Office européen des brevets

EUROPEAN PATENT APPLICATION

© JUF CFE COOR 69/10, GO2B 1/04,

45 Application number: 90304699.3

E43846 2U 68.20.20 : yihoinq @

06.40.0E :gnilif to etsG (S)

- Applicant: BAUSCH & LOMB INCORPORATED One Lincoln First Square PO Box 54 Rochester New York 14601-0054(US)
- (72) Inventor: Melpolder, John B. 420 North Avenue Hilton, New York 14468(US)

(a) Date of publication of application: 07.11.90 Bulletin 90/45

744403 SU 09.40.E0

(e) Designated Contracting States:

Mepresentative: Allam, Peter Clerk et al LLOYD WISE, TREGEAR & CO. Norman House 105-109 Strand
London WC2R 0AE(GB)

- S Polymerizable dye.
- Dye monomers of the general chemical formula

where X denotes an unsaturated polymerizable organic radical; and R is an organic diradical with 2 to 12 carbon atoms.

EP 0 396 376 A1

POLYMERIZABLE DYE

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. Application Serial No. 348,543 filed May 2, 1989.

SUMMARY OF THE INVENTION

lens materials. These compounds are represented by the general formula This invention relates to a class of novel compounds which are useful as comonomers to fint contact

materials in biomechanical applications. 12 carbon atoms. The invention also relates to copolymers of the above compounds which are useful as where X denotes a polymerizable, unsaturated organic radical; and R denotes an organic diradical with 2 to

DETAILED DESCRIPTION OF THE INVENTION

divalent phenyl alkyl radical have been found to be especially useful polymerizable dyes. methacrylate, acrylate, vinyl carbonyl, or vinyl carbamate functional moieties. Compounds wherein R is a divalent organic radical with 2 to 12 carbon atoms and X is a polymerizable, unsaturated radical, such as a compounds represented by the foregoing general formula wherein R and X are defined as follows: R is a comonomers to impart a blue color in biomechanical devices. Specifically, the present invention relates to The present invention relates to a novel class of compounds which are particularly useful as

The general synthetic scheme for producing the comonomers of the present invention is illustrated

below.

30

50

General Synthetic Scheme

The comonomers produced by the General Synthetic Scheme outlined above have several characteristics which distinguish them over dye comonomers used in biomechanical devices previously. For instance, the present invention dye monomers are compatible with many monomers used to produce biomechanical

materials. This allows the dye to be mixed with the bulk monomer prior to the polymerization of that comonomer.

Furthermore, the functionality of the present dye comonomers allows them to be more completely polymerized with the bulk monomers used to produce state of the art biomechanical materials. This ensures

polymerized with the bulk monomers used to produce state of the art biomechanical materials. This ensures that the present invention dye comonomers become integral parts of the copolymer's matrix and cannot be leached out of that matrix by conditions (e.g., physiological conditions) that are encountered by hydrogel materials, especially biomechanical materials such as contact lenses.

Furthermore, due to the solution compatibility of these dye comonomers with other comonomers, they can be used in various concentration ranges which allows them to be used as tinting (or coloring) agents. This result is a particularly important characteristic in contact lens materials and has heretofore been

94

S

EP 0 396 376 A1

unavailable in the art.

The comonomer dyes of the present invention can be used to produce biomechanical materials in conjunction with known monomers while maintaining all of the advantageous characteristics of polymers produced from the known monomers. This allows for the production of copolymers which are tinted or colored and which still maintain the beneficial physiological characteristics required for biomechanical materials.

The monomers which the present invention can be copolymerized with include both hydrophilic and hydropholic monomers. Biomechanical materials, of course, include copolymeric mixtures. The compounds of the present invention are used as an additional agent in the prepolymer mixtures disclosed in the art. The dye compound of this invention is added in amounts sufficient to impart the desired color intensity. The upper limit of comonomer dye concentration may be restricted by the amount of crosslinking effected by the difunctional dye molecule. Typically the dye concentration will range from about 0.001 to about 2 weight percent of the mixture. More typically the dye concentration will single from about 0.001 to about 2 weight percent of the total monomer mixture. The concentration will single from about 0.001 to about 2 weight percent of the total monomer mixture. The concentration will of course determine the color intensity of the resulting copolymer.

