CONTROL 1 ECUACIONES EN DERIVADAS PARCIALES 2015

PROF. CLAUDIO MUÑOZ, PROFS. AUXS. ROBERTO BOBADILLA, MARTÍN RÍOS, Y NICOLÁS TORRES.
TIEMPO: 3 HRS.

Pregunta 1. Considere, para t > 0, el problema en S',

(Sch)
$$\begin{cases} i\partial_t u + \Delta_x u = 0, & u(t) := u(t, \cdot) \in S'(\mathbb{R}^d), \\ u(t=0) = \delta_0. \end{cases}$$

- 1. Suponiendo que para cada t>0, $u(t)\in S'(\mathbb{R}^d)$ y $\partial_t u(t)\in S'(\mathbb{R}^d)$, muestre que $\mathcal{F}(\partial_t u(t))=\partial_t \hat{u}(t)$ en S'. Indicación. La derivada en tiempo $\partial_t u$ se entiende como límite (si existe) $\partial_t u(t):=\lim_{h\to 0}\frac{u(t+h)-u(t)}{h}$ en S'.
- 2. Si ahora sólo $u(t) \in S'(\mathbb{R}^d)$, encuentre la solución del problema (Sch) y verifique que efectivamente está en $S'(\mathbb{R}^d)$. ¿Es la solución única en $S'(\mathbb{R}^d)$?
- 3. ¿A qué espacios $H^s(\mathbb{R}^d)$ pertenece la solución u(t), t > 0? Compare con el mismo resultado para el dato inicial δ_0 . ¿Hay mejora en la regularidad de la solución?
- 4. ¿Es u(t), t > 0, función?

Pregunta 2

- 1. Suponga $T \in \mathcal{E}'(\mathbb{R}^d)$ es tal que, para todo $N \in \mathbb{N}$, existe $C_N > 0$ tal que $|\mathcal{F}(T)(\xi)| \leq C_N (1 + |\xi|^2)^{-N}$, $\xi \in \mathbb{R}^d$. Probar que $T \in D(\mathbb{R}^d)$. ¿Es la recíproca cierta?
- 2. *a*) Encontrar $c_0, \alpha \in \mathbb{R}$ para los cuales $E(x) := c_0 |x|^{\alpha}$ es solución fundamental del Laplaciano en \mathbb{R} , es decir, $E \in L^1_{loc}(\mathbb{R})$ y es tal que $-\partial_x^2 E = \delta_0$ en $D'(\mathbb{R})$.
 - b) Sea K:=[-4,4] en $\mathbb R$. Construya f suficientemente explícita, continua en $\mathbb R$ y con soporte contenido en K, para la cual

$$\delta_0 = -\partial_x^2 f$$

en el sentido de las distribuciones. *Indicación:* Puede serle útil mostrar primero que, para determinar completamente la distribución δ_0 , basta tomar funciones test $\phi \in D(-2,2)$.

Pregunta 3. Sean $t \in \mathbb{R}$, $x \in \mathbb{R}^3$ y $v \in \mathbb{R}^3$ un vector de velocidad, y sea f = f(t, x; v) solución de la ecuación de transporte "relativista"

$$\partial_t f + \frac{v}{\sqrt{1+|v|^2}} \cdot \nabla_x f = 0, \qquad f(t=0,x;v) = f_0(x).$$

Aquí el dato inicial $f_0 \in C_0^1(\mathbb{R}^3_x)$ es dado y se asume C^1 a soporte compacto y además nonegativo.

- 1. Muestre que existe una única solución f=f(t,x;v) de este problema, de clase $C^1(\mathbb{R}_t\times\mathbb{R}_x^3\times\mathbb{R}_v^3)$, y además $f(t,x;v)\geq 0$. ¿Cuál es la rapidez máxima a la que se traslada la solución?
- 2. Muestre que todas las normas L_x^p ($1 \le p \le \infty$) de f son conservadas, es decir,

$$||f(t,\cdot;v)||_{L_x^p} = ||f_0||_{L_x^p}.$$

- 3. Se define ahora, para $(t,x) \in \mathbb{R}^4$, la densidad de espacio $\rho(t,x) := \int_{\mathbb{R}^3_v} f(t,x;v) dv$. Muestre que para cada t > 0 suficientemente grande, $\rho(t,\cdot)$ es de clase $C^1(\mathbb{R}^3_x)$ y tiene soporte compacto en \mathbb{R}^3 .
- 4. Pruebe la estimación de dispersión siguiente: existe C > 0 tal que

$$\|\rho(t,\cdot)\|_{L^{\infty}_{x}} \leq \frac{C}{\epsilon^{3}}, \quad \forall \ t \ \text{suficientemente grande}.$$