ОБНАРУЖЕНИЕ ВКРАПЛЕНИЙ В ДВОИЧНУЮ ЦЕПЬ МАРКОВА НА ОСНОВЕ ЭНТРОПИЙНЫХ ХАРАКТЕРИСТИК

Андрей Чеславович Шимко Научный руководитель: Егор Валентинович Вечерко

Факультет прикладной математики и информатики Кафедра математического моделирования и анализа данных

Минск, 2017

Математическая модель

Дана последовательность случайных величин распределенных по нормальному закону

$$\{x_t\} \ \sqcup M(1), x_i \in V = \{0, 1\}, i = \overline{1, T}$$
 (1)

$$\pi = (\frac{1}{2}, \frac{1}{2}), P(\varepsilon) = \frac{1}{2} (\frac{1+\varepsilon, 1-\varepsilon}{1-\varepsilon, 1+\varepsilon}), |\varepsilon| < 1, \varepsilon \neq 0.$$
 (2)

Сообщение

$$\mathcal{L}m_t = Bi(1,\theta), m_i \in V = 0, 1, i = \overline{1,\tau}, \tag{3}$$

Ключ

$$\mathcal{L}\gamma_t = Bi(1,\delta), \gamma_i \in V = 0, 1, i = \overline{1,T};$$
 (4)

И задано функциональное преобразование

$$y_t = \begin{cases} x_t, \gamma_t = 0; \\ m_{\tau_t}, \gamma_t = 1; \end{cases} = (1 - \gamma_t) x_t + \gamma_t m_{\tau_t}, \text{где } \tau_t = \sum_{j=1}^t \gamma_j$$
 (5)

Введем понятие энтропии на знак для І-граммы:

$$H_{l}(\delta) = -\frac{1}{l} \sum_{(a_{1},...,a_{l}) \in \{0,1\}} P\{y_{t-l} = a_{1},...,y_{t-1} = a_{l}\} \log P\{y_{t-l} = a_{1},...,y_{t-1} = a_{l}\}.$$
(6)

Определение

Величина

$$I\{b_i\} = -\log p_i \tag{7}$$

называется собственной информацией, содержащейся в исходе $b_i \in B$.

Величина $I\{b_i\}$ изменяется от нуля в случае реализации достоверного исхода до бесконечности, когда $p(b_i)=p_i \to 0$. Величину $I\{b_i\}$ можно интерпретировать как априорную неопределенность события $\{\xi=b_i\}$. Случайная величина $I\{\xi\}$ имеет математическое ожидание

$$EI\{\xi\} = -\sum_{b_i \in B} p_i \log p_i. \tag{8}$$

Оценка энтропии биграммы

Лемма

Если имеет место монобитная модель вкраплений (1)-(5), то вероятности появления всевозможных биграмм имеют вид :

$$P\{y_{t-1} = 1, y_t = 1\} = \frac{1}{4}(1+\varepsilon)(1-\delta)^2 + \theta\delta(1-\delta) + \theta^2\delta^2;$$
 (9)

$$P\{y_{t-1}=1, y_t=0\} = \frac{1}{4}(1-\varepsilon)(1-\delta)^2 + \frac{1}{2}\delta(1-\delta) + \theta(1-\theta)\delta^2; \quad (10)$$

$$P\{y_{t-1} = 0, y_t = 1\} = \frac{1}{4}(1-\varepsilon)(1-\delta)^2 + \frac{1}{2}\delta(1-\delta) + \theta(1-\theta)\delta^2; \quad (11)$$

$$P\{y_{t-1}=0,y_t=0\}=\frac{1}{4}(1+\varepsilon)(1-\delta)^2+\delta(1-\theta)(1-\delta)+\delta^2(1-\theta)^2.$$
 (12)

Лемма

Если имеет место монобитная модель вкраплений (1)-(5), то для энтропии при I=2 справедливо асимптотическое разложение при $\delta \to 0$ 1-го порядка

$$H_2(\delta) = H_2(0) + 2\delta\varepsilon\log\frac{1+\varepsilon}{1-\varepsilon} + O(\delta^2).$$
 (13)

Оценка энтропии 3-граммы

Теорема

Если имеет место монобитная модель вкраплений (1)-(5) , то для энтропии при I=3 справедливо асимптотическое разложение при $\delta \to 0$ 1-го порядка:

$$H_3(\delta) = H_3(0) + 2\varepsilon\delta\log\frac{1+\varepsilon}{1-\varepsilon} + O(\delta^2);$$
 (14)

