

Instructions

- Use **black** ink or **black** ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The question labelled with an **asterisk** (*) is one where the quality of your written communication will be assessed you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on this question.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

P64627A
©2021 Pearson Education Ltd.
1/1/1/1/1

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- In which of the following pairs does the metal have **different** oxidation numbers?
 - **A** CrO_4^{2-} and $Cr_2O_7^{2-}$ X
 - **B** CrO₄²⁻ and CrO₃Cl⁻ X
 - \mathbf{C} V_2O_5 and VO_4^{3-} X
 - \mathbf{D} VO₂⁺ and VO²⁺ X

(Total for Question 1 = 1 mark)

This question is about the reaction

$$2Fe^{3+}(aq) + Ti(s) \rightarrow 2Fe^{2+}(aq) + Ti^{2+}(aq)$$

$$E_{cell}^{\Theta} = +2.40 \text{ V}$$

(a) The electrode potential for the Fe^{3+} / Fe^{2+} electrode system is +0.77 V.

What is the electrode potential for the Ti²⁺/Ti electrode system?

(1)

- X -3.17V
- -1.63 V
- X +1.63 V
- X **D** +3.17V

(b) What metals should be used for the electrodes in the cell for this reaction? In this reaction? In the cell for this reac				
	3/ _{Studentroom, w.}			
	Fe ³⁺ / Fe ²⁺ electrode system	Tightess.		
⊠ A	iron	titanium	COM	
⊠ B	iron	platinum		
⊠ C	platinum	titanium		
⋈ D	platinum	platinum		

(c) The half-cell for the Fe³⁺/ Fe²⁺ electrode system is prepared by mixing **equal** volumes of solutions of iron(II) sulfate, FeSO₄, and iron(III) sulfate, Fe₂(SO₄)₃.

What concentrations of the **original** solutions are needed for the resulting mixture to be standard?

(1)

	Concentration of the original solution				
	FeSO ₄	Fe ₂ (SO ₄) ₃			
⊠ A	1 mol dm ⁻³	0.5 mol dm ⁻³			
⊠ B	1 mol dm ⁻³	1 mol dm ⁻³			
	2 mol dm ⁻³	1 mol dm ⁻³			
□ D	2 mol dm ⁻³	2 mol dm ⁻³			

(Total for Question 2 = 3 marks)

3 What is the electronic configuration of a chromium atom?

3d

1	1	1	1	1
---	---	---	---	---

- B (Ar)
- \uparrow \uparrow \uparrow \uparrow \uparrow

1

- C (Ar)
- \square **D** (Ar) $\uparrow \downarrow$ \uparrow

 $\uparrow\downarrow$

1

- 4s
- 1
- ↑↓
- 1
- $\uparrow\downarrow$

(Total for Question 3 = 1 mark)

hup://britishshidentroom.worthress.com/

- 4 A ligand must be an
 - A electron-pair donor
 - **B** electron-pair donor and negatively charged

 - D electron-pair acceptor and negatively charged

(Total for Question 4 = 1 mark)

- 5 Diamminecopper(I) ions are **not** coloured because
 - A the d orbitals in copper(I) cannot be split
 - **B** the energy difference between the split d orbitals is outside the visible region of the spectrum

 - **D** copper(I) complexes are readily oxidised

(Total for Question 5 = 1 mark)

6 Co	op /ha opp	per(l nt typ per(ll	I) ions form a complex with 1,2-dia be of ligand is 1,2-diaminoethane, a) in the complex? Type of ligand bidentate	مرورة aminoethane (symbol 'en') with the and what is the coordination num	e Roymula Cu(en) ₃ 2- ber of C _{k)II} OO _O O, No.
			Type of ligand	Coordination number	Orthress
×	X	Α	bidentate	3	
×	X	В	bidentate	6	
×	X	C	tridentate	3	
×	X	D	tridentate	6	

(Total for Question 6 = 1 mark)

Aqueous sodium hydroxide was added to aqueous iron(II) sulfate and the mixture allowed to stand.

What would be observed?

		Observations				
		Immediately after adding sodium hydroxide	After standing			
X	A	brown precipitate	no change			
X	В	green precipitate	no change			
X	C	brown precipitate	precipitate turns green			
X	D	green precipitate	precipitate turns brown			

(Total for Question 7 = 1 mark)

When aqueous ammonia is added to an aqueous solution of zinc sulfate, a white precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which dissolves in excess ammonia to give a colourless solution in the precipitate forms which is the precipitate forms are precipitated in the precipitate

Type of reaction		
Formation of white precipitate	Formation of colourless solution	
deprotonation	ligand exchange	
deprotonation	deprotonation	
ligand exchange	deprotonation	
ligand exchange	ligand exchange	

(Total for Question 8 = 1 mark)

Benzene is sometimes represented by a Kekulé structure.

