Francisco Javier Otero
Herrero
Grupo ATU
20-3-2025

Contenido

Protocolo TCP	. 2
Principales características del protocolo TCP:	. 2
Ejemplo de uso:	.3
Proceso de conexión y desconexión con TCP	.4
Establecimiento de la Conexión (Three-Way Handshake).	. 4
Cierre de la Conexión (Four-Way Handshake)	. 5
Diferencias entre la conexión y desconexión	. 6

Protocolo TCP

El **protocolo TCP (Transmission Control Protocol)** es uno de los principales protocolos de comunicación en redes, utilizado principalmente en Internet para garantizar la entrega fiable de datos entre dispositivos.

Las siglas **TCP/IP** significan Transmission Control Protocol/Internet **Protocol.** El TCP/IP describe una serie de protocolos generales de diseño e implementación para permitir que un equipo pueda comunicarse con una red. Dota a la red de una conectividad "extremo a extremo" especificando cómo se comportan los datos en ella. El mantenimiento de estos protocolos es responsabilidad de la **IETF** (Internet Engineering Task Force.

Principales características del protocolo TCP:

- Confiabilidad: TCP garantiza que los datos se entregan sin errores, en orden y sin duplicaciones. Para lograrlo, usa mecanismos como la numeración de segmentos y confirmaciones (ACK).
- Orientado a conexión: Antes de transmitir datos, se debe establecer una conexión entre el emisor y el receptor mediante un proceso llamado "Three-Way Handshake" (sincronización de tres pasos).
- Control de flujo: Regula la cantidad de datos que pueden ser enviados sin abrumar al receptor, utilizando un sistema de ventana deslizante (Sliding Window).
- Control de congestión: TCP ajusta dinámicamente la velocidad de transmisión para evitar la congestión en la red y reducir la pérdida de paquetes.
- Segmentación y re ensamblaje: Divide los datos en segmentos más pequeños para su transmisión y los vuelve a ensamblar en el destino en el orden correcto.

- ➤ Detección y corrección de errores: Usa un mecanismo de suma de verificación (checksum) para detectar errores en los datos recibidos y solicita retransmisiones si es necesario.
- ➤ Entrega ordenada de datos: TCP asegura que los segmentos lleguen en el mismo orden en que fueron enviados. Si un paquete se pierde o llega fuera de orden, se retransmite y reorganiza.
- Multiplexación: Permite que múltiples aplicaciones en un mismo dispositivo usen TCP simultáneamente mediante el uso de puertos (ejemplo: HTTP usa el puerto 80, HTTPS el 443).
- Modo full-duplex: Permite que la comunicación sea bidireccional simultáneamente, lo que significa que ambos extremos pueden enviar y recibir datos al mismo tiempo.
- ➤ Protocolo pesado (mayor consumo de recursos): Debido a sus mecanismos de control y fiabilidad, TCP requiere más recursos y ancho de banda en comparación con otros protocolos como UDP.

Ejemplo de uso:

TCP se utiliza en aplicaciones como:

- Navegación web (HTTP/HTTPS)
- Correo electrónico (SMTP, IMAP, POP3)
- Transferencia de archivos (FTP)
- Mensajería instantánea

Proceso de conexión y desconexión con TCP

El **proceso de conexión y desconexión en TCP** se basa en un conjunto de pasos bien definidos para garantizar una comunicación confiable entre dos dispositivos en la red:

1. Establecimiento de la Conexión (Three-Way Handshake)

Antes de enviar datos, TCP necesita establecer una conexión entre el cliente y el servidor mediante un "apretón de manos en tres pasos":

I. SYN (Solicitud de conexión)

- ➤ El cliente envía un segmento TCP con el flag SYN (synchronize) activado y un número de secuencia inicial (ISN) aleatorio.
- Esto indica que quiere iniciar una conexión.

II. SYN-ACK (Confirmación de conexión)

- ➤ El servidor responde con un segmento TCP que tiene SYN + ACK (acknowledge) activados.
- El servidor también elige su propio número de secuencia.

III. ACK (Confirmación final)

- ➤ El cliente envía un último segmento con el flag ACK activado para confirmar la conexión.
- Ahora, la conexión está establecida y los datos pueden empezar a transmitirse.

2. Cierre de la Conexión (Four-Way Handshake)

Para finalizar la conexión de manera segura, TCP usa un proceso de cuatro pasos:

I. FIN (Solicitud de cierre)

- El dispositivo que quiere cerrar la conexión envía un segmento con el flag FIN (finish) activado.
- Esto indica que ya no tiene más datos para enviar.

II. ACK (Confirmación de FIN)

➤ El otro extremo responde con un ACK para confirmar que recibió la solicitud de cierre.

III. FIN (Solicitud de cierre del otro lado)

Cuando el otro dispositivo termina de enviar sus propios datos, también envía un FIN.

IV. ACK (Confirmación final)

- El primer dispositivo envía un último ACK para confirmar la terminación de la conexión.
- Luego, la conexión se cierra completamente.

Después del último ACK, TCP entra en un estado llamado **TIME_WAIT**, donde espera un corto período de tiempo antes de liberar completamente la conexión, asegurando que todos los paquetes han sido transmitidos correctamente.

Diferencias entre la conexión y desconexión

Características	Conexión(Three-Way Handsacke)	Desconexión(Four-Way Handsacke)
Número de pasos	3 pasos (SYNC, SYNC-ACK, ACK)	4 pasos (FIN, ACK, FIN, ACK)
Iniciador	Cliente inicia la conexión	Cualquiera de los dos puede iniciar el cierre
Objetivo	Establecer una comunicación fiable	Asegurar el cierre ordenado de la conexión
Uso de FIN	No se usa	Se usa para indicar el cierre de cada lado