STAT24410 NOTES

ADEN CHEN

Quarter	Instructor	Last Updated		
2024 Fall	Dan L. Nicolae	Thursday 2 nd January, 2025		

See here for the most recent version of this document.

Contents

1.	Probability	2
2.	Joint Distribution	7
3.	Point Estimates	10
4.	Confidence Intervals	18
5.	The Bootstrap	20
6.	Hypothesis Testing	22
7.	Likelihood Ratio Test	24
8.	Multiple Testing	26
9.	Bayesian Statistic	28
10.	Statistical Decision Theory	32
Apı	pendix A: Common Distributions	36

1. Probability

1.1. The Cumulative Distribution Function.

Proposition 1.1. *Properties of the CDF:*

- Nondecreasing.
- Right continuous.
- $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$.

Definition 1.2. The **generalized inverse distribution function** is defined as

$$F^{-}(x) \coloneqq \inf\{u : x \le F(u)\}.$$

Proposition 1.3. Let F be the CDF of X. If F is continuous and strictly increasing, then $Y := F(X) \sim \text{Uniform}[0, 1]$.

Proof. For any $y \in [0, 1]$,

$$\mathbb{P}(F(X) \le y) = F(F^{-1}(y)) = y.$$

Proposition 1.4. Let $U \sim \text{Uniform}[0,1]$ and F be the CDF of X. Then $F^{-1}(U) \sim F$.

Proof. For any $x \in [0, 1]$,

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x).$$

Remark 1.5. This is useful for simulation.

1.2. **Transformations.** For Y := h(X), if h is one-to-one and differentiable, then

$$f_Y(y) = f_X(h^{-1}(y)) \cdot \left| \frac{\mathrm{d}h^{-1}(y)}{\mathrm{d}y} \right|.$$

1.3. **Expectation.** For an random variable X. We define

$$X^+ = \max\{X, 0\}, \quad X^- = \max\{-X, 0\}.$$

Note that $X \equiv X^+ - X^-$.

Since X^+ is nonnegative, we may define

$$E(X^+) := \int_0^\infty x \, dF(x)$$

in the Riemann–Stieltjes sense, and similarly $E(X^{-})$.

Definition 1.6. X has expected value if at least one of $E(X^+)$ and $E(X^-)$ is finite, and when it does we define

$$E(X) := E(X^+) - E(X^-).$$

Definition 1.7. We say *Y* stochastically dominates $X, Y \succeq X$, if for each *t* we have $\mathbb{P}(X > t) \leq \mathbb{P}(Y > t)$.

Proposition 1.8. *Properties of* E:

- Linearity.
- If

$$\int_{\mathbb{R}} |x| f(x) \, \mathrm{d}x < \infty$$

then

$$E(X) = \int_{\mathbb{R}} x f(x) \, \mathrm{d}x.$$

- If X is stochastically dominated by Y then $E(X) \leq E(Y)$.
- If X and Y are independent, then E(XY) = E(X) E(Y).
- (Hille) E commutes with closed (in particular, continuous) linear operators.

Definition 1.9. The variance of *X* is defined as

$$Var(X) := E[(X - E(X))^2]$$

Proposition 1.10. Properties of Var:

- $Var(X) = E(X^2) (E(X))^2$.
- $Var(cX) = c^2 Var(X)$.
- If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y).

Proposition 1.11. If $X \ge 0$ and there exists an at most countable subset $S = \{x_1, x_2, \dots\}$ of isolated points such that F_X is continuously differentiable on $[0, \infty) \setminus S$, then

$$E(X) = \sum_{x \in S} x \mathbb{P}(X = x) + \int_0^\infty x F_X'(x) \, dx.$$

1.4. Probability Inequalities.

Theorem 1.12 (Markov's Inequality). *If* $X \ge 0$ *and* c > 0, *then*

$$\mathbb{P}(X \ge c) \le \frac{\mathrm{E}(X)}{c}.$$

(Equality is attained when $\mathbb{P}(X = 0 \text{ or } X = c) = 1.$)

Proof. Construct

$$Y \coloneqq c \cdot \mathbb{1}_{\{x \ge c\}}(X).$$

Then $Y \leq X$ and

$$E(Y) = c \cdot \mathbb{P}(X \ge c) \le E(X).$$

Theorem 1.13 (Chebychev's Inequality). If c > 0, then for any μ we have

$$\mathbb{P}(|X - \mu| \ge c) \le \frac{\mathbb{E}[(X - \mu)^2]}{c^2}.$$

Proof. Apply Markov's inequality to $(X - \mu)^2$.

Theorem 1.14 (Chernoff's Inequality). *If* $c \in \mathbb{R}$ *and* t > 0, *then*

$$\mathbb{P}(X \ge c) \le e^{-tc} \, \mathbb{E}(e^{tX}), \quad \mathbb{P}(X \le c) \le e^{tc} \, \mathbb{E}(e^{-tX}).$$

Proof. Apply Markov's inequality to e^{tX} and e^{-tX} .

Theorem 1.15 (Weak Law of Large Numbers). Let X_1, X_2, \ldots be iid with finite expectation μ and variance σ^2 . Then as n goes to infinity, $\overline{X}_n \stackrel{p}{\to} \mu$. That is,

$$\mathbb{P}\left[\left|\overline{X_n}-\mu\right|>\epsilon\right]\longrightarrow 0.$$

Proof. Note that $E(\overline{X_n}) = \mu$ and $Var(\overline{X_n}) = \sigma^2/n$. Chebyshev's gives

$$\mathbb{P}\left(\left|\overline{X_n}-\mu\right|>\epsilon\right)\leq \frac{\sigma^2}{n\cdot\epsilon^2}\longrightarrow 0.$$

Proposition 1.16 (Large Deviations). Let $X_1, X_2, ...$ be iid with finite expectation μ and variance σ^2 . Let $c > \mu$. Then

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(\overline{X_n}>c)=-\sup_t[tc-\kappa(t)],$$

where $\kappa(t) = \log E(e^{tX})$.

We do not yet have the tools to prove that this is the limit, but we can use Chernoff's inequality to obtain an upper bound:

Proof. From Chernoff's inequality, for any t we have

$$\mathbb{P}(\overline{X_n} \geq c) = \mathbb{P}\left(\sum X_i \geq c \cdot n\right) \leq e^{-tnc} \operatorname{E}\left[e^{t(\sum X_i)}\right] = e^{-tnc + n\kappa(t)},$$

where $\kappa(t) = \log E(e^{tX})$. Thus we have

$$\frac{1}{n}\log \mathbb{P}(\overline{X_n} \ge c) \le -\sup_{t} [tc - \kappa(t)].$$

Remark 1.17.

- $E[e^{tX}]$ is the moment generating function.
- $\kappa(t)$ is the cumulant generating function.
- $\sup_{t} [tc \kappa(t)]$ is the **Legendre transform**.

Definition 1.18. A sequence of random variables X_n converges in distribution to $X, X_n \xrightarrow{\mathcal{D}} X$, if their cdfs converge pointwise to the cdf of X. That is, if

$$F_{X_n}(x) \longrightarrow F_X(x), \quad \forall x \in \mathbb{R}.$$

Definition 1.19. The moment generating function of X is

$$M_X: \mathbb{R} \longrightarrow [0, \infty]$$

 $t \longmapsto \mathbb{E}[e^{tX}].$

Proposition 1.20. Properties of the moment generating function:

• $E[X^n] = M_X^{(n)}(0)$ when Fubini grants so.

$$\mathrm{E}\left[e^{tX}\right] = \mathrm{E}\left[\sum_{n=0}^{\infty} \frac{(tX)^n}{n!}\right] = \sum_{n=0}^{\infty} \frac{t^n \, \mathrm{E}(X^n)}{n!}.$$

- $M_{cX}(t) = M_X(ct)$.
- If X and Y are independent, then

$$M_{X+Y}(t) = M_X(t) + M_Y(t).$$

• If X_1, X_2, \ldots are iid, then

$$M_{\sum X_i} = \prod M_{X_i}.$$

• $X_n \xrightarrow{\mathcal{D}} X$ if and only if $M_{X_n} \to M_X$ in a neighborhood of 0.

