데이터분석캡스톤디자인

12주차 수행보고

Khupid 조

산업경영공학과 김동혁 관광학과 류연주 산업경영공학과 유정수

이번주 to-do list

- 1. NCF 파라미터 tuning -> O
 - a. Early Stopping
 - b. epoch, batch size, n_factor
 - c. layer size
 - d. learning rate
- 2. contents-based matrix 각자 가져오기 & Data Normalization -> O
 a. 정규화([1] 유저가 클러스터에 남긴 단어 개수/클러스터 단어
 b. [1]들을 모두 더해서 1로 만들고 최종적으로 비율로 나타냄)
- 3. 추가 데이터 수집 및 전처리 -> **O**
- 4. hybrid model 실험 -> O

matrix 정규화의 필요성

각 Group에 속한 word의 갯수가 다름 각 User별 리뷰의 양이 다름

── Group별, User별 편향된 데이터를 정규화 시킬 필요가 있음

	30	12	2	3	5	5	3	2	2	9	7	3
	group_7	group_0	group_1	group_2	group_3	group_4	group_5	group_6	group_8	group_9	group_10	group_11
p_id												
1719	16	6	0	0	7	7	1	0	0	6	3	1
899	16	1	3	0	8	7	1	0	1	6	3	0
283	16	6	1	1	5	2	0	0	1	4	0	0
303	8	7	2	0	9	7	2	0	0	6	1	0
1754	15	6	3	1	7	6	0	0	0	5	3	2
719	21	5	3	1	9	6	5	0	1	4	5	1
1125	20	10	2	1	8	10	2	0	0	2	2	0
2086	19	2	1	0	4	8	1	0	0	1	0	1
769	12	4	2	1	7	6	1	0	0	2	1	2
1288	11	3	0	1	7	5	0	0	0	3	4	0

cluster word 수

Cell(i,j) = Cell(i,j) / (group j의 word 갯수) , 각 셀의 숫자를 <mark>해당 cluster가 가지고 있는 word 수로 나눔</mark>

 $Cell(i,j) = Cell(i,j) / \Sigma Cell(i,j)$

User별 사용 word수

위에서 계산한 값을 해당 **row**의 <mark>비율</mark>로 환산

NCF 라이브러리 비교

	Microsoft / NCF	Cornac / NCF		
Early Stopping	기능 없음	모듈로 구현		
cross_validation	기능 없음	모듈로 구현 (k-fold 등)		
Hyper-parameter tuning	- batch_size, - learning_rate - layer_size 등 > 기본적인 파라미터 튜닝 가능	- 기본적인 파라미터 튜닝 외 - gridSearch - randomSearch 사용가능		

Fine tuning 진행중

	Library 1	Library 2
먹을 곳	F1-score: 0.021004 Recall@10: 0.027271 Precision@10: 0.017080	F1-score: 0.0223 Recall@10: 0.0293 Precision@10: 0.0181
갈 곳	F1-score: 0.311442 Recall@10: 0.438293 Precision@10: 0.241537	F1-score: 0.4033 Recall@10: 0.6282 Precision@10: 0.2670
볼곳	F1-score: 0.062483 Recall@10: 0.065089 Precision@10: 0.060079	F1-score: 0.0672 Recall@10: 0.0382 Precision@10: 0.3371

item-based model test

cornac.model.UserKNN cornac.model.ItemKNN

```
(0.0, 3238.0, 4.5),

(0.0, 5144.0, 4.0),

(0.0, 2126.0, 5.0),

(0.0, 6026.0, 3.0),

(0.0, 1158.0, 4.0),

(0.0, 1350.0, 4.0),

(0.0, 472.0, 3.5),

(0.0, 4074.0, 4.0),

(0.0, 3602.0, 3.5),

(0.0, 2219.0, 4.0),

(0.0, 3180.0, 3.5),

(0.0, 1254.0, 4.5),

input

user-item-rate
```

TEST: Train (s) Test (s) UserKNN-Cosine 0.6058 0.12971.5848 UserKNN-Pearson 0.6370 0.1316 1.3743 UserKNN-Amplified 0.6058 0.6493 1.2865 UserKNN-IDF 0.6062 0.1436 1.2756 UserKNN-BM25 0.1576 1.3454 0.6060 ItemKNN-Cosine 0.7011 0.10071.2257 ItemKNN-Pearson 0.7108 0.1376 1.3304 1.2178 ItemKNN-AdjustedCosine 0.6625 0.0848

Cosine similarity

```
user_knn_idf.score(user_idx=1)

array([3.770827 , 4.09432958, 3.62831448, 2.66654354, 2.71076991, 3.89011849, 3.97864726, 3.60349834, 4.18342009, 2.89956895, 3.58482387, 3.6004619 , 3.58425655, 3.37179816, 3.24161365, 3.5755642 , 3.60158377, 3.29004869, 3.18406739, 3.80199554, 3.62148065, 3.57895428, 4.12925059, 4.0508625 , 3.90938915, 3.57330311, 3.86010928, 3.27580288, 3.39701155, 3.64364341,
```

다음 주 계획

- 1. contents-based
 - a. 모델/라이브러리 선정
 - b. 직접 구현
- 2. Hybrid method 적용 후 최종 결과 도출
- 3. 계속해서 NCF 모델 성능 개선