ФИО	Группа	1	2	3	4	Σ	Оценка	Подпись

Контрольный вопрос: Определение нормы матрицы, согласованной с нормой вектора.

1. (3) С какой относительной погрешностью можно вычислить корни уравнения

$$x^2 - \sin(uv^2) = 0,$$

если приближенные значения $u^*=\pi,\ v^*=1/\sqrt{2},$ а их абсолютные погрешности $\Delta u=10^{-2},$ $\Delta v=10^{-3}?$

2. (3) Функция задана таблично:

$$x$$
 1.1
 1.2
 1.4

 $f(x)$
 3.00
 3.32
 4.06

Значения функции известны с абсолютной погрешностью 0.01. Методом конечных разностей, посчитать производную функции в точке x=1.2 с максимально возможной точностью. Оценить полную погрешность, если известно, что $M_3 = \max_{1 \le x \le 1.5} f'''(x) = 6$.

3. (8) Некоторая величина определяется как решение СЛАУ с треугольной матрицей, элементы которой, в свою очередь, получены численно. Матрица системы имеет вид:

$$\begin{pmatrix}
0.100 & 10.000 & 0.000 \\
0.000 & 0.100 & 10.000 \\
0.000 & 0.000 & 0.100
\end{pmatrix}$$

С какой точностью будет вычисляться решение системы прямым методом с произвольной правой частью, если известно, что правая часть задана точно?

$$A = \begin{pmatrix} \frac{3}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 2 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & \frac{5}{2} \end{pmatrix}$$

ФИО	Группа	1	2	3	4	Σ	Оценка	Подпись

Контрольный вопрос: Определение прямых методов решения СЛАУ.

1. (3) В результате измерений получены следующие значения

x_1	x_2	x_3	x_4
0.45	-0.38	-0.14	-0.86

С какой точностью можно вычислить $x_1x_2^2$ и $\exp(x_3+x_4)$?

2. (4) Функция задана таблично:

x	0.0	0.3	0.4
f(x)	f_0	f_3	f_4

Вывести формулу для рассчета производной функции в точке x=0.1 с максимально возможной точностью. Оценить погрешность полученного Вами метода.

3. (6) Решается СЛАУ:

$$\begin{pmatrix} -5 & 2 & 0 \\ 2 & -5 & 1 \\ 0 & 1 & -5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -11 \end{pmatrix}$$

Выписать расчетные формулы метода Зейделя в компонентах. Выполнить две итерации. Записать метод в канонической форме. Оценить скорость сходимости метода Зейделя.

4. (8) Предложить итерационный метод для поиска минимального собственного числа матрицы:

$$\begin{pmatrix} 2 & -2 & 4 \\ 0 & 2 & -2 \\ -4 & 0 & 2 \end{pmatrix}$$

Выполнить две итерации от начального приближения (8, 0, 2).

ФИО	Группа	1	2	3	4	Σ	Оценка	Подпись

Контрольный вопрос: Дать определение итерационных методов решения СЛАУ.

1. (3) С какой относительной погрешностью можно вычислить корни уравнения

$$x^2 - \frac{u}{v}x = 0,$$

если приближенные значения $u^*=1,\,v^*=16,\,$ а их абсолютные погрешности $\Delta u=10^{-2},\,\Delta v=10^{-3}?$

2. (3) Функция задана таблично:

x	0.1	0.3	0.5
f(x)	1.11	1.35	1.65

Значения функции заданы с абсолютной погрешностью 0.01. Методом конечных разностей, посчитать производную функции в точке x=0.3 с максимально возможной точностью. Оценить полную погрешность, если известно, что $M_3 = \max_{0 \le x \le 1.0} f'''(x) = 3$.

3. (8) При определении констант скоростей системы некоторых реакций получена СЛАУ:

$$\begin{cases} 1.73k_1 + 0.50k_2 + 1.00k_3 = 1000.0\\ 0.50k_1 + 0.75k_2 + 0.50k_3 = 2000.0\\ 1.00k_1 + 0.50k_2 + 1.73k_3 = 3000.0 \end{cases}$$

Коэффициенты и правые части системы — некоторые концентрации, измеренные экспериментально. С какой точностью можно определить константы реакции при решении системы методом Гаусса?

