Relaxations and approximations of chance constraints under finite distributions Shabbir Ahmed, Weijun Xie

Friday Seminar

Li Chen

November 19, 2021

Chance-Constrained Program

Consider a chance-constrained Program (CCP):

$$v^* = \min_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ \boldsymbol{c}^\top \boldsymbol{x} : \mathbb{P}\left[\tilde{\boldsymbol{\xi}} : \boldsymbol{x} \in \mathcal{X}(\tilde{\boldsymbol{\xi}})\right] \ge 1 - \epsilon \right\}$$
 (1)

where the random vector $\tilde{\boldsymbol{\xi}}$ has support set Ξ .

Chance-Constrained Program

Consider a chance-constrained Program (CCP):

$$v^* = \min_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ \boldsymbol{c}^\top \boldsymbol{x} : \mathbb{P}\left[\tilde{\boldsymbol{\xi}} : \boldsymbol{x} \in \mathcal{X}(\tilde{\boldsymbol{\xi}})\right] \ge 1 - \epsilon \right\}$$
 (1)

where the random vector $\tilde{\boldsymbol{\xi}}$ has support set Ξ .

Assumptions

- $lackbox{Finite scenarios: } \mathbb{P}\left[\tilde{\boldsymbol{\xi}}=\boldsymbol{\xi}^i\right]=p_i \text{ for } i\in[N].$
- \triangleright The feasible region in scenario i has the form of

$$\mathcal{X}(oldsymbol{\xi}^i) = \left\{oldsymbol{x}: oldsymbol{A}^i oldsymbol{x} \geq oldsymbol{b}^i
ight\}$$

where $\boldsymbol{\xi}^i \triangleq (\boldsymbol{A}^i, \boldsymbol{b}^i)$.

▶ The sets $\mathcal{X}(\boldsymbol{\xi}^i)$ is non-empty and compact (can be relaxed to sharing the same recession cone)

Challenges

- ► Typically, CCP involves two challenges:
 - ► Check feasibility needs computing probability (not an issue here)
 - ▶ Optimization over non-convex feasible region

^[1] James Luedtke, Shabbir Ahmed, and George L Nemhauser. "An integer programming approach for linear programs with probabilistic constraints". In: Mathematical programming 122.2 (2010), pp. 247–272.

Challenges

- ► Typically, CCP involves two challenges:
 - ► Check feasibility needs computing probability (not an issue here)
 - ▶ Optimization over non-convex feasible region
- ▶ The chance-constrained program (1) is strongly NP-hard. [1]
- ▶ Mixed integer linear programming (MILP) formulation:

$$v^* = \min_{\boldsymbol{x}, \boldsymbol{z}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} : \sum_{i \in [N]}^{\boldsymbol{A}^i \boldsymbol{x}} \geq z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}_i \quad \forall i \in [N] \\ \boldsymbol{p}_i z_i \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \right\}$$
 (2)

^[1] Luedtke, Ahmed, and Nemhauser, "An integer programming approach for linear programs with probabilistic constraints".

Challenges

- ▶ Typically, CCP involves two challenges:
 - ► Check feasibility needs computing probability (not an issue here)
 - ▶ Optimization over non-convex feasible region
- ▶ The chance-constrained program (1) is strongly NP-hard. [1]
- ▶ Mixed integer linear programming (MILP) formulation:

$$v^* = \min_{\boldsymbol{x}, \boldsymbol{z}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} : \sum_{i \in [N]}^{\boldsymbol{A}^i \boldsymbol{x}} \geq z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}_i \quad \forall i \in [N] \\ \boldsymbol{c}^{\top} \boldsymbol{x} : \sum_{i \in [N]}^{p_i z_i} \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \right\}$$
 (2)

➤ The above big-M formulation is difficult to solve as its continuous relaxation is very weak

^[1] Luedtke, Ahmed, and Nemhauser, "An integer programming approach for linear programs with probabilistic constraints".

Solution Approaches

- 1. Improving the MILP relaxation
 - ► Coefficient tightening
 - ▶ Quantile bound
 - ► Nonanticipative relaxations
 - Quantile cut and quantile closure
- 2. Constructing convex approximation
 - CVaR approximation
 - Scenario approximation
 - Bisection heuristic
 - Bicriteria approximation

Coefficient Tightening

Idea: estimate the big-M coefficients and reduce them recursively

 \triangleright Each row of the constraint corresponding to scenario i is

$$\boldsymbol{a}_{\ell}^{i\top}\boldsymbol{x} \ge b_{\ell}^{i}z_{i} - M_{\ell}^{i}(1-z_{i})$$

where the big-M coefficient

$$-M_\ell^i \leq \inf\left\{oldsymbol{a}_\ell^{i op}oldsymbol{x}: (oldsymbol{x}, oldsymbol{z}) \in \mathcal{X}
ight\}$$

and \mathcal{X} is the feasible region in MILP formulation (2).

