Genome Language Modelling

Sonika Tyagi, PhD

Associate Professor (Digital Health and Bioinformatics)

School of Computational Technologies

What's next...

Acknowledgements

Australian

Academy of

Science

National Health and Medical Research Council

The current and past members of the Tyagi Lab

Tyrone Chen Yashpal Ramakrishnaiah Navya Tyagi Murali Aadithya MS Imrad Nyeen **Eleanor Cummins** Naima Vahab Lipika Singh **Melcy Phillip** Tarun Bonu **Alex Dubrovsky Jasbir Dhaliwal** Esha Singh Sarthak Chauhan

Outline

Big Genomic Data

- Computational Epigenomics
- Large scale data on DNA, RNA, and Protein

Healthcare data

Electronic Medical Records

Data Integration

- Molecular
- Molecular + Healthcare

.

Big Genomic Data:

Biomolecules sequencing Numerical measurements Qualitative data

What's next...

DNA -> RNA -> Protein

- Human DNA (3 Billion letters A, C, G, T)
- RNA (>200,000 transcripts)
- Protein (~20,000 proteins)

Big Genomic Data:

- From each high throughput assay thousands of data points are generated.
- High velocity, volume
- multidimensional and multimodal

Multi-omics

Big Genomic Data:

- From each high throughput assay thousands of data points are generated.
- High velocity, volume
- multidimensional and multimodal

Multi-omics

DATA	Feature 1	Feature 2
Sample 1	3.142	2.7
Sample 2	10000	88.88

METADATA	Sample Type
Sample 1	Treatment A
Sample 2	Treatment B

TyagiLab 2020

Main contributor to Big data growth is genomics

Deep Learning Applications for Genomics

- 1. Pattern recognition
- 2. Predicting biomolecule structures
- 3. Classification or predictive modeling
- 4. Image analysis

Eraslan et al 2019

Deep Learning Applications for Genomics

- 1. Pattern recognition: e.g. Gene regulatory motifs
- 2. Predicting Biomolecules:
 - a. Modeling ncRNA structures,
 - b. and functional motifs

Gene regulatory code: Motifs

Gene regulatory code: Motifs

- Binding sites are very short patterns (5-12 bp)
- Genome is much longer (billion bp), results in very high false positive rate
- All combinations of motifs is exponential

Generally millions of binding sites for a TF are found but only a few thousands are bound

Deep Learning Applications for Genomics

- 1. Pattern recognition: e.g. Gene regulatory motifs
- 2. Predicting Biomolecules:
 - a. Modeling ncRNA structures,
 - b. and functional motifs

14th CASP Winner

Top: highest-ranked models for the target T1064 submitted by the Zhang (black) and Baker (green) human groups.

Bottom: models aligned with the crystal structure. Right: all three models (Zhang, Baker and AlphaFold 2) aligned with the crystal structure. The submissions were abtained from the CASP14 webpage on Tuesday 1st December, 2020.

Non-coding Genome

RNA SEQUENCE FOLDS ON TO ITSELF INTO SECONDARY CONFORMATIONS

AACUGUCUUAGCUUUGCAGUCGAGUU

- Watson-Crick pairs
- UG pairs
- Mismatch

Long noncoding RNA (IncRNA)

Conventional NLP pipeline

Biological "words" can be learned from the data

[Rule-based] Predefined words

Tokens (EN): [Hello] [World]

Tokens (CN): [你好世界]

[Data-driven] Learned words

Tokens (EN): [Hello][Wor][ld]

Tokens (CN): [你好][世界]

[Rule-based] Predefined k-mer/n-gram

Tokens (DNA): [ATCG][CGAT]
Tokens (RNA): [AUCG][CGAU]

[Data-driven] Learned k-mer/n-gram

Tokens (DNA): [AT][CGCGAT]
Tokens (RNA): [AUC][GCGAU]

RMIT Class

genomicBERT model

Wandb sweeps

RMIT CN OF Prior annotation is required

Putative nucleoid protein binding domain

Maps to part of cis-regulatory element in Ecoli K12

> GCCAGCA CCAGCAG

Short motifs

CCAGCAG

TGCTGGC

CGCCAGCAGATTATACCTGCTGGTTTTTTTT

A composite signature of three short motifs corresponding to the **long motif**

Precision Medicine

- Deep Learning has a huge potential for biomedicine.
- The biggest impact is in Precision Medicine that is a data driven approach:
 - Molecular data (e.g. omics)
 - Clinical data (e.g. Randomized trials)
 - Health data (e.g. Electronic medical records, wearables)

"To understand and treat disease by integrating multi-modal/multi-omics data from an individual to make patient-tailored decisions."

Genetic information

Health data

Other digital information

Diagnosis

Summary

- ★ New high throughput R&D activities generate measurements at scale.
- New Big biomedical data present new challenges for ML
- Genomics data often contain correlated data of common biological activities and integration of different data types provides a systems view.
- ★ Advances language models can be applied to genomic language directly to infer the grammar

Questions?