## Критерий интегрируемости. Теорема Фубини

**Теорема 1.** Пусть f - ограниченная функция на замкнутом бруске I. f - интегрируема по Риману на I тогда и только тогда, когда  $\exists$  последовательности ступенчатых функций  $h_n, g_n$  такие, что:

- 1)  $h_n(x) \le h_{n+1}(x)$ ;  $g_{n+1}(x) \le g_n(x)$ ,  $\forall n$ ;
- 2)  $h_n(x) \le f(x) \le g_n(x), \forall n;$

3)  $\int_{\mathbf{I}} g_n(x) dx - \int_{\mathbf{I}} h_n(x) dx \xrightarrow[n \to \infty]{} 0;$ 

**Rm:** 1. Отметим, что это фактически критерий Дарбу, изложенный на языке функций, где равномерная сходимость заменена на монотонную последовательность.

 $(\Leftarrow)$  Пусть  $(\mathbb{T},\xi)$  - отмеченное разбиение,  $h_n \leq f \leq g_n$ , следовательно (объемы брусков  $\geq 0$ ):

$$\sigma(h_n, \mathbb{T}, \xi) \le \sigma(f, \mathbb{T}, \xi) \le \sigma(g_n, \mathbb{T}, \xi)$$

Заметим, что последовательность интегралов от  $h_n$  не убывает, а  $g_n$  не возрастает:

$$\int_{\mathbf{I}} h_n(x)dx \le \int_{\mathbf{I}} h_{n+1}(x)dx, \quad \int_{\mathbf{I}} g_{n+1}(x)dx \le \int_{\mathbf{I}} g_n(x)dx$$

Поскольку f - ограниченна, то эти последовательности ограниченны  $\Rightarrow$  у монотонных, ограниченных последовательностей есть предел. По пункту 3) условия и теореме Вейерштрасса следует:

$$\exists \lim_{n \to \infty} \int_{\mathbf{I}} h_n(x) dx = \lim_{n \to \infty} \int_{\mathbf{I}} g_n(x) dx = A$$

Возьмем  $\varepsilon > 0$  произвольное, тогда:

$$\exists n : \int_{\mathbf{I}} h_n(x) dx > A - \varepsilon, \int_{\mathbf{I}} g_n(x) dx < A + \varepsilon$$

Фиксируем  $n \Rightarrow$  поскольку ступенчатые функции - интегрируемы, то:

$$\exists \delta > 0 \colon \forall (\mathbb{T}, \xi), \ \lambda(\mathbb{T}) < \delta \Rightarrow \left| \int_{\mathbb{T}} h_n(x) dx - \sigma(h_n, \mathbb{T}, \xi) \right| < \varepsilon, \left| \int_{\mathbb{T}} g_n(x) dx - \sigma(g_n, \mathbb{T}, \xi) \right| < \varepsilon \Rightarrow$$

$$\Rightarrow A - 2\varepsilon < \sigma(f, \mathbb{T}, \xi) < A + 2\varepsilon \Rightarrow |\sigma(f, \mathbb{T}, \xi) - A| < 2\varepsilon \Rightarrow$$

$$\Rightarrow \forall \varepsilon > 0, \ \exists \delta > 0 \colon \forall (\mathbb{T}, \xi), \ \lambda(\mathbb{T}) < \delta \Rightarrow |\sigma(f, \mathbb{T}, \xi) - A| < \varepsilon$$

 $(\Rightarrow)$  Пусть f - интегрируема, построим  $h_n(x)$  и  $g_n(x).$  Возьмём произвольный брусок J :

$$J = J_1 \times \cdots \times J_n, J_k = (\ ,\ ) \vee [\ ,\ ) \vee (\ ,\ ] \vee [\ ,\ ]$$

Разобьем каждый промежуток  $J_k$  в объединение промежутков (договоримся, что  $|\Delta_k^i| > 0$ ):

$$\forall k = \overline{1, n}, J_k = \bigcup_{i=1}^{m_k} \Delta_k^i, \quad \forall i, j, \Delta_k^i \cap \Delta_k^j = \varnothing, \Delta_k^i = (,) \vee [,) \vee (,] \vee [,]$$