Theorem 1.21 (Central Limit Theorem). *If* $X_1, X_2, ...$ *are iid,* $E(X_i) = \mu$, and $Var(X_i) = \sigma^2$, then

$$\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2).$$

The following proof works only when we have enough regularity; it is meant to provide a certain intuition (the general proof needs complex analysis):

Proof. We assume $\mu = 0$ and consider the mgf.

$$M_{\sum X_i/\sqrt{n}}(t) = M_{\sum X_i}\left(\frac{t}{\sqrt{n}}\right) = \left[M_{X_i}\left(\frac{t}{\sqrt{n}}\right)\right]^n.$$

We obtain an approximation though Taylor:

$$M_X\left(\frac{t}{\sqrt{n}}\right) \approx M_X(0) + \frac{t}{\sqrt{n}}M_X'(0) + \frac{t^2}{n}M_X''(0)$$

Noting that $M'_X(0) = E[X] = 0$ and $M''_X(0) = E[X^2] = \sigma^2$, we have

$$M_{\sum X_i/\sqrt{n}}(t) \approx \left[1 + \frac{t^2\sigma^2}{n}\right]^n \longrightarrow e^{t^2\sigma^2}.$$

The last term is precisely the mgf of $N(0, \sigma^2)$.

7

2. Joint Distribution

2.1. Random Vectors and Joint Distributions.

Proposition 2.1.

•

$$F(x) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(x) \, dx.$$

• *If F is continuous and differentiable, then X has density*

$$f(X) = \frac{\partial^n F(x)}{\partial x_1 \dots \partial x_n}.$$

• If X_1, X_2, \ldots, X_n are independent, then

$$F_X(x) = F_{X_1}(x_1) \dots F_{X_n}(x_n).$$

• *If F is differentiable, then*

$$f_X(x) = f_{X_1}(x_1) \dots f_{X_n}(x_n),$$

and conversely!

• If $X = (X_1, X_2, ..., X_n)$ has density f_X , then X_I has density

$$f_I(x_I) = \int_{\mathbb{R}^{n-|I|}} f(x_I, x_{S_n \setminus I}) dx_{S_n \setminus I},$$

where $S_n := \{1, 2, ..., n\}$ are all the indices. Think "integrating out" the other variables.

2.2. Transformations.

Definition 2.2. The **Jacobian** of $g: G \to H \subset \mathbb{R}^n$, where G and H are open, is given by

$$Jg(y) := \det \left[\frac{\partial g_i}{\partial y_j} \right].$$

Proposition 2.3. If $X : \Omega \to H \subset \mathbb{R}^n$ and $h : H \to G \subset \mathbb{R}^n$, where H and G are open, are such that h is one-to-one and differentiable and $h^{-1} : G \to H$ is differentiable. Then Y := h(X) has density

$$f_Y(y) = \begin{cases} f_X(h^{-1}(y)) \cdot |Jh^{-1}(y)|, & y \in G \\ 0, & y \notin G. \end{cases}$$

Definition 2.4. The Gamma function is given by

$$\Gamma(\lambda) := \int_0^\infty e^{-x} x^{\lambda - 1} \, \mathrm{d}x.$$

Proposition 2.5. *Properties:*

•
$$\Gamma(1) = 1$$
.

- $\Gamma(1/2) = \sqrt{\pi}$.
- $\Gamma(x+1) = x\Gamma(x)$.
- $\Gamma(n) = (n-1)!$ for any $n \in \mathbb{N}$.

2.3. Conditional distribution. The continuous case:

Definition 2.6. We define the **conditional density** as

$$f_{X|Y}(x|y) := \frac{f_{X,Y}(x,y)}{f_Y(y)},$$

2.4. Covariance and Correlation.

Definition 2.7. The **covariance** of random variables *X* and *Y* is

$$Cov(X,Y) = E((X - \mu_X) \cdot (Y - \mu_Y)).$$

Their correlation is given by

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}.$$

Proposition 2.8. *Properties:*

- $Var(a + bX) = b^2 Var(X)$.
- Cov(a + bX, c + dY) = bd Cov(X, Y).
- Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y).
- If X and Y are independent, then Cov(X,Y) = 0. But the converse is not true. For example, if $Z \sim N(0,1)$, and S and T are random signs (1 or -1), then Cov(SZ,TZ) = 0.

Theorem 2.9.

• If (X,Y) has density f, then X|Y has density

$$\frac{f(x,y)}{f_Y(y)}$$

• If (X, Y) has a pmf, then X|Y is discrete with pmf

$$\frac{p(x,y)}{p_Y(y)}$$
.

Note that E(X|Y = y) is a number, and E(X|Y) is a random variable.

Proposition 2.10.

- (i) If X and Y are independent, then we have $\mathrm{E}(X|Y)=\mathrm{E}(X)$ with probability I.
- (ii) Law of total expectation / Tower law: E[E[X|Y]] = E[X].
- (iii) With probability 1 we have the following:

$$\mathrm{E}[g(X)h(Y)|Y] = h(Y)\,\mathrm{E}(g(X)|Y),\quad \mathrm{E}[X|T(Y)] = \mathrm{E}[\mathrm{E}[X|T(Y)]|Y].$$

(iv) Law of total variations: we have

$$Var(Y) = E[Var(Y|X)] + Var[E(Y|X)],$$

where

$$Var(Y|X) := E(Y^2|X) - (E(Y|X))^2$$
.

2.5. **Rejection Sampling.** If for some constant c we have

$$h(x) \ge c \cdot f(x), \quad \forall x,$$

then we can obtain a sample from distribution with density f using samples from distribution with density h using **rejection sampling**:

- (1) Sample Y from g and U from Uniform(0, 1), with Y and U independent.
- (2) Set X := Y if

$$U \le \frac{c \cdot f(Y)}{h(Y)}$$

and return to (1) otherwise.

Remark 2.11.

- Think sampling on the area under f (as a subset of the area under g).
- Rejection sampling can also be used if

$$f(x) = \frac{g(x)}{N},$$

where N is an unknown constant (e.g., an integral with numerical approximations but no closed form solutions). We need only find h such that

$$h(x) \ge cN \cdot g(x)$$
.

Think

$$h(x) \gg g(x)$$
.

3. Point Estimates

Example 3.1. Modeling lifetime $T: \Omega \to [0, \infty)$.

Definition 3.2.

• The survival function is defined as

$$S: [0, \infty) \longrightarrow [0, 1]$$
$$x \longmapsto \mathbb{P}(T > x) = 1 - F_Y(x).$$

• The failure rate function is defined as

$$h(x) \coloneqq \frac{f(x)}{S(x)}.$$

Remark 3.3.

$$\mathbb{P}(T \leq x + \Delta x | T > x) = \frac{\mathbb{P}[x < T \leq x + \Delta x]}{\mathbb{P}[T > x]} = \frac{F(x + \Delta x) - F(x)}{S(x)} \approx \Delta x \cdot \frac{f(x)}{S(x)} = \Delta x \cdot h(x).$$

Think of an increasing failure rate as "aging."

Given h we can recover f:

$$h(x) = \frac{f(x)}{1 - F(x)} = -\frac{\partial}{\partial x} \log(1 - F(x)).$$

So,

$$\log(1 - F(x)) = -\int_0^x h(t)dt + C.$$

Since F(0) = 0 we know C = 0. We have

$$s(x) = \exp\left(-\int_0^x h\right)$$

and

$$f(x) = h(x) \exp\left(-\int_0^x h\right).$$

Example 3.4.

• If $h(x) = \lambda$ is a constant function, we have $T \sim \text{Exponential}(\lambda)$:

$$f(x) = \lambda \exp\left(-\int_0^x \lambda dt\right) = \lambda \exp(-\lambda x), \quad \forall x > 0.$$

- If $h(x) = \alpha + \beta x$ with $\alpha, \beta > 0$, then *T* follows the Gompertz distribution.
- If $h(x) = \lambda \beta x^{\beta-1}$, then *T* follows the Weibull distribution.

3.1. **Estimating parameters.** We next assume $T_1, T_2, \ldots \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$ and estimate λ .

Remark 3.5. Metrics to evaluate an estimator:

- Bias: $E(\hat{\lambda}) \lambda$.
- Variance: $Var[\hat{\lambda}]$.
- Mean Squared Error: $MSE[\hat{\lambda}] = E[(\hat{\lambda} \lambda)^2] = Bias^2 + Variance$.

Definition 3.6. An estimator $\hat{\theta}_n$ of θ is said to be **consistent** if

$$\hat{\theta}_n \xrightarrow{p} \theta$$
.

That is, if for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}(\left|\hat{\theta}_n - \theta\right| > \epsilon) = 0.$$

3.1.1. Asymptotic Estimation.

Definition 3.7 (Method of Moments). Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ with n parameters. To estimate the parameters, we equate n (usually the first n) theoretical moments to the n corresponding sample moments:

$$E[X^k] = \frac{1}{n} \sum X_i^k, \quad 1 \le k \le n.$$

Example 3.8. Consider $T_n \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$.

- Since $E(\overline{T}_n) = 1/\lambda$, we may use $\hat{\lambda} := 1/\overline{T}_n$ as an estimator for λ .
- Since

$$\mathrm{E}\left[\sum T_i^2/n\right] = \frac{2}{\lambda^2},$$

we may also use

$$\hat{\lambda}_2 = \sqrt{\frac{2n}{\sum T_i^2}}$$

as an estimator.

Example 3.9.

- Consider $X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}[0, \theta]$. We have $E[X] = \theta/2$. $\hat{\theta} := 2\hat{X}$.
- Consider $X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha, \beta)$. We have $E[X] = \alpha/\beta$ and $E[X^2] = \alpha/\beta^2 + (\alpha/\beta)^2$. Thus we solve

$$\frac{\hat{\alpha}}{\hat{\beta}} = \overline{X}, \quad \frac{\hat{\alpha}}{\hat{\beta}^2} + \frac{\hat{\alpha}^2}{\hat{\beta}^2} = \frac{\sum X_i^2}{n}.$$

The following theorems help us characterize these estimators.

Theorem 3.10 (Continuous Mapping Theorem).

- (i) if $X_n \xrightarrow{p} X$ and g is continuous, then $g(X_n) \xrightarrow{p} g(X)$.
- (ii) If $X_n \xrightarrow{\mathcal{D}} X$ and g is continuous, then $g(X_n) \xrightarrow{\mathcal{D}} g(X)$.

Lemma 3.11 (Slutsky). If $X_n \xrightarrow{\mathcal{D}} X$ and $Y_n \xrightarrow{p} c$, where c is a constant, then

$$X_n + Y_n \xrightarrow{\mathcal{D}} X + c$$
, $X_n Y_n \xrightarrow{\mathcal{D}} cX$.

Theorem 3.12 (Delta Method). *If* X_n *is such that*

$$\sqrt{n}(X_n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$$

and g is continuously differentiable, then

$$\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{\mathscr{D}} \mathcal{N}(0, \sigma^2[g'(\theta)]^2).$$

Remark 3.13. Intuition: We can write

$$\sqrt{n}(g(X_n) - g(\theta)) = g'(\tilde{\theta}_n)\sqrt{n}(X_n - \theta), \quad \tilde{\theta}_n \in (x_n, \theta).$$

We know that $g'(\tilde{\theta}_n) \xrightarrow{p} g'(\theta)$ and $\sqrt{n}(X_n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$, so Slutsky's gives the desired result.

We can now characterize estimators obtained from the method of moments:

Proposition 3.14.

- Non-uniqueness: we can obtain multiple estimators.
- Consistency: Law of Large Numbers gives

$$\overline{X} \xrightarrow{p} E[X],$$

and the continuous mapping theorem then gives consistency (under certain conditions).

- Asymptotic normality: the Delta Method gives normality (under certain conditions).
- 3.1.2. *Estimators for Smaller n*. We can obtain the exact distribution of \overline{T}_n . Since

$$T_i \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda) = \text{Gamma}(1, \lambda),$$

we know by the properties of gamma distributions that

$$\sum T_i \sim \text{Gamma}(n, \lambda).$$

Again by properties of gamma distributions, we know that the estimator $\hat{\lambda}_1 := 1/\overline{T}_n$ is biased for small n:

$$E[\hat{\lambda}_1] = n \cdot E\left[\frac{1}{\sum T_i}\right] = \frac{n\lambda}{n-1}.$$

The estimator

$$\hat{\lambda}_3 := \frac{n-1}{n} \hat{\lambda}_1,$$

then, is unbiased and has smaller variance.

Remark 3.15. This is a rare case. Oftentimes, we have instead a tread off between bias and variance.

- 3.2. **Maximum Likelihood Estimator.** The above may be summed up as the following steps:
 - Estimators
 - Evaluations
 - Distribution for estimators (which allows for the construction of probabilistic statements)

Maximum Likelihood estimator accomplishes all the above in a streamlined fashion.

Definition 3.16. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F_{\theta}$, where $\theta \in \mathbb{R}^k$ is a parameter for the distribution. Let $f(x, \theta)^1$ be the density or pmf of F_{θ} . The **Likelihood** of θ given observations X_1, X_2, \ldots, X_n is

$$L(\theta) = L_n(\theta) := \prod_{i=1}^n f(X_i, \theta).$$

The **maximum likelihood estimator** is the value at which L obtains its maximum:

$$\hat{\theta} = \hat{\theta}_n \coloneqq \arg\max_{\theta} L(\theta).$$

Remark 3.17. It is often easier to work with the log likelihood:

$$\ell(\theta) = \ell_n(\theta) := \log L(\theta)$$
.

Remark 3.18.

- Might be non-unique. Consider $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}(\theta, \theta+1)$.
- Might not exist. Consider X_1, X_2, \dots, X_n iid with density

$$f(x, \mu, \sigma^2) = \frac{1}{2} \left[\frac{1}{\sqrt{2\pi}} e^{-x^2/2} + \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \right].$$

Think $X \sim \mathcal{N}(0, 1)$ with probability 1/2 and $X \sim \mathcal{N}(\mu, \sigma^2)$ with probability 1/2. The likelihood function is unbounded:

$$\max_{\mu,\sigma^2} L(\mu,\sigma^2) \ge \max_{\sigma} L(X_1,\sigma^2) \ge \frac{1}{2^n} \left[\frac{1}{\sqrt{2\pi}\sigma} \right] \prod_{k=1}^n e^{-X_1^2/2}.$$

¹Some also write $f_{\theta}(x)$ or $f(x|\theta)$.

3.3. Likelihood Theory.

Definition 3.19. The score function is defined as

$$\dot{\ell}_n(\theta) \coloneqq \frac{\partial}{\partial \theta} \ell_n(\theta) = \sum_{i=1}^n \frac{\frac{\partial f}{\partial \theta}(x_i, \theta)}{f(x_i, \theta)} = \sum_{i=1}^n \frac{f'(x_i, \theta)}{f(x_i, \theta)}.$$

Remark 3.20. We find the MLE by setting the score function to 0.

Proposition 3.21. *If* $f(x, \theta)$ *has common support, that is, if* $\{x : f(x, \theta) > 0\}$ *does not depend on* θ *, then*

$$E_{\theta_0}\left[\frac{L_n(\theta)}{L_n(\theta_0)}\right] = 1.$$

Equivalently,

$$E\left[\exp\left(\ell_n(\theta) - \ell_n(\theta_0)\right)\right] = 1.$$

Proposition 3.22. If the density functions are smooth, then

(a)
$$E_{\theta} \left[\dot{\ell}_n(\theta) \right] = 0.$$

(b)
$$-\mathbf{E}_{\theta} \left[\dot{\ell}_n(\theta) \right] = \mathbf{E} \left[\dot{\ell}_n(\theta)^2 \right].$$

Definition 3.23 (Fisher Information).

$$I(\theta) := \mathbb{E}_{\theta}[\dot{\ell}(\theta)^2] = \mathbb{E}_{\theta}[-\ddot{\ell}(\theta)].$$

That is.

$$I(\theta) := \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log f(X, \theta)\right)^2\right] = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \log f(X, \theta)\right],$$

where the expectation is taken with respect to $X \sim f(x, \theta)$.

Remark 3.24. Intuitively, the more variation there is in the density functions $f(x, \theta)$ as we vary θ , the more information we can get from data. Fisher information measures the variation in density functions by looking at its derivative.

Theorem 3.25 (Cramér–Rao Inequality). Let $T(X_n)$ be any unbiased estimator for $g(\theta)$. Then,

$$\operatorname{Var}[T(X_n)] \ge \frac{[g'(\theta)]^2}{nI(\theta)}.$$

Remark 3.26. The Cramér–Rao lower bound is attained if and only if

$$Corr(\hat{\theta}(X), \dot{\ell}(X)) = 1.$$

By Cauchy-Schwarz inequality, this is equivalent to $\hat{\theta}(X)$ and $\dot{\ell}(X)$ being linearly related random variables. That is,

$$\dot{\ell}(\theta) = \alpha(\theta)\hat{\theta}(X) + \beta(\theta)$$

for functions α and β that do not depend on X.

