Chapter 33 HDMI Transmitter (HDMI)

33.1 Overview

33.1.1 HDMI Operational Model Overview

The High Definition Multimedia Interface (HDMI) is a wired digital interconnect that replaces the analog TV out or VGA out.

HDMI is capable of transferring uncompressed video, audio, and data using a single cable. The video pixel rates are typically from 25 MHz up to 266 MHz (and 3D video modes), but HDMI can support higher rates up to 266 MHz. It can support S/PDIF (IEC60958 L-PCM and IEC61937 compressed non-linear PCM: AC-3, MPEG-1/-2 Audio, DTS®, MPEG-2/-4 AAC, ATRAC, WMA, MAT) and Parallel HBR (high bit rate) audio interface, enabling the support of Dolby® True-HD and DTS-HD Master Audio. HDMI has the capability of automatically setting the display format configuration (intelligent link).

HDMI include a content protection system called HDCP (High-bandwidth Data Content Protection). The HDMI connections can be used to connect DVD recorders, set-top boxes, and game consoles to flat panel televisions and an AV amplifier that can act as repeater/router.

HDMI system architecture consists of sources (transmitter) and sinks (receiver). As shown in the figure below, the HDMI cable and connectors carry four differential pairs that make up the TMDS data and clock channels. These channels are used to carry video, audio, and auxiliary data. In addition, HDMI carries a VESA Data Display Channel (DDC). The DDC is used for configuration and status exchange between a single source and a single sink. The optional CEC protocol provides high-level control functions between all of the various audiovisual products in a user's environment.

Figure 33-1. HDMI Block Diagram

Audio, video, and auxiliary data is transmitted across the three TMDS data channels. A TMDS clock running at 1x (24-bit true color mode), the video pixel rate is transmitted on the TMDS clock channel and used by the receiver as a frequency reference for data recovery on the three TMDS data channels. Video data can have a pixel size of 24bits. Video at the default 24-bit color depth is carried at a TMDS clock rate equal to the pixel clock rate. Higher color depths are carried using a correspondingly higher TMDS clock rate. Video formats with TMDS rates below 25MHz (such as, 13.5MHz for 480i/NTSC) can be transmitted using a pixel-repetition scheme. The video pixels can be encoded in either RGB, YCBCR 4:4:4, or YCBCR 4:2:2 formats.

HDMI uses a packet structure to transmit audio and auxiliary data across the TMDS channels. To attain the highest reliability required of audio and control data, this data is protected with a BCH error correction code and is encoded using a special error reduction code to produce the transmitted 10-bit word.

Basic audio functionality consists of a single IEC 60958 L-PCM audio stream (two audio channels) at sample rates of 32 KHz, 44.1 KHz, or 48 KHz, which can accommodate any normal stereo stream. Optionally, HDMI can carry audio at sample rates up to 192KHz

and with three to eight audio channels. HDMI can also carry an IEC 61937 compressed (such as, surround sound) audio stream at bit rates up to 24.576 Mbps. For bit rates above 6.144 Mbps, compressed audio streams conforming to IEC 61937 are carried using HBR Audio Stream Packets. Each packet carries four IEC 60958 frames, which corresponds to (4x2x16 =) 128 contiguous bits of an IEC 61937 stream.

The source uses the DDC to read the sink's Enhanced Extended Display Identification Data (E-EDID) to obtain the sink's configuration and/or capabilities.

The HDMI TX Controller schedules the three periods: Video Data Period, Data Island period, and Control period. During the Video Data Period, the active pixels of an active video line are transmitted. During the Data Island period, audio and auxiliary data are transmitted using a series of packets. The Control period is used when no video, audio, or auxiliary data needs to be transmitted. A Control Period is required between any two periods that are not Control Periods.

An example of each period placement is shown in the figure below.

Figure 33-2. TMDS Periods in 720x480p Video Frame

33.1.1.1 Interfaces

HDMI TX has the following interfaces:

Overview

- HDCP interface
- External ROM interface for key storage
- External RAM interface for revocation
- Random number generator interface
- Video input interface
- RGB 4:4:4
- YCbCr4:2:2
- YCbCr4:4:4
- Digital audio input interface
- AHB audio DMA
- System interface
- AMBA AHB
- Scan test interface
- HDMI TX PHY interface
- CEC interface

33.1.1.2 Features

HDMI TX includes the following features:

- Supported video formats:
- All CEA-861-E video formats up to 1080p at 60Hz and 720p/1080i at 120Hz
- Supported colorimetry:
- 24bit RGB 4:4:4
- 24bit YCbCr 4:4:4
- 16bit YCbCr 4:2:2
- xvYCC601
- xvYCC709
- Integrated color space converter:
- RGB(4:4:4) to/from YCbCr(4:4:4 or 4:2:2)
- Optional HDMI 1.4a supported video formats:
- HDMI 1.4a 3D video modes with up to 266MHz (TMDS clock)
- Optional HDMI 1.4a supported colorimetry:
- sYCC601
- Adobe RGB
- Adobe YCC601
- Optional HDMI 1.4a supported Infoframes:
- Audio InfoFrame packet extension to support LFE playback level information
- AVI infoFrame packet extension to support YCC Quantization range (Limited Range, Full
- Range)

- AVI infoFrame packet extension to support Content type (Graphics, Photo, Cinema, Game)
- Supported Audio formats:
- Up to four I²S interface for eight-channel Linear-PCM audio
- S/PDIF interface for linear and non-linear PCM formats:
 - AC-3
 - MPEG-1/-2 Audio
 - DTS
 - MPEG- 2/-4 AAC
 - ATRAC
 - WMA
 - MAT
- Parallel audio interface for High-Bit Rate (HBR) Audio:
 - Dolby® True-HD
 - DTS®-HD Master Audio
 - Generic Parallel Audio interface
- AHB DMA Audio interface
- Up to 192 KHz IEC60958 audio sampling rate
- Pixel clock from 13.5MHz up to 266 MHz
- Option to remove pixel repetition clock (prepclk) from HDMI TX interface for an easy integration with third-party HDMI TX PHYs
- Flexible synchronous enable per clock domain to set functional power down modes
- Register access:
- AMBA AHB
- I²C DDC, EDID block read mode
- Advanced PHY testability
- Integrated CEC hardware engine

33.2 External Signals

See HDMI PHY for external signal information.

33.3 Clocks

The table found here describes the clock sources for HDMI.

Please see Clock Controller Module (CCM) for clock setting, configuration and gating information.

Table 33-1. HDMI Clocks

Clock name	Clock Root	Description
iahbclk	ahb_clk_root	Bus clock
icecclk	ckil_sync_clk_root	CEC low-frequency clock (32kHZ)
ihclk	ahb_clk_root	Module clock
isfrclk	video_27m_clk_root	Internal SFR clock (video clock 27MHz)

33.4 Functional Description

This section describes the functional architecture of the HDMI TX controller.

33.4.1 HDMI TX Functional Overview

The HDMI TX provides a variety of standard audio, video, and system interfaces.

It includes an high-bandwidth data content protection (HDCP) encryption engine for HDMI receiver authentication, revocation, and data encryption.

Figure below illustrates the top level diagram of the HDMI TX solution.

Figure 33-3. HDMI TX Top Level Block Diagram

The HDCP encryption engine is responsible for HDMI receiver authentication, revocation, and data encryption.

The input video stream can be either RGB 4:4:4, YcbCr 4:2:2, or YcbCr 4:44 in single data rate (SDR) bus formats as described in Table 33-2. The video mode's timing format must follow the CEA-861-E specification. An embedded color space conversion allows the pixel color format to be converted on the HDMI source side to match the best with the HDMI sink capabilities. 24

The input audio stream can be provided through audio AHB DMA interface;

Finally, HDMI_TX can output video in full HD with up to 48-bit color mode and inserts high fidelity audio up to eight-channels over low resolution video formats by performing automatic pixel repetition over the input video stream.

33.4.2 Video Pixel Sampler

The Video pixel sampler block is responsible for the video data synchronization, according to the video data input mapping defined by the Color Depth (Deep Color) and format configuration.

Optionally, for YCbCr 4:2:2 format, data mapping can be performed to conform to ITU. 601 and ITU.656 standards but without the support of embedded synchronizers.

The video pixel sampler registers base address is 0x0200.

33.4.2.1 HDMI Transmitter Controller Databook Functional Description

Table 33-2. Input Data Mapping

Video Ir Format	nput	ivdata	a[47:	0] ma	appir	ng																		
Color Space	Color Depth	47-4 6	45- 44	43- 42	41- 40	39- 38	37- 35	35- 34	 31-3 0	29- 28	l	25- 24	23- 22	21- 20	19- 18	17- 16	15-1 4	13- 12	11- 10	9- 8	7 - 6	5 - 4	3- 2	1- 0
RGB 4:4:4	8-bit	R[7:0]		•				G[7:0)]							B[7:0]	•	•				
YCbCr 4:4:4	8-bit	Cb[7:	0]						Y[7:0]							Cr[7:0	0]						
YCbCr	8-bit	Cb[7:	0]						Y[7:0]														
4:2:2		Cr[7:0	0]						Y[7:0]														

For each video timing format, there is a specific timing parameters defined in the CEA-861-E specification.

The following timing diagram is an example for the video mode format 1 (640x480p @ 59.94/60 Hz): Data Enable = idataen, HSYNC = ihsync, VSYNC = ivsync.

Figure 33-4. Timing Parameters for 640x480p @ 59.94/60 Hz

For a complete list of timing parameters and diagrams, refer to the CEA-861-E specification. The SDR video sample input format is illustrated in the figure below.

Figure 33-5. Video Sample Timing Interface for RGB and YCbCr SDR Format

33.4.3 Supported Video Mode

The table below shows examples of the supported video modes.

Table 33-3. Video Modes

				2D	3D Struc	cture						
VideoMod e	Mode	H x V Active Resolutio n (pixel)	Refre s h Rate (Hz)	2D Pixel Rate (Mp/s)	Frame Packin g Pixel Rate (Mp/s)	Field Alt. Pixel Rate (Mp/s)	Line Alt. Pixel Rate (Mp/s)	Side- by- Side (full) Pixel Rate (Mp/s)	L+depth Pixel Rate (Mp/s)	L +depth + graphic s+ graphic s- depth Pixel Rate (Mp/s)	Side- by- Side (Half) Pixel Rate (Mp/s)	Top- and- Bottom Pixel Rate (Mp/s)
					ALL CEA	Interlace d Only	Progr. Only	ALL CEA	Progr. Only	Progr. Only	ALL CEA	ALL CEA
Primary HE	Primary HDMI Video Format Timings (CEA-861-						1		1		•	

Table 33-3. Video Modes (continued)

1	640x480p (EDTV)	640 x 480	59.94	25.18	50.35		50.35	50.35	50.35	100.70	25.18	25.18
1			60.00	25.2	50.40		50.40	50.40	50.40	100.80	25.2	25.2
19	1280x720p (HDTV)	1280 x 720	50.00	74.25	148.50		148.50	148.50	148.50	297.00	74.25	74.25
4			59.94	74.18	148.35		148.35	148.35	148.35	296.70	74.18	74.18
4			60.00	74.25	148.50		148.50	148.50	148.50	297.00	74.25	74.25
20	1920x1080i (HDTV)	1920 x 1080	50.00	74.25	148.50	148.50		148.50			74.25	74.25
5			59.94	74.18	148.35	148.35		148.35			74.18	74.18
5			60.00	74.25	148.50	148.50		148.50			74.25	74.25
2.3	720x480p (EDTV)	720 x 480	59.94	27.00	54.00		54.00	54.00	54.00	108.00	27.00	27.00
2.3			60.00	27.03	54.05		54.05	54.05	54.05	108.11	27.03	27.03
6.7	720(1440)x4 80i (SDTV)	1440 x 480	59.94	27.00	54.00	54.00		54.00			27.00	27.00
6.7			60.00	27.03	54.05	54.05		54.05			27.03	27.03
17.18	720x576p (EDTV)	720 x 576	50.00	27.00	54.00			54.00			27.00	27.00
21.22	720(1440)x5 76i (SDTV)	1440 x 576	50.00	27.00	54.00	54.00		54.00			27.00	27.00
Seconda E)	ry HDMI video f	ormat timin	gs (CEA	A-861-		1			1	1		
8.9	720(1440)x2 40p	1440 x 240	59.94	27.00	54.00		54.00	54.00	54.00	108.00	27.00	27.00
8.9			60.00	27.03	54.05		54.05	54.05	54.05	108.11	27.03	27.03
10.11	1440(2880)x 480i	2880 x 480	59.94	54.00	108.00	108.00		108.00			54.00	54.00
10.11			60.00	54.05	108.11	108.11		108.11			54.05	54.05
12.13	1440(2880)x 240p	2880 x 240	59.94	54.00	108.00		108.00	108.00	108.00	216.00	54.00	54.00
12.13			60.00	54.05	108.11		108.11	108.11	108.11	216.22	54.05	54.05
32	1920x1080p (HDTV)	1920 x 1080	23.98	74.18	148.35		148.35	148.35	148.35	296.70	74.18	74.18
32			24.00	74.25	148.50		148.50	148.50	148.50	297.00	74.25	74.25
33			25.00	74.25	148.50		148.50	148.50	148.50	297.00	74.25	74.25
34			29.97	74.18	148.35		148.35	148.35	148.35	296.70	74.18	74.18
34			30.00	74.25	148.50		148.50	148.50	148.50	297.00	74.25	74.25
31			50.00	148.5	297.00		297.00	297.00	297.00		148.5	148.5
16			59.94	148.3 5	296.70		296.70	296.70	296.70		148.35	148.35
16			60.00	148.5	297.00		297.00	297.00	297.00		148.5	148.5
64			100.0 0	297.0 0							297.00	297.00

Table 33-3. Video Modes (continued)

63			120.0 0	297.0 0							297.00	297.00
40	1920x1080i (HDTV)	1920 x 1080	100.0 0	148.5	297.00	297.00		297.00			148.5	148.5
46			119.8 8	148.3 5	296.70	296.70		296.70			148.35	148.35
46			120.0 0	148.5	297.00	297.00		297.00			148.5	148.5
60	1280x720p (HDTV)	1280 x 720	24.00	59.40	118.80		118.80	118.80	118.80	237.60	59.40	59.40
61			25.00	74.25	148.50		148.50	148.50	148.50	297.00	74.25	74.25
62			30.00	74.25	148.50		148.50	148.50	148.50	297.00	74.25	74.25
41			100.0 0	148.5	297.00		297.00	297.00	297.00		148.5	148.5
47			119.8 8	148.3 5	296.70		296.70	296.70	296.70		148.35	148.35
47			120.0 0	148.5	297.00		297.00	297.00	297.00		148.5	148.5
29, 30	1440x576p (EDTV)	1440 x 576	50.00	54.00	108.00		108.00	108.00	108.00	216.00	54.00	54.00
37.38	2880x576p (EDTV)	2880 x 576	50.00	108.0 0	216.00		216.00	216.00	216.00		108.00	108.00
14.15	1440x480p (EDTV)	1440 x 480	59.94	54.00	108.00		108.00	108.00	108.00	216.00	54.00	54.00
14.15			60.00	54.05	108.11		108.11	108.11	108.11	216.22	54.05	54.05
35.36	2880x480p (EDTV)	2880 x 480	59.94	54.00	108.00		108.00	108.00	108.00	216.00	54.00	54.00
35.36			60.00	54.05	108.11		108.11	108.11	108.11	216.22	54.05	54.05
48.49	720x480p (EDTV)	720 x 480	119.8 8	54.00	108.00		108.00	108.00	108.00	216.00	54.00	54.00
48.49			120.0 0	54.05	108.11		108.11	108.11	108.11	216.22	54.05	54.05
56.57			239.7 6	108.0 0	216.00		216.00	216.00	216.00		108.00	108.00
56.57			240.0 0	108.1 1	216.22		216.22	216.22	216.22		108.11	108.11
50.51	720(1440)x4 80i (SDTV)	1440 x 480	119.8 8	54.00	108.00	108.00		108.00			54.00	54.00
50.51			120.0 0	54.05	108.11	108.11		108.11			54.05	54.05
58.59			239.7 6	108.0 0	216.00	216.00		216.00			108.00	108.00
58.59			240.0 0	108.1 1	216.22	216.22		216.22			108.11	108.11
42.43	720x576p (EDTV)	720 x 576	100.0 0	54.00	108.00		108.00	108.00	108.00	216.00	54.00	54.00

Table 33-3. Video Modes (continued)

52.53			200.0	108.0 0	216.00		216.00	216.00	216.00		108.00	108.00
44.45	720(1440)x5 76i (SDTV)	1440 x 576	100.0 0	54.00	108.00	108.00		108.00			54.00	54.00
54.55			200.0 0	108.0 0	216.00	216.00		216.00			108.00	108.00
23.24	720(1440)x2 88p	1440 x 288	50.00	27.00	54.00		54.00	54.00	54.00	108.00	27.00	27.00
25.26	720(1440)x5 76i	1440 x 576	50.00	54.00	108.00	108.00		108.00			54.00	54.00
27.28	1440(2880)x 288p	2880 x 288	50.00	54.00	108.00		108.00	108.00	108.00	216.00	54.00	54.00
39	1920x1080i	1920 x 1080	50.00	72.00	144.00	144.00		144.00			72.00	72.00

33.4.4 Video Packetizer

This block is responsible for:

- Pixel repetition (if not already performed in the input video stream and needed by the user)
- 10-bit, 12-bit, and 16-bit packing when in deep color modes
- YCC 422 remapping according to the HDMI 1.4a specification
- Clock rate transformation from pixel or repetition clock to the final TMDS clock domain (by means of FIFOs)

The figure below depicts a functional diagram of the Video Packetizer block.

Figure 33-6. Video Packetizer Functional Diagram

33.4.5 Color Space Conversion

This block is responsible for carrying out the following video color space conversion functions:

- RGB to/from YCbCr
- 4:2:2 to/from 4:4:4 up (pixel repetition or linear interpolation)/down-converter
- Limited to/from full quantization range conversion

Figure 33-7. Color Space Converter Simplified Block Diagram

The Color Space Converter (CSC) supports all the timings reported in the CEA-861-D specification and the following pixel modes:

- RGB444 and YCbCr444: 24, 30, 36, and 48 bits
- YCbCr422: 16, 20, and 24 bits

The color space conversion matrix is ruled by the following equations listed below. The color space conversion registers base address is 0x4100.

$$out_1 = (X_1 x in_1/4096 + X_2 x in_2/4096 + X_3 x in_3/4096 + X_4) x 2^{scale}$$

$$out_2 = (Y_1 \ x \ in_1/4096 + Y_2 \ x \ in_2/4096 + Y_3 \ x \ in_3/4096 + Y_4) \ x \ 2^{\text{scale}}$$

$$out_3 = \left(Z_1 \ x \ in_1 / 4096 + Z_2 \ x \ in_2 / 4096 + Z_3 \ x \ in_3 / 4096 + Z_4\right) \ x \ 2^{\text{scale}}$$

33.4.6 Audio Interfaces

The supported audio input interfaces are:

AHB Direct Memory Access (DMA)

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

No lipsync support is available inside the HDMI TX. If necessary, this feature can be performed at the system audio processor side. From the HDMI TX, no audio/video delay or skew is added.

The audio sampler registers base address is 0x3100.

33.4.6.1 CTS Calculation

Because there is no audio clock carried through the HDMI link, only the pixel clock is used.

The CTS/N has to be set by software with value taken in the following table. Table below shows the CTS and N value for the supported standard. All other TMDS clocks are not supported; the TMDS clocks divided or multiplied by 1,001 coefficients are not supported.

	TMDS C	lock (MHz	<u>z</u>)									
	25.2		27	27		54		74.25			297	
Fs (kHZ)	N	CTS	N	CTS	N	CTS	N	CTS	N	CTS	N	CTS
32	4096	25200	4096	27000	4096	54000	4096	74250	4096	148500	3072	222750
44.1	6272	28000	6272	30000	6272	60000	6272	82500	6272	165000	4704	247500
48	6144	25200	6144	27000	6144	54000	6144	74250	6144	148500	5120	247500
88.2	12544	28000	12544	30000	12544	60000	12544	82500	12544	165000	9408	247500
96	12288	25200	12288	27000	12288	54000	12288	74250	12288	148500	10240	247500
176.4	25088	28000	25088	30000	25088	60000	25088	82500	25088	165000	18816	247500
192	24576	25200	24576	27000	24576	54000	24576	74250	24576	148500	20480	247500
768	Used for HBR audio only. N and CTS configured for Fs=192kHZ (1/4th ACR value per spec)											

Table 33-4. N and CTS for 8-Bit Color Depth

To support the deep color mode and/or 3D video modes, the TMDS clock is multiplied by 4, 2, 1.5, or 1.25, depending on the mode. In this case, the CTS value must also follow the same ratio.

33.4.6.2 Audio DMA Interface

This audio direct memory access (DMA) interface is intended for advanced systems running 32-bit CPU SoC solutions.

This module provides a direct audio DMA interface, which is useful in systems where a DSP handles audio processing. In these systems, sending the incoming audio samples directly to the memory provides a cleaner architecture to the SoC, without the overhead of converting several audio standards.

Figure 33-8. Audio DMA Block Diagram

The audio DMA block combines an AHB master interface with a FIFO to perform direct memory access to audio samples stored in a system memory.

The DMA engine is configurable through programmable software registers to perform autonomous burst reading on a configured memory range.

33.4.6.2.1 AHB Master

The AHB master is compliant with the AMBA AHB Specification, Revision 2.0 from ARM.

It has the following features:

- Multi-master capable operation
- 32-bit data transfer
- OKAY, ERROR, RETRY, and SPLIT slave responses
- Rescheduling of burst requirements
- IDLE, NONSEQ, and SEQ transfer types
- Incremental burst modes: unspecified lengths (upper limit is 1 kB boundary) and INCR, INCR4, INCR8, and INCR16 fixed-beat bursts
- Master burst lock mechanism

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

- Bus access granting
- The following features are not supported:
- Write transaction
- Protection control
- BUSY transfer type
- Wrapping burst

Data Organization in System Memory

The AHB master block fetches the samples from system memory. The Audio Samples are organized according to the channel allocation.

For example, channel 0, 1, 3, 5 are enabled (0 and 1 are always enabled). The Audio Samples must be organized in the system memory like the following:

Table 33-5. Audio Sample Arrangement in System Memory

Position	Sample	Channel
0	n-1	0
1	n-1	1
2	n-1	3
3	n-1	5
4	n-1	0
5	n-1	1
6	n-1	3
7	n-1	5

Table 33-6. Data Arrangement in System Memory for L-PCM (24 bits)

Bit	Description
28	B - IEC B bit
27	P - Parity bit
26	C - Channel Status bit
25	U - User Data bit
24	V - Validity Bit
[23:0]	Audio Sample Data

Table 33-7. Data Arrangement in System Memory for L-PCM (16 bits) and NL-PCM (16 bits)

Bit	Description
28	B - IEC B bit
27	P - Parity bit
26	C - Channel Status bit

Table 33-7. Data Arrangement in System Memory for L-PCM (16 bits) and NL-PCM (16 bits) (continued)

25	U - User Data bit
24	V - Validity Bit
[23:8]	Audio Sample Data
[7:0]	0x00

33.4.6.2.2 DMA Engine

The DMA engine is responsible for requesting burst transfers to the AHB master, taking into account the FIFO threshold and register settings.

33.4.6.2.2.1 Functional Behavior

The engine:

- Arbitrates read requests to start the burst in the initial address with the size sufficient to fill the FIFO (the size of the FIFO is a parameter in the audio DMA core).
- After this first request, the DMA engine performs subsequent burst requests (incrementing accordingly ohaddr[31:0] and determining correct ohburst[2:0]) towards final_addr[31:0] configured at the register bank and taking into account the AUDIO_FIFO_DEPTH parameter and fifo_threshold[7:0] configuration.
- In the burst mode (INCR4, INCR8, INCR16), the operation stops at the end of the burst.
- Stops operation upon ERROR slave response, signaling ointerror interrupt and staterror signal
- Continues burst transaction:
- Upon RETRY/SPLIT slave response, signaling ointretrysplit interrupt and statretrysplit signal
- Upon losing ownership (no ihgrant) as consequence of arbiter action, signaling ointlostownership interrupt and statlostownership signal
- Decides through register configuration which burst method (unspecified length incrementing or fixed beat incrementing) to use in the read transfers
- Issues ointdone interrupt when it reaches final address reading or is stopped upon user request
- Automatically starts new burst requests until the final_addr[31:0] is reached
- The DMA engine is either stopped by the user or an error/fail condition appears at the slave response.
- Takes into account that an incrementing burst can be of any length (if unspecified INCR type), but upper limit is set because the address must not cross a 1kB boundary

- A maximum theoretical length of a burst is 1024. The burst size must be declared on the mburstlength_addr[10:0].
- Has INCR with an unspecified burst as the default operation burst mode

33.4.6.2.2.2 DMA Operation

Normal operation of the DMA engine is as follows:

1. The enable_hlock, incr_type[1:0], burst_mode, fifo_threshold[7:0], initial_addr[31:0], and final_addr[31:0] are configured according to desired DMA operation.

NOTE

Configured values have to follow these rules:

The number of memory positions (between initial_addr and final_addr) has to be a multiple of theactive audio channels.

The final_addr[31:0] signal is always bigger than the initial_addr[31:0].

- 2. To start the audio DMA operation, a '1' is written to data_buffer_ready.
- 3. The DMA engine starts the operation. The first burst transfer is:

- 4. While DMA is reading samples from the AHB master and writing samples to the Audio FIFO, a datafetch request from the internal frame composer block might happen at the Audio FIFO interface, diminishing the number of samples in the FIFO.
- 5. When the number of samples in the Audio FIFO is lower than the configured fifo_threshold[7:0], the DMA engine requests a new burst request to the AHB master interface with:

```
ohaddr[15:0] = last address in step 5);
ohburst[2:0] = INCR;
mburstlength[10:0] = AUDIO_FIFO_DEPTH - fifo_threshold[7:0];
```

6. Steps 4) and 5) continue until the final_addr[31:0] is reached.

NOTE

In the last burst request, the DMA engine calculates the mburstlength[10:0] such that the last requested read position is the final_addr[31:0].

7. After completion of the DMA operation, the DMA engine issues the ointdone interrupt signaling end of operation.

Variations of the DMA engine's behavior occur when fixed-beat, incremental bursts are used by INCR4/INCR8/INCR16 burst selects. When this forcing mode is used, you must correctly configure the FIFO's threshold such that the last of the consecutive INCRx (with x = 4, 8, or 16) bursts correctly fill the FIFO at last burst received. Note there is a re-alignment at the 1k boundary.

The following are exceptions to the described DMA behavior:

- 1. When a user requests end stop_dma_transaction, the DMA engine stops at the end of the current burst operation and signals its completion with an ointdone interrupt.
- 2. When the AHB slave sends an error response, the DMA engine stops the current operation and signals ointerror interrupt.

Rules for Configuration of Address Registers:

1. Configure the last 2 bits of initial_addr with 0.

```
For example, 32'h0000 0000.
```

2. Configure the last 2 bits of final_addr with non-zero values.

```
For example
32'hxxx_xxx3 or
32'hxxx_xxx7 or
32'hxxx_xxxB or
32'hxxx_xxxF
Where x= any value
```

3. The number of samples is calculated by using the following formula:

```
Number of samples = (final\_addr - initial\_addr + 1) / 4

Therefore, final\_addr = (Number of samples x 4) + initial\_addr - 1

If a defined length burst is used, align initial\_addr, final\_addr and fifo\_threshold with the value. If

the burst is not aligned, DMA uses AHB INCR transfers when required.
```

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Then the number of samples = 100 (a multiple of 5)

4. The threshold must be

```
Greater than the selected FIFO DEPTH;

Greater than the number of channels enabled in channel allocation.
```

Due to the limit of audio DMA design, some registers configuration are updated by SDMA (Smart Direct Memory Access). SDMA need to do these items below:

- 1. clear the audio DMA done request(actually it's an interrupt); set offset 0x00120109 -- bit2.
- 2. configure next audio DMA start address(offset 0x00123604~0x00123607) and next stop address(offset 0x00123608~0x0012360b); Start address and stop address are provided by S/W and it's variable.
- 3. Set offset 0x00123601 bit0 "1" to start DMA;

33.4.6.2.2.3 Transfer Data, Package, and Word

One transfer data can be composed of several transfer packages, and one transfer package can be composed of one or several transfer bursts. One transfer burst can be composed of several transfer words.

The figure below shows the transfer data structure for a fixed-beat, incremental burst.

Figure 33-9. Transfer Data Constitution for Fixed-Beat, Incremental Burst

The figure below depicts the transfer data structure for an unspecified burst length.

Figure 33-10. Transfer Data Constitution for Unspecified Burst Length

The figure below illustrates the DMA state machine.

Figure 33-11. DMA FSM Diagram

- 1. When the operation request is written into the data_buffer_ready, the state switches from IDLE to DMAREQ.
- 2. When enough transfer information is ready, the state changes to DMAXFER.

- When one package is completed-indicated by "OnePackOver"-or a lost ownership occurs, the state jumps back to DMAREQ, so the new transaction information can be calculated.
- 4. When the DMA is ready again, it jumps to DMAXFER.

The previous steps continue until you request an end operation or until the whole operation is completed.

33.4.6.2.3 Audio FIFO

This block contains a FIFO with a configurable depth.

The statthrfiffoempty flag is a version of the FIFO empty, that is active whenever the amount of samples in the FIFO is smaller than four samples. The AHB_DMA_THRSLD and the statthrfifoempty indicators are different. The AHB_DMA_THRSLD defines the occupation of the FIFO, while statthrfifoempty helps the HDMI TX's Frame Composer in the audio packet composition (required when non-linear audio is being packed, in which case four pair of samples are needed to compose one packet).

33.4.6.2.4 FIFO Occupancy/FIFO Almost Empty Flags

The FIFO depth is configured by setting the AUDIO_FIFO_DEPTH parameter in coreConsultant. The FIFO occupancy is calculated from the pointer values.

Also, the most significant pointer bits are used to perform the following calculation:

If occupancy is less than 4, then statthrfifoempty is active.

An example of full/empty flags and FIFO occupancy is shown in the figure below.

Figure 33-12. Audio FIFO Status Indication

33.4.7 Supported Audio Formats

The HDMI TX has several audio interfaces and each of them has different audio format support capabilities.

Table below represents the audio interface and format dependencies.

Table 33-8. Supported Audio Formats

Audio Input Interface	Audio Format Supported
	Up to eight channels L-PCM/NL-PCM and HBR audio, allowing all audio formats listed to support one single audio DMA interface.

33.4.8 Frame Composer

This block is responsible for assembling video, audio, and data packets in a consistent frame that are streamed to the HDCP cipher and then finally to the HDMI TX PHY.

The HDMI 1.3a standard precisely describes the packet insertion timing and distribution that must be followed to correctly compose an HDMI TMDS (transition minimized differential signaling) stream. In this context, there are data island packets that-when available (ready for insertion in output stream)-have higher priority over others. Two packet descriptor queues are responsible for prioritizing packet insertion.

The higher priority packets are described in Table below. These packets are inserted in the output stream as soon as data to compose them is available (see the HDMI 1.3a standard).

Table 33-9. High Priority Data Island Packets

Packet	Description
Audio Clock Regeneration (ACR)	Indicates to sink device the N/CTS values that should be used in the ACR process
Audio Sample (AUDS)	Transports L-PCM and IEC 61937 compressed audio
General Control (GCP)	Indicates Color Depth, Pixel Packing phase, and AV mute information to sink device

The packets described in tables below can be considered as low priority packets-even though they have precise timing insertion-because their insertion timing is large (for example, one per frame or one per two frames without specific location for some of the packet types and on user request transmit for others).

Table 33-10. Low Priority Data Island Packets

Packet	Description
Audio Content Protection (ACP)	Used to convey content-related information about the active audio stream transmitted
Audio InfoFrame (AUDI)	Indicates characteristics of the active audio stream by using IEC 60958 channel status bits, IEC 61937 burst info, and/or stream data (if present).
Null (NULL)	Ignored by sink devices.
International Standard Recording Code (ISRC1/ISRC2)	See HDMI 1.3a section 5.3.8.
Vendor Specific (VSD) InfoFrame	According to CEA-861-E standard.
AVI infoFrame (AVI)	Video information from source to sink.
Source Data Product Descriptor (SPD) infoFrame	Name and product type of the source device. MPEG (MPEG) Source InfoFrame packets (optional, implementation discouraged by CEA-861-E Section 6.7). Describes several aspects of the compressed video stream that were used to produce the uncompressed video.

The Frame Composer distributes and assembles the data island packets according to the module register bank configuration. The block allows extended control periods to appear with a certain programmed spacing. The Frame Composer uses two packet buffers that allow a packet to be composed while another is being sent to the output HDMI stream.

Packet requests are inserted into the packet queues by a data island flexible scheduler. The HDMI 1.3a specification requires that packet distribution and insertion timing correctly compose an output HDMI TMDS stream. In this context, there are data island packets that are sent on data availability, while others are sent once per frame or once per two frames. and finally others that are sent on user request. Classification of the packets according to this insertion timing is described in the table below.

Packet	Classification
Audio Clock Regeneration (ACR)	Sent on data availability.
Audio Sample (AUDS)	Sent on data availability (precede ACR if present).
Audio Content Protection (ACP)	On user request or automatic insertion.
Audio InfoFrame (AUDI)	Once per two frames.
Null (NULL)	On user request or automatic insertion to fill Data Island period.
General Control (GCP)	Once per frame.
International Standard Recording Code (ISRC1/ISRC2)	On user request.
Vendor Specific (VSD) InfoFrame	On user request or automatic insertion.
AVI infoFrame (AVI)	Once per frame.
Source Data Product Descriptor (SPD) infoFrame	On user request or automatic insertion.

Table 33-11. Packet Classification

The Data Island Scheduler (DIS) handles packet distribution in the Frame Composer. The DIS is a round- robin (RDRB) state machine that is able to schedule packet insertion on an input video frame or line basis. The DIS is fully configurable and can schedule any packet type to be inserted at a given input video frame rate or input video line rate.

While determining packet distribution on an input video frame or line basis, the DIS schedules the packets to be inserted in the output HDMI stream by inserting the packet descriptor in the corresponding packet priority queue, according to packet priority classification.

After the packet descriptor has been inserted in the packet priority queues, the Data Island Packer (DIP) is responsible for assembling and sequencing the packets for output HDMI stream insertion.

Dedicated ECC generators and checksum byte-wide sum hardware generate the BCH ECC parity codes and infoFrames checksums for all the data islands packets.

The content of GCP, ISRC1/2, VSD, AVI, SPD, and MPEG packets are configured through the registers bank starting at address 0x1000.

33.4.9 HDCP Encryption Engine

HDCP is designed to protect the transmission of audio-visual content between an HDCP Transmitter and an HDCP Receiver.

The system also allows for HDCP Repeaters that support downstream HDCP-protected interface ports. The HDCP system allows up to seven levels of HDCP Repeaters and as many as 128 total HDCP devices, including HDCP Repeaters, to be attached to an HDCP-protected interface port.

NOTE

This feature must be configured and requires a separate license. Contact your Freescale representative for more information on HDCP.

The authentication protocol enables the HDCP Transmitter to verify that a given HDCP Receiver is licensed. With the legitimacy of the Receiver determined, encrypted HDCP content is transmitted between the two based on shared secrets established during authentication. In the event that legitimate devices are compromised to permit unauthorized use of the content, renewability allows an HDCP Transmitter to identify such compromised devices and prevent the transmission of the content.

The implemented HDCP functionality is compliant with HDCP revision 1.4. The HDCP transmitter implements the three layers of the HDCP cipher, including LFSR and other functions required to generate the encryption key bytes that are then XORed with the data.

33.4.10 EDID/HDCP I²C E-DDC Interface

The E-DDC channel is a dedicated I2C master interface that allows the read of sink E-EDID based on system needs.

Data read from sink E-EDID can be then transferred to the I2C Master register bank, starting at address 0x7E00.

This block reads the E-EDID (and all its segments according to user configuration) and, after completion, it warns the CPU of data availability. This block also arbitrates the I2C master interface to allow the HDMI TX's HDCP authentication protocol to be performed through this interface. Sink HDCP links (with addresses 0x74 and/or 0x76) should be present at these lines to enable HDCP-compliant behavior.

The interface is shared with the DDC channel of the HDMI controller through multiplexers and is I2C compliant.

33.4.10.1 I²C Master Interface Normal Mode

This operation implements a single read or write operation using the Special Function Register configuration.

The I^2C data transfer protocol used is the 7-bit addressed, as defined in Section 9 of the I^2C -bus Specification, version 2.1.

Figure 33-13. Data Write Transaction

Figure 33-14. Data Read Transaction

33.4.10.2 I²C Master Interface Extended Read Mode

This I2C extended read mode operation implements a segment pointer-based read operation using the Special Register configuration.

