人工智能之 自動化光學檢測 實務

Yi-Yung Chen

適用影片單元04~單元09

分類(Classification)

- 邏輯回歸
- ▶ 支持向量機(SVM)
- ▶ 核函數支持向量機
- 樸素貝葉斯
- ▶ 決策樹
- ▶ 隨機森林
- ▶ 分類模型性能評價與選擇

邏輯回歸

Classification

From what we know

From Regression

■ If we use regression to be classification

Sigmoid Function

- Regression
- Use Sigmoid Function

$$P = \frac{1}{1 + e^{-y}}$$

S function

Which one is better

支持向量機

What's so Special about SVMs?

The C Parameter

線性可分 vs. 線性不可分

高維投射 (一維)

RBF SVM parameters

- gamma可以看作是模型選擇作為support vectors的樣本的影響半徑的倒數
 - $ightharpoonup \gamma \propto \sigma^{-1}$
- 對於較大的 C,能夠更好地正確分類所有訓練點,但接受較小的邊距。

Hyperparameters

- (
 - The C parameter.
- Kernel
 - The kernel. The most common ones are 'linear', 'poly', and 'rbf'.
- Degree
 - f the kernel is polynomial, this is the maximum degree of the monomials in the kernel.
- Gamma
 - If the kernel is rbf, this is the gamma parameter.

Concepts

- Probabilities (機率)
 - $P(woman) = \frac{50}{100} = 0.5, P(man) = \frac{50}{100} = 0.5$
- Conditional Probabilities (條件機率)
 - $P(long \ hair \ | \ woman) = \frac{25}{50} = 0.5, P(long \ hair \ | \ man) = \frac{2}{50} = 0.04$
 - $P(A \mid B) \neq P(B \mid A)$
- Joint Probabilities (聯合機率)
 - P(woman with long hair) = $P(woman) \times P(long hair \mid woman) = 0.5 \times 0.5 = 0.25$
 - ightharpoonup P(A and B) = P(B and A)
- Marginal Probabilities (邊際機率)
 - ▶ $P(long \ hair) = P(woman \ with \ long \ hair) + P(man \ with \ long \ hair) = 0.25 + 0.02 = 0.27$

Bayesian Inference

- Joint Probabilities
 - $ightharpoonup P(man with long hair) = P(man) \times P(long hair | man)$
 - ▶ $P(long\ hair\ and\ man) = P(long\ hair) \times P(man\ |\ long\ hair)$
 - ightharpoonup P(man with long hair) = P(long hair and man)
- Bayesian Inference
 - $P(man \mid long \; hair) = \frac{P(man) \times P(long \; hair \mid man)}{P(long \; hair)} = \frac{P(man \; with \; long \; hair)}{P(woman \; with \; long \; hair) + P(man \; with \; long \; hair)}$

Bayes Theorem

- Mach1: 30 pcs/hr
 - ► P(Mach1)=0.6
- Mach2: 20 pcs/hr
 - ► P(Mach2)=0.4
- Out of all produced parts: 1% are defective
 - **■** P(Defect)=0.01
- Out of all defective parts: 50% came from mach1
 - ► P(Mach1 | Defect)=0.5, P(Mach2 | Defect)=0.5
- What is the probability that a part produced by mach2 is defective?
 - ► P(Defect | Mach2)=?

https://brohrer.mcknote.com/zh-Hant/statistics/how_bayesian_inference_works.html

 $P(Defect|Mach2) = \frac{P(Mach2|Defect) \times P(Defect)}{P(Mach2)}$

Naïve Bayes Classifier

The First Step

- $P(Walks \mid X) = \frac{P(X \mid Walks) \times P(Walks)}{P(X)}$
 - $P(Walks) = \frac{10}{20+10} = \frac{10}{30}$

The Second Step

- $P(Walks \mid X) = \frac{P(X \mid Walks) \times P(Walks)}{P(X)}$
 - $P(X) = \frac{4}{30}$

The Third Step

- $P(Walks \mid X) = \frac{P(X \mid Walks) \times P(Walks)}{P(X)}$
 - $P(X \mid Walks) = \frac{3}{10}$

Posterior Probability

- $P(Walks \mid X) = \frac{P(X \mid Walks) \times P(Walks)}{P(X)}$
 - $P(Walks \mid X) = \frac{\frac{3}{10} \times \frac{10}{30}}{\frac{4}{30}} = \frac{3}{4}$

健康檢查

Decision Tree

Decision Tree

Hyperparameters for Decision Trees

- Maximum Depth
 - max_depth
- Minimum number of samples to split
 - min_samples_split
- Minimum number of samples per leaf
 - min_samples_leaf

Maximum Depth

- The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
- ► A tree of maximum length k can have at most 2^k leaves.

