Water Services Management

Article in Water Intelligence Online · June 2006					
DOI: 10.21	166/9781780402529				
CITATIO	VS	READS			
4		416			
1 auth	or:				
F-153	David Stephenson				
	University of Botswana				
	79 PUBLICATIONS 703 CITATIONS				
	GET DOOF!!! 5				
	SEE PROFILE				
Some	Some of the authors of this publication are also working on these related projects:				
Project	water resources View project				

Water Services Management

David Stephenson

University of Botswana, Gaborone, Botswana

Published by IWA Publishing, Alliance House, 12 Caxton Street, London SW1H 0QS, UK

Telephone: +44 (0) 20 7654 5500; Fax: +44 (0) 20 7654 5555; Email: publications@iwap.co.uk Web: www.iwapublishing.com

First published 2005 © 2005 IWA Publishing

Printed by TJ International (Ltd), Padstow, Cornwall, UK.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of photographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to IWA Publishing at the address printed above.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for errors or omissions that may be made.

Disclaimer

The information provided and the opinions given in this publication are not necessarily those of IWA or of the authors, and should not be acted upon without independent consideration and professional advice. IWA and the authors will not accept responsibility for any loss or damage suffered by any person acting or refraining from acting upon any material contained in this publication.

British Library Cataloguing in Publication Data

A CIP catalogue record for this book is available from the British Library

Library of Congress Cataloging- in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN 1843390809

Contents

	Preface	xv
	About the author	xvii
1	Water sources and quality	1
1.1	AVAILABILITY OF FRESH WATER	1
	1.1.1 Surface water	2
	1.1.2 Groundwater	5
	1.1.3 Siting of wells and boreholes	8
	1.1.4 Determination of yield	9
1.2	RAINWATER	10
1.3	WASTEWATER AND RECYCLING	11
1.4	SEAWATER OR SALINE WATER	12
1.5	WATER POLLUTION	12
	1.5.1 Protection of public health	13
	1.5.2 Pollution risk assessment and management	13
1.6	INTERNATIONAL STANDARDS AND CRITERIA	14
	1.6.1 Microbiological determinants	14
	1.6.2 Chemical and physical determinants	15
	1.6.3 Organic pollution	17
	1.6.4 Stability of water supplies	18
1.7	WATER TREATMENT	18
1.8	REFERENCES	22

2	Urban water supply	23
2.1	WATER USE	23
	2.1.1 Volumes required	24
	2.1.2 Planning basis	25
	2.1.3 Peak factors	28
	2.1.4 Pressure requirements	29
2.2	RESERVOIR STORAGE REQUIREMENTS	30
	2.2.1 Elevated storage and pumps	30
	2.2.2 Balancing volume	31
	2.2.3 Other storage reservoirs	31
2.3	PIPE FLUID MECHANICS	32
	2.3.1 The fundamental equations of fluid flow	33
2.4	FLOW HEAD LOSS RELATIONSHIPS	34
	2.4.1 Empirical flow formulae	34
	2.4.2 Rational flow formulae	35
2.5	WATER HAMMER AND FLOW CONTROL	39
	2.5.1 Valves and other fittings	41
2.6	PIPELINE OPTIMISATION	42
2.7	OPTIMUM RESERVOIR SIZES	45
2.8	PUMP CHARACTERISTIC CURVES	47
2.9	REFERENCES	48
3	Water demand management and loss control	49
3.1	CONTROLLING WATER USE	49
3.2	ECONOMIC THEORY OF SUPPLY AND DEMAND	52
	3.2.1 Effect of metering	54
	3.2.2 Management by use of tariffs	55
3.3	TIMING	57
	3.3.1 Long-term (planning and design)	58
	3.3.2 Operational time-frame	59
	3.3.3 Crisis management	60
	3.3.4 Notes on management by use of tariffs	61
3.4	THE COST OF WATER	62
	3.4.1 Future trends	67
3.5	VALUE OF WATER	67
3.6	LOSS CONTROL	68
3.7	WATER HARVESTING	71
38	REFERENCES	71

