

8:30 às 9:10h: Palestra 1 – TEMA "Alternativas de análise de experimentos visando à otimização na identificação de genótipos superiores de milho"

Cosme Damião Cruz Universidade Federal de Viçosa

cdcruz@ufv.br

http://www.ufv.br/dbg/biodata.htm https://www.facebook.com/GenesNews

Melhoramento Genético

Passarei hoje por todo o teu rebanho, separando dele todos os salpicados e malhados, e todos os morenos entre os cordeiros, e os malhados e salpicados entre as cabras; e isto será o meu salário.

Gênesis 30:32

1866: Gregor Mendel, monge Austríaco, publicou as leis da hereditariedade baseado nos resultados de seus experimentos, iniciados em 1857, com ervilhas.

1. MELHORAMENTO GENÉTICO

População Original

População Melhorada

Observador

Observador + Conhecimento científico

Observador + Conhecimento científico + Informação Processada

Recursos

Tempo

2. IDENTIFICAÇÃO DE GENÓTIPOS SUPERIORES

Ampla variabilidade

A B C 10 9.8 4.2

Pouca variabilidade

3. OTIMIZAÇÃO NA IDENTIFICAÇÃO DE GENÓTIPOS

Experimentação

Genética Quantitativa

Genômica: SAM e GWS

Melhoramento

Redes Neurais

Biometria

A B C 10 9.8 4.2 "Alternativas de análise de experimentos visando à otimização na identificação de genótipos superiores de milho"

4. EXPERIMENTAÇÃO

Princípio Repetição Casualização Controle Local

Delineamentos

Processamento de dados

Qual a finalidade das análises estatísticas ?

Experimento => Dados => Processamento => Informação

ANÁLISE DE VARIÂNCIA

FV	GL	SQ	QM	F	Probabilidad
BLOCOS	2	11244.2580	5622.1290	12.3929	
GENÓTIPOS	9	22027.2483	2447.4720	5.3950	.0012
RESÍDUO	18	8165.8487	453.6583		
TOTAL	29	41437.3550			

DESCRIÇÃO	ESTIMATIVA		
MÉDIA	199.9500		
S ² GENÉTICA	664.6046		
S ² RESIDUAL	453.6583		
H ² (MÉDIA)	81.4642		
H ² (IND.)	59.4319		
CV exp	10.6523		
CV gen	12.8932		

Genótipos	Média	Classificação
1	186.50	7°
2	225.60	3° *
3	208.50	5°
4	210.27	4° *
5	189.50	6°
6	161.80	10°
7	168.27	9°
8	243.53	1° *
9	172.43	8°
10	233.10	2° *

Média da população	199.95
Média dos selecionados	228.13
Diferencial de seleção	28.18
Herdabilidade	.81
Ganhos por seleção	22.95
Ganhos por seleção (%)	11.48
Média da população melhorada	222.90

Algumas alternativas de esquemas experimentais:

Objetivos:

- Gerar informações
- Reduzir custos
- a) Blocos Aumentados de Federer

Informações Geradas

ANÁLISE DE VARIÂNCIA

FV	GL	SQ	QM	F	Probabilidade(%
Blocos	4	2517170.768	629292.692		
Trat.(Ajust.)	104	4478123.36	43058.878462	7.4858	.002403 **
Resíduo	16	92033.76	5752.11		
Total	124	7087327.888			
- Média geral				424.336	
Média comuns - testemu	nhas		257.72		
Média não comuns - gen	ótipos	1	465.99		
Média ponderada - μF(F	ederer	•)	456.072381		
CV(%) geral				17.873258	
CV(%) comuns			29.42832		
CV(%) não comuns			16.275599		
DP tratamentos comuns			47.967114		
DP tratamentos não com	uns de	um mesmo bloco	107.257727		
DP tratamentos não com	uns de	blocos diferentes	117.494953		
DP tratamentos não com	uns e	comuns	91.011199		
PARÂMETROS GENÉTIC			OS E AMBIENTAIS-	Obtidos para genótipo	os
VARIÂNCIA FENOTÍPICA			43232	2.08596	
VARIÂNCIA AMBIENTAL			5752.	.11	
VARIÂNCIA GENOTÍPICA			37479	9.97596	
HERDABILIDADE (%)				86.6948	
COEFICIENTE DE VARIAÇÃ	O GENÉ	TICO (%)	41.54	! 54	
RAZÃO CVg/CVe			2.552	26	

