(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 August 2002 (15.08.2002)

PCT

(10) International Publication Number WO 02/062973 A2

(51) International Patent Classification7:

C12N 9/00

- (21) International Application Number: PCT/DK02/00084
- (22) International Filing Date: 7 February 2002 (07.02.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data:
 PA 2001 00195 7 February 2001 (07.02.2001) DK
- (71) Applicant (for all designated States except US): NOVOZYMES A/S [DK/DK]; Krogshøjvej 36, DK-2880 Bagsværd (DK).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MUNK, Signe [DK/DK]; Peder Skrams Gade 27, 3.th, DK-1054 København K (DK). VIND, Jesper [DK/DK]; Hejrebakken 20, DK-3500 Værløse (DK). BORCH, Kim [DK/DK]; Vandtårnsvej 18, DK-3460 Birkerød (DK). PATKAR, Shamkant, Anant [DK/DK]; Christoffers Allé 91, DK-2800 Lyngby (DK). GLAD, Sanne, O. Schrøder [DK/DK]; Viggo Barfoeds Allé 59, DK-2750 Ballerup (DK). SVENDSEN, Allan [DK/DK]; Overdamsvej 13, DK-2970 Hørsholm (DK).

- (74) Common Representative: NOVOZYMES A/S, Patents, Krogshøjvej 36, DK-2880 Bagsværd (DK).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

52973

(54) Title: LIPASE VARIANTS

(57) Abstract: Attaching a peptide extension to the C-terminal amino acid of a lipase re-duces the tendency to form odor. This may lead to lipase variants with a reduced odor generation when washing textile soiled with fat which includes relatively short-chain fatty acyl groups (e.g. up to C8) such as dairy stains containing butter fat or tropical oils such as ecocout oil or palm kernel oil.

WO 02/062973

LIPASE VARIANTS

FIELD OF THE INVENTION

The present invention relates to lipase variants with reduced potential for odor generation and to a method of preparing them. It particularly relates to variants suited for use in detergent compositions, more particularly variants of the *Thermomyces lanuginosus* lipase showing a first-wash effect and a reduced tendency to form odors when washing cloth soiled with milk fat.

BACKGROUND OF THE INVENTION

Lipases are useful, e.g., as detergent enzymes to remove lipid or fatty stains from clothes and other textiles, as additives to dough for bread and other baked products. Thus, a lipase derived from *Thermomyces lanuginosus* (synonym *Humicola lanuginosa*, EP 258 068 and EP 305 216) is sold for detergent use under the tradename Lipolase (product of Novo Nordisk A/S). WO 0060063 describes variants of the *T. lanuginosus* lipase with a particularly good first-wash performance in a detergent solution. WO 9704079, WO 9707202 and WO 15 0032758 also disclose variants of the *T. lanuginosus* lipase.

In some applications, it is of interest to minimize the formation of odor-generating short-chain fatty acids. Thus, it is known that laundry detergents with lipases may sometimes leave residual odors attached to cloth soiled with milk (EP 430315).

SUMMARY OF THE INVENTION

The inventors have found that attaching a peptide extension to the C-terminal amino acid of a lipase may reduce the tendency to form odor. This may lead to lipase variants with a reduced odor generation when washing textile soiled with fat which includes relatively short-chain fatty acyl groups (e.g. up to C₈) such as dairy stains containing butter fat or tropical oils such as coconut oil or palm kernel oil. The variants may have an increased specificity for long-chain acyl groups over the short-chain acyl and/or an increased activity ratio at alkaline pH to neutral pH, i.e. a relatively low lipase activity at the neutral pH (around pH 7) during rinsing compared to the lipase activity at alkaline pH (e.g. pH 9 or 10) similar to the pH in a detergent solution.

Accordingly, the invention provides a method of producing a lipase by attaching a peptide extension to the C-terminal of a parent lipase and screening resulting polypeptides for lipases with any of the above improved properties.

The invention also provides a polypeptide having lipase activity and having an amino acid sequence which comprises a parent polypeptide with lipase activity and a peptide extension attached to the C-terminal of the parent polypeptide.

15

20

UAMH (University of Alberta Mold Herbarium & Culture Collection), Devonian Botanic Garden, Edmonton, Alberta, Canada T6G 3GI.

Alternatively, the parent lipase may be a variant obtained by altering the amino acid sequence of any of the above lipases, particularly a variant having first-wash activity as described in WO 0060063 or as described below.

Peptide extension at C-terminal

The invention provides attachment of a peptide addition by a peptide bond to the C-terminal amino acid of a parent lipase (e.g. to L269 of the *T.* lanuginosus lipase shown as SEQ ID NO: 2). The peptide extension may be attached by site-directed or random mutagenesis.

The peptide extension at the C-terminal may consist of 2-15 amino acid residues, particularly 2-11 or 3-10, e.g. 2, 3, 4, 5, 7, 9 or 11 residues.

The extension may particularly have the following residues at the positions indicated (counting from the original C-terminal):

- a negative amino acid residue (e.g. D or E) at the first position,
- a small, electrically uncharged amino acid (e.g. S, T, V or L) at the 2nd and/or the 3nd position, and/or
- a positive amino acid residue (e.g. H or K) at the 3rd-7th position, particularly the 4th, 5th or 6th.

The peptide extension may be HTPSSGRGGHR or a truncated form thereof, e.g. HTPSSGRGG, HTPSSGR, HTPSS OR HTP. Other examples are KV, EST, LVY, RHT, SVF, SVT, TAD, TPA, AGVF and PGLPFKRV.

The peptide extension may be attached by mutagenesis using a vector (a plasmid) encoding the parent polypeptide and an oligonucleotide having a stop codon corresponding to an extension of 2-15 amino acids from the C-terminal. The nucleotides between the C-terminal and the stop codon may be random or may be biased to favor the amino acids described above. One way of doing this would be to design a DNA oligo, which contains the desired random mutations as well has the sequence necessary to hybridize to the 3'end of the gene of interest. This DNA oligo is used in a PCR reaction along with an oligo with the capability of hybridizing to the opposite DNA strand (as known to a person skilled in the art). The PCR fragment is then cloned into the desired context (expression vector).

Increased long-chain/short-chain specificity

The lipase of the invention may have an increased long-chain/short-chain specificity compared to the parent enzyme, e.g. an increased ratio of activity on long-chain (e.g. C₁₆-35 C₂₀) triglycerides to the activity on short-chain (e.g. C₄-C₆) triglycerides. This may be deter-

Also, the lipase may have a negative or neutral net electric charge in the region 90-101 (particularly 94-101), i.e. the number of negative amino acids may be equal to or greater than the number of positive amino acids. Thus, the region may be unchanged from Lipolase, having two negative amino acids (D96 and E99) and one positive (K98), and having a neutral amino acid at position 94 (N94), or the region may be modified by one or more substitutions.

Alternatively, two of the three amino acids N94, N96 and E99 may have a negative or unchanged electric charge. Thus, all three amino acids may be unchanged or may be changed by a conservative or negative substitution, i.e. N94(neutral or negative), D(negative) and E99(negative). Examples are N94D/E and D96E.

Further, one of the three amino acids N94, N96 and E99 may be substituted so as to increase the electric charge, i.e. N94(positive), D96(neutral or positive) or E99 (neutral or positive). Examples are N94K/R, D96I/L/N/S/W or E99N/Q/K/R/H.

The parent lipase may comprise a substitution corresponding to E99K combined with a negative amino acid in the region corresponding to 90-101, e.g. D96D/E.

The substitution of a neutral with a negative amino acid (N94D/E), may improve the performance in an anionic detergent. The substitution of a neutral amino acid with a positive amino acid (N94K/R) may provide a variant lipase with good performance both in an anionic detergent and in an anionic/non-ionic detergent (a detergent with e.g. 40-70 % anionic out of total surfactant).

20 Amino acids at other positions

The parent lipase may optionally comprise substitution of other amino acids, particularly less than 10 or less than 5 such substitutions. Examples are substitutions corresponding to Q249R/K/H, R209P/S and G91A in SEQ ID NO: 2. Further substitutions may, e.g., be made according to principles known in the art, e.g. substitutions described in WO 92/05249, WO 94/25577, WO 95/22615, WO 97/04079 and WO 97/07202.

Parent lipase variants

The parent lipase may comprise substitutions corresponding to G91G/A +E99E/D/R/K +T231T/S/R/K +N233N/Q/R/K +Q249Q/N/R/K in SEQ ID NO: 2. Some particular examples are variants with substitutions corresponding to the following.

