$$\boxed{1} \boxed{1} \boxed{1} \sqrt{g} L(\hat{g}, y) = \sqrt{g} \left(-y \ln(\hat{g}) - (1-y) \ln(1-\hat{g}) \right)$$

$$\frac{1}{9} = \frac{-9}{(1-9)} = \frac{-9}{9} + \frac{(1-9)}{(1-9)} = \frac{-9(1-9) + 9(1-9)}{9(1-9)}$$

$$= -y + \hat{y}y + \hat{y} - \hat{y}y = -y + \hat{y}$$

$$\hat{y}(1 - \hat{y}) = \hat{y}(1 - \hat{y})$$
and since $h^{(2)} = \hat{y}$,

$$\nabla_{\hat{y}} L(\hat{y}, y) = \frac{-y + \hat{y}}{\hat{y}(1 - \hat{y})} = \frac{-y + h^{(2)}}{k^{(2)}(1 - k^{(2)})}$$

(12)
$$\nabla_{a^{(2)}}J = g \circ f'(a^{(2)})$$
 $f'(z) = \frac{e^{-z}}{(1+e^{-z})^2} = \frac{(1+e^{-z}-1)}{(1+e^{-z})} \cdot \frac{1}{(1+e^{-z})} = (1-f(z))f(z)$

50
$$g \circ f'(a^{(2)}) = g \circ f(a^{(2)})(1 - f(a^{(2)}))$$

= $g \circ h^{(2)}(1 - h^{(2)})$ Since $h^{(2)} = f(a^{(2)})$
= $-y + h^{(2)}$
 $h^{(2)}(1 - h^{(2)}) \circ h^{(2)}(1 - h^{(2)})$ So $\nabla_{a^{(2)}}J = h^{(2)} - y$.

$$= -\frac{y + h^{(2)}}{h^{(2)}(1 - h^{(2)})} \circ h^{(2)}(1 - h^{(2)})$$
 so $\nabla_{a}(z)J = h^{(2)} - y$.

$$\begin{array}{ccc}
\hline{(1.3)} & \nabla_{b}(z) & \boxed{} & 9
\end{array}$$

$$f_{rom}$$
 1.2, $g = \nabla_{a^{(2)}}J$ so $\nabla_{b^{(2)}}J = h^{(2)} - y$

$$(9) \nabla_{W^{(2)}} J = gh^{(2-1)}T = gh^{(1)}T$$
 so
$$\nabla_{W^{(2)}} J = (h^{(2)} - y) \cdot h^{(1)}T$$

$$g = h^{(2)} - y$$
 so $\nabla_{h^{(1)}} J = W^{(2)} T \cdot (h^{(2)} - y)$

(a)
$$g = \nabla_{a}(0) = g \circ f'(a^{(1)})$$

$$= g \circ f(a^{(1)})(1 - f(a^{(1)})) = g \circ h^{(1)}(1 - h^{(1)})$$

$$= g \circ f(a^{(1)})(1 - f(a^{(1)})) = g \circ h^{(1)}(1 - h^{(1)})$$

$$= g \circ h^{(1)}(1 - h^{(1)}) = g \circ h^{(1)}(h^{(2)} - g) \circ h^{(1)}(1 - h^{(1)}) = \nabla_{a}(0) = g$$

$$= \nabla_{b}(0) = g \circ \nabla_$$