発表中にコメントがあった事柄を整理する。

命題-定義 0.1 (測度の押し出し). X, Y を可測空間、 μ を X 上の測度、 $f: X \to Y$ を可測写像とする。このとき、 $\mu \circ f^{-1}$ は Y 上の測度となる。これを f による μ の押し出しと呼び、 $f_*\mu$ と書く。

証明 $\mu \circ f^{-1}$ が \mathcal{Y} 上の測度となることは、測度の定義を直接確かめればすぐにわかる。

- ☆ 演習問題 0.1. 条件 A (3) は次と同値か?
 - (4) $\operatorname{aspan}(\sup T_*\mu) = V$

演習問題 0.1 の解答. [TODO]

- ☆ 演習問題 0.2. 条件 A (2) は次と同値か?
 - (5) 任意の \mathbb{R} -ベクトル空間 V' および線型写像 $F \in \text{Lin}(V,V')$ に対し「 $F(T(x)) = \text{const.} \ \mu\text{-a.e.}x \Rightarrow F = 0$ 」が成り立つ。

演習問題 0.2 の解答. [TODO] 任意の V' ではなく、有限次元に限定すれば言えそう

命題 0.2. $(V,T,\mu),(V',T',\mu')$ を $\mathcal P$ の実現とする。このとき、ある c>0 および $\theta^0\in V^\vee$ であって

$$\mu' = c \exp \langle \theta^0, T(x) \rangle \cdot \mu \tag{0.1}$$

をみたすものがただ1組存在する。

証明 μ,μ' がみたす関係式

$$\langle \theta, T(x) \rangle - \psi(\theta) = \langle \theta', T'(x) \rangle - \psi'(\theta') + \log \frac{d\mu'}{d\mu}(x)$$
 μ -a.e. x (0.2)

に定理 1.12 と系 1.13 を合わせて式変形するとわかる。

参考文献

[Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).

[BN78] O. E. Barndorff-Nielsen, **Information and exponential families: In statistical theory**, Wiley, 1978. [Yos] Taro Yoshino, **bn1970.pdf**, Dropbox.