

I키포인트

- 용어: 시행, 사건, 표본공간.
- 수학적 확률의 정의.
- 통계적 (경험적) 확률의 정의.
- 확률의 기본 특성.

I시행

- 가능한 모든 결과를 알 수 있는 관찰 또는 실험.
- 같은 조건 아래에서 반복할 수 있음.
- 그 결과가 우연에 의해서 결정됨.

• 시행의 가능한 결과가 e_1 , e_2 , e_3 , …, e_N 일때 다음 집합 S를 이 시행의 표본공간 (sample space)라고 한다:

$$S = \{e_1, e_2, e_3, \dots, e_N\}$$

예). 주사위: $S = \{1, 2, 3, 4, 5, 6\}$

예). 동전: $S = \{T, H\}$

← Head = 앞면, Tail=

뒷면

• 표본공간의 부분집합을 **사건** (event)라고 한다. 예를 들어서,

 $\rightarrow S$ 전체

"전사

건"

 \rightarrow 공집합 ϕ

"공사

건"

 \rightarrow 단 하나의 원소로 구성된 부분집합: $\{e_1\}$, $\{e_2\}$, ··· "근원사건"

FAST CAMPUS ONLINE \rightarrow 이외의 부분집합: $\{e_1,e_2\}$, $\{e_7,e_9,e_{13}\}$, … $^{\otimes c \otimes 3 \text{ Al.}}$

• 한개의 주사위 던지기 예 #1.

→ 표본공간: *S* = {1,2,3,4,5,6}

 \rightarrow 5의 눈이 나오는 사건: $E_1 = \{5\}$ \Rightarrow 단 하나의 결과 "근원사건"

- \rightarrow 홀수의 눈이 나오는 사건: $E_2 = \{1,3,5\}$
- \rightarrow 3 이상의 눈이 나오는 사건: $E_3 = \{3,4,5,6\}$

- 한개의 주사위 던지기 예 #2.
 - \rightarrow 짝수의 눈이 나오는 사건 A와 3이상의 눈이 나오는 사건 B:

$$A = \{2, 4, 6\}, B = \{3, 4, 5, 6\}$$

- \rightarrow 짝수이면서 3이상의 눈이 나오는 사건: $A \cap B = \{4,6\}$
- \rightarrow 짝수 또는 3이상의 눈이 나오는 사건: $A \cup B = \{2, 3, 4, 5, 6\}$

- 한개의 주사위 던지기 예 #2.
 - → 이제 홀수의 눈이 나오는 사건을 *C* 라고 정의하면:

 $A = \{2, 4, 6\}, B = \{3, 4, 5, 6\}, C = \{1, 3, 5\} \Rightarrow A \cap C = \phi$ "배반

- \rightarrow 짝수의 눈이긴 한데 3이상이 아닌 사건: $A B = \{2\}$
- \rightarrow 3이상의 눈이긴 한데 짝수가 아닌 사건: $B A = \{3,5\}$
- \rightarrow 3 이 상 의 눈 이 아 닌 사 건 : $B^c = S B = \{1, 2\}$

- 10원짜리 동전 한개와 100원짜리 동전 한개를 동시에 던지기 예.
 - \rightarrow 표본공간: $S = \{(H, H), (H, T), (T, H), (T, T)\}$
 - \rightarrow 두 개 모두 뒷면이 나오는 사건: $E_1 = \{(T,T)\}$
 - \rightarrow 두 개 모두 같은 면이 나오는 사건: $E_2 = \{(H, H), (T, T)\}$
 - → 적어도 한쪽이 앞면이 나오는 사건:

$$E_3 = \{(H, H), (T, H), (H, T)\}$$

• N이 한 시행에 따라서 일어날 수 있는 모든 경우의 수이고, N_A 는 사건 A가 일어나는 경우의 수일 때 수학적 확률 P(A) 는 다음과 같다:

$$P(A) = \frac{N_A}{N}$$

문제: 두 개의 주사위를 동시에 던질 때, 다음 물음에 답하라.

1). 서로 다른 눈이 나올 확률을 구하라.

문제: 두 개의 주사위를 동시에 던질 때, 다음 물음에 답하라.

1). 서로 다른 눈이 나올 확률을 구하라.

$$P = \frac{7 \text{ 대하는 것이 일어나는 경우의 수}}{2 \text{ 일어날 수 있는 모든 경우의 수}} = \frac{36-6}{36} = \frac{5}{6}$$

문제: 두 개의 주사위를 동시에 던질 때, 다음 물음에 답하라.

2).두 개의 눈의 합이 7이될 확률을 구하라.

문제: 두 개의 주사위를 동시에 던질 때, 다음 물음에 답하라.

2).두 개의 눈의 합이 7이될 확률을 구하라.

눈의 합이 7인 경우는 (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)과 같다.

그러므로,
$$P = \frac{6}{36} = \frac{1}{6}$$

문제: 두 개의 주사위를 동시에 던질 때, 다음 물음에 답하라.

3). 나오는 눈의 곱이 짝수가 되는 확률을 구하라.

문제: 두 개의 주사위를 동시에 던질 때, 다음 물음에 답하라.

3). 나오는 눈의 곱이 짝수가 되는 확률을 구하라.

$$P = \frac{27}{36} = \frac{3}{4}$$

• 어떤 조건 아래에서 실험 또는 관측한 자료의 총수를 N이라 하고, 그 중에서 어떤 사건 A가 일어난 횟수를 N_A 라 할 때 상대도수는 다음과 같다:

상대도수 =
$$\frac{N_A}{N}$$

• 이상적으로 통계적 확률 *P(A)*는 다음과 같이 상대도수의 극한이다:

$$P = \lim_{N \to \infty} \frac{N_A}{N}$$

문제: 통계에 의하면 출생아 1000명 중 출생 후 1년까지 산 아이가 980명이다. 출생아의 1년 생존확률은?

문제: 통계에 의하면 출생아 1000명 중 출생 후 1년까지 산 아이가 980명이다. 출생아의 1년 생존확률은?

$$P = \frac{7 \text{ 대하는 것이 일어난 횟수}}{4 \text{ 실험한 모든 횟수}} = \frac{980}{1000} = 0.98$$

문제: 한 개의 주사위를 10000번 던져서 1의 눈이 1650번 나왔다. 1의 눈이 나올 확률을 구하라.

문제: 한 개의 주사위를 10000번 던져서 1의 눈이 1650번 나왔다. 1의 눈이 나올 확률을 구하라.

$$P = \frac{\text{기대하는 것이 일어난 횟수}}{\text{실험한 모든 횟수}} = \frac{1650}{10000} = 0.165 \approx \frac{1}{6}$$

I확률의 기본 특성

• 임의의 사건 A, 전사건 S, 공사건 ϕ 에 대해서:

$$0 \le P(A) \le 1$$

$$P(S) = 1$$

$$P(\phi) = 0$$

I확률의 기본 특성

• 근원사건 e_i 의 확률 p_i 를 모두 더하면 1이 되어야 한다:

$$p_1 + p_2 + \dots + p_N = 1$$

감사합니다.