Figure 33-15. Extended Data Read Operation

33.4.11 System Configuration Interfaces

The internal register set is distributed with the HDMI TX. The system interface (the interface that connects to the processor bus) bridges these registers using a simple standard interface.

The system interface is AMBA AHB,.

The AHB bridges the bus to the internal SFR bus.

33.4.11.1 AMBA AHB Slave Interface

The AMBA AHB slave interface is compatible with the AMBA Specification, revision 2.0.

The AHB slave interface is used for register configuration implementing only a simple transaction mode and single master slave operation.

The HDMI TX does not support protection control, burst transfers, or split transactions.

33.4.12 CEC Hardware Engine

Consumer Electronics Control (CEC) is a protocol that provides high-level control functions between all of the various audiovisual products in a user's environment.

It is an optional feature in the HDMI 1.3a Specification. It uses only one bidirectional line for transmission and reception.

All transactions on the CEC line consist of an initiator and one or more followers. The initiator is responsible for sending the message structure and the data. The follower is the recipient of any data and is responsible for setting any acknowledgement bits.

Figure 33-16. CEC Engine Simplified Block Diagram

There are two operation modes for a CEC controller.

- Initiator Mode
- In this mode, the CEC controller sends messages out and waits for a follower to feedback. The CEC controller works in this mode when it starts to send a frame. After the transmission is done, it automatically returns to the follower mode (no software control involved).

HDMI Memory Map/Register Definition

- Follower Mode
- In this mode, the CEC controller receives messages and feeds back the initiator with appropriate signals. The CEC controller always works in the follower mode whenever it is not transmitting any data.

For correct CEC controller interface operation, initial reset is required in order to set internal registers to a known state. After this reset, the interface is in an IDLE state, waiting for a read or write request coming from the register configuration.

A specific CEC API is provided that implements all necessary low-level register configuration to send and receive CEC messages. For more information, see the CEC API documentation.

The CEC engine registers base address is 0x7D00. For more information about these registers, see HDMI Memory Map/Register Definition.

For more information about CEC, see *Consumer Electronics Control (CEC) Application Note*.

33.5 HDMI Memory Map/Register Definition

All registers are addressable on 32-bit boundaries; each unused bit or address location is reserved for future use and read back as 0.

.

HDMI memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_0000	Design Identification Register (HDMI_DESIGN_ID)	8	R	00h	33.5.1/1593
12_0001	Revision Identification Register (HDMI_REVISION_ID)	8	R	00h	33.5.2/1594
12_0002	Product Identification Register 0 (HDMI_PRODUCT_ID0)	8	R	00h	33.5.3/1594
12_0003	Product Identification Register 1 (HDMI_PRODUCT_ID1)	8	R	00h	33.5.4/1595
12_0004	Configuration Identification Register 0 (HDMI_CONFIG0_ID)	8	R	00h	33.5.5/1595
12_0005	Configuration Identification Register 1 (HDMI_CONFIG1_ID)	8	R	00h	33.5.6/1596
12_0006	Configuration Identification Register 2 (HDMI_CONFIG2_ID)	8	R	00h	33.5.7/1597
12_0007	Configuration Identification Register 3 (HDMI_CONFIG3_ID)	8	R	00h	33.5.8/1598
12_0100	Frame Composer Interrupt Status Register 0 (HDMI_IH_FC_STAT0)	8	w1c	00h	33.5.9/1598

HDMI memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_0101	Frame Composer Interrupt Status Register 1 (HDMI_IH_FC_STAT1)	8	w1c	00h	33.5.10/ 1599
12_0102	Frame Composer Interrupt Status Register 2 (HDMI_IH_FC_STAT2)	8	w1c	00h	33.5.11/ 1600
12_0103	Audio Sampler Interrupt Status Register (HDMI_IH_AS_STAT0)	8	w1c	00h	33.5.12/ 1601
12_0104	PHY Interface Interrupt Status Register (HDMI_IH_PHY_STAT0)	8	w1c	00h	33.5.13/ 1602
12_0105	E-DDC I2C Master Interrupt Status Register (HDMI_IH_I2CM_STAT0)	8	w1c	00h	33.5.14/ 1603
12_0106	CEC Interrupt Status Register (HDMI_IH_CEC_STAT0)	8	w1c	00h	33.5.15/ 1604
12_0107	Video Packetizer Interrupt Status Register (HDMI_IH_VP_STAT0)	8	w1c	00h	33.5.16/ 1605
12_0108	PHY GEN2 I2C Master Interrupt Status Register (HDMI_IH_I2CMPHY_STAT0)	8	w1c	00h	33.5.17/ 1606
12_0109	AHB Audio DMA Interrupt Status Register (HDMI_IH_AHBDMAAUD_STAT0)	8	w1c	00h	33.5.18/ 1606
12_0180	Frame Composer Interrupt Mute Control Register 0 (HDMI_IH_MUTE_FC_STAT0)	8	R/W	00h	33.5.19/ 1608
12_0181	Frame Composer Interrupt Mute Control Register 1 (HDMI_IH_MUTE_FC_STAT1)	8	R/W	00h	33.5.20/ 1609
12_0182	Frame Composer Interrupt Mute Control Register 2 (HDMI_IH_MUTE_FC_STAT2)	8	R/W	00h	33.5.21/ 1610
12_0183	Audio Sampler Interrupt Mute Control Register 0 (HDMI_IH_MUTE_AS_STAT0)	8	R/W	00h	33.5.22/ 1610
12_0184	PHY Interface Interrupt Mute Control Register (HDMI_IH_MUTE_PHY_STAT0)	8	R/W	00h	33.5.23/ 1611
12_0185	E-DDC I2C Master Interrupt Mute Control Register (HDMI_IH_MUTE_I2CM_STAT0)	8	R/W	00h	33.5.24/ 1612
12_0186	CEC Interrupt Mute Control Register (HDMI_IH_MUTE_CEC_STAT0)	8	R/W	00h	33.5.25/ 1612
12_0187	Video Packetizer Interrupt Mute Control Register (HDMI_IH_MUTE_VP_STAT0)	8	R/W	00h	33.5.26/ 1613
12_0188	PHY GEN 2 I2C Master Interrupt Mute Control Register (HDMI_IH_MUTE_I2CMPHY_STAT0)	8	R/W	00h	33.5.27/ 1614
12_0189	AHB Audio DMA Interrupt Mute Control Register (HDMI_IH_MUTE_AHBDMAAUD_STAT0)	8	R/W	00h	33.5.28/ 1615
12_01FF	Global Interrupt Mute Control Register (HDMI_IH_MUTE)	8	R/W	03h	33.5.29/ 1616
12_0200	Video Input Mapping and Internal Data Enable Configuration Register (HDMI_TX_INVID0)	8	R/W	01h	33.5.30/ 1616
12_0201	Video Input Stuffing Enable Register (HDMI_TX_INSTUFFING)	8	R/W	00h	33.5.31/ 1617

HDMI memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_0202	Video Input GY Data Channel Stuffing Register 0 (HDMI_TX_GYDATA0)	8	R/W	00h	33.5.32/ 1618
12_0203	Video Input GY Data Channel Stuffing Register 1 (HDMI_TX_GYDATA1)	8	R/W	00h	33.5.33/ 1619
12_0204	Video Input RCR Data Channel Stuffing Register 0 (HDMI_TX_RCRDATA0)	8	R/W	00h	33.5.34/ 1619
12_0205	Video Input RCR Data Channel Stuffing Register 1 (HDMI_TX_RCRDATA1)	8	R/W	00h	33.5.35/ 1620
12_0206	Video Input RCB Data Channel Stuffing Register 0 (HDMI_TX_BCBDATA0)	8	R/W	00h	33.5.36/ 1620
12_0207	Video Input RCB Data Channel Stuffing Register 1 (HDMI_TX_BCBDATA1)	8	R/W	00h	33.5.37/ 1621
12_0800	Video Packetizer Packing Phase Status Register (HDMI_VP_STATUS)	8	R	00h	33.5.38/ 1621
12_0801	Video Packetizer Pixel Repetition and Color Depth Register (HDMI_VP_PR_CD)	8	R/W	00h	33.5.39/ 1622
12_0802	Video Packetizer Stuffing and Default Packing Phase Register (HDMI_VP_STUFF)	8	R/W	00h	33.5.40/ 1623
12_0803	Video Packetizer YCC422 Remapping Register (HDMI_VP_REMAP)	8	R/W	00h	33.5.41/ 1624
12_0804	Video Packetizer Output, Bypass, and Enable Configuration Register (HDMI_VP_CONF)	8	R/W	46h	33.5.42/ 1625
12_0805	VP_STAT (HDMI_VP_STAT)	8	R	00h	33.5.43/ 1625
12_0806	VP_INT (HDMI_VP_INT)	8	R	00h	33.5.44/ 1626
12_0807	Video Packetizer Interrupt Mask Register (HDMI_VP_MASK)	8	R/W	00h	33.5.45/ 1627
12_0808	VP_POL (HDMI_VP_POL)	8	R/W	FFh	33.5.46/ 1628
12_1000	Frame Composer Input Video Configuration and HDCP Keepout Register (HDMI_FC_INVIDCONF)	8	R/W	70h	33.5.47/ 1629
12_1001	Frame Composer Input Video HActive Pixels Register 0 (HDMI_FC_INHACTIV0)	8	R/W	00h	33.5.48/ 1630
12_1002	Frame Composer Input Video HActive Pixels Register 1 (HDMI_FC_INHACTIV1)	8	R/W	00h	33.5.49/ 1631
12_1003	Frame Composer Input Video HBlank Pixels Register 0 (HDMI_FC_INHBLANK0)	8	R/W	00h	33.5.50/ 1631
12_1004	Frame Composer Input Video HBlank Pixels Register 1 (HDMI_FC_INHBLANK1)	8	R/W	00h	33.5.51/ 1632
12_1005	Frame Composer Input Video VActive Pixels Register 0 (HDMI_FC_INVACTIV0)	8	R/W	00h	33.5.52/ 1633
12_1006	Frame Composer Input Video VActive Pixels Register 1 (HDMI_FC_INVACTIV1)	8	R/W	00h	33.5.53/ 1633

HDMI memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_1007	Frame Composer Input Video VBlank Pixels Register (HDMI_FC_INVBLANK)	8	R/W	00h	33.5.54/ 1634
12_1008	Frame Composer Input Video HSync Front Porch Register 0 (HDMI_FC_HSYNCINDELAY0)	8	R/W	00h	33.5.55/ 1634
12_1009	Frame Composer Input Video HSync Front Porch Register 1 (HDMI_FC_HSYNCINDELAY1)	8	R/W	00h	33.5.56/ 1635
12_100A	Frame Composer Input Video HSync Width Register 0 (HDMI_FC_HSYNCINWIDTH0)	8	R/W	00h	33.5.57/ 1636
12_100B	Frame Composer Input Video HSync Width Register 1 (HDMI_FC_HSYNCINWIDTH1)	8	R/W	00h	33.5.58/ 1636
12_100C	Frame Composer Input Video VSync Front Porch Register (HDMI_FC_VSYNCINDELAY)	8	R/W	00h	33.5.59/ 1637
12_100D	Frame Composer Input Video VSync Width Register (HDMI_FC_VSYNCINWIDTH)	8	R/W	00h	33.5.60/ 1637
12_100E	Frame Composer Input Video Refresh Rate Register 0 (HDMI_FC_INFREQ0)	8	R/W	00h	33.5.61/ 1638
12_100F	Frame Composer Input Video Refresh Rate Register 1 (HDMI_FC_INFREQ1)	8	R/W	00h	33.5.62/ 1638
12_1010	Frame Composer Input Video Refresh Rate Register 2 (HDMI_FC_INFREQ2)	8	R/W	00h	33.5.63/ 1639
12_1011	Frame Composer Control Period Duration Register (HDMI_FC_CTRLDUR)	8	R/W	00h	33.5.64/ 1640
12_1012	Frame Composer Extended Control Period Duration Register (HDMI_FC_EXCTRLDUR)	8	R/W	00h	33.5.65/ 1640
12_1013	Frame Composer Extended Control Period Maximum Spacing Register (HDMI_FC_EXCTRLSPAC)	8	R/W	00h	33.5.66/ 1641
12_1014	Frame Composer Channel 0 Non-Preamble Data Register (HDMI_FC_CH0PREAM)	8	R/W	00h	33.5.67/ 1641
12_1015	Frame Composer Channel 1 Non-Preamble Data Register (HDMI_FC_CH1PREAM)	8	R/W	00h	33.5.68/ 1642
12_1016	Frame Composer Channel 2 Non-Preamble Data Register (HDMI_FC_CH2PREAM)	8	R/W	00h	33.5.69/ 1642
12_1017	Frame Composer AVI Configuration Register 3 (HDMI_FC_AVICONF3)	8	R/W	00h	33.5.70/ 1643
12_1018	Frame Composer GCP Packet Configuration Register (HDMI_FC_GCP)	8	R/W	00h	33.5.71/ 1643
12_1019	Frame Composer AVI Packet Configuration Register 0 (HDMI_FC_AVICONF0)	8	R/W	00h	33.5.72/ 1644
12_101A	Frame Composer AVI Packet Configuration Register 1 (HDMI_FC_AVICONF1)	8	R/W	00h	33.5.73/ 1645
12_101B	FC_AVICONFFrame Composer AVI Packet Configuration Register 2 (HDMI_FC_AVICONF2)	8	R/W	00h	33.5.74/ 1646
12_101C	Frame Composer AVI Packet VIC Register (HDMI_FC_AVIVID)	8	R/W	00h	33.5.75/ 1647

HDMI Memory Map/Register Definition

HDMI memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_101D	Frame Composer AVI Packet End of Top Bar Register 0 (HDMI_FC_AVIETB0)	8	R/W	00h	33.5.76/ 1647
12_101E	Frame Composer AVI Packet End of Top Bar Register 1 (HDMI_FC_AVIETB1)	8	R/W	00h	33.5.77/ 1648
12_101F	Frame Composer AVI Packet Start of Bottom Bar Register 0 (HDMI_FC_AVISBB0)	8	R/W	00h	33.5.78/ 1648
12_1020	Frame Composer AVI Packet Start of Bottom Bar Register 1 (HDMI_FC_AVISBB1)	8	R/W	00h	33.5.79/ 1649
12_1021	Frame Composer AVI Packet End of Left Bar Register 0 (HDMI_FC_AVIELB0)	8	R/W	00h	33.5.80/ 1649
12_1022	Frame Composer AVI Packet End of Left Bar Register 1 (HDMI_FC_AVIELB1)	8	R/W	00h	33.5.81/ 1650
12_1023	Frame Composer AVI Packet Start of Right Bar Register 0 (HDMI_FC_AVISRB0)	8	R/W	00h	33.5.82/ 1650
12_1024	Frame Composer AVI Packet Start of Right Bar Register 1 (HDMI_FC_AVISRB1)	8	R/W	00h	33.5.83/ 1651
12_1025	Frame Composer AUD Packet Configuration Register 0 (HDMI_FC_AUDICONF0)	8	R/W	00h	33.5.84/ 1651
12_1026	Frame Composer AUD Packet Configuration Register 1 (HDMI_FC_AUDICONF1)	8	R/W	00h	33.5.85/ 1652
12_1027	Frame Composer AUD Packet Configuration Register 2 (HDMI_FC_AUDICONF2)	8	R/W	00h	33.5.86/ 1652
12_1028	Frame Composer AUD Packet Configuration Register 3 (HDMI_FC_AUDICONF3)	8	R/W	00h	33.5.87/ 1653
12_1029	Frame Composer VSI Packet Data IEEE Register 0 (HDMI_FC_VSDIEEEID0)	8	R/W	00h	33.5.88/ 1653
12_102A	Frame Composer VSI Packet Data Size Register (HDMI_FC_VSDSIZE)	8	R/W	1Bh	33.5.89/ 1654
12_1030	Frame Composer VSI Packet Data IEEE Register 1 (HDMI_FC_VSDIEEEID1)	8	R/W	00h	33.5.90/ 1654
12_1031	Frame Composer VSI Packet Data IEEE Register 2 (HDMI_FC_VSDIEEEID2)	8	R/W	00h	33.5.91/ 1655
12_1032	Frame Composer VSI Packet Data IEEE Register 0 (HDMI_FC_VSDPAYLOAD0)	8	R/W	00h	33.5.92/ 1655
12_1033	Frame Composer VSI Packet Data IEEE Register 1 (HDMI_FC_VSDPAYLOAD1)	8	R/W	00h	33.5.93/ 1656
12_1034	Frame Composer VSI Packet Data IEEE Register 2 (HDMI_FC_VSDPAYLOAD2)	8	R/W	00h	33.5.94/ 1656
12_1035	Frame Composer VSI Packet Data IEEE Register 3 (HDMI_FC_VSDPAYLOAD3)	8	R/W	00h	33.5.95/ 1657
12_1036	Frame Composer VSI Packet Data IEEE Register 4 (HDMI_FC_VSDPAYLOAD4)	8	R/W	00h	33.5.96/ 1657
12_1037	Frame Composer VSI Packet Data IEEE Register 5 (HDMI_FC_VSDPAYLOAD5)	8	R/W	00h	33.5.97/ 1658

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_1038	Frame Composer VSI Packet Data IEEE Register 6 (HDMI_FC_VSDPAYLOAD6)	8	R/W	00h	33.5.98/ 1658
12_1039	Frame Composer VSI Packet Data IEEE Register 7 (HDMI_FC_VSDPAYLOAD7)	8	R/W	00h	33.5.99/ 1659
12_103A	Frame Composer VSI Packet Data IEEE Register 8 (HDMI_FC_VSDPAYLOAD8)	8	R/W	00h	33.5.100/ 1659
12_103B	Frame Composer VSI Packet Data IEEE Register 9 (HDMI_FC_VSDPAYLOAD9)	8	R/W	00h	33.5.101/ 1660
12_103C	Frame Composer VSI Packet Data IEEE Register 10 (HDMI_FC_VSDPAYLOAD10)	8	R/W	00h	33.5.102/ 1660
12_103D	Frame Composer VSI Packet Data IEEE Register 11 (HDMI_FC_VSDPAYLOAD11)	8	R/W	00h	33.5.103/ 1661
12_103E	Frame Composer VSI Packet Data IEEE Register 12 (HDMI_FC_VSDPAYLOAD12)	8	R/W	00h	33.5.104/ 1661
12_103F	Frame Composer VSI Packet Data IEEE Register 13 (HDMI_FC_VSDPAYLOAD13)	8	R/W	00h	33.5.105/ 1662
12_1040	Frame Composer VSI Packet Data IEEE Register 14 (HDMI_FC_VSDPAYLOAD14)	8	R/W	00h	33.5.106/ 1662
12_1041	Frame Composer VSI Packet Data IEEE Register 15 (HDMI_FC_VSDPAYLOAD15)	8	R/W	00h	33.5.107/ 1663
12_1042	Frame Composer VSI Packet Data IEEE Register 16 (HDMI_FC_VSDPAYLOAD16)	8	R/W	00h	33.5.108/ 1663
12_1043	Frame Composer VSI Packet Data IEEE Register 17 (HDMI_FC_VSDPAYLOAD17)	8	R/W	00h	33.5.109/ 1664
12_1044	Frame Composer VSI Packet Data IEEE Register 18 (HDMI_FC_VSDPAYLOAD18)	8	R/W	00h	33.5.110/ 1664
12_1045	Frame Composer VSI Packet Data IEEE Register 19 (HDMI_FC_VSDPAYLOAD19)	8	R/W	00h	33.5.111/ 1665
12_1046	Frame Composer VSI Packet Data IEEE Register 20 (HDMI_FC_VSDPAYLOAD20)	8	R/W	00h	33.5.112/ 1665
12_1047	Frame Composer VSI Packet Data IEEE Register 21 (HDMI_FC_VSDPAYLOAD21)	8	R/W	00h	33.5.113/ 1666
12_1048	Frame Composer VSI Packet Data IEEE Register 22 (HDMI_FC_VSDPAYLOAD22)	8	R/W	00h	33.5.114/ 1666
12_1049	Frame Composer VSI Packet Data IEEE Register 23 (HDMI_FC_VSDPAYLOAD23)	8	R/W	00h	33.5.115/ 1667
12_104A	Frame Composer SPD Packet Data Vendor Name Register 0 (HDMI_FC_SPDVENDORNAME0)	8	R/W	00h	33.5.116/ 1667
12_1052	Frame Composer SPD Packet Data Product Name Register 0 (HDMI_FC_SPDPRODUCTNAME0)	8	R/W	00h	33.5.117/ 1668
12_1062	Frame Composer SPD Packet Data Source Product Descriptor Register (HDMI_FC_SPDDEVICEINF)	8	R/W	00h	33.5.118/ 1668
12_1063	Frame Composer Audio Sample Flat and Layout Configuration Register (HDMI_FC_AUDSCONF)	8	R/W	00h	33.5.119/ 1669

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_1064	Frame Composer Audio Packet Sample Present Status Register (HDMI_FC_AUDSSTAT)	8	R	00h	33.5.120/ 1669
12_1073	Frame Composer Number of High Priority Packets Attended Configuration Register (HDMI_FC_CTRLQHIGH)	8	R/W	0Fh	33.5.121/ 1670
12_1074	Frame Composer Number of Low Priority Packets Attended Configuration Register (HDMI_FC_CTRLQLOW)	8	R/W	03h	33.5.122/ 1671
12_1075	Frame Composer ACP Packet Type Configuration Register 0 (HDMI_FC_ACP0)	8	R/W	00h	33.5.123/ 1671
12_1091	Frame Composer ACP Packet Type Configuration Register 1 (HDMI_FC_ACP1)	8	R/W	00h	33.5.124/ 1672
12_1092	FC_ISCR1_Frame Composer Packet Status, Valid, and Continue Configuration Register (HDMI_FC_ISCR1_0)	8	R/W	00h	33.5.125/ 1672
12_1093	Frame Composer ISCR1 Packet Body Register 1 (HDMI_FC_ISCR1_1)	8	R/W	00h	33.5.126/ 1673
12_10A3	Frame Composer ISCR2 Packet Body Register 0 (HDMI_FC_ISCR2_0)	8	R/W	00h	33.5.127/ 1673
12_10B3	Frame Composer Data Island Auto Packet Scheduling Register 0 (HDMI_FC_DATAUTO0)	8	R/W	00h	33.5.128/ 1674
12_10B4	Frame Composer Data Island Auto Packet Scheduling Register 1 (HDMI_FC_DATAUTO1)	8	R/W	00h	33.5.129/ 1675
12_10B5	Frame Composer Data Island Auto Packet Scheduling Register 2 (HDMI_FC_DATAUTO2)	8	R/W	00h	33.5.130/ 1675
12_10B6	Frame Composer Data Island Manual Packet Request Register (HDMI_FC_DATMAN)	8	W	00h	33.5.131/ 1676
12_10B7	Frame Composer Data Island Auto Packet Scheduling Register 3 (HDMI_FC_DATAUTO3)	8	R/W	0Fh	33.5.132/ 1677
12_10B8	Frame Composer Round Robin ACR Packet Insertion Register 0 (HDMI_FC_RDRB0)	8	R/W	00h	33.5.133/ 1678
12_10B9	Frame Composer Round Robin ACR Packet Insertion Register 1 (HDMI_FC_RDRB1)	8	R/W	00h	33.5.134/ 1678
12_10BA	Frame Composer Round Robin ACR Packet Insertion Register 2 (HDMI_FC_RDRB2)	8	R/W	00h	33.5.135/ 1679
12_10BB	Frame Composer Round Robin ACR Packet Insertion Register 3 (HDMI_FC_RDRB3)	8	R/W	00h	33.5.136/ 1679
12_10BC	Frame Composer Round Robin ACR Packet Insertion Register 4 (HDMI_FC_RDRB4)	8	R/W	00h	33.5.137/ 1680
12_10BD	Frame Composer Round Robin ACR Packet Insertion Register 5 (HDMI_FC_RDRB5)	8	R/W	00h	33.5.138/ 1680
12_10BE	Frame Composer Round Robin ACR Packet Insertion Register 6 (HDMI_FC_RDRB6)	8	R/W	00h	33.5.139/ 1681
12_10BF	Frame Composer Round Robin ACR Packet Insertion Register 7 (HDMI_FC_RDRB7)	8	R/W	00h	33.5.140/ 1682
12_10D0	FC_STAT0 (HDMI_FC_STAT0)	8	R	00h	33.5.141/ 1682

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_10D1	FC_INT0 (HDMI_FC_INT0)	8	R/W	00h	33.5.142/ 1683
12_10D2	Frame Composer Packet Interrupt Mask Register 0 (HDMI_FC_MASK0)	8	R/W	25h	33.5.143/ 1684
12_10D3	FC_POL0 (HDMI_FC_POL0)	8	R/W	FFh	33.5.144/ 1685
12_10D4	FC_STAT1 (HDMI_FC_STAT1)	8	R/W	00h	33.5.145/ 1686
12_10D5	FC_INT1 (HDMI_FC_INT1)	8	R/W	00h	33.5.146/ 1686
12_10D6	Frame Composer Packet Interrupt Mask Register 1 (HDMI_FC_MASK1)	8	R/W	00h	33.5.147/ 1687
12_10D7	FC_POL1 (HDMI_FC_POL1)	8	R/W	FFh	33.5.148/ 1688
12_10D8	FC_STAT2 (HDMI_FC_STAT2)	8	R/W	00h	33.5.149/ 1689
12_10D9	FC_INT2 (HDMI_FC_INT2)	8	R/W	00h	33.5.150/ 1690
12_10DA	Frame Composer High/Low Priority Overflow Interrupt Mask Register 2 (HDMI_FC_MASK2)	8	R/W	00h	33.5.151/ 1690
12_10DB	FC_POL2 (HDMI_FC_POL2)	8	R/W	03h	33.5.152/ 1691
12_10E0	Frame Composer Pixel Repetition Configuration Register (HDMI_FC_PRCONF)	8	R/W	10h	33.5.153/ 1692
12_1100	Frame Composer GMD Packet Status Register (HDMI_FC_GMD_STAT)	8	R	00h	33.5.154/ 1693
12_1101	Frame Composer GMD Packet Enable Register (HDMI_FC_GMD_EN)	8	R/W	00h	33.5.155/ 1694
12_1102	Frame Composer GMD Packet Update Register (HDMI_FC_GMD_UP)	8	W	00h	33.5.156/ 1694
12_1103	Frame Composer GMD Packet Schedule Configuration Register (HDMI_FC_GMD_CONF)	8	R/W	10h	33.5.157/ 1695
12_1104	Frame Composer GMD Packet Profile and Gamut Sequence Configuration Register (HDMI_FC_GMD_HB)	8	R/W	00h	33.5.158/ 1696
12_1105	Frame Composer GMD Packet Body Register 0 (HDMI_FC_GMD_PB0)	8	R/W	00h	33.5.159/ 1696
12_1106	Frame Composer GMD Packet Body Register 1 (HDMI_FC_GMD_PB1)	8	R/W	00h	33.5.160/ 1697
12_1107	Frame Composer GMD Packet Body Register 2 (HDMI_FC_GMD_PB2)	8	R/W	00h	33.5.161/ 1697
12_1108	Frame Composer GMD Packet Body Register 3 (HDMI_FC_GMD_PB3)	8	R/W	00h	33.5.162/ 1698
12_1109	Frame Composer GMD Packet Body Register 4 (HDMI_FC_GMD_PB4)	8	R/W	00h	33.5.163/ 1698

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_110A	Frame Composer GMD Packet Body Register 5 (HDMI_FC_GMD_PB5)	8	R/W	00h	33.5.164/ 1699
12_110B	Frame Composer GMD Packet Body Register 6 (HDMI_FC_GMD_PB6)	8	R/W	00h	33.5.165/ 1699
12_110C	Frame Composer GMD Packet Body Register 7 (HDMI_FC_GMD_PB7)	8	R/W	00h	33.5.166/ 1700
12_110D	Frame Composer GMD Packet Body Register 8 (HDMI_FC_GMD_PB8)	8	R/W	00h	33.5.167/ 1700
12_110E	Frame Composer GMD Packet Body Register 9 (HDMI_FC_GMD_PB9)	8	R/W	00h	33.5.168/ 1701
12_110F	Frame Composer GMD Packet Body Register 10 (HDMI_FC_GMD_PB10)	8	R/W	00h	33.5.169/ 1701
12_1110	Frame Composer GMD Packet Body Register 11 (HDMI_FC_GMD_PB11)	8	R/W	00h	33.5.170/ 1702
12_1111	Frame Composer GMD Packet Body Register 12 (HDMI_FC_GMD_PB12)	8	R/W	00h	33.5.171/ 1702
12_1112	Frame Composer GMD Packet Body Register 13 (HDMI_FC_GMD_PB13)	8	R/W	00h	33.5.172/ 1703
12_1113	Frame Composer GMD Packet Body Register 14 (HDMI_FC_GMD_PB14)	8	R/W	00h	33.5.173/ 1703
12_1114	Frame Composer GMD Packet Body Register 15 (HDMI_FC_GMD_PB15)	8	R/W	00h	33.5.174/ 1704
12_1115	Frame Composer GMD Packet Body Register 16 (HDMI_FC_GMD_PB16)	8	R/W	00h	33.5.175/ 1704
12_1116	Frame Composer GMD Packet Body Register 17 (HDMI_FC_GMD_PB17)	8	R/W	00h	33.5.176/ 1705
12_1117	Frame Composer GMD Packet Body Register 18 (HDMI_FC_GMD_PB18)	8	R/W	00h	33.5.177/ 1705
12_1118	Frame Composer GMD Packet Body Register 19 (HDMI_FC_GMD_PB19)	8	R/W	00h	33.5.178/ 1706
12_1119	Frame Composer GMD Packet Body Register 20 (HDMI_FC_GMD_PB20)	8	R/W	00h	33.5.179/ 1706
12_111A	Frame Composer GMD Packet Body Register 21 (HDMI_FC_GMD_PB21)	8	R/W	00h	33.5.180/ 1707
12_111B	Frame Composer GMD Packet Body Register 22 (HDMI_FC_GMD_PB22)	8	R/W	00h	33.5.181/ 1707
12_111C	Frame Composer GMD Packet Body Register 23 (HDMI_FC_GMD_PB23)	8	R/W	00h	33.5.182/ 1708
12_111D	Frame Composer GMD Packet Body Register 24 (HDMI_FC_GMD_PB24)	8	R/W	00h	33.5.183/ 1708
12_111E	Frame Composer GMD Packet Body Register 25 (HDMI_FC_GMD_PB25)	8	R/W	00h	33.5.184/ 1709
12_111F	Frame Composer GMD Packet Body Register 26 (HDMI_FC_GMD_PB26)	8	R/W	00h	33.5.185/ 1709

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_1120	Frame Composer GMD Packet Body Register 27 (HDMI_FC_GMD_PB27)	8	R/W	00h	33.5.186/ 1710
12_1200	Frame Composer Video/Audio Force Enable Register (HDMI_FC_DBGFORCE)	8	R/W	00h	33.5.187/ 1710
12_1201	Frame Composer Audio Channel 0 Register 0 (HDMI_FC_DBGAUD0CH0)	8	R/W	00h	33.5.188/ 1711
12_1202	Frame Composer Audio Channel 0 Register 1 (HDMI_FC_DBGAUD1CH0)	8	R/W	00h	33.5.189/ 1712
12_1203	Frame Composer Audio Channel 0 Register 2 (HDMI_FC_DBGAUD2CH0)	8	R/W	00h	33.5.190/ 1712
12_1204	Frame Composer Audio Channel 1 Register 0 (HDMI_FC_DBGAUD0CH1)	8	R/W	00h	33.5.191/ 1713
12_1205	Frame Composer Audio Channel 1 Register 1 (HDMI_FC_DBGAUD1CH1)	8	R/W	00h	33.5.192/ 1713
12_1206	Frame Composer Audio Channel 1 Register 2 (HDMI_FC_DBGAUD2CH1)	8	R/W	00h	33.5.193/ 1714
12_1207	Frame Composer Debug Audio Channel 2 Register 0 (HDMI_FC_DBGAUD0CH2)	8	R/W	00h	33.5.194/ 1714
12_1208	Frame Composer Debug Audio Channel 2 Register 1 (HDMI_FC_DBGAUD1CH2)	8	R/W	00h	33.5.195/ 1715
12_1209	Frame Composer Audio Channel 2 Register 2 (HDMI_FC_DBGAUD2CH2)	8	R/W	00h	33.5.196/ 1715
12_120A	Frame Composer Audio Channel 3 Register 0 (HDMI_FC_DBGAUD0CH3)	8	R/W	00h	33.5.197/ 1716
12_120B	Frame Composer Audio Channel 3 Register 1 (HDMI_FC_DBGAUD1CH3)	8	R/W	00h	33.5.198/ 1716
12_120C	Frame Composer Audio Channel 3 Register 2 (HDMI_FC_DBGAUD2CH3)	8	R/W	00h	33.5.199/ 1717
12_120D	Frame Composer Audio Channel 4 Register 0 (HDMI_FC_DBGAUD0CH4)	8	R/W	00h	33.5.200/ 1717
12_120E	Frame Composer Audio Channel 4 Register 1 (HDMI_FC_DBGAUD1CH4)	8	R/W	00h	33.5.201/ 1718
12_120F	Frame Composer Audio Channel 4 Register 2 (HDMI_FC_DBGAUD2CH4)	8	R/W	00h	33.5.202/ 1718
12_1210	Frame Composer Audio Channel 5 Register 0 (HDMI_FC_DBGAUD0CH5)	8	R/W	00h	33.5.203/ 1719
12_1211	Frame Composer Audio Channel 5 Register 1 (HDMI_FC_DBGAUD1CH5)	8	R/W	00h	33.5.204/ 1719
12_1212	Frame Composer Audio Channel 5 Register 2 (HDMI_FC_DBGAUD2CH5)	8	R/W	00h	33.5.205/ 1720
12_1213	Frame Composer Audio Channel 6 Register 0 (HDMI_FC_DBGAUD0CH6)	8	R/W	00h	33.5.206/ 1720
12_1214	Frame Composer Audio Channel 6 Register 1 (HDMI_FC_DBGAUD1CH6)	8	R/W	00h	33.5.207/ 1721

HDMI Memory Map/Register Definition

HDMI memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_1215	Frame Composer Audio Channel 6 Register 2 (HDMI_FC_DBGAUD2CH6)	8	R/W	00h	33.5.208/ 1721
12_1216	Frame Composer Audio Channel 7 Register 1 (HDMI_FC_DBGAUD0CH7)	8	R/W	00h	33.5.209/ 1722
12_1217	Frame Composer Audio Channel 7 Register 0 (HDMI_FC_DBGAUD1CH7)	8	R/W	00h	33.5.210/ 1722
12_1218	Frame Composer Audio Channel 7 Register 2 (HDMI_FC_DBGAUD2CH7)	8	R/W	00h	33.5.211/ 1723
12_1219	Frame Composer TMDS Channel 0 Register (HDMI_FC_DBGTMDS0)	8	R/W	00h	33.5.212/ 1723
12_121A	Frame Composer TMDS Channel 1 Register (HDMI_FC_DBGTMDS1)	8	R/W	00h	33.5.213/ 1724
12_121B	Frame Composer TMDS Channel 2 Register (HDMI_FC_DBGTMDS2)	8	R/W	00h	33.5.214/ 1724
12_3000	PHY Configuration Register (HDMI_PHY_CONF0)	8	R/W	06h	33.5.215/ 1725
12_3001	PHY Test Interface Register 0 (HDMI_PHY_TST0)	8	R/W	00h	33.5.216/ 1726
12_3002	PHY Test Interface Register 1 (HDMI_PHY_TST1)	8	R/W	00h	33.5.217/ 1726
12_3003	PHY Test Interface Register 2 (HDMI_PHY_TST2)	8	R	00h	33.5.218/ 1727
12_3004	PHY RXSENSE, PLL lock, and HPD Status Register (HDMI_PHY_STAT0)	8	R	00h	33.5.219/ 1727
12_3005	PHY RXSENSE, PLL lock, and HPD Interrupt Register (HDMI_PHY_INT0)	8	R	00h	33.5.220/ 1728
12_3006	PHY RXSENSE, PLL lock, and HPD Mask Register (HDMI_PHY_MASK0)	8	R/W	00h	33.5.221/ 1729
12_3007	PHY RXSENSE, PLL lock and HPD Polarity Register (HDMI_PHY_POL0)	8	R/W	F3h	33.5.222/ 1730
12_3020	PHY I2C Slave Address Configuration Register (HDMI_PHY_I2CM_SLAVE_ADDR)	8	R/W	00h	33.5.223/ 1731
12_3021	PHY I2C Address Configuration Register (HDMI_PHY_I2CM_ADDRESS_ADDR)	8	R/W	00h	33.5.224/ 1731
12_3022	PHY I2C Data Write Register 1 (HDMI_PHY_I2CM_DATAO_1_ADDR)	8	R/W	00h	33.5.225/ 1732
12_3023	PHY I2C Data Write Register 0 (HDMI_PHY_I2CM_DATAO_0_ADDR)	8	R/W	00h	33.5.226/ 1733
12_3024	PHY I2C Data Read Register 1 (HDMI_PHY_I2CM_DATAI_1_ADDR)	8	R	00h	33.5.227/ 1733
12_3025	PHY I2C Data Read Register 0 (HDMI_PHY_I2CM_DATAI_0_ADDR)	8	R/W	00h	33.5.228/ 1734
12_3026	PHY I2C Read/Write Operation (HDMI_PHY_I2CM_OPERATION_ADDR)	8	W	00h	33.5.229/ 1734

