Гибридные архитектуры

Введение

В этом уроке мы поговорим о том как глобально сочетать разные подходы.

План

Общее понятие гибридной архитектуры Content-based +
Collaborative
filtering

Общее понятие гибридной архитектуры

Гибридный подход

Гибридный подход – это сочетание коллаборативной и контентной фильтраций.

- Улучшает качество рекомендаций
- Позволяет сначала взвешивать результаты согласно контентной фильтрации, а затем смещать эти веса по направлению к коллаборативной фильтрации (по мере "вызревания" доступного набора данных по конкретному пользователю).

Гибридный подход

Content-based + Collaborative filtering

вернемся к 1-ому уроку...

Виды рекомендаций

Коллаборативная фильтрация

Рекомендации для пользователя строятся на основе **оценок** похожих пользователей.

Коллаборативная фильтрация

1 User-based

2 Item-based

Основанные на контенте

 Рассчитываются признаки для пользователей и объектов

Строится модель
классификации/
регрессии, приближающая
оценки пользователей

Основанные на знаниях

- Строится база знаний о том, как объекты одной предметной области соотносятся с интересами и предпочтениями пользователя, которая с помощью правил эти соотношения описывает.
- Далее, на основе предпочтений пользователей оценивается полезность объектов по этим правилам, и на основании этой полезности строятся рекомендации.

Гибридные

Распространённые типы комбинирования:

- реализация по отдельности коллаборативных и контентных алгоритмов и объединение их предположений
- включение некоторых контентных правил в коллаборативную методику
- включение некоторых коллаборативных правил в контентную методику
- построение общей модели, включающей в себя правила обеих методик

Гибридный подход

Таксономия источников знаний

Источники знаний и типы рекомендаций

Зачем строят гибриды?

- Разные подходы имеют свои недостатки и преимущества
- Вместо выбора гибко используем все

Гибридитизация

- Часто улучшает качество рекомендаций
- Иногда положительно сказывается на разнообразии
- Не гарантирует решение всех проблем, связанных с тем или иным подходом

Пример – рекомендации в Okko

Окко начал своё существование в 2011 году как часть Йоты, запустившись под именем Yota Play

https://habr.com/ru/company/okko/blog/454224/

Рекомендации в Okko

В 2012 социальные рекомендации было решено дополнить алгоритмическими. Так появился **«Оракул»** — первая рекомендательная система онлайн-кинотеатра Okko.

Рекомендации в Okko

Решение: Комбинация матричной факторизации с WARP loss и градиентного бустинга над деревьями

Weighted Approximate-Rank Pairwise

Идея: Использовать adaptive learning rate (поговорим об этом в лекции об active learning). Будем оценивать качество, исходя из количества семплов, которые нам пришлось бы просмотреть, чтобы для данной пары {пользователь, положительный пример} найти отрицательный пример, который система оценила выше положительного.

Чем раньше мы находим такой пример – тем хуже.

$$L_{WARP}(u, i, j) = \frac{\widehat{L}(rank_u^1(i))}{\widehat{L}(|Items|)} \cdot (\widehat{r}_{uj} + 1 - \widehat{r}_{ui})$$

$$\widehat{L}(k) = \sum_{l=1}^{k} \frac{1}{l}$$

$$rank_u^1 \approx \frac{|Items| - 1}{numdraws(j)}$$

REKKO CHALLENGE 2019

Соревнование от ОККО: https://boosters.pro/championship/rekko challenge/data

Задача

На предоставленном тренировочном множестве обучить рекомендательную систему и предсказать топ 20 наиболее релевантных для пользователя идентификаторов контента. Обучающее множество собрано за N дней (N > 60), тестовое множество — за последующие 60 дней.

Целевая переменная

В качестве целевой переменной необходимо предсказать множество фильмов, которые пользователь потребил за тестовый период.

Разные типы гибридных архитектур

Виды гибридизации

- Weighted
- Switching
- Mixed
- Feature augmentation
- Cascade
- Feature Combination

Weighted

- Рекомендации строятся на основе комбинирования оценок от разных систем с весами
- Стратегия объединения: считать средневзвешенный прогноз по нескольким оценкам
- Например:
 - Линейная комбинация
 - Голосование

Weighted

Switching

- Рекомендации строятся путем переключения между системами, работающими независимо, на основании критериев для переключения
- Стратегия объединения: для разных продуктов/пользователей применять различные алгоритмы,

Switching

Mixed

- Список рекомендаций состоит из «смеси» рекомендаций от разных систем
- Стратегия объединения: вычисляются рекомендации по разным алгоритмам, а потом просто объединяются в один список.

Mixed

Feature Combination

- Подход основан на content-based
- Признаки от разных систем объединяются в одну выборку для построения единой модели

Feature Combination

Feature Augmentation

 Модель рекомендаций используется для создания рейтинга или классификации профиля пользователя / элемента, которая в дальнейшем используется в основной системе рекомендаций для получения окончательного прогнозируемого результата.

Feature Augmentation

Cascade

- Поэтапное применение нескольких моделей для уточнений рекомендаций
- Candidate selection

Cascade

Вопросы

Заключение

- Гибриды не хуже чем «стандартные» подходы
- Есть разные виды гибридов

Семинар:

Разбор домашних работ №1
 Как совместить CF + CB?