

Applying edgeR for alternative splicing analysis

Lizhong Chen

Smyth Lab, Bioinformatics Division
Walter and Eliza Hall Institute of Medical Research

April 23, 2024

What is alternative splicing

https://www.technologynetworks.com/genomics/articles/alternative-splicing-importance-and-definition-351813

Alternative splicing using differential exon usage

- Only able to find differential isoform usage
- Exon proportion change implies isoform proportion change

$$\mathsf{Exon} \Rightarrow \mathsf{Isoform}$$

■ Isoform proportion change does not mean exon proportion change

 $\mathsf{Isoform} \not\Rightarrow \mathsf{Exon}$

Foxp1 data set

> v\$samples

```
group lib.size norm.factors
Basal-CT-1 BasalCT
                    1.1e+07
                                     0.99
                                     1.02
Basal-CT-2 BasalCT
                    1.2e+07
Basal-CT-3 BasalCT
                    1.1e+07
                                     1.09
Basal-KO-1 BasalKO
                    1.1e+07
                                     0.89
Basal-KO-2 BasalKO
                    1.1e+07
                                     1.02
Basal-KO-3 BasalKO
                    1.1e+07
                                     0.95
Lum-CT-1
             LumCT
                    1.2e+07
                                     0.97
Lum-CT-2
             LumCT
                    1.0e+07
                                     1.09
Lum-CT-3
             L11mCT
                    1.1e+07
                                     0.97
Lum-KO-1
             L11mKO
                    1.1e+07
                                     0.98
Lum-KO-2
             LumKO
                    1.1e+07
                                     1.08
Lum-KO-3
             L11mKO
                    1.6e+07
                                     0.98
```

> dim(y)
[1] 28503

[1] 285931 12

Rsubread: align and featureCounts

```
# align
                                                                        # data
align(index
                   = indir.
                                                                        y <- featureCounts2DGEList(counts)</pre>
                   = paste0("./FASTQ/", file).
      readfile1
      input_format = "gzFASTQ",
                                                                        # filtering
      output_file = paste0("./BAM/", bam),
                                                                       keep <- filterByExpr(y)</pre>
                                                                             <- v[keep,,keep.lib.sizes=FALSE]</pre