External Project Report on Digital Logic Design (EET1211)

TOPIC: DESIGN AND IMPLEMENT A 2BIT AND 4-BIT MAGNITUDE COMPARATOR USING LOGIC GATES

Submitted by

Name 01- SAI SMRUTI MOHARANA Reg. No.:2241013383

Name 02- SAURAV SINGH MOHANTA Reg. No.:2241013209

Name 03- KHUSHI NIGAM Reg. No.: 2241014154

Name 04- RATI RANJAN MALIK Reg. No.: 2241014112

B. Tech. CSE 3rd Semester (Section - I)

INSTITUTE OF TECHNICAL EDUCATION AND RESEARCH (FACULTY OF ENGINEERING)
SIKSHA 'O' ANUSANDHAN (DEEMED TO BE UNIVERSITY), BHUBANESWAR, ODISHA

Declaration

We, the undersigned students of B. Tech. of "Computer Science and

Engineering"Department hereby declare that we own the full

responsibility for the information, results etc. provided in this

PROJECT titled "Design and implement a 2-bit and a 4-bit

Magnitude Comparator using logic gates". submitted to Siksha 'O'

Anusandhan Deemed to be University, Bhubaneswar for the partial

fulfillment of the subject Digital Logic Design (EET 1211). We have

taken care in all respect to honor the intellectual property right and

have acknowledged the contribution of others for using them in

academic purpose and further declare that in case of any violation of

intellectual property right or copyright we, as the candidate(s), will

be fully responsible for the same.

SAI SMRUTI MOHARANA

Registration No.:2241013383

SAURAV SINGH MOHANTA

Registration No.:2241013209

KHUSHI NIGAM

RATIRANJAN MALIK

Registration No.: 2241014154

Registration No.: 2241014112

DATE-15-01-2024

PLACE:

ii

ABSTRACT:

A 2-bit magnitude comparator circuit compares two 2-bit binary numbers to determine their relative magnitudes. It typically consists of XOR gates, AND gates, and OR gates to compare corresponding bits. The output signals indicate whether the numbers are equal, one is greater, or the other is greater.

Similarly, a 4-bit magnitude comparator circuit compares two 4-bit binary numbers. It extends the principles of the 2-bit comparator, using XOR, AND, and OR gates for each pair of corresponding bits. The output signals provide information about the relationship between the two 4-bit numbers in terms of equality and magnitude.

In both cases, the comparator circuits are designed to efficiently analyze binary numbers and produce relevant output based on the relative magnitudes of the compared values.

Contents

Serial No.	Chapter No.	Title of the Chapter	Page No.
1.	1	Introduction	5
2.	2	Problem Statement	6
3.	3	Methodology	7-8
4.	4	Implementation	9-10
5.	5	Results and interpretation	11-12
6.	6	Conclusion	13
7.		References	14
8.		Appendices	15-47

1. Introduction

"The aim of this project is to design and implement a 2 bit and 4 bit magnitude comparator."

2-bit magnitude comparator:

A 2-bit magnitude comparator is a digital circuit designed to compare the magnitudes of two 2-bit binary numbers. Its primary function is to determine whether one binary number is greater than, equal to, or less than the other.

The 2-bit magnitude comparator performs a bitwise comparison starting from the most significant bit (MSB) to the least significant bit (LSB).

The comparison is done using logic gates, and the output lines are activated based on the comparison results.

The output lines typically include signals like "A > B," "A < B," and "A = B," indicating the relative magnitudes of the two input numbers.

4-bit magnitude comparator:

A 4-bit magnitude comparator is a digital circuit designed to compare the magnitudes of two 4-bit binary numbers. Similar to its 2-bit counterpart, it determines whether one 4-bit binary number is greater than, equal to, or less than another.

The 4-bit magnitude comparator performs a bitwise comparison starting from the most significant bit (MSB) to the least significant bit (LSB).

The comparison is carried out using logic gates, and the output lines are activated based on the comparison results.