$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -3 & -2\sqrt{3} \\ 0 & -2\sqrt{3} & 1 \end{pmatrix}$$

ФИО	Группа 1		1 2		3 4		Оценка	Подпись

Контрольный вопрос: Необходимое и достаточное условие сходимости метода простых итераший.

1. (4) Пусть в представлении IEEE-арифметики двойной точности значение полиноме в точке x=20 вычисляется двумя способами:

1)
$$10x^3 + 6x^2 + 5x + 2$$

2)
$$10(x(x(x+0.6)+0.5)+0.2)$$

Найти погрешности, с которыми вычисляется значение полинома в этих двух случаях. В каком случае погрешность меньше?

2. (4) Функция задана таблично:

x	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
f(x)	3.3	3.6	4.0	4.6	5.0	5.4	6.0	6.6	7.3	8.1	9.0

Используя конечную разность второго порядка:

$$f'(x_n) = \frac{f(x_{n+1}) - f(x_{n-1})}{2h}$$

Вычислить производную в точке x=1.0 с максимально возможной точностью, если известно, что $M_3 = \max_{0.5 \le x \le 1.5} f'''(x) = 10$. Оценить погрешность вычисления производной.

3. (7) Решается СЛАУ с матрицей

$$A = \begin{pmatrix} 5 & 2 & 0 \\ 2 & 10 & 3 \\ 0 & 3 & 5 \end{pmatrix}$$

Оценить скорость сходимости метода простой итерации с оптимальным значением итерационного параметра. Предложить вариант итерационного метода, явно использующего строгое диагональное преобладание. Записать предложенный метод в канонической форме. Оценить скорость сходимости предложенного метода.

4. (6) Для поиска максимального собственного числа матрицы:

$$\begin{pmatrix} 2 & -2 & 4 \\ 0 & 2 & -2 \\ -4 & 0 & 2 \end{pmatrix}$$

степенной метод. Выполнить две итерации от начального приближения (1, 1, 1). Показать, что для данной задачи степенной метод сходится.

ФИО	Группа 1		1 2		3 4		Оценка	Подпись

Контрольный вопрос: Что такое число обусловленности матрицы?

- 1. (2) Найти машинное эпсилон ε , если на хранения числа отводится 10 бит, из которых f=5 для хранения мантиссы, e=4 для хранения порядка.
- 2. (4) Функция задана таблично:

Вывести формулу для рассчета производной функции в точке x=0.3 с максимально возможной точностью. Оценить погрешность Вашего метода.

3. (8) При численном решении задачи диффузии с конвекцией для аппроксимации поля концентраций была получена СЛАУ, причем коэффициенты этой системы также считались численно. Для тестового расчета система имела вид:

$$\begin{cases}
-2.00x_1 + 0.00x_2 = 0.00 \\
0.00x_1 - 2.00x_2 + 1.50x_3 = 3.00 \\
1.50x_2 - 2.00x_3 = -3.00
\end{cases}$$

Обратите внимание на запись системы! Некоторые переменные не могут входить в математическую модель, коэффициенты при них в точности равны нулю. Для некоторых переменных коэффициенты вычислены, и они получились нолями в пределах точности расчета. С какой точностью можно определить решение системы при использовании прямых методов?

$$A = \begin{pmatrix} \frac{5}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{5}{2} \end{pmatrix}$$

ФИО	Группа	1	2	3	4	Σ	Оценка	Подпись

Контрольный вопрос: Что такое машинное ε ?

1. (3) В результате измерений получены следующие значения

x_1	x_2	x_3	x_4
-0.27	-0.27	0.50	1.07

С какой точностью можно вычислить $(x_1 - x_2)x_3$ и $\cos(x_3 + x_4)$?

