Scilab Textbook Companion for Fluid Mechanics and Hydraulic Machines by B. K. Sarkar¹

Created by
Ankit Krishan Agrawal
B.Tech Chemical
Chemical Engineering
Visvesvaraya National Institute of Technology
College Teacher
Dr. R. P. Vijaykumar
Cross-Checked by
Chaitanya Potti

May 6, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluid Mechanics and Hydraulic Machines

Author: B. K. Sarkar

Publisher: Allied Publishers Limited

Edition: 1

Year: 1999

ISBN: 81-7023-977-X

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Fluid pressure and its measurement	9
2	equillibrium of floating bodies	22
3	Flow of fluids	30
4	flow through orifices	37
5	Notches and weirs	42
6	Flow through pipes	48
7	Flow through open channels	5 8
8	Impact of jets	67
9	Reciprocating pump	7 6
10	Centrifugal pump	81
11	Impulse turbine	91
12	Reaction turbine	98

List of Scilab Codes

Exa 1.1	num	9
Exa 1.2	num	9
Exa 1.3	num	10
Exa 1.4	num	10
Exa 1.5	num	11
Exa 1.6	num	11
Exa 1.7	num	11
Exa 1.8	num	12
Exa 1.9	num	12
Exa 1.10	num	13
Exa 1.11	num	13
Exa 1.12	num	13
Exa 1.13	num	14
Exa 1.14	num	14
Exa 1.15	num	15
Exa 1.16	num	15
Exa 1.17	num	16
Exa 1.18	num	16
Exa 1.19	num	17
Exa 1.20	num	17
Exa 1.21	num	17
Exa 1.22	num	18
Exa 1.23	num	18
Exa 1.24	num	19
Exa 1.25	num	19
Exa 1.26	num	20
Exa 1.27	num	20
Exa 2.1	num	22

Exa 2.2	num	22
Exa 2.3	num	23
Exa 2.4	num	23
Exa 2.5	num	24
Exa 2.6	num	24
Exa 2.7	num	25
Exa 2.8	num	25
Exa 2.9	num	25
Exa 2.10	num	26
Exa 2.11	num	26
Exa 2.12	num	27
Exa 2.13	num	27
Exa 2.14	num	28
Exa 2.15	num	29
Exa 3.1	num	30
Exa 3.2	num	30
Exa 3.3	num	31
Exa 3.4	num	32
Exa 3.5	num	32
Exa 3.6	num	33
Exa 3.7	num	34
Exa 3.8	num	34
Exa 3.9	num	35
Exa 3.10	num	35
Exa 3.11	num	36
Exa 3.12	num	36
Exa 4.2	num	37
Exa 4.3	num	37
Exa 4.4	num	38
Exa 4.5	num	38
Exa 4.6	num	39
Exa 4.7	num	39
Exa 4.8	num	40
Exa 4.9	num	40
Exa 4.10	num	41
Exa 5.1	num	42
Exa 5.2	num	42
Exa 5.3	niim	43

Exa 5.4	num	43
Exa 5.5	num	44
Exa 5.6	num	44
Exa 5.7	num	44
Exa 5.8	num	45
Exa 5.9	num	45
Exa 5.10	num	46
Exa 5.11	num	46
Exa 6.1	num	48
Exa 6.2	num	48
Exa 6.3	num	49
Exa 6.4	num	49
Exa 6.5	num	49
Exa 6.6	num	50
Exa 6.7	num	50
Exa 6.8	num	51
Exa 6.9	num	52
Exa 6.10	num	52
Exa 6.11	num	53
Exa 6.12	num	53
Exa 6.13	num	54
Exa 6.14	num	54
Exa 6.15	num	55
Exa 6.16	num	55
Exa 6.17	num	56
Exa 6.18	num	56
Exa 7.1	num	58
Exa 7.2	num	58
Exa 7.3	num	59
Exa 7.4	num	59
Exa 7.5	num	60
Exa 7.6	num	60
Exa 7.7	num	61
Exa 7.8	num	61
Exa 7.9	num	62
Exa 7.10	num	62
Exa 7.11	num	63
Eva 7 19	num	63

Exa 7.13	num .				 							 					64
Exa 7.14	num .				 							 					64
Exa 7.15	num .				 							 					64
Exa 7.16	num .				 							 					65
Exa 7.17	num .				 							 					65
Exa 7.18	num .				 							 					66
Exa 8.1	num .				 							 					67
Exa 8.2	num .				 							 					67
Exa 8.3	num .				 							 					68
Exa 8.4	num .				 							 					68
Exa 8.5	num .				 							 					69
Exa 8.6	num .				 							 					69
Exa 8.7	num .				 							 					70
Exa 8.8	num .				 							 					70
Exa 8.9	num .				 							 					71
Exa 8.10	num .				 							 					72
Exa 8.11	num .				 							 					72
Exa 8.12	num .				 							 					73
Exa 8.13	num .				 							 					74
Exa 8.14	num .				 							 					74
Exa 8.15	num .				 							 					75
Exa 9.1	num .				 							 					76
Exa 9.2	num .				 							 					76
Exa 9.3	num .				 							 					77
Exa 9.4	num .				 							 					77
Exa 9.5	num .				 							 					78
Exa 9.6	num .																79
Exa 9.7	num .				 							 					79
Exa 10.1	num .				 							 					81
Exa 10.2	num .				 							 					82
Exa 10.3	num .				 							 					82
Exa 10.4	num .				 							 					83
Exa 10.5	num .				 							 					83
Exa 10.6	num .				 							 					84
Exa 10.7	num .																84
Exa 10.8	num .																85
Exa 10.9	num .				 												85
Exa 10.10		-	-					•	٠	•			•	,	,	•	86

Exa 10.11	num															86
Exa 10.12	num															87
Exa 10.13	num															87
Exa 10.14	num															88
Exa 10.15	num															89
Exa 10.16	num															89
Exa 10.17	num															90
Exa 11.1	num															91
Exa 11.2	num															92
Exa 11.3	num															92
Exa 11.4	num															93
Exa 11.5	num															94
Exa 11.6	num															94
Exa 11.7	num															95
Exa 11.8	num															95
Exa 11.9	num															96
Exa 12.1	num															98
Exa 12.2	num															99
Exa 12.3	num															99
Exa 12.4	num															100
Exa 12.5	num															100
Exa 12.6	num															101
Exa 12.7	num															102
Eva 12.8	num															102

Chapter 1

Fluid pressure and its measurement

Scilab code Exa 1.1 num

```
//problem 1.1
p=343350 //pressure at any point in pa
w=9810 //gravitational constant
h1=(p/w)
disp(h1 ,"pressure in term of height of water(m)")
s1=1
s2=13.6
h2=h1*s1/s2
disp(h2 ,"pressure in term of height of mercury(m)")
```

Scilab code Exa 1.2 num

```
1 //Problem 1.2
2 h1=0.75 //atm pressure in term of mercury
3 w=9810
4 w1=13.6*w //specific weight of mercury
```

```
5 Patm=w1*h1
6 w2=15000
7 h2=3 //
8 p=w2*h2 // gauge pressure
9 Pabs=Patm+p
10 disp(p,"gauge pressure(N/m2)")
11 disp(Pabs,"absolute pressure(N/m2)")
```

Scilab code Exa 1.3 num

```
1 //Problem 1.3
2 h1=2.5
3 h2=1.5
4 s1=1
5 s2=0.8
6 w=9810
7 p2=s2*w*h2 //Pressure intensity at interface
8 p1=s1*w*h1
9 p=p1+p2
10 disp(p2, "pressure intensity at interface(N/m2)")
11 disp(p, "pressure intensity at bottom(N/m2)")
```

Scilab code Exa 1.4 num

```
1 //problem 1.4
2 p=71613 //gauge pressure
3 w=9810
4 phead=p/w
5 patm=10.33
6 pabs=patm+phead
7 disp(pabs, "absolute pressure in term of water height in meters")
```

Scilab code Exa 1.5 num

```
1 //problem 1.5
2 h1=0.05
3 h2=0.1
4 s1=0.8
5 s2=13.6
6 w=9810
7 p=s2*h2*w //pressure at balance line
8 p1=s1*h1*w
9 pf=p-p1
10 disp(pf, "pressure in pipe(N/m2)")
```

Scilab code Exa 1.6 num

```
1 //problem 1.6
2 h1=0.2
3 h2=0.5
4 s1=0.9
5 s2=13.6
6 h=-(h1*s1+h2*s2)
7 w=9810
8 p=h*w
9 disp(p, "vacuum pressure (N/m2)")
```

Scilab code Exa 1.7 num

```
1 //problem 1.7
2 s1=0.8
```

```
3 s2=13.6
4 dh=0.4
5 h=dh*13.6-dh*0.8
6 w=9810
7 pd=w*h
8 disp(h, "pressure difference in height of water()")
9 disp(pd, "pressure difference in N/m2")
```

Scilab code Exa 1.8 num

```
1 //problem 1.8
2 s1=0.8
3 s2=0.7
4 h1=1.5
5 h2=0.3
6 h3=0.7
7 s3=13.6
8 hd=h2*s2+h3*s3-h1*s1
9 w=9810
10 pd=hd*w
11 disp(hd, "diffrence in pressure in term of height of water(m)")
12 disp(pd, "difference in pressure (N/m2)")
```

Scilab code Exa 1.9 num

```
1 //problem 1.9
2 s1=1.6
3 s2=0.8
4 s3=13.6
5 p1=98100
6 p2=176580
7 w=9810
```

```
8 h1=p1/w
9 h2=p2/w
10 h=(h2-h1+1.6*s2-4.1*s1)/(s3-s2)
11 disp(h.*100 ," difference in mercury level(cm)")
```

Scilab code Exa 1.10 num

```
1 // problem 1.10
2 s1=1.2
3 s2=1
4 s3=0.7
5 h=(s1-s2)*0.3/(s2-s3)
6 disp(h*100," difference in height(cm)")
```

Scilab code Exa 1.11 num

```
1 // problem 1.11
2 s1=0.8
3 s2=13.6
4 z=0.02
5 w=9810
6 h2=0.2
7 h1=0.1
8 h=h2*s2-h1*s1+(z*h2*(s2-s1))
9 p=h*w
10 disp(p,"pressure of the oil in N/m2")
```

Scilab code Exa 1.12 num

```
1 //problem 1.12
```

```
2 l=4
3 b=2
4 h=3
5 w=9810
6 s=0.8
7 p1=w*l*b*h*s
8 p2=w*s*l*h*1.5
9 p3=w*s*b*h*1.5
10 disp(p1,"total pressure on horizontal base")
11 disp(p2, "total pressure on larger vertical base")
12 disp(p3,"total pressure on smaller vertical walls")
```

Scilab code Exa 1.13 num

```
1 //problem 1.13
2 p=490500
3 w=9810
4 h=p/w
5 D=0.15
6 A=3.142*D*D*0.25
7 pt=w*A*h
8 h1=(D*D)/(16*h)
9 disp(pt,"total hydrostatic pressure in N")
10 disp(h1,"position of centre of pressure below the centre of pipe")
```

