FOR THE PEOPLE FOR EDVCATION FOR SCIENCE

LIBRARY

OF
THE AMERICAN MUSEUM

OF
NATURAL HISTORY

DEN NORSKE NORDHAVS-EXPEDITION

1876 - 1878.

CHEMI.

- 1. OM LUFTEN I SØVANDET.
- II. OM KULSYREN I SØVANDET.
- III. OM SALTHOLDIGHEDEN AF VANDET • I DET NORSKE NORDHAV.

. A F

HERCULES TORNØE.

MED 3 TRÆSNIT OG 3 KARTER.

CHRISTIANIA.

GRONDAHL & SONS BOGTRYKKERI. 1880.

THE NORWEGIAN NORTH-ATLANTIC EXPEDITION

1876 - 1878.

11

CHEMISTRY.

55.1,46 (20)

- I. ON THE AIR IN SEA-WATER.
- II. ON THE CARBONIC ACID IN SEA-WATER.
- III. ON THE AMOUNT OF SALT IN THE WATER OF THE NORWEGIAN SEA.

ВУ

HERCULES TORNØE.

WITH 3 WOODCUTS AND 3 MAPS.

CHRISTIANIA.

PRINTED BY GRONDAHL & 80N.

1880.

I. Om Luften i Sovandet.

llerede i lange Aarrækker har der fra Tid til anden af A forskjellige Chemikere været foretaget Experimenter i den Hensigt at studere Forholdene ved den atmosphæriske Lufts Absorbtion af de Vædsker, hvormed den i Naturen kommer i Beroring, men det er dog forst i de seneste Aar, at dette Spørgsmaal har været gjort til Gjenstand for mere omfattende Undersøgelser, hvad angaar Søvandet i de aabne Have. Rigtignok foreligger der ogsåa fra ældre Tider enkelte Opgaver over Sammensætning og Mængden af den i Sovandet opløste Luft, men disse ere for det Meste bundne til nogle ganske fan Puncter af Kysterne, og der, hvor Forsogene ogsåa omfatte Vandprover fra det aabne Hav, er der ofte saameget at indvende mod Materialets Indsamling og Opbevaring, at man, selv om Intet maatte være at udsætte pan Methoderne til dets Undersøgelse, ikke kunde sætte disse i Klasse med de med vore Tiders fuldkommere Hiselpemidler udforte Observationer.

Naar saaledes vort Kjendskab til Fordelingen af Luften i Verdenshavene specielt for de store Dybs Vedkommende lige til de seneste Aar maa siges at have været meget mangelfuldt, da maa Grunden hertil soges i de mange Vanskeligheder, som man allevegne moder, naar man vil undersoge disse Sporgsmaal. Hvor det gjælder at bestemme Sammensætningen af den atmosphæriske Luft, giver Luftens Letbevægelighed Ret til af Undersogelser udforte paa faa Puncter at slutte til den hele Atmosphare, hvad der imidlertid ikke er Anledning til for Sovandets Vedkommende. Der fordrer Havenes langt ringere Bevagelighed et storre Antal Observationer, idet der her maa stilles meget strengere Fordringer til den geografiske Udbredning. Enten maatte altsaa Vandprover bjemfores fra fjerne Farvande, saaledes at de ved en længere Tids Henstand udsatte for allehaande fremmed Indvirkning kunde blive aldeles ubrugbare, eller Analytikeren maatte, udsat for alle de Ulemper, som et Skibs Bevægelser medfører for videnskabelige Undersogelser, forsoge bedst muligt at udfore sine Observationer ombord. Men selv naar der hos mange Chemikere fra ældre Tider kan have været Interesse for ved Undersøgel-

On the Air in Sea-Water.

Experiments have long since been instituted, from time to time, by divers chemists, with the object of investigating the absorption of atmospheric air by the fluids with which in the course of nature it comes in contact; but not till of late years has this phenomenon been made the subject of exhanstive treatment in its relation to ocean-water, True, there do exist comparatively early statements respecting the amount and composition of the air present in scawater, but the great majority of such are confined to a very few constal localities; and when, as was sometimes the case, the samples of sea-water examined had been drawn from the open sea, the mode of collecting and preserving them was frequently so open to objection that, even assuming the methods adapted for their examination to have been in every respect trustworthy, these early experiments will not hear comparison with those of modern date, performed with the far superior apparatus since devised.

Our knowledge therefore, till but a few years since, of the distribution of air in ocean-water, must be said to have continued very imperfect; and the reason is found in the numerous difficulties everywhere encountered when proceeding to investigate so intricate a subject. From the great mobility of the atmosphere, experiments in a few localities only will suffice to determine the general composition of air; but with sen-water the case is different. Water being far less fluid than air, many observations are obviously needed, since the greatest importance must be attached to geographical position. Hence, samples of sea-water had to be brought home from distant regions, and in that case, by being allowed to stand over for a comparatively long period, left exposed to all manner of disturbing influences; or the observations were taken on board, and experiments performed to the best of the analyst's ability, in spite of the numerous drawbacks entailed by the motion of the vessel. But, though many of the earlier chemists would, when at sea, no doubt have felt an interest in contributing to solve the problem of the distribution of air in the water of the ocean, they almost inva-

ser paa Reiser at give Bidrag til Losningen af Sporgsmaalet om Fordelingen of Luften i Havet, da har Anledningen dertil næsten bestandig manglet. Først ved de i de senere Tider hyppigt udsendte Expeditioner, hvormed der har været givet Chemikere Anledning til at medfølge. har det været muligt mere detailleret at studere disse Ting. Ved disse Expeditioner har Formaalet udelukkende været videnskahelig Undersogelse af Havet, og der har derfor med Hensyn pan Udrustningen altid været lagt megen Vind paa veil hensigtsmæssige Foranstaltninger og omlyggelige Forberedelser at fremme dette Formaal saa meget som muligt, og det er derfor klart, at disse Expeditioner maa have den storste Betydning for den chemiske Undersøgelse af Havene specielt, hvor Talen er om sædanne Observationer, der ligesom Bestemmelser af Gasarterne ikke taale Opsættelse, men nødvendigvis man udføres øieblikkelig efter at Vandproven er ost. Saaledes maa aabenbart de mider disse Omstændigheder andforte Observationer fan storst Vægt, hvor det dreier sig om at skaffe Oplysninger om Gasarterne i Sovandet, udenat det dog derfor vil findes paa mette Plads her at give en kort Oversigt ogsån over de herover udførte ældre I ndersøgelser.

De tidligste Undersogelser, der mig bekjendt ere gjorte over Lutten i Sovandet, udfortes i 1838 af Frémy¹ paa nogle Vandprover, der over et Aar forud vare bleven optagne paa den franske Expedition med 'La Bonite' i 1836 og 37. Vandproverne bestode dels af Overfladevand dels af Vand fra forskjellige Dyb indtil 150 franske Favne og vare optagne med et af Biot opfinndet Apparat. ²

Ved Analysen af den udkogte Gas absorberede Frémy Kulsyren med Kalilud og Surstoffet med Phosphor. Resultaterne ansaæs allerede af Frémy selv for upnalidelige og de stan saa bestemt i Strid med alle nyere Angivelser, at man med temmelig stor Sikkerhed kan autage, at det længe Tidsrum mellem Vandprøvernes Øsning og deres Undersøgelse har gjort dem fuldstændig ubrugbare.

I 1843 udförte Morren³ nogle l'udersogelser af Overfladevandet ved Saint-Malo mermest i den Hensigt at paavise Sollysets Indflydelse paa den relative Sammensætning
af den af Vandet absorberede Luft. Han kom i den Henseende til det Resultat, at Smrstofmængden fandtes størst
og Kulsyremængden mindst ved klart Sollys, hvorimod omvendt Surstofmængden fandtes mindst og Kulsyremængden
størst ved mørkt overskyet Veir. Vandproverne undersogtes ikke paa Stedet, men sendtes til Rennes, hvor de at
Morren udkogtes i Kolber paa 4.5 Litre. Den udkogte Gas
lededes gjennen Kantschukledning over i en Flaske, hvori
Gasarterne opsamledes over Vand. Ved Analysen af Gasen
anvendte han til Absorbtion af Kulsyren Kalilud og for-

riably lacked the means. Not till chemists had been sent out on the numerons Expeditions dispatched of late years to all quarters of the globe, was it possible to study this subject in detail. The sole object of such Expeditions having been the scientific investigation of the ocean, they were naturally fitted out with the greatest possible care, being furnished with the latest and most improved apparatus, and every necessary aid and appliance. It is obvious, therefore, that these Expeditions must largely contribute to our chemical knowledge of the ocean, more particularly with regard to observations which, like the determination of gaseous bodies, will not brook delay, but must be taken immediately the sample of water has been drawn. Hence, very great weight should be attached to observations instituted under such circumstances, viz. those that relate to the determination of gaseous bodies in seawater. It will not, however, be out of place, briefly to notice some of the earlier observations undertaken with that object in view.

The earliest experiments, so far as I am aware, relating to the air in sea-water, were instituted in 1838, by Frémy, with samples of water drawn more than a year before on the French Expedition with the Bonite, in 1836 and 1837. These samples of water consisted partly of surface-water, partly of water from various depths, the greatest being 450 French fathoms; and were collected with an apparatus devised by Biot, 2

When analysing the gas driven off, the carbonic acid was absorbed in a lye of potash, the oxygen being consumed with phosphorus. But Frémy himself did not regard as trustworthy the results of this process; and they have proved so decidedly at variance with those of all later observations, that his samples of water, owing to the length of time for which they had been preserved previous to examination, had no doubt become utterly worthless for experimental purposes.

In 1843, Morren³ instituted a series of experiments with surface-water, near St. Malo, chiefly with the object of determining the influence of solar light on the composition of the air absorbed by sea-water. He found the proportion of oxygen to be greatest, and that of carbonic acid least, in bright weather; whereas the proportion of oxygen was least, and that of carbonic acid greatest, with a dark, cloudy sky. The samples of water were not examined on the spot, but taken to Rennes, and there boiled by Morren, in matrasses containing 4.5 litre. The gas driven off during the process was conducted through a caoutschouc tube into a phial, and there collected over water. When analysing the gas, Morren used a lye of

Compt. rend. 6 = 616.

² Pogg. Ann. 37 — 416.

 $^{^3}$ Ann. Chin. Phys. [3] — 12 — 5.

⁴ Compt. rend. 6, p. 616.

² Pogg. Anic 37, p. 416.

³ Ann. Chine Phys. [3], 42, p. 5.

brændte Surstofgasen med overskydende Vandstof. Han brugte ogsåa her som Spærrevædske Vand, som påa Forhaand var mættet med Luft, og det kan saaledes ikke formdre, at de Resultater, han erholdt, vise temmelig betydelige Afvigelser. Surstofmængden varierer saaledes fra 39.5 til 31.0 og udgjør i Middel 34.7 % af den samlede Surstof-Kvælstofmængde, medens denne varierer mellem 20.0 og 30.5 og i Middel udgjør 24.5 CC, pr. Litre af det udkogte Vand. Som man heraf ser, svarer den midlere Surstofprocent meget noie med det af Bunsen senere for destilleret Vand opstillede Tal, hvorimod de Tal, Morren opfører som Udtryk for den samlede Surstof-Kvælstofmængde, ingen nøjagtig fixeret Betydning have, da han intetsteds angiver den Bavometerstand og Temperatur, hvortil han har reduceret sine Gasvolumina.

Nogle Aar schere i 1846 gjenoptog Lewy¹ Morrens Undersogelser paa nogle Vandprovev, som han øste ved Langrune i Nordost for Saint-Malo, og anvendte for at kunne sammenligne sine Resultater med Morrens noiagtig den af ham beskrevne Arbeidsmethode. Hans Resultater vise ogsåa, naar man tager Hensyn til, at Vandprøverne alle skrive sig fra samme Sted, ikke ubetydelige om endmeget mindre Afvigelser, som han ligesom Morren tilskriver Sollysets Indflydelse. Smrstofmængden varier hos ham fra 35,4 til 32.4 og udgjør i Middel 33,6 % af den samlede Surstof-Kwelstofmængde, som gjennemsnitlig beløber sig til 17.3 CC, pr. Litre og ikke overskrider Grændserne 18.9 og 16.3. Heller ikke Lewy har mermere fixeret Betydningen af de opforte Gasvolnmina. Der har forresten i hans Tabel indsneget sig meningsforvirrende Regnefeil, som har givet Anledning til, at han er bleven misforstaact.

I 1851 har endvidere A, Hayes² offentliggjort nogle Udtalelser om Fordelingen af Lutten i Søvandet dog uden at vedføle sine Originalobservationer. Ifølge ham findes i Vand fra storre Dyb altid en betragtelig mindre Mængde Surstof end i Overfladevandet, en Regel, som overalt holdt stik saavel i den hede som tempererede Zone, naar undtages i Golfstrommen, hvor den stærke Bevægelse i Vandet kunde antages at forstyrre den almindelige Ligevægt. Han fandt ogsåa efter Storme en betydelig storre Surstofmængde i Overfladevandet.

I 1855 udførte M. F. Pisani³ nogle Undersøgelser af Saltene i Overfladevandet ved Bujuk-Dèré og bestemte samtidig de i Vandet indeholdte Gasarter. Resultaterne findes sammenstillede i nedenstaaende Tabel, hvor Volumet er redneeret til 0° og 766 mm Tryk og udtrykt som CC, pr. Litre Vand,

Some years after, in 1846, Lewy¹ repeated Morren's experiments, with samples of water drawn at Langrune, north-east of Saint-Malo, adopting, the better to compare his results with those of Morren, precisely the same mode of operation. The results obtained by this chemist, seeing that the samples of water were all of them from the same locality, vary, too, considerably, though by no means to the same extent, which he, in common with Morren, ascribes to the influence of solar light. The amount of oxygen ranges from 35,4 to 32,4 33,6 per cent, being the mean proportion of the total amount of oxygen and nitrogen, which averages 17.3% per litre, having in no case passed the limits 18,9 and 16,3, Lewy, too, omits to give the factors determining the volume of the gas. Moreover, divers perplexing errors have slipped into his Table; and hence he has been misunderstood by some.

In 1851, A. Hayes² published a paper on the distribution of air in sea-water, without however embodying his original observations. According to the observations of that chemist, the amount of oxygen in water drawn from great depths is always appreciably less than that in surfacewater, a rule which holds good for all seas both of the torrid and the temperate zones, with the exception of the Gulf Stream, where the strong current may be supposed to exert a disturbing influence. After a heavy gale of wind, too, the proportion of oxygen in the surface-water was found to be much greater.

In 1855, M. F. Pisani³ instituted a series of observations near Bujuk-Dèré on the salts in surface-water, and also determined the gaseous bodies it contained. His results are given in the following Table, the volume being reduced to a temperature of 0° and a pressure of 760^{mm}, expressed in cubic centimetres per litre.

potash for absorbing the earbonic acid, and consumed the oxygen with a surplus of hydrogen. Here, too, the contining third was water, previously saturated with air; and hence it is not surprising, that the results obtained should have been found to vary considerably. Thus, for instance, the amount of oxygen varies between 39,5 and and 31.9 per cent, the mean proportion being 34.7 of the total amount of oxygen and nitrogen; while the latter ranges from 20.0 to 30.5, giving a mean proportion of 24.5% per litre. The mean percentage of oxygen agrees, therefore, very closely with the proportion afterwards found by Binisen for distilled water; whereas no definite importance can be attached to Morren's figures representing the total amount of oxygen and nitrogen, since that observer does not anywhere state to what temperature and atmospheris pressure he had reduced the volume of the gas,

 $^{^1}$ Ann. Chim. Phys. [3] — 17. Ann. Chem. Pharm. 58 — 326.

 $^{^2}$ Sillim, Amer. Journ. $[2] \leftarrow 11 \leftarrow 241$.

^a Compt. rend. 41 — 532.

Ann. Chim. Phys. 34, 17; Ann. Chem. Pharm. 58, p. 326.

² Sillim, Amer. Journ. [2], 14, p. 241.

² Compt. rend. 41, p. 532.

$\theta \models N$ pr. Litre	16.0	16,2
0	31.4	33.2
O + N = 100	68.5	66.8

I Aaret 1869 udgik fra England Porcupincexpeditionen, hvor der for første Gang foraden de øvrige videnskabelige Arbeider ogsån foresloges udfort mere omfattende chemiske Undersogelser. Man besluttede her at benytte den udmerkede Anledning til ved talrige Forsog saavel med Overfladevand som Vand fra større Dyb at skaffe sig Oplysning om de Fluctuationer, som optræde saavel i de absolute som relative Mængder af de i Søvandet oploste Gasarter. Forat undgaa de Feil, som nødvendigvis maatte indsnige sig, maar de til Gasanalyser bestemte Vandprover ophevaredes i kengere Tid for Undersøgelsen, bestemte man sig her for den Udvei at foretage Gasanalyserne ombord, Til Optagelse af de fra storre Dyb stammende Vandprøver benyttedes en |meget simpel Vandhenter bestaaende af en lml Metalcylinder med letbevægelige opadslanende Kegleventiler, et Apparat, hvis Paalidelighed senere Undersøgelser giver Anledning til at betyivle. Udkogningen og Opsamlingen af Gasarterne foretoges i alt Væsentligt som ved de tidligere beskrevne Forsøg, og anvendtes under Analysen til Absorbtion af Kulsyre og Surstof Kalihydrat og pyrogallussur Kali. Det siger sig selv, at de paa denne Maade erholdte Resultater maatte være beheftede med meget betydelige Observationsfeil, hvad der ogsaa tydeligst vises af de store Afvigelser mellem de laf forskjellige Observatorer efter denne Fremgangsmande udførte Bestemmelser. Som Udtryk for Sammensietningen af den af Overfladevandet udkogte Luft fandt nemlig de tre Chemikere, som paa de tre Togter, hvori denne Expedition deltes, efter hinanden ndforte de chemiske Arbeider, folgende Tal:

Dette er kun de af de enkelte Observationer udledede Middelværdier, men, som man ser, er allerede Afvigelserne mellem disse overmaade store, medens de enkelte Bestemmelser, som ikke findes opforte, varierer mellem langt videre Grændser. Saaledes opfores som Ydergrændser for Variationerne af Surstofmængden i Overfladevandet Maximum 45,3 og Minimum 14,0 % af den samlede Gasmængde, Kulsyren iberegnet.

Porcupineexpeditionens Chemikere ansaa selv sine Resultater upaalidelige, dog mindre paa Grund af Mangler ved Arbeidsmethoderne, end fordi den af dem benyttede Vandhenter tillod Undvigelsen af den Luft, som de mente kunde udvikle sig, naar Vandet fra*de storre Dyb naaede op til det ved Overfladen herskende mindre Tryk. De tog forresten sin Tilflugt ogsåa til andre Midler for at forklare

O+N pr.	Litre	16.0	16.2
	O p.ct.	31.4	33.2
0 + N = 100	N p.et.	68.5	66.8

In the year 1869, the 'Porcupine' Expedition was dispatched by the British Government, and it was now proposed, for the first time, to institute a series of chemical experiments on a more comprehensive scale than any hitherto performed. By taking advantage of this excellent opportunity to examine numerous samples of sea-water, both from the surface and from great depths, the fluctuations that occur alike in the absolute and the relative amounts of gaseons bodies in ocean-water might be effectively investigated. In order to guard against the error that must necessarily arise when the samples of water are preserved for any length of time previous to examination, it was resolved to undertake all analyses of gas on board. For obtaining samples of water from great depths, a very simple instrument was used, consisting of a hollow metal cylinder, furnished with conical-shaped valves, opening above, an apparatus the trustworthiness of which subsequent experiments have shown reason to doubt. The gas was boiled out and collected by a process essentially similar to that adopted for the experiments previously described, the carbonic acid and the oxygen having been absorbed by hydrate of potash and pyrogallic acid. As a matter of course, very considerable errors of observation would attach to results obtained by this method, the best proof of which lies in the extent to which the determinations of different observers performed by this mode of operation are found to vary. For instance, the three chemists who successively accompanied the Expedition on the three voyages into which it was divided, express the composition of the air boiled out of surface-water by the following figures:1 -

These amounts, however, are the mean values deduced from the several observations, and yet they vary exceedingly: the individual determinations, which are not given, must obviously have ranged between far wider limits. Thus, the extreme limits between which the amount of oxygen was found to vary in surface-water, is stated to have been 45.3 (maximum) and 14.0 (minimum) per cent of the total amount of gas, including the carbonic acid.

The chemists who accompained the 'Porcupine' Expedition did not even themselves regard the results obtained as trustworthy,' less however on the ground of possible defects in the modes of operation, than because the the apparatus used for collecting the water admits of the escape of air which, in their opinion, may be liberated on water drawn from great depths reaching the surface, where the atmos-

⁴ Proc. Roy. Soc. 18 - 395.

¹ Proc. Roy. Soc. 18, p. 397.

de observerede store Afvigelser, saaledes tilskreves sterke Bevægelser af Havovertladen enten ved Storme eller paa anden Maade den Evm at foroge Surstofmængden og forringe Kulsyrenængden, ligesom rigt Dyreliv ogsaa tilskreves en meget stor Indflydelse paa Sammensætningen af den i Sovandet oploste Luft.

I 1871 udgik atter igjen denne Gang fra Tyskland en Expedition til Undersogelse af Østersøen, hvormed som Chemiker fulgte Dr. O. Jacobsen. Med Resultaterne af de fra de tidligere Expeditioner hidrorende Gasbestemmelser for Oic besluttede han sig hverken for den ene eller den anden af de ved Bonite eller Porcupineexpeditionen anvendte Fremgangsmander men slog ind paa en Middelvei, den eneste, som i dette Tilfælde kunde føre til paalidelige Resultater,

Han delte Undersogelserne i to Dele og udførte den nopsættelige Del af dem nemlig Gasarternes Udkogning strax, medens han, indseende Umuligheden af at udføre tilfredsstillende Gasanalyser ombord paa et Fartoi i aaben So, opsatte deres mermere Undersøgelse til Hjemkomsten. Desværre gav Mangelen af en til Optagelse af Dybvandsprøver egnet paalidelig Vandhenter Anledning til, at det 1ste Aars Udbytte of denne Expedition for Gasanalysernes Vedkommende reducerede sig til blot og bart Indsamling af den Erfaring, som senere skulde komme til Anvendelse ved det Aaret efter foretagne Togt i Nordsøen. Manglerne ved den paa Porcupincexpeditionen benyttede Vandhenter havde nemlig bevæget dacobsen til ogsna til Øsning af de for Gasanalyser bestemte Vandprover at benytte en Vandhenter, der nedsænkedes fyldt med Luft. Naar nu Appnratet i Dybet aabnedes, absorberedes under det der herskende store Tryk momentant en Del af den nedbragte atmosphæriske Luft, hvorved de paa disse Vandprøver udforte Gasanalyser bleve saa npaalidelige, at der ikke engang værdigedes dem en Offentliggjørelse.

De paa Ostersotogtet i 1871 indhostede Erfaringer, muliggjorde det imidlertid for Jacobsen ved en omlyggelig Forberedelse til den i 1872 foretagne Expedition i Nordsoen at overvinde eller omgaa de Vanskeligheder, som havde bevirket Manglerne ved de paa Porcupineexpeditionen foretagne Undersøgelser, og det lykkedes ham denne Gang som Resultat af sine Arbeider at offentliggjøre en Afhandling, som giver en Række af vore Tiders Fordringer strengt tilfredsstillende Oplysninger om Luften i Søvandet. Til Optagelse af de til Gasanalyser bestemte Vandprøver fra Dybet tjente paa Nordsøtogtet et af Dr. H. A. Meyer angivet Apparat² bestaaende af en tang Metalcylinder, som ved Udløsning i det bestemte Dyb faldt ned over to vel islebne koniske Ventiler, og derved afspærrede det mellem disse

pheric pressure is less. But they had recourse to other

means whereby to explain the great differences observed,

In 1871, an Expedition was despatched from Germany for the investigation of the Baltic, Dr. O. Jacobsen accompanying it as chemist. Warned by the unsatisfactory results of former gas-analyses, he resolved to adopt neither of the methods resorted to an the Bonite' and 'Porcapine' Expeditions, but rather to take a middle course, which indeed held out the only prospect of success.

Accordingly, he divided his observations. Experiments admitting of no delay, such as boiling off the gas, were performed at once, whereas all analyses of gas, impossible as it is found to operate satisfactorily on board a vessel in the open sea, were deferred till his refurn home. Unfortunately, the want of a trustworthy apparatus for collecting samples of water from great depths, confined the results obtained on the first voyage of the Expedition, as regards analyses of gas, to the mere acquisition of experience, which, however, there was ample opportimity of applying on the cruise undertaken the following year in the North Sea. The defective construction of the instrument employed for collecting water on the Porchpine' Expedition had induced Jacobsen to make use of an apparatus which, even when drawing water for gassonalyses, was smik full of air. Now, on opening this apparatus at the required depth, some portion of the air it contains will, by reason of the great pressure, be momentarily absorbed; and hence all analyses of gas with such samples of water proved to that extent defective as to be not even deemed worthy of publication.

Meanwhile, taking advantage of the experience acquired in 1871 on the cruise in the Baltie, Dr. Jacobsen succeeded, after careful preparation to meet the requirements of the Expedition undertaken in 1872 to the North Sea, in surmounting or evading the difficulties experienced on the 'Porcupine' Expedition, and was enabled, as the result of bis labours, to publish a trentise on the air present in seawater recording a series of eminently safisfactory results. For collecting samples of water wherewith to undertake analyses of gas in water from the bottom, or from great depths, an apparatus, described by Dr. H. A. Meyer, was made use of on the cruise in the North Sea, 2—It consists of a heavy metal cylinder, which, at the required depth, will drop down on two accurately fitted conical valves, entring off all com-

ascribing to the state of violent agitation into which the surface of the ocean is thrown by heavy storms, or to same other adequate cause, the ability of increasing the proportion of oxygen and diminishing that of carbonic acid; an abundance of animal lite, too, was believed to exert very great influence on the composition of the air absorbed in sea-water.

In 1871, an Expedition was despatched from Germany for the investigation of the Bultic. Dr. O decalary accom-

⁴ Ann. Chem. Pharm. 167 — 1; Jahresbericht der Commission zur wissenschaftlichen Untersuchung der deutschen Meere in Kiel, 1872 — 13.

 $^{^2}$ dahresbericht der Commission zur wissenschaftlichen Fintersuchung der deutschen Meere in Kiel 4872—73 — 5.

 $^{^4}$ Ann. Chem. Pharm. 167, p. 1. Jahresbericht der Commissione zur wissenschaftlichen Untersuchung der deutschen Meere in Kiel. 1872

⁷ Abdresberieht der Connossion zur wissenschaftlichen Untersuchung der deutschen Meere in Kiel, 1852-73, p. 5.

beliggende Vandlag. Udløsningen foregik enten ved Apparatets Anslag mod Bunden eller i intermediare Dyh ved et langs Linen nedsænket Lod.

Ved Uddrivelsen af de i Vandet indeholdte Gasarter anvendte Jacobsen Binisens Princip, idet Vandet kogtes i munication with the outside water. The detachment was effected either by the instrument striking the hottom, or, at intermediate depths, by running a weight down the line.

For expelling the gas contained in the water, Jacobsen made choice of Bunsen's method, boiling the water in

Fig. 1.

et ved Vanddamp frembragt Vacuum, og construerede i Forhindelse med Dr. H. Behrens i dette Øiemed et Apparat, som i Simpelhed og Paalidelighed Intet lader tilbage at onske. Apparatet, som findes afbildet i Figur 1, har af Jacobsen faaet folgende Beskrivelse: a vacuum created by steam; and to meet the requirements of this process, he devised, with the assistance of Dr. H. Behrens, an apparatus which in trustworthiness and simplicity of construction leaves nothing to be desired. This apparatus, of which a drawing is given in Fig. 1. Dr. Jacobsen has described as follows:—

"Die Siedekugel a länft in ihrem unteren Theil in ein starkwandiges, genan cylindrisches Glasrohr aus, welches unten zugeschmolzen, aber bei e mit einer seitlichen Oeffnung versehen ist. Je nachdem diese Oeffnung bis unter den Kautschukpfropfen d hinabgedrückt oder bis in seine Durchbohrung heraufgezogen wird, ist die Siedekngel mit dem Innern des Wasserkolbens in Verbindung oder gegen dasselbe abgeschlossen. Das Glasrohr muss sich in der glatten Durchbohrung des Kantschukpfropfens mit Refibung auf- und niederbewegen, diese Reibung darf aber nicht so stark sein, wie die zwischen dem Pfropfen und dem cylindrischen Kolbenhals. Ist einmal ein fehlerfreier Pfropfen aus vulkanisirtem Kautschuk den Glastheilen des Apparates auf das Sorgfältigste angepasst, so kan diese Ventilvorrichtung unbegrenzt lange benuzt werden, ohne von ihrer völligen Zuverlässigkeit einzubüssen.

Das Gassaumelrohr b ist durch ein kurzes Kautschukrörchen mit der Siedekugel verbunden und zwischen die federnden Arme des messingenen Halters f eingeklemmt. Das untere Ende dieses Halters trägt eine weit stärkere Klammer, deren Korkfütterung durch die starche Schranbe e sehr fest um das Rohr der Siedekugel gepresst wird, so dass man, am unteren Theil des Halters anfassend, Siedekugel und Sammelrohr in dem Kautschukpfropfen auf- und niederschieben und damit die Oeffnung c beliebig verlegen kann.

Der Ramminhalt der Siedekugel beträgt etwas mehr als das Doppelte von dem Volumen, um welches sich die auszukochende Wassermenge beim Erwärmen auf 100° ansdehnt.

Bei der Benutzung des Apparates füllt man zunächst die schon im Pfroplen steckende und in den Halter eingeklennnte Siedekugel zur Hällte mit Wasser und schiebt den Pfropien über die seitliche Oeffnung. Man füllt nun die Kochflasche durch ein bis auf ihren Boden reichendes Gummirohr direct aus dem Schöpfapparat bis zum Ueberlaufen mit dem anszukochenden Wasser und setzt, nachdem die Oeffnung c bis eben unter den Kautschukpfropfen verschoben ist, diesen sehr fest in den Hals der Kochflasche ein. Zieht man nun die Siedekngel bis zur Herstellung des Verschlusses in die Höhe, so entsteht dadurch in der Kochflasche ein kleines Vacuum, in welches sofort Gusbläschen aus dem Wasser aufsteigen. Es wird dadurch Raum geschafft für die Ausdehnung, welche das oft sehr kalte Wasser schon in den ersten Augenblicken durch die höhere Temperatur der umgebenden Luft erfährt, Man fügt nun das Sammelrohr an, über dessen beide Emlen vorher kurze Gummiröhren gezogen sind, stelt die Kochflasche in ein Wasserbad, erhitzt das Wasser in der Siedekugel durch eine darunter angebrachte Weingeistflamme und erhält es im Sieden, bis man der vollständigen Austreibung der Luft aus dem Sammelrohr gewiss sein kauu. In dem Augenblick, in welchem man mit der rechten Hand die Flamme entfernt, kneift man mit der linken das Ende des oberen Gummirohrs zu, verschließst es darauf durch Hineinstecken der abgernudeten Spitze eines passenden Classtäbehens und schwilzt sofort bei g ab.

"Die Siedekugel a läuft in ihrem unteren Theil in ein starkwandiges, genan cynlindrisches Glasrohr aus, welches unten zugeschmolzen, aber bei c mit einer seitlichen Oeffming versehen ist. de nachdem diese Oeffming bis unter den Kantschukpfropfen d hinabgedräckt oder bis in seine Durchbohrung heraufgezogen wird, ist die Siedekugel mit dem Innern des Wasserkolbens in Verbindung oder gegen dasselbe abgeschlossen. Das Glasrohr muss sieh in der glatten Durchbohrung des Kantschukpfropfens mit Reihnng auf und niederhewegen, diese Reibung darf aber nicht so stark sein, wie die zwischen dem Pfropfen und dem cylindrischen Kolbenhals. Ist einmal ein schlerfreier Pfropfen aus vulkanisirtem Kautsehuk den Glastheilen des Apparates auf das Sorgfältigste augepasst, so kan diese Ventilvorrichtung unbegrenzt lange benntzt werden, ohne von ihrer völligen Zuverlässigkeit einzubitssen.

Das Gassammelvohr b ist durch ein kurzes Kantschukröhrchen mit der Siedekugel verbunden und zwischen die federuden Arme des messingenen Halters f eingeklemmt. Das untere Eude dieses Halters trägt eine weit stäckere Klammer, deren Korkfütterung durch die starke Schranbe e sehr fest um das Rohr der Siedekugel gepresst wird, so dass man, am untern Theil des Halters aufbesend, Siedekugel und Sammelrohr in dem Kantschukpfropfen auf- und niederschieben und damit die Oeffnung e beliebig verlegen kann.

Der Rauminhalt der Siedekugel beträgt etwas mehr als das Doppelte von dem Volumen, um welches sich die auszukochende Wassermenge beim Erwärmen auf 100° ausdehnt.

Bei der Benntzung des Apparates füllt man zunächst die schon im Pfropfen steckende und in den Hidter eingeklemmte Siedekugel zur Hälfte mit Wasser und schiebt den Pfropfen über die seitliche Oeffnung. Man füllt nun die Kochflasche durch ein bis auf ihren Boden reichendes Gummirohr direct aus dem Schöpfapparat bis zum Ueberlaufen mit dem auszukochenden Wasser und setzt, nachdem die Oeffnung e bis eben anter den Kautschukpfropfen verschoben ist, diesen sehr fest in den Hals der Kochflasche Zieht man nun die Siedekugel bis zur Herstellung des Verschlusses in die Höhe, so entsteht dadurch in der Kochflasche ein kleines Vacnum, in welches sofort Gasbläschen aus dem Wasser anfsteigen. Es wird dadurch Ranm geschafft für die Ausdelmung, welche das oft sehr kalte Wasser schon in den ersten Angenblicken durch die höhere Temperatur der umgebenden Luft erfährt. Man fägt mm das Sammelrohe an, über dessen beide Enden vorher kurze Gummiröhren gezogen sind, stellt die Kochflasche in ein Wasserhad, erhitzt das Wasser in der Siedekugel durch eine darunter angebrachte Weingeisttlamme und erhält es im Sieden, bis man der vollständigen Austreibung der Luft aus dem Sammelrohr gewiss sein kann. In dem Augenblick, in welchem man mit der rechten Haml die Flamme entfernt, kneift men mit der linken das Ende des oberen Gummirohrs zu, verschliesst es darauf durch Hineinstecken der abgerundeten Spitze eines passenden Glasstäbchens und schmilzt solort bei g ab.

Nachdem num die Oelfinnig e bis eben unter den Pfropfen binabgeschoben ist, wird das Wasserbad erwärmt nud der Inhalt des Kolbens in heltigem Sieden erhalten. Nach einiger Zeit hat sich im oberen Theil des Kolbenhalses ein freier Ramm gebildet, in welchen die Dampfblasen mit Geränsch hineinschlagen. Man bringt durch Entfernen der Wärmequelle ader durch knizes Heransheben des Apparates aus dem Wasserbade das Wasser aus der Siedekngel in den Kolben zurück und wiederholt dieses Ervärmen und theilweise Abkühlen des Kolbenhalses noch zweimal, wodurch binnen verhältnissmässig kurzer Zeit eine sehr vollständige Anstreibung der Luft bewirkt wird.

Es ist sehr leicht, schliesslich das Wasser bis zur vollständigen Aufüllung der Siedekugel steigen zu lassen, woranf man durch Aufziehen derselben den Verschluss herstellt und das Sammelrohr unn auch bei h abschmilzt.

Das Sammeln der Gase mittelst dieses Apparates machte auch bei ziemlich stark bewegter See keine Schwierigkeit.

Gewöhnlich wurden 900 CC Wasser zur Anskochung verwendet."

Ved Hjælp af dette Apparat indsmeltede Jacobsen paa Nordsologtet 73 Luftprover, som efter Hjemkomsten analyseredes efter Bunsens Methode, idet Kulsvren fjernedes med Kali og Surstoffet bestemtes ved Forhrænding med overskydende Vandstof, Han sammenstiller sine Resultater i en Tabel, hvor han i Modsætning til de tidligere Forfattere betragter den kulsyrefrie Luft og Kulsyren hver for sig. 1 saaledes beregnes Surstof og Kvælstofinængderne som Procenter af den kulsyrefrie Luft, der opfores som CC pr. Litre udkogt Vand reduceret til 00 og 760 ma Tryk. Ifolge denne Tabel hersker der en ganske markelig gjennemført Ensartethed i Sammensatningen af den Luft, der er uddrevet af de Vandprøver, som have befindet sig under samme physikalske Forholde, saaledes ligger Surstofprocenten i alle de 24 Luftprover, som stamme fra Overfladevandet, tiltrods for at de skrive sig fra meget forskjellige Localiteter, mellem de meget snævre Grændser af 34.14 og 33,64, og naar denne Overensstemmelse ikke i samme Udstrækning er fundet at gan igjen i de dybere Lag, da har dette sin Forklaring i en njevn Circulation. Naar Surstofmangden overalt i Dybet er funden lig eller noget mindre end i Overfladen, da kan del vel ikke være tvivlsomt, at dette skriver sig fra Surstoffets Forbrug til Oxydation af de i Sovandet forckommende organiske Plante- og Dyrcrester samt til Sødyrenes Aaudeproces, saaledes som det af Jacobsen udtales uned folgende Ord: "Der Zusammenhang dieses Unterschiedes ist leicht zu deuten. In dem schwereren Wasser, welches ohne erhebliche Beimischung aus höheNachdem num die Oeffinnig c bis ehen nuter den Pfropfen hinabgeschohen ist, wird das Wasserbad erwärmt and der Einhalt des Kolbens in heftigem Sieden erhalten. Nach einiger Zeit hat sich im oberen Theil des Kolbenhalses ein freier Raum gebildet, in welchen die Dampfblasen mit Geränsch hineinschlagen. Man bringt durch Entfernen der Wärmequelle oder durch kurzes Herausheben des Apparates aus dem Wasserbade das Wasser aus der Siedekugel in den Kolben zurück und wiederholt dieses Erwärmen und theilweise Abkühlen des Kolbenhalses noch zweimal, wodurch binnen verhältnissmässig kurzer Zeit eine sehr vollständige Austreihung der Luft bewirkt wird.

Es ist sehr leicht, schliesslich das Wasser his zur vollständigen Anfällung der Siedekugel steigen zu lassen, worauf man durch Anfziehen derselben den Verschluss herstellt und das Sammelrohr nun auch bei h abschmilzt.

Das Sammeln der Gase mittelst dieses Apparates machte auch bei ziemlich stark bewegter See keine Schwierigkeit.

Gewöhnlich wurden 900 CC, Wasser zur Anskochung verwoudet,"

With this apparatus Jacobsen collected on the cruise in the North Sea 73 samples of air, which, after the return of the Expedition, were analysed by Bunsen's method, potash being used for absorbing the carbonic acid, and the oxygen consumed with a surplus of hydrogen. His results are set forth in a Table, where, reversing the custom of earlier authors, he refers separately to the carbonic acid and the air free from that body;1 thus, for instance, the respective amounts of oxygen and mitrogen will be found computed as percentages of the air free from carbonic acid, which is given in cc. per litre of the water examined, reduced to a temperature of 00 and a pressure of 760 mm. According to this Table, a truly remarkable uniformity prevails in the composition of the air expelled from samples of sea-water which have been exposed to the same physical influences; thus, for instance, the percentage of oxygen in the 24 samples of air derived from surface-water, was found, notwithstanding the collection of the latter in widely different localities, to range between the exceedingly narrow limits of 34.14 and 33.64; and though equal agreement does not extend to the deeperlying strata, this may be accounted for by irregularity of circulation. That the amount of oxygen at the bottom, or in great depths, should invariably prove equal to, or somewhat less than, that at the surface, is a phenomienon the cause of which must unquestionably be ascribed to the consumption of that gas in the oxidation of organic remains, and for the support of the res-

⁴ Naar jeg her overalt har anvendt denne Jacobsens Fremstillingsmaade og ifulgo denne omregnet de ældre Forfatteres Opgaver, hvor Gasmengderne overalt ere fremstillede som Procenter at den samlede Surstof-Kvælstof-Kulsyremængde, da vil Grunden hertil fremgaa uf min senere Afhandling "Om Kulsyren i Sovandet."

The reason that induced me to adopt exclusively Jacobsen's mode of representation, and by the standard of that process to recompute the results of earlier observers, who invariably give the proportions of the gases determined as percentages of the total amount of oxygen, nitrogen, and carbonic acid, will appear in any next Memoir on the carbonic acid present in seaswater.

ren Schichten sehr lange in der Tiefe verweilt, wird ohne genügenden Ersatz fortwährend Sanerstoff verbraucht zur Oxydation der im Wasser und besonders am Meeresgrunde vorhandenen oxydirbaren Stoffe, – in wahrscheinlich weit untergeordnetem Grade auch durch die Athmung der Thiere."

Men de herved foranledigede Afvigelser ere ikke meget store, idet Surstofprocenten, hortseet fra nogle faa Undtagelser, ligger indesluttet mellem 30 og 34, saaledes at den som Regel aftager med Dybet,

Jacobsens Observationer, der vare udforte under de mest forskjelligartede Omstændigheder, vise ogsåa påa det Bestemteste, at de tidligere gjorte Antagelser, om at Sollyset og Stormene eller i det Hele taget de meteorologiske Forholde skulde spille nogen fremtrædende Rolle ligeoverfor den relative Sammensætning af Overfladevandshutten, vare fuldstændig ubegrundede, i ethvert Fald vise de store Overensstemmelser, at disse Factorers Indflydelse maatte være meget ringe.

Med Hensyn paa den absolute Mængde af den Luft, der indeholdes i de fra forskjellige Dyb optagne Vandprøver, da viser den sig at tiltage med Dybet, noget der imidlertid let lader sig forklare ved Temperaturens: Aftagen med Dybet, uden at det er fornødent at tage sin Tilflugt til de store Tryk. Der blev ogsåa påa Pomeraniaexpeditionen for at bevise Urigtigheden af den tidligere pan flere Steder udtalte Formodning, om at Luftgehalten i de store Dyb skulde staa i Forhold til det der herskende større Tryk, foretaget specielle Experimenter med en af Dr. Behrens og Jacobsen construeret Vandhenter af Kantschuk, Denne sammenklemtes forst mest muligt, hvorpan den sidste Rest Luft uddreves af den ved Hjælp af Kviksolv, og uedsænkedes derefter fuldstændig lufttom og lufttæt igjenlukket. Forst i Tybet ved Apparatets Anslag mod Bund nabuedes det, udspændtes og fyldtes med Vand, hvorpan det atter lufttet igjenlukket og fyldt med Vand ankom til Overfladen. Det viste sig altid, at de med dette Apparat optagne Vandprover ikke indeholdt mere Luft, end de ved Vandprovens Temperatmi kunde holde oplost under almindeligt Atmosphæretryk. At dette maatte være saa, kunde man allerede were berettiget til at slutte af nogle Forsog. som Aimé¹ i 1843 udforte. Han anvendte et i den ene Ende anbent Glasror, som nedsænkedes fyldt med Kviksolv og i det bestemte Dyb vendtes omkring, bvorved Kviksolvet i Glasroret delvis erstattedes af Vand paa en saadan Maade, at dette afspærredes af Kviksølvet, der optoges af en nedeminder anbragt passende Beholder. Som Resultat af de med dette Apparat indførte Forsog udtalte Aimé den Sats, at den Mængde Luft, som indeholdtes i en bestemt Mængde Sovand, i alle Dyb var meget nær den samme.

But the differences thus occasioned are not very great, since the percentage of oxygen, with but few exceptions, ranges from 30 to 34, as a rule diminishing with the depth.

Moreover, Jacobsen's observations, instituted under circumstances the most diverse, turnish incontestible proof, that the views of earlier authors, according to which the effect of solar light and storms, or indeed meteorological influence generally, was assumed to play an important part in modifying the [composition of the air in surface-water, were wholly unfounded; nay, the extent to which the results based on that hypothesis are found to 'vary, will of itself show the comparative insignificance of such factors.

As regards the absolute amount of air contained in samples of water collected from different strata, this is found to increase with the depth. - a fact sufficiently obvious from . the temperature diminishing as the depth increases, without needing to seek an explanation in the greater pressure And with the object of showing that the proportion of air present in sea-water at great depths, is not, as assumed by some, to any appreciable extent dependent on the greater pressure prevailing there, a special series of experiments was instituted on the 'Pomerania' Expedition, with an apparatus for collecting water constructed of caoutschone by Drs. Behrens and Jacobsen. This instrument was first pressed flat, and then sunk, ofter the air still remaining in it had been expelled by means of mercury, perfectly air-tight. On its striking the bottom, it opened and filled with water, after which it again closed, and was then brought up to the surface, air-tight as before. The samples of water collected in this apparatus were never found to contain more air than would be absorbed, with the same temperature, at the surface. That such must be the case. there was indeed reason to infer from the experiments instituted by Aimė in 1843. Aimė made use of a glass tube, which, open at the upper extremity, was sunk full of mercury, and at the required depth inverted, cansing part of the mercury in the tube to be replaced by water, in such manner that the mercury, flowing into a receiver of proper size and shape, prevented its escape. As the result of the experiments performed with this instrument, Aimé ventured to assume, that the proportion of air contained in a given quantity of sea-water, is at all depths very nearly the same.

pnatory process in marine animals, as stated by Dr. dacobsen in the tollowing words: "Der Zusammenhang dieses Unterschiedes ist leicht zu denten. In dem schwereren Wasser, welches ohne erhebliche Beimischung aus höheren Schichten sehr lange in der Tiefe verweilt, wird ohne genügenden Ersatz forfwährend Sanerstoff verbraucht zur Oxydation der im Wasser und besonders am Meeresgrunde vorhandenen oxydirbaren Stoffe. in wahrscheinlich weit untergeordnetem Grade auch durch die Athunung der Thiere,"

^{, &}lt;sup>1</sup> Ann. Chim. Phys. [A] — 7 — 497. Pogg. Ann. 30 — 412. Den norske Nordhavsexpedition. Tornee: Chemi.

⁴ Ann. Chim. Phys. 3], 7, p. 197; Pogg. Ann. 30, p. 412,

I Aaret 1873 ndgik atter fra England en Expedition. Chaflengerexpeditionen, som i et Tidsrum af 3 Aar skulde undersøge baade de æquatoriale og antarktiske Farvande. Med denne Expedition fulgte som Chemiker J. Y. Buchanan, som besluttede sig til at anvende de paa Fomerania-expeditionen benyttede Methoder og Apparater saa godt som uden Modifikationer. Resultaterne af hans Undersøgelser ere, saavidt jeg ved, endnu ikke offentliggjorte i sine Enkeltheder, medens der dog er gjort nogle forelobige Meddelelser, hvorefter man vil kunne danne sig et Begreb om de Slutninger, hvortil hans Observationer ville fore,

tian finder!, at Surstofmængden i Overfladevandet varierer mellem 33 og 35 %/0 af den samlede Surstof-Kvælstofmængde, saaledes at den storste Mængde er fundet (baade relativt og absolut) i Vandprøver oste i Nærheden af den sydlige Polarcirkel og den mindste i Pasatvindegnene. Hvad angaar de under Overfladen liggende Lag, da har han observeret det mærkelige Factum, at Surstofprøcenten aftager nedover indtil et Dyb af 300 Favue, hvor den opnaar et Munimum for atter igjen at stige, saaledes som det fremgaar af folgende Tabel

Dylde i engelske Favne,	()	25	50	100	200	300 -	400	800	Der-
$\theta + \frac{N}{\theta} = 100$	33-7	33.4	32.2	30.2	33.4	11.1	15.5	22.6	23.5

Om den absolute Mængde af de af hans Vandprover udkogte Gasarter findes paa dette Sted Intet, hvorimod der senere er bleven offentliggjort folgende Tabel².

Dyhde i Fed,	CC.	Midlere Temperatur i "C, 	CC, N per Litre N _P	CC. N per titre destill. Vand ved Temperat, t . Bursen N_{2} .	N 9-27,
000	4,24	14:"6	11,26	11.75	0.49
1200	3.59	13. 0	11.71	11.92	0.21
1800	1.67	6. g	13.00	13.45	0.45
2400	2.41	5- 1	13.10	14.00	0.90
4800	1.00	2. 5	13.82	15.00	1.14
derover,		1. 5	14.37	15-40	1.03

Hermed er i Korthed gjengivet det Vigtigste af de til Dato fremkomne Bidrag til Løsningen af Sporgsmaalet om Luften i Sovandet.

l Vaaren 1876, da man i Norge var beskjæftiget med Udrustningen af den Expedition, som var besluttet udsendt for i Sommermaanederne af Aarene 1876 – 77 og 78 at In the year 1873, another Expedition was dispatched, from England, with H. M. S. Challenger,' its object being the investigation, during a period of 3 years, both of the Equatorial and the Antarctic Seas. As chemist to this Expedition, had been secured the services of J. Y. Buchanan, who resolved to adopt the methods and apparatus employed on the 'Pomerania' Expedition, almost without modification. The results of his labours are not yet, I believe, published in detail; preliminary papers have, however, appeared, from which we can form some general idea of his results.

