



### Definition

- Signal = a measurable quantity which varies in time, space or some other variable
- Examples:
  - a voltage which varies in time (1D voltage signal)
  - sound pressure which varies in time (sound signal)
  - intensity of light which varies across a photo (2D image)
- ▶ Usually represented as mathematical functions, e.g. v(t).



## Unidimensional and multidimensional signals

- ▶ Unidimensional (1D) signal = a function of a single variable
  - **Example:** a voltage signal v(t) only varies in time.
- ► Multidimensional (2D, 3D ... M-D) signal = a function of a multiple variables
  - Example: intensity of a grayscale image I(x, y) across the surface of a photo
- ▶ In these lectures we consider only 1D signals
- ▶ The techniques which you will learn for 1D signals can also be used for multidimensional signals (usually 2D signals, images).

### Analog and discrete signals

- ▶ **Analog** signals = functions of continuous variables
  - there exists a signal value for any value of the variable within the defined range
- ▶ **Discrete** signals = functions of discrete variables
  - have values only at certain discrete values, typically indexed with integer numbers (x[-1], x[0], x[1]...)





### Discrete signals

- ► The values of a discrete signal are usually called **samples**
- ▶ The spacing between the samples is usually uniform
- ▶ **Note:** A discrete signal has **no value defined** in the space between samples
  - ▶ in these areas, it simply does not exist.
- ▶ Discrete signals are usually obtained by **sampling** analog signals.

#### Notation

- ightharpoonup Analog signal a(t)
  - use round brackets
  - $\triangleright$  variable typically denoted with t (from time), e.g. a(t).
- ▶ Discrete signal x[n]
  - use square brackets
  - variable is typically denoted with n, or sometimes k (suggest natural numbers)
- Examples:
  - ▶ a(1) and a(3.23542) are the values of signal a(t) at time t=2 and t=3.23542
  - ▶ b[-1] and b[2] are the values of b[n] at discrete time n = -1 and n = 2
  - ▶ Writing x[1.3] is incorrect: x[n] is only defined for integer values of n.

### Signals with continuous and discrete values

- ▶ Besides the variable, the *value* of the signal can also be continuous or discrete
- Signal with continuous values: can have any value in a certain defined range
  - Example: the voltage in one point of a circuit: any value between, for example, 0V and 5V.
- ► Signal with discrete values: can only have a value from a discrete set of possible values
  - Example: the number of bits received in a second over a binary communication channel



### Periodicity

- Periodic signal: if its values repeat themselves after a certain time (known as period)
- For an analog signal:

$$x(t) = x(t+T), \forall t$$

► For a discrete signal:

$$y[n] = y[n + N]), \forall t$$

- ► Fundamental period = the minimum value of T or N
  - ▶ multiples of T or N are also periods, but non-fundamental
  - ▶ shorthand notation: from now on, by "period" we will mean the fundamental period.
- For analog signals, the period has unit seconds
  - ► T is time
- ▶ For digital signals the period is adimensional
  - N is just a number, has no unit attached

### Frequency

- ► Fundamental frequency of a periodic signal = inverse of the period
- For analog signals:

$$F=rac{1}{T}$$

► The unit is:

$$[F] = \frac{1}{s} = Hz$$

For discrete signals:

$$f=\frac{1}{N}$$

- ▶ Has no unit, since *N* has no unit also.
- Notation:
  - frequencies of analog signals with F (capital letter)
  - ▶ frequencies of discrete signals with *f* (small letter)

## Frequency example

▶ An analog cosine with a frequency of F = 0.1Hz

$$x(t) = \cos(2 \cdot \pi \cdot 0.1 \cdot t)$$

▶ A discrete cosine with a frequency of f = 0.1.

$$x[n] = \cos(2 \cdot \pi \cdot 0.1 \cdot t)$$

### **Pulsation**

- $\blacktriangleright$  For harmonic signals, the pulsation  $=\omega=2\pi f$  for both analog and discrete signals
- ▶ We use  $\omega$  when treating harmonic signals like  $\cos()$  or  $\sin()$ , e.g.

$$cos(\omega t) = cos(2\pi ft)$$

.

### Domain of existence

- Analog signals
  - the period can be as small as desired,  $T \rightarrow 0$
  - ▶ therefore the frequency can be very large,  $F_{max} = \infty$ .

$$F \in (-\infty, \infty)$$

- Discrete signals
  - the smallest period is N = 2 (excluding N=1 which means a constant signal)
  - therefore, the largest possible frequency is  $f_{max} = \frac{1}{2}$

$$f\in\left[-\frac{1}{2},\frac{1}{2}\right]$$

- ► For mathematical reasons: we will consider negative frequencies as well (remember SCS)
  - they mirror the positive frequencies.