30

10

T231R+ N233R	
D96L+ T231R+ N233R	
G91A+ E99K+ T231R+ N233R+ Q249R	
R209P +T231R +N233R	
E87K +G91D +D96L +G225P +T231R +N233R +Q249R +N251D	
G91A +E99K +T189G +T231R +N233R +Q249R	

nal of Molecular Biology, 48, 443-45), using GAP with the following settings for polypeptide sequence comparison: GAP creation penalty of 3.0 and GAP extension penalty of 0.1.

Amino acid sequence alignment

In this specification, amino acid residues are identified by reference to SEQ ID NO: 2. To find corresponding positions in another lipase sequence, the sequence is aligned to SEQ ID NO: 2 by using the GAP alignment. GAP is provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-45). The following settings are used for polypeptide sequence comparison: GAP creation penalty of 3.0 and GAP extension penalty of 0.1.

DNA sequence, Expression vector, Host cell, Production of lipase

The invention provides a DNA sequence encoding the lipase of the invention, an expression vector harboring the DNA sequence, and a transformed host cell containing the DNA sequence or the expression vector. These may be obtained by methods known in the art.

The invention also provides a method of producing the lipase by culturing the transformed host cell under conditions conducive for the production of the lipase and recovering the lipase from the resulting broth. The method may be practiced according to principles known in the art.

Lipase activity

Lipase activity on tributyrin at neutral and alkaline pH (LU7 and LU9)

A substrate for lipase is prepared by emulsifying tributyrin (glycerin tributyrate) using gum Arabic as emulsifier. The hydrolysis of tributyrin at 30 °C at pH 7 or 9 is followed in a pH-stat titration experiment. One unit of lipase activity (1 LU7 or 1 LU9) equals the amount of enzyme capable of releasing 1 µmol butyric acid/min at pH 7 or 9. LU7 is also referred to as LU.

The relative lipase activity at neutral and alkaline pH may be expressed as LU9/LU7. This ratio may be at least 2.0.

30 Lipase activity on triolein (SLU)

The lipase activity is measured at 30°C and pH 9 with a stabilized olive oil emulsion (Sigma catalog No. 800-1) as the substrate, in a 5 mM Tris buffer containing 40 mM NaCl and 5 mM calcium chloride. 2.5 ml of the substrate is mixed with 12.5 ml buffer, the pH is ad-

Phosphonate [1-hydroxyethane-1,2-diylbis(phosphonic acid)]	0.1
Codium porbamto monohydroto	11.2
Sodium perborate monohydrate Tetraacetylethylenediamine (TAED)	6.3
Copoly(acrylic acid/maleic acid)	4.3
SRP (soil release polymer)	1.2

Detergent additive

According to the invention, the lipase may typically be used as an additive in a detergent composition. This additive is conveniently formulated as a non-dusting granulate, a stabilized liquid, a slurry or a protected enzyme. The additive may be prepared by methods known in the art.

DETERGENT COMPOSITION

The detergent compositions of the invention may for example, be formulated as hand and machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the pretreatment of stained fabrics, rinse added fabric softener compositions, and compositions for use in general household hard surface cleaning operations and dishwashing operations.

The detergent composition of the invention comprises the lipase of the invention and a surfactant. Additionally, it may optionally comprise a builder, another enzyme, a suds suppresser, a softening agent, a dye-transfer inhibiting agent and other components conventionally used in detergents such as soil-suspending agents, soil-releasing agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and/or encapsulated or non-encapsulated perfumes.

The detergent composition according to the invention can be in liquid, paste, gel, bar, tablet or granular forms. The pH (measured in aqueous solution at use concentration) will usually be neutral or alkaline, e.g. in the range of 7-11, particularly 9-11. Granular compositions according to the present invention can also be in "compact form", i.e. they may have a relatively higher density than conventional granular detergents, i.e. form 550 to 950 g/l.

The lipase of the invention, or optionally another enzyme incorporated in the detergent composition, is normally incorporated in the detergent composition at a level from 0.00001% to 2% of enzyme protein by weight of the composition, preferably at a level from 0.0001% to 1% of enzyme protein by weight of the composition, more preferably at a level from 0.001% to 0.5% of enzyme protein by weight of the composition, even more preferably at a level from 0.01% to 0.2% of enzyme protein by weight of the composition. 15

25

30

A PCR reaction was made using oligo19671 and 991222j1 (SEQ ID NO: 11 and 12) with pENi1576 as template in a total of 100 μl using PWO polymerase (Boehringer Mannheim). Oligo 991222J1 adds 3 extra amino acids on the C-terminal.

The PCR fragment was purified on a Biorad column and cut BamHI/SacII.

The plasmid pENI1861 (described in PCT/DK01/00805) was cut BamHI / SacII.

The PCR fragment and the plasmid vector was purified from a 1 % gel.

Vector and PCR fragment was ligated O/N, and electro-transformed into the E.coli strain DH10B giving 123,000 independent E.coli transformants.

10 independent clones were sequenced and showed satisfactory diversity.

10 A DNA-prep was made from all the clones.

Aspergillus transformation and screening.

Approximately 5 ug DNA plasmid was transformed into Jal355 (as mentioned in WO 00/24883). After 20 minutes incubation with PEG, the protoplasts were washed twice with 1.2 M sorbitol, 10 mM Tris pH7.5 (to remove CaCl₂).

The protoplasts were mixed in an alginate-solution (1.5 % alginate, 1 % dextran, 1.2 M sorbitol, 10 mM Tris pH 7.5). Using a pump (Ole Dich 110ACR.80G38.CH5A), this alginate solution dripped into a CaCl2 - solution (1.2 M sorbitol, 10 mM Tris pH 7.5., 0.2 M CaCl2) from a height of 15 cm. This created alginate beads of app. 2.5 mm in diameter with app. one transformed protoplast in every second bead. Approximately 55,000 transformants were 20 generated.

After the beads had been made, they were transferred to 1.2 M sorbitol, 10 mM Tris pH7.5, 10 mM CaCl₂ and grown o/n at 30°C. The beads were washed twice with sterile water and afterwards transferred to 1*vogel (without a carbon source, which is already present in the alginate-beads (dextran)). The beads grew o/w at 30°C.

After o/w growth, the beads were spread on plates containing TIDE and olive oil (1 g/L agarose, 0.1 M Tris pH 9.0, 5 mM CaCl₂, 25 ml/L olive oil, 1.4 g/L TIDE, 0.004 % brilliant green). The plates were incubated o/n at 37°C.

384 positive beads were transferred to four 96 well microtiter plates containing 150 µl 1*vogel, 2 % maltose in each well.

The plates were grown for 3 days at 34°C.

Media was assayed for activity towards pnp-valerate and pnp-palmitate at pH7.5 (as described in WO 00/24883)). The 64 clones having the highest activity on the long-chained substrate (pnp-palmitate) as well as low activity on the short chained substrate (pnp-valerate) were isolated on small plates, from which they were inoculated into a 96 well microtiter plate 35 containing 200 μl 1*vogel, 2 % maltose in each well.

After growth for 3 days at 34°C the media was once again assayed for activity towards pnp-valerate and pnp-palmitate at pH7.5, as well as activity towards pnp-palmiate at pH10.

5

10

15

The lipase variant was added to the wash liquor at a dosage of 0.25 or 1.0 mg enzyme protein per liter. A control was made without addition of lipase variant, and a reference experiment was made with a lipase variant having the same amino acid sequence without any peptide extension.

The swatches were washed a second washing without lipase.

The performance was evaluated as follows:

- Odor generation was evaluated by a sensory panel, keeping the washed butter swatches in closed vials until the evaluation.
- Wash performance was evaluated by measuring the remission of the lard swatches after the first or the second washing. All variants showed a significant performance in this one-cycle washing test.
- A benefit/risk ratio was calculated as the performance on lard swatches after the first or second washing divided by the odor on butter swatches. An improved benefit/risk ratio indicates that the lipase can be dosed at a higher level than the reference to give wash performance on level with the reference with reduced odor.

All variants tested showed lower odor generation and/or a higher benefit/risk ratio than the same lipase without a peptide extension at the C-terminal.

