

第十三届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2022

数据智能 价值创新

OceanBase

数据来源:数据库产品上市商用时间

openGauss

RASESQL

开务数据库自治平台架构解析及应用分享

冯友旭

开务数据库 — 高级软件研发工程师

- 01 开务数据库自治平台
- 02 开务数据库自治平台的参考架构

- 03 开务数据库自治平台的设计部署
- 04 开务数据库自治实践

▮数据库系统为什么要自治?

- SQL 执行缓慢
- 数据热点问题
- 资源分配不均匀
- 数据库系统不熟悉
- 参数配置过多
- •

- · 慢 SQL 分析
- 数据分布优化
- 弹性扩展和控制
- 用户画像

• • • •

▮ 什么是数据库自治平台?

自动自主自我治理管控

自动决定有哪些优化的动作?

执行计划、参数设置、

物理资源、数据分布等

自动决定何时执行这些优化?

多种配置策略支持

根据历史

自动学习优化策略

开务数据库自治平台的参考架构

▮自治的演进

1970s-1990s

Self-Adaptive Databases

根据数据库提供的内置或第三方周边工具支持。而关于数据存储,索引,持久化,性能等问题全部依赖于DBA的经验和能力。

early 2010s

Cloud Databases

• 依托云计算,结合云的弹性伸缩特性扩展数据库的存储 与计算能力,基于微服务/API 对数据库自治管理。

1990s-2000s

Self-Tuning Databases

 结合使用 DBMS 的成本模型估算,根据规则和特定模型评估 来辅助决策,帮助 DBA 提出可能存在的最佳索引、数据分区 等方案。具有一定自动化能力,仍然需要 DBA 介入。

late 2010s

Self-Driving Databases

- 具备预测未来的负载并作出调优
- 自动选择优化某个特定功能的方法以及这个优化所需要的资源。
- 决定何时优化
- 面向应用负载的主动式智能化的自治系统, 更主动、更自适应性

▮ 自治平台的特性模型

01 自主配置

配置参数,补丁/新版本升级,表空间重组,分区,复制模式等

02 自主修复

自动故障转移,自动对象恢复, 预防性告警,自动伸缩等

03 自主优化

统计信息收集,索引设计, MQT设计,分区设计, 排序缓冲区优化,查询巡查等

04 自主保护

资源管控,负载管控等

05 自主检查

行为数据,一致性检查, 健康检查等

一 开务数据库自治平台的参考架构

开务数据库的设计部署

■ 开务数据库自治架构的设计部署

▮ 开务数据库自治架构的设计部署

▮ 开务数据库自治架构的设计部署

04 开务数据库自治实践

▮ 一次错误的慢 SQL 分析

用户反馈

现场反馈 select * from order_line where ol_supply_w_id in (XXX,XXX,XXX) 性能执行过慢

DBA 分析

DBA 根据分析定位为分析行为信息定位,觉得是因为 ol_supply_w_id 列没有索引导致的,所以 DBA 在 order line 表创建了ol suppl w id index 的普通索引

实际效果

虽然添加该索引,优化了上述SQL语句的性能。但是DBA的索引创建引发了更大的问题… 这张表在实际现场存在海量数据写入,在创建索引前平均每秒性能达到10W/S,但创建索引后, 性能急剧下降,降低至只有1W左右。

后续

研发分析定位,由于该列 ol_supply_w_id 数据特点,导致创建该列普通索引后,**写数据热点问题严重**,后调整为 hash 索引解决该问题。

推荐优化方案

以应用负载为核心,理解应用负载以及应用负载的行为 和生命周期,对整个系统进行优化

应用负载级别画像描述

- ✓ 应用负载生命周期获取
- ✓ 分析应用负载健康状态
- ✓ SQL 涉及表信息、语句以及相关执行频率
- ✓ 应用 SQL 数量变化,集群负载程度,影响数据变化

用户画像

应用负载 SQL 分布

异常 SQL 分析,系统问题定位

开务自治平台从多个方向判断 SQL 健康状况需要考虑:

• 预估行数偏差过大: 查询逻辑计划 operator 与物理计划 operator 输入行数与输出行数之比的差距,如果存在差距过大 (超过某一设定值),则说明对应的 sql 健康存在问题。

- 执行时间偏差过大
- 重试次数过多
- 等待时间过长
- 机器学习预估

• ...

SQL统计分析 智能statis	tics收集 智能Hir	nt分析				
SQL语句	健康状况	数据库用户名	执行次数 🕏	总执行时间 🗢	平均执行时间 🕏	总CPU执行时间 🕏
select * from order_lin…	异常	inspur	32284	54.74 s	1.70 ms	30.61 s
SELECT s_quantity, s	异常	inspur	31481	3.40 min	6.49 ms	2.99 min
UPDATE bmsql_stock ···	异常	inspur	30879	33.29 min	64.68 ms	7.16 min
INSERT INTO bmsql_or···	异常	inspur	30875	28.57 min	55.51 ms	3.15 min
UPDATE bmsql_wareh…	异常	inspur	2871	1.15 min	23.94 ms	1.55 min
INSERT INTO bmsql_o···	异常	inspur	2769	22.49 s	8.12 ms	19.74 s

智能统计信息收集(智能统计信息收集系统)

开务数据库引入了 智能统计信息收集,为监控集群重新收集统计信息并结合 Application Insight 的分析结果,针对其标识的 不健康 SQL 语句 以及权重排序,对应用负载生成并整合 SQL 引擎所需的缺少或过时的统计信息。

智能索引推荐(基于应用负载信息的索引优化建议)

- 1. 对应用负载内的查询语句根据其重要程度进行排序整合,计算所创建或删除索引在应用负载整体的代价,并评估收益。
- 2. 基于启发式的规则建立推荐系统,结合实际运行数据,进行后验式的修正。
- 3. 持续监控该索引的运行情况和性能表现,并将操作前后的执行情况对比分析,以验证 Index Advisor 的能效。

■ 开务数据库自治优化特点

应用负载级别分析

针对workload 而非单条慢 SQL,盲目。以应用负载为出发点,掌握系统概况,根据 SQL 重要程度给出系统关键点

用户画像刻画,输出优化目标

系统画像输出,给出系统薄弱点,慢 SQL 分析等给出应用资源使用情况和优化目标

系统级别优化

指定系统级别的优化计划,比如针对统计信息、针对资源使用等持续关注应用负载生命周期,比较前后变化趋势,实现持续正反馈循环

■ 开务数据库的其他自治场景优化

A Hint 手动指定计划支持

集群参数的自动调优

数据分区方式的调整

分布式场景下的优化推荐

• • •

开务数据库自治平台

1.0 发布

让数据库会思考?

Inside-out vs Outside-in?

openGauss

OceanBase

ArkDB

RASESQL

OianBase

云树Shard

MatrixDB

SinoDB

porbuiung

FastData

SQL Server
vertica
D. B. 2

D B 2 GBase

Oracle 达梦数据库

神舟通用

KingbaseES

GreatDB

MongoDB

IDB AI

TiDB

l'apdata

UDISQL

StarRock

2010

关注开务数据库