

Hermon Laboratories Ltd. P.O.Box 23, Binyamina 30500, Israel Tel. +972 4628 8001 Fax. +972 4628 8277

E-mail: mail@hermonlabs.com

 \sim T			-		_
 S I	N	\vdash	\cap	P	•

ACCORDING TO: FCC CFR 47 PART 15 Subpart C, section 15.249 and subpart B

FOR:

Diamant Toys Ltd.

Remote control for ride-on toy vehicle

Model:North America

This report is in conformity with ISO/ IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Changes made in the EUT	5
6.3	Test configuration	5
6.4	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 15 subpart C requirements	7
7.1	Field strength of emissions	7
7.2	Band edge emission	20
7.3	Antenna requirements	25
7.4	Radiated emission measurements	26
8	APPENDIX A Test equipment and ancillaries used for tests	31
9	APPENDIX B Measurement uncertainties	32
10	APPENDIX C Test facility description	33
11	APPENDIX D Specification references	33
12	APPENDIX E Abbreviations and acronyms	34
13	APPENDIX F Test equipment correction factors	35

Report ID: DIARAD_FCC.17179_rev1.doc Date of Issue: July 2006

1 Applicant information

Client name: AMAV Enterprises Ltd.

Address: 656 Sylvan Place, Batavia, IL 60510, USA

 Telephone:
 +1-630-761-3077

 Fax:
 +1-630-761-3078

 E-mail:
 peter@amav.com

 Contact name:
 Mr. Peter Lowe

2 Equipment under test attributes

Product name: Remote control for ride-on toy vehicle

Product type: Transmitter

Model(s): North America

Receipt date 6/08/2006

3 Manufacturer information

Manufacturer name: Diamant Toys Ltd.

Address: 29 Haroshet street, P.O.B. 12066, Ashdod 77000, Israel

Telephone: +972 8856 6101 **Fax:** +972 8856 5936

E-Mail: asher@diamanttoys.com

Contact name: Mr. Asher Diamant

4 Test details

Project ID: 17179

Location: Hermon Laboratories Ltd. P.O.Box 23, Binyamina 30500, Israel

Test started: 6/08/2006

Test completed: 6/18/2006; 7/30/2006

Test specification(s): FCC Part 15, subpart C, §15.249 and subpart B §15.109

5 Tests summary

Test	Status
Transmitter characteristics	
Section 15.249(a), Field strength of fundamental	Pass
Section 15.249(a), Field strength of harmonics	Pass
Section 15.249(d), Field strength of spurious other than harmonics	Pass
Section 15.249(d), band edge emissions	Pass
Section 15.203, Antenna requirement	Pass
Section 15.207(a), Conducted emission	Not required
Unintentional emissions	
Section 15.107, Conducted emission at AC power port	Not required
Section 15.109, Radiated emission	Pass
Section 15.111, Conducted emission at receiver antenna port	Not required

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

This test report replaces the previously issued test report identified by Doc ID: DIARAD_FCC/17179.

	Name and Title	Date	Signature
Tested by:	Mr. A. Adelberg, test engineer	June 18, July 30, 2006	and the same of th
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	July 30, 2006	Chu
Approved by:	Mr. M. Nikishin, EMC and Radio group leader	July 30, 2006	41

6 EUT description

6.1 General information

The EUT is a transmitter used outdoor to enhance convenience of parents accompanying children using battery operated ride-on toys. Parents use the remote control to stop the ride-on toy vehicle from distance. The parent holds a transmitter, which automatically transmits a short ID code signal every 0.3 second. The receiver, installed within the ride-on toy vehicle, enables vehicle normal operation as long as it correctly receives its own ID code signal. When the parent wants to stop the vehicle, he/she turns off the transmitter. When the receiver stops receiving its correct ID code transmissions (e.g., when parent turned off the transmitter, when getting out of range, due to disturbance, or for any other reason), it automatically stops the vehicle.

The device utilizes the integral wire antenna and is powered by 9 V internal alkaline battery.

6.2 Changes made in the EUT

No changes were implemented.

6.3 Test configuration

Photograph 6.3.1 EUT general veiw

6.4 Transmitter characteristics

Type of equipment										
V Stand-alone (Equi	Stand-alone (Equipment with or without its own control provisions)									
Combined equipm	Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)									
Plug-in card (Equi	Plug-in card (Equipment intended for a variety of host systems)									
Intended use	Condition of	use								
Fixed	Always at a d									
mobile	Always at a d									
V portable	May operate	at a dist	ance o	closer t	han 2	0 cm to huma	an body	1		
Assigned frequency range	je	902 - 9	928 M	Hz						
Operating frequency range	ge	916.5	MHz							
Maximum rated output pe	ower	Equiva	alent is	sotropi	cally r	adiated powe	r			1.1 dBm
		٧	No							
						continuou	s varial	ole		
Is transmitter output pow	er variable?		Yes			stepped v	ariable	able with stepsize		
			res		ninimu	ım RF power				
					naxim	um RF powei	•			
Antenna connection										
unique coupling	sta	ndard co	onnec	tor	٧	Integra	I			RF connector
								V wi	thout tempor	ary RF connector
Antenna/s technical char	acteristics									
Туре	Manufa	cturer			Mod	el number			Gain	
Wire	Diaman	t Toys			NA				NA	
Transmitter 99% power b	andwidth			3 kHz						
Transmitter aggregate da	nta rate/s			2.4 kb	ps					
Type of modulation			OOK, PWM							
Modulating test signal (baseband)				ID coc	le					
Maximum transmitter duty cycle in normal use				2.8%		Tx ON time	8.2	259 msec	Period	296.25 msec
Transmitter power sourc	e									
	Nominal rated vo			9 V D	С	Battery	type	Alkaline	Э	
	Nominal rated vo									· · · · · · · · · · · · · · · · · · ·
AC mains	Nominal rated vo	ltage				Freque	ncy			
Common power source f	or transmitter an	d receiv	er					/es	٧	no

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date:	6/12/2006; 7/30/2006	verdict.	FASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

7 Transmitter tests according to 47CFR part 15 subpart C requirements

7.1 Field strength of emissions

7.1.1 General

This test was performed to measure field strength of fundamental and spurious emissions from the EUT. Specification test limits are given in Table 7.1.1, Table 7.1.2, Table 7.1.3.

Table 7.1.1 Radiated fundamental emission limits

Fundamental frequency, MHz	Field strength at 3 m, dB(μV/m)
i undamental frequency, wriz	Quasi-peak
902 – 928	94.0

Table 7.1.2 Harmonics limits

Fundamental frequency, MHz	Field strength a	t 3 m, dB(μV/m)
r undamental frequency, wriz	Peak	Average
902 – 928	74.0	54.0

Table 7.1.3 Radiated spurious emissions limits

Frequency, MHz	Field strength at 3 m, dB(μV/m)*					
1 requericy, wiriz	Peak	Quasi Peak	Average	Attenuation below carrier		
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**			
0.090 - 0.110	NA	108.5 – 106.8**	NA			
0.110 - 0.490	126.8 - 113.8	NA	106.8 - 93.8**			
0.490 - 1.705		73.8 – 63.0**				
1.705 – 30.0*		69.5		50 dBc (whichever is the less		
30 – 88	NA	40.0	NA	stringent)		
88 – 216	INA	43.5	INA			
216 – 960		46.0				
960 - 1000		54.0				
Above 1000	74.0	NA	54.0			

^{*-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S^2} = \lim_{S^1} + 40 \log (S_1/S_2),$

where S_1 and S_2 – standard defined and test distance respectively in meters.

<u>Note:</u> The above field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency but not exceeding 40 GHz for intentional radiators operated below 10 GHz and up to the fifth harmonic of the highest fundamental frequency but not exceeding 100 GHz for intentional radiators operated above 10 GHz.

