

SPI IP 用户指南

上海安路信息科技股份有限公司

IPUG108(v1.0)2021年7月

目 录

目	,	录	I
1	ΙP	概述	1
		SPI 协议简介	
		器件支持	
2		详情	
	2.1	IP 例化	3
		2. 1. 1 配置 GUI	3
		2. 1. 2 生成文件	5
	2.2	端口	6
		2. 2. 1 SPI Master 端口	6
		2. 2. 2 SPI Slave 端口	7
	2.3	用户可存取寄存器	8
		2.3.1 SPI Master 的 UAR	8
		2. 3. 2 SPI Slave 的 UAR	9
	2.4	时序	. 10
		2. 4. 1 写 UAR	. 10
		2. 4. 2 读 UAR	11
		2.4.3 SPI Master IP 发起 SPI 传输	11
		2. 4. 4 TRDY 和 TOE	. 12
		2. 4. 5 RPRDY,RRDY 和 ROE	. 12
		2.4.6 "部分接收阈值"功能	. 13
	2.5	资源占用和时序性能	. 14
3	版	本信息	15

1 IP 概述

SPI,即串行外设接口(Serial Peripheral Interface)是一种同步串行通信协议,适用于短距离通信。该协议自 Motorola 公司于 20 世纪 80 年代提出至今,已经广泛应用在嵌入式系统当中,成为许多传感器,ADC,DAC,存储器以及控制器件的通信接口。值得注意的是,SPI 是一种约定俗称的协议,并无正式的协议标准,造成该协议的形式多样,不同的器件厂商也会定义自己的协议版本。安路的 SPI IP 核具有极高的灵活性,用户可通过配置 SPI IP 核的主/从类型,时钟极性,时钟相位,数据宽度,数据传输顺序,从设备数量以及部分接收阈值等,使 SPI IP 核兼容市场上常见的 SPI 接口。

1.1 SPI 协议简介

SPI 器件通信的拓扑通常为一主(Master)一从(Slave)或一主多从,工作模式为全双工模式,读写操作只能由主设备发起。

图 1-1 SPI 主设备与多个独立的从设备相连

SPI 端口包含 2 条数据信号线 MISO 和 MOSI, 1 条同步时钟信号线 SCLK 以及 1 条或多条从设备片选信号线:

- MOSI(Master Output Slave Input) 主设备输出/从设备输入信号;
- MISO(Master Input Slave Output) 主设备输入/从设备输出信号;
- SCLK(Serial Clock) 串行时钟信号,由主设备产生,用来同步数据比特;
- SS(Slave Select)/CS(Chip Select) 从设备片选信号,低电平有效,由主设备控制;

SPI 协议中有时钟极性 (CPOL) 和时钟相位 (CPHA) 两个参数,通过对这两个参数的设置可以产生 4 种时序模式:

● CPOL (Clock Polarity) —可被设置为 0 或 1。当 CPOL=0 时,SCLK 在空闲状态下为低电平。当 CPOL=1 时,SCLK 在空闲状态下为高电平。

● CPHA (Clock Phase):——可被设置为 0 或 1。当 CPHA=0 时,数据在 SCLK 的前沿被锁存,数据在 SCLK 的后沿被更新。当 CPHA=1 时,数据在 SCLK 的后沿被锁存,数据在 SCLK 的前沿被更新。

图 1-2 SPI 时序图, 红线代表时钟的前沿, 蓝线代表时钟的后沿

1.2 器件支持

SPI IP 核支持安路全系列 FPGA 器件。

2 IP 详情

2.1 IP 例化

2.1.1 配置 GUI

用户可在 TD 的 IP Generator 中来配置并生成 IP 核。

图 2-1 SPI IP 配置 GUI

表 2-1 SPI IP配置 GUI 中的组件说明

组件名称	有效条件	取值范围	描述
Туре	任何条件	Master, Slave	配置该 IP 作为主设备或从设备
Number of slave select (SS_n) signals	Type = Master	1, 2, 332	从设备片选信号线数量
System clock(Sys_Clk) rate	Type = Master	2~200000000	IP 内部逻辑工作的参考输入时钟频率
SPI clock (SCLK) rate	Type = Master	不 超 过 Sys_Clk 频率 的 1/2	SCLK 时钟频率
Actual SCLK rate	Type = Master	NA	该组件为只读,在用户设定 System clock(Sys_Clk) rate 和 SPI clock (SCLK) rate 后,IP Generator 会告知用户实际能达到的 SCLK 时钟频率
SS_n setup time ⁽¹⁾	Type = Master	正整数	SS_n 的建立时间
Actual SS_n setup time	Type = Master	NA	该组件为只读,在用户设定 System clock(Sys_Clk) rate 和 SS_n setup time 后,IP Generator 会告知用户实际能达到的 SS_n 建立时间
SS_n hold time ⁽¹⁾	Type = Master	正整数	SS_n 的保持时间
Actual SS_n hold time	Type = Master	NA	在用户设定 System clock(Sys_Clk) rate 和 SS_n hold time 后, IP Generator 会告知用户实际能达到的 SS_n 建立时间
SCLK polarity ⁽²⁾	Type = Slave	0, 1	SCLK 时钟极性
SCLK phase ⁽²⁾	Type = Slave	0, 1	SCLK 时钟相位
Width	任何条件	8, 9, 1032	SPI 每轮传输的数据位数
Shift direction ⁽²⁾	Type = Slave	MSB First, LSB First	数据传输顺序
Enable RxPartial threshold ⁽³⁾	Type = Slave	勾选,不勾选	使能"部分接收阈值"功能

