CMPT 295

Chapter 2 of our textbook

Unit - Data Representation

Lab 0 – Review of the Binary numeral system,

the Hexadecimal numeral system

and the Binary ⇔ Hexadecimal Conversion

Lab 0 - Objectives and Instructions

- In this lab, we shall review
 - The binary numeral system
 - The hexadecimal numeral system
 - How to represent memory content, i.e., series of bits, using each of the above two numeral systems
 - ► How to convert from one numeral system to the other: binary ⇔ hexadecimal
- Instructions:
 - Read each slide and answer the questions
 - Solution are located on the last slides of this lab

In Lecture 2, we saw ...

- ... that, typically, in a diagram representing memory, we represent the content of a byte of memory as a series of memory "cells" in which one of two possible values is stored
- ... and that these two possible values are represented using '0' and '1'

Why can only two possible values be stored in a memory "cell"?

- Because, as electronic machines, computers operate using two voltage levels, more specifically, two ranges of voltage levels
 - ► Why **ranges**? Because voltage levels are transmitted on **noisy** wires and this noise creates fluctuations in the value of the two voltage levels, hence a **range** of values as opposed to a **precise** voltage level value
 - These two ranges are abstracted using "0" and "1":

Range representing "high" voltage level, abstracted using "1"

Range representing "low" voltage level, abstracted using "0"

However, computers have not always use two values ...

Indeed, the ENIAC used ten ...

A bit of history

ENIAC: Electronic Numerical Integrator And Calculator

- U. Penn by Eckert + Mauchly (1946)
- Data: 20 × 10-digit registers+ ~18,000 vacuum tubes
- To code: manually set switches and plug cables
 - Debugging was manual
 - No method to save program for later use
 - Separated code from the data

Review

Why do we abstract these two ranges using '0' and '1'?

We call "memory cell" a bit.

- Because we can use the <u>binary numeral system</u>, for which there is already a well-established body of algebra.
- **Base: 2**
- Bit (binary digit) values: 0 and 1
- Possible content of a byte (8 memory cells/bits):
 - ightharpoonup 00000000₂, 00000001₂, 00000010₂ ... to 111111111₂ => 2⁸ (256) bit patterns
- Drawback of using '0' and '1' (binary numbers) to represent memory content:
 - \blacksquare What number is this -> 1001100110010010100010101001000 $_2$?
 - ► As you can see, the drawback is that ...
 - Such bit patterns (binary numbers) are difficult to read
 - Such bit patterns (binary numbers) are lengthy to write -> not very compact

Also called bit vectors

Both very

error prone!

5

A solution: hexadecimal numbers

- **■** Base: 16
- Values: 0, 1, 2, ..., 9, A (or a), B (or b), C (or c),
 D (or d), E (or e), F (or f)
- Possible patterns stored in a byte (8 bits):
 - $ightharpoonup 00_{16}$, 01_{16} , 02_{16} ... FF_{16} => 256 bit patterns
- Exercise 1. Conversion exercise: binary -> hex
 - Convert 1001100 11001001 01000101 01001000₂ (in C: 0b10011001100100101010101001000) to hex:
- Exercise 2. Conversion exercise: hex -> binary
 - Convert $3D5F_{16}$ (in **C**: 0x3D5F) to binary (word size = 16):

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Exercise 3. Do you know another numeral system?

If so, complete the following:

1. Name of this numeral system:

2. Base of this numeral system:

3. Digits values of this numeral system:

Endian – Exercise

Exercise 4. Question: How would the following 4-byte bit pattern be stored in memory starting at address 0x0000 ...

10100011 10110100 00110101 11101001 2

if the microprocessor uses little endian?

if the microprocessor uses big endian?

1. Little endian

Complete the following two diagrams with your answer:

Address	M[]
size-1	
•	
0x0003	
0x0002	
0x0001	
0x0000	

2. Big endian

Address	M[]
size-1	•
•	
• (} }
0x0003	
0x0002	
0x0001	
0x0000	

A solution: hexadecimal numbers

- Conversion exercise: binary -> hex
 - Convert 1001100 11001001 01000101 01001000₂
 (in C: 0b1001100110010010100010100000) to hex:

Solution to Exercise 1.:

Step 1. Starting from the LSbit (least significant bit, i.e., the rightmost bit), divide each group of 4 bits (padding with zeros if the leftmost group of bits does not have 4 bits):

Step 2. Using the table on the right (soon, we shall know this table by heart ©), translate each binary number (of 4 bits) into its hexadecimal equivalent:

0100	1100	1100	1001	0100	0101	0100	10002
4	С	C	9	4	5	4	8 =>

A solution: hexadecimal numbers

2. Conversion exercise: hex -> binary

Convert 3D5E₁₆ (in C: 0x3D5F) to binary (word size = 16):

Solution to Exercise 2.: 0011 1101 0101 11111₂

Again, using the table on the right (I did tell you that soon, we shall know this table by heart ©), translate each hexadecimal number into its binary equivalent.

To indicate a binary number, you can either use the subscript 2 as illustrated above, or **0b -> 0b**0011 1101 0101 1111

Why do we pad (adding zeros) to the left of a binary number as opposed to its right?

To answer this question, let's pad this binary number: 11 1101 0101 1111₂

to the left: 0011 1101 0101 1111₂ and to right: 1111 0101 0111 1100₂

Can you see that $11\ 1101\ 0101\ 1111_2 == 0011\ 1101\ 0101\ 1111_2$ but != $1111\ 0101\ 0111\ 1100_2$ Indeed, $1111\ 0101\ 0111\ 1100_2$ converted back to hexadecimal number gives us F57C₁₆

To conclude: Adding zeros to the left of any numbers (binary, decimal or hexadecimal) never changes the value of the number. However, adding zeros to its right does change its value.

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Solution to Exercise 3.:

Do you know another numeral system?

If so, complete the following:

- 1. Name of this numeral system: Decimal Numeral System
- 2. Base of this numeral system: 10
- 3. Digits values of this numeral system: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Solution to Exercise 3.:

Do you know another numeral system?

If so, complete the following:

- 1. Name of this numeral system: Octal Numeral System
- 2. Base of this numeral system: 8
- 3. Digits values of this numeral system: 0, 1, 2, 3, 4, 5, 6, 7

Endian – Exercise

Solution to

Exercise 4. Question: How would the following 4-byte bit pattern be stored in memory starting at address 0x0000 ...

10100011 10110100 00110101 11101001 2

if the microprocessor uses little endian?

if the microprocessor uses big endian?

1. Little endian

	Address	M[]
Complete the	size-1	
following two	: }	
•	0x0003	10100011
diagrams with	0x0002	10110100
your answer:	0x0001	00110101
, 001 011 10 11 011	0×0000	11101001

2. Big endian

Address	M[]
size-1	
•	
• {	}
0x0003	11101001
0x0002	00110101
0x0001	10110100
0x0000	10100011

Trick: LLL -> Little endian: LSB goes into lowest address

15