Devoir à la maison n°16 : corrigé

Problème 1 — D'après Centrale MP 1996

$$\forall x \in \mathbb{R}, \ F(x) - \lambda F(x + a) = f(x)$$
 (*)

Partie I - Questions préliminaires

- **1.** Soit ϕ constante sur \mathbb{R} . Alors pour tout $(x,y) \in \mathbb{R}^2$, $|\phi(x) \phi(y)| = 0 \leq K|x-y|$ quelque soit $K \in \mathbb{R}_+$. Ainsi $\phi \in \mathcal{L}$.
- 2. cos et sin sont dérivables à dérivées bornées donc lipschitziennes.
- **3.** Par définition, $\mathcal{L} \subset \mathcal{F}$. La fonction nulle est constante donc lipschitzienne. Soient $(\phi, \psi) \in \mathcal{L}^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Il existe $(K, L) \in \mathbb{R}_+$ tel que

$$\forall (x, y) \in \mathbb{R}^2, \ |\varphi(x) - \varphi(y)| \leqslant K|x - y|$$
 et $|\psi(x) - \psi(y)| \leqslant L|x - y|$

Par inégalité triangulaire, our tout $(x, y) \in \mathbb{R}^2$,

$$|(\lambda \phi + \mu \psi)(x) - (\lambda \phi + \mu \psi)(y)| = |\lambda (\phi(x) - \phi(y)) + \mu (\psi(x) - \psi(y))| \leqslant |\lambda| |\phi(x) - \phi(y)| + |\mu| |\psi(x) - \psi(y)| \leqslant (|\lambda| K + |\mu| L) |x - y|$$

On a donc bien $\lambda \varphi + \mu \psi \in \mathcal{L}$.

 \mathcal{L} est donc bien un sous-espace vectoriel de \mathcal{F} .

4. Puisque $\phi \in \mathcal{L}$, il existe $K \in \mathbb{R}_+$ tel que

$$\forall (x, y) \in \mathbb{R}^2, |\varphi(x) - \varphi(y)| \leq K|x - y|$$

En particulier,

$$\forall t \in \mathbb{R}, |\varphi(t) - \varphi(0)| \leq K|t|$$

Par inégalité triangulaire,

$$\forall t \in \mathbb{R}, |\varphi(t)| \leq K|t| + |\varphi(0)|$$

Il suffit alors de poser A = K et $B = |\varphi(0)|$.

5. a. C'est du cours.

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

- **b.** Par croissance comparées, $q^n = o\left(\frac{1}{n^3}\right)$ donc $nq^n = o\left(\frac{1}{n^2}\right)$. Puisque $\sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$ est une série de Riemann convergente à termes positifs, la série $\sum_{n \in \mathbb{N}} nq^n$ converge.
- 6. **a.** Puisque $|\lambda e^{i\alpha}| = |\lambda| < 1$, la série géométrique $\sum_{n \in \mathbb{N}} \lambda^n e^{ni\alpha}$ converge et $\sum_{n=0}^{+\infty} \lambda^n e^{in\alpha} = \frac{1}{1-\lambda e^{i\alpha}}$. Par conséquent, la série $\sum_{n \in \mathbb{N}} \lambda^n e^{i(x+n\alpha)}$ converge et $\sum_{n=0}^{+\infty} \lambda^n e^{i(x+n\alpha)} = \frac{e^{ix}}{1-\lambda e^{i\alpha}}$.

b. Les séries $\sum_{n\in\mathbb{N}}\lambda^n\cos(x+n\alpha)$ et $\sum_{n\in\mathbb{N}}\lambda^n\sin(x+n\alpha)$ sont les parties réelle et imaginaire de la série convergente $\sum_{n\in\mathbb{N}}\lambda^ne^{i(x+n\alpha)}$ donc ce sont des séries convergentes. De plus, leurs sommes sont respectivement les parties réelle et imaginaire de $\frac{e^{ix}}{1-\lambda e^{i\alpha}}$. Or

$$\frac{e^{\mathrm{i}x}}{1-\lambda e^{\mathrm{i}a}} = \frac{e^{\mathrm{i}x}(1-\lambda e^{-\mathrm{i}a})}{(1-\lambda e^{\mathrm{i}a})(1-\lambda e^{-\mathrm{i}a})} = \frac{e^{\mathrm{i}x}-\lambda e^{\mathrm{i}(x-a)}}{1-2\lambda\cos a + \lambda^2}$$

On en déduit les résultats demandés.

