Revisit to the theoretical analysis of a classical piezoelectric cantilever energy harvester

Maoying Zhou

November 20, 2019

1 Summary of the interested equations

The dynamic equations for a typical piezoelectric composite cantilever beam is

$$B_p \frac{\partial^4 w(x,t)}{\partial x^4} + m_p \frac{\partial^2 w(x,t)}{\partial t^2} = 0, \tag{1}$$

where B_p is the equivalent bending stiffness and m_p is the line mass density of the piezoelectric cantilever beam. If the piezoelectric elements attached to the cantilever beam is connected to an external electrical load R_l , we have

$$\frac{dQ_p(t)}{dt} + \frac{V_p(t)}{R_l} = 0. (2)$$

For the underlying physics, we have the following constitutive equations

$$M_p(x,t) = B_p \frac{\partial^2 w(x,t)}{\partial x^2} - e_p V_p(t),$$

$$q_p(x,t) = e_p \frac{\partial^2 w(x,t)}{\partial x^2} + \varepsilon_p V_p(t),$$
(3)

or equivalently,

$$\begin{cases}
M_p(x,t) = B_p \frac{\partial^2 w(x,t)}{\partial x^2} - e_p V_p(t), \\
Q_p(x,t) = e_p \left[\frac{\partial w(x,t)}{\partial x} \right]_0^{l_p} + C_p V_p(t).
\end{cases}$$
(4)

One end of the cantilever beam is fixed while the other end is free. So the boundary conditions are

$$\begin{cases} w(0,t) = w_b(t), \\ \frac{\partial w(0,t)}{\partial x} = 0, \end{cases}$$
 (5)

and

$$\begin{cases}
M_p(l_p, t) = B_p \frac{\partial^2 w(l_p, t)}{\partial x^2} - e_p V_p(t) = 0, \\
N_p(l_p, t) = \frac{\partial M_p(l_p, t)}{\partial x} = B_p \frac{\partial^3 w(l_p, t)}{\partial x^3} = 0.
\end{cases}$$
(6)

In the classical energy harvesting applications, the cantilever beam is subject to a periodical base excitation $w_b(t)$. Thus the dynamic response of the cantilever beam is decomposed as

$$w(x,t) = w_b(t) + w_{rel}(x,t), \tag{7}$$

where $w_{rel}(x,t)$ is the relative displacement function of the cantilever beam. In this way, the system is converted into

$$B_{p}\frac{\partial^{4}w_{rel}(x,t)}{\partial x^{4}} + m_{p}\frac{\partial^{2}w_{rel}(x,t)}{\partial t^{2}} = -m_{p}\frac{\partial^{2}w_{b}(t)}{\partial t^{2}},$$
(8)

$$e_p \left[\frac{\partial^2 w_{rel}(x,t)}{\partial x \partial t} \right] \Big|_0^{l_p} + C_p \frac{dV_p(t)}{dt} + \frac{V_p(t)}{R_l} = 0.$$
 (9)

$$\begin{cases} w_{rel}(0,t) = 0, \\ \frac{\partial w_{rel}(0,t)}{\partial x} = 0, \end{cases}$$
 (10)

and

$$\begin{cases} B_p \frac{\partial^2 w_{rel}(l_p, t)}{\partial x^2} - e_p V_p(t) = 0, \\ \frac{\partial^3 w_{rel}(l_p, t)}{\partial x^3} = 0. \end{cases}$$
 (11)

Considering a sinusoidal base excitation

$$w_b(t) = \eta_b e^{j\sigma_b t} \tag{12}$$

where ξ_b is usually a real vibration amplitude, the steady state solution for the above system can be reasonably set as

$$w_{rel}(x,t) = \eta_{rel}(x)e^{j\sigma_b t}, \quad V_p(t) = \tilde{V}_p e^{j\sigma_b t}, \tag{13}$$

where $\eta_{rel}(x)$ and \tilde{V}_p are complex amplitudes. Then the above system is again simplified as

$$B_p \frac{\partial^4 \eta_{rel}(x)}{\partial x^4} - m_p \sigma_b^2 \eta_{rel}(x) = m_p \sigma_b^2 \eta_b, \tag{14}$$

