COMS 4772 Fall 2016 Homework 2 Due Friday, October 28

Instructions:

- The usual homework policies (http://www.cs.columbia.edu/~djhsu/coms4772-f16/about.html) are, of course, in effect.
- Using this LATEX template will be helpful for grading purposes.

Problem 1 (25 points). Let X be a random vector in \mathbb{R}^d whose distribution is a mixture of k spherical Gaussians:

$$X \sim \pi_1 \operatorname{N}(\boldsymbol{\mu}_1, \sigma_1^2 \boldsymbol{I}) + \pi_2 \operatorname{N}(\boldsymbol{\mu}_2, \sigma_2^2 \boldsymbol{I}) + \dots + \pi_k \operatorname{N}(\boldsymbol{\mu}_k, \sigma_k^2 \boldsymbol{I}).$$

For any set $C \subset \mathbb{R}^d$, define

$$cost(C) := \mathbb{E} \left[\min_{\boldsymbol{y} \in C} \|\boldsymbol{X} - \boldsymbol{y}\|_{2}^{2} \right].$$

Let $M := {\boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots, \boldsymbol{\mu}_k}$. Prove that if $k < e^{d/2}$, then

$$\cot(M) \leq \frac{1}{1 - \frac{2\ln(k)}{d}} \cdot \min_{\substack{C \subset \mathbb{R}^d: \\ |C| < k}} \cot(C).$$

Solution.

We start by finding the upper bound of cost(M):

$$\begin{split} \mathbb{E}\left[\min_{\boldsymbol{y}\in M}\|\boldsymbol{X}-\boldsymbol{y}\|_{2}^{2}\right] &= \mathbb{E}\left[\min_{\boldsymbol{y}\in M}(\boldsymbol{X}-\boldsymbol{y})^{T}(\boldsymbol{X}-\boldsymbol{y})\right] \\ &= \mathbb{E}\left[\min_{\boldsymbol{y}\in M}\boldsymbol{X}^{T}\boldsymbol{X}_{i} - 2\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{y}^{T}\boldsymbol{y}\right] \\ &= \mathbb{E}\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] - \mathbb{E}\left[\min_{\boldsymbol{y}\in M} - 2\boldsymbol{X}^{T}\boldsymbol{y} + \boldsymbol{y}^{T}\boldsymbol{y}\right] \\ &= \mathbb{E}\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] + \mathbb{E}\left[\max_{\boldsymbol{y}\in M}(2\boldsymbol{X}-\boldsymbol{y})^{T}\boldsymbol{y}\right] \\ &= \mathbb{E}\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] + \frac{1}{\lambda}\ln\exp\mathbb{E}\left[\max_{\boldsymbol{y}\in M}\lambda(2\boldsymbol{X}-\boldsymbol{y})^{T}\boldsymbol{y}\right] \\ &\leq \mathbb{E}\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] + \frac{1}{\lambda}\ln\mathbb{E}\left[\max_{\boldsymbol{y}\in M}\exp\lambda(2\boldsymbol{X}-\boldsymbol{y})^{T}\boldsymbol{y}\right] \\ &\leq \mathbb{E}\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] + \frac{1}{\lambda}\ln\sum_{i=1}^{k}\mathbb{E}\left[\exp\lambda(2\boldsymbol{X}-\boldsymbol{y})^{T}\boldsymbol{y}_{i}\right] \\ &\leq E\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] + \frac{1}{\lambda}\ln\sum_{i=1}^{k}\mathbb{E}\left[\exp\lambda(2\boldsymbol{X}_{k}-\boldsymbol{y})^{T}\boldsymbol{y}_{i}\right] \text{ where } \boldsymbol{X}_{k} = \max_{\boldsymbol{y}\in M}\boldsymbol{y} \\ &\leq E\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] + \frac{1}{\lambda}\ln\sum_{i=1}^{k}\mathbb{E}\left[\exp\lambda(2\boldsymbol{X}_{k}^{T}\boldsymbol{y})\right] \\ &\leq E\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] + \frac{1}{\lambda}\ln\sum_{i=1}^{k}\mathbb{E}\left[\exp\lambda(2\boldsymbol{X}_{k}^{T}\boldsymbol{y})\right] \\ &\leq E\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] + \frac{1}{\lambda}\ln\sum_{i=1}^{k}\mathbb{E}\left[\exp2\lambda(\boldsymbol{X}_{k}^{T}\boldsymbol{y})\right] \\ &\leq E\left[\boldsymbol{X}^{T}\boldsymbol{X}\right] + \frac{1}{\lambda}\ln\sum_{i=1}^{k}\exp(\sigma_{k}\lambda^{2})tr(\boldsymbol{y}) \end{split}$$

