3.2 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process, $x_t = \theta(B)w_t$, where $\theta(B) = 1 + \theta_1 B + \ldots + \theta_q B^q$. Because x_t is a finite linear combination of white noise terms, the process is stationary with mean

$$E(x_t) = \sum_{j=0}^q \theta_j E(w_{t-j}) = 0,$$

where we have written $\theta_0 = 1$, and with autocovariance function

$$\gamma(h) = Cov(x_{t+h}, x_t) = \begin{cases} \sigma_w^2 \sum_{j=0}^{q-h} \theta_j \theta_{j+h}, & 0 \le h \le q \\ 0 & h > q. \end{cases}$$
(3.2.1)

Recall that $\gamma(h) = \gamma(-h)$, so we will only display the values for $h \ge 0$.

Note that $\gamma(q)$ cannot be zero because $\theta_q \neq 0$. The cutting off of $\gamma(h)$ after q lags is the signature of the MA(q) model.

Besides, the ACF of an MA(q) is:

$$\rho(h) = \begin{cases} \frac{\sum_{j=0}^{q-h} \theta_j \theta_{j+h}}{1+\theta_1^2 + \dots + \theta_q^2}, & 0 \le h \le q \\ 0 & h > q. \end{cases}$$
(3.2.2)

For a causal ARMA(p,q) model, $\phi(B)x_t = \theta(B)w_t$, where the zeros of $\phi(z)$ are outside the unit circle, write

where
$$x_{t}$$
 is the unit circle, write $x_{t} = \sum_{j=0}^{\infty} \psi_{j} w_{t-j}$. $y_{t} = \sum_{j=0}^{\infty} \psi_{j} w_{t-j}$. (3.2.3)

It follows immediately that $E(x_t) = 0$ and the autocovariance function of x_t is

$$\gamma(h) = Cov(x_{t+h}, x_t) = \sigma_w^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}, \quad h \ge 0.$$
 (3.2.4)

Besides, it is also possible to obtain a homogeneous difference equation directly in terms of $\gamma(h)$. First, we write

$$\gamma(h) = Cov(x_{t+h}, x_t) = Cov\left(\sum_{j=1}^{p} \phi_j x_{t+h-j} + \sum_{j=0}^{q} \theta_j w_{t+h-j}, x_t\right)$$

$$= \sum_{j=1}^{p} \phi_j \gamma(h-j) + \sigma_w^2 \sum_{j=h}^{q} \theta_j \psi_{j-h}, \qquad h \ge 0, \quad (3.2.5)$$

where we have used the fact that, for $h \ge 0$,

$$Cov(w_{t+h-j}, x_t) = Cov\left(w_{t+h-j}, \sum_{k=0}^{\infty} \psi_k w_{t-k}\right) = \psi_{j-h}\sigma_w^2.$$

From (3.2.5), we can write a general homogeneous equation for the ACF of a causal ARMA process:

$$/\gamma(h) - \phi_1 \gamma(h-1) - \dots - \phi_p \gamma(h-p) = 0, \qquad h \ge \max(p, q+1), \quad (3.2.6)$$

with initial conditions

$$\gamma(h) - \sum_{j=1}^{p} \phi_{j} \gamma(h-j) = \sigma_{w}^{2} \sum_{j=h}^{q} \theta_{j} \psi_{j-h}, \qquad 0 \le h < \max(p, q+1), \quad (3.2.7)$$

Dividing (3.2.6) and (3.2.7) through by $\gamma(0)$ will allow us to solve for the ACF, $\rho(h) = \gamma(h)/\gamma(0)$.

Example 3.5 (The ACF of an AR(p)) Consider AR(p) process. To obtain its ACF, it follows immediately from (3.2.6) that

$$\rho(h) - \phi_1 \rho(h-1) - \dots - \phi_p \rho(h-p) = 0, \qquad h \ge p.$$
 (3.2.8)

Let $z_1, ..., z_r$ denote the roots of $\phi(z)$, each with multiplicity $m_1, ..., m_r$, respectively, where $m_1 + ... + m_r = p$. Then, it can be shown that the general solution is

$$\rho(h) = z_1^{-h} P_1(h) + z_2^{-h} P_2(h) + \dots + z_r^{-h} P_r(h), \qquad h \ge p, \tag{3.2.9}$$

where $P_j(h)$ is a polynomial in h of degree $m_j - 1$.

