

章 全 2 章 2 5 中 国 自动化大会

论文编号: 120698

的智赋能 掌控主来

LLM-DiSC: LLM-enabled Distributed and Safe Coordination of **Multi-Robot Systems using Control Barrier Functions**

Qingqing Yang¹, Guoxiang Zhao^{1,*}, Xiaoqiang Ren¹, Xiaofan Wang²

¹Shanghai University

²Shanghai Institute of Technology

qingqyang@shu.edu.cn

Abstract

Multi-robot systems (MRS) are widely used but often face motion conflicts during coordination. While large language models (LLM) show promise in complex planning tasks, their application to MRS remains limited by hallucinations and insufficient domain knowledge. To address this, we propose LLM-DiSC, a distributed and safe coordination framework that integrates LLM-generated planners with control barrier functions (CBF). It employs centralized training with feedback from simulation and CBF-based risk evaluation to refine planning, and distributed execution for scalability. Experiments demonstrate LLM-DiSC's safety, scalability, and near-optimal performance.

Method Python

Reference planner:

LLM generates the reference planner in Python, with automatic semantic correction through error feedback to the LLM.

CBF-based modifier:

Unsafe reference signals are corrected by the CBF-based modifier to ensure safety.

Define the safe state set S using a continuously differentiable function h(x), $S = \{x \in \mathbb{R}^n : h(x) \ge 0\}$. Given the system's dynamics and the safe state set, h is a CBF if there exists a class ${\mathcal K}$ function ${\alpha}$, such that $\forall x_i \in S$:

$$\sup_{\mathbf{u}_i \in U} \left[L_f h_i(\mathbf{x}_i) + L_g h_i(\mathbf{x}_i) \mathbf{u}_i + \alpha \left(h_i(\mathbf{x}_i) \right) \right] \ge 0.$$

Solve a Quadratic Program to find safe control input u close to LLM's reference output:

$$\min_{\boldsymbol{u}_{i}^{t}} \frac{1}{2} \|\boldsymbol{u}_{i}^{t} - \boldsymbol{u}_{ref}^{t}\|^{2}$$

s.t.
$$L_f h_{i,i}^a(\boldsymbol{x}_i^t) + L_g h_{i,j}^a(\boldsymbol{x}_i^t) \boldsymbol{u}_i^t + \alpha \left(h_{i,j}^a(\boldsymbol{x}_i^t) \right) \ge 0, \forall j \in \mathcal{R} \setminus \{i\}$$

$$L_f h_{i,k}^o(\boldsymbol{x}_i^t) + L_g h_{i,k}^o(\boldsymbol{x}_i^t) \boldsymbol{u}_i^t + \alpha \left(h_{i,k}^o(\boldsymbol{x}_i^t) \right) \ge 0, \forall k \in \mathcal{O}$$

Planner optimization:

Planner optimization iteratively refines the LLM-generated planner using simulation feedback when robots fail to reach their targets.

Experiments

Experiments were conducted in environments with polygonal obstacles and multiple robots, where the reference planner was generated using OpenAI o1-preview. Performance of the LLM-DiSC was compared against a conventional distributed planner combining A*, Pure Pursuit, and a CBF coordinator.

Safety and Scalability

TABLE I: Different robot models and group sizes

Model	Size	Pass@k			Iterations
Wodei	3126	k=1	k=5	k=10	iterations
Cinale Integrator	5	100%	100%	100%	1
Single Integrator	10	75%	100%	100%	1.37
Unicod	5	70%	100%	100%	1.67
Unicycle	10	60%	90%	95%	2.11

Trajectories of 10 unicycle robots.

Temporal evolution of minimum inter-robot distances in 10 robots.

Near-Optimal Performance

TABLE II: Near-optimality evaluation

Tribut optimizately evaluation				
Me	ethods	LLM-DISC	Conventional	
0:	Offline	261.98s	676.03s	
Computations	Online	7.85s	7.03s	
	Success	Yes	No	
Execution	Traveling Time	41.10s	40.5s	
	Trajectory Length	23.25	21.69	

Ablation Study of Different LLM Models

TABLE III: Ablation study of different LLMs

TABLE III. Abiation study of different Elivis					
LLM M	LLM Model		GPT-4o	DeepSeek-r1	
	k=1	60%	5%	55%	
Pass@k	k=5	90%	50%	95%	
	k=10	95%	65%	100%	
Iteration	ons	2.11	4.08	2.13	
Offline Compu	tation Time	261.98s	192s	1069.78s	
Online Compu	tation Time	7.85s	8.86s	6.54s	

Conclusions

By integrating LLM reasoning with CBF safety guarantees, our approach enables collision-free navigation and efficient task execution without relying on extensive training data or expert-designed models. The experimental results validate the superior performance of LLM-DiSC across different dynamic models and group sizes. This accessible solution significantly lowers technical barriers and computational demands for multi-robot motion planning.

论文编号: 120698

的智赋能 掌控击来

LLM-DiSC: LLM-enabled Distributed and Safe Coordination of **Multi-Robot Systems using Control Barrier Functions**

Qingqing Yang¹, Guoxiang Zhao^{1,*}, Xiaoqiang Ren¹, Xiaofan Wang²

¹Shanghai University

²Shanghai Institute of Technology

qingqyang@shu.edu.cn

https://github.com/Yangniq/LLM-DiSC

Abstract

Multi-robot systems (MRS) are widely used but often face motion conflicts during coordination. While large language models (LLM) show promise in complex planning tasks, their application to MRS remains limited by hallucinations and insufficient domain knowledge. To address this, we propose LLM-DiSC, a distributed and safe coordination framework that integrates LLM-generated planners with control barrier functions (CBF). It employs centralized training with feedback from simulation and CBF-based risk evaluation to refine planning, and distributed execution for scalability. Experiments demonstrate LLM-DiSC's safety, scalability, and near-optimal performance.

Method Python exception robot 1 reference controller LLM failure CBF-based modifier robot N

Reference planner:

LLM generates the reference planner in Python, with automatic semantic correction through error feedback to the LLM.

CBF-based modifier:

Unsafe reference signals are corrected by the CBF-based modifier to ensure safety.

Define the safe state set S using a continuously differentiable function h(x), $S = \{x \in \mathbb{R}^n : h(x) \ge 0\}$. Given the system's dynamics and the safe state set, h is a CBF if there exists a class ${\mathcal K}$ function ${\alpha}$, such that $\forall x_i \in S$:

$$\sup_{\mathbf{u}_i \in U} \left[L_f h_i(\mathbf{x}_i) + L_g h_i(\mathbf{x}_i) \mathbf{u}_i + \alpha \left(h_i(\mathbf{x}_i) \right) \right] \ge 0.$$

Solve a Quadratic Program to find safe control input u close to LLM's reference output:

$$\min_{\boldsymbol{u}_{i}^{t}} \frac{1}{2} \left\| \boldsymbol{u}_{i}^{t} - \boldsymbol{u}_{ref}^{t} \right\|^{2}$$

s.t.
$$L_f h_{i,i}^a(\boldsymbol{x}_i^t) + L_g h_{i,j}^a(\boldsymbol{x}_i^t) \boldsymbol{u}_i^t + \alpha \left(h_{i,j}^a(\boldsymbol{x}_i^t) \right) \ge 0, \forall j \in \mathcal{R} \setminus \{i\}$$

$$L_f h_{i,k}^o(\boldsymbol{x}_i^t) + L_g h_{i,k}^o(\boldsymbol{x}_i^t) \boldsymbol{u}_i^t + \alpha \left(h_{i,k}^o(\boldsymbol{x}_i^t) \right) \ge 0, \forall k \in \mathcal{O}$$

Planner optimization:

Planner optimization iteratively refines the LLM-generated planner using simulation feedback when robots fail to reach their targets.

Experiments

Experiments were conducted in environments with polygonal obstacles and multiple robots, where the reference planner was generated using OpenAI o1-preview. Performance of the LLM-DiSC was compared against a conventional distributed planner combining A*, Pure Pursuit, and a CBF coordinator.

