Вычмат-2025

16 июня 2025 г.

Основные определения		
1.1	Преді	мет вычислительной математики. Метод и задачи вы-
	числи	тельной математики в терминах функционального
	анали	13a
	1.1.1	Предмет вычислительной математики
	1.1.2	Функциональный анализ
	1.1.3	Функциональные метрические пространства
	1.1.4	Функции, заданные на функциональном пространстве
	1.1.5	Методы и задачи вычислительной математики
1.2	Источ	ники и классификация погрешностей результатов
	числе	нного решения задач. Приближенные числа. Абсо-
		ая и относительная погрешности. Правила записи
	-	иженных чисел
	1.2.1	Источники и классификация погрешностей
	1.2.2	Приближенные числа. Абсолютная и относительная
		погрешности
	1.2.3	Правила записи приближенных чисел
1.0	$\frac{1.2.4}{2}$	Округления
1.3	=	ешности арифметических операций над приближен-
		числами. Погрешность функции одной и многих пе-
	•	ІНЫХ
	1.3.1	Погрешности арифметических операций над при-
	1 2 0	ближенными числами
1 1	1.3.2	Погрешность функции одной и многих переменной.
1.4		ектность вычислительной задачи. Примеры коррект-
1.5		и некорректных задач
1.0		повленность вычислительной задачи. Примеры хоро- плохо обусловленных задач
1.6		плохо обусловленных задач
1.0		вычислительных алгоритмов
	ность	вычислительных алторитмов
Per	пение	нелинейных уравнений, СЛАУ
2.1		ановка задачи решения нелинейных уравнений. Ос-
		ые этапы решения задачи
	2.1.1	Задача решения нелинейного уравнения

	2.1.2 Локализация корней
	2.1.3 Итерационное уточнение корней
2.2	Скорость сходимости итерационных методов уточнения ре-
	шения нелинейного уравнения
2.3	Обусловленность задачи решения нелинейных уравнений.
	Понятие об интервале неопределенности. Правило Гарвика. 33
	2.3.1 Обусловленность задачи решения нелинейных урав-
	нений
	2.3.2 Понятие об интервале неопределенности. Правило
	Гарвика
2.4	Метод бисекции решения нелинейных уравнений. Скорость
	сходимости. Критерий окончания
	2.4.1 Описание метода
	2.4.2 Скорость сходимости
	2.4.3 Критерий окончания
2.5	Метод простой итерации. Скорость сходимости. Критерий
	окончания. Приведение к виду, удобному для итераций 35
	2.5.1 Описание метода
	2.5.2 Скорость сходимости
	2.5.3 Критерий окончания
	2.5.4 Приведение к виду, удобного для итераций 40
2.6	Метод Ньютона решения нелинейных уравнений. Вывод
	итерационной формулы метода Ньютона 4
2.7	Априорная погрешность метода Ньютона
2.8	Апостериорная оценка погрешности (критерий оконча-
	ния). Правило выбора начального приближения на отрезке
	локализации корня, гарантирующего сходимость метода 45
2.9	Модификации метода Ньютона. Упрощенный метод Нью-
	тона. Метод хорд
2.10	Модификации метода Ньютона. Метод секущих. Скорость
0 1 1	сходимости метода секущих
	Решение СЛАУ. Постановка задачи
2.12	Решение СЛАУ. Определение понятия нормы вектора. Аб-
0.10	солютная и относительная погрешности вектора
2.13	Решение СЛАУ. Определение понятия нормы матрицы,
	подчиненной норме вектора. Геометрическая интерпрета-
0.14	ция нормы матрицы
2.14	Обусловленность задачи решения СЛАУ для приближен-
	но заданной правой части. Количественная мера обуслов-
	ленности СЛАУ. Геометрическая интерпретация числа обу-
	словленности

	2.10	Ооусловленность задачи решения СЛАУ для приолиженно
		заданных матрицы и правой части
	2.16	Метод Гаусса решения СЛАУ. Схема единственного деле-
		ния. LU – разложение. Свойства метода.
		2.16.1 Схема единственного деления
	2.17	Метод Гаусса решения СЛАУ. Схемы частичного и полного
		выбора ведущих элементов. Свойства методов
		2.17.1 Схемы частичного выбора
		2.17.2 Схема полного выбора.
	2.18	Применение метода Гаусса к решению задач линейной ал-
		гебры. Вычисление решений системы уравнений с несколь-
		кими правыми частями
	2.19	Применение метода Гаусса к решению задач линейной ал-
		гебры. Вычисление обратной матрицы.
	2.20	Применение метода Гаусса к решению задач линейной ал-
		гебры. Вычисление выражений вида v = CWw. Вычисле-
		ние определителя матрицы
	2.21	Метод Холецкого решения СЛАУ с симметричной положи-
		тельно определенной матрицей. Свойства метода
		2.21.1 Описание метода
		2.21.2 Свойства метода
	2.22	Метод прогонки решения СЛАУ с трехдиагональными
		матрицами. Свойства метода
_	T.T.	
3		ерполяция
	3.1	Постановка задачи приближения функций. Приближение
	2.2	функций обобщенными многочленами
	3.2	Приближение методом интерполяции. Интерполяция обоб-
	2.2	щенными многочленами
	3.3	Понятия линейно-независимой системы функций на задан-
		ном множестве точек. Теорема о существовании единствен-
		ного решения задачи интерполяции.
	3.4	Понятия ортогональной системы функций на заданном
		множестве точек. Утверждение о существовании един-
		ственного решения задачи интерполяции с помощью ор-
		тогональной системы функций. Решение задачи интерпо-
	0 =	ляции для этого случая
	3.5	Полиномиальная интерполяция. Интерполяционный мно-
	2 2	гочлен в форме Лагранжа.
	3.6	Погрешность полиномиальной интерполяции

	3.7	Интерполяционный многочлен с кратными узлами. 110-	
		грешность интерполяции с кратными узлами	82
	3.8	Минимизация оценки погрешности интерполяции. Много-	
		члены Чебышева и их свойства. Применение для решения	
		задачи минимизации погрешности	84
	3.9	Интерполяционная формула Ньютона для неравных про-	
		межутков. Разделенные разности и их свойства	88
	3.10	Вывод формулы Ньютона для неравных промежутков с	
		помощью разделенных разностей.	90
	3.11	Интерполяционная формула Ньютона для равных проме-	
		жутков. Конечные разности и их связь с разделенными	
		разностями	91
	3.12	Вывод формул Ньютона для интерполирования вперед и	-
	9	назад	93
	3.13	Проблемы глобальной полиномиальной интерполяции. Ин-	0.0
	0.20	терполяция сплайнами. Определение сплайна. Интерполя-	
		ционный сплайн	95
		3.13.1 Глобальная полиномиальная интерполяция	95
		3.13.2 Сходимость глобальной полиномиальной интерпо-	
		ляции	96
		3.13.3 Чувствительность интерполяционного многочлена	
		к погрешностям входных данных	98
		3.13.4 Интерполяция сплайнами	99
	3.14	Интерполяция сплайнами. Построение локального кубиче-	
		ского интерполяционного сплайна	100
	3.15	Интерполяция сплайнами. Глобальные способы построе-	
		ния кубического интерполяционного сплайна	102
		• · · · · · · · · · · · · · · · · · · ·	
4	Диф	рференцирование и интегрирование	103
	4.1	Простейшие формулы численного дифференцирования.	
		Вычисление первой производной. Погрешность формул	104
	4.2	Простейшие формулы численного дифференцирования.	
		Вычисление второй производной. Погрешность формул	108
	4.3	Общий подход к выводу формул численного дифференци-	
		рования с помощью интерполяционного многочлена	109
	4.4	Обусловленность формул численного дифференцирования.	110
	4.5	Численное интегрирование. Простейшие квадратурные	
		формулы. Формула прямоугольников. Погрешность фор-	
		мулы	112
	4.6	Численное интегрирование. Простейшие квадратурные	
		формулы. Формула трапеций. Погрешность формулы	113

5	Спи	сок вопросов	115
		формулы. Формула Симпсона. Погрешность формулы Апостериорные оценки погрешности квадратурных формул. Правило Рунге	
	4.7	Численное интегрирование. Простейшие квадратурные	

1 Основные определения

- 1.1 Предмет вычислительной математики. Метод и задачи вычислительной математики в терминах функционального анализа.
- 1.1.1 Предмет вычислительной математики.

Необходимость разработки методов доведения математических исследований до числового результата привела к созданию отдельной дисциплицы - вычислительной математики.

Определение 1.1: Вычислительная математика-1

Область математики, которая призвана разрабатывать методы доведения до числового результата решений основных задач математического анализа, алгебры и геометрии и пути использования для этой цели современных вычислительных средств.

Определение 1.2: Вычислительная математика-2

Раздел математики, связанный с построением и анализом алгоритмов численного решения математических задач.

Таким образом, **вычислительная математика** помогает решать численные задачи с помощью ЭВМ.

1.1.2 Функциональный анализ.

Определение 1.3: Функциональный анализ

Область математики, изучающая свойства функциональных пространств.

Для определения **задач и методов** вычислительной математики введем важнейшие **понятия функционального анализа**.

Определение 1.4: Понятия функционального анализа

- Функциональные метрические пространства.
- Функции, определенные на функциональных пространствах.

Функциональный анализ рассматирвает элементы более общего (не евклидова) пространства.

1.1.3 Функциональные метрические пространства.

В функциональном анализе вместо евклидовых пространств рассматриваются абстрактные пространства, элементы которых могут иметь самую различную природу.

Определение 1.5: Метрическое пространство

Абстрактное множество, для любых двух элементов x и y которого **опрделено** понятие **расстояния** $\rho(x,y)$.

Лемма 1.1: Свойства расстояния

Расстояние $\rho(x,y)$ должно удовлетворять следующим **свойствам:**

- 1. $\rho(x,y) \ge 0$, причем $\rho(x,y) = 0 \leftrightarrow x$ совпадает с y.
- 2. $\rho(x, y) = \rho(y, x)$.
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y) \ \forall \ x,y,z \in \mathscr{R}$, где: \mathscr{R} метрическое пространство.

Евклидовы пространства с обычным определением расстояния удовлетворяют всем этим условиям. Но могут быть и другие метрические пространства.

Определение 1.6: Пространство непрерывных функций

Пространство C[a,b] - множество всех непрерывных функций на отрезке [a,b].

Функция f(x) непрерывная на $[a,b] \leftrightarrow f(x) \in C[a,b]$.

Пример 1.1: Неевклидово метрическое пространство

Пространства L_p , где $p \geq 1$ и $p \in \mathbb{R}$.

$$L_p = \{ f(x) | f(x) \in \mathbb{C}[a, b], \int_a^b |f(t)|^p dt < \infty \}$$

Расстояние $\rho(x,y)$ в пространстве L_p определяется следующим образом:

$$\rho(x,y) = \left[\int_{a}^{b} |x(t) - y(t)|^{p} dt \right]^{\frac{1}{p}}$$

В каждом метрическом пространстве можно говорить об окрестности данной точки.

Определение 1.7: Окрестность точки

 ε -окрестностью точки x некоторого метрического пространства $\mathscr R$ называется множество точек y таких, что:

$$\rho(x,y) \le \varepsilon$$

Пример 1.2: Окрестность точки в L_p

Окрестность точки в L_p - это совокупность всех функций y(t), принадлежащих L_p , для которых:

$$\int_{a}^{b} |x(t) - y(t)|^{p} dt < \varepsilon^{p}$$

В вычислительной математике часто приходится заменять одну функцию x(t) другой, более удобной для вычислительных целей. Обычно эту вторую функцию берут из ε -окрестности первой.

1.1.4 Функции, заданные на функциональном пространстве.

Определение 1.8: Операторы функционального пространства

Пусть нам даны два абстрактных (функциональных) пространства \mathcal{R}_1 и \mathcal{R}_2 и каждому элементу $x \in \mathcal{R}_1$ поставлен в соответствие элемент $y \in \mathcal{R}_2$. Тогда будем говорить, что нам задан **оператор**:

$$y = A(x)$$

с областью определения \mathscr{R}_1 и областью значений, принадлежащих \mathscr{R}_2 .

В частности, если \mathscr{R}_2 является областью вещественных или комплексных чисел, то оператор A(x) - функционал.

Пример 1.3: Функционал

Оператором (функционалом) в пространстве непрерывных функций на отрезке [a,b] C[a,b] - определенный интеграл:

$$I(x) = \int_{a}^{b} x(t) dt$$

1.1.5 Методы и задачи вычислительной математики.

Определение 1.9: Задачи вычислительной математики

Многие задачи в вычислительной математике могут быть записаны в виде:

$$y = A(x)$$

где x и y принадлежат заданным пространствам \mathscr{R}_1 и \mathscr{R}_2 и A(x) - некоторых заданный оператор.

Далеко не всегда с помощью средств современной математики удается точно решить эти задачи, применяя конечное число шагов. Для этого используют методы вычислительной математики:

Определение 1.10: Основной метод вычислительной математики

Замена пространств \mathcal{R}_1 и \mathcal{R}_1 и \mathcal{R}_2 и оператора A(x) другими пространствами $\overline{\mathcal{R}_1}$ $\overline{\mathcal{R}_2}$ и оператором \overline{A} , более удобными для вичислительных целей.

Замена $\overline{y} = \overline{A(\overline{x})}$ должна удовлетворять следующим неравенствам:

$$\rho(x, \overline{x}) < \varepsilon$$

$$\rho(y, \overline{y}) < \varepsilon$$

Иногда бывает достаточно произвести замену только пространств \mathscr{R}_1 и \mathscr{R}_2 или даже одного из них, или заменить только оператор.

Пример 1.4: Применение метода

 $f(x) \in C[a,b]$. Требуется решить задачу:

$$y = \int_{a}^{b} f(x) \, dx$$

причем интеграл не берется в элементарных функциях.

Тогда возможны два пути:

- 1. Замена пространств: вместо f(x) взять $P_n(x)$ алгебраический многочлен степени n.
- 2. Замена оператора: вместо интегрирования построить интегральную сумму $\sum_{i=1}^{n} f(x_i) \Delta_i$.

Определение 1.11: Вычислительный метод

Метод, используемый для преобразования задачи к виду, удобному для реализации на ЭВМ.

Определение 1.12: Основные вычислительные методы

Основные классы вычислительных методов:

- Методы эквивалентных преобразований (замена исходной задачи другой (более простой), имеющее то же решение).
- **Методы аппроксимации** (аппроксимировать исходную задачу другой, с небольшой погрешностью решения).
- Итерационные методы (через итерационные последовательности и функции).

Резюмируя, можно выделить **основные задачи** вычислительной математики:

Пример 1.5: Основные задачи

- Приближение множеств в функциональных пространствах.
- Приближение операторов, заданных на функциональных пространствах.
- Разработка рациональных алгоритмов и методов решения задач в условиях приминения современных вычислительных средств.

1.2 Источники и классификация погрешностей результатов численного решения задач. Приближенные числа. Абсолютная и относительная погрешности. Правила записи приближенных чисел.

1.2.1 Источники и классификация погрешностей

При решении прикладной задачи с использованием ЭВМ получить точное решение задачи практически невозможно. Получаемое **решение** почти **всегда содержит погрешность**, т.е. является приближенным.

Определение 1.13: Источники погрешности решения

Пусть у - точное значение величины, а y^* - ее приближенное значение, тогда:

- 1. **Неустранимая погрешность:** $\delta_{\rm H} y^*$ математическая модель и исходные данные вносят в решение ошибку, которая не может быть устранена далее.
- 2. Ошибка метода решения: $\delta_{\scriptscriptstyle \rm M} y^*$ источник данной погрешности метод решения задачи.
- 3. **Вычислительная погрешность:** $\delta_{\text{в}}y^*$ определяется характеристикой машины ЭВМ.

Таким образом, полная погрешность результата решения задачи на ЭВМ складывается из трех составляющих:

$$\delta y^* = \delta_{\scriptscriptstyle \rm H} y^* + \delta_{\scriptscriptstyle \rm M} y^* + \delta_{\scriptscriptstyle \rm B} y^*$$

На практике исходят из того, что:

- Погрешность метода должна быть на порядок меньше неустранимой погрешности.
- Величина вычислительной ошибки была хотя бы на порядок меньше величины погрешности метода.

1.2.2 Приближенные числа. Абсолютная и относительная погрешности.

Пусть - точное (неизвестное) значение некоторой величины, a^* - приближенное (известное) значение той же величины (приближенное число).

Определение 1.14: Абсолютная погрешность

Модуль разности приближенного и точного значения некоторой величины:

$$\Delta(a^*) = |a - a^*|$$

Определение 1.15: Относительная погрешность

Для соотоншения погрешности величины и ее значения вводят понятие **относительной погрешности**:

$$\delta(a^*) = \frac{|a - a^*|}{|a|} = \frac{\Delta(a^*)}{|a|}$$

Т.к. значение a неизвестно, то непосредственное вычисление величин $\Delta(a^*)$ и $\delta(a^*)$ по предыдущим формулам невозможно. Следовательно, вводят верхние границы погрешностей.

Определение 1.16: Верхние границы погрешностей

 $\overline{\Delta(a^*)}$ и $\overline{\delta(a^*)}$ - верхние границы абсолютной и относительной погрешностей соответственно:

$$|a - a^*| \le \overline{\Delta(a^*)}$$

$$\frac{|a - a^*|}{|a|} \le \overline{\delta(a^*)}$$

Причем, если величина $\Delta(a^*)$ известна, то:

$$\overline{\delta(a^*)} = \frac{\overline{\Delta(a^*)}}{|a|}$$

Аналогично, если известна $\overline{\delta(a^*)}$:

$$\overline{\Delta(a^*)} = |a| \cdot \overline{\delta(a^*)}$$

1.2.3 Правила записи приближенных чисел.

Пусть приближенное число a^* задано следующим образом:

$$a^* = \alpha_n \alpha_{n-1} \dots \alpha_0 \beta_1 \beta_2 \dots \beta_m$$

где $\alpha_n\alpha_{n-1}\dots\alpha_0$ - целая часть, $\beta_1\beta_2\dots\beta_m$ - дробная.

Определение 1.17: Значащие цифры

Все цифры в записи числа a^* , начиная с первой ненулевой слева.

Определение 1.18: Верная цифра

Значащую цифру называют верной, если абсолютная погрешность числа не превосходит единицы разряда, соответствующей этой цифре.

Пример 1.6: Значащие и верные цифры

Пусть $a^* = 0.010300$, $\Delta(a^*) = 2 \cdot 10^{-6}$:

- 1. Значащие цифры: 10300
- 2. Верные цифры: 1030

Лемма 1.2: Связь числа верных цифр с отностительной погрешностью

Если число a^* имеет ровно N верных цифр, то $\delta(a^*) \sim 10^{-N}$.

Лемма 1.3: Правило записи

Неравенство верхней границы абсолютной погрешности эквивалентно следующему:

$$a^* - \overline{\Delta a^*} \le a \le a^* + \overline{\Delta a^*}$$

Тот факт, что число a^* является приближенным значением числа a с абслоютной точностью $\varepsilon = \overline{\Delta(a^*)}$ принято записывать в виде:

$$a = a^* \pm \overline{\Delta(a^*)}$$

Аналогично, можно получить следующие неравенства:

$$a^*(a - \overline{\delta a^*}) \le a \le a^*(a + \overline{\delta a^*})$$

Тот факт, что число a^* является приближенным значением числа a с относительной точностью $\varepsilon = \overline{\delta(a^*)}$ принято записывать в виде:

$$a = a^* (1 \pm \overline{\delta(a^*)})$$

Как правило, числа a^* , $\overline{\Delta(a^*)}$ и $\overline{\delta(a^*)}$ указывают с одинаковым числом цифр после десятичной точки.

Если число a^* приводится в качестве результата **без указания величины погрешности**, то принято считать, что все его значащие цифры являются **верными**.

1.2.4 Округления.

Определение 1.19: Округление методом усечения

Отбрасываем все цифры, расположенные слева от n-ой значащей цифры.

Определение 1.20: Округление по дополнению

Если первая слева от отбрасываемых цифр меньше 5, то сохраняемые цифры остаются без изменения.

Иначе: в младший сохраняемый разряд добавляется единица.

Границы абсолютной и относительной **погрешностей** принято округлять **в сторону увеличения**.

- 1.3 Погрешности арифметических операций над приближенными числами. Погрешность функции одной и многих переменных.
- 1.3.1 Погрешности арифметических операций над приближенными числами.

Теорема 1.1: Абсолютная погрешность сложения/вычитания

Абсолютная погрешность алгебраической суммы или разности не превосходит суммы абсолютных погрешностей слагаемых, т.е:

$$\Delta(a^* \pm b^*) \le \Delta(a^*) + \Delta(b^*)$$

Доказательство.

$$\Delta(a^* \pm b^*) = |(a \pm b) - (a^* \pm b^*)| = |(a - a^*) \pm (b - b^*)| \le \Delta(a^*) + \Delta(b^*)$$

П

Следстиве 1.1: Абсолютная погрешность сложения/вычитания

В силу того, что $\Delta(a^*) \leq \overline{\Delta(a^*)}$, получаем: $\overline{\Delta(a^* \pm b^*)} = \overline{\Delta(a^*)} + \overline{\Delta(b^*)}$.

Теорема 1.2: Относительная погрешность сложения/вычитания

Пусть a и b: ab > 0. Тогда справедливы неравенства:

$$\delta(a^* + b^*) \le \delta_{\max}, \ \delta(a^* - b^*) \le \nu \delta_{\max}$$

где:
$$\delta_{\max} = \max\{\delta(a^*), \, \delta(b^*)\}, \, \nu = \frac{|a+b|}{|a-b|}$$

Доказательство.

$$|a+b|\delta(a^*+b^*) = \Delta(a^*+b^*) \le \Delta(a^*) + \Delta(b^*)$$
$$|a|\delta(a^*) + |b|\delta(b^*) \le |a|\delta_{\max} + |b|\delta_{\max}$$
$$(|a|+|b|)\delta_{\max} = |a+b|\delta_{\max}$$

T.e.
$$\delta(a^* + b^*) \leq \delta_{\max}$$

$$|a - b|\delta(a^* - b^*) = \Delta(a^* - b^*) \le \Delta(a^*) + \Delta(b^*) \le |a + b|\delta_{\max}$$

T.e. $\delta(a^* - b^*) \le \frac{|a + b|}{|a - b|}\delta_{\max} = \nu\delta_{\max}$

Итог: при вычислении разности близких числе точность теряется примерно в $\nu=\frac{|a+b|}{|a-b|}$ раз.

Теорема 1.3: Относительная погрешность умножения/деления

Для относительных погрешностей произведения и частного приближенных чисел верны оценки:

$$\delta(a^*b^*) \le \delta(a^*) + \delta(b^*) + \delta(a^*)\delta(b^*)$$
$$\delta(\frac{a^*}{b^*}) \le \frac{\delta(a^*) + \delta(b^*)}{1 - \delta(b^*)}$$

Доказательство.

$$|ab|\delta(a^*b^*) = \Delta(a^*b^*) = |ab - a^*b^*|$$

$$|(a-a^*)b+(b-b^*)a-(a-a^*)(b-b^*)| \le |a-a^*|\cdot|b|+|b-b^*|\cdot|a|+|a-a^*|\cdot|b-b^*|$$

$$\Delta(a^*)|b|+\Delta(b^*)|a|+\Delta(a^*)\Delta(b^*)=c$$

Разделим c на |ab|:

$$\delta(a^*b^*) = \delta(a^*) + \delta(b^*) + \delta(a^*)\delta(b^*)$$

$$\begin{split} |\frac{a}{b}|\delta(\frac{a^*}{b^*}) &= \Delta(\frac{a^*}{b^*}) = |\frac{a}{b} - \frac{a^*}{b^*}| = |\frac{ab^* - a^*b}{bb^*}| = c \\ |b^*| &= |b - (b - b^*)| = |b| \cdot |1 - \frac{b - b^*}{b}| \ge |b| \cdot (1 - \delta(b^*)) \\ c &\leq \frac{|ab^* - a^*b|}{|b|^2(1 - \delta(b^*))} \end{split}$$

Разделим c на $\left|\frac{a}{b}\right|$:

$$\delta(\frac{a^*}{b^*}) \le \frac{\delta(a^* + b^*)}{1 - \delta(b^*)}$$

Следстиве 1.2: Относительная погрешность умножения/деления

Если $\delta(a^*) << 1$ и $\delta(b^*) << 1$, то:

$$\overline{\delta(a^*b^*)} \approx \overline{\delta(a^*)} + \overline{\delta(b^*)}$$

$$\overline{\delta(\frac{a^*}{b^*})} \approx \overline{\delta(a^*)} + \overline{\delta(b^*)}$$

Общий итог:

- Выполнение арифметических операций над приближенными числами сопровождается потерей точности.
- Наибольшая потеря точности может произойти при вычитании близких чисел одного знака.
- Единственная операция, при которой потеря не происходит, это сложение чисел одного знака.

1.3.2 Погрешность функции одной и многих переменной.

Теорема 1.4: Погрешность функции одной переменной

Пусть функция f(x) - дифференцируема в окрестности точки x^* . Тогда формулы для границ погрешностей:

$$\overline{\Delta(y^*)} \approx |f'(x^*)| \overline{\Delta(x^*)}$$

$$\overline{\delta(y^*)} \approx \nu^* \overline{\delta(x^*)}$$

$$\overline{\delta(y^*)} \approx \nu \overline{\delta(x^*)}$$

где
$$\nu^* = |x^*| \frac{f'(x^*)}{f(x^*)}, \ \nu = |x| \frac{f'(x)}{f(x)}$$

Доказательство. Частный случай формулы погрешности функции многих переменных.

$$\frac{\overline{\Delta(y^*)}}{|f(x)|} \approx \frac{|f'(x^*)|}{|f(x)|} \overline{\Delta x^*}$$

$$\overline{\delta(y^*)} \approx \frac{|f'(x^*)| \cdot |x|}{|f(x)|} \overline{\frac{\Delta x^*}{|x|}} \to \overline{\delta(y^*)} \approx \frac{|f'(x^*)| \cdot |x|}{|f(x)|} \overline{\delta(x^*)}$$

Теорема 1.5: Погрешность функции многих переменных

Пусть $f(\vec{x}) = f(x_1, x_2, \dots, x_m)$ - дифференцируемая в области G функция m переменных, вычисление которой производится при приближенно заданных аргументах $x_1^*, x_2^*, \dots, x_m^*$. Тогда:

$$\Delta(y^*) \le \sum_{j=1}^{m} \max_{[x,x^*]} \{|f_{x_j}^{'}|\} \Delta(x_j^*)$$

Доказательство.

$$f(x) - f(x^*) = \sum_{j=1}^{m} f'_{x_j}(\overline{x})(x_j - x_j^*), \, \overline{x} \in [x, x^*]$$
$$|f(x) - f(x^*)| = |\sum_{j=1}^{m} f'_{x_j}(\overline{x})(x_j - x_j^*)|$$
$$|f(x) - f(x^*)| \le |\sum_{j=1}^{m} \max_{[x, x^*]} \{f'_{x_j}\}(x_j - x_j^*)|$$
$$\Delta(y^*) \le \sum_{j=1}^{m} \max_{[x, x^*]} \{|f'_{x_j}|\} \Delta(x^*)$$

Следстиве 1.3: Погрешность функции многих переменных

Если $x^* \approx x$, то можно положить:

$$\overline{\Delta(y^*)} pprox \sum_{j=1}^m |f_{x_j}^{'}(x)| \overline{\Delta(x_j^*)}$$
 и $\overline{\Delta(y^*)} pprox \sum_{j=1}^m |f_{x_j}^{'}(x^*)| \overline{\Delta(x_j^*)}$

Тогда:

$$\overline{\delta(y^*)} \approx \sum_{j=1}^m \nu_j \overline{\delta(x_j^*)} \text{ и } \overline{\delta(y^*)} \approx \sum_{j=1}^m \nu_j^* \overline{\delta(x_j^*)}$$

где:

$$\nu_j = \frac{|x_j| \cdot |f'_{x_j}(x)|}{|f(x)|}, \ \nu_j^* = \frac{|x_j^*| \cdot |f'_{x_j}(x^*)|}{|f(x^*)|}$$

1.4 Корректность вычислительной задачи. Примеры корректных и некорректных задач.

Определение 1.21: Вычислительная задача

Постановка вычислительной задачи включает в себя:

- 1. Задание множества допустимых входных данных X.
- 2. Задание множества возможных решений Y.

Цель вычислительной задачи состоит в нахождении решения $y \in Y$ по заданному входному $x \in X$.

Определение 1.22: Корректность вычислительной задачи

Вычислительная задача называется корректной, если выполнены следующие все требования:

- 1. Решение $y \in Y$ **существует** при любых входных данных $x \in X$.
- 2. Решение единственно.
- 3. Решение **устойчиво** по отношению к малым возмущениям входных данных (решение зависит от входных данных непрерывным образом: $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 \; \forall x^* \colon \Delta x^* < \delta \to y^* \colon \Delta(y^*) < \varepsilon$).

Пример 1.7: Корректная вычислительная задача

Решение квадратного уравнения: $x^2 + bx + c = 0$ (a = 1).

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

- Наличие решения: в области $\mathbb R$ должно выполняться неравенство: $b^2-4ac \geq 0$.
- Единственность решения: два корня можно представить в виде вектора $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
- Устойчивость решения: корни являются непрерывными функциями коэффициентов b и c.

Вычисление определенного интеграла: $I = \int_a^b f(x) \, dx \ (f(x) \in C[a,b]).$

$$\Delta(f^*(x)) = \max_{x \in [a,b]} |f(x) - f^*(x)|$$
 и $I^* = \int_a^b f^*(x) \, dx$
$$\Delta(I^*) = |I - I^*|$$

$$\left| \int_{a}^{b} f(x) \, dx - \int_{a}^{b} f^{*}(x) \, dx \right| \leq \int_{a}^{b} \left| f(x) - f^{*}(x) \right| \, dx \leq (b - a) \cdot \Delta(f^{*}(x))$$

Значит, $\forall \varepsilon > 0$ неравенство $\Delta(I^*) < \varepsilon$ будет выполено, если потребовать выполнения условия $\Delta(f^*(x)) < \delta = \frac{\varepsilon}{b-a}$.

Пример 1.8: Некорректная вычислительная задача

Нахождение ранга матрицы в общем случае: $A \in M_n(R)$

Пусть
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $A_{\varepsilon} = \begin{pmatrix} 1 & 0 \\ 0 & \varepsilon \end{pmatrix}$. Тогда:

$$rk(A) = 1, rk(A_{\varepsilon}) = 2$$

Т.е. задача неустойчива.

Вычисление производной u(x) = f'(x) приближенно заданной функции.

Пусть $f \in C^1[a,b], f^*(x)$ - приближенная функция, $u^*(x) = (f^*)'(x)$. Тогда:

$$\Delta(f^*(x)) = \max_{x \in [a,b]} |f(x) - f^*(x)|$$

$$\Delta(u^*(x)) = \max_{x \in [a,b]} |u(x) - u^*(x)|$$

Если взять $f^*(x) = f(x) + \alpha \sin(\frac{x}{\alpha^2})$, где 0 < alpha << 1. Тогда:

$$u^*(x) = u(x) + \alpha^{-1}\cos(\frac{x}{\alpha^2})$$

Следовательно:

$$\Delta(u^*) = \alpha^{-1}, \ \Delta(f^*) = \alpha$$

Значит, сколь угодно малой погрешности задания функции f(x) может отвечать сколь угодно большая погрешность производной f'(x).

1.5 Обусловленность вычислительной задачи. Примеры хорошо и плохо обусловленных задач.

На пракстике погрешность исходных данных не всегда сколь угодно малая, точность их ограничена.

Определение 1.23: Обусловленность вычислительной задачи

Чувствительность решения задачи к малым погрешностям исходных данных.

Задачу называют:

- хорошо обусловленной, если малым погрешностям исходных данных отвечают малые погрешности решения.
- плохо обусловленной, если возможны сильные изменения решения при малых погрешностях исходных данных.

Определение 1.24: Число обусловленности

Коэффициент возможного возрастания погрешностей в решении по отношению к вызвавшим их погрешностям входных данных.

Обычно под числом обусловленности понимают одну из величин $(\nu_{\Delta}, \nu_{\delta})$:

- Абсолютное число обусловленности: $\Delta(y^*) \le \nu_{\Delta} \Delta(x^*)$.
- Относительное число обусловленности: $\delta(y^*) \leq \nu_\delta \delta(x^*)$.

Для плохо обусловленной задачи u >> 1.

Если $\nu_{\delta} \approx 10^N$, то порядок N показывает число верных цифр, которое может быть утеряно в результате по сравнению с числом верных цифр входных данных.

Определение 1.25: Обусловленность задачи вычисления функции одной переменной

Для задачи, состоящей в вычислении по заданному x значения y=f(x) дифференцируемой функции f(x), числа обусловленности примут вид:

$$\nu_{\Delta} \approx |f'(x)|$$

$$\nu_{\delta} \approx \frac{|x| \cdot |f'(x)|}{|f(x)|}$$

Пример 1.9: Обусловленность вычислительных задач

Задача вычисления значения функции: $y = \exp(x)$.

$$\nu_{\delta} = |x|$$

При реальных вычислениях эта величина не может быть очень большой (в противном случае переполнение).

Задача вычисления значения функции: $y = \sin(x)$.

$$\nu_{\Delta} = |\cos(x)| \le 1, \ \nu_{\delta} = |\cot(x)| \cdot |x|$$

При $x \to \pi k, \ \nu_\delta \to \infty$. Следовательно, задача плохо обусловлена.

Задача вычисления определенного интеграла: $I = \int_a^b f(x) \, dx$.

$$\Delta(I^*) = |I - I^*| = |\int_a^b f(x) - f^*(x) \, dx| \le \int_a^b |f(x) - f^*(x)| \, dx$$

$$\delta(I^*) \le \frac{\int_a^b |f(x) - f^*(x)| \, dx}{|\int_a^b f(x) \, dx|} \le \frac{\int_a^b \left| \frac{f(x) - f^*(x)}{f(x)} \right| \cdot |f(x)| \, dx}{|\int_a^b f(x) \, dx|}$$

$$\frac{\int_a^b \delta(f^*(x))|f(x)| \, dx}{|\int_a^b f(x) \, dx|} \le \frac{\int_a^b |f(x)| \, dx}{|\int_a^b f(x) \, dx|} \cdot \overline{\delta(x)}$$

Таким образом, $\delta(I^*) \leq \frac{\int_a^b |f(x)| \, dx}{|\int_a^b f(x) \, dx|} \cdot \overline{\delta(x)}$.

Значит, при знакопостоянной функции f(x), $\nu_{\delta} \approx 1$. Иначе: $\nu_{\delta} > 1$ (если f(x) сильно осцилированная).

1.6 Вычислительные алгоритмы. Корректность и обусловленность вычислительных алгоритмов.

Определение 1.26: Вычислительный алгоритм

Вычислительный метод, доведенный до степени детализации (точное предписание действий), позволяющей реализовать его на ЭВМ.

Определение 1.27: Корректность вычислительных алгоритмов

Вычислительный алгоритм - корректный, если выполнены условия:

- Алгоритм за конечное число элементарных для ЭВМ операций (сложение, вычитание, умножение, деление) приводит к достижению результата.
- Алгоритм устойчив по отношению к малым погрешностям исходных данных.
- Алгоритм **вычислительно устойчив**, т.е: погрешность решения стремится к нулю, если машинный эпсилон стремится к нулю.

Определение 1.28: Обусловленность вычислительных алгоритмов

Отражает чувствительность результата работы алгоритма к малым, но неизбежным ошибкам округления.

Алгоритм называют:

- хорошо обусловленным, если малые относительные погрешности округления (характеризуемые машинной точностью ε_{M}) приводят к малой относительной вычислительной погрешности $\delta(y^*)$ результата y^* .
- плохо обусловленным, если вычислительная погрешность может быть недопустимо большой.

Определение 1.29: Число обусловленности вычислительного алгоритма

Если $\delta(y^*)$ и ε_{M} связаны неравенством $\delta(y^*) \leq \nu_{\mathrm{A}} \varepsilon_{\mathrm{M}}$, то число ν_{A} называют **числом обусловленности** вычислительного алгоритма.

Для плохо обусловленных алгоритмов $u_{
m A}>>1$.

2 Решение нелинейных уравнений, СЛАУ

- 2.1 Постановка задачи решения нелинейных уравнений. Основные этапы решения задачи.
- 2.1.1 Задача решения нелинейного уравнения.

Определение 2.1: Задача решения нелинейного уравнения

Нахождение корня - \overline{x} такого, что: $f(\overline{x}) = 0$.

Определение 2.2: Простой/кратный корень

Корень \overline{x} уравнения f(x) называется:

- Простым: если $f'(\overline{x}) \neq 0$.
- **Кратным степени m**: если $f^{(k)}(\overline{x})=0$ для $k\in \overline{[1,\ldots,m-1]}$ и $f^{(m)}(\overline{x})\neq 0.$

Геометрически корень \overline{x} соответствует точке пересечения графика функции y = f(x) с осью Ох.

Корень \overline{x} является простым, если график пересекает ось Ох под ненулевым углом, и кратным, если пересечение происходит под нулевым углом.

Рис. 2.1

Виды корней:

- $a) x_1^* кратный корень;$
- б) x_2^* простой корень;
- $(6) x_3^* вырожденный корень.$

Рис. 1: Пример корней уравнения

Определение 2.3: Основные этапы решения нелинейного уравнения

Решение задачи вычисления корней нелинейного уравнения, как правило, осуществляется в два этапа:

- Локализация корней.
- Итерационное уточнение корней.

2.1.2 Локализация корней.

Определение 2.4: Отрезок локализации

Отрезок [a,b], содержащий только один корень \overline{x} , называют **отрезком локализации**.

Цель этапа локализации: для каждого из корней указать отрезок локализации (длину отрезка стараются по возможности сделать минимальной).

Для локализации корней широко применяют построение таблиц значений функции f(x) вида $y_i = f(x_i), i = 1, 2, ..., n$. При этом способе локализации, о наличии на отрезке $[x_{i-1}, x_i]$ корня судят по перемене знака функции на концах отрезка.

Теорема 2.1: Больцано-Коши

Пусть функция f(x) непрерывна на отрезке [a,b] и принимает на его концах значения разных знаков, т.е. $f(a)\cdot f(b)<0$.

Тогда отрезок [a,b] содержит по крайне мере один корень уравнения f(x)=0.

2.1.3Итерационное уточнение корней.

Основная идея: использовать итерационный метод, что позволит построить последовательность $x^{(0)}, x^{(1)}, \ldots, x^{(n)}, \ldots$ приближений к корню \overline{x} .

Определение 2.5: Виды итерационных методов

Итерационный метод может быть:

- одношаговым: для вычисления очередного приближения $x^{(n+1)}$ используется только одно предыдущее значение $x^{(n)}$.
- k-шаговым: для вычисления $x^{(n+1)}$ используется k предыдущих приближений $x^{(n-k+1)}, x^{(n-k+2)}, \ldots, x^{(n)}$.

Определение 2.6: Итерационная функция

Итерационную последовательность $x^{(0)}, x^{(1)}, \dots, x^{(n)}, \dots$ строится через итерационную функцию:

$$\phi(x^{(0)}) = x^{(1)}$$

$$\phi(x^{(1)}) = x^{(2)}$$

$$\phi(x^{(n-1)}) = x^{(n)}$$

2.2 Скорость сходимости итерационных методов уточнения решения нелинейного уравнения.

Определение 2.7: Скорость сходимости

Говорят, что метод сходится со скоростью **геометрической прогрес- сии**, знаменатель которой q < 1, если для всех n справедливо:

$$|x^{(n)} - \overline{x}| \le c_0 q^n$$

Пусть существует σ -окрестность корня \overline{x} такая, что если приближение $x^{(n)}$ принадлежит этой окрестности, то справедлива оценка:

$$|x^{(n+1)} - \overline{x}| \le C|x^{(n)} - \overline{x}|^p$$

где C > 0 и $p \ge 1$ - постоянные. Тогда:

- Если p=1 и C<1, то метод обладает **линейной** скоростью сходимости в указанной σ -окрестности корня.
- Если p > 1, то метод обладает **сверхлинейной** скоростью сходимости: при p = 2 **квадратичной**, при p = 3 **кубической**.

Лемма 2.1: Связь линейной и геометрической сходимости

Пусть одношаговый итерационный метод обладает линейной скоростью сходимости в некоторой σ -окрестности корня \overline{x} . Тогда $\forall x^{(0)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$:

- Итерационная последовательность $x^{(n)}$ не выходит за пределы этой окрестности.
- Метод сходится со скоростью геометрической прогрессии со знаменателем q=C.

А также имеет место следующая оценка:

$$|x^{(n)} - \overline{x}| \le q^n |x^{(0)} - \overline{x}|, \ n \ge 0$$

Доказательство. $q < 1 \to x^{(n)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$. Тогда $x^{(n)}$ сходися к \overline{x} . Справедливость оценки установим через индукцию:

При n=0:

$$|x^{(0)} - \overline{x}| \le |x^{(0)} - \overline{x}|$$

При переходе от n=m-1 к n=m:

$$|x^{(m)} - \overline{x}| \le q|x^{(m-1)} - \overline{x}| \le q^m|x^{(0)} - \overline{x}|$$

- 2.3 Обусловленность задачи решения нелинейных уравнений. Понятие об интервале неопределенности. Правило Гарвика.
- 2.3.1 Обусловленность задачи решения нелинейных уравнений.

Пусть \overline{x} - корень уравнения, f(x) - входные данные для задачи вычисления корня \overline{x} , $f^*(x)$ - приближенные значения функции.

Определение 2.8: Обусловленность задачи решения нелинейных уравнений

Нельзя ожидать, что в окрестности корня относительная погрешность $\delta(f^*(x))$ окажется малой, например:

$$y = \sin(x)$$

в окрестности корней $x = \pi \cdot k, k \in \mathbb{Z}, \delta(f^*(x)) = |x| \cdot \cot(x) \to \infty.$

Реально рассчитывать можно лишь на то, что малой окажется абсолютная погрешность вычисления значений функции:

$$\Delta(f^*(x)) \approx |f'(x)| = |\cos(x)|$$

2.3.2 Понятие об интервале неопределенности. Правило Гарвика.

Определение 2.9: Интервал неопределенности

Окрестность корня $(\overline{x} - \overline{\varepsilon}, \overline{x} + \overline{\varepsilon})$, в котором невозможно точно определить знак функции f(x): знак вычисленного значения $f^*(x)$ может не совпадать со знаком f(x) для $x \in (\overline{x} - \overline{\varepsilon}, \overline{x} + \overline{\varepsilon})$.

Лемма 2.2: Оценка $\bar{\varepsilon}$ для интервала неопределенности

Пусть корень \overline{x} - простой. Тогда для близких к \overline{x} значений x справедливо приближенное равенство:

$$f(x) \approx f(\overline{x}) + f'(\overline{x})(x - \overline{x}) = f'(\overline{x})(x - \overline{x})$$

В интервале $(\overline{x} - \overline{\varepsilon}, \overline{x} + \overline{\varepsilon}), |f(x)| < \overline{\Delta(f^*(x))}$. Следовательно:

$$|f'(x)(x-\overline{x})| < \overline{\Delta(f^*(x))}$$

$$\text{Mtor: } \overline{x} - \frac{\overline{\Delta(f^*(x))}}{|f'(x)|} < x < \overline{x} + \frac{\overline{\Delta(f^*(x))}}{|f'(x)|} \to \overline{\varepsilon} = \frac{1}{|f'(x)|} \cdot \overline{\Delta(f^*(x))}.$$

Определение 2.10: Число обусловленности задачи нахождения корня

 $u_{\Delta} = \frac{1}{|f'(\overline{x})|}$ - число обусловленности задачи нахождения корня.

Определение 2.11: Правило Гарвика

$$q^{(n)} = \frac{|x^{(n)} - x^{(n-1)}|}{|x^{(n-1)} - x^{(n-2)}|}$$

В интервале неопределенности $q^{(n)} > 1$, т.е. начинается разболтка - хаотическое поведение итерационной последовательности.

В этой ситуации вычисления следует прекратить и принять правильное решение. Лучшее из последовательностей приближений к решению становится $x^{(n-1)}$.

Метод бисекции решения нелинейных уравне-2.4 ний. Скорость сходимости. Критерий окончания.

2.4.1Описание метода.

По сравнению с другими методами метод бисекции сходится довольно медленно. Однако он очень прост и непритязателен; для его применения достаточно, чтобы:

- Выполнялось неравенство: $f(a)f(b) \le 0$.
- Функция f(x) была непрерывна.
- Верно определялся знак функции.

Метод гарантирует точность приближения, примерно равную радиусу интервала неопределенности $\overline{\varepsilon}$.

Определение 2.12: Описание метода

Пусть требуется найти с заданной точностью ε корень \overline{x} , а также задан отрезок локализации $[a^{(0)},b^{(0)}]$ такой, что: $f(a^{(0)})\cdot f(b^{(0)})<0$, тогда:

$$x^{(0)} = \frac{a^{(0)} + b^{(0)}}{2}$$

- начальное приближенное значение корня. Погрешность данного приближения: $\frac{b^{(0)}-a^{(0)}}{2}$

В качестве $[a^{(1)},b^{(1)}]$ берут тот из отрезков $[a^{(0)},x^{(0)}]$ и $[x^{(0)},b^{(0)}]$, на концах которого выполняется условие: $f(a^{(1)})f(b^{(1)}) < 0$. Середина полученного отрезка:

$$x^{(1)} = \frac{a^{(1)} + b^{(1)}}{2}$$

- следующее приближение к корню с погрешностью: $\frac{b^{(1)}-a^{(1)}}{2}=\frac{b^{(0)}-a^{(0)}}{2^2}$

На очередной (n+1) итерации происходит следующее:

- Вычисляется $f(x^{(n)})$.
- Если $f(a^{(n)})f(x^{(n)}) \leq 0$, то в качестве отрезка локализации $[a^{(n+1)},b^{(n+1)}]$ принимается отрезок $[a^{(n)},x^{(n)}]$, иначе $[x^{(n)},b^{(n)}]$.
 Вычисляется $x^{(n+1)}=\frac{a^{(n+1)}+b^{(n+1)}}{2}$.

Если $\frac{b-a}{2^{n+1}} < \varepsilon$, то останавливаемся: $\overline{x} \approx \frac{a^{(n-1)} + b^{(n-1)}}{2}$.

2.4.2 Скорость сходимости.

Лемма 2.3: Скорость сходимости

Середина n-го отрезка - точка $x^{(n)} = \frac{a^{(n)} + b^{(n)}}{2}$ дает приближение к корню \overline{x} , имеющее оценку погрешности:

$$|x^{(n)} - \overline{x}| \le \frac{b^{(n)} - a^{(n)}}{2} = \frac{b - a}{2^{n+1}}$$

Получаем: метод бисекции сходится со скоростью геометрической прогрессии со знаменателем $q=\frac{1}{2}.$

2.4.3 Критерий окончания.

Лемма 2.4: Критерий окончания

Итерации следовательно вести до тех пор, пока не будет выполнено неравенство:

$$(b^{(n)} - a^{(n)}) < 2\varepsilon$$

При его выполнении можно принять $x^{(n)}$ за приближение к корню с точностью ε .

2.5 Метод простой итерации. Скорость сходимости. Критерий окончания. Приведение к виду, удобному для итераций.

2.5.1 Описание метода.

Геометрически, метод можно представить следующим образом:

Рис. 2: Геометрическое представление метода простых итераций

Определение 2.13: Описание метода

Основная идея метода - привести нелинейное уравнение к виду, удобному для итерации:

$$x = \phi(x)$$

где функция $\phi(x)$ - итерационная функция.

В методе простых итераций $\phi(x)=x-\alpha f(x)$, где α - какая-то константа, f(x) - исходная функция.

Убедимся, что корень $\phi(x)$ - корень f(x):

$$\phi(\overline{x}) = \overline{x} - \alpha f(\overline{x}) = \overline{x}$$

Пусть $x^{(0)} \in [a,b]$ - начальное приближение корня, тогда:

$$x^{(1)} = \phi(x^{(0)})$$

$$x^{(2)} = \phi(x^{(1)})$$

. . .

$$x^{(n+1)} = \phi(x^{(n)}), n \ge 0$$

. . .

2.5.2 Скорость сходимости.

Рис. 3: Сходимость метода простых итераций

Как видно на рисунках, в случаях (а), (б) - метод сходится, а в (в) и (г) - расходится. Это связано с тем, что в (а) и (б) $|\phi'(x)| < 1$, а в (в) и (г) наоборот, $|\phi'(x)| > 1$.

Теорема 2.2: Об априорной погрешности

Пусть в некоторой σ -окрестности корня \overline{x} функция $\phi(x)$ дифференцируема и удовлетворяет неравенству:

$$|\phi'(x)| \le q$$

где $0 \le q < 1$ - постоянная.

Тогда $\forall x^{(0)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$ итерационная последовательность:

- Не выходит за пределы этой окрестности.
- Метод сходится со скоростью геометрической прогрессии.

А также справедлива следующая оценка погрешности:

$$|x^{(n)} - \overline{x}| \le q^n |x^{(0)} - \overline{x}|$$

Доказательство. По определению:

$$x^{(n+1)} = \phi(x^{(n)})$$

$$\overline{x} = \phi(\overline{x})$$

Тогда:

$$x^{(n+1)} - \overline{x} = \phi(x^{(n)}) - \phi(\overline{x}) = \phi'(\xi^{(n)})(x^{(n)} - \overline{x})$$

Причем:

$$\xi^{(n)} \in [x^{(n)}, \overline{x}]$$

Значит:

$$|x^{(n+1)} - \overline{x}| = |\phi'(\xi^{(n)})| \cdot |x^{(n)} - \overline{x}| \le q \cdot |x^{(n)} - \overline{x}|$$

Следовательно: интерполяционная последовательность $x^{(0)}, x^{(1)}, \dots, x^{(k)}, \dots$ сходится линейно к \overline{x} (отсюда получаем, что последовательность сходится со скоростью геометрической последовательности со знаменателем q).

Априорные оценки погрешности позволяют еще до вычислений дать некоторое заключение о качестве метода.

2.5.3 Критерий окончания.

Теорема 2.3: Об апостериорной погрешности

Пусть в некоторой σ -окрестности корня \overline{x} функция $\phi(x)$ дифференцируема и удовлетворяет неравенству:

$$|\phi'(x)| \le q$$

где $0 \le q < 1$ - постоянная.

Тогда $\forall x^{(0)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$ верна следующая апостериорная оценка погрешности:

$$|x^{(n)} - \overline{x}| \le \frac{q}{1-q} |x^{(n)} - x^{(n-1)}|, \ n \ge 1$$

Доказательство.

$$x^{(n)} - \overline{x} = \phi(x^{(n-1)}) - \phi(\overline{x}) = \phi'(\xi^{(n)})(x^{(n-1)} - \overline{x})$$

Пусть:

$$\phi'(\xi^n) = \alpha^{(n+1)}$$

Тогда:
$$x^{(n)} - \overline{x} = \alpha^{(n+1)}(x^{(n+1)} - \overline{x})$$

$$\alpha^{(n+1)}(x^{(n-1)} - x^{(n)} + x^{(n)} - \overline{x}) = \alpha^{(n+1)}(x^{(n-1)} - x^{(n)}) + \alpha^{(n+1)}(x^{(n)} - \overline{x})$$
 Значит:
$$|x^{(n)} - \overline{x}| \leq |\alpha^{(n+1)}| \cdot |x^{(n-1)} - x^{(n)}| + |\alpha^{(n+1)}| \cdot |x^{(n)} - \overline{x}|$$

$$(1 - |\alpha^{(n+1)}|) \cdot |x^{(n)} - \overline{x}| \leq |\alpha^{(n+1)}| \cdot |x^{(n-1)} - x^{(n)}|$$

$$|x^{(n)} - \overline{x}| \leq \frac{|\alpha^{(n+1)}|}{1 - |\alpha^{(n+1)}|} \cdot |x^{(n-1)} - x^{(n)}|$$
 Т.к.
$$\begin{cases} |\alpha^{(n+1)}| \leq q \\ 1 - |\alpha^{(n+1)}| \geq 1 - q \end{cases}$$
 то:
$$|x^{(n)} - \overline{x}| \leq \frac{q}{1 - q} \cdot |x^{(n-1)} - x^{(n)}|$$

Если величина q известна, то неравенство выше дает эффективный метод контроля погрешности и можно сформулировать следующий критерий окончания итерационного процесса.

Следстиве 2.1: Критерий остановки

Вычисления следует вести до выполнения неравенства:

$$\frac{q}{1-q}|x^{(n)} - x^{(n-1)}| < \varepsilon$$

или равносильному ему неравенства:

$$|x^{(n)} - x^{(n-1)}| < \frac{1-q}{q}\varepsilon$$

Использование данного критерия окончания требует знание величины q. Чтобы избавиться от нее, оценим q.

Лемма 2.5: Оценка величины q

$$|x^{(n)} - x^{(n-1)}| < \frac{1 - \overline{\alpha^{(n)}}}{\overline{\alpha^{(n)}}} \varepsilon$$

 \mathcal{A} оказательство. Заметим, что в малой окрестности корня величина производной $\phi'(x)$ практически постоянна:

$$\phi'(x) \approx \phi'(\overline{x})$$

Тогда величину $\alpha^{(n)} = \phi'(\xi^{(n-1)})$ можно приближенно заменить на $\phi'(\overline{x})$.

Следовательно:

$$x^{(n)} - x^{(n-1)} = \phi(x^{(n-1)}) - \phi(x^{(n-2)}) = \phi'(\overline{\xi^{(n)}})(x^{(n-1)} - x^{(n-2)})$$

где: $\overline{\xi^{(n)}} \in [x^{(n-1)}, x^{(n-2)}].$

Тогда:

$$\overline{\alpha^{(n)}} = \frac{x^{(n)} - x^{(n-1)}}{x^{(n-1)} - x^{(n-2)}} = \phi'(\overline{\xi^{(n)}}) \approx \phi'(\overline{x})$$

Таким образом: можно положить $\alpha^{(n)} \approx \overline{\alpha^{(n)}}$.

$$|x^{(n)} - x^{(n-1)}| < |\frac{1 - \overline{\alpha^{(n)}}}{\overline{\alpha^{(n)}}}|\varepsilon$$

2.5.4 Приведение к виду, удобного для итераций.

Теорема 2.4: Приведение к виду, удобного для итераций

Пусть $f(x) \in C^1[a, b]$, причем $f'(x) \ge 0$.

Тогда $\exists m, M \in \mathbb{R}: 0 < m \le f'(x) \le M, x \in [a, b].$

Тогда при:

$$\alpha_{\rm opt} = \frac{2}{m+M}$$

 $|\phi'(x)| \leq q < 1$, причем значение q - минимально.

Доказательство. Т.к. $m \leq \phi'(x) \leq M$, то:

$$1 - \alpha M \le \phi'(x) \le 1 - \alpha m$$

В соотношении:

$$|\phi'(x) \le q|$$

Величина q должна быть минимальна.

Следовательно:

$$|\phi'(x)| \le \max_{\alpha} |\{|1 - \alpha M|, |1 - \alpha m|\}$$

Получаем:

$$1 - \alpha m = -1 + \alpha M$$

Отсюда:

$$\alpha_{\text{opt}} = \frac{2}{m+M}$$

2.6 Метод Ньютона решения нелинейных уравнений. Вывод итерационной формулы метода Ньютона.

Расчетную формулу метода можно получить, используя различные подходы.

Определение 2.14: Метод касательных

Шаги алгоритма:

- Пусть $x^{(0)} \in [a, b]$ начальное приближение к корню \overline{x} .
- Выбираем точку $M(x^{(0)}, f(x^{(0)}))$.
- Строим через M касательную к графику f(x).
- Пересечение с осью Ox следующее приближение $x^{(1)}$.

Продолжая этот процесс далее, получим последовательность $x^{(0)}, x^{(1)}, \dots, x^{(n)}, \dots$ приближений к корню \overline{x} .

Уравнение касательной, проведенной к графику функции y=f(x) в точке $(x^{(n)},f(x^{(n)}))$, имеет вид:

$$y = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)})$$

Полагая в равенстве y = 0 и $f'(x^{(n)}) \neq 0$, получаем:

$$0 = f(x^{(n)}) + f'(x^{(n)})(x^{(n+1)} - x^{(n)})$$

Расчетная формула:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}, n \ge 0$$

Рис. 4: Метод касательных

С более общих позиций метод Ньютона можно рассматривать как итерационный метод, использующий специальную линеаризацию задачи.

Определение 2.15: Метод линеаризации

Пусть приближение $x^{(n)}$ уже получено. Представим функцию в окрестности точки $x^{(n)}$ по формуле Тейлора:

$$f(x) = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}) + \frac{f''(\xi)}{2}(x - x^{(n)})^2$$

где: $\xi \in [x, x^{(n)}]$

Заменяя в уравнении f(x) = 0 функцию f(x), получаем:

$$f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}) = 0$$

Принимая решение уравнения за новое приближение $x^{(n+1)}$, приходим к формуле:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$$

2.7 Априорная погрешность метода Ньютона.

Теорема 2.5: Об априорной погрешности

Пусть $f(x) \in C^2[a,b]$ - отрезок локализации и \overline{x} - простой корень. Тогда сущствует некоторая σ -окрестность: $(\overline{x} - \sigma, \overline{x} + \sigma)$: $\forall x^{(0)} \in (\overline{x} - \sigma, \overline{x} + \sigma)$, итерационная последовательность не выходит из этой окрестности и справедлива оценка:

$$|x^{(n+1)} - \overline{x}| \le C|x^{(n)} - \overline{x}|^2, \ n \ge 0$$

где: $C = \sigma^{-1}$.

Доказательство. Т.к. $f \in C^2[a,b]$, то:

$$\exists \alpha, \beta > 0: \begin{cases} 0 < \alpha \le |f'(x)| \\ |f''(x)| < \beta \end{cases}$$

Тогда:

1.
$$0 = f(x^{(n)}) + f'(x^{(n)})(x^{(n+1)} - x^{(n)})$$

2.
$$f(x) = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}) + \frac{f''(\xi)}{2}(x - x^{(n)})^2$$

Подставим во второе уравнение $x = \overline{x}$: $f(\overline{x}) = 0$

$$0 = f(x^{(n)}) + f'(x^{(n)})(\overline{x} - x^{(n)}) + \frac{f''(\xi)}{2}(\overline{x} - x^{(n)})$$

Вычтем из перовго уравнения второе:

$$0 = f'(x^{(n)})(\overline{x} - x^{(n)} - x^{(n+1)} + x^{(n)}) + \frac{f''(\xi)}{2}(\overline{x} - x^{(n)})^{2}$$
$$f'(x^{(n)})(x^{(n+1)} - \overline{x}) = \frac{f''(\xi)}{2}(x^{(n)} - \overline{x})^{2}$$
$$\alpha |x^{(n+1)} - \overline{x}| \le \frac{\beta}{2}|x^{(n)} - \overline{x}|^{2}$$
$$|x^{(n+1)} - \overline{x}| \le \frac{\beta}{2\alpha}|x^{(n)} - \overline{x}|^{2}$$

Возьмем за $\sigma = \frac{2\alpha}{\beta}$:

$$|x^{(n+1)} - \overline{x}| < \sigma^{-1}|x^{(n)} - \overline{x}|^2$$

Следстиве 2.2: Априорной погрешности

Априорная оценка погрешности для метода Ньютона:

$$|x^{(n)} - \overline{x}| \le \sigma q^{2^n}, \ n \ge 0$$

где:
$$q = \sigma^{-1}|x^{(0)} - \overline{x}|$$
.

Доказательство. По индукции.

2.8 Апостериорная оценка погрешности (критерий окончания). Правило выбора начального приближения на отрезке локализации корня, гарантирующего сходимость метода.

Теорема 2.6: Об апостериорная погрешность

Пусть $x^{(n)} \in (\overline{x} - \frac{\sigma}{2}, \overline{x} + \frac{\sigma}{2})$, тогда: в условиях теоремы об априорной погрешности:

$$|x^{(n)} - \overline{x}| \le |x^{(n)} - x^{(n-1)}|$$

Доказательство.

$$2|x^{(n)} - \overline{x}| \le 2\sigma^{-1}|x^{(n-1)} - \overline{x}|^{2}$$

$$2 \cdot \sigma^{-1}|x^{(n-1)} - \overline{x}| \cdot |x^{(n-1)} - \overline{x}| \le |x^{(n-1)} - \overline{x}|$$

$$|x^{(n-1)} - x^{(n)} + x^{(n)} - \overline{x}| \le |x^{(n-1)} - x^{(n)}| + |x^{(n)} - \overline{x}|$$

$$|x^{(n)} - \overline{x}| \le |x^{(n-1)} - x^{(n)}|$$

Следстиве 2.3: Критерий остановки

$$|x^{(n)} - x^{(n-1)}| < \varepsilon$$

где: ε - заданная точность.

В качестве начального приближения можно выбрать **не любую** точку из [a,b]. Иначе: касательная может пересечь Ox вне интервала.

Теорема 2.7: Критерий выбора начального приближения

Пусть $f(x) \in C^2[a,b]$ и f'(x) и f''(x) - знакопостоянны.

Тогда итерационная последовательность метода Ньютона сходится, если в качестве $x^{(0)}$ выбрать точку такую, что:

$$f(x^{(0)})f''(x^{(0)}) > 0$$

Таким образом, метод Ньютона **обладает** в общем случае только **локальной сходимостью**.

2.9 Модификации метода Ньютона. Упрощенный метод Ньютона. Метод хорд.

Определение 2.16: Упрощенный метод Ньютона

Исходная формула Ньютона:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}, n \ge 0$$

Формула упрощенного Ньютона: $f'(x^{(n)}) \approx f'(x^{(0)})$

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(0)})}, n \ge 0$$

T.e:

- В точке $(x^{(0)}, f(x^{(0)}))$ к графику функции y = f(x) проводится касательная l_0 .
- За приближение $x^{(1)}$ принимается абцисса точки пересечения l_0 с осью Ox.
- Каждое следующее приближение $x^{(n+1)}$ получается как абцисса точки пересечения с осью Ox прямой, проходящей через точку $M^{(n)}(x^{(n)}, f(x^{(n)}))$ и параллельной касательной l_0 .

Данный метод можно рассматривать как **метод простой итерации** с формулой:

$$\phi(x) = x - \frac{f(x)}{f'(x^{(0)})}$$

Скорость сходимоти данного метода - линейная.

Рис. 5: Упрощенный метод Ньютона

Определение 2.17: Метод хорд

По определению производной:

$$f'(x^{(n)}) = \frac{f(z^{(n)}) - f(x^{(n)})}{z^{(n)} - x^{(n)}}$$
, при: $z^{(n)} \to x^{(n)}$

Тогда вместо:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$$

Фиксируем: $f'(x^{(n)}) = \frac{f(c) - f'(x^{(n)})}{c - x^{(n)}}$

Итоговая формула:

$$x^{(n+1)} = x^{(n)} - \frac{c - x^{(n)}}{f(c) - f(x^{(n)})} \cdot f(x^{(n)}), \ n \ge 0$$

где c - фиксированная точка, расположенная в окрестности простого корня \overline{x} .

Очередное приближение $x^{(n+1)}$ получается здесь как абцисса точки пересечения с осью Ox прямой, проходящей через расположенные на графике функции y=f(x) точки M(c,f(c)) и $M^{(n)}(x^{(n)},f(x^{(n)}))$

Метод можно рассматривать как итерационный, с формулой:

$$\phi(x) = x - \frac{c - x}{f(c) - f(x)} f(x)$$

Скорость сходимости данного метода - линейная.

Рис. 6: Метод хорд

2.10 Модификации метода Ньютона. Метод секущих. Скорость сходимости метода секущих.

Определение 2.18: Метод секущих

Замена $f'(x^{(n)})$ на $\frac{f(x^{(n+1)})-f(x^{(n)})}{x^{(n-1)}-x^{(n)}}$ приводит к расчетной формуле:

$$x^{(n+1)} = x^{(n)} - \frac{x^{(n-1)} - x^{(n)}}{f(x^{(n-1)}) - f(x^{(n)})} f(x^{(n)}), n \ge 1$$

Данный метод является двухшаговым.

Очередное приближение $x^{(n+1)}$ получается как абцисса точки пересечения с осью Ox секущей, соединяющей точки $M^{(n-1)}(x^{(n-1)}, f(x^{(n-1)}))$ и $M^{(n)}(x^{(n)}, f(x^{(n)}))$, графика функции f(x).

Рис. 7: Метод секущих

Лемма 2.6: Скорость сходимости метода секущих

Метод секущих сходится с порядком $p=\frac{1+\sqrt{5}}{2}\approx 1.618$, т.е. для $n\geq 1$ справедлива оценка:

$$|x^{(n+1)} - \overline{x}| \le c|x^{(n)} - \overline{x}|^p, \ p = \frac{1 + \sqrt{5}}{2}$$

- Одная итерация метода секущих требует только одного нового вычисления f(x).
- Метод Ньютона требует двух вычислений: f(x) и f'(x)
- Трудоемкость двух итераций метода секущих \sim трудоемкость одной итерации метода Ньютона.
- Две итерации метода секущих дают порядок $p^2 \approx 2.618 > 2 \rightarrow$ его можно расценивать как более быстрый.

Метод обладает только локальной сходимостью: он требует выбора двух близких к корню начальных приближений $x^{(0)}$ и $x^{(1)}$.

2.11 Решение СЛАУ. Постановка задачи.

Определение 2.19: Система линеных алгебраических уравнений

Системы вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ a_{31}x_1 + a_{32}x_2 + \dots + a_{3m}x_m = b_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mm}x_m = b_m \end{cases}$$

с вещественным набором коэффициентов $a_{11}, a_{12}, \ldots, a_{mm}$ называют системой линейных алгебраических уравнений.

В матричной форме система записывается в виде:

где:
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ a_{31} & a_{32} & \dots & a_{3m} \\ \dots & \dots & \dots & \dots \\ a_{m-1} & a_{m-2} & \dots & a_{m-2} \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ x_2 \\ x_2 \\ \dots \\ x \end{pmatrix}, \ b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ b \end{pmatrix}$$

Определение 2.20: Корректность задачи решения СЛАУ

Пусть заданы входной вектор b и невырожденная матрица A. Тогда известно, что **решение** системы:

- Существует.
- Единственно.
- Устойчиво по входным данным.

Т.е. задача решения СЛАУ корректна.

Определение 2.21: Задача решения СЛАУ

Задача решения СЛАУ - нахождение такого приближенного решения $x^* = (x_1^*, x_2^*, \dots, x_m^*)^T$, для которого погрешность $e = x - x^*$ мала.

Иногда вместо погрешности e, удовлетворительным является критерий **малости невязки** $r=b-Ax^*.$

Заметим, что погрешность и невязка системы связаны:

$$r = b - Ax^* = Ax - Ax^* = A(x - x^*)$$

 $e = x - x^* = A^{-1}r$

Решение СЛАУ. Определение понятия нормы 2.12вектора. Абсолютная и относительная погрешности вектора.

Определение 2.22: Норма вектора

Говорят, что в пространстве R^m задана норма, если: $\forall x \in R^m$ сопоставлено вещественное число ||x||, называемое **нормой вектора** и обладающее следующими свойствами:

- $||x|| \ge 0$, причем $||x|| = 0 \leftrightarrow x = 0$.
- $\|\alpha x\| = |\alpha| \|x\| : \forall x \in \mathbb{R}^m, \forall \alpha \in \mathbb{R}.$
- $||x + y|| \le ||x|| + ||y|| : \forall x, y \in \mathbb{R}^m$.

Определение 2.23: Виды векторных норм

Существуют различные способы введения векторной нормы:

- $||x||_1 = \sum_{i=1}^m |x_i|$. $||x||_2 = (\sum_{i=1}^m |x_i|^2)^{\frac{1}{2}}$ (евклидова норма). $||x||_{\infty} = \max_{1 \le i \le m} |x_i|$.

Первые две являются частными случаями более общей нормы:

$$||x_p|| = (\sum_{i=1}^m |x_i|^p)^{\frac{1}{p}}, \ p \ge 1$$

Также справедливы неравенства:

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le m||x||_{\infty}$$

Т.е. все три введенные нормы эквивалентны: каждая из них оценивается любой из двух других с точностью до множителя, зависящего ot m.

Определение 2.24: Абсолютная и относительная погрешности вектора

Пусть в пространстве R^m введена и фиксирована норма, тогда:

- Абсолютная погрешность вектора: $\Delta(x^*) = \|x x^*\|$.
 Отностительная погрешность вектора: $\delta(x^*) = \frac{\Delta(x^*)}{\|x\|} =$ $||x-x^*||$

Определение 2.25: Сходимость по норме

Пусть $\{x^{(n)}\}_{n=1}^{\infty}$ - последовательность векторов $x^{(n)}=(x_1^{(n)},x_2^{(n)},\ldots,x_m^{(n)}).$

Говорят, что последовательность векторов $\{x^{(n)}\}_{n=1}^{\infty}$ сходится к вектору x, если:

$$\Delta(x^{(n)}) = \|x - x^{(n)}\| \to 0$$
, при $n \to \infty$

2.13 Решение СЛАУ. Определение понятия нормы матрицы, подчиненной норме вектора. Геометрическая интерпретация нормы матрицы.

Определение 2.26: Норма матрицы

Величина:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

является нормой матрицы A, подчиненной норме векторов, введенной в R^m .

Норма матрицы обладает следующими свойствами:

- $||A|| \ge 0$, причем $||A|| = 0 \leftrightarrow A = 0$.
- $\|\alpha A\| = |\alpha| \|A\| : \forall A \in M_m(\mathbb{R}), \forall \alpha \in \mathbb{R}.$
- $||A + B|| \le ||A|| + ||B|| : \forall A, B \in M_m(\mathbb{R}).$
- $||A \cdot B|| \le ||A|| \cdot ||B|| : \forall A, B \in M_m(\mathbb{R}).$
- $||A \cdot x|| \le ||A|| \cdot ||x||$: $\forall A \in M_m(\mathbb{R}), \forall x \in \mathbb{R}^m$.

Определение 2.27: Виды матричных норм

Существуют различные способы введения матричной нормы: векторным нормам $||x||_1$, $||x||_2$, $||x||_\infty$ подчинены следующие матричные нормы:

- $\|A\|_1 = \max_{1 \leq j \leq m} \sum_{i=1}^m |a_{ij}|$ ("максимальная строка"). $\|A\|_2 = \max_{1 \leq j \leq m} \sqrt{\lambda_j(A^TA)}$ (где $\lambda_j(A^TA)$) собственные числа матрицы A^TA .
- $||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{m} |a_{ij}|$ ("максимальный вектор").

Для нормы $||A||_2$ используют оценку:

$$||A||_2 \le ||A||_{\mathcal{E}}$$

где $\|A_{\rm E}\| = \sqrt{\sum_{i,j=1}^m |a_{ij}|^2}$ - евклидова норма матрицы A.

Лемма 2.7: Геометрическая интерпретация нормы матрицы

Операция умножения матрицы A на вектор x - преобразование, которое переводит вектор x в другой y: y = Ax.

Тогда:

- $\|x\|$ длина вектора x. $\frac{\|Ax\|}{\|x\|}$ коэффициент растяжения (сжатия) вектора x под действием матрицы A.

Следовательно:

$$k_{\max} = ||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

есть максимальный коэффициент растяжения вектора x под действием матрицы A.

Для невырожденной матрицы A минимальный коэффициент растяжения k_{\min} - норма обратной матрицы:

$$k_{\min} = ||A^{-1}||^{-1} = \min_{x \neq 0} \frac{||Ax||}{||x||}$$

2.14 Обусловленность задачи решения СЛАУ для приближенно заданной правой части. Количественная мера обусловленности СЛАУ. Геометрическая интерпретация числа обусловленности.

Решения различных СЛАУ обладают разной чувствительностью к погрешностям входных данных.

Теорема 2.8: Обусловленность задачи решения СЛАУ-1

Пусть элементы матрицы A заданы точно.

Пусть x^* - точное решение системы $Ax^* = b^*$, в которой правая часть b^* - приближение к b.

Тогда справедливы оценки:

$$\Delta(x^*) \le \nu_{\Delta}\Delta(b^*)$$

$$\delta(x^*) \le \nu_\delta \delta(b^*)$$

где
$$\nu_{\Delta} = \|A^{-1}\|$$
 и $\nu_{\delta} = \|A^{-1}\| \frac{\|b\|}{\|x\|}$.

Доказательство. Пусть x - точное решение системы Ax=b, тогда:

$$Ax - Ax^* = b - b^*$$

$$x - x^* = A^{-1}(b - b^*)$$

$$||x - x^*|| \le ||A^{-1}|| \cdot ||b - b^*||$$

$$\Delta(x^*) \le ||A^{-1}|| \cdot \Delta(b^*)$$

Т.е: $\nu_{\Delta} = \|A^{-1}\|$ - абслоютное число обусловленности.

$$\delta(x^*) = \frac{\Delta(x^*)}{\|x\|} \le \frac{\|A^{-1}\| \cdot \|b\|}{\|x\|} \cdot \delta(b^*)$$

Т.е: $\nu_{\delta} = \frac{\|A^{-1}\| \cdot \|b\|}{\|x\|}$ - относительное (естественное) число обусловленности.

Теорема 2.9: Стандартное число обусловленности

Максимальное значение естественного числа обусловленности (т.е. оно не зависит от x).

$$\max_{x \neq 0} \{ \nu_{\delta}(x) \} = \max_{x \neq 0} \{ \frac{\|A^{-1}\| \cdot \|b\|}{\|x\|} \} = \max_{x \neq 0} \{ \frac{\|A^{-1}\| \cdot \|Ax\|}{\|x\|} \} = \|A^{-1}\| \cdot \|A\|$$

Полученное число принято называть **стандартным числом обу- словленности** (или просто числом обусловленности) матрицы *A*:

$$\nu(A) = \text{cond}(A) = ||A^{-1}|| \cdot ||A||$$

Следстиве 2.4: Стандартное число обусловленности

Из предыдущей теоремы и свойства относительного числа обусловленности, получаем:

$$\delta(x^*) \le \operatorname{cond}(A)\delta(b^*)$$

Лемма 2.8: Свойства стандартного числа обусловленности

У стандартного числа обусловленности следующие свойства:

- 1. cond(E) = 1.
- 2. $\operatorname{cond}(A) \geq 1$: $\forall A \in M_m(\mathbb{R})$.
- 3. $\operatorname{cond}(\alpha A) = \operatorname{cond}(A)$: $\forall A \in M_m(\mathbb{R}), \forall \alpha \in \mathbb{R}$.

Лемма 2.9: Геометрическая интерпретация числа обусловленности

Число обусловленности можно интерпретировать как отношение максимального коэффициента растяжения (k_{max}) векторов под действием матрицы A к минимальному коэффициенту (k_{min}) :

$$cond(A) = \frac{k_{\text{max}}}{k_{\text{min}}}$$

2.15 Обусловленность задачи решения СЛАУ для приближенно заданных матрицы и правой части.

Теорема 2.10: Обусловленность задачи решения СЛАУ-2

Пусть x^* - точное решение системы $A^*x^*=b^*$, с приближенно заданной матрицей A^* и вектором b^* . Тогда верная следующая оценка:

$$\delta(x^*) \le \operatorname{cond}(A)(\delta(A^*) + \delta(b^*))$$

где:
$$\delta(x^*) = \frac{\|x - x^*\|}{\|x^*\|}$$
, $\delta(A^*) = \frac{\|A - A^*\|}{\|A\|}$, $\delta(b^*) = \frac{\|b - b^*\|}{\|b\|}$

Доказательство. Без доказательства.

2.16 Метод Гаусса решения СЛАУ. Схема единственного деления. LU – разложение. Свойства метода.

Вычисления с помощью метода Гаусса состоят из двух этапов:

- Прямого хода: преобразование исходной системы к верхнетреугольному виду.
- Обратного хода: вычисление неизвестных констант в обратном порядке: начиная x_m , заканчивая x_1 .

2.16.1 Схема единственного деления.

Теорема 2.11: Прямой ход

Состоит из m-1 шагов исключения неизвестных из системы.

Первый шаг состоит из исключения неизвестного x_1 из уравнений с номерами $i=2,3,\ldots,m$:

Предположим, что $a_{11} \neq 0$, тогда:

- 1. a_{11} главный (ведущий) элемент первого шага.
- 2. Найдем величины: $\mu_{i1} = \frac{a_{i1}}{a_{11}} i = (2, 3, \dots, m)$ (множители первого шага).
- 3. Последовательно вычтем из второго, третьего, ..., m-го уравнения системы первое уравнение, умноженное соответственно на $\mu_{21}, \mu_{31}, \ldots, \mu_{m1}$.

