Chapter 3

Inferential Statistics

Inferential Statistics

- Informal aim: draw inferences about the population on the basis of the sample information.
- The conclusions/inverences can be incorrect. To minimize the probability of incorrect decisions we use the methods of probability theory.
- Formal aim: statements about the characteristics of the attribute X (random variable or random vector)
- All relevant information about X can be recovered from the distribution function F of X, i.e. $F(x) = P(X \le x)$, since all necessary probabilities can be computed using F(x).

Example:

- ullet Delivery of 1000 pieces of a particular product; M pieces are defective
- M is unknown
- Random selection of n = 30 pieces ("sample")

The sample contains 2 defective

Possible aims:

- Estimate M (e.g. $\frac{2}{30} \cdot 1000 = 66.67$)
- Estimate an interval for M (e.g. $M \in [58; 84]$ with prob. of 95%)
- Test hypothesis that M > 50.

Step 1: fixing the family of distributions

Problem: The distribution function F of the variable of interest X is unknown in general.

- We have some preliminary information about F and use it to choose the family of potential distributions.
- The family of distributions \mathcal{F} is indexed by the parameter ϑ , i.e. $X \sim F_{\vartheta}, \ \vartheta \in \Theta$, where Θ is the set of parameter values.
- Thus $\mathcal{F} = \{F_{\vartheta} : \vartheta \in \Theta\}.$

Examples:

- Let X be the quality of produced bulbs (1 functioning, 0 defective).
 - Then $X \sim B(1, p)$ with p = P(X = 1).
 - It holds $\vartheta = p, \Theta = (0,1)$ and $\mathcal{F} = \{B(1,p) : p \in (0,1)\}.$
- Let X be the body height. Many studies have shown that the body height is approximately normally distributed.
 - It holds $X \sim \mathcal{N}(\mu, \sigma^2)$.
 - Thus $\vartheta = (\mu, \sigma)$ and $\Theta = \mathbb{R} \times (0, \infty)$.

If $\Theta \subset \mathbb{R}^k$, then we speak about a parametric family of distributions.

Note:

- If X is a discrete RV, then the true distribution function is usually contained in the family (for example, the Bernoulli distribution)
- ullet If X is a continuous random variable, then the true distribution function is, in general, not contained in the family.
 - The family is used as an approximation.
 - The choice of the family follows from the analysis of the histogram.
 - The choice should be statistically justified. Exact procedures: goodness-of-fit tests (later).

Example: The asset returns are frequently assumed to follow the normal distribution, i.e. $\mathcal{F} = \{N(\mu, \sigma^2)\}$. But if the returns are in fact t-distributed, then the family does not contain the correct distribution.

Step 2: draw a sample

- To make statements about the parameter ϑ or the distribution function F, we run random experiments.
- We draw from the population samples of size n. This leads to the sample $x_1, ..., x_n$.
- Method: $x_1, ..., x_n$ are seen as realizations of random variables $X_1, ..., X_n$ which are called sample variables.
- It is usually assumed that $X_1, ..., X_n$ are independent and follow the same distribution as X (identically distributed).

Example:

- Pick up a sample of delivered products and control the quality. The sample is, e.g. 1, 0, 0, 0, 1, 0......
- Pick up a sample students and measure the height. The sample is, e.g. 1.65, 1.86, 1.73, 1.91,

Step 3: Disciplines of the inferential statistics

a) Parameter estimation (point estimation) 1) = Scalar number

Aim: Using the sample data we determine an estimator (value) for the unknown parameter θ \Rightarrow $\hat{\phi}$ Phrenty A?

Example:

• estimate the fraction of the voters, who voted for a particular party, using an exit-poll suple =) p - estimate of the time unuant

• expected lifetime of a particular product by running a selective quality control

b) Confidence intervals (interval estimation)

We determine the interval, where the true (but unknown) parameter lies with high probability.

Example: an interval, which contains the true fraction of voters who voted for a particular party and where this true fraction lies with probability of 95%. $\Rightarrow \rho \in (7\%, 74\%)$

c) Testing hypotheses

Would the party A reach (at least, at most) 20 % of votes, i.e. does it hold that $p \ge 0.20$ or $p \le 0.20$?

Parameter estimation

Assumptions: Let $X \sim F_{\vartheta}, x_1, ..., x_n$ is a sample and $X_1, ..., X_n$ are sample variables.

- By test statistics we denote a (measurable) function, which depends only on the sample variables $X_1, ..., X_n$.
- A test statistics $g(X_1, \ldots, X_n)$, which is used to estimate the parameter ϑ , is called the estimation function or shortly the estimator of ϑ .
- $g(x_1,\ldots,x_n)$ is the estimate of ϑ .

Notation: we denote the estimator/estimate of ϑ by ϑ .

d=p g-1 g(A,A,B,A...)