Buchanan found the proportion of oxygen in surfacewater to vary between 33 and 35 per cent of the total amount of oxygen and nitrogen; it was greatest (both relatively and absolutely) in the samples of water drawn near the Antarctic Circle, and smallest in those collected within the region of the trade winds. As regards the proportion of oxygen in water below the surface, he observed the very remarkable fact, that it generally diminshes down to a depth of 300 fathoms, where a minimum is reached, and then begins to increase, as shown by the following Table.

	Depth in English Futhoms.)	25	50	100 - 200				Great- er Diths.
0	-1.00 - 33	5.7	33.4	32.2	30.2 33.4	11.4	15.5	22.6	23.5

With respect to the absolute amounts of the gases boiled out of the different samples of water, nothing is stated in the work alluded to, but the following Table 2 has since appeared.

Depth in Feet.	ec. o per titre	Mean Tempera- ture in C.	$\begin{array}{c} \operatorname{CC}, \\ N \\ \operatorname{per} \operatorname{Litre}, \\ N_0 \end{array}$	CC, N per Litre dis- titled Water, at Temp, t. Bonsen N ₂ ,	$N_q - N_1$
600	4.24	14.°6	11.26	11.75	0.19
1200	3.59	13. 0	11.71	11.92	0.21
1800	1.67	6. 9	13,00	13.45	0.45
2400	2.41	5. 1	13,10	14.00	0.90
4800	4.06	2. 5	13.82	15.00	I.I.
Greater Depths,		1. 5	14.37	15.40	1.03

A brief account has now been given of what had previously been accomplished as regards the solution of the problem presented by the air in sea-water.

fu the spring of 1876, when fitting out the Norwegian Expedition, which had for its object the investigation, during the summer months of 1876, 1877, and 1878, of

⁴ The Voyage of the Challenger, The Atlantic, 2 366.

Ber, Berl, chem, Ges, 11 — 110.

¹ The Voyage of the Challenger, The Atlantic, 2, p. 366,

² Ber. Berl. chem. Ges. 11, p. 410.

undersoge det mellem Norge, Færoerne, Island, dan Mayen og Spitsbergen beliggende Hav, vare heller ikke de paa den engelske Challengerexpedition udforte Observationer offentliggjorte, saaat de Data, der den Gang forchia, j Righoldighed paa ingen Maade kumbe sammenlignes med dem, som mi staa til Raadighed. Især var det med Hensyn poa den geografiske Udbredning, at Observationerne ikke kunde give synderig omfattende Oplysninger, idet det eneste Hav. som endnu var grundigt undersøgt, nemlig Nordsøcn, bande med Hensyn paa Dybde og ovrige physikalske Forholde ofveg i hoi Grad fra det store Verdenshav, forsaavidt man kjendte det. Da der først var fattet Beslutning, om at der ogsåa paa den norske Nordhavsexpedition skulde udfores chemiske Undersøgelser af samme Art som paa de tidligere Expeditioner, maatte det derfor for Hr. S. Svendsen, hvem disse Arbeider oprindelig vare overdrague, fremstille sig som en meget vigtig, ja man kan sige, som den vigtigste Opgave at tilveieleringe de fornodne Ophysninger om Gasarterne i Sovandet, hvad angaar den Del af Verdenshavet, som Norge havde paataget sig at gjøre til Gjenstand for videnskabelig Undersøgelse. Med Hensyn paa de Midler, der skulde benyttes til Løsningen af denne Opgave, da kunde Valget af disse ikke falde vanskeligt, da de af Dr. Jacobsen benyttede Methoder og Apparater strax maatte udpege sig som de hensigtsmæssigste fremfor Alt, hvad der for Resten stod til Randighed, selv om ikke Hensynet til Resultaternes Sammenlignelighed havde gjort deres Anvendelse ønskelig. Svendsen besluttede derfor uden Modificationer at optage de paa Pomeraniaexpeditionen benyttede Arbeidsmethoder, og var det i Henscende til Expeditionens Udrustring et stort Held, at Professor Dr. Jacobsen velvilligen tilbød sig at anskaffe de til de chemiske Undersøgelser fornødne Apparater.

Det var dog ikke alle de ved Pomeraniaexpeditionen benyttede Apparater, som ogsåa kom til Anvendelse påa den norske Nordhavsexpedition, idet man der besluttede at anvende en af Capitain Wille construeret Vandhenter, som især i en Henseende maatte være at foretrække for den af Dr. H. A. Meyer angisne. Påa denne maatte nemlig, naar den skulde optage Vandprover fra intermediære Dyb, Cylinderen udløses ved et langs Linen nedsæuket Lod, som aldeles udelukkede Muligheden af påa Linen samtidig at have anbragt Thermometre eller deslige, saaledes som det uden mindste Ulempe kan forenes med Brugen af Willes Vandhenter.

Willes Vandhenter, som findes afbildet i Fig. 2. er af Opfinderen bleven beskrevet paa folgende Maadé:

"Vandprøven indesluttes i dette Instrument i et for Pladsens Skyld spiralformig boiet Rør, der under Nedfiringen i Vandet holdes aabent i begge Ender, saaledes at Vandet frit kan stromme igjennem; men naar Instrumentet ophales et kort Stykke, lukkes Enderne af Røret med to Ventiler, hvorved det da i Røret staaende Vand afstænges og kan bringes op. the sea lying between Norway, the Feröe Islands, Iceland, dan Mayen, and Spitzbergen, the results of the observations instituted on the 'Challenger' Expedition and not yet been made public; and hence the data then obtained were few compared to those of which we are now in possession. It was more particularly with respect to geographical distribution, that the information former observations could supply had proved but meagre, inasmuele as the only sea thoroughly investigated, viz the German Ocean, was found to differ widely in regard to depth and other physical conditions from the Atlantic and Pacific, so far at least as our knowledge of both may be said to extend. The resolution once formed, of instituting on the Norwegian North-Atlantic Expedition a series of chemical experiments similar to those performed on former Expeditions, Mr. S. Svendsen, the gentleman on whom the execution of this task was to have devolved, could not but regard as an important, may the most important, part of his labours, accurate determinations of the gases present in that tract of the Atlantic Ocean which the Norwegian Expedition was to make the subject of scientific investigation. Respecting the means whereby to solve this problem, no difficulty could be experienced in making a choice, since Dr. Jacobsen's methods and apparatus must at once suggest themselves as by far the best, even apart from the consideration, that, for the better comparing of his results with those obtained, their adoption was desirable. Svendsen, therefore, decided in favour of the prowithout modification - resorted to on the Pomerania' Expedition; and it was a fortunate concurrence, that Professor Jacobsen should kindly volunteer his assistance in procuring the various apparatus necessary for the chemical experiments.

All the apparatus made use of on the Pomerania' Expedition, were not, however, adopted on the Norwegian North-Atlantic Expedition; the instrument, for instance, employed to collect water, which, particularly in one respect, must be held preferable to that described by Dr. H. A. Meyer, had been constructed by Captain C. Wille R. N. When drawing water from intermediate depths, the cylinder in the latter is detached by running a weight down the line, which precludes the possibilty of having a thermometer, or any other instrument, attached to it, an advantage which may, without the slightest drawback, be combined with Wille's apparatus.

Wille's, instrument for collecting water, of which Fig. 2 is a represention, has been described by the inventor as follows:

"The samples of water drawn with this instrument are, to save space, brought up in a spiral tube, which, when sunk through the water, is kept open at both ends, to admit of the free passage of the fluid; but, on the instrument, at the required depth, being banded in a few fathous, the ends of the tube are closed by means of two valves, and the water it contains, thus prevented from escaping, may be brought to the surface.

Fig. 2.

1/4 af maturlig Storrelse,
(One-eighth of the Actual Size.)

*Tegningen fremstiller Instrumentet klar til Nedfiring; Tampen af Lodlinen hexes i overste Oicholt (a) og Loddet i den nedre (b). Under Nedfiringen lofter Vandtrykket Propellerne op, saa at Taggerne i Underkant af Propelbosset (g) kommer klar af Taggerne i Muffen, gjennem hvilken Ventilstangen (d) gaar, og om de ikke kommer ganske klare, sker Propellens Omdreining med Skraaplanerne, saa at Muffen og Ventilstangen bliver staacude stille. Naar Instrumentet derimod under Ophalingen bevieges opad. driver Vandtrykket Propellerne ned, de dreies rundt den anden Vei og tager Mufferne med sig. Ventilstængerne, der ikke kan dreic sig rundt, men styres af Tværstykkerne (c), skrues da, tilligemed de med Kantschuk overtrukne Ventiler, mod Ventilsæderne i Enderne af Rorct, og maar de ere næsten likkede, glipper den sidste 8krnegjænge paa Ventilstangen ud af Skruegjængerne i Muffen, og Spiralfjædrene (f) klappe da Ventilerne i, medens Propellerne og Mufferne gan løse rundt om den glatte Del af Ventilstængerne, og frembyder saaledes meget liden Modstand under Resten af Indhivningen. Instrumentet lukker sig efter omtrent 7 Favnes (13 Meters) Indhaling. Ringen om Midten og Skjærmerne rundt Propellerne beskytte Instrumentet, saaledes at det uden Skade kan ligge paa Bunden.

For at konstatere, om der var Overskad af Luft i de nedre Vandlag, blev der over Svikhallet paaskraet et gjennemboret Laag (g), der ved Hjælp af et Stykke Gammislange forenedes til et i den ene. Ende lukket Glasror. Naar Vandet under Nedfiringen strømmede ind i Vandroret, lob det ogsaa ned i Glasroret, af hvilket Luften saaledes blev udjaget. Naar Instrumentet kom ombord, endevendtes det, saa at Kranen kom ned og Glasroret op. Man bevægede in Vandheuteren lidt frem og tilbage med den ovre Ende, og hvis der havde været Overskud af Luft, maatte denne have arbeidet sig op og vist sig i Toppen af Glasroret, men dette viste sig stadig fuldt lige til Tops, og blev derfor i den sidste Tid ikke paasat."

Instrumentet kan tommes gjennem Tappekranen (h) og leverer en Vandprøve paa circa 5 L tre.

Udforelsen af de chemiske Arbeider ombord paa den norske Nordhavsexpedition overtoges altsaa forst i Følge den oprindelige Plan af Hr. Svendsen, som gjorde Togtet i 1876 med, men blev senere, da denne af Helbredshensyn bad sig fritaget, overdraget Forfatteren, der saaledes har udfort de paa de to sidste Togter gjorte Observationer delvis med Assistance af Hr. L Schmelck, som sidste Sommer medfulgte Expeditionen, og som for Tiden er beskjæftiget med Bearbeidelsen af en anden Del af det paa Expeditionens Togter (til chemisk Undersogelse indsamlede Materiale.

The figure shows the instrument ready for sinking, The end of the sounding-line is made fast to the upper eyebolt (a), and the lead to the lower (b). On the downward passage, the pressure of the water lifts up the propellers, enabling the cogs in the under surface of the base of the latter (c) to get clear of the cogs in the bush. through which passes the rod of the valve (d); and if not quite clear, the propeller revolves with the inclined planes, the bush and the rod of the valve remaining stationary as before. On the other hand, when the instrument, on being hauled in, is given an upward motion, the pressure of the water forces down the propellers, which then revolve in the opposite direction, carrying along with them the bushes. The rods of the valves, which cannot revolve, being kept in position by transverse pieces (c), are, together with the valves covered with caontschone, serewed against the ends of the tube. Now, when the latter are almost closed, the last twist of the screw on the rod of the valve slips out of the corresponding twist of the screw on the bush, and the spiral springs (f) instantly press down the valves, the propellers and the hisles revolving independently round the smooth portion of the rods, thus presenting but little resistance to the water during the remainder of the upward passage. The instrument closes on being hanled in about 7 fathoms (13 metres). The ring cound the middle, and the shields protecting the propellers, prevent the instrument from sustaining injury on its striking the bottom.

With a view to ascertain whether the proportion of air were really greater in the lower strata, a perforated cover (g) was screwed over the spigot-hole, and connected by means of a piece of caoutschoic hose with a glass tube, open at one end. Now, when the water on the downward passage flowed into the spiral tube, it also desscended into the glass tube, expelling the air, 'So soon as the instrument came on board, it was inverted, the stop-cock therefore pointing down, and the glass tube up. The upper end of the apparatus being now moved a little backwards and torwards, the surplus of air, if any had been present, must obviously have forced its way upwards, and have appeared, in the torm of bubbles, at the top of the tube, which, however, was invariably found to be quite full, and therefore not attached to the apparatus when the fact would no longer admit of doubt."

The stopcock (h) serves to empty the instrument, which will hold about 5 litres of water

The chemical work to be done on board was, as stated above, originally undertaken by Mr. 8, 8vendsen, who went out on the first cruise, in 1876; but, his health failing, Mr. 8vendsen was succeeded by the author, who had therefore to take the observations instituted in 1877 and 1878, partly with the assistance of Mr. L. 8chmelek, that gentleman having accompanied the Expedition on the last cruise. (Mr. 8chmelek is now engaged in working up other materials collected on the Expedition for chemical investigation).

Da jeg Vaaren 1877 blev opfordret til at overtage disse Arbeider, var der kun givet mig fin Dages Varsel, saaat jeg havde de største Vanskeligheder med af faa udfort selv de aller nødtorftigste Forberedelser, og naar det alligevel lykkedes af faa Alt tilfredsstillende ordnet for Afreisen, da skyldes dette udelukkende den Beredvillighed, hvormed Hr. Professør Waage bistod mig blandt Andet ogsaa med Indredningen af det chemiske Laboratorium ombord.

Det paa Expeditionens forste Togt i 1876 fremherskende uahnindeligt stormfulde Veir gjorde det i høi Grad vanskeligt ja næsten ugjørligt af udfore de chemiske Observationer ombord, og det Udbytte, som af Svendsen bjembragtes fra første Togt, indskrænkede sig derfor i denne Branche til 17 Luftprøyer, hvoraf desuden 3 ved l'held seinere gik tabt, Det rolige Veir, som de to sidste Aar beganstigede Expeditionens Arbeider, tilled mig derimed paa de Togter, hvormed der van givet mig Anledning til at medfølge, at indsmelfe et storre Anfal, idet der for disse Aars Vedkommende erholdtes 80 Luftbestemmelser af de hjembragte Luftprover, hvoraf 9 vare indsmeltede af Hr. Schmelck. Naar Udbyttet ikke er blevet storre, da har dette sin Grand i, at talrige Observationer gik tabt nogle faa ved Ubeld under Analysen, men de fleste ved Uheld under Indsmeltningen. Saaledes var der til Brug paa sidste Togt fra Küchler & Söhne i Ilmenan sendt mig nogle Luftopsamlingsror, hvoraf over 75 % filtrods for den omhyggeligste Behandling sprang enten under Indsmeltningen eller efter samme. Luftproverne ere alle analyserede ved det af Franckland og Ward¹ angivne Gasanalyscapparat, saaledes at Kulsyren er fjernet med Kalilud og Surstoffet bestemt ved Forbrending med Vandstof, De 14 forstnævnte Prover ere analyserede af Hr. Svendsen de ovrige 80 af Forfatteren. De erholdte Resultater findes sammenstillede i Tabel I, byortil kan bemærkes folgende: De i Tabellen opforte Temperaturangivelser ere mig meddelte af Professor Mohn. Ved Augivelse af de Dybder, hvorfra Vandproverne ere hentede, er ikke taget Hensyn til, at Vandhenteren forst lukker sig efter circa 7 Favnes Indhivning. Ved de med * betegnede 10 Nummere var der i de til Luftprovernes Opbevarelse benyttede Glasror smaa Feil, nden at jeg dog har fundet mig foranlediget til af till:egge disse mindre Vægt end de Oyrige, da man vel ikke kan tænke sig Muligheden af en Lækage, uden at den, haar Glasrorene i'flere Maaneder opbevaredes under en Trykdifferents mellem det ydre og indre Gastryk af circa 300 til 400mm, maatte have ovet en mærkbar Virkning paa'den indesluttede Lufts Sammensætning. Jeg kan sna meget trostigere tage dem med i Beregningerne, hvor det gjælder at opstille de almindelige Slutninger, som de ikke i synderlig Grad ville bidrage til at forrykke I'dseendet af de endelige Resultater. Alle Gasvolumina findes i Tabellen udtrykte i CC, per Litre udkogt Søvand reduceret til 0° og 760^{mm} Barometerstand,

When, in the spring of 1877, I was requested to undertake these labours, I had but a few days' notice, and experienced, therefore, very great difficulty in making even the most necessary preparations; nor would it indeed have been possible to get everything satisfactorily arranged in so short a time but for the readiness with which Professor Waage came forward to assist me; for instance, in fitting up the chemical laboratory on board,

The exceptionally heavy weather on the first cruise in 1876, rendered it in the highest degree difficult, nay well nigh impracticable, to perform the necessary experiments on board; and hence the chemical work done by Svendsen on the first voyage was, with regard to gas-determinations, confined to collecting 17 samples of air, 3 of which however were subsequently lost. On the two last cruises of the Expedition the weather proved much more favourable. and I succeeded in obtaining a larger number of samples (9 of them collected by Mr. Schmelck), with which, when brought home. 80 air-determinations were performed. A more satisfactory result would, however, have been obtained but for the loss of numerous samples, some few from accident when analysing the gass, but the great majority by reason of the difficulty experienced in sealing. Thus, for instance, on the last voyage 75 per cent of the glass tubes for collecting air, procured from Kächler & Sohne in Ilmenau, notwithstanding the greatest care cracked either during the sealing-process or after its completion. The samples of air were all of them analysed in the apparatus described by Franckland and Ward, the carbonic acid having been absorbed in a lye of potash and the oxygen determined by consuming it with hydrogen. The first 14 samples were analysed by Mr. Svendsen, the remaining 80 by myself. The results obtained will be found in Table I. The temperatures in the Table were given by Professor Mohn. When stating the depths from which the samples of water were drawn, regard has not been had to the fact, that the instrument used for collecting them does not close till it has been hauled in about 7 fathoms. The asterisk marking 10 of the determinations signifies that the glass tubes used for preserving these samples of air had small defects. To these determinations, however, I have not attached less weight than to the others; for it is impossible to conceive that a leakage, after the glass tubes had been exposed for months together to a difference of pressure amounting to 300 mm - 400 mm, viz. that existing between the air inside and the atmosphere without, should not have had an appreciable effect on the composition of the air they contained. Moreover, I hesitate the less to include them as factors when seeking to arrive at general conclusions, since they cannot to any considerable extent disturb the character of the final results. The volumes are given in cubic centimetres per litre of the sea-water examined, reduced to a temperature of 0° and a pressure of 760°m,

⁴ Chem. Suc. Journ. 22-313, 1869.

⁴ Chem. Soc. Journ, 22, p. 313; 4869.

Tabel I.

-				Dybde	livorim Pro-					
	S44		Længde	7.0	n hentet.			0 - N		
No.	Stat.	Nordlig Bredde,	fra Greenwich,		cero calli (ted.)	CC.	,N.	100	Tempes ratur,	Anmærkninger.
	No.	(North Latitudes)	(Long) inde from	Engels			ner Litre.	$\theta^{(0)}$	Celsius.	(Remarks.)
,			Greenwich.)	Envno (Inglis	λ (Afetres,)		(6	9 per cents		
				Pathon	*0 1					
I			usö	0	0	17.4	1123	35.1	10.5	·
2	1.1	62° 4′	2° 44′.5 E.	221	1 17	20.1	13.8	31.1	0.1	
. 3	32	63 5	4 51-3 3 0	430		19.0	13.0	31.7	-0.6	
5	33	63 5	3 0	52.		18.9	12.4	344	11.8	
6	35	63 7	1 20 W,		~	17.0	11.1	35.0	10.1	
7	35	63 7	1 26	7.2	** . *	18.4	12.4	32,6	(1.0)	
8	37	62 28.3	2 20	30	0 0	18.5	12.4	32.8	0.1	
10	·37	62 28.3	2 2Q 5 2Q			18.3	12.3	32.7	1.1	
11	10	63 22.5	5 20	51,		20.5	13.0	35.2 32.1	0.7 0j	
1.2	51	65 53	7 18	51		, 20.0	13.0	32.3	0.0	•
13	51	65 53	7 18	116,	3 21,27	20.0	14.1	32.7	-1.1	
14	52	65 47.5	3 7	186	V 1 U	-	~	32.2	-1.2	
, 15	95	66 8.5	4 13.7 E. 3 0					32.4	5.8	
17	125	67 52.5	3 0 5 12	80, 70	- , ,	20.5	127	32.3	1.1	•
18	125	67 52.5	5 12	700		20.0	1.3.7	33.0 33.6	-1.1 -1.1	*
19	152	67 18	12 46	12,		_		31.0	4-1	
20	162	.68 23	10 20	79.	5 1454	20.6	13.9	32.6	· — ī.2	
2.1	162	68 23	10 20	79.		10.4	12.9	33.7	1.2	Pilk ogt efter mogen This Honetam) (Hollist offer the Japon of a short interval)
2.2	171	60 18	14 20	64.	* *	19.6	13.0	33.5	-1.0	
23	179	69 32 69 59.5	6 15	100	7 2930 0	20.2		32.1	8.6	
25	183	00 59.5	6 I5	0	0		12.9	30.1 30.1	8.6	
26	184	70 4	9 50	1543	45	21.5	14.6	32.0	1.3	
27	184	70 4	9 50	600	1097	20.7	14.1	32.1	0,0	
28	189	60 41	15 42	0	0	18.4	12.0	35.0	0.6	
20	189	00 41	15 42	860	010	21.5	1 1.0	32.0	1.1	Olkogt offer 5-6 Timer Renstand
30 31	4	7 I 25 Inthibet til Malan	15 40.5	1 0	0 1134	10.9	12.8	35.8	1.0 8-5?	(Butlest after the bipos of 5 or II hours)
32	213	(Entermed to the Mate 70° 23'	2" 30"	0	0	18.6	12.1	35-5 34-9	8.2	
33	213	70 23	2 30	1760		19.6	12.4)	34.0	-1.2	
34	213	70 23	2 30	1760	3219			* 33.8	- 1.2	
35	215	70 53	2 0 W,	0	0			34.8	8.0	
36	215	70 53	2 0	700		20.1	13.6	22.1	0.6	
37 38	215	70 53 70 59	2 0 7 51	100	5 3045 0	19.2	12.0	32.8	1,2	
39	226	70 59	7 51	3.40		_		32.7	3.0 0.6	
40		69 20	11 18	ď	0	20.7	13.3	35.8		
41	- 1	69 20	11 18	0	0		100	35-1	1.3	
42	243.	68 32.5	6 26	0	О	20.0	13.1	34-7	7.8	
4.3	2 4 3 2 4 3	68 32.5 68 32.5	6 26 6 26	1385		22.1	15.0	32.2	0.8	
44 45	247	68 5.5	2 24 E.	1305	5 2533 0	22.0	15.3	32.5	- L.3 9 +	
46	247	68 5.5	2 2 1	500				32.3	0.1	
47	249	68 12	6 35	106	3 1944	21.4	14.5	32.3	-1.3	
48	252	(South of	Skraaven; Skraaven; tadfaol	0	0	18.2	11.9	34.7	14.05	v
40	253	(The Skjies	reinl Fjorib)	203		20.0	13.8	31.2	3-2	
50 l	254	67" 27"	13" 25' 13 25	0	0	18.2	11.0	34.8	10,0	
5 F 5 2	254	07 27 67 27	13 25	70 140		21.3	1 4.2	33.2	4.8 5.8	
53	201	70 56	35 37	0	0	20.0	13.3	35.5	5.2	
54	264	70 56	35 37	86		20.7	13.8	33.1	1.0	
5.5	275	74 8	. 31 12	()	0	20.5	13.3	34.0	2.9	
56	275	74 8	31 12	1.47		21.0	14.6	33-4	-0.1	
57 58	278 278	74 1.5 74 1.5	22 27	-0 230	0 421	20.4	13.3 13.8	35.0	4.2	
10	2/0	/ 7	/	200	4	20.7		0010	17119	

No. No. (Nach Ladinds)	Laengde fra Greenwich, (Langdade from Greenwick)	Dybde hvorfra Proven hentet. (Depth feam which the Sampler were collected.) Engelske Favne, Meter. (Raylah (Metres.) Fathsms)	o + N OC. per Litre.	CC,	t + N = 100 $t = 0.0$	Temperator. Colsius.	Aumserkningers (Hemaoks.)
59	1 ° 21' 1 21 1 32 1 32 2 1 32 2 1 1 1 40 8 9 5 12 1 20 W. 3 2 E. 4 51 1 30 11 30 10 30 21 51 21 51 11 36 11 36 11 30 14 30 14 30 15 30 13 18 13 18 13 18 10 9 10 0 7 47 7 7 8 7	150 274 300 549 1735 3173 0 0 25 46 0 0 0 1149 2101 1149 2101 0 0 179 327 37 68 0 0 523 956 300 549 0 0 1429 2613 1487 2719 1686 3083	19.8 19.5 20.6 21.8 19.0 20.2 21.4 21.5 20.4 21.3 21.9 22.0 21.7 21.0 23.8 23.7 19.3 — 21.9 22.0 21.6 21.8 20.9 21.6 21.8 20.9 21.5 20.9 21.4 21.7 21.9 22.9 21.4 21.7 21.9 22.9 22.4 — 20.3	12.8 12.6 13.2 14.8 13.0 12.8 14.6 13.4 13.8 14.1 14.7 14.7 14.0 15.4 15.3 12.3	35.4 35.3 35.8 31.9 33.5 36.7 31.7 32.1 35.6 33.1 35.6 33.1 35.2 35.2 35.4 36.5 35.8 32.2 35.4 36.5 35.8 36.2 35.1 35.3 35.3 36.7 35.8 36.7 35.8 36.2 35.1 35.6 35.8 36.2 35.1 35.8 36.2 35.1 35.6 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 35.8 36.2 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.2 36.3 36.2 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3 36.2 36.3	7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.0 8 5.1 7.0 -0.8 1 -1.3 3.1 1.4 2.2 -1.1 -0.8 -1.5 0.5 0.2 7.8 7.8 7.8 1.5 -1.5 5.4 1.0 0.0 6.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 -1.1 1.5 -0.8	

Vandprøverne ere overalt, hvor det Modsatte ikke udtrykkelig er aufort, udkogte strax efter deres Optagelse.

Som man ser, ligner donne Tabel overmande meget den af Dr. Jacobsen opstillede, hvad man ogsån pån Forhaand kunde vente, då de indersogte Districter fuldstændig gan over i hinanden, og naar Differentserne mellem de af Hr. Svendsen og mig opforte Tal ere noget større, då kommer dette ligefrem af det af as bearbeidede Felts større Udstrækning og deraf folgende større Uensartethed i de physikalske Forholde.

Hvad der er mest ioinefaldende, er det paafaldende Phaenomen, at der med Hensyn paa den relative Sammensetning af den i Overfladevandet indeholdte Luft paa den norske Nordhavsexpedition er fundet betydeligt storre Surstofgehalt end af Dr. Jacobsen for Nordsoen opstillet, saaledes er Surstofprocenten i Overfladen i Nordsoen bestemt til i Middel 33,93 % af den samlede Luftmængde, medens den for det af den norske Expedition i 1876 og 77 undersogte Strog søndenfor den 70de Breddegrad, beløber sig

The samples of water were all, except when the reverse is stated, boiled immediately on being drawn,

As will be seen, this Table agrees very closely with that prepared by Dr. Jacobsen, which was indeed to be expected, since the tracts investigated coalesce; and the somewhat greater differences exhibited by Mr. Svendsen's and my own figures arise simply from the region explored by the Expedition having been more extensive, involving greater dissimilarity in the physical conditions.

With regard to the relative composition of the air in surface-water, the proportion of oxygen was, strange to say, on the Norwegian North-Atlantic Expedition found to be considerably greater than that given by Dr. Jacobsen for the North Sea. The mean proportion of oxygen in the surface-water of the North Sea he determined to be 33.93 per cent of the total amount of air, whereas the mean proportion for the tract of the North-Atlantic stretching south of the 70th parallel of latitude, that investigated by the

til i Middel 34.96 og for det i 1878 undersogte mellem 70de og 80de Breddegrad beliggende Strog til 35.64 %, Fuldstændigt tilsvarende er det af Buchanan fundet at være paa den sydlige Halvkugle, idet Surstofprocenten i Overfladen der varierer fra omkring 33 i Æqvatoregnene til ca. 35 omkring den sydlige Polarcirkel.

Dette lod med temmelig stor Bestemthed formode. at de for destilleret Vand gjældende, af Bunsen opstillede, Absorbtionscoefficienter ikke skulde være gyldige for Sovand. idet det, mar Overfladevandsluftens Sammensætning fandtes at variere med Bredden, matte være det Naturligste at skrive disse Variationer paa Temperaturforandringerng. Det vil imidlertid ikke fore til noget rimeligt Resultat, om man vil betragte Temperaturen som den Variable og af de her foreliggende Observationer forsage at udlede en Loy for Absorbtionscoefficienternes Variationer med Temperaturen. Man vil da finde, at de cukelte Observationer staa ikke uhetydeligt i. Strid med hinanden, idet der for Surstofmængdernes Vedkommende overalt optræder meget storre Afvigelser, end man kan antage begrundede i Observations-Det kunde dog ikke symes tilraadeligt at løde det hero hermed og forsøge at disentere de foreliggende Observationer uden nøiere Kjendskab til Absorbtionscoefficienternes Athængighed af Temperaturen, og jeg besluttede derfor at bestemme saavel Sammensatning som Mængde af den i Søvandet ved forskjellige Temperaturer opløste Luft.

Forst gjordes en Del Forsøg, hvorved Søvandet i et Bad af constant Temperatur søgtes mættet ved flere Timers Gjennemledning af Luft, (saaledes som Bunsen har gaact frem ved sine Bestemmelser i), bvorefter den oploste Luft uddreves og analyseredes paa den før beskrevne Maade. De paa denne Maade mættede Vandprøver afgave bestandig Luftmængder, som uden Hensyn til den Temperatur, hvorved Vandet var mættet, viste nogenhunde nær den samme Sammensætning (med 34.9 %) Surstof mod 65.1 %) Kvælstof), medens de ofte temmelig stærkt afvigende Tal, som udtrykte de absolute Mængder af opløste Gaser, tydeligt viste, at der paa denne Maade ikke var opmaaet fuldstændig Mætning.

Professor Waage foreslog mig derfor at gjentage disse Forsog med nogen Variation i den Maade, hvorpaa Mætningen iværksattes, og har jeg som Folge deraf ved de senere Forsog benyttet folgende Fremgangsmaade. En passende Portion Soyand af nogenlunde hoi Egenvægt rystedes med Luft i en rummelig Kolbe i et Tidsrum fra 1 til 2 Timer under stadig Vexlen af den i Kolben værende Luft og hensattes derpaa i nogle Timer ganske rolig, idet Temperaturen saavel under Rystningen som senere boldtes fuldstændig constant. Forat overbevise mig om, at jeg bar opnaaet fuldstændig Mætning, har jeg nærmet mig Mæt-

Norwegian Expedition in 1876 and 1877, amounts to 31,96, and for that lying between the 70th and 80th parallels of latitude, to 35,64 per cent. Buchanan observed precisely the some phenomenon in the southern bemisphere, the proportion of oxygen varying from about 33 per cent in the Equatorial Seas to about 35 per cent in the vicinity of the Antarctic Circle.

Reasoning on these data, there were strong grounds to assume, that the coefficients of absorption given by Bunsen for distilled water could not apply to sea-water: for, the composition of the air in surface-water having been found to vary with the latitude, the most probable cause of this phenomenon would seem to be temperature. Meanwhile, we shall not arrive at a satisfactory result by regarding temperature as the variable factor, and by seeking from the observations here set forth to discover a law according to which the coefficients of absorption vary with the temperature. The individual observations would in that case be found to clash, insunach as the variation with regard to oxygen is invertably greater than can be assumed to arise from errors of observation. However, it did not seem advisable to leave the question as it stood, and proceed to the discussion of the results without having further investigated the relation of the coefficients of absorption to the temperature; and I resolved, therefore, on determining alike the composition and the amount of the air absorbed by sea-water at different temperatures.

A series of experiments were first instituted with a view to saturate sea-water with air, viz, by placing it in a bath of constant temperature, and for the space of several hours uninterruptedly conducting through it a the mode of operation adopted by current of air, Bunsen for his determinations, - after which the air absorbed in the water was driven off, and analysed by the process previously described. The samples of water saturated in this manner invariably yielded quantities of sir which, irrespective of the temperature at which the water had been saturated, were found to be very nearly uniform in composition, viz. 34.9 per cent oxygen and 65.1 per cent nitrogen, whereas the figures, often widely divergent. expressing the absolute quantities of the gaseous bodies absorbed, gave sufficient proof that by this method complete saturation had not been attained.

At Professor Wange's suggestion. I repeated these experiments, varying slightly the means by which saturation was sought to be effected, and have since adopted the following mode of operation. A quantity of sea-water, of considerable specific gravity, is shaken, along with air, in a roomy matrixs for one or two bours, the air in the matrixs being frequently renewed, and then lett perfectly still for a few bours, at the precise temperature preserved during its contibual agitation. To be quite sire that I have really succeeded in saturating the water. I approach the point of saturation as it were from opposite, directions:

Bunsen, Gasom, Methoden 165.,

¹ Binisen, Gasono, Methodén, p. 465.

ningspunctet fra begge Sider, idet jeg paa, den ene Side har behandlet Vand, som påa Forhaand var utilstrækkeligt mættet med Luft ved vedkommende Temperatur, og paa den anden Side først har mættet Vandet ved en betydelig layere Temperatur' for derefter, som ovenfor beskrevet, at ryste det med Luft ved den Temperatur, hvorved det ønskedes metlet. Den Barometerstand, hvorved Vandproverne ere mættede, er altid bleven observeret, og ere de uddrevne Gasmengder reducerede til Mætning ved 760 mm. idet de absorberede Volumina ere sytte proportionale med Trykket. Resultaterne ere sammenstillede i nedenstaaende Tabel, hvor Gasmængderne ere udtrykte som CC, pr. Litre ndkogt Vand reduceret til 0° og 750mm Tryk. De med fede Typer trykkede Tal hidrore fra de Vandprover, der i Forveien have været mættede med Luft ved en lavere Temperatur. Ved de med Klammer sammenfoiede Tal cre begge Luftprover adkogte af samme Vandprove.

-	Ω,	° C.	5"	(1,	10"	(-',	15"	C,
	()	Λ'	0	.\	0	-N	0	٦١-
1	7.76	1:4:30	6.83	13.20	6.31	12,14	5.60	10.79
- 1	7.85	14.50	0.90	13.30	6.30	12.06	1 5.79	11.20
	7.71	14.31	6.97	13.16	6.25	12.04	5.70	11.04
		-	7.01	13.20	_		-	—

Som Middelyagdier erholder man heraf:

· (1,	0	5	10	15
$O = \frac{O}{N}$ $O + N = 100 O_{-\frac{\alpha}{10}}$	7.77	13.22	12.08	11.01

Til yderligere Control paa Rigtigheden af denne Tabel hensattes en Vandprove i uproppet Kolbe ved 0° i 7 Dogu, hvorpaa den deri oploste Luft udkogtes og analyseredes, og viste den uddrevne Gas sig at være omtreutlig af samme Sammensætning som ovenfor angivet nemlig 35,18 % O mod 64,82 % N. Al den samlede Luftmængde erholdtes her ingen Maaling, da desværre en liden Blære under Overfyldningen i Evdiometret gik tabt, den resterende Del maalte 21,71 CC. Som man af denne Tabel vil kunne se, er den Kvælstofmængde, som l Litre Sovand absorberer af den atmosphæriske Luft, ligetil proportional med Temperaturen og lader sig udtrykt i CC, meget noie fremstille ved Formelen

$$N = 14.4 - 0.23 t$$
.

hvoraf man istedetfor de

observerede Værdier [, 14.41 13.22 12.08 11.04 km beregne , , , , 14.40 13.25 12.10 10.95.

Hvad angaar den absorberede Surstofmængde, da er Forholdet ikke kengere saa simpelt, idet den Curve, der betegner Variationen med Temperaturen, ikke kengere er en ret men en svagt krummet Linie, som paa Stroget fra 0 til 10%, hvorom der her nærmest er Tale, lader sig udtrykke ved Formelen on the one hand, operating with water that has been imperfectly saturated at a given temperature, and on the other, saturating that water at a much lower temperature; and not till then proceeding to shake it along with air at the temperature for which saturation is sought to be attained. The atmospheric pressure at which the samples of water were saturated, was always noted down, and the quantity of gas driven off reduced to the point of saturation at 760 mm, the volumes absorbed being put proportional with the pressure. The results are set forth in the following Table, the amounts of gas being expressed in cubic centimetres per litre of the water examined, reduced to a temperature of 0° and a pressure of 760^{mm} . The figures printed in thick type refer to samples of water previously saturated with air at a lower temperature: those in brackets are determinations performed with the same sample of water.

0"	C.	5° (1	10°	C.	15°	C,
O	N	0	N.	()	1,	(1)	Λ
17.76	14.36	6.83	13.20	6.31	12.14	5.60	10.79
17.85	14.56	6.90	13.30	6.30	12 06	5.79_	11.20
7.71	1431	6.97	13.16	6.25	12.04	5.70	11.04
4			13.20		*		

The mean proportions are accordingly: —

C,	0"	5 °	10"	15°
()	7.77	6,03		
`/	14.41	13.22	12.08	11.01
$\theta + N = 100 \theta$ pact.	35.03	34:39	34.24	34.1.1

With the object of testing still further the accuracy of this Table, a sample of water was allowed to stand over in an open matrass at a temperature of 0° for the space of 7 days, when the air absorbed by it was boiled out and analysed; but the composition of the gas driven off proved to be almost the same as that specified above, viz. 35.18 per cent oxygen and 64.82 per cent nitrogen. Of the total amount of air no measurement was obtained, a small bubble of gas having unfortunately escaped when transferring the air into the endiometer; the remaining portion measured 21.71°. As appears from this Table, the quantity of nitrogen absorbed from the atmosphere by 1 litre of sca-water is strictly proportional to the temperature, and may be very accurately expressed in cubic centimetres by the formula—

$$N = 14.4 - 0.23 t$$
.

which, in place of

the values observed, 14.41 - 13.22 - 12.08 - 11.01 gives 44.40 - 13.25 - 42.10 - 10.95

With regard to the amount of oxygen absorbed, the proportion is less easily expressed, since the curve indicating the variation with the temperature will no longer be a straight, but a slightly curved line, which, from 0° to 10°, the interval most important here, may be expressed by the formula —

$$0 = 7.79 = 0.2 t + 0.005 t^2$$

som istedetfor de observerede Værdier 7,77 (6,93 6,29 giver 7,79 6,92 6,29

Men Hensyn paa den relative Sammensætning af den absorberede Luft da er den ikke, saaledes som af Bunsen for destilleret Vand fundet, nafhængig af Temperaturen men varierer med denne, saaledes at Surstofprocenten paa Stroget fra 0° til 15° forandrer sig med en hel Procent.

Betragter man Resultaterne af disse Forsog som Norm, viser det sig, at den relativt til den samlede Luftmængde meget hoie Surstofgehalt, som er observeret i Overfladen i den nordlige Halvdel af det undersogte Hav, i Virkefigheden skriver sig fra en Overmælning med Surstof og ikke, som man ogsåa kunde tænkt, fra en mangelfuld Mætunng med Kvælstof, idet der mærkeligt nok her findes en Surstofgehalt, der meget hyppigt overskrider den af disse Forsog beregnede med 0.5 CC, og degover. Det vil sige, der optræder saa store Afvigelser, at de påa ingen Maade kunne tilskrives Observationsfeil, og det viser sig saaledes, at Surstofgehalten i Overfladen ikke alene afhænger af Tryk og Temperatur, men rimeligvis ogsåa maa paavirkes af en eller flere andre ubekjendte Aarsager.

Naar det gjælder mermere at studere Surstofmængdens Variation med Dybden, falder det lækvemmest at udtrykke den som Procenter af den samlede Luftmængde, da den absolute Luftmængde varierer i meget stærkere Grad med Temperaturen end Luftens relative Sammensætning, og man vil saaledes ved at benytte denne l'dtryksmænde opnaa at gjore sig i betydeligt større Udstrækning nafhængig af Temperaturens Indilydelse.

Ordner man de paa denne Maade udtrykte Tal efter Dybden, viser det sig, at der med Hensyn paa Smystofprocenteus Størrelse i de forskjellige Dyb existerer en temmelig udpræget Lovmæssighed, som nærmere kan karakteriseres af nedenstaænde Tabel, der er uddræget af samtlige Observationer, naar undtæges de to, hvor Udkogningen ikke forefoges strax men først efter nogen Tids Henstand.

Dybdeinte	rvaller.	Antal	Midlere	Midlere		
Engelske Favne,	Meter.	Observa- tioner,	Engelske Favne, •	Meter.	Surstof- procent.	
0	0	28	0	0	35.31	
0-100	0-183	6	69	126	33.93	
100-300	183 549	1.4	210	384	32,84	
300-600	549—1097	16	420	768	32.50	
600-10001	097 1829	11	684	1251	32.58	
1000-1400 1	829-2560	6	1192	2180	32.78	
1400-1760 2	560-3219	01	1646	3010	32.89	

De enkelte Observationers Afvigelser fra den ved denne Tabel bestemte Regel ere i Betragtning af det undersøgte Felts store Udstrækning hverken månge eller synderlig store, idet kun 40, No. 2, 19, 38, 49, 64, 68, 83, $O = 7.79 - 0.2t + 0.005t^2$.

Hence, the relative composition of the air absorbed is not, as Bunsen found to be the case with distilled water, independent of temperature, but varies with that factor, the percentage of oxygen, for instance, differing as much as 1 per cent between 0 and 15.

Now, assuming the results of these experiments to furnish a normal standard, the relatively large proportion of oxygen as compared with the total amount of air present in the surface-water of the northern tracts of the sea investigated, will be found to axise from supersaluration with oxygen, and not, as might be supposed, from imperfect saturation with nitrogen, seeing that the proportion of oxygen exceeded that computed from these experiments by as much as, or even more than, 0.5%; for a difference so considerable does not admit of being ascribed to errors of observation. On the basis of these facts, the proportion of oxygen in surface-water is shown to depend not only on pressure and temperature, but, probably, also on the effect of one or more causes as yet nuknown.

When investigating the degree in which the proportion of oxygen varies with the depth, it will be most convenient to express the difference as a percentage of the total amount of air, the absolute amount of air varying to a much greater extent with the temperature than does its relative composition; besides, with this mode of expression considerably less regard need be had to the influence of temperature.

If the figures representing the results thus expressed are arranged according to depth, the proportion of oxygen present in the different strata will be found to exhibit very considerable uniformity, as appears from the following Table, based as it is on the whole series of determinations, with the exception of two, the water with which the latter were performed not having been holded at once, but allowed to stand over for some time previous to examination.

Littervals	of Dejah.	Number	Mean 1	Mean Pers	
English Futhous.	Metros,	of Observations,	English Fathones	Meters,	centage of Oxygen.
+ O	0 .	28	0	,0	35.31
0-100	0-183	6	69 '	120	33-03
100-300	183-540	1.‡	210	381	32.81
300600	549 = 1097	16	420	768	32.50
600 -1000	1097 1829	11	684	1251	32.58
1000 1400	1829 2560	6	1102	2180	32.78
1400 1760 2	650 3219	10	1646	3010	32.80

Considering the great extent of the region investigated, the deviation of the individual observations from the standard given in this Table is neither frequent nor considerable, 10 only, viz. Nos. 2, 19, 38, 49, 64, 68, 83, 84,

84, 85 og 87, fjerne sig om mere end 1 Procent fra det almindelige Resaltat, medens man af samtlige Observationer kan bestemme en enkelt Observations sandsynlige Åfvigelse fra den efter denne Tabel optrukne Curve fil \pm 0.52 $^{\rm o}_{\rm jo}$ en Afvigelse saa liden, at en ikke ringe Del af den kan skrives paa Observationsfeil.

De største l'overensstemmelser optræde talrigst i et Dyb fra 300 =600 Favne (549 | 1097 Meter) men findes ogsåa enkeltvis i storre Dyb.

Fro Bunden hidrorer i de storre Dyb kun to Luttprover and viesentlig for hoi Surstofprocent nemlig No. 68 og 87, optagne fra, to Puncter, som mærkeligt nok begge ligge parc en Linie paralel med og tæt ved Grændsen mellem den nordøver strygende varme. Strøm og den sydover farbi dan Mayen gaaende Polarstrøm. Bortser man imidlertid fra disse de væsentligste Hoverensstemmelser, som bidrage til at give Curven et om end meget svagt Minimum i 300 400 Favues (549 = 732 Meters) Dyb, vil man i Kortheil kmme udtale Regelen for Surstofprocentens Aftagen med Dybet saaleiles: Surstofprocenten er i Overfladen gjennemsnitlig 35,3 og aftager derpaa først hurtigt senere langsommere til henimod 32,5 i 300 Favnes (549 Meters) Dyb, hvortra den med stigende Dyb holder sig pan det Nærmeste constant. Det kan bemærkes, at af de her undersøgte Vandprover 40 ere oste lige ved Havbunden. Man vil imidlertid forgjæyes bestræbe sig for at opdage nogen Forskjellighed i Egeńskaber mellem disse og de fra ligestore intermediere Dyb optagne.

Hvor det gjælder at studere Variationerne af den absolute Luftmængde, maa det synes naturligt som Maad nor denne at benytte den oploste Kvælstof, idet den observerede Luftmængde paa Grund af det vedvarende Forbring af Surstof i de dybere liggende Lag bestandig kan torudsættes at være mere eller mindre forskjellig fra den Mængde, som vilde absorberes i Overfladen under directe Paavirkning af Atmosphæren. Kvælstofmængden kan derimod paa Grund af denne Gasarts stærkt udprægede Indifferentisme ligeoverfor amdre Legemer uden, synderlig Feil antages, nafhængig af locale Tilfældigheder.

Anvendes saaledes Kvælstofmængden som Maal for den i Sovandet oploste læft, viser der sig i Fordelingen ogsån her en udpræget Løvmæssighed, man undtages, at der i de af Svændsen påa det forste Togt udforte Observationer overalt er fundet en mindre Kvælstofmængde, end man efter alle ovrige foreliggende Observationer skulde vente. Bortser man imidlertid fra disse påa forste Togt udforte 14 Observationer, vil man se, at alle de Øvrige påa faa Undtagelser nær meget vel stemme overens med de Tal, man kan beregne efter den ved de ovengiterede Forsog bestemte Formel

N = 14.4 - 0.23 t,

85, and 87 exhibiting a difference of more than 1 per cent as compared with the general result, whereas the probable deviation of a single observation from the curve drawn according to this Table may be computed at \pm 0.52 per cent, a deviation so small as to arise, probably, in no slight degree from errors of observation.

The greatest discrepancies refer chiefly to a depth of 300 -600 fathoms (549-1097 metres); now and again, however, they were met with in water obtained from greater depths.

In only two of the samples of air expelled from bottom-water drawn where the depth was great, did the percentage of oxygen prove much too high, viz. in Nos. 68 and 87, the samples of water yielding them having been obtained from two spots which, strange to say, are in a line running parallel and, in close proximity to the boundary between the warm current flowing morth and the cold Arctic current flowing south past the Island of Jan Mayen. Now, if we exclude from these differences the chief of those that contribute towards giving the curve a very slight but appreciable minimum at a depth of from 300 to 400 fathoms (540-732 metres), the rule according to which the proportion of oxygen is found to diminish with the depth may be expressed as follows: - The proportion of oxygen, which at the surface is 35.3 per cent, begins at once and continues to diminish, at first rapidly and afterwards at a slower rate, till it has reached 32.5 per cent, at the depth of 300 fathous (549 metres), from whence it keeps almost constant. I will not omit to observe, that of the samples of water examined 40 had been drawn from the bottom; is was, however, impossible to detect any difference in composition between these and the samples obtained from equal intermediate depths.

When investigating the variation in the absolute amount of air, it will obviously be advisable to make use of the nitrogen absorbed, since the quantity of air observed in the deeper strata may, by reason of the steady consumption of oxygen, be assumed to differ more or less from that which would be absorbed at the surface under the direct influence of the atmosphere, whereas nitrogen, from the very slight affinity evinced by that gas for other bodies, may, without involving appreciable error, be regarded as proof against the accidents of locality.

