Математические основы криптологии

Автор курса: Применко Эдуард Андреевич Составитель: Смирнов Дмитрий Константинович

Версия от 23:04, 2 марта 2022 г.

Оглавление

1	Дом	пашние задания	1
	1.1	Элементы теории групп	1
	1.2		5
2	Бил	еты	5
	2.1	Делимость в кольце целых чисел. НОД, алгоритм Евклида. Критерий взаимной простоты двух чисел	5
	2.2	Сравнения и их свойства. Китайская теорема об остатках. Кольцо вычетов. Функция Эйлера и её свойства	6
	2.3	Теоремы Эйлера и Ферма. Критерий обратимости, алго-	
	2.4	ритм вычисления обратного элемента	6
	2.5	Теорема о цикличности мультипликативной группы по примарному модулю	6
	2.6	Решение сравнений первой степени	6
	2.7	Сравнения второй степени. Символ Лежандра и его свой-	
	2.8	ства	6
	2.9	му модулю	6
		ния второй степени	6
	2.10	Алгоритмы решения сравнений второй степени по примарному и составному модулю.	6
	2.11	Группа, порядок элемента. Теорема Лагранжа	6
		Нормальный делитель, фактор – группа, первая теорема о гомоморфизме	7
	2.13	Кольцо многочленов, идеал, теорема Безу, кольцо главных	
		идеалов	7
	2.14	Конечное поле. Теорема о простом подполе конечного поля. Строение конечного поля. Теорема о примитивном эле-	
		менте.	7

ОГЛАВЛЕНИЕ 3

2.15	Построение конечных полей. Алгоритм вычисления обратного элемента. Арифметические операции в конечном поле.
2 16	Алгоритмы вычисления дискретного алгоритма
	Криптосистема Эль - Гамаля. Протокл Диффи - Хеллмана.
	Минимальный многочлен и его свойства. Теорема об изо-
2.10	морфизме конечных полей одной мощности
2 10	Примитивный многочлен и его свойства. Теорема о раз-
2.10	ложении многочлена $f(x) = xp^n - x$ на неприводимые многочлены. Критерий принадлежности элемента поля соб-
2.20	ственному подполю
	Теорема о группе автоморфизмов конечного поля
2.21	Рекуррентные последовательности над конечным полем, линейные рекуррентные последовательности (ЛРП). Характеристический и минимальный многочлен ЛРП и их
	свойства.
2.22	ристическому многочлену. Теорема о ЛРП максимального
0.00	периода
2.23	
0.04	пы в виде прямого произведения своих подгрупп
	Теорема о примарной абелевой группе
2.25	Теорема о разложении конечной абелевой группы в произ-
2.26	ведение своих циклических подгрупп
	Теорема Коши
2.27	Двойные смежные классы и их свойства. Теорема Силова (первая)
2.28	Вторая и третья теоремы Силова
	Группы подстановок. Инвариантное множество, орбита. Теорема об индексе стабилизатора группы. Теорема о транзитвности нормализатора подгруппы транзитвной группы. (Ут. 13.4)
2.30	Лемма Бернсайда
	Регулярные и полурегулярные группы. Порядок полурегулярной группы.
2.32	Блоки и импримитивные группы. Критерий импримитив-
	ности. Теорема о импримитивности транзитивной группы
	с интранзитивным нормальным делителем
2.33	
2 34	Теорема о группе автоморфизмов конечной группы
J I	Topoma o ipjuno abiomoponomon kono mon ipjunom i i i i i

2.35	Утверждение об изоморфизме стабилизатора и специаль-	
	ной группы автоморфизмов регулярной подгруппы (Ут .	
	13.5). Утверждение о порядке регулярного нормального	
	делителя кратно транзитивной группы	8
2.36	Простая группа. Теорема о простоте знакопеременной груп-	
	пы. Теорема о нормальном делителе симметрической груп-	
	пы	8

Часть 1

Домашние задания

1.1 Элементы теории групп

Задачи в этом разделе решаются со следующими параметрами:

p	g	k
23	-8	22

 $\mathbf{3}$ адача $\mathbf{1.1}$ Убедиться, что $g \in \mathbb{Z}_p^*$ – примитивный элемент \mathbb{Z}_p . Решение.