Examples:

- Expectation E(X)
 - $E(X) = \sum_{i} x_i P(X = x_i)$ or $E(X) = \int_{-\infty}^{\infty} x f(x) dx$
- Since a-priori each value has the same probability, we obtain the estimator by replacing P(X=i) with 1/n.

Estimator for
$$E(X)$$
 X - Gody Light, $E(X)$ -expected Gody Leight.

Estimator: $\hat{\mathcal{A}} = \bar{X} = \frac{1}{N} \sum_{i=1}^{n} X_i$ scaple: $X_i = X_i = (1, 20)$ [176...)

Estimator:
$$\hat{\vartheta} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Estimate: sample mean
$$\hat{\vartheta} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Variance

•
$$Var(X) = \sum_{i} (x_i - E(X))^2 P(X = x_i)$$
 or
$$Var(X) = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) dx$$

p, 2 - how to develop a several approach to conside s

Estimator for Var(X)

Estimator:
$$\hat{\vartheta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Estimate: empirical variance
$$\hat{\vartheta} = \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

Examples:

- Distribution function F: the empirical distribution function is an estimate/or for F.
- Density or probability function f: the histogram is an estimate/or of f.

We have a link between the characteristics of a data set (compare descriptive statistics) and the characteristics of a distribution function. The characteristics of a data set are estimators of the corresponding characteristics of the distribution function!!!

Maximum Likelihood (ML) estimation

Given:

- A random sample (x_1, \ldots, x_n)
- Likelihood function $L_{\vartheta}(x_1,\ldots,x_n)$: the joint density function $f(x_1,\ldots,x_n|\vartheta)$

$$f(x_1, \dots, x_n | \vartheta) = \prod_{i=1}^n f_{\vartheta}(x_i) = L_{\vartheta}(\underline{x})$$

If X is a discrete RV, then $L_{\vartheta}(x_1,\ldots,x_n)$ is the probability that we observe the particular sample assuming that the underlying parameter equals ϑ .

Typical ML-estimation

- Write down the likelihood function: $L_{\vartheta}(x_1,\ldots,x_n)$
- Take logs (optional): $\ln L_{\vartheta}(x_1,\ldots,x_n)$ \Longrightarrow to set i.i.d. \Longleftrightarrow Take derivatives: $\frac{\partial}{\partial \vartheta} [\ln] L_{\vartheta}(x_1,\ldots,x_n) \stackrel{!}{=} 0$ (affinite is the quality thete are many parameters!)

(usually thete are many parameters!)

Example: Bernoulli distribution

Success of a therapy:
$$X = \begin{cases} 1 & \text{if successful} \\ 0 & \text{if not} \end{cases} \sim B(1, p), p \in (0, 1)$$

The sample variables $X_1,...,X_n$ are independent and $X_i \sim B(1,p)$ for i=1,...,n. Since $P_p(X_i=x_i)=f_i(x_i)=p^{x_i}(1-p)^{1-x_i}$ für $x_i\in\{0,1\}$ it holds that

$$L_p(x_1, \dots, x_n) = \prod_{i=1}^n f_i(x_i) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$= \sum_{i=1}^n x_i (1-p)^{\sum_{i=1}^n (1-x_i)} = p^{n\bar{x}} (1-p)^{n-n\bar{x}}$$

Taking logarithm yields

$$\ln L_n(x_1,...,x_n) = n \bar{x} \ln p + (n-n\bar{x}) \ln(1-p)$$

Maximum:

$$\frac{\partial}{\partial p} \ln L_p(x_1, \dots, x_n) = \frac{n\,\bar{x}}{p} - \frac{n\,(1-\bar{x})}{(1-p)} \stackrel{!}{=} 0.$$
We obtain $\hat{p} = \bar{x}$.

Since
$$\frac{\partial^2}{\partial p^2} \ln L_p(x_1, \dots, x_n) = -\frac{n\,\bar{x}}{p^2} - \frac{n\,(1-\bar{x})}{(1-p)^2} < 0$$

the ML estimator for p is $\hat{\Theta} = \bar{X}$.

Example: Exponential distribution

Let $X_i \sim Exp(\lambda)$ for i = 1, ..., n. Then

$$L_{\lambda}(x_1, \dots, x_n) = \prod_{i=1}^n \lambda \exp(-\lambda x_i) = \lambda^n \exp(-\lambda n \bar{x}),$$

$$\ln L_{\lambda}(x_1, \dots, x_n) = n \ln \lambda - n \lambda \bar{x}.$$

The solution is

$$\frac{d}{d\lambda}(\ln L_{\lambda}(x_1,\dots,x_n)) = n/\lambda - n\bar{x} \stackrel{!}{=} 0$$

leading to $\lambda = 1/\bar{x}$.

buts with life direct: 7,5,8... 15 years.
$$J = \frac{1}{15(7+5+0-15)} \Rightarrow P(X > 15 \text{ years})$$

oleway hat we exposed.

