ECE253/CSE208 Introduction to Information Theory

Lecture 7: Data Compression:
Prefix Code & Kraft-McMillan Inequality

Dr. Yu Zhang ECE Department University of California, Santa Cruz

Chap 5 of Elements of Information Theory (2nd Edition) by Thomas Cover & Joy Thomas

Different classes of codes

Figure: A Diagram of Communication Systems.

- Chapters 2–4 describe fundamental characteristics of information sources.
- Source coding compresses the source (redundancy reduction) as much as possible without losing information.
- Channel coding combats channel noise to control errors (by introducing redundancy).
- Data compression: Encoding the given source symbols into strings (codewords)
- Entropy of a random source is the fundamental limit of information compression.

Source Code

Definition

A source code $C(x): \mathcal{X} \to D^*$, where \mathcal{D}^* is the set of finite length strings of symbols from D-ary alphabet; e.g. $\mathcal{D} := \{0, 1, \cdots, D-1\}$.

Example

Consider $\mathcal{X} = \{1, 2, 3, 4\}$, one possible coding scheme:

$$C(1) = 0, C(2) = 10, C(3) = 110, C(4) = 111$$

Definition (Nonsingular code)

 $x \neq x' \implies c(x) \neq c(x')$. We can add a special symbol (e.g., comma) between any two consecutive codewords for decoding, but this is inefficient.

Definition

Extension C^* of a code C: Concatenation of the corresponding codewords

$$C(x_1x_2\cdots x_n)=C(x_1)C(x_2)\cdots C(x_n).$$

Source Code (Cont'd)

Definition (Uniquely decodable)

If a code's extension is non-singular, then a code is uniquely decodable. In other words, a uniquely decodable code has only one source string producing it. However, we may need to look at the entire string to determine the source.

Sardinas-Patterson algorithm (1953'): A classical algorithm for determining in polynomial time whether a given variable-length code is uniquely decodable.

Definition (Prefix code)

A code is called a prefix (or instantaneous) code if no codeword is a prefix of any other codewords. A prefix code can be decoded without reference to future codewords since the end of a codeword is immediately recognizable (self-punctuating).

Source Code (Cont'd)

		Nonsingular, but not	Uniquely Decodable,	
Χ	Singular	Uniquely Decodable	but not Instantaneous	Instantaneous
1	0	0	10	0
2	0	010	00	10
3	0	01	11	110
4	0	10	110	111

Figure: Classes of codes: The 2nd class is not uniquely decodable because the codeword 010 can be decoded as 2, 31, or 14. The 3rd class is not a prefix code because 11 is a prefix of 110.

Figure: A diagram showing relations of different classes of codes.

Kraft-McMillan Inequality

Theorem (Kraft inequality)

For any prefix code over an alphabet of size D, the codeword length l_1, l_2, \ldots, l_m must satisfy the following inequality:

$$\sum_{i=1}^{m} D^{-l_i} \le 1.$$

Conversely, given a set of codeword lengths that satisfy this inequality, then there exists a prefix code with those lengths.

Extended Kraft Ineq: the inequality holds for an infinite set of prefix code $(m \to \infty)$.

Exponentiated codeword length assignments must look like a PMF.

Insight. Kraft inequality shows a budget constraint of codeword lengths for any prefix codes. To minimize the expected code length, we would like to assign shorter codewords to more frequent symbols. However, *shorter codewords are more expensive*.

6/17

Kraft-McMillan Inequality (Cont'd)

Implications.

- If Kraft's inequality does not hold, the code is not uniquely decodable.
- If Kraft's inequality holds with strict inequality, the code is called redundant.
- If Kraft's inequality holds with equality, the code is called complete.
- For any redundant prefix code with codeword lengths $\{l_i\}_{i=1}^m$ there exists a complete prefix code with codeword lengths $\{l_i'\}_{i=1}^m$ such that $l_i' \leq l_i$ for all $i=1,2,\ldots,m$.

Proof of Kraft-McMillan Inequality

Figure: A binary tree shows the method for calculating the number of descendant leaf nodes. Red nodes represent codewords.

Proof.

First, construct a binary (D=2) tree as shown above.

- The branches represent the symbols of the codeword. Each code is represented by a leaf on the tree. The path from the root traces out the symbols of the codeword.
- Prefix condition: no codeword is an ancestor of any other codewords (each codeword eliminates its descendants as possible codewords).

8 / 17

Proof of Kraft-McMillan Inequality

Proof (Cont.)

- Let l_{max} be the length to the longest codeword.
- ullet The nodes at level $l_{
 m max}$ can be codewords, descendants, or unused.
- A codeword at level l_i has $2^{(l_{\max}-l_i)}$ descendants at level l_{\max} .
- Each of these descendant sets must be disjoint (from different branches of the tree).

9 / 17

- Summing over all codewords, we have $\sum_i 2^{(l_{\max}-l_i)} \le 2^{l_{\max}} \implies \sum_i 2^{-l_i} \le 1$.
- ullet Clearly, the argument holds for an arbitrary D-ary tree.

Yu Zhang (UCSC) ECE253/CSE208: Lecture 7

McMillan Inequality

The McMillan inequality generalizes the Kraft inequality from *prefix code* to *uniquely decodable code*:

Theorem (McMillan inequality)

For any uniquely decodable code over an alphabet of size D, the codeword length l_1, l_2, \ldots, l_m must satisfy the following inequality: $\sum_i D^{-l_i} \leq 1$.

Conversely, give a set of codeword lengths that satisfy the inequality, it is possible to construct a uniquely decodable code with those codeword lengths.