Output lines typically include signals like "A > B," "A < B," and "A = B," indicating the relative magnitudes of the two input numbers.

2. PROBLEM STATEMENT

- I. Explanation of problem and identification of input and output variables.
- II. Highlighting the constraints.

EXPLAINATION:

In this problem we are going to take 2 numbers for both the sub problems (2 bit and 4 bit). For 2 bit we will have 2 bits for each of the numbers A and B and for 4 bit we will have 4 bits for each of the numbers A and B. The bits of A will be compared to that of B's bit and thereby give us with three outputs where GT will result to 1 if A>B, LT will result to 1 if A<B and ET will result to 1 if a=b.

For 2 BIT:

Input: for the no A 2 bits are: A1, A0 for the no B 2 bits are: B1,B0

Output: There would be comparisons between the no.s

A and B creating outputs as

GT (greater than)

LT (less than)

ET (equal to)

For 4 BIT:

Input: for the no A 4 bits are :A3,A2,A1,A0 for the no B 4 bits are:B3,B2,B1,B0

Output: There would be comparisons between the no.s

A and B creating outputs as

GT (greater than)

LT (less than)

ET (equal to)

CONSTRAINTS:

- The Boolean expressions for each output must be derived using K-maps or other methods, and simplified using algebraic rules or Boolean theorems.
- The logic circuit diagram must be drawn using the appropriate logic gates for each expression, such as AND, OR, NOT, XOR, etc.
- The functionality of the circuit must be verified by testing it with different input values and checking the outputs.

3.Methodology

- I. Generating the solution to the problem by the use of Truth table/excitation table, K- map and (or) Boolean algebra.
- II. Finding out the different digital ICs to be used in the optimized design.

For 2 BIT:

A1	A0	B1	В0	ET	LT	GT
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
1	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1

\				
	1			
		1		
			1	
				1

1	1	1
	1	1

OBTAINED EXPRESSIONS:

FOR 2 BIT:

ET= (A0'.B0' + A0.B0) + (A1'.B1' + A1.B1) LT=A1'.B1 + A0'.B0(A1' + B1) GT= A1.B1' + A0.B0'(A1 + B1')

FOR 2 BIT:

S0=A0 XNOR B0

S1=A1 XNOR B1

S2=A2 XNOR B2

S3=A3 XNOR B3

ET= S3.S2.S1.S0

LT=A3'.B3 + S3.A2'.B2 + S3.S2.A1'.B1 + S3.S2.S1.A0'.B0

GT= A3.B3' + S3.A2.B2' + S3.S2.A1.B1' + S3.S2.S1.A0.B0'

DIFFERENT IC'S USED:

- 7432-Quad-2-input OR gate
- 7408-Quad-2-input AND gate
- 7486-Quad-2-input XOR gate
- 747266-Quad-2-input XNOR gate
- 7404-Hex Inverter-NOT gate

4. Implementation

- III. Drawing the logic diagram using different logic gates.
- IV. Program

FOR 2 BIT:

FOR 4 BIT:

PROGRAMS(FOR 2 BIT AND 4 BIT)

5. Results & Interpretation

Verification of the output for different inputs that satisfies the problem statement by the use of truth table.

EXCPECTED OUTPUT

A1	Α0	B1	В0	ET	LT	GT
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
1	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1

OBSERVED OUTPUT

A1	Α0	B1	В0	ET	Ľ	GT
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
1	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1

1	1	0	1	0	0	1
1	1	1	0	0	0	1

6. REFERENCES:

- Brown, L., & Miller, C. (2019). "Fundamentals of Digital Electronics:
 Design, Implementation, and Applications."
- Chang, S., & Patel, R. (2021). "Advanced Digital Circuit Design: Techniques and Applications."

Conclusion:

We are able to design a 2 bit and 4 bit magnitude comparator and are able to successfully
run it over Vivado .We verified our expected output that we had depicted from truth table
and compared it with our observed output that we observed from waveform.

