CONSERVACIÓN DE LA ENERGÍA, FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

FUERZA CONSERVATIVA:

• si el W que realiza sobre un sistema es independiente a la trayectoria, sólo depende de las posiciones iniciales y finales

si el **W** que realiza sobre un sistema en una trayectoria cerrada es **nulo**

Ejemplos de fuerzas conservativas:

La suma de **caso A** y **caso B** nos da una trayectoria cerrada, y el trabajo total de la fuerza gravitatoria es $\mathbb{V}_{\vec{F}} = \mathbb{V}_{\vec{F}} + \mathbb{V}_{\vec{F}} = 0$

Un bloque pegado a un resorte se desplaza de 0 a x

$$W_{el1} = \int_{0}^{x} \vec{F}_{el} \cdot d\vec{r} = \int_{0}^{x} F_{el} dx = -\int_{0}^{x} kx dx = \frac{-kx^{2}}{2}$$

Y luego vuelve de x a 0

$$W_{el2} = \int_{x}^{0} \vec{F}_{el} \cdot d\vec{r} = \int_{x}^{0} F_{el} dx = -\int_{x}^{0} kx \, dx = \frac{kx^{2}}{2}$$

El trabajo neto realizado por el resorte (de 0 a X y de X a 0) es la suma de los trabajos

$$W_{neto} = W_{el1} + W_{el2} = 0$$

- La ENERGÍA POTENCIAL es aquella forma de energía que depende la posición del sistema.
- Anteriormente vimos que el trabajo de un fuerza conservativa, sólo depende de las posiciones inicial y final, entonces el trabajo de este tipo de fuerzas está asociado a la energía potencial tal que

•
$$W_{F_{cons}} = -\Delta E_{potencial} = E_{potencial_i} - E_{potencial_f}$$
 $E_{pot grav}(y) = mgy$
 $E_{pot elástica}(x) = \frac{k}{2}x^2$

Retomando el teorema de la clase anterior

 Se define a la ENERGÍA MECÁNICA de un sistema como la suma de sus ENERGÍAS CINÉTICA y POTENCIAL

TEOREMA DE TRABAJO Y ENERGÍA MECÁNICA

El trabajo de las fuerzas NO conservativas que actúan sobre un sistema es igual a la variación de la energía mecánica del mismo.

$$W_{\vec{F}_{no cons}} = \Delta E_{mecanico}$$

Si no hay W_{FNC} energía potencial puede transformarse en energía cinética sin que la energía mecánica del sistema cambie.

RAMPA SIN ROCE

Las **F** actuantes son **P** y **N** . Ésta ú**l**tima si bien es NC es siempre [⊥] al desplazamiento, NO hace W.

• La única fuerza que hace W es el P que es CONSERVATIVA. El niño de masa m está a una inicialmente a una altura H quieto, entonces:

$$E_{pg_i} = mgH$$

$$E_{c_i} = 0$$

$$E_{m_i} = E_{pg_i} + E_{c_i} = mgH$$

La energía mecánica se conserva (es cte.), entonces a medida que el niño desciende (H>h), decrece su E_{ng} y aumenta su E pero de manera tal que E = cte.

En este instante "x" (H>h),

$$E_{pg_x} = mgh \qquad E_{c_x} = \frac{m}{2} v_x^2$$

$$E_{m_x} = E_{pg_x} + E_{c_x} = mgh + \frac{m}{2}v_x^2 = mgH$$

 $E_{m_i} = E_{m_i} = cte$

$$E_{pg_i} > E_{pg_x}$$
 y $E_{c_i} < E_{c_x}$
$$v_x = \sqrt{2g(H-h)}$$

En el instante que llega a la base,

$$E_{pg_b} = 0 \qquad E_{c_b} = \frac{m}{2} v_b^2 \qquad \vec{v}_b = m \acute{a} x$$

$$E_{m_b} = E_{pg_b} + E_{c_b} = \frac{m}{2} v_b^2 = mgH$$

$$E_{pg_i} > E_{pg_s} > E_{pg_b}$$
 y $E_{c_i} < E_{c_s} < E_{c_b}$
$$E_{m_b} = E_{m_x} = E_{m_i} = cte$$

