How Transformer Model Works

주재걸교수 KAIST 김재철AI대학원

Review: Seq2Seq with Attention < RNN 71115

-Sequised attention 144

Transformer: High-level View

- Attention module can work as both a sequence encoder and a decoder in seq2seq with attention.
- In other words, RNNs or CNNs are no longer necessary, but all we need is attention modules.

Long-term Dependency Issue of RNN Models

Backpropagation

Transformer: Solving Long-term Dependency Problem

Attention Is All You Need, NeurIPS'17

Problem

(0) (0/2)

- As d_k gets large, the variance of $q^T k$ increases. $\frac{2}{2}$ % of the variance of $q^T k$ increases. क्रिया १००% इंकि
- Some values inside the softmax get large.
- The softmax gets very peaked.
- Hence its gradient gets smaller.

Solution

Scaled by the length of query / key vectors:

$$A(Q, K, V) =$$
softmax

gradient as x

- The input word vectors can be the queries, keys and values.
- In other words, the word vectors themselves select one another.
- Problem: only one way for words to interact with one another.

- **Solution:** multi-head attention maps Q, K, and V into the h number of lower-dimensional spaces via W matrices.
- Afterwards, apply attention, then concatenate outputs and pipe through linear layer.

C) some reformater x 042-1711

MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^O where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

Transformer: Quadratic Memory Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
	न जा १ थ भग		
Self-Attention	$O(n^2) \cdot d$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Attention Is All You Need, NeurlPS'17

Transformer: Block-Based Model

Each block has two sub-layers

- Multi-head attention
- Two-layer feed-forward NN (with ReLU)

Each of these two steps also has

• Residual connection and layer normalization:

LayerNorm(x + sublayer(x))

Attention Is All You Need, NeurIPS' 17

Layer Normalization

- Layer normalization consists of two steps:
 - Normalization of each word vectors to have zero mean of zero and variance of one.
 - Affine transformation of each sequence vector with learnable parameters.

Transformer: Positional Encoding

• Use sinusoidal functions of different frequencies:

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i)} = \cos(pos/10000^{2i/d_{model}})$$

• Another positional encoding can also be used (e.g., positional encoding in

ConvS2S).

Transformer: Warm-up Learning Rate Scheduler

• learning rate = $d_{\text{model}}^{-0.5} \cdot \min(\#\text{step}^{-0.5}, \#\text{step} \cdot \text{warmup_step}^{-1.5})$

Transformer: Encoder Self-attention Visualization

• Words start to pay attention to other words in sensible ways.

Attention Is All You Need, NeurIPS'17

Transformer: Decoder

- Two sub-layer changes in decoder
- Masked decoder self-attention on previously generated outputs:

Encoder-Decoder attention,
 where queries come from previous decoder layer
 and keys and values come from output of encoder

• Those words not yet generated cannot be accessed during the inference time.

• Renormalization of softmax output prevents the model from accessing not yet

generated words.

- Those words not yet generated cannot be accessed during the inference time.
- Renormalization of softmax output prevents the model from accessing not yet generated words.

- Those words not yet generated cannot be accessed during the inference time.
- Renormalization of softmax output prevents the model from accessing not yet generated words.

- Those words not yet generated cannot be accessed during the inference time.
- Renormalization of softmax output prevents the model from accessing not yet generated words.

Attention Is All You Need, NeurIPS' 17

Transformer: Experimental Results

• Results on English-German/French translation (newstest2014)

Model	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$		
Transformer (big)	28.4	41.8	2.3 ·	$2.3 \cdot 10^{19}$	

Attention Is All You Need, NeurIPS'17

Recent Trends

- Transformer model and its self-attention block has become a general-purpose sequence (or set) encoder in recent NLP applications as well as in other areas.
- Training deeply stacked Transformer models via a self-supervised learning framework has significantly advanced various NLP tasks via transfer learning, e.g., BERT, GPT-2, GPT-3, XLNet, ALBERT, RoBERTa, Reformer, T5, ...
- Other applications are fast adopting the self-attention architecture and self-supervised learning settings, e.g., computer vision, recommender systems, drug discovery, and so on
- As for natural language generation, self-attention models still require a greedy decoding of words one at a time.

References

- Harvard NLP The Annotated Transformer
- Stanford University CS224n Deep learning for Natural Language Processing
- Fully-parallel text generation for neural machine translation
- Convolution Sequence to Sequence
- The Illustrated Transformer (Eng)
- The Illustrated Transformer (Kor)