claims:

[claim1] A method for producing polyester by polycondensation of at least one glycol ester of bifunctional aromatic carboxylic acid and/or low polymer thereof, wherein a homogeneous and clear solution is used as a polycondensation catalyst which is obtained by heating a titanium compound shown by formula (I)

(I): Ti (OR) 4 (wherein R is alkyl group) and a phosphorus compound shown by formula (II),

(II): (O=)P(OR1)(OR2)(OR3) [wherein R1, R2, and R3 are H or alkyl group, at least one of the R1, R2 and R3 is an alkyl group] in a glycol prior to the polycondensation.

[claim2] A method for producing polyester according to claim1, wherein the molar ratio of the titanium compound (I) and the phosphorus compound (II) is 1/3-6 mol/mol in the homogeneous and clear solution.

[claim3] A method for producing polyester according to claim1 or 2, wherein the titanium compound is shown by formula (I'). (I'): Ti(0R')4 (wherein R' is an alkyl group with 3 to 4 carbon atoms)

[claim4] A method for producing polyester according to claim1 or 2, wherein the

phosphorus compound is shown by formula (II').

(II): (0=) P (OR' 1) (OR' 2) (OR' 3) [wherein R' 1, R' 2, and R' 3 are H or alkyl group with 3 to 4 carbon atoms, and at least one of the R' 1, R' 2 and R' 3 is an alkyl group with 3 to 4 carbon atoms.]

[claim5] A method for producing polyester according to any of claim1, wherein the glycol ester of bifunctional aromatic carboxylic acid is a glycol ester of terephthalic acid.

[claim6] A method for producing polyester according to any of claim1, wherein the glycol ester of bifunctional aromatic carboxylic acid is a ethylene glycol terephthalate.

[claim7] A method for producing polyester according to any of claim1 or 2, wherein the glycol is an ethylene glycol.

Abstract:

PURPOSE: To obtain a polyester having a high softening point and good color tone, by polycondensation reaction of a glycol ester of a bifunctional aromatic carboxylic acid, using the reaction product of a titanium and a phosphorus compounds as a catalyst. CONSTITUTION: The reaction product of a titanium and a phosphorus compounds as a catalyst. CONSTITUTION: The reaction product of a titanium compound shown by formula Ti (OR) 4 (R is alkyl) and a phosphorus compound shown by formula R1 OP (OR2) (O) OR3 [R1, R2, and R3 are H or alkyl, at least one of the R1, R2 and R3 is alkyl] is used as a polycondensation catalyst in the production of a polyester obtained by the polycondensation of a glycol ester of a bifunctional carboxylic acid and/or its oligomer. Tetrapropyl, or tetrabutyl titanate, etc. may be cited as the titanium compound. A mono— or dialkyl ester of phosphoric acid, etc. may be cited as the phosphorus compound.

BEST AVAILABLE COPY

⑫特

報(B2) 昭61-25738

⑤ Int Cl.⁴

勿発 明 者

識別記号

庁内整理番号

网公告 昭和61年(1986)6月17日

C 08 G 63/34

6537 - 4 J

発明の数 1 (全6頁)

ポリエステルの製造方法 50発明の名称

> ②特 願 昭52-109406

63公 開 昭54-43295

爾 昭52(1977)9月13日 220出

❷昭54(1979)4月5日

宜 也 79発明

松。

愛媛県伊予郡砥部町宮内字西代甲550-40 松山市南吉町町2750の1

ĩE 79発明 者

夫 松山市高岡町698-26 康

帝人株式会社 の出 願 人

大阪市東区南本町1丁目11番地

弁理士 前田 純博 の代 理 人

審査官

特公 昭49-35075(JP, B1) 9多考文献

1

の特許請求の範囲

1 少なくとも一種の二官能性芳香族カルボン酸 のグリコールエステル及び/又はその低重合体を 重縮合反応せしめてポリエステルを製造するに際 し、重縮合反応触媒として下記一般式(I)

Ti (OR)

〔式中、Rはアルキル基である。〕 で表わされるチタン化合物と下記一般式(Ⅱ)

$$R_1O \longrightarrow P \longrightarrow OR_3$$
 (II)

〔式中、R1、R2及びRaは水素原子又はアルキル基 であって、R1、R2及びR3の少なくとも1個はア 15〔式中、R′は炭素数3又は4のアルキル基であ ルキル基である。〕