^{**-} The limit decreases linearly with the logarithm of frequency.

Report ID: DIARAD_FCC.17179_rev1.doc Date of Issue: July 2006

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date:	6/12/2006; 7/30/2006	verdict.	PASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

- 7.1.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band
- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and the performance check was conducted.
- **7.1.2.2** The measurements were performed in three EUT orthogonal positions.
- **7.1.2.3** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- **7.1.2.4** The worst test results (the lowest margins) were found in the EUT horizontal, lay down (Y) position, recorded in Table 7.1.4 and shown in the associated plots.
- 7.1.3 Test procedure for spurious emission field strength measurements above 30 MHz
- 7.1.3.1 The EUT was set up as shown in Figure 7.1.2, energized and the performance check was conducted.
- **7.1.3.2** The measurements were performed in three EUT orthogonal positions.
- 7.1.3.3 The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- **7.1.3.4** The worst test results (the lowest margins) were found in the EUT horizontal, lay down (Y) position, recorded in Table 7.1.4 and shown in the associated plots.

Figure 7.1.1 Setup for spurious emission field strength measurements below 30 MHz

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date:	6/12/2006; 7/30/2006	verdict.	FASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

Figure 7.1.2 Setup for spurious emission field strength measurements above 30 MHz

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date:	6/12/2006; 7/30/2006	verdict.	FASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:		•	-			

Table 7.1.4 Field strength of fundamental emission and spurious emissions

TEST DISTANCE: 3 m

EUT POSITION: 3 orthogonal (X / Y / Z) (Lay down)

MODULATION: OOK
MODULATING SIGNAL: ID code
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

INVESTIGATED FREQUENCY RANGE: 0.009 - 10000 MHz

DETECTOR USED: Peak

RESOLUTION BANDWIDTH: 0.2 kHz (9 kHz – 150 kHz)

9.0 kHz (150 kHz – 30 MHz) 120 kHz (30 MHz – 1000 MHz) 1.0 MHz (above 1000 MHz) ≥ Resolution bandwidth

 VIDEO BANDWIDTH:
 ≥ Resolution bandwidth

 TEST ANTENNA TYPE:
 Active loop (9 kHz − 30 MHz)

Log periodic (200 MHz – 1000 MHz) Biconilog (30 MHz – 1000 MHz) Double ridged guide (above 1000 MHz)

Fundamental emission

		Ante	enna		Peak	Qu	asi-peak		
ı	Frequency, MHz	Pol.	Height, m	Azimuth, degrees*	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Verdict
	916.500	Н	1.5	154	93.6	93.2	94.0	8.0	Pass

Spurious emissions

	Antenna Azimuth,		Peak field strength		Avr	Avera	ge field strer	ngth			
F, MHz	Pol.	Height, m	degrees*	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	factor, dB	Calculated, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Verdict
1832.98	Н	1.0	171	72.74	74.0	-1.26	-21.66	51.08	54.0	-2.92	
2749.45	Н	1.0	181	64.18	74.0	-9.82	-21.66	42.52	54.0	-11.48	
3665.97	Н	1.3	180	58.67	74.0	-15.33	-21.66	37.01	54.0	-16.99	
4582.37	Ι	1.2	145	57.83	74.0	-16.17	-21.66	36.17	54.0	-17.83	Pass
5499.05	Ι	1.0	169	51.67	74.0	-22.33	-21.66	30.01	54.0	-23.99	
6415.58	Н	1.1	95	52.00	74.0	-22.00	-21.66	30.34	54.0	-23.66	
7331.99	Н	1.1	122	39.50	74.0	-34.50	-21.66	17.84	54.0	-36.16	

The recorded test results were obtained in the EUT lay down position.

^{*-} EUT front panel refers to 0 degrees position of turntable.

^{**-} Margin = dB below (negative if above) specification limit.

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS				
Date:	6/12/2006; 7/30/2006	verdict.	PASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:		•	-			

Table 7.1.5 Average factor calculation

Transmission pulse	Transmis	sion burst	Average factor, dB
Tx ON duration, ms	Duration, ms	Period, ms	Average ractor, ub
8.259	10.562	296.25	-21.66

^{*-} Average factor was calculated as follows:

20 log (8.259/100) = -21.66 dB

for pulse train shorter than 100 ms: $Average\ factor = 20 \times \log_{10} \left(\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burst\ duration}{Train\ duration} \times Number\ of\ bursts\ within\ pulse\ train \right)$ for pulse train longer than 100 ms: $Average\ factor = 20 \times \log_{10} \left(\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burst\ duration}{100\ ms} \times Number\ of\ bursts\ within\ 100\ ms \right)$

Reference numbers of test equipment used

HL 0034	HL 0410	HL 0415	HL 0446	HL 0812	HL 1200	HL 1424	HL 1430
HL 1553	HL 1566	HL 1942	HL 1984	HL 2259	HL 2432	HL 2697	HL 2780
HL 2871							

Full description is given in Appendix A.

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS				
Date:	6/12/2006; 7/30/2006	verdict.	PASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

Plot 7.1.1 Radiated emission measurements at the fundamental frequency

TEST SITE: OATS
TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
EUT POSITION: Y (lay down)

Plot 7.1.2 Radiated emission measurements at the fundamental frequency

TEST SITE: OATS
TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical
EUT POSITION: Y (lay down)

Test specification:	Section 15.249(a), Field strength of emissions					
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS				
Date:	6/12/2006; 7/30/2006	verdict.	FASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

Plot 7.1.3 Repetition rate measurements at the fundamental frequency

TEST SITE: OATS
TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
EUT POSITION: Y (lay down)

Repetition rate = 1/48 ms = 20.833 Hz

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS				
Date:	6/12/2006; 7/30/2006	verdict.	PASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

Plot 7.1.4 Radiated emission measurements from 9 to 150 kHz

TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical

EUT POSITION: 3 orthogonal (X/ Y/ Z)

Plot 7.1.5 Radiated emission measurements from 0.15 to 30 MHz

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

EUT POSITION: 3 orthogonal (X/ Y/ Z)

Test specification:	Section 15.249(a), Field strength of emissions					
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS				
Date:	6/12/2006; 7/30/2006	verdict.	FASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

Plot 7.1.6 Radiated emission measurements from 30 to 1000 MHz

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal EUT POSITION: 3 orthogonal (X/ Y/ Z)

Note: 916.5 MHz – fundamental frequency, intended emission

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS				
Date:	6/12/2006; 7/30/2006	verdict.	PASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

Plot 7.1.7 Radiated emission measurements from 1.0 to 2.9 MHz

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal EUT POSITION: 3 orthogonal (X/ Y/ Z)

DETECTOR: Peak

Note: 1832 MHz – 2nd harmonic

Plot 7.1.8 Radiated emission measurements from 1.0 to 2.9 MHz

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal EUT POSITION: 3 orthogonal (X/ Y/ Z)

DETECTOR: Average

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS				
Date:	6/12/2006; 7/30/2006	verdict.	PASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

Plot 7.1.9 Radiated emission measurements from 2.9 to 10 GHz

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal EUT POSITION: 3 orthogonal (X/ Y/ Z)

DETECTOR: Peak

Note: 4th and 5th harmonics

Plot 7.1.10 Radiated emission measurements from 2.9 to 10.0 GHz

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal EUT POSITION: 3 orthogonal (X/ Y/ Z) DETECTOR: Average

Test specification:	Section 15.249(a), Field strength of emissions					
Test procedure:	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS				
Date:	6/12/2006; 7/30/2006	verdict.	FASS			
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC			
Remarks:						

Plot 7.1.11 Transmission pulse duration

Plot 7.1.12 Transmission sync pulse duration

Test specification:	Section 15.249(a), Field s	Section 15.249(a), Field strength of emissions		
Test procedure:	ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict:	PASS	
Date:	6/12/2006; 7/30/2006	verdict.	PASS	
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC	
Remarks:				

Plot 7.1.13 Transmission burst duration

Plot 7.1.14 Transmission burst period

Test specification:	Section 15.249(d), Band edge emissions		
Test procedure:	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date:	6/12/2006	verdict.	PASS
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC
Remarks:			

7.2 Band edge emission

7.2.1 General

This test was performed to verify the EUT band edge emission including all associated side bands and was attenuated at least 50 dB below the unmodulated carrier level or below the general spurious emission limit. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Band edge emission limits

Frequency band, MHz	Attenuation below carrier, dBc
902.0 - 928.0	50

7.2.2 Test procedure

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and the performance check was conducted.
- **7.2.2.2** The spectrum analyzer frequency span was set to capture all major modulation sidebands of emission and sweep time was set sufficiently slow to ensure peak measurements. Spectrum analyzer was set in peak hold mode and time sufficient for trace stabilization was allowed.
- **7.2.2.3** The frequency of modulation envelope points beyond which power level drops below the band edge emission limit was measured.
- **7.2.2.4** The test results were recorded in Table 7.2.2 and shown in the associated plots.

Test specification:	Section 15.249(d), Band e	Section 15.249(d), Band edge emissions		
Test procedure:	ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict:	PASS	
Date:	6/12/2006	verdict.	PASS	
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC	
Remarks:		-	-	

Figure 7.2.1 Band edge emission measurement set up

Test specification:	Section 15.249(d), Band edge emissions		
Test procedure:	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date:	6/12/2006	verdict.	PASS
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC
Remarks:		•	-

Table 7.2.2 Band edge emission test results

OPERATING FREQUENCY: 916.5 MHz **DETECTOR USED:** Peak hold 120 kHz **RESOLUTION BANDWIDTH:** VIDEO BANDWIDTH: 300 kHz MODULATION: OOK MODULATING SIGNAL: ID code TRANSMITTER OUTPUT POWER SETTINGS: Maximum CARRIER FIELD STRENGTH: 96.35 dBµV/m ATTENUATION BELOW CARRIER: 50 dBc

Modulation envelope		Band edge limit, MHz	Margin, MHz***	Verdict
Edge	Frequency, MHz*	Band edge illint, wiriz	Margin, Miriz	Veruici
Low	916.195	902.0	14.195	Pass
High	916.808	928.0	-11.192	Pass

^{* -} Measured frequency beyond which the emission dropped 50 dB below the carrier emission or below the field strength limit whichever was a less stringent

Reference numbers of test equipment used

HL 0034 HL 1365 HL 1430 F	7	
---------------------------	---	--

Full description is given in Appendix A.

Plot 7.2.1 Assigned band span

^{** -} Margin = Modulation envelope cross point frequency - Band edge limit

Test specification:	Section 15.249(d), Band edge emissions		
Test procedure:	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date:	6/12/2006	verdict.	FASS
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC
Remarks:		-	-

Plot 7.2.2 Lower cross point of modulation envelope and limit

Plot 7.2.3 Upper cross point of modulation envelope and limit

Test specification:	Section 15.249(d), Band e	Section 15.249(d), Band edge emissions		
Test procedure:	ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict:	PASS	
Date:	6/12/2006	verdict.	PASS	
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC	
Remarks:				

Plot 7.2.4 Low band edge emission test result

Plot 7.2.5 High band edge emission test result

Test specification:	Section 15.203, Antenna	Section 15.203, Antenna requirement		
Test procedure:	Visual inspection / supplier de	Visual inspection / supplier declaration		
Test mode:	Compliance	Verdict:	PASS	
Date:	6/12/2006	verdict.	FASS	
Temperature: 24 °C	Air Pressure: 1004 hPa	Relative Humidity: 39 %	Power Supply: 9 V DC	
Remarks:				

7.3 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.3.1.

Table 7.3.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

Photograph 7.3.1 Antenna assembly

Report ID: DIARAD_FCC.17179_rev1.doc Date of Issue: July 2006

Test specification:	Section 15.109, Radiated emission			
Test procedure:	ANSI C63.4, Sections 11.6 at	ANSI C63.4, Sections 11.6 and 12.1.4		
Test mode:	Compliance	Verdict:	PASS	
Date:	6/13/2006	verdict.	PASS	
Temperature: 23 °C	Air Pressure: 1010 hPa	Relative Humidity: 42 %	Power Supply: 9 V DC	
Remarks:				

7.4 Radiated emission measurements

7.4.1 General

7.4.2

This test was performed to measure radiated emissions from the EUT enclosure. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Radiated emission test limits

Frequency,	Class B limit, dB(μV/m)		Class A limit, dB(μV/m)		
MHz	10 m distance	3 m distance	10 m distance	3 m distance	
30 - 88	29.5*	40.0	39.0	49.5*	
88 - 216	33.0*	43.5	43.5	54.0*	
216 - 960	35.5*	46.0	46.4	56.9*	
Above 960	43.5*	54.0	49.5	60.0*	

^{*} The limit for test distance other than specified was calculated using the inverse linear distance extrapolation factor as follows: $\text{Lim}_{S2} = \text{Lim}_{S1} + 20 \log (S_1/S_2)$, where S_1 and S_2 – standard defined and test distance respectively in meters.

Test procedure for measurements in anechoic chamber

- 7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized and the performance check was conducted.
- **7.4.2.2** The specified frequency range was investigated with biconilog antenna connected to EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal and the EUT cables position was varied.
- 7.4.2.3 The worst test results (the lowest margins) were recorded in Table 7.4.2 and shown in the associated plots.

Figure 7.4.1 Setup for radiated emission measurements in anechoic chamber, table-top equipment

Test specification:	Section 15.109, Radiated	emission	
Test procedure:	ANSI C63.4, Sections 11.6 an	d 12.1.4	
Test mode:	Compliance	Verdict:	PASS
Date:	6/13/2006	verdict.	FASS
Temperature: 23 °C	Air Pressure: 1010 hPa	Relative Humidity: 42 %	Power Supply: 9 V DC
Remarks:			

Table 7.4.2 Radiated emission test results

EUT SET UP: TABLE-TOP
LIMIT: Class B
EUT OPERATING MODE: Stand-by

TEST SITE: ANECHÓIC CHAMBER

TEST DISTANCE: 3 r

DETECTORS USED: PEAK / QUASI-PEAK RESOLUTION BANDWIDTH: 120 kHz

Frequency,	Peak	Measured	Quasi-peak		Antenna	Antenna	Turn-table	
MHz	emission, dB(μV/m)	emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	polarization	height, m	position**, degrees	Verdict
30 -1000		All found em	issions were	at least 20 d	B below the spe	cified limit		Pass

DETECTORS USED: PEAK / AVERAGE RESOLUTION BANDWIDTH: PEAK / AVERAGE 1000 kHz

	Peak	Average				Antenna	Turn-table	
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	height, m	position**, degrees	Verdict
1000 - 5000		All found em	nissions were	at least 20 d	B below the spe	cified limit		Pass

^{*-} Margin = Measured emission – specification limit.

Reference numbers of test equipment used

HL 1425	HL 1553	HL 1566	HL 1849	HL 1850	HL 1947	HL 1984	HL 2109
HL 2697							

Full description is given in Appendix A.

^{**-} EUT front panel refers to 0 degrees position of turntable.

