

Rob J Hyndman

Forecasting: Principles and Practice

1. Introduction to forecasting

OTexts.org/fpp/1/ OTexts.org/fpp/2/3

Resources

- Slides
- Exercises
- Textbook
- Useful links

robjhyndman.com/uwa

Outline

- 1 Introduction
- 2 Some case studies
- 3 Time series data
- 4 Some simple forecasting methods

- Director of Monash University's Business & Economic Forecasting Unit
- Editor-in-Chief, International Journal of Forecasting

- Director of Monash University's Business & Economic Forecasting Unit
- Editor-in-Chief, International Journal of Forecasting

- Director of Monash University's Business & Economic Forecasting Unit
- Editor-in-Chief, International Journal of Forecasting

- Pharmaceutical Benefits Scheme
- Cancer incidence and mortality
- Electricity demand

- Director of Monash University's Business & Economic Forecasting Unit
- Editor-in-Chief, International Journal of Forecasting

- Pharmaceutical Benefits Scheme
- Cancer incidence and mortality
- Electricity demand
- Ageing population
- Fertilizer sales

- Director of Monash University's Business & Economic Forecasting Unit
- Editor-in-Chief, International Journal of Forecasting

- Pharmaceutical Benefits Scheme
- Cancer incidence and mortality
- Electricity demand
- Ageing population
- Fertilizer sales

- Director of Monash University's Business & Economic Forecasting Unit
- Editor-in-Chief, International Journal of Forecasting

- Pharmaceutical Benefits Scheme
- Cancer incidence and mortality
- Electricity demand
- Ageing population
- Fertilizer sales

- Director of Monash University's Business & Economic Forecasting Unit
- Editor-in-Chief, International Journal of Forecasting

- Pharmaceutical Benefits Scheme
- Cancer incidence and mortality
- Electricity demand
- Ageing population
- Fertilizer sales

- Director of Monash University's Business & Economic Forecasting Unit
- Editor-in-Chief, International Journal of Forecasting

- Pharmaceutical Benefits Scheme
- Cancer incidence and mortality
- Electricity demand
- Ageing population
- Fertilizer sales

- Director of Monash University's Business & Economic Forecasting Unit
- Editor-in-Chief, International Journal of Forecasting

How my forecasting methodology is used:

- Pharmaceutical Benefits Scheme
- Cancer incidence and mortality
- Electricity demand
- Ageing population
- Fertilizer sales

robjhyndman.com

Poll: How experienced are you in forecasting?

- Guru: I wrote the book, done it for decades, now I do the conference circuit.
- Expert: It has been my full time job for more than a decade.
- Skilled: I have been doing it for years.
- Comfortable: I understand it and have done it.
- Learner: I am still learning.
- Beginner: I have heard of it and would like to learn more.
- Unknown: What is forecasting? Is that what the weather people do?

Hyndman, R. J. & Athanasopoulos, G. (2013) Forecasting: principles and practice.

otexts.org/fpp/

Free and online

■ Data sets in associated is pacific

R code for examples

Hyndman, R. J. & Athanasopoulos, G. (2013) Forecasting: principles and practice.

- Free and online
- Data sets in associated R package
- R code for examples

Hyndman, R. J. & Athanasopoulos, G. (2013) Forecasting: principles and practice.

- Free and online
- Data sets in associated R package
- R code for examples

Hyndman, R. J. & Athanasopoulos, G. (2013) Forecasting: principles and practice.

- Free and online
- Data sets in associated R package
- R code for examples

Hyndman, R. J. & Athanasopoulos, G. (2013) Forecasting: principles and practice.

- Free and online
- Data sets in associated R package
- R code for examples

Poll: How proficient are you in using R?

- Guru: The R core team come to me for advice.
- Expert: I have written several packages on CRAN.
- Skilled: I use it regularly and it is an important part of my job.
- Comfortable: I use it often and am comfortable with the tool.
- User: I use it sometimes, but I am often searching around for the right function.
- Learner: I have used it a few times.
- Beginner: I've managed to download and install it.
- Unknown: Why are you speaking like a pirate?

Which version of R are you using?

Version: (try getRversion() if you don't know)

- R 3.0.0 or higher
- ² R 2.15.x
- 3 R 2.14.x
- Something older.