Example 3: First-wash performance, activity at alkaline/neutral pH, long-chain/short-20 chain activity

The following lipase variants based on SEQ ID NO: 2 were evaluated:

G91A +E99K +T231R +N233R +Q249R +270HTPSSGRGGHR

G91A +E99K +T231R +N233R +Q249R +270HTPSSGRGG

G91A +E99K +T231R +N233R +Q249R +270HTPSSGR

25 G91A +E99K +T231R +N233R +Q249R +270HTPSS

G91A +E99K +T231R +N233R +Q249R +270EST

The first-wash performance was evaluated as described above, and each lipase variant was found to give a remission increase (ΔR) above 3.0.

The lipase activity was determined as LU7, LU9 and SLU by the methods described above. Each lipase variant was found to have a LU9/LU7 ratio above 2.0 and a SLU/LU9 ratio above 2.0.

This form was received by the international Bureau on:

Original (for SUBMISSION) - printed on 07.02.2002 09:30:02 AM

3	The indications made below relate to the deposited microorganism(s) or	
	other biological material referred to	
3-1	in the description on: page	2
3-2	line	13-19
3-3	Identification of Deposit	
3-3-1	Name of depositary institution	DSMZ-Deutsche Sammlung von
		Mikroorganismen und Zellkulturen GmbH
3-3-2	Address of depositary institution	Mascheroder Weg 1b, D-38124
		Braunschweig, Germany
3-3-3	Date of deposit .	08 February 2001 (08.02.2001)
3-3-4	Accession Number	DSMZ 14049
3-4	Additional Indications	
3-5	Designated States for Which	NONE
<i></i>	Indications are Made	all designated States
3-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to the International Bureau later	
4	The indications made below relate to	·
	the deposited microorganism(s) or other biological material referred to	
	in the description on:	
4-1	page	2
4-2 ·	line	13-19
4-3	Identification of Deposit	
4-3-1	Name of depositary institution	DSMZ-Deutsche Sammlung von
	i	Mikroorganismen und Zellkulturen GmbH
4-3-2	Address of depositary institution	Mascheroder Weg 1b, D-38124
		Braunschweig, Germany
4-3-3	Date of deposit	08 February 2001 (08.02.2001)
4-3-4	Accession Number	DSMZ 14051
4-4	Additional Indications	NONE
4-5	Designated States for Which Indications are Made	all designated States
4-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to the International Bureau later	
	FOR I	RECEIVING OFFICE USE ONLY
0-4	This form was received with the	
	international application: (yes or no)	yes .
0-4-1	Authorized officer	Mu Codsfaule
Mit		
	EOD INT	ERNATIONAL BUREAU USE ONLY

NZAS-0022429

CLAIMS

- 1. A method of producing a polypeptide having lipase activity comprising:
 - a) preparing at least one polypeptide having an amino acid sequence which comprises:

5

- i) a parent polypeptide having lipase activity and,
- ii) a peptide extension attached to the C-terminal of the parent polypeptide,
- b) selecting a polypeptide which has lipase activity and which compared to the parent polypeptide has:

10

- i) a lower ratio between activities towards short-chain versus longchain fatty acyl esters,
- ii) a lower ratio between lipase activities at neutral versus alkaline pH, and/or
- iii) a lower tendency to form odor in textile swatches with fatty soiling washed in detergent with the polypeptide,
- c) producing the selected polypeptide.
- 2. The method of claim 1 wherein the parent polypeptide has an amino acid sequence which has at least 50 % identity with SEQ ID NO: 2.
- 3. The method of claim 1 or 2 wherein the peptide extension consists of 2-15 amino acid residues, particularly 3-10.
 - 4. The method of any of claims 1-3 wherein the peptide extension comprises a positive amino acid residue at position 4, 5 or 6.
- 5. The method of any of claims 1-4 wherein the polypeptide is prepared by mutagenesis using of a plasmid encoding the parent polypeptide and an oligonucleotide having a stop codon25 corresponding to an extension of 2-15 amino acids.
 - 6. A polypeptide having lipase activity and having an amino acid sequence which comprises:
 - a) a parent polypeptide having lipase activity and
 - b) a peptide extension comprising a positive, negative or polar amino acid residue attached to the C-terminal of the parent polypeptide.

- 16. The polypeptide of any of claims 6-15 wherein the peptide extension is HTPSSGRGGHR or a truncated form thereof (particularly HTPSSGRGG, HTPSSGR, HTPSS or HTP), KV, EST, LVY, RHT, SVF, SVT, TAD, TPA, AGVF or PGLPFKRV.
- 17. A detergent composition comprising a surfactant and the polypeptide of any of claims 6-5 16.
 - 18. A DNA sequence encoding the polypeptide of any of claims 6-16.
 - 19. An expression vector harboring the DNA sequence of claim 18.
 - 20. A transformed host cell containing the DNA sequence of claim 18 or the expression vector of claim 19.
- 10 21. A method of producing the polypeptide of any of claims 6-16 which method comprises culturing the transformed host cell of claim 7 under conditions conducive for the production of the polypeptide and recovering the polypeptide from the resulting broth.
 - 22. A detergent composition comprising a surfactant and a lipase which has:
 - a) a remission increase (ΔR) of at least 3 at the test washing conditions given in the specification,
 - b) a ratio of hydrolytic activities towards tributyrin at pH 9 and pH 7 (LU9/LU7) of at least 2.0, and
 - c) a ratio of hydrolytic activities towards olive oil and tributyrin (SLU/LU) of at least 2.0.
- 20 23. A method of preparing a detergent, comprising:
 - a) testing at least one lipase for:
 - i) its first-wash performance in a detergent solution,
 - ii) Its relative lipase activity at neutral and alkaline pH, and
 - iii) its relative activity towards long-chain and short-chain acyl bonds in triglycerides,
 - b) selecting a lipase which has:
 - i) a remission increase (ΔR) of at least 3 at the test washing conditions given in the specification,

<400> 1

SEQUENCE LISTING

```
<110> Novozymes A/S
<120> Lipolytic enzymes
<130> 10130
<160> 12
<170> PatentIn version 3.1
<210>
      1
<211>
      918
<212>
      DNA
<213>
      Thermomyces lanuginosus
<220>
<221>
       CDS
<222>
       (1)..(873)
<223>
<220>
<221> sig_peptide
<222> (1)..(66)
<223>
<220>
<221> mat_peptide
<222> (67)..()
<223>
```

atg agg agc tcc ctt gtg ctg ttc ttt gtc tct gcg tgg acg gcc ttg Met Arg Ser Ser Leu Val Leu Phe Phe Val Ser Ala Trp Thr Ala Leu -20 -15 -10

WO 02/062973 PCT/DK02/00084

						cga Arg -1												96
	aat Asn	ctc Leu	ttt Phe	gca Ala	cag Gln 15	tat Tyr	tct Ser	gca Ala	gcc Ala	gca Ala 20	tac Tyr	tgc Cys	gga Gly	aaa Lys	aac Asn 25	aat Asn		144
	gat Asp	gcc Ala	cca Pro	gct Ala 30	ggt Gly	aca Thr	aac Asn	att Ile	acg Thr 35	tgc Cys	acg Thr	gga Gly	aat Asn	gcc Ala 40	tgc Cys	CCC Pro		192
	gag Glu	gta Val	gag Glu 45	aag Lys	gcg Ala	gat Asp	gca Ala	acg Thr 50	ttt Phe	ctc Leu	tac Tyr	tcg Ser	ttt Phe 55	gaa Glu	gac Asp	tct Ser		240 .
	gga Gly	gtg Val 60	ggc Gly	gat Asp	gtc Val	acc Thr	99c Gly 65	ttc Phe	ctt Leu	gct Ala	ctc Leu	gac Asp 70	aac Asn	acg Thr	aac Asn	aaa Lys		288
						ttc Phe 80												336
						gac Asp												384
						ggc Gly											,	432
	acg Thr	tta Leu	agg Arg 125	cag Gln	aag Lys	gtg Val	gag Glu	gat Asp 130	gct Ala	gtg Val	agg Arg	gag Glu	cat His 135	CCC Pro	gac Asp	tat Tyr		480
	cgc Arg	gtg Val 140	gtg Val	ttt Phe	acc Thr	gga Gly	cat His 145	agc Ser	ttg Leu	ggt Gly	ggt Gly	gca Ala 150	ttg Leu	gca Ala	act Thr	gtt val	·	528
						cgt Arg 160												576
						gtc Val					Phe							624
	gta Val	cag Gln	acc Thr	ggc Gly 190	Gly	aca Thr	ctc Leu	·tac Tyr	cgc Arg 195	att Ile	acc Thr	cac His	acc Thr	aat Asn 200	gat Asp	att Ile		672
						ccg Pro			Phe									720
	gag Glu	tac Tyr 220	Trp	atc Ile	aaa Lys	tct Ser	gga Gly 225	acc Thr	ctt Leu	gtc Val	ccc Pro	gtc Val 230	Thr	cga Arg	aac Asn	gat Asp		768
•						ggc Gly 240	Ile					ĞĨy						816
						cct Pro				Trp 260	Tyr	Phe				Gly		864
								. •		Pa	ige 2		•					

aca tgt ctt tagtggccgg cgcggctggg tccgactcta gcgagctcga gatct Thr Cys Leu

918

<210> 2

<211> 291

<212> PRT

<213> Thermomyces lanuginosus

<400> 2

Met Arg Ser Ser Leu Val Leu Phe Phe Val Ser Ala Trp Thr Ala Leu
-20 -15 -10

Ala Ser Pro Ile Arg Arg Glu Val Ser Gln Asp Leu Phe Asn Gln Phe

Asn Leu Phe Ala Gln Tyr Ser Ala Ala Ala Tyr Cys Gly Lys Asn Asn 20

Asp Ala Pro Ala Gly Thr Asn Ile Thr Cys Thr Gly Asn Ala Cys Pro $\frac{30}{30}$

Glu Val Glu Lys Ala Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser 45 55

Gly Val Gly Asp Val Thr Gly Phe Leu Ala Leu Asp Asn Thr Asn Lys
60 70

Leu Ile Val Leu Ser Phe Arg Gly Ser Arg Ser Ile Glu Asn Trp Ile 75

Gly Asn Leu Asn Phe Asp Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly 100 105

Cys Arg Gly His Asp Gly Phe Thr Ser Ser Trp Arg Ser Val Ala Asp 110 115 120

Thr Leu Arg Gln Lys val Glu Asp Ala Val Arg Glu His Pro Asp Tyr 125 130 135

Arg Val Val Phe Thr Gly His Ser Leu Gly Gly Ala Leu Ala Thr Val 140 145 150

Ala Gly Ala Asp Leu Arg Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser 155 160 170

Tyr Gly Ala Pro Arg Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr 175 180 185 Page 3 Val Gln Thr Gly Gly Thr Leu Tyr Arg Ile Thr His Thr Asn Asp Ile 190 195 200

Val Pro Arg Leu Pro Pro Arg Glu Phe Gly Tyr Ser His Ser Ser Pro 205 210 215

Glu Tyr Trp Ile Lys Ser Gly Thr Leu Val Pro Val Thr Arg Asn Asp 220 230

Ile Val Lys Ile Glu Gly Ile Asp Ala Thr Gly Gly Asn Asn Gln Pro 235 240 245 250

Asn Ile Pro Asp Ile Pro Ala His Leu Trp Tyr Phe Gly Leu Ile Gly 265

Thr Cys Leu

<210> 3

<211> 1083

<212> DNA

<213> Talaromyces thermophilus

<220>

<221> CDS

<222> (1)..(67)

<223>

<220>

<221> CDS

<222> (139)..(307)

<223>

<220>

<221> CDS

<222> (370)..(703)

<223>

<220>

Page 4.

WO 02/062973 PCT/DK02/00084

<221> CDS (778)..(1080) <222> <223> <220> <221> mat_peptide <222> (67)..() <223> <400> 3 atg agg agc tcg ctc gtg ctg ttc ttc gtt tct gcg tgg acg gcc ttg Met Arg Ser Ser Leu Val Leu Phe Phe Val Ser Ala Trp Thr Ala Leu -20 -15 -10 48 gcc agt cct gtc cga cga g gtatgtaaat cacggggtat acttttcatg Ala Ser Pro Val Arg Arg 97 cattgcatgt cgaacctgct gtactaagat tgcgcgcaca g ag gtc tcg cag gat Glu Val Ser Gln Asp 152 ctg ttt gac cag ttc aac ctc ttt gcg cag tac tcg gcg gcc gca tac Leu Phe Asp Gln Phe Asn Leu Phe Ala Gln Tyr Ser Ala Ala Ala Tyr 200 tgc gcg aag aac aac gat gcc ccg gca ggt ggg aac gta acg tgc agg Cys Ala Lys Asn Asn Asp Ala Pro Ala Gly Gly Asn Val Thr Cys Arg 25 30 35 248 gga agt att tgc ccc gag gta gag aag gcg gat gca acg ttt ctc tac Gly Ser Ile Cys Pro Glu Val Glu Lys Ala Asp Ala Thr Phe Leu Tyr 296 tcg ttt gag ga gtaggtgtca acaagagtac aggcacccgt agtagaaata Ser Phe Glu Asp 55 347 gcagactaac tgggaaatgt ag t tct gga gtt ggc gat gtc acc ggg ttc Ser Gly Val Gly Asp Val Thr Gly Phe 60 65 397 ctt gct ctc gac aac acg aac aga ctg atc gtc ctc tct ttc cgc ggc Leu Ala Leu Asp Asn Thr Asn Arg Leu Ile Val Leu Ser Phe Arg Gly 70 75 80 445 tct cgt tcc ctg gaa aac tgg atc ggg aat atc aac ttg gac ttg aaa Ser Arg Ser Leu Glu Asn Trp Ile Gly Asn Ile Asn Leu Asp Leu Lys 85 90 95 493 gga att gac gac atc tgc tct ggc tgc aag gga cat gac ggc ttc act Gly Ile Asp Asp Ile Cys Ser Gly Cys Lys Gly His Asp Gly Phe Thr 100 105 110 541 tcc tcc tgg agg tcc gtt gcc aat acc ttg act cag caa gtg cag aat Ser ser Trp Arg Ser Val Ala Asn Thr Leu Thr Gln Gln Val Gln Asn 115 120 125 130 589 637 gct gtg agg gag cat ccc gac tac cgc gtc gtc ttc act ggg cac agc

WO 02/062973 PCT/DK02/00084

Ala Val Arg Glu His Pro Asp Tyr Arg Val Val Phe Thr Gly His Ser 135 140 145	
ttg ggt ggt gca ttg gca act gtg gcc ggg gca tct ctg cgt gga aat Leu Gly Gly Ala Leu Ala Thr Val Ala Gly Ala Ser Leu Arg Gly Asn 150 155 160	685
ggg tac gat ata gat gtg gtatgtagga aaaatgatcc ccgtggagcg Gly Tyr Asp Ile Asp Val 165	733
gtcatgtgga aatgtgcagg ggtgtctaat acacagacca acag ttc tca tat ggc Phe Ser Tyr Gly 170	789
gct ccc cgc gtc gga aac agg gct ttt gcg gaa ttc ctg acc gca cag Ala Pro Arg Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr Ala Gln 175 180 185	837
acc ggc ggc acc ttg tac cgc atc acc cac acc aat gat att gtc ccc Thr Gly Gly Thr Leu Tyr Arg Ile Thr His Thr Asn Asp Ile Val Pro 190 195 200	885
aga ctc ccg cca cgc gaa ttg ggt tac agc cat tct agc cca gag tat Arg Leu Pro Pro Arg Glu Leu Gly Tyr Ser His Ser Ser Pro Glu Tyr 205 210 215 220	933
tgg atc acg tct gga acc ctc gtc cca gtg acc aag aac gat atc gtc Trp Ile Thr Ser Gly Thr Leu Val Pro Val Thr Lys Asn Asp Ile Val 225 230 235	981
aag gtg gag ggc atc gat tcc acc gat gga aac aac cag cca aat acc Lys Val Glu Gly Ile Asp Ser Thr Asp Gly Asn Asn Gln Pro Asn Thr 240 245 250	1029
ccg gac att gct gcg cac cta tgg tac ttc ggg tca atg gcg acg tgt Pro Asp Ile Ala Ala His Leu Trp Tyr Phe Gly Ser Met Ala Thr Cys 255 260 265	1077
ttg taa Leu	1083

