20-5-2021

BILKENT UNIVERSITY Department of Electrical and Electronics Engineering **EEE313 Electronic Circuit Design Final Exam** 4 questions 150 minutes

PART-1, 2 QUESTIONS 75 MINUTES

- Instructions:
- Calculators without extensive memory are allowed
- Clearly explain all your answers in order to receive credit
- Put a box around your final answer
- Cheat sheets are not allowed
- Indicate the units for your final answers
- Write your name and student ID on the bottom of every page
- Mail your pdf solutions to eee313exam@bilkent.edu.tr with your student ID number as subject
- Also upload your pdf solutions to Moodle

Q1. (20 points) For the buffered regulator shown above, $V_{Z0} = 6V$ and $R_1 = 0.5k\Omega$. The DC voltage source V_S may be between 9V and 12V. The load resistor R_L may be between 50Ω and 100Ω . I_Z must be greater than $0.1 \, \text{mA}$ for the Zener to be in the Zener region, and the maximum allowable power dissipation in the Zener is $66 \, \text{mW}$.

a) Find the range of acceptable β of the transistor so that the Zener current remains within acceptable limits under all conditions stated above for V_S and R_L (assuming the transistor is Forward Active.).

b) For the β range found above find the maximum value of R_C so that the transistor remains in the Forward Active state.

c) If the load resistor is accidentally shorted ($R_L \rightarrow 0$), how much current goes through R_C ? Take R_C as the maximum value found in part b. Assume

 I_Z is negligible if $V_Z < V_{Z0}$.

Q2. (30 points) The parameters of the transistor in the circuit above are $K_p = 1$ mA/V², $V_{TP} = -1.5$ V, and $\lambda = 0$. The other circuit component values are $R_S = 200\Omega$, $R_1 = 1.2k\Omega$, $R_D = 1.2k\Omega$, $R_L = 50k\Omega$, $C_{C1} = 4.7\mu F$, $C_{C2} = 1\mu F$, $C_{gs} = 10pF$, and $C_{gd} = 4pF$. v_{in} is a small-signal ac source.

a) Determine the quiescent current and voltage values of the transistor. Verify the state of the transistor.

b) Determine the small-signal midband gain $A_{MB} = v_{out}/v_{in}$.

c) Find the -3dB lower cut-off frequency f_L of this amplifier.

d) Find the -3dB upper cut-off frequency f_H of this amplifier.

20-5-2021

BILKENT UNIVERSITY Department of Electrical and Electronics Engineering **EEE313 Electronic Circuit Design Final Exam** 4 questions 150 minutes

PART-2, 2 QUESTIONS 75 MINUTES

- Instructions:
- Calculators without extensive memory are allowed
- Clearly explain all your answers in order to receive credit
- Put a box around your final answer
- Cheat sheets are not allowed
- Indicate the units for your final answers
- Write your name and student ID on the bottom of every page
- Mail your pdf solutions to eee313exam@bilkent.edu.tr with your student ID number as subject
- Also upload your pdf solutions to Moodle

Q3. (30 points) In the above diff amp $V_{cm} = V_Q + v_{cm}$ where $V_Q = 5V$, v_{cm} is the small-signal common-mode input voltage, and v_d is the small-signal differential input voltage.

currents, small signal transistor parameters, and verify the states of the transistors. a) For when the small input signals are zero (i.e. $v_{cm} = v_d = 0$), find the collector

Note: Do not ignore the base currents and the current on R_{EE}.

- b) Derive and find the small signal differential gain v_{out}/v_d .
- c) Derive and find the worst-case common mode small-signal gain v_{out}/v_{cm} if R_{C1}
 - and R_{C2} are accurate to $\pm 1\%$. d) Derive and find the small-signal common mode input resistance R_{icm}
 - e) Derive and find the small-signal differential input resistance Rid

Q4. (20 points) In the above voltage buffer, the npn BJT has the parameters $V_{BE}(ON) = 0.7V$, $V_{CE}(SAT) = 0.2V$, $\beta = 100$, $V_A = \infty$, and the **depletion mode nMOS** transistor has the parameters $K_n = 0.2mA/V^2$, $\lambda = 0$, and $V_{TN} = -1.8V$. Take $V_T = 0.026V$.

a) For $R_L = \infty$, find the range of V_{in} so that both transistors are active i.e. F.A. for the BJT and SAT for the nMOS.

b) If V_{out} is a sinusoidal with peak voltage of 2V, find the minimum value of R_L for which the condition that both transistors are active is not violated.

c) For $R_L = 500\Omega$ derive and find the small signal gain v_{out}/v_{in} of this buffer for $V_{in} = 0.7V + v_{in}$ where v_{in} and v_{out} are a small signal.