Proposition 3.27. Under the regularity conditions in the Cramér–Rao inequality, there exists an unbiased estimator $\hat{\theta}(X)$ of θ whose variance attains the Cramér–Rao lower bound if and only if the score can be expressed in the form

$$\dot{\ell}(\theta) = I(\theta) \left\{ \hat{\theta}(X) - \theta \right\},\,$$

or, equivalently, if and only if the function

$$\frac{\dot{\ell}(\theta)}{I(\theta)} + \theta$$

does not depend on θ .

Theorem 3.28 (Fisher). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x|\theta_0)$, with f satisfying certain smoothness conditions. As $n \to \infty$, we have

$$\sqrt{nI(\theta_0)} \cdot (\hat{\theta} - \theta_0) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1)$$

and

$$\sqrt{nI(\hat{\theta})} \cdot (\hat{\theta} - \theta_0) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1)$$

Remark 3.29. One may also think

$$\hat{\theta} \approx \mathcal{N}\left(\theta_0, \frac{1}{nI(\theta_0)}\right).$$

Proposition 3.30. Assumptions:

- Common support.
- Smoothness of densities.
- Distinct densities: if $\theta_1 \neq \theta_2$ then $f(x, \theta_1) \neq f(x, \theta_2)$.

Properties of maximal likelihood estimators under the above assumptions:

- consistency,
- asymptotic normality,
- has known and optimal asymptotic variance (efficiency). That is, it attains the Cramér–Rao bound.
- Invariance in the following sense:

Theorem 3.31. If $\hat{\theta}_n$ is an MLE of θ , then $\hat{\tau}_n := g(\hat{\theta}_n)$ is an MLE of $g(\theta)$.

3.4. Jensen Inequality.

Theorem 3.32. If $f : \mathbb{R} \to \mathbb{R}$ is convex and X is a random variable such that $E[X] < \infty$, then

$$f(E X) \leq E f(X)$$
.

Proof. From the convexity of f we know $f(x) \ge f(y) + f'(y)(x - y)$ for any x and y. Setting $y = \mu =: E X$ gives

$$f(X) \ge f(\mu) + f'(\mu)(X - \mu), \quad \forall x, y.$$

Taking expectation on both sides gives the desired result.

- 3.4.1. Applications of Jensen Inequality.
 - If f is concave, then $f(E X) \ge E f(X)$.
 - The convex function $x \mapsto x^2$ and the concave function $x \mapsto \log x$ give two special cases:

$$(E X)^2 \le E X^2$$
, $\log E X \ge E \log X$.

• If $x_1, x_2, \ldots, x_n > 0$ and $p_i \ge 0$ such that $\sum p_i = 1$, then

$$\prod x_i^{p_i} \leq \sum p_i x_i.$$

Remark 3.33. When $p_i = 1/n$, this result reduces to the geometric mean-arithmetic mean inequality.

Proof. Let *X* be a discrete variable such that $\mathbb{P}(X = x_i) = p_i$. Then

$$\sum p_i \log x_i = E \log X \le \log E X \le \sum p_i x_i.$$

Taking exp on both sides gives the desired result.

• Hölder's inequality: If $X, Y \ge 0$ are random variables and p, q > 0 are such that 1/p + 1/q = 1, then

$$E(XY) \le (EX^p)^{1/p} \cdot (EY^q)^{1/q}$$
.

Proof. If $E X^p = E X^q = 1$, then

$$XY = (X^p)^{1/p} (Y^q)^{1/q} \le \frac{1}{p} X^p + \frac{1}{q} X^q,$$

where the last inequality follows from the previous result. Taking expectation on both sides then gives $E[XY] \le EX^p EY^q$.

For the general case, normalize by setting

$$\tilde{X} \coloneqq \frac{X}{(E X)^{1/p}}, \quad \tilde{Y} \coloneqq \frac{Y}{(E Y)^{1/q}}.$$

• Cauchy Inequality: Taking p = q = 2 in Hölder gives

$$E|XY| \le \sqrt{EX^2}\sqrt{EY^2}$$
.

• The consistency of likelihood.

3.5. Multivariate Normal.

Definition 3.34. The random vector $X = (X_1, X_2, ..., X_k)$ is said to follow a **multivariate normal distribution** if for each $a \in \mathbb{R}^k$, $a^{\mathsf{T}}x$ is normal. We write

•
$$\mu = E X \in \mathbb{R}^k$$
.

•
$$\Sigma = \operatorname{Var}(X) = \operatorname{E}\left[(X - \mu)(X - \mu)^{\mathsf{T}}\right] \in \mathbb{R}^{2k}$$
.

Proposition 3.35.

• If Σ is positive definite, then X has density

$$f(X) = \frac{1}{(2\pi)^{k/2} \det(\Sigma)} \exp\left(-\frac{1}{2}(X - \mu)^{\mathsf{T}} \Sigma^{-1} (X - \mu)\right).$$

- If (X_1, X_2) is bivariate normal and $Cov(X_1, X_2) = 0$, then X_1 and X_2 are independent.
- If $U \sim N_k(\mu, \Sigma)$, $a \in \mathbb{R}^p$, and B is a $p \times k$ matrix, then

$$V = a + BU \sim N_p(a + B\mu, B\Sigma B^{\mathsf{T}}).$$

4. Confidence Intervals

Definition 4.1. Suppose $X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} F_{\theta}$. Confidence intervals (CIs) are probabilistic statements on data of the form

$$\mathbb{P}_{\theta}\left[A(X_1,\ldots,X_n)\leq\theta\leq B(X_1,\ldots,X_n)\right]=\alpha.$$

The interval

$$[A(X_1,\ldots,X_n),B(X_1,\ldots,X_n)]$$

is called a $\alpha \cdot 100\%$ confidence interval.

Remark 4.2. We are typically interested in $\alpha = 0.95$ or $\alpha = 0.99$.

Remark 4.3.

- The probabilistic statement concerns the interval ends, not θ , which is fixed. The interval ends are random variables.
- Interpretation (frequentest): the long run frequency of the CI covering θ is α .

Definition 4.4. The α quantile of $X \sim F$, q_{α} , is such that

$$\mathbb{P}[X \leq q_{\alpha}] = \alpha.$$

Example 4.5. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda) = \text{Gamma}(1, \lambda)$. Then $\sum X_i \sim \text{Gamma}(n, \lambda)$ and $\lambda \sum X_i \sim \text{Gamma}(n, 1)$. Note that the distribution of $\lambda \sum X_i$ does not depend on λ . We then have

$$\left[\frac{q_{0.025}}{\sum X_i}, \frac{q_{0.975}}{\sum X_i}\right],$$

where q refers to the quantile of Gamma(n, 1), is a 95% CI.

Definition 4.6. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F_{\theta}$. The function

$$g(X_1,\ldots,X_n,\theta)$$

is called a **pivot** if its distribution does not depend on θ .

Remark 4.7. One may use the distribution of the pivot $g(X_1, ..., X_n, \theta) \sim F^*$ to build CIs. Let L and U be the $(1 - \alpha)/2$ and $1 - (1 - \alpha)/2$ quantiles for F^* . Then

$$\alpha = \mathbb{P}\left[L \leq g(X_1, \dots, X_n, \theta) \leq U\right] = \mathbb{P}\left[\theta \in S(X_1, \dots, X_n, L, U)\right]$$

for some set S. If S is an interval, it is a CI.

Theorem 4.8. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Let

$$\overline{X_n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right), \quad S^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2.$$

Then

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{S} \sim t_{n-1}, \quad (n-1) \frac{S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

Remark 4.9. Thus $\sqrt{n} \cdot \frac{\overline{X} - \mu}{S}$ is a pivot estimator for μ and $(n-1)\frac{S^2}{\sigma^2}$ is a pivot estimator for σ .

Remark 4.10. We may use the central limit theorem and the above results to obtain approximate CIs for large samples. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ with $E[X] = \mu$ and $Var[X] = \sigma^2$. The central limit theorem gives

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{\sigma} \approx \mathcal{N}(0, 1).$$

Thus

$$\left[\overline{X}-q_{\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{X}+q_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right],$$

where q is the quantiles on $\mathcal{N}(0,1)$ contains μ with probability α . We can approximate σ using S to obtain the following CI:

$$\left[\overline{X} - q_{\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + q_{\alpha/2} \frac{S}{\sqrt{n}}\right].$$

Note that we used two approximations: central limit theorem and using S to approximate σ .