$$\begin{cases}
\eta_{rel}(0) = 0, \\
\frac{\partial \eta_{rel}(0)}{\partial x} = 0,
\end{cases}$$
(15)

and

$$\begin{cases}
B_p \frac{\partial^2 \eta_{rel}(l_p)}{\partial x^2} + \frac{j\sigma_b R_l}{1 + j\sigma_b C_p R_l} e_p^2 \frac{\partial \eta_{rel}(l_p)}{\partial x} = 0, \\
\frac{\partial^3 \eta_{rel}(l_p)}{\partial x^3} = 0.
\end{cases}$$
(16)

Note that here we assume a sinusoidal steady state response, which is not actually validated theoretically.

Obviously we can have the following dimensionless scheme:

$$\eta_{rel} \sim u\eta_b, \quad x \sim zl_p$$
(17)

and therefore the following dimensionless parameters

$$\sigma = \sigma_b \sqrt{\frac{m_p l_p^4}{B_p}}, \quad \beta = R_l C_p \sqrt{\frac{B_p}{m_p l_p^4}}, \quad \delta = \frac{e_p^2 l_p}{C_p B_p}.$$
 (18)

Now, we reach the following dimensionless system of boundary value problem

$$\begin{cases} u'''' - \sigma^2 u = \sigma^2, \\ u(0) = 0, \\ u'(0) = 0, \end{cases}$$

$$u''(1) + \frac{j\beta\sigma}{1 + j\beta\sigma} \delta u'(1) = 0,$$

$$u'''(1) = 0,$$
(19)

where the prime denotes the derivative with respect to z. The analytical solution to this problem can be formulated as

$$u(z;\delta) = A_{\delta}\cos\sqrt{\sigma}z + B_{\delta}\sin\sqrt{\sigma}z + C_{\delta}\cosh\sqrt{\sigma}z + D_{\delta}\sinh\sqrt{\sigma}z - 1$$
 (20)

and hence

$$u'(z;\delta) = \sigma^{1/2} \left(-A_{\delta} \sin \sqrt{\sigma}z + B_{\delta} \cos \sqrt{\sigma}z + C_{\delta} \sinh \sqrt{\sigma}z + D_{\delta} \cosh \sqrt{\sigma}z \right),$$

$$u''(z;\delta) = \sigma \left(-A_{\delta} \cos \sqrt{\sigma}z - B_{\delta} \sin \sqrt{\sigma}z + C_{\delta} \cosh \sqrt{\sigma}z + D_{\delta} \sinh \sqrt{\sigma}z \right),$$

$$u'''(z;\delta) = \sigma^{3/2} \left(A_{\delta} \sin \sqrt{\sigma}z - B_{\delta} \cos \sqrt{\sigma}z + C_{\delta} \sinh \sqrt{\sigma}z + D_{\delta} \cosh \sqrt{\sigma}z \right).$$
(21)

The coefficients A_{δ} , B_{δ} , C_{δ} , and D_{δ} are then subject to the following linear system of equations:

$$\begin{cases}
A_{\delta} + C_{\delta} = 1, \\
B_{\delta} + D_{\delta} = 0, \\
(-A_{\delta}\cos\sqrt{\sigma} - B_{\delta}\sin\sqrt{\sigma} + C_{\delta}\cosh\sqrt{\sigma} + D_{\delta}\sinh\sqrt{\sigma}) + \\
\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1}\delta\left(-A_{\delta}\sin\sqrt{\sigma} + B_{\delta}\cos\sqrt{\sigma} + C_{\delta}\sinh\sqrt{\sigma} + D_{\delta}\cosh\sqrt{\sigma}\right) = 0, \\
A_{\delta}\sin\sqrt{\sigma} - B_{\delta}\cos\sqrt{\sigma} + C_{\delta}\sinh\sqrt{\sigma} + D_{\delta}\cosh\sqrt{\sigma} = 0.
\end{cases} (22)$$