Coefficient Tightening

Idea: estimate the big-M coefficients and reduce them recursively

 \triangleright Each row of the constraint corresponding to scenario i is

$$\boldsymbol{a}_{\ell}^{i\top}\boldsymbol{x} \ge b_{\ell}^{i}z_{i} - M_{\ell}^{i}(1-z_{i})$$

where the big-M coefficient

$$-M_{\ell}^{i} \leq \inf \left\{ \boldsymbol{a}_{\ell}^{i \top} \boldsymbol{x} : (\boldsymbol{x}, \boldsymbol{z}) \in \mathcal{X} \right\}$$

and \mathcal{X} is the feasible region in MILP formulation (2).

- lackbox Obtaining the optimal value itself is hard \Longrightarrow using the continuous relaxation of $\mathcal X$
- \blacktriangleright Start from very large M^i_ℓ , and replace it by the optimal value of the relaxed problem, and proceed recursively

Quantile Bound

Assume $\mathcal{X}(\boldsymbol{\xi}^i) \subseteq S$ for all $i \in [N]$ where S is compact.

Quantile Bound

Assume $\mathcal{X}(\boldsymbol{\xi}^i) \subseteq S$ for all $i \in [N]$ where S is compact.

For simplicity, assume $p_i=1/N$ for now, then the CCP becomes

$$\min_{\boldsymbol{x}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} : \sum_{i \in [N]} \mathbb{I}(\boldsymbol{x} \in \mathcal{X}(\boldsymbol{\xi}^i)) \geq (1 - \epsilon) N \right\}$$

Let $k := |\epsilon N|$,

Compute

$$\beta^i = \min \left\{ \boldsymbol{c}^\top \boldsymbol{x} : \boldsymbol{x} \in S \cap \mathcal{X}(\boldsymbol{\xi}^i) \right\}$$

- ▶ Sort $\beta^1 \ge \beta^2 \ge \dots \ge \beta^N$
- ► Then we must have

$$v^* \ge \beta^{k+1}$$

because a feasible x must satisfy $\sum_{i \in [N]} \mathbb{I}(x \in \mathcal{X}(\xi^i)) \geq N - k$, which implies $x \in S \cap \mathcal{X}(\xi^i)$ for some $i \in \{1, 2, ..., k+1\}$.

Extend to general distribution p_i

Idea: variable splitting

$$v^* = \min_{\boldsymbol{x}^1, \dots, \boldsymbol{x}^N, \boldsymbol{z}} \left\{ \sum_{i \in [N]} p_i \boldsymbol{c}^\top \boldsymbol{x}^i : \begin{array}{l} \sum_{i \in [N]} \boldsymbol{H}^i \boldsymbol{x}^i = \boldsymbol{h} \\ \boldsymbol{A}^i \boldsymbol{x}^i \ge z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}^i & \forall i \in [N] \\ \sum_{i \in [N]} p_i z_i \ge 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\}$$

where

$$\sum_{i \in [N]} oldsymbol{H}^i oldsymbol{x}^i = oldsymbol{h} \Longleftrightarrow oldsymbol{x}^1 = ... = oldsymbol{x}^N$$

is the system of nonanticipativity constraints.

Idea: variable splitting

$$v^* = \min_{\boldsymbol{x}^1, \dots, \boldsymbol{x}^N, \boldsymbol{z}} \left\{ \sum_{i \in [N]} p_i \boldsymbol{c}^\top \boldsymbol{x}^i : \begin{array}{l} \sum_{i \in [N]} \boldsymbol{H}^i \boldsymbol{x}^i = \boldsymbol{h} \\ \boldsymbol{A}^i \boldsymbol{x}^i \ge z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}^i & \forall i \in [N] \\ \sum_{i \in [N]} p_i z_i \ge 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\}$$

where

$$\sum_{i \in [N]} oldsymbol{H}^i oldsymbol{x}^i = oldsymbol{h} \iff oldsymbol{x}^1 = ... = oldsymbol{x}^N$$

is the system of nonanticipativity constraints.

▶ Lagrangian relaxation: A lower bound of v^* is

$$v_1^{LD} = \sup_{\boldsymbol{\lambda}} \mathcal{L}_1(\boldsymbol{\lambda}) - \boldsymbol{\lambda}^{\top} \boldsymbol{h}$$

where

$$\mathcal{L}_1(\boldsymbol{\lambda}) = \min_{\boldsymbol{x}, \boldsymbol{z}} \left\{ \sum_{i \in [N]} p_i \boldsymbol{c}^\top \boldsymbol{x}^i + \boldsymbol{\lambda}^\top \boldsymbol{H}^i \boldsymbol{x}^i : \begin{array}{l} \boldsymbol{A}^i \boldsymbol{x}^i \geq z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}^i \\ \sum_{i \in [N]} p_i z_i \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\}$$

Apply subgradient to optimize λ .