With $\lambda = \sqrt{\frac{\ln k}{\sigma_k tr(\boldsymbol{y})}}$, $\mathbb{E}\left[\min_{\boldsymbol{y}\in M}\|\boldsymbol{X} - \boldsymbol{y}\|_2^2\right] \leq E\left[\boldsymbol{X}^T\boldsymbol{X}\right] + 2\sqrt{\sigma_k tr(\boldsymbol{y})\ln k}$. The lower bound of the cost(C) occurs when $\boldsymbol{y} = \mathbb{E}[\boldsymbol{X}]$ and hence $\mathbb{E}[\boldsymbol{X}^T\boldsymbol{X}] - \mathbb{E}[\boldsymbol{X}^T]\mathbb{E}[\boldsymbol{X}] \leq \text{cost}(c)$. **Problem 2** (25 points). Suppose $A, B \in \mathbb{R}^{n \times d}$ each have rank d. Give unambiguous pseudocode for an algorithm that, when given A and B as inputs, finds all solutions $v \in S^{d-1}$ satisfying

$$\exists \lambda \in \mathbb{R} \setminus \{0\} \text{ s.t. } \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{v} = \lambda \boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{v}.$$

If there is an entire subspace of solutions, the algorithm just needs to return an orthonormal basis for this subspace. Your pseudocode can use things like SVD, Gram-Schmidt, etc. as black-box subroutines. Prove that the algorithm is correct.

Solution.

Input: $\boldsymbol{A}, \boldsymbol{B}$

Output: All solutions $v \in S^{d-1}$ satisfying $\exists \lambda \in \mathbb{R} \setminus \{0\}$ s.t. $A^{\top}Av = \lambda B^{\top}Bv$

Begin

Calculate $\mathbf{A}^T \mathbf{A}$

Calculate $\boldsymbol{B}^T\boldsymbol{B}$

Invert $\boldsymbol{B}^T\boldsymbol{B}$ and set it as \boldsymbol{C}

Take the product of C and A^TA and set it as D

Perform eigendecomposition on D to obtain $D = U\Sigma U^T$

Normalise and return U

End

Steps 1 and 2 will be always be valid for matrices of any size. As \boldsymbol{B} is of rank d, $\boldsymbol{B}^T\boldsymbol{B}$ is also of rank d and a $d \times d$ matrix, hence $\boldsymbol{B}^T\boldsymbol{B}$ is not rank deficient and is invertible so step 3 is valid. Since both \boldsymbol{C} and $\boldsymbol{A}^T\boldsymbol{A}$ are $d \times d$ matrices, their product can be computed which verifies step 4. \boldsymbol{D} is a square $d \times d$ matrix of rank d, we can perform eigendecomposition to obtain $\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{U}^T$ where $U^T = U^{-1}$. Hence U is orthogonal and forms a basis for the subspace of the solutions. After normalising U, we obtain a orthonormal basis for the subspace.