Возьмём Декартовы произведения:  $I_{k_1...k_n}=\Delta_1^{k_1}\times\Delta_2^{k_2}\times\ldots\times\Delta_n^{k_n},$  тогда:

$$J = \bigcup_{k_1 \dots k_n} \mathbf{I}_{k_1 \dots k_n}, \quad (k_1 \dots k_n) \neq (l_1 \dots l_n) \Rightarrow \mathbf{I}_{k_1 \dots k_n} \cap \mathbf{I}_{l_1 \dots l_n} = \emptyset$$

Кроме того,  $\forall \varepsilon > 0$  можно разбить так, чтобы:  $\operatorname{diam}(I_{k_1...k_n}) < \varepsilon$ , (каждую сторону разбиваем на промежутки малой длины так, чтобы диаметр соответствующих клеточек получался меньше  $\varepsilon$ ).

Строим последовательность разбиений:  $\{I_m^N\} = \mathbb{T}^N$ , где N - номер разбиения, а m - индекс, пересчитывающий все бруски. Последовательность строим так, чтобы выполнялись свойства:

- (1) diam( $I_m^N$ )  $< \frac{1}{N}$ ;
- (2)  $\mathbb{T}^{N+1}$  из  $\mathbb{T}^N$  получается разбиением  $\mathbf{I}_m^N$  на попарно непересекающиеся бруски, как описано выше (процедура называется измельчением);



Рис. 1: Измельчение I.

Тогда  $\exists \, k \colon \mathcal{I}_m^{N+1} \subset \mathcal{I}_k^N, \, \forall m \neq l, \, \mathcal{I}_m^N \cap \mathcal{I}_l^N = \varnothing$  и  $\operatorname{diam}(\mathcal{I}_m^N) < \frac{1}{N}$ . Предъявим последовательность функций:

$$h_N(x) = \sum_{m} \inf_{\mathbf{I}_m^N} f(x) \cdot \chi_{\mathbf{I}_m^N}(x), \quad g_N(x) = \sum_{m} \sup_{\mathbf{I}_m^N} f(x) \cdot \chi_{\mathbf{I}_m^N}(x)$$

Отличие от сумм Дарбу здесь в том, что бруски не пересекаются ⇒ это не обычное разбиение, как в определении интеграла, а разбиение чуть более общее (это сделано, чтобы не было наложений значений). Проверим свойства из теоремы:

1)  $h_N(x) \leq h_{N+1}(x)$ , поскольку бруски не пересекаются, то тут всегда только одно слагаемое может быть не 0, разбили брусок на мелкие и только один мелкий будет содержать x, тем самым:

$$h_N(x) = \inf_{\mathbf{I}_m^N} f(x), \ h_{N+1}(x) = \inf_{\mathbf{I}_n^{N+1}} f(x)$$



Рис. 2: Измельчение относительно конкретной точки x.

При измельчении точная нижняя грань не уменьшается, тогда:

$$x \in \mathcal{I}_m^N \land x \in \mathcal{I}_k^{N+1} \Rightarrow \mathcal{I}_k^{N+1} \subset \mathcal{I}_m^N \Rightarrow h_N(x) = \inf_{\mathcal{I}_m^N} f(x) \leq \inf_{\mathcal{I}_k^{N+1}} f(x) = h_{N+1}(x)$$

Для  $g_N(x)$  получется аналолгично:  $g_N(x) \ge g_{N+1}(x)$ ;

- 2)  $h_N(x) \le f(x) \le g_N(x)$  очевидно, поскольку  $h_N(x)$  точная нижняя грань f(x) на соответствующем бруске,  $g_N(x)$  точная верхняя грань f(x) на соответствующем бруске;
- 3) Воспользуемся результатами предыдущих пунктов, тогда:

$$0 \le \int_{\mathbf{I}} g_N(x) dx - \int_{\mathbf{I}} h_N(x) dx = \sum_{m} \sup_{\mathbf{I}_m^N} f(x) \cdot \left| \mathbf{I}_m^N \right| - \sum_{m} \inf_{\mathbf{I}_m^N} f(x) \cdot \left| \mathbf{I}_m^N \right|$$