Note also

$$v^* = \min_{y, \boldsymbol{x}, \boldsymbol{z}} \left\{ \begin{array}{ll} y \geq \boldsymbol{c}^{\top} \boldsymbol{x}^i & \forall i \in [N] \\ \sum_{i \in [N]} \boldsymbol{H}^i \boldsymbol{x}^i = \boldsymbol{h} \\ y : \boldsymbol{A}^i \boldsymbol{x}^i \geq z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}^i & \forall i \in [N] \\ \sum_{i \in [N]} p_i z_i \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\}$$
(3)

Note also

$$v^* = \min_{y, \boldsymbol{x}, \boldsymbol{z}} \left\{ \begin{array}{ll} y \geq \boldsymbol{c}^{\top} \boldsymbol{x}^i & \forall i \in [N] \\ \sum_{i \in [N]} \boldsymbol{H}^i \boldsymbol{x}^i = \boldsymbol{h} \\ y : \boldsymbol{A}^i \boldsymbol{x}^i \geq z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}^i & \forall i \in [N] \\ \sum_{i \in [N]} p_i z_i \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\}$$
(3)

ightharpoonup Lagrangian relaxation: Another lower bound of v^* is

$$v_2^{LD} = \min_{y} \sup_{\boldsymbol{\lambda}} y + \mathcal{L}_2(\boldsymbol{\lambda}) - \boldsymbol{\lambda}^{\top} \boldsymbol{h}$$

where

$$\mathcal{L}_2(oldsymbol{\lambda}) = \min_{oldsymbol{x}, oldsymbol{z}} \left\{ oldsymbol{\lambda}^ op oldsymbol{H}^i oldsymbol{x}^i : egin{array}{c} oldsymbol{y} oldsymbol{z} oldsymbol{c}^ op oldsymbol{x}^i oldsymbol{z} oldsymbol{J}^ op oldsymbol{z} oldsymbol{\lambda} oldsymbol{z} o$$

Bisection on y and apply subgradient to optimize λ .

Relation between The Relaxations

Let \boldsymbol{v}^{M} be the optimal value of LP relaxation of the MILP (2) , then

$$v^M \leq v_1^{LD} \leq v_2^{LD}$$

Relation between The Relaxations

Let v^M be the optimal value of LP relaxation of the MILP (2) , then

$$v^M \leq v_1^{LD} \leq v_2^{LD}$$

Proof.

$$v^{M} = \sup_{\boldsymbol{\lambda}} \min_{y, \boldsymbol{x}^{i}, \boldsymbol{z}} \left\{ y + \boldsymbol{\lambda}^{\top} \boldsymbol{H}^{i} \boldsymbol{x}^{i} : \begin{array}{l} y \geq \sum_{i \in [N]} p_{i} \boldsymbol{c}^{\top} \boldsymbol{x}^{i} \\ \boldsymbol{A}^{i} \boldsymbol{x}^{i} \geq z_{i} \boldsymbol{b}^{i} - (1 - z_{i}) \boldsymbol{M}^{i} \\ \sum_{i \in [N]} p_{i} z_{i} \geq 1 - \epsilon \\ \boldsymbol{z} \in [0, 1]^{N} \end{array} \right\} - \boldsymbol{\lambda}^{\top} \boldsymbol{h}$$

$$v_1^{LD} = \sup_{\boldsymbol{\lambda}} \min_{y, \boldsymbol{x}^i, \boldsymbol{z}} \left\{ y + \boldsymbol{\lambda}^\top \boldsymbol{H}^i \boldsymbol{x}^i : \begin{array}{l} y \geq \sum_{i \in [N]} p_i \boldsymbol{c}^\top \boldsymbol{x}^i \\ \boldsymbol{A}^i \boldsymbol{x}^i \geq z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}^i \\ \sum_{i \in [N]} p_i z_i \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\} - \boldsymbol{\lambda}^\top \boldsymbol{h}$$

Relation between The Relaxations

Let v^M be the optimal value of LP relaxation of the MILP (2) , then

$$v^M \le v_1^{LD} \le v_2^{LD}$$

Proof.

$$v_1^{LD} = \sup_{\boldsymbol{\lambda}} \min_{y, \boldsymbol{x}^i, \boldsymbol{z}} \left\{ y + \boldsymbol{\lambda}^\top \boldsymbol{H}^i \boldsymbol{x}^i : \begin{array}{l} y \geq \sum_{i \in [N]} p_i \boldsymbol{c}^\top \boldsymbol{x}^i \\ \boldsymbol{\lambda}^i \boldsymbol{x}^i \geq z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}^i \\ \sum_{i \in [N]} p_i z_i \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\} - \boldsymbol{\lambda}^\top \boldsymbol{h}$$

$$v_2^{LD} = \min_{\boldsymbol{y}} \sup_{\boldsymbol{\lambda}} \min_{\boldsymbol{x}^i, \boldsymbol{z}} \left\{ \boldsymbol{y} + \boldsymbol{\lambda}^\top \boldsymbol{H}^i \boldsymbol{x}^i : \begin{array}{l} \boldsymbol{y} \geq \max_{i \in [N]} \boldsymbol{c}^\top \boldsymbol{x}^i \\ \boldsymbol{A}^i \boldsymbol{x}^i \geq z_i \boldsymbol{b}^i - (1 - z_i) \boldsymbol{M}^i \\ \sum_{i \in [N]} p_i z_i \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\} - \boldsymbol{\lambda}^\top \boldsymbol{h}$$

Comparison of The Relaxations

$$\mathcal{X}(\pmb{\xi}^i) = \{\pmb{x} \in [0,1]^n : \pmb{A}^i \pmb{x} \leq \pmb{b}^i\}$$

Table 1: Bound comparison for multi-dimensional continuous knapsack instances.

