

Indice

1	1 Spazio di Probabilità		
	1.1 Cenni di Teoria della Misura	3	
	1.2 Proprietà Generali	7	

1 Spazio di Probabilità

Per poter studiare Probabilità e statistica possiamo immaginare di fare un parallelismo con l'analisi:

Probabilità e Statistica	Analisi Matematica
Spazio di Probabilità	Numeri reali
Variabile Aleatoria	Variabile reale
Convergenza per successioni di variabili aleatorie	Successioni
(M) Processo Stocastico	Funzioni
(M) Calcolo Stocastico	Calcolo differenziale e integrale
(M) Equazioni Differenziali Stocastiche	Equazioni Differenziali

Il (M) sta indicare che non sono argomenti trattati in questo corso, ma saranno approfonditi alla magistrale

1.1 Cenni di Teoria della Misura

Definizione 1.1.1: Spazio Misurabile

Si definisce **Spazio Misurabile** una coppia (Ω, \mathcal{F}) , dove Ω è un insieme non vuoto e \mathcal{F} è una σ -algebra, cioè una famiglia non vuota di sottoinsiemi di Ω che soddisfa due proprietà:

- 1. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$, cioè \mathcal{F} è chiuso rispetto al complementare
- 2. Se $(A_n)_{n\in\mathbb{N}}$ è una successione in \mathscr{F} , allora

$$\bigcup_{n\in\mathbb{N}}A_n\in\mathscr{F}$$

cioè F è chiusa rispetto all'unione numerabile

Il prefisso " σ -" davanti a queste parole sta ad indicare che si tratta di una proprietà <u>numerabile</u>. Quindi le due proprietà sopra elencate possono essere scritte come " \mathscr{F} è σ - \cup -chiuso"

Osservazione. Sottolineiamo che Ω può essere un insieme qualunque (un esempio, forse il più facile da tenere a mente è quello della Teoria della Misura di Lebesgue, un esempio può essere $(\Omega, \mathcal{F}) = (\mathbb{R}^n, \mathcal{M}(\mathbb{R}^n))$) Quindi possiamo prendere insiemi qualunque, che siano numerici, come \mathbb{N}, \mathbb{C} , vettoriali \mathbb{R}^n , oppure qualcosa di totalmente diverso, come l'insieme delle funzioni continue $C(\mathbb{R})$, l'insieme dei polinomi $\mathbb{R}[x]$ addirittura l'insieme delle sedie in una stanza.

Osservazione (σ -algebre banali). Esistono due tipi di σ -algebre particolari, dette **Banali** in quanto sono definite come:

$$\mathscr{F} = \{\varnothing, \Omega\}$$
 e $\mathscr{F} = \mathscr{P}(\Omega)$

In particolare abbiamo che valgono:

$$\{\emptyset, \Omega\} \subseteq \mathscr{F} \subseteq \mathscr{P}(\Omega) \qquad \forall \mathscr{F} \ \sigma - algebra$$

Proposizione 1.1.2

Se \mathscr{F} è una σ -algebra, allora è \cup -chiusa (cioè l'unione finita è chiusa)

Dimostrazione. Siano $A_1,...,A_n \in \mathcal{F}$ e siano:

$$\bigcup_{k=1}^{n} A_n = \bigcup_{k=1}^{+\infty} \overline{A}_k \qquad \text{dove } \overline{A}_k = \begin{cases} A_k & k \le n \\ A_n & k > n \end{cases}$$

Tuttavia, sappiamo che \mathscr{F} è una σ -algebra, quindi il secondo elemento sta in \mathscr{F} . Tuttavia, essendo il secondo uguale al primo abbiamo che anche il primo sta in \mathscr{F} . Per l'arbitrarietà degli A_k , segue che \mathscr{F} è \cup -chiuso

Osservazione. Per, definizione di σ -algebra, \mathscr{F} è non vuoto. Sia $A \in \mathscr{F}$ vale che:

$$A^c \in \mathscr{F} \implies A \cup A^c = \Omega \in \mathscr{F} \quad e \quad \varnothing = \Omega^c \in \mathscr{F}$$

questo implica che \varnothing e Ω appartengono a ogni \mathscr{F} σ -algebra.

