Inhalt Vektoren im Raum, das Vektorprodukt, das Spatprodukt, Ebenen im Raum

1 Vektoren im Raum

Ein Vektor im Raum ist eine Klasse gleichlanger und gleichgerichteter Pfeile im Raum; jeder Pfeil der Klasse repräsentiert den Vektor.

a_3 a_2 d

Beschreibung durch Koordinaten

Wir wählen ein rechtwinkliges Koordinatensystem. Ein Vektor wird dann repräsentiert durch einen Ortsvektor vom Nullpunkt zu einem Punkt des Raumes, der durch Koordinaten (a_1, a_2, a_3) beschrieben wird.

Vektoren im Raum entsprechen also Tripeln (a_1, a_2, a_3) reeller Zahlen.

Länge eines Vektors

Ein Vektor $a = (a_1, a_2, a_3) \in \mathbb{R}^3$ hat die Länge

$$|a| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

Beweis: Nach dem Satz von Pythagoras gilt $|a|^2 = |d|^2 + a_3^2 = a_1^2 + a_2^2 + a_3^2$.

Skalarprodukt zweier Vektoren

Für $a, b \in \mathbb{R}^3$ setzt man $a \cdot b := |a| \cdot |b| \cos \varphi$ (wobei φ der Winkel zwischen a, b ist).

Da a,b in einer Ebene liegen, gilt der Cosinus- $Satz |a-b|^2 = |a|^2 + |b|^2 - 2a \cdot b$.

Für $a=(a_1,a_2,a_3),\ b=(b_1,b_2,b_3)\in\mathbb{R}^3$ folgt $a\cdot b=\frac{1}{2}(|a|^2+|b|^2-|a-b|^2)=a_1b_1+a_2b_2+a_3b_3$. Es gelten entsprechende Rechenregeln wie im \mathbb{R}^2 , insbesondere ist $|a|=\sqrt{a\cdot a}$.

Es gilt die Ungleichung von Cauchy-Schwarz: $|a \cdot b| \leq |a| |b|$ für $a, b \in \mathbb{R}^3$.

Man definiert: $a \perp b \iff a \cdot b = 0$ für $a, b \in \mathbb{R}^3$.

Zusätzlich zu diesen (bereits bekannten) Begriffen kommt im \mathbb{R}^3 das Vektorprodukt hinzu:

2 Das Vektorprodukt zweier Vektoren

Motivation

In der Physik betrachtet man das *Drehmoment*. Auf einen Punkt mit Ortsvektor x wirke eine Kraft F in der Drehebene. Es sei d der Abstand der "Wirkungslinie" der Kraft von der Drehachse (im Nullpunkt); wegen $\sin \varphi = \frac{d}{|x|}$ ist $d = |x| \sin \varphi$.

Das Drehmoment M hat dann den Betrag $|M| = |F| \cdot d = |F| \cdot |x| \sin \varphi$. Das Drehmoment hat auch eine Richtung (in Richtung Drehachse), ist also ein Vektor.

Definition Sind a, b Vektoren im Raum, so sei $a \times b$ derjenige Vektor im Raum mit:

- 1. $|a \times b| = |a| |b| \sin \varphi$, wobei φ der von a, b eingeschlossene Winkel ist,
- 2. $a \times b \perp a$ und $a \times b \perp b$,
- 3. Die Richtung von $a \times b$ ergibt sich aus der *Rechte-Hand-Regel:* Daumen (der rechten Hand) in Richtung a, Zeigefinger in Richtung b, Mittelfinger in Richtung $a \times b$.

Bemerkung $|a \times b| = |a||b|\sin\varphi$ ist die Fläche des von a,b aufgespannten Parallelogramms.

Beweis: Das Parallelogramm hat die Höhe $h=|b|\sin\varphi$. Die Fläche ist dann gleich $|a|h=|a|\,|b|\sin\varphi$.

Haben a,b die gleiche (oder entgegengesetzte) Richtung, ist also $\varphi=0^{\circ}$ oder $\varphi=180^{\circ}$, so ist $\sin\varphi=0$, also $a\times b=0$.

Rechenregeln für das Vektorprodukt Sind a, b, c Vektoren im Raum, $r \in \mathbb{R}$, so gilt:

- $(1) a \times (rb) = r(a \times b) = (ra) \times b,$
- (2) $a \times b = -b \times a$,
- (3) $a \times (b+c) = a \times b + a \times c$.
- (1) und (2) folgen leicht aus der Definition, (3) ist etwas schwieriger zu zeigen.

