TOMADA DE DECISÃO EM CLASSIFICADORES

Allan Dieguez Al Researcher | Data Scientist

Director, Data Science

BAIN & COMPANY

LinkedIn: @allandieguez

E-Mail: allandieguez@gmail.com

AGENDA

- Decisão de Corte do Threshold
 Decisões sobre a saída probabilística
- Tomada de Decisão Multiclasse
 Aprofundando o Winner Takes All
- Otimização de um Multiclassificador
 Melhorando resultados sem retreinar

DECISÃO DE CORTE DO THRESHOLD

Decisões sobre a saída probabilística

PROBLEMA: APROVAÇÃO DE CRÉDITO

	(X) salário	(y) aprovado
cliente_01	0.5	0
cliente_02	0.8	0
cliente_03	4.7	1
cliente_04	3.7	1
cliente_05	2.5	1
cliente_06	1.1	0
cliente_07	1.6	0
cliente_08	2.7	1
cliente_09	4.2	1
cliente_10	4.8	1

SOLUÇÃO COM REGRESSÃO LOGÍSTICA

MESMO MODELO, DECISÕES DISTINTAS

	saída probabilística	threshold >= 25%	threshold >= 50%	threshold >= 75%	(y) aprovado
cliente_01	0.053552	0	0	0	0
cliente_02	0.078026	0	0	0	0
cliente_03	0.940715	1	1	1	1
cliente_04	0.805697	1	1	1	1
cliente_05	0.453114	1	0	0	1
cliente_06	0.112358	0	0	0	0
cliente_07	0.19847	0	0	0	0
cliente_08	0.520065	1	1	0	1
cliente_09	0.890249	1	1	1	1
cliente_10	0.947771	1	1	1	1

BREAST CANCER WINSCONSIN

DISTRIBUIÇÃO DAS SAÍDAS DO MODELO

DECISÃO MANUAL: *THRESHOLD* = 50%

DECISÃO MANUAL: *THRESHOLD* = 25%

FERRAMENTA: FAR/FRR

Visualização de **FN** e **FP** em função da escolha do *threshold* de decisão.

O **encontro das curvas**, denominado **Equal Error Rate**, é o *threshold* que resulta em **valores iguais** de **FN** e **FP**.

CURVA FAR/FRR NORMALIZADA

O gráfico pode ser construído com as **quantidades normalizadas** para representarem o **percentual das massas** real positiva e real negativa.

CONTAGEM PURA VS NORMALIZADA

Threshold: 0.48
Accuracy: 0.82
Precision: 0.88
Recall: 0.82
F-Score: 0.85

Threshold: 0.38
Accuracy: 0.82
Precision: 0.85
Recall: 0.85
F-Score: 0.85

EQUALIZAR FP E FN NÃO É OTIMIZAÇÃO

Threshold: 0.25
Accuracy: 0.88
Precision: 0.84
Recall: 0.99
F-Score: 0.91

Nem sempre o melhor corte de decisão está no ponto de equilíbrio.

Às vezes é interessante **sacrificar 1% de** *precision* para **ganhar 13% de** *recall*.

```
import numpy as np
def calculate far frr(y proba, y true, n points=30,
                      normalize=False, threshold=None):
   thr = np.linspace(0, 1, n points)
   far = []
   frr = []
   for t in thr:
       far pt = y proba[y true == 0] >= t
       frr pt = y proba[y true == 1] < t</pre>
       if normalize:
           far.append(far pt.mean())
           frr.append(frr pt.mean())
       else:
           far.append(far pt.sum())
           frr.append(frr pt.sum())
   if threshold is None:
       far = np.array(far)
       frr = np.array(frr)
       optm = thr[abs(far - frr).argmin()]
   else:
       optm = threshold
   return {
       'optm': optm,
       'plot': pd.DataFrame(
           index=thr,
           data={'far': far, 'frr': frr},
           dtype=float
```

