## MAXIMUM LIKELIHOOD ESTIMATION FOR DISCRETE MULTIVARIATE VASICEK PROCESSES

Michael Pokojovy, Ebenezer Nkum and Thomas M. Fullerton Jr.

This supplementary documents contains additional figure and proofs referred to in the paper.

## S1 Supplemental Figure



Figure S(1): Simulated root-MSE ratio (MLE to OLS)

## S2 Auxiliary Results

We briefly present and prove some auxiliary results for vector and matrix differentiation below. Recall  $\langle x, y \rangle = x'y = y'x$  for  $x, y \in \mathbb{R}^p$ .

**Lemma S2.1.** Suppose  $A \in \mathbb{R}^{p \times p}$ . Then the function

$$f(x) = \langle Ax, x \rangle$$
 is smooth with  $\frac{\partial}{\partial x} f(x) = 2Ax$ . (S2.1)

*Proof.* We observe

$$f(x+h) = \langle A(x+h)\rangle, x+h\rangle = \langle Ax, x\rangle + 2\langle Ax, h\rangle + \langle Ah, h\rangle$$
 (S2.2)

$$= f(\mathbf{x}) + 2\langle \mathbf{A}\mathbf{x}, \mathbf{h} \rangle + o(|\mathbf{h}|) \text{ as } \mathbf{h} \to \mathbf{0}, \tag{S2.3}$$

whence the claim trivially follows with Frechét definition of the derivative.  $\Box$ 

**Lemma S2.2.** Suppose  $\Sigma \in \mathbb{R}^{p \times p}$  is symmetric,  $A \in \mathbb{R}^{p \times p}$  and  $u, v \in \mathbb{R}^{p}$ , we consider the following functions:

$$f(\mathbf{A}) = \langle \mathbf{\Sigma}^{-1} \mathbf{u}, \mathbf{A} \mathbf{v} \rangle$$
 and  $g(\mathbf{A}) = (\mathbf{A} \mathbf{v})' \mathbf{\Sigma}^{-1} (\mathbf{A} \mathbf{v}) = |\mathbf{\Sigma}^{-1/2} (\mathbf{A} \mathbf{v})|^2$ . (S2.4)

Then  $f(\cdot)$  and  $g(\cdot)$  are smooth with

$$\frac{\partial}{\partial \mathbf{A}} f(\mathbf{A}) = (\mathbf{\Sigma}^{-1} \mathbf{u}) \mathbf{v}$$
 and  $\frac{\partial}{\partial \mathbf{A}} g(\mathbf{A}) = 2\mathbf{\Sigma}^{-1} \mathbf{A} (\mathbf{v} \mathbf{v}').$  (S2.5)

*Proof.* For  $\mathbf{H}, \mathbf{A} \in \mathbf{R}^{p \times p}$ , as  $\mathbf{H} \to 0$ , we consider  $f(\mathbf{A} + \mathbf{H})$  and  $g(\mathbf{A} + \mathbf{H})$ , and employ Einstein's summation convention to obtain

$$f(\mathbf{A} + \mathbf{H}) = \langle \mathbf{\Sigma}^{-1} \mathbf{u}, (\mathbf{A} + \mathbf{H}) \mathbf{v} \rangle = \langle \mathbf{\Sigma}^{-1} \mathbf{u}, \mathbf{A} \mathbf{v} \rangle + \langle \mathbf{\Sigma}^{-1} \mathbf{u}, \mathbf{H} \mathbf{v} \rangle$$
(S2.6)

$$= f(\mathbf{A}) + ((\mathbf{\Sigma}^{-1})_{ij}u_j)(\mathbf{H}_{ik}\mathbf{v}_k)$$
 (S2.7)

$$= f(\mathbf{A}) + ((\mathbf{\Sigma}^{-1})_{ij} \mathbf{u}_i \mathbf{v}_k) (\mathbf{H}_{ik}), \tag{S2.8}$$

$$g(\mathbf{A} + \mathbf{H}) = \left\langle \mathbf{\Sigma}^{-\frac{1}{2}} (\mathbf{A} + \mathbf{H}) \mathbf{v}, \mathbf{\Sigma}^{-\frac{1}{2}} (\mathbf{A} + \mathbf{H}) \mathbf{v} \right\rangle$$
 (S2.9)

$$= \langle \mathbf{\Sigma}^{-\frac{1}{2}} \mathbf{A} \mathbf{v}, \mathbf{\Sigma}^{-\frac{1}{2}} \mathbf{A} \mathbf{v} \rangle + 2 \langle \mathbf{\Sigma}^{-\frac{1}{2}} \mathbf{A} \mathbf{v}, \mathbf{\Sigma}^{-\frac{1}{2}} \mathbf{H} \mathbf{v} \rangle + o(\|\mathbf{H}\|_{\mathcal{F}})$$
(S2.10)

$$= g(\mathbf{A}) + 2\langle \mathbf{\Sigma}^{-1} \mathbf{A} \mathbf{v}, \mathbf{H} \mathbf{v} \rangle + o(\|\mathbf{H}\|_{\mathcal{F}})$$
(S2.11)

$$= g(\mathbf{A}) + 2\langle \mathbf{\Sigma}^{-1} \mathbf{A} \mathbf{v} \mathbf{v}', \mathbf{H} \rangle + o(\|\mathbf{H}\|_{\mathcal{F}}), \tag{S2.12}$$

whence the claim trivially follows from the definition of Frechét derivative.

Chain rule and Jacobi's theorem yield the following result:

**Lemma S2.3.** For any non-singular matrix  $\mathbf{H} \in \mathbb{R}^{p \times p}$ , we have

$$\frac{\partial}{\partial \boldsymbol{H}}|\boldsymbol{H}| = |\boldsymbol{H}|(\boldsymbol{H}^{-1})' \quad and \quad \frac{\partial}{\partial \boldsymbol{H}}\log|\boldsymbol{H}| = (\boldsymbol{H}^{-1})'.$$
 (S2.13)

If H is symmetric, we additionally have

$$\frac{\partial}{\partial \boldsymbol{H}}|\boldsymbol{H}| = |\boldsymbol{H}|\boldsymbol{H}^{-1} \quad and \quad \frac{\partial}{\partial \boldsymbol{H}}\log|\boldsymbol{H}| = \boldsymbol{H}^{-1}.$$
 (S2.14)

**Lemma S2.4.** Let  $\Sigma$  be symmetric non-singular,  $M \in \mathbb{R}^{p \times p}$  be arbitrary and

$$f(\Sigma) = \langle M, \Sigma^{-1} \rangle_{\mathcal{F}},$$
 (S2.15)

where the Frobenius scalar product is defined as  $\langle \mathbf{A}, \mathbf{B} \rangle_{\mathcal{F}} = \operatorname{trace}(\mathbf{A}'\mathbf{B})$ . Then  $f(\cdot)$  is smooth with

$$\frac{\partial}{\partial \Sigma} f(\Sigma) = -\Sigma^{-1} M \Sigma^{-1}. \tag{S2.16}$$

*Proof.* For  $\mathbf{H} \in \mathbb{R}^{p \times p}$  symmetric, as  $\mathbf{H} \to 0$ , von Neumann series yields:

$$f(\mathbf{\Sigma} + \mathbf{H}) = \langle \mathbf{M}, (\mathbf{\Sigma} + \mathbf{H})^{-1} \rangle_{\mathcal{F}} = \langle \mathbf{M}, (\mathbf{\Sigma}(\mathbf{I} + \mathbf{\Sigma}^{-1}\mathbf{H}))^{-1} \rangle_{\mathcal{F}}$$
(S2.17)

$$= \langle \boldsymbol{M}, (\boldsymbol{I} + \boldsymbol{\Sigma}^{-1} \boldsymbol{H})^{-1} \boldsymbol{\Sigma}^{-1} \rangle_{\mathcal{F}} = \langle \boldsymbol{M}, (\boldsymbol{I} - \boldsymbol{\Sigma}^{-1} \boldsymbol{H} + o(\|\boldsymbol{H}\|_{\mathcal{F}})) \boldsymbol{\Sigma}^{-1} \rangle_{\mathcal{F}}$$
(S2.18)

$$= \langle \boldsymbol{M}, \boldsymbol{\Sigma}^{-1} \rangle - \langle \boldsymbol{M}, \boldsymbol{\Sigma}^{-1} \boldsymbol{H} \boldsymbol{\Sigma}^{-1} \rangle_{\mathcal{F}}$$
 (S2.19)

$$= f(\Sigma) - \langle \Sigma^{-1} M \Sigma^{-1}, H \rangle_{\mathcal{F}} + o(\|H\|_{\mathcal{F}}).$$
 (S2.20)