Chapter 3: Independent Events

Meike Niederhausen and Nicky Wakim 2024-10-07

Learning objectives

- 1. Define independence of 2-3 events given probability notation
- 2. Calculate whether two or more events are independent

Where are we?

Basics of probability

- Outcomes and events
- Sample space
- Probability axioms
- Probability properties
- Counting
- Independence
- Conditional probability
- Bayes' Theorem
- Random Variables

Probability for discrete random variables

- Functions: pmfs/CDFs
- Important distributions
- Joint distributions
- Expected values and variance

Probability for continuous random variables

- Calculus
- Functions: pdfs/CDFs
- Important distributions
- Joint distributions
- Expected values and variance

Advanced probability

- Central limit theorem
- Functions: moment generating functions

3

Independent Events

Definition: Independence

Events A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Notation: For shorthand, we sometimes write

$$A \perp \!\!\! \perp B$$
,

to denote that \boldsymbol{A} and \boldsymbol{B} are independent events.

Example of two dice

Example 1

Two dice (red and blue) are rolled. Let A = event a total of 7 appears, and B = event red die is a six. Are events A = event and B = event independent?

Independence of 3 Events

Definition: Independence of 3 Events

Events A, B, and C are mutually independent if

- 1. $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$
 - $\mathbb{P}(A \cap C) = \mathbb{P}(A) \cdot \mathbb{P}(C)$
 - $\mathbb{P}(B \cap C) = \mathbb{P}(B) \cdot \mathbb{P}(C)$
- 2. $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A) \cdot \mathbb{P}(B) \cdot \mathbb{P}(C)$

Remark:

On your homework you will show that $(1) \Rightarrow (2)$ and $(2) \Rightarrow (1)$.

6

Probability at least one smoker

Example 2

Suppose you take a random sample of n people, of which people are smokers and non-smokers independently of each other. Let

- A_i = event person i is a smoker, for i = 1, ..., n, and
- p_i = probability person i is a smoker, for i = 1, ..., n.

Find the probability that at least one person in the random sample is a smoker.