ABSTRACT 2/5/2023

System Requirements

Define System Parameters/Goals

Target Range
Scanning Angle
Power Requirements
Frequency
Bandwidth

System Model

Create System Model

Components

Parameters

Modulation

System Simulation

Parts List

PCB/Substrate IC-chips Data Acquisition

Design

Component Design/Verification

Design individual components Simulate components Verify parameter goals for each component

Design Link

Fabricate

Data acquisition

Signal Processing Create GUI

System Requirements

Target range – The system should be able to scan up 20 meters and down to 1 meter Scanning Angle – The system should have a scanning angle of 45 degrees and a beamwidth of 5 degrees

 $VSWR-The\ system\ should\ not\ have\ a\ VSWR\ greater\ than\ 1.4$

Power – The system should transmit at least 1W

Introduction

This project will be a continuous wave frequency modulated (FMCW) electronically scanning radar. This will be achieved using a superheterodyne transceiver architecture. On the transmit side of the system the components implemented will be a phased array antenna, a voltage-controlled oscillator, a 90 degree hybrid coupler, an transmit amplification stage and lowpass harmonic filters. On the receive side of the transceiver, the same phased array antenna will be used, a bandpass filter, an LNA, a mixer, an IF-gain stage an ADC and FPGA. The system will transmit 2.95GHz to 3.05GHz which is a 100MHz Bandwidth. A system level simulation will be performed in Keysight System Vue which will show a top level operation of the system. The system will be built on multi layer Rogers ro-3003 PCB board with an FR4 inner layer pre-impregnated. The board will consist of microstrip technology with microstrip stub matching and lumped elements for matching and DC-blocking. The system will have no components with an return loss greater than 15dB to limit standing waves (VSWR). The system will use the zybo-z7 FPGA for data sampling and signal processing. Research to conduct the implementation of the project will involve reading from Microwave Engineering by David Pozar and research from online scholarly articles using IEEE or other methods as sources

Methods

Components

90 degree hybrid coupler: this component will have its parameters calculated, will be simulated in Advanced Design System, and verified using momentum EM-simulator

Transmit Amplification

A driver amplifier, ad a power amplifier will be evaluated to provide a target output power of at least 30dBm (1W). I-V curves will be simulated for an optimal bias point which will result in a Q-point and load line calculation. Once that is found a proper matching network will be designed to provide the optimum load impedance for power delivery. An output matching network will also be designed to match the antenna to the power amplifier for optimum power delivery. The Amplification stage will be designed in Advanced Design System and verified in simulation.

Low-Pass Harmonic Filter

A microstrip lowpass filter will be designed to reject 2nd and third harmonics due to possible non linearities the power amplifier will introduce. The filter will have no greater than -1dB insertion loss in the passband and will have minimum 30dB of harmonic rejection.

Phased Array Antenna

The phased array antenna will be designed using ANYSS HFSS and will have a 45 degree scanning angle and a 5 degree beamwidth. This will be done designing enough antennas in an array to tighten the transmit beam. Electronic steering will be done by using phase shifters either in parallel or series which will be modulated from the FPGA. The array will be of microstrip patch configuration.

Bandpass Filter

The Bandpass filter will be a parallel coupled line filter used to reduce Noise equivalent bandwidth. The filter will be designed using Advanced Design System and will not have an insertion loss greater than 1dB in the passband. the layout will be realized in Momentum EMsolver

LNA

The LNA will be simulated in Advanced Design System and should have a Noise Figure no greater than 2dB and a gain of 18dB. The input and output will be microstrip matched and the layout will be realized in Momentum EM-solver

Mixer

The mixer will be chosen to have a low baseband IF. The RF port and LO port will be matched using microstrip and lumped element matching. The matching will be done using advanced Design System and verified in simulation.

IF Amplification

Design IF amplifier, design enough gain to drive ADC and define ADC output protocol

System Simulation

All parts designed and simulated will be combined to do a system simulation

Signal Processing

Use Zybo z7 FPGA board and create VHDL code to process incoming signals. Create a user interface to realize data to distinguish target distance. This will be done using Vivado IDE suite

Parts

	Mouser #	Mfr.#	Manufact	Descriptio	RoHS	Ord	Pric	Ext.:
			urer	n		er	e	(US
						Qty.	(US	D)
							D)	
1	772-	CMD231C3	Qorvo	RF	RoHS	1	\$49.	\$49.
	CMD231C3			Amplifier 2	Compli		31	31
				- 6 GHz	ant			
				Driver				
				Amplifier				
2	873-	SKY13320-	Skyworks	RF Switch	RoHS	20	\$2.0	\$41.
	SKY13320-	374LF		ICs .1-	Compli		9	80
	374LF			6.0GHz	ant			
				SPDT				
				GaAs IL				
				.5dB @				
				2.4GHz				
3	584-	AD8138ARZ	Analog	Differential	RoHS	1	\$12.	\$12.
	AD8138ARZ	-R7	Devices	Amplifiers	Compli		24	24
	-R7		Inc.	SOIC Lo-	ant			

				Distort'n				
				Diff I/O				
				500MHz				
				Pb-Fr				
4	584-	LTC2315ITS	Analog	Analog to	RoHS	1	\$15.	\$15.
	C2315ITS8-	8-	Devices	Digital	Compli		71	71
	12TMPF	12#TRMPBF	Inc.	Converters	ant			
				- ADC 12-				
				B, 5Msps				
				Serial Smpl				
				ADC in				
5	139-TC16-	TC16-161T+	Mini-	TSOT Audio	RoHS	1	\$3.8	\$3.8
)	161T	10-1011+	Circuits	Transforme	Compli	1	6	6
	1011		Circuits	rs / Signal	ant			
				Transforme	· · · · · · · · · · · · · · · · · · ·			
				rs TC				
				XFMR /				
				SURF				
				MOUNT /				
				RoHS				
6	139-TC8-1	TC8-1+	Mini-	Audio	RoHS	1	\$3.1	\$3.1
			Circuits	Transforme	Compli		1	1
				rs / Signal	ant			
				Transforme rs TC				
				XFMR /				
				SURF				
				MOUNT /				
				RoHS				
7	841-	AFT27S010	NXP	RF		1	\$15.	\$15.
	AFT27S010	NT1		MOSFET			60	60
	NT1			Transistors				
				Airfast RF				
				Pwr				
				LDMOS				
				Trx, .7-				
				3.6GHz 1.26				
8	549-	CVCO55BE-	Crystek	VCO	RoHS	1	\$34.	\$34.
	CV55BE286	2865-3100	CIYSICK	Oscillators	Compli	1	85	85 85
	5-3100	2002 2100		2865-	ant			
				3100MHz				
9	584-	LT5527EUF#	Analog	RF Mixer	RoHS	1	\$16.	\$16.
	LT5527EUF#	PBF	Devices	400MHz to	Compli		18	18
1	L1332/L01//	1 21	2011000	.001,1112	00111911			

				Signal				
				Level				
				Downcon				
1	139-PMA3-	PMA3-	Mini-	RF	RoHS	1	\$14.	\$14.
0	83LN	83LN+	Circuits	Amplifier	Compli		67	67
				LOW	ant			
				NOISE				
				AMPL /				
				SM /				
				RoHS				

Results

The results from simulation will be recorded and tabulated in an IEEE formatted paper. Measurements will be taken on the fabricated board and will also be recorded and tabulated. Final results will be recorded of any signal processing and targets that are able to be resolved

90 Degree Hybrid S-Parameters

freq, GHz

