k-Nearest Neighbors & Decision Trees

Outline

- k-Nearest Neighbors (kNN)
 - Algorithm
 - Distance metrics
 - kNN tradeoffs
- Decision Trees
 - How to build a decision tree
 - Information gain vs. gini impurity
 - Decision tree tradeoffs
 - Pruning

k-Nearest Neighbors (kNN)

Distance Metrics

Euclidean distance

$$dist(a,b) = ||a-b|| = \sqrt{(a-b)\cdot(a-b)} = \sqrt{\sum_{i}(a_i-b_i)^2}$$

Cosine similarity

$$dist(a,b) = \frac{a \cdot b}{||a|| ||b||} = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

Pseudocode - kNN

For datapoint in training set:

calculate distance from datapoint to new_value

Order distances in increasing order and take the first k

Take the label with the most votes

kNN Tradeoffs

Pros

- Really easy to train (just save all the data)
- Easily works with any number of classes
- Easy to add new training datapoints

Con

 Really slow to predict (especially if you have a lot of features)

Decision Trees

How to Build a Decision Tree

- To do a binary split:
 - For a categorical variable, choose either value or not value (e.g. sunny or not sunny)
 - For a continuous variable, choose a threshold and do > or <= the value (e.g. temperature <75 or >=75)
- To measure how good the split is:
 - Information gain
 - Gini impurity

Entropy

 Entropy – a measure of the amount of disorder in a set

$$H(y) = -\sum_{i=1}^{m} P(c_i) \log_2 (P(c_i))$$

P(c) is the percent of the group that belongs to a given class

More on Entropy

Information Gain

$$Gain(S, D) = H(S) - \sum_{V \in D} \frac{|V|}{|S|} H(V)$$

S is the original set and D is the splitting of the set (a partition), each V is a subset of S

Gini Impurity

- It is a measure of this probability:
 - Take random element from the set
 - Label it randomly according to the distribution of labels in the set
 - What is the probability that is it labeled incorrectly?

$$Gini = \sum_{i=1}^{m} P(c_i)(1 - P(c_i)) = 1 - \sum_{i=1}^{m} P(c_i)^2$$

Pseudocode – Decision Trees

function BuildTree:

If every item in the dataset is in the same class or there is no feature left to split the data:

return a leaf node with the class label

Else:

find the best feature and value to split the data split the dataset

create a node

for each split

call BuildTree and add the result as a child of the node return node

Decision Tree Tradeoffs

Pros

- Easily interpretable
- Handles missing values and outliers
- Non-parametric/non-linear/model complex phenomenon
- Computationally cheap to predict
- Can handle irrelevant features
- Mixed data (discrete and continuous)

Cons

- Computationally expensive to train
- Greedy algorithm (local optima)
- Very easy to overfit

Pruning - Prepruning

- Making the decision tree algorithm stop early
 - Leaf size: stop when the number of data points for a leaf gets below a threshold
 - Depth: stop when the depth of the tree (distance from root to leaf) reaches a threshold
 - Mostly the same: stop when some percent of the data points are the same (rather than all the same)
 - Error threshold: stop when the error reduction (information gain) is not improved significantly

Pruning - Postpruning

- Involves building the tree first and then choosing to cut off some of the leaves
- Psuedocode:

function Prune:

if either left or right is not a leaf:

call Prune on that split

if both left and right are leaf nodes:

calculate error associated with merging two nodes calculate error associated without merging two nodes if merging results in lower error:

merge the leaf nodes

Decision Tree Variants

- ID3 (Iterative Dichotomiser 3)
 - Designed for only categorical features
 - Splits categorical features completely
 - Uses entropy and information gain to pick the best split
- CART (Classification and Regression Tree)
 - Handles both categorical and continuous data
 - Always uses binary splits
 - Uses gini impurity to pick the best split
- C4.5
 - Handles continuous data
 - Implements pruning to reduce overfitting
- C5.0
 - Propietary, do not have access to the specifics

In Practice

- We always implement pruning to avoid overfitting
- Either gini or information gain is acceptable
- Sometimes fully splitting categorical features is preferred, but generally we air on the side of binary splits

sklearn

- Pruning with max_depth, min_samples_split, min_samples_leaf or max_leaf_nodes
- Gini is default, but you can also choose entropy
- Does binary splits (you would need to binarize categorical features)

Regression Trees

- Decisions trees can also be used for regression
- Can average the values at each leaf node to predict a continuous value
- Can also use a combination of decision trees and linear regression on the leaf nodes (model trees)