Partie II – Etude de (\star) lorsque f est nulle et $|\lambda| \neq 1$

On suppose dans cette partie que f est nulle sur \mathbb{R} et $|\lambda| \neq 1$.

1. Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Puisque F vérifie (*) et que f est nulle, pour tout $k \in [0, n-1]$,

$$\lambda^{k}F(x+ka) - \lambda^{k+1}F(x+(k+1)a) = 0$$

Puis, via un télescopage

$$F(x) - \lambda^n F(x+\alpha) = \sum_{k=0}^{n-1} \lambda^k F(x+k\alpha) - \lambda^{k+1} F(x+(k+1)\alpha) = 0$$

De la même manière pour tout $k \in [1, n]$,

$$\lambda^{-k} f(x - ka) = \lambda^{-k} k F(x - ka) - \lambda^{-(k-1)} F(x - (k-1)a)$$

Puis, via un télescopage

$$\lambda^{-n}F(x-n\alpha) - F(x) = \sum_{k=1}^{n} \lambda^{-k}kF(x-k\alpha) - \lambda^{-(k-1)}F(x-(k-1)\alpha) = 0$$

On en déduit les égalités demandées.

2. D'après la question **I.4**, il existe $(A, B) \in \mathbb{R}^2_+$ tel que

$$\forall t \in \mathbb{R}, |F(t)| \leq A|t| + B$$

Fixons alors $x \in \mathbb{R}$.

Supposons $|\lambda| < 1$. Alors pour tout $n \in \mathbb{N}$,

$$|F(x)| = |\lambda|^n |F(x + n\alpha)| \le |\lambda|^n (A|x + n\alpha| + B) \le A|\alpha|n|\lambda|^n + (A|x| + B)|\lambda|^n$$

Puisque $|\lambda| < 1$,

$$\lim_{n\to +\infty} |\lambda|^n = \lim_{n\to +\infty} n|\lambda|^n = 0$$

de sorte que F(x) = 0.

Supposons $|\lambda| > 1$. Alors pour tout $n \in \mathbb{N}$,

$$|F(x)| = |\lambda|^{-n}|F(x - n\alpha)| \le |\lambda|^{-n}(A|x - n\alpha| + B) \le A|\alpha|n|\lambda|^{-n} + (A|x| + B)|\lambda|^{-n}$$

Puisque $|\lambda| > 1$,

$$\lim_{n\to +\infty} |\lambda|^{-n} = \lim_{n\to +\infty} n |\lambda|^{-n} = 0$$

de sorte que F(x) = 0.

Finalement, F est bien nulle sur \mathbb{R} .

Partie III – Etude de (*) **lorsque** $|\lambda| \neq 1$

1. Soit $(F,G) \in \mathcal{L}^2$ un couple éventuel de solutions de (\star) . D'après la question **I.3**, $H = F - G \in \mathcal{L}$ et pour tout $x \in \mathbb{R}$.

$$H(x) - \lambda H(x + a) = 0$$

La question II.2 permet alors d'affirmer que H=0 i.e. F=G.