Osservazione. Prendiamo $(A_n)_{n\in\mathbb{N}}$ successione in \mathscr{F} allora dalla definizione vale che:

$$\bigcap_{n\in\mathbb{N}} A_n = \left(\bigcup_{n\in\mathbb{N}} A^c\right)^c \in \mathscr{F}$$

Definizione 1.1.3: Misura su (Ω, \mathcal{F})

Definiamo una **Misura** su uno spazio misurabile come una funzione $\mu: \mathscr{F} \to [0, +\infty]$ tale che:

- 1. $\mu(\emptyset) = 0$
- 2. $\mu \stackrel{.}{e} \sigma$ -additiva ovvero:

Se (A_n) è una successione in \mathscr{F} i cui elementi sono disgiunti $\Longrightarrow \mu\left(\bigcup_{n\geq 1}A_n\right)=\sum_{n\geq 1}\mu(A_n)$

Osservazione (La misura è additiva su somme finite). Usiamo la Notazione \biguplus per parlare di unione disgiunta. Siano A_1, \ldots, A_n disgiunti e siano $A_k = \emptyset \ \forall k \geq n+1$, dalla definizione di misura segue banalmente che $\mu(A_k) = 0 \ \forall k \geq n+1$ allora dal fatto poichè μ è σ -additiva vale che:

$$\mu\left(\biguplus_{k=1}^{n} A_{k}\right) = \mu\left(\biguplus_{k=1}^{+\infty} A_{k}\right) = \sum_{k=1}^{+\infty} \mu(A_{k}) = \sum_{k=1}^{n} \mu(A_{k})$$

Definizione 1.1.4: Spazio di Probabilità

Definiamo uno **Spazio di Probabilità** come una tripla (Ω, \mathcal{F}, P) , cioè uno spazio misurabile (Ω, \mathcal{F}) con misura P tale che:

$$P(\Omega) = 1$$

Diamo adesso dei nomi agli strumenti che stiamo utilizzando, in particolare utilizzando un esempio, quello del dado a 6 facce:

Elemento	Nome	Esempio
Ω	Spazio Campionario	$\Omega = \{1, 2, 3, 4, 5, 6\}$
$\omega \in \Omega$	Esito	$\omega = 1$
F	Famiglia degli Eventi	$\mathscr{F} = \mathscr{P}(\Omega)$
$A\in\mathscr{F}$	Evento	$A = \{1, 3, 5\}$
P	Misura di Probabilità	P(A)

Definizione 1.1.5: Spazio Discreto

Uno spazio si dice **Discreto** se Ω è finito o numerabile in questo caso prendiamo:

$$\mathscr{F} = \mathscr{P}(\Omega)$$
 e scriviamo $(\Omega, \mathscr{F}, P) = (\Omega, P)$

Esempio 1 (Lancio di un dado). In questo caso abbiamo: $\Omega = \{1, ..., 6\}$, $\mathscr{F} = famiglia degli eventi dove <math>A \in \mathscr{F}$ è un evento ovvero "un affermazione relativa all'esito dell'esperimento", P = Misura di probabilità è la funzione $P : \mathscr{F} \to [0,1]$ che manda A nella probabilià che l'esito sia positivo.

Per esempio sia $A = \{1,3,5\} \subseteq \Omega$ ovvero le possibili facce che lanciando il Dado diano un esito positivo, allora $P(A) = \frac{1}{2}$. Notiamo inoltre che lanciando il dado uscirà sempre almeno una faccia questo equivale a dire che $P(\varnothing) = 0$ e $P(\Omega) = 1$.

