Search-based Structured Prediction for biological event extraction

李辰

Background

Unstructured knowledge

Structured knowledge

BioModels Database Li C. et al., BMC systems biology

- Quantitatively characterise morphology of different types of biological networks in the scientific literature.
- Semantically enrich curated biological networks
- Discover hidden relations

MEDLINE

Biomedical event extraction

decreased tyrosine phosphorylation and nuclear translocation of STAT6

Biomedical event extraction

CpG hypermethylation may account for the absence of IRF-4 expression

- Event extraction decomposition
- Trigger recognition: classify each token as one of the event types or No_trigger
- Theme assignment: classify each candidate triggerargument pair as Theme or No_theme
- Cause assignment: classify each candidate triggerargument pair as Cause or No_cause

- Event types and features

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- Event types and features

CpG hypermethylation may account for the absence of IRF-4 expression

Methylation

Pos_reg

Neg_reg

Gene_exp

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

nsubj Path: {trigger}—→{argument}

POS_Path: NN—→{argument}

etc.

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- Event types and features

nn

nsubj

prep

nn

Neg_reg

Gene_exp

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- Event types and features **Stanford collapsed dependencies** nsubj nn prep prep prep hypermethylation may account for the absence of Theme Neg_reg Methylation Pos reg Gene exp hypermethylation Methylation CpG E1

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- Event types and features **Stanford collapsed dependencies** nsubj nn prep prep prep hypermethylation may account for the absence of Theme Theme Methylation Pos reg Neg_reg Gene_exp hypermethylation Methylation CpG E1

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- Event types and features **Stanford collapsed dependencies** nsubj nn prep prep prep hypermethylation may account for the absence of Theme Theme Methylation Pos reg Neg_reg Gene_exp E1 Methylation hypermethylation CpG E2 IRF-4 Gene expression expression

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- Event types and features

binding of A, B and C

1 st case	Binding	A
2 nd case	Binding	В
3 rd case	Binding	С
4 th case	Binding	AB
5 th case	Binding	ВС
6 th case	Binding	AC
7 th case	Binding	ABC

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- Event types and features **Stanford collapsed dependencies** nsubj nn prep prep prep hypermethylation may account for the absence of Theme/No_theme
 ↑ Theme Theme Methylation Pos reg Neg_reg Gene_exp E1 Methylation hypermethylation CpG E2 Gene expression IRF-4 expression

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

- 1. Simple events: an event takes one theme, e.g. gene expression
- 2. Binding: an event has multi-theme
- 3. Complex events: an event has both theme and cause
- 4. Recursive events: an event has theme and/or cause, which can be another event

BioNLP shared task

- Organized in 2009, 2011 and 2013 (next in 2015)
- Emphasis on
 - Expressive structured models of extracted information
 - "High-level" information extraction: directionality and polarity of reactions

BioNLP shared task (cont.)

- Event structure is defined closer to reactions in biological networks.
 - Each event is associated with an event type
 - Event is explicitly mentioned in the text
 - Reactant number may vary in each event
 - Each reactant has different role, e.g. cause, theme, site etc.
 - Event can play a role in another event

BioNLP shared task (cont.)

Structural evaluation

BioNLP shared task (cont.)

