APRENDIZAJE REFORZADO

Guía 3: Programación Dinámica

Ejercicio 1

[Programación] Para el proceso de Markov de recompensas (MRP) de la figura, calcular los valores de los estados de forma iterativa con los siguientes algoritmos y compare sus convergencias. Considere factor de descuento $\gamma < 0.9$.

- a) Actualizar todos los valores a la vez por iteración: $\mathbf{v}_{k+1} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}_k$, con \mathbf{v}_k , \mathbf{r} siendo los vectores de valores y recompensas, respectivamente; y \mathbf{P} la matriz de probabilidades de transición.
- b) Actualizar el valor de un estado por vez (in place): $v_{k+1}(s') = r(s') + \gamma v_k(s)$, con $v_k(s)$ y r(s') siendo los valores y recompensas correspondientes a los estados s y s', respectivamente.

Ejercicio 2

En el Ejemplo 4.1 (*GridWorld*, Sutton&Barto, 2018), donde la política π es aleatoria y equiprobable:

- a) ¿Cuánto vale $q_{\pi}(11, down)$?
- b) ¿Cuánto vale $q_{\pi}(7, down)$?

 Nota: Utilice v(11) = -14 (Fig. 4.1 del libro)

Justifique sus respuestas

Ejercicio 3

En el Ejemplo 4.1 (*GridWorld*, Sutton&Barto, 2018), suponga que se agrega un nuevo estado 15 debajo del estado 13 y sus acciones: *left*, *up*, *right* y *down*, lleva al agente a los estados 12, 13, 14 y 15, respectivamente.

a) Considere que las transiciones desde los estados originales no se cambian. ¿Cuánto vale $v_{\pi}(15)$ para la política π aleatoria y equiprobable? Utilice v(12) = -22, v(13) = -20, v(14) = -14 (Fig. 4.1 del libro)

Justifique su respuesta

Ejercicio 4

En el Ejemplo 4.3 (Gambler's problem, Sutton&Barto, 2018) la política óptima tiene una forma particular (ver figura) con máximo en 50. Es decir, cuando el jugador tiene \$50, le conviene apostarlo todo; sin embargo, cuando tiene \$51, le conviene apostar \$1. ¿Por qué sucede esto?

APRENDIZAJE REFORZADO

Ejercicio 5

[Programación] Implemente el Algoritmo de Iteración de Valores para el el Ejemplo 4.3 (Gambler's problem, Sutton&Barto, 2018) para los siguientes casos:

- a) P(CARA) = 0.25
- b) P(CARA) = 0.55

Compare los resultados y saque conclusiones.