

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-255095

(43)公開日 平成5年(1993)10月5日

(51)Int.Cl. ⁵	識別記号	序内整理番号	F I	技術表示箇所
A 61 K 33/42	A G A	8314-4C		
9/08	F	7329-4C		
47/04	B	7433-4C		
	E	7433-4C		

審査請求 未請求 請求項の数2(全4頁)

(21)出願番号	特願平4-88256	(71)出願人	000126757 株式会社アドバンス 東京都中央区日本橋小舟町5番7号
(22)出願日	平成4年(1992)3月13日	(71)出願人	591144372 青木 秀希 東京都品川区東五反田3-16-24-301
		(72)発明者	青木 秀希 東京都品川区東五反田3-16-24島津山水 ームズ301
		(72)発明者	吉沢 和剛 東京都板橋区蓮沼町8-1-502
		(72)発明者	奏 美治 東京都東村山市富士見町2-3-53

(54)【発明の名称】 血管内投与剤

(57)【要約】

【目的】 リン酸カルシウムの内在する薬理作用を生体内で充分に發揮させることを目的とする。

【構成】 微結晶化したリン酸カルシウムを主成分とする。

BF

【特許請求の範囲】

【請求項1】リン酸カルシウム微結晶体を主成分とする血管内投与剤。

【請求項2】薬剤を担持したリン酸カルシウム微結晶体を主成分とする血管内投与剤。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、リン酸カルシウムの微結晶体を主成分とする血管内投与剤に関する。

【0002】

【従来の例】従来、体外で血液に無機化合物及びその焼成物を作用させ、もしくは血管内を除く生体組織内に直接埋入し、血液成分の吸着除去（特開昭62-253074、同昭63-15961、同平01-236940、同平03-85172など）、凝集・凝縮（特開平02-283284）、濾過・分離（特開昭57-31621、同昭63-2999など）、薬物徐放（特開昭58-157715、同昭62-6522、同昭63-26726、同平01-40418、同平02-198560、同平03-161429、同平03-218310など）を行おうとする試みは多くあった。又、リン酸カルシウム、特にハイドロキシアバタイトの生体成分に対する特性についても下記に例示した様に数多く研究され、種々の治療への応用が検討されている。

- 1) カルシウム、リン源・・・・低カルシウム血症、骨粗しょう症
- 2) カルシウム吸着剤・・・・高カルシウム血症、末期ガン
- 3) リン吸着剤・・・・・・・高リン血症、慢性腎不全症
- 4) コレステロール吸着剤・・・・高コレステロール血症
- 5) 免疫タンパク吸着剤・・・・免疫性疾患
- 6) 血液抗凝固剤・・・・本態性高血圧症、動脈硬化症
- 7) 遺伝子・ウイルス捕捉剤・・・肝炎、エイズ、ATLなどウイルス感染症

【0003】

【発明が解決しようとする課題】更に、これらは何れも吸着濾過を利用したものであり、血管投与等直接人体に作用させることを目的としたものではない。これら従来例には、次の様な問題がある。

- 1) 無機化合物及び焼成物は、多孔体ブロックまたは多孔体顆粒、もしくは圧粉体又はその造粒物、凝集物などが用いられており、これらは、いずれもサイズが大きすぎるため血管内に投与することは不可能である。
- 2) 無機化合物及び焼成物はアルミナなどの非溶解性セラミックスか、高温で焼結された難溶解性セラミックスであり、生体内に長期間残留する。
- 3) 多孔体による薬物徐放法は局所に投与するのには適

しているが、全身的な投与には適さない。

4) 無機化合物及び焼成物を薬剤のマクロ的担体として使用することを目的としており、セラミックス自体ミクロ的担体の使用については、未解明である。

5) これら無機化合物及び焼成物を担体としてミクロ的に使用した場合、比表面積が小さくなるため、薬物の担持量、徐放速度等の制御は困難である。

この様にある種の無機化合物及び焼成物には秀れた作用を有しながらも上述した諸問題点によってその薬理作用を充分に發揮し得ないものであった。

【0004】

【問題点を解決する為の手段】上記に鑑み本発明は微結晶化したリン酸カルシウムを直接、静脈等に血管内に注入することにより、血管を閉塞することなく本来内在するリン酸カルシウムの薬理作用を充分に發揮し得る血管内投与剤を実現した。しかも微結晶化したリン酸カルシウムは吸着能力にすぐれ、溶解吸収が比較的早い為、長期間残留することがなく、またミクロ的に担持した薬剤を可及的に徐放または、制御可能に抑制し担体としても機能性を有するものである。