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_3027	PHY I2C Done Interrupt Register (HDMI_PHY_I2CM_INT_ADDR)	8	R/W	08h	33.5.230/ 1735
12_3028	PHY I2C Done Interrupt Register (HDMI_PHY_I2CM_CTLINT_ADDR)	8	R/W	88h	33.5.231/ 1736
12_3029	PHY I2C Speed Control Register (HDMI_PHY_I2CM_DIV_ADDR)	8	R/W	0Bh	33.5.232/ 1737
12_302A	PHY I2C Software Reset Register (HDMI_PHY_I2CM_SOFTRSTZ_ADDR)	8	R/W	01h	33.5.233/ 1737
12_302B	PHY I2C Slow Speed SCL High Level Control Register 1 (HDMI_PHY_I2CM_SS_SCL_HCNT_1_ADDR)	8	R/W	00h	33.5.234/ 1738
12_302C	PHY I2C Slow Speed SCL High Level Control Register 0 (HDMI_PHY_I2CM_SS_SCL_HCNT_0_ADDR)	8	R/W	6Ch	33.5.235/ 1739
12_302D	PHY I2C Slow Speed SCL Low Level Control Register 1 (HDMI_PHY_I2CM_SS_SCL_LCNT_1_ADDR)	8	R/W	00h	33.5.236/ 1739
12_302E	PHY I2C Slow Speed SCL Low Level Control Register 0 (HDMI_PHY_I2CM_SS_SCL_LCNT_0_ADDR)	8	R/W	7Fh	33.5.237/ 1740
12_302F	PHY I2C Fast Speed SCL High Level Control Register 1 (HDMI_PHY_I2CM_FS_SCL_HCNT_1_ADDR)	8	R/W	00h	33.5.238/ 1740
12_3030	PHY I2C Fast Speed SCL High Level Control Register 0 (HDMI_PHY_I2CM_FS_SCL_HCNT_0_ADDR)	8	R/W	11h	33.5.239/ 1741
12_3031	PHY I2C Fast Speed SCL Low Level Control Register 1 (HDMI_PHY_I2CM_FS_SCL_LCNT_1_ADDR)	8	R/W	00h	33.5.240/ 1741
12_3032	PHY I2C Fast Speed SCL Low Level Control Register 0 (HDMI_PHY_I2CM_FS_SCL_LCNT_0_ADDR)	8	R/W	24h	33.5.241/ 1742
12_3200	Audio Clock Regenerator N Value Register 1 (HDMI_AUD_N1)	8	R/W	00h	33.5.242/ 1742
12_3201	Audio Clock Regenerator N Value Register 2 (HDMI_AUD_N2)	8	R/W	00h	33.5.243/ 1743
12_3202	Audio Clock Regenerator N Value Register 3 (HDMI_AUD_N3)	8	R/W	00h	33.5.244/ 1743
12_3203	AUD_CTS1 (HDMI_AUD_CTS1)	8	R/W	00h	33.5.245/ 1744
12_3204	AUD_CTS2 (HDMI_AUD_CTS2)	8	R/W	00h	33.5.246/ 1744
12_3205	AUD_CTS3 (HDMI_AUD_CTS3)	8	R/W	00h	33.5.247/ 1745
12_3600	Audio DMA Start Register (HDMI_AHB_DMA_CONF0)	8	R/W	00h	33.5.248/ 1745
12_3601	AHB_DMA_START (HDMI_AHB_DMA_START)	8	R/W	00h	33.5.249/ 1746
12_3602	Audio DMA Stop Register (HDMI_AHB_DMA_STOP)	8	R/W	00h	33.5.250/ 1747
12_3603	Audio DMA FIFO Threshold Register (HDMI_AHB_DMA_THRSLD)	8	R/W	00h	33.5.251/ 1748

HDMI Memory Map/Register Definition

HDMI memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_3604	Audio DMA Start Address Register 0 (HDMI_AHB_DMA_STRADDR0)	8	R/W	00h	33.5.252/ 1748
12_3605	Audio DMA Start Address Register 1 (HDMI_AHB_DMA_STRADDR1)	8	R/W	00h	33.5.253/ 1749
12_3606	Audio DMA Start Address Register 2 (HDMI_AHB_DMA_STRADDR2)	8	R/W	00h	33.5.254/ 1749
12_3607	Audio DMA Start Address Register 3 (HDMI_AHB_DMA_STRADDR3)	8	R/W	00h	33.5.255/ 1750
12_3608	Audio DMA Stop Address Register 0 (HDMI_AHB_DMA_STPADDR0)	8	R/W	00h	33.5.256/ 1750
12_3609	Audio DMA Stop Address Register 1 (HDMI_AHB_DMA_STPADDR1)	8	R/W	00h	33.5.257/ 1751
12_360A	Audio DMA Stop Address Register 2 (HDMI_AHB_DMA_STPADDR2)	8	R/W	00h	33.5.258/ 1751
12_360B	Audio DMA Stop Address Register 3 (HDMI_AHB_DMA_STPADDR3)	8	R/W	00h	33.5.259/ 1752
12_360C	Audio DMA Burst Start Address Register 0 (HDMI_AHB_DMA_BSTADDR0)	8	R	00h	33.5.260/ 1752
12_360D	Audio DMA Burst Start Address Register 1 (HDMI_AHB_DMA_BSTADDR1)	8	R	00h	33.5.261/ 1753
12_360E	Audio DMA Burst Start Address Register 2 (HDMI_AHB_DMA_BSTADDR2)	8	R	00h	33.5.262/ 1753
12_360F	Audio DMA Burst Start Address Register 3 (HDMI_AHB_DMA_BSTADDR3)	8	R	00h	33.5.263/ 1753
12_3610	Audio DMA Burst Length Register 0 (HDMI_AHB_DMA_MBLENGTH0)	8	R	00h	33.5.264/ 1754
12_3611	Audio DMA Burst Length Register 1 (HDMI_AHB_DMA_MBLENGTH1)	8	R	00h	33.5.265/ 1755
12_3612	Audio DMA Interrupt Status Register (HDMI_AHB_DMA_STAT)	8	R	00h	33.5.266/ 1755
12_3613	Audio DMA Interrupt Register (HDMI_AHB_DMA_INT)	8	R	00h	33.5.267/ 1756
12_3614	Audio DMA Mask Interrupt Register (HDMI_AHB_DMA_MASK)	8	R/W	00h	33.5.268/ 1757
12_3615	Audio DMA Polarity Interrupt Register (HDMI_AHB_DMA_POL)	8	R/W	00h	33.5.269/ 1758
12_3616	Audio DMA Channel Enable Configuration Register 1 (HDMI_AHB_DMA_CONF1)	8	R/W	00h	33.5.270/ 1759
12_3617	Audio DMA Buffer Interrupt Status Register (HDMI_AHB_DMA_BUFFSTAT)	8	R	00h	33.5.271/ 1760
12_3618	Audio DMA Buffer Interrupt Register (HDMI_AHB_DMA_BUFFINT)	8	R	00h	33.5.272/ 1761
12_3619	Audio DMA Buffer Mask Interrupt Register (HDMI_AHB_DMA_BUFFMASK)	8	R/W	00h	33.5.273/ 1762

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_361A	Audio DMA Buffer Polarity Interrupt Register (HDMI_AHB_DMA_BUFFPOL)	8	R/W	00h	33.5.274/ 1762
12_4001	Main Controller Synchronous Clock Domain Disable Register (HDMI_MC_CLKDIS)	8	R/W	00h	33.5.275/ 1763
12_4002	Main Controller Software Reset Register (HDMI_MC_SWRSTZREQ)	8	R/W	FFh	33.5.276/ 1764
12_4004	Main Controller Feed Through Control Register (HDMI_MC_FLOWCTRL)	8	R/W	00h	33.5.277/ 1765
12_4005	Main Controller PHY Reset Register (HDMI_MC_PHYRSTZ)	8	R/W	00h	33.5.278/ 1765
12_4006	Main Controller Clock Present Register (HDMI_MC_LOCKONCLOCK)	8	w1c	00h	33.5.279/ 1766
12_4007	Main Controller HEAC PHY Reset Register (HDMI_MC_HEACPHY_RST)	8	R/W	00h	33.5.280/ 1767
12_4100	Color Space Converter Interpolation and Decimation Configuration Register (HDMI_CSC_CFG)	8	R/W	00h	33.5.281/ 1767
12_4101	Color Space Converter Scale and Deep Color Configuration Register (HDMI_CSC_SCALE)	8	R/W	01h	33.5.282/ 1768
12_4102	CSC_COEF_A1_MSB (HDMI_CSC_COEF_A1_MSB)	8	R/W	20h	33.5.283/ 1769
12_4103	CSC_COEF_A1_LSB (HDMI_CSC_COEF_A1_LSB)	8	R/W	00h	33.5.284/ 1769
12_4104	CSC_COEF_A2_MSB (HDMI_CSC_COEF_A2_MSB)	8	R/W	00h	33.5.285/ 1770
12_4105	CSC_COEF_A2_LSB (HDMI_CSC_COEF_A2_LSB)	8	R/W	00h	33.5.286/ 1770
12_4106	CSC_COEF_A3_MSB (HDMI_CSC_COEF_A3_MSB)	8	R/W	00h	33.5.287/ 1771
12_4107	CSC_COEF_A3_LSB (HDMI_CSC_COEF_A3_LSB)	8	R/W	00h	33.5.288/ 1771
12_4108	CSC_COEF_A4_MSB (HDMI_CSC_COEF_A4_MSB)	8	R/W	00h	33.5.289/ 1772
12_4109	CSC_COEF_A4_LSB (HDMI_CSC_COEF_A4_LSB)	8	R/W	00h	33.5.290/ 1772
12_410A	CSC_COEF_B1_MSB (HDMI_CSC_COEF_B1_MSB)	8	R/W	00h	33.5.291/ 1773
12_410B	CSC_COEF_B1_LSB (HDMI_CSC_COEF_B1_LSB)	8	R/W	00h	33.5.292/ 1773
12_410C	CSC_COEF_B2_MSB (HDMI_CSC_COEF_B2_MSB)	8	R/W	20h	33.5.293/ 1774
12_410D	CSC_COEF_B2_LSB (HDMI_CSC_COEF_B2_LSB)	8	R/W	00h	33.5.294/ 1774
12_410E	CSC_COEF_B3_MSB (HDMI_CSC_COEF_B3_MSB)	8	R/W	00h	33.5.295/ 1775

HDMI Memory Map/Register Definition

HDMI memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_410F	CSC_COEF_B3_LSB (HDMI_CSC_COEF_B3_LSB)	8	R/W	00h	33.5.296/ 1775
12_4110	CSC_COEF_B4_MSB (HDMI_CSC_COEF_B4_MSB)	8	R/W	00h	33.5.297/ 1776
12_4111	CSC_COEF_B4_LSB (HDMI_CSC_COEF_B4_LSB)	8	R/W	00h	33.5.298/ 1776
12_4112	CSC_COEF_C1_MSB (HDMI_CSC_COEF_C1_MSB)	8	R/W	00h	33.5.299/ 1777
12_4113	CSC_COEF_C1_LSB (HDMI_CSC_COEF_C1_LSB)	8	R/W	00h	33.5.300/ 1777
12_4114	CSC_COEF_C2_MSB (HDMI_CSC_COEF_C2_MSB)	8	R/W	00h	33.5.301/ 1778
12_4115	CSC_COEF_C2_LSB (HDMI_CSC_COEF_C2_LSB)	8	R/W	00h	33.5.302/ 1778
12_4116	CSC_COEF_C3_MSB (HDMI_CSC_COEF_C3_MSB)	8	R/W	20h	33.5.303/ 1779
12_4117	CSC_COEF_C3_LSB (HDMI_CSC_COEF_C3_LSB)	8	R/W	00h	33.5.304/ 1779
12_4118	CSC_COEFC4_MSB (HDMI_CSC_COEFC4_MSB)	8	R/W	00h	33.5.305/ 1780
12_4119	CSC_COEFC4_LSB (HDMI_CSC_COEFC4_LSB)	8	R/W	00h	33.5.306/ 1780
12_7D00	CEC_CTRL (HDMI_CEC_CTRL)	8	R/W	02h	33.5.307/ 1781
12_7D01	CEC_STAT (HDMI_CEC_STAT)	8	R	00h	33.5.308/ 1782
12_7D02	CEC_MASK (HDMI_CEC_MASK)	8	R/W	00h	33.5.309/ 1783
12_7D03	CEC_POLARITY (HDMI_CEC_POLARITY)	8	R/W	7Fh	33.5.310/ 1784
12_7D04	CEC_INT (HDMI_CEC_INT)	8	R	00h	33.5.311/ 1785
12_7D05	CEC_ADDR_L (HDMI_CEC_ADDR_L)	8	R/W	00h	33.5.312/ 1786
12_7D06	CEC_ADDR_H (HDMI_CEC_ADDR_H)	8	R/W	80h	33.5.313/ 1787
12_7D07	CEC_TX_CNT (HDMI_CEC_TX_CNT)	8	R/W	00h	33.5.314/ 1788
12_7D08	CEC_RX_CNT (HDMI_CEC_RX_CNT)	8	R	00h	33.5.315/ 1789
12_7D10	CEC_TX_DATA (HDMI_CEC_TX_DATA0)	8	R/W	00h	33.5.316/ 1790
12_7D11	CEC_TX_DATA (HDMI_CEC_TX_DATA1)	8	R/W	00h	33.5.316/ 1790

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_7D12	CEC_TX_DATA (HDMI_CEC_TX_DATA2)	8	R/W	00h	33.5.316/ 1790
12_7D13	CEC_TX_DATA (HDMI_CEC_TX_DATA3)	8	R/W	00h	33.5.316/ 1790
12_7D14	CEC_TX_DATA (HDMI_CEC_TX_DATA4)	8	R/W	00h	33.5.316/ 1790
12_7D15	CEC_TX_DATA (HDMI_CEC_TX_DATA5)	8	R/W	00h	33.5.316/ 1790
12_7D16	CEC_TX_DATA (HDMI_CEC_TX_DATA6)	8	R/W	00h	33.5.316/ 1790
12_7D17	CEC_TX_DATA (HDMI_CEC_TX_DATA7)	8	R/W	00h	33.5.316/ 1790
12_7D18	CEC_TX_DATA (HDMI_CEC_TX_DATA8)	8	R/W	00h	33.5.316/ 1790
12_7D19	CEC_TX_DATA (HDMI_CEC_TX_DATA9)	8	R/W	00h	33.5.316/ 1790
12_7D1A	CEC_TX_DATA (HDMI_CEC_TX_DATA10)	8	R/W	00h	33.5.316/ 1790
12_7D1B	CEC_TX_DATA (HDMI_CEC_TX_DATA11)	8	R/W	00h	33.5.316/ 1790
12_7D1C	CEC_TX_DATA (HDMI_CEC_TX_DATA12)	8	R/W	00h	33.5.316/ 1790
12_7D1D	CEC_TX_DATA (HDMI_CEC_TX_DATA13)	8	R/W	00h	33.5.316/ 1790
12_7D1E	CEC_TX_DATA (HDMI_CEC_TX_DATA14)	8	R/W	00h	33.5.316/ 1790
12_7D1F	CEC_TX_DATA (HDMI_CEC_TX_DATA15)	8	R/W	00h	33.5.316/ 1790
12_7D20	CEC_RX_DATA (HDMI_CEC_RX_DATA0)	8	R	00h	33.5.317/ 1790
12_7D21	CEC_RX_DATA (HDMI_CEC_RX_DATA1)	8	R	00h	33.5.317/ 1790
12_7D22	CEC_RX_DATA (HDMI_CEC_RX_DATA2)	8	R	00h	33.5.317/ 1790
12_7D23	CEC_RX_DATA (HDMI_CEC_RX_DATA3)	8	R	00h	33.5.317/ 1790
12_7D24	CEC_RX_DATA (HDMI_CEC_RX_DATA4)	8	R	00h	33.5.317/ 1790
12_7D25	CEC_RX_DATA (HDMI_CEC_RX_DATA5)	8	R	00h	33.5.317/ 1790
12_7D26	CEC_RX_DATA (HDMI_CEC_RX_DATA6)	8	R	00h	33.5.317/ 1790
12_7D27	CEC_RX_DATA (HDMI_CEC_RX_DATA7)	8	R	00h	33.5.317/ 1790

HDMI Memory Map/Register Definition

HDMI memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_7D28	CEC_RX_DATA (HDMI_CEC_RX_DATA8)	8	R	00h	33.5.317/ 1790
12_7D29	CEC_RX_DATA (HDMI_CEC_RX_DATA9)	8	R	00h	33.5.317/ 1790
12_7D2A	CEC_RX_DATA (HDMI_CEC_RX_DATA10)	8	R	00h	33.5.317/ 1790
12_7D2B	CEC_RX_DATA (HDMI_CEC_RX_DATA11)	8	R	00h	33.5.317/ 1790
12_7D2C	CEC_RX_DATA (HDMI_CEC_RX_DATA12)	8	R	00h	33.5.317/ 1790
12_7D2D	CEC_RX_DATA (HDMI_CEC_RX_DATA13)	8	R	00h	33.5.317/ 1790
12_7D2E	CEC_RX_DATA (HDMI_CEC_RX_DATA14)	8	R	00h	33.5.317/ 1790
12_7D2F	CEC_RX_DATA (HDMI_CEC_RX_DATA15)	8	R	00h	33.5.317/ 1790
12_7D30	CEC_LOCK (HDMI_CEC_LOCK)	8	R/W	00h	33.5.318/ 1791
12_7D31	CEC_WKUPCTRL (HDMI_CEC_WKUPCTRL)	8	R/W	FFh	33.5.319/ 1791
12_7E00	I2CM_SLAVE (HDMI_I2CM_SLAVE)	8	R/W	00h	33.5.320/ 1792
12_7E01	I2CM_ADDRESS (HDMI_I2CM_ADDRESS)	8	R/W	00h	33.5.321/ 1793
12_7E02	I2CM_DATAO (HDMI_I2CM_DATAO)	8	R/W	00h	33.5.322/ 1793
12_7E03	I2CM_DATAI (HDMI_I2CM_DATAI)	8	R	00h	33.5.323/ 1794
12_7E04	I2CM_OPERATION (HDMI_I2CM_OPERATION)	8	W	00h	33.5.324/ 1794
12_7E05	I2CM_INT (HDMI_I2CM_INT)	8	R/W	08h	33.5.325/ 1795
12_7E06	I2CM_CTLINT (HDMI_I2CM_CTLINT)	8	R/W	88h	33.5.326/ 1796
12_7E07	I2CM_DIV (HDMI_I2CM_DIV)	8	R/W	0Bh	33.5.327/ 1796
12_7E08	I2CM_SEGADDR (HDMI_I2CM_SEGADDR)	8	R/W	00h	33.5.328/ 1797
12_7E09	I2CM_SOFTRSTZ (HDMI_I2CM_SOFTRSTZ)	8	R/W	01h	33.5.329/ 1798
12_7E0A	I2CM_SEGPTR (HDMI_I2CM_SEGPTR)	8	R/W	00h	33.5.330/ 1798
12_7E0B	I2CM_SS_SCL_HCNT_1_ADDR (HDMI_I2CM_SS_SCL_HCNT_1_ADDR)	8	R/W	00h	33.5.331/ 1799

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
12_7E0C	I2CM_SS_SCL_HCNT_0_ADDR (HDMI_I2CM_SS_SCL_HCNT_0_ADDR)	8	R/W	6Ch	33.5.332/ 1799
12_7E0D	I2CM_SS_SCL_LCNT_1_ADDR (HDMI_I2CM_SS_SCL_LCNT_1_ADDR)	8	R/W	00h	33.5.333/ 1800
12_7E0E	I2CM_SS_SCL_LCNT_0_ADDR (HDMI_I2CM_SS_SCL_LCNT_0_ADDR) 8 R/W				33.5.334/ 1800
12_7E0F	I2CM_FS_SCL_HCNT_1_ADDR (HDMI_I2CM_FS_SCL_HCNT_1_ADDR)		R/W	00h	33.5.335/ 1801
12_7E10	I2CM_FS_SCL_HCNT_0_ADDR (HDMI_I2CM_FS_SCL_HCNT_0_ADDR)	8	R/W	11h	33.5.336/ 1801
12_7E11	I2CM_FS_SCL_LCNT_1_ADDR (HDMI_I2CM_FS_SCL_LCNT_1_ADDR) 8 R/W		00h	33.5.337/ 1802	
12_7E12	I2CM_FS_SCL_LCNT_0_ADDR (HDMI_I2CM_FS_SCL_LCNT_0_ADDR) 8		R/W	24h	33.5.338/ 1802
12_7F00	BASE_POINTER_ADDR (HDMI_BASE_POINTER_ADDR)	8	R/W	00h	33.5.339/ 1803

33.5.1 Design Identification Register (HDMI_DESIGN_ID)

The following are the registers used to identify the HDMI TX controller.

• Name: Design Identification Register

• Address Offset: 0x0000

• Size: 8 bits

• Value after Reset: Implementation Dependent

• Access: Read

Address: 12_0000h base + 0h offset = 12_0000h

HDMI_DESIGN_ID field descriptions

Field	Description		
DESIGN_ID	This is a 1 byte design ID code fixed by Freescale that Identifies the main revision of the HDMI TX controller. For example, HDMI TX 1.30a, DESIGN_ID = 11h; REVISION_ID = 0Ah		

33.5.2 Revision Identification Register (HDMI_REVISION_ID)

• Name: Revision Identification Register

• Address Offset: 0x0001

• Size: 8 bits

• Value after Reset: Implementation Dependent

• Access: Read

Address: 12_0000h base + 1h offset = 12_0001h

HDMI_REVISION_ID field descriptions

Field	Description		
_	This is a one byte revision ID code fixed by Freescale that Identifies the main revision of the HDMI TX controller. For example, HDMI TX 1.30a, DESIGN_ID = 12h; REVISION_ID = 0Ah		

33.5.3 Product Identification Register 0 (HDMI_PRODUCT_ID0)

• Name: Product Identification Register 0

• Address Offset: 0x0002

• Size: 8 bits

• Value after Reset: Implementation Dependent

• Access: Read

Address: 12_0000h base + 2h offset = 12_0002h

HDMI_PRODUCT_ID0 field descriptions

Field	Description		
PRODUCT_ID0	This one byte fixed code Identifies Freescale's product line ("A0h" for HDMI TX products).		

33.5.4 Product Identification Register 1 (HDMI_PRODUCT_ID1)

• Name: Product Identification Register 1

• Address Offset: 0x0003

• Size: 8 bits

• Value after Reset: Implementation Dependent

• Access: Read

Address: 12_0000h base + 3h offset = 12_0003h

HDMI_PRODUCT_ID1 field descriptions

Field	Description		
PRODUCT_ID1	This one byte fixed code identifies Freescale's product line according to:		
	01h HDMI TX Controller		
	C1h HDMI TX Controller with HDCP encryption engine		

33.5.5 Configuration Identification Register 0 (HDMI_CONFIG0_ID)

• Name: Configuration Identification Register 0

• Address Offset: 0x0004

• Size: 8 bits

• Value after Reset: Implementation Dependent

Access: Read

Address: 12_0000h base + 4h offset = 12_0004h

HDMI Memory Map/Register Definition

HDMI_CONFIG0_ID field descriptions

Field	Description
7 prepen	Indicates if it is possible to use internal pixel repetition
6 audhbr	Indicates if HBR interface is present
5 audspdif	Indicates if SPDIF interface is present
4 audi2s	Indicates if I2S interface is present
3 hdmi14	Indicates if HDMI 1.4 features are present
2 csc	Indicates if Color Space Conversion block is present
1 cec	Indicates if CEC is present
0 hdcp	Indicates if HDCP is present

33.5.6 Configuration Identification Register 1 (HDMI_CONFIG1_ID)

• Name: Configuration Identification Register 1

• Address Offset: 0x0005

• Size: 8 bits

• Value after Reset: Implementation Dependent

• Access: Read

Address: 12_0000h base + 5h offset = 12_0005h

HDMI_CONFIG1_ID field descriptions

Field	Description			
7–5 -	This field is reserved.			
4 confsfrdir	Indicates that configuration interface is SFR interface			
3 confi2c	Indicates that configuration interface is I2C interface			

HDMI_CONFIG1_ID field descriptions (continued)

Field	Description				
2 confocp	Indicates that configuration interface is OCP interface				
1 confapb	Indicates that configuration interface is APB interface				
0 confahb	Indicates that configuration interface is AHB interface				

33.5.7 Configuration Identification Register 2 (HDMI_CONFIG2_ID)

• Name: Configuration Identification Register 2

• Address Offset: 0x0006

• Size: 8 bits

• Value after Reset: Implementation Dependent

• Access: Read

Address: 12_0000h base + 6h offset = 12_0006h

HDMI_CONFIG2_ID field descriptions

Field	Description		
phytype	Indicates the type of PHY interface selected:		
	00h Legacy PHY (HDMI TX PHY)		
	F2h PHY_Gen2 (HDMI 3D TX PHY)		
	E2h PHY_Gen2 (HDMI 3D TX PHY) + HEAC PHY		

33.5.8 Configuration Identification Register 3 (HDMI_CONFIG3_ID)

• Name: Configuration Identification Register 3

• Address Offset: 0x0007

• Size: 8 bits

• Value after Reset: Implementation Dependent

• Access: Read

Address: 12_0000h base + 7h offset = 12_0007h

HDMI_CONFIG3_ID field descriptions

Field	Description
7–1	This field is reserved.
-	
	Indicates that configuration interface is Generic Parallel Audio (GPAUD) interface
confgpaud	

33.5.9 Frame Composer Interrupt Status Register 0 (HDMI_IH_FC_STAT0)

This section describes clear on write (1 to corresponding bit) status registers, which contain the following active-high, sticky bit interrupts.

HDMI TX introduces a new set of sticky bit mute control registers (IH_MUTE_FC_STAT0 to IH_MUTE_AHBDMAAUD_STAT0) that correspond to the interrupt registers. You can ignore a sticky bit interrupt by setting the corresponding mute control register bit to 1. This puts the global interrupt line on a higher priority than the sticky bit interrupt.

• Address Offset: 0x0100

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read/Clear on Write

Address: 12_0000h base + 100h offset = 12_0100h

Bit	7	6	5	4	3	2	1	0
Read	AUDI	ACP	HBR	DST	OBA	AUDS	ACR	NULL
Write	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0

HDMI_IH_FC_STAT0 field descriptions

Field	Description			
7 AUDI	Active after successful transmission of an Audio InfoFrame packet.			
6 ACP	Active after successful transmission of an Audio Content Protection packet.			
5 HBR	Active after successful transmission of an Audio HBR packet.			
4 DST	Reserved			
3 OBA	Reserved			
2 AUDS	Active after successful transmission of an Audio Sample packet. Due to high number of audio sample packets transmitted, this interrupt is by default masked at frame composer.			
1 ACR	Active after successful transmission of an Audio Clock Regeneration (N/CTS transmission) packet.			
0 NULL	Active after successful transmission of an Null packet. Due to high number of audio sample packets transmitted, this interrupt is by default masked at frame composer.			

33.5.10 Frame Composer Interrupt Status Register 1 (HDMI_IH_FC_STAT1)

• Address Offset: 0x0101

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read/Clear on Write

Address: 12_0000h base + 101h offset = 12_0101h

Bit	7	6	5	4	3	2	1	0
Read	GMD	ISCR1	ISCR2	VSD	SPD	MPEG	AVI	GCP
Write	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0

HDMI Memory Map/Register Definition

HDMI_IH_FC_STAT1 field descriptions

Field	Description
7 GMD	Active after successful transmission of an Gamut metadata packet.
6 ISCR1	Active after successful transmission of an International Standard Recording Code 1 packet.
5 ISCR2	Active after successful transmission of an International Standard Recording Code 2 packet.
4 VSD	Active after successful transmission of an Vendor Specific Data infoFrame packet.
3 SPD	Active after successful transmission of an Source Product Descriptor infoFrame packet.
2 MPEG	Reserved
1 AVI	Active after successful transmission of an AVI infoFrame packet.
0 GCP	Active after successful transmission of an General Control Packet.

33.5.11 Frame Composer Interrupt Status Register 2 (HDMI_IH_FC_STAT2)

• Address Offset: 0x0102

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read/Clear on Write

Address: 12_0000h base + 102h offset = 12_0102h

HDMI_IH_FC_STAT2 field descriptions

Field	Description
7–2	This field is reserved.
-	Reserved
	Frame Composer low priority packet queue descriptor overflow indication.
LowPriority_ overflow	

HDMI_IH_FC_STAT2 field descriptions (continued)

Field	Description
0 HighPriority_ overflow	Frame Composer high priority packet queue descriptor overflow indication.

33.5.12 Audio Sampler Interrupt Status Register (HDMI_IH_AS_STAT0)

• Address Offset: 0x0103

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read/Clear on Write

Address: 12_0000h base + 103h offset = 12_0103h

HDMI_IH_AS_STAT0 field descriptions

Field	Description
7–3 -	This field is reserved. Reserved
2 Aud_fifo_ underflow_thr	Audio Sampler audio FIFO empty threshold (four samples) indication. Only valid in HBR audio.
1 Aud_fifo_ underflow	Audio Sampler audio FIFO empty indication.
0 Aud_fifo_ overflow	Audio Sampler audio FIFO full indication.

33.5.13 PHY Interface Interrupt Status Register (HDMI_IH_PHY_STAT0)

• Address Offset: 0x0104

• Size: 8 bits

Value after Reset: 0x00Access: Clear on Write/Read

Address: 12_0000h base + 104h offset = 12_0104h

Bit	7	7 6		4	
Read	Pose	erved	RX_SENSE3	RX_SENSE2	
Write	riese	aveu	w1c	w1c	
Reset	0	0	0	0	
Bit	3	2	1	0	
Read	RX_SENSE1	RX_SENSE0	TX_PHY_LOCK	HDP	
Write	w1c	w1c	w1c	w1c	
Reset	0	0	0	0	

HDMI_IH_PHY_STAT0 field descriptions

Field	Description
7–6 -	This field is reserved. Reserved
5 RX_SENSE3	TX PHY RX_SENSE indication for driver 3. You may need to mask or change polarity of this interrupt after it has become active.
4 RX_SENSE2	TX PHY RX_SENSE indication for driver 2. You may need to mask or change polarity of this interrupt after it has become active.
3 RX_SENSE1	TX PHY RX_SENSE indication for driver 1. You may need to mask or change polarity of this interrupt after it has become active.
2 RX_SENSE0	TX PHY RX_SENSE indication for driver 0. You may need to mask or change polarity of this interrupt after it has become active.
1 TX_PHY_LOCK	TX PHY PLL lock indication. Please refer to PHY datasheet for more information. You may need to mask or change polarity of this interrupt after it has become active.
0 HDP	HDMI Hot Plug Detect indication. You may need to mask or change polarity of this interrupt after it has become active.

33.5.14 E-DDC I2C Master Interrupt Status Register (HDMI_IH_I2CM_STAT0)

• Address Offset: 0x0105

• Size: 8 bits

Value after Reset: 0x00Access: Clear on Write/Read

Address: 12_0000h base + 105h offset = 12_0105h

HDMI_IH_I2CM_STAT0 field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 I2Cmasterdone	I2C Master done indication
0 I2CMASTER_ ERROR	I2C Master error indication

33.5.15 CEC Interrupt Status Register (HDMI_IH_CEC_STAT0)

• Address Offset: 0x0106

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read/Clear on Write

Address: 12_0000h base + 106h offset = 12_0106h

Bit	7	6	5	4	3	2	1	0
Read	Reserved	WAKEUP	ERROR_ FOLLOW	ERROR_ INITIATOR	ARB_LOST	NACK	EOM	DONE
Write		w1c	w1c	w1c	w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0

HDMI_IH_CEC_STAT0 field descriptions

Field	Description
7 -	This field is reserved. Reserved
6 WAKEUP	CEC Wake-up indication
5 ERROR_ FOLLOW	CEC Error_follow indication
4 ERROR_ INITIATOR	CEC Error_follow indication
3 ARB_LOST	CEC Arb_Lost indication
2 NACK	CEC Nack indication
1 EOM	CEC End of Message Indication
0 DONE	CEC Done Indication

33.5.16 Video Packetizer Interrupt Status Register (HDMI_IH_VP_STAT0)

• Address Offset: 0x0107

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read/Clear on Write

Address: 12_0000h base + 107h offset = 12_0107h

Bit	7	6	5	4
Read	fifofullrepet	fifoemptyrepet	fifofullpp	fifoemptypp
Write	w1c w1c		w1c	w1c
Reset	0	0	0	0
Bit	3	2	1	0
Read	fifofullremap fifoemptyremap		fifofullbyp	fifoemptybyp
Write	w1c	w1c	w1c	w1c
Reset	0 0		0	0

HDMI_IH_VP_STAT0 field descriptions

Field	Description
7 fifofullrepet	Video packetizer pixel repeater FIFO full interrupt
6 fifoemptyrepet	Video packetizer pixel repeater FIFO empty interrupt
5 fifofullpp	Video packetizer pixel packing FIFO full interrupt
4 fifoemptypp	Video packetizer pixel packing FIFO empty interrupt
3 fifofullremap	Video packetizer pixel YCC 422 re-mapper FIFO full interrupt
2 fifoemptyremap	Video packetizer pixel YCC 422 re-mapper FIFO empty interrupt
1 fifofullbyp	Video packetizer 8-bit bypass fifo full interrupt
0 fifoemptybyp	Video packetizer 8-bit bypass fifo empty interrupt

33.5.17 PHY GEN2 I2C Master Interrupt Status Register (HDMI_IH_I2CMPHY_STAT0)

This clear on write (1 to corresponding bit) register contains the following active high sticky bit interrupts. That I2C Master PHY is the I2C Master block used to access the PHY I2C Slave.

