Definition 2.1 – Unbiased estimator

Any estimator $\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(\mathbf{Y})$ is said to be unbiased if $E[\hat{\boldsymbol{\theta}}] = \boldsymbol{\theta}$ for all $\boldsymbol{\theta} \in \Theta^k$.

Definition 2.2 – Consistent estimator

An estimator is *cosistent* if the sequence $\theta_n(\mathbf{Y})$ if estimators for the parameter θ converges in porbability to the true value θ . Otherwise the estimator is said to be inconsistent.

Definition 2.3 – Minimum mean square error

An estimator $\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(\mathbf{Y})$ is said to be uniformly minimum mean square error is

$$E\left[(\hat{\boldsymbol{\theta}}(\mathbf{Y}) - \boldsymbol{\theta})(\hat{\boldsymbol{\theta}}(\mathbf{Y}) - \boldsymbol{\theta})^{T}\right] \leq E\left[(\tilde{\boldsymbol{\theta}}(\mathbf{Y}) - \boldsymbol{\theta})(\tilde{\boldsymbol{\theta}}(\mathbf{Y}) - \boldsymbol{\theta})^{T}\right]$$
(1)

for all $\theta \in \Theta^k$ and all other estimators $\tilde{\theta}(\mathbf{Y})$.