TOMADA DE DECISÃO MULTICLASSE

Aprofundando o Winner Takes All

CLASSIFICADOR DE DÍGITOS

Fonte: dataset digits do do sklearn

SAÍDAS DO CLASSIFICADOR

				Saídas do M	odelo (funç	ão logística	a sigmóide)				
	0	1	2	3	4	5	6	7	8	9	Target
img_0653	0.013101	0.064656	0.021794	0.038154	0.054042	0.068532	0.007527	0.591824	0.073284	0.067086	7
img_0100	0.056225	0.108414	0.003838	0.010227	0.462783	0.055771	0.147624	0.030143	0.058683	0.066291	4
img_1209	0.010828	0.076752	0.052734	0.044373	0.049547	0.068471	0.010596	0.526857	0.095063	0.064779	7
img_0325	0.023861	0.099842	0.017077	0.039382	0.074208	0.121851	0.007481	0.377932	0.113535	0.124831	9
img_0716	0.036626	0.191648	0.056901	0.009270	0.158417	0.081015	0.112315	0.115670	0.167168	0.070970	1
img_0149	0.115513	0.084478	0.025103	0.293411	0.017080	0.083960	0.011025	0.015174	0.083613	0.230644	9
img_1302	0.043921	0.063062	0.021389	0.355606	0.019309	0.210428	0.041220	0.038038	0.084935	0.122092	5
img_0482	0.131793	0.075837	0.019173	0.091564	0.049917	0.106207	0.154455	0.087178	0.149495	0.134381	8
img_0248	0.041313	0.161591	0.134693	0.088051	0.076911	0.066161	0.056560	0.075195	0.194226	0.105297	8
img_1131	0.112366	0.076022	0.081576	0.003652	0.083115	0.062110	0.471276	0.003991	0.069444	0.036448	6

HEURÍSTICA WINNER TAKES ALL

		Saídas do Modelo (heurística Winner Takes All)										
	0	1	2	3	4	5	6	7	8	9	Target	Previsão
img_0653	0.013101	0.064656	0.021794	0.038154	0.054042	0.068532	0.007527	0.591824	0.073284	0.067086	7	7
img_0100	0.056225	0.108414	0.003838	0.010227	0.462783	0.055771	0.147624	0.030143	0.058683	0.066291	4	4
img_1209	0.010828	0.076752	0.052734	0.044373	0.049547	0.068471	0.010596	0.526857	0.095063	0.064779	7	7
img_0325	0.023861	0.099842	0.017077	0.039382	0.074208	0.121851	0.007481	0.377932	0.113535	0.124831	9	7
img_0716	0.036626	0.191648	0.056901	0.009270	0.158417	0.081015	0.112315	0.115670	0.167168	0.070970	1	1
img_0149	0.115513	0.084478	0.025103	0.293411	0.017080	0.083960	0.011025	0.015174	0.083613	0.230644	9	3
img_1302	0.043921	0.063062	0.021389	0.355606	0.019309	0.210428	0.041220	0.038038	0.084935	0.122092	5	3
img_0482	0.131793	0.075837	0.019173	0.091564	0.049917	0.106207	0.154455	0.087178	0.149495	0.134381	8	6
img_0248	0.041313	0.161591	0.134693	0.088051	0.076911	0.066161	0.056560	0.075195	0.194226	0.105297	8	8
img_1131	0.112366	0.076022	0.081576	0.003652	0.083115	0.062110	0.471276	0.003991	0.069444	0.036448	6	6

EMPATE TÉCNICO: VÁRIOS CANDIDATOS

Algumas vezes é necessária uma heurística para 0 remover ambiguidades de decisão em saídas com Em saídas probabilísticas é mais raro esse tipo de valores **muito próximos**. 2 ocorrência, pois as saídas emulam uma PDF por 3 definição. 4 5 6 6 9 9

EMPATE TÉCNICO: SCORES MUITO BAIXOS

OTIMIZAÇÃO DE UM MULTICLASSIFICADOR

Melhorando resultados sem retreinar

AVALIAÇÃO DAS PIORES CONFUSÕES

Classe 3 tem FP muito alto, qual corte poderia ser usado para minimizar isso?