Problem 3 (25 points). Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a data matrix whose rows are $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \in \mathbb{R}^d$. Let $\mathbf{D} \in \mathbb{R}^{n \times n}$ be the matrix whose (i, j)-th entry is the squared Euclidean distance $D_{i,j} = \|\mathbf{a}_i - \mathbf{a}_j\|_2^2$. Suppose you are given the squared Euclidean distance matrix \mathbf{D} as input, and you are asked to recover the set of original points $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ up to some translation. You do not have access to the original data matrix \mathbf{A} .

- (a) Let $s \in \mathbb{R}^n$ be the vector whose *i*-th entry is $\|\boldsymbol{a}_i\|_2^2$. Prove that $\boldsymbol{D} = s \boldsymbol{1}_n^\top 2 \boldsymbol{A} \boldsymbol{A}^\top + \boldsymbol{1}_n \boldsymbol{s}^\top$, where $\boldsymbol{1}_n \in \mathbb{R}^n$ is the all-ones vector.
- (b) Let $\Pi \in \mathbb{R}^{n \times n}$ be the orthogonal projector for the (n-1)-dimensional subspace

$$\{x \in \mathbb{R}^n : \langle \mathbf{1}_n, x \rangle = 0\}$$
.

Prove that $-(1/2)\Pi D\Pi = \Pi AA^{\top}\Pi$.

- (c) Explain how to determine points $x_1, x_2, \dots, x_n \in \mathbb{R}^d$ from D such that:
 - $D_{i,j} = ||x_i x_j||_2^2$ for all $i, j \in [n]$; and
 - $\sum_{i=1}^{n} x_i = 0$.

(You may assume that you are told the original dimension d.)

- (d) Optional. Suppose the matrix D is corrupted (say, because your distance measuring device is imperfect), so the entries no longer correspond to the squared Euclidean distances between the a_i . Explain how to determine points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ (yes, n and not d) from D such that:
 - $\bullet \ \sum_{i=1}^n x_i = \mathbf{0};$
 - $\|\boldsymbol{x}_i \boldsymbol{x}_j\|_2^2 \ge D_{i,j}$ for all $i \ne j$; and
 - $\max \left\{ \frac{\|\mathbf{x}_i \mathbf{x}_j\|_2^2}{D_{i,j}} : 1 \le i < j \le n \right\}$ is as small as possible.

Hint: use semidefinite programming.

Solution.

 \mathbf{a}

 $D_{i,j} = ||a_i - a_j||_2^2 = (a_i - a_j)^T (a_i - a_j) = a_i^T a_i - 2a_i^T a_j + a_j^T a_j$. We have $s = ||a_i||_2^2 = a_i^T a_i$ and

$$m{s}m{1}_n^ op = egin{bmatrix} m{a}_1^Tm{a}_1 & m{a}_1^Tm{a}_1 & m{a}_1^Tm{a}_1 & \dots & m{a}_1^Tm{a}_1 \ m{a}_2^Tm{a}_2 & m{a}_2^Tm{a}_2 & m{a}_2^Tm{a}_2 & \dots & m{a}_2^Tm{a}_2 \ dots & dots & dots & \ddots & dots \ m{a}_n^Tm{a}_n & m{a}_n^Tm{a}_n & m{a}_n^Tm{a}_n & \dots & m{a}_n^Tm{a}_n \end{bmatrix}$$

