ME 620: Fundamentals of Artificial Intelligence

Lecture 15: First Order Logic – Part I

Shyamanta M Hazarika

Biomimetic Robotics and Artificial Intelligence Lab Mechanical Engineering and M F School of Data Sc. & AI IIT Guwahati

Language to formulate Knowledge

- ☐ A system aspiring to be intelligent, need to be able to formulate knowledge of the world! Propositional Logic is a weak Language!
 - Language of our choice is the First-order Logic
 - ☐ Simple and Convenient to begin with.
- ☐ Three things of a *language* that are of our concern
 - Syntax
 - □ Specify which group of symbols, arranged in what way, are to be considered properly formed.
 - Semantics

In English - There is someone behind you; Warning! Or Request

- Specify what the well-formed expressions are supposed to mean.
- Pragmatics

In KR &R - How to use meaningful sentences as part of a KB from which inferences are drawn.

Specify how the meaningful expression are to be used.

Propositional Logic

Commits only to the existence of facts that may not be the case in the world being represented.

- Logical constants: true, false
- □ **Propositional symbols**: P, Q, S, ... (atomic sentences)
- □ Wrapping parentheses: (...)
- Sentences are combined by propositional connectives:
 - ∧ and [conjunction]
 - V or [disjunction]
 - → implies [implication / conditional]

 - ¬ not [negation]

It has a simple syntax and simple semantics. It suffices to illustrate the process of inference. Propositional logic quickly becomes impractical, even for very small worlds.

Weak Language

Propositional Logic is a weak Language.

- Consider the problem of representing the following information:
 - Every person is mortal.
 - Socrates is a person.
 - Socrates is mortal.

Although the third sentence is entailed by the first two, an explicit symbol, to represent an individual was required.

- How can these sentences be represented so that we can infer the third sentence from the first two?
 - Create propositional symbols.
 - P = He is a Person; M = He is Mortal; S = Socrates
 - \blacksquare P \rightarrow M; S \rightarrow P; Therefore S \rightarrow M

To represent other individuals we need separate symbols for each one; some way to represent the fact that all individuals who are "people" are also "mortal".

- Propositional Logic
 - Hard to identify "individuals"
 - □ E.g., Mary, 3
 - Can't directly talk about properties of individuals or relations between individuals
 - ☐ E.g., Ben is fat.
 - Generalizations, patterns, regularities can't easily be represented
 - ☐ E.g., All triangles have 3 sides.
- ☐ First-Order Logic

First-order logic allows us to get at the internal structure of certain propositions in a way that is not possible with propositional logic.

- FOL or FOPC is expressive enough to concisely represent this kind of information
- FOL adds relations, variables, and quantifiers, e.g.,
 - Every elephant is gray. : $\forall x \text{ (elephant}(x) \rightarrow \text{gray}(x))$
 - There is a white alligator.: $\exists x (alligator(X) \land white(X))$

- Propositional Logic.
 - Have drawbacks so we will consider the more general
- First-Order Predicate Calculus.

First-order logic is symbolized reasoning in which each sentence, or statement, is broken down into a subject and a predicate. The predicate modifies or defines the properties of the subject. In first-order logic, a predicate can only refer to a single subject. First-order logic is also known as first-order predicate calculus or first-order functional calculus.

First-Order Predicate Calculus

Propositional Logic

- □ First-order logic is a logical system for reasoning about properties of objects.
- Augments the logical connectives from propositional logic.
 - **predicates** that describe properties of objects.
 - **functions** that map objects to one another.
 - **quantifiers** to reason about multiple objects simultaneously.

☐ First-order logic models the world in terms of

Objects

The notion of an *object* is quite broad. Objects can be concrete or abstract; Objects can be primitive or composite.

Things with individual identities

Properties

□ Distinguish objects from other objects.

Relations

Hold among sets of objects.

A relation takes objects as arguments and generates a truth value. Functions applied to arguments name things.

Functions

□ subset of Relations; one value for a given input.

- □ Each variable refers to some object in a set called the **domain of discourse**.
- □ First-order variables refer to arbitrary objects, it does not make sense to directly apply connectives to them:
- □ To reason about objects, first-order logic uses predicates.
 - In English, the predicate is the part of the sentence that tells you something about the subject.