【0005】本発明で示すリン酸カルシウムとは、カルシウム及びリンを主成分とする化合物でハイドロキシアバタイト、リン酸三カルシウム、リン酸四カルシウム、リン酸八カルシウム、リン酸水素カルシウム、ビロリン酸カルシウム、メタリン酸カルシウムなどの一種または二種以上で構成されるものをさす。特にハイドロキシアバタイト又はリン酸三カルシウムが好ましい。微結晶体とは、粒径が1μm以下、望ましくは0.1μm以下である。その製法は特に限定されないが、中でも湿式合成法は0.1μm以下の粒径を有するリン酸カルシウムが比較的容易に生成できることから好ましい方法である。

また、リン酸カルシウム微結晶体の凝集を防止し、分散性を高めるために分散剤又は乳化剤を添加したり、乳化器を用いるなどの方法を併用してもよい。分散剤又は乳化剤にはグリセリン脂肪酸エチル、ショ糖脂肪酸エチル、リン脂質、レシチンなど、また乳化器にはホモジナイザー超微粒分散機などがあるが、いずれもこれらに限定したものではない。

【0006】本発明で示すリン酸カルシウムの特性は、上述した作用の他に薬剤の担体とした場合も含めて次の様な作用を例示し得る。

- 1) 血液中の電解質や蛋白、脂質などを吸着させ血液成分の組成変化を起こさせる。
- 2) 血液成分に吸着させ、細胞分化、増殖などに働く血液成分の生理的作用をコントロールする。
- 3) リン酸カルシウム中のカルシウム及びリン酸イオンを徐々に吸着又は解離させ、血中濃度を変化させる。リン酸カルシウム微結晶体に適当な薬剤を添加し、これを血管内に投与することにより、1)及び2)の変化をさらに促進または遅延させる。

4) リン酸カルシウム微結晶体に適当な薬剤を添加し固定化し、これを血管内に投与することにより、薬剤の効果を促進または遅延させる。遅延させることにより徐放効果を付加することができる。

5) リン酸カルシウム微結晶体に適当な薬剤を添加し、これを血管内に投与することにより、ガン細胞などの各種細胞、エイズ、ATL、肝炎ウイルスなどのウイルス等に選択的に吸着させ、分化、増殖をコントロールし同時に薬剤を作用させる。

6) リン酸カルシウム微結晶体は、溶解速度が大きく、比較的容易に生体内に吸収され、長期間残留するおそれはない。

ここで示す血液成分とは、赤血球、白血球などの血球成分、タンパク、脂質、酸素、糖、Ca、Na、K、C₁、Pなどの電解質、ホルモン、生理活性物質、幹細胞、細菌、ウイルスなど細胞成分などをさす。リン酸カルシウム微結晶体を薬剤担体として使用する場合の薬剤とは、抗ガン剤、インスリンなどのホルモン剤、抗生素、免疫抑制または促進剤、ビタミンD₃などの骨粗しう症治療薬、生理活性物質または細胞増殖因子、血液降下剤、抗血栓剤または血栓溶解剤などの循環器系治療薬、各種体内診断薬などをさすが、これらに限定されない。

【0007】本発明の実施例について説明する。本発明は主として、ハイドロキシアバタイト微結晶体を主成分とすればその他添加剤は適宜選択されるものであるが、一例として次に示す。

実施例1

ハイドロキシアバタイト微結晶体 15 mg
水 1 ml
上記ハイドロキシアバタイト微結晶ゲル濃度1.5%
(平均粒径約0.1 μm) を調製し、該溶液を生体静脈に注射投与する。

実施例2

ハイドロキシアバタイト微結晶体 15 mg *
マウスに静脈注射したハイドロキシアバタイトゲルのホモジナイザーによる

乳化時間に対する沈降深さ、平均凝集粒径及びラット死亡率

乳化時間	沈降深さ	平均凝集粒径	ラット死亡率
0秒	130 mm	22 μm	100%
1	110	15	100
1分	80	7	100
3	65	5	100
5	60	3	100
10	40	1	0
20	30	0.7	0

【0009】実験例2

ウイスター系ラットの静脈血から得られた血清2 mlに

* 水 1 ml
グリセリン脂肪酸エステル 2 mg
NaCl 8.5 mg
上記成分を調製し、生体静脈に注射投与する。

実施例3
ハイドロキシアバタイト微結晶体 15 mg
水 1 ml
コレカルシフェタール 1000 IU
上記成分を調製し、生体静脈に注射投与する。

10 実施例4
ハイドロキシアバタイト微結晶体 15 mg
水 1 ml
インスリン 100単位
上記成分を調製し、生体静脈にヒト(体重60 kg)当たり約3 ml注射投与する。