Analytically, we can directly obtain the solution to this problem as

$$\begin{cases} A_{\delta} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} - \sin\sqrt{\sigma}\sinh\sqrt{\sigma} + \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]}, \\ B_{\delta} = \frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\sin\sqrt{\sigma}\sinh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]}, \\ C_{\delta} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]}, \\ D_{\delta} = \frac{-\cos\sqrt{\sigma}\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}\cosh\sqrt{\sigma} - \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\sin\sqrt{\sigma}\sinh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]}. \end{cases}$$
(23)

According to equations (20) and (23), it is seen that the dimensionless displacement amplitude function u(z) is totally determined by the three dimensionless parameters σ , β , and δ introduced before. The resulting complex amplitudes \tilde{V}_p , \tilde{I}_p , and \tilde{P}_p for output voltage $V_p(t)$, output current $I_p(t)$, and output power $P_p(t)$, respectively, can be formulated as follows

$$\begin{cases}
\tilde{V}_{p} = -\frac{j\sigma\beta}{j\sigma\beta+1} \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} u'(1), \\
= -\frac{j\sigma\beta}{j\sigma\beta+1} \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} \sigma^{1/2} \left(-A_{\delta} \sin \sqrt{\sigma} + B_{\delta} \cos \sqrt{\sigma} + C_{\delta} \sinh \sqrt{\sigma} + D_{\delta} \cosh \sqrt{\sigma} \right) \\
= -\frac{j\sigma\beta}{j\sigma\beta+1} \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} \frac{\sqrt{\sigma} \left(\sinh \sqrt{\sigma} - \sin \sqrt{\sigma} \right)}{1 + \cos \sqrt{\sigma} \cosh \sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \delta \left(\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma} \right)} \\
= -\frac{j\sigma\beta}{j\sigma\beta+1} \left(\frac{\eta_{b}}{l_{p}} \right) \left(\frac{e_{p}}{C_{p}} \right) \chi_{p}, \\
\tilde{I}_{p} = \tilde{V}_{p}/R_{l} = \frac{-j}{j\sigma\beta+1} \left(\frac{\eta_{b}}{l_{p}} \right) \left(e_{p}\sigma_{b} \right) \chi_{p}, \\
\tilde{P}_{p} = \tilde{V}_{p}^{2}/R_{l} = -\left(\frac{\eta_{b}}{l_{p}} \right)^{2} \left(\frac{e_{p}}{C_{p}} \right) \left(e_{p}\sigma_{b} \right) \frac{\sigma\beta}{\left(j\sigma\beta+1 \right)^{2}} \chi_{p}^{2},
\end{cases} \tag{24}$$

in which we have used the notations that

$$\chi_p = u_1'(1) = \frac{\sqrt{\sigma} \left(\sinh \sqrt{\sigma} - \sin \sqrt{\sigma}\right)}{1 + \cos \sqrt{\sigma} \cosh \sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1 + i\beta\sigma}\delta \left(\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma}\right)}.$$
 (25)

Clearly, output performance \tilde{V}_p , \tilde{I}_p , and \tilde{P}_p of a classical piezoelectric cantilever energy harvester is heavily dependent on another dimensionless parameter $r_d = \eta_b/l_p$. To be more explicit, both \tilde{V}_p and \tilde{I}_p are linearly dependent on r_d and as a result, \tilde{P}_p shows a quadratic dependence on r_d .

Among the four dimensionless parameters σ , β , δ , and r_d , σ is the dimensionless base excitation frequency, β is the dimensionless electromechanical coupling strength for the structure, and r_d is the dimensionless base excitation amplitude. As σ and β is determined by the base excitation and externally connected circuit respectively, only the parameter δ is fully determined by the structure itself. Hence we would like to investigate the influence of parameter δ upon the performance of a piezoelectric energy harvesting cantilever. By

Figure 1: Amplitude and phase of the displacement function u(z)

taking different values of δ and fixing the other three parameters σ , β , and r_d according to the data shown in [1, 2], we calculate the displacement amplitude function u(z) and the corresponding performance metrics \tilde{V}_p , \tilde{I}_p , and \tilde{P}_p . The results are plotted in Figure 1 and Figure 2.

