```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
matplotlib inline
```

Out[2]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	house
0	-122.23	37.88	41.0	880	129.0	322.0	
1	-122.22	37.86	21.0	7099	1106.0	2401.0	
2	-122.24	37.85	52.0	1467	190.0	496.0	
3	-122.25	37.85	52.0	1274	235.0	558.0	
4	-122.25	37.85	NaN	1627	280.0	NaN	

Data Analysis:

In [3]: 1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639

Data columns (total 11 columns):
Column Non-Nul

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	 float64
1	latitude	20640 non-null	float64
2	housing_median_age	20382 non-null	float64
3	total_rooms	20640 non-null	int64
4	total_bedrooms	15758 non-null	float64
5	population	20596 non-null	float64
6	households	19335 non-null	object
7	median_income	17873 non-null	float64
8	median_house_value	20640 non-null	int64
9	ocean_proximity	20640 non-null	object
10	gender	16620 non-null	object

dtypes: float64(6), int64(2), object(3)

memory usage: 1.7+ MB

```
In [4]: 1 | df = df.drop_duplicates()
```

In [5]: 1 print(df.shape)

(20640, 11)

In [6]: 1 df.describe()

Out[6]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	
count	20640.000000	20640.000000	20382.000000	20640.000000	15758.000000	20!
mean	-119.569704	35.631861	28.676283	2635.763081	539.920104	14
std	2.003532	2.135952	12.589284	2181.615252	419.834171	1.
min	-124.350000	32.540000	1.000000	2.000000	1.000000	
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	-
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1.
75%	-118.010000	37.710000	37.000000	3148.000000	652.000000	17
max	-114.310000	41.950000	52.000000	39320.000000	6210.000000	356

longitude	0
latitude	0
housing_median_age	258
total_rooms	0
total_bedrooms	4882
population	44
households	1305
median_income	2767
median_house_value	0
ocean_proximity	0
gender	4020
dtype: int64	

Out[8]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	h
4	-122.25	37.85	NaN	1627	280.0	NaN	
5	-122.25	37.85	NaN	919	213.0	NaN	
6	-122.25	37.84	NaN	2535	NaN	NaN	
7	-122.25	37.84	NaN	3104	NaN	NaN	
8	-122.26	37.84	42.0	2555	NaN	NaN	
20627	-121.32	39.13	NaN	358	NaN	169.0	
20628	-121.48	39.10	NaN	2043	NaN	1018.0	
20629	-121.39	39.12	NaN	10035	NaN	6912.0	
20630	-121.32	39.29	NaN	2640	NaN	1257.0	
20631	-121.40	39.33	15.0	2655	493.0	1200.0	

10463 rows × 11 columns

Total Missing: 13276

Data Visualization Before:

Most houses have bedrooms between 0 to 1000.

Houses with more than 1000 room are rare.

Out[11]: Text(0.5, 0, 'Total bedrooms')

In [13]: 1 df.plot(kind='scatter', x='longitude', y='latitude', alpha = 0.

Out[13]: <AxesSubplot:xlabel='longitude', ylabel='latitude'>

Outliers:

Dropping unnecessary data:

Dropping the gender column:

Out [16]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	house
0	-122.23	37.88	41.0	880	129.0	322.0	

Handelling the missing data:

In [20]: 1 | df[(df['population']>4000)]

Out [20]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population h
185	-122.23	37.79	43.0	5963	1344.000000	4367.0
283	-122.16	37.79	22.0	12842	2048.000000	4985.0
570	-122.24	37.72	5.0	18634	539.920104	7427.0
576	-122.06	37.77	12.0	14316	539.920104	5781.0
780	-122.10	37.63	18.0	9963	539.920104	5613.0
20530	-121.76	38.57	NaN	15018	539.920104	7984.0
20539	-121.71	38.56	NaN	8627	539.920104	4071.0
20544	-121.76	38.55	NaN	8800	539.920104	6330.0
20563	-121.75	38.67	NaN	12139	539.920104	6837.0
20629	-121.39	39.12	NaN	10035	539.920104	6912.0

582 rows × 10 columns

In [29]: 1 | df.loc[df['population'].isna(), 'population']=df['population'].m

In [30]: 1
2 df.loc[df['housing_median_age'].isna(),'housing_median_age']=df

In [31]: 1 | df.head(3)

Out[31]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	house
(-122.23	37.88	41.0	880	129.0	322.0	
1	-122.22	37.86	21.0	7099	1106.0	2401.0	
2	-122.24	37.85	52.0	1467	190.0	496.0	

In [41]: 1 d

Out [41]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
0	-122.23	37.88	41.000000	880	129.0	322.000000
1	-122.22	37.86	21.000000	7099	1106.0	2401.000000
2	-122.24	37.85	52.000000	1467	190.0	496.000000
3	-122.25	37.85	52.000000	1274	235.0	558.000000
4	-122.25	37.85	28.676283	1627	280.0	1424.928724
20635	-121.09	39.48	25.000000	1665	374.0	845.000000
20636	-121.21	39.49	18.000000	697	150.0	356.000000
20637	-121.22	39.43	17.000000	2254	485.0	1007.000000
20638	-121.32	39.43	18.000000	1860	409.0	741.000000
20639	-121.24	39.37	16.000000	2785	616.0	1387.000000