The polymerizable dye of this invention is particularly useful to color hydrogel materials. Hydrogel materials (i.e., water-containing polymers) are prepared from a wide variety of copolymeric mixtures characterized by the presence of hydrophilic monomers. Examples of hydrophilic monomers are -2-hydroxyethylmethacrylate, N-vinyl pyrrolidone, and methacrylic acid. Copolymeric mixtures used to prepare hydrogels may also include polymers such as polyvinyl alcohol and polyethylene glycol. Hydrogels for contact lenses are generally made by the polymerization of hydrophilic monomers (e.g., 2-hydroxyethyl-methacrylate or N-vinyl pyrrolidone) with a crosslinking agent. Useful hydrogels are also obtained by the copolymerization and crosslinking of hydrophilic and hydrophobic monomers to obtain the desired level of water absorption in the gel. Suitable hydrogels are further exemplified by the materials described in U.S. P.R. 27,401; U.S. 3,532,679; and U.S. 3,937,680.

The monomers of the present invention can also be used in conjunction with rigid gas permeable contact lens formulations known in the art as exemplified in U.S. 4,450,264, U.S. 4,159,548, U.S. 4,433,111, U.S. 4,152,508, U.S. 4,450,264, U.S. 4,153,641, U.S. 4,540,761, U.S. 4,372,203, and U.S. 3,950,315.

The invention compounds may also be used as comonomers with silicone based systems. Silicones are also well known in the art and are exemplified by the following U.S. Patents: U.S. 4,136,250, U.S. 3,518,324,

and U.S. 4,138,382.

The following examples are not intended to exemplify the full scope of the present invention. They are meant to illustrate certain specific examples of the present invention to those skilled in the art and to

EXAMPLES

provide sufficient basis for those skilled in the art to practice their invention.

EXAMPLE 18

Synthesis of 1. 4-Bis(2-methacrylamidoethylamino)anthraquinone (I)

Þ

FP 0 396 376 A1

.%08 to isolated by filtration, washed with 1:1 methanol water and then water, and air dried giving an isolated yield

According to the above procedure, the following compounds were prepared:

4-bis(2-acrylamidoethylamino)anthraquinone,

1,4-bis(3-methacrylamido-2-2-dimethylpropylamino)anthraquinone (III), (II), 4-bis(3-methacrylamidopropylamino)anthraquinone (II),

1,4-bis(2-acrylamidocyclohexylamino)anthraquinone, and

1,4-bis(2-methacrylamidocyclohexylamino)anthraquinone (IV).

EXAMPLE 1b

Synthesis of 1,4-Bis(3-methacryloxypropylamino)anthraquinone (V)

acetone:water, water and air dried. The isolated yield was 20%. the addition of 200 ml of water. The product was isolated by filtration on a tritted filter, washed with 1:1 gummy solids were isolated on fluted filter paper, redissolved in 200 ml of acetone and reprecipitated by complete after 1/2 hour. The solution was diluted to 1 liter with water and 1.0 g of NaOH was added. The added 3.0 ml of triethylamine and 1.5 ml of methacryloyl chloride at room temperature. The reaction was giving a recrystallized yield of 23%. To a solution of 1.0 g of the intermediate in 200 ml of acetonitrile was The intermediate was prepared as before using 8.0 g of leucoquinizarin and 50 ml of 3-aminopropanol

EXAMPLE 10

Synthesis of 1.4-Bis(1-methacryloxy-2-butylamino)anthraquinone (VI)

both the intermediate and the final product. washed with water and air dried. The isolated yield was 52%. The TLC showed the expected two spots for 200 ml of acetone a second time and precipitated by the addition of 300 ml of water, isolated by filtration, 200 ml of acetone and precipitated by the addition of 500 ml of water. The wet product was redissolved in solution was diluted to 1 liter with water. The tacky product was filtered out of the solution, redissolved in ml of methacryloyl chloride. After 1/2 hour, 300 ml of ethylene glycol was added and 10 minutes later the a solution of 2 g of the intermediate in 100 ml of dry acetonitrile was added 4.0 ml of triethylamine and 3.0 isolated by filtration, washed with water and air dried. Recrystallization from toluene gave a yield of 52%. To nitrogen at 90°C for 7.5 hours and then diluted to 500 ml to precipitate the product. The intermediate was A mixture of 15 g of quinizarin, 75 ml of (±)-2-amino-1-butanol and 100 ml of water was heated under

