Lect#13: Enzyme Engineering and Design

- 1. Protein Engineering
- 2. Engineering Technology
- 3. Engineering Methods
- 4. Engineering proteins to be more stable enzymes
- 5. Engineering a more stable T4 lysozyme

- 6. Disulfide bonds increase T4 lysozyme stability
- 7. Helix stabilization (capping) of T4 lysozyme
- 8. Incorporation of Non-Canonical Amino Acids (NCAA) into Proteins
- 9. Protein Engineering by Combinatorial Methods
- 10. Machine-learning-guided directed evolution for protein engineering

Lecture #13: Enzyme Engineering and Design

Enzyme ENGINEERING and DESIGN

 exciting developments in protein structure is ability to design and construct new proteins or enzymes with novel functions—
 "Bionic Biochemistry"

WILEY-VCH

1. Protein Engineering

- Technology that alters protein structures to improve their properties in applications such as pharmaceuticals, environmental chemistry and biofuels
- Challenge is to build accurate models to predict the best substitutions to prepare candidates to insert into the parent protein
- Involves a combination of experimental and in silico predictions to build the best model

Volume 3

Edited by Stefan Lutz

Protein Engineering

Choosing the Right Strategy

Rational Protein Design

Directed Evolution

Knowledge about structure and mechanism

Molecular modeling

Structural variation and combination Simultaneous saturation mutagenesis

Random mutagenesis

Site-directed mutagenesis

Shuffling Circular permutation CASTing Cassette mutagenesis

epPCR

Size of the screening

Manual screening

HTS of medium-sized libraries

HTS of large libraries

Distribution of mutations in variants

Single amino acid substitutions Hybrids and structural changes Mutations distributed over the gene

2. Overview of Protein Engineering Technology

Goals:

- Increased catalytic function compared to parent enzyme
- Altered specificity, stereospecificity or affinity with interacting partners
- Increased stability

Property	Parameters
Thermostability	T_{m},T_{50}
Catalytic activity	k_{cat} , K_{M} , k_{cat}/K_{M}
Binding specificity	K_{D} , K_{i}
Binding affinity	$\Delta G = -RTln(K_D^{-1})$

Goal 1: Increasing protein (enzyme) thermostability

 Thermostability quantifies the ability of a protein secondary and tertiary structures to withstand high temperatures (avoiding denaturation)

- T₅₀ is the temperature at which 50% of the proteins are inactivated in 10 min
- Increasing thermostability is the **first step** in protein engineering

Goal 2: Evaluating enzyme efficiency

- k_{cat}
 K_M
 k_{cat}/K_M
 Turnover number
 Michaelis constant
 Specificity constant Specificity constant
- For an enzyme acting on two substrates S_A, S_B at rates v_A and v_B

$$\frac{v_A}{v_B} = \frac{k_{cat}^A / K_{M_{(A)}}[S_A]}{k_{cat}^B / K_{M_{(B)}}[S_B]}$$

• At $[S_A] = [S_B]$, then k_{cat}/K_M provides a measure of

substrate promiscuity efficiency

Goal 3: Protein binding affinity and specificity

- Protein-ligand (substrate) binding: interaction with a small molecule
 - Drug target
 - Enzyme-substrate or effector molecule
- Protein-protein interaction: interaction with protein partners or subunits in protein complexes
 - Permanent: in multi-unit proteins
 - Structural or functional role
 - Transient: in signalling, transport and regulation

Fatty acid synthase

3. Protein Engineering Methods

1. Site-directed mutagenesis

Point mutation, deletion or insertion

2. Error-prone PCR (ePCR)

- Modifications of standard PCR methods
- Designed to enhance the natural error rate of DNA polymerase

3. Recombination and DNA shuffling

- Natural approach to making multiple mutations is recombination
- <u>DNA shuffling</u>: perform functional domain or motif shuffling in vitro

4. Engineering proteins to be more stable

Stability of the folded structure depends on many factors

1). Unfavourable conformational entropy change upon folding

- folding is entropically unfavorable = loss of ΔS
- entropy of random coil (denatured protein)
 is >> than the folded native state

favorable
$$\Delta G_{N} = \Delta H - T \Delta S$$
 unfavorable

2). Entropy loss is compensated by favorable enthalpic contacts

- hydrophobic contacts
- H-bonds
- disulfide (S-S) bonds
- van der Waals contacts
- electrostatic interactions

3). Stabilization of the secondary structure (α -helices, β -sheets)

stronger forming residues

helix capping

TABLE 6.8 Correspondence of amino acid residues to protein secondary structure

Relative probabilities of amino acid residue occurrence in different globular protein secondary structures $\!\!^a$

