CHAPTER

7

Optimum Design with MATLAB®

7.1 -	·
	Formulate and solve Exercise 3.34 Optimum solution: $x_1^* \doteq 103.0 \text{ mm}$, $x_2^* \doteq 0.955$, $f^* \doteq 2.9 \text{ kg}$; shear stress, and buckling constraint are active.
7.2	
	Formulate and solve Exercise 3.35 Optimum solution: $d_0^* \doteq 103.0 \text{ mm}$, $d_i^* \doteq 98.36 \text{ mm}$, $f_i^* \doteq 2.9 \text{ kg}$; shear stress, and buckling constraints are active.
7.3 -	Formulate and solve Exercise 3.36 Optimum solution: $R^* = 50.3$ mm, $t^* = 2.35$ mm, $t^* = 2.9$ kg; shearing stress, and buckling constraints are active.
7.4 ⁻	Formulate and solve Exercise 3.50 Optimum solution: $A_1^* \doteq 300 \text{ mm}^2$, $A_2^* \doteq 50.0 \text{ mm}^2$, $f_2^* \doteq 7.0 \text{ kg}$; member 1 stress constraint is active.
7.5	Formulate and solve Exercise 3.51 Optimum solution: $R^* \doteq 130$ cm, $t^* \doteq 2.86$ cm, $t^* \doteq 57000$ kg; combined stress constraint, and (diameter/thickness) ratio constraint are active.
7.6* 7.7*	Formulate and solve Exercise 3.52 Optimum solution: $d_0^* \doteq 41.56$ cm, $d_i^* \doteq 40.19$ cm, $f_i^* = 680.0$ kg; top deflection constraint, and (diameter/thickness) ratio constraint are active.
	Formulate and solve Exercise 3.53 Optimum solution: $d_o^* \doteq 1310$ mm, $t^* \doteq 14.2$ mm, $t_o^* \doteq 92,500$ N; maximum deflection constraint, and (diameter/thickness) ratio constraint are active.
7.8*	Formulate and solve Exercise 3.54 Optimum solution: $H^* = 50.0$ cm, $D^* \doteq 3.42$ cm, $f^* \doteq 6.6$ kg; buckling load constraint, and maximum height constraint are active.

7.9

Problem formulation: Minimize f = bh;

subject to
$$g_1 = 1.0 - [3gkEI/(3WEI + kWL^3)]^{1/2}/8.0 \le 0$$
, where $I = bh^3/12$,

and
$$0.5 \le b \le 1.0$$
, $0.2 \le h \le 2.0$.

Solution: Initial design: b = 0.5, h = 0.2, optimum solution; $b^* = 0.5$ in, $h^* = 0.28107$ in, $f^* = 0.28107$ in $f^* = 0.28$

 0.140536 in^2 , active constraints (Lagrange multiplier); $g_1(0.54523)$, lower limit on b(0.0936936).

7.10

Formulation: Units of N and cm are used

- 1. Design variables: $x_1 = b$, $x_2 = t_1$, $x_3 = t_2$, $x_4 = h$
- 2. Cost function: $f = L(2x_1x_2 + x_3x_4) = 150(2x_1x_2 + x_3x_4)$
- 3. Constraints:

$$\langle \text{axial stress} \rangle g_1 = (Mc/I + P\cos\theta/A)/\sigma_a - 1.0 \le 0,$$

where
$$M = PL\sin\theta$$
, $c = x_2 + x_4/2$, $I = \left[x_1(2x_2 + x_4)^3 - (x_1 - x_3)x_4^3\right]/12$, $A = 2x_1x_2 + x_3x_4$

$$P = 70000$$
, $L = 150$, $\theta = 45^{\circ}$, $\sigma_a = 10000$;

$$<$$
shear stress $> g_2 = (VQ/Ix_3)/\tau_a - 1.0 \le 0$,

where
$$V = P\sin\theta$$
, $Q = x_1x_2(x_2 + x_4)/2 + x_3x_4^2/8$, $\tau_a = 6000$;

$$<$$
deflection $> g_3 = [(P\sin\theta)L^3/(3EI)]/\Delta - 1.0 \le 0$, where $\Delta = 1.5$;

