SEQUENCE LISTING

<110> Chesnut, Jonathan D. Carrino, John Leong, Louis Madden, Knut Gleeson, Martin Fan, James Brasch, Michael A. Cheo, David Hartley, James L. Byrd, Devon R.N. Temple, Gary F. <120> Methods and Compositions for Synthesis of Nucleic Acid Molecules Using Multiple Recognition Sites <130> 0942.5340005 <140> <141> <150> US 10/454,793 <151> 2003-06-05 <150> US 60/385,613 <151> 2002-06-05 <150> US 10/014,128 <151> 2001-12-07 <150> US 10/005,876 <151> 2001-12-07 <150> US 60/333,124 <151> 2001-11-27 <150> US 60/318,902 <151> 2001-09-14 <160> 142 <170> PatentIn version 3.1 <210> 1 <211> 27 <212> DNA <213> artificial sequence <220> <223> oligonucleotide primer <400> 1

27

<210> 2

<211> 20

<212> DNA

<213> artificial sequence

tatgtatcat acacatacga tttaggt

<220> <223>	oligonucleotide primer	
<400> accgcc	2 tete ecegegegtt	20
<210><211><211><212><213>	3 34 DNA artificial sequence	
<220> <223>	oligonucleotide primer	
<400> gttccg	3 aagg gggcgataca gtcaactgtc tttg	34
<210><211><211><212><213>		
<220> <223>	oligonucleotide primer	
<400> ttggcc	4 aagg gtatctagaa gcttctgcag acgcgt	36
<210> <211> <212> <213> <220>		
<223>	oligonucleotide primer	
<400> gttccg	5 aagg gccaccgtac tcgtcaattc caag	34
<210><211><211><212><213>	6 36 DNA artificial sequence	
<220> <223>	oligonucleotide primer	
<400> ggccaa	6 aagg gaacttgttt attgcagctt ataatg	36
<210><211><211><212><213>	DNA	
<2205		

,

<223>	oligonucleotide primer	
<400> ctctga	7 cttg agcgtcgatt tt	22
<210> <211>	8 32	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	8	20
eggaac	aagg ggaatteeet gteacegaga ee	32
<210>	9	
<211>	34	
<212> <213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	9	
	aagg ggaattcccg gggatctgga attc	34
<210>	10	
<211> <212>	29 DNA	
	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	10	
tcgaaa	gggt cgaggtcgac ctgcagctg	29
010		
<210> <211>	11 26	
<212>		
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	11	26
aaltca	catt gattattgag tagtta	26
<210>	12	
	30	
<212>	DNA artificial sequence	
	arozzazar beguenee	
<220>	oligonuslectide primer	

	12 gggt aatggccagc aaaggagaag	30
<210><211><211><212><213>		
<220> <223>	oligonucleotide primer	
<400> ggccaa	13 gggt ttgtagaget catecat	27
<210><211><211><212><213>		
<220> <223>	oligonucleotide primer	
<400> ggccaa	14 gggt ctgaatgggg ccgcatagt	29
<210><211><211><212><213>		
<220> <223>	oligonucleotide primer	
<400> aagcca	15 taga gcccgggcca	20
<210><211><211><212><213>	16 31 DNA artificial sequence	
<220> <223>	oligonucleotide primer	
<400> gttccg	16 aagg gtcgaggtcg acctgcagct g	31
<210><211><211><212><213>		
<220> <223>	oligonucleotide primer	
<400>	17 aagg gatggccagc aaaggagaag	30

```
<210> 18
<211> 31
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
taggccaagg gtttgtagag ctcatccatg c
                                                                       31
<210> 19
<211> 29
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 19
                                                                       29
ggcctaaagg gtgaatgggg ccgcatagt
<210> 20
<211> 50
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 20
gaaggagtaa tacgactcac tatagggagc caccatgggc ccttcggaac
                                                                       50
<210> 21
<211> 50
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 21
gttccgaagg gcccatggtg gctccctata gtgagtcgta ttactccttc
                                                                       50
<210> 22
<211> 21
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 22
                                                                       21
gaaggagtaa tacgactcac t
```

<210> 23

<211> <212> <213>		
<220> <223>	oligonucleotide primer	
<400> ggcctaa	23 aagg gtccctttag tgagggttaa ttgcgcgc	38
<210><211><211><212><213>	38	
<220> <223>	oligonucleotide primer	
<400> gcgcgc	24 aatt aacceteaet aaagggaeee tttaggee	38
<210><211><211><212><213>	34	
<220> <223>	oligonucleotide primer	
<400> cggaac	25 aagg gatgatagat cccgtcgttt taca	34
<210><211><211><212><213>	32	
<220> <223>	oligonucleotide primer	
<400> taggcc	26 aagg ggaccatttt caatccgcac ct	32
<210><211><212><212><213>	27 32 DNA artificial sequence	
<220> <223>	oligonucleotide primer	
<400> taggcc	27 aagg ggaggcactt caccgcttgc ca	32
<210><211><211>	28 33 DNA	

