Evolutionary Methods in Multi-Objective Optimization - Why do they work ? -

Lothar Thiele

Computer Engineering and Networks Laboratory
Dept. of Information Technology and Electrical Engineering
Swiss Federal Institute of Technology (ETH) Zurich

Overview

Black-Box Optimization

Issues in EMO

- How to maintain a diverse Pareto set approximation?
 - **2** density estimation

- How to prevent nondominated solutions from being lost?
 - **3** environmental selection

- How to guide the population towards the Pareto set?
 - fitness assignment

Multi-objective Optimization

Definition 1 (Dominance relation)

Let $f, g \in \mathbb{R}^m$. Then f is said to dominate g, denoted as $f \succ g$, iff

- 1. $\forall i \in \{1, \ldots, m\} : f_i \geq g_i$
- 2. $\exists j \in \{1, \ldots, m\} : f_j > g_j$

Definition 2 (Pareto set)

Let $F \subseteq \mathbb{R}^m$ be a set of vectors. Then the Pareto set $F^* \subseteq F$ is defined as follows: F^* contains all vectors $g \in F$ which are not dominated by any vector $f \in F$, i.e.

$$F^* := \{ g \in F \mid \not\exists f \in F : f \succ g \} \tag{1}$$

A Generic Multiobjective EA

Comparison of Three Implementations

Performance Assessment: Approaches

Which technique is suited for which problem class?

- Theoretically (by analysis): difficult
 - Limit behavior (unlimited run-time resources)
 - Running time analysis
- **2** Empirically (by simulation): standard

Problems: randomness, multiple objectives

Issues: quality measures, statistical testing,

benchmark problems, visualization, ...

Overview

Analysis: Main Aspects

Evolutionary algorithms are random search heuristics

Archiving

Problem: Deterioration

 New solution accepted in t+1 is dominated by a solution found previously (and "lost" during the selection process)

Problem: Deterioration

But: Most archiving strategies may forget Pareto-optimal solutions...

Limit Behavior: Related Work

Requirements for archive:

- 1. Convergence
- 2. Diversity
- 3. Bounded Size

Solution Concept: Epsilon Dominance

Definition 1: ε-Dominance

A ε -dominates B iff $(1+\varepsilon)\cdot f(A) \geq f(B)$

(known since 1987)

Definition 2: ε-Pareto set

A subset of the Pareto-optimal set which ε-dominates all Pareto-optimal solutions

Keeping Convergence and Diversity

Goal: Maintain ε-Pareto set

Idea: ε-grid, i.e. maintain a
set of non-dominated
boxes (one solution
per box)

Algorithm: (ε-update)

Accept a new solution f if

• the corresponding box is not dominated by any box represented in the archive A

AND

2 any other archive member in the same box is dominated by the new solution

Correctness of Archiving Method

Theorem

Let $F = (f_1, f_2, f_3, ...)$ be an infinite sequence of objective vectors one by one passed to the ε -update algorithm, and F_t the union of the first t objective vectors of F.

Then for any t > 0, the following holds:

- the archive A at time t contains an ε-Pareto front of F_t
- ② the size of the archive A at time t is bounded by the term (K = "maximum objective value", m = "number of objectives")

$$\left(\frac{\log K}{\log(1+\varepsilon)}\right)^{m-1}$$

Correctness of Archiving Method

Sketch of Proof:

- **①** 3 possible failures for A_t not being an ε-Pareto set of F_t (indirect proof)
- at time k ≤ t a necessary solution was missed
- at time k ≤ t a necessary solution was expelled
- A_t contains an f ∉ Pareto set of F_t

2

- Number of total boxes in objective spa $\left(\frac{\log K}{\Re g(1+\varepsilon)}\right)^m$
- Maximal one solution per box accepted
 Partition into \(\frac{\log K}{\log (1+\varepsilon)} \) chains of boxes

Simulation Example

Overview

Running Time Analysis: Related Work

problem domain type of results

Single-objective **EAs**

discrete search spaces

expected RT (bounds)

(bounds)

RT with high probability

[Mühlenbein 92]

[Rudolph 97]

[Droste, Jansen, Wegener 98,02] [Garnier, Kallel, Schoenauer 99,00]

[He, Yao 01,02]

continuous search spaces

asymptotic convergence rates

> exact convergence \ rates

[Beyer 95,96,...]

