## ALGO MCQ

|    | When we use the insertion at the leaf, the resulting binary search tree is not systematically balanced?              |
|----|----------------------------------------------------------------------------------------------------------------------|
| V  | (a) true (b) false                                                                                                   |
| 2  | A tree is "balanced" if the left subtree and the right subtree have the same number of elements ?                    |
| V  | (a) true (b) false                                                                                                   |
| 3  | When using the insertion at the root, the resulting binary search tree is systematically balanced?                   |
| V  | (a) true (b) false                                                                                                   |
| 4  | . When using deletion, the resulting binary search tree is systematically balanced?                                  |
| V  | (a) true (b) false                                                                                                   |
| 5  | . The complexity of the insertion at the leaf, for an element in a BST, ending after a node $v$ is?                  |
|    | (a) 2*depth(v)+1<br>(b) 2*depth(v)+2                                                                                 |
| N  | (c) $depth(v)+1$<br>(d) $depth(v)+2$                                                                                 |
|    | (e) None of the four previous answers                                                                                |
| b  | The complexity of the positive search, for an element in a BST, ending on a node v is?                               |
| V  | (a) 2*depth(v)+1                                                                                                     |
|    | (b) 2*depth(v)+2<br>(c) depth(v)+1                                                                                   |
|    | (d) depth( $v$ )+2                                                                                                   |
|    | (e) None of the four previous answers                                                                                |
| 7  | . The depth of a BST can be ?                                                                                        |
|    | (a) a quadratic funtion of its size                                                                                  |
| V  | (b) a logarithmic funtion of its size                                                                                |
| V. | (c) a linear funtion of its size                                                                                     |
|    | (d) a exponential funtion of its size                                                                                |
| 8  | . The non-degenerate binary tree $B$ whose postorder traversal is $(6,8,10,12,14,18,30,32,35,37,42,45,47)$ is a BST. |
| J  | (a) Faux                                                                                                             |
|    | (b) Vrai                                                                                                             |

Consider the binary search tree B2:

$$< 14, < 10, < 6, \emptyset, \emptyset >, < 11, \emptyset, \emptyset >>, < 35, < 30, < 16, \emptyset, \emptyset >, < 33, \emptyset, \emptyset >>, \emptyset >>$$

Where the numbers are the nodes and where  $\emptyset = emptytree$ 

- 9. The preorder traversal of the BST B2, modified by deleting the value 35, is ?
  - (a) (6, 10, 11, 14, 15, 16, 30)
- (b) (14, 10, 6, 11, 30, 16, 33)
  - (c) (14, 10, 30, 6, 11, 16, 33)
  - (d) (6, 11, 10, 16, 33, 30, 14)
- 10. The postorder traversal of the BST B2, modified by deleting the value 14, is ?
  - (a) (6, 10, 11, 16, 30, 33, 35)
  - (b) (11, 10, 6, 35, 30, 16, 33)
- (c) (6, 10, 16, 33, 30, 35, 11)
  - (d) (11, 10, 35, 6, 30, 16, 33)



## MCQ 7

Monday, 15 April

## Question 11

From the mappings below, select those which is(are) linear map(s)

a. 
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
  
 $(x,y) \longmapsto x^3y$ 

$$\sqrt{ b. g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2} 
(x,y) \longmapsto (2x+y,-y)$$

$$\sqrt{ c. h: \mathbb{R}[X] \longrightarrow \mathbb{R}^2}$$

$$P(X) \longmapsto (P(-1), P(3))$$

$$\begin{array}{cccc} \mathrm{d.} \ k: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}_2[X] \\ & (a,b) & \longmapsto & aX^2 + bX + 1 \end{array}$$

e. None of them

## Question 12

Let  $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ . Select the correct way of defining the kernel of f.

a. 
$$\operatorname{Ker}(f) = \{ \forall u \in \mathbb{R}^2, \ f(u) = 0_{\mathbb{R}^3} \}$$

c. 
$$\operatorname{Ker}(f) = \{ \forall u \in \mathbb{R}^3, \ f(u) = 0_{\mathbb{R}^2} \}$$

d. 
$$Ker(f) = \{u \in \mathbb{R}^3, f(u) = 0_{\mathbb{R}^2}\}$$

e. None of these definitions is correct

## Question 13

Consider the linear map  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  . Then  $(x,y) \longmapsto x+y$ 

a. 
$$0 \in \text{Ker}(f)$$

b. 
$$(1,1) \in \operatorname{Ker}(f)$$

$$(1)$$
 c.  $(2,-2) \in \text{Ker}(f)$ 

d. None of the others

## Question 14

Let  $f \in \mathcal{L}(\mathbb{R}^3)$  such that  $\operatorname{Ker}(f) = \{(x, y, z) \in \mathbb{R}^3, \ x - 2y + z = 0\}$ . Then:

- $\checkmark$  a.  $(1,1,1) \in \text{Ker}(f)$ 
  - b.  $(1, 1, -1) \in Ker(f)$
  - c. Ker(f) has dimension 1
- d. Ker(f) has dimension 2
  - e. None of the others

#### Question 15

Consider the linear map  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  . Then  $(x,y) \longmapsto (x+y,0)$ 

- a.  $3 \in \text{Im}(f)$
- b.  $(1,0) \in \text{Im}(f)$ 
  - c.  $(0,1) \in Im(f)$
  - d. None of the others

#### Question 16

Let E and F be two vector spaces over  $\mathbb R$  and  $f\in \mathcal L(E,F).$  Then:

- a. f is injective if and only if Im(f) = E
- b. f is injective if and only if Im(f) = F
- c. f is injective if and only if  $(\forall v \in F, \exists u \in E \text{ such that } v = f(u))$
- d. None of the others

## Question 17

Let  $f \in \mathcal{L}(\mathbb{R}^3)$  such that  $\operatorname{Ker}(f) = \{(x, y, z) \in \mathbb{R}^3, \ x + y = 0 \text{ and } y + z = 0\}$ . Then:

- a.  $\operatorname{Ker}(f) = \{0_{\mathbb{R}^3}\}$
- b.  $\operatorname{Ker}(f) = \operatorname{Span}((1,1,1))$
- c. Ker(f) = Span((-1, 1, -1))
- d. None of the others

## Question 18

From the mappings  $\mathbb{R} \longrightarrow \mathbb{R}$  below, select those which is(are) linear map(s)

- a.  $f: x \longmapsto \sin(x)$
- b.  $g: x \longmapsto 2x + 1$
- c.  $h: x \longmapsto x^2$
- d.  $k: x \longmapsto e^x$
- e. None of these mappings is a linear map.

## Question 19

Consider a mapping  $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$  such that f((0,1,0)) = (0,0). Then:

- $\bigvee$  a. f can be a linear map from  $\mathbb{R}^3$  to  $\mathbb{R}^2$ 
  - b. f cannot be a linear map from  $\mathbb{R}^3$  to  $\mathbb{R}^2$

## Question 20

Let E and F be two  $\mathbb{R}$ -vector spaces and  $f: E \longrightarrow F$  a linear map. Let  $(u, v) \in E^2$ . Then:

- a. f(2.u) = u.f(2)
- b. f(u+v) = u + v
- c. f(u+v) = f(u) + f(v)
  - $d. f(u) f(u) = 0_E$
  - e. None of the others

# Test 2 Computer Architecture

Monday 15 April 2024

For all the questions, one or more answers are possible.

#### 21. A RAM device has:

- A. A control bus.
- B. An address bus.
- C. A data bus.
- D. None of these answers.

#### 22. A ROM device has:

- $\sqrt{\phantom{a}}$  A. A control bus.
- B. An address bus.
- \/ C. A data bus.
  - D. None of these answers.

#### 23. The capacity in bits of a memory is:

- A. Depth × Width / 8
- B. Depth × Width
- C. The size in bits of each word.
- D. None of these answers.

#### 24. The depth of a memory is:

- $\mathcal{N}$  A. The number of addresses.
  - B. The size in bits of each word.
  - C. The number of wires of the data bus.
- ./ D. The number of words.

#### 25. The width of a memory is:

- A. The size in bits of each word.
  - B. The number of addresses.
  - C. The number of words.
- $\sqrt{\phantom{a}}$  D. The number of wires of the data bus.

- 26. The CS input can be found on:
  - A. ROM and RAM devices.
  - B. ROM devices only.
  - C. RAM devices only.
  - D. None of these answers.
- 27. The WE input can be found on:
  - A. ROM and RAM devices.
  - B. ROM devices only.
  - C. RAM devices only.
  - D. None of these answers.
- 28. Connecting memory devices in parallel:
  - A. Enlarges the width and the depth.
  - B. Enlarges the width only.
    - C. Enlarges the depth only.
    - D. None of these answers.
- 29. Connecting memory devices in series:
  - A. Enlarges the width and the depth.
  - B. Enlarges the width only.
  - C. Enlarges the depth only.
  - D. None of these answers.
- 30. The main memory of a computer is usually made up of:
  - A. SRAM devices.
- / B. DRAM devices.
  - C. ROM devices.
  - D. None of these answers.