

Guide to Network Security First Edition

Chapter Seven
Wireless Network Security

Objectives

- Identify various wireless technologies and standards
- Recognize the topology and architecture of wireless networks
- Define popular wireless security protocols
- Describe various WLAN security concerns
- Discuss the security issues regarding Bluetooth technology

Introduction

- Definitions of "wireless"
 - Signal transmitted using a radiated signal
- Wireless network security is difficult
 - Signal is uncontrolled
- Wireless access point (WAP)
 - Radio transmitter/receiver
 - Takes signal from wired network and broadcasts it to wireless receivers
- Wireless local area network (WLAN)
 - Also called Wi-Fi

Introduction (cont'd.)

- Wireless networks differ from wired networks in that:
 - The signaling method does not have readily observable boundaries
 - They are susceptible to interference from other devices and networks
 - They are less reliable
 - The number of devices being networked may change frequently
 - They may lack full connectivity among nodes
 - The signal propagation is less certain

Wireless Technologies and Standards

- WLANs became popular in the 1990s
 - Commercial products connected computers wirelessly
 - Radio transmissions in the 900 mHz band
 - Transmission rates about 1 Mbps
- Bandwidths assigned to radio-based communications began to vary more widely
 - 2.4 GHz range
 - Data rates up to 54 Mbps

Wireless Modulation Technologies

- Modulation
 - Method of manipulating the medium signal to carry data
- Technologies used in wireless communications
 - Quadrature amplitude modulation (QAM)
 - Quadrature phase shift keying (QPSK)
 - Spread-spectrum transmission

Wireless Modulation Technologies (cont'd.)

QAM

- Combines digital and analog signaling
- Encodes data onto radio signals
- Encodes two message channels at the same time
- Changes amplitude of the two carrier waves
- At least two phases and two amplitudes are used
- See Figure 7-1 for an example

Figure 7-1 Quadrature Amplitude Modulation © Cengage Learning 2013

Wireless Modulation Technologies (cont'd.)

QPSK

- Provides multi-bit carrying capability
- Enhancement of Binary Phase Shift Keying
- Uses four signal states 90 degrees out of phase with each other
- Spread-spectrum transmission advantages over fixed frequencies
 - Reduced narrowband interference
 - Signal interception less likely
 - Interference minimized

Wireless Modulation Technologies (cont'd.)

- Spread-spectrum technologies
 - Frequency hopping spread spectrum (FHSS)
 - Direct-sequence spread spectrum (DSSS)
 - Orthogonal frequency-division multiplexing (OFDM)

IEEE 802.11 Standards

- Original standard ratified in 1997
- Amended in 1999 with 802.11a and 802.11b
 - Clearly defined use of radio transmission methods
 - 802.11b became standard in the marketplace
- Amended in 2003 with 802.11g
 - Supported data rates up to 54Mbps
 - Backwards compatible with 802.11b
- Amended in 2009 with 802.11n
 - Security improvements
 - Supported data rates to 600Mbps

Standard	Data Rate	Technology	Band	Date Published	Notes
802.11	2 Mbps		2.4 GHz	1997	
802.11a	54 Mbps	OFDM	5 GHz	1999	Not compatible with 802.11b
802.11b	11 Mbps	DSSS	2.4 GHz	1999	
802.11g	54 Mbps	OFDM & DSSS	2.4 GHz	2003	Backwardly compatible with 802.11b
802.11n	600 Mbps	OFDM	2.4 GHz & 5 GHz	2009	Newest standard, still being deployed

Table 7-1 IEEE 802.11 WLAN Technologies © Cengage Learning 2013

Wi-Fi Alliance Certifications

- Wi-Fi Alliance
 - Group created to certify interoperability of 802.11b products
 - Created Wi-Fi Protected Access (WPA) security protocol in 2002
- WPA
 - Called for supporting Advanced Encryption Standard
- WPA2
 - Introduced with ratification of 802.11i amendment

Other Wireless Standards

Bluetooth

- Open standard for short-range wireless communication between devices
- Included in IEEE standard 802.15.1

WiMAX

- Standard for devices in geographically dispersed facilities
- Range: up to 30 miles

Other Wireless Standards (cont'd.)