で表わされるリン化合物とを予めグリコール中で 加熱せしめて得られる均一で且つ透明な溶液を使 用することを特徴とするポリエステルの製造方

2 重縮合反応触媒が下記一般式(I)

Ti (OR)

〔式中、Rはアルキル基である。〕 で表わされるチタン化合物と眩チタン化合物1モ

〔式中、R1、R2及びR3は水素原子又はアルキル基 であって、R1、R2及びR2の少なくとも1個はア ルキル基である。〕

で表わされるリン化合物とを予めグリコール中で 10 加熱せしめて得られる均一で且つ透明な溶液であ る特許請求の範囲第1項記載のポリエステルの製 造方法。

3 チタン化合物が下記―般式(I ′)。

..... (I') Ti (OR')₄

で表わされる特許請求の範囲第1項又は第2項記 載のポリエステルの製造方法。

リン化合物が下記一般式(Ⅱ1)

ルに対し1/3~6 モルの割合の下記一般式(II) 25 〔式中、R′1、R′2及びR′3は水素原子又は炭素数 1 ~4のアルキル基であつて、R'i、R'a及びR'aの

少くとも1個は炭素数1~4のアルキル基であ る。)

で表わされる特許請求の範囲第1項又は第2項記 載のポリエステルの製造方法。

5 二官能性芳香族カルボン酸のグリコールエス 5 テルがテレフタル酸のグリコールエステルである 特許請求の範囲第1項記載のポリエステルの製造 方法。

6 二官能性芳香族カルボン酸のグリコールエス テルがテレフタル酸のエチレングリコールエステ 10 でなく、いずれも工業的に採用するには適当な方 ルである特許請求の範囲第1項又は第5項記載の ポリエステルの製造方法。

グリコールがエチレングリコールである特許 請求の範囲第1項又は第2項記載のポリエステル の製造方法。

発明の詳細な説明

本発明はポリエステルの製造方法、特に高軟化 点で且つ色調の良好な芳香族ポリエステルを製造 する方法に関するものである。

たる構成成分とする芳香族ポリエステルは、その 機械的、物理的、化学的性能が優れているため、 繊維、フィルム、その他の成型物に広く利用され ている。芳香族ポリエステルのなかでも、特にテ レフタル酸を主たる酸成分とし、エチレングリコ 25 生産性をあげるために重縮合反応温度を高くする ール、テトラメチレングリコール、ヘキサメチレ ングリコール又はシクロヘキサンー1・4ージメ チロールを主たるグリコール成分とするポリエス テルは重要なものである。

タレートはテレフタル酸のエチレングリコールエ ステル及び/又はその低重合体を滅圧下加熱して 重縮合反応せしめることによつて製造されてい る。この重縮合反応は触媒を使用することによつ 品が得られるものであり、これに使用する触媒の 種類によって反応速度、得られる製品の品質が大 きく左右される。

従来より、優れた重縮合触媒能を有しているも のとしてテトラブチルチタネートの如きチタン化 40 合物が知られている。しかしながら、かかるチタ ン化合物を使用した場合、得られるポリエステル は黄色を帯び易く、特に工業的生産速度が得られ る程度の量使用した場合は、得られるポリエステ

ルは濃色な黄色を呈し、且つ軟化点も低下する。 かかるチタン化合物を使用した場合の着色を防 止する方法がいくつか提案されている。即ち、特 公昭48-2229号公報には水素化チタンを使用する 方法が示されており、特公昭47-26597号公報に はαーチタン酸を使用する方法が示されている。 しかしながら、前者の方法では水素化チタンの粉 末化が容易でなく、また後者の方法ではαーチタ ン酸が変質し易いなど、その保存、取扱いが容易 法でない。また、特公昭43-9759号公報には亜リ ン酸のチタニウム塩を使用する方法が示されてお り、特開昭48-49893号公報にはチタン化合物と ホスフイン酸との縮合物を使用する方法が示され 15 ている。しかしながら、これらのチタンーリン化 合物は均一で透明な触媒溶液にならず、白~黄色 の沈澱を含む溶液になる。反応速度が一定で且つ 均一な高品質のポリエステルを製造するには、極 く少量の触媒を定量的に添加する操作が不可欠で 二官能性芳香族カルボン酸とグリコールとを主 20 あり、均一な触媒溶液にすることは触媒の取扱い 上極めて重要である。特に、触媒を均一な溶液に することは、触媒の計量、添加を自動的に行なう ことを可能にし、工業的には極めて重要である。 しかも、上記チタンーリン化合物を用いた場合、 と、得られるポリエステルはかなり強い黄色を呈 し、商品価値が著しく低下する。

本発明者は、以上の事情に鑑み、均一で透明な 触媒溶液の調整、触媒溶液の安定性、触媒の活性 かかるポリエステル、特にポリエチレンテレフ 30 及び生成ポリエステルの品質等全てを満足し得る チタン化合物について鋭意研究した結果、テトラ ブチルチタネートとトリブチルホスフェートとを エチレングリコール中で加熱(以下、反応と称す ることがある)せしめて得られる溶液(以下、反 てはじめて円滑に進行し、且つ商品価値のある製 35 応生成物と称することがある)は上記条件の全て を満し、得られるポリエステルは高軟化点で且つ 色調も良好なことを知つた。本発明は、この知見 に基いて更に鋭意研究を重ねた結果完成したもの である。

> 即ち、本発明は少なくとも一種の二官能性芳香 族カルボン酸のグリコールエステル及び/又はそ の低重合体を重縮合反応せしめてポリエステルを 製造するに際し、重縮合反応触媒として下記一般 式(I)

Ti (OR)4

〔式中、Rはアルキル基である。〕 で表わされるチタン化合物と下記一般式(Ⅱ)

〔式中、R1、R2およびR3は水素原子又はアルキル アルキル基である。〕

で表わされるリン化合物とを予めグリコール中で 加熱せしめて得られる均一で且つ透明な溶液を使 用することを特徴とするポリエステルの製造方法 である。

本発明で使用する二官能性芳香族カルボン酸の グリコールエステルは如何なる方法によつて製造 されたものであつてもよい。通常二官能性芳香族 カルボン酸又はそのエステル形成性誘導体とグリ ・コール又はそのエステル形成性誘導体とを加熱反 20 応せしめることによつて製造される。

ここで使用する二官能性芳香族カルボン酸とは テレフタル酸を主たる対象とし、そのエステル形 成性誘導体としては炭素数1~4のアルキルエス テル、フエニルエステル等が好ましく使用され 25 る。また、テレフタル酸以外の二官能性芳香族カ ルボン酸、例えばイソフタル酸、ナフタリンジカ ルボン酸、ジフエニルジカルボン酸、ジフエニル スルホンジカルボン酸、ジフエニルメタンジカル ボン酸、ジフェニルエーテルジカルボン酸、ジフ 30 チタン化合物は2個以上併用してもよい。 エノキシエタンジカルボン酸、βーヒドロキシエ トキン安息香酸等であつてもよく、また主成分と する二官能性芳香族カルボン酸の一部を他の二官 能性芳香族カルボン酸及び/又は例えば、セバシ ン酸、アジピン酸、蓚酸の如き二官能性芳香族カ 35 ルポン酸、1・4ーシクロヘキサンジカルボン酸 の如き二官能性脂環族カルボン酸又はこれらのエ ステル形成性誘導体で置き換えてもよい。

グリコールとはエチレングリコールを主たる対 象とし、そのエステル形成性誘導体としては、特 40 1個はアルキル基である。具体的にはリン酸のモ にエチレンオキサイドが好ましく使用される。そ の他テトラメチレングリコール、トリメチレング リコール、シクロヘキサンー1・4ージメタノー ル等の脂肪族、脂環族グリコールであつてもよ

6

かかる酸成分とグリコール成分とからグリコー

ルエステル及び/又はその低重合体を製造する方 法は、例えばポリエチレンテレフタレートの構成 5 原料であるテレフタル酸のエチレングリコールエ ステル及び/又はその低重合体について説明する と、テレフタル酸とエチレングリコールとを直接 エステル化反応せしめるか、テレフタル酸の低級 アルキルエステルとエチレングリコールとをエス 基であつて、R₁、R₂及びR₃の少なくとも1個は 10 テル交換反応せしめるか又はテレフタル酸にエチ レンオキサイドを付加反応せしめる方法が一般に 採用される。これらの反応には任意の触媒を使用