Edition

- Standard R (CRAN)
- Standard R with RStudio
- Revolution R: Community, Enterprise Workstation or Server
- Something else?

Install required packages

```
install.packages("fpp", dependencies=TRUE)
```

Getting help with R

```
# Search for terms
help.search("forecasting")
# Detailed help
help(forecast)
# Worked examples
example("forecast.ar")
# Similar names
apropos("forecast")
#Help on package
```

Approximate outline

Day	Topic	Chapter
1	The forecaster's toolbox	1,2
1	Seasonality and trends	6
1	Exponential smoothing	7
2	Time series decomposition	6
2	Time series cross-validation	2
2	Transformations	2
2	Stationarity and differencing	8
2	ARIMA models	8
3	State space models	_
3	Dynamic regression	9
3	Hierarchical forecasting	9
3	Advanced methods	9

Assumptions

- This is not an introduction to R. I assume you are broadly comfortable with R code and the R environment.
- This is not a statistics course. I assume you are familiar with concepts such as the mean, standard deviation, quantiles, regression, normal distribution, etc.
- This is not a theory course. I am not going to derive anything. I will teach you forecasting tools, when to use them and how to use them most effectively.

Assumptions

- This is not an introduction to R. I assume you are broadly comfortable with R code and the R environment.
- This is not a statistics course. I assume you are familiar with concepts such as the mean, standard deviation, quantiles, regression, normal distribution, etc.
- This is not a theory course. I am not going to derive anything. I will teach you forecasting tools, when to use them and how to use them most effectively.

Assumptions

- This is not an introduction to R. I assume you are broadly comfortable with R code and the R environment.
- This is not a statistics course. I assume you are familiar with concepts such as the mean, standard deviation, quantiles, regression, normal distribution, etc.
- This is not a theory course. I am not going to derive anything. I will teach you forecasting tools, when to use them and how to use them most effectively.

Outline

- 1 Introduction
- 2 Some case studies
- 3 Time series data
- 4 Some simple forecasting methods

Problem: Want forecasts of each of hundreds of items. Series can be stationary, trended or seasonal. They currently have a large forecasting program written in-house but it doesn't seem to produce sensible forecasts. They want me to tell them what is wrong and fix it.

Problem: Want forecasts of each of hundreds of items. Series can be stationary, trended or seasonal. They currently have a large forecasting program written in-house but it doesn't seem to produce sensible forecasts. They want me to tell them what is wrong and fix it.

Additional information

Program written in COBOL making numerical calculations limited. It is not possible to do any optimisation.

Problem: Want forecasts of each of hundreds of items. Series can be stationary, trended or seasonal. They currently have a large forecasting program written in-house but it doesn't seem to produce sensible forecasts. They want me to tell them what is wrong and fix it.

Additional information

- Program written in COBOL making numerical calculations limited. It is not possible to do any optimisation.
- Their programmer has little experience in numerical computing.

Problem: Want forecasts of each of hundreds of items. Series can be stationary, trended or seasonal. They currently have a large forecasting program written in-house but it doesn't seem to produce sensible forecasts. They want me to tell them what is wrong and fix it.

Additional information

- Program written in COBOL making numerical calculations limited. It is not possible to do any optimisation.
- Their programmer has little experience in numerical computing.
- They employ no statisticians and want the program to produce forecasts automatically.

Methods currently used

- A 12 month average
- C 6 month average
- **E** straight line regression over last 12 months
- **G** straight line regression over last 6 months
- H average slope between last year's and this year's values.
 (Equivalent to differencing at lag 12 and
 - (Equivalent to differencing at lag 12 and taking mean.)
- I Same as H except over 6 months.
- K I couldn't understand the explanation.

The **Pharmaceutical Benefits Scheme** (PBS) is the Australian government drugs subsidy scheme.

- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.

The **Pharmaceutical Benefits Scheme** (PBS) is the Australian government drugs subsidy scheme.

- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.

The **Pharmaceutical Benefits Scheme** (PBS) is the Australian government drugs subsidy scheme.

- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.

The **Pharmaceutical Benefits Scheme** (PBS) is the Australian government drugs subsidy scheme.

- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.

ABC News Online

Vindovs Media

NewsRadio Streaming audio news

LISTEN: WMP | Real

Select a Topic from the list below Click "Refresh" or "Reload" on your browser for the latest edition.

