

Physics 427 – Introduction to Computational Physics

James B. Mertens

Homework 4 – due Feb. 18, 2021

Problem 1: In the previous homework we encountered the Hilbert matrix and saw that it is ill-conditioned. This is not just a matrix invented by a mathematician to create problems¹ but instead can appear in a minimization problem. Suppose we are given a known function q(x) and wish to expand it in a finite power series so that

$$g(x) \approx \sum_{i=0}^{n} a_i x^i.$$

To find the coefficients, a_i , we could minimize a " χ^2 -like" quantity we define as

$$X^{2} \equiv \int_{0}^{1} \left[g(x) - \sum_{i=0}^{n} a_{i} x^{i} \right]^{2} dx.$$

Notice that if the integral were replaced by a sum over a finite number of points this would just be the χ^2 . When we minimize X^2 with respect to the coefficients a_i we end up with a system of linear equations that can be written in the familiar form

$$\mathsf{A}\vec{a}=\vec{b},$$

where now \vec{a} is a vector with components given by the coefficients a_i . This system of equations can then be solved.

- a) Perform the minimization and find the expression for the components of \vec{b} . These will depend on g(x), but, given a particular functional form for g(x), the values can be calculated resulting in a known vector \vec{b} .
- b) Again from the minimization determine the components of the matrix A. You should find that the A_{ij} are precisely the components of the Hilbert matrix. [Note: It can be useful to consider a small n case, such as n=2, to more directly see the structure of the matrix. The results can be generalized to arbitrary n from there.]

Problem 2: Complete the Jupyter notebook assignments.

Problem 3: Complete the "Homework 4 Survey" in the quizzes section of Canvas.

¹Not to say that a mathematician would not create such a matrix for just such a purpose.