<210> 4

<211> 291

<212> PRT

<213> Talaromyces thermophilus

<400> 4

Met Arg Ser Ser Leu Val Leu Phe Phe Val Ser Ala Trp Thr Ala Leu -20 -15 -10

Ala Ser Pro Val Arg Arg Glu Val Ser Gln Asp Leu Phe Asp Gln Phe -5 10

Asn Leu Phe Ala Gln Tyr Ser Ala Ala Ala Tyr Cys Ala Lys Asn Asn 20 25

Page 6

Asp Ala Pro Ala Gly Gly Asn Val Thr Cys Arg Gly Ser Ile Cys Pro 30 40

Glu Val Glu Lys Ala Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser

Gly val Gly Asp val Thr Gly Phe Leu Ala Leu Asp Asn Thr Asn Arg
60 65 70

Leu Ile Val Leu Ser Phe Arg Gly Ser Arg Ser Leu Glu Asn Trp Ile 75 80 85 90

Gly Asn Ile Asn Leu Asp Leu Lys Gly Ile Asp Asp Ile Cys Ser Gly 100 105

Cys Lys Gly His Asp Gly Phe Thr Ser Ser Trp Arg Ser Val Ala Asn 110 115 120

Thr Leu Thr Gln Gln Val Gln Asn Ala Val Arg Glu His Pro Asp Tyr 125 130 135

Arg Val Val Phe Thr Gly His Ser Leu Gly Gly Ala Leu Ala Thr Val 140 150

Ala Gly Ala Ser Leu Arg Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser 155 160 170

Tyr Gly Ala Pro Arg Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr 175 180 185

Ala Gln Thr Gly Gly Thr Leu Tyr Arg Ile Thr His Thr Asn Asp Ile 190 195 200

Val Pro Arg Leu Pro Pro Arg Glu Leu Gly Tyr Ser His Ser Ser Pro 205 210 215

Glu Tyr Trp Ile Thr Ser Gly Thr Leu Val Pro Val Thr Lys Asn Asp 220 225

lle val Lys val Glu Gly Ile Asp Ser Thr Asp Gly Asn Asn Gln Pro 235 245 250

Asn Thr Pro Asp Ile Ala Ala His Leu Trp Tyr Phe Gly Ser Met Ala 260 265

Thr Cys Leu

<210> 5 <211> 1070

Page 7

```
<212> DNA
<213> Thermomyces ibadanensis
<220>
<221> CDS
<222> (1)..(67)
<223>
<220>
<221>
        CDS
<222>
         (128)..(296)
<223>
<220>
<221>
         CDS
<222>
          (357)..(690)
 <223>
 <220>
 <221>
          CDS
 <222>
          (765)..(1067)
 <223>
 <220>
 <221>
         mat_peptide
 <222>
          (67)..()
 <223>
 <400> 5
 atg cgg agc tcc ctc gtg ctg ttc ttc ctc tct gcg tgg acg gcc ttg
Met Arg Ser Ser Leu Val Leu Phe Phe Leu Ser Ala Trp Thr Ala Leu
-20 -15 -10
                                                                                              48
 gcg cgg cct gtt cga cga g gtatgtagca agggacacta ttacatgttg
Ala Arg Pro Val Arg Arg
-5 -1
                                                                                              97
```

accttggtga ttctaagact gcatgcgcag cg gtt ccg caa gat ctg ctc gac Ala Val Pro Gln Asp Leu Leu Asp S Page 8 150

A CONTRACT OF THE PARTY OF THE

Glñ	ttt Phe 10	gaa Glu	ctc Leu	ttt Phe	tca ser	caa Gln 15	tat Tyr	tcg Ser	gcg Ala	gcc Ala	gca Ala 20	tac Tyr	tgt Cys	gcg Ala	gca Ala	198
aac Asn 25	aat Asn	cat His	gct Ala	cca Pro	gtg Val 30	ggc Gly	tca Ser	gac Asp	gta Val	acg Thr 35	tgc Cys	tcg Ser	gag Glu	aat Asn	gtc Val 40	246
tgc Cys	cct Pro	gag Glu	Va l	gat Asp 45	gcg Ala	gcg Ala	gac Asp	gca Ala	acg Thr 50	ttt Phe	ctc Leu	tat Tyr	tct Ser	ttt Phe 55	gaa Glu	294
ga Asp	gtgg	gtgt	cg a	caaa	igcad	a ga	ıgaca	agtag	g tag	jagad	agc	agto	taa	etg		346
agat	gtgc	ag t	tct Ser	gga	tta Leu 60	ggc Gly	ga1 / Asp	t gti val	t acc	gg(Gl) 65	Ct1	t cto	gc1 J Ala	t cto a Leo	gac u Asp 70	396
aac Asn	acg Thr	aat Asn	aaa Lys	ctg Leu 75	atc Ile	gtc val	Ctc Leu	tct Ser	ttc Phe 80	cgc Arg	ggc Gly	tct Ser	cgc Arg	tca Ser 85	gta Val	444
gag Glu	aac Asn	tgg Trp	atc Ile 90	gcg Ala	aac Asn	ctc Leu	gcc Ala	gcc Ala 95	gac Asp	ctg Leu	aca Thr	gaa Glu	ata Ile 100	tct Ser	gac Asp	492
atc Ile	tgc Cys	tcc Ser 105	ggc Gly	tgc Cys	gag Glu:	ggg Gly	cat His 110	gtc Val	ggc Gly	ttc Phe	gtt Val	act Thr 115	tct Ser	tgg Trp	agg Arg	540
tct Ser	gta Val 120	gcc Ala	gac Asp	act Thr	ata Ile	agg Arg 125	gag Glu	cag Gln	gtg Val	cag Gln	aat Asn 130	gcc Ala	gtg Val	aac Asn	gag Glu	588
cat His 135	ccc Pro	gat Asp	tac Tyr	cgc Arg	gtg Val 140	gtc Val	ttt Phe	acc Thr	gga Gly	cat His 145	agc Ser	ttg Leu	gga Gly	ggc Gly	gca Ala 150	636
ctg Leu	gca Ala	act Thr	att Ile	gcc Ala 155	gca Ala	gca Ala	gct Ala	ctg Leu	cga Arg 160	gga Gly	aat Asn	gga Gly	tac Tyr	aat Asn 165	atc Ile	684
gac Asp	gtg Val	gtat	gtgg	gga a	agaa	gcca	cc c	agac	aaac	a at	tatg	tgga	aac	atgc	aag	740
gat	ggct	aat a	acac	ggtc	ca. a	cag :	Phe :	tca Ser 170	tat Tyr	ggc Gly	gcg Ala	Pro .	cgc Arg 175	gtc Val	ggt Gly	791
aac Asn	agg Arg	gca Ala 180	ttt Phe	gca Ala	gaa Glu	ttc Phe	ctg Leu 185	Thr	gca Ala	cag Gln	acg Thr	ggc Gly 190	Gly	acc Thr	ctg Leu	839
tat Tyr	cgc Arg 195	atc Ile	acc Thr	cat His	acc Thr	aat Asn 200	Asp	atc	gtc Val	cct Pro	aga Arg 205	Leu	cct Pro	cct Pro	cga Arg	887
gac Asp 210	Trp	ggt Gly	tac Tyr	agc Ser	cac His 215	Ser	agc Ser	ccg Pro	gag Glu	tac Tyr 220	Trp	gtc Val	acg Thr	tct Ser	ggt Gly 225	935
aac Asn	gac Asp	gtc Val	cca Pro	gtg Val 230	Thr	gca Ala	aac Asn	gac	235	Thr	val	gtg Val	gag Glu	ggc Gly 240	atc Ile	983
									Pa	നല 9)					

WO 02/062973 PCT/DK02/00084

gat tcc acc gac ggg aac aac cag ggg aat atc cca gac atc cct tcg
Asp Ser Thr Asp Gly Asn Asn Gln Gly Asn Ile Pro Asp Ile Pro Ser
245

Cat cta tgg tat ttc ggt ccc att tca gag tgt gat tag
His Leu Trp Tyr Phe Gly Pro Ile Ser Glu Cys Asp
265

1031

<210> 6

<211> 291

<212> PRT

<213> Thermomyces ibadanensis

<400> 6

Met Arg Ser Ser Leu Val Leu Phe Phe Leu Ser Ala Trp Thr Ala Leu
-20 -15 -10

Ala Arg Pro Val Arg Arg Ala Val Pro Gln Asp Leu Leu Asp Gln Phe
-5 -1 1 5 10

Glu Leu Phe Ser Gln Tyr Ser Ala Ala Ala Tyr Cys Ala Ala Asn Asn 20 25

His Ala Pro Val Gly Ser Asp Val Thr Cys Ser Glu Asn Val Cys Pro 30 40

Glu Val Asp Ala Ala Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser 45 50 55