Minimum number of samples to split

■ The minimum number of samples required to split an internal node.

No split!

If the minimum number of samples to split is 11

Minimum number of samples per leaf

The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least min_samples_leaf training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.

The Features

Feature	Underfitting / Overfitting
Small maximum depth	Underfitting
Large maximum depth	Overfitting
Small minimum samples per split	Overfitting
Large minimum samples per split	Underfitting

隨機森林

集成學習 (Ensemble learning)

- ► Ensemble Learning基本條件
 - 每個分類器之間應該要有差異
 - ▶ 每個分類器準確率需大於0.5
- Bagging (Random Forest : Bagging + Decision tree) [Bootstrap aggregating]
 - 從訓練資料中隨機抽取(取出後放回,n<N)樣本,訓練多個分類器,每個分類器的<mark>權重一致,最</mark> 後用投票方式(Majority vote)得到最終結果
- Boosting (GBDT : Gradient Boost + Decision tree)
 - ▶ 將很多個弱的分類器(weak classifier)進行合成,變成一個強分類器(Strong classifier),和 Bagging不同的是分類器之間是有關聯性的。
 - 透過將舊分類器的錯誤資料權重提高,然後再訓練新的分類器,這樣新的分類器就會學習到錯誤分類資料(misclassified data)的特性,進而提升分類結果。
- AdaBoost (Boosting Tree : AdaBoost + Decision tree)
 - 是一種改進的Boosting分類算法

Bagging

AdaBoost (training)

AdaBoost (weight)

$$weight = \ln\left(\frac{accuracy}{1 - accuracy}\right) = \ln\left(\frac{\#correct}{\#incorrect}\right)$$

$$weight = \ln\left(\frac{7}{3}\right) = 0.84$$

$$weight = \ln\left(\frac{11}{3}\right) = 1.30$$

$$weight = \ln\left(\frac{19}{3}\right) = 1.84$$

Bagging vs. Boosting

▶ 訓練樣本:

- Bagging: 每一次的訓練集是隨機抽取(每個樣本權重一致),抽出可放回,以獨立同分布選取的訓練樣本子集訓練弱分類器。
- Boosting: 每一次的訓練集不變,訓練集之間的選擇不是獨立的,每一次選擇的訓練集都是依賴上一次學習得結果,根據錯誤率(給予訓練樣本不同的權重)取樣。

▶ 分類器:

- Bagging: 每個分類器的權重相等。
- Boosting: 每個弱分類器都有相應的權重,對於分類誤差小的分類器會有更大的權重。
- ▶ 每個分類器的取得:
 - Bagging: 每個分類器可以並行生成。
 - Boosting: 每個弱分類器只能依賴上一次的分類器順序生成。

Introduction

- Problem ↔ Tools ↔ Measurement Tools
- Regression Measures
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - R2 Score
- Classification Measures
 - Accuracy
 - Precision
 - Recall
 - ► F-Beta Score
 - ROC Curve & AUC

混淆矩陣 (Confusion Matrix)

$$Accruacy Rate = \frac{Correct}{Total}$$

$$Error Rate = \frac{Incorrect}{Total}$$

$$Spam_{Folder} Inbox$$

$$Inbox$$

$$100_{True Positives} 170_{False Negatives}$$

$$30_{False Positives} 700_{True Negatives}$$

$$Accruacy\ Rate = \frac{800}{1,000} = 80\%$$

Spam

Not Spam

False Positives

Accruacy Rate = $\frac{9,000}{10,000}$ = 90%

True Negatives

Healthy

準確率悖論 (Accuracy Paradox)