[Rudolph 97]

[Jagerskupper 03]

Multiobjective **EAs**

[none]

Methodology

Typical "ingredients" of a Running Time Analysis.

Here:

Simple algorithms

Simple problems

Analytical methods & tools

- ⇒ SEMO, FEMO, GEMO ("simple", "fair", "greedy")
- ⇒ mLOTZ, mCOCZ (m-objective Pseudo-Boolean problems)
- General upper bound technique & Graph search process
- 1. Rigorous results for specific algorithm(s) on specific problem(s)
- 2. General tools & techniques
- 3. General insights (e.g., is a population beneficial at all?)

Three Simple Multiobjective EAs

Variant 1: SEMO

Each individual in the population is selected with the same probability (uniform selection)

Variant 2: FEMO

Select individual with minimum number of mutation trials (fair selection)

Variant 3: GEMO

Priority of convergence if there is progress (greedy selection)

SEMO

Algorithm 1 Simple Evolutionary Multi-Objective Optimizer (SEMO)

- 1: Choose an initial individual x uniformly from $X = \{0, 1\}^n$
- $2: P \leftarrow \{x\}$
- 3: **loop**
- 4: Select one element x out of P uniformly.
- 5: Create offspring x' by flipping a randomly chosen bit.
- 6: $P \leftarrow P \setminus \{z \in P | x' \succ z\}$
- 7: **if** $\not\exists z \in P$ such that $(z \succ x' \lor f(x') = f(z))$ **then**
- 8: $P \leftarrow P \cup \{x'\}$
- 9: **end if**
- 10: end loop

Example Algorithm: SEMO

Simple Evolutionary Multiobjective Optimizer

Run-Time Analysis: Scenario

Problem

leading ones, trailing zeros (LOTZ)

Variation:

single point mutation

one bit per individual

The Good News

SEMO behaves like a single-objective EA until the Pareto set has been reached...

Phase 1:

only one solution stored in the archive

SEMO: Sketch of the Analysis I

Phase 1: until first Pareto-optimal solution has been found

 $i \rightarrow i-1$: probability of a successful mutation $\geq 1/n$ expected number of mutations = n

 $i=n \rightarrow i=0$: at maximum n-1 steps (i=1 not possible) expected overall number of mutations = O(n²)

SEMO: Sketch of the Analysis II

Phase 2: from the first to all Pareto-optimal solutions

 $j \rightarrow j+1$: probability of choosing an outer solution $\geq 1/j, \leq 2/j$ probability of a successful mutation $\geq 1/n$, $\leq 2/n$ expected number T_i of trials (mutations) $\geq nj/4, \leq nj$

j=1 \rightarrow j=n: at maximum n steps \Rightarrow n³/8 + n²/8 \leq \sum T_j \leq n³/2 + n²/2 expected overall number of mutations = Θ (n³)

SEMO on LOTZ

Lemma 1 (Expected running time for phase 1)

The expected running time of Alg. 1 until the first Pareto-optimal point is found is $O(n^2)$.

Lemma 2 (Expected running time for phase 2)

After the first Pareto-optimal point is found, the expected running time of Alg. 1 until all Pareto-optimal points are found is $\Theta(n^3)$

Corollary 1 (Expected running time Alg. 1)

The expected running time of Alg. 1 until all Pareto-optimal points are found is $\Theta(n^3)$

Can we do even better?