собственная информация имеет вид:

$$\begin{split} I\{y_{i-1} = 0, y_i = 0, y_{i+1} = 0\} &= -\log\frac{(1+\varepsilon)^2}{8} + \delta\frac{1}{\ln b} \cdot \frac{2\varepsilon^2 + 4\varepsilon}{(1+\varepsilon)^2} + O(\delta^2), \\ I\{y_{i-1} = 1, y_i = 0, y_{i+1} = 0\} &= I\{y_{i-1} = 0, y_i = 0, y_{i+1} = 1\} = \\ &= -\log\frac{1-\varepsilon^2}{8} - \delta\frac{1}{\ln b} \cdot \frac{2\varepsilon^2}{1-\varepsilon^2} + O(\delta^2), \\ I\{y_{i-1} = 0, y_i = 1, y_{i+1} = 0\} &= -\log\frac{(1-\varepsilon)^2}{8} + \delta\frac{1}{\ln b} \cdot \frac{2\varepsilon^2 - 4\varepsilon}{(1-\varepsilon)^2} + O(\delta^2); \\ I\{y_{i-1} = j_1, y_i = j_2, y_{i+1} = j_3\} &= I\{y_{i-1} = 1 - j_1, y_i = 1 - j_2, y_{i+1} = 1 - j_3\}, \\ j_1, j_2, j_3 \in \{0, 1\}. \end{split}$$

Оценка энтропии 4-граммы

Теорема

Если имеет место монобитная модель вкраплений (1)-(5) , то для энтропии при I=4 справедливо асимптотическое разложение при $\delta \to 0$ 1-го порядка:

$$H_4(\delta) = H_4(0) + \frac{24\varepsilon\delta}{16}\log\frac{1+\varepsilon}{1-\varepsilon} + O(\delta^2); \tag{15}$$

собственная информация имеет вид:

$$\begin{split} I\{y_{i-1} = 0, y_i = 0, y_{i+1} = 0, y_{i+2} = 0\} &= I\{y_{i-1} = 1, y_i = 1, y_{i+1} = 1, y_{i+2} = 1\} = \\ &= -\left(\log\frac{(1+\varepsilon)^3}{16} + \delta\frac{-2\varepsilon^3 - 8\varepsilon^2 - 6\varepsilon}{(1+\varepsilon)^3\ln b}\right) + O(\delta^2); \\ I\{y_{i-1} = 0, y_i = 0, y_{i+1} = 0, y_{i+2} = 1\} &= I\{y_{i-1} = 1, y_i = 1, y_{i+1} = 1, y_{i+2} = 0\} = \\ I\{y_{i-1} = 1, y_i = 0, y_{i+1} = 0, y_{i+2} = 0\} &= I\{y_{i-1} = 0, y_i = 1, y_{i+1} = 1, y_{i+2} = 1\} = \\ &= -\left(\log\frac{(1-\varepsilon)(1+\varepsilon)^2}{16} + \delta\frac{2\varepsilon^3 + 4\varepsilon^2 - 2\varepsilon}{(1-\varepsilon)(1+\varepsilon)^2\ln b}\right) + O(\delta^2); \end{split}$$

Оценка энтропии 4-граммы

$$\begin{split} I\{y_{i-1} = 0, y_i = 0, y_{i+1} = 1, y_{i+2} = 0\} &= I\{y_{i-1} = 1, y_i = 1, y_{i+1} = 0, y_{i+2} = 1\} = I\{y_{i-1} = 0, y_i = 1, y_{i+1} = 0, y_{i+2} = 0\} = I\{y_{i-1} = 1, y_i = 0, y_{i+1} = 1, y_{i+2} = 1\} = \\ &= -\left(\log\frac{(1-\varepsilon)^2(1+\varepsilon)}{16} + \delta\frac{-2\varepsilon^3 + 4\varepsilon^2 + 2\varepsilon}{(1-\varepsilon)^2(1+\varepsilon)\ln b}\right) + O(\delta^2); \\ I\{y_{i-1} = 0, y_i = 0, y_{i+1} = 1, y_{i+2} = 1\} = I\{y_{i-1} = 1, y_i = 1, y_{i+1} = 0, y_{i+2} = 0\} = \\ &= -\left(\log\frac{(1-\varepsilon)(1+\varepsilon)^2}{16} + \delta\frac{2\varepsilon^3 - 2\varepsilon}{(1-\varepsilon)(1+\varepsilon)^2\ln b}\right) + O(\delta^2); \\ I\{y_{i-1} = 0, y_i = 1, y_{i+1} = 1, y_{i+2} = 0\} = I\{y_{i-1} = 1, y_i = 0, y_{i+1} = 0, y_{i+2} = 1\} = \\ &-\left(\log\frac{(1-\varepsilon)^2(1+\varepsilon)}{16} + \delta\frac{-2\varepsilon^3 + 2\varepsilon}{(1-\varepsilon)^2(1+\varepsilon)\ln b}\right) + O(\delta^2); \\ I\{y_{i-1} = 1, y_i = 0, y_{i+1} = 1, y_{i+2} = 0\} = I\{y_{i-1} = 0, y_i = 1, y_{i+1} = 0, y_{i+2} = 1\} = \\ &-\left(\log\frac{(1-\varepsilon)^3}{16} + \delta\frac{2\varepsilon^3 - 8\varepsilon^2 + 6\varepsilon}{(1-\varepsilon)^3\ln b}\right) + O(\delta^2). \end{split}$$

Линейный дискриминантный анализ

Анализ последовательности $Y = \{y_1, ..., y_T\}$, на основании $(H_3(\delta), H_4(\delta))$ при фиксированном ε , тогда:

Гипотеза

 H_0 : последовательность Y имеет вкрапления

Гипотеза

 H_1 : последовательность Y не имеет вкраплений

$$\hat{\alpha} = \frac{n_0 - \nu_0}{n_0}$$
 — оценка вероятности ошибки первого рода; (16)

$$\hat{eta} = rac{n_1 -
u_1}{n_1}$$
 — оценка вероятности ошибки второго рода; (17)

где n_0 - количество заведомо пустых последовательностей, n_1 - количество последовательностей с вкраплениями, ν_0 - количество верно определенных пустых последовательностей, ν_1 - количество верно определенных последовательностей с вкраплениями.