- For a causal model, all of the roots are outside the unit circle, $|z_i| > 1$, for i = 1, ..., r.
- If all the roots are real, then $\rho(h)$ dampens exponentially fast to zero as $h \to \infty$.
- If some of the roots are complex, then they will be in conjugate pairs and $\rho(h)$ will dampen, in a sinusoidal fashion, exponentially fast to zero as $h \to \infty$.
- In the case of complex roots, the time series will appear to be cyclic in nature.
- This is also true for ARMA models in which the AR part has complex roots.

Example 3.6 (The ACF of an ARMA(1, 1)) Consider the ARMA(1, 1) process $x_t = \phi x_{t-1} + \theta w_{t-1} + w_t$, where $|\phi| < 1$. Based on (3.2.6), the autocovariance function satisfies $\langle w_t \rangle = \langle w_t \rangle = \langle$

$$\theta w_{t-1} + w_t, \text{ where } |\phi| < 1. \text{ Based on (3.2.6), the autocovarisisfies}$$

$$\gamma(h) = \psi(h-1)$$

$$\gamma(h) - \phi \gamma(h-1) = 0, \qquad h = 2, 3, \dots, \qquad \psi(h-1)$$

and it can be shown that the general solution is

$$\gamma(h) = \phi^{h-1}\gamma(1), \qquad h = 2, 3, \dots$$
 (3.2.10)

To obtain the initial conditions, we use (3.2.7):

$$\gamma(0) = \phi \gamma(1) + \sigma_w^2 [1 + \theta \phi + \theta^2]$$

and

$$\gamma(1) = \phi \gamma(0) + \sigma_w^2 \theta.$$

Solving for $\gamma(0)$ *and* $\gamma(1)$ *, we obtain:*

$$\gamma(0) = \sigma_w^2 \frac{1 + 2\theta\phi + \theta^2}{1 - \phi^2}$$

and

$$\gamma(1) = \sigma_w^2 \frac{(1 + \theta\phi)(\phi + \theta)}{1 - \phi^2}.$$

Hence, the specific solution for $h \ge 2$ *is*

$$\gamma(h) = \gamma(1)\phi^{h-1} = \sigma_w^2 \frac{(1 + \theta\phi)(\phi + \theta)}{1 - \phi^2} \underline{\phi^{h-1}}$$

Finally, dividing through by $\gamma(0)$ yields the ACF

$$\underline{\rho(h)} = \frac{(1+\theta\phi)(\phi+\theta)}{1-2\phi\theta+\theta^2} \underline{\phi}^{h-1}, \quad h \ge 1 \qquad (3.2.11)$$
decreasing exponentially as h increases

- The general pattern of $\rho(h)$ versus h in (3.2.11) is not different from that of an AR(1) given in (3.1.8).
- It is unlikely that we will be able to tell the difference between an ARMA(1,1) and an AR(1) based solely on an ACF estimated from a sample.
- This consideration will lead us to the partial autocorrelation function.

3.2.1 The Partial Autocorrelation Function (PACF)

- We have seen in (3.2.2), for MA(q) models, the ACF will be zero for lags greater than q.
- Because $\theta_q \neq 0$, the ACF will not be zero at lag q.
- The ACF provides a considerable amount of information about the order of the dependence when the process is a moving average process.
- If the process is ARMA or AR, the ACF alone tells us little about the orders of dependence.
- It is worthwhile pursuing a function that will behave like the ACF of MA models, but for AR models, namely, the partial autocorrelation function (PACF).

• Recall that if X, Y, and Z are random variables, then the partial correlation between X and Y given Z is obtained by regressing X on Z to obtain \hat{X} , regressing Y on Z to obtain \hat{Y} , and then calculating

$$\rho_{XY|Z} = Corr\{X - \hat{X}, Y - \hat{Y}\}.$$

• The idea is that $\rho_{XY|Z}$ measures the correlation between X and Y with the linear effect of Z removed (or partialled out). If the variables are multivariate normal, then this definition coincides with $\rho_{XY|Z} = Corr(X, Y|Z)$.

To motivate the idea for time series, consider a causal AR(1) model, $x_t = \frac{\phi x_{t-1} + w_t}{v_t}$. Then, $\frac{\phi x_{t-1} + w_t}{v_t} = \frac{cov(x_t, x_{t-2})}{v_t} = \frac{cov(\phi x_{t-1} + w_t, x_{t-2})}{v_t}$

$$\frac{\gamma_{x}(2) = Cov(x_{t}, x_{t-2}) = Cov(\phi x_{t-1} + w_{t}, x_{t-2})}{= Cov(\phi^{2}x_{t-2} + \phi w_{t-1} + w_{t}, x_{t-2}) = \phi^{2}\gamma(0).}$$
• This result follows from causality because x_{t-2} involves $\{w_{t-2}, w_{t-3}, \ldots\}$,

- This result follows from causality because x_{t-2} involves $\{w_{t-2}, w_{t-3}, \ldots\}$, which are all uncorrelated with w_t and w_{t-1} .
- The correlation between x_t and x_{t-2} is not zero, as it would be for an MA(1), because x_t is dependent on x_{t-2} through x_{t-1} .
- Suppose we break this chain of dependence by removing (or partial out) the effect x_{t-1} . That is, we consider the correlation between $x_t \phi x_{t-1}$ and $x_{t-2} \phi x_{t-1}$, because it is the correlation between x_t and x_{t-2} with the linear dependence of each on x_{t-1} removed.

In this way, we have broken the dependence chain between x_t and x_{t-2} . In fact, have on dep or AR(1) $x_t - x_t - x_{t-1} = w_t$

$$Cov(\overline{x_t - \phi x_{t-1}}, x_{t-2} - \phi x_{t-1}) = Cov(w_t, \underline{x_{t-2}} - \phi \underline{x_{t-1}}) = 0.$$

Hence, the tool we need is partial autocorrelation, which is the correlation between x_s and x_t with the linear effect of everything "in the middle" removed.

To formally define the PACF for mean-zero stationary time series, let \hat{x}_{t+h} , for $h \ge 2$, denote the regression of x_{t+h} on $\{x_{t+h-1}, x_{t+h-2}, \dots, x_{t+1}\}$, which we write as

$$\hat{x}_{t+h} = \beta_1 x_{t+h-1} + \beta_2 x_{t+h-2} + \dots + \beta_{h-1} x_{t+1}. \tag{3.2.12}$$

No intercept term is needed in (3.2.12) because the mean of x_t is zero (otherwise, replace x_t by $x_t - \mu_x$ in this discussion).

In addition, let \hat{x}_t denote the regression of x_t on $\{x_{t+1}, x_{t+2}, \dots, x_{t+h-1}\}$, then

$$\hat{x}_t = \beta_1 x_{t+1} + \beta_2 x_{t+2} + \dots + \beta_{h-1} x_{t+h-1}. \tag{3.2.13}$$

Because of stationarity, the coefficients, $\beta_1, \ldots, \beta_{h-1}$ are the same in (3.2.12) and (3.2.13); we will explain this result in the next section, but it will be evident from the examples.

Definition 3.9 (The partial autocorrelation function (PACF)) *The partial autocorrelation function of a stationary process,* x_t , *denoted by* ϕ_{hh} , *for* h = 1, 2, ..., is

$$\phi_{11} = Corr(x_{t+1}, x_t) = \rho(1), \tag{3.2.14}$$

and

$$\phi_{hh} = Corr(x_{t+h} - \hat{x}_{t+h}, x_t - \hat{x}_t), \qquad h \ge 2.$$
 (3.2.15)

Note 3.3 • The PACF, ϕ_{hh} , is the correlation between x_{t+h} and x_t with the linear dependence of $\{x_{t+1}, \ldots, x_{t+h-1}\}$ on each, removed.

• If the process x_t is Gaussian, then $\phi_{hh} = Corr(x_{t+h}, x_t | x_{t+1}, \dots, x_{t+h-1})$; that is, ϕ_{hh} is the correlation coefficient between x_{t+h} and x_t in the bivariate distribution of (x_{t+h}, x_t) conditional on $\{x_{t+1}, \dots, x_{t+h-1}\}$.

Example 3.7 (The PACF of an AR(1)) Consider the PACF of the AR(1) process given by $x_t = \phi x_{t-1} + w_t$, with $|\phi| < 1$. By definition, $\phi_{11} = \rho(1) = \phi$. To calculate ϕ_{22} , consider the regression of x_{t+2} on x_{t+1} , say, $\hat{x}_{t+2} = \beta x_{t+1}$. We choose β to minimize

$$\beta \text{ to minimize}$$

$$E(x_{t+2} - \hat{x}_{t+2})^2 = E(x_{t+2} - \beta x_{t+1})^2 = \gamma(0) - 2\beta\gamma(1) + \beta^2\gamma(0).$$

Taking derivatives with respect to β and setting the result equal to zero, we have $\beta = \gamma(1)/\gamma(0) = \rho(1) \neq \phi$. Next, consider the regression of $\underline{x_t}$ on $\underline{x_{t+1}}$, say $\hat{x}_t = \beta x_{t+1}$. We choose β to minimize

$$E(x_t - \hat{x}_t)^2 = E(x_t - \beta x_{t+1})^2 = \gamma(0) - 2\beta \gamma(1) + \beta^2 \gamma(0).$$

This is the same equation as before, so $\beta = \phi$. Hence,

$$\phi_{22} = Corr(x_{t+2} - \hat{x}_{t+2}, x_t - \hat{x}_t) = Corr(x_{t+2} - \phi x_{t+1}, x_t - \phi x_{t+1})$$

$$= Corr(w_{t+2}, x_t - \phi x_{t+1}) = 0$$

$$t+2 > t, t+1$$

by causality. Thus, $\phi_{22} = 0$. In the next example, we will see that in this case, $\phi_{hh} = 0$ for all h > 1.

Example 3.8 (The PACF of an AR(p)) The model implies $x_{t+h} = \sum_{j=1}^{p} \phi_j x_{t+h-j} + w_{t+h}$, where the roots of $\phi(z)$ are outside the unit circle. When h > p, the regression of x_{t+h} on $\{x_{t+1}, \ldots, x_{t+h-1}\}$, is

$$\hat{x}_{t+h} = \sum_{j=1}^{p} \phi_j x_{t+h-j}$$

Thus, when h > p,

$$\phi_{hh} = Corr(x_{t+h} - \hat{x}_{t+h}, x_t - \hat{x}_t) = Corr(w_{t+h}, x_t - \hat{x}_t) = 0,$$

because, by causality, $x_t - \hat{x}_t$ depends only on $\{w_{t+h-1}, w_{t+h-2}, \ldots\}$. When $h \le p$, ϕ_{pp} is not zero, and $\phi_{11}, \ldots, \phi_{p-1,p-1}$ are not necessarily zero. We will see later that, in fact, $\phi_{pp} = \phi_p$.

Figure 3.3 shows the ACF and the PACF of the AR(2) with $\phi_1 = 1.5$ and $\phi_2 = -.75.$

 $\phi_2 = -.75$

Example 3.9 (The PACF of an Invertible MA(q**)**) For an invertible MA(q), we can write $x_t = \sum_{j=1}^{\infty} \pi_j x_{t-j} + w_t$. Moreover, no finite representation exists. From this result, it should be apparent that the PACF will never cut off, as in the case of an AR(p). For an MA(1), $x_t = w_t + \theta w_{t-1}$, with $|\theta| < 1$, it can be shown that $\phi_{22} = -\theta^2/(1 + \theta^2 + \theta^4)$. For the MA(1) in general, we can show that

$$\phi_{hh} = -\frac{(-\theta)^h (1 - \theta^2)}{1 - \theta^{2(h+1)}}, \qquad h \ge 1.$$

- The PACF for MA models behaves much like the ACF for AR models.
- The PACF for AR models behaves much like the ACF for MA models.
- Because an invertible ARMA model has an infinite AR representation, the PACF will not cut off.

	AR(p)	MA(q)	ARMA(p,q)
ACF	Tails off	Cuts off after lag q	Tails off
PACF	Cuts off after lag <i>p</i>	Tails off	Tails off

Example 3.10 (Preliminary Analysis of the Recruitment Series) We consider the problem of modeling the Recruitment series, discussed in previous chapters. There are 453 months of observed recruitment ranging over the years 1950-1987. The ACF and the PACF given in Figure 3.10 are consistent with the behavior of an AR(2). The ACF has cycles corresponding roughly to a 12-month period, and the PACF has large values for h = 1, 2 and then is essentially zero for higher order lags. Based on Table 3.1, these results suggest that a second-order (p = 2) autoregressive model might provide a good fit.

We ran a regression using the data triplets

$$\{(x; z_1, z_2) : (x_3; x_2, x_1), (x_4; x_3, x_2), \dots, (x_{453}; x_{452}, x_{451})\}$$

to fit a model of the form $x_t = \phi_0 + \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$ for t = 3, 4, ..., 453. The estimates and standard errors (in parentheses) $are \hat{\phi}_0 = 6.74(1.11), \hat{\phi}_1 = 6.74(1.11)$

1.35(.04), $\hat{\phi}_2 = -.46(.04)$, and $\sigma_w^2 = 89.72$. The following R code can be used for this analysis. We use acf2 from astsa to print and plot the ACF and PACF.

AR(2)

auto-covariance junction of MA(q) Tro 9 9 520 Reo to if t+h-s=t-k 9-h 9-ARMA (10,9) 5 lide 207 , n_t) \$ n + A W 3 Mt j=1

