- 1. Consider stationary process $y_t = 2 + 0.3y_{t-1} + u_t u_{t-1}$, where u_t is a white noise with $Var(u_t) = \sigma_u^2$.
 - (a) Find $E(y_t)$, $Var(y_t)$ and first values of autocovariance function γ_1, γ_2 ;
 - (b) Find the first values of autocorrelation function, ρ_1 , ρ_2 ;
 - (c) Find the first values of partial autocorrelation function, ϕ_{11} , ϕ_{22} ;
- 2. It is known that $u_{100} = 0.5$, $y_{100} = 4.5$, $Var(u_t) = 9$ and y_t is defined by equation $y_t = 2 + 0.3y_{t-1} + u_t u_{t-1}$, where u_t is a white noise.
 - (a) Make one-step and two-steps point forecasts: find $E(y_{101}|\mathcal{F}_{100})$ and $E(y_{102}|\mathcal{F}_{100})$.
 - (b) Assuming normal distribution of u_t construct 95% prediction intervals for y_{101} and y_{102} .
 - (c) What is higher $\mathbb{P}(y_{101} > 3 | \mathcal{F}_{100})$ or $\mathbb{P}(y_{102} > 3 | \mathcal{F}_{100})$? Briefly argue why.
- 3. Find the equation of the process with partial autocorrelation function given by $\phi_{11}=0.9,\,\phi_{22}=-0.9,\,\phi_{kk}=0$ for $k\geq 3$.
- 4. This is the output of seasonal ARIMA model estimation in R for the number of marriages in Russia. Data from 2006 to 2018 are used.

```
ARIMA(0,1,1)(1,1,2)[12]

Coefficients:

ma1 sar1 sma1 sma2

-0.8544 -0.2677 -0.5076 -0.3289

s.e. 0.0540 0.5048 0.5103 0.4107

sigma^2 estimated as 150821423: log likelihood=-1545.24

AIC=3100.49 AICc=3100.93 BIC=3115.26
```

- (a) Is the number of marriages stationary? Which transformation will make it stationary?
- (b) Write down the estimated equation.

5. Consider Holt's linear model with additive errors, $\varepsilon_t \sim \mathcal{N}(0; \sigma^2)$ are independent.

$$\begin{cases} y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t = b_{t-1} + \beta \varepsilon_t \end{cases}$$

Here y_t — is the observed value of the variable of interest, ℓ_t — unobserved ideal level of the variable of interest, b_t — unobserved current growth rate of the variable.

Represent this model as ARIMA(0, 2, 2)-model for y_t . Find all the coefficients of this ARIMA representation.

6. Using 200 observations James Bond has estimated the regression

$$\Delta \hat{y}_t = \underbrace{4}_{(0.2)} - \underbrace{0.8}_{(0.3)} y_{t-1} + \underbrace{0.9}_{(0.2)} \Delta y_{t-1}$$

Standard errors are in brackets. Check whether the process y_t is stationary.

Critical values for Dickey-Fuller statistic for 5% critical level are provided below:

	$ au_0$	$ au_c$	$ au_t$
n = 100			
n = 200	-1.95	-2.88	-3.43