APPENDICES:

74LVC08A Quad 2-input AND gate Rev. 7 — 19 April 2016

Product data sheet

General description

The 74LVC08A provides four 2-input AND gates.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V applications.

2. Features and benefits

- 5 V tolerant inputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- Complies with JEDEC standard:
 - JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A (2.3 V to 2.7 V)
 - JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Ordering information

Table 1. Ordering information

Type number	Package							
	Temperature range Name		Description	Version				
74LVC08AD	-40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1				
74LVC08ADB	-40 °C to +125 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1				
74LVC08APW	-40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1				
74LVC08ABQ	-40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1				

Quad 2-input AND gate

4. Functional diagram

5. Pinning information

5.1 Pinning

74LVC08A

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1A to 4A	1, 4, 9, 12	data input
1B to 4B	2, 5, 10, 13	data input
1Y to 4Y	3, 6, 8, 11	data output
GND	7	ground (0 V)
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function selection[1]

Input	Output	
nA	nB	nY
L	x	L
x	L	L
н	н	н

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care

Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+6.5	V
lok	output clamping current	V _O > V _{CC} or V _O < 0 V		-	±50	mA
Vo	output voltage	output HIGH or LOW-state	[2]	-0.5	V _{CC} + 0.5	V
lo	output current	V _O = 0 V to V _{CC}		-	±50	mA
loc	supply current			-	100	mA
IGND	ground current			-100	-	mA
Ptot	total power dissipation	T _{amb} = -40 °C to +125 °C	[3]	-	500	mW
T _{stg}	storage temperature			-65	+150	°C

^[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

^[2] The output voltage ratings may be exceeded if the output current ratings are observed.

^[3] For SO14 packages: above 70 °C derate linearly with 8 mW/K.
For (T)SSOP14 packages: above 60 °C derate linearly with 5.5 mW/K.
For DHVQFN14 packages: above 60 °C derate linearly with 4.5 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vcc	supply voltage		1.65	-	3.6	V
		functional	1.2	-	-	V
Vi	input voltage		0	-	5.5	V
Vo	output voltage	output HIGH or LOW-state	0	-	Vcc	V
T _{amb}	ambient temperature		-40	-	+125	°C
ΔΨΔΥ	input transition rise and fall rate	V _{CC} = 1.65 V to 2.7 V	0	-	20	ns/V
		V _{CC} = 2.7 V to 3.6 V	0	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	arameter Conditions -40 °C to +8		5 ℃	-40 °C to	+125 °C	Unit	
			Min	Typ[1]	Max	Min	Max	1
VIH	HIGH-level	V _{CC} = 1.2 V	1.08	-	-	1.08	-	٧
	input voltage	V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}	-	-	0.65 × V _{CC}	-	V
		V _{CC} = 2.3 V to 2.7 V	1.7		-	1.7	-	٧
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	٧
V _{IL}	LOW-level	V _{CC} = 1.2 V	-	-	0.12		0.12	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7		0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}						
	output voltage	I _O = -100 μA; V _{CC} = 1.65 V to 3.6 V	V _{CC} - 0.2	-	-	V _{CC} - 0.3		V
		I _O = -4 mA; V _{CC} = 1.65 V	1.2		-	1.05		٧
		I _O = -8 mA; V _{CC} = 2.3 V	1.8	-	-	1.65	-	٧
		I _O = -12 mA; V _{CC} = 2.7 V	2.2	-	-	2.05	-	٧
		$I_O = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	2.25	-	٧
		$I_0 = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.2		-	2.0	-	٧
V _{OL}	LOW-level	V _I = V _{IH} or V _{IL}						
	output voltage	I _O = 100 μA; V _{CC} = 1.65 V to 3.6 V			0.2	-	0.3	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45		0.65	٧
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.6		0.8	V
		I _O = 12 mA; V _{CC} = 2.7 V		-	0.4	-	0.6	٧
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.55	-	0.8	٧
lı .	input leakage current	V _{CC} = 3.6 V; V _I = 5.5 V or GND		±0.1	±5	-	±20	μА

74LVC08A

All information provided in this document is subject to legal disclaimers.