Contents	vii

4	Sewerage	73
4.1	FLOW IN CIRCULAR DRAINS	73
	4.1.1 Manning equation	73
	4.1.2 Non-circular cross sections	74
	4.1.3 Uniform flow in part-full circular pipes	75
4.2	DRAINAGE NETWORK OPTIMISATION	77
	4.2.1The variables	77
	4.2.2 Dynamic programming for optimising compound pipes	80
4.3	DESIGN OF SEWERS	83
	4.3.1 Sewer flows	85
	4.3.2 Construction	85
	4.3.3 Access and ventilation	88
	4.3.4 Computer design and grading	89
4.4	REFERENCES	91
5	Sewer leakage and rehabilitation	92
5.1	STORMWATER AND GROUNDWATER INGRESS	92
5.2	PROBLEMS IN WASTE WATER COLLECTION SYSTEMS	93
5.3	DETERMINING EXTRANEOUS FLOWS	94
	5.3.1 Infiltration into sewers	94
	5.3.2 Inflow into sewers	95
	5.3.3 Determination of ingress events	95
5.4	IMPACT OF STORMWATER AND GROUNDWATER INGRESS	97
	5.4.1 Wastewater Treatment Works (WWTW)	97
5.5	REDUCING STORMWATER INFLOW	100
0.0	5.5.1 Local structure improvements	100
	5.5.2 Effective utilisation of existing storage in sewerage systems	100
	5.5.3 Pro-active maintenance	101
	5.5.4 Overflows or redirection of flows within a system	101
	5.5.5 Holding ponds	101
	5.5.6 Enhancement of sewer network	102
5.6	ANCILLARY SYSTEMS	102
	5.6.1 Pumping systems	102
	5.6.2 Vacuum systems	103
	5.6.3 Protective structures	103
	5.6.4 Purchase of land/properties	103
5.7	MANAGEMENT OF INGRESS	104
	5.7.1 Preventative measures	105
	5.7.2 Remedial measures	106

iii	Water Services Management	
5.8	ALTERNATIVE METHODS FOR REMEDIATION	106
	5.8.1 Rehabilitation methods	106
	5.8.2 Replacement methods	108
5.9	BENEFIT-COST ANALYSIS	111
	5.9.1 Cost-effectiveness analysis	111
5.10	SEWER MAINTENANCE	113
	5.10.1 Preliminary analysis	113
	5.10.2 Sewer testing	114
	5.10.3 Corrosion of sewers	116
	5.10.4 Rehabilitation of manholes and sumps	117
5.11	REFERENCES	117
6	Alternative urban drainage systems	119
6.1	INTRODUCTION	119
6.2	DRAINAGE STREAMS	120
	6.2.1 Grey water	123
	6.2.2 Stormwater	123
	6.2.3 Sewerage	126
6.3	CASE STUDY IN ALEXANDRA TOWNSHIP	127
6.4	SYSTEM MASS BALANCES	128
6.5	DOMESTIC MASS BALANCE	130
6.6	REFERENCES	130
7	Wastewater treatment	131
7.1	SEWAGE QUALITY	131
7.2	TREATMENT PROCESSES	133
7.3	APPROPRIATE SANITATION	139
7.4	CATEGORIES OF SANITATION SYSTEMS	140
	7.4.1 Group 1: No water added – Requiring conveyance for treatment at central works	141
	7.4.2 Group 2: No water added – no conveyance (treatment or partial treatment on site before disposal)	142
	7.4.3 Group 3: Water added – requiring conveyance (treatment at a central works)	145
	7.4.4 Group 4: Water added – no conveyance (treatment or	148
7.5	partial treatment on-site before disposal) FACTORS AFFECTING CHOICE OF SANITATION	150

