

Display network connectivity with neighbor discovery protocols

ONTAP System Manager

Barb Einarsen December 09, 2020

Table of Contents

Display network connectivity wit	neighbor discovery protocols	
----------------------------------	------------------------------	--

Display network connectivity with neighbor discovery protocols

In a data center, you can use neighbor discovery protocols to view network connectivity between a pair of physical or virtual systems and their network interfaces. ONTAP supports two neighbor discovery protocols: Cisco Discovery Protocol (CDP) and Link Layer Discovery Protocol (LLDP).

About this task

Neighbor discovery protocols enable you to automatically discover and view information about directly connected protocol-enabled devices in a network. Each device advertises identification, capabilities, and connectivity information. This information is transmitted in Ethernet frames to a multicast MAC address and is received by all neighboring protocol-enabled devices.

For two devices to become neighbors, each must have a protocol enabled and correctly configured. Discovery protocol functionality is limited to directly connected networks. Neighbors can include protocol-enabled devices such as switches, routers, bridges, and so on. ONTAP supports two neighbor discovery protocols, which can be used individually or together.

Cisco Discovery Protocol (CDP)

CDP is a proprietary link layer protocol developed by Cisco Systems. It is enabled by default in ONTAP for cluster ports, but must be enabled explicitly for data ports.

Link Layer Discovery Protocol (LLDP)

LLDP is a vendor-neutral protocol specified in the standards document IEEE 802.1AB. It must be enabled explicitly for all ports.

Use CDP to detect network connectivity

Using CDP to detect network connectivity consists of reviewing deployment considerations, enabling it on data ports, viewing neighbor devices, and adjusting CDP configuration values as needed. CDP is enabled by default on cluster ports.

CDP must also be enabled on any switches and routers before information about neighbor devices can be displayed.

CDP is also used by the cluster switch health monitor to automatically discover your cluster and management network switches.

Related information

System administration

Considerations for using CDP

By default, CDP-compliant devices send CDPv2 advertisements. CDP-compliant devices send CDPv1 advertisements only when they receive CDPv1 advertisements. ONTAP supports only CDPv1. Therefore, when an ONTAP node sends CDPv1 advertisements, CDP-compliant neighboring devices send back CDPv1 advertisements.

You should consider the following information before enabling CDP on a node:

- · CDP is always enabled on cluster ports.
- CDP is disabled, by default, on all non-cluster ports.
- CDP is supported for all ports.
- CDP advertisements are sent and received by ports that are in the up state.
- CDP must be enabled on both the transmitting and receiving devices for sending and receiving CDP advertisements.
- CDP advertisements are sent at regular intervals, and you can configure the time interval.
- When IP addresses are changed for a LIF, the node sends the updated information in the next CDP advertisement.

Sometimes when LIFs are changed on the node, the CDP information is not updated at the receiving device side (for example, a switch). If you encounter such a problem, you should configure the network interface of the node to the down status and then to the up status.

- Only IPv4 addresses are advertised in CDP advertisements.
- For physical network ports with VLANs, all of the LIFs configured on the VLANs on that port are advertised.
- For physical ports that are part of an interface group, all of the IP addresses configured on that interface group are advertised on each physical port.
- For an interface group that hosts VLANs, all of the LIFs configured on the interface group and the VLANs are advertised on each of the network ports.
- For packets with MTU size equal to or greater than 1,500 bytes, only the number of LIFs that can fit into a 1500 MTU-sized packet is advertised.

Enable or disable CDP

To discover and send advertisements to CDP-compliant neighboring devices, CDP must be enabled on each node of the cluster. By default, CDP is enabled on all cluster ports of a node and disabled on all non-cluster ports of a node.

About this task

The cdpd.enable option controls whether CDP is enabled or disabled on the ports of a node:

- on enables CDP on non-cluster ports.
- off disables CDP on non-cluster ports; you cannot disable CDP on cluster ports. When CDP is disabled on a port that is connected to a CDP-compliant device, network traffic might not be optimized.

