Hackathon - Carreiras de TI - Curitiba/PR

Contexto:

- Dataset contendo dados de qualidade do ar do Centro de monitoramento municipal do meio ambiente de Beijing, de março de 2013 à fevereiro de 2017.
- PM2.5 se refere a particulas atmosféricas que possuem diâmetro menor que 2.5 micrômetros, é uma medida de poluição.

1. Identificação do problema a resolver

- Analisar as variações na qualidade do ar em metrópole asiática através do comportamento dos poluentes particulados PM2.5 e PM10
- Variaveis a serem trabalhadas: Year, Month, PM2.5, PM10

2. Preparação dos datasets e exploração dos dados

In [1]:

```
# Importar as bibliotecas para fazer análise exploratória dos dados
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import os
import glob
```

In [3]:

Out[3]:

	No	year	month	day	hour	PM2.5	PM10	SO2	NO2	СО	О3	TEMP	PRES	DEWP
0	1	2013	3	1	0	4.0	4.0	4.0	7.0	300.0	77.0	-0.7	1023.0	-18.8
1	2	2013	3	1	1	8.0	8.0	4.0	7.0	300.0	77.0	-1.1	1023.2	-18.2
2	3	2013	3	1	2	7.0	7.0	5.0	10.0	300.0	73.0	-1.1	1023.5	-18.2
3	4	2013	3	1	3	6.0	6.0	11.0	11.0	300.0	72.0	-1.4	1024.5	-19.4
4	5	2013	3	1	4	3.0	3.0	12.0	12.0	300.0	72.0	-2.0	1025.2	-19.5
4														>

In [4]:

```
# Cria uma cópia do dframe
df_copy = df.copy()
```

In [5]:

```
df_copy.head()
```

Out[5]:

	No	year	month	day	hour	PM2.5	PM10	SO2	NO2	СО	О3	TEMP	PRES	DEWP
0	1	2013	3	1	0	4.0	4.0	4.0	7.0	300.0	77.0	-0.7	1023.0	-18.8
1	2	2013	3	1	1	8.0	8.0	4.0	7.0	300.0	77.0	-1.1	1023.2	-18.2
2	3	2013	3	1	2	7.0	7.0	5.0	10.0	300.0	73.0	-1.1	1023.5	-18.2
3	4	2013	3	1	3	6.0	6.0	11.0	11.0	300.0	72.0	-1.4	1024.5	-19.4
4	5	2013	3	1	4	3.0	3.0	12.0	12.0	300.0	72.0	-2.0	1025.2	-19.5

In [6]:

```
# Resumo do dataset por coluna: contagem, media, desvio padrão, vmin, vmax
df_copy.describe()
```

Out[6]:

No	year	month	day	hour	PM2.5	PM
000000	420768.000000	420768.000000	420768.000000	420768.000000	412029.000000	414319.0000
500000	2014.662560	6.522930	15.729637	11.500000	79.793428	104.6026
116943	1.177198	3.448707	8.800102	6.922195	80.822391	91.7724
000000	2013.000000	1.000000	1.000000	0.000000	2.000000	2.0000
750000	2014.000000	4.000000	8.000000	5.750000	20.000000	36.0000
500000	2015.000000	7.000000	16.000000	11.500000	55.000000	82.0000
250000	2016.000000	10.000000	23.000000	17.250000	111.000000	145.0000
000000	2017.000000	12.000000	31.000000	23.000000	999.000000	999.0000
4						+

In [7]:

Resumo de total de registros por coluna, tipo de dado, quantidade total de colunas, uso d df_copy.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 420768 entries, 0 to 35063
Data columns (total 18 columns):
No
          420768 non-null int64
          420768 non-null int64
year
month
          420768 non-null int64
          420768 non-null int64
day
          420768 non-null int64
hour
PM2.5
          412029 non-null float64
PM10
          414319 non-null float64
S02
          411747 non-null float64
           408652 non-null float64
NO2
          400067 non-null float64
CO
           407491 non-null float64
03
          420370 non-null float64
TEMP
PRES
          420375 non-null float64
           420365 non-null float64
DEWP
           420378 non-null float64
RAIN
           418946 non-null object
wd
WSPM
           420450 non-null float64
           420768 non-null object
station
dtypes: float64(11), int64(5), object(2)
```

memory usage: 61.0+ MB

In [8]:

```
# Verificação de valores missing presentes por coluna
# Identificado valores missing de PM2.5 até WSPM
df_copy.isnull().sum()
```

Out[8]:

0 No year 0 0 month day 0 hour 0 PM2.5 8739 PM10 6449 S02 9021 NO2 12116 CO 20701 03 13277 398 TEMP **PRES** 393 403 DEWP RAIN 390 1822 wd WSPM 318 station 0 dtype: int64

In [11]:

```
# Descrição resumida da coluna PM2.5
df_copy['PM2.5'].describe()
```

Out[11]:

```
412029.000000
count
             79.793428
mean
std
             80.822391
min
              2.000000
             20.000000
25%
50%
             55.000000
75%
            111.000000
            999.000000
max
```

Name: PM2.5, dtype: float64

In [12]:

```
# Descricao resumida da coluna PM10
df_copy['PM10'].describe()
```

Out[12]:

```
count
         414319.000000
mean
            104.602618
std
             91.772426
              2.000000
min
25%
             36.000000
             82.000000
50%
            145.000000
75%
            999.000000
max
Name: PM10, dtype: float64
```

In [13]:

```
# Descrição resumida da coluna TEMP
df_copy['TEMP'].describe()
```

Out[13]:

```
420370.000000
count
mean
             13.538976
             11.436139
std
min
            -19.900000
25%
              3.100000
50%
             14.500000
75%
             23.300000
             41.600000
max
Name: TEMP, dtype: float64
```

In [14]:

```
# Inserir valores missing para normalização de dados nas variáveis PM2.5 e PM10
df_copy['PM2.5'].fillna(df_copy['PM2.5'].median(), inplace = True)
df_copy['PM10'].fillna(df_copy['PM10'].median(), inplace = True)
```

In [15]:

```
# Verificando se valores missing foram preenchidos em PM2.5 e PM10
df_copy.isnull().sum()
```

Out[15]:

No 0 year month 0 0 day 0 hour PM2.5 0 0 PM10 S02 9021 NO2 12116 20701 CO 03 13277 TEMP 398 393 PRES DEWP 403 390 RAIN wd 1822 WSPM 318 station dtype: int64

In [16]:

```
# Verificar se valores missing afetaram o resumo dos dados de PM2.5
# Valores missing aumentaram a contagem de registros, fez uma pequena alteração na média, de
df_copy['PM2.5'].describe()
```

Out[16]:

```
420768.000000
count
             79.278489
mean
             80.056799
std
              2.000000
min
25%
             21.000000
50%
             55.000000
75%
            109.000000
            999.000000
max
Name: PM2.5, dtype: float64
```

In [17]:

Verificar se valores missing afetaram o resumo dos dados de PM10
Valores missing aumentaram a contagem de registros, fez uma pequena alteração na média, de
df_copy['PM10'].describe()

Out[17]:

count	420	0768.000	0000			
mean		104.25	5193			
std	91.108745					
min		2.000	0000			
25%	36.00000					
50%		82.000	0000			
75%		144.000	0000			
max		999.000	0000			
Name:	PM10,	dtype:	float64			

In [22]:

```
# Analiser histórico de emissões de PM2.5 e PM10 de todo o período do dataset
# 2014 foi o ano que apresentou maior nível de emissão de ambos os PMs
# PM2.5 variou de 50 a 60
df_year_PM25 = df_copy[['year', "PM2.5"]].groupby(['year']).median()
df_year_PM10 = df_copy[['year', 'PM10']].groupby(['year']).median()
fig, ax1 = plt.subplots(figsize=(12,2))
fig, ax2 = plt.subplots(figsize=(12,2))
ax1.plot(df year PM25, color = 'blue')
ax2.plot(df_year_PM10, color = 'red')
ax1.set_title('Mediana de PM2.5 por ano', fontsize = 15)
ax1.set_xlabel('Ano')
ax1.set_ylabel('Emissão de PM2.5')
ax2.set_title('Mediana de PM10 por ano', fontsize = 15)
ax2.set_xlabel('Ano')
ax2.set_ylabel('Emissão de PM10')
plt.show()
```


In [24]:

```
# Filtrar os anos de 2014 (ano de maior emissão) e 2016 (ano de menor emissão)
# Ano de 2017 apresenta apenas 2 meses, por isso não foi considerado para comparativo
df_2014 = df_copy[df_copy['year'] == 2014]
df_2016 = df_copy[df_copy['year'] == 2016]
```

In [30]:

```
# Analisar emissão de PM2.5 no ano de 2014 e 2016 por mês
df_2014_PM25 = df_2014[['month', 'PM2.5']].groupby(['month']).median()
fig, ax1 = plt.subplots(figsize = (12,2))
ax1.plot(df_2014_PM25, color = 'blue')
ax1.set_title('Mediana de PM2.5 por mês - 2014', fontsize = 15)
ax1.set_xlabel('Meses')
ax2.set_ylabel('PM2.5')

df_2016_PM25 = df_2016[['month', 'PM2.5']].groupby(['month']).median()
fig, ax2 = plt.subplots(figsize = (12,2))
ax2.plot(df_2016_PM25, color = 'red')
ax2.set_title('Mediana de PM2.5 por mês - 2016', fontsize = 15)
ax2.set_xlabel('Meses')
ax2.set_ylabel('PM2.5')

plt.show()
```

100 -80 -60 -40 -

Mediana de PM2.5 por mês - 2014

In [31]:

```
# Analisar emissão de PM10 no ano de 2014 e 2016 por mês
df_2014_PM10 = df_2014[['month','PM10']].groupby(['month']).median()
fig, ax1 = plt.subplots(figsize = (12,2))
ax1.plot(df_2014_PM10, color = 'blue')
ax1.set_title('Mediana de PM10 por mês - 2014')
ax1.set_xlabel('Mês')
ax1.set_ylabel('PM10')

df_2016_PM10 = df_2016[['month', 'PM10']].groupby(['month']).median()
fig, ax2 = plt.subplots(figsize = (12,2))
ax2.plot(df_2016_PM10, color = 'red')
ax2.set_title('Mediana de PM10 por mês - 2016')
ax2.set_xlabel('Mês')
ax2.set_ylabel('PM10')
```


In [33]:

```
# Mapa de calor, identificando a correlação entre as variáveis
corr = df_copy.corr()
ax = sns.heatmap(corr, vmin = -1, vmax = 1, center = 0, cmap = sns.diverging_palette(10, 60
ax.set_xticklabels(ax.get_xticklabels(), rotation = 45, horizontalalignment = 'right');
```


In []:

```
# Comparativo de CO em 2014 e 2016 por mês
df_2014_co = df_2014[['month', 'CO']].groupby(['month']).median()
fig,ax1 = plt.subplots(figsize=(12,1.5))
ax1.plot(df_2014_co, color = 'blue')

ax1.set_title('Histórico CO - 2014')
ax1.set_xlabel('Meses')
ax1.set_ylabel('CO')

df_2016_co = df_2016[['month', 'CO']].groupby(['month']).median()
fig,ax1 = plt.subplots(figsize=(12,1.5))
ax1.plot(df_2016_co, color = 'red')

ax1.set_title('Histórico CO - 2016')
ax1.set_xlabel('Meses')
ax1.set_ylabel('CO')

plt.show()
```

3. Resultados

- Partículas PM2.5, PM10, SO2, NO2, CO apresentam correlação positiva.
- SO2, NO2, CO são gases tóxicos e tem grande parte de sua produção pela atividade industrial.
- Ano de 2014, maiores níveis de emissões de partículas foram no começo do ano.
- Já em 2016, maiores níveis de emossões de particulas foram no final do ano.