Compromiso 6

Javier Falcón (2016-5265)

1 Ejericio 4.5

Muestre las acciones de un'analizador sintáctico L.t.11) que utiliza la tabla 4.4 (página 163) para reconocer las siguientes expresiones aritméticas:

(a)
$$3+4*5-6$$

	Pila	Entrada	Acción
1	\$exp	3 + 4 * 5 - 6\$	$exp \rightarrow term \ exp'$
2	\$exp' term	3 + 4 * 5 - 6\$	$term \rightarrow factor \ term'$
3	\$exp' term' factor	3 + 4 * 5 - 6\$	$factor \rightarrow num$
4	\$exp' term' num	3 + 4 * 5 - 6\$	match(3)
5	\$exp' term'	+4*5-6\$	$term' o \epsilon$
6	\$exp'	+4*5-6\$	$exp' \rightarrow opsuma \ term \ exp'$
7	\$exp' term opsuma	+4*5-6\$	$opsuma \rightarrow +$
8	\$exp' term +	+4*5-6\$	match(+)
9	\$exp' term	4*5-6\$	$term \rightarrow factor \ term'$
10	\$exp' term' factor	4*5-6\$	$factor \rightarrow num$
11	\$exp' term' num	4*5-6\$	match(4)
12	\$exp' term'	*5 - 6\$	$term' \rightarrow opmult\ factor'$
13	\$exp' term' factor opmult	*5 - 6\$	opmult o *
14	\$exp' term' factor *	*5 - 6\$	match(*)
15	\$exp' term' factor	5 - 6\$	$factor \rightarrow num$
16	\$exp' term' num	5 - 6\$	match(5)
17	\$exp' term'	-6\$	$term' o \epsilon$
18	\$exp'	-6\$	$exp' \rightarrow opsuma \ term \ exp'$
19	\$exp'	-6\$	$exp \rightarrow term \ exp'$
20	\$exp' term opsuma	-6\$	$opsuma \rightarrow -$
21	\$exp' term -	-6\$	match(-)
22	\$exp' term	6\$	$term \rightarrow factor \ term'$
23	\$exp' term' factor	6\$	$factor \rightarrow num$
24	\$exp' term' num	6\$	match(6)
25	\$exp' term'	\$	$term' o \epsilon$
26	\$exp'	\$	$exp' \to \epsilon$
27	\$	\$	aceptar

(b) 3*(4-5+6)

	Pila	Entrada	Acción
1	\$exp	3*(4-5+6)\$	$exp \rightarrow term \ exp'$
2	\$exp' term	3*(4-5+6)\$	$term \rightarrow factor \ term'$
3	\$exp' term' factor	3*(4-5+6)\$	$factor \rightarrow num$
4	\$exp' term' num	3*(4-5+6)\$	match(3)
5	\$exp' term'	*(4-5+6)\$	$term \rightarrow opmult\ factor\ term'$
6	\$exp' term' factor opmult	*(4-5+6)\$	$opmult \rightarrow *$
7	\$exp' term' factor *	*(4-5+6)\$	match(*)
8	\$exp' term' factor	(4-5+6)\$	$factor \rightarrow (exp)$
9	\$exp' term') exp ((4-5+6)\$	match(()
10	\$exp' term') exp	4-5+6)\$	$exp \rightarrow term \ exp'$
11	\$exp' term') exp' term	4-5+6)\$	$term \rightarrow factor \ term'$
12	\$exp' term') exp' term' factor	4-5+6)\$	$factor \rightarrow num$
13	\$exp' term') exp' term' num	4-5+6)\$	match(4)
14	\$exp' term') exp' term'	-5+6)\$	$term' o \epsilon$
15	\$exp' term') exp'	-5+6)\$	$exp' \rightarrow opsuma \ term \ exp'$
16	\$exp' term') exp' term opsuma	-5+6)\$	$opsuma \rightarrow -$
17	\$exp' term') exp' term -	-5+6)\$	match(-)
18	\$exp' term') exp' term	5+6)\$	$term \rightarrow factor \ term'$
19	\$exp' term') exp' term' factor	5+6)\$	$factor \rightarrow num$
20	\$exp' term') exp' term' num	5+6)\$	match(5)
21	\$exp' term') exp' term'	+6)\$	$term' o \epsilon$
22	\$exp' term') exp'	+6)\$	$exp' \rightarrow opsuma \ term \ exp'$
23	\$exp' term') exp' term opsuma	+6)\$	$opsuma \rightarrow +$
24	exp' term') exp' term +	+6)\$	match(+)
25	\$exp' term') exp' term	6)\$	$term \rightarrow factor \ term'$
26	\$exp' term') exp' term' factor	6)\$	$factor \rightarrow num$
27	\$exp' term') exp' term' num	6)\$	match(6)
28	\$exp' term') exp' term')\$	$term' o \epsilon$
29	\$exp' term') exp')\$	$exp' o \epsilon$
30	\$exp' term'))\$ \$ \$	match())
31	\$exp' term'	\$	$term' o \epsilon$
32	\$exp'	\$	$exp' o \epsilon$
33	\$	\$	aceptar