Osservazione. Possiamo fare un parallelismo tra gli insiemi misurabili e la probabilità aiutandoci con la "terminologia":

Analisi e Insiemistica	Probabilità e statistica
$A \cup B$	Evento A "oppure" Evento B
$A\cap B$	Evento A "e" Evento B
A^c	"Non Evento A"
$\mu(\mathbb{Q}) = 0$	$P(A) = 0 \Rightarrow A$ è "non misurabile"
$\mu(\mathbb{R}\setminus\mathbb{Q})=+\infty$	$P(A) = 1 \Rightarrow A$ è "quasi certo"

Esempio 2 (Corridore e le due Gare). Abbiamo un corridore che partecipa a 2 gare dove, ottimisticamente parlando, vorrebbe vincere le due gare:

- A = Vince la prima gara
- $B = Vince \ la \ seconda \ gara$

Supponiamo di avere come dati:

- P(A) = 30% la probabilità di vincere di la prima gara
- P(B) = 40% la probabilità di vincere la seconda gara
- $P(A \cup B) = 50\%$ la probabilità di vincere la prima o la seconda gara

Allora dall'additività della misura possiamo ricavare:

$$P(A \cup B) = P(A \uplus (B \setminus A)) = P(A) + P(B \setminus A) = P(A) + P(B \setminus A) + P(A \cap B) - P(A \cap B)$$

e poiché $P(B \setminus A) + P(A \cap B) = P(B)$ otteniamo:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

Andando a sostituire otteniamo:

$$P(A \cup B) = P(A) + P(B) - P(A \cup B) = 0.3 + 0.4 - 0.5 = 0.2 = 20\%$$

Osservazione. L'esempio precedente funziona perché siamo in uno spazio discreto. Prendiamo (Ω, P) discreto ovvero $\#\Omega \leq \aleph_0$ quindi considerando ω esito e $\{\omega\}$ evento elementare sappiamo che vale:

$$P(A) = P\left(\bigcup_{\omega \in A} \{\omega\}\right) = \sum_{\omega \in A} P(\{\omega\})$$

Quindi data *P* misura di probabilità posso definire la seguente funzione:

$$p: \quad \Omega \to [0,1]$$

$$\omega \mapsto P(\{\omega\}) = p(\omega)$$

Dove sappiamo che valgono:

- $1 = P(\Omega) = \sum_{w \in \Omega} p(\omega)$
- $p(\omega) \ge 0$

Concludendo possiamo dire che se (Ω, P) è discreto, posso studiare la probabilità sui singoli eventi elementari.

È importante osservare che avere la probabilità dei singoli esiti o eventi elementari risulta fondamentale nel calcolo di vari eventi. In particolare se lo spazio campionario di partenza è molto grande oppure numerabile.

Esempio 3. Se abbiamo uno spazio campionario Ω tale che $\#\Omega=100$, allora abbiamo che $\#\mathcal{P}(\Omega)=2^{100}$. Risulta quindi estremamente più comodo conoscere le probabilità dei singoli eventi elementari che di tutti gli eventi possibili. Per questo motivo, in questo caso, è opportuno ricordare p definita sugli esiti che P sugli eventi.

Viceversa, se Ω è discreto, cioè è tale che $\Omega = \{\omega_1, \omega_2, ...\}$, e conosciamo le singole probabilità di ogni esito, allora possiamo considerare una successione $(p_n)n$, definite come $p_n = p(\omega_n)$, e possiamo calcolare P(A), per $A \in \mathcal{F}$, come:

$$P(A) = \sum_{\omega_n \in A} p_n$$

Quindi p mi definisce una misura di probabilità P.

Tutto quello che abbiamo fatto è fattibile in quanto abbiamo che Ω è discreto, se così non fosse non sarebbe possibile.

Esempio 4 (Probabilità Uniforme). Se abbiamo che $\#\Omega = N$, allora possiamo prendere $p_n = \frac{1}{N}$ per $n \in \{1, 2, ..., N\}$, allora segue che la probabilità di ogni evento è:

$$P(A) = \frac{\#A}{\#\Omega}$$

Cioè andiamo a guardare le cardinalità degli insiemi. In sintesi questo sarebbe "Casi Favorevoli su Casi Totali"

Esempio 5 (Continuo del Corridore, Esempio 2). *Possiamo scrivere* Ω *come:*

$$\Omega = \{p_1 = vv, p_2 = vp, p_3 = pv, p_4 = pp\}$$

Allora, riprendendo gli eventi A e B, questi possono essere scritti come:

$$A = \{vv, vp\} = \{p_1, p_2\} = 30\%$$
 $B = \{vv, pv\} = \{p_1, p_3\} = 40\%$

Da cui segue che:

$$A \cup B = \{vv, vp, pv\} = \{p_1, p_2, p_3\} = 50\%$$
 $A \cap B = \{vv\} = ??\%$