			No big-M Str.			With big-M Str.			v^Q	v^H
Instance	ϵ	N	$v^C(M)$	\mathbf{v}_1^{LD}	v_{2}^{LD}	$v^C(M)$	$\frac{v_1^{LD}}{v_1^{LD}}$	$\frac{\mathbf{v}_{2}^{LD}}{\mathbf{v}_{2}^{LD}}$		
mk-20-10	0.1	100	10.1%	7.3%	1.3%	2.3%	2.3%	1.2%	2.4%	0.4%
		500	10.0%	7.0%	1.4%	2.4%	2.4%	1.2%	2.1%	0.2%
		1000	10.0%	7.3%	1.6%	2.5%	2.5%	1.4%	2.5%	0.3%
		3000	9.8%	7.2%	1.7%	2.6%	2.6%	1.5%	2.5%	0.2%
	0.2	100	14.5%	10.5%	1.3%	3.0%	3.0%	1.1%	2.0%	0.6%
		500	14.7%	10.3%	1.4%	3.0%	2.9%	1.3%	2.1%	0.3%
		1000	14.8%	10.7%	1.7%	3.2%	3.2%	1.5%	2.5%	0.3%
		3000	14.4%	10.5%	1.8%	3.2%	3.2%	1.6%	2.6%	0.1%
mk-39-5	0.1	100	8.0%	7.4%	2.0%	2.0%	2.0%	1.5%	3.2%	0.6%
		500	8.9%	8.3%	2.5%	2.6%	2.5%	2.0%	3.8%	0.3%
		1000	8.8%	8.3%	2.6%	2.6%	2.6%	2.1%	3.9%	0.4%
		3000	8.7%	8.3%	2.9%	2.8%	2.8%	2.3%	4.3%	0.1%
	0.2	100	11.4%	10.7%	2.1%	2.7%	2.7%	1.8%	3.3%	0.4%
		500	12.4%	11.7%	2.6%	3.4%	3.3%	2.2%	3.5%	0.3%
		1000	12.4%	11.7%	2.9%	3.5%	3.4%	2.4%	4.0%	0.2%
		3000	12.1%	11.6%	3.0%	3.5%	3.5%	2.5%	4.2%	0.1%

Comparison of The Relaxations

$$\mathcal{X}(\pmb{\xi}^i) = \{ \pmb{x} \in \{0,1\}^n : \pmb{A}^i \pmb{x} \leq \pmb{b}^i \}$$

Table 4: Bound comparison for multi-dimensional binary knapsack instances

Table 4. Bound Comparison for multi-dimensional binary knapsack instances.									
Instances	ϵ	N	$\underline{\mathbf{v}}^{C}(M)$	\mathbf{z}_{1}^{LP}	z_{2}^{NLP}	v^Q	v^{QG}	v^H	
mk-20-10	0.1	100	3.5%	3.5%	2.3%	1.6%	1.1%	0.0%	
		500	3.8%	3.8%	2.6%	1.8%	1.5%	0.0%	
		1000	3.8%	3.8%	2.7%	2.0%	1.8%	0.0%	
		3000	3.8%	3.8%	2.7%	2.0%	1.7%	0.0%	
	0.2	100	4.8%	4.7%	2.8%	2.3%	2.4%	0.0%	
		500	3.9%	3.9%	2.2%	1.5%	1.6%	0.0%	
		1000	4.4%	4.4%	2.7%	2.2%	2.2%	0.0%	
		3000	4.4%	4.4%	2.7%	2.1%	2.0%	0.0%	
mk-39-5	0.1	100	3.2%	3.2%	2.7%	3.3%	2.2%	0.6%	
		500	≤3.9% [*]	≤3.9%	≤3.3%	≤3.9%	$\leq 3.1\%$	≤0.3%	
		1000	$\leq 4.0\%$	$\leq 4.0\%$	≤3.5%	$\leq 4.1\%$	$\leq 3.4\%$	≤1.6%	
		3000	$\leq 4.0\%$	$\leq 4.0\%$	≤3.5%	$\leq 4.2\%$	≤3.3%	≤2.7%	
	0.2	100	3.9%	3.9%	2.9%	3.4%	3.0%	0.4%	
		500	$\leq 4.2\%$	$\leq 4.2\%$	≤3.0%	$\leq 3.3\%$	≤3.6%	$\leq 1.1\%$	
		1000	$\leq 4.4\%$	\leq 4.3%	≤3.3%	$\leq 3.8\%$	$\leq 4.0\%$	≤2.3%	
		3000	≤4.5%	≤4.5%	≤3.5%	≤4.0%	≤3.8%	≤3.2%	

 $^{^*}$ A " \le " indicates instances for which the optimal value is not known, and the associated number represents an upper bound on the true optimality gap.