Structural evaluation

3 false positives and 3 false negatives

Structured prediction requirements

- Labeled data
- Loss function
- Optimal policy
- A cost-sensitive classification

```
1 Initialise
     Structured instances S,
     optimal policy \pi,
     cost sensitive learning algorithm CSCL
     loss function \ell
6
7 Train
     current policy h=\pi
     while h depends significantly on \pi do
       Examples E = \emptyset
10
       for s in S do
11
          Predict h(s) = \hat{y}_1...\hat{y}_T
          for \hat{y}_t in h(s) do
             Extract features \Phi_t = f(s, \hat{y}_{1:t-1})
             for each possible action \boldsymbol{y}_t^i do
15
               Predict y'_{t+1:T} = h(s|\hat{y}_{1:t-1}, y_t^i)
16
               Estimate c_t^i = \ell(\hat{y}_{1:t-1}, y_t^i, y_{t+1}', y_t)
17
             Add (\Phi_t, c_t) to E
18
       Learn a classifier h_{new} = CSCL(E)
       h = \beta h_{new} + (1 + \beta)h
21 Return policy h
```

```
1 Initialise
     Structured instances S,
  optimal policy \pi,
   cost sensitive learning algorithm CSCL
     loss function \ell
7 Train
     current policy h=\pi
     while h depends significantly on \pi do
       Examples E = \emptyset
10
       for s in S do
         Predict h(s) = \hat{y}_1...\hat{y}_T
          for \hat{y}_t in h(s) do
            Extract features \Phi_t = f(s, \hat{y}_{1:t-1})
            for each possible action y_t^i do
15
              Predict y'_{t+1:T} = h(s|\hat{y}_{1:t-1}, y^i_t)
16
              Estimate c_t^i = \ell(\hat{y}_{1:t-1}, y_t^i, y_{t+1:T}')
17
            Add (\Phi_t, c_t) to E
18
       Learn a classifier h_{new} = CSCL(E)
       h = \beta h_{new} + (1 + \beta)h
21 Return policy h
```

```
1 Initialise
     Structured instances S,
     optimal policy \pi,
     cost sensitive learning algorithm CSCL
     loss function \ell
6
7 Train
     current policy h=\pi
     while h depends significantly on \pi do
       Examples E = \emptyset
10
        for s in S do
11
          Predict h(s) = \hat{y}_1...\hat{y}_T
          for \hat{y}_t in h(s) do
13
             Extract features \Phi_t = f(s, \hat{y}_{1:t-1})
             for each possible action \boldsymbol{y}_t^i do
15
               Predict y'_{t+1:T} = h(s|\hat{y}_{1:t-1}, y_t^i)
16
               Estimate c_t^i = \ell(\hat{y}_{1:t-1}, y_t^i, y_{t+1}', y_t)
17
             Add (\Phi_t, c_t) to E
18
       Learn a classifier h_{new} = CSCL(E)
       h = \beta h_{new} + (1 + \beta)h
21 Return policy h
```

```
1 Initialise
     Structured instances S,
     optimal policy \pi,
     cost sensitive learning algorithm CSCL
     loss function \ell
6
7 Train
     current policy h=\pi
     while h depends significantly on \pi do
       Examples E = \emptyset
        for s in S do
11
          Predict h(s) = \hat{y}_1...\hat{y}_T
12
          for \hat{y}_t in h(s) do
13
             Extract features \Phi_t = f(s, \hat{y}_{1:t-1})
             for each possible action \boldsymbol{y}_t^i do
15
               Predict y'_{t+1:T} = h(s|\hat{y}_{1:t-1}, y_t^i)
16
               Estimate c_t^i = \ell(\hat{y}_{1:t-1}, y_t^i, y_{t+1}', y_t)
17
             Add (\Phi_t, c_t) to E
18
       Learn a classifier h_{new} = CSCL(E)
       h = \beta h_{new} + (1 + \beta)h
21 Return policy h
```

```
1 Initialise
     Structured instances S,
     optimal policy \pi,
     cost sensitive learning algorithm CSCL
     loss function \ell
6
7 Train
     current policy h=\pi
     while h depends significantly on \pi do
       Examples E = \emptyset
10
       for s in S do
11
          Predict h(s) = \hat{y}_1...\hat{y}_T
12
          for \hat{y}_t in h(s) do
13
            Extract features \Phi_t = f(s, \hat{y}_{1:t-1})
14
            for each possible action y_t^i do
15
               Predict y'_{t+1:T} = h(s|\hat{y}_{1:t-1}, y_t^i)
16
               Estimate c_t^i = \ell(\hat{y}_{1:t-1}, y_t^i, y_{t+1}', y_t)
17
            Add (\Phi_t, c_t) to E
18
       Learn a classifier h_{new} = CSCL(E)
       h = \beta h_{new} + (1 + \beta)h
21 Return policy h
```

```
1 Initialise
     Structured instances S,
     optimal policy \pi,
     cost sensitive learning algorithm CSCL
     loss function \ell
7 Train
     current policy h=\pi
     while h depends significantly on \pi do
       Examples E = \emptyset
10
       for s in S do
11
          Predict h(s) = \hat{y}_1...\hat{y}_T
12
          for \hat{y}_t in h(s) do
            Extract features \Phi_t = f(s, \hat{y}_{1:t-1})
            for each possible action y_t^i do
               Predict y'_{t+1:T} = h(s|\hat{y}_{1:t-1}, y_t^i)
               Estimate c_t^i = \ell(\hat{y}_{1:t-1}, y_t^i, y_{t+1,T}')
17
            Add (\Phi_t, c_t) to E
       Learn a classifier h_{new} = CSCL(E)
19
       h = \beta h_{new} + (1 + \beta)h
21 Return policy h
```

```
1 Initialise
     Structured instances S,
     optimal policy \pi,
     cost sensitive learning algorithm CSCL
     loss function \ell
7 Train
     current policy h=\pi
     while h depends significantly on \pi do
       Examples E = \emptyset
10
       for s in S do
11
          Predict h(s) = \hat{y}_1...\hat{y}_T
          for \hat{y}_t in h(s) do
            Extract features \Phi_t = f(s, \hat{y}_{1:t-1})
            for each possible action \boldsymbol{y}_t^i do
15
               Predict y'_{t+1:T} = h(s|\hat{y}_{1:t-1}, y_t^i)
16
               Estimate c_t^i = \ell(\hat{y}_{1:t-1}, y_t^i, y_{t+1:T}')
17
            Add (\Phi_t, c_t) to E
18
        Learn a classifier h_{new} = CSCL(E)
       h = \beta h_{new} + (1 + \beta)h
21 Return policy h
```