7.6 REFERENCES

Contents	1X

_		
8	Stormwater drainage	157
8.1	INTRODUCTION	157
8.2	THE RATIONAL METHOD	158
8.3	LLOYD-DAVIES METHOD	163
8.4	STEP METHOD	164
8.5	TIME-AREA DIAGRAM AND ISOCHRONAL METHODS	167
8.6	TANGENT METHOD AND MODIFICATIONS	169
8.7	KINEMATIC METHOD	173
	8.7.1 Time of concentration for a plain	173
8.8	REFERENCES	175
9	Stormwater management	176
9.1	DESIGN ALTERNATIVES	176
9.2	STORMWATER MANAGEMENT PRACTICES	178
	9.2.1 Safety factors	180
9.3	DETENTION AND RETENTION PONDS	181
9.4	PERCOLATION BASINS	186
	9.4.1 Effect of holding on water quality	187
	9.4.2 On-site detention	187
9.5	STRUCTURES TO CONTAIN RUNOFF	188
	9.5.1 Parking-lot storage	188
	9.5.2 Rooftop detention	188
	9.5.3 Combined sewers	188
9.6	OVERLAND AND CHANNEL RETARDATION	190
	9.6.1 Dual drainage	190
9.7	FLOOD MANAGEMENT	191
9.8	RESERVOIR ROUTING METHODS	195
9.9	FLOOD RISK ANALYSIS	198
9.10	FLOOD PLAIN MANAGEMENT	199
	9.10.1 Hazards associated with flooding	199
9.11	INTEGRATED FLOOD PLAIN MANAGEMENT	201
	9.11.1 Channel confinement	202
	9.11.2 Anti-flooding devices	203
9.12	REFERENCES	203
10	Drainage structures	205
10.1	HYDRAULICS OF BRIDGES	205
	10.1.1 Flow through gap	207
	10.1.2 Surface profile	208
	10.1.3 Drop in water level	214

	10.1.4 Complex structures	216
	10.1.5 Flow over an embankment	216
	10.1.6 Inundation of bridge	218
	10.1.7 Erosion due to overflow	219
10.2	CULVERT HYDRAULICS	219
	10.2.1 Economic design	219
	10.2.2 Principle of controls	220
	10.2.3 Hydraulic profiles	221
	10.2.4 Inlet Design	223
	10.2.5 Inlet control equations for box culverts	225
	10.2.6 Circular pipe culverts	226
	10.2.7 Outlet Control	228
	10.2.8 Balanced design	229
10.3	REFERENCES	230
11	Asset management	232
11.1	9	232
11.2	ASSETS	233
11.3	BENEFITS OF ASSET MANAGEMENT	235
11.4	BEST PRACTICE	236
	11.4.1 Reviews of world practices	237
	11.4.2 United Kingdom	239
	11.4.3 Australia and New Zealand	241
11.5	DATA MANAGEMENT	245
11.6	METHODOLOGY FOR AMPs	245
	11.6.1 Information systems	246
	11.6.2 Asset management plans	247
	11.6.3 Benefits from implementing an Asset Management programme	249
	11.6.4 Types of asset management plans	249
11.7	LIFE CYCLE ASSET MANAGEMENT	251
	11.7.1 Life cycle costing	252
	11.7.2 The life of a works	254
	11.7.3 Economic evaluation	255
11.8	ASSET MANAGEMENT REGISTERS	257
	11.8.1 Definition of a national standard for asset registers	257
	11.8.2 Requirements of an asset register	258
	11.8.3 Components of a national standard for asset registers	258
	11.8.4 Which assets should be on the register?	259
	11.8.5 The minimum set of information to be recorded	259
	11.8.6 Recording the changes to assets	260
	11.8.7 Capturing the data	261

