Welcome to CHE 384T: Computational Methods in Materials Science

Interatomic Potentials

LeSar Ch. 5

Lecture Outline

Cohesive energy

Types of bonding

Interatomic potentials
Basic forms
Lennard-Jones potential
Mie potential
Born-Mayer and Morse potentials

Materials considerations
ionic materials
metals
covalent materials
mixed bonding environments

Cohesive Energy

$$\mathcal{U} = \sum_{i=1}^{n} v^{(i)}(\bar{r}_{i})$$

$$\mathcal{U} = \sum_{i=1}^{N} \mathcal{V}(\bar{r}_{i}) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \phi_{ij}(r_{ij}) + \frac{1}{6} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda^{(3)}(\bar{r}_{i,j}\bar{r}_{j,j}\bar{r}_{k}) + \dots$$

$$= \sum_{i=1}^{N} \mathcal{V}(\bar{r}_{i}) + \sum_{i=1}^{N} \sum_{j=1}^{N} \phi_{ij}(r_{ij}) + \frac{1}{6} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda^{(3)}(\bar{r}_{i,j}\bar{r}_{j,j}\bar{r}_{k}) + \dots$$

$$= \sum_{i=1}^{N} \mathcal{V}(\bar{r}_{i,j}) + \sum_{i=1}^{N} \sum_{j=1}^{N} \phi_{ij}(r_{ij}) + \frac{1}{6} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda^{(3)}(\bar{r}_{i,j}\bar{r}_{j,j}\bar{r}_{k}) + \dots$$

$$= \sum_{i=1}^{N} \mathcal{V}(\bar{r}_{i,j}) + \sum_{i=1}^{N} \sum_{j=1}^{N} \phi_{ij}(r_{ij}) + \frac{1}{6} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda^{(3)}(\bar{r}_{i,j}\bar{r}_{j,j}\bar{r}_{k}) + \dots$$

external potential

Goals in constructing an interatomic potential

- Define an input and output
 - Input: distance
 - Output: potential
- To create a model that captures how molecules interact with each other
 - Condensed matter exists → must be an attractive component
 - Matter does not collapse on itself → must be a repulse component
- A semi-quantitative model can provide some insights on materials behavior
- Re-cast mathematical equations in a form that is conducive to coding

Types of interactions

Covalent bonding

London dispersion forces

Trends in the Periodic Table

Electronegativity: tendency of an atom or a functional group to attract electrons toward itself.

Atoms prefer to have fully (or half) occupied electron electron shells → energetically stable

Duet rule: S² **Octet rule:** S²p⁶

18-electron rule: transition metals (varies a lot)

Figure 2.9 The electronegativity values for the elements. (From J. E. Brady and F. Senese, *Chemistry: Matter and Its Changes*, 4th edition, 2004. This material is reproduced with permission of John Wiley & Sons, Inc.)

Types of bonding and interactions

Interatomic potentials: Basic interactions

Short-range interactions

repulsive
$$\phi_{SR}(\bar{r}) = Ae^{-\alpha r}$$

Pauli exclusion principle (DM)

Long-range interactions

attractive
$$\rightarrow$$
 coulomb attraction $\phi_{LR}(r)^{\frac{1}{r}} - \frac{A}{r^6}$

Recasting into a more useful form

$$\phi^{LJ}(r) = \frac{B}{r^{12}} - \frac{A}{r^6}$$

$$\nabla = \left(\frac{B}{A}\right)^{1/6}$$

$$\varepsilon = \frac{A^2}{4B}$$

$$\sigma = \left(\frac{B}{A}\right)^{1/2}$$

$$= 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Scaled/reduced units

$$\phi^{*}(r^{*}) = 4\left[\left(\frac{1}{r^{*}}\right)^{12} - \left(\frac{1}{r^{*}}\right)^{6}\right]$$

Table 5.2 Calculated and experimental properties of the rare gas solids. Parameters taken from [15]

Shell	
closed shell coccs	
(disposion lake)	
- (gray gar	

not acropha	5
\$ se Fie	

		Ne	Ar	Kr	Xe
r_o (Å)	Experiment	3.13	3.75	3.99	4.33
	Theory	2.99	3.71	3.98	4.34
u_o (eV/atom)	Experiment	-0.02	-0.08	-0.11	-0.17
	Theory	-0.027	-0.089	-0.120	-0.172
B_o (GPa)	Experiment	1.1	2.7	3.5	3.6
	Theory	1.8	3.2	3.5	3.8

Higher alon sen points

bulk modulus
$$\beta_0 = \sqrt{\frac{\partial U}{\partial v}}$$

Pressure $P = -\left(\frac{\partial U}{\partial v}\right) \Big|_{N_1 \in V}$

Interatomic potentials: other forms

Mie Potential, fitting parameters 5, 8; m, 0

$$\phi_{mn}(r) = \frac{\epsilon}{m-n} \left(\frac{m^m}{n^n}\right)^{\frac{1}{m-n}} \left[\left(\frac{\sigma}{r}\right)^m - \left(\frac{\sigma}{r}\right)^n \right]$$

Born-Mayer Potential on a steepress

$$\phi^{BM}(r) = Ae^{-\alpha r} - \frac{C}{r^6}$$

Morse Potential - metals

$$\phi^{M}(r) = \epsilon \left[e^{-2\alpha(r-r^{*})} - 2e^{-\alpha(r-r^{*})} \right]$$