Gly Leu Gly Asp Val Thr Gly Leu Leu Ala Leu Asp Asn Thr Asn Lys 60 65 70

Leu Ile Val Leu Ser Phe Arg Gly Ser Arg Ser Val Glu Asn Trp Ile 75 80 85 90

Ala Asn Leu Ala Ala Asp Leu Thr Glu Ile Ser Asp Ile Cys Ser Gly $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Cys Glu Gly His Val Gly Phe Val Thr Ser Trp Arg Ser Val Ala Asp 110 115 120

Thr Ile Arg Glu Gln Val Gln Asn Ala Val Asn Glu His Pro Asp Tyr 125 130 135

Arg Val Val Phe Thr Gly His Ser Leu Gly Gly Ala Leu Ala Thr Ile 140 145 150

Ala Ala Ala Leu Arg Gly Asn Gly Tyr Asn Ile Asp Val Phe Ser 155 160 165 170 Page 10 Tyr Gly Ala Pro Arg Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr 175 180 185

Ala Gln Thr Gly Gly Thr Leu Tyr Arg Ile Thr His Thr Asn Asp Ile 190 195 200

Val Pro Arg Leu Pro Pro Arg Asp Trp Gly Tyr Ser His Ser Ser Pro 205 210 215

Glu Tyr Trp Val Thr Ser Gly Asn Asp Val Pro Val Thr Ala Asn Asp 220 230

The Thr Val Val Glu Gly Tle Asp Ser Thr Asp Gly Asn Asn Gln Gly 235 240 245 250

ASM Ile Pro ASP Ile Pro Ser His Leu Trp Tyr Phe Gly Pro Ile Ser 260 265

Glu Cys Asp

<210> 7

<211> 1064

<212> DNA

<213> Talaromyces emersonii

<220>

<221> CDS

<222> (1)..(88)

<223>

<220>

<221> mat_peptide

<222> (88)..()

<223>

<220>

<221> CDS

<222> (142)..(310)

<223>

Page 11

<220	>															
<221	> (DS														
<222	> ((362)	(6	95)												
<223	>						•									
<220	>															
<221	> (CDS						•								
<222	> ((756)	(1	1061))											
<223	>															
<400																
Met	Phe	aaa Lys	tcg Ser	gcc Ala -25	Ala	gtg Val	cgg Arg	gcc Ala	att Ile -20	gct Ala	gcc Ala	ctc Leu	gga Gly	ctg Leu -15	act Thr	48
gcg Ala	tca Ser	gtc Val	ttg Leu -10	gct Ala	gct Ala	cct Pro	gtt Val	gaa Glu -5	ctg Leu	ggc Gly	cgt Arg	cga Arg -1	g g ¹	taag	gaagc	98
atga	cgg	aga g	jaaca	ACCC1	tg tg	jcga	ctg	tga	acato	ctt	cag			tct Ser		152
gac Asp 5	ctc Leu	ttc Phe	gac Asp	cag Gln	ctc Leu 10	aat Asn	ctt Leu	ttc Phe	gag Glu	cag Gln 15	tac Tyr	tcg Ser	gcg Ala	gct Ala	gcg Ala 20	200
tac Tyr	tgt Cys	tca Ser	gct Ala	aac Asn 25	aat Asn	gag Glu	gcc Ala	tct Ser	gcc Ala 30	ggc Gly	acg Thr	gca Ala	atc Ile	tct ser 35	tgc Cys	248
tcc Ser	gca Ala	ggc Gly	aat Asn 40	tgc Cys	ccg Pro	ttg Leu	gtc Val	cag Gln 45	cag Gln	gct Ala	gga Gly	gca Ala	acc Thr 50	atc Ile	ctg Leu	296
tat Tyr	tca Ser	ttc Phe 55	aac Asn	aa Asn	gtg	ggtgi	tca (gga	aaaga	at tọ	gttga	atac	c aa	catg	ttga	350
cgtg	jttg:	tca. g) C a	att (Cle (SIY S	tct (Ser (ggc (gat (Asp \	gtg a	Thr (ggt 1 Gly 1 65	ttt (Phe I	ctc (Leu /	gct (ctc Leu	398
gac Asp 70	tcg Ser	acg Thr	aat Asn	caa Gln	ttg Leu 75	atc Ile	gtc Val	ttg Leu	tca Ser	ttc Phe 80	Cgg Arg	gga Gly	tca Ser	gag Glu	act Thr 85	446
ctc Leu	gaa Glu	aac Asn	tgg Trp	atc Ile 90	gct Ala	gac Asp	ctg Leu	gaa Glu	gct Ala 95	gac Asp	ctg Leu	gtc Val	gat Asp	gcc Ala 100	tct Ser	494
gcc Ala	atc Ile	tgt Cys	tcc Ser 105	ggc Gly	tgt Cys	gaa Glu	gca Ala	cac His 110	gat Asp	ggg GTy	ttc Phe	ctt Leu	tca Ser 115	tcc Ser	tgg Trp	542
aat	tca	gtc	gcc	agc	act	ctg	aca	tcc		atc je 12		tcg	gcc	gtc	aac	590

Asn	Ser	Va1 120	Ala	Ser	Thr	Leu	Thr 125	Ser	Lys	Ile	Ser	Ser 130	Ala	va1	Asn.	
gaa Glu	cat His 135	ccc Pro	agc Ser	tac Tyr	aag Lys	ctg Leu 140	gtc Val	ttc Phe	acc Thr	ggc Gly	cac His 145	agt Ser	ctc Leu	gga Gly	gcc Ala	638
gcc Ala 150	Leu	gct Ala	aca Thr	ctt Leu	gga Gly 155	gcc Ala	gtt Val	tct Ser	ctt Leu	aga Arg 160	gag Glu	agc Ser	gga Gly	tat Tyr	aat Asn 165	686
	gac Asp	ctc Leu	gta	agtt1	tcc g	ggca	:ggg	cg to	egtca	tcat	t cga	igcg	gaaa			735
gac	tgac	cgg 1	ttaa	ctgca	ag ta Ty	/r A	at ta sn Ty 70	at gg yr G	yc to	gc co /s Pi	ro Al	99. 91 19. Va 75	tc g	gt aa ly As	ac acc sn Thr	788
gcg Ala 180		gca Ala	gac Asp	ttc Phe	atc Ile 185	acc Thr	acg Thr	caa Gln	tcc Ser	gga Gly 190	ggc Gly	aca Thr	aat Asn	tac Tyr	cgc Arg 195	836
gtc Val	acg Thr	cat His	tcc Ser	gat Asp 200	gac Asp	cct Pro	gtc Val	CCC Pro	aag Lys 205	ctg Leu	cct Pro	CCC Pro	agg Arg	agt Ser 210	ttt Phe	884
gga Gly	tac Tyr	agc Ser	caa Gln 215	ccg Pro	agc Ser	cca Pro	gag Glu	tac Tyr 220	tgg Trp	atc Ile	acc Thr	tca Ser	999 Gly 225	aac Asn	aat Asn	932 .
gta Val	act Thr	gtt Val 230	Gln	ccg Pro	tcc Ser	gac Asp	atc Ile 235	gag Glu	gtc Val	atc Ile	gaa Glu	ggc Gly 240	gtc Val	gac Asp	tcc Ser	980
act Thr	gca Ala 245	ggc Gly	aac Asn	gac Asp	ggc Gly	acc Thr 250	cct Pro	gct Ala	ggc Gly	ctt Leu	gac Asp 255	att Ile	gat Asp	gct Ala	cat His	1028
	Trp	tac Tyr									tga				<u>-</u>	1064
<21	L 0 >	8														
<21	1>	299														
<23	L 2>	PRT														
<21	L3>	Tala	romy	ces	emer	soni	i							•		
<4(00>	8														
Met	Phe	Lys	Ser	Ala -25	Ala	val	Arg	Ala	11e -20	Ala	Ala	Leu	Gly	Leu -15	Thr	
Ala	Ser	· val	Leu	Ala	Ala	Pro	val	Glu	Leu	Gly	Arg	Arg	Asp	٧a٦	Ser	

Page 13

Gln Asp Leu Phe Asp Gln Leu Asn Leu Phe Glu Gln Tyr Ser Ala Ala 5 $\,$ 10 $\,$ 15