ML-estimators

Distribution	ϑ	ML-estimates
B(1;p)	$p (= \mu)$	X
$\operatorname{Exp}(\lambda)$	λ	$rac{1}{ar{X}}$
$P(\lambda)$	$\lambda \ (= \mu = \sigma^2)$	\widehat{X}
$N(\mu; \sigma^2)$	μ	$ar{X}$
$N(\mu; \sigma^2)$	σ^2	$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$
$\mathrm{N}_k(oldsymbol{\mu};oldsymbol{\Sigma})$	μ	$\frac{1}{n}X1$
$\mathrm{N}_k(oldsymbol{\mu};oldsymbol{\Sigma})$	$oldsymbol{\Sigma}$	$rac{1}{n}X(I-rac{1}{n}11')X'$

Bayes estimation

Idea: the true parameters are unknown and thus can be treated as realisations of some random variables.

- Given:
 - A random sample (x_1, \ldots, x_n)
 - Joint density (Likelihood function) $f(x_1, \ldots, x_n | \vartheta)$
 - Prior information about ϑ (assessment of the analyst) in form of a priori density $\varphi(\vartheta)$
- a posteriori density $\psi(\vartheta|x_1,\ldots,x_n)$

Recall the Bayes formula

$$P(A_j|B) = \frac{P(B|A_j) \cdot P(A_j)}{\sum_{i} P(B|A_i) \cdot P(A_i)}$$

with

$$\begin{array}{ll} P(A_j|B) & \text{replaced by} & \psi(\vartheta|x_1,\ldots,x_n) \\ P(B|A_j) & \text{replaced by} & f(x_1,\ldots,x_n|\vartheta) \\ P(A_j) & \text{replaced by} & \varphi(\vartheta) \end{array}$$

$$\Rightarrow \psi(\vartheta|x_1, \dots, x_n) = \begin{cases} \frac{f(x_1, \dots, x_n | \vartheta_i) \cdot \varphi(\vartheta_i)}{\sum\limits_j f(x_1, \dots, x_n | \vartheta_j) \cdot \varphi(\vartheta_j)} & \text{discrete case} \\ \frac{f(x_1, \dots, x_n | \vartheta) \cdot \varphi(\vartheta)}{\sum\limits_{-\infty}^{\infty} f(x_1, \dots, x_n | \vartheta) \cdot \varphi(\vartheta) \, d\vartheta} & \text{continuous case} \end{cases}$$

Bayes-estimation

- **1** fix the a priori density: $\varphi(\vartheta)$
- ② Build the joint density: $f(x_1, \ldots, x_n | \vartheta)$
- **3** determine the posteriori density: $\psi(\vartheta|x_1,\ldots,x_n)$
- For example, determine the location parameters of the posterior density
 - median,
 - mean, etc.

What is a "good" estimator?

Idea 1: the estimator should be close (?) to the true value.

• Bias: should be small (if zero \leadsto unbiased) $Bias(\hat{\vartheta}) = E(\hat{\vartheta}) - \vartheta = 0$ which is the permits

$$Bias(\hat{\vartheta}) = E(\hat{\vartheta}) - \vartheta = 0$$
 he have positive

• Variance: should be small \leadsto efficiency

$$Var(\hat{\vartheta}) = E[\hat{\vartheta} - E(\hat{\vartheta})]^2$$

• MSE - mean-squared error: trade-off between bias and variance

$$MSE(\hat{\vartheta}) = [Bias(\hat{\vartheta})]^2 + Var(\hat{\vartheta})\}$$
 moone of shift . we see of precision .

Example:

Are

$$\hat{\Theta} = \bar{X}_n, \quad \hat{\Theta}' = \frac{X_1 + X_n}{2}, \quad \hat{\Theta}'' = \frac{1}{n-1} \sum_{i=1}^n X_i$$

- unbiased for $E(X_i) = \mu$? $E\left(\frac{1}{n}(X_i + \dots + Y_n)\right) = \frac{1}{n}\left(E(X_i) + \dots + E(X_n)\right)$ $\bullet E(\hat{\Theta}) = E(\bar{X}_n) = \mu$ $= \frac{1}{n}\left(\mu + \dots + \mu\right) = \mu$ \Rightarrow unbiased
 - $E(\hat{\Theta}') = E(\frac{X_1 + X_n}{2}) = \frac{1}{2}[E(X_1) + E(X_n)] = \frac{1}{2}(\mu + \mu) = \mu$
 - \Rightarrow unbiased • $E(\hat{\Theta}'') = E\left(\frac{1}{n-1}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n-1}\sum_{i=1}^{n}E(X_{i}) = \frac{1}{n-1}\sum_{i=1}^{n}\mu = \frac{1}{n-1}\sum_{i=1}^{n}X_{i}$

$$\frac{n}{n-1} \cdot \mu \xrightarrow[n \to \infty]{} \mu$$

$$\Rightarrow \text{ asymptotically unbiased.}$$

Which estimator better?