Steps

1. Display the current CDP setting for a node, or for all nodes in a cluster:

To view the CDP setting of	Enter
A node	run - node <node_name> options cdpd.enabled</node_name>
All nodes in a cluster	options cdpd.enabled

2. Enable or disable CDP on all ports of a node, or on all ports of all nodes in a cluster:

To enable or disable CDP on	Enter
A node	run -node node_name options cdpd.enable {on or off}
All nodes in a cluster	options cdpd.enable {on or off}

View CDP neighbor information

You can view information about the neighboring devices that are connected to each port of the nodes of your cluster, provided that the port is connected to a CDP-compliant device. You can use the network devicediscovery show -protocol cdp command to view neighbor information.

About this task

Because CDP is always enabled for cluster ports, CDP neighbor information is always displayed for those ports. CDP must be enabled on non-cluster ports for neighbor information to appear for those ports.

Step

Display information about all CDP-compliant devices that are connected to the ports on a node in the cluster:

```
network device-discovery show -node node -protocol cdp
```

The following command shows the neighbors that are connected to the ports on node cluster-1_01:

Node/	Local	Discovered		
Protocol	Port	Device (LLDP: ChassisID)	Interface	Platform
				. -
sti2650-21	2/cdp			
	e0M	RTP-LF810-510K37.gdl.eng	g.netapp.com(SAL19	42R8JS)
			Ethernet1/14	N9K-
C93120TX				
	e0a	CS:RTP-CS01-510K35	0/8	CN1610
	e0b	CS:RTP-CS01-510K36	0/8	CN1610
	e0c	RTP-LF350-510K34.gdl.eng	g.netapp.com(FDO21	.521S76)
			Ethernet1/21	N9K-
C93180YC-F	X			
	e0d	RTP-LF349-510K33.gdl.eng	g.netapp.com(FDO21	.521S4T)
			Ethernet1/22	N9K-
C93180YC-F	X			
	e0e	RTP-LF349-510K33.gdl.eng	g.netapp.com(FDO21	.521S4T)
			Ethernet1/23	N9K-
C93180YC-F	X			
	eOf	RTP-LF349-510K33.gdl.eng	g.netapp.com(FDO21	.521S4T)
			Ethernet1/24	N9K-

The output lists the Cisco devices that are connected to each port of the specified node. The Remote Capability column specifies the capabilities of each remote device. The following capabilities are available:

- R—Router
- T—Transparent bridge
- B—Source-route bridge
- S—Switch
- H—Host
- I—IGMP
- r—Repeater
- P—Phone

Configure the hold time for CDP messages

Hold time is the period of time for which CDP advertisements are stored in cache in neighboring CDP-compliant devices. Hold time is advertised in each CDPv1 packet and is updated whenever a CDPv1 packet is received by a node.

- The value of the cdpd.holdtime option should be set to the same value on both nodes of an HA pair.
- The default hold time value is 180 seconds, but you can enter values ranging from 10 seconds to 255 seconds.

• If an IP address is removed before the hold time expires, the CDP information is cached until the hold time expires.

Steps

1. Display the current CDP hold time for a node, or for all nodes in a cluster:

To view the hold time of	Enter
A node	run -node node_name options cdpd.holdtime
All nodes in a cluster	options cdpd.holdtime

2. Configure the CDP hold time on all ports of a node, or on all ports of all nodes in a cluster:

To set the hold time on	Enter
A node	run -node node_name options cdpd.holdtime holdtime
All nodes in a cluster	options cdpd.holdtime holdtime

Set the interval for sending CDP advertisements

CDP advertisements are sent to CDP neighbors at periodic intervals. You can increase or decrease the interval for sending CDP advertisements depending on network traffic and changes in the network topology.