Abbiamo allora che P è univocamente determinata se conosciamo p_1, p_2, p_3, p_4 . Tuttavia, per come abbiamo definito p, abbiamo che:

$$p_1 + p_2 + p_3 + p_4 = 1$$
 \Rightarrow $p_4 = 1 - p_1 - p_2 - p_3$

Otteniamo quindi un sistema lineare di 4 operazioni a 4 incognite:

$$\begin{cases} p_1 + p_2 = 0,3 \\ p_1 + p_3 = 0,4 \\ p_1 + p_2 + p_3 = 0,5 \\ p_1 + p_2 + p_3 + p_4 = 1 \end{cases}$$

Andandolo a risolvere otteniamo lo stesso risultato ottenuto nell'esempio precedente

Questo è anche un esempio di probabilità non uniforme

Osservazione. La probabilità uniforme non è altro che un esempio di probabilità, il caso più semplice e a volte anche quello meno interessante, in quanto basta solamente guardare la cardinalità degli insiemi degli eventi e può essere usata solamente per Ω finiti. Se infatti Ω fosse numerabile, avremmo che:

$$1 = P(\Omega) = \sum_{\omega \in \Omega} P(\{\omega\})$$

Poiché tutti gli elementi sono uguali, questa serie diverge oppure è uguale a 0.

1.2 Proprietà Generali

Proposizione 1.2.1: Monotonia

Vale la proprietà di monotonia per la Misura di Probabilità P, cioè:

$$\forall A, B \in \mathscr{F}: A \subseteq B \Rightarrow P(A) \leq P(B)$$

Dimostrazione. Graficamente abbiamo che:

Allora possiamo considerare:

$$P(B) = P(A \uplus (B \setminus A)) = P(A) + \underbrace{P(B \setminus A)}_{\geq 0} \geq P(A)$$

Osservazione. Se $B = \Omega$, allora abbiamo che: $1 = P(\Omega) = P(A) + P(A^c) \implies P(A^c) = 1 - P(A)$

Esempio 6 (Lancio 8 dadi). Sia Ω l'insieme dei possibili risultati lanciando 8 dadi e sia A = "esca almeno un 6". In questo caso (così come quelli futuri in cui ci sarà "almeno"), è più facile calcolare $P(A^c)$, dove $A^c =$ "Non esce neanche un 6". Scrivendo tutto per bene in formule abbiamo che:

$$\Omega = \{(\omega_1, ..., \omega_8) : \omega_i \in \{1, ..., 6\}\} \Rightarrow \#\Omega = 6^8$$

Allora abbiamo che:

$$P(A) = 1 - P(A^c) = 1 - \frac{\#A^c}{\#O} = 1 - \frac{5^8}{6^8}$$

Proposizione 1.2.2: σ -sub-additività di P

Se P è misura di Probabilità $\Rightarrow P$ è σ -sub-additiva ovvero vale:

$$\forall A \in (A_n) \in \mathcal{F} : A \subseteq \bigcup_{n \ge 1} A_n \quad \Rightarrow \quad P(A) \le \sum_{n \ge 1} P(A_n)$$

Dimostrazione. Siano A e $(A_n) \in \mathscr{F}$ tali che $A \subseteq \bigcup_{n \ge 1} A_n$, poniamo $\overline{A}_1 = A_1 \cap A$, e prendiamo come elementi disgiunti $\overline{A}_n = \left(A_n \setminus \left(\bigcup_{k=1}^{n-1} \overline{A}_k\right)\right) \cap A$. In questo modo infatti vale che sono tutti elmenti di \mathscr{F} e $A = \biguplus_{n \ge 1} \overline{A}_n$ e quindi dalla σ -additività 1.1.3 e dalla Monotonia 1.2.1 vale che:

$$P(A) = \sum_{n \ge 1} P(\overline{A}_n) \le \sum_{n \ge 1} P(A_n) \qquad \left(\overline{A}_n \subseteq A_n \,\forall \, n\right)$$

Proposizione 1.2.3: Caratterizzazione dell'additività Finita

Sia $P: \mathcal{F} \to [0,1]$ Misura di Probabilità tale che $P(\emptyset) = 0$ allora:

$$P$$
 è additiva (Finitamente) \iff $P(A \cup B) = P(A) + P(B) - P(A \cup B) \quad \forall A, B \in \mathscr{F}$

 $Dimostrazione. \Rightarrow$ la prima implicazione l'abbiamo vista ieri nell'esempio del Corridore 2. \Leftarrow la seconda implicazione invece è ovvia infatti basta partire dal caso $A \cap B = \emptyset$ ed otteniamo il risultato.