Test specification:	Section 15.109, Radiated	emission	
Test procedure:	ANSI C63.4, Sections 11.6 an	d 12.1.4	
Test mode:	Compliance	Verdict:	PASS
Date:	6/13/2006	verdict.	FASS
Temperature: 23 °C	Air Pressure: 1010 hPa	Relative Humidity: 42 %	Power Supply: 9 V DC
Remarks:			

Plot 7.4.1 Radiated emission measurements in 30- 1000 MHz range, vertical antenna polarization

Plot 7.4.2 Radiated emission measurements in 30 - 1000 MHz range, horizontal antenna polarization

Test specification:	Section 15.109, Radiated	emission	
Test procedure:	ANSI C63.4, Sections 11.6 ar	nd 12.1.4	
Test mode:	Compliance	Verdict:	PASS
Date:	6/13/2006	verdict.	PASS
Temperature: 23 °C	Air Pressure: 1010 hPa	Relative Humidity: 42 %	Power Supply: 9 V DC
Remarks:			

Plot 7.4.3 Radiated emission measurements in 1000 - 2900 MHz, vertical antenna polarization

Plot 7.4.4 Radiated emission measurements in 1000 -2900 MHz, horizontal antenna polarization

Test specification:	Section 15.109, Radiated	emission	
Test procedure:	ANSI C63.4, Sections 11.6 an	d 12.1.4	
Test mode:	Compliance	Verdict:	PASS
Date:	6/13/2006	verdict.	FASS
Temperature: 23 °C	Air Pressure: 1010 hPa	Relative Humidity: 42 %	Power Supply: 9 V DC
Remarks:			

Plot 7.4.5 Radiated emission measurements in 2900 - 5000 MHz, vertical antenna polarization

TEST DISTANCE: 3 m

Plot 7.4.6 Radiated emission measurements in 2900 - 5000 MHz, horizontal antenna polarization

TEST SITE: Anechoic chamber TEST DISTANCE: 3 m

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal.	Due Cal.
0034	Antenna, Log Periodic, 200 - 1000 MHz	Electro-Metrics	LPA 25/30	1988	10-Jan-06	10-Jan-07
0410	Cable, Coax, Microwave, DC-18 GHz, N-N, 1 m	Gore	PFP01P0 1039.4	9338767	17-Oct-05	17-Oct-06
0415	Cable, Coax, RF, RG-214	HL	CC-3	056	02-Dec-05	02-Dec-06
0446	Antenna, Loop active, 10kHz-30MHz	EMCO	6502	2857	28-Jun-05	28-Jun-06
0812	Cable Coax, RG-214, 11.5 m, N-type connectors	HL	C214-11	148	02-Dec-05	02-Dec-06
1200	Quadruplexer 1-12 GHz (1-2 GHz; 2-4GHz;4-8 GHz; 8-12GHz)	Elettronica S.p.A Roma	UE 84	D/00240	10-Feb-05	10-Feb-07
1365	Cable Coaxial, S-FLC 12-50, 5 m	HL	C214-5	1365	02-Dec-05	02-Dec-06
1424	Spectrum Analyzer, 30 Hz- 40 GHz	Agilent Technologies	8564EC	3946A002 19	30-Aug-05	30-Aug-06
1425	EMI Receiver, 9 kHz - 2.9 GHz, System: HL1426, HL1427	Agilent Technologies	8542E	3710A002 22, 3705A002 04	01-Sep-05	01-Sep-06
1430	EMI Receiver, 9 kHz - 2.9 GHz, System: HL1431, HL1432	Agilent Technologies	8542E	3807A002 62,3705A0 0217	01-Sep-05	01-Sep-06
1553	Cable RF, 3.5 m	Alpha Wire	RG-214	1553	02-Dec-05	02-Dec-06
1566	Cable RF, 2 m	Huber-Suhner	Sucoflex 104PE	13094/4PE	02-Dec-05	02-Dec-06
1849	Antenna mast with polarity control (Small Anechoic chamber)	Sh. I. Machines	AM-F4	1849	18-Jan-06	18-Jan-07
1850	Turntable	Sh. I. Machines	TT-M-3	1850	11-Nov-05	11-Nov-06
1942	Cable 18GHz, 4 m, blue	Rhophase Microwave Limited	SPS- 1803A- 4000-NPS	T4658	01-Jan-06	01-Jan-07
1947	Cable 18GHz, 6.5 m, blue	Rhophase Microwave Limited	NPS- 1803A- 6500-NPS	T4974	17-Oct-05	17-Oct-06
1984	Antenna, Double-Ridged Waveguide Horn, 1-18 GHz, 300 W, N-type	EMC Test Systems	3115	9911-5964	03-Mar-06	03-Mar-07
2109	Anechoic Chamber 6(L) x 5.5(W) x 2.95(H) m	HL	AC-2	2109	11-Nov-05	11-Nov-06
2259	Amplifier Low Noise 2-20 GHz	Sophia Wireless	LNA0220- C	0223	05-Nov-05	05-Nov-06
2432	Antenna, Double-Ridged Waveguide Horn 1-18 GHz	EMC Test Systems	3115	00027177	03-Mar-06	03-Mar-07
2697	Antenna, 30 MHz - 3.0 GHz,	Sunol Sciences. Corp. Pleasanton, California USA	JB3	A022805	10-Jan-06	10-Jan-07
2780	EMS analyzer, 100 Hz to 26.5 GHz	Agilent Technologies	E7405A	MY451024 6	11-Jun-05	11-Jun-07
2871	Microwave Cable Assembly, 18 GHz, 6.4 m, SMA - SMA	Huber-Suhner	198-8155- 00	2871	16-Feb-06	16-Feb-07

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Radiated emissions at 3 m measuring distance	·
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Duty cycle, timing (Tx ON / OFF) and average	
factor measurements	± 1.0 %

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of ISO/IEC 17025 (or alternately ANSI/NCSL Z540-1).

The laboratory calibrates its measurement standards by a third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements. The Hermon Labs EMC measurements uncertainty is given in the table above.

10 APPENDIX C Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, telecommunications, environmental, safety standards, and by AMTAC (UK) for safety of medical devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01).

Address: P.O. Box 23, Binyamina 30500, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

47CFR part 15: 2005 Radio Frequency Devices.

ANSI C63.2: 1996 American National Standard for Instrumentation-Electromagnetic Noise and Field

Strength, 10 kHz to 40 GHz-Specifications.

ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions

from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40

GHz.

12 APPENDIX E Abbreviations and acronyms

A ampere

AC alternating current
AM amplitude modulation
AVRG average (detector)

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu \text{V}) & \text{decibel referred to one microvolt} \end{array}$

 $\begin{array}{ll} dB(\mu V/m) & \text{decibel referred to one microvolt per meter} \\ dB(\mu A) & \text{decibel referred to one microampere} \end{array}$

 $dB\Omega$ decibel referred to one Ohm

DC direct current

EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz

ITE information technology equipment

k kilo kHz kilohertz LO local oscillator meter m megahertz MHz min minute millimeter mm ms millisecond μs microsecond NA not applicable NT not tested

OATS open area test site

 $\begin{array}{ccc} \Omega & \text{Ohm} \\ \text{QP} & \text{quasi-peak} \\ \text{RE} & \text{radiated emission} \\ \text{RF} & \text{radio frequency} \\ \text{rms} & \text{root mean square} \end{array}$

Rx receive s second T temperature Tx transmit V volt WB wideband

13 APPENDIX F Test equipment correction factors

Antenna factor Active loop antenna Model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic antenna factor, dB	Electric antenna factor, dB
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.8
0.750	-41.9	9.7
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.2
4.000	-41.4	10.1
5.000	-41.5	10.1
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Log periodic antenna Electro-Metrics, model LPA-25/30 Ser.No.1988, HL 0034

