9. Proof Strategies for Predicate Calculus

Language & Logic

Dave Parker

University of Birmingham 2017/18

This week

- Assignment 2 marks/feedback/solutions out now
- No Tue/Thu exercise classes this week
 - I will release a practice exercise sheet (Ex 7)
 - questions welcome: Facebook/office hours/...
 - follow-up next week
- Office hours for this week
 - Tue 1-2 (the usual Tuesday office hour)
 - also Tue 11-12 (i.e. the usual exercise class slot)
 - no office hour on Thursday
 - I have moved office: I'm now in room 133

Overview

- Assessment 2 Feedback
- Equivalences
- Theorem & sequent introduction
- Proof strategies for predicate calculus
- Proving vs. disproving

Assessment 2 – Feedback

- Some common mistakes:
- 1. Only use sub-proofs (and hypotheses) where needed
 - only for certain inference rules; always know which one you want

Sub-proofs

Inference rules needing sub-proofs/hypotheses

$$\frac{A \vdash B}{A \to B} \to \text{-introduction} \qquad \frac{A \vdash \bot}{\neg A} \neg \text{-introduction}$$

$$\frac{A \vee B \quad A \vdash C \quad B \vdash C}{C} \vee \text{-elimination}$$

$$\frac{\exists x [\phi(x)] \quad \phi(a) \vdash C}{C} \exists \text{-elimination*}$$

Assessment 2 – Feedback

- Some common mistakes:
- 1. Only use sub-proofs (and hypotheses) where needed
 - only for certain inference rules; always know which one you want
- 2. Never close two sub-proofs simultaneously
- 3. Proof formatting/annotation
 - always put boxes around sub-proofs
 - always check your dependencies
- 4. Inference rules only apply to the main connective of a formula
- 5. Don't use derived inference rules (or equivalences), unless you provide a separate proof of validity
 - e.g. modus tollens, law of excluded middle, etc.

Equivalences

- Formulas C and D are equivalent, written C ≡ D iff:
 - their truth value is the same for every possible interpretation
 - alternatively, it means that both $C \vdash D$ and $D \vdash C$
- Some common equivalences:
- 1. Double negation
 - $\neg \neg A \equiv A$
- 2. Implication
 - $A \rightarrow B \equiv \neg A \lor B$
- 3. De Morgan's laws
 - $-\neg(A \land B) \equiv \neg A \lor \neg B$ and $\neg(A \lor B) \equiv \neg A \land \neg B$
- 4. Quantifier duality:
 - $\neg \forall x [...] \equiv \exists x [\neg(...)] \text{ and } \neg \exists x [...] \equiv \forall x [\neg(...)]$

Equivalences

- Equivalences allow us to rewrite formulas or subformulas
 - e.g., since $\neg (A \land B) \equiv \neg A \lor \neg B$
 - we know that: $P \rightarrow \neg (Q \land (R \land S)) \equiv P \rightarrow (\neg Q \lor \neg (R \land S))$
- But...
 - we make no direct use of these in our natural deduction proofs
- Still useful to know
 - e.g. to guide/structure the proof
 - or to confirm validity if this is unknown
- Example: Assessment 2 Q4

$$\neg (P \land (Q \lor R)) : \neg P \lor (\neg Q \land \neg R)$$

Theorem & sequents

- Theorem:
 - a formula that we can prove to be always true
- An example of a theorem (modus tollens):

$$- \vdash ((A \rightarrow B) \land \neg B) \rightarrow \neg A$$

- We could also write this in sequent notation as:
 - $-A \rightarrow B, \neg B \vdash \neg A$
- In natural deduction proofs, you are allowed to:
 - use theorem/sequent introduction
 - if you have provided a separate (natural deduction) proof of it
- Theorem introduction inserts a known theorem.
- Sequent introduction inserts a conclusion that can be derived

Theorem/sequent introduction

- A theorem:
 - $\vdash (A \land B) \rightarrow \neg(\neg A \lor \neg B)$ [De Morgan]
- Prove, using theorem introduction:
 - P, Q, R: $\neg(\neg(P \land Q) \lor \neg R)$
- A valid argument (sequent):
 - $-A \wedge B \vdash \neg(\neg A \vee \neg B)$ [De Morgan]
- Prove again, using sequent introduction:
 - P, Q, R: $\neg(\neg(P \land Q) \lor \neg R)$
- This uses (uniform) substitutions
 - e.g. replacing A with $(P \land Q)$ and B with R

Example: Theorem introduction

• Prove: $P \lor \neg Q$, $P \to R$, $S \to Q \vdash R \lor \neg S$

1.
$$P \vee \neg Q$$

3.
$$P \rightarrow R$$

5.
$$R \vee \neg S$$

7.
$$S \rightarrow Q$$

8.
$$((S \rightarrow Q) \land \neg Q) \rightarrow \neg S$$
 Theorem (modus tollens)

9.
$$(S \rightarrow Q) \land \neg Q$$

11.
$$R \vee \neg S$$

12.
$$R \vee \neg S$$

$$\rightarrow$$
-elimination_{3,2} {2,3}

$$\vee$$
-introduction₄ {2,3}

Hypothesis
$$\{6\} \qquad \begin{array}{c} \text{Using:} \\ \vdash ((A \rightarrow B) \land \neg B) \rightarrow \neg A \end{array}$$

$$\land$$
-introduction_{7,6} {6,7}

$$\rightarrow$$
-elimination_{9,8} {6,7}

$$\vee$$
-introduction₁₀ {6,7}

$$\vee$$
-elimination_{1,2,5,6,11} {1,3,7}

Example: Sequent introduction

• Prove: $P \vee \neg Q$, $P \rightarrow R$, $S \rightarrow Q \vdash R \vee \neg S$