Тогда исходная система придет к виду:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ 0 + a_{22}^{(1)}x_2 + \dots + a_{2m}x_m = b_2^{(1)} \\ 0 + a_{32}^{(1)}x_2 + \dots + a_{3m}x_m = b_3^{(1)} \\ \dots \\ 0 + a_{m2}^{(1)}x_2 + \dots + a_{mm}x_m = b_m^{(1)} \end{cases}$$

в которой:

$$a_{ij}^{(1)} = a_{ij} - \mu_{i1}a_{1j}, \ b_i^{(1)} = b_i - \mu_{i1}b_1$$

В матричном виде:

$$A^{(1)} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ 0 & a_{22}^{(1)} & \dots & a_{2m}^{(1)} \\ \dots & \dots & \dots & \dots \\ 0 & a_{m2}^{(1)} & \dots & a_{mm}^{(1)} \end{pmatrix}, b^{(1)} = \begin{pmatrix} b_1 \\ b_2^{(1)} \\ \dots \\ b_m^{(1)} \end{pmatrix}$$

$$M_1 = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -\mu_{21} & 1 & 0 & \dots & 0 \\ -\mu_{31} & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ -\mu_{m1} & 0 & 0 & \dots & m \end{pmatrix}$$

$$A^{(1)} = M A + b^{(1)} = M b$$

Аналогично, обощим для k-го шага:

Предположим, что $a_{kk} \neq 0$, тогда:

- 1. a_{kk} главный (ведущий) элемент k-го шага. 2. Найдем величины: $\mu_{ik} = \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} i = (k+1,k+2,\ldots,m)$ (множители k-го шага).
- 3. Последовательно вычтем из $k+1, k+2, \dots m$ -го уравнения системы k-ое уравнение, умноженное соответственно на $\mu_{2k}, \mu_{3k}, \ldots, \mu_{mk}$.

Тогда в исходной системы элементы примут вид:

$$A_{ij}^{(k)} = a_{ij}^{(k-1)} - \mu_{ik} a_{kj}^{(k-1)}, \ b_i^{(k)} = b_i^{(k-1)} - \mu_{ik} b_k^{(k-1)}$$

$$M_k = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & -\mu_{k+1k} & \dots & 0 \\ 0 & 0 & 0 & \dots & -\mu_{k+2k} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -\mu_{mk} & \dots & 1 \end{pmatrix}$$

После m-1 шага получим матрицу $A^{(m-1)}=U$ - верхнетреугольная.

$$A^{(m-1)} = U = M_{m-1}M_{m-2}\dots M_1A$$

$$b^{(m-1)} = M_{m-1}M_{m-2}\dots M_1b$$

Тогда:

$$A = M_1^{-1} M_2^{-1} \dots M_{m-1}^{-1} A^{(m-1)}$$

где:

$$M_k^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & \mu_{k+1k} & \dots & 0 \\ 0 & 0 & 0 & \dots & \mu_{k+2k} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \mu_{mk} & \dots & 1 \end{pmatrix}$$

$$M_1^{-1}M_2^{-1}\dots M_{m-1}^{-1} = L = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0\\ \mu_{21} & 1 & 0 & \dots & 0 & 0\\ \mu_{31} & \mu_{32} & 1 & \dots & 0 & 0\\ \dots & \dots & \dots & \dots & \dots\\ \mu_{m1} & \mu_{m2} & \mu_{m3} & \dots & \mu_{mm-1} & 1 \end{pmatrix}$$

Итог прямого хода:

$$A = LU$$

Теорема 2.12: Обратный ход

На момент обратного хода имеем систему:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ 0 + a_{22}^{(1)}x_2 + \dots + a_{2m}^{(1)}x_m = b_2^{(1)} \\ 0 + 0 + \dots + a_{3m}^{(2)}x_m = b_3^{(2)} \\ \dots \\ 0 + 0 + \dots + a_{mm}^{(m-1)}x_m = b_m^{(m-1)} \end{cases}$$

Из последнего уравнения системы находим x_m :

$$x_m = \frac{b_m^{(m-1)}}{a_{mm}^{(m-1)}}$$

Подставляем значение x_m в предпоследнее уравнение:

$$a_{m-1m-1}^{(m-2)}x_{m-1} + a_{m-1m}^{(m-2)}\left(\frac{b_m^{(m-1)}}{a_{mm}^{(m-1)}}\right) = b_{m-1}^{(m-2)}$$

Выражаем x_{m-1} , и т.д.

Лемма 2.10: Свойства метода

- Трудоемкость метода $\sim \frac{2}{3}m^3$. Недостаток метода: если ведущий элемент $a_{kk} << 1$, то соответствующий множитель $\mu_{ik} >> 1 o$ вычислительные схемы становится неустойчивыми.

2.17 Метод Гаусса решения СЛАУ. Схемы частичного и полного выбора ведущих элементов. Свойства методов.

2.17.1Схемы частичного выбора.

Отличия от схемы единственного деления:

- На k-ом шаге прямого хода, в качестве ведущего элемента выбирают максимальный по модулю коэффициент $a_{i_{k}k}^{(k-1)}$ при неизвестной x_k в уравнениях с номерами $i = k, k + 1, \ldots, m$.
- Уравнение системы с номером i_k меняют местами с k-м.

После этой перестановки исключение неизвестного x_k производят как в схеме единственного деления.

Лемма 2.11: Свойства метода

- Трудоемкость метода $\sim \frac{2}{3}m^3+m^2\approx \frac{2}{3}m^3$ Гарантированно $|\mu_i|\leq 1 \to |a_{ij}^{(k)}|\leq |a_{ij}^{(k-1)}|+|a_{kj}^{(k-1)}|$. Следовательно, элементы $a_{ij}^{(k)}$ возрастают на каждом шаге не более чем в 2 раза \rightarrow за m-1 шаг не более чем в 2^{m-1} раз.

2.17.2Схема полного выбора.

Отличие от метода частичного выбора: ведущий элемент - максимальный по модулю в матрице:

$$a_{ij} = a_{i_k j_k} = \max_{1 \le i, j \le m} \{|a_{ij}|\}$$

Строки i_k и i меняются местами.

Лемма 2.12: Свойства метода

- Трудоемкость метода $\sim m^3$.
- **Коэффициент роста** элементов матрицы менее чем в m раз.

2.18 Применение метода Гаусса к решению задач линейной алгебры. Вычисление решений системы уравнений с несколькими правыми частями.

Теорема 2.13: Решение нескольких СЛАУ

Если необходимо решить несколько СЛАУ с различной правой частью, то:

Задача принимает вид:

$$\begin{cases}
Ax = d_{(1)} \\
Ax = d_{(2)} \\
Ax = d_{(3)} \\
\dots \\
Ax = d_{(p)}
\end{cases}$$

Применяя метод Гаусса к каждой из систем независимо от других, можно найти соответствующие решения $x_{(1)}, x_{(2)}, \ldots, x_{(p)}$, затратив примерно $\frac{2}{3}pm^3$ арифметических операций.

Если решать системы одновремено, т.е: при преобразовании матрицы A к верхнетреугольному виду преобразовать все $d_{(i)}$ по однотипным формулам, то на прямой ход будет затрачено примерно $\frac{2}{3}m^3 + pm^2$ операций.

С учетом обратного хода, **общие вычислительные затраты** составят $\frac{2}{3}m^3 + 2pm^2$ операций.

2.19 Применение метода Гаусса к решению задач линейной алгебры. Вычисление обратной матрицы.

Теорема 2.14: Вычисление обратной матрицы

Пусть $A^{-1} = V$, тогда:

$$AV = E_m$$

где E_m - единичная матрица.

Заменим уравнение $AV=E_m$ на несколько систем:

$$\begin{cases} Av_1 = e_1 \\ Av_2 = e_2 \\ Av_3 = e_3 \\ \dots \\ Av_m = e_m \end{cases}$$

где v_i - i-ый столбец матрицы V, e_i - i-ый столбец единичной матрицы.

Применяя метод Гаусса для решения систем уравнений с различной правой частью, получаем: общее число операций $\sim \frac{2}{3}m^3 + 2m^3 = \frac{8}{3}m^3$.

Из-за специального вида правых частей потребуется $\sim 2m^3$ операций.

2.20 Применение метода Гаусса к решению задач линейной алгебры. Вычисление выражений вида v = CWw. Вычисление определителя матрицы.

Теорема 2.15: Вычисления выражений вида $w = A^{-1}BC^{-1}v$

При непосредственном вычислении A^{-1}, C^{-1} потребуется: $4m^3 + 2m^2$ операций.

Пусть $C^{-1}v = x$, тогда:

- 1. Решение системы Cx = v потребует $\sim \frac{2}{3}m^3$ операций.
- 2. Решение $y = Bx \sim m^2$ операций (просто умножить матрицу на вектор).
- 3. Решение $w = A^{-1}y \to Aw = y \sim \frac{2}{3}m^3$ операций.

Общий итог: потребуется $\sim \frac{4}{3} m^3$ операций.

Теорема 2.16: Вычисление определителя матрицы

Методом Гаусса приводим матрицу A к верхнетреугольному виду. Тогда:

$$\det(A) = \det(A^{(m-1)})(-1)^{s}$$

где s - число перестановок строк в схеме частичного выбора.

$$\det(A^{(m-1)}) = a_{11}a_{22}^{(1)} \dots a_{mm}^{(m-1)}$$

2.21 Метод Холецкого решения СЛАУ с симметричной положительно определенной матрицей. Свойства метода.

2.21.1 Описание метода.

Если матрица A - симметричная положительно определенная, то можно применить метод Холецкого:

Основа метода - построение такого LU-разложения матрицы A, что:

$$A = LL^T$$

где:

$$L = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ l_{m1} & l_{m2} & \dots & l_{mm} \end{pmatrix}$$

Причем требуется, чтобы диагональные элементы были положительными.

Если разложение получено, то решение исходной системы сводится к решению:

$$Ly = b, L^T x = y$$

для **решения** которых требуется **выполнение** $\sim 2m^2$ арифметических операций.

Лемма 2.13: Вычисление элементов матрицы L

Пусть задана невырожденная матрица A, тогда:

$$l_{kk} = \sqrt{a_{kk} - l_{k1}^2 - l_{k2}^2 - \dots - l_{kk-1}^2}$$

$$l_{ik} = \frac{a_{ik} - l_{i1}l_{k1} - l_{i2}l_{k2} - \dots - l_{ik-1}l_{kk-1}}{l_{kk}}, i = k+1, \dots, m$$

 \mathcal{A} оказательство. Матрицы L и L^T принимают следующий вид:

$$L = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ l_{m1} & l_{m2} & \dots & l_{mm} \end{pmatrix}$$

$$L^{T} = \begin{pmatrix} l_{11} & l_{21} & \dots & l_{m1} \\ 0 & l_{22} & \dots & l_{m2} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & l_{mm} \end{pmatrix}$$

Из равенства $LL^T = A$, получаем:

$$\begin{cases} l_{11}^{2} = a_{11} \\ l_{i1}l_{11} = a_{i1}, & i = 2, 3, \dots, m \\ l_{21}^{2} + l_{22}^{2} = a_{i2}, & i = 3, 4, \dots, m \\ \dots \\ l_{k1}^{2} + l_{k2}^{2} + \dots + l_{kk}^{2} = a_{kk} \\ l_{i1}l_{k1} + l_{i2}l_{k2} + \dots + l_{ik}l_{kk} = a_{ik}, & i = k+1, k+2, \dots, m \\ \dots \\ l_{m1}^{2} + l_{m2}^{2} + \dots + l_{mm}^{2} = a_{mm} \end{cases}$$

Решив систему, получаем:

$$\begin{cases} l_{11} = \sqrt{a_{11}} \\ l_{i1} = \frac{a_{i1}}{l_{11}}, & i = 2, 3, \dots, m \\ l_{22} = \sqrt{a_{22} - l_{21}^2} \\ l_{i2} = \frac{a_{i2} - l_{i1} l_{21}}{l_{22}}, & i = 3, 4, \dots, m \\ \\ \vdots \\ l_{kk} = \sqrt{a_{kk} - l_{k1}^2 - l_{k2}^2 - \dots - l_{kk-1}^2} \\ l_{ik} = \frac{a_{ik} - l_{i1} l_{k1} - l_{i2} l_{k2} - \dots - l_{ik-1} l_{kk-1}}{l_{kk}}, & i = k+1, \dots, m \dots \\ \\ l_{mm} = \sqrt{a_{mm} - l_{m1}^2 - l_{m1}^2 - \dots - l_{mm-1}^2} \end{cases}$$

2.21.2 Свойства метода.

Лемма 2.14: Свойства метода

Число операций, выполняемых в ходе вычисления разложения $LL^T=A$ по формулам $\sim \frac{m}{3}$.

Учитывая, что для решения систем Ly=b и $L^Tx=y$ требуется $\sim 2m^2$ операций, получаем:

Метод Холецкого при больших значений m требует **вдвое меньше** вычислительных затрат по сравнению с **методом Гаусса**.

Также, метод Холецкого гарантированно устойчив.

2.22 Метод прогонки решения СЛАУ с трехдиагональными матрицами. Свойства метода.

Метод прогонки подходит для решения СЛАУ с трехдиагональными матрицами.

Т.е. систем вида:

$$\begin{cases} b_1 x_1 + c_1 x_2 = d_1 \\ a_2 x_1 + b_2 x_2 + c_2 x_3 = d_2 \\ \dots \\ a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i \\ \dots \\ a_{m-1} x_{m-2} + b_{m-1} x_{m-1} + c_{m-1} x_m = d_{m-1} \\ a_m x_{m-1} + b_m x_m = d_m \end{cases}$$

Теорема 2.17: Вывод расчетных формул

$$x_1 = \alpha_1 + \beta_1$$

$$x_i = \alpha_i x_{i+1} + \beta_i$$

$$x_m = \frac{d_m - a_m \beta_{m-1}}{b_m + a_m \alpha_{m-1}}$$

где:

$$\alpha_{1} = -\frac{c_{1}}{b_{1}}, \ \beta_{1} = \frac{d_{1}}{b_{1}}$$

$$\alpha_{i} = -\frac{c_{i}}{b_{i} + a_{i}\alpha_{i-1}}, \ \beta_{i} = \frac{d_{i} - a_{i}\beta_{i-1}}{b_{i} + a_{i}\alpha_{i-1}}$$

Доказательство. Преобразуем первое уравнение к виду:

$$x_1 = \alpha_1 x_2 + \beta_1$$

где
$$\alpha_1 = -\frac{c_1}{b_1}$$
 и $\beta_1 = \frac{d_1}{b_1}$.

Подставим полученное для x_1 значение во второе уравнение системы:

$$a_2(\alpha_1 x_2 + \beta_1) + b_2 x_2 + c_2 x_3 = d_2$$

Преобразуем это уравнение к виду:

$$x_2 = \alpha_2 x_3 + \beta_2$$

где $\alpha_2=-\frac{c_2}{b_2+a_2\alpha_1}$ и $\beta_2=\frac{d_2-a_2\beta_1}{b_2+a_2\alpha_1}$ Выражение для x_2 подставляем в третье уравнение, и т.д.

На *i*-ом шаге, получаем:

$$x_i = \alpha_i x_{i+1} + \beta_i$$

где
$$\alpha_i=-rac{c_i}{b_i+a_ilpha_{i-1}}$$
 и $eta_i=rac{d_i-a_ieta_{i-1}}{b_i+a_ilpha_{i-1}}$

На подстановка на m-м шаге:

$$\alpha_m(\alpha_{m-1}x_m + \beta_{m-1}) + b_m x_m = d_m$$

отсюда получаем значение для x_m :

$$x_m = \frac{d_m - a_m \beta_{m-1}}{b_m + a_m \alpha_{m-1}}$$

Теорема 2.18: Алгоритм прогонки

Алгоритм состоит в следующем:

- Через прямой ход получить значения для α_i и β_i :
 - При i=1: $\alpha_1=-\frac{c_1}{\gamma_1},\ \beta_1=\frac{d_1}{\gamma_1},\ \gamma_1=b_1.$
 - При $i=2,3,\ldots,m-1$: $\alpha_i=-\frac{x_i}{\gamma_i},\;\beta_i=\frac{d_i-a_i\beta_{i-1}}{\gamma_i},\;\gamma_i=b_i+$
 - При i = m: $\beta_m = \frac{d_m \alpha_m \beta_{m-1}}{\gamma_m}$, $\gamma_m = b_m + a_m \alpha_{m-1}$.
- Через обратный ход найти значения неизвестных:

 - $-x_i = \alpha_i x_{i+1} + \beta_i$, при $i = m-1, m-2, \dots, 1$.

Лемма 2.15: Свойства метода прогонки

Для метода прогонки требуется всего 8m арифметических операций в отличие от Гаусса $\sim \frac{2}{3}m^3$.

Если коэффициенты трехдиагональной системы удовлетворяют следующим условиям диагонального преобладания, то вычисления по формулам прямой прогонки могут быть доведены до конца (ни один из знаменателей γ_i не обратится в нуль).

$$|b_k| \ge |a_k| + |c_k|, |b_k| > |a_k|,$$
 при: $1 \le k \le m$

3 Интерполяция

3.1 Постановка задачи приближения функций. Приближение функций обобщенными многочленами.

Определение 3.1: Приближение функции

Если функция f(x):

- Задана таблицей своих значений: $f(x_i) = y_i \ i = 0, 1, \dots, n$.
- Сложна в вычислениях (значительные затраты машинного времени).
- Ограниченное число значений f(x) из эксперимента: нахождение значения функции из эксперимента в реальном масштабе времени невозможно.

то функцию f(x) приближенно заменяют другой функцией g(x), вычисляемые значения которой принимают за приближенное значение функции f(x).

Такая замена оправдана, если:

- Значения g(x) вычисляются быстро и надежно.
- Погрешность приближения f(x) g(x) достаточно мала.

Определение 3.2: Обобщенный многочлен

Обобщенный многочлен - многочлен вида:

$$\Phi_m(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \ldots + a_m \phi_m(x)$$

т.е. линейная оболочка фиксированного набора базисных функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$.

Число m - степень обобщенного многочлена.

Пример 3.1: Обобщенный многочлен

Для гладкой функции f(x) базис:

$$\{1, x, x^2, \dots, x^m\}$$

т.е. степенные функции.

Тогда обобщенный многочлен будет вида:

$$\Phi_m(x) = a_0 + a_1 x + \ldots + a_m x^m$$

Для периодической функции f(x):

$$\{1, \cos(2\pi x), \sin(2\pi x), \cos(4\pi x), \sin(4\pi x), \ldots\}$$

$$\Phi_m(x) = a_0 + \sum_{k=-\frac{m}{2}}^{\frac{m}{2}} a_k(\cos(2\pi x) + \sin(2\pi x))$$

Лемма 3.1: Требования для приближения. Приближение обобщенными многочленами

Приближение обобщенными многочленами состоит из:

- 1. Определения информации о f(x): таблица значений f(x), множество значений f(x) на отрезке [a,b].
- 2. Определения вида функции f(x): гладкость, период, монотонность, четность, врехние оценки производных ...
- 3. **Выбора класса** аппроксимирующих функций: $g(x) = \Phi_m(x) = a_0\phi_0(x) + a_1\phi_1(x) + \ldots + a_m\phi_m(x)$
- 4. Определения критерия близости g(x) к функции f(x):
 - (a) Совпадение в конкретных узлах (интерполяция: $f(x_i) = g(x_i)$).
 - (b) Минимизация среднеквадратичного отклонения $(\min\{[f(x)-g(x)]^2\}).$
- 5. Определения точности приближения.

3.2 Приближение методом интерполяции. Интерполяция обобщенными многочленами.

Определение 3.3: Постановка задачи

Пусть в точках x_0, x_1, \ldots, x_n , разложенных на отрезке [a, b] и попарно различных, задана таблица значений функции f(x).

Тогда **задача интерполяции** - построение функции q(x):

$$g(x_i) = y_i, i = 0, 1, \dots, n$$

Т.е. график g(x) должен проходить через заданные точки $(x_i, f(x_i))$.

