Trees Binary Trees Binary Search Tress

Definition

A tree is either:

a. empty, or

b. it has a node called the root, followed by zero or more trees called subtrees

Tree Terminologies

• Nodes: A, B, C, D, E, F

Root node: A

• Leaf nodes: B, E, F, D

Arcs: (A,B), (A,C), (A,D), (C, E), (C, F)

Tree Terminologies

- Path: a unique sequence of arcs to connect the node from the root.
- Path examples: (A,B),
 (A,C), (A,C,E), (A,C,F), etc

Tree Terminologies

- Length of a path = number of arcs
- Level of a node
 - = the length of the path from the node to the root + 1
 - = the number of nodes in the path
- Height of a non-empty tree = maximum level of a node

Height of the tree: 3 level = 1 for A

Level =
$$3$$
 for E

Binary tree

 A tree whose nodes have 2 children (possibly empty), and each child is designated as either a left child or a right child.

Binary Trees

Representation:

TreeNode:

Element
Left Right

Binary Trees

- Properties
 - Max # of leaves = 2^{height(tree)-1}
 - Max # of nodes = $2^{height(tree)}$ 1
- Height of a binary tree with n nodes:
 - Max height: n (same as linked list)
 - Min height: floor(lg(n)) +1

Complete Binary Trees

- If all the nodes at all levels except the last level had 2 children, then it is a complete binary tree.
- Level 1, 1 node
- Level i, 2ⁱ⁻¹ node
- Leaf nodes m, non-leaf nodes k, then m = k+1.
- Height i, 2ⁱ -1 nodes.
- Example: A complete binary tree of height 4, then total 15 nodes with 8 leaves and 7 non-leaves.

Implementation of Binary tree

Approach 1:

- Array (of nodes), each node with an information field, and 2 "pointer" fields that contain the indices of the array cells in which the left and right children are stored.
- Root is cell 0. -1 is a null child.
- Problems: Sequential locations, holes after deletion.
- Approach 2: (more common)
 - Each node is an object of an information field, and 2 pointer members.

Node of A binary tree

```
template < class T>

Class BSTNode {
  public:
     BSTNode() { left = right = 0; }
     BSTNode(const T& el, BSTNode *I =0, BSTNode *r = 0)
          { key = el; left = I; right = r; }
     T key;
     BSTNode *left, *right;
}
```

This implementation can also be used for BST. See later.

Binary Search Tree (BST)

Search tree property

- all keys in left subtree smaller than root's key
- all keys in right subtree
 larger than root's key
- result:
 - easy to find any given key
 - inserts/deletes by changing links

Search in BST (iterative impl.)

```
template<class T>
T* BST<T>::search(BSTNode<T>* p, const T& el) const {
 while (p != 0)
    if (el == p->key)
        return &p ->key;
    else if (el < p->key)
        p = p - | eft;
    else
        p = p->right;
  return 0;
```

Complexity of Search in BST

 Complexity of search is measured by the number of comparisons performed during the searching process.

Complexity of Search in BST:

- Running time analysis
 - Worst case: O(n) -- when tree is off balance and the shape is like a linked list.
 - Best case: O(logn) when tree is complete.
 - Average case: O(logn) close to the best case.

Tree traversal

- Process of visiting each node in the tree exactly one time.
- Concept applicable to any tree.
 Implementation can be different depending on the nature of the tree. We talk about binary tree here.

Breadth-1st traversal

- Starting from highest level and moving down level by level, visiting nodes on each level from left to right.
- Also called level-order traversal.
- Implement use a queue.

```
template<class T>
void BST<T>::breadthFirst()
 queue<BSTNode<T>*> q;
  BSTNode<T> *p = root;
  if (p!=0)
  { q.push(p); //enqueue
    while(!q.empty())
       p = q.front(); q.pop(); //dequeue
       visit(p);
       if (p->left != 0)
          q.push(p->left); //enqueue
       if (p->right != 0)
           q.push(p->right); //enqueue
```

Discussion

- When a node is visited, put its children in a queue (tail).
- For a node on level n, its children are on level n+1, these children are at the end of the queue, and are visited after all nodes from level n are visited.
 - All nodes on level n must be visited before visiting any nodes on level n+1.
- Enqueue root → dequeue root -> enqueue children of root → dequeue 1st child of root -> enqueue the grandchildren of root -> dequeue 2nd child of root ...

