CHAPTER 3

INTRODUCTION SEMANTIC WEB

- Web: Linked Documents
- Semantic Web:
 - Resources
 - In the Semantic Web we refer to the things in the world as resources.

1. Distributing Data across the Web

• Why distributing data?

Distribution solution provides considerable flexibility.

- Since the machines can share the **load** of representing information about several.
- Strategies
 - 01. Row by row
 - 02. Column by column
 - 03. Cell by cell
- · Cell by cell
 - Row by row * Column by column
 - Cell by cell has both of benefits
 - Cost
 - Combines the costs of the two strategies
 - Global Reference: Column & Row
 - In fact, each cell has to be represented with three values
 - 01. Global reference for the row
 - 02. Global reference for the column
 - 03. The value in the cell itself.
- Triple

- RDF (Resource Description Framework) Cell by Cell
- Since a cell is represented with three values, the basic building block for RDF is called the **triple**
- Example:

Triple: Subject, Predicate, Object

- Directed Graph
 - One triple refers to the same entity.

H3 3. Merging Data from Multiple Sources

1 + 2 + 3 ==>

13. Namespace, URIs, and Identity

- Uniform Resource Identifiers(URI)
 - How to recognize a node in one graph the same node as a node in another graph?
 - RDF borrows its solution to this problem from foundational Web technology
 - In particular, the **URI** = (Global Identification)
- Qname
 - URI: Too long
 - So for the examples in this book
 - Abbreviation scheme: Qname
 - By a colon (:)
 - · :Shakespeare, :JamesDean, :Researcher
- Standard NameSpace
 - rdf: Indicates identifiers used in RDF. The set of identifiers defined in the standard is quite small and is used to define types and properties in RDF.
 - rdfs: Indicates identifiers used for the RDF Schema language, RDFS.
 - owl: Indicates identifiers used for the Web Ontology Language.

4. Identifiers in the RDF Namespace

- The W3C provide definitions terms
 - such as type, subClassOf, Class, inverseOf, and so forth
 - rdf:type
 - Property that provides an elementary typing system in RDF
 - Example

■ 5. Higher-order Relationships

• Limit

• 'Shakespeare wrote Hamlet' -> O

 $\circ \ \ Subject: Shake speare$

Predicate : wrote Object : Hamlet

 \circ 'Shakespeare wrote Hamlet in 1604' -> X

• Subject : Shakespeare

Predicate: wroteObject: Hamlet????: in 1604???

• Reification

Subject	Predicate	Object
bio:n1	bio:author	lit:Shakespeare
bio:n1	bio:title	Hamlet
bio:n1	bio:publicationDate	1604