Chapter 11

Flows

Discrete Structures for Computing on January 11, 2017

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung Faculty of Computer Science and Engineering University of Technology - VNUHCM htnguyen@hcmut.edu.vn

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

2 Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min

Cost Problem

3 Application

Multi-source Multi-sink Maximum Flow Problem

Bipartite Matching Vertex Capacities

Maximum Path

Exercise

Numerical exercises

Application

Flows

Huvnh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem Evercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem

Bipartite Matching Vertex Canacities

Maximum Path

Evercise

Course outcomes

		i iidiiii i
	Course learning outcomes	
L.O.1	Understanding of logic and discrete structures L.O.1.1 – Describe definition of propositional and predicate logic	BK TP.HCM
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs	-
L.O.2	Represent and model practical problems with discrete structures L.O.2.1 – Logically describe some problems arising in Computing	Flows Motivation
	L.O.2.2 – Use proving methods: direct, contrapositive, induction	Max Flow Proble
	L.O.2.3 – Explain problem modeling using discrete structures	Max Flow and M Problem
		Algorithm
L.O.3	Understanding of basic probability and random variables	State-of-the-art
	L.O.3.1 – Define basic probability theory	Ford-Fulkerson's for solving Max I
	L.O.3.2 – Explain discrete random variables	Problem
L.O.4	Compute quantities of discrete structures and probabilities	Ford-Fulkerson's for solving Max F Min Cost Proble
	L.O.4.1 – Operate (compute/ optimize) on discrete structures	Application
	L.O.4.2 – Compute probabilities of various events, conditional ones, Bayes theorem	Multi-source Mul Maximum Flow F
	· ··, · · y · · · · · ·	Bipartite Matchin
		Vertex Capacities Maximum Path

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

x Flow Problem x Flow and Min Cost

blem

orithm

d-Fulkerson's algorithm solving Max Flow blem

d-Fulkerson's algorithm solving Max Flow and Cost Problem

lication

lti-source Multi-sink ximum Flow Problem artite Matching tex Capacities

Exercise

Motivation

- Distributed manufacturing system : $((((M1 \land M4) \lor M2) \land M5) \lor (M3 \land M6)) \land (M7 \lor M8)$
- Production capacity of each branch is defined in graph G

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Motivation

- Distributed manufacturing system : $((((M1 \land M4) \lor M2) \land M5) \lor (M3 \land M6)) \land (M7 \lor M8)$
- Production capacity of each branch is defined in graph G
- How to determine the production capacity (e.g. pieces/min)?

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Motivation

- Distributed manufacturing system : $((((M1 \land M4) \lor M2) \land M5) \lor (M3 \land M6)) \land (M7 \lor M8)$
- Production capacity of each branch is defined in graph G
- How to determine the production capacity (e.g. pieces/min)?
- How to determine the production paths with the minimum transportation cost?

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Maximum flow problem

Given data

- A directed graph G = (V, E) with source node s and sink node t
- capacity function $c: E \longrightarrow \mathcal{R}$, i.e. $c(u,v) \geq 0$ for any edge $(u,v) \in E$

Objective

Send as much flow as possible with flow $f: E \longrightarrow R^+$ such that

- $f(u,v) \le c(u,v)$, for all $(u,v) \in E$
- $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$, for $u \neq s, t$

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Vertex Canacities

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Maximum Path Exercise

Maximum flow problem with minimum cost

Given data

- A directed graph G = (V, E) with source node s and sink node t
- capacity function $c: E \longrightarrow \mathcal{R}$, i.e. $c(u,v) \geq 0$ for any edge $(u,v) \in E$

Objective

Send as much flow as possible such that

- $f(u,v) \le c(u,v)$, for all $(u,v) \in E$
- $\sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v)$, for $u \neq s,t$

