Math 115A assign1

Vincent

2023-01-17

Question 1

Prove in details de Morgan's law I didn't solve in class: for any sets X, A, B we have $X - (A \cap B) = (X - A) \cup (X - B)$

Proof:

1. If
$$x \in X - (A \cap B)$$
 Then, $(X - A) \in x$ and $(X - B) \in x$. Thus $x \in (X - A) \cup (X - B)$

2. Assume $x \in (X - A) \cup (X - B)$, which means that $A \notin x$ and $B \notin x$. Base on the other side of the equation, $x \in X - (A \cap B)$, we can assume by contradiction that this is not true. Thus $x \notin X - (A \cup B)$, which means $x \in A \cap B$. So we have at the same time $x \notin A \cap B$ and $x \in A \cap B$ which is a contradiction

Question 2

Let A, B be subsets of the set of real numbers \mathbb{R} For each one of the statements below write its negation.

(a) For all $x \in A$ there exists $b \in B$ such that b > x

Negation:

There is no $b \in B$ for all $x \in A$ such that b > x

(b) There is an $x \in A$ such that for all $b \in B$ we have b > x

Negation

There is no such $x \in A$ for all $b \in B$ where b > x

Question 3

Consider the set $\mathbb{Z}_3 = \{0,1,2\}$ and define on it the operation + and * as follows:

For +:

$$0+0=0; 0+1=1; 0+2=2$$

$$1+0=1; 1+1=2; 1+2=0$$

$$2+0=2$$
; $2+1=0$; $2+2=1$

For *:

$$0 * 0 = 0; 0 * 1 = 0; 0 * 2 = 0$$

$$1*0 = 0; 1*1 = 1; 1*2 = 2$$

$$2*0 = 0; 2*1 = 2; 2*2 = 1$$

Show that $(\mathbb{Z}_3, +, *)$

proof:

To be determine as a field, it has to follow the five laws of field. It does satisfied (F1), where a + b = b + a and a * b = b * a. It does satisfied (F2), where (a + b) + c = a + (b + c) and (a * b) * c = a * (b * c). It does satisfied

(F3) where the set contains 0 and 1 such that 0 + a = a and 1 * a = a, $\forall a \in F$. It does satisfied (F4) where all element, except 0, has a inverse element that is belong to the set. Also, it does satisfied (F5), where a * (b + c) = a * b + a * c

Question 4

Consider the subset of \mathbb{C} :

$$Q(i) := x + yi : x,y \in Q$$

Prove that Q(i) with addition and multiplication inherited from $\mathbb{C}(i.e.$ defined the some way as for all complex numbers) is field

proof:

To be determine as a field, it has to follow the five laws of field. It does satisfied (F1), where (a+bi)+(c+di)=(c+di)+(a+bi) and (a+bi)*(c+di)=(c+di)*(a+bi). It does satisfied (F2), where ((a+bi)+(c+di))+(x+yi)=(a+bi)+((c+di)+(x+yi)) and ((a+bi)*(c+di))*(x+yi)=(a+bi)*((c+di)*(x+yi)). It does satisfied (F3) where the set contains 0 and 1 such that 0+(a+bi)=(a+bi) and $1*(a+bi)=(a+bi), \forall a\in F$. It does satisfied (F4) where all element, except 0, has a inverse element that is belong to the set. Also, it does satisfied (F5), where (a+bi)*(c+di)+(x+yi)=(a+bi)*(c+di)+(a+bi)*(x+yi)

Question 5

Let (F, +, *) be a field, with its operations of addition + and multiplication *. Let $E \in F$ be a subset and assume the following fields

- * For all $a, b \in E$, $a + b \in E$ and $a * b \in E$. (E is closed to addition & multiplication)
- * $0 \in E$, $1 \in E$
- * If $a \in E$ then $-a \in E$
- * If $a \in E$, $a \neq 0$ then $a^{-n} \in E$
- * Prove that E with the solve operations + and * as F, is a Field. (i.e. with the operations it inherits from F)

proof:

As known that $E \in F$ and set F is a field, so set E can satisfied (F1)(F2)and (F5). Also, we know that $0 \in E$ and $1 \in E$ where satisfied (F3). Finally, we do have that, "if $a \in E$ then $-a \in E$ and if $a \in E$, $a \neq 0$ then $a^{-n} \in E$ ". Therefore, satisfied (F4) and E is a field.

Question 6

Let (F, +, *) be a field.

- (a) Prove that (-1) * a = -a and (-2) * a = -(2 * a) for any $a \in F$
- (b) Prove that for any $a \in F$, $a \neq 0$, we have $(-a)^{-1} = -a^{-1}$

proof:

- a) According to definition of field, (F2), where (a*b)*c = a*(b*c) then (-1)*a = (-1)(1)(a) = -a and (-2)*a = (-1)*(2)*(a) = -(2*a)
- b) According to definition of field, (F2), where (a*b)*c = a*(b*c) then $(-a)^{-1} = (-1)^{-1}*(1)^{-1}*(a)^{-1} = (-1)*(1)*(a)^{-1} = -a^{-1}$