Contents	X1

11.9	SYSTEM DEFINITION	261
	11.9.1 Asset identification and classification	262
11.10	REFERENCES	262
12	Privatisation	264
12.1	INTRODUCTION	264
12.2	ECONOMIC REFORM	267
12.3	CONCESSIONS	268
	12.3.1 Definition of a concessionary contract	269
12.4	FORMS OF PARTNERSHIP EVALUATED	272
	12.4.1 Full Privatisation	272
	12.4.2 Concession	272
	12.4.3 Lease Contract	273
	12.4.4 Management Contract	273
	12.4.5 Service Contract	273
	12.4.6 Corporatisation	273
	12.4.7 Public-Public Partnerships	274
	12.4.8 BOOT and BOT Projects	274
	12.4.9 Municipal Debt Issuance	275
	12.4.10 Private Consultants	275
12.5	MUNICIPAL CHARACTERISTICS EVALUATED	275
12.6	PRIVATE AND PUBLIC INSTITUTIONAL ROLES	277
	12.6.1 Case study – Balfour municipality	278
	12.6.2 Analysis of municipal situation	278
	12.6.3 Immediate capital expenditure requirements	279
	12.6.4 Age, condition, value relationship of existing assets	280
	12.6.5 Capital available	280
	12.6.6 Municipal income and expenses	282
	12.6.7 Cost of service provision and level of cost recovery	282
	12.6.8 Water and sanitation staff	283
	12.6.9 System efficiency, quality and service	283
	12.6.10 Results of analysis	284
12.7	SELECTION OF BEST FORM OF PUBLIC PRIVATE	285
	PARTNERSHIP	
12.8	REFERENCES	286
13	Probability and risk	288
13.1	HYDROLOGICAL UNCERTAINTY	288
	13.1.1 Probability distributions	289
	13.1.2 Analysis of records	293
	13.1.3 Confidence bands	296

	13.1.4 Design discharge	297
12.2	13.1.5 Spread risk	297
13.2	RELATIONSHIP BETWEEN PROBABILITY, RISK AND HAZARD	300
	13.2.1 Definitions	300
13.3		300
13.4		301
13.4	13.4.1 Technological risks	301
	13.4.1 Fechnological risks	302
	13.4.3 Natural and external factors	302
13.5		303
13.3	13.5.1 Economic risk	304
	13.5.2 Effect of uncertainty in demand estimates	307
	13.5.3 South African case study	310
13.6		312
	VULNERABILITY	313
13.8	REFERENCES	316
11	Factories and financing water services	318
14.1	Economics and financing water services SOURCES OF FINANCE	318
14.1		318
14.2	14.2.1 Justification for rural water supplies	321
	14.2.2 Evaluation methods	323
	14.2.3 Study of water collecting time	324
14.3	RESULTS OF FIELD SURVEY	325
14.3	14.3.1 Health benefits of water supply	325
	14.3.2 Educational benefits	327
14.4	STUDY OF HOUSEHOLD ECONOMY	329
14.4	14.4.1 Average household monthly income	330
	14.4.2 Micro survey of household economies	330
14.5		333
15	Davidan mant issues	334
15	Development issues	
15.1	BACKGROUND	334
	15.1.1 Water supply problems	335
	15.1.2 Population of developing countries	336
	15.1.3 Financial limitations	338 340
15.2	15.1.4 Institutional problems WATER QUALITY AND HEALTH	340 341
13.2	15.2.1 Water-related diseases	341
		344
	15.2.2 Water quality standards	344