<213>	artificial sequence	
<220> <223>	oligonucleotide primer	
<400> taggcca	28 aagg gtttgacacc agaccaactg gta	33
<210><211><212><212><213>	12	
<220> <223>	Vaccinia topoisomerase cleavable sequence	
<400> gccctta	29 attc cc	12
<210><211><211><212><213>	12	
<220> .<223>	Vaccinia topoisomerase cleavable sequence	
<400> tcgccct	30 ttat tc	12
<210><211><212><212><213>	12	
<220> <223>	Vaccinia topoisomerase cleavable sequence	
	31 cctt at	12
<210><211><211><212><213>		
<220> <223>	Vaccinia topoisomerase cleavable sequence	
<400> gtgtcgc	32 ccct ta	12
<210><211><211><212><213>	33 28 DNA artificial sequence	

```
<220>
<223> adapter oligonucleotide, TOPO D1
<400> 33
aattgatccc ttcaccgaca tagtacag
                                                                      28
<210> 34
<211> 12
<212> DNA
<213> artificial sequence
<220>
<223> adapter oligonucleotide, TOPO D2
<400> 34
                                                                      12
ggtgaaggga tc
<210> 35
<211> 11
<212> DNA
<213> artificial sequence
<223>
      adapter oligonucleotide, TOPO D5
<400> 35
                                                                      11
aagggcgagc t
<210> .36
<211> 19
<212> DNA
<213> artificial sequence
<220>
<223> adapter oligonucleotide, TOPO D4
<400> 36
cgcccttgac atagtacag
                                                                      19
<210> 37
<211> 12
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide overhang sequence of TOPO D1 and TOPO D4
<400> 37
                                                                      12
gacatagtac ag
<210> 38
<211> 15
<212> DNA
<213> artificial sequence
<220>
<223> annealing oligonucleotide sequence, TOPO D3
```

```
<400> 38
                                                                     15
caactgtact atgtc
<210> 39
<211> 23
<212> DNA
<213> artificial sequence
<220>
<223> adapter oligonucleotide, TOPO H
<400> 39
agctcgccct tattccgata gtg
                                                                      23
<210> 40
<211> 11
<212> DNA
<213> artificial sequence
<220>
<223> adapter oligonucleotide, TOPO 16
<400> 40
                                                                      11
gaataagggc g
<210> 41
<211>
      23
<212> DNA
<213> artificial sequence
<220>
<223> adapter oligonucleotide, TOPO 1
<400> 41
aattcgccct tattccgata gtg
                                                                      23
<210> 42
<211> 12
<212> DNA
<213> artificial sequence
<220>
      oligonucleotide overhang sequence of TOPO 1
<223>
<400> 42
attccgatag tg
                                                                      12
<210> 43
<211> 15
<212> DNA
<213> artificial sequence
<220>
<223> annealing oligonucleotide, TOPO 3
<400> 43
```

caacacı	tate ggaat	15
<210><211><211><212><213>	14	
<220> <223>	DNA sequence of the N-terminus of a theoretical protein	
<400> atggat	44 ctga taaa	14
<210><211><211><212><213>	14	
<220> <223>	PCR primer	
<400> accgate	45 ctga taaa	14
<211> <212>		
<220> <223>	DNA sequence of the C-terminus of a theoretical protein	
<400> aagtcg	46 gagc actcgacgac ggtgtag	27
<210><211><211><212><213>	47 17 DNA artificial sequence	
<220> <223>	reverse PCR primer sequence	
<400> aaacac	47 cgtc gtcgagt	17
<210><211><211><212><212><213>	48 33 DNA artificial sequence	
<220> <223>	DNA sequence of the C-teminus of a theoretical protein	
<400> gcggtt	48 aagt cggagcactc gacgactgca tag	33

```
<210> 49
<211> 24
<212> DNA
<213> artificial sequence
<220>
<223> sequence of reverse primer without stop codon
<400> 49
tgcagtcgtc gagtgctccg actt
                                                                      24
<210> 50
<211> 27
<212> DNA
<213> artificial sequence
<220>
<223> sequence of reverse primer with stop codon
                                                                      27
ctatgcagtc gtcgagtgct ccgactt
<210> 51
<211> 22
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 51
gttgacattg attattgact ag
                                                                      22
<210> 52
<211> 32
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 52
                                                                       32
gttccgaagg gttaacgcta gagtccggag gc
<210> 53
<211>
       32
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 53
                                                                       32
gactcaaagg gaaggtaagc ctatccctaa gg
```

<210> 54

```
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 54
gcgcagatct gctatggcag
                                                                      20
<210> 55
<211> 37
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
cggaacaagg gaccatggag aaaaaaatca ctggata
                                                                        37
<210> 56
<211> 36
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 56
tgagtcaagg gcgccccgcc ctgctgccac tcatcg
                                                                        36
<210> 57
<211> 41
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide sequence
ggggacaagt ttgtacaaaa aagcaggctt cccttcggaa c
                                                                        41
<210> 58
<211>
      41
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
gttccgaagg gaagcctgct tttttgtaca aacttgtccc c
                                                                        41
<210> 59
<211> 40
<212> DNA
```

<213>	artificial sequence	
<220>		
	oligonucleotide primer	
<400>	59	
gactcaa	agg gacccagett tettgtacaa agtggteece	40
	60	
<211>		
<212>		
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	60	
ggggaco	cact ttgtacaaga aagctgggtc cctttgagtc	40
<210>	61	
<211>		
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	61	
cacgac	gttg taaaacgacg	20
<210>	62	
<211>		
<212>		
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	62	22
atgtaat	cacg actcactata gg	22
<210>	63	
<211>	11	
<212>		
<213>	artificial sequence	
<220>		
<223>	nucleotide primer	
<400>	63	
cggaaca	aagg g	11
<210>	64	
<211>	11	
<212>	DNA	
<213>	artificial sequence	

```
<220>
<223> nucleotide primer
<400> 64
                                                                           11
taggccaagg g
<210> 65
<211> 16
<212> DNA
<213> artificial sequence
<220>
<223> amplified end of PCR product
<400> 65
                                                                           16
cccttcggaa caaggg
<210> 66
<211> 16
<212> DNA
<213> artificial sequence
<220>
<223> amplified end of PCR product
<400> 66
                                                                           16
cccttggcca taaggg
<210> 67
<211> 75
<212> DNA
<213> artificial sequence
<220>
<223> map of multiple cloning sites in plasmids
       pcDNAGW-DT9(sc) and pENTR-DT(sc)
<400> 67
ttgtacaaaa aagcaggctc cgcggccgcc gtactcgaga aagggcgcgc cgacccagct
                                                                           60
ttcttgtaca aagtg
                                                                           75
<210> 68
<211> 10
<212> PRT
<213> artificial sequence
<220>
<223> Amino acid sequence for pcDNAGW-DT9(sc) and pENTR-DT(sc)
<400> 68
Leu Tyr Lys Lys Ala Gly Ser Ala Ala Ala
<210> 69
<211> 11
<212> PRT
```