Quantile Cut

lacksquare For any $lpha\in\mathbb{R}^n$, let

$$\beta^i_{\boldsymbol{\alpha}}(S) = \min\left\{\boldsymbol{\alpha}^{\top}\boldsymbol{x}: \boldsymbol{x} \in S \cap \mathcal{X}(\boldsymbol{\xi}^i)\right\}$$

▶ Let $\beta_{\alpha}^{q}(S)$ be the $(1 - \epsilon)$ -quantile β_{α}^{i} , then

$$\boldsymbol{\alpha}^{\top} \boldsymbol{x} \geq \beta_{\boldsymbol{\alpha}}^{q}(S)$$

is valid inequality for \mathcal{X} .

- Quantile cuts can be useful in solving the MILP formulation of CCP (2)
- ► More new valid inequalities can be generated from a set of base valid inequalities by mixing techniques

Quantile Closure

Define the quantile closure

$$S^1 = \bigcap_{\boldsymbol{\alpha} \in \mathbb{R}^n} \{ \boldsymbol{x} : \boldsymbol{\alpha}^\top \boldsymbol{x} \ge \beta_q^{\boldsymbol{\alpha}}(S) \}$$

and note $\operatorname{Proj}_x(\mathcal{X}) \subseteq S^1$, hence we can iteratively define

$$S^r = \bigcap_{\boldsymbol{lpha} \in \mathbb{R}^n} \{ \boldsymbol{x} : \boldsymbol{lpha}^{\top} \boldsymbol{x} \geq \beta_q^{\boldsymbol{lpha}}(S^{r-1}) \}, \text{ for } r > 1$$

lacktriangle Assume S is compact, a theoretically interesting result^[2] is

$$\lim_{r \to \infty} d_H(S^r, \operatorname{conv}(\operatorname{Proj}_x(\mathcal{X}))) = 0$$

CVaR Approximation

Idea: convexify the problem

ightharpoonup Note that for any y > 0,

$$\mathbb{P}\left[\tilde{v}>0\right]=\mathbb{E}_{\mathbb{P}}\left[\mathbb{I}(\tilde{v}>0)\right]\leq\mathbb{E}_{\mathbb{P}}\left[(\tilde{v}/y+1)_{+}\right]$$

So

$$\begin{split} & \mathbb{P}\left[\tilde{v} \leq 0\right] \geq 1 - \epsilon \\ \iff & \mathbb{P}\left[\tilde{v} > 0\right] \leq \epsilon \\ \iff & \inf_{y > 0} \mathbb{E}_{\mathbb{P}}\left[(\tilde{v}/y + 1)_{+}\right] \leq \epsilon \\ \iff & \inf_{y > 0} \mathbb{E}_{\mathbb{P}}\left[(\tilde{v} + y)_{+}\right] - y\epsilon \leq 0 \\ \iff & \inf_{y < 0} \frac{1}{\epsilon} \mathbb{E}_{\mathbb{P}}\left[(\tilde{v} - y)_{+}\right] + y \leq 0 \\ \iff & \inf_{y \in \mathbb{R}} \frac{1}{\epsilon} \mathbb{E}_{\mathbb{P}}\left[(\tilde{v} - y)_{+}\right] + y \leq 0 \quad \text{i.e., CVaR}_{1 - \epsilon}(\tilde{v}) \leq 0 \end{split}$$

CVaR Approximation

For joint chance constraints $\mathbb{P}\left[\tilde{A}x\geq \tilde{b}\right]\geq 1-\epsilon$, we have a safe convex approximation

$$\inf_{y \in \mathbb{R}} \frac{1}{\epsilon} \mathbb{E}_{\mathbb{P}} \left[\left(\max_{\ell \in [m]} \{ \tilde{b}_{\ell} - \tilde{\boldsymbol{a}}_{\ell}^{\top} \boldsymbol{x} \} - y \right)_{+} \right] + y \leq 0$$

CVaR Approximation

For joint chance constraints $\mathbb{P}\left[\tilde{A}x\geq \tilde{b}\right]\geq 1-\epsilon$, we have a safe convex approximation

$$\inf_{y \in \mathbb{R}} \frac{1}{\epsilon} \mathbb{E}_{\mathbb{P}} \left[(\max_{\ell \in [m]} \{ \tilde{b}_{\ell} - \tilde{\boldsymbol{a}}_{\ell}^{\top} \boldsymbol{x} \} - y)_{+} \right] + y \leq 0$$

So the CCP has an upper bound

$$\min_{\boldsymbol{x}, y, \theta_1, \dots, \theta_N} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} : \begin{array}{l} y + \frac{1}{\epsilon} \sum_{i \in [N]} p_i \theta_i \leq 0 \\ \boldsymbol{c}^{\top} \boldsymbol{x} : \begin{array}{l} \theta_i \geq 0 \\ \theta_i \geq b_{\ell}^i - \boldsymbol{a}_{\ell}^{i \top} \boldsymbol{x} - y \end{array} & \forall i \in [N] \\ \theta_i \geq b_{\ell}^i - \boldsymbol{a}_{\ell}^{i \top} \boldsymbol{x} - y \end{array} \right\}$$

