Decision Tree Classifier

Decision Tree Regressor

Classification Trees

- · can use both continuous & discrete features
- · numeric threshold can be different for same data

- · Prediction nodes can be repeated
- . Default : Left branch = True, right branch = False

Building classification Trees

1) Determine the feature at root mode

L> Steps: Build simple tree for each feature

Loves Popeara	Loves Sodon	Age	Loves movie
Υ .	Y	7	N
Υ	N	12	N
И	Y	(3	Y
N	Y	35	Y
Y	Y	38	Y
Υ	N	\$0	И
7	И	83	N

Quantifying Impurity of leaf nodes

- · Gini Impurity (popular)
- · Fotropy
- · Information Gain

Gini Impurity (categorical)

$$G = 1 - (\text{Probability Yes})^{2} - (\text{Probability No})^{2}$$

$$G(\text{pop corn}) = 1 - (\frac{1}{1+3})^{2} - (\frac{3}{1+3})^{2}$$

$$= 0.375$$

$$G(\text{pop corn} F) = 1 - (\frac{2}{1+2})^{2} - (\frac{1}{1+2})^{2}$$

$$= 0.4444$$

Weighted Gini Impurity

• To account for different sample size
$$6 \left(\begin{array}{c} \text{Loves} \\ \text{papeorn} \end{array} \right) = \frac{4}{4+3} \left(0.375 \right) + \frac{3}{4+3} \left(0.444 \right)$$

Gini Impurity (numerical)

Sini Impurity (numerical co) ascerding

1) Sort numerical co) ascerding

2) Calculate any of adjacent

3) Calculate gini Impurity for each any

Age
$$\angle 9.5$$

Loves

Movie

T

T

T

O

1

2

(Age $\angle 9.5$) = 1 - (0)² - (1/2)²

= 0

No Impurity

G(Aje $\angle 9.5$) = 1 - (0)² - (1/3)²

= 4/9

Weighted Ary = 1/4 (0) + 3/4 (1/4)

(Age $\angle 9.5$) = 1/3

* Repeat for all other any ages.

- 2) Perform Similar splitting & calculate fini index
- 3) Assign output values for each leaf node (threshold) to Typically whichever category that has most votes.

Handling overfit of Trees

- 1) Pruning
- 2) Limit tree growth (require minimum No. of data in each reaf node)