Для простоты дальнейших рассуждений замкнём бруски (для определения интеграла Римана). Когда мы замыкаем, мы увеличиваем множество и sup может только возрасти, а inf может только уменьшиться, тогда:

$$\sum_{m} \left( \sup_{\mathbf{I}_{m}^{N}} f(x) - \inf_{\mathbf{I}_{m}^{N}} f(x) \right) \cdot \left| \mathbf{I}_{m}^{N} \right| \leq \sum_{m} \left( \sup_{\bar{\mathbf{I}}_{m}^{N}} f(x) - \inf_{\bar{\mathbf{I}}_{m}^{N}} f(x) \right) \cdot \left| \bar{\mathbf{I}}_{m}^{N} \right|$$

Заметим, что  $\overline{\mathbb{T}}^N = \left\{\overline{\mathbf{I}}_m^N\right\}$  - разбиение I такое, что:  $\lambda\left(\overline{\mathbb{T}}^N\right) < \frac{1}{N}$ , поскольку добавление границы длины брусков поменять не может. Поскольку f - интегрируема, тогда:

$$\forall \xi^N, \left| \sigma\left(f, \overline{\mathbb{T}}^N, \xi^N\right) - \int_{\mathbf{I}} f(x) dx \right| \xrightarrow[N \to \infty]{} 0$$

Пусть  $\varepsilon>0$ , выберем  $\xi^N$  и  $\widetilde{\xi}^N$  так, чтобы:  $f(\xi^N_m)<\inf_{\overline{\mathbf{I}}^N_m}f(x)+\varepsilon$  и  $f(\widetilde{\xi}^N_m)>\sup_{\overline{\mathbf{I}}^N_m}f(x)-\varepsilon$ , тогда:

$$0 \le \int_{\mathbf{I}} g_N(x) dx - \int_{\mathbf{I}} h_N(x) dx \le \sigma \left( f, \overline{\mathbb{T}}^N, \widetilde{\xi}^N \right) - \sigma \left( f, \overline{\mathbb{T}}^N, \xi^N \right) + 2\varepsilon \cdot |\mathbf{I}| \xrightarrow[N \to \infty]{} 0 + 2\varepsilon \cdot |\mathbf{I}| = 2\varepsilon \cdot |\mathbf{I}|$$

Поскольку  $\varepsilon$  можно сделать сколь угодно маленьким, то будет верно:

$$\int_{\mathbf{I}} g_N(x)dx - \int_{\mathbf{I}} h_N(x)dx \xrightarrow[N \to \infty]{} 0$$

**Rm: 2.** Для любой ограниченной функции f на I всегда  $\exists h_n, g_n \colon h_n \leq h_{n+1}, \ g_n \geq g_{n+1}, \ h_n \leq f \leq g_n$ .

 $\mathbf{Rm}$ : 3. Для любой интегрируемой функции f на I к предыдущему замечанию добавляется, что:

$$\int_{\mathbf{I}} h_n(x)dx - \int_{\mathbf{I}} g_n(x)dx \to 0$$

Rm: 4. Можно рассматривать только построенные последовательности:

$$h_N(x) = \sum_{m} \inf_{\mathbf{I}_m^N} f(x) \cdot \chi_{\mathbf{I}_m^N}(x), \quad g_N(x) = \sum_{m} \sup_{\mathbf{I}_m^N} f(x) \cdot \chi_{\mathbf{I}_m^N}(x)$$

Тогда:

$$f$$
 - интегрируема  $\Leftrightarrow \sum_m \left(\sup_{\mathbf{I}_m^N} f(x) - \inf_{\mathbf{I}_m^N} f(x)\right) \cdot |\mathbf{I}_m^N| \xrightarrow[N \to \infty]{} 0$ 

