EDLD654 ML Project

Maiko Hata

```
# "Beautiful presentations with R and Quarto" https://youtu.be/01KifhHDkFk?si=2axQMI_c0Tu9_Z
# quarto themes https://quarto.org/docs/presentations/revealjs/themes.html
# theme - serif or simple
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
library(finalfit)
library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
    date, intersect, setdiff, union
```

```
library(reticulate)
library(finalfit)
library(stringr)
library(recipes)
Attaching package: 'recipes'
The following object is masked from 'package:stringr':
    fixed
The following object is masked from 'package:stats':
    step
library(ggplot2)
library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v forcats 1.0.1 v tibble 3.3.0
                   v tidyr 1.3.1
v purrr 1.1.0
         2.1.5
v readr
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x recipes::fixed() masks stringr::fixed()
                 masks stats::lag()
x dplyr::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
library(gt)
library(caret)
Loading required package: lattice
Attaching package: 'caret'
The following object is masked from 'package:purrr':
    lift
```

library(MASS)

```
Attaching package: 'MASS'

The following object is masked from 'package:dplyr': select
```

library(AppliedPredictiveModeling)

Research problem

The big question: How can I design and apply Machine Learning (ML) models without reinforcing existing biases?

Asian MIT Student Asks Al for a Pro Headshot, Gets **Turned White**

MATT GROWCOOT

Rona Wang, left, and the Al headshot, right, which turned her Caucasian.

Research question

- Goal: Predict Autism Spectrum Quotient (AQ-10) screener scores from demographic information.
- Potential benefit: Understanding factors relating to scores can potentially support more focused outreach.

• Ethical & equity considerations: As an Autistic researcher and Early Intervention (EI) specialist, I want to understand how predictive models are created, what their limitations are, and the ethical considerations.

Machine learning is a topic that holds many layers and emotions. There are clear benefits,

Data

- From Kaggle
 - Numerical (age, screener result)
 - Categorical (gender f/m, jaundice yes/no, family history of Autism yes/no, used app before yes/no, results from screener results YES (7+) NO (~6), ethnicity, country of residence)

#I looked for dataset on Kaggle as recommended by Lina. There were a few Autism related data

Cleaning up missing data

```
autism <- read.csv('/Users/maiko/Desktop/EDLD654_ML/data/Autism_Screening.csv', header=TRUE)
setwd("~/Desktop/EDLD654_ML")
autism$gender_binary <- ifelse(autism$gender == "m", 1, 0)
autism$jundice_binary <- ifelse(autism$jundice == "yes", 1, 0)</pre>
```

autism\$Class.ASD_binary <- ifelse(autism\$Class.ASD == "YES", 1, 0)</pre>

ff_glimpse(autism[, 1:20])

\$Continuou											
		ar_type		missing_		issing_	-			min	
A1_Score	A1_Score	<int></int>			0		0.0		0.4		
A2_Score	A2_Score	<int></int>			0		0.0				
A3_Score	A3_Score	<int></int>			0		0.0				
A4_Score	A4_Score	<int></int>			0		0.0				
A5_Score	A5_Score	<int></int>	704		0		0.0		0.5		
A6_Score	A6_Score	<int></int>	704		0		0.0	0.3	0.5	0.0)
A7_Score	A7_Score	<int></int>	704		0		0.0				
A8_Score	A8_Score	<int></int>	704		0		0.0	0.6	0.5	0.0)
A9_Score	A9_Score	<int></int>	704		0		0.0	0.3	0.5	0.0)
A10_Score	A10_Score	<int></int>	704		0		0.0	0.6	0.5	0.0)
result	result	<int></int>	704		0		0.0	4.9	2.5	0.0)
	quartile_25	median	qua	rtile_75	ma	X					
A1_Score	0.0	1.0		1.0	1.0	0					
A2_Score	0.0	0.0		1.0	1.0	0					
A3_Score	0.0	0.0		1.0	1.0	0					
A4_Score	0.0	0.0		1.0	1.0	0					
A5_Score	0.0	0.0		1.0	1.0	0					
A6_Score	0.0	0.0		1.0	1.0	0					
A7_Score	0.0	0.0		1.0	1.0	0					
A8_Score	0.0	1.0		1.0	1.0	0					
A9_Score	0.0	0.0		1.0	1.0	0					
A10_Score	0.0	1.0		1.0	1.0	0					
result	3.0	4.0		7.0	10.0	0					
\$Categoric	cal										
				var_type			ng_n mis	sing_	-		lev
age			ıge	<chr></chr>			0			0.0	
gender		gend		<chr></chr>			0			0.0	
ethnicity		ethnici	ty	<chr></chr>	704		0		(0.0	

	label	var_type	n	missing_n	missing_percent	levels_n
age	age	<chr></chr>	704	0	0.0	47
gender	gender	<chr></chr>	704	0	0.0	2
ethnicity	ethnicity	<chr></chr>	704	0	0.0	12
jundice	jundice	<chr></chr>	704	0	0.0	2
austim	austim	<chr></chr>	704	0	0.0	2
contry_of_res	contry_of_res	<chr></chr>	704	0	0.0	67
used_app_before	used_app_before	<chr></chr>	704	0	0.0	2
age_desc	age_desc	<chr></chr>	704	0	0.0	1
relation	relation	<chr></chr>	704	0	0.0	6

levels levels_count levels_percent

age - - - - - - -

```
      ethnicity
      -
      -
      -

      jundice
      -
      -
      -

      austim
      -
      -
      -

      contry_of_res
      -
      -
      -

      used_app_before
      -
      -
      -

      age_desc
      -
      -
      -

      relation
      -
      -
      -
```

Cleaning up missing data

• Because the dataset had "?" for missing data, I calculated the percentage of "?" values in the Ethnicity column.

```
sum(autism$ethnicity == "?", na.rm = TRUE)

[1] 95

nrow(autism)

[1] 704

mean(autism$ethnicity == "?", na.rm = TRUE) * 100
```

[1] 13.49432

Descriptive statistics

Autism Screener result

```
autism <- autism %>%
  mutate(
    contry_of_res = str_trim(contry_of_res),
    contry_of_res = str_replace_all(contry_of_res, "^[\"']+|[\"']+$", ""),
    contry_of_res = str_squish(contry_of_res),
    contry_of_res = recode(contry_of_res,
        "USA" = "United States", "U.S." = "United States",
        "United States of America" = "United States"
    )
    )
}
```

```
autism <- autism %>%
  mutate(
    ethnicity = str_trim(ethnicity),
    ethnicity = str_replace_all(ethnicity, "^[\"']+|[\"']+$", ""),
    ethnicity = str_squish(ethnicity)
    )
```

Warning: NAs introduced by coercion

Autism Prevalence by Screener Result

Descriptive statistics

Autism Screener user age

Warning: Removed 2 rows containing non-finite outside the scale range (`stat_bin()`).

Warning: Removed 2 rows containing missing values or values outside the scale range (`geom_bar()`).

Descriptive statistics

Autism Screener user age with filter(age <= 100)

Model 1

"... all model building efforts are constrained by the existing data" (p. 61, Kuhn & Johnson, 2016).

Model 2

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Model 3

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Specific setting for model fitting

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Evaluating model performance

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Model fit - Model performance

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Model fit - Final model selection

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Model fit - Cut off point

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Model fit - Other considerations

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Data visualization 1

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Data visualization 2

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Discussion - What I learned

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Discussion - Variables

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Discussion - Findings

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

Conclusion

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this: