Exercise 3.

- (a) Show that if \mathscr{A} is a collection of inductive sets, then the intersection of the elements of \mathscr{A} is an inductive set.
- (b) Prove the basic properties of \mathbb{Z}_+ :
 - \mathbb{Z}_+ is inductive
 - (Principle of induction) If A is an inductive set of positive integers, then $A = \mathbb{Z}_+$

Proof.

- (a) Let \mathscr{A} be a collection of inductive sets, let $I = \bigcap_{A \in \mathscr{A}} A$, and let $A_0 \in \mathscr{A}$. Then A_0 is inductive, from which we deduce that $1 \in A_0$. The previous proposition does not depend on any specific choice of A_0 , so $\forall A_0 \in \mathscr{A}, 1 \in A_0$, which is the definition of $1 \in I$. In particular, $I \neq \varnothing$. Let then $x \in I$; we have $\forall A \in \mathscr{A}, x \in A$, and since every such A is inductive, $x + 1 \in A$. We have shown $\forall A \in \mathscr{A}, x + 1 \in A$, which is by definition of the intersection $x + 1 \in I$. Thus $\forall x \in I, x + 1 \in I$, and I is inductive.
- (a) Let \mathscr{A} denote the family of inductive sets of \mathbb{R} . By definition, $\mathbb{Z}_+ = \bigcap_{A \in \mathscr{A}} A$, so that \mathbb{Z}_+ is the intersection of inductive sets, and thus inductive. Let $B \in \mathscr{A}$. We have $\mathbb{Z}_+ \subset B \subset \mathbb{R}$, and since \mathbb{Z}_+ is inductive, $\mathbb{Z}_+ \in \mathscr{A}$. Any inductive set of positive integers must therefore be a subset of \mathbb{Z}_+ . Conversely, if $A_0 = \bigcap_{A \in \mathscr{A}} A$, then A_0 is an inductive subset of \mathbb{R} , so that $A_0 \in \mathscr{A}$ and $\mathbb{Z}_+ \subset A$.