pobm Documentation

Author

CONTENTS:

1	1 pobm package 1						
	1.1	1.1 Subpackages					
		1.1.1 pobm.obm package					
		1.1.1.1 Submodules	1				
		1.1.1.2 pobm.obm.burden	1				
		1.1.1.3 pobm.obm.complex	2				
		1.1.1.4 pobm.obm.desat	3				
		1.1.1.5 pobm.obm.general	4				
		1.1.1.6 pobm.obm.periodicity	5				
		1.1.1.7 Module contents	6				
		1.1.2 pobm.spo2 package	6				
		1.1.2.1 Submodules	6				
		1.1.2.2 pobm.spo2.single_biomarkers	6				
		1.1.2.3 Module contents	7				
	1.2	Submodules	7				
	1.3	pobm.main	7				
	1.4	pobm.prep	7				
	1.5	Module contents	8				
2	2 Indices and tables 9						
Python Module Index 11							
Inc	dex		13				

CHAPTER

ONE

POBM PACKAGE

1.1 Subpackages

1.1.1 pobm.obm package

1.1.1.1 Submodules

1.1.1.2 pobm.obm.burden

Bases: object

Class that calculates Hypoxic Burden Features from spo2 time series. Suppose that the data has been preprocessed.

Parameters

- **begin** List of indices of beginning of each desaturation event.
- end List of indices of end of each desaturation event.
- CT_Threshold Percentage of the time spent below the "CT_Threshold" % oxygen saturation level.
- CA_Baseline Baseline to compute the CA feature. Default value is mean of the signal.

compute (signal)

Parameters signal – 1-d array, of shape (N,) where N is the length of the signal

Returns

HypoxicBurdenMeasuresResults class containing the following features:

- CA: Integral SpO2 below the xx SpO2 level normalized by the total recording time
- CT: Percentage of the time spent below the xx% oxygen saturation level
- POD: Percentage of oxygen desaturation events
- AODmax: The area under the oxygen desaturation event curve, using the maximum SpO2 value as baseline and normalized by the total recording time
- AOD100: Cumulative area of desaturations under the 100% SpO2 level as baseline and normalized by the total recording time

Example:

```
from pobm.obm.burden import HypoxicBurdenMeasures

# Initialize the class with the desired parameters
hypoxic_class = HypoxicBurdenMeasures(results_desat.begin, results_desat.end,__

CT_Threshold=90, CA_Baseline=90)

# Compute the biomarkers
results_hypoxic = hypoxic_class.compute(spo2_signal)
```

1.1.1.3 pobm.obm.complex

```
class pobm.obm.complex.ComplexityMeasures (CTM\_Threshold=0.25, DFA\_Window=20, M\_Sampen=3, R\_Sampen=0.2, M\_ApEn=2, R\_ApEn=0.25)
```

Bases: object

Class that calculates Complexity Features from spo2 time series. Suppose that the data has been preprocessed.

:param signal: 1-d array, of shape (N,) where N is the length of the signal CTM_Threshold: Radius of Central Tendency Measure. DFA_Window: Length of window to calculate DFA biomarker. M_Sampen: Embedding dimension to compute SampEn. R_Sampen: Tolerance to compute SampEn. M_ApEn: Embedding dimension to compute ApEn. R_ApEn: Tolerance to compute ApEn.

 $compute(signal) \rightarrow pobm._ResultsClasses.ComplexityMeasuresResults$

Parameters signal – 1-d array, of shape (N,) where N is the length of the signal

Returns

ComplexityMeasuresResults class containing the following features:

- ApEn: Approximate Entropy.
- LZ: Lempel-Ziv complexity.
- CTM: Central Tendency Measure.
- SampEn: Sample Entropy.
- DFA: Detrended Fluctuation Analysis.

Example:

1.1.1.4 pobm.obm.desat

```
class pobm.obm.desat.DesaturationsMeasures (ODI_Threshold=3)
    Bases: object
```

Class that calculates the Desaturation Features from spo2 time series. Suppose that the data has been preprocessed.

Parameters ODI_Threshold – Threshold to compute Oxygen Desaturation Index.

```
compute(signal) \rightarrow pobm.\_ResultsClasses.DesaturationsMeasuresResults
```

Parameters signal - 1-d array, of shape (N,) where N is the length of the signal

Returns

DesaturationsMeasuresResults class containing the following features:

- DL_u: Mean of desaturation length
- DL_sd: Standard deviation of desaturation length
- DA100_u: Mean of desaturation area using 100% as baseline.
- DA100_sd: Standard deviation of desaturation area using 100% as baseline
- DAmax_u: Mean of desaturation area using max value as baseline.
- DAmax_sd: Standard deviation of desaturation area using max value as baseline
- DD100_u: Mean of depth desaturation from 100%.
- DD100_sd: Standard deviation of depth desaturation from 100%.
- DDmax_u: Mean of depth desaturation from max value.
- DDmax_sd: Standard deviation of depth desaturation from max value.
- DS_u: Mean of the desaturation slope.
- DS_sd: Standard deviation of the desaturation slope.
- TD_u: Mean of time between two consecutive desaturation events.
- TD sd: Standard deviation of time between 2 consecutive desaturation events.

