

Ingeniería del Conocimiento

Tema 1: Introducción al Razonamiento Artificial

Objetivos del tema

- Ubicación
 - Unidad 1: ASPECTOS BASICOS DE LA IA SIMBOLICA
 - Tema 1: Introducción al Razonamiento Artificial
- Objetivos generales
 - Definir la IA simbólica (razonamiento artificial) y establecer sus áreas y técnicas de trabajo.
 - Presentar los modelos de Procesamiento Simbólico que se estudiarán en el cuatrimestre
 - Comprender lo que es un espacio de estados, como se crea y como se usa para buscar la solución de problemas.
 - Entender la importancia de la representación del conocimiento como forma de generar nuevo conocimiento mediante mecanismos de inferencia

Contenido

- 1. Aproximación simbólica
- 2. Técnicas simbólicas
- 3. Áreas
 - 1. Búsqueda en espacio de estados
 - 2. Representación/Ingeniería del Conocimiento
 - 3. Otras áreas

- 1. Aproximación simbólica
- 2. Técnicas simbólicas
- 3. Áreas
 - 1. Búsqueda en espacio de estados
 - 2. Representación/Ingeniería del Conocimiento
 - 3. Otras áreas

- Hipótesis del Sistema de Símbolos Físicos SSF (Newell y Simon, 1976)
 - "Un SSF tiene los medios necesarios y suficientes para producir un comportamiento inteligente"
 - Cualquier sistema (humano, animal o máquina) que exhiba inteligencia debe operar manipulando estructuras compuestas por símbolos. Procesamiento de la **información**.
- La noción de símbolo establece un vínculo entre la IA y los sistemas formales (lógica, matemáticas)
 - Computación simbólica: Un símbolo es algo que representa a otra cosa (objeto físico o concepto)
 - El símbolo "7" representa al concepto 7
 - Un símbolo es algo físico
 - EL PERRO PERSIGUE AL GATO

- Tres niveles en la representación del mundo real:
 - Nivel de conocimiento (nivel conceptual) →
 - Se modela la realidad mediante un modelo formal
 - Nivel simbólico (nivel lógico) →
 - El conocimiento se representa en un SSF
 - Nivel de implementación (nivel físico)
 - El SSF se implementa en un Lenguaje de Programación
- También funciona al revés (es lo interesante):
 - Nivel de implementación →
 - A partir de las expresiones simbólicas implementadas
 - Nivel simbólico →
 - se infieren nuevas estructuras simbólicas
 - Nivel de conocimiento
 - que pueden ser interpretadas para obtener nuevo conocimiento

- 1. Aproximación Simbólica
- 2. Técnicas simbólicas
- 3. Áreas
 - 1. Búsqueda en espacio de estados
 - 2. Representación/Ingeniería del Conocimiento
 - 3. Otras áreas

2. Técnicas simbólicas

- Técnicas de la Computación clásica (enfoque algorítmico): se tiene toda la información necesaria para una solución óptima del problema
- Técnicas específicas de la IA: no se asume conocimiento absoluto. Decisiones basadas en conocimiento parcial que no garantiza encontrar el óptimo
 - Estas técnicas se denominan heurísticas: estrategias de resolución de problemas que los humanos usamos y donde reside parte de la inteligencia
- Inteligencia: saber sacar el máximo provecho a la información disponible para obtener el resultado deseado
 - Compromiso entre exhaustividad del análisis y calidad del resultado
 - Se sacrifica la seguridad de obtener soluciones óptimas por la ventaja de poder operar con información incompleta

2. Técnicas simbólicas

Modelo algorítmico:

 La resolución de un problema se obtiene en un proceso secuencial lineal de pasos elementales a partir de unas premisas.

Modelo basado en el conocimiento (heurística):

- Hay problemas de los que no se conoce un algoritmo o no vale
 - Resolución mediante BUSQUEDA INFORMADA
 - Resolución mediante SISTEMAS
 BASADOS EN EL CONOCIMIENTO

2. Técnicas simbólicas

- Diferencias entre la solución algorítmica y heurística (para un constructor que recibe un encargo)
 - Calcular el precio de una casa mediante un análisis detallado:
 - Calcular materiales, llamar proveedores y subcontratistas para obtener precios, estimar contingencias razonables, etc.
 - Ventaja: el presupuesto es correcto
 - Desventaja: tiempo hasta dar una respuesta al comprador
 - Estimar el precio comparando con otras obras parecidas buscando diferencias que podrían subir o bajar el precio
 - Añadir una piscina, muebles de la cocina de pino en vez de roble, un baño menos...
 - Ventaja: rapidez en la estimación
 - Desventaja: inexactitud (a lo mejor no importa)

- 1. Aproximación simbólica
- 2. Técnicas simbólicas
- 3. Áreas
 - 1. Búsqueda en espacio de estados
 - 2. Representación/Ingeniería del Conocimiento
 - 3. Otras áreas

Uso de algoritmos para buscar la solución en el espacio de los posibles estados (grafo) en que se puede encontrar un problema

- Los dos elementos básicos para resolver el problema son
 - Representación del problema (<u>Específico</u>)
 Usando el paradigma del Espacio de Estados
 - Búsqueda de la solución (<u>General</u>)
 Búsqueda entre todos los estados posibles mediante una estrategia eficiente sobre el grafo/árbol que representa al problema
- Este paradigma es totalmente general
 - principal ventaja
 - principal inconveniente.