Frequency MHz	Antenna Factor dB(1/m)	Frequency MHz	Antenna Factor dB(1/m)
200	12.6	625	20.4
225	12.2	650	20.9
250	13.4	675	22.0
275	14.3	700	22.2
300	15.2	725	22.7
325	15.7	750	22.5
350	15.9	775	22.7
375	16.4	800	22.8
400	17.0	825	23.2
425	17.4	850	23.5
450	17.9	875	23.9
475	18.6	900	24.0
500	19.1	925	24.0
525	19.3	950	24.2
550	19.6	975	24.7
575	19.8	1000	25.1
600	20.0		_

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Double-ridged wave guide horn antenna Model 3115, S/N 9911-5964, HL1984

Frequency, MHz	Antenna factor, dB(1/m)
1000.0	24.7
1500.0	25.7
2000.0	27.6
2500.0	28.9
3000.0	31.2
3500.0	32.0
4000.0	32.5
4500.0	32.7
5000.0	33.6
5500.0	35.1
6000.0	35.4
6500.0	34.9
7000.0	36.1
7500.0	37.8
8000.0	38.0
8500.0	38.1
9000.0	39.1
9500.0	38.3
10000.0	38.6
10500.0	38.2
11000.0	38.7
11500.0	39.5
12000.0	40.0
12500.0	40.4
13000.0	40.5
13500.0	41.1
14000.0	41.6
14500.0	41.7
15000.0	38.7
15500.0	38.2
16000.0	38.8
16500.0	40.5
17000.0	42.5
17500.0	45.9
18000.0	49.4

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Double-ridged guide horn antenna Model 3115, serial number: 00027177, HL2432

Frequency, MHz	Antenna factor. dB(1/m)
1000.0	24.7
1500.0	25.7
2000.0	27.8
2500.0	28.9
3000.0	30.7
3500.0	31.8
4000.0	33.0
4500.0	32.8
5000.0	34.2
5500.0	34.9
6000.0	35.2
6500.0	35.4
7000.0	36.3
7500.0	37.3
8000.0	37.5
8500.0	38.0
9000.0	38.3
9500.0	38.3
10000.0	38.7
10500.0	38.7
11000.0	38.9
11500.0	39.5
12000.0	39.5
12500.0	39.4
13000.0	40.5
13500.0	40.8
14000.0	41.5
14500.0	41.3
15000.0	40.2
15500.0	38.7
16000.0	38.5
16500.0	39.8
17000.0	41.9
17500.0	45.8
18000.0	49.1

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna calibration Sunol Sciences Inc., model JB3, serial number A022805

