Miguel Ballesteros

Algorithms for NLP Course. 7-11

Carnegie Mellon

Review from last day

- CFGs and CFLs
 - CFGs. Context-free grammars when its production rules can be applied regardless of the context of a nonterminal.

CFLs. Context-free languages. Languages recognized by CFGs.

Review from last month

- FSAs: finite state automata
 - A finite-state automaton is a device that can be in one of a finite number of states

- PDAs: a more powerful computation device that can <u>recognize</u> CFLs.
- PDA: a ε-NFA with a "**stack**" which serves as "memory", and store a string of stack symbols.
- LR ↔ FSA
- CFL ↔ PDA
- The general non-deterministic version accepts ALL CFLs.
- The deterministic version accepts only a subsets of the CFLs.

Formal definition of a PDA

• $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$

Q, Σ , q₀, F are the same as in FSAs. Which is?

Γ: set of stack symbols (finite) (denoted using X, Y, Z)

z₀: start stack symbol.

 $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$

transitions

The **tape** is divided into finitely many cells. Each cell contains a symbol in an alphabet Σ .

The **stack** head always scans the top symbol of the stack. It performs two basic operations:

Push: add a new symbol at the top.

Pop: read and remove the top symbol.

Alphabet of stack symbols:

□

 The head/pointer scans at a cell on the tape and can read a symbol on the cell. In each move, the head can move to the right cell.

- Transitions depends on
 - Current state.
 - Input.(these two, the same as FSAs)
 - Top of the stack.(which is the new thing)

- After each transition:
 - New state.
 - Pop the stack : €
 - And push the stack with new symbol.

- In one transition the PDA may do the following:
 - Consume the input symbol. If e is the input symbol, then no input is consumed.
 - Go to a new state, which may be the same as the previous state.
 - Replace the symbol at the top of the stack by any string.
 - If this string is ϵ then this is a **pop** of the stack
 - The string might be the same as the current stack top (does nothing)
 - Replace with a new string (pop and push)
 - Replace with multiple symbols (multiple pushes)

PDA. Simple example

$$L = \{0^n 1^n \mid n \ge 0 \}.$$

Grammar for L:

$$S \rightarrow 0 S 1 \mid \varepsilon$$

- L is not regular. (see 9/8 by Chris)
 - If it is not regular a finite automaton is unable to recognize this language because it cannot store an arbitrarily large number of values in its finite memory.
- Is there a PDA for L?

PDA. Simple example

$$L = \{0^n 1^n \mid n \ge 0 \}.$$

- A PDA is able to recognize this language!
 - Can use its stack to store the number of 0's it has seen.
 - As each 0 is read, **push** it onto the stack
 - As soon as 1's are read, **pop** a 0 off the stack
 - If reading the input is finished exactly when the stack is empty, accept the input else reject the input

PDA. Simple example

$$L = \{0^n 1^n \mid n \ge 0 \}.$$

- q0: push 0.
- q1: pop all 0s while reading 1s.
- q2: accept when we have an empty stack.

Some examples

• L = { w wr | w $\in \{a,b\}^*$ }

This language is often referred as "w-w-reverse", is the even-length palindromes over alphabet {a,b}

CFG:

 $P \to \varepsilon$

 $P \rightarrow bPb$

P → aPa

L = { w w^r | w ∈ {a,b}* }PDA?

- Start in a state **q0** that represents that we have not seen the end of w. While in **q0**, read symbols and store them on the stack.

L = { w w^r | w ∈ {a,b}* }PDA?

- Start in a state **q0** that represents that we have not seen the end of w. While in **q0**, read symbols and store them on the stack.
- At any time, we may go to a state q1, signifying that we are at the end of w. Since the automaton is not deterministic, we actually make both guesses: (1) stay in q0 or (2) go to q1.

L = { w w^r | w ε {a,b}* }
 PDA?

- Start in a state **q0** that represents that we have not seen the end of w. While in q0, read symbols and store them on the stack.
- At any time, we may go to a state q1, signifying that we are at the end of w. Since the automaton is not deterministic, we actually make both guesses: (1) stay in q0 or (2) go to q1.
- Once in q1, we compare input symbols with the symbol at the top of the stack.
 - If they match, we consume the input symbol, pop the stack, and proceed.
 - If the do not match, this branch dies, although other branches of the nondeterministic automaton may reach the acceptance.

