Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчет

Лабораторные работа № 3 «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

По курсу «Технологии машинного обучения»

	ИСПОЛНИТЕЛ Матиенко Андр Группа ИУ5-6						
"-	"	2020 г.					
	ПРЕП	ОДАВАТЕЛЬ: Гапанюк Ю.Е.					
"	11	2020 г.					

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего формирования моделей.

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов <u>лекции</u> решить следующие задачи:
- обработку пропусков в данных;
- кодирование категориальных признаков;
- масштабирование данных.

Решение:

	sing = losing.hea		sing_data()							
	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY

Кодирование категориальных признаков

Категориальные признаки

Кодирование с помощью LabelEncoder

Кодирование с помощью OneHotEncoder

Обработка пропусков в данных

Первый способ определить признаки с нулевыми значениями

total_bedrooms имеет 20433 ненулевых объекта из 20640

Второй способ

In [101]:	housing.isnull().su	m()
Out[101]:	longitude latitude housing_median_age	0 0 0
	total_rooms total_bedrooms	0 207
	population households median income	0 0 0
	median_house_value ocean_proximity	0 0
	ocean_proximity_le dtype: int64	0

In [102]:		le_incomp le_incomp		ws = housing[housi ws	ng.isnull().any(axis=1)].head()				
Out[102]:		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
	290	-122.16	37.77	47.0	1256.0	NaN	570.0	218.0	4.3750	161900.0	NEAR BAY
	341	-122.17	37.75	38.0	992.0	NaN	732.0	259.0	1.6196	85100.0	NEAR BAY
	538	-122.28	37.78	29.0	5154.0	NaN	3741.0	1273.0	2.5762	173400.0	NEAR BAY
	563	-122.24	37.75	45.0	891.0	NaN	384.0	146.0	4.9489	247100.0	NEAR BAY
	696	-122.10	37.69	41.0	746.0	NaN	387.0	161.0	3.9063	178400.0	NEAR BAY
	4										

Первый способ решить эту проблему

Удалить строки с нулевыми значениями

```
In [103]: sample_incomplete_rows.dropna(subset=['total_bedrooms'])

Out[103]: longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity ocean_
```

Второй способ

Удалить столбцы, у которых есть нулевые значения(пропуски)

```
In [104]: sample_incomplete_rows.drop("total_bedrooms", axis=1)
Out[104]:
                longitude latitude housing_median_age total_rooms population households median_income median_house_value ocean_proximity ocean_proximity_le
           290 -122.16 37.77
                                47.0 1256.0 570.0 218.0
                                                                                      4.3750
                                                                                                       161900.0
                                                                                                                   NEAR BAY
           341
                -122.17
                         37.75
                                            38.0
                                                      992.0
                                                               732.0
                                                                          259.0
                                                                                       1.6196
                                                                                                        85100.0
                                                                                                                    NEAR BAY
                                            29.0
                                                                         1273.0
                                                                                       2.5762
           538
                 -122.28
                         37.78
                                                     5154.0
                                                               3741.0
                                                                                                       173400.0
                                                                                                                   NEAR BAY
                 -122.24
                                                                                       4.9489
                                                                                                       247100.0
                                                                                                                    NEAR BAY
           696
                -122.10 37.69
                                            41.0
                                                      746.0
                                                               387.0
                                                                          161.0
                                                                                       3.9063
                                                                                                       178400.0
                                                                                                                   NEAR BAY
                                                                                                                                     -
```

Третий способ

Заменить нулевые (пустые) значения средним/медианой/самой частой величиной

```
In [106]: mean_ = housing['total_bedrooms'].mean()
sample_incomplete_rows['total_bedrooms'].fillna(mean_, inplace=True)
            sample incomplete rows
Out[106]:
                  longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity oc
             290
                              37.77
                                                     47.0
                     -122.16
                                                                                            570.0
                                                                                                         218.0
                                                                                                                                           161900.0
                                                                                                                                                          NEAR BAY
             341
                    -122.17
                              37.75
                                                     38.0
                                                                992.0
                                                                           537.870553
                                                                                            732.0
                                                                                                         259.0
                                                                                                                        1.6196
                                                                                                                                            85100.0
                                                                                                                                                          NEAR BAY
             538
                    -122.28
                              37.78
                                                     29.0
                                                               5154.0
                                                                           537.870553
                                                                                           3741.0
                                                                                                        1273.0
                                                                                                                        2.5762
                                                                                                                                           173400.0
                                                                                                                                                          NEAR BAY
             563
                    -122.24
                              37.75
                                                     45.0
                                                                891.0
                                                                           537.870553
                                                                                            384.0
                                                                                                         146.0
                                                                                                                        4.9489
                                                                                                                                           247100.0
                                                                                                                                                          NEAR BAY
             696
                                                     41.0
                                                                746.0
                                                                                            387.0
```

Масштабирование данных

```
In [115]: from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
housing_1 = housing.copy()
housing_1.drop(['ocean_proximity'], axis=1, inplace=True)
housing_1 = scaler.fit_transform(housing_1)
df = pd.DataFrame(housing_1)
df
```

Out	[110	:14
out	[++-	٠ [٠

	0	1	2	3	4	5	6	7	8	9
0	-1.327835	1.052548	0.982143	-0.804819	-0.970325	-0.974429	-0.977033	2.344766	2.129631	1.291089
1	-1.322844	1.043185	-0.607019	2.045890	1.348276	0.861439	1.669961	2.332238	1.314156	1.291089
2	-1.332827	1.038503	1.856182	-0.535746	-0.825561	-0.820777	-0.843637	1.782699	1.258693	1.291089
3	-1.337818	1.038503	1.856182	-0.624215	-0.718768	-0.766028	-0.733781	0.932968	1.165100	1.291089
4	-1.337818	1.038503	1.856182	-0.462404	-0.611974	-0.759847	-0.629157	-0.012881	1.172900	1.291089
20635	-0.758826	1.801647	-0.289187	-0.444985	-0.388895	-0.512592	-0.443449	-1.216128	-1.115804	-0.116739
20636	-0.818722	1.806329	-0.845393	-0.888704	-0.920488	-0.944405	-1.008420	-0.691593	-1.124470	-0.116739
20637	-0.823713	1.778237	-0.924851	-0.174995	-0.125472	-0.369537	-0.174042	-1.142593	-0.992746	-0.116739
20638	-0.873626	1.778237	-0.845393	-0.355600	-0.305834	-0.604429	-0.393753	-1.054583	-1.058608	-0.116739
20639	-0.833696	1.750146	-1.004309	0.068408	0.185416	-0.033977	0.079672	-0.780129	-1.017878	-0.116739

20640 rows × 10 columns