Units on the horizontal axis

variable: income units: thousands of dollars

Units on the vertical axis

units of height: percent per thousand dollars

The data

the distribution table, along with the heights of the bars

income		height
(thousands of dollars)	percent	(% per thousand dollars)
0 - 10	20	20/10 = 2.00
10 - 25	28	28/15 = 1.87
25 - 50	27	27/25 = 1.08
50 - 100	18	18/50 = 0.36
100 - 150	7	7/50 = 0.14

• The 10-25 bar has more people than the 0-10 bar (28% versus 20%).

 \bullet The 10-25 bar has more people than the 0-10 bar (28% versus 20%). Its **area** is greater.

- The 10-25 bar has more people than the 0-10 bar (28% versus 20%). Its **area** is greater.
- But it is shorter than the 0-10 bar.

- The 10-25 bar has more people than the 0-10 bar (28% versus 20%). Its **area** is greater.
- But it is shorter than the 0-10 bar.

So heights do not measure "percent of people." Areas measure that.

- The 10-25 bar has more people than the 0-10 bar (28% versus 20%). Its **area** is greater.
- But it is shorter than the 0-10 bar.

So heights do not measure "percent of people." Areas measure that.

• Heights measure "percent of people per unit on the horizontal axis"

- The 10-25 bar has more people than the 0-10 bar (28% versus 20%). Its **area** is greater.
- But it is shorter than the 0-10 bar.

So heights do not measure "percent of people." Areas measure that.

• Heights measure "percent of people per unit on the horizontal axis"

That's **density**, or crowdedness in the interval.

- The 10-25 bar has more people than the 0-10 bar (28% versus 20%). Its **area** is greater.
- But it is shorter than the 0-10 bar.

So heights do not measure "percent of people." Areas measure that.

• Heights measure "percent of people per unit on the horizontal axis"

That's **density**, or crowdedness in the interval.

The 10-25 bar has more people than the 0-10 bar, but it is less crowded.

Height and crowdedness

units: percent per thousand dollars

income		height
(thousands of dollars)	percent	(% per thousand dollars)
0 – 10	20	20/10 = 2.00
10 - 25	28	28/15 = 1.87

income (thousands of dollars)	percent	height (% per thousand dollars)
0 – 10	20	20/10 = 2.00
10 - 25	28	28/15 = 1.87

Assuming that the people are uniformly distributed within the bars,

income (thousands of dollars)	percent	height (% per thousand dollars)
0 – 10	20	20/10 = 2.00
10 - 25	28	28/15 = 1.87

Assuming that the people are uniformly distributed within the bars,

 \bullet about 2% have incomes in the range \$5,000 to \$6,000

income (thousands of dollars)	percent	height (% per thousand dollars)
0 – 10	20	20/10 = 2.00
10 - 25	28	28/15 = 1.87

Assuming that the people are uniformly distributed within the bars,

- about 2% have incomes in the range \$5,000 to \$6,000
- about 4% have incomes in the range \$5,000 to \$7,000

income (thousands of dollars)	percent	height (% per thousand dollars)
0 – 10	20	20/10 = 2.00
10 - 25	28	28/15 = 1.87

Assuming that the people are uniformly distributed within the bars,

- about 2% have incomes in the range \$5,000 to \$6,000
- about 4% have incomes in the range \$5,000 to \$7,000
- ullet about 1.87% have incomes in the range \$14,000 to \$15,000

income (thousands of dollars)	percent	height (% per thousand dollars)
0 – 10	20	20/10 = 2.00
10 - 25	28	28/15 = 1.87

Assuming that the people are uniformly distributed within the bars,

- about 2% have incomes in the range \$5,000 to \$6,000
- about 4% have incomes in the range \$5,000 to \$7,000
- about 1.87% have incomes in the range \$14,000 to \$15,000

Under the assumption of uniformity within bars,

% in a subinterval = height of bar \times width of subinterval