

# Actividad Formativa - Ingeniería del Software

| CRÉDITOS: 3 EC                 | TS                                 |                |                  |            |
|--------------------------------|------------------------------------|----------------|------------------|------------|
| PROFESOR/A (alberto.alvarellos | COORDINADOR/A:<br>s@udc.es)        | Alberto        | Alvarellos       | González   |
| UNIVERSIDAD D                  | PESDE LA QUE IMPARTE               | EL PROFESO     | R/A COORDINAI    | DOR/A: UDC |
| ¿HA DADO O VA<br>ASIGNATURA? Y | <b>A A DAR AUTORIZACIÓN</b><br>'es | N PARA GRAI    | BAR LAS CLASE    | S DE ESTA  |
| PROFESOR 1: Jo                 | sé Antonio Álvarez Dios (jo        | oseantonio.alv | arez.dios@usc.es | )          |
| UNIVERSIDAD D                  | DESDE LA QUE IMPARTE               | EL PROFESO     | R/A: USC         |            |
| ¿HA DADO O VA<br>ASIGNATURA? S | <b>A A DAR AUTORIZACIÓN</b><br>5i. | N PARA GRAI    | BAR LAS CLASE    | S DE ESTA  |

#### **CONTENIDOS**:

# Contenido teórico:

- 1. Ingeniería del software. Paradigmas de desarrollo
- 2. Principales paradigmas: estructurado y OO
- 3. Paradigma OO
  - 3.1. Introducción y conceptos básicos
  - 3.2. Análisis, diseño y aspectos de desarrollo en OO
  - 3.3. Notación básica UML
  - 3.4. Proceso recomendado de análisis y diseño en OO
- 4. Patrones de diseño en OO



- 4.1. Introducción
- 4.2. Ejemplos

# Contenido práctico:

- 1. Aplicación de la OO a pequeños ejemplos/ejercicios
- 2. Aplicación de la OO a casos reales genéricos
- 3. Aplicación de la OO a proyectos de desarrollo reales en el ámbito matemático

METODOLOGÍA: Clases magistrales y prácticas en el aula

IDIOMA: Castellano

¿SE REQUIERE PRESENCIALIDAD PARA ASISTIR A LAS CLASES? No. Los alumnos pueden asistir a la clase mediante videoconferencia o ver las clases grabadas.

## **BIBLIOGRAFÍA**:

#### Bibliografía básica:

"Ingeniería del Software. Un enfoque práctico". Roger S. Pressman. Mc-Graw Hill

"El Lenguaje Unificado de Modelado". Grady Booch, James Rumbaugh e Ivar Jacobson. Addison Wesley

"Patrones de Diseño". Erich Gamma, Richard Helm, Ralph Johnson y John Vlissides. Addison Wesley

# Bibliografía adicional:

"Ingeniería de Software Orientada a Objetos con UML, Java e Internet". Alfredo Weitzenfeld. Thomson

"El Proceso Unificado de Desarrollo de Software". Ivar Jacobson, Grady Booch y James Rumbaugh. Addison Wesley

### **COMPETENCIAS**

#### <u>Básicas y generales</u>:



CG1: Poseer conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación, sabiendo traducir necesidades industriales en términos de proyectos de I+D+i en el campo de la Matemática Industrial;

CG2: Saber aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios, incluyendo la capacidad de integrarse en equipos multidisciplinares de I+D+i en el entorno empresarial;

CG3: Ser capaz de integrar conocimientos para enfrentarse a la formulación de juicios a partir de información que, aun siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos:

CG4: Saber comunicar las conclusiones, junto con los conocimientos y razones últimas que las sustentan, a públicos especializados y no especializados de un modo claro y sin ambigüedades;

CG5: Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo, y poder emprender con éxito estudios de doctorado.

# Específicas:

CE2: Modelar ingredientes específicos y realizar las simplificaciones adecuadas en el modelo que faciliten su tratamiento numérico, manteniendo el grado de precisión, de acuerdo con requisitos previamente establecidos.

CE3: Determinar si un modelo de un proceso está bien planteado matemáticamente y bien formulado desde el punto de vista físico.

CE4: Ser capaz de seleccionar un conjunto de técnicas numéricas, lenguajes y herramientas informáticas, adecuadas para resolver un modelo matemático.

CE5: Ser capaz de validar e interpretar los resultados obtenidos, comparando con visualizaciones, medidas experimentales y/o requisitos funcionales del correspondiente sistema físico/de ingeniería.

#### ¿SE VA A USAR ALGÚN TIPO DE PLATAFORMA VIRTUAL?

No. Se usará un grupo de correo para la comunicación y subida de archivos.

¿SE NECESITA ALGÚN SOFTWARE ESPECÍFICO? No.



# CRITERIOS PARA LA 1ª OPORTUNIDAD DE EVALUACIÓN:

Aprendizaje efectivo de los conceptos teóricos explicados: 40%. La evaluación de este aspecto se llevará a cabo a través de un examen teórico sobre los conceptos explicados en las clases presenciales.

Capacidad de poner en práctica esos conceptos: 60%. La evaluación de este aspecto se llevará a cabo a través de un trabajo práctico que supondrá la puesta en operación de los conceptos explicados en el ámbito de un contexto matemático

Ambos aspectos deben aprobarse por separado.

#### CRITERIOS PARA LA 2ª OPORTUNIDAD DE EVALUACIÓN:

Los mismos que para la primera oportunidad

#### **COMENTARIOS:**

Objetivos de la asignatura:

- 1. Comprensión básica de los principales paradigmas de desarrollo software
- 2. Estudio del paradigma de orientación a objetos (OO)
- 3. Capacidad de poner en operación la OO

La asignatura está orientada a desarrollar las siguientes capacidades técnicas en los estudiantes:

- 1. Capacidad de abstracción y síntesis
- 2. Capacidad de poner en práctica los conocimientos teóricos en las fases de análisis, diseño y desarrollo en OO
- 3. Capacidad de comprensión y crítica de los modelos OO obtenidos para un proyecto de desarrollo software.