Scilab code Exa 1.14 num

```
1 //problem 1.14
2 w=9810
3 h=4
4 d=2
5 a=d*d*0.25*3.142
```

```
6 p=w*a*h
7 h1=d*d/64
8 T=p*(h1)
9 disp(T, "torque required to keep the disc in vertical position in N.m")
```

Scilab code Exa 1.15 num

```
1 //problem 1.15
2 w=9810
3 h=2
4 l=2
5 b=1
6 a=1*b
7 p=w*a*h
8 h1=h+(b*1*1*1/(12*b*1*1))
9 disp(p,"total pressure")
10 disp(h1,"location of its centre of pressure")
```

Scilab code Exa 1.16 num

```
1 //problem 1.16
2 h1=8
3 w=9810
4 wd=6
5 p1=0.5*w*h1*h1*wd
6 h2=4
7 p2=0.5*h2*w*h2*wd
8 h11=0.66666*h1
9 h22=0.6666*h2
10 p=p1-p2
11 hf=(p1*(h1-h11)-p2*(h2-h22))/p
12 disp(p,"resultant force")
```

```
13 disp(hf, "position of its line of action")
```

Scilab code Exa 1.17 num

```
1 //problem 1.17
2 z=9810
3 w=10
4 h=2
5 p=0.5*h*h*w*z
6 h1=h*0.6666
7 disp(p,"total hydrostatic thrust")
8 disp(h1,"its point of application")
```

Scilab code Exa 1.18 num

```
1 //problem 1.18
2 a1=1.4*2.2*1.4
3 x1=1.6+0.7
4 x11=(1.4*1.4/(12*2.3))+x1
5 x2=0.7
6 x22=(1.4*1.4/(12*0.7))+x2
7 z=9810
8 p1=z*a1*x1
9 p2=z*a1*x2/1.4
10 p=p1-p2
11 h=(p1*(3-x11)+p2*(1.4-x22))/p
12 f=(p1*(3-x11)-p2*(1.4-x22))/1.4
13 disp(p,"resultant force")
14 disp(f,"force acting horizontally on the top of the gate")
```

Scilab code Exa 1.19 num

```
1 //problem 1.19
2 s = 1.5
3 \text{ s1} = 0.9
4 w = 9810
5 h1=0.9
6 h2=0.6
7 p1=0.5*w*s*s1*h1*h1 //total pressure due to oil
8 p2=w*h1*h2*s*s1 // total pressure due to oil above
      water
9 p3=w*h2*h2*0.5*s //total pressure due to water
10 p = p1 + p2 + p3
h = ((p1*0.6666*h1) + (p2*(h1+0.5*h2)) + (p3*(0.6666*h2+h1))
      )))/p
12 disp(p,"resultant pressure on the wall in <math>N/m2")
13 disp(h," position of centre of pressure from free
      surface")
```

Scilab code Exa 1.20 num

```
1 // problem 1.20
2 d=2.4
3 h=1.6
4 s=1.2
5 a=d*s
6 w=9810
7 p=w*a*h*s
8 h1=((2*s*s*s*d)/(12*a*h))+h
9 disp(p,"total pressure in N")
10 disp(h1,"its point of application")
```

Scilab code Exa 1.21 num

```
1 // problem 1.21
2 x=30
3 d=1.2
4 h=1.5
5 w=9810
6 z=sin(x*3.142/180)
7 h1=(z*d*0.5)+h
8 a=0.25*3.142*d*d
9 p=a*w*h1
10 h11=(d*d*z*z)/(16*h1)+h1
11 disp(p,"total pressure")
12 disp(h11,"position of centre of pressure")
```

Scilab code Exa 1.22 num

```
1 // problem 1.22
2 d=2
3 z=0.5
4 h=z+0.5*d
5 w=9810
6 a=3.142*d*d*0.25
7 p=a*w*h
8 h11=(1/(16*1.5))+1.5
9 disp(p,"total pressure on the plate")
10 disp(h11,"position of centre of pressure")
```

Scilab code Exa 1.23 num

```
1 // problem 1.23
2 x=30
3 z=sin(x*3.142/180)
4 h=6-(z*0.5)
5 l=1
```

```
6 b=4
7 a=1*b
8 w=9810
9 p=w*a*h
10 h11=(z*z)/(12*h)+h
11 f=p*0.5072
12 disp(f, "force normal to the gate at point B")
```

Scilab code Exa 1.24 num

```
1 // problem 1.24
2 x=30
3 z=sin(3.142*x/180)
4 d=1.4
5 h=3
6 b=1.5
7 h1=z+d
8 a=0.5*h*b
9 w=9810
10 p=w*a*h1
11 h11=((z*z*h*h*h*b)/(36*a*h1))+h1
12 disp(p,"total pressure on the plate")
13 disp(h11,"position of centre of pressure")
```

Scilab code Exa 1.25 num

```
1 // problem 1.25

2 d=1.8

3 h=2.4

4 w=9810

5 s=0.8

6 p1=w*d*d*h*0.25*3.142

7 h1=((d*d)/(16*h))+h
```

```
8  p=w*(s*1.5+2.4)
9  p2=p*3.142*d*d*0.25
10  p=p2-p1
11  ab=w*(s*1.5+1.5)
12  de=w*(s*1.5+3.3)
13  ce=de-ab
14  x=((0.5*ce*d*0.3)/(0.5*(ab+de)*d))
15  h2=x+h
16  h12=h1-h2
17  disp(p, "change in total pressure")
18  disp(h2,"position of centre of pressure")
19  disp(h12,"change in position of centre of pressure")
```

Scilab code Exa 1.26 num

```
1 // problem 1.26
2 l=5
3 r=3
4 a=1*r
5 h=r*0.5
6 w=9810
7 ph=w*a*h
8 pv=w*0.25*3.142*r*r*1
9 p=sqrt((ph*ph)+(pv*pv))
10 z=ph/pv
11 theta=atand(z)
12 disp(p,"resultant pressure on the gate")
13 disp(theta,"angle of resultant force with vertical")
```

Scilab code Exa 1.27 num

```
1 // problem 1.27
2 s=5
```

```
3 z=sind(45)
4 a=2*s*z
5 h=s*z
6 w=9810
7 ph=w*a*h
8 pv=w*((0.25*s*s*3.142)-(0.5*a*h))
9 disp(ph, "horizontal pressure")
10 disp(pv, "vertical pressure")
```

Chapter 2

equillibrium of floating bodies

Scilab code Exa 2.1 num

```
1 //problem 2.1
2 l=4
3 w=2
4 sg=0.75
5 z=9810
6 d=0.5
7 v=1*w*d
8 wg=v*z*sg
9 s=24000
10 V=((z*v)-wg)/s
11 V1=(v*z-wg)/(s-z)
12 disp(V,"volume in m3 when block is completely in water")
13 disp(V1,"volume in m3 when block and concrete completely under water")
```

Scilab code Exa 2.2 num

```
1 //problem 2.2
2 d=1
3 s=0.75
4 w=9810
5 a=3.142*d*d/4
6 h=d*0.5
7 p=w*h*s // intensity of pressure on at horizontal interface
8 v=p*a //vertical upward force
9 w1=w*s*a*d/3 // weight of oil in upper hemisphere
10 vf=v-w1 // net vertical upward force
11 disp(vf, "minimum weight of upper hemisphere in N")
```

Scilab code Exa 2.3 num

```
// problem 2.3
w=90
// By archemde's principle
// weight of water dispalced = weight of sphere
z=9810
v=w/z
d=(v*12/3.142)^0.33333
disp(d,"external diameter of hollow of sphere in m")
```

Scilab code Exa 2.4 num

```
1 // problem 2.4
2 s1=13.6
3 s2=7.8
4 s3=1
5 // by archimede principle
6 // weight of body = weight of liquid displaced
7 // s2=s1*x+s3*(1-x)
```

```
8 x=(s2-s3)/(s1-s3)
9 disp(x, "fraction of steel below surface of mercury")
```

Scilab code Exa 2.5 num

```
1 // problem 2.5
2 w=9810
3 do=1.25
4 a=3.142*do*do*0.25
5 f1=w*a*1
6 f2=w*a*3 // buoyancy force of 3m lenght of pipe
7 di=1.2
8 s=9.8
9 wg=w*s*3*((1.25^2)-(1.2^2))*0.25*3.142
10 fa=f2-wg
11 disp(f1,"buoyancy force in N/m")
12 disp(fa,"upward force on anchor")
```

Scilab code Exa 2.6 num

```
1 // problem 2.6
2 a=0.25
3 s1=11.5
4 s2=1
5 z=9810
6 v1=a*a*a*0.5
7 wc=v1*z
8 h=0.016
9 // by archimede's principle
10 v2=(a*0.5+h)*a*a // volume of cube submergerd
11 v=(v2-v1)/(s1-s2)
12 w1=v*s1*z
13 disp(w1,"weight of lead attached")
```

Scilab code Exa 2.7 num

```
1 // problem 2.7
2 s1=19.3
3 s2=9
4 x=14/24
5 wg=x*10
6 wc=(1-x)*10
7 vg=wg/s1
8 vc=wc/s2
9 vt=vg+vc
10 disp(vt,"volume of 10gm,14 carat gold in cm3")
```

Scilab code Exa 2.8 num

```
1  // problem 2.8
2  h1=0.05
3  h2=0.015
4  s=41/40
5  l=h1/(s-1)
6  w1=25
7  // applying bakance in vertical direction
8  w=w1*(1+h1)/(h2)
9  disp(w," weight of ship in in N")
```

Scilab code Exa 2.9 num

```
1 // problem 2.9
2 w=700
```

```
3 w1=20000
4 d=0.5
5 h=1
6 wd=250
7 z=9810
8 f=z*3.142*d*d*2*0.25/3
9 n=(w*4+w1)/(f-250)
10 n1=round(n)
11 disp(n1,"number of drums")
```

Scilab code Exa 2.10 num

```
1 // problem 2.10
2 a=0.12
3 l=1.8
4 s=0.7
5 z=9810
6 wp=s*a*a*1*z
7 v=a*a*(1-0.2)
8 w=v*z
9 t=w-wp
10 s.p=110000
11 // applying equilibrium balance
12 w=t/(1-(9810/s.p))
13 disp(w," weight of lead in N")
```

Scilab code Exa 2.11 num

```
1 // problem 2.11
2 d=4
3 h=4
4 s=0.6
5 s1=1
```

Scilab code Exa 2.12 num

```
1 // problem 2.12
2 d=4
3 s1=0.6
4 s2=0.9
5 l=1
6 h=s1*1/s2
7 cob=h/2
8 cog=1/2
9 dcog=cog-cob
10 i=3.142*d*d*d*d/64
11 v=3.142*0.25*d*d*h
12 bm=i/v
13 bm=dcog
14 l=(6*1.5)^0.5
15 disp(1,"maximium lenght of cylinder in m")
```

Scilab code Exa 2.13 num

```
1 // problem 2.13
```

```
2 s=2
3 w=340
4 v=0.5*s*s*s
5 z=9810
6 w1=z*4
7 gb=s/4-s/8
8 i=s*s*s*s/(12)
9 v=4
10 bm=i/v
11 gm=bm+gb
12 p=w/(w1*gm)
13 theta=atand(p)
14 disp(theta*60,"angle through which cube will tilt in minutes")
```

