Instituto de Ciências Matemáticas e da Computação da Universidade de São Paulo – ICMC USP

Relatório Parcial Reconhecimento de Dígitos em Imagens

Curso: Bacharelado em Ciências da Computação

Disciplina: Processamento de Imagens

Professor: Moacir Antonelli Ponti

Participantes: Luiz Henrique Lourenção - 10284862

Sumário

1.	OB.	JETIVO	3
2.	ETA	APAS DO PROJETO	3
		Entrada de Imagens	
2.2	2.	Segmentação	3
2.3	3.	Separação dos Dígitos	3
		Reconhecimento dos Dígitos	
3. Restrições do Projeto			
3.2	1.	Posição	3
3.2	2.	lluminação	4
4.	4. Resultados4		
4.2	1.	Segmentação	5
4.2	2.	Separação dos Dígitos	5
	5. Conclusão 6		

1. OBJETIVO

O objetivo do projeto é utilizar métodos de processamento de imagens para fazer o reconhecimento de dígitos em placas de carro e transformá-los em texto, obtendo 3 letras e 4 números que são correspondentes aos dígitos da placa analisada.

2. ETAPAS DO PROJETO

2.1. Entrada de Imagens

A primeira parte do programa é receber o nome de uma imagem que estará presente no arquivo do projeto. Após isso, o programa deve transformar essa imagem em uma matriz, para tornar possível a manipulação dos pixels da imagem.

2.2. Segmentação

O programa deverá segmentar a imagem escolhida, fazendo com que ela fique preta e branca e, na medida do possível, deixando em preto apenas os dígitos, que são as informações que importam para o projeto.

2.3. Separação dos Dígitos

O programa deverá separar os dígitos a fim de deixá-los isolados para o reconhecimento. Nessa etapa também deverá ser feita a remoção de informações não importantes, como o nome da cidade e o estado, presentes na parte superior da placa.

2.4. Reconhecimento dos Dígitos

O programa deverá reconhecer os dígitos presentes em cada espaço isolado e transformá-los em texto, comparando-os com imagens de dígitos que já estarão armazenadas. Dessa forma serão obtidos 3 letras e 4 números que corresponderão à uma placa de carro brasileira.

3. Restrições do Projeto

3.1. Posição

A posição da placa na imagem tem de ser sempre horizontal e reta. Qualquer imagem de placas inclinadas poderá comprometer o funcionamento do programa que estará sujeito a erro.

3.2. Iluminação

A iluminação da imagem da placa deve ser satisfatória. Imagens escuras podem fazer com que o programa não funcione.

4. Resultados

As imagens foram obtidas da internet escolhidas por mim tendo em vista o padrão apresentado na seção das restrições. Aqui estão alguns exemplos das imagens:

Figura 1 : Exemplo de imagem de placa

Figura 2: Exemplo de imagem de placa

Com esses dois exemplos conseguimos obter resultados de segmentação e separação dos dígitos.

4.1. Segmentação

Aqui estão as imagens segmentadas dos exemplos citados acima:

Figura 3: Primeira imagem segmentada

Figura 4: Segunda imagem segmentada

4.2. Separação dos Dígitos

Aqui estão as imagens dos exemplos acima já com os dígitos separados:

Figura 5: Primeira imagem com os dígitos separados

Figura 6: Segunda imagem com os dígitos separados

Obs1: Utilizei um tom de cinza para ficar mais fácil a visualização de que os dígitos estão separados.

Obs2: Perceba que a imagem que tem a menor resolução obtém um resultado melhor tanto na segmentação quanto na separação dos dígitos.

5. Conclusão

Como conclusão do relatório parcial temos que, para melhorar os resultados da segmentação e da separação dos dígitos, seria necessário deixar todas as imagens de placas de carro com a mesma resolução, resolução essa que facilite a obtenção dos resultados. A próxima parte do trabalho é armazenar as imagens de todas as letras (A-Z) e de todos os números (0-9), todas padronizadas com o formato das placas, e depois realizar algum algoritmo para comparar essas imagens com as partes separadas das placas de carro, a fim de concluir o objetivo do projeto.