【0008】実験例1
混式合成したのち日音医理科機械製作所製超高速万能ホモジナイザーを用い22000 rpmで乳化させたハイドロキシアバタイトのゲル(濃度1.5%)を試験管に入れ、室温中で1時間静置したのちの沈降度を調べたところ、乳化時間が長いほど沈降速度が遅くなり、ホモジナイザーのよりゲル凝集粒子を細かく分散させる効果があることが確かめられた。次にこれらのゲルを1群5匹のウイスター系ラット(平均体重:約250g)の大脳静脈内に50 mg/Kgずつ注射したところ、5分乳化したゲルでは5匹とも肺動脈の閉塞や脳梗塞により即座に死亡したのに対し、10分乳化したゲルでは5匹とも2ヶ月後も生存していた(表1)。これは電子顕微鏡による観察の結果、ハイドロキシアバタイトのゲルの凝集粒子の平均粒径が5分乳化で約3 μmであったことに対し、10分乳化では1.0 μm以下になった結果による。このことから1 μm以下の粒径では血管を閉塞させないことが分かった。

【表1】

濃度1.5%のハイドロキシアバタイトのゲル0.3 mlを添加し、37°Cで1時間インキュベートしたのち上清

を血液成分自動分析装置にかけ、血液成分の吸着による変化を調べた。その結果、対照として用いたアルミナゲルがどの成分も大きな変化がなかったのに対し、ハイドロキシアバタイトのゲルはカルシウム及びリンの減少率*

*が大きかった(表2)。これはハイドロキシアバタイトゲルがカルシウムとリンを強く吸着したこと示している。

【表2】

アバタイト及びアルミナのゲルを加えたときの

ラットの各血清成分の減少率

	アバタイト	アルミナ
T P	0%	7%
A L B	0	0
L D H	5	8
G O T	0	4
G P T	0	0
A L P	1	8
C P K	2	6
T C o	0	1
U N	0	3
G L u	1	5
C a	4 8	6
P	3 5	5
A M	1	2
C E s t	0	1
T G	0	3
L A P	0	0
F e	0	5

【0010】

【発明の効果】上記に鑑み本発明は、微結晶化したリン酸カルシウムを主成分とする溶液を血管内へ投与することにより、リン酸カルシウム本来の薬理的作用を充分に

発揮させることができる等の効果を有し、更には他薬剤のミクロ的担体として使用した場合、薬剤の作用を抑制または、促進制御可能とする等の効果を有するものである。

DIALOG(R) File 351:Derwent WPI
(c) 2005 Thomson Derwent. All rts. reserv.

009654802

WPI Acc No: 1993-348353/ 199344

XRAM Acc No: C93-154508

Pharmaceutical compsn. for admin. via blood vessels - contains microcrystalline calcium phosphate powder as carrier for e.g. insulin

Patent Assignee: ADVANCE KK (ADVN); AOKI H (AOKI-I)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 5255095	A	19931005	JP 9288256	A	19920313	199344 B

Priority Applications (No Type Date): JP 9288256 A 19920313

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
JP 5255095	A	4	A61K-033/42	

Abstract (Basic): JP 5255095 A

Compsn. contains main component of microcrystalline powder of calcium phosphate opt. contg. medical component. Compsn. contg. micropowder of calcium phosphate as carrier, contg. medicated component (e.g. anti-cancer drugs, insulin, antibiotics, or vitamin D3) is also claimed. The calcium phosphate is hydroxy apatite, or calcium triphosphate.

USE/ADVANTAGE - Calcium phosphate-contg. compsn. is used for admin. to blood vessel, and calcium phosphate ability (e.g. absorption of protein or lipid in blood, or control of physiological ability of blood) can be improved.

In an example, hydroxy apatite microcrystalline powder (15 mg: mean grain size of 0.1 microns and water (1 ml) were formed into soln. for intravenous injection. Hydroxy apatite microcrystalline powder (15 mg), water (1 ml) and cholecalciferol (1000 IU) were formed into soln. for intravenous injection.

Dwg.0/0

Title Terms: PHARMACEUTICAL; COMPOSITION; ADMINISTER; BLOOD; VESSEL; CONTAIN; MICROCRYSTALLINE; CALCIUM; PHOSPHATE; POWDER; CARRY; INSULIN

Derwent Class: B06; B07

International Patent Class (Main): A61K-033/42

International Patent Class (Additional): A61K-009/08; A61K-047/04

File Segment: CPI