Домашня контрольна робота

Визначити для заданого напівпровідникового матеріалу за заданих умов:

- 1. Концентрацію носіїв заряду
- 2. Ефективну масу носіїв заряду (плазмовий резонанс)
- 3. Щільність струму в другому критичному полі

ДП-01

Варіант 1

- 1. Визначити концентрацію електронів n за $T=300~\rm K$ у зразку частково компенсованого германію, що має концентрацію донорних домішок $N_D=2\cdot 10^{20}~\rm M^{-3}$ та акцепторних домішок $N_A=3\cdot 10^{20}~\rm M^{-3}$. Власна концентрація $n_i=2.5\cdot 10^{19}~\rm M^{-3}$
- 2. Відносна діелектрична проникність $\varepsilon = 16.3$, $\varepsilon_0 = 8.8 \cdot 10^{-12}$ Ф/м. Концентрація електронів $n^+ = 3.2 \cdot 10^{25}$ м⁻³, мінімум поглинання $\lambda_{ne3} = 7.5$ мкм
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}~{\rm kr}$, а $\hbar\omega_0=0.59\cdot 10^{-19}~{\rm Дж}$

Варіант 2

- 1. Визначити концентрацію дірок p у зразку компенсованого германію, Вміст донорів N_D = $2\cdot 10^{20}$ м⁻³ та акцепторів N_A = $3\cdot 10^{20}$ м⁻³. Власна концентрація за Т=300 К n_i = $2.5\cdot 10^{19}$ м⁻³.
- 2. Відносна діелектрична проникність $\varepsilon=16.3,\, \varepsilon_0=8.8\cdot 10^{-12}\, \Phi/\mathrm{m}$. Концентрація дірок р $^+=3,2\cdot 10^{25}\,\mathrm{m}^{-3},\,$ мінімум поглинання $\lambda_{pes}=7.5\,$ мкм
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.59\cdot 10^{-19}$ Дж

- 1. Обчислити концентрацію носіїв заряду n у кремнії за температури 300 К. Питома електропровідність власного кремнію $\sigma = 4,3 \cdot 10^{-3}$ См/м, рухливість електронів у кремнії $\mu_n = 1350$ см²/В·с
- 2. Відносна діелектрична проникність $\varepsilon=11,7,\ \varepsilon_0=8,8\cdot 10^{-12}\ \Phi/\text{м}$. Концентрація електронів $n^+=2\cdot 10^{25}\ \text{m}^{-3},$ мінімум поглинання $\lambda_{pes}=11.5\ \text{мкм}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо m_e = 10^{-30} кг, а $\hbar\omega_0=0.088\cdot 10^{-19}$ Дж

Варіант 4

- 1. Обчислити концентрацію носіїв заряду p у кремнії за температури 300 К. Питома електропровідність власного кремнію $\sigma = 4.3 \cdot 10^{-3}$ См/м, рухливість дірок $\mu_p = 480$ см²/В·с.
- 2. Відносна діелектрична проникність $\varepsilon = 11,7, \, \varepsilon_0 = 8,8\cdot 10^{-12} \, \Phi/\mathrm{m}$. Концентрація дірок $\mathrm{p}^+ = 20\cdot 10^{25} \, \mathrm{m}^{-3}$, мінімум поглинання $\lambda_{pes} = 3.75 \, \mathrm{mkm}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.088\cdot 10^{-19}$ Дж

Варіант 5

- 1. Визначити концентрацію n у кремнії n- типу, питомий опір якого $\rho = 1,8$ Ом·см, а стала Холла $RH = 2,1\cdot 10^{-3}$ м³/Кл. Заряд електрона $q = 1,6\cdot 10^{-19}$ Кл.
- 2. Відносна діелектрична проникність $\varepsilon = 11.7$, $\varepsilon_0 = 8.8 \cdot 10^{-12}$ Ф/м. Концентрація електронів $n^+ = 2 \cdot 10^{25}$ м⁻³, мінімум поглинання $\lambda_{ne3} = 11.5$ мкм
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо m_e = 10^{-30} кг, а $\hbar\omega_0=0.088\cdot 10^{-19}$ Дж

Варіант 6

- 1. Розрахувати концентрацію основних носіїв n у зразку германію n- типу, який має питомий опір $\rho_n = 1.5 \text{ Ом} \cdot \text{см}$ і значення сталої Холла $R_H = 5.4 \cdot 10^3 \text{ см}^3 / \text{Кл}$.
- 2. Відносна діелектрична проникність $\varepsilon=16.3,\ \varepsilon_0=8.8\cdot 10^{-12}\ \Phi/\mathrm{m}$. Концентрація електронів $\mathrm{n}^+=3,2\cdot 10^{25}\,\mathrm{m}^{-3},$ мінімум поглинання $\lambda_{pes}=7.5\,\mathrm{mkm}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо m_e = 10^{-30} кг, а $\hbar\omega_0=0.59\cdot10^{-19}$ Дж