Kraft-McMillan Inequality (Cont'd)

		Nonsingular, but not	Uniquely Decodable,	
Χ	Singular	Uniquely Decodable	but not Instantaneous	Instantaneous
1	0	0	10	0
2	0	010	00	10
3	0	01	11	110
4	0	10	110	111

Example (Sanity check)

• The prefix code in the table satisfies the Kraft inequality:

$$\sum_{i} D^{-l_i} = 2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} < 1.$$

 For the not uniquely decodable code, its lengths violate the Kraft-McMillan inequality:

$$\sum_{i} D^{-l_i} = 2^{-1} + 2^{-3} + 2^{-2} + 2^{-2} = \frac{9}{8} > 1.$$

Lemma

For every uniquely decodable code, there exists a prefix code with the same length distribution.

Optimal Codes (Shortest Expected Length)

Finding the code lengths of optimal codes (prefix/uniquely decodable codes) can be formulated as the following constrained optimization problem:

$$\underset{\{l_i\}}{\text{minimize}} \qquad \sum_i p_i l_i \tag{1}$$

subject to
$$\sum_{i} D^{-l_i} \le 1$$
 (2)

Consider the Lagrangian relaxation by introducing the multiplier λ :

$$L(\{l_i\}, \lambda) = \sum_{i} p_i l_i + \lambda \left(\sum_{i} D^{-l_i} - 1\right).$$

Set the gradient to be zero, we get:

$$\frac{\partial L(\{l_i\}, \lambda)}{\partial l_i} = p_i - \lambda D^{-l_i} \ln D = 0 \quad \Longrightarrow \quad D^{-l_i} = \frac{p_i}{\lambda \ln D}.$$

We should have $\sum\limits_{i}D^{-l_{i}^{*}}=1$ (i.e., the ineq constraint must be binding at the optimum).

Hence,
$$\lambda = \frac{1}{\ln D} \implies p_i = D^{-l_i^*} \implies \boxed{l_i^* = -\log_D p_i}$$
 (if $-\log_D p_i$ is an integer).

Optimal Codes (Cont'd)

The optimal expected codeword length (i.e., the optimal value of the objective function):

$$L_i^* = \sum p_i l_i^* = -\sum p_i \log_D p_i = H_D(X).$$

Again, we see that the entropy is a natural measure of efficient description length.

Theorem

The expected length L of any prefix D-ary code for a ramdon variable X is no less than $H_D(X)$, that is

$$L \geq H_D(X)$$
,

with equality if and only if $D^{-l_i} = p_i$.

Optimal codes (Cont'd)

Proof: Let
$$r_i := \frac{D^{-l_i}}{\sum\limits_{i} D^{-l_i}}, c := \sum\limits_{i} D^{-l_i}$$
 , we have

$$L - H_D(X) = \sum_{i} p_i l_i - \sum_{i} p_i \log_D \frac{1}{p_i}$$
(3)

$$= \sum_{i} -p_i \log_D D^{-l_i} + \sum_{i} p_i \log_D p_i \tag{4}$$

$$= \sum_{i} p_i \log_D \frac{p_i}{r_i} - \log_D c \tag{5}$$

$$= D(\mathbf{p}||\mathbf{r}) + \log_D 1/c \tag{6}$$

$$\geq 0 \tag{7}$$

Optimal Codes (Cont'd)

Definition (*D*-adic distribution)

A distribution is called D-adic if each of the probabilities is equal to D^{-n} for some $n \in \mathbb{Z}_+$.

One way to find the optimal code: Find the D-adic distribution that is closest (in the sense of KL divergence) to the distribution of X. But, this is a hard problem.

Theorem (Bounds on the optimal code length)

The minimum expected codeword length per symbol satisfies

$$\frac{1}{n}H(X_1, X_2, \dots, X_n) \le L_n < \frac{1}{n}H(X_1, X_2, \dots, X_n) + \frac{1}{n}.$$

- If $\{X_i\}$ are i.i.d. $\Rightarrow H(X_1) \leq L_n < H(X_1) + \frac{1}{n} \Rightarrow L_n \to H(X_1)$ as $n \to \infty$
- If $\{X_i\}$ are non-i.i.d. $\Rightarrow L_n \to H(\mathcal{X})$ as $n \to \infty$

Wrong Code

Q: If the code is designed based on a wrong distribution (e.g., we have a wrong estimate of p_i), how much penalty will we pay?

A: Suppose the true distribution is $\{p_i\}$, but we design the codes according to $\{q_i\}$.

Theorem (Wrong code)

Let $l(x) = \lceil \log_D \frac{1}{q(x)} \rceil$ while the true distribution is p(x). Then, we have

$$H_D(X) + D(p||q) \le E_p[l(X)] < H_D(X) + 1 + D(p||q)$$

Clearly, if p = q (no mismatch), $H_D(X) \leq E_p[l(X)] < H_D(X) + 1$.

Proof:

$$\begin{split} E_p[l(X)] &= \sum_i p_i \left\lceil \log_D \frac{1}{q_i} \right\rceil < \sum_i p_i \left(1 + \log_D \frac{1}{q_i} \right) \\ &= 1 + \sum_i p_i \log_D \frac{p_i}{q_i} + \sum_i p_i \log_D \frac{1}{p_i} \\ &= 1 + D(p||q) + H_D(X). \end{split}$$

Thank You!

Email: <zhangy@ucsc.edu>

Homepage: https://people.ucsc.edu/~yzhan419/