Central-Force potentials

Lennard-Jones potential is an example of a central-force potential

Such potentials will tend to form simple structures, e.g., fcc, bcc

More complex structures require additional thinking

 c_{12} and c_{44} are the Lame constant and shear elastic constant

 $c_{12} \neq c_{44}$ gives a degree of anisotropy

Table 5.3 Comparison of values for c_{12}/c_{44} for a number of materials. The value from calculations on a Lennard-Jones (LJ) potential are from [267], the data for Ar is from [168], while all other data are from Appendix 1 of [147]

Material	c ₁₂ /c ₄₄
"LJ"	1.00
Ar	1.12
Mo	1.54
Cu	1.94
Au	4.71
NaCl	0.99
Si	0.77
MgO	0.53
diamond	0.16

Connection to Thermodynamic quantities

Regardless, can use the simplicity of Lennard-Jones potential to analytically compute some thermodynamic quantities

Figure 5.5 (a) Cohesive energy per atom of the Lennard-Jones solid $u^* = u/\epsilon$ as a function of the volume per atom $v^* = v/\sigma^3$, from Eq. (5.39). v_o^* and u_o^* are the equilibrium values from Eq. (5.40). The bulk modulus is proportional to the curvature of this curve at equilibrium. (b) The pressure for the Lennard-Jones solid at 0 K.

Connection to Thermodynamic quantities

For an FCC crystal, rewrite LJ potential in terms of nn distances

$$u(\tilde{r}) = 2\epsilon \left[A_{12} \left(\frac{\sigma}{\tilde{r}} \right)^{12} - A_6 \left(\frac{\sigma}{\tilde{r}} \right)^6 \right]$$
where $r_o = \left(\frac{2A_{12}}{A_6} \right)^{1/6} \sigma = 1.09 \sigma$
where $r_o = \left(\frac{2A_{12}}{A_6} \right)^{1/2} \beta \sigma^3 = 0.916 \sigma^3$
where $r_o = \left(\frac{2A_{12}}{A_6} \right)^{1/2} \beta \sigma^3 = 0.916 \sigma^3$
where $r_o = \left(\frac{2A_{12}}{A_6} \right)^{1/2} \beta \sigma^3 = 0.916 \sigma^3$
where $r_o = \frac{\epsilon}{2} \left(\frac{A_6^2}{A_{12}} \right) = -8.6 \epsilon$
where $r_o = \frac{\epsilon}{2} \left(\frac{A_6^2}{A_{12}} \right) = -8.6 \epsilon$

Table 5. Lattice sums (A_n) for cubic crystals. From [161]. $f_1 = 6 + 12(1/\sqrt{2})^n + 8(1/\sqrt{3})^n$, $f_2 = 8 + 6(\sqrt{3}/4))^n + 12(\sqrt{3}/8)^n$, and $f_3 = 12 + 6(1/\sqrt{2})^n + 24(1/\sqrt{3})^n$

n	Simple cubic Body-centered		Simple cubic Body-centered cubic		Face-centered cubic
4	16.5323	22.6387	25.3383		
5	10.3775	14.7585	14.7585 16.9675		
6	8.4019	12.2533	14.4539		
7	7.4670	11.0542	13.3593		
8	6.9458	10.3552	12.8019		
9	6.6288	9.8945	12.4925		
10	6.2461	9.5645	12.3112		
11	6.2923	9.3133	12.2009		
12	6.2021	9.1142	12.1318		
13	6.1406	8.9518	12.0877		
14	6.0982	8.8167	12.0590		
15	6.0688	8.7030	12.0400		
16	6.0483	8.6063	12.0274		
17	6.0339	8.5236	12.0198		
18	6.0239	8.4525	12.0130		
19	6.0168	8.3914	12.0094		
$n \ge 20$	f_1	f_2	f_3		

Ionic systems

Closed-shell ions with limited charge in interstitial regions

Stitial regions
$$\mathcal{U} = \left\{ \begin{array}{cc} \sum_{i=1}^{n} \sum_{j=1}^{n} \left\{ \begin{array}{c} \phi_{i,j}(r_{i,j}) + \frac{kq_{i}q_{i}}{r_{i,j}} \end{array} \right\} \end{array} \right\}$$

Shell Model

- harmonic oscillator being polarized around (screened)

Coulombic

Electric Field E~ 2 K 8x2 lattice vibrations

· partition Coulomb cressy into coretshell, core-cores, shell-shell ineractions

is defects -> drive fluctuations of e- cloud

lead to small finite E

Metallic systems

Universal Binding curve sempirical

Universal Binding curve

Sempirical

Universal Binding curve

Sempirical

Volume-dependent potential

Universal Binding Curve (purely empirical fit to data)

Metallic systems

Covalent systems

Angular-dependent potentials

Bond-order potentials

use to tune

Mixed bonding systems

Reactive force potentials

Reax FF

npj Comput Mater 2, 15011 (2016).

Tight-binding Method

o approx to QM O develop Hamiltonian KE, PE

© solve eigenvalues (energies) eigenvectors (wavefunctions)

ML for interatomic potentials

Ab initio methods are still quite limited in terms of the length and time scales accessible

Current area of research: fit interatomic potentials to first-principles (usually DFT) data

Incorporating long-range interactions

J. Chem. Phys. 151, 204105 (2019)

Modeling amorphous systems

Phys. Rev. B 95, 094203 (2017)

FIG. 2. Potential-energy scans for an isolated carbon dimer. This plot, with DFT data as reference (blue), allows us to assess the use of different structural descriptors: all three combined are needed for a high-quality fit (see text).