AN - 1994-222740 [27]

AP - JP19920298683 19921109; [Previous Publ. JP6158591]; JP19920298683 19921109

CPY - MITY

DC - F09 G02 P42

DR - 1278-U

FS - CPI;GMPI

IC - B05D1/30; B05D7/00; B05D7/24; D21H19/38; D21H23/48

MC - F05-A06B G02-A05C

PA - (MITY) MITSUBISHI PAPER MILLS LTD

PN - 123222224B2 B2 20011022 DW200169 D21H19/38 009pp

- JP6158591 A 19940607 DW199427 D21H19/38 009pp

PR - JP19920298683 19921109

XA - C1994-102335

XIC - B05D-001/30; B05D-007/00; B05D-007/24; D21H-019/38; D21H-023/48

XP - N1994-175385

- AB J06158591 Prodn. comprises forming a coat layer consisting mainly of pigments on a base material, a coating compsn. contg. 3 to 20 wt.% based on the whole pigments, of satin white is prepd. and the coating compsn. is passed through a gap of up to 120 microns and applied to the base material with a curtain coater.
 - ADVANTAGE The paper has high gloss and smoothness and does not cause uneven printing.
 - In an example, after the following under coating compsn. was applied to wood-free paper with a blade coater in amt. of 8 g/m2, the following upper coating compsn. was passed through a 110 micron mesh filter and applied to the resultant under coat layer with a curtain coater in amt. of 14 g/m2 to obtain pigment coated paper. Under coating compsn ground CaCO3 70 pts., kaolin 30 pts., phosphated starch 9 pts., SBR latex 8 pts., polyacrylic acid-type dispersant 0.1 pts., NaOH 0.1 pts., solid content 61 %, Upper coating compsn. satin white 3.5 pts., ground CaCO3 8 pts., cubic pptd. CaCO3 12 pts, kaolin 46.5 pts., clay 30 pts., polyacrylic acid-type dispersant 0.1 pt, phosphated starch 2 pts., SBR latex 14 pts., solid content 52 %. The coated paper had gloss of 72 % and smoothness of 12 mm Hg. (Dwg.1/1)
- IW PRODUCE PRINT PIGMENT COATING PAPER FORMING COAT LAYER CONTAIN PIGMENT BASE MATERIAL
- IKW PRODUCE PRINT PIGMENT COATING PAPER FORMING COAT LAYER CONTAIN PIGMENT BASE MATERIAL

NC - 001

OPD - 1992-11-09

ORD - 1994-06-07

PAW - (MITY) MITSUBISHI PAPER MILLS LTD

TI - Prodn. of printing pigment-coated paper - by forming coat layer contg. pigments on base material

THIS PAGE BLANK (USPTO)

19 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報(A) 平3-22221

⑤Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)10月1日

H 01 H 33/66

D 6969-5G

> 未請求 請求項の数 13 (全10頁) 審査請求

69発明の名称 改良された軸方向磁場遮断器

> 20特 願 平2-169665

223出 願 平2(1990)6月27日

201990年1月2日30米国(US)30459449 優先権主張

加発 明 者 アーネスト フレツド

アメリカ合衆国 ウイスコンシン州 53005 ブルックリ ベステル

ンフイールド パーリー ストリート 13235

の出 願 人 クーパー インダスト

アメリカ合衆国 テキサス州 77210 ヒューストン ピ ーオーボックス 4446 スイート 4000 フアースト シ

リーズ インコーポレ

テイ タワー (番地なし)

ーテツド

弁理士 中 村 個代 理 人 稔 外7名

- 1.発明の名称 改良された軸方向磁場遮断器
- 2. 特許請求の範囲
- 1. 真空容器内に配置され、主電極を有する第1 の電極構造;

前記真空容器内に配置され、主電極を有する 第2の電極構造;

前記第1及び第2の電極構造の少なくとも一 方を他方に対して軸方向に移動させる手段;及

前記第1及び第2の電極構造の主電極間に接 触点を与えるために各主電極から伸びる突起を 含み、両主電極が接触した時に両主電極を通っ て流れる電流のための低抵抗通路を維持する手

を具備する真空遮断器。

2. 第1の電極構造が;