						Sunoi	Scien	ces inc., i	nodel J	B3, ser	iai nui	mber A02	2805						
Frequency, MHz	ACF, dB	Gain, dBi	Num gain	Frequency, MHz	ACF, dB	Gain, dBi	Num gain	Frequency, MHz	ACF, dB	Gain, dBi	Num gain	Frequency, MHz	ACF, dB	Gain, dBi	Num gain	Frequency, MHz	ACF, dB	Gain, dBi	Num
MHZ 30	22.2	-22.5	0.01	620	19.7	6.3	4.27	1215	24.9	7.0	5.05	MHZ 1810	28.3	7.1	5.08	2405	30.9	6.9	gain 4.93
35	18.5	-17.4	0.02	625	19.7	6.5	4.42	1220	24.9	7.0	4.99	1815	28.5	6.9	4.91	2410	30.9	6.9	4.89
40 45	14.7 11.3	-12.5 -8.1	0.06 0.16	630 635	19.6 19.7	6.6 6.5	4.57 4.48	1225 1230	25.1 25.2	6.9 6.8	4.91 4.82	1820 1825	28.6 28.7	6.8 6.8	4.74 4.75	2415 2420	31.0 31.0	6.9 6.8	4.85 4.82
45	11.3	-8.1	0.16	640	19.7	6.4	4.40	1235	25.2	7.0	4.96	1830	28.7	6.8	4.76	2425	31.1	6.8	4.81
50 55	8.9 7.9	-4.7 -2.8	0.34 0.52	645 650	19.9 19.9	6.5 6.5	4.45 4.51	1240 1245	25.0 25.0	7.1 7.1	5.09 5.12	1835 1840	28.7 28.8	6.7 6.7	4.72 4.69	2430 2435	31.0 31.0	6.9 6.9	4.87 4.88
60	7.8	-2.0	0.62	655	19.9	6.6	4.60	1250	25.0	7.1	5.12	1845	28.6	6.9	4.90	2440	31.2	6.8	4.74
65	8.5	-2.0	0.63	660	19.9	6.7	4.69	1255	25.0	7.2	5.25	1850	28.4	7.1	5.12	2445	31.1	6.9	4.91
70 75	9.0 8.8	-1.9 -1.1	0.64 0.78	665 670	19.9 20.0	6.7 6.7	4.70 4.71	1260 1265	24.9 25.0	7.3 7.3	5.36 5.31	1855 1860	28.5 28.6	7.0 7.0	5.07 5.01	2450 2455	31.0 31.0	7.0 7.0	4.96 5.01
80	8.4	-0.2	0.97	675	20.1	6.7	4.71	1270	25.1	7.2	5.26	1865	28.5	7.1	5.17	2460	30.9	7.2	5.19
85 90	8.0 8.2	0.8 1.1	1.20 1.29	680 685	20.1	6.7 6.8	4.71 4.79	1275 1280	25.3 25.5	7.0 6.8	5.05 4.84	1870 1875	28.4 28.4	7.3 7.2	5.33 5.28	2465 2470	31.1 31.3	6.9 6.8	4.95 4.76
95	9.2	0.5	1.13	690	20.1	6.9	4.88	1285	25.4	7.0	4.97	1880	28.5	7.2	5.22	2475	31.4	6.7	4.69
100 105	10.6 11.7	-0.4 -1.1	0.92 0.78	695 700	20.2	6.8	4.82 4.76	1290 1295	25.3 25.3	7.1 7.2	5.10 5.22	1885 1890	28.5 28.6	7.2 7.2	5.22 5.21	2480 2485	31.3 31.1	6.8 7.0	4.79 5.00
110	12.6	-1.6	0.70	705	20.4	6.8	4.75	1300	25.2	7.3	5.33	1895	28.6	7.2	5.24	2490	31.1	7.0	4.99
115 120	13.3 13.9	-1.9 -2.1	0.65 0.62	710 715	20.5 20.5	6.8	4.75 4.80	1305 1310	25.3 25.5	7.2 7.1	5.21 5.09	1900 1905	28.6 28.5	7.2 7.3	5.27 5.36	2495 2500	31.2 30.9	7.0 7.2	4.99 5.27
125	14.2	-2.0	0.63	720	20.5	6.9	4.85	1315	25.4	7.2	5.23	1910	28.5	7.4	5.45	2505	31.1	7.1	5.15
130 135	14.2 13.8	-1.7 -1.0	0.68	725 730	20.6 20.7	6.8	4.81 4.77	1320 1325	25.3 25.5	7.3 7.2	5.36 5.21	1915 1920	28.5 28.6	7.3 7.3	5.38 5.31	2510 2515	31.0 31.0	7.2 7.2	5.22 5.26
140	13.4	-0.3	0.94	735	20.9	6.7	4.65	1330	25.6	7.0	5.06	1925	28.6	7.3	5.35	2520	31.2	7.0	5.05
145	13.1	0.3	1.08	740	21.0	6.6	4.53	1335	25.7	7.1	5.07	1930	28.6	7.3	5.39	2525	30.8	7.4	5.54
150 160	12.9 12.7	0.8 1.6	1.21	745 755	21.0 21.0	6.6 6.8	4.59 4.74	1340 1350	25.7 25.7	7.1 7.1	5.09 5.17	1935 1945	28.5 28.5	7.4 7.5	5.54 5.59	2530 2540	31.0 31.2	7.3 7.1	5.37 5.09
165	12.5	2.0	1.59	760	21.0	6.8	4.83	1355	25.8	7.0	5.06	1950	28.6	7.4	5.48	2545	31.0	7.3	5.43
170 175	12.2 11.8	2.6 3.3	1.83 2.13	765 770	21.1 21.3	6.8	4.73 4.64	1360 1365	25.9 26.0	6.9 6.9	4.95 4.95	1955 1960	28.6 28.6	7.5 7.5	5.57 5.65	2550 2555	31.0 31.1	7.3 7.2	5.39 5.30
180	11.6	3.7	2.36	775	21.3	6.7	4.68	1370	26.0	7.0	4.96	1965	28.7	7.4	5.47	2560	31.0	7.4	5.47
190 200	11.6 13.1	4.2 3.2	2.61 2.07	785 795	21.3 21.4	6.8 6.8	4.77 4.79	1380 1390	26.0 26.1	7.0 6.9	5.06 4.92	1975 1985	28.9 29.1	7.2 7.1	5.22 5.11	2570 2580	31.1 31.6	7.3 6.9	5.37 4.87
205	12.0	4.4	2.76	800	21.5	6.8	4.77	1395	26.2	6.9	4.94	1990	29.1	7.0	5.06	2585	31.6	6.8	4.79
210 215	11.0 11.3	5.6 5.6	3.66 3.59	805 810	21.6 21.7	6.7 6.7	4.71 4.65	1400 1405	26.2 26.1	7.0 7.0	4.96 5.02	1995 2000	29.1 29.1	7.1 7.1	5.09 5.11	2590 2595	31.6 31.5	6.9 7.0	4.88 4.97
220	11.6	5.5	3.52	815	21.7	6.7	4.72	1410	26.1	7.1	5.09	2005	29.1	7.1	5.16	2600	31.6	6.9	4.86
225	11.7	5.5	3.55	820	21.7	6.8	4.80	1415	26.2	7.0	5.02	2010	29.1	7.1	5.15	2605	31.3	7.2	5.30
230 235	11.9 12.1	5.5 5.5	3.57 3.56	825 830	21.7 21.7	6.8	4.82 4.85	1420 1425	26.3 26.2	7.0 7.1	4.96 5.10	2015 2020	29.2 29.2	7.1 7.1	5.13 5.18	2610 2615	31.4 31.7	7.1 6.9	5.15 4.88
240	12.3	5.5	3.54	835	21.8	6.8	4.82	1430	26.1	7.2	5.25	2025	29.3	7.1	5.08	2620	31.6	7.0	4.97
245 250	12.3	5.7 5.9	3.71 3.88	840 845	21.9 21.9	6.8	4.80 4.83	1435 1440	26.1 26.2	7.2 7.2	5.24 5.24	2030 2035	29.3 29.3	7.0 7.1	5.05 5.07	2625 2630	31.4 31.6	7.1 7.0	5.17 5.00
255	12.3 12.5	5.9	3.85	850	21.9	6.9	4.86	1445	26.3	1	5.11	2040	29.3	7.1	5.13	2635	31.8	6.8	4.82
260	12.7	5.8	3.83	855	22.0	6.8	4.80	1450	26.5	7.0	4.98	2045	29.2	7.2	5.23	2640	31.7	7.0	4.98
265 270	13.2	5.5 5.2	3.54 3.27	860 865	22.1 22.0	6.8	4.74 4.92	1455 1460	26.4 26.4	7.1 7.1	5.07 5.17	2050 2055	29.2 29.3	7.2 7.2	5.27 5.21	2645 2650	31.7 31.8	6.9	4.93 4.85
275	13.7	5.3	3.39	870	21.9	7.1	5.11	1465	26.4	7.2	5.19	2060	29.5	7.0	5.02	2655	31.8	6.9	4.85
280 285	13.7 13.7	5.4	3.50 3.61	875 880	22.0 22.1	7.1	5.08 5.05	1470 1475	26.4 26.4	7.2 7.1	5.22 5.17	2065 2070	29.4 29.4	7.1 7.1	5.08 5.10	2660 2665	31.7 32.0	7.0 6.7	5.02 4.71
290	13.7	5.7	3.72	885	22.1	7.0	5.06	1480	26.5	7.1	5.12	2075	29.5	7.0	5.01	2670	32.0	6.7	4.67
295	13.8	5.8	3.77	890	22.1	7.0	5.06	1485	26.5	7.1	5.14	2080	29.8	6.8	4.76	2675	31.9	6.8	4.81
300 305	13.9 14.0	5.8 5.9	3.81 3.85	895 900	22.2 22.2	7.1 7.1	5.09 5.12	1490 1495	26.5 26.5	7.1 7.2	5.17 5.24	2085 2090	29.7 29.7	6.9 6.9	4.89 4.86	2680 2685	31.7 31.9	7.0 6.8	5.04 4.83
310	14.1	5.9	3.88	905	22.3	7.1	5.09	1500	26.5	7.2	5.31	2095	29.8	6.8	4.78	2690	32.1	6.7	4.72