If, therefore, the amount of nitrogen be adopted as the standard of measurement for the air absorbed in seawater, a marked uniformity will here, too, be found to characterise the distribution, as determined by the observations described, with the exception however of Svendsen's, on the first voyage, by which the amount of nitrogen was found to be less than all subsequently instituted observations gave reason to expect. Excluding then, the 14 observations from the first voyage, all of the others, with but few exceptions, agree closely with the figures which may be found by the formula stated above—

Man faar nemlig af Observationerne folgende Middelyærdier:

Dybdeinto	ervaller.	Middel-	Midlece Kyrelstof-	Kyacksted-	Dif- ferents,	
Engelske Favne,	Meter.	terap, " C,	mængde observeret	anunigde heregnet.		
0	0	6.4	13.07	12.93	-0.11	
0-100	0-183	. *2.7 *	13.98	13.78	0,20	
100-300	183-549	1.0	14.15	14.17	0.02	
300—600	549—1097	-o.6	14.54	14.34	0,00	
600-1000	1097 1829	→ 0.8	14.04	14.58	0.54	
1000-1760	1829-3219	-1.4	14.38	14.72	0.34	

Naar den midlere Kvælstofmængde her i de dybere Lag er funden noget lavere end man skulde vente, da har dette sin Grund i, at der ved de 5 Observationer No. 17, 22, 33, 36 og 37, alle hidrørende fra Vandprøver fra det i 1877 undersøgte Strøg, er fundet en ca. 1.5 CC. lavere Gehalt, end de ved sin Temperatur vilde kunne optage ved almindeligt Atmosphæretryk. Forresten vil efter alle de øvrige Observationer at dømme ogsåa i de større Dyb Kvælstofmængden findes at stemme overens med den af Formelen beregnede.

En lignende Sammenligning 1 er af Buchanan gjort mellem de af ham for de sydlige Have fundne Tal og de af Bunsen for destilleret Vand opstillede. Der optræder ved denne Sammenligning især ved de lavere Temperaturer ikke ubetydelige Differentsør paa lige op til over 1 CC. pr. Litre, men disse vil ved Sammenligning med de efter Forfatterens Formel beregnede Tal saa godt som bortfalde, idet man faar:

		4		
Dybde i Fod,	Midlece Temperatur.	K vielstof- mængde efter Buchanan.	Kvælstof- naængde efter Fornælen.	Differents.
. 600	14.6	11.26	11.04	0.22
1200	13.0	11.71	11.41	-0.30
1800	6.9	13.00	. 12.81	0.19
2400	5.1	13.10	13.23	0.13
4800	2,5	13.82	13.82	0.00
derover	1.5	14.37	14.05	-0.32

Det fremgaar heraf, at Kvælstofniængden, saaledes som det allerede af Dr. Jacobsen og Andre er antaget, ikke i mindste Maade retter sig efter de i de store Dyb herskende Tryk men kun afhænger af Temperaturen. Den eneste rimelige Fortolkning udelukker Muligheden for, at Tryk- og Temperaturdifferentser i de under Overfladen as will be seen from the following Table showing the mean values.

Intervals o English Futtoms.	Modern		Mean Temp °C.	Mean Amount of Sitr, alcorved.	aonat of Da		
()	C)	6.1	13.07	12,03	-0.14	
0~~100	0-	-183	2.7	13.98	13.78	0.20	
100 300	183	549	1.0	14.15	14.17	0.02	
, 300 - 6 <u>0</u> 0	5 t9	1097	0,6	14.54	14.51	0.00	
600) = (000	1097	1829	-0.8	14.04	14.58	0.51	
1000 1760	1829	3210	1.‡	14.38	1 4.7 2	0.34	

The mean quantity of nitrogen in the deeper strata proved, accordingly, somewhat lower than there was reason to expect; but this crose from the proportion determined by 5 of the observations, viz. Nos. 17, 22, 33, 36, and 37—all of them referring to samples of water obtained from the tract of ocean investigated in 1877—having been about 1.5% less than could be absorbed at the same temperature under ordinary atmospheric pressure. For the rest, judging from all the other observations, the proportion of nitrogen observed, even at greater depths, will be found to agree with that computed by the formula.

A similar comparison was instituted by Buchanan between his results for the water of the Southern Seas and the figures found by Bunsen for distilled water. The differences resulting from this comparison, more especially for a low temperature, are considerable, the greatest reaching 1% per litre; but, on comparing them with the figures given by the anthor's formula, they will be found almost to vanish, as appears from the following Table.

Deptle in Feet.	Mesar Temperature.	Anatime of Nitrogen ac- cord, to Buchman,	Amount of Nitragen comp. by the Formula.	Difference,
600	1 4.6	11.26	14.04	0,22
1200	13.0	11.71	11.11	0.30
1800	6.9	13.00	12.81	0.19
2 [00	5.1	13.10	13.23	0.13
4800	. 2.5	13.82	13.82	0.00
Greater Depths.	1.5	1 1.37	14.05	-0.32

Hence the amount of nitrogen, as previously assumed by Dr. Jacobsen and others, can in no wise be affected by the increase of pressure at great depths, but must obviously be dependent on temperature alone. The results of these observations exclude, therefore, the possibility of differences in temperature and pressure at depths below

¹ Ber. Berl. chem. Ges. - 11 -- 410.

Ber, Berl, clent, Gest 11, p. 110.

liggende Lag skulde kunne hidføre en anden Fordeling af Luften end den, der allerede existerer fra den Tid, da Vandet sidste Gang befamlt sig i Overfladen udsat for fri Paavirkning af Atmosphæren. Euffen vil saaledes kun gjennem Vamlets t'irenlation kunne må ned i Dybet, og nogen Udjevning af Luftmængderne vil der kun kunne ske gjennem Blanding af de forskjelligartede Vandmængder, en Blanding, som under Forndsætning af at der ikke ogsåa foregaar Opvarunning eller Afkjoling, ikke vil kunne forrykke det rette Forhold mellem Temperatur og Kvælstufmængde, da Kvælstofmængdens Variation med Temperaturen fremstilles ved en ret Luire.

Man vil altsaa, dersom disse Forndsætninger holde Stik, ved en Kvælstofbestemmelse i de dyhere liggende Vandlag kunne om end meget raat bestemme, om disse have været Gjenstand for en væsentlig Opvarmning eller Afkjøling, siden de sidst befandt sig i Overfladen, forndsat at man kan negligere Virkningerne af Atmosphæretrykkets Forandringer og andre mulige Tilfæhligheder, som under Absorbtionen i Overfladen vil kunne gjore sin Indflydelse gjældende.

tärupperer man de her offentliggjorte Observationer efter Vamhprovernes Temperatur, viser det sig, at Kvelstofmængden meget noie svarer til den efter denne Temperatur af Formehen beregnede, det vil sige, Vandprovernes Temperatur skulde ikke i væsentlig Grad have forandret sig, siden de sidst befandt sig i Overfladen. Man faar nemlig:

Tengaratur- interval.	Midlere Temperatur.	Midlere Kvælstof- mængde.	Beregnet Kvælstof- mængde.	Differents.
mider 0"	-1".1	14.32,	14,65	0.33
0-3	1.2	14:10	14.12	-0.07
3 6	4.6	13.38	13,34	-0.04
6 -0	7.5	12.90	12.67	-0.13
over 9	11,2	11.93	11.82	-0.11

At Overensstemmelsen for Temperaturerne under 0° ikke er saa fuldstændig som ellers, skyldes ogsåa her de ovenfor nævnte 5 tibservationer alle udførte påa Togtet i 1877. Beregner man derimod den midlere Temperatur og Kvælstofmængde for dette Interval af de påa sidste Aars Togt gjorte Observationer, erholder man til Middeltemperaturen 1.2 Kvælstofmængden 14,59 CC, altsaa kun 0.09 CC, mindre eml beregnet,

Benyttes paa samme Maadie de af Dr. Jacobsen offentligjorte Observationer til et Overslag over Kvælstofmængden i Nordsoen, erholder man med runde Tal: the surface causing a distribution of the air different to that which existed when the water was last at the surface, in direct contact with the atmosphere. Hence the air cannot penetrate to such depths save by the circulation of the water, and an adjustment of the amounts of air can be effected solely by the mixing of the water different in composition, which will not, however, unless we assume a simultaneous increase or decrease of heat, disturb the true relation between the temperature and the amount of nitrogen, since the variation of the latter with the temperature is expressed by a right line.

If, then, these assumptions are found to hold good, it will be possible, when computing the proportion of nitrogen in the lower strata of the water, to determine — very roughly indeed — whether the latter have experienced any increase or decrease of heat since they were last at the surface, provided we can ignore the effect of change in the atmospheric pressure and of other accidental circumstances, which, during the process of absorption, may have made their influence felt.

On grouping together according to the temperature of the samples of water examined, the observations published in this Memoir, the proportion of nitrogen will be found to agree very closely with that computed by the formula, showing, as appears from the following Table, that the temperature could have varied but little since the water had been last at the surface.

Intervals of Temperature,	Mean Temperature.	Mean Amount of Nitrogen.	Computed Amount of Nitrogen.	Difference.
helow O°	— 1°.1	14.32	14.65	0.33
0-3	1.2	14.19	14.12	-0.07
3-6	4.6	13.38	13.34	-0.04
6-9	7.5	12.90	12.67	-0.13
abuve 9	. 11.2	11.93	11.82	-0.11

For the temperatures under 0° the agreement is indeed not so close; but here, too, the cause may be traced to the aforesaid 5 observations from the voyage in 1877. If, however, we compute the mean temperature and the amount of nitrogen for that interval by the results of the observations instituted on the last voyage, the mean temperature will be -1.2 and the amount of nitrogen 14.59° , or only 0.09° less than that computed by the formula.

A similar computation with the observations published by Dr. Jacobsen for estimating the amount of nitrogen in the water of the North Sea, will give, in round numbers, the following results: —

Temperator- interval.	Mallere Temperatur,	Midlere Kvælstof- mængde,	Beregnet K vælstof- mængde,	Defferents,
under 10°	6°.5	13.2	12,9	- 0.3
10-15	12.1	12,0	11.6	-0.4
15-20	16.9	11,0	10,51	-0.5

Her findes altsaa overalt en Kvælstofgehalt svarende til en noget lavere Temperatur end den observerede og det i stærkest Grad for de hoiere Temperaturer, eller da Temperaturen aftager med Dybden, for de overst liggende Vandlag. Naar man erindrer, at Jacobsens Observationer ere udforte i Eftersommeren og for det Meste paa Vandprover fra saa smaa Dyb, at Luft- og Vandtemperaturens aarlige Variation kan tænkes at have gjort sig gjældende, vil dette ikke være saa vanskeligt at forklare gjennem Vandets Opvarunning i Sommermaanederne, medens Kvælstofmængden maa antages at rette sig efter en Temperatur mindst lige saa lav som den aarlige Middeltemperatur.

At lignende Phenomener ikke ogsåa ere observerede i de ovre Lag af det af den norske Nordhavsexpedition undersogte Hav, har sin simple Forklaringsgrund deri, at Lufttemperaturen der selv om Sommeren ikke er højere end Overfladøtemperaturen hellere omvendt.

Intervals of Temperature.	Mesa Temperatare,	Mean Amount of Vitrogen	Computed Amount of Nitrogen	Difference,
Below to	6",5	13.2	12,0	- 0, 3
10 15	12.1	12,0	11,6	0, (
15-20	16.9	41,0	10,51	0.5

The proportion of nitrogen in this Table corresponds accordingly to a somewhat lower temperature than that observed, especially for the higher temperatures, or rather, since the temperature diminishes with the depth, for the upper strata of the water. If, however, we bear in mind that Jacobsen's observations were instituted at the latter end of summer, and the majority with samples of water obtained from such triffing depths that the annual variation in the temperature of air and water probably exerted some influence, this will not be difficult to account for, by reason of the heat stored in the water during the summer months, whereas the amount of nitrogen must be regulated by a temperature at least as low as the mean annual temperature.

That similar phenomena were not observed in the upper strata of the water throughout the tract of ocean investigated on the Norwegian North-Atlantic Expedition, arises simply from the fact, that the temperature of the air in those regions does not even in summer exceed that of the water at the surface, nay the reverse is rather the case,

 $^{^{-1}}$ Den for Intervallet fra 0 til 15° udledede Formel er her forudsat at gjælde ogsåa fra 15 til 20°,

[.] The formula deduced for the interval from 0° to 150° is here assumed to be correct for that extending from 150° to 20%.

H. Om Kulsyren i Søyandet.

f alle de Chemikere, som før den tyske Pomerania-A expedition i 1872 austillede Undersogelser over Luiten i Sovandet, blev der foruden Bestemmelser af Sinstof-Kvælstofmængden ogsaæ samtidig udført Maalinger af den under Udkogningen uddrevne Kulsyre, og de Qvantiteter, man paa denne Maade fandt, bleve ogsaa bestandig opførte. blandt Resultaterne som den samlede Mængde Kulsyre. der var oplost i Sovandet enten fri som Gasart eller bunden til Carbonater som sure Salte. De Resultater, som ad denne Vei erholdtes, visc imidlertid bestandig overmaade store Uoverensstemmelser ikke alene mellem de forskjellige l'orfattere men ogsaa mellem de enkelte Observationer hos en og samme Experimentator, hvor man dog maatte have anlaget, at en storre Ensartethed i Forsogenes Udførelse skulde have adjevnet Differentserne.

Som Exempel pan, hvor vidt Voverensstemmelserne i de ældre Opgaver strække sig, kan anføres Følgende:

l en Lit				Overtladevånd fandt												
Fremy										2.2	til	2.8	CC_{μ}	Kulsyre	1.	
Morren						,			ï	1.6	3*	3.9		—	2.	
Lewy						,		٠,		2.4	1.4	3,9			а,	
Pisani															1,	
												1 ()			14	

Hunter 0.8° , 0.9Desiden fandtes efter en noget anden Fremgangsmaade af

Hitterett it									
Bischot .			,				39,0	CC.	
Vogel					55.6	til	116,3		

Ved alle disse ældre Undersogelser, hvor der ved Udkogningerne var anvendt fuldt Atmosphæretryk, og hvor

³ Compt. rend. 6 - 616.

On the Carbonic Acid in Sea-water.

The several chemists who, previous to the German Pom-I erania' Expedition (1872), had instituted observations on the air present in sea-water, when measuring the amount of the oxygen and nitrogen also collected the carbonic acid driven off during the process of boiling; and the quantities determined were invariably set down among the results as the total amount of carbonic acid actually existing in the water, either free as gas or contained, to a less extent, also in bicarbonates. The results thus attained vary however to a remarkable extent, and not only as between the different experimentalists individually. - the like is also the case with the observations of one and the same person, although greater uniformity in the mode of operation should apparently have tended to climinate error.

The following Table will show the wide difference prevailing between the formulæ of early authors.

Amount of Carbonic Acid in 1 Litre of Surface-water.

Frémy		:	,	. '					2.2	to	2.8	CC.	1,
Morren				,					1.6	3*	D.0		•
Lewy.									2.4	1.7	3,9	-	3,.
Pisani			٠.			٠.	,	-1	6.0	2*	8.1		1,
Hunter									0.8	77	ē,č	_	ă,
	٠.	-								_		- 20	

The proportion as found by a somewhat different process was as follows

1										
Bischof								39,0	CC: 6.	
								1.17.11.11	7	
' Vogel .		,				0,66	to	-116.3	'.	

Hence, it appears that the quantity of carbonic acid given off under these early experiments, for which the boil-

⁹ Ann. Chim. Phys. [3] — 12 = 5.

Ann. [3] 17. Ann. Chem. Pharm. 58 + 328.
 Compt. rend. 41 532.
 Jahresbericht 1869 1279.

Ohem, Geologie I Aufl. 2 - 1130.

¹ Schweigg, John, 8 - 35).

Compt. rend. 6, p. 616.

² Ann. Chim. Phys. 3142, p. 5.

^{— — [3] 17.} Ann. Chem. Pharm. 58. p. 328.

⁴ Compt. rend: 41, p. 532.

Liebigs Jahrbericht 1869, p. 1279.

⁸ Chem. Geologie⁺1 Aufl. 2, p. 1130.

[†] Schweigg, Journt S, p. 3'd.

derfor Temperaturen steg over 100°, undveg altsaa altid vel maalelige og ofte eudog temmelig betydelige Mængder Kulsvre,

Ved de paa Pomeraniaexpeditionen i 1871 ndførte Luftbestemmelser¹, hvor den tidligere beskrevne Methode med Gasarternes Udkogning under et, ved Vanddamp frembragt Vacuum anvendtes, sænkedes imidlertid Temperaturen ikke ubetydeligt, og det viste sig da, at man ved denne Temperatur temmelig ofte kan fik næsten umaalelig smaa Qvantiteter Kulsyre uddrevet sammen med den øvrige Luft, medens de tidligere Uoverensstemmelser mellem tlere med samme Vandprove, gjentagne Udkogninger ogsaa her gik igjen.

Jacobsen fandt sig derfor ved dette mærkelige Phænomen foranlediget til nærmere at andersoge Kulsyrens Absorbtionsforhold ligeoverfor Sovand,

Gjennem de Forsog, som han i denne Anledning anstillede, viste det sig da, at man ad andre Veic kunde paavise aldeles uventet store Qvantiteter Kulsyre i det samme Vand, hvoraf man ved en i flere Timer fortsat Udkogning efter Bunsens Methode kun kunde erholde meget smaa Mængder. Afdestilleredes nemlig Søvandet i en kulsyrefri Luftstrom uden Luftfortynding i en Retorte, undveg der den hele Tid Kulsyre, lige indtil den hele Mængde Vædske var afdestilleret, saaledes at man først ved rigelig Udskillelse af Salte kunde være fuldstændig sikker paa at have erholdt det samlede Udbytte af Kulsyre uddrevet.

Der lod sig under Udkogningen ikke paavise noget Punct, hvor man kunde tale om en Grændse mellem fri og surt bunden Kulsyre.

Paa denne Maade nddrev nu Jacobsen ved fuldstændig Afdestillation af ½ Litre Sovand i en kulsyrefri Luftstrøm den hele Mængde Kulsyre og opsamlede den efter Pettenkoffers Princip i en afmaalt Mængde titreret Barytvand, som efter endt Operation retitreredes med Oxalsyre, og beregnedes efter disse den samlede Kulsyremængde, som for nfortyndet Nordsovand opgives til omkring 100 Mgr, per Litre.

Samtidig bestemtes ogsåa i Residnet fra Inddampning af circa 10 Litre af det samme Vand den i de neutrale Carbonater indeholdte Kulsyre til i Middel kun omkring 10 Mgr. per Litre.

Ifolge disse Observationer kunde altsaa kun en meget liden Brokdel af den ved Destillationen uddrevne Kulsyre betragtes som surt bunden, og Jacobsen imodegaar derfor i sin Athandling bestemt den af Vierthaler gjorte Antagelse, at al den ved Kogning af Sovandet uddrevne Kulsyre skulde være surt bunden. Han anser sig endvidere aldeles sikker for under Inddampningen ikke at lave erholdt decomponeret nogen Del af de i Søvandet indeholdte neutrale Carbonater, idet han udtrykkelig siger: "Die ganze Menge der nicht

ing-process was conducted with full atmospheric pressure, or at a temperature of more than 100° C, invariably proved appreciable, nay sometimes rather large,

When performing the air-determinations on the Pomerania' Expedition in 1871 (by the method, previously described, of boiling out the gaseons elements in a vacuum created by steam), the temperature kept considerably lower, and the quantity of carbonic field expelled with the other atmospheric elements at a comparatively low temperature was often immeasurably small; moreover, the variable character of the results, alluded to above, on repeating the boiling-process with the same sample of water again asserted itself.

Struck by this remarkable phenomenon, Jacobsen determined to investigate anew the absorptive capacity of sea-water in relation to carbonic acid.

The experiments of that chewist undertaken with the above object in view afforded conclusive proof of the fact, that large quantities of carbonic acid were still present in water from which a very small amount only could be expelled after several hours' protracted boiling by Bunsen's method. On distilling in a retert sea-water exposed to a current of air free from carbonic acid, but not rarified, carbonic acid is found to escape so long as any portion of the fluid remains undistilled, an abundance of solid deposit however being the only indication that all or nearly all the carbonic acid present in the water has been driven off.

During the process of boiling no particular moment could be determined marking the escape of the carbonic acid present as gas and of that which has combined with carbonates to form bicarbonates.

In this manner, by distillation in a current of air free from carbonic acid, Jacobsen succeeded in expelling the whole amount of carbonic acid contained in \(^1/\)_1 litre of sca-water, and collected it, by Pettenkoffer's method, in a given quantity of titrated baryla water of known strength, which, on the operation being terminated, he retitrated with oxalic acid, computing accordingly the total amount of carbonic acid driven off in the process. Undiluted North Sea water contains according to Jacobsen's results about 100 mpr per litre.

The amount of carbonic acid contained by the neutral 'carbonates in the residuary deposit from the evaporation of 10 litres of the same water, was also calculated, and found to average only about 10 mgz per litre.

According to these observations, a very small proportion only of the carbonic acid driven off by distillation could have been present in bicarbonates; and hence Jacobsen cumphatically opposes Vierthaler's assumption, that the carbonic acid boiled out of sea-water occurs in that form. Moreover, he feels quite sure that no portion of the neutral carbonates in the water examined was decomposed during the process of boiling. "Die ganze Menge." he says, "der nicht mit Basen zu neutralen Salzen verbuu-

¹ Ann. Chem. Pharm. 167 — 1.

³ Wien, Acad. Ber. [2] — 56 — 479.

Den norske Nordhavsexpedition. Tornee: Chemi,

¹ Ann. Chem. Pharm. 167, p. 1.

² Wien, Acad. Ber. [2, 56, p. 479.

unt Basen zu nentralen Salzen verbundenen Kohlensäure erhält man aus dem Meerwasser, wenn dieses unter Durchleiten eines Stromes kohlensäurefreier Luft bis zur reichlichen Abscheidung von Chlornatrium verkecht wird."

Det maatte saaledes fremstille sig som et hoist mærkeligt Phænomen, at den Kulsyre, som dog maatte tænkes oplost i Sovandet paa en eller anden Maade som fri Gasart, ikke skulde lade sig uddrive ved Udkogning efter Bunsens Methode, og at den endogsaa ved Udkogning under fuldt Atmosphæretryk og i en kulsyrefri Luftstrom skulde undvige saa langsomt, at man først ved Concentration til omkring $^4/_{10}$ af det oprindelige Volum erholdt den sidste Rest uddrevet

Forat kunne forklare disse Mærkeligheder tilkegger Jacobsen Sovandet en eiendommelig Evuc til med megen Kraft at kinnie tilbageholde sin Kulsyrg, en Mening, som han efter nærmere at have fremført sine Grunde mod den af Vierthaler gjorte Antagelse udtrykker med følgende Ord: "Wie man aber auch eine Deutung der starken Absorptionswirkung des Meerwassers, auf die atmosphärische Kohlensäure versuchen möge, jedenfalls kann man die Kohlensäure nicht in demselben Sinne, wie Sanerstoff und Stickstoff, als absorbirtes freies Gas darin annehmen. Man mag einstweilen von einem eigenthümlichen Zustande der Bindung sprechen, bei welchem die Koblensäure selbst durch stundenlanges Kochen umr sehr unvollständig ausgestrichen wird, Das Vorhandensein ungeheuerer Mengen Kohlensäure im Meerwasser, in einem solchen Zustande, wo sie der Athmungsluft der Seethiere nicht ohne Weiteres zugezählt werden kann, ohne andercrseits der Vegetation des Meeres unzugänglich zu sein, ist jedenfalls für das maritime Thierund Pflanzenleben von höchster Bedentung."

Jacobsen antager nærmest at maatte henkegge denne eiendommelige Absorbtionsevne hos Sovandet til den deri oploste Chlormagnesium og henviser i saa Henseende til Egenskaber hos en Chlormagnesiumoplosning, der indeholder en i Kulsyre oplost Mængde kulsur Kalk. En saadan Oplosning kan ifølge ham henstaa i ugevis ja endog koges nden at blakkes, først ved meget laugt fortsat Concentration ndskiller der sig ren kulsur Magnesia.

Denne Jacobsens Ansknelsesmaade blev senere san godt som uforandret optagen af den engelske Challenger-expeditions Chemiker, J. Y. Buchanan, som udforte en Række Forsog¹ for nærmere at bestemme, hvilket eller hvilke af Saltene i Søvandet der skulde være i Besiddelse af denne Evne saaledes at kunne tilbageholde Kulsyren. Han kom i den Henseende til det paafaldende Resultat, at de fleste Salte, som han undersøgte, i mere eller mindre Grad skulde være i Besiddelse af denne Egenskab dog mest Sulfaterne, saaledes at denne Søvandets stærke Absorbtionsevne ligeoverfor Kulsyren af ham henlagdes fra Chlormagnesinm til Sulfaterne. Ved de af ham udforte

denen Kohlensäure erhält man aus dem Meerwasser, wenn dieses unter Durchleiten eines Stromes kohlensäurefreier Luft bis zur reichlichen Abscheidung von Chlornatrium verkocht wird."

Hence it could not but strike the experimentalist as a remarkable phenomenon, that the carbonic acid, which in some way or other must have been held absorbed by the sea-water in a free gaseons form, should not admit of heing boiled out by Brusen's method, and that even when the boiling-process was conducted with full atmospheric pressure in a current of air free from carbonic acid, it should escape so slowly, that concentration to the extent of about one-tenth of the original volume proved necessary to obtain it all.

To account for this perplexing phenomenon, Jacobsen ascribed to sea-water a peculiar property of retaining its carbonic acid, an assumption which, after setting forth more at large the grounds that led him to oppose Vierthaler's hypothesis, he enounces in the following terms: .-"Wie man aber anch eine Deutung der starken Absorptionswirkung des Meerwassers auf die atmosphärische Kohlensäure versuchen möge, jedenfalls kann man die Kohlensäure nicht in demselben Sinne, wie Sauerstoff und Stickstoff, als absorbirtes freies Gas darin annebmen. Man mag einstweilen von einem eigenthümlichen Zustande der Bindung sprechen, bei welchem die Kohlensäure selbst durch stundenlanges Kochen nur sehr unvollständig ansgestrieben wird. Das Vorhandensein ungehenerer Mengen Kohlensäure im Meerwasser, in einem solchen Zustande, wo sie der Athmungsluft der Seethiere nicht ohne Weiteres zugezählt werden kann, ohne andererseits der Vegetation des Meeres unzugänglich zu sein, ist jedenfalls für das maritime Thierund Pflanzenleben von höchster Bedentung."

Ancobsen is of opinion, that this peculair absorptive power must be derived from the chloride of magnesia present in sea-water, and draws attention to certain properties possessed by a solution of chloride of magnesia containing carbonate of lime dissolved in carbonic acid. A solution of this kind may, according to his statement, be left exposed for weeks together, may be boiled even, without becoming turbid; nor can it be made to part with pure carbonate of magnesia till after protracted concentration.

Jacobsen's hypothesis was subsequently adopted, almost without modification, by J. Y. Buchanan, chemist to the Challenger' Expedition, who instituted a series of experiments with a view to determine which of the salts present in sea-water had this property of retaining carbonic acid. He arrived at the surprising conclusion, that most of the salts examined were in some degree distinguished by this property, chiefly however the sulphates; and the remarkable power possessed by sea-water of retaining carbonic acid he transferred accordingly from chloride of magnesia to the sulphates. Hence, when performing carbonic acid determinations he always precipitated the sulphuric

 $^{^4}$ Proc. Royal Soc. 22 $\,=\,$ 192 og 483.

⁴ Proc. Royal Soc. 22, pp. 192 and 483.

Knlsyrebestemmelser pleiede han derfor altid for Operationens Begyndelse at udfælde Svovlsyren med concentreret Chlorbariumoplosning, forat Kulsyren lettere skulde undvige, men anvendte forresten den af Dr. Jacobsen angivne Methode, hvorved han har bestemt Kulsyren i Sovandet i de sydlige Have til i Middel 43.26 Mgr, per Litre¹,

Da jeg Vaaren 1877 opfordredes til at gaa ud som Chemiker paa den norske Nordhavsexpeditions 2det Togt, var der kun levnet mig nogle faa Dage til Forberedelser, og det folger derfor af sig selv, at jeg ikke paa nogen Maade dengang kunde kave befattet mig med vidtløftigere Forundersogelser, og jeg maatte saaledes uden selv at kunne prove optage de tidligere Methoder uforandrede. Paa Togtet i 1877 anvendtes derfor den af Dr. dacobsen angivne Methode, og bestemtes efter denne gjennem en Række ombyggelig udforte Observationer Kulsyregehalten i det da undersøgte Hav til omkring 100 Mgr. per Litre, Der viste sig imidlertid ved Gjentagelse af samme Observation bestandig Poverensstemmelser, som ofte vare ikke ubetydelige og engang endog løb op til hele 12 Mgr. per Litre.

Dels herved dels ved andre Omstændigheder vaktes min Mistanke om Tilforladeligheden af den af Dr. Jacobsen i Forslag bragte Methode.

Det syntes mig paa Forhaand overnfaade urimeligt, at der hos Sovandet skulde findes en saadan mærkelig Evne til rent mekanisk at tilbageholde den ene Gasart, medens den ingensomhelst Virkning skulde udove paa de Andre. Heller ikke var der nogensinde gjort noget borsog paa at sætte dette Phænomen i Forbindelse med bekjendte chemiske Egenskaber hos nogen af de i Sovandet indeholdte Stoffe.

Ved et Tilfælde kom jeg en Dag til at forsoge Sovandets Reaktion paa Lakmus og Rosolsyre og fandt til min store Forundring, at det reagerede bestemt og tydeligt alkalisk, hvad jeg siden har bragt i Erfaring, at allerede v. Bibra² og senere E. Guignet og A. Telles³ har observeret.

Efter mine Forsøg viser to ligestore Prover af en efter Gottliebs⁴ Fremgangmande frisk tilberedt Lakmusoplosning, hvoraf den Ene tilsættes en tilstrækkelig Mængde
Søvand og den Anden et ligestort Volum rent destilleret
Vand, ikke ubetydelige Farvedifferentser. Ligeledes antager en med meget fortyndet Oxalsyre svagt udsyret passende Portion rent Vand, hvori paa Forhaand er oplost
en Draabe Rosolsyre, ved Tilsætning af Sovand strax den
bekjendte rodlig-violette Farve.

Paa denne Maade undersogtes paa Expeditionens sidste Togt, hvor der var fuld Anledning til at erholde Vandproverne ganske frisken et meget stort Antal af disse og uden Undtagelse med det samme ovenbeskrevne Resultat. acid, before commencing the operation, by adding to the water a saturated solution of chloride of barium, in order to facilitate the liberation of the carbonic acid, but, with this exception, adopted the method devised by Dr. Jacobsen, and determined the mean amount of carbonic acid present in the water of the Southern Seas to be 43.26 mgs per litre. 1

When invited, in the spring of 1877, to go out as chemist to the Norwegian North-Atlantic Expedition, on the second cruise, I had but a few days in which to make the necessary preparations, and consequently no time being left me for preliminary experiments, I was compelled to adopt unchanged the earlier methods, without testing the accuracy of their results. On the cruise in 1877, I therefore applied Dr. Jacobsen's method, and determined by a series of careful observations the amount of carbonic acid present in the water of the tract then investigated to be about 100^{mgr} per litre. But, on repeating the operation with the same sample of water, the results were always found to vary, and frequently indeed considerably; may, on one occasion the difference amounted to as much as 12^{mgr} per litre.

Partly for this reason, and partly from other circumstances. I was led to question the trustworthiness of Jacobsen's method.

Now it struck me at once as highly improbable that sea-water should possess so remarkable a power of retaining mechanically one gas, and yet, in this respect, exert no influence whatever on others. Nor had any attempt been made to connect this phenomenon with known chemical properties distinguishing the substances contained in seawater.

Quite accidentally, I was one day fed to investigate the effect of sea-water as a reagent on litmus and rosolic acid, and found its reaction, to my great surprise, distinctly alkaline, which, indeed, as I subsequently learnt, had been already observed, first by von Bibra² and later by E. Guignet and A. Telles,³

According to my experiments, two equal measures of a solution of litums, freshly prepared by Gottlieb's method, one of which has added to it a sufficient quantity of senwater and the other an equal volume of pure distilled water, exhibit considerable difference in colour. Moreover, a proportionate mixture of highly dilute oxalic acid and pure water, the latter having been previously treated with a drop of rosolic acid, will, on the addition of sen-water, immediately assume the well known reddish-violet hue.

In this manner were examined on the last cruise of the Expedition, which afforded excellent opportunities of obtaining the water quite fresh, a very large number of samples, and invariably with the results described above.

¹ Ber, Berf, chem, Ges, 11 — 410,

² Ann Chem. Pharm. 77 — 90.

⁸ Compt. rend. 83 — 919.

⁴ Journ, f
ür pract, Chem. 107 — 488.

¹ Ber, Berl, chem, Ges, 11, p. 410.

⁸ Ann. Chem. Pharm. 77, p. 90.

³ Compt. rend. 83, p. 919.

⁴ Journ, f¨ur pract, Chem, 107, p. 488.

Dette syntes ogsån meget vanskeligt at forklare, saafremt det virkelig skulde forholde sig som af Enkelte paastaaet, at der i Søvandet skulde findes et meget stort Overskud af fri Kulsyre ved Siden af en meget liden Qvantitet af sure Carbonater. Det maatte aabenbart synes meget rimeligere at forklare de af Dr. Jacobsen gjorte Observationer derved, at Søvandet under den langvarige Kogning ved en eller anden chemisk Reaction gav Slip paa noget af sin neutralt hundne Kulsyre.

For at komme paa det Rene med, om dette virkelig forholdt sig saa, gik jeg frem paa følgende Maade:

200 CC. Sovand (af sp. Vægt 1.0267 ved 17.°5 C. i Forhold til destilleret Vand af samme Temperatur) afdestilleredes næsten til Torhed i en kulsyrefri Luftstrøm, og opfangedes den undvigende Kulsyre i 25 CC. af en Barytopløsning, hvoraf 1 CC, svarede til 4.0204 Mgr. Kulsyre, Ved Retitration med Oxalsyre viste det sig, at 19.97 CC. af det anvendte Barytvand var nuentraliseret, hvoraf den undvegne Kulsyre beregnedes til 20.2 Mgr. Residuet paaheldtes un friskt udkogt Vand, som atter afdesfilleredes, hvorved endnu et ubetydeligt Spor af Kulsyre erholdtes. Sluttelig tilsattes circa 0.5 Gr. fuldkommen ren friskt udglødet Soda, hvorpaa det Hele atter fortyndedes med kulsyrefrit Vand til Sovandets oprindelige Volum og saa afdesfilleredes i en kulsyrefri Luftstrøm.

Allerede fra det Oieblik af, da Vædsken var kommen i Kog, begyndte strax en saa voldsom Kulsyrendvikling, at det i Forlaget anbragte Barytvand slap store Mængder uabsorberede igjennem, og det viste sig efter endt Operation, at kun 1.3 CC. Barytvand var forblevet uneutraliseret. Heraf beregnes den absorberede Del af den undvegne Kulsyre til 95.3 Mgr., medens desfornden meget betydelige Mængder gik igjennem, idet nemlig Barytvandet i et uformigt Ror, som var anbragt foran Forlaget, fuldstændigt var forbrugt.

Efter Forslag af Professor Waage gjentoges Forsøget med varmt fieldt, ved 100° tørret kulsur Kalk, hvoraf det ogsaa lykkedes at uddrive ikke ubetydelige om end meget mindre Mængder Kulsyre, hvorimod der ved et Forsøg med fint pulveriseret Marmor ikke erholdtes nøget sikkert Resultat.

Betydningen af disse Observationer kunde ikke være tvivlsom, da det hermed paa det Tydeligste var godtgjort, at den i Sovandet forhaandenværende Saltblanding ved Koghede decomponerede neutrale Carbonater, og dermed ogsaa, at alle de hidindtil gjorte Kulsyrchestemmelser med Hensyn paa sin Hensigt at bestemme den i Sovandet indeholdte frie og surt bundne Kulsyre være forfeilede. Hvad angaar de for Publicationen af Dr. Jacobsens Afhandling om Luften i Sovandet udforte Kulsyrchestemmelser, da er det en Selvfølge, at de alle uden Undtagelse maatte være i enbyer Henseende fuldstændig værdiløse, idet der ved dem intetsteds er kommen til Anvendelse en Afdestillation til Torhed eller en saa vidtdreven Concentration, at man

This fact would obviously be most difficult of explanation if, as some have affirmed, sea-water does actually contain a very large surplus of free carbonic acid along with an exceedingly small proportion of bicarbonates. A more plausible hypothesis by which to explain Dr. Jacobsen's observations were surely the assumption, that during the protracted process of boiling some of the neutral carbonates present in sea-water had been decomposed.

With the object of ascertaining whether such was really the case, I went to work as follows.

Two lumdred c.centim. of sea-water (sp. grav. 1.0267, temp. 17.75 C., as compared with distilled water of the same temperature) were distilled almost to dryness in a current of air free from carbonic acid, and the carbonic acid collected in 25% of baryta water, 1% of which represented 4.0204 mgr carbonic 'acid. On being retitrated with oxalic acid 19.97 of the baryta water were found not to be saturated, and 20.2 mgr carbonic acid had accordingly been driven off. Water freshly boiled was now poured on the residue, and then evaporated, the result yielding a slight trace of carbonic acid; finally, about 0.5 mgr purified and freshly heated soda was added, and the whole compound again diluted with water, from which all carbonic acid had been expelled, to the original volume of the sample, and then distilled in a current of air free from carbonic acid.

From the very moment at which the fluid began to boil, so rapid was the liberation of carbonic acid that large quantities passed unabsorbed through the baryta water; and, on the operation being terminated, $1.3^{\circ c}$ only of the baryta water had not been neutralised. Hence the absorbed portion of the carbonic acid was calculated at 95.3^{mgr} , exclusive of which a very considerable quantity, as before stated, passed off into the atmosphere, the baryta water, placed in a glass tube (resembling in form the letter U) connected with the receiver, being surcharged with the gas.

At Professor Waage's suggestion I repeated the experiment with carbonate of lime, precipitated warm and dried at a temperature of 100° C., and succeeded in expelling carbonic acid in considerable, though not so large, quantities as before, whereas an experiment with finely pulverised marble gave no positive result.

The importance of these observations was not to be questioned, affording as they did conclusive proof that the saline mixture in sea-water, on the temperature being raised to the boiling point, decomposed neutral carbonates, and likewise that all carbonic acid determinations hitherto attempted with the object of measuring the carbonic acid present in sea-water were faulty. As regards the carbonic acid determinations performed previous to the publication of Dr. Jacobseu's Memoir on the presence of air in sea-water, such must as a matter of course be wholly worthless, the method of distillation to dryness having in no case been adopted, or that of concentrating the fluid till further evaporation ceased to expel carbonic acid. The

ikke ved fortsat Inddampning skulde kunne have erholdt et større Udbytte af Kulsyre. De af Dr. Jacobsen og J. Y. Buchanan udførte Observationer kunde derimod ikke saa ligefrem forkastes, idet der jo kunde tænkes Mulighed for, at det ved de af dem benyttede Methoder kunde have lykkedes ved den langvarige Kogning at uddrive ogsaa al neutralbunden Kulsyre, i bvilket Fald de af dem opførte Tal i en anden Henseende kunde faa Betydning neulig som Udtryk for den samlede Sum af den i Sovandet indeholdte Kulsyre.

Desvierre lagde flere Omstændigheder Hindringer i Veien for Afslutningen af mine Forsog over disse Gjenstande i Vinteren 1877—78, dels var min Tid optaget med andre Arbeider, dels lod min Helbred den største Del af Vinteren adskilligt tilbage at ønske, saaat mine Forsøg ingenlunde havde den onskelige Fremgang, og jeg blev derfor nødt til at gaa ud ogsan paa Togtet i 1878 uden nøgen paalidelig Methode til Bestemmelse af den i Søvandet indeholdte Kulsyre. Da jeg efter endt Togt om Hosten vendte tilbage, gjenoptog jeg imidlertid atter mine Undersøgelser og bragte dem til Afslutning,

Gjeinnem en netop da af C. Børchers offentliggjort Afhandling om Bestemmelsen af Kulsyren i naturlige Mineralvande blev jeg gjort opmærksom paa det for Bestemmelse af Kulsyren i Carbonater af Alexander Classen angivne Apparat, som jeg senere i stor Udstrækning har benyttet.

Apparatet i den Form, hvori det her er kommen til Anvendelse, findes sammenstillet i Figur 3.

Aer 2 med Natronkalk fyldte nformige Ror, B indeholder Barytvand. Cer en Erlenmeyers Kolbe paa circa 0.5 Litre, der gjennem et ved Bunden udmundende Ror communicerer med B. medens et lige under Kantschukproppen udmundende sætter den i Forbindelse med Kjøleleren D, hvis indre Del efter Classen bestaar af et 27—30 mm vidt Glasror, hvortil i ovre og nedre Ende er loddet Ror med respective 15 og 7 mm Diameter. Forlaget Eer fuldstændig af samme Construction som det af Jacobsen benyttede og er oventil forsynet med det af P. Wagner foreslaæde med Glaskugler fyldte Ror F.

Ved a, hvor der findes en Indsnevring, er anbragt en noget større Glaskugle, som temmelig noie dækker øver det nederste snevre Rør. Idet det til Opsamling åf Kulsyren anvendte titrerede Barytvand heldes ned gjennem F, tjernes Proppen b, indtil det Meste af Barytvandet har passeret a, men sættes derpaa hurtigt i, saaledes at der over de nederste Glaskugler bliver staaende noget Barytvand til en Hoide af omtrent 50 mm over a. Dersom m

series of observations instituted by Dr. dacobsen and J. Y. Buchanan cannot however be wholly rejected, since the protracted boiling characteristic of the method they adopted may possibly have driven off all the carbonic acid contained in the carbonates, in which case their figures would acquire importance as expressive of the total amount of carbonic acid present in the sea-water examined.

Unfortunately, divers untoward circumstances conspired to prevent my terminating in the winter of 1877—78 the series of experiments I had began with the object of elacidating this intricate subject; my time, for instance, came to be unexpectedly occupied in other ways, and during the greater part of that period I suffered from ill-health. My observations, therefore, not having progressed so favourably as I at first had reason to anticipate, I was again obliged to set out on the Expedition, in 1878, without having fixed on any reliable method for determining the carbonic acid present in sen-water. On my return however to Christiania in the antunun of that year, I recommenced the said experiments, and succeeded in bringing them to a satisfactory termination.

A paper by C. Borchers, which had just appeared.¹ on the determination of carbonic acid in mineral water, drew my attention to the apparatus — of which 1 have since made frequent use — devised by Alex. Classen² for determining carbonic acid in carbonates.

Figure 3 represents this apparatus as constructed for my experiments,

A 2 glass tubes, resembling in form the letter U, filled with soda-lime; B a vessel for baryta water; C an Erlenmeyer flat-bottomed matrass, containing about 0.5 litre, which by means of a tube terminating at the hottom is made to communicate with B, a similar tube, issuing immediately beneath the caontschoue stopper, putting it likewise in communication with the cooler D, the inner portion of which, according to Classen, should consist of a glass tube from 27^{mm} to 30^{mm} in diameter, with tubes, measuring respectively 15^{mm} and 7^{mm} in diameter, scaled to its upper and lower extremities. The receiver E has precisely the same form as that adopted by Jacobsen, and is furnished above with a glass tube, F, filled with glass balls, as suggested by P. Wagner.³

At the point a, where the tube suddenly narrows, is introduced a somewhat larger glass ball, to fill up, as near as may be, the opening of the lower or slender portion of the tube. When the titrated larger water, which absorbs the carbonic acid, is being poured down through F, the stopper b has to be taken out, but must be quickly replaced, before the whole of the fluid has passed a, in order that the glass balls to a height of about 50^{1000} above a

¹ John, für pract. Chem. 125 — 353,

Fresenius Zeitschrift 15 = 288.

³ Fresenins Zeitschrift 9 — 417,

³ Journ, für pract, Chem. 125, p. 353.

² Fresenius Zeitschrift 15, p. 288.

³ Fresenius Zeitschrift 9, p. 445.

den nederste Glaskugle slutter godt, vil den gjennem a passerende Luft spaltes i en Mængde meget fine Blærer, som ved at stige op mellem de af Barytvand omgivne Glaskugler bliver fuldstændig kulsyrefri. Det nformige Ror G indeholder Barytvand, H fører til Aspiratoren.

may be immersed in baryta water. Now, assuming the large glass ball to fit well, the air will pass a in the form of minute bubbles, which, having to ascend between the glass balls surrounded by baryta water, must part with the whole of its carbonic acid. The tube G contains baryta water; H leads to the aspirator.

Fig. 3.

Den af Classen foreslaaede Kjøler virker saa udmærket, at man i meget lang Tid kan koge fortyndet Saltsyre i Kolben, uden at det mindste Spor af Chlor kan paavises i Forlaget, forndsat at den gjennemledede Luftstrøm ikke gives for stor Hastighed, hvad der imidlertid heller ikke er fornodent.

The cooler devised by Classen is so excellent, that diluted hydrochloric acid may be boiled in the matrass for a very considerable length of time without a trace of acid being detected in the receiver, provided that too great rapidity be not given to the current of air; this, however, is quite nunecessary.

Naar Sovandet i dette Apparat kogtes med fortyndet Svovlsyre i en kulsyrefri Luftstrom, ûndveg Kulsyren meget hurtigt, idet 15 Minutters Kogning fuldstændig strak til for at bringe al Kulsyre over i Forlaget. Sovandets Sulfater viste altsaa i alle Fald ikke ved Tilstedeværelsen af fri Syre de af J. Y. Buchanan observerede Egenskaber. Naar den paa denne Maade uddrevne Kulsyremængde opsamledes og bestemtes, viste den sig altid at stemme nogenlunde med, hvad man efter den af Dr. Jacobsen anvendte Methode kunde erholde uddrevet, idet de optrædende Afvigelser snart vare positive snart negative men i Regeleu ikke større, end at de for den største Del maatte kunne tilskrives Observationsfeil. Ved den af Buchanan i Forslag bragte Udfældning af Svovlsyren erholdt jeg derimod bestandig betydelig for lave Resultater, hvorom senere.

For samtidig i en og samme Portion at kunne bestemme brade den neutralbundne og den samlede Mængde Kulsyre, anvendte jeg følgende Fremgangsmaade,

Efterat Apparatet fuldstændig var befriet for kulsyreholdig Luft, anbragtes i Forlaget paa den for beskrevne Maade 25 CC. Barytvand, hvoraf hver CC, svarede til 4,129 Mgr. Kulsyre, hvorefter der i Kolben C heldtes 367.7 CC, af det til Undersøgelse bestemte Sovand tilligemed 10 CC, af en Svovlsyre, hvoraf hver CC, svarede til 4,099 Mgr. Kulsyre. Indholdet i Kolben ophededes un under Gjennemleduing af en meget langsom Luftstrom til Koghede og holdtes i Kog i nogen Tid. Efter Forlob af henimod 15 Minntter fjernedes atter Varmekilden og Vædsken afkjoledes, idet Luftstrommen lidt efter lidt gaves en noget større Hastighed, hvorved den endnu ikke absorberede Kulsyre meget hurtigt bragtes over i Forlaget.

Efter endt Operation bragtes de i F værende Glaskugler tilligemed det ved Rørets Vægge heftende Barytvand ned i Forlaget E, hvorpaa det Hele retitreredes med en Oxalsyre, hvoraf hver CC, svarede til 3,976 Mgr, Kulsyre, idet alkoholisk Curcuma tjente som Index. Ligeledes skylledes den ved de indre Vægge af Kjøleren heftende Vædske ved lidt kulsyrefrit destilleret Vand ned i Kolben, hvori den overskydende Syre neutraliseredes med en Natronlud, hvoraf hver CC, svarede til 2,928 Mgr, CO_2 , idet Rosolsyre tjente som Index.

Som Resultat af disse Titreringer erholdtes den samlede Kulsyremengde bestemt til omkring 97 Mgr. og den neutralbundne til gjennemsuitlig henimed 53 Mgr. pr. Litre. De 44 Mgr. Kulsyre, som udgjor Differentsen mellem den samlede Kulsyremengde og den neutralbundne, kan anbenbart ikke forekomme i Sovandet som fri Gasart, men maa førene sig med de allerede færdigdamnede Carbonater umler Dannelsen af Bicarbonater, og det viser sig altsaa, at de af Dr. Jacobsen gjorte Observationer meget naturligt lade sig forklare derved, at Sovandet ikke indeholder det mindste Spor af fri Kulsyre men hele 53 Mgr. neutralbunden og kun omkring 44 Mgr. surtbunden Kulsyre pr. Litre.

On boiling sea-water along with diluted sulplimric acid, exposed to a current of air free from carbonic acid, in this apparatus, carbonic acid escaped very rapidly, the space of 15 minutes sufficing to collect the whole of it in the receiver. The sulphates in sea-water - at least when free acids were present did not, accordingly, exhibit the properties ascribed to them by J. Y. Buchanan. On collecting and determining the carbonic acid driven off by this process, the amount was invariably found to agree with that which could be liberated by Dr. Jacobsen's method, the differences observed having been sometimes positive and sometimes negative, but as a rule not greater than would admit of imputing them chiefly to errors of observation. On precipitating the sulphuric acid as suggested by Buchanan, the results obtained were invariably too low; but to this subject I shall afterwards return.

In order to determine both the proportion of carbonic acid forming the neutral carbonates and the whole amount of carbonic acid contained in one and the same sample of sen-water. I adopted the following mode of procedure.