- La investigación inicial en búsquedas en espacios de estados se hizo con juegos de tablero
 - Ajedrez, tres en raya, damas...
 - Muy fácil medir el éxito o el fracaso
 - En comparación con otras aplicaciones de IA (comprensión del lenguaje, etc.) los juegos no necesitan mucho conocimiento
 - Conjunto de reglas de juego bien definido que facilita la generación del espacio de búsqueda
 - Las configuraciones de tablero se representan fácilmente en una máquina
 - No hay implicaciones éticas, económicas...
- Primer intento: búsqueda exhaustiva en el árbol de estados del juego

 Pero los juegos pueden generar espacios de búsqueda inmensos. Se precisan técnicas (heurísticas) para determinar qué alternativas se exploran

Heurística ≈ Inteligencia

- Tipos de búsqueda
 - Búsqueda no informada o ciega
 - Búsqueda informada o heurística: Para problemas de tamaño real es necesario dirigir esta búsqueda usando conocimiento heurístico
 - Algoritmos genéricos de búsqueda en grafos: A* (puzles)
 - Búsqueda con adversarios: minimax (juegos de dos jugadores)
 - Búsqueda con restricciones (8 reinas)

- Un caso particular: encontrar el camino entre dos puntos (pathfinding)
 - Búsqueda de la ruta más corta entre dos puntos
 - Uso del <u>Algoritmo de Dijkstra</u> en grafos

Uso de formalismos para representar la realidad de forma que se puedan realizar inferencias a partir de dicho conocimiento.

Sistemas que permiten generar nuevo conocimiento (<u>inferencia</u>) a partir del conocimiento explícito almacenado en las bases de conocimiento.

- El conocimiento se construye durante toda la vida de un ser humano y se almacena en el cerebro
- A menudo somos incapaces de expresarlo de una forma entendible al 100%
 - El lenguaje natural es ambiguo e impreciso
 - Esto obliga a usar Esquematizaciones del lenguaje → lenguajes formales (¿ejemplos?)

- Cada formalismo de representación del conocimiento usa un método de inferencia (*Razonamiento*) específico
 - Lógica → Inferencia: obtención de nuevo conocimiento a partir del conocimiento de partida.
 - Deducción: A partir de leyes generales obtenemos conocimiento particular.
 - Inducción: Es la generalización de la información extraída de casos particulares. No se puede garantizar la validez de la inferencia. Es la base del aprendizaje
 - Abducción: Es la capacidad de generar explicaciones plausibles para un cierto hecho que ha ocurrido.
 - Reglas → Razonamiento hacia adelante, Razonamiento hacia atrás
 - Etc...

De obucción de seneral a concreto	I volucción de concreto a general	de un element a un concrto
Regla General 'Todos los griesos pon humanos"	Cano "Aristoteles es griego" D	Resultado "Aristotelos es humans" Rosla General
Caso "Aristotels es griego"	Resultado "Aristotelos es humano" Regla General	"Todos les grieges son humanos"
Resultado (condusión) "A ristóteles es humano"		Caso "Aristotels es griego"
	1	

- Los dos elementos básicos para resolver el problema son
 - Representación del problema (<u>Específico</u>)
 Usando un modelo descriptivo de las características del problema
 - Obtención de la solución (<u>General</u>)
 Mediante sistemas que generan nuevo conocimiento (razonan) a partir del conocimiento explícito contenido en el modelo descriptivo.
- Los sistemas así creados se denominan Sistemas Basados en el Conocimiento
 - Usan razonamiento Lógico, probabilístico, temporal, incierto...
 - Normalmente el razonamiento se lleva a cabo mediante un motor de inferencia

3.3 Otras áreas

Aprendizaje automático (Machine Learning)

Generalización de comportamientos a partir de información no estructurada en forma de ejemplos (inducción del conocimiento)

- Inductivo (algoritmo ID3)
- Deductivo
- Árboles y Redes de Decisión

Procesamiento de Lenguaje Natural (NLP)

Área de la IA que estudia la capacidad de entender y generar lenguaje humano (hablado/escrito)

- Subyace a la mayoría de las aplicaciones: interfaces de programas, comprensión de noticias, filtrado de información
- Depende de conocimiento implícito del dominio y aplicación de conocimiento contextual para resolver omisiones y ambigüedades

3.3 Otras áreas

Ejemplo de Machine Learning + NLP

- Softbots o knowbots para automatizar tareas y facilitar el uso de internet
 - Papel de asistente personal o mayordomo
 - Inicialmente, observan las tareas del usuario. Posteriormente, intentan automatizar aquéllas que el usuario realiza rutinariamente
 - Detectan a otros agentes en la red y colaboran con ellos

3.3 Otras áreas

Planificación

Proceso de generar secuencias de acciones para conseguir un objetivo dado (plan) a partir de una descripción de la situación actual

- Basada en estados (un caso particular de búsqueda)
- Basada en lógica (PDDL)
- Cuestiones a abordar:
 - Representación del mundo y de las acciones que lo transforman
 - Algoritmos de búsqueda de planes
 - Minimizar los recursos consumidos por el plan
 - Tiempo en el que se realiza cada acción