恩布 IM 服务端 EBS

性能测试报告

2015年6月

1. 测试目的

本次测试目的是,对恩布 IM 服务端的 UDP 并发性能进行测试,并且通过对测试的进行分析, 找出系统的优缺点,从而为恩布 IM 服务端的性能优化提升提供测试参考。

2. 测试时间及地点

1) 测试时间

2015年6月

2) 测试地点

办公区

3. 测试要点及测试方法

1) 测试要点

软件的基本配置

软件的并发功能

2) 测试方法

黑盒测试,手工+专业性能测试工具进行测试;通过一组和二组线程并发发送数据,服务端响应回复,客户端收到回复数据。

4. 测试环境及测试工具

- 1) 测试环境
 - 网络环境:本地局域网;
 - 硬件环境: 联想 PC 电脑两台 (服务端和测试机器);
 - 软件环境: Windows8、恩布 IM 服务端 1.14.1、MySql 数据库。
- 2) 测试工具

恩布 IM 服务端性能测试工具: EbsTestTool

5. 性能测试结果

第一组测试: 开启一个 5000 次并发测试记录表:

线程数	发送 数量 (个)	发送 用时 (秒)	发送并发(个秒)	响应 用时 (秒)	响应并发(个秒)	丢包 补偿 (个)	丢包率 (%)	最短 响应 时间	最长 响应 时间	平均 响应 时间	流量 (KB/S)
	5000	8. 032	622	8. 032	622	0	0.0000	0.03	1. 14 1	0. 54	52-91 KB
2 0	3000	6.034	022	0.034	022	U	0.0000	0.03	1. 21		
	5000	7. 985	626	8. 031	622	0	%	1	9	0. 55	
							0.0000	0.03	1. 14	0. 55	
	5000	7. 985	626	8.032	622	0	%	1	1	2	
							0.0000	0.01	1.17		
	5000	7. 985	626	8.032	622	0	%	5	2	0.4	
							0.0000	0.03	1.31	0.56	
	5000	8.062	620	8.062	620	0	%	1	3	8	
	5000	0.000	704	C 005	715	4.0	0.0092	0.09	2. 20	1. 24	79–12 7 KB
	5000	6. 906	724	6. 985	715	46	%	3	1 00	1 10	
	5000	6. 813	733	7.000	714	0	0.0000	0.04	1. 98	1. 18	
3	3000	0.013	100	1.000	111	U	0.0010	0.03	2.06	1. 13	
0	5000	6. 766	738	7.000	714	5	%	1	2.00	3	
							0.0000	0.03	1. 92	1.02	
	5000	6. 766	738	6.844	730	0	%	2	2	1	
							0.0000	0.03	1.21	0.44	
	5000	6.11	818	6. 187	808	0	%	1	8	5	
			109		109		0.0310	0.03	1.51	0.69	98-16 3 KB
4 0	5000	4. 547	9	4. 577	2	0	%	1	6	3	
	5000	2 505	=0=	5 0 5 0	= 00	1000	0. 3876	0. 12	3. 29	1. 77	
	5000	6. 797	735	7.078	706	1938	%	5	7	7	
	5000	6. 422	778	6. 765	739	1559	0.3106	0.03	2. 96 9	1. 53	
	5000	0.422	110	0.700	109	1553	0. 1632	0.01	2.87	1. 21	
	5000	6. 329	790	6. 391	782	816	%	5	5	3	
		3.320		0.001	. 52	010	0. 1582	0.01	2. 82	1. 21	
	5000	6. 281	796	6. 422	778	791	%	6	8	8	

从表中测试的数据可以得出:一组 30 并发线程时,系统丢包率很低,丢包基本可以忽略不计,此时发送并发大概在 700-800/S,响应并发也是在 700-800/S 左右;

当一组线程达到 40 时,丢包比较严重,主要是客户端发送线程数太多导致,后面通过二组 线程来测试,避免客户端问题,最大限度测试服务端并发数。

第二组测试:同时开启两组线程并发 10000 进行测试,测试结果如下图:

线程 数	发送数量(个)	发送用时(秒)	发送 并发 (个 /秒)	响应用时(秒)	响应 并发 (个 /秒)	丢包补偿(个)	丢包率 (%)	最短 响应 时间	最长响应时间	平均 响应 时间	流量 (kB/s)
	10000	8. 125	1231	8.375	1194	0	0.0000%	0.015	1. 109	0.537	
	10000	8. 297	1205	8.641	1157	0	0.0000%	0.015	1. 297	0.592	
20+20	10000	8.079	1238	8. 157	1226	0	0.0000%	0.015	0.735	0.503	107-173KB
	10000	8.000	1250	8.032	1245	0	0.0000%	0.015	0. 984	0. 281	
	10000	8. 094	1235	8. 125	1231	0	0.0000%	0.015	0. 984	0.335	
	10000	7. 078	1413	7.078	1413	620	6. 2000%	0.015	3.672	0. 982	
	10000	5. 423	1844	5. 453	1834	8	0.0800%	0.015	2. 172	0.343	
30+30	10000	5. 375	1860	6. 578	1520	603	6. 0300%	0.015	3. 110	0.663	150-244KB
	10000	6.719	1488	7. 250	1379	312	3. 1200%	0.015	2.469	1. 104	
	10000	5. 453	1834	5. 594	1788	0	0.0000%	0.015	1.484	0.382	

从以上表中可以得出,10000 并发测试:

在 20+20 二组并发线程情况下,发送并发在 1200 左右情况下,服务端响应并发同样可以达到 1200/S 左右响应并发,流量达到 173KB/S;

在 30+30 二组并发线程数情况下,发送并发在 1400-1800/S,服务端响应并发同样能达到 1400-1800/S 左右的响应并发,流量达到 244KB/S。

6. 测试小结

通过对恩布 IM 服务端并发测试得出如下结论:

在不计算网络流量带宽情况下,恩布 I M的响应并发,基本取决于客户端的发送并发,目前二组发送并发达到 1800/S 的情况下,服务端的响应并发同样能够达到 1800/S 的并发响应。