MATRICES

EXERCICE 01 On considère la matrice
$$A = \begin{pmatrix} 2 & 4 & 0 & -6 & 8 \\ \frac{1}{5} & 7 & 0 & 4 & 1 \\ \frac{-8}{5} & 7 & 9 & 15 & 367 \end{pmatrix}$$

- 1) Donner l'ordre de la matrice A. Puis Donner la valeur de chacun des éléments $a_{23}, a_{25}, a_{33}, a_{31}$.
 - 2) Ecrire la matrice transposée A^t de A et donner son ordre.

EXERCICE 02 On donne
$$B = \begin{pmatrix} 2 & \dots & -4 & \dots \\ 6 & 13 & \dots & \dots \\ \dots & 2 & \dots & 0 \\ 879 & 58 & 7 & 0 \\ 3 & \frac{23}{6} & e^5 & \dots \end{pmatrix}$$

- 1) Compléter l'écriture de B avec : $a_{54}=0,\ a_{24}=5,\ a_{23}=0,\ a_{14}=,\ a_{31}=-1,\ a_{33}=0,$ et $a_{12}=13.$
 - 2) Ecrire la matrice transposée B^t de B et donner son ordre.

EXERCICE 03

- 1) On donne $C = \begin{pmatrix} 4 & 3 \\ 0 & 5 \end{pmatrix}$ et $D = \begin{pmatrix} 7 & 9 \\ -8 & 0 \end{pmatrix}$. Calculer C + D C 4D et 5C + 3(C 4D).
- 2) On donne $E = \begin{pmatrix} 1 & -6 & 0 \\ 3 & 2 & 4 \end{pmatrix}$, $F = \begin{pmatrix} -1 & -7 & 0 \\ 0 & 7 & 8 \end{pmatrix}$ et $G = \begin{pmatrix} -1 & -59 & 0 \\ 12 & 43 & 56 \end{pmatrix}$ Trouver x et y tels que xE + yF = G.
- 3) Effectuer les produits suivants lorsque c'est possible. Lorsque c'est impossible, dire pourquoi?

(a)
$$\begin{pmatrix} 1 & 2 \\ 5 & 3 \\ 3 & 0 \end{pmatrix} \times \begin{pmatrix} 3 & 0 \\ -7 & 4 \end{pmatrix}$$
, (b) $\begin{pmatrix} 3 & 0 \\ -7 & 4 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 5 & 3 \\ 3 & 0 \end{pmatrix}$, (c) $\begin{pmatrix} 1 & 2 & 0 \\ 5 & 3 & 1 \end{pmatrix} \times \begin{pmatrix} 3 & 0 & -1 \\ -7 & 4 & 0 \\ 4 & 0 & 0 \end{pmatrix}$
(d) $\begin{pmatrix} 1 & -1 \\ 5 & 0 \\ 3 & 1 \end{pmatrix} \times \begin{pmatrix} 3 & 0 \\ -7 & 4 \\ 4 & -1 \end{pmatrix}$, (e) $\begin{pmatrix} 3 & 0 & 6 \\ -7 & 4 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 5 & 3 \\ 3 & 0 \end{pmatrix}$, (f) $\begin{pmatrix} 1 & 2 & 0 \\ 5 & 3 & 1 \\ 0 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 3 & 0 & -1 \\ -7 & 4 & 0 \\ 4 & 0 & 0 \end{pmatrix}$

EXERCICE 04

- 1) Vérifier que la matrice $J = \begin{pmatrix} -1 & 6 & -6 \\ -2 & 7 & -6 \\ -1 & 4 & -4 \end{pmatrix}$ satsifait à l'équation $J^3 2J^2 J + 2I_3 = 0_3$.
- 2) En déduire qu'elle est inversible et déterminer son inverse.

EXERCICE 05

- 1) Soit $K=\begin{pmatrix}1&0&2\\0&-1&1\\1&-2&0\end{pmatrix}$ Calculer $K^3-K.$ En déduire que K est inversible et déterminer $K^{-1}.$
 - 2) Calculer (s'il existe) l'inverse des matrices suivantes :

$$L = \begin{pmatrix} 2 & -3 \\ 3 & 1 \end{pmatrix}, M = \begin{pmatrix} -2 & -3 \\ 4 & 6 \end{pmatrix}, N = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ -2 & -2 & -1 \end{pmatrix}, O = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix}$$

3) Exprimer les systèmes linéaires suivants sous forme matricielle et les résoudre en inversant la matrice. Puis par la méthode des déterminants.

