

UNIVERSITY OF ENERGY AND NATURAL RESOURCES, SUNYANI, GHANA

SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER AND ELECTRICAL ENGINEERING

LEVEL 200 MID SEMESTER EXAMINATION 2017/2018

Bachelor of Science (Electrical, Computer and Renewable Energy Engineering)

CENG 207: SOLID STATE DEVICES

Attempt all Questions

October, 2017

Time: 60 Mins

Question 1 [2+6+2]

An abrupt Si p-n junction has $N_D = 1 \times 10^{14} cm^{-3}$ on one side and $N_A = 1 \times 10^{17} cm^{-3}$ on the other.

- a) Calculate the fermi level positions at 300K in the p and n regions
- b) Draw an equilibrium band diagram for the junction and determine the contact potential from the diagram
- c) Calculate the depletion width, W and the depletion in the p and n regions

Question 2 [4+6]

- (a) A Si bar $0.1 \,\mu\text{m}$ long and $100 \,\mu\text{m}^2$ in cross-sectional area is doped with $10^{17} cm^{-3}$ phosphorus. [$\mu_n = 1350 m^2/V s$]. Find the current at 300k with 10 V across it.
- (b) A GaAs LED has a doping profile of $N_A = 10^{14} cm^{-3}$ and $N_D = 10^{15} cm^{-3}$. The minority carrier time, $\tau_n = 10^{-8} s$; $\tau_p = 7 \times 10^{-9} s$. The electron diffusion coefficient is $100 cm^2 s^{-1}$ while that of the hole is $20 cm^2 s^{-1}$. Calculate the ratio of electron injected current across the junction to the total current. $[n_i(GaAs) = 1.8 \times 10^6]$

J = 91 1/8 + 1/8

Index No	D	
Index 140	Programme	 V

PHYSICAL CONSTANTS

q	Electronic Charge	1.602 x 10 ⁻¹⁹	C		
ε ₀	Permittivity of Free Space	8.854 x 10 ⁻¹⁴	F.cm ⁻¹		
μ_{o}	Permeability of Free Space	1.2566 x 10 ⁻⁸	H.cm ⁻¹		
k	Boltzmann Constant	1.38 x 10 ⁻²³	J.K ⁻¹	8.62 x 10 ⁻⁵	eV.K ⁻¹
h	Planck Constant	6.626 x 10 ⁻³⁴	J.s		• v.ik
mo	Electron Rest Mass	9.11 x 10 ⁻³¹	kg		
eV	Electron Volt	1.602 x 10 ⁻¹⁹	J		
c	Speed of Light	3×10^{8}	m.s ⁻¹		
kT/q	Thermal Voltage (290K)	0.0250 V			

SOME PROPERTIES OF SILICON

n_i	Intrinsic Carrier Concentration	1.5×10^{10}	cm ⁻³	
N_{C}	Effective Density of States (CB)	2.8×10^{19}	cm ⁻³	
N_{V}	Effective Density of States (VB)	1.04×10^{19}	cm ⁻³	
E _G	Band Gap	1.12	eV	
ϵ_{s}	Dielectric Constant	11.8		
ϵ_{ox}	Dielectric Constant	3.6		
χ	Electron affinity (Si)	4.05	V	

1,22205