<213> artificial sequence

```
<220>
<223> Amino acid sequence for pcDNAGW-DT9(sc) and pENTR-DT(sc)
<400> 69
Gly Arg Ala Asp Pro Ala Phe Leu Tyr Lys Val
<210>
      70
<211>
      2591
<212> DNA
<213> artificial sequence
<220>
      Nucleotide sequence of plasmid pENTR/D-TOPO
<223>
<220>
<221>
      unsure
      (691)..(699)
<222>
<223> N can be any nucleotide: a, t, c, g
<400> 70
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga
                                                                      60
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga
                                                                     120
gegeecaata egeaaacege eteteceege gegttggeeg atteattaat geagetggea
                                                                     180
cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc
                                                                     240
tagccaggaa gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgctta
                                                                     300
gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc
                                                                     360
acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa
                                                                     420
caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg
                                                                     480
gcagttccct actctcgcgt taacgctagc atggatgttt tcccagtcac gacgttgtaa
                                                                     540
aacqacqqcc aqtcttaaqc tcqqqcccca aataatqatt ttattttqac tqataqtqac
                                                                     600
ctgttcgttg caacaaattg atgagcaatg cttttttata atgccaactt tgtacaaaaa
                                                                     660
agcaggetee geggeegeee etteaceatg nnnnnnnna agggtgggeg egeegaeeea
                                                                     720
gctttcttgt acaaagttgg cattataaga aagcattgct tatcaatttg ttgcaacgaa
                                                                     780
caggicacta tcagicaaaa taaaatcatt attigccatc cagcigatat cccctatagi
                                                                     840
gagtcgtatt acatggtcat agctgtttcc tggcagctct ggcccgtgtc tcaaaatctc
                                                                     900
tgatgttaca ttgcacaaga taaaaatata tcatcatgaa caataaaact gtctgcttac
                                                                     960
ataaacagta atacaagggg tgttatgagc catattcaac gggaaacgtc gaggccgcga
                                                                    1020
```

ttaaattcca acatggatgc tgatttatat gggtataaat gggctcgcga taatgtcggg

1080

caatcaggtg cgacaatcta tcgcttgtat gggaagcccg atgcgccaga gttgtttctg 1140 aaacatggca aaggtagcgt tgccaatgat gttacagatg agatggtcag actaaactgg 1200 ctgacggaat ttatgcctct tccgaccatc aagcatttta tccgtactcc tgatgatgca 1260 tggttactca ccactgcgat ccccggaaaa acagcattcc aggtattaga agaatatcct 1320 gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcgatt 1380 cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca 1440 cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct 1500 gttgaacaag tctggaaaga aatgcataaa cttttgccat tctcaccgga ttcagtcgtc 1560 actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt 1620 attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac 1680 tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat 1740 aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagttttt ctaatcagaa 1800 ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcgcaagc 1860 tcatgaccaa aatcccttaa cgtgagttac gcgtcgttcc actgagcgtc agaccccgta 1920 gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa 1980 acaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt 2040 tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag 2100 ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta 2160 atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca 2220 agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag 2280 cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gcattgagaa 2340 agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga 2400 acaggagage gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc 2460 gggtttegee acetetgaet tgagegtega tttttgtgat getegteagg ggggeggage 2520 ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt 2580 gctcacatgt t 2591

<210> 71

<211> 2607

<212> DNA

<213> artificial sequence

<220>

<223> Nucleotide sequence of plasmid pENTR/SD/D-TOPO

gegeceaata egeaaacege eteteceege gegttggeeg atteattaat geagetggea

cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc

tagccaggaa gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgctta

gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc

acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa

caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg

gcagttccct actctcgcgt taacgctagc atggatgttt tcccagtcac gacgttgtaa

aacgacggcc agtcttaagc tcgggcccca aataatgatt ttattttgac tgatagtgac

ctgttcgttg caacaaattg atgagcaatg cttttttata atgccaactt tgtacaaaaa

agcaggetee geggeegeet tgtttaaett taagaaggag eeetteaeen nnnnnaaggg

tgggcgcgcc gacccagctt tcttgtacaa agttggcatt ataagaaagc attgcttatc

aatttgttgc aacgaacagg tcactatcag tcaaaataaa atcattattt gccatccagc

tgatatecee tatagtgagt egtattaeat ggteataget gttteetgge agetetggee

cgtgtctcaa aatctctgat gttacattgc acaagataaa aatatatcat catgaacaat

aaaactgtct gcttacataa acagtaatac aaggggtgtt atgagccata ttcaacggga

aacgtcgagg ccgcgattaa attccaacat ggatgctgat ttatatgggt ataaatgggc tcgcgataat gtcgggcaat caggtgcgac aatctatcgc ttgtatggga agcccgatgc

gccagagttg tttctgaaac atggcaaagg tagcgttgcc aatgatgtta cagatgagat

ggtcagacta aactggctga cggaatttat gcctcttccg accatcaagc attttatccg

tactcctgat gatgcatggt tactcaccac tgcgatcccc ggaaaaacag cattccaggt

attagaagaa tatcctgatt caggtgaaaa tattgttgat gcgctggcag tgttcctgcg

coggttgcat togattcotg tttgtaattg toottttaac agogatogcg tatttogtot

cgctcaggcg caatcacgaa tgaataacgg tttggttgat gcgagtgatt ttgatgacga

gcgtaatggc tggcctgttg aacaagtctg gaaagaaatg cataaacttt tgccattctc

accggattca gtcgtcactc atggtgattt ctcacttgat aaccttattt ttgacgaggg

gaaattaata ggttgtattg atgttggacg agtcggaatc gcagaccgat accaggatct

tgccatccta tggaactgcc tcggtgagtt ttctccttca ttacagaaac ggctttttca

60

120

180

240

300

360 420

480

540

600

660

720

780

840

900

960

1020 1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

1680

1740

<221> unsure

<222> (710)..(715)

<223> N can be any nucleotide: a, t, c, g

<400> 71
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga

```
aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttga tgctcgatga
                                                                     1800
gtttttctaa tcagaattgg ttaattggtt gtaacactgg cagagcatta cgctgacttg
                                                                     1860
                                                                     1920
acgggacggc gcaagctcat gaccaaaatc ccttaacgtg agttacgcgt cgttccactg
agogtcagac cocgtagaaa agatcaaagg atottottga gatcottttt ttotgogogt
                                                                     1980
aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt tgccggatca
                                                                     2040
agagctacca actettttte egaaggtaae tggetteage agagegeaga taccaaatae
                                                                     2100
tgtccttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag caccgcctac
                                                                     2160
atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct
                                                                     2220
taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg
                                                                     2280
                                                                     2340
gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga gatacctaca
gcgtgagcat tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccggt
                                                                     2400
aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa acgcctggta
                                                                     2460
tetttatagt cetgtegggt ttegecacet etgaettgag egtegatttt tgtgatgete
                                                                     2520
gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc
                                                                     2580
                                                                     2607
cttttgctgg ccttttgctc acatgtt
```

```
<210>
      72
<211>
      5543
<212> DNA
<213> artificial sequence
<220>
      Nucleotide sequence of plasmid pcDNA3.2/V5/GWD-TOPO
<223>
<220>
<221>
      unsure
      (958)..(966)
<222>
<223> N can be any nucleotide: a, t, c, g
<400> 72
gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg
                                                                      60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg
                                                                     120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc
                                                                     180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt
                                                                     240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
                                                                     300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
                                                                     360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
                                                                     420
attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt
                                                                     480
```

atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctagt	900
taagctatca	acaagtttgt	acaaaaaagc	aggctccgcg	gccgcccctt	caccatgnnn	960
nnnnnaagg	gtgggcgcgc	cgacccagct	ttcttgtaca	aagtggttga	tctagagggc	1020
ccgcggttcg	aaggtaagcc	tatccctaac	cctctcctcg	gtctcgattc	tacgcgtacc	1080
ggttagtaat	gagtttaaac	gggggaggct	aactgaaaca	cggaaggaga	caataccgga	1140
aggaacccgc	gctatgacgg	caataaaaag	acagaataaa	acgcacgggt	gttgggtcgt	1200
ttgttcataa	acgcggggtt	cggtcccagg	gctggcactc	tgtcgatacc	ccaccgagac	1260
cccattgggg	ccaatacgcc	cgcgtttctt	ccttttcccc	accccacccc	ccaagttcgg	1320
gtgaaggccc	agggctcgca	gccaacgtcg	gggcggcagg	ccctgccata	gcagatctgc	1380
gcagctgggg	ctctaggggg	tatccccacg	cgccctgtag	cggcgcatta	agcgcggcgg	1440
gtgtggtggt	tacgcgcagc	gtgaccgcta	cacttgccag	cgccctagcg	cccgctcctt	1500
tcgctttctt	cccttccttt	ctcgccacgt	tegeeggett	tccccgtcaa	gctctaaatc	1560
ggggcatccc	tttagggttc	cgatttagtg	ctttacggca	cctcgacccc	aaaaaacttg	1620
attagggtga	tggttcacgt	agtgggccat	cgccctgata	gacggttttt	cgccctttga	1680
cgttggagtc	cacgttcttt	aatagtggac	tcttgttcca	aactggaaca	acactcaacc	1740
ctatctcggt	ctattcttt	gatttataag	ggattttggg	gatttcggcc	tattggttaa	1800
aaaatgagct	gatttaacaa	aaatttaacg	cgaattaatt	ctgtggaatg	tgtgtcagtt	1860
agggtgtgga	aagtccccag	gctccccagc	aggcagaagt	atgcaaagca	tgcatctcaa	1920
ttagtcagca	accaggtgtg.	gaaagtcccc	aggctcccca	gcaggcagaa	gtatgcaaag	1980
catgcatctc	aattagtcag	caaccatagt	cccgccccta	actccgccca	tcccgcccct	2040
aactccgccc	agttccgccc	attctccgcc	ccatggctga	ctaattttt	ttatttatgc	2100
agaggccgag	gccgcctctg	cctctgagct	attccagaag	tagtgaggag	gcttttttgg	2160
aggcctaggc	ttttgcaaaa	agctcccggg	agcttgtata	tccattttcg	gatctgatca	2220
agagacagga	tgaggatcgt	ttcgcatgat	tgaacaagat	ggattgcacg	caggttctcc	2280
ggccgcttgg	gtggagaggc	tattcggcta	tgactgggca	caacagacaa	teggetgete	2340

