CS 450Sample Problem Set

Howard Yang

Dec. 29, 2022

0.1Theoretical Problems

Question-1: Consider using the fixed-point iteration to find the root of the following equation

 $x^3+x-1=0.$ When the can construct different forms of fixed-point relationships, e.g., $1) \ x=g_1(x), \text{ with } g_1(x)=1-x^3; \quad \text{not convergent.}$ $2) \ x=g_2(x), \text{ with } g_2(x)=\sqrt[3]{1-x}; \quad \text{convergent.}$ (1)

1)
$$x = g_1(x)$$
, with $g_1(x) = 1 - x^3$; not convergent

2)
$$x = g_2(x)$$
, with $g_2(x) = \sqrt[3]{1-x}$;

3)
$$x = g_3(x)$$
, with $g_3(x) = \frac{1+2x^3}{1+3x^2}$.

Suppose the algorithm starts from the same initial point, do all the above fixedpoint iterations converge? Which one converges the fastest? Can you construct a fixed-point iteration that has the fastest convergence rate amongst all the possible candidates?

Question-2: Which of the following fixed-point iterations converge to $\sqrt{5}$?

1) $x = h_1(x)$, with $h_1(x) = \frac{4}{5}x + \frac{1}{x}$; converge iter 28

2) $x = h_2(x)$, with $g_2(x) = \frac{x}{2} + \frac{5}{2x}$; converge iter 3

3) $x = h_3(x)$, with $g_3(x) = \frac{x+5}{x+1}$.

1)
$$(x) = h_1(x)$$
, with $h_1(x) = \frac{4}{5}x + \frac{1}{x}$; converge ; ter-28

2)
$$x = h_2(x)$$
, with $g_2(x) = \frac{x}{2} + \frac{5}{2x}$;

3)
$$x = h_3(x)$$
, with $g_3(x) = \frac{x+5}{x+1}$.

Question-3: Consider using the Conjugate Gradient Method to solve the following optimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \qquad f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$
 (2)

where A is a symmetric and positive definite matrix. Let us stay with the notations adopted in the lecture notes, and answer the following questions.

- (a) Derive the expression for the step size α_k .
- (b) Show that the residual error r_k at iteration k is orthogonal to the previous ones, i.e., $r_k^T r_j = 0$ for j < k.
- (c) Show that the update direction d_k at iteration k is conjugate to the previous ones, i.e., $\langle d_k, d_j \rangle_A = 0$ for j < k.
 - (d) What is the convergence rate of the conjugate gradient method?

Question-4: For Lagrange polynomial interpolation of m data points $(x_i, y_i), i = 1, \dots, m$.

- (a) What is the degree of each polynomial function $L_j(x)$ in the Lagrange basis?
 - (b) How many polynomials of degree m+1 interpolates these data points?
 - (c) How many polynomials of degree m interpolates these data points?
 - (d) How many polynomials of degree m-1 interpolates these data points?
 - (e) How many polynomials of degree m-2 interpolates these data points?