

Exploring the robustness of t-based procedures

Non-normality

If the population distribution is not normal, are the t-procedures valid?

If the t-procedures "perform well" even if some of the assumptions under which they were developed do not hold, then they will be called robust.

Simulation

To check whether a procedure is robust, it is relatively easy to use simulation:

- 1. Simulate data from a variety of different probability distributions.
- 2. Run the procedure (e.g., build a one-sample t-interval)
- 3. Compare the results of the procedure to what should have happened. (e.g., for a large number of Cls, approximately 95% of 95% Cls should capture the parameter value)

% of one-sample 95% CIs that are successful when population is non-normal.

	Bell- shaped	Short- tailed	Long- tailed	Mild Skew	Moderate Skew	Strong Skew
n						
5	95.3	94	96.3	91.6	91.8	89.8
10	95.9	94	96.3	93.3	93.2	90.8
25	95.3	95.4	95.9	93.8	93.5	90.3
50	94.8	94.3	96.3	94.1	94	93.8
100	95.3	95.7	94.9	95.1	95.9	94.6

One-sample t-procedures

Robustness against departures from Normality:

- 1. If the population distribution is roughly symmetric and unimodal, then the procedure works well for sample sizes of at least 10–15 (just a rough guide)
- 2. For skewed population distributions, the t-procedure can be substantially affected, depending on the severity of the skew and the sample size.
- 3. t-procedures are not resistant to outliers.
- 4. If observations are not independent, the results can be misleading.

% of 95% two-sample pooled CIs that are successful when the two populations are non-normal (with same shape, SD, and sample sizes)

	Short-tailed	Long-tailed	Mild Skew	Moderate Skew	Strong Skew
n					
5	94.5	98.3	95.2	95.4	95.5
10	94.6	98.3	95.2	95.4	95.5
25	94.9	98.2	95.1	95.3	95.3
50	95.2	98.1	95.1	95.3	95.1
100	95.6	98	95	95.3	94.8

Two-sample pooled-procedures

Robustness against departures from Normality:

- 1. If the populations have equal variances and approx. the same shapes, and if sample sizes approx. equal, then moderately affected by heavy-tails and skew.
- 2. If the populations have equal variances and approx. same shape, but rather different sample sizes, then moderately affected by heavy-tails and substantially by skew.
- If the skewness of the two populations differs considerably, the tools can be very misleading with small and moderate sample sizes.

Unequal Variances

If the sample variances are not equal, how does the pooled t-procedure perform?

% of 95% two-sample pooled CIs that are successful when the two populations have different SDs, but are normal with possible different sample sizes.

		σ_2/σ_1					
n1	n2	1/4	1/2	1	2	4	
10	10	95.2	94.2	94.7	95.2	94.5	
10	20	83	89.3	94.4	98.7	99.1	
10	40	71	82.6	95.2	99.5	99.9	
100	100	94.8	96.2	95.4	95.3	95.1	
100	200	86.5	88.3	94.8	98.8	99.4	
100	400	72.6	81.5	95	99.5	99.9	