1.	$P \vee \neg Q$	Premise	{1}
2.	P	Hypothesis	{2}
3.	$P \rightarrow R$	Premise	{3}
4.	R	→-elimination _{3,2}	{2,3}
5.	$R \vee \neg S$	\lor -introduction ₄	{2,3}
6.	$\neg Q$	Hypothesis	{6} Using: $ (A \rightarrow B, \neg B \vdash \neg A) $
7. 8.	S → Q	Premise	{7}
8.	¬S	Theorem (modus tollens)	{6,7}
9.	$R \vee \neg S$	\vee -introduction ₁₀	{6,7}
10.	$R \vee \neg S$	\vee -elimination _{1,2,5,6,11}	{1,3,7}

Predicate calculus - Recap

- Natural deduction for predicate calculus
 - extends natural deduction for propositional logic
- ∀-elimination
 - infer a particular instance $\phi(a)$ from $\forall x [\phi(x)]$
- \exists -introduction
 - infer $\exists x [\phi(x)]$ from a particular instance $\phi(a)$
- ∀-introduction
 - infer $\forall x [\varphi(x)]$ from $\varphi(a)$ for a "typical" a
 - condition: a must not occur in any dependency of $\phi(a)$
- ∃-elimination
 - infer C from $\exists x [\phi(x)]$ by inferring C for a "typical" a
 - condition: a must not occur in C
 or in any dependency of C except φ(a)

Example – ∀-introduction

• Prove: $\forall x [P(x) \rightarrow Q(x)], \forall x [P(x)] : \forall x [Q(x)]$

condition: a must not occur in any dependency of $\phi(a)$

Example – 3-elimination

Prove: ∃x [F(x) ∧ G(x)] : ∃x [F(x)]

condition: a must not occur in C or in any dependency of C except $\phi(a)$

No other

Proof strategies

- Recall the rules of thumb ("golden rules")
 when writing natural deduction proofs for propositional logic
 - 1. if there is a \rightarrow in the conclusion, try \rightarrow -introduction
 - 2. if there is a premise of the form $A \lor B$, try \lor -elimination
 - 3. otherwise, try negation \neg -introduction
- Generally:
 - elimination rules for premises, introduction rules for conclusion
- We extend these rules to predicate calculus proofs
- Formulas in predicate calculus arguments are:
 - universal (∀-quantified), existential (∃-quantified)
 or unquantified (about individuals)

Rules of thumb

• When the only quantifiers in the premises are universal...

Premises	Conclusion	Then use	
universal, unquantified	unquantified	∀-elimination to infer properties of individuals, then follow golden rules	
	existential	∀-elimination to infer properties of individuals, golden rules to prove conclusion for an individual, then ∃-introduction	
universal	universal	 ∀-elimination to infer properties for arbitrary a, golden rules to prove conclusion for a, then ∀-introduction 	

- In summary:
 - ∀-elimination first, then prove conclusion
- A common pattern is:
 - → -elimination then ∀-introduction

Proof strategies

• When there are existential quantifiers in the premises...

Premises	First	Conclusion	Then
existential	Assume a "typical" disjunct of the existential for arbitrary a	or universal or	Golden rules to prove conclusion for a (e.g. ∃-introduction or ∀-introduction), then ∃-elimination
1	Assume a "typical" disjunct of the existential for arbitrary a, —elimination to infer further oroperties of a		

Note:

- proof of conclusion is inside ∃-elimination sub-proof
- A common pattern is:
 - ∃-introduction inside ∃-elimination

Examples

1.
$$\forall x [D(x) \lor B(x)], \forall x [D(x) \rightarrow B(x)] : \forall x [B(x)]$$

2.
$$\forall y [G(y) \rightarrow H(y)] : \exists x [G(x)] \rightarrow \exists z [H(z)]$$

3.
$$\exists x [\neg F(x)] \lor \exists y [G(y)] : \exists z [F(z) \rightarrow G(z)]$$

Proving versus disproving

- So far: asked to prove arguments/theorems known to be valid
 - what if we do not know if it is valid?
- Example (propositional logic):
 - prove or disprove the theorem:
 - $-: (P \rightarrow Q) \lor (\neg Q \rightarrow \neg P)$
- How do we answer this?
 - first step: decide if it is valid or not
 - second step: use appropriate technique to prove/disprove
- How to disprove a theorem? (i.e. how to prove invalid/false)
 - we need a counterexample
 - (the same is true for disproving arguments, or equivalences)

Counterexamples (propositional logic)

- For propositional logic
 - a counterexample is a truth valuation for atomic propositions which makes the formula false
 - and we can search for it using a truth table
- Example: Prove or disprove the theorem:
 - $-: (P \rightarrow Q) \lor (\neg Q \rightarrow \neg P)$
 - counterexample: P=true, Q=false

Counterexamples (predicate calculus)

- For predicate calculus
 - a counterexample is an interpretation for (some domain) which makes the formula false
- Example: Prove or disprove the theorem:
 - $: (\exists x [F(x)] \lor \exists x [G(x)]) \rightarrow (\exists x [F(x) \land G(x)])$
 - counterexample: single constant a where F(a)=true, G(a)=false
- What about arguments?
 - to disprove, show counterexample that makes the premises true and the conclusion false
- What about equivalences?
 - to prove $A \equiv B$, need to (separately) prove: $A \vdash B$ and $B \vdash A$
 - to disprove, disprove either $A \vdash B$ or $B \vdash A$