RELAZIONE GEOTECNICA

INTERVENTO LOCALE

L.R. Lombardia n.33/2015 D.G.R. Lombardia 30-03-2016 n.X5001

> art. 4 Legge 5-11-1971 n. 1086 art.65 D.P.R. 6-6-2001 n.380 cap.10 D.M .17-01-2018

CIMITERO POGLIANO MILANESE

MONTACARICHI PORTAFERETRI ESTERNO

Via Arluno, 27 – 20005 Pogliano Milanese (MI)

Dicembre 2022

GEGNERION

GOVERNO

ATTANEO CLAUDIO

Settori:

Settori:

ATTANO

ATTANO

ATTANO

ATTANO

Dott. Ing. Claudio CATTANEO

via Vittorio Emanuele, 1 – Pregnana Mil.se - MI

Ordine degli Ingegneri della Provincia di Milano n°14749 02-93590040 - claudio.cattaneo@studiocc.it

1 Normativa di riferimento per la geotecnica

NORME TECNICHE PER LE COSTRUZIONI NTC 2018 Norme tecniche per le costruzioni D.M. 17 gennaio 2018.

CONSIGLIO SUPERIORE DEI LAVORI PUBBLICI

Istruzioni per l'applicazione dell'"Aggiornamento delle "Norme tecniche per le costruzioni"" di cui al D.M. 17 gennaio 2018. Circolare 21 gennaio 2019, n.7.

CONSIGLIO SUPERIORE DEI LAVORI PUBBLICI

Pericolosità sismica e Criteri generali per la classificazione sismica del territorio nazionale. Allegato al voto n. 36 del 27.07.2007

NORMA TECNICA UNI EN 1997-1:2005 (EUROCODICE 7 - PROGETTAZIONE GEOTECNICA) Progettazione geotecnica - Parte 1: Regole generali.

NORMA TECNICA UNI EN 1998:2005 (EUROCODICE 8 - PROGETTAZIONE SISMICA)

Indicazioni progettuali per la resistenza sismica delle strutture - Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

D.M. 11/03/1988

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione (norma possibile se si opera in Zona sismica 4, attuali Classi I e II).

2 Premessa

Trattasi della realizzazione di un nuovo montacarichi all'interno dell'area cimiteriale di via Arluno 27 Polgliano Milanese Il nuovo montacarichi viene realizzato in adiacenza e al servizio dell'esistente edificio cimiteriale.

Per tutto quanto riguarda le caratteristiche geologiche e geotecniche del terreno per il dimensionamento delle fondazioni si fa riferimento alla relazione Geologica redatta dal **Geologo Dott. Linda Cortellezzi**

Dott. Geologo LINDA CORTELEZZI - Ordine dei Geologi della Lombardia n. 1013

Via Morazzone n. 3/A - 21049 TRADATE (VA); Tel. e Fax. +39 0331 843568 - cell. +39 338 3613462 e-mail: geostudio1966@libero.it; PEC: linda.cortelezzi@pec.epap.it P.IVA 02414970125 --Codice Fiscale: CRTLND66R70L319R

Comune di POGLIANO MILANESE

Città Metropolitana di Milano Regione Lombardia

Progetto per la costruzione di nuovo montacarichi presso il Cimitero Comunale

Relazione Geologica e Geotecnica (R1, R2 ed R3)

Decreto Ministeriale 17.01.2018 Aggiornamento delle "Norme Tecniche per le Costruzioni"

Rif.: 966TCN

dicembre 2022

3 Descrizione delle opere in sito

La **struttura in oggetto** è stata analizzata secondo la norma D.M. 17-01-18 (N.T.C.), considerandola come tipo di costruzione 2 - Costruzioni con livelli di prestazioni ordinari. In particolare si è prevista, in accordo con il committente, una vita nominale dell'opera di Vn=50 anni per una classe d'uso II. L'opera è edificata in località Milano, Pogliano Milanese; Latitudine ED50 45,5422° (45° 32' 32"); Longitudine ED50 9,0017° (9° 0' 6"); Altitudine s.l.m. 165,35 m. (coordinate esatte: 45,5422 9,0017).

Si tratta di una struttura metallica di sostegno del montacarichi e del relativo piano di sbarco al piano primo , nonché della fondazione a platea oggetto della presente relazione .

La presente relazione fa riferimento ai dati relativi ai carichi in fondazione trasmessi dal progettista della struttura metallica, si rimanda alla relativa relazione di calcolo.

Nell'ambito della modellazione della fondazione pertanto si è condotta una analisi statica di tipo non sismico in quanto l'azione sismica è già stata considerata dal progettista della struttura metallica e gli effetti esplicitati nei carichi al piede.

Nella presente progettazione si sono considerati i seguenti parametri geotecnici di verifica:

Coefficiente di sicurezza per carico limite (fondazioni superficiali) Coefficiente di sicurezza per scorrimento (fondazioni superficiali) Coefficiente di sicurezza per ribaltamento (plinti superficiali) 2.3

1.15

LEGENDA

Figura 4 - estratto Carta dei vincoli - PGT vigente

LEGENDA

TEMATISMI	ZONA	DESCRIZIONE	CLASSE DI FATTIBILITA DELLE AZIONI DI PIANO
3.2	3.2	 Area ad elevata vuinerabilità dell'acquifero, Area con presenza nel primi metri di sottosuolo di orizzonti incoerenti a bassa densità relativa Area verificata come allagabile nella valutazione approfondita della condizione di rischio idraulito - zonazione di pericolosità H3 (con tirante idraulico 5 di 0,5 m) e H1/H2 	CLASSE 3

	Suddiv	risione del territorio comunale in Scenari di Pericolosità Sismica Lo	cale
TEMATISM	SIGLA	DESCRIZIONE	EFFETTO
	Z4a	 Zone di fondovalle con presenza di depositi alluvionali e/o fluvio-glaciali granulari e/o coesivi. 	AMPLIFICAZIONI LITOLOGICHE E GEOMETRICHE

Figura 1 – estratto Carta della fattibilità geologica– Studio geologico, idrogeologico e sismico del PGT – Comune di Pogliano Milanese (MI)

4 Problemi geotecnici e scelte tipologiche

Problemi geotecnici e scelte tipologiche: contiene la valutazione eseguita dal progettista sulle problematiche geotecniche inerenti l'opera in oggetto, sulla base di quanto emerso dalle documentazioni esistenti, in particolare dalla relazione geologica del sito; a questo proposito è possibile richiamare i termini presenti nella carta geologica. Viene indicata la tipologia di fondazioni previste, le modalità costruttive, gli accertamenti preliminari necessari, gli eventuali interventi aggiuntivi richiesti (sbancamenti, consolidamenti, sistemi di drenaggio, abbassamento di falda, ecc.).

Tipologia di fondazione

Nella modellazione si è considerata la presenza di fondazioni superficiali, schematizzando il suolo con un letto di molle elastiche di assegnata rigidezza. In direzione orizzontale si è considerata la struttura bloccata.

I valori di default dei parametri di modellazione del suolo, cioè quelli adottati dove non diversamente specificato, sono i seguenti:.

Coefficiente di sottofondo verticale per fondazioni superficiali (default)

1 [daN/cm3]

Per elementi nei quali si sono valutati i parametri geotecnici in funzione della stratigrafia sottostante si sono adottate le seguenti formulazioni di letteratura:

Metodo di calcolo della K verticale Metodo di calcolo della capacità portante Vesic Vesic

Rappresentazione in pianta di tutti gli elementi strutturali di fondazione.

4.1 Elementi di fondazione

4.1.1 Fondazioni di piastre

Descrizione breve: descrizione breve usata nelle tabelle dei capitoli delle piastre di fondazione.

Stratigrafia: stratigrafia del terreno nel punto medio in pianta dell'elemento.

Sondaggio: è possibile indicare esplicitamente un sondaggio definito nelle preferenze oppure richiedere di estrapolare il sondaggio dalla definizione del sito espressa nelle preferenze.

Estradosso: distanza dalla quota superiore del sondaggio misurata in verticale con verso positivo verso l'alto. [cm]

Deformazione volumetrica: valore della deformazione volumetrica impiegato nel calcolo della pressione limite a rottura con la formula di Vesic. Il valore è adimensionale. Accetta anche il valore di default espresso nelle preferenze.

Angolo pendio: angolo del pendio rispetto l'orizzontale; il valore deve essere positivo per opere in sommità di un pendio mentre deve essere negativo per opere al piede di un pendio. [deg]

K verticale: coefficiente di sottofondo verticale del letto di molle. [daN/cm³]

Limite compressione: pressione limite di plasticizzazione a compressione del letto di molle. [daN/cm²]

Limite trazione: pressione limite di plasticizzazione a trazione del letto di molle. [daN/cm²]

Descrizione breve		Stratigrafia		Angolo pendio	K verticale	Limite compressione	Limite trazione
	Sondaggio	Estradosso	Deformazione volumetrica				
FS1	Piu' vicino in sito	0		0	1	10	0.001

5 Programma delle indagini e delle prove geotecniche

Programma delle indagini e delle prove geotecniche: contiene il programma delle indagini e delle prove geotecniche, definito dal progettista in base alle caratteristiche dell'opera in progetto e alle presumibili caratteristiche del sottosuolo. Le indagini geotecniche devono permettere un'adeguata caratterizzazione geotecnica del volume significativo di terreno, che è la parte di sottosuolo influenzata, direttamente o indirettamente, dalla costruzione dell'opera e che influenza l'opera stessa. La posizione dei punti di indagine e la loro quota assoluta devono essere rilevate topograficamente e riportate in planimetria. I risultati delle indagini e prove geotecniche in sito devono essere documentati con indicazioni sui tipi di indagine condotte e le caratteristiche delle attrezzature impiegate:

Categorie di sottosuolo

Le categorie di suolo di fondazione, secondo l'OPCM 3274 e s.m.i. e il D.M. 17.01.2018 risultano identificate secondo la seguente Tabella.

Le NTC2018 raccomandano fortemente la misura diretta della velocità di propagazione delle onde di taglio Vs, ma in questo caso tale classe è stata definita mediante l'esecuzione di prove penetrometriche e dalle indicazioni di profili sismici di riferimento (Indagine Masw per la costruzione di antenne per telefonia mobile, Pogliano Milanese, 2019; documentazione del vigente PGT).

Per il terreno in esame la categoria di suolo è assimilabile al **Tipo C**, "Depositi di sabbie e ghiaie mediamente addensate o argille di media consistenza, caratterizzati da valori di Vs compresi tra 180 e 360 m/s".

Tab. 3.2.II - Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie $C \circ D$, con profondità del substrato non superiore a 30 m.

5.1 Sondaggi del sito

Vengono elencati in modo sintetico tutti i sondaggi risultanti dalle verticali di indagine condotte in sito, con l'indicazione dei terreni incontrati, degli spessori e dell'eventuale falda acquifera.

Non sono stati effettuati sondaggi del sito , si sono assunti i dati di sondaggi noti perché realizzati in diretta adiacenza relativi alla realizzazione di una torre per telecomunicazioni.

Si riporta nel seguito la stratigrafia adottata e le relative caratteristiche meccaniche del terreno

Immagine: Sondaggio_1

Stratigrafie

Terreno: terreno mediamente uniforme presente nello strato.

Sp.: spessore dello strato. [cm]

Liqf: indica se considerare lo strato come liquefacibile nelle combinazioni sismiche. Con 'Da verifica' viene considerato quanto risulta dalla verifica condotta a fine calcolo solutore.

Kor,i: coefficiente K orizzontale al livello inferiore dello strato per modellazione palo. [daN/cm³]

Kor,s: coefficiente K orizzontale al livello superiore dello strato per modellazione palo. [daN/cm³]

Kve,i: coefficiente K verticale al livello inferiore dello strato per modellazione palo. [daN/cm³]

Kve,s: coefficiente K verticale al livello superiore dello strato per modellazione palo. [daN/cm³]

Eel,s: modulo elastico al livello superiore dello strato per calcolo cedimenti istantanei; 0 per non calcolarli. [daN/cm²] **Eel,i**: modulo elastico al livello inferiore dello strato per calcolo cedimenti istantanei; 0 per non calcolarli. [daN/cm²]

Eed,s: modulo edometrico al livello superiore per calcolo cedimenti complessivi; 0 per non calcolarli. [daN/cm²]

Eed,i: modulo edometrico al livello inferiore per calcolo cedimenti complessivi; 0 per non calcolarli. [daN/cm²]

CC,s: coefficiente di compressione vergine CC al livello superiore per calcolo cedimenti di consolidazione; 0 per non calcolarli. Il valore è adimensionale.

CC,i: coefficiente di compressione vergine CC al livello inferiore per calcolo cedimenti di consolidazione; 0 per non calcolarli. Il valore è adimensionale.

CR,s: coefficiente di ricompressione CR al livello superiore per calcolo cedimenti di consolidazione; 0 per non calcolarli. Il valore è adimensionale.

CR,i: coefficiente di ricompressione CR al livello inferiore per calcolo cedimenti di consolidazione; 0 per non calcolarli. Il valore è adimensionale.

E0,s: indice dei vuoti E0 al livello superiore per calcolo cedimenti di consolidazione. Il valore è adimensionale.

E0,i: indice dei vuoti E0 al livello inferiore per calcolo cedimenti di consolidazione. Il valore è adimensionale.

OCR,s: indice di sovraconsolidazione OCR al livello superiore per calcolo cedimenti di consolidazione; 1 per terreno NC. Il valore è adimensionale. OCR,i: indice di sovraconsolidazione OCR al livello inferiore per calcolo cedimenti di consolidazione; 1 per terreno NC. Il valore è adimensionale.

Terreno	Sp.	Liqf	Kor,i	Kor,s	Kve,i	Kve,s	Eel,s	Eel,i	Eed,s	Eed,i	CC,s	CC,i	CR,s	CR,i	E0,s	E0,i	OCR,s	OCR,i
Pogliano 1°	60	No	1	1	1	1	50	50	0	0	0	0	0	0	0	0	1	1
strato																		
superficiale																		
Pogliano 2°	300	No	1	1	1	1	88	88	0	0	0	0	0	0	0	0	1	1
strato																		
Pogliano 3°	440	No	1	1	1	1	204	204	0	0	0	0	0	0	0	0	1	1
strato															1			

6 Caratterizzazione geotecnica dei terreni in sito

Caratterizzazione geotecnica dei terreni in sito: contiene i profili geotecnici, cioè la successione stratigrafica considerata per la progettazione (sezioni geotecniche), il regime delle pressioni interstiziali, le caratteristiche meccaniche dei terreni e tutti gli elementi significativi del sottosuolo. L'insieme di questi dati deve permettere la determinazione dei parametri geotecnici caratteristici.

TABELLA 2 - PARAMETRI GEOTECNICI

Unità geotecniche	profondità dal p.c. (m)	Nspt medio	φ (°)	Dr (%)	Peso di volume naturale (t/mc)	E Modulo di Young (kg/cmq)	Rapporto tau/sigma	Go Modulo dinamico di taglio (kg/cmq)	M Modulo edometrico (kg/cmq)
1	da - 0,3/-0,6m a -3,6m circa	5	27	20	1,85	88	0,25	94	82
2	Da -3,6m circa a -8,0 m	15	31	45	1,90	204	0,3	182	221

 $arphi = \sqrt{15Nspt} + 15_{
m Valida\ per\ sabbia\ fine\ e\ limosa\ (Road\ Bridge\ Specification)}$ arphi=0.3 Nspt+27 valida per sabbia media e grossolana; ghiaia (Japanese National Railway) $\ln(Dr\%) = 0.478 \ln(N_{sps}) - 0.262 \ln(\sigma) + 2.84$ (Schultze & Mezembach)
$$\begin{split} G_0\left(t \mid mq\right) &= a N s p t^b \text{ (Ohsaki \& Iwasaki)} \\ V s(m \mid s) &= C_s N_{spt}^{-0.171} z_s^{0.199} F_a F_g \text{ (Ohta \& Goto)} \end{split}$$
 $\tau/\sigma = \frac{N_1}{90} \frac{1}{\text{dove:}} N_1 = \left[1 - 1,25 Log_{10}(\sigma_{\text{v}}')\right] N_{\text{spt}} \text{ (relazione empirica di Seed e Idriss)}$ $M\left(kg/cmq\right)=11,84N_{spi}+38_{valida\ per\ sabbia\ ghiaiosa\ (Menzebach\ \&\ Malcev)}$ $E(MPa) = \alpha N spt \ (\alpha = -0.00107 N spt^2 + 0.136 N spt + 1.503)$ (Stroud)

6.1 Terreni

Descrizione: descrizione o nome assegnato all'elemento.

