Teorema 5.7.10 Teorema de resumen (punto de vista 7)

Sea A una matriz de $n \times n$. Entonces las siguientes diez afirmaciones son equivalentes; es decir, cada una implica a las otras nueve (si una se cumple, todas se cumplen).

- i) A es invertible.
- ii) La única solución al sistema homogéneo Ax = 0 es la solución trivial (x = 0).
- iii) El sistema $Ax = \mathbf{b}$ tiene una solución única para cada vector de dimensión n **b**.
- iv) A es equivalente por renglones a la matriz identidad, I_n , de $n \times n$.
- v) A se puede expresar como el producto de matrices elementales.
- vi) La forma escalonada por renglones de A tiene n pivotes.
- vii) Las columnas (y renglones) de A son linealmente independientes.
- viii) det $A \neq 0$.
- ix) $\nu(A) = 0$.
- **x)** $\rho(A) = n$.

Más aún, si una de ellas no se cumple, entonces para cada vector $\mathbf{b} \in \mathbb{R}^n$, el sistema $A\mathbf{x} = \mathbf{b}$ no tiene solución o tiene un número infinito de soluciones. Tiene un número infinito de soluciones si y sólo si $\rho(A) = \rho(A, \mathbf{b})$.

RESUMEN 5.7

• El espacio nulo de una matriz A de $n \times n$ es el subespacio de \mathbb{R}^n dado por

$$N_A = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}$$

- La nulidad de una matriz A de $n \times n$ es la dimensión de N_A y se denota por v(A).
- Sea A una matriz de $m \times n$. La imagen de A, denotado por imA, es el subespacio de \mathbb{R}^m dado por

$$\operatorname{im} A = \{ \mathbf{y} \in \mathbb{R}^m : A\mathbf{x} = \mathbf{y} \text{ para alguna } \mathbf{x} \in \mathbb{R}^n \}$$

- El rango de A, denotado por $\rho(A)$, es la dimensión de la imagen de A.
- El **espacio de los renglones de** A, denotado por R_A , es el espacio generado por los renglones de A y es un subespacio de \mathbb{R}^n .
- El espacio de las columnas de A, denotado por C_A es el espacio generado por las columnas de A y es un subespacio de \mathbb{R}^m .
- Si A es una matriz de $m \times n$, entonces

$$C_A = \operatorname{im} A \operatorname{y} \operatorname{dim} R_A = \operatorname{dim} C_A = \operatorname{dim} \operatorname{im} A = \rho(A)$$

Más aún,

$$\rho(A) + v(A) = n$$

• El sistema $A\mathbf{x} = \mathbf{b}$ tiene al menos una solución si y sólo si $\rho(A) = \rho(A, \mathbf{b})$, donde (A, \mathbf{b}) es la matriz aumentada que se obtiene al agregar la columna del vector \mathbf{b} a A.