Deep Graphs

Presented by Gote Mathias Isaksson Faculty Advisor: Dr. Andrew J. Hetzel The University of Louisiana at Monroe

Special Thanks to
The University of Louisiana at Monroe
Emerging Scholars Program

Pebbling Number

The *pebbling number* (introduced by F.R.K. Chung, SIAM J. Disc. Math. **2** (1989), 467-472) of a (finite, connected) graph G, denoted by f(G), is the smallest number n such that no matter how n pebbles are distributed on the vertices of G, the distribution would have the property that, for each vertex v of G, a series of "pebbling steps" could move a pebble to v.

Deep Graph

A graph G is called *deep* (developed by Dr. Andrew J. Hetzel) if, for each positive integer $n \le f(G)$, there exists a subgraph H of G such that f(H) = n.

No path with more than 2 vertices is a deep graph.

Applications

- Networking
- Information Transfer
- Military

- Is in all deep graphs with $n \ge 3$ vertices.
- The only graph with the pebbling number $K(K_3) = 3$
- Any complete graph is a deep graph.

- Pebbling number $f(G_n) = n + 1, n \ge 4$
- G_n is a deep graph

- Pebbling number $f(H_n) = n + 3$
- Graph H_n is a deep graph when $n \ge 7$
- Graph has a diameter of 3.

Classification of all deep graphs with 4 vertices

Some deep graphs with 5 vertices

Open problems

- Deep Graphs with a diameter ≥ 4?
- What graphs other than K₃ must be in a deep graph?
- Pyramid with 6 vertices is a deep graph. Is a pyramid with more than 6 vertices a deep graph?

