

Lab 13 - OJ Maximum Flow

CS208 Algorithm Design and Analysis Instructor: Yang Xu, xuyang@sustech.edu.cn

Q1: Maximum Flow

Description

You are given a **directed** connected graph consisting of n vertices and m edges. The source is s and the sink is t. Please calculate the maximum flow from s to t. Assume the flow is infinity in s.

Input Format

The first line contains four integers n, m, s, t.

Then m lines follow, each line contains three integers u_i , v_i and c_i , separated by space. Three integers denote that there is an edge from u_i to v_i , and its capacity is c_i .

Output Format

One line, one integer denoting the maximum flow from s to t.

Q1: Maximum Flow

Sample Input

Sample Output

5

Q2: Project Selection

Description

Given a set of projects P and prerequisites E, choose a feasible subset of projects to maximize revenue.

Detailly, each project i has a revenue P_i , and prerequiste $E_i=(u,v)$ denotes that if you want to select project v, you must have selected project u.

The projects won't form a cycle or self-cycle itself. You can also take 0 project in total.

Input Format

The first line contains two integers n, m denotes the number of projects and the number of prerequisites.

The second line contains n integers, each integer P_i denotes the revenue of project i.

Then following m lines, and each line contains two integers u,v denoting the prerequiste E_i .

Output:

One line, one integer denotes the maximum revenue.

Q2: Project Selection

Sample Input

Sample Output

4

 $P_4 = 1$

Explanation

Select project 1 and project 3, so the total revenues are 4.