(c) 3 - (4 + 5 * 6)

1 \$\text{sexp} \text{ sexp' term} 3 - (4 + 5 * 6)\$ term \rightarrow factor 3 - (4 + 5 * 6)\$ factor \rightarrow num 3 - (4 + 5 * 6)\$ factor \rightarrow num 4 \text{ \$\text{sexp' term' num} } 3 - (4 + 5 * 6)\$ factor \rightarrow num 3 - (4 + 5 * 6)\$ factor \rightarrow num 3 - (4 + 5 * 6)\$ factor \rightarrow num 3 - (4 + 5 * 6)\$ factor \rightarrow num 3 - (4 + 5 * 6)\$ factor \rightarrow 6 8 8	
3 \$\text{sexp' term' factor}\$ 4 \$\text{sexp' term' num}\$ 3 - (4 + 5 * 6)\$ $match(3)$ 5 \$\text{sexp' term'}\$ 6 \$\text{sexp'}\$ 7 \$\text{sexp' term opsuma}\$ -(4 + 5 * 6)\$ $match(3)$ 7 \$\text{sexp' term opsuma}\$ -(4 + 5 * 6)\$ $match(-1)$ 8 \$\text{sexp' term}\$ -(4 + 5 * 6)\$ $match(-1)$ 9 \$\text{sexp' term}\$ -(4 + 5 * 6)\$ $match(-1)$ 10 \$\text{sexp' term' factor}\$ (4 + 5 * 6)\$ $match(-1)$ 11 \$\text{sexp' term' pexp}\$ (4 + 5 * 6)\$ $match(-1)$ 12 \$\text{sexp' term' pexp}\$ (4 + 5 * 6)\$ $match(-1)$ 12 \$\text{sexp' term' pexp}\$ (4 + 5 * 6)\$ $match(-1)$ 13 \$\text{sexp' term' pexp' term}\$ 4 + 5 * 6)\$ $match(-1)$ 14 \$\text{sexp' term' pexp' term' factor}\$ 4 + 5 * 6)\$ $match(-1)$ 15 \$\text{sexp' term' pexp' term' factor}\$ 4 + 5 * 6)\$ $match(-1)$ 16 \$\text{sexp' term' pexp' term' num}\$ 4 + 5 * 6)\$ $match(-1)$ 17 \$\text{sexp' term' pexp' term'}\$ 18 \$\text{sexp' term' pexp' term}\$ 19 \$\text{sexp' term' pexp' term}\$ 10 \$\text{sexp' term' pexp' term'}\$ 11 \$\text{sexp' term' pexp' term'}\$ 12 \$\text{sexp' term' pexp' term}\$ 13 \$\text{sexp' term' pexp' term'}\$ 14 \$\text{sexp' term' pexp' term'}\$ 15 \$\text{sexp' term' pexp' term'}\$ 16 \$\text{sexp' term' pexp' term'}\$ 17 \$\text{sexp' term' pexp' term'}\$ 18 \$\text{sexp' term' pexp' term}\$ 19 \$\text{sexp' term' pexp' term}\$ 10 \$\text{sexp' term' pexp' term}\$ 11 \$\text{sexp' term' pexp' term}\$ 12 \$\text{sexp' term' pexp' term}\$ 13 \$\text{sexp' term' pexp' term' factor}\$ 14 \$\text{5} * 6)\$ $match(-1)$ 15 \$\text{sexp' term' pexp' term' pexp' term'}\$ 15 \$\text{sexp' term' pexp' term' pexp' term'}\$ 16 \$\text{sexp' term' pexp' term'}\$ 17 \$\text{sexp' term' pexp' term'}\$ 18 \$\text{sexp' term' pexp' term'}\$ 19 \$\text{sexp' term' pexp' term'}\$ 10 \$\text{sexp' term' pexp' term'}\$ 11 \$\text{sexp' term' pexp' term'}\$ 12 \$\text{sexp' term' pexp' term'}\$ 13 \$\text{sexp' term' pexp' term'}\$ 14 \$\text{sexp' term' pexp' term'}\$ 15 \$\text{sexp' term' pexp' term'}\$ 16 \$\text{sexp' term' pexp' term'}\$ 17 \$\text{sexp' term'}\$ 18 \$\text{sexp' term'}\$ 19 \$\text{sexp' term'}\$ 10 \$\text{sexp' term'}\$ 11 \$	$\overline{xp'}$
4 \$exp' term' num $3 - (4 + 5 * 6)$ \$ $match(3)$ 5 \$exp' term' $-(4 + 5 * 6)$ \$ $term' \rightarrow \epsilon$ 6 \$exp' $-(4 + 5 * 6)$ \$ $exp' \rightarrow opsum$ 7 \$exp' term opsuma $-(4 + 5 * 6)$ \$ $opsuma \rightarrow -(4 + 5 * 6)$ \$ $opsuma \rightarrow +(4 + 5 * 6)$ \$ $opsu$	$r \ term'$
5 \$exp' term'	\imath'
6 \$exp'	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
8 \$exp' term -	a term exp'
9 \$exp' term $(4+5*6)$ \$ $term \rightarrow factor$ 10 \$exp' term' factor $(4+5*6)$ \$ $factor \rightarrow (exp)$ 11 \$exp' term' $(2+5+6)$ \$ $factor \rightarrow (exp)$ 11 \$exp' term' $(2+5+6)$ \$ $factor \rightarrow (exp)$ $2+5+6$ \$\$ $factor \rightarrow (exp)$ \$\$ $factor \rightarrow ($	