- 1. Визначити концентрацію n та рухливість електронів μ_n у кремнії n- типу, питомий опір якого $\rho = 1,8\cdot 10^{-2}$ Ом·м, а стала Холла $R_H = 2,1\cdot 10^{-3}$ м³/Кл. Заряд електрона $q = 1,6\cdot 10^{-19}$ Кл.
- 2. Відносна діелектрична проникність $\varepsilon = 11,7, \, \varepsilon_0 = 8,8 \cdot 10^{-12} \, \Phi/\text{м}$. Концентрація електронів $n^+ = 2 \cdot 10^{25} \, \text{м}^{-3}$, мінімум поглинання $\lambda_{pes} = 11.5 \, \text{мкм}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо m_e = 10^{-30} кг, а $\hbar\omega_0=0.088\cdot 10^{-19}$ Дж

Варіант 8

- 1. Визначити концентрацію електронів n за $T=300~\rm K$ у зразку частково компенсованого германію, що має концентрацію донорних домішок $N_D=3\cdot 10^{20}~\rm M^{-3}$ та акцепторних домішок $N_A=4\cdot 10^{20}~\rm M^{-3}$. Власна концентрація $n_i=2.5\cdot 10^{19}~\rm M^{-3}$
- 2. Відносна діелектрична проникність $\varepsilon=16.3,\ \varepsilon_0=8.8\cdot 10^{-12}\ \Phi/\mathrm{m}$. Концентрація електронів $\mathrm{n}^+=3,2\cdot 10^{25}\,\mathrm{m}^{-3},$ мінімум поглинання $\lambda_{pes}=7.5\,\mathrm{mkm}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.59\cdot 10^{-19}$ Дж

Варіант 9

- 1. Визначити концентрацію дірок p у зразку компенсованого германію, Вміст донорів N_D = $3\cdot10^{20}$ м $^{-3}$ та акцепторів N_A = $4\cdot10^{20}$ м $^{-3}$. Власна концентрація за T=300 К n_i = $2.5\cdot10^{19}$ м $^{-3}$.
- 2. Відносна діелектрична проникність $\varepsilon = 16.3$, $\varepsilon_0 = 8.8 \cdot 10^{-12}$ Ф/м. Концентрація дірок $p^+ = 3.2 \cdot 10^{25}$ м⁻³, мінімум поглинання $\lambda_{pes} = 7.5$ мкм
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.59\cdot 10^{-19}$ Дж

Варіант 10

- 1. Обчислити концентрацію носіїв заряду n у кремнії за температури 300 К. Питома електропровідність кремнію $\sigma = 5.3 \cdot 10^{-2}$ См/м, рухливість електронів у кремнії $\mu_n = 1350$ см²/В·с
- 2. Відносна діелектрична проникність $\varepsilon = 11,7,\ \varepsilon_0 = 8,8\cdot 10^{-12}\ \Phi/\text{м}$. Концентрація електронів $n^+ = 2\cdot 10^{25}\,\text{m}^{-3}$, мінімум поглинання $\lambda_{pes} = 11.5\,\text{мкм}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.088\cdot 10^{-19}$ Дж

- 1. Обчислити концентрацію носіїв заряду p у кремнії за температури 300 К. Питома електропровідність кремнію $\sigma = 6.3 \cdot 10^{-2}$ См/м, рухливість дірок $\mu_p = 480$ см²/В·с.
- 2. Відносна діелектрична проникність $\varepsilon = 11,7, \, \varepsilon_0 = 8,8\cdot 10^{-12} \, \Phi/\text{м}$. Концентрація дірок $p^+ = 20\cdot 10^{25} \, \text{м}^{-3}$, мінімум поглинання $\lambda_{pes} = 3.75 \, \text{мкм}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.088\cdot 10^{-19}$ Дж

ДП-02

Варіант 1

- 1. Визначити концентрацію n у кремнії n- типу, питомий опір якого $\rho = 1$ Ом·см, а стала Холла $Rh = 2,1\cdot 10^{-3}$ м³/Кл. Заряд електрона $q = 1,6\cdot 10^{-19}$ Кл.
- 2. Відносна діелектрична проникність $\varepsilon = 11.7$, $\varepsilon_0 = 8.8 \cdot 10^{-12}$ Ф/м. Концентрація електронів $n^+ = 2 \cdot 10^{25}$ м⁻³, мінімум поглинання $\lambda_{pes} = 11.5$ мкм
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо m_e = 10^{-30} кг, а $\hbar\omega_0=0.088\cdot 10^{-19}$ Дж

Варіант 2

- 1. Розрахувати концентрацію основних носіїв п у зразку германію п- типу, який має питомий опір $\rho_n = 0.5$ Ом·см і значення сталої Холла $R_H = 5.4 \cdot 10^3$ см³/Кл.
- 2. Відносна діёлектрична проникність $\varepsilon = 16.3$, $\varepsilon_0 = 8.8 \cdot 10^{-12}$ Ф/м. Концентрація електронів $n^+ = 3.2 \cdot 10^{25}$ м⁻³, мінімум поглинання $\lambda_{pes} = 7.5$ мкм
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.59\cdot 10^{-19}$ Дж