Natura geologica: natura geologica del terreno (granulare, coesivo, roccia).

Coesione (c'): coesione efficace del terreno. [daN/cm²]

Coesione non drenata (Cu): coesione non drenata (Cu), per terreni eminentemente coesivi (argille). [daN/cm²]

Angolo di attrito interno φ: angolo di attrito interno del terreno. [deg]

Angolo di attrito di interfaccia δ: angolo di attrito all'interfaccia tra terreno-cls. [deg]

Coeff. α di adesione della coesione (0;1): coeff. di adesione della coesione all'interfaccia terreno-cls, compreso tra 0 ed 1. Il valore è adimensionale.

Coeff. di spinta K0: coefficiente di spinta a riposo del terreno. Il valore è adimensionale.

y naturale: peso specifico naturale del terreno in sito, assegnato alle zone non immerse. [daN/cm³]

y saturo: peso specifico saturo del terreno in sito, assegnato alle zone immerse. [daN/cm³]

E: modulo elastico longitudinale del terreno. [daN/cm²]

v: coefficiente di Poisson del terreno. Il valore è adimensionale.

Qualità roccia RQD (0;1): rock quality degree. Indice di qualità della roccia, assume valori nell'intervallo (0;1). Il valore è adimensionale.

Descrizione	Natura geologica	Coesione (c')	Coesione non drenata (Cu)	attrito	Angolo di attrito di interfaccia δ	adesione	Coeff. di spinta K0	γ naturale	γ saturo	E	V	Qualità roccia RQD (0;1)
Ghiaia	Generico	0	0	38	0	1	0.38	0.00195	0.00215	900	0.3	0
Pogliano 1° strato superficiale	Granulare incoerente (Sabbie)	0	0	21	20	0	0.64	0.00145	0.00185	50	0.35	0
Pogliano 2° strato	Granulare incoerente (Sabbie)	0	0	27	20	0	0.55	0.00185	0.00185	88	0.35	0
Pogliano 3° strato	Granulare incoerente (Sabbie)	0	0	31	20	0	0.48	0.0019	0.0019	204	0.35	0

7 Modellazione del sottosuolo e metodi di analisi e di verifica

Modellazione del sottosuolo e metodi di analisi e di verifica: contiene la descrizione del modello di calcolo adottato per il suolo, con i relativi parametri di modellazione; sono indicati anche gli eventuali metodi adottati per ricavare i parametri di modellazione ed i metodi e le condizioni con cui sono condotte le verifiche geotecniche.

Modello di fondazione

Le travi di fondazione sono modellate tramite uno specifico elemento finito che gestisce il suolo elastico alla Winkler.

Le fondazioni a plinto superficiale sono modellate con un numero elevato di molle verticali elastiche agenti su nodi collegati rigidamente al nodo centrale. Le fondazioni a platea sono modellate con l'inserimento di molle verticali elastiche agenti nei nodi delle mesh.

Verifica di scorrimento

La verifica di scorrimento della fondazione superficiale viene eseguita considerando le caratteristiche del terreno immediatamente sottostante al piano di posa della fondazione, ricavato in base alla stratigrafia associata all'elemento, e trascurando, a favore di sicurezza, l'eventuale spinta passiva laterale. Qualora l'elemento in verifica sia formato da parti non omogenee tra loro, ad esempio una travata in cui le singole travi di fondazione siano associate ad un differente sondaggio, verranno condotte verifiche geotecniche distinte sui singoli tratti.

Lo scorrimento di una fondazione avviene nel momento in cui le componenti delle forze parallele al piano di contatto tra fondazione e terreno vincono l'attrito e la coesione terreno-fondazione e, qualora fosse presente, la spinta passiva laterale.

Il coefficiente di sicurezza a scorrimento si ottiene dal rapporto tra le forze stabilizzanti di progetto (Rd) e quelle instabilizzanti (Ed):

$$Rd = (N \cdot Tan(\varphi) + c_a \cdot B \cdot L + \alpha \cdot S_p) / \gamma_{Rs}$$
$$|Ed = \sqrt{T_x^2 + T_y^2}$$

dove:

Ν

= risultante delle forze normali al piano di scorrimento;

Tx, Ty = componenti delle forze tangenziali al piano di scorrimento;

tan(phi) = coefficiente di attrito terreno-fondazione;

ca = aderenza alla base, pari alla coesione del terreno di fondazione o ad una sua frazione;

B, L = dimensioni della fondazione;

alpha = fattore di riduzione della spinta passiva; Sp = spinta passiva dell'eventuale terreno laterale; gamma rs= fattore di sicurezza parziale per lo scorrimento;

Le normative prevedono che il fattore di sicurezza a scorrimento FS=Rd/Ed sia non minore di un prefissato limite.

Verifica di capacità portante

La verifica di capacità portante della fondazione superficiale viene eseguita mediante formulazioni di letteratura geotecnica considerando le caratteristiche dei terreni sottostanti al piano di posa della fondazione, ricavati in base alla stratigrafia associata all'elemento.

Qualora l'elemento in verifica sia formato da parti non omogenee tra loro, ad esempio una travata in cui le singole travi di fondazione siano associate ad un differente sondaggio, verranno condotte verifiche geotecniche distinte sui singoli tratti.

La verifica viene fatta raffrontando la portanza di progetto (Rd) con la sollecitazione di progetto (Ed); la prima deriva dalla portanza calcolata con metodi della letteratura geotecnica, ridotta da opportuni fattori di sicurezza parziali; la seconda viene valutata ricavando la risultante della sollecitazione scaricata al suolo con una integrazione delle pressioni nel tratto di calcolo. Le normative prevedono che il fattore di sicurezza alla capacità portante, espresso come rapporto tra il carico ultimo di progetto della fondazione (Rd) ed il carico agente (Ed), sia non minore di un prefissato limite.

La portanza di una fondazione rappresenta il carico ultimo trasmissibile al suolo prima di arrivare alla rottura del terreno. Le formule di calcolo presenti in letteratura sono nate per la fondazione nastriforme indefinita ma aggiungono una serie di termini correttivi per considerare le effettive condizioni al contorno della fondazione, esprimendo la capacità portante ultima in termini di pressione limite agente su di una fondazione equivalente soggetta a carico centrato. La determinazione della capacità portante ai fini della verifica è stata condotta secondo il metodo di Vesic, che viene descritto nei paragrafi successivi.

Metodo di Vesic

La capacità portante valutata attraverso la formula di Vesic risulta, nel caso generale:

$$Q_{\text{lim}} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q + \frac{1}{2} \gamma' \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma$$

Nel caso di terreno eminentemente coesivo (phi = 0) tale relazione diventa:

$$Q_{\text{lim}} = (2+\pi) \cdot c_u \cdot (1+s'_c+d'_c-i'_c-b'_c-g'_c) + q$$

dove:

gamma' = peso di volume efficace dello strato di fondazione; B = larghezza efficace della fondazione (B = Bf - 2e);

```
= lunghezza efficace della fondazione (L = Lf - 2e);
С
                     = coesione dello strato di fondazione:
                     = coesione non drenata dello strato di fondazione;
cu
                     = sovraccarico del terreno sovrastante il piano di fondazione;
Nc, Nq, Ny
                     = fattori di capacità portante;
                                = fattori di forma della fondazione;
sc, sq, sy
dc, dq, dy
                     = fattori di profondità del piano di posa della fondazione;
ic, iq, iy
                     = fattori di inclinazione del carico;
bc, bq, by
                     = fattori di inclinazione della base della fondazione;
gc, gq, gy
                     = fattori di inclinazione del piano campagna;
```

Nel caso di piano di campagna inclinato (beta > 0) e phi = 0, Vesic propone l'aggiunta, nella formula sopra definita, del termine 0.5 * gamma * B * N_gamma con N_gamma = -2 * sen beta
Per la teoria di Vesic i coefficienti sopra definiti assumono le espressioni che seguono:

$$\begin{split} N_c &= \left(N_q - 1\right) \cdot ctg\phi \, ; \quad N_q = tg^2 \bigg(45^o + \frac{\phi}{2}\bigg) \cdot e^{(\pi \cdot tg\phi)} \, ; \quad N_\gamma = 2 \cdot \left(N_q + 1\right) \cdot tg\phi \\ s_c &= 1 + \frac{B}{L} \cdot \frac{N_q}{N_c} \, ; \quad s'_c = 0.2 \cdot \frac{B}{L} \, ; \quad s_q = 1 + \frac{B}{L} \cdot tg\phi \, ; \quad s_\gamma = 1 - 0.4 \cdot \frac{B}{L} \\ d_c &= 1 + 0.4 \cdot k \, ; \quad d'_c = 0.4 \cdot k \, ; \quad d_q = 1 + 2 \cdot k \cdot tg\phi \cdot \left(1 - \sin\phi\right)^2 \, ; \quad d_\gamma = 1 \\ i_c &= i_q - \frac{1 - i_q}{N_q - 1} \, ; \quad i'_c = \frac{m \cdot H}{B \cdot L \cdot c_a \cdot N_c} \, ; \quad i_q = \left(1 - \frac{H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\right)^m \, ; \\ i_\gamma &= \left(1 - \frac{H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\right)^{m+1} \\ g_c &= 1 - \frac{\beta^o}{147^o} \, ; \quad g'_c = \frac{\beta^o}{147^o} \, ; \quad g_q = \left(1 - tg\beta\right)^2 \, ; \quad g_\gamma = g_q \\ b_c &= 1 - \frac{\eta^o}{147^o} \, ; \quad b'_c = \frac{\eta^o}{147^o} \, ; \quad b_q = \left(1 - \eta \cdot tg\phi\right)^2 \, ; \quad b_\gamma = b_q \\ k &= \frac{D}{B_f} \quad (\text{se } \frac{D}{B_f} \leq 1) \, ; \quad k = arctg \left(\frac{D}{B_f}\right) \quad (\text{se } \frac{D}{B_f} > 1) \, ; \quad m = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \\ \end{array}$$

nelle quali si sono considerati i seguenti dati:

phi = angolo di attrito dello strato di fondazione;

ca = aderenza alla base della fondazione:

nu = inclinazione del piano di posa della fondazione sull'orizzontale (nu = 0 se orizzontale);

beta = inclinazione del pendio;

H = componente orizzontale del carico trasmesso sul piano di posa della fondazione;

V = componente verticale del carico trasmesso sul piano di posa della fondazione:

D = profondità del piano di posa della fondazione dal piano campagna;

Influenza degli strati sulla capacità portante

Le formulazioni utilizzate per la portanza prevedono la presenza di uno stesso terreno nella zona interessata dalla potenziale rottura. In prima approssimazione lo spessore di tale zona è pari a:

$$H = \frac{1}{2} \cdot B \cdot Tan(45^{\circ} + \phi/2)$$

In presenza di stratificazioni di terreni diversi all'interno di tale zona, il calcolo diventa più complesso; non esiste una metodologia univoca per questi casi, differenti autori hanno proposto soluzioni diverse a seconda dei casi che si possono presentare. In prima approssimazione, nel caso di stratificazioni, viene trovata una media delle caratteristiche dei terreni, pesata sullo spessore degli strati interessati. Nel caso in cui il primo strato incontrato sia coesivo viene anche verificato che la compressione media agente sulla fondazione non superi la tensione limite di espulsione, circostanza che provocherebbe il rifluimento del terreno da sotto la fondazione, rendendo impossibile la portanza.

La tensione limite di espulsione qult per terreno coesivo viene calcolata come:

$$q_{ult} = 4c + q$$

dove c è la coesione e q è il sovraccarico agente sul piano di posa.

Influenza del sisma sulla capacità portante

La capacità portante nelle combinazioni sismiche viene valutata mediante l'estensione di procedure classiche al caso di azione sismica.

L'effetto inerziale prodotto dalla struttura in elevazione sulla fondazione può essere considerato tenendo conto dell'effetto dell'inclinazione (rapporto tra forze T parallele al piano di posa e carico normale N) e dell'eccentricità (rapporto tra momento M e carico normale N) delle azioni in fondazione, e produce

variazioni di tutti i coefficienti di capacità portante del carico limite, oltre alla riduzione dell'area efficace. L'**effetto cinematico** si manifesta per effetto dell'inerzia delle masse del suolo sotto la fondazione come una riduzione della resistenza teorica calcolata in condizioni statiche; tale riduzione è in funzione del coefficiente sismico orizzontale kh, cioè dell'accelerazione normalizzata massima attesa al suolo, e delle caratteristiche del suolo. L'effetto è più marcato su terreni granulari, mentre nei suoli coesivi è poco rilevante.

Per tener conto nella determinazione del carico limite di tali effetti inerziali vengono introdotti nelle combinazioni sismiche anche i fattori correttivi e (earthquake), valutati secondo Paolucci e Pecker:

$$e_{q} = \left(1 - \frac{k_{h}}{tg\phi}\right)^{0.35}$$
; $e_{c} = 1 - 0.32 \cdot k_{h}$; $e_{\gamma} = e_{q}$

8 Verifiche delle fondazioni

Verifiche delle fondazioni: contiene la descrizione degli stati limite considerati, gli approcci e le combinazioni di calcolo adottate; vengono poi elencate le pressioni e gli spostamenti massimi e minimi raggiunti nei diversi SL e le verifiche condotte sulle fondazioni presenti, superficiali e profonde.

Le verifiche nei confronti degli Stati Limite ultimi SLU strutturali (STR) e geotecnici (GEO) sono state effettuate applicando la combinazione (A1+M1+R3) di coefficienti parziali prevista dall'approccio 2:

DA1.2 - Approccio 2:

Combinazione 1:(A1+M1+R3)

Le verifiche strutturali delle fondazioni in combinazioni sismiche sono state condotte in campo sostanzialmente elastico.

8.1 Verifiche piastre C.A. di fondazione

Le unità di misura elencate nel capitolo sono in [cm, daN, deg] ove non espressamente specificato.

Nodo: indice del nodo di verifica.

Dir.: direzione della sezione di verifica.

B: base della sezione rettangolare di verifica. [cm]

H: altezza della sezione rettangolare di verifica. [cm]

A. sup.: area barre armatura superiori. [cm²]

C. sup.: distanza media delle barre superiori dal bordo superiore della sezione. [cm]

A. inf.: area barre armatura inferiori. [cm²]

C. inf.: distanza media delle barre inferiori dal bordo inferiore della sezione. [cm]

Comb.: combinazione di verifica.

M: momento flettente. [daN*cm]

N: sforzo normale. [daN]

Mu: momento flettente ultimo. [daN*cm]

Nu: sforzo normale ultimo. [daN]

c.s.: coefficiente di sicurezza.

Verifica: stato di verifica.

σc: tensione nel calcestruzzo. [daN/cm²]

σlim: tensione limite. [daN/cm²]

Es/Ec: coefficiente di omogenizzazione.

σf: tensione nell'acciaio d'armatura. [daN/cm²]

ID: indice della verifica di capacità portante.

Comb.: combinazione.

Fx: componente lungo x del carico. [daN]

Fy: componente lungo y del carico. [daN]

Fz: componente verticale del carico. [daN]

Mx: componente lungo x del momento. [daN*cm] My: componente lungo y del momento. [daN*cm]

ix: inclinazione del carico in x. [deg]

iy: inclinazione del carico in y. [degi

ex: eccentricità del carico in x. [cm]

ev: eccentricità del carico in y. [cm]

B': larghezza efficace. [cm]

L': lunghezza efficace. [cm]

Cnd: resistenza valutata per condizione a breve o lungo termine (BT - LT).

C: coesione di progetto. [daN/cm²]

Phi: angolo di attrito di progetto. [deg]

Qs: sovraccarico laterale da piano di posa. [daN/cm²]

vR: coefficiente parziale sulla resistenza di progetto.

Rd: resistenza alla rottura del complesso di progetto. [daN]

Ed: azione di progetto (sforzo normale al piano di posa). [daN]

Rd/Ed: coefficiente di sicurezza alla capacità portante.

Nq: fattore di capacità portante per il termine di sovraccarico.