Так как p=23 – простое число, то $\phi(p)=p-1=22$. Разложим это число на простые множители: $\phi(p)=2\cdot 11$. Тогда достаточно проверить следующие 2 неравенства:

$$g^{\frac{\phi(p)}{2}} = (-8)^{11} = 15 \cdot 15^{10} = 15 \cdot 18^5 = 17 \cdot 2^2 = 22 \not\equiv 1 \pmod{p},$$
$$g^{\frac{\phi(p)}{11}} = (-8)^2 = 18 \not\equiv 1 \pmod{p},$$

Делаем вывод, что g действительно является примитивным элементом $\mathbb{Z}_p.$

Задача 1.2 Найти образующий элемент h группы $\mathbb{Z}_{p^2}^*$ Решение.

Образующий элемент группы $\mathbb{Z}_{p^n}^*, n \geq 2$ имеет вид:

$$h = g + t_0 p, \ t_0 \not\equiv g\nu \pmod{p}; \ \nu = (\frac{g^{\frac{p-1}{2}} + 1}{p}) \pmod{p} \cdot (-2) \pmod{p}$$

Таким образом,

$$\nu = \left(\frac{(-8)^{\frac{23-1}{2}} + 1}{23}\right) \pmod{23} \cdot (-2) \pmod{23} = (1 \cdot (-2)) \pmod{23} = 21$$
$$t_0 \not\equiv (-8) \cdot 21 \pmod{23} = 16 \pmod{23}$$

$$t_1 = 1 \Rightarrow h = (-8) + 1 * 23 = 15$$

Следовательно, h=15 – образующий элемент группы $\mathbb{Z}_{23^2}^*$

Задача 1.3 Подсчитать число образующих группы $\mathbb{Z}_{p^3}^*$ **Решение.**

Число образующих группы $\mathbb{Z}_{23^3}^*$ равно $\phi(23^3)=(23-1)23^{3-1}=11638.$

Задача 1.4 Найти элемент a группы $\mathbb{Z}_{p^2}^*$ порядка k **Решение.**

Так как \forall натурального k>1 и простого $p\geq 3$ группа $\mathbb{Z}_{p^k}^*$ является циклической, то $\mathbb{Z}_{23^2}^*$ – циклическая группа. Элемент порядка k в циклической группе порядка N имеет вид h^r , где $r=\frac{N}{k}$. Таким образом,

$$a = h^{\frac{\phi(p^2)}{k}} = 15^{\frac{22*23}{22}} = 15^{23} = 130$$

Задача 1.5 Решить сравнение $a^x \equiv b \pmod{p}$ **Решение.**

р	a	b				
701	2	163	ſ			

І. Алгоритм согласования

1. Убедимся в том, что a=2 – примитивный элемент группы \mathbb{Z}_{701} .

$$\phi(701) = 700 = 2^2 \cdot 5^2 \cdot 7$$

$$g^{\frac{\phi(p)}{2}} = 2^{350} = 700 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{5}} = 2^{140} = 210 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{7}} = 2^{100} = 19 \not\equiv 1 \pmod{p},$$

$$g^{\phi(p)} = 2^{700} = 1 \equiv 1 \pmod{p},$$

Таким образом, порядок элемента a равен ord(a) = 700.

- 2. Выбираем минимальное $m : m^2 \ge ord(a) \Rightarrow m = 27$.
- 3. Вычисляем $c = a^m = 2^{27} = 62$.
- 4. Составляем два множества:

i	1	2		3	4	5	(3	7	8		9	10	11		12	13	14
c^i	62	33	9 6	89	658	138	3 14	44 5	16	447	3	75	117	244		407	699	577
			·				·											
i	15	16	17	18	3	19	20	21	2	2	23	24	2	25	26	27	7	
c^i	23	24	86	42	5 4	13	370	508	65	52	467	213	3 5	88	4	24	8	
	1							-1		-				-				
j	0		1	2	3	;	4	5	6		7	8	9	10		11	12	13
bas	^j 16	3	326	652	60	3 5	505	309	618	3 5	35	369	37	74		148	296	592

j	14	15	16	17	18	19	20	21	22	23	24	25	26
ba^j	483	265	530	359	17	34	68	136	272	544	387	73	146

В таблицах совпадают элементы под номерами i=22 и j=2. 5. Таким образом, $x=mi-j=27\cdot 22-2=592$.

Ответ: x = 592.

II. Алгоритм Полига-Хеллмана

Порядок поля \mathbb{Z}_{701} равен $N=\phi(701)=700=2^2\cdot 5^2\cdot 7$. Количество простых множителей в разложении этого числа t=3.