Nesperia S.V. 2017. All rights reserved.

Quad 2-input AND gate

Table 6. Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40 °C to +85 °C		-40 °C to +125 °C		Unit	
			Min	Typ[1]	Max	Min	Max	
Icc		$V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND};$ $I_O = 0 \text{ A}$	•	0.1	10	-	40	μА
Δl _{CC}	additional supply current	per input pin; V _{CC} = 2.7 V to 3.6 V; V _I = V _{CC} - 0.6 V; I _O = 0 A	-	5	500	-	5000	μА
Cı		V _{CC} = 0 V to 3.6 V; V _I = GND to V _{CC}	-	4.0	-	-	-	pF

All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 7.

Symbol	Parameter	Conditions	Conditions -40		-40 °C to +85 °C			-40 °C to +125 °C	
				Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	nA, nB to nY; see Figure 6	[2]						
		V _{CC} = 1.2 V		-	11.0	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		0.5	4.2	9.0	0.5	10.4	ns
		V _{CC} = 2.3 V to 2.7 V		1.0	2.5	6.9	1.0	8.0	ns
		V _{CC} = 2.7 V		1.5	2.5	4.8	1.5	5.6	ns
		V _{CC} = 3.0 V to 3.6 V		1.0	2.3	4.1	1.0	4.8	ns
t _{sk(o)}	output skew time	V _{CC} = 3.0 V to 3.6 V	[3]	-	-	1.0	-	1.5	ns
C _{PD}	power dissipation	per gate; V _I = GND to V _{CC}	[4]						
	capacitance	V _{CC} = 1.65 V to 1.95 V		-	4.4	-	-	-	pΕ
		V _{CC} = 2.3 V to 2.7 V		-	7.7	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V			10.5	-	-	-	pΕ

Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_1 = input frequency in MHz, f_0 = output frequency in MHz

C_L = output load capacitance in pF

V_{CC} = supply voltage in Volts

N = number of inputs switching

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

74LVC08/

All information provided in this document is subject to legal disclaimers.

P Nesperia S.V. 2017. All rights reserved

^[2] t_{pd} is the same as t_{PLH} and t_{PHL}.

^[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

^[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

Nexperia 74LVC08A

Quad 2-input AND gate

11. AC waveforms

Product data sheet

20 | Page

Quad 2-input AND gate

Table 8. Test data

Supply voltage	Input		Load		
	V _i	t _r , t _f	CL	RL	
1.2 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ	
1.65 V to 1.95 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ	
2.3 V to 2.7 V	V _{CC}	≤ 2 ns	30 pF	500 Ω	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	

12. Package outline

SOT108-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT108-1	076E06	MS-012			₩	89 12 27 03-02-19	

Fig 8. Package outline SOT108-1 (SO14)

VCSBA All information provided in this document is subject to legal disclaimers.

Nesperia B.V. 2017. All rights reserved.

Product data sheet

Rev. 7 -- 19 April 2016

Fig 9. Package outline SOT337-1 (SSOP14)

Product data sheet Rev. 7 — 19 April 2016 9 of 15

Fig 11. Package outline SOT762-1 (DHVQFN14)

Quad 2-input AND gate

13. Abbreviations

Table 9. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
74LVC08A v.7	20160419	Product data sheet		74LVC08A v.6			
Modifications:	<u>Table 2</u> : Pin d	<u>Table 2</u> : Pin description for 1A to 4A inputs and 1Y to 4Y outputs swapped (errata).					
74LVC08A v.6	20111216	Product data sheet		74LVC08A v.5			
Modifications:	guidelines of • Legal texts ha	The format of this document has been redesigned to comply with the new identity guidelines of NXP Semiconductors. Legal texts have been adapted to the new company name where appropriate. Table 4, Table 5, Table 6, Table 7 and Table 8: values added for lower voltage ranges.					
74LVC08A v.5	20030224	Product specification		74LVC08A v.4			
74LVC08A v.4	20021030	Product specification	-	74LVC08A v.3			
74LVC08A v.3	20020308	Product specification		74LVC08A v.2			
74LVC08A v.2	19970630	Product specification		74LVC08A v.1			
74LVC08A v.1	19970630	Product specification					

