A. WHY DIGEST FOOD?

- To make it smaller so it can pass through the small intestine wall and enter the blood.
- To make it soluble so it can dissolve in the blood and be transported to cells.

B. THE HUMAN ALIMENTARY CANAL

- The **epiglottis** is a flap of skin that **covers** the **trachea**, when **eating** or **drinking**, to **prevent food** and **water** from **entering** the **lungs**.
- This explains why you stop breathing when drinking.

C. FUNCTIONS OF THE DIFFERENT ORGANS

ORGAN	FUNCTION
моитн	Ingestion and chewingCarbohydrate digestion starts here
OESOPHAGUS	Lined with mucus to help swallowing
STOMACH	Kills pathogens in foodProtein digestion starts here
LIVER	• Produces bile
GALL BLADDER	• Stores bile
PANCREAS	 Produces all types of digestive enzyme: amylase (carbohydrase) endopeptidase and exopeptidase (protease) lipase nuclease
SMALL INTESTINE	DigestionAbsorption of digested food
LARGE INTESTINE	Absorption of water
ANUS	Egestion of faeces

D. BILE

- Produced by the liver and stored in the gall bladder.
- Squirted onto food as it enters the small intestine from the stomach.

Function 1: Emulsification

Function 2: Neutralisation & Optimum pH

- Bile is an alkali. This allows it to:
 - neutralise the acid in food coming from the stomach
 - provide the optimum pH for enzymes to work in the small intestine

E. STARCH DIGESTION

- Starch is made from two types of molecule:
- **Amylose** (unbranched with α1-4 glycosidic bonds)
- **Amylopectin** (branched with α1-4 and α1-6 glycosidic bonds)

Three enzymes are needed to fully digest starch:

- Amylase
- Maltase
- Dextrinase

Amylase is produced by the **mouth** and **pancreas**

Maltase and dextrinase
are produced by the
pancreas and
microvilli membranes of
the small intestine

1. AMYLASE

Amylase can only partially digest amylopectin as it cannot break α1-6 bonds.

2. MALTASE

3. DEXTRINASE

F. DIGESTIVE ENZYMES

ENZYME	WHERE IT IS PRODUCED	WHAT IT BREAKS DOWN	WHAT IS PRODUCED	
AMYLASE	SALIVARY GLANDS (MOUTH) PANCREAS	STARCH	MALTOSE DEXTRINS	
MALTASE	PANCREAS	MALTOSE	GLUCOSE	
DEXTRINASE	MICROVILLI MEMBRANES	DEXTRINS	GLUCUSE	
ENDOPEPTIDASE	STOMACH	PROTEIN	SHORTER PEPTIDES	
EXOPEPTIDASE	PANCREAS	SHORTER PEPTIDES	AMINO ACIDS	
LIPASE	PANCREAS	LIPID / FAT / TRIGLYCERIDE	GLYCEROL & FATTY ACIDS	

= fully digested

Why should humans not eat lots of grass?!

- Cows contain **bacteria** that produce an enzyme called **cellulase**.
- Cellulase digests the cellulose in plant cell walls to glucose.
- Humans do not produce cellulase.

G. STRUCTURE OF THE SMALL INTESTINE

- Contraction of circular muscles behind food = prevents food going backwards
- Contraction of longitudinal muscles at food = moves food forward

Contraction of both sets of muscles

- 1. produce waves that push the food along = peristalsis
- 2. mixes food with enzymes in the small intestine = faster digestion

H. A VILLUS

I. METHODS OF ABSORPTION

METHOD	WHAT IT IS	EXAMPLES
SIMPLE DIFFUSION	 Molecules travel: DOWN a concentration gradient from HIGH → LOW concentration through the PHOSPHOLIPID BILAYER 	Hydrophobic molecules e.g. fatty acids & monoglycerides
FACILITATED DIFFUSION	 Molecules travel: DOWN a concentration gradient from HIGH → LOW concentration through CHANNEL PROTEINS in the membrane 	Hydrophilic molecules e.g. glucose and fructose
ACTIVE TRANSPORT	 Molecules travel: AGAINST a concentration gradient from LOW → HIGH concentration through PUMP/CARRIER PROTEINS in the membrane. 	e.g. minerals such as calcium, sodium, potassium. Iron
ENDOCYTOSIS	 SMALL DROPLETS OF FLUID are passed through the membrane using VESICLES 	e.g. triglycerides & cholesterol

• In exams, you are expected to know the method **name**, **what it is** and to give **examples** of **substances** that are transported in this way.