- Our problem is the exploration of the Pareto-front.
- Uniform sampling is unfair as it samples early found Paretopoints more frequently.

```
Algorithm 2 Fair Evolutionary Multi-Objective Optimizer (FEMO)
 1: Choose an initial individual x uniformly from X = \{0,1\}^n
 2: w(x) \leftarrow 0
 3: P \leftarrow \{x\}
 4: loop
      Select one element x out of \{y \in P | w(y) \le w(z) \forall z \in P\} uniformly.
     w(x) \leftarrow w(x) + 1
    Create offspring x' by flipping a randomly chosen bit.
 7:
    P \leftarrow P \setminus \{z \in P | x' \succ z\}
    if \exists z \in P such that (z \succ x' \lor f(x') = f(z)) then
         P \leftarrow P \cup \{x'\}
10:
       end if
11:
12: end loop
```

FEMO on LOTZ

Let the population P of FEMO applied to LOTZ contain exactly one Pareto-optimal solution and let c > 0 be an arbitrary constant. With probability at least $1 - n^{1-c}$, it takes at most $c \cdot n \log n$ mutation trials per solution to generate all remaining n Pareto-optimal solutions.

Sketch of Proof

Probability for each individual, that parent did not generate it with $c/p \log n$ trials:

$$(1-p)^t = (1 - \frac{1}{1/p})^{c/p\log n} = (1 - \frac{1}{1/p})^{1/p^{c\log n}} \le \left(\frac{1}{e}\right)^{c\log n} = \frac{1}{n^c}$$

n individuals must be produced. The probability that one needs more than $c/p \log n$ trials is bounded by n^{1-c} .

FEMO on LOTZ

With probability at least 1 - O(1/n), the running time FEMO needs from the discovery of the first two Pareto-optimal objective vectors of LOTZ until the whole Pareto set has been found lies in the interval $[1/4 \cdot 1/p \cdot n \log n, 2 \cdot 1/p \cdot n \log n]$. Hence, $P\{T = \Theta(1/p \cdot n \log n)\} = 1 - O(1/n)$. Furthermore, $E[T] = O(1/p \cdot n \log n)$.

- Single objective (1+1) EA with multistart strategy (epsilon-constraint method) has running time $\Theta(n^3)$.
- EMO algorithm with fair sampling has running time $\Theta(n^2 \log(n))$.

Generalization: Randomized Graph Search

How long does it take to explore the whole graph?

How should we select the "parents"?

Randomized Graph Search

Algorithm 9 Randomized Graph Search

```
1: w(v) \leftarrow 0

2: V \leftarrow \{v_1\}; E \leftarrow \emptyset

3: loop

4: Select a node v out of \{v' \in V | w(v) \leq w(v') \ \forall v' \in V\} uniformly.

5: w(v) \leftarrow w(v) + 1

6: v' \leftarrow \text{jump}(v)

7: if v' \not\in V then

8: w(v) \leftarrow 0

9: V \leftarrow V \cup \{v'\}; E \leftarrow E \cup \{(v, v')\}

10: end if

11: end loop
```

With probability at least $1 - |E|^{-c}$, Algorithm 9 explores all nodes and edges of G using not more that $(c+1)\frac{|V|}{p}\log|E|$ calls to the function jump. The expected number of calls to jump is bounded by $O(\frac{|V|}{p}\log|E|)$.

Running Time Analysis: Comparison

Algorithms

	(1+1)-EMO	SEMO	FEMO	GEMO
LOTZ	$\Theta(n^3)$	$\Theta(n^3)$	$\Theta(n^2 \log n)$	$\Theta(n^2 \log n)$
COCZ	$\Theta(n^2 \log n)$	$O(n^2 \log n)$	$O(n^2 \log n)$	$\Theta(n^2)$
mLOTZ	$\Theta(n^{m/2}n^2)$	$O(n^{m+1})$	$O(n^{m+1})$	$O(n^{m/2}n\log n)$
mCOCZ	$\Theta(n^{m/2}n\log n)$	$O(n^{m+1})$	$O(n^{m+1})$	$O(n^{m/2}n\log n)$

Problems

Population-based approach can be more efficient than multistart of single membered strategy

Overview

Performance Assessment: Approaches

Which technique is suited for which problem class?