Nc: fattore di capacità portante per il termine coesivo.

Ng: fattore di capacità portante per il termine attritivo.

Sq: fattore correttivo di capacità portante per forma (shape), per il termine di sovraccarico.

Sc: fattore correttivo di capacità portante per forma (shape), per il termine coesivo.

Sg: fattore correttivo di capacità portante per forma (shape), per il termine attritivo.

Dq: fattore correttivo di capacità portante per approfondimento (deep), per il termine di sovraccarico.

Dc: fattore correttivo di capacità portante per approfondimento (deep), per il termine coesivo.

Dg: fattore correttivo di capacità portante per approfondimento (deep), per il termine attritivo.

Iq: fattore correttivo di capacità portante per inclinazione del carico, per il termine di sovraccarico.

Ic: fattore correttivo di capacità portante per inclinazione del carico, per il termine coesivo.

Ig: fattore correttivo di capacità portante per inclinazione del carico, per il termine attritivo.

Bq: fattore correttivo di capacità portante per inclinazione della base, per il termine di sovraccarico.

Bc: fattore correttivo di capacità portante per inclinazione della base, per il termine coesivo.

Bg: fattore correttivo di capacità portante per inclinazione della base, per il termine attritivo.

G:

Gq: fattore correttivo di capacità portante per inclinazione del pendio, per il termine di sovraccarico.

Gc: fattore correttivo di capacità portante per inclinazione del pendio, per il termine coesivo.

Gg: fattore correttivo di capacità portante per inclinazione del pendio, per il termine attritivo.

D.

Pq: fattore correttivo di capacità portante per punzonamento, per il termine di sovraccarico.

Pc: fattore correttivo di capacità portante per punzonamento, per il termine coesivo.

Pg: fattore correttivo di capacità portante per punzonamento, per il termine attritivo.

E.

Eq: fattore correttivo di capacità portante per sisma (earthquake), per il termine di sovraccarico.

Ec: fattore correttivo di capacità portante per sisma (earthquake), per il termine coesivo.

Eg: fattore correttivo di capacità portante per sisma (earthquake), per il termine attritivo.

Platea Montacarichi

Verifiche condotte secondo D.M. 17-01-18 (N.T.C.)

Geometria

Caratteristiche dei materiali

Acciaio: B450C Fyk 4500 Calcestruzzo: C25/30 Rck 300

Sistema di riferimento e direzioni di armatura

Le coordinate citate nel seguito sono espresse in un sistema di riferimento cartesiano con origine in (-140; 3748.2; -117), direzione dell'asse X = (1; 0; 0), direzione dell'asse Y = (0; 1; 0).

Le direzioni X/Y di armatura e le sezioni X/Y di verifica sono individuate dagli assi del sistema di riferimento.

Verifiche nei nodi

Verifiche SLU flessione nei nodi

Piastra di fondazione con comportamento non dissipativo pertanto la verifica a pressoflessione, per le combinazioni SLV, viene eseguita calcolando i momenti resistenti in campo sostanzialmente elastico secondo D.M. 17-01-2018 87.4.1

HOHIEHU TE	50101611111111	i campo so	Stanziann	ente elasti	CO SECONO	10 D.IVI. 17	-01-2010 \	}/. 4 .I						
Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	Mu	Nu	c.s.	Verifica
110	X	50	30	1.96	4.5	1.96	4.5	SLU 2	134371	0	201793	0	1.5018	Si
111	X	50	30	1.96	4.5	1.96	4.5	SLU 2	130248	0	201793	0	1.5493	Si
109	X	50	30	1.96	4.5	1.96	4.5	SLU 2	116886	0	201793	0	1.7264	Si
55	X	50	30	1.96	4.5	1.96	4.5	SLU 6	106896	0	201793	0	1.8878	Si
107	X	48.9	30	1.92	4.5	1.92	4.5	SLU 2	100169	0	197204	0	1.9687	Si

Verifiche SLU EX flessione nei nodi

Piastra di fondazione con comportamento non dissipativo

Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	Mu	Nu	c.s.	Verifica
55	X	50	30	1.96	4.5	1.96	4.5	SLU EX 3	74168	0	236935	0	3.1946	Si
56	X	50	30	1.96	4.5	1.96	4.5	SLU EX 4	66894	0	236935	0	3.5419	Si
51	X	48.6	30	1.91	4.5	1.91	4.5	SLU EX 3	63097	0	229539	0	3.6379	Si
110	X	50	30	1.96	4.5	1.96	4.5	SLU EX 3	63718	0	236935	0	3.7185	Si
109	X	50	30	1.96	4.5	1.96	4.5	SLU EX 3	62907	0	236935	0	3.7664	Si

Verifiche SLE tensione calcestruzzo nei nodi

Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	σς	σlim	Es/Ec	Verifica
110	X	50	30	1.96	4.5	1.96	4.5	SLE RA 2	85087	0	-10.7	149.4	15	Si
55	X	50	30	1.96	4.5	1.96	4.5	SLE QP 2	63708	0	-8	112.1	15	Si
111	Х	50	30	1.96	4.5	1.96	4.5	SLE RA 2	82385	0	-10.4	149.4	15	Si
56	X	50	30	1.96	4.5	1.96	4.5	SLE QP 2	60035	0	-7.6	112.1	15	Si
55	Х	50	30	1.96	4.5	1.96	4.5	SLE RA 2	78802	0	-9.9	149.4	15	Si

Verifiche SLE tensione acciaio nei nodi

Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	σf	σlim	Es/Ec	Verifica
110	X	50	30	1.96	4.5	1.96	4.5	SLE RA 2	85087	0	112.6	3600	15	Si
111	X	50	30	1.96	4.5	1.96	4.5	SLE RA 2	82385	0	109	3600	15	Si
55	X	50	30	1.96	4.5	1.96	4.5	SLE RA 2	78802	0	104.3	3600	15	Si
109	X	50	30	1.96	4.5	1.96	4.5	SLE RA 2	73861	0	97.8	3600	15	Si
51	X	48.6	30	1.91	4.5	1.91	4.5	SLE RA 2	67286	0	91.6	3600	15	Si

Verifiche SLE fessurazione nei nodi

La piastra non presenta nodi con apertura delle fessure.

Verifiche geotecniche

Dati geometrici dell'impronta di calcolo

Forma dell'impronta di calcolo: rettangolare di area equivalente Centro impronta, nel sistema globale: -10; 3958.2; -147

Lato minore B dell'impronta: 260 Lato maggiore L dell'impronta: 420

Area dell'impronta rettangolare di calcolo: 109200

Verifiche geotecniche di capacità portante sul piano di posa

Profondità massima del bulbo di rottura considerato: 2.12 m Peso specifico efficace del terreno di progetto ys: 1850 daN/m3

Coefficiente di sicurezza minimo per portanza 3.87

000	Socialistic di Sicurezza minimo per portanza 6.07																				
ID	Comb.	Fx	Fy	Fz	Mx	My	ix	iy	ex	ey	B'	L'	Cnd	O	Phi	Qs	γR	Rd	Ed	Rd/Ed	Verifica
1	SLU 6	0	0	-32540	551831	578077	0	0	18	17	224	386	LT	0	27	0.06	2.3	125915	32540	3.87	Si
Ver	Verifiche geotecniche di capacità portante - Fattori utilizzati nel calcolo di Rd																				

8.2 Pressioni terreno in SLU

da -0.05 a -0.1

da -0.1 a -0.15

da -0.15 a -0.2

da -0.2 a -0.25

da -0.25 a -0.3

da -0.3 a -0.35

da -0.4 a -0.45

da -0.4 a -0.45

da -0.5 a -0.55

[daN/cm²]

Rappresentazione in pianta delle massime compressioni sul terreno in famiglia SLU.

Nodo: Nodo che interagisce col terreno.

Ind.: indice del nodo.

Pressione minima: situazione in cui si verifica la pressione minima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione minima.

uz: spostamento massimo verticale del nodo. [cm]

Valore: pressione minima sul terreno del nodo. [daN/cm²]

Pressione massima: situazione in cui si verifica la pressione massima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione massima.

uz: spostamento minimo verticale del nodo. [cm]

Valore: pressione massima sul terreno del nodo. [daN/cm²]

Compressione estrema massima -0.46833 al nodo di indice 12, di coordinate x = 120, y = 3748, z = -132, nel contesto SLU 6. Spostamento estremo minimo -0.46833 al nodo di indice 12, di coordinate x = 120, y = 3748, z = -132, nel contesto SLU 6. Spostamento estremo massimo -0.06581 al nodo di indice 189, di coordinate x = -140, y = 4168, z = -132, nel contesto SLU 2.

Nodo		Pressione minima		Pressione massima				
Ind.	Cont.	uz	Valore	Cont.	uz	Valore		
2	SLU 5	-0.3013	-0.3013	SLU 2	-0.16953	-0.16953		
3	SLU 5	-0.3006	-0.3006	SLU 2	-0.1921	-0.1921		
4	SLU 5	-0.29993	-0.29993	SLU 2	-0.2146	-0.2146		
5	SLU 6	-0.30614	-0.30614	SLU 1	-0.23026	-0.23026		
6	SLU 6	-0.32857	-0.32857	SLU 1	-0.22994	-0.22994		
7	SLU 6	-0.3512	-0.3512	SLU 1	-0.22982	-0.22982		
8	SLU 6	-0.37413	-0.37413	SLU 1	-0.22993	-0.22993		
9	SLU 6	-0.39736	-0.39736	SLU 1	-0.23023	-0.23023		
10	SLU 6	-0.42085	-0.42085	SLU 1	-0.23067	-0.23067		
11	SLU 6	-0.44453	-0.44453	SLU 1	-0.23117	-0.23117		
12	SLU 6	-0.46833	-0.46833	SLU 1	-0.23169	-0.23169		
13	SLU 5	-0.29281	-0.29281	SLU 2	-0.16778	-0.16778		
14	SLU 6	-0.4659	-0.4659	SLU 1	-0.22516	-0.22516		
15	SLU 6	-0.34798	-0.34798	SLU 1	-0.22314	-0.22314		
16	SLU 6	-0.32508	-0.32508	SLU 1	-0.22327	-0.22327		
17	SLU 6	-0.3712	-0.3712	SLU 1	-0.22326	-0.22326		
18	SLU 5	-0.29205	-0.29205	SLU 2	-0.19023	-0.19023		
19	SLU 6	-0.44219	-0.44219	SLU 1	-0.22459	-0.22459		

				Draceione magaine				
Nodo Ind.	Cont.	Pressione minima uz	Valore	Cont.	Pressione massima uz	Valore		
20	SLU 6	-0.30242	-0.30242	SLU 1	-0.22361	-0.22361		
21	SLU 6	-0.39475	-0.39475	SLU 1	-0.22358	-0.22358		
22	SLU 5 SLU 6	-0.29131 -0.41848	-0.29131 -0.41848	SLU 2 SLU 1	-0.2127 -0.22404	-0.2127 -0.22404		
24	SLU 5	-0.28424	-0.28424	SLU 2	-0.16585	-0.16585		
25	SLU 6	-0.46346	-0.46346	SLU 1	-0.21856	-0.21856		
26	SLU 6	-0.34461	-0.34461	SLU 1	-0.21634	-0.21634		
27	SLU 6 SLU 6	-0.32135 -0.36828	-0.32135 -0.36828	SLU 1 SLU 1	-0.21648 -0.21646	-0.21648 -0.21646		
29	SLU 5	-0.28338	-0.28338	SLU 2	-0.18804	-0.18804		
30	SLU 6	-0.44002	-0.44002	SLU 1	-0.21792	-0.21792		
31	SLU 6	-0.29833	-0.29833	SLU 1	-0.21684	-0.21684		
32 33	SLU 6 SLU 5	-0.39232 -0.28253	-0.39232 -0.28253	SLU 1 SLU 2	-0.2168 -0.21035	-0.2168 -0.21035		
34	SLU 6	-0.41641	-0.41641	SLU 1	-0.21728	-0.21728		
35	SLU 5	-0.27539	-0.27539	SLU 2	-0.16352	-0.16352		
36	SLU 6	-0.46082	-0.46082	SLU 1	-0.21175	-0.21175		
37 38	SLU 6 SLU 6	-0.34099 -0.31713	-0.34099 -0.31713	SLU 1 SLU 1	-0.20928 -0.20943	-0.20928 -0.20943		
39	SLU 6	-0.36534	-0.36534	SLU 1	-0.2094	-0.2094		
40	SLU 5	-0.27437	-0.27437	SLU 2	-0.18512	-0.18512		
41	SLU 6 SLU 6	-0.43801 -0.29343	-0.43801 -0.29343	SLU 1 SLU 1	-0.21099 -0.20978	-0.21099 -0.20978		
43	SLU 6	-0.29343	-0.39022	SLU 1	-0.20974	-0.20974		
44	SLU 5	-0.27327	-0.27327	SLU 2	-0.20671	-0.20671		
45	SLU 6	-0.41502	-0.41502	SLU 1	-0.21015	-0.21015		
46	SLU 5 SLU 6	-0.26596 -0.45759	-0.26596 -0.45759	SLU 2 SLU 1	-0.16044 -0.2045	-0.16044 -0.2045		
48	SLU 6	-0.43759	-0.43759	SLU 1	-0.20189	-0.20189		
49	SLU 6	-0.31238	-0.31238	SLU 1	-0.20202	-0.20202		
50	SLU 6	-0.36229	-0.36229	SLU 1	-0.20199	-0.20199		
51 52	SLU 5 SLU 6	-0.26467 -0.43569	-0.26467 -0.43569	SLU 2 SLU 1	-0.18117 -0.20352	-0.18117 -0.20352		
53	SLU 6	-0.43369	-0.28752	SLU 1	-0.20225	-0.20225		
54	SLU 6	-0.38837	-0.38837	SLU 1	-0.2022	-0.2022		
55	SLU 5	-0.2626	-0.2626	SLU 2	-0.19965	-0.19965		
56 57	SLU 6 SLU 5	-0.41502 -0.25575	-0.41502 -0.25575	SLU 1 SLU 2	-0.20194 -0.1564	-0.20194 -0.1564		
58	SLU 6	-0.45342	-0.45342	SLU 1	-0.19664	-0.19664		
59	SLU 6	-0.33271	-0.33271	SLU 1	-0.19419	-0.19419		
60	SLU 6	-0.30754	-0.30754	SLU 1	-0.19435	-0.19435		
61 62	SLU 6 SLU 5	-0.35897 -0.25475	-0.35897 -0.25475	SLU 1 SLU 2	-0.1943 -0.17826	-0.1943 -0.17826		
63	SLU 6	-0.43126	-0.43126	SLU 1	-0.19586	-0.19586		
64	SLU 6	-0.28297	-0.28297	SLU 1	-0.1947	-0.1947		
65	SLU 6	-0.3859	-0.3859	SLU 1	-0.19463	-0.19463		
66	SLU 6 SLU 6	-0.25869 -0.40936	-0.25869 -0.40936	SLU 1 SLU 1	-0.1951 -0.19501	-0.1951 -0.19501		
68	SLU 5	-0.24484	-0.24484	SLU 2	-0.15134	-0.15134		
69	SLU 6	-0.44815	-0.44815	SLU 1	-0.18824	-0.18824		
70	SLU 6	-0.30195	-0.30195	SLU 1	-0.18633	-0.18633		
71	SLU 6 SLU 5	-0.32785 -0.24407	-0.32785 -0.24407	SLU 1 SLU 2	-0.18616 -0.17413	-0.18616 -0.17413		
73	SLU 6	-0.27724	-0.27724	SLU 1	-0.18668	-0.18668		
74	SLU 6	-0.42598	-0.42598	SLU 1	-0.18763	-0.18763		
75 76	SLU 6	-0.35562 -0.25333	-0.35562 -0.25333	SLU 1	-0.18624	-0.18624		
76	SLU 6 SLU 6	-0.25333	-0.25333	SLU 1 SLU 1	-0.18714 -0.18701	-0.18714 -0.18701		
78	SLU 6	-0.38673	-0.38673	SLU 1	-0.1865	-0.1865		
79	SLU 5	-0.23357	-0.23357	SLU 2	-0.14547	-0.14547		
80 81	SLU 6	-0.44181 -0.23297	-0.44181 -0.23297	SLU 1 SLU 2	-0.17957 -0.16883	-0.17957 -0.16883		
82	SLU 5 SLU 6	-0.23297	-0.23297	SLU 2 SLU 1	-0.16883	-0.16883		
83	SLU 6	-0.27025	-0.27025	SLU 1	-0.17835	-0.17835		
84	SLU 6	-0.32194	-0.32194	SLU 1	-0.17792	-0.17792		
85 86	SLU 6 SLU 6	-0.24608 -0.41935	-0.24608 -0.41935	SLU 1 SLU 1	-0.17875 -0.17911	-0.17875 -0.17911		
86	SLU 6	-0.41935	-0.34949	SLU 1	-0.17911	-0.17911		
88	SLU 6	-0.3975	-0.3975	SLU 1	-0.17864	-0.17864		
89	SLU 6	-0.37569	-0.37569	SLU 1	-0.17825	-0.17825		
90 91	SLU 5 SLU 6	-0.22227 -0.43432	-0.22227 -0.43432	SLU 2 SLU 1	-0.13896 -0.17088	-0.13896 -0.17088		
92	SLU 5	-0.2218	-0.2218	SLU 2	-0.16265	-0.16265		
93	SLU 6	-0.26229	-0.26229	SLU 1	-0.16992	-0.16992		
94	SLU 6	-0.28821	-0.28821	SLU 1	-0.16968	-0.16968		
95 96	SLU 6 SLU 6	-0.2377 -0.31618	-0.2377 -0.31618	SLU 1 SLU 1	-0.17025 -0.16959	-0.17025 -0.16959		
97	SLU 6	-0.41197	-0.41197	SLU 1	-0.17053	-0.17053		
98	SLU 6	-0.34565	-0.34565	SLU 1	-0.16969	-0.16969		
99 100	SLU 6 SLU 6	-0.39044 -0.36936	-0.39044 -0.36936	SLU 1 SLU 1	-0.17019 -0.1699	-0.17019 -0.1699		
100	SLU 6 SLU 5	-0.36936	-0.21116	SLU 1 SLU 2	-0.1699	-0.13195		
102	SLU 6	-0.42554	-0.42554	SLU 1	-0.16234	-0.16234		
103	SLU 5	-0.21078	-0.21078	SLU 2	-0.15581	-0.15581		
104	SLU 6	-0.22853 -0.25341	-0.22853 -0.25341	SLU 1	-0.16184 -0.16158	-0.16184 -0.16158		
105	SLU 6 SLU 6	-0.25341 -0.28	-0.25341 -0.28	SLU 1 SLU 1	-0.16158 -0.16138	-0.16158 -0.16138		
107	SLU 6	-0.40339	-0.40339	SLU 1	-0.16206	-0.16206		
108	SLU 6	-0.31009	-0.31009	SLU 1	-0.16131	-0.16131		
109	SLU 6 SLU 6	-0.34789 -0.36535	-0.34789 -0.36535	SLU 1 SLU 1	-0.16147 -0.16162	-0.16147 -0.16162		
111	SLU 6	-0.38274	-0.38274	SLU 1	-0.16162	-0.16162 -0.16179		
112	SLU 5	-0.2004	-0.2004	SLU 2	-0.12453	-0.12453		
113	SLU 6	-0.41543	-0.41543	SLU 1	-0.15406	-0.15406		
114	SLU 5	-0.20008	-0.20008	SLU 2	-0.14843	-0.14843		

