Curso de Geoestadística

Dr. Martín Díaz Viera¹, M. en C. Van Huong Le², Ing. Aarón Sánchez Cruz³

1) Instituto Mexicano del Petróleo, Tel: 9175-6473, e-mail: mdiazv@imp.mx
2) e-mail: levanhuong15011989@gmail.com 3) e-mail: aarnsanchz@gmail.com

Cálculo mediante el método de Kriging

1.- Considere el siguiente arreglo geométrico de puntos en una región rectangular Ω .

Se conoce que:

- En toda la región Ω , dada en la figura anterior, hay definida una función aleatoria estandarizada Z(u).
- La función aleatoria Z(u) se considera estacionaria de segundo orden y su variabilidad espacial es descrita mediante el siguiente variograma esférico e isotrópico:

$$\gamma(h) = 0.05 + 0.95esf_{a=50}(h)$$

Los valores de Z(u) en los puntos son u₁=10, u₂=20 y u₃=30, mientras que el valor en el punto u₀ es desconocido.

Para cada alumno, Los valores de Z (u) en los puntos u1, u2 y u3 se cambiará según la fórmula siguiente:

$$Z(u) = Z(u) * el número de la lista del alumno.$$

Calcule el valor estimado en el punto u_0 y obtenga la varianza del error de la estimación aplicando Kriging cuando d=5 y d=10, respectivamente.

Nota: Recuerde que el variograma esférico es de la forma:

$$esf_a(h) = \begin{cases} \frac{S}{2} \left\{ 3 \left(\frac{h}{a} \right) - \left(\frac{h}{a} \right)^3 \right\} & \text{para } 0 \le h \le a \\ S & \text{para } h > a \end{cases}$$