Remark 4.11. For a MLE $\hat{\theta}$, we can use the following two results to construct approximate CIs:

$$\sqrt{n}(\hat{\theta} - \theta) \approx \mathcal{N}\left(0, \frac{1}{I(\theta)}\right), \sqrt{nI(\theta)}(\hat{\theta} - \theta) \approx \mathcal{N}(0, 1).$$

Remark 4.12. The above cases fail, however, if either the distribution of the pivot or the variance of the estimators is unknown.

5. The Bootstrap

Definition 5.1. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$. The **empirical distribution function (edf)**, \hat{F}_n , is the CDF that puts probability 1/n at each X_i .

$$\hat{F}_n(x) := \frac{1}{n} \sum \mathbb{1}_{\{X_i \le x\}}.$$

Remark 5.2. Note that $\mathbb{1}_{\{X_i \le x\}} \sim \text{Bernoulli}(F(x))$. This gives the following properties:

Proposition 5.3.

• $\hat{F}(x)$ is an unbiased estimator for F(x):

$$\mathrm{E}[\hat{F}(x)] = F(x).$$

• $\hat{F}(x)$ has variance:

$$\operatorname{Var}(\hat{F}(x)) = \frac{F(x)(1 - F(x))}{n}.$$

• By the law of large numbers,

$$\hat{F}(x) \xrightarrow{p} F(x)$$
.

Moreover, $\hat{F}_n(x) \to F(x)$ *uniformly. That is:*

Theorem 5.4 (Glivenko-Cantelli). *If* $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$, then as $n \to \infty$ we have

$$\sup_{x} |\hat{F}_n(x) - F(x)| \longrightarrow 0.$$

Remark 5.5. For variable $\theta := T(F)$, we can thus construct estimator $\hat{T} := T(\hat{F})$.

Example 5.6. For $T = \int x \, dF(x)$, θ is the mean. For $T = \int (x - \mu)^2 \, dF(x)$, θ is the variance. For $T = F^{-1}(1/2)$, θ is the median.

Remark 5.7. Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ and $T_n := g(X_1, \ldots, X_n)$. We want to find $\text{Var}(T_n)$. If it is possible to sample from F, then we may repeated the following procedure

- Take repeated samples of size n.
- Calculate T_n for each sample.

to obtain k samples of $T_n, T_{n,1}, \ldots, T_{n,k}$. We may use

$$\frac{1}{k}\sum \left(T_{n,j}-\overline{T}_n\right)^2$$

as an estimator for the variance of T_n , $Var_F(T_n)$.

Remark 5.8. If we cannot directly sample from F, we may use \hat{F} as an approximation. That is, given a sample of size n, we sample repeatedly with replacement k samples also of size n from the given sample, and calculate the statistic of interest for each sample to estimate the distribution of T_n . This procedure is called **bootstrapping**, and each sample is called a **bootstrap sample**.

6. Hypothesis Testing

We want to test whether a set of given data is generated by a certain data generating model.

The idea: we use a certain distance between the ecdf and the theoretical cdf in the density space as a test statistic.

Example 6.1. Given $X_i \stackrel{\text{iid}}{\sim} F$, we want to test if F is the cdf of a normal distribution. Test statistic:

- Kolmogorov–Smirnov: $S := \sup_{x} |F(x) \hat{F}(x)|$.
- Quantiles: e.g., compare $Q_3 Q_1$ with $X_{(|3N/4|)} X_{(|N/4|)}$.
- Shapiro-wilk:

$$W := \frac{\left(\sum a_i x_{(i)}\right)^2}{\sum (x - \overline{x})^2}.$$

6.1. Hypothesis Testing for Parametric Models. Let $X_i \stackrel{\text{iid}}{\sim} F_{\theta}$ with $\theta \in \Omega$. The null hypothesis:

$$H_0: \theta \in \Omega_0 \subset \Omega$$
.

The alternative hypothesis:

$$H_A: \theta \in \Omega_1$$
.

We often have $\Omega_1 = \Omega \setminus \Omega_0$.

Remark 6.2. Note a certain asymmetry: we usually know a lot more about H_0 (the "status quo") than H_1 .

Definition 6.3. Let S be the set of all possible values for $X = (X_1, \ldots, X_n)$. The values for which we do not reject H_0 , S_0 , is called the **acceptance region**. The values for which we reject H_0 , S_1 , is called the **rejection region**. Note that we require $S = S_0 \cup S_1$.

Definition 6.4. T = T(X) is called a **test statistic** if

$$S_1 = \{x : T(x) \in R_1\}$$

for some $R_1 \subset \mathbb{R}$.

Definition 6.5. A **type I error**, or a false positive, is the rejection of the null hypothesis when it is actually true. A **type II error**, or a false negative, is the failure to reject a null hypothesis that is actually false.

Definition 6.6. The function

$$\pi: \Omega \longrightarrow [0,1], \quad \pi(\theta) := \mathbb{P}_{\theta}(x \in S_1)$$

is called the **power function**.

Remark 6.7. Note we can represent type I errors as $\pi(\theta)$ with $\theta \in \Omega_0$; and type II errors as $1 - \pi(\theta)$ with $\theta \in \Omega_1$. Ideally, we want π to be small on Ω_0 and large on Ω_1 . We often find S_1 such that π is low on Ω_0 and hope for the best for Ω_1 .

Definition 6.8. The size of the test is $\sup_{\theta \in \Omega_0} \pi(\theta)$.

Definition 6.9. A test is a **level** α **test** if it has size $\leq \alpha$.

Remark 6.10. For convenience of calculating size, we often want either simple H_0 such that $\theta = \theta_0$, or the power function to be constant on Ω_0 .

Example 6.11. Let $X_i \stackrel{\text{iid}}{\sim} F$ such that $E[X_i] = \mu$ with known variance $Var[X_i] = \sigma^2$. Let

$$H_0: \mu = \mu_0, \quad H_A: \mu > \mu_0.$$

Under H_0 , the CLT gives

$$T(X) := \sqrt{n} \cdot \frac{\overline{X} - \mu_0}{\sigma} \approx \mathcal{N}(0, 1).$$

Then, we may set the rejection region by picking c such that

$$\mathbb{P}_{u}\left(\left\{ T(X)\geq c\right\} \right)=\alpha.$$

Example 6.12. Same set up as above, with

$$H_0: \mu = \mu_0, \quad H_A: \mu \neq \mu_0.$$

We may set

$$S_1 := \{X : |T(X)| > c_2\}$$

to be such that $\mathbb{P}_{\mu}(X \in S_1) \approx \alpha$.

Remark 6.13. If σ is unknown, we may use the fact that under H_0 ,

$$\sqrt{n}\cdot \frac{X-\mu_0}{S}\sim t_{n-1}.$$

6.2. *p*-value.

Definition 6.14. The *p*-value is the smallest level α for which we reject H_0 with the observed data.

Proposition 6.15. *If under* H_0 , $T \sim F$, then $p = \mathbb{P}(T \geq T_{obs})$. *Moreover,* $F(p) \sim \text{Uniform}[0, 1]$.

7. LIKELIHOOD RATIO TEST

Let H_0 and H_1 be simple hypotheses (that is, are of the form $\theta = \theta_i$). We may define the test statistic using the Likelihood ratio

$$LR(X) := \frac{L(\theta_0|X)}{L(\theta_1|X)} = \frac{\prod f(X_i|\theta_0)}{\prod f(X_i|\theta_1)}$$

and the rejection region as

$$S_1 := \{X : LR(X) \le c\}.$$

We know that this test is the most powerful test (with fixed level) with the following result:

Theorem 7.1 (Neyman-Pearson Lemma). With LR and S_1 as above, if the type I and type II errors are α and β , then any other test with α type I error has a type II error larger than β .

More generally, we have the following:

Definition 7.2. For $H_0: \theta \in \Omega_0$ and $H_A: \theta \in \Omega_1$, we can define the **likelihood ratio** as follows:

$$\Lambda(X) \coloneqq \frac{\sup_{\theta \in \Omega_0} L(\theta|X)}{\sup_{\theta \in \Omega} L(\theta|X)}.$$

Theorem 7.3. If $\Omega \subset \mathbb{R}^p$ is open and Ω_0 is obtained by fixing k coordinates of θ and if the assumptions of the MLE hold, then under H_0 we have

$$-2\log\Lambda(X) \xrightarrow{\mathcal{D}} \chi_k^2$$
.

Remark 7.4. More generally,

$$-2\log\Lambda(X) \xrightarrow{\mathcal{D}} \chi^2_{\dim H_A - \dim H_0}.$$

The below proof is meant to provide a certain intuition. It deals only with the case p = k = 1.