tgatgccgcc	gtgttccggc	tgtcagcgca	ggggcgcccg	gttctttttg	tcaagaccga	2400
cctgtccggt	gccctgaatg	aactgcagga	cgaggcagcg	cggctatcgt	ggctggccac	2460
gacgggcgtt	ccttgcgcag	ctgtgctcga	cgttgtcact	gaagcgggaa	gggactggct	2520
gctattgggc	gaagtgccgg	ggcaggatct	cctgtcatct	caccttgctc	ctgccgagaa	2580
agtatccatc	atggctgatg	caatgcggcg	gctgcatacg	cttgatccgg	ctacctgccc	2640
attcgaccac	caagcgaaac	atcgcatcga	gcgagcacgt	actcggatgg	aagccggtct	2700
tgtcgatcag	gatgatctgg	acgaagagca	tcaggggctc	gcgccagccg	aactgttcgc	2760
caggctcaag	gcgcgcatgc	ccgacggcga	ggatctcgtc	gtgacccatg	gcgatgcctg	2820
cttgccgaat	atcatggtgg	aaaatggccg	cttttctgga	ttcatcgact	gtggccggct	2880
gggtgtggcg	gaccgctatc	aggacatagc	gttggctacc	cgtgatattg	ctgaagagct	2940
tggcggcgaa	tgggctgacc	gcttcctcgt	gctttacggt	atcgccgctc	ccgattcgca	3000
gcgcatcgcc	ttctatcgcc	ttcttgacga	gttcttctga	gcgggactct	ggggttcgcg	3060
aaatgaccga	ccaagcgacg	cccaacctgc	catcacgaga	tttcgattcc	accgccgcct	3120
tctatgaaag	gttgggcttc	ggaatcgttt	tccgggacgc	cggctggatg	atcctccagc	3180
gcggggatct	catgctggag	ttcttcgccc	accccaactt	gtttattgca	gcttataatg	3240
gttacaaata	aagcaatagc	atcacaaatt	tcacaaataa	agcattttt	tcactgcatt	3300
ctagttgtgg	tttgtccaaa	ctcatcaatg	tatcttatca	tgtctgtata	ccgtcgacct	3360
ctagctagag	cttggcgtaa	tcatggtcat	agctgtttcc	tgtgtgaaat	tgttatccgc	3420
tcacaattcc	acacaacata	cgagccggaa	gcataaagtg	taaagcctgg	ggtgcctaat	3480
gagtgagcta	actcacatta	attgcgttgc	gctcactgcc	cgctttccag	tcgggaaacc	3540
tgtcgtgcca	gctgcattaa	tgaatcggcc	aacgcgcggg	gagaggcggt	ttgcgtattg	3600
ggcgctcttc	cgcttcctcg	ctcactgact	cgctgcgctc	ggtcgttcgg	ctgcggcgag	3660
cggtatcagc	tcactcaaag	gcggtaatac	ggttatccac	agaatcaggg	gataacgcag	3720
gaaagaacat	gtgagcaaaa	ggccagcaaa	aggccaggaa	ccgtaaaaag	gccgcgttgc	3780
tggcgttttt	ccataggctc	cgcccccctg	acgagcatca	caaaaatcga	cgctcaagtc	3840
agaggtggcg	aaacccgaca	ggactataaa	gataccaggc	gtttccccct	ggaagctccc	3900
tcgtgcgctc	tcctgttccg	accctgccgc	ttaccggata	cctgtccgcc	tttctccctt	3960
cgggaagcgt	ggcgctttct	caatgctcac	gctgtaggta	tctcagttcg	gtgtaggtcg	4020
ttcgctccaa	gctgggctgt	gtgcacgaac	ccccgttca	gcccgaccgc	tgcgccttat	4080
ccggtaacta	tcgtcttgag	tccaacccgg	taagacacga	cttatcgcca	ctggcagcag	4140
ccactggtaa	caggattagc	agagcgaggt	atgtaggcgg	tgctacagag	ttcttgaagt	4200

```
ggtggcctaa ctacggctac actagaagga cagtatttgg tatctgcgct ctgctgaagc
                                                                     4260
cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta
                                                                     4320
gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag
                                                                     4380
atcetttgat ettttetaeg gggtetgaeg etcagtggaa egaaaactea egttaaggga
                                                                     4440
ttttggtcat gagattatca aaaaggatct tcacctagat ccttttaaat taaaaatgaa
                                                                     4500
gttttaaatc aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa
                                                                     4560
teagtgagge acctatetea gegatetgte tatttegtte atceatagtt geetgaetee
                                                                     4620
ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga
                                                                     4680
taccgcgaga cccacgctca ccggctccag atttatcagc aataaaccag ccagccggaa
                                                                     4740
gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagtct attaattgtt
                                                                     4800
gccgggaagc tagagtaagt agttcgccag ttaatagttt gcgcaacgtt gttgccattg
                                                                     4860
ctacaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc tccggttccc
                                                                     4920
aacgatcaag gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt agctccttcg
                                                                     4980
gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg gttatggcag
                                                                     5040
cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgtg actggtgagt
                                                                     5100
actcaaccaa gtcattctga gaatagtgta tgcggcgacc gagttgctct tgcccggcgt
                                                                     5160
caatacggga taataccgcg ccacatagca gaactttaaa agtgctcatc attggaaaac
                                                                     5220
gttcttcggg gcgaaaactc tcaaggatct taccgctgtt gagatccagt tcgatgtaac
                                                                     5280
ccactcgtgc acccaactga tcttcagcat cttttacttt caccagcgtt tctgggtgag
                                                                     5340
caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa
                                                                     5400
tactcatact cttccttttt caatattatt gaagcattta tcagggttat tgtctcatga
                                                                     5460
gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc
                                                                     5520
cccgaaaagt gccacctgac gtc
                                                                     5543
```

```
<210>
       73
<211>
       5173
<212>
       DNA
<213>
       artificial sequence
<220>
<223>
      Nucleotide sequence of plasmid pcDNA6.2/V5/GWD-TOPO
<220>
<221>
      unsure
<222>
      (958)..(966)
<223>
      N can be any nucleotide: a, t, c, g
<400> 73
```

gacggatcgg gagatctccc gatcccctat ggtgcactct cagtacaatc tgctctgatg

ccgcatagtt	aagccagtat	ctgctccctg	cttgtgtgtt	ggaggtcgct	gagtagtgcg	120
cgagcaaaat	ttaagctaca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggttag	gcgttttgcg	ctgcttcgcg	atgtacgggc	cagatatacg	cgttgacatt	240
gattattgac	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	300
tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	360
cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgtca	atgggtggag	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	480
atcatatgcc	aagtacgccc	cct'attgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctagt	900
taagctatca	acaagtttgt	acaaaaaagc	aggctccgcg	gccgcccctt	caccatgnnn	960
nnnnnnaagg	gtgggcgcgc	cgacccagct	ttcttgtaca	aagtggttga	tctagagggc	1020
ccgcggttcg	aaggtaagcc	tatccctaac	cctctcctcg	gtctcgattc	tacgcgtacc	1080
ggttagtaat	gagtttaaac	gggggaggct	aactgaaaca	cggaaggaga	caataccgga	1140
aggaacccgc	gctatgacgg	caataaaaag	acagaataaa	acgcacgggt	gttgggtcgt	1200
ttgttcataa	acgcggggtt	cggtcccagg	gctggcactc	tgtcgatacc	ccaccgagac	1260
cccattgggg	ccaatacgcc	cgcgtttctt	ccttttcccc	accccacccc	ccaagttcgg	1320
gtgaaggccc	agggctcgca	gccaacgtcg	gggcggcagg	ccctgccata	gcagatctgc	1380
gcagctgggg	ctctaggggg	tatccccacg	cgccctgtag	cggcgcatta	agcgcggcgg	1440
gtgtggtggt	tacgcgcagc	gtgaccgcta	cacttgccag	cgccctagcg	cccgctcctt	1500
tcgctttctt	cccttccttt	ctcgccacgt	tcgcaggctt	tccccgtcaa	gctctaaatc	1560
ggggcatccc	tttagggttc	cgatttagtg	ctttacggca	cctcgacccc	aaaaaacttg	1620
attagggtga	tggttcacgt	agtgggccat	cgccctgata	gacggttttt	cgccctttga	1680
cgttggagtc	cacgttcttt	aatagtggac	tcttgttcca	aactggaaca	acactcaacc	1740
ctatctcggt	ctattcttt	gatttataag	ggattttggg	gatttcggcc	tattggttaa	1800
aaaatgagct	gatttaacaa	aaatttaacg	cgaattaatt	ctgtggaatg	tgtgtcagtt	1860
agggtgtgga	aagtccccag	gctccccagc	aggcagaagt	atgcaaagca	tgcatctcaa	1920