> 合は、本発明において重縮合反応触媒として使用 するチタン化合物とリン化合物の反応生成物をエ ステル交換触媒としても使用することができ、こ うすることは好ましいことでもある。 本発明の方法において使用する重縮合反応触媒

> することができるが、本発明の目的を勘案し、色

調に悪影響を及ぼさないものを選択して使用する 15 のが好ましい。特にエステル交換法を採用する場

はチタン化合物とリン化合物とを反応せしめて得 られる反応生成物である。

ここで使用するチタン化合物は、下記一般式 (I)

但し、式中のRはアルキル基であり、特に炭素 数3又は4のアルキル基の場合、即ちテトラプロ ピルチタネート、テトライソプロピルチタネート 又はテトラブチルチタネートが好ましい。かかる

また、かかるチタン化合物と反応させるリン化 合物は、下記一般式(Ⅱ)

$$R_1O - P - OR_3$$
 (II)

但し、式中のR1、R2及びR3は水素原子又はア ルキル基であつて、R1、R2及びR2の少なくとも ノアルキルエステル、ジアルキルエステル、トリ アルキルエステル又は混合アルキルエステルであ り、特に炭素数1~4のアルキル基によるエステ ルが好ましい。また、これらのリン化合物は1種

のみ単独で使用しても、2種以上併用してもよ

上記チタン化合物とリン化合物との反応は、グ リコール中にチタン化合物の一部又は全部を溶解 し、これにリン化合物を滴下し、150℃~200℃の 5 応せしめてポリエステルにする際に採用される条 温度で30分程度以上反応させればよい。この際の 反応圧力は特に制限なく、常圧で充分である。な お、グリコールとしてはチタン化合物の一部又は 全部を溶解し得るものであれば使用できるが、ポ リコールが好ましく、特にエチレングリコールが 好ましい。

ここで、前記グリコールに代えて他の溶媒、例 えば水を用いると、後述の比較例3で示す様に、 100℃で30分保持しても透明な溶液にならず白濁 15 必要はなく、例えばポリエチレンテレフタレート した溶液となり、かかる白濁溶媒を重縮合触媒と して使用しても、得られるポリエステルは低軟化 点で且つ色調も劣るものとなる。

この反応におけるチタン化合物とリン化合物と のモル比は広い範囲をとることができるが、チタ 20 (通常10kg/cm程度以下) 又は若干の減圧下 (通常 ン化合物があまりに多いと得られるポリエステル .の色調や軟化点が悪化する傾向があり、逆にチタ ン化合物があまりに少なくなると重縮合反応が充 分に進行し難くなる傾向があるため、チタン化合 物1モルに対し、リン化合物を1/3~6モルの割 25 合で使用するのが好ましく、1/2~3モルの割合 で使用するのが特に好ましい。

このようにして得たチタン化合物とリン化合物 との反応生成物(以下含リンチタン化合物と含 う)の使用量は、特に制限する必要はないが、あ 30 可塑性を失わない程度の量の三官能以上の多官能 まりに少ないと充分な重縮合反応速度が得られ ず、逆にあまり多くすると得られるポリエステル が黄色になる傾向があるので、通常ポリエステル の原料として使用する二官能性カルボン酸成分に 対しチタン原子換算で0.001~0.05モル%、好ま 35 帯電防止剤等を使用してもよい。 しくは0.005~0.03モル%である。また、その添 加時期は、重縮合反応が完結する以前であれば何 時でもよいが、重縮合反応開始前から開始直後ま での間に添加するのが好ましい。特にエステル交 応開始前から開始直後までの間に上記量添加する のが好ましい。なお、本発明の目的を逸脱しない 範囲で他の重縮合反応触媒例えばアンチモン化合 物、ゲルマニウム化合物等を併用することもでき