Efficiency

• Let $\hat{\Theta}$ be $\hat{\Theta}'$ two unbiased estimators of θ . Then $\hat{\Theta}$ is **more efficient** than $\hat{\Theta}'$, if independently of the numeric value of θ it holds:

$$Var(\hat{\Theta}) < Var(\hat{\Theta}') = 0 \text{ is on a serge}$$

$$Var(\hat{\Pi}(X_1 + \dots + X_n)) = \frac{1}{N^2} \left(VaJX_1 + \dots + VaJX_n \right) = \frac{1}{N^2}$$

Example:

$$Var(\hat{\Theta}) = Var(\bar{X}) = \frac{\sigma^2}{n} <$$

$$< Var(\hat{\Theta}') = Var\left(\frac{X_1 + X_n}{2}\right) = \frac{1}{4}(\sigma^2 + \sigma^2) = \frac{\sigma^2}{2}$$

(if n > 2) $\hat{\Theta}$ is more efficient than $\hat{\Theta}'$.

An unbiased estimator with the smallest possible variance (within a particular model) is called the most efficient estimator.

Idea 2: what happens to the estimator if the sample size increases? A sequence of estimators $\hat{\vartheta}_n$

$$\hat{\Theta}_1 = g_1(X_1)$$

$$\hat{\Theta}_2 = g_2(X_1, X_2)$$

$$\vdots$$

$$\hat{\Theta}_n = g_n(X_1, \dots, X_n)$$

is **consistent** for θ , if for all c > 0 it holds:

we mix μ by more $P(|\hat{\Theta}_n - \theta| \ge c) \xrightarrow{n \to \infty} 0$

 $P(|\hat{\Theta}_n - \theta| \ge c) \xrightarrow{n \to \infty} 0$ absolute distance between
the we amount for a people and expected base beight.

difference 1) lease then c

Asympto headly
i) truple
side inverts
to injury!

Convergence in probability

A sequence of RV's z_n converges in probability to a constant c if for all $\varepsilon > 0$

$$P(|z_n - c| > \varepsilon) \longrightarrow 0$$
, as $n \to \infty$.

We write $z_n \stackrel{p}{\to} z$ and say that c is the probability limit of z_n , i.e. $p \lim z_n = c$.

Thus an estimator is consistent if

$$p\lim_{n\to\infty}\hat{\vartheta}=\vartheta$$

The weak low of large numbers

arge numbers
equality \sqrt{n} $P(|X - E(X)| \ge c) \le \frac{Var(X)}{c^2}$

② applying to
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 results in

$$P(|\bar{X}_n - \mu| \ge c) \le \frac{\sigma^2}{n \cdot c^2} \longrightarrow O_{\rho} \quad \text{as a sign}$$

3 as $n \to \infty \Rightarrow \text{lgw}$ of large numbers (LLN):

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \ge c) = 0 \quad \text{or} \quad \lim_{n \to \infty} P(|\bar{X}_n - \mu| \le c) = 1$$

Checking the limit in the definition of consistency is not trivial. But from Tschebysheff inequality we have the following sufficient conditions for consistency:

$$\left(\lim_{n\to\infty}\right)E(\hat{\Theta}_n)=\theta$$
 and $\lim_{n\to\infty}Var(\hat{\Theta}_n)=0.$

Example: Is \bar{X}_n consistent for μ ?

Es gilt:

- $E(\bar{X}_n) = \mu$, i.e. \bar{X}_n is unbiased for μ .
- $Var(\bar{X}_n) = \frac{\sigma^2}{n} \xrightarrow[n \to \infty]{} 0$, i.e. the variance converges to zero.

Thus \bar{X}_n is consistent for μ .

Example: toss a die

ve know from ML

Since $X_i \sim B(1, 1/6)$ then $E(\bar{X}) = 1/6$ and $Var(\bar{X}) = \frac{1}{n} \cdot Var(X_i) = \frac{5}{36 n}$.

Kex: P=16 is known. For work complex models British war known, Practice: if we invecte sample they the estimated closer oul closer oul closer oul closer oul closer out dependent

Statistics for CS|DS@UCU -- Yarema Okhrin

Universitä 148 Augsbu

or sy improbable = \$\beta\$ is constant

Thus: any estimator should be:

- Unbiased: $E(\hat{\vartheta}) = \vartheta$
- Efficient: $Var(\hat{\vartheta})$ is the smallest among all other unbiased estimators of ϑ
- or asymptotically efficient: $\lim_{n\to\infty} Var(\hat{\vartheta}) = [I(\vartheta)]^{-1}$ converges to the smallest possible variance given by the Cramer-Rao lower bound

$$I(\vartheta) = -E\left[\frac{\partial^2 \ell(x_1, ..., x_n | \vartheta)}{\partial \vartheta \partial \vartheta'}\right] = E\left[\frac{\partial \ell(x_1, ..., x_n | \vartheta)}{\partial \vartheta} \frac{\partial \ell(x_1, ..., x_n | \vartheta)}{\partial \vartheta'}\right]$$

• Consistent:

$$p \lim_{n \to \infty} \hat{\vartheta} = \vartheta$$

• Robust: $\hat{\vartheta}$ is still a good estimator even if the distributional assumptions are not satisfied.