EXAMPLE 1d

Synthesis of 1,4-Bis(1-methacryloxy-2-pentylamino)anthraquinone (VII)

scetonitrile was added 4.0 ml of triethylamine and 2.0 ml of methacryloyl chloride. After 30 minutes at room and air dried. The isolated yield was 75%. To a solution of 2.0 g of the intermediate in 50 ml of dry precipitate the intermediate, which was isolated by filtration, washed with 2:1 water:methanol and the water, 55°C for 3 hours. The resulting oil was diluted with 250 ml of methanol and then with 250 ml of water to triethylamine was heated at 60 C under nitrogen overnight. Air was then bubbled through the solution at A deoxygenated solution of 3.0 g of leucoquinizarin, 10.0 g of (±)-2-amino-1-pentañol and 50 ml of

97

30

20

OL

EP 0 396 376 A1

temperature, the reaction was completed. The solution was diluted with 50 ml of ethylene glycol followed by 400 ml of water 15 minutes later. After vigorous stirring for one hour, most of the gummy product was sticking to the sides of the flask. The solution was filtered and the solids were dissolved in 500 ml of methanol. The product was reprecipitated by the addition of 500 ml of water, isolated by filtration, washed methanol followed by water and sir dried. Isolated yield was 34%.

EXAMPLE 16

Synthesis of 1,4-Bis(4-methacryloxycyclohexylamino)anthraquinone (VIII)

A deoxygenated solution of 10.0 g of trans-4-sminocyclohexanol hydrochloride, 2.76 g of NaOH, 25 ml of water and 45 ml of triethylamine was added to a nitrogen filled flask containing 2.0 g of leucoquinizarin and the mixture was heated at 55° C for two hours. Air was then bubbled through the solution overnight at 55° C to form the crude intermediate. The slurry was diluted to 250 ml with water and the solids were isolated by filtration. Unoxidized product was removed by placing the solids in 500 ml of boiling 2-propanol for one hour, cooling and filtering. The purified intermediate was washed with methanol and at dried. The purified intermediate in 100 ml of toluene was added 5.0 ml of solvation and 1.4 ml of methacyloyl chloride. After boiling for 10 minutes, the product was formed and the product was formed and 1.4 ml of methacyloyl chloride. After boiling for 10 minutes, the product was formed and the product was intermediated by the addition of 500 ml of water. The fine precipitate was isolated on fluted filter paper, redissolved in acetone, precipitated with water and the product was isolated by filtration. After washing with water, the product was air dried. The yield was 60%.

EXAMPLE 11

Synthesis of 1,4-Bis(2-methacryloxycyclohexylamino)anthraquinone (IX)

A deoxygenated solution of 10.9 g of 2-sminocyclohexanol hydrochloride, 2.58 g of NaOH, 50 ml of water and 100 ml of triethylamine was added to a nitrogen filled flask containing 2.0 g of leucoquinizarin and the mixture was heated at 55°C for four hours. Air was then bubbled through the solution overnight with the temperature reaching 80°C. After diluting with water, the solids were filtered out. The solids were alwayshed with acetone until the filtrate was light blue. The yield of the sir dried product was 42%. Over a 1/2 hour period of time, a total of 2.6 ml of methacryloyl chloride, 4.0 ml of triethylamine and 2.0 ml of pyridine was added to a slurry of 1.0 g of the intermediate in 100 ml of dry acetonitrile. Product was formed by boiling the mixture for one hour. Water, 25 ml, was added and the solvents were rotovaped off. The solids were slurred in 1 liter of water containing 0.5 g of NaOH for 1/2 hour and the product was isolated from the highly colored solution by filtration. The product was dissolved in 300 ml of acetone, precipitated by the addition of 600 ml of water and isolated by filtration several times until the filtrated was light blue. The yield of the sir dried product was 20%.

