PRE PSPM SET 1 (ANSWER SCHEME)

NO.	ANSWER SCHEME	MARK (S)
1	[J] = [F][t]	
	= [m][a][t]	K1
	$= (M)(LT^{-2})(T)$	
	$= MLT^{-1}$	
	∴ Unit of impulse = kg m s ⁻¹	J1
	TOTAL	2

NO.	ANSWER SCHEME	MARK (S)
2(a)(i)	$u = 0 \text{ m s}^{-1}$	K1
	$v^2 = u^2 + 2as$ $v^2 = 0^2 + 2(2.0)850$ $v = 58.31 \text{ m s}^{-1}$	GJU1
(a)(ii)	v = u + at 58.31 = 0 + 2.0t t = 29.16 s	G1 JU1
(b)(i)	$u_x = u \cos 45^\circ$, $u_y = u \sin 45^\circ$ $S_y = 3.05 - 2 = 1.05 m$	K 1
	$S_x = u_x t$ $S_x = (u \cos 45^\circ) t$ $t = \frac{10}{u \cos 45^\circ} \dots \dots$	G1

	$S_y = u_y t - \frac{1}{2} g t^2$	
	$1.05 = (u \sin 45^{\circ})t - \frac{1}{2}(9.81)t^{2}(2)$	G1
	1.05 = $(u \sin 45^\circ) \left(\frac{10}{u \cos 45^\circ}\right) - \frac{1}{2}(9.81) \left(\frac{10}{u \cos 45^\circ}\right)^2$ $u = 10.47 \text{ m s}^{-1}$	JU1
(b)(ii)	$S_x = (u \cos 45^\circ) t$ $10 = (10.47 \cos 45^\circ) t$ t = 1.35 s	G1 JU1
	TOTAL	10

NO.	ANSWER SCHEME	MARKS
3(a)	$m = 40 \ kg, u = 6.2 \ m \ s^{-1}, v = 5.7 \ m \ s^{-1}$	
	$\Delta P = m(v - u)$ $\Delta P = area under F - t graph$	K 1
	$40(7 - 6.2) = \frac{1}{2} \times F_{max} \times (6 + 10)$ $F_{max} = 4 \text{ N}$	GJU1
		Gool
3(b)	$m_A = m_B = m$, $u_A = 55 \text{ m s}^{-1}$, $u_{Ax} = 55 \sin 20^o$, $u_{Ay} = 55 \cos 20^o$ $u_B = 55 \text{ m s}^{-1}$, $u_{Bx} = 55 \text{ m s}^{-1}$, $u_{By} = 0$	
	$\sum_{m_A u_{Ax}} P_{ix} = \sum_{m_B u_{Bx}} P_{fx}$ $m_A u_{Ax} + m_B u_{Bx} = (m_A + m_B) v_x$	K1
	$m(55 \sin 20^{\circ}) + m(55) = (m + m)v_x$ $v_x = 36.91 m s^{-1}$	G1
	$\sum_{m} P_{iy} = \sum_{m} P_{fy}$	
	$m_A u_{Ay} + m_B u_{By} = (m_A + m_B) v_y$ $m(55 \cos 20^o) + m(0) = (m + m) v_y$ $v_y = 25.84 \text{ m s}^{-1}$	G1
	υ _y — 23.04 III 3	
	$v = \sqrt{v_x^2 + v_y^2}$	
	$v = \sqrt{36.91^2 + 25.84^2} = 45.06 m s^{-1}$	GJU1

	$\theta = tan^{-1} \left(\frac{v_y}{v_x} \right)$ $\theta = tan^{-1} \left(\frac{25.84}{36.91} \right) = 35^o$	GJU1
3(c)	$m_1 = 8 \ kg, m_2 = 4 \ kg, \theta = 35^o, \mu_k = 0.2$	
	Object 1 T $W_{1y}=W_{1}\cos 35^{\circ}$ $W_{1x}=W_{1}\sin 35^{\circ}$ $W_{1y}=W_{1}\cos 35^{\circ}$ $W_{1x}=W_{1}\sin 35^{\circ}$	
	$N_1 = W_1 \cos 35^\circ = (4)(9.81)\cos 35^\circ = 32.14 \text{ N}$	G1
	$\sum_{x} F_{x} = m_{1}a$	K1
	$T - f_1 - W_1 \sin 35^o = m_1 a$ $T - (0.2)(32.14) - (4)(9.81) \sin 35^o = 4a$ $T - 4a = 28.94$	G1
	$\sum_{i} F_{i} = m_{2}a$ $W_{2} - T = m_{2}a$ $W_{3} = T - Sa$	
	(8)(9.81) - T = 8a $T + 8a = 78.48$	G1
	T = 45.44 N $a = 4.13 \text{ m s}^{-2}$	JU1 JU1
	TOTAL	13