315 320	14.3 14.4	5.9 5.9	3.89 3.90	910 915	22.3 22.4	7.0 7.0	5.05 4.99	1505 1510	26.5 26.6	7.2 7.2	5.27 5.23	2100 2105	29.9 29.8	6.8 6.8	4.75 4.81	2695 2700	32.1 32.0	6.7 6.8	4.71 4.81
325	14.5	5.9	3.92	920	22.6	6.9	4.92	1515	26.6	7.2	5.30	2110	29.9	6.8	4.78	2705	32.0	6.8	4.80
330	14.6	5.9	3.93	925	22.7	6.9	4.85	1520	26.5	7.3	5.38	2115	29.9	6.8	4.76	2710	32.1	6.8	4.79
335 340	14.7 14.7	6.0	4.02 4.12	930 935	22.8 22.8	6.8	4.77 4.83	1525 1530	26.6 26.6	7.3 7.3	5.37 5.36	2120 2125	29.9 29.9	6.8 6.9	4.84 4.89	2715 2720	32.1 32.4	6.7 6.5	4.71 4.47
345	14.9	6.1	4.06	940	22.8	6.9	4.89	1535	26.6	7.4	5.44	2130	29.9	6.9	4.90	2725	32.2	6.7	4.63
350 360	15.1 15.6	6.0 5.8	3.99 3.78	945 955	22.8 23.0	6.9	4.87 4.81	1540 1550	26.5 26.5	7.4 7.5	5.53 5.63	2135 2145	29.8 29.9	6.9 6.9	4.94 4.92	2730 2740	31.9 31.6	7.0 7.1	5.05 5.46
365	15.5	5.9	3.89	960	23.1	6.8	4.77	1555	26.7	7.3	5.39	2150	29.9	7.0	4.98	2745	31.9	7.0	5.06
370	15.5	6.0	4.01	965	23.1	6.7	4.73 4.69	1560	26.9	7.1	5.16	2155	29.8	7.1	5.10	2750	32.0	6.9	4.94 4.98
375 380	15.6 15.7	6.1 6.1	4.03 4.05	970 975	23.2 23.3	6.7 6.6	4.62	1565 1570	26.9 26.9	7.2 7.2	5.23 5.30	2160 2165	29.8 29.9	7.1 7.0	5.09 5.00	2755 2760	32.0 32.0	7.0 7.0	4.98 5.06
385	15.7	6.2	4.15	980	23.5	6.6	4.54	1575	27.0	7.2	5.23	2170	29.9	7.1	5.07	2765	32.2	6.8	4.80
390 400	15.7 16.0	6.3	4.25 4.18	985 995	23.5	6.6 6.5	4.52 4.48	1580 1590	27.0 27.0	7.1 7.2	5.17 5.22	2175 2185	29.8 29.8	7.2 7.2	5.20 5.27	2770 2780	32.3 32.3	6.8 6.8	4.73 4.82
405	16.3	6.1	4.07	1000	23.6 23.7	6.5	4.46	1595	27.0	7.2	5.29	2190	29.8	7.2	5.28	2785	32.7	6.4	4.41
410 415	16.5 16.5	6.0	3.96 4.00	1005 1010	23.7 23.7	6.5 6.6	4.51 4.57	1600 1605	27.0 27.0	7.3 7.3	5.36 5.38	2195 2200	29.8 29.7	7.2 7.3	5.30 5.38	2790 2795	32.8 32.8	6.3 6.4	4.25 4.33
415 420	16.5	6.0	4.00	1010	23.7	6.6	4.57	1610	27.0	7.3	5.38	2200	29.7	7.3	5.38	2800	32.8 32.5	6.4	4.33
425	16.6	6.1	4.10	1020	23.8	6.6	4.54	1615	27.1	7.3	5.33	2210	29.7	7.4	5.47	2805	32.5	6.6	4.62
430 435	16.7 16.9	6.2	4.16 4.05	1025 1030	23.8 23.7	6.6	4.62 4.70	1620 1625	27.2 27.2	7.2 7.2	5.27 5.30	2215 2220	29.7 29.7	7.4 7.5	5.54 5.57	2810 2815	32.5 32.3	6.7 6.9	4.70 4.85
440	17.1	5.9	3.93	1035	23.7	6.8	4.81	1630	27.2	7.3	5.33	2225	29.8	7.3	5.43	2820	32.2	7.0	5.01
445 450	17.2 17.2	6.0	3.97 4.00	1040 1045	23.6 23.7	6.9	4.92 4.91	1635 1640	27.2 27.2	7.3 7.3	5.35 5.36	2230 2235	29.8 29.7	7.4 7.5	5.45 5.61	2825 2830	32.3 32.4	7.0 6.8	4.96 4.80
460	17.4	6.1	4.07	1055	23.7	7.0	5.01	1650	27.5	7.1	5.09	2245	29.8	7.4	5.53	2840	32.5	6.8	4.78
470 475	17.6 17.7	6.1 6.0	4.04 3.99	1065 1070	23.7 23.8	7.0 7.0	5.06 5.01	1660 1665	27.5 27.6	7.1 7.0	5.13 5.06	2255 2260	30.0 30.1	7.2 7.2	5.28	2850 2855	32.6 32.4	6.7 6.9	4.70 4.88
4/5	17.9	5.9	3.99	1075	23.8	7.0	5.01	1665	27.6	7.0	4.99	2260 2265	30.1	7.2	5.24 5.20	2855 2860	32.4	7.0	4.88
485	18.0	5.9	3.88	1080	23.9	7.0	5.01	1675	27.7	7.0	5.02	2270	30.2	7.1	5.12	2865	32.8	6.5	4.52
490 495	18.2 18.0	5.8 6.0	3.82 4.02	1085 1090	24.0 24.0	7.0 6.9	4.96 4.91	1680 1685	27.7 27.7	7.0 7.0	5.05 5.01	2275 2280	30.3 30.0	7.0 7.0	5.05 5.06	2870 2875	33.0 33.0	6.3 6.4	4.30 4.38
500	17.9	6.3	4.23	1095	24.1	6.9	4.86	1690	27.8	7.0	4.98	2285	30.3	7.0	5.05	2880	32.5	6.9	4.87
505 510	17.9 18.0	6.3 6.4	4.29 4.36	1100 1105	24.2 24.3	6.8 6.8	4.82 4.80	1695 1700	27.8 27.8	7.0 7.0	5.01 5.03	2290 2295	30.3 30.3	7.1 7.1	5.07 5.13	2885 2890	33.0 33.1	6.4 6.3	4.40 4.28
510 515	18.0	6.4	4.36	1105	24.3	6.8	4.80	1700	27.8	7.0	5.03	2295	30.3	7.1	5.13	2890 2895	33.1	6.4	4.28
520	18.2	6.4	4.32	1115	24.3	6.8	4.79	1710	27.7	7.1	5.16	2305	30.3	7.2	5.20	2900	33.0	6.4	4.41
525 530	18.2 18.3	6.4	4.36 4.39	1120 1125	24.4 24.3	6.8	4.80 4.90	1715 1720	27.8 27.9	7.1 7.0	5.08 5.00	2310 2315	30.2 30.1	7.3 7.4	5.35 5.45	2905 2910	32.9 32.9	6.6 6.5	4.58 4.51
535	18.3	6.4	4.41	1130	24.3	7.0	5.00	1725	28.0	7.0	4.99	2320	30.3	7.2	5.27	2915	33.1	6.4	4.33
540	18.4 18.4	6.4 6.5	4.41 4.47	1135 1140	24.4 24.5	6.9	4.90 4.81	1730 1735	28.0	7.0	4.98 5.02	2325 2330	304 30.4	7.2	5.22 5.13	2920	33.3 33.0	6.2 6.5	4.16 4.45
545 550	18.4	6.6	4.47	1140 1145	24.6	6.8	4.81	1735 1740	28.0 28.0	7.0 7.1	5.02	2330	30.4	7.1 7.0	5.13	2925 2930	33.0	6.5	4.45 4.51
555	18.6	6.5	4.45	1150	24.7	6.7	4.71	1745	28.0	7.0	5.04	2340	30.5	7.1	5.11	2935	33.0	6.5	4.48
560 565	18.8 18.9	6.4 6.4	4.37 4.33	1155 1160	24.7 24.7	6.8	4.76 4.80	1750 1755	28.1 27.9	7.0 7.1	5.01 5.17	2345 2350	30.6 30.5	7.0 7.1	5.07 5.12	2940 2945	33.0 33.1	6.5 6.5	4.52 4.42
570	19.0	6.3	4.28	1165	24.7	6.8	4.81	1760	27.8	7.3	5.34	2355	30.6	7.1	5.08	2950	33.2	6.4	4.32
575 580	19.1 19.1	6.3 6.4	4.31 4.33	1170 1175	24.7 24.8	6.8 6.8	4.81 4.84	1765 1770	27.9 27.9	7.3 7.2	5.31 5.28	2360 2365	30.9 31.0	6.8 6.7	4.79 4.66	2955 2960	33.3 33.3	6.3 6.3	4.27 4.30
580 585	19.1	6.5	4.43	11/5	24.8	6.9	4.84	1770	27.9 27.9	7.2	5.28	2365 2370	31.0	6.6	4.66	2960 2965	33.3	6.3	4.30 4.21
590	19.1	6.6	4.52	1185	24.8	6.9	4.92	1780	27.9	7.3	5.35	2375	31.1	6.6	4.60	2970	33.3	6.4	4.36
595 600	19.0 19.0	6.6	4.62 4.72	1190 1195	24.7 24.7	7.0 7.0	4.99 5.02	1785 1790	28.1 28.2	7.2 7.0	5.21 5.07	2380 2385	31.1 31.1	6.6 6.7	4.61 4.62	2975 2980	33.0 32.9	6.6 6.8	4.60 4.74
605	19.1	6.8	4.74	1200	24.7	7.0	5.05	1795	28.2	7.0	5.07	2390	31.2	6.6	4.56	2985	32.8	6.9	4.93
610	19.1	6.8	4.76	1205	24.08	7.1	5.08	1800	28.3	7.0	5.06	2395	31.2	6.6	4.60	2990	32.9	6.8	4.82
615	19.4	6.5	4.51	1210	24.8	7.1	5.11	1805	28.3	7.1	5.07	2400	30.9	6.9	4.93	3000	33.4	6.4	4.33