20640 rows × 10 columns

In [42]: 1 df["households"]=df['households'].fillna(df["households"].mode(

In [43]: 1 df.replace('no' ,0,inplace=True)

In [44]: 1 sns.distplot(df["households"])

/Users/omniaelmenshawy/opt/anaconda3/lib/python3.8/site-packages/s eaborn/distributions.py:2551: FutureWarning: `distplot` is a depre cated function and will be removed in a future version. Please ada pt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for his tograms).

warnings.warn(msg, FutureWarning)

Out[44]: <AxesSubplot:xlabel='households', ylabel='Density'>

In [45]: 1 print(df.isnull().sum())

longitude	0
latitude	0
housing_median_age	0
total_rooms	0
total_bedrooms	0
population	0
households	0
median_income	0
median_house_value	0
ocean_proximity	0
dtype: int64	

Total Missing: 0

Correlation:

- the median house value is positivily correlated with the median income and has a great impact
- · while it is negatively correlated with the:
 - latitude: the value decreases when we go north
 - longitude: the value also decreases when we go west
 - population: the value decreases when the total number of people living in the block increases

```
In [49]:
              corr_matrix = df.corr()
              corr_matrix["median_house_value"].sort_values(ascending = False
Out[49]: median_house_value
                                1.000000
         median_income
                                0.650304
         total_rooms
                                0.134153
         housing_median_age
                                0.106648
         total_bedrooms
                                0.044949
         population
                               -0.024351
         longitude
                               -0.045967
         latitude
                               -0.144160
         Name: median_house_value, dtype: float64
```

```
In [51]: 1 plt.matshow(df.corr())
2 plt.show()
```


Data Visualization after Handelling it:

In [113]: import folium from folium.plugins import HeatMap, MarkerCluster from folium import Choropleth, Circle, Marker cal_map = folium.Map(location=[36.7783,-119.4179], zoom_start = df_map = df[['latitude', 'longitude']] data = [[row['latitude'],row['longitude']] for index, row in df _ = HeatMap(data, radius=10).add_to(cal_map) cal_map

Out [113]:

shape of price distribution by the latitude and longitude:

- high-density areas are:
 - the Bay Area
 - around Los Angeles and San Diego
 - plus a long line of fairly high density in the Central Valley, around Sacramento and Fresno.

Out[152]: <matplotlib.legend.Legend at 0x7fbf022ef850>

Out[153]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	hous
0	-122.23	37.88	41.000000	880	129.0	322.000000	
1	-122.22	37.86	21.000000	7099	1106.0	2401.000000	
2	-122.24	37.85	52.000000	1467	190.0	496.000000	
3	-122.25	37.85	52.000000	1274	235.0	558.000000	
4	-122.25	37.85	28.676283	1627	280.0	1424.928724	

In []: 1

Maximum Values around the 500001 Dollar and they are all near the ocean

```
In [132]:
               print("House statistics:\n")
               print(df['median house value'].describe())
          House statistics:
                     20640.000000
          count
                    206855.816909
          mean
                    115395.615874
          std
          min
                     14999.000000
                    119600.000000
          25%
          50%
                    179700.000000
                    264725.000000
          75%
                    500001,000000
          max
          Name: median_house_value, dtype: float64
```

Linear Regression and Training:

```
In [134]: 1
             df.columns
Out[134]: Index(['longitude', 'latitude', 'housing_median_age', 'total_rooms
                 'total_bedrooms', 'population', 'households', 'median_incom
          е',
                 'median_house_value', 'ocean_proximity'],
                dtvpe='object')
              Training = df[['longitude', 'latitude', 'housing_median_age',
In [135]:
                      'total_bedrooms', 'population', 'households', 'median_in
                      'median_house_value']]
              x = Training.drop(['median_house_value'],axis = 1).values
In [136]:
              v = Training["median house value"].values
In [137]:
              x_train, x_test, y_train, y_test = train_test_split(x,y,test_si
In [138]:
             x train.shape
Out[138]: (15480, 8)
In [139]:
             x_test.shape
Out[139]: (5160, 8)
In [140]:
              y train.shape
Out[140]: (15480,)
In [141]:
          1 y_test.shape
Out[141]: (5160,)
In [142]:
             100*x_test.shape[0]/x_train.shape[0]
Out[142]: 33.3333333333333336
              lr = LinearRegression()
In [143]:
              lr.fit(x_train, y_train)
              y_predict = lr.predict(x_test)
In [145]:
              y_predict = lr.predict(x_test)
In [146]:
              lr.score(x_train, y_train)
Out[146]: 0.5868339060852498
```

```
In [147]: 1 lr.score(x_test,y_test)
```

Out[147]: 0.581149194438561

Model Visualization:

Errors are close to normal distribution and also the mean is pretty close to zero


```
In [148]: 1 sns.displot(test_residuals,bins=30,kde=True);
```



```
In [149]: 1 predictions = lr.predict(x_test)
```

Out[150]: Text(0, 0.5, 'Predicted Y')


```
In []: 1
```