Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	TEST-I	Maximum marks: 50
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle	Time: 9:30AM-11:00AM
	Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Date: 10-07-2023

Sl. No.	Questions	M	ВТ	СО				
1	Details regarding marks scored by 280 candidates in an examination are given by the following table. Using Newton- Gregory interpolation formula estimate the number of candidates who secured marks between 45 and 65. Marks: Below 30 30-40 40-50 50-60 60-70 70-80 Number of Students: 35 49 62 74 40 20							
2. (a)	The following table gives the relation between steam pressure and temperature. T°C 361 367 378 387 399 P 154.9 167.9 191 212.5 244.2 Using suitable interpolation formula find the pressure at the temperature 372°C.	6	L2	3				
2. (b)	Given the following table of values of x and y , find using inverse interpolation the value of x when $y = 100$. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
3. (a)	The following table gives corresponding values of pressure p and specific volume v of superheated steam: v 2 4 6 8 10 p 105 42.7 25.3 16.7 13 Find the rate of change of p with respect to v at $v = 4$ and $v = 8$.	6	L2	1				
3. (b)								
4	Obtain the general solution of the differential equation: $2\frac{d^2y}{dx^2} + \frac{dy}{dx} - y = e^{\frac{x}{2}} + \sin^2(2x) + x^2.$							
5. (a)	Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 13y = e^{2x}\sin(3x)$.							
5. (b)	Solve the initial value problem $\frac{d^2x}{dt^2} + \mu x = 0 \ (\mu > 0)$ given that $x = a$ and $\frac{dx}{dt} = 0$ when $t = \frac{\pi}{\sqrt{\mu}}$.							

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

B1-Blooms Taxonomy, Co-Course Outcomes, WI-Warks											
	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks											
Distribution	Max Marks	10	25	15	00	04	31	15			