る。

本発明における重縮合反応は、特別な条件を採 用する必要はなく、二官能性カルボン酸のグリコ ールエステル及び/又はその低重合体を重縮合反 件が任意に採用される。ポリエチレンテレフタレ ートの場合には、一般に前記量の含リンチタン化 合物を添加したテレフタル酸のエチレングリコー ルエステル及び/又はその低重合体を減圧下、そ リエステルを構成するグリコール成分と同一のグ 10 の融点以上300℃以下の温度に加熱して発生する グリコールを留去することによつて重縮合反応せ しめる方法が採用される。また、含リンチタン化 合物をエステル交換触媒としても使用する場合、 そのエステル交換反応にも特別の条件を採用する の場合には、前記量の含リンチタン化合物を添加 した反応混合物(テレフタル酸の低級アルキルエ ステルとエチレングリコール又はこれらとこれら の反応生成物との混合物)を常圧、若干の加圧下 50㎜Hg程度迄)150~250℃に加熱し、発生する アルコールを留去することによつてエステル交換 反応せしめた後、次いで重縮合反応を完結せしめ ればよい。

> なお、本発明を実施するに当つて、得られるポ リエステルの末端に単官能化合物、例えばベンジ ル安息香酸、フエノールスルホン酸塩、γーヒド ロキシプロパンスルホン酸塩等を結合せしめても よく、また、得られるポリエステルが実質的に熱 性化合物を共重合せしめてもよい。

> 更に、必要に応じて任意の添加剤、例えば着色 **刻、墊消剤、螢光增白剤、安定剤、紫外線吸収** 剤、エーテル結合防止剤、易染化剤、難燃化剤、

以下に実施例をあげて本発明を更に詳述する。 実施例中の部は重量部であり、〔η〕はオルソク ロロフェノールを溶媒とし35℃で測定して得た粘 度から求めた極限粘度である。色調はポリマーを 換触媒としても使用するときは、エステル交換反 40 窒素気流中200°Cで20分間熱処理して結晶化せし めた後その表面色をカラーマシンCMー20型(カ ラーマシン社製)で測定して得たL値とb値で示 した。し値は明度を示し数値が大きい程明度が高 いことを示し、b値はその値が(+)側に大きい

程黄の度合が大きく、(一)側に大きい程青の度 合が大きいことを示す。軟化点はペネトレーショ ン法により測定した。

実施例1及び比較例1

(イ) 触媒の調整

ェチレングリコール200部にテトラブチルチタネート14.2部を室温で混合した。この溶液を空気中常圧下攪拌しながらトリブチルホスフェート22.2部(2倍モル対テトラブチルチタネート)滴下し、滴下終了後加熱して30分で155℃ 10近くに達した。この時点で析出が起り、液が白濁した。更に加熱し続けると、171℃附近でエチレングリコールモノブチルエーテル(沸点、文献値171.2℃)が留出した。更に加熱し続けて内温が193℃で白い沈澱物は溶解し、完全に 15透明な微黄色の液になつた。ここで反応を打切り、室温まで冷却したところ、何らの析出物もなく透明な溶液のままであつた。

この冷却溶液1部にアセトン10部を加え、析出物をNo.5沪紙を用いて沪過し、100℃で2時間乾燥した。得られた反応生成物のIRチャートが第1図であり、そのチタン含有量は8.0重量%であり、リン含有量は10.3重量%であった。

(ロ) ポリエステルの製造

ジメチルテレフタレート970部、エチレング リコール640部、酢酸マンガン0.18部及び酢酸 コバルト0.12部を攪拌機、精留塔及びメタノー ル留出コンデンサーを設けた反応器に仕込み、 140°Cから230°Cに加熱し、反応の結果生成する* メタノールを系外に留出せしめながらエステル 交換反応せしめた。反応開始後3時間で内温は 230℃に達し、320部のメタノールが留出した。

10

ここで安定剤としてトリメチルホスフェート 0.21部及び艶消剤として二酸化チタン4.85部を添加し、更に上記(パで得たアセトン析出物0.40部 (チタン原子として0.013モル%対ジメチルテレフタレート)を加え、しかる後反応混合物を攪拌機及びエチレングリ留出コンデンサーを設けた反応器に移し、230℃から285℃に徐々に昇温すると共に常圧から1mmHgの高真空に圧力を下げながら重縮合反応せしめた。全重縮合反応時間3時間30分で〔η〕0.639のポリマーを得た。このポリマーの軟化点は260.4℃、色調はL値81.5、b値2.4であつた。

