Fundamental Groups and Covering Spaces Midterm Fall 2021 Keiko Kawamuro

- 1. Let $X = \mathbb{R}^3 \setminus Z$ where $Z \subset \mathbb{R}^3$ is the z-axis (so Z is homeomorphic to \mathbb{R} .) Show that X is not simply connected.
- 2. Identify a torus $S^1 \times S^1$ with a square S whose vertical sides are glued and horizontal sides are glued.
 - (a) Sketch a loop (in the square S) that represents the element $(2,3) \in \mathbb{Z} \times \mathbb{Z} \cong \pi_1(S^1 \times S^1)$.
 - (b) Do the same for (6,4).
- 3. Find a map $f: S^1 \to S^1$ that yields the mapping cylinder structure of a Möbius band.
- 4. Let $f: I \to \mathbb{R}^3$ be a loop whose image is the unit circle and $g: I \to \mathbb{R}^3$ be a trefoil knot. Are f and g homotopic?
- 5. Show that there are no retractions $r: X \to A$ in the following cases:
 - (a) $X = S^1 \times D^2$ and A is the circle shown below.

- (b) X is the Möbius band and A is the boundary of X.
- 6. (a) Find a cell-complex structure of a genus 2 orientable surface.
 - (b) Do the same for general genus g.