CSC3001 Discrete Mathematics

Final Examination

December 18, 2024: 18:30pm - 21:00pm

Name: _	Student ID:
	Answer ALL questions in the Answer Book.

Question	Points	Score
1	16	
2	16	
3	24	
4	16	
5	12	
6	16	
Total:	100	

- 1. (16 points) Given a set S, the power set pow(S) of S is defined as the set of all subsets of S.
 - (a) (8 points) Find pow($\{3, 5, 7\}$).
 - (b) (8 points) Show that $|pow(S)| = 2^{|S|}$.

Solution:

- (a) $pow({3,5,7}) = {{3,5,7},{3,5},{5,7},{3,7},{3},{5},{7},\emptyset}.$
- (b) For each element there are 2 choices to include or not include it when constructing a subset. Because there are |S| elements in S, the total number of choices is $2^{|S|}$, which is the number of elements of |pow(S)|.
- 2. (16 points) Show that K_5 , the complete graph with 5 vertices, is not planar.

Solution: For any planar graph with at least 3 vertices, $m \le 3n - 6$, where m is the number of edges and n is the number of vertices. Because K_5 dictates m = 10 and n = 5, it does not satisfy $m \le 3n - 6$, which means it is not planar.

- 3. (24 points) The sequence $\{a_n\}$, $n \ge 0$ satisfies $a_{n+2} = \sqrt{a_{n+1}a_n}$ for all integers $n \ge 0$. Let $a_0, a_1 > 0$.
 - (a) (8 points) Show that $a_n > 0$ for every integer $n \ge 0$.
 - (b) (8 points) Let $b_n = \log a_n$ for all integers $n \ge 0$, where log denotes the logarithm function with base 2. Show that $b_{n+2} = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$ for all integers $n \ge 0$.
 - (c) (8 points) Given $a_0 = 1$, $a_1 = 2$, find a closed-form expression of a_n , $n \ge 0$.

Solution:

- (a) We prove this by induction. The base case is $a_0, a_1 > 0$. Assume that for some $k \in \mathbb{Z}^+, k \geq 2, a_i > 0$ for any $0 \leq i \leq k, i \in \mathbb{Z}^+$. Then for $a_{k+1} = \sqrt{a_k a_{k-1}}$, from the induction assumption we know that $a_k, a_{k-1} > 0$, which concludes $a_{k+1} > 0$. Therefore $a_n > 0$ for every $n \in \mathbb{Z}^+$.
- (b) Because $a_{n+2}, a_{n+1}, a_n > 0$, by taking logarithm on both sides of $a_{n+2} = \sqrt{a_{n+1}a_n}$ we obtain the desired statement.
- (c) Because $b_0 = 0, b_1 = \log 2 = 1$, by the distinct root theorem, we have $b_n = \frac{2}{3}(1 (-\frac{1}{2})^n)$. Therefore, $a_n = 2^{\frac{2}{3}(1 (-\frac{1}{2})^n)}$.

- 4. (16 points) A poker deck has 52 cards. The deck is composed of ranks A, 2, ..., 10, J, Q, K of 4 suits (♠, ♠, ♠, ♥). Consider that 3 cards are dealt out of 52 cards. The deal is without replacement, meaning that the same card cannot be dealt twice. A deal is "lucky" if it satisfies at least one of the following conditions:
 - 1. The 3 cards are of the same rank.
 - 2. The 3 cards are of the same suit.
 - 3. The 3 cards are consecutive, including A-2-3, 2-3-4, ..., J-Q-K, Q-K-A.
 - 4. The 3 cards are picture cards, i.e. all 3 cards are J, Q, or K.

Find the number of lucky deals.

Solution: There are $13\binom{4}{3} = 52$ combinations of case 1, $4\binom{13}{3} = 1144$ combinations of case 2, $12 \times 4^3 = 768$ combinations of case 3, and $\binom{12}{3} = 220$ combinations of case 4.

For combinations that satisfy two cases, there are $3\binom{4}{3} = 12$ combinations for cases 1 and 4, $12 \times 4 = 48$ combinations for cases 2 and 3, $1 \times 4 = 4$ combinations of cases 2 and 4, and $4^3 = 64$ combinations of cases 3 and 4. No combination simultaneously satisfies cases 1 and 2, cases 1 and 3.

For combinations that satisfy three cases, there are exactly 4 combinations of J-Q-K of the same suit. No combination satisfies all four cases.

By the inclusion-exclusion principle, the total number of combinations is 52 + 1144 + 768 + 220 - 12 - 48 - 4 - 64 + 4 = 2060.

5. (12 points) For a simple bipartite graph G = (X, Y; E) with |X| = |Y|, define a perfect matching which is a matching with |X| edges. Denote the neighborhood set of $S \subseteq X$ as N(S) which contains all adjacent vertices of vertices in S. A subset S of X is said to be *tight* if |N(S)| = |S|. A nonempty connected graph is *matching-covered* if every edge belongs to some perfect matching.

