CheatSheet Basics Machine Learning

Chu Duc Thang

April 2021

1 Chapter 1

Introduction to the class. Only 1 page, no important information here

2 Chapter 2: Probability

- 1. Sample space/outcome space vs event space:
 - Sample space: Ω
 - Event space: Subset of sample space, ex: powerset (discrete), Borel Field (continuous)
- 2. Discrete vs Continuous RV
 - Discrete: {}, N, words
 - Continuous: [], R, R^k
- 3. Probability mass function (pmf) vs probability density function (pdf)
 - Pmf: $\Omega \to [0,1]$
 - Pdf: $\Omega \to [0, \infty)$, no singleton event, can be > 1
- 4. Special Distribution
 - Discrete: Uniform (n #outcomes), Poisson (α histogram/likely), Bernoulli (p success)
 - Continuous: Gamma (α, β) , Uniform (a, b), Normal (μ, σ) , Exponential (α)
- 5. Marginal vs Conditional Distribution
 - Marginal: $p(x) = \sum_{y \in Y} p(x, y)$
 - • Conditional: $p(x||y) = \frac{p(y||x)p(x)}{p(y)}$ or p(x,y,z) = p(x||y,z)p(y||z)p(z)
- 6. Expected value vs Conditional Expected value vs Variance

- $E = \sum_{x \in X} x p(x)$
- $E[X||Y] = \sum_{x \in X} xp(x||y)$
- $Var = E[(X E[X])^2] \text{ or } E[X^2] E[X]^2$
- Properties of E: E[c] = c, E[cX] = cE[X], E[X + Y] = E[X] + E[Y], E[XY] = E[X]E[Y] (independence), E[E[Y||X]] = E[Y]
- Properties of Var: Var[c] = 0, $Var[cX] = c^2Var[X]$, Var[X + Y] = Var[X] + Var[Y] + 2Cov(X,Y)
- 7. Covariance vs Correlation
 - Cov = E[XY] E[X]E[Y]
 - Corr = $\frac{Cov(x,y)}{\sqrt{Var(x)}\sqrt{Var(y)}}$
 - Note: $-1 \le Corr \le 1$, but Cov is unbounded
- 8. Independence vs Conditional Independence
 - P(X,Y) = P(X)P(Y)
 - P(X,Y||Z) = P(X||Z)P(Y||Z)

3 Chapter 3: Estimator

- 1. Formula $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 2. Bias: $E[\bar{X}] E[X]$
- 3. Confidence interval: $\Pr(|\bar{X} E[\bar{X}]| < \epsilon) > 1 \delta$

•
$$\mu \in [\bar{X} - \epsilon, \bar{X} + \epsilon]$$

- 4. Chebyshev: Known variance and $\delta = \frac{\sigma^2}{n\epsilon^2}$
- 5. Hoeffding: Bounded between a and b
- 6. Convergence rate: How quickly the error has been reduced
- 7. Sample complexity:
 - As small as possible (data efficiency)
 - $n \ge \frac{v^2}{\delta \epsilon^2}$
- 8. Consistency: As $n \to \infty$, $\epsilon \to 0$ or $\bar{X} \to \mu$
 - Unbiased \rightarrow consistency, but not the vice versa
- 9. Mean-squared error: $MSE = Var(X) + Bias(X)^2$

4 Chapter 4: Optimization

- 1. $w^* = argmin_w c(w)$
- 2. Closed form:
 - Stationary point (c'(w) = 0): local min, local max, saddle point
 - Global min: Boundary point or local min
 - Concave up vs Concave down: $c''(w) > 0 \rightarrow minimum vs c''(w) < 0 \rightarrow maximum$
 - Practical: non-convex function \rightarrow not able to take derivative
- 3. Gradient Descent
 - Taylor series degree 2: Approximate the actual function, then taking the derivative of the approximated function
 - $w_{t+1} = w_t \frac{c'(w_t)}{c''(w_t)}$
 - Difficult to compute $c''(w_t)$, constant stepsize η
 - Chossing stepsize: Too large (overshoot) vs too small (too long to converge)
 - Adaptive stepsize: $\eta_t = argmin_{\eta}c(w_t \eta_t \nabla c(w_t))$
- 4. Properties of Optimization
 - $\operatorname{argmin} c(w) = \operatorname{argmax} c(w)$
 - $\operatorname{argmin} c(w) = \operatorname{argmin} ac(w) = \operatorname{argmin} (c(w) \pm a)$
 - convex function
- 5 Chapter 5: MAP/MLE/Bayesian
- 6 Chapter 6: Optimal predictor
- 7 Chapter 7: Linear/Polynomial Regression
- 8 Chapter 8: Generalization Error
- 9 Chapter 9: Regularization
- 10 Chapter 10: Classification