Depth-1st traversal

- Preorder -- VLR
- Postorder LRV
- Inorder LVR

Traversing Trees (example)

Preorder: Root, then Children

$$-+A*B/CD$$

Postorder: Children, then Root

$$-ABCD/*+$$

Inorder: Left child, Root, Right child

$$-A+B*C/D$$

 Note: This example is in fact a so-called expression tree. The expressions are called prefix, postfix and infix form of an expression, respectively.

Preorder

```
template<class T>
Void BST<T>::preorder(BSTNode<T> *p)
{
    if (p != 0)
    {
       visit(p);
       preorder(p->left);
       preorder(p->right);
    }
}
```

Postorder

```
template<class T>
Void BST<T>::postorder(BSTNode<T> *p)
{
    if (p != 0)
    {
       postorder(p->left);
       postorder(p->right);
       visit(p);
    }
}
```

Inorder

```
template<class T>
void BST<T>::inorder(BSTNode<T> *p)
  if (p != 0)
     inorder(p->left);
     visit(p);
     inorder(p->right);
```

Binary Search Tree Insertion

Insertion into a BST

```
template<class T>
void BST<T>::insert(const T& el)
   BSTNode<T> *p = root, *prev = 0;
  while (p != 0)
     prev = p;
      if(p->key < el)
         p = p - right;
      else
         p = p->left;
   if (root == 0) // tree is empty
         root = new BSTNode<T>(el);
   else if (prev->key < el)
         prev->right = new BSTNode<T>(el);
    else
         prev->left = new BSTNode<T>(el);
```

Note:

- 1. If a value is already in the tree, this implementation inserting it as the left child.
- 2. You can also use recursion to implement it.

Discussion

- Same technique as the BST search, look for a node with a null end, based on BST ordering property.
- Once found, insert the node as its child. (Use prev, because p is the null pointer already.)
- Running time of BST insertion:

$$time = O(height(T))$$

Example of using insertion to construct a binary search tree:

• 1, 6, 3, 7

What if the sequence is 1 3 6 7?

Deletion from BST

How do you delete:

17?

9 ??

20 ???

Deletion - Leaf Case

Delete(17)

(5)
(15)
(2)
(7)
(17)
(30)

Deletion - One Child Case

Just pull up its child. 10 's right child is now 20.

Deletion - Two Children Case

- Most complicated
 - Deletion by copying
 - Deletion by merging

Predecessor and Successor

- Predecessor: A key's predecessor is the key in the rightmost node in the left subtree.
- successor: A key's successor is the key in the leftmost node in the right subtree.

Deletion - Two Children Case

Replace the node with the value guaranteed to be between the left and right subtrees: the successor.

WHAT IF USE PREDECESSOR?

Deletion - Two Children Case

Always easy to delete the successor – always has either 0 or 1 child!

Deletion - Two Child Case

Finally copy data value from deleted successor into original

node

- What is the cost of a delete operation?
- Can we use the *predecessor* instead of successor?

Deletion by Copying

 The previous method demonstrated is called "deletion by copying".

```
template<class T>
void BST<T>::deleteByCopy(BSTNode<T>*& node)
  BST<Node<T> *previous, *temp = node;
   if (node->right ==0)
                      //node has no right child
     node = node->left;
   else if (node->left == 0) //node has no left child
     node = node->right;
                       //node has both children
   else {
     tmp = node->left;
     previous = node; //1. set previous
     while (tmp->right != 0) { //2. search for predecessor
        previous = tmp;
        tmp = tmp->right;
                                    //3. copy
      node->key = tmp->key;
      if (previous == node)
                                    //4. break the link for predecessor
          previous->left = tmp->left;
       else previous->right = tmp->left;
     delete tmp;
                                   //5. delete
```

Discussion on Deletion by Copying

- Advantages
 - Does not increase height
- Problems
 - May become unbalanced if always use the successor -- Alternate the use of successor and predecessor.