Example:

```
from pobm.obm.desat import DesaturationsMeasures

# Initialize the class with the desired parameters
desat_class = DesaturationsMeasures(ODI_Threshold=3)

# Compute the biomarkers
results_desat = desat_class.compute(spo2_signal)
```

desaturation_detector(signal)

run desaturation detector, implemented by Dr. Joachim Behar

Parameters signal – The SpO2 signal, of shape (N,)

Returns

ODIMeasureResult class containing the following features:

- ODI: the average number of desaturation events per hour.
- begin: List of indices of beginning of each desaturation event.

1.1. Subpackages 3

• end: List of indices of end of each desaturation event.

```
\verb"pobm.obm.desat.desat_embedding" (\textit{begin}, \textit{end})
```

Help function for the class

Returns helper arrays containing the information about desaturation lengths and areas.

1.1.1.5 pobm.obm.general

```
class pobm.obm.general.OverallGeneralMeasures (ZC\_Baseline=None, percentile=1, M\_Threshold=2, DI\_Window=12)
Bases: object
```

Class that calculates Overall General Features from spo2 time series. Suppose that the data has been preprocessed.

Parameters

- **ZC_Baseline** Baseline for calculating number of zero-crossing points.
- **percentile** Percentile to perform. For example, for percentile 1, the argument should be 1
- M_Threshold Percentage of the signal M_Threshold % below median oxygen saturation. Typically use 1,2 or 5

 $compute(signal) \rightarrow pobm._ResultsClasses.OverallGeneralMeasuresResult$

Parameters signal – 1-d array, of shape (N₁) where N is the length of the signal

Returns

OveralGeneralMeasuresResult class containing the following features:

- AV: Average of the signal.
- MED: Median of the signal.
- Min: Minimum value of the signal.
- SD: Std of the signal.
- RG: SpO2 range (difference between the max and min value).
- P: percentile.
- M: Percentage of the signal x% below median oxygen saturation.
- ZC: Number of zero-crossing points.
- DI: Delta Index.

Example:

1.1.1.6 pobm.obm.periodicity

```
class pobm.obm.periodicity.PRSAMeasures (PRSA_Window=10, K_AC=2)
    Bases: object
```

Function that calculates PRSA Features from spo2 time series. Suppose that the data has been preprocessed.

:param PRSA_Window: Fragment duration of PRSA. K_AC: Number of values to shift when computing autocorrelation

```
compute(signal) \rightarrow pobm.\_ResultsClasses.PRSAResults
```

Parameters signal – 1-d array, of shape (N,) where N is the length of the signal

Returns

PRSAResults class containing the following features:

- PRSAc: PRSA capacity.
- PRSAad: PRSA amplitude difference.
- PRSAos: PRSA overall slope.
- PRSAsb: PRSA slope before the anchor point.
- PRSAsa: PRSA slope after the anchor point.
- AC: Autocorrelation.

Example:

```
from pobm.obm.periodicity import PRSAMeasures

# Initialize the class with the desired parameters
prsa_class = PRSAMeasures(PRSA_Window=10, K_AC=2)

# Compute the biomarkers
results_PRSA = prsa_class.compute(spo2_signal)
```

class pobm.obm.periodicity.PSDMeasures

Bases: object

Function that calculates PSD Features from spo2 time series. Suppose that the data has been preprocessed.

```
\textbf{compute} \ (\textit{signal}) \ \rightarrow \text{pobm.\_ResultsClasses.PSDResults}
```

:param signal: The SpO2 signal, of shape (N,)

Returns

PSDResults class containing the following features:

- PSD_total: The amplitude of the spectral signal.
- PSD_band: The amplitude of the signal multiplied by a band-pass filter between 0.014 and 0.033 Hz.
- PSD_ratio: The ratio between PSD_total and PSD_band.
- PDS_peak: The max value of the FFT into the band 0.014-0.033 Hz.

Example:

1.1. Subpackages 5

```
from pobm.obm.periodicity import PSDMeasures

# Initialize the class with the desired parameters
psd_class = PSDMeasures()

# Compute the biomarkers
results_PSD = psd_class.compute(spo2_signal)
```

1.1.1.7 Module contents

1.1.2 pobm.spo2 package

1.1.2.1 Submodules

1.1.2.2 pobm.spo2.single biomarkers

```
pobm.spo2.single_biomarkers.apen (signal, M_ApEn=2, R_ApEn=0.25)
```

Compute the approximate entropy, according to the paper Utility of Approximate Entropy From Overnight Pulse Oximetry Data in the Diagnosis of the Obstructive Sleep Apnea Syndrome

Parameters signal – 1-d array, of shape (N₁) where N is the length of the signal

Returns ApEn

Parameters

- signal 1-d array, of shape (N₁) where N is the length of the signal
- DFA_Window Length of window to calculate DFA biomarker.

