ALGE	BRA ((27) (C	s Exactas-Ingenie	ería) EXAN	IEN FINAL	DICIEMBRE 201	2 TEMA
APEL	LIDO		No	OMBRES:		D.N.I:	
Bien	Mal	NC	NOTA	INSCRIP'	ΓΟ EN: Días	Horario	
			L	Sede	A	ulaCuatrimes	stre:
Para	-					uestas correctas, y mo única respuesta corre	The second second
[] (1,2	2,0)		[1,1,-2)		1,1,0)	l de Π es paralela al	
2. Sean	$A = \begin{bmatrix} A & A & A \end{bmatrix}$	0 a a 3	$\begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} \mathbf{y} \mathbb{S}_0 = \left\{ \mathbf{x} \in \mathbb{R}^3 \right\}$	$\int d\mathbf{x} d\mathbf{x} = 0$. E	El conjunto de	$a \in \mathbb{R}$ para los cuales	s S₀ es una
recta es	5		[] {1;3}	☐ {:		[] {0;1}	· • • • • • • • • • • • • • • • • • • •
3. Sean	$B = \{$	$\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3$	$\{\mathbf{v}_3\}$ y $B' = \{\mathbf{v}_1 - \mathbf{v}_2\}$	$; \mathbf{v}_1 + \mathbf{v}_3; 2\mathbf{v}_1 +$	v ₃ } bases de ι	un e.v. V . El conjunto	de vectores
			adas en base B' so				
☐ ⟨4 v	$\mathbf{v}_1 - \mathbf{v}_2$	$+\mathbf{v}_{\scriptscriptstyle 3}\rangle$		3) [(1	$\mathbf{v}_1; -\mathbf{v}_2; 2\mathbf{v}_3 \rangle$		\rangle
4. Sean $\begin{bmatrix} \mathbf{v}_1 \end{bmatrix}$				No.		x = b, otra solución d	
5. Si A	$\in \mathbb{R}^{2 \times 2}$	es tal	que det $A = 3$, ent	onces det(A2)	$+\det(-2A)$ es	s igual a	
21	\$			0		3	
6. Sean		-2 <i>y</i> +	$2z = 12 \text{ y } \mathbb{L} : \lambda(1,1)$			que está a distancia (2,2,1)	4 de Π es
						$f_{BE}(f) = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \end{pmatrix}$. I	Dadas las
			epimorfismo II: erdadera			era y II es falsa 🗌 I y	II son falsas
8. Si T	=(1,2)	2,1,-1)	$y \ \mathbb{S} = \left\{ \mathbf{x} \in \mathbb{R}^4 / x \right\}$	$x_1 + 2x_2 + x_3 - x_4$	$\mathfrak{r}_4 = 0$, entono	ces $\mathbb{S} \cap \mathbb{T}^{\perp}$ es igual a	ı
_ S			☐ {0}	T			
9. Si z	= 2(cos	$s(\pi/7)$	$+i \operatorname{sen}(\pi/7)$) ento	nces la forma	trigonométrica	a de −2z es	
			$sen(8\pi/7)$		$(\cos(8\pi/7) + is$		
4(cc	os(-π/	7) + $i s = 0$	$en(-\pi/7)$	□ 40	$(\cos(13\pi/7) + i$	$i \operatorname{sen}(13\pi/7)$	
10. Si	$f: \mathbb{R}^3$ –	$\rightarrow \mathbb{R}^3$ es	la t.l. tal que $f(1)$	(1,0) = (2,0,4)	f(1,0,0) = 0	1,0,2) y $f(0,0,1) = ($	0,0,0)
entonce				191 1			1 22
	$\begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 4 & 0 \end{pmatrix}$		$ \begin{bmatrix} 1 & 0 & 2 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} $		1 0 0 0 0 1 2 0	$ \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 2 & 2 & 0 \end{bmatrix} $	