Почти критерий Дарбу, отличие в том, что мы не рассматриваем суммы Дарбу, а рассматриваем последовательности вложенных разбиений ⇒ нельзя написать для любого разбиения, масштаб которого стремится к нулю верно, что разность выше тоже стремится к нулю, где можно было бы заменить:

$$\omega\left(f, \mathbf{I}_{m}^{N}\right) = \sup_{\mathbf{I}_{m}^{N}} f(x) - \inf_{\mathbf{I}_{m}^{N}} f(x)$$

**Rm: 5.** В доказательстве достаточности нам не важно, что функции ступенчатые, но в необходимости мы строим ступенчатые. Также заметим, что из ступенчатости следует их интегрируемость.

## Теорема Фубини

Опр: 1. Повторным интегралом Римана называются интегралы вида:

$$\int_{\mathbf{I}_x} \left( \int_{\mathbf{I}_y} f(x, y) dy \right) dx, \quad \int_{\mathbf{I}_y} \left( \int_{\mathbf{I}_x} f(x, y) dx \right) dy$$

**Теорема 2.** (**Фубини**) Пусть  $I = I_x \times I_y$ ,  $I_x \subset \mathbb{R}^n$ ,  $I_y \subset \mathbb{R}^m$  - замкнутые бруски (в том числе I тоже замкнутый брусок). Пусть f интегрируема по Риману на I и  $\forall x \in I_x$  функция  $y \mapsto f(x,y)$  интегрируема на бруске  $I_y$ , тогда функция:  $x \mapsto \int_{\mathbb{R}^n} f(x,y) dy$  интегрируема на  $I_x$  и верно равенство:

$$\iint\limits_{\mathbf{I}} f(x,y)dxdy = \int\limits_{\mathbf{I}_x} \left( \int\limits_{\mathbf{I}_y} f(x,y)dy \right) dx$$

Если  $\forall y \in I_y$  функция  $x \mapsto f(x,y)$  интегрируема на бруске  $I_x$ , тогда функция:  $y \mapsto \int_{I_x} f(x,y) dx$  интегрируема на  $I_y$  и верно равенство:

$$\iint\limits_{\mathbf{I}} f(x,y)dxdy = \int\limits_{\mathbf{I}_{u}} \left( \int\limits_{\mathbf{I}_{x}} f(x,y)dx \right) dy$$

**Rm:** 6. По теореме Фубини, если у нас есть брусок  $I = I_x \times I_y$  и мы хотим проинтегрировать функцию f(x,y) по нему. Для этого, мы фиксируем каждый раз точку x и интегрируем по сечению, то есть интегрируем по y. И таким образом мы можем зафиксировать все x вдоль  $I_x$ .



Рис. 3: Интегрирование по  $I_x$ .

Получаем функцию, которая выдаёт значения интегралов на сечении, затем мы эту функцию проинтегрируем по x, то есть "сложим" все эти сечения.

**Rm:** 7. В одномерном случае интеграл это попытка посчитать площадь под графиком, здесь же многомерный интеграл это попытка посчитать объем под графиком.



Рис. 4: Площадь сечения под графиком.

Она предлагает брать сечения под графиком, считать их площадь и складывать  $\Rightarrow$  смотрим на сечения.

Задача 1. Что будет в пересечении двух трубок одинакового диаметра под прямым углом?



Рис. 5: Пересечение двух трубок под прямым углом.

 $\square$  Можно считать, что трубки получились из уравнений:  $x^2+y^2\leq 1$  и  $x^2+z^2\leq 1$ , тогда:

$$|y| \le \sqrt{1 - x^2}, |z| \le \sqrt{1 - x^2}$$

Таким образом, если мы возьмём сечения при фиксированном x, будут получаться квадраты.

Аналогичный вопрос может быть про четырехмерный куб:  $[0,1]^4$ , как его себе представить? Один из способов это посмотреть сечения. Многомерные объекты мы так и понимаем - с помощью сечений.