Beschreibung des Vektorprodukts in Koordinaten

Für die Einheitsvektoren
$$e_1 := (1,0,0), \ e_2 := (0,1,0), \ e_3 := (0,0,1)$$
 gilt $e_1 \times e_2 = e_3, \quad e_2 \times e_3 = e_1, \quad e_3 \times e_1 = e_2.$

Für einen beliebigen Vektor $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ gilt

$$x = (x_1, x_2, x_3) = x_1(1, 0, 0) + x_2(0, 1, 0) + x_3(0, 0, 1) = x_1e_1 + x_2e_2 + x_3e_3.$$

Für Vektoren $x=(x_1,x_2,x_3),\ y=(y_1,y_2,y_3)\in\mathbb{R}^3$ folgt mit den obigen Rechenregeln:

$$x \times y = (x_1e_1 + x_2e_2 + x_3e_3) \times (y_1e_1 + y_2e_2 + y_3e_3)$$

$$= x_1y_1e_1 \times e_1 + x_1y_2e_1 \times e_2 + x_1y_3e_1 \times e_3 + \dots = 0 + x_1y_2e_3 - x_1y_3e_2 + \dots$$

$$= (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

Grassmann-Identität Für alle $a, b, c \in \mathbb{R}^3$ gilt $a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$. Beweis als Übungsaufgabe (etwas langwierig).

Folgerungen

a) $a \times b = 0 \iff a, b \text{ sind } linear \ abh \ddot{a}nqiq, \ d. \ h. \ a \ ist \ Vielfaches von \ b \ oder \ umgekehrt.$

Beweis: " \Leftarrow ": Sind a, b linear abhängig, so haben a, b die gleiche (oder entgegengesetzte) Richtung, nach der obigen Bemerkung ist also $a \times b = 0$.

"⇒": Sei $a \times b = 0$. Für a = 0 sind a, b linear abhängig (a = 0b). Ist $a \neq 0$, so folgt aus $a \times b = 0$ mit der Grassmann-Identität $0 = a \times (a \times b) = (a \cdot b)a - (a \cdot a)b$, also $(a \cdot a)b = (a \cdot b)a$, damit ist $b = \frac{a \cdot b}{a \cdot a}a$ ein Vielfaches von a.

b) Seien $a, b \in \mathbb{R}^3$ linear unabhängig (d. h. nicht linear abhängig). Für alle $x \in \mathbb{R}^3$ gilt: $x \perp a$ und $x \perp b \iff x \in \mathbb{R}(a \times b) := \{t(a \times b) \mid t \in \mathbb{R}\}.$

Beweis: " \Leftarrow " ist klar wegen $a \times b \perp a$ und $a \times b \perp b$.

"⇒": Aus $x \perp a$ und $x \perp b$ folgt $x \times (a \times b) = (x \cdot b)a - (x \cdot a)b = 0$. Nach a) sind dann $x, a \times b$ linear abhängig, also x ein Vielfaches von $a \times b$ oder umgekehrt. Da a, b linear unabhängig sind, ist $a \times b \neq 0$ nach a). Dann ist x in jedem Fall ein Vielfaches von $a \times b$ (denn aus $a \times b = rx$ folgt $r \neq 0$, also $x = \frac{1}{r}(a \times b)$).

3 Das Spatprodukt dreier Vektoren

Für Vektoren a, b, c im Raum heißt $(a \times b) \cdot c \in \mathbb{R}$ das Spatprodukt von a, b, c.

Das Spatprodukt $(a \times b) \cdot c$ ist gleich \pm Volumen des von a, b, c aufgespannten Spates. Die von (linear unabhängigen) a, b aufgespannte Ebene zerschneidet den Raum in zwei Halbräume. Das Vorzeichen von $(a \times b) \cdot c$ ist gleich +, wenn $a \times b, c$ im gleichen Halbraum liegen (dann nennt man a, b, c ein Rechtssystem), sonst gleich -.

Beweis (für den Fall, dass $a \times b, c$ im gleichen Halbraum liegen):

Der Spat hat die Höhe $h = |c| \cos \varphi$, wobei φ der Winkel zwischen $a \times b$, c ist. Dann gilt

Volumen des Spates = Grundfläche · Höhe
=
$$|a \times b| \cdot |c| \cdot \cos \varphi$$

= $(a \times b) \cdot c$

(s. Definition des Skalarproduktes $(a \times b) \cdot c$).

Folgerung Seien $a, b \in \mathbb{R}^3$ linear unabhängig, also $a \times b \neq 0$. Dann gilt für alle $c \in \mathbb{R}^3$: $(a \times b) \cdot c = 0 \iff c$ liegt in der von a, b aufgespannten Ebene $\mathbb{R}a + \mathbb{R}b := \{sa + tb \mid s, t \in \mathbb{R}\}$.

Beweis:

$$(a \times b) \cdot c = 0 \iff \text{Der von } a, b, c \text{ aufgespannte Spat hat das Volumen } 0$$

 $\iff \text{Der von } a, b, c \text{ aufgespannte Spat hat die H\"{o}he } 0 \qquad (\text{da } |a \times b| \neq 0)$
 $\iff c \text{ liegt in der von } a, b \text{ aufgespannten Ebene}$
 $\iff c \in \mathbb{R}a + \mathbb{R}b := \{sa + tb \mid s, t \in \mathbb{R}\}.$

4 Ebenen im Raum

1. Parameterdarstellung

Man wählt einen Punkt u in der Ebene und zwei linear unabhängige Richtungsvektoren a, b. Es ist

$$E_{u;a,b} = u + \mathbb{R}a + \mathbb{R}b := \{u + sa + tb \mid s, t \in \mathbb{R}\}\$$

die von a, b aufgespannte Ebene durch u.

