Line Search (Part II)

WQD7011 Numerical Optimization

Recall previous slides...

- We had learned:
 - Introduction to line search
 - Direction searching using gradient descent method and newton method

Exercises (Discussion)

- 1. What is the role of second derivative function in Gradient Descent method?
- 2. Explain invHess() in Newton.py, in line manner.
- 3. Calculate the time utilized to run both Gradient Descent method and Newton method when start is set to [5, 5].
- 4. What are the initial observations from the both results obtained when start is set to [5, 5]?
- 5. If start is set to [15, 15], rerun both methods. What are the observations now?
- 6. Compare and contrast between Gradient Descent method and Newton method.

Complete the answers and submit to spectrum before next class.

Step Length (Introduction)

- Trade-off in calculating step length, α_k :
 - Choose α_k to give substantial reduction of f
 - Do not want to spend too much time making the choice.
- Ideal step length?
 - Put it into an optimization algorithm, find the global minimizer.

$$\phi(\alpha) = f(x_k + \alpha p_k), \alpha > 0$$

- BUT, too expensive:
 - Too many evaluations of objective function f and gradient ∇f .

Step Length (Introduction)

- More practical way?
 - Perform inexact line search to identify a step length that achieve adequate reductions in f at minimal cost.
- What is Exact Line Search?
 - **Search** through ALL possible α to find global minimizer:

Figure 3.1 The ideal step length is the global minimizer.

Line Search in Finding Step Length

- Bracketing Phase:
 - Finds an interval containing desirable step lengths
- Bisection or Interpolation Phase:
 - Computes a good step length within this interval

Termination Conditions for Line Search Algorithm

■ The simplest method: simple condition of decrement

$$f(x_{k+1}) = f(x_k + \alpha p_k) < f(x_k)$$

- and take multiple iterations to find the minima.
- Backtracking line search algorithm to find the step length.

Backtracking Line Search

- 1. Obtain an α_{init} , then let $\alpha_j = \alpha_{init}$ and initialize j = 0.
- 2. Until $f(x_k + \alpha_j p_k) < f(x_k)$, repeat a) Set $\alpha_{j+1} = \rho \alpha_j$, where ρ is in (0, 1). b) Increase j by 1.
- 3. Set $\alpha = \alpha_i$.

Problem: May converge before reaching minima. Thus, we need a **SUFFICIENT DECREASE** condition.

Backtracking Line Search

Figure 3.2 Insufficient reduction in f.

Problem: May converge before reaching minima. Thus, we need a **SUFFICIENT DECREASE** condition.

Ensure α gives sufficient decrease in f (when finding step length), Armijo condition is required:

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k$$

- Here, c_1 is a positive constant in (0,1).
- Practically, c_1 is a small number, such as 10^{-4} .
- $lacktriangledown f_k$ is a short hand of $f(x_k)$.
- BUT,

Why "+"???

Note: RHS of the equation is a linear function with α as the slope.

Backtracking Line Search with Armijo Condition

- 1. Obtain an α_{init} , then let $\alpha_j = \alpha_{init}$ and initialize j = 0.
- 2. Until $f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k$, repeat
 - a) Set $\alpha_{j+1} = \rho \alpha_j$, where ρ is in (0,1).
 - b) Increase j by 1.
- 3. Set $\alpha = \alpha_i$.

The contraction factor ρ is often allowed to vary at each iteration.

Figure 3.3 Sufficient decrease condition.

Figure 3.3 Sufficient decrease condition.

Curvature Condition

If we DON'T WANT small value of α , curvature condition can be applied:

$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k$$

- where c_2 is a constant in $(c_1, 1)$, typically close to 1 (e.g., 0.9).
- This condition means the gradient at x_{k+1} (if the step with α is taken) must be greater than or equal to c_2 times the initial gradient.
- Note: the gradient near the minima should be "less negative" than the gradient at the further point.

Curvature Condition

Figure 3.4 The curvature condition.

Wolfe Condition

Armijo condition and curvature conditions are known collectively as the Wolfe Conditions:

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k$$
$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k$$

ightharpoonup with $0 < c_1 < c_2 < 1$

Wolfe Condition

Figure 3.5 Step lengths satisfying the Wolfe conditions.

Goldstein Conditions

- Like the Wolfe conditions, the Goldstein Conditions ensure that the step length α achieves sufficient decrease BUT IS NOT TOO SHORT.
- With 0 < c < 0.5:

$$f(x_k) + (1-c)\alpha_k \nabla f_k^T p_k \leq f(x_k + \alpha_k p_k) \leq f(x_k) + c\alpha_k \nabla f_k^T p_k$$

$$Control \qquad \text{Ensure sufficient}$$

$$Step \ \text{Length} \quad \text{Decrease condition}$$

Goldstein Conditions

Figure 3.6 The Goldstein conditions.