Указанный способ назвают **интерполяцией**, а точки x_i - **узлами интерполяции**.

Выбор функции g(x) неоднозначен: по заданной таблице можно построить бесконечно много интерполирующих функций. Тогда функцию g(x) выбирают из достаточно узкого класса G функций, в котором единственность выбора гарантируется.

Теорема 3.1: Задача интерполяции обобщенными многочленами

Обобщенный многочлен $\Phi_m(x_i)$ - **интерполяционный**, если:

$$\Phi_m(x_i) = y_i, i = 0, 1, \dots, n$$

В виде системы запись преобразуется:

$$\begin{cases} \phi_0(x_0)a_0 + \phi_1(x_0)a_1 + \dots + \phi_m(x_0)a_m = y_0 \\ \phi_0(x_1)a_0 + \phi_1(x_1)a_1 + \dots + \phi_m(x_1)a_m = y_1 \\ \dots \\ \phi_0(x_n)a_0 + \phi_1(x_n)a_1 + \dots + \phi_m(x_n)a_m = y_n \end{cases}$$

В матричном виде система записывается в виде:

где:
$$P = \begin{pmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_m(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_m(x_1) \\ \dots & \dots & \dots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_m(x_n) \end{pmatrix}, \ a = \begin{pmatrix} a_0 \\ a_1 \\ \dots \\ a_m \end{pmatrix}, \ y = \begin{pmatrix} y_0 \\ y_1 \\ \dots \\ y_n \end{pmatrix}$$

3.3 Понятия линейно-независимой системы функций на заданном множестве точек. Теорема о существовании единственного решения задачи интерполяции.

Определение 3.4: Линейно зависимая (независимая) система функций

Пусть:

$$\phi_0 = \begin{pmatrix} \phi_0(x_0) \\ \phi_0(x_1) \\ \vdots \\ \phi_0(x_n) \end{pmatrix}, \ \phi_1 = \begin{pmatrix} \phi_1(x_0) \\ \phi_1(x_1) \\ \vdots \\ \phi_1(x_n) \end{pmatrix}, \dots, \phi_m = \begin{pmatrix} \phi_m(x_0) \\ \phi_m(x_1) \\ \vdots \\ \phi_m(x_n) \end{pmatrix}$$

где $\phi_0(x), \phi_1(x), \ldots, \phi_m(x)$ - базисные функции.

Говорят, что система функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$ линейно зависимая в точке x_0, x_1, \dots, x_n , если $\exists j$:

$$\phi_j = \sum_{k=0, k \neq j}^m \alpha_k \phi_k$$

В противном случае, говорят, что система функций **линейно независимая**.

Следстиве 3.1: Линейно независимая система-1

Система функций $\{1, x, x^2, \dots, x^m\}$ - линейно-независима в точке x_0, x_1, \dots, x_n при $m \leq n$.

Доказательство. От противного: пусть $\exists j$:

$$x_i^j = \sum_{k=0, k \neq j}^m \alpha_k x_i^k$$

Перенесем x_i^j в левую часть, т.е полагая $\alpha_j = -1$:

$$P_m(x) = \sum_{k=0}^{m} \alpha_k x^k$$

многочлен стпени m, который обращаетя в ноль в точках n+1 точке (x_0, x_1, \ldots, x_n) .

n+1>m o противоречие основной теореме алгебры.

Определение 3.5: Матрица Грамма

Матрица вида:

$$\Gamma = PP^* = \begin{pmatrix} (\phi_0, \phi_0) & (\phi_1, \phi_0) & \dots & (\phi_m, \phi_0) \\ (\phi_0, \phi_1) & (\phi_1, \phi_1) & \dots & (\phi_m, \phi_1) \\ \dots & \dots & \dots & \dots \\ (\phi_0, \phi_m) & (\phi_1, \phi_m) & \dots & (\phi_m, \phi_m) \end{pmatrix}$$

где:
$$P = \begin{pmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_m(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_m(x_1) \\ \dots & \dots & \dots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_m(x_n) \end{pmatrix}$$
, $P^* = \overline{P}^T$ - сопряженная

Элементы матрицы Грамма вычисляются по формуле:

$$\gamma_{jk} = (\phi_k, \phi_j) = \sum_{i=0}^n \phi_k(x_i) \overline{\phi_j(x_i)}$$

Следстиве 3.2: Линейно независимая система-2

Система функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$ - **линейно независима**

$$\det(\Gamma) \neq 0$$

Теорема 3.2: О существовании единственного решения задачи интерполяции

Задача интерполяции обобщенным многочленом имеет единственное решение при m=n

$$\phi_0(x), \phi_1(x), \dots, \phi_m(x)$$

линейно независимая система в точках x_0, x_1, \dots, x_n .

3.4 Понятия ортогональной системы функций на заданном множестве точек. Утверждение о существовании единственного решения задачи интерполяции с помощью ортогональной системы функций. Решение задачи интерполяции для этого случая.

Определение 3.6: Ортогональная система функций

Система функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$ - **ортогональная** на множестве x_0, x_1, \dots, x_n , если:

$$\begin{cases} (\phi_k, \phi_j) = 0, \text{ при } k \neq j \\ (\phi_k, \phi_j) \neq 0, \text{ при } k = j \end{cases}$$

$$\forall k = 0, 1, \dots, m; j = 0, 1, \dots, m$$

Следстиве 3.3: Ортогональная система функций

При ортогональной системе функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$ матрица Грамма примет вид:

$$\Gamma = \begin{pmatrix} (\phi_0, \phi_0) & 0 & 0 & \dots & 0 \\ 0 & (\phi_1, \phi_1) & 0 & \dots & 0 \\ 0 & 0 & (\phi_2, \phi_2) & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & (\phi_m, \phi_m) \end{pmatrix}$$

Определитель матрицы Грамма будет считатьтся по формуле:

$$\det(\Gamma) = \prod_{i=0}^{m} (\phi_i, \phi_i)$$

Пример 3.2: Ортогональная система функций

Система функций $\phi_0(x), \phi_1(x), \dots, \phi_{N-1}(x)$, где:

$$\phi_k(x) = \exp(2\pi i k x), \ k = 0, 1, \dots$$

ортогональная на множестве точек:

$$x_l = \frac{l}{N}, \ l = 0, 1, \dots, N - 1$$

 \mathcal{A} оказательство. Пусть $\omega = \exp(\frac{2\pi i}{N})$, тогда:

$$\phi_k(x_l) = \exp(\frac{2\pi i k l}{N}) = \omega^{kl}$$

$$(\phi_k, \phi_j) = \sum_{l=0}^{N-1} \omega^{kl} \cdot \omega^{-jl} = \sum_{l=0}^{N-1} \omega^{(k-j)l}$$

Если k = j:

$$(\phi_k,\phi_j)=N$$
 (сумма единиц)

Иначе:

$$(\phi_k,\phi_j) = \sum_{l=0}^{N-1} \omega^{(k-j)l} = \frac{1-\omega^{(k-j)N}}{1-\omega^{k-j}} = 0$$
 (т.к. $\omega^{(k-j)N} = 1$)

Teopema 3.3: Решение задачи интерполяции для ортогональной системы

Пусть система функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$ - ортогональна на множестве x_0, x_1, \dots, x_n .

Тогда при $m=n, \det(\Gamma) \neq 0 \to$ задача интерполяции обобщенным многочленом имеет единственное решение.

$$Pa = y \rightarrow P^*Pa = P^*y \rightarrow \Gamma a = b$$

где:

$$\begin{cases} b_j = (y, \phi_j) = \sum_{i=0}^n y_i \overline{\phi_j(x_i)} \\ a_j = \frac{(y, \phi_j)}{(\phi_j, \phi_j)}, & j = 0, 1, \dots, n \end{cases}$$

3.5 Полиномиальная интерполяция. Интерполяционный многочлен в форме Лагранжа.

Определение 3.7: Интерполяционный многочлен

Для заданной таблице значений функции f(x) интерполяционным многочленом называется многочлен $P_n(x) = \sum_{k=0}^n a_k x^k$ степени n, если:

$$P_n(x_i) = y_i, i = 0, 1, \dots, n$$

Запись условия в виде системы:

$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0 \\ a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_0 \\ \dots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = y_0 \end{cases}$$

Данная система однозначно разрешима: система функций $\{1,x,x^2,\ldots,x^n\}$ - линейно независима в точках x_0,x_1,\ldots,x_n .

Теорема 3.4: О единственности интерполяционного многочлена

Существует единственный интерполяционный многочлен степени n, удовлетворяющий условию:

$$P_n(x_i) = y_i, i = 0, 1, \dots, n$$

Определение 3.8: Интерполяционный многочлен в форме Лагранжа

Многочлен вида:

$$L_n(x) = \sum_{j=0}^n y_j L_{n_j}(x)$$

где:

$$l_{n_j}(x) = \prod_{k=1, k \neq j}^n \frac{x - x_k}{x_j - x_k} = \frac{(x - x_0)...(x - x_{j-1})(x - x_{j+1})...(x - x_n)}{(x_j - x_0)...(x_j - x_{j-1})(x_j - x_{j+1})...(x_j - x_n)}$$

Из определения, получаем:

$$l_{n_j}(x_i) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Пример 3.3: Интерполяционный многочлен Лагранжа

Пусть x_0, x_1 - узлы, тогда:

$$L_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

3.6 Погрешность полиномиальной интерполяции.

Теорема 3.5: Погрешность полиномиальной интерполяции

Пусть $f(x) \in C^{(n+1)}[a,b]$, тогда:

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

где $\xi \in [a,b]$ и:

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

Следстиве 3.4: Погрешность полиномиальной интерполяции

Т.к. величина $\xi \in [a,b]$ - неизвестная величина, то формулу из предыдущей теоремы можно заменить на:

1.
$$|f(x) - P_n(x)| \leq \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|$$
, где $M_{n+1} = \max_{x \in [a,b]} \{f^{(n+1)}(x)\}$.

2.
$$\max_{x \in [a,b]} \{ |f(x) - P_n(x)| \} \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}.$$

3.
$$\overline{\Delta(P_n(x))} = \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}.$$

3.7 Интерполяционный многочлен с кратными узлами. Погрешность интерполяции с кратными узлами.

Определение 3.9: Кратный узел

Если в узлах $x_i, i=0,1,\ldots,m$ заданы еще и значения производных:

$$\begin{cases} y'_i = f'(x_i) \\ y''_i = f''(x_i) \\ \dots \\ y_i^{(k_i-1)} = f^{(k_i-1)}(x_i) \end{cases}$$

то узел x_i - кратный узел кратности k_i .

Определение 3.10: Интерполяционный многочлен с кратными узлами

Пусть $n=k_0+k_1+\ldots+k_m-1$, тогда существует единственный многочлен $P_n(x)$, удовлетворяющий условиям:

$$\begin{cases} P_n(x_i) = y_i \\ P'_n(x_i) = y'_i \\ \dots \\ P_n^{(k_i-1)}(x_i) = y_i^{(k_i-1)} \end{cases}$$

для $i=0,1,\dots,m$ - интерполяционный многочлен с кратными узла-

Пример 3.4: Интерполяционный многочлен с кратными узлами

Пусть узлы: x_0, x_1 и соответствующие им значения y_0, y_0', y_1, y_1' , тогда: $P_3(x) = y_0 \frac{(x-x_1)^2(2(x-x_0)+h)}{h^2} + y_0' \frac{(x-x_1)^2(x-x_0)}{h^2} + y_1 \frac{(x-x_0)^2(2(x_1-x)+h)}{h^3} + y_0' \frac{(x-x_0)^2(x-x_1)}{h^2}$

 $g_1 h^2$ где $h = x_1 - x_0$, x - некоторая точка внутри промежутка $[x_0, x_1]$.

Многочлен $P_3(x)$ - кубический интерполяционный многочлен Эрмита.

Теорема 3.6: Погрешность интерполяционного многочлена с кратными узлами

Пусть $f(x) \in C^{(n+1)}[a,b]$, тогда для интерполяции с кратными узлами в точке $x \in [a,b]$ справделивы:

1.
$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$
, где $\xi \in [a,b]$.

2.
$$|f(x)-P_n(x)| \leq \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|$$
, где $M_{n+1} = \max_{x \in [a,b]} \{f^{(n+1)}(x)\}$.

3.
$$\max_{x \in [a,b]} \{ |f(x) - P_n(x)| \} \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}.$$

4.
$$\overline{\Delta(P_n(x))} = \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}.$$

где
$$\omega_{n+1}(x) = (x-x_0)^{k_0}(x-x_1)^{k_1}\dots(x-x_m)^{k_m}$$
.

Для кубического многочлена Эрмита справедлива следующая оценка:

$$\max_{x \in [x_0, x_1]} \{ |f(x) - P_3(x)| \} \le \frac{M_4}{384} \cdot h^4$$

где $\max_{x \in [x_0, x_1]} \{ \omega_4(x) = (x - x_0)^2 (x - x_1)^2 \} = \frac{h^4}{16}$.

3.8 Минимизация оценки погрешности интерполяции. Многочлены Чебышева и их свойства. Применение для решения задачи минимизации погрешности.

Рассмотрим неравенство:

$$\overline{\Delta}(P_n) \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{\omega_{n+1}(x)\}$$

где
$$\omega_{n+1}(x) = (x-x_0)(x-x_1)\dots(x-x_n).$$

При замене f(x) на интерполяционный многочлен $P_n(x)$, желательно, чтобы погрешность интерполяции стала бы минимальной, т.е. величину $\overline{\Delta(P_n)}$ должна быть минимальной.

Т.к. в интерполяции возможно управлять только выбором узлов x_0, x_1, \ldots, x_n , то выберем такие, при которых величина $\overline{\Delta(P_n)}$ была бы минимальной.

Для этой цели используют многочлены Чебышева.

Определение 3.11: Многочлены Чебышева

Многочлены вида:

$$\begin{cases} T_0(x) = 1 \\ T_1(x) = x \\ T_n(x) = 2x \cdot T_{n-1}(x) - T_{n-2}(x) \end{cases}$$

Лемма 3.2: Свойства многочленов Чебышева

- 1. При четном n многочлен $T_n(x)$ содержит только четные степени x и является четной функцией. При нечетном n наоборот.
- 2. При $n \ge 1$ страший коэффициент многочлена $T_n(x)$ равен 2^{n-1} .
- 3. Для $x \in [-1, 1]$ справедлива формула:

$$T_n(x) = \cos(n \cdot \arccos(x))$$

4. При $T_n(x) = cos(n \cdot arccos(x))$ число вещественных корней $T_n(x)$ - n, и они имеют вид:

$$x_k = \cos(\frac{2k+1}{2n}\pi), \ k = 0, 1, \dots, n-1$$

П

5. Максимальные значения $|T_n(x)| = 1$ достигаются в точках вида:

$$x_m = \cos(\frac{m}{n}\pi), \ m = 0, 1, \dots, n$$

6. Среди всех многочленов фиксированной степени n со старшим коэффициентом a_n , равным 1, наименьшее отклонение от нуля (равное 2^{1-n}) имеет многочлен:

$$\overline{T_n(x)} = 2^{1-n}T_n(x)$$

T.e:

$$2^{1-n} = \max_{[-1,1]} \{ |\overline{T_n(x)}| \} \le \max_{[-1,1]} |P_n(x)|$$

Доказательство. Свойство (3):

При
$$n = 0$$
: $T_0(x) = cos(0) = 1$.

При
$$n = 1$$
: $T_1(x) = \cos(\arccos(x)) = x$.

При $n \ge 2$:

$$\cos(n \cdot \arccos(x)) = 2x(\cos((n-1)\arccos(x)) - \cos((n-2)\arccos(x)))$$

$$\cos(n\arccos(x)) + \cos((n-2)\arccos(x)) =$$

$$2\cos((n-1)\arccos(x))\cos(\arccos(x)) = 2x\cos((n-1)\arccos(x))$$

Свойство (4):

$$\cos(n\arccos(x)) = 0$$

$$n\arccos(x) = \frac{\pi}{2} + \pi k, \ k = 0, 1, \dots, n-1$$

$$x_k = \cos(\frac{2k+1}{2n}\pi), \ k = 0, 1, \dots, n-1$$

Свойство (5):

Аналогично предыдущему, только приравниваем к ±1.

Теорема 3.7: Минимизация оценки погрешности

• Если отрезок [a,b] совпадает с [-1,1]:

$$\min_{[a,b]} \{ \overline{\Delta(P_n)} \} = \frac{M_{n+1}}{(n+1)!2^n}$$

• Для произвольного отрезка [a,b]:

$$\min_{[a,b]} \{ \overline{\Delta(P_n)} \} = \frac{M_{n+1}}{(n+1)!2^n} (\frac{b-a}{2})^{n+1}$$

Доказательство. В общем виде:

$$\overline{\Delta(P_n)} = \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}$$

и величина $\overline{\Delta(P_n)}$ будет минимальна, если минимальна величина $\max_{x\in[a,b]}\{|\omega_{n+1}(x)|\}.$

Если отрезок [a, b] **совпадает** с отрезком [-1, 1], то минимальное значение для $\max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}$ есть минимальное отклонение от нуля многочлена:

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

В силу свойств многочлена Чебышева, решение задачи дает набор узлов:

$$x_k = \cos(\frac{2k+1}{2n+2}\pi), k = 0, 1, \dots, n$$

являющихся нулями для $T_{n+1}(x)$ (т.к. в этом случае $\omega_{n+1}=\overline{T_{n+1}}$).

Следовательно, минимальное отклонение от 0 будет $2^{1-(n+1)} = \frac{1}{2^n}$. Тогда:

$$\min_{x \in [a,b]} \{ \Delta(P_n) \} = \frac{M_{n+1}}{(n+1)!2^n}$$

Если отрезок [a,b] не совпадает с отрезком [-1,1], то заменяем:

$$x = \frac{a+b}{2} + \frac{b-a}{2}t$$
, где $t \in [-1,1]$

Тогда:

$$\omega_{n+1}(x) = \left(\frac{b-a}{2}\right)^{n+1} \overline{\omega_{n+1}(t)}$$

где:

$$\begin{cases} \overline{\omega_{n+1}(t)} = (t - t_0)(t - t_1)\dots(t - t_n) \\ x_k = \frac{a+b}{2} + \frac{b-a}{2}t_k, \end{cases} \qquad k = 0, 1, \dots, n$$

Следовательно:

$$\overline{\Delta(P_n)} = \frac{M_{n+1}}{(n+1)!} (\frac{b-a}{2})^{n+1} \max_{t \in [-1,1]} \{ |\overline{\omega_{n+1}(t)}| \}$$

Аналогично, получаем:

$$\min_{x \in [a,b]} \{ \overline{\Delta(P_n)} \} = \frac{M_{n+1}}{(n+1)!2^n} (\frac{b-a}{2})^{n+1}$$

3.9 Интерполяционная формула Ньютона для неравных промежутков. Разделенные разности и их свойства.

Определение 3.12: Разделенные разности

Пусть есть система узлов x_0, x_1, \ldots, x_n : $x_i \neq x_j$ при $i \neq j$. Тогда отношения вида:

$$\begin{cases} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f(x_0; x_1) \\ \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f(x_1; x_2) \\ \dots \\ \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} = f(x_{n-1}; x_n) \end{cases}$$

разделенные разности первого порядка.