After expelling from the apparatus all air in which carbonic acid was present, 25% of baryta water were introduced, as previously described, into the receiver, each c.centim, representing 4.129% carbonic acid; 367.7% of the sea-water to be examined were then poured into the matrass (C), along with 10% of sulphuric acid, each c.centim, of which represented 4.099% carbonic acid. The contents of the matrass were now heated, during exposure to a very slow current of air, up to the boiling-point, and kept for some time at that temperature. After the lapse of about 15 minutes, the source of heat was removed and the fluid cooled, the rapidity of the current of air being slightly increased, causing the carbonic acid not yet absorbed to pass off quickly into the receiver.

The operation being terminated, the glass balls in the tube F, along with the baryta water adhering to the walls of the tube, were introduced into the receiver E, and the whole of its contents retitrated with oxalic acid, each c.centim. of which represented $3.976\,^{myr}$ carbonic acid, a solution of alcoholic curenma serving as the index. The fluid adhering to the walls of the cooler was likewise washed down into the matrass with a little distilled water free from carbonic acid, and the surplus acid neutralised by the addition of soda-lye, each c.centim, of which represented $2.928\,^{myr}$ CO_2 , rosolic acid serving as the index.

As the result of this titration, the total amount of carbonic acid was found to be about 97 myr and the proportion forming neutral carbonates to average about 53 myr per litre. Now, the difference, 44 myr, cannot occur free as gas, but will unite with the carbonates to form bicarbonates; and hence Dr. Jacobsen's observations could be readily explained on the assumption that sen-water contains no trace even of free carbonic acid, but as much as 53 myr per litre of carbonic acid forming carbonates and only about 44 myr per litre of carbonic acid forming bicarbonates.

Som mau ser, er den her til Bestemmelse af den nentralbundne Kulsyre anvendte Methode i alt væsentligt den samme, som allerede for flere Aar tilbage er beskreven af Dr. Mohr. Forskjellen stikker kun deri, at jeg har anvendt Classens Kjøler og desuden ombyttet Salpetersyren med Svovlsyre. Det syntes mig nemlig ikke tilraadeligt at anvende Salpetersyre ligeoverfor et saa stærkt chlorholdigt Mineralvand som Sovand, hvori der desuden fandtes en vel mærkbar om end temmelig liden Qvantitet oxyderbare Stoffe.

Efter denne Fremgangsmaade har jeg senere ved 78 Observationer bestemt Kulsyren i 64 forskjellige Vandprover temmelig jevnt fordelte over det af den norske Nordhavexpedition undersøgte Felt: Resultaterne findes sammenstillede i Tabel 11.

Forst skal i Korthed berøres de Feil, hvormed de i Tabellen opforte Tal kan tænkes beheftede.

Om man vilde antage, at den i Sovandet indeholdte Kiselsyre ikke forckom opløst som fri Syre, men forefandtes bundet til Baser i Form af Silicater, en Antagelse af meget tvivlsom Berettigelse, vilde man aabenbart efter den ovenfor beskrevne Methode faa noget feilagtige Resultater. idet den til Kiselsyre bundue Mængde Baser vilde findes som bunden til Kulsyren. Forat kunne danne mig en Forestilling om, hvorvidt den Feil, som man under denne Forndsætning skulde kunne begaa, nogensinde vil kunne tænkes at fan særlig Betydning, bar jeg bestemt Kiselsyremængden i forskjellige af de hjembragte Vandprøver, idet folgende Fremgangsmaade er kommen til Anvendelse. 0.5 Litre Søvand inddampedes med lidt Saltsyre i en Platinaskaal forst over fri Ild senere paa Vandbad til Tørhed og torredes ved 110°-120° C. Saltene udtoges derpaa og pulveriseredes bedst muligt i en vel poleret Agatriveskaal, hvorpaa de atter torredes ved samme Temperatur. og sluttelig bragtes over i et passende Kar og 'tilsattes ca, 200 CC, saltsyreholdigt Vand, hvorved al Gips fuldstændigt opløstes. De paa denne Maade udskilte Kiselsyremængder vare altid meget smaa og maatte mermest blive at betegne som Spor, idet de, hvor jeg forsøgte at veie dem, kun beloh sig til Brokdele af Mgr. i den anvendte Portion Vand. Dette stemmer paa det Noieste med, hvad Thorpe og Morton nylig har fundet i det irske Hay, hvorimod de ældre Opgaver giver noget større Tal. Og man vil saaledes se, at der ingensomhelst Rimelighed er for, at den i Sovandet indeholdte Kiselsyremængde skulde bidrage til i mærkelig Grad at gjøre de fundne Resultater upaalidelige.

Naar man skal danne sig en Mening om Noiagtigheden af disse Observationer, er det imidlertid nodvendigt at tage Hensyn til en anden Omstændighed, som kunde tænkes at have havt sin Indflydelse paa Resultaterue.

As will be seen, the method adopted for the determ-

By this process I subsequently determined the carbonic acid in 64 different samples of sea-water, drawn at comparatively regular intervals from the tract of ocean investigated on the Norwegian North-Atlantic Expedition; the number of observations amounted to 78. The results are given in Table II.

I will first say a few words respecting the errors that may possibly affect the accuracy of the figures set down in the Table.

Assuming the silicic acid in sea-water not to occur as a free acid, but combined with bases in the form of silicates, an hypothesis of very doubtful value, the results obtained by the method described above would be obviously to some extent inaccurate, inasmuch as the bases combined with silicic acid must in that case have behaved as if originally combined with carbonic acid. In order to ascertain what importance could possibly be attached to an error arising on such an assumption, I determined the amount of silicic acid in divers of the samples of sea-water brought home with me, adopting for that purpose the following method. Five-tenths of a litre of sea-water mixed with a little hydrochloric acid were evaporated to dryness in a platinum dish, at first over a common fire and then in a water-bath, and dried at a temperature of 110°-120" C. The salts were then taken out and transferred to a well polished agate dish, in which they were finely pulverised. and again dried at the same temperature; finally they were placed in a suitable vessel, and mixed with about 200 ∞ of water containing hydrochloric acid, which thoroughly dissolved all the gypsum. The amounts of silicic acid thus precipitated were invariably very small, indeed but little more than traces; for, on attempting to weigh them, they proved to be but fractions of a milligramme. This result agrees exactly with the observations of Thorpe and Morton on water from the Irish Sea,2 whereas the figures in earlier statements are somewhat higher. Hence, there is no reason whatever to assume, that the silicic acid present in sea-water should to any considerable extent influence the results obtained.

When judging of the accuracy of these observations, regard must, however, be had to another circumstance that might possibly in some measure affect the results. The water examined did not consist of freshly drawn samples,

ination of the carbonic acid forming carbonates, was essentially the same as that described by Dr. Mobr¹ several years previously. The only difference lay in my having employed Classen's cooler and made choice of sulphuric acid in preference to nitric. It did not seem advisable to use nitric acid when examining a mineral water so rich in chlorine as is sea-water, and which besides contains a quantity, small indeed but appreciable, of organic matter.

Mohr Titrirmethode 3te Aufl. — 524.

² Ann. Chem. Pharm. 158 - 122.

Mohr's Titrirmethoden 3te Aufl. p. 524.

² Ann. Chem. Pharm. 158, p. 122.

Tabel II.

Νo,	Stat.	Nordlig Bredde.	Langde fra	Ven (Depth from	vorfra Pro- hentet, which the Sam- collected.)	a compre-		Surtbun den Kulsyro	• 1
_	No.	(North Lutitude.)	Greenwich, (Longitude from Greenwich.)	Engelske Favne, (English Fathoms.)	Meter.	ratur. Celsius,	(Carbonia Acid forming Carbonates) Mgr. per Litre,	Mar.	(Remarks.)
I		Jæd	eren.						-
2	51	65° 53′	7" 18' W.	1103	0 1	?	52.3	41.1	
3	52	65 47.5	3 7	1801	3403	— I.I — I.2	52.6	40.7	
4	5.2	65 47.5	3 7	1861	3403	I.2	52.7 52.9	46.1	
5.	53	65 13.5	о 33 Е.	1539	2814	-1.3	53.1	43.8	
6	53	65 13.5	0 33	0	0	10.5	54-3	40.4	1
7 8	143	66 58 66 58	10 33	189	346	6.2	53.8	43-3	
9	183 4	69 59.5	6 15	1600	2926 -	8.2	53-4	41.5	
0	183	69 59.5	6 15	()	0	8.6	52.6	44.8	
I	184	70 4	, 9 50	1547	2829	-1.3	53·5 53·0	14.8 45.5	
2	184	70 +	9 50	600	1097	0.0	52.4	44.7	
3	184	70 4	9 50	0	0	7.6	53.8	40.0	
4 5	187 180	69 51.5 69 41	14 41	1335	2441	— I . I	53.8	4.3-1	
6	189	69 41	15 42 15 42	860 860	1573	-1.1	53.0	45.5	
7	189	00 41	15 42	' 0	1573	0.6	52.7	13.0	
8	215	70 53	2 o W.	0	0	8 0	54.2 54.2	41.8	
9	215	70 53	2 0	200	366	218	52.6	-1 ++	
0	215	70 53	2 0	200	366	2.8	52.6	46.8	
I 2	217	71 0	5 8	0	0	4.6	52.7	41.3	
3	226	70-59 70-59	7 51 7 51	340	022	-0.6	54-3	46.4	
7	226	70 59	7 51	340 340	622	-0.6 -0.6	54.6	46.0	
5	226	70 59	7 51	0	0	3.0	54·7 52·2	40.7	
6	226	70 50 -	7 51	0		3.0	52.2 •	41.6	,
7	237	70 41	10 10	0	0	3.0	53-4	42.4	
8	237	70 41	10 10	. 0	0	3.0	54.5	39.7	
9	240	69 2 69 2	11 26	()	()	4.2	55 0	11.1	
I	_	68 33	7 25	0	0	6.0	55.4		
2		68 33 .	7 25	0	0	6.0	53.0 53.0	45.0 43.0	
3	243	68 32,5	6 26	1385	2533	-1.3	53.7	42.4	
1	245	68 21	2 5	0	0	9.0	53.8		
	245	68 21	2 5	0	0	9.0	53.8	44.2	
	247 247	68 5.5	2 24 E.	500	914	-0.4	53-9	£7 -3	
3	264	70 56	2 24 35 37	0	0	0.1	54.0	47.2	
)	264	70 50	35 37	86 .	157	5.2 1.0	52.6	42.3 43.2	
)	275	74 8	31 12	0.	0	2.0	53.0	15.3	
	284	73	12 58	0	0	6.8	52.6	43.2	
. '	295	7 F 59	11 40	0	0	7.0	52.8	42.4	
	295	7 55	11 30	001	183	3.2	51.0	42.8	
	295	71 55 71 59	11 30	000	2030	-0.8	52.6	43.7	
	297	72 36.5	5 12	0	0	1.3 4.6	5,3.8 52.6	43·1 43·7	
	297	72 36.5	5 12	1280	2341	-1.4	52.1	43.4	
	298	72 52	1 50.5	1500	2743	-1.5	52.2	12.9	
	300	73 10	3 24 W.	0 ;	()	1.7	48.6	43 4	the lige ved Kannon at translandrion (Brown in humodiate precipity to the Greenland bec)
	300 302	73 10	3 22 3 2 E,	0	0	1.7	48.4	42.0	Arrive in many and permitty to the effection (16)
	303 303	7,5 1.2 7,5 1.2		0	0	3.3	52.2	47-9	
	303	75 12	3 2 3	, o 150	0 274		51.8	48.0	
	304	75 3	4 51	300	549	—o.8	52.2	43.0 42.5	
	304	75 3	4 51	300	549	= 0.8	52.3	45.I	
	304	75 3	4 51	1735		-1.5	52.4	43.9	
	306		10 27	1334	2440	1.3	52.0	40.5	
1	323 ,	72 53.5	24 54 1. Turnoc: Chem	223	408	1.,5	53.1	42.I	

No.	Stat.	Nordlig Brodde, (North Latitude)	Laengde fra Greenwich, (Longitude from Gerenwich.)	Dylide hy ven h Opph frant o ples were Engelske Favne (tinglish Fathoms.)	entet.	Tempe- rator, Celsius.	lminden Kalsyre.	Mgr.	Anmærkninger. (Remarks.)
* 0	225	76° 16′.5	14" 39' E.	0	0	5-4	53.4	12.7	
59 60	335	76 40-5	-7 07	1429	2613	1.3	52.2	41.6	
0.0	347	76 40.5	7 47	0	0	4.4	52.6.	41.0	
0.2	349	76 30	2 57 **	1487	2719	-1.5	51.6	43.5	
63	350	76 26	0 20 W.	0	0	3.0	54.0	47.2	
-01	350	76 20	0 20	300	549	1.1	53.2	45.8	
0.5	350	76 20	0.29	300	549	1.1	53-3	46.0	
66	350	76 26	0 20	1686	3083	1.5	51.9	43.9	
67	351	77 49-5		0	0	3.3	51.9	42.8	
68	352	77 56	3 20 E.	Ō	0	3.9	52-3	41.5	
0.0	352	77 56	3 20	300	549	o.8	52.6	46.0	
70	355	78 0	8 32	0	0	4.9	52.4	43.2	
71.1	355	78 0	8 32	048	1734	-1.3	51.8	44.6	
7.2	361	79 8.5	5 28	0	0	4.2	52.4	42.7	
7.3	301	79 8.5	5 28	905	1655	-1.2	51.9	46.1	
7.4	302	79 59	5 40	0	0	5.2	52.6	43-2	
7.5	362	79 59	5 40	459	839	1.0	51.8	44.0	
76	363	80 0	8 15	260	475	1.1	52.0	11.0	
7.7	368	78 43	8 20	315	567	1.6	52.0	42.4	
78	373	78 10	14 26	120	219	0.8	51.4	++++	

Forsogene ere nemlig ikke blevne udforte paa Vandproverne strax efter deres Optagelse men først, efterat de have henstaaet i kortere eller længere Tid. Angaaende Tidsrummet, hvori de enkelte Vandprover have henstaaet for Bestemmelsen, kan aufores Folgende: No. 1, en Vandprove, som Hr. Dampskibsforer E. Rostrup viste mig den Velvillie at skaffe mig, har kun henstaact nogle Dage, de ovrige Prover have benstaaet, No. 2-6 i ca. 21/4 Aar. 7 37 i ca. 11 Aar og 38-78 i 2 til 4 Maaneder paa et kjøligt Sted opbevarede paa Flasker, der vare forsynede med vel islebne Glasproppe, Der aahner sig altsaa en Mulighed for, at der ved Oxydation af de i Søvandet værende, aldrig manglende, organiske Bestanddele kunde have dannet sig en mindre Qvantitet Kulsyre paa Bekostning af den oploste Surstofmængde, en Proces, der naturligvis kun har Indflydelse paa den surt bundne Kulsyre, saafremt ikke Oxydationen skulde skride saa vidt frem, at ogsaa Smrstoffet i Svovlsyren skulde medgaa til Danuelsen af Kulsyre, i hvilket Fald den dannede Kulsyre maatte træde ind som neutralbunden istedetfor den destruerede Mængde Svoylsyre. En san vidt fremskreden Oxydation kan imidlertid ikke tænkes umlig, medmindre man til Prop i Flaskerne anvender Kork, da den i Sovandet opløste Surstofgas er, mere end tilstrækkelig til at oxydere alle de oprindelig tilstedeværende organiske Bestanddele. Det kan ogsåa bemærkes, at det ikke i nogen af de imdersøgte Vandprover' har været muligt at paavise det mindste Spor af Svoylvandştof. For saa nogenlimde at fixere de Mangder Kulsyre, som paa denne Maade skulde kunne dannes, har jeg anmodet min Ven Schmelck, som har været beskjæftiget med Undersogelse af de faste Bestanddele i Vandet i det af Expeditionen befarede Hav, og som saaledes ogsåa har

having all of it been allowed to stand over for a longer or shorter period. With respect to the interval that had elapsed before commencing the determinations, the following particulars can be given: - No. 1, a sample of seawater which Captain E. Rostrup had the kindness to procure me, did not stand over for more than a few days: of the remaining samples, Nos. 2 30 were preserved for about two years and a quarter, Nos, 7-37 for about one year and a quarter, and Nos. 38 78 from two to four months, all of them in a cool spot, and in bottles furnished with ground glass stoppers. Hence it is just possible that oxidation of the organic matter never absent in seawater may have produced a small quantity of carbonic acid, by reducing the amount of oxygen, a process which of course could only affect the carbonic acid forming bicarbonates, unless indeed oxidation were so far advanced. that the oxygen in the sulphuric acid should also contribute to the formation of carbonic acid, in which case such carbonic acid would reimplace the sulphuric acid decomposed. But this advanced stage of exidation is clearly impossible unless the bottles are corked, since the oxygen in sea-water is more than sufficient to oxidize all organic matter originally present. I can also observe, that in none of the samples of water examined was it possible to detect the slightest trace of sulphuretted hydrogen. With the object of determining approximately what proportion of carbonic acid could result from this process, I requested my friend Mr. Schmelck — whose labours have been chiefly confined to the examination of the solid matter present in the water of the seas explored on the Expedition, and who accordingly instituted a series of experiments to ascertain the amount of organic substances it contained — to furnish

ndfort en Række Forsog til Bestemmelse af de organiske Stoffes Miengde, om at meddele mig de fornødne Data. Ifolge ham eve de organiske Stoffes Mængde kun underkastet meget smaa Variationer, og affarver 1 Litre Sovand gjennemsnitlig 3 Mgr. Kamaeleon, som under Forndsætning af Reduction til Oxydulsalt kun kan afgive henimod 0.8 Mgr. Surstof, hvoraf det lettelig vil kunne indsees, at den dannede Mængde Kulsyre ikke kan være meget stor, naar Surstofforbruget selv ved en saa energisk Oxydation som ved Anvendelse af Kannadeon er san lidet, "Og hvad der især tyder paa, at den Oxydation, som kan foregaa ved Vandprøvens Henstand under ordinære Forholde, fuldstændig maa kunne negligeres, er den Omstændighed, at Schmelck har fundet Sovandets Evne til at affarve Kamæleon ligestor, hvadenten Vandprøven undersoges' frisk eller forst efter aarelang Henstand.

At noget af Kulsyren ved den lange Henstand skulde være fordampet, er der heller ingen Rimelighed for, naar man erindrer, at Sovandet er en alkalisk Vædske, som ikke indeholder det mindste Spor af fri Kulsyre, og som med saadan Kraft holder paa sin surt bundne Kulsyre, at den i timevis kan koges i det af Jacobsen angivne Luftudkogningsapparat med det Resultat, at kun en meget liden Brokdel uddrives. Der er aabenbart storre Fare for det Modsatte, nemlig at der skulde kunne absorberes noget af Atmosphærens Kulsyre, men for Undgaaelsen af denne Feilkilde er der sørget ved omhyggelig Opbevaring paa velproppede Flasker.

Resultaterne synes heller ikke at tyde paa, at Henstanden skulde have været til Skade for Vandprøvernes Brugbarhed, idet de alle uden Hensyn til den meget forskjellige Varighed af det Tidsrum, hvori de have henstanet, vise nogenlunde det samme Resultat, og jeg tror saaledes ikke at tage meget Feil, naar jeg anser de af mig udførte Observationer som i alt Væsentligt ligesaa gode, som om de havde været udførte ombord paa friskt optagne Vandprøver.

Hvail angaar de af selve Methoden og Experimentationen flydende Observationsfeil, da vil de hyppigt udforte Controlbestemmelser knune give de fornodne Bidrag til Bedommelsen af deres Storrelse, saaledes er ved 13 Controlbestemmelser for den neutralt bundne Kulsyres Vedkommende den gjennemsnitlige halve Differents mellem 2 paa samme Vandprové udforte Observationer bestemt til 0.11 Mgr. per Litre (Maximum 0.6) og for den surt bundne Kulsyres Vedkommende til 0,59 Mgr. per Litre (Maximum 1.35). Foruden den variable Feil vil der imidlertid i sidste Tilfælde ogsåa være en constant, idet det ikke lader sig undgaa, at man ved Arbeide i en kulsyrcholdig Atmosphære vil erholde noget om end meget lidet for hoie Resultator. Naar Feilene ved Bestemmelsen af den surt bundne Kulsyre er funden at være storst, da er Grunden dertil for en stor Del at soge deri, at man ved Retitration med Natronlud, isser naar Rosolsyre anvendes som Index. erholder en meget skarp Endercaction, medens dette paa lang Vei ikke i samme Grad er Tilfælde, hvor Baryt reme with the necessary data. According to his obserations, the amount of organic matter varies but very slightly. I litre of sea-water discolouring on an average 3^{rept} permanganate of potash; and this quantity, assuming extreme reduction, cannot give off more than about 0.8^{rept} of oxygen. Hence it is obvious that the amount of carbonic acid cannot be very large, considering the limited consumption of oxygen even with the use of permanganate of potash. But that the oxidation which can ordinarily result from allowing the water to stand over may be altogether ignored, is more particularly indicated by the fact of Schmelck having found the property in sea-water of discolouring permanganate of potash to be invariably the same, whether the samples are freshly drawn or have been preserved for years together.

Nor is there reason to assume, that any portion of the carbonic acid should have escaped by evaporation during the long interval, if we bear in mind that sea-water is an alkaline fluid, which does not contain the smallest trace of free carbonic acid, and which retains that present in bicarbonates with such vigour, that it may be boiled for hours together in the apparatus devised by Jacobsen for boiling out air and not part with more than a mere fraction. Nay, there is obviously danger of the reverse, viz, that some of the carbonic acid present in the atmosphere will be absorbed; but that source of error was effectually avoided by keeping the water in bottles provided with tight-fitting glass stoppers.

Judging, too, from the results, which were very nearly the same for all the samples, irrespective of the difference in the length of the period during which they had been preserved, the interval that had elapsed previous to examination did not appear to have had any injurious effect on the water for experimental purposes; and hence I feel tolerably convinced that my observations in all essential particulars are as reliable as if they had, been conducted on board with freshly drawn water.

With respect to the errors of observation involved in the method itself, numerous test-determinations will serve as an approximate standard by which to compute their magnitude; thus, for instance, half the difference between two observations with the same sample of water was found, for the carbonic acid forming carbonates, to be 0.11 mgr per litre (maximum 0.6), and for the carbonic acid forming bicarbonates to be 0.59myr per litre (maximum 1.35). Exclusive of the variable error there will also, in the latter case, be a constant one, inasmuch as the results of experiments performed in an atmosphere containing carbonic acid must necessarily be somewhat, if but a very little, too high, When the error in the determination of the carbonic acid forming bicarbonates is found to be greatest, the reason will be chiefly this, that retitration with soda-lye, more especially if rosolic acid has been selected as the index, gives rise to a very decided terminal reaction, which does not result on the baryta water being titrated with oxalic acid; the reaction is then much less obvious. It must be likewise

titreres med Oxalsyre. Tillige bor det erindres, at de som Udtryk for den sirt bundne Kulsyre opførte Tal indeholde Feilene saavel i Bestemmelsen af den nentralt bundne som den samlede Kulsyremængde.

Som man let vil overbevise sig om, vise de i Tabellen opforte Tal især for den nentralt bundne Kulsyres Vedkommende en mærkelig Overensstemmelse, maar nemlig 2 Observationer, begge udførte paa en Vandprove hentet lige ved Gronlandsisen, undtages, ligger i alle de ovrige 53 Vandprover den neutralt bundne Kulsyre mellem Grændserne 51.4 og 55.4 Mgr. per Litre, saaledes at den største Differents kun belober sig til 4 Mgr., hvad der maa siges at være meget lidet i Betragtning af, at disse Tal ere fremkomne ved Undersøgelse af et Hav paa betydeligt over 200 geografiske Mile i Udstrækning saavel i syd og nord som ost og vest. Hvad derimod den surt bundne Kulsyre angaar, da ere de optrædende Differentser betydelig større og belobe sig i Ydertilfældene til omkring 8 Mgr. pr. Litre.

deg har henge bestræbt mig for at opdage nogen Lovmæssighed i disse Variationer, uden at det dog sanledes som for Luftens Vedkommende har lykkes at erholde klare og paalidelige Resultater i saa Henscende og det ligegyldigt, hvadenten man vælger Dybdeforholdene eller den geografiske Beliggenhed til Udgangspunkt for sin Betragtning.

Da saaledes ingen Del af det undersogte Felt udmacker sig fremfor den anden ved nogen tydelig Forskjellighed i Kulsyregehalt, og da de optrædende Differentser overalt ere smaa, ville de erholdte Resultater naturligst være at benytte til Udledning af Gjennemsnitsværdier, der kunne opføres som Udtryk for Kulsyregehalten i det undersogte Hav i sin Helhed betragtet. De Gjennemsnitsværdier, som saaledes blive at opstille som Hovedresultater, ere for den neutralt bundne Kulsyres Vedkommende

$$52.78 \pm 0.083$$
 Mgr, pr. Litre

med en sandsynlig Afvigelse herfra af en enkelt Observation af \pm 0.662 Mgr. pr. Litre og for den sart bundne Kulsyres Vedkommende

$$43.64 \pm 0.16$$
 Mgr. pr. Litre

med en sandsynlig Afvigelse hertra af en enkelt Observation af \pm 1.26 Mgr. pr. Litre.

Da det først var bragt på det Rene, at de af Dr. Jacobsen iagttagne Egenskaber hos Sovandet skrev sig derfra, at den i Sovandet existerende Salthlanding ved Koghede decomponerede neutrale Carbonater, maatte det ogsån fremstille sig som en meget interessant Opgåve at finde den nærmere Forklaring dertil.

Den nærmestliggende Tanke, som i denne Auledning først paatvang sig mig, var den at soge Grunden i Chlormagnesinmens bekjendte Egenskaber. At denne under Kogningen selv ved Tilstedeværelsen af Overskad af Chlornatrium skulde have Tilboielighed til lidt efter lidt at spalte sig, og at der af den dannede Saltsyre skulde kunne uddrives noget Kulsyre, kunde jo ikke synes mmligt. Der

borne in mind, that the figures representing the carbonic acid forming bicarbonates also include the error in both titrations.

A glance at the Table will show that the figures therein set down, more particularly those representing the carbonic acid forming carbonates, exhibit a remarkable uniformity; save in 2 observations, both with a sample of water drawn in close proximity to the ice off the coast of Greenland, the carbonic acid forming carbonates determined in the remaining 63 samples lies between the limits 51.4 mgr and 55.4 mgc per litre and the greatest difference amounts therefore to only 4mgr, which must be regarded as very small, considering that the said figures refer to the examination of water from a tract of ocean which, measured both from north to south and from east to west, extends for considerably more than 200 geographical miles. As regards the carbonic acid forming bicarbonates, the differences in the amounts determined are, however, much greater, reaching Smar per litre.

I have long had my attention directed to the possible discovery of a law controlling these variations, similar to that which I found to regulate those of air, but have not yet succeeded in obtaining conclusive results; and it is quite immaterial whether depth or geographical position be made the basis of investigation.

The water in no part of the ocean-tract explored being characterised by properties plainly distinguishing it from that of any other, and the differences in the results obtained having invariably proved small, the latter will obviously serve for the computation of average formula representing the amount of carbonic acid present in the water of the sea investigated. These average formula, set down accordingly as the final results, were found to be —

for the carbonic acid forming carbonates, with a probable error in a single observation of \pm 0.662 per litre; and

$$43.64 \pm 0.16^{mgr}$$
 per litre . .

for the carbonic acid forming bicarbonates, with a probable error in a single observation of ± 1.26 mgr. per litre.

Having now obtained conclusive proof that the properties observed by Dr. Jacobsen in sea-water were the result of the property possessed by the saline compounds present therein of decomposing at the boiling-point neutral carbonates, the next step was to find a satisfactory explanation of the interesting phenomenon.

My first thought in this direction was to seek the cause in the known properties of chloride of magnesia. Assuming this body to have a tendency of gradually decomposing during the process of boiling, carbonic acid might possibly be driven off by the hydrochloric acid formed. Against such an hypothesis, however, various objections may be raised. Dr. Jacobsen and others having shown that sea-

lader sig imidlertid reise Indvendinger mod denne Betragtningsmaade, idet det af Dr. Jacobsen med Flere er paavist, at Sovand lader sig inddampe til Torhed og Saltene endog torre ved en Temperatur af 180° C., uden at nogen synderlig Mængde Saltsyre forflygtiger sig, og det er i Virkeligheden heller ikke fornodent at ty til Chlormagnesinmens Dissociation for at finde den rineligste Forklaringsgrund. Man behover blot at holde sig til den kulsure Magnesia og dens Egenskaber, saaledes som de ere kjendte af Arbeider udførte af de mest beromte Chemikere,

lfolge Angivelser of Berzelins, H. Rose, Fritzsche, Närgaurd⁴ og L. Jonlin⁵ er den ved højere Temperatur dannede kulsure Magnesia altid mere eller mindre basisk, ja ifolge Berzelins og H. Rose er selv de ved Blanding af Magnesiaopløsninger med kulsure Alkalier i Kulden dannede Bundfald mere knjsyrefattige end mættet kulsur Magnesia. Der findes om den kulsure Magnesia et meget stort Antal tildels meget modstridende Angivelser, og der er, eftersom Fremstillingsmaaden er varieret, erholdt meget forskjelligt sammensatte Salte, hvis procentiske Sammensætning ifølge Analyserne stemme meget daarligt overensmed den af de opstillede Formler beregnede. Disse Forbindelser ere ogsåa af enkelte Forfattere betragtede som basiske Salte af variabel Sammensætning og ansees af L. doulin endog for en Blanding af vexlende Mængder Oxyd og Carbonat. Det vilde fore for langt her at gjennemgaa de talrige over dette Emne forfattede Afhandlinger, og jeg skal derfor indskrænke mig til at henvise til Gmelin-Kraut's Handbuch der Chemie 6te Antl. 2 432, hvor det Væsentligste findes i Uddrag. Det man dog være mig tilladt at citere nogle Udtalelser af H. Rose, som jeg nylig blev opmærksom paa, Udtalelser, som vise at Videnskaben allerede meget længe har været i Besiddelse af Materiale til Forklaringen af de af Dr. dacobsen gjorte Observationer. H. Rose siger (Pogg. Ann. [3] = 23 = 417) Folgende:

"Als das Gesetz der einfachen chemischen Proportionen aufgestellt und hinreichend durch Versuche bewiesen worden war, ergab sich die Neutralität zweier sich zersetzender Salzanflösungen als eine ganz natürliche Folge des Gesetzes der bestimmten Verhältnisse, in denen sich alle Körper, also auch Söuren und Basen, mit einander verbinden.

Aber das Gesetz, dass durch Zersetzung zweier neutraler Salze nach ihrer Auflösung in Wasser wiederum zwei neutrale Salze entstehen, ist nicht richtig, wenigstens nicht in der Allgemeinheit, wie es bisher ohne den geringsten Widerspruch angenommen worden ist.

Es ist bemerkenswerth, dass die so ausserordentlich vielen Ausnahmen, die bei diesem Gesetze stattfinden, nicht früher aufgefallen sind, obgleich mehrere derselben schon seit langer Zeit bekannt waren. Nur eine fast einzeln stebende water adonts of being evaporated to dryness, and the residue even dried at a temperature of 180° C, without volatilising any considerable quantity of hydrochloric acid. But it is not necessary to seek in the properties of chloride of magnesia the most plansible means of explanation, we need only keep to the carbonate and its properties, as determined by the most renowned Chemists.

According to the statements of Berzelius, § H. Rose, Fritzsche, Nörgaard, and L. Jonlin, carbonate of magnesia formed at a high temperature invariably contains less carbonic acid than the neutral salt; may, according to Berzelius and Rose the precipitate resulting from the mixture of carbonate of potash, when cold, with solutions of magnesia, contains less carbonic acid than saturated earbonate of magnesia. For carbonate of magnesia we have a very large number of conflicting statements, and the compounds obtained have been found to vary greatly with the mode of operation, the proportion of their constituents, too, often agreeing but very indifferently with that computed by the formule. By some authors these combinations have been regarded as basic salts, varying in their component parts; nay by L. Joulin, as consisting of inconstant unixtures of some oxide and carbonate. I lack space here to notice the numerous memoirs treating of this subject, and shall therefore merely refer the reader to Gmelin-Krant's 'Handbuch der Chemie' (6te Anflage, 2, p. 432), in which copious extracts from them will be found, I cannot however refrain from quoting certain remarks by H. Rose, on which a short time since I happened to light, remarks showing science to have been long in possession of materials amply sufficient to explain Dr. Jacobsen's observations. In Pogg. Ann., [3] 23, p. 417, H. Rose observes as follows: -

"Als das Gesetz der einfachen chemischen Proportionen aufgestellt und hinreichend durch Versuche bewiesen worden war, ergab sich die Nentralität zweier sich zersetzender Salzauflösungen als eine ganz natürliche Folge des Gesetzes der bestimmten Verhältnisse, in denen sich alle Körper, also auch Säuren und Basen, mit einander verbinden,

Aber das Gesetz, dass durch Zersetzung zweier neutraler Salze nach ihrer Auflösung in Wasser wiederum zwei neutrale Salze entstehen, ist nicht richtig, wenigstens nicht in der Allgemeinheit, wie es bisher ohne den geringsten Widerspruch angenommen worden ist.

Es ist bemerkenswerth, dass die so ausserordentlich vielen Ansnahmen, die bei diesem Gesetze stattfinden, nicht früher aufgefallen sind, obgleich mehrere derselben sehen seit langer Zeit bekannt waren. Nur eine fast einzeln stehende

⁴ Berzelius Jahresbericht 17 — 158.

³ Pugg. Ann. 83 — 435.

³ Pogg. Ann. 37 — 310.

⁴ K. Danske Vid. Selsk, Skrift, [5] — 2 — 54 (1850).

⁵ Ann. Chim. Phys. 4] -30 = 271.

⁴ Berzelius Jahresbericht, 17, p. 458.

² Pogg. Ann. 83, p. 435.

³ Pogg, Ann. 37, p. 310.

⁴ K. Danske Vid. Selsk.-Skrift [5] 2, p. 54 (1850).

⁵ Von. Chine, Phys. 14, 30, p. 271.

Ansnahme erregte vor längerer Zeit ein allgemeines Anfsehen. Als man fand, dass eine Anflösung von gewöhnlichem phosphorsaurem Notron, welche für sich geröthetes Lackmuspapier bläut, mit einer Anflösung von salpetersaurem Silberoxyd, welche das Lackmuspapier unverändert lässt, versetzt, einen Niederschlag von gelhem phosphorsaurem Silberoxyd und eine Phissigkeit giebt, welche gebläutes Lackmuspapier röthet, konnte diese Erscheimung nicht früher genügend erklärt werden, als bis die interessanten Untersuchungen von Clarke, und die sinureiche Deutung derselben durch Graham bekonnt wurde.

Aber vor weit läugerer Zeit schau hatte man Erscheinungen beohachtet, die eben so räthselhaft waren, als der beschriebene Fall. Man hatte schon oft bemerkt, dass aus der Auflösung eines neutralen koblensauren Alkalis durch Zersetzung vermittelst einer Auflösung eines neutralen Salzes von Magnesia, von Zinkoxyd oder von einem andern ähulich zusammengesetzten Metalloxyd Kohlensänregas entwickelt werde, besonders wenn die Fällung des kohlensauren Oxyds in der Wärme geschicht, und eine grosse Reihe von Versuchen, die man besonders in neuerer Zeit angestellt hat, hat ergeben, dass die meisten der kohlensauren milöslichen Salze, welche man durch Zersetzung nentraler Salzanflösnugen erhält, nicht die entsprechende Zusammensetzung des kohlensauren Alkalis haben, das zu ihrer Erzengung angewondt worden ist. Sie enthalten weniger Kohlensäure, aber obgleich die Untersuchungen oft von sehr bewährten Chemikern augestellt worden sind, so hat man ihre Zusammensetzung sehr wenig übereinstimmend gefunden."

H. Rose har ogsåa ved Forsog, som han sammesteds beskriver, fundet, at 'varmt fældt basisk kulsnr Magnesia indeholder mindre Kulsyre, naar den efter Fældningen koges nogen Tid, end naar den strax gjores til Gjenstand for Analyse.

Det kan efter dette ikke være tvivlsomt, at den kulsure Magnesia ved hoiere Temperaturer decomponeres og antager meget forskjellige Sammensætninger, eftersom den koges kortere eller længere Tid. Rigtignok er det ikke nogensteds ved de tidligere Forsog paavist, at man paa denne Maade kan faa Magnesia fuldstændig befriet for Kulsyre, men man maa ogsaa her tage Hensyn til, at man ved de tidligere Forsog visselig overalt har arheidet med temmelig store Mængder Bundfald, der naturligvis ikke med samme Lethed som Smaaportioner vil kunne erholdes decomponerede.

Forat paavise, at smaa Maengder kulsur Magnesia ved Kogning lader sig omvandle til fuldstændig rent Oxyd, gik jeg frem paa tolgende Maade. Af fuldstændig ren friskt udglodet Soda afveiedes 0.422 Gr. og opløstes i 100 CC, kulsyrefrit destilleret Vand, ligeledes tilberedtes en 13 % jo indeholdende Opløsning af almindelig ren svovlsur Magnesia, som i Forveien ved gjentagne Omkrystallisationer var betriet for alle Forureusninger. En Blanding af 15 CC, af Sodaopløsningen med 50 CC, af Bittersaltopløsningen fortyndet med noget over ½ Litre friskt udkogt endnu varmt Vand kogtes i en kulsyrefri Luftstrom i Classens

Ansnahme erregte vor längerer Zeit ein allgemeines Anfsehen. Als man fand, dass eine Anflösung von gewöhnlichem phosphorsanrem Natron, welche für sich geröthetes Lackmuspapier blänt, mit einer Anflösung von salpetersanrem Silberoxyd, welche das Lackmuspapier unverändert lässt, versetzt, einen Niederschlag von gelbem phosphorsanrem Silberoxyd und eine Flüssigkeit giebt, welche gebläutes Lackmuspapier röthet, konnte diese Erscheinung nicht früher genügend erkärt werden, als bis die interessanten Untersuchungen von Clarke, und die sinnreiche Deutung derselben durch Graham bekannt wurde.

Aber vor weit längerer Zeit schon hatte man Erscheinungen beobachtet, die eben so räthselhaft waren, als der beschriebene Fall. Man hatte schon oft bemerkt, dass aus der Auflösung eines neutralen kohlensauren Alkalis durch Zersetzung vermittelst einer Auflösung eines neutralen Salzes von Magnesia, von Zinkoxyd oder von einem andern älmlich zusammengesetzten Metalloxyd Kohlensäuregas entwickelt werde, besonders wenn die Fällung des kohlensanren Oxyds in der Wärme geschieht, und eine grosse Reihe von Versuchen, die man besonders in neuerer Zeit angestellt hat, hat ergeben, dass die meisten der kohlensauren unlöslichen Salze, welche man durch Zersetzung nentraler Salzanflösungen erhält, nicht die entsprechende Zusaumensetzung des kohlensonren Alkalischaben, das zu ihrer Erzengung angewaudt worden ist. Sie enthalten weniger Kohlensänre, aber obgleich die Untersuchungen oft von schr bewährten Chemikern angestellt worden sind, so hat man ihre Zusammensetzung sehr wenig übereinstimmend gefunden."

Moreover, H. Rose also found, by experiments which he has described in the same paper, that basic carbonate of magnesia, precipitated warm, contains less carbonic acid when boiled for some time after precipitation than when at once subjected to analysis.

From what has been stated above, carbonate of magnesia is evidently decomposed at a high temperature, and enters into a variety of very different combinations according to the duration of the boiling-process. True, none of the earlier experiments have shown that all the carbonic acid present in magnesia can be expelled by this method; but those experiments were conducted, we must remember, with a comparatively large amount of precipitate, which necessarily proves less easy to decompose than do small quantities.

In order to show that small quantities of carbonate of magnesia may be transformed by boiling into pure oxide. I went to work as follows. In 100° of distilled water free from carbonic acid were dissolved 0.422° of freshly heated carbonate of soda; a solution was likewise prepared containing 13 per cent of ordinary sulphate of magnesia, which by repeated crystallization had been previously freed from all impurities. A mixture consisting of 15° of the solution of soda and 50° of a solution of Epsom salts diluted with a little more than $^{1}_{f1}$ of a litre of freshly boiled water, still warm, was boiled in Classen's ap-

Apparat i omkring 2 Timer, idet den undvigende Kulsyre som for opfangedes og bestemtes ved titreret Barytvand. I den anvendte Mangde Sodaopløsning var indeholdt 63,3 Mgr. Soda svarende til 26,3 Mgr. Kulsyre, medens der veil to Experimenter paa denne Maade fandtes uddrevet den ene Gang 26.8 og den anden 27.7 Mgr. Ved Forsogets Gjentagelse med en lidt storre Qvantitet panny indveiet Soda fandtes uddrevet 34.1 Mgr. Kulsyre istedetfor beregnet 33.2. Under Kogningen var Oplosningen i Begyndelsen fuldstandig klar, hvorpaa der efter eirea 1/2 Times Forlob begyndte at fremkomme et Bundfald af Magnesia, hvori der trods al anvendt Moie ikke lykkedes mig at paavise det mindste Spor af Kulsyre. Den basisk kulsure Magnesia er nemlig ifølge H. Rose og blere ikke nbetydelig oploselig saavel i Vaml som i forskjellige Salte, saaledes at der af smaa Mangder intet Bundfald fremkommer, og det er derfor ikke paafaldende, at Øxydet ved saa fortyndede Opløsninger, som her ere anvendte, ikke udfæhles, førend det ved Kogningen er befriet for sin Kulsyre.

Koges Sovand under Concentration, kan man meget let komme til at overse denne Udskillelse af Magnesia, idet denne forst indtræder efter nogen Tids Forlob, saaledes at man kan antage Blakningen fromkommen ved Udfældning af Gips i den concentrerede Vædske. Udskillelsen vil ogsåa, maar Inddampningen foregaar i nabent Kar, forsinkes betydeligt, idet Kulsyrens Undvigen foregaar meget langsommere i en kulsyrcholdig Atmosphære end i en kulsyrefri Luftstrom, og det kan derfor ikke forundre, at denne I'dfældning af Magnesia af kogende Sovand, saavidt mig bekjendt, ikke tidligere er observeret, naar undtages, at Usiglio i det torrede Residum har paavist fri Magnesia. Dersom man imidlertid koger Sovand uden Concentration i en kulsvrefri Atmosphære med omvendt Kjøler, saaledes som det let kan ske ved Classens Apparat, fremtræder Phanomenet meget tyileligt pan samme Maade som ved Kogning af en Blanding af Soda og Bittersalt, idet der efter circa 1/2 Times Kogning begynder at udskille sig et Bundfald bestaacude af ren kulsyre- og kalkfri Magnesia ved Siden af et lidet Spor af Kiselsyre hidrorende fra det benyttede Glaskar. Om man samtidig opfanger og bestemmer den undvigende Kulsyre, viser det sig, at den Villighed, hvormed Kulsyren undviger, ikke snameget afhænger af Concentrationsgraden som af Varigheden af det Tidsrnm, hvori Kogningen fortsættes, da ogsåa påa denne Maade eirea 2 Timers Kogning strækker til for at skaffe en fuldstændig kulsyrefri Vædske.

Det vil forbaabentlig hermed kunne ansees fuldstændig godtgjort, at Søvandets Evne til ved Kogning at decom-

paratus for 2 hours exposed to a current of air free from carbonic acid, the carbonic acid driven off being collected and determined as before by titrated baryta water. The portion of the solution of carbonate of soda employed contained 63.3 mgr of that substance, representing 26.3 mgr carbonic acid; and two experiments performed by this method gave respectively 26,8mgr and 27.5 mgr as the amount of the latter driven off. On repeating the experiment with a somewhat larger quantity of carbonate of soda, carefully weighed, 34.1 "gr were found to have been liberated, whereas the exact proportion would have been 33,2 mgr. During the process of boiling, the fluid at first continued perflectly clear; but after the lapse of about half an hour magnesia began to be precipitated, in which with the most delicate tests I failed to detect the smallest trace of carbonic acid. According to H. Rose and other authors basic carbonate of magnesia is to a considerable extent soluble alike in water and in solutions of divers salts, so that small quantities give no precipitate; and hence it is not surprising that with a solution so diluted as that made use of for these experiments, the oxide should not have been precipitated before it had given off all its carbonic acid.

If sea-water be boiled during concentration, this precipitation of magnesia may be easily overlooked, since it does not take place till after the lapse of some time, and the turbidness of the concentrated fluid might therefore be ascribed to the deposit of gypsum. When the water, too, is evaporated in an open dish, the precipitation will be considerably retarded, since the carbonic acid escapes much more slowly in an atmosphere containing carbonic acid than in a current of air from which all carbonic acid has been expelled; and this accounts for the precipitation of magnesia in boiled sea-water, so far as I am aware, not having been previously observed, except at least by Usiglio, who detected the presence of free magnesia in the dried residue. When, however, sen-water is boiled without being concentrated in an atmosphere free from carbonic acid, and with the cooler inverted, which it easily may be with Classen's apparatus, the phenomenon appears with great distinctness, as is the case on boiling a mixture of soda and Epsom salts; for after about half an hour's boiling a precipitate begins to form, consisting of pure magnesia, with no admixture of lime and carbonic acid and a trace only of silicic acid, the latter arising from the glass vessel employed in the operation. If the carbonic acid be simultaneously collected and determined, the readiness with which it escapes is found to depend not so much on the degree of concentration as on the duration of the boiling-process, about 2 hours proving amply sufficient to obtain a fluid free from the smallest trace of carbonic acid.

From what has been stated, there is, we think, conclusive proof, that the property possessed by sea-water of

[!] Joorn, für pract, Chem, 46 — 106,

Lourn, für jeset Chem. 46, p. 106.

ponere neutrale Carbonater maa blive at tilskrive gradvise Omsætninger mellem de i Søvandet existerende kulsure Salte og Magnesiaforbindelserne, og de af Dr. Jacobsen hos Savandet iagttagne Egenskaber maa derfor ogsåa i mere eller mindre tirad tilligge alle andre magnesiaholdige Mineralvande, eller naar man lægger Roses ovenciterede Udtalelser til Grund, alle Saltoplosninger, forsaavidt de fornden Alkalier og Jordalkalier tillige indeholder opløselige Salte af nogen af de syagere Baser, som med Kulsyren danner nlæstandige Forbindelser. Denne Omstændighed vil saaledes uden videre stemple saa godt som alle de til Bestemmelse af Forholdet mellem den frie og bundne Kulsyre i Mineralvande anvendte talrige Methoder som mere og mindre npaalidelige ligeoverfor magnesiaholdige Mineralvande, idet man ved dem til Bestemmelse af neutralbunden Kulsyre enten anvender Residuet fra Inddampning eller paa anden Maade benytter sig af Kogning, hvor den efter det forhen ndviklede vil være utilladelig.

Det vil sluttelig ikke være påa urette Sted kortelig at berøre de Synsmander, som fra ældre Tider har været gjort gjældende, hvad angaar de i Sovandet indeholdte Carbonater.

Efter de Fremgangsmander, hvorved disse af ældre Forfattere ere hestemte, kunde de naturligvis kun erholdes ndskilte i Form af kulsur Kalk eller, som af enkelte ogsåa fundet, lidt kulsur Magnesia, men deraf folger ingenlunde, at de med Nødvendighed oprindelig skulde forekommet i Savandet under denne Form, ja dette er saa langt fra sikkert, at jeg meget mere skulde være tilbøielig til at tro. at saa ikke er Tilfælde. Koger man nemlig Sovand i det af Dr. dacobsen beskrevne Luftudkogningsapparat, undviger der, som allerede for bemærket, meget sman Qvantiteter Kalsyre, idet man kan fortsætte Kogningen med vexlende Afkjoling en hel Time uden at faa uddrevet mere end en Brakdel af Milligram pr. Litre. Kogepunctet vil her i Begyndelsen ligge meget lavt, men stiger, efterhaanden som den undvigende Luft og den dannede Vanddamp forøger Trykket, meget hurtigt, saaledes at jeg allerede under den forste Halvdel af Operationen har observeret en Temperaratur af 89° C. Naar saaledes de i Savandet indeholdte sure Carbonater vise en saa haardnakket Modstand mod Decomposition, at de i en hel Time skulde saa godt som aldeles uden Virkning knime adsættes for en Temperatur af omkring 90° C., da synes mig denne Egenskab at passe noget bedre paa surt kulsurt Natron end paa sur kulsur Kalk, og det vilde desnden falde vanskeligt at forklare Sovandets tydelige alkaliske Reaction, medmindre man knude antage, at Carbonaterne i det Mindste for en ikke ringe Del bestod of Alkalisalte.

