O protocolo de comunicação l²C tem quantas linhas de dados? Quais?

Apenas uma, sendo o STA

b) Qual a velocidade do l²C?

Os barramentos l²C tem velocidade de 100 kbits/s no modo padrão e 10kbits/s no modo de baixa velocidade, mas arbitrariamente frequências baixas de clock também são permitidas. São velocidades acordadas entre o mestre e o escravo.

c) O que é Over Head?

É o tempo em que o sistema perde mandando ordens de controle ao invés de dados úteis.

d) Qual é o tamanho de Buffer do arduino para transmitir um dado usando um protocolo l²C?

Para o Arduino Uno é 32 bytes.

e) O que é registrador Pull Up?

O registrador Pull Up é utilizado para evitar falhas de comunicação e é utilizado para evitar que um dispositivo se comunique com erros.

f) A gravação de dados é feita no clock de subida ou descida?

É feita no clock de subida.

g) Qual é o método de controle do protocolo UART?

É uma comunicação assíncrona, não há barramentos de clock para sincronia de dados enviados e recebidos pelo mestre e escravo.

h) Quais são os bits de controle do protocolo UART?

São o primeiro e último bit para realizar o controle.

i) Compare a ordem de dados em relação ao UART e I²C?

O UART a ordem de dados é invertida com o I²C, LSB deve ser lido primeiro no UART.

j) Explique o funcionamento da paridade ímpar e par no protocolo de comunicação UART?

No bit de paridade é inserido entre o fim dos bits de dados e o bit final. O valor do bit de paridade depende quando é usado ímpar e par.

8 bits de dados, um bit de parada, sem paridade 7 bits de dados, uma parada, paridade ímpar

I) Como funciona o slave select no SPI?

O sinal de SS da SPI funciona como Seleção de Escravo (Slave Select). É um sinal ativo em nível baixo, o que significa que o dispositivo é selecionado quando este pino se encontra em nível baixo.

m) Quem define a velocidade de comunicação no protocolo de comunicação SPI?

O mestre, basta que o escravo consiga se comunicar nessa velocidade.

Dec /Bin/ Hex

0/0000/0

1 / 0000 / 0 1 / 0001 / 1

2/0010/2

3/0010/2

4/0100/4

5/0101/5

6/ 0110 / 6 7/ 0111 / 7

8/ 1000 / 8

9 / 1000 / 8

10/ 1010 / A 11/ 1011 / B 12/ 1100 / C 13/ 1101 / D 14/ 1110 / E 15/ 1111 / F

Portas lógicas

Função lógica	Símbolo Iógico	Tabela verdade	Expressão booleana
Porta Buffer	A	A Y 0 0 1 1	Y = A
Porta NOT - Inversora	A — Y	A Y 0 1 1 0	Y = Ā
Porta AND	А	A B Y 0 0 0 0 1 0 1 0 0 1 1 1	Y = A•B
Porta NAND	А	A B Y 0 0 1 0 1 1 1 0 1 1 1 0	Y = •B
Porta OR	A	A B Y 0 0 0 0 1 1 1 0 1 1 1 1	Y = A + B
Porta NOR	А	A B Y 0 0 1 0 1 0 1 0 0 1 1 0	Y = A + B
Porta XOR	А	A B Y 0 0 0 0 1 1 1 0 1 1 1 0	Y = A⊕B
Porta XNOR	A	A B Y 0 0 1 0 1 0 1 0 0 1 1 1	Y = A⊕B

Diferença de Von Neumann para havard?

Von Neumann é uma arquitetura de computador digital cujo design é baseado no conceito de computadores de programa armazenados onde os dados do programa e os dados de instrução são armazenados na mesma memória. Esta arquitetura foi projetada pelo famoso matemático e

físico John Von Neumann em 1945.

Para Harvard é a arquitetura de computador digital cujo design é baseado no conceito onde há armazenamento separado e barramentos separados (caminho de sinal) para instrução e dados. Foi desenvolvido basicamente para superar o gargalo da Arquitetura Von Neumann.

Lei de Moore

É uma observação e projeção de uma tendência histórica relacionado a Indústria de microchips e processamento de computadores. Foi observada por Gordon E. Moore, e consiste no estudo de que o número de transistores dos chips teria um aumento de 100%, pelo mesmo custo, a cada período de 18 meses.------

Tipos de memórias

RAM - "Random Access Memory": memória de leitura/escrita para armazenamento

temporário de programas e dados, volátil;

RAM Estática - RAM com menor densidade e mais rápida que a RAM dinâmica.

Não necessita de circuitos adicionais em um microcomputador.

RAM Dinâmica - RAM com maior densidade e mais lenta que a RAM estática.

Necessita de circuitos adicionais de controle em um microcomputador.
ROM - "Read Only Memory": memória programada quando o chip é fabricado, não podendo ser modificada. É usada para armazenamento permanente de programas e dados;

PROM - "Programmable ROM": memória programada por um dispositivo

programador de PROM. Programável uma única vez;

 EPROM - "Erasable PROM": memória que pode ser apagada e reprogramada

várias vezes. Apagável pela incidência de raios ultra-violeta e programável por um

dispositivo programador de EPROM;

o EEPROM - "Erasable Electrically PROM": memória EPROM eletricamente

modificável, sem necessidade de dispositivos externos apagadores ou programadores.

 $S1 = \bar{A}. C' + B.C$

	Situação	Α	В	С	s		
	0	0	0	0	1		
	1	0	0	1	0		
	2	0	1	0	1		
	3	0	1	1	1		
	4	1	0	0	0		
	5	1	0	1	0		
	6	1	1	0	0		
	7	1	1	1	1		
	1						

S2= C'D + B'D' + ABD

Contador