	Accuracy	Precision	Recall	F1-Score
Classe 0		0.84	0.98	0.91
Classe 1		0.89	0.31	0.46
Classe 2		0.61	1.00	0.76
Classe 3		0.50	0.98	0.66
Classe 4		0.76	0.96	0.85
Classe 5		1.00	0.53	0.69
Classe 6		0.81	0.97	0.88
Classe 7		0.70	1.00	0.82
Classe 8		1.00	0.43	0.60
Classe 9		0.43	0.15	0.23
Média Ponderada	0.72	0.77	0.72	0.69

SOLUÇÃO APLICADA

Uma estratégia para **zerar o FP** da Classe 3 é **tornar zero** a resposta do modelo para essa classe caso a saída probabilística seja **menor que 0.3**.

EFEITOS DA APLICAÇÃO DA REGRA

		Saídas do Modelo (heurística Winner Takes All)										
	0	1	2	3	4	5	6	7	8	9	Target	Previsão
img_0653	0.013101	0.064656	0.021794	0.038154	0.054042	0.068532	0.007527	0.591824	0.073284	0.067086	7	7
img_0100	0.056225	0.108414	0.003838	0.010227	0.462783	0.055771	0.147624	0.030143	0.058683	0.066291	4	4
img_1209	0.010828	0.076752	0.052734	0.044373	0.049547	0.068471	0.010596	0.526857	0.095063	0.064779	7	7
img_0325	0.023861	0.099842	0.017077	0.039382	0.074208	0.121851	0.007481	0.377932	0.113535	0.124831	9	7
img_0716	0.036626	0.191648	0.056901	0.009270	0.158417	0.081015	0.112315	0.115670	0.167168	0.070970	1	1
img_0149	0.115513	0.084478	0.025103	0.293411	0.017080	0.083960	0.011025	0.015174	0.083613	0.23064	9	9
img_1302	0.043921	0.063062	0.021389	0.355606	0.019309	0.210428	0.041220	0.038038	0.084935	0.122092	5	3
img_0482	0.131793	0.075837	0.019173	0.091564	0.049917	0.106207	0.154455	0.087178	0.149495	0.134381	8	6
img_0248	0.041313	0.161591	0.134693	0.088051	0.076911	0.066161	0.056560	0.075195	0.194226	0.105297	8	8
img_1131	0.112366	0.076022	0.081576	0.003652	0.083115	0.062110	0.471276	0.003991	0.069444	0.036448	6	6

MUDANÇAS NA MATRIZ DE CONFUSÃO

Depois do Corte

COMPARAÇÃO DA PERFORMANCE

Original

	Accuracy	Precision	Recall	F1-Score
Classe 0		0.84	0.98	0.91
Classe 1		0.89	0.31	0.46
Classe 2		0.61	1.00	0.76
Classe 3		0.50	0.98	0.66
Classe 4		0.76	0.96	0.85
Classe 5		1.00	0.53	0.69
Classe 6		0.81	0.97	0.88
Classe 7		0.70	1.00	0.82
Classe 8		1.00	0.43	0.60
Classe 9		0.43	0.15	0.23
Média Ponderada	0.72	0.77	0.72	0.69

Depois do Corte

	Accuracy	Precision	Recall	F1-Score
Classe 0		0.81	0.98	0.89
Classe 1		0.89	0.33	0.48
Classe 2		0.59	1.00	0.74
Classe 3		0.79	0.90	0.83
Classe 4		0.76	0.96	0.85
Classe 5		1.00	0.59	0.74
Classe 6		0.81	0.97	0.88
Classe 7		0.70	1.00	0.82
Classe 8		1.00	0.55	0.71
Classe 9		0.61	0.51	0.56
Média Ponderada	0.77	0.81	0.77	0.75

RESUMO DA AULA

T

TAKEAWAY #1

Podemos definir probabilidades diferentes do padrão de 0,5 e aumentar a performance do modelo com isso.

TAKEAWAY #2

É possível utilizar heurísticas para lidar com winner takes all e melhorar problemas principalmente de empate técnico.

TAKEAWAY #3

Com os conceitos trabalhados, podemos otimizar um multiclassificador.

 Para isso, buscamos os grandes falsos positivos e aplicamos a heurística para tornar zero a saída que está abaixo de um threshold calculado com FAR/FRR.

