1st Term : 2022 – 2023 Midterm Exam.

Program : Mathematics Course: Mathematical Analysis I Course Code :MT206 &Computer Science Level: (2) Second Year Instructor: Dr. Adel Khalil Date: 15/11/2022 Total Pages: 2 Total Marks: 30 Time Allowed: 1 Hour A. Are the following statements true (\(\forall \)) or false (\(\times\))? (One mark and half each) 11-The line x = 4t-2, y = 6t-7, z = 5t+2 lies in the plane 3x-2y=82 - If α, β , and γ are direction angles of a vector, then $\frac{\cos 2\alpha + \cos 2\beta + \cos 2\gamma}{\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma} = -1$ 3- In the space, the equation $x^2 + z^2 = 9$, y = 3 represents a circle with radius 3 and center at (0,3,0) $\frac{\cancel{x}}{\cancel{x}}$ 4- The two lines $\frac{1-2x}{2} = \frac{2y-1}{4} = \frac{z}{2} & (x=5-3t, y=6t+1, z=-5+6t)$ are perpendicular $\sqrt{5}$. The distance from the point (-1,2,1) to the plane 3x-4z+2=0 is -16- The spherical equation of the paraboloid $z = x^2 + y^2$ is $\rho = \cos \varphi \csc^2 \varphi$ 7- If a vector makes an angle γ with z-axis then $\cos^2 \gamma + \sin^2 \gamma = 1$ 7 8. The equation $x^2 + y^2 + z^2 + 8x - 2y + z + 21 = 0$ represents a sphere with center (-4,1,0) 19- Skew lines must fall in two different planes 10- The three points $A \equiv (1,-3,2)$, $B \equiv (4,1,0)$, and $C \equiv (7,5,-2)$ are collinear **11-** If A = (1,-3,k), B = (9,k,5), C = (k,0,4), and $AB \perp BC$ then k = -1 χ 12 - If a vector makes three equal acute angles lpha,eta, and γ with the three coordinate axes 0x, 0y, and oz, then $\alpha = \beta = \gamma = \sin^{-1}\left(\sqrt{\frac{3}{2}}\right)$ x13- In the space, the equation 2x+z+13=0 represents a plane parallel to xz-plane 74- The direction ratios of the line (x+2y=z&2x+y=z+5) is given by <1,1,3> 75- If the two vectors $\langle 1,b,-2 \rangle$, $\langle b,1,2 \rangle$ are parallel then b=-1 \times 16- The equation of xz-plane is x=0, y=017. If the plane x-y+2z=0 is perpendicular the plan 2x-2y=5-az then a=-2 \times 18. The direction cosines of the line $\frac{1+2x}{2} = \frac{1-2y-1}{-4} = \frac{z}{2}$ is $<\frac{1,2,2}{\sqrt{5}}>$ 19. The line 2x = y = 2 - z intersects the plane 2x + y - z = 22 at the point (4,8,-6) \checkmark 20. The plane x-3y=2 is passing through Z-axis