2. Beschreibung durch eine Gleichung

Die allgemeine Ebenengleichung ist $c_1x_1 + c_2x_2 + c_3x_3 = r$ mit $c = (c_1, c_2, c_3) \in \mathbb{R}^3$, $c \neq 0$ und $r \in \mathbb{R}$. Für $c \in \mathbb{R}^3$, $c \neq 0$ und $r \in \mathbb{R}$ setzt man

$$H_{c,r} := \{ x \in \mathbb{R}^3 \mid c_1 x_1 + c_2 x_2 + c_3 x_3 = r \} = \{ x \in \mathbb{R}^3 \mid c \cdot x = r \}.$$

 $H_{c,r}$ ist eine Ebene im \mathbb{R}^3 .

Frage: Wie bekommt man aus der Parameterdarstellung die Ebenengleichung?

Satz 1 Seien a, b linear unabhängig und $u \in \mathbb{R}^3$. Dann gilt:

$$E_{u:a,b} = H_{c,r}$$
 mit $c := a \times b$ und $r := (a \times b) \cdot u$.

Beweis: " \subseteq ": Sei $x = u + sa + tb \in E_{u:a,b}$. Für $c = a \times b$ gilt dann (wegen $c \perp a$, $c \perp b$)

$$c \cdot x = (a \times b) \cdot (u + sa + tb) = (a \times b) \cdot u = r$$
, also $x \in H_{c,r}$.

" \supseteq ": Sei $x \in H_{c,r}$, also $c \cdot x = (a \times b) \cdot x = r = (a \times b) \cdot u$ und damit $(a \times b) \cdot (x - u) = 0$. Nach obiger Folgerung liegt dann x - u in der von a, b aufgespannten Ebene $\mathbb{R}a + \mathbb{R}b$, also $x \in u + \mathbb{R}a + \mathbb{R}b = E_{u:a,b}$.

3. Hessesche Normalform

Die Ebene E sei durch $c \cdot x = r$ gegeben mit $c \in \mathbb{R}^3$, $c \neq 0$, $r \in \mathbb{R}$. Wir können $r \geq 0$ annehmen. Division der Gleichung durch $|c| \neq 0$ liefert die Gleichung

$$\frac{c}{|c|} \cdot x = \frac{r}{|c|}.$$

Setzen wir $n := \frac{c}{|c|}$, $d := \frac{r}{|c|}$, so erhalten wir die Ebenengleichung in der Form $n \cdot x = d$ mit $n \in \mathbb{R}^3$, |n| = 1, $d \ge 0$ (Hessesche Normalform der Ebenengleichung).

Satz 2 Die Ebene E sei in Hessescher Normalform gegeben, also

$$E = \{x \in \mathbb{R}^3 \mid n \cdot x = d\} \quad mit \ n \in \mathbb{R}^3, \ |n| = 1 \ und \ d \in \mathbb{R}, \ d \ge 0.$$

Dann gilt:

- a) $n \perp E$, d.h. $n \perp (x y)$ für alle $x, y \in E$.
- b) d ist $der\ Abstand\ von\ 0$ $zu\ E$, $d.\ h.\ d=min\{|x|\mid x\in E\}$.
- c) Für alle $p \in \mathbb{R}^3$ ist $|p \cdot n d|$ der Abstand von p zu E, d. h. $|p \cdot n d| = min\{|p x| \mid x \in E\}$.

Beweis: a) Sind $x, y \in E$, also $n \cdot x = d = n \cdot y$, so gilt $n \cdot (x - y) = 0$, also $n \perp E$.

Sei $p \in \mathbb{R}^3$. Es sei x_p der "Fußpunkt von p auf der Ebene", also $x_p \in E$ mit $p - x_p \perp E$.

Dann ist $|p - x_p|$ der Abstand von p zur Ebene (analog zum \mathbb{R}^2).

Wegen $p - x_p \perp E$, $n \perp E$ ist $p - x_p$ ein Vielfaches von n, also $p - x_p = tn$ mit einem $t \in \mathbb{R}$. Bilden des Skalarprodukts mit n liefert

$$t = t(n \cdot n) = (tn) \cdot n = p \cdot n - x_p \cdot n = p \cdot n - d$$

4

(wegen $x_p \in E$). Also ist $|p - x_p| = |t| = |p \cdot n - d|$.

b) Speziell für p=0 ist der Abstand von 0 zu E gleich $|0\cdot n-d|=|d|=d$.