• Address Offset: 0x0108

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read/Clear on Write

Address: 12_0000h base + 108h offset = 12_0108h

HDMI_IH_I2CMPHY_STAT0 field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 i2cmphydone	I2C Master PHY done indication
0 i2cmphyerror	I2C Master PHY error indication

33.5.18 AHB Audio DMA Interrupt Status Register (HDMI_IH_AHBDMAAUD_STAT0)

Address Offset: 0x0109

Size: 8 bits

Value after Reset: 0x00

Access: Read/Clear on Write

Address: 12_0000h base + 109h offset = 12_0109h

Bit	7	7 6		4
Read	Rese	erved	ahbdmaaud_interror	ahbdmaaud_ intlostownership
Write			w1c	w1c
Reset	0	0	0	0
Bit	3	2	1	0
Read	ahbdmaaud_intretrysplit	ahbdmaaud_intdone	ahbdmaaud_intbufffull	ahbdmaaud_ intbuffempty
Write	w1c	w1c	w1c	w1c
Reset	0	0	0	0

HDMI_IH_AHBDMAAUD_STAT0 field descriptions

Field	Description
7–6 -	This field is reserved. Reserved
5 ahbdmaaud_interror	AHB audio DMA error interrupt
4 ahbdmaaud_ intlostownership	AHB audio DMA lost ownership interrupt
3 ahbdmaaud_ intretrysplit	AHB audio DMA RETRY/SPLIT interrupt
2 ahbdmaaud_intdone	AHB audio DMA done interrupt
1 ahbdmaaud_ intbufffull	AHB audio DMA Buffer full interrupt
0 ahbdmaaud_ intbuffempty	AHB audio DMA Buffer empty interrupt

33.5.19 Frame Composer Interrupt Mute Control Register 0 (HDMI_IH_MUTE_FC_STAT0)

• Address Offset: 0x0180

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 180h offset = 12_0180h

Bit	7	6	5	4	3	2	1	0
Read Write	AUDI	ACP	HBR	DST	ОВА	AUDS	ACR	NULL
Reset	0	0	0	0	0	0	0	0

HDMI_IH_MUTE_FC_STAT0 field descriptions

Field	Description
7 AUDI	When set to 1, mutes IH_ FC_STAT0[7]
6 ACP	When set to 1, mutes IH_ FC_STAT0[6]
5 HBR	When set to 1, mutes IH_ FC_STAT0[5]
4 DST	When set to 1, mutes IH_ FC_STAT0[4]
3 OBA	When set to 1, mutes IH_ FC_STAT0[3]
2 AUDS	When set to 1, mutes IH_ FC_STAT0[2]
1 ACR	When set to 1, mutes IH_ FC_STAT0[1]
0 NULL	When set to 1, mutes IH_ FC_STAT0[0]

33.5.20 Frame Composer Interrupt Mute Control Register 1 (HDMI_IH_MUTE_FC_STAT1)

• Address Offset: 0x0181

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 181h offset = 12_0181h

Bit	7	6	5	4	3	2	1	0
Read Write	GMD	ISCR1	ISCR2	VSD	SPD	MPEG	AVI	GCP
Reset	0	0	0	0	0	0	0	0

HDMI_IH_MUTE_FC_STAT1 field descriptions

Field	Description
7 GMD	When set to 1, mutes IH_ FC_STAT1[7]
6 ISCR1	When set to 1, mutes IH_ FC_STAT1[6]
5 ISCR2	When set to 1, mutes IH_ FC_STAT1[5]
4 VSD	When set to 1, mutes IH_ FC_STAT1[4]
3 SPD	When set to 1, mutes IH_ FC_STAT1[3]
2 MPEG	When set to 1, mutes IH_ FC_STAT1[2]
1 AVI	When set to 1, mutes IH_ FC_STAT1[1]
0 GCP	When set to 1, mutes IH_ FC_STAT1[0]

33.5.21 Frame Composer Interrupt Mute Control Register 2 (HDMI_IH_MUTE_FC_STAT2)

• Address Offset: 0x0182

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 182h offset = 12_0182h

HDMI_IH_MUTE_FC_STAT2 field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 LowPriority_ overflow	When set to 1, mutes IH_ FC_STAT2[1]
0 HighPriority_ overflow	When set to 1, mutes IH_ FC_STAT2[0]

33.5.22 Audio Sampler Interrupt Mute Control Register 0 (HDMI_IH_MUTE_AS_STAT0)

• Address Offset: 0x0183

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 183h offset = 12_0183h

HDMI_IH_MUTE_AS_STAT0 field descriptions

Field	Description
7–3 -	This field is reserved. Reserved
2 Aud_fifo_ underflow_thr	When set to 1, mutes IH_ AS_STAT0[2]
1 Aud_fifo_ underflow	When set to 1, mutes IH_ AS_STAT0[1]
0 Aud_fifo_ overflow	When set to 1, mutes IH_ AS_STAT0[0]

33.5.23 PHY Interface Interrupt Mute Control Register (HDMI_IH_MUTE_PHY_STAT0)

• Address Offset: 0x0184

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 184h offset = 12_0184h

HDMI_IH_MUTE_PHY_STAT0 field descriptions

Field	Description
7–6 -	This field is reserved. Reserved
5 RX_SENSE3	When set to 1, mutes IH_ PHY_STAT0[5]
4 RX_SENSE2	When set to 1, mutes IH_ PHY_STAT0[4]
3 RX_SENSE1	When set to 1, mutes IH_ PHY_STAT0[3]
2 RX_SENSE0	When set to 1, mutes IH_ PHY_STAT0[2]
1 TX_PHY_LOCK	When set to 1, mutes IH_ PHY_STAT0[1]
0 HDP	When set to 1, mutes IH_ PHY_STAT0[0]

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

33.5.24 E-DDC I2C Master Interrupt Mute Control Register (HDMI_IH_MUTE_I2CM_STAT0)

• Address Offset: 0x0185

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 185h offset = 12_0185h

HDMI_IH_MUTE_I2CM_STAT0 field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 I2Cmasterdone	When set to 1, mutes IH_ I2CM_STAT0[1]
0 I2CMASTER_ ERROR	When set to 1, mutes IH_ I2CM_STAT0[0]

33.5.25 CEC Interrupt Mute Control Register (HDMI_IH_MUTE_CEC_STAT0)

• Address Offset: 0x0186

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 186h offset = 12_0186h

HDMI_IH_MUTE_CEC_STAT0 field descriptions

Field	Description
7 -	This field is reserved. Reserved
6 WAKEUP	When set to 1, mutes IH_ CEC_STAT0[6]
5 ERROR_ FOLLOW	When set to 1, mutes IH_ CEC_STAT0[5]
4 ERROR_ INITIATOR	When set to 1, mutes IH_ CEC_STAT0[4]
3 ARB_LOST	When set to 1, mutes IH_ CEC_STAT0[3]
2 NACK	When set to 1, mutes IH_ CEC_STAT0[2]
1 EOM	When set to 1, mutes IH_ CEC_STAT0[1]
0 DONE	When set to 1, mutes IH_ CEC_STAT0[0]

33.5.26 Video Packetizer Interrupt Mute Control Register (HDMI_IH_MUTE_VP_STAT0)

• Address Offset: 0x0187

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 187h offset = 12_0187h

Bit	7	6	5	4
Read Write	fifofullrepet	fifoemptyrepet	fifofullpp	fifoemptypp
Reset	0	0	0	0
Bit	3	2	1	0
Read Write	fifofullremap	fifoemptyremap	fifofullbyp	fifoemptybyp
Reset	0	0	0	0

HDMI_IH_MUTE_VP_STAT0 field descriptions

Field	Description
7 fifofullrepet	When set to 1, mutes IH_ VP_STAT0[7]

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI Memory Map/Register Definition

HDMI_IH_MUTE_VP_STAT0 field descriptions (continued)

Field	Description
6 fifoemptyrepet	When set to 1, mutes IH_ VP_STAT0[6]
5 fifofullpp	When set to 1, mutes IH_ VP_STAT0[5]
4 fifoemptypp	When set to 1, mutes IH_ VP_STAT0[4]
3 fifofullremap	When set to 1, mutes IH_ VP_STAT0[3]
2 fifoemptyremap	When set to 1, mutes IH_ VP_STAT0[2]
1 fifofullbyp	When set to 1, mutes IH_ VP_STAT0[1]
0 fifoemptybyp	When set to 1, mutes IH_ VP_STAT0[0]

33.5.27 PHY GEN 2 I2C Master Interrupt Mute Control Register (HDMI_IH_MUTE_I2CMPHY_STAT0)

• Address Offset: 0x0188

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 188h offset = 12_0188h

HDMI_IH_MUTE_I2CMPHY_STAT0 field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 i2cmphydone	When set to 1, mutes IH_ I2CMPHY_STAT0[1]
0 i2cmphyerror	When set to 1, mutes IH_ I2CMPHY_STAT0[0]

33.5.28 AHB Audio DMA Interrupt Mute Control Register (HDMI_IH_MUTE_AHBDMAAUD_STAT0)

• Address Offset: 0x0189

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 189h offset = 12_0189h

Bit	7	6	5	4
Read Write	Reserved		ahbdmaaud_interror	ahbdmaaud_ intlostownership
Reset	0	0	0	0
Bit	3	2	1	0
Read Write	ahbdmaaud_intretrysplit	ahbdmaaud_intdone	ahbdmaaud_intbufffull	ahbdmaaud_ intbuffempty
Reset	0	0	0	0

HDMI_IH_MUTE_AHBDMAAUD_STAT0 field descriptions

Field	Description
7–6 -	This field is reserved. Reserved
5 ahbdmaaud_interror	When set to 1, mutes IH_AHBDMAAUD_STAT0[5]
4 ahbdmaaud_ intlostownership	When set to 1, mutes IH_AHBDMAAUD_STAT0[4]
3 ahbdmaaud_ intretrysplit	When set to 1, mutes IH_AHBDMAAUD_STAT0[3]
2 ahbdmaaud_intdone	When set to 1, mutes IH_AHBDMAAUD_STAT0[2]
1 ahbdmaaud_ intbufffull	When set to 1, mutes IH_AHBDMAAUD_STAT0[1]
0 ahbdmaaud_ intbuffempty	When set to 1, mutes IH_AHBDMAAUD_STAT0[0]

33.5.29 Global Interrupt Mute Control Register (HDMI_IH_MUTE)

• Address Offset: 0x01FF

• Size: 8 bits

Value after Reset: 0x03Access: Read/Write

Address: 12_0000h base + 1FFh offset = 12_01FFh

HDMI_IH_MUTE field descriptions

Field	Description
7–2 rsvd	This field is reserved.
1 mute_wakeup_ interrupt	When set to 1, mutes the wake-up interrupt line. The sticky bit interrupt continues with its state; only the wake up interrupt line is muted.
0 mute_all_ interrupt	When set to 1, mutes the main interrupt line (where all interrupts are ORed). The sticky bit interrupts continue with their state; only the main interrupt line will be muted.

33.5.30 Video Input Mapping and Internal Data Enable Configuration Register (HDMI_TX_INVID0)

This registers contains the input video mapping code as defined in Table 2-1.

• Address Offset: 0x0200

• Size: 8 bits

Value after Reset: 0x01Access: Read/Write

Address: 12_0000h base + 200h offset = 12_0200h

HDMI_TX_INVID0 field descriptions

Field	Description							
7 internal_de_ generator	Internal data enable (DE) generator enable. If data enable is not available for the input video the user may set this bit to one to activate the internal data enable generator.							
generator	NOTE: This feature only works for input video modes that have native repetition (such as, all CEA videos). No desired pixel repetition can be used with this feature because these configurations only affect the Frame Composer and not this block.							
6–5	This field is reserved.							
-	Reserved							
video_mapping	video_mapping							

33.5.31 Video Input Stuffing Enable Register (HDMI_TX_INSTUFFING)

This register enables the stuffing mechanism of the Video Sampler module in order to correctly perform Color Space Conversion of the ITU.601 standard YCC video. In this case, when "de" is low, the output video components gydata[15:0], rcrdata[15:0], and bcbdata[15:0] can be configured.

• Address Offset: 0x0201

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 201h offset = 12_0201h

HDMI_TX_INSTUFFING field descriptions

Field	Description							
7–3 -	This field is reserved. Reserved							
2 BCBDATA_ STUFFING	O When the dataen signal is low, the value in the bcbdata[15:0] output is the one sampled from the corresponding input data. When the dataen signal is low, the value in the bcbdata[15:0] output is given by the values in register TX_BCBDTA0 and TX_BCBDATA1.							
1 RCRDATA_ STUFFING	RCRDATA stuffing bit							

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_TX_INSTUFFING field descriptions (continued)

Field	Description							
	When the dataen signal is low, the value in the rcrdata[15:0] output is the one sampled from the corresponding input data.							
	When the dataen signal is low, the value in the rcrdata[15:0] output is given by the values in TX_RCRDTA0 and TX_RCRDATA1 registers.							
0 GYDATA_	GYDATA stuffing bit							
STUFFING	when the dataen signal is low, the value in the gydata[15:0] output is the one sampled from the corresponding input data.							
	1 When the dataen signal is low, the value in the gydata[15:0] output is given by the values in TX_GYDTA0 and TX_GYDATA1 registers.							

33.5.32 Video Input GY Data Channel Stuffing Register 0 (HDMI_TX_GYDATA0)

• Address Offset: 0x0202

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 202h offset = 12_0202h

HDMI_TX_GYDATA0 field descriptions

Field	Description					
	gydata[7:0].This register defines the value of gydata[7:0] when TX_INSTUFFING[0] (gydata_stuffing) is set to 1b.					

33.5.33 Video Input GY Data Channel Stuffing Register 1 (HDMI_TX_GYDATA1)

• Address Offset: 0x0203

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 203h offset = 12_0203h

HDMI_TX_GYDATA1 field descriptions

Field	Description
gydata	gydata[15:8].This register defines the value of gydata[15:8] when TX_INSTUFFING[0] (gydata_stuffing) is set to 1b.

33.5.34 Video Input RCR Data Channel Stuffing Register 0 (HDMI_TX_RCRDATA0)

• Address Offset: 0x0204

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 204h offset = 12_0204h

HDMI TX RCRDATA0 field descriptions

Field	Description						
rcrdata	rcrdata[7:0]. This register defines the value of rcrydata[7:0] when TX_INSTUFFING[1] (rcrdata_stuffing) is set to 1b.						

33.5.35 Video Input RCR Data Channel Stuffing Register 1 (HDMI_TX_RCRDATA1)

• Address Offset: 0x0205

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 205h offset = 12_0205h

HDMI_TX_RCRDATA1 field descriptions

Field	Description
	rcrdata[15:8]. This register defines the value of rcrydata[15:8] when TX_INSTUFFING[1] (rcrdata_stuffing) is set to 1b.

33.5.36 Video Input RCB Data Channel Stuffing Register 0 (HDMI_TX_BCBDATA0)

• Address Offset: 0x0206

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 206h offset = 12_0206h

HDMI_TX_BCBDATA0 field descriptions

	Field	Description
t		bcbdata[7:0]. This register defines the value of bcbdata[7:0] when TX_INSTUFFING[2] (bcbdata_stuffing) is set to 1b.

33.5.37 Video Input RCB Data Channel Stuffing Register 1 (HDMI_TX_BCBDATA1)

• Address Offset: 0x0207

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 207h offset = 12_0207h

HDMI_TX_BCBDATA1 field descriptions

Field	Description				
	bcbdata[15:8]. This register defines the value of bcbdata[15:8] when TX_INSTUFFING[2] (bcbdata_stuffing) is set to 1b.				

33.5.38 Video Packetizer Packing Phase Status Register (HDMI_VP_STATUS)

• Address Offset: 0x0800

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 800h offset = 12_0800h

HDMI_VP_STATUS field descriptions

Field	Description					
7–4	This field is reserved.					
-	Reserved					

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_VP_STATUS field descriptions (continued)

Field	Description
. 5=,	Read only register that holds the "packing phase" output by the Video packetizer block. For more information about "packing" video data, refer to the HDMI1.4a specification. The register is updated at tmds clock rate.

33.5.39 Video Packetizer Pixel Repetition and Color Depth Register (HDMI_VP_PR_CD)

This register configures the Color Depth of the input video and Pixel repetition to apply to video.

• Address Offset: 0x0801

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 801h offset = 12_0801h

Bit	7	6	5	4	3	2	1	0
Read Write		color_de	epth[3:0]		desired_pr_factor[3:0]			
Reset	0	0	0	0	0	0	0	0

HDMI_VP_PR_CD field descriptions

Field	Description					
7–4	Color depth configuration:					
color_depth[3:0]	other Reserved. Not used.					
	0000 24 bits per pixel video (8 bit per component). 8-bit packing mode.					
	0100 24 bits per pixel video (8 bit per component). 8-bit packing mode.					
	0101 30 bits per pixel video (10 bit per component). 10-bit packing mode.					
	0110 36 bits per pixel video (12 bit per component). 12-bit packing mode.					
	0111 48 bits per pixel video (16 bit per component). 16-bit packing mode.					
desired_pr_ factor[3:0]	Desired pixel repetition factor configuration. The configured value sets H13T PHY PLL to multiply pixel clock by the factor in order to obtain the desired repetition clock. For the CEA modes some are already defined with pixel repetition in the input video. So for CEA modes this shall be always 0. Shall only be used if the user wants to do pixel repetition using H13TCTRL core.					
	other Reserved. Not used.					
	0000 No pixel repetition (pixel sent only once)					
	0001 Pixel sent 2 times (pixel repeated once)					
	0010 Pixel sent 3 times					
	0011 Pixel sent 4 times					
	0100 Pixel sent 5 times					
	0101 Pixel sent 6 times					

Table continues on the next page...

HDMI_VP_PR_CD field descriptions (continued)

Field	Description			
	0110 Pixel sent 7 times			
	0111 Pixel sent 8 times			
	1000 Pixel sent 9 times			
	1001 Pixel sent 10 times			

33.5.40 Video Packetizer Stuffing and Default Packing Phase Register (HDMI_VP_STUFF)

This register controls the Pixel repetition, pixel packing and YCC422 stuffing.

• Address Offset: 0x0802

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 802h offset = 12_0802h

HDMI_VP_STUFF field descriptions

Field	Description
7–6 -	This field is reserved. Reserved
5 idefault_phase	Controls the default phase packing machine used according to: "If the transmitted video format has timing such that the phase of the first pixel of every Video Data Period corresponds to pixel packing phase 0 (for example, 10P0, 12P0, 16P0), the Source may set the Default_Phase bit in the GCP. The Sink may use this bit to optimize it's filtering or handling of the PP field." (HDMI specification version 1.4a) This means that for10 bit mode the Htotal must be dividable by 4 and for 12 bit mode the Htotal must be dividable by 2.
4 ifix_pp_to_last	Reserved. Controls packing machine strategy.
3 icx_goto_p0_st	Reserved. Controls packing machine strategy.
2 ycc422_stuffing	YCC 422 remap stuffing control. For horizontal blanking: 0 YCC 422 remap block in direct mode (input blanking data goes directly to output).
	1 YCC 422 remap block in stuffing mode. When "de" goes to low the outputs are fixed to 0x00.

Table continues on the next page...

HDMI_VP_STUFF field descriptions (continued)

Field	Description				
1	Pixel packing stuffing control				
pp_stuffing					
	Pixel packing block in direct mode (input blanking data goes directly to output).				
	1 Pixel packing block in stuffing mode. When "de_rep" goes to low the outputs are fixed to 0x00.				
0	Pixel repeater stuffing control				
pr_stuffing					
	Pixel repeater block in direct mode (input blanking data goes directly to output).				
	1 Pixel repeater block in stuffing mode. When "de" goes to low the outputs are fixed to 0x00.				

33.5.41 Video Packetizer YCC422 Remapping Register (HDMI_VP_REMAP)

This register controls YCC422 remap of the Video Packetizer. For more information about YCC422 remap refer to HDMI 1.4a specification.

• Address Offset: 0x0803

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 803h offset = 12_0803h

HDMI_VP_REMAP field descriptions

Field	Description				
7–2	nis field is reserved.				
-	Reserved				
ycc422_size[1:0]	YCC 422 remap input video size:				
	 YCC 422 16-bit input video (8 bits per component). YCC 422 20-bit input video (10 bits per component). YCC 422 24-bit input video (12 bits per component). Reserved. Not used. 				

33.5.42 Video Packetizer Output, Bypass, and Enable Configuration Register (HDMI_VP_CONF)

This register controls the Video Packetizer output selection, bypass select, YCC422 enable, Pixel repeater, and pixel packing enabling.

• Address Offset: 0x0804

• Size: 8 bits

Value after Reset: 0x46Access: Read/Write

Address: 12_0000h base + 804h offset = 12_0804h

HDMI_VP_CONF field descriptions

Field	Description			
7 -	This field is reserved. Reserved			
6 bypass_en	Bypass enable. Disabling forces bypass module to output always zeros.			
5 pp_en	Pixel packing enable. Disabling forces bypass module to output always zeros.			
4 pr_en	Pixel repeater enable. Disabling forces bypass module to output always zeros.			
3 ycc422_en	YCC 422 select enable. Disabling forces bypass module to output always zeros.			
2 BYPASS_	Bypass select bit			
SELECT	Data from pixel repeater block.Data from input of video packetizer block.			
output_ selector[1:0]	Video packetizer output selection.			
	00 Data from pixel packing block.			
	01 Data from YCC 422 remap block.			
	10 Data from 8-bit bypass block.			
	11 Data from 8-bit bypass block.			

33.5.43 VP_STAT (HDMI_VP_STAT)

This register contains the following active high FIFO status indications:

• Address Offset: 0x0805

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 805h offset = 12_0805h

Bit	7	6	5	4	
Read	ostfullrepet	ostemptyrepet	ostfullpp	ostemptypp	
Write					
Reset	0	0	0	0	
Bit	3	2	1	0	
Read	ostfullremap	ostemptyremap	ostfullbyp	ostemptybyp	
Write					
Reset	et 0 0		0	0	

HDMI_VP_STAT field descriptions

Field	Description
7 ostfullrepet	Video packetizer pixel repeater FIFO full status.
6 ostemptyrepet	Video packetizer pixel repeater FIFO empty status.
5 ostfullpp	Video packetizer pixel packing FIFO full status.
4 ostemptypp	Video packetizer pixel packing FIFO empty status.
3 ostfullremap	Video packetizer pixel YCC 422 re-mapper FIFO full status.
2 ostemptyremap	Video packetizer pixel YCC 422 re-mapper FIFO empty status.
1 ostfullbyp	Video packetizer 8-bit bypass FIFO full status.
0 ostemptybyp	Video packetizer 8-bit bypass FIFO empty status.

33.5.44 **VP_INT (HDMI_VP_INT)**

This register contains the interrupt indication of the VP_STAT status interrupts. Interrupt generation is accomplished in the following way:

interrupt = (mask == 1'b0) && (polarity == status);

All this interrupts are forwarded to the Interrupt Handler sticky bit registers and after ORed to a single main interrupt line to micro controller. Assertion of this interrupt implies that data related with the corresponding packet has been sent through the HDMI interface.

• Address Offset: 0x0806

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 806h offset = 12_0806h

Bit	7	6	5	4	
Read	ointfullrepet	ointemptyrepet	ointfullpp	ointemptypp	
Write					
Reset	0	0	0	0	
Bit	3	2 1		0	
Read	ointfullremap	ointemptyremap	ointfullbyp	ointemptybyp	
Write					
Reset	t 0 0		0	0	

HDMI_VP_INT field descriptions

Field	Description
7 ointfullrepet	Video packetizer pixel repeater FIFO full status
6 ointemptyrepet	Video packetizer pixel repeater FIFO empty status
5 ointfullpp	Video packetizer pixel packing FIFO full status
4 ointemptypp	Video packetizer pixel packing FIFO empty status
3 ointfullremap	Video packetizer pixel YCC 422 re-mapper FIFO full status.
2 ointemptyremap	Video packetizer pixel YCC 422 re-mapper FIFO empty status.
1 ointfullbyp	Video packetizer 8-bit bypass FIFO full status.
0 ointemptybyp	Video packetizer 8-bit bypass FIFO empty status.

33.5.45 Video Packetizer Interrupt Mask Register (HDMI_VP_MASK)

Mask register for generation of VP_INT interrupts.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

• Address Offset: 0x0807

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 807h offset = 12_0807h

Bit	7	6	5	4	3	2	1	0
Read Write	VPMASK7	VPMASK6	VPMASK5	VPMASK4	VPMASK3	VPMASK2	VPMASK1	VPMASK0
Reset	0	0	0	0	0	0	0	0

HDMI_VP_MASK field descriptions

Field	Description
7 VPMASK7	Mask bit for VP_INT[7] interrupt bit.
6 VPMASK6	Mask bit for VP_INT[6] interrupt bit.
5 VPMASK5	Mask bit for VP_INT[5] interrupt bit.
4 VPMASK4	Mask bit for VP_INT[4] interrupt bit.
3 VPMASK3	Mask bit for VP_INT[3] interrupt bit.
2 VPMASK2	Mask bit for VP_INT[2] interrupt bit.
1 VPMASK1	Mask bit for VP_INT[1] interrupt bit.
0 VPMASK0	Mask bit for VP_INT[0] interrupt bit.

33.5.46 VP_POL (HDMI_VP_POL)

Polarity register for generation of VP_INT interrupts.

• Address Offset: 0x0808

• Size: 8 bits

Value after Reset: 0xFF Access: Read/Write

Address: 12_0000h base + 808h offset = 12_0808h

HDMI_VP_POL field descriptions

Field	Description
7 VPPOL7	Polarity bit for VP_INT[7] interrupt bit.
6 VPPOL6	Polarity bit for VP_INT[6] interrupt bit.
5 VPPOL5	Polarity bit for VP_INT[5] interrupt bit.
4 VPPOL4	Polarity bit for VP_INT[4] interrupt bit.
3 VPPOL3	Polarity bit for VP_INT[3] interrupt bit.
2 VPPOL2	Polarity bit for VP_INT[2] interrupt bit.
1 VPPOL1	Polarity bit for VP_INT[1] interrupt bit.
0 VPPOL0	Polarity bit for VP_INT[0] interrupt bit.

33.5.47 Frame Composer Input Video Configuration and HDCP Keepout Register (HDMI_FC_INVIDCONF)

This register configures the Interlaced/progressive, Vblank variation and polarity of all video synchronism of the input video signal.

• Address Offset: 0x1000

• Size: 8 bits

Value after Reset: 0x70Access: Read/Write

Address: 12_0000h base + 1000h offset = 12_1000h

HDMI_FC_INVIDCONF field descriptions

Field	Description
7	This field is reserved.
-	Reserved

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_FC_INVIDCONF field descriptions (continued)

Field	Description
6	Vsync input polarity
vsync_in_polarity	d Astina biah
	1 Active high 0 Active low
5 hsync_in_polarity	Hsync input polarity
nisyric_in_polarity	1 Active high
	0 Active low
4	Data enable input polarity
de_in_polarity	
	1 Active high
_	0 Active low
3 DVI_mode	Active low
DVI_IIIOGE	0 DVI mode selected
	1 HDMI mode selected
2	This field is reserved.
-	Reserved
1	Used for CEA861-D modes with fractional Vblank (for example, modes 5, 6, 7, 10, 11, 20, 21, and 22. For
r_v_blank_in_osc	more modes, refer to CEA861-D specification.
	1 Active high
0	Input video mode:
in_I_P	1 Interlaced
	0 Progressive
	U I logicosive

33.5.48 Frame Composer Input Video HActive Pixels Register 0 (HDMI_FC_INHACTIV0)

• Address Offset: 0x1001

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1001h offset = 12_1001h

HDMI_FC_INHACTIV0 field descriptions

Field	Description
H_in_activ[7:0]	Input video Horizontal active pixel region width. Number of Horizontal active pixels [08191].

33.5.49 Frame Composer Input Video HActive Pixels Register 1 (HDMI_FC_INHACTIV1)

• Address Offset: 0x1002

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1002h offset = 12_1002h

HDMI_FC_INHACTIV1 field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
H_in_activ[12:8]	Input video Horizontal active pixel region width.
	Dependencies:
	Value after Reset: 0000b
	the higher bit of Horizontal active pixels; Number of Horizontal active pixels [08191].

33.5.50 Frame Composer Input Video HBlank Pixels Register 0 (HDMI_FC_INHBLANK0)

• Address Offset: 0x1003

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1003h offset = 12_1003h

HDMI_FC_INHBLANK0 field descriptions

Field	Description
H_in_blank[7:0]	Input video Horizontal blanking pixel region width. Number of Horizontal blanking pixels [04095].

33.5.51 Frame Composer Input Video HBlank Pixels Register 1 (HDMI_FC_INHBLANK1)

• Address Offset: 0x1004

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1004h offset = 12_1004h

HDMI_FC_INHBLANK1 field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
H_in_blank[12:8]	Input video Horizontal blanking pixel region width.
	Dependencies:
	Value after Reset: 0000b
	the higher bits of Horizontal blanking pixels; Number of Horizontal blanking pixels [08191].

33.5.52 Frame Composer Input Video VActive Pixels Register 0 (HDMI_FC_INVACTIV0)

• Address Offset: 0x1005

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1005h offset = 12_1005h

HDMI_FC_INVACTIV0 field descriptions

Field	Description
V_in_activ[7:0]	Input video Vertical active pixel region width. Number of Vertical active lines [04095].

33.5.53 Frame Composer Input Video VActive Pixels Register 1 (HDMI_FC_INVACTIV1)

• Address Offset: 0x1006

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1006h offset = 12_1006h

HDMI_FC_INVACTIV1 field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
V_in_activ[12:8]	Input video Vertical active pixel region width.
	Dependencies:
	Value after Reset: 0000b

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_FC_INVACTIV1 field descriptions (continued)

Field	Description
	the higher 5 bits of Vertical active line; Number of Vertical active lines [08191].

33.5.54 Frame Composer Input Video VBlank Pixels Register (HDMI_FC_INVBLANK)

• Address Offset: 0x1007

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1007h offset = 12_1007h

HDMI_FC_INVBLANK field descriptions

Field	Description
V_in_blank[7:0]	Input video Vertical blanking pixel region width. Number of Vertical blanking lines [0255].
	Value after Reset: 0x00

33.5.55 Frame Composer Input Video HSync Front Porch Register 0 (HDMI_FC_HSYNCINDELAY0)

• Address Offset: 0x1008

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1008h offset = 12_1008h

HDMI_FC_HSYNCINDELAY0 field descriptions

Field	Description
	Input video Hsync active edge delay. Integer number of pixel clock cycles from "de" non active edge of the last "de" valid period [04095].

33.5.56 Frame Composer Input Video HSync Front Porch Register 1 (HDMI_FC_HSYNCINDELAY1)

• Address Offset: 0x1009

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1009h offset = 12_1009h

HDMI_FC_HSYNCINDELAY1 field descriptions

Field	Description				
7–5	is field is reserved.				
-	eserved				
H_in_delay[12:8]	put video Hsync active edge delay.				
	Dependencies:				
	Value after Reset: 0000b				
	 the higher 5 bits of delay; Integer number of pixel clock cycles from "de" non active edge of the last "de" valid period [08191]. 				

33.5.57 Frame Composer Input Video HSync Width Register 0 (HDMI_FC_HSYNCINWIDTH0)

• Address Offset: 0x100A

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 100Ah offset = 12_100Ah

HDMI_FC_HSYNCINWIDTH0 field descriptions

Field	Description
H_in_width[7:0]	Input video Hsync active pulse width. Integer number of pixel clock cycles [0511].

33.5.58 Frame Composer Input Video HSync Width Register 1 (HDMI_FC_HSYNCINWIDTH1)

• Address Offset: 0x100B

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 100Bh offset = 12_100Bh

HDMI_FC_HSYNCINWIDTH1 field descriptions

Field	Description			
7–2	This field is reserved. Reserved			
H_in_width[9:8]	nput video Hsync active pulse width.			
	Dependencies:			
	Value after Reset after Reset: 0b			

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_FC_HSYNCINWIDTH1 field descriptions (continued)

Field	Description			
	Integer number of pixel clock cycles [01024].			

33.5.59 Frame Composer Input Video VSync Front Porch Register (HDMI_FC_VSYNCINDELAY)

• Address Offset: 0x100C

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 100Ch offset = 12_100Ch

HDMI_FC_VSYNCINDELAY field descriptions

Field	Description
	Input video Vsync active edge delay. Integer number of Hsync pulses from "de" non active edge of the last "de" valid period. [0255].

33.5.60 Frame Composer Input Video VSync Width Register (HDMI FC VSYNCINWIDTH)

• Address Offset: 0x100D

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 100Dh offset = 12_100Dh

HDMI_FC_VSYNCINWIDTH field descriptions

Field	Description			
7–6	s field is reserved.			
-	eserved			
V_in_width[50]	/alue after Reset: 000000b			
	Input video Vsync active pulse width: Integer number of pixel clock cycles [063].			

33.5.61 Frame Composer Input Video Refresh Rate Register 0 (HDMI_FC_INFREQ0)

• Address Offset: 0x100E

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 100Eh offset = 12_100Eh

HDMI_FC_INFREQ0 field descriptions

Field	Description			
" '	Video refresh rate in Hz*1E3 format. This registers are provided for debug and informative purposes. No data is written to this registers by the H13TCTRL and the data here written by software is not used in any way by the H13TCTRL.			

33.5.62 Frame Composer Input Video Refresh Rate Register 1 (HDMI_FC_INFREQ1)

• Address Offset: 0x100F

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 100Fh offset = 12_100Fh

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_FC_INFREQ1 field descriptions

Field	Description
	Video refresh rate in Hz*1E3 format. This registers are provided for debug and informative purposes. No data is written to this registers by the H13TCTRL and the data here written by software is not used in any way by the H13TCTRL.

33.5.63 Frame Composer Input Video Refresh Rate Register 2 (HDMI_FC_INFREQ2)

• Address Offset: 0x1010

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1010h offset = 12_1010h

Bit	7	6	5	4	3	2	1	0
Read Write		Rese	erved			infreq[[19:16]	
Reset	0	0	0	0	0	0	0	0

HDMI_FC_INFREQ2 field descriptions

Field	Description				
7–4 -	This field is reserved. Reserved				
	Video refresh rate in Hz*1E3 format. This registers are provided for debug and informative purposes. No data is written to this registers by the H13TCTRL and the data here written by software is not used in any way by the H13TCTRL. Value after Reset: 0000b				

33.5.64 Frame Composer Control Period Duration Register (HDMI_FC_CTRLDUR)

• Address Offset: 0x1011

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1011h offset = 12_1011h

HDMI_FC_CTRLDUR field descriptions

Description
guration of the control period minimum duration (min. of 12 pixel clock cycles, refer to HDMI specification). Integer number of pixel clocks cycles [0255].
٠

33.5.65 Frame Composer Extended Control Period Duration Register (HDMI_FC_EXCTRLDUR)

• Address Offset: 0x1012

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1012h offset = 12_1012h

HDMI FC EXCTRLDUR field descriptions

Field	Description
· ·	Configuration of the extended control period minimum duration (min. of 32 pixel clock cycles, see HDMI 1.4a specification). Integer number of pixel clocks cycles [0255].

33.5.66 Frame Composer Extended Control Period Maximum Spacing Register (HDMI_FC_EXCTRLSPAC)

• Address Offset: 0x1013

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1013h offset = 12_1013h

HDMI_FC_EXCTRLSPAC field descriptions

Field	Description
	Configuration of the maximum spacing between consecutive extended control periods (max of 50msec, see HDMI 1.4a specification):
	generated spacing = (1/freq tmds clock)*256*256*extctrlperiodspacing

33.5.67 Frame Composer Channel 0 Non-Preamble Data Register (HDMI_FC_CH0PREAM)

• Address Offset: 0x1014

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1014h offset = 12_1014h

HDMI FC CHOPREAM field descriptions

Field	Description
ch0_preamble_	When in control mode, configures 8-bits that are going to fill the channel 0 data lines not used to transmit
filter	the preamble (for more clarifications refer to HDMI 1.4a specification).

33.5.68 Frame Composer Channel 1 Non-Preamble Data Register (HDMI_FC_CH1PREAM)

• Address Offset: 0x1015

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1015h offset = 12_1015h

HDMI_FC_CH1PREAM field descriptions

Field	Description
7–6 -	This field is reserved. Reserved
	When in control mode, configures 6-bits that are going to fill the channel 1 data lines not used to transmit the preamble (for more clarifications refer to HDMI 1.4a specification).

33.5.69 Frame Composer Channel 2 Non-Preamble Data Register (HDMI_FC_CH2PREAM)

• Address Offset: 0x1016

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1016h offset = 12_1016h

HDMI_FC_CH2PREAM field descriptions

Field	Description
7–6	This field is reserved.
-	Reserved

Table continues on the next page...

HDMI_FC_CH2PREAM field descriptions (continued)

Field	Description
	When in control mode, configures 6-bits that are going to fill the channel 2 data lines not used to transmit the preamble (for more clarifications, see HDMI 1.4a specification).

33.5.70 Frame Composer AVI Configuration Register 3 (HDMI_FC_AVICONF3)

• Address Offset: 0x1017

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

configuration of Quantization range and IT content type.

Address: 12_0000h base + 1017h offset = 12_1017h

HDMI_FC_AVICONF3 field descriptions

Field	Description
7–4 -	This field is reserved. Reserved
3–2 YQ1_YQ0_YCC	Quantization range according to CEA specification.
CN1_CN0	IT content type according to CEA specification

33.5.71 Frame Composer GCP Packet Configuration Register (HDMI_FC_GCP)

Configures the General Control Packet A/V mute indicators and the default phase.

• Address Offset: 0x1018

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1018h offset = 12_1018h

HDMI_FC_GCP field descriptions

Field	Description
7–3 -	This field is reserved. Reserved
2 default_phase	Value of "default_phase" in the GCP packet. This data should be equal to the default phase used at Video packetizer packing machine.
	Value after Reset: 0b
1	Value of "set_avmute" in the GCP packet.
set_avmute	Value after Reset: 0b
0	Value of "clear_avmute" in the GCP packet.
clear_avmute	Value after Reset: 0b

33.5.72 Frame Composer AVI Packet Configuration Register 0 (HDMI_FC_AVICONF0)

Configures the following contents of the AVI infoFrame:

- RGB/YCC indication
- Bar information
- Scan information
- Active format present
- Progressive/Interlaced indicator
- Active aspect ratio
- Picture aspect ratio
- Colorimetry
- IT content
- Extended colorimetry
- Quantization range
- Non-uniform picture scaling

For more information, refer to HDMI 1.4a and CEA - 861D specifications.

• Address Offset: 0x1019

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1019h offset = 12_1019h

HDMI_FC_AVICONF0 field descriptions

Field	Description
7 FC_AVICONF0_ MISC	Frame composer AVI packet configuration bit
6 FC_AVICONF0_ ACTIVE_ FORMAT	Active format present
5–4 FC_AVICONF0_ SCAN	Scan information
3–2 FC_AVICONF0_ BAR	Bar information
FC_AVICONF0_ RGB_YCC	RGB/YCC indication Value after Reset: 0b

33.5.73 Frame Composer AVI Packet Configuration Register 1 (HDMI_FC_AVICONF1)

• Address Offset: 0x101A

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 101Ah offset = 12_101Ah

HDMI_FC_AVICONF1 field descriptions

Field	Description
7–6 FC_AVICONF0_ COLOR	Colorimetry
5–4 FC_AVICONF1_ PICTURE_AR	Picture aspect ratio
FC_AVICONF1_ ACTIVE_AR	Active aspect ratio Value after Reset: 0b

33.5.74 FC_AVICONFFrame Composer AVI Packet Configuration Register 2 (HDMI_FC_AVICONF2)

• Address Offset: 0x101B

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 101Bh offset = 12_101Bh

HDMI_FC_AVICONF2 field descriptions

Field	Description
7 FC_AVICONF2_ IT	IT content
6–4 FC_AVICONF2_ EXT_COLOR	Extended colorimetry
3–2 -	Quantization range
	Non-uniform picture scaling
SCALE	Value after Reset: 0b

33.5.75 Frame Composer AVI Packet VIC Register (HDMI_FC_AVIVID)

Configures the AVI infoFrame Video Identification code. For more information, refer to the CEA-861-E specification.

