Discrete Mathematics. (8-12)

Variety – Names

DMS = Discrete Mathematical structures

DM = Discrete Mathematics

DS = Discrete Structures

MFCS = Mathematical Foundation for computer Science

ehapter wise

- Mathematical Logic
- Set Theory & Algebraic Structures
- Combinatorics 111
- IV. Graph Theory

- 1) Propositional Logic?
 2) First-order Logic.
- 3) Set Theory /
- 4) Relations
- 5) Partial-orderings
- 6) Functions
- Algebraic Structures (Groups)
- 8) Combinatorics,
- Graph Theory

Eng naths

- 1) Linear algebra
- 2) Probability
- 3) calculus

Reference Books

- Discrete Mathematical Structure with Applications to Computer Science –

 Tremblay & Manohar
- Discrete Mathematics for Computer Scientist & Mathematicians Mott, Kandell & Baker.
- 3. Discrete Mathematics Kenneth Rosen 8th edition
- 4. Discrete Mathematics C.L.Liu

Set Theory

Set: The collect of well defined objects is known as set $A = \{a,b,c\}, B = \{1,2,3\}$ $a \in A$ $3 \in B$

Cardinality: The number of elements in the given set is known as It's cardinality, represented by IAI (or) n(A)

$$A = 2 a_{11} b_{12} c_{13} d^{3}$$

$$|A| = n(A) = 4$$

*
$$n(AuB) = n(A) + n(B) - n(AnB)$$

* $n(AnB) = n(A) + n(B) - n(AuB)$

* $n(AuBuc) = n(A) + n(B) + n(c) - n(AnB) - n(Bnc) - n(Anc)$

* $+ n(AnBnc)$

* Null Set: A Set with no elements is known as null set

 $\phi = \frac{2}{3}$

* Universal Set: A Set with all possible elements under consideration is

* $\mu = U$

Set A is said to be subset of Set B if all. the elements of A are belongs to B

eg-1: $A = \{1,2\}$ $B = \{1,2,3\}$

 $A \subseteq B$

eg-2: $A = \{1,2,3\}$ $B = \{1,2,3\}$ ACB

Proper Subset: If A is subset of B and $A \neq B$ then. A is known

as proper subset of B

eg: $A = \{1,2\}$ $B = \{1,2,3\}$ Here $A \subset B$

Equal Sets: If $A \subseteq B$ and $B \subseteq A$ then A = Beg: $A = \{a,b,c\}$ $B = \{a,b,c\}$ A = B

Power Set: The Set of all possible Subsets of the given set is known as powerset

example | A = \(\frac{1}{2} \) a, b \(\frac{3}{2} \) Power set of $A = P(A) = {} {}^{}} {}^{}$ £ a, b3 }

A= 2 1,1,2,2,23 $A = \{1,2,3\} \longrightarrow |A| = 3$ $B = \underbrace{2 \underline{113}}, \underbrace{\underline{12.33}}_{3} \underbrace{3} \longrightarrow |B| = 2$ c = 2 21,2,333 ---> |c|=1 £ £133 --- 1

If
$$|A| = 2$$
 then $|P(A)| = 4$
If $|A| = 3$ then $|P(A)| = 8$
If $|A| = 4$ then $|P(A)| = 16$
X If $|A| = n$ then $|P(A)| = a^n$
X If $|A| = n$ then $|P(A)| = a^n$
Then.

(Ph) If there are 2.56 elements in the power set of Set A. Then.

Then $|P(A)| = 356 = 2^8 = 2^n$
 $|n[P(A)] = 356 = 2^8 = 2^n$
 $|n[A] = 8$

 Δ If A = 21,23 Then find 1) P(A) 2) P(P(A)