2. a. D'après la question **I.4**, il existe $(A, B) \in \mathbb{R}^2_+$ tel que

$$\forall t \in \mathbb{R}, |f(t)| \leq A|t| + B$$

Ainsi, pour tout $n \in \mathbb{N}$,

$$|\lambda^n f(x+na)| = |\lambda|^n |f(x+na)| \leqslant |\lambda|^n (A|x+na|+B) \leqslant A|a|n|\lambda|^n + (A|x|+B)|\lambda|^n$$

Puisque $|\lambda| < 1$, les séries $\sum_{n \in \mathbb{N}} |\lambda|^n$ et $\sum_{n \in \mathbb{N}} n |\lambda|^n$ convergent donc la série $\sum_{n \in \mathbb{N}} |\lambda^n f(x + n\mathfrak{a})|$ converge i.e. la série $\sum_{n \in \mathbb{N}} \lambda^n f(x + n\mathfrak{a})$ converge absolument.

b. Puisque $f \in \mathcal{L}$, il existe $K \in \mathbb{R}_+$ tel que

$$\forall (x, y) \in \mathbb{R}^2, |f(x) - f(y)| \leq K|x - y|$$

Soit $(x, y) \in \mathbb{R}^2$.

$$\begin{split} |F_0(x) - F_0(y)| &= \left| \sum_{n=0}^{+\infty} \lambda^n (f(x + n\alpha) - f(y + n\alpha)) \right| \\ &\leq \sum_{n=0}^{+\infty} |\lambda|^n |f(x + n\alpha) - f(y + n\alpha)| \\ &\leq \sum_{n=0}^{+\infty} |\lambda|^n K|(x + n\alpha) - (y + n\alpha)| = \frac{K|x - y|}{1 - |\lambda|} \end{split}$$

Ainsi $F_0 \in \mathcal{L}$.

c. Par définition de F_0 , pour tout $x \in \mathbb{R}$,

$$F_0(x) - \lambda F_0(x+a) = \sum_{n=0}^{+\infty} \lambda^n f(x+na) - \sum_{n=0}^{+\infty} \lambda^{n+1} f(x+(n+1)a)$$
$$= \sum_{n=0}^{+\infty} \lambda^n f(x+na) - \sum_{n=1}^{+\infty} \lambda^n f(x+na) = f(x)$$

Donc F_0 est bien solution de (*) et c'est l'unique solution de (*) appartenant à \mathcal{L} d'après la question III.1.

d. Dans ce cas, l'unique solution de (\star) appartenant à \mathcal{L} est la fonction F_0 telle que pour tout $x \in \mathbb{R}$,

$$F_0(x) = \sum_{n=0}^{+\infty} \lambda^n = \frac{1}{1-\lambda}$$

e. Dans le cas où $f = \cos$, l'unique solution de (\star) appartenant à \mathcal{L} est la fonction F_0 telle que pour tout $x \in \mathbb{R}$,

$$F_0(x) = \sum_{n=0}^{+\infty} \lambda^n \cos(x + n\alpha) = \frac{\cos x - \lambda \cos(x - \alpha)}{1 - 2\lambda \cos \alpha + \lambda^2}$$

Dans le cas où $f=\sin$, l'unique solution de (\star) appartenant à $\mathcal L$ est la fonction F_0 telle que pour tout $x\in\mathbb R$,

$$F_0(x) = \sum_{n=0}^{+\infty} \lambda^n \sin(x + n\alpha) = \frac{\sin x - \lambda \sin(x - \alpha)}{1 - 2\lambda \cos \alpha + \lambda^2}$$

3. a. Il suffit d'appliquer la question **III.2.a** en remplaçant λ par $\frac{1}{\lambda}$ et α par $-\alpha$, ce qui est légitime car $\left|\frac{1}{\lambda}\right| < 1$.

b. On prouve à nouveau que $F_0 \in \mathcal{L}$ comme dans III.2.b. De plus, pour tout $x \in \mathbb{R}$,

$$\begin{split} F_0(x) - \lambda F_0(x+\alpha) &= \sum_{n=1}^{+\infty} \lambda^{-(n-1)} f(x-(n-1)\alpha) - \sum_{n=1}^{+\infty} \lambda^{-n} f(x-n\alpha) \\ &= \sum_{n=0}^{+\infty} \lambda^{-n} f(x-n\alpha) - \sum_{n=1}^{+\infty} \lambda^{-n} f(x-n\alpha) = f(x) \end{split}$$

Ainsi F_0 est bien solution de (\star) et c'est la seule appartenant à ${\cal L}$ d'après la question III.1.