=> MG => need a distribution (toy body height is wormed)

Interestial Statistics

M-Expected Gody reight = point estudior is X.

=) interest estudion ME (150; 190) with pool 85%.

to device the use need the distribution of X.

Note: frequently is is important to know the distribution of $\hat{\vartheta}$ or at least its asymptotic distribution

Example: Let $\vartheta = \mu$ and $\hat{\vartheta} = \bar{x}$. $(\sim \mathcal{N}, \ \chi_2 \sim \mathcal{N}, \ \chi_3 \sim \mathcal{N})$ $(\sim \mathcal{N}, \ \chi_2 \sim \mathcal{N}, \ \chi_3 \sim \mathcal{N}$

• If the sample is drawn from a normal distribution then

$$\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n).$$

• What happens if the sample is not normal? \leadsto CLT

Central limit theorem (CLT)

The CLT gives a statement about the asymptotic behavior of the mean (or any simple function of the sample)

Example: X_1 , X_2 , X_3 in [0; 1] uniformly distributed; $Z_1 = X_1$, $Z_2 = X_1 + X_2$, $Z_3 = X_1 + X_2 + X_3$

$$\begin{cases} f(z_1) & f(z_2) \\ 1 & f(z_3) \end{cases} \xrightarrow{\frac{3}{4}} z_3$$

$$\begin{cases} \chi_1 \chi_2 \chi_2 & \chi_3 \\ \chi_1 \chi_2 \chi_3 & \chi_4 \chi_5 \end{cases}$$

$$\begin{cases} \chi_1 \chi_2 \chi_3 & \chi_4 \chi_5 \\ \chi_1 \chi_2 \chi_3 & \chi_5 \chi_5 \end{pmatrix}$$

$$\begin{cases} \chi_1 \chi_2 \chi_3 & \chi_4 \chi_5 \\ \chi_1 \chi_2 \chi_3 & \chi_5 \chi_5 \end{pmatrix}$$

$$\begin{cases} \chi_1 \chi_2 \chi_3 & \chi_5 \chi_5 \\ \chi_1 \chi_2 \chi_5 & \chi_5 \chi_5 \\ \chi_1 \chi_5 & \chi_5 \\ \chi_1 \chi_5 & \chi_5 \chi_5 \\ \chi_1 \chi_5$$

$$\chi_{i} \sim F_{i,j}$$

Y. ~ Fy with EXI=M

1/81X=62

Standardisation:

$$u = \frac{\bar{X}_n - \mu}{1} = \sqrt{n}$$

 $Y_n = \frac{\bar{X}_n - \mu}{\sigma \cdot \frac{1}{\sqrt{n}}} = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma}$ $\sqrt{\sqrt{\sigma} \sqrt{\hat{X}_n}} = \sqrt{\sigma}$

of the

N(0,1)

Central Limit Theorem dishibition of
$$Y_n$$
 at z .
$$\lim_{n\to\infty} P(Y_n \leq x) = \lim_{n\to\infty} P\left(\sqrt{n}\frac{\bar{X}_n - \mu}{\sigma} \leq x\right) = \Phi(x)$$
where $x = 0$ and $x = 0$.

3 We write

 $\sqrt{n}\frac{X_n-\mu}{\sigma} \xrightarrow{\delta} \mathcal{N}(0,1)$

Sile joes to oo

Example: wear parts of a machine

(a) A machine contains 100 wear parts. Each part should be replaced during the next year with the prob. of $\frac{1}{6}$. What is the prob. that we have to replace more than 10 but less than 21 parts?

$$P\left(10 < \sum_{i=1}^{100} X_i \le 20\right) = F_{B(100,\frac{1}{6})}(20) - F_{B(100,\frac{1}{6})}(10)$$

$$= \sum_{i=11}^{20} \left(\frac{100}{i}\right) \left(\frac{1}{6}\right)^i \left(\frac{5}{6}\right)^{100-i}$$

$$= \sum_{i=11}^{20} \left(\frac{100}{i}\right) \left(\frac{1}{6}\right)^i \left(\frac{5}{6}\right)^{100-i}$$

Problem: $F_{B(100,\frac{1}{2})}(x)$ for 1 < x < 100!