Amino Acid	α Helix (P_{α})	β Sheet (P_{β})	Turn (P_t)
Ala	1.29	0.90	0.78 \
Cys	1.11	0.74	0.80
Leu	1.30	1.02	0.59
Met	1.47	0.97	0.39 Favor α helices
Glu	1.44	0.75	1.00 \int ravor α hences
Gln	1.27	0.80	0.97
His	1.22	1.08	0.69
Lys	1.23	0.77	0.96)
Val	0.91	1.49	0.47
Ile	0.97	1.45	0.51
Phe	1.07	1.32	0.58
Tyr	0.72	1.25	1.05 Favor β sheets
Trp	0.99	1.14	0.75
Thr	0.82	1.21	1.03)
Gly	0.56	0.92	1.64
Ser	0.82	0.95	1.33
Asp	1.04	0.72	1.41 Favor turns
Asn	0.90	0.76	1.23
Pro	0.52	0.64	1.91
Arg	0.96	0.99	0.88 Matthews 4 th ed, 2013

4). Hydrophobic effect

Favourable entropy change arising from burying hydrophobic groups within the protein

effect (favorable)

12

 The greater the hydrophobic buried core of a water-soluble protein, the greater will be the stability

Methods to increase the number of hydrophobic buried residues

in the protein can increase the stability

5. Engineering a more stable T4 lysozyme

- disulfide bridges
- helix capping

Brian Matthews HHMI Univ. of Oregon

- T4 bacteriophage infect *E. coli*
- Helps to release mature phage particles from the host cell wall by digesting the peptidoglycan
- Hydrolyzes 1,4-beta linkages between N-acetyl-D-glucosamine and N-acetylmuramic acid

6. Disulfide bridges increase T4 lysozyme stability

Disulfide bridges

- decrease the number of unfolded conformations by introducing novel disulfide bridges and the more stable will be the newly engineered variant protein
- the longer the loop between the 2
 Cys residues, the more restricted is
 the unfolded polypeptide
 - folded structure will be more stable

must be introduced in proper location otherwise introduce strain into the structure, which will decrease the stability of the protein structure

- Matthews substituted Ile-3, Ile-9, Thr-21, Thr-142, Leu-164 with Cys (separate experiments)
- various combinations of single, double, and triple -S-S- bridges
- Matthews increased the stability of T4 lysozyme by 23°C for the triple variant

7. Helix stabilization (capping) of T4 lysozyme

- Two different variants with single residue substitutions at the Nterminus of two separate helices
 - Ser38 to Asp
 - Asn144 to Asp
 - Double variant (S38D/N144D)
 - Single variants showed T_M increase of 2°C
 - Double variant showed T_M increase of 2 + 2 = 4°C

8. Incorporation of Non-Canonical Amino Acids (NCAA) into Proteins

ACS Biol. (2018) 13, 854-70. Playing with the molecules of life. Peter G Schultz Scripps Res. Inst.

• used to incorporate an amino acid residue that has novel chemistry not found in the naturally occurring amino acids

Peter G Schultz

2020 Nobel
Prize??
505 pubs,
63 in Science
17 in Nature

Applications

 fluorescent reporter groups → protein dynamics, conformation, interactions, etc.

 photo-reactive groups → capturing catalytic events, trapping conformations, etc.

new chemistry for enzymes →
 enhance rates or provide for new reactions

Playing God: Expansion of the genetic code

- An orthogonal tRNA/amino acyl tRNA synthetase pair and ncAA are added and encoded by a nonsense or frameshift codon in the mRNA
- The ncAA is incorporated into the protein at the nonsense site

ACS Chem. Biol. 2018, 13, 4, 854-870

Examples of Unnatural Amino Acids

Box 27-3 figure 2
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Lecture by Peter G Schultz entitled "Synthesis at the Interface of Chemistry" in 2016

https://www.youtube.com/watch?v=X2w0FzAqm_Q

9. Protein Engineering by Combinatorial Methods

- also known as "Directed Protein Evolution"
- combinatorial methods invented to analyze libraries of related proteins
- sorting libraries can select a small number of active proteins from millions of inactive variants
- in nature random DNA mutations ⇒ changes in protein structure are rare
- combinatorial methods <u>accelerate evolution!</u>
- approach is to use random mutagenesis
 - oligonucleotide-directed mutagenesis
 - error-prone PCR
 - mutagenic strains
 - DNA shuffling
- mutagenesis must be followed by a selection process for the desired function

Frances Arnold, CalTech Nobel Prize in Chemistry 2018

Francis Arnold Nobel Lecture 2018: "Innovation by evolution: Bringing new chemistry to life"

- An enzyme whose function is optimized for its native job performs poorly in a new role
- Directed evolution via rounds of mutation and screening can discover changes in sequence that improve performance climbing to a new "fitness" peak

https://www.youtube.com/watch?v=6hOZ5e0g9Uo&t=1s

10. Machine-learning-guided directed evolution for protein engineering

- (1) Directed evolution uses iterative cycles of diversity generation and screening to find improved variants
 - information from unimproved variants is discarded
- (2) Directed evolution is a series of local searches on the function landscape
- (3) Machine learning (ML) methods use the data collected in each round of directed evolution to choose which mutations to test in the next round
 - careful choice of mutations to test decreases the screening burden and improves outcomes
- (4) ML guided directed evolution often rationally chooses the initial points to maximize the information learned from the function landscape
 - allows future iterations to quickly converge to improved sequences