SI231B - Matrix Computations, Spring 2022-23

Homework Set #3

Prof. Ziping Zhao

Acknowledgements:

1) Deadline: 2023-04-08 23:59:59

2) Please submit your assignments via Blackboard.

3) You can write your homework using latex/word or you can write in handwriting and submit the scanned pdf.

Problem 1. (20 points)

For the matrix below

$$\mathbf{A} = \left[\begin{array}{ccc} 5 & -1 & -1 \\ 3 & 1 & -1 \\ 4 & -2 & 1 \end{array} \right]$$

- 1) Calculate the characteristic polynomial of A. (5 points)
- 2) Find the eigenvalues of A. (5 points)
- 3) Find a basis for each eigenspace of A. (5 points)
- 4) Determine whether or not \mathbf{A} is diagonalizable. If \mathbf{A} is diagonalizable, then find an invertible matrix \mathbf{V} and a diagonal matrix $\mathbf{\Lambda}$ such that $\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \mathbf{\Lambda}$. (5 points)

Solution:

1) The characteristic polynomial of A is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 5 & 1 & 1 \\ -3 & \lambda - 1 & 1 \\ -4 & 2 & \lambda - 1 \end{vmatrix} = (\lambda - 3)(\lambda - 2)^2.$$

- 2) A has eigenvalues 3 and 2, with algebraic multiplicities 1 and 2 respectively.
- 3) The eigenspace of A associated to the eigenvalue 3 is the null space of the matrix 3I A. To find a basis for the eigenspace, row reduce this matrix.

$$3\mathbf{I} - \mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ -3 & 2 & 1 \\ -4 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ -3 & 2 & 1 \\ -4 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus, the general solution to the equation $(3\mathbf{I} - \mathbf{A})\mathbf{x} = 0$ is $k_1(1, 1, 1)^T$.

The eigenspace of A associated to the eigenvalue 3 is the null space of the matrix 3I - A. To find a basis for the eigenspace, row reduce this matrix.

$$2\mathbf{I} - \mathbf{A} = \begin{pmatrix} -3 & 1 & 1 \\ -3 & 1 & 1 \\ -4 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ -3 & 1 & 1 \\ -4 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus, the general solution to the equation $(2\mathbf{I} - \mathbf{A})x = 0$ is $k_2(1, 1, 2)^T$.

4) A is not diagonalizable since there is only one eigenvector of eigenvalue 2, whose algebraic multiplicity is 2.

Problem 2. (20 points)

1) Let A be the adjacency matrix of an undirected graph G = (V, E) and λ_1 the largest eigenvalue of A, and

$$a_{i,j} = \begin{cases} 1, & \text{if vertex } i \text{ and vertex } j \text{ are adjacent;} \\ 0, & \text{otherwise.} \end{cases}$$

Show that λ_1 is at least the average degree of the vertices in G. (10 points)

2) Let **A** be a symmetric matrix with the largest eigenvalue α_1 . Let **B** be the matrix obtained by removing the last row and column from **A**. And β_1 is the largest eigenvalue of **B**. Show that $\alpha_1 \geq \beta_1$. (10 points) (*Hint:* You can use the Rayleigh quotient to prove the two problems.)

Solution:

1) Let $\mathbf d$ denote the vector of degrees of vertices in G, so $\mathbf d(i)$ is the degree of vertex i. Now, take the Rayleigh quotient of the all-1s vector. We find

$$\lambda_1 = \max_{x} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \ge \frac{\mathbf{1}^T \mathbf{A} \mathbf{1}}{\mathbf{1}^T \mathbf{1}} = \frac{\mathbf{1}^T \mathbf{d}}{n} = \frac{1}{n} \sum_{i} \mathbf{d}(i).$$

2) For any vector $\mathbf{y} \in \mathbb{R}^{n-1}$, we have

$$\mathbf{y}^T \mathbf{B} \mathbf{y} = \left(egin{array}{c} \mathbf{y} \\ 0 \end{array}
ight)^T \mathbf{A} \left(egin{array}{c} \mathbf{y} \\ 0 \end{array}
ight)$$