• Address Offset: 0x101C

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 101Ch offset = 12_101Ch

HDMI_FC_AVIVID field descriptions

Field	Description
FC_AVIVID	the AVI infoFrame Video Identification code.

33.5.76 Frame Composer AVI Packet End of Top Bar Register 0 (HDMI_FC_AVIETB0)

These registers define the AVI infoFrame End of Top Bar value. For more information, refer to CEA-861-E specification.

• Address Offset: 0x101D

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 101Dh offset = 12_101Dh

HDMI_FC_AVIETB0 field descriptions

Field	Description
-	Line number of end of top bar (lower 8 bits)

33.5.77 Frame Composer AVI Packet End of Top Bar Register 1 (HDMI_FC_AVIETB1)

• Address Offset: 0x101E

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 101Eh offset = 12_101Eh

HDMI_FC_AVIETB1 field descriptions

Field	Description
-	Line number of end of top bar (upper 8 bits)

33.5.78 Frame Composer AVI Packet Start of Bottom Bar Register 0 (HDMI_FC_AVISBB0)

These registers define the AVI infoFrame Start of Bottom Bar value. For more information, refer to CEA-861D specification.

Address Offset: 0x101F

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 101Fh offset = 12_101Fh

HDMI_FC_AVISBB0 field descriptions

Field	Description
FC_AVISBB0	Line number of Start of Bottom Bar (lower 8 bits)

33.5.79 Frame Composer AVI Packet Start of Bottom Bar Register 1 (HDMI_FC_AVISBB1)

• Address Offset: 0x1020

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1020h offset = 12_1020h

HDMI_FC_AVISBB1 field descriptions

Field	Description
FC_AVISBB1	Line number of Start of Bottom Bar (upper 8 bits)

33.5.80 Frame Composer AVI Packet End of Left Bar Register 0 (HDMI FC AVIELB0)

These registers define the AVI infoFrame End of Left Bar value. For more information, refer to CEA-861D specification.

• Address Offset: 0x1021

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1021h offset = 12_1021h

HDMI_FC_AVIELB0 field descriptions

Field	Description
FC_AVIELB0	Pixel number of end of left Bar (lower 8 bits)

33.5.81 Frame Composer AVI Packet End of Left Bar Register 1 (HDMI_FC_AVIELB1)

• Address Offset: 0x1022

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1022h offset = 12_1022h

HDMI_FC_AVIELB1 field descriptions

Field	Description
FC_AVIELB1	Pixel number of end of left Bar (lower 8 bits)

33.5.82 Frame Composer AVI Packet Start of Right Bar Register 0 (HDMI_FC_AVISRB0)

These registers define the AVI infoFrame Start of Right Bar value. For more information, refer to CEA-861D specification.

• Address Offset: 0x1023

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1023h offset = 12_1023h

HDMI_FC_AVISRB0 field descriptions

Field	Description
FC_AVISRB0	Pixel number of start of right Bar (lower 8 bits)

33.5.83 Frame Composer AVI Packet Start of Right Bar Register 1 (HDMI_FC_AVISRB1)

• Address Offset: 0x1024

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1024h offset = 12_1024h

HDMI_FC_AVISRB1 field descriptions

Field	Description
FC_AVISRB1	Pixel number of start of right Bar (upper 8 bits)

33.5.84 Frame Composer AUD Packet Configuration Register 0 (HDMI FC AUDICONF0)

These registers configure the following contents of the AUDIO infoFrame:

- Coding type
- Channel count
- Sampling frequency
- Sampling size
- Channel allocation
- Audio level shift value
- Down mix enable

For more information, refer to CEA-861D specification.

Address Offset: 0x1025 to 0x1028

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For the FC_AUDICONF0 register, bits [6:5] correspond to LFEPBL1, LFEPBL0 LFE playback level as compared to the other channels (from HDMI 1.4a specification).

Address: 12_0000h base + 1025h offset = 12_1025h

HDMI_FC_AUDICONF0 field descriptions

Field	Description
7 -	This field is reserved. Reserved
6–4 CC[2:0]	Channel count
CT[3:0]	Coding Type

33.5.85 Frame Composer AUD Packet Configuration Register 1 (HDMI_FC_AUDICONF1)

Address: 12_0000h base + 1026h offset = 12_1026h

HDMI_FC_AUDICONF1 field descriptions

Field	Description
7–6 -	This field is reserved. Reserved
5–4 SS[1:0]	Sampling size
3 -	This field is reserved. Reserved
SF[2:0]	Sampling frequency

33.5.86 Frame Composer AUD Packet Configuration Register 2 (HDMI_FC_AUDICONF2)

Address: 12_0000h base + 1027h offset = 12_1027h

HDMI_FC_AUDICONF2 field descriptions

Field	Description
CA[7:0]	Channel allocation

33.5.87 Frame Composer AUD Packet Configuration Register 3 (HDMI_FC_AUDICONF3)

Address: 12_0000h base + 1028h offset = 12_1028h

Bit	7	6	5	4	3	2	1	0
Read Write	Reserved	LFEP	3L[1:0]	DM_INH		LSV[[3:0]	
Reset	0	0	0	0	0	0	0	0

HDMI_FC_AUDICONF3 field descriptions

Field	Description
7 -	This field is reserved. Reserved
6–5 LFEPBL[1:0]	LFE playback information
4 DM_INH	Down mix enable
LSV[3:0]	Level shift value (for down mixing)

33.5.88 Frame Composer VSI Packet Data IEEE Register 0 (HDMI_FC_VSDIEEEID0)

These registers configure the Vendor Specific infoFrame IEEE registration identifier. For more information, refer to CEA-861D specification.

• Address Offset: 0x1029

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1029h offset = 12_1029h

HDMI_FC_VSDIEEEID0 field descriptions

Field	Description
-	the Vendor Specific infoFrame IEEE registration identifier byte 0

33.5.89 Frame Composer VSI Packet Data Size Register (HDMI FC VSDSIZE)

• Address Offset: 0x102A

• Size: 8 bits

Value after Reset: 0x1BAccess: Read/Write

configuration of Packet size.

Address: 12_0000h base + 102Ah offset = 12_102Ah

HDMI_FC_VSDSIZE field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
VSDSIZE	Packet size as described in HDMI Vendor Specific InfoFrame (from HDMI specification).

33.5.90 Frame Composer VSI Packet Data IEEE Register 1 (HDMI_FC_VSDIEEEID1)

• Address Offset: 0x102a

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1030h offset = 12_1030h

HDMI_FC_VSDIEEEID1 field descriptions

Field	Description
-	the Vendor Specific infoFrame IEEE registration identifier byte 1

33.5.91 Frame Composer VSI Packet Data IEEE Register 2 (HDMI_FC_VSDIEEEID2)

• Address Offset: 0x102b

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1031h offset = 12_1031h

HDMI_FC_VSDIEEEID2 field descriptions

Field	Description
-	the Vendor Specific infoFrame IEEE registration identifier byte 2

33.5.92 Frame Composer VSI Packet Data IEEE Register 0 (HDMI_FC_VSDPAYLOAD0)

These registers configure the Vendor Specific infoFrame 24 bytes specific payload. For more information, refer to CEA-861D specification.

• Address Offset: 0x1032

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1032h offset = 12_1032h

HDMI_FC_VSDPAYLOAD0 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte0

33.5.93 Frame Composer VSI Packet Data IEEE Register 1 (HDMI_FC_VSDPAYLOAD1)

• Address Offset: 0x1033

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1033h offset = 12_1033h

HDMI_FC_VSDPAYLOAD1 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte1

33.5.94 Frame Composer VSI Packet Data IEEE Register 2 (HDMI_FC_VSDPAYLOAD2)

• Address Offset: 0x1034

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1034h offset = 12_1034h

HDMI_FC_VSDPAYLOAD2 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte2

33.5.95 Frame Composer VSI Packet Data IEEE Register 3 (HDMI_FC_VSDPAYLOAD3)

• Address Offset: 0x1035

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1035h offset = 12_1035h

HDMI_FC_VSDPAYLOAD3 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte3

33.5.96 Frame Composer VSI Packet Data IEEE Register 4 (HDMI_FC_VSDPAYLOAD4)

• Address Offset: 0x1036

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1036h offset = 12_1036h

HDMI_FC_VSDPAYLOAD4 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte4

33.5.97 Frame Composer VSI Packet Data IEEE Register 5 (HDMI_FC_VSDPAYLOAD5)

• Address Offset: 0x1037

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1037h offset = 12_1037h

HDMI_FC_VSDPAYLOAD5 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte5

33.5.98 Frame Composer VSI Packet Data IEEE Register 6 (HDMI_FC_VSDPAYLOAD6)

• Address Offset: 0x1038

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1038h offset = 12_1038h

HDMI_FC_VSDPAYLOAD6 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte6

33.5.99 Frame Composer VSI Packet Data IEEE Register 7 (HDMI_FC_VSDPAYLOAD7)

• Address Offset: 0x1039

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1039h offset = 12_1039h

HDMI_FC_VSDPAYLOAD7 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte7

33.5.100 Frame Composer VSI Packet Data IEEE Register 8 (HDMI_FC_VSDPAYLOAD8)

• Address Offset: 0x103a

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 103Ah offset = 12_103Ah

HDMI_FC_VSDPAYLOAD8 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte8

33.5.101 Frame Composer VSI Packet Data IEEE Register 9 (HDMI_FC_VSDPAYLOAD9)

• Address Offset: 0x103b

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 103Bh offset = 12_103Bh

HDMI_FC_VSDPAYLOAD9 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte9

33.5.102 Frame Composer VSI Packet Data IEEE Register 10 (HDMI_FC_VSDPAYLOAD10)

• Address Offset: 0x103c

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 103Ch offset = 12_103Ch

HDMI_FC_VSDPAYLOAD10 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte10

33.5.103 Frame Composer VSI Packet Data IEEE Register 11 (HDMI_FC_VSDPAYLOAD11)

• Address Offset: 0x103d

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 103Dh offset = 12_103Dh

HDMI_FC_VSDPAYLOAD11 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte11

33.5.104 Frame Composer VSI Packet Data IEEE Register 12 (HDMI_FC_VSDPAYLOAD12)

• Address Offset: 0x103e

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 103Eh offset = 12_103Eh

HDMI_FC_VSDPAYLOAD12 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte12

33.5.105 Frame Composer VSI Packet Data IEEE Register 13 (HDMI_FC_VSDPAYLOAD13)

• Address Offset: 0x103f

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 103Fh offset = 12_103Fh

HDMI_FC_VSDPAYLOAD13 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte13

33.5.106 Frame Composer VSI Packet Data IEEE Register 14 (HDMI_FC_VSDPAYLOAD14)

• Address Offset: 0x1040

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1040h offset = 12_1040h

HDMI_FC_VSDPAYLOAD14 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte14

33.5.107 Frame Composer VSI Packet Data IEEE Register 15 (HDMI_FC_VSDPAYLOAD15)

• Address Offset: 0x1041

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1041h offset = 12_1041h

HDMI_FC_VSDPAYLOAD15 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte15

33.5.108 Frame Composer VSI Packet Data IEEE Register 16 (HDMI_FC_VSDPAYLOAD16)

• Address Offset: 0x1042

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1042h offset = 12_1042h

HDMI_FC_VSDPAYLOAD16 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte16

33.5.109 Frame Composer VSI Packet Data IEEE Register 17 (HDMI_FC_VSDPAYLOAD17)

• Address Offset: 0x1043

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1043h offset = 12_1043h

HDMI_FC_VSDPAYLOAD17 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte17

33.5.110 Frame Composer VSI Packet Data IEEE Register 18 (HDMI_FC_VSDPAYLOAD18)

• Address Offset: 0x1044

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1044h offset = 12_1044h

HDMI_FC_VSDPAYLOAD18 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte18

33.5.111 Frame Composer VSI Packet Data IEEE Register 19 (HDMI_FC_VSDPAYLOAD19)

• Address Offset: 0x1045

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1045h offset = 12_1045h

HDMI_FC_VSDPAYLOAD19 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte19

33.5.112 Frame Composer VSI Packet Data IEEE Register 20 (HDMI_FC_VSDPAYLOAD20)

• Address Offset: 0x1046

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1046h offset = 12_1046h

HDMI_FC_VSDPAYLOAD20 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte20

33.5.113 Frame Composer VSI Packet Data IEEE Register 21 (HDMI_FC_VSDPAYLOAD21)

• Address Offset: 0x1047

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1047h offset = 12_1047h

HDMI_FC_VSDPAYLOAD21 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte21

33.5.114 Frame Composer VSI Packet Data IEEE Register 22 (HDMI_FC_VSDPAYLOAD22)

• Address Offset: 0x1048

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1048h offset = 12_1048h

HDMI_FC_VSDPAYLOAD22 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte22

33.5.115 Frame Composer VSI Packet Data IEEE Register 23 (HDMI_FC_VSDPAYLOAD23)

• Address Offset: 0x1049

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1049h offset = 12_1049h

HDMI_FC_VSDPAYLOAD23 field descriptions

Field	Description
-	the Vendor Specific infoFrame 24 bytes specific payload byte23

33.5.116 Frame Composer SPD Packet Data Vendor Name Register 0 (HDMI_FC_SPDVENDORNAME0)

These registers configure the Source Product Descriptor infoFrame 8 bytes Vendor name. For more information, refer to CEA-861D specification.

• Address Offset: 0x104A to 0x1051

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 104Ah offset = 12_104Ah

HDMI_FC_SPDVENDORNAME0 field descriptions

Field	Description
vendor_name	Vendor name

33.5.117 Frame Composer SPD Packet Data Product Name Register 0 (HDMI_FC_SPDPRODUCTNAME0)

These registers configure the Source Product Descriptor infoFrame 16 bytes Product name. For more information, refer to CEA-861D specification.

Address Offset: 0x1052 to 0x1061

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1052h offset = 12_1052h

HDMI_FC_SPDPRODUCTNAME0 field descriptions

Field	Description
product_name	Product name

33.5.118 Frame Composer SPD Packet Data Source Product Descriptor Register (HDMI_FC_SPDDEVICEINF)

This register configures Source Product Descriptor infoFrame description device field. For more information, refer to CEA-861D specification.

• Address Offset: 0x1062

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1062h offset = 12_1062h

HDMI_FC_SPDDEVICEINF field descriptions

Field	Description
product_ descriptor	Product descriptor

33.5.119 Frame Composer Audio Sample Flat and Layout Configuration Register (HDMI_FC_AUDSCONF)

Configures the Audio sample packet sample flat and layout configuration. For more information, refer to HDMI 1.4a specification.

• Address Offset: 0x1063

• Size: 8 bits

Value after Reset: 0x00AEccess: Read/Write

Address: 12_0000h base + 1063h offset = 12_1063h

HDMI_FC_AUDSCONF field descriptions

Field	Description
7–4 aud_packet_ sampfit[3:0]	Set the audio packet sample flat value to be sent on the packet.
3–1 -	This field is reserved. Reserved
0 aud_packet_ layout	Set the audio packet layout to be sent in the packet: 1 layout 1 0 layout 0

33.5.120 Frame Composer Audio Packet Sample Present Status Register (HDMI_FC_AUDSSTAT)

Shows the data sample present indication of the last Audio sample packet sent by the HDMI TX Controller. For more information, refer to HDMI 1.4a specification.

Address Offset: 0x1064

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 1064h offset = 12_1064h

HDMI_FC_AUDSSTAT field descriptions

Field	Description
7–4 -	This field is reserved. Reserved
packet_ sampprs[3:0]	Shows the data sample present indication of the last Audio sample packet sent by the HDMI TX Controller. This register information is at tmds clock rate.

33.5.121 Frame Composer Number of High Priority Packets Attended Configuration Register (HDMI_FC_CTRLQHIGH)

• Address Offset: 0x1073

• Size: 8 bits

Value after Reset: 0x0FAccess: Read/Write

Address: 12_0000h base + 1073h offset = 12_1073h

HDMI_FC_CTRLQHIGH field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
onhighattended[4:0]	Configures the number of high priority packets or audio sample packets consecutively attended before checking low priority queue status. Integer number [031]

33.5.122 Frame Composer Number of Low Priority Packets Attended Configuration Register (HDMI FC CTRLQLOW)

• Address Offset: 0x1074

• Size: 8 bits

Value after Reset: 0x03Access: Read/Write

Address: 12_0000h base + 1074h offset = 12_1074h

HDMI_FC_CTRLQLOW field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
onlowattended[4:0]	Configures the number of low priority packets or null packets consecutively attended before checking high priority queue status or audio sample availability.
	Integer number [031]

33.5.123 Frame Composer ACP Packet Type Configuration Register 0 (HDMI_FC_ACP0)

Configures the following contents of the ACP packet. For more information, refer to the HDMI 1.4 specification.

• Address Offset: 0x1075

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1075h offset = 12_1075h

HDMI_FC_ACP0 field descriptions

Field	Description
acptype[7:0]	Configures the ACP packet type.

33.5.124 Frame Composer ACP Packet Type Configuration Register 1 (HDMI_FC_ACP1)

Configures the following contents of the Audio Content Packet (ACP) body:

• Address Offset: 0x1091 to 0x1082

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1091h offset = 12_1091h

HDMI FC ACP1 field descriptions

Field	Description
Audio_ contentpacket	Audio content packet

33.5.125 FC_ISCR1_Frame Composer Packet Status, Valid, and Continue Configuration Register (HDMI_FC_ISCR1_0)

Configures the following contents of the ISRC1 packet:

• Address Offset: 0x1092

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, see the HDMI 1.4 specification.

Address: 12_0000h base + 1092h offset = 12_1092h

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_FC_ISCR1_0 field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
4–2 isrc_status[2:0]	Status of ISRC1.
1 isrc_valid	Valid of ISRC1.
0 isrc_cont	Indication of ISRC2.

33.5.126 Frame Composer ISCR1 Packet Body Register 1 (HDMI_FC_ISCR1_1)

Configures the following contents of the ISRC1 packet:

• ISRC1 packet body

• Address Offset: 0x10A2 to 0x1093

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, see the HDMI 1.4 specification.

Address: 12_0000h base + 1093h offset = 12_1093h

HDMI_FC_ISCR1_1 field descriptions

Field	Description
isrc1	Configures the contents of the ISRC1 packet:

33.5.127 Frame Composer ISCR2 Packet Body Register 0 (HDMI_FC_ISCR2_0)

Configures the following contents of the ISRC2 packet:

• ISRC2 packet body

• Address Offset: 0x10B2 to 0x10A3

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, see the HDMI 1.4 specification.

Address: 12_0000h base + 10A3h offset = 12_10A3h

HDMI_FC_ISCR2_0 field descriptions

Field	Description
isrc2	Configures the contents of the ISRC1 packet:

33.5.128 Frame Composer Data Island Auto Packet Scheduling Register 0 (HDMI_FC_DATAUTO0)

Configures the Frame Composer RDRB(1)/Manual(0) data island packet insertion for SPD, VSD, ISRC2, ISRC1 and ACP packets. On RDRB mode the described packet scheduling is controlled by registers FC_DATAUTO1 and FC_DATAUTO2, while in Manual mode register FC_DATMAN requests to FC the insertion of the requested packet.

Address Offset: 0x10B3

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10B3h offset = 12_10B3h

HDMI_FC_DATAUTO0 field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
4 spd_auto	Enables SPD automatic packet scheduling
3 vsd_auto	Enables VSD automatic packet scheduling

Table continues on the next page...

HDMI_FC_DATAUTO0 field descriptions (continued)

Field	Description
2 iscr2_auto	Enables ISRC2 automatic packet scheduling
1 iscr1_auto	Enables ISRC1 automatic packet scheduling
0 acp_auto	Enables ACP automatic packet scheduling

33.5.129 Frame Composer Data Island Auto Packet Scheduling Register 1 (HDMI_FC_DATAUTO1)

Configures the Frame Composer (FC) RDRB frame interpolation for SPD, VSD, ISRC2, ISRC1 and ACP packet insertion on data island when FC is on RDRB mode for the listed packets.

• Address Offset: 0x10B4

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10B4h offset = 12_10B4h

HDMI_FC_DATAUTO1 field descriptions

Field	Description
7–4	This field is reserved.
-	Reserved
AUTO_FRAME_ INTERPOLATION	Packet frame interpolation, for automatic packet scheduling

33.5.130 Frame Composer Data Island Auto Packet Scheduling Register 2 (HDMI_FC_DATAUTO2)

Configures the Frame Composer (FC) RDRB line interpolation and number of packets in frame for SPD, VSD, ISRC2, ISRC1 and ACP packet insertion on data island when FC is on RDRB mode for the listed packets.

Address Offset: 0x10B5

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10B5h offset = 12_10B5h

HDMI_FC_DATAUTO2 field descriptions

Field	Description
7–4 AUTO_FRAME_ PACKETS	Packets per frame, for automatic packet scheduling
AUTO_LINE_ SPACING	Packets line spacing, for automatic packet scheduling

33.5.131 Frame Composer Data Island Manual Packet Request Register (HDMI_FC_DATMAN)

Requests to the Frame Composer the data island packet insertion for NULL, SPD, VSD, ISRC2, ISRC1 and ACP packets when FC_DATAUTO0 bit is in manual mode for the packet requested.

• Address Offset: 0x10B6

• Size: 8 bits

• Value after Reset: 0x00

• Access: Write

Address: 12_0000h base + 10B6h offset = 12_10B6h

HDMI_FC_DATMAN field descriptions

Field	Description
7–6 -	This field is reserved. Reserved
5 null_tx	Null packet

Table continues on the next page...

HDMI_FC_DATMAN field descriptions (continued)

Field	Description
4 spd_tx	SPD packet
3 vsd_tx	VSD packet
2 iscr2_tx	ISRC2 packet
1 isr1_tx	ISRC1 packet
0 acp_tx	ACP packet

33.5.132 Frame Composer Data Island Auto Packet Scheduling Register 3 (HDMI_FC_DATAUTO3)

Configures the Frame Composer Automatic(1)/RDRB(0) data island packet insertion for AVI, GCP, AUDI and ACR packets. In Automatic mode, the packet will be inserted on Vblanking when first line with active Vsync appears.

• Address Offset: 0x10B7

• Size: 8 bits

Value after Reset: 0x0FAccess: Read/Write

Address: 12_0000h base + 10B7h offset = 12_10B7h

HDMI_FC_DATAUTO3 field descriptions

Field	Description
7–4 -	This field is reserved. Reserved
3 avi_auto	Enable AVI packet insertion
2 gcp_auto	Enable GCP packet insertion
1 audi_auto	Enable AUDI packet insertion
0 acr_auto	Enable ACR packet insertion

33.5.133 Frame Composer Round Robin ACR Packet Insertion Register 0 (HDMI_FC_RDRB0)

Configures the Frame Composer (FC) RDRB frame interpolation for ACR packet insertion on data island when FC is on RDRB mode for this packet.

• Address Offset: 0x10B8

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10B8h offset = 12_10B8h

HDMI_FC_RDRB0 field descriptions

Field	Description
7–4	This field is reserved.
-	Reserved
ACRframeinterpolation	ACR frame interpolation

33.5.134 Frame Composer Round Robin ACR Packet Insertion Register 1 (HDMI_FC_RDRB1)

Configures the Frame Composer (FC) RDRB line interpolation and number of packets in frame for the ACR packet insertion on data island when FC is on RDRB mode this packet.

Address Offset: 0x10B9

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10B9h offset = 12_10B9h

HDMI_FC_RDRB1 field descriptions

Field	Description
7–4 ACRpacketsinframe	ACR packets in frame
ACRpacketlinespacing	ACR packet line spacing

33.5.135 Frame Composer Round Robin ACR Packet Insertion Register 2 (HDMI_FC_RDRB2)

Configures the Frame Composer (FC) RDRB frame interpolation for AUDI packet insertion on data island when FC is on RDRB mode for this packet.

• Address Offset: 0x10BA

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10BAh offset = 12_10BAh

HDMI_FC_RDRB2 field descriptions

Field	Description
7–4	This field is reserved. Reserved
AUDIframeinterpolation	Audio frame interpolation

33.5.136 Frame Composer Round Robin ACR Packet Insertion Register 3 (HDMI_FC_RDRB3)

Configures the Frame Composer (FC) RDRB line interpolation and number of packets in frame for the AUDI packet insertion on data island when FC is on RDRB mode this packet.

• Address Offset: 0x10BB

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10BBh offset = 12_10BBh

HDMI FC RDRB3 field descriptions

Field	Description
7–4 AUDIpacketsinframe	Audio packets per frame
AUDIpacketlinespacing	Audio packets line spacing

33.5.137 Frame Composer Round Robin ACR Packet Insertion Register 4 (HDMI_FC_RDRB4)

Configures the Frame Composer (FC) RDRB frame interpolation for GCP packet insertion on data island when FC is on RDRB mode for this packet.

• Address Offset: 0x10BC

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10BCh offset = 12_10BCh

HDMI_FC_RDRB4 field descriptions

Field	Description
7–4 -	This field is reserved. Reserved
GCPframeinterpolation	GCP packets line spacing

33.5.138 Frame Composer Round Robin ACR Packet Insertion Register 5 (HDMI_FC_RDRB5)

Configures the Frame Composer (FC) RDRB line interpolation and number of packets in frame for the GCP packet insertion on data island when FC is on RDRB mode this packet.

Address Offset: 0x10BD

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10BDh offset = 12_10BDh

HDMI_FC_RDRB5 field descriptions

Field	Description
7–4 GCPpacketsinframe	GCP packets per frame
GCPpacketlinespacing	GCP packets line spacing

33.5.139 Frame Composer Round Robin ACR Packet Insertion Register 6 (HDMI_FC_RDRB6)

Configures the Frame Composer (FC) RDRB frame interpolation for AVI packet insertion on data island when FC is on RDRB mode for this packet.

• Address Offset: 0x10BE

• Size: 8 bits

Value after Reset: 0x00 Access: Read/Write

Address: 12_0000h base + 10BEh offset = 12_10BEh

HDMI_FC_RDRB6 field descriptions

Field	Description
7–4	This field is reserved. Reserved
AVIframeinterpolation	GCP packets line spacing

33.5.140 Frame Composer Round Robin ACR Packet Insertion Register 7 (HDMI_FC_RDRB7)

Configures the Frame Composer (FC) RDRB line interpolation and number of packets in frame for the AVI packet insertion on data island when FC is on RDRB mode this packet.

• Address Offset: 0x10BF

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10BFh offset = 12_10BFh

HDMI_FC_RDRB7 field descriptions

Field	Description
7–4 AVIpacketsinframe	AVI packets per frame
AVIpacketlinespacing	AVI packets line spacing

33.5.141 FC_STAT0 (HDMI_FC_STAT0)

Configures the Frame Composer (FC) RDRB line interpolation and number of packets in frame for the AVI packet insertion on data island when FC is on RDRB mode this packet.

• Address Offset: 0x10D0

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 10D0h offset = 12_10D0h

HDMI_FC_STAT0 field descriptions

Field	Description
7	Status bit
AUDI	Active after successful transmission of an Audio InfoFrame packet.
6 ACP	Status bit. Active after successful transmission of an Audio Content Protection Packet.
5 HBR	Status bit. Active after successful transmission of an Audio HBR packet
4–3	This field is reserved.
-	Reserved
2	Status bit
AUDS	Active after successful transmission of an Audio Sample packet.
1	Status bit
ACR	Active after successful transmission of an Audio Clock Regeneration (N/CTS transmission) packet.
0	Status bit
NULL	Active after successful transmission of an Null packet.

33.5.142 FC_INT0 (HDMI_FC_INT0)

This register contains the interrupt indication of the FC_STAT0 status interrupts. Interrupt generation is accomplished in the following way:

interrupt = (mask == 1'b0) && (polarity == status);

All this interrupts are forwarded to the Interrupt Handler sticky bit registers and after ORed to a single main interrupt line to micro controller. Assertion of this interrupt implies that data related with the corresponding packet has been sent through the HDMI interface.

• Address Offset: 0x10D1

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10D1h offset = 12_10D1h

HDMI_FC_INTO field descriptions

Field	Description
7	Interrupt indication bit
AUDI	

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_FC_INTO field descriptions (continued)

Field	Description						
	Active after successful transmission of an Audio InfoFrame packet interrupt.						
6	Interrupt indication bit						
ACP	Active after successful transmission of an Audio Content Protection packet interrupt.						
5	Interrupt indication bit						
HBR	Active after successful transmission of a Audio HBR packet interrupt.						
4–3	This field is reserved.						
-	Reserved						
2	Interrupt indication bit						
AUDS	Active after successful transmission of an Audio Sample packet interrupt.						
1	Interrupt indication bit						
ACR	Active after successful transmission of an Audio Clock Regeneration (N/CTS transmission) packet interrupt.						
0	Interrupt indication bit						
NULL	Active after successful transmission of an Null packet interrupt.						

33.5.143 Frame Composer Packet Interrupt Mask Register 0 (HDMI_FC_MASK0)

Mask register for generation of FC_INT0 interrupts.

• Address Offset: 0x10D2

• Size: 8 bits

Value after Reset: 0x25Access: Read/Write

Address: 12_0000h base + 10D2h offset = 12_10D2h

HDMI_FC_MASK0 field descriptions

Field	Description				
7	Mask bit for FC_INT0.AUDI interrupt bit				
AUDI	Value after Reset: 0b				
6	Mask bit for FC_INT0.ACP interrupt bit				
ACP	Value after Reset: 0b				
5	Mask bit for FC_INT0.HBR interrupt bit				
HBR	Value after Reset: 0b				

Table continues on the next page...

HDMI_FC_MASK0 field descriptions (continued)

Field	Description				
4–3	This field is reserved. Reserved				
2 AUDS	Mask bit for FC_INT0.AUDS interrupt bit Value after Reset: 0b				
1 ACR	Mask bit for FC_INT0.ACR interrupt bit Value after Reset: 0b				
0 NULL	Mask bit for FC_INT0.NULL interrupt bit Value after Reset: 0b				

33.5.144 FC_POL0 (HDMI_FC_POL0)

Polarity register for generation of FC_INT0 interrupts.

• Address Offset: 0x10D3

• Size: 8 bits

Value after Reset: 0xFFAccess: Read/Write

Address: 12_0000h base + 10D3h offset = 12_10D3h

HDMI_FC_POL0 field descriptions

Field	Description				
7 AUDI	Polarity bit for FC_INT0.AUDI interrupt bit Value after Reset: 0b				
6 ACP	Polarity bit for FC_INT0.ACP interrupt bit Value after Reset: 0b				
5 HBR	Polarity bit for FC_INT0.HBR interrupt bit Value after Reset: 0b				
4–3 -	This field is reserved. Reserved				
2 AUDS	Polarity bit for FC_INT0.AUDS interrupt bit Value after Reset: 0b				
1 ACR	Polarity bit for FC_INT0.ACR interrupt bit Value after Reset: 0b				
0 NULL	Polarity bit for FC_INT0.NULL interrupt bit Value after Reset: 0b				

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

33.5.145 FC_STAT1 (HDMI_FC_STAT1)

This register contains the following active high packet sent status indications:

• Address Offset: 0x10D4

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10D4h offset = 12_10D4h

HDMI FC STAT1 field descriptions

Field	Description					
7	Status bit					
GMD	Active after successful transmission of an Gamut metadata packet.					
6	Status bit					
ISCR1	Active after successful transmission of an International Standard Recording Code 1 packet.					
5 ISCR2	Active after successful transmission of an International Standard Recording Code 2 packet.					
4 VSD	Active after successful transmission of an Vendor Specific Data infoFrame packet.					
3 SPD	Active after successful transmission of an Source Product Descriptor infoFrame packet.					
2	This field is reserved.					
-	Reserved					
1	Status bit					
AVI	Active after successful transmission of an AVI infoFrame packet.					
0	Status bit					
GCP	Active after successful transmission of an General Content Packet.					

33.5.146 FC_INT1 (HDMI_FC_INT1)

This register contains the interrupt indication of the FC_STAT1 status interrupts. Interrupt generation is accomplished in the following way:

interrupt = (mask == 1'b0) && (polarity == status);

All this interrupts are forwarded to the Interrupt Handler sticky bit registers and after ORed to a single main interrupt line to micro controller. Assertion of this interrupt implies that data related with the corresponding packet has been sent through the HDMI interface.

• Address Offset: 0x10D5

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10D5h offset = 12_10D5h

HDMI_FC_INT1 field descriptions

Field	Description					
7	Interrupt indication bit					
GMD	Active after successful transmission of an Gamut metadata packet interrupt.					
6	Interrupt indication bit					
ISCR1	Active after successful transmission of an International Standard Recording					
	Code 1 packet interrupt.					
5	Interrupt indication bit					
ISCR2	Active after successful transmission of an International Standard Recording					
	Code 2 packet interrupt.					
4	Interrupt indication bit					
VSD	Active after successful transmission of an Vendor Specific Data infoFrame packet interrupt.					
3	Interrupt indication bit					
SPD	Active after successful transmission of an Source Product Descriptor infoFrame packet interrupt.					
2	This field is reserved.					
-	Reserved					
1	Interrupt indication bit					
AVI	Active after successful transmission of an AVI infoFrame packet interrupt.					
0	Interrupt indication bit					
GCP	Active after successful transmission of an General Content Packet interrupt.					

33.5.147 Frame Composer Packet Interrupt Mask Register 1 (HDMI_FC_MASK1)

Mask register for generation of FC_INT1 interrupts.

• Address Offset: 0x10D6

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10D6h offset = 12_10D6h

HDMI_FC_MASK1 field descriptions

Field	Description					
7 GMD	Mask bit for FC_INT1.GMD interrupt bit					
6 ISCR1	Mask bit for FC_INT1.ISRC1 interrupt bit					
5 ISCR2	Mask bit for FC_INT1.ISRC2 interrupt bit					
4 VSD	Mask bit for FC_INT1.VSD interrupt bit					
3 SPD	Mask bit for FC_INT1.SPD interrupt bit					
2 -	This field is reserved. Reserved					
1 AVI	Mask bit for FC_INT1.AVI interrupt bit					
0 GCP	Mask bit for FC_INT1.GCP interrupt bit					

33.5.148 FC_POL1 (HDMI_FC_POL1)

Polarity register for generation of FC_INT1 interrupts.

• Address Offset: 0x10D7

• Size: 8 bits

Value after Reset: 0xFF Access: Read/Write

Address: 12_0000h base + 10D7h offset = 12_10D7h

Bit	7	6	5	4	3	2	1	0
Read Write	GMD	ISCR1	ISCR2	VSD	SPD	Reserved	AVI	GCP
Reset	1	1	1	1	1	1	1	1

HDMI_FC_POL1 field descriptions

Field	Description
7 GMD	Polarity bit for FC_INT1.GMD interrupt bit
6 ISCR1	Polarity bit for FC_INT1.ISRC1 interrupt bit
5 ISCR2	Polarity bit for FC_INT1.ISRC2 interrupt bit
4 VSD	Polarity bit for FC_INT1.VSD interrupt bit
3 SPD	Polarity bit for FC_INT1.SPD interrupt bit
2 -	This field is reserved. Reserved
1 AVI	Polarity bit for FC_INT1.AVI interrupt bit
0 GCP	Polarity bit for FC_INT1.GCP interrupt bit

33.5.149 FC_STAT2 (HDMI_FC_STAT2)

This register contains the following active high packet sent status indications:

• Address Offset: 0x10D8

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10D8h offset = 12_10D8h

HDMI_FC_STAT2 field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 LowPriority_ overflow	Status bit Frame Composer low priority packet queue descriptor overflow indication.
0 HighPriority_ overflow	Status bit Frame Composer high priority packet queue descriptor overflow indication.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

33.5.150 FC_INT2 (HDMI_FC_INT2)

This register contains the interrupt indication of the FC_STAT2 status interrupts. Interrupt generation is accomplished in the following way:

interrupt = (mask == 1'b0) && (polarity == status);

All this interrupts are forwarded to the Interrupt Handler sticky bit registers and after ORed to a single main interrupt line to micro controller. Assertion of this interrupt implies that data related with the corresponding packet has been sent through the HDMI interface.

Address Offset: 0x10D9

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 10D9h offset = 12_10D9h

HDMI FC INT2 field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 LowPriority_ overflow	Interrupt indication bit Frame Composer low priority packet queue descriptor overflow indication interrupt.
0 HighPriority_ overflow	Interrupt indication bit Frame Composer high priority packet queue descriptor overflow indication interrupt.

