat nem elég stabil, gyakran eredményez torz politikát a túltanulás miatt.

graphs/ql_3.png

Tapasztalat visszajátszás

A tapasztalat visszajátszás az egyik változtatás, ami a Q-hálózat problémáján hivatott segíteni.

A tapasztalat memória (D_{replay}) [s,a,r,s'] négyeseket tartalmaz. Minden alkalommal amikor az ügynök cselekszik, az általa tapasztalt s_t,a_t,r_t,s_{t+1} elmentődik a tapasztalat memóriába.

Amikor tanulásra kerül a sor, az ügynök véletlen és rendezetlen mintát (miniköteget) kap a tapasztalat memóriából, melynek számossága megegyezik a kötegmérettel. Eszerint fogja kiszámolni a költségfüggvényt majd frissíteni a neurális hálózat paramétereit.

 ${\tt graphs/ql_4.png}$

Költségfüggvény és frissítési szabály

A DQN költségfüggvénye

$$J(\theta) = E_{s,a,r,s' \sim D} \left[\left(r + \gamma \max_{a'} Q_{\theta}(s', a') - Q_{\theta}(s, a) \right)^{2} \right]$$

A költségfüggvény a **négyzetes Bellman hiba várható értéke**. Ahol s,a,r,s' a D tapasztalat visszajátszásból vett minta. Q_{θ} megkeresi az s' következő állapothoz tartozó legnagyobb cselekvés értéket (**célérték**), és lekérdezi s aktuális állapothoz és a aktuális cselekvéshez tartozó értéket.

A DQN paraméter frissítése

$$\theta' \leftarrow \theta + \alpha \ J(\theta) \ \nabla_{\theta} Q_{\theta}(s, a)$$

Ahol θ a paramétervektor, α a tanulási sebesség, $J(\theta)$ a költségfüggvény θ szerint és ∇_{θ} a költségfüggvény gradiense θ szerint.