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Vertex Canacities

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Maximum Path Exercise

Maximum flow problem with minimum cost

Given data

- A directed graph G = (V, E) with source node s and sink node t
- capacity function $c: E \longrightarrow \mathcal{R}$, i.e. $c(u,v) \geq 0$ for any edge $(u,v) \in E$
- cost function $a: E \longrightarrow \mathcal{R}$, i.e. $a(u,v) \geq 0$ for any edge $(u,v) \in E$

Objective

Send as much flow as possible with minimum cost such that

- $f(u,v) \le c(u,v)$, for all $(u,v) \in E$
- $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$, for $u \neq s, t$
- $\sum_{(u,v)\in E} a(u,v)f(u,v)$ should be minimized

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Maximum Path Exercise

State-of-the-art

Flow Algorithms

- Linear programming
- Ford-Fulkerson algorithm $O(E \max |f|)$
- Edmond-Karp algorithm $O(VE^2)$
- Dinitz blocking flow algorithm $O(V^2E)$
- ullet General push-relabel maximum flow algorithm $O(V^2E)$
- Push-relabel algorithm with FIFO vertex selection rule $O(V^3)$
- Dinitz blocking flow algorithm with dynamic trees $O(VE \log(V))$
- ullet Push-relabel algorithm with dynamic trees $O(VE\log(V^2/E))$
- Binary blocking flow algorithm $O(E\min(V^{2/3}, \sqrt{E})log(V^2/E)\log(U))$ with $U = \max c(u, v)$

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

Ford-Fulkerson's algorithm for solving Max Flow Problem

Input: graph G with flow capacity c, a source node s, and a sink node t Output: a maximum flow f from s to t

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

Ford-Fulkerson's algorithm for solving Max Flow Problem

Input: graph G with flow capacity c, a source node s, and a sink node t

Output: a maximum flow f from s to t

$$k = 0; G^{(0)} = G;$$

 $c^{(0)}(u, v) = c(u, v), c^{(0)}(v, u) = 0, \forall (u, v) \in G^{(0)};$

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

Numerical exercises

Ford-Fulkerson's algorithm for solving Max Flow Problem

Input: graph G with flow capacity c, a source node s, and a sink node t

Output: a maximum flow f from s to t

$$k = 0; G^{(0)} = G;$$

$$c^{(0)}(u,v) = c(u,v), \ c^{(0)}(v,u) = 0, \ \forall (u,v) \in G^{(0)};$$

While \exists a path $\Pi^{(k)}(s,t)$ in $G^{(k)}$ such that $c^{(k)}(u,v)>0$, $\forall (u,v)\in\Pi^{(k)}$ do

Find
$$f(\Pi^{(k)}) = \min\{c^{(k)}(u,v)|(u,v) \in \Pi^{(k)}\}$$
;

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Maximum Path Exercise

```
Input: graph G with flow capacity c, a source node s, and a sink node t
Output: a maximum flow f from s to t
k = 0: G^{(0)} = G
c^{(0)}(u,v) = c(u,v), c^{(0)}(v,u) = 0, \forall (u,v) \in G^{(0)}
While \exists a path \Pi^{(k)}(s,t) in G^{(k)} such that C^{(k)}(u,v)>0, \forall (u,v)\in\Pi^{(k)} do
  Find f(\Pi^{(k)}) = \min\{c^{(k)}(u, v) | (u, v) \in \Pi^{(k)}\}:
  For each edge (u, v) \in \Pi^{(k)} do
     If (u,v) \in G then
        c^{(k+1)}(u,v) = c^{(k)}(u,v) - f(\Pi^{(k)}):
        c^{(k+1)}(v, u) = c^{(k)}(v, u) + f(\Pi^{(k)});
     Else
        c^{(k+1)}(u,v) = c^{(k)}(u,v) + f(\Pi^{(k)}):
        c^{(k+1)}(v, u) = c^{(k)}(v, u) - f(\Pi^{(k)}):
```