Nodo		Pressione minima	Pressione massima					
Ind.	Cont.	uz	Valore	Cont.	uz	Valore		
115 116	SLU 6 SLU 6	-0.21869 -0.24342	-0.21869 -0.24342	SLU 1 SLU 1	-0.15365 -0.15343	-0.15365 -0.15343		
117	SLU 6	-0.26939	-0.26939	SLU 1	-0.15325	-0.15325		
118	SLU 6	-0.3928	-0.3928	SLU 1	-0.15379	-0.15379		
119	SLU 6	-0.2972	-0.2972	SLU 1	-0.15317	-0.15317		
120 121	SLU 6	-0.37091 -0.32625	-0.37091 -0.32625	SLU 1 SLU 1	-0.15352 -0.15319	-0.15352 -0.15319		
122	SLU 6	-0.34953	-0.34953	SLU 1	-0.1533	-0.1533		
123	SLU 5	-0.19003	-0.19003	SLU 2	-0.11679	-0.11679		
124	SLU 6	-0.40424	-0.40424	SLU 1	-0.14609	-0.14609		
125 126	SLU 5 SLU 6	-0.18974 -0.20835	-0.18974 -0.20835	SLU 2 SLU 1	-0.1406 -0.14573	-0.1406 -0.14573		
127	SLU 6	-0.20833	-0.2328	SLU 1	-0.14573	-0.14552		
128	SLU 6	-0.25802	-0.25802	SLU 1	-0.14535	-0.14535		
129	SLU 6	-0.38115	-0.38115	SLU 1	-0.14577	-0.14577		
130	SLU 6	-0.28419	-0.28419	SLU 1	-0.14521	-0.14521		
131 132	SLU 6 SLU 6	-0.31068 -0.35834	-0.31068 -0.35834	SLU 1 SLU 1	-0.14512 -0.14542	-0.14512 -0.14542		
133	SLU 6	-0.33535	-0.33535	SLU 1	-0.14513	-0.14513		
134	SLU 5	-0.18008	-0.18008	SLU 2	-0.10878	-0.10878		
135	SLU 6	-0.39236	-0.39236	SLU 1	-0.13843	-0.13843		
136 137	SLU 5 SLU 6	-0.17978 -0.19758	-0.17978 -0.19758	SLU 2	-0.13237 -0.13805	-0.13237 -0.13805		
138	SLU 6	-0.19758	-0.19758	SLU 1 SLU 1	-0.13805	-0.13786		
139	SLU 6	-0.24661	-0.24661	SLU 1	-0.13767	-0.13767		
140	SLU 6	-0.36929	-0.36929	SLU 1	-0.13799	-0.13799		
141	SLU 6	-0.27206	-0.27206	SLU 1	-0.13745	-0.13745		
142 143	SLU 6 SLU 6	-0.29804 -0.34651	-0.29804 -0.34651	SLU 1 SLU 1	-0.13717 -0.13745	-0.13717 -0.13745		
144	SLU 6	-0.32368	-0.32368	SLU 1	-0.13689	-0.13689		
145	SLU 5	-0.17049	-0.17049	SLU 2	-0.10056	-0.10056		
146	SLU 6	-0.38016	-0.38016	SLU 1	-0.13105	-0.13105		
147 148	SLU 5 SLU 6	-0.17011 -0.21038	-0.17011 -0.21038	SLU 2 SLU 1	-0.12364 -0.13039	-0.12364 -0.13039		
149	SLU 6	-0.18615	-0.18615	SLU 1	-0.13057	-0.13057		
150	SLU 6	-0.2351	-0.2351	SLU 1	-0.13021	-0.13021		
151	SLU 6	-0.26038	-0.26038	SLU 1	-0.12993	-0.12993		
152	SLU 6	-0.35746	-0.35746	SLU 1	-0.13047	-0.13047		
153 154	SLU 6	-0.28676 -0.33548	-0.28676 -0.33548	SLU 1 SLU 1	-0.12937 -0.12962	-0.12937 -0.12962		
155	SLU 6	-0.31552	-0.31552	SLU 1	-0.12803	-0.12803		
156	SLU 5	-0.16117	-0.16117	SLU 2	-0.09214	-0.09214		
157	SLU 6	-0.36786	-0.36786	SLU 1	-0.12389	-0.12389		
158 159	SLU 6 SLU 5	-0.22325 -0.16064	-0.22325 -0.16064	SLU 1 SLU 2	-0.12296 -0.11427	-0.12296 -0.11427		
160	SLU 6	-0.19829	-0.19829	SLU 1	-0.12306	-0.12306		
161	SLU 6	-0.24826	-0.24826	SLU 1	-0.12277	-0.12277		
162	SLU 6	-0.34531	-0.34531	SLU 1	-0.12331	-0.12331		
163 164	SLU 6	-0.17338 -0.2737	-0.17338 -0.2737	SLU 1 SLU 1	-0.12313 -0.12249	-0.12313 -0.12249		
165	SLU 6	-0.32298	-0.32298	SLU 1	-0.12261	-0.12261		
166	SLU 6	-0.29949	-0.29949	SLU 1	-0.12217	-0.12217		
167	SLU 5	-0.15198	-0.15198	SLU 2	-0.08353	-0.08353		
168 169	SLU 6	-0.35557 -0.23616	-0.35557 -0.23616	SLU 1 SLU 1	-0.11682 -0.11575	-0.11682 -0.11575		
170	SLU 6	-0.2114	-0.2114	SLU 1	-0.11583	-0.11583		
171	SLU 5	-0.15124	-0.15124	SLU 2	-0.10444	-0.10444		
172	SLU 6	-0.26099	-0.26099	SLU 1	-0.11563	-0.11563		
173 174	SLU 6	-0.33325	-0.33325	SLU 1	-0.11622 -0.1159	-0.11622 -0.1158		
175	SLU 6	-0.18585 -0.28623	-0.18585 -0.28623	SLU 1 SLU 1	-0.1158 -0.1155	-0.1158		
176	SLU 6	-0.15731	-0.15731	SLU 1	-0.11535	-0.11535		
177	SLU 6	-0.31205	-0.31205	SLU 1	-0.1153	-0.1153		
178	SLU 5	-0.1428	-0.1428	SLU 2	-0.07473	-0.07473		
179 180	SLU 6	-0.3433 -0.22435	-0.3433 -0.22435	SLU 1 SLU 1	-0.10976 -0.10878	-0.10976 -0.10878		
181	SLU 6	-0.20033	-0.20033	SLU 1	-0.10875	-0.10885		
182	SLU 6	-0.24846	-0.24846	SLU 1	-0.10878	-0.10878		
183	SLU 5	-0.14232	-0.14232	SLU 2	-0.0969	-0.0969		
184 185	SLU 6	-0.32021 -0.1761	-0.32021 -0.1761	SLU 1 SLU 1	-0.10939 -0.10895	-0.10939 -0.10895		
186	SLU 6	-0.1761	-0.1761	SLU 1	-0.10895	-0.10895		
187	SLU 6	-0.15167	-0.15167	SLU 1	-0.10905	-0.10905		
188	SLU 6	-0.2971	-0.2971	SLU 1	-0.10898	-0.10898		
189	SLU 5	-0.1336	-0.1336	SLU 2	-0.06581	-0.06581		
190 191	SLU 5 SLU 6	-0.13335 -0.14319	-0.13335 -0.14319	SLU 2 SLU 1	-0.0892 -0.10234	-0.0892 -0.10234		
192	SLU 6	-0.14319	-0.14319	SLU 1	-0.10234	-0.10234		
193	SLU 6	-0.18943	-0.18943	SLU 1	-0.10189	-0.10189		
194	SLU 6	-0.21268	-0.21268	SLU 1	-0.10181	-0.10181		
195 196	SLU 6	-0.23611 -0.25973	-0.23611 -0.25973	SLU 1 SLU 1	-0.10187 -0.10206	-0.10187 -0.10206		
197	SLU 6	-0.28347	-0.28347	SLU 1	-0.10206	-0.10206		
198	SLU 6	-0.30725	-0.30725	SLU 1	-0.10251	-0.10251		
199	SLU 6	-0.33105	-0.33105	SLU 1	-0.10268	-0.10268		

[daN/cm²]

8.3 Pressioni terreno in SLV/SLVf/SLUEcc

Rappresentazione in pianta delle massime compressioni sul terreno in famiglie SLV/SLVf/SLUEcc.

Nodo: Nodo che interagisce col terreno.

Ind.: indice del nodo.

Pressione minima: situazione in cui si verifica la pressione minima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione minima.

uz: spostamento massimo verticale del nodo. [cm]

Valore: pressione minima sul terreno del nodo. [daN/cm²]

Pressione massima: situazione in cui si verifica la pressione massima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione massima.

uz: spostamento minimo verticale del nodo. [cm]

Valore: pressione massima sul terreno del nodo. [daN/cm²]

Compressione estrema massima -0.3353 al nodo di indice 12, di coordinate x = 120, y = 3748, z = -132, nel contesto SLU eccezionale 4. Spostamento estremo minimo -0.3353 al nodo di indice 12, di coordinate x = 120, y = 3748, z = -132, nel contesto SLU eccezionale 4. Spostamento estremo massimo -0.09052 al nodo di indice 189, di coordinate x = -140, y = 4168, z = -132, nel contesto SLU eccezionale 4.

Nodo		Pressione minima		Pressione massima				
Ind.	Cont.	uz	Valore	Cont.	uz	Valore		
2	SLU EX 1	-0.22154	-0.22154	SLU EX 4	-0.18613	-0.1861		
3	SLU EX 1	-0.22664	-0.22664	SLU EX 4	-0.20063	-0.2006		
4	SLU EX 1	-0.23173	-0.23173	SLU EX 4	-0.21511	-0.2151		
5	SLU EX 3	-0.23821	-0.23821	SLU EX 2	-0.22824	-0.2282		
6	SLU EX 3	-0.248	-0.248	SLU EX 2	-0.23825	-0.2382		
7	SLU EX 4	-0.25893	-0.25893	SLU EX 1	-0.24745	-0.2474		
8	SLU EX 4	-0.27389	-0.27389	SLU EX 1	-0.25303	-0.2530		
9	SLU EX 4	-0.28905	-0.28905	SLU EX 1	-0.2588	-0.258		
10	SLU EX 4	-0.30438	-0.30438	SLU EX 1	-0.26471	-0.2647		
11	SLU EX 4	-0.31981	-0.31981	SLU EX 1	-0.27068	-0.2706		
12	SLU EX 4	-0.3353	-0.3353	SLU EX 1	-0.27669	-0.2766		
13	SLU EX 1	-0.21663	-0.21663	SLU EX 4	-0.18283	-0.1828		
14	SLU EX 4	-0.33274	-0.33274	SLU EX 1	-0.27209	-0.2720		
15	SLU EX 4	-0.25588	-0.25588	SLU EX 1	-0.24258	-0.2425		
16	SLU EX 3	-0.2441	-0.2441	SLU EX 2	-0.23401	-0.2340		
17	SLU EX 4	-0.27103	-0.27103	SLU EX 1	-0.24824	-0.2482		
18	SLU EX 1	-0.22167	-0.22167	SLU EX 4	-0.19724	-0.1972		
19	SLU EX 4	-0.31732	-0.31732	SLU EX 1	-0.26608	-0.2660		