10 \$exp' term' factor $(4+5*6)$ \$ $factor \rightarrow (exp-11 \text{ $exp' term'}) \exp ((4+5*6))$ \$ $match(())$ 12 \$exp' term' $) \exp (4+5*6)$ \$ $exp \rightarrow term \ exp-13 \text{ $exp' term'}) \exp (4+5*6)$ \$ $exp \rightarrow term \ exp-14 \text{ $exp' term'}) \exp (4+5*6)$ \$ $term \rightarrow factor$ 14 \$exp' term' $) \exp (4+5*6)$ \$ $term \rightarrow factor$ 15 \$exp' term' $) \exp (4+5*6)$ \$ $term \rightarrow factor$ 16 \$exp' term' $) \exp (4+5*6)$ \$ $term \rightarrow factor$ 17 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 18 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 19 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 19 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 10 $term' \rightarrow \epsilon$ 11 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 12 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 13 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 14 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 15 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 16 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 17 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 18 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 19 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 10 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 11 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 12 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 13 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 14 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 15 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 16 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 17 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 18 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 19 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 19 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 10 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 11 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 12 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 13 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 14 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 15 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 16 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 17 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 18 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 19 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 19 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 20 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 21 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 22 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 23 \$exp' term' $) \exp (4+5*6)$ \$ $term' \rightarrow \epsilon$ 24 \$exp' term'	
11 \$exp' term') exp ($r \ term'$
12 \$exp' term') exp	o)