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Problem

Motivation

Max Flow Problem Max Flow and Min Cost

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow

Evercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Canacities

Maximum Path Evercise

Contents

Flows

Motivation Max Flow Problem

Max Flow and Min Cost

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

(A,B)

(A,C)

(B,C)

(B,D) | (C,D) |

 $\Pi^{(k)}$

Max Flow Problem Max Flow and Min Cost Problem

Contents Flows Motivation

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path

Exercise

(A,B)

(A,C)

(B,C)

(B,D) | (C,D) |

 $\Pi^{(k)}$

Flows

Huynh Tuong Nguyen
Nguyen An Khuong, V
Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

k	$\Pi^{(k)}$						$f(\Pi^{(k)})$
0	{(A,B),(B,D)}	6	-	-	6	-	6

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

 $\Pi^{(k)}$

0

 $\{(A,B),(B,D)\}$

(A,C)

(B,C)

(B,D)

(C,D)

(A,B)

	Flows	
uynh	Tuong	Nguyen

Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Max Flow and Min (Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

 $f(\Pi^{(k)})$

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

xercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,D)\}$	6	-	-	6	-	6
1	$\{(A,C),(C,D)\}$	-	4	-	-	4	4
					•	•	

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem Max Flow and Min Cost

Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,D)\}$	6	-	-	6	-	6
1	{(A,C),(C,D)}	-	4	-	-	4	4

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Problem

Motivation

Max Flow Problem

Max Flow and Min Cost

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$		
0	{(A,B),(B,D)}	6	-	-	6	-	6		
1	$\{(A,C),(C,D)\}$	-	4	-	-	4	4		
	Stop	with $f_{max}=10$							

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem Max Flow and Min Cost

Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,D)\}$	6	-	-	6	-	6
1	$\{(A,C),(C,D)\}$	-	4	-	-	4	4
		6	4	-	6	4	10
	Stop		with f_n	nax = 10			

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

Algorithm State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path

Exercise

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Wildermann T den

Exercise

 $k \mid \Pi^{(k)} \qquad \qquad \mid (A,B) \mid (A,C) \mid (B,C) \mid (B,D) \mid (C,D) \mid f(\Pi^{(k)})$

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art
Ford-Fulkerson's algorithm
for solving Max Flow

-Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and

Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path

Exercise

 $f(\Pi^{(k)})$ $\Pi^{(k)}$ k(A,B) (A,C) | (B,C) | (B,D) (C,D)

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem Max Flow and Min Cost

Problem

Algorithm

State-of-the-art Ford-Fulkerson's algorithm

for solving Max Flow -Problem

Exercise

Ford-Fulkerson's algorithm

Min Cost Problem

for solving Max Flow and Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,C),(C,D)\}$				-		

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

 $\Pi^{(k)}$

 $\{(A,B),(B,C),(C,D)\}$

k

(A,C)

(B,C)

(B,D)

(C,D)

(A,B)

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost
Problem

Algorithm

 $f(\Pi^{(k)})$

State-of-the-art

Ford-Fulkerson's algorithm	
for solving Max Flow	
Problem	

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,C),(C,D)\}$	1	-	1	-	1	1
1		-	3	-	-	3	3

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost
Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,C),(C,D)\}$	1	-	1	-	1	1
1	{(A,C),(C,D)}	-	3	-	-	3	3

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	{(A,B),(B,C),(C,D)}	1	-	1	-	1	1
1	{(A,C),(C,D)}	-	3	-	-	3	3
2	{(A,B),(B,D)}	5	-	-	5	-	5
	. , , , , , , , , , , , , , , , , , , ,				'	'	'

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,C),(C,D)\}$	1	-	1	-	1	1
1	{(A,C),(C,D)}	-	3	-	-	3	3
2	{(A,B),(B,D)}	5	-	-	5	-	5
		!	'	'		'	•

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost
Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,C),(C,D)\}$	1	-	1	-	1	1
1	{(A,C),(C,D)}	-	3	-	-	3	3
2	{(A,B),(B,D)}	5	-	-	5	-	5
3	$\{(A,C),(C,B),(B,D)\}$	-	1	-1	1	-	1
		ı	'	1	'	!	'