				Drossiana massima					
Nodo Ind.	Cont.	Pressione minima uz	Valore	Cont.	Pressione massima uz	Valore			
20	SLU EX 3	-0.23422	-0.23422	SLU EX 2	-0.22392	-0.22392			
21	SLU EX 4	-0.28639	-0.28639	SLU EX 1	-0.2541	-0.2541			
22	SLU EX 1 SLU EX 4	-0.22673 -0.30187	-0.22673 -0.30187	SLU EX 4 SLU EX 1	-0.21168 -0.26007	-0.21168 -0.26007			
24	SLU EX 1	-0.21163	-0.21163	SLU EX 4	-0.17942	-0.17942			
25	SLU EX 4	-0.33016	-0.33016	SLU EX 1	-0.26745	-0.26745			
26 27	SLU EX 4 SLU EX 3	-0.25274 -0.24005	-0.25274 -0.24005	SLU EX 1 SLU EX 2	-0.23759 -0.22962	-0.23759 -0.22962			
28	SLU EX 4	-0.26816	-0.26816	SLU EX 1	-0.24337	-0.24337			
29	SLU EX 1	-0.21656	-0.21656	SLU EX 4	-0.19362	-0.19362			
30	SLU EX 4 SLU EX 3	-0.31491 -0.23002	-0.31491 -0.23002	SLU EX 1 SLU EX 2	-0.26146 -0.21938	-0.26146 -0.21938			
32	SLU EX 4	-0.28384	-0.28384	SLU EX 1	-0.21936	-0.21936			
33	SLU EX 1	-0.22152	-0.22152	SLU EX 4	-0.20791	-0.20791			
34	SLU EX 4	-0.29953	-0.29953	SLU EX 1	-0.25543	-0.25543			
35 36	SLU EX 1 SLU EX 4	-0.20635 -0.32739	-0.20635 -0.32739	SLU EX 4 SLU EX 1	-0.17569 -0.26259	-0.17569 -0.26259			
37	SLU EX 4	-0.24938	-0.24938	SLU EX 1	-0.23238	-0.23238			
38	SLU EX 3	-0.23568	-0.23568	SLU EX 2	-0.2249	-0.2249			
39 40	SLU EX 4 SLU EX 1	-0.26524 -0.21107	-0.26524 -0.21107	SLU EX 1 SLU EX 4	-0.23832 -0.18946	-0.23832 -0.18946			
41	SLU EX 4	-0.31255	-0.31255	SLU EX 1	-0.18946	-0.25669			
42	SLU EX 3	-0.22534	-0.22534	SLU EX 2	-0.21438	-0.21438			
43	SLU EX 4	-0.28146	-0.28146	SLU EX 1	-0.24451	-0.24451			
44	SLU EX 1 SLU EX 4	-0.21573 -0.29758	-0.21573 -0.29758	SLU EX 4 SLU EX 1	-0.20321 -0.2507	-0.20321 -0.2507			
46	SLU EX 1	-0.20054	-0.20054	SLU EX 4	-0.17137	-0.17137			
47	SLU EX 4	-0.32413	-0.32413	SLU EX 1	-0.25727	-0.25727			
48	SLU EX 4 SLU EX 3	-0.24576 -0.23092	-0.24576 -0.23092	SLU EX 1 SLU EX 2	-0.22684 -0.21982	-0.22684 -0.21982			
50	SLU EX 4	-0.2622	-0.2622	SLU EX 1	-0.23299	-0.23299			
51	SLU EX 1	-0.20491	-0.20491	SLU EX 4	-0.1845	-0.1845			
52 53	SLU EX 4	-0.30989 -0.22001	-0.30989 -0.22001	SLU EX 1	-0.25147	-0.25147			
54	SLU EX 3 SLU EX 4	-0.27916	-0.22001	SLU EX 2 SLU EX 1	-0.20876 -0.23938	-0.20876 -0.23938			
55	SLU EX 1	-0.20831	-0.20831	SLU EX 4	-0.19598	-0.19598			
56	SLU EX 4	-0.29634	-0.29634	SLU EX 1	-0.24558	-0.24558			
57 58	SLU EX 1 SLU EX 4	-0.19401 -0.32013	-0.19401 -0.32013	SLU EX 4 SLU EX 1	-0.16629 -0.25126	-0.16629 -0.25126			
59	SLU EX 4	-0.24188	-0.24188	SLU EX 1	-0.22099	-0.22099			
60	SLU EX 3	-0.22597	-0.22597	SLU EX 2	-0.21462	-0.21462			
61 62	SLU EX 4	-0.25895 -0.19882	-0.25895 -0.19882	SLU EX 1	-0.22739	-0.22739 -0.18021			
63	SLU EX 1 SLU EX 4	-0.19882	-0.19882	SLU EX 4 SLU EX 1	-0.18021 -0.24555	-0.18021			
64	SLU EX 3	-0.21522	-0.21522	SLU EX 2	-0.20378	-0.20378			
65	SLU EX 4	-0.27646	-0.27646	SLU EX 1	-0.23403	-0.23403			
66 67	SLU EX 3 SLU EX 4	-0.20458 -0.29162	-0.20458 -0.29162	SLU EX 2 SLU EX 1	-0.1931 -0.23984	-0.1931 -0.23984			
68	SLU EX 1	-0.18678	-0.18678	SLU EX 4	-0.16047	-0.16047			
69	SLU EX 4	-0.31533	-0.31533	SLU EX 1	-0.24458	-0.24458			
70 71	SLU EX 4 SLU EX 4	-0.22095 -0.23762	-0.22095 -0.23762	SLU EX 1 SLU EX 1	-0.20858 -0.21477	-0.20858 -0.21477			
72	SLU EX 1	-0.19195	-0.19195	SLU EX 4	-0.17502	-0.17502			
73	SLU EX 3	-0.20967	-0.20967	SLU EX 2	-0.19817	-0.19817			
74 75	SLU EX 4 SLU EX 4	-0.30102 -0.25558	-0.30102 -0.25558	SLU EX 1 SLU EX 1	-0.23898 -0.2215	-0.23898 -0.2215			
76	SLU EX 3	-0.19919	-0.19919	SLU EX 2	-0.18771	-0.18771			
77	SLU EX 4	-0.28744	-0.28744	SLU EX 1	-0.23364	-0.23364			
78 79	SLU EX 4	-0.27575 -0.17909	-0.27575 -0.17909	SLU EX 1 SLU EX 4	-0.22905 -0.15416	-0.22905 -0.15416			
80	SLU EX 1 SLU EX 4	-0.17909	-0.17909	SLU EX 1	-0.13416	-0.13416			
81	SLU EX 1	-0.18451	-0.18451	SLU EX 4	-0.16911	-0.16911			
82	SLU EX 4	-0.21578	-0.21578	SLU EX 1	-0.2017 -0.19201	-0.2017			
83 84	SLU EX 3 SLU EX 4	-0.20338 -0.23274	-0.20338 -0.23274	SLU EX 2 SLU EX 1	-0.19201	-0.19201 -0.2081			
85	SLU EX 3	-0.19274	-0.19274	SLU EX 2	-0.18146	-0.18146			
86	SLU EX 4	-0.29538	-0.29538	SLU EX 1	-0.23184	-0.23184			
87 88	SLU EX 4 SLU EX 4	-0.2504 -0.28128	-0.2504 -0.28128	SLU EX 1 SLU EX 1	-0.21478 -0.22645	-0.21478 -0.22645			
89	SLU EX 4	-0.26723	-0.26723	SLU EX 1	-0.22112	-0.22112			
90	SLU EX 1	-0.17116	-0.17116	SLU EX 4	-0.1476	-0.1476			
91 92	SLU EX 4 SLU EX 1	-0.304 -0.17674	-0.304 -0.17674	SLU EX 1 SLU EX 4	-0.22982 -0.16279	-0.22982 -0.16279			
93	SLU EX 3	-0.17674	-0.17674	SLU EX 2	-0.18559	-0.18559			
94	SLU EX 4	-0.21039	-0.21039	SLU EX 1	-0.19452	-0.19452			
95 96	SLU EX 3	-0.18568 -0.22815	-0.18568	SLU EX 2 SLU EX 1	-0.17486	-0.17486 -0.20134			
97	SLU EX 4 SLU EX 4	-0.22815	-0.22815 -0.2895	SLU EX 1	-0.20134 -0.22439	-0.20134			
98	SLU EX 4	-0.24683	-0.24683	SLU EX 1	-0.2085	-0.2085			
99 100	SLU EX 4	-0.27551	-0.27551	SLU EX 1	-0.21919	-0.21919			
100	SLU EX 4 SLU EX 1	-0.26192 -0.16315	-0.26192 -0.16315	SLU EX 1 SLU EX 4	-0.21416 -0.14096	-0.21416 -0.14096			
102	SLU EX 4	-0.29783	-0.29783	SLU EX 1	-0.22199	-0.22199			
103	SLU EX 1	-0.16883	-0.16883	SLU EX 4	-0.1563	-0.1563			
104 105	SLU EX 3 SLU EX 3	-0.17822 -0.18925	-0.17822 -0.18925	SLU EX 2 SLU EX 2	-0.16817 -0.17906	-0.16817 -0.17906			
106	SLU EX 4	-0.20467	-0.18923	SLU EX 1	-0.18704	-0.18704			
107	SLU EX 4	-0.28341	-0.28341	SLU EX 1	-0.21667	-0.21667			
108	SLU EX 4 SLU EX 4	-0.22374 -0.24754	-0.22374 -0.24754	SLU EX 1 SLU EX 1	-0.19441 -0.20359	-0.19441 -0.20359			
110	SLU EX 4	-0.24754	-0.24754	SLU EX 1	-0.20762	-0.20762			
111	SLU EX 4	-0.26991	-0.26991	SLU EX 1	-0.21171	-0.21171			
112	SLU EX 1	-0.15516	-0.15516	SLU EX 4	-0.13436	-0.13436			
113 114	SLU EX 4 SLU EX 1	-0.29151 -0.16088	-0.29151 -0.16088	SLU EX 1 SLU EX 4	-0.21396 -0.14978	-0.21396 -0.14978			
	OHO HA I	0.10000	0.10000	OHO HA 4	0.149/0	0.149/0			

Nodo		Pressione minima			Pressione massima	
Ind. 115	Cont. SLU EX 3	-0.17046	-0.17046	Cont. SLU EX 2	-0.16153	Valore -0.16153
116	SLU EX 3	-0.18144	-0.17046	SLU EX 2	-0.17242	-0.17242
117	SLU EX 4	-0.19781	-0.19781	SLU EX 1	-0.17896	-0.17896
118	SLU EX 4	-0.27679	-0.27679	SLU EX 1	-0.20853	-0.20853
119	SLU EX 4	-0.21551	-0.21551	SLU EX 1	-0.18574	-0.18574
120	SLU EX 4	-0.26253	-0.26253	SLU EX 1	-0.20329	-0.20329
121	SLU EX 4	-0.23392	-0.23392	SLU EX 1	-0.19275	-0.19275
122 123	SLU EX 4 SLU EX 1	-0.24874 -0.14725	-0.24874 -0.14725	SLU EX 1 SLU EX 4	-0.19824 -0.12786	-0.19824 -0.12786
124	SLU EX 4	-0.14723	-0.28513	SLU EX 1	-0.12786	-0.12780
125	SLU EX 1	-0.15297	-0.15297	SLU EX 4	-0.14329	-0.14329
126	SLU EX 3	-0.16251	-0.16251	SLU EX 2	-0.15503	-0.15503
127	SLU EX 4	-0.1746	-0.1746	SLU EX 1	-0.16463	-0.16463
128	SLU EX 4	-0.19085	-0.19085	SLU EX 1	-0.17074	-0.17074
129	SLU EX 4	-0.27018	-0.27018	SLU EX 1	-0.20024	-0.20024
130 131	SLU EX 4 SLU EX 4	-0.20766 -0.22468	-0.20766 -0.22468	SLU EX 1 SLU EX 1	-0.17704 -0.18334	-0.17704 -0.18334
132	SLU EX 4	-0.25541	-0.25541	SLU EX 1	-0.19471	-0.19471
133	SLU EX 4	-0.24057	-0.24057	SLU EX 1	-0.18916	-0.18916
134	SLU EX 1	-0.13946	-0.13946	SLU EX 4	-0.1215	-0.1215
135	SLU EX 4	-0.27877	-0.27877	SLU EX 1	-0.19767	-0.19767
136	SLU EX 1	-0.1451	-0.1451	SLU EX 4	-0.13684	-0.13684
137	SLU EX 3	-0.15441	-0.15441	SLU EX 2	-0.14867	-0.14867
138	SLU EX 4	-0.16804	-0.16804	SLU EX 1	-0.15662	-0.15662
139 140	SLU EX 4 SLU EX 4	-0.18415 -0.26388	-0.18415 -0.26388	SLU EX 1 SLU EX 1	-0.16258 -0.19198	-0.16258 -0.19198
141	SLU EX 4	-0.26388	-0.20072	SLU EX 1	-0.19198	-0.19198
142	SLU EX 4	-0.21769	-0.21769	SLU EX 1	-0.17466	-0.17466
143	SLU EX 4	-0.24921	-0.24921	SLU EX 1	-0.18627	-0.18627
144	SLU EX 4	-0.23447	-0.23447	SLU EX 1	-0.18052	-0.18052
145	SLU EX 1	-0.13177	-0.13177	SLU EX 4	-0.11526	-0.11526
146	SLU EX 4	-0.27241	-0.27241	SLU EX 1	-0.18957	-0.18957 -0.13033
147 148	SLU EX 1 SLU EX 4	-0.13723 -0.16141	-0.13723 -0.16141	SLU EX 4 SLU EX 1	-0.13033 -0.14858	-0.13033
149	SLU EX 3	-0.14603	-0.14603	SLU EX 2	-0.14227	-0.14227
150	SLU EX 4	-0.17761	-0.17761	SLU EX 1	-0.1545	-0.1545
151	SLU EX 4	-0.19425	-0.19425	SLU EX 1	-0.16043	-0.16043
152	SLU EX 4	-0.2578	-0.2578	SLU EX 1	-0.18384	-0.18384
153	SLU EX 4	-0.21176	-0.21176	SLU EX 1	-0.16637	-0.16637
154	SLU EX 4	-0.24373	-0.24373	SLU EX 1	-0.17807	-0.17807
155 156	SLU EX 4 SLU EX 1	-0.23106 -0.12416	-0.23106 -0.12416	SLU EX 1 SLU EX 4	-0.17222 -0.1091	-0.17222 -0.1091
157	SLU EX 4	-0.26601	-0.26601	SLU EX 1	-0.1091	-0.18154
158	SLU EX 4	-0.17095	-0.17095	SLU EX 1	-0.14646	-0.14646
159	SLU EX 1	-0.12928	-0.12928	SLU EX 4	-0.1236	-0.1236
160	SLU EX 4	-0.1545	-0.1545	SLU EX 1	-0.14044	-0.14044
161	SLU EX 4	-0.18752	-0.18752	SLU EX 1	-0.15238	-0.15238
162	SLU EX 4	-0.25146	-0.25146	SLU EX 1	-0.17582	-0.17582
163	SLU EX 4 SLU EX 4	-0.13813 -0.20449	-0.13813 -0.20449	SLU EX 1 SLU EX 1	-0.13438 -0.15829	-0.13438 -0.15829
165	SLU EX 4	-0.23704	-0.23704	SLU EX 1	-0.13829	-0.17007
166	SLU EX 4	-0.22169	-0.22169	SLU EX 1	-0.1642	-0.1642
167	SLU EX 1	-0.11654	-0.11654	SLU EX 4	-0.10296	-0.10296
168	SLU EX 4	-0.25953	-0.25953	SLU EX 1	-0.17356	-0.17356
169	SLU EX 4	-0.1808	-0.1808	SLU EX 1	-0.14443	-0.14443
170	SLU EX 4	-0.16433	-0.16433	SLU EX 1	-0.13849	-0.13849
171 172	SLU EX 1 SLU EX 4	-0.12123 -0.19739	-0.12123 -0.19739	SLU EX 4 SLU EX 1	-0.1167 -0.15031	-0.1167 -0.15031
173	SLU EX 4	-0.24507	-0.24507	SLU EX 1	-0.16787	-0.16787
174	SLU EX 4	-0.14743	-0.14743	SLU EX 1	-0.13224	-0.13224
175	SLU EX 4	-0.21422	-0.21422	SLU EX 1	-0.15623	-0.15623
176	SLU EX 4	-0.12869	-0.12869	SLU EX 1	-0.12494	-0.12494
177	SLU EX 4	-0.23135	-0.23135	SLU EX 1	-0.16219	-0.16219
178	SLU EX 1	-0.10888	-0.10888	SLU EX 4	-0.09676	-0.09676
179	SLU EX 4	-0.25297	-0.25297	SLU EX 1	-0.16557	-0.16557
180 181	SLU EX 4 SLU EX 4	-0.17425 -0.15821	-0.17425 -0.15821	SLU EX 1 SLU EX 1	-0.13658 -0.13082	-0.13658 -0.13082
182	SLU EX 4	-0.15821	-0.15821	SLU EX 1	-0.13082	-0.13082
183	SLU EX 1	-0.11402	-0.11402	SLU EX 4	-0.11138	-0.11138
184	SLU EX 4	-0.23788	-0.23788	SLU EX 1	-0.15985	-0.15985
185	SLU EX 4	-0.1421	-0.1421	SLU EX 1	-0.12499	-0.12499
186	SLU EX 4	-0.20661	-0.20661	SLU EX 1	-0.14822	-0.14822
187	SLU EX 4	-0.12592	-0.12592	SLU EX 1	-0.11909	-0.11909
188	SLU EX 4	-0.22273	-0.22273	SLU EX 1	-0.15408	-0.15408
189 190	SLU EX 1 SLU EX 2	-0.10116 -0.10864	-0.10116 -0.10864	SLU EX 4 SLU EX 3	-0.09052 -0.10407	-0.09052 -0.10407
190	SLU EX 2	-0.12138	-0.12138	SLU EX 3	-0.10407	-0.10407
192	SLU EX 4	-0.13676	-0.12136	SLU EX 1	-0.11226	-0.11772
193	SLU EX 4	-0.15221	-0.15221	SLU EX 1	-0.1232	-0.1232
194	SLU EX 4	-0.16778	-0.16778	SLU EX 1	-0.12876	-0.12876
195	SLU EX 4	-0.18348	-0.18348	SLU EX 1	-0.13444	-0.13444
196	SLU EX 4	-0.19926	-0.19926	SLU EX 1	-0.14021	-0.14021
197	SLU EX 4	-0.21502	-0.21502	SLU EX 1	-0.14602	-0.14602
198	SLU EX 4	-0.23072	-0.23072	SLU EX 1	-0.1518	-0.1518
199		-0.24635	-0.24635	SLU EX 1	-0.15755	-0.15755

8.4 Pressioni terreno in SLE/SLD

da -0.1 a -0.125

da -0.125 a -0.15

da -0.15 a -0.175

da -0.225

da -0.225

da -0.225

da -0.25 a -0.25

da -0.275 a -0.3

da -0.325 a -0.35

[daN/cm²]

Rappresentazione in pianta delle massime compressioni sul terreno in famiglie SLE/SLD.

