age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

buys_computer

$$=\frac{9}{14} \log_{2} \left(\frac{9}{14}\right) - \frac{5}{14} \log_{2} \left(\frac{5}{14}\right)$$

$$I_{n}f_{0} = \frac{5}{0.9} I(9.3) + \frac{4}{14} I(4.0) + \frac{5}{14} I(3.2)$$

$$= \frac{5}{14} \left[-\frac{3}{2} \log_2\left(\frac{9}{5}\right) - \frac{3}{5} \log_2\left(\frac{3}{5}\right) \right] + \frac{4}{14} \left[-\frac{4}{4} \log_2\left(\frac{4}{4}\right) - \frac{0}{4} \log_2\left(\frac{0}{4}\right) \right] +$$

$$\frac{5}{14}\left[-\frac{3}{5}, \log_{1}\left(\frac{3}{5}\right) - \frac{2}{5}, \log_{1}\left(\frac{2}{5}\right)\right]$$

$$=\frac{4}{14}\left[-\frac{2}{4}\left[\log_2\left(\frac{2}{4}\right)-\frac{2}{4}\log_2\left(\frac{2}{4}\right)\right]+\left[\frac{6}{14}\left[-\frac{4}{6}\log_2\left(\frac{4}{6}\right)-\frac{2}{6}\log_2\left(\frac{2}{6}\right)\right]+\right]$$

$$\frac{4}{14} \left[-\frac{3}{4} \log_2 \left(\frac{3}{4} \right) - \frac{1}{4} \log_2 \left(\frac{1}{4} \right) \right].$$

In foreign (D) >
$$\frac{7}{14} I(\xi_1) + \frac{7}{14} I(3, a)$$

= $\frac{7}{14} \left[-\frac{6}{3} \log_3 \left(\frac{1}{4} \right) - \frac{1}{4} \log_2 \left(\frac{1}{4} \right) \right]$

= In foreign (D) = 0.842

In foreign (D) = 0.842

In foreign (O) = $\frac{1}{14} I(33) + \frac{8}{14} I(6, 2)$

= $\frac{1}{14} \left[-\frac{2}{3} \log_2 \left(\frac{3}{6} \right) - \frac{2}{3} \log_2 \left(\frac{3}{6} \right) \right] + \frac{8}{14} \left[-\frac{1}{6} \log_2 \left(\frac{6}{8} \right) - \frac{1}{6} \log_3 \left(\frac{6}{8} \right) \right]$

In foreign (O) = 0.843

(A) Gain (age) = In fo (D) - In foreign (D) = 0.440 - 0.444 + 0.244 - 100.746 + 100.746

Gain (income) = In fo (D) - In foreign (D) = 0.440 - 0.748 = 0.152

Gain (student) = In fo (D) - In foreign (D) = 0.440 - 0.788 = 0.152

Gain (credit rating) = In fo (D) - In foreign (D) = 0.440 - 0.788 = 0.152

Gain (credit rating) = In fo (D) - In foreign (D) = 0.448

And the credit rating (D) = 0.448

In fo (D) = I(3)

In fo (D) = I(3)

In fo (D) = I(3)

In fo (D) = 0.470

In fo (D) = 0

Into Student (P) =
$$\frac{1}{5}$$
 I (1,0) + $\frac{3}{5}$ I(9,1) + $\frac{3}{5}$ I(9,1) + $\frac{3}{5}$ I(9,1) + $\frac{3}{5}$ I(1,1) = 0

In to student (D) = 0

In to credit, (D) = $\frac{3}{5}$ I (1,1) + $\frac{3}{5}$ (1,1) = $\frac{1}{5}$ log $\frac{3}{5}$ (1,1) + $\frac{1}{5}$ I log $\frac{3}{5}$ (1,1) + $\frac{3}{5}$ I

เนื่องจาก yes ขมด : จ๊อไม่ได้ คำนาณ นา node vos 31. 40

Yes