Deletion by merging

Still need to find successor (or predecessor)

 Make the successor the parent of left subtree. (or make predecessor the parent of right subtree)

Deletion by merging

- Problem
 - May increase or decrease the height after deletion

```
template<class T>
void BST<T>::findAndDeleteByMerging(const T& el)
  BSTNode<T> *node = root, *prev = 0;
  while (node!=0)
    if (node->key == el)
         break;
    prev = node;
    if (node -> key < el)
          node = node-> right;
     else
          node = node->left;
 if (node!=0 && node->key == el)
      if (node == root)
        deleteByMerging(root);
     else if (prev->left == node)
        deleteByMerging(prev->left);
     else
        deleteByMerging(prev->right);
 else if (root !=0)
      cout << "key" << el << "not found";</pre>
  else cout << "the tree is empty":
```

```
template<class T>
void BST<T>::deleteByMerging(BSTNode<T>*& node)
 BSTNode<T> *tmp = node;
 if (node !=0)
    //node has no right child: its left child (if any) is attached to its parent
    if (node->right == 0)
        node = node->left;
    //node has no left child: its right child is attached to its parent.
    else if (node->left == 0)
         node = node->right;
               //merge subtree
    else
       tmp = node -> left; //1. get predecessor
        while (tmp->right != 0) tmp = tmp->right; // 2. tmp is pointing to the predecessor
       // 3. establish link between predecessor and the right subtree.
       tmp->right = node-> right;
       tmp = node; // 4. tmp is now pointing to the original node (to be removed)
       node = node->left; // 5. node is its left child (which connects with the parent of original node)
     delete tmp; // 6. remove the original node
```

Cost of the Operations

• find, insert, delete : | time = O(height(T))

- For a tree T with n nodes:
 - height(T) \leq n and
 - height(T) $\geq \log(n)$ or more precisely, floor(log(n)) +1

Height of the BST

- Height depends critically on the order in which we insert the data:
 - E.g. 1,2,3,4,5,6,7 or 7,6,5,4,3,2,1, or 4,2,6,1,3,5,7

Balancing the tree (globally)

Definition:

- A balanced tree: If the difference in height of both subtrees of any node in the tree is either 0 or 1.
- Globally balancing a tree (AVL tree is locally balanced, later)
 - Sort them in an array, the middle element is used as root.
 - Then recursively build the tree.

Code for global balancing

```
template<class T>
void BST<T>::balance(T data[], int first, int last) {
   If (first <= last) {
      int middle = (first + last)/2;
      insert(data[middle]);
      balance(data,first, middle-1);
      balance(data,middle+1, last);
   }
}</pre>
```

Example Operations on Binary Trees

- Height
- Size
- # of Leaves
- Delete the tree

Height of a Binary Tree

- The height can be found by performing a postorder traversal.
 - The height of the left subtree is determined;
 - then the height of the right subtree is determined.
 - During the "visit" step, the height of the tree is determined as:
 - height = maximum{leftHeight, rightHeight} + 1

Pseudo Code for Getting Height

```
if(ptr is null)
    return 0
endif
leftHeight = height(ptr->leftChild)
rightHeight = height(ptr->rightChild)
if (leftHeight > rightHeight)
return
    leftHeight + 1
else return
    rightHeight + 1
endif
```

Size of a Binary Tree

- Any of the four traversal methods can be used, since each method visits each node exactly one time.
- Pseudo code using width-1st (or level-order) traversal:

```
while (there are elements in the tree)

count++

if (there is a left child)

push onto a queue

endif

if (there is a right child)

push onto a queue

endif

pop the queue

endwhile
```

Find # of leaves

- Recursive or iterative -- Any traversal methods can be used.
- Example of using iterative level-order traversal:

```
while (there are elements in the tree)

if (leftChild is null and rightChild is null)

leavesCount ++;

if (there is a left child)

push onto a queue

endif

if (there is a right child)

push onto a queue

endif

pop the queue

endwhile
```

Deleting a Binary Tree

- Perform a post-order traversal. The node is deleted during "visit" step.
- Pseudo codes:

```
– Pubic method:
delete()
delete(root)
set root to null
```

The private recursive method:
 delete (pointer to a tree node)
 If (pointer is not null)
 delete (pointer to left child)
 delete (pointer to right child)
 delete pointer
 End if