Syntactic Objects

if true then false else true

if true then false else true: Exp

sort

if true then false else true: Exp

true: Exp

false: Exp

```
if — then — else — : (Exp \times Exp \times Exp) \rightarrow Exp
```

true: Exp

false: Exp

if true then false else true: Exp

Abstract Syntax

```
if(-, -, -): (Exp \times Exp \times Exp) \rightarrow Exp
true: Exp
false: Exp
if(true, false, true): Exp
```

Abstract Syntax Trees

```
plus: Exp \times Exp \rightarrow Exp
```

 $\mathsf{num}: \mathbb{N} \to \mathsf{Exp}$

num[42] : Exp

num[4]: Exp

plus(num[4], num[42]): Exp

Abstract Syntax Trees: Variables

```
times: Exp \times Exp \rightarrow Exp
```

 $\mathsf{num}: \mathbb{N} \to \mathsf{Exp}$

variable $\rightarrow x : Exp$

num[4]: Exp

times(x, num[4]) : Exp

Abstract Syntax Trees: Variable Substitution

```
plus : Exp \times Exp \rightarrow Exp
```

times: Exp × Exp → Exp

 $\mathsf{num}: \mathbb{N} \to \mathsf{Exp}$

num[42] : Exp

num[4]: Exp

times(plus(num[4], num[42]), num[4]): Exp

Abstract Syntax Trees: Variable Substitution

```
plus : Exp \times Exp \rightarrow Exp
```

times: Exp × Exp → Exp

 $\mathsf{num}: \mathbb{N} \to \mathsf{Exp}$

num[42] : Exp

num[4]: Exp

times(plus(num[4], num[42]), num[4]): Exp

Abstract Syntax Trees Defined

Let S be a finite set of **sorts**, $\{O_s\}_{s\in S}$ be a sort-indexed family of operators o of sort s with arity $\operatorname{ar}(o)=(s_1,\ldots,s_n)$, and $\{\mathscr{X}_s\}_{s\in S}$ be a sort-indexed family of variables s of sort s. The family $\operatorname{A}[\mathscr{X}]=\operatorname{A}[\mathscr{X}_s]_{s\in S}$ of abstract syntax trees (ASTs) of sort s is defined as follows:

- if $x \in \chi_s$, then $x \in A[\mathcal{X}]_s$
- if $o \in O_s$ with $ar(o) = (s_1, ..., s_n)$ and $a_1 \in A[\mathcal{X}]_{s_1}, ..., a_n \in A[\mathcal{X}]_{s_n}$, then $o(a_1, ..., a_n) \in A[\mathcal{X}]_s$

Abstract Syntax Trees Defined

Let S be a finite set of **sorts**, $\{O_s\}_{s\in S}$ be a sort-indexed family of operators o of sort s with arity $\operatorname{ar}(o)=(s_1,\ldots,s_n)$, and $\{\mathscr{X}_s\}_{s\in S}$ be a sort-indexed family of variables s of sort s. The family $A[\mathscr{X}]=A[\mathscr{X}_s]_{s\in S}$ of abstract syntax trees (ASTs) of sort s is defined as follows:

- if $x \in \mathcal{X}_s$, then $x \in A[\mathcal{X}]_s$
- if $o \in O_s$ with $ar(o) = (s_1, ..., s_n)$ and $a_1 \in A[\mathcal{X}]_{s_1}, ..., a_n \in A[\mathcal{X}]_{s_n}$, then $o(a_1, ..., a_n) \in A[\mathcal{X}]_s$

Exercise: Come up with three example ASTs.

Abstract Syntax Trees: Structural Induction

To show that a property P for every AST it suffices to show P(a) holds for every $a \in A[\mathcal{X}]$, which holds when:

- 1. (Base Case) if $x \in \mathcal{X}_s$, then $P_s(x)$, and
- 2. (Step Case) if $o \in O_s$ with $ar(o) = (s_1, ..., s_n)$, then if $P_{s_1}(a_1), ..., P_{s_n}(a_n)$ all hold, then $P_s(o(a_1, ..., a_n))$ holds.

Abstract Syntax Trees: Structural Induction

Lemma: If $\mathcal{X} \subseteq \mathcal{Y}$, then $A[\mathcal{X}] \subseteq A[\mathcal{Y}]$.

Proof. By structural induction.