2. (4) Функция задана таблично:

x	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
f(x)	0.878	0.825	0.765	0.697	0.622	0.540	0.435	0.362	0.267	0.170	0.071

Используя конечную разность:

$$f''(x_n) = \frac{f(x_{n+1}) - 2f(x_n) + f(x_{n-1})}{h^2}$$

Вычислить вторую производную в точке x=1.0 с максимально возможной точностью, если известно, что $M_3 = \max_{0 \le x \le 1.0} f^{IV}(x) = 1$. Оценить погрешность вычисления производной.

3. (7) Система линейных алгебраических уравнений

$$\begin{pmatrix} 5 & 2 & 0 \\ 2 & 10 & 3 \\ 0 & 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 16 \\ -8 \\ 2 \end{pmatrix}$$

решается методом минимальных невязок. Выполнить две итерации данным методом, начальное приближение к решению — нулевой вектор. Выписать функционал энергии для данной задачи (заметим, что функционал энергии порождается самосопряженной положительной матрицей). Обосновать сходимость метода для Вашей задачи.

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & \frac{5}{2} & -\frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{3}{2} \end{pmatrix}$$

ФИО	Группа	1	2	3	4	Σ	Оценка	Подпись

Контрольный вопрос: В чем заключается некорректность задачи численного дифференцирования?

1. (4) Пусть в представлении IEEE-арифметики двойной точности значение полиноме в точке x=10 вычисляется двумя способами:

1)
$$10x^3 + 6x^2 + 5x + 2$$

2)
$$x(2x(5x+3)+5)+2$$

Найти погрешности, с которыми вычисляется значение полинома в этих двух случаях. В каком случае погрешность меньше?

2. (4) Функция задана таблично:

x	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
f(x)	0.96	0.94	0.92	0.90	0.87	0.84	0.81	0.78	0.74	0.70	0.66

Используя конечную разность второго порядка:

$$f'(x_n) = \frac{f(x_{n+1}) - f(x_{n-1})}{2h}$$

Вычислить производную в точке x=1.0 с максимально возможной точностью, если известно, что $M_3=\max_{0.5\leq x\leq 1.5}f'''(x)=1$, а у значений в таблице указанны лишь верные значимые цифры. Оценить погрешность вычисления производной.

3. (6) Решается СЛАУ:

$$\begin{pmatrix} -5 & 2 & 0 \\ 2 & -5 & 1 \\ 0 & 1 & -5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -11 \end{pmatrix}$$

Выполнить две итерации методом наискорейшего спуска.

4. (7) Используя метод вращений, найти собственные числа и собственные векторы следующей матрицы:

$$\begin{pmatrix} 2 & \sqrt{3} \\ \sqrt{3} & 4 \end{pmatrix}$$

ФИО	Группа	1	2	3	4	Σ	Оценка	Подпись

Контрольный вопрос: Норма вектора. Аксиомы нормы.

- 1. (3) В ЭВМ «Сетунь-70» использовалась троичная система счисления. Найти машинное эпсилон ε , если число представляется в троичном представлении и на его хранение отводится 81 трит (аналог бита), из которых f = 70 для хранения мантиссы, e = 10 для хранения порядка.
- 2. (4) Функция задана таблично:

x	0.0	0.1	0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9
f(x)	1.00	1.01	1.04	1.09	1.17	1.28	1.28	1.43	1.63	1.90	1.25

Используя конечную разность:

$$f''(x_n) = \frac{f(x_{n+1}) - 2f(x_n) + f(x_{n-1})}{h^2}$$

Вычислить вторую производную в точке x=0.5 с максимально возможной точностью, если известно, что $M_3=\max_{0\leq x\leq 1.0}f^{IV}(x)=150$. Оценить погрешность вычисления производной.

3. (6) Решается СЛАУ:

$$\begin{pmatrix} 5 & 2 & 0 \\ 2 & 10 & 3 \\ 0 & 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 13 \\ 2 \\ 7 \end{pmatrix}$$

Выписать расчетные формулы метода Якоби в компонентах. Выполнить две итерации. Записать метод в канонической форме. Оценить скорость сходимости метода Якоби.

4. (8) Предложить итерационный метод вычисления расстояния от π до ближайшего собственного числа матрицы:

$$\begin{pmatrix} 4 & 2 & 0 \\ 2 & -6 & 2 \\ 0 & 2 & 4 \end{pmatrix}$$

и сделать одну итерацию для оценки этого расстояния.