第1の端と第2の端とを有する円筒形導体: 及び

互に間隔をおき、前記円筒形導体の第1の端

と鋭角をなして第1の端から円周方向に伸びる 複数の傾斜したスリット

を含む請求項1記載の真空遮断器。

- 3. 第1の電極構造が、円筒形導体と主電極との 間に挿入されている銅環をも具備する請求項2 記載の真空遮断器。
- 4. 真空容器内に配置されている第1の電極構造: 前記真空室内に配置され、前記第1の電極機 造に向って、または遠去かるように軸方向に運 動可能な対向する第2の電極構造

を具備し;前記各電極構造が均等に円筒形のコ イル導体、主電極、及び前記コイル導体と前記 主電極との間に挿入され前記主電極を通る低抵 抗電流通路を維持する銅環を含む真空遮断器。

- 5. 主電極が、接触点を限定するために主電極の 前面から伸びる突起を含む請求項4記載の真空 遮断器.
- 6. 主電橋が、銅環を受入れるために主電極の背 面の周縁に限定されたみぞを含む請求項5記録 の真空遮断器。

- 7. 主電極上の突起は、背面上のみぞに対応する 主電極の前面の位置において環状の形態を有し ている請求項 6 記載の真空遮断器。
- 8. 円筒形コイル導体が、複数の電流通路を限定する複数の傾斜したスリットを含む請求項 4 記載の真空遮断器。
- 9. 第1の電極構造及び第2の電極構造が、円筒 形コイル導体の一方の端に各電流通路毎に1つ ずつ位置決めされている複数の電気コネクタを 含む請求項8記載の真空遮断器。
- 10. 各電流通路が、円筒形コイル導体上に半巻回を限定する請求項 9 記載の真空遮断器。
- 11. 第1の電極構造上の複数の傾斜したスリット が、第2の電極構造上の複数の傾斜したスリットと実質的に平行に位置決めされている請求項 10記載の真空遮断器。
- 12. 第1の電極構造上の複数の電気コネクタが、 第2の電極構造上の複数の電気コネクタと実質 的に整列されている請求項11記載の真空遮断 器。
- 3. 発明の詳細な説明

(発明の分野)

本発明は真空遮断器に関し、特定的には真空遮断器のための改良された電極構造に関する。 更に特定的には、本発明は真空遮断器の電極の一部を形成している改良された電気コネクタ及び主電極構造に関する。

(発明の背景)

 13. 第1の端板及び第2の端板を有する真空容器; 一部分に複数の電流通路を限定し、各電流通 路の端に電気コネクタが位置決めされている複 数の傾斜したスリットを含み、第1の導体ディ スクに電気的に接続されている第1の管状コイ

前記電気コネクタに電気的に接続されている 第1の導電性の環;

ル遺体:

前記導電性の環に電気的に接続されている第 1 の主電極;

前記第1の主電極の近傍に位置決めされている第2の主電極:

前記第2の主電極に電気的に接続されている 第2の導電性の環;

前記第2の導電性の環に電気的に接続され、一部分に複数の電流通路を限定する複数の傾斜したスリットを含む第2の管状コイル導体を具備する真空遮断器。

によって複数のフィラメント状アーク電流に分散 する。

電気コネクタは、主電極とコイル導体との間の 電流のためのブリッジを提供する。主電極が閉じ た接触位置にあって互に接触している場合には、 電流は主電極間の接触点を通って流れる。従って 電流は、電気コネクタによって限定される通路と 接触点との間の主電極を通って流れる。主電極間 の接触点が各主電極の構造と共に変化するので、 主電極を通る通路を正しく予測することは不可能 である。電流は電気コネクタまでの距離が最短で あり、従ってオーム抵抗が最低である主電極の周 縁を通って流れることが好ましい。しかし多くの 状況においては、接触点は電気コネクタが最長で あり従ってオーム抵抗が遙かに高い主電極の中央 に存在する。抵抗が増加するにつれて熱降伏もま た増加する恐れがある。熱降伏が主電極をそれら の中央部において溶着させることが屢々である。 一旦主電極が溶着してしまうと、それらを分離さ せることは極めて困難になる。

コイル導体内にコイル効果を発生させる合衆国 特許 3.946.179号における隙間の使用は、これら の隙間の領域に軸方向磁場をもたらす。アーク電 流は、軸方向磁場の低強度領域から高強度領域に 向って移動する傾向を有する。従って主電極内へ 流れ込むアーク電流は隙間の領域から違去かるよ うに移動して主電極に局部的な過熱を生じさせる。 主電極の領域全体を電流遮断のために実効的に利 用することはできないから、主電極の寸法の増加 が必要になる。更に主電極が接触している時に、 それらの周縁に電流を維持する手段が存在してい ないため、電流が主電極の中心を通って流れる可 能性が増大する。