Discussion on Group Assignment 1

■ Refer to the assignment instructions in Spectrum.

Practical Exercise

- Using the same objective function and first order derivatives, we will calculate the step length using:
 - Armijo conditions
 - Wolfe conditions

Import libraries

```
import random
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
```

Objective function and first-order derivatives:

```
# the objective function
def func(x):
    return 100*np.square(np.square(x[0])-x[1])+np.square(x[0]-1)

# first order derivatives of the function
def dfunc(x):
    df1 = 400*x[0]*(np.square(x[0])-x[1])+2*(x[0]-1)
    df2 = -200*(np.square(x[0])-x[1])
    return np.array([df1, df2])
```

■ The Armijo function:

```
# the armijo algorithm
def armijo(valf, grad, niters):
    #beta = random.random()
    \#sigma = random.uniform(0, .5)
    beta = 0.25
    sigma = 0.25
    (miter, iter conv) = (0, 0)
    conval = [0,0]
    val = []
    objectf = []
    val.append(valf)
    objectf.append(func(valf))
    while miter <= niters:
        leftf = func(valf+np.power(beta, miter)*grad)
        rightf = func(valf) + sigma*np.power(beta, miter)*dfunc(valf).dot(grad)
        if leftf-rightf <= 0:
            iter conv = miter
            conval = valf+np.power(beta, iter conv)*grad
            break
        miter += 1
        val.append(conval)
        objectf.append(func(conval))
    return conval, func(conval), iter_conv, val, objectf
```

Initialization, Run and Plotting:

```
# initialization
start = np.array([-.3, .1])
direction = np.array([1, -2])
maximum iterations = 30
converge value, minimal, no iter, val, objf = armijo(start, direction, maximum iterations)
print("The value, minimal and number of iterations are " + str(converge value) + \
    ", " + str(minimal) + ", " + str(no_iter))
x = np.array([i[0] for i in val])
y = np.array([i[1] for i in val])
z = np.array(objf)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(x, y, z, label='Armijo Rule')
ax.legend()
plt.savefig('armijo.jpg')
```

Wolfe Conditions

- Use back the same objective functions, derivatives and libraries from the Armijo Condition practical.
- Add in new method for Wolfe Conditions:

```
def wolfe(valf, direction, max iter):
    (alpha, beta, step, c1, c2) = (0, 1000, 5.0, 0.15, 0.3)
    i = 0
    stop iter = 0
    stop val = valf
    minima = 0
    val = []
    objectf = []
    val.append(valf)
    objectf.append(func(valf))
    while i <= max iter:
       # first confition
        leftf = func(valf + step*direction)
        rightf = func(valf) + step* c1*dfunc(valf).dot(direction)
        if leftf > rightf:
            beta = step
            step = .5*(alpha + beta)
            val.append(valf+step*direction)
            objectf.append(leftf)
        elif dfunc(valf + step*direction).dot(direction) < c2*dfunc(valf).dot(direction):</pre>
```

Wolfe Conditions

Continue on Wolfe Conditions:

```
elif dfunc(valf + step*direction).dot(direction) < c2*dfunc(valf).dot(direction):</pre>
        alpha = step
        if beta > 100:
            step = 2*alpha
        else:
            step = .5*(alpha + beta)
        val.append(valf+step*direction)
        objectf.append(leftf)
    else:
        val.append(valf+step*direction)
        objectf.append(leftf)
        break
    i += 1
    stop val = valf + step*direction
    stop iter = i
    minima = func(stop val)
print(val, objectf)
return stop val, minima, stop iter, step, val, objectf
```

Wolfe Conditions

Initializing, run and plotting for Wolfe:

```
start = np.array([.6, .5])
dirn = np.array([-.3, -.4])
converge_value, minimal, no_iter, size, val, objectf = wolfe(start, dirn, 30)
print("The value, minimal and iterations needed are " + str(converge_value) + ", " \
+ str(minimal) + ", " + str(no_iter) + ', ' + str(size))
x = np.array([i[0] for i in val])
y = np.array([i[1] for i in val])
z = np.array(objectf)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(x, y, z, label='Wolfe Rule')
ax.legend()
plt.savefig('wolfe.jpg')
```

Exercises

- 1. Why the "+"?
- 2. Identify ONE technique / method (not in lecture) to perform step length calculation.
- 3. Identify ONE technique / method (not in lecture) to perform direction searching.
- 4. Explain the practical steps in Armijo function using words.
- 5. Explain the practical steps in Wolfe function using words.
- 6. What is your observation for the results generated using Armijo conditions and wolfe conditions? Discuss.