So, for y an eigenvector of B of eigenvalue β_1 ,

$$\beta_1 = \frac{\mathbf{y}^T \mathbf{B} \mathbf{y}}{\mathbf{y}^T \mathbf{y}} = \frac{\begin{pmatrix} \mathbf{y} \\ 0 \end{pmatrix}^T \mathbf{A} \begin{pmatrix} \mathbf{y} \\ 0 \end{pmatrix}}{\begin{pmatrix} \mathbf{y} \\ 0 \end{pmatrix}^T \begin{pmatrix} \mathbf{y} \\ 0 \end{pmatrix}} \leq \max_{\mathbf{x} \in \mathbb{R}^n} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \alpha_1$$

Problem 3. (20 points)

Let **A** be an $n \times n$ square matrix.

- 1) Suppose that A^{-1} exists. Prove: if λ is an eigenvalue of A, then $1/\lambda$ is an eigenvalue of A^{-1} . (5 points)
- 2) Prove that if $A^2 = I$, then the eigenvalue of A must be 1 or -1. (5 points)
- 3) Suppose that λ_1 and λ_2 are two distinct eigenvalues of **A**. And suppose that \mathbf{x}_1 is an eigenvector of **A** under λ_1 , and \mathbf{x}_2 is an eigenvector of **A** under λ_2 . Prove that there dose not exists any real number t such that $t\mathbf{x}_1 = \mathbf{x}_2$. (5 points)
- 4) Suppose that λ_1 and λ_2 are two distinct eigenvalues of **A**. And suppose that \mathbf{x}_1 is an eigenvector of **A** under λ_1 , and \mathbf{x}_2 is an eigenvector of **A** under λ_2 . Prove that $\mathbf{x}_1 + \mathbf{x}_2$ is not an eigenvector of **A**. (5 points)

Solution:

1) Suppose λ is an eigenvalue of **A**, there exists an vector **x** satisfies

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \implies$$

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \lambda \mathbf{A}^{-1}\mathbf{x} \implies$$

$$\frac{1}{\lambda}\mathbf{x} = \mathbf{A}^{-1}\mathbf{x}$$

2) Consider any eigenvalue λ of **A**, and let **x** be an arbitrary eigenvector of **A** corresponding to λ . It gets

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \implies$$

$$\mathbf{A}^2 \mathbf{x} = \lambda \mathbf{A} \mathbf{x} \implies$$

$$\mathbf{I}\mathbf{x} = \lambda \mathbf{A} \mathbf{x} \implies$$

$$\mathbf{x} = \lambda^2 \mathbf{x} \implies$$

$$\mathbf{0} = (\lambda^2 - 1)\mathbf{x}$$

As we know that $\mathbf{x} \neq 0$, we have $\lambda^2 = 1$, i.e., $\lambda = -1$ or 1.

3) Assume, on the contrary, there exists a such t. Since $\mathbf{A}\mathbf{x}_1 = \lambda_1\mathbf{x}_1$, we have $\mathbf{A}(c_1\mathbf{x}_1) = \lambda(c\mathbf{x}_1)$, which leads to $\mathbf{A}\mathbf{x}_2 = \lambda_1\mathbf{x}_2$.

On the other hand, we have $\mathbf{A}\mathbf{x}_2 = \lambda_2\mathbf{x}_2$. Thus, $\lambda_1\mathbf{x}_2 = \mathbf{A}\mathbf{x}_2 = \lambda_2\mathbf{x}_2$, that implies $\lambda_1 = \lambda_2$, which is a contradiction.

4) Assume, on the contrary, that $\mathbf{x}_1 + \mathbf{x}_2$ is an eigenvector of \mathbf{A} corresponding to some eigenvalue λ_3 . Then, we have

$$\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) = \lambda_3(\mathbf{x}_1 + \mathbf{x}_2) \quad \Longrightarrow$$

$$\mathbf{A}\mathbf{x}_1 + \mathbf{A}\mathbf{x}_2 = \lambda_3\mathbf{x}_1 + \lambda_3\mathbf{x}_2 \quad \Longrightarrow$$

$$\lambda_1\mathbf{x}_1 + \lambda_2\mathbf{x}_2 = \lambda_3\mathbf{x}_1 + \lambda_3\mathbf{x}_2 \quad \Longrightarrow$$

$$(\lambda_1 - \lambda_3)\mathbf{x}_1 = (\lambda_3 - \lambda_2)\mathbf{x}_2$$

As $\lambda_1 \neq \lambda_2$, there at least one of $\lambda_1 - \lambda_3$ and $\lambda_3 - \lambda_2$ is non-zero. Without loss of generality, suppose $\lambda_1 - \lambda_3 \neq 0$, which gives

$$\mathbf{x}_1 = \frac{\lambda_3 - \lambda_2}{\lambda_1 - \lambda_3} \mathbf{x}_2$$

According to 3), the above is impossible, which is a contradiction. Proof done.