	Contents	xiii
15.3	LEVEL OF SERVICE	344
15.4	ALTERNATIVE SYSTEMS	347
15.5	PROBLEMS IN SUPPLY	348
	15.5.1 Payment	349
15.6	COMMUNITY PARTICIPATION	350
	15.6.1 Affordability	351
15.7	POLICY	352
15.8	DEVELOPING PEOPLE	352
15.9		355
15.10	REFERENCES	356
	The energy factor	357
16.1	PUMPING ENERGY	357
	16.1.1 Programming pumping systems	359
	16.1.2 Model formulation	362
	16.1.3 Operating cost components	365
	16.1.4 Predicting consumer demands	366
16.2	ENERGY INTENSIVE VERSUS CAPITAL INTENSIVE PROJECTS	367
16.3	PUMPING SEWAGE	367
16.4	HYDROPOWER	368
16.5	SOLAR-HYDRO HYBRID SYSTEMS FOR RAPS	368
	16.5.1 Hybrid energy systems for rural communities	369
	16.5.2 Development of alternative energy sources	370
16.6	REFERENCES	372
17	Project management	373
17.1	INTRODUCTION	373
17.2	CONTRACT PROCEDURES AND DOCUMENTS	374
17.3		374
17.4	•	375
17.5	RESOURCE MANAGEMENT	380
17.6	COMMUNICATION	381
17.7		381
17.8	HAZARDS RELEVANT TO WATER SERVICES	382
17.8	REFERENCES	386
18	Organisation and operation	387
18.1	QUALITY CONTROL	389
18.2	CONTAMINATION	390

xiv	Water Services Management	
18.3	FINANCIAL MANAGEMENT	391
18.4	HUMAN RESOURCE MANAGEMENT	392
	18.4.1 Human resources and training	393
18.5	MAINTENANCE SCHEDULING	394
18.6	EMERGENCY SUPPLIES	394
18.7	LEGAL	395
	18.7.1 Water law	395
	18.7.2 Bylaws	397
	18.7.3 Inspectorates	398
	18.7.4 Regulation	398
	18.7.5 Competition	399
18.8	SEWER MAINTENANCE DATA PROCESSING	400
	18.8.1 Application	400
	18.8.2 Processing of sewer maintenance data	401
18.9	REFERENCES	403
	Index	405

Preface

Water supply and sewerage systems in cities are critical from health and planning points of view, but many are aging and deteriorating. This may be because engineers have tended to focus on development rather than management. As world populations stabilize, less hydraulic design and better management of existing facilities is required.

Modern practices are needed to manage the systems. Business practices, customer satisfaction, and economic planning are all as important as engineering design and can no longer be disregarded by water service providers.

The subjects covered in this book include potable water supply, sewerage and stormwater drainage. Basic design methods are reviewed followed by ways of improving designs and management of those facilities. The book forms a comprehensive guide for design and operation of water services and managing the associated infrastructure.

Hydraulic management implies optimum storage, peak flow attenuation, pollution control and effluent discharge. Infrastructure management includes rehabilitation, reconstruction, upgrading and maintenance.

Topics relevant to economic efficiency are asset management, privatization, and risk analysis. Efficient use of energy and construction project management are also ways of improving economic viability.

The particular problems of developing countries are covered in a special chapter, but a number of other chapters have ideas of relevance, viz. low cost sanitation, staged water supply expansion and off-grid energy sources. Capacity building and appropriate technologies are particularly appropriate.

Students and practitioners are becoming aware of the changes in emphasis of water engineering and university courses and continuing education courses are now orientated to the subjects covered here. The book is a condensation of graduate courses give by the author at a number of universities and to a number of water utilities organizations worldwide. It also serves as a reference book for planners, designers and operators of water services. The broader field of engineering is likely to expand over the coming years, i.e. technical calculations will be relegated to computers and the engineer will be able to broaden his scope. New relevant topics, for example in the IT area, may therefore emerge in future years. The topics here can form the springboard for new focus and terminology.

The manuscript of the book was set out and typed by April Thompson.

About the author

David Stephenson is Professor of Water Engineering at the University of Botswana. He is also Professor Emeritus at the University of the Witwatersrand and a Visiting Professor at the University of Stuttgart. He teaches Water Supply Management and Water Resources Management at graduate level at these Institutes. He is the author of ten books and many papers on the subjects. He started his career in practice and consults internationally.

He lives on a game farm in Africa.

[xvii]