В формулировке есть очень важное условие от которого отказаться нельзя:  $\forall x \in I_x$  функция  $y \mapsto f(x,y)$  интегрируема на бруске  $I_y$ .

Пример: рассмотрим следующую функцию:

$$f(x,y) = \begin{cases} 0, & x \neq \frac{1}{2} \\ D(y), & x = \frac{1}{2} \end{cases}$$

где D(x) - функция Дирихле. По определению это интегрируемая функция, поскольку какое бы разбиение ни взяли, в Римановой сумме отлично от нуля лишь слагаемое, где задето сечение  $x=\frac{1}{2}$ , но сумма объемов этих слагаемых не превосходит  $2\lambda(\mathbb{T})$  и следовательно:  $\sigma \to 0$ . Но в  $x=\frac{1}{2}$  функция Дирихле и никакого интеграла по y не существует и такое может происходить не только на одном сечении. Поэтому исключив требование выше, интеграла по  $I_y$  не будет.

После доказательства можно будет обсудить, как хитро доопределять f(x,y) в тех x для которых функция не интегрируема, но отметим, что интеграл Римана плохо реагирует на переопределения. Чтобы не перегружать теорему, мы пока обойдемся без этого. Аналогичное требоване есть, если расписываем всё в другом порядке.

Также отметим, что в обратную сторону теорема не верна: может так случиться, что у функции всё отлично на каждом сечении (как по x, так и по y), но при этом интеграла по квадрату нет (например, построив аналог функции Дирихле на квадрате: на плотном множестве 1, а вне него 0 так, чтобы на каждом сечении эта функция будет либо 0, либо только в одной точке будет  $\neq$  0).

## Доказательство теоремы Фубини

 $\square$  Пусть  $J \subset I = I_x \times I_y$  - произвольный брусок. Верно:  $J = J_x \times J_y$ , поскольку брусок это произведение отрезков, а лююбой подбрусок это выбор в каждом отрезке промежутка и их перемножение. Рассмотрим индикаторы:  $\chi_J(x,y) = \chi_{J_x}(x) \cdot \chi_{J_y}(y)$  - как мы установлии в прошлый раз. Рассмотрим интегралы:

$$\begin{split} \int\limits_{\mathbf{I}_x} \chi_{\mathbf{J}}(x,y) dx dy &= |\mathbf{J}| \\ \int\limits_{\mathbf{I}_x} \bigg( \int\limits_{\mathbf{I}_y} \chi_{\mathbf{J}}(x,y) dy \bigg) dx &= \int\limits_{\mathbf{I}_x} \bigg( \int\limits_{\mathbf{I}_y} \chi_{\mathbf{J}_x}(x) \cdot \chi_{\mathbf{J}_y}(y) dy \bigg) dx = \int\limits_{\mathbf{I}_x} \chi_{\mathbf{J}_x}(x) \cdot \bigg( \int\limits_{\mathbf{I}_y} \chi_{\mathbf{J}_y}(y) dy \bigg) dx = \\ &= \int\limits_{\mathbf{I}_x} \chi_{\mathbf{J}_x}(x) \cdot |\mathbf{J}_y| dx = |\mathbf{J}_y| \cdot \int\limits_{\mathbf{I}_x} \chi_{\mathbf{J}_x}(x) dx = |\mathbf{J}_x| \cdot |\mathbf{J}_y| = |\mathbf{J}| \end{split}$$

Тоже самое верно и в другом порядке. Следовательно, для ступенчатой функции теорема верна. Воспользуемся критерием интегрируемости, тогда:  $\exists$  последовательность  $h_n(x,y)$ ,  $g_n(x,y)$  ступенчатых функций, для которых выполняются свойства:

- 1)  $h_n(x,y) \le f(x,y) \le g_n(x,y), \forall n;$
- 2)  $h_n(x,y) \le h_{n+1}(x,y); g_{n+1}(x,y) \le g_n(x,y), \forall n;$
- 3)  $\int_{\mathbf{I}} g_n(x,y) dx dy \int_{\mathbf{I}} h_n(x,y) dx dy \xrightarrow[n \to \infty]{} 0;$