■ Safety and Scalability

TABLE I: Different robot models and group sizes

Model	Size	Pass@k			Iterations
Wodei	3126	k=1	k=5	k=10	iterations
Cinale Integrator	5	100%	100%	100%	1
Single Integrator	10	75%	100%	100%	1.37
Unicod	5	70%	100%	100%	1.67
Unicycle	10	60%	90%	95%	2.11

Trajectories of 10 unicycle robots.

Temporal evolution of minimum inter-robot distances in 10 robots.

Near-Optimal Performance

TABLE II: Near-optimality evaluation

Me	thods	LLM-DISC	Conventional
Commutations	Offline	261.98s	676.03s
Computations	Online	7.85s	7.03s
	Success	Yes	No
Execution	Traveling Time	41.10s	40.5s
	Trajectory Length	23.25	21.69

Ablation Study of Different LLM Models

TABLE III: Ablation study of different LLMs

LLM Mo	del	o1-preview	GPT-4o	DeepSeek-r1
	k=1	60%	5%	55%
Pass@k	k=5	90%	50%	95%
	k=10	95%	65%	100%
Iteratio	ns	2.11	4.08	2.13
Offline Comput	ation Time	261.98s	192s	1069.78s
Online Comput	ation Time	7.85s	8.86s	6.54s

Conclusions

By integrating LLM reasoning with CBF safety guarantees, our approach enables collision-free navigation and efficient task execution without relying on extensive training data or expert-designed models. The experimental results validate the superior performance of LLM-DiSC across different dynamic models and group sizes. This accessible solution significantly lowers technical barriers and computational demands for multi-robot motion planning.

https://github.com/Yangnig/LLM-DiSC

Madal	C:	Pass@k			Itarationa
Model	Size	k=1	k=5	k=10	Iterations
Cinale Internator	5	100%	100%	100%	1
Single Integrator	10	75%	100%	100%	1.37
I Indianala	5	70%	100%	100%	1.67
Unicycle	10	60%	90%	95%	2.11

Model	Size	k=1	Pass@k k=5	k=10	Iterations
Single Integrator	5	100%	100%	100%	1
	10	75%	100%	100%	1.37
Unicycle	5	70%	100%	100%	1.67
	10	60%	90%	95%	2.11

N	lethod	LLM-DiSC	Conventional
Computations	Offline Online	261.98s 7.85s	676.03s 7.03s
Execution	Success Traveling Time Trajectory Length	Yes 41.10s 23.25	No 40.5s 21.69

The experimental environment consists of static polygonal obstacles and multiple robots. We use OpenAl o1-preview as the LLM to generate the reference planner. Performance of the proposed LLM-DiSC framework was compared against a conventional distributed motion planner consisting of an A* target navigator combined with a Pure Pursuit tracker and the same parameterized CBF-based coordinator adopted by LLM-DiSC.

LLM Model	o1-preview	GPT-40	DeepSeek-r1
k=1	60%	5%	55%
Pass@k k=5	90%	50%	95%
k=10	95%	65%	100%
Iterations	2.11	4.08	2.13
Offline Computation Time	261.98s	192s	1069.78s
Online Computation Time	7.85s	8.86s	6.54s

Me	thods	LLM-DiSC	Conventional
Computations	Offline	261.98s	676.03s
Computations	Computations Online		7.03s
	Success	Yes	No
Execution	Traveling Time	41.10s	40.5s
	Trajectory Length	23.25	21.69

LLM M	odel	o1-preview	GPT-4o	DeepSeek-r1
	k=1	60%	5%	55%
Pass@k	k=5	90%	50%	95%
	k=10	95%	65%	100%
Iteration	ons	2.11	4.08	2.13
Offline Compu	tation Time	261.98s	192s	1069.78s
Online Compu	tation Time	7.85s	8.86s	6.54s

论文编号: 120698

的智赋能 掌控未来

LLM-DiSC: LLM-enabled Distributed and Safe Coordination of **Multi-Robot Systems using Control Barrier Functions**

Qingqing Yang¹, Guoxiang Zhao^{1,*}, Xiaoqiang Ren¹, Xiaofan Wang²

¹Shanghai University ²Shanghai Institute of Technology

Abstract

Multi-robot systems (MRS) are widely used but often face motion conflicts during coordination. While large language models (LLM) show promise in complex planning tasks, their application to MRS remains limited by hallucinations and insufficient domain knowledge. To address this, we propose LLM-DiSC, a distributed and safe coordination framework that integrates LLM-generated planners with control barrier functions (CBF). It employs centralized training with feedback from simulation and CBF-based risk evaluation to refine planning, and distributed execution for scalability. Experiments demonstrate LLM-DiSC's safety, scalability, and near-optimal performance.