(a)
$$\begin{cases} 2x + 4y = 7 \\ -2x + 3z = -14 \end{cases}$$
 (b)
$$\begin{cases} x + y = 1 \\ -2y + 3z = 1 \\ x + z = 1 \end{cases}$$
 (c)
$$\begin{cases} x + y + z = 6 \\ -2y + 3z = 5 \\ x + z = 4 \end{cases}$$

 ${\bf Logique\ et\ Raisonnement.}$

Exercice 01.

Université Ibe Der Thiam de Thiès

Année académique : 2020-2021. Intervenant: Dr. A. S. Diabang Géométrie affine

UFR: SET Département Mathématiques et Informatique.

TD.1. Espaces affines

Exercice 01.

1) Montrer que, pour tout espace vectoriel E, l'application

$$\phi: E \times E \longrightarrow E, (x, y) \longmapsto y - x$$

munit E d'une structure d'espace affine (dont l'espace vectoriel sous-jacent est E lui-même).

2) Soit E un espace affine et $A \in E$, Montrer que (E, \oplus, \otimes) est un \mathbb{R} -espace vectoriel, avec $P \oplus Q = A + (\overrightarrow{AP} + \overrightarrow{AQ})$ et $\alpha \otimes P = A + \alpha \overrightarrow{AP}$, pour tous $P, Q \in E$ et $\alpha \in \mathbb{R}$.

On note parfois E_A cet espace vectoriel appelé vectorialisé de E en A.

Exercice 02.

Soient
$$E = \mathbb{R}_n[X]$$
. $E_1 = \{ f \in E, \int_0^1 f(t)dt = 1 \}$ et $E_0 = \{ f \in E, \int_0^1 f(t)dt = 0 \}$.
1) Montrer que E et E_0 sont des \mathbb{R} -espace vectoriels de dimension finie.

- 2) Soient f, g dans E_1 . Les éléments f+g, f-g et $\frac{f+g}{2}$ sont-ils dans E_1 , dans E_0 ?
- 3) Montrer que E_1 peut-être muni d'une structure d'espace affine d'espace vectoriel sousjacent E_0 .

Exercice 03.

Déterminer lesquels des sous-ensembles suivants sont des sous-espaces affines :

$$V_{1} = \{(x, y, z) \in \mathbb{R}^{3}; x + 2y + z = 1\} : V_{2} = \{(x, y, z) \in \mathbb{R}^{3}; x + 2y + z = 1 \text{ et } 3x + 2y = 0\};$$

$$V_{3} = \{(x, y, z) \in \mathbb{R}^{3}; x^{2} + 6y = 4\}; V_{4} = \{(x, y, z) \in \mathbb{R}^{3}; x^{2} + 2xy + y^{2} = 0\};$$

$$V_{5} = \{(x, y, z) \in \mathbb{R}^{3}; x^{2} + 2xy + y^{2} = 1\};$$

Exercice 04.

Montrer que l'ensemble des solutions d'un système linéaire (avec second membre) est un sous-espace affine de \mathbb{R}^p ; autrement dit, montrer que; pour toute matrice $A \in M_{p,q}(\mathbb{R})$ et tout vecteur $B \in \mathbb{R}^p$, l'ensemble $\{X \in \mathbb{R}^q; AX = B\}$ est un sous-espace affine de \mathbb{R}^q .

Application : Dans \mathbb{R}^4 , on considère X l'ensemble des points de \mathbb{R}^4 dont les coordonnées vérifient le système

 $S = \{x + 2y + 3z + 4t = 1 \mid x + 3y + z + 2t = 1\}$ munit X d'une structure d'espace affine dont on précisera la direction.

Exercice 05.