なくなる。

合衆国特許 4.871,808号では均一な軸方向磁場が最大化され、それによってアーク電流をより均一に分散させている。軸方向磁場は、均一な円筒形コイル導体を使用して半径方向磁場を減少させることによって最大化されている。加えてこの特許は機械的応力を減少させる構造支持棒も記載している。しかし合衆国特許 4.839.471号と同様に、電流は主電極間の接触点を通過させられる。その結果、電流は主電極の中心を流れる傾向を有し、主電極の抵抗が増加して主電極の寿命を短縮させる。

〔発明の概要〕

従って、本発明は一定の低接触抵抗を呈する小型で級密な真空遮断器を提供する。改良された真空遮断器は、低抵抗電流通路を維持する主電極を有する電極構造を含む。主電極はその中心側に対向主電極と接触するための環状突起を有する。改良された電極構造は、真空容器内の軸方向磁場を増加させるコイル導体をも含む。複数の電気コネ

(実施例)

本発明の真空遮断器は合衆国特許 4,839,481号 及び同 4,871,888号に記載の遮断器の改良された 設計である。

第1図に示す本発明の好ましい実施例に従って 製造された真空遮断器は、真空容器15、容器 15の中心軸に沿って変位する可動電極構造25、 真空容器15の中心軸に沿って可動電極構造25 に対向して配置されている静止電極構造30、及

3 0 の中心軸に沿って伸びる構造支持棒 2 3 を具備する。

好ましい実施例に従って製造されたコイル導体 20は、コネクタ区分61に一体取付けされてい る円筒形構造44を具備する。円筒形構造44は、 内端51、外端59、及び円筒形構造44の軸方 向全長に沿って加工されている複数の傾斜したス び容器 1 5 内で可動電極構造 2 5 を軸方向に変位させるためのベロー 2 8 を含む。可動電極構造 2 5 を静止電極構造 3 0 から変位させると、 2 つの電極構造間を流れる電流は後述するように電極間の間隙にまたがってアークを発生させる。

第1図の真空容器15は、円筒形部材10の両端に取付けられている一対の端板8、9を備えていることが好ましい。端板8、9の形状は円形であり、その半径は1であって中心円形開口14を有している。円形部材10の半径1を有し、電気・ 銀材料で作られている。端板8、9は円筒形部材10の両端に固定され、これらの端を封じて容器15内に制御された環境を限定する。

第1図、第2図及び第4図を参照する。好ましい実施例に従って製造された静止電極構造30は、端板9の中心開口14を通って伸びる外部導体棒35、一端を導体棒35に電気的に接続されている円筒形のコイル導体20、コイル導体20に電気的に接続されている調環65、網環65に電気的に接続されている主電極17、及び電極構造

リット26を具備する。円筒形構造44及びコネ クタ区分61は導電材料で作られている。コネク 夕区分61は支持棒23を受入れるためにその中 を貫通して伸びる孔81及び棒35を受けるため に外部端11に設けられている凹み16を含む。 スリット26は円筒形構造44からコネクタ区分 61内へ続き、孔81と交差する。コネクタ区分 61は孔16内で棒35のリップ39と係合する。 スリット26は円筒形構造44の内端59から伸 び、コイル導体20の周縁に沿って約180°に 亘って螺旋している。複数のスリット26はコイ ル連体20の表面に沿って等間隔に離間し、コイ ル導体20の周縁にほぼ半巻回ずつの複数の電流 通路55を限定している。第2図の好ましい実施 例では3つのスリット26が設けられ3つの電流 通路55を限定している。しかし、スリット26 の数 (2 よりは多い)は随意である。各スリット 26とコイル20の内端51とがなす傾斜角は任 意に選択して差支えないが、好ましい実施例にお いては約20°である。

特別平3-222221 (5)