WiMedia

- Wireless Personal Area Network (WPAN) standard
- Low-cost, low-power-consumption network
- Application: wireless USB devices communicate remotely with host system

ZigBee

- WPAN standard used for monitoring and control devices
- Examples of uses: building climate control systems; shipping container tracking devices

Wireless Architectures and Topologies

- Technology standards not enough to create functional networks
 - Must have clearly defined ways of assembling pieces
- Wireless architectures
 - Structured solutions
 - No need to prepare each deployment from scratch

Wireless Architectures

- Basic building block of wireless network
 - Set of clients using wireless connectivity interfaces connect to a WAP
 - WAP provides connection between clients
 - And to other networks
- Basic service set (BSS)
 - Basic model of wireless clients within defined network area
 - BSS range called basic service area
 - See Figure 7-2

Figure 7-2 Basic service © Cengage Learning 2013

- Distributed system (DS)
 - Connects multiple BSSs
 - Works as a backbone network
 - See Figure 7-3
- Extended service set (ESS)
 - Collection of DSs
 - See Figure 7-4

Figure 7-3 Distributed system © Cengage Learning 2013

Figure 7-4 Extended service © Cengage Learning 2013

Wireless Topologies

- Network configuration layouts
 - Star
 - Bus
 - Ring
 - Hierarchical
 - Mesh
 - Hybrid

Wireless Topologies (cont'd.)

- Star wireless topology
 - Also called hub-and-spoke model
 - See Figure 7-5 for star topology
- Mesh wireless topology
 - All stations on the network are equal peers
 - See Figure 7-6 for mesh topology

Figure 7-5 Star wireless topology © Cengage Learning 2013

Figure 7-6 Mesh wireless topology © Cengage Learning 2013

Wireless Topologies (cont'd.)

- Hierarchical wireless topology
 - Hierarchy of stars
 - Individual stations connect to a WAP
 - WAP connects to a higher-level WAP
 - Provides larger geographic coverage
 - Advantage: increased number of connections
 - See Figure 7-7 for hierarchical topology

Figure 7-7 Hierarchical wireless topology © Cengage Learning 2013

Wireless Topologies (cont'd.)

- Hybrid wireless topology
 - Combination of star and mesh topology
 - See Figure 7-8 for hybrid topology

Figure 7-8 Hybrid wireless topology © Cengage Learning 2013

Wireless Architectures

- Implementation models
 - Ad hoc approach
 - Permanent, consistent connection points
- Ad hoc implementation
 - No formal access points
 - Peer-to-peer connection
 - At least one station must have WAP connectivity
 - Inherently unreliable

Figure 7-9 Wireless ad hoc network configuration screens © Cengage Learning 2013

- Infrastructure model
 - Used by most installed wireless networks
 - WAP connected to a wired network
 - Provides reliable connectivity
 - Provides better scalability than ad-hoc networks
- Connectivity models
 - Describes how wireless networks communicate
 - Unicast, broadcast, or multicast

- Point-to-point
 - Direct link between two stations
 - Typically implemented in the ad-hoc manner
 - One station configured to allow connection
 - Other station initiates connection
- Point-to-multipoint
 - Single access point provides connectivity for several clients within a BSS
 - Example: modern wireless phone network

- Mesh multipoint
 - Any station can send and receive data from any other station
 - More recent approach to networking
- Roaming
 - Provides point-to-multipoint connectivity
 - Allows station to move between adjacent BSSs
 - Without losing connectivity
 - Example: WiMAX

- Mobile hotspot
 - Provided by wireless telephony provider
 - Allows users to connect wireless devices to specific commercial wireless service
- Wireless devices can serve as a wireless network access point relay
 - Example: smartphones serving as personal mobile hotspots

Wireless Security Protocols

- Radio transmissions used in WLANs
 - Easily intercepted with receiver and packet sniffer
- Networks must use cryptographic security control
- Two sets of protocols in use today
 - Wired Equivalent Privacy (WEP)
 - Wi-Fi Protected Access (WPA)