This Bulletin: Wed, May 30 2001 6:22 PM AES

Top Stories

Just In World

Asia-Pacific

Business

Daoino

Sport

<u>Arts</u>

Sci Tech

<u>Indigenous</u>

Weather

Rural

Local News

Broadband

SPECIALS

Federal Election

<u>POLITICS</u>

Opp demands drug price restriction after PBS budget blow-out

The Federal Opposition has called for tighter controls on drug prices after the Pharmaceutical Benefits Scheme (PBS) budget blew out by almost \$800 million.

The money was spent on two new drugs including the controversial anti-smoking aid Zyban, which dropped in price from \$220 to \$22 after it was listed on the PBS.

Püblic Record

For full election coverage

FEATURES

Püblic Record

Federal Election 2001

For a fresh perspective on the federal election, reach into ABC Online's campaign weblog, The Poll Vault.

Audio News Online

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

Problem: how to forecast passenger traffic on major routes.

- They can provide a large amount of data on previous routes.
- Traffic is affected by school holidays, special events such as the Grand Prix, advertising campaigns, competition behaviour, etc.
- They have a highly capable team of people who are able to do most of the computing

Problem: how to forecast passenger traffic on major routes.

- They can provide a large amount of data on previous routes.
- Traffic is affected by school holidays, special events such as the Grand Prix, advertising campaigns, competition behaviour, etc.
- They have a highly capable team of people who are able to do most of the computing.

Problem: how to forecast passenger traffic on major routes.

- They can provide a large amount of data on previous routes.
- Traffic is affected by school holidays, special events such as the Grand Prix, advertising campaigns, competition behaviour, etc.
- They have a highly capable team of people who are able to do most of the computing.

Problem: how to forecast passenger traffic on major routes.

- They can provide a large amount of data on previous routes.
- Traffic is affected by school holidays, special events such as the Grand Prix, advertising campaigns, competition behaviour, etc.
- They have a highly capable team of people who are able to do most of the computing.

Outline

- 1 Introduction
- 2 Some case studies
- 3 Time series data
- 4 Some simple forecasting methods

- Time series consist of sequences of observations collected over time.
- We will assume the time periods are equally spaced.

Time series examples

Daily IBM stock prices

- Time series consist of sequences of observations collected over time.
- We will assume the time periods are equally spaced.

Time series examples

Daily IBM stock prices

Forecasting: Principles and Practice

- Time series consist of sequences of observations collected over time.
- We will assume the time periods are equally spaced.

Time series examples

- Daily IBM stock prices
- Monthly rainfall
- Annual Google profits
 - Quarterly Australian beer productions

- Time series consist of sequences of observations collected over time.
- We will assume the time periods are equally spaced.

Time series examples

- Daily IBM stock prices
- Monthly rainfall
- Annual Google profits
- Quarterly Australian beer production

- Time series consist of sequences of observations collected over time.
- We will assume the time periods are equally spaced.

Time series examples

- Daily IBM stock prices
- Monthly rainfall
- Annual Google profits
- Quarterly Australian beer production

- Time series consist of sequences of observations collected over time.
- We will assume the time periods are equally spaced.

Time series examples

- Daily IBM stock prices
- Monthly rainfall
- Annual Google profits
- Quarterly Australian beer production

- Time series consist of sequences of observations collected over time.
- We will assume the time periods are equally spaced.

Time series examples

- Daily IBM stock prices
- Monthly rainfall
- Annual Google profits
- Quarterly Australian beer production

- Time series consist of sequences of observations collected over time.
- We will assume the time periods are equally spaced.

Time series examples

- Daily IBM stock prices
- Monthly rainfall
- Annual Google profits
- Quarterly Australian beer production

Australian beer production

Looking for stories

Peak Break-Up Times

According to Facebook status updates

Looking for stories that make sense

(Metric Tons)

Think about what you're doing

MY HOBBY: EXTRAPOLATING

Australian GDP

- Class: ts
- Print and plotting methods available.

```
> ausgdp
```

```
      Qtr1
      Qtr2
      Qtr3
      Qtr4

      1971
      4612
      4651

      1972
      4645
      4615
      4645
      4722

      1973
      4780
      4830
      4887
      4933

      1974
      4921
      4875
      4867
      4905

      1975
      4938
      4934
      4942
      4979
```

Australian GDP

- Class: ts
- Print and plotting methods available.