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost
Problem

Algorithm

Algorithm State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,C),(C,D)\}$	1	-	1	-	1	1
1	{(A,C),(C,D)}	-	3	-	-	3	3
2	$\{(A,B),(B,D)\}$	5	-	-	5	-	5
3	$\{(A,C),(C,B),(B,D)\}$	-	1	-1	1	-	1
	20 1 700 1 700 1 73	ı	!		'	ı	

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation
Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$	
0	$\{(A,B),(B,C),(C,D)\}$	1	-	1	-	1	1	
1	$\{(A,C),(C,D)\}$	-	3	-	-	3	3	
2	{(A,B),(B,D)}	5	-	-	5	-	5	
3	{(A,C),(C,B),(B,D)}	-	1	-1	1	-	1	
	Stop with $f_{max}=10$							

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

Example 2

k	$\Pi^{(k)}$	(A,B)	(A,C)	(B,C)	(B,D)	(C,D)	$f(\Pi^{(k)})$
0	$\{(A,B),(B,C),(C,D)\}$	1	-	1	-	1	1
1	$\{(A,C),(C,D)\}$	-	3	-	-	3	3
2	{(A,B),(B,D)}	5	-	-	5	-	5
3	{(A,C),(C,B),(B,D)}	-	1	-1	1	-	1
		6	4	-	6	4	10
	Stop	with $f_{max}=10$				•	

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost
Problem

Algorithm

State-of-the-art Ford-Fulkerson's algorithm for solving Max Flow

Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

Find the maximum flow and the min-cut in the following network.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost
Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

Input: graph G with flow capacity c, a source node s, and a sink node t Output: a maximum flow f from s to t

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

Input: graph ${\it G}$ with flow capacity ${\it c}$, a source node ${\it s}$, and a sink node ${\it t}$

Output: a maximum flow f from s to t

$$k = 0$$
; $G^{(0)} = G$; $c^{(0)}(u, v) = c(u, v)$, $c^{(0)}(v, u) = 0$, $\forall (u, v) \in G^{(0)}$;

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

Input: graph G with flow capacity c, a source node s, and a sink node t

Output: a maximum flow f from s to t

$$k=0;$$
 $G^{(0)}=G;$ $c^{(0)}(u,v)=c(u,v),$ $c^{(0)}(v,u)=0,$ $\forall (u,v)\in G^{(0)};$

While \exists a shortest path $\Pi^{(k)}(s,t)$ in $G^{(k)}$ such that $c^{(k)}(u,v)>0$, $\forall (u,v)\in\Pi^{(k)}$ do

Find
$$f(\Pi^{(k)}) = \min\{c^{(k)}(u,v)|(u,v) \in \Pi^{(k)}\}$$
;

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path Exercise

```
Input: graph G with flow capacity c, a source node s, and a sink node t
Output: a maximum flow f from s to t
k = 0: G^{(0)} = G: c^{(0)}(u, v) = c(u, v), c^{(0)}(v, u) = 0, \forall (u, v) \in G^{(0)}:
While \exists a shortest path \Pi^{(k)}(s,t) in G^{(k)} such that c^{(k)}(u,v)>0.
\forall (u, v) \in \Pi^{(k)} do
  Find f(\Pi^{(k)}) = \min\{c^{(k)}(u,v)|(u,v) \in \Pi^{(k)}\};
  For each edge (u, v) \in \Pi^{(k)} do
     If (u,v) \in G then
        c^{(k+1)}(u,v) = c^{(k)}(u,v) - f(\Pi^{(k)});
        c^{(k+1)}(v, u) = c^{(k)}(v, u) + f(\Pi^{(k)}):
     Else
        c^{(k+1)}(u,v) = c^{(k)}(u,v) + f(\Pi^{(k)}):
        c^{(k+1)}(v, u) = c^{(k)}(v, u) - f(\Pi^{(k)});
```