Med Hensyn paa Qvantiteten af de i Sovandet forekommende kulsure Salte, da stemme de derover existerende Opgaver meget daarligt overens, de lyde i Regelen paa Spor undertiden endog paa Intet, medens der af enkelte igjen er opfort forholdsvis store Mængder. Saaledes finder decomposing when hoiled neutral carbonates, arises from the slow reciprocal action of the carbonates and salts of magnesia it contains, and the properties observed by Dr. Jacobsen in sea-water must therefore to a greater or less extent distinguish all mineral waters containing magnesia compounds, or, according to Rose, in his statements quoted above, all solutions of salts, provided they contain, exclusive of sodinm, potassium, lime, barium, and strontium, also soluble salts of some one of the weaker leases, which along with carbonic acid form inconstant combinations. Hence, this circumstance clearly shows, that of the unmerous methods devised for determining, in mineral waters, the relative proportion of free carbonic acid and that present in carbonates nearly all arc, when magnesia is present, unreliable, since for the determination of the carbonic acid present in carbonates, either the residue from evaporation or some other result of boiling is had recourse to, which has been shown to be inadmissible.

Finally, it will not be out of place to notice the views originally entertained with regard to the carbonates present in sea-water.

By the process according to which the earlier chemists determined these compounds, they could of course obtain them only in the form of carbonate of lime, or, as found by some observers, along with a little carbonate of magnesia; but from this it does not by any means follow that they necessarily occur in that form in sea-water; nay, I am myself inclined to believe that such is not the case. On boiling sca-water in the apparatus described by Dr. Jacobsen, very small quantities only of carbonic acid are found to escape; the fluid may be alternately boiled and cooled for an hour together without liberating more than a fraction of a milligramme per litre. The boiling-point with this method will at first be very low, but, on the pressure being increased by the escape of the air and the formation of steam, rapidly rise; even in the first half of the operation I have observed a temperature of 89° C. The vigorous resistance to decomposition thus exhibited by the bicarbonates in sea-water, which admits of their being exposed almost without effect for an hour together to a temperature of nearly 90° C., would rather seem to indicate hicarbonate of soda than bicarbonate of lime; and besides, the decided alkaline reaction of sea-water would be difficult to explain unless by assuming the carbonates or a considerable portion of them at least — to consist of carbonate of soda and potash.

With regard to the proportion of carbonates present in sea-water, the results as yet obtained agree but very indifferently; the majority of observers have detected traces only or none whatever, whereas some allege to have found comparatively large quantities, as will be seen from the following Table. von Bibra 1 Intet,

Robinet og Lefort² i det røde Hav Spor,

Pisani³ ved Bujuk-Dérè i Bosporus 0.1569 Gr. pr. Litre, C. Knanss¹ 0.011 Gr. pr. Litre,

Thorpe og Morton⁵ i det irske Hav 0,04754 i 1000 Dele Vand,

Dr. Jacobsen i Nordsoen 0.018-0.028 Gr. pr. Litre,

Vierthaler⁶ i Adriaterhavet 0,315 Gr. pr. Litre,

F. Wibel⁷ i det joniske Hay Intet

og Buchanan⁸ i de sydlige Have enten Intet eller og meget smaa Mængder.

Saa store Forskjelligheder vilde naturligvis være meget paafaldende, i Fald man kunde anse Resultaterne af disse Observationer for aldeles correcte, hvad der imidlertid ikke er muligt, da alle uden Undtagelse ere udforte efter Methoder, som kun for aldeles specielle Sammensætninger af Havvandet kunde føre til nogenhude rigtige Resultater,

Ved de tidligere i denne Afhandling beskrevne Forsog er det godtgjort, at Søvandet (under enhver Omstændighed det af Forfatteren undersøgte) ved Kogning i kulsyrefri Luft taber al neutralbunden Kulsyre, og det maa endvidere ved de af v. Bibra og Buchanan udførte Observavationer ansecs fuldt bevist, at almindeligt Oceanvand ved Inddampning til Torhed selv i en kulsyrcholdig Atmosphære undertiden kan give et fuldstændig kulsyrefrit Residumn, medens det kanske ligesaa ofte ikke vil være Tilfælde, idet der ofte af Buchanau og altid af Jacobsen er fundet Carbonater i Residuet. Hvor den neutralbundne Kulsyre nuder Inddampningen bortdrives, vil der til Gjengjæld altid udfældes den æqvivalente Mængde, Magnesia, som, naar Residuet henstaar i kulsyreholdly Luft for Bestemmelsen, vil knune gjenoptage en Del Kulsyre, og det er derfor let forklarligt, at man ved Anvendelse af Inddampning vil kunne erholde meget forskjellige Resultater selv i Søvand af fuldstændig identisk Sammensætning.

En til Bestemmelse af Carbonaterne hyppig anvendt Methode er den, hvorefter Sovandet koges i ca. 1 Time under stadig Fornyelse af det fordunstede Vand, hvorefter det udskilte Bundfald frafiltreres og veies, saaledes som Vierthaler og flere har gjort, medens T. E. Thorpe og E. H. Morton af den i Sovandet oprindelig indeholdte Kalkmængde og den i Vædsken efter Frafiltration af det ved Kogningen udskilte Bundfald tilbageværende beregner den kulsure Kalks Mængde.

Von Bibra; 1 none,

Robinet and Lefort,2 in the Red Sea; traces,

Pisani,³ near Bujuk-Déré in the Bosporns: 0.1569% per litre, C. Knauss; ¹ 0.011% per litre,

Thorpe and Morton,⁵ in the Irish Sea: 0.04754 in 1000 parts of water,

Dr. Jacobsen, in the North Sea: 0.018 -0.028# per litre. Vierthaler,6 in the Adriatic Sea: 0.315## per litre.

F. Wibel, in the Ionian Sea: none.

Buchanan, in the Southern Seas; none at all or traces only.

Differences so considerable would indeed be extraordinary, assuming the results of the observations to be quite correct; this, however, is simply impossible, since they were all without exception obtained by methods none of which, save for sea-water of a particular composition, can lead to results even approximately reliable.

By the experiments previously described in this Memoir, it has been shown that sea-water - at least that examined by the anthor - can, by boiling in an atmosphere free from carbonic acid, be made to part with all of its carbonic acid that is present in carbonates; and moreover. the observations of v. Bibra and Buchanan have linewished conclusive proof, that ordinary ocean-water when evaporated to dryness even in a atmosphere containing carbonic acid, sometimes gives a residue in which no trace of carbonic acid can be detected, but the reverse will, perhaps, no less frequently prove to be the case, seeing that Buchanan has often, and Jacobsen always, found carbonates present in the residue. When the identral carbonates are decomposed during the process of evaporation, an equivalent proportion of magnesia will invariably be precipitated, which, on the residue being allowed to stand over previous to determination in an atmosphere containing carbonic acid. may possibly absorb some carbonic acid; and hence, when recourse is had to evaporation, very different results may obviously be obtained even with water identical in com-

A method frequently adopted for determining the proportion of carbonates, is to boil the sea-water for about an hour, while steadily adding freshwater in place of that evaporated, after which the precipitate is filtered off and weighed, as done by Vierthaler and others; T. E. Thorpe and E. H. Morton calculate the proportion of carbonate of lime by comparing the amount of lime originally present in the water with that contained in the fluid after filtering off the precipitate.

¹ Ann. Chem. Pharm. 77 — 90.

⁹ Compt. rend. 62 — 436.

³ Compt. rend. 41 — 532.

⁴ Petersb, Acad. Bull. 2 — 203 (1860).

Ann. Chèm. Pharm. 158 — 122.

⁶ Wien, Acad. Ber. [2] — 56 — 479.

⁵ Ber. Berl, chem. Ges. 6 — 184.

⁸ Proc. Roy. Soc. 24 — 604.

Den norske Nordhavsexpedition. Tornse: Chemi,

¹ Ann. Chem. Phorn. 55, p. 90.

² Comp. rend. 62, p. 436.

³ Comp. rend. 41, p. 532.

Peters)c Acad. Bull. 2, p. 203 (1860).

⁵ Ann. Chem. Pharm. 158, p. 122.

⁶ Wien, Acad. Ber. [2] 56, p. 479.

⁵ Ber, Berl, chem. Ges. 6, p. 184.

⁵ Proc. Roy. Soc. 24, p. 604.

Det er af samme Grund som ovenfor klart, at denne Freugangsmaade for almindeligt Oceanvands Vedkommende vil fore til aldeles værdilose Resultater, nden at det dog med Sikkerhed kan pnastæres, at dette i samme Udstrækning skulde være Tilfælde for det af Vierthaler undersogte Vand, som har en fra almindeligt Søvand meget forskjellig Sammensætning. Efter de tahrige og værdifulde Analyser af Søvand, som vi skylde Professor Forchhammer, indeholder Vandet i de store Verdenshave nden synderlig store Variationer i de enkelte Bestanddeles indhyrdes Forhold gjennemsnitlig

Chlor + Brom .										1,895	0/0
Svovlsyre (SO _s)						,	,			-0.225	-
Magnesia		,		,	,					0.210	-
Kalk , ,			,	,	٠					0,056	-
medens Vierthale	r i	A	dria	itei	ha	vet	ha	l'	fimdet		

Chlor + F	Brom	,										-2.264	0/0
Svovlsyre										,	,	-0.262	-
Magnesia		,				4	4					-0.237	-
Kalk		,	,	,				,	,	,	,	0,371	_

Denne uforholdsmæssig store Forøgelse af Kalkmængden uden tilsvarende Forøgelse af Svøvlsyremængden vil bidrage til, at det af Vierthaler undersøgte Vand vil have en meget større Tilbøielighed til ved Kogning at udskille kulsur Kalk, hvad der i ikke ringe Grad kan tænkes at forrykke de almindelige Phænomener.

Hvad angaar de of Thorpe og Morton udførte Observationer, da er der i en Henscende en væsentlig Forskjel mellem de af disse Forfattere og de af mig erholdte Resultater. Jeg havde, allerede før jeg blev opmærksom paaden af dem offentliggjorte Afhandling, lagt Mærke til, at der af Sovand ved Kogning i en kulsyrefri Luftstrom i Classens Apparat udfieldtes et Bundfald af Magnesia, indeholdende lidt fra Glasset hidrørende, Kiselsyre, men jeg havde aldrig deri kunnet paavise hverken Kulsyre eller Kalk og det, nanscet om Kogningen afbrødes paa et tidligere eller senere Stadium, hvadenten den neutralbundne Kulsyre var helt eller kim delvis bortdrevet. Rigtignok anfører Thorpe og Morton intetsteds udtrykkelig, at de have undersogt det ndskilte Bundfald paa Kalk, men det fremgaar indirecte med stor Bestemthed, af hvad der forresten er bemærket, at saa maa have været Tilfælde.

At Vierthaler kunde faa udfieldt kulsur Kalk af et saa abnormt sammensat Sovand som det i Adriaterhavet flydende, kunde ikke vække Fornndring, men at det samme fandtes at være Tilfielde med Vandet i det irske Hav, som ved livlige Stromme stadig optager friske Vandmængder fra det store Verdenshav, og som i sin Sammensætning viser sig saa analogt det af den norske Nordhavsexpedition undersogte, forekom mig meget paafaldende. Deg har derfor gjentaget Thorpe og Mortons Forsog aldeles uforandrede paa flere af de fra den norske Expedition hjembragte Vandprover, men erholdt altid det samme Resultat, at det i det udskilte Bundfald trods af anvendt Møie ikke lykkedes at paavise Spor hverken at Kulsyre eller Kalk. Af det forhen I'dviklede vil det fremgaa, at man af de ældre Angi-

For the same reason, as explained above, the said process with ordinary ocean-water will give results absolutely worthless; this cannot bowever be affirmed with certainty of Vierthaler's observations, the water he examined baving heen very different in composition from ordinary sea-water. According to the numerous and valuable analyses of sea-water for which we are indebted to Professor Forebhammer, the water of the great oceans, the component parts of which vary but little in their relative proportion, is generally found to contain —

Chlorine + Bromine.								-1.895	per	cent.
Sulphuric Acid (SO ₃)								0.225	-	
Magnesia				٠				0,210	-	_
Lime, . ,	:			,				0,056	-	
whereas the water of	the	A	dri	ntic	S	ea.	ac	cording	to	Vier-
thaler's observations, o	cont	air	ıs -	_						
Chlorine + Bromine.					4		4	2,264	per	cent.
Sulphurie Acid	4							0.262	-	_
Magnesia , , , ,	,	,		,	,			0.237	-	
Lime	,	,	,		,	,	,	0,371	_	

This disproportionately large amount of lime without a corresponding increase in the amount of sulphuric acid will give the water examined by Viertlialer a tendency, when boiled, to precipitate carbonate of lime, which must to a considerable extent have a disturbing influence on the phenomena.

With regard to the series of observations instituted by Thorpe and Morton, there is, in one respect, an essential difference between their results and mine. Previous to my reading their Memoir, I had become aware of the fact, that, on boiling sea-water exposed to a current of air free from carbonic acid in Classen's apparatus, there results a precipitate of magnesia, containing a little silicic acid, derived from the glass; but I have never succeeded in detecting therein the presence of carbonic acid or lime; the result is precisely the same whether the boiling be interrupted at an early or a late stage of the process, or whether all or part only of the carbonates be decomposed. True, Thorpe and Morton nowhere distinctly state their having examined the precipitate for lime; but from what is observed in other respects, this must obviously have been the case,

That Vierthaler should have succeeded in precipitating carbonate of lime from water so exceptionally composed as is that of the Adriatic Sea, cannot surprise us; but that the same result should have been obtained with water from the Irish Sea, which by reason of rapid currents is continually receiving a large influx of water from the Atlantic Ocean, and which in its composition exhibits so great an analogy with that examined on the Norwegian North-Atlantic Expedition, does, to me, indeed appear strange. I have therefore repeated the experiments instituted by Thorpe and Morton, adopting their method without the slightest modification; but the results obtained were invariably the same: even with the most delicate tests I failed to detect the smallest traces of carbonic acid or

velser Intet med Bestemthed kan slutte om Carbonaternes Mængde i de store Verdenshave. Det synes dog, som om de af Buchanan udførte Bestemmelser af Kulsyren i Atlanterhavet, (hvorved han inddamper efter forudgaaende Tilsætning af Chlorbarium og tilslut med stærk Saltsyre forgjæves har bestræbt sig for at paavise Kulsyre i Residuet), med Sikkerhed skulde fastsætte en øvre Grændse for den tilstedeværende Carbonatmængde, men dette er i Virkeligheden ikke Tilfælde.

Som bekjendt beskytter noploselige Sulfater Carbonater mod Decomposition endog, naar til Uddrivelse af Kulsyren anvendes saa radicale Midler som concentreret Svovlsyre, saaledes at man endog af den Grund har fundet det fornodent at modificere den af Fresenius og Will angivue Methode til Bestemmelse af Kulsyren i neutrale Carbonater.\(^1\) De af Buchanan foretagne Undersogelser efter Kulsyre i Residuet kan derfor ikke betragtes som Bevis for, at den ikke skulde have været tilstede, og det fremgaar ogsaa tydeligt af hans egne Udtalelser, at han selv har været af samme Mening.

Forat faa Rede paa, hvorvidt en ved Kogning bevirket Decomposition af de i Søvandet indeholdte neutrale Carbonater foregaar i større Udstrækning ogsaa, naar der i Vædsken findes uoploselige Sulfater, har jeg udfort nogle Forsog etter den af Buchanan foreslaaede Fremgangsmaade. Af nogle Vandprøver, som, udersøgte efter den af mig benyttede Methode, viste sig at indeholde en Sum af surtog neutralbunden Kulsyre af 96 Mgr. pr. Litre og derover, erholdtes ved Inddampning til Tørhed efter Tilsætning af Chlorbarium uddrevet kun henimod 50 Mgr., ved en enkelt Undtagelse erholdtes engang over 50 Mgr. pr. Litre. Det vil sige, den uddrevne Kulsyremængde var ikke synderlig hoieve end den af Buchanan for Vandet i Ægyatoregnene augivne og heløb sig til kun faa Mgr. over, hvad den surtbundne Kulsyre efter paalidelige Observationer skulde beløbe sig til, de endnu i Residnet tilbageværende Carbonater lykkedes det heller ikke mig at paavise.

Sporgsmaalet om Carbonaternes Mængde i de sydlige Have maa derfor endnu betragtes som aabent.

Forhaabeutlig resterer endnn en Del af de fra Challengerexpeditionens Togter hjembragte Vandprøver, og man vil i saa Fald ved Undersøgelse af disse kunne give Bidrag til Besvarelsen af disse Sporgsmaal.

Efterat Ovenstaacnde var nedskrevet paa Norsk, men forend det endnu var oversat paa Tysk, ankom hertil 2det og 3die Hefte for 1879 af Fresenins' Zeitschrift für anal. Chem., hvori E. Bohlig offentliggjor en Afhandling,² bvoraf det sees, at han ved Arbeide med naturlige Mineralvande har observeret Omsætninger mellem kulsur Kalk og svovl-

of lime. From what has been already explained, it is obvious that nothing definite can be inferred from earlier statements respecting the proportion of carbonates in the water of the great oceans. The carbonic acid determinations performed by Buchanan with water from the Atlantic Ocean (he had recourse to evaporation, adding lirst chloride of barium, and then attempting, unsuccessfully, to detect carbonic acid in the residue by means of strong hydrochloric acid) would appear to fix a limit for the maximum amount of carbonates contained in sea-water; but such is not really the case,

The presence of insoluble sulphates serving, as is known, to protect carbonates against decomposition, even when concentrated sulphuric acid is made use of to expel the carbonic acid, it was necessary for this reason alone to modify the process devised by Fresenius and Will for determining carbonic acid in neutral carbonates. Hence, the experiments performed by Buchanan with a view to detect carbonic acid in the residue, cannot be regarded as affording conclusive proof of its absence; indeed, he himself, as appears from his statements, is clearly of the same opinion.

In order to ascertain whether the decomposition by boiling of the neutral carbonates in sea-water also fook place to a considerable extent when insoluble sulphates were present in that fluid, I made a few experiments by Buchanan's process, From several samples of sea-water which, examined by the method I adopted, were found to contain 96 mg/ of carbonic acid per litre. I succeeded, by evaporation to dryness, after adding a solution of obloride of barium, in liberating about 50 mg/ only, with a solitary exception, when the amount exceeded 50 mg/ per litre. The proportion of carbonic acid expelled was accordingly not much greater than that determined by Buchanan in water from the Equatorial Seas, and but a few millegrammes in excess of what the carbonic acid forming bicarbonates, according to trustworthy observations, should have been; of the carbonates said to be still present in the residue, I failed to detect any trace.

The amount of the carbonates contained in the water of the Southern Seas must, therefore, be still regarded as an open question.

It is to be hoped, that some of the samples of water collected on the *Challenger' Expedition still remain, in which case their examination will serve to throw further light on the subject.

After this Memoir had been written in Norwegian, but previous to its translation into German, the 2nd and 3rd Parts of Fresenius' Zeitschrift für anal. Chemic for 1879 came to hand, in which E. Bohlig has published a paper? on transformations, observed by him in mineral waters, resulting from the reciprocal action of carbonate of

¹ Fresenius, Qvant, Analyse, 5te Aufl, 364 ldc.

³ Fresenius' Zeitschrift, 18 — 195.

^{*} Fresenius, Qvant. Analyse, Ite Aufl. 364 bb.

^{*2} Fresenius, Zeitschrift, 18, p. 195.

sur Magnesia, som fuldstændig svare til, hvad jeg efter de foran beskrevne Observationer har fundet for Sovands Vedkommende. Disse Omsætninger knune saaledes, idet de ere iægttagne af to af hinauden nafhængigt arbeidende Chemikere, uden videre Begrundelse antages fuldstændig fæctiske.

Det vil af dette Boldigs Arbeide sees, at han idlerede Sommerene 1878 over det samme Thema har publiceret en Afhandling, som jeg ikke tidligere led været opmærksom paa. Den vilde dog ikke havt nogen væsentlig Indflydelse paæ mine Undersogelser, saasom de vigtigste af de Observationer, der har fort mig frem til de samme Resultater, som Bohlig først hac beskrevet, allerede vare udførte 3 4 Manneder, førend hans første Afhandling forelaa trykket.

lime and sulphate of magnesia, which precisely agree with those I have described as occurring in sea-water. These transformations having accordingly been observed by two chemists working independently of each other, may without further proof be accepted as facts.

From the said paper, it appears that Bohlig published a treatise on the same subject in the summer of 1878, to which my attention had not previously been directed. It would not, however, have materially influenced my experiments, the most important of the observations that led me to the results which Bohlig was the first to describe, having been instituted 3 or 4 months before his first treatise had left the press.

¹, Fresenus' Zeitschrift, 17 — 301.

¹ Fresenius' Zeitschrift, 17, p. 301.

III. Om Saltholdigheden af Vandet i det norske Nordhay.

Hvor det gjælder at tilveiebringe Oplysninger om Varia-tionerne af Saltmængderne i Havvandet, kan man til sine Saltbestemmelser benytte flere forskjellige Methoder, som hver især tidligere har fundet udstrakt Anvendelse. Den nærmest liggende af disse bestaar i Vandets Afdampning og derpaa folgende Torring og Veining af de som Residuum tilbageblivende Salte, en Fremgangsmaade, som rigtignok directe forer til Maalet, men som til Gjengjæld ogsaa fordrer temmelig meget Arbeide. Som mere indirecte men ogsån ulige mindre besværlige Methoder kan ogsaa anvendes Bestemmelse af Havvandets Chlormængde¹ eller Egenvægt, hvoraf man gjennem passende bestemte Coefficienter kan beregne den samlede Saltmængde, forndsat, at man kan antage et constant indbyrdes Forhold mellem de i Søvandet indeholdte faste Bestanddele. Den første af disse Methoder medfører foruden Besværligheder ved Udførelsen ogsåa den Ulempe, at den ikke lader sig anvende ombord paa et Fartoi i aaben Sø, hvor Skibets Bevægelser forbyder Brugen af Vægt, medens Egenvægtsbestemmelser ved Hjælp af Aræometre og volumetriske Chlorbestemmelser meget letvindt og med temmelig stor Noiagtighed kan adfores ombord selv i temmelig uroligt Veir.

Hvor man derfor ikke tror sig sikker pan at kunne opbevare Vandproverne i kengere Tidsrum uden derved æt risikere, at de undergaa Forandringer, som kunde ytre en skadelig Indflydelse pan Resultaterne af de erholdte Saltbestemmelser og, hvor man som Folge deraf man kegge Hovedvægten pan en hurtig Undersogelse af Vandproverne i frisk Tilstand, bliver man saaledes udelukkende henvist til Brugen af Chlorbestemmelser eller Egenvægtsbestemmelser som Maal for den samlede Saltgehalt.

Paa det første, af den norske Expeditions Togter blev af Svendsen, hvem de chemiske Observationer dengang vare

111. On the Amount of Salt in the Water of the Norwegian Sea.

When seeking to investigate the degree in which the proportion of salt varies in sea-water, choice may be made for performing the salt-determinations between several methods, each of which has in turn been extensively adopted. The most simple process, is first to evaporate the water, and then dry and weigh, the salts left in the residue, a mode of operation which, though leading direct to the desired result, involves considerable labour, 'Two other methods, not so direct, but far less tedions, consist in determining either the specific gravity of the water or the amount of chlorine 1 it contains, from which, by means of proper coefficients, the total amount of salt may be computed, provided always that a constant proportion can be assumed to exist between the solid constituents of sen-water. The first process is attended, irrespective of the fromblesome mode of operation, with another drawback, viz. the impractibility of adopting it on board ship in the open sea, where the motion of the vessel altogether precludes the use of the balance, whereas both specific gravity determinations, with the hydrometer, and volumetric determinations of chlorine, may be performed at see with the greatest case, and very considerable accuracy, even in comparatively rough weather,

Hence, when there is reason to fear that the samples of water cannot be preserved for any length of time without exposing them to chemical change, which might exert a disturbing influence on the results; and whenever, accordingly, weight must be chiefly attached to their immediate examination, the only practicable standard of measurement for computing the total amount of salt will be that furnished by determinations of chilgrine or of specific gravity.

On the first voyage of the Norwegian Expedition, Svendsen, who then, as previously stated, did the chemical

 $^{^{1}}$ Saavel her som overalt senere førstaa
es ved Chlormængde den samlede Chlor- og Brommængde.

¹ By "the amount of chlorine," here and elsewhere throughout this Memoir, is understood the total amount of chlorine and bromine.

overdragne, til Undersogelser over Saltgehalten udelikkende anvendt Egenvægtsbestemmelser, hvorimod jeg paa de to sidste Togter ved Siden af disse ogsåa har udfort et storre Antal Chlortitreringer for gjennem denne Control at give Resultaterne en storre Sikkerhed.

Til Undersogelser over den i Søvandet indeholdte Chlormangde medhavdes paa de to sidste Togter foruden Solvoplosning af saadan Styrke, at 1 CC, af denne omtrent svarede til 1 CC, Søvand, ogsåa 2 paa første Togt indsamlede Vandprøver, bestemte til som Normaler at tjene til den nøjagtigere Pastsættelse af Sølvopløsningens Styrke. Disse Normalers Chlormangde i Procenter blev ved omhyggeligt adforte Veiningsanalyser hvert Aar bestemt saavel før Expeditionens Udreise som efter dens Hjemkomst bestandig med meget nær det samme Resultat, hvorhos tillige deres Egenvægter ved Hjælp af Aræometret ombord aflæstes. Til Brug ved alle ombord adførte Chlortitreringer tjente kun to Büretter af lignende Construction og Storrelse, de samme, som af Stipendiat A. Helland anvendtes ved de Bestemmelser af Chlormangderne i Overfladevandet i Atlanterhavet, som denne foretog i Aaret 1875 paa en Reise til Gronland, de bleve af ham den Gang calibrerede ved Hjælp af Kviksolv og befundne særdeles tjenlige for-Oiemedet.

Ved Büretternes Brug fyldtes den ene med Sølvoplosning den anden med det til Undersøgelse bestemte Sølvand, hvorefter en passende Portion Søvand fra den ene under Omrystning tilsattes Sølvoplosning fra den anden, indtil al Chlor var ndfældt, idet chromsurt Kali tjente som Index. Begge Büretters Stand afbestes nu, og nogle Draaber Søvand tilsattes atter til Affarvning, hvorefter paany finlgte Tilsætning af Sølvopløsning og Afbesning af Büretternes Stand o. s. v. Gjennem en Række af 4 h 5 paa hinanden følgende lignende Afbesninger erholdtes paa denne Maade de førnødne Data til Beregning af det Volum Søvand, som i hvert enkelt Tilfælde svarede til I CC. Sølvopløsning.

Paa denne Maade sammeulignedes paa den ene Side Sovandsproverne og paa den anden Side ogsaa fra Tid til anden de medbragte Normaler med Solvoplosningen, idet der altid sorgedes for, at Vandprovernes og Oplosningernes Temperatur ikke fjernede sig synderlig meget fra hinanden. Büretterne bleve for at tilveieltringe en bedst mulig Aflobning hyppig rensede med concentreret Svovlsyre.

Af de gjennem disse Observationer erholdte Tal er senere Søvandets Chlormængde beregnet efter folgende Formel

$$p = \frac{KSP}{ks}$$

hvori p betegner den undersogte Vandprøves Chlormængde i Procenter, k det Antal CC, af samme, der svare til 1 CC, Solvoplosning og s dens Egenvægt ved 17.5 C., P Middeltallet mellem de for Udreisen og efter Hjemkomsten i Normalen fundne Chlormængder, K det Antal CC., som af denne svarer til 1 CC. Solvopløsning og S dens Egen-

work, made exclusive use of specific gravity determinations; but for a considerable number of my own observations, on the last two cruises. I also adopted titration for chloring as a means of testing the general accuracy of the results.

For estimating the amount of chlorine in sea-water, I took with me, on the two last cruises, besides a solution of silver of such strength that 4 ° of the fluid about corresponded to 1 " of sea-water, also 2 samples of water collected on the first voyage, to serve as a normal standard by which to determine the strength of the solution of silver. Each year, both previous to the departure of the Expedition and after its return, the chloring in these standard samples was carefully determined by weighing, and the percentage calculated accordingly, their specific gravity too, as shown by the arcometer on board, having been likewise noted down. For all chlorine-titrations performed at sea, there were only two burettes in use, similar alike in size and construction. - those used by Mr. Helland for determining the amount of chlorine in the surface-water of the Atlantic on a voyage to Greenland in 1875; he had calibrated them by means of mercary, and they proved excellently adapted for the purpose.

When using the burettes, one was filled with solution of silver and the other with the sea-water selected for examination, after which solution of silver was added to a proper quantity of the sea-water, while shaking the flask in which the titration was performed till all chlorine had been precipitated, chromate of potassium serving as the index. The height of the fluid in both burettes was now read, and a few drops of sea-water added to the mixture, to discolour it, after which solution of silver was again added, and the height of the fluids read as before. &c. After the height had been thus read 4 or 5 times in succession, the necessary data were obtained for computing the volume of sea-water, which in each individual case corresponded to 1° solution of silver.

In this manner, were compared on the one hand the freshly drawn samples of sea-water, and on the other, from time to time, also the standard samples, with the solution of silver, care being taken to keep the samples of water and the solution as near as possible at the same temperature. In order to prevent any portion of the fluid from adhering to the burettes, they were frequently rinsed with concentrated sulphuric acid.

With the figures obtained from these observations, the amount of chlorine in sea-water was afterwards determined by the following formula —

$$p = \frac{KSP}{ks}$$

in which p signifies the percentage of chlorine in the sample of water examined, k the proportion in cubic centimetres representing 1° of the solution of silver, and s the specific gravity of the water at 17°5 C,; P the mean between the amounts of chlorine found in the standard sample before the departure and after the return of the

vægt ved 17° 5 °C. Disse Observationer bleve dog selv på de to sidste Togter ikke mistillede i samme Udstrækning som Egenvægtsbestemmelserne, der også oprindelig vare bestemte til i første Række at tjene som Maal for den samlede Saltgehalt.

Expeditionen var for Egenvægtsbestemmelser forsynet med flere Sæt Glasarwometre fra Dr. Küchler i Ilmenau, indrettede til at vise Søvandets Egenvægt ved $\frac{17\,^{\circ}}{17\,^{\circ}}$ 5, saaledes at et Sæt viste Egenvægter fra 1 til 1,007, et andet fra 1,006 til 1,013, et tredie fra 1,012 til 1,019, et fjerde fra 1.018 til 1.025 og et femte fra 1.024 til 1.031. Aræometrene vare inddelte i Delstreger af Værdi 0,0002, medens Afstanden mellém disse Delstreger paa Scalaen belob sig til meget nær 1.5 mm, saaledes at man maatte kunne aflæse nden stor Feil det 5te Decimal, Under Afkesningen af Vandprovernes specifiske Vægt anbragtes disse i en i dobbelt Slingreboile ophængt (flascylinder, hvis indre Diameter belob sig til contrent det tredobbelte af Aræometrets Corpns, hvorefter dette omhyggeligt renset og aftorret neddykkedes i Vædsken og tillodes at svømme frit i nogen Tid, indtil det havde antaget Vandets Temperatur. Afkesningen foretoges nu langs den undre Rand af Vædskens Niveau, idet samtidig Vandets Temperatur iagttoges paa et controlleret Thermometer, inddelt i Delstreger af Værdi

Paa Grund af det af Expeditionen benyttede Dampskibs fortrinlige Egenskaber som Soskib voldte disse Observationer i nogenlunde roligt Veir ingensomhelst Vanskeligheder, selv naar Kursen sattes ret mod Vinden, hvorimod Skibets Duvning i meget haardt Veir altid ytrede sig i mærkbare om end smaa Bevægelser hos Aræometret. Hvor Vandproverne optoges i saa uroligt Veir, at Bestemmelsen paa Grund deraf kunde medføre foroget Usikkerhed, bleve de altid hensatte nogle Dage, indtil de kunde undersøges under mere ganstige Vilkaar.

Disse saaledes aflæste Egenvægter maa imidlertid i 2 Henseender forbedres, idet man paa den ene Side maa anvende passende Correctioner for at faa de ved meget forskjellige Temperaturer aflæste Egenvægter reducerede til den fælles Normaltemperatur 17.°5, og paa den anden Side maa befrie dem for Aræmetrenes constante Feil.

Hvad for det Første Correctionerne for Temperaturen augaar, da give de af flere Videnskabsmænd udførte Bestemmelser af Søvandets Volumforandring med Temperaturen Midlerne til at beregne disse, idet knade Hubbard², L. F. Expedition, K those amounts in embic centimetres corresponding to 1% of the solution of silver, and S the specific gravity of the standard sample at 17%5 C. These observations, however, were not instituted even on the two last voyages to the same extent as those based on determinations of specific gravity, the method by which, as originally agreed upon, the total amount of salt was to be chiefly computed.

For performing specific gravity determinations, the Expedition had been supplied by Dr. Küchler of Hueman with divers sets of glass areometers, adapted to show the specific gravity of sea-water at $\frac{17}{17}$, $\frac{5}{5}$, one set indicating specific gravities from 1 to 1.007, another from 1,006 to 1.013, a third from 1.012 to 1.019, a fourth from 1.018 to 1.025, and a fifth from 1.024 to 1.031. The areameters were graduated in degrees of 0.0002, the interspaces on the scale measuring however very nearly 1,5 mm; and hence you could read off with comparative accuracy to the fifth When about to read the specific gravity, the samples of water were poured into a glass cylinder suspended in gimbals, the inner diameter of the cylinder being triple that of the areometer, which, carefully wiped and dried, was immersed in the third and suffered to fleat freely for some time till of the same temperature as the water. The specific gravity was now read in the ordinary way, the temperature of the water, as shown by a tested thermometer graduated in fifths of a degree Centigrade, being simultaneously observed.

The steamer selected for the Expedition being an excellent sea-hoat, these observations were attended with no difficulty whatever in moderately fair weather, even when steaming dead against the wind; pitching, however, was found to have a distinctly disturbing effect on the arcometer, and therefore all samples of water drawn when it was in any way violent, so as to give reason for apprehending greater uncertainty in the determinations if performed at once, were stored for a few days, till the weather had improved.

These readings of specific gravity have, however, a twofold need of correction, arising on the one hand from the very different temperatures at which the specific gravities were read, involving the necessity of their reduction by proper corrections to the normal temperature 17° 5, and on the other, the constant error of the areometer, which has also to be eliminated.

As regards the corrections for temperature, these may be computed by the determinations performed by divers men of science of the extent to which the volume of sea-water varies with the temperature, Hubbard, 2 L. F.

 $^{^{1}}$ Naar ber som ofte senere bruges Betegningsmaaden Egenviegt ved t^{α} $_{T^{0}}$ da nænes dermed Egenviegt ved t^{α} i Forhold til destilleret Vand af T^{α} som Enbed. Alle Temperatorangivelser i denne Afbaodling ere udtrykte i Grader Celsius.

Maory's Sailing Directions 1858, — 1 — 237.

⁾ The expression, specific gravity at $\frac{t^0}{T^{90}}$ signifies specific gravity at t^0 , with distilled water of T^0 as the unit of comparison. All statements of temperature in this Memorr are given in degrees Celsus.

² Maury's Sailing Directions, 1858, 4, p. 237.

Ekmant og Thorpe og Rücker2 har givet meget fuldstændige Tabeller over Søvandets Volumina ved forskjellige Temperaturer, leverhos tillige ogsåa Dr. Karsten³ har opstillet en Corcectionstabel. hvorester man kan reducere de ved vilkaarlige Temperaturer allaeste Egenvægter til 17.°5. Sammenstiller man de Correctioner, som efter disse Ingttagelser kunne beregnes, erholder man imidlertid især for de lavere Temperaturer meget daarligt overensstemmende Værdier, idet der kan optræde Differenter, der endog kan overskride 0,0004, aaellem de af Ekmann's og Hubbard's Observationer heregiede Correctioner, hersker der den storste Overensstemmelse, men ogsån her gaar Differentserue paa enkelte Puncter op til meget uær 0,0001. I BetragIning af disse tildels temmelig betydelige Uoverensstemmelser mellem de hidtil publicerede Undersøgelser af denne Art kunde det ikke lindes ubefoiet endnu engang at gjenoptage Bestemmelserne af Søvandets Volumina ved forskjellige Temperaturer, og jeg besluttede mig derfor til gjennem egne Undersøgelser at forvisse mig om, hvilken af de opstillede Tabeller der bedst syarede til Udvidelsen af det i det aorske Nordhay flydende Vand. Dels i dette Ojemed dels for at bestemme de henyttede Aræometres Correctioner og de Constanter, hvormed Chlorprocenterne og Decimalerne i Egenvægten maatte multipliceres for at give Saltmængden, har jeg anstillet Undersogelser med folgende Vandprover,

		L	engde	Dybde		
Station.	Bredde	fra G	reenwich.	Eng. Fvn.	Meter.	
245	68" 21'	2 °	5' V.	0	0	
2 47	68 5.5	2	24 (),	500	941	
253	Skjær	stadfje	ird.	0	0	
254	67" 27"	13"	25	0	0	
284	73 1	1.2	58	0	0	
300	73 10	3	22 V.	0	0	
349	76 30	2	57 0.	1487	2719	
362	79 59	5	40	0	0	

livilke jeg for Kortheds Skyld i den Orden, hvori de her findes opforte, vil betegne med 1, H o. s. v. indtil VIII. Til Bestemmelse af Sovandets Udvidelse benyttede jeg et Sprengel's Pyknometer⁴. forarbeidet af to Stykker meget tynde Glasror af et og samme Ror med en indvendig Diameter af omtrent 13 mm. Rørene vare nedentil sammenloddede ved Hjælp af et snævert kort n-formig boiet Glasror og oventil paaloddede knæformig boiede solide Capillarror med meget fin Aabning. Ved Paalodningen af disse Glasror blev der saa meget som muligt draget Omsorg for, at kun en liden Del af de videre Rør udsattes for Opvarmning over Blæselampen, forat ikke Apparatet derved skulde

Ekman¹, and Thorpe and Rucker² laying prepared comprehensive Tables to show the volume of sea-water at different temperatures; Dr. Karsten³, too, las published a Table of Corrections by which specific gravities read at any temperature may be reduced to 17.°5. Meanwhile, on comparing together the corrections computed from these observations. the values obtained, more especially for low temperatures, are found to agree but very indifferently, the difference in some cases exceeding even 0,0004. The agreement is closest between the corrections computed from Ekman's and Hubbard's observations; but here, too, the difference for some temperatures amounts to very nearly 0.0001. Considering, therefore, the want of uniformity, in some cases very considerable, exhibited by such observations of this kind as had till then been made public, it could not be deemed superfluous to investigate anew by a further series of experiments the variation in volume which sea-water is found to undergo at different temperatures; and bence I determined on ascertaining from the results of my own observations which of the aforesaid Tables corresponded best with the expansion of the water in the Norwegian Sea, Partly with this object in view, and partly in order to determine the corrections for the areometers and the constants by which the percentages of chlorine and the decimals of specific gravity had to be multiplied when computing the amount of salt. I examined the following samples of water: -

		Lo	ngitode	Depth		
Station.	Latitude.	from	Greenw.	Eng. Fath.	Metres.	
245	68" 21'	2 °	5' W.	0	0	
247	68 5.5	2	24 E.	500	941	
253	The Skjær	estad	Fjord.	0	0	
254	67" 27'	13°	25	0	0 .	
284	73 1	12	58	0	0	
300	73 10	3	22 W.	0	, 0	
349	76 30	2	57 E.	1487	2719	
362	79 59	5	40	0	0	

which I will indicate, for the sake of brevity, by the Roman numbers from I to VIII, and in the order in which they are given here. For determining the expansion of the seawater. I made use of Sprengel's pycnometer; the instrument was constructed of two pieces of glass tubing, cut off from the same length, with an inner diameter of about 13 mm, These tubes were sealed together at their lower ends by means of a short, narrow glass tube, bent into the form of the letter U, and had strong knee-shaped capillary tubes sealed on to their upper extremities. When sealing on these glass tubes, the greatest care was taken to confine the heat from the glass-blower's lamp to as small a portion

Mongl, Svenska Vetenskapsak, Handlingar 1870 — 1.

² Proc. Roy. Soc., 24 159.

^{*} Tafeln zur Berechnung der Beobachtungen auf den Küstenstationen u. s. w. Kiel 1874.

Pogg. Ann. 150 — 470.

¹ Kongl. Svenska Vetenskapsak, Handlingar 1870, 1.

² Proc. Roy. Soc., 24, p. 159.

³ Tafeln zur Berechnung der Beschachtungen an den Küstenstationen u. s. w. Kiel 1874.

C Pogg. Ann. 150, p. 459.

antage en anden Udvidelsescoefficient end den, det anvendte Glasror oprindelig havde. Pyknometret blev først omkring 4 Maaneder, efterat det var blæst, taget i Brug til de Forsøg, som her skulle beskrives, forat ikke den før alle Glasgjenstande eiendommelige Contraction gjennem de første Maaneder efter deres Blæsning skulde bidrage til i mærkelig Grad at forandre dets Volum under Observationernes Udførelse. Pyknometret benyttedes ved de første Forsøg uden nogen Sikkerhedskugle, men maatte senere, hvor det fyldtes ved lavere Temperaturer, førsynes med en saadan, indrettet til at trækkes ind over det videre Capillarrør. Apparatet uden Sikkerhedskugle vil jeg for Kortheds Skyld betegne som Pyknometer No. 1 og med Sikkerhedskugle som Pyknometer No. 2. Ved Hjælp af disse udførtes følgende Forsøg i den Orden, hvori de her findes opførte.

	Py	knometec med Indbold.	Viegt I Luft Gr. af sp. Viegt.
1.	Pykn.	No. 1 tomt	15.9222 0.00 £200
2.		- 1, , , , , , , , ,	15.9223 0.001200
3.		- 1 med rent Vand af 1	17.°5 44.3153 0.001200
4.	_	- 1 , , , , , , ,	17.5 44.3156 0.001201
5.	_	- 1 , . , . , . ,	17.5 44.3151 0.001201
6.		- I , III.;,	17. 5 44.8097 0.001201
7.	_	- I III	17. 5 44.8093 0.001201
8.	_	- 1 , VII	17. 5 45.0742 0.001200
Q,		- 1 , VII,	17. 5 45.0738 0.001200
10.	_	- 2.tomt	18,5665 0,001194
11.		- 2 med I af	0.° 47.7869 0.001198
12.	_	- 2 , I	0. 47.7873 0.001198
13.	_	- 2 , 1 ,	0. 47.7871 0.001199
14.	·	- 2' , I	17.05 47.7249 0.001201
15.	-	- 2 I	17. 5 47.7246 0.001201
16.		- 2 · · · · · · · · ·	20. 47.7085 0.001198
17:	_	- 2 I	20. 47.7087 0.001198
ι8.		- 2 " I	8. 47.7696 0.001200
19.	_	- 2 ' I	8. 47.7702 0.001200
20.	_	- 2 I ,	4. 47.7810 0.001200
21.		- 2 , 1 ,	14. 47.7808 0.001200
22.	_	- 2 , I	13. 47.7487 0.001198
23.	_	- 2 , I	13. 47.7484 0.001198
24.	_	- 2 med rent Vand ,	0. 46.9773 0.001191
25.	-	- 2 ,,	0. 46.9776 0.001191
26.	_	- 2 tomt	18.5658 0.001191
27.	_	- 1 ,	15.9216 0.001191
28.	-	- 2 ,	18.5656 0.001231
29.		- 1	15.9213 0.001231

Til Bestemmelse af Udvidelsescoefficienten af det auvendte Glas forarbeidedes af det samme Glasrør et andet engrenet Pyknometer nedentil tilsmeltet og oventil forsynet med et Capillarrør, idet der ogsåa her sorgedes for Opvarmning af en saa liden Del af Røret som muligt. Ved

Den norske Nordhavsexpedition. Tornoe: Chemi.

as possible of the wider tubes, lest it should give to the apparatus a coefficient of expansion different to that which the glass tubes originally had. The pychometer was not made use of for the experiments to be described here, till about 4 months after the tubes of which it consisted had been scaled together; for the contraction peculiar to all articles of glass throughout the first few months after they have been blown might otherwise have occasioned an appreciable change in its volume during the progress of the observations. For the first experiments, the pycnometer was used without a receiver, but subsequently, when filled at a lower temperature, one had to be provided, adapted so as to admit of its being drawn over the capillary tube. The apparatus when used without a receiver I shall designate for the sake of brevity Pycnometer No. 1. and when used with a receiver, 'Pycnometer No. 2.' By means of this instrument the following experiments were performed, in the order in which they are here arranged.

	Γ'n	Weig yenometer with Contents, in Gram	with a Sp.
1.	Pyen.	. No. 1 empty 15.9	222 0,001200
2.	_	- 1 , 15.9	223 0,001200
3.	_	- 1 with pure water of 17.°5 44.3	153 0.001200
4.	_	- 1 , , , , , , 17.5 44.3	156 0,001201
5.	_	- 11 ,	151 0,001201
6.	_	- 1 , III , 17.5 +1.8	8097 0.001201
7 -	· ·	- 1 III, 17.5 44.8	093 0.001201
8.	_	- 1 VII 17. 5 45.0	742 0.001200
9.	_	- 1 " VII. 1 17.5 45.0	738 0.001200
ΙO.	_	1 /	3665 0.001194
11.	_		869 0,001198
12.	_	- 2 I o. 47.7	873 0.001198
13.	_	- 2 , 1 0. 47.7	871 (0.001199
14.	_		7249 0:001201
15.	_	- 2 1, 17.5 47.7	7246 0.001201
16.	_		7085 0.001198
17.	_		7087 0.001198
18.			7 6 96 0.001 <i>2</i> 00
19.	_		7702 0,001200
20.	_		7810 0,001200
21.		- 2 I 4. 47.7	7898 0.001200
22.	_		7487 0.001198
23-	.—	- 2 , I., , , 13. 47.	7484 0,001198
24.	_		9773 0.001101
25.	_	- 2 , , , , , , , , O, 16.	9776 0.001191
26.	_	- 2 empty 18.	5658 0,001191
27.	_	- 1 15.	9216 0.001191
28.	_	2 = 18,	5656 0.001231
29.	_	• 1 —	0:001231

For determining the coefficient of expansion of the glass, a single-branched pycnometer was constructed, of the same length of glass tubing, with the lower opening sealed up and the upper extremity bearing a capillary tible, care being taken, as before, not to beat a greater part of the large tube than

Hjælp af dette Apparat, som ved et Stykke Kantschukror var forhundet med et lidet Reservoir, bestemt til Optagelse af den ved mulig Opvarmning udskudte Del af Indholdet, bestemtes na Udvidelsescoefficienten af det anvendte Glasror med renset Kviksolv, som nogen Tid for Forsøgenes Udførelse under Udkogning panfyldtes Pyknometret. Med dette Apparat, som jeg vil betegne som Pyknometer No. 3. udførtes til den Ende folgende Veininger.

