

ME 310: Thermo-fluid System Design

Non-condensing Economizer

Group A12

Md Jawarul moresalein (1710002) Shouvik Sarker (1710017) Sadib Fardin (1710019) Md Fuad Amin Jarif (1710020)

- To create a mathematical model of the economizer
- To design this model by CAD software
- To validate this model by ANSYS & HTRI Exchanger-Suite
- To manufacture this model by practical market study & cost analysis
- To analyze the overall efficiency & practicality of this model

> What Is An Economizer

- Mechanical device intended to reduce energy consumption.
- To perform useful functions such as preheating a fluid

Benefits of having one:

- Improves the boiler efficiency.
- Reduces the losses of heat with the flue gases.
- Reduces the consumption of fuel
- Reduces thermal stresses in the boiler

PROJECT FEATURES

Cross flow heat exchanger

Tubes in staggered position

Improved efficiency, Improved ventilation

Simple Structure, Easy Installation

Improved Fin Structure To Increase Efficiency

Non-Condensing Economizer

> Project Timeline

9TH WEEK

10TH WEEK

11TH WEEK

12TH WEEK

13TH WEEK

PROJECT STUDY

MATHEMATICAL MODEL CREATE

3D MODEL **CREATE**

DESIGN VALIDATION

LITERATURE REVIEW AND RESULT STUDY

Components & costing

Component	Price(Taka)
Shell (Stainless steel)	4,000/-
Tube (Copper)	10,500/-
Fin (Aluminum)	2,500/-
Insulation	2,200/-
Additional Cost	2,000/-
Total	21,200/-

Problem statement

Hot fluid : Flue Gas

Position: Shell

Inlet temperature, $T_{h,in} = 180^{\circ} C$

Outlet temperature, $T_{h,out}=120^{\circ} C$

Mass flow rate, $\dot{m}_{\rm h} = 60$ kg/hr

Uniform velocity, $U_{\infty} = 3 \text{ m/s}$

Cold fluid : Feedwater

Position: Tubes

Inlet temperature, $T_{c,in} = 50^{\circ} \text{ C}$

Outlet temperature, $T_{c,out}=80^{\circ} C$ (assumed)

Mass flow rate, $\dot{m}_c = 6 \text{ kg/hr}$

Length, L = 4 ft

Width, W = 1 ft

Height, H = 1.5 ft

Tangential pitch, $S_T = 5$ cm

Longitudinal pitch, $S_L = 2.5$ cm

Tube outer diameter, D = 2.5 cm

Tube inner diameter, d = 2.4 cm

Number of tubes in longitudinal distance, $N_L = 20$

Number of tubes in transverse distance, $N_T = 10$

$$T_{avg} = \frac{180 + 120}{2}$$
 ° C = 150° C

$$s_D = \sqrt{S_L^2 + \left(\frac{s_T}{2}\right)^2} = 3 \cdot 54 \text{ mm}$$

$$U_{\text{max}} = \max \left(U_{\infty} \left[\frac{S_{\text{T}}}{S_{\text{T}} - D} \right], U_{\infty} \left[\frac{S_{\text{T}}}{2(S_{\text{D}} - D)} \right] \right) = 7.2 \text{ ms}^{-1}$$

$$R_e = \frac{U_{max} \times D}{v} = 6313.57$$

Zukauskas co-relation for cross flow heat exchanger:

$$N_{u_m} = \frac{h_m D}{K} = C_1 \times R_{e_{D,max}}^m \times P_r^{0.36}$$

$$h_{\rm m} = 91.75 \text{ W/m}^2\text{-K}$$

Flue gas properties $@T_{avg} = 150^{\circ} C$

$$\rho = 0.8068 \, kg/m^3$$

$$Cp = 1043 \text{ J/kg K}$$

$$K = 0.03416 \text{ W/m K}$$

$$\mu = 2.3 \text{ x } 10^{-5} \text{ kg/m s}$$

$$\nu = 2.851 \text{ x } 10^{-5} \text{ m}^2/\text{s}$$

$$Pr = 0.7025$$

$$C_1 = 0.40 \& m = 0.60$$

Exit temperature,
$$T_{e,w} = 160 - (16050) \exp\left(-\frac{15.71 \times 91.75}{1.21 \times 4180}\right) = 77.28 \, ^{\circ}\text{C}$$

$$\therefore \text{ error} = \frac{80 - 77.28}{80} = 3.40\%$$

So the assumption is correct.

