### SOLUTION FOR HOMEWORK ASSIGNMENT NO. 11

Nils Hoyer, Maurice Morgenthaler

## Exercise 11.1

a) Given a Poissonian distribution with mean  $\nu$ 

$$f_n(\nu) = e^{-n} \frac{n^{\nu}}{\nu!} \tag{1}$$

we are asked to list the number of observed events such that there is a  $10\,\%$  chance to observe them above, below and outside of the central interval.

As usual, please find the code in file exercise11\_1a.C. The results are given in table 1.

| Exercise | ν  | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|----------|----|---|---|---|---|----|----|----|----|----|----|----|----|
| 1        | n  | 5 | 5 | 6 | 8 | 9  | 10 | 11 | 13 | 14 | 15 | 16 | 18 |
| 2        |    | 1 | 1 | 2 | 3 | 3  | 4  | 5  | 6  | 6  | 7  | 8  | 9  |
| 3        | n' | 1 | 1 | 2 | 2 | 3  | 3  | 4  | 5  | 5  | 6  | 7  | 8  |
|          | n  | 4 | 6 | 7 | 9 | 10 | 11 | 13 | 14 | 15 | 16 | 18 | 19 |

**Table 1:** Results obtained for a fixed mean  $\nu$ .

**b)** Similar to the first part we are asked to calculatze the  $90\,\%$  CL for  $\nu$  given the total number of observed events n.

As usual, please find the code in file exercise11\_1b.C. The results are given in table 2.

| Exercise | n     | 0    | 1    | 2    | 3    | 4    | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|----------|-------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1        | 1,    |      |      |      |      |      |       |       | 11.77 |       |       |       |       |       |
| 2        | ν     | 0.11 | 0.53 | 1.10 | 1.75 | 2.43 | 3.15  | 3.90  | 4.66  | 5.43  | 6.22  | 7.02  | 7.83  | 8.65  |
| ą        |       |      |      |      |      |      |       |       | 3.98  |       |       |       |       |       |
| J        | $\nu$ | 3.00 | 4.74 | 6.30 | 7.75 | 9.15 | 10.51 | 11.84 | 13.15 | 14.44 | 15.71 | 16.96 | 18.21 | 19.44 |

**Table 2:** Results obtained for a fixed number of events n.

### Exercise 11.2

Given the total number of observed events  $n_{\rm tot}=n_{\rm S}+n_{\rm B}$  where  $n_{\rm S}$  is the number of signal and  $n_{\rm B}$  the number of background events we are asked to derive an upper limit for the mean  $\nu_{\rm S}$  at the 95 % confidence limit. We also know that  $\nu_{\rm B}$  and that n follows a Poissonian distribution.

To answer this question we relate the upper limit with respect to a Poissonian distribution and the quantile of the  $\chi^2$  distribution such that

$$s_{\rm up} = \frac{1}{2} F_{\chi^2}^{-1} [p, 2(n+1)] - b.$$
 (2)

This is possible because of the relation between the cumulative Poissonian distribution and the cumulative  $\chi^2$  distribution.

$$\Pr(X = k) = F_{\chi^2}(2\lambda; 2(k+1)) - F_{\chi^2}(2\lambda; 2k)$$
(3)

The implementation into code is given in file exercise 11\_2.C. Using  $n_{obs}=5$  yields  $\nu_S^{max}\approx 8.730\,96.$ 

### Distribution of events for the toy MC experiments



Figure 1: Results from our  $10\,000$  Monte Carlo simulation of n.

# Exercise 11.3

We are asked to verify the value obtained in exercise . To do this we use  $10\,000$  toy Monte Carlo experiments to generate random variables according to a Poissonian distribution with mean  $\nu=\nu_{\rm B}+\nu_{\rm S}^{\rm max}$  where  $\nu_{\rm S}^{\rm max}$  is used from exercise 11.2. By construction the number of events  $< n_{\rm obs}$  should be  $5\,\%$ .

The implementation into code is given in file exercise11\_3.C. The plot showing the results is given in figure ??.

Using the value given in exericse we get a fraction of n which is observed below  $n_{obs} = 5$  of  $4.89\,\%$  which does not disagree with the expected value of  $5\,\%$ .