13 \$exp' term') exp' term $4+5*6$ \$ $term \rightarrow factor$ 14 \$exp' term') exp' term' factor $4+5*6$ \$ $factor \rightarrow num$ 15 \$exp' term') exp' term' num $4+5*6$ \$ $match(4)$ 16 \$exp' term') exp' term' $+5*6$ \$ $term' \rightarrow \epsilon$ 17 \$exp' term') exp' $+5*6$ \$ $exp' \rightarrow opsum$ 18 \$exp' term') exp' term opsuma $+5*6$ \$ $opsuma \rightarrow +19$ \$ \$exp' term') exp' term $+5*6$ \$ $match(+)$ 20 \$exp' term') exp' term $+5*6$ \$ $term \rightarrow factor$ 21 \$exp' term') exp' term' factor $+5*6$ \$ $term \rightarrow factor$ 22 \$exp' term') exp' term' num $+5*6$ \$ $term \rightarrow factor$ 23 \$exp' term') exp' term' num $+5*6$ \$ $term' \rightarrow opma$ 24 \$exp' term') exp' term' factor op- 15 mult 26 \$exp' term') exp' term' factor $+5*6$ \$ $term' \rightarrow opma$ 27 $term' \rightarrow opma$ 28 $term' \rightarrow opma$ 29 $term' \rightarrow opma$ 29 $term' \rightarrow opma$ 21 $term' \rightarrow opma$ 22 $term' \rightarrow opma$ 23 $term' \rightarrow opma$ 24 $term' \rightarrow opma$ 25 $term' \rightarrow opma$ 26 $term' \rightarrow opma$ 27 $term' \rightarrow opma$ 28 $term' \rightarrow opma$ 29 $term' \rightarrow opma$ 29 $term' \rightarrow opma$ 29 $term' \rightarrow opma$ 20 $term' \rightarrow opma$ 21 $term' \rightarrow opma$ 22 $term' \rightarrow opma$ 23 $term' \rightarrow opma$ 24 $term' \rightarrow opma$ 25 $term' \rightarrow opma$ 26 $term' \rightarrow opma$ 27 $term' \rightarrow opma$ 28 $term' \rightarrow opma$ 29 $term' \rightarrow opma$ 29 $term' \rightarrow opma$ 21 $term' \rightarrow opma$ 21 $term' \rightarrow opma$ 22 $term' \rightarrow opma$ 23 $term' \rightarrow opma$ 24 $term' \rightarrow opma$ 25 $term' \rightarrow opma$	
14 \$exp' term' exp' term' factor $4+5*6$ \$ $factor \rightarrow num$ 15 \$exp' term' exp' term' num $4+5*6$ \$ $match(4)$ 16 \$exp' term' exp' term' $+5*6$ \$ $term' \rightarrow \epsilon$ 17 \$exp' term' exp' term opsuma $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' factor $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' num $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' num $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' factor $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' factor $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' factor $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' factor $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' factor $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' factor $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$exp' term' exp' term' factor $+5*6$ \$ $exp' \rightarrow opsuma \rightarrow +19$ \$ $exp' \rightarrow opsuma $	xp'
14 \$\text{sexp' term'} \) exp' term' factor $4+5*6$)\$ $factor \to num$ 15 \$\text{sexp' term'} \) exp' term' num $4+5*6$)\$ $match(4)$ 16 \$\text{sexp' term'} \) exp' term' $+5*6$)\$ $term' \to \epsilon$ 17 \$\text{sexp' term'} \) exp' term opsuma $+5*6$)\$ $exp' \to opsuma$ 18 \$\text{sexp' term'} \) exp' term opsuma $+5*6$)\$ $opsuma \to +1$ 19 \$\text{sexp' term'} \) exp' term $+10$	$r \ term'$
15 \$\exp'\ \term' \) exp' \term' num $4+5*6$)\$ $match(4)$ 16 \$\exp'\ \term' \) exp' \term' $+5*6$)\$ $term' \to \epsilon$ 17 \$\exp'\ \term' \) exp' \term opsuma $+5*6$)\$ $exp' \to opsuma$ 18 \$\exp'\ \term' \) exp' \term opsuma $+5*6$)\$ $opsuma \to +$ 19 \$\exp'\ \term' \) exp' \term $5*6$)\$ $match(+)$ 20 \$\exp'\ \term' \) exp' \term' factor $5*6$)\$ $term \to factor$ 21 \$\exp'\ \term' \) exp' \term' factor $5*6$)\$ $factor \to num$ 22 \$\exp'\ \term' \) exp' \term' num $5*6$)\$ $match(5)$ 23 \$\exp'\ \term' \) exp' \term' factor op- $*6$)\$ $opmult \to *$ 24 \$\exp'\ \term' \) exp' \term' factor op- $*6$)\$ $opmult \to *$ $mult$ 25 \$\exp'\ \term' \) exp' \term' factor * $*6$)\$ $match(*)$	
