

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/12, C07K 14/705

A2

(11) International Publication Number:

WO 95/11974

(43) International Publication Date:

4 May 1995 (04.05.95)

(21) International Application Number:

PCT/US94/11897

(22) International Filing Date:

19 October 1994 (19.10.94)

(30) Priority Data:

08/141,500 08/143,215

22 October 1993 (22.10.93) 26 October 1993 (26.10.93)

US US

(71) Applicant: LIGAND PHARMACEUTICALS, INC. [US/US]; 9393 Towne Center Drive, San Diego, CA 92121 (US).

(72) Inventor: MUKHERJEE, Ranjan, 11341 Avenida De Los Lobos, San Diego, CA 92127 (US).

(74) Agents: CHEN, Anthony, C. et al.; Lyon & Lyon, First Interstate World Center, Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071-2066 (US).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, ČN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR

1400 1407

(57) Abstract

A human peroxisome proliferation activated receptor gene is purified from the environment in which it naturally occurs, and preferably provided within an expression vector.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			•		
AT	Austria	`GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	TT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	· LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	· UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN .	Viet Nam
GA	Gobon	•			

PCT/US94/11897 WO 95/11974

DESCRIPTION

Human Peroxisome Proliferator Activated Receptor

Cross Reference to Related Application

application is a continuation-in-part of Application Docket No. 202/041, titled "Human Peroxisome Proliferator Activated Receptor, " filed October 22, 1993, by Mukherjee, the disclosure of which is incorporated herein by reference.

Field of the Invention

5

This invention relates to the cloning and uses of a human peroxisome proliferator activated receptor.

Background of the Invention

A peroxisome proliferator is an agent that induces peroxisomal proliferation. Peroxisome proliferators are a diverse group of chemicals which include unsaturated fatty acids, hypolipidemic drugs, herbicides, leukotriene antagonists, and plasticizers (for a review, see Green, S., 43 Biochem. Pharmacol: 393-400, 1992). Hypolipidemic drugs such as clofibrates have been found to lower triglycerides and cholesterol levels in plasma and to be beneficial in the prevention of ischaemic heart disease in individuals with elevated levels of cholesterol (Havel, 15 R.J. and Kane, J.P., 13 Ann. Rev. Pharmac. 287-308, 1973). Therapeutic use of such drugs, however, is questioned because clofibrates are carcinogens in rats.

Peroxisome proliferator activated receptor (PPAR) is a member of the steroid receptor family. It is activated by peroxisome proliferators. Issemann and Green, 347 Nature 645, 1990, cloned a mouse peroxisome proliferator activated receptor (mPPAR) gene from a mouse liver complementary DNA (cDNA) library. Göttlicher et al., 89 Proc. Nat. Acad. Sci. USA 4653-4657, 1992, cloned a rat peroxisome proliferator activated receptor (rPPAR) gene from a rat liver cDNA library. PPARs from mouse and rat share 97% homology in amino acid sequence

particularly well-conserved putative ligand-binding domain. Three members of the Xenopus nuclear hormone receptor superfamily have also been found to be structurally and functionally related to the mPPAR (Dreyer et al., 68 <u>Cell</u> 879-887, 1992).

Schmidt et al., 6 Molecular Endocrinology 1634-1641, 1992, cloned a steroid hormone receptor gene, NUC1, from a human osteosarcoma cell cDNA library. The homology between amino acid sequence of NUC1 and that of the mouse 10 PPAR is only 62%. Thus, although it is clear that NUC1 is a member of the PPAR receptor group, it remains to be determined whether NUC1 is the human homolog of the mouse PPAR or a new member of the PPAR family.

Sher et al., 32 <u>Biochemistry</u> 5598-5604, 1993, cloned 15 a human PPAR gene from a human liver cDNA library. This clone has 85% nucleotide sequence homology and 91% amino acid sequence homology with the mPPAR clone.

Summary of the Invention

25

30

The present invention relates to the cloning of a 20 human PPAR gene, hPPAR1. The protein encoded by hPPAR1 has 92% homology with the mouse PPAR. It is different from the human PPAR cloned by Sher et al., supra, at two locations in the amino acid sequence, i.e., amino acids 268 and 296.

The hPPAR1 clone can be used for the expression of large amounts of hPPAR1. This human PPAR clone is also compounds for improved for screening for the treatment pharmacological profiles hyperlipidemia with higher potency, efficacy, and fewer side effects. Specifically, the human PPAR clone can be used to screen for compounds active as primary endogenous inducers of the human PPAR. In addition, it is useful for establishing the tissue specific expression pattern of For example, a Northern blot can be used to human PPAR. reveal tissue specific expression of the gene to aid treatment of diseases such as atherosclerosis.

20

25

30

Thus, in a first aspect, the invention features a purified nucleic acid encoding a human PPAR with the nucleotide base sequence shown in Figure 1, and given as SEQ ID NO. 1. By purified nucleic acid is meant that the nucleic acid is separated from its natural environment and from other nucleic acids.

In a second aspect, the present invention features a vector containing the human PPAR gene. This vector may be used for multiplication of the human PPAR gene or expression of the human PPAR gene.

In a preferred embodiment, the vector is an expression vector. In one example, the expression vector is used to make a recombinant human PPAR nucleic acid, which can be used as a specific probe for DNA or RNA complementary to the human PPAR sequence. In another example, the expression vector is used to express human recombinant PPAR protein.

By vector is meant a plasmid or viral DNA molecule into which either a cDNA or a genomic DNA sequence is inserted.

By expression vector is meant a vector that directs protein synthesis from a promoter. In a preferred embodiment, either vector pBacPAK8 (Clontech) or vector pBacPAK9 (Clontech) is used to express the human PPAR in insect cells. In another preferred embodiment, vector pYES2 (Invitrogen) is used to express the human PPAR in yeast cells. In yet another preferred embodiment, pBKCMV (Stratagene) is used to express the human PPAR in mammalian cells.

By recombinant human PPAR is meant a non-naturally expressed human PPAR.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

Description of the Preferred Embodiments

Drawings

Figure 1 is the nucleotide and amino acid sequence of hPPAR1; and

Figure 2 is a comparison of the amino acid sequences of hPPAR1 and the mouse PPAR.

What follows is an example of the cloning of a human PPAR. Those of ordinary skill in the art will recognize that equivalent procedures can be readily used to isolate human PPAR from cDNA libraries or genomic libraries of other tissues than that exemplified below, namely the liver.

In general, the cloning of the human PPAR involved probing a human liver cell cDNA library with a labeled <u>EcoRI-BglII</u> fragment (nucleotides 450-909) of the rat PPAR (459 bases). The sequence of the probe is shown in Göttlicher et al. supra.

The recipes for buffers, mediums, and solutions in the following examples are given in J. Sambrook, E. F. 20 Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 2 Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.

Example 1: Cloning of a human PPAR

A human PPAR subtype, hPPAR1, was cloned from a human liver 5'-stretch cDNA library (Clontech #HL1115a) in lambda gt10 phages. C600-Hfl coli (Clontech) was grown overnight in LB broth supplemented with 0.2% maltose. A required amount of phage (corresponding to 2 million plaques) was mixed with 200 microliters of 10 mM MgCl₂/10 mM CaCl₂ and 1.5 milliliters of the overnight C600-Hfl coli and incubated at 37°C for 30 minutes. Soft LB agarose was added at 48°C, mixed and poured onto prewarmed 22x22 cm rectangular LB agar plates and incubated overnight at 37°C.

Plaque lifts were performed by chilling the plates at 4°C to harden the top agarose and prevent it from peeling,

30

marking a nylon or nitrocellulose filter on the surface contacting the plaques, laying the filter on the surface without trapped air bubbles, and leaving it for about a minute. A number of asymmetric dots were inserted with Indian ink with a syringe and needle so that the ink soaked into the agar. The sheets were then peeled gently away, and laid plaque side up on two sheets of Whattman 3MM soaked in denaturing solution, and left for about 2 minutes. The sheets were then peeled away and immersed in a standard neutralizing solution for 5 minutes, immersed in 5X SSC, air dried, and baked at 80°C under vacuum, for 2 hours.

The filters were prehybridized in 40% formamide, 5X SSC, 0.1 % SDS, 1X Denhardt, and 100 ng/ml denatured salmon sperm DNA at 37°-42°C for 1 hour. Labeled DNA probe (1 million cpm/ml) was denatured by heating at 100°C for 10 minutes, chilled, and then added to the prehybridization solution, and hybridized at 37°-42°C overnight. The filters were washed in 2X SSC and, 0.1% SDS at 42°C or higher temperature.

Positive plaques were identified and purified by rescreening two more times. The probe was labeled by nick-translation.

Phage stocks were made by isolating and removing a well separated plaque with the narrow end of an autoclaved Pasteur pipette, immersing it in 1 ml of standard SM buffer, and adding a drop of chloroform. This was left for a few hours at room temperature (20°C-24°C) or overnight at 4°C, vortexed, and centrifuged.

The cDNA insert was amplified by polymerase chain reactions (PCR). 20 microliters of phage stock was used in 100 microliters of standard PCR reaction buffer, by adding all components except Polymerase. This mixture was heated to 99°C, and Vent DNA polymerase (Biolabs) was added to start the PCR cycles. The PCR conditions were 95°C 1 minute, 72°C 1 minute, 72°C 3 minutes (1 minute per

kilobase) for 30 cycles, 72°C 5 minutes, and kept at 4°C till further utilized.

The applicant isolated a clone from the cDNA library using an EcoR1-BqlII fragment (nucleotides 450-909) of the 5 rat PPAR (459 bases) as a probe and the hybridization conditions provided above. This clone was purified and its sequence defined. This sequence is shown in Figure 1, and as SEQ. ID. NO. 1. Figure 2 is a comparison of mPPAR and hPPAR1 amino acid sequences with those amino acids 10 having identity between the two sequences enclosed in blocks.

Example 2: Northern blot analysis

A human multiple tissue Northern blot was purchased from Clontech. Screening was done following 15 manufacturer's protocol. The blot was prehybridized in 5X 10X Denhardt's solution, $100\mu g/ml$ of freshly denatured salmon sperm DNA, 50% formamide and 2% SDS for 3 hours at 42°C. DNA from the EcoR1 site at position 1025 of the coding region to the end of the cloned gene was used as probe (see Figure 1). This DNA was labeled by random priming, boiled and added at a concentration of 1 prehybridization of cpm/ml Hybridization was carried out for 13 hours at 42°C. blot was then washed in 2X SSC, 0.05% SDS at room 25 temperature followed by two washes in 0.1% SSC, 0.1% SDS at 50°C and exposed to X-ray film.

A specific band of about 10 kilobase was observed in all tissues except the brain. Maximal expression was observed in skeletal muscle, followed by heart, placenta, pancreas, liver, kidney, and lung. The expression of hPPAR1 gene is therefore observed in tissues known to express PPARs in other species.

SEQUENCE LISTING

				. SEQU	ENCE	PISIT	NG		
	(1)	GENER	AL I	NFORMATION:					
		(i) i	APPL:	ICANT:					·
5 .			(B) (C) (D) (E) (F)	NAME: LIC STREET: SAI CITY: SAI STATE: CO COUNTRY: POSTAL CO TELEPHONE TELEFAX:	9393 ' n Die alifo Unit DE (Z: : (6)	Fowne go rnia ed Sta IP): 19) 5:	Tentre ates of 92121 35-3900	ALS, INC Drive America	•
				LE OF INVEN			•	COME	
15		(11)	TIT	LE OF INVEN	TION:	PROL:	FERATOR VATED RE	t	
		(iii	וטא (MBER OF SEQU	UENCE	s: 3			
				PUTER READA					
		(10)							20-
20			(A) (B) (C)	MEDIUM TYPE COMPUTER: OPERATING	E: SYSTEI	M: II	Diskett compatib BM P.C. Jersion	DOS	MD
			(D)	SOFTWARE:		Word	Perfect	(Version	5.1)
25		(v)	CURR	ENT APPLICA	rion i	DATA:			•
			A	PPLICATION 1	NUMBE	R:	To Be A	ssigned	
		(vi)	PRI	OR APPLICAT	ION D	ATA:	•		-
30			(A) (B)	APPLICATION FILING DATE	N NUMI E:	BER:	08/141, 22-OCT-	500 1993	•
		(vi)	PRI	OR APPLICAT	ION DA	ATA:			
			(A) (B)	APPLICATION FILING DATE	N NUMI E:	BER:	08/143, 26-OCT-	215 1993	
35	(2)	INFO	RMAT:	ION FOR SEQ	ID NO):	1:		
•		(i) :	SEQUI	ENCE CHARAC	reris:	rics:			
40			(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNES TOPOLOGY:	ss:	1407 nucle singl	base pa eic acid le ar	irs	

(ii) SEQUENCE DESCRIPTION : SEQ ID NO: 1:

	ATG Met	GTG Val	GAC Asp	ACG Thr	GAA Glu 5	AGC Ser	CCA Pro	CTC Leu	TGC Cys	CCC Pro 10	CTC Leu	TCC Ser	CCA Pro	39
5	CTC Leu	GAG Glu 15	Ala	GIY	GAT Asp	CTA Leu	GAG Glu 20	AGC Ser	CCG Pro	TTA Leu	TCT Ser	GAA Glu 25	GAG Glu	78
10	TTC Phe	CTG Leu	CAA Gln	GAA Glu 30	ATG Met	GGA Gly	AAC Asn	ATC Ile	CAA Gln	GAG Glu 35	ATT	TCG Ser	CAA Gln	117
	TCC Ser 40	ATC	GGC	GAG Glu	GAT Asp	AGT Ser 45	TCT Ser	GGA Gly	AGC Ser	TTT Phe	GGC Gly 50	TTT Phe	ACG Thr	156
15	GAA Glu	TAC Tyr	CAG Gln 55	TAT Tyr	TTA	GGA Gly	AGC Ser	TGT Cys 60	CCT Pro	GGC Gly	TCA Ser	GAT Asp	GGC Gly 65	195
	TCG Ser	GTC Val	ATC Ile	ACG Thr	GAC Asp 70	ACG Thr	CTT Leu	TCA Ser	CCA Pro	GCT Ala 75	TCG Ser	AGC Ser	CCC Pro	234
20	TCC Ser	TCG Ser 80	GTG Val	ACT Thr	TAT Tyr	CCT Pro	GTG Val 85	GTC Val	CCC Pro	GGC Gly	AGC Ser	GTG Val 90	GAC Asp	273
25	GAG Glu	TCT Ser	CCC Pro	AGT Ser 95	GGA Gly	GCA Ala	TTG Leu	AAC Asn	ATC Ile 100	GAA Glu	TGT Cys	AGA Arg	ATC Ile	312
	TGC Cys 105	GGG Gly	GAC Asp	AAG Lys	GCC Ala	TCA Ser 110	GGC Gly	TAT Tyr	CAT His	TAC Tyr	GGA Gly 115	GTC Val	CAC His	351
30	GCG Ala	TGT Cys	GAA Glu 120	GGC Gly	TGC Cys	AAG Lys	GGC Gly	TTC Phe 125	TTT Phe	CGG Arg	CGA Arg	ACG Thr	ATT Ile 130	390
	CGA Arg	CTC Leu	AAG Lys	CTG Leu	GTG Val 135	TAT Tyr	GAC Asp	AAG Lys	TGC Cys	GAC Asp 140	CGC Arg	AGC Ser	TGC Cys	429
35	AAG Lys	ATC Ile 145	CAG Gln	AAA Lys	AAG Lys	AAC Asn	AGT Arg 150	TTC Asn	AAA Lys	TGC Cys	CAG Gln	TAT Tyr 155	TGT Cys	468
40	CGA Arg	TTT Phe	CAC His	AAG Lys 160	TGC Cys	CTT Leu	TCT Ser	GTC Val	GGG Gly 165	ATG Met	TCA Ser	CAC His	AAC Asn	507

		Ile			GGA Gly								GCA Ala	546
5					GAA Glu									585
					ACT Thr 200									624
10					GCC Ala									663
15	AAG Lys	GTC Val	ÀAA Lys	GCC Ala 225	CGG Arg	GTC Val	ATC Ile	CTC Leu	TCA Ser 230	GGA Gly	AAG Lys	GCC Ala	AGT Ser	702
					TTT Phe									741
20	TGT Cys	ATG Met	GCT Ala 250	GAG Glu	AAG Lys	ACG Thr	CTG Leu	GTG Val 255	GCC Ala	AAG Lys	CTG Leu	GTG Val	GCC Ala 260	780 ·
	AAT Asn	GGC Gly	ATC Ile	CAG Gln	AAC Asn 265	AAG Lys	GAG Glu	GCG Ala	GAG Glu	GTC Val 270	CGC Arg	ATC Ile	TTT Phe	819
25	CAC His	TCG Cys 275	TGC Cys	CAG Gln	TGC Cys	ACG Thr	TCA Ser 280	GTG Val	GTG Glu	ACC Thr	GTC Val	ACG Thr 285	GAG Glu	858
30					GCC Ala									897
					GAT Asp									936
35	GTT Val	TAT Tyr	GAG Glu 315	GCC Ala	ATA Ile	TTC Phe	GCC Ala	ATG Met 320	CTG Leu	TCT Ser	TCT Ser	GTG Val	ATG Met 325	975
					ATG Met 330									1014
40					TTC Phe									1053

								10						
													AAG Lys	1092
5			GCA Ala									Ser	CTT Leu	1131
			GCT Ala 380										GGC Gly 390	1170
10			AAC Asn										GGT Gly	1209
15	ATT Ile	GTA Val 405	CAT His	GTG Val	CTC Leu	AGA Arg	CTC Leu 410	CAC His	CTG Leu	CAG Gln	AGC Ser	AAC Asn 415	CAC	1248
	CCG Pro	GAC Asp	GAT Asp	ATC Ile 420	TTT Phe	CTC Leu	TTC Phe	CCA Pro	AAA Lys 425	CTT Leu	CTT Leu	CAA Gln	AAA Lys	1287
20			GAC Asp										CAG Gln	1326
			CAG Gln 445										GCG Ala 455	1365
25			CCG Pro										TAC Tyr	1404
•	TGA				-									1407
	(2)	INFC	RMAI	NOI	FOR	SEQ	ID N	· •	2:					
30		(i)	SEQ	UENC	E CH	ARAC	TERI	STIC	s:					

(A) LENGTH:(B) TYPE:(D) TOPOLOGY: 468 amino acids amino acid

linear

35 (ii) SEQUENCE DESCRIPTION: SEQ ID NO: 2

Met Val Asp Thr Glu Ser Pro Leu Cys Pro Leu Ser Pro 5

Leu Glu Ala Gly Asp Leu Glu Ser Pro Leu Ser Glu Glu

	Phe	Leu	Gln	Glu 30	Met	Gly	Asn	Ile	Gln 35	Glu	Ile	Ser	Glr
	Ser 40	Ile	Gly	Glu	Asp	Ser 45	Ser	Gly	Ser	Phe	Gly 50	Phe	Thr
5	Glu	Tyr	Gln 55	Tyr	Leu	Gly	Ser	Cys 60	Pro	Gly	Ser	Asp	Gly 65
	Ser	Val	Ile	Thr	Asp 70	Thr	Leu	Ser	Pro	Ala 75	Ser	Ser	Pro
10	Ser	Ser 80	Val	Thr	Tyr	Pro	Val 85	Val	Pro	Gly	Ser	Val 90	Asp
	Glu	Ser	Pro	Ser 95		Ala	Leu	Asn	Ile 100	Glu	Cys	Arg	Ile
	Cys 105	Gly	Asp	Lys	Ala	Ser 110	Gly	Tyr	His	Tyr	Gly 115	Val	His
15	Ala	Cys	Glu 120	Gly	Cys	Lys	Gly	Phe 125	Phe	Arg	Arg	Thr	Ile 130
	Arg	Leu	Lys	Leu	Val 135	Tyr	Asp	Lys	Cys	Asp 140	Arg	Ser	Cys
20	Lys	Ile 145	Gln	Lys	Lys	Asn	Arg 150	Asn	Lys	Cys	Gln	Tyr 155	Cys
	Arg	Phe	His	Lys 160	Cys	Leu	Ser	Val	Gly 165	Met	Ser	His	Asn
:	Ala 170	Ile	Arg	Phe	Gly	Arg 175	Met	Pro	Arg	Ser	Glu 180	Lys	Ala
25	Lys	Leu	Lys 185	Ala	Glu	Ile	Leu	Thr 190	Cys	Glu	His	Asp	Ile 195
	Glu	Asp	Ser	Glu	Thr 200	Ala	Asp	Leu	Lys	Ser 205	Leu	Ala	Lys
30	Arg	Ile 210	Tyr	Glu	Ala	Tyr	Leu 215	Lys	Asn	Phe	Asn	Met 220	Asn
	Lys	Val	Lys	Ala 225	Arg	Val	Ile	Leu	Ser 230	Gly	Lys	Ala	Ser
	Asn 235	Asn	Pro	Pro	Phe	Val 240	Ile	His	Asp	Met	Glu 245	Thr	Leu
35	Cys	Met	Ala 250	Glu	Lys	Thr	Leu	Val 255	Ala	Lys	Leu	Val	Ala 260

Asn Gly Ile Gln Asn Lys Glu Ala Glu Val Arg Ile Phe His Cys Cys Gln Cys Thr Ser Val Glu Thr Val Thr Glu 280 Leu Thr Glu Phe Ala Lys Ala Ile Pro Gly Phe Ala Asn Leu Asp Leu Asn Asp Gln Val Thr Leu Leu Lys Tyr Gly 305 Val Tyr Glu Ala Ile Phe Ala Met Leu Ser Ser Val Met 10 315 320 Asn Lys Asp Gly Met Leu Val Ala Tyr Gly Asn Gly Phe Ile Thr Arg Glu Phe Leu Lys Ser Leu Arg Lys Pro Phe 345 Cys Asp Ile Met Glu Pro Lys Phe Asp Phe Ala Met Lys Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp Ile Ser Leu 370 Phe Val Ala Ala Ile Ile Cys Cys Gly Asp Arg Pro Gly 20 Leu Leu Asn Val Gly His Ile Glu Lys Met Gln Glu Gly 395 Ile Val His Val Leu Arg Leu His Leu Gln Ser Asn His 405 Pro Asp Asp Ile Phe Leu Phe Pro Lys Leu Leu Gln Lys 420 Met Ala Asp Leu Arg Gln Leu Val Thr Glu His Ala Gln 435 Leu Val Gln Ile Ile Lys Lys Thr Glu Ser Asp Ala Ala 30 Leu His Pro Leu Leu Gln Glu Ile Tyr Arg Asp Met Tyr 460 465 .

13

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:

468 amino acids

(B) TYPE:

amino acid

(D) TOPOLOGY:

linear

(ii) SEQUENCE DESCRIPTION : SEQ ID NO: 3:

Met Val Asp Thr Glu Ser Pro Ile Cys Pro Leu Ser Pro 5

Leu Glu Ala Asp Asp Leu Glu Ser Pro Leu Ser Glu Glu
10 15 20 25

Phe Leu Gln Glu Met Gly Asn Ile Gln Glu Ile Ser Gln 30 35

Ser Ile Gly Glu Glu Ser Ser Gly Ser Phe Gly Phe Ala 40 45 50

15 Asp Tyr Gln Tyr Leu Gly Ser Cys Pro Gly Ser Glu Gly
55 60 65

Ser Val Ile Thr Asp Thr Leu Ser Pro Arg Ser Ser Pro 70 75

Ser Ser Val Ser Cys Pro Val Ile Pro Ala Ser Thr Asp 20 80 85 90

Glu Ser Pro Gly Ser Ala Leu Asn Ile Glu Cys Arg Ile
95 100

Cys Gly Asp Lys Ala Ser Gly Tyr His Tyr Gly Val His 105 110 115

25 Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile 120 125 130

Arg Leu Lys Leu Val Tyr Asp Lys Cys Asp Arg Ser Cys
135 140

Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys 30 145 150 155

Arg Phe His Lys Cys Leu Ser Val Gly Met Ser His Asn 160 165

Ala Ile Arg Phe Gly Arg Met Pro Arg Ser Glu Lys Ala 35 170 175 180

Lys Leu Lys Ala Glu Ile Leu Thr Cys Glu His Asp Leu 185 190 195

	Lys	Asp	Ser	Glu	Thr 200	Ala	Asp	Leu	Lys	Ser 205	Leu	Gly	Lys
	Arg	Ile 210	His	Glu	Ala	Tyr	Leu 215	Lys	Asn	Phe	Asn	Met 220	Asn
5	Lys	Val	Lys	Ala 225	Arg	Val	Ile	Leu	Ala 230	Gly	Lys	Thr	Ser
	Asn 235	Asn	Pro	Pro	Phe	Val 240	Ile	His	Asp	Met	Glu 245	Thr	Leu
10	Cys	Met	Ala 250	Glu	Lys	Thr	Leu	Val 255	Ala	Lys	Met	Val	Ala 260
	Asn	Gly	Val	Glu	Asp 265	Lys	Glu	Ala	Glu	Val 270	Arg	Phe	Phe
	His	Cys 275	Cys	Gln	Cys	Met	Ser 280	Val	Glu	Thr	Val	Thr 285	Glu
15	Leu	Thr	Glu	Phe 290	Ala	Lys	Ala	Ile	Pro 295	Gly	Phe	Ala	Asn
	Leu 300	Asp	Leu	Asn	Asp	Gln 305	Val	Thr	Leu	Leu	Lys 310	Tyr	Gly
20	Val	Tyr	Glu 315	Ala	Ile	Phe	Thr	Met 320	Leu	Ser	Ser	Leu	Met 325
	Asn	Lys	Asp	Gly	Met 330	Leu	Ile	Ala	Tyr	Gly 335	Asn	Gly	Phe
	Ile	Thr 340	Arg	Glu	Phe	Leu	Lys 345	Asn	Leu	Arg	Lys	Pro 350	Phe
25	Cys	Asp	Ile	Met 355	Glu	Pro	Lys	Phe	Asp 360	Phe	Ala	Met	Lys
	Phe 365	Asn	Ala	Leu	Glu	Leu 370	Asp	Asp	Ser	Asp	Ile 375	Ser	Leu
30	Phe	Val	Ala 380	Ala	Ile	Ile	Cys	Cys 385	Gly	Asp	Arg	Pro	Gly 390
	Leu	Leu	Asn	Ile	Gly 395	Tyr	Ile	Glu	Lys	Leu 400	Gln	Glu	Gly
	Ile	Val 405	His	Val	Leu	Lys	Leu 410	His	Leu	Gln	Ser	Asn 415	
. 35	Pro	Asp	Asp	Thr 420	Phe	Leu	Phe	Pro	Lys 425		Leu	Gln	Lys

Met Val Asp Leu Arg Gln Leu Val Thr Glu His Ala Gln 430 435 440

Leu Val Gln Val Ile Lys Lys Thr Glu Ser Asp Ala Ala 445 450 450

5 Leu His Pro Leu Leu Gln Glu Ile Tyr Arg Asp Met Tyr 460 465 468 WO 95/11974

16

What is claimed is:

- 1. Purified nucleic acid comprising the nucleotide sequence shown in SEQ ID NO. 1.
- A vector comprising said nucleic acid of claim
 1.
 - 3. Recombinant PPAR expressed from said nucleic acid of claim 1.

1											•			
100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1407
10 20 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50			GAATGTAGAA TCTGCGGGGA CAAGGCCTCA GGCTATCATT ACGGAGTCCA CGCGTGTGAA GGCTGCAAGG GCTTCTTTCG GCGAACGATT CGACTCAAGC E C R I C G D K A S G Y H Y G V H A C E G C K G F F R R T I R L K L			GCAGATCTCA AATCTCTGGC CAAGAGAATC TACGAGGCCT ACTTGAAGAA CTTCAACATG AACAAGGTCA AAGCCCGGGT CATCCTCTCA GGAAAGGCCA	ATACATGATA TGGAGACACT GTGTGGCC GAGAAGACGC TGGTGGCCAA GCTGGTGGCC AATGGCATCC AGAACAAGGA I H D H E T L C H A E K T L V A K L V A N G I Q N K E	TITIC ACTGCTGCCA GTGCAGGTCA GTGGAGACCG TCACGGAGTT CCCAAGGCCA TCCCAGGCTT CGCAAACTTG F H C C Q C T S V E T V T E L T E F A K A I P G F A N L	GACCIGAACS ATCAAGIGAC ATIGCIAAAA TACGGAGITI AIGAGGCCAT ATICGCCAIG CIGICTICIG IGAIGAACAA AGACGGGAIG CIGGIAGCGI D L N D O V T L L K Y G V Y E A I F A M L S S V M N K D G M L V A Y	ATGGAAATGG GTTTATAACT CGTGAATTCC TAAAAAGCCT AAGGAAACCG TTCTGTGATA TCATGGAACC CAAGTTTGAT TTTGCCATGA AGTTCAATGC O	ACTGGAACTG GATGACAGTG ATATCTCCCT TTTTGTGGCT GCTATCATTT GCTGTGGAGA TCGTCCTGGC CTTCTAAACG TAGGACACAT TGAAAAAATG L E L D D S D I S L F V A A I I C C G D R P G L L N V G H I E K M	CAGGAGGGTA TTGTACATGT GCTCAGACTC CACCTGCAGA GCAACCACC GGACGATATC TTTCTCTTCC CAAAACTTCT TCAAAAAATG GCAGACCTCC Q E G I V H V L R L H L Q S N H P D D I F L F P K L L Q K M A D L R	GGCAGCTGGT GACGGAGCAT GCGCAGCTGG TGCAGATCAT CAAGAAGACG GAGTCGGATG CTGCGCTGCA CCCGCTACTG CAGGAGATCT ACAGGGACAT Q L V T E H A Q L V Q I I K K T E S D A A L H P L L Q E I Y R D M	FIG. 1
10 90 1234567890 17 CA CGGAAAGCCC A	AT TTCGCAATCC AT	AC ACGCTTTCAC C	AA TCTGĆGGGA C I C G D	GA CAAGTGCGAC C	SCG ATTCGTTTTG G	TCA AATCTCTGGC (TCC ACCTTTTGTC	GGCGGAGGTC CGCATCTTTC. A E V R I F H	ACG ATCAAGTGAC	VIGG GTTTATAACT G F I T	CTG GATGACAGTG	SGTA TTGTACATGT	1GGT GACGGAGCAT V T E H	•
123456789 ATGGTGGAG	TCCAAGAG	CATCACGG I T D	GAATGTAG E C R	TGGTGTAT V	ACACAACE H N A	GCAGATCI A D L	GTAACAA' N N	GGCGGAG	GACCTGA D L N	ATGGAAA G N	ACTGGAA L E	CAGGAGG Q E G	GGCAGCT Q L	GTACTGA Y X
٠				'R	CTIFIÉ 1	D SHE SA/E	et (rl P	JLE 91))					
	ISAVEP													

$\frac{100}{100}$	200	300	400	468 469						
NVOTESPICP LSPLEADOLE SPLSEEFLOE MGNIQEISQS IGEESSGSFG FADYQYLGSC PGSESSVITO TLSPRSSPSS VSCPVIPART DESPESALNI MVOTESPICP LSPLEAGOLE SPLSEEFLOE MGNIQEISQS IGEOSSGSFG FITEYQYLGSC PGSCGSVITO TLSPASSPSS VFYPWAPGSV DESPSGALNI	ECRICGDKAS GYHYGVHACE GCKGFFRRTI RKKLVYDKCD RSCKIQKKNR NKCQYCRFHK CLSVGMSHNA IRFGRMPRSE KAKLKAEILT CEHDLKDSET ECRICGDKAS GYHYGVHACE GCKGFFRRTI RKKLVYDKCD RSCKIQKKNR NKCQYCRFHK CLSVGMSHNA IRFGRMPRSE KAKLKAEILT CEHDIEDSET	ADLKSLGKRI HEAYLKNFNM NKVK ADLKSLAKRI YEAYLKNFNM NKVK	DLNDQVTLLK YGVYEAIHIM LSSIMNKDGM LIAYGNGFIT REFLKMLRKP FCDIMEPKFD FAMKFNALEL DDSDISLFVA AIICCGDRPG LLNIGMIEUK F DLNDQVTLLK YGVYEAIHAM LSSIMNKDGM LVAYGNGFIT REFLKSLRKP FCDIMEPKFD FAMKFNALEL DDSDISLFVA AIICCGDRPG LLNIGHIEUM	GEGIVHVLKL HLOSNHPDDI FLFPKLLOKM VDLRQLVTEH AQLVOVIKKT ESDAALHPLL QEIYROMY- QEGIVHVLRL HLOSNHPDDI FLFPKLLOKM ADLRQLVTEH AQLVQIIKKT ESDAALHPLL QEIYROMYK						
ISA/EP										

FIG. 2