Jing-An Tzeng

734-882-5333 | robintzg@umich.edu | https://robintzeng.github.io/

EDUCATION

University of Michigan Ann Arbor, MI

Master of Science in Electrical and Computer Engineering

Apr 2021

Concentration: Robotics GPA: 4.0/4.0

Coursework: Self-Driving Cars: Perception and Control, Computational Data Science and Machine Learning (F19)

Mobile Robotics, Foundations of Computer Vision, Embedded Control (W20)

National Tsing Hua University (NTHU)

Hsinchu, Taiwan

Bachelor of Science in Power Mechanical Engineering

Jun 2018

Concentration: Control System

GPA: 3.92/4.3

PROFESSIONAL EXPERIENCE

ASML San Diego, CA

Droplet Generation Control and Automation System Intern, Control Team

May 2020 - Aug 2020

- Designed an object detection pipeline using OpenCV, Tkinter and Scikit-learn to detect the tin droplets and satellites, including preprocessing, labeling, feature extraction and classification from scratch.
- Detected the interest objects with maximally stable extremal regions (MSER) and eliminated the overlapped bounding boxes with Non-Maximum Suppression (NMS) and achieved 99% accuracy.
- Evaluated the classifiers' performance using k-fold cross validation, confusion matrix, learning curve and validation curve to prevent overfitting.

PROJECT EXPERIENCE

Mobile Robotics - Visual Inertia Navigation

Ann Arbor, MI

Team Leader

Mar 2020 - Apr 2020

- Improved a Muti-State Constraint Kalman filter-based visual inertial navigation framework (Openvins) with learning-based interest point extractor SuperPoint in Pytorch using C++.
- Evaluated the performance on the EuRoC MAV dataset with ROS and ameliorated the performance for every tasks.

Computer Vision - Depth Completion

Ann Arbor, MI

Team Member

Mar 2020 – Apr 2020

- Completed dense depth data from a color image and sparse LiDAR data in KITTI depth completion benchmark.
- Developed learning architecture included a two pathway system with the U-Net like low-resolution feature extractor, and utilized attention mechanism to propose the final prediction in Pytorch.

Self-Driving Car - Object Detection

Ann Arbor, MI

Perception Team Leader

Nov 2019 - Dec 2019

- Placed 2nd overall in class and implemented and trained YOLOv3 on the given dataset in Python with Keras.
- Developed a layer to discriminate the distance of the objects with the point cloud.

Eurobot 2018 Contest - Autonomous Robot

Taiwan/France

Software Team Leader

Sep 2017 - Jun 2018

- Placed 24th overall in world counted.
- Prototyped positioning system model with MATLAB for integration test, utilized microcontrollers and ultrawideband (UWB) chips to trace the robots accurately and practiced the whole system in C++ in Linux.
- Implemented Kalman filter and trilateration algorithm to enhance measuring accuracy and stability, increasing 30% accuracy which is within 5 cm radius with high repeatability.

Powered Exoskeleton for Motion Recording

Hsinchu, Taiwan

Sensing and Communication Team Leader

May 2017 - Dec 2017

- Placed 2nd and "Most Popular" awards from 50 teams in Senior Capstone Project Competition.
- Developed a sensing exoskeleton suit by integrating 4 microcontrollers, 6 encoders and 4 inertial sensors to detect and record the user's movements, i.e. hand gestures.
- Used SPI, I²C, UART for fetching the data to the microcontrollers and estimate the user's movement by adopting complementary filter to fuse the gyroscope and accelerometer data.
- Built a Bluetooth communication system with cyclic redundancy check (CRCs) to improve its consistency.

TECHNICAL SKILLS

Programming Languages: C++, Python, MATLAB, Simulink

Toolkit/Frameworks/Platforms: ROS, Arduino, PyTorch, OpenCV, scikit-learn, Linux(Ubuntu), Git