円筒形コイル導体 2 0 の内端 5 1 は、電流通路 5 5 に 1 つずつ組合わされている複数の電気 コネクク 1 2 を通して主電極 1 7 に電気的に接続されている・第 2 図の好ましい実施例に示すように、或は主電極 1 7 の隣接表面上に形成された一体の突起からなることができる・変形として、コネクタ 1 2 はスリット 2 6 に隣接する電流通路 5 5 の端においてコイル導体 2 0 の内端 5 1 に恒久的に取付けた導電クリップからなっていてもよい。

調環 6 5 はコイル導体 2 0 の電気コネクタ 1 2 と主電極 1 7 との間に挿入される。調環 6 5 はコイル導体 2 0 の外径と等しい外径と、コイル導体・2 0 の内径に等しい内径とを有することが好ましい。

第2図、第4図及び第6図を参照する。主電極 17は銅環65を通してコイル導体20の電気コネクタ12に電気的に接続されている導電性円形 ディスクからなる。主電極17はクロム銅製であることが好ましく、コイル導体20の直径にほぼ

第1図に示す可動電極構造25は、上記静止電極構造30と実質的に同一に製造される。唯一の相違は、コイル導体95の外部端11′がベロー28内に受入れられていることである。

ベロー28は普通の、どのようなベロー組立体であってもよく、内端75がコイル導体20の外部端11′と係合し、外端77が端板8に取付けられ、そしてボディ部分80を通して外部導体棒35′が伸びている。ベロー28は、棒35′上に取付けられ棒35′を軸方向に移動させるアクチュエータ(図示せず)によって駆動する。

可動電極構造25のコイル導体95は、コイル 導体20と同様に、複数の電流通路56を限定す る複数のスリット27及び電気コネクタ24を具 備する。更に、主電極17′と電気コネクタ24 との間の電流の流れを容易ならしめるために調理 65′が設けられている。傾斜したスリット26、 27は、互にほぼ平行となり且つ電気コネクタ 12、24が直接整列するように位置決めされている。動作時に可動電極構造25が静止電極構造 等しい直径を有する。主電極17は、対向する電極構造の主電極17と対面する内面57と、コイル導体20の内端51及び隣接する銅環65に対面する背面48とを含む。

主電極17の内面57は、主電極17の周縁に沿う接触面を形成する環状突起85を含む。即ち、主電極は閉じた位置にある時には突起85において互に接続し合うのである。主電極17の背面48は銅環65を受入れるための周縁みぞ93を含む。

第1図及び第4図に示す構造支持棒23は高誘って材料製であり、主電極17の背面48に固着されているステンレス鋼製スペーサ42、及びの中心軸に沿って電極構造30を避分46の直径は導体棒35内の孔37の内と、端板9を通い、棒部分46はコイル導体20、端板9を通い、不外部導体棒35内の孔37の中まで伸び、それによって電極構造30を同軸的に整列させる。ル事体20及び主電極17の応力を低下させる。

3 0 から離間して電流を遮断すると、アーク電流が電極構造 2 5 、 3 0 にまたがって流れる。従ってこの電流は 1 つの電流通路 5 5 、コネクタ 1 2 、 調リング 6 5 、ユネクタ 2 4 及び電流通路 5 6 を通って流れる。

以上に本発明の好ましい実施例を合衆国特許 4,837,481 号に記載の電極構造と共に使用することを示した。変形として本発明の原理を他の電極構造と共に使用することが可能である。例えば、本発明は、後述するように合衆国特許 4,871,808 号に記載の電極構造と共に使用可能である。

第3図及び第5図に示す静止電極構造130の変形実施例は、端板109の中心開口114を通って伸びる外部導体棒135、導体ディスク119に電気的に接続されている円筒形コイル導体120に電気的に接続されている主電板117、及び電極構造130の中心軸に沿って伸びる構造支持棒123を具備する。

特別平3~222221 (6)

外部導体棒135は導電材料製であり、外縁138、外縁の外径よりもや、外径を有する内端140、及び外縁138と内端140を含むの存金によっては、その中を軸方向にず139を中心は東海である合い、組囲の指板109に係合器の中では、間回114の内のはそこの外縁135の外縁135の外縁135の外縁135の中ではで、変空容器の中では、135の外縁135の中ではで、変空容器の中では、135の外縁135の中では、135の

導体ディスク119は導電材料製の円板からなり、コイル導体120の外径とほぼ同一の外径を有する。導体ディスク119は、導体棒135の内端140を貫通させるための軸方向に伸びる開口149をも含む。導体ディスク119は端板9に固着され、その開口149は端板109の中心開口114と同軸的に整列される。棒135の内

