Exercícios Propostos - Aula 05

Felipe Fazio da Costa

RA: 23.00055-4

Disciplina: ECM306 - Tópicos Avançados em Estrutura de Dados

```
public class InsertionSort {
    public static void insertionSort(int[] array) {
        for (int i = 1; i < array.length; i++) {
            //2 + 3*(n + 1) + 4n operações
            int key = array[i];
            // 5n operações
            int j = i - 1;
            // 4n operações
            while (j \ge 0 \&\& array[j] > key) {
                // 4*(n+1)^2 + 5*(n+1)^2 operações
                array[j + 1] = array[j];
                // 5n^2 + 4n^2 operações
                j = j - 1;
                // 4n^2 operações
            }
            array[j + 1] = key;
            // 6n operações
        }
    }
    public static void main(String[] args) {
        int[] array = {12, 11, 13, 5, 6};
        System.out.println("Array antes da ordenacao:");
        for (int num : array) {
            System.out.print(num + " ");
        }
        insertionSort(array);
        System.out.println("\n\nArray depois a ordenacao:");
        for (int num : array) {
            System.out.print(num + " ");
        }
    }
}
```

Análise de Complexidade:

Esse algoritmo tem o seguinte número de operações:

```
Linha 1: for (int i = 1; i < array.length; i++)
<ul>
2 + 3*(n + 1) + 4n operações

Linha 2: int key = array[i];

4n operações

Linha 3: int j = i - 1;

4n operações

Linha 4: while (j >= 0 && array[j] > key) {

4*(n+1)^2 + 5*(n+1)^2 operações

Linha 5: array[j + 1] = array[j];

5n^2 + 4n^2 operações

Linha 6: j = j - 1;

4n^2 operações

Linha 7: array[j + 1] = key;

6n operações
```

$$T(n) = 14 + 40 * n + 22 * n^2 => O(n^2)$$

Código Java:

```
import java.util.Scanner;
public class TarefaT3_01 {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        System.out.println(Func(n));
        in.close();
    }
    public static int Func(int n) {
        int m = 0;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j \le n; j++) {
                m = m + 1; // Linha 1
            }
        }
        return m;
    }
}
```

Análise de Complexidade:

Esse algoritmo tem o seguinte número de operações:

```
Linha 1: m = m + 1;4*n^2
```

$$T(n) = 4 * n^2 => O(n^2)$$

Código Java:

```
import java.util.Scanner;
public class TarefaT3_02 {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        System.out.println(Func(n));
        in.close();
    }
    public static int Func(int n) {
        int m = 0;
        for (int i = 2; i <= n; i++) {
            for (int j = 2; j \le n; j++) {
                m = m + 1; // Linha 1
            }
        }
        return m;
    }
}
```

Análise de Complexidade:

Esse algoritmo tem o seguinte número de operações:

```
    Linha 1: m = m + 1;
    4*n^2 - 1
```

$$T(n) = 4 * n^2 - 1 => O(n^2)$$

Código Java:

```
import java.util.Scanner;
public class TarefaT3_03 {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        System.out.println(Func(n));
        in.close();
    }
    public static int Func(int n) {
        int i = 4;
        int m = 0;
        while (i \leq n) {
            m = m + 1; // Linha 1
            i = i + 2;
        }
        return m;
    }
}
```

Análise de Complexidade:

Esse algoritmo tem o seguinte número de operações:

```
• Linha 1: m = m + 1;
• (4*n)/2 + 1
```

$$T(n) = 2 * n + 1 => O(n)$$

Código Java:

```
import java.util.Scanner;
public class TarefaT3_04 {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        System.out.println(Func(n));
        in.close();
    }
    public static int Func(int n) {
        int i = 4;
        int m = 0;
        while (i \leq n) {
            m = m + 1; // Linha 1
            i = i * 2;
        }
        return m;
    }
}
```

Análise de Complexidade:

Esse algoritmo tem o seguinte número de operações:

```
Linha 1: m = m + 1;4 * log(n)
```

$$T(n) = 4*log(n) => O(log(n))$$

Código Java:

```
import java.util.Scanner;
public class TarefaT3_05 {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        System.out.println(Func(n));
        in.close();
    }
    public static int Func(int n) {
        int m = 0;
        for (int i = 1; i <= n; i++) {
            for (int j = i; j <= n; j++) {
                m = m + 1; // Linha 1
            }
        }
        return m;
    }
}
```

Análise de Complexidade:

Esse algoritmo tem o seguinte número de operações:

```
    Linha 1: m = m + 1;
    4 * n * (n+1)/2
```

Equação final:

$$T(n) = 4 * n * (n+1)/2 => O(n^2)$$

Tabela analisada:

Para chegar nas conclusões, foi feita a análise conforme o tempo

n	i	i(2)	i+2	i * 2
1	1	2	4	1
2	2	3	6	2
3	3	4	8	4
4	4	5	10	8
5	5	6	12	16
6	6	7	14	32
7	7	8	16	64
8	8	9	18	128
9	9	10	20	
10	10	11	22	
11	11	12	24	
12	12	13	26	
13	13	14	28	
14	14	15	30	
15	15	16	32	
16	16	17	34	
17	17	18	36	
18	18	19	38	
19	19	20	40	
20	20	21	42	
21	21	22	44	
22	22	23	46	
23	23	24	48	
24	24	25	50	
25	25	26	52	
26	26	27	54	
27	27	28	56	
28	28	29	58	
29	29	30	60	
30	30	31	62	
31	31	32	64	
32	32	33	66	

Supondo-se que se está comparando implementações de ordenação por inserção e ordenação por intercalação na mesma máquina. Para entradas de tamanho n, a ordenação por inserção é executada 8n2 etapas, enquanto a ordenação por intercalação é executada em 64n ln n etapas. Para que valores de n a ordenação por inserção supera a ordenação por intercalação?

n	Insertion Sort Steps(8n^2)	Merge Sort Steps(64n*In(n))	Insertion < Merge
1	8	0.0000	False
11	968	1688.1183	False
21	3528	4091.8382	False
27	5832	5695.2061	True

n	Insertion Sort Steps(8n^2)	Merge Sort Steps(64n*ln(n))	Insertion < Merge
31	7688	6813.0306	True
41	13448	9744.4131	True
51	20808	12833.4789	True
61	29768	16048.8516	True
71	40328	19369.6174	True
81	52488	22780.8244	True

Pela tabela podemos ver que o código de inserção supera com n = 27 ordenação por intercalação.

Exercício 9

Qual é o menor valor de n tal que um algoritmo cujo tempo de execução é 100n2 funciona mais rápido que um algoritmo cujo tempo de execução é 2n na mesma máquina?

n	100n²	2 ⁿ	100n² < 2n
1	100	2	False
2	400	4	False
3	900	8	False

72/25, 11.40 All				
n	100n²	2 ⁿ	100n² < 2 ⁿ	
4	1600	16	False	
5	2500	32	False	
6	3600	64	False	
7	4900	128	False	
8	6400	256	False	
9	8100	512	False	
10	10000	1024	False	
11	12100	2048	False	
12	14400	4096	False	
13	16900	8192	False	
14	19600	16384	False	
15	22500	32768	False	
16	25600	65536	True	

Gráfico com plot com log para melhor visualização

Pela tabela podemos ver que é no valor 16 o código de 2ⁿ supera o 100n².

Exercício 10

Considere dois algoritmos A e B com complexidades respectivamente iguais a 128n2 e 4n3. Qual o maior valor de n, para o qual o algoritmo B é mais eficiente que o algoritmo A?

n	128n²	4n³	4n³ < 128n²
1	128	4	True
2	512	32	True
3	1152	108	True
4	2048	256	True
5	3200	500	True
6	4608	864	True
7	6272	1372	True
8	8192	2048	True
9	10368	2916	True
10	12800	4000	True
15	28800	13500	True
20	51200	32000	True
25	80000	62500	True
30	115200	108000	True
31	123904	119791	True
32	131072	131072	False
33	139392	143253	False

Pela tabela podemos ver que o código B é melhor até n igual a 32.