$$v_b = \sqrt{2gH}$$

Cuando el niño comienza a ascender, encontrándose a una altura y (H>y)

encontrandose a una al
$$E_{pg_y} = mgy$$
 $E_{c_y} = \frac{m}{2}v_y^2$

$$E_{m_{y}} = E_{pg_{y}} + E_{c_{y}} = mgy + \frac{m}{2}v_{y}^{2} = mgH$$

$$E_{pg_i} > E_{pg_b} > E_{pg_b}$$
 $\sum_{c_i} E_{c_i} < E_{c_b}$ $E_{m_y} = E_{m_b} = E_{m_b} = E_{m_i} = cte$

$$v_{v} = \sqrt{2g(H-y)}$$

- ¿Cuál es la altura máx a la que puede subir?
 - Usando que E_m=cte, la altura máx es H. La energía potencial es máxima y la energía cinética es nula

Plano horizontal con roce

Un cuerpo que se mueve a una v_i =v entra en contacto con una superficie que tiene roce. Se desplaza una cierta distancia sobre ella hasta que termina y luego sigue moviéndose a una v_f . ¿ Cómo es esta velocidad respecto de la v_i ? ¿Cuál es el trabajo de la fuerza de roce?

El desplazamiento se da en el eje x, por ende NO hay trabajo de la $\bf N$ y del $\bf P$ entonces ΔE_{pg} =0, E_{pg} =cte. En este caso es nula. Sólo hay W de la

F_r que es NO CONSERVATIVA, de hecho quita energía mecánica.

Es una FUERZA DISIPATIVA, la velocidad v_f será menor que v_i.

$$W_{F_r} = \Delta E_m = \frac{m}{2} v_f^2 - \frac{m}{2} v_i^2 < 0$$

Ejercicio 4 En uno de los extremos de una cuerda ligera e inextensible se ata una masa de m_1 =0,25 kg, la cual está sobre una mesa horizontal con roce. La cuerda pasa por una polea de masa despreciable y sin roce, y se ata a otra masa de m_2 =0,4 kg en el otro extremo, de forma que cuelga verticalmente. El coeficiente de roce dinámico entre el bloque y la mesa es μ_d =0,2.

- a) Enuncie el teorema de Trabajo y Energía Mecánica.
- b) Determinar la velocidad de los bloques cuando cada uno de ellos se desplaza h=2 m desde el reposo.
- a) El trabajo de las fuerzas no conservativas que actúan sobre un sistema es igual a la variación de la energía mecánica del mismo.

b) Como la cuerda es ideal, si m₂ desciende un Δy=-h, m₁ se deplaza un Δx=h, y ambos tienen la misma velocidad y aceleración.

 m_1 se desplaza sobre el eje horizontal por ende, las fuerzas N y P_1 no realizan trabajo, sólo lo hacen las fuerzas F_r y T_L que no son conservativas.

$$W_{T_1} = \int_0^h \vec{T}_1 \cdot d\vec{x} = \int_0^h T_1 dx = T_1 h$$

$$W_{F_r} = \int \vec{F}_r \cdot d\vec{x} = -\int F_r dx = -F_r h$$

Sobre el cuerpo 2 ambas fuerzas (P_2 y T_2) hacen trabajo. P_2 es conservativa, entonces su trabajo está asociado al cambio en la energía potencial sin modificar a la energía mecánica.

$$W_{T_2} = \int_{h}^{0} \vec{T}_2 \cdot d\vec{y} = \int_{h}^{0} T_2 dy = -T_2 h$$
 $W_{P_2} = -\Delta E_{pg} = E_{pgi} - E_{pgf} = m_2 gh - 0$

Si tomamos a los dos cuerpos como un sistema $W_{Fr}+W_{TI}+W_{T2}+W_{P2}=\Delta Ec$ $|\mathsf{T_1}|=|\mathsf{T_2}|$

$$-F_r h + T_1 h - T_2 h + m_2 g h = m_1 v^2 / 2 + m_2 v^2 / 2 = (m_1 + m_2) v^2 / 2$$

$$v^2 = 2(m_2 hg - F_r h)/(m_1 + m_2)$$