Nexperia 74LVC08A

Quad 2-input AND gate

15. Legal information

15.1 Data sheet status

Document status [13[2]	Product status[1]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product (short) data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperts.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the outblication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or maifunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreement is valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

June 1986 Revised March 2000

DM74LS32

Quad 2-Input OR Gate

General Description

This device contains four independent gates each of which performs the logic OR function.

Ordering Code:

Order Number	Package Number	Package Description
DM74LS32M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS32SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS32N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also evallable in Tape and Reel. Specify by appending the suffix latter "X" to the ordering code.

Connection Diagram

Function Table

Inp	uts	Output
A	В	Y
L	L	L
L	H	H
H	L	H
H	H	H

Y-A+B

H = HIGH Logic Level L = LOW Logic Level

© 2000 Fairchild Semiconductor Corporation

DS006361

Absolute Maximum Ratings(Note 1)

 Supply Voltage
 7V

 Input Voltage
 7V

 Operating Free Air Temperature Range
 0°C to +70°C

 Storage Temperature Range
 -65°C to +150°C

7V Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	٧
V _{IH}	HIGH Level Input Voltage	2			٧
V _{IL}	LOW Level Input Voltage			0.8	٧
I _{OH}	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
TA	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	V _{GC} = Min, I _I = -18 mA			-1.5	V
V _{OH}	HIGH Level Output Voltage	V _{OC} = Min, I _{OH} = Max V _{BH} = Min	2.7	3.4		V
Vol	LOW Level Output Voltage	V _{OC} = Min, I _{OL} = Max V _{IL} = Max		0.35	0.5	v
		I _{OL} = 4 mA, V _{CC} = Min		0.25	0.4	
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_1 = 7V$			0.1	mA
I _H	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μА
I _{IL}	LOW Level Input Current	$V_{GG} = Max$, $V_I = 0.4V$			-0.36	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 3)	-20		-100	mA
I _{OOH}	Supply Current with Outputs HIGH	V _{CC} = Max		3.1	6.2	mA
looL	Supply Current with Outputs LOW	V _{CC} = Max		4.9	9.8	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

Symbol	Parameter	C ^L =	15 pF	C _L =	Units	
		Min	Max	Min	Max	
Part	Propagation Delay Time LOW-to-HIGH Level Output	3	11	4	15	ns
	Propagation Delay Time HIGH-to-LOW Level Output	3	11	4	15	ns

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N14A

0.100 ± 0.010 TEP

 (7.540 ± 0.254)

0.050 ± 0.010 (1.270 - 0.254)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

0.014 -- 0.023 TYP

(0.356 - 0.584)

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

(7.112)-

MIN

0.325 ^{+0.040} -0.015 (8.255 +1.016) -0.381)

www.fairchildsemi.com

M54HC04 M74HC04

HEX INVERTER

- HIGH SPEED
 - tpp = 6 ns (TYP.) AT Vcc = 5 V
- LOW POWER DISSIPATION
 I_{CC} = 1 μA (MAX.) AT T_A = 25 °C
- HIGH NOISE IMMUNITY
 V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | IOH | = I_{OL} = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS
 tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS04

DESCRIPTION

The M54/74HC04 is a high speed CMOS HEX IN-VERTER fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

The internal circuit is composed of 3 stages including buffer output, which enables high noise immunity and stable output. All inputs are equipped with circuits against static discharge and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