Problem 4. (20 points) For $\mathbf{A} \in \mathbb{R}^{m \times n}$, prove that $\mathbf{A}^T \mathbf{A}$ and \mathbf{A}^T have the same range space.

Solution:

For $\mathbf{x} \in \mathcal{N}(\mathbf{A})$, we have $\mathbf{A}\mathbf{x} = \mathbf{0}$ for some $\mathbf{x} \in \mathbb{R}^n$, which means $\mathbf{A}\mathbf{A}^T\mathbf{x} = 0$ also holds and $\mathbf{x} \in \mathcal{N}(\mathbf{A}^T\mathbf{A})$, hence $\mathcal{N}(\mathbf{A}) \subseteq \mathcal{N}(\mathbf{A}^T\mathbf{A})$. For $\mathbf{x} \in \mathcal{N}(\mathbf{A}^T\mathbf{A})$, we have $\mathbf{A}^T\mathbf{A}\mathbf{x} = 0$, which means $(\mathbf{A}\mathbf{x})^T\mathbf{A}\mathbf{x} = 0$ and $\mathbf{A}\mathbf{x} = \mathbf{0}$, hence $\mathbf{x} \in \mathcal{N}(\mathbf{A})$ and $\mathcal{N}(\mathbf{A}^T\mathbf{A}) \subseteq \mathcal{N}(\mathbf{A})$. Therefore, we can conclude that $\mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{A}^T\mathbf{A})$ and $\mathrm{rank}(\mathbf{A}^T) = \mathrm{rank}(\mathbf{A}) = \mathrm{rank}(\mathbf{A}^T\mathbf{A})$, indicating that $\dim(\mathcal{R}(\mathbf{A}^T\mathbf{A})) = \dim(\mathcal{R}(\mathbf{A}^T))$.

For $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T \mathbf{A})$, there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{y}$, we can always find $\tilde{\mathbf{x}} = \mathbf{A} \mathbf{x}$ that satisfies $\mathbf{A}^T \tilde{\mathbf{x}} = \mathbf{y}$ which means $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$ and $\mathcal{R}(\mathbf{A}^T \mathbf{A}) \subseteq \mathcal{R}(\mathbf{A}^T)$. Therefore $\mathcal{R}(\mathbf{A}^T) = \mathcal{R}(\mathbf{A}^T \mathbf{A})$.

Problem 5. (20 points) Time-of-arrival (TOA) based source localization is a scenario in which the location of a target sensor is determined based on the TOA measurements of the target sensor collected by many anchors.

Define $\mathbf{x}^* \in \mathbb{R}^n$ be the unknown true position of the target sensor. Define $\{\mathbf{a}_i\}_{i=1}^m \subseteq \mathbb{R}^n$ be the known position of the *i*th anchor and suppose that the vectors $\{\mathbf{a}_i - \mathbf{a}_1\}_{i=1}^m$ span \mathbb{R}^n $(m \ge n+1)$. Then the TOA based range measurement between the target and the *i*th anchor is modeled as

$$r_i = \|\mathbf{x}^* - \mathbf{a}_i\|_2 + \omega_i, \quad i = 1, ..., m,$$

where $\{\omega_i\}_{i=1}^m\subseteq\mathbb{R}$ is the noise.