and

$$egin{aligned} \mathbf{1}_n oldsymbol{s}^{ op} egin{bmatrix} oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_2^T oldsymbol{a}_2 & oldsymbol{a}_3^T oldsymbol{a}_3 & \dots & oldsymbol{a}_n^T oldsymbol{a}_n \ oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_2^T oldsymbol{a}_2 & oldsymbol{a}_3^T oldsymbol{a}_3 & \dots & oldsymbol{a}_n^T oldsymbol{a}_n \ oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_2^T oldsymbol{a}_2 & oldsymbol{a}_3^T oldsymbol{a}_3 & \dots & oldsymbol{a}_n^T oldsymbol{a}_n \ oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_2^T oldsymbol{a}_2 & oldsymbol{a}_3^T oldsymbol{a}_3 & \dots & oldsymbol{a}_n^T oldsymbol{a}_n \ oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_2^T oldsymbol{a}_2 & oldsymbol{a}_3^T oldsymbol{a}_3 & \dots & oldsymbol{a}_n^T oldsymbol{a}_n \ oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_2^T oldsymbol{a}_2 & oldsymbol{a}_3^T oldsymbol{a}_3 & \dots & oldsymbol{a}_n^T oldsymbol{a}_n \ oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_2^T oldsymbol{a}_2 & oldsymbol{a}_3^T oldsymbol{a}_3 & \dots & oldsymbol{a}_n^T oldsymbol{a}_n \ oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_2^T oldsymbol{a}_2 & oldsymbol{a}_3^T oldsymbol{a}_3 & \dots & oldsymbol{a}_n^T oldsymbol{a}_n \ oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_1^T oldsymbol{a}_1^T oldsymbol{a}_1 & oldsymbol{a}_1^T oldsymbol{$$

while

$$m{A}m{A}^T = egin{bmatrix} m{a}_1^Tm{a}_1 & m{a}_1^Tm{a}_2 & m{a}_1^Tm{a}_2 & \dots & m{a}_1^Tm{a}_n \ m{a}_2^Tm{a}_1 & m{a}_2^Tm{a}_2 & m{a}_2^Tm{a}_3 & \dots & m{a}_2^Tm{a}_n \ dots & dots & dots & \ddots & dots \ m{a}_n^Tm{a}_1 & m{a}_n^Tm{a}_2 & m{a}_n^Tm{a}_3 & \dots & m{a}_n^Tm{a}_n \end{bmatrix}$$

The i, j^{th} component of $s\mathbf{1}_n^{\top} - 2AA^T + s\mathbf{1}_n^{\top} = a_i^T a_i - 2a_i^T a_j + a_j^T a_j = D_{i,j}$, hence $D = s\mathbf{1}_n^{\top} - 2AA^{\top} + \mathbf{1}_n s^{\top}$.

b

$$-(1/2)\mathbf{\Pi}D\mathbf{\Pi} = -(1/2)\mathbf{\Pi}(\mathbf{s}\mathbf{1}_n^{\top} - 2\mathbf{A}\mathbf{A}^{\top} + \mathbf{1}_n\mathbf{s}^{\top})\mathbf{\Pi}$$

$$= -(1/2)(\mathbf{\Pi}\mathbf{s}\mathbf{1}_n^{\top}\mathbf{\Pi} - 2\mathbf{\Pi}\mathbf{A}\mathbf{A}^{\top}\mathbf{\Pi} + \mathbf{\Pi}\mathbf{1}_n\mathbf{s}^{\top}\mathbf{\Pi}) \text{ where } \mathbf{1}_n^{\top}\mathbf{\Pi} = \mathbf{\Pi}\mathbf{1}_n = 0$$