RxPartial Threshold	Type = Slave 且勾	1,2,3Data	设置部分接收阈值	l
	选 Enable RxPartial	Width -1		
	threshold			

(1) 本文对 SS_n 的建立时间的定义为,SS_n 下降沿到 SCLK 第一个前沿间的时间;对 SS_n 的保持时间的定义为,SCLK 最后一个后沿到 SS_n 的上升沿之间的时间。安路 SPI Slave IP 对 SS_n 的建立与保持时间的要求为大于等于 1 个 Sys Clk 时钟周期。

图 2-2 SS_n 的建立时间与保持时间示意图

- (2) 当 Type = Master 时,SCLK 时钟极性,时钟相位,数据传输顺序由用户通过 UAR (User-Accessible Register)来动态配置。详情见本文 2.3.1 节。
- (3) "部分接收阈值"功能被使能后,用户可提前读取 SPI Slave 接收到的部分数据,详情见本文 2.4.6 节。

2.1.2 生成文件

文件名	描述
USERNAME_gate.v	IP 核的 Netlist 文件,用户将该文件添加到 TD 工程中后可例化该 IP 核。该 Netlist 文件可用于Implementation 和 Gate-level simulation(需要仿真软件编译相应器件的仿真库)
USERNAME.ipc	IP 核的配置文件,用户可用 IP Generator 加载该文件来查看或更改 IP 配置

表 2-2 IP Generator 生成文件列表

用户在使用 IP Generator 生成 IP 核后, TD 会弹出对话框如图 2-3 所示,如果用户希望将该 IP 核添加到当前 TD 工程中,需勾选"_gate.v"前的选项框,如图中红框内所示,并点击"Yes"。

图 2-3 添加 Netlist 文件到 TD 工程

2.2 端口

2.2.1 SPI Master 端口

表 2-3 当 Type = Master 时, SPI IP 的端口信号

	端口名	位宽	方向	说明
	Sys_Clk	1	In	SPI IP 核内部逻辑工作的输入参考时钟
	RST_n	1	In	复位信号,低电平有效
	Address	2	In	地址端口,用于寻址 SPI IP 内的寄存器
	Data_to_IP	32	In	向 SPI IP 写数据的端口
	Write	1	In	Data_to_IP 端口的写使能信号
面向片	Data_from_IP	32	Out	从 SPI IP 读数据的端口
内用户 逻辑的	Read	1	In	Data_from_IP 端口的读使能信号
端口	TOE	1	Out	Transmit-overrun error,发送数据覆盖错误,前一次被写入 TxData 寄存器里的数据没有被发送时,如果又有新的数据被写入 TxData 寄存器,则该信号变为高电平,在这种情况下,新数据被忽略。读 TxData 寄存器可清 0 该信号
	ROE	1	Out	Receive-overrun error,接受数据覆盖错误,当 RxData 寄存器里的数据 没有被读取时,如果 RxData 寄存器又接收到新的数据,则该信号变为 高电平,在这种情况下,新数据被忽略。读 RxData 寄存器可清 0 该信号

	TRDY	1	Out	Transmitter Ready,当 TxData 寄存器可以接收新数据时,该信号为高 电平
	RRDY	1	Out	Receiver Ready, 当 RxData 寄存器的数据被更新后,该信号变为高电平。读 RxData 寄存器可清 0 该信号
	SCLK	1	Out	串行时钟信号
面向 SPI Slave 的	MOSI	1	Out	主设备输出/从设备输入信号
端口	MISO	1	In	主设备输入/从设备输出信号
	SS_n	1~32	Out	从设备片选信号,低电平有效