1) Suppose there is no noise, i.e, $\omega_i = 0$ for i = 1, ..., m. Prove that \mathbf{x}^* can be recovered based on the following linear least squares problem:

$$\mathbf{x}_{LS} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

i.e., $\mathbf{x}_{LS} = \mathbf{x}^*$ in the noiseless case, where

$$\mathbf{A} = \begin{bmatrix} (\mathbf{a}_2 - \mathbf{a}_1)^T \\ \vdots \\ (\mathbf{a}_m - \mathbf{a}_{m-1})^T \end{bmatrix}, \quad \mathbf{b} = \frac{1}{2} \begin{bmatrix} \|\mathbf{a}_2\|_2^2 - \|\mathbf{a}_1\|_2^2 + r_1^2 - r_2^2 \\ \vdots \\ \|\mathbf{a}_m\|_2^2 - \|\mathbf{a}_{m-1}\|_2^2 + r_{m-1}^2 - r_m^2 \end{bmatrix}.$$

Besides, derive the solution of the estimator x_{LS} . (10 points)

2) Suppose the noise ω_i satisfies $\omega_i \ll \|\mathbf{x}^* - \mathbf{a}_i\|_2$ for i = 1, ..., m. We can estimate \mathbf{x}^* based on the following nonlinear least squares problem:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^m (\|\mathbf{x} - \mathbf{a}_i\|_2 - r_i)^2.$$

Define $\boldsymbol{\omega} = [\omega_1, ..., \omega_m]^T$ and suppose $\|\boldsymbol{\omega}\|_2 \leq c\sqrt{m}\sigma$ where $c, \sigma > 0$ are some constants. Prove that the following result holds:

$$\|\hat{\mathbf{x}} - \mathbf{x}^*\|_2 \le K_1 \sqrt{m}\sigma + K_2 m\sigma^2$$

for some constants $K_1, K_2 > 0$ which are determined by $\{\mathbf{a}_i\}_{i=1}^m$, c, and \mathbf{x}^* . (10 points) Hint for 2):

- You can find the upper bound of $\|\mathbf{x}_{LS} \mathbf{x}^*\|_2$ and $\|\mathbf{x}_{LS} \hat{\mathbf{x}}\|_2$ and then combine them to get the result.
- Based on 1), you may need to define $r_i^* = \|\mathbf{x}^* \mathbf{a}_i\|_2$ (resp. $\hat{r}_i = \|\hat{\mathbf{x}} \mathbf{a}_i\|_2$) and let \mathbf{b}^* (resp. $\hat{\mathbf{b}}$) be the vector obtained by replacing r_i with r_i^* (resp. \hat{r}_i) in \mathbf{b} , and then \mathbf{x}^* (resp. $\hat{\mathbf{x}}$) satisfies $\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} \mathbf{b}^*\|_2^2$ (resp. $\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} \hat{\mathbf{b}}\|_2^2$).
- You may need the relation $f(\hat{\mathbf{x}}) = \sum_{i=1}^{m} (\|\hat{\mathbf{x}} \mathbf{a}_i\|_2^{-1} r_i)^2 \le f(\mathbf{x}^*)$.

Solution:

1) Suppose there is no noise, i.e, $\omega_i = 0$ for i = 1, ..., m, we have

$$r_i = \|\mathbf{x}^* - \mathbf{a}_i\|_2$$
 for $i = 1, ..., m$,

or, equivalently,

$$r_i^2 = \|\mathbf{x}^* - \mathbf{a}_i\|_2^2 = \|\mathbf{x}^*\|_2^2 - 2\mathbf{a}_i^T\mathbf{x}^* + \|\mathbf{a}_i\|_2^2 \text{ for } i = 1,...,m.$$

Subtracting the *i*th equation from the (i + 1)th equation, we have

$$(\mathbf{a}_{i+1} - \mathbf{a}_i)^T \mathbf{x}^* = \frac{1}{2} (\|\mathbf{a}_{i+1}\|_2^2 - \|\mathbf{a}_i\|_2^2 + r_i^2 - r_{i+1}^2) \text{ for } i = 2, ..., m.$$

Combing the m-1 equations, we have

$$\mathbf{A}\mathbf{x}^* = \mathbf{b},\tag{1}$$

where

$$\mathbf{A} = \begin{bmatrix} (\mathbf{a}_2 - \mathbf{a}_1)^T \\ \vdots \\ (\mathbf{a}_m - \mathbf{a}_{m-1})^T \end{bmatrix}, \quad \mathbf{b} = \frac{1}{2} \begin{bmatrix} \|\mathbf{a}_2\|_2^2 - \|\mathbf{a}_1\|_2^2 + r_1^2 - r_2^2 \\ \vdots \\ \|\mathbf{a}_m\|_2^2 - \|\mathbf{a}_{m-1}\|_2^2 + r_{m-1}^2 - r_m^2 \end{bmatrix}.$$

