COMPSCI 753

Algorithms for Massive Data

Semester 2, 2020

Tutorial - Recommender System

Kaiqi Zhao

1 Collaborahitepfilteringwooder.com

Given the following user-item interaction matrix in a recommender system. Rows denote users and communication interaction matrix in a recommender system. Rows denote users and communication in the c

https://powcoder.com

- 1. Apply the basic user-based collaborative filtering with Pearson correlation coefficient for user u4 to predict the rating for p6.

 And WeChat powcoder
- 2. Extend the above user-based CF with bias. Predict the rating for p6 of user u4.

Solution:

1. To predict the rating r(u4, p6) using user-based collaborative filtering, only u1 and u3 have rated the item p6. So, we only need to compute similarity between u4 and u1, u3. The Pearson correlation coefficient are:

$$Sim(u4, u1) = \frac{(5-4)(4-2)}{\sqrt{(5-4)^2}\sqrt{(4-2)^2}} = 1$$

$$Sim(u4, u3) = \frac{(4-3)(1-2)}{\sqrt{(4-3)^2}\sqrt{(1-2)^2}} = -1$$

Then the rating $r(u4, p6) = \frac{3*1+2*(-1)}{|1|+|-1|} = 0.5$. Note that Pearson correlation coefficient takes values from [-1,1], so the denominator needs to take absolute value for each weight because we only want the magnitude, not the sign, to normalize the score.

- 2. We first calculate the bias $b_g = 39/13 = 3$, the average score of u1, u3, u4 are 4, 3, 2, respectively. That is $b_g + b_{u1} = 4$, $b_g + b_{u3} = 3$, $b_g + b_{u4} = 2$. The bias of p6 is $(2+3)/2 b_g = -0.5$. So the user-item bias can be calculated as:
 - $b_{u1,p6} = 4 0.5 = 3.5$
 - $b_{u3,p6} = 3 0.5 = 2.5$
 - $b_{u4.p6} = 2 0.5 = 1.5$

Then, the prediction is $r(u4, p6) = 1.5 + \frac{(3-3.5)*1+(2-2.5)*(-1)}{|1|+|-1|} = 1.5$

2 RS Evaluation https://powcoder.com

Suppose we have two recommendation absorithms A and B. We trained the two algorithms on some dataset, and sest them in the dataset as follows in the form of triples (user, item, rating):

Assignada Mespetato Damo Helpo

Let the two algorithms output the following predicted ratings:

Algorithm	https	predicted ratings of all items not rated in training data
A	u1	p3:2.5, p4:3
	$\mathbf{A}^{u2}\mathbf{d}\mathbf{d}$	pl: 3 p4: 2, p5: 2.5 powcoder
В	u1	p3:3.5, p4:3
	u2	p1:2, p4:3, p5:4 p1:4, p3:3, p5:2
	u3	p1:4, p3:3, p5:2

- 1. Compute the MSE for both algorithms. Which is better?
- 2. Consider the top-N recommendation problem and convert the groundtruth data into binary labels (like or dislike) in the test data as follows: (1) any rating above (including) 3 stars denote that the user like the item; (2) Any missing value or rating below 3 is considered as dislike. Compute the Precision@1, Recall@1 and AUC for the two algorithms. Which is better?

Solution:

1. MSE: $\frac{1}{N_{test}} \sum_{r_{ij} \in testset} (\hat{r}_{ij} - r_{ij})^2$. MSE(A)=1.75, MSE(B)=1.54. Algorithm B is better.

Algorithm	User	Top-1 Item	Groundtruth	# tp	# fp	# fn
A	u1	p4	<i>p</i> 3	0	1	1
	u2	p1	p5	0	1	1
	u3	p3	p1, p3	1	0	1
В	u1	<i>p</i> 3	<i>p</i> 3	1	0	0
	u2	p5	p5	1	0	0
	u3	p1	p1, p3	1	0	1

2. The top-1 recommendation for the two algorithms is listed in the table above.

For Algorithm A, Precision@1= $\frac{1}{3}(0/1+0/1+1/1) = 1/3$, Recall@1= $\frac{1}{3}(0/1+0/1+1/2) = 1/6$. For Algorithm/Precision@1= $\frac{1}{3}(1/1+1/1+1/2) = 1/3$, Recall@1= $\frac{1}{3}(1/1+1/1+1/2) = 1/3$, Recall@1= $\frac{1}{3}(1/1+1/1+1/2) = 1/3$

To calculate AUC, first rank the items by their scores:

Algorithm	sign	ment P	roject E	xam F	Help.
Algorithm	User	Item Kanking	Groundtruth		
				items $ P_u^+ $	items $ P_u^- $
A	u1	194 P3 X	p3 of Box	1 Octor	1
Ass ₁ g	MAN	empty y ro	bat Pay	MACHE	4D
	u3	p3, p1, p5	p1, p3	2	1
В	u1	p3, p4	p3	1	1
1	##170	p5/, p4-p1-xx/	Mder co	m	2
1.	u_3	p1, p5, p5	gder.co	7411	1

AUC(u) = AUC(u) = AUC(u) + A

In Algorithm A: AUC(u1) = 0, AUC(u2) = 1/2, AUC(u3) = 2/2 = 1, and thus $AUC = \frac{1}{3}(0 + 1/2 + 1) = 1/2$

In Algorithm B: AUC(u1) = 1, AUC(u2) = 2/2 = 1, AUC(u3) = 2/2 = 1, and thus AUC = 1

3 RS design

Suppose you have a startup company that recommends books to users. Your database contains book attributes including category and author. Since you have run your system for a while, you have some users' ratings in terms of like/dislike on the books in your database. Following is a snapshot of your database table for the items:

If we know that a user U1 is interested in books written by A2 and Sci-Fi books, and a recommendation algorithm recommends B3 as the top-1 book to U1.

Book ID	Category	Author	# ratings
B1	Science	A1	20
B2	Science	A1	100
В3	Science	A3	500
B4	Sci-Fi	A2	25
B5	Sci-Fi	A2	10

- 1. For each statement below, decide if it is true.
 - The recommendation algorithm is content-based.
 - The recommendation algorithm is collaborative filtering.
 - The recommental salgon of the recommendation of the recommendati
- 2. Suppose you grow the business and now have 10,000 users and 1,000,000 books. Each user has racel 19th in the hard and them has been all of them.
- 3. Consider each user may have preferences on multiple book categories. Design a method returns top of the context of the cont

Solution:

- 1. For each statement below, exider at powcoder
 - The recommendation algorithm is content-based. [False]
 - The recommendation algorithm is collaborative filtering. [True]
 - The recommendation algorithm is latent factor model. [True]

If content-based method was used, B4 or B5 should be returned.

2. In user-based collaborative filtering, we construct the user vector using the user's ratings to items and compute user similarity based on the user vector. Its sparsity is 0.002%, while the item vector in item-based collaborative filtering is 0.1%. So, the similarity computation of user-based collaborative filtering is even more difficult than the item-based model. If there are totally 100 different types of items, we can model each user as a vector of categories. That is, each dimension corresponds to the number of items in a category purchased by the user. Then, the similarity of two users can be computed using the vectors of categories, reducing the dimension from 1 million to 100.

3. Some possible methods: (1) Maintain a rank based on different categories and pick up some items from each category. (2) When the list contains more than a certain number of items in a category, add items from other categories.

https://powcoder.com
Assignment Project Exam Help

Assignment/Project Exmortelp

https://powcoder.com

Add WeChat powcoder