L = { w w^r | w ε {a,b}* }
 PDA?

- Start in a state **q0** that represents that we have not seen the end of w. While in q0, read symbols and store them on the stack.
- At any time, we may go to a state **q1**, signifying that we are at the end of w. Since the automaton is not deterministic, we actually make both guesses: (1) stay in **q0** or (2) go to **q1**.
- Once in **q1**, we compare input symbols with the symbol at the top of the stack.
 - If they match, we consume the input symbol, **pop the stack**, and proceed.
 - If the do not match, this branch dies, although other branches of the nondeterministic automaton may reach the acceptance.
- If we empty the stack, then we have indeed seen w w^r.
 We accept the input

Formal definition of a PDA

• $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$

Q, Σ , q₀. F are the same as in FSAs.

Γ: set of stack symbols (finite) (denoted using X, Y, Z)

z₀: start stack symbol.

 $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$

transitions

Formal definition of a PDA

- Q: a finite set of states (like in finite automaton)
- Σ : a finite set of input symbols (like in finite automaton)
- Γ: a finite stack alphabet. The components that we are allowed to push onto the stack.
- δ : the transition function $\delta(q,a,X)$ where:
 - q is a state in Q.
 - a is either an input symbol in Σ or a = ε
 - $X \in \Gamma (X \text{ is a stack symbol})$
- q₀: the start state.
- Z₀: the start symbol,
- F: the set of accepting states.

- Let's describe te PDA of L_{wwr}
- L = { w wr | w \in {a,b}* } P=({q₀,q₁,q₂}, {a,b}, {a,b,Z₀}, δ , q₀, Z₀, {q₂}) and δ is as follows: 1 $\delta(q_0,a,Z_0) = \{(q_0,aZ_0)\}$ $\delta(q_0,b,Z_0) = \{(q_0,bZ_0)\}$

One of these rules applies initially when we are in q_0 and we see the start symbol at the top of the stack.

Let's describe te PDA of L_{wwr}

$$P = (\{q_0, q_1, q_2\}, \{a,b\}, \{a,b,Z_0\}, \delta, q_0, Z_0, \{q_2\})$$
 and δ is as follows:
$$1$$

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}$$

$$\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}$$

$$2$$

$$\delta(q_0, a, a) = \{(q_0, aa)\}, \delta(q_0, b, b) = \{(q_0, bb)\},$$

 $\delta(q_0,b,a) = \{(q_0,ba)\}, \ \delta(q_0,a,b) = \{(q_0,ab)\}$

These four similar rules allow us to stay in q_0 and read inputs, pushing each onto the top of the stack, and leaving the previous stack symbol alone.

Let's describe te PDA of L_{wwr}

```
 \begin{split} & \text{P=}(\{q_0,q_1,q_2\},\ \{a,b\},\ \{a,b,Z_0\},\ \delta,\ q_0,\ Z_0,\ \{q_2\}) \\ & \text{and } \delta \text{ is as follows:} \\ & 1 \\ & \delta(q_0,0,Z_0) = \{(q_0,0Z_0)\} \\ & \delta(q_0,1,Z_0) = \{(q_0,1Z_0)\} \\ & 2 \\ & \delta(q_0,a,a) = \{(q_0,aa)\},\ \delta(q_0,b,b) = \{(q_0,bb)\}, \\ & \delta(q_0,b,a) = \{(q_0,ba)\},\ \delta(q_0,a,b) = \{(q_0,ab)\} \\ & 3 \\ & \delta(q_0,\varepsilon,Z_0) = \{(q_1,Z_0)\},\ \delta(q_0,\varepsilon,a) = \{(q_1,a)\} \text{ and } \delta(q_0,\varepsilon,b) = \{(q_1,b)\} \end{aligned}
```

These three rules allow us to go from q_0 to state q_1 spontaneously (on ε input)

Let's describe te PDA of L_{wwr}

4

$$\begin{split} & \text{P=}(\{q_0,q_1,q_2\},\,\{a,b\},\,\{a,b,Z_0\},\,\delta,\,q_0,\,Z_0,\,\{q_2\}) \\ & \text{and } \delta \text{ is as follows:} \\ & 1 \\ & \delta(q_0,a,Z_0) = \{(q_0,aZ_0)\} \\ & \delta(q_0,b,Z_0) = \{(q_0,bZ_0)\} \\ & 2 \\ & \delta(q_0,a,a) = \{(q_0,aa)\},\,\delta(q_0,b,b) = \{(q_0,bb)\},\\ & \delta(q_0,b,a) = \{(q_0,ba)\},\,\,\delta(q_0,a,b) = \{(q_0,ab)\} \\ & 3 \\ & \delta(q_0,\varepsilon,Z_0) = \{(q_1,Z_0)\},\,\,\delta(q_0,\varepsilon,0) = \{(q_1,a)\} \text{ and } \delta(q_0,\varepsilon,b) = \{(q_1,b)\} \\ & 4 \end{split}$$

 $\delta(q_1,a,a) = \{(q_1,\epsilon)\}, \ \delta(q_1,b,b) = \{(q_1,\epsilon)\}$

In state q_1 we can match input symbols against the top of the stack and **pop** when they match.

Let's describe te PDA of L_{wwr}

```
\begin{split} & \text{P=}(\{q_0,q_1,q_2\},\,\{a,b\},\,\{a,b,Z_0\},\,\delta,\,q_0,\,Z_0,\,\{q_2\}) \\ & \text{and } \delta \text{ is as follows:} \\ & 1 \\ & \delta(q_0,a,Z_0) = \{(q_0,aZ_0)\} \\ & \delta(q_0,b,Z_0) = \{(q_0,bZ_0)\} \\ & 2 \\ & \delta(q_0,a,a) = \{(q_0,aa)\},\,\delta(q_0,b,b) = \{(q_0,bb)\},\\ & \delta(q_0,b,a) = \{(q_0,ba)\},\,\,\delta(q_0,a,b) = \{(q_0,ab)\} \\ & 3 \\ & \delta(q_0,\varepsilon,Z_0) = \{(q_1,Z_0)\},\,\,\delta(q_0,\varepsilon,0) = \{(q_1,a)\} \text{ and } \delta(q_0,\varepsilon,b) = \{(q_1,b)\} \\ & 4 \\ & \delta(q_1,a,a) = \{(q_1,\varepsilon)\},\,\,\delta(q_1,b,b) = \{(q_1,\varepsilon)\} \\ & 5 \\ & \delta(q_1,\varepsilon,Z_0) = \{(q_2,Z_0)\} \end{split}
```

Finally, if we see the bottom of the stack marker Z_0 and we are in state q_1 we have found a palindrome wwr. We, thus go to q_2 and accept.

Let's describe te PDA of L_{wwr}

```
P=(\{q_0,q_1,q_2\},\{a,b\},\{a,b,Z_0\},\delta,q_0,Z_0,\{q_2\})
and \delta is as follows:
1
     \delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}
     \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
2
     \delta(q_0,a,a) = \{(q_0,aa)\}, \delta(q_0,b,b) = \{(q_0,bb)\},\
     \delta(q_0,b,a) = \{(q_0,ba)\}, \ \delta(q_0,a,b) = \{(q_0,ab)\}
3
     \delta(q_0, \varepsilon, Z_0) = \{(q_1, Z_0)\}, \ \delta(q_0, \varepsilon, 0) = \{(q_1, a)\} \text{ and } \delta(q_0, \varepsilon, b) = \{(q_1, b)\}
4
     \delta(q_1,a,a) = \{(q_1,\varepsilon)\}, \ \delta(q_1,b,b) = \{(q_1,\varepsilon)\}
5
     \delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}
```


Transition

 $L = \{ w wr \mid w \in \{a,b\}^* \}$

 $b, b \rightarrow bb$

More examples

See blackboard.

Two different kind of PDAs

- Empty stack PDA:
 - Sometimes, it is easier to design a PDA that accepts if and only if it is capable of having an empty stack.

Final state PDA.

Two different kind of PDAs

- Empty stack PDA:
 - Sometimes, it is easier to design a PDA that accepts if and only if it is capable of having an empty stack.