- The value of the cdpd.interval option should be set to the same value on both nodes of an HA pair.
- The default interval is 60 seconds, but you can enter a value from 5 seconds to 900 seconds.

Steps

1. Display the current CDP advertisement time interval for a node, or for all nodes in a cluster:

To view the interval for	Enter
A node	run -node node_name options cdpd.interval
All nodes in a cluster	options cdpd.interval

2. Configure the interval for sending CDP advertisements for all ports of a node, or for all ports of all nodes in a cluster:

To set the interval for	Enter
A node	run -node node_name options cdpd.interval interval
All nodes in a cluster	options cdpd.interval interval

View or clear CDP statistics

You can view the CDP statistics for the cluster and non-cluster ports on each node to detect potential network connectivity issues. CDP statistics are cumulative from the time they were last cleared.

About this task

Because CDP is always enabled for cluster ports, CDP statistics are always displayed for traffic on those ports. CDP must be enabled on non-cluster ports for statistics to appear for those ports.

Step

Display or clear the current CDP statistics for all ports on a node:

If you want to	Enter
View the CDP statistics	run -node node_name cdpd show-stats
Clear the CDP statistics	run -node node_name cdpd zero-stats

Example of showing and clearing statistics

The following command shows the CDP statistics before they are cleared. The output displays the total number of packets that have been sent and received since the last time the statistics were cleared.

```
run -node nodel cdpd show-stats
RECEIVE
Packets:
              9116 | Csum Errors: 0 | Unsupported Vers: 4561
Invalid length:
               0 | Malformed:
                                    0 | Mem alloc fails:
                                                             0
Missing TLVs: 0 | Cache overflow: 0 | Other errors:
                                                             0
TRANSMIT
               4557 | Xmit fails: 0 | No hostname:
                                                             0
Packets:
Packet truncated: 0 | Mem alloc fails: 0 | Other errors:
                                                             0
OTHER
Init failures:
                 0
```

The following command clears the CDP statistics:

```
run -node node1 cdpd zero-stats
```

```
run -node node1 cdpd show-stats
RECEIVE
                 0 | Csum Errors: 0 | Unsupported Vers:
                                                           0
Packets:
Invalid length:
                 0 | Malformed:
                                                           0
                                     0 | Mem alloc fails:
Missing TLVs:
                 0
TRANSMIT
Packets:
                 0 | Xmit fails: 0 | No hostname:
                                                           0
Packet truncated:
                 0  | Mem alloc fails: 0  | Other errors:
                                                           0
OTHER
Init failures:
                 0
```

After the statistics are cleared, they begin to accumulate after the next CDP advertisement is sent or received.

Use LLDP to detect network connectivity

Using LLDP to detect network connectivity consists of reviewing deployment considerations, enabling it on all ports, viewing neighbor devices, and adjusting LLDP configuration values as needed.

LLDP must also be enabled on any switches and routers before information about neighbor devices can be displayed.

ONTAP currently reports the following type-length-value structures (TLVs):

- · Chassis ID
- Port ID
- Time-To-Live (TTL)
- System name

The system name TLV is not sent on CNA devices.

Certain converged network adapters (CNAs), such as the X1143 adapter and the UTA2 onboard ports, contain offload support for LLDP:

- LLDP offload is used for Data Center Bridging (DCB).
- Displayed information might differ between the cluster and the switch.

For example, the Chassis ID and Port ID data displayed by the switch might be different for CNA and non-CNA ports, but the data displayed by the cluster is consistent for these port types.

The LLDP specification defines access to the collected information through an SNMP MIB. However, ONTAP does not currently support the LLDP MIB.

Enable or disable LLDP

To discover and send advertisements to LLDP-compliant neighboring devices, LLDP must be enabled on each node of the cluster. By default, LLDP is disabled on all ports of a node.

About this task

The Ildp.enable option controls whether LLDP is enabled or disabled on the ports of a node:

- on enables LLDP on all ports.
- off disables LLDP on all ports.