透明な徴黄色の液になった。ここで反応を打切 比較のため上記(4)で得た析出物の代りにチタンり、室温まで冷却したところ、何らの析出物も テトラブトキシド 0.23部(チタン原子としてなく透明な溶液のままであった。 0.013モル%対ジメチルテレフタレート)を使用この冷却溶液 1 部にアセトン10部を加え、析 する以外は上記(□)と同様に反応せしめた。得られ出物をNo.5戸紙を用いて沪過し、100℃で 2 時 20 たポリマーの〔η〕は 0.652、色調は L 値 77.5、間乾燥した。得られた反応生成物のIRチャー b 値10.8、軟化点は259.3℃であった。

実施例 2

実施例1ー(イ)においてテトラブチルチタネートとトリブチルホスフェートのモル割合を第1表に25 示すように種々変える以外は実施例1ー(イ)と同様に反応せしめて夫々透明溶液を得た。夫々の溶液をチタン原子として0.013モル%対ジメチルテレフタレートになる量用いて実施例1ー(ロ)と同様に反応せしめた。結果は第1表に示す通りであった

第 1 表

	触	媒	ポリマー特性			
実験番号	テトラブチルチ	テトラブチルチ	() ¹	軟化点	色	調
,	タネート(モル)	タネート(モル)	(η)	(℃)	l	Ь
2-1	1	0.2	0.650	260.8	78.3	9.5
2-2	1	0.5	0.662	260.4	80.2	5.8
2-3	1	1 .	0.658	260.3	81.7	3.7
2-4	1	2	0.637	260.5	81.4	1.9
2-5	1	4	0.625	260.0	81.3	0.9
2-6	1 .	10	0.456	258.3	82.2	0.2

実施例1-(イ)において使用したトリブチルホス

フェートの代りに正リン酸&2部(2倍モル対テ トラブチルチタネート)を使用する以外は実施例 1-(4)と同様に反応せしめた。エチレングリコー ルの沸点(約193℃)下30分保持したが、透明な 溶液にならず、白い沈澱を含む溶液のままであつ 5 ル対テトラブチルチタネート)又はジブチルホス た。

この溶液を均一になるよう攪拌し、チタン原子 として0.013モル%対ジメチルテレフタレートに なる量採取し、これを重縮合触媒として使用する 以外は実施例1-四と同様に反応せしめた。得ら 10 レートになる量用いて実施例1-四と同様に反応 れたポリマーの〔η〕は0.615、軟化点259.3℃、 色調はL値78.4、b値1.4であり、ポリマー中に*

*は黒色の異物がかなり認められた。 実施例 3及び4

実施例1ーイイ)においてトリブチルホスフェート の代りにトリメチルホスフエート11.7部(2倍モ フェート17.5部(2倍モル対テトラブチルチタネ ート)を使用する以外は実施例1-(イ)と同様に反 応せしめて夫々透明溶液を得た。夫々の溶液をチ タン原子として0.013モル%対ジメチルテレフタ せしめた。結果は第2表に示す通りであつた。

第	2 ·	麦
-17		

		触		媒		ポリマー特性					
1		チタ	ン化	合物	リン化合物		軟化点		色調		
		種	類	量(モル)	種	類	量(モル)	(7)	(°C)	L	b
Ì	実施例 3	テトラブ・ タネート	チルチ	1	トリメ・フェー	チルホス ト	2	0.644	260.2	81.5	1.8
	// 4	#		1	ジブチリエート	ルホスフ	2	0.675	260.7	79.4	1.4

比較例 3

実施例1ーイイ)において、エチレングリコール中 で反応させる代りに水中で反応させる以外は、実 25 様にポリエステルを製造した。 施例1-(4)と同様に行なつた。

テトラブチルケタネートを水中に混合したとこ ろ白濁し、更にトリブチルホスフェートを滴下し た後に100℃で30分間保持したが、溶液は白濁し たままであつた。

尚、この溶液を静置すると白色の沈澱物を生じ るため、提拌を停止することができなかつた。

次いで、前記溶液からチタン原子として0.031

モル%対ジメチルテレフタレートとなる量採取 し、これを重縮合触媒に用いて実施例1-四と同

得られたポリマーの〔7〕は0.607軟化点259.0 ℃、色調はL値78.3、b値5.0であつた。

図面の簡単な説明

図はテトラブチルチタネート 1 モルとトリブチ 30 ルホスフェート 2 モルとを反応せしめて得られる 反応生成物(本発明の重縮合触媒)のIRチャー トである。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.