$$<$$
buckling $> g_4 = 1.0 - \pi^2 EI / (4L^2 P \cos \theta) \le 0, g_5 = 1.0 - \pi^2 EI / (4L^2 P \cos \theta) \le 0,$

where
$$I' = x_1^3 x_2 / 6 + x_3^3 x_4 / 12$$
;

$$<$$
design limits $> x_1 \ge 10, x_2 \le 1, x_3 \le 1.5, x_4 \le 15.$

Initial design;
$$x_1 = 60$$
, $x_2 = 0.9$, $x_3 = 0.9$, $x_4 = 14$,

Optimum; $x_1^* = 50.4437$ cm, $x_2^* = 1.0$ cm, $x_3^* = 0.52181$ cm, $x_4^* = 15.0$ cm, $f^* = 16307.2$ cm³, active constraints (Lagrange multipliers); $g_1(15502.0)$, $g_2(805.224)$, upper limit of $x_2(154.797)$, upper limit of $x_4(14641.4)$.

7.11 -

Formulation:

- 1. Design variables; $b_i = A_i$, $b_{i+3} = x_i$, i = 1 to 3.
- 2. Cost function; $f = \text{volume of truss members} = \sum_{i=1}^{3} b_i L_i = \sum_{i=1}^{3} b_i \left[L^2 + b_{i+3}^2\right]^{1/2}$
- 3. Constraints (18 stress constraints)

$$g_j = \sigma_1/5000 - 1.0 \le 0, \ j = 1,2,3; \ g_{3+j} = -\sigma_1/5000 - 1.0 \le 0, \ j = 1,2,3;$$

$$g_{6+j} = \sigma_{2/2} / 20000 - 1.0 \le 0, \ j = 1,2,3; \ g_{9+j} = -\sigma_{2/2} / 20000 - 1.0 \le 0, \ j = 1,2,3;$$

$$g_{12+j} = \sigma_{3j}/5000 - 1.0 \le 0, \ j = 1,2,3; \ g_{15+j} = -\sigma_{3j}/5000 - 1.0 \le 0, \ j = 1,2,3;$$

4. Design variable limits (arbitrary) $1.0E-10 \le b_i \le 20$, in²; $-10.0 \le b_{i+3} \le 10.0$, in, i = 1,2,3

<u>Solution</u>: Initial design: $b_1 = b_2 = b_3 = 6.0$, $b_4 = b_6 = 0.5$, $b_5 = 0.0$,

Optimum solution: $b_1^* = A_1 = 1.4187$, $b_2^* = A_2 = 2.0458$, $b_3^* = A_3 = 2.9271$ in², $b_4^* = x_1 = -4.6716$,

 $b_5^* = x_2 = 8.9181$, $b_6^* = x_3 = 4.6716$ in, $f^* = 75.3782$ in³, active constraints (Lagrange multipliers); $g_3(27.411)$, $g_7(4.86191)$, $g_{11}(0.0)$, $g_{13}(20.5489)$, $g_{17}(22.5562)$.

7.12 -

Formulation: Minimize $f = (x_2 - x_3)^2$;

subject to $h_1 = \phi^2 x_1 (x_1 - x_2 + x_3) / x_2 x_3 - 1 = 0$, $h_2 = 1.0 - x_2 (1 - x_1 + x_2) / \phi^3 x_1 = 0$,

and design bounds $1.0E-10 \le x_1, x_2, x_3 \le 1000.0$

Solution for $\phi = \sqrt{2}$, $x^{(0)} = (1, 1, 1)$;

Optimum; $x_1^* = 2.4138$, $x_2^* = 3.4138$, $x_3^* = 3.4141$, $f^* = 1.2877 \times 10^{-7}$. Active constraints (Lagrange multipliers); $h_1(-0.007119)$, $h_2(0.003528)$. [Program used; IDESIGN; 8 iterations]

Solution for $\phi = 2^{1/3}$, $x^{(0)} = (1,1,1)$.

Optimum; $x_1^* = 2.2606$, $x_2^* = 2.8481$, $x_3^* = 2.8472$, $f^* = 8.03 \times 10^{-7}$.

Active constraints (Lagrange multipliers); $h_1(-5.47\times10^{-6})$, $h_2(1.6236\times10^{-6})$.