Wired Equivalent Privacy (WEP)

- Early attempt to provide security with 802.11 network protocol
- Now considered too weak cryptographically
- Reasons for weakness
 - No key management defined in protocol
 - Keys are seldom changed
 - Initialization vector too small
 - Tools exist to allow cracking of the WEP key

Wi-Fi Protected Access (WPA and WPA2)

- Introduced to resolve issues with WEP
- WPA key
 - 128 bits
 - Dynamically changing
 - Uses Temporal Key Integrity Protocol (TKIP)
- Some compromises made to allow backwards compatibility
- See Table 7-2 for differences between WEP and WPA

	WEP	WPA
Encryption	Broken by scientists and hackers	Overcomes all WEP shortcomings
	40-bit key	128-bit key
	Static key—same value used by everyone on the network	Dynamic keys; each user assigned a key per session, with additional keys calculated for each packet
	Manual key distribution—each key typed by hand into each device	Automatic key distribution
Authentication	Broken, used WEP key itself for authentication	Improved user authentication, utilizing stronger 802.1X and EAP

Table 7-2 WEP versus WPA © Cengage Learning 2013

WPA2

- Mandatory for all new Wi-Fi devices in 2006
- Designed to meet all 802.11i standard requirements
- Robust Security Network (RSN)
 - Network that only allows connections that provide encryption
- Notable features of WPA2
 - AES-based encryption
 - CCMP encryption method
 - EAP authentication protocol

WPA2 (cont'd.)

- Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP)
 - Enhances confidentiality and integrity of wireless LAN protocols
 - No constraint of interoperation with legacy hardware
 - Uses a new temporal key every session
 - See Figure 7-10

Figure 7-10 CCMP encapsulation diagram © Cengage Learning 2013

WPA2 (cont'd.)

- Extensible Authentication Protocol (EAP)
 - Framework for device-to-device authentication
 - Provides authentication using a wide variety of authentication methods
 - Passwords, certificates, smart cards, tokens
 - Can include combinations of techniques

WLAN Security Concerns

- Threats to a secure WLAN
 - Rogue access points
 - Key cracking
 - Wardriving
 - ARP poisoning
 - DoS attacks

WLAN Security Solutions

- Recommendations for securing wireless networks
 - Use WPA2 and strong passkeys
 - Employ wireless IDS to help spot rogue access points
 - Use mutual authentication methods like EAP-TLS
 - Ensure wireless connections authenticate via a VPN

WLAN Security Myths

- Processes that fail to provide adequate security
 - MAC filtering
 - SSID hiding
 - Disable DHCP
 - LEAP authentication
 - Signal suppression

Bluetooth

- Wireless communication standard
 - Allows devices to communicate within limited range
 - Range: depends on type of radio used in the device
 - From 3 to 300 feet
- Piconets
 - Bluetooth networks
- Key benefits of Bluetooth
 - Removes wired cables
 - Share and synchronize data
 - Serve as an Internet hotspot

Bluetooth Security Concerns

- Consistently criticized as insecure
- Paired devices generate a session key
 - Used for all future communications
- Bluetooth attacks
 - Bluesnarf
 - Bluejacking
 - BlueBug
 - Evil twin

Bluetooth Security Solutions

- Best practices for Bluetooth security
 - Turn off Bluetooth when not using
 - Do not accept incoming communications pairing request unless you know the requester
- Secure Simple Pairing (SSP)
 - New security mechanism in Bluetooth 2.1

Summary

- Wireless security is problematic
 - Organization can do little to restrict a wireless signal
 - Can restrict wireless network's footprint
- Wireless local area network (WLAN or Wi-Fi)
 - Networking nodes connected with the use of radio waves
- Basic building blocks of the modern WLAN
 - Wireless modulation technologies
 - IEEE 802.11

Summary (cont'd.)

- Wireless network
 - Clients with wireless interface cards connect to a WAP
- WLANs place data onto radio signal using modulation techniques
- Wireless network implementation modes
 - Ad hoc and permanent, persistent connection points
- Types of wireless network communication
 - Point-to-point and point-to-multipoint