Варіант 3

- 1. Визначити концентрацію n та рухливість електронів μ_n у кремнії n- типу, питомий опір якого $\rho = 7.8 \cdot 10^{-2}$ Ом·м, а стала Холла $RH = 2.1 \cdot 10^{-3}$ м³/Кл. Заряд електрона $q = 1.6 \cdot 10^{-19}$ Кл.
- 2. Відносна діелектрична проникність $\varepsilon = 11,7, \, \varepsilon_0 = 8,8\cdot 10^{-12} \, \Phi/\mathrm{m}$. Концентрація електронів $\mathrm{n}^+ = 2\cdot 10^{25} \, \mathrm{m}^{-3}$, мінімум поглинання $\lambda_{pes} = 11.5 \, mкм$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.088\cdot 10^{-19}$ Дж

- 1. Визначити концентрацію електронів n за $T=300~\rm{K}$ у зразку частково компенсованого германію, що має концентрацію донорних домішок $N_D=1\cdot 10^{20}~\rm{m}^{-3}$ та акцепторних домішок $N_A=2\cdot 10^{20}~\rm{m}^{-3}$. Власна концентрація $n_i=2.5\cdot 10^{19}~\rm{m}^{-3}$
- 2. Відносна діелектрична проникність $\varepsilon=16.3,\ \varepsilon_0=8.8\cdot 10^{-12}\ \Phi/\mathrm{m}$. Концентрація електронів $\mathrm{n}^+=3,2\cdot 10^{25}\,\mathrm{m}^{-3},$ мінімум поглинання $\lambda_{pes}=7.5\,\mathrm{mkm}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.59\cdot 10^{-19}$ Дж

Варіант 5

- 1. Визначити концентрацію дірок p у зразку компенсованого германію, Вміст донорів N_D = $1\cdot 10^{20}$ м⁻³ та акцепторів N_A = $2\cdot 10^{20}$ м⁻³. Власна концентрація за T=300 К n_i = $2.5\cdot 10^{19}$ м⁻³.
- 2. Відносна діелектрична проникність $\varepsilon=16.3,\, \varepsilon_0=8.8\cdot 10^{-12}$ Ф/м. Концентрація дірок р $^+=3,2\cdot 10^{25}\,\mathrm{m}^{-3},\,$ мінімум поглинання $\lambda_{pes}=7.5\,$ мкм
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо $m_e=10^{-30}$ кг, а $\hbar\omega_0=0.59\cdot 10^{-19}$ Дж

Варіант 6

- 1. Обчислити концентрацію носіїв заряду n у кремнії за температури 300 К. Питома електропровідність власного кремнію $\sigma = 9,3 \cdot 10^{-2}$ См/м, рухливість електронів у кремнії $\mu_n = 1350$ см²/В·с
- 2. Відносна діелектрична проникність $\varepsilon=11,7,\ \varepsilon_0=8,8\cdot 10^{-12}\ \Phi/{\rm M}$. Концентрація електронів ${\rm n^+}=2\cdot 10^{25}\,{\rm m^{-3}},$ мінімум поглинання $\lambda_{pes}=11.5\,{\rm m\kappa m}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо m_e = 10^{-30} кг, а $\hbar\omega_0=0.088\cdot10^{-19}$ Дж

Варіант 7

- 1. Обчислити концентрацію носіїв заряду p у кремнії за температури 300 К. Питома електропровідність власного кремнію $\sigma = 8,3\cdot 10^{-2}$ См/м, рухливість дірок $\mu_p = 480$ см²/В·с.
- 2. Відносна діелектрична проникність $\varepsilon = 11,7, \, \varepsilon_0 = 8,8\cdot 10^{-12} \, \Phi/\mathrm{m}$. Концентрація дірок р⁺ = $20\cdot 10^{25} \, \mathrm{m}^{-3}$, мінімум поглинання $\lambda_{pes} = 3.75 \, \text{мкм}$
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо m_e = 10^{-30} кг, а $\hbar\omega_0=0.088\cdot10^{-19}$ Дж

- 1. Визначити концентрацію n у кремнії n- типу, питомий опір якого $\rho = 2.8$ Ом·см, а стала Холла $R_H = 2,1\cdot 10^{-3}$ м³/Кл. Заряд електрона $q = 1,6\cdot 10^{-19}$ Кл.
- 2. Відносна діелектрична проникність $\varepsilon=11,7,\ \varepsilon_0=8,8\cdot 10^{-12}\ \Phi/\text{м}$. Концентрація електронів $\mathbf{n}^+=2\cdot 10^{25}\,\text{м}^{-3},$ мінімум поглинання $\lambda_{pes}=11.5\,$ мкм
- 3. З урахуванням отриманих в п.1 та п.2 данних визначити щільність струму в другому критичному полі якщо m_e = 10^{-30} кг, а $\hbar\omega_0=0.088\cdot 10^{-19}$ Дж