33.5.151 Frame Composer High/Low Priority Overflow Interrupt Mask Register 2 (HDMI_FC_MASK2)

Mask register for generation of FC_INT2 interrupts.

Address Offset: 0x10DA

• Size: 8 bits

Address: 12_0000h base + 10DAh offset = 12_10DAh

HDMI_FC_MASK2 field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 LowPriority_ overflow	Mask bit for FC_INT1.LowPriority_overflow interrupt bit Value after Reset: 0b
0 HighPriority_ overflow	Mask bit for FC_INT1.HighPriority_overflow interrupt bit Value after Reset: 0b

33.5.152 FC_POL2 (HDMI_FC_POL2)

Polarity register for generation of FC_INT2 interrupts.

• Address Offset: 0x10DB

• Size: 8 bits

Value after Reset: 0x03Access: Read/Write

Address: 12_0000h base + 10DBh offset = 12_10DBh

HDMI_FC_POL2 field descriptions

33.5.153 Frame Composer Pixel Repetition Configuration Register (HDMI_FC_PRCONF)

Defines the Pixel Repetition ratio factor of the input and output video signal.

• Address Offset: 0x10E0

• Size: 8 bits

Value after Reset: 0x10Access: Read/Write

Address: 12_0000h base + 10E0h offset = 12_10E0h

HDMI_FC_PRCONF field descriptions

Field	Description
7–4 incoming_pr_	Configures the input video pixel repetition. A plus 1 factor should be added in this register configuration. For CEA modes this value should be extracted from the CEA spec for the video mode being inputted.
factor[3:0]	NOTE: When working in YCC422 video the actual repetition of the stream will be Incoming_pr_factor * (desired_pr_factor + 1). This calculation is done internally in the H13TCTRL and no HW overflow protection is available. Care must be taken to avoid this result passes the maximum number of 10 pixels repeated since no HDMI support is available for this in the spec and the H13TPHY does not support this higher repetition values.
	other: Reserved. Not used.
	0000 No action. Shall not be used.
	0001 No pixel repetition (pixel sent only once).
	0010 Pixel sent twice (pixel repeated once).
	0011 Pixel sent 3 times.
	0100 Pixel sent 4 times.
	0101 Pixel sent 5 times.
	0110 Pixel sent 6 times.
	0111 Pixel sent 7 times.
	1000 Pixel sent 8 times.
	1001 Pixel sent 9 times.
	1010 Pixel sent 10 times.
output_pr_ factor[3:0]	Configures the video pixel repetition ratio to be sent on the AVI infoFrame. This value must be valid according to HDMI spec. The output_pr_factor = incoming_pr_factor(without the + 1 factor) * desired_pr_factor.
	other: Reserved. Not used.
	0000 No action. Shall not be used.
	0001 Pixel sent twice (pixel repeated once).
	0010 Pixel sent 3 times.
	0011 Pixel sent 4 times.

Table continues on the next page...

HDMI_FC_PRCONF field descriptions (continued)

Field		Description
	0100	Pixel sent 5 times.
	0101	Pixel sent 6 times.
	0110	Pixel sent 7 times.
	0111	Pixel sent 8 times.
	1000	Pixel sent 9 times.
	1001	Pixel sent 10 times.

33.5.154 Frame Composer GMD Packet Status Register (HDMI_FC_GMD_STAT)

Gamut metadata packet status bit information for no_current_gmd, next_gmd_field, gmd_packet_sequence and current_gamut_seq_num. For more information, refer to the HDMI 1.4a specification.

• Address Offset: 0x1100

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 1100h offset = 12_1100h

HDMI_FC_GMD_STAT field descriptions

Field	Description
7 igmdno_crnt_gbd	Gamut scheduling: No current gamut data
6 igmddnext_field	Gamut scheduling: Gamut Next field
5–4 igmdpacket_ seq[1:0]	Gamut scheduling: Gamut packet sequence
igmdcurrent_ gamut_seq_ num[3:0]	Gamut scheduling: Current Gamut packet sequence number

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

33.5.155 Frame Composer GMD Packet Enable Register (HDMI_FC_GMD_EN)

This register enables Gamut metadata (GMD) packet transmission. Packets are inserted in the incoming frame, starting in the line where active Vsync indication starts. After enable of GMD packets the outgoing packet is sent with no_current_gmd active indication until update GMD request is performed in the controller.

• Address Offset: 0x1101

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1101h offset = 12_1101h

HDMI_FC_GMD_EN field descriptions

Field	Description
7–1 -	This field is reserved. Reserved
0 gmdenabletx	Gamut Metadata packet transmission enable (1b).

33.5.156 Frame Composer GMD Packet Update Register (HDMI_FC_GMD_UP)

This register performs an GMD packet content update according to the configured packet body (FC_GMD_PB0 to FC_GMD_PB27) and packet header (FC_GMD_HB). This active high auto clear register reflects the body and header configurations on the GMD packets sent arbitrating the current_gamut_seq_num, gmd_packet_sequence and next_gmd_field bits on packet to correctly indicate to source the Gamut change to be performed. After enable GMD packets the first update request is also responsible for deactivating the no_current_gmd indication bit. Attention packet update request must only be done after correct configuration of GMD packet body and header registers. Correct affected_gamut_seq_num and gmd_profile configuration is user responsibility and must convey with HDMI 1.4a standard gamut rules.

• Address Offset: 0x1102

• Size: 8 bits

• Value after Reset: 0x00

• Access: Write

Address: 12_0000h base + 1102h offset = 12_1102h

HDMI_FC_GMD_UP field descriptions

Field	Description
7–1 -	This field is reserved. Reserved
0 gmdupdatepacket	Gamut Metadata packet update.

33.5.157 Frame Composer GMD Packet Schedule Configuration Register (HDMI_FC_GMD_CONF)

This register configures the number of GMD packets to be inserted per frame (starting always in the line where the active Vsync appears) and the line spacing between the transmitted GMD packets. Note that for profile P0 (refer to HDMI 1.4a spec) this register should only indicate one GMD packet to be inserted per video field.

Address Offset: 0x1103

• Size: 8 bits

Value after Reset: 0x10Access: Read/Write

Address: 12_0000h base + 1103h offset = 12_1103h

HDMI_FC_GMD_CONF field descriptions

Field	Description
7–4 gmdpacketsinframe[3:0]	Number of GMD packets per frame or video field (profile P0)
gmdpacketlinespacing[3:0]	Number of line spacing between the transmitted GMD packets

33.5.158 Frame Composer GMD Packet Profile and Gamut Sequence Configuration Register (HDMI_FC_GMD_HB)

This register configures the GMD packet header affected_gamut_seq_num and gmd_profile bits. For more information, refer to the HDMI 1.4a specification.

• Address Offset: 0x1104

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1104h offset = 12_1104h

HDMI_FC_GMD_HB field descriptions

Field	Description	
7 -	This field is reserved. Reserved	
6–4 gmdgbd_profile	GMD profile bits	
gmdaffected_ gamut_seq_num	Affected gamut sequence number	

33.5.159 Frame Composer GMD Packet Body Register 0 (HDMI_FC_GMD_PB0)

Configures the following contents of the GMD packet:

GMD packet body byte0Address Offset: 0x1105

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1105h offset = 12_1105h

HDMI_FC_GMD_PB0 field descriptions

Field	Description
FC_GMD_PB0	Gamut Metadata packet byte0

33.5.160 Frame Composer GMD Packet Body Register 1 (HDMI_FC_GMD_PB1)

GMD packet body byte1Address Offset: 0x1106

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1106h offset = 12_1106h

HDMI_FC_GMD_PB1 field descriptions

Field	Description
FC_GMD_PB1	Gamut Metadata packet byte1

33.5.161 Frame Composer GMD Packet Body Register 2 (HDMI_FC_GMD_PB2)

GMD packet body byte2Address Offset: 0x1107

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1107h offset = 12_1107h

HDMI_FC_GMD_PB2 field descriptions

Field	Description
FC_GMD_PB2	Gamut Metadata packet byte2

33.5.162 Frame Composer GMD Packet Body Register 3 (HDMI_FC_GMD_PB3)

GMD packet body byte3Address Offset: 0x1108

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1108h offset = 12_1108h

HDMI_FC_GMD_PB3 field descriptions

Field	Description
FC_GMD_PB3	Gamut Metadata packet byte3

33.5.163 Frame Composer GMD Packet Body Register 4 (HDMI_FC_GMD_PB4)

GMD packet body byte4Address Offset: 0x1109

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1109h offset = 12_1109h

HDMI FC GMD PB4 field descriptions

Field	Description
FC_GMD_PB4	Gamut Metadata packet byte4

33.5.164 Frame Composer GMD Packet Body Register 5 (HDMI_FC_GMD_PB5)

GMD packet body byte5Address Offset: 0x110a

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 110Ah offset = 12_110Ah

HDMI_FC_GMD_PB5 field descriptions

Field	Description
FC_GMD_PB5	Gamut Metadata packet byte5

33.5.165 Frame Composer GMD Packet Body Register 6 (HDMI_FC_GMD_PB6)

GMD packet body byte6Address Offset: 0x110b

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 110Bh offset = 12_110Bh

HDMI_FC_GMD_PB6 field descriptions

Field	Description
FC_GMD_PB6	Gamut Metadata packet byte6

33.5.166 Frame Composer GMD Packet Body Register 7 (HDMI_FC_GMD_PB7)

GMD packet body byte7Address Offset: 0x110c

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 110Ch offset = 12_110Ch

HDMI_FC_GMD_PB7 field descriptions

Field	Description
FC_GMD_PB2	Gamut Metadata packet byte7

33.5.167 Frame Composer GMD Packet Body Register 8 (HDMI_FC_GMD_PB8)

GMD packet body byte8Address Offset: 0x110d

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 110Dh offset = 12_110Dh

HDMI FC GMD PB8 field descriptions

Field	Description
FC_GMD_PB8	Gamut Metadata packet byte8

33.5.168 Frame Composer GMD Packet Body Register 9 (HDMI_FC_GMD_PB9)

GMD packet body byte9Address Offset: 0x110e

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 110Eh offset = 12_110Eh

HDMI_FC_GMD_PB9 field descriptions

Field	Description
FC_GMD_PB9	Gamut Metadata packet byte9

33.5.169 Frame Composer GMD Packet Body Register 10 (HDMI_FC_GMD_PB10)

GMD packet body byte10Address Offset: 0x110f

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 110Fh offset = 12_110Fh

HDMI_FC_GMD_PB10 field descriptions

Field	Description
FC_GMD_PB10	Gamut Metadata packet byte10

33.5.170 Frame Composer GMD Packet Body Register 11 (HDMI_FC_GMD_PB11)

GMD packet body byte11Address Offset: 0x1110

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1110h offset = 12_1110h

HDMI_FC_GMD_PB11 field descriptions

Field	Description
FC_GMD_PB11	Gamut Metadata packet byte11

33.5.171 Frame Composer GMD Packet Body Register 12 (HDMI_FC_GMD_PB12)

GMD packet body byte12Address Offset: 0x1111

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1111h offset = 12_1111h

HDMI FC GMD PB12 field descriptions

Field	Description
FC_GMD_PB12	Gamut Metadata packet byte12

33.5.172 Frame Composer GMD Packet Body Register 13 (HDMI_FC_GMD_PB13)

GMD packet body byte13Address Offset: 0x1112

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1112h offset = 12_1112h

HDMI_FC_GMD_PB13 field descriptions

Field	Description
FC_GMD_PB13	Gamut Metadata packet byte13

33.5.173 Frame Composer GMD Packet Body Register 14 (HDMI_FC_GMD_PB14)

GMD packet body byte14Address Offset: 0x1113

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1113h offset = 12_1113h

HDMI FC GMD PB14 field descriptions

Field	Description
FC_GMD_PB14	Gamut Metadata packet byte14

33.5.174 Frame Composer GMD Packet Body Register 15 (HDMI_FC_GMD_PB15)

GMD packet body byte15Address Offset: 0x1114

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1114h offset = 12_1114h

HDMI_FC_GMD_PB15 field descriptions

Field	Description
FC_GMD_PB15	Gamut Metadata packet byte15

33.5.175 Frame Composer GMD Packet Body Register 16 (HDMI_FC_GMD_PB16)

GMD packet body byte16Address Offset: 0x1115

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1115h offset = 12_1115h

HDMI FC GMD PB16 field descriptions

Field	Description
FC_GMD_PB16	Gamut Metadata packet byte16

33.5.176 Frame Composer GMD Packet Body Register 17 (HDMI_FC_GMD_PB17)

GMD packet body byte17Address Offset: 0x1116

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1116h offset = 12_1116h

HDMI_FC_GMD_PB17 field descriptions

Field	Description
FC_GMD_PB17	Gamut Metadata packet byte17

33.5.177 Frame Composer GMD Packet Body Register 18 (HDMI_FC_GMD_PB18)

GMD packet body byte18Address Offset: 0x1117

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1117h offset = 12_1117h

HDMI FC GMD PB18 field descriptions

Field	Description
FC_GMD_PB18	Gamut Metadata packet byte18

33.5.178 Frame Composer GMD Packet Body Register 19 (HDMI_FC_GMD_PB19)

GMD packet body byte19Address Offset: 0x1118

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1118h offset = 12_1118h

HDMI_FC_GMD_PB19 field descriptions

Field	Description
FC_GMD_PB18	Gamut Metadata packet byte18

33.5.179 Frame Composer GMD Packet Body Register 20 (HDMI_FC_GMD_PB20)

GMD packet body byte20Address Offset: 0x1119

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1119h offset = 12_1119h

HDMI FC GMD PB20 field descriptions

Field	Description
FC_GMD_PB20	Gamut Metadata packet byte20

33.5.180 Frame Composer GMD Packet Body Register 21 (HDMI_FC_GMD_PB21)

GMD packet body byte21Address Offset: 0x111a

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 111Ah offset = 12_111Ah

HDMI_FC_GMD_PB21 field descriptions

Field	Description
FC_GMD_PB21	Gamut Metadata packet byte21

33.5.181 Frame Composer GMD Packet Body Register 22 (HDMI_FC_GMD_PB22)

GMD packet body byte22Address Offset: 0x111b

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 111Bh offset = 12_111Bh

HDMI_FC_GMD_PB22 field descriptions

Field	Description
FC_GMD_PB22	Gamut Metadata packet byte22

33.5.182 Frame Composer GMD Packet Body Register 23 (HDMI_FC_GMD_PB23)

GMD packet body byte23Address Offset: 0x111c

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 111Ch offset = 12_111Ch

HDMI_FC_GMD_PB23 field descriptions

Field	Description
FC_GMD_PB23	Gamut Metadata packet byte23

33.5.183 Frame Composer GMD Packet Body Register 24 (HDMI_FC_GMD_PB24)

GMD packet body byte24Address Offset: 0x111d

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 111Dh offset = 12_111Dh

HDMI_FC_GMD_PB24 field descriptions

Field	Description
FC_GMD_PB24	Gamut Metadata packet byte24

33.5.184 Frame Composer GMD Packet Body Register 25 (HDMI_FC_GMD_PB25)

GMD packet body byte25Address Offset: 0x111e

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 111Eh offset = 12_111Eh

HDMI_FC_GMD_PB25 field descriptions

Field	Description
FC_GMD_PB25	Gamut Metadata packet byte25

33.5.185 Frame Composer GMD Packet Body Register 26 (HDMI_FC_GMD_PB26)

GMD packet body byte26Address Offset: 0x111f

• Size: 8 bits

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 111Fh offset = 12_111Fh

HDMI_FC_GMD_PB26 field descriptions

Field	Description
FC_GMD_PB26	Gamut Metadata packet byte26

33.5.186 Frame Composer GMD Packet Body Register 27 (HDMI_FC_GMD_PB27)

GMD packet body byte27Address Offset: 0x1120

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

For more information, refer to the HDMI 1.4a specification.

Address: 12_0000h base + 1120h offset = 12_1120h

HDMI_FC_GMD_PB27 field descriptions

Field	Description
FC_GMD_PB27	Gamut Metadata packet byte27

33.5.187 Frame Composer Video/Audio Force Enable Register (HDMI_FC_DBGFORCE)

This register allows to force the controller to output audio and video data the values configured in the FC_DBGAUD and FC_DBGTMDS registers.

• Address Offset: 0x1200

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1200h offset = 12_1200h

HDMI_FC_DBGFORCE field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
4 forceaudio	Force fixed audio output with FC_DBGAUDxCHx registers contain.
3–1 -	This field is reserved. Reserved
0 forcevideo	Force fixed video output with FC_DBGTMDSx registers contain.

33.5.188 Frame Composer Audio Channel 0 Register 0 (HDMI_FC_DBGAUD0CH0)

Configures the audio fixed data to be used in channel 0 when in fixed audio selection.

• Address Offset: 0x1201

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1201h offset = 12_1201h

HDMI_FC_DBGAUD0CH0 field descriptions

Field	Description
FC_ DBGAUD0CH0	the audio fixed data byte0 to be used in channel 0 when in fixed audio selection

33.5.189 Frame Composer Audio Channel 0 Register 1 (HDMI_FC_DBGAUD1CH0)

• Address Offset: 0x1202

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1202h offset = 12_1202h

HDMI_FC_DBGAUD1CH0 field descriptions

Field	Description
FC_ DBGAUD1CH0	the audio fixed data byte1 to be used in channel 0 when in fixed audio selection

33.5.190 Frame Composer Audio Channel 0 Register 2 (HDMI_FC_DBGAUD2CH0)

• Address Offset: 0x1203

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1203h offset = 12_1203h

HDMI FC DBGAUD2CH0 field descriptions

Field	Description
FC_ DBGAUD2CH0	the audio fixed data byte2 to be used in channel 0 when in fixed audio selection

33.5.191 Frame Composer Audio Channel 1 Register 0 (HDMI FC DBGAUD0CH1)

Configures the audio fixed data to be used in channel 0 when in fixed audio selection.

• Address Offset: 0x1204

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1204h offset = 12_1204h

HDMI_FC_DBGAUD0CH1 field descriptions

Field	Description
FC_ DBGAUD0CH1	the audio fixed data byte2 to be used in channel 0 when in fixed audio selection

33.5.192 Frame Composer Audio Channel 1 Register 1 (HDMI_FC_DBGAUD1CH1)

• Address Offset: 0x1205

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1205h offset = 12_1205h

HDMI_FC_DBGAUD1CH1 field descriptions

Field	Description
FC_ DBGAUD1CH1	the audio fixed data byte1 to be used in channel 1 when in fixed audio selection

33.5.193 Frame Composer Audio Channel 1 Register 2 (HDMI_FC_DBGAUD2CH1)

• Address Offset: 0x1206

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1206h offset = 12_1206h

HDMI_FC_DBGAUD2CH1 field descriptions

Field	Description
FC_ DBGAUD2CH1	the audio fixed data byte2 to be used in channel 1 when in fixed audio selection

33.5.194 Frame Composer Debug Audio Channel 2 Register 0 (HDMI_FC_DBGAUD0CH2)

Configures the audio fixed data to be used in channel 0 when in fixed audio selection.

• Address Offset: 0x1207

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1207h offset = 12_1207h

HDMI_FC_DBGAUD0CH2 field descriptions

Field	Description
FC_ DBGAUD0CH2	the audio fixed data byte0 to be used in channel 2 when in fixed audio selection

33.5.195 Frame Composer Debug Audio Channel 2 Register 1 (HDMI_FC_DBGAUD1CH2)

• Address Offset: 0x1208

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1208h offset = 12_1208h

HDMI_FC_DBGAUD1CH2 field descriptions

Field	Description
FC_ DBGAUD1CH2	the audio fixed data byte1 to be used in channel 2 when in fixed audio selection

33.5.196 Frame Composer Audio Channel 2 Register 2 (HDMI_FC_DBGAUD2CH2)

• Address Offset: 0x1209

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1209h offset = 12_1209h

HDMI FC DBGAUD2CH2 field descriptions

Field	Description
FC_ DBGAUD2CH2	the audio fixed data byte2 to be used in channel 2 when in fixed audio selection

33.5.197 Frame Composer Audio Channel 3 Register 0 (HDMI_FC_DBGAUD0CH3)

Configures the audio fixed data to be used in channel 0 when in fixed audio selection.

• Address Offset: 0x120A

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 120Ah offset = 12_120Ah

HDMI_FC_DBGAUD0CH3 field descriptions

Field	Description
FC_ DBGAUD0CH3	the audio fixed data byte0 to be used in channel 3 when in fixed audio selection

33.5.198 Frame Composer Audio Channel 3 Register 1 (HDMI_FC_DBGAUD1CH3)

• Address Offset: 0x120B

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 120Bh offset = 12_120Bh

HDMI_FC_DBGAUD1CH3 field descriptions

Field	Description
FC_ DBGAUD1CH3	the audio fixed data byte1 to be used in channel 3 when in fixed audio selection

33.5.199 Frame Composer Audio Channel 3 Register 2 (HDMI FC DBGAUD2CH3)

• Address Offset: 0x120C

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 120Ch offset = 12_120Ch

HDMI_FC_DBGAUD2CH3 field descriptions

Field	Description
FC_ DBGAUD2CH3	the audio fixed data byte2 to be used in channel 3 when in fixed audio selection

33.5.200 Frame Composer Audio Channel 4 Register 0 (HDMI_FC_DBGAUD0CH4)

Configures the audio fixed data to be used in channel 0 when in fixed audio selection.

• Address Offset: 0x120D

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 120Dh offset = 12_120Dh

HDMI_FC_DBGAUD0CH4 field descriptions

Field	Description
FC_ DBGAUD0CH4	the audio fixed data byte0 to be used in channel 4 when in fixed audio selection

33.5.201 Frame Composer Audio Channel 4 Register 1 (HDMI_FC_DBGAUD1CH4)

• Address Offset: 0x120E

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 120Eh offset = 12_120Eh

HDMI_FC_DBGAUD1CH4 field descriptions

Field	Description
FC_ DBGAUD1CH4	the audio fixed data byte1 to be used in channel 4 when in fixed audio selection

33.5.202 Frame Composer Audio Channel 4 Register 2 (HDMI_FC_DBGAUD2CH4)

• Address Offset: 0x120F

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 120Fh offset = 12_120Fh

HDMI FC DBGAUD2CH4 field descriptions

Field	Description
FC_ DBGAUD2CH4	the audio fixed data byte2 to be used in channel 4 when in fixed audio selection

33.5.203 Frame Composer Audio Channel 5 Register 0 (HDMI FC DBGAUD0CH5)

Configures the audio fixed data to be used in channel 0 when in fixed audio selection.

• Address Offset: 0x1210

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1210h offset = 12_1210h

HDMI_FC_DBGAUD0CH5 field descriptions

Field	Description
FC_ DBGAUD0CH5	the audio fixed data byte0 to be used in channel 5 when in fixed audio selection

33.5.204 Frame Composer Audio Channel 5 Register 1 (HDMI_FC_DBGAUD1CH5)

• Address Offset: 0x1211

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1211h offset = 12_1211h

HDMI_FC_DBGAUD1CH5 field descriptions

Field	Description
FC_ DBGAUD1CH5	the audio fixed data byte1 to be used in channel 5 when in fixed audio selection

33.5.205 Frame Composer Audio Channel 5 Register 2 (HDMI_FC_DBGAUD2CH5)

• Address Offset: 0x1212

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1212h offset = 12_1212h

HDMI_FC_DBGAUD2CH5 field descriptions

Field	Description
FC_ DBGAUD2CH5	the audio fixed data byte2 to be used in channel 5 when in fixed audio selection

33.5.206 Frame Composer Audio Channel 6 Register 0 (HDMI_FC_DBGAUD0CH6)

Configures the audio fixed data to be used in channel 0 when in fixed audio selection.

• Address Offset: 0x1213

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1213h offset = 12_1213h

HDMI_FC_DBGAUD0CH6 field descriptions

Field	Description
FC_ DBGAUD0CH6	The audio fixed data byte0 to be used in channel 6 when in fixed audio selection

33.5.207 Frame Composer Audio Channel 6 Register 1 (HDMI_FC_DBGAUD1CH6)

• Address Offset: 0x1214

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1214h offset = 12_1214h

HDMI_FC_DBGAUD1CH6 field descriptions

Field	Description
FC_ DBGAUD1CH6	the audio fixed data byte1 to be used in channel 6 when in fixed audio selection

33.5.208 Frame Composer Audio Channel 6 Register 2 (HDMI_FC_DBGAUD2CH6)

• Address Offset: 0x1215

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1215h offset = 12_1215h

HDMI FC DBGAUD2CH6 field descriptions

Field	Description
FC_ DBGAUD2CH6	the audio fixed data byte2 to be used in channel 6 when in fixed audio selection

33.5.209 Frame Composer Audio Channel 7 Register 1 (HDMI_FC_DBGAUD0CH7)

Configures the audio fixed data to be used in channel 7 when in fixed audio selection.

• Address Offset: 0x1216

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1216h offset = 12_1216h

HDMI_FC_DBGAUD0CH7 field descriptions

Field	Description
FC_ DBGAUD0CH7	the audio fixed data byte0 to be used in channel 7 when in fixed audio selection

33.5.210 Frame Composer Audio Channel 7 Register 0 (HDMI_FC_DBGAUD1CH7)

• Address Offset: 0x1217

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1217h offset = 12_1217h

HDMI_FC_DBGAUD1CH7 field descriptions

Field	Description
FC_ DBGAUD1CH7	the audio fixed data byte1 to be used in channel 0 when in fixed audio selection

33.5.211 Frame Composer Audio Channel 7 Register 2 (HDMI_FC_DBGAUD2CH7)

• Address Offset: 0x1218

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1218h offset = 12_1218h

HDMI_FC_DBGAUD2CH7 field descriptions

Field	Description
FC_ DBGAUD2CH7	the audio fixed data byte2 to be used in channel 0 when in fixed audio selection

33.5.212 Frame Composer TMDS Channel 0 Register (HDMI_FC_DBGTMDS0)

Configures the video fixed data to be used in tmds channel 0 when in fixed video selection. This equals to set B pixel component value in RGB video or Cb pixel component value in YCbCr.

• Address Offset: 0x1219

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 1219h offset = 12_1219h

HDMI_FC_DBGTMDS0 field descriptions

Field	Description
FC_DBGTMDS0	set B pixel component value in RGB video or Cb pixel component value in YCbCr

33.5.213 Frame Composer TMDS Channel 1 Register (HDMI_FC_DBGTMDS1)

Configures the video fixed data to be used in tmds channel 1 when in fixed video selection. This equals to set G pixel component value in RGB video or Y pixel component value in YCbCr.

• Address Offset: 0x121A

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 121Ah offset = 12_121Ah

HDMI_FC_DBGTMDS1 field descriptions

Field	Description
FC_DBGTMDS1	set G pixel component value in RGB video or Y pixel component value in YCbCr

33.5.214 Frame Composer TMDS Channel 2 Register (HDMI_FC_DBGTMDS2)

Configures the video fixed data to be used in tmds channel 2 when in fixed video selection. This equals to set R pixel component value in RGB video or Cr pixel component value in YCbCr.

• Address Offset: 0x121B

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 121Bh offset = 12_121Bh

HDMI_FC_DBGTMDS2 field descriptions

Field	Description
FC_DBGTMDS2 set R pixel component value in RGB video or Cr pixel component value in YCbCr	

33.5.215 PHY Configuration Register (HDMI_PHY_CONF0)

This register holds the power down, data enable polarity and interface control of the HDMI Source PHY control. For more information, refer to the DesignWare Cores HDMI TX PHY Databook.

• Address Offset: 0x3000

• Size: 8 bits

Value after Reset: 0x06Access: Read/Write

Address: 12_0000h base + 3000h offset = 12_3000h

Bit	7	6	5	4
Read Write	PDZ	ENTMDS	sparectrl	gen2_pddq
Reset	0	0	0	0
Bit	3	2	1	0
Read Write	gen2_txpwron	gen2_enhpdrxsense	seldataenpol	seldipif
Reset	0	1	1	0

HDMI_PHY_CONF0 field descriptions

Field	Description
7	Power-down enable (active low 0b).
PDZ	Value after Reset: 0b
6	Enable TMDS drivers, bias, and TMDS digital logic.
ENTMDS	Value after Reset: 0b
5	Reserved. Spare pin control.
sparectrl	Value after Reset: 0b
4	PHY_Gen2 PDDQ signal
gen2_pddq	Value after Reset: 0b
3	PHY_Gen2 TXPWRON signal
gen2_txpwron	Value after Reset: 0b
2	PHY_Gen2 ENHPDRXSENSE signal
gen2_ enhpdrxsense	Value after Reset: 1b
1	Select data enable polarity.
seldataenpol	Value after Reset: 1b

Table continues on the next page...

HDMI_PHY_CONF0 field descriptions (continued)

Field	Description
0	Select interface control.
seldipif	Value after Reset: 0b

33.5.216 PHY Test Interface Register 0 (HDMI_PHY_TST0)

PHY TX mapped text interface (control). For more information, refer to the DesignWare Cores HDMI TX PHY Databook.

• Address Offset: 0x3001

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3001h offset = 12_3001h

Bit	7	6	5	4	3	2	1	0
Read Write	Rese	erved	testclr	testen		Reserved		testclk
Reset	0	0	0	0	0	0	0	0

HDMI_PHY_TST0 field descriptions

Field	Description	
7–6 -	This field is reserved. Reserved	
5 testclr	Enable TMDS drivers, bias and tmds digital logic. Value after Reset: 0b	
4 testen	Reserved. Spare control pins. Value after Reset: 0b	
3–1 -	This field is reserved. Reserved	
0 testclk	Test clock signal. Value after Reset: 0b	

33.5.217 PHY Test Interface Register 1 (HDMI_PHY_TST1)

PHY TX mapped text interface (data in). For more information, refer to the DesignWare Cores HDMI TX PHY Databook.

• Address Offset: 0x3002

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3002h offset = 12_3002h

HDMI_PHY_TST1 field descriptions

Field	Description
testdin[7:0]	Test data input.

33.5.218 PHY Test Interface Register 2 (HDMI_PHY_TST2)

PHY TX mapped text interface (data out). For more information, refer to the DesignWare Cores HDMI TX PHY Databook.

• Address Offset: 0x3003

• Size: 8 bits

• Value after Reset: N/A

• Access: Read

Address: 12_0000h base + 3003h offset = 12_3003h

HDMI_PHY_TST2 field descriptions

Field		Description
testdout[7:0	0]	Test data output.

33.5.219 PHY RXSENSE, PLL lock, and HPD Status Register (HDMI_PHY_STAT0)

This register contains the following active high packet sent status indications. For more information, see Overview

• Address Offset: 0x3004

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 3004h offset = 12_3004h

HDMI_PHY_STAT0 field descriptions

Field	Description		
7 RX_SENSE3	Status bit. TX PHY RX_SENSE indication for TMDS CLK driver. User may need to mask or change polarity of this interrupt after it has became active.		
6 RX_SENSE2	Status bit. TX PHY RX_SENSE indication for TMDS channel 2 driver. User may need to mask or change polarity of this interrupt after it has became active.		
5 RX_SENSE1	Status bit. TX PHY RX_SENSE indication for TMDS channel 1 driver. User may need to mask or change polarity of this interrupt after it has became active.		
4 RX_SENSE0	Status bit. TX PHY RX_SENSE indication for TMDS channel 0 driver. User may need to mask or change polarity of this interrupt after it has became active.		
3–2 -	This field is reserved. Reserved		
1 HPD	Status bit. HDMI Hot Plug Detect indication. User may need to mask or change polarity of this interrupt after it has became active.		
0 TX_PHY_LOCK	Status bit. TX PHY PLL lock indication. Please refer to PHY datasheet for more information. User may need to mask or change polarity of this interrupt after it has became active.		

33.5.220 PHY RXSENSE, PLL lock, and HPD Interrupt Register (HDMI_PHY_INT0)

This register contains the interrupt indication of the PHY_STAT0 status interrupts. Interrupt generation is accomplished in the following way:

interrupt = (mask == 1'b0) && (polarity == status);

All this interrupts are forwarded to the Interrupt Handler sticky bit registers and after ORed to a single main interrupt line to micro controller. Assertion of this interrupt implies that data related with the corresponding packet has been sent through the HDMI interface.

• Address Offset: 0x3005

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 3005h offset = 12_3005h

Bit	7	6	5	4
Read	RX_SENSE3	RX_SENSE2	RX_SENSE1	RX_SENSE0
Write				
Reset	0	0	0	0
Bit	3	2	1	0
Read	Poor	erved	HPD	TX_PHY_LOCK
Write	nese	erveu		
Reset	0	0	0	0

HDMI_PHY_INTO field descriptions

Field	Description
7	Interrupt indication bit
RX_SENSE3	TX PHY RX_SENSE indication interrupt for TMDS CLK driver.
6	Interrupt indication bit
RX_SENSE2	TX PHY RX_SENSE indication interrupt for TMDS channel 2 driver.
5	Interrupt indication bit
RX_SENSE1	TX PHY RX_SENSE indication interrupt for TMDS channel 1 driver.
4	Interrupt indication bit
RX_SENSE0	TX PHY RX_SENSE indication interrupt for TMDS channel 0 driver.
3–2	This field is reserved.
-	Reserved
1	Interrupt indication bit
HPD	HDMI Hot Plug Detect indication interrupt.
0	Interrupt indication bit
TX_PHY_LOCK	TX PHY PLL lock indication interrupt.

33.5.221 PHY RXSENSE, PLL lock, and HPD Mask Register (HDMI_PHY_MASK0)

Mask register for generation of PHY_INT0 interrupts.

• Address Offset: 0x3006

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3006h offset = 12_3006h

HDMI_PHY_MASK0 field descriptions

Field	Description
7 RX_SENSE3	Mask bit for PHY_INT0.RX_SENSE3 interrupt bit
6 RX_SENSE2	Mask bit for PHY_INT0.RX_SENSE2 interrupt bit
5 RX_SENSE1	Mask bit for PHY_INT0.RX_SENSE1 interrupt bit
4 RX_SENSE0	Mask bit for PHY_INT0.RX_SENSE0 interrupt bit
3–2 -	This field is reserved. Reserved
1 HPD	Mask bit for PHY_INT0.HPD interrupt bit
0 TX_PHY_LOCK	Mask bit for PHY_INT0.TX_PHY_LOCK interrupt bit

33.5.222 PHY RXSENSE, PLL lock and HPD Polarity Register (HDMI_PHY_POL0)

Polarity register for generation of PHY_INT0 interrupts.

• Address Offset: 0x3007

• Size: 8 bits

Value after Reset: 0xF3Access: Read/Write

Address: 12_0000h base + 3007h offset = 12_3007h

HDMI_PHY_POL0 field descriptions

Field	Description	
7	Polarity bit for PHY_INT0.RX_SENSE3 interrupt bit	
RX_SENSE3	·	

Table continues on the next page...

HDMI_PHY_POL0 field descriptions (continued)

Field	Description
6 RX_SENSE2	Polarity bit for PHY_INT0.RX_SENSE2 interrupt bit
5 RX_SENSE1	Polarity bit for PHY_INT0.RX_SENSE1 interrupt bit
4 RX_SENSE0	Polarity bit for PHY_INT0.RX_SENSE0 interrupt bit
3–2 -	This field is reserved. Reserved
1 HPD	Polarity bit for PHY_INT0.HPD interrupt bit
0 TX_PHY_LOCK	Polarity bit for PHY_INT0.TX_PHY_LOCK interrupt bit

33.5.223 PHY I2C Slave Address Configuration Register (HDMI_PHY_I2CM_SLAVE_ADDR)

This register writes the slave address of the I2C Master PHY.

• Address Offset: 0x3020

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3020h offset = 12_3020h

HDMI_PHY_I2CM_SLAVE_ADDR field descriptions

Field	Description	
7	nis field is reserved.	
-	eserved	
-	Slave address to be sent during read and write operations. The PHY Gen2 slave address is: 7'h69	
	The HEAC PHY slave address is: 7'h49	

33.5.224 PHY I2C Address Configuration Register (HDMI_PHY_I2CM_ADDRESS_ADDR)

This register writes the address for read and writer operations.

• Address Offset: 0x3021

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3021h offset = 12_3021h

HDMI_PHY_I2CM_ADDRESS_ADDR field descriptions

	Field	Description
Ī	address	Register address for read and write operations.

33.5.225 PHY I2C Data Write Register 1 (HDMI_PHY_I2CM_DATAO_1_ADDR)

• Address Offset: 0x3022

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3022h offset = 12_3022h

HDMI_PHY_I2CM_DATAO_1_ADDR field descriptions

	Field	Description
datao[15:8] MSB's of data to be written on register pointed by address [7:0].		

33.5.226 PHY I2C Data Write Register 0 (HDMI_PHY_I2CM_DATAO_0_ADDR)

• Address Offset: 0x3023

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3023h offset = 12_3023h

HDMI_PHY_I2CM_DATAO_0_ADDR field descriptions

	Field	Description
datao[7:0] LSB's of data to be written on register pointed by address [7:0].		

