CAPÍTULO 1 SOLUÇÕES DOS PROBLEMAS

$$\vec{a} = 3\vec{i} + (3tz + txy^2)\vec{j} + (y^2 + 2xyzt)\vec{k}$$

1.5 a)
$$\vec{a} = \frac{2v_0^2}{L} \left(1 + \frac{2x}{L} \right)$$

b) entrada = 200 ft s⁻²; saída = 600 ft s^{-2} .

1.6 a)
$$\vec{v} = 3\vec{i} + 4\vec{j}$$

- b) aceleração local =0
- c) aceleração convectiva = $24\vec{i} + 6\vec{j}$

1.7 a)
$$\vec{a} = (3 + 9t^2)\vec{i} + (2t - t^4)\vec{j}$$

b) uma solução é $\vec{n}=\pm\vec{k}$ (notar que $\vec{a}\cdot\vec{n}=0$)

1.8 a)
$$a_x = (x^2 + x - y^2) (2x+1) + (-2xy-y) (-2y)$$

$$a_y = (x^2 + x - y^2) (-2y) + (-2xy-y) (-2x-1)$$

$$\vec{a} = 35 \vec{i} + 15 \vec{j}$$
 ((x,y) = (2,1))

b) $v_{30^{\circ}} = \vec{v} \cdot \vec{n} = 1,83 \text{ unidades}$

c)
$$\vec{a} = \sqrt{1450}$$
 $\vec{v} = \sqrt{50}$

1.9 Q = 4.0 unidades; $v_{med} = 1.0$ unidade;

1.10 a) $Q = 1/2 \pi v_{max} R^2$; $v_{med} = 1/2 v_{max}$

- b) 0,0113 m³ s⁻¹
- c) 11,3 kg m⁻³.

1.11 5,3 horas.

1.12
$$v_x = -3 \text{ sen } \theta$$
; $v_y = 3 \text{ cos } \theta$; $a_r = -4.5 \text{ ms}^{-2}$; $a_\theta = 0$.

1.13 Dp/Dt $(x = L) = -0.0498 p_0 v_0/L$.

- **1.14** Escoamento incompressível e rotacional.
- **1.15** Linhas de corrente xy = c (hipérboles).
- **1.16** Linhas de corrente $y = x tg\theta + C$.

1.18 Trajectória:

$$x = x_0 \exp \left[ln \left(y_{y_0} \right) + ln^2 \left(y_{y_0} \right) \right]$$

1.19 Grad T =

$$\nabla T = \frac{T_0 e^{-1}}{ab} \left[\left[b \cos 1 \cosh 1 \right] \vec{i} + \left[a sen1 \ senh1 \right] \vec{j} \right]$$

- **1.21** a) 5,88 x 10-6 m² s⁻¹
 - b) $6,331 \times 10^{-5} \text{ ft}^2 \text{ s}^{-1}$
 - c) 1,044 x 10⁻⁴ slug ft⁻¹ s⁻¹
- **1.22** 3,30 x 10-5 lb_f s ft⁻²