Exercício 11

Considere dois computadores C1 e C2 que executam 108 e 1010 operações por segundo e dois algoritmos de ordenação A e B que necessitam 5n2 e 40n log10 n operações com entrada de tamanho n, respectivamente. Qual o tempo de execução de cada algoritmo em cada um dos computadores C1 e C2 para ordenar 108 elementos?

Passo 1: Definição dos Dados

- Computadores:
 - $\circ \ C_1$ executa 10^8 operações por segundo
 - $\circ \ C_2$ executa 10^10 operações por segundo
- Algoritmos:
 - $\circ \;$ Algoritmo A precisa de $5n^2$ operações
 - $\circ~$ Algoritmo B precisa de $40nlog_10n$ operações
- Entrada: $n=10^8$ elementos

Algoritmo A

$${
m Operaç\~oes}_A = 5n^2 = 5(10^8)^2 = 5 imes 10^{16}$$

Algoritmo B

$$egin{aligned} ext{Opera} ilde{ ilde{o}} ext{Ess}_B &= 40 n \log_{10} n = 40 imes 10^8 imes \log_{10} (10^8) \ &= 40 imes 10^8 imes 8 = 3.2 imes 10^{10} \end{aligned}$$

Passo 3: Cálculo do Tempo de Execução

O tempo de execução é dado por:

$$Tempo = \frac{N\'{u}mero \ de \ opera\'{c}\~{o}es}{Opera\~{c}\~{o}es \ por \ segundo}$$

Computador C1

$$T_A(C_1)=rac{5 imes10^{16}}{10^8}=5 imes10^8 ext{ segundos}pprox 15.8 ext{ anos}$$
 $T_B(C_1)=rac{3.2 imes10^{10}}{10^8}=320 ext{ segundos}pprox 5.3 ext{ minutos}$

Computador C2

$$T_A(C_2) = rac{5 imes 10^{16}}{10^{10}} = 5 imes 10^6 ext{ segundos} pprox 58 ext{ dias} \ T_B(C_2) = rac{3.2 imes 10^{10}}{10^{10}} = 3.2 ext{ segundos}$$

Algoritmo	Computador	Operações Totais	Tempo (segundos)	Tempo Aproximado
А	C1	5 × 10 ¹⁶	5 × 10 ⁸	15.8 anos
А	C2	5 × 10 ¹⁶	5 × 10 ⁶	58 dias
В	C1	3.2 × 10 ¹⁰	320	5.3 minutos
В	C2	3.2 × 10 ¹⁰	3.2	3.2 segundos

Exercício 12

Um algoritmo tem complexidade 2n. Num certo computador, num tempo t, o algoritmo resolve um problema de tamanho 25. Imagine, agora, que se tenha disponível um computador 100 vezes mais rápido. Qual o tamanho máximo de problema que o mesmo algoritmo resolve no mesmo tempo t no computador mais rápido?

Se tivermos um computador 100 vezes mais rápido, ele pode executar:

 100×2^{25} operações no mesmo tempo

Para encontrar o novo tamanho máximo do problema n^\prime , resolvemos:

$$2^{n'} = 100 \times 2^{25}$$

Aplicando logaritmo base 2 em ambos os lados:

$$n'\log_2(2) = \log_2(100) + \log_2(2^{25})$$

Como $\log_2(2)=1$ e $\log_2(2^{25})=25$, temos:

$$n' = \log_2(100) + 25$$

Aproximando $\log_2(100) \approx 6.64$:

$$n' \approx 6.64 + 25 = 31.64$$

Como n' deve ser um número inteiro, concluímos que:

$$n' = 31$$

Portanto, no computador 100 vezes mais rápido, o algoritmo pode resolver um problema de tamanho n=31 no mesmo tempo t.