ttagtcagca	accaggtgtg	gaaagtcccc	aggctcccca	gcaggcagaa	gtatgcaaag	1980
catgcatctc	aattagtcag	caaccatagt	cccgccccta	actccgccca	tcccgcccct	2040
aactccgccc	agttccgccc	attctccgcc	ccatggctga	ctaattttt	ttatttatgc	2100
agaggccgag	gccgcctctg	cctctgagct	attccagaag	tagtgaggag	gcttttttgg	2160
aggcctaggc	ttttgcaaaa	agctcccggg	agcttgtata	tccattttcg	gatctgatca	2220
gcacgtgttg	acaattaatc	atcggcatag	tatatcggca	tagtataata	cgacaaggtg	2280
aggaactaaa	ccatggccaa	gcctttgtct	caagaagaat	ccaccctcat	tgaaagagca	2340
acggctacaa	tcaacagcat	ccccatctct	gaagactaca	gcgtcgccag	cgcagctctc	2400
tctagcgacg	gccgcatctt	cactggtgtc	aatgtatatc	attttactgg	gggaccttgt	2460
gcagaactcg	tggtgctggg	cactgctgct	gctgcggcag	ctggcaacct	gacttgtatc	2520
gtcgcgatcg	gaaatgagaa	caggggcatc	ttgagcccct	gcggacggtg	ccgacaggtg	2580
cttctcgatc	tgcatcctgg	gatcaaagcc	atagtgaagg	acagtgatgg	acagccgacg	2640
gcagttggga	ttcgtgaatt	gctgccctct	ggttatgtgt	gggagggcta	agcacttcgt	2700
ggccgaggag	caggactgac	acgtgctacg	agatttcgat	tccaccgccg	ccttctatga	2760
aaggttgggc	ttcggaatcg	ttttccggga	cgccggctgg	atgatcctcc	agcgcgggga	2820
tctcatgctg	gagttcttcg	cccaccccaa	cttgtttatt	gcagcttata	atggttacaa	2880
ataaagcaat	agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	attctagttg	2940
tggtttgtcc	aaactcatca	atgtatctta	tcatgtctgt	ataccgtcga	cctctagcta	3000
gagcttggcg	taatcatggt	catagctgtt	tcctgtgtga	aattgttatc	cgctcacaat	3060
tccacacaac	atacgagccg	gaagcataaa	gtgtaaagcc	tggggtgcct	aatgagtgag	3120
ctaactcaca	ttaattgcgt	tgcgctcact	gcccgctttc	cagtcgggaa	acctgtcgtg	3180
ccagctgcat	taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggcgctc	3240
ttccgcttcc	tcgctcactg	actcgctgcg	ctcggtcgtt	cggctgcggc	gagcggtatc	3300
agctcactca	aaggcggtaa	tacggttatc	cacagaatca	ggggataacg	caggaaagaa	3360
catgtgagca	aaaggccagc	aaaaggccag	gaaccgtaaa	aaggccgcgt	tgctggcgtt	3420
tttccatagg	ctccgccccc	ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagaggtg	3480
gcgaaacccg	acaggactat	aaagatacca	ggcgtttccc	cctggaagct	ccctcgtgcg	3540
ctctcctgtt	ccgaccctgc	cgcttaccgg	atacctgtcc	gcctttctcc	cttcgggaag	3600
cgtggcgctt	tctcatagct	cacgctgtag	gtatctcagt	tcggtgtagg	tcgttcgctc	3660
caagctgggc	tgtgtgcacg	aaccccccgt	tcagcccgac	cgctgcgcct	tatccggtaa	3720
ctatcgtctt	gagtccaacc	cggtaagaca	cgacttatcg	ccactggcag	cagccactgg	3780

taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 3840 taactacggc tacactagaa gaacagtatt tggtatctgc gctctgctga agccagttac 3900 cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggttt 3960 ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat 4020 cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat 4080 gagattatca aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc 4140 aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc 4200 acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta 4260 gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga 4320 cccacgctca ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg 4380 cagaagtggt cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc 4440 tagagtaagt agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctacaggcat 4500 cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag 4560 gegagttaca tgatececca tgttgtgcaa aaaageggtt ageteetteg gteeteegat 4620 cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa 4680 ttctcttact gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa 4740 gtcattctga gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caatacggga 4800 taataccgcg ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg 4860 gcgaaaactc tcaaggatct taccgctgtt gagatccagt tcgatgtaac ccactcgtgc 4920 acccaactga tcttcagcat cttttacttt caccagcgtt tctgggtgag caaaaacagg 4980 aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact 5040 cttccttttt caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat 5100 atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt 5160 gccacctgac gtc 5173

```
<210> 74
<211> 69
<212> DNA
<213> artificial sequence
<220>
<223> Partial sequence of pENTR/SD-dTOPO
<220>
<221> unsure
<222> (64)..(69)
<223> N can be any nucleotide: a, t, c, g
```

<400> ttgtaca	74 aaaa aagcaggctc cgcggccgcc ttgtttaact ttaagaagga gcccttcacc	60
atgnnnr	nnn	69
<210>	75	
<211>	52	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Nucleotide sequence of TOPO-D71	
<400>	75	
ggccgcc	ettg tttaacttta agaaggagce cttcaccgac tatgtacagtt g	52
<210>	76	
<211>		
<211>		
<213>	artificial sequence	
<220>		
<223>	Nucleotide sequence of TOPO-D73	
<400>	76	
ggccgcc	ccc ttcaccgact atgtacagtt g	31
<210>	77	
<211>	28	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Nucleotide sequence of TOPO-D75	
<400>	77	
cgcgccc	cacc cttgacatag tacagttg	28
<210>	78	
<211>	14	
<212>	PRT	
<213>	artificial sequence	
<220>		
<223>	Partial amino acid sequence of pENTR-dTOPO and	
	pcDNAGW-dTOPO	
<400>	78	
Leu Tvi	Lys Lys Ala Gly Ser Ala Ala Ala Pro Phe Thr Met	
1	5 10	
<210>	79	
<211>	13	
<212>	PRT	
<213>	artificial sequence	

```
<220>
<223> Partial amino acid sequence of pENTR/SD-dTOPO,
       pENTR-dTOPO, and pcDNAGW-dTOPO
<400> 79
Lys Gly Gly Arg Ala Asp Pro Ala Phe Leu Tyr Lys Val
<210> 80
<211> 15
<212> DNA
<213> artificial sequence
<223> Product of binding a topoisomerase to part of a nucleic
       acid molecule
<220>
<221> unsure <222> (13)..(15)
<223> N can be any nucleotide: a, t, c, g
<400> 80
cccttcacca tgnnn
                                                                           15
<210> 81
<211> 15
<212> DNA
<213> Unknown
<220>
<223> 15 bp core region of the wildtype att site
<400> 81
gcttttttat actaa
                                                                           15
<210> 82
<211> 21
<212> DNA
<213> Unknown
<220>
<223> att site
<400> 82
caacttttt atacaaagtt g
                                                                           21
<210> 83
<211> 25
<212> DNA
<213> Unknown
<220>
<223> attB1 site
<400> 83
agcctgcttt tttgtacaaa cttgt
                                                                           25
```

```
<210> 84
<211> 233
<212> DNA
<213> Unknown
<220>
<223> attP1 site
<400> 84
tacaggtcac taataccatc taagtagttg attcatagtg actggatatg ttgtgtttta
                                                                      60
cagtattatg tagtctgttt tttatgcaaa atctaattta atatattgat atttatatca
                                                                     120
ttttacgttt ctcgttcagc ttttttgtac aaagttggca ttataaaaaa gcattgctca
                                                                     180
tcaatttqtt gcaacgaaca ggtcactatc agtcaaaata aaatcattat ttg
                                                                     233
<210> 85
<211> 100
<212> DNA
<213> Unknown
<220>
<223> attL1 site
<400> 85
caaataatga ttttattttg actgatagtg acctgttcgt tgcaacaaat tgataagcaa
                                                                      60
tgctttttta taatgccaac tttgtacaaa aaagcaggct
                                                                     100
<210> 86
<211> 125
<212> DNA
<213> Unknown
<220>
<223> attR1 site
acaagtttgt acaaaaagc tgaacgagaa acgtaaaatg atataaatat caatatatta
                                                                      60
aattagattt tgcataaaaa acagactaca taatactgta aaacacaaca tatccagtca
                                                                     120
ctatg
                                                                     125
<210>
       87
<211>
      27
<212> DNA
<213> Unknown
<220>
<223> attB0 site
<400> 87
                                                                      27
agcctgcttt tttatactaa cttgagc
<210> 88
```

<211> 27

<212> <213>	DNA Unknown	
<220> <223>	attPO site site	
<400> gttcage	88 Ettt tttatactaa gttggca	27
0.1.0		
<210> <211>	89 27	
<212>	DNA	
<213>	Unknown	
<220>		
<223>	attL0 site	
<400>	89	
ageetge	ettt tttatactaa gttggca	27
<210>	90	
<211>	27	
	DNA	
<213>	Unknown	
<220>		
<223>	attRO site	
<400>	90	
gttcag	cttt tttatactaa cttgagc	27
<210>	91	
<211> <212>	27 DNA	
	Unknown	
<220>		
<223>	attP1 site	
<400>	91	
	cttt tttgtacaaa gttggca	27
<210>	92	
<211>	27	
<212>	DNA	
<213>	Unknown	
<220>	attī 1 gita	
<223>	attL1 site	
<400>	92	
agcctgo	ettt tttgtacaaa gttggca	27
<210>	93	
<211>	25	
<212>	DNA	
<213>	Unknown	

<220> <223>	attR1 site	
	93 cttt tttgtacaaa cttgt	25
<210><211><212><213>	25	
<220> <223>	attB2 site	
<400> acccage	94 cttt cttgtacaaa gtggt	25
<210><211><212><213>	27	
<220> <223>	attP2 site	
<400> gttcage	95 cttt cttgtacaaa gttggca	27
<210><211><212><212><213>		
<220> <223>	attL2 site	
<400> acccag	96 cttt cttgtacaaa gttggca	27
<210><211><211><212><213>	DNA	
<220> <223>	attR2 site	
<400> gttcag	97 cttt cttgtacaaa gtggt	25
<210><211><212><212><213>	22	
<220>	attB5 site	

	98 att atacaaagtt g	gt	22
<211>	99 27 DNA Unknown		
<220> <223>	attP5 site		
	99 ttt attatacaaa <u>c</u>	gttggca	27
<211>	100 24 DNA Unknown		
<220> <223>	attL5 site		
	100 att atacaaagtt <u>c</u>	ggca	24
<211>	101 25 DNA Unknown		
<220> <223>	attR5 site		
	101 ttt attatacaaa g	gttgt	25
<211> <212>	102 22 DNA Unknown		
<220> <223>	attB11 site		
	102 tct atacaaagtt <u>c</u>	gt	22
<211> <212>	103 27 DNA Unknown		
<220> <223>	attPll site		
	103 ttt tctatacaaa c	attaaca	27

```
<210> 104
<211> 24
<212> DNA
<213> Unknown
<220>
<223> attL11 site
<400> 104
caacttttct atacaaagtt ggca
                                                                         24
<210> 105
<211> 25
<212> DNA
<213> Unknown
<220>
<223> attR11 site
<400> 105
gttcaacttt tctatacaaa gttgt
                                                                         25
<210> 106
<211> 22
<212> DNA
<213> Unknown
<220>
<223> attB17 site
<400> 106
caacttttgt atacaaagtt gt
                                                                         22
<210> 107
<211> 27
<212> DNA
<213> Unknown
<220>
<223> attP17 site
<400> 107
gttcaacttt tgtatacaaa gttggca
                                                                         27
<210> 108
<211> 24
<212> DNA
<213> Unknown
<220>
<223> attL17 site
<400> 108
caacttttgt atacaaagtt ggca
                                                                         24
```