Here,

$$\frac{S_T}{S_L} = 1.41 \; ; \; \frac{S_T}{D} = 2 \; ;$$

$$R_e = 67000$$
 (Feedwater velocity = $1\frac{m}{s}$ assumed)
From chart, $x = 1 \& \frac{f}{x} = 2 \cdot 1 \times 10^{-1}$
 $\therefore x = 1.9 \times 10^{-1}$

∴ Tubeside pressure drop,

$$\Delta P = f\left(\frac{1}{2} \times \rho \times v^2\right) N_L = 1356 \, Pa$$

Fin analysis

Number of fins per tube, $N_{fin} = 35$

From chart, $\eta_{fin} = 0.98$

$$r_{1} = 2.5 cm = 2.5 \times 10^{-2} m$$

$$r_{2} = 3 cm = 3 \times 10^{-2} m$$

$$t = 0.1 cm = 1 \times 10^{-3} m$$

$$L = 0.5 cm = 0.5 \times 10^{-2} m$$

$$\therefore r_{2C} = r_{2} + \frac{t}{2} = 3.05 cm = 3.05 \times 10^{-2} m$$

$$L_{C} = L + \frac{t}{2} = 0.55 cm$$

$$A_{P} = L_{C}t = 0.055 cm$$

$$A_{fin} = 2\pi \left(r_{2C}^{2} - r_{1}^{2}\right) = 19.17 \times 10^{-4} m^{2}$$

$$\xi = (L_{C})^{\frac{3}{2}} \left(\frac{h}{kA_{P}}\right)^{\frac{1}{2}} = 0.10$$

$$\frac{r_{2C}}{L} = 1.22$$

FIGURE 3-44

Efficiency of annular fins of constant thickness t.

Fin analysis

$$\therefore A_t = NA_{fin} + \pi D(L - Nt) = 0.09 m^2$$

$$\dot{Q} = hA_t \left[1 - \frac{NA_{fin}}{A_t} (1 - n_f) \right] (T_S - T_\infty) = 81.34 W$$

$$\dot{Q}_{no\ fin} = h A_b (T_S - T_\infty) = 25.22 \ W$$

$$\therefore Effectiveness of fin, \epsilon = \frac{\dot{Q}}{\dot{Q}_{no fin}} = \frac{81.34}{25.22} = 3.23$$

: There will be 35 fins per tube, which will increase overall efficiency of the economizer.

Parts of the CAD Model

Flue gas inlet-outlet

Feed water inlet-outlet

Pipe fitting

Finned tube

Sectional View & Complete Assembly

Sectional view

Complete assembly

> ANSYS Simulation

> ANSYS Simulation

> ANSYS Simulation

> HTRI Modeling & Validation

3D model generated from HTRI

2D View & tube layout

ID	Name	Туре	Outer Diameter (mm)	Wall Thickness (mm)	Transverse Pitch (mm)	Longitudinal Pitch (mm)	Fin Height (mm)
T1	TubeType1	Plain	63.5000	1.0000	75.0001	64.9501	n/a

Row From Top	Number of Tubes	Tube Type Name	Wall Clearance (mm)	Row From Top	Number of Tubes	Tube Type Name	Wall Clearance (mm)
1	20	TubeType1	9.5250	6	20	TubeType1	47.0251
2	20	TubeType1	47.0251	7	20	TubeType1	9.5250
3	20	TubeType1	9.5250	8	20	TubeType1	47.0251
4	20	TubeType1	47.0251	9	20	TubeType1	9.5250
5	20	TubeType1	9.5250	10	20	TubeType1	47.0251

Bundle Information

Bundle width 1.545 m

Number of tube rows 10

Number of tubes 200

Minimum wall clearance

Left 9.5250 mm

Right 9.5250 mm

Number of tubes per pass

O Tubepass # 1: 200

2D View

Tube layout

Local overall heat transfer co-efficient

> Temperature distribution

> Pressure drop verification

From the mathematical model described previously, tubeside pressure drop $\Delta P = 1356 \, Pa$

Economic Analysis

- > Key takeaways:
 - Base Material: Stainless Steel
 - Insulation Material: 1000MF Board Type III (Wool)
 - Economic Thickness: Single Layer 25 mm
 - Payback Period = 3.51 years
 - Surface Temperature = 45° C

> Future plans

Expansion of the Project

FURTHER RESEARCH

Market study

COMPLETION OF THE WHOLE PROJECT

Market Launching

Data Analysis

System	Combustion Efficiency @ 4% Excess O ² (%)	Stack Gas Temperature °F
Boiler	78 to 83%	350 to 550°
- with Feedwater (FW) Economizer	84 to 86%	250 to 300°
- with FW and Condensing Economizer	92 to 95%	75 to 150°

BOILER EFFICIENCY OF CONDENSING ECONOMIZER

EXERGY ANALYSIS OF FEED WATER HEATER

REFERENCES

- Campbell Survey
- <u>Design & Analysis of Low-Pressure Economizer Based Waste-Heat Recovery System for Coal- Fired</u>
 <u>Thermal Power Plant 1</u>
- Textbook Heat Transfer : A Practical Approach 5th edition Edition by Yunus A. Cengel.
- Theory lectures of ME 307 course by Professor Dr. Md. Zahurul Haq, Dept. of Mechanical Engineering, BUET.
- Theory lectures of ME 307 course by Professor Dr. Md. Nasim Hasan, Dept. of Mechanical Engineering, BUET.