Australian GDP

- Class: ts
- Print and plotting methods available.

Residential electricity sales

```
> elecsales
Time Series:
Start = 1989
End = 2008
Frequency = 1
  [1] 2354.34 2379.71 2318.52 2468.99 2386.09 2569.47
  [7] 2575.72 2762.72 2844.50 3000.70 3108.10 3357.50
[13] 3075.70 3180.60 3221.60 3176.20 3430.60 3527.48
[19] 3637.89 3655.00
```

Main package used in this course

> library(fpp)

Main package used in this course

> library(fpp)

This loads:

- some data for use in examples and exercises
- **forecast** package (for forecasting functions)
- tseries package (for a few time series
- functions)
- functions)

Forecasting: Principles and Practice

Main package used in this course

> library(fpp)

This loads:

- some data for use in examples and exercises
- **forecast** package (for forecasting functions)
- tseries package (for a few time series functions)
- fma package (for lots of time series data)
- expsmooth package (for more time series data)
- Imtest package (for some regressions)

Main package used in this course

> library(fpp)

- some data for use in examples and exercises
- forecast package (for forecasting functions)
- tseries package (for a few time series functions)
- fma package (for lots of time series data)
- expsmooth package (for more time series data)
- Imtest package (for some regression functions)

Main package used in this course

> library(fpp)

- some data for use in examples and exercises
- forecast package (for forecasting functions)
- tseries package (for a few time series functions)
- fma package (for lots of time series data)
- expsmooth package (for more time series data)
- Imtest package (for some regression functions)

Main package used in this course

> library(fpp)

- some data for use in examples and exercises
- forecast package (for forecasting functions)
- tseries package (for a few time series functions)
- fma package (for lots of time series data)
- expsmooth package (for more time series data)
- Imtest package (for some regression functions)

Main package used in this course

> library(fpp)

- some data for use in examples and exercises
- forecast package (for forecasting functions)
- tseries package (for a few time series functions)
- fma package (for lots of time series data)
- expsmooth package (for more time series data)
- **Imtest** package (for some regression functions)

Outline

- 1 Introduction
- 2 Some case studies
- 3 Time series data
- 4 Some simple forecasting methods

Can you think of any forecasting methods for these data?

How would you forecast these data?

How would you forecast these data?

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method (for time series only)

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method (for time series only)

Enrecasts equal to last observed value

Social paive method

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \dots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method (for time series only)

- Forecasts equal to last observed value
 - Forecasts: $\dot{y}_{T+h|T} = y_T$
 - Consequence of efficient market hypothesis

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method (for time series only)

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method (for time series only)

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method (for time series only)

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

Forecasts equal to last value from same season

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method (for time series only)

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

- Forecasts equal to last value from same season
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and $k = \lfloor (h-1)/m \rfloor + 1$

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method (for time series only)

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and $k = \lfloor (h-1)/m \rfloor + 1$.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method (for time series only)

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and $k = \lfloor (h-1)/m \rfloor + 1$.

Which method is which?

Which method is which?

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

Equivalent to extrapolating a line drawn between first and last observations.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

Equivalent to extrapolating a line drawn between first and last observations.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$

$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

■ Equivalent to extrapolating a line drawn between first and last observations.

- Mean: meanf(x, h=20)
- Naive: naive(x, h=20) or rwf(x, h=20)
- Seasonal naive: snaive(x, h=20)
- Drift: rwf(x, drift=TRUE, h=20)

- Mean: meanf(x, h=20)
- Naive: naive(x, h=20) or rwf(x, h=20)
- Seasonal naive: snaive(x, h=20)
- Drift: rwf(x, drift=TRUE, h=20)

- Mean: meanf(x, h=20)
- Naive: naive(x, h=20) or rwf(x, h=20)
- Seasonal naive: snaive(x, h=20)
- Drift: rwf(x, drift=TRUE, h=20)

- Mean: meanf(x, h=20)
- Naive: naive(x, h=20) or rwf(x, h=20)
- Seasonal naive: snaive(x, h=20)
- Drift: rwf(x, drift=TRUE, h=20)