(b) Approximation with CLT
$$(n = 100, E(X_i) = \frac{1}{6}, Var(X_i) = \frac{5}{36})$$

$$P\left(10 < \sum_{i=1}^{100} X_i \le 20\right) = P\left(0.1 < \bar{X} \le 0.2\right)$$

$$= P\left(\sqrt{100} \frac{0.1 - \frac{1}{6}}{\sqrt{\frac{5}{36}}} < \sqrt{100} \frac{\bar{X} - \frac{1}{6}}{\sqrt{\frac{5}{36}}} \le \sqrt{100} \frac{0.2 - \frac{1}{6}}{\sqrt{\frac{5}{36}}}\right)$$

$$= P\left(0.8944\right) - \Phi(-1.7888)$$

$$= \Phi(0.8944) - 1 + \Phi(1.7888)$$

$$= 0.8143 - 1 + 0.9631$$

$$= 0.7774$$

$$\Rightarrow VAR = 0.8143 - 1 + 0.9631$$

$$= 0.7774$$

$$\Rightarrow VAR = 0.8143 - 1 + 0.9631$$

$$= 0.7774$$

$$\Rightarrow VAR = 0.8143 - 1 + 0.9631$$

$$\Rightarrow PAR = 0.7774$$

$$\Rightarrow PAR = 0.8143 - 1.8$$

Universität Augsburg

Theorem (Multivariate Central Limit Theorem)

If X_1, \ldots, X_n are a random sample from an arbitrary multivariate distribution with finite mean μ and positive definite covariance matrix Σ , then $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \Sigma)$.

Theorem (Multivariate Central Limit Theorem with unequal moments (Lindberg-Feller))

If X_1, \ldots, X_n are a set of RVs with finite means μ_i and finite positive definite covariance matrices Σ_i . Let $\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mu_i$ and $\bar{\Sigma}_n = \frac{1}{n} \sum_{i=1}^n \Sigma_i$. If no single term dominates the average variance, i.e. $\lim_{n\to\infty} (n\bar{\Sigma}_n)^{-1}\Sigma_i = \mathbf{O}$, and if the average variance converges to a finite constant $\bar{\Sigma} = \lim_{n \to \infty} \bar{\Sigma}_n^2$, then

$$\sqrt{n}(\bar{X}_n - \bar{\mu}_n) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \bar{\Sigma}).$$

Theorem (Limiting normal distribution of a function

(Delta-method)) X-600g high $\sim N$ Y-600g weight N. If $\sqrt{n}(z_n-\mu) \stackrel{d}{\longrightarrow} M(0,\sigma^2)$ and if $g(\cdot)$ is a continuous function not

If $\sqrt{n}(z_n - \mu) \xrightarrow{\alpha} M(0, \sigma^2)$ and if $g(\cdot)$ is a continuous function not involving n, then

$$\sqrt{n}(g(z_n) - g(\mu)) \xrightarrow{d} \mathcal{N}(0, [g'(\mu)]^2 \sigma^2).$$

Theorem (Limiting normal distribution of a multivariate function (Delta-method))

If \mathbf{z}_n is a sequence of $k \times 1$ -dimensional vector-valued RVs such that $\sqrt{n}(\mathbf{z}_n - \boldsymbol{\mu}) \stackrel{d}{\longrightarrow} \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ and if $\mathbf{c}(\cdot) : \mathbb{R}^k \to \mathbb{R}^J$ is a continuous function not involving n, then

$$\sqrt{n}(oldsymbol{c}(oldsymbol{z}_n) - oldsymbol{c}(oldsymbol{\mu})) \stackrel{d}{\longrightarrow} \mathcal{N}_J(oldsymbol{0}, oldsymbol{C}(oldsymbol{\mu}) oldsymbol{\Sigma} oldsymbol{C}(oldsymbol{\mu})')$$

where $C(\mu)$ is the $J \times k$ matrix of first partial derivatives $\partial c(\mu)/\partial \mu'$.

Confidence intervals

Assumption: it holds $X_i \sim F_{\vartheta}$, $\vartheta \in \Theta$, where X_1, \ldots, X_n are the sample variables

Aim: provide an area (e. g. interval), where the unknown parameter ϑ will belong to with a high probability

Let
$$T_1(\boldsymbol{X}), T_2(\boldsymbol{X})$$
 be functions of the sample with $T_1 \leq T_2$ and $\alpha \in (0,1)$.

The interval $[T_1(\boldsymbol{X}), T_2(\boldsymbol{X})]$ with

$$P_{\vartheta}(T_1 \leq \vartheta \leq T_2) = \underbrace{1-\alpha}_{\vartheta \mathcal{T}_2, \vartheta \mathcal{T}_2, \vartheta \mathcal{T}_2} \forall \vartheta \in \Theta \qquad (*)$$

is an exact (two-sided) confidence interval (CI) for ϑ with the confidence level $1 - \alpha$.

Note: In practice we select α often equal to 0.1, 0.05 or 0.01.

Interpretation: If $[T_1, T_2]$ is a 90%-CI, then the unknown parameter ϑ belongs to this interval with the probability of 90%.

 $[T_1(\boldsymbol{X}), \infty)$ is a one-sided lower confidence interval at the confidence level $1 - \alpha$, if

$$P_{\vartheta}(T_1 \le \vartheta) = 1 - \alpha \quad \forall \, \vartheta \in \Theta$$

and $(-\infty, T_2(\mathbf{X})]$ is a one-sided upper confidence interval at the confidence level $1-\alpha$, if

$$P_{\vartheta}(\vartheta \le T_2) = 1 - \alpha \quad \forall \, \vartheta \in \Theta$$

risk = lose Bounds is inclused = interest in the highest pomble risk!

P (risk = T2) = 0,55.

Example:

- Assume that the parameter measures the riskiness of an asset. Then we are interested in the upper confidence interval, since ϑ should be bounded from above.
- If ϑ denotes the tear strength of a rope, then we consider the lower confidence interval, since the lower bound cannot be undershot.

Construction of confidence intervals Confidence interval for normally distributed random variables

Assumption: The sample variables $X_1, ..., X_n$ are independent and normally distributed with $X_i \sim N(\mu, \sigma^2)$ for i = 1, ..., n.

i) Confidence interval for μ (σ is known) starting point: estimate μ with \bar{X}

Since $Var(\bar{X}) = \sigma^2/n$, we postulate the following structure of the

confidence interval field the $C \bar{I}$ $[\bar{X} + c_1 \frac{\sigma}{\sqrt{n}}, \bar{X} + c_2 \frac{\sigma}{\sqrt{n}}]$

with suitable constants $c_1 < 0 < c_2$. c_1 and c_2 will depend on α , i.e. of (*).

Since $\bar{X} \sim N(\mu, \sigma^2/n)$, i.e. the distribution is symmetric around μ , we select $c_2 = c = -c_1$.

Thus

$$\mu \in \left[\bar{X} - c \, \frac{\sigma}{\sqrt{n}}, \bar{X} + c \, \frac{\sigma}{\sqrt{n}} \right] \iff \sqrt{n} \, \frac{|\bar{X} - \mu|}{\sigma} \le c$$

Since $\sqrt{n}(X-\mu)/\sigma \sim \Phi$, we determine c in such way, that

Since
$$\sqrt{n}(\bar{X}-\mu)/\sigma \sim \Phi$$
, we determine c in such way, that
$$P_{\mu}\left(\sqrt{n}\frac{|\bar{X}-\mu|}{\sigma} \leq c\right)$$
which $P_{\mu}\left(\sqrt{n}\frac{|\bar{X}-\mu|}{\sigma} \leq c\right)$
which $P_{\mu}\left(\sqrt{n}\frac{|\bar{X}-\mu|}{\sigma} \leq c\right)$

$$P_{\mu}\left(\sqrt{n}\frac{|\bar{X}-\mu|}{\sigma} \leq c\right) - P_{\mu}\left(\sqrt{n}\frac{|\bar{X}-\mu|}{\sigma} \leq c\right)$$

$$P_{\mu}\left(\sqrt{n}\frac{|\bar{X}-\mu|}{\sigma} \leq c\right)$$

$$P_{\mu}\left(\sqrt{n}\frac{|\bar{X}-\mu|}{\sigma} \leq c\right)$$

$$P_{\mu}\left(\sqrt{n}\frac{|\bar{X}-\mu|}{\sigma} \leq c\right)$$

$$P_{\mu}\left(\sqrt{n}\frac{|\bar{X}-\mu|}{\sigma} \leq c\right)$$
This implies $C = z_{1-\alpha/2}$ such the of $N(0,0)$ of $1-\alpha$.

The exact CI for μ at the level $1-\alpha$

$$\left[\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

X=110 X, =80 -

Example: demand for a particular product

A manufacturer had on average X = 100 orders per day for a particular product during the last n = 100 days. From experience they know that the standard deviation σ is 100. To satisfy the demand, the company is interested in the confidence interval for the expected demand.

Assuming normally distributed random variables and taking $\alpha=0.05$ we obtain $z_{0.975}=1.96$ and

$$\bar{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} = 100 \pm 1.96 \frac{100}{\sqrt{100}} = 100 \pm 19.6$$

The 95%-CI for μ is given by [80.4, 119.6]. \Rightarrow expected demond the prob of 95%,

) store 120 items) the demend only be described -101 975% probability. => 2,5% prob that he has me orders.

ii) Confidence interval for μ (σ is unknown)

To derive the CI we use the same procedure as above. We estimate the

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

The derivation is more complicated, since we have to determine the distribution of

$$\sqrt{n} \, \frac{\bar{X} - \mu}{S} \, \sim \, t_{n-1}.$$

Exact confidence interval for μ (σ is unknown) at the level $1-\alpha$

Exact confidence interval for
$$\mu$$
 (σ is unknown) at the
$$\left[\bar{X} - t_{n-1;1-\alpha/2} \, \frac{S}{\sqrt{n}}, \bar{X} + t_{n-1;1-\alpha/2} \, \frac{S}{\sqrt{n}} \right]$$
 quentiles of the Fig.