b) Análise de Grupos de Experimentos

Experimento 1

Rep 1 A, B,C + 1, 2,...20 Rep 2 A, B, C + 1, 2,...20

Experimento 2

A, B, C + 21, 22,...40

A, B, C + 21, 22,...40

Experimento 3

A, B, C + 41, 42,...60

A, B, C+ 41, 42,...60

쭚	Esquemas de Análise de Variância		
å	Retornar		
	FV	T9	SQ
	Blocos/Ensaio	(r-1)e	SQB
	Ensaios (E)	e-1	SQE
	Testemunhas (Te)	t-1	SQTe
	E x Te	(t-1)(e-1)	SQTexE
	Genótipos (G)	r G e	sǫc
	(Te vs G)/E	9	SQGrupo
	Residuo	$(r-1)$ $\left(\sum_{k=1}^{e} g_k + et + e\right)$	SQR
	Total	(ret + r∑ g _k) - 1	
	© Esquema 1	○ Esquema 2	○ Esquema 3
_			

c) Látices

A B C 10 9.8 4.2 "Alternativas de análise de experimentos visando à otimização na identificação de genótipos superiores de milho"

ESTRATÉGIAS DE MELHORAMENTO
GENÉTICA QUANTITATIVA

5. ESTRATÉGIAS DE MELHORAMENTO GENÉTICO

Cruzamentos:

- Ao acaso
- Hibridações
- Autofecundações

Objetivo

-Manipular a variabilidade disponível

Progênie: FMI, FIC, S1
Combinações de progênies:
Dialelo
Delineamentos I e II

População Original

População Estruturada em Família

Melhoramento

Genética Quantitativa

Acasalamento ao acaso

Hibridação

Autofecundação

Derivação de famílias

FMI FIC FS_1

Média

$$\mu_{\alpha} = u + a(D - R) + dH$$

$$\mu_{\alpha} = u + a(p - q) + 2pqd$$

Variância

$$\sigma_g^2 = a^2[(D+R) - (D-R)^2] + d^2H(!-H) - 2ad(D-R)H$$

$$\sigma_g^2 = 2pq\alpha^2 + (2pqd)^2$$

Covariância

$$Cov(X,Y) = 2r_{XY}\sigma_A^2 + U_{XY}\sigma_D^2$$

$$Cov(MI) = \frac{1}{4}\sigma_A^2$$

$$Cov(IC) = \frac{1}{2}\sigma_A^2 + \frac{1}{4}\sigma_D^2$$

A B C 10 9.8 4.2 "Alternativas de análise de experimentos visando à otimização na identificação de genótipos superiores de milho"

6. UTILIZAÇÃO DA BIOMETRIA

Objetivos (Informações):

Estudo da Hereditariedade Herança dos caracteres

Ganhos por seleção Diretos Indireta Simulânea

Genótipos

Interação GxA Adaptabilidade e Estabilidade Capacidade Combinatória Heterose Valor genético -BLUP

Ambiente

Estratificação

Características

Parâmetros genéticos Correlações Repetibilidade

a. Resposta correlacionada

Seleção Direta e Indireta

Número de indivíduos selecionados: 4

SELEÇÃO DIRETA SOBRE ==> Produção

/ARIÁVEL Vg(y)	rg	h ² (y) %	GS	GS %
Produção 12782.63368	1.0	87.19794	101.97541	19.44
Altura 2902.47403	6289	26.34404	-30.55978	-6.92
Floração 4004.00431	66527	82.6898	-37.96939	-9.92
Tespigas 4833.89055	.0902	92.03905	5.65638	1.72
Resist. 30436.79188	.48662	87.48611	76.57293	20.11

x : caráter sob seleção

GS direto em $x := i \cdot Sgx \cdot hx$

GS indireto em $y(x) = i \cdot hx \cdot rg \cdot Sgy$ Caráter principal hx : 0.933798366116691

Intensidade de seleção: 0.9659

SELEÇÃO DIRETA SOBRE: Produção

VARIÁVEL Xo	Xs	h² %	GS	GS %
 Produção 524.46433	617.43667	87.19794	81.06996	15.46
Altura 441.58767	454.58917	26.34404	3.42512	.78
Floração 382.69533	375.25333	82.6898	-6.15378	-1.61
Nespigas 328.02	343.75333	92.03905	14.48081	4.41
Resist. 380.848	412.78833	87.48611	27.94336	7.34
GANHO TOTAL			120.76547	26.38

Progênies selecionadas:

8 2 4 7

	Produção	Altura	Floração	Nespigas	Resist.
8	645.77	438.56	293.91	271.58	486.63
2	617.69	357.27	379.88	348.69	521.26
4	603.34	373.31	426.63	495.47	212.18
7	602.94	649.21	400.59	259.28	431.09

b) Índice de seleção – Seleção simultânea de caracteres

Índice Clássico - Smith (1936) e Hazel (1943)

Número de indivíduos selecionados : 4

VARIÁVEL	PESO GENOTÍPICO	PESO FENOTÍPICO	
Produção	3.0	2.29903	
Altura	1.0	.11819	
Floração	1.0	.01019	
Nespigas	3.0	2.67221	
Resist.	1.0	.71975	

Determinante da matriz de covariância fenotípica : 34598887829608480241.76491

SELEÇÃO BASEADA NO ÍNDICE CLÁSSICO - Acréscimo

VARIÁVEL Xo	Xs	h² %	GS	GS %
Produção 524.46433	601.94417	87.19794	67.56082	12.88
Altura 441.58767	397.93333	26.34404	-11.50032	-2.6
Floração 382.69533	347.9075	82.6898	-28.76599	-7.52
Nespigas 328.02	364.18	92.03905	33.28132	10.15
Resist. 380.848	472.7675	87.48611	80.4168	21.12
GANHO TOTAL			140.99263	34.03

Variável assinalada com o símbolo # apresenta variância genética negativa.

Progênies selecionadas :

4	2	10	8				
		Produ	ıção	Altura	Floração	Nespigas	Resist
4		603.3	34	373.31	426.63	495.47	212.18
2		617.6	9	357.27	379.88	348.69	521.26
10		540.9	7	422.59	291.21	340.99	671.
8		645.7	7	438.56	293.91	271.58	486.63

c) Seleção combinada

S² blocos

ANÁLISE DE VARIÂNCIA DA VARIÁVEL => Altura

FV	GL	SQ	QM	F	Probabilidade(%)
BLOCOS	5	174.10528	34.82106		
GENÓTIPOS	7	437.29556	62.47079	3.15586	1.07294
ENTRE PARCELAS	35	692.83028	19.79515		
DENTRO PARCELA	240	73.0933	.30456		
MÉDIA	DIA 4.26389				
CV(%)	42.	.59885			

.31304

PARÂMETROS GENÉTICOS E AMBIENTAIS

S ² genotípica entre famílias	1.18543
S ² genotípica dentro famílias	3.5563
S ² FENOTÍPICA DENTRO DE FAMÍLIAS	.30456
S ² residual - (ambiental entre)	3.24843
S ² TOTAL	5.05146
HERDABILIDADE (US = MÉDIA FAMÍLIAS)	0.683129513220146
HERDABILIDADE (US = DENTRO FAMÍLIA)	11.6770327395651
HERDABILIDADE (US = INDIVÍDUO NO BLOCO)	1.00069972484068
HERDABILIDADE (US = INDIVÍDUO NO EXPERIMENTO)	0.938686249799856
CV EXPERIMENTAL - $100*RAIZ(QME/N))/\mu$ (CV1)	42.5988527409803
CV EXPERIMENTAL - $100*RAIZ(S^2 ENTRE)/\mu$ (CV2)	42.2698832783177
CV GENÉTICO ENTRE (CV3)	25.5348262191831
CV GENÉTICO DENTRO (CV4)	44.227616374067
CV3/CV2	0.604090294052957
CV4/CV2	1.04631508165894

SELEÇÃO ENTRE FAMÍLIAS

PORCENTAGEM DE SELEÇÃO	25 (%)	
NÚMERO DE FAMÍLIAS SELECIONADAS	2	
FAMÍLIAS => 3 8		
MÉTODO 1 - GSe = DS h ²		
MÉDIA DAS FAMÍLIAS SELECIONADAS	5.78056	
DIFERENCIAL DE SELEÇÃO	1.51667	
GANHO POR SELEÇÃO	1.03608	
GANHO POR SELEÇÃO (%)	24.29894	
MÉTODO 2 - GS = i h DPga		
INTENSIDADE DE SELEÇÃO	1.2711	
GANHO POR SELEÇÃO	1.14385	
GANHO POR SELEÇÃO (%)	26.82651	

SELEÇÃO DENTRO - INDIVÍDUOS SELECIONADOS

MÉTODO 1 - GSd = DSm h ²							
DIFERENCIAL DE SELEÇÃO MÉDIO	.56944						
GANHO POR SELEÇÃO	.56944						
GANHO POR SELEÇÃO (%)	13.35505						
MÉTODO 2 - GSd = i h DPg INTENSIDADE DE SELEÇÃO GANHO POR SELEÇÃO	1.2711 2.39706						
GANHO POR SELEÇÃO (%)	56.21772						

SELEÇÃO COMBINADA

INDICE : Gijk = b1(Yijk - Y.j.) + b2(Yi.. - Y...)