Через разделенные разности первого порядка, можно получить **разделенные разности второго порядка**:

$$\begin{cases} \frac{f(x_1; x_2) - f(x_0; x_1)}{x_2 - x_0} = f(x_0; x_1; x_2) \\ \frac{f(x_2; x_3) - f(x_1; x_2)}{x_3 - x_1} = f(x_1; x_2; x_3) \\ \dots \\ \frac{f(x_n; x_{n-1}) - f(x_{n-1}; x_{n-2})}{x_n - x_{n-2}} = f(x_{n-1}; x_n; x_{n-2}) \end{cases}$$

В общем случае: **разделенная разность** k-го порядка, при имеющейся разделенной разности порядка k-1:

$$\frac{f(x_i; x_{i+1}; \dots; x_{i+k}) - f(x_{i-1}; x_i; \dots; x_{i-k+1})}{x_{i+k} - x_{i-1}} = f(x_{i-1}; x_i; \dots; x_{i+k})$$

Лемма 3.3: Свойство разделенных разностей

$$f(x_i; x_{i+1}; \dots; x_{i+k}) = \frac{f(x_i)}{\prod_{l=1}^k (x_i - x_{i+l})} + \frac{f(x_{i+1})}{\prod_{l=0; l \neq 1}^k (x_{i+1} - x_{i+l})} + \dots$$
$$\dots + \frac{f(x_{i+k})}{\prod_{l=0}^{k-1} (x_{i+k} - x_{i+l})}$$

Доказательство. По индукции:

База: k = 1 (порядок разности)

$$f(x_i; x_{i+1}) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{f(x_i)}{x_i - x_{i+1}} + \frac{f(x_{i+1})}{x_{i+1} - x_i}$$

Переход: $l-1 \rightarrow l$

$$f(x_i; x_{i+1}; \dots; x_{i+l}) = \frac{f(x_{i+1}; \dots; x_{i+l}) - f(x_i; \dots; x_{i+l-1})}{x_{i+l} - x_i}$$

Далее аккуратно применяем свойство для симметричной разности l-го порядка для обеих множителей последнего равенства (учитываем разность!!) (слишком много расписывать).

Следстиве 3.5: Свойство разделенных разностей

Разделенная разность k-го порядка симметрична относительно своих аргументов:

$$f(x_i; x_{i+1}; \dots; x_{i+k}) = f(x_{i+1}; x_{i+2}; \dots; x_{i+k}; x_i) =$$

$$= f(x_{i+2}; x_{i+3}; \dots; x_{i+k}; x_i; x_{i+1}) = \dots$$

Теорема 3.8: Интерполяционная формула Ньютона для неравных промежутков

Интерполяционный многочлен принимает вид:

$$L_n(x) = f(x_0) + (x - x_0)f(x_0; x_1) + (x - x_0)(x - x_1)f(x_0; x_1; x_2) + \dots$$
$$\dots + (x - x_0)(x - x_1)\dots(x - x_{n-1})f(x_0; x_1; \dots; x_n)$$

Более удобная форма (чем по Лагранжу): добавление одного или нескольких узлов не приводит к повторению всей проделанной работы заново.

3.10 Вывод формулы Ньютона для неравных промежутков с помощью разделенных разностей.

Теорема 3.9: Формула Ньютона для неравных промежутков

Формула Ньютона:

$$L_n(x) = f(x_0) + (x - x_0)f(x_0; x_1) + (x - x_0)(x - x_1)f(x_0; x_1; x_2) + \dots$$
$$\dots + (x - x_0)(x - x_1)\dots(x - x_{n-1})f(x_0; x_1; \dots; x_n)$$

Доказательство. Представим многочлен Лагранжа в следующем виде:

$$L_n(x) = L_0(x) + [L_1(x) - L_0(x)] + [L_2(x) - L_1(x)] + \dots + [L_n(x) - L_{n-1}(x)]$$

Рассмотрим $L_k(x) - L_{k-1}(x)$:

Это многочлен степени k: $x_0, x_1, \ldots, x_{k-1}$ - его корни: $L_k(x_i) - L_{k-1}(x_i) = f(x_i) - f(x_i) = 0$ $i = 0, 1, \ldots, k-1$.

Значит, его можно представить в следующем виде:

$$L_k(x) - L_{k-1}(x) = A_k(x - x_0)(x - x_1) \dots (x - x_{k-1}), A_k$$
 - константа

Найдем A_k :

$$L_k(x_k)-L_{k-1}(x_k)=f(x_k)-L_{k-1}(x_k)=A_k(x_k-x_0)(x_k-x_1)\dots(x_k-x_{k-1})$$
 Следовательно:

$$A_k = \frac{f(x_k)}{(x_k - x_0)(x_k - x_1)\dots(x_k - x_{k-1})} - \frac{\sum_{j=0}^{k-1} f(x_j) \frac{(x_k - x_0)\dots(x_k - x_{j-1})(x_k - x_{j+1})\dots(x_k - x_{k-1})}{(x_j - x_0)\dots(x_j - x_{j-1})(x_j - x_{j+1})\dots(x_j - x_{k-1})}}{(x_k - x_0)(x_k - x_1)\dots(x_k - x_{k-1})} =$$

$$= \sum_{j=0}^{k} \frac{f(x_j)}{(x_j - x_0) \dots (x_j - x_{j-1})(x_j - x_{j+1}) \dots (x_j - x_k)} = f(x_0; x_1; \dots; x_k)$$

Отсюда получаем итоговую формулу.

3.11 Интерполяционная формула Ньютона для равных промежутков. Конечные разности и их связь с разделенными разностями.

Определение 3.13: Конечные разности

Пусть даны узлы $x_0, x_0+h, x_0+2h, \ldots, x_0+nh$, где h - шаг таблицы. Пусть известны значения f_0, f_1, \ldots, f_n , тогда разности вида:

$$\begin{cases} f_1 - f_0 \\ f_2 - f_1 \\ \dots \\ f_n - f_{n-1} \end{cases}$$

конечные разности первого порядка.

Обозначение для конечных разностей первого порядка: $f_{i+1} - f_i = f_{i+\frac{1}{2}}^1$.

Из конченых разностей первого порядка можно получить **конечные разности второго порядка**:

$$\begin{cases} f_1^2 = f_{\frac{3}{2}}^1 - f_{\frac{1}{2}}^1 \\ f_2^2 = f_{\frac{5}{2}}^1 - f_{\frac{3}{2}}^1 \\ \dots \\ f_i^2 = f_{\frac{2i+1}{2}}^1 - f_{\frac{2i-1}{2}}^1 \\ \dots \end{cases}$$

Лемма 3.4: Связь между разделенной и конечной разностями

$$f(x_i; x_{i+1}) = \frac{f_{i+1} - f_i}{x_{i+1} - x_i} = \frac{f_{i+\frac{1}{2}}^1}{h}$$

$$f(x_i; x_{i+1}; x_{i+2}) = \frac{f(x_{i+1}; x_{i+2}) - f(x_i; x_{i+1})}{x_{i+2} - x_i} = \frac{f_{i+\frac{3}{2}}^1 - f_{i+\frac{1}{2}}^1}{2h^2} = \frac{f_{i+1}^2}{2h^2}$$

В общем виде:

$$f(x_i; x_{i+1}; \dots; x_{i+k}) = \frac{f_{i+\frac{k}{2}}^k}{k!h^k}$$

Доказательство. По индукции

Teopema 3.10: Интерполяционная формула Ньютона для равных промежутков

Формула Ньютона для интерполирования вперед имеет вид:

$$L_n(x_0 + ht) = f_0 + tf_{\frac{1}{2}}^1 + \frac{t(t-1)}{2!}f_1^2 + \ldots + \frac{t(t-1)\ldots(t-(n-1))}{n!}f_{\frac{n}{2}}^n$$

Формула Ньютона для интерполирования назад имеет вид:

$$L_n(x_0+ht) = f_0 + tf_{-\frac{1}{2}}^1 + \frac{t(t+1)}{2!}f_{-1}^2 + \ldots + \frac{t(t+1)\ldots(t+(n-1))}{n!}f_{-\frac{n}{2}}^n$$

3.12 Вывод формул Ньютона для интерполирования вперед и назад.

Теорема 3.11: Формула Ньютона для интерполирования вперед

Пусть даны узлы $x_0, x_0 + h, \dots, x_0 + nh$, тогда:

Формула Ньютона для интерполирования вперед имеет вид:

$$L_n(x_0 + ht) = f_0 + tf_{\frac{1}{2}}^1 + \frac{t(t-1)}{2!}f_1^2 + \dots + \frac{t(t-1)\dots(t-(n-1))}{n!}f_{\frac{n}{2}}^n$$

Доказательство. Формула Ньютона с заменой разделенных разностей на конечные:

$$L_n(x) = f_0 + \frac{x - x_0}{h} f_{\frac{1}{2}}^1 + \frac{(x - x_0)(x - x_1)}{2h^2} f_1^2 + \dots$$
$$\dots + \frac{(x - x_0)(x - x_1) \cdot (x - x_{n-1})}{n!h^n} f_{\frac{n}{2}}^n$$

Произведя дополнительную замену: $t=\frac{x-x_0}{h} o x=x_0+th$

$$L_n(x_0 + ht) = f_0 + tf_{\frac{1}{2}}^1 + \frac{t(t-1)}{2!}f_1^2 + \ldots + \frac{t(t-1)\ldots(t-(n-1))}{n!}f_{\frac{n}{2}}^n$$

Формула для интерполирования вперед используется, если необходимо вычислить значение в узле, что находится ближе к началу выборки.

Теорема 3.12: Формула Ньютона для интерполирования назад

Пусть даны узлы $x_0, x_0 - h, \dots, x_0 - nh$, тогда:

Формула Ньютона для интерполирования назад имеет вид:

$$L_n(x_0+ht) = f_0 + tf_{-\frac{1}{2}}^1 + \frac{t(t+1)}{2!}f_{-1}^2 + \dots + \frac{t(t+1)\dots(t+(n-1))}{n!}f_{-\frac{n}{2}}^n$$

Доказательство. В силу симметрии разделенных разностей относительно своих аргументов:

$$f(x_0; x_0 - h; \dots; x_0 - ih) = f(x_0 - ih; x_0 - ih + h; \dots; x_0 - h; x_0)$$

Заменим разделенные разности конечными:

$$f(x_0 - ih; x_0 - ih + h; \dots; x_0 - h; x_0) = \frac{f_{-\frac{i}{2}}^i}{i!h^i}$$

Формула Ньютона с заменой разделенных разностей на конечные:

$$L_n(x) = f_0 + \frac{x - x_0}{h} f_{-\frac{1}{2}}^1 + \frac{(x - x_0)(x - x_0 + h)}{2!h^2} f_{-1}^2 + \dots$$
$$\dots + \frac{(x - x_0)(x - x_0 + h) \cdot (x - x_0 + (n - 1)h)}{n!h^n} f_{-\frac{n}{2}}^n$$

Заменяя $\frac{(x-x_0)}{h} = t$, получаем:

$$L_n(x_0+ht) = f_0 + tf_{-\frac{1}{2}}^1 + \frac{t(t+1)}{2!}f_{-1}^2 + \ldots + \frac{t(t+1)\ldots(t+(n-1))}{n!}f_{-\frac{n}{2}}^n$$

Формула для интерполирования назад используется, если необходимо вычислить значение в узле, что находится ближе к концу выборки.

- 3.13 Проблемы глобальной полиномиальной интерполяции. Интерполяция сплайнами. Определение сплайна. Интерполяционный сплайн.
- 3.13.1 Глобальная полиномиальная интерполяция.

Определение 3.14: Глобальная полиномиальная интерполяция

Пусть функция f(x) интерполируема на отрезке [a,b]. Метод решения этой задачи единым для всего отрезка многочленом $P_n(x)$ называют глобальной полиномиальной интерполяцией.

Теорема 3.13: Постановка задачи

Для реализации процесса интерполяции многочленами возрастающей степени n, необходимо указать стратегию выбора узлов интерполяции $x_0^{(n)}, x_1^{(n)}, \ldots, x_n^{(n)}$.

Такая стратегия задается указанием **интерполяционного массива** - треугольной таблицы, вида:

$$x_0^{(0)}$$

$$x_0^{(1)}, x_1^{(1)}$$

$$x_0^{(2)}, x_1^{(2)}, x_2^{(2)}$$

$$\dots$$

$$x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, \dots, x_n^{(n)}$$

где все $x_i^{(n)}$ различны и $x_i^{(n)} \in [a, b]$.

Т.е. при глобальной интерполяции многочленами возрастающей степени наращивается степень многочлена (постепенно выбираются оптимальные узлы).

Определение 3.15: Сходимость интерполяции

Интерполяция **сходится** при заданной стратегии выбора узлов, если:

$$\max_{[a,b]}\{|f(x)-P_n(x)|\} \to 0$$
, при $n\to\infty$

Существует несколько проблем, по которым глобальная полиномиальная интерполяция многочленами высокой степени не используется.

Сходимость глобальной полиномиальной интерполя-3.13.2 ции

Теорема 3.14: Равномерный выбор узлов

При равномерном распределение на отрезке [a,b] узлов интерполяции (т.е. в выборе $x_i^{(n)}=a+ih,\ i=0,1,\ldots,n,$ где $h=\frac{b-a}{n}$) существуют примеры расходящейся при увеличении узлов интерполяции:

Пример Рунге:

Если $f(x) = \frac{1}{1+25x^2}$, то при больших n интерполяция будет расходится для $0.73 < |x| \le 1$:

Рис. 8: Пример расходящейся интерполяции

Таким образом, равномерное распределение узлов интерполяции для функции Рунге оказалось неудачным.

При выборе узлов интерполяции - корни многочлена Чебышева $T_{n+1}(x)$ проблема сходимости для примера Рунге уйдет.

Теорема 3.15: Фабера

Какова бы ни была стратегия выбора узлов интерполяции, найдется непрерывная на [a,b] функция f(x), для которой $\max_{[a,b]}\{|f(x)-P_n(x)|\}\to\infty$ при $n\to\infty$.

Т.е. теорема Фабера отрицает существование единой для всех **непрерывных** функций стратегии выбора узлов интерполяции.

Однако для **гладких** функций (а именно такие функции чаще всего и интерполируются) такая стратегия существует.

Теорема 3.16: Стратегия для гладких функций

Если в качестве узлов интерполяции на отрезке [a,b] выбираются чебышевские корни:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos(\frac{2k+1}{2n+2}\pi), k = 0, 1, \dots, n$$

то для любой **непрерывно дифференцируемой функции** f(x) на отрезке [a,b] метод интерполяции сходится.

3.13.3 Чувствительность интерполяционного многочлена к погрешностям входных данных.

Помимо погрешности от замены функции f(x), возникает еще дополнительная погрешность, связанная со значениями интерполируемой функции.

Теорема 3.17: Интерполяционное число обусловленности

Пусть в заданных узлах x_i значения y_i^* содержат погрешности ε_i . Тогда многочлен $P_n^*(x) = \sum_{j=0}^n y_j^* l_{n_j}(x)$ содержит погрешность:

$$P_n(x) - P_n^*(x) = \sum_{j=0}^n \varepsilon_j l_{n_j}(x)$$

Пусть $|\varepsilon_i| \leq \overline{\Delta(y^*)}$ для всех $i = 0, 1, \dots, n$, тогда:

$$\overline{\Delta(P_n^*)} = \max_{[a,b]} \{ |P_n(x) - P_n^*(x)| \} \le \Lambda_n \overline{\Delta(y^*)}$$

где $\Lambda_n = \max_{[a,b]} \{ \sum_{j=0}^n |l_{n_j}(x)| \}$ - абсолютное число обусловленности (число Лебега).

Величина Λ_n не зависит от длины [a,b]: она определяется только относительным расположением узлов на отрезке.

При выборе узлов - корни многочлена Чебышева: $\Lambda_n \approx \frac{2}{\pi} \ln(n+1) + 1$ При выборе узлов - равномерное распределение: $\Lambda_n > \frac{2^{n-1}}{(2n-1)\sqrt{n}}$

Следствие вышесказанного - в вычислениях **не следует** использовать интерполяционные многочлены высокой степени с **равноотстоящими узлами**.

3.13.4 Интерполяция сплайнами.

Вместо построения одного многочлена высокой степени для всего отрезка [a,b], область разбивается на частичные отрезки, и на каждом из них строится свой многочлен невысокой степени (обычно кубический).

Определение 3.16: Сплайн

Сплайн степени m - функция $S_m(x)$, обладающая следующими **свой- ствами**:

- 1. $S_m(x) \in C^{(p)}[a,b]$ (т.е. непрерывно-дифференцируема до порядка производной p).
- 2. На каждом частичном отрезке $[x_{i-1}, x_i]$ функция $S_m(x)$ совпадает с некоторым алгебраическим многочленом $P_{m,i}(x)$ степени m.

Определение 3.17: Дефект сплайна

Разность m-p между степенью и наивысшим порядком непрерывной на отрезке [a,b] производной сплайна.

Пример 3.5: Сплайн

Кубические сплайны с дефектами 1 и 2: такие сплайны на каждом из частичных отрезков $[x_{i-1}, x_i]$ совпадают с кубическим многочленом:

$$S_3(x) = P_{3,i}(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

и имеют на отрезке хотя бы одну непрерывную производную $S_3'(x)$.

Определение 3.18: Интерполяционный сплайн

Пусть функция f(x) задана таблицей своих значений $y_i = f(x_i), i = 0, 1, \ldots, n$.

Сплайн $S_m(x)$ называется **интерполяционным**, если $S_m(x_i) = y_i$ для всех $i = 0, 1, \ldots, n$.

Определение 3.19: Наклон сплайна

Значение: $s_i = S_m^{(1)}(x_i)$ - **наклон** сплайна в точке x_i .

Различные методы интерполяции кубическими сплайнами отличаются один от другого способом выбора наклонов s_i .

3.14 Интерполяция сплайнами. Построение локального кубического интерполяционного сплайна.

Определение 3.20: Локальный сплайн

Если в точках x_i известны значения производной $y_i' = f'(x_i)$, то естественно в формуле положить $s_i = y_i'$ для всех $i = 0, 1, \ldots, n$.

Тогда на каждом частичном отрезке $[x_{i-1}, x_i]$ интерполяционный кубический сплайн однозначно задается заданиями значений $y_{i-1}, y_i, y'_{i-1}, y'_i$.

Данный сплайн называется **локальным**. Он совпадает с кубическим интерполяционным многочленом Эрмита для отрезка $[x_{i-1}, x_i]$.

Лемма 3.5: Особенности локального сплайна

- Независимость: каждый кусок сплайна строится независимо.
- Входные данные: требуют знания не только значений функции, но и её производных.
- Совпадение: локальный сплайн = многочлен Эрмита на каждом отрезке.
- Гарантии: непрерывность только $S_3(x)$ и $S_3'(x)$ (дефект = 2).

Теорема 3.18: Построение кубического локального сплайна

Из равенства для интерполяционного многочлена Эрмита с кратными узлами:

$$P_3(x) = y_0 \frac{(x_1 - x)^2 (2(x - x_0) + h)}{h^3} + y_0' \frac{(x_1 - x)^2 (x - x_0)}{h^2} + y_1 \frac{(x - x_0)^2 (2(x_1 - x) + h)}{h^3} + y_1' \frac{(x - x_0)^2 (x - x_1)}{h^2}$$

где $h = x_1 - x_0$, следует:

$$S_3(x) = P_{3,i}(x) = \frac{(x - x_i)^2 (2(x - x_{i-1}) + h_i)}{h_i^3} y_{i-1} + \frac{(x - x_{i-1})^2 (s(x_i - x) + h_i)}{h_i^3} y_i + \frac{(x - x_i)^2 (x - x_{i-1})}{h_i^2} s_{i-1} + \frac{(x - x_{i-1})^2 (x - x_i)}{h_i^2} s_i$$

где $h_i = x_i - x_{i-1}$.

Лемма 3.6: Оценка погрешности кубического сплайна

Оценка погрешности интерполяции локальным кубическим сплайном имеет вид:

$$\max_{[a,b]}\{|f(x) - S_3(x)|\} \le \frac{M_4}{384}h_{\max}^4$$

где $h_{\max} = \max_{1 \leq i \leq n} \{h_i\}$ - максимальаня из длин частичных отрезков.

Доказательство. Получается из оценки погрешности интерполяции многочленом Эрмита с кратными узлами:

$$\max_{[x_0, x_1]} \{ |f(x) - P_3(x)| \} \le \frac{M_4}{384} h^4$$

Для построенного через Эрмита сплайна можно гарантировать непрерывность на отрезке [a,b] только функции $S_3(x)$ и ее первой производной $S_3'(x)$, т.е. дефект данного сплайна равен 2.

3.15 Интерполяция сплайнами. Глобальные способы построения кубического интерполяционного сплайна.

Глобальные способы требуют согласования наклонов s_i .

Теорема 3.19: Глобальные способы построения кубических сплайнов

Для того, чтобы сплайн $S_3(x)$ имел непрерывную на [a,b] вторую производную $S_3''(x)$, необходимо выбирать наклоны s_i так, чтобы в точках x_i стыка многочленов $P_{3,i}$ и $P_{3,i+1}$ совпадали значения их вторых производных:

$$P''_{3,i}(x_i) = P''_{3,i+1}(x_i), i = 1, 2, \dots, n-1$$

Записав такие уравнения для всех внутренних узлов $i=1,2,\ldots,n-1,$ можно составить систему, решение которой даст значения всех наклонов, обеспечивающих глобальную гладкость сплайна с непрерывной второй производной.

Из формулы локального построения сплайна:

$$\begin{cases} P_{3,i}''(x_i) = \frac{2s_{i-1}}{h_i} + \frac{4s_i}{h_i} - 6\frac{y_i - y_{i-1}}{h_i^2} \\ P_{3,i+1}''(x_i) = -\frac{4s_i}{h_{i+1}} - \frac{2s_{i+1}}{h_{i+1}} + 6\frac{y_{i+1} - y_i}{h_{i+1}^2} \end{cases}$$

Приравняв уравнения, придем к системе уравнений относительно коэффициентов s_i :

$$h_i^{-1}s_{i-1} + 2(h_i^{-1} + h_{i+1}^{-1})s_i + h_{i+1}^{-1}s_{i+1} =$$

$$= 3[h_i^{-2}(y_i - y_{i-1}) + h_{i+1}^3(y_{i+1} - y_i)], i = 1, 2, \dots, n-1$$

Данная система недоопределена: число уравнений (n-1) меньше числа неизвестных (n+1).

Теорема 3.20: Дополнение системы наклонов

Выбор двух оставшихся уравнений связывают с дополнительными условиями, накладываемыми на сплайн в граничных точках a и b (граничными условиями):

- Если известны f'(a) и f'(b), то: $s_0 = f'(a)$, $s_n = f'(b)$ (фундаментальный кубический сплайн).
- Если известны f''(a) и f''(b), то: $S_3''(a) = P_{3,1}''(x_0) = f''(a)$, $S_3''(b) = P_{3,n}''(x_n) = f''(b)$. Это приводит к следующим уравнениям:

$$\begin{cases} -\frac{4s_0}{h_1} - \frac{2s_1}{h_1} + 6\frac{y_1 - y_0}{h_1^2} = f''(a) \\ \frac{2s_{n-1}}{h_n} + \frac{4s_n}{h_n} - 6\frac{y_n - y_{n-1}}{h_n^2} = f''(b) \end{cases}$$

Полагая в предыдущих уравнениях f''(a) = 0, f''(b) = 0, придем к системе уравнений, определяющих естественный кубический сплайн.

• Если f(x) - периодическая функция с $T_f = b - a$, то систему следует дополнить уравнениями:

$$\begin{cases} s_0 = s_n \\ h_n^{-1}(s_{n-1} + 2s_n) + h_1^{-1}(2s_0 + s_1) = 3[h_n^{-2}(y_n - y_{n-1}) + h_1^{-2}(y_1 - y_0)] \end{cases}$$

Лемма 3.7: Особенности глобальных методов

- Связанность: все куски сплайна связаны через систему уравнений.
- Входные данные: достаточно только значений функции в узлах.
- **Непрерывность**: обеспечивают непрерывность высших производных.
- **Система**: наклоны s_i определяются из глобальной системы уравнений.

4 Дифференцирование и интегрирование

4.1 Простейшие формулы численного дифференцирования. Вычисление первой производной. Погрешность формул.

Численное дифференцирование применяется, когда функцию трудно или невозможно продифференцировать аналитически (например, задана таблицей).

Теорема 4.1: Вычисление первой производной

Предположим, что функция f(x) дифференцируема достаточное число раз в окрестности точки x, тогда:

$$\begin{cases} f'(x) \approx \frac{f(x+h) - f(x)}{h} \\ f'(x) \approx \frac{f(x) - f(x-h)}{h} \end{cases}$$

приближенные формулы (правые и левые разностные производные), соответствующие выбору фиксированных значений $\Delta x = h$ и $\Delta x = -h$ (здесь h > 0 - малый параметр (шаг)).

Величина:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

есть центральная разностная производная.

Теорема 4.2: Оценка погрешностей

Оценим величины:

$$\begin{cases} r_{+}(x,h) = f'(x) - \frac{f(x+h) - f(x)}{h} \\ r_{-}(x,h) = f'(x) - \frac{f(x) - f(x-h)}{h} \\ r_{0}(x,h) = f'(x) - \frac{f(x+h) - f(x-h)}{2h} \end{cases}$$

Получаем:

$$\begin{cases} |r_{+}(x,h)| \leq \frac{1}{2}M_{2}h, \ M_{2} = \max_{[x,x+h]} \{|f''(\xi)|\} \\ |r_{-}(x,h)| \leq \frac{1}{2}M_{2}h, \ M_{2} = \max_{[x-h,x]} \{|f''(\xi)|\} \\ |r_{0}(x,h)| \leq \frac{1}{6}M_{3}h^{2}, \ M_{3} = \max_{[x-h,x+h]} \{f^{(3)}(\xi)\} \end{cases}$$

Т.е. правые и левые разностные производные имеют превый порядок точности по h: они аппроксимируют производную $f^{'}(x)$ с первым порядком точности.

Центральная разностная производная аппроксимирует производную f'(x) со вторым порядком точности относительно h.

Доказательство. Воспользуемся формулами Тейлора:

$$f(x \pm h) = f(x) \pm f'(x)h + \frac{f''(\xi_{\pm})}{h^2}$$

где ξ_+ и ξ_- - точки, расположенные на интервалах (x,x+h) и (x,x-h) соответственно.

Подставляя значения в вырежения для $r_{\pm}(x,h)$, получаем:

$$\begin{cases} r_{+}(x,h) = -\frac{1}{2}f''(\xi_{+})h \\ r_{-}(x,h) = \frac{1}{2}f''(\xi_{-})h \end{cases}$$

Следовательно:

$$\begin{cases} |r_{+}(x,h)| \leq \frac{1}{2}M_{2}h, \ M_{2} = \max_{[x,x+h]} \{f''(\xi)\} \\ |r_{-}(x,h)| \leq \frac{1}{2}M_{2}h, \ M_{2} = \max_{[x-h,x]} \{f''(\xi)\} \end{cases}$$

Разложение Тейлора, соответствующее центральной разностной производной:

$$f(x \pm h) = f(x) \pm f'(x)h + \frac{f''}{2}h^{2} \pm \frac{f^{(3)}}{6}h^{3}$$

Подставив в $r_0(x,h)$ соответствующие значения, получаем:

$$r_0(x,h) = -\frac{f^{(3)}(\xi_+) + f^{(3)}(\xi_-)}{12}h^2$$

Тогда:

$$|r_0(x,h)| \le \frac{1}{6}M_3h^2, M_3 = \max_{[x-h,x+h]} \{|f^{(3)}(\xi)|\}$$

Для вычисления f'(x) можно получить формулы любого порядка точности (просто в формулах возрастает число используемых значений функции): так, формула 4-го порядка точности имеет вид:

$$f'(x) \approx \frac{f(x-2h) - 8f(x-h) + 8(x+h) - f(x+2h)}{12h}$$

Лемма 4.1: Геометрическая интерпретация производной

Пусть
$$N_0(x, f(x)), N_-(x-h, f(x-h)), N_+(x+h, f(x+h)).$$

Тогда производная f'(x) - тангенс угла α наклона к оси Ox касательной, проведенной к графику функции в точке N_0 .

Соответствующие правая и левая разностная производные есть тангенсы углов α_+ и α_- наклона секущих, проведенных через точки N_0 и N_+ , N_0 и N_- соответственно.

Формула центральной разностной производной - тангенс угла наклона α_0 секущей, проведенной через точки N_- и N_+ .

Рис. 9: Геометрическая интерпретация производных

4.2 Простейшие формулы численного дифференцирования. Вычисление второй производной. Погрешность формул.

Теорема 4.3: Вычисление второй производной

Формула второй производной:

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$

вторая разностная производная.

Теорема 4.4: Оценка погрешности

Пусть:

$$r(x,h) = f''(x) - \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$

погрешность формулы второй разностной производной, тогда:

$$|r(x,h)| \le \frac{M_4}{12}h^2$$
, $M_4 = \max_{[x-h,x+h]} \{|f^{(4)}(\xi)|\}$

т.е. формула второй разностной производной имеет второй порядок точности.

Доказательство. Разложение по формуле Тейлора:

$$f(x \pm h) = f(x) \pm f'(x)h + \frac{f''(x)}{2}h^2 \pm \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\xi_{\pm})}{24}h^4$$

Подставив значения в r(x,h), получаем:

$$-\frac{f^{(4)}(\xi_+) + f^{(4)}(\xi_-)}{24}h^2$$

Следовательно:

$$|r(x,h)| \le \frac{M_4}{12}h^2$$
, $M_4 = \max_{[x-h,x+h]} \{|f^{(4)}(\xi)|\}$

4.3 Общий подход к выводу формул численного дифференцирования с помощью интерполяционного многочлена.

В общем виде:

Пусть в окрестности точки x функция f(x) аппроксимируется некоторой другой функцией g(x), причем: производная $g^{(k)}(x)$ в точке x легко вычисляется. Тогда:

$$f^{(k)}(x) \approx g^{(k)}(x)$$

Теорема 4.5: Общий подход к выводу формул численного дифференцирования с помощью интерполяционного многочлена

Пусть $P_n(x)$ - интерполяционный многочлен степени n с узлами интерполяции $x_0 < x_1 < \ldots < x_n$ и $x \in [x_0, x_n]$. Тогда:

$$f^{(k)} \approx P_n^{(k)}(x), \ 0 \le k \le n$$

При этом справедлива следующая оценка погрешности:

$$|f^{(k)}(x) - P_n^{(k)}(x)| \le C_{n,k} M_{n+1} h_{\max}^{n+1-k}, \ 0 \le k \le n$$

где $C_{n,k}$ - положительные числа, $M_{n+1} = \max_{[x_0,x_n]}\{|f^{(n+1)}(x)|\}$

Порядок точности относительно $h_{\rm max}$ равен разности между числом узлов интерполяции и порядком вычисляемой производной.

4.4 Обусловленность формул численного дифференцирования.

Теорема 4.6: Обусловленность формул численного дифференцирования

K погрешности аппроксимации формул численного дифференцирования добавляется неустранимая погрешность, вызванная погрешностями вычисления функции f.

При малых шагах формулы численного дифференцирования становятся плохо обусловленными и результат их применения может быть полностью искажен неустранимой ошибкой.

Пример 4.1: Обусловленность формул численного дифференцирования

Полная погрешность формулы правой разностной производной:

$$r^{*}(x,h) = f'(x) - \frac{f^{*}(x+h) - f^{*}(x)}{h}$$

есть сумма:

• Погрешности аппроксимации:

$$r_{+}(x,h) = f'(x) - \frac{f(x+h) - f(x)}{h}$$

• Неустранимой погрешности:

$$r_{\rm H}(x,h) = \frac{1}{h}((f(x+h) - f^*(x+h)) - (f(x) - f^*(x)))$$

Пусть $\overline{\Delta}$ - верхняя оценка абсолютной погрешности $\Delta(f^*(x)) = |f(x) - f^*(x)|$, тогда:

$$r_{\rm H} \le \frac{2\overline{\Delta}}{h}$$

т.е. чувствительность формулы правой разностной производной к погрешностям входных данных характеризуется абсолютным числом $\nu_{\Delta}=\frac{2}{b}.$

Т.к. $\nu_{\Delta} \to \infty$ при $h \to 0$, то формула при малых h становится очень плохо обусловленной.

Во всяком случае, так ведет себя верхняя граница полной погрешности:

$$\overline{r(h)} = \frac{1}{2}M_2h + \frac{\overline{\Delta}}{h}$$

Лемма 4.2: Оптимальное значение h

$$h_{
m opt} = 2\sqrt{rac{\overline{\Delta}}{M_2}}$$

Доказательство. Приравняем верхнюю оценку полной погрешности к нулю:

$$\overline{r(h)} = \frac{1}{2}M_2h + \frac{\overline{\Delta}}{h}$$

получим:

$$h_{
m opt} = 2\sqrt{rac{\overline{\Delta}}{M_2}}$$

которому отвечает:

$$\overline{r_{
m min}} = \overline{r}(h_{
m opt}) = 2\sqrt{\overline{\Delta}M_2}$$

Формулы для вычисления производных порядка k>1 обладают еще большей чувствительностью к ошибкам задания функций.

Г

4.5 Численное интегрирование. Простейшие квадратурные формулы. Формула прямоугольников. Погрешность формулы.

4.6 Численное интегрирование. Простейшие квадратурные формулы. Формула трапеций. Погрешность формулы.

4.7 Численное интегрирование. Простейшие квадратурные формулы. Формула Симпсона. Погрешность формулы.

4.8 Апостериорные оценки погрешности квадратурных формул. Правило Рунге.

5 Список вопросов

- 1. Предмет вычислительной математики. Метод и задачи вычислительной математики в терминах функционального анализа.
- 2. Источники и классификация погрешностей результатов численного решения задач. Приближенные числа. Абсолютная и относительная погрешности. Правила записи приближенных чисел.
- 3. Погрешности арифметических операций над приближенными числами. Погрешность функции одной и многих переменных.
- 4. Корректность вычислительной задачи. Примеры корректных и некорректных задач.
- 5. Обусловленность вычислительной задачи. Примеры хорошо и плохо обусловленных задач.
- 6. Вычислительные алгоритмы. Корректность и обусловленность вычислительных алгоритмов.
- 7. Постановка задачи решения нелинейных уравнений. Основные этапы решения задачи.
- 8. Скорость сходимости итерационных методов уточнения решения нелинейного уравнения.
- 9. Обусловленность задачи решения нелинейных уравнений. Понятие об интервале неопределенности. Правило Гарвика.
- 10. Метод бисекции решения нелинейных уравнений. Скорость сходимости. Критерий окончания.
- 11. Метод Ньютона решения нелинейных уравнений. Вывод итерационной формулы метода Ньютона.
- 12. Априорная оценка погрешности метода Ньютона (теорема о скорости сходимости).
- 13. Апостериорная оценка погрешности (критерий окончания). Правило выбора начального приближения на отрезке локализации корня, гарантирующего сходимость метода.
- 14. Модификации метода Ньютона. Упрощенный метод Ньютона. Метод хорд.
- 15. Модификации метода Ньютона. Метод секущих. Скорость сходимости метода секущих.
- 16. Решение систем линейных алгебраических уравнений. Постановка задачи.
- 17. Решение систем линейных алгебраических уравнений. Определение понятия нормы вектора. Абсолютная и относительная погрешности вектора.

- 18. Решение систем линейных алгебраических уравнений. Определение понятия нормы матрицы, подчиненной норме вектора. Геометрическая интерпретация нормы матрицы.
- 19. Обусловленность задачи решения системы линейных алгебраических уравнений для приближенно заданной правой части. Количественная мера обусловленности системы линейных алгебраических уравнений. Геометрическая интерпретация числа обусловленности.
- 20. Обусловленность задачи решения системы линейных алгебраических уравнений для приближенно заданных матрицы и правой части.
- 21. Метод Гаусса решения систем линейных алгебраических уравнений. Схема единственного деления. LU разложение. Свойства метода.
- 22. Метод Гаусса решения систем линейных алгебраических уравнений. Схемы частичного и полного выбора ведущих элементов. Свойства методов.
- 23. Применение метода Гаусса к решению задач линейной алгебры. Вычисление решений системы уравнений с несколькими правыми частями.
- 24. Применение метода Гаусса к решению задач линейной алгебры. Вычисление обратной матрицы.
- 25. Применение метода Гаусса к решению задач линейной алгебры. Вычисление выражений вида v = CWw. Вычисление определителя матрицы.
- 26. Метод Холецкого решения систем линейных алгебраических уравнений с симметричной положительно определенной матрицей. Свойства метода.
- 27. Метод прогонки решения систем линейных алгебраических уравнений с трехдиагональными матрицами. Свойства метода.
- 28. Постановка задачи приближения функций. Приближение функций обобщенными многочленами.
- 29. Приближение методом интерполяции. Интерполяция обобщенными многочленами.
- 30. Понятия линейно-независимой системы функций на заданном множестве точек. Теорема о существовании единственного решения задачи интерполяции.
- 31. Понятия ортогональной системы функций на заданном множестве точек. Утверждение о существовании единственного решения задачи интерполяции с помощью ортогональной системы функций. Решение задачи интерполяции для этого случая.

- 32. Полиномиальная интерполяция. Интерполяционный многочлен в форме Лагранжа.
- 33. Погрешность полиномиальной интерполяции.
- 34. Интерполяционный многочлен с кратными узлами. Погрешность интерполяции с кратными узлами.
- 35. Минимизация оценки погрешности интерполяции. Многочлены Чебышева и их свойства. Применение для решения задачи минимизации погрешности.
- 36. Интерполяционная формула Ньютона для неравных промежутков. Разделенные разности и их свойства.
- 37. Вывод формулы Ньютона для неравных промежутков с помощью разделенных разностей.
- 38. Интерполяционная формула Ньютона для равных промежутков. Конечные разности и их связь с разделенными разностями.
- 39. Вывод формул Ньютона для интерполирования вперед и назад.
- 40. Проблемы глобальной полиномиальной интерполяции. Интерполяция сплайнами. Определение сплайна. Интерполяционный сплайн.
- 41. Интерполяция сплайнами. Построение локального кубического интерполяционного сплайна.
- 42. Интерполяция сплайнами. Глобальные способы построения кубического интерполяционного сплайна.
- 43. Простейшие формулы численного дифференцирования. Вычисление первой производной. Погрешность формул.
- 44. Простейшие формулы численного дифференцирования. Вычисление второй производной. Погрешность формул.
- 45. Общий подход к выводу формул численного дифференцирования с помощью интерполяционного многочлена.
- 46. Обусловленность формул численного дифференцирования.
- 47. Численное интегрирование. Простейшие квадратурные формулы. Формула прямоугольников. Погрешность формулы.
- 48. Численное интегрирование. Простейшие квадратурные формулы. Формула трапеций. Погрешность формулы.
- 49. Численное интегрирование. Простейшие квадратурные формулы. Формула Симпсона. Погрешность формулы.
- 50. Апостериорные оценки погрешности квадратурных формул. Правило Рунге.