### Definition

- ▶ Discrete signals are obtained from analog signals through sampling
- Sampling = taking the values from the analog signal at discrete moments of time (usually periodic)
- ▶ The time between two samples is the sampling period  $T_s$
- ► The corresponding frequency is the **sampling frequency**

$$F_s = \frac{1}{T_s}$$

# Graphical example



## Sampling equation

Sampling equation:

$$x[n] = x_a(n \cdot Ts).$$

- ► Interpretation:
  - ▶ The *n*-th value in the discrete signal x[n] = the value of the analog signal taken after*n* $sampling periods, at time <math>t = nT_s$ .

# Sampling of harmonic signals

- ▶ Consider a cosine signal  $x_a(t) = cos(2\pi Ft)$ , sampling frequency is  $F_s$
- ▶ What is the resulting discrete signal x[n]?
- Applying the sampling equation:

$$x[n] = x_a(n \cdot T_s) = x_a(n \cdot \frac{1}{F_s}) = \cos(2\pi F n \frac{1}{F_s})$$
$$= \cos(2\pi \frac{F}{F_s} n) = \cos(2\pi f n),$$

 Sampling an analog cosine/sine produces a discrete cosine/sine of similar form, but with discrete frequency

$$f = \frac{F}{F_s}$$

# Sampling example

- Analog signal:  $x_a(t) = cos(2\pi 100t)$
- ▶ Sampling frequency:  $F_s = 300 Hz$
- Result:

$$x[n] = \cos(2\pi \frac{1}{3}t)$$

- ► The discrete frequency is  $f = \frac{1}{3}$
- ightharpoonup Sampling with a different  $F_s = 500 Hz$  produces a different signal

$$x[n] = \cos(2\pi \frac{1}{5}t)$$

- ► Explain: why does sampling with a higher sampling frequency produce a signal with lower discrete frequency?
- Note: in both cases the resulting f is smaller than  $f_{max} = \frac{1}{2}$

### False friends

Note: A discrete sinusoidal signal might not *look* sinosoidal, when its frequency is high (close to  $\frac{1}{2}$ ).





## Sampling theorem

#### The Nyquist-Shannon sampling theorem:

If a signal having maximum frequency  $F_{max}$  is sampled with a a sampling frequency  $F_s \geq 2F_{max}$ , then it can be perfectly reconstructed from its samples using the formula:

$$x_a(t) = \sum_{n=-\infty}^{+\infty} x[n] \cdot \frac{\sin(\pi(F_s t - n))}{\pi(F_s t - n)}.$$

#### **Comments**

- ▶ All the information in the original signal is contained in the samples, provided that they are sampled correctly
- lacktriangle We can process discrete samples instead of the original analog signals
- ▶ Sampling with  $F_s \ge 2F_{max}$  means the resulting discrete frequencies are smaller than 1/2

$$f = \frac{F}{F_s} \le \frac{F_{max}}{F_s} \le \frac{1}{2}$$

# Aliasing

- What if the sampling frequency is not high enough?
- ▶ Obtain a discrete frequency higher than  $\frac{1}{2}$
- ▶ A discrete frequency higher than 1/2 is **identical** to a frequency smaller than  $\frac{1}{2}$
- ► This phenomenon is known as aliasing

# Aliasing example

#### Example

- $x_a(t) = cos(2\pi 10t)$  is sampled with  $F_s = 15Hz$
- ▶ The result is

$$x[n] = \cos(2\pi \frac{10}{15}n) = \cos(2\pi \frac{2}{3}n)$$

▶ But, the frequency  $\frac{2}{3}$  is actually identical to  $\frac{1}{3}$ :

$$\cos(2\pi\frac{2}{3}n) = \cos(2\pi\frac{1}{3}n)$$

▶ Proof: since cos() is periodical, we can subtract a multiple of  $2\pi$ :

$$cos(2\pi \frac{2}{3}n) = cos(2\pi \frac{2}{3}n - 2\pi n) = cos(2\pi (\frac{2}{3} - 1)n)$$
$$= cos(-2\pi \frac{1}{3}n) = cos(2\pi \frac{1}{3}n)$$

# Aliasing example





# Aliasing

http://www.dictionary.com/browse/alias:

"alias": a false name used to conceal one's identity; an assumed name

Every discrete frequency above  $f_{max} = \frac{1}{2}$  is equivalent (an **alias**) to a frequency that smaller than  $f_{max} = \frac{1}{2}$ :

$$cos(2\pi(\frac{1}{2}+\epsilon)n)=cos(2\pi(\frac{1}{2}-\epsilon)n)$$

$$\sin(2\pi(\frac{1}{2}+\epsilon)n) = -\sin(2\pi(\frac{1}{2}-\epsilon)n)$$

- ► Proof: at whiteboard
- ▶ Every frequency  $f \in \mathbb{R}$  is actually identical to a frequency  $f \in [-\frac{1}{2}, \frac{1}{2}]$ , up to a different phase
- Note: Aliasing is only valid for discrete frequencies, not analog!

# What's the problem with aliasing?

- ▶ Problem: sampling analog signals with different frequencies, will lead to exactly the same samples
- ▶ How can we know the original frequency? Impossible
- ▶ **Note:** Always, there is only a single analog frequency  $F \in [-\frac{Fs}{2}, \frac{Fs}{2}]$  that corresponds to a discrete frequency in  $f \in [-\frac{1}{2}, \frac{1}{2}]$ 
  - ▶ No confusion if every  $F < F_s/2$ , i.e. sampled according to the theorem
  - Problems are only for analog frequencies which are not sampled according to the theorem

### Example

### Example:

- ▶ If sampling frequency is  $F_s = 15Hz$ , all the following signals produce identical discrete signals:
  - $ightharpoonup cos(2\pi 5t), cos(2\pi 10t), cos(2\pi 20t), cos(2\pi 30t)$
- ► Exercise: which are the next signals in the above sequence, which produce the same samples?



### Exercise

▶ What signals produce the following samples?



# Ideal reconstruction of analog signals from samples

▶ If the discrete frequency  $f \in [-\frac{1}{2}, \frac{1}{2}]$ , use the following:

$$x_r(t) = x[\frac{t}{T_s}] = x[t \cdot F_s].$$

- ▶ If f outside this interval: the same equation, but **replace** f with its equivalent from the interval  $\left[-\frac{1}{2}, \frac{1}{2}\right]$ .
- ▶ Consequence: reconstruction leads only to analog signals with frequencies  $F \in \left[-\frac{Fs}{2}, \frac{Fs}{2}\right]$ 
  - Analog signals which were sampled with at least  $2F_{max}$ : reconstructed identically
  - Analog signals which are not sampled correctly: not reconstructed identically

## Anti-alias filtering

- ▶ If a signal has frequencies  $F > \frac{F_s}{2}$ , it is better to eliminate these frequencies from the signal before sampling
  - ▶ If left, they will just overlap with the samples of a frequency from the base interval  $\left[-\frac{Fs}{2}, \frac{Fs}{2}\right]$
- ▶ Anti-alias filter: an analog low-pass filter, before a sampling circuit, designed to reject all frequencies  $F > \frac{F_s}{2}$  from the signal before sampling.



### Definition

- ▶ After sampling, the samples can have any real value
- Quantization = adjusting a value to a limited set of predefined values (quantization levels)
- ▶ Quantization error = the difference between quantized value and the original value
- Quantization methods:
  - truncation: choose the quantization level immediately smaller
  - rounding: choose the nearest quantization level

### Examples

- ► Example 1 :
  - ► The grade of a student is 8.75, but it is adjusted to 8 or 9 (closest quantization levels)
- Example 2:
  - ▶ A voltage sample can be between 0V and 10V, but we need to store the value on one byte (8 bits)
  - ▶ With 8 bits:  $2^8 = 256$  different possible values (quantization levels)
  - lacktriangle Divide the interval [0-10] in 255 equal sub-intervals of size

$$\Delta = \frac{10}{255} \approx 0.039 V$$

- ► Each level corresponds to one of 256 possible numeric values: 0 = 0V,  $1 \approx 0.039V$ ,  $2 \approx 0.078V$ , ... 256 = 10V
- ▶ The sample value can be rounded to the closest quantization level

### Coding

- Coding = converting a quantized value in binary form
  - a binary form can be handled by a processor or microcontroller in a digital system
- Sampling + quantization + coding are usually done by an Analog to Digital Converter (ADC).
- Reconstruction of a analog signal from numeric samples: by a Digital to Analig Converter (DAC)
  - Usually the reconstruction is not done based on the ideal reconstruction equations above
  - Simpler approximative methods are preferred