円筒形コイル導体120の内端151は、、電流 通路155に1つずつ組合わされている複数気質 気コネクタ112を通して主電極117にに 最近 電気 では 第5図の変形 実施 例に 示いて できる。 コネクタ112は 銅環165に 恒久 リッコネクタ112は 銅像155の終りの 個所で で 流通路155の終りの のの いっこ で ない で とい で は 151上に 一体形成 された 突起からなって いて もよい・

電気コネクタ112が形成されている網環 165の外径は円筒形コイル導体120の外径に ほぼ等しく、また内径は円筒形コイル導体120 の内径よりもやゝ小さい。

第3図、第5図及び第6図を参照する。主電極 117は前記好ましい実施例と同一の構造を有し、 銅環165に電気的に接続されている導電性円形 ディスクからなる。主電極117はコイル導体 120の直径にほぼ等しい直径を有し、対向電極 端140は導体ディスク119の開口149を通って伸び、電極構造130に構造的安定性を与える。

変形実施例による円筒形コイル導体120は均 一な円筒形構造144からなり、導体ディスク 119と係合する外端147、内端151、及び 円筒形構造144内に加工されている複数の傾斜 したスリット126を含む。固定された直径を有 する進電材料製の円筒形構造 144は導体ディス ク119に電気的に接続されている。スリット 126は円筒形構造144の内端151から伸び、 円筒形構造144の周縁を約180°に亘って螺 旋している。複数のスリット126は円筒形構造 144の表面に沿って等間隔に離間し、円筒形コ イル導体120の周縁にほぼ半巻回ずつの複数の 電流通路155を限定している。しかし、スリッ ト126の数(2よりは多い)は随意である。各 スリット126とコイル120の内端151とが なす傾斜角は任意に選択して差支えないが、好ま しい実施例においては約20°である。

構造の主電極117に対面する内面157と、コイル事体120の内端151及び隣接する電気コネクタ112に対面する背面148とを限定している。

主電極117の内面157は、主電極117の 周縁に沿う接触面を形成する環状突起185を含む。即ち、主電極117は閉じた位置にある時に は突起185において互に接触し合うのである。 主電極117の背面148は銅環165を受入れるための周縁みぞ193を含む。

第3図及び第5図に示す構造支持棒123は高誘電材料製であり、主電極117の背面に固着されているスペーサ142、及び容器15の中心軸に沿って電極構造130を通って伸びる棒部分146を含む。支持棒123の棒部分146のの直径は導体棒135内の孔137の中まで伸び、これによって電流構造130を同軸的に整列させ、コイル導体120

及び主電極117の応力を低下させる。

第3図に示す可動電極構造 1 2 5 は、上記静電極構造 1 3 0 と実質的に同一に製造される。可動電極構造 1 2 5 の更なる詳細は合衆国特許4.871.828 号に記載されている。

以上に本発明の好ましい実施例を図示し、説明 したが、当業者ならば本発明の思想から逸脱する ことなく多くの変更が可能であろう。

4. 図面の簡単な説明

第1図は本発明による真空遮断器の概要側断面 図であり、

第2図は第1図に示す2つの電極構造の一方の 部分断面側面図であり、

第3図は第2図に示す電極構造の変形の部分断 面側面図であり、

第4図は第2図に示す真空遮断器内に組込まれる2つの電極構造の一方の分解斜視図であり、

第5図は第3図に示す変形電極構造の分解斜視 図であり、

第6図は第1図に示す2つの主電極の一方の側

断面図である。

8.9.109……端 板、

10 … … 円筒形部材、

12,24,112……電気コネクタ、

15 ……真空容器、

17.117……主電極、

20.95.120……コイル導体、

23,123……構造支持棒、

25……可動電極構造、

26. 27, 126……傾斜したスリット、

28 ~ ... ~ ...

30,130……静止電極構造、

3 5 . 1 3 5 … … 外部導体棒、

44,144……円筒形構造、

46,146……棒部分、

48,148……背面、

51,151……内端、

55.56,155……電流通路、

5 7 … … 内 面、

5 9 … … 外 端、

6 1 ……コネクタ区分、

65,165……銅 環、

80……ボディ部分、

8 5 . 1 8 5 … … 環状突起、

93,193……周縁みぞ、

119……導体ディスク。

FIG. 1