Example 1

Given a parameter $\kappa > 1$, consider

$$v_{\kappa}^* = \min_{x \geq 0} \left\{ x : \mathbb{P}\left[\tilde{\xi}x \geq 1\right] \geq 1 - \epsilon \right\}$$

where
$$\mathbb{P}\left[\tilde{\xi}=1\right]=\epsilon$$
 and $\mathbb{P}\left[\tilde{\xi}=\kappa\right]=1-\epsilon.$

Example 1

Given a parameter $\kappa > 1$, consider

$$v_{\kappa}^* = \min_{x \geq 0} \left\{ x : \mathbb{P}\left[\tilde{\xi}x \geq 1\right] \geq 1 - \epsilon \right\}$$

where
$$\mathbb{P}\left[\tilde{\xi}=1\right]=\epsilon$$
 and $\mathbb{P}\left[\tilde{\xi}=\kappa\right]=1-\epsilon.$

$$\qquad \qquad \mathbf{v}_{\kappa}^* = 1/\kappa$$

Example 1

Given a parameter $\kappa > 1$, consider

$$v_{\kappa}^* = \min_{x \geq 0} \left\{ x : \mathbb{P}\left[\tilde{\xi}x \geq 1\right] \geq 1 - \epsilon \right\}$$

where
$$\mathbb{P}\left[\tilde{\xi}=1\right]=\epsilon$$
 and $\mathbb{P}\left[\tilde{\xi}=\kappa\right]=1-\epsilon.$

- $v_{\kappa}^* = 1/\kappa$

Example 1

Given a parameter $\kappa > 1$, consider

$$v_{\kappa}^* = \min_{x \geq 0} \left\{ x : \mathbb{P}\left[\tilde{\xi}x \geq 1\right] \geq 1 - \epsilon \right\}$$

where $\mathbb{P}\left[\tilde{\xi}=1\right]=\epsilon$ and $\mathbb{P}\left[\tilde{\xi}=\kappa\right]=1-\epsilon.$

- $v_{\kappa}^* = 1/\kappa$
- $ightharpoonup v_{\kappa}^{CVaR} = 1$
- ► So

$$\lim_{\kappa \to \infty} \frac{v_\kappa^{CVaR}}{v_\kappa^*} = \infty$$

Scenario Approximation

Idea: enforce the constraints in sampled scenarios

ightharpoonup Sample $ar{N}$ i.i.d. samples from (\tilde{A}, \tilde{b}) , and compute

$$v^{SA} = \min_{\boldsymbol{x}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} : \boldsymbol{A}^{k} \boldsymbol{x} \geq \boldsymbol{b}^{k} \ \forall k \in [\bar{N}] \right\}$$

Scenario Approximation

Idea: enforce the constraints in sampled scenarios

lacktriangle Sample $ar{N}$ i.i.d. samples from $(\tilde{m{A}}, \tilde{m{b}})$, and compute

$$v^{SA} = \min_{\boldsymbol{x}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} : \boldsymbol{A}^k \boldsymbol{x} \geq \boldsymbol{b}^k \ \forall k \in [\bar{N}] \right\}$$

▶ It is justified when \bar{N} is large enough, say^[3]

$$\bar{N} \geq \frac{2}{\epsilon} \log \left(\frac{1}{\delta}\right) + \frac{2n}{\epsilon} \log \left(\frac{2}{\epsilon}\right) + 2n,$$

and suppose $v^{SA}<\infty$, then its solution is also feasible to CCP with probability at least $1-\delta$.

Scenario Approximation

Idea: enforce the constraints in sampled scenarios

lacktriangle Sample $ar{N}$ i.i.d. samples from $(\tilde{m{A}}, \tilde{m{b}})$, and compute

$$v^{SA} = \min_{\boldsymbol{x}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} : \boldsymbol{A}^{k} \boldsymbol{x} \geq \boldsymbol{b}^{k} \ \forall k \in [\bar{N}] \right\}$$

▶ It is justified when \bar{N} is large enough, say^[3]

$$\bar{N} \geq \frac{2}{\epsilon} \log \left(\frac{1}{\delta}\right) + \frac{2n}{\epsilon} \log \left(\frac{2}{\epsilon}\right) + 2n,$$

and suppose $v^{SA}<\infty$, then its solution is also feasible to CCP with probability at least $1-\delta$.

▶ However, v^{SA} can be ∞ with high probability even for simple examples.

Example 2

Consider

$$v^* = \min_{x \ge 0} \left\{ x : \mathbb{P}\left[\tilde{\xi}x \ge 1\right] \ge 1 - \epsilon \right\}$$

where $\mathbb{P}\left[\tilde{\xi}=0\right]=\epsilon$ and $\mathbb{P}\left[\tilde{\xi}=1\right]=1-\epsilon.$

Note that

- $v_* = 1$
- ▶ Given confidence parameter δ , let $\bar{N}_{\delta} = \lceil \frac{2}{\epsilon} \log \left(\frac{1}{\delta} \right) + \frac{2}{\epsilon} \log \left(\frac{2}{\epsilon} \right) + 2 \rceil$, then

$$\mathbb{P}\left[v_{\delta}^{SA} = \infty\right] \geq 1 - \delta^2 \epsilon^2$$

because the SA problem

$$\min_{x \ge 0} \left\{ x : \xi^i x \ge 1, \forall i \in [\bar{N}_\delta] \right\}$$

is infeasible whenever there is some $\xi^i=0$, which happens with probability at least $1-(1-\epsilon)^{\bar{N}_\delta}\geq 1-\delta^2\epsilon^2$.

Bisection Heuristic

Idea: minimize the expected constraint violation with fixed budget, then bisection to optimize the budget parameter

The bisection heuristic works as follows:

► Fix v and solve

$$\min_{\boldsymbol{x},\boldsymbol{s}} \left\{ \sum_{i \in [N]} p_i s_i : \begin{array}{ll} s_i \boldsymbol{e} \geq \boldsymbol{b}^i - \boldsymbol{A}^i \boldsymbol{x} & \forall i \in [N] \\ \sum_{i \in [N]} p_i s_i : s_i \geq 0 & \forall i \in [N] \\ \boldsymbol{c}^\top \boldsymbol{x} \leq v \end{array} \right\}$$

▶ Check whether $\sum_{i \in [N]} p_i \mathbb{I}(s_i = 0) \ge 1 - \epsilon$, then decrease v if yes, otherwise increase v.

Example 3

Let $\epsilon = 1 - 1/N$, consider

$$v^* = \min_{\boldsymbol{x} \in \mathbb{R}_+^2} \left\{ \frac{1}{1 - \epsilon} x_1 + x_2 : \mathbb{P}\left[\tilde{\boldsymbol{\xi}}^\top \boldsymbol{x} \ge 1\right] \ge 1 - \epsilon \right\}$$

where
$$\mathbb{P}\left[\tilde{\xi}=(1,0)\right]=\epsilon$$
 and $\mathbb{P}\left[\tilde{\xi}=(1,1)\right]=1-\epsilon$.

Then $v^* = 1$ and optimal $\boldsymbol{x} = (0, 1)$.

Example 3

Let $\epsilon = 1 - 1/N$, consider

$$v^* = \min_{\boldsymbol{x} \in \mathbb{R}_+^2} \left\{ \frac{1}{1 - \epsilon} x_1 + x_2 : \mathbb{P}\left[\tilde{\boldsymbol{\xi}}^\top \boldsymbol{x} \ge 1\right] \ge 1 - \epsilon \right\}$$

where
$$\mathbb{P}\left[\tilde{\xi}=(1,0)\right]=\epsilon$$
 and $\mathbb{P}\left[\tilde{\xi}=(1,1)\right]=1-\epsilon.$

Then $v^* = 1$ and optimal $\boldsymbol{x} = (0, 1)$.

However, start from $u>\frac{1}{1-\epsilon}$ an L=0, for any $v\in[1,\frac{1}{1-\epsilon})$, the bisection subproblem

$$\min_{\boldsymbol{x} \in \mathbb{R}_+^2, \boldsymbol{s} \in \mathbb{R}_+^N} \left\{ \frac{1}{N} \sum_{i \in [N]} s_i : \begin{array}{ll} s_i \geq 1 - x_1 & \forall i \in [\epsilon N] \\ s_i \geq 1 - x_1 - x_2 & \forall i \in [N] \backslash [\epsilon N] \end{array} \right\}$$

has optimal solution $\boldsymbol{x}=((1-\epsilon)v,0)$ and $s_i=1-(1-\epsilon)v>0$, so that $v^H\geq \frac{1}{1-\epsilon}=N$.

Bicriteria Approximation

Definition 1

Given a violation ratio $\sigma \geq 1$ and an approximation ratio $\gamma \geq 1$, a (σ, γ) -bicriteria approximation algorithm for CCP returns a solution $(x, z) \in \mathbb{R}^n \times \{0, 1\}^N$ such that

$$A^{i}x \ge b^{i}z_{i} - (1 - z_{i})M_{i}, \forall i \in [N]$$
$$\sum_{i \in [N]} p_{i}z_{i} \ge 1 - \sigma\epsilon, \quad c^{\top}x \le \frac{\gamma}{\gamma}v^{*}$$

An inapproximability result is

Theorem 1

Suppose we have a polynomial time algorithm that returns a (σ,γ) approximate solution to the CCP with $p_i=1/N$. Then, unless P=N P, the following holds:

- 1. If $\gamma=1$, then we must have $\sigma=1/\epsilon-f(N)(1-\epsilon)/\epsilon$ for some function f such that $f(N)\to 0$ as $N\to \infty$
- 2. If $\sigma=1$, then we must have $\gamma=g(N)$ for some function g such that $g(N)\to\infty$ as $N\to\infty$.