EXAMPLE 19

(X) anoniuparhtna-(onimalyntalynany-1-phenylamino)-anthraquinone

In an oxygen free solution, 3.0 g of leucoquinizarin and 10.0 g of L-2-phenylglycinol in 150 ml of triethy amine were reacted overnight at 55°C. Air was then bubbled through the solution for 3 hours at

99

09

32

30

FA 376 396 0 93

55 C and the mixture was reduced to dryness on a rotovap. The solids were dissolved in acetone and the intermediate was precipitated by the addition water containing NaOH. The product was isolated from the highly colored solution by filtration, washed and air dried. The yield of the intermediate was 45%. Two grams of the intermediate was dissolved in 100 ml of dry acetonitrile to which was added 4.0 ml of triethylamine and 2.5 ml of methacyoyl chloride. After 1/2 hour the reaction was complete. Methanol, 25 ml, was added and the solvents were rotovaped off. The product was dissolved in 250 ml of water and isolated by filtration several times until the filtrate was light blue. The yield of the air dried product was 33%.

EXAMPLE 1h

Synthesis of 1,4-Bis(1-methacryloxy-3-methyl-2-pentylamino) anthraquinone(XI)

A 1.5 g sample of leucoquinizarin was reacted with 5.0 g of L-isoleucinol in 50 ml of triethylamine under nitrogen for 6 hours at 55°C. Air was then bubbled through the solution for 8 hours with the temperature reaching 80°°C at one point. The mixture was diluted with 1:1 methanol water and filtered to isolate the infermediate. The intermediate was washed with the same solvent mixture until the filtrate was light blue. The yield of the sir dried intermediate was 87%. TLC showed that the intermediate still contained unoxidized and mono-substituted impurities. To a solution of 1.23 g of the impure intermediate in 50 ml of vactonitrile was added 3.0 ml of triefthylamine and 1.5 ml of methacyloyl chloride. The reaction was complete after 15 minutes at room temperature. Methanol, 50 ml, was added and the solution was exporated to dryness. The crude product was puritied by column chromatography over silica gel using 1:1 toluene:chloroform as the eluent. When the solvent was evaporated, it was found that the product was tacky. Repeated dissolving in methanol and stripping resulted in a dry product. The yield was 63%.

EXAMPLE II

Synthesis of 1,4-Bis(4-(2-methacryloxyethyl)phenyamino-anthraquinone (XII)

A 3.0 g sample of leuquinizatin was heated with 10.0 g of 4-sminophenethyl slochol (mp 113°C) under nitrogen at reflux (~15°C) for 5 hours. TLC showed no further changes occurring. Ethylene glycol, 25 ml, was added and air was bubbled through the hot solution for 3 hours. After cooling, the resulting solid cake was broken up and the solids were dissolved in 1 liter of acetone, the solution filtered and the intermediate was precipitated by the solids were dissolved in 1 liter of NaOH in water. The intermediate was isolated by filtration, washed with water and air dried. The yield was 38%. To a slurry of 1.6 g of the intermediate in 30 ml of dry acetonitrile was added 3.2 ml of triethylamine and 1.6 ml of methacrylol chloride at room temperature. After acetonitrile was precipitated by diluting the solution to 1 liter with water and isolated by filtration. The product was precipitated by dissolving 800 ml of acetone and precipitated by the addition of 400 ml of water. The product was isolated from the deep rust colored solution by filtration, washed with 1:1 acetone; water and air dried. The isolated yield was 57%.

EXAMPLE 2

Preparation of Tinted Copolymeric Contact Lens Materials

22

A monomer mix was prepared from the following formulation:

09

32

оε

FP 0 396 376 A1

S00 ppm	monomer I
% tw 71.0	Benzoin Methyl Ether Catalyst (NVP)
% tw 46.0	Ethylene Glycol Dimethacrylate (EGDMA)
% 1w 6p.66	2-hydroxymethacrylate (HEMA)

Monomer (I) is the dye molecule synthesized in Example 1(a). The monomer mixture was polymerized between silicone treated glass plates using a fluorescent UV source. Similar pHEMA films were cast using 200 ppm of the various monomers synthesized in Example 1.

EXAMPLE 3

Discs were cut from the film prepared from monomer I (as described in Example 2). These untinted discs were tinted by a state of the art method using Procian blue (Procian Blue discs). The visible spectra of the film discs of example 2 and the Procian Blue discs were compared. The discs were then subjected to accelerated hydrolysis testing and the resultant visible spectra were again compared. Both types of discs showed about the same loss of color intensity. However, the loss of the color intensity in the Procian disc was from loss of dye from the disc whoreas loss of color intensity in the monomer I disc was due to the hydrolysis of the amine functionality rather than actual monomer loss.