2. 2. 2 SPI Slave 端口

表 2-4 当 Type = Slave 时, SPI IP 的端口

	端口名	位宽	方向	说明
	Sys_Clk ⁽¹⁾	1	In	SPI IP 核内部逻辑工作的输入参考时钟
	RST_n	1	In	复位信号,低电平有效
	Address	2	In	地址端口,用于寻址 SPI IP 内的寄存器
	Data_to_IP	32	In	向 SPI IP 写数据的端口
	Write	1	In	Data_to_IP 端口的写使能信号
面向片	Data_from_IP	32	Out	从 SPI IP 读数据的端口
内用户	Read	1	In	Data_from_IP 端口的读使能信号
逻辑的 端口	ТОЕ	1	Out	Transmit-overrun error,发送数据覆盖错误,前一次被写入 TxData 寄存器里的数据没有被发送时,如果又有新的数据被写入 TxData 寄存器,则该信号变为高电平,在这种情况下,新数据被忽略。读 TxData 寄存器可清 0 该信号
	ROE	1	Out	Receive-overrun error,接受数据覆盖错误,当 RxData 寄存器里的数据 没有被读取时,如果 RxData 寄存器又接收到新的数据,则该该信号变 为高电平,在这种情况下,新数据被忽略。读 RxData 寄存器可清 0 该 信号
	TRDY	1	Out	Transmitter Ready,当 TxData 寄存器可以接收新数据时,该信号为高

				电平
	RRDY	1	Out	Receiver Ready, 当 RxData 寄存器的数据被更新后,该信号变为高电平。读 RxData 寄存器可清 0 该信号
	RPRDY	1	Out	Receiver Partial Ready, 当 SPI Slave 接收到的数据位数达到 RxPartial Threshold 后,该信号变为高电平。读 RxData 寄存器可清 0 该信号
	SCLK ⁽¹⁾	1	In	串行时钟信号
面向 SPI Master	MOSI	1	In	主设备输出/从设备输入信号
的端口	MISO	1	Out	主设备输入/从设备输出信号
	SS_n	1	In	从设备片选信号,低电平有效

⁽¹⁾ SPI Slave 的 Sys Clk 频率应大于等于其 SCLK 频率的 2 倍。

2.3 用户可存取寄存器

生成 SPI IP 后,用户逻辑可通过 Address, Data_to_IP, Write, Data_from_IP, Read 等端口来读写用户可存取寄存器(User-Accessible Register,缩写为 UAR)。

2.3.1 SPI Master 的 UAR

寄存器内容 内部地 读写类 寄存器名 址 型 31~6 5 4 3 2 1 0 0 读/写 需要发送的数据 **TxData RxData** 只读 接收到的数据 2 **CPHA** Control 读/写 **CPOL** Shift Dir

从设备片选掩码

表 2-5 SPI Master 的 UAR 映射

TxData 寄存器

Slave Select

读/写

发送数据寄存器。用户的逻辑设计可在 TRDY 信号为高电平期间写 TxData 寄存器;当 TRDY 信号为低电平时,写入 TxData 寄存器的值被忽略,TOE 信号变为高电平。用户的逻辑设计可在任意时刻读取 TxData

IPUG108 v1.0 www.anlogic.com 8

3

寄存器。读 TxData 寄存器操作可将 TOE 信号清 0。在 Master 模式下,写 TxData 寄存器成功会发起一次 SPI 传输。

RxData 寄存器

接收数据寄存器。用户的逻辑设计可在任意时刻读取 RxData 寄存器。当 RxData 寄存器里的数据没有被读取时,即 RRDY 为高电平时,如果 SPI IP 核又接收到新的数据,则 ROE 信号变为高电平,在这种情况下,新接收到的数据被忽略。读 RxData 寄存器操作可将 RRDY 和 ROE 信号清 0。

Control 寄存器

控制寄存器。用户的逻辑设计可在 TRDY 信号为高电平期间写 Control 寄存器;当 TRDY 信号为低电平时,写入 Control 寄存器的值被忽略。用户的逻辑设计可在任意时刻读取 Control 寄存器。

#	名称	默认值	说明
0	Shift_Dir	1	移位方向。当 Shift_Dir = 0 时,LSB 先传;当 Shift_Dir = 1 时,MSB 先传
1	СРНА	1	时钟相位
2	CPOL	1	时钟极性

表 2-6 Control 寄存器的位定义

Slave_Select 寄存器

从设备选择寄存器。用户的逻辑设计可在 TRDY 信号为高电平期间写 Slave_Select 寄存器; 当 TRDY 信号为低电平时,写入 Slave_Select 寄存器的值被忽略。用户的逻辑设计可在任意时刻读取 Slave_Select 寄存器。