Proof. Let p = k = 1 and $H_0: \theta = \theta_0$. Let $\hat{\theta}$ be the MLE. We have

$$\Lambda(X) = \frac{L(\theta_0|X)}{L(\hat{\theta}|X)}$$

and thus

$$-2\log\Lambda(X) = 2(\ell(\hat{\theta}) - \ell(\theta_0)).$$

Taylor gives

$$\ell(\theta_0) \approx \ell(\hat{\theta}) + \dot{\ell}(\hat{\theta})(\theta_0 - \hat{\theta}) + \frac{1}{2} \ddot{\ell}(\hat{\theta})(\theta_0 - \hat{\theta})^2.$$

Under certain regularities we have $\dot{\ell}(\hat{\theta}) = 0$. Thus rearranging gives

$$2\left[\ell(\hat{\theta}) - \ell(\theta_0)\right] = \left[\sqrt{n}\left(\hat{\theta} - \theta_0\right)\right]^2 \left[-\frac{1}{n}\ddot{\ell}(\hat{\theta})\right].$$

We complete the proof by noting that under H_0 , by Fisher's theorem we have $\sqrt{(\hat{\theta} - \theta_0)} \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1/I(\theta_0))$, and by the law of large numbers we have $-1/n \cdot \ddot{\ell}(\hat{\theta}) \xrightarrow{p} I(\theta_0)$.

7.1. **Hypothesis Testing and Confidence Intervals.** Let $X_i \stackrel{\text{iid}}{\sim} F_{\theta}$ and $A(\theta_0)$ be the acceptance region for a test with $H_0: \theta = \theta_0$ at level α . We have that

Proposition 7.5. Let $S(X) = \{\theta_0, X \in A(\theta_0)\}$ be the set of parameters rejected by data X. Then S(X) is a $1 - \alpha$ confidence set.

Proof.

$$P_{\theta}(\theta \in S(X)) = \mathbb{P}_{\theta}(X \in A(\theta)) \ge 1 - \alpha.$$

The converse of the above theorem is also true:

Proposition 7.6. Let S(X) be a $1 - \alpha$ confidence set and define

$$A(\theta_0) \coloneqq \{X : \theta_0 \in S(X)\}.$$

Then $A(\theta_0)$ is the acceptance region of a level α test of H_0 : $\theta = \theta_0$ and H_A : $\theta \neq \theta_0$.

Proof.

$$\mathbb{P}_{\theta_0}(X \notin A(\theta_0)) = \mathbb{P}_{\theta_0} (\theta_0 \notin S(X)) \le \alpha.$$

8. Multiple Testing

	Not rejected	rejected	
H_0 true	U	V	m_0
H_A true	T	S	$m-m_0$
	m-R	R	m

- R is the number of discoveries, V the number of false discoveries.
- We want *U* and *S* to be large, and *V* and *T* to be small.

The error rates can be measured by the following:

- Family-wise error rate (FWER): P[V > 0].
- Per-family error rate (PFER): EV.
- False discovery rate (FDR): E[V/R].

We discuss first the case of controlling FWER:

Proposition 8.1. For m independent tests, to obtain $\mathbb{P}[V] < \alpha$ for some $\alpha > 0$, we may reject when $p < \gamma$ for

$$\gamma \coloneqq 1 - (1 - \alpha)^{1/m}.$$

This is the **Sidak** correction.

Proof. Noting that under H_0 we have $p \sim \text{Uniform}[0, 1]$, we obtain

$$\mathbb{P}[V > 0] = \mathbb{P}[p_{(1)} < \gamma] = 1 - \mathbb{P}[p_{(1)} \ge \gamma] = 1 - (1 - \gamma)^m.$$

For

$$\gamma \coloneqq 1 - (1 - \alpha)^{1/m},$$

we get $1 - (1 - \gamma)^m < \alpha$.

Remark 8.2. Using the approximation $\exp x \approx 1 + x$ for small x, we have

$$1 - (1 - \alpha)^{1/m} \approx 1 - e^{-\alpha/m} \approx 1 - \left(1 - \frac{\alpha}{m}\right) = \frac{\alpha}{m}.$$

Thus we may also set $\gamma := \alpha/m$. This is the **Bonferroni** correction.

To control FDR (and the PFER), we use the following result:

Algorithm 8.3 (Benjamini Hochberg procedure, 1985).

- Sort all p-values in ascending order. $p_{(1)} \leq \cdots \leq p_{(m)}$.
- Find the largest j such that

$$p_{(j)} \le \frac{\alpha j}{m}.$$

• Reject the tests with the j smallest p-values.

Proof. Let $N \subset \{1, 2, ..., m\}$ be the indices of the tests when H_0 is true. Note that $|N| = m_0$. Define

$$\alpha_r := \frac{\alpha r}{m}, \quad \forall r = 1, 2, \dots, m.$$

Note that α_R is the *p*-value threshold. We have

$$E\left[\frac{V}{R}\right] = E\left[\frac{1}{R}\sum_{k\in\mathbb{N}}\mathbb{1}_{\{p_k\leq\alpha_R\}}\right] = \sum_{k\in\mathbb{N}}\sum_{r=1}^m\frac{1}{r}\mathbb{P}\left[p_r\leq\alpha_R,R=r\right].$$

Now, define R_k to be the number of false discoveries when doing the BH producedure at α with the kth p-value p_k replaced by 0. Note that

$$\mathbb{P}\left[p_k \leq \alpha_R, R = r\right] = \mathbb{P}\left[p_k \leq \alpha_r, R_k = r\right] = \mathbb{P}\left[p_k \leq \alpha_r\right] \cdot \mathbb{P}\left[R_k = r\right].$$

We thus have

$$E\left[\frac{V}{R}\right] = \sum_{k \in \mathbb{N}} \sum_{r=1}^{m} \frac{1}{r} \alpha_r \cdot \mathbb{P}[R_k = r]$$
$$= \frac{\alpha}{m} \sum_{k \in \mathbb{N}} \sum_{r=1}^{R} \mathbb{P}[R_k = r]$$
$$= \frac{\alpha m_0}{m} \le \alpha.$$

Note that this is a very conservative estimate if $m_0 \ll m$.

If, on the other hand, we want to find the FDR for the rejection region $[0, \gamma]$, we may note that

$$\frac{V}{R} \approx \frac{m_0 \cdot \gamma}{R}.$$

Thus we need only estimate m_0 . To do so we note that for $\lambda \in [0, 1]$ we have

of p-values
$$> \lambda \approx m_0(1 - \lambda)$$
.

Note however that there is a bias-variance trade-off: for small λ this estimator is more biases, since it might include p-values generated by H_A ; for large λ , on the other hand, fewer tests will have p-values larger than λ , and the estimator has more noise.

9. Bayesian Statistic

Recall Bayes' formula:

$$\mathbb{P}\left[A|B\right] = \frac{\mathbb{P}[B|A]\mathbb{P}[A]}{\mathbb{P}[B]}$$

and its generalization: If H_1, \ldots, H_k is a partition of the sample space Ω and D is an event with $\mathbb{P}[D] > 0$, then

$$P[H_i|D] = \frac{\mathbb{P}[H_i]\mathbb{P}[D|H_i]}{\sum_i \mathbb{P}[H_i]\mathbb{P}[D|H_i]}.$$

We call

- $\mathbb{P}[H_i]$ the **prior**, probabilities
- $\mathbb{P}[D|H_i]$ the **likelihood**,
- $\mathbb{P}[H_i|D]$ the **posterior** probabilities.

In hypothesis testing, we view θ as a random variable. Given a prior $f(\theta)$ and a model for data $f(X|\theta)$, we can then obtain the posterior $f(\theta|X)$ by

$$f(\theta|X) \coloneqq \frac{f(X|\theta)f(\theta)}{f(X)},$$

where f(X) is defined as

$$f(X) := \int f(X|\theta) f(\theta) d\theta$$

so that $f(\theta|X)$ is a valid density function.

9.1. Credible Intervals.

• Equal tailed $1 - \alpha$ credible interval:

$$\left[F_{\theta|X}^{-1}(\alpha/2), F_{\theta|X}^{-1}(1-\alpha/2)\right].$$

• High posterior density interval

$$I = \{\theta : f(\theta|X) \ge c\}$$
 s.t. $\mathbb{P}_{\theta|X}(I) = 1 - \alpha$.

Remark 9.1.