$$= -(1/2)(-2\mathbf{\Pi}\mathbf{A}\mathbf{A}^{\top}\mathbf{\Pi})$$

$$= \mathbf{\Pi}\mathbf{A}\mathbf{A}^{\top}\mathbf{\Pi}$$

 \mathbf{c}

We know that any vector \boldsymbol{x} can be split into components consisting of $\mathbf{1}_n$ and its orthogonal projection in the form of $\boldsymbol{x} = \langle \boldsymbol{x}, \mathbf{1}_n \rangle \mathbf{1}_n + \Pi \boldsymbol{x}$. Next, we rewrite the above in terms of $\Pi \boldsymbol{x}$ which is $\Pi \boldsymbol{x} = \boldsymbol{x} - \langle \boldsymbol{x}, \mathbf{1}_n \rangle \mathbf{1}_n$. To find out what Π is, we express the RHS in terms of \boldsymbol{x} . $\langle \boldsymbol{x}, \mathbf{1}_n \rangle = \boldsymbol{x}^T \mathbf{1}_n = \sum_{i=1}^n \boldsymbol{x}_i$, so $\langle \boldsymbol{x}, \mathbf{1}_n \rangle \mathbf{1}_n$ is an n dimension vector of $\sum_{i=1}^n \boldsymbol{x}_i$. This is also equivalent to the product of a $n \times n$ matrix of $1 = \mathbf{1}_n \mathbf{1}_n^T$ and \boldsymbol{x} . Hence $\Pi \boldsymbol{x} = (I - \mathbf{1}_n \mathbf{1}_n^T) \boldsymbol{x}$ and $\Pi = (I - \mathbf{1}_n \mathbf{1}_n^T)$ which is invertible. Using the results in b), $-(1/2)\Pi D\Pi = \Pi \boldsymbol{X} \boldsymbol{X}^T \Pi$ where \boldsymbol{X} is the concatenation of \boldsymbol{x}_i s. With SVD, we can break $\Pi \boldsymbol{X} \boldsymbol{X}^T \Pi$ into $\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{V}^T = \boldsymbol{V} \boldsymbol{\Sigma}^{1/2} \boldsymbol{\Sigma}^{1/2} \boldsymbol{V}^T$ where $\boldsymbol{V} \boldsymbol{\Sigma}^{1/2} = \Pi \boldsymbol{X}$ and $\boldsymbol{\Sigma}^{1/2} \boldsymbol{V}^T = \boldsymbol{X}^T \Pi$. By taking the product of $\boldsymbol{\Pi}^{-1} \boldsymbol{V} \boldsymbol{\Sigma}^{1/2} = \boldsymbol{\Pi}^{-1} \Pi \boldsymbol{X}$, we recover $\boldsymbol{x}_1, ... \boldsymbol{x}_n$ in the form of \boldsymbol{X} .

Problem 4 (25 points). Exercise 3.25 from BHK.

Solution.

 \mathbf{a}

$$\arg \max ||Ax||_2^2 = \arg \max x^T A^T A x$$

The above is equivalent to solving for the eigenvalues and eigenvectors of $A^T A$ and choosing the eigenvector v_1 with the largest eigenvalue λ_1 . The synthetic document is then Av_1 .

b

The synthetic document does not represent the centre of gravity which is the document with averaged term counts. Instead, it represents the document with the largest average dot-product with the set of documents represented by the matrix.

 \mathbf{c}

Perform eigendecomposition on \boldsymbol{A} like in a) but choose the k eigenvectors with the largest eigenvalues. Obtain the synthetic documents by calculating the product \boldsymbol{A} and \boldsymbol{v}_i where $i \in [1, k]$ and are hence the document-term matrix multiplied by singular vectors.

\mathbf{d}

Assuming that we can arrange A as a block-diagonal matrix, A^TA (which could also be loosely called the 'term-correlation matrix') would be block-diagonal as well. To see this, the i, j^{th} entry of the matrix is $\langle a_i^T, a_j \rangle$ and would only be non-zero when the vectors belong to the same block since each block is characterised by an exclusive set of terms. Breaking the so-called 'term-correlation matrix' into parts via eigendecomposition, A^TA can be represented as $V\lambda V^T$ where $V^T = V^{-1}$. As each entry of A^TA can be expressed as $\lambda_i v_{ij}^2$, the eigenvectors of A^TA or the right-singular vectors of A must also reflect the block-diagonal structure of A^TA as we only see a 0 when $v_{ij} = 0$. Hence each right-singular vector can be divided into distinct blocks where the existence of non-zero numbers in the blocks gives rise to the corresponding block in A^TA if it multiplied by another right-singular vector containing non-zero numbers in the same block.

 \mathbf{e}

Pick a v_I of the right singular matrix of A^TA and obtain the $m \times 1$ vector obtained by Av_i . The corresponding documents with non-zero entries in the resulting vector all belong to the same cluster. Repeat till all documents have an assignment.