FINAL	ALGE	BRA -	- DICIEMBRE 20	012	There is no	ta zai azziko - <u>1</u>	TEMA

11. Si $\Pi: x + k^2y - 2$	$z = 7 \text{ y } \mathbb{L} : \lambda(-2,1,1) + (-2,1,1)$	-3, k, -1), el conjunto de	$k \in \mathbb{R}$ tales que $\mathbb{L} \cap \Pi = \emptyset$ es
☐ {2}			
12. Si $B = \{(1, -1, 0);$	$(-1,1,1);(0,1,0)$ y $f: \mathbb{R}$	$x^3 \to \mathbb{R}^3$ es la t.l. tal que	$M_{EB}(f) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \\ 1 & 0 & 0 \end{pmatrix}$, entonces
f(1,1,1) - f(1,0,0) e	s igual a	% ±	(1 0 0)
(0,1,0)	[] (1,1,1)	(-1,1,1)	(0,1,1)
13. Sean $B = \{(0,0,1)\}$); $(0,1,0)$; $(1,0,0)$ } y $B'=$	$\{(1,1,1);(0,1,0);\mathbf{v}\}$ base	s de \mathbb{R}^3 . Si (1,2,3) tiene las
7	en ambas bases, entonce		
$\mathbf{v} = (-2, -3, 0)$		$\mathbf{v} = (0, -1, 2)$	
14. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$	la t.l. tal que $M(f) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & -2 & 0 \\ -2 & 0 & 0 \\ 1 & 0 & -3 \end{pmatrix}$. Todos los	autovalores de f son
☐ -2 y -3	☐ 1, −2 y −3	☐ 2, −2 y −3	☐ 0 y −3
15. Sean $\mathbb{S} = \{x \in \mathbb{R}^3 \}$	$(x_1 - x_3 = 0)$ $y T = \{x \in$	$\mathbb{R}^3 / x_1 + x_2 = 0$ Si f :	$\mathbb{R}^3 \to \mathbb{R}^3$ es una t.l. tal que
$f(\mathbb{S}) = \mathbb{T} y f(\mathbb{T}) = \mathbb{S}$	entonces la dimensión	del núcleo de f es	
☐ 3	<u> </u>	2	
16. Sean $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 \}$	$/x_1 + x_2 - x_3 = x_2 + x_3 - x_3$	$x_4 = 0$ y $S = (3, 0, k, -1)$	2); $(1,0,0,2)$. El conjunto de
	s cuales $\mathbb{R}^4 = \mathbb{S} + \mathbb{T}$ es		
17. Sean $B = \{(1,1,0)\}$	$(1,1,1);(1,0,0)$ y $f: \mathbb{R}^{3}$	$^3 \to \mathbb{R}^3$ la t.l. tal que M	$I_{EB}(f) = \begin{pmatrix} 0 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & -1 & a \end{pmatrix}$. El valor de
$a \in \mathbb{R}$ tal que $\mathbf{v} = (1$,2,2) es un autovector d		
_ 2			∐ 0
	$3x^3 + 5x^2 + x - 7$. Un po	linomio que tiene como	raíces al producto y a la suma de
las raíces de P es	(x-3)(x+7)		
19. Sea $B = \{ \mathbf{v}_1; \mathbf{v}_2 \}$	base de un e.v. \mathbb{V} . Si f	$: \mathbb{V} \to \mathbb{V}$ es la t.l. tal qu	$f(\mathbf{v}_2) = -\mathbf{v}_1 + \mathbf{v}_2 \mathbf{y}$
$f \circ f(\mathbf{v}_2) = 4\mathbf{v}_2$, ent	onces $f(\mathbf{v}_1)$ es igual a		
$ -\mathbf{v}_1 - 3\mathbf{v}_2 $	\square \mathbf{v}_1		0
	$p: \mathbb{V} \to \mathbb{V}$ un proyector $\mathbf{v} - p(\mathbf{v})$, entonces Nu g		$\operatorname{Nu} p \neq \{0\}$. Si $g: \mathbb{V} \to \mathbb{V}$ es la t.l.
	\square Nu p	[] {0}	
FIRMA DEL ALUM	INO:	9 2 1 2	

4/4