- In credible intervals, θ is the random variable, not the interval ends.
- The high posterior density interval might be the union of several intervals.
- The interval lengths of high posterior density intervals are always no longer than those of the corresponding equal tailed credible intervals.

9.2. **Hypothesis Testing.** We use

$$\frac{\mathbb{P}_{\theta|X}(\theta \in \Omega_0)}{\mathbb{P}_{\theta|X}(\theta \in \Omega_1)}$$

Example 9.2. Let θ be the probability of obtaining heads. Let $X_i \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$ and let $X := \sum X_i$.

• Case 1: Let the prior be $\theta \sim \text{Uniform}[0, 1]$. Then

$$f_{\theta|X} \propto \theta^X (1-\theta)^{n-X}, \quad 0 < \theta < 1$$

and we have

$$f_{\theta|X} \sim \text{Beta}(X + 1, n - X + 1).$$

We have the posterior mean (X + 1)/(n - X + 1), which we may think of this as the frequentest estimator with two extra flips, one heads and one tails.

• Case 2: Let the prior be $\theta \sim \text{Beta}(\alpha, \beta)$. We have

$$f_{\theta|X} \propto \theta^{\alpha+X-1} (1-\theta)^{\beta+n-X-1}$$
.

So

$$f(\theta|X) \sim \text{Beta}(\alpha + X, \beta + n - X).$$

Note that the posterior mean

$$\frac{X+\alpha}{n+\alpha+\beta} = \frac{\alpha}{\alpha+\beta} \frac{\alpha+\beta}{\alpha+\beta+n} + \frac{X}{n} \frac{n}{\alpha+\beta+n}$$

is a convex combination of the prior mean $\alpha/(\alpha + \beta)$ and the data mean X/n, and converges to the data mean as $n \to \infty$.

Remark 9.3. In case two, we have a family of distribution which when updated results in posterior distributions in the same family. Prior distributions like this are called **conjugate priors**.

Example 9.4. Travel to a city; saw a train with number T. Suppose trains are numbered $1 \dots N$. What do we know about N? Frequentist's solution: MoM gives $\overline{N} = 2T - 1$. Bayesian: let's assume the prior distribution

$$\theta(N) \propto 1/N$$
.

Note that this an **improper prior** since it does not have a density. We have then that

$$\Theta(N|T) \xrightarrow{p} \frac{1}{N^2}, \quad N \ge T$$

and

$$\mathbb{P}[N \ge x | T] = \frac{\sum_{n \ge x} \frac{1}{n^2}}{\sum_{n \ge 1} \frac{1}{n^2}} \approx \frac{\int_x^{\infty} \frac{1}{y^2} \, \mathrm{d}y}{\int_1^{\infty} \frac{1}{y^2} \, \mathrm{d}y} = \frac{T}{x}.$$

Remark 9.5.

- $\mathbb{P}[N \ge 2T|T] \approx 1/2$. So the posterior median is $\approx 2T$.
- The posterior mean is ∞ .

Example 9.6 (Exponential Rate). Let $X_i \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$ and let $\lambda \sim \text{Gamma}(\alpha, \beta)$. We have

$$f(\lambda|X) \propto f(\lambda)f(X|\lambda) = \lambda^{\alpha-1}e^{-\lambda\beta} \prod_{i=1}^{n} \lambda e^{-\lambda X_i}$$
$$= \lambda^{\alpha+n-1}e^{-\lambda(\beta+\sum X_i)}.$$

Thus

$$f(\lambda|X) \sim \text{Gamma}\left(n + \alpha, \beta + \sum X_i\right)$$
.

We have the posterior mean

$$\frac{n+\alpha}{\beta+\sum X_i} = \frac{1+\frac{\alpha}{n}}{\overline{X}+\frac{\beta}{n}}$$

Recall that the MLE is \overline{X} .

Example 9.7 (Normal Mean). Let $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with known σ^2 . Let $\mu \sim \mathcal{N}(\mu_0, \nu^2)$. We have then the posterior

$$\mu|X \sim \mathcal{N}\left(\frac{\frac{\mu_0}{\nu^2} + \frac{n\overline{X}}{\sigma^2}}{\frac{1}{\nu^2} + \frac{n}{\sigma^2}}, \frac{1}{\frac{1}{\nu^2} + \frac{n}{\sigma^2}}\right).$$

Note that the posterior is a weighted average of the prior mean and the sample mean. One may think of the weights (n/σ^2) and $1/v^2$ as the information contained in the data.

9.3. **Selecting Prior Distributions.** Most critical (and criticized) part of Bayesian statistics.

For discrete and finite sample space Ω , we may use past experience to determine a prior. When Ω is an interval, we may discretize it and use the above method.

9.3.1. *Conjugate Priors*.

Definition 9.8. A family \mathcal{F} of distributions is said to be **closed under sampling** from a model $f(X|\theta)$ if for each prior $f \in \mathcal{F}$, the posterior $f(\theta|X) \in \mathcal{F}$.

$$\mathcal{F}$$
 $f(X|\theta)$

Beta Bernoulli or Binomial

Gamma Exponential

 \mathcal{N} \mathcal{N} (with fixed variance)

Gamma Poisson

Example 9.9.

9.3.2. Uninformative Priors.

- If Ω is discrete and finite, we may use the uniform prior.
- If Ω is an interval, we may use the uniform prior. Note that the uniform prior is not invariant under reparameterization.
- $\Omega = \mathbb{R}$. Flat (improper) prior.

Definition 9.10. If $X_i \stackrel{\text{iid}}{\sim} f(X|\theta)$ with fisher information $I(\theta)$. The **Jeffreys** prior is defined as

$$\pi_J(\theta) \propto \sqrt{I(\theta)}.$$

Theorem 9.11. The Jeffreys prior is invariant under reparameterization.

10. STATISTICAL DECISION THEORY

We have $X_i \stackrel{\text{iid}}{\sim} f(X|\theta)$ with $\theta \in \Omega$. $\pi(\theta)$ is a prior on θ . We are interested in estimating θ . A "decision" is an estimator $\hat{\theta} = \hat{\theta}(X_i, \dots, X_n)$.

Definition 10.1. A loss function is a function $L: \Omega \times \Omega \to [0, \infty)$.

Example 10.2. Common loss functions:

- Squared error loss: $L(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$.
- Absolute error loss: $\hat{L}(\theta, \hat{\theta}) = |\theta \hat{\theta}|$.
- Zero-one loss: $L(\theta, \hat{\theta}) = \mathbb{1}_{\{\theta \neq \hat{\theta}\}}$.

Definition 10.3. The frequentist risk of $\hat{\theta}$ is

$$R(\theta, \hat{\theta}) := E_{\theta} L(\theta, \hat{\theta}) = \int L(\theta, \hat{\theta}) f(X|\theta) dX.$$

Remark 10.4.

- The risk function does not depend on the data. It is a "pre-data" measure of performance.
- If L is squared loss, then $R(\theta, \hat{\theta}) = MSE(\hat{\theta})$.
- $R(\theta, \hat{\theta})$ is a function of θ which θ to choose to make the comparison?

Example 10.5 (Two estimators with the same risk). Suppose

$$X_1, X_2 \stackrel{\text{iid}}{\sim} \begin{cases} \theta - 1, & \text{with probability } \frac{1}{2}, \\ \theta + 1, & \text{with probability } \frac{1}{2}. \end{cases}$$

Consider the estimators $\hat{\theta}_1 = (X_1 + X_2)/2$ and $\hat{\theta}_2 = X_1 + 1$. Using the zero-one loss function, we have

$$R(\theta, \hat{\theta}_1) = \mathbb{P}_{\theta} [X_1 = X_2] = \frac{1}{2},$$

$$R(\theta, \hat{\theta}_2) = \mathbb{P}_{\theta} [X_1 = \theta + 1] = \frac{1}{2}.$$

We cannot compare $\hat{\theta}_1$ and $\hat{\theta}_2$.

Example 10.6. Suppose $X \sim \mathcal{N}(\theta, 1)$ with $\theta \in \Omega = (0, 10)$. Consider estimators $\hat{\theta}_1 = X$ and $\hat{\theta}_2 = 5$. Using the squared error loss, we have

$$R(\theta, \hat{\theta}_1) = E_{\theta}[(\theta - X)^2] = \text{Var } X = 1,$$

 $R(\theta, \hat{\theta}_2) = E_{\theta}[(\theta - 5)^2] = (5 - \theta)^2.$

Neither estimator is uniformly better.