Esempio 7 (Lancio dei 2 Dadi). Consideriamo il seguente evento A= "Almeno uno dei 2 lanci è minore o uguale a 3", (Piccola notazione: $I_n = \{1, \ldots, n\}$ $n \in \mathbb{N}$) in questo caso lo spazio di probabilità discreto (Ω, P) è composto da:

- $\Omega = I_6 \times I_6 = \{(m, n) : m, n \in I_6\}$
- P Probabilità uniforme

In particolare notiamo che $A = A_1 \cup A_2$ dove A_1 ="Il primo lancio è minore o uguale di 3" e A_2 ="Il secondo lancio è minore o uguale di 3". Sappiamo che questi 2 eventi non sono disgiunti e che valgono:

- | Ω |= 36
- $|A_1| = |A_2| = 18$
- $|A_1 \cap A_2| = 9$

Sapendo che lo spazio è discreto vale la proposizione precedente e quindi:

$$P(A) = P(A_1) + P(A_2) - P(A_1 \cap A_2) = \frac{|A_1|}{|\Omega|} + \frac{|A_2|}{|\Omega|} - \frac{|A_1 \cap A_2|}{|\Omega|} = \frac{18}{36} + \frac{18}{36} - \frac{9}{36} = \frac{27}{36} = 75\%$$

Prima di enunciare la prossima proposizione diamo 2 notazioni che ci torneranno utili:

$$A_n \nearrow A \stackrel{\mathrm{def}}{\Longleftrightarrow} A_n \subseteq A_{n+1} \forall n$$
 e $\bigcup_{n \ge 1} A_n = A$

$$A_n \setminus A \stackrel{\text{def}}{\Longleftrightarrow} A_n \supseteq A_{n+1} \forall n \text{ e } \bigcup_{n \ge 1} A_n = A$$

Proposizione 1.2.4: Nome che mette manu

 $P: \mathcal{F} \to [0,1]$ additiva e tale che $P(\emptyset) = 0$ allora sono equivalenti:

- 1. $P \in \sigma$ -additiva
- 2. P è σ -subadditiva
- 3. P è continua dal basso ossia vale la seguente implicazione:

$$\forall (A_n) \in \mathscr{F} : A_n \nearrow A \quad \Rightarrow \quad \lim_{n \to +\infty} P(A_n) = P(A)$$

4. P è continua dall'alto ossia vale la seguente implicazione:

$$\forall (A_n) \in \mathscr{F} : A_n \setminus A \quad \Rightarrow \quad \lim_{n \to +\infty} P(A_n) = P(A)$$

Dimostrazione. $1 \Rightarrow 2$ l'abbiamo fatta nella proposizione 1.2.2

 $2 \Rightarrow 3$ Ovvero P è σ -subadditiva ⇒ P è continua dal basso, vediamo se vale la condizione.

Sia
$$A_n \nearrow A \Rightarrow A_n \subseteq A_{n+1} \forall n$$
 $\stackrel{\text{Monotonia}}{\Longrightarrow}$ $P(A_n) \leq P(A_{n+1}) \leq P(A) \Rightarrow \exists \lim_{n \to +\infty} P(A_n) \leq P(A)$

Ora definiamo $\overline{A}_1=A_1$ e $\overline{A}_n=A_n\setminus A_{n-1}$ questo implica che $A=\biguplus_{n\geq 1}\overline{A}_n$. Utilizzando la σ -subadditività otteniamo:

$$P(A) \le \sum_{n>1} P(\overline{A}_n) = \lim_{n \to +\infty} \sum_{k=1}^n P(\overline{A}_n) = \lim_{n \to +\infty} P(A_n)$$