Predicate

<u>Definition</u>: A **predicate** is a property that a variable or a finite collection of variables can have.

- Predicates can take any number of arguments, but each predicate has a fixed number of arguments called its arity.
 - \square P(x₁, x₂, ..., x_n) is a predicate of n variables or n arguments.
- A predicate becomes a proposition when specific values are assigned to the variables.
 - □ Applying a predicate to arguments produces a proposition, which is either true or false.

Predicate

□ Example

She is a student at IIT Guwahati.

We could have a predicate

P(x, IIT) - `x' is a student at IIT Guwahati.

OR

P(x, y) - x' is a student at y'.

He lives in the city.

We could have a predicate

$$P(x, y) - x'$$
 lives in y' .

Mohan lives in Guwahati.

Note that P(Mohan, Guwahati) is a proposition!

Domain and Truth Sets

<u>Definition</u>: The <u>domain</u> or <u>universe</u> or <u>universe</u> of <u>universe</u> of <u>discourse</u> for a predicate variable is the set of values that may be assigned to the variable.

<u>Definition</u>: If P(x) is a predicate and x has domain U, the **truth set** of P(x) is the set of all elements t of U such that P(t) is true, i.e., $\{t \in U | P(t) \text{ is true}\}$.

- Example
 - $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - \blacksquare P(x): `x' is even.
 - The truth set is: {2, 4, 6, 8, 10}

Functions

<u>Definition</u>: A **function** return objects associated with other objects.

- Functions can take any number of arguments, but each function has a fixed number of arguments called its arity.
 - \square F(x₁, x₂, ..., x_n) is a function of n variables or n arguments.
- Functions evaluate to objects, not propositions when specific values are assigned to the variables.
 - MotherOf(x): a function that returns the mother of `x'.
 MotherOf(Jesus) would return `Mary'.

Two types of symbols

Variables

■ A variable is any sequence of *lowercase* alphabet and numeric characters in which the first character is lowercase alphabet.

Constants

- Object Constants
 - An object constant is used to name a specific element of a universe of discourse.

□ Function Constants

■ A function constant is used to designate a function on members of the universe of discourse.

□ Relation Constants

A relation constant is used to name a relation on the universe of discourse.

FOL Provides

- Variable symbols
 - E.g., x, y, foo
- Connectives
 - Same as in PL:

$$\blacksquare \neg$$
, \land , \lor , \rightarrow , \leftrightarrow

- Quantifiers
 - Universal ∀x
 - Existential ∃x

User Provides

- Constant symbols
 - Mary
 - Green
- Function symbols
 - father-of(Mary) = John
 - color-of(Sky) = Blue
- Predicate symbols
 - \blacksquare greater(5,3)
 - color(Grass, Green)

A term (denoting a real-world individual) is a constant symbol, a variable symbol, or an n-place function of n terms.

x and $f(x_1, ..., x_n)$ are terms, where each x_i is a term.

A term with no variables is a ground term.

In FOL, facts are stated in the form of expressions called sentences or well-formed formulas.

□ An atomic sentence (which has value true or false) is an n-place predicate of n terms.

- \square A **complex sentence** is formed from atomic sentences connected by the logical connectives: $\neg P$, $P \lor Q$, $P \to Q$, $P \to Q$ where P and Q are sentences
- □ A quantified sentence adds quantifiers ∀ and ∃ Universally quantified Existentially quantified Quantified sentences provide a more flexible way of talking about objects in the universe of discourse.
- ☐ A **well-formed formula** (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.

Equality

- □ First-order logic includes a special predicate =
 - States whether two objects are equal to one another.
 - Example

 \square Two = 2

Equality is a part of first-order logic

First Order Logic without equality is a weaker version of FOL that has no distinguished equality symbol.

- **Equality** symbol (=) is a logical constant and can be best understood as the identity relation.
- □ Equality can only be applied to object.
 - \blacksquare Biconditional \leftrightarrow is used to see if propositions are equal.
- \square Define \neq as $x \neq y \equiv \neg (x = y)$