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost
Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Canacities

Maximum Path Exercise

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost
Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Canacities

Maximum Path Exercise

Numerical exercises
Application

Input: graph G with flow capacity c, a source node s, and a sink node tOutput: a maximum flow f from s to tk = 0: $G^{(0)} = G$: $c^{(0)}(u, v) = c(u, v)$, $c^{(0)}(v, u) = 0$, $\forall (u, v) \in G^{(0)}$: While \exists a shortest path $\Pi^{(k)}(s,t)$ in $G^{(k)}$ such that $c^{(k)}(u,v)>0$. $\forall (u, v) \in \Pi^{(k)} do$ Find $f(\Pi^{(k)}) = \min\{c^{(k)}(u,v)|(u,v) \in \Pi^{(k)}\}$; For each edge $(u, v) \in \Pi^{(k)}$ do If $(u,v) \in G$ then $c^{(k+1)}(u,v) = c^{(k)}(u,v) - f(\Pi^{(k)});$ $c^{(k+1)}(v, u) = c^{(k)}(v, u) + f(\Pi^{(k)})$: Else $c^{(k+1)}(u,v) = c^{(k)}(u,v) + f(\Pi^{(k)})$: $c^{(k+1)}(v, u) = c^{(k)}(v, u) - f(\Pi^{(k)});$ k + +:

Multi-source Multi-sink Maximum Flow Problem

• Given a network $\mathcal{N}=(V,E)$ with a set of sources $S=s_1,\ldots,s_n$ and a set of sinks $T=t_1,\ldots,t_m$

• find the maximum flow across \mathcal{N} .

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

Multi-source Multi-sink Maximum Flow Problem

- Given a network $\mathcal{N}=(V,E)$ with a set of sources $S=s_1,\ldots,s_n$ and a set of sinks $T=t_1,\ldots,t_m$
- find the maximum flow across \mathcal{N} .
- ⇒ transform into a maximum flow problem by adding a super source connecting to each vertex in S and a super sink connected by each vertex in T with infinite capacity on each edge

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost
Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem

Bipartite Matching

Vertex Capacities Maximum Path

Exercise

Maximum Cardinality Bipartite Matching

- Given a bipartite graph $G = (X \cup Y, E)$
- find a maximum cardinality matching in *G*, that is a matching that contains the largest possible number of edges.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem

Bipartite Matching Vertex Capacities

Maximum Path

Exercise

Maximum Cardinality Bipartite Matching

- Given a bipartite graph $G = (X \cup Y, E)$
- find a maximum cardinality matching in G, that is a matching that contains the largest possible number of edges.
- \Longrightarrow transform into a maximum flow problem by constructing a network $\mathcal{N} = (X \cup Y \cup \{s,t\}, E'\}$:
 - 1 E' contains the edges in G directed from X to Y.
 - $(s,x) \in E'$ for each $x \in X$ and $(y,t) \in E'$ for each $y \in Y$.
 - 3 c(e) = 1 for each $e \in E'$.

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem

Vertex Capacities Maximum Path

Exercise

Minimum Path Cover in Directed Acyclic Graph

• Given a directed acyclic graph G = (V, E), we are to find the minimum number of paths to cover each vertex in V. We can construct a bipartite graph $G' = (Vout \cup Vin, E')$ from G, where

```
1 Vout = \{v \in V : v \text{ has positive out-degree } \}.
```

2
$$Vin = \{v \in V : v \text{ has positive in-degree } \}.$$

3
$$E' = \{(u, v) \in (Vout, Vin) : (u, v) \in E\}.$$

- Then it can be shown that G' has a matching of size m iif there exists n-m paths that cover each vertex in G, where n is the number of vertices in G
- Therefore, the problem can be solved by finding the maximum cardinality matching in G' instead.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem

Vertex Canacities

Maximum Path

Exercise

Maximum Flow Problem with Vertex Capacities

- Given a network $\mathcal{N}=(V,E)$, in which there is capacity at each node in addition to edge capacity, that is, a mapping $c:V\to R+$, denoted by c(v), such that the flow f has to satisfy not only the capacity constraint and the conservation of flows, but also the vertex capacity constraint $\sum_{i\in V}f_{i,v}\leq c(v), \forall v\in V\setminus s,t$
- \Longrightarrow the amount of flow passing through a vertex cannot exceed its capacity.
- To find the maximum flow across N, we can transform the problem into the maximum flow problem in the original sense by expanding N.
 - each $v \in V$ is replaced by v_{in} and v_{out}
 - v_{in} is connected by edges going into v
 - v_{out} is connected to edges coming out from v,
 - ullet assign capacity c(v) to the edge connecting v_{in} and v_{out}
- In this expanded network, the vertex capacity constraint is removed and therefore the problem can be treated as the original maximum flow problem.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Maximum Independent Path

- Given a directed graph G = (V, E) and two vertices s and t,
- Find the maximum number of independent paths from s to t.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and

Min Cost Problem Application

Multi-source Multi-sink

Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Evercise

Maximum Independent Path

- Given a directed graph G = (V, E) and two vertices s and t,
- Find the maximum number of independent paths from s to t.
- Two paths are said to be independent if they do not have a vertex in common apart from s and t.
- We can construct a network $\mathcal{N} = (V, E)$ from G with vertex capacities, where
 - 1 s and t are the source and the sink of $\mathcal N$ respectively.
 - c(v) = 1 for each $v \in V$.
 - (e) = 1 for each $e \in E$.
- ullet Then the value of the maximum flow is equal to the maximum number of independent paths from s to t.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities

Maximum Path

Exercise

Maximum Edge-disjoint Path

- given a directed graph G = (V, E) and two vertices s and t
- find the maximum number of edge-disjoint paths from s to t.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem Max Flow and Min Cost

Algorithm

Problem State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow

Problem Evercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Evercise

Maximum Edge-disjoint Path

- given a directed graph G = (V, E) and two vertices s and t
 - find the maximum number of edge-disjoint paths from s to t.
- This problem can be transformed to a maximum flow problem by constructing a network $\mathcal{N}=(V,E)$ from G with s and t being the source and the sink of \mathcal{N} respectively and assign each edge with unit capacity.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and

Min Cost Problem Application

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Find the maximum flow in the following networks

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm

for solving Max Flow and Min Cost Problem

Application

pplication

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Numerical exercises

Find the maximum flow in the following networks

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

Find the maximum flow in the following networks

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Maximum Fath

Exercise

Find the maximum flow in the following networks

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

Numerical exercises

Find the maximum flow in the following networks

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

Numerical exercises

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Find the maximum flow in the following networks

 G_5

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Capacities Maximum Path

Exercise

Find the maximum flow in the following networks

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

xercise

Restaurant management

- Whole pineapples are served in a restaurant in London.
- To ensure freshness, the pineapples are purchased in Hawaii and air freighted from Honolulu to Heathrow in London.
- The following network diagram outlines the different routes that the pineapples could take.

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Max Flow and Min Co Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Numerical exercises

Restaurant management

- Whole pineapples are served in a restaurant in London.
- To ensure freshness, the pineapples are purchased in Hawaii and air freighted from Honolulu to Heathrow in London.
- The following network diagram outlines the different routes that the pineapples could take.

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem

Bipartite Matching Vertex Capacities

Maximum Path

Exercise

Production quantity measuring

- Distributed manufacturing system : $((((M1 \land M4) \lor M2) \land M5) \lor (M3 \land M6)) \land (M7 \lor M8)$
- Production capacity of each branch is defined in graph G
- How to determine the production capacity (e.g. pieces/min)?