Kekulé structure of benzene

If this were the **only** structure of benzene, what would be the total number of isomers of dichlorobenzene?

X A two

X

X

X

Α

В

C

D

- X **B** three
- X **C** four
- X **D** five

(Total for Question 9 = 1 mark)

10 What is the product when benzene reacts with fuming sulfuric acid?

(Total for Question 10 = 1 mark)

http://britishshtdentroom.worthress.com/

11 Hydrogen bonds are formed when methylamine dissolves in water.

- Hydrogen bonds are formed when methylamine dissolves in water.

 Which structure best represents a hydrogen bond between methylamine and water worth water.

(Total for Question 11 = 1 mark)

- 12 Which type of compound cannot be a monomer in the formation of polyamides?
 - X **A** amides
 - X **B** amino acids
 - **C** diacyl chlorides
 - X **D** diamines

(Total for Question 12 = 1 mark)

13 Alanine is an amino acid.

(a) Which structure best represents alanine at high pH?

- A H₃C C C C

- (b) Alanine is a crystalline solid at room temperature.

What are the main forces broken when alanine melts?

- A London forces
- **B** hydrogen bonds
- **C** covalent bonds
- **D** ionic bonds

(Total for Question 13 = 2 marks)

(1)

http://britishshadentroom.wordpress.com/

What are the bond stretches responsible for the peaks **P** and **Q** in the spectrum?

		Р	Q
X	A	O—H carboxylic acid	C—O carboxylic acid
X	В	O—H carboxylic acid	C—O aldehyde
X	C	C—H aldehyde	C—O carboxylic acid
X	D	C—H aldehyde	C—O aldehyde

(Total for Question 14 = 1 mark)

How many peaks are there in the carbon-13 (13C) NMR spectrum of methylcyclopexane?

Only the control of the carbon of methylcyclopexane?

Only the carbon of the carbon of methylcyclopexane?

Only the carbon of methylcyclopexane?

methylcyclohexane

- one
- three
- five X
- seven

(Total for Question 15 = 1 mark)

16 In the high resolution proton NMR spectrum of propan-2-ol, CH₃CHOHCH₃ there are

- X **A** one singlet, one doublet and a heptet
- X one singlet, two doublets and a heptet
- X **C** two singlets and two triplets
- X **D** three singlets and a quartet

(Total for Question 16 = 1 mark)

17 What is the minimum volume of oxygen gas, measured at room temperature and pressure, required for the complete combustion of 9.2 g of $C_3H_8O_3$ ($M_r = 92$)?

This is the minimum volume of oxygen gas, measured at room temperature and pressure = 24.0 dm³ mol⁻¹]

This is the minimum volume of oxygen gas, measured at room temperature and pressure = 24.0 dm³ mol⁻¹]

- $8.4\,\mathrm{dm}^3$
- 12.0 dm³ X
- 16.8 dm³ X

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

http://britishshdentroom.wordpress.com/

18 This question is about manganese compounds. Some data are given below.

	SECTION B nswer ALL the questions. Write your answers in the spaces on is about manganese compounds. Some data are given below Electrode reaction $MnO^{-}_{-} + e^{-}_{-} \Rightarrow MnO^{2-}_{-}$	hub://britis.	
A	nswer ALL the questions. Write your answers in the spaces	provide& _{n,}	
questio	on is about manganese compounds. Some data are given belov	v. ************************************	نکر ر
	Electrode reaction	E [⊕] /V	Opress.co.
1	$MnO_4^- + e^- \Rightarrow MnO_4^{2-}$	+0.56	TO.
2	$MnO_4^{2-} + 2H_2O + 2e^- \Rightarrow MnO_2 + 4OH^-$	+0.59	
3	$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	+0.77	
4	$MnO_2 + 4H^+ + 2e^- \Rightarrow Mn^{2+} + 2H_2O$	+1.23	
5	$MnO_4^- + 8H^+ + 5e^- \Rightarrow Mn^{2+} + 4H_2O$	+1.51	
6	$MnO_4^- + 4H^+ + 3e^- \Rightarrow MnO_2 + 2H_2O$	+1.70	
7	$MnO_4^{2-} + 4H^+ + 2e^- \Rightarrow MnO_2 + 2H_2O$	+2.26	

(a) (i) Write the ionic equation for the disproportionation of manganate(VI) ions, MnO₄²⁻, in **acidic** conditions, using relevant half-equations from the table. State symbols are not required.