1. Вычисляем матрицу с элементами $(i,j)=a^{j\frac{N}{p_i}}, i=\overline{1,t},\ j=\overline{0,p_i-1}$:

p_i	0	1	2	3	4	5	6
2	$2^{0\cdot\frac{700}{2}}$	$2^{1 \cdot \frac{700}{2}}$	-	-	-	-	-
5	$2^{0\cdot\frac{700}{5}}$	$2^{1\cdot\frac{700}{5}}$		$2^{3\cdot\frac{700}{5}}$	$2^{4 \cdot \frac{700}{5}}$	-	-
7	$2^{0 \cdot \frac{700}{7}}$	$2^{1 \cdot \frac{700}{7}}$	$2^{2 \cdot \frac{700}{7}}$	$2^{3\cdot\frac{700}{7}}$	$2^{4 \cdot \frac{700}{7}}$	$2^{5 \cdot \frac{700}{7}}$	$2^{6 \cdot \frac{700}{7}}$

p_i j	0	1	2	3	4	5	6
2	1	700	-	-	-	-	-
5	1	210	638	89	464	-	-
7	1	19	361	550	636	167	369

2. Далее находим $x_i = \log_a b \pmod{p_i^{k_i}} = \gamma_0 + \gamma_1 p_i + \ldots + \gamma_{k_i-1} p_i^{k_i-1}, \gamma_j \in \mathbb{Z}_p.$ Последовательно находим γ_j из $M(p,\gamma_j)=b_j^{rac{N}{p^{j+1}}}$, где $b_j=ba^{-\gamma_0-\gamma_1p-\ldots-\gamma_{j-1}p^{j-1}}$

а M – определённая выше матрица.

a)
$$x_1 = \log_2 163 \pmod{2^2}$$
, $p = 2$, $k = 2$
 $M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{2}} = 1 \Rightarrow \gamma_0 = 0$, $b_1 = ba^{-\gamma_0} = 163 \cdot 2^{-0} = 163$
 $M(p, \gamma_1) = b_1^{\frac{N}{p^2}} = 163^{\frac{700}{4}} = 1 \Rightarrow \gamma_1 = 0$
 $\Rightarrow x_1 = \gamma_0 + \gamma_1 p = 0 + 0 \cdot 2 = 0$
6) $x_2 = \log_2 163 \pmod{5^2}$, $p = 5$, $k = 2$
 $M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{5}} = 638 \Rightarrow \gamma_0 = 2$, $b_1 = ba^{-\gamma_0} = 163 \cdot 2^{-2} = 216$

$$M(p, \gamma_0) = b^{p} = 163^{-5} = 638 \Rightarrow \gamma_0 = 2, \ b_1 = ba^{-10} = 163 \cdot 2^{-2} = 216$$
 $M(p, \gamma_1) = b_1^{\frac{N}{p^2}} = 216^{\frac{700}{25}} = 89 \Rightarrow \gamma_1 = 3$

$$M(p, \gamma_1) = b_1^{\overline{p^2}} = 216^{\frac{700}{25}} = 89 \Rightarrow \gamma_1 = 3$$

 $\Rightarrow x_2 = \gamma_0 + \gamma_1 p = 2 + 3 \cdot 5 = 17$

в)
$$x_3 = \log_2 163 \pmod{7}, \ p = 7, \ k = 1$$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{7}} = 636 \Rightarrow \gamma_0 = 4$$

 $\Rightarrow x_3 = \gamma_0 = 4$

3. На основе вычисленных выше значений $x_1, x_2, ..., x_t$ и китайской теоремы об остатках находим искомый логарифм:

$$\begin{split} x &= \sum x_i \frac{N}{p_i^{k_i}} [(\frac{N}{p_i^{k_i}})^{-1} \pmod{p_i^{k_i}}] \pmod{N} = 0 \cdot \frac{700}{2^2} [(\frac{700}{2^2})^{-1} \pmod{2^2}] + \\ &+ 17 \cdot \frac{700}{5^2} [(\frac{700}{5^2})^{-1} \pmod{5^2}] + 4 \cdot \frac{700}{7} [(\frac{700}{7})^{-1} \pmod{7}] \pmod{700} = \\ &= 476 \cdot [28^{-1} \pmod{25}] + 400 \cdot [100^{-1} \pmod{7}] \pmod{700} = \\ &= 476 \cdot 17 + 400 \cdot 4 \pmod{700} = 592 \end{split}$$

Ответ: x = 592.

Билеты

5

1.2

Часть 2

Билеты

2.1 Делимость в кольце целых чисел. НОД, алгоритм Евклида. Критерий взаимной простоты двух чисел.

Теорема 1.1 (о делении с остатком) Пусть a>0 и b>0 — целые числа. Тогда a единственным образом представимо в виде

$$a = bq + r, \ 0 \le r < b.$$

Число q – неполное частное

- 2.2 Сравнения и их свойства. Китайская теорема об остатках. Кольцо вычетов. Функция Эйлера и её свойства.
- 2.2 Сравнения и их свойства. Китайская теорема об остатках. Кольцо вычетов. Функция Эйлера и её свойства.
- 2.3 Теоремы Эйлера и Ферма. Критерий обратимости, алгоритм вычисления обратного элемента.
- 2.4 Криптографическая теорема (обоснование криптосистемы РСА).
- 2.5 Теорема о цикличности мультипликативной группы по примарному модулю.
- 2.6 Решение сравнений первой степени.
- 2.7 Сравнения второй степени. Символ Лежандра и его свойства.
- 2.8 Алгоритмы решения сравнений второй степени по простому модулю.
- 2.9 Символ Якоби и его свойства. Числа Блюма и их свойства. Эквивалентность задачи факторизации и решения сравнения второй степени.
- 2.10 Алгоритмы решения сравнений второй степени по примарному и составному модулю.
- 2.11 Группа, порядок элемента. Теорема Лагранжа.

Билеты 7

2.12 Нормальный делитель, фактор – группа, первая теорема о гомоморфизме.

- 2.13 Кольцо многочленов, идеал, теорема Безу, кольцо главных идеалов.
- 2.14 Конечное поле. Теорема о простом подполе конечного поля. Строение конечного поля. Теорема о примитивном элементе.
- 2.15 Построение конечных полей. Алгоритм вычисления обратного элемента. Арифметические операции в конечном поле.
- 2.16 Алгоритмы вычисления дискретного алгоритма.
- 2.17 Криптосистема Эль Гамаля. Протокл Диффи Хеллмана.
- 2.18 Минимальный многочлен и его свойства. Теорема об изоморфизме конечных полей одной мощности.
- 2.19 Примитивный многочлен и его свойства. Теорема о разложении многочлена $f(x) = xp^n x$ на неприводимые многочлены. Критерий принадлежности элемента поля собственному подполю.
- 2.20 Теорема о группе автоморфизмов конечного поля.
- 2.21 Рекуррентные последовательности над конечным полем, линейные рекуррентные последовательности (ЛРП). Характеристический и минимальный многочлен ЛРП и их свойства.
- 2.22 Теорема об определении структуры ЛРП по её характеристическому многочлену. Теорема о ЛРП максимального периода.
- 2.23 Прямое произведение групп. Теорема о пред-

- 2.25 Теорема о разложении конечной абелевой группы в произведение своих циклических подгрупп.
- 2.26 Нормализатор, централизатор, класс сопряженных элементов конечной группы. Теорема о числе множеств сопряженных с данным. Теорема о центре примарной группы. Теорема Коши.
- 2.27 Двойные смежные классы и их свойства. Теорема Силова (первая)
- 2.28 Вторая и третья теоремы Силова.
- 2.29 Группы подстановок. Инвариантное множество, орбита. Теорема об индексе стабилизатора группы. Теорема о транзитвности нормализатора подгруппы транзитвной группы. (Ут. 13.4).
- 2.30 Лемма Бернсайда.
- 2.31 Регулярные и полурегулярные группы. Порядок полурегулярной группы.
- 2.32 Блоки и импримитивные группы. Критерий импримитивности. Теорема о импримитивности транзитивной группы с интранзитивным нормальным делителем.
- 2.33 Примитивные группы. Кратная транзитивность. Критерий кратной транзитивности.
- 2.34 Теорема о группе автоморфизмов конечной группы.
- 2.35 Утверждение об изоморфизме стабилизатора и специальной группы автоморфизмов регулярной подгруппы (Ут. 13.5). Утверждение о порядке регулярного нормального делителя кратно транзитивной группы.
- 2.36 Простая группа. Теорема о простоте знако-