Ala Tyr Cys Ser Ala Asn Asn Glu Ala Ser Ala Gly Thr Ala Ile Ser 20 25 30

Cys Ser Ala Gly Asn Cys Pro Leu Val Gln Gln Ala Gly Ala Thr Ile 40 45 50

Leu Tyr Ser Phe Asn Asn Ile Gly Ser Gly Asp Val Thr Gly Phe Leu 55 60 65

Ala Leu Asp Ser Thr Asn Gln Leu Ile Val Leu Ser Phe Arg Gly Ser 70 75

Glu Thr Leu Glu Asn Trp Ile Ala Asp Leu Glu Ala Asp Leu Val Asp 85 90 95

Ala Ser Ala Ile Cys Ser Gly Cys Glu Ala His Asp Gly Phe Leu Ser 100 105 110 115

Ser Trp Asn Ser Val Ala Ser Thr Leu Thr Ser Lys Ile Ser Ser Ala 120 125 130

val Asn Glu His Pro Ser Tyr Lys Leu val Phe Thr Gly His Ser Leu 135 140 145

Gly Ala Ala Leu Ala Thr Leu Gly Ala Val Ser Leu Arg Glu Ser Gly 150 155 160

Tyr Asn Ile Asp Leu Tyr Asn Tyr Gly Cys Pro Arg Val Gly Asn Thr 165 170 175

Ala Leu Ala Asp Phe Ile Thr Thr Gln Ser Gly Gly Thr Asn Tyr Arg 180 195

Val Thr His Ser Asp Asp Pro Val Pro Lys Leu Pro Pro Arg Ser Phe 200 205 210

Gly Tyr Ser Gln Pro Ser Pro Glu Tyr Trp Ile Thr Ser Gly Asn Asn 215 220 225

Val Thr Val Gln Pro Ser Asp Ile Glu Val Ile Glu Gly Val Asp Ser 230 235 240

Thr Ala Gly Asn Asp Gly Thr Pro Ala Gly Leu Asp Ile Asp Ala His 245 250 255

Arg Trp Tyr Phe Gly Pro Ile Ser Ala Cys Ser 260 270

<210> 9

<211> 1074

Page 14

```
<212> DNA
<213> Talaromyces byssochlamydoides
<220>
<221>
         CDS
<222>
         (1)..(85)
<223>
<220>
<221>
         CDS
<222>
         (150)..(318)
<223>
<220>
<221>
         CDS .
<222>
         (376)..(709)
<223>
<220>
<221> CDS
<222> (760)..(1071)
<223>
<220>
<221> mat_peptide
<222>
         (85)..()
<223>
<400> 9
atg ttc aaa tca act gtc cgg gcc atc gcc ctc gga ctg acc tcg
Met Phe Lys Ser Thr Val Arg Ala Ile Ala Ala Leu Gly Leu Thr Ser
-25 -20 -15
                                                                                                 48
tca gtc ttt gct gct cct atc gaa ctg ggc cgt cga g gtaaggggca
Ser Val Phe Ala Ala Pro Ile Glu Leu Gly Arg Arg
-10 -5 -1
                                                                                                 95
```

Page 15

tgaaaactcc ctgtatggca tctcatctgg cagcatatct actgacatcc tcag at

A Section 1

151

Asp

gtt tcg gag cag ctc tt Val Ser Glu Gln Leu Ph S	c aac cag tt e Asn Gln Ph 10	e Asn Leu Phe	gag cag tat Glu Gln Tyr 15	tcc 199 Ser
gcg gct gcg tac tgt cc Ala Ala Ala Tyr Cys Pr 20	a gcc aac tt o Ala Asn Ph 25	t gag tcc gct e Glu Ser Ala	tcc ggc gcg Ser Gly Ala 30	gca 247 Ala
att tct tgt tcc aca gg Ile Ser Cys Ser Thr Gl 35	c aat tgc cc y Asn Cys Pr 40	g ctc gtc caa o Leu Val Gln 45	cag gct ggc Gln Ala Gly	gca 295 Ala
acc acc ctg tat gca tt Thr Thr Leu Tyr Ala Ph 50 55	c aac aa gt e Asn Asn	gagtgtca tgga	aaggct tgttgg	taca 348 .
ccgtacgggt atgttgactg	tcatcag c at Il	c ggc tct ggc e Gly Ser Gly 60	gat gtg acg Asp Val Thr	ggt 400 Gly 65
ttt ctt gct gtc gat cc Phe Leu Ala Val Asp Pr 70	g acc aac cg o Thr Asn Ar	a ctc atc gtc g Leu Ile Val 75	ttg tcg ttc Leu Ser Phe 80	cgg 448 Arg -
ggg tca gag agt ctc ga Gly Ser Glu Ser Leu Gl 85	g aac tgg at u Asn Trp Il 90	e Thr Asn Leu	agc gcc gac Ser Ala Asp 95	ctg 496 Leu
gtc gat gcc tct gca at Val Asp Ala Ser Ala Il 100	tgt tcc gg Cys Ser G1 105	g tgt gaa gcc y Cys Glu Ala	cat gac gga His Asp Gly 110	ttc 544 Phe
tat tcg tct tgg caa tc Tyr Ser Ser Trp Gln Se 115	a gtt gcc ag r Val Ala Se 120	c act ctg acc r Thr Leu Thr 125	tcc caa atc Ser Gln Ile	tcg 592 Ser
tcg gcc ctc tcg gca ta Ser Ala Leu Ser Ala Ty 130	r Pro Asn Ty	c aag ctg gtc r Lys Leu Val 140	Phe Thr Gly	cac 640 His 145
agt ctc gga gcc gcc tt Ser Leu Gly Ala Ala Le 150	a gct aca ct u Ala Thr Le	t gga gct gtc u Gly Ala Val 155	tct ctc agg Ser Leu Arg 160	gag 688 Glu
agt gga tac aat atc ga Ser Gly Tyr Asn Ile As 165	ctc gtaagt Leu	tcct ggcattgco	a tcatggaaag	739
agactcacag ttaactgtag	tac aac ttt Tyr Asn Phe 170	ggc tgt ccc co Gly Cys Pro Ai 17	'g Val Gly As	c act 792 n Thr
gcg ctc gca gac ttt at Ala Leu Ala Asp Phe Il 180 18	Thr Asn Gl	a acc ggt ggc n Thr Gly Gly 190	Thr Asn Tyr	cgg 840 Arg 195
gta acg cat tac gag ga Val Thr His Tyr Glu As 200	cct gtc cc Pro Val Pro	c aag ctg cct o Lys Leu Pro 205	ccc agg agt : Pro Arg Ser 210	ttt 888 Phe
gga tac agc caa cct ag Gly Tyr Ser Gln Pro Se 215	ccg gaa ta Pro Glu Ty 22	r Trp Ile Thr	tcg gga aac a Ser Gly Asn a 225	aat : 936 Asn
gtg act gtg act tcg tc Val Thr Val Thr Ser Se 230	gac atc gar Asp Ile Asp 235	p Val Val Val	ggt gtc gac : Gly Val Asp : 240	tcg 984 Ser
•		Page 16		

act gca ggc aac gac ggg acg cct gat ggc ctt gac act gct gcc cat
Thr Ala Gly Asn Asp Gly Thr Pro Asp Gly Leu Asp Thr Ala Ala His
245
250
257

agg tgg tat ttt gga cct act acc gaa tgt tcg tcg tca tga 1074
Arg Trp Tyr Phe Gly Pro Thr Thr Glu Cys Ser Ser Ser 265 270

<210> 10

<211> 300

<212> PRT

<213> Talaromyces byssochlamydoides

<400> 10

Met Phe Lys Ser Thr Val Arg Ala Ile Ala Ala Leu Gly Leu Thr Ser -25 -25 -15

Ser Val Phe Ala Ala Pro Ile Glu Leu Gly Arg Arg Asp Val Ser Glu
-10 -5 -1 1

Gln Leu Phe Asn Gln Phe Asn Leu Phe Glu Gln Tyr Ser Ala Ala Ala 10 15

Tyr Cys Pro Ala Asn Phe Glu Ser Ala Ser Gly Ala Ala Ile Ser Cys 25

Ser Thr Gly Asn Cys Pro Leu Val Gln Gln Ala Gly Ala Thr Thr Leu 40 45 50

Tyr Ala Phe Asn Asn Ile Gly Ser Gly Asp Val Thr Gly Phe Leu Ala 55 60 65

Val Asp Pro Thr Asn Arg Leu Ile Val Leu Ser Phe Arg Gly Ser Glu 70 80

Ser Leu Glu Asn Trp Ile Thr Asn Leu Ser Ala Asp Leu Val Asp Ala 85 90 95 100

Ser Ala Ile Cys Ser Gly Cys Glu Ala His Asp Gly Phe Tyr Ser Ser 105 110 115

Trp Gln Ser val Ala Ser Thr Leu Thr Ser Gln Ile Ser Ser Ala Leu 120 130

Ser Ala Tyr Pro Asn Tyr Lys Leu Val Phe Thr Gly His Ser Leu Gly 145

Ala Ala Leu Ala Thr Leu Gly Ala Val Ser Leu Arg Glu Ser Gly Tyr 150 160 Page 17 WO 02/062973 PCT/DK02/90084