Example: length of bolts in cm

per olar to 21-d/2=1,65

The average length of n=125 bolts is $\bar{x}=10.25$. Moreover, s=0.3. For $\alpha=0.1$ we obtain $t_{124;0.95}=1.6576$, and

$$\left[10.25 - 1.6576 \cdot \frac{0.3}{\sqrt{125}}, 10.25 + 1.6576 \cdot \frac{0.3}{\sqrt{125}}\right]$$

$$\approx [10.206, 10.294]$$

iii) Confidence intervals for σ^2

Estimator for
$$\sigma^2$$
: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

It can be shown that

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

 χ^2_{n-1} denotes the (central) χ^2 -distribution with n-1 degrees of freedom.

$$\mathcal{A} \subset \mathcal{A} \subset$$

Since the χ^2 -distribution is not symmetric, the CI for σ^2 is also not symmetric. We take

$$P_{\sigma}\left(c_{1} \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq c_{2}\right) = \chi_{n-1}^{2}(c_{2}) - \chi_{n-1}^{2}(c_{1}) \stackrel{!}{=} 1 - \alpha$$

Since the equation contains two independent quantities, it cannot be solved uniquely. For this reason we assume

$$\chi_{n-1}^2(c_2) = 1 - \frac{\alpha}{2}, \quad \chi_{n-1}^2(c_1) = \frac{\alpha}{2}.$$

We use the notation $c_2 = \chi^2_{n-1:1-\alpha/2}$ and $c_1 = \chi^2_{n-1:\alpha/2}$.

Since

$$c_1 \le \frac{(n-1)S^2}{\sigma^2} \le c_2 \quad \Leftrightarrow \quad \frac{(n-1)S^2}{c_2} \le \sigma^2 \le \frac{(n-1)S^2}{c_1},$$

the exact confidence interval for σ^2 at the level $1 - \alpha$ is given by

$$\left[\frac{\left(n-1\right)S^2}{\chi^2_{n-1;1-\alpha/2}},\frac{\left(n-1\right)S^2}{\chi^2_{n-1;\alpha/2}}\right]$$

Example: the length of bolts in cm

Let
$$\alpha = 0.1$$
, $n = 100$, $s^2 = 0.1$.
Since $\chi^2_{99:0.05} = 77.93$ and $\chi^2_{99:0.95} = 124.3$, the CI is given by

$$\left[\frac{99 \cdot 0.1}{124.3}, \frac{99 \cdot 0.1}{77.93}\right]$$

$$\approx [0.08, 0.13]$$

Inferential Statistics up to use: we reeded a disablishmal aroungs.

now: Asymptotic confidence intervals

Using the the CLT we can derive the asymptotic CI. It holds

$$\lim_{n\to\infty} P_{\vartheta}(T_1(\boldsymbol{X}) \leq \vartheta \leq T_2(\boldsymbol{X})) = 1 - \alpha \quad \forall \vartheta \in \Theta.$$
the parameter lies between T_1 and T_2 with t - d subjectively.

Example: Let $X_1, ..., X_n$ be iid with $E(X_i) = \mu$ for all $i \ge 1$. The objective is a CI for μ .

i)
$$\sigma^2 = Var(X_i)$$
 is known $\chi_1 = \chi_2 = \chi_3 = \chi_4 = \chi_4 = \chi_5 =$

The CI has the same structure as in the case of normal distribution

$$\left[\bar{X} - c\,\frac{\sigma}{\sqrt{n}}, \bar{X} + c\,\frac{\sigma}{\sqrt{n}}\right]$$

Problem: The exact distribution of $\sqrt{n}(\bar{X} - \mu)/\sigma$ is unknown.

of NO1), but -NO1)

By CIT

University

For this reason one applies the CLT.

$$\lim_{n \to \infty} P_{\mu} \left(\mu \in \left[\bar{X} - c \frac{\sigma}{\sqrt{n}}, \bar{X} + c \frac{\sigma}{\sqrt{n}} \right] \right) = \lim_{n \to \infty} P_{\mu} \left(\sqrt{n} \frac{|\bar{X} - \mu|}{\sigma} \le c \right)$$

$$= \lim_{n \to \infty} P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} \le c \right) - \lim_{n \to \infty} P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} < -c \right)$$

$$= \Phi(c) - \Phi(-c) = 2\Phi(c) - 1 \stackrel{!}{=} 1 - \alpha.$$

Consequently $c=z_{1-\alpha/2}$ and an asymptotic CI for μ is given by

$$\left[\bar{X}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right] \text{ with poble of appear}$$

Rule of thumb: $n \ge 30$