In Figure 1, we depict the influence of the electromechanical coupling factor δ upon the normalized displacement response function u(z). It is shown that, the parameter δ changes the function u(z) through the change of the third boundary condition (to be inserted).

In the following, we can obtain the corresponding displacement function u(z) in terms of its amplitude and phase in Figure 1.

For a typical piezoelectric cantilever energy harvester in the literature [1, 2], this parameter δ is rather small

Figure 2: Voltage, current and power output for the piezoelectric cantilever energy harvester

Using the following regular expansion:

$$\begin{cases}
A_{\epsilon} = A_0 + \epsilon A_1 + \epsilon^2 A_2 + \cdots, \\
B_{\epsilon} = B_0 + \epsilon B_1 + \epsilon^2 B_2 + \cdots, \\
C_{\epsilon} = C_0 + \epsilon C_1 + \epsilon^2 C_2 + \cdots, \\
D_{\epsilon} = D_0 + \epsilon D_1 + \epsilon^2 D_2 + \cdots,
\end{cases} (26)$$

we obtain the successive expansion problem:

 $O(\epsilon^0)$:

$$\begin{cases}
A_0 + C_0 = 1, \\
B_0 + D_0 = 0, \\
-A_0 \cos \sqrt{\sigma} - B_0 \sin \sqrt{\sigma} + C_0 \cosh \sqrt{\sigma} + D_0 \sinh \sqrt{\sigma} = 0, \\
A_0 \sin \sqrt{\sigma} - B_0 \cos \sqrt{\sigma} + C_0 \sinh \sqrt{\sigma} + D_0 \cosh \sqrt{\sigma} = 0.
\end{cases} (27)$$

The solution is

$$\begin{cases}
A_{0} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} - \sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}} \\
B_{0} = \frac{\cosh\sqrt{\sigma}\sin\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}} \\
C_{0} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}} \\
D_{0} = -\frac{\cosh\sqrt{\sigma}\sin\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}}
\end{cases}$$
(28)

Hence we have

$$-A_0 \sin \sqrt{\sigma} + B_0 \cos \sqrt{\sigma} + C_0 \sinh \sqrt{\sigma} + D_0 \cosh \sqrt{\sigma} = \frac{\sinh \sqrt{\sigma} - \sin \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1}$$
(29)

 $O(\epsilon^1)$:

$$A_{1} + C_{1} = 0,$$

$$B_{1} + D_{1} = 0,$$

$$(-A_{1}\cos\sqrt{\sigma} - B_{1}\sin\sqrt{\sigma} + C_{1}\cosh\sqrt{\sigma} + D_{1}\sinh\sqrt{\sigma}) +$$

$$\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1} \left(-A_{0}\sin\sqrt{\sigma} + B_{0}\cos\sqrt{\sigma} + C_{0}\sinh\sqrt{\sigma} + D_{0}\cosh\sqrt{\sigma}\right) = 0,$$

$$A_{1}\sin\sqrt{\sigma} - B_{1}\cos\sqrt{\sigma} + C_{1}\sinh\sqrt{\sigma} + D_{1}\cosh\sqrt{\sigma} = 0.$$
(30)

The solution is

$$\begin{cases}
A_1 = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right) \\
B_1 = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(\frac{-\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right) \\
C_1 = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(-\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right) \\
D_1 = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(\frac{-\sin\sqrt{\sigma} + \sinh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right)
\end{cases}$$
(31)

Then we have

$$-A_1 \sin \sqrt{\sigma} + B_1 \cos \sqrt{\sigma} + C_1 \sinh \sqrt{\sigma} + D_1 \cosh \sqrt{\sigma}$$

$$= \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sin \sqrt{\sigma} - \sinh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right) \left(\frac{\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right)$$
(32)

 $O(\epsilon^2)$:

$$\begin{cases}
A_2 + C_2 = 0, \\
B_2 + D_2 = 0, \\
(-A_2 \cos \sqrt{\sigma} - B_2 \sin \sqrt{\sigma} + C_2 \cosh \sqrt{\sigma} + D_2 \sinh \sqrt{\sigma}) + \\
\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1} \left(-A_1 \sin \sqrt{\sigma} + B_1 \cos \sqrt{\sigma} + C_1 \sinh \sqrt{\sigma} + D_1 \cosh \sqrt{\sigma} \right) = 0, \\
A_2 \sin \sqrt{\sigma} - B_2 \cos \sqrt{\sigma} + C_2 \sinh \sqrt{\sigma} + D_2 \cosh \sqrt{\sigma} = 0.
\end{cases} (33)$$