 COEFICIENTE b1
 1.27187

 COEFICIENTE b2
 .01

 RELAÇÃO b1/b2
 127.18651

RESPOSTA A SELEÇÃO COMBINADA

MÉTODO 1 : GS = DS			
GANHO POR SELEÇÃO	5.91142		
GANHO POR SELEÇÃO (%)	138.63911		
EFICIÊNCIA SELEÇÃO COMBINADA/SELEÇÃO ENTRE e DENTRO	3.68192		
MÉTODO 2 : GS = i r(HI) DP(Var.Gen.)			
PORCENTAGEM DE SELECIONADOS (%)	4.16667		
INTENSIDADE DE SELEÇÃO (tabelada)	2.13903		
INTENSIDADE DE SELEÇÃO (estimada)	2.60298		
GANHO POR SELEÇÃO	4.85779		
GANHO POR SELEÇÃO (%)	113.92858		

SELEÇÃO MASSAL

MÉDIA DOS SELECIONADOS	9.34167
DIFERENCIAL DE SELEÇÃO	5.07778
HERDABILIDADE	.93869
GANHO POR SELEÇÃO	4.76644
GANHO POR SELEÇÃO (%)	111.78622

SELEÇÃO MASSAL ESTRATIFICADA

MÉDIA DOS SELECIONADOS	8.1
DIFERENCIAL DE SELEÇÃO	3.83611
HERDABILIDADE	1.0
GANHO POR SELEÇÃO	3.83611
GANHO POR SELEÇÃO (%)	89.96743

A B C 10 9.8 4.2 "Alternativas de análise de experimentos visando à otimização na identificação de genótipos superiores de milho"

7. UTILIZAÇÃO DA GENÔMICA

- -Mapa genético
- -Detecção de QTLs
- -SAM
- -GWS

Exemplo:

População: F2

Número de marcadores : 8 Número de indivíduos = 44

Número de características fenotípicas : 1 (Resistência: R e S)

a) Teste de Segregação

Teste de segregação - Esperado 3:1

Marca	Obs1	Obs2	X ²	Probab.(%)
 М 1	31	13	.48485	48.62344 ns
м 2	34	10	.12121	72.77235 ns
м 3	28	16	3.0303	8.17228 ns
м 4	35	9	.48485	48.62344 ns
м 5	32	12	.12121	72.77235 ns
м б	34	10	.12121	72.77235 ns
м 7	31	13	.48485	48.62344 ns
м 8	31	13	.48485	48.62344 ns
Q1	35	9	.48485	48.62344 ns

- b) Porcentagem de recombinação entre pares de locos
- b1) Entre os marcadores M1 e M2

b2) Entre os pares de marcadores

Mapa	apa de Ligação - Matriz de Distância					mbinação	máxima:	30	LOD mínimo :	3
	м 1	M 2	м 3	M 4	м 5	м б	M 7	M 8	Q1	
M 1	100	22.59	29.93	47.77	6.72	50	41.39	48.19	57.35	
M 2	1.96	100	48.19	50	14.71	65.83	34.93	50	63.36	
м 3	1.17	0	100	53.97	33.36	55.73	29.93	60.24	53.97	
M 4	0	0	0	100	45.39	12.83	39.69	20.22	16.03	
M 5	6.84	3.58	0.75	0.03	100	57.35	39.34	53.97	67.98	
мб	0	0	0	3.74	0	100	59.39	34.93	2.41	
M 7	0.17	0.49	1.17	0.2	0.25	0	100	35.12	57.35	
M 8	0	0	0	2.31	0	0.49	0.54	100	39.69	
Q1	0	0	0	2.82	0	8.03	0	0.2	100	

b2) Entre os pares de marcadores

Teste de Ligação - Distância entre Marcas

30 1 2 24 7 1 23 8 8 22 9 9	8 .0 3	10.94949 11.43434 1.0101	1.20021				
25 6 1 30 1 2 24 7 1 23 8 8 822 9 9	.0 3		05040		22.59	1.96	20.22
30 1 2 24 7 1 23 8 8 22 9 9		1 0101	. >>>48		29.93	1.17	14.71
24 7 1 23 8 8 22 9 9	11	T.OTOT	79.88078	NL	47.77	0	47.77
23 8 8 22 9 9	. 11	36.9697	.0		6.72	6.84	0
22 9 9	.0 3	.60606	89.50436	NL	50	0	47.77
	5	1.9798	57.66103	NL	41.39	.17	32.58
24 7 1	4	1.0101	79.88078	NL	48.19	0	39.69
	.1 2	1.33333	72.12334	NL	57.35	0	57.35
22 12 6	5 4	3.19192	36.2971	NL	48.19	0	39.69
27 7 8	3 2	.60606	89.50436	NL	50	0	57.35
30 4 2	8	18.06061	.04274		14.71	3.58	14.71
25 9 9	1	1.25253	74.04361	NL	65.83	0	69.84
26 8 5	5 5	3.19192	36.2971	NL	34.93	.49	32.58
24 10 7	' 3	.60606	89.50436	NL	50	0	47.77
26 8 9	1	1.25253	74.04361	NL	63.36	0	69.84
22 6 1	.3 3	3.67677	29.85492	NL	53.97	0	47.77
23 5 9	7	8.0404	4.5184		33.36	.75	20.22
21 7 1	.3 3	3.51515	31.88023	NL	55.73	0	47.77
23 5 8	8	11.43434	.95948		29.93	1.17	14.71
18 10 1	.3 3	4.9697	17.40296	NL	60.24	0	47.77
22 6 1	.3 3	3.67677	29.85492	NL	53.97	0	47.77
26 9 6	3	.76768	85.71817	NL	45.39	.03	47.77
32 3 2	? 7	16.76768	.07889		12.83	3.74	20.22
26 9 5	4	1.9798	57.66103	NL	39.69	. 2	39.69
29 6 2	? 7	12.64646	.5467		20.22	2.32	20.22
32 3 3	6	12.64646	.5467		16.03	2.82	26.14
24 8 1	.0 2	.60606	89.50436	NL	57.35	0	57.35
24 8 7	5	2.06061	55.99234	NL	39.34	.25	32.58
22 10 9	3	.76768	85.71817	NL	53.97	0	47.77
24 8 1	.1 1	2.06061	55.99234	NL	67.98	0	69.84
23 11 8	2	1.25253	74.04361	NL	59.39	0	57.35
26 8 5	5 5	3.19192	36.2971	NL	34.93	.49	32.58
34 0 1	. 9	32.28283	.00005		2.41	8.04	9.54
24 7 7	6	4.24242	23.64486	NL	35.12	.54	26.14
24 7 1	.1 2	1.33333	72.12334	NL	57.35	0	57.35
, _	4	1.9798	57.66103	NL	39.69	. 2	39.69
24	7 7 7 1 5 9	7 7 6 7 11 2 5 9 4	7 7 6 4.24242 7 11 2 1.33333 5 9 4 1.9798	7 7 6 4.24242 23.64486 7 11 2 1.33333 72.12334 5 9 4 1.9798 57.66103	7 7 6 4.24242 23.64486 NL 7 11 2 1.33333 72.12334 NL	7 7 6 4.24242 23.64486 NL 35.12 7 11 2 1.33333 72.12334 NL 57.35 5 9 4 1.9798 57.66103 NL 39.69	7 7 6 4.24242 23.64486 NL 35.12 .54 7 11 2 1.33333 72.12334 NL 57.35 0 5 9 4 1.9798 57.66103 NL 39.69 .2

MMV : método da máxima verossimilhança.

Dist.fhr : Distância calculada com base na freqüência do homozigoto recessivo.

 ${
m NL}$: Não ligado. Nível de significância estimado acima de 5% de probabilidade pelo teste ${
m X^2}$

c) Mapa de ligação

```
Grupos de Ligação - Melhor Ordem
Distâncias expressa em : Frequência de recombinação (%)
```

```
Grupo : 1 : [M 4] 12.8 [M 6] 2.4 [Q1]

Grupo : 2 : [M 1] 6.7 [M 5] 14.7 [M 2]

Grupo : 3 : [M 3]

Grupo : 4 : [M 7]

Grupo : 5 : [M 8]
```


d) Utilização da genômica para fins de seleção

Sem auxílio da genômica:

- 44 plantas seriam levadas a campo
- 11 plantas (25%) seriam descartadas

Com auxílio da genômica:

- 34 plantas seriam levadas a campo
- Nenhuma planta descartada

A B C 10 9.8 4.2 "Alternativas de análise de experimentos visando à otimização na identificação de genótipos superiores de milho"

