

Travail et énergie potentielle –Energie mécanique

Situation-problème

Grâce à sa position par rapport à la Terre, le nageur possède une énergie appelée l'énergie potentielle de pesanteur.

- Qu'est-ce que l'énergie potentielle ? Comment peut-on la calculer ?
- Qu'est-ce que l'énergie mécanique ? Comment peut-on la calculer ?

Objectifs

- 🤏 Définir l'énergie potentielle de pesanteur et savoir la calculer.
- Connaître la relation entre la variation de l'énergie potentielle de pesanteur et le travail du poids.
- 🏶 Définir l'énergie mécanique d'un corps solide et savoir la calculer.
- Savoir que l'énergie potentielle de pesanteur se transforme en énergie cinétique et vice versa .
- Définir l'énergie mécanique d'un corps solide et savoir la calculer.
- Connaître les conditions de conservation de l'énergie mécanique.
- Connaître les raisons pour lesquelles l'énergie mécanique n'est pas conservée.

L'énergie potentielle de pesanteur

① Définition

٠	• • •		• •	• • •	• • •	• • •	• • •		• • •		• • •		• • •		• • •		• • •	••	• • •	•••	• • •		• • •	••	• • •	••	• • •	•••	• • •	• • •	•••	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	••	• • •		• • •	••	• • •	
	• • •	• • •	• •	• • •	• •	• • •	• • •	• • •		•••	• • •	•••	• • •	•••	• • •	• •	• • •	• •	• • •	••	• • •		• • •	• •	• • •	•••		••	• • •	•••	• •	• • •	• • •	• • •	• • •	•••		• • •	• • •		•••	• • •		•••	••	• • •	
	• • •	• • •	• •	• • •	• •	• • •	• • •	• • •	• • •		• • •	••	• • •	••	• • •	• •	• • •	••	• • •	••	• • •		• • •	••	• • •	• •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• •	• •	• • •		• • •	••	• • •	
	• • •	• • •	• •	• • •	• •	• • •	• • •	• • •	• • •	• •	• • •	••	• • •	••	• • •	••	• • •	••	• • •	• •	• • •	• • •	• • •	••	• • •	•••	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •		•••	• • •	• • •	• • •	• •	••••	
•	• • •	• • •	• •	• • •	• •	• • •	• • •	• • •	• • •	• •	• • •	• •	• • •	• •	• • •	• •	• • •	• •	• • •	• •	• • •	• • •	• • •	• •	• • •	• •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •		• •	• • •	• • •	• • •	• •	• • •	
	• • •		• •		• •		• • •				• • •								• • •	• •			• • •		• • •	• •		• •		• • •	• • •		• • •			• • •			• • •		• •	• • •		• • •	• •	• • •	

*	Définition	
• • • •		,
• • •		,
• • • •		,
• • • •		,

2 Notion du travail

	Activité
1	On considère un corps solide (S) de masse m se déplaçant d'un point a à un point a . Données l'expression l'énergie potentielle de (S) au point a en puis au point a . Trouver l'expression de la variation l'énergie potentielle de (S) lors de son passage de a à a en fonction de a , a , a , a , a et a . Exprimer le travail du poids de (S) lors de son passage de a à a b.
	Que peut-on conclure?
•	Conclusion

L'énergie mécanique d'un con Définition	T
*Application	
Une petite voiture (jeu d'enfants) de masse m = 2 est en mouvement rectiligne uniforme avec une vitesse V = 0,24m. s ⁻¹ sur une table horizontale de hauteur h = 1,1m. Étudions le mouvement cette voiture par rapport à un repère d'axe (OZ) vertical lié au sol. 1 Calculer l'énergie cinétique de la voiture. 2 Calculer l'énergie potentielle de pesanteur de la voiture sachant que E _{pp} (O) = OJ. 2 Calculer l'énergie mécanique de la voiture.	le le

2 La conservation de l'énergie mécanique d'un corps	s solide
♦ Cas de chute libre	
La chute libre	
Activité	
On lâche une bille métallique de masse $m{m}$ sans vitesse initiale d'un p	ooint <mark>A</mark> d'altitude z_A. O n
néglige la résistance de l'air et on étudie le mouvement du centre d'i	nertie de la bille par
rapport à un repère d'axe $(0Z)$ orienté vers le haut .	A 7
On prend: $E_{pp}(0) = 0\mathbf{J}$	
• Faire l'inventaire des forces extérieurs exercées sur la bille	Z_A A
2 Exprimer la variation l'énergie potentielle de la bille entre les p	oints
A et B en fonction de g , z_A et m .	
3 En appliquant le théorème de l'énergie cinétique entre A et O	
trouver l'expression de l'énergie cinétique de la bille en O.	
Exprimer la variation de l'énergie mécanique de la bille en les positions A et O. Oue pout en déduire?	
positions A et O . Que peut-on déduire?	
1	i
1	

Rapport à l'horizontal. On p Faire l'inventaire des force Exprimer la variation pote entre A et B en fonction d En appliquant le théorème exprimer la variation de l et B en fonction de g, AB	orend: $E_{pp}(A) = 0J$ es extérieurs exercées sur la bille entielle de l'énergie du corps le g , AB , α et m . e de l'énergie cinétique entre A et	р і
Activité	nouvement sans frottemen	nt sur un plan incliné
Conclusion		

	!
	!
	!
	i i i i i i i i i i i i i i i i i i i
	i i
 Conclusion Non-conservation de l'énergie mécanique d'un 	n corns solide
• Activité On un corps solide de masse <i>m</i> glisse avec frottement sur un p	
Rapport à l'horizontal .	Z Z
On suppose que les frottements sont équivalents à une force $ec{f}$	A
d'intensité constante et on prend : $E_{pp}(A) = 0J$	•G
• Faire l'inventaire des forces extérieurs exercées sur la bille	R
 	ο α(

 Conclusion