17 \$exp' term') exp' $+5*6$)\$ $exp' \to opsum$ 18 \$exp' term') exp' term opsuma $+5*6$)\$ $opsuma \to +$ 19 \$exp' term') exp' term $+$ $+5*6$)\$ $match(+)$ 20 \$exp' term') exp' term $5*6$)\$ $term \to factor$ 21 \$exp' term') exp' term' factor $5*6$)\$ $factor \to num$ 22 \$exp' term') exp' term' num $5*6$)\$ $match(5)$ 23 \$exp' term') exp' term' factor op- $*6$)\$ $opmult \to *$ 24 \$exp' term') exp' term' factor op- $*6$)\$ $opmult \to *$ $mult$ $*exp'$ term') exp' term' factor $*exp'$ $*exp'$	
18 \$exp' term') exp' term opsuma $+5*6$ \$ $opsuma \rightarrow +19$ \$exp' term') exp' term $+5*6$ \$ $match(+)$ 20 \$exp' term') exp' term $5*6$ \$ $term \rightarrow factor$ 21 \$exp' term') exp' term' factor $5*6$ \$ $factor \rightarrow num$ 22 \$exp' term') exp' term' num $5*6$ \$ $match(5)$ 23 \$exp' term') exp' term' $*6$ \$ $term' \rightarrow opma$ 24 \$exp' term') exp' term' factor op- mult 25 \$exp' term') exp' term' factor $**6$ \$ $match(*)$	
19 \$exp' term') exp' term + $+5*6$)\$ $match(+)$ 20 \$exp' term') exp' term 5 * 6)\$ $term \rightarrow factor$ 21 \$exp' term') exp' term' factor 5 * 6)\$ $factor \rightarrow num$ 22 \$exp' term') exp' term' num 5 * 6)\$ $match(5)$ 23 \$exp' term') exp' term' * *6)\$ $term' \rightarrow opmm$ 24 \$exp' term') exp' term' factor op- mult 25 \$exp' term') exp' term' factor * * *6)\$ $match(*)$	a term exp'
20 \$exp' term') exp' term $5*6$ \$ $term \rightarrow factor$ 21 \$exp' term') exp' term' factor $5*6$ \$ $factor \rightarrow num$ 22 \$exp' term') exp' term' num $5*6$ \$ $match(5)$ 23 \$exp' term') exp' term' $*6$ \$ $term' \rightarrow opmm$ 24 \$exp' term') exp' term' factor op- mult 25 \$exp' term') exp' term' factor $**6$ \$ $match(*)$	
21 \$exp' term') exp' term' factor $5*6$ \$ $factor \rightarrow num$ 22 \$exp' term') exp' term' num $5*6$ \$ $match(5)$ 23 \$exp' term') exp' term' $*6$ \$ $term' \rightarrow opm'$ 24 \$exp' term') exp' term' factor op- $*6$ \$ $opmult \rightarrow *$ $mult$ 25 \$exp' term') exp' term' factor $**6$ \$ $match(*)$	
22 \$\exp'\term' \) exp'\term' num $5 * 6$ \\$ $match(5)$ 23 \$\exp'\term' \) exp'\term' $*6$ \\$ $term' \to opmin$ 24 $\exp'\term' \) exp'\term' factor op- *6\$ opmult \to * mult 25 $\exp'\term' \) exp'\term' factor * *6\$ match(*)$	$r \ term'$
23 \$exp' term') exp' term' *6)\$ $term' \rightarrow opm''$ 24 \$exp' term') exp' term' factor op- *6)\$ $opmult \rightarrow *$ mult 25 \$exp' term') exp' term' factor * *6)\$ $match(*)$	\imath
24 \$exp' term') exp' term' factor op- *6)\$ $opmult \rightarrow *$ mult 25 \$exp' term') exp' term' factor * *6)\$ $match(*)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ult factor term'
25 \$exp' term') exp' term' factor * *6)\$ $match(*)$	
26 Cover' torm') over torm' factor 6)\$ factor \ man	
20 year term jexp term ractor 0jo $jactor \rightarrow man$	\imath
27 $\exp' \operatorname{term'}) \exp' \operatorname{term'} \operatorname{num} $ 6)\$ $\operatorname{match}(6)$	
28 \$exp' term') exp' term')\$ $term' \rightarrow \epsilon$	
29 \$\exp' \text{ term'} \) \(\exp' \rightarrow \exp' \rightarrow \epsilon \)	
30 $\exp' \operatorname{term}'$) $match()$	
31 \$exp' term' \$ $term' \rightarrow \epsilon$ 32 \$exp' \$ $exp' \rightarrow \epsilon$ 33 \$ aceptar	
33 \$ aceptar	

2 Ejercicio 4.6

Muestre las acciones de un analizador sintáctico $\mathrm{LL}(\mathrm{I})$ que utiliza la tabla de la sección 4.2.2 (página 155) para reconocer las siguientes cadenas de paréntesis balanceados:

(a) (())()

	Pila	Entrada	Acción
1	\$S	(())()\$	$S \to (S)S$
2	\$S) S ((())()\$	$match(\c)$
3	\$S) S	())()\$	$S \to (S)S$
4	\$S) S) S (())()\$	$match(\ (\)$
5	\$S) S) S))()\$	$S o \epsilon$
6	\$S) S)))()\$	match())
7	\$S) S)()\$	$S o \epsilon$
8	\$S))()\$	match())
9	\$S	()\$	$S \to (S)S$
10	\$S) S (()\$	match(()
11	\$S) S)\$	$S \to \epsilon$
12	\$S))\$	match())
13	\$S)\$ \$	$S o \epsilon$
14	\$	\$	aceptar

(b) (()())

	Pila	Entrada	Acción
1	\$S	(()())\$	$S \to (S)S$
2	\$S) S ((())()\$	match(()
3	\$S) S	()())\$	$S \to (S)S$
4	\$S) S) S (()())\$	match(()
5	\$S) S) S)())\$	$S o \epsilon$
6	\$S) S))())\$	match())
7	\$S) S	())\$	$S \to (S)S$
8	\$S) S) S (())\$	$match(\dot{f})$
9	\$S) S) S))\$	$S o \epsilon$
10	\$S) S)))\$	match())
11	\$S) S)\$	$S o \epsilon$
12	\$S))\$	match())
13	\$S	\$	$S o \epsilon$
_14	\$	\$	aceptar

	Pila	Entrada	Acción
1	\$S	()(())\$	$S \to (S)S$
2	\$S) S (()(())\$	match(()
3	\$S) S)(())\$	$S \to \epsilon$
4	\$S)	(())\$	match())
5	\$S	(())\$	$S \to (S)S$
6	\$S) S ((())\$	$match(\ (\)$
7	\$S) S	())\$	$S \to (S)S$
8	\$S) S) S (())\$	$match(\dot{f})$
9	\$S) S) S))\$	$S \to \epsilon$
10	\$S) S)))\$	match())
11	\$S) S)\$	$S \to \epsilon$
12	\$S))\$	match())
13	\$S)\$ \$	$S \to \epsilon$
14	\$	\$	aceptar

3 Ejercicio 4.11

Este esquema simplificado sí presenta desventajas. A pesar de que la tabla quedaría mucho más manejable, esto produciría que el compilador solo valore un solo error y se detenga allí, sin poder seguir buscando por más errores en lo que resta de cadena. La idea del analizador sintáctico consiste en poder detectar todos los errores posibles, empleando los métodos de *explorar* y *extraer*, que manipulan la pila y la cadena para continuar el análisis; sin embargo, con este formato reducido, solo saldría el primer error que encuentre y se detendrá.

4 Ejercicio 4.12

- (a) ¿Puede ser ambigua una gramática LL(1)? Justifique su respuesta. Sí, puede ser ambigua debido a que la gramática LL(1) tiene un lookahead de 1 posición. Si no pudiera ser ambigua, entonces no se necesitaría tener dicho lookahead ya que ningún símbolo no terminal tendría más de una regla de producción.
- (b) ¿Puede una gramática ambigua ser LL(1)? Justifique su respuesta. Debido a que tenemos un lookahead de 1, si podría ser LL(1). Con esto podemos "mirar" adelante por si hay algún no terminal con dos reglas de producción.
- (c) ¿Una gramitica ambigua debe ser LL(1)? Justifique su respuesta. Puede ser LL(1), más no necesariamente deba pertenecer a éste, ya que puede pertenecer a cualquier gramática LL(k), en la cual k>0. Todo

depende de su ambigüedad, la cual dictará el tamaño de \boldsymbol{k} que mejor se ajuste.