Statistical Language Models

Week 7.2

Textmining in R, chapter 8

Perplexity

- Training dataset used to build LDA model
- Validation dataset used to asses the (model selection) number of clusters topics

From hold out data

- Great resource: Section 2 of
- vignette("topicmodels")
- Geometric mean per word likelihood:

$$Perplexity(Doc_{test}) = exp \left\{ -\frac{\sum_{doc} log(p(w \mid \theta, \phi))}{\sum_{doc} \{ \text{\#words is in doc} \}} \right\}$$

lower perplexity score indicates better generalization performance

Perplexity

Measure is how likely new data is given the LDA model that was learned.

Assumptions: standard to training /testing

 Perplexity is not well correlated with human perception of quality by interpretability of topics

- JSON data comes in key/value pairs
- Think of it as named data frame columns or named vectors.
- Our course schedule might be have several key/value pairs:

```
"startTime":"13:05", "days":"Tu/Th",
```

```
"endTime":"14:25",
```

"roomNumber": "3224", "building": "Richcraft Hall"

- Data can be
 - Numbers: 1, 2, 3.1415
 - Strings: "Text in double quotes"
 - Boolean: TRUE
 - Array ["ordered", "comma separated", "enclosed in square brackets", "any data type inside"]
- Object {unordered, comma separated, collection of key: value pairs in curly brackets, any data types}

 Our course schedule might be have several "key":value pairs:

```
"startTime":"13:05", "days":"Tue/Thu", "endTime":"2:25",
```

"roomNumber": "3224", "building": "Richcraft Hall"

- Our course info could be split into a hierarchical data structure with the top levels:
- CourseSchedule
- Course Instructor
- Grading
- Course Info
- Text

- Our course info could be split into a hierarchical data structure with the top levels:
- CourseSchedule [start time, end time, day, room, ...]
- Course Instructor [name, office, email, phone,...]
- Grading [assignments, midterms, final,...]
- Course Info [pre-req, delivery method, title, description, . . .
- Text [required, recommended,...]

Some course info in JSON:

```
"courseSchedule":[{"startTime":"13:05",
"startDate":"Tue Jan 07 2020", "roomNumber":"7618",
"days":"Mo","endDate":"Thu Apr 07
2020","endTime":"14:20", "isExam":false,
"roomNumber":"3224","building":"Richcraft Hall"}],
```

Big JSON file

 Can we find datasets that are related? Are there clusters of similar datasets? What does NASA research?

https://data.nasa.gov/data.json

Metadata from NASA datasets from their research

- library(jsonlite)
- metadata = fromJSON("https://data.nasa.gov/data.json") # big file
- class(metadata)
- names(metadata\$dataset)

- class(metadata\$dataset\$title)
- length(metadata\$dataset\$title)
- class(metadata\$dataset\$keyword)
- class(metadata\$dataset\$description)

Tidying up the title data

- #Set up separate nibbles for title, description, and keyword
- library(dplyr)
- nasa_title = tibble(id = metadata\$dataset\$`identifier`,
- title = metadata\$dataset\$title)
- nasa_title

Data set descriptions

- nasa_desc = tibble(id = metadata\$data\$dataset\$`identifier`,
- desc = metadata\$dataset\$description)

- nasa_desc %>%
- select(desc) %>%
- sample_n(5)

The data keywords (one row for each keyword)

library(tidyr)

nasa_keyword = tibble(id = metadata\$dataset\$`identifier`,

keyword = metadata\$data\$dataset\$keyword) %>%

unnest(keyword)

nasa_keyword

Tokenize title and description

- library(tidytext)
- nasa_title = nasa_title %>%
- unnest_tokens(word, title) %>%
- anti_join(stop_words)
- nasa_title
- ########### stop_words?????##########

- nasa_desc = nasa_desc %>%
- unnest_tokens(word, desc)%>%
- anti_join(stop_words)
- nasa_desc

Basic Explorations

- # Find the most common words in the dataset
- nasa_title %>%
- count(word, sort = TRUE)
- nasa_desc %>%
- count(word, sort = TRUE)