Мощность критерия:

$$\hat{w} = \frac{\nu_1}{n_1} \tag{18}$$

Результаты ЛДА

Таблица: Результаты дискриминантного анализа при $\varepsilon=0.55, n=1000.$

δ	$\hat{\alpha}$	$\hat{\beta}$	ŵ
0.03	0.42	0.31	0.69
0.07	0.21	0.14	0.86
0.09	0.14	0.08	0.92
0.1	0.13	0.05	0.95
0.3	0.05	0.02	0.98

Таблица: Результаты дискриминантного анализа при $\varepsilon = 0.15, n = 1000.$

δ	$\hat{\alpha}$	$\hat{\beta}$	ŵ
0.01	0.47	0.4	0.6
0.03	0.3	0.2	0.8
0.07	0.1	0.08	0.92
0.1	0.06	0.05	0.95
0.3	0.02	0.02	0.98

Математическая модель серий

Пусть последовательность с вкраплениями, задается следующим образом:

$$s - \nu_s, s = \overline{1, k} \tag{19}$$

где s - длина серии, а u_s - количество серий длины s, $\sum\limits_{s=1}^{\kappa} s
u_s = T$

Лемма

Для модели (19) асимптотическая оценка 1-го порядка вероятности вкрапления при $\delta \to 0$ имеет вид:

$$\begin{split} P\{y_1 = u_1, ..., y_T = u_T\} &= \frac{1}{2^T - 1} (1 + \varepsilon)^{T - \sum\limits_{s=1}^K \nu_s - 1 - 2} (1 - \varepsilon)^{\sum\limits_{s=1}^K \nu_s - 2} \\ &\left((1 + \varepsilon)(1 - \varepsilon) - \delta \left(\frac{3}{4} \varepsilon^4 + \frac{5}{4} \varepsilon^3 + \frac{5}{4} \varepsilon^2 - \frac{3}{4} \varepsilon - \frac{7}{2} \right) \right) + O(\delta^2), \\ &u_i \in \{0, 1\}, i = \overline{1, T}. \end{split}$$

Рис.: График зависимости энтропии $H_2(\delta)$ от длины последовательности

Рис.: График зависимости энтропии $H_3(\delta)$ от длины последовательности

Рис.: График зависимости энтропии $H_4(\delta)$ от длины последовательности

Рис.: График зависимости энтропии $H_4(\delta)$ от $H_3(\delta)$ при различных долях вкраплений

Заключение

В работе получены следующие основные результаты:

- 1. Исследована математическая модель вкраплений в цепь Маркова 1-го порядка.
- 2. Получены точные значения вероятностей для всевозможных шаблонов *I*-граммы при *I*=2,3,4.
- 3. Получены асимптотические оценки первого порядка для энтропии I-граммы при I=2,3,4.
- Проведен линейный дискриминантный анализ на основании асимптотических оценок для энтропии 3-граммы и 4-граммы.
- Исследованы вероятностные свойства математической модели вкраплений в цепь Маркова 1-го порядка, задаваемой сериями.
- 6. Проведены компьютерные эксперименты.

Список литературы

- А. А. Духин: Теория информации М.: "Гелиос АРВ", 2007.
- A.B. Аграновский, А. В. Балакин: Стеганография, цифровые водяные знаки о стегоанализе М.: Вузовская книга, 2009.
- К. И. Пономарев "Параметрическая модель вкрапления и ее статистический анализ", Дискрет. матем., 21:4 (2009), 148-157.
- Н.П.Варновский, Е.А.Голубев, О.А.Логачев: Современные направления стеганографии. Математика и безопасность информационных технологий. Материалы конференции в МГУ 28-29 октября 2004 г., МЦМНО, М., 2005, с. 32-64.
- Ю. С. Харин [и др.]: Криптология Минск: БГУ, 2013.
- Ю. С. Харин, Е. В. Вечерко "Статистическое оценивание параметров модели вкраплений в двоичную цепь Маркова", Дискрет. матем., 25:2 (2013), 135-148.
- Ю. С. Харин, Е. В. Вечерко "Распознавание вкраплений в двоичную цепь Маркова", Дискрет. матем., 27:3 (2015), 123Џ144.

Спасибо за внимание!

ОБНАРУЖЕНИЕ ВКРАПЛЕНИЙ В ДВОИЧНУЮ ЦЕПЬ МАРКОВА НА ОСНОВЕ ЭНТРОПИЙНЫХ ХАРАКТЕРИСТИК

Андрей Чеславович Шимко Научный руководитель: Егор Валентинович Вечерко

Минск, 2017