	Pyk	1101n (ter	med	Indhold.	_		Vægt Gr.	I buit af sp. Vægt.
30.	Pykn.	N_0	. 3	tomf				10.8654	0.001214
31.		-	3	4*		1 1 1		10,8653	0.001214
32.	_	-	3	$_{\mathrm{med}}$	Kvikso	lv af	Oo	195,9265	0.001215
33-			3		13	33	0	195,9265	0.001215
34.		-	3	34	81	3.8	20	195.3588	0.001205
35.		-	3	34			20	195,3592	0.001205
36.		-	3	33	11	31	15	195,4993	0.001205
37.	_	-	3	-0	24	4.3	0	195,9276	0.001205
38.		-	3	tomt	A A A 4	1 4 4	1 - 1	10.8650	0.001203
39.	,	-	3	med	rent Va	nd af	4"	24,4621	0.001202
‡0.		-	3	**	44 - A - A	34	4	24,4634	0,001190

Alle disse Veininger ere udforte efter Substitutiousmethoden ved Aflæsning af Syingninger paa en Vægt, hvis Folsomhed uden Belastning belob sig til 1.4 Mgr. pr. Delstreg og for stigende Belastning temmelig jevnt aftog indtil 1.9 Mgr. ved 200 Gr. Belastning. Til disse saavel som alle finere Veininger, som jeg har foretaget i Anledning af disse Arbeider, benyttedes en Platinalodsats fra Delenil i Paris, hvis Correctioner jeg i Forveien havde bestemt ved flere vel overensstemmende Veininger paa en af P. Bunge formbeidet fortrinlig Viegt, hvis Folsomhed for de her omhandlede Belastninger beløb sig til omkring 0.14 Mgr. Ved Veiningerne iagttoges altid Temperatur og Barometerstand af Luften i Veieværelset, hvorimod dens Fugtighedsgrad i Mangel af Observation passende ansattes, en Mangel, der ikke har nogen mærkbar Indflydelse paa Forsøgenes Paalidelighed, da selv en saa grov Feil i Austettelsen af Luftens relative Fugtighed som 25 $^{0}_{10}$ under de her omhandlede Forhold kun virker paa det endelige Resultat med en liden Feil i 6te Decimal. Efter disse Data er Luftens specifiske Vægt under Veiningerne paa værlig Maade beregnet og opført i Tabellen. Pyknometret blev for Jiver særskilt opført Veining indstillet panny for Temperaturen 0° i finstødt Is og forøvrigt i Våndbad, hvis Temperatur under stadig Omrøring holdtes constant, ligesom det mindst en Gang for hver unden Veining tomtes og fyldtes igjen med det Sovand, hvis Volum skulde bestemmes. Ingen Imistilling toges for god, med mindre det lykkedes i mindst 15 Minutter at holde Temperaturen saa constant, at Thermometret ingensinde viste Variationer af 0.71 eller derover. Til Brug ved Afkesning af Vandbadets Temperatur tjente absolutely unavoidable. With this apparatus, which was connected by a caontschout tube with a small receiver for collecting any portion of the contents that, in the event of the instrument becoming warmer might possibly he expelled, the coefficient of expansion of the glass tube was now determined by means of purified mercury, which, shortly before the commencement of the experiment, had, when boiling out the air, been introduced into the pycnometer. With this apparatus, which I will designate 'Pycnometer No. 3,' were performed the following determinations of weight:—

	Pyc	mom	ete	r with	Contents.			Weight in Grammes,	In Air with a Sp. Gr. of
30.	Pyen.	No.	3	empty				10,8654	0.001214
31.	_	-	3	1.0	() ()	n 2		10.8653	0.001214
32.		-	3	with	merenry	of	Oo	195.9265	0.001215
33,	_	-	3	34	44	34	0	195.9265	0.001215
3+.	—	-	3	14	44	11	20	195.3588	0,001205
35.	-	-	3	4.4	1.1	1.1	20	195.3592	0.001205
36.	-	-	3	74	q	14	15	195,4993	0.001205
37.		-	3	**	**	14	0	195.9276	0.001205
38.	_	-	3	empt	y			10.8650	0.001203
39.	_		3	with	ome water	1	1,,	24.4621	0.001202
40.	_	-	3	**	†) *2	4.3	4	24.4634	0.001190

These weight-determinations were all performed according to the substitution method, by reading the oscillations of a balance, the sensibility of which, when not loaded, amounted to 1.4 mgr for every division of the scale, diminishing, on being loaded with successive weights, at a comparatively uniform rate down to 1.9 myr, when loaded with 20097. For the above-mentioned as for all accurate weight-determinations involved in these labours, I made use of a set of platina weights procured from Delenil in Paris, the corrections of which I had previous to starting on the Expedition computed from a series of closely agreeing determinations of weight performed with an excellent balance (made by P. Bunge), its sensibility when loaded to the extent here specified being nearly 0.14 mgr. When performing the weight-determinations, the temperature and the atmospheric pressure in the room were always observed, but the relative lumidity not having been found by observation had to be roughly estimated, a source of inaccuracy which however can exert no appreciable influence on the trustworthiness of the experiments, seeing that an error of even 25 per cent in the computation of the relative humidity of the atmosphere would affect the final result only by occasioning a very small error in the 6th decimal. From these data, the specific gravity of the air during the process of weighing was computed in the usual manner, and entered in the Table. For each successive determination, the pyenometer was placed in finely crushed ice, to give it the temperature of 0°, and for every other required, in a water-bath, which by constant stirring was kept at an equable temperature; it was emptied,

et Thermometer, inddelt i Delstreger af Værdi 0,2 med en Længde af 0,68^{mm}, hvis Correctioner bestemtes ved gjentagne Sammenligninger med det herværende meteorologiske Instituts Normalthermometer, som til det Brug velvillig blev mig baant af histitutets Bestyrer, Professor Dr. Mohn.

Al Observationerne 32 til 37 kan forst Udvidelsen af det til Pyknometrene benyttede Glasror beregnes, og man erholder, naar de af Wüllner¹ beregnede Værdier for Kviksølvets Udvidelse lægges til Grund, som Udtryk for (Hassets midlere Udvidelsescoefficient mellem 0° og 15° 0,0000267 og mellem 0° og 20° 0,0000274. Man kan desuden ogsåa benytte Observationerne 3, 4 og 5 i Forbindelse med 24 og 25 til Beregning af Glassets Udvidelse og erholder, naar man anvender de 'af Hällström' og Rosetti³ bestemte Værdier for Vandets Udvidelse, meget vel overensstemmende Tal, som i Middel fastsætte Glassets nuidlere Udvidelsescoefficient mellem 0° og 17.°5 til 0.0000275. Efterat man heraf har bestemt en passende Værdi for Glassets Udvidelse, hvorved naturligvis de med Kviksolv udforte Bestemmelser fortrinsvis maa komme i Betragtning. kan man un skride til Udledelsen af de videre Resultater af Forsøgene. Man maa imidlertid her tage Hensyn til, at Observationerne 1, 2, 10, 26, 27, 28 og 29 tydeligt bevise, at Pyknometret under Forsøgene har talit omkring 0.7 Mgr. i Vagt, hvad der rimeligyis skriver sig fra Oplosning af en Del af Glasset paa de ydre Vægge paa Grund af den stadige Omroring i Badet. Den herved foraarsagede Usikkerhed kan dog betydelig reduceres, naar man beregner Pyknometrets Vægt til enhver Tid under Forndsætning af, at Vægttabet er proportionalt med Observationernes Antal, idet Usikkerheden da knapt nok vil, influere pan 5te Decimal. Under denne Forndsætning har jeg senere heregnet folgende Resultater, idet jeg paa enkelte Steder har tilladt mig smaa Aproximationer, som imidlertid kun kan virke paa de endelige Værdier med en liden Feil i 6te Decimal.

too, at least once for every other determination, and again filled with the sea-water the volume of which had to be found. These observations were in no case considered satisfactory unless the temperature of the water-bath had been kept comparatively uniform for at least 15 minutes, the greatest variation indicated by the thermometer during that interval never having exceeded 0.°1. For reading the temperature of the water-bath, a thermometer graduated in divisons of 0.°2, measuring each 0.68°m, was made use of, the instrument having been previously corrected by frequent comparison with the standard thermometer of the Norwegian Meteorological Institute, which the Director, Professor H. Molm, had kindly lent me for that purpose,

Nos. 32-37 are the first of the observations by which the expansion of the glass in the pycnometer may be computed; and, taking the values found by Wüllner¹ for the expansion of mercury as the basis of calculation, the mean coefficient of expansion of the glass between 0° and 15° will be 0,0000267, and between 0° and 20°, 0,0000274. Moreover, Nos. 3, 4, and 5, in conjunction with Nos. 24 and 25, will also serve for determining the expansion of the glass; and, adopting the values computed by Hallström? and Rusetti³ for the expansion of water, very closely agreeing results will be obtained, the figures expressing the average mean coefficient of expansion of the glass hetween 0° and 17.25 being 0.0000275. After a proportionate value of the expansion of the glass has been found, for computing which preference should be given to the determinations performed with mercury, we may proceed to deduce the further results of the experiments. Meanwhile, regard must be had to the fact, of which the observations 4, 2, 10, 26, 27, 28, and 29 afford conclusive proof, that the pychometer had lost about 0.7mgr in weight during the progress of the experiments, some portion of the outer surface of the glass having probably been dissolved, a result of the constant motion of the water surrounding the instrument when in the water-bath. The uncertainty this occasions may however be very considerably reduced by computing the weight of the pycnometer for every experiment on the assumption that the loss of weight is proportional to the number of observations; in that case it will hardly influence the 5th decimal. On the basis of this assumption, I subsequently computed the following results, introducing here and there slight approximations, which, however, can affect the final result only by occasioning a small error in the 6th decinial.

Pogg. Ams. 153 440.

² Disse Vierdier ere ogsåa af Ekman benyttede til Bestemmelse af Udvidelsen at det Dilatometer, som denne til sine Forsog over Sovandets Udvidelse har anvendt.

³ Ann. Chim. Phys. [4] — 17 — 372.

¹ Pogg. Ann. 153, p. 440.

These vidies were also adopted by Ekonor for determining the expansion of the dilutometer which he used when investigating the expansion of sea-water.

⁵ Ann. Chim. Phys. [4], 17, p. 372.

og som Control pa
a det benyttede Kviksolvs Renhed dettes Egenvægt ved $\frac{0^{\alpha}}{4^{\alpha}}$ til 13,5963

sant Sovandets Volumina ved forskjellige Temperaturer til

£0	0	1	å	1.3	17.5	2C
	-	T			. 7	

I't af [1.000000 1.000308 1.000794 1.001654 1.002605 1.003227

Til Udjevning af den efter disse Observationer optrikne Curve har jeg benyttet de mindste Kvadraters Methode, idet jeg har sat Ligningen for Søvandets Volum ved t^* under Formen

$$V_t = 1 + at + bt^2 + ct^3$$
.

Betingelsesligningerue blive

hvoraf Systemerne

$$5a + 62.5b + 955.25c - 0.000613687 \pm 0$$

 $62.5a + 955.25b + 16132.37c - 0.008588 \pm 0$
 $955.25a + 16132.37b + 286702 - c - 0.1392135 \pm 0$

som ved Elimination giver

$$a = 0.0000527328$$

 $b = 0.00000617375$
 $c = -0.000000037516$

eller ved Afranding

$$V_t = 1 + 0.000052733t + 0.0000061738t^2 + 0.000000003752t^3$$
.

Efter denne Formel har jeg heregnet folgende Tabel, hvori Søvandets Volum findes opført for diver hel Grad ogsåa for Temperaturerne under 0°, nagtet Formelens Gyldighed for dette Strog ikke er stottet ved nogen Observation.

t°	T_t	†°	V_{r}	t°	V_t
-1	0.99989	5	1.00041	14	1.00185
$-\dot{3}$	0.99990	6	1.00053	15	1.00205
-2	0.99992	7	1.00066	16	1.00227
— 1	0.99995	1. 8	1.00080	17	1.00250
0	1.00000	9	1.00095	17.5	1.00261
I	1.00006	10	1.00111	18	· 1.00273
2	1.00013	1.1	1.00128	19.	1.00297
3	1.00021	Ι2	.j.001 19	20	1.00322
+	1.00031	13	1.00165		

and, as a test of purity, the specific gravity of the mercury at $\frac{0^\circ}{4^-}$ was found to be 13.5963, and the volume of sea-water at different temperatures —

 -						
t0 ·	o	4	. 8	13	17-5	20

Vi of I 1.000000 1.000308 1.000794 1.001654 1.002605 1.003227

For smoothing the curve laid down from these observations, I adopted the method of the least squares, giving the equation for the volume of the sea-water at t° the form —

$$V_i = 1 + at + bt^2 + ct^3$$
.

The conditional equations will be -

$$\begin{array}{rll} a+4&b+16&c-0.000077&\equiv 0\\ a+8&b+64&c-0.00009925&\equiv 0\\ a+13&b+169&c-0.00012723&\equiv 0\\ a+17.5b+306.25c-0.000148857&\equiv 0\\ a+20&b+400&c+0.00016135&\equiv 0 \end{array}$$

from which are deduced -

and these equations give by elimination -

$$a = .00000527328$$

 $b = 0.00000617375$
 $c = -0.000000037516$

or, rounded off,

$$V_t = 1 + 0.000052733t + 0.0000061738t^2 + 0.00000003752t^3$$

By means of this formula I determined the results set forth in the following Table, which shows the volume of sea-water, computed for every degree, including temperatures below 0° , although the applicability of the formula to the latter has not been ascertained from observation.

t°	V_t	t°	Γ_t	t°	V_{ϵ}
-+	0.99989	5	1.00041	14	1.00185
— 3	0.99990	6	1.00053	15	1.00205
2	0.99992	. 7	1.00066	16	1.00227
<u>·</u> 1	0.99995	8	1.00080	17	1.00250
0	1.00000	9	1.00095	17.5	1.00261
Î .	1.00006	10	1.00111	18	1.00273
. 2	1.00013	II	1.00128	19	1.00297
3	1.00021	I 2	1.00146	20	1.00322
+	1.00031	13	1.00165		

Til Sammenligning hidsættes her de af Ekman fundne Værdier for Volumet af 4 Vandprøver A_s B_s C og D af respective. Egenvægter ved $\frac{15^n}{15^n}$ 1,01603, 1,01982, 1,02306, og 1,02695.

t° -	V_i af A	V_t af B	V_t af C	V_t af D
- 5	1.000145.	1.000061	0.999983	0.999902
— 	1.000087	1.000020	0.999959	0.999894
— 3 °	1.000044	0.999994	0.999948 .	- 0.999904
— 2	1.000015	0.999983	0.999953	0.999922
— i	1.000001	0.999985	0.999969	0.999955
0 ,	1.000000	000000,1	1.000000	1.000000
i	1.000019	1.000035	1.000043	1.000062
2	1.000047	1.000083	1.000100	1.000136
3	1.000096	1.000142	1.000168	1,000220
4	1.000154	1.000213	1.000249	1.000315
5	1.000223	1.000296	1.000344	1.000421
6	1.000305	£.000390 .	1.000450	1.000537
7	1.000399	1.000495	1 000567	1.000664
8	1.000504	1.000612	1.000696	1.000801
9	1.000621	1.000739	1.000836	1.000048
10	1.000749	1.000877	1.000985	1.001104
I.E.	1.000888	1.001026	1.001145	1.001272
1.2	1.001038	1.001185	1.001315	1.001440
13	1.001199	1.001354	1.001405	1.001635
1.1	1.001370	1.001533	1.001683	1.001831
15	1.001551	1.001719	1.001880	1.002038
16	1.001742	1.001925	1.002085	1,002250
17	1.001943	1.002134	1.002299	1.002473
18	1.002153	1.002353	1.002520	1.002705
19	1.002373	1.002582	1.002749	1.002946
20	1.002601	1.002819	1.002984	1,003195
21	1.002839	1.003002	1.003227	1.00345,
22	1.003085	1.003321	1.003474	1,003710
23	1.003340	1.003588	1.003728	1.00399
2.4	1.003602	1.003861	1.003988	1.004275
2.5	1.003875	1.001144	1.004253	1.004565

For den af mig undersogte Vandprove I er efter de torhen beskrevne Observationer fundet Egenvægten 1.02691 ved $\frac{17.°5}{17.°5}$ eller 1.02707 redaceret til $\frac{15°}{15°}$, medens Ekman for Vandproven D har fundet Egenvægten 1.02695 ved $\frac{15°}{15°}$, og det fremgaar saaledes, at Undersogelserne for disse Vandprovers Vædkommende meget godt kunne gjøres til tijenstand for Sammenligning. En saadan Sammenligning viser let, at der paa alle Puncter selv for Temperaturerne under 0° existerer en tilfredsstillende Overensstemmelse, idet Differentserne i Regelen ikke overstige 0.00001 og for de hoiere Temperaturer, hvor de antage sin største Værdi, kun gaa op til omtrent 0.000025, en Uoverensstemmelse, som, maar Hensyn tages til Forskjellen mellem Vandprovernes Egenvægter, end yderligere kan reduceres. Med de ovenfor nævnte af andre Chemikere udforte Undersægelser

For comparison with these figures, are annexed the values found by Ekman for the volume of 4 samples of sea-water, A. B. C. and D. their specific gravity at $\frac{15^{\circ}}{15^{\circ}}$ being respectively 1.01603, f.01982, 1.02806, and 1.02695.

	•			
t^{i}	V_t of A	$1'_s$ of B $+$	V_t of C	V_{ℓ} of D
}				
-5	1,000145	1.000061	0.999983	0.999902
-1,	1.000087	1,000020	.0.999959	0.999894
— ₃	1,000014	0.999994	0.999948	0.999904
2	1.000015	0.999983	0.999953	0.999922
1	1.000001	0.999985	0.999969	0.999955
O	1.000000	1,000000	1.000000	1,000000
1	1.000019	1.000035	1.000043	1,000062
2	1.000047	1.000083	1,000100	1.000136
3	1.000096	1.0001 (2	1,000168	1,000220
+	1.000154	1.000213	1.000249.	1.000315
5	1.000223	1.000296	1.000311	1.000421
6	1.000305	1.000300	1.000450	1.000537
7	. 1.000399	1.000195	1,000507	1,00066‡
8 .	1.000504	1,000612	1,000696	1.000801
9	1.000621	1.000739	1.000836	1.0000 18
10	1.000749	1.000877	, 1.000985	1.001104
11.	Looo888	1.001026	1.001145	1.001272
1.2	1.001038	1.001185	1.001315	1.001449
13	1.001190	1.001354	1.001405	1.001635
14	1.001370	1.001533	1.001683	1.001831
15	1.001551	1.001719	1.001880	1.002038
16	1.001742	1.001925	1.002085	1,002250
17	1.001943	1.002134	1.002299	1.002473
. 18	1.002153	1.002353	1,002520	1.002705
19	1.002373	1.002582	1,002740	1.002940
20	1.002601	1.002819	1.002984	1.003195
21	1.002830	1.003062	1.003227	1.003453
22	1.003085	1,003321	1.003474	1.003719
23	1.003340	1.003588	1.003728	1,003993
2.1	1.003602	1.003861	1.003988	1.004275
25	1.003875	1,004144	1.004253	1.004565

According to the observations previously described the specific gravity of sample I, was, at $\frac{17.25}{17.25}$, 1.02691, or, reduced to $\frac{15^{\circ}}{15^{\circ}}$. 1.02707, and Ekman found the specific gravity of sample D to be 1.02695 at $\frac{15^{\circ}}{15^{\circ}}$. Hence the results, so far at least as these samples are concerned, very well admit of being compared; satisfactory agreement exists even for temperatures below 0°, since the difference does not as a rule exceed 0.00001, and for the highest temperatures, at which it is greatest, it amounts to only 0.000025; nay, these figures may be still further reduced by taking into account the specific gravities of the samples. With the results of the abovt-mentioned observations instituted by other chemists, those here described, agree but indifferently. According to the formula deduced by

stemme de her beskrevne Resultater kun maadeligt overens. Holge den af Wackerbarth efter Ekmans Observationer beregnede Formel er Temperaturen for Tæthedsmaximum hos Sovand af Egenvægt 1.02707 \pm 4.004, medens Ligningen $\frac{dA}{dt} \equiv 0$ med de af mig fundne Coefficienter giver Temperaturen —4.045,

Paa Grund af denne gjennemførte Overensstemmelse mellem Ekmans og mine Resultater, har jeg ikke fundet det fornødent at bestemme Udvidelsen af Vandprover af lavere Egenvægt, men har nden videre anvendt Ekmans Observationer paa de faa Puncter, hvor jeg til Reduction af de paa den norske Nordhavsexpedition aflæste Egenvægter har havt Brug for den. Ved Hjælp af de ovenfor opførte Værdier for Sovandets Volumina ved forskjellige Temperaturer kan man nu beregne de Correctioner, hvormed de ved vilkaarlige Temperaturer aflæste Egenvægter maa forbedres forat reduceres til 17.5 / 17.5 . Correctionerne, hvori ogsåa indgaar et Led, der afhænger af Aræometrenes I dvidelsescoefficient, findes sammenstillede i nedenstaaende Tabel.

t°	Correction	t°	Correction
	1 4		
0	-0.00224	E.2	-0.00104
2	0.00214	1.4	-0.00060
4	-0.00201	16	-0.00031
6	= 0.00183	18	0.00011
8	-0.00161	20	0.00056
10	-0.00134		

Hvor den Temperatur, hvorved Aflæsningen foretages, ikke tjerner sig meget fra Normaltemperaturen 17.°5, kan disse Correctioner, der strengt taget kun gjælde for Sovand af Egenvægt omkring 1.027, ogsåa nden mærkelig Feil anvendes for Vandprover af en derfra temmelig forskjellig Egenvægt. Hvor derimod den Temperatur, hvorved Aflæsningen foretages, ligger langt fra 17.°5, ere disse Correctioner kun gyldige for et meget begrændset Interval.

Efterat saaledes de affæste Egenvægter ved Anbringelse af disse Correctioner ere reducerede til Normaltemperaturen, staar det endnn tilbage at befrie dem for de ved de benyttede Aræometre heftende constante l'eil.

Til Afkesning af saa godt som alle paa Expeditionen bestemte Egenvægter benyttedes kun 3 Aræometre, to paa første Togt og et paa de to sidste. Af de to først nævnte, der af Svendsen for Udreisen vare udvalgte af de øvrige, fordi de havde vist sig at stemme særdeles vel overens, er desværre det ene senere bleven knust, det andet er enduu i Behold og er sammen med det paa sidste Togt benyttede bleven corrigeret af mig.

A. Wackerbarth from Ekman's observations, the temperature for the maximum density of sea-water with a specific gravity of 1.02707 is $-4.^{\circ}04$, whereas the equation $\frac{d \Gamma}{dt} \equiv 0$ gives, with my coefficients, a temperature of $-4.^{\circ}45$.

Relying, then, on the close agreement between Ekman's results and my own, I have not determined the expansion in samples of sea-water with a lower specific gravity, but have adopted Ekman's observations, for reducing, when needful, the specific gravities read on the Norwegian North-Atlantic Expedition. By means of the values, tabulated above, for the volume of sea-water at different temperatures, the corrections which serve to reduce specific gravities read at any given temperature to \frac{17.5}{17.5} may be computed. These corrections, into which the coefficient of expansion of the areometer enters as a factor, are given in the following Table.

t"	Corrections	†°	Corrections
0	-0.00224	12	-0.00104
2	-0.00214	14	-0.00060
+	0.00201	16	-0.00031
6	-0.00183	18	0.00011
8	-0.00161	20	0.00056
10	-0.00134		

When the temperature is not far removed from the normal temperature, 17,5, these corrections, which, strictly speaking, apply only to sea-water with a specific gravity of about 1,027, may, without involving any appreciable error in the result, be likewise adopted for samples of water whose specific gravity differs considerably from that expressed by the above formula; but when, on the other hand, the temperature at which the specific gravity is read and that of 17.5 lie far apart, the interval for which these corrections will serve is but very limited.

After reducing by means of these corrections the specific gravities to the normal temperature, there still remains to eliminate the constant error of the areometer.

For reading almost all of the specific gravities determined on the Expedition, only 3 arcometers were made use of, two on the first cruise and one on the two last. Of the two former, which, having been found to agree uncommonly well, Mr. Svendsen had selected previous to his departure, one was unfortunately alterwards broken; the other is still in perfect order, and was, together with that made use of on the last voyage, corrected by myself,

Som sandan benyttedes 0,000026,

¹ That adopted was 0,000026,

Correctionernes Bestemmelse indfortes ved Hjælp af Vandprøverne I og VII, hvis Egenvægter tidligere ere bestemte til 1,02691 og 1,02669 ved $\frac{17.95}{17.95}$. første Togt anvendte Aræometer erholdtes saaledes gjennem 5 Aflæsninger i 1 Correctionen -0,00023 og gjennem 12 Afhesninger i VII ligeledes -0,00023. Paa samme Maade bestemtes det andet Arnometers Correctioner ved 5 Aflæsninger i I til --0.00037 og ved 8 Aflæsninger i VII til ---0.00038. Under disse Affæsninger var Vædsken altid bragt til 17,5 eller en meget nærliggende Temperatur, 'hvorfra Aflæsningerne efter de forhen gjengivne Correctioner reduceredes til Normaltemperaturen. Gjennem flere Rækker Aflæsninger i Vandprøven 1 ved forskjellige Temperaturer har jeg tillige forvisset mig om, at den ved Beregning af Correctionstabellen benyttede Udvidelsescoefficient for Aræometrene er passende valgt,

Hermed er givet de fornodne Data til Reduction af de paa den norske Nordhavsexpedition aflæste Egenvægter, og jeg gaar dernæst over til Bestemmelsen af Relationerne mellem Saltgehalten, Chlormængden og Egenvægten.

Til Bestemmelse af Saltmangden har, saavidt jeg ved, tidligere kun været benyttet den simpleste Methode, bestaaende i Afdampining af Vandet og Residuets Torring ved en passende Temperatur, som af de forskjellige Chemikere er bleven valgt noget forskjelligt fra 150°-180°. Denne Methode har jeg imidlertid af flere Grunde fundet lidet tilfredsstillende, hvad mau ogsåa påa Forhaand maatte vente. Efter Graham⁴ og andre taber nemlig den svøvlsnre Magnesia, om hvis Tilstedeværelse i Søvandet der vel ikke kan reises Tvivl, forst ved en Temperatur af over 200° sit sidste Molekyl Vand, medens man paa den anden Side allerede ved en Temperatur af betydeligt under 200° maa befrygte en delvis Decomposition af den i Saltene tilstedeværende Chlormagnesium. Efter de Forsog, som jeg anstillede, viste det sig, at Saltene selv efterat være tørrede ca. 20 Timer i Luftbad ved en Temperatur fra 170°-180° endm indeholdt ikke ubetydelige Mængder Vand (omkring 15 Mgr. pr. Gr. Salt), medens de torrede ved lidt lavere Temperatur indeholdt noget mere. Samtidig undersøgtes ogsåa Saltene påa fri Magnesia, hvorved jeg i Strid med ældre Angivelser fandt, at de bestandig selv ved Tørring ved 160° til 170° indeholdt nventet store Qvantiteter, saaat der for hvert Gr. torret Salt fandtes en Magnesiamængde tilstrækkelig til at neatralisere over 20 Mgr. HCl (ved Torring ved 180° fandt jeg endog en enkelt Gang 40 Mgr.). Bestemmelsen af den frie Magnesia foretoges ved Saltenes Oplosning i en afmaalt Mængde titreret Svovlsyre og derpaa folgende Retitration med fortyndet Natronlud af bekjendt Styrke. Ved Anvendelse af Rosolsyre som Index erholdtes her en meget skarp Endercaction.

Having now specified the data necessary for reducing the specific gravities read on the Norwegian North-Atlantic Expedition, I shall proceed to determine the relation between the specific gravity of sea-water and the amount of salt and chlorine it contains.

For determining the amount of salt, the only method formerly resorted to was, so far as I am aware, the simplest, viz. that of evaporating the water and then drying the residue at a proper temperature, which has been varionsly fixed by different chemists at from 150° to 180°, This method, however, has proved in several respects defective, as was indeed to be expected. According to Graham and others, sulphate of magnesia, the presence of which in sea-water can hardly admit of doubt, does not part with its last molecule of water till exposed to a temperature of more than 200" whereas, on the other hand, it is highly probable that partial decomposition of the chloride of magnesium contained in the salt takes place considerably below 200°. Even after the salts had been dried for about 20 hours in an air-bath at a temperature of 170°-180°, they were still found to contain, according to my experiments, a considerable quantity of water (about 15^{mgr} salt per gramme); dried at a lower temperature, the amount was somewhat greater. I also tested the salts for free magnesia, and found, in direct opposition to earlier statements, that, even when dried at 460° 170°, they invariably contained a very large amount, the quantity of magnesia to every gramme of dried salt being sufficient to neutralize more than 20 mgr HCl (once, when dried at 180°, even 40 mgr). For determining the free magnesia, the salts were dissolved in a given quantity of titrated sulphuric acid, and the fluid then retitrated with dilute soda-lye of known strength. With rosolic acid as the index, the final reaction was very decided.

The determination of the corrections was performed with the water of samples I and VII, whose specific gravity at $\frac{17.75}{17.95}$ had been found to be respectively 1,02691 and 1,02669. For the arcometer used on the first voyage, 5 readings with the water of sample I gave the correction -0.00023, and 12 readings with the water of sample VII likewise -0.00023; in the same manner, the corrections for the other areometer were determined, by 5 readings with the water of sample 1, to be -0,00037, and, by 8 readings with the water of sample VII, to be -0.00038. For these readings, the fluid was always brought to 17, 5, or as near that temperature as possible, the readings having in the latter case to be reduced, by means of the corrections given above, to the normal temperature. Several series of readings with the water of sample I, at different temperatures, convinced me that the coefficient of expansion for the areometer which I had computed for preparing the Table of Corrections was practically correct,

Phil. Mag. J. 6 = 422.

[!] Phif. Mag. J. 6, p. 422.

Forat undgaa de her omtalte Feil, benyttedes til Bestemmelse af Saltmængden i Sovandet følgende Fremgangsmaade.

I en med tætsluttende Laag forsynet tyk, veiet Porcellaindigel indveiedes 30 til 40 Gr. Sovand, som aldunstedes paa Vandbad. Efterat Saltene vare nogenlunde vel torrede, ophededes Digelen med Laaget paa ca. 5 Minutter over en Bunsens Lampe, afkjoledes og veiedes paany. Derefter bestemtes paa den fornd beskrevne Maade den ved Decomposition af Chlormagnesium dannede frie Magnesia, hvorved de til Beregning af den samlede Saltgehalt fornødne Data erholdtes.

1 en tidligere Afhandling 1 har jeg paavist, at Carbonaterne i Sovandet ved Kogning omsætter sig til kulsnr Magnesia, som ved luddampning eller under enhver Omstændighed ved Glodning efterlader Magnesia, og man skulde altsaa strengt taget for den saaledes dannede Del af den frie Magnesia beregne en anden Correction end for den ved Decomposition af Chlormagnesium dannede Hovedmængde. Den Feil, man begaar, ved at undlade dette er imidlertid baade meget nær constant og desnden saa liden. at den nden videre kan negligeres, idet den knn bidrager til at formindske den samlede Saltgehalt med omkring 0,0015 %. Det er saaledes fuldstændig tilstrækkeligt til den ved Veiningen fundne Mængde torret Salt at addere 1.375 Gange den ved Titreringen bestemte Mangde fri Magnesia, for af det scaledes fremkomne Tal at beregne Saltgehalten i Procenter.

Mod denne Methode kan der dog reises Indvendinger. idet det kunde befrygtes, at mindre Qvantiteter Chloruatrium, Chlormagnesium eller Chlorkalium under Glødningen kunde forflygtiges, eller at en Del af den svovlsme Magnesia ved den hoie Temperatur kunde decomponeres og give Anledning til Tab af Svoylsyre. Man kan imidlertid let forvisse sig om, at dette ved Anvendelse af en tyk Porcellaindigel med tetsluttende Laag ikke bevirker nogen Feil af markbar Indflydelse. Saaledes fandt jeg, at 1,2 Gr. af en passende Blanding af Chlorkalinm og Chlornatrinm ved 11/1 Times starkest mulig Glodning over en Bunsens Lampe i den samme Digel, som jeg benyttede til mine Saltbestemmelser, kun tabte 2 Mgr. i Vægt, det vil sige, Blandingen tabte ved Glodningen ikke fuldt 0.14 Mgr. pr. 5 Minutter. Ligeledes paavistes ved Bestemmelse al Svovlsyre og Magnesia saavel i det benyttede Sovand som i det glodede Residmum, at man selv yed en meget længere fortsat Glodning end den, der udfordres forat skaffe fuldstændig vandfrit Salt, ikke risikerer nogen skadelig Feil foranlediget ved Forflygtigelse al Chlormagnesium eller Decomposition af svoylsur Magnesia,

From 30% to 40% of sea-water were introduced into a thick porcelain crucible of known weight, furnished with a tight-fitting cover, and evaporated on a water-bath. So soon as the salt was sufficiently dry, the crucible, with the cover on, was heated for about 5 minutes over one of Bunsen's gas-burners, then cooled and weighed with its contents. The free magnesia liberated by the decomposition of the chloride of magnesium was now determined in the manner previously described, and the last factor necessary for computing the total amount of salt accordingly found.

In a former paper I drew attention to the fact, that the carbonates present in sea-water are transformed during the process of boiling into carbonate of magnesia, which after evaporation, or, at least, on the salt being thoroughly heated, leaves a residue of magnesia; and hence the proportion of free magnesia thus formed would, strictly speaking, seem to involve the need of a correction different from that adopted for the principal amount liberated by the decomposition of the chloride of magnesium. But the error which arises from applying the same correction to both is, on the one hand, very nearly constant, and, on the other, so small as to admit of being safely ignored, seeing that it reduces the total amount of salt only about 0.0015 per cent. It is, therefore, amply sufficient, if to the amount of dried salt found by weighing be added 1.375 times the amount of the free magnesia determined by titration: the figure thus obtained will serve to compute the percentage of salt.

This method certainly is so for open to objection, that small quantities of chloride of sodium, chloride of magnesium, or chloride of potassium may be volatilized during the process of heating, or some portion of the sulphate of magnesia be decomposed at the high temperature, and thus occasion a loss of sulphuric acid. The error. however, arising from this source will not exert any appreciable influence on the result, provided the crucible used for the operation be of thick porcelain, and have a tight-fitting cover. Thus, for instance, I found that 1.29r of a proportionate mixture of chloride of potassinm and chloride of sodium, on being heated for the space of an hour and a quarter over one of Bunsen's gas-burners in the crucible I had used for my salt-determinations, lost only 2 mgc in weight, or 0.14 mgr every 5 minutes. Moreover, it was manifest on determining the sulphuric acid and magnesia both in the water itself and in the heated residue, that, even in the event of the heating-process being much more protracted than is necessary to obtain salt free from the smallest trace of water, no serious error can result from the volatilization of chloride of magnesium or the decomposition of sulpliate of magnesia.

In order to guard against the above-mentioned errors, the following mode of operation was adopted for determining the amount of salt in sea-water.

^{1 &}quot;Om Kulsyren i Sovandet" Side 40 overst,

^{2 &}quot;On the Carbonic Acid in Sea-Water," p. 40.

'At Methoden giver indbyrdes vel overensstemmende Resultator, viser de talrige Saltbestemmelser, som udførtes med samme Vandprover. Saaledes fandtes ved nedenstaaende Forsog

Proc. Salt i II
$$\begin{vmatrix} 3.525 \\ 3.517 \end{vmatrix}$$
 Proc. Salt i VII $\begin{vmatrix} 3.514 \\ 3.516 \\ 3.515 \end{vmatrix}$

$$= - + III \begin{vmatrix} 2.303 \\ 2.299 \\ - - + IV \begin{vmatrix} 3.386 \\ 3.385 \\ - - - + VIII \end{vmatrix}$$

$$\begin{vmatrix} 3.501 \\ 3.507 \\ 3.508 \\ 3.500 \\ 3.502 \\ 3.506 \\ 3.506 \\ 3.500 \\ 3.501 \end{vmatrix}$$

$$= - + V1 \begin{vmatrix} 3.276 \\ 3.279 \end{vmatrix}$$

Resultaterne ere, som man ser, allerede her temmelig vel overensstemmende, men kunde visselig gives en endnu større Noiagtighed, om man vilde arbeide med noget større Quantiteter Sovand,

For Vandproverne 111 og VII er Egenvægten ved 17.55 allerede tidligere ved Hjælp af Pyknometer bestemt til respective 1.01739 og 1.02669, for Vandproverne IV. V. VI og VIII er den funden ved gjentagne Aflæsninger påa et af de corrigerede Armometre, medens den for Proven II kun blev bestemt ved en enkelt Aflæsning. Ligeledes bestemtes meget omhyggeligt samtlige Vandprovers Chlormængder. Heraf kan

Chlorcoefficienten
$$=$$
 Saltmængden Chlormængden

og

 $\label{eq:Egenvagtscoefficienten} \textbf{Egenvagten} = \frac{\text{Saltmangden}}{\text{Egenvagten}} = \frac{1}{1}$ beregnes, saaledes som det er gjort i nedenstaaende Tabel.

No.	Egenvingt. ved 17,05	Chlor- mwngde	Salt- mængde	Egen- vægts- enefficient.	Chlor- eaefficient.
П	1.02670	1,947	3,521	131.9	1,898
IIÌ	1.01730	1.271	2,301	132.3	1,810
IV	1.02573	1.868	3.386	131.6	1,813
	1.02676	1.956	3.532	132,0	1.806
V1	1.02488	1.809	3.278	131.8	1.812
${\text{VII}}$	1.02669	1.947	3.515	131.7	1.805
- VIII	. 1,02655	1,938	3,503	1'31.9	1,808

Som det heraf fremgaar, er baade Chlor- og Egenvægtscoefficienterne tiltrods for Sultgehalternes Forskjellighed overalt meget nær constante, saa at Variationerne

Den norske Nordlavsexpedition. Tornoe: Chemi.

That the results obtained by this method must be regarded as agreeing very closely inter se, is shown by the numerous salt-determinations performed with the same samples of water.

These figures, it will be seen, differ but little interse, and by increasing the quantity of water greater accuracy could no doubt be attained.

For samples III and VII, the specific gravity at 17.55 respectively 1.01739 and 1.02669, had been previously determined by means of the pycnometer; for samples IV. V. VI, and VIII, it was found by repeated readings of one of the corrected areometers, whereas for sample II it was determined by one reading only. The amount of chlorine, too, in each sample was carefully determined. From these data may be computed the

Coefficient of Chlorine = Amount of Salt Amount of Chlorine and the

Coefficient of Specific Gravity = $\frac{\text{Amount of Salt}}{\text{Specific Gravity}}$ as set forth in the following Table.

, No,	Spec. Grav. at 15.05 17.05	Percentage P of Chloring	cď	of	of
11	1,02670	1.947	3.521	131.9	1.808
_. III	1.01739	1.271	2,301	132.3.	1.810
IV	1.02573	1.868	3.386	131.6	1,813
7.	1.02676	1.956	3.532	132.0	1,806
VΙ	1.02 188	1,809	3.278.	131.8	1.812
VII	1.02669	15047	3.515	1,31.7	1,805
VIII	1.02655	1.938	3.503	131.9	1.808

It thus appears, that the coefficients both of chlorine and specific gravity, notwithstanding the difference in the percentage of salt, are always very nearly constant;

rimeligst bliver at tilskrive Observationsfeil. Som Chlorcoefficient kan heraf opstilles

1.809 ± 0.00076

med en sandsynlig Feil af en enkelt Bestemmelse af \pm 0.002 og som Egenvægtscoefficient

$$131.9 \pm 0.058$$

med en sandsynlig Fril af en enkelt Bestemmelse,
af \pm 0.15,

Disse Vardier stemme især for Chlorcoefficientens Vedkommende ganske vel overens med tidligere fundne Værdier, saaledes har baade Forchlammer og Ekman i Middel fundet 1.811, medens de af Andre opstillede Egenvægtscoefficienter overalt ere noget mindre end den af mig fundne.

Ved Hjælp af disse Coefficienter har jeg af de paa Expeditionens Togter udførte Chlov- og Egenvægtsbestemmelser heregnet Vandprovernes Saltgehalt og sammen med Originalobservationerne opført dem i nedenstaaende Tabel.

Egenvægterne ere i Regelen kun aflæste med 4 Decimaler, det 5tr er kun opført, hvor det havde en Værdi nær 5, saa at det kunde vare Tvivl underkastet, om der ved Afrunding skulde formindskes eller forhøies. I de reducerede Egenvægter findes ligeledes kun opført 4 Decimaler. hvor det uden Tvivl kunde afgjøres, til hvilken Side Afrundingen skulde finde Sted, hvorimod der i modsat Fald ogsåa der er tilføiet et 5te. De med * betegnede Egenviegter ere aflaste paa Araometre, hvis Correction ikke er bleven bestemt. Til Optagelse af de til Undersogelse af Saltholdigheden bestemte Vandprøver er fornden det tidligere beskrevne, af Wille construerede, Apparat ogsaa paa grundere Vand ofte henyttet den af Ekman angivne fortrinlige Vandhenter, som imidlertid ifølge den Fremgangsmaade, hvorefter Dyblodninger paa den norske Expedition foretoges, ikke egnede sig til Brug ved storre Dyb.

Ved Velvillie af Professor Mohn har jeg faact opgivet de undersogte Vandprøvers Temperatur i Havet, hvorved det er hleven muligt ogsåa at tilfoic en Rubrik for deres Egenvægter ved denne Temperatur i Forhold til rent Vand af 4°. Af de i Tabellen gjengivne Observationer ere alle indtil No. 149 udførte påa "1ste Togt af Svendsen, alle fra 149 til 225 påa 2det Togt af mig, de øvrige ere ulførte påa sidste Togt af Schmelck og mig i Fædlesskab, saaledes at det største Antal skyldes Schmelck, der dette Aar medfulgte Expeditionen.

and hence the variation in the results should most probably be ascribed to errors of observation. The coefficient of chlorine may accordingly be taken at —

$$1.809 \pm 0.00076$$

with a probable error in a single determination of \pm 0.002, and the coefficient of specific gravity, at —

$$131.9 \pm 0.058$$

with a probable error in a single determination of ± 0.15 .

These values agree closely, in particular as regards the coefficient of chlorine, with those previously found. Thus, for instance, the mean value found both by Forchhammer and Ekman was 1.811, whereas the coefficient of specific gravity given by former observers is somewhat lower than mine.

By means of these coefficients I have computed from the determinations of chlorine and specific gravity the amount of salt in the samples of water collected on the Expedition, and have set down the observations and their results in the accompanying Table, which calls for a brief explanation.

The specific gravities are as a rule not read to more than 4 decimals, a fifth being added only in the event of its having a value of 5, in which case it is often doubtful whether, when rounding off the figures, there should be increase or diminishment. The reduced specific gravities, too. are expressed with 4 decimals only, wherever it was manifest in which direction the rounding off had to be made; when such is not the case, a fifth has been added. An asterisk at the side of a specific gravity denotes that the latter was determined with an areometer for which no correction had been found. Besides the instrument devised by Wille, of which a description has been given. Ekman's excellent apparatus was likewise made use of, in comparatively shallow localities, for collecting the samples of seawater in which to determine the amount of salt; the mode of sounding practised on the Norwegian North-Atlantic Expedition would not admit of its adoption for greater depths.

Professor Mohn has kindly furnished me with the temperatures of the samples of water in situ, which has enabled me to give an aditional column for the specific gravities at those temperatures as compared with pure water of 4°. Of the observations given in the Table, those extending from No. 1 to No. 149 were performed on the first voyage, by Mr. Svendsen; those extending from No. 149 to No. 220, on the second voyage, by myself; the remainder were taken on the last voyage, by Mr. Schmelck and myself conjointly, the greater number, however, by Mr. Schmelck, who that year accompanied the Expedition,

⁴ Rent Vand af 4° er ved denne Redoction valgt sam Enhed, fordi den allerede tidligere er anvendt af J. Y. Buchanan (Proc. Roy. Soc. 24—597). Ved Beregning af Egenvægternes Værdi ved Havets Temperatur i Forhold til Vand af 4° er Forholdet mellem Vulumet af rent Vand ved 4° og 47,°5 sat = 0,998768.

Pure water of 1° was chosen as the unit of reduction, J. Y. Buchanan having previously adopted it as such (Proc. of Roy. Soc. 24, p. 597). When computing the specific gravities at the temperature of the sea, as compared with water of 4°, the ratio existing between the volume of pure water at 4° and 17.5% was assumed to be 0.998768.

Tab. III.