(2)

(ii) Calculate E_{cell}^{Θ} for the disproportionation of manganate(VI) ions in **acidic** conditions, stating whether or not the reaction is thermodynamically feasible.

(2)

(iii) Using the standard electrode potentials in the table, assess the thermodynamic feasibility of preparing manganate(VI) by reacting manganate(VII) and manganese(IV) oxide in alkaline conditions.	http://britishshidenhoods/)
	, COM

(b) Steel is an alloy of iron and carbon. A group of students determined the iron, content of a sample of steel wire by a titration method.

The wire was dissolved in dilute sulfuric acid and the resulting more dilute sulfuric acid and mixed thoroughly.

The more dilute sulfuric acid and mixed thoroughly.

Fe +
$$H_2SO_4 \rightarrow FeSO_4 + H_2$$

25.0 cm³ samples of the resulting solution were titrated with 0.0195 mol dm⁻³ potassium manganate(VII) solution.

(i) State the colour change at the end-point of the titration.

(1)

(ii) One student used 1.53 g of the wire (weighed directly on the balance pan) and obtained a mean titre of 27.35 cm³.

Using half-equations 3 and 5 from the table, calculate the percentage of iron in the steel wire. Give your answer to **three** significant figures.

(5)

(iii) A second student carried out the same experiment but used distilled water to make up the solution in the volumetric flask. A brown suspension formed during the titration. Explain how, if at all, the titre value would be affected by this student's error.				
(c) The uncertainti	es of the apparatus use	ed in the experiment in (k	o) are shown.	
Apparatus	Value measured	Uncertainty on each reading	Percentage uncertainty on value measured / %	
Balance	1.53 g	±0.005 g	0.65	
Burette	27.35 cm ³	±0.05 cm ³		
Pipette	25.0 cm ³	±0.06 cm ³		
Volumetric flask	250.0 cm ³	±0.3 cm ³		
(i) Complete th	ne table.		(2)	
State wheth number of s	er or not this student h	f 95.863% for the propornas given their answer to fy your answer in terms o	tion of iron in the wire. an appropriate	
		(Total for Ou	uestion 18 = 21 marks)	

- **19** This question is about the investigation of an organic compound **X**.
 - - (ii) When $0.493\,\mathrm{g}$ of \mathbf{X} was vaporised, $157\,\mathrm{cm}^3$ of dry air was displaced, measured at 15°C and 103 000 Pa.

Calculate the molar mass of **X**, using the ideal gas equation. You must show your working.

(4)

(b) X reacted vigorously with ethanoyl chloride forming steamy fumes and a white solid Y .	. Ashdentoon
(i) Identify the steamy fumes, by name or formula.	Toona Aorightess: com
(ii) Suggest the functional group present in Y .	(1)
(iii) Analysis of Y showed that its composition by mass was 62.6% carbon; 11.3% hydrogen; 12.2% nitrogen; 13.9% oxygen.	
Determine the empirical formula of Y . You must show your working.	(3)

(6)

*(c) A simplified **high** resolution proton NMR spectrum of **Y** is shown. The relative peak areas are given near each peak.

Deduce the structure of Y, using the NMR spectrum and the other information in the question.

(d) Draw the structure of compound **X**.

(Total for Question 19 = 17 marks)

http://britishshdentroom.wordpress.com/

- 20 This question is about benzene and some related compounds.
 - (a) Some standard enthalpies of combustion are shown.

This question is about benzend (a) Some standard enthalpies	·	*Sh _{Studentre}
Compound	Structure	Standard enthalpy of α combustion, $\Delta_c H^{\oplus}$ / kJ mol $^{\circ}$
cyclohexene		-3752
cyclohexa-1,4-diene		-3584
benzene		-3267

(i) Using the standard enthalpies of combustion of cyclohexene and cyclohexa-1,4-diene, calculate a value for the enthalpy of combustion of the theoretical compound 'cyclohexa-1,3,5-triene'.

(2)

cyclohexa-1,3,5-triene

24

ı	(ii) Explain the difference between the enthalpy of combustion of 'cyclohexa-1,3,5-triene' calculated in (a)(i) and the enthalpy of combustion of benzene given in the table.	fullentroop, Norther
	Bromine reacts with cyclohexene to form 1,2-dibromocyclohexane, and with benzene to form bromobenzene.	
	Compare and contrast these reactions, considering the type and mechanism o each reaction and the conditions required.	f
	eden redenon and the conditions required.	
	You are not required to draw the mechanisms of the reactions.	(4)
		(4)
		(4)
		(4)
		(4)
		(4)
		(4)
		(4)
		(4)

(c) Bromine also reacts with phe	าol.
----------------------------------	------

Bromine also reacts with phenol.

