Versuchsbericht zu

E1 - GLEICH- UND WECHSELSTROM

Gruppe 6Mi

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 20.12.2017 betreut von Philipp Eickholt

> > 7. Januar 2018

Inhaltsverzeichnis

4	Schlussfolgerung	3			
3	Ergebnisse und Diskussion 3.1 Beobachtung				
2 Methoden					
1	Kurzfassung	3			

Tabelle 1: Gemessener Innenwiderstand.

Innenwiderstand	Ein Akku	3 Akkus Reihe	3 Akkus Parallel
aus Klemmspannung	$(27,19 \pm 0,47) \Omega$	$(81,24 \pm 1,06) \Omega$	$(9,73 \pm 0,20) \Omega$
aus Leistung	$(29,51 \pm 0,59) \Omega$	$(77,53 \pm 1,55) \Omega$	$(9,79 \pm 0,19) \Omega$

Tabelle 2: Gemessener Innenwiderstand.

Innenwiderstand	Ein Akku	Akku Reihe	Akku Parallel
aus Klemmspannung			
aus Leistung	$(29,51 \pm 0,59) \Omega$	$(25,84 \pm 0,52) \Omega$	$(29,37 \pm 0,57) \Omega$

1 Kurzfassung

2 Methoden

3 Ergebnisse und Diskussion

In Abb. 1 ist die Klemmspannung gegen den Strom, der sich aus I = U/R ergeben hat, aufgetragen. Es wurde ein linearer Fit durchgeführt, da nach der Theorie ein linearer Zusammenhang besteht. Die Steigung der Geraden ist der (negative) Innenwiderstand $R_i = (27.19 \pm 0.47) \Omega$.

Trägt man die Leistung gegen den Außenwiderstand, ist zuerwarten, dass (genau) ein Maximum bei R_iR_a liegt. Abb. 2 stellt dies und einen Fit mit dem "Scaled Levenberg-Marquardt"-Algorithmus, welcher die Methode der kleinsten Quadrate verwendet, dar. Die Funktion des Fits ist:

$$f(x) = a \frac{x}{(x+b)^2} \tag{1}$$

Es ergibt sich ein Parameter b = 29,51 ohne Unsicherheit, desshalb haben wir diese als relative Unsicherheit mit 2% abgeschätzt. Folglich ist $R_i = (29,51 \pm 0,59) \Omega$.

Analog kann man aus Abb. 3 bis 6 die Innenwiderstände für drei parallel, bzw. in Reihe, geschaltete Akkus erhalten. In Tabelle 1 sind die ermittelten Innenwiderstände aufgelistet. Aus diesen Widerständen lässt der Innenwiderstand eines einzelnen Akkus bestimmen. Tabelle 2 zeigt diese.

3.1 Beobachtung

3.2 Diskussion

4 Schlussfolgerung

Abbildung 1: Die gemessene Klemmspannung bei einem Akku ist gegen den Strom aufgetragen.

Abbildung 2: Die gemessene Leistung bei einem Akku ist gegen den Außenwiderstand aufgetragen.

Klemmspannung von drei in Reihe geschalteten Akkus 5- DreiAkkuReihe_Klemmspannung LinearFit1 4 Spannung U in V Dataset: DreiAkkuReihe_Klemmspannung Function: A*x+B Chi^2 = 824,180659163928 $R^2 = 0.877834797293895$ B = 4,38400324992218 +/- 0,0268089156748379 = -81,2412997327461 +/- 1,05568175839715 0 -0,01 Ó 0,01 0,02 0,03 0,04 0,05

Abbildung 3: Die gemessene Klemmspannung bei drei in Reihe geschateten Akkus ist gegen den Strom aufgetragen.

Strom I in A

Abbildung 4: Die gemessene Leistung bei drei in Reie geschalteten Akkus ist gegen den Außenwiderstand aufgetragen.

Abbildung 5: Die gemessene Klemmspannung bei 3 parallelen Akkus ist gegen den Strom aufgetragen.

Abbildung 6: Die gemessene Leistung bei drei parallelen Akkus ist gegen den Außenwiderstand aufgetragen.

Abbildung 7: Die gemessene Spannung ist gegen den Strom aufgetragen.

Abbildung 8: Die gemessene Leistung ist gegen das Produkt aus Strom und Spannung aufgetragen.

Abbildung 9: Die gemessene Spannung ist gegen den Strom aufgetragen.

Abbildung 10: Die gemessene Leistung bei ist gegen das Produkt aus Strom und Spannung aufgetragen.

Abbildung 11: Die gemessene Spannung bei ist gegen den Strom aufgetragen.

Abbildung 12: Die gemessene Leistung bei ist gegen das Produkt aus Strom und Spannung aufgetragen.

Abbildung 13: Die gemessene Spannung bei ist gegen den Strom aufgetragen.

Abbildung 14: Die gemessene Spannung bei ist gegen den Strom aufgetragen.

Abbildung 15: Die gemessene Leistung bei ist gegen das Produkt aus Strom und Spannung aufgetragen.