Introduction to Software Testing

Chapter 3
Syntactic Logic Coverage Criteria - DNF

Paul Ammann & Jeff Offutt

Updated by Sunae Shin

DNF Criteria

- Revisit the testing of Boolean expressions
- Syntactic Logic Coverage Criteria
- Structure of the predicate as expressed in a disjunctive normal form (DNF) representation

Disjunctive Normal Form

- **Common Representation for Boolean Functions**
 - Slightly Different Notation for Operators
 - Slightly Different Terminology

■ Basics:

- A literal is a clause or the negation (overstrike) of a clause
 - Examples: a, \overline{a}
- A term is a set of literals connected by logical "and"
 - "and" is denoted by adjacency instead of ∧
 - Examples: ab, $a\overline{b}$, $\overline{a}\overline{b}$ for $a \wedge b$, $a \wedge \neg b$, $\neg a \wedge \neg b$
- A (disjunctive normal form) predicate is a set of terms connected by "or"
 - "or" is denoted by + instead of ∨
 - Examples: $abc + \overline{ab} + a\overline{c}$
 - Terms are also called "implicants"
 - If a term is true, that implies the predicate is true

Implicant Coverage

- Obvious coverage idea: Make each implicant evaluate to "true".
 - Problem: Only tests "true" cases for the predicate.
 - Solution: Include DNF representations for negation.

Implicant Coverage (IC): Given DNF representations of a predicate f and its negation \overline{f} , for each implicant in f and \overline{f} , TR contains the requirement that the implicant evaluate to true.

- Example: $f = ab + b\overline{c}$ $\overline{f} = \overline{b} + \overline{a}c$
 - Implicants: $\{ab, b\overline{c}, \overline{b}, \overline{ac}\}$
 - Possible test set: {TTF, FFT}
- Observation: IC is relatively weak

Improving on Implicant Coverage

Additional Definitions:

- A proper subterm is a term with one or more clauses removed
 - Example: abc has 6 proper subterms: a, b, c, ab, ac, bc
- A prime implicant is an implicant such that no proper subterm is also an implicant.
 - Example: $f = ab + a\overline{b}c$
 - Implicant ab is a prime implicant
 - Implicant $a\bar{b}c$ is not a prime implicant (due to proper subterm ac)
- A redundant implicant is an implicant that can be removed without changing the value of the predicate
 - Example: $f = ab + ac + b\overline{c}$
 - ab is redundant
 - Predicate can be written: $ac + b\overline{c}$

Unique True Points

- A minimal DNF representation is one with only prime, nonredundant implicants.
- A unique true point with respect to a given implicant is an assignment of truth values so that
 - the given implicant is true, and
 - all other implicants are false
- Hence a unique true point test focuses on just one implicant
- A minimal representation guarantees the existence of at least one unique true point for each implicant

<u>Unique True Point Coverage (UTPC)</u>: Given minimal DNF representations of a predicate f and its negation \overline{f} , TR contains a unique true point for each implicant in f and \overline{f} .

Unique True Point Example

- Consider again: $f = ab + b\overline{c}$ $\overline{f} = \overline{b} + \overline{a}c$
 - Implicants: $\{ab, b\overline{c}, b, \overline{ac}\}$
 - Each of these implicants is prime
 - None of these implicants is redundant

■ Unique true points:

- *− ab*: {TTT}
- $-b\overline{c}$: {FTF}
- $-\bar{b}$: {FFF, TFF, TFT}
- $-\bar{ac}$: {FTT}

■ UTPC is fairly powerful

- Exponential in general, but reasonable cost for many common functions
- No subsumption relation wrt any of the ACC or ICC Criteria

Near False Points

- A near false point with respect to a clause c in implicant i is an assignment of truth values such that f is false, but if c is negated (and all other clauses left as is), i (and hence f) evaluates to true.
- \blacksquare Relation to determination: at a near false point, c determines f
 - Hence we should expect relationship to ACC criteria

Unique True Point and Near False Point Pair Coverage (CUTPNFP): Given a minimal DNF representation of a predicate f, for each clause c in each implicant i, TR contains a unique true point for i and a near false point for c such that the points differ only in the truth value of c.

■ Note that definition only mentions f, and not \overline{f} .

CUTPNFP Example

- Consider f = ab + cd
 - For implicant ab, we have 3 unique true points: {TTFF, TTFT, TTTF}
 - For clause a, we can pair unique true point $\underline{T}TFF$ with near false point $\underline{F}TFF$
 - For clause b, we can pair unique true point TTFF with near false point TFFF
 - For implicant cd, we have 3 unique true points: {FFTT, FTTT}
 - For clause c, we can pair unique true point $FF\underline{T}T$ with near false point $FF\underline{F}T$
 - For clause d, we can pair unique true point FFT \underline{T} with near false point FFT \underline{F}
- **CUTPNFP set: {TTFF, FFTT, TFFF, FTFF, FFTF, FFFT}**
 - First two tests are unique true points; others are near false points
- Rough number of tests required: # implicants * # literals

Karnaugh Map

■ Karnaugh map

- Provides a simple and straight-forward method of minimizing Boolean expressions
- A tabular representation of a predicate
 - Groupings of adjacent table entries correspond to simple DNF representation
- Up to four and even six variables can be simplified

Karnaugh map table for the predicate "ab + cd"

Karnaugh Maps – Example 1

- Consider the following map
- The function plotted is: Z = f(A, B) = AB + AB

- Referring to the map above, the two adjacent 1's are grouped together
- Through inspection it can be seen that variable B has its true and false form within the group
- This eliminates variable B leaving only variable A which only has its true form
- The minimized answer therefore is Z = A

Karnaugh Maps – Example 2

■ Consider the expression Z = f(A, B) = AB + AB + AB plotted on the Karnaugh map:

- The first group
 - Correspond to the area of the map where B=0 contains 1s, independent of the value of A
 - The expression of the output will contain the term B
- The second group
 - Corresponds to the area of the map where A = 0
 - The group can therefore be defined as A
- Hence the simplified answer is $Z = \overline{A} + \overline{B}$

Karnaugh Maps – Rules of Simplication

- Groups may not include any cell containing a zero
- Groupd may be horizontal or vertical, but not diagonal
- Groups must contain 1, 2, 4, 8, or in general 2ⁿ cells
- Each group should be as large as possible
- Groups may overlap

K-Map: Negation of a predicate

- **Consider the predicate:** f = ab + bc
- Draw the Karnaugh Map for the negation
 - Identify groups
 - Write down negation: $f = \overline{b} + \overline{a} \overline{c}$