Отметим, что функция  $H_n(x) = \int_{\mathbf{I}_y} h_n(x,y) dy$  будет снова ступенчатой функцией, поскольку она равна индикатору бруска по x, умноженному на число. Аналогично для  $G_n(x) = \int_{\mathbf{I}_y} g_n(x,y) dy$ . Подробнее:

$$h_n(x,y) = \sum_k c_k \cdot \chi_{\mathbf{J}_k}(x,y) \Rightarrow \int_{\mathbf{J}_k} h_n(x,y) dy = \sum_k c_k \cdot |\mathbf{J}_{k,y}| \cdot \chi_{\mathbf{J}_{k,x}}(x) = \sum_k \widetilde{c_k} \cdot \chi_{\mathbf{J}_{k,x}}(x)$$

Нам необходимо доказать интегрируемость функции  $x \mapsto \int_{\mathcal{I}_y} f(x,y) dy$  на  $\mathcal{I}_x$  и равенство двойного интеграла повторному. Для этого потребуется воспользоваться критерием интегрируемости.

По монотонности интеграла понятно, что  $H_n$  не убывает, а  $G_n$  не возрастает и по этой же причине верно:

$$h_n(x,y) \le f(x,y) \le g_n(x,y) \Rightarrow H_n(x) \le \int_{\mathbf{I}_y} f(x,y) dy \le G_n(x)$$

Рассмотрим интегралы для  $H_n(x)$ ,  $G_n(x)$  и применим уже доказанное выше для ступенчатых функций:

$$\int_{\mathbf{I}_x} H_n(x)dx = \int_{\mathbf{I}_x} \left( \int_{\mathbf{I}_y} h_n(x,y)dy \right) dx = \iint_{\mathbf{I}} h_n(x,y)dxdy \xrightarrow[n \to \infty]{} \iint_{\mathbf{I}} f(x,y)dxdy$$

$$\int_{\mathbf{I}_{r}} G_{n}(x)dx = \int_{\mathbf{I}_{r}} \left( \int_{\mathbf{I}_{u}} g_{n}(x,y)dy \right) dx = \iint_{\mathbf{I}} g_{n}(x,y)dxdy \xrightarrow[n \to \infty]{} \iint_{\mathbf{I}} f(x,y)dxdy$$

Следовательно, разности этих интегралов, а значит и разность интегралов от  $H_n$  и  $G_n$  стемятся к нулю:

$$\int\limits_{\mathrm{I}_x} H_n(x) dx - \int\limits_{\mathrm{I}_x} G_n(x) dx \xrightarrow[n \to \infty]{} 0 \Rightarrow x \mapsto \int\limits_{\mathrm{I}_y} f(x,y) dy$$
 - интегрируема

Кроме того:

$$\int_{\mathbf{I}_x} \left( \int_{\mathbf{I}_y} f(x, y) dy \right) dx = \lim_{n \to \infty} \int_{\mathbf{I}_x} H_n(x) dx = \iint_{\mathbf{I}} f(x, y) dx dy$$

**Упр. 1.** Мы использовали, что  $\forall x$  существует интеграл  $\int_{\mathbf{I}_y} f(x,y) dy$ . Как доопределять функцию в тех точках x в которых этого интеграла не существует, чтобы заключение теоремы было верным? То есть:

$$F(x) = \begin{cases} \int_{\mathbf{I}_y} f(x,y) dy, & \text{интеграл существует} \\ ?, & \text{интеграл не существует} \end{cases}$$

Но так, чтобы:

$$\iint\limits_{\mathbf{I}} f(x,y)dxdy = \int\limits_{\mathbf{I}_{\mathbf{x}}} F(x)dx$$

Окажется, что доопределять можно не как угодно.

**Упр. 2.** Сколь велико множество x, где надо доопределять эту функцию F(x)?