		I.	zengde	Dybde hve ven h	entet. hich the Sam-) (2	Tempe		Egenve				engde. top Salt srot)
No.	Stat.	(North	fra 's Green- wich,	Engelske Favne,	. Moter.	Affaste Egen- Viegter, (Specific Gravity	Under Atlæsnin-	I Havet,	Vod 17,9 5.	Ved _{E0}	Chlor- mengde, (lassat of Chlorine.)	Efter Arco-	Effer Chlor- Imengde
	1		,from reenwich.)	(English Fathoms)	(Me(res.)	read.)	gen. (B'hen read.)	(In Situa)	.1t 17.0 5 17.0 5	At to		(Hy the Areometer.)	(By the
		Esefjord, S	. —	0	0	1.0151*	14.8		1.01465			1.03	
2		Do,	ogn.	1	2	1.0234*	13.7		1.0227	_		2.00	
3		Do,		2	+	1.0237*	12.5	_	1.0228	-	_	3.01	
+		Do.		3	5	1.0241*	13.0	.—	1.0233	_	_	3.07	
5	- 1	Do.		4	7	1.0242*	138		1.0235			3.10 3.16	
6		Dө Бө.		5 6	, (j	1.0240° 1.0245*	17.3	_	1.02395	_		3.22	
7 8		Do.,		7	13	1.0249*	17.0 20.0		1.02545			3.36	
9	2	61" 9.'6 6°	31.79	672	1229	1.0270	16.7	6.7	1.0266	1.0274		3.51	
10	•	Fjærland	d.	0	0	1.0118	9.2	_	1.0107	_	_	1.44	
1.1	_	Esefjore	I.	0	0	1.0147*	12.0	-	1.0130			1.46	
1.2	_	Do	/ . E	I 6.0	'2	1.0188*	12.5	6.6	1.0266	1.0274		2.37 3.51	
13	3	61° 5.′2 5" Huso.		618	1130	1.0262	9.7		1.0246		_	3.24	
14		Do.		0	0	1.0262	9.9		1.02465	_		3-25	_
16	_	Do.		0	0	1.0262	10.2		1.02 17			3.26	
17	_	• Do.		6	1.1	1.0261	10.7	<u> </u>	1.02405		_	3.25	
18	' —	'Do.		6	II	1.0258	15.6	_	1.0252			3.32	
19		Do	41' E	0	0	1.0252	16.8		1.0250		·	3.30	
20			41' E 18.5	0	0	1.0253	16.2	11.5	1.0248	1.02 48	_	3.27	
21	10	61 53.3 3	0	0	0	1 0270	18.0	1.1.1	1.0200	1.0270	. —	3.55	
23	. 14	62 4 2	11.5	0	0	1.0265	10.0	9.9	1.0268	1.0271		3.53	
2 4	1.4	62 4 2	44.5	226	413	1.0268	18.6	6.1	1.0268	1.0277		3.53	1 _
25	16	62 23.9 2	1.7	0	0	1.0275	15.4	10.0	1.02005	1.0269		3.55	-
26	17	62 33 2	4	0	0	1.0271	17.5	11.6	1.0270	1.0260	; —	3.56	
27 28	18	62 44.5 1	48 [,]	. 0 .	0	1.0270		+ I,2.5	1.0269	1.0267		3.55	1
20		62 29 2	34	O		1.0273	16.2	12.5	1.0268	1.0266		3.53	
30	19.	62 23.5 2	50	0	0	, 1.0262	17.5	11.0	1.0260	, L.02005	5 —	3.43 3.38	
31	20	62 16.3 3	8	0	0	1.0256	18.7	11.2	1.0256 1.02495	1.0257	51 ' —	3.29	
32	2 1	62 14.7 3	27.5	0	0	1.0251	17.8 18.0	13.4	1.0253	1.0250		3.34	
3.3	22	62 13.2 3	40.5	0	0	1.0252	19.5	1 12.1	1.0254	1.0253	_	3.35	_
3+ 35	_	62 52.5 5	51.5 16	0	,o	1.0253	18.4	12.8	1.0253	1.0250	-	3.34	
36	_	Christians		0	0	1.0255	17-5	. —	1.0253		_	3.31 3.36	
37	i —	63" 10' 6"	30'	0	0	1.0260	10.2	10.0	1.0255	1.0257	_	3.43	
38	1 24	63 10 5	57-5	0	0	1.0262	17.5	6.0	1.0260	1.0267		,3-13	
39	1 24	63 10 .5	57.5	90	165	1.0202	17.2	11.2	1.0263	1.0264	•	3-17	
40	26	63 10 5	10	0	0	1.0261	17.6	8.11	1.0259	1.0258		3.41	
4 I 42	20	63 7.1 5	17	0	0	1.0264	18.6	11.7	1.0204	1.0264		3.18	
43	_	63 10 4	56	0	0	1.0264	17.5	11.6	1.0262	1.0261		3.46 3.52	
14	32	63 10 4	51.3	430	786	1.0270	17.0	—0.6 II.2	1.0207	1.0260		3.43	_
45	_	63 9 3	56	0	. 0	1.0265	15.8	11.8	1.0254	1.0253	ς —	3.35	_
46	7.2	63 6 3	I O	525	960	1.0270	15.0		1.0272	- 1.0286	-	3.59	
47 48	33	$\begin{bmatrix} 63 & 5 & 3 \\ 63 & 5 & 2 \end{bmatrix}$	57	0	0	1.0271	15.2	11.6		11.0264		3:48	
49		$\begin{vmatrix} 63 & 4 & 2 \end{vmatrix}$	52	0	O	1.0260	14.6	12.3	1.0261	1.0250		3-14	
50	· —	63. 3 2	43	0	0	1.0266	17.3	11.0	1.0263	1.0202		3.52	
51		63 3 12	10	0	0	1.0275 1.0278	14.3	12.0	1.0270		_	3.56	
52		63 5 1	7	587	1073	1.0270	15.0	LO	1.0270	1.0284	_	3.56	-
53		63 5 0	52.5 54	507	0	1.0277	14.8	12.0	1,02695	1.0268		3.55	_
5.4 5.5		63 3 0	51	0	0	1.0273		0.11.9				3.53	
56 56		62 44 2	10	0	. 0	1.0272	16.1	11.1	1.0267	1.0267		3.52	

		· -		Dybde hy ven h	enteta" .		Temper			vægter. : Gravity.)		Saltmo (Amount measo	of Salt
	Stat.	Nordlig Bredde, (North Latitude)	Liengde fra (breen- wich, (Langitude from Greenwich)	Chepth from were ples were Fayne. * Fayne. * (English Fathoms.)	Meter. (Metres.)	Affirste Egen- viegtev. (Specific Gravity read)	Under Affassin- gen.	I Havet. (In Nam)	Ved 17.º 5 17.º 5 17.º 5 170 5 170 5	Ved t" 40	Chlor-manugde. (Amount of Chlorine.)	Efter Arreo- meter. (By the Arcometer.)	Efter Chlor- mengde (By the Amount of Chlorine)
										1.0266		3.51	_
			2 " 37' E	. 0	. 0	1.0277	13.1	11.5	1.0266			3.51	
57 -		62° 37′	2 " 37 E	. 0	0	1.0276	13.7	11.4	1.0269	,		3.55	-
58	'	62 40.5		0	0	1.0277	14.6	11.4	1.0209		-	3.55	
59		62 45	$\frac{1}{1} = \frac{13}{12}$ W		0	1.0275	15.9	11.11	1.0205	7/	-	3.50	
60		63 2	1 14	Ō	0	1.0275	13.4	10.8		5 1.1268	· -	3.52	-
61		63 4	1 19	0	0	1.0277	13.2		1.0267			3.52	
62		63 4	1 24	o o	0	1.0279	12.5	10.4	1.0268		-	3.53	'-
63	4-00	63 8	I 26	0	0	1.0279	12.8	10.4	1.0268		_	3.53	
64		63 12	1 26	0	0	1.0279	0	10.5	1.0267		5 . —	3.52 -	
66		62 11	I 27.	0	0	1.0278		10.8	1.0268	5 1.0270	_	3.54	
67		63 17	1 28	0	0	1.0279		1.0.8	1.0267	1.0268	5 , —	3.52	
68		63 18	1 , 23	. 0	0	1.0250		10.7	1.0270		_	3.50	
69		63 45,	0 57	0	0	1.0277		10.2	(1.027)		5	3.50	
70		63 46	I 0	0	0 0	1.027	1 .6 .	10.8				3.56	
7.1		63 26	1 28	0	0	1.027	/ -	10.4				3 \$5	-
72		63 18	1 38	0	0	1.027	0	10.4				3 56	-
73		, 63 8	1 58	. 0	0	1.027		10.2				3-53	
74		62 58		0	0	1.027	7 14.0	9.8		4 10 80 1		3.56	
75		62 16	3 34	0	0	1.028		Ö-1				3.56	
76	_	62 34	4 · 28	0	0	1.028		10.0				3.54	
77	-	62 20 62 5	0 22	. 0		1.027	8 . 13.8	10.6				3.56	
78			rshavn.	0	0	1.028		9				3.31	
79 80			Do		0	1.026		9	1	·		3.55	
81			D ₀ ,	C		1.027	/ 1 / 6) G.	1 026			3-55	
82	1	Northern L	or Norshpynt extremity of Naules-)				0.	. 1.021		35 —	3.50	
8.		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Do.		.6.			0.		59, 1.028	3 -	3.55	
8.		62" 28".		W. 300	- '- 6 -			1.	I 1.02			3.56	
8	5 . 37	62 28.		. 000			0	9.	3 1.02			3.53	5
- 81		62 15	1 4 32) (.6 1.02	68 1.027		3.53	
8	7 —	62 23	3 20		0 0			10.				3.55	
8	8 -	- 62 28	1.2 29		0 (10				3.55	
- 8	9 =	- 62 37	$\frac{2}{3} \frac{5^2}{30}$		0 (1.02						3.53	
	0 -	- 62 50				1.02	75 14.8					3.5	
	I -	- 62 57 $-$ 63 12			0	1.02						3.5	
)2 -)3	03 22				D 1.02				67 1.028		2 "	
		0 03 22		5 1						675 1.02		- 3.5	
		10 63 22				0 1.02				675 1.02		3.5	
	7 .	0 63 22	4	1		0 1.02				2705 1.02		3-5	
		10 63 22	.5 5 20		~	0 1.03 0 1.03		i . (9.8 Loi	258 1.02		- 3.4	
		- H	teikjavik.		0	0 L0:			0.0? 1.0.	202 1.02		- 3.4	
	99 -	The M	that at Landmid Hallo of Lune Bay)	0	0 L0.	,		3.8 . 1.0.	265 1.02		- 3.5	
- 1		- 63" 40	()		0	0 LO	*		7 2	265 1.02		- 3.5	
		— 63 31			0		278 11.			265 1.02		- 1 3.5 - 3.5	
		-634			0		271 15.	,		265 1.02		- 3.3 - 3.3	
	,	- 63 2 - 63 1	3 19 5		0	0 1.0	273 15-		,	267 1.02		- 3.	
			6 18 1		()		273 16.			269 1.02 266 1.02	685 -	- 3.	
	105 100		7 17 3		0		273 15	2		267 I.02		- 3.	
	107	- 63	7 10 2		0		273 15			269 1.02		_ 3.	
	108	63	*	9 '	Ü		1276 15				· .	<u> </u>	53.
	109	- 63	8 13 5		0		279 : 13			2665 1.0		- 3.	52
	110		20 13 2		0		' '			12695 1.0.			55
	111			8	0		, 0			269 1.0			55
	1 1 2	0	/	5	0	() 1.0	2-11 1.						
	1 54	airk Regn.	Heavy Rain.)										

	er i	Nordi			ængde fra	Dybde hy ven h (Depth from u ples were	hich the Sam-	Affreste	Tempe	ratur.		riegter, Graeny.)		("Ішонц	eengde, t of Sait ared,)
No.	Stat. No.	Bredd (North	?i	Green- wich. (Loughude from Greenwich.)		Engelske Favne, (English Fathoms)	Meter.	Egen- vargter, (Specific Gravity read.)	Under Affæsnin- gen.	I Havet.	Ved 17.º 5 17.º 5	Ved t ⁰ 4 ⁰ At	Chlor- mængde, (Amount of Chlorine,)	Efter Armo- meter, (By the	Efter Chlor- mangde (by the
	,	_							(H. Hen rens.)	10	170 6	2 -		.(reometer.)	Chiorine.
113	_	63 ° 5	7	11	52' W.	0	0	1.0277	13.6	10.2	1.0267	1.0269		3.52	_
111	_	64 1		11	12	0	0	1.0277	0.41	9.5	1.0268	1.0271	_	3.53	_
115	48	64 3		10	21.5	0	0	1.0279	11.5	5.3	1.02655	1.0275		3.50	
117		64 4	0	10	1 2.1	0	0	1.0270	17.5	7.0	1.0268	1.0275		3.53	~
118	_	65 2		8	36	0	0	1.0209	18.0 16,8	7·4 7.8	1.0268	1.0275	_	3.53	
119	_	65 3		7	53	0	0	1.0271	15.0	7.2	1.0264	1.0273 1.02705		3.52 3.48	_
120	5 I	65 5		7	18	0	0	1.0272	15.0	8.0	1.0265	1.02705		3.50	
121	51	65 5	3	7	18	515	942	1.0272	16.0	-o.6		1.0281	_	3.52	
122	5 I	65 5		7	18	1163	2127	1 0272	16.0	1 . 1	1.02665	1.0281	- 1	3.52	
123	. —	65 5		5	36	0	0	1.0269	.18.2	8.4		1.02735	- 1	3-53	
124		05 4		+	18	0	0	1.0270	17.6	9.3	1 0268	1.0272	_	3.53	_
125 126	52 i 52	,	7·5 7·5	3	7 7	515	0 942	1.0270	17.6	9.7	1.0268	1.0271		3.53	
127	52		7.5	3	7	1861	3403	1.0270	17.4	-0.1 -1.2	1.02675	1.0282		3.53	
128	_	64 4		4	24 E.		0	1.0274	13.9	11.0	1.02645	1.02655		3.52	
120	_	64 4		4	2.4	0	0	1.0264	19.5	0.11	1.0266	1.0267		3.51	
130	. —	64 4		4	46	0	0	. 1.0263	19.0	10.8	1.0264	1.0265		3.48	-
131		64 4		5	38	0	0	1.0270	18.0	11.2	1.0269	1.02695	_ '	3.55	. —
132	_	01 1		0	47	0	0	1.0265	19.0	10.6	1.0266	1.0268		3.51	
133	_	64 3		8	0	0	0	1.0205	19.0	10.8	1 0266	1.0207		3.51	
134 135	-97-104	64 2 Mellem	Syillan	nd og	36 Revillen.	0	0	1.0253 1.0220*.	19.2	10.5	* I.02545	1.0250		3.36	
136	63		8) dhu 1 . 3	1111 DING	Revillen O	0	0	1.0278	13.4	11.6	1.0217	1.02675	_	2.86 3.53	
137	68		4.I	8	9	0	0	1.0277	13.0	11.6	1.0266	1.0266	_ '	3.51	_
138	7.3		6.5	7	28 *	0	0	1.0276	13.0	11.3	1 0265	1.0265		3 50	-
139	_	64 4		6	45	0.	0	1.0277	13.0	11.5	1.0266	1.0266		3.51	_
140	_	64 4		6	26	0	0	1.0281	12.2	11.6	1.02685	1.0268		3.54	_
111	_	64 3,		5	31	0	0	1.0278	14.2	11.8	1.0269	1.0269		3.55	Ŧ
142			 2	5	3.5	0	0	1.0277	13.8	11.7,	1.02075	1.0267		3.53	
143	-89	, '	I	5	12 7.5	0	0	1.0277 1.0277	13.8	12.0	1.02675	1.0207		3·53 3·53	_
145	_	, '	0	6	12	0	0	1.0279	12.0	11.1	1 0266	1 02665		3.51	_
46	_	63 48	8	6	12	0	0	1.0268	12.8	12.8	1.0257	1.0264	— ,	3.39	_
47	_	63 2		6	47	0	0	1.0259	12.8	. —	1.0248	_	_	3.27	_
148	_		Str		0.1	. 0	0	1.0250	14.2	_	1.02415		_	3.19	_
49	94		8,2	4°	38'	0	0	1.0259	12.0	9.8		1.0248	_	3.23	_
50	04	7	8.2	+	38	145	265	1.0263	12.0	5.0	1.0240	1.0258		3.28	
51 52	. 95 95		2.5 2.5	1	13.7	0 175	0 320	1.0254	12.9 11.9	9.4 5.8	1.0242	1.0245		3.18 3.48	_
53	93	64 4		1 2	13.7 50	. 0	. 320	1.0276	12.7	9.4	1.0263	1 0267	_	3.47	_
54	96		8.5	3	0	0	0	1.0278	13.5	8.2	1.0266	1.0272		3-51	-
55	96		8.5	3	0	805	1472	1.0275	14.9	— I.I	1.0266	1.0280	. —	3.51	_
56	97	66 2	2	4	2 1	683		1.0284	10.9	1.1	1.0268	1.0283	_	3.53	
57	98	65 50		5	2 I	388		1.0278	13.0	-1.0	1.02655	1.0280		3.50	
58	99		1.5	6	25 .	213	390	1.0277	13.5	6.1	1.0265	1.0274	_	3.50	
59 60	101	65 36		8	32	222	0 408	1.027,0	12.6	9.4 6.0	1.0263	1.02665	_	3 47 3-51	~
61	101	65 28		9	32 56	223 162	296	1.0282	11.4	6.5	1.0200	1.0275	_	3.52	. –
	124	66 41		6	59	0	0	1.02735	14.5	8.4	1.0264	1.0269	· —	3.48	-
63	125	,	2.5	5	12	0	0	1.0282	10.1	7.0	1.0265	1.0272	1.957	3.50	3-54
64	125	67 52	2.5	5	12	700	1280	1.0280	10.4	-1.1	1 02635	1.0278	1.951	3.48	3.53
65	137	67 24		8	58 .	O	0	1.02745	9.9	8.2	1.0257	1.0263		3.39	_
66	137	67 24		8	58	400	732	1.0281	11.7	-1.0	1.0266	1.0281	1 800	3.51	
68	143	66 58 66 58		10	33',	189	0 346	1.0273	10.7	8.2 6.2	1.0257	1.0202	1.899	3.39 3.50	3.14
68	143				33 11. Torne		340	1.02/9	12.0	0.2	1.0203	110273	11930	3.30	3.3+

				Dybde hvo			Tempe		Egenv	· ·		Saltmængde.		
		Vordlig	Længde fra	"(Depth from w ples were	rhich the Sau- callected 1	Allasti	(Temper	ature.)	(Sperific	Granty.)	Chlor-	niegza	ured.)	
No.	Stat.	Bredde.	Green-			Egen- vægter.	15s law		Ved	Ved	mængde,	Efter	Efter	
.¥0,	Xo.	(North	wich.	Engelske	35 4	1 Specific	Under Aflæsnin-	I Havet.	17.0 5	10 10	(Amonut of Chlorine)	Arnio-	Chlor-	
		Latitude)	(Longitude from	Pavne.	Meter. (Metres.)	Gravity rend)	gen.		17.7 5	-it		meter.	miengdo. (Ey the	
			Greenwich)	(Euglish Fathons)	(.uetres.) ,		(When read.)	(In Situ)	174 5	±10 ≱ n		(By the .1reometer.)	Amount of Chloriue, 1	
									170 5					
169		Hidoni (Historia	ved Bode. mar Bode.)	. 0	0	1.0091*	11.7		1.0083	_	-	1.00	_	
170	152	67 " 18'	12° 46′ E	. 0	0	1 0266	14.3	8.2	1.0256	1.0261	_	3.38		
171	152	67 18	12 46	70	128	1.0270	13.5	4. I	1 02585	1.0200		3.41	_	
172	152	67 18	12 46	125	229	1.0274	13.5	1.1 1.2	1.0202	1.0273	1.943	3.46 3.51	3.5 I	
173	102	68 23	IO 20 II Hasselfjord:	795	1454	1.0270	17.2	8.8	1 0250	1.0264	1.194.)	3.41	.,,,,,	
17.1	171	69" 18'	the throng (jamb)	0	0	1.0272	11.0	0.0	1.0258	1.0262		3.40		
175	171	60 18	I4 20	642	1174	1.0282	9.9	-1.0	1.0265	1.0270	— .	3.50	_	
177	176	60 18	.14 32.7	0	0	1.0270	13.3	8.0	1.0258	1.0264		3.40		
178	179	69 32	11 10	0	0 +	1.0280	10.0	8.8	1.0264	1.0269	1.945	3.48	3.52	
179	179	69 32	11 10	1607	2939	1.0282	9.7	-1.2	1.0264	1.0270	1.935	3.48	3.50	
180	183	69 59.5	6 15	0	0	1.0279	13-3	8.6	1.0207	1.0272	1.952	3.52	3.53	
181	184	70 +	9 50	0	0	1.0280	12.0	7.6	1.0207	1.0273	1.943	3.52	3.51	
182	184	70 4	9 50	600	1097	1.0279	12.8	0.0 —1.3	1.0265	1.0280	1.928	3.51° 3.50	3.49	
183.	184	70 +	0 50	1547	2829	1.02705 1.0276	13.4	-1.3	1.0203	1.0282	1.933	3.53	3.50	
184 185	187	60 43	14 41	1 3 3 5	2 1	1.0278	13.2	0.0	1.0266	1.0270	1.939	3 5 1	3.51	
186	180	60 41	15 42	0	0	1.0275	13.2	0.6	1.0263	1.0206	1.923	3.47	3.48	
187	180	60 41	15 42	860	1573	1.0279	12.0	-1.1	1.0266	1.0281	1.931	3.51	3.49	
188	200	71 25	15 40.5	O	0	1.0282	9.9	7.8	1.0265	1.0271	_	3.50	_	
180	200	71 25	15 40 5	620	1134	1.0285	9.4	1.0	1.0267	1.0281	1.949	3.52	3-53	
190	206	70 45	14 36	0	• 0	1.0282	9.5	8.2	1.0264	1.0270	1.945	3.48	3.52	
IOI	206	70 45	14 36	700	1280	1.0285	. 8.7	-0.7	1.0266	1.0280	1.945	3.51	3.52	
102	200	70 45	14 36 Matangenfjord.	1248	2282	1.0283	9.2	1.1	1.0265	1.0279	1.945	3.50	3.52	
193		(Entrance to the	e Malangen Flord.	0	0	1.0255	21 =		1.0261	1.02675	1.744	2 1 1	3.15	
104	212	70° 12.5	17 41	0 1 2	260	1.0255	17.6	7.2 5.8	1.02685	1.02775	1.040	3.44	3.51	
195	213	70 12.5	2 30	0	0	1.0277	14.2	8.2	1.0267	1.0272	1.956	3.52	3.54	
197	213	70 23	2 30	1760	3219	1.0274	15.5	-1.2	1 0266	1.02805	1.951	3.5 I	3.53	
198	215	70 53	2 0 W	. 0	0	1.0276	14.0	8.0	1.0267	2.0273	1.945	3.52	3.52	
199	215	70 53	2 0	200	366	1.02755	15.2	2.8	1.0267	1.0279	1.945	3.52	3.52	
200	215	70 53	2 0	700	1280	1.0276	14.3	-b.6	1.0266	1.0280	1.935	3.5 I	3.50	
201	215	70 53	2 ()	1665	3045	1.0275	14.5	-1.2	1.0205	1.02795	1.939	3.50	3.51	
202	217	71 O	5 8.5	0	0	1.0283	6.5	1.6	1.0262	1.0272		3.46	1-1010	
203	225	(Lastern Extren	(By of Jun Mayou.)	0	0	1.0280	1.0 0.2	3.0 3.4	1.025031	1.0208	_	3.38		
205	226	70" 58' 70 59	7 51	0	. 0	1.0277	10.5	3.0	1.0261	1.0272	1.893	3.43	3.42	
206	226	70 50		. 340	622	1.0282	9. I	-0.6	1.02635		1.936	3 48	3.50	
207	_	69 20	11 18	+ 0	0	1.0276	12.8	4.3	1.0263	1.02745		3.47	3.48	
208	_	68 33	7 25	0	0			6.0		_	1.936		3.50	
200	243	68 32.5	6 26	0	0	1.0280	12.8	7.8	1.0267	1.0273	1.945	3.52	3.52	
210	2 + 3	68 32.5	6 26	600	1097	1.02715	16.7	-0.8	1.0266	1.0280	1.927	3.51	3.49	
211	243	68 32.5		1385	2533	1.0286	5.7	-1.3	1 0201	1.0278	1.040	3.48	3.51	
212	2 + 5 2 + 7	68 21 68 5.5	2 5 2 2 1 E	0 0	0	1.0280	13.4	0.0	1.0268	1.02725		4.53	2.53	
214	2 + 7	68 5.5	,	500	014	1.02,6	13.1	0.4	1.0207	1.0271	1.954	3.52	3.53	
215	2 17	68 5.5		1120	2048	1.0275	14.5	~ 1.2	1.0265	1.0230		3.51 3.50	3.49	
216	249	68 12	6 35	1003	1944	1.0274	15.4	-1.3	1.0266	1.0280	1.937	3.51	3.50	
217	2 5 I	68 6.5	9 44	0	0	1.0276	13.9		1.0265	1.0262	1.927	3.50	3.49	
218	252	(Nouth	or Skransen.)	0	0	1.0254	19.2	14.03	1.0254	1.0249	1.820	3.35	3.29	
210	253		stadíjord, —	0	0	1.0178*	14.4	13.0	1.017.3	1.0168	1.261	2.28	2.28	
220	253		Do.	263	481	1.02755	11.2	3.2	1.0260	1.02715		3.43	3-41	
221	25+	67" 27' 67 27	13" 25' 13 25	.70	128	1.0256	12.6	10.0	1.0253	1.0255	1.843	3:34	3.33	
223	254	67 27	13 25	140	256	1.0276	11.2	4.8 5.8	1.02625		1.929	3 46	3.49	
224	_		oliavet.	0	0	1.0262	12.0	3.0	1.0248	1.0276	1.931	3.52	3.49	
									10040		1.022	3-27	3.29	

		Nordlig Bredde,		7		Dybde hy ven h	orfra Pro-) entet.		Tempe	ratur.	Egenv	wegter,			sengde,
				Langde fra		(Depth from which the Sam- ples were collected.)		Aflaste	(Temperature)		(Spreigle Gravity.)			(Amount of Salt measured)	
3.5	Stat.			(trech-	-		Egen-			, , -	11	Chlor-		
No.	No.	(3	iversh		wich,	Engelske	,	vægter,	Under	1	Ved 17.º 5	$\frac{Ved}{t^{o}}$	macngde.	Efter	Efter
	1,0,		(tude.)	(7	ongetinte	Favne.	Meter,	(Specific Gravity	Aflæsnin-	Havet,	17.0 5	10	(Amount of Chlurum)	Arneo- ineter.	Chlor- mængde,
				61	from reenwich.)	(English	(Metres.)	read.)		(In Situr)	. \$1	.lt		(hg the	· (Eig. the
						Futhoms.)			(When read.)	f '	170 S 17n S	y 0 g -		Areometer.)	(Thioring)
	1														
225	255	68°	12.3	15 "	40' E.	0	0	1.0262	14.3	10.7	1.0252	1.0253		3.32	
226	255	68	12.3	15	40	300	549.	1.0280	12.0	6.5	1.0267	1.0275		3.52	
227	256	70	8.5	23	+	. 0	0	*		_			1.118		2.02
228	256	70	8.5	23	+	225	411	1,0280	10-0	1.0	1.020 ‡	1.0275	1.030	3-48	3-40
220	258	70	12.6	23	2.5	0	0	1.0276	8.3	11.6	1.0257	1.0250	1.865	3.30	3.37
230	258	70	12.6	23	2.5	230	421	1.0282	6.9	1.0	1 0201	1.0272	1.007	3.44	3-15
231	259	70	48.0	² 5 ₂ 8	59	80 0	146	1.0286	0.7	4.1	1.02045	1.0275	1.0 12	3-19 3.00	3.51
232 233	201 261	70 70	47·5 47·5	28	30 30	127	232	1.0240	10.0	7·4 2.8	1.0204	1.0276	1.713	3.48	3-17
234	262	70	36	32	35	0	0	1.0282	8.5	5.6	1.0263	1.0272	1.921	3-17	3-47
235	262	70	36	32	35	148	271	1.0284	8.0	1.0	1.0205	1.0278	1.032	3.50	3.10
236	263	70	44.5	34	14	121	2 2 I	1.1286	6.9	1.9	1.0265	1.02775	1.027	3.50	3.40
237	264	70	56	35	37	0	0	1.0279	11.3	5-2	1.0264	1.0273	1.020	3.48	3.49
238	264	70	56	35	37	. 86	157	1.0281	11.1	1.9	1.0266	1.02785	1.034	3.51	3.50
239	268	7.1	36.5	36	18	0	0	1.0284	8.7	4.4	1.0265	1.02755	1.025	3.50	2.48
240	268	7.1	36.5	36	18	130	238 .	1.0285	8.9	1.0	1.0266	1.0281	1.038	3.51	1.51
2 + 1	270	7.2	27.5	35	I	0	0	1.0284	9.0	3.6	1.02055	1.0277	1.037	3.50	1.50
2 4 2	27,0	7 -2	27.5	35	I	136	240	1.0286	8.9	0.0	1.0207	1.0281	1.937	3-52	3.50
2+3	272	7.3	10.8	33	3	113	207	1.0285	8.0	1.5	1.0266	L.0279	1.037	3.51	3.50
2+4	. 273	7.3	25	31	30	0	0	1.0285	8.7	1.0	1.0266	Lo276	1.038	3.51	3.51
245	273	7.3	2.5	31	30	107	360	1.0285	8.5	2.2	1.0265	1.0278 1.0277	Li0 13	3.51 3.50	3.51 3.50
2 4 6	275	7.4	8	31	1.2	0	0	1.0287	5.9	2.0	1.0205	1.0277	1.035	3.52	3.50
2 17	275	7+	8	(3 I	1.2	147 O	26g 0	1.0286	5·5 5·9	4.2	1.0264	1.02745	117,50	3 18	,, ,, ,
248	278	74	1.5	22	27 27	230	421	1.0287	5.3	0.9	1.0261	1.0278		3.48	
249	278 280	7 + 7 +	10.5	18	51	0	0	1.0282	0.3	1.2	1.0264	1.0277	_	3.48	
250 251	280	7 1 1	10.5	18	51	35	64	1.0283	9.1	Ι.Ι	1.0205	1.0278		3.50	
252	281	74	3	17	18	0	0	1.0285	8.9	4.6	1.0266	11.02765	1.967	3.51	3.56
253	281	74	3	17	18	115	210	1.0287	8.8	2.2	1.0268	1.0281	1.030	3.53	3.51
254	283	7.3	47.5	14	21	0	0	1.0282	11.3	7.2	1.0267	1.0271	1.938	3.52	3-51
2.55	284	7.3	I	1.2	58	O	0	1.0283	, LI.2	6.8	1.02075	1.0275	F046	3.53	3.51
256	286	7.2	57	1.4	32	447	817	1.0284	9.5	-o.8	1.0266	1.02805		3.51	-
257	289	72	41.5	20	18	0	0	1.0282	11.1	7.6	1.02005		_	3.52	(
258	289	7.2	41.5	20	81	219	100	1.0282	11.1	2.0	1.02665	1.0279	1.126	3.52	3.50
259		71	5+	2 [57	0	0	1.0280	12.0	7.4	1.0260	1.02725		3-51 3-53	3.52
260		7 I	5+	21	57	194	355	1.0284	10.5		1.02495	1.02795	1.000 }	3.29	3.45
261	293	7.1	7	21	11	0	0	1.0272	5.0 5.3	_	1.02495		1.043	3.35	3.51
262	293	7 I	7	21	11	95	174	1.0272	. 49		1.02495		1.918	3.20	3-47
263	294	7 I	35	15		637	1165	1.02/2	7-1	I.2		1.02775		3-17	3.50
264	294	7 I	35	15	11 40	037	0	1.0278	13.5	7.0		1.02735		3.52	3.51
265 266	295	7 I 7 I	59	11	30	100	183	1.0283	10.1	3.2	1.0266	1.0278	1.0 ‡2	3.51	3.5 I
267	295	7 I	55 55	11	30	600	1097	1.0281	10.7	0.8	1.0205	1.0270	1.936	3.50	3.50
268	295	7 T	59	II	40	1110	2030	1.0278	13.3	1.3	1.0266	1.02805	1.031	3.51	3 50
269	296	7.2	15.5	8	9	100	183	1.0286	7.1	3.1	1.0205	1.0277	1.011	3.50	3-52
270	206	72	15.5	8	9	600	1097	1.0287	7 - 1	-0.5	1.0200	1.0280	1.939	3.51	3.51
271	297	7 2	36.5	5	1.2	0	0	1.0284	5.9	1.8	1.0202	1.0272	1.928	3.46	3 40
272	297	7.2	36.5	5	1.2	1280	2341	1.0286	5.0		1.0263	1.02775		-3-17	3.18
27.3	298	7.2	52	1	50.5	0	O	1.0272	15.1	1.0	1.0203	1.0274	1.017	3-17	3.47
271	298	7.2	52	ī	50.5	1500	2743	1.0271	16.8	1.5	1.0260	1.0280	1.015 ?	3.51	3.12
275	299	7.3	10	2*	-1+W		0	1.0269	13.7	3.6	1.0258	1.0259	1.810	3.26	3.27
276	300	73	10	3	2.2	0	0	1.0255		. 1.7	,1.0247 1.0253	1.0259	1.837	3.34	3.32
277	301	7.4	1	I	20 ·	0	0	1.0263	143 79	3.0	1.0255	1.0277	1.037	3.50	3-47
278	302	7.5	16	0	54 E	0	0	1.0285	6.5	3.3		1.0273	1.011	3.45	3. ‡6
279	303	7.5	1.2	3	2 E.		O 274	1.0288	1.1			1.0270	1.929	3.10	3-49
280	303	7.5	1.2	3	2	150	-/-+	110200	7.1		- 717				

No.		Vardtie		Længde fra		Dybde hvorfia Proven hentet. (Depth from which the Samples were collected.)		Aflæste	Temperatur.		Egenvægter. (Specific Gravity.)		- Chlor-	Saltmængde. (Amount of Salt measured)	
	Stat.	Bi (2	Nordlig Bredde. (North Latitude.)		Green- wich. Longitude from	Engelske Favne.	Meter.	Egen- vægter. (Specific Gravity read.)	Under Aflæsnin- gen.	I Havet.	Ved 17.º 5 17.º 5	Ved '0 4''	mengde. (Amount of Chlariae.)	Efter Aræo- meter.	Efter Chlor- mængde.
				f	reenwich.)	(English Fathoms-)	(Metres.)		(When read.)	(In Situ.)	At 17.0 & 17.0 &	At t 0 2 0		(By the Areometer.)	(By the smount of Chlorine.)
281	304	75 "	3.	4	51' E	300	549	1.0273	14.9	-o.8 ·	1.0264	1.0278	1.929	3.48	3.49
282	304	7.5	3	+	51	1735	3173	1.0273	14.5	 1.5	1.0263	1.02775	1.940	3.47	3.51
283	305	7.5	1.5	7	50	0		1.0272	14.8	5.3	1.0263	1.0272	1.947	3.47	3.52
284	306 306	75	0	10	27 27	1.221	2140	1.0275 1.0272	. 14.1	5 4	1.02645	1.0274	1.929	3.49	3.49
286	310	75 74	56	13		1334	2440	1.0274	14.9	-1.3	1.0263	I.0277 I.0274	1.920	3.47	3.47
287	310	74	56	1.3	50	1006	1840	1.0275	14.7	5·5 —1.4	1.0264		1.935	3.48	3.50 3.49
288	316	74	56	16	29	0	0	1.0269	14.7	3.6	1.02595	1.02705	1.903	3.42	3.44
289	316	74	56	16	29	129	236	1.0275	14.6	1.9	1.02655	1.0278	1.930	3.50	3.49
290	321	7.4	56.5	10	30	25	46	1.0275	9.7	0.2	1.02575	1.0271	-	3.40	~~~
29 I	323	72	53.5	2 I	5 I	0	0	1.0283	9.7	7.8	1.02655	1.0272	1.947	3.50	3-52
202	323	72	53.5	21	51	223	408	1.0284	8.9	1.5	1.0265	1.0278	1.933	3.50	3.50
293	326 326	75	31.5	17	50	0 '	0	1.0276	8.9	4.8	1,02575	1.0267	1.904	3.40	3.44
295	328	75 75	31.5	17	50 30	0	225	1.0284	8.7	1.6	1.0265	1.0278	1.930	3.50	3.49
296	328 .	75	42	15	39	200	366	1.02/9	. 9.9 9.8	4·7 —1.3	1.0262	1.0272 1.0279	1.908	3.46	3.45
207	331	75	51	13	5	0	0	_		 			1.942	3.49	3.50
298 -	332	75	56	II	36	1110	2101	1.0286	6.3	—i.5	1.0264	1.0279		3.48	3.50
299	334	76	12.5	1.4	0	0	0	1.0275	13.7	6.0	1.0264	1.0272	1.923	3.48	3.48
300	334	76	12.5	14	O	403	737	1.0277	13.7	0.1	1.0266	1.0279	1.935	3-51	3.50
301	335	76	16.5	14	39	0	0	1.0270	15-5	5.4	1.0262	1.0271	1.914	3.46	3.46
302	335	76	16.5	1.1	30	179	327	1.0276	13.4	1.0	1.0264	1.0277	1.940	3.48	3.51
303 304	1339 339	76 76	30 30	1.5 1.5	3 9	0	68	1.0267	12.7	2.6	1 0254	1.0260	1.867	3.35	3.38
305	342	76	33	13	18	37	0	1.0273	13.6	6.2	1.02635	1.0275	1.924	3.45	3 48
306	342	76	33	13	18	523	956	1.0277	12.2	-1.0	1.0263	1.0277	1.935	3.48 3.47	3.50 3.50
307	344	76	42	I 1	16	0	0	1.0283	6.2	5.2	1.0261	1.0271		3.44	3.50
308	347	76	40.5	7	47	0	0 ,	1.0277	11.3	4.4	1.0262	1.0272	1.924	3.46	3.48
309	347	76	40.5	7	47	1429	2613	1.0278	11.6	-1.3	1.0263	1.02775	1.935	3.47	3.50
310	349	76 76	30	2	57	0	0	1.0274	I I . 2	3.8	1.02585	1.0269	1.898	3-41	3-43
311	349	76	30 26	2	57 29 W.	1487	2719	1.0277	11.3	-1.5	1.0262	1.0276	1.946	3.46	3.52
313	350	76	26	0	20	300	549	1.0270 1.0270	10.9	-1.I	1.0254	1.0266	1.872	3.35	3.39
314	350	76	26	0	20	1686	3083	1.0276	10.8	—1.1 —1.5	1.0203	1.02775	1.922	3-47	3.48
315	352	77	56	3	29 E.	0	0	1.0272	12.8	3.9	1.0250	1.0270	1.908	3.43	3·47 3·45
	352	77	56.	.3	29	300	549	1.0274	14.0	-0.8	1.0263	1.02775	1.928	3.47	3 49
317	355	78	0	8	32	0		1.0275	10.3	4.9	1.0258	1.0268	1.890	3.40	3.42
318. 319	355	78 78		8	32 18	948		1.0280	9.9	1.3	1.0263	1.0277	1.927	3 47	3.49
320	357 350	78 78	_	9	25	0	0	1.0261	100	5.0	1.02455	1.02545	1.797	3.24	3.25
321	359	78	2	9	25	416		1.0256	5·3 13·7	4-3 0.8	1.02575	1.0268	_	3.40	_
322	361	79	8.5	5	28	0		1.0278	11.5		1.0265	1.0278	1.925	3.50	3.48
323	361	79	8.5	5.	28	905	1655	1.0272		-12	1.02595		1.906	3.47	3-45
324	362	79	59	5	40	0	0	1.0274	13.0	5.2	1.02615		1.920	3·42 3·45	3·49 3·47
325	362	79	59	5	40	459	839	1.0275	12.8	0.1	1.0262	1.0276	1.922	3.46	3.48
326 327	363 363	80 80	0	- 8 - 8	15	0		1.0276	10.0	4.6	1.0260	1.0270	<u> </u>	3 +3	
328	303	00	Ved No	ero la rorera	15	260		1.0284	7.7	I.I	1.0264	1.0277	1.945	3.48	3.52
329		7	or‱ xoo Magda	lene	bay.	0		1.0283 ·	1.I	2.7	1 02595			3.42	-
330	368	78°	4.3	81		0		1.0266	13.0	2.2 16	1.02545 1.0254		_	3.36	
331	368	78	43	8	20	315		1.0286	8.5	1.6		1.02635	1026	3.35	
332	2.7	78	34	9	22	0	0	1.0262	11.9	4.5	1.0248	1.0258	- 1.936	3.52	3.50
333	372	78	9	1.1	1.2	0		1.0258	5.0			1.0246	(3 27 3.11	
334	373	78	I O methigen	ar Ada	26 entling	0	0	1.0250	12 5 5·3	4.0	L0237	1.0247	- 1	3.13	_
335			attinger to												

Af denne Tabel fremgaar det, at Differentserne mellem de ved Hjælp af Egenvægt og Chlormængde beregnede Saltmængder i Regelen ere meget sman, kun de 3 samtidig udforte Bestemmelser i Vandprøverne No. 26f, 262 og 263 danne i saa Henseende en Undtagelse. De store her optrædende Differentser skyldes uden Tvivl en Feil ved Affresningen af Egenvægterne, som for disse Vandprovers Vedkommende ere fundne altfor lave, til at de kunne bringes i Harmoni med andre paa Steder i Nærheden udførte Observationer. Det er saaledes i høi Grad paafaldende for Vandprøven No. 262, optagen fra et Dyb af 95 Favne (174 Meter) i ca. 8 Miles Afstand fra Land, at finde Egenvægten 1.0254, medens man i de indenfor liggende Fjorde, hvor Saltgehalten ellers overalt er mindre end paa Havet, i lignende Dyb finder en meget større Egenvægt. Selv i den indelukkede Skjærstadfjord, hvor Overfladevandet er særdeles fattigt paa Salte, fer dog Egenvægten paa Bunden funden at være 1,026, kort sagt. Egenwegter som de i de omtalte Tilfælde observerede staa paa dette Strog af Kysten fuldstændig uden Sidestykke. Naturligst lade disse Urimeligheder sig forklare ved at autage Egenvægterne aflæste med 0,001 for lavt, da de ved denne Antagelse paa det Nærmeste kan bringes i Overensstemmelse saavel med de i de samme Vandprover ndførte Chlorbestemmelser som med de andre Observationer fra nærliggende Puncter.

Bortser man fra disse 3 nævnte Observationer og af de ovrige beregner den gjennemsnitlige halve Differents mellem to paa samme Vandprove ved Hjælp af Chlortitrering og Aræometer udførte Saltbestemmelser, resulterer som Udtryk for denne 0.00904, eller man erholder under Forndsætning af, at Feilene i lige høi Grad skyldes Chlor-som Egenvægtsbestemmelserne, for den gjennemsnitlige Feil af en Egenvægtsbestemmelse Værdien 0.000069 og af en Chlorbestemmelse 0.005. Differentserne falde, som man ser, snart til den ene snart til den anden Side, idet det dog man bemærkes, at Chlormængden gjennemsnitlig giver lidt over 0.008 % høiere Saltgehalt end Egenvægterne, hvad der næsten ndelukkende skyldes de nordenfor den 75de Breddegrad udførte Observationer.

Forend jeg nu gaar over til at give en Oversigt over de Resultater, som af disse Observationer lader sig udlede, vil det være nødvendigt parenthetisk at indskyde nøgle Bemærkninger om Dybde- og Temperaturforholdene i det norske Hav i sine groveste Træk. Hvad der til den Ende her meddeles, er hovedsagelig hentet fra en af Professor Dr. Mohn forfattet Afhandling, som findes trykt i C. F. Schübelers "Væxtlivet i Norge."

Dybden i det af den norske Expedition undersogte Hav, forsaavidt det ligger vestenfor en Linie fra Spitsbergen til det nordlige Norge, er i større Afstand fra Land overalt over 1000 Favne (1829 Meter) og gaar i Regelen op til mellem 1500 og 2000 Favne (2743 og 3658 Meter) eller endog derover. Paa Stroget mellem Beeren Eiland og Jan Mayen hæver sig en Ryg, hvor Dybden ikke naar 1500 Favne (2743 Meter), medens der saavel sondenfor

This Table shows the differences in the amount of salt computed from specific gravity and the proportion of chlorine to be, as a rule, exceedingly small, the 3 determinations performed successively with samples Nos, 261, 262, and 263 constituting the sole exception. The great ditferences observed here must unquestionably arise from erroneous readings of the specific gravity, which, as found for these samples, is much too low when compared with that determined for others obtained from adjacent localities. Thus, for instance, the specific gravity of sample No. 262, drawn at a depth of 95 fathous (174 metres), about 8 geographical miles from land, is stated to be L0254, whereas that determined for the water of the neighbouring fjords, in which the amount of salt at equal depths is invariably less than in the open sen, was much greater. Even for a frith locked in as is the Skjærstadfjord. where the surface-water is remarkably deficient in salts. the specific gravity of bottom-samples was found to be 1.0260; in short, such exceptional specific gravities are without a parallel on this line of coast. The most natural explanation of these incongruities, is afforded by assuming the specific gravity in each case to have been read 0,001 too low; the results could then be made to agree pretty closely both with the chlorine-determinations performed with the same samples of water and with observations taken in adjacent localities.

Now, if we disregard the 3 exceptional observations, and for the others compute the average half-difference between two salt-determinations performed with the same sample of water by means of the arcometer and titrating with chlorine, this will be expressed by 0,00904; or, assuming the errors to lie equally in the chlorine and the specific gravity determinations, the mean error of a specific gravity determination is 0,000069, and of a chlorine-determination 0,005. As will be seen, the differences between the 2 right-hand columns of the Table are sometimes positive, sometimes negative; but the amount of salt indicated by the proportion of chlorine exceeds on an average that denoted by the specific gravity by a trifle over 0,008 per cent, which must be referred almost exclusively to the observations taken north of the 75th parallel of latitude,

Before proceeding to review the results deducible from these observations, it will be necessary to interpolate a few general remarks on the depth and temperature of the Norwegian Sea. To this end, I shall merely recapitulate what Professor Mohn has stated on the subject in a Memoir printed in C. F. Schübeler's "Vextlivet i Norge."

The depth of the Sea investigated by the Norwegian North-Atlantic Expedition was found to be as follows: Throughout the tract extending west of an imaginary line drawn from Spitzbergen to the northern extremity of Norway, it is never less than 1000 fathoms (1829 metres) some considerable distance from land, and generally ranges from 1500 to 2000 fathoms (2743—3658 metres): may, in some places if is even greater. Between Beeren Ei-

10

som nordenfor findes betydelig større Dyb paa indtil over 2000 Favne (3658 Meter). Østhavet, det vil sige Havet østenfor en Linie fra Spitsbergen til det nordlige Norge, er overalt meget grundt, da Dybden der paa faa Steder overskrider 200 Favne (366 Meter).

De talrige udforte Temperaturobservationer vise, at Vandet i den af Expeditionen undersogte Del af Osthavet med Undtagelse af den østligste og nordligste Strækning holder Varmegrader ligefra Overfladen til Bunden, saaledes som dette ogsåa er Tilfælde med Vandet paa de norske Banker, som paa enkelte Steder strækker sig ud til en ikke ubetydelig Afstand fra Kysten. Helt anderledes er Forholdet i det vestenfor liggende dybere Hav, som med Hensyn paa Temperaturforholdene naturlig kan inddeles i 2 Hovedstrog, den i den østlige Del nordover gaaende saakaldte Golfstrøm og den i den vestlige Del sydover gaaende ostgronbudske Polarstrom. Grændsen mellem disse gaar nordenom Island op til dan Mayen, bøier i en Buc sondenom og østenom denne og øverskrider paa omkring 3° vestlig Længde med nordostlig Retning den 71de Breddegrad. Herfra gaar den mod Ost til henimod 7 ostlig Længde og fortsætter derfra i nordlig og lidt vestlig Retning til nordenom den 80de Breddegrad.

l den ostenfor denne Grændse beliggende Del af Havet besidder Overfladevandet en forholdsvis høi Temperatur, der endog overskrider Luftens midt om Sommeren, hvorhos ogsåa Vandet i de nærmest under Overfladen beliggende Lag holder Varmegrader, saaledes at 0° først foretindes i et Dyb af omkring 500 Favne (914 Meter), hvorfra Temperaturen jevnt og langsomt synker til omkring – 1.°3 ved Havbunden.

I den østgrønlandske Koldvandsstrøm er derimod Temperaturen i selve Overfladen meget lav men om Sømmeren i isfrit Vand dog øveralt over 0", medens den allerede fra faa Favnes Dyb og nedover lige til Bunden holder sig under 0".

Med Hensyn paa Saltgehalten i Overfladevandet henvises til Kartet No. I, hvori findes indtegnet en større Del af de Tal, der fremgaa som Middel af de efter Chlorog Egenvægtsbestemmelserne beregnede Værdier for Saltmængden. Efter disse Observationer findes ogsaa optrukket Grændserne for 3,55, 3,50, 3,45 og 3,40 % Salt, sanledes som deres Form maa antages at være i Sommermaanederne. Kartet viser, at den i Syd ind i det norske Hav strømmende Varmvandsstrom forer Vand af temmelig stør Saltgehalt, som i de sydligste Egne paa begge Sider af Færoerne gaar op til 3,55 % eller endog derover. Herfra gaar Strømmen videre i nordostlig Retning med noget lavere Saltgehalt (omkring 3,525 %) indtil henimod Beeren Eiland, hvor den deler sig og sender en Arm mod Ost ind i Osthavet og en anden i nordlig og noget vestlig Retning

land and Jan Mayen there is a vast ridge, and here the depth does not reach 1500 fathoms (2743 metres); but south and north of that ridge it is much greater, in some localities more than 2000 fathoms (3658 metres). Barents' Sea, or, the tract of ocean stretching between Novaja Zemlja and an imaginary line drawn from Spitzbergen to the northern extremity of Norway, is everywhere exceedingly shallow, the depth in but few places reaching above 200 fathoms (366 metres).

The extensive series of observations shows that the temperature of the water throughout the part of Barents' Sea investigated by the Expedition, saving the most easterly and northerly tracts, exhibits everywhere a temperature above zero, from the surface to the bottom, as is also the case with the water on the great Norwegian banks, which, in certain localities, extend to a considerable distance from the coast. A very different relation rules in the deep western section, which, as regards temperature, may be divided into two principal tracts, an eastern, with the Gulf Stream, as it is called, flowing north, and a western, with the Arctic current, flowing south, along the shores of East Greenland. The boundary-line between these two currents extends north of Iceland to the island of Jan Mayen, where it makes a bend sonthward and eastward, crossing, in longitude about 3° W., with a north-easterly direction, the 71st parallel of latitude. From thence it runs east, and, when in longitude about 7" E., takes a northerly and somewhat westerly direction, continuing on past the 80th parallel of latitude.

In the tract of ocean stretching to the east of this boundary, the temperature of the surface-water is comparatively high, exceeding even that of the atmosphere in the middle of summer; the water, too, some distance below the surface exhibits a temperature above zero, the depth at which 0° is reached being about 500 fathoms (914 metres), from which the temperature sinks slowly and gradually to about —1.°3, at the bottom.

In the cold East Greenland current, the temperature at the surface is on the other hand exceedingly low, though in summer above zero where the water is free from ice; Or however is reached at the depth of a few fathoms.

As regards the amount of salt in the surface-water, the reader is referred to Plate I, in which will be found most of the figures representing the mean values, deduced from the chlorine and specific gravity-determinations, for the proportion of salt. In Pl. I, too, are laid down curves constructed from these results, to show the limits of distribution for the following percentages of salt: 3.55, 3.50, 3.45, and 3.40, as they may be assumed to extend in the summer months. The warm current, flowing from the south into the Norwegian Sea, brings with it, as shown by the Plate, an indraught of water containing a comparatively large amount of salt, the maximum percentage, upwards of 3.55, being reached in the most southerly tracts, along the eastern and western shores of the Feröe Islands. From thence, with a slightly reduced amount of salt (about 3.525), the

forbi Spitsbergens Vestkyst. I den mod Øst gaaende Gren synker Saltgehalten meget langsomt og jevnt, indtil den ved Grændsen af det af Expeditionen undersøgte Felt har naaet $3.50^{-6}/_{0}$, medens den i den nordover flydende Arm meget lurrtigt synker til endog under $3.45^{-6}/_{0}$ for atter ved Spitsbergens Nordvestkyst at hæve sig til lidt over $3.45^{-6}/_{0}$.

Denne i Vest for Spitsbergen forefundne ringe Saltholdighed i Overfladen er dog sandsyuligvis kun eiendommelig for den varmere Aarstid, da der fra Spitsbergens mægtige Is- og Snebræer flyder store Mængder Ferskvand ned i det tilstodende Hav.

Indflydelsen af saadaut fra Kysterne udgaaende Ferskvand indskrænker sig dog hovedsagelig kun til meget smaa Dyb, da det saavel af disse som tidligere publicerede Undersogelser af samme Art fremgaar, at et over saltere Vand flydende ferskere Overfladelag besidder en mærkelig Evne til meget kenge at holde sig forholdsvis ublaudet, saaledes at den fra Kysterne hidrorende Fortynding i Overfladen olte kan spores 30 til 40 Mile tilhavs, medens man ved Bunden i Nærheden af Land ja endog i Fjordene kau finde meget saltholdigt Vand. Denne Eiendommelighed træder meget skarpt frem i Observationsrækken No. 1 til 8.1 da Saltgehalten her fra Overfladen til 1 Favns (2 Meters) Dyb tiltager med over 1 %, medens den siden temmelig jevnt voxer med kun 0.06 % for liver Favus Tilvæxt af Dybden. De pan Spitsbergens Banker tagne Observationer viser da ogsaa ganske rigtigt, at Vandet der paa Bunden i nogen Afstand fra Land besidder en Saltstyrke, som paa sine Steder endog gaar op til over 3.50 %.

Paa begge Sider af den midt efter det norske Hav flydende salte Overfladestrom synker Saltgehalten paa den ene Side mod den norske Kyst og paa den anden Side mod den østgronlandske Polarstrom, en Synkning, som paa Grund af de herskende Stromforholde hverken er jevn eller regelmæssig. Saaledes Hyder der fra Nordsoen langs Norges Vestkyst i nordlig Retning en lidet saltholdig Overfladesfrom, som ved den 62de Breddegrad, hvor Kysten boier nordostover, forlader denne, og fortsætter fremdeles i nordlig Retning, indtil dens Virkninger i omtrent 40 Miles Afstand fra Land efterhaanden taber sig. En mindre udpræget lignende Kyststrom gnar fra Vestfjorden udover i sydvestlig Retning og nanr ligeledes temmelig langt tilhavs. forend dens Indflydelse paa Saltgehalten i Overfladevandet fuldstændig forsvinder. Mellem disse Kyststrømme kaster der sig en smal Arm af det saltere Atlanterhavsvand forholdsvis nær ind under Land, hvor den meget skarpt This low percentage of saft in the surface-water west of Spitzbergen is, however, in all probability the result of summer heat, vast quantities of freshwater pouring down to the sea at that season of the year from the immense glaciers and snow-fields of that group of islands.

