Section4: Population Scale Analysis

Ellice Wang (PID: A16882742)

2025-02-13

Table of contents

· ·	1 3
Q13: read expression data R	
determine the sample size for each genotype and their corresponding median expression levels for each of these genotypes	
The median expression levels for each genotype are: A/A: 31.25 A/G: 25.065 G/G: 20.074	
# import dplyr and ggplot library(dplyr)	
Attaching package: 'dplyr'	
The following objects are masked from 'package:stats':	
filter, lag	
The following objects are masked from 'package:base':	
intersect, setdiff, setequal, union	

library(ggplot2)

```
url <- "https://bioboot.github.io/bimm143_W25/class-material/rs8067378_ENSG00000172057.6.txt
exp_data <- read.table(url)
head(exp_data)</pre>
```

```
samplegenoexp1 HG00367A/G28.960382 NA20768A/G20.244493 HG00361A/A31.326284 HG00135A/A34.111695 NA18870G/G18.251416 NA11993A/A32.89721
```

unique(exp_data\$geno)

[1] "A/G" "A/A" "G/G"

A_G <- exp_data[exp_data\$geno == "A/G",] summary(A_G)

```
sample
                      geno
                                         exp
Length:233
                  Length:233
                                    Min. : 7.075
                                    1st Qu.:20.626
Class :character
                  Class :character
Mode :character
                  Mode :character
                                    Median :25.065
                                    Mean
                                           :25.397
                                    3rd Qu.:30.552
                                    Max.
                                           :48.034
```

A_A <- exp_data[exp_data\$geno == "A/A",] summary(A_A)

\mathtt{sample}	geno	exp
Length:108	Length:108	Min. :11.40
Class :character	Class :character	1st Qu.:27.02
Mode :character	Mode :character	Median :31.25
		Mean :31.82
		3rd Qu.:35.92
		Max. :51.52

```
G_G <- exp_data[exp_data$geno == "G/G",]
summary(G_G)</pre>
```

```
sample
                        geno
                                             exp
                    Length: 121
Length: 121
                                        Min.
                                               : 6.675
Class :character
                    Class : character
                                        1st Qu.:16.903
Mode :character
                    Mode :character
                                        Median :20.074
                                        Mean
                                               :20.594
                                        3rd Qu.:24.457
                                               :33.956
                                        Max.
```

Q14: boxplot

Generate a boxplot with a box per genotype, what could you infer from the relative expression value between A/A and G/G displayed in this plot? Does the SNP effect the expression of ORMDL3?

```
ggplot(exp_data, aes(x=geno, y=exp, fill = geno)) +
  geom_boxplot(outliers = FALSE, notch = TRUE) +
  geom_jitter(color="black", position=position_jitter(0.2), alpha=0.3)
```