Since the vectors $\{\mathbf{a}_i - \mathbf{a}_i\}_{i=1}^m$ span \mathbb{R}^n , we have $\{\mathbf{a}_{i+1} - \mathbf{a}_i\}_{i=1}^m$ span \mathbb{R}^n and hence \mathbf{A} has full column rank. \mathbf{x}^* is the solution to the linear system or equivalently the following linear least squares (LS) problem

$$\mathbf{x}_{LS} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \ \left\| \mathbf{A} \mathbf{x} - \mathbf{b} \right\|_2^2,$$

and the LS solution is given by

$$\mathbf{x}_{\mathrm{LS}} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}$$

2) First, let $r_i^* = \|\mathbf{x}^* - \mathbf{a}_i\|_2$ for i = 1, ..., m and let \mathbf{b}^* be the vector obtained by replacing r_i in \mathbf{b} with r_i^* . Based on the LS result, we have $\mathbf{x}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}^*$ and

$$\left\|\mathbf{x}_{LS}-\mathbf{x}^{*}\right\|_{2}=\left\|\left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}\left(\mathbf{b}-\mathbf{b}^{*}\right)\right\|_{2}\leq\left\|\left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}\right\|_{2}\left\|\mathbf{b}-\mathbf{b}^{*}\right\|_{2},$$

where $\left\| \left(\mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T \right\|_2$ is a constant. Based on the range measurement equation, we have $r_i = \left\| \mathbf{x}^* - \mathbf{a}_i \right\|_2 + \omega_i = r_i^* + \omega_i$ and hence $r_i^2 - \left(r_i^* \right)^2 = 2 r_i^* \omega_i + \omega_i^2$ for $i = 1, \dots, m$. Then,

$$\begin{split} \|\mathbf{b} - \mathbf{b}^*\|_2 &= \frac{1}{2} \left\| \begin{bmatrix} r_1^2 - (r_1^*)^2 - (r_2^2 - (r_2^*)^2) \\ \vdots \\ r_{m-1}^2 - (r_m^*)^2 - (r_m^2 - (r_m^*)^2) \end{bmatrix} \right\|_2 = \left\| \begin{bmatrix} r_1^* \omega_1 + \frac{1}{2} \omega_1^2 - (r_2^* \omega_2 + \frac{1}{2} \omega_2^2) \\ \vdots \\ r_{m-1}^* \omega_{m-1} + \frac{1}{2} \omega_{m-1}^2 - (r_m^* \omega_m + \frac{1}{2} \omega_m^2) \end{bmatrix} \right\|_2 \\ &= \left\| \begin{bmatrix} r_1^* \omega_1 - r_2^* \omega_2 + \frac{1}{2} (\omega_1^2 - \omega_2^2) \\ \vdots \\ r_{m-1}^* \omega_{m-1} - r_m^* \omega_m + \frac{1}{2} (\omega_{m-1}^2 - \omega_m^2) \end{bmatrix} \right\|_2 \\ &\leq C_0 \|\boldsymbol{\omega}\|_2 + \frac{1}{2} \|\tilde{\boldsymbol{\omega}}\|_2 \end{split}$$

for some constant $C_0 > 0$, where

$$ilde{oldsymbol{\omega}} := \left[egin{array}{c} \omega_1^2 - \omega_2^2 \ & dots \ \omega_{m-1}^2 - \omega_m^2 \end{array}
ight].$$

Since $\|\tilde{\boldsymbol{\omega}}\|_2 = \sqrt{\sum_{i=2}^m |\omega_{i-1}^2 - \omega_i^2|^2} \le \sum_{i=2}^m |\omega_{i-1}^2 - \omega_i^2| = \|\tilde{\boldsymbol{\omega}}\|_1 \le 2\|\boldsymbol{\omega}\|_2^2$, our assumption on $\|\boldsymbol{\omega}\|_2$ yields $\|\mathbf{x}_{\text{LS}} - \mathbf{x}^*\|_2 \le C_1 \sqrt{m}\sigma + C_2 m\sigma^2$,

for some constants $C_1, C_2 > 0$.