- Theoretically (by analysis): difficult
 - Limit behavior (unlimited run-time resources)
 - Running time analysis
- **2** Empirically (by simulation): standard

Problems: randomness, multiple objectives

Issues: quality measures, statistical testing,

benchmark problems, visualization, ...

The Need for Quality Measures

Ideal: quality measures allow to make both type of statements

Independent of User Preferences

Pareto set approximation (algorithm outcome) = set of incomparable

solutions

 Ω = set of all Pareto set approximations

- A weakly dominates B
 - = not worse in all objectives sets not equal
- **C** dominates **D**
 - = better in at least one objective
- A strictly dominates C
 - = better in all objectives
- **B** is **incomparable** to **C**
 - = neither set weakly better

Dependent on User Preferences

Goal: Quality measures compare two Pareto set approximations A and B.

	Α	В
hypervolume	432.34	420.13
distance	0.3308	
diversity	0.3637	0.3463
spread	0.3622	0.3601
cardinality	6	5

comparison and interpretation of quality values

"A better"

Quality Measures: Examples

Unary

Hypervolume measure

Binary

Coverage measure

[Zitzler, Thiele: 1999]

Previous work on Multiobjective Quality Measures

Status:

- Visual comparisons common until recently
- Numerous quality measures have been proposed since the mid-1990s

```
[Schott: 1995] [Zitzler, Thiele: 1998] [Hansen, Jaszkiewicz: 1998] [Zitzler: 1999] [Van Veldhuizen, Lamont: 2000] [Knowles, Corne, Oates: 2000] [Deb et al.: 2000] [Sayin: 2000] [Tan, Lee, Khor: 2001] [Wu, Azarm: 2001]...
```

- Most popular: unary quality measures (diversity + distance)
- No common agreement which measures should be used

Open questions:

- What kind of statements do quality measures allow?
- Can quality measures detect whether or that a Pareto set approximation is better than another?

```
[Zitzler, Thiele, Laumanns, Fonseca, Grunert da Fonseca: 2003]
```

Comparison Methods and Dominance Relations

Compatibility of a comparison method C:

C yields $true \Rightarrow A$ is (weakly, strictly) better than **B** (C detects **that** A is (weakly, strictly) better than **B**)

Completeness of a comparison method C:

A is (weakly, strictly) better than $\mathbf{B} \Rightarrow \mathbf{C}$ yields true

Ideal: compatibility and completeness, i.e.,

A is (weakly, strictly) better than $\mathbf{B} \Leftrightarrow \mathbf{C}$ yields true (C detects whether **A** is (weakly, strictly) better than **B**)

Limitations of Unary Quality Measures

Theorem

There exists no unary quality measure that is able to detect

whether A is better than B.

This statement even holds, if we consider a finite combination

of unary quality measures

There exists no combination of unary measures applicable to any problem.

