拉格朗日乘子法

squid

2021年4月22日

1 问题

求 $f(x_1, x_2, \dots, x_n)$ 在约束 $g_1(x_1, x_2, \dots, x_n) = 0, g_2(x_1, x_2, \dots, x_n) = 0, \dots, g_m(x_1, x_2, \dots, x_n) = 0$ 下的极值。

2 粗糙的数学说明

函数 f 的微分 $df = \partial_1 f dx_1 + \partial_2 f dx_2 + \cdots + \partial_n f dx_n = (\partial_1 f, \partial_2 f, \cdots, \partial_n f) \cdot (dx_1, dx_2, \cdots, dx_n)$, 当 x_i 的取值无约束时, $(dx_1, dx_2, \cdots, dx_n)$ 可以是任意方向,极值条件为 $(\partial_1 f, \partial_2 f, \cdots, \partial_n f)$ 为 0 向量。在极值点 $(x_1^*, x_2^*, \cdots, x_n^*)$ 应有

$$\partial_i f|_{(x_1^*, x_2^*, \cdots, x_n^*)} = 0$$

当有约束条件 g_i 时, $(dx_1, dx_2, \cdots, dx_n)$ 的取向受限制,

$$dg_i = \partial_1 g_i dx_1 + \partial_2 g_i dx_2 + \dots + \partial_n g_i dx_n = (\partial_1 g_i, \partial_2 g_i, \dots, \partial_n g_i) \cdot (dx_1, dx_2, \dots, dx_n) = 0$$

即 $(dx_1, dx_2, \dots, dx_n)$ 的不同取向需保持与 $(\partial_1 g_i, \partial_2 g_i, \dots, \partial_n g_i)$, $i = 1, \dots, m$ 垂直。对于极值点,此时仍有 df = 0,不过由于这时 $(dx_1, dx_2, \dots, dx_n)$ 取向受限制, $(\partial_1 f, \partial_2 f, \dots, \partial_n f)$ 不必为 0 向量。事实上, $(\partial_1 f, \partial_2 f, \dots, \partial_n f)$ 只是在 $(\partial_1 g_i, \partial_2 g_i, \dots, \partial_n g_i)$, $i = 1, \dots, m$ 的正交补空间内分量为 0,它可以是上述矢量的任意线性组合,即

$$(\partial_1 f, \partial_2 f, \cdots, \partial_n f) = \sum_i \lambda_i (\partial_1 g_i, \partial_2 g_i, \cdots, \partial_n g_i)$$

也就是说,在极值点 $(x_1^*, x_2^*, \cdots, x_n^*)$ 应有

$$\partial_i \left(f - \sum_i \lambda_i g_i \right) \Big|_{(x_1^*, x_2^*, \dots, x_n^*)} = 0$$

3 泛函条件极值问题

求泛函 $\Phi[y] = \int \phi(y, \cdots) dx$ 在约束条件 $\Psi_1[y] = \int \psi_1(y, \cdots) dx = L_1$, $\Psi_2[y] = \int \psi_2(y, \cdots) dx = L_2$, \dots , $\Psi_m[y] = \int \psi(y, \cdots) dx = L_m$ 下的极值。

由于泛函 $\Psi[y]$ 可以视为 $y(x_0), y(x_1), \cdots, y(x_N), N \to \infty$ 的函数 (高阶导数可以由高阶差分代替),故 对其应用拉格朗日乘子法即得极值条件

$$\delta \left(\Phi[y] - \sum_{i} \lambda_{i} \Psi_{i}[y] \right) \bigg|_{y^{*}} = 0$$