Math 171 Shahriari

Name:	Forest Kobayashi		
Ordered Number:	14		
HW #:	9w		
Day:	Mon. Wed. Fri.		
Date:	$\underline{\hspace{1cm}} 3/21/18$		

No.	Points	Acknowledgments
10.2.17		Cole K., Owen G.
10.3.9		
10.3.11		
11.1.2		kfldsafjksd
11.1.10		
Total		

This Homework is (check one	e):	
X On Time	2 day extension #1	2 day extension # 2
2 day extension #3	2 day extension #4	Brownie Point Extension
Late		

Problem 10.2.17 (The alternating group of degree 5)

Use problems **6.2.15** and **10.2.15** and Lagrange's theorem to prove that A_5 , the alternating group of degree 5, has no non-trivial normal subgroups.

Problem 10.3.9

Let G be a group, and let $N \triangleleft G$. Assume that |G:N| = m. Let $x \in G$. Prove that $x^m \in N$.

Problem 10.3.11

Assume that N is a normal subgroup of a group G. Assume E is a subgroup of G/N. Thus E is a collection of right cosets of N in G. Let K be the union of all the elements of E. In other words, K is a subset of G consisting of all the elements in the right cosets in E. Prove that K is a subgroup of G that contains N. What is |K|?

Problem 11.1.2

Define $\phi: (\mathbb{Z}/8\mathbb{Z}, +) \to (\mathbb{Z}/8\mathbb{Z}, +)$ by $\phi(x) = 2x$. Is ϕ a homomorphism? If so, what is $\phi^{-1}(\{0\})$? Answer the same questions for $\theta: (\mathbb{Z}/8\mathbb{Z}, +) \to (\mathbb{Z}/8\mathbb{Z}, +)$ defined by $\theta(x) = x^2$.

Problem 11.1.10

Let $\phi:G\to H$ be an onto homomorphism.

- (a) Assume that G is abelian. Does this imply that H is abelian? What about the converse?
- (b) What if we replaced abelian by cyclic in the above question?