33.5.227 PHY I2C Data Read Register 1 (HDMI_PHY_I2CM_DATAI_1_ADDR)

• Address Offset: 0x3024

• Size: 8 bits

• Value after Reset: 0x00

Access: Read

Address: 12_0000h base + 3024h offset = 12_3024h

HDMI_PHY_I2CM_DATAI_1_ADDR field descriptions

Field	Description	
datai[15:8]	datai[15:8] MSB's of data read from the register pointed by address [7:0].	

33.5.228 PHY I2C Data Read Register 0 (HDMI_PHY_I2CM_DATAI_0_ADDR)

• Address Offset: 0x3025

• Size: 8 bits

• Value after Reset: 0x00

Access: Read

Address: 12_0000h base + 3025h offset = 12_3025h

HDMI_PHY_I2CM_DATAI_0_ADDR field descriptions

Field	Description	
datai[7:0]	LSB's of data read from the register pointed by address [7:0].	

33.5.229 PHY I2C Read/Write Operation (HDMI_PHY_I2CM_OPERATION_ADDR)

This register requests read and write operations from the I2C Master PHY. This register can only be written; reading this register always results in 00h. Writing 1'b1 simultaneously to read and write requests is considered a read request.

• Address Offset: 0x3026

• Size: 8 bits

• Value after Reset: 0x00

• Access: Write

Address: 12 0000h base + 3026h offset = 12 3026h

HDMI_PHY_I2CM_OPERATION_ADDR field descriptions

Field	Description	
7–5 -	This field is reserved. Reserved	
4 write	Write operation request	
3–1 -	This field is reserved. Reserved	
0 read	Read operation request.	

33.5.230 PHY I2C Done Interrupt Register (HDMI_PHY_I2CM_INT_ADDR)

This register contains and configures I2C master PHY done interrupt.

• Address Offset: 0x3027

• Size: 8 bits

Value after Reset: 0x08Access: Read/Write

Address: 12_0000h base + 3027h offset = 12_3027h

HDMI_PHY_I2CM_INT_ADDR field descriptions

Field	Description
7–4 -	This field is reserved. Reserved
3 done_pol	Done interrupt polarity configuration Value after Reset: 1b
2 done_mask	Done interrupt mask signal Value after Reset: 0b
1 done_interrupt	Operation done interrupt bit.{done_interrupt =(done_mask==0b)&& (done_status==done_pol)}. Value after Reset: 0b
0 done_status	Operation done status bit.Marks the end of a rd or write operation. Value after Reset: 0b

33.5.231 PHY I2C Done Interrupt Register (HDMI_PHY_I2CM_CTLINT_ADDR)

This register contains and configures the I2C master PHY error interrupts.

• Address Offset: 0x3028

• Size: 8 bits

Value after Reset: 0x88Access: Read/Write

Address: 12_0000h base + 3028h offset = 12_3028h

Bit	7	6	5	4
Read Write	nack_pol	nack_mask	nack_interrupt	nack_status
Reset	1	0	0	0
Bit	3	2	1	0
Read Write	arbitration_pol	arbitration_mask	arbitration_interrupt	arbitration_status
Reset	1	0	0	0

HDMI_PHY_I2CM_CTLINT_ADDR field descriptions

Field	Description		
7	Not acknowledge error interrupt polarity configuration.		
nack_pol	Value after Reset: 1b		
6	Not acknowledge error interrupt mask signal		
nack_mask	Value after Reset: 0b		
5	Not acknowledge error interrupt bit.{nack_interrupt = nack_mask==0b) && (nack_status==nack_pol)}.		
nack_interrupt	Value after Reset: 0b		
4	Not acknowledge error status bit. Error on I2C not acknowledge.		
nack_status	Value after Reset: 0b		
3	Arbitration error interrupt polarity configuration.		
arbitration_pol	Value after Reset: 1b		
2	Arbitration error interrupt mask signal.		
arbitration_mask	Value after Reset: 0b		
1	Arbitration error interrupt bit.{arbitration_interrupt = (arbitration_mask==0b)&&		
arbitration_ interrupt	(arbitration_status==arbitration_pol)}.		
тистирі	Value after Reset: 0b		
0	Arbitration error status bit. Error on master I2C protocol arbitration.		
arbitration_status	Value after Reset: 0b		

33.5.232 PHY I2C Speed Control Register (HDMI_PHY_I2CM_DIV_ADDR)

This register wets the I2C Master PHY to work in either Fast or Standard mode.

• Address Offset: 0x3029

• Size: 8 bits

Value after Reset: 0x0BAccess: Read/Write

Address: 12_0000h base + 3029h offset = 12_3029h

HDMI_PHY_I2CM_DIV_ADDR field descriptions

Field	Description
7–4 -	This field is reserved. Reserved
fast_mode	Sets the I2C Master to work in Fast Mode or Standard Mode
	(x implies that it can take any value)
	Value after Reset: 1011b
	1xxxb Fast Mode
	0xxxb Standard Mode

33.5.233 PHY I2C Software Reset Register (HDMI_PHY_I2CM_SOFTRSTZ_ADDR)

This register sets the I2C Master PHY software reset.

Address Offset: 0x302A

• Size: 8 bits

Value after Reset: 0x01Access: Read/Write

The following *CNT registers must be set before any I2C bus transaction can take place to ensure proper I/O timing.

The following are the I2C Master SCL clock settings:

• SS: Standard Speed

• FS: Fast Speed

HCNT: SCL High Level counterLCNT: SCL Low Level counter

Address: 12_0000h base + 302Ah offset = 12_302Ah

HDMI_PHY_I2CM_SOFTRSTZ_ADDR field descriptions

Field	Description
7–1 -	This field is reserved. Reserved
0 i2c_softrst	I2C Master PHY Software Reset. Active by writing a zero and auto cleared to one in the following cycle. Value after Reset: 1b

33.5.234 PHY I2C Slow Speed SCL High Level Control Register 1 (HDMI_PHY_I2CM_SS_SCL_HCNT_1_ADDR)

• Address Offset: 0x302B

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 302Bh offset = 12_302Bh

HDMI_PHY_I2CM_SS_SCL_HCNT_1_ADDR field descriptions

Field	Description
i2cmp_ss_scl_ hcnt[15:8]	Value after Reset: 8'h00

33.5.235 PHY I2C Slow Speed SCL High Level Control Register 0 (HDMI_PHY_I2CM_SS_SCL_HCNT_0_ADDR)

• Address Offset: 0x302C

• Size: 8 bits

Value after Reset: 0x6CAccess: Read/Write

Address: 12_0000h base + 302Ch offset = 12_302Ch

HDMI_PHY_I2CM_SS_SCL_HCNT_0_ADDR field descriptions

Field	Description
i2cmp_ss_scl_ hcnt[7:0]	Value after Reset: 8'h6C

33.5.236 PHY I2C Slow Speed SCL Low Level Control Register 1 (HDMI_PHY_I2CM_SS_SCL_LCNT_1_ADDR)

• Address Offset: 0x302D

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 302Dh offset = 12_302Dh

HDMI PHY I2CM SS SCL LCNT 1 ADDR field descriptions

Field	Description
i2cmp_ss_scl_ lcnt[15:8]	Value after Reset: 8'h00

33.5.237 PHY I2C Slow Speed SCL Low Level Control Register 0 (HDMI_PHY_I2CM_SS_SCL_LCNT_0_ADDR)

• Address Offset: 0x302E

• Size: 8 bits

Value after Reset: 0x7FAccess: Read/Write

Address: 12_0000h base + 302Eh offset = 12_302Eh

HDMI_PHY_I2CM_SS_SCL_LCNT_0_ADDR field descriptions

Field	Description
i2cmp_ss_scl_ lcnt[7:0]	Value after Reset: 8'h7F

33.5.238 PHY I2C Fast Speed SCL High Level Control Register 1 (HDMI_PHY_I2CM_FS_SCL_HCNT_1_ADDR)

Address Offset: 0x302F

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 302Fh offset = 12_302Fh

HDMI PHY I2CM FS SCL HCNT 1 ADDR field descriptions

	Field	Description
iź	2cmp_fs_scl_ hcnt[15:8]	Value after Reset: 8'h00

33.5.239 PHY I2C Fast Speed SCL High Level Control Register 0 (HDMI_PHY_I2CM_FS_SCL_HCNT_0_ADDR)

• Address Offset: 0x3030

• Size: 8 bits

Value after Reset: 0x11Access: Read/Write

Address: 12_0000h base + 3030h offset = 12_3030h

HDMI_PHY_I2CM_FS_SCL_HCNT_0_ADDR field descriptions

Field	Description
i2cmp_fs_scl_ hcnt[7:0]	Value after Reset: 8'h11

33.5.240 PHY I2C Fast Speed SCL Low Level Control Register 1 (HDMI_PHY_I2CM_FS_SCL_LCNT_1_ADDR)

• Address Offset: 0x3031

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3031h offset = 12_3031h

HDMI PHY I2CM FS SCL LCNT 1 ADDR field descriptions

Field	Description
i2cmp_fs_scl_ lcnt[15:8]	Value after Reset: 8'h00

33.5.241 PHY I2C Fast Speed SCL Low Level Control Register 0 (HDMI_PHY_I2CM_FS_SCL_LCNT_0_ADDR)

• Address Offset: 0x3032

• Size: 8 bits

Value after Reset: 0x24Access: Read/Write

Address: 12_0000h base + 3032h offset = 12_3032h

HDMI_PHY_I2CM_FS_SCL_LCNT_0_ADDR field descriptions

Field	Description
i2cmp_fs_scl_ lcnt[7:0]	Value after Reset: 8'h24

33.5.242 Audio Clock Regenerator N Value Register 1 (HDMI_AUD_N1)

For N expected values, refer to the HDMI 1.4a specification.

• Address Offset: 0x3200

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3200h offset = 12_3200h

HDMI_AUD_N1 field descriptions

Field	Description
AudN[7:0]	HDMI Audio Clock Regenerator N value

33.5.243 Audio Clock Regenerator N Value Register 2 (HDMI_AUD_N2)

For N expected values, refer to the HDMI 1.4a specification.

• Address Offset: 0x3201

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3201h offset = 12_3201h

HDMI_AUD_N2 field descriptions

Field	Description	
AudN[15:8]	HDMI Audio Clock Regenerator N value	

33.5.244 Audio Clock Regenerator N Value Register 3 (HDMI_AUD_N3)

For N expected values, refer to the HDMI 1.4a specification.

• Address Offset: 0x3202

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3202h offset = 12_3202h

HDMI_AUD_N3 field descriptions

Field	Description
7–4 -	This field is reserved. Reserved
AudN[19:16]	HDMI Audio Clock Regenerator N value

33.5.245 AUD_CTS1 (HDMI_AUD_CTS1)

For CTS expected values, refer to the HDMI 1.4a specification.

• Address Offset: 0x3203

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3203h offset = 12_3203h

HDMI AUD CTS1 field descriptions

Field	Description
	HDMI Audio Clock Regenerator CTS calculated value. This value can be manually set using the CTS_manual (AUD_CTS3) mechanism.

33.5.246 AUD_CTS2 (HDMI_AUD_CTS2)

For CTS expected values, refer to the HDMI 1.4a specification.

• Address Offset: 0x3204

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3204h offset = 12_3204h

HDMI_AUD_CTS2 field descriptions

Field	Description
	HDMI Audio Clock Regenerator CTS calculated value. This value can be manually set using the CTS_manual (AUD_CTS3) mechanism.

33.5.247 AUD_CTS3 (HDMI_AUD_CTS3)

For CTS expected values, refer to the HDMI 1.4a specification.

• Address Offset: 0x3205

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3205h offset = 12_3205h

HDMI AUD CTS3 field descriptions

Field	Description
7–4 -	This field is reserved. Reserved
	HDMI Audio Clock Regenerator CTS calculated value. This value can be manually set using the CTS_manual (AUD_CTS3) mechanism.

33.5.248 Audio DMA Start Register (HDMI_AHB_DMA_CONF0)

This register contains the software reset bit for the audio FIFOs. It also configures operating modes of the AHB master.

• Address Offset: 0x3600

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3600h offset = 12_3600h

HDMI_AHB_DMA_CONF0 field descriptions

Field	Description
7	This is the software reset bit for the audio and FIFOs clear.
sw_fifo_rst	Writing 0'b does not result in any action.

Table continues on the next page...

HDMI_AHB_DMA_CONF0 field descriptions (continued)

Field	Description
	Writing 1'b to this register resets all audio FIFOs.
	Reading from this register always returns 0'b.
6–5 -	This field is reserved. Reserved
4	HBR packets enable.
hbr	The HDMI TX sends the HBR packets. This bit is enabled when the audio frequency is higher than 192 KHz. If this bit is enabled, the number of channels configured in AHB_DMA_CONF1 is always 8.
3 enable_hlock	Enable request of locked burst AHB mechanism.
	1 Enables the usage of ohlock for master request to arbiter of a locked complete burst.\
	Disables request of locked burst AHB mechanism
2–1	Forced size burst mode.
incr_type[1:0]	00 Corresponds to INCR4 fixed four beat incremental AHB burst mode. Only valid when burst_mode is high.
	O1 Corresponds to INCR8 fixed eight beat incremental AHB burst mode. Only valid when burst_mode is high.
	10 Corresponds to INCR16 fixed 16 beat incremental AHB burst mode. Only valid when burst_mode is high.
	11 Corresponds to INCR16 fixed 16 beat incremental AHB burst mode. Only valid when burst_mode is high.
0	Burst mode bit
burst_mode	1 Forces the burst mode to be fixed beat incremental burst mode designated by the incr_type[1:0] signal.
	0 Normal operation is unspecified length incremental burst. It corresponds to INCR AHB burst mode.

33.5.249 AHB_DMA_START (HDMI_AHB_DMA_START)

The data_ buffer_ready bit field signals the AHB audio DMA to start accessing system memory in order to fetch data samples to store in the FIFO. After the operation starts, a new request for a DMA start is ignored until the DMA is stopped or it reaches the end address. Only in one of these situations will a new start request be acknowledged.

The first DMA burst request after data_buffer_ready configuration uses the initial_addr[31:0] as the ohaddr[31:0] and the MBURSTLENGTH[10:0] = AUDIO_FIFO_DEPTH if AUDIO_FIFO_DEPTH < 1024 or MBURSTLENGTH[10:0] = 1024 if AUDIO_FIFO_DEPTH >= 1024.

• Address Offset: 0x3601

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3601h offset = 12_3601h

HDMI_AHB_DMA_START field descriptions

Field	Description
7–1 -	This field is reserved. Reserved
0 data_buffer_ ready	Data buffer ready

33.5.250 Audio DMA Stop Register (HDMI_AHB_DMA_STOP)

The stop_dma_transaction bit field signals the AHB audio DMA to stop current memory access. After it stops, if a new start DMA operation is requested, the DMA engine restarts the memory access assuming the initial_addr[31:0] is programmed at AHB_DMA_STRADDR0 to AHB_DMA_STRADDR3.

• Address Offset: 0x3602

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3602h offset = 12_3602h

HDMI_AHB_DMA_STOP field descriptions

33.5.251 Audio DMA FIFO Threshold Register (HDMI_AHB_DMA_THRSLD)

This register defines the FIFO medium threshold occupation value.

After the AHB master successfully completes a burst transaction, the FIFO may stay remain full until the data fetch interface requests samples. The sample request from the FIFO using the data fetch mechanism drops the number of samples stored in the audio FIFO.

As soon as the number of samples in the FIFO drops lower than the fifo_threshold[7:0], the DMA engine requests a new burst of samples to the AHB master with a size (MBURSTLENGTH[10:0]) equal to AUDIO_FIFO_DEPTH minus fifo_threshold[7:0].

Therefore, the fifo_threshold[7:0] is the medium number of samples that should be available in the audio FIFO across the DMA operation.

• Address Offset: 0x3603

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3603h offset = 12_3603h

HDMI_AHB_DMA_THRSLD field descriptions

Field	Description	
fifo_threshold[7]	FIFO medium threshold occupation value	

33.5.252 Audio DMA Start Address Register 0 (HDMI_AHB_DMA_STRADDR0)

These registers define the initial_addr[31:0] used to initiate the DMA burst read transactions upon data_buffer_ready configuration.

Address Offset: 0x3604 to 0x3607

Size: 8 bits per register
Value after Reset: 0x00
Access: Read/Write

Chapter 33 HDMI Transmitter (HDMI)

Address: 12_0000h base + 3604h offset = 12_3604h

HDMI AHB DMA STRADDR0 field descriptions

	Field	Description
init	ial_addr[7]	Defines init_addr[7:0] for bits 7-0 to initiate DMA burst transactions

33.5.253 Audio DMA Start Address Register 1 (HDMI_AHB_DMA_STRADDR1)

Address: 12_0000h base + 3605h offset = 12_3605h

HDMI_AHB_DMA_STRADDR1 field descriptions

Field	Description
initial_addr[15]	Defines init_addr[15:8] for bits 7-0 to initiate DMA burst transactions

33.5.254 Audio DMA Start Address Register 2 (HDMI_AHB_DMA_STRADDR2)

Address: 12_0000h base + 3606h offset = 12_3606h

HDMI_AHB_DMA_STRADDR2 field descriptions

Field	Description
initial_addr[23]	Defines init_addr[23:16] for bits 7-0 to initiate DMA burst transactions

33.5.255 Audio DMA Start Address Register 3 (HDMI_AHB_DMA_STRADDR3)

Address: 12_0000h base + 3607h offset = 12_3607h

HDMI_AHB_DMA_STRADDR3 field descriptions

Field	Description
initial_addr[31]	Defines init_addr[31:24] for bits 7-0 to initiate DMA burst transactions

33.5.256 Audio DMA Stop Address Register 0 (HDMI_AHB_DMA_STPADDR0)

This registers define the final_addr[31:0] used as the final point to the DMA burst read transactions.

Upon data_buffer_ready configuration, the DMA engine starts requesting burst reads from the external system memory. Each burst read can have a maximum theoretical length of 1024 words (due to the AMBA AHB specification restriction). As an example, if the first burst transaction of the AHB audio DMA has a length of 16, then the second burst starts at address ohaddr[31:0] = initial_addr[31:0] + 16 and has a length of MBURSTLENGTH[10:0] = AUDIO_FIFO_DEPTH - fifo_threshold[7:0].

The DMA engine is responsible for incrementing the burst starting address and defining its corresponding burst length to reach the final_addr[31:0] address. The last burst request issued by the DMA engine takes into account that it should only request data until the final_addr[31:0] address (included) and for that should calculate the correct burst length.

After reaching the final_addr[31:0] address, the done interrupt is active to signal completion of DMA operation.

Address Offset: 0x3608 to 0x360B

Size: 8 bits per register
Value after Reset: 0x00
Access: Read/Write

Chapter 33 HDMI Transmitter (HDMI)

Address: 12_0000h base + 3608h offset = 12_3608h

HDMI AHB DMA STPADDR0 field descriptions

Field	Description	
final_addr[7]	Defines final_addr[7:0] for bits 7-0 to initiate DMA burst transactions	

33.5.257 Audio DMA Stop Address Register 1 (HDMI_AHB_DMA_STPADDR1)

Address: 12_0000h base + 3609h offset = 12_3609h

HDMI_AHB_DMA_STPADDR1 field descriptions

Field	Description
final_addr[15]	Defines final_addr[15:8] for bits 7-0 to initiate DMA burst transactions

33.5.258 Audio DMA Stop Address Register 2 (HDMI AHB DMA STPADDR2)

Address: 12_0000h base + 360Ah offset = 12_360Ah

HDMI_AHB_DMA_STPADDR2 field descriptions

Field	Description	
final_addr[23]	Defines final_addr[23:16] for bits 7-0 to initiate DMA burst transactions	

33.5.259 Audio DMA Stop Address Register 3 (HDMI_AHB_DMA_STPADDR3)

Address: 12_0000h base + 360Bh offset = 12_360Bh

HDMI_AHB_DMA_STPADDR3 field descriptions

Field	Description
final_addr[31]	Defines final_addr[31:24] for bits 7-0 to initiate DMA burst transactions

33.5.260 Audio DMA Burst Start Address Register 0 (HDMI_AHB_DMA_BSTADDR0)

This read-only register composes the start address of the current burst operation. As an example, if the first burst transaction of the AHB audio DMA as a length of 16, then the second burst should start at address ohaddr[31:0] = initial_addr[31:0] + 16. While this burst is being executed, burst_start_addr[31:0] = haddr[31:0] = initial_addr[31:0] + 16.

• Address Offset: 0x360C to 0x360F

Size: 8 bits per registerValue after Reset: 0x00

• Access: Read

Address: 12_0000h base + 360Ch offset = 12_360Ch

HDMI AHB DMA BSTADDR0 field descriptions

Field	Description	
burst_start[7]	Start address for the current burst operation	

33.5.261 Audio DMA Burst Start Address Register 1 (HDMI_AHB_DMA_BSTADDR1)

Address: 12_0000h base + 360Dh offset = 12_360Dh

HDMI_AHB_DMA_BSTADDR1 field descriptions

Field	Description	
burst_start[15]	Start address for the current burst operation	

33.5.262 Audio DMA Burst Start Address Register 2 (HDMI_AHB_DMA_BSTADDR2)

Address: 12_0000h base + 360Eh offset = 12_360Eh

HDMI_AHB_DMA_BSTADDR2 field descriptions

Field	Description	
burst_start[23]	Start address for the current burst operation	

33.5.263 Audio DMA Burst Start Address Register 3 (HDMI_AHB_DMA_BSTADDR3)

Address: 12_0000h base + 360Fh offset = 12_360Fh

HDMI_AHB_DMA_BSTADDR3 field descriptions

Field	Description	
burst_start[31]	Start address for the current burst operation	

33.5.264 Audio DMA Burst Length Register 0 (HDMI_AHB_DMA_MBLENGTH0)

These registers hold the length of the current burst operation. As an example, if the first burst transaction of the AHB audio DMA is a length of 8, then the second burst should start at address ohaddr[31:0] = initial_addr[31:0] + 8. It will also have length MBURSTLENGTH[10:0] = AUDIO_FIFO_DEPTH - fifo_threshold[7:0] while this burst is being executed, MBURSTLENGTH[10:0] = AUDIO_FIFO_DEPTH - fifo_threshold[7:0].

• Address Offset: 0x3610 to 0x3611

Size: 8 bits per registerValue after Reset: 0x00

• Access: Read

Address: 12_0000h base + 3610h offset = 12_3610h

HDMI_AHB_DMA_MBLENGTH0 field descriptions

Field	Description	
MBURSTLENGTH7	Requested burst length	

33.5.265 Audio DMA Burst Length Register 1 (HDMI_AHB_DMA_MBLENGTH1)

Address: 12_0000h base + 3611h offset = 12_3611h

HDMI_AHB_DMA_MBLENGTH1 field descriptions

Field	Description
7–3 -	This field is reserved. Reserved
2 MBURSTLENGTH10	Requested burst length
1 MBURSTLENGTH9	Requested burst length
0 MBURSTLENGTH8	Requested burst length

33.5.266 Audio DMA Interrupt Status Register (HDMI_AHB_DMA_STAT)

This register contains the status bits of the following interrupts:

Address Offset: 0x3612Size: 8 bits per registerValue after Reset: 0x00

• Access: Read

Address: 12_0000h base + 3612h offset = 12_3612h

HDMI_AHB_DMA_STAT field descriptions

Field	Description		
7 statdone	Status of DMA end of operation interrupt. Active when DMA engine reaches final_addr[15:0] or when stop DMA operation is activated.		
6 statretrysplit	Status of retry/split interrupt. Active when AHB master receives a RETRY or SPLIT response from slave.		
5 statlostownership	Status of master lost ownership when in burst transfer. Active when AHB master loses BUS ownership within the course of a burst transfer.		
4 staterror	Status of error interrupt. Active when slave indicates error through the isresp[1:0].		
3 -	This field is reserved. Reserved		
2 statthrfifoempty	Status of audio FIFO empty when audio FIFO has less than four samples.		
1 statfifofull	Status of audio FIFO full interrupt.		
0 statfifoempty	Status of audio FIFO empty interrupt.		

33.5.267 Audio DMA Interrupt Register (HDMI_AHB_DMA_INT)

This register contains the interrupt bits of the following interrupts:

Address Offset: 0x3613Size: 8 bits per registerValue after Reset: 0x00

• Access: Read

Address: 12_0000h base + 3613h offset = 12_3613h

Bit	7	6	5	4
Read	intdone	intretrysplit	intlostownership	interror
Write				
Reset	0	0	0	0
Bit	3	2	1	0
Read	Reserved	intthrfifoempty	intfifofull	intfifoempty
Write	neserveu			
Reset	0	0	0	0

HDMI_AHB_DMA_INT field descriptions

Field	Description
7 intdone	DMA end of operation interrupt. Active when DMA engine reaches final_addr[15:0] or when stop DMA operation is activated.
6 intretrysplit	Retry/split interrupt. Active when AHB master receives a RETRY or SPLIT response from slave.
5 intlostownership	Master lost ownership interrupt when in burst transfer. Active when AHB master loses BUS ownership within the course of a burst transfer.
4 interror	Error interrupt. Active when slave indicates error through the isresp[1:0].
3 -	This field is reserved. Reserved
2 intthrfifoempty	Audio FIFO empty interrupt when audio FIFO has less than four samples.
1 intfifofull	Audio FIFO full interrupt.
0 intfifoempty	Audio FIFO empty interrupt.

33.5.268 Audio DMA Mask Interrupt Register (HDMI_AHB_DMA_MASK)

Mask for each of the interrupts present in the AHB audio DMA module. For usage information, see Audio DMA Interrupt Register (HDMI_AHB_DMA_INT)."

Address Offset: 0x3614
Size: 8 bits per register
Value after Reset: 0x00
Access: Read/Write

Address: 12_0000h base + 3614h offset = 12_3614h

HDMI_AHB_DMA_MASK field descriptions

Field	Description
7 done_mask	DMA end of operation interrupt mask. Active when DMA engine reaches final_addr[15:0] or when stop DMA operation is activated.

Table continues on the next page...

HDMI_AHB_DMA_MASK field descriptions (continued)

Field	Description
6 retrysplit_mask	Retry/split interrupt mask. Active when AHB master receives a RETRY or SPLIT response from slave.
5 lostownership_ mask	Master lost ownership interrupt mask when in burst transfer. Active when AHB master loses BUS ownership within the course of a burst transfer.
4 error_mask	Error interrupt mask. Active when slave indicates error through the isresp[1:0].
3 -	This field is reserved. Reserved
2 fifo_thrempty_ mask	Audio FIFO empty interrupt mask when audio FIFO has less than four samples.
1 fifo_full_mask	Audio FIFO full interrupt mask.
0 fifo_empty_mask	Audio FIFO empty interrupt mask.

33.5.269 Audio DMA Polarity Interrupt Register (HDMI_AHB_DMA_POL)

Polarity for each of the interrupts present in the AHB audio DMA module. For usage information, see Audio DMA Interrupt Register (HDMI_AHB_DMA_INT)."

Address Offset: 0x3615
Size: 8 bits per register
Value after Reset: 0x00
Access: Read/Write

Address: 12_0000h base + 3615h offset = 12_3615h

HDMI_AHB_DMA_POL field descriptions

Field	Description
7 done_polarity	DMA end of operation interrupt mask. Active when DMA engine reaches final_addr[15:0] or when stop DMA operation is activated.

Table continues on the next page...

HDMI_AHB_DMA_POL field descriptions (continued)

Field	Description
6 retrysplit_polarity	Retry/split interrupt mask. Active when AHB master receives a RETRY or SPLIT response from slave.
5 lostownership_ polarity	Master lost ownership interrupt mask when in burst transfer. Active when AHB master loses BUS ownership within the course of a burst transfer.
4 error_polarity	Error interrupt mask. Active when slave indicates error through the isresp[1:0].
3 -	This field is reserved. Reserved
2 fifo_thrfifoempty_ polarity	Audio FIFO empty interrupt mask when audio FIFO has less than four samples.
1 fifo_full_polarity	Audio FIFO full interrupt mask.
0 fifo_empty_ polarity	Audio FIFO empty interrupt mask.

33.5.270 Audio DMA Channel Enable Configuration Register 1 (HDMI_AHB_DMA_CONF1)

• Address Offset: 0x3616

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3616h offset = 12_3616h

HDMI_AHB_DMA_CONF1 field descriptions

Field	Description
7	Channel 7 enable bit
CH_IN_EN7	
	1 Channel enabled
	0 Channel disabled
6	Channel 6 enable bit
CH_IN_EN6	
	1 Channel enabled
	0 Channel disabled

Table continues on the next page...

HDMI_AHB_DMA_CONF1 field descriptions (continued)

Field	Description
5 CH_IN_EN5	Channel 5 enable bit
	1 Channel enabled
	0 Channel disabled
4 CH_IN_EN4	Channel 4 enable bit
	1 Channel enabled
	0 Channel disabled
3 CH_IN_EN3	Channel 3 enable bit
	1 Channel enabled
	0 Channel disabled
2 CH_IN_EN2	Channel 2 enable bit
	1 Channel enabled
	0 Channel disabled
1 CH_IN_EN1	Channel 1 is always enabled.
0 CH_IN_EN0	Channel 0 is always enabled.

33.5.271 Audio DMA Buffer Interrupt Status Register (HDMI_AHB_DMA_BUFFSTAT)

• Address Offset: 0x3617

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 3617h offset = 12_3617h

HDMI_AHB_DMA_BUFFSTAT field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 buff_full	Buffer full flag status

Table continues on the next page...

HDMI_AHB_DMA_BUFFSTAT field descriptions (continued)

Field	Description
0 buff_empty	Buffer empty flag status

33.5.272 Audio DMA Buffer Interrupt Register (HDMI_AHB_DMA_BUFFINT)

• Address Offset: 0x3618

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 3618h offset = 12_3618h

HDMI_AHB_DMA_BUFFINT field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 int_buff_full	Buffer full flag interrupt
0 int_buff_empty	Buffer empty flag interrupt

33.5.273 Audio DMA Buffer Mask Interrupt Register (HDMI_AHB_DMA_BUFFMASK)

• Address Offset: 0x3619

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 3619h offset = 12_3619h

HDMI_AHB_DMA_BUFFMASK field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 int_buff_full	Buffer full flag mask
0 int_buff_empty	Buffer empty flag mask

33.5.274 Audio DMA Buffer Polarity Interrupt Register (HDMI_AHB_DMA_BUFFPOL)

Address Offset: 0x361A

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 361Ah offset = 12_361Ah

HDMI_AHB_DMA_BUFFPOL field descriptions

Field	Description
7–2 -	This field is reserved. Reserved
1 int_buff_full	Buffer full flag polarity
0 int_buff_empty	Buffer empty flag polarity

33.5.275 Main Controller Synchronous Clock Domain Disable Register (HDMI_MC_CLKDIS)

Main controller synchronous disable control per clock domain. Upon release of synchronous disable the corresponding sw reset NRZ request signal, to that domain, is toggled asking to the output for a synchronized active low reset to be generated to that domain.

Address Offset: 0x4001

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4001h offset = 12_4001h

HDMI_MC_CLKDIS field descriptions

Field	Description
7 -	This field is reserved. Reserved
6 hdcpclk_disable	This field is reserved. Reserved
5 cecclk_disable	CEC Engine clock synchronous disable signal.
4 cscclk_disable	Color Space Converter clock synchronous disable signal.
3 audclk_disable	Audio Sampler clock synchronous disable signal.
2 prepclk_disable	Pixel Repetition clock synchronous disable signal.

HDMI_MC_CLKDIS field descriptions (continued)

Field	Description
1 tmdsclk_disable	TMDS clock synchronous disable signal.
0 pixelclk_disable	Pixel clock synchronous disable signal.

33.5.276 Main Controller Software Reset Register (HDMI_MC_SWRSTZREQ)

Main controller software reset request per clock domain. Writing zero to a bit of this register results in an NRZ signal toggle at sfrclk rate to an output signal that indicates a software reset request. This toggle must be used to generate a synchronized reset to de corresponding domain, with at least 1 clock cycle. Register defaults back to 0xFF.

• Address Offset: 0x4002

• Size: 8 bits

Value after Reset: 0xFFAccess: Read/Write

Address: 12_0000h base + 4002h offset = 12_4002h

HDMI_MC_SWRSTZREQ field descriptions

Field	Description
7 -	This field is reserved. Reserved
6 cecswrst_req	CEC software reset request. Defaults back to 1b after reset request.
5–3 -	This field is reserved. Reserved
2 prepswrst_req	Pixel Repetition clock synchronous disable signal.
1 tmdsswrst_req	TMDS software reset request. Defaults back to 1b after reset request.
0 pixelswrst_req	Pixel software reset request. Defaults back to 1b after reset request.

33.5.277 Main Controller Feed Through Control Register (HDMI_MC_FLOWCTRL)

• Address Offset: 0x4004

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4004h offset = 12_4004h

HDMI_MC_FLOWCTRL field descriptions

Field	Description
7–1	This field is reserved.
-	Reserved
0	Video path Feed Through enable bit:
Feed_through_off	
	Color Space Converter is in the video data path.
	0 Color Space Converter is bypassed (not in the video data path).

33.5.278 Main Controller PHY Reset Register (HDMI_MC_PHYRSTZ)

• Address Offset: 0x4005

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4005h offset = 12_4005h

HDMI_MC_PHYRSTZ field descriptions

Field	Description
7–1 -	This field is reserved. Reserved
0 phyrstz	HDMI Source PHY active low reset control.

33.5.279 Main Controller Clock Present Register (HDMI_MC_LOCKONCLOCK)

• Address Offset: 0x4006

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read/Clear on Write

Address: 12_0000h base + 4006h offset = 12_4006h

HDMI_MC_LOCKONCLOCK field descriptions

Field	Description
7 -	This field is reserved. Reserved.
6 pclk	Pixel clock status. Indicates that the clock is present in the system. Cleared by WR 1 to this position.
5 tclktclk	TMDS clock status. Indicates that the clock is present in the system. Cleared by WR 1 to this position
4 prepclk	Pixel repetition clock status. Indicates that the clock is present in the system. Cleared by WR 1 to this position.
3–1 -	This field is reserved. Reserved.
0 cecclk	CEC clock status. Indicates that the clock is present in the system. Cleared by WR 1 to this position.

33.5.280 Main Controller HEAC PHY Reset Register (HDMI_MC_HEACPHY_RST)

• Address Offset: 0x4007

• Size: 8 bits

Value after Reset: N/AAccess: Read/Write

Address: 12_0000h base + 4007h offset = 12_4007h

HDMI_MC_HEACPHY_RST field descriptions

Field	Description
7–1 -	This field is reserved. Reserved
0 heacphyrst	HEAC PHY reset (active high)

33.5.281 Color Space Converter Interpolation and Decimation Configuration Register (HDMI_CSC_CFG)

Color Space Conversion configuration register. Configures YCC422 to YCC444 interpolation mode and YCC444 to YCC422 decimation mode.

Address Offset: 0x4100

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4100h offset = 12_4100h

HDMI_CSC_CFG field descriptions

Field	Description
7–6 -	This field is reserved. Reserved
5–4	Chroma interpolation configuration:
INTMODE	00 interpolation disabled
	01 H $_{\rm u}$ (z) = 1 + z $^{-1}$
	10 H $_{\rm u}$ (z)=1/2 + Z $^{-1}$ +1/2 z $^{-2}$
	11 interpolation disabled.
3–2 -	This field is reserved. Reserved
DECMODE	Chroma decimation configuration: DECMODE[1:0] Chroma decimation 00 decimation disabled 01 H d? z? =1 10 H d? z?=1/4?1/2 z?1?1/4 z?2 11 H d? z?P211=?5?12 z?2?22 z?4?39 z?6?65 z?8?109 z?10?204 z?12?648 z?14?1024 z?15?648 z?16?204 z?18?109 z?20?65 z?22?39 z?24?22 z?26?12 z?28?5 z?30
	00 decimation disabled
	01 H $_{d}$ (z) = 1
	$10 \text{ H}_{d}(Z)=1/4 + 1/2z^{-1} + 1/4z^{-2}$
	11H _d (z)x2 ¹¹ =-5+12z ⁻² +22z ⁻⁴ +39z ⁻⁸ +109z ⁻¹⁰ -204z ⁻¹² +648z ⁻¹⁴ +1024z ⁻¹⁵ +648z ⁻¹⁶ -204z ⁻¹⁸ +109z ⁻²⁰ -65z ⁻²² +39z ⁻²⁴ -22z ⁻²⁶ +12z ⁻²⁸ -5z ⁻³⁰

33.5.282 Color Space Converter Scale and Deep Color Configuration Register (HDMI_CSC_SCALE)

• Address Offset: 0x4101

• Size: 8 bits

$$\begin{bmatrix} G \\ R \\ B \end{bmatrix} = 2 \csc scale - 12 \ X \qquad \begin{bmatrix} A_1 \ A_2 \ A_3 \\ B_1 \ B_2 \ B_3 \\ C_1 \ C_2 \ C_3 \end{bmatrix} + 2 \csc scale \ X \qquad \begin{bmatrix} A_4 \\ B_4 \\ C_4 \end{bmatrix}$$

$$\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} = 2 \text{ cscscale - } 12 \text{ X} \quad \begin{bmatrix} A_1 A_2 A_3 \\ B_1 B_2 B_3 \\ C_1 C_2 C_3 \end{bmatrix} + 2 \text{ cscscale } X \quad \begin{bmatrix} A_4 \\ B_4 \\ C_4 \end{bmatrix}$$

Figure 33-299. CSC Conversion Functions

Address: 12_0000h base + 4101h offset = 12_4101h

HDMI CSC SCALE field descriptions

Field	Description
7–4	Color space converter color depth configuration:
csc_colorde_ pth[3:0]	Other: Reserved.
	0000 24 bit per pixel video (8 bit per component).
	0100 24 bit per pixel video (8 bit per component).
	0101 30 bit per pixel video (10 bit per component).
	0110 36 bit per pixel video (12 bit per component).
	0111 48 bit per pixel video (16 bit per component).
3–2	This field is reserved.
-	Reserved
-	Defines the cscscale[1:0] scale factor to apply to all coefficients in Color Space Conversion. This scale factor is expressed in the number of left shifts to apply to each of the coefficients, ranging from 0 to 2.