Cable loss Cable GORE, HL 0410

No.	Frequency, GHz	Cable loss, dB
1	0.5	0.16
2	1	0.28
3	2	0.38
4	4	0.55
5	6	0.85
6	8	0.90
7	10	1.07
8	12	1.11
9	14	1.29
10	16	1.41
11	18	1.73

Cable loss Cable Coaxial, RG-58/RG-214, s/n 056, HL 0415 + Cable Coaxial, RG-214, 11.5m, s/n 148, HL 0812

No.	Frequency, MHz	Cable loss, dB	Measured uncertainty, dB
1	20	0.73	
2	30	0.91	
3	50	1.2	
4	80	1.56	
5	100	1.76	
6	200	2.59	
7	300	3.26	
8	400	3.93	±0.12
9	500	4.42	
10	600	4.92	
11	700	5.36	
12	800	5.88	
13	900	6.41	
14	1000	6.71	
15	1500	8.63	
16	2000	10.39	

Cable loss Cable coaxial, RG-214, 5m, model: C214-5, HL 1365

No.	Frequency,	Measured,	Measured uncertainty
NO.	MHz	dB	dB
1	1000	0.41	
2	1200	0.44	
3	1400	0.48	
4	1600	0.52	±0.12
5	1800	0.55	
6	2000	0.58	
7	2200	0.61	
8	2400	0.64	
9	2600	0.67	
10	2800	0.7	
11	3000	0.73	.0.47
12	3300	0.79	±0.17
13	3600	0.84	
14	3900	0.94	
15	4200	1.22	

Cable loss RF cable 3.5 m, Alpha Wire, model RG-214, S/N 149, HL 1553

No.	Frequency, MHz	Cable loss, dB	Measurement uncertainty, dB
1	1	0.01	
2	10	0.07	
3	30	0.12	
4	50	0.22	
5	100	0.26	
6	200	0.40	
7	300	0.52	
8	400	0.60	±0.05
9	500	0.70	
10	600	0.77	
11	700	0.84	
12	800	1.00	
13	900	1.00	
14	1000	1.05	
15	2000	1.70	

Cable loss Cable RF, 2m, model: Sucoflex 104PE, S/N 13094/4PE, HL 1566

No.	Frequency, MHz	Cable loss, dB	Tolerance, dB	Measurement uncertainty, dB
1	30	0.10		
2	50	0.13		
3	100	0.20		
4	300	0.33		
5	500	0.45		
6	800	0.60		
7	1000	0.65	≤ 5.0	±0.12
8	1500	0.91		
9	2000	1.08		
10	2500	1.19		
11	3000	1.28		
12	3500	1.49		
13	4000	1.63		
14	4500	1.63		
15	5000	1.66		
16	5500	1.88		
17	6000	1.96		±0.17
18	6500	1.93		
19	7000	2.07		
20	7500	2.37		
21	8000	2.34	≤ 5.0	
22	8500	2.64		
23	9000	2.68		
24	9500	2.64		
25	10000	2.70		
26	10500	2.84		
27	11000	2.88		
28	11500	3.19		
29	12000	3.15		
30	12500	3.20		
31	13000	3.22		
32	13500	3.47		
33	14000	3.41		
34	14500	3.59		
35	15000	3.79	≤ 5.0	±0.26
36	15500	4.24	\$ 5.0	10.20
37	16000	4.12		
38	16500	4.46		
39	17000	4.50		
40	17500	4.49		
41	18000	4.45		

Cable loss Cable 18 GHz, 4 m, blue, model: SPS-1803A-4000-NPS, S/N T4658, HL 1942

Frequency, GHz	Cable loss, dB
0.03	0.21
0.05	0.26
0.10	0.36
0.20	0.50
0.30	0.61
0.40	0.70
0.50	0.78
0.60	0.85
0.70	0.93
0.80	0.99
0.90	1.04
1.00	1.10
1.10	1.16
1.20	1.22
1.30	1.26
1.40	1.31
1.50	1.35
1.60	1.41
1.70	1.45
1.80	1.49
1.90	1.53
2.00	1.57
2.10	1.61
2.20	1.65
2.30	1.69
2.40	1.72
2.50	1.76
2.60	1.79
2.70	1.83
2.80	1.87
2.90	1.90
3.10	1.97
3.30	2.04
3.50	2.11
3.70	2.18
3.90	2.24
4.10	2.31
4.30	2.38
4.50	2.43
4.70	2.53
4.90	2.53
5.10	2.63
5.30	2.65
5.50	2.72
5.70	2.72
5.70	2.79
5.90	۷.۱۶

Frequency,	Cable loss,
GHz	dB
6.10	2.88
6.30	2.90
6.50	2.97
6.70	3.02
6.90	3.04
7.10	3.07
7.30	3.12
7.50	3.13
7.70	3.19
7.90	3.24
8.10	3.30
8.30	3.36
8.50	3.45
8.70	3.41
8.90	3.45
9.10	3.42
9.30	3.55
9.50	3.48
9.70	3.58
9.90	3.61
10.10	3.66
10.30	3.68
10.50	3.70
10.70	3.70
10.90	3.75
11.10	3.78
11.30	3.86
11.50	3.98
11.70	4.10
11.90	4.12
12.10	4.09
12.40	4.13
13.00	4.23
13.50	4.35
14.00	4.40
14.50	4.44
15.00	4.57
15.50	4.66
16.00	4.64
16.50	4.66
17.00	4.75
17.50	4.85
18.00	4.93

Cable loss Cable 18 GHz, 6.5 m, blue, model: NPS-1803A-6500-NPS, S/N T4974, HL 1947

Frequency, GHz	Cable loss, dB			
0.03	0.30			
0.05	0.38			
0.10	0.53			
0.20	0.74			
0.30	0.91			
0.40	1.05			
0.50	1.18			
0.60	1.29			
0.70	1.40			
0.80	1.50			
0.90	1.59			
1.00	1.68			
1.10	1.77			
1.20	1.86			
1.30	1.94			
1.40	2.01			
1.50	2.08			
1.60	2.16			
1.70	2.22			
1.80	2.29			
1.90	2.36			
2.00	2.42			
2.10	2.48			
2.20	2.54			
2.30	2.60			
2.40	2.66			
2.50	2.71			
2.60	2.77			
2.70	2.83			
2.80	2.89			
2.90	2.95			
3.10	3.06			
3.30	3.17			
3.50	3.28			
3.70	3.39			
3.90	3.51			
4.10	3.62			
4.30	3.76			
4.50	3.87			
4.70	4.01			
4.90	4.10			
5.10	4.21			
5.30	4.31			
5.50	4.43			
5.70	4.56			
5.90	4.71			
	* *			

Frequency, GHz	Cable loss, dB
6.10	4.87
6.30	4.95
6.50	4.94
6.70	4.88
6.90	4.87
7.10	4.83
7.30	4.85
7.50	4.86
7.70	4.91
7.90	4.96
8.10	5.03
8.30	5.08
8.50	5.13
8.70	5.21
8.90	5.22
9.10	5.34
9.30	5.35
9.50	5.52
9.70	5.51
9.90	5.66
10.10	5.70
10.30 10.50	5.78
10.50	5.79 5.82
10.90	5.86
11.10	5.94
11.30	6.06
11.50	6.21
11.70	6.44
11.90	6.61
12.10	6.76
12.40	6.68
13.00	6.66
13.50	6.81
14.00	6.90
14.50	6.90
15.00	6.97
15.50	7.17
16.00	7.28
16.50	7.27
17.00	7.38
17.50	7.68
18.00	7.92