另例,如果A類的發病率占主導地位,在99%的病例中發現,則預測每個病例都是A類,其準確度為99%

	Diagnosed Sick	Diagnosed Healthy		Diagnosed Sick	Diagnosed Healthy
Sick	100 True Positives	50 False Negatives	Sick	O True Positives	150 False Negatives
Healthy	150 False Positives	9,700 True Negatives	Healthy	O False Positives	9,850 True Negatives
$Accruacy\ Rate = \frac{9,800}{10,000} = 98\%$			$Accruacy\ Rate = \frac{9,850}{10,000} = 98.5\%$		

為陽性與偽陰性 (Fales Positives & Fales Negatives)

	False Positives ok False Negatives NOT ok			False Positives NOT ok False Negatives ok		
		Diagnosed Sick	Diagnosed Healthy		Spam Folder	Inbox
	Sick	1,000 True Positives	200 False Negatives	Spam	100 True Positives	170 False Negatives
	Healthy	800 False Positives	8,000 True Negatives	Not Spam	30 False Positives	700 True Negatives
_	High Recall			High Precision		

其他指標

	Diagnosed Sick	Diagnosed Healthy	
Sick	TP	FN Type II Error	
Healthy	FP Type I Error	TN	

$$Accuracy = (TP + TN)/Total$$

$$Precision = TP/(TP + FP)$$

重視Type I Error, ex 門禁系統

$$Recall = TP/(TP + FN)$$

重視Type II Error, ex 疾病檢查

$$F_{\beta} = (1 + \beta^2) \times \frac{precision \times recall}{(\beta^2 \times precision) + recall}$$

 $\beta > 1$, 為了提高 F_{β} ,偏向提升Recall $\beta = 1$, F1 score

 β < 1, 為了提高 F_{β} ,偏向提升Precision

F-beta Score

Precision	F _{0.5} Score	F ₁ Score	F ₂ Score	Recall
$\beta = 0$	門禁系統垃圾郵件		疾病檢查 飛機零件	$eta ightarrow\infty$
	Focus on Type I (False Alarm)		Focus on Type II (False Pass)	
	Precision		Recall	

CAP & ROC

- CAP
 - Cumulative Accuracy Profile
 - TP vs. (TP+TN+FP+FN)
- ROC
 - Receiver Operating Characteristic
 - **■** TP/(TP+FN) vs. FP/(FP+TN)

The CAP is distinct from the receiver operating characteristic (ROC) curve

- ROC plots the true-positive rate against the false-positive rate.
- CAPs are used in robustness evaluations of classification models.

累計準確曲線 (Cumulative Accuracy Profile Curve)

累計準確曲線

累計準確曲線

累計準確曲線

累計準確曲線分析 (CAP Curve Analysis)

累計準確曲線分析

接收者操作特徵 (Receiver Operating Characteristic)

True Positive Rate = $\frac{True \ Positives}{All \ Positives}$

False Positive Rate = $\frac{False\ Positives}{All\ Negatives}$

ROC曲線

- ► 將同一模型每個閾值的 (FPR, TPR) 座標都畫在ROC空間裡,就成為特定模型的ROC曲線
 - ► 當閾值設定為最高時,必得出ROC 座標系左下角的點 (0,0)
 - 當閾值設定為最低時,必得出ROC 座標系右上角的點 (1,1)
 - ▶ 隨著閾值調低,ROC點 往右上(或右/或上)移動,或不動;但絕不會往左下(或左/或下)移動

AUC (Area Under the Curve)

► ROC曲線下方的面積

- ► AUC = 1,是完美分類器,採用這個預測模型時,存在至少一個閾值能得出完美預測。絕大多數預測的場合,不存在完美分類器。
- ▶ 0.5 < AUC < 1,優於隨機猜測。這個分類器(模型)妥善設定閾值的話,能有預測價值。
- ► AUC = 0.5, 跟隨機猜測一樣 (例:丟銅板), 模型沒有預測價值。
- ► AUC < 0.5, 比隨機猜測還差;但只要總是反預測而行,就優於隨機猜測。

感謝聆聽