Power of Unary Quality Indicators

indicator	name / reference	Boolean function	compatibility	completeness
I_{HC}	enclosing hypercube indicator / Section III-B.1	$I_2^{HC}(A) < I_1^{HC}(B)$	→ ≻≻	
I_O	objective vector indicator / Section III-B.1	$I_i^O(A) < I_i^O(B)$	≻≻	_
I_H	hypervolume indicator / [7]	$I_H(A) > I_H(B)$	₽	
I_W	average best weight combination / [19]	$I_W(A) < I_W(B)$	⋈	▶ ≻
I_D	distance from reference set / [20]	$I_D(A) < I_D(B)$	×	>>
$I_{\epsilon 1}$	unary ε-indicator / Section III-B.2	$I_{\epsilon 1}(A) < I_{\epsilon 1}(B)$	\textstyle	> >
I_{PF}	fraction of Pareto-optimal front covered / [22]	$I_{PF}(A) > I_{PF}(B)$	₩	-
I_P	number of Pareto points contained / Section III-B.2	$I_P(A) > I_P(B)$	⋫	-
I_{ER}	error ratio / [13]	$I_{ER}(A) > 0$	*	-
I_{CD}	chi-square-like deviation indicator / [14]	$I_{CD}(A) < I_{CD}(B)$	-	-
I_S	spacing / [23]	$I_S(A) < I_S(B)$	-	-
I_{ONVG}	overall nondominated vector generation / [13]	$I_{ONVG}(A) > I_{ONVG}(B)$	-	-
I_{GD}	generational distance / [13]	$I_{GD}(A) \nearrow I_{GD}(B)$	-	-
I_{ME}	maximum Pareto front error / [13]	$I_{ME}(A) < I_{ME}(B)$	-	-
I_{MS}	maximum spread / [21]	$I_{MS}(A) > I_{MS}(B)$	-	-
I_{MD}	minimum distance between two solutions / [24]	$I_{MD}(A) > I_{MD}(B)$	-	-
I_{CE}	coverage error / [24]	$I_{CE}(A) < I_{CE}(B)$	-	-
I_{DU}	deviation from uniform distribution / [25]	$I_{DU}(A) < I_{DU}(B)$	-	-
I_{OS}	Pareto spread / [26]	$I_{OS}(A) > I_{OS}(B)$	-	-
I_A	accuracy / [26]	$I_A(A) > I_A(B)$	-	-
I_{NDC}	number of distinct choices / [26]	$I_{NDC}(A) > I_{NDC}(B)$	-	-
I_{CL}	cluster / [26]	$I_{CL}(A) < I_{CL}(P)$	-	-

rictly dominates

doesn't weakly dominate doesn't dominate

weakly dominates

Quality Measures: Results

Basic question: Can we say on the basis of the quality measures

whether or that an algorithm outperforms another?

application of quality measures

	9	
hypervolume	432.34	420.13
distance	0.3308	
diversity	0.3637	0.3463
spread	0.3622	0.3601
cardinality	6	5

There is no combination of unary quality measures such that

S is better than T in all measures is equivalent to S

Unary quality measures usually do not tell that **S** dominates **T**; at maximum that **S** does not dominate **T**

[Zitzler et al.: 2002]

A New Measure: ε-Quality Measure

Two solutions:

$$E(\mathbf{a}, \mathbf{b}) = \max_{1 \le i \le n} \min_{\epsilon} \epsilon \cdot f_i(\mathbf{a}) \ge f_i(\mathbf{b})$$

Two approximations:

$$E(\mathbf{A}, \mathbf{B}) = \max_{\mathbf{b} \in \mathbf{B}} \min_{\mathbf{a} \in \mathbf{A}} E(\mathbf{a}, \mathbf{b})$$

Advantages: allows all kinds of statements (complete and compatible)

Selected Contributions

How to apply (evolutionary) optimization algorithms to large-scale multiobjective optimization problems?

Algorithms:

```
Improved techniques [Zitzler, Thiele: IEEE TEC1999]
                 [Zitzler, Teich, Bhattacharyya:
CEC20001
                                     [Zitzler, Laumanns,
Thiele: EUROGEN20011
Unified model
                        [Laumanns, Zitzler, Thiele:
CEC20001
                 [Laumanns, Zitzler, Thiele: EMO2001]
Test problems
                        [Zitzler, Thiele: PPSN 1998, IEEE
TEC 19991
                 [Deb, Thiele, Laumanns, Zitzler:
GECCO20021
```

Theory:

° Convergence/diversity [Laumanns, Thiele, Deb, Zitzler: