PROBABILISTIC METHODS IN COMBINATORICS MIT 18.226 (FALL 2024) PROBLEM SET

https://sammy-luo.github.io/18-226/

A. Introduction and linearity of expectations

- A1. Verify the following asymptotic calculations used in Ramsey number lower bounds:
 - (a) For each k, the largest n satisfying $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ has $n = \left(\frac{1}{e\sqrt{2}} + o(1)\right) k 2^{k/2}$.
 - (b) For each k, the maximum value of $n \binom{n}{k} 2^{1 \binom{k}{2}}$ as n ranges over positive integers is $\left(\frac{1}{e} + o(1)\right) k 2^{k/2}$.
 - (c) For each k, the largest n satisfying $e\left(\binom{k}{2}\binom{n}{k-2}+1\right)2^{1-\binom{k}{2}}<1$ satisfies $n=\left(\frac{\sqrt{2}}{e}+o(1)\right)k2^{k/2}$.
- A2. Prove that, if there is a real $p \in [0, 1]$ such that

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{t} (1-p)^{\binom{t}{2}} < 1$$

then the Ramsey number R(k,t) satisfies R(k,t) > n. Using this show that

$$R(4,t) \ge c \left(\frac{t}{\log t}\right)^{3/2}$$

for some constant c > 0.

- A3. Let G be a graph with n vertices and m edges. Prove that K_n can be written as a union of $O(n^2(\log n)/m)$ isomorphic copies of G (not necessarily edge-disjoint).
 - A4. Prove that there is an absolute constant C > 0 so that for every $n \times n$ matrix with distinct real entries, one can permute its rows so that no column in the permuted matrix contains an increasing subsequence of length at least $C\sqrt{n}$. (A subsequence does not need to be selected from consecutive terms. For example, (1,2,3) is an increasing subsequence of (1,5,2,4,3).)
 - A5. Generalization of Sperner's theorem. Let \mathcal{F} be a collection of subset of [n] that does not contain k+1 elements forming a chain: $A_1 \subsetneq \cdots \subsetneq A_{k+1}$. Prove that \mathcal{F} is no larger than taking the union of the k levels of the Boolean lattice closest to the middle layer.
 - A6. Let G be a graph on $n \ge 10$ vertices. Suppose that adding any new edge to G would create a new clique on 10 vertices. Prove that G has at least 8n-36 edges.

 Hint in white:
 - A7. Let $k \ge 4$ and H a k-uniform hypergraph with at most $4^{k-1}/3^k$ edges. Prove that there is a coloring of the vertices of H by four colors so that in every edge all four colors are represented.
- A8. Given a set \mathcal{F} of subsets of [n] and $A \subseteq [n]$, write $\mathcal{F}|_A := \{S \cap A : S \in \mathcal{F}\}$ (its projection onto A). Prove that for every n and k, there exists a set \mathcal{F} of subsets of [n] with $|\mathcal{F}| = O(k2^k \log n)$ such that for every k-element subset A of [n], $\mathcal{F}|_A$ contains all 2^k subsets of A.
- A9. Let A_1, \ldots, A_m be r-element sets and B_1, \ldots, B_m be s-element sets. Suppose $A_i \cap B_i = \emptyset$ for each i, and for each $i \neq j$, either $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$. Prove that $m \leq (r+s)^{r+s}/(r^r s^s)$.

ps1∗

- A10. Show that in every non-2-colorable *n*-uniform hypergraph, one can find at least $\frac{n}{2}\binom{2n-1}{n}$ unordered pairs of edges with each pair intersecting in exactly one vertex.
- A11. Let A be a measurable subset of the unit sphere in \mathbb{R}^3 (centered at the origin) containing no pair of orthogonal points.

ps1

(a) Prove that A occupies at most 1/3 of the sphere in terms of surface area.

ps1*

(b) Prove an upper bound smaller than 1/3 (give your best bound).

ps1∗

- A12. Prove that every set of 10 points in the plane can be covered by a union of disjoint unit disks.
- A13. Let $\mathbf{r} = (r_1, \dots, r_k)$ be a vector of nonzero integers whose sum is nonzero. Prove that there exists a real c > 0 (depending on \mathbf{r} only) such that the following holds: for every finite set A of nonzero reals, there exists a subset $B \subseteq A$ with $|B| \ge c|A|$ such that there do not exist $b_1, \dots, b_k \in B$ with $r_1b_1 + \dots + r_kb_k = 0$.

ps1

A14. Prove that every set A of n nonzero integers contains two disjoint subsets B_1 and B_2 , such that both B_1 and B_2 are sum-free, and $|B_1| + |B_2| > 2n/3$.

ps1

A15. Let G be an n-vertex graph with pn^2 edges, with $n \ge 10$ and $p \ge 10/n$. Prove that G contains a pair of vertex-disjoint and isomorphic subgraphs (not necessarily induced) each with at least cp^2n^2 edges, where c > 0 is a constant.

ps1∗

A16. Prove that for every positive integer r, there exists an integer K such that the following holds. Let S be a set of rk points evenly spaced on a circle. If we partition $S = S_1 \cup \cdots \cup S_r$ so that $|S_i| = k$ for each i, then, provided $k \geq K$, there exist r congruent triangles where the vertices of the i-th triangle lie in S_i , for each $1 \leq i \leq r$.

ps1∗

A17. Prove that $[n]^d$ cannot be partitioned into fewer than 2^d sets each of the form $A_1 \times \cdots \times A_d$ where $A_i \subseteq [n]$.

B. ALTERATION METHOD

B1. Using the alteration method, prove the Ramsey number bound

$$R(4,k) \ge c(k/\log k)^2$$

for some constant c > 0.

- B2. Prove that every 3-uniform hypergraph with n vertices and $m \ge n$ edges contains an independent set (i.e., a set of vertices containing no edges) of size at least $cn^{3/2}/\sqrt{m}$, where c > 0 is a constant.
- B3. Prove that every k-uniform hypergraph with n vertices and m edges has a transversal (i.e., a set of vertices intersecting every edge) of size at most $n(\log k)/k + m/k$.

ps2

B4. Zarankiewicz problem. Prove that for every positive integers $n \ge k \ge 2$, there exists an $n \times n$ matrix with $\{0,1\}$ entries, with at least $\frac{1}{2}n^{2-2/(k+1)}$ 1's, such that there is no $k \times k$ submatrix consisting of all 1's.

ps2

B5. Fix k. Prove that there exists a constant $c_k > 1$ so that for every sufficiently large $n > n_0(k)$, there exists a collection \mathcal{F} of at least c_k^n subsets of [n] such that for every k distinct $F_1, \ldots, F_k \in \mathcal{F}$, all 2^k intersections $\bigcap_{i=1}^k G_i$ are nonempty, where each G_i is either F_i or $[n] \setminus F_i$.

B6. Acute sets in \mathbb{R}^n . Prove that, for some constant c > 0, for every n, there exists a family of at least $c(2/\sqrt{3})^n$ subsets of [n] containing no three distinct members A, B, C satisfying $A \cap B \subseteq C \subseteq A \cup B$.

Deduce that there exists a set of at least $c(2/\sqrt{3})^n$ points in \mathbb{R}^n so that all angles determined by three points from the set are acute.

Remark. The current best lower and upper bounds for the maximum size of an "acute set" in \mathbb{R}^n (i.e., spanning only acute angles) are $2^{n-1} + 1$ and $2^n - 1$ respectively.

ps2*

- B7. Covering complements of sparse graphs by cliques
 - (a) Prove that every graph with n vertices and minimum degree n-d can be written as a union of $O(d^2 \log n)$ cliques.
 - (b) Prove that every bipartite graph with n vertices on each side of the vertex bipartition and minimum degree n-d can be written as a union of $O(d \log n)$ complete bipartite graphs (assume $d \geq 1$).

ps2∗

B8. Let G = (V, E) be a graph with n vertices and minimum degree $\delta \geq 2$. Prove that there exists $A \subseteq V$ with $|A| = O(n(\log \delta)/\delta)$ so that every vertex in $V \setminus A$ contains at least one neighbor in A and at least one neighbor not in A.

ps2∗

B9. Prove that every graph G without isolated vertices has an induced subgraph H on at least $\alpha(G)/2$ vertices such that all vertices of H have odd degree. Here $\alpha(G)$ is the size of the largest independent set in G.

C. SECOND MOMENT METHOD

ps2

- C1. Threshold for k-APs. Let $[n]_p$ denote the random subset of $\{1, \ldots, n\}$ where every element is included with probability p independently. For each fixed integer $k \geq 3$, determine the threshold for $[n]_p$ to contain a k-term arithmetic progression.
- C2. Show that, for each fixed positive integer k, there is a sequence p_n such that

 $\mathbb{P}(G(n, p_n) \text{ has a connected component with exactly } k \text{ vertices}) \to 1 \quad \text{ as } n \to \infty.$

Hint in white:

ps2

- C3. Poisson limit. Let X be the number of triangles in G(n, c/n) for some fixed c > 0.
 - (a) For every nonnegative integer k, determine the limit of $\mathbb{E}\binom{X}{k}$ as $n \to \infty$.
 - (b) Let $Y \sim \text{Binomial}(n, \lambda/n)$ for some fixed $\lambda > 0$. For every nonnegative integer k, determine the limit of $\mathbb{E}\binom{Y}{k}$ as $n \to \infty$, and show that it agrees with the limit in (a) for some $\lambda = \lambda(c)$.

We know that Y converges to the Poisson distribution with mean λ . Also, the Poisson distribution is determined by its moments.

(c) Compute, for fixed every nonnegative integer t, the limit of $\mathbb{P}(X = t)$ as $n \to \infty$. (In particular, this gives the limit probability that G(n, c/n) contains a triangle, i.e., $\lim_{n\to\infty} \mathbb{P}(X > 0)$. This limit increases from 0 to 1 continuously when c ranges from 0 to $+\infty$, thereby showing that the property of containing a triangle has a coarse threshold.)

ps2

C4. Central limit theorem for triangle counts. Find a real (non-random) sequence a_n so that, letting X be the number of triangles and Y be the number of edges in the random graph

G(n, 1/2), one has

$$Var(X - a_n Y) = o(Var X).$$

Deduce that X is asymptotically normal, that is, $(X - \mathbb{E}X)/\sqrt{\operatorname{Var}X}$ converges to the normal distribution.

(You can solve for the minimizing a_n directly similar to ordinary least squares linear regression, or first write the edge indicator variables as $X_{ij} = (1 + Y_{ij})/2$ and then expand. The latter approach likely yields a cleaner computation.)

- C5. Isolated vertices. Let $p_n = (\log n + c_n)/n$.
 - (a) Show that, as $n \to \infty$,

$$\mathbb{P}(G(n, p_n) \text{ has no isolated vertices}) \to \begin{cases} 0 & \text{if } c_n \to -\infty, \\ 1 & \text{if } c_n \to \infty. \end{cases}$$

- (b) Suppose $c_n \to c \in \mathbb{R}$, compute, with proof, the limit of LHS above as $n \to \infty$, by following the approach in C3.
- ps2* C6. Is the threshold for the bipartiteness of a random graph coarse or sharp? (You are not allowed to use any theorems that we did not prove in class/notes.)
- ps2 C7. Triangle packing. Prove that, with probability approaching 1 as $n \to \infty$, $G(n, n^{-1/2})$ has at least $cn^{3/2}$ edge-disjoint triangles, where c > 0 is some constant.

Hint in white:

ps3

- C8. Nearly perfect triangle factor. Prove that, with probability approaching 1 as $n \to \infty$,
 - (a) $G(n, n^{-2/3})$ has at least n/100 vertex-disjoint triangles.
 - (b) Simple nibble. $G(n, Cn^{-2/3})$ has at least 0.33n vertex-disjoint triangles, for some constant C.

Hint in white:

C9. Permuted correlation. Recall that the correlation of two non-constant random variables X and Y is defined to be $\operatorname{corr}(X,Y) := \operatorname{Cov}[X,Y]/\sqrt{(\operatorname{Var} X)(\operatorname{Var} Y)}$.

Let $f, g \in [n] \to \mathbb{R}$ be two non-constant functions. Prove that there exist permutations π and τ of [n] such that, with Z being a uniform random element of [n],

$$\operatorname{corr}(f(\pi(Z)), g(Z)) - \operatorname{corr}(f(\tau(Z)), g(Z)) \ge \frac{2}{\sqrt{n-1}}.$$

Furthermore, show that equality can be achieved for even n.

Hint in white:

- ps3 C10. Let $v_1 = (x_1, y_1), \ldots, v_n = (x_n, y_n) \in \mathbb{Z}^2$ with $|x_i|, |y_i| \leq 2^{n/2}/(100\sqrt{n})$ for all $i \in [n]$. Show that there are two disjoint sets $I, J \subseteq [n]$, not both empty, such that $\sum_{i \in I} v_i = \sum_{j \in J} v_j$.
- ps3* C11. Prove that there is an absolute constant C > 0 so that the following holds. For every prime p and every $A \subseteq \mathbb{Z}/p\mathbb{Z}$ with |A| = k, there exists an integer x so that $\{xa : a \in A\}$ intersects every interval of length at least Cp/\sqrt{k} in $\mathbb{Z}/p\mathbb{Z}$.
- ps3* C12. Prove that there is a constant c > 0 so that every hyperplane containing the origin in \mathbb{R}^n intersects at least c-fraction of the 2^n closed unit balls centered at $\{-1,1\}^n$.

D. CHERNOFF BOUND

- D1. Prove that with probability 1 o(1) as $n \to \infty$, every bipartite subgraph of G(n, 1/2) has at most $n^2/8 + 10n^{3/2}$ edges.
- D2. Unbalancing lights. Prove that there is a constant C so that for every positive integer n, one can find an $n \times n$ matrix A with $\{-1,1\}$ entries, so that for all vectors $x,y \in \{-1,1\}^n$, $|y^{\mathsf{T}}Ax| \leq Cn^{3/2}$.
- D3. Prove that there exists a constant c > 1 such that for every n, there are at least c^n points in \mathbb{R}^n so that every triple of points form a triangle whose angles are all less than 61°.
 - it succeeds over the random input with probability approaching 1 as $n \to \infty$. Input: some unlabeled n-vertex G created as the union of G(n, 1/2) and a clique on

D4. Planted clique. Give a deterministic polynomial-time algorithm for the following task so that

Output: a clique in G of size t.

 $t = |100\sqrt{n\log n}|$ vertices.

ps3

ps3∗

ps3

- D5. Weighing coins. You are given n coins, each with one of two known weights, but otherwise indistinguishable. You can use a scale that outputs the combined weight of any subset of the coins. You must decide in advance which subsets $S_1, \ldots, S_k \subseteq [n]$ of the coins to weigh. We wish to determine the minimum number of weighings needed to identify the weight of every coin. (Below, X and Y represent two possibilities for which coins are of the first weight.)
- (a) Prove that if $k \leq 1.99n/\log_2 n$ and n is sufficiently large, then for every $S_1, \ldots, S_k \subseteq [n]$, there are two distinct subsets $X, Y \subseteq [n]$ such that $|X \cap S_i| = |Y \cap S_i|$ for all $i \in [k]$. (There is a neat solution to part (a) using information theory, though here you are explicitly asked to solve it using the Chernoff bound.)
 - (b) Show that there is some constant C such that (a) is false if 1.99 is replaced by C. (What is the best C you can get?)

E. Lovász local lemma

- E1. Show that it is possible to color the edges of K_n with at most $3\sqrt{n}$ colors so that there are no monochromatic triangles.
 - E2. Prove that it is possible to color the vertices of every k-uniform k-regular hypergraph using at most $k/\log k$ colors so that every color appears at most $O(\log k)$ times on each edge.
- E3. Hitting thin rectangles. Prove that there is a constant C > 0 so that for every sufficiently small $\epsilon > 0$, one can choose exactly one point inside each grid square $[n, n+1) \times [m, m+1) \subset \mathbb{R}^2$, $m, n \in \mathbb{Z}$, so that every rectangle of dimensions ϵ by $(C/\epsilon) \log(1/\epsilon)$ in the plane (not necessarily axis-aligned) contains at least one chosen point.