Nodo: Nodo che interagisce col terreno.

Ind.: indice del nodo.

Pressione minima: situazione in cui si verifica la pressione minima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione minima.

uz: spostamento massimo verticale del nodo. [cm]

Valore: pressione minima sul terreno del nodo. [daN/cm²]

Pressione massima: situazione in cui si verifica la pressione massima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione massima.

uz: spostamento minimo verticale del nodo. [cm]

Valore: pressione massima sul terreno del nodo. [daN/cm²]

Compressione estrema massima -0.34311 al nodo di indice 12, di coordinate x = 120, y = 3748, z = -132, nel contesto SLE rara 2. Spostamento estremo minimo -0.34311 al nodo di indice 12, di coordinate x = 120, y = 3748, z = -132, nel contesto SLE rara 2. Spostamento estremo massimo -0.07813 al nodo di indice 189, di coordinate x = -140, y = 4168, z = -132, nel contesto SLE rara 2.

Nodo	ı	Pressione minima		Pressione massima				
Ind.	Cont.	uz	Valore	Cont.	uz	Valore		
2	SLE RA 1	-0.23177	-0.23177	SLE RA 2	-0.19028	-0.1902		
3	SLE RA 1	-0.23123	-0.23123	SLE RA 2	-0.20514	-0.2051		
4	SLE RA 1	-0.23071	-0.23071	SLE RA 2	-0.21997	-0.2199		
5	SLE RA 2	-0.2348	-0.2348	SLE RA 1	-0.23026	-0.2302		
6	SLE RA 2	-0.2497	-0.2497	SLE RA 1	-0.22994	-0.2299		
7	SLE RA 2	-0.26478	-0.26478	SLE RA 1	-0.22982	-0.2298		
8	SLE RA 2	-0.28008	-0.28008	SLE RA 1	-0.22993	-0.2299		
9	SLE RA 2	-0.2956	-0.2956	SLE RA 1	-0.23023	-0.2302		
10	SLE RA 2	-0.31132	-0.31132	SLE RA 1	-0.23067	-0.2306		
11	SLE RA 2	-0.32718	-0.32718	SLE RA 1	-0.23117	-0.2311		
12	SLE RA 2	-0.34311	-0.34311	SLE RA 1	-0.23169	-0.2316		
13	SLE RA 1	-0.22524	-0.22524	SLE RA 2	-0.18693	-0.1869		
14	SLE RA 2	-0.34062	-0.34062	SLE RA 1	-0.22516	-0.2251		
15	SLE RA 2	-0.26174	-0.26174	SLE RA 1	-0.22314	-0.2231		
16	SLE RA 2	-0.24649	-0.24649	SLE RA 1	-0.22327	-0.2232		
17	SLE RA 2	-0.27724	-0.27724	SLE RA 1	-0.22326	-0.2232		
18	SLE RA 1	-0.22465	-0.22465	SLE RA 2	-0.2017	-0.201		
19	SLE RA 2	-0.32474	-0.32474	SLE RA 1	-0.22459	-0.2245		

Nodo Ind. 20	Cont.	Pressione minima			Pressione massima				
		uz	Valore	Cont.	uz	Valore			
	SLE RA 2	-0.23143	-0.23143	SLE RA 1	-0.22361	-0.22361			
21	SLE RA 2	-0.29298	-0.29298	SLE RA 1	-0.22358	-0.22358			
22	SLE RA 1 SLE RA 2	-0.22409 -0.30886	-0.22409 -0.30886	SLE RA 2 SLE RA 1	-0.2165 -0.22404	-0.2165 -0.22404			
24	SLE RA 1	-0.21864	-0.21864	SLE RA 2	-0.18345	-0.18345			
25	SLE RA 2	-0.33812	-0.33812	SLE RA 1	-0.21856	-0.21856			
26 27	SLE RA 2 SLE RA 2	-0.25859 -0.2431	-0.25859 -0.2431	SLE RA 1 SLE RA 1	-0.21634 -0.21648	-0.21634 -0.21648			
28	SLE RA 2	-0.27438	-0.27438	SLE RA 1	-0.21646	-0.21646			
29	SLE RA 1	-0.21799	-0.21799	SLE RA 2	-0.19802	-0.19802			
30	SLE RA 2	-0.3224	-0.3224	SLE RA 1	-0.21792	-0.21792			
31 32	SLE RA 2 SLE RA 2	-0.2278 -0.29046	-0.2278 -0.29046	SLE RA 1 SLE RA 1	-0.21684 -0.2168	-0.21684 -0.2168			
33	SLE RA 1	-0.21733	-0.21733	SLE RA 2	-0.21268	-0.21268			
34	SLE RA 2	-0.30658	-0.30658	SLE RA 1	-0.21728	-0.21728			
35 36	SLE RA 1 SLE RA 2	-0.21184 -0.33545	-0.21184 -0.33545	SLE RA 2 SLE RA 1	-0.17962 -0.21175	-0.17962 -0.21175			
37	SLE RA 2	-0.25523	-0.25523	SLE RA 1	-0.21173	-0.21173			
38	SLE RA 2	-0.23934	-0.23934	SLE RA 1	-0.20943	-0.20943			
39	SLE RA 2	-0.27148	-0.27148	SLE RA 1	-0.2094	-0.2094			
40	SLE RA 1 SLE RA 2	-0.21106 -0.32014	-0.21106 -0.32014	SLE RA 2 SLE RA 1	-0.19376 -0.21099	-0.19376 -0.21099			
42	SLE RA 2	-0.22359	-0.22359	SLE RA 1	-0.20978	-0.20978			
43	SLE RA 2	-0.28811	-0.28811	SLE RA 1	-0.20974	-0.20974			
44	SLE RA 1	-0.21021	-0.21021	SLE RA 2	-0.20788	-0.20788			
45 46	SLE RA 2 SLE RA 1	-0.3047 -0.20459	-0.3047 -0.20459	SLE RA 1 SLE RA 2	-0.21015 -0.17516	-0.21015 -0.17516			
47	SLE RA 2	-0.33233	-0.33233	SLE RA 1	-0.2045	-0.2045			
48	SLE RA 2	-0.2516	-0.2516	SLE RA 1	-0.20189	-0.20189			
49	SLE RA 2	-0.23519	-0.23519	SLE RA 1	-0.20202	-0.20202			
50 51	SLE RA 2 SLE RA 1	-0.26846 -0.20359	-0.26846 -0.20359	SLE RA 1 SLE RA 2	-0.20199 -0.18864	-0.20199 -0.18864			
52	SLE RA 2	-0.3176	-0.3176	SLE RA 1	-0.20352	-0.20352			
53	SLE RA 2	-0.21865	-0.21865	SLE RA 1	-0.20225	-0.20225			
54 55	SLE RA 2	-0.28588	-0.28588	SLE RA 1	-0.2022 -0.20043	-0.2022			
56	SLE RA 1 SLE RA 2	-0.202 -0.3036	-0.202 -0.3036	SLE RA 2 SLE RA 1	-0.20043	-0.20043 -0.20194			
57	SLE RA 1	-0.19673	-0.19673	SLE RA 2	-0.16984	-0.16984			
58	SLE RA 2	-0.3285	-0.3285	SLE RA 1	-0.19664	-0.19664			
59 60	SLE RA 2 SLE RA 2	-0.2477 -0.23094	-0.2477 -0.23094	SLE RA 1 SLE RA 1	-0.19419 -0.19435	-0.19419 -0.19435			
61	SLE RA 2	-0.26522	-0.26522	SLE RA 1	-0.1943	-0.1943			
62	SLE RA 1	-0.19596	-0.19596	SLE RA 2	-0.18416	-0.18416			
63	SLE RA 2	-0.31362	-0.31362	SLE RA 1	-0.19586	-0.19586			
64 65	SLE RA 2 SLE RA 2	-0.21461 -0.28322	-0.21461 -0.28322	SLE RA 1 SLE RA 1	-0.1947 -0.19463	-0.1947 -0.19463			
66	SLE RA 2	-0.19848	-0.19848	SLE RA 1	-0.1951	-0.1951			
67	SLE RA 2	-0.29891	-0.29891	SLE RA 1	-0.19501	-0.19501			
68 69	SLE RA 1 SLE RA 2	-0.18834 -0.32387	-0.18834 -0.32387	SLE RA 2 SLE RA 1	-0.16368 -0.18824	-0.16368 -0.18824			
70	SLE RA 2	-0.22615	-0.22615	SLE RA 1	-0.18633	-0.18633			
71	SLE RA 2	-0.24339	-0.24339	SLE RA 1	-0.18616	-0.18616			
72	SLE RA 1	-0.18774	-0.18774	SLE RA 2	-0.17867	-0.17867			
73 74	SLE RA 2 SLE RA 2	-0.20972 -0.309	-0.20972 -0.309	SLE RA 1 SLE RA 1	-0.18668 -0.18763	-0.18668 -0.18763			
75	SLE RA 2	-0.26191	-0.26191	SLE RA 1	-0.18624	-0.18624			
76	SLE RA 2	-0.19384	-0.19384	SLE RA 1	-0.18714	-0.18714			
77	SLE RA 2	-0.29486	-0.29486	SLE RA 1	-0.18701	-0.18701			
78 79	SLE RA 2 SLE RA 1	-0.28269 -0.17967	-0.28269 -0.17967	SLE RA 1 SLE RA 2	-0.1865 -0.15687	-0.1865 -0.15687			
80	SLE RA 2	-0.31848	-0.31848	SLE RA 1	-0.17957	-0.17957			
81	SLE RA 1	-0.17921	-0.17921	SLE RA 2	-0.17229	-0.17229			
82 83	SLE RA 2 SLE RA 2	-0.22068 -0.20395	-0.22068 -0.20395	SLE RA 1 SLE RA 1	-0.17805 -0.17835	-0.17805 -0.17835			
84	SLE RA 2	-0.23835	-0.23835	SLE RA 1	-0.17792	-0.17835			
85	SLE RA 2	-0.18789	-0.18789	SLE RA 1	-0.17875	-0.17875			
86	SLE RA 2	-0.30345	-0.30345	SLE RA 1	-0.17911	-0.17911			
87 88	SLE RA 2 SLE RA 2	-0.25673 -0.28882	-0.25673 -0.28882	SLE RA 1 SLE RA 1	-0.178 -0.17864	-0.178 -0.17864			
89	SLE RA 2	-0.27422	-0.27422	SLE RA 1	-0.17825	-0.17825			
90	SLE RA 1	-0.17097	-0.17097	SLE RA 2	-0.14963	-0.14963			
91	SLE RA 2	-0.31233	-0.31233 -0.17061	SLE RA 1	-0.17088	-0.17088			
92 93	SLE RA 1 SLE RA 2	-0.17061 -0.19751	-0.17061	SLE RA 2 SLE RA 1	-0.1653 -0.16992	-0.1653 -0.16992			
94	SLE RA 2	-0.21476	-0.21476	SLE RA 1	-0.16968	-0.16968			
95	SLE RA 2	-0.18117	-0.18117	SLE RA 1	-0.17025	-0.17025			
96 97	SLE RA 2	-0.2334	-0.2334	SLE RA 1	-0.16959	-0.16959			
97	SLE RA 2 SLE RA 2	-0.29738 -0.25306	-0.29738 -0.25306	SLE RA 1 SLE RA 1	-0.17053 -0.16969	-0.17053 -0.16969			
99	SLE RA 2	-0.28298	-0.28298	SLE RA 1	-0.17019	-0.17019			
100	SLE RA 2	-0.26889	-0.26889	SLE RA 1	-0.1699	-0.1699			
101 102	SLE RA 1 SLE RA 2	-0.16243 -0.30534	-0.16243 -0.30534	SLE RA 2 SLE RA 1	-0.14211 -0.16234	-0.14211 -0.16234			
103	SLE RA 2	-0.30334	-0.30534	SLE RA 1	-0.15792	-0.15792			
104	SLE RA 2	-0.17393	-0.17393	SLE RA 1	-0.16184	-0.16184			
105	SLE RA 2	-0.19048	-0.19048	SLE RA 1	-0.16158	-0.16158			
106 107	SLE RA 2 SLE RA 2	-0.20818 -0.29053	-0.20818 -0.29053	SLE RA 1 SLE RA 1	-0.16138 -0.16206	-0.16138 -0.16206			
107	SLE RA 2	-0.22824	-0.22824	SLE RA 1	-0.16131	-0.16206			
109	SLE RA 2	-0.25345	-0.25345	SLE RA 1	-0.16147	-0.16147			
110	SLE RA 2	-0.26512	-0.26512	SLE RA 1	-0.16162	-0.16162			
111 112	SLE RA 2 SLE RA 1	-0.27673 -0.15415	-0.27673 -0.15415	SLE RA 1 SLE RA 2	-0.16179 -0.1344	-0.16179 -0.1344			
113	SLE RA 2	-0.29749	-0.29749	SLE RA 1	-0.15406	-0.15406			
	SLE RA 1	-0.15391	-0.15391	SLE RA 2	-0.15025	-0.15025			

