Tutorial-1

1. State Kirchhoff's law. Find the current in 3 Ω resistance in fig.1 by loop current method and verify the answer by node voltage method.

- 2. Reduce the network of fig. 2 to obtain the equivalent resistance as seen between nodes a and d.
- **3.** Find current I in the circuit shown in fig. 3. All resistances are in ohms.

- 4. Use nodal analysis to find the voltage across and current through 4 Ω resistor in fig. 4.
- 5. Find the current and voltage across 2 Ω resistance in the following fig. 5.

(Ans: 5A, 10V)

6. Use nodal analysis to find the currents in 3 Ω and 4 Ω resistors of the circuit shown in fig. 6.

7. Using delta to Star Transformation determines the resistance between terminals a-b and the total power drawn from the supply in the circuit shown in fig.7.

 5Ω

(Ans: $R_{eq} = 5.031 \Omega$, P = 19.873 W)

8. Find I_1 , I_2 and I_3 in the network shown in fig. 8 below using loop current method.

9. Use nodal analysis to find currents in the different branches of the circuit shown in fig. 9.

 $(Ans:\,I_{R2}=4.038A,\,I_{R1}=3.924A\,,\,I_{R3}=0.1133A,\,I_{R5}=0.7168A,\,I_{R4}=0.604A)$

10. For the circuit shown in fig. 10,

- i.Calculate V_{out} , ignoring the internal resistance R_s of the source E. Use voltage division.
- ii.Recalculate V_{out} taking into account the internal resistance R_s of the source. What percent error was introduced by ignoring R_s in part (i)?

(Ans: (i)
$$V_{out}$$
= 37.9V, (ii) V_{out} = 37.27V, Error = 1.69%)

11. Determine I_1 , I_2 , I_3 , and I_5 using only current divider formula in fig. 11, when $I_4 = 4A$.

$$(I_1 = 3.4 A, I_2 = 2.004 A I_3 = 3.4 A, I_5 = 2.4 A)$$

12. Consider the nonseries-parallel circuit shown in fig. 12. Determine R and the equivalent resistance R_{eq} between the terminals "a" & "b" when $V_1 = 8V$. (Hint: Applying basic two Kirchhoff's laws).

$$(Ans: R = 4 \Omega, R_{eq} = 4 \Omega.)$$

13. Find equivalent resistance between the terminals 'a' & 'b' and assume all resistors values are 1Ω fig. 13.

14. Find the current through 'ab-branch' (I_{ab}) and voltage (V_{cg}) across the current source using Meshcurrent method in Fig. 14.

 $(Ans:I_{ab}=0.39A,V_{cg}=6.27V)$

15. For the circuit shown Fig. 15, find V_x using the mesh current method.

(Ans: $V_x = 48 V$)

16. Find the value of the current I flowing through the battery in fig.16 using 'Node voltage' method.

....xxxxx.....