(i) Identify, by name or formula, the organic product when phenol reacts with the organic excess bromine.

(ii) Identify, by name or formula, the organic product when phenol reacts with the organic excess bromine.

(ii) Explain why bromine reacts much faster with phenol than with benzene.

(2)

(Total for Question 20 = 12 marks)

TOTAL FOR SECTION B = 50 MARKS

SECTION C Answer ALL the questions. Write your answers in the spaces provide the spaces

21

Iron is a typical transition metal. Due to the similar energies of the 3d and 4s electrons, iron forms compounds in a number of oxidation states. Iron(II) and iron(III) are the most common oxidation states, and iron(III) is the most stable.

Iron ions form many complexes, including that in haemoglobin which is responsible for oxygen transport in the blood of most vertebrates. The haemoglobin-iron complex with oxygen is responsible for the red colour of blood.

Iron(III) ions may be detected in solution by the addition of thioglycolic acid (HSCH₂COOH). All the water ligands of the iron(III) ion are replaced giving a complex with an intense red colour which can be detected in very low concentrations.

The complexes of iron(II) and iron(III) usually have a coordination number of six and are octahedral but the chloro complexes have a coordination number of four and are tetrahedral.

Iron and its compounds can act as catalysts. The element catalyses the Haber process, acting as a typical heterogeneous catalyst. However, the compounds and complexes of iron are usually homogeneous catalysts.

(a)	than iron(II) compounds.	
		(2)

- (b) The third ionisation energy of iron is 2958 kJ mol⁻¹.
 - (i) Write the equation for the third ionisation energy of iron. Include state symbols.

(ii) Explain how **stable** iron(III) ions can be formed from iron(II) ions in aqueous solution. Refer to the relevant energy changes of these ions only.

_0	

(c) Invertebrates use a copper complex, haemocyanin, to transport oxygen. Blue oxyhaemocyanin gives invertebrate blood its characteristic colour. Explain why oxyhaemocyanin and oxyhaemoglobin have different colours.	
Explain why oxyhaemocyanin and oxyhaemoglobin have different colours.	
Thordhress.	
· · · · · · · · · · · · · · · · · · ·	

(d) The presence of iron in sodium carbonate can affect its properties; the higher the quality of the sodium carbonate, the lower the proportion of iron.

Chapter the quality of the sodium carbonate was in a laboratory grade anhydrous sodium carbonate was control of the carbonate was iron(III) thioglycolic acid complex, Fe(HSCH₂COOH)₃³⁺. The solution was made up to 500 cm³ in a volumetric flask and thoroughly mixed.

Colorimeter calibration graph

The transmittance of the resulting solution was determined using a colorimeter and found to be 39.8%.

(i) Using the calibration graph, determine whether or not the iron concentration in this sample of sodium carbonate meets the stated specification.

(4)

complex. Justify your answer.	Sh _{shider} (2)
(ii) Suggest what type of ligand thioglycolic acid is in the iron(III) thioglycolic complex. Justify your answer.	THOOM, b.
	Tordores
e) lodide ions are oxidised to iodine by peroxodisulfate ions.	
$2I^{-}(aq) + S_{2}O_{8}^{2-}(aq) \rightarrow I_{2}(aq) + 2SO_{4}^{2-}(aq)$	
Iron(II) ions act as a homogeneous catalyst for this reaction.	
(i) State why the catalyst is described as 'homogeneous'.	(4)
	(1)
(ii) Write two equations to show how iron(II) ions catalyse this oxidation.	
State symbols are not required.	(2)
(iii) Suggest how iron(II) ions lower the activation energy of this reaction.	
	(1)

(f)	Give a possible re number of four ra	eason why the chloro cor ather than six.	mplexes of iron ions have	h _{lb.} e a coordination sh _{ildentroon, w}
				Mics. Co.
				tion 21 = 20 marks)

TOTAL FOR SECTION C = 20 MARKS
TOTAL FOR PAPER = 90 MARKS

http://britishshdentroom.wordpress.com/

http://britishstadentroom.worthress.com/

http://britishshdentroom.wordpress.com/

The Periodic Table of Elements

0 (8)	(18)	4.0	H	helium
7				
9				
2				
4				
3				
	Г			_
	,	0. :	I	hydrogen
				;
7				