The effect of such an influx of fresh water from the coast is, however, mostly confined to a very triffing depth, the result of the observations taken on the Expedition, and of others in connexion with the same subject previously published, being to show, inter alia, that freshwater possesses the remarkable property of floating on salt water for some considerable time in a comparatively numixed state, so that its influence may be frequently traced at a distance of from 30 to 40 geographical miles off shore, whereas the bottom-water close in shore, nay that of friths and estuaries even, often contains a very large proportion of salt, This peculiar feature was strikingly instanced in the series of observations from No. 1 to 8.1 the amount of salt at the depth of 1 fathour (2 metres) exceeding that at the surface by I per cent, whereas the subsequent increase with the depth did not amount to more than 0,06 per cent for every fathom. The observations taken on the banks of Spitzbergen show that the maximum percentage of salt in the bottom-water some distance from land, in certain localities, reaches 3.50,

On either side of the salt surface-current flowing through the medial portion of the Norwegian Sea, the amount of sult diminishes, eastward in the direction of the Norwegian coast and westward in the direction of the Arctic current off East Greenland; but this diminution, owing to the effect of ocean currents, is however anything but regular and gradual. Thus, for instance, a surface-current, with a low percentage of salt, flows from the North Sea in a northerly direction along the west coast of Norway. Irom which it diverges near the 62nd parallel of latitude, continuing on, still in a northerly direction, till, about 40 geographical miles from land, its influence gradually ceases to be felt. Another coastal current, more limited in extent, flows from the Vestfjord in a south-westerly direction, its influence on the amount of salt in the surfacewater being likewise perceptible comparatively far out at Between these coastal currents runs a narrow arm

current flows in a north-easterly direction, as far north almost as Beeren Eiland, where it divides into two arms, one running east into Barents' Sea, and the other in a north-westerly direction past the west coast of Spitzbergen. In the branch flowing east, the amount of salt diminishes very slowly and gradually down to 3.50 per cent, at the limit of the region explored by the Expedition, whereas in that running north it rapidly sinks even below 3.45 per cent, rising, however, on the north-western coast of Spitzbergen a little above 3.45 per cent,

¹ Disse Observationer kunne desaden ogsaa tjene som Bevis for Fortrinligheden af den af Ekman angivna Vandhenter, som ved denne Leilighed benyttedes.

¹ These observations likewise attest the excellence of Ekman's apparatus for collecting sea-water, which was used on this occasion.

afgrændser sig mod det indenfor flydende meget ferskere Vand, Forovrigt holder Grændsen for det saltere Overfladevand sig meget langt tilhavs med Undtagelse af, at den ved den 70de Breddegrad paa en ganske kort Strækning kaster sig tæt ind under Kysten.

Denne Fortynding af Overfladevandet, som overalt ytrer sig ved den norske lyst, er intetsteds ledsaget af nogen væsentlig Forrykkelse af Overfladetemperaturen. Saltgehaltens Formindskelse skyldes her aabenbart det fra Kysterne ndstrommende Flodvand, der om Sommeren besidder en ikke ringe Varmegrad, saaledes at man i den mest fremtrædende Kyststrøm langs Norges Vestkyst endog finder en noget højere Overfladetemperatur end paa nærliggende Puncter. Ganske anderledes stiller Sagen sig paa den mod den østgrønlanske Polarstrøm vendende Side, hvor Overfladevandet fortyndes ikke ved Fladvand men ved det ved Havisens Smeltning dannede, stærkt afkjølede Ferskvand, og det viser sig derfor, at en Synken i Saltgehalten her bestandig er ledsaget af en tilsvarende Formindskelse af Overfladetemperaturen. Grændsen for det saltere Vand i Overfladen følger derfor paa denne Side ofte Polarstrommens Grændse, og selv der, hvor den forlader denne, optræder der dog samtidig med Overgangen fra saltere til ferskere Vand altid meget tydelige Variationer i Temperaturen, der gan i samme Retning som Saltgehaltens. At Overfladetemperaturen synker, naar man enten mermer sig eller overskrider Grændsen for 3,50 % Salt, vise Observationerue No. 115 til 120 og No. 207 til 209,

l selve Polarstrommen er Saltgehalten i Overfiaden i nogen Afstand fra Grændsen oftest fundet meget lav, kun paa et Sted optræder i saa Henscende en Undtagelse fra den almindelige Regel, idet der omtrent paa den 75de Breddegrad skyder sig en smal Tunge med Vaml af hoiere Saltstyrke ind over Polarstommen, uden at der dog derved bevirkes nogen væsentlig Forhoielse af Overfladetemperaturen. En Markelighed, som fortjener at omtales, er den, at Professor Dr. G. O. Sars, som paa Expeditionens Togter jevnlig undersogte Dyrelivet i Overfladen, netop paa dette Punct langt inde i Polarstrommen har gjenfundet de for det varmere Aflanterhavsvand eienlommelige Dyreformer, der forresten intetsteds ellers ere fundue i den ostgrønlandske Koldvandsstrom.

Med Hensyn paa Saltmangderne i de storre Dybheuvises til Kartet No. 11. hvori paa samme Maade som ovenfor findes indtegnet Saltgehalten ved Havbunden samt i de intermediære Dyb, forsaavidt Observationerne refererer sig til Puncter saa dybt under Overfladen, at Temperaturen der ligger under Ov. Hvor en Observation hidrorer fra et intermediært Dyb, er Tallet i Kartet understroget.

Naar man bortser fra enkelte i Nærheden af Kysterne og paa grundt Vand optagne Vandprover, varierer Saltgehalten paa de store Dyb mellem 3.59 og 3.45 %.

of the salt ocenn-water of the Atlantic, distant but a few miles from land, its boundary being distinctly marked by the limits of the brackish water flowing along the shore. Except in this region, and a locality bordering the 70th parallel of latitude, where, for a short distance, it runs close to the coast, the boundary of the salt surface-water lies far out at sea.

This dilution of the surface-water on all parts of the Norwegian coast is not anywhere found to exert a material influence on the surface-temperature. The decrease in the amount of salt must be obviously ascribed to the influx of river-water, the temperature of which during the summer months is relatively high. — so high indeed, that the principal coastal current, flowing along the western shores of Norway, has a somewhat higher surface-temperature than that observed in its immediate vicinity. Phenomena the reverse of these prevail in the tract of ocean exposed to the influence of the Arctic or East Greenland, current, There, the surface-water is not diluted by an influx of riverwater, but with freshwater of a low temperature, produced by the melting of drift-ice; and hence a decrease in the percentage of salt is invariably attended with a corresponding reduction of the surface-temperature. The salt surfacewater borders, therefore, not infrequently the Arctic current; and even where its boundary diverges from it, the transition from salt to comparatively fresh water is always accompained by a very considerable variation in temperature, proportionate to the variation in the amount of salt. That the surface-temperature becomes gradually lower on approaching the limits of the section in which the proportion of salt is 3.50 per cent, will be seen from the series of observations Nos. 115—120 and Nos. 207—209.

In the Arctic current, some distance from its extreme boundary, the proportion of salt at the surface was found to be very small, except in one locality, near the 75th parallel of latitude, where a narrow strip of salter water flows into the current, without, however, causing an appreciable rise in the surface-temperature. It is a remarkable fact, which must not be passed by unnoticed, that Professor G. O. Sars, naturalist to the Expedition, found here in the surface-water, which he examined from day to day, forms of animal life peculiar to the warm area of the Atlantic water, which he never met with in any other part of the cold East Greenland current.

As regards the amount of salt observed at great depths, the reader is referred to Pl. II, in which, as in Pl. I, will be found the percentage both at the bottom and at intermediate depths, provided the observations were taken with samples of water the temperature of which in situ was below 0°. Observations with water from intermediate depths are denoted by underlining the figures expressing their results.

Disregarding a few samples of water collected near the coast and in shallow spots, the proportion of salt, where the depth is great, ranges from 3.59 to 3.45 per og Differentserne ere saaledes ogsaa her vel paaviselige om end mindre end i Overfladen. For tydeligt at kunne markere disse optrædende Differentser paa en let overskuelig Maade, har jeg benyttet forskjellige Farver. Saaledes ere de Strog, hvor Saltgehalten beløber sig til 3,50 % eller derunder, betegnede med blaa Farve, de Strog, hvor Saltgehalten ligger mellem 3,50 og 3,55 % on med rod Farve, medens de Vandmasser, der ifølge Observationerne besidde en Saltmængde af over 3,55 % of ere tegnede med en noget kraftigere rod Farve, I Nærheden af Kysterne er Kartet overalt nfarvet nden Hensyn til, om Vandet der henhorer under den ene eller den anden af de tre Hovedgrupper.

Den nregelmæssige "Fordeling al Saltgehalten i de storre Dyb, som det saaledes tegnede Kart udviser, maa unegtelig betegnes som meget paafaldende. At Saltmangderne paa Bankerne og i den sydlige Del af Østbavet paa det Nærmeste findes at syare til den, som det i Overfladen svommende varme Atlanterhavsvand besidder, kan ikke synes overraskende. Havet er her meget grundt, og det deri flydende Vand besidder overalt en Temperatur af over O" og maa saaledes nærmest henføres til den nordover flydende Atlanterhaysstrom, med hvilken det da ogsåa helt naturligt har Saltgehalt tilfælles. Ligeoverfor de store Dyb maatte man derimod paa Forhaand vente et andet Resultat. Temperaturen ligger her uden Undtagelse under 0" ja paa de fleste Steder endog under -1°, og det kunde derfor synes rimeligst at tilskrive det der flydende Vand polar Oprindelse. Det fremgaar imidlertid med Bestemthed af alle mig bekjendte Undersogelser over Saltmængderne i de forskjellige Have, at de fra arktiske Egne udgaacude Stromme uden Undtagelse forer Vand af lavere Saltgehalt end de fra de mere tempererede Himmelstrog udgaaende Varmvandsstromme, og man skulde derfor i de dybere og koldere Lag af det her indersøgte Hav vente at finde en Vandmasse med adskilligt lavere Saltgehalt end den, der er funden i det i Overfladen og mærmest under den flydende Vand, som aabenbart skriver sig fra varmere Egne. Hvnd der virkelig finder Sted er desnagtet dette. at det i de dybere liggende Lag flydende, iskolde Vand paa store Strækninger viser sig at have en Saltgehalt, der temmelig noie svarer til den, der er funden i den atlantiske Overfladestrom.

Saavel af denne Grund som ogsåa af andre Grunde, som jeg senere skal fremføre, finder jeg det rimeligt at gjøre den Antagelse, at Vandet paa de større Dyb paa de Steder, som i Kartet findes aflagte med rod Farve, enten udelukkende skriver sig fra varmere Egne eller under enhver Omstændighed er saa opblandet med saadant Vand, at det Hele derved antager en tydelig atlautisk Karakter, medens Vandet i de med blaa Farve betegnede Strækninger mere eller mindre skarpt udpræger sig som hidrorende fra polar Oprindelse.

Hyor det gjælder at besvare Sporgsmaalet om, hyorledes de øvre Lag finder Vei ned til Bunden, da synes dette ikke at kunne besvares paa anden Maade, end at det atlantiske Vand under stadig Afkjoling maa synke gjennem det iskolde og fordrive dette, under enhver Omstencent: and there too, accordingly, the differences are appreciable, though smaller than at the surface. For the better apprehension of these differences, the sections in which they occur have been differently coloured in the Plate: blue indicates a percentage of 3.50, and under; red, a percentage ranging from 3.50 to 3.55; and a somewhat deeper red, a higher percentage than 3.55. Along the coasts, the Plate is left uncoloured, no matter to which of the three principal groups the water there belongs.

This irregular distribution of the amount of salt at great depths, as shown in the Plate, is certainly a most remarkable phenomenon. That the proportion of salt on the banks and in the southern portion of Barents' Sea should agree pretty closely with that contained in the warm surface-water of the Atlantic, is not indeed surprising: the depth is in both localities comparatively tritling, and the water, having everywhere a temperature above U2, must be referred to the warm Atlantic current; its percentage of salt is therefore naturally the same as that of the Gulf Stream. For the great depths, on the other hand, there was reason to expect a very different result. Here, the temperature is without exception below 0°, may in most 1°; and hence, as regards the origin of places below such water, there seems much to urge in favour of an indraught from the Polar Sea. Of the observations undertaken to determine the amount of salt in sea-water, all with which I am acquainted firmish incontestible proof that the water of the currents flowing from the Arctic Ocean has a lower percentage of salt than that of the warm currents flowing from more temperate regions; and the proportion of salt in the deeper and colder strata of the tract of ocean explored by the Expedition was expected, therefore, to prove considerably lower than that observed at the surface or a short distance beneath it, where the water is obviously an influx from warmer climes. But such was not the case, for the amount of salt found in the water of the cold area, where the temperature is below zero, agrees, in some localities, pretty closely with that in the water of the Atlanic surface-current.

This phenomenon, in conjunction with reasons that will afterwards be explained, has led me to assume, that the water met with at great depths in the sections coloured red in the Plate, is either exclusively the result of an influx from warmer regions, or is, at least, so mixed with such water as to have distinctly acquired Atlantic characteristics; whereas the water in the blue-coloured sections would seem to indicate more or less determinately a Polar origin.

As to the question involved in the descent of the upper strata to the bottom, the only way in which this can take place seems to be by the Atlantic surface-water, as it parts with its excess of heat, gradually sinking through the water of the cold area, and displacing it: at all events,

dighed synes det sikkert, at man for det afgrændsede østenfor Jan Mayen beliggende Strog ikke kan antage nogen anden Vei. Men at den varmere Vandmasse saaledes skulde synke gjennem den koldere, kunde jo ved første Oickast synes stridende mod vel kjendte Naturlove, da man nærmest mantte tro, at det i Nærheden af Overfladen flydende atlantiske Vand paa Grund af sin høiere Temperatur skulde være specifisk lettere end det ifølge sin lave Temperatur stærkt fortættede Bundvand. Nærmest for at fjerne enhver Tvivl i san Henseende, er der i den forhen gjengivne Tabel opfort en Rubrik for Vandprovernes Egenvægter ved den i Havet observerede Temperatur i Forhold til rent Vand af 4%. Ved Hjælp af de der beregnede Tal kan man med Lethed studere den specifiske Vægts Variation med Dybden, saaledes som den finder Sted i Havet, bortsect fra den ved Vandets Sammentrykkelighed foraarsagede Fortatning i de større Dyb.

Den Region, som i denne Henseende mest interesserer os, er den, hvori der i Overfladen og nærmest under den findes en bestemt udpræget atlantisk Varmvandsstrom, en Region, som paa det Nærmeste falder sammen med den sondenfør en Linie fra Island til Beeren Eiland liggende Del af Havet, dog saaledes at det nærmest Norge liggende Parti paa Grund af den fra Kysterne udgaaende Fortynding maa bortskjæres. Grupperer man de i denne Egn tagne Observationer over Saltgehalt og den specifiske Vægt reduceret til Havets Temperatur og en Atmosphæres Tryk efter Dybden, fremgaar som Resultat heraf Folgende.

Dybdeinterval.		Midlere Dylale		Midlere Egenvagt
Engelske Favne.	Meter.	Engelske Favne.	Meter.	Saltgebalt Havets "Temperatur,
0	0	0	0	3.526 1.02688
0 300	0-549	167	305	3.514 1.02782
300 000	549-1097	502	918	3.521 1.02812
600 1000	1007-1820	681	1245	3.513 1.02802
1000 1500	1829 2743	1203	2200	3.506 1.02800
under 1500	under 2743	1688	3087	3.507 1.02800

Det i denne Tabel erholdte Tal for Saltgehalten paa Stroget mellem 0 og 300 Favnes (0 og 549 Meters) Dyb er imidlertid nden Tvivl for lavt, da en uforholdsmæssig stor Del af Observationerne i dette Dyb hidrore fra Osthavet, bvor Saltgehalten overalt er mindre end i de centrale og sydlige Dele af Feltet. De Observationer, som skrive sig fra dette Dyle i storre Afstand fra Kysten, tyde hen paa, at Saltgehalten der meget nær svarer til den, der er funden i Overfladen paa de samme Steder. Denne Mislighed ved den geografiske Fordeling af Observationerne fra de mindre Dyb faar derimod ingen væsentlig Indflydelse paa det som Middel af de specifiske Vægter erholdte Tal, da den i de nordligere Egne ved Saltgehaltens Synkning foraarsagede Formindskelse af Egenvægterne paa det Nær-

it is certain that no other plansible explanation can be given of the phenomenon for the region cast of Jan Mayen. But, that water of a higher temperature should sink in this manner through water of a lower, appears at first sight to be at variance with well-known physical laws; for the water from the Atlantic current having a higher temperature, one would imagine it to be specifically lighter than the cold and dense bottom-water. With the object of dispelling every doubt that might arise in connexion with this subject, a column has been added to the Table given above for the specific gravity of the samples of water at their temperature in situ, as compared with that of pure water of 4°. By means of the figures set down in the column, the variation of the specific gravity with the depth, as it occurs in the sea irrespective of increased density from the compressibility of water at great depths, may be readily investigated.

The tract of ocean which in this respect it will be most desirable to investigate, is that through which flows, on or near the surface, a warm current, setting from the Atlantic.— a tract which nearly coincides with the region stretching south of an imaginary line drawn from Iceland to Beeren Eiland, but from which, owing to the influx of freshwater, must be cut off the section extending along the Norwegian coast. Now, if we group together the observations taken in this part of the North-Atlantic to determine the percentage of salt and the specific gravity reduced to the temperature of the sea and a pressure of one atmosphere, the result will be as follows:—

Intervals of Depth.		Mean Depth.		Mean Amount of	Mean Sp.
English Fathons.	Metres,	English Fathoms.	Metres.	Salt per cent.	the Temp. of the Sea.
0	0	0	0	3.526	1.02688
0-300	0-549	167	305	3.514	1.02782
300 600	549-1097	502	918	3.521	1.02812
600 1000	1097-1829	681	1245	3.513	1.02802
1000-1500	1829-2743	1203	2200	3.506	1.02800
belay 1500	helow 2743	1688	3087	3.507	1.02800

The figures in this Table expressing the amount of salt at depths ranging from 0 to 300 fathoms (0-549 metres) are, however, unquestionably too low, seeing that a disproportionate number of the observations at this depth were taken in Barents' Sea, where the amount of salt is everywhere smaller than in the central and southern sections of the tract investigated. The observations referring to this depth at a considerable distance from land, show that the percentage of salt is very nearly the same as that at the surface. The said defect in the geographical distribution of the observations taken at a comparatively trifling depth, does not however materially affect the correctness of the figures expressing the mean specific gravity; for the fall in specific gravity occasioned in northern regions

meste opveies af den Forogelse af samme, der skyldes de der herskende lavere Temperaturer.

Det fremgaar altsaa, at Differentserne mellem Saltgehalten i de atlantiske Overfladelag og de pan Bunden hvilende iskolde Vandmasser gjennemsnitlig kun ere meget smaa, om de end paa de Puncter, hvor Vandet i de dybere Lag besidder en overveiende polar Karakter, turde være adskilligt mere fremtrædende. Disse Differentser af henimod 0.02% ere dog mere end tilstrækkelig store til i de nederste mere afkjolede Lag af det atlantiske Vand at fremkalde et, som det vil sees af Tabellen, meget tydeligt om end svagt Maximum af den specifiske Vægt, hvad der nærmest bevirkes derved, at Sovandet ved Afkjoling under 0" nærmer sig sit Tæthedsmaximum og derfor i Nærheden af dette for mindre Temperaturvariationer kun forandrer sit Volum med næsten umærkelig smaa Værdier, saaledes at en selv meget ringe Forøgelse af Saltgehalten under disse Omstændigheder faar en overveiende Indflydelse ligeoverfor en Grads Forandring af Temperaturen.

Det er saaledes saa langt fra Tilfælde, at der i de specifiske Vægter af de forskjellige Vandlag ligger nogen Hindring for Antagelsen af, at det atlantiske Vand skulde synke gjennem det koldere Polarvand, at man tvertom af disse maa slutte, at saa maa være Tilfælde, dersom ikke andre i Havet herskende Stromme virke hemmende paa en sandan Bevægelse. Man tænke sig f. Ex. ved Siden af himanden i Havet to Vandsøiler af 2000 Favnes (3658) Meters) Dybde, hvori Temperaturens Variation med Dybden for Simpelheds Skyld kan antages at være den samme, hvorimod Saltgehalten i den 1ste helt igjennem sættes til $3.52\,^{\rm o}_{loc}$ medens den i den 2
den paa Stroget fra Overfladen til 500 Favnes (914 Meters) Dyb gives Værdien 3.52% og fra 500 til 2000 (914 til 3658) Værdien 3.50%, saaledes som Forholdet ilolge Observationerne virkelig synes at stille sig pan enkelte Steder i det undersøgte Hav. Det er da umiddelbart indlysende, at en saadan Fordeling af Saltgehalten vil have en Synkning i den 1ste Soile til Følge, saaledes at Vandet i denne vil søge at udbrede sig langs Bunden og fordrive det omliggende specifisk lettere Vand. Den Hastighed, hvormed en sandan Bevægelse foregaar. vil naturligvis rette sig efter Differentsen mellem Trykkene i samme Nivenn i begge Søiler, en Differents, som ved Bunden i 2000 Faynes (3658 Meters) Dyb efter Beregning belober sig til henimod 32 mm Kviksølysøile.

For nærmere at begrunde den forhen fremsatte Hypothese, om at det paa Bunden hvilende iskolde Vand paa de i Kartet med rod Farve betegnede Steder skulde have atlantisk Oprindelse, vil jeg benytte mig af de i en tidligere Afhandling¹ beskrevne Observationer over de i Sovandet indeholdte Kvælstofmængder, hvis Anvendelse i saadant Qiemed allerede paa det Sted loselig er bleven autydet.

Som bekjendt herskede der i ældre Tider den Anskuelse, at de i Sovandet i de større Dyb indeholdte Luftmængder paa Grund af det der herskende Tryk maatte by a decrease in the amount of salt, is almost compensated by the rise resulting from the low temperatures prevailing there.

It appears, therefore, that the differences between the amount of salt in the warm upper strata and that in the cold water at the bottom, are, on an average, exceedingly small, though more striking perhaps in localities where the water of the deeper strata to a very great extent is Polar in origin. These differences about 0.02 per cent are, however, as will be seen from the Table, more than sufficient in the deepest and coldest strata of Atlantic water to occasion an appreciable, though a low, maximum of specific gravity, which is explained by the fact, that seawater below 0" has very nearly reached its maximum of density, and the increase in volume then resulting from trifling variations in temperature, is a well high inappreciable magnitude: hence, under such circumstances, the influence of a very slight addition to the amount of salt with but one degree's difference in temperature will be exceedingly great.

Such being the case, there is nothing in the specific gravities observed in the different strata of water to disfavour the assumption that the comparatively warm Atlantic water should sink through the cold water of Polar origin; nay, from these specific gravities we may infer its correctness, provided only that such descending motion be not counteracted by the effect of ocean enrrents. To give an illustration. Let us imagine two columns of water, 2000 fathoms (3658 metres) deep, in both of which, for convenience' sake, the variation in temperature with the depth is assumed to be equal; the amount of salt on the other hand, being put at 3.52 per cent throughout the whole of the first, but in the second, at 3.52 per cent from the surface to a depth of 500 fathous (914 metres), at 3.50 per cent from 500 to 2000 fathoms (914-3658 metres), - a ratio of distribution actually observed in some localities. This given, it is obvious that such a distribution must cause the water in the first column to sink, and spread itself over the bottom, displacing as it does so the specifically lighter. The rapidity of this downward motion will of course be proportionate with the difference in pressure at the same level in the two columns, a difference which, at the depth of 2000 fathoms (3658 metres), has been computed equal to that of a column of mercury 32 mm in *height.

With a view to firmish additional confirmation of the hypothesis brought forward above, which assumes the cold bottom-water in the red-coloured sections of the Plate to be of Atlantic origin, I shall have recourse to my observations on the amount of nitrogen in sea-water, published in a former paper, where their application to such a purpose was briefly alluded to.

The opinion formerly entertained, that the quantity of air contained in sea-water at great depths must be exceedingly great, by reason of the immense pressure pre-

^{1 &}quot;Om Luften i Sovinflet."

² ettn the Air in Sea-Water."

være nforholdsmæssig store, en Ansknelse, som ved de senere Undersagelser fuldstændig er bleven modbevist. Rigtignok er det paa den engelske Challengerexpedition ingttaget, at de i den hede Zone fra Havbunden optagne Vandprover ved at heustaa nogen Tid vise Overmætningsplænomener, men dette vil jo ikke være vanskeligt at forklare. naar man erindrer, at Vandet i de store Dyh selv i Æqvatoregnene er meget nær iskoldt. Det folger nemlig af sig selv, at de til en saa lav Temperatur svarende Luftmangder ikke kunne holdes opløste, naar Vandprøverne ved hengere Tids Henstand antager de tropiske Egnes høje Lufttemperatur. Sterkest taler de paa den norske Expedition udforte Luftbestemmelser for, at Tryktilvæxten med Dybden ikke kan have nogen Indflydelse paa Mængden af den i Sovandet oplaste Luft. Tager man nemlig Middelet af Dybder, Temperaturer og Kvælstofmængder for alle de fra Puncter under Overfladen stammende Vandprover, hvori der paa denne Expedition er foretaget Luftbestemmelser, erholder man til et Middeldyh 693 Favne (1267 Meter) en Middeltemperatur 0.005 og en midlere Kvælstofgehalt 13.99 CC, per Litre, det vil sige, Vandet i Dybet indeholder gjennemsnitlig næsten 0.5 CC. Kvælstof mindre, end det ved sin Temperatur vilde kunne holde oplost under en Atmosphæres Tryk.

Naar man erindrer, at Trykket i Havdybene ikke dreier sig om Atmosphærer men om Hundreder af Atmosphærer, san maatte man dog vente, at dets Indflydelse (om det havde nogen) vilde give sig tilkjende ved Uregelmæssigheder af paaviselig Storrelse, og man er, da dette ikke i mindste Maade er Tilfældet, berettiget til den Slutning, at Trykket ikke besidder nogen Evne til i mærkbar Grad at ophobe Luftmængderne i de store Dyh. Paa den anden Side maa det fornuftigvis antages, at Vandet i de dybere liggende Lag ikke kan afgive noget af sin Luft, da det jo paa Grund af det der herskende Tryk vil kunne holde oplost overveiende storre Mængder end de, der nogensinde ere forefundne.

Den rimeligste Slutning af de senere Tiders Observationer over disse Gjenstande vil saaledes være den, at en Vandprove, saalenge den befinder sig under Overfladen, uforandret vil beholde den samme Luftmængde eller rigtigere Kvælstofmængde¹, som den havde absorberet, da den sidste Gang befandt sig i Overfladen udsat for Luftens frie Indvirkning.

Nu er den Luftmængde, som Sovandet absorberer af Atmosphæren, hovedsagelig afhængig af Vandets Temperatur, idet Barometerstandens Variationer ligeoverfor storre Temperaturdifferentser kun har en underordnet Betydning. Heraf følger, at de Vandmasser, der have absorberet sin Luftmængde under varmere Himmelstrog, maa være forholdsvis vailing there, has been wholly refuted by the results of later observations. True, the samples of water obtained at great depths within the tropics on the 'Challenger' Expedition were found to exhibit the phenomena of supersaturation when allowed to stand over some time; this, however, is easily explained, if we call to mind that the water at great depths, even in equatorial regions, has a temperature but little above zero. Hence it naturally follows, that the quantity of air corresponding to so low a temperature cannot be retained on the samples of water having stood over sufficiently long to acquire the high temperature of the atmosphere in tropical climates. The airdeterminations performed on the Norwegian Expedition afford the strongest proof of the fact, that the increase of pressure with the depth does not exert any appreciable influence on the proportion of air in sca-water. Now, if we compute the mean depth, temperature, and amount of nitrogen for all the samples of water from below the surface examined for air-determinations, the result will be as follows: mean depth 693 fathoms (1267 metres); mean temperature — 0,005; mean amount of nitrogen 13.99% per litre, which shows that in the depths of the ocean the proportion of nitrogen averages 0.5% less than could be absorbed by sea-water of the temperature prevailing there with the pressure of one atmosphere.

If we call to mind that the pressure in the depths of the sea is not computed even by tens, but by hundreds of atmospheres, its influence, if any, must surely, one would imagine, occasion irregularities of appreciable magnitude; and we may therefore safely conclude, since no such disturbance can be detected, that pressure does not perceptibly increase the amount of air at great depths. On the other hand, there is every reason to infer, that the water in the lower strata, owing to the immense pressure, cannot part with any of its air, the quantity actually absorbed never being even approximately so great as such a pressure would enable it to retain.

From the latest observations throwing light on this question, we may therefore reasonably infer, that all seawater below the surface retains undiminished the quantity of air, or rather of nitrogen, which it absorbed when last at the surface, in direct contact with the atmosphere.

Now, the quantity of air absorbed by sea-water is mainly dependent on the temperature of the latter, the rise or fall of the larometer, as compared with considerable differences in temperature, being in this case of but little moment. Hence it follows, that the proportion of air absorbed by sea-water in warm climates is small compared

⁴ Den absorherede Surstofmongde er nemlig i nogen Grad afhængig af Dyrelivet og andre Tilfældigheder, spaledes at det her ligesom i den tidligere Afhandling vil være det Rigtigste at anvende Kvælstofmængden som Maal for den samlede haftmengde,

⁴ The amount of oxygen absorbed by sea-water depending to a certain extent on the presence of animal life and other accidental causes, the amount of nitrogen may, with greater precision, be assumed to represent the total amount of air — a standard of measurement adopted in the preceeding Memori.

lidet luftholdige, medens de, der have absorberet sin Luftmængde i de arktiske Egne, maa indeholde meget storre Mængder, og man vil derfor netop i de paa Expeditionen udforte Gasanalyser have et fortrinligt Middel til at controllere den forhen opstillede Hypothese, ifølge hvilken enkelte Regioner af det iskolde Dyb skulde være opfyldt af Vandmasser, der ialfald delvis havde atlantisk Oprindelse.

Forat vise Udfaldet al en saadan Control har jeg tegnet Kartet No. III, hvorpaa efter samme Princip som det ved Tegning af Kartet No. II befulgte findes afsat de i Dybet fundne Kvælstofmængder udtrykte i CC. pr. Litre redncerede til 0° og 760^{mm} Tryk, ligesom der ogsaa ved Siden af disse Tal findes opfort den Temperatur, hvorved Sovandet absorberer denne Kvælstofmængde, beregnet til mærmeste hel Grad efter den af de tidligere bskrevne Forsøg udledede Formel

$$N = 14.4 - 0.23t$$
.

Det siger sig selv, at disse Temperaturer ikke kunne gjore Fordring paa nogen stor Grad af Noiagtighed, da en forholdsvis liden Feil i Kvælstofbestemmelsen bevirker en meget stor Feil i den deraf beregnede Temperatur. Der findes saaledes flere Observationer, der give Temperaturen — 4°, en Temperatur, der mig bekjendt ikke er observeret i Havet. Dette vil dog ikke forekomme saa urimeligt, naar man tager Hensyn til, at Sovand af —2° ved 780° Barometerstand absorberer en Kvælstofmængde, der paa det Nærmeste gaar op til, hvad der i Ydertilfældene er fundet.

Farvelægningen er her foretagen saaledes, at de Strog, hvor Kvælstofmængden er finden at være 14.4 °C. eller derover, ere betegnede med blaa Farve, de Strog, hvor Kvælstofmængden ligger mellem 14.4 og 12.5 °C., med en svag rod Farve, medens et mindre Parti, hvor Kvælstofmængden er funden at ligge under 12.5 °CC., er betegnet med en noget kræftigere rød Farve. Betydningen af disse Farver bliver ligesom i Kartet No. II den, at de rode Farver bedække de Strækninger, hvor Vandet i mere eller mindre Grad besidder atlantisk Karakter, medens den blaa Farve tilhorer de Vandmasser, der have absorberet sin Kvælstofmængde ved en Temperatur af under 0°, og som altsaa nærmest synes at hidrore fra de arktiske Egne.

Ved at sammenligne Kartene No. 11 og III vil man strax se, at Farvelægningen i disse i alt Væsentligt viser en særdeles stor Overensstemmelse, som paa mange Puncter endog nærmer sig til Congruents, om man end ved nærmere Betragtning vil finde, at disse Ligheder ikke gaa igjen i alle Detailler, hvad man heller ikke paa nogen Maade kunde vente. Grændserne bliver nænlig paa Kartet No. III paa Grund af Observationernes Faatallighed meget vanskelige at bestemme, ja der findes endog her paa omkring den 65de Breddegrad et større Strog, hvorom man intet med Bestemthed kan slutte, da der under Analysen tabtes en mindre Del af de Luftprøver, der vare bestemte til at ndfylde dette Hul, saaledes at den samlede Luftmængde desværre ikke kunde maales. Desuden ere ogsåa Observationsfeilene baade for Salt- og Kvælstofbestemmel-

Den norske Aordbaysexpedition, Tornoe; Chemi,

with that absorbed in the Arctic regions, wherefore the analyses of gas performed on the Expedition furnish an excellent means of testing the value of the hypothesis according to which certain sections of the cold area are assumed to be made, up of water part of which at least would seem to be of Atlantic origin.

To show the result of such a test, I have annexed a third Plate (drawn on the same principle as Pl. II), in which are given the different amounts of nitrogen present in deep water, expressed in c,centim, per litre, reduced to 0° and a pressure of 760^{mm}. Along with these figures will be found, too, the temperature at which sen-water absorbs such an amount of nitrogen, computed, in whole degrees, by means of the formula deduced from the observations previously described, viz:—

$$N = 14.4 - 0.23t$$
.

These temperatures cannot of course pretend to any high degree of accuracy, a comparatively small error in a nitrogen-determination involving a very considerable error in the temperature. Thus, for instance, several of the observations indicate — 4° , a temperature which, so far as I am aware, was not anywhere observed in the sen. This, however, will not appear so strange, if regard be had to the fact, that sea-water of — 2° , at a pressure corresponding to 780^{mm} , absorbs an amount of nitrogen which agrees very closely with the highest found on the Expedition.

The sections in this Plate are coloured as follows: those in which the amount of nitrogen was found to equal or to exceed 14.4%, blue; those in which it ranged from 14.4 to 12.5%, light red; a somewhat deeper red serves to indicate a small tract in which the amount of nitrogen did not reach 12.5. Moreover, as in Plate II, the red colour indicates water more or less distinguished by Atlantic characteristics; the blue, water in which the nitrogen was absorbed at a temperature below 0%, and which, therefore, would seem to have derived its origin from some part of the Polar Seas.

A comparison of Plates II and III will at once show considerable agreement in the distribution of colour, many of the sections almost coinciding; though, on closer inspection this approach to congruity is not found to characterise all details, which indeed there was no reason to expect. In Pl. III, the limits proved exceedingly difficult to define, owing to the limited number of observations; nay, respecting an extensive tract near the 65th parallel of latitude nothing definite can be inferred, part of several samples of air, the analysis of which would have served to fill up the blank, having been unfortunately lost, and the total amount of air could not, therefore, be measured. Besides, the errors of observation both in the salt and the nitrogen determinations, are so considerable, when compared with the minute differences in amount, that, in some

sernes Vedkommende af saadan Størrelse, at de i Sammenligning med de smaa Differentser, som det her gjælder at paavise, lettelig paa sine Steder kunne gjøre sig gjældende og frembringe Uoverensstemmelser, hvor de i Tilfælde af absolut nøjagtige Observationer ikke vilde findes.

Hvilken Vægt man nu end vil tillægge disse faa Forskjelligheder mellem de to Karter, saa meget er dog sikkert, at de kun optræde som Undtagelser, medens den langt stærkere fremtrædende Regel er Overensstemmelser af saadan Art, at de ikke nden videre kunne tilskrives Tilfældigheder. Der existerer uimodsigeligt en paa mange Puncter næsten til Proportionalitet grændsende lovmæssig Forbindelse mellem Saltgehalten og Kvælstofmængderne, som untligens ikke turde lade sig forklare paa aaden Maade end netop gjennem den før omtalte Hypothese, som saaledes maa ansæs for at indeholde ialfald en stor Del Sandhed, idet den samtidig bestyrkes af to af hinanden fuldstændig nafhængiæ, nensartede Observationsrækker, der i alt Væsentligt give det samme Resultat.

Den, som det synes, største Vanskelighed ved denne Hypothese bestaar i at forklare, hvorledes det i de store Dyb flydende atlantiske Vand skulde have antaget en saa lav Temperatur, som det ifølge Observationerne viser sig at besidde. Dette turde dog maaske ikke synes saa nrimeligt, naar man betænker, at den varme, sondenfra kommende Atlanterhavsstrøm ved at flyde henover det underliggende meget kolde Vand paa de nærmest til dette grændsende Lag maa blive udsat for en meget stærk Afkjøling nedenfra, og at det først gjennem en saadan Afkjøling til omkring 0° opnaar den hoie specifiske Vægt, der er den nødvendige Betingelse for, at det skal kunne synke tilbunds. Det utlantiske Vand har altsaa, allerede forend det begynder at synke, antaget en meget lav Temperatur og vil desforuden under selve Synkningen, idet det dæ kanske i et meget langt Tidsrum befinder sig paa alle Sider omgivet af polart Vand, end yderligere blive Gjenstand for Afkjøling, forend det naar Bunden. Det fremgaar forøvrigt ogsaa af de endim ikke offentliggjorte Temperaturobservationer, som jeg desuagtet ved Velvillie af Professor Mohn har fauet Anledning, til at gjore mig bekjendt med, at Temperaturen i de store Dyb paa de med rød Farve betegnede Partier er noget høiere end der, hvor Kartet er farvet blaat, saaledes at i Virkeligheden ogsaa Temperaturforholdene tale for den opstillede Hypothese.

Det vilde dog være paa urette Sted paa dette Stadium at, forsøge 'ndredet alle Vanskeligheder, saalænge de paa Expeditionen udførte talrige Temperaturbestemmelser endnu ikke ere forelagte Offentligheden, da man alene ved at tage tilbørligt Hensyn til det hele foreliggende Materiale af Observationer vil kunne vente at faa det bedst mulige Indblik i de mere indviklede Spørgsmaal om Stromforholdene. Det er dog meget sandsynligt, at man senerehen ved at combinere alle Data vil kunne kaste Lys over meget, som nu maa synes dankelt.

Uheldigvis var det ved Expeditionens Udreise ikke muligt at forndse, at de chemiske Observationer skulde knune føre, til Slutninger af saadan Art som de her paaof the computations, they might easily affect the result, and give rise to discrepancies which, with perfectly accurate observations, there would be no fear of.

Whatever weight may be attached to these differences, they must unquestionably be regarded as exceptional; the rule is agreement, and of a character precluding the possibility of ascribing it to chance. Many of the observations prove incontestibly the existence of a definite, well nigh proportional connexion between the amount of salt and that of nitrogen, a connexion difficult, perhaps, to explain without having recourse to the aforesaid hypothesis, which cannot but come near the truth, confirmed as it is by two widely different series of observations, leading, each independently of the other, in all essential points, to the same result.

The greatest apparent difficulty involved in this hypothesis consists in explaining the low temperature of the Atlantic water in the deeper strata. We must, however, bear in mind that the warm Atlantic current, in flowing over the cold water of the lower strata, is necessarily made to part with a very considerable amount of heat; and that the high specific gravity, without which it could not sink to the bottom, involves a temperature of about O. Hence, the Atlantic water will have acquired a very low temperature before beginning to sink, and moreover, being smrounded during its downward passage, possibly for a considerable period, by Polar water, give off a further amount of heat ere it reaches the bottom. For the rest, it appears from the independent series of temperature observations, not 'yet in print, with which Professor Mohn has kindly made me acquainted, that the temperature at great depths in the sections coloured red in the Plate. is somewhat higher than in those coloured blue; and hence the hypothesis adopted here derives additional support from the variation in temperature.

Meanwhile, it would be premature to attempt disposing of all difficulties, till the numerous temperature determinations performed on the Expedition shall have been made public, since to elucidate fully the more intricate questions connected with ocean currents, the whole stock of materials must be dealt with. We may however venture to bope, that, at a later stage of this interesting inquiry, a general combination of data will throw light upon much that is at present involved in obscurity.

Unfortunately, it was not possible to foresee on the departure of the Expedition, that such inferences as those here pointed out would be drawn from the chemical ob

pegede, og det er derfor helt naturligt, naar Undersøgelserne ikke i Henseende til Studiet af tidligere ukjendte Eiendommeligheder ved Havet kunde fore til san fyldige Resultater, som ønskeligt kunde være. Men om end disse Undersøgelser paa Grund beraf nærmest fan Karakteren af forberedende Arbeider, saa vil det dog, som jeg haaber. indrømmes, at de desnagtet kunne have sine maaske ikke uvigtige Folger, idet de vise, at man gjennem de chemiske Observationer, der tidligere i Sammenligning med Temperatur- og Dybdebestemmelser har spillet en mindre fremtrædende Rolle ved Studiet af Havets Physik, vil knnne skaffe Oplysninger om mærkelige Forholde i Havet, som man ad anden Vei vanskelig skulde falde paa at søge opklarede. Man vil ved Hjælp af de ber erholdte Resultater med Lethed i Fremtiden kunne udkaste en detailleret Plan for en fornyet Undersogelse af det norske Hav, der i mine Øine stiller sig som særdeles ønskelig, da man ved at gjøre et hidindtil ukjendt Hav til Gjenstand for Bearbeidelse vanskelig turde gjore Regning paa at træffe et, der i Henseende til Studiet af Strømforholdene er saa instructivt som det norske Hav.

Ved saadanne fremtidige Undersøgelser kunne de paa den norske Expedition benyttede Arbeidsmethoder ikke i alle Retninger blive optagne i nforandret Form, og det vil derfor ikke være ubefoiet til Slutning med faa Ord at paapege de Mangler, der klæbe ved disse.

De til Saltbestemmelserne tidligere benyttede Methoder, ifolge hvilke alle herben horende Observationer anstilles ombord, bor utvivlsomt for Fremtiden ikke komme til Anvendelse, da man ad den Vei tiltrods for al anvendt Moie ikke vil kunne opnaa den Nøingtighed, som tiltrænges for med ønskelig Sikkerhed at kunne paavise de i Havet forekommende ofte meget sman Differentser. Paa den norske Expedition blev denne Fremgangsmaade benyttet, fordi man med ældre lagttageres Udtalelser for Øie maatte befrygte, at Sovand ikke lod sig opbevare i længere Tidsrum uden at undergaa forskjellige Forandringer, en Frygt, der imidlertid efter min Erfaring kun forsaavidt er begrundet, som man til Opbevaring af Vandet benytter Kar, der ere forsynede med Korkeprop. Jeg har nemlig undersogt flere Vandprøver, der have været opbevarede paa denne Maade i omkring 2 Aur og fundet, at de alle uden Undtagelse have undergaact Forandringer af saadan Art. at man turde være berettiget til at anse dem uskikkede til Egenvægtsbestemmelse, hvorimod jeg hos Vandprover, der i lignende Tidsrum havde henstnaet paa Flasker forsynede med isleben Glasprop, ikke kunde opdage nogensomhelst Eiendommeligheder, der kunde adskille dem fra friskt øste Vandprover. Ved denne Opbevaringsmaade risikerer man dog ganske sikkert Fordnustning af en Del af Vandet, og man maa derfor beskytte sig mod denne Feilkilde ved at bjemføre det til Saltbestommelser bestemte Vand paa tilsmeltede Glasror.

I de saaledes conserverede Vandprover vil man senerehen efter Hjemkomsten kunne bestemme Egenvægten ved Sprengels Pyknometer og Cblorgebølten ved Hjælp af Veiningsanølyser med saadan Skarphed, som man ved Arbeide servations, and hence the results of the work done, embracing as it did the investigation of phenomena unknown before, were naturally less comprehensive than might otherwise have been attained. But, though such labours must to a certain extent, be regarded as preliminary, they will, I trust, prove of considerable importance, showing as they do, that chemical observations, which, as compared with determinations of temperature and depth, previously held quite a subordinate rank among the means employed for studying the physical conditions of the ocean, will serve to throw light upon many remarkable phenomena, that without such data would be extremely difficult to explain. On the basis of the results here set forth, a detailed plan might be easily laid down for the further exploration of the Norwegian Sea, - in my opinion a most desirable undertaking, since of ocean tracts as yet unknown, there are probably few that, in regard to the study of ocean currents, would so well repay investigation as that section of the North-Atlantic.

As several of the methods of investigation practised on the Norwegian Expedition, will not admit of being adopted on future occasions in a wbolly unmodified form, it will not be out of place in conclusion briefly to point out their defects.

The methods previously devised for determining the amount of salt in sea-water, by which all observations with this object in view were taken on board, should unquestionably cease to be adopted, since they will not suffice, with the greasest care even, to attain the high degree of accuracy requisite for detecting such minute differences as are frequently found to occur. These defective modes of operation were, however, adopted on the Norwegian Expedition, there being reason to believe from the statements of earlier observers, that sea-water could not be preserved for any length of time without undergoing chemical change, a supposition which, so far as my experience goes, is confirmed only in the event of its being kep't in corked vessels, I have examined, for instance, various samples of sea-water that had been preserved for about 2 years in corked bottles, and found all without exception to have undergone a change sufficient to render them unfit for specific gravity determiuntions; whereas, on the other band, sen-water which had been allowed to stand over for the same space of time in bottles furnished with ground glass stoppers, was not to be distinguished from freshly drawn samples. There is, bowever, a risk of loss from evaporation, the stoppers being seldom, if ever, tight-fitting; and to guard against this source of error, the water for salt-determinations must be brought home in hermetically sealed glass tubes.

With water thus preserved, the specific gravity may be determined by means of Sprengel's pycnometer, and the amount of chlorine by weighing, on the return of the Expedition, far more accurately than would be possible on ombord ikke i fjerneste Maade vil kunne gjore Regning paa at opnaa, hvorhos man tillige vil have den Fordel at kunne benytte directe Saltbestemmelser som Controhniddel.

Mod de paa Expeditionen udforte Laftbestemmelser vil ikke kunne gjores nogen væsentlig Indvending, med mindre man skulde anke over, at de benyttede Vandpraver ere optagne ved Hjælp af Apparater, der ikke vare omgivne med slette Varmeledere, saaledes at de ved Ankomsten til Overfladen vilde have havt Auledning til at antage en i Forhold til sin Luftmengde noget for hoi Temperatur. Denne Feilkilde kan dog ikke antages at have taaet nogen væsentlig Indflydelse i et Hav som det her undersogte, hvor kun et meget tyndt Lag nærmest Overfladen besidder en Temperatur af over 5°, især da Vand, der kun er svagt overmættet med Luft, meget langsomt giver Slip paa den overskydende Del.

Det ved Ildkogningen benyttede, af Jacobsen beskrevne Apparat er i alt Vasentligt findet særdeles bekvemt, kun vilde det maaske være hensigtsmæssigt at give Luftopsamlingsrøret en noget forandret Form, hvorved man lettelig vilde undgaa den Vanskelighed, hvormed det nu er forbundet at overtylde Luftmængden i Endiometret uden Tab. board; moreover, there is the additional advantage of being able to test the results by direct salt-determinations.

As regards the air-determinations performed on the Expedition, their general accuracy can hardly be impugned. True, the apparatus with which the samples of water were collected not having been surrounded by a non-conducting medium, they may possibly in their passage to the surface have assumed a temperature somewhat too high as compared with the amount of air contained in them: but the error arising from this source cannot have exerted any material influence, since the tract of ocean investigated has but a thin stratum of water in which the temperature rises above 5°; besides, water slightly surcharged with air is found to part very slowly with the surplus portion.

The boiling-apparatus devised by Jacobsen proved very convenient; possibly, however, the tube for collecting air might be given a somewhat different form, to obviate the difficulty now experienced in transferring the air to the endiometer without loss.

. Ovenstaachde Afhandlinger ere indsendte til Redactionscomiteen for den norske Nordhavsexpeditions Generalberetning, No. 1 og 11 i April 1879 og No. III i December samme Aar.

De i disse 3 Afhandlinger beskrevne Observationer ere, forsaavidt de ikke ere udforte ombord, anstillede i Professor Waages Afdeling af Universitetets chemiske Laboratorium i Christiania.

Sluttelig henytter jeg Anledningen til at udtale min Tak til D'Hrr Professorerne Waage og Molm for den Bistand, de under 'mit Arbeide med disse Gjenstande paa flere Puncter har ydet mig. These Memoirs were sent in to the Editorial Committee for the Norwegian North-Atlantic Expedition as follows: — Nos. I and II in April 1879 and No. III in December.

The observations set forth in the foregoing Memoirs were, when not taken on board, instituted in Professor Waage's department of the Chemical Laboratory of the University of Christiania.

In conclusion, I must not omit to thank Professors Waage and Mohn for the assistance they kindly rendered me, in certain respects, when engaged on the investigation of the subjects treated of in these papers,

Errata

Page 3, line 26, from top of page, for 35.4 to 32.4 - 33.6 per cent, being' read 35.4 to 32.4, 33.6 per cent being.'

^{9,} line 20, from top of page, for the extent to which the results based on that hyppothesis, etc. read the slight extent to which Jacobsen's results, etc.

^{— 28,} line 22, from top of page, for 'soda was added, and the whole compound' read 'carbonate of sodo was added, and the whole mixture.'

^{- 38,} line 3, from foot of page, for 'soda' read 'corbonate of soda.'

^{- 39,} line 13, from foot of page, for 'soda' read 'carbonate of soda.'

