

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I. ET M.P.I.I.

Année 2023 - 2024

C6: Analyse temporelle des systèmes asservis

TD 13 - Analyse temporelle des SLCI (1er ordre) (C6-1)

Compétences

Analyser

- o Identifier la structure d'un système asservi.
- o Interpréter et vérifier la cohérence des résultats obtenus expérimentalement, analytiquement ou numériquement.

Modéliser

- Établir un modèle de connaissance par des fonctions de transfert.
- o Modéliser le signal d'entrée.
- o Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle.
- Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques aux résultats expérimentaux.

• Communiquer

o Utiliser un vocabulaire technique, des symboles et des unités adéquats.

Exercice 1: Robucar

Source: e3a 2015 MP SII

Présentation du sujet

Contexte

Le système étudié dans ce sujet est un démonstrateur de véhicules intelligents dotés de la fonctionnalité "d'accrochage télémétrique" qui consiste au suivi en toute sécurité et à distance fixe entre un véhicule maître (leader) et un ou plusieurs véhicules suiveurs (esclave). le laboratoire d'Automatique Génie Informatique et Signal (LAGIS UMR8219) situé à Polytech-Lille utilise un démonstrateur composé FIGURE 1 – Ensemble Châssis - Train roulant du véhicule d'un véhicule maître et deux véhicules suiveurs dont on RobuCar peut voir l'architecture sur la figure 1.
b) Architecture du système

C6: C6-1

Le véhicule suiveur intelligent est un châssis à quatre roues motrices et directrices pilotables séparément (figure 1). Il y a donc deux paramètres de commande pour chaque roue (orientation (direction), vitesse de rotation (motricité)). Le schéma suivant (figure 2) présente un diagramme de bloc interne pour une roue.

FIGURE 2 – Diagramme de bloc interne pour une roue du véhicule RobuCar

2 Modélisation et Commande du véhicule

a) Modélisation du comportement de l'ensemble moto-réducteur-roue

La trajectoire et la vitesse du véhicule autonome est assurée par la commande de 4 roues indépendantes assurée chacune par un moteur électrique.

b) Simulation du système du système de commande de la vitesse angulaire

La partie électrique peut être facilement modélisée car les paramètres fournis par le constructeur sont bien identifiés. Afin de déterminer la fonction de transfert de l'ensemble du système mécanique (moto réducteur et arbre de la roue), nous avons isolé la partie mécanique du système et réalisé un essai indiciel en introduisant un couple moteur $C_m(t)$ d'un échelon de 4N.m à l'entrée de l'arbre du moteur et avons enregistré en sortie de la roue la variation de la vitesse angulaire comme expliqué par le schéma de la figure 3. La réponse à cette échelon est donnée figure 4.

On assimile la fonction de transfert à un élément du premier ordre et on relève la vitesse en régime permanent : $\Delta \dot{\theta}(\infty) = 2,93 \, rad/s$, et ceci pour un échelon d'entrée d'amplitude $C_m = 4N \cdot m$.

Q 1 : Identifier les valeurs numériques avec les unités des paramètres caractéristiques de la fonction de transfert du $1^{\rm er}$ ordre.

FIGURE 3 – Essai expérimental pour l'identification de la fonction de transfert de la partie mécanique

C6: C6-1

FIGURE 4 – Réponse indicielle de la vitesse angulaire de la roue suite à un couple moteur d'un échelon 4 N.m

Exercice 2 : Robot 6 axes pour l'usinage robotisée de moules

1 Présentation

Un robot industriel de la Stäubli est utilisé pour réalisé les perçage d'une grande précision pour les évents de de Moules pour le fabriquant Audi

Sur le centre d'usinage de 8 m de long et de 7 m de large, on peut usiner des moules en acier ou en fonte grise. Les dimensions des moules peuvent aller jusqu'à $4500mm \times 2500mm \times 1000mm$ et peuvent peser jusqu'à $20\,000$ kg.

Un robot de précision Stäubli contrôle toutes les activités dans la cellule. Il dispose d'une broche d'usinage de 37kW. Le robot six axes présente une charge maximale de $100 \, \mathrm{kg}$ et un rayon d'action de 2194mm. Afin de pouvoir accéder à toutes les positions d'usinage, le robot a été monté sur un rail motorisé.

2 Modélisation

Pour identifier le comportement global du robot, un test avant réglage de la commande de l'axe linéaire a été réalisé. Le signal d'entrée est un échelon de tension d'amplitude +1,5 V débutant à l'instant t=0,5 s. La réponse est la position du chariot sur l'axe linéaire.

C6: C6-1

- Q 2 : Indiquer l'ordre du modèle auquel peut-être identifié l'axe. Justifier.
- Q 3 : Proposer un modèle de comportement de cet axe.