Final state PDA.

If there is a PDA P that accepts a language by **final state**, then there is another PDA P' that accepts the same language by **empty stack**.

Normally P ≠ P'

Translation between Empty Stack PDA to Final State PDA.

Let Pv be a PDA that accepts by empty stack.

$$Pv = (Q, \Sigma, \Gamma, \delta, q_0, z_0)$$

• Then, we define

Pf = (Q U {q0F, qF},
$$\Sigma$$
, Γ U {z0F}, δ F, q_0 , z_0 , {qF})

that accepts by final state the same strings as Pv

q0

by empty stack.

Translation between Empty Stack PDA to Final State PDA.

Let Pv be a PDA that accepts by empty stack.

$$Pv = (Q, \Sigma, \Gamma, \delta, q_0, z_0)$$

• Then, we define

Pf = (Q U {q0F, qF}, Σ , Γ U {z0F}, δ F, q_0 , z_0 , {qF})

that accepts by final state the same strings as Pv

by empty stack.

Translation between Final State PDA to Empty Stack PDA.

 We need a state that is in charge of making the stack empty.

Translation between Final State PDA to Empty Stack PDA.

 We need a state that is in charge of making the stack empty.

Equivalence of PDA's and CFG's

- Let's demonstrate that the languages defined by PDAs are exactly CFLs.
- Let's prove that these three are the same:
 - 1. CFLs (languages defined by CFGs).
 - 2. Languages accepted by final state by some PDA.
 - 3. Languages accepted by empty stack by some PDA.

Overview

- When we talked about closure properties of regular languages, it was useful to be able to jump between RE and DFA representations.
- Similarly, CFG's and PDA's are both useful to deal with properties of the CFL's.

Overview -(2)

- Also, PDA's, being "algorithmic," are often easier to use when arguing that a language is a CFL.
- Example: It is easy to see how a PDA can recognize balanced parentheses; not so easy as a grammar.
- But all depends on knowing that CFG's and PDA's both define the CFL's.

Equivalence of PDA's and CFG's

- Let's demonstrate that the languages defined by PDAs are exactly CFLs.
- Let's prove that these three are the same:
 - 1. CFLs (languages defined by CFGs).
 - 2. Languages accepted by final state by some PDA.
 - 3. Languages accepted by empty stack by some PDA.
- We have already shown that 2 and 3 are the same.

Converting a CFG to a PDA

- Let L = L(G).
- Construct PDA P such that N(P) = L.
- P has:
 - One state q.
 - Input symbols = terminals of G.
 - Stack symbols = all symbols of G.
 - Start symbol = start symbol of G.

Intuition About the PDA P

- Given input w, P will step through a leftmost derivation of w from the start symbol S.
- Since P can't know what this derivation is, or even what the end of w is, it uses nondeterminism to "guess" the production to use at each step.

Intuition About the PDA P - (2)

- At each step, P represents some *left-sentential form* (step of a leftmost derivation).
- If the stack of P is α , and P has so far consumed x from its input, then P represents left-sentential form $x\alpha$.
- At empty stack, the input consumed is a string in L(G).

From CFG to PDA

- Given a CFG G, we construct a PDA that simulates the leftmost derivations of G.
- Any left sentential form that is not a terminal string can be written as xAα, where
 - A is the leftmost variable.
 - x is whatever terminals appear to its left.
 - α is the string of terminals and variables that appear to the right of A.

From CFG to PDA

- Let G=(V,T,Q,S) be a CFG. Construct the PDA P that accepts L(G) by empty stack.
 - $P=(\{q\}, T, V U T, \delta, q S)$
 - Where δ is defined by:
 - For each variable A,

$$\delta$$
 (q, ε, A) = {(q, β) | A \rightarrow β is a production of G}

For each terminal a,

$$\delta(q,a,a) = \{(q,\varepsilon)\}$$

An example

See blackboard.

Summary

- Pushdown automata:
 - Like FSAs with an auxiliary stack.
 - Notation.
 - Examples.
 - PDA by final state.
 - PDA by empty stack.
 - Transformations between final state and empty stack, and the other way around.
 - Equivalence of PDA's and CFG's.