

Período 2

Clusterização

Aprendizado Supervisionado

- Na classificação, se quer prever a classe ou categoria de uma observação.
- Na regressão, se quer prever um valor contínuo, como o preço de um produto ou a temperatura

Aprendizado Não Supervisionado

 Usa algoritmos de machine learning para analisar e agrupar conjuntos de dados não rotulados. Esses algoritmos descobrem padrões ocultos ou agrupamentos de dados sem a necessidade de intervenção humana.

Introdução

O que é Clusterização?

Clusterização (ou clustering) é uma técnica de aprendizado não supervisionado usada para agrupar dados semelhantes em grupos chamados clusters, sem a necessidade de rótulos prévios.

Aplicações:

- Encontrar padrões e estrutura nos dados
 Identificar grupos naturais dentro do conjunto de dados
- Melhorar a organização e análise das informações

Objetivo

Os grupos são formados de maneira a maximizar a similaridade entre os elementos de um grupo (similaridade intra-grupo) e minimizar a similaridade entre elementos de grupos diferentes (similaridade inter-grupos)

Por que usar Clusterização?

Identificação automática de padrões sem supervisão

Redução de dimensionalidade e simplificação de dados

Auxilia na tomada de decisão baseada em grupos

Por que usar Clusterização?

Identificação automática de padrões sem supervisão

Redução de dimensionalidade e simplificação de dados

Auxilia na tomada de decisão baseada em grupos

Cliente	Renda Mensal (R\$)	Gastos Menais (R\$)	
João	10.000	6.000	
Maria	3.000	3.000 1.000	
Andressa	5.000	2.500	
Pedro	2.000	500	

Por que usar Clusterização?

Identificação automática de padrões sem supervisão

Redução de dimensionalidade e simplificação de dados

Auxilia na tomada de decisão baseada em grupos

Cliente	Renda Mensal (R\$)	Gastos Menais (R\$)	Cluster (Exemplo)
João	10.000	6.000	Gastador
Maria	3.000	1.000	Econômico
Andressa	5.000	2.500	Moderada
Pedro	2.000	500	Econômico

Funcionamento do K-means

1. Inicialização:

Escolha K centróides aleatórios do conjunto de dados.

2. Atribuição:

Atribua cada ponto de dado ao centróide mais próximo.

3. Recalcular Centroides:

 Recalcule os centroides como a média dos pontos de cada grupo.

4. Repetir:

 Repita os passos 2 e 3 até que os centróides não mudem mais (convergência).

Conjunto de Dados

Inicialização

Atribuição

Recalcular os Centroides

Resultado Final

Inércia

$$ext{Inertia} = \sum_{i=1}^n (x_i - C_k)^2$$

Inércia

Descobrir o Número de Clusters

Diferentes Modelos

Obrigado!