Method

Reference planner:

LLM generates the reference planner in Python, with automatic semantic correction through error feedback to the LLM.

CBF-based modifier:

Unsafe reference signals are corrected by the CBF-based modifier to ensure safety.

Define the safe state set S using a continuously differentiable function h(x):

$$S: \{ x \in \mathbb{R}^n : h(x) \ge 0 \}.$$

Given the system's dynamics and the safe state set, h is a CBF if there exists a class \mathcal{K} function α , such that $\forall x_i \in S$:

$$\sup_{\boldsymbol{u}_i \in U} \left[L_f h_i(\boldsymbol{x}_i) + L_g h_i(\boldsymbol{x}_i) \boldsymbol{u}_i + \alpha \left(h_i(\boldsymbol{x}_i) \right) \right] \ge 0.$$

Solve a Quadratic Program to find safe control input u close to LLM's reference output:

$$\min_{\boldsymbol{u}_{i}^{t}} \frac{1}{2} \|\boldsymbol{u}_{i}^{t} - \boldsymbol{u}_{ref}^{t}\|^{2}$$

s.t.
$$L_f h_{i,j}^a(\boldsymbol{x}_i^t) + L_g h_{i,j}^a(\boldsymbol{x}_i^t) \boldsymbol{u}_i^t + \alpha \left(h_{i,j}^a(\boldsymbol{x}_i^t) \right) \ge 0, \forall j \in \mathcal{R} \setminus \{i\}$$

$$L_f h_{i,k}^o(\boldsymbol{x}_i^t) + L_g h_{i,k}^o(\boldsymbol{x}_i^t) \boldsymbol{u}_i^t + \alpha \left(h_{i,k}^o(\boldsymbol{x}_i^t) \right) \ge 0, \forall k \in \mathcal{O}$$

Planner optimization:

Planner optimization iteratively refines the LLM-generated planner using simulation feedback when robots fail to reach their targets.

Experiments

Experiments were conducted in environments with polygonal obstacles and multiple robots, where the reference planner was generated using OpenAI o1-preview. Performance of the LLM-DiSC was compared against a conventional distributed planner combining A*, Pure Pursuit, and a CBF coordinator.

Safety and Scalability

TABLE I: Different robot models and group sizes

Model	Size	Pass@k			Iterations
		k=1	k=5	k=10	iterations
Single Integrator	5	100%	100%	100%	1
	10	75%	100%	100%	1.37
Unicycle	5	70%	100%	100%	1.67
	10	60%	90%	95%	2.11

Trajectories of 10 unicycle robots.

Temporal evolution of minimum inter-robot distances in 10 robots.

Near-Optimal Performance

TABLE II: Near-optimality evaluation

TABLE II. Wear optimality evaluation					
Methods		LLM-DISC	Conventional		
	261.98s	676.03s			
Computations	Online	7.85s	7.03s		
	Success	Yes	No		
Execution	Traveling Time	41.10s	40.5s		
	Trajectory Length	23.25	21.69		

Ablation Study of Different LLM Models

TABLE III: Ablation study of different LLMs

TABLE III. Abiation study of different LLIVIS						
LLM Model		o1-preview	GPT-4o	DeepSeek-r1		
Pass@k	k=1	60%	5%	55%		
	k=5	90%	50%	95%		
	k=10	95%	65%	100%		
Iterations		2.11	4.08	2.13		
Offline Computation Time		261.98s	192s	1069.78s		
Online Computation Time		7.85s	8.86s	6.54s		

Conclusions

By integrating LLM reasoning with CBF safety guarantees, our approach enables collision-free navigation and efficient task execution without relying on extensive training data or expert-designed models. The experimental results validate the superior performance of LLM-DiSC across different dynamic models and group sizes. This accessible solution significantly lowers technical barriers and computational demands for multi-robot motion planning.