December 1992 1/9

TRUTH TABLE

A	Y
L	Н
н	L

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9,	1A to 6A	Data Inputs
11, 13		
2, 4, 6, 8,	1Y to 6Y	Data Outputs
10, 12		-
7	GND	Ground (0V)
14	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOL

LOGIC DIAGRAM (Per Gate)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
Vi	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to Vcc + 0.5	V
l _{ik}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
PD	Power Dissipation	500 (*)	mW
Tstg	Storage Temperature	-65 to +150	°c
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

(*) 500 mW: = 65 °C derate to 300 mW by 10 mW°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
Vcc	Supply Voltage	2 to 6	V	
Vi	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
Тор	Operating Temperature: M54HC Series M74HC Series	-55 to +125 -40 to +85	ဘိ ဘိ	
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Test Conditions		Value								
Symbol	Parameter	Vcc			T _A = 25 °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit	
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
VIH	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
VIL	Low Level Input	2.0					0.5		0.5		0.5	85 V
	Voltage	4.5					1.35		1.35		1.35	
		6.0					1.8		1.8		1.8	
VoH	High Level Output Voltage	2.0	VI =		1.9	2.0		1.9		1.9		
		utput Voltage 4.5	ViH	I ₀ =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	VIL	l ₀ =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		lo=-5.2 mA	5.68	5.8		5.63		5.60		
VoL	Low Level Output	2.0	VI =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VIII	I ₀ = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	lo= 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		lo= 5.2 mA		0.18	0.26		0.33		0.40	
l _l	Input Leakage Current	6.0	V ₁ = '	V _{CC} or GND			±0.1		±1		±1	μА
loc	Quiescent Supply Current	6.0	V ₁ = 1	V _{CC} or GND			1		10		20	μА

AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)

		Te	est Conditions				Value				
Symbol	Parameter	V _{cc} (V)			T _A = 25 °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(*)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0			30	75		95		110	
t _{THL}	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
tpLH	Propagation	2.0			27	75		95		110	
tehl	Delay Time	4.5			9	15		19		22	ns
		6.0			8	13		16		19	
Cin	Input Capacitance				5	10		10		10	pF
CPD (*)	Power Dissipation Capacitance				22						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. I_{CC}(opr) = C_{PD} •V_{CD} •I_{FN} + I_{CC}(6 (per Gate)).

SWITCHING CHARACTERISTICS TEST CIRCUIT

TEST CIRCUIT Icc (Opr.)

4/9

Plastic DIP14 MECHANICAL DATA

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
1			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

SGS-THOMSON MICROMICS

5/9

Ceramic DIP14/1 MECHANICAL DATA

DIM.	mm				inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			20			0.787
В			7.0			0.276
D		3.3			0.130	
E	0.38			0.015		
e3		15.24			0.600	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	1.52		2.54	0.060		0.100
N			10.3			0.406
P	7.8		8.05	0.307		0.317
Q			5.08			0.200

6/9

SO14 MECHANICAL DATA

DIM.		mm			inch	
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45° ((typ.)		
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S			8° (n	nax.)		

PLCC20 MECHANICAL DATA

DIM.	nm mm			inch		
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
M		1.27			0.050	
M1		1.14			0.045	

8/9

Quad 2-Input XOR Gate

The MC74VHC86 is an advanced high speed CMOS 2-input Exclusive-OR gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems.

Features

- High Speed: tpD = 4.8 ns (Typ) at V_{CC} = 5 V
- Low Power Dissipation: I_{CC} = 2 μA (Max) at T_A = 25°C
- High Noise Immunity: V_{NIH} = V_{NIL} = 28% V_{CC}
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: Volle = 0.8 V (Max)
- · Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA.
- ESD Performance: Human Body Model (HBM) > 2000 V;
 Machine Model > 200 V
- · Chip Complexity: 56 FETs or 14 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Figure 1. Logic Diagram

Figure 2. Pinout: 14-Lead Packages (Top View)

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

A = Assembly Location

WL, L = Wafer Lot Y, YY = Year WW, W = Work Week G or • = Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE

In	Output	
A	8	¥
L	L	L
L	H	H
н	L	H
н	н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Voc	DC Supply Voltage	-0.5 to +7.0	٧
Vin	DC Input Voltage	-0.5 to +7.0	٧
Vout	DC Output Voltage	-0.5 to V _{CC} +0.5	٧
l _{lic}	Input Diode Current	-20	mA
lax	Output Diode Current	±20	mA
Louis	DC Output Current, per Pin	±25	mA
loo	DC Supply Current, V _{CC} and GND Pins	±50	mA
PD	Power Dissipation in Still Air, SOIC Package [†] TSSOP Package [†]	500 450	mW
T _{etg}	Storage Temperature	-65 to +150	ç

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}-

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating SOIC Package: - 7 mW/°C from 65° to 125°C

TSSOP Package: - 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
Voc	DC Supply Voltage	2.0	5.5	٧
Vin	DC Input Voltage	0	5.5	٧
V _{out}	DC Output Voltage	0	V _{cc}	٧
TA	Operating Temperature, All Package Types	-66	+125	÷C.
L, L	Input Rise and Fall Time V _{CC} = 3.3 V ±0.3 V V _{CC} = 5.0 V ±0.5 V	0	100 20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			Voc	TA = 25°C			T _A = -55°C	to +125°C	
Symbol	Parameter	Test Conditions	٧	Min	Тур	Max	Min	Max	Unit
ViH	High-Level Input Voltage		2.0 3.0 to 5.5	1.50 V _{CC} x 0.7			1.50 V _{CC} x 0.7		<
V _{IL}	Low-Level Input Voltage		2.0 3.0 to 5.5			0.50 V _{CC} x 0.3		0.50 V _{CC} x 0.3	٧
V _{OH}	High-Level Output Voltage	V _{In} = V _{IH} or V _{IL} I _{DH} = -50 μA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		<
		$V_{\rm in}$ = $V_{\rm iH}$ or $V_{\rm IL}$ $I_{\rm OH}$ = -4 mA $I_{\rm OH}$ = -8 mA	3.0 4.5	2.58 3.94			2.48 3.80		
V _{OL}	Low-Level Output Voltage	V _{In} = V _{IH} or V _{IL} I _{OL} = 50 μA	2.0 3.0 4.5		000	0.1 0.1 0.1		0.1 0.1 0.1	<
		$V_{\rm in}$ = $V_{\rm IH}$ or $V_{\rm IL}$ $I_{\rm OL}$ = 4 mA $I_{\rm OL}$ = 8 mA	3.0 4.5			0.36 0.36		0.44 0.44	
lin	Input Leakage Current	V _{in} = 5.5 V or GND	0 to 5.5			±0.1		±1.0	μA
loc	Quiescent Supply Current	V _{in} = V _{CC} or GND	5.5			2.0		20.0	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (input t_f = t_f = 3.0ns)

			T _A = 25 °C		T _A = -6 +12			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Max	Unit
t _{pue} t _{pet}	Propagation Delay, A or B to Y	V _{CC} = 3.3 ± 0.3 V C _L = 15 pF C _L = 50 pF		7.0 9.5	11.0 14.5	1.0 1.0	13.0 16.5	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		4.8 6.3	6.8 8.8	1.0 1.0	8.0 10.0	
Cin	Input Capacitance			4	10		10	pF

		Typical @ 25°C, V _{CC} = 5.0 V		l
Cpp	Power Dissipation Capacitance (Note 1.)	18	pΕ	ĺ

C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
 Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/4 (per gate). C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

NOISE CHARACTERISTICS (Input t_r = t_f = 3.0ns, C_L = 50 pF, V_{CC} = 5.0 V, Measured in SOIC Package)

		T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.3	0.8	٧
Volv	Quiet Output Minimum Dynamic V _{OL}	-0.3	-0.8	٧
VIHD	Minimum High Level Dynamic Input Voltage		3.5	٧
VILD	Maximum Low Level Dynamic Input Voltage		1.5	V

