ETC_HW4_107403020 李泳輝

一、Python

1. 載入資料並刪除除了"energy", "speechiness", acousticness", "instrumentalness", "loudness", "tempo", "danceability", 'valence', "liveness"以外之欄位(使用 pandas dataframe) (2%)

df	r = pa F.head	read_csv(()	wu_son	gs.csv)										
]:	energ	y liveness	tempo	speechiness	acousticness	instrumentalne	s time_signature	danceability	key	duration_ms	loudness	valence	mode	
0	0.97	9 0.2720	128.876	0.1220	0.007620	0.0152	0 4	0.410	3	294740	-3.481	0.080	0	audio_fe
1	0.86	1 0.0747	100.080	0.0493	0.001890	0.0005	9 4	0.518	6	231762	-6.998	0.317	0	audio_fe
2	0.96	3 0.2030	195.979	0.1590	0.000090	0.0003	4 4	0.356	9	217959	-4.385	0.379	1	audio_fe
3	0.96	8 0.1060	158.089	0.1370	0.000047	0.0000	3 4	0.36	2	198987	-4.267	0.386	1	audio_fe
4	0.32	7 0.0922	75.122	0.0489	0.605000	0.0000	2 4	0.434	6	040400		0.000		audio fe
4		0.0022	70.122	0.0400	0.003000	0.0000	2 4	0.43	. 0	216100	-10.161	0.260	0	audio_i
 }: df	f = df f.head	["energy'					calness", "lou							
 }: df	f.head	["energy" ()	, "spee	chiness",		s","instrumer		dness","te	mpo",					
∢]: df	f . head energ	["energy"	, "spee	chiness",	"acousticnes	s","instrumer	calness", "lou	dness","te	mpo",					
df df	energ	y speechin	spee ess acou	chiness",	"acousticnes: strumentalness	s","instrumer	calness", "lou oo danceability 76 0.410	valence live	mpo",					
df df	energ 0.97	y speechin 9 0.1	ess acou	chiness", usticness ins	"acousticness strumentainess 0.015200	loudness tem	calness", "lou oo danceability 76 0.410 30 0.518	valence live 0.080 0. 0.317 0.	mpo", ness 2720					
df df df	energ 0.97 0.86	y speechin 9 0.1 1 0.0 3 0.1	, "spee ess acon 220 493 590	chiness", usticness ins	"acousticness strumentalness 0.015200 0.000539	s","instrumer loudness tem -3.481 128.8 -6.998 100.0	calness", "lou co danceability 76 0.410 30 0.518 79 0.356	valence live 0.080 0. 0.317 0. 0.379 0.	mpo", ness 2720					

2. 將剩下的欄位做特徵篩選的動作,並使用 kmeans silhouette analysis 的方法, 找出在哪三個欄位的情況下(需考慮所有組合),分 X 群會有最高的 silhouettescore。請找出 X 與 silhouette score 還有是哪三個欄位。(20%)

◆ 建立相關 function

kmeans & silhouette

Find Hiegest Siloutte

```
In [13]: def find_hiegest_siloutte(df, candidate):
    strategy = ClusterStratge(0, 0, 0)
    for i in range(0, len(candidate)):
        columns = list(candidate[i])
        X = standard_data(df[columns])
        score, K = count_kmeans_silhoutte_analysis(X)
        if strategy.getScore() < score:
            strategy.setStrategy(columns, K, score)
    return strategy</pre>
In [14]: def draw_features_cluster(df, list):
        X = standard_data(df[list])
        do_kmeans_silhouette_analysis(X)
```

◆ 執行

請解釋 silhouette 分析法 與 elbow 轉折判斷法的差別(3%)

- ◆ elbow 轉折判斷法是針對不同 K 的分群,計算樣本點到各自分群中心距離 的總和。當分群的數目增加,距離的總和自然會下降。當 K 值大於真正的 K 值後,下降就不會那麼明顯。這樣正確的 K 值就會在這個轉折點上。但 若遇到某些特例,像是下降幅度趨緩的圖,就不適合用 elbow 判斷方式。
- ◆ silhouette 分析法會衡量物件與所屬 cluster 的相似度,即內聚性。silhouette 的分數越高代表著物件與所屬的 cluster 有越密切的關聯。silhouette 的缺點是他的計算複雜度為 O(n^2),若資料量上到百萬,計算算量會非常巨大。
- 3. 使用剛剛找出來的欄位用 k-means 做分群。超參數設定為 n_cluster=4 ,random_state=15。並使用 plotly 繪製出 3d 圖形如以下所示(15%):

4. 使用剛剛找出來的欄位用 Meanshift 做分群(15%) 請找出最佳的 estimate_bandwidth. 超參數設定為 random_state=15,quantile=0.32, n_samples=1000

5. 使用剛剛找出來的欄位用 k-prototypes 做分群。超參數設定為 n_cluster=4, random_state=15,init=' Huang' ,verbose=0。並使用 plotly 繪製出 3d 圖形如第三題的圖(15%)

6. 使用剛剛找出來的欄位用 k-modes 做分群。超參數設定為 n_cluster=4,random_state=15,init=' Huang', verbose=0。並使用 plotly 繪製出 3d 圖形如第三題的圖(15%)

- 7. 請比較說明上述四種分群法的差異(5%)
- ◆ K-Means 演算法中,最終的 cluster 結果容易受到初始中心的影響。
- ◆ Mean Shift 演算法與 K-Means 一樣是基於 Cluster 中心的演算法,但 Mean Shift 演算法不需要事先制定類別個數 K。
- ◆ K-modes 演算法可以看做 K-means 算法在非數值屬性集合的版本,將原本 K-Means 使用的歐基里德距離替換成相異程度的算法。
- ◇ K-prototypes 散與數值屬性兩種混合的數據進行 clustering,其結合了 K-Means 與 K-modes 算法。

二、Weka

● 只留下要用的三個欄位

● 設定 SimpleKMeans 超參數

● 執行結果