- 1) Montrer que l'ensemble $V_1 = \{ f \in C^1([0,1],\mathbb{R}); f'(t) = \cos(r), t \in \mathbb{R} \}$ est un sous-espace affine de $C^1([0,1],\mathbb{R})$. De même, montrer que l'ensemble $V_2=\{f\in C^2([0,1],\mathbb{R});f''(t)+5f(t)=0\}$ 3, $t \in \mathbb{R}$ } est un sous-espace affine de $C^2([0,1],\mathbb{R})$. Généraliser.
- 2) Montrer que l'ensemble $V_3 = \{(U_n) \in \mathbb{R}^{\mathbb{N}}; U_{n+1} 3U_n + 1 = n, n \in \mathbb{N}\}$ est un sous-espace affine de $\mathbb{R}^{\mathbb{N}}$. Généraliser.

Exercice 06.

1) Soit V l'ensemble des fonctions f de $\mathbb R$ dans $\mathbb R$, polynomiales de degré inférieur ou égal à 4, et telle que $\int_0^1 f(t)dt = 1$. Montrer que V est un sous-espace affine de $C^0(\mathbb{R},\mathbb{R})$. Quel est sa dimension?

Montrer que l'ensemble des fonctions de V qui, en tant que polynômes, sont divisibles par $(x-\frac{1}{2})^2$ est un plan affine de $C^0(\mathbb{R},\mathbb{R})$.

2) Soit E et F deux espaces vectoriels, et $f: E \longrightarrow F$ une application linéaire. Monttrer que pour tout élément y de F, l'ensemble $f^{-1}(\{y\})$ est un sous-espace affine de E.

Exercice 07

1) Plans dans \mathbb{R}^3 .

Dans \mathbb{R}^3 on considère les points A(1,2,3), B=(2,-1,1) et C=(1,1,1). Montrer que A, B et C sont non alignés.

On note P_1 le plan passant par les points A, B et C.

2) Soit A' le point (2, -2, -3) et D le sous-ensemble de \mathbb{R}^3 donné par les équations. 2x + y + z - 5 = 0 et -2x - y + z + 3 = 0.

Vérifier que D est une droite de \mathbb{R}^3 et que A' n'est pas dans D.

On note P_2 le plan passant par A' et contenant D.

3) Montrer que P_2 est parallèle à P_1 et n'est pas confondu avec P_1 .

Exercice 08

1) Dans l'espace affine \mathbb{R}^3 , on considère les droites D et D' d'équations :

$$D: (2x+3y-4z=-1 \ x-2y+z=3) \ \text{et} \ D': (11x-y-7z=\alpha \ x+y+z=1)$$

Les droites sont-elles parallèles, Sécantes ou coplanaires?

- 2) L'espace affine de dimension 3 est rapporté à un repère cartésien. Ecrire l'équation du plan passnt par le point (0,1,0) et parallèle au plan d'équation x+y-z+3=0.
- 3) Soit, dans l'espace affine de dimension 3 rapporté à un repère cartésien, D la droite d'équations x + y z + 3 = 0, 2x + z 2 = 0. Donner l'équation du plan P contenant D et passant par le point (1,1,1).

Exercice 09 Dans le plan \mathbb{R}^2

- 1) Donner une équation cartésienne de la droite passant par le point $(0, \sqrt{3})$ et parallèle à la droite d'équation 2x y + 3 = 0, de celle passant par ce même point et orthogonale à la droite donnée.
 - 2) Soient A(1,2), B(3,1), C(-3,-2) et D(0,1) quatre points de \mathbb{R}^2 .

Montrer que les points A, B et C sont non alignés. Montrer que les droites (AB) et (CD) sont non parallèles.

Donner une équation cartésienne de la droite (AB). Calculer le point d'insection des droites (AB) et (CD).

Exercice 10

1) Soit D_1 la droite d'équation x - y + 2 = 0 et D_2 celle d'équation 2x + 3y + 1 = 0. A tout réel m on associe la droite D_m l'équation (2m + 1)x + (3m - 1)y + m + 2 = 0.

Soit M_0 le point commum de D_1 et D_2 . Montrer que M_0 est sur D_m quel que soit m.

2) Montrer que les points A(1,2,-1), B=(1,3,4), C(2,2,2) et D(0,2,-4) sont coplanaires.