Scilab code Exa 2.14 num

```
1 // problem 2.14
 2 1=60
3 b=9
4 w = 16 * 1000000
 5 w1 = 160 * 1000
 6 y = 6
 7 q = 3
8 \text{ s.p} = 10104
9 i=0.75*1*b*b*b/12
10 \text{ v=w/s.p}
11 \text{ bm=i/v}
12 gm=(w1*y)/(w*tand(q))
13 \text{ mcd} = 2 - \text{bm}
14 \, \text{cogd} = \text{gm} + \text{mcd}
15 disp(gm, "metacentric height")
16 disp(cogd, "position of centre of gravity below the
       water line")
```

Scilab code Exa 2.15 num

```
1 // problem 2.15
2 w=450000
3 y=5.5
4 w1=80*1000000
5 q=3
6 gm=(w*y)/(w1*tand(q))
7 p=12.5*1000
8 n=120
9 T=(p*60000)/(2*3.142*n)
10 z=T/(w1*gm)
11 theta=atand(z)
12 disp(theta, "angle of heel in degree")
```

Chapter 3

Flow of fluids

Scilab code Exa 3.1 num

```
1 // problem 3.1
2 d1 = 0.3
3 d2=0.1
4 z1 = 6
5 z2=3
6 p1=200*1000
7 q1 = 0.07
8 a1=3.142*d1*d1/4
9 \quad a2=3.142*d2*d2/4
10 v1=q1/a1
11 v2=q1/a2
12 w = 9810
13 g=9.81
14 //applying bernoulli equation
15 p2=((z1-z2)+(((v1^2)-(v2^2))/(2*g))+(p1/w))*w
16 disp(p2, "pressure at point B in N/m2")
```

Scilab code Exa 3.2 num

```
1 // problem 3.2
2 d1=1
3 d2=0.5
4 q = 0.1
5 p1 = 70 * 1000
6 1=60
7 z_{2} = 0
8 z1=1/20
9 a1=3.142*d1*d1/4
10 \quad a2=3.142*d2*d2/4
11 v1=q/a1
12 v2=q/a2
13 w = 9810
14 g = 9.91
15 // applying bernoulli equation
16 p2=((z1-z2)+(((v1^2)-(v2^2))/(2*g))+(p1/w))*w
17 disp(p2,"presssure at lower end in N/m2")
```

Scilab code Exa 3.3 num

```
1 // problem 3.3

2 d1=0.2

3 d2=0.1

4 l=4

5 x=30

6 p1=392.4*1000

7 q=0.035

8 z1=0

9 z2=1*sind(x)

10 a1=3.142*d1*d1/4

11 a2=3.142*d2*d2/4

12 v1=q/a1

13 v2=q/a2

14 w=9810

15 g=9.81
```

```
16 p2=((z1-z2)+(((v1^2)-(v2^2))/(2*g))+(p1/w))*w
17 disp(p2,"pressure intensity at outlet in N/m2")
```

Scilab code Exa 3.4 num

```
1 // problem 3.4
2 d1=0.2
3 d2=0.1
4 d3=0.15
5 v1 = 4
6 g = 9.81
7 \text{ vh1} = (\text{v1}^2)/(2*\text{g})
8 a1=3.142*d1*d1/4
9 a2=3.142*d2*d2/4
10 \quad a3=3.142*d3*d3/4
11 v2=(a1*v1)/a2
12 vh2=(v2^2)/(2*g)
13 v3 = (a1 * v1) / a3
14 \text{ vh3}=(v3^2)/(2*g)
15 q = a1 * v1
16 mf=q*1000
17 disp(vh1, "velocity head at point 1")
18 disp(vh2, "velocity head at point 2")
19 disp(vh3, "velocity head at point 3")
20 disp(mf, "mass flow rate in kg/sec")
```

Scilab code Exa 3.5 num

```
1 // problem 3.5
2 d1=0.2
3 d2=0.5
4 p1=98.1*1000
5 p2=58.86*1000
```

```
6 q = 0.2
 7 z1=0
8 z2=4
9 g = 9.81
10 s = 0.87
11 a1=3.142*d1*d1/4
12 \quad a2=3.142*d2*d2/4
13 \text{ v1=q/a1}
14 v2=q/a2
15 w = 9810
16 ph1=p1/(w*s)
17 ph2=p2/(w*s)
18 \text{ vh1}=(\text{v1}^2)/(2*\text{g})
19 vh2=(v2^2)/(2*g)
20 th1=vh1+ph1+z1
21 th2=vh2+ph2+z2
22 t1 = th1 - th2
23 disp(tl, "loss of head in m, flow from 1 to 2")
```

Scilab code Exa 3.6 num

```
1 // problem 3.6
2 d1=0.3
3 d2=0.15
4 a1=3.142*d1*d1/4
5 a2=3.142*d2*d2/4
6 H=0.18
7 Cd=0.85
8 s2=13.6
9 s1=1
10 w=9810
11 h=H*((s2/s1)-1)
12 g=9.81
13 q=(Cd*a1*a2*((2*g*h)^0.5))/(((a1^2)-(a2^2))^0.5)
14 q1=q*1000
```

```
15 disp(q1, "rate of flow in litres/sec")
```

Scilab code Exa 3.7 num

```
1 // problem 3.7
2 q=0.1
3 d1=0.2
4 Cd=0.9
5 H=0.4
6 s1=1
7 s2=13.6
8 g=9.8
9 h=H*((s2/s1)-1)
10 a1=3.142*d1*d1/4
11 z=1+(((Cd*a1*((2*g*h)^0.5))/q)^2)
12 a2=((a1^2)/z)^0.5
13 d2=(4*a2/3.1)^0.5
14 disp(d2," diameter of throat in m")
```

Scilab code Exa 3.8 num

```
1 // problem 3.8
2 q=0.08
3 d1=0.3
4 d2=0.15
5 a1=3.142*d1*d1/4
6 a2=3.142*d2*d2/4
7 h=1.5
8 g=9.81
9 z=(a1*a2*((2*g*h)^0.5))/(((a1^2)-(a2^2))^0.5)
10 Cd=q/z
11 disp(Cd,"co-efficient of meter")
```

Scilab code Exa 3.9 num

```
1 // problem 3.9
2 s2=13.6
3 s1=0.9
4 H = 0.25
5 h=H*((s2/s1)-1)
6 \text{ Cd} = 0.98
7 w = 9810 * s1
8 d1=0.3
9 d2 = 0.15
10 \quad a1=3.142*d1*d1/4
11 \quad a2=3.142*d2*d2/4
12 dz = 0.3
13 g=9.81
q = (Cd*a1*a2*((2*g*h)^0.5))/(((a1^2)-(a2^2))^0.5)
15 \text{ dp}=(h+dz)*w
16 disp(q,"discharge of the oil in m3/sec")
17 disp(dp,"pressure diffrence in entrance and throat
      section ")
```

Scilab code Exa 3.10 num

```
1 // problem 3.10

2 H=0.1

3 w=9810

4 sw=12

5 h=H*(w/sw)

6 Cv=0.96

7 g=9.81

8 v=Cv*((2*g*h)^0.5)

9 v1=v*18/5
```

```
10 disp(v1, "speed of the plane")
```

Scilab code Exa 3.11 num

```
1 // problem 3.11
2 d1=0.05
3 d2=0.025
4 a1=3.142*d1*d1/4
5 a2=3.142*d2*d2/4
6 Cd=0.94
7 g=9.81
8 k=((((a1^2)/(a2^2))-1)*(1-(Cd^2)))/(2*g*(a1^2)*(Cd^2))
9 disp(k," venturimeter constant m-5/s2")
```

Scilab code Exa 3.12 num

```
1 // problem 3.12
2 d0=0.05
3 d1=0.1
4 H=0.09
5 s2=13.6
6 s1=1
7 g=9.81
8 h=H*((s2/s1)-1)
9 Cd=0.65
10 a1=3.142*d1*d1/4
11 a0=3.142*d0*d0/4
12 q=(Cd*a1*a0*((2*g*h)^0.5))/(((a1^2)-(a0^2))^0.5)
13 q1=q*(10^6)
14 disp(q1,"actual flow rate in cm3/sec")
```

Chapter 4

flow through orifices

Scilab code Exa 4.2 num

```
1  // problem 4.2
2  q=0.0982
3  d=0.12
4  H=10
5  x=4.5
6  y=0.54
7  g=9.81
8  Vth=(2*g*H)^0.5
9  a=3.142*d*d/4
10  Qth=Vth*a
11  Cd=q/Qth
12  Cv=((x*x)/(4*y*H))^0.5
13  Cc=Cd/Cv
14  disp(Cc,Cv,Cd,"Cd,Cv,Cc of the orifice")
```

Scilab code Exa 4.3 num

```
1 // problem 4.3
```

```
2 D=0.1

3 d=0.05

4 q=0.02

5 A=3.142*D*D/4

6 g=9.81

7 w=9810

8 p=58.86*1000

9 v=q/A

10 Vh=(v*v)/(2*g)

11 Ph=p/w

12 Th=Ph+Vh

13 a=3.142*d*d/4

14 Cd=q/(a*((2*g*Th)^0.5))

15 disp(Cd,"co-efficient of discharge")
```

Scilab code Exa 4.4 num

```
1 // problem 4.4
2 Cd=0.6
3 H1=3
4 H2=4
5 b=2
6 g=9.81
7 Q=(2*Cd*b*((2*g)^0.5)*((H2*H2*H2)^0.5-(H1*H1*H1)^0.5))/3
8 q1=Q*1000
9 disp(q1," discharge flow rate in litres/sec")
```

Scilab code Exa 4.5 num

```
1 //problem 4.5
2 b=0.75
3 H1=2.25
```

```
4 H2=2.5
5 H=0.5
6 g=9.81
7 Cd=0.62
8 Q=Cd*b*(H2-H1)*((2*g*H)^0.5)
9 Q1=Q*1000
10 disp(Q1,"discherge through the orifice in litres/sec ")
```

Scilab code Exa 4.6 num

Scilab code Exa 4.7 num

```
1 // problem 4.7
2 1=20
3 b=10
4 a=1*b
5 H1=1.5
```

```
6 Cd=0.62

7 H2=0

8 T=5*60

9 n=4

10 g=9.81

11 a1=(2*a*((H1^0.5)-(H2^0.5)))/(Cd*T*((2*g)^0.5))

12 d=((4*a1)/(3.142*n))^0.5

13 d1=d*100

14 disp(d1,"diameter of the orifice in cm")
```

Scilab code Exa 4.8 num

```
1 // problem 4.8
2 11=10
3 b1=5
4 12=5
5 b2=2.5
6 a1=11*b1
7 a2=12*b2
8 d=0.2
9 a=3.142*d*d/4
10 H1=4
11 g=9.81
12 q = 25
13 \text{ Cd=0.62}
14 h1=q/a1
15 h2=q/a2
16 H2=H1-h1-h2
17 T=(2*a1*a2*((H1)^0.5-(H2)^0.5))/(a*Cd*(a1+a2)*((2*g))
      ^0.5))
18 disp(T,"time taken to flow 25 m3 in sec")
```

Scilab code Exa 4.9 num

```
1 // problem 4.9
2 Cd=0.8
3 D=2
4 r=1
5 H1=2
6 d=0.1
7 a=3.142*d*d/4
8 l=8
9 g=9.81
10 T=(4*1*((2*r)^1.5-(2*r-H1)^1.5))/(3*Cd*a*((2*g)^0.5))
11 disp(T/60," time taken for emptying the boiler in min")
```

Scilab code Exa 4.10 num

```
1 // problem 4.10
2 r=5
3 h1=5
4 d=0.08
5 a=0.005
6 h2=h1-2
7 Cd=0.6
8 g=9.81
9 z=((2*r*((h1^1.5)-(h2^1.5)))/3)-((((h1^2.5)-(h2^2.5)))/5)
10 T=(z*2*3.142)/(Cd*a*((2*g)^0.5))
11 disp(T," time in seconds to lower the level by 2m")
```

Chapter 5

Notches and weirs

Scilab code Exa 5.1 num

```
1 // problem 5.1
2 q=0.2
3 Cd=0.62
4 g=9.81
5 // using the relation
6 z=(3*q*(2^1.5))/(2*Cd*((2*g)^0.5))
7 b=z^0.4
8 disp(b*100,"the lenght of the notch in cm ")
```

Scilab code Exa 5.2 num

```
1 // problem 4.2
2 b=1
3 H=0.15
4 Cd1=0.62
5 x=90
6 g=9.81
7 Cd2=0.58
```

```
8 Q1=2*Cd1*b*((2*g*H*H*H)^0.5)/3
9 z=(15*Q1)/(8*Cd2*((2*g)^0.5)*tand(x/2))
10 H1=z^0.4
11 disp(H1*100,"the depth over the traingular veir in cm")
```

Scilab code Exa 5.3 num

```
1 // problem 5.3
2 x=90
3 Cd=0.62
4 H=0.36
5 g=9.81
6 Q=(8*Cd*tand(x/2)*((2*g)^0.5)*(H^2.5))/15
7 q=Q*1000
8 disp(q,"the actual discharge in litres/sec")
```

Scilab code Exa 5.4 num

```
1 // problem 5.4
2 x=90
3 H=0.2
4 b=0.3
5 Cd=0.62
6 g=9.81
7 q1=(8*Cd*tand(x/2)*((2*g)^0.5)*(H^2.5))/15
8 q2=2*Cd*b*((2*g*H*H*H)^0.5)/3
9 q=q1+q2
10 disp(q,"discharge over the trapezoidal notch in m3/sec")
```

Scilab code Exa 5.5 num

```
1 // problem 5.5
2 a=20*(10^6)
3 x=0.03
4 q=a*x
5 qf=q*0.4/3600
6 n=2
7 H=0.6
8 // Using Francis formula
9 L=(qf/(1.84*(H^1.5)))+(0.1*n*H)
10 disp(L,"the length of the weir in m")
```

Scilab code Exa 5.6 num

```
1 // problem 5.6
2 L=36
3 v1=2
4 g=9.81
5 H=1.2
6 H1=(v1*v1)/(2*g)
7 n=2*12
8 w=0.6
9 Nv=11
10 Lf=L-(Nv*w)
11 Q=1.84*(Lf-(0.1*n*(H+H1)))*((H+H1)^1.5-(H1^1.5))
12 disp(Q," discharge over the weir in m3/sec")
```

Scilab code Exa 5.7 num

```
1 // problem 5.7
2 1=0.77
3 H=0.39
```

```
4 H1=0.6
5 Dp=H+H1
6 Cd=0.623
7 g=9.81
8 Q=(2*Cd*1*((2*g*H*H*H)^0.5))/3
9 v=Q/(1*Dp)
10 Ha=(v*v)/(2*g)
11 q=(2*Cd*1*((2*g)^0.5)*(((H+Ha)^1.5)-(Ha^1.5)))/3
12 disp(q," discharge in m3/sec")
```

Scilab code Exa 5.8 num

```
1 // problem 5.8
2 Q1=0.005
3 Cd=0.62
4 g=9.81
5 Q2=0.75
6 h=0.07
7 z=(Q1*15)/(8*Cd*((2*g)^0.5)*(h^2.5))
8 H=h*((Q2/Q1)^0.4)
9 W=2*H*z
10 disp(W," width of the water surface in m")
```

Scilab code Exa 5.9 num

```
1 // problem 5.9
2 b=4
3 H=0.2
4 Cd=0.62
5 g=9.81
6 Q1=2*Cd*b*((2*g*H*H*H)^0.5)/3
7 Q2=(2*Cd*((2*g)^0.5)*(H^1.5)*(b-(0.2*H)))/3
8 m=0.405+(0.003/H)
```

```
9 Q3=m*b*((2*g)^0.5)*(H^1.5)
10 disp(Q1, "discharge when end contraction are supressed in m3/sec")
11 disp(Q2, "discharge when end contraction are taken into account by francis formula in m3/sec")
12 disp(Q3, "discharge when end contraction are taken into account by bazin formula in m3/sec")
```

Scilab code Exa 5.10 num

```
1 // problem 5.10
2 Cd=0.6
3 x=45
4 H=0.5
5 g=9.81
6 q1=(8*Cd*tand(x/2)*((2*g)^0.5)*(H^2.5))/15
7 disp(q1,"rate of flow over the rectangular notch in m3/sec")
8 dq1=0.025
9 dh=dq1*H/2.5
10 h1=H+dh
11 h2=H-dh
12 disp(h1*100,h2*100,"limiting values of head in centimeters")
```

Scilab code Exa 5.11 num

```
1 // problem 5.11
2 Cd=0.6
3 x=90
4 q=0.05
5 g=9.81
6 dh=0.00025
```

```
7 z=(15*q)/(8*Cd*((2*g)^0.5)*(tand(x/2)))
8 H=z^0.4
9 error=2.5*(dh/H)
10 disp(error*100,"the percentage error in the discharge")
```

Chapter 6

Flow through pipes

Scilab code Exa 6.1 num

```
1 // problem 6.1
2 Rn=1700
3 v=0.744*(10^-4)
4 d=0.05
5 V=(Rn*v)/d
6 Vmax=2*V
7 x=0.00625
8 r=(d/2)-x
9 V1=Vmax*(1-(2*r/d)^2)
10 disp(V1," velocity at the point 6.25 mm from the wall in m/sec")
```

Scilab code Exa 6.2 num

```
1 // problem 6.2
2 d=0.3
3 p=787
4 v=1.6*(10^-6)
```

```
5 Rn=2000
6 V=Rn*v/d
7 a=3.142*d*d/4
8 Q=a*V
9 disp(Q,"maximum flow rate for which the flow is maximium")
```

Scilab code Exa 6.3 num

```
1 // problem 6.3
2 vd=8*(10^-3)*0.1
3 p=996
4 vk=vd/p
5 disp(vk,"kinematic viscosity in m2/sec")
```

Scilab code Exa 6.4 num

```
1 // problem 6.4
2 u=1.5/98.1
3 s=0.81
4 d=0.14
5 Q=0.03
6 g=9.81
7 p=s*1000/g
8 a=3.142*d*d/4
9 V=Q/a
10 Rn=V*p*d/u
11 disp(Rn,"Rn less than 2000, flow is laminar")
```

Scilab code Exa 6.5 num

```
1 // problem 6.5
2 d=0.2
3 Q=0.088
4 l=5
5 vd=0.01
6 p=1000
7 v=vd/(p*10)
8 a=3.142*d*d/4
9 g=9.81
10 V=Q/a
11 Re=V*d/v
12 f=0.0018+(0.092/(3*(Re^0.5)))
13 Hf=(4*f*l*V*V)/(d*2*g)
14 disp(Hf,"head lost due to friction in m")
```

Scilab code Exa 6.6 num

```
1 // problem 6.6
2 s=0.75
3 d=0.2
4 l=1000
5 Q=3/60
6 f=0.01
7 a=3.142*d*d/4
8 V=Q/a
9 g=9.81
10 Hf=(4*f*l*V*V)/(d*2*g)
11 w=g*s*1000
12 dp=w*Hf
13 disp(dp,"pressure drop along its entire lenght in N/m2")
```

Scilab code Exa 6.7 num

```
1 // problem 6.7
2 d=0.3
3 g=9.81
4 l=400
5 Q=0.3
6 f=0.032
7 a=3.142*d*d/4
8 V=Q/a
9 Lentrance=(0.5*V*V)/(2*g)
10 Hf=(4*f*1*V*V)/(d*2*g)
11 Lexit=(V*V)/(2*g)
12 Totalloss=Lentrance+Hf+Lexit
13 disp(Totalloss," diffrenc in elevation in m")
```

Scilab code Exa 6.8 num

```
1 // problem 6.8
2 1=40
3 11=20
4 12=20
5 d1 = 0.15
6 d2 = 0.3
7 H=8
8 f = 0.01
9 h1=(2*d2*d2)/(d1*d1)
10 h2=4*f*11*16/d1
11 h3=9
12 h4=4*f*12/d2
13 g=9.81
14 ht=h1+h2+h3+h4+1
15 V2=(H*2*g/ht)^0.5
16 \quad a2=3.142*d2*d2/4
17 \ Q = V2 * a2
18 disp(Q*1000, "rate of low in litres/sec")
```

Scilab code Exa 6.9 num

```
1 // problem 6.9
2 l=2000
3 d=0.2
4 V=0.8
5 f=0.01
6 g=9.81
7 hf=(4*f*l*V*V)/(d*2*g)
8 disp(hf,"Head loss due to friction in pipeline")
```

Scilab code Exa 6.10 num

```
1 // problem 6.10
2 d1 = 0.15
3 d2=0.1
4 Q = 0.03
5 a1=3.142*d1*d1/4
6 \quad a2=3.142*d2*d2/4
7 V1=Q/a1
8 V2 = Q/a2
9 c = 0.6
10 g = 9.81
11 dz=(V2*V2/(2*g))-(V1*V1/(2*g))+(V2*V2/(2*g))*((1/c)
      -1)^2)
12 w = 9810
13 dp=dz*w
14 disp(dp, "pressure loss across the contraction in N/
      m2")
```

Scilab code Exa 6.11 num

```
1 // problem 6.11
2 d1 = 0.5
3 d2=0.25
4 p1=103005
5 p2=67689
6 p3=p2
7 w = 9810
8 g = 9.81
9 c = 0.65
10 z=1-(1/16)+((1/c-1)^2)
11 dp=p1-p2
12 v2=((dp*2*g)/(w*z))^0.5
13 \quad a2=3.142*d2*d2/4
14 \ Q=v2*a2
15 disp(Q*1000, "rate of flow in m3/sec")
16 v3=v2
17 v1 = v3/4
18 v4 = v1
19 he=(v3-v4)^2/(2*g)
20 p4=w*((p3/w)+((v3*v3-v4*v4)/(2*g))-he)
21 disp(p4," pressure at the 50 cm enlarge section in N/
     m2")
```

Scilab code Exa 6.12 num

```
1 // problem 6.12
2 d=0.04
3 v=2
4 dp=20000
5 l=8
6 w=9810
7 u=(dp*d*d)/(32*l*v)
8 disp(u,"viscosity of the flowing oil")
```

Scilab code Exa 6.13 num

```
1 // problem 6.13
2 d=0.25
3 1=12*1000
4 w = 9320
5 i=1/300
6 v = 20 * (10^-4)
7 a=3.142*d*d/4
8 q = 0.015
9 V=q/a
10 g = 9.81
11 Rn = V * d / v
12 f = 16 / Rn
13 hf = (4*f*1*V*V)/(2*d*g)
14 H=hf+(i*1)
15 p = (w*q*H)/1000
16 disp(p, "power required to pump the oil")
```

Scilab code Exa 6.14 num

```
1 // problem 6.14

2 1=600

3 H=160

4 p=1200*1000

5 n=0.85

6 f=0.005

7 hf=H/3

8 w=9810

9 H1=H-hf

10 q=p/(w*H1*n)
```

```
11 d=((f*l*q*q)/(3*hf))^0.2
12 disp(d*100,"minimium diameter of the pipe in cm")
```

Scilab code Exa 6.15 num

```
1 // problem 6.15
2 d=0.25
3 l=500
4 a=3.142*d*d/4
5 f=0.006
6 q=0.04
7 g=9.81
8 p2=250*1000
9 V=q/a
10 hf=(4*f*l*V*V)/(d*2*g)
11 z1=0
12 z2=25
13 w=9810
14 p1=((p2/w)+z2+hf)*w
15 disp(p1," pressure at point A is N/m2")
```

Scilab code Exa 6.16 num

```
1 // problem 6.16

2 q=0.15/(2.5*60)

3 d=0.03

4 p1=9810

5 p2=6867

6 l=2

7 w=9810

8 hf=(p1-p2)/w

9 a=3.142*d*d/4

10 V=q/a
```

```
11 g=9.81
12 f=(hf*2*g*d)/(4*1*V*V)
13 C=V*((4*1)/(d*hf))^0.5
14 disp(f,"darcy co-efficient")
15 disp(C,"Chezy formula")
```

Scilab code Exa 6.17 num

```
1 // problem 6.17
2 a=90
3 H1=10
4 d=0.15
5 l=400
6 H2=7
7 g=9.81
8 f=0.008
9 z=3.142*d*d*((2*g)^0.5)
10 z1=(1.5+(4*f*1/d))^0.5
11 T=(8*a*z1*(H1^0.5-H2^0.5))/z
12 disp(T/3600,"time to lower the level from 10m to 7m in hr")
```

Scilab code Exa 6.18 num

```
1 // problem 6.18

2 q=0.08

3 d1=0.25

4 d2=1

5 11=1500

6 12=1500

7 a1=3.142*d1*d1/4

8 a2=3.142*d2*d2/4

9 v2=q*4/(3.142*((1/32)+1))
```

```
10  v1=v2*0.5
11  q1=v1*a1
12  q2=v2*a2
13  disp(q1*1000,q2*1000,"disharge through pipe in m3/sec")
```

Chapter 7

Flow through open channels

Scilab code Exa 7.1 num

```
1 // problem 7.1
2 b=6
3 i=1/1000
4 d=2
5 C=50
6 A=b*d
7 m=A/(b+2*d)
8 Q=A*C*((i*m)^0.5)
9 disp(Q," flow rate assuming chezys constant eqaul to 50 in m3/sec")
```

Scilab code Exa 7.2 num

```
1 // problem 7.2
2 b=5
3 d=3
4 i=1/1000
5 C=55
```

Scilab code Exa 7.3 num

```
1 // problem 7.3
2 b=2.5
3 d=2.5
4 C=56
5 A=b*(7.5+d)*0.5
6 P=2.5+((b*b+d*d)^0.5)*2
7 m=A/P
8 i=1/1200
9 Q=A*C*((m*i)^0.5)
10 disp(Q*1000,"the diacharge through the channel in litres/sec")
```

Scilab code Exa 7.4 num

```
1 // problem 7.4
2 b=3.5
3 i=1/1000
4 d=1.5
5 C=60
6 y=60
7 x=1.5/tand(y)
8 w=b+x*2
9 A=(w+b)*0.5*d
10 P=b+2*((x*x+d*d)^0.5)
```

Scilab code Exa 7.5 num

```
1 // problem 7.5
2 b=9
3 i=1/3000
4 d=1.2
5 w=b+d
6 A=(w+b)*0.5*d
7 P=b+2*((d*d+d*d*0.25)^0.5)
8 m=A/P
9 C=50
10 V=C*((m*i)^0.5)
11 Q=V*A
12 disp(Q*1000,V,"average velocity of flow, rate of flow")
```

Scilab code Exa 7.6 num

```
1 // problem 7.6

2 Q=0.1

3 b=0.6

4 C=56

5 d=0.3

6 a=b*d

7 v=Q/a

8 p=b+2*d

9 m=a/p

10 i=(v*v)/(C*C*m)
```

Scilab code Exa 7.7 num

```
1 // problem 7.7
2 i=1/1000
3 d=1.5
4 Cd=0.55
5 a=d*d
6 C=40
7 g=9.81
8 m=d
9 Q=a*C*((d*i)^0.5)
10 H=(3*Q/(Cd*2*((2*g)^0.5)))^0.4
11 height=d+3-H
12 disp(height,"height of the dam in m")
```

Scilab code Exa 7.8 num

```
1 // problem 7.8
2 b=1.4
3 d=1.4
4 n=1/4
5 i=1/700
6 N=0.025
7 a=d*(b+(n*d))
8 p=b+(2*d*((n*n+1)^0.5))
9 m=a/p
10 q=(a*(m^0.6666)*(i^0.5))/N
11 disp(q*1000," discharge from the trapezoidal channel in litres/sec")
```

Scilab code Exa 7.9 num

```
1 // problem 7,9
2 Q=0.3
3 D=1.5
4 N=0.02
5 A=3.142*D*D/(4*2)
6 p=3.142*D/2
7 m=A/p
8 i=((Q*N)/(A*(m^0.6666)))^2
9 disp(i,"the slope of the sewer")
```

Scilab code Exa 7.10 num

```
1 // problem 7.10
2 D=2.4
3 d=1.5
4 i=1/1500
5 N=0.02
6 a=(d-(D/2))/(D/2)
7 z=acos(a)
8 z1=3.142-z
9 P=D*z1
10 A=D*D*0.25*(z1-(sin(2*z1)/2))
11 m=A/P
12 Q=(A*(m^0.6666)*(i^0.5))/N
13 disp(Q*1000,"the discharge through the sewer in litres/sec")
```

Scilab code Exa 7.11 num

```
1 // problem 7.11
2 b=1.5
3 d=0.8
4 Q=0.75
5 i=1/2500
6 A=b*d
7 P=b+(2*d)
8 m=A/P
9 C=Q/(((m*i)^0.5)*A)
10 z=(157.6/C)-1.81
11 K=z*(m^0.5)
12 disp(K,C,"Chezys constant and coefficient of roughness")
```

Scilab code Exa 7.12 num

```
1 // problem 7.12
2 b=10
3 d=4
4 i=1/1000
5 N=0.03
6 A=b*d
7 P=b+(2*d)
8 m=A/P
9 z1=23+(0.00155/i)+(1/N)
10 z2=1+((23+(0.00155/i))*(N/(m^0.5)))
11 C=z1/z2
12 Q=A*C*((m*i)^0.5)
13 disp(Q*1000," discharge through the rectangular channel in litres/sec")
```

Scilab code Exa 7.13 num

```
1 // problem 7.13
^{2} b=4
3 d=1.5
4 i=1/1000
5 C=55
6 \quad A = b * d
7 P=b+(2*d)
8 m = A/P
9 \quad Q = A * C * ((m*i)^0.5)
10 d1 = (A/2)^0.5
11 b1=d1*2
12 disp(d1,b1,"the new dimension of the channel")
13 P1=b1+(2*d1)
14 \text{ m1}=A/P1
15 Q1=A*C*((m1*i)^0.5)
16 Qf=Q1-Q
17 disp(Qf, "increase in discharge in m3/sec")
```

Scilab code Exa 7.14 num

```
1 // problem 7.14
2 i=1/2500
3 N=0.02
4 Q=14
5 n=1/(tand(60))
6 a=(3^0.5)
7 d=((Q*N*(2^0.6666))/((i^0.5)*a))^(3/8)
8 b=d*2/(3^0.5)
9 disp(d,b,"dimension of the channel")
```

Scilab code Exa 7.15 num

```
1 // problem 7.15
2 Q=20.2
3 i=1/2500
4 C=60
5 n=1/(tand(60))
6 a=(3^0.5)
7 d=((Q*(2^0.5))/(C*a*(i^0.5)))^0.4
8 b=2*d/(a)
9 disp(d,b,"dimension of the cross section in m")
```

Scilab code Exa 7.16 num

```
1 // problem 7.16
2 Q=10
3 V=2
4 A=Q/V
5 n=1
6 d=(A/1.828)^0.5
7 b=0.828*d
8 A1=(b+(2*d*((n*n+1)^0.5)))
9 disp(A1," area in m2 of lining required for 1m canal lenght")
```

Scilab code Exa 7.17 num

```
1 // problem 7.17
2 n=1
3 Q=14
4 i=1/1000
5 C=44
6 a=1.828
7 d=((Q*(2^0.5))/(C*a*(i^0.5)))^0.4
8 b=d*0.828
```

Scilab code Exa 7.18 num

```
1 // problem 7.18
2 d=1.2
3 i=1/1500
4 C=52
5 z=1.9-1/1
6 z1=acos(z)
7 x=3.142-z1
8 A=d*d*0.25*(x-(sin(2*x)/2))
9 P=d*x
10 m=A/P
11 Q=A*C*((m*i)^0.5)
12 disp(Q*1000,"the maximium discharge through the channel in litres/sec")
```

Chapter 8

Impact of jets

Scilab code Exa 8.1 num

```
1 // problem 8.1
2 V=25
3 F=300
4 g=9.81
5 p=1000
6 w=g*p
7 A=(F*g)/(w*V*V)
8 V1=35
9 F1=(w*A*V1*V1)/(g)
10 disp(F1, "force in N on the plate if the velocity of the jet is increased to 35 m/sec")
```

Scilab code Exa $8.2\,$ num

```
1 // problem 8.2
2 d=0.05
3 V=15
4 g=9.81
```

```
5 p1=1000
6 w=g*p1
7 a=3.142*d*d/4
8 F=(w*a*V*V)/g
9 u=5
10 F1=(w*a*((V-u)^2))/g
11 disp(F,"force in N on plate if plate is stationary")
12 disp(F1,"force in N on plate if plate is moving in the direction of the jet")
```

Scilab code Exa 8.3 num

```
1 // problem 8.3
2 d=0.03
3 Fx=900
4 x=30
5 g=9.81
6 w=g*1000
7 a=3.142*d*d/4
8 V=((Fx*g)/(w*a*sind(x)*sind(x)))^0.5
9 Q=a*V
10 disp(Q*1000,"rate of flow in m3/sec")
```

Scilab code Exa 8.4 num

```
1 // problem 8.4

2 d=0.02

3 V=20

4 x=15

5 g=9.81

6 p1=1000

7 w=g*p1

8 a=3.142*d*d/4
```

```
9 W=(w*a*V*V)/(g*sind(x))
10 F1=(w*a*V*V)/(2*g)
11 disp(W,"weight of the plate in N")
12 disp(F1,"force in N required at the lower edge of the plate")
```

Scilab code Exa 8.5 num

```
1 // problem 8.5
2 d=0.05
3 V=20
4 y=120
5 x=180-y
6 g=9.81
7 p1=1000
8 w=g*p1
9 a=3.142*d*d/4
10 F=(w*a*V*V*(1+cosd(x)))/(g)
11 disp(F,"force in N exerted by the water jet")
```

Scilab code Exa 8.6 num

```
1 // problem 8.6
2 d=0.05
3 V=20
4 u=7
5 a=3.142*d*d/4
6 g=9.81
7 p1=1000
8 w=g*p1
9 F=(w*a*V*V)/g
10 F1=(w*a*((V-u)^2))/g
11 work=F1*u
```

```
12 disp(F, "force in N if plate is fixed ")
13 disp(F1, "force in N if plate is moving with a
      velocity of 7 m/sec")
14 disp(work, "work done per sec by the jet")
```

Scilab code Exa 8.7 num

```
1 // problem 8.7
2 W = 58.86
3 d=0.02
4 V = 5
5 z=0.15
6 g = 9.81
7 p1=1000
8 \text{ w=g*p1}
9 a=3.142*d*d/4
10 F = (w*a*V*V)/g
11 \cos = 0.1
12 x = 30
13 P=(F*z)/cog
14 F1 = ((P*cog*(cosd(x))) + (W*cog*(sind(x))))
15 V1 = ((F1*g)/(w*a))^0.5
16 disp(V1, "velocity in m/sec of the jet if the plate
      is deflected through 30 degree")
```

Scilab code Exa 8.8 num

```
1 // problem 8.8

2 V=25

3 u=10

4 q=0.001

5 g=9.81

6 p1=1000
```

```
7  w=g*p1
8  x=180
9  u1=8
10  F1=(w*q/g)*V*(1-cosd(x))
11  F2=(w*q*((V-u)^2)*(1-cosd(x)))/(g*V)
12  F3=(w*q*(V-u1)*(1-cosd(x)))/g
13  disp(F3,F2,F1," force of jet in N when, the cup is stationary, the cup is moving with velocity of 10m /sec, series of cup with velocity of 8m/sec")
```

Scilab code Exa 8.9 num

```
1 // problem 8.9
2 x1 = 30
3 V1=30
4 Q = 0.001
5 g = 9.81
6 w = g * 1000
7 Vf1=V1*sind(x1)
8 \text{ Vw1=V1*cosd(x1)}
9 u = 15
10 x2 = 120
11 y1=atand(Vf1/(Vw1-u))
12 Vr1 = ((Vf1 * Vf1) + ((Vw1 - u)^2))^0.5
13 z=u*sind(x2)/Vr1
14 \text{ y}2=60-\text{asind}(z)
15 V2=Vr1*sind(y2)/sind(x2)
16 Vw2 = V2 * cosd(x2/2)
17 W = (w * Q * (Vw1 + Vw2) * u) / g
18 n = W * 2 / (V1 * V1)
19 disp(n*100, W, y2, "angle of vane, work done of water
       entering the vane, efficiency")
```

Scilab code Exa 8.10 num

```
1 // problem 8.10
2 Q = 0.283
3 d=0.05
4 x = 170
5 u = 48
6 g = 9.81
7 p1=1000
8 \text{ w=g*p1}
9 a=3.142*d*d/4
10 \text{ V1=Q/a}
11 Vw1=V1
12 Vr1=V1-u
13 x1=0
14 Vr2=Vr1
15 Vw2 = (Vr2 * cosd(180 - x)) - u
16 Fx = (w*a*(V1-u)*(Vw1+Vw2))/g
17 P = Fx * u / 1000
18 n=(P*1000*g*2)/(w*Q*V1*V1)
19 disp(n*100,P,Fx," force exerted by the jet, power
      developed by the vane, efficiency")
```

Scilab code Exa 8.11 num

```
1 // problem 8.11
2 y1=30
3 y2=15
4 a=13*(10^-4)
5 x1=15
6 V1=60
7 Vf1=V1*sind(y2)
8 Vw1=V1*cosd(y2)
9 u=Vw1-(Vf1/tand(y1))
10 Vw2=u-(Vf1*cosd(y2)/sind(y1))
```

```
11  Vf2=(u-Vw2)*tand(y2)
12  V2=(Vf2*Vf2+Vw2*Vw2)^0.5
13  x2=atand(Vf2/Vw2)
14  g=9.81
15  p1=1000
16  w=g*p1
17  Fx=(w*a*V1*(Vw1-Vw2))/g
18  Fy=(w*a*V1*(V1*sind(y2)-V2*sind(x2)))/g
19  Fr=(Fx*Fx+Fy*Fy)^0.5
20  o=atand(Fy/Fx)
21  disp(o,Fr,x2,V2,u," velocity of the vane, direction of velocity at exit, resultant force, angle between forces")
```

Scilab code Exa 8.12 num

```
1 // problem 8.12
2 V1=13
3 y1 = 30
4 y2 = y1
5 u=4.5
6 g = 9.81
7 p1 = 1000
8 \text{ w=g*p1}
9 \quad Q = 0.001
10 \text{ x1} = a \cos d (0.9394)
11 Vw1=V1*cosd(x1)
12 Vr1 = (Vw1 - u) / cosd(v1)
13 \quad Vw2=Vr1*cosd(y1)-u
14 \text{ Vf2=Vr1*sind(y1)}
15 V2 = (Vf2 * Vf2 + Vw2 * Vw2)^0.5
16 \text{ x2=atand}(Vf2/Vw2)
17 W = (w * Q * (Vw1 + Vw2) * u) / g
18 disp(W,x2,V2,x1," direction of velocity, velocity of
       water at exit, direction of work, magnitude of work
```

Scilab code Exa 8.13 num

```
1  // problem 8.13
2  V1=40
3  u=12
4  x1=20
5  x2=90
6  Vw1=V1*cosd(x1)
7  Vf1=V1*sind(x1)
8  y1=atand(Vf1/(Vw1-u))
9  Vr1=Vf1/sind(y1)
10  Vr2=0.9*Vr1
11  y2=acosd(u/Vr2)
12  W=1*Vw1*u
13  n=W/(V1*V1*0.5*1)
14  disp(n*100,W,y2,y1,"vane angle at the exit, work done on the vane per kg of water, efficiency")
```

Scilab code Exa 8.14 num

```
1 // problem 8.14 sce
2 d=0.05
3 V1=25
4 x1=30
5 x=50
6 x2=x1+x
7 g=10
8 p1=1000
9 a=3.142*d*d/4
10 w=g*p1
11 Fx=(w*a*V1*V1*(cosd(x1)-cosd(x2)))/g
```

```
12 Fy=(w*a*V1*V1*(sind(x1)-sind(x2)))/g
13 F=(Fx*Fx+Fy*Fy)^0.5
14 z=atand(-Fy/Fx)
15 disp(z,Fx,Fy,"resultant force, angle made by the resultant force with the horizontal")
```

Scilab code Exa 8.15 num

```
1 // problem 8.15
2 x1=0
3 x2=60
4 V1=30
5 V2=25
6 m=0.8
7 Fx=m*((V1*cosd(x1))-(V2*cosd(x2)))
8 Fy=m*((V1*sind(x1))-(V2*sind(x2)))
9 R=(Fx*Fx+Fy*Fy)^0.5
10 z=atand(-Fy/Fx)
11 disp(z,R," magnitude and direction of resultant force
")
```

Chapter 9

Reciprocating pump

Scilab code Exa 9.1 num

```
1 // problem 9.1
2 D=0.15
3 s=0.25
4 N=50
5 Hs=5
6 Hd=5
7 n1=0.6
8 n2=0.78
9 g=9.81
10 w=g*1000
11 a=3.142*D*D/4
12 Fs=(w*a*Hs)/n1
13 Fd=(w*a*Hd)/n2
14 P=((Fs+Fd)*s*N)/(1000*60)
15 disp(P,"power required by the pump in Kw")
```

Scilab code Exa 9.2 num

```
1 // problem 9.2
2 D=0.18
3 s=0.36
4 Hs=3
5 Hd=45
6 N=50
7 n=0.85
8 a=3.142*D*D/4
9 Q=(2*a*s*N)/60
10 g=9.81
11 w=g*1000
12 P=w*Q*(Hs+Hd)/(n*1000)
13 disp(P,"power in kw required to drive the pump")
```

Scilab code Exa 9.3 num

```
1 // problem 9.3
2 D=0.15
3 s=0.3
4 Hs=3
5 Hd=30
6 n=0.8
7 a=3.142*D*D/4
8 N=60/60
9 w=9810
10 Q=0.62/60
11 Qth=(2*a*s*N)
12 slip=(Qth-Q)/Qth
13 power=(w*Qth*(Hs+Hd))/(1000*n)
14 disp(slip*100, power, "power in Kw required to drive the pump, percentage slip")
```

Scilab code Exa 9.4 num

```
1 // problem 9.4
2 D=0.15
3 s = 0.3
4 N = 50/60
5 H = 25
6 Qact=0.0042
7 \text{ Ld} = 22
8 d=0.1
9 a=3.142*D*D/4
10 Qth=a*s*N
11 w=9810
12 power=w*Qth*H/1000
13 slip=(Qth-Qact)/Qth
14 \quad W = 2 * 3.142 * N
15 \quad a1=3.142*d*d/4
16 g=9.81
17 Had = (Ld*a*W*W*s)/(g*a1*2)
18 disp(Had, slip*100, power, Qth, "theoritical discharge,
      theoritical power, percentage slip, acceleration
      head")
```

Scilab code Exa 9.5 num

```
1 // problem 9.5

2 s=0.15

3 Ls=7

4 ds=0.075

5 N=75/60

6 Hs=2.5

7 z=16/9

8 f=0.01

9 W=2*3.142*N

10 g=9.81

11 Has=Ls*z*W*W*ds/g

12 H=Hs+Has
```

Scilab code Exa 9.6 num

```
1 // problem 9.6
2 D = 0.08
3 s = 0.15
4 \text{ Hs} = 3
5 ds = 0.03
6 g = 9.81
7 \text{ Ls} = 4.5
8 p=78.86*(1000)
9 w = 9810
10 \quad W = 2 * 3.142/60
11 z=(D/ds)^2
12 \text{ Hsep=p/w}
13 Habs=10.3-Hsep
14 Has=Hsep-Hs
15 N=((Has*g*2)/(z*W*W*s*Ls))^0.5
16 disp(N," maximium speed in rpm at which may run
       without separation")
```

Scilab code Exa 9.7 num

```
1 // problem 9.7
2 Hs=5
3 Ls=10
4 D=0.15
```

```
5 d=0.1
6 N = 30/60
 7 s = 0.15
8 g = 9.81
9 \quad W = 2 * 3.142 * N
10 \quad w = 9810
11 ha=10.3
12 z = (D/d)^2
13 H = (Ls*z*W*W*s/g)
14 \text{ Ph=Hs+H}
15 Phabs=ha-Ph
16 \quad f = 0.01
17 Hfs = (4*f*Ls/(d*2*g))*((z*W*s)^2)
18 \text{ H1=Hs+Hfs}
19 H1abs=ha-H1
20 \text{ H2=Hs-H}
21 H2abs=ha-H2
22 \text{ Hd} = 15
23 \text{ Ld} = 25
24 \text{ H11} = (\text{Ld} * z * W * W * s/g)
25 H12=H11+Hd
26 H12abs=ha+H12
27 Hfd=(4*f*Ld/(d*2*g))*((z*W*s)^2)
28 \text{ H22=Hd+Hfd}
29 H22abs=ha+H22
30 H3=Hd-H11
31 \text{ H3abs=ha+H3}
32 a=3.142*D*D/4
33 Q=a*s*2*N
34 \text{ power} = (w*Q*(Hs+Hd+(0.6666*Hfs)+Hfd*0.6666))/1000
35 disp(H2abs, H1abs, "pressure head at middle and end of
        suction stroke")
36 disp(H3abs, H22abs, H12abs, "pressure head at beginning
       , middle, end of suction stroke")
37 disp(power, "power in Kw required to drive the pump")
```

Chapter 10

Centrifugal pump

Scilab code Exa 10.1 num

```
1 // problem 10.1
2 N = 900/60
3 x1 = 90
4 D1=0.2
5 D2 = 0.4
6 n = 0.7
7 g=9.81
8 u1=3.142*D1*N
9 u2=2*u1 // as D2=2D1
10 y1 = 20
11 Vf1=u1*tand(y1)
12 Vr1=Vf1/sind(y1)
13 Vf2=Vf1
14 Vr2=Vr1
15 x=(Vr2*Vr2-Vf1*Vf1)^0.5
16 \ Vw2=u2-x
17 B1=0.02
18 \quad Q=3.142*D1*B1*Vf1
19 H=Vw2*u2/g
20 w = 9810
21 P = (w*Q*Vw2*u2)/(g*1000)
```

Scilab code Exa 10.2 num

```
1 //problem 10.2
 2 \text{ Hs}=2
 3 \text{ Hd} = 20
4 \text{ Hfs}=1
5 \text{ Hfd=5}
6 Q = 1/60
 7 N = 1450/60
8 \, ds = 0.1
9 dd=ds
10 n = 0.75
11 g = 9.81
12 w = 9810
13 \ a=3.142*ds*ds/4
14 \ Vs=Q/a
15 \text{ Vd=Vs}
16 Ht=Hs+Hd+Hfs+Hfd+(Vs*Vs/(2*g))+(Vd*Vd/(2*g))
17 Pi = (w*Q*Ht)/(n*1000)
18 Ns = ((N*(Q^0.5))/(Ht^0.75))*60
19 disp(Ns, Pi, Ht, "total head developed by the pump,
       power input to the pump, specific speed of pump in
        r.p.m")
```

Scilab code Exa 10.3 num

```
1 // problem 10.3
2 d2=0.6
```

```
3 Q=20/60
4 N=1400/60
5 V1=2.8
6 g=9.81
7 y2=30
8 w=9810
9 Vf1=V1
10 Vf2=V1
11 u2=3.142*d2*N
12 x=Vf2/tand(y2)
13 Vw2=u2-x
14 Hm=Vw2*u2/g
15 P=(w*Q*Hm)/1000
16 disp(P,Hm,"head developed, pump power")
```

Scilab code Exa 10.4 num

```
1 // problem 10.4
2 N=1450/60
3 N1=1650/60
4 H=12
5 P=6
6 H1=H*((N1/N)^2)
7 P1=P*((N1/N)^3)
8 disp(P1,H1,"head developed and power required if pump runs at 1650 r.p.m")
```

Scilab code Exa 10.5 num

```
1 // problem 10.5
2 Q=0.03
3 Hs=18
4 d=0.1
```

```
5 l=90
6 n=0.8
7 w=9810
8 a=3.142*d*d/4
9 f=0.04
10 g=9.81
11 Vd=Q/a
12 H1=(4*f*1*Vd*Vd)/(d*2*g)+(Vd*Vd/(2*g))
13 Hm=Hs+H1
14 P=(w*Q*Hm)/(n*1000)
15 disp(P,"power required to drive the pump")
```

Scilab code Exa 10.6 num

```
1 // problem 10.6
2 Q=0.04
3 Hm=30
4 n=0.75
5 w=9810
6 p=w*Q*Hm/1000
7 P=p/n
8 disp(P,p,"output power of the pump, power required to drive the motor")
```

Scilab code Exa 10.7 num

```
1 // problem 10.7
2 Q=1.8/60
3 d=0.1
4 n=0.72
5 Hs=20
6 w=9810
7 H1=8
```

Scilab code Exa 10.8 num

```
1 // problem 10.8
2 d2 = 0.6
3 Q = 15/60
4 N = 1450/60
5 V1 = 2.6
6 g = 9.81
7 y2 = 30
8 w = 9810
9 Vf1=V1
10 Vf2=V1
11 u2=3.142*d2*N
12 x=Vf2/tand(y2)
13 \ Vw2=u2-x
14 \text{ Hm} = \text{Vw}2*\text{u}2/\text{g}
15 P = (w * Q * Hm) / 1000
16 disp(P, Hm, "head developed, pump power")
```

Scilab code Exa 10.9 num

```
1 // problem 10.9
2 Q=0.05
3 p=392.4*1000
4 n=0.65
5 s=0.8
6 w1=9810
```

```
7  Hw=p/w1
8  Hoil=p/(w1*s)
9  Pw=(w1*Q*Hw)/(n*1000)
10  Poil=(w1*s*Q*Hoil)/(n*1000)
11  disp(Pw,Poil,"power in Kw to drive the pump with water and oil of s,p=0.8")
```

Scilab code Exa 10.10 num

```
1 // problem 10.10
2 Q=0.118
3 N=1450/60
4 Hm=25
5 d2=0.25
6 B2=0.05
7 n=0.75
8 g=9.81
9 u2=3.142*d2*N
10 Vf2=Q/(3.142*d2*B2)
11 Vw2=g*Hm/(n*u2)
12 y2=atand(Vf2/(u2-Vw2))
13 disp(y2,"vane angle in degree at the outer nperiphery of the impeller")
```

Scilab code Exa 10.11 num

```
1 // problem 10.11

2 Hm=14.5

3 N=1000/60

4 y2=30

5 d2=0.3

6 B2=0.05

7 g=9.81
```

```
8  n=0.95
9  u2=3.142*d2*N
10  Vw2=g*Hm/(n*u2)
11  Vf2=(u2-Vw2)*tand(y2)
12  Q=3.142*d2*B2*Vf2
13  disp(Q*1000," discharge of pump in m3/sec if manometric efficiency if 95%")
```

Scilab code Exa 10.12 num

```
1 // problem 10.12
2 d2=1.2
3 N = 200/60
4 Q=1.88
5 \text{ Hm} = 6
6 y2 = 26
7 g = 9.81
8 Vf2=2.5
9 d1 = 0.6
10 \quad u2=3.142*d2*N
11 Vw2=u2-(Vf2/tand(y2))
12 n = g * Hm / (Vw2 * u2)
13 z1 = (3.142*d2/60)^2
14 z2 = (3.142 * d1/60)^2
15 N1 = (Hm * 2 * g/(z1 - z2))^0.5
16 disp(n*100,N1,"least speed to start pump, manometric
       efficiency")
```

Scilab code Exa 10.13 num

```
1 // problem 10.13
2 Q=0.125
3 Hm=25
```

```
4 N=660/60
5 d2=0.6
6 d1=d2*0.5
7 a=0.06
8 y2=45
9 g=9.81
10 u2=3.142*d2*N
11 u1=u2*0.5
12 Vf2=Q/a
13 Vw2=u2-(Vf2/tand(y2))
14 n=g*Hm/(Vw2*u2)
15 Vf1=Q/(a)
16 y1=atand(Vf1/u1)
17 disp(y1,n*100," manometric efficiency, vane angle at inlet")
```

Scilab code Exa 10.14 num

```
1 // problem 10.14
2 n=3
3 d2=0.4
4 B2 = 0.02
5 y2 = 45
6 da=0.1
7 \text{ nm} = 0.9
8 w = 9810
9 \text{ no=0.8}
10 g = 9.81
11 N = 1000/60
12 Q=0.05
13 Vf2=Q/(3.142*d2*nm*B2)
14 u2=3.142*d2*N
15 Vw2=u2-(Vf2/tand(y2))
16 \text{ Hm}=\text{nm}*\text{Vw}2*\text{u}2/\text{g}
17 \text{ Ht}=n*Hm
```

```
18  P=w*Q*Ht/1000
19  Ps=P/no
20  disp(Ps, "shaft power in Kw")
```

Scilab code Exa 10.15 num

```
1 // problem 10.15
2 n=6
3 Q=0.12
4 p=5003.1*1000
5 N=1450/60
6 w=9810
7 Ht=p/w
8 h=Ht/n
9 Ns=(N*(Q^0.5)/(h^0.75))*60
10 disp(Ns,"radial impeller would be selected")
```

Scilab code Exa 10.16 num

```
1 // problem 10.16
2 sg=1.08
3 w=9810*sg
4 Q=0.3
5 H=12
6 no=0.75
7 P=w*Q*H/(no*1000)
8 p=w*H
9 disp(p,P,"power in Kw required by the pump, pressure developed by the pump in N/m2")
```

Scilab code Exa 10.17 num

```
1 // problem 10.17
2 d1=0.3
3 N1=2000/60
4 Q1=3
5 Hm1=30
6 Q2=5
7 N2=1500/60
8 Ht=200
9 Hm2=((N2/N1)*((Q2/Q1)^0.5)*(Hm1^0.75))^1.3333
10 n=Ht/Hm2
11 d2=((Hm2/Hm1)^0.5)*(N1/N2)*d1
12 disp(d2*100,n,"number of stages and diameter of each impeller in cm")
```

Chapter 11

Impulse turbine

Scilab code Exa 11.1 num

```
1 // problem 11.1
 2 P=8820*1000
3 N = 600/60
4 H = 500
 5 \text{ Cv} = 0.97
 6 \text{ Cu} = 0.46
7 \text{ no} = 0.85
8 w = 9810
9 g = 9.81
10 Q=P/(no*w*H)
11 V1 = Cv * ((2*g*H)^0.5)
12 \quad u = Cu * V1
13 D=u/(3.142*N)
14 d = D/15
15 \quad a=3.142*d*d/4
16 \text{ n=Q/(a*V1)}
17 \quad n1 = round(n+1)
18 disp(n1,d*100,D,Q,"discharge in m3/sec, wheel
       diameter in m, jet diameter in cm, number os jets
        ")
```