10.1. Comparing Estimators.

10.1.1. The Frequentist Approach.

Definition 10.7. The **maximum risk** of an estimator $\hat{\theta}$ is

$$\overline{R}(\hat{\theta}) = \max_{\theta} R(\theta, \hat{\theta}).$$

Definition 10.8. A minimax estimator is an estimator $\hat{\theta}$ such that

$$\overline{R}(\hat{\theta}) = \inf_{\tilde{\theta}} \overline{R}(\tilde{\theta}).$$

10.1.2. The Bayes Approach.

Definition 10.9. With π as the prior, the **Bayes risk** is given by

$$r(\hat{\theta}) = \int R(\theta, \hat{\theta}) \pi(\theta) d\theta.$$

Definition 10.10. A **Bayes estimator** (associated with the loss function L and prior π) is an estimator $\hat{\theta}$ such that

$$r(\hat{\theta}) = \min_{\tilde{\theta}} r(\tilde{\theta}).$$

Example 10.11. Let $X \sim \text{Binomial}(n, \theta)$ with prior $\theta \sim \text{Uniform}(0, 1)$ and squared error loss. Consider the estimators

$$\hat{\theta}_1 = \hat{\theta}_{MLE} = X/n, \quad \hat{\theta}_2^{\alpha,\beta} = \frac{\alpha + X}{\alpha + \beta + n} \quad (\alpha, \beta > 0).$$

(Note that $\hat{\theta}_2^{\alpha,\beta}$ is the posterior mean with a Beta (α,β) prior.) We have

$$R(\theta, \hat{\theta}_1) = \mathbb{E}[(\hat{\theta}_1 - \theta)^2] = \text{Var}[\hat{\theta}_1] = \frac{\theta(1 - \theta)}{n}$$

and

$$R(\theta, \hat{\theta}_2^{\alpha, \beta}) = \frac{n\theta(1-\theta) + [\alpha - (\alpha + \beta)\theta]^2}{(\alpha + \beta + n)^2}.$$

Note that

$$R(\theta, \hat{\theta}_2^{\frac{\sqrt{n}}{2}, \frac{\sqrt{n}}{2}}) = \frac{n}{4(n + \sqrt{n})^2}$$

is constant as a function of θ .

• We first compare the maximum risk:

$$\overline{R}(\hat{\theta}_1) = \frac{1}{4n}, \quad \overline{R}(\hat{\theta}_2^{\frac{\sqrt{n}}{2}, \frac{\sqrt{n}}{2}}) = \frac{1}{4n + 8\sqrt{n} + 4}.$$

So $\hat{\theta}_2^{\frac{\sqrt{n}}{2},\frac{\sqrt{n}}{2}}$ is better estimator.

• Next, we compare the Bayes risk:

$$r(\hat{\theta}_1) = \int_0^1 \frac{\theta(1-\theta)}{n} 1 \, d\theta = \frac{1}{6n}$$

and

$$r(\hat{\theta}_2^{\frac{\sqrt{n}}{2},\frac{\sqrt{n}}{2}}) = \frac{n}{4(n+\sqrt{n})^2}.$$

So $\hat{\theta}_1$ is the batter estimator for large n.

Note that $\hat{\theta}_2^{1,1}$ is the Bayes estimator with risk

$$r(\hat{\theta}_2^{1,1}) = \frac{1}{6(n+2)}.$$

Definition 10.12. The **posterior risk** is the risk calculated using the posterior distribution:

$$r(\hat{\theta}|X) = \int L(\theta, \hat{\theta}) f(\theta|X) d\theta.$$

Theorem 10.13. Let $\hat{\theta} = \hat{\theta}(X)$ be the value that minimizes the posterior risk $r(\hat{\theta}|X)$. Then $\hat{\theta}$ is the Bayes estimator.

Proof. Note that

$$\begin{split} r(\hat{\theta}) &= \int R(\theta, \hat{\theta}) \pi(\theta) \; \mathrm{d}\theta \\ &= \int \int L(\theta, \hat{\theta}) f(X|\theta) \; \mathrm{d}x \; \pi(\theta) \; \mathrm{d}\theta \\ &= \int \int L(\theta, \hat{\theta}) f(X|\theta) \pi(\theta) \; \mathrm{d}\theta \; \mathrm{d}x \\ &= \int \int L(\theta, \hat{\theta}) \pi(\theta|X) f(X) \; \mathrm{d}\theta \; \mathrm{d}x \\ &= \int r(\hat{\theta}|X) f(X) \; \mathrm{d}x. \end{split}$$

Theorem 10.14 (Bayes estimators).

- If L is squared error loss, then the Bayes estimator is the posterior mean.
- If L is absolute error loss, then the Bayes estimator is the posterior median.
- *If L is zero-one loss, then the Bayes estimator is the posterior mode.*

We prove only the first statement.

Proof. Note: if X is a random variable with mean μ , then

$$E[(X-c)^{2}] = E[(X-\mu)^{2} + 2(X-\mu)(\mu-c) + (\mu-c)^{2}]$$
$$= Var[X] + (\mu-c)^{2}$$

is minimized at $c = \mu$.

The posterior risk is

$$r(\hat{\theta}|X) = \int (\theta - \hat{\theta})^2 f(\theta|X) d\theta.$$

We think of $X = \theta$ and $c = \hat{\theta}$. Thus $r(\hat{\theta}|X)$ is minimized at $\hat{\theta} = E[\theta|X]$. \Box

APPENDIX A: COMMON DISTRIBUTIONS

Distribution	Support	PMF	Mean	Variance
Binomial (n, p)	$\{0, 1, 2, \ldots, n\}$	$\binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)
Geometric (p)	$\{1,2,3,\dots\}$	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$\{0,1,2,\dots\}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ

Table 1. Key Properties of Discrete Distributions

Distribution	Support	PDF	Mean	Variance
Uniform (a, b)	[a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\mathcal{N}(\mu, \sigma^2)$	$(-\infty,\infty)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Exponential (λ)	$[0,\infty)$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\operatorname{Gamma}(\alpha, \beta)$	$(0,\infty)$	$\frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$	$\frac{lpha}{eta}$	$rac{lpha}{eta^2}$
$\mathrm{Beta}(\alpha,\beta)$	(0, 1)	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Table 2. Key Properties of Continuous Distributions

10.2. Properties of the normal distribution.

Proposition 10.15. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$.

- E[S²] = σ².
 X̄ and S² are independent.
- Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Let

$$\overline{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right), \quad S^2 \coloneqq \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2.$$

Then

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{S} \sim t_{n-1}, \quad (n-1) \frac{S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

10.3. Properties of the exponential distribution.

Proposition 10.16.

(i) The "memoryless" property:

$$\mathbb{P}(T \leq x + y | T > x) = \mathbb{P}(T \leq y).$$

- (ii) Exponential(λ) = Gamma(1, λ).
- 10.4. Properties of the gamma distribution.

Proposition 10.17.

(i) If $X_i \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha_i, \beta)$ for i = 1, 2, ..., N, then

$$\sum X_i \sim \text{Gamma}\left(\sum \alpha_i, \beta\right).$$

(ii) If $X \sim \text{Gamma}(\alpha, \beta)$ and $\alpha > 1$, then

$$E[1/X] = \frac{\beta}{\alpha - 1}.$$

(iii) If $X \sim \text{Gamma}(\alpha, \beta)$, then

$$\beta X \sim \text{Gamma}(\alpha, 1)$$
.

Proof.

(i) Note that

$$\mathrm{E}\left[e^{tX_i}\right] = \left(1 - \frac{t}{\beta}\right)^{-\alpha_i}, \quad \forall t < \beta.$$

We then have

$$M_{\sum X_i}(t) = \prod M_{X_i}(t) = \left(1 - \frac{t}{\beta}\right)^{-\sum \alpha_i}.$$

(ii) We have

$$E[1/X] = \int_0^\infty \frac{1}{x} \cdot \frac{\beta^\alpha}{\Gamma(\alpha)} \cdot x^{\alpha - 1} e^{-\beta x} dx,$$

which we can integrate by reducing to the Γ function.

10.5. Properties of the gamma distribution.

Proposition 10.18.

- Beta(1, 1) = Uniform(0, 1). If $X \sim \text{Beta}(\alpha, \beta)$, then

$$E[X] = \frac{\alpha}{\alpha + \beta}, \quad Var[X] = \frac{\alpha}{\alpha + \beta} \frac{\beta}{\alpha + \beta} \frac{1}{\alpha + \beta + 1}.$$