Returns DFA

```
pobm.spo2.single_biomarkers.lempel_ziv(signal)
```

Compute lempel-ziv, according to the paper Non-linear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnoea detection

Parameters signal – 1-d array, of shape (N,) where N is the length of the signal

Returns LZ

```
pobm.spo2.single_biomarkers.odi(signal, ODI_Threshold=3)
```

Calculates the ODI from spo2 time series. Suppose that the data has been preprocessed.

Parameters

- signal The SpO2 signal, of shape (N,)
- **ODI_Threshold** Threshold to compute Oxygen Desaturation Index.

Returns ODI

```
pobm.spo2.single_biomarkers.sampen(signal, M_Sampen=3, R_Sampen=0.2)
Compute the Sample Entropy
```

Parameters

- **signal** 1-d array, of shape (N₁) where N is the length of the signal
- **M_Sampen** Embedding dimension to compute SampEn.

• **R_Sampen** – Tolerance to compute SampEn.

Returns SampEn

1.1.2.3 Module contents

1.2 Submodules

1.3 pobm.main

1.4 pobm.prep

```
pobm.prep.block_data (signal, treshold=50)
Apply a block data filter to the SpO2 signal.
```

Parameters

- **signal** 1-d array, of shape (N₁) where N is the length of the signal
- **(Optional)** (*treshold*) treshold parameter for block data filter.

Returns preprocessed signal, 1-d numpy array.

```
pobm.prep.dfilter(signal, Diff=4)
Apply Delta Filter to the signal.
```

Parameters

- **signal** 1-d array, of shape (N₁) where N is the length of the signal
- Diff parameter of the delta filter.

Returns preprocessed signal, 1-d numpy array.

```
pobm.prep.median spo2 (signal spo2, FilterLength=9)
```

Apply a median filter to the SpO2 signal. Median filter used to smooth the spo2 time series and avoid sporadic increase/decrease of spo2 which could affect the detection of the desaturations. Assumption: any missing/abnormal values are represented as 'np.nan'

Parameters

- **signal** 1-d array, of shape (N₁) where N is the length of the signal
- (Optional) (FilterLength) The length of the filter.

Returns preprocessed signal, 1-d numpy array.

```
pobm.prep.resamp_spo2 (signal, OriginalFreq)
```

Resample the SpO2 signal to 1Hz. Assumption: any missing/abnormal values are represented as 'np.nan'

Parameters

- signal 1-d array, of shape (N,) where N is the length of the signal
- OriginalFreq the original frequency.

Returns resampled signal, 1-d numpy array, the resampled spo2 time series at 1Hz

```
pobm.prep.set_range(signal, Range_min=50, Range_max=100)
```

Range function. Remove values lower than 50 or greater than 100, considered as non-physiological

Parameters signal – 1-d array, of shape (N₁) where N is the length of the signal

1.2. Submodules 7

Returns preprocessed signal, 1-d numpy array.

1.5 Module contents

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

р

```
pobm, 8
pobm.obm, 6
pobm.obm.burden, 1
pobm.obm.complex, 2
pobm.obm.desat, 3
pobm.obm.general, 4
pobm.obm.periodicity, 5
pobm.prep, 7
pobm.spo2, 7
pobm.spo2.single_biomarkers, 6
```

12 Python Module Index

INDEX

A apen() (in module pobm.spo2.single_biomarkers), 6 B block_data() (in module pobm.prep), 7 C ComplexityMeasures (class in pobm.obm.complex), 2 compute() (pobm.obm.burden.HypoxicBurdenMeasures method), 1	module pobm, 8 pobm.obm, 6 pobm.obm.burden, 1 pobm.obm.complex, 2 pobm.obm.desat, 3 pobm.obm.general, 4 pobm.obm.periodicity, 5 pobm.prep, 7 pobm.spo2, 7 pobm.spo2.single_biomarkers, 6
compute () (pobm.obm.complex.ComplexityMeasures method), 2	0
compute () (pobm.obm.desat.DesaturationsMeasures method), 3 compute () (pobm.obm.general.OverallGeneralMeasure.	odi() (in module pobm.spo2.single_biomarkers), 6 OverallGeneralMeasures (class in pobm.obm.general), 4
method), 4 compute() (pobm.obm.periodicity.PRSAMeasures method), 5 compute() (pobm.obm.periodicity.PSDMeasures method), 5	P pobm module, 8 pobm.obm
D	module, 6 pobm.obm.burden
<pre>desat_embedding() (in module pobm.obm.desat), 4 desaturation_detector()</pre>	module, 1 pobm.obm.complex module, 2 pobm.obm.desat module, 3 pobm.obm.general module, 4 pobm.obm.periodicity module, 5
H HypoxicBurdenMeasures (class in pobm.obm.burden), 1	pobm.prep module,7 pobm.spo2 module,7 pobm.spo2.single_biomarkers
<pre>lempel_ziv() (in module</pre>	module, 6 PRSAMeasures (class in pobm.obm.periodicity), 5 PSDMeasures (class in pobm.obm.periodicity), 5

pobm Documentation

R

resamp_spo2() (in module pobm.prep), 7

S

sampen() (in module pobm.spo2.single_biomarkers), 6
set_range() (in module pobm.prep), 7

14 Index