33.5.283 CSC_COEF_A1_MSB (HDMI_CSC_COEF_A1_MSB)

Color Space Conversion A1 coefficient.

• Address Offset: 0x4102

• Size: 8 bits

Value after Reset: 0x20Access: Read/Write

Address: 12_0000h base + 4102h offset = 12_4102h

HDMI_CSC_COEF_A1_MSB field descriptions

Field	Description
CSC_COEF_A1_ MSB	Color Space Conversion A1 MSB coefficient.

33.5.284 CSC_COEF_A1_LSB (HDMI_CSC_COEF_A1_LSB)

Color Space Conversion A1 coefficient.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

• Address Offset: 0x4103

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4103h offset = 12_4103h

HDMI_CSC_COEF_A1_LSB field descriptions

Field	Description
CSC_COEF_A1_ LSB	Color Space Conversion A1 LSB coefficient

33.5.285 CSC_COEF_A2_MSB (HDMI_CSC_COEF_A2_MSB)

Color Space Conversion A2 coefficient.

• Address Offset: 0x4104

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4104h offset = 12_4104h

HDMI_CSC_COEF_A2_MSB field descriptions

Field	Description
CSC_COEF_A2_ MSB	Color Space Conversion A2 MSB coefficient.

33.5.286 CSC_COEF_A2_LSB (HDMI_CSC_COEF_A2_LSB)

Color Space Conversion A2 coefficient.

• Address Offset: 0x4105

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4105h offset = 12_4105h

HDMI_CSC_COEF_A2_LSB field descriptions

Field	Description
CSC_COEF_A2_ LSB	Color Space Conversion A2 LSB coefficient.

33.5.287 CSC_COEF_A3_MSB (HDMI_CSC_COEF_A3_MSB)

Color Space Conversion A3 coefficient.

• Address Offset: 0x4106

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12 0000h base + 4106h offset = 12 4106h

HDMI_CSC_COEF_A3_MSB field descriptions

Field	Description
CSC_COEF_A3_ MSB	Color Space Conversion A3 MSB coefficient.

33.5.288 CSC_COEF_A3_LSB (HDMI_CSC_COEF_A3_LSB)

Color Space Conversion A3 coefficient.

• Address Offset: 0x4107

• Size: 8 bits

Address: 12_0000h base + 4107h offset = 12_4107h

HDMI_CSC_COEF_A3_LSB field descriptions

Field	Description
CSC_COEF_A3_ LSB	Color Space Conversion A3 LSB coefficient.

33.5.289 CSC_COEF_A4_MSB (HDMI_CSC_COEF_A4_MSB)

Color Space Conversion A4 coefficient.

• Address Offset: 0x4108

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4108h offset = 12_4108h

HDMI_CSC_COEF_A4_MSB field descriptions

Field	Description
CSC_COEF_A4_ MSB	Color Space Conversion A4 MSB coefficient.

33.5.290 CSC_COEF_A4_LSB (HDMI_CSC_COEF_A4_LSB)

Color Space Conversion A4 coefficient.

• Address Offset: 0x4109

• Size: 8 bits

Address: 12_0000h base + 4109h offset = 12_4109h

HDMI CSC COEF A4 LSB field descriptions

Field	Description
CSC_COEF_A4_ LSB	Color Space Conversion A4 LSB coefficient.

33.5.291 CSC_COEF_B1_MSB (HDMI_CSC_COEF_B1_MSB)

Color Space Conversion B1 coefficient.

• Address Offset: 0x410A

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 410Ah offset = 12_410Ah

HDMI_CSC_COEF_B1_MSB field descriptions

	Field	Description
_	COEF_B1_ MSB	Color Space Conversion B1 MSB coefficient.

33.5.292 CSC_COEF_B1_LSB (HDMI_CSC_COEF_B1_LSB)

Color Space Conversion B1 coefficient.

• Address Offset: 0x410B

• Size: 8 bits

Address: 12_0000h base + 410Bh offset = 12_410Bh

HDMI_CSC_COEF_B1_LSB field descriptions

Field	Description
CSC_COEF_B1_ LSB	Color Space Conversion B1 LSB coefficient.

33.5.293 CSC_COEF_B2_MSB (HDMI_CSC_COEF_B2_MSB)

Color Space Conversion B2 coefficient.

• Address Offset: 0x410C

• Size: 8 bits

Value after Reset: 0x20Access: Read/Write

Address: 12_0000h base + 410Ch offset = 12_410Ch

HDMI_CSC_COEF_B2_MSB field descriptions

Field		Description
CSC_COEF_ MSB	32_	Color Space Conversion B2 MSB coefficient.

33.5.294 CSC_COEF_B2_LSB (HDMI_CSC_COEF_B2_LSB)

Color Space Conversion B2 coefficient.

• Address Offset: 0x410D

• Size: 8 bits

Address: 12_0000h base + 410Dh offset = 12_410Dh

HDMI CSC COEF B2 LSB field descriptions

Field	Description
CSC_COEF_B2_ LSB	Color Space Conversion B2 LSB coefficient.

33.5.295 CSC_COEF_B3_MSB (HDMI_CSC_COEF_B3_MSB)

Color Space Conversion B3 coefficient.

• Address Offset: 0x410E

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 410Eh offset = 12_410Eh

HDMI_CSC_COEF_B3_MSB field descriptions

Field	Description
CSC_COEF_B3_ MSB	Color Space Conversion B3 MSB coefficient.

33.5.296 CSC_COEF_B3_LSB (HDMI_CSC_COEF_B3_LSB)

Color Space Conversion B3 coefficient.

• Address Offset: 0x410F

• Size: 8 bits

Address: 12_0000h base + 410Fh offset = 12_410Fh

HDMI_CSC_COEF_B3_LSB field descriptions

Field	Description
CSC_COEF_B3_ LSB	Color Space Conversion B3 LSB coefficient.

33.5.297 CSC_COEF_B4_MSB (HDMI_CSC_COEF_B4_MSB)

Color Space Conversion B4 coefficient.

• Address Offset: 0x4110

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4110h offset = 12_4110h

HDMI_CSC_COEF_B4_MSB field descriptions

Field		Description
CSC_COEF MSB	_B4_	Color Space Conversion B4 MSB coefficient.

33.5.298 CSC_COEF_B4_LSB (HDMI_CSC_COEF_B4_LSB)

Color Space Conversion B4 coefficient.

• Address Offset: 0x4111

• Size: 8 bits

Address: 12_0000h base + 4111h offset = 12_4111h

HDMI CSC COEF B4 LSB field descriptions

Field	Description
CSC_COEF_B4_ LSB	Color Space Conversion B4 LSB coefficient.

33.5.299 CSC_COEF_C1_MSB (HDMI_CSC_COEF_C1_MSB)

Color Space Conversion C1 coefficient.

• Address Offset: 0x4112

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4112h offset = 12_4112h

HDMI_CSC_COEF_C1_MSB field descriptions

Field	Description
CSC_COEF_C1_ MSB	Color Space Conversion C1 MSB coefficient.

33.5.300 CSC_COEF_C1_LSB (HDMI_CSC_COEF_C1_LSB)

Color Space Conversion C1 coefficient.

• Address Offset: 0x4113

• Size: 8 bits

Address: 12_0000h base + 4113h offset = 12_4113h

HDMI_CSC_COEF_C1_LSB field descriptions

Field	Description
CSC_COEF_C1_ LSB	Color Space Conversion C1 LSB coefficient.

33.5.301 CSC_COEF_C2_MSB (HDMI_CSC_COEF_C2_MSB)

Color Space Conversion C2 coefficient.

• Address Offset: 0x4114

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4114h offset = 12_4114h

HDMI_CSC_COEF_C2_MSB field descriptions

	Field	Description
CS	C_COEF_C2_ MSB	Color Space Conversion C2 MSB coefficient.

33.5.302 CSC_COEF_C2_LSB (HDMI_CSC_COEF_C2_LSB)

Color Space Conversion C2 coefficient.

• Address Offset: 0x4115

• Size: 8 bits

Address: 12_0000h base + 4115h offset = 12_4115h

HDMI_CSC_COEF_C2_LSB field descriptions

Field	Description
CSC_COEF_C2_ LSB	Color Space Conversion C2 LSB coefficient.

33.5.303 CSC_COEF_C3_MSB (HDMI_CSC_COEF_C3_MSB)

Color Space Conversion C3 coefficient.

• Address Offset: 0x4116

• Size: 8 bits

Value after Reset: 0x20Access: Read/Write

Address: 12_0000h base + 4116h offset = 12_4116h

HDMI_CSC_COEF_C3_MSB field descriptions

	Field	Description
CS	C_COEF_C3_ MSB	Color Space Conversion C3 MSB coefficient.

33.5.304 CSC_COEF_C3_LSB (HDMI_CSC_COEF_C3_LSB)

Color Space Conversion C3 coefficient.

• Address Offset: 0x4117

• Size: 8 bits

Address: 12_0000h base + 4117h offset = 12_4117h

HDMI_CSC_COEF_C3_LSB field descriptions

Field	Description
CSC_COEF_C3_ LSB	Color Space Conversion C3 LSB coefficient.

33.5.305 CSC_COEFC4_MSB (HDMI_CSC_COEFC4_MSB)

Color Space Conversion C4 coefficient.

• Address Offset: 0x4118

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 4118h offset = 12_4118h

HDMI_CSC_COEFC4_MSB field descriptions

	Field	Description
C	CSC_COEFC4_ MSB	Color Space Conversion C4 MSB coefficient.

33.5.306 CSC_COEFC4_LSB (HDMI_CSC_COEFC4_LSB)

Color Space Conversion C4 coefficient.

• Address Offset: 0x4119

• Size: 8 bits

Address: 12_0000h base + 4119h offset = 12_4119h

HDMI_CSC_COEFC4_LSB field descriptions

Field	Description	
CSC_COEFC4_ LSB	Color Space Conversion C4 LSB coefficient.	

33.5.307 CEC_CTRL (HDMI_CEC_CTRL)

CEC registers control the CEC feature that is implemented in HDMI TX. They perform various functions like controlling, monitoring, and buffering data for the transmitter and the receiver.

This register handles the main control of the CEC initiator.

• Address Offset: 0x7D00

• Size: 8 bits

Value after Reset: 0x02Access: Read/Write

Address: 12_0000h base + 7D00h offset = 12_7D00h

HDMI_CEC_CTRL field descriptions

Field	Description			
7–5	This field is reserved. Reserved			
4 STANDBY	Standby bit			
	 CEC controller responds the ACK to all messages. CEC controller responds with ACK to all ping messages (only when the EOM is received) and responds with NACK to all other messages, generating wake-up status for selected opcodes. Attention that the NACK will only be posted on the last block of a frame. 			
3 BC_NACK	Broadcast NACK bit Reset by software to ACK the received broadcast message.			
	1 Set by software to NACK the received broadcast message. This bit holds till software resets. The broadcasts will be answered with 1'b0. It means the follower reject the message.			

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_CEC_CTRL field descriptions (continued)

Field	Description				
2–1	Frame Type bit				
FRAME_TYP					
	OSignal Free Time = 3-bit periods. Previous attempt to send frame is unsuccessful.				
	01 Signal Free Time = 5-bit periods. New initiator wants to send a frame.				
	10 Signal Free Time = 7-bit periods. Present initiator wants to send another frame immediately after its previous frame. (spec CEC 9.1)				
	11 Illegal value. If software write this value, hardware will set the value to the default 2'b01.				
0	Send bit				
SEND					
	O Reset to 0 by hardware when the CEC transmission is done (no matter successful or failed). It can also work as an indicator checked by software to see whether the transmission is finished.				
	1 Set by software to trigger CEC sending a frame as an initiator. This bit keeps at 1 while the transmission is going on.				

33.5.308 CEC_STAT (HDMI_CEC_STAT)

This register indicates the status of CEC line. All bits are read only. When an event occurs, the corresponding bit will set to 1 for one SFR clock cycle only. Then, the bit automatically resets to 0. No software reset is required. Software can read the "stable" interrupts on IH_CEC_STAT0 register (this register has the same bit arrangement as CEC_STAT register).

• Address Offset: 0x7D01

• Size: 8 bits

• Value after Reset: N/A

• Access: Read

Address: 12_0000h base + 7D01h offset = 12_7D01h

HDMI_CEC_STAT field descriptions

Field	Description		
7 -	This field is reserved. Reserved		
6 WAKEUP	Follower received wake-up command (for follower only).		
5 ERROR_FOLL			

HDMI_CEC_STAT field descriptions (continued)

Field	Description		
4 ERROR_INIT	An error is detected on cec line (for initiator only).		
3 ARB_LOST	The initiator losses the CEC line arbitration to a second initiator. (specification CEC 9).		
2 NACK	A frame is not acknowledged in a directly addressed message. Or a frame is negatively acknowledged in a broadcast message (for initiator only).		
1 EOM	EOM is detected so that the received data is ready in the receiver data buffer (for follower only).		
0 The current transmission is successful (for initiator only). DONE			

33.5.309 CEC_MASK (HDMI_CEC_MASK)

This read/write register masks/unmasks the interrupt events. When the bit is set to 1 (masked), the corresponding event will not trigger an interrupt signal at the system interface. When the bit is reset to 0, the interrupt event is unmasked.

• Address Offset: 0x7D02

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7D02h offset = 12_7D02h

HDMI_CEC_MASK field descriptions

Field	Description			
7 -	This field is reserved. Reserved			
6 WAKEUP_MASK	Follower wake-up signal mask			
5 ERROR_FOLL_ MASK	An error is notified by a follower. Abnormal logic data bit error (for follower).			
4 ERROR_INIT_ MASK	An error is detected on cec line (for initiator only).			

HDMI_CEC_MASK field descriptions (continued)

Field	Description			
3 ARB_LOST_ MASK	The initiator losses the CEC line arbitration to a second initiator. (specification CEC 9).			
2 NACK_MASK	A frame is not acknowledged in a directly addressed message. Or a frame is negatively acknowledged in a broadcast message (for initiator only).			
1 EOM_MASK	EOM is detected so that the received data is ready in the receiver data buffer (for follower only).			
0 DONE_MASK The current transmission is successful (for initiator only).				

33.5.310 CEC_POLARITY (HDMI_CEC_POLARITY)

This register is readable and writable, which controls the polarity of the interrupt status register as well as the polarity of the interrupt signals at system interface.

• Address Offset: 0x7D03

• Size: 8 bits

Value after Reset: 0x7FAccess: Read/Write

Address: 12_0000h base + 7D03h offset = 12_7D03h

HDMI_CEC_POLARITY field descriptions

Field	Description		
7 -	This field is reserved. Reserved		
6 WAKEUP_POL	Follower wakeup signal polarity		
5 ERROR_FOLL_ POL	CEC line error polarity (for follower only)		
4 ERROR_INIT_ POL	CEC line error polarity (for initiator only)		
3 ARB_LOST_POL	Initiator Arbitration lost signal polarity DL		
2 NACK_POL	- · · ································		

HDMI_CEC_POLARITY field descriptions (continued)

Field	Description
1 EOM_POL	EOM detect signal polarity (follower only)
0 DONE_POL	Current transmission success or not signal polarity

33.5.311 CEC_INT (HDMI_CEC_INT)

This register is read only. Each bit of the register is output at the system interface. The output signals hold the active interrupt state (high or low) for only one SFR clock cycle. Then the hardware resets the bit to an inactive state. Software can read the "stable" interrupts on the IH_CEC_STAT0 register at address 0x0106 (this register has the same bit arrangement as the CEC_STAT register).

The functional formula for the interrupts is:

CEC_INT = (CEC_MASK == 0b) && (CEC_STATUS == CEC_POLARITY)

• Address Offset: 0x7D04

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 7D04h offset = 12_7D04h

HDMI_CEC_INT field descriptions

Field	Description
7 -	This field is reserved. Reserved
6 WAKEUP_INT	Follower wakeup signal polarity

HDMI_CEC_INT field descriptions (continued)

Field	Description	
5 ERROR_FOLL_ INT	Follower wakeup interrupt	
4 ERROR_INIT_ INT	CEC line error interrupt (for follower only)	
3 ARB_LOST_INT	CEC line error interrupt (for initiator only)	
2 NACK_INT	Initiator Arbitration lost interrupt	
1 EOM_INT	Frame NACK interrupt	
0 DONE_INT	EOM detect interrupt (for follower only)	

33.5.312 CEC_ADDR_L (HDMI_CEC_ADDR_L)

CEC_ADDR_L and CEC_ADDR_H registers indicate the logical address(es) allocated to the CEC device. The logical address mappings are shown in CEC_ADDR_L (HDMI_CEC_ADDR_L) and CEC_ADDR_H (HDMI_CEC_ADDR_H). This register is written by software when the logical allocation is finished. Bit value 1 means the corresponding logical address is allocated to this device. Bit value 0 means the corresponding logical address is not allocated to this device.

• Address Offset: 0x7D05

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7D05h offset = 12_7D05h

Bit	7	6	5	4
Read Write	CEC_ADDR_L7	CEC_ADDR_L6	CEC_ADDR_L5	CEC_ADDR_L4
Reset	0	0	0	0
Bit	3	2	1	0
Read Write	CEC_ADDR_L3	CEC_ADDR_L2	CEC_ADDR_L1	CEC_ADDR_L0
Reset	0	0	0	0

HDMI_CEC_ADDR_L field descriptions

Field	Description
7 CEC_ADDR_L7	Logical address 7 - Tuner 3
6 CEC_ADDR_L6	Logical address 6 - Tuner 2
5 CEC_ADDR_L5	Logical address 5 - Audio System
4 CEC_ADDR_L4	Logical address 4 - Playback Device 1
3 CEC_ADDR_L3	Logical address 3 - Tuner 1
2 CEC_ADDR_L2	Logical address 2 - Recording Device 2
1 CEC_ADDR_L1	Logical address 1 - Recording Device 1
0 CEC_ADDR_L0	Logical address 0 - Device TV

33.5.313 CEC_ADDR_H (HDMI_CEC_ADDR_H)

CEC_ADDR_L and CEC_ADDR_H registers indicate the logical address(es) allocated to the CEC device. The logical address mappings are shown in CEC_ADDR_L (HDMI_CEC_ADDR_L) and CEC_ADDR_H (HDMI_CEC_ADDR_H). This register is written by software when the logical allocation is finished. Bit value 1 means the corresponding logical address is allocated to this device. Bit value 0 means the corresponding logical address is not allocated to this device.

• Address Offset: 0x7D06

• Size: 8 bits

Value after Reset: 0x80Access: Read/Write

Address: 12_0000h base + 7D06h offset = 12_7D06h

Bit	7	6	5	4
Read Write	CEC_ADDR_H7	CEC_ADDR_H6	CEC_ADDR_H5	CEC_ADDR_H4
Reset	1	0	0	0
Bit	3	2	1	0
Read Write	CEC_ADDR_H3	CCEC_ADDR_H2	CEC_ADDR_H1	CEC_ADDR_H0
Reset	0	0	0	0

HDMI_CEC_ADDR_H field descriptions

Field	Description
7 CEC_ADDR_H7	Logical address 15 - Unregistered (as initiator address), Broadcast (as destination address)
6 CEC_ADDR_H6	Logical address 14 - Free use
5 CEC_ADDR_H5	Logical address 13 - Reserved
4 CEC_ADDR_H4	Logical address 12 - Reserved
3 CEC_ADDR_H3	Logical address 11 - Playback Device 3
2 CCEC_ADDR_ H2	Logical address 10 - Tuner 4
1 CEC_ADDR_H1	Logical address 9 - Playback Device 3
0 CEC_ADDR_H0	Logical address 8 - Playback Device 2

33.5.314 CEC_TX_CNT (HDMI_CEC_TX_CNT)

This register indicates the size of the frame in bytes (including header and data blocks), which are available in the transmitter data buffer.

When the value is zero, the CEC controller ignores the send command triggered by software. When the transmission is done (no matter success or not), the current value is held until it is overwritten by software.

• Address Offset: 0x7D07

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7D07h offset = 12_7D07h

HDMI_CEC_TX_CNT field descriptions

Field	Description
7–5	This field is reserved.
-	Reserved

HDMI_CEC_TX_CNT field descriptions (continued)

Field	Description	
CEC_TX_CNT	CEC Transmitter Counter register:	
	Value after Reset: 5'b00000	
	0 No data needs to be transmitted.	
	1 Frame size is 1 byte.	
	16 Frame size is 16 byte.	

33.5.315 CEC_RX_CNT (HDMI_CEC_RX_CNT)

This register indicates the size of the frame in bytes (including header and data blocks), which are available in the receiver data buffer.

Only after the whole receiving process is finished successfully, the counter is refreshed to the value which indicates the total number of data bytes in the Receiver Data Register.

• Address Offset: 0x7d08

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 7D08h offset = 12_7D08h

HDMI_CEC_RX_CNT field descriptions

Field	Description	
7–5		
-		
CEC_RX_CNT	CEC Receiver Counter register.	
	Value after Reset: 5'b00000	
	0 No data received	
	1 1-byte data is received.	
	16 16-byte data is received.	

33.5.316 CEC_TX_DATA (HDMI_CEC_TX_DATAn)

These registers (8 bit each) are the buffers used for storing the data waiting for transmission(including header and data blocks).

• Address Offset: 0x7D10 .. 0x7D1F

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 7D10h offset + (1d × i), where i=0d to 15d

HDMI_CEC_TX_DATA field descriptions

Field	Description	
CEC_TX_DATA	Header block in CEC_TX_DATA0	
	Data blockn in CEC_TX_DATAn	

33.5.317 CEC_RX_DATA (HDMI_CEC_RX_DATAn)

These registers (8 bit each) are the buffers used for storing the received data (including header and data blocks).

• Address Offset: 0x7D20 .. 0x7D2F

• Size: 8 bits

• Value after Reset: 0x00

Access: Read

Address: 12_0000h base + 7D20h offset + (1d × i), where i=0d to 15d

HDMI_CEC_RX_DATA field descriptions

Field	Description	
CEC_RX_DATA	eader block in CEC_RX_DATA0	
	Data blockn in CEC_RX_DATAn	

33.5.318 CEC_LOCK (HDMI_CEC_LOCK)

• Address Offset: 0x7D30

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7D30h offset = 12_7D30h

HDMI_CEC_LOCK field descriptions

Field	Description
7–1 -	This field is reserved. Reserved
	When a frame is received, this bit would be active. The CEC controller answers to all the messages with NACK until the CPU writes it to '0'.

33.5.319 CEC_WKUPCTRL (HDMI_CEC_WKUPCTRL)

Address Offset: 0x7D31

• Size: 8 bits

Value after Reset: 0xFFAccess: Read/Write

After receiving a message in the CEC_RX_DATA1 (OPCODE) registers, the CEC engine verifies the message opcode[7:0] against one of the previously defined values to generate the wake-up status:

Wakeupstatus is 1 when:

received opcode is 0x04 and opcode0x04en is 1 or received opcode is 0x0D and opcode0x0Den is 1 or received opcode is 0x41 and opcode0x41en is 1 or received opcode is 0x42 and opcode0x42en is 1 or received opcode is 0x44 and opcode0x44en is 1 or received opcode is 0x70 and opcode0x70en is 1 or received opcode is 0x82 and opcode0x82en is 1 or received opcode is 0x86 and opcode0x86en is 1

Wakeupstatus is 0 when none of the previous conditions are true.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

This formula means that the wake-up status (on CEC_STAT[6] register) is only '1' if the opcode[7:0] received is equal to one of the defined values and the corresponding enable bit of that defined value is set to '1'.

Address: 12_0000h base + 7D31h offset = 12_7D31h

Bit	7	7 6		4	
Read Write	OPCODE0x86en	OPCODE0x82en	OPCODE0x70en	OPCODE0x44en	
Reset	1	1	1	1	
Bit	3	2	1	0	
Read Write	OPCODE0x42en	OPCODE0x41en	OPCODE0x0Den	OPCODE0x04en	
Reset	1	1	1	1	

HDMI_CEC_WKUPCTRL field descriptions

Field	Description
7 OPCODE0x86en	OPCODE 0x86 wake up enable
6 OPCODE0x82en	OPCODE 0x82 wake up enable
5 OPCODE0x70en	OPCODE 0x70 wake up enable
4 OPCODE0x44en	OPCODE 0x44 wake up enable
3 OPCODE0x42en	OPCODE 0x42 wake up enable
2 OPCODE0x41en	OPCODE 0x41 wake up enable
1 OPCODE0x0Den	OPCODE 0x0D wake up enable
0 OPCODE0x04en	OPCODE 0x04 wake up enable

33.5.320 I2CM_SLAVE (HDMI_I2CM_SLAVE)

I2C Master Registers (E-DDC) registers are responsible for the Master's coordination with the Slave, by coordinating the Slave address, data identification, transaction status, acknowledgement, and reset functions.

• Address Offset: 0x7E00

• Size: 8 bits

Address: 12_0000h base + 7E00h offset = 12_7E00h

HDMI I2CM SLAVE field descriptions

Field	Description	
7 -	This field is reserved. Reserved	
slaveaddr[6:0]	Slave address to be sent during read and write normal operations.	

33.5.321 I2CM_ADDRESS (HDMI_I2CM_ADDRESS)

• Address Offset: 0x7E01

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7E01h offset = 12_7E01h

HDMI_I2CM_ADDRESS field descriptions

Field	Description
address[7:0]	Register address for read and write operations.

33.5.322 I2CM_DATAO (HDMI_I2CM_DATAO)

• Address Offset: 0x7E02

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7E02h offset = 12_7E02h

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_I2CM_DATAO field descriptions

Field	Description
datao[7:0]	Data to be written on register pointed by address[7:0].

33.5.323 I2CM_DATAI (HDMI_I2CM_DATAI)

• Address Offset: 0x7E03

• Size: 8 bits

• Value after Reset: 0x00

• Access: Read

Address: 12_0000h base + 7E03h offset = 12_7E03h

HDMI_I2CM_DATAI field descriptions

Field	Description
datai[7:0]	Data read from register pointed by address[7:0].

33.5.324 I2CM_OPERATION (HDMI_I2CM_OPERATION)

Read and write operation request. This register can only be written, reading this register will always result in 00h. Writing 1'b1 simultaneously to rd, rd_ext and wr requests is considered as a read (rd) request.

Address Offset: 0x7E04

• Size: 8 bits

• Value after Reset: 0x00

• Access: Write

Address: 12_0000h base + 7E04h offset = 12_7E04h

HDMI_I2CM_OPERATION field descriptions

Field	Description
7–5 -	This field is reserved. Reserved
4 wr	Write operation request.
3–2 -	This field is reserved. Reserved
1 rd_ext	After writing 1'b1 to rd_ext bit a extended data read operation is started (E- DDC read operation).
0 rd	Read operation request.

33.5.325 I2CM_INT (HDMI_I2CM_INT)

This register contains and configures I2C master done interrupt.

• Address Offset: 0x7E05

• Size: 8 bits

Value after Reset: 0x08Access: Read/Write

Address: 12_0000h base + 7E05h offset = 12_7E05h

HDMI_I2CM_INT field descriptions

Field	Description
7–4 -	This field is reserved. Reserved
3 done_pol	Done interrupt polarity configuration.
2 done_mask	Done interrupt mask signal.
1 done_interrupt	Operation done interrupt bit. Only lasts for 1 SFR clock cycle and is auto cleaned after it. {done_interrupt = (done_mask==0b) && (done_status==done_pol)}.
0 done_status	Operation done status bit. Marks the end of a rd or write operation.

33.5.326 I2CM_CTLINT (HDMI_I2CM_CTLINT)

This register contains and configures I2C master arbitration error and not acknowledge error interrupt.

• Address Offset: 0x7E06

• Size: 8 bits

Value after Reset: 0x88Access: Read/Write

Address: 12_0000h base + 7E06h offset = 12_7E06h

Bit	7	6	5	4
Read Write	nack_pol	nack_mask	nack_interrupt	nack_status
Reset	1	0	0	0
Bit	3	2	1	0
Read Write	arbitration_pol	arbitration_mask	arbitration_interrupt	arbitration_status
Reset	1	0	0	0

HDMI_I2CM_CTLINT field descriptions

Field	Description
7 nack_pol	Not acknowledge error interrupt polarity configuration.
6 nack_mask	Not acknowledge error interrupt mask signal.
5	Not acknowledge error interrupt bit. Only lasts for 1 SFR clock cycle and is auto cleaned after it.
nack_interrupt	{nack_interrupt = (nack_mask==0b) && (nack_status==nack_pol)}.
4 nack_status	Not acknowledge error status bit. Error on I2C not acknowledge.
3 arbitration_pol	Arbitration error interrupt polarity configuration.
2 arbitration_mask	Arbitration error interrupt mask signal.
1 arbitration_ interrupt	Arbitration error interrupt bit. Only lasts for 1 SFR clock cycle and is auto cleaned after it. {arbitration_interrupt = (arbitration_mask==0b) && (arbitration_status==arbitration_pol)}.
0 arbitration_status	Arbitration error status bit. Error on master I2C protocol arbitration.

33.5.327 I2CM_DIV (HDMI_I2CM_DIV)

This register configures the division relation between master and scl clock.

• Address Offset: 0x7E07

• Size: 8 bits

Value after Reset: 0x0BAccess: Read/Write

Address: 12_0000h base + 7E07h offset = 12_7E07h

HDMI_I2CM_DIV field descriptions

Field	Description	
7–4	This field is reserved.	
-	Reserved	
3	Sets the I2C Master to work in Fast Mode or Standard Mode:	
fast_std_mode		
	1 Fast Mode	
	0 Standard Mode	
-	This field is reserved. Reserved	

33.5.328 I2CM_SEGADDR (HDMI_I2CM_SEGADDR)

This register configures the segment address for extended RD/WR destination.

• Address Offset: 0x7E08

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7E08h offset = 12_7E08h

HDMI_I2CM_SEGADDR field descriptions

Field	Description
	This field is reserved. Reserved
SEGADDR	E-DDC Extended read segment address

33.5.329 I2CM_SOFTRSTZ (HDMI_I2CM_SOFTRSTZ)

This register resets the I2C master.

• Address Offset: 0x7E09

• Size: 8 bits

Value after Reset: 0x01Access: Read/Write

Address: 12_0000h base + 7E09h offset = 12_7E09h

HDMI I2CM SOFTRSTZ field descriptions

Field	Description
7–1 -	This field is reserved. Reserved
0 i2c_softrst	I2C Master Software Reset. Active by writing a zero and auto cleared to one in the following cycle. Value after Reset: 1b

33.5.330 I2CM_SEGPTR (HDMI_I2CM_SEGPTR)

This register configures the segment pointer for extended RD/WR request.

• Address Offset: 0x7E0A

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

The following *CNT registers must be set before any I2C bus transaction can take place to ensure proper I/O timing.

Address: 12_0000h base + 7E0Ah offset = 12_7E0Ah

HDMI_I2CM_SEGPTR field descriptions

Field	Description
_	I2CM_SEGPTR is used for EDID reading operations, particularly for the Extended Data Read Operation (See I ² C Master Interface Extended Read Mode ") which is used for Enhanced DDC. This is all described in the VESA Enhanced Display Data Channel Standard v1.1 spec. (addresses A0h/A1h pairs and a segment pointer - 60h).

33.5.331 I2CM_SS_SCL_HCNT_1_ADDR (HDMI_I2CM_SS_SCL_HCNT_1_ADDR)

• Address Offset: 0x7E0B

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7E0Bh offset = 12_7E0Bh

HDMI_I2CM_SS_SCL_HCNT_1_ADDR field descriptions

Field	Description
i2cmp_ss_scl_ hcnt[15:8]	Value after Reset: 8'h00

33.5.332 I2CM_SS_SCL_HCNT_0_ADDR (HDMI_I2CM_SS_SCL_HCNT_0_ADDR)

Address Offset: 0x7E0C

• Size: 8 bits

Value after Reset: 0x6CAccess: Read/Write

Address: 12_0000h base + 7E0Ch offset = 12_7E0Ch

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_I2CM_SS_SCL_HCNT_0_ADDR field descriptions

Field	Description
i2cmp_ss_scl_ hcnt[7:0]	Value after Reset: 8'h6C

33.5.333 I2CM_SS_SCL_LCNT_1_ADDR (HDMI_I2CM_SS_SCL_LCNT_1_ADDR)

• Address Offset: 0x7E0D

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7E0Dh offset = 12_7E0Dh

HDMI_I2CM_SS_SCL_LCNT_1_ADDR field descriptions

Field	Description
i2cmp_ss_scl_ lcnt[15:8]	Value after Reset: 8'h00

33.5.334 I2CM_SS_SCL_LCNT_0_ADDR (HDMI_I2CM_SS_SCL_LCNT_0_ADDR)

Address Offset: 0x7E0E

• Size: 8 bits

Value after Reset: 0x7FAccess: Read/Write

Address: 12_0000h base + 7E0Eh offset = 12_7E0Eh

HDMI_I2CM_SS_SCL_LCNT_0_ADDR field descriptions

Field	Description
i2cmp_ss_scl_ lcnt[7:0]	Value after Reset: 8'h7F

33.5.335 I2CM_FS_SCL_HCNT_1_ADDR (HDMI_I2CM_FS_SCL_HCNT_1_ADDR)

• Address Offset: 0x7E0F

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7E0Fh offset = 12_7E0Fh

HDMI_I2CM_FS_SCL_HCNT_1_ADDR field descriptions

Field	Description
i2cmp_fs_scl_ hcnt[15:8]	Value after Reset: 8'h00

33.5.336 I2CM_FS_SCL_HCNT_0_ADDR (HDMI_I2CM_FS_SCL_HCNT_0_ADDR)

• Address Offset: 0x7E10

• Size: 8 bits

Value after Reset: 0x11Access: Read/Write

Address: 12_0000h base + 7E10h offset = 12_7E10h

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

HDMI_I2CM_FS_SCL_HCNT_0_ADDR field descriptions

Field	Description
i2cmp_fs_scl_ hcnt[7:0]	Value after Reset: 8'h11

33.5.337 I2CM_FS_SCL_LCNT_1_ADDR (HDMI_I2CM_FS_SCL_LCNT_1_ADDR)

• Address Offset: 0x7E11

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12_0000h base + 7E11h offset = 12_7E11h

HDMI_I2CM_FS_SCL_LCNT_1_ADDR field descriptions

Field	Description
i2cmp_fs_scl_ lcnt[15:8]	Value after Reset: 8'h00

33.5.338 I2CM_FS_SCL_LCNT_0_ADDR (HDMI_I2CM_FS_SCL_LCNT_0_ADDR)

Address Offset: 0x7E12

• Size: 8 bits

Value after Reset: 0x24Access: Read/Write

Address: 12_0000h base + 7E12h offset = 12_7E12h

HDMI_I2CM_FS_SCL_LCNT_0_ADDR field descriptions

Field	Description
i2cmp_fs_scl_ lcnt[7:0]	Value after Reset: 8'h24

33.5.339 BASE_POINTER_ADDR (HDMI_BASE_POINTER_ADDR)

The I2C Slave Registers allow register memory pagination, and function in the incremental burst operation mode that increases the data throughput when consecutive addressed registers need to be read or write.

The I2C base pointer operation mode is a aimed to allow register memory pagination. As long as this operational mode is enabled the value written to this register will be used as the seven most significant bits of the internal Special Function Register address interface (sfraddr[14:8]) for all read or write operations. I2C data transfer protocol used shall be the 7-bit addressed as defined in the section 9 of the I2C-bus Specification, version 2.1.

• Address Offset: 0x7F00

• Size: 8 bits

Value after Reset: 0x00Access: Read/Write

Address: 12 0000h base + 7F00h offset = 12 7F00h

HDMI_BASE_POINTER_ADDR field descriptions

Field	Description
7 en_base_ pointer_addr	Enables the base pointer operation mode.
base_pointer_ base_addr[6:0]	Defines the base address for base pointer operation mode. They represent the address bits [14:8]