Ответы и решения

Вариант 4

2. Исходная функция $f(x) = 2\exp(x)$; значение производной, посчитанное аналитически: $f'(x) \approx 5.44$. Ошибка:

$$\Delta = \Delta_M + \Delta_O = M_3 * \frac{h^2}{6} + \frac{2(\varepsilon \cdot M_0)}{2h},\tag{1}$$

где $\varepsilon \cdot M_0 = 0.1$ (или 0.05) берется из таблицы. Оптимальный шаг:

$$h_{opt} = \sqrt[3]{3 \frac{\varepsilon \cdot M_0}{M_3}}. (2)$$

Если считать ошибку округления $\varepsilon \cdot M_0 = 0.1$, то получается $h_{opt} = 0.3$. При $\varepsilon \cdot M_0 = 0.05$ получается $h_{opt} = 0.2$. В первом случае получается $f'_{0.3}(1.0) = 5.5$, во втором — $f'_{0.2}(1.0) = 5.25$. Ошибка $\Delta_{0.3} = 0.5$ и $\Delta_{0.2} = 0.3$ соответственно.

Вариант 6

2. Исходная функция $f(x) = \cos(x)$; значение производной, посчитанное аналитически: $f''(x) \approx -0.540$. Ошибка:

$$\Delta = \Delta_M + \Delta_O = M_4 * \frac{h^2}{12} + \frac{4(\varepsilon \cdot M_0)}{h^2}.$$
 (3)

Оптимальный шаг:

$$h_{opt} = \sqrt[4]{48 \frac{\varepsilon \cdot M_0}{M_4}}. (4)$$

Ошибку округления по таблице можно считать равной $\varepsilon \cdot M_0 = 0.001$ или $\varepsilon \cdot M_0 = 0.0005$. Соответствующие оптималтные шаги $h_{opt,0.001} = 0.5$ и $h_{opt,0.0005} = 0.4$; $f_{0.5}''(1.0) = -0.528$, $f_{0.4}''(1.0) = -0.531$. Ошибка $\Delta_{0.001} = 0.04$, $\Delta_{0.0005} = 0.03$.

Вариант 7

2. Исходная функция $f(x) = \frac{\sin(x)}{x}$; значение производной, посчитанное аналитически: $f'(x) \approx -0.30$. Ошибка:

$$\Delta = \Delta_M + \Delta_O = M_3 * \frac{h^2}{6} + \frac{2(\varepsilon \cdot M_0)}{2h},\tag{5}$$

где $\varepsilon \cdot M_0 = 0.01$ (или 0.005) берется из таблицы. Оптимальный шаг:

$$h_{opt} = \sqrt[3]{3 \frac{\varepsilon \cdot M_0}{M_3}}. (6)$$

Если считать ошибку округления $\varepsilon \cdot M_0 = 0.01$, то получается $h_{opt} = 0.3$. При $\varepsilon \cdot M_0 = 0.005$ получается $h_{opt} = 0.2$. В обоих случаях должно получиться f'(1.0) = -0.3. Ошибка в обоих случаях $\Delta = 0.05$.

Вариант 8

2. Исходная функция $f(x) = \exp(x^2)$; значение производной, посчитанное аналитически: $f''(x) \approx 3.85$. Ошибка:

$$\Delta = \Delta_M + \Delta_O = M_4 * \frac{h^2}{12} + \frac{4(\varepsilon \cdot M_0)}{h^2}.$$
 (7)

Оптимальный шаг:

$$h_{opt} = \sqrt[4]{48 \frac{\varepsilon \cdot M_0}{M_4}}.$$
(8)

Ошибку округления по таблице можно считать равной $\varepsilon \cdot M_0 = 0.01$ или $\varepsilon \cdot M_0 = 0.005$. В обоих случаях получается $h_{opt} = 0.2, \, f''(0.5) = 4.00$. Ошибка $\Delta_{0.01} = 1.5, \, \Delta_{0.005} = 1.0$.