<210> 109

<212>	25 DNA Unknown	
<220> <223>	attR17 site	
	109 cttt tgtatacaaa gttgt	25
	110 22	
<212>		
<220> <223>	attB19 site	
	110 tttc gtacaaagtt gt	22
<210><211><211><212><213>	111 27 DNA Unknown	
<220> <223>	attP19 site	
	111 cttt ttcgtacaaa gttggca	27
	112 24 DNA Unknown	
<220> <223>	attL19 site	
<400> caacttt	112 tttc gtacaaagtt ggca	24
<210><211><212><212><213>	113 25 DNA Unknown	
<220> <223>	attR19 site	
<400> gttcaac	113 cttt ttcgtacaaa gttgt	25
<210><211>	114 22	

<213>	Unknown	
<220> <223>	attB20 site	
	114 Ettg gtacaaagtt gt	22
<211>		
<212> <213>	DNA Unknown	
<220> <223>	attP20 site	
<400> gttcaad	115 cttt ttggtacaaa gttggca	27
<210> <211>	116 24	
<212> <213>	DNA Unknown	
<220> <223>	attL20 site	
<400> caactt	116 Ettg gtacaaagtt ggca	24
<211> <212>		
<220> <223>	attR20 site	
<400> gttcaac	117 cttt ttggtacaaa gttgt	25
<210><211><211>	118 22 DNA	
<213>	Unknown	
<220> <223>	attB21 site	
<400> caactti	118 ttta atacaaagtt gt	22
<210><211><211><212>	119 27 DNA	
<213>	Unknown	

```
<220>
<223> attP21 site
<400> 119
                                                                           27
gttcaacttt ttaatacaaa gttggca
<210> 120
<211> 24
<212> DNA
<213> Unknown
<220>
<223> attL21 site
<400> 120
caacttttta atacaaagtt ggca
                                                                           24
<210> 121
<211> 25
<212> DNA
<213> Unknown
<220>
<223> attR21 site
<400> 121
gttcaacttt ttaatacaaa gttgt
                                                                           25
<210> 122
<211> 15
<212> DNA
<213> Unknown
<220>
<223> Theoretical protein N-terminus DNA sequence
<400> 122
atgggatctg ataaa
                                                                           15
<210> 123
<211> 19
<212> DNA
<213> Unknown
<220>
<223> Theoretical PCR primer
<400> 123
                                                                           19
caccatggga tctgataaa
<210> 124
<211> 43
<212> DNA
<213> Unknown
<220>
<223> Oligonucleotide linker
```

<400> gactcg	124 taat acgactcact atagggccct tattccgata gtg	43
<210><211><211><212><213>	•	
<220> <223>	Oligonucleotide linker	
<400> agggcc	125 ctat agtgagtcgt attacgagtc aaaaaaaaa aa	42
<210><211><211><212><213>	126 16 DNA Unknown	
<220> <223>	Oligonucleotide linker	
<400> caacac	126 tatc ggaata	16
<210><211><212><212><213>	127 24 DNA Unknown	
<220> <223>	PCR Primer	
<400> gctcac	127 catg gatgatgata tcgc	24
<210><211><212><212><213>	128 24 DNA Unknown	
<220> <223>	PCR Primer	
<400> ggagga	128 gcaa tgatcttgat cttc	24
<210><211><212><212><213>	129 33 DNA Unknown	
<220> <223>	PCR Primer	
<400>	129 tecg etcaccatgg atgatgatat ege	33

```
<210> 130
<211> 33
<212> DNA
<213> Unknown
<220>
<223> PCR Primer
<400> 130
cacaagcttg gaggagcaat gatcttgatc ttc
                                                                        33
<210> 131
<211> 25
<212> DNA
<213> Unknown
<220>
<223> PCR Primer
<400> 131
                                                                        25
atggctagca aaggagaaga acttt
<210> 132
<211> 25
<212> DNA
<213> Unknown
<220>
<223> PCR Primer
<400> 132
ttatttgtag agctcatcca tgcca
                                                                        25
<210> 133
<211> 29
<212> DNA
<213> Unknown
<220>
<223> PCR Primer
<400> 133
                                                                        29
gatgactcgt aatacgactc actataggg
<210> 134
<211> 24
<212> DNA
<213> Unknown
<220>
<223> PCR Primer
<400> 134
gatgactcgt aatacgactc acta
                                                                        24
<210> 135
```

```
<211> 11
<212> DNA
<213> Unknown
<220>
<223> 5' end of Element 2
<400> 135
                                                                                11
ggccataagg g
<210> 136
<211> 11
<212> DNA
<213> Unknown
<220>
<223> 3' end of Element 1
<400> 136
gttccgaagg g
                                                                                11
<210> 137
<211> 11
<212> DNA
<213> Unknown
<220>
<223> oligonucleotide
<400> 137
                                                                                11
ggcctaaagg g
<210> 138
<211> 33
<212> DNA
<213> Unknown
<220>
<223> TOPO-D71 5' end
<400> 138
cggaacaaat tgaaattctt cctcgggaag tgg
                                                                                33
<210> 139
<211> 12
<212> DNA
<213> Unknown
<220>
<223> TOPO-D70 5' end
<400> 139
ctgatacatg tc
                                                                                12
<210> 140
<211> 48
<212> DNA
```

فسد

```
<213> Unknown
<220>
<223> pENTR-dTOPO and pcDNAGW-dTOPO 5'end
<220>
<221> misc_feature
<222> (43)...(48)
<223> n is a, c, g, or t
ttgtacaaaa aagacggctc cgcggccgcc cccttcacca tgnnnnnn
                                                                      48
<210> 141
<211> 12
<212> DNA
<213> Unknown
<220>
<223> TOPO-D74 5' end
<400> 141
                                                                      12
cgggggaagt gg
<210> 142
<211> 45
<212> DNA
<213> Unknown
<220>
<223> pENTR/SD-dTOPO, pENTR-dTOPO, and pcDNAGW-dTOPO 3' end
<220>
<221> misc_feature
<222> (1)..(6)
<223> n is a, c, g, or t
<400> 142
nnnnnaagg gtgggcgcgc cgacccagct ttcttgtaca aagtg
                                                                      45
```