NO.	ANSWER SCHEME	MARK (S)
4 (a)	work done = area under Force – displacement graph	K1
	$W = \frac{1}{2}(0.02)(200) + \frac{1}{2}(0.06 - 0.02)(200 + 300) + \frac{1}{2}(0.08 - 0.02)(200 + 0.02$	
	$0.06)(300 + 500) + \frac{1}{2}(0.14 - 0.08)(500) = 35 \text{ J}$	GJU1
4(b)(i)	$mgh_A = \frac{1}{2}mv_B^2$ OR $U_A = K_B$	K1
	$(0.14)(9.81)(0.7) = \frac{1}{2}(0.14)v_B^2$	
	$v_B = 3.71 \text{ m s}^{-1}$	GJU1
4(b)(ii)	potential energy at point $C = mgh_c$	
	$h_c = L - L \cos 35^\circ$	G1
	$h_c = 0.7 - 0.7 \cos 35^{\circ} = 0.13 m$	
	$U_c = mgh_c = (0.14)(9.81)(0.13) = 0.179 \text{ J}$	GJU1
4(c)	$P_{AV} = \frac{\text{energy}}{\text{energy}} = \frac{\text{mgh}}{\text{mgh}}$	
	time t	
	$P_{AV} = \frac{(65)(9.81)(342)}{(30)(60)}$	G1
	$P_{AV} = 121.15 \text{ W}$	JU1
	TOTAL	8

	ANSWER SCHEME	MARK (S)
5(a) (i)	$a_c = \frac{v^2}{R} = \frac{5^2}{0.5} = 50 \text{ m s}^{-2}$	GJU1
5(a)(ii)	$\sum F = F_C$	
	$T = ma_c$ T = (0.2)(50) = 10 N	GJU1
5(b)	\vec{T} F_C	
	$T \sin \theta = \frac{mv^2}{R}(1)$ $T \cos \theta = mg(2)$	K1
	(2) ÷(1)	
	$\tan \theta = \frac{v^2}{Rg} = \frac{(3^2)}{(40 \times 10^{-2})(9.81)}$	G1
	$\theta=66.4^{\circ}$	JU1
	TOTAL	5

NO.	ANSWER SCHEME	MARK (S)
6(a)(i)	$y = 4\sin 1.2t = 4\sin 1.2(3) = -1.77$ cm	GJU1
6(a)(ii)	$v = \omega A \cos \omega t$	
	$= (1.2)(4)\cos 1.2(3)$	G1
	$= -4.30 \text{ cm s}^{-1}$	JU1
	OR	
	$y = A\sin\omega t$	
	$y = 4\sin 1.2t$	
	$\omega = 1.2 \text{ rad s}^{-1} \text{ and } A = 4 \text{ cm}$	
	$v = \pm \omega \sqrt{A^2 - y^2}$	
	$v = \pm (1.2)\sqrt{(4)^2 - (-1.77)^2}$	
	$v = \pm 4.30 \text{ cm s}^{-1}$	
6(a)(iii)	$a = -\omega^2 A \sin \omega t$	
	$=-(1.2)^24\sin 1.2(3)$	G1
	$a = 2.55 \text{ cm s}^{-2}$	JU1
	OR	
	$a = -\omega^2 y$	
	$=-(1.2)^2(-1.77)$	
	$= 2.55 \text{ cm s}^{-2}$	
6(b)(i)	$T = 2\pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}} = 2\pi \sqrt{\frac{0.25}{50}}$	G1
	= 0.44 s	
	$f = \frac{1}{T} = \frac{1}{0.44}$	
	= 2.27 Hz	GJU1
6(b)(ii)	$E = \frac{1}{2}kA^2$	
	$=\frac{1}{2}(50)(0.06)^2$	G 1
	= 0.09 J	JU1

6(c) (i)	$y = 2A\cos kx\sin \omega t$	
	$y = 2(0.04)\cos\frac{x}{2}\sin 20t$	G1
	$y = 0.08 \cos \frac{x}{2} \sin 20t$	
	where y and x in metre and t is in seconds.	JU1
6(c)(ii)	$k = \frac{1}{2}$	K1
	$k = \frac{2\pi}{2}$	
	$\frac{1}{2} = \frac{2\pi}{\lambda} \to \lambda = 4\pi \mathrm{m}$	GJU1
6(d) (i)	$l = 1.5\lambda \rightarrow 2.5 = 1.5\lambda$	K1
	$\lambda = 1.67 \mathrm{m}$	JU1
6(d)(ii)	$v = \sqrt{\frac{T}{\mu}}$ and $\mu = \frac{m}{L}$	
	$v = \sqrt{\frac{TL}{m}} = \sqrt{\frac{100 \times 2.5}{0.005}}$	G1
	$= 223.61 \text{ m s}^{-1}$	JU1
6(d) (iii)	$f = \frac{nv}{2L}$	
	$=\frac{3(223.61)}{2(2.5)}$	G1
	= 134.17 Hz	JU1
	OR	
	$f = \frac{v}{\lambda} = \frac{223.61}{1.67}$	
	$= 133.90 \text{ m s}^{-1}$	
6(e)(i)		
	$f_a = \left(\frac{v \pm v_o}{v \pm v_s}\right) f -\text{O S+}$	