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Evercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Evercise

Numerical exercises

Production quantity measuring

- Distributed manufacturing system : $((((M1 \land M4) \lor M2) \land M5) \lor (M3 \land M6)) \land (M7 \lor M8)$
- Production capacity of each branch is defined in graph G
- How to determine the production capacity (e.g. pieces/min)?
- How to determine the production paths with the minimum transportation cost ?

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Maximum Path

Exercise

Travelling problem

- The table below gives the expenses for persons W, X, Y and Z to travel to places A, B, C and D.
- The objective is to send each person to one of the four places such that all places will be visited, whilst the total costs are as small as possible.
- Translate this problem into a maximum flow problem and solve it with the maximum flow algorithm.

ſ		Α	В	С	D
Ī	W	16	12	11	12
ľ	Х	13	11	8	14
ſ	Υ	10	6	7	9
ſ	Z	11	15	10	8

Flows

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

WIAXIIIIUIII I ACII

Exercise

Seminar assignment problem

- Consider the problem of assigning student to writing seminars.
- In class, we modeled a version of the problem where the total number of students exactly equals the number of available spots.
- In real applications, there are fewer students than available spots so some writing seminars are assigned fewer than 15 students.
- Model this problem as a minimum cost flow problem.
- Explain (in words and/or pictures) what are the vertices, supplies and demands, edges, and edge weights.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Blood donation problem

- Enthusiastic celebration of a sunny day at a prominent northeastern university has resulted in the arrival at the university's medical clinic of 169 students in need of emergency treatment.
- Each of the 169 students requires a transfusion of one unit of whole blood. The clinic has supplies of 170 units of whole blood.
- The number of units of blood available in each of the four major blood groups and the distribution of patients among the groups is summarized below.
 - type A patients can only receive type A or O;
 - type B patients can receive only type B or O;
 - type O patients can receive only type O;
 - type AB patients can receive any of the four types.

Blood type	Α	В	0	AB
Supply	46	34	45	45
Demand	39	38	42	50

Give a max flow formulation that determines a distribution that satisfies the demands of a maximum number of patients.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Problem

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities Maximum Path

Exercise

xercise

Energy supplying problem

Dining Services wonders how little money they can spend on food while still supplying sufficient energy (2000 kcal), protein (55g), and calcium (800mg) to meet the minimum Federal guidelines and avert a potential lawsuit. A limited selection of potential menu items along with their nutrient content and maximum tolerable quantities per day is given in the table below.

	Energy	Protein	Calcium	Cost per serving
	(kcal)	(g)	(mg)	(cents)
Oatmeal	110	4	2	3
Chicken	205	32	12	24
Eggs	160	13	54	13
Whole milk	160	8	285	9
Cherry pie	420	4	22	20
Pork with beans	260	14	80	19

Formulate a linear program to find the most economical menu.

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem

Max Flow and Min Cost

Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Exercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching

Vertex Capacities

Maximum Path

Exercise

Numerical exercises

Circulation problem

Given data

- A directed graph G = (V, E) with source node s and sink node t
- lower bound l(u,v) and upper bound $u(u,v) \geq 0$ for any edge $(u,v) \in E$
- cost function $a: E \longrightarrow \mathcal{R}$, i.e. a(u,v) > 0 for any edge $(u,v) \in E$

Objective

Send as much flow as possible with minimum cost such that

- l(u,v) < f(u,v) < u(u,v), for all $(u,v) \in E$
- $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$, for $u \neq s, t$
- $\sum_{(u,v)\in E} a(u,v) f(u,v)$ should be minimized

Flows

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Flows

Motivation

Max Flow Problem Max Flow and Min Cost

Problem Algorithm

State-of-the-art

Ford-Fulkerson's algorithm for solving Max Flow Problem

Evercise

Ford-Fulkerson's algorithm for solving Max Flow and Min Cost Problem

Application

Multi-source Multi-sink Maximum Flow Problem Bipartite Matching Vertex Canacities

Evercise

Maximum Path Numerical exercises