Scilab code Exa 11.2 num

```
1 // problem 11.2
2 H = 46
3 Q=1
4 u1=15
5 y = 165
6 y2=180-y
7 \text{ Cv} = 0.975
8 g=9.81
9 V1 = ((2*g*H)^0.5)
10 Vw1=V1
11 Vr1=V1-u1
12 Vr2=Vr1
13 Vw2=(Vr2*(cosd(y2)))-u1
14 \quad w = 9810
15 P = (w*Q*(Vw1+Vw2)*u1)/(g*1000)
16 n=P*1000/(w*Q*H)
17 disp(n*100,P,"power developed in Kw and efficiency
      of the wheel")
```

Scilab code Exa 11.3 num

```
1 // problem 11.3

2 H=340

3 P=4410*1000

4 N=500/60

5 Cv=0.97

6 no=0.86

7 w=9810

8 g=9.81

9 Q=P/(w*H*no)
```

```
10 V1=Cv*(sqrt(2*g*H))
11 u=0.45*V1
12 D=u/(3.142*N)
13 a=Q/V1
14 disp(a,D,"mean diameter in m, jet area in m2")
```

Scilab code Exa 11.4 num

```
1 // problem 11.4
2 H = 45
3 Q = 50/60
4 u1=12.5
5 y = 160
6 y2=180-y
7 \text{ Cv} = 0.97
8 g=9.81
9 V1 = Cv * ((2*g*H)^0.5)
10 Vw1=V1
11 Vr1=V1-u1
12 Vr2=Vr1
13 Vw2 = Vr2 * (cosd(y2)) - u1
14 \quad w = 9810
15 P = (w*Q*(Vw1+Vw2)*u1)/(g*1000)
16 nh = (2*u1*(Vw1+Vw2))/(V1*V1)
17 disp(nh*100,P,"power developed in Kw and hydraulic
      efficiency")
18 H1=50
19 V11 = Cv * ((2*g*H1)^0.5)
20 Vw11=V11
21 Vr11=V11-u1
22 Vr21=Vr11
23 \text{ Vw21=Vr21*(cosd(y2))-u1}
24 w = 9810
25 P = (w*Q*(Vw11+Vw21)*u1)/(g*1000)
26 disp(P, "Power developed in Kw if head is increased
```

Scilab code Exa 11.5 num

```
1 // problem 11.5
2 H=50
3 Q = 1.2
4 u1=18
5 y = 160
6 y2=180-y
7 \text{ Cv} = 0.94
8 g=9.81
9 V1=Cv*((2*g*H)^0.5)
10 Vw1=V1
11 Vr1=V1-u1
12 Vr2=Vr1
13 Vw2 = Vr2 * (cosd(y2)) - u1
14 \quad w = 9810
15 P = (w*Q*(Vw1+Vw2)*u1)/(g*1000)
16 n=P*1000/(w*Q*H)
17 disp(n*100,P,"power developed in Kw and efficiency
      of the wheel")
```

Scilab code Exa 11.6 num

```
1 // problem 11.6

2 D=1

3 N=1000/60

4 H=700

5 y=165

6 y2=180-y

7 Q=0.1

8 Cv=0.97
```

```
9 g=9.81

10 u=D*3.142*N

11 V1=Cv*(sqrt(2*g*H))

12 nh=(2*u*(V1-u)*(1+(cosd(y2))))/(V1*V1)

13 disp(nh*100,"hydraulic efficiency of the wheel")
```

Scilab code Exa 11.7 num

```
1 // problem 11.7
2 \text{ Hg} = 500
3 \text{ hf} = \text{Hg}/3
4 \text{ H=Hg-hf}
5 Q=2
6 y = 165
7 y2 = 180 - y
8 g = 9.81
9 w = 9810
10 \, \text{Cv} = 1
11 V1=Cv*(sqrt(2*g*H))
12 u=0.45*V1
13 Vr1=V1-u
14 \ Vw1 = V1
15 Vr2=Vr1
16 \ Vw2 = (Vr2 * (cosd(y2))) - u
17 W = w * Q * (Vw1 + Vw2) * u/g
18 P = W / 1000
19 nh=2*u*(Vw1+Vw2)/(V1*V1)
20 disp(nh*100,P,"power given by the water to the
       runner in Kw, Hydraulic efficiency")
```

Scilab code Exa 11.8 num

```
1 // problem 11.8
```

```
2 L=1600
3 H=550
4 Dp=1.2
5 d=0.18
6 \text{ f} = 0.006
7 \text{ Cv} = 0.97
8 g = 9.81
9 V1=Cv*(sqrt(2*g*H))
10 \ a=3.142*d*d/4
11 Q = a * V1
12 w = 9810
13 P = (w*Q*V1*V1)/(2*g*1000)
14 \text{ ap=3.142*Dp*Dp/4}
15 \text{ Vp=Q/ap}
16 Hf = (4*f*L*Vp*Vp)/(Dp*2*g)
17 Tp=4*w*Q*(H+Hf)/1000
18 disp(Tp,P,"power to each jet in Kw, total power at
      reserviour i Kw")
```

Scilab code Exa 11.9 num

```
1  // problem 11.9
2  Q=4
3  H=250
4  L=3000
5  n1=4
6  n=0.91
7  nh=0.9
8  Cv=0.975
9  f4=0.0045
10  hf=H-H*n
11  Hn=H-hf
12  g=9.81
13  w=9810
14  V1=Cv*(sqrt(2*g*Hn))
```

```
15  Pw=w*Q*V1*V1/(2*g*1000)
16  Pt=nh*Pw
17  q=Q/n1
18  d=sqrt(4*q/(3.142*V1))
19  D=((f4*L*16*16)/(2*g*3.142*3.142*hf))^0.2
20  disp(D,d,Pt,"power developed by turbine in Kw, diameter jet and diameter of pipeline")
```

Chapter 12

Reaction turbine

Scilab code Exa 12.1 num

```
1 // problem 12.1
2 D1 = 0.6
3 D2 = 0.3
4 x2 = 90
5 B1=0.15
6 N = 300/60
7 x1 = 15
8 Vf1=3
9 Vf2=Vf1
10 \text{ u1=3.1428*D1*N}
11 u2=3.142*D2*N
12 Vw1=Vf1/tand(x1)
13 y1=atand(Vf1/(Vw1-u1))
14 Q=3.142*D1*B1*Vf1
15 w = 9810
16 g=9.81
17 P=w*Q*Vw1*u1/(g*1000)
18 disp(P,y1," blade angles, Power developed in Kw")
```

Scilab code Exa 12.2 num

```
1 // problem 12.2
2 D1=1
3 N = 200/60
4 B1=0.15
5 Vf1=3
6 Vf2=Vf1
7 x2 = 90
8 \quad Q=3.142*D1*B1*Vf1
9 u1=3.142*D1*N
10 Vw1=u1
11 \quad w = 9810
12 g=9.81
13 P = (w*Q*Vw1*u1)/(g*1000)
14 H=(Vw1*u1/g)+(Vf2*Vf2/(2*g))
15 nh=Vw1*u1/(g*H)
16 disp(nh*100,P,"power developed in Kw,hydraulic
      efficiency")
```

Scilab code Exa 12.3 num

```
1 // problem 12.3
2 D1=0.75
3 D2=0.5
4 x1=20
5 Vf1=3
6 Vf2=3
7 B1=0.15
8 N=250/60
9 u1=3.142*D1*N
10 u2=3.142*D2*N
11 Vw1=Vf1/tand(x1)
12 y1=atand(Vf1/(u1-Vw1))
13 y2=atand(Vf2/u2)
```

```
14  Q=3.142*D1*B1*Vf1
15  w=9810
16  g=9.81
17  P=w*Q*Vw1*u1/(g*1000)
18  H=(Vw1*u1/g)+(Vf2*Vf2/(2*g))
19  nh=Vw1*u1/(g*H)
20  disp(nh*100,P,y2,y1,"hydraulic efficiency,power developed in Kw,blade angle at inlet and outlet")
```

Scilab code Exa 12.4 num

```
1 // problem 12.4
2 H = 150
3 Q=6
4 N = 400/60
5 D1=1.2
6 x1 = 20
7 x2 = 90
8 B1 = 0.1
9 u1=3.142*D1*N
10 Vf1=Q/(3.142*D1*B1)
11 Vw1=Vf1/tand(x1)
12 \ Vw2=0
13 w = 9810
14 g = 9.81
15 P=w*Q*Vw1*u1/(g*1000)
16 disp(P, Vw2, Vw1, "whirl component at inlet and outlet,
      power developed in Kw")
```

Scilab code Exa 12.5 num

```
1 // problem 12.5
2 D1=0.76
```

```
3 D2 = 0.5
4 x1 = 20
5 \text{ Vf } 1 = 4
6 Vf2=Vf1
7 B1 = 0.15
8 N = 300/60
9 u1=3.142*D1*N
10 u2=3.142*D2*N
11 Vw1=Vf1/tand(x1)
12 y1=atand(Vf1/(u1-Vw1))
13 y2=atand(Vf2/u2)
14 \quad Q = 3.142 * D1 * B1 * Vf1
15 w = 9810
16 g=9.81
17 P=w*Q*Vw1*u1/(g*1000)
18 disp(P,y2,y1," blade angle at inlet and outlet, power
      developed in Kw")
```

Scilab code Exa 12.6 num

```
1 // problem 12.6
2 no=0.8
3 P=147*1000
4 H=10
5 g=9.81
6 u1=0.95*(sqrt(2*g*H))
7 Vf1=0.3*(sqrt(2*g*H))
8 N=160/60
9 Vw2=0
10 nh=(H-(0.2*H))/H
11 Vw1=nh*g*H/u1
12 x1=atand(Vf1/Vw1)
13 y1=atand(Vf1/(u1-Vw1))
14 D1=u1/(3.142*N)
15 w=9810
```

```
16 p=147*1000
17 Q=p/(w*H*no)
18 B1=Q/(3.142*D1*Vf1)
19 disp(B1*100,D1,y1,x1,"guide blade angle, wheel vane angle, diameter of wheel, width of wheel at inlet in cm")
```

Scilab code Exa 12.7 num

```
1 // problem 12.7
2 sp=25*(10^6)
3 H = 40
4 \text{ no} = 0.9
5 P=25*1000
6 g = 9.81
7 u1=2*(sqrt(2*g*H))
8 Vf1=0.6*(sqrt(2*g*H))
9 w = 9810
10 Q=sp/(w*no*H)
11 De=(Q*4/(3.142*Vf1*(1-(0.35^2))))^0.5
12 Db = 0.35 * De
13 \text{ N=u1*60/(3.142*De)}
14 Ns=N*(P^0.5)/(H^1.25)
15 disp(Ns,N,Db,De," diameter of runner and boss, speed
      and specific speed of runner in r.p.m")
```

Scilab code Exa 12.8 num

```
1 // problem 12.8
2 D=4.5
3 d=2
4 P=20608
5 N=140/60
```

```
6 H=22
7 nh=0.94
8 w=9810
9 g=9.81
10 no=0.85
11 Q=P*1000/(w*no*H)
12 Vf1=Q*4/(3.142*((D^2)-(d^2)))
13 u1=3.142*D*N
14 Vw1=nh*g*H/u1
15 x1=atand(Vf1/Vw1)
16 disp(x1,Q,"discharge through the turbine, guide blade angle at inlet")
```