	Non_trigger	Pos_reg	Neg_reg	Methylation	Gene_exp
hypermethylation					
may					
account					
for					
absence					
expression					

	Non_trigger	Pos_reg	Neg_reg	Methylation	Gene_exp
hypermethylation	3				
may					
account					
for					
absence					
expression					

	Non_trigger	Pos_reg	Neg_reg	Methylation	Gene_exp
hypermethylation	3	4			
may					
account					
for					
absence					
expression					

	Non_trigger	Pos_reg	Neg_reg	Methylation	Gene_exp
hypermethylation	3	4	4	0	4
may					
account					
for					
absence					
expression					

	Non_trigger	Pos_reg	Neg_reg	Methylation	Gene_exp
hypermethylation	3	4	4	0	4
may	0	0	0	0	0
account					
for					
absence					
expression					

	Non_trigger	Pos_reg	Neg_reg	Methylation	Gene_exp
hypermethylation	3	4	4	0	4
may	0	0	0	0	0
account	1	0	2	2	2
for	0	0	0	0	0
absence	3	4	0	4	4
expression	5	6	6	6	0

2nd iteration -- Learned hypothesis

	Non_trigger	Pos_reg	Neg_reg	Methylation	Gene_exp
hypermethylation	3	4	4	0	4
may	0	1	0	0	0
account					
for					
absence					
expression					

2nd iteration -- Learned hypothesis

	Non_trigger	Pos_reg	Neg_reg	Methylation	Gene_exp
hypermethylation	3	4	4	0	4
may	0	1	0	0	0
account	1	0	2	2	2
for	0	0	0	0	0
absence	3	4	0	4	4
expression	5	6	6	6	0

Averaged perceptron

```
1 Input
       training examples X = x_1...x_T,
2
     cost vectors c_1...c_T,
initialise weights w_0^{(k)} = (0,...,0),
     for x_t \in X do
          predict label \hat{y}_t = argmax_k(w_t^{(k)} \times x_t)
6
          receive cost vector c_t
s if c_t^{(\hat{y}_t)} > 0 then
             loss \ell_t = w_t^{(\hat{y}_t)} \times x_t - w_t^{(y_t)} \times x_t + \sqrt{c_t^{(\hat{y}_t)}}
             learning rate 	au_t = rac{\ell_t}{\|x_t\|^2 + rac{1}{2a}}
10
             weight w_{t+1}^{(y_t)} = w_t + \tau_t x_t
11
                        w_{t+1}^{(\hat{y}_t)} = w_t - \tau_t x_t
12
     average w_{avg} = \frac{\sum_{i=0}^{T \times K} w_i}{T \times B}
```

Averaged perceptron

```
1 Input
       training examples X = x_1...x_T,
     cost vectors c_1...c_T,
4 initialise weights w_0^{(k)} = (0,...,0),
     for x_t \in X do
          predict label \hat{y}_t = argmax_k(w_t^{(k)} \times x_t)
          receive cost vector c_t
s if c_t^{(\hat{\mathbf{y}}_t)} > 0 then
loss \ell_t = w_t^{(\hat{y}_t)} 	imes x_t - w_t^{(y_t)} 	imes x_t + \sqrt{c_t^{(\hat{y}_t)}}
         learning rate 	au_t = rac{\ell_t}{\|x_t\|^2 + rac{1}{2c}}
             weight w_{t+1}^{(y_t)} = w_t + \tau_t x_t
w_{t+1}^{(\hat{y}_t)} = w_t - \tau_t x_t
11
12
      average w_{avg} = \frac{\sum_{i=0}^{T \times R} w_i}{T \times P}
```

Conclusion

- Biological networks are described in complicated structures in the scientific literature.
- Structured prediction for a complex structured prediction task
- Structured prediction achieved state-of-theart performance
- A flexible system for extracting more types of biological networks

Questions?