		_			_				_				_				_				_			
(18) 4.0 He	2	20.2	Ne	neon	10	39.9	Ar	argon	18	83.8	궃	krypton	36	131.3	Xe	xenon	24	[222]	R	radon	8		ted	
	(17)	19.0	L	fluorine	6	35.5	บ	chlorine	17	6.62	В	bromine	35	126.9	_	iodine	53	[210]	Αt	astatine	82		oeen repor	
	(16)	16.0	0	oxygen	8	32.1	S	sulfur	16	79.0	Se	selenium	34	127.6	<u>l</u> e	tellurium	52	[508]	Po	polonium	84		116 have !	nticated
	(15)	14.0	z	nitrogen	7	31.0	۵	phosphorus	15	74.9	As	arsenic	33	121.8	Sb	antimony	51	209.0	Bi	bismuth	83		Elements with atomic numbers 112-116 have been reported	but not fully authenticated
	(14)	12.0	U	carbon	9	28.1	Si	silicon	14	72.6	g	germanium	32	118.7	Sn	tiu	20	207.2	Ъ	lead	78		atomic nu	but not f
	(13)	10.8	۵	boron	2	27.0	Ι	aluminium	13	69.7	Ga	gallium	31	114.8	٦	indium	46	204.4	F	thallium	8		nents with	
								Ś	(12)	65.4	Zu	zinc	30	112.4	В	cadmium	48	200.6	H	mercury	80		Elen	
									(11)	63.5	Cn	copper	29	107.9	Ag	silver	47	197.0	PΠ	gold	6/	[272]	Rg	roentgenium 111
								Š	(10)	58.7	Z	nickel	28	106.4	Pq	palladium	46	195.1	T	platinum	8/	[271]	Os	meitnerium damstadtium 109 110
								Ć	(6)	58.9	ဝ	cobalt	27	102.9	R	rhodium	45	192.2	<u>L</u>	iridium		[368]	Мţ	meitnerium 109
1.0 H hydrogen	-							Ć	(8)	55.8	Fe	iron	26	101.1	Ru	ruthenium	44	190.2	S	osmium	9/	[277]	Hs	hassium 108
								į	(/)	54.9	Wn	chromium manganese	25	[86]	2	technetium	42 43	186.2	Re	£	72		B	bohrium 107
		mass	poq		numper			\$	(9)	52.0	ъ		24	62.6	Wo	molybdenum	42	183.8	>	tungsten	/4	[596]	Sg	m seaborgium b
	Key	relative atomic mass	atomic symbol	name	atomic (proton) number			į	(5)	50.9	>	vanadium	23	92.9	Q	niobium	41	180.9	٦	tantalum	73		පි	dubniu 105
		relati	ato		atomic			Ş	(4)	47.9	ï	titanium	22	91.2	Zr	zirconium	40	178.5	Ŧ	hafnium	7/	[261]	Æ	rutherfordium 104
									(3)	45.0	Sc	scandium	21	88.9	>	yttrium	39	138.9	La*	lanthanum	2/	[227]	Ac*	actinium 89
	(2)	9.0	Be	beryllium	4	24.3	Wg	magnesium	12	40.1	Ca			87.6	Sr	strontium	38	137.3	Ba	barium	90	[326]	Ra	radium 88
	(1)	6.9	ב	lithium	~	23.0	Na	_	1	39.1	¥	potassium	19	85.5	8	rubidium	37	132.9	క	caesium	55	[223]	Ŧ	francium 87

series	series
Lanthanide	Actinide

175 Lu Intetium 71 71 71 71 71 71 71 7													
		175	n n	lutetium	71	[257]	ځ	lawrencium	103	je si	co,	n	-
		173	ХÞ	ytterbium	70	[254]	<u>گ</u>	nobelium	102				
		169	Ē	thulium	69	[256]	ΡW	mendelevium	101				
		167	ᆸ	erbium	89	[253]	Fa	fermium	100				
			운	_	_	[254]	E	einsteinium	66				
		163	۵	dysprosium	99	[251]	ᠸ	californium	86				
-						[245]	쓚	berkelium	26				
2		157	В	gadolinium	\$	[247]	Ę	aurium	96				
		152	Eu	europium	63	[243]	Am		95				
8		150	Sm	samarinm	62	[242]	Pn	plutonium	94				
2		[147]	Pm	promethium	61	[237]	å	neptunium	93				
3		144	PX	neodymium	9	238	_	uranium	92				
20		141	ď	praseodymium	59	[231]	Pa	protactinium	91				
2		140	S	cerium	28	232	丘	thorium	06				
	Ĺ												