- 1. (Base Case) If $x \in \mathcal{X}_s$ which implies that $x \in A[\mathcal{X}]_s$, then by assumption $x \in \mathcal{Y}$, and hence, by definition $x \in A[\mathcal{Y}]_s$.
- 2. (Step Case) Suppose $o \in \mathcal{O}_s$, $\operatorname{ar}(o) = (s_1, \ldots, s_n)$, $\mathcal{X} \subseteq \mathcal{Y}$. Then by induction: $a_1 \in A[\mathcal{X}]_{s_1} \iff a_1 \in A[\mathcal{Y}], \ldots, a_n \in A[\mathcal{X}] \iff a_n \in A[\mathcal{Y}]_{s_n}$. Then by definition $o(a_1, \ldots, a_n) \in A[\mathcal{X}]_s \iff o(a_1, \ldots, a_n) \in A[\mathcal{Y}]_s$.

Abstract Syntax Trees: Substitution

Variables are given their meaning through

```
[num[42]/x](plus(x, mult(num[3], x))
```

- = plus([num[42]/x]x, [num[42]/x]mult(num[3], x)
- = plus([num[42]/x]x, mult([num[42]/x]num[3], [num[42]/x]x)
- = plus(num[42], mult(num[3], num[42])

Abstract Syntax Trees: Substitution

Substitution $[b_1/x]b_2 \in A[\mathcal{X}]_{s_2}$ on any AST $A[\mathcal{X}]$ where x is a variable of sort $s_1, b_1 \in A[\mathcal{X}]_{s_1}, b_2 \in A[\mathcal{X}, x]_{s_2}$ is defined as follows:

- 1. $[b_1/x]x = b_1$
- 2. $[b_1/x]y = y$, when $x \neq y$
- 3. $[b_1/x]o(a_1,...,a_n) = o([b_1/x]a_1,...,[b_1/x]a_n)$

Abstract Syntax Trees: Extension

Let \mathcal{X} be a sort-indexed family of variables. Then: (\mathcal{X},x) where x is a variable of sort s such that $x \notin \mathcal{X}_s$, to stand for the sort-indexed family \mathcal{Y} such that $\mathcal{Y}_s = \mathcal{X}_s \cup \{x\}$ and $\mathcal{Y}_{s'} = \mathcal{X}_{s'}$ for all $s' \neq s$.

This is also known a adjoining.

Swift:

```
func exampleFunc(arg1: T1,...,argi: Ti) -> T {
   ...
}
```

C#:

```
T exampleFunc(T1 arg1, ..., Ti argi) {
    ...
}
```

Javascript:

```
function exampleFunc(arg1, ..., argi) {
    ...
}
```

Lets:

let x = 2 + 2 in x * 6

$$let x = 2 + 2 in x * 6$$

Abstract Binding Trees: Example

```
let x = 2 + 2 in x * 6

let x = 2 + 2 in x * 6

let (2 + 2, x.x * 6): Exp

ar(let) = (Exp, (Exp)Exp)
```

Abstract Binding Trees: Example

let
$$x = 2 + 2$$
 in $x * 6$

let $x be 2 + 2$ in $x * 6$

let $(2 + 2, x.x * 6)$: Exp

ar(let) = (Exp, (Exp)Exp)

Valence

Abstract Binding Trees: Valence

A **valence** of the form $(s_1, ..., s_i)s$ specifies an argument of sort s which binds i-variables of sorts $s_1, ..., s_i$ within it.

- \overrightarrow{s} denotes a sequence of sorts s_1, \ldots, s_i
- \overrightarrow{x} denotes a sequence of variables $x_1, ..., x_i$
- \overrightarrow{x} has sort \overrightarrow{s} denotes that each x_i of \overrightarrow{x} having sort s_i of \overrightarrow{s} .

Abstract Binding Trees: Example

Abstract Binding Trees Defined(?)

Let S be a finite set of **sorts**, $\{O_s\}_{s\in S}$ be a sort-indexed family of operators, and $\{\chi_s\}_{s\in S}$ be a sort-indexed family of variables x of sort s. The family $B[\chi] = B[\chi_s]_{s\in S}$ of abstract syntax trees (BSTs) of sort s is defined as follows:

- if $x \in \chi_s$, then $x \in B[\mathcal{X}]_s$
- if $o \in O_s$ with $\operatorname{ar}(o) = ((\overrightarrow{s_1})s_1, \ldots, (\overrightarrow{s_n})s_n)$ and if, for each $1 \le i \le n$, $\overrightarrow{x_i}$ is of sort $\overrightarrow{s_i}$ and $a_i \in B[\chi, \overrightarrow{x_i}]_{s_i}$, then $o(\overrightarrow{x_1}.a_1, \ldots, \overrightarrow{x_n}.a_n) \in B[\chi]_s$

Abstract Binding Trees: Binders

Binders specify the names of bound variables.