Nodo		Pressione minima					
Ind.	Cont.	uz	Valore	Cont.	Pressione massima uz	Valore	
115	SLE RA 2	-0.16628	-0.16628	SLE RA 1	-0.15365	-0.15365	
116	SLE RA 2	-0.18274	-0.18274	SLE RA 1	-0.15343	-0.15343	
117 118	SLE RA 2 SLE RA 2	-0.20003 -0.28237	-0.20003 -0.28237	SLE RA 1 SLE RA 1	-0.15325 -0.15379	-0.15325 -0.15379	
119	SLE RA 2	-0.21855	-0.21855	SLE RA 1	-0.15317	-0.15317	
120	SLE RA 2	-0.26774	-0.26774	SLE RA 1	-0.15352	-0.15352	
121	SLE RA 2	-0.23792	-0.23792	SLE RA 1	-0.15319	-0.1531	
122 123	SLE RA 2 SLE RA 1	-0.25346 -0.14618	-0.25346 -0.14618	SLE RA 1 SLE RA 2	-0.1533 -0.12658	-0.1533 -0.12658	
124	SLE RA 2	-0.14618	-0.28897	SLE RA 1	-0.12638	-0.14609	
125	SLE RA 1	-0.14596	-0.14596	SLE RA 2	-0.14239	-0.14239	
126	SLE RA 2	-0.15833	-0.15833	SLE RA 1	-0.14573	-0.14573	
127 128	SLE RA 2	-0.1746 -0.19139	-0.1746 -0.19139	SLE RA 1 SLE RA 1	-0.14552	-0.14552	
128	SLE RA 2 SLE RA 2	-0.19139	-0.19139	SLE RA 1	-0.14535 -0.14577	-0.14535 -0.14577	
130	SLE RA 2	-0.20882	-0.20882	SLE RA 1	-0.14521	-0.14521	
131	SLE RA 2	-0.22647	-0.22647	SLE RA 1	-0.14512	-0.14512	
132	SLE RA 2	-0.25828	-0.25828	SLE RA 1	-0.14542	-0.14542	
133 134	SLE RA 2 SLE RA 1	-0.24292 -0.13852	-0.24292 -0.13852	SLE RA 1 SLE RA 2	-0.14513 -0.11869	-0.14513 -0.11869	
135	SLE RA 2	-0.28003	-0.28003	SLE RA 1	-0.13843	-0.13843	
136	SLE RA 1	-0.13829	-0.13829	SLE RA 2	-0.13434	-0.13434	
137	SLE RA 2	-0.15013	-0.15013	SLE RA 1	-0.13805	-0.13805	
138	SLE RA 2	-0.16626	-0.16626	SLE RA 1 SLE RA 1	-0.13786	-0.13786	
139 140	SLE RA 2 SLE RA 2	-0.18276 -0.26459	-0.18276 -0.26459	SLE RA 1 SLE RA 1	-0.13767 -0.13799	-0.13767 -0.13799	
141	SLE RA 2	-0.1997	-0.1997	SLE RA 1	-0.13745	-0.13745	
142	SLE RA 2	-0.21698	-0.21698	SLE RA 1	-0.13717	-0.13717	
143	SLE RA 2	-0.24933	-0.24933	SLE RA 1	-0.13745	-0.13745	
144 145	SLE RA 2 SLE RA 1	-0.23404 -0.13114	-0.23404 -0.13114	SLE RA 1 SLE RA 2	-0.13689 -0.11075	-0.13689 -0.11075	
146	SLE RA 2	-0.27091	-0.27091	SLE RA 1	-0.13105	-0.13105	
147	SLE RA 1	-0.13086	-0.13086	SLE RA 2	-0.12604	-0.12604	
148	SLE RA 2	-0.15764	-0.15764	SLE RA 1	-0.13039	-0.13039	
149	SLE RA 2	-0.14151 -0.17409	-0.14151	SLE RA 1	-0.13057	-0.13057	
150 151	SLE RA 2 SLE RA 2	-0.17409	-0.17409 -0.19091	SLE RA 1 SLE RA 1	-0.13021 -0.12993	-0.13021 -0.12993	
152	SLE RA 2	-0.2557	-0.2557	SLE RA 1	-0.13047	-0.13047	
153	SLE RA 2	-0.20842	-0.20842	SLE RA 1	-0.12937	-0.12937	
154	SLE RA 2	-0.24093	-0.24093	SLE RA 1	-0.12962	-0.12962	
155 156	SLE RA 2 SLE RA 1	-0.22742 -0.12397	-0.22742 -0.12397	SLE RA 1 SLE RA 2	-0.12803 -0.10275	-0.12803 -0.10275	
157	SLE RA 2	-0.26176	-0.12397	SLE RA 1	-0.10273	-0.10273	
158	SLE RA 2	-0.16523	-0.16523	SLE RA 1	-0.12296	-0.12296	
159	SLE RA 1	-0.12357	-0.12357	SLE RA 2	-0.11737	-0.11737	
160	SLE RA 2	-0.14861	-0.14861	SLE RA 1	-0.12306	-0.12306	
161 162	SLE RA 2 SLE RA 2	-0.18187 -0.24664	-0.18187 -0.24664	SLE RA 1 SLE RA 1	-0.12277 -0.12331	-0.12277 -0.12331	
163	SLE RA 2	-0.13201	-0.13201	SLE RA 1	-0.12313	-0.12313	
164	SLE RA 2	-0.1988	-0.1988	SLE RA 1	-0.12249	-0.12249	
165	SLE RA 2	-0.23167	-0.23167	SLE RA 1	-0.12261	-0.12261	
166 167	SLE RA 2 SLE RA 1	-0.21595 -0.1169	-0.21595 -0.1169	SLE RA 1 SLE RA 2	-0.12217 -0.09466	-0.12217 -0.09466	
168	SLE RA 2	-0.25262	-0.25262	SLE RA 1	-0.11682	-0.11682	
169	SLE RA 2	-0.17288	-0.17288	SLE RA 1	-0.11575	-0.11575	
170	SLE RA 2	-0.15638	-0.15638	SLE RA 1	-0.11583	-0.11583	
171	SLE RA 1	-0.11634	-0.11634	SLE RA 2	-0.10841	-0.10841	
172 173	SLE RA 2 SLE RA 2	-0.18941 -0.23766	-0.18941 -0.23766	SLE RA 1 SLE RA 1	-0.11563 -0.11622	-0.11563 -0.11622	
174	SLE RA 2	-0.13934	-0.13934	SLE RA 1	-0.1158	-0.1158	
175	SLE RA 2	-0.20622	-0.20622	SLE RA 1	-0.1155	-0.1155	
176	SLE RA 2	-0.12025	-0.12025	SLE RA 1	-0.11535	-0.11535	
177 178	SLE RA 2 SLE RA 1	-0.22341 -0.10985	-0.22341 -0.10985	SLE RA 1 SLE RA 2	-0.1153 -0.08644	-0.1153 -0.08644	
179	SLE RA 2	-0.2435	-0.2435	SLE RA 1	-0.10976	-0.10976	
180	SLE RA 2	-0.16407	-0.16407	SLE RA 1	-0.10878	-0.10878	
181	SLE RA 2	-0.14806	-0.14806	SLE RA 1	-0.10885	-0.10885	
182 183	SLE RA 2 SLE RA 1	-0.18015 -0.10947	-0.18015 -0.10947	SLE RA 1 SLE RA 2	-0.10878 -0.10109	-0.10878 -0.10109	
183	SLE RA 1	-0.10947	-0.10947	SLE RA 2 SLE RA 1	-0.10109	-0.10109	
185	SLE RA 2	-0.13193	-0.13193	SLE RA 1	-0.10895	-0.10895	
186	SLE RA 2	-0.19638	-0.19638	SLE RA 1	-0.10884	-0.10884	
187	SLE RA 2	-0.11565	-0.11565	SLE RA 1	-0.10905	-0.10905	
188 189	SLE RA 2 SLE RA 1	-0.2126 -0.10277	-0.2126 -0.10277	SLE RA 1 SLE RA 2	-0.10898 -0.07813	-0.10898 -0.07813	
190	SLE RA 1	-0.10277	-0.10277	SLE RA 2	-0.09366	-0.07813	
191	SLE RA 2	-0.10911	-0.10911	SLE RA 1	-0.10234	-0.10234	
192	SLE RA 2	-0.12449	-0.12449	SLE RA 1	-0.10209	-0.10209	
193 194	SLE RA 2	-0.13987	-0.13987	SLE RA 1	-0.10189	-0.10189 -0.10181	
194	SLE RA 2 SLE RA 2	-0.15536 -0.17099	-0.15536 -0.17099	SLE RA 1 SLE RA 1	-0.10181 -0.10187	-0.10181	
196	SLE RA 2	-0.18676	-0.18676	SLE RA 1	-0.10206	-0.10206	
197	SLE RA 2	-0.20262	-0.20262	SLE RA 1	-0.10229	-0.10229	
198	SLE RA 2	-0.2185	-0.2185	SLE RA 1	-0.10251	-0.10251	
199	SLE RA 2	-0.23439	-0.23439	SLE RA 1	-0.10268	-0.10268	

8.5 Cedimenti fondazioni superficiali

Nodo: nodo che interagisce col terreno.

Ind.: indice del nodo.

spostamento nodale massimo: situazione in cui si verifica lo spostamento massimo verticale nel nodo calcolato dal solutore ad elementi finiti. Lo

spostamento massimo con segno è quello con valore massimo lungo l'asse Z, dove valori positivi rappresentano spostamenti verso l'alto.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce lo spostamento.

uz: spostamento verticale del nodo calcolato dal solutore ad elementi finiti. Lo spostamento è dotato di segno. [cm]

Press.: pressione sul terreno corrispondente allo spostamento. Valori positivi indicano trazione, valori negativi indicano compressione. [daN/cm²] **spostamento nodale minimo**: situazione in cui si verifica lo spostamento minimo verticale del nodo calcolato dal solutore ad elementi finiti. Lo spostamento minimo con segno è quello con valore minimo lungo l'asse Z, dove valori negativi rappresentano spostamenti verso il basso.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce lo spostamento.

uz: spostamento verticale del nodo calcolato dal solutore ad elementi finiti. Lo spostamento è dotato di segno. [cm]

Press.: pressione sul terreno corrispondente allo spostamento. Valori positivi indicano trazione, valori negativi indicano compressione. [daN/cm²] **Cedimento elastico**: cedimento teorico elastico massimo.

Cont.: nome breve della combinazione di carico in cui è stato calcolato il cedimento teorico elastico massimo.

v.: valore del cedimento teorico elastico massimo. [cm]

Cedimento edometrico: cedimento teorico edometrico massimo.

Cont.: nome breve della combinazione di carico in cui è stato calcolato il cedimento teorico edometrico massimo.

v.: valore del cedimento teorico edometrico massimo. [cm]

Cedimento di consolidazione: cedimento teorico di consolidazione massimo.

Cont.: nome breve della combinazione di carico in cui è stato calcolato il cedimento teorico di consolidazione massimo.

v.: valore del cedimento teorico di consolidazione massimo. [cm]

Spostamento estremo minimo -0.34311 al nodo di indice 12, di coordinate x = 120, y = 3748, z = -132, nel contesto SLE rara 2. Spostamento estremo massimo -0.07813 al nodo di indice 189, di coordinate x = -140, y = 4168, z = -132, nel contesto SLE rara 2.

Cedimento elastico estremo massimo 0.59784 al nodo di indice 75, di coordinate x = 22, y = 3897, z = -132, nel contesto SLE rara 2 Cedimento di consolidazione spostamento nodale massimo spostamento nodale minimo Cedimento elastico Cedimento edometrico Cont. Ind. Cont uz Press. Cont. Cont. uz SLE RA -0.20514 SLE RA SLE RA 0.24545 SLE RA 1 -0.22994 -0.22994 SLE RA 2 -0.2497 -0.2497 SLE RA 0.33506 SLE RA SLE RA 2 0.36186 1.0 SLE RA 1 -0.23067-0.2306SLE RA 2 -0.31132 -0.3113 SLE RA 0.35157 SLE RA SLE RA 2 SLE RA -0.3431 0.34311 0.24713 SLE RA SLE RA 2 SLE RA SLE RA 2 -0.18693 -0.18693 SLE RA 1 SLE RA -0.3406 -0.3406 14 SLE RA 2 SLE RA 2 0.32574 SLE RA 1 -0.22516 -0.2251 0.47151 SLE RA SLE RA 1 -0.22327 -0.22327 SLE RA 2 -0.24649 -0.24649 SLE RA 2 0.44856 RA RA 0.4867 -0.2017 -0.22459 -0.22361 SLE RA 2 SLE RA 1 -0.22465 -0.3247 .2246 SLE RA SLE RA 2 SLE RA 2 -0.2245 SLE RA 2 SLE RA 1 -0 2314 0 2314 SLE RA 0.41837 21 SLE RA 1 -0.22358 SLE RA 2 -0.29298-0.29298 SLE RA 2 0.49172 22 SLE RA 2 -0.2165 -0.2165 SLE RA 1 -0.22409 -0.22409 SLE RA 2 0.37962 RA SLE RA -0.3088 .3088 0.48121 -0.2186 SLE RA 1 -0.21856-0.21856 SLE RA 2 -0.33812 -0.3381 SLE RA 2 0.36678 SLE RA 1 -0.21634 -0.21634 SLE RA 2 -0.2585 SLE RA 0.51077 SLE RA 1 -0.21648 -0.21648 -0.2431 SLE RA 0.48527 -0.2431 28 SLE RA 1 -0.21646 -0.2164 SLE RA 2 -0.27438 -0.2743 SLE RA : 0.36308 SLE RA 2 -0.19802 -0.1980 SLE RA 1 0.2179 SLE RA 2 29 30 -0.2179 SLE RA 1 -0.21792 -0.322 -0.322 SLE RA 2 0.49401 SLE RA 1 -0.21684 -0.21684 SLE RA 2 -0.2278 -0.2278 SLE RA 2 0.45039 SLE RA 0.41037 SLE RA 1 -0.21175 -0.21175SLE RA 2 -0.33545 -0.33545 SLE RA 2 0.3901 -0.20928 20943 0.51863 SLE RA 1 4.0 SLE RA 2 -0.19376 -0.19376 -0.21106 -0.21106SLE RA 2 0.38075 41 SLE RA SLE RA 42 0.47966 SLE RA 1 -0.20978 SLE RA 2 SLE RA : 43 SLE RA 1 -0.20974 SLE RA 2 -0.2881 -0.28811 SLE RA 2 0.56522 44 0.4288 SLE RA 2 46 SLE RA 2 -0.17516 -0.17516 SLE RA 1 -0.20459 -0.20459 SLE RA 2 0.29054 -0.20189 -0.20202 -0.20189 -0.20202 48 SLE RA 1 SLE RA 2 -0.2516 -0.23519 SLE RA 0 2684 SLE RA 0 58504 SLE RA 2 -0.18864-0.18864SLE RA 1 -0.20359-0.20359 SLE RA 2 0.39052 SLE RA 1 -0.20352 SLE RA 2 -0.3176 RA SLE RA 0.49471 54 SLE RA 1 SLE RA 2 0.2858 SLE RA 2 0.58581 0.20043 SLE RA -0.2004 SLE RA SLE RA 0.43421 SLE RA 1 -0.20194 -0.20194 SLE RA 2 -0.3036 -0.3036 SLE RA 2 0.56079 -0.1967 57 SLE RA 2 -0.16984 -0.16984 SLE RA 1 -0.1967 SLE RA 2 0.29342 58 SLE RA 1 -0.19664 -0.19664 SLE RA 2 -0.328 -0.328 SLE RA 2 0.41175 -0.19419 -0.19419 SLE RA 2 SLE RA 1 -0.23094 SLE RA 2 0.54648 60 SLE RA 1 -0.19435 -0.19435 61 SLE RA 1 -0.1943-0.1943 SLE RA 2 -0.2652 -0.2652 SLE RA 2 0.59523 0.18416 SLE RA -0.19586 SLE RA -0.2146 19463 SLE RA 1 -0.1951-0.1951 SLE RA 2 -0.19848 SLE RA 0.44853 SLE RA 1 -0.19501 -0.19501 SLE RA 2 -0.29891 -0.29891 SLE RA 2