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74VHC86DR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
MC74VHC86DTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74VHC86DTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
NLVVHC86ADTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

TEST POINT

"Includes all probe and jig capacitance

Figure 3. Switching Waveforms

Figure 4. Test Circuit

Figure 5. Input Equivalent Circuit

MECHANICAL CASE OUTLINE

SOIC-14 NB CASE 751A-03 ISSUE L

DATE 03 FEB 2016

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIN	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
ь	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0°	7°	0°	7°

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DIMENSIONS: MILLIMETERS

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

Product Preview

Low-Voltage CMOS Quad 2-Input XNOR Gate With 5V-Tolerant Inputs

The MC74LCX810 is a high performance, quad 2-input XNOR gate operating from a 2.7 to 3.6V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5V allows MC74LCX810 inputs to be safely driven from 5V devices.

Current drive capability is 24mA at the outputs.

- Designed for 2.7 to 3.6V VCC Operation
- . 5V Tolerant Inputs Interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current (10μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MC74LCX810

LOW-VOLTAGE CMOS QUAD 2-INPUT XNOR GATE

D SUFFIX PLASTIC SOIC CASE 751A-03

M SUFFIX PLASTIC SOIC EIAJ CASE 965-01

SD SUFFIX PLASTIC SSOP CASE 940A-03

DT SUFFIX PLASTIC TSSOP CASE 948G-01

PIN NAMES

Pins	Function
An, Bn	Data Inputs
On	Outputs

FUNCTION TABLE

Inputs		Outputs
An	Bn	On
L	L	Н
L	н	L
н	L	L
н	Н	н

OUTLINE DIMENSIONS

- NOTES: 1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 - 2 CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PHU INUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 5 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION/INTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF K DIMENSION AT MAXIMUM MATERIAL CONDITION, DAMBAR INTRUSION SHALL NOT REDUCE DIMENSION K BY MORE THAN 0.07 (0.002) AT LEAST MATERIAL CONDITION.
 6 TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 7 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIMETERS		S INCHES	
DIM	MIN	MAX	MIN	MAX
A	6.07	6.33	0.238	0.249
В	5.20	5.38	0.205	0.212
C	1.73	1.99	0.068	0.078
D	0.05	0.21	0.002	0.008
F	0.63	0.95	0.024	0.037
G	0.65 BSC		0.026 BSC	
Н	1.08	1.22	0.042	0.048
J	0.09	0.20	0.003	0.008
J1	0.09	0.16	0.003	0.006
K	0.25	0.38	0.010	0.015
K1	0.25	0.33	0.010	0.013
L	7.65	7.90	0.301	0.311
M	0 0	80	0 0	8.0

ISSUE O

Δ -V-

NOTES:

- 1 DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. 2 CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4 DIMENSION B DOES NOT INCLUDE INTERLEAD
- FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- 5 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 7 DIMENSION A AND B ARE TO BE DETERMINED

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20	-	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
JH	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0 0	80	0°	8.0

△ 0.15 (0.006) T

L

△ 0.15 (0.006) T U ⑤

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUGION
- MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
0	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		3SC 0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.228	0.244
R	0.25	0.50	0.010	0.019

M SUFFIX

PLASTIC SOIC EIAJ PACKAGE CASE 965-01 ISSUE O

NOTES:

- 1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
- 4 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 5 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.45 (0.018).

	MILLIN	ETER\$	INC	HE8
DIM	MIN	MAX	MIN	MAX
Α	-	2.05	***	0.081
Ą	0.05	0.20	0.002	800.0
ь	0.35	0.50	0.014	0.020
0	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
	1.27 BSC		0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L _E	1.10	1.50	0.043	0.059
M	0 0	10°	0.0	10°
Q1	0.70	0.90	0.028	0.035
Z		1.42	***	0.056