Binders in BSTs are denoted by "x."

Abstract Bindings Trees: Binders

Binders specify the names of bound variables.

Binders in BSTs are denoted by "x."

Abstract Binding Trees: Free vs Bound

let(42,x.x+1)

```
let(42,(x,y).y+1)
```

```
let(let(42,x.x*2),(x,y).let(x+1,x.y+x+1))
```

Abstract Binding Trees: Free vs Bound

x is bound

let(42,x.x+1)

x is bound y is bound

let (42, (x,y).y+1)

x is bound y is free

let(42,x.y+1)

x is bound

x is bound

x is bound y is bound

let(let(42,x.x*2),(x,y).let(x+1,x.y+x+1))

Abstract Binding Trees Defined(?)

What's wrong with this definition?

Let S be a finite set of **sorts**, $\{O_s\}_{s\in S}$ be a sort-indexed family of operators, and $\{\chi_s\}_{s\in S}$ be a sort-indexed family of variables. The family $B[\chi] = B[\chi_s]_{s\in S}$ of abstract syntax trees (BSTs) of sort S is defined as follows:

- if $x \in \chi_s$, then $x \in B[\mathcal{X}]_s$
- if $o \in O_s$ with $\operatorname{ar}(o) = (\overrightarrow{s_1})s_1, \ldots, (\overrightarrow{s_n})s_n$) and if, for each $1 \le i \le n$, $\overrightarrow{x_i}$ is of sort $\overrightarrow{s_i}$ and $a_i \in B[\mathcal{X}, \overrightarrow{x_i}]_{s_i}$, then $o(\overrightarrow{x_1}.a_1, \ldots, \overrightarrow{x_n}.a_n) \in B[\mathcal{X}]_s$

Abstract Binding Trees Defined(?)

let(plus(2,3),x.let(5,x.times(x,2))

Let S be a finite set of **sorts**, $\{O_s\}_{s\in S}$ be a sort-indexed family of operators, and $\{\chi_s\}_{s\in S}$ be a sort-indexed family of variables. The family $B[\chi] = B[\chi_s]_{s\in S}$ of abstract syntax trees (BSTs) of sort S is defined as follows:

- if $x \in \chi_s$, then $x \in B[\mathcal{X}]_s$
- if $o \in O_s$ with $\operatorname{ar}(o) = (\overrightarrow{s_1})s_1, \ldots, (\overrightarrow{s_n})s_n$ and if, for each $1 \le i \le n$, $\overrightarrow{x_i}$ is of sort $\overrightarrow{s_i}$ and $a_i \in B[\mathcal{X}, \overrightarrow{x_i}]_{s_i}$, then $o(\overrightarrow{x_1}.a_1, \ldots, \overrightarrow{x_n}.a_n) \in B[\mathcal{X}]_s$

Abstract Binding Trees Defined(!)

Let S be a finite set of **sorts**, $\{O_s\}_{s\in S}$ be a sort-indexed family of operators, and $\{\mathcal{X}_s\}_{s\in S}$ be a sort-indexed family of variables. The family $B[\mathcal{X}] = B[\mathcal{X}_s]_{s\in S}$ of abstract syntax trees (BSTs) of sort s is defined as follows:

- if $x \in \chi_s$, then $x \in B[\mathcal{X}]_s$
- if $o \in O_s$ with $\operatorname{ar}(o) = (\overrightarrow{s_1})s_1, \ldots, (\overrightarrow{s_n})s_n$ and if, for each $1 \le i \le n$ and for each renaming $\pi_i : \overrightarrow{x} \leftrightarrow \overrightarrow{x}'$, where $\overrightarrow{x}' \notin \mathcal{X}$, and $\overrightarrow{x_i}$ is of sort $\overrightarrow{s_i}$ and $\pi_i \cdot a_i \in B[\mathcal{X}, \overrightarrow{x_i'}]_{s_i}$, then $o(\overrightarrow{x_1}, a_1, \ldots, \overrightarrow{x_n}, a_n) \in B[\mathcal{X}]_s$

Abstract Binding Trees Defined(!)

```
let(plus(2,3),x.let(5,x.times(x,2))
let(plus(2,3),y.let(5,z.times(z,2))
```

Let S be a finite set of **sorts**, $\{O_s\}_{s\in S}$ be a sort-indexed family of operators, and $\{\mathcal{X}_s\}_{s\in S}$ be a sort-indexed family of variables. The family $B[\mathcal{X}] = B[\mathcal{X}_s]_{s\in S}$ of abstract syntax trees (BSTs) of sort s is defined as follows:

- if $x \in \chi_s$, then $x \in B[\mathcal{X}]_s$
- if $o \in O_s$ with $\operatorname{ar}(o) = (\overrightarrow{s_1})s_1, \ldots, (\overrightarrow{s_n})s_n$) and if, for each $1 \le i \le n$ and for each renaming $\pi_i : \overrightarrow{x} \leftrightarrow \overrightarrow{x'}$, where $\overrightarrow{x'} \notin \mathcal{X}$, and $\overrightarrow{x_i}$ is of sort $\overrightarrow{s_i}$ and $\pi_i \cdot a_i \in B[\mathcal{X}, \overrightarrow{x_i'}]_{s_i}$, then $o(\overrightarrow{x_1} \cdot a_1, \ldots, \overrightarrow{x_n} \cdot a_n) \in B[\mathcal{X}]_s$

Abstract Bindings Trees: Structural Induction

To show that a property P for every BST it suffices to show $P[\mathcal{X}](a)$ holds for every $a \in B[\mathcal{X}]$, which holds when:

- 1. (Base Case) if $x \in \chi_s$, then $P[\mathcal{X}]_s(x)$, and
- 2. (Step Case) if $o \in O_s$ with $\operatorname{ar}(o) = ((\overrightarrow{s_1})s_1, \ldots, ((\overrightarrow{s_n})s_n)$, and foreach $1 \le i \le n$, we have $\operatorname{P}[\mathcal{X}, \overrightarrow{x_i'}]_{s_i}(\pi_i \cdot a_i)$ hold for every renaming $\pi_i : \overrightarrow{x_i} \leftrightarrow \overrightarrow{x_i'}$, then $\operatorname{P}[\mathcal{X}]_s(o(\overrightarrow{x_1} \cdot a_1, \ldots, \overrightarrow{x_n} \cdot a_n))$ holds.

Abstract Binding Trees: Substitution

Substitution $[b_1/x]b_2 \in B[\mathcal{X}]_{s_2}$ on any AST $B[\mathcal{X}]$ where x is a variable of sort $s_1, b_1 \in B[\mathcal{X}]_{s_1}, b_2 \in B[\mathcal{X}, x]_{s_2}$ is defined as follows:

- 1. $[b_1/x]x = b_1$
- 2. $[b_1/x]y = y$, when $x \neq y$
- 3. $[b_1/x]o(\overrightarrow{x_1}.a_1,...,\overrightarrow{x_n}.a_n) = o(\overrightarrow{x_1}.a_1',...,\overrightarrow{x_n}.a_n')$, where for each $1 \le i \le n$, we require that $\overrightarrow{x_i} \notin \mathsf{FV}(b_1)$, and we set $a_i' = [b_1/x]a_i$ if $x \notin \overrightarrow{x_i}$ and $a_i' = a_i$ otherwise.

Abstract Binding Trees: Substitution

Substitution $[b_1/x]b_2 \in B[\mathcal{X}]_{s_2}$ on any AST $B[\mathcal{X}]$ where x is a variable of sort $s_1, b_1 \in B[\mathcal{X}]_{s_1}, b_2 \in B[\mathcal{X}, x]_{s_2}$ is defined as follows:

- 1. $[b_1/x]x = b_1$
- 2. $[b_1/x]y = y$, when $x \neq y$
- 3. $[b_1/x]o(\overrightarrow{x_1}.a_1,...,\overrightarrow{x_n}.a_n) = o(\overrightarrow{x_1}.a_1',...,\overrightarrow{x_n}.a_n')$, where for each $1 \le i \le n$, we require that $\overrightarrow{x_i} \notin \mathsf{FV}(b)$, and we set $a_i' = [b_1/x]a_i$ if $x \notin \overrightarrow{x_i}$ and $a_i' = a_i$ otherwise.

The capture avoidance condition.

Abstract Binding Trees: α -Equivalence

$$a =_{\alpha} b:$$
1. $x =_{\alpha} x$
2. $o(\overrightarrow{x_1} \cdot a_1, \dots, \overrightarrow{x_n} \cdot a_n) =_{\alpha} o(\overrightarrow{x_1} \cdot a_1', \dots, \overrightarrow{x_n} \cdot a_n')$, if for every
$$1 \leq i \leq n, \ \pi_i \cdot a_i =_{\alpha} \pi_i' \cdot a_i' \text{ for all fresh renaming } \pi_i : \overrightarrow{x_i} \leftrightarrow \overrightarrow{z_i}$$
 and $\pi_i' : \overrightarrow{x_i'} \leftrightarrow \overrightarrow{z_i}$.

All BSTs are identified up to α -equivalence.