Next, define $\hat{r}_i = \|\hat{\mathbf{x}} - \mathbf{a}_i\|_2$ for i = 1, ..., m and let $\hat{\mathbf{b}}$ be the vector obtained by replacing r_i in \mathbf{b} with \hat{r}_i . Based on the LS result, we have $\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \hat{\mathbf{b}}$ and

$$\left\|\mathbf{x}_{\mathsf{LS}} - \hat{\mathbf{x}}\right\|_{2} = \left\|\left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}\left(\mathbf{b} - \hat{\mathbf{b}}\right)\right\|_{2} \leq \left\|\left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}\right\|_{2}\left\|\mathbf{b} - \hat{\mathbf{b}}\right\|_{2}.$$

We also have

$$r_{i}^{2} - \hat{r}_{i}^{2} = 2r_{i}\left(r_{i} - \hat{r}_{i}\right) - \left(r_{i} - \hat{r}_{i}\right)^{2} = 2\left(r_{i}^{*} + \omega_{i}\right)\left(r_{i} - \hat{r}_{i}\right) - \left(r_{i} - \hat{r}_{i}\right)^{2}$$

and then

$$\begin{split} \left\| \mathbf{b} - \hat{\mathbf{b}} \right\|_2 &= \frac{1}{2} \left\| \begin{bmatrix} r_1^2 - \hat{r}_1^2 - (r_2^2 - \hat{r}_2^2) \\ \vdots \\ r_{m-1}^2 - \hat{r}_{m-1}^2 - (r_m^2 - \hat{r}_m^2) \end{bmatrix} \right\|_2 \\ &= \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) - \frac{1}{2} \left(r_1 - \hat{r}_1 \right)^2 - \left((r_2^* + \omega_2) \left(r_2 - \hat{r}_2 \right) - \frac{1}{2} \left(r_2 - \hat{r}_2 \right)^2 \right) \\ \vdots \\ (r_{m-1}^* + \omega_{m-1}) \left(r_{m-1} - \hat{r}_{m-1} \right) - \frac{1}{2} \left(r_{m-1} - \hat{r}_{m-1} \right)^2 - \left((r_m^* + \omega_m) \left(r_m - \hat{r}_m \right) - \frac{1}{2} \left(r_m - \hat{r}_m \right)^2 \right) \end{bmatrix} \right\|_2 \\ &= \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) - \left(r_2^* + \omega_2 \right) \left(r_2 - \hat{r}_2 \right) + \frac{1}{2} \left(\left(r_2 - \hat{r}_2 \right)^2 - \left(r_1 - \hat{r}_1 \right)^2 \right) \\ \vdots \\ (r_{m-1}^* + \omega_{m-1}) \left(r_{m-1} - \hat{r}_{m-1} \right) - \left(r_m^* + \omega_m \right) \left(r_m - \hat{r}_m \right) + \frac{1}{2} \left(\left(r_m - \hat{r}_m \right)^2 - \left(r_{m-1} - \hat{r}_{m-1} \right)^2 \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_{m-1}^* + \omega_{m-1}) \left(r_{m-1} - \hat{r}_{m-1} \right) \end{bmatrix} \right\|_2 + \left\| \begin{bmatrix} (r_2^* + \omega_2) \left(r_2 - \hat{r}_2 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_m - \hat{r}_m \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_m - \hat{r}_m \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_m - \hat{r}_m \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_m - \hat{r}_m \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_m - \hat{r}_m \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_m - \hat{r}_m \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_m - \hat{r}_m \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \end{bmatrix} \right\|_2 \\ &\leq \left\| \begin{bmatrix} (r_1^* + \omega_1) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m) \left(r_1 - \hat{r}_1 \right) \\ \vdots \\ (r_m^* + \omega_m$$

where

$$\tilde{\mathbf{r}} := \begin{bmatrix} (r_2 - \hat{r}_2)^2 - (r_1 - \hat{r}_1)^2 \\ (r_3 - \hat{r}_3)^2 - (r_2 - \hat{r}_2)^2 \\ \vdots \\ (r_m - \hat{r}_m)^2 - (r_{m-1} - \hat{r}_{m-1})^2 \end{bmatrix}.$$