#	名称	默认值	说明
31~0	Slave_Select	0xFFFFFFF	SPI 主设备根据该寄存器中被置 0 的位来选择对应
		Е	的从设备

表 2-7 Slave_Select 寄存器的位定义

2.3.2 SPI Slave 的 UAR

表 2-8 SPI Slave 的 UAR 映射

内部地	寄存器名	读写类				寄存器内线	容		
址	C2 13 HH . []	型	31~6	5	4	3	2	1	0
0	TxData	读/写	需要发送的数据						
1	RxData	只读			扌	妾收到的数	(据		
2	Control	读/写				SPI_EN			

TxData 寄存器

发送数据寄存器。用户的逻辑设计可在 SS_n 信号为高电平期间多次写 TxData 寄存器。当 SS_n 信号为低电平时,如果在上一次 SPI 传输结束后没有对 TxData 执行过写操作,则 TxData 依然可被写入新数据;如果在上一次 SPI 传输结束后已对 TxData 执行过写操作,则 TRDY 信号为低电平,如果此时再对 TxData 进行写操作,则新写入的值被忽略,TOE 信号变为高电平。读 TxData 寄存器操作可将 TOE 信号 清 0。

RxData 寄存器

接收数据寄存器。用户的逻辑设计可在任意时刻读取 RxData 寄存器。当 RxData 寄存器里的数据没有被读取时,即 RRDY 或 RPRDY 为高电平时,如果 SPI IP 核又接收到新的数据,则 ROE 信号变为高电平,在这种情况下,新接收到的数据被忽略。读 RxData 寄存器操作可将 RRDY,RPRDY 和 ROE 信号清 0。

Control 寄存器

控制寄存器。用户的逻辑设计可在任意时刻写或读 Control 寄存器。

表 2-9 Control 寄存器的位定义

#	Name	默认值	说明
3	SPI_EN	0	SPI Slave IP 核使能。当 SPI_EN = 0 时,Slave SPI IP 核不工作,片外输入信号被忽略,片外输出的引脚为高阻态;当 SPI_EN = 1 时,SPI Slave IP 核使能

2.4 时序

2.4.1 写 UAR

以写 Control 寄存器为例。

图 2-4 写 Control 寄存器时序

2. 4. 2 读 UAR

以读 Control 寄存器为例, 其中 User's Reg 为用户逻辑中的寄存器。

图 2-5 读 Control 寄存器时序

2.4.3 SPI Master IP 发起 SPI 传输

图 2-6 SPI Master IP 发起 SPI 传输的时序

2. 4. 4 TRDY 和 TOE

图 2-7 TRDY 和 TOE 信号时序

2.4.5 RPRDY, RRDY和ROE

图 2-8 RPRDY, RRDY和ROE信号时序

2.4.6 "部分接收阈值"功能

在一些 SPI 的上层协议中,规定了 SPI 通信数据的格式。例如图 2-9 中,SPI Master 发送的前若干位为地址位和读写标志位,后若干位为数据位。安路 SPI Slave IP的"部分接收阈值"功能专为兼容这种上层协议而设计,用户通过在 GUI 中设置部分接收阈值(RxPartial threshold),可令 SPI Slave IP 接收到的数据位数达到该阈值后立即推送到 RxData 寄存器,并将 RPRDY 置 1。用户逻辑在读取 RxData 寄存器后可进行寻址等操作,并将需要发送的数据写入 TxData 寄存器。

图 2-9 一些 SPI 上层协议中的数据格式

在上述场景中使用"部分接收阈值"功能时应注意,需要发送的数据应在 SCLK 的发送边沿到达之前准备就绪,这就要求 Sys_Clk 频率远高于 SCLK 频率。如果用户逻辑对 RPRDY 信号的响应时序如图 2-10 所示,则 Sys_Clk 频率应大于等于 SCLK 频率的 18 倍。

图 2.10 用户逻辑对 RPRDY 信号的响应时序

2.5 资源占用和时序性能

用户可根据以下案例中的数据来评估 SPI IP 核的资源占用情况和时序性能。该案例采用 TD4. 6. 4 进行编译,器件型号为安路 EAGLE 系列 EG4X20BG256。

Type **CPOL CPHA** Shift Dir LUT 占用 Reg 占用 Sys Clk 最高频率 1 1 492 257 Master 1 200MHz 1 1 Slave 1 272 150 200 MHz

表 2-10 SPI IP 的资源占用情况和时序性能

3 版本信息

日期	版本	修订记录
2021/07/05	1.0	初版制定

版权所有©2021 上海安路信息科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除安路科技在其产品的销售条款和条件中声明的责任之外,安路科技概不承担任何法律或非法律责任。安路科技对安路科技产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。安路科技对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,安路科技保留修改文档中任何内容的权利,恕不另行通知。安路科技不承诺对这些文档进行适时的更新。