Custom stop words #arguably include words like "data"

- my_stopwords = tibble(word = c(as.character(1:10),
- "v1", "v1.0", "v03", "I2", "I3", "I4", "v5.2.0",
- "v003", "v004", "v005", "v006", "v7"))
- nasa_title = nasa_title %>%
- anti_join(my_stopwords)
- nasa_desc = nasa_desc %>%
- anti_join(my_stopwords)

Common keywords

- nasa_keyword %>%
- group_by(keyword) %>%
- count(sort = TRUE)

Networks of Description and Title Words

- #Count the number of pairwise occurrences of words in a title or description
- library(widyr)

- title_word_pairs = nasa_title %>%
- pairwise_count(word, id, sort = TRUE, upper = FALSE)
- title_word_pairs

Common co-occuring description words

- desc_word_pairs = nasa_desc %>%
- pairwise_count(word, id, sort = TRUE, upper = FALSE)

desc_word_pairs

Networks of co-occuring words in titles

- library(ggplot2)
- library(igraph)
- library(ggraph)

- title_word_pairs %>%
- filter(n >= 250) % >%
- graph_from_data_frame() %>%

- ggraph(layout = "fr") +
- geom_edge_link(aes(edge_alpha = n, edge_width = n), edge_colour = "cyan4")
- geom_node_point(size = 5) +
- geom_node_text(aes(label = name), repel = TRUE,
- point.padding = unit(0.2, "lines")) +
- theme_void()

Networks of Co-occurences in descritions

- desc_word_pairs %>%
- filter(n >= 1000) % > %
- graph_from_data_frame() %>%

- ggraph(layout = "fr") +
- geom_edge_link(aes(edge_alpha = n, edge_width = n), edge_colour = "darkred") +
- geom_node_point(size = 5) +
- geom_node_text(aes(label = name), repel = TRUE,
- point.padding = unit(0.2, "lines")) +
- theme_void()

Networks of co-occurences in keywords

- keyword_pairs = nasa_keyword %>%
- pairwise_count(keyword, id, sort = TRUE, upper = FALSE)

keyword_pairs

- keyword_pairs %>%
- filter(n >= 500) %>%
- graph_from_data_frame() %>%
- ggraph(layout = "fr") +
- geom_edge_link(aes(edge_alpha = n, edge_width = n), edge_colour = "royalblue") +
- geom_node_point(size = 5) +
- geom_node_text(aes(label = name), repel = TRUE,
- point.padding = unit(0.2, "lines")) +
- theme_void()

- #Note the clusters; these seem to define redundancy, but counts won't tell us for sure. Co-occurrence isn't always enough
- keyword_cors = nasa_keyword %>%
- group_by(keyword) %>%
- filter(n() >= 50) % >%
- pairwise_cor(keyword, id, sort = TRUE, upper = FALSE)
- keyword_cors

Correlation options

- Pearson Correlation is classic linear relationship for two continuous variables
- Kendall rank correlation measures the strength of dependence for ordered data

$$\tau = \frac{N_{concordant} - N_{discordant}}{.5N(N-1)} = \frac{1}{.5N(N-1)} \sum_{i < j} sgn(x_i - x_j) sgn(y_i - y_j)$$

- Concordant = consistent
- Spearman rank correlation for ordinal or continuous variables

,
$$\rho=1-\frac{6\sum d_i^2}{N(N^2-1)}$$
, for difference between ranks d_i and N observations

Visualize networks of words via correlations

- keyword_cors %>%
- filter(correlation > .6) %>%
- graph_from_data_frame() %>%
- ggraph(layout = "fr") +
- geom_edge_link(aes(edge_alpha = correlation, edge_width = correlation), edge_colour = "royalblue") +
- geom_node_point(size = 5) +
- geom_node_text(aes(label = name), repel = TRUE,
- point.padding = unit(0.2, "lines")) +
- theme_void()

tf_idf from descriptions

- desc_tf_idf = nasa_desc %>%
- count(id, word, sort = TRUE) %>%
- ungroup() %>%
- bind_tf_idf(word, id, n)