Relax-and-Scale Algorithm

For simplicity, consider a special CCP where the big-M reduce to zero,

$$v^* = \min_{\boldsymbol{x} \in \mathbb{R}^n_+, \boldsymbol{z}} \left\{ \boldsymbol{c}^\top \boldsymbol{x} : \begin{array}{l} \boldsymbol{A}^i \boldsymbol{x} \geq z_i \boldsymbol{b}^i \\ \boldsymbol{c}^\top \boldsymbol{x} : \begin{array}{l} \sum_{i \in [N]} p_i z_i \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\}$$
 (Covering CCP)

where $A^i \in \mathbb{R}_+^{m imes n}, b^i \in \mathbb{R}_+^m, c \in \mathbb{R}_+^n$.

Relax-and-Scale Algorithm

For simplicity, consider a special CCP where the big-M reduce to zero,

$$v^* = \min_{\boldsymbol{x} \in \mathbb{R}^n_+, \boldsymbol{z}} \left\{ \boldsymbol{c}^\top \boldsymbol{x} : \begin{array}{l} \boldsymbol{A}^i \boldsymbol{x} \geq z_i \boldsymbol{b}^i \\ \boldsymbol{c}^\top \boldsymbol{x} : \begin{array}{l} \sum_{i \in [N]} p_i z_i \geq 1 - \epsilon \\ \boldsymbol{z} \in \{0, 1\}^N \end{array} \right\}$$
 (Covering CCP)

where $A^i \in \mathbb{R}_+^{m \times n}, b^i \in \mathbb{R}_+^m, c \in \mathbb{R}_+^n$.

```
Algorithm 2: Relax-and-Scale (\sigma, \gamma)
```

Input: paramter $\sigma \ge 1$, $\gamma \ge 1$

Initialization Set L=1, $U=\gamma$, and stopping tolerance $\delta>0$;

Solve LP relaxation of CCP and denote its optimal solution (x,z)

while $U-L>\delta$ do

Set
$$\tau = (L+U)/2$$
;

Set $x \leftarrow \tau x$, $z \leftarrow \min\{\lfloor \tau z, e \rfloor$;

Check whether $\sum_{i \in [N]} p_i z_i \ge 1 - \sigma \epsilon$, then set $U \leftarrow \tau$ if yes,

otherwise set $L \leftarrow \tau$;

end

Output: $\bar{x} \leftarrow Ux$

Bicriteria Analysis

Theorem 2

Assume $p_i = 1/N$, suppose we choose

$$\sigma \in [1, 1/\epsilon), \quad \gamma = \frac{1 + \lfloor \sigma \epsilon N \rfloor}{1 + \lfloor \sigma \epsilon N \rfloor - \epsilon N},$$

then the Relax-and-Scale algorithm returns a (σ, γ) -bicriteria approximate solution. Furthermore, $\gamma \leq \frac{\sigma}{\sigma-1}$.

Bicriteria Analysis

Theorem 2

Assume $p_i = 1/N$, suppose we choose

$$\sigma \in [1, 1/\epsilon), \quad \gamma = \frac{1 + \lfloor \sigma \epsilon N \rfloor}{1 + \lfloor \sigma \epsilon N \rfloor - \epsilon N},$$

then the Relax-and-Scale algorithm returns a (σ, γ) -bicriteria approximate solution. Furthermore, $\gamma \leq \frac{\sigma}{\sigma-1}$.

The bound could be conservative when $\sigma \to 1$ in practice. Solve a CCP

$$v^* = \min_{\boldsymbol{x} \in \mathbb{R}^{50}_+, \boldsymbol{z} \in \{0,1\}^{100}} \left\{ \boldsymbol{c}^\top \boldsymbol{x} : \boldsymbol{\xi}^{i\top} \boldsymbol{x} \ge z_i, \forall i \in [100], \sum_{i \in [100]} z_i / 100 \ge (1 - \epsilon) \right\}$$

where ξ^i are i.i.d. uniformly sampled between 0.8 to 1.2 and $\epsilon \in \{0.05, 0.10\}.$

Numerical Illustration

Theoretical ratio: $\sigma/(\sigma-1)$

Suggest choosing $\sigma \in (1, 2]$.

Summary

- ► CCP is a challenging optimization model which motivates many useful approximation techniques
- ► CCP is ill-posed in some sense, be aware of its distributionally robust counterparts and other alternatives such as risk or robust constraints^[4]
- ➤ Combine different approximation techniques can be useful, e.g., bisection + CVaR approximation^[5]
- ➤ Solution techniques from CCP can be useful for solving other problems such as cardinality constrained problems^[6]

^[4] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Princeton university press, 2009.

^[5] Jiang Nan and Xie Weijun. "ALSO-X and ALSO-X+: Better Convex Approximations for Chance Constrained Programs.". In: Operations Research (2021).

^[6] Weijun Xie and Xinwei Deng. "Scalable algorithms for the sparse ridge regression". In: SIAM Journal on Optimization 30.4 (2020), pp. 3359–3386.