Steps

- 1. Display the current LLDP setting for a node, or for all nodes in a cluster:
 - ° Single node: run -node node name options lldp.enable
 - All nodes: options lldp.enable
- 2. Enable or disable LLDP on all ports of a node, or on all ports of all nodes in a cluster:

To enable or disable LLDP on	Enter
A node	run -node node_name options lldp.enable {on
off}	All nodes in a cluster
options Ildp.enable {on	off}

· Single node:

```
run -node node_name options lldp.enable {on|off}
```

All nodes:

```
options lldp.enable {on|off}
```

View LLDP neighbor information

You can view information about the neighboring devices that are connected to each port of the nodes of your cluster, provided that the port is connected to an LLDP-compliant device. You use the network device-discovery show command to view neighbor information.

Step

Display information about all LLDP-compliant devices that are connected to the ports on a node in the cluster:

```
network device-discovery show -node node -protocol lldp
```

The following command shows the neighbors that are connected to the ports on node cluster-1 01. The output

lists the LLDP-enabled devices that are connected to each port of the specified node. If the <code>-protocol</code> option is omitted, the output also lists CDP-enabled devices.

```
network device-discovery show -node cluster-1 01 -protocol lldp
         Local Discovered
Node/
Protocol
         Port
               Device
                                     Interface
                                                    Platform
_____
cluster-1 01/11dp
                                     GigabitEthernet1/36
         e2a 0013.c31e.5c60
         e2b 0013.c31e.5c60
                                     GigabitEthernet1/35
         e2c 0013.c31e.5c60
e2d 0013.c31e.5c60
                                     GigabitEthernet1/34
                                     GigabitEthernet1/33
```

Adjust the interval for transmitting LLDP advertisements

LLDP advertisements are sent to LLDP neighbors at periodic intervals. You can increase or decrease the interval for sending LLDP advertisements depending on network traffic and changes in the network topology.

About this task

The default interval recommended by IEEE is 30 seconds, but you can enter a value from 5 seconds to 300 seconds

Steps

- 1. Display the current LLDP advertisement time interval for a node, or for all nodes in a cluster:
 - Single node:

```
run -node node_name options lldp.xmit.interval
```

· All nodes:

```
options lldp.xmit.interval
```

- 2. Adjust the interval for sending LLDP advertisements for all ports of a node, or for all ports of all nodes in a cluster:
 - Single node:

```
run -node node_name options lldp.xmit.interval interval
```

• All nodes:

```
options lldp.xmit.interval interval
```

Adjust the time-to-live value for LLDP advertisements

Time-To-Live (TTL) is the period of time for which LLDP advertisements are stored in cache in neighboring LLDP-compliant devices. TTL is advertised in each LLDP packet and is updated whenever an LLDP packet is received by a node. TTL can be modified in outgoing LLDP frames.

About this task

- TTL is a calculated value, the product of the transmit interval (lldp.xmit.interval) and the hold multiplier (lldp.xmit.hold) plus one.
- The default hold multiplier value is 4, but you can enter values ranging from 1 to 100.
- The default TTL is therefore 121 seconds, as recommended by IEEE, but by adjusting the transmit interval and hold multiplier values, you can specify a value for outgoing frames from 6 seconds to 30001 seconds.
- If an IP address is removed before the TTL expires, the LLDP information is cached until the TTL expires.

Steps

- 1. Display the current hold multiplier value for a node, or for all nodes in a cluster:
 - · Single node:

```
run -node node_name options lldp.xmit.hold
```

· All nodes:

```
options lldp.xmit.hold
```

- 2. Adjust the hold multiplier value on all ports of a node, or on all ports of all nodes in a cluster:
 - · Single node:

```
run -node node_name options lldp.xmit.hold hold_value
```

· All nodes:

```
options lldp.xmit.hold hold_value
```

Copyright Information

Copyright © 2020 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.