Research Paper Presentation

Aman Panwar - CS20BTECH11004

June 28, 2021

BER Analysis of a NOMA Enhanced Backscatter Communication System

Abstract

- Analyses the BER performance of a NOMA enhanced BackCom system with imperfect SIC. One reader and two BNs are considered.
- Ompares the effective non-errornous transmitted bits over a large period in NOMA vs OMA
- Oerives equation for optimal reflection coefficients for the two BNs

2/15

Introduction

Keywords

BackCom: Backscatter Communication

BN: Backscatter Node

BER: Bit Error Rate

NOMA: Non-Orthogonal Multiple Access

SPK: Binary Phase Shift Keying

AWGN: Additive White Gaussian Noise

SIC: Successive Interference Cancellation

Figure

Fig. 1. Illustration of uplink NOMA-BackCom system

Important Formulae

The signal received by the reader is

$$y = \sqrt{P_r \xi_1} h_1 x_1 + \sqrt{P_r \xi_2} h_2 x_2 + w$$

Here,

 P_r is reader transmitted power

 ξ_i are the power reflection coefficient

 h_i are channel coefficients b/w BNs and reader

 x_i is the BPSK modulated information signal of BNi

w is the AWGN with 0 mean and N_0 varinace

(A strong line-of-sight is assumed in this model. Also, the BNs are numbered such that $\xi_1 > \xi_2$)

BER for User 1

Probability that the bit read from the first BN has error

$$P_1(e) = \frac{1}{4} \Biggl(\text{erfc} \Biggl(\frac{\epsilon_b \xi_1 + \sqrt{\left(\epsilon_b \xi_1\right)/R}}{N_0} \Biggr) + \left. \text{erfc} \Biggl(\frac{\epsilon_b \xi_1 - \sqrt{\left(\epsilon_b \xi_1\right)/R}}{N_0} \Biggr) \right)$$

where erfc () is the complementary error function

$$\operatorname{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^{2}} dt$$

6/15

BER for User 2

NOMA uses SIC i.e. to recognise the second signal, the first signal is subtracted from the received signal. Thus, probability of error in second signal depend on P_1

When first signal is correctly decoded,

$$P_{2(I)} = \frac{1}{4} \left(2 \text{erfc} \left(\sqrt{\frac{\left(\epsilon_b \xi_1\right)/R}{N_0}} \right) - \text{erfc} \left(\frac{\sqrt{\epsilon_b \xi_1} + \sqrt{\left(\epsilon_b \xi_1\right)/R}}{\sqrt{N_0}} \right) \right)$$

When first signal is incorrectly decoded,

$$\begin{split} P_{2(\textit{II})} &= \frac{1}{4} \Biggl(\text{erfc} \Biggl(\frac{2 \, \sqrt{\epsilon_b \xi_1} + \, \sqrt{\left(\epsilon_b \xi_1\right)/R}}{\sqrt{N_0}} \Biggr) + \text{erfc} \Biggl(\frac{\sqrt{\epsilon_b \xi_1} - \, \sqrt{\left(\epsilon_b \xi_1\right)/R}}{\sqrt{N_0}} \Biggr) \\ &- \text{erfc} \Biggl(\frac{2 \, \sqrt{\epsilon_b \xi_1} - \, \sqrt{\left(\epsilon_b \xi_1\right)/R}}{\sqrt{N_0}} \Biggr) \end{split}$$

4□ > 4₫ > 4 를 > 4 를 > 6

BER for User 2

The final probability of error in bit read from the second user

$$\begin{split} P_2 &= \frac{1}{4} \Biggl(2 \text{erfc} \Biggl(\sqrt{\frac{\left(\epsilon_b \xi_1\right)/R}{N_0}} \Biggr) - \text{erfc} \Biggl(\frac{\sqrt{\epsilon_b \xi_1} + \sqrt{\left(\epsilon_b \xi_1\right)/R}}{\sqrt{N_0}} \Biggr) \\ &+ \text{erfc} \Biggl(\frac{2\sqrt{\epsilon_b \xi_1} + \sqrt{\left(\epsilon_b \xi_1\right)/R}}{\sqrt{N_0}} \Biggr) + \text{erfc} \Biggl(\frac{\sqrt{\epsilon_b \xi_1} - \sqrt{\left(\epsilon_b \xi_1\right)/R}}{\sqrt{N_0}} \Biggr) \\ &- \text{erfc} \Biggl(\frac{2\sqrt{\epsilon_b \xi_1} - \sqrt{\left(\epsilon_b \xi_1\right)/R}}{\sqrt{N_0}} \Biggr) \end{split}$$

Simulation 1: BER vs SNR

Fig. 7. BER plots of BN1 and BN2 for three reflection coefficient pairs (ξ_1,ξ_2)

Greater separation in reflection coefficients(ξ_1 and ξ_2) leads to smaller BER. This is due to decreased inter-user interface(IUI).

Simulation 2: Effective bits transfered vs SNR for NOMA and OMA

Fig. 8. Comparison of normalized effective bits transmitted in NOMA for two reflection coefficient pairs (ξ_1, ξ_2) and OMA

- This simulation shows that NOMA does outperform OMA-TDMA (Orthogonal Multiple Access - Time Division Multiple Access)
- The separation in reflection coefficients greatly effect the no. of correctly transmission of bits.

Simulation 3: ξ_1 vs ξ_2 for specific BER

- **1** Only a small range of ξ_2 achieves acceptable performance.
- 2 BER performance of BN1 is independent of ξ_2

Simulation 3: ξ_1 vs ξ_2 for specific BER

Parameter	Value
P _r	20dBm
N ₀	-90dBm
Path loss exponent	2
r ₁	25m
r ₂	25m
Effective SNR	24.08 dB

Table: Simulation Parameters

Simulation 4: ξ_2 vs range

Fig. 10. BER contour plot of BackCom coverage range versus ξ_2

- In this given case, the optimal ξ_2 is about one-fourth of ξ_1 .
- ② If $\xi_1 = 0.7$, QoS requirement of BER is 10^{-3} and coverage range is 33m then optimal $\xi_2 = 0.19$

Simulation 4: ξ_2 vs range

Parameter	Value
P_r	20dBm
N_0	-90dBm
Path loss exponent	2
r ₁	25m
r ₂	25m
Effective SNR	24.08 dB
<i>ξ</i> 1	0.7

Table: Simulation Parameters

Conclusion

Conclusion

- The numerical results are found to match perfectly with Monte Carlo simulations
- Moreover, derived BER expressions have been evaluated for different reflection coefficients and ranges to find optimum values for each scenario
- NOMA has a upper hand over OMA when it comes to BackCom