Let G = (X, Y; E) be a connected simple bipartite graph where a perfect matching exists. Show that G is matching-covered if and only if X has no nonempty proper tight subsets.

Solution:

We prove the necessity by contradiction. If X has a nonempty proper tight subset, we specify $S \subseteq X$ with |S| = |N(S)| to be a proper tight subset. If there is no vertex in N(S) adjacent to vertices in $X \setminus S$, G will be disconnected. Therefore there is a vertex $v_0 \in N(S)$ adjacent to some vertex $u_0 \in X \setminus S$. Now the edge $\{v_0, u_0\}$ cannot appear in any perfect matching of G, because all vertices in N(S) must be matched to vertices in S. Then G is not matching-covered.

For the sufficiency, assume $\forall S \subset X$, |N(S)| > |S|. For an arbitrary edge $e = \{x, y\}$, $x \in X$, $y \in Y$, we consider the subgraph induced by removing x and y. For $S \subseteq X \setminus \{x\}$ with $y \in N(S)$, since |N(S)| > |S|, we have $|N(S) \setminus \{y\}| \ge |S|$. For $S \subseteq X \setminus \{x\}$ without $y \in N(S)$, |N(S)| > |S|. By Hall's theorem, there is a perfect matching M' in this subgraph, where $M \cup \{e\}$ is a perfect matching in G. Therefore for an arbitrary edge, G has a perfect matching that contains it, which means G is matching-covered.

- 6. (16 points) Let $p \ge 3$ be prime and $n \ge p$ be a multiple of p. Let $f(x) = (1 + x)(1 + x^2)\cdots(1 + x^n)$, $x \in \mathbb{C}$, be a polynomial function defined on the complex domain. Denote the coefficients of the polynomial f(x) as $c_0, \ldots, c_{n(n+1)/2}$, namely, $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_{n(n+1)/2} x^{n(n+1)/2}$.
 - (a) (8 points) Let $0 \le m \le n(n+1)/2$ be an integer. Show that there are exactly c_m many subsets of $\{1, 2, \ldots, n\}$ such that the sum of the elements of the subset is m.
 - (b) (4 points) Let $0 \le m \le n(n+1)/2$ be an integer. Show that there exist p distinct nonzero numbers $x_1, \ldots, x_p \in \mathbb{C}$, such that $x_p = 1$, and if and only if m is not a multiple of p, the sum $c_m x_1^m + c_m x_2^m + \cdots + c_m x_p^m = 0$.
 - (c) (4 points) Find, in closed form, the number of subsets of $\{1, 2, ..., n\}$, the sum of whose elements is a multiple of p.

Solution:

- (a) By expanding the definition of f(x) we obtain 2^n terms, which forms a one-to-one correspondence with all 2^n subsets of $\{1, 2, \ldots, n\}$, where the inclusion of k corresponds to selecting x^k in the term $1 + x^k$, and the exclusion of k corresponds to the selection of 1 in the term $1 + x^k$, $1 \le k \le n$. Each subset that sums up to m contributes 1 to the coefficient c_m , which means c_m is the number of such subsets.
- (b) It suffices to have $x_k = e^{2k\pi i/p}$, $1 \le k \le p$, where i is the imaginary unit.
- (c) Let h = n(n+1)/(2p). With the values x_1, \ldots, x_p in the previous part, we have

$$f(x_1) + \dots + f(x_p)$$
= $c_0(x_1^0 + \dots + x_p^0) + c_p(x_1^p + \dots + x_p^p) + \dots + c_{hp}(x_1^{hp} + \dots + x_p^{hp})$
= $p(c_0 + c_p + \dots + c_{hp})$.

Then

$$c_0 + c_p + \dots + c_{hp} = \frac{1}{p} (f(x_1) + \dots + f(x_p))$$
$$= \frac{1}{p} 2^n + \frac{1}{p} (f(x_1) + \dots + f(x_{p-1})).$$

Because $(k \cdot 1, \dots, k \cdot p)$ is a permutation of $(1, \dots, p)$ modulo p,

$$f(x_1) + \dots + f(x_{p-1}) = (p-1)f(x_1)$$

$$= (p-1)(1+x_1)\dots(1+x_1^n)$$

$$= (p-1)((1+x_1)\dots(1+x_1^p))^{n/p}$$

$$= (p-1)((1+x_1)\dots(1+x_p))^{n/p}.$$

By $x^p - 1 = (x - x_1) \cdots (x - x_p)$, $\forall x \in \mathbb{C}$, we have $(1 + x_1) \cdots (1 + x_p) = 2$. Subsequently, the number of such subsets, which is $c_0 + c_p + \cdots + c_{hp}$, is $\frac{1}{p} 2^n + \frac{p-1}{p} 2^{n/p}$.

Remark: This is an example of applying generating functions (though not the ordinary generating function) to solve number theory tasks. It leverages a fact that by letting $x_k = e^{2k\pi i/p}$, the group $\{x_1, \ldots, x_p\}$ in the complex domain is isomorphic to the cyclic group \mathbb{Z}_p .