- desc_tf_idf = full_join(desc_tf_idf, nasa_keyword, by = "id")
- desc_tf_idf %>%
- arrange(-tf_idf)
- #many boring words

Look for high tf_idf terms within keywords

- desc_tf_idf %>%
- filter(!near(tf, 1)) %>%
- filter(keyword %in% c("solar activity", "clouds", "seismology", "astrophysics", "human health", "budget", "climate")) %>%
- arrange(desc(tf_idf)) %>%
- group_by(keyword) %>%
- distinct(word, keyword, .keep_all = TRUE) %>%
- top_n(15, tf_idf) %>%
- ungroup() %>%

- mutate(word = factor(word, levels = rev(unique(word)))) %>%
- ggplot(aes(word, tf_idf, fill = keyword)) +
- geom_col(show.legend = FALSE) +
- facet_wrap(~keyword, ncol = 3, scales = "free") +
- coord_flip() +
- labs(title = "Highest tf-idf words in NASA metadata description fields",
- caption = "NASA metadata from https://data.nasa.gov/data.json",
- x = NULL, y = "tf-idf")

- my_stop_words = bind_rows(stop_words, tibble(word = c("nbsp", "amp", "gt", "lt", "timesnewromanpsmt", "font", "td", "li", "br", "tr", "quot", "st", "img", "src", "strong", "http", "file", "files", as.character(1:12)), lexicon = rep("custom", 30)))
- word_counts = nasa_desc %>%
- anti_join(my_stop_words) %>%
- count(id, word, sort = TRUE) %>%
- ungroup()

word_counts

- desc_dtm = word_counts %>%
- cast_dtm(id, word, n)

- desc_dtm
- ### desc_dtm = removeSparseTerms(desc_dtm,.95)

LDA

library(topicmodels)

- # be aware that running this model is time intensive
- desc_lda <- LDA(desc_dtm, k = 24, control = list(seed = 1234))
- desc_lda

tidy_lda <- tidy(desc_lda)

tidy_lda

Their β = probability of a term given a topic

- top_terms <- tidy_lda %>%
- group_by(topic) %>%
- top_n(10, beta) %>%
- ungroup() %>%
- arrange(topic, -beta)

top_terms

In plots

- top_terms %>%
- mutate(term = reorder_within(term, beta, topic)) %>%
- group_by(topic, term) %>%
- arrange(desc(beta)) %>%
- ungroup() %>%

- ggplot(aes(term, beta, fill = as.factor(topic))) +
- geom_col(show.legend = FALSE) +
- coord_flip() +
- scale_x_reordered() +
- labs(title = "Top 10 terms in each NASA topic",
- x = NULL, y = expression(beta)) +
- facet_wrap(~ topic, ncol = 4, scales = "free")

Their γ = probability of topic within document Connecting topic modeling with keywords

Ida_gamma = tidy(desc_lda, matrix = "gamma")

- Ida_gamma
- Ida_gamma = full_join(lda_gamma, nasa_keyword, by = c("document" = "id"))
- Ida_gamma

top_keywords <- Ida_gamma %>% D

- filter(gamma > 0.9) %>%
- count(topic, keyword, sort = TRUE)
- top_keywords

- top_keywords %>%
- group_by(topic) %>%
- top_n(5, n) %>%
- ungroup %>%
- mutate(keyword = reorder_within(keyword, n, topic)) %>%

- ggplot(aes(keyword, n, fill = as.factor(topic)))
- geom_col(show.legend = FALSE) +
- labs(title = "Top keywords for each topic",
- x = NULL, y = "Number of documents") +
- coord_flip() +
- scale_x_reordered() +
- facet_wrap(~ topic, ncol = 4, scales = "free")

Supervised LDA

 https://papers.neurips.cc/ paper/3328-supervisedtopic-models.pdf

• Fit LDA so as to best estimate Y