	$f_a = \left(\frac{v}{v - v_s}\right) f_s$	
	$= \left(\frac{340}{340 - 46}\right) 550$	G1
	= 636.05 Hz	JU1
6(e)(ii)	$f_a = \left(\frac{v \pm v_o}{v \pm v_s}\right) f \qquad \text{-O S+}$	
	$f_a = \left(\frac{v}{v + v_s}\right) f_s$	
	$= \left(\frac{340}{340 + 46}\right) 550$	G1
	= 484.46 Hz	JU1
	TOTAL	23

NO.	ANSWER SCHEME	MARK (S)
7.(a)(i)	$\left(\frac{Q}{t}\right)_{brick} = \left(\frac{Q}{t}\right)_{concrete}$	K1
	$-KA\left(\frac{T-40}{0.12}\right) = -KA\left(\frac{20-T}{0.24}\right)$	
	$-(0.6)\left(\frac{T-40}{0.12}\right) = -(0.8)\left(\frac{20-T}{0.24}\right)$	G1
	5(T - 40) = 3.33(20 - T)	
7 () ('')	T = 32°C	JU1
7.(a)(ii)	$\left(\frac{Q}{t}\right)_{concrete} = - KA\left(\frac{\Delta T}{L}\right)$	
	$\left(\frac{Q}{1 \times 60 \times 60}\right) = -0.6(55) \left(\frac{32 - 40}{0.12}\right)$	G1
	$Q = 7.92 \times 10^6 J$	JU1
7(b)	$V_t = V_{\circ}(1 + \gamma \Delta T)$	
	$V_t = 3(1 + 3\alpha\Delta T)$	
	$V_t = 3(1 + 3(1.1 \times 10^{-4}(18 - 32))$ $V_t = 2.98614 m^3$	
	$V_g = V_{\circ}(1 + \gamma \Delta T)$ $V_g = 3(1 + (4.8 \times 10^{-4}(18 - 32))$ $V_g = 2.97984 \ m^3$	G1
	$\Delta V = 2.98614 - 2.97984$) $\Delta V = 0.0063 m^3$	G1 JU1
	OR	

$\Delta V_t = 3\alpha_t V_{ot} \Delta T$	
$= 3(1.1 \times 10^{-4})(3.0)(18 - 32)$	
$=-0.01386 \mathrm{m}^3$	
$\Delta V_g = \gamma_g V_{og} \Delta T$	
$=(4.8\times10^{-4})(3.0)(18-32)$	
$=-0.02016\mathrm{m}^3$	
$\Delta V_{add} = \Delta V_t - \Delta V_g$	
=-0.01386-(-0.02016)	
$= 0.0063 \mathrm{m}^3$	
TOTAL	8

NO.	ANSWER SCHEME	MARK (S)
8 .(a)	$v_{rms} = 600 \mathrm{ms^1}$	
	$v_{rms} = \sqrt{\frac{3RT}{M}}$	
	$600 = \sqrt{\frac{3(8.31)T}{28 \times 10^{-3}}}$	G1
	T = 404.33 K	
	f = 5	K1
	$U = \frac{1}{2} f nRT$	
	$=\frac{1}{2}(5)(0.2)(8.31)(404.33)$	G1
	= 1680 J	JU1

(b)	$P = \frac{1}{3}\rho v_{rms}^2$	
	$=\frac{1}{3}(0.1)(1.85\times10^3)^2$	G1
	$=1.14 imes10^5\ N\ m^{-2}$ or Pa	JU1
8(c)	$\Delta U = 0$ J	K 1
	$W = nRT \ln \left(\frac{V_f}{V_i}\right)$	
	$= (2)(8.31)(295) \ln\left(\frac{0.050}{0.025}\right)$	G1
	$= 3.398 \times 10^3 \text{ J}$	
	$\Delta U = Q - W$	
	$Q = 0 + (3.398 \times 10^3)$	G1
	$= 3.398 \times 10^3 \text{ J}$	JU1
	System absorb heat	J1
	TOTAL	11