N-d-			!				0	-14:	0-4:	I t!		!!
Nodo Ind.	spostam Cont.	ento nodale n uz	nassimo Press.	Spostar Cont.	nento nodale i uz	Press.	Cedimento (elastico v.	Cedimento ed Cont.	lometrico v.	Cedimento di co Cont.	nsolidazione v.
68	SLE RA 2	-0.16368	-0.16368	SLE RA 1	-0.18834	-0.18834	SLE RA 2	0.29322	00111.	**	oon.	٧.
69	SLE RA 1	-0.18824	-0.18824	SLE RA 2	-0.32387	-0.32387	SLE RA 2	0.41418				
70 71	SLE RA 1	-0.18633 -0.18616	-0.18633 -0.18616	SLE RA 2 SLE RA 2	-0.22615 -0.24339	-0.22615 -0.24339	SLE RA 2	0.54837 0.57987				
72	SLE RA 2	-0.17867	-0.17867	SLE RA 1	-0.18774	-0.18774	SLE RA 2	0.39517				
73	SLE RA 1	-0.18668	-0.18668	SLE RA 2	-0.20972	-0.20972	SLE RA 2	0.50568				
74 75	SLE RA 1 SLE RA 1	-0.18763 -0.18624	-0.18763 -0.18624	SLE RA 2 SLE RA 2	-0.309 -0.26191	-0.309 -0.26191	SLE RA 2 SLE RA 2	0.54168 0.59784				
76	SLE RA 1	-0.18714	-0.18714	SLE RA 2	-0.19384	-0.19384	SLE RA 2	0.45185				
77	SLE RA 1	-0.18701	-0.18701	SLE RA 2	-0.29486	-0.29486	SLE RA 2	0.57229				
78	SLE RA 1	-0.1865	-0.1865	SLE RA 2	-0.28269	-0.28269	SLE RA 2	0.59316				
79 80	SLE RA 2 SLE RA 1	-0.15687 -0.17957	-0.15687 -0.17957	SLE RA 1 SLE RA 2	-0.17967 -0.31848	-0.17967 -0.31848	SLE RA 2 SLE RA 2	0.29029 0.41268				
81	SLE RA 2	-0.17229	-0.17229	SLE RA 1	-0.17921	-0.17921	SLE RA 2	0.39134				
82	SLE RA 1	-0.17805	-0.17805	SLE RA 2	-0.22068	-0.22068	SLE RA 2	0.54435				
83	SLE RA 1	-0.17835	-0.17835	SLE RA 2	-0.20395	-0.20395	SLE RA 2	0.50162				
85	SLE RA 1	-0.17792 -0.17875	-0.17792 -0.17875	SLE RA 2 SLE RA 2	-0.23835 -0.18789	-0.23835 -0.18789	SLE RA 2	0.57608 0.44821				
86	SLE RA 1	-0.17911	-0.17911	SLE RA 2	-0.30345	-0.30345	SLE RA 2	0.53885				
87	SLE RA 1	-0.178	-0.178	SLE RA 2	-0.25673	-0.25673	SLE RA 2	0.59404				
88	SLE RA 1	-0.17864 -0.17825	-0.17864 -0.17825	SLE RA 2 SLE RA 2	-0.28882 -0.27422	-0.28882 -0.27422	SLE RA 2	0.5711				
90	SLE RA 2	-0.14963	-0.14963	SLE RA 1	-0.17097	-0.17097	SLE RA 2	0.28463				
91	SLE RA 1	-0.17088	-0.17088	SLE RA 2	-0.31233	-0.31233	SLE RA 2	0.40794				
92	SLE RA 2	-0.1653	-0.1653	SLE RA 1	-0.17061	-0.17061	SLE RA 2	0.38339				
93	SLE RA 1 SLE RA 1	-0.16992 -0.16968	-0.16992 -0.16968	SLE RA 2 SLE RA 2	-0.19751 -0.21476	-0.19751 -0.21476	SLE RA 2 SLE RA 2	0.49284			+	
95	SLE RA 1	-0.17025	-0.17025	SLE RA 2	-0.18117	-0.18117	SLE RA 2	0.43978			<u> </u>	
96	SLE RA 1	-0.16959	-0.16959	SLE RA 2	-0.2334	-0.2334	SLE RA 2	0.56819				
97	SLE RA 1	-0.17053	-0.17053 -0.16969	SLE RA 2	-0.29738 -0.25306	-0.29738 -0.25306	SLE RA 2	0.53189			1	
98	SLE RA 1	-0.16969 -0.17019	-0.16969	SLE RA 2 SLE RA 2	-0.28298	-0.28298	SLE RA 2 SLE RA 2	0.58636 0.56357			+	
100	SLE RA 1	-0.1699	-0.1699	SLE RA 2	-0.26889	-0.26889	SLE RA 2	0.58472				
101	SLE RA 2	-0.14211	-0.14211	SLE RA 1	-0.16243	-0.16243	SLE RA 2	0.27661				
102	SLE RA 1 SLE RA 2	-0.16234 -0.15792	-0.16234 -0.15792	SLE RA 2 SLE RA 1	-0.30534 -0.16214	-0.30534 -0.16214	SLE RA 2 SLE RA 2	0.40026 0.37222				
103	SLE RA 1	-0.16184	-0.16184	SLE RA 1	-0.17393	-0.16214	SLE RA 2	0.42766				
105	SLE RA 1	-0.16158	-0.16158	SLE RA 2	-0.19048	-0.19048	SLE RA 2	0.48006				
106	SLE RA 1	-0.16138	-0.16138	SLE RA 2	-0.20818	-0.20818	SLE RA 2	0.52314				
107	SLE RA 1	-0.16206 -0.16131	-0.16206 -0.16131	SLE RA 2 SLE RA 2	-0.29053 -0.22824	-0.29053 -0.22824	SLE RA 2	0.52136 0.55671				
109	SLE RA 1	-0.16147	-0.16131	SLE RA 2	-0.25345	-0.25345	SLE RA 2	0.57508				
110	SLE RA 1	-0.16162	-0.16162	SLE RA 2	-0.26512	-0.26512	SLE RA 2	0.56995				
111	SLE RA 1	-0.16179	-0.16179	SLE RA 2	-0.27673	-0.27673	SLE RA 2	0.55063				
112	SLE RA 2 SLE RA 1	-0.1344 -0.15406	-0.1344 -0.15406	SLE RA 1 SLE RA 2	-0.15415 -0.29749	-0.15415 -0.29749	SLE RA 2 SLE RA 2	0.26653				
114	SLE RA 2	-0.15025	-0.15025	SLE RA 1	-0.15391	-0.15391	SLE RA 2	0.35837				
115	SLE RA 1	-0.15365	-0.15365	SLE RA 2	-0.16628	-0.16628	SLE RA 2	0.4123				
116	SLE RA 1	-0.15343	-0.15343	SLE RA 2	-0.18274	-0.18274	SLE RA 2	0.46327				
117	SLE RA 1	-0.15325 -0.15379	-0.15325 -0.15379	SLE RA 2 SLE RA 2	-0.20003 -0.28237	-0.20003 -0.28237	SLE RA 2 SLE RA 2	0.50503 0.50777				
119	SLE RA 1	-0.15317	-0.15317	SLE RA 2	-0.21855	-0.21855	SLE RA 2	0.53686				
120	SLE RA 1	-0.15352	-0.15352	SLE RA 2	-0.26774	-0.26774	SLE RA 2	0.53635				
121	SLE RA 1	-0.15319	-0.15319	SLE RA 2	-0.23792	-0.23792	SLE RA 2	0.55526				
122	SLE RA 1 SLE RA 2	-0.1533 -0.12658	-0.1533 -0.12658	SLE RA 2 SLE RA 1	-0.25346 -0.14618	-0.25346 -0.14618	SLE RA 2	0.55511 0.25455				
124	SLE RA 1	-0.14609	-0.14609	SLE RA 2	-0.28897	-0.28897	SLE RA 2	0.37623				
125	SLE RA 2	-0.14239	-0.14239	SLE RA 1	-0.14596	-0.14596	SLE RA 2	0.34204				
126	SLE RA 1	-0.14573	-0.14573	SLE RA 2	-0.15833	-0.15833	SLE RA 2	0.39396			1	
127	SLE RA 1 SLE RA 1	-0.14552 -0.14535	-0.14552 -0.14535	SLE RA 2 SLE RA 2	-0.1746 -0.19139	-0.1746 -0.19139	SLE RA 2 SLE RA 2	0.44311			+	
129	SLE RA 1	-0.14577	-0.14577	SLE RA 2	-0.27354	-0.27354	SLE RA 2	0.4905				
130	SLE RA 1	-0.14521	-0.14521	SLE RA 2	-0.20882	-0.20882	SLE RA 2	0.51377				
131	SLE RA 1	-0.14512 -0.14542	-0.14512 -0.14542	SLE RA 2	-0.22647 -0.25828	-0.22647 -0.25828	SLE RA 2	0.53181 0.53625			1	
132	SLE RA 1 SLE RA 1	-0.14542	-0.14542	SLE RA 2 SLE RA 2	-0.25828	-0.24292	SLE RA 2	0.53625			+	
134	SLE RA 2	-0.11869	-0.11869	SLE RA 1	-0.13852	-0.13852	SLE RA 2	0.2407				
135	SLE RA 1	-0.13843	-0.13843	SLE RA 2	-0.28003	-0.28003	SLE RA 2	0.3602				
136	SLE RA 2 SLE RA 1	-0.13434 -0.13805	-0.13434 -0.13805	SLE RA 1 SLE RA 2	-0.13829 -0.15013	-0.13829 -0.15013	SLE RA 2 SLE RA 2	0.3231			-	
138	SLE RA 1	-0.13786	-0.13786	SLE RA 2	-0.15013	-0.15013	SLE RA 2	0.41955				
139	SLE RA 1	-0.13767	-0.13767	SLE RA 2	-0.18276	-0.18276	SLE RA 2	0.45823				
140	SLE RA 1	-0.13799 -0.13745	-0.13799 -0.13745	SLE RA 2	-0.26459	-0.26459	SLE RA 2	0.46857			_	ļ
141	SLE RA 1 SLE RA 1	-0.13745	-0.13745	SLE RA 2 SLE RA 2	-0.1997 -0.21698	-0.1997 -0.21698	SLE RA 2 SLE RA 2	0.48752 0.50479			+	
143	SLE RA 1	-0.13745	-0.13745	SLE RA 2	-0.24933	-0.24933	SLE RA 2	0.49136			1	
144	SLE RA 1	-0.13689	-0.13689	SLE RA 2	-0.23404	-0.23404	SLE RA 2	0.50582				
145	SLE RA 2	-0.11075	-0.11075	SLE RA 1	-0.13114	-0.13114	SLE RA 2	0.22494			1	
146	SLE RA 1 SLE RA 2	-0.13105 -0.12604	-0.13105 -0.12604	SLE RA 2 SLE RA 1	-0.27091 -0.13086	-0.27091 -0.13086	SLE RA 2	0.34124			+	
148	SLE RA 1	-0.13039	-0.13039	SLE RA 2	-0.15764	-0.15764	SLE RA 2	0.39178				
149	SLE RA 1	-0.13057	-0.13057	SLE RA 2	-0.14151	-0.14151	SLE RA 2	0.34661				
150 151	SLE RA 1 SLE RA 1	-0.13021 -0.12993	-0.13021 -0.12993	SLE RA 2 SLE RA 2	-0.17409 -0.19091	-0.17409 -0.19091	SLE RA 2	0.4291 0.45728			+	
151	SLE RA 1	-0.12993	-0.12993	SLE RA 2	-0.19091	-0.19091	SLE RA 2	0.45728			+	
153	SLE RA 1	-0.12937	-0.12937	SLE RA 2	-0.20842	-0.20842	SLE RA 2	0.47325			1	
154	SLE RA 1	-0.12962	-0.12962	SLE RA 2	-0.24093	-0.24093	SLE RA 2	0.46001				
155	SLE RA 1	-0.12803	-0.12803	SLE RA 2	-0.22742	-0.22742	SLE RA 2	0.46737			1	
156 157	SLE RA 2 SLE RA 1	-0.10275 -0.12389	-0.10275 -0.12389	SLE RA 1 SLE RA 2	-0.12397 -0.26176	-0.12397 -0.26176	SLE RA 2 SLE RA 2	0.20713 0.31851			+	
158	SLE RA 1	-0.12296	-0.12296	SLE RA 2	-0.16523	-0.16523	SLE RA 2	0.39461				
159	SLE RA 2	-0.11737	-0.11737	SLE RA 1	-0.12357	-0.12357	SLE RA 2	0.275	· · · · · · · · · · · · · · · · · · ·			
160 161	SLE RA 1 SLE RA 1	-0.12306 -0.12277	-0.12306 -0.12277	SLE RA 2 SLE RA 2	-0.14861 -0.18187	-0.14861 -0.18187	SLE RA 2 SLE RA 2	0.3584 0.42178			+	
162	SLE RA 1	-0.12277	-0.12371	SLE RA 2	-0.18187	-0.18187	SLE RA 2	0.42178			+	
										•	•	

Nodo		nento nodale n			mento nodale i		Cedimento	elastico	Cedimento e	dometrico	Cedimento di c	onsolidazione
Ind.	Cont.	uz	Press.	Cont.	uz	Press.	Cont.	V.	Cont.	v.	Cont.	v.
163	SLE RA 1	-0.12313	-0.12313	SLE RA 2	-0.13201	-0.13201	SLE RA 2	0.31441				
164	SLE RA 1	-0.12249	-0.12249	SLE RA 2	-0.1988	-0.1988	SLE RA 2	0.43805				
165	SLE RA 1	-0.12261	-0.12261	SLE RA 2	-0.23167	-0.23167	SLE RA 2	0.42788				
166	SLE RA 1	-0.12217	-0.12217	SLE RA 2	-0.21595	-0.21595	SLE RA 2	0.43978				
167	SLE RA 2	-0.09466	-0.09466	SLE RA 1	-0.1169	-0.1169	SLE RA 2	0.1869				
168	SLE RA 1	-0.11682	-0.11682	SLE RA 2	-0.25262	-0.25262	SLE RA 2	0.29052				
169	SLE RA 1	-0.11575	-0.11575	SLE RA 2	-0.17288	-0.17288	SLE RA 2	0.37906				
170	SLE RA 1	-0.11583	-0.11583	SLE RA 2	-0.15638	-0.15638	SLE RA 2	0.35353				
171	SLE RA 2	-0.10841	-0.10841	SLE RA 1	-0.11634	-0.11634	SLE RA 2	0.2463				
172	SLE RA 1	-0.11563	-0.11563	SLE RA 2	-0.18941	-0.18941	SLE RA 2	0.39486				
173	SLE RA 1	-0.11622	-0.11622	SLE RA 2	-0.23766	-0.23766	SLE RA 2	0.37793				
174	SLE RA 1	-0.1158	-0.1158	SLE RA 2	-0.13934	-0.13934	SLE RA 2	0.31863				
175	SLE RA 1	-0.1155	-0.1155	SLE RA 2	-0.20622	-0.20622	SLE RA 2	0.41456				
176	SLE RA 1	-0.11535	-0.11535	SLE RA 2	-0.12025	-0.12025	SLE RA 2	0.27976				
177	SLE RA 1	-0.1153	-0.1153	SLE RA 2	-0.22341	-0.22341	SLE RA 2	0.40586				
178	SLE RA 2	-0.08644	-0.08644	SLE RA 1	-0.10985	-0.10985	SLE RA 2	0.16109				
179	SLE RA 1	-0.10976	-0.10976	SLE RA 2	-0.2435	-0.2435	SLE RA 2	0.25185				
180	SLE RA 1	-0.10878	-0.10878	SLE RA 2	-0.16407	-0.16407	SLE RA 2	0.33644				
181	SLE RA 1	-0.10885	-0.10885	SLE RA 2	-0.14806	-0.14806	SLE RA 2	0.31354				
182	SLE RA 1	-0.10878	-0.10878	SLE RA 2	-0.18015	-0.18015	SLE RA 2	0.35217				
183	SLE RA 2	-0.10109	-0.10109	SLE RA 1	-0.10947	-0.10947	SLE RA 2	0.21305				
184	SLE RA 1	-0.10939	-0.10939	SLE RA 2	-0.22806	-0.22806	SLE RA 2	0.329				
185	SLE RA 1	-0.10895	-0.10895	SLE RA 2	-0.13193	-0.13193	SLE RA 2	0.2843				
186	SLE RA 1	-0.10884	-0.10884	SLE RA 2	-0.19638	-0.19638	SLE RA 2	0.35857				
187	SLE RA 1	-0.10905	-0.10905	SLE RA 2	-0.11565	-0.11565	SLE RA 2	0.24971				
188	SLE RA 1	-0.10898	-0.10898	SLE RA 2	-0.2126	-0.2126	SLE RA 2	0.35275				
189	SLE RA 2	-0.07813	-0.07813	SLE RA 1	-0.10277	-0.10277	SLE RA 2	0.12738				
190	SLE RA 2	-0.09366	-0.09366	SLE RA 1	-0.10258	-0.10258	SLE RA 2	0.16348				
191	SLE RA 1	-0.10234	-0.10234	SLE RA 2	-0.10911	-0.10911	SLE RA 2	0.19197				
192	SLE RA 1	-0.10209	-0.10209	SLE RA 2	-0.12449	-0.12449	SLE RA 2	0.21524				
193	SLE RA 1	-0.10189	-0.10189	SLE RA 2	-0.13987	-0.13987	SLE RA 2	0.23464				
194	SLE RA 1	-0.10181	-0.10181	SLE RA 2	-0.15536	-0.15536	SLE RA 2	0.25006		1		1
195	SLE RA 1	-0.10187	-0.10187	SLE RA 2	-0.17099	-0.17099	SLE RA 2	0.26069				
196	SLE RA 1	-0.10206	-0.10206	SLE RA 2	-0.18676	-0.18676	SLE RA 2	0.26486				
197	SLE RA 1	-0.10229	-0.10229	SLE RA 2	-0.20262	-0.20262	SLE RA 2	0.25971		1		1
198	SLE RA 1	-0.10251	-0.10251	SLE RA 2	-0.2185	-0.2185	SLE RA 2	0.2402				
199	SLE RA 1	-0.10268	-0.10268	SLE RA 2	-0.23439	-0.23439	SLE RA 2	0.18974		1		+
										ı		