The solution is

$$\begin{cases}
A_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}+\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\
B_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\
C_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\cos\sqrt{\sigma}+\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\
D_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\
D_3 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\
D_4 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right)
\end{cases}$$

To get higher order expansions, we can use the following iteration method: $O(\epsilon^{k+1})$ $(k \ge 1)$:

$$\begin{cases}
A_{k+1} + C_{k+1} = 0, \\
B_{k+1} + D_{k+1} = 0, \\
(-A_{k+1}\cos\sqrt{\sigma} - B_{k+1}\sin\sqrt{\sigma} + C_{k+1}\cosh\sqrt{\sigma} + D_{k+1}\sinh\sqrt{\sigma}) + \\
\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1} \left(-A_k\sin\sqrt{\sigma} + B_k\cos\sqrt{\sigma} + C_k\sinh\sqrt{\sigma} + D_k\cosh\sqrt{\sigma} \right) = 0, \\
A_{k+1}\sin\sqrt{\sigma} - B_{k+1}\cos\sqrt{\sigma} + C_{k+1}\sinh\sqrt{\sigma} + D_{k+1}\cosh\sqrt{\sigma} = 0.
\end{cases} (35)$$

The solution is

$$\begin{cases}
A_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \\
B_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(\frac{-\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \\
C_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(-\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \\
D_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(\frac{-\sin\sqrt{\sigma} + \sinh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k)
\end{cases}$$
(36)

where for $k \geq 2$

$$Q_k = -A_k \sin \sqrt{\sigma} + B_k \cos \sqrt{\sigma} + C_k \sinh \sqrt{\sigma} + D_k \cosh \sqrt{\sigma}, \tag{37}$$

and for $k \geq 0$

$$Q_{k+1} = -A_{k+1} \sin \sqrt{\sigma} + B_{k+1} \cos \sqrt{\sigma} + C_{k+1} \sinh \sqrt{\sigma} + D_{k+1} \cosh \sqrt{\sigma}$$

$$= -\left(\frac{\sin \sqrt{\sigma} \cosh \sqrt{\sigma} + \cos \sqrt{\sigma} \sinh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1}\right) \left(\frac{j\beta\sqrt{\sigma}}{1 + j\beta\sigma}\right) Q_k,$$
(38)

and

$$Q_{1} = -A_{1} \sin \sqrt{\sigma} + B_{1} \cos \sqrt{\sigma} + C_{1} \sinh \sqrt{\sigma} + D_{1} \cosh \sqrt{\sigma}$$

$$= \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sin \sqrt{\sigma} - \sinh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right) \left(\frac{\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right)$$
(39)

$$Q_0 = \frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \tag{40}$$

Hence it is shown that for k > 0

$$Q_{k} = -\left(\frac{\sin\sqrt{\sigma}\cosh\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{j\beta\sqrt{\sigma}}{1 + j\beta\sigma}\right) Q_{k}$$

$$= \left[-\left(\frac{j\beta\sqrt{\sigma}}{1 + j\beta\sigma}\right) \left(\frac{\sin\sqrt{\sigma}\cosh\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right)\right]^{k} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right)$$
(41)

As a result, we obtain that for $k \geq 0$

$$\begin{cases} A_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^{k} \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}+\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\ B_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^{k} \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\ C_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^{k} \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\cos\sqrt{\sigma}-\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\ D_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^{k} \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\sin\sqrt{\sigma}+\sinh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \end{cases}$$

Reference

References

- [1] Erturk A, Inman DJ. A distributed parameter electromechanical model for cantilevered piezo-electric energy harvesters. Journal of vibration and acoustics. 2008;130(4):041002.
- [2] Erturk A, Inman DJ. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart materials and structures. 2009;18(2):025009.