SELEÇÃO GENÔMICA AMPLA

8. UTILIZAÇÃO DA GWS

- A Seleção Genômica Ampla (*Genome Wide Selection -* GWS), proposta inicialmente no ano de 2001 por Meuwissen et al. (2001),
- Consiste na análise de um grande número de marcadores amplamente distribuídos no genoma.
- Após a obtenção destes marcadores, seus efeitos são estimados baseados em dados fenotípicos de uma população conhecida usada para estimação.
- Uma vez que seus efeitos são modelados e estimados, estes são testados em uma população de validação e, então, seleciona-se os marcadores que explicam parte da variância genética do caráter em estudo para que sua informação seja efetivamente incorporada à etapa de seleção do Programa de Melhoramento

Aplicação:

a. Genotipagem

b. Fenotipagem

Número de Locos	100	Máximo 500	
Loci selecionados	Gerar	Sequencial	
			26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 91 92 93 94 95 96 97 98 99 100
			v.
Ação gênica			
Efeito a e d	C Uniforme	Binomial	C Poisson C Exponencial
Efeito d	✓ Nulo		
Herdabilidade da cai	racterística (0-1)	0.4	
Constante (u)		100	

Programa GENES	Simulação
Arquivo de dados	C:\Nova pasta\genotipo.txt
Número de indivíduos	1000
Número de marcadores	500
Arquivo de saída	C:\Nova pasta\genotipo_feno.txt
Arquivo de saída	C:\Nova pasta\genotipo_geno.txt
Data	05-01-2014

Efeito do loco

Loco Uniforme	Uniforme	Binomial	Poisson	Exponencial
1	0.01	0.	0.000454	0.39346934
2	0.01	0.	0.00227	0.23865122
:				
44	0.01	0.03895256	0.	0.
45	0.01	0.0484743	0.	0.
46	0.01	0.0579584	0.	0.
47	0.01	0.0665905	0.	0.
48	0.01	0.07352701	0.	0.
49	0.01	0.07802866	0.	0.
50	0.01	0.07958924	0.	0.
51	0.01	0.07802866	0.	0.
52	0.01	0.07352701	0.	0.
53	0.01	0.0665905	0.	0.
54	0.01	0.0579584	0.	0.
55	0.01	0.0484743	0.	0.
56	0.01	0.03895256	0.	0.
:				
66	0.01	0.	0.	0.
100	0.01	0.	0.	0.
soma	1.	1.	0.9999546	1.

Herdabilidade : .4 Distribuição dos efeitos a :Binomial Distribuição dos efeitos d :Nulo

Estimativa	Genética	Fenotípica
Wédia	.148137	.148137
S	.018634	.047055
Correlação	. 637773	
R ₂	.406754	
ď	1000	

×		•	1
		2474E 08 14772 4	
		vfen 100.099132 100.329574 100.322964 100.322033 100.162269 100.059718 99.919521 100.28754 100.28754 100.28754 100.28387 100.28387 100.48322 99.91622	
	Ajuda	74e 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000.	
notas	Exibir	7485 1883 1883 1883 5507 908 5272 5272 6358 0111 0111 87 87 475	
loco de r	Formatar	vgen 100.107485 100.258164 100.201883 100.275907 100.385272 100.076358 99.94306 100.076358 100.076358 100.076358 100.076358 100.076358 100.076311 100.108174 100.2587 100.2587 100.2587 100.2587	
genotipo_feno - Bloco de notas		Z	
enotipo_	Arquivo Editar		
9	Arqu	id 11 22 88 70 11 11 11 11 11 12 11 12	

Variável = vfen
Média = 100.1505
Desvio-padrão 0.2168797
variância = 0.04703679
Num. obs = 800
DP média 0.007667854

Efeito dos marcadores

```
5.271359e-03 8.851225e-03 -8.640793e-04 6.366001e-03 2.994299e-03
  Γ61
      1.003776e-02 -1.087664e-03 -9.526799e-04 8.428165e-03
                                                             5.577558e-03
 [11] 6.047749e-03 1.965340e-03 -9.039372e-03 -3.278473e-03 -1.426062e-03
 [16] 1.912324e-03 -7.038966e-03 1.462921e-03 2.922860e-03 -2.186472e-03
 [21] -5.470340e-03 -3.763219e-03 -5.189021e-03 -3.399641e-03
                                                             5.566117e-04
 [26] -2.098626e-03 3.799496e-04 -2.885364e-03 -5.402590e-03 -1.041173e-03
 [311 -9.089106e-03 -4.659429e-03 -3.555734e-03 3.997355e-03
                                                             4.845967e-05
[481] -8.503819e-05 -7.284646e-04 9.622414e-03 5.687507e-04 1.260996e-02
[486] 7.939012e-03 -2.749067e-03
                                  7.444189e-03 3.925074e-03 -1.080992e-04
[491] -6.163062e-05 2.393033e-03 -4.272430e-05 2.801869e-03 7.250899e-03
[496] 7.172935e-04 -1.099128e-03 9.258061e-04 -8.529307e-03 -2.660772e-04
```


A B C 10 9.8 4.2 "Alternativas de análise de experimentos visando à otimização na identificação de genótipos superiores de milho"

9. INTELIGÊNCIA ARTIFICIAL - REDES NEURAIS

- -Análise Classificatória
- -Predição de Valores Genéticos
- -Ajuste de modelos
- -Previsões temporais

Redes Neurais são modelos computacionais não lineares, inspirados na estrutura e operação do cérebro humano, que procuram reproduzir características humanas, tais como:

aprendizado, associação, generalização e abstração.

Devido à sua estrutura, as Redes Neurais são bastante efetivas no aprendizado de padrões a partir de dados não-linares, incompletos, com ruído e até compostos de exemplos contraditórios.

a. Inteligência computacional

Busca, através de técnicas inspiradas na Natureza, o desenvolvimento de sistemas inteligentes que imitem aspectos do comportamento humano, tais como: aprendizado, percepção, raciocínio, evolução e adaptação.

O que é Inteligência Computacional?

- "O ramo da ciência da computação preocupada com a automação de comportamento inteligente." [LUGER & STUBBLEFIELD, 93]
- " É o estudo de como fazer os computadores realizarem coisas que, no momento, as pessoas fazem melhor." [RICH & KNIGHT, 93]

Objetivo científico:

Entender os princípios que tornam possíveis comportamentos inteligentes.

Objetivo de engenharia:

Especificar métodos para projeto de artefatos inteligentes úteis.

b. Modelo Estatístico

$$Yij = m + Gi + Bj + Eij$$

- a. Modelo estatístico
- b. Pressuposições e distribuições
- c. Análises estatísticas

c. Modelo biológico

7,5

T10

Paradigma atual
Processamento
Resumo das informações
Tomada de decisão

Objetivo

Avaliar a eficiência da RNA em predizer valores genéticos em comparação com o valor fenotípico médio, tendo por base um experimento em blocos ao acaso, com 6 repetições e avaliação de 100 genótipos em relação a uma característica de herdabilidade igual a 40%. A hipótese é a de que o pesquisador possa substituir a média por um outro critério de seleção que seria o valor da rede treinada a partir de informações estatísticas relevantes, tais como:

- a. A média do genótipo (critério convencional)
- b. Os valores máximos de cada genótipo nos b blocos
- c. Os valores mínimos de cada genótipo nos b blocos
- d. Os valores do DP de cada genótipo
- e. Os valores dos coeficientes de variação de cada genótipo
- f. Os valores da soma de rank obtida em cada bloco pelos g genótipos
- g. Os valores da estatística Pi que mede a distância do genótipo i ao genótipo ideal caracterizado por produzir o máximo em todos os blocos
- h. A média do genótipo transformada em variável qualitativa considerando a sua variação em tono da média nos limites, inferior e superior, a 1, 2 e 3 desvio-padrão

Arquivo de dados:

Arquivo original (teste):

Informações da avaliação de 100 genótipos, em DBC, com 6 blocos. Característica com H2 de 40%, média igual a 100 e CV igual a 12.

Arquivos de validação:

Informações da avaliação de 100 genótipos simulados, em DBC, com 6 blocos. A simulação mantém a H2 de 40%, média igual a 100 e CV igual a 12 e a mesma matriz de variâncias e covariância entre dados dos diferentes blocos. Também é predito o valor genético.

Arquivos de treinamento:

Informações da avaliação de 5000 genótipos simulados, em DBC, com 6 blocos. A simulação mantém a H2 de 40%, média igual a 100 e CV igual a 12 e a mesma matriz de variâncias e covariância entre dados dos diferentes blocos. Também é predito o valor genético.

Ensaio de treinamento - Histórico ou in silico

Ensaio - Teste

I. Análise dos dados de teste

A análise do conjunto dos dados comprova a eficácia da simulação em prover informações de genótipos com os valores da média (igual a 100), coeficiente de variação (igual a 12) e herdabilidade (igual a 40%) tal como estabelecidos pelo pesquisador.