Asn Ile Asp Leu Tyr Asn Phe Gly Cys Pro Arg Val Gly Asn Thr Ala 165 170 175 180

Leu Ala Asp Phe Ile Thr Asn Gln Thr Gly Gly Thr Asn Tyr Arg Val 185 190 195

Thr His Tyr Glu Asp Pro Val Pro Lys Leu Pro Pro Arg Ser Phe Gly 200 205

Tyr Ser Gln Pro Ser Pro Glu Tyr Trp Ile Thr Ser Gly Asn Asn Val 215 220 225

Thr Val Thr Ser Ser Asp Ile Asp Val Val Gly Val Asp Ser Thr 230 240

Ala Gly Asn Asp Gly Thr Pro Asp Gly Leu Asp Thr Ala Ala His Arg 245 250 255

Trp Tyr Phe Gly Pro Thr Thr Glu Cys Ser Ser Ser 270

<210> 11

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligo 19671

<400> 11

ctcccttctc tgaacaataa accc

<210> 12

<211> 77

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligo 99122211

<220>

<221> misc_feature

<222> (50)..(57)

Page 18

<223> n is C or G or T or A

<400> 12 cctctagatc	tcgagctcgg	tcaccggtgg	cctccgcggc	cgctgctawn	пพากพากลลд	60
acatgtccca	attaacc					77

INTERNATIONAL FORM

Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. IDENTIFICATION OF THE MICROORGANISM	
Identification reference given by the DEPOSITOR:	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 14047
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESI	GNATION
The microorganism identified under I, above was accompanied by:	
(X) a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable).	
III. RECEIPT AND ACCEPTANCE	
This International Depositary Authority accepts the microorganism identified a (Date of the original deposit).	nder I. above, which was received by it on 2001-02-08
IV. RECEIPT OF REQUEST FOR CONVERSION	
The microorganism identified under I above was received by this International and a request to convert the original deposit to a deposit under the Budapest I for conversion).	
V. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GribH Address: Mascheroder Weg 1b	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):
D-38124 Braunschweig	U. Weils Date: 2001-02-19

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired.

Form DSMZ-BP/4 (soic page) 0196

INTERNATIONAL FORM

Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOS	ITOR ·	II. IDENTIFICATION OF THE MICROORGANISM
Name: Address:	Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 14047 Date of the deposit or the transfer!: 2001-02-08
IIL VIAB	ILITY STATEMENT	
On that da	ity of the microorganism identified under II above was tested on a late, the said microorganism was (3) viable 3) no longer viable DITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN P	
v. inter	NATIONAL DEPOSITARY AUTHORITY	
Name: Address:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

Mark with a cross the applicable box.

Form DSMZ-BP/9 (sole page) 0196

in the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Fill in if the information has been requested and if the results of the test were negative.

INTERNATIONAL FORM

Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. IDENTIFICATION OF THE MICROORGANISM	
Identification reference given by the DEPOSITOR:	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 14048
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DES	IGNATION
The microorganism identified under I. above was accompanied by:	
(X) a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable).	
UI. RECEIPT AND ACCEPTANCE	
This International Depositary Authority accepts the microorganism identified (Date of the original deposit).	under I. above, which was received by it on 2001-02-08
IV. RECEIFT OF REQUEST FOR CONVERSION	
The microorganism identified under I above was received by this Internation and a request to conven the original deposit to a deposit under the Budapest for conversion).	al Depositary Authority on (date of original deposit) Treaty was received by it on (date of receipt of request
V. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Address: Maschcroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the laternational Depositary Authority or of authorized official(s):

Form DSMZ-BP/4 (sole page) 0196

INTERNATIONAL FORM

Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK

> VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSITOR		II. IDENTIFICATION OF THE MICROORGANISM
Address:	Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 14048 Date of the deposit or the transfer!: 2001-02-08
III. VIABI	LITY STATEMENT	
On that das	ty of the microorganism identified under II above was tested on the the said microorganism was (3) viable (4) no longer viable	2001-02-08 '.
IV. COND	ITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN P	ERFORMED'
v. Interi	NATIONAL DEPOSITARY AUTHORITY	
Name: Address:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): U, Wa-Lo Date: 2001-02-19

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Form DSMZ-BP/9 (sole page) 0196

Fill in if the information has been requested and if the results of the test were negative.

INTERNATIONAL FORM

Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. IDENTIF	TCATION OF THE MICROORGANISM	
Identification	on reference given by the DEPOSITOR:	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 14049
II. SCIEN	TIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DE	SIGNATION
The micron	organism identified under I. above was accompanied by:	
	(X) a scientific description	
	(X) a proposed taxonomic designation	
(Mark with	a cross where applicable).	
III. RECEI	PT AND ACCEPTANCE	
	ational Depositary Authority accepts the microorganism identified e original deposit).	under I. above, which was received by it on 2001-02-08
IV. RECEI	PT OF REQUEST FOR CONVERSION	
	organism identified under I above was received by this Internation est to convert the original deposit to a deposit under the Budapest tion).	
V. INTER	NATIONAL DEPOSITARY AUTHORITY	
Name:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH	Signature(s) of person(s) having the power to represent the finternational Depositary Authority or of authorized official(s):
Address:	Mascheroder Weg Ib D-38124 Braunschweig	V. Weils
		Date: 2001-02-19

Form DSMZ-BP/4 (sole page) 0196

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired.

INTERNATIONAL FORM

Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK

> VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSITOR	B. IDENTIFICATION OF THE MICROORGANISM
Name: Novozymes A/S Krogshøjvej 36 Address: 2880 Bagsvaerd DENMARK	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 14049 Date of the deposit or the transfer!: 2001-02-08
III. VIABILITY STATEMENT	
The viability of the microorganism identified under II above was tested on 2 On that date, the said microorganism was (X) ³ viable () ² no longer viable IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PE	
V. INTERNATIONAL DEPOSITARY AUTHORITY	·
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Address: Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the laternational Depositary Authority or of authorized official(s): Date: 2001-02-19

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative.

Form DSMZ-BP/9 (sole page) 0196

INTERNATIONAL FORM

Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. IDENTIF	FICATION OF THE MICROORGANISM	
Identification	on reference given by the DEPOSITOR: 564	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 14051
II. SCIEN	TIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DES	GIGNATION
	(X) a scientific description (X) a proposed taxonomic designation a cross where applicable).	
This Interna	PT AND ACCEPTANCE ational Depositary Authority accepts the microorganism identified to original deposit).	under 8. above, which was received by it on 2001-02-08
	PT OF REQUEST FOR CONVERSION	
The microo and a reque for convers	rganism identified under I above was received by this International st to convert the original deposit to a deposit under the Budapest ion).	Il Depositary Authority on (date of original deposit) Treaty was received by it on (date of receipt of request
V. INTERN	VATIONAL DEPOSITARY AUTHORITY	
Name:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):
Address:	Mascheroder Weg 1b D-38124 Braunschweig	U, Weils Date: 2001-02-19

Form DSMZ-BP/4 (solc page) 0196

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired.

INTERNATIONAL FORM

Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK

> VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSI	TOR	II. IDENTIFICATION OF THE MICROORGANISM
Address:	Novozymes A/S Krogshøjvej 36 2880 Bagsvaerd DENMARK	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 14051 Date of the deposit or the transfer!: 2001-02-08
III. VIABII	LITY STATEMENT	
On that dat	ty of the microorganism identified under II above was tested on Zie, the said microorganism was (c) viable (c) no longer viable (TIONS UNDER WHICH THE VIABILITY TEST HAS BEEN P	•
	THORS UNDER WHICH THE VIRBILITY TEST HAS BEEN P	ERFORMED
v. Intern	NATIONAL DEPOSITARY AUTHORITY	
Name: Address:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg Ib D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): One 2001-02-19

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative.

Form DSMZ-BP/9 (sole page) 0196