EXAMPLE 4

pHEMA films were made with 200 ppm of each of the monomers I, III, III, and IV. Incorporation of the bismethacrylamide monomers into the pHEMA was tested with the following results:

26 28 28 28	-(CH ₂) ₂ - CH ₂ C(CH ₃) ₂ - CH ₂ C(CH ₃) ₂ - CH ₂ -	ΛΙ 111 11
% Incorporation	(A) ebhid	Monomer

The hydrolytic stability of the final polymeric material was tested by boiling the samples in buffered saline solution. After 4 weeks the loss of color intensity was as follows:

4	S	٨١
56	Þ١	111
58	91	II II
56	81	· l
mn048 ts	% Loss at mn008	Monomer

The monomer with the largest R radical produced the most stable copolymeric material.

EXAMPLE 5

The dimethyacrylate ester monomers were tested for incorporation in to a pHEMA material and for

92

os

32

52

12

g

FP 0 396 376 A1

stability. Incorporation was as follows:

66	lonsdtə(lynədqonims-4)-S	IIX
∠6	lonstneqlydtem-8-onims-S	IX.
∠6	S-amino-2-phenylethanol	х
96	S-aminocyclohexanol	ΙX
86	4-aminocyclohexanol	IIIA
86	lonstneqonims-S	HΛ
86	lonstudonims-S	١٨
100	3-aminopropanol	Λ
% Incorporation	Bridge (R) Precursor	Monomer

The hydrolytic stability of the pHEMA films were tested as described in Example 4. After 4 weeks, the loss of color intensity was as follows:

9	9	IIX
59	Þi	ΙX
54	12	Х
SS	11	(3 weeks)
38	52	IIIA
88	91	IIΛ
72	Þ١	١٨
23	67	٨
mn0+8 ts	% of Loss at mn008	Monomer

EXAMPLE 6

Films were cast from a monomer mix as described in Example 2 except that the mix contained 150 ppm of monomer XII. The control was untinted film cast from the same lot of monomer mix. Film properties were measured with the following results:

		$(cm_3 \times cm/sec \times cm_5 \times @32 C)$
11-01xS.6	11-01×6.8	O ₂ permeability
6.78	£.7£	O²H %
0.2	6.₽	bropagation tear
7.9	8.9	initial teat
590	280	elongation
14	99	əliznət
69	4 9	(g/mm/s) sulubom
	mliT	
Miii loutnoO	Monomer XII	fest

The results show that the monomer does not affect the physical characteristics of standard contact lens materials.

EXAMPLE 7

09

32

50

A monomer mix was prepared from the following formulation:

20.4 grams 2.88 2.88 2.0.0 2.24 grams 21.0 2.15 2.10 2.15 2.16 2.16

- OL

The monomer mix was heat cured into rods from which buttoms were cut and discs were lathed. The

buttons and discs were blue-green.

Claims

1. A compound having the general chemical formula:

30

52

32

wherein:

A denotes a divalent radical with 1 to 12 carbon atoms; and X denotes a polymerizable unsaturated organic radical.

2. A compound of Claim 1 wherein X is -Y-CO-C(Z) = CH₂

2. A compound of Claim 1 wherein X is -Y-CO-C(Z) = CH_2 wherein Y is -O- or -NH- and Z is hydrogen or methyl.

3. A compound of Claim 1 or Claim 2 wherein R is a divalent phenylalkyl radical. 4. The compound 1,4-bis(4-(2-methacryloxyethyl)phenylamino)anthraquinone.

5. A hydrogel article formed by polymerizing a precopolymer mixture comprising a hydrophilic

monomer and a compound as defined in any preceding claim.

6. An article as in Claim 5 wherein the precopolymer mixture contains 2-hydroxyethylmethacrylate.

7. An article as in Claim 5 wherein the precopolymer mixture contains *N*-vinyl pyrrolidone.

7. An article as in Claim 5 wherein the precopolymer mixture contains N-vinyl pyrrolidone. 8. A hydrogel article as in any one of Claims 5-7 which is a soft contact lens.

*0*5