Name: Mofazzal Hossain

Student Number: R00225120

Class Group: COMP1D-X

Lab 6 - Adders

1. Complete the following truth table for a binary half adder:

Truth Table:

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

2. Using the truth table above, design a half adder circuit which adds two bits.

Circuit:

$$S = A'B + AB'$$
 or $S = A \bigoplus B$
 $C = AB$

3. Draw the black box representation of a half adder.

4. Complete the following truth table for a full adder:

A	В	С	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

5. Using the black box representation of a half adder (from Q.3), design a full adder which is capable of adding two bits and a carry-in bit.

6. Implement the full adder design in Logisim using XOR, AND and OR gates.

Circuit:

7. Using the partial circuit given on Canvas, ripple-burst.circ, complete the ripple carry adder which is capable of adding two 4-bit numbers. Test your circuit by adding the following 4-bit numbers (include a screenshot for each sum):

```
a. 0011 + 0111 = 1010
```

b.
$$0101 + 0001 = 0110$$

c.
$$0011 + 0010 = 0101$$

d.
$$1000 + 0011 = 1011$$

e.
$$1010 + 0011 = 1101$$

f.
$$1101 + 1000 = 1010 \ 1$$
 # (Carry output 1)

Circuit:

8. Using a black box design (i.e. use black box full adder blocks), draw the 4-bit ripple carry adder below:

