EINFÜHRUNG IN DIE GEOMETRIE UND TOPOLOGIE Blatt 5

Jendrik Stelzner

27. Mai 2014

Aufgabe 5.1:

Wir nehmen zunächst an, dass $f:S^1\to X$ homotop zu einer konstanten Schlinge ist. Dann gibt es eine Homotopie $F:S^1\times [0,1]\to X$ mit

$$F(s,0)=\mathrm{const}\,\,\mathrm{und}\,\,$$

$$F(s,1) = f(s)$$

für alle $s \in S$. Es sei

$$A := S^1 \times \{0\} \subseteq S^1 \times [0,1]$$

und

$$\pi: S^1 \times [0,1] \to (S^1 \times [0,1]) / A$$

die kanonische Projektion.

Es ist klar, dass F als Abbildung

$$\tilde{F}: \left(S^1 \times [0,1]\right)/A \to X$$

faktorisiert. Diese ist nach der universellen Eigenschaft des Quotienten stetig. Wir bemerken weiter, dass $\left(S^1 \times [0,1]\right)/A \cong D^2$: Die Abbildung

$$\phi: S^1 \times [0,1] \to D^2, (s,t) \mapsto ts$$

ist stetig und surjektiv, und faktorisiert als Bijektion

$$\psi: (S^1 \times [0,1]) / A \to D^2,$$

die nach der universellen Eigenschaft des Quotienten stetig ist. Da $S^1 \times [0,1]$ als Produkt kompakter Räume kompakt ist, ist auch $\left(S^1 \times [0,1]\right)/A$ quasikompakt. Da D^2 Hausdorff ist, ist damit ψ bereits ein Homöomorphismus.

Über den Homö
omorphismus ψ faktorisiert \tilde{F} als stetige Abbildung
 $\bar{F}:D^2\to X.$ Insgesamt ergibt sich damit ein Diagramm wie in Abbildung 1. Dieses Diagramm kommutiert: Nach Konstruktion ist $\phi=\psi\pi,$ sowi
e $F=\tilde{F}\pi$ und $\tilde{F}=\bar{F}\psi.$ Daher ist auch

$$F = \tilde{F}\pi = \bar{F}\psi\pi = \bar{F}\phi.$$

Da für alle $s \in S^1$

$$\bar{F}(s) = \bar{F}\phi(s, 1) = F(s, 1) = f(s)$$

Abbildung 1: Faktorisierungen der Homotopie.

ist \bar{F} eine stetige Fortsetzung von f auf D^2 .

Angenommen, $f:S^1\to X$ lässt sich zu einer stetigen Abbildung $\bar F:D^2\to X$ fortsetzen. Mithilfe der stetigen Abbildung

$$\phi: S^1 \times [0,1] \to D^2, (s,t) \mapsto ts$$

erhalten wir dann die Homotopie

$$F := \bar{F}\phi : S^1 \times [0,1] \to X.$$

Da für alle $s \in S^1$

$$F(s,0) = \bar{F}(\phi(s,0)) = \bar{F}(0) = \text{const und}$$

 $F(s,1) = \bar{F}(\phi(s,1)) = \bar{F}(s) = f(s)$

ist f homotop zu einer konstanten Schlinge.

Aufgabe 5.2:

Ist X zusammenziehbar, so gibt es einen einelementigen Raum * und eine Homotopieäquivalenz $\varphi:X\to *$. Diese induziert, wie aus Aufgabe 4.4 bekannt, für jeden Raum K eine Bijektion

$$\varphi_*^K : [K, X] \to [K, *], [f] \mapsto [\varphi f].$$

Da [K,*] immer einelementig ist, ist dann [K,X] für jeden Raum K einelementig. Besteht [K,X] für jeden Raum K aus nur einem Element, so ist insbesondere [X,X] einelementig, also jede (konstante) Abbildung $X\to X$ homotop zu id $_X$.

Ist id $_X$ homotop zu einer konstanten Abbildung, so gibt es ein $x_0 \in X$, so dass id $_X \simeq f$ für die konstante Funktion $f: X \to X, x \mapsto x_0$. Für den Teilraum $* = \{x_0\}$ ist dann für die kanonische Inklusion $\iota: * \to X$ und $g: X \to *, x \mapsto x_0$

$$g\iota=\operatorname{id}_*\ \operatorname{und}\,\iota g=f\simeq\operatorname{id}_X.$$

Also ist g eine Homotopieäquivalenz und X deshalb zusammenziehbar.

Abbildung 2: Funktoreigenschaften von $X \mapsto \mathcal{S}(X)$.

Aufgabe 5.3: (Brouwerscher Fixpunktsatz)

(i)

Für die Homotopie

$$F: D^2 \times [0,1] \to D^2, (x,t) = tx$$

ist für alle $x \in D^2$

$$F(x,0) = 0 = \text{const und}$$

 $F(x,1) = x = \text{id}_{D^2}(x).$

Deshalb ist id_{D^2} homotop zu einer konstanten Abbildung. Also ist D^2 zusammenziehbar, und deshalb $\left[K,D^2\right]$ für jeden Raum K einelementig. Insbesondere ist daher $\mathcal{S}\left(D^2\right)=\left[S^1,D^2\right]$ einelementig.

Gibt es eine stetige Abbildung $r:D^2\to S^1$ mit $r_{|S^1}=\mathrm{id}_{S^1}$, so ergibt sich aus den Funktoreigenschaften von $X\mapsto \mathcal{S}(X)$ das kommutatives Diagramm in Abbildung 2, wobei $\iota:S^1\to D^2$ die kanonische Inklusion bezeichnet.

Da $r\iota=\mathrm{id}_{S^1}$ ist auch

$$S(r)S(\iota) = S(r\iota) = S(\mathrm{id}_{S^1}) = \mathrm{id}_{S(S^1)}$$

Inbesondere muss daher $\mathcal{S}(r)$ surjektiv sein, da es $\mathcal{S}(\iota)$ als Rechtsinverses besitzt. Es ist jedoch $\mathcal{S}(D^2)$ einelementig und $\mathcal{S}(S^1)$ abzählbar unendlich (aus der Vorlesung bekannt). Dieser Widerspruch zeigt, dass keine solche Abbildung r existieren kann.

(ii)

Für alle $x \in D^2$ definieren wir

$$h_x: \mathbb{R} \to \mathbb{R}^2 \text{ mit } h_x(t) := f(x) + t(x - f(x))$$

und

$$T_x := \{ t \in \mathbb{R} \mid ||h_x(t)|| \le 1 \} = \{ t \in \mathbb{R} \mid h_x(t) \in D^2 \},$$

wobei klar ist, dass h_x für alle $x \in D^2$ stetig ist.

Für alle $x\in D^2$ ist $T_x\neq\emptyset$, da $f(x)=h_x(0)\in D^2$, also $0\in T_x$ für alle $x\in D^2$. Wegen der Konvexität von D^2 ist T_x für alle $x\in D^2$ ein Intervall. Da $\|h_x\|$ stetig ist, und $T_x=\|h_x\|^{-1}([0,1])$ ist T_x auch abgeschlossen, also für alle $x\in D^2$ von der Form $T_x=[u_x,m_x]$ mit $u_x,m_x\in\mathbb{R}$, wobei $m_x\geq 0\geq u_x$. Da $f(x)-x\neq 0$ und $x,f(x)\in D^2$ ist auch klar, dass $m_x>0$.

Abbildung 3: f_t faktorisiert durch ι_t über \mathbb{C} .

Aus dem üblichen Analysis-1-Argument folgt auch, dass

$$||h_x(u_x)|| = ||h_x(m_x)|| = 1,$$

also $h_x(u_x), h_x(m_x) \in S^1$. Da die durch h_x beschrieben Gerade den Kreis S^1 in höchstens zwei Punkten schneidet, ist auch $||h_x(t)|| < 1$ für alle $u_x < t < m_x$.

Wir definieren

$$q: D^2 \to S^1, x \mapsto h_x(m_x),$$

und behaupten, dass g stetig ist. Da h_x für alle $x \in X$ stetig ist, genügt es hierfür zu zeigen, dass m_x stetig von x abhängt.

Seien hierfür $x\in D^2, m_x>\varepsilon>0$ beliebig aber fest. Wir bemerken, dass $\|h_x(t)\|$ für festes t stetig von x abhängt. Es ist $h_x(m_x+\varepsilon)>1$, daher gibt es $\delta_1>0$ mit $\|h_{x'}(m_x+\varepsilon)\|>1$ für alle $x'\in B_{\delta_1}(x)$, also $m_{x'}< m_x+\varepsilon$ für alle $x'\in B_{\delta_1}(x)$. Da $h_x(m_x-\varepsilon)<1$ gibt es auch ein $\delta_2>0$, so dass $\|h_{x'}(m_x-\varepsilon)\|<1$ für alle $x'\in B_{\delta_2}(x)$, also $m_{x'}>m_x-\varepsilon$ für alle $x'\in B_{\delta_2}(x)$. Für $\delta=\min\{\delta_1,\delta_2\}$ ist also

$$|m_{x'} - m_x| < \varepsilon$$
 für alle $x' \in B_{\delta}(x)$.

Dies zeigt die Stetigkeit von $x \mapsto m_x$, und damit auch von g.

Wir bemerken weiter, dass g(x)=x für alle $x\in S^1$: Es ist klar, dass $h_x(1)=x$, also $1\in T_x$. Da $\|h_x(1)\|=1$ ist auch $1\not< m_x$. Wegen $m_x=\max T_x$ muss also $m_x=1$ und deshalb $g(x)=h_x(1)=x$.

Insgesamt zeigt dies, dass $g:D^2\to S^1$ eine Retraktion, im Widerspruch zu Aufgabenteil (i).

Aufgabe 5.4: (Fundamentalsatz der Algebra)

(i)

Sei $t\geq 0$ beliebig aber fest. Für $\iota_t:S^1\to\mathbb{C},z\mapsto tz$ ergibt sich das kommutative Diagramm in Abbildung 3. Da \mathbb{C} zusammenziehbar ist (denn \mathbb{C} ist homöomorph zu \mathbb{R}^2), ist ι_t homotop zu einer konstanten Abbildung $c:S^1\to\mathbb{C}$, also $f_t=f\iota_t$ homotop zur konstanten Abbildung fc. (Analog ergibt sich, dass jede stetige Funktion, die über einen zusammenziehbaren Raum faktorisiert, homotop zu einer konstanten Abbildung ist).

(ii)

Wir definieren

$$F: S^1 \times [0,1] \to \mathbb{C} - \{0\},$$

$$(z,t) \mapsto C^k z^k + t \sum_{l=0}^{k-1} a_l C^l z^l.$$

F ist wohldefiniert, denn für alle $(z,t) \in S^1 \times [0,1]$ ist

$$|F(z,t)| = \left| C^k z^k + t \sum_{l=0}^{k-1} a_l C^l z^l \right| \ge \left| C^k z^k \right| - \left| t \sum_{l=0}^{k-1} a_l C^l z^l \right|$$

$$\ge C^k - t \sum_{l=0}^{k-1} |a_l| C^l \ge C^k - \sum_{l=0}^{k-1} |a_l| C^l > 0.$$

Es ist auch klar, dass F stetig ist, also eine Homotopie ist. Für alle $z \in S^1$ ist

$$F(z,0)=C^kz^k\quad\text{und}\quad F(z,1)=\tilde{f}_C(z).$$

Das zeigt, dass $\tilde{f}_C \simeq \left(z \mapsto C^k z^k\right)$.

(iii)

Für $k \in \mathbb{Z}$ sei

$$H_k: S^1 \to \mathbb{C} - \{0\}, z \mapsto z^k \text{ und } h_k: S^1 \to S^1, z \mapsto z^k.$$

Es ist klar, dass H_k und h_k für alle $k\in\mathbb{Z}$ stetig sind. Es sei $k:=\deg f$. Dann gibt es $C\geq 0$, so dass

$$C^k > \sum_{l=0}^{k-1} |a_l| C^l.$$

Nach Aufgabenteil (ii) ist dann $\tilde{f}_C \simeq C^k H_k$. Da $C^k H_k \simeq H_k$ via der Homotopie

$$S^1 \times [0,1] \to \mathbb{C} - \{0\}, (z,t) \mapsto (t + (1-t)C^k) z^k$$

ist daher $\tilde{f}_C \simeq H_k$. Andererseits ist \tilde{f}_C nach Aufgabenteil (i) auch homotop zu einer konstanten Abbildung $c: S^1 \to \mathbb{C} - \{0\}$.

Bezüglich der Projektion

$$q: \mathbb{C} - \{0\} \to S^1, z \mapsto \frac{z}{|z|},$$

die offenbar stetig ist, ist daher auch

$$h_k = qH_k \simeq q\tilde{f}_C \simeq qc.$$

Es ist also h_k homotop zu einer konstanten Schlinge. Wir wissen, dass dies nur für k=0 der Fall ist. Also muss f ein konstantes Polynom sein.