ANÁLISE DE V	ARIÂNCIA -	- ARQUIVO : C:\dado	s\IA\ProjetosR	NA\rede1.dat				
FV Probabilidad	GL le	SQ	QM	F				
GENÓTIPOS	5 99 495			.71192 1.66672	.00023			
TOTAL	599	95552.2691	691					
DESCRIÇÃO		EST	ESTIMATIVA					
MÉDIA VARIÂNCIA GE VARIÂNCIA RE H² (MÉDIA) H² (INDIVÍDU CV Experimen	SIDUAL JOS)	16. 143 40. 10.	99.99985 16.00108 143.99841 40.00188 10.0007 11.99995					
CV genético		4.0	4.00014					

II. Qualidade das estatísticas auxiliares para a predição do valor genético

Algumas estatísticas chegam a ser critérios mais confiáveis em predizer o valor genético do que a média do genótipo, conforme pode ser observado a seguir:

r²: Vg x Média	.40 <= herdabilidade do caráter
r²: Vg x Máximo	.2929
r²: Vg x Mínimo	.2416
r2: Vg x DP	.0015
r ² : Vg x CV	.0061
r²: Vg x Pi	.3621
r ² : Vg x SRank	.3843
r²: Vg x Classe	.4289

Vg = valor genético verdadeiro (conhecido por ser gerados por simulação)

III - Replicação e Ampliação de Arquivo de Dados

Por simulação foram geradas 10 réplicas do arquivo original (redelvall.dat a redelvall0.dat) e uma ampliação (redelTr.dat) com a avaliação de 5000 genótipos. O resultado da análise deste arquivo ampliado é apresentado a seguir, podendo ser verificado que todos os parâmetros da simulação (média, cv, herdabilidade e matriz de variâncias e covariâncias entre informações dos b blocos) foram preservados.

ANÁLISE DE VARIÂNCIA - AROUIVO:

C:\dados\IA\ProjetosRNA\rede1Tr.dat

FV	GL	SQ	QM	F	Probab		
BLOCOS	5	25628.80008	5125.76002	35.59595			
GENÓTIPOS	4999	1199784.3157	240.00486	1.66672	.19346		
RESÍDUO	24995	3599240.19244	143.99841				
TOTAL	29999	4824653.30822					
DESCRIÇÃO		ESTI	MATIVA				
MÉDIA		99.9	99985				
VARIÂNCIA G	ENÉTICA	16.0	16.00108				
VARIÂNCIA RI	ESIDUAL	143.	143.99841				
H² (MÉDIA)		40.0	40.00188				
H² (INDIVÍD	UOS)	10.0	10.0007				
CV Experime	ntal	11.9	11.99995				
CV genético		4.00	4.00014				

A qualidade das informações das estatísticas auxiliares também é mantida conforme ilustrado a seguir:

Valores de r²

r²:	۷g	x	Média	.40
r²:	۷g	x	Máximo	.2901
r²:	Vg	x	Mínimo	.275
r²:	۷g	x	DP	.0047
r²:	۷g	x	CV	.0123
r²:	۷g	x	Pi	.3856
r²:	۷g	x	SRank	.3697
r²:	۷g	x	Classe	.3418

Para os arquivos de validação foram obtidos os seguintes resultados:

	Val1	Val2	Val3	Val4	Val5	Val6	Val6	Val8	Val9	Val10
Média	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Máximo	0.2812	0.2761	0.2277	0.2191	0.3625	0.1214	0.4266	0.3212	0.3244	0.2772
Mínimo	0.3334	0.3015	0.3072	0.1954	0.2995	0.369	0.1005	0.1661	0.2159	0.262
DP	0.0565	0.002	0.0491	0.0001	0.0015	0.0319	0.1361	0.0244	0.0002	0.0044
CV	0.1426	0.0334	0.1464	0.0294	0.0346	0.1183	0.0417	0	0.018	0.0446
Pi	0.4034	0.3864	0.4063	0.3708	0.3864	0.4195	0.3176	0.3547	0.359	0.3705
SRank	0.3321	0.3764	0.3767	0.3534	0.3531	0.3622	0.3711	0.3947	0.4199	0.3261
Classe	0.3663	0.4247	0.1693	0.3207	0.2838	0.4074	0.3934	0.3584	0.3691	0.4981

IV – Uso da Rede Neural

CONCLUSÃO

"Alternativas de análise de experimentos visando à otimização na identificação de genótipos superiores de milho"

Genética Quantitativa

Melhoramento

Experimentação

Redes Neurais

Genômica: SAM e GWS

Biometria

MUITO OBRIGADO