For the first term, we have

$$\left\| \begin{bmatrix} (r_{1}^{*} + \omega_{1})(r_{1} - \hat{r}_{1}) \\ \vdots \\ (r_{m-1}^{*} + \omega_{m-1})(r_{m-1} - \hat{r}_{m-1}) \end{bmatrix} \right\|_{2} = \sqrt{\sum_{i=2}^{m} |r_{i-1}^{*} + \omega_{i-1}|^{2} |r_{i-1} - \hat{r}_{i-1}|^{2}}$$

$$\leq \sqrt{\sum_{i=2}^{m} (r_{i-1}^{*} + |\omega_{i-1}|)^{2} |r_{i-1} - \hat{r}_{i-1}|^{2}} \leq \sqrt{\sum_{i=2}^{m} (2r_{i-1}^{*})^{2} |r_{i-1} - \hat{r}_{i-1}|^{2}} \leq C_{3} \sqrt{\sum_{i=1}^{m} |r_{i} - \hat{r}_{i}|^{2}},$$

where in the second inequality we have used $|\omega_i| \ll \|\mathbf{x}^* - \mathbf{a}_i\|_2 = r_i^*$ for i = 1, ..., m and a similar result holds for the second term. For the third term, we have $\frac{1}{2} \|\tilde{\mathbf{r}}\|_2 \leq \frac{1}{2} \|\tilde{\mathbf{r}}\|_1 \leq \sum_{i=1}^m |r_i - \hat{r}_i|^2$.

Defining $f(\mathbf{x}) = \sum_{i=1}^{m} (\|\mathbf{x} - \mathbf{a}_i\|_2 - r_i)^2$, we have

$$f(\hat{\mathbf{x}}) = \sum_{i=1}^{m} (\|\hat{\mathbf{x}} - \mathbf{a}_i\|_2 - r_i)^2 = \sum_{i=1}^{m} (\hat{r}_i - r_i)^2 \le f(\mathbf{x}^*) = \sum_{i=1}^{m} (\|\mathbf{x}^* - \mathbf{a}_i\|_2 - r_i)^2 = \sum_{i=1}^{m} \omega_i^2 = \|\boldsymbol{\omega}\|_2^2 \le c^2 m \sigma^2,$$

where the first inequality is due to the fact that $\hat{\mathbf{x}}$ is the optimal solution of $f(\mathbf{x})$. Then we have

$$\|\mathbf{b} - \hat{\mathbf{b}}\|_{2} \le C_{4} \sqrt{\sum_{i=1}^{m} |r_{i} - \hat{r}_{i}|^{2} + \sum_{i=1}^{m} |r_{i} - \hat{r}_{i}|^{2}} \le C_{5} \sqrt{m} \sigma + c^{2} m \sigma^{2}$$

for some constants $C_4, C_5 > 0$. This gives

$$\|\mathbf{x}_{LS} - \hat{\mathbf{x}}\| \le C_6 \sqrt{m}\sigma + C_7 m\sigma^2$$

for some constants $C_7, C_8 > 0$.

Finally, the desired result then follows

$$\begin{aligned} \|\hat{\mathbf{x}} - \mathbf{x}^*\|_2 &= \|(\mathbf{x}_{LS} - \mathbf{x}^*) - (\mathbf{x}_{LS} - \hat{\mathbf{x}})\|_2 \\ &\leq \|\mathbf{x}_{LS} - \mathbf{x}^*\|_2 + \|\mathbf{x}_{LS} - \hat{\mathbf{x}}\|_2 \\ &\leq C_1 \sqrt{m}\sigma + C_2 m\sigma^2 + C_6 \sqrt{m}\sigma + C_7 m\sigma^2 \\ &= K_1 \sqrt{m}\sigma + K_2 m\sigma^2, \end{aligned}$$

with $K_1 = C_1 + C_6 > 0$ and $K_2 = C_2 + C_7 > 0$. Along this proof, it is easy to see that K_1 and K_2 depend on $\{\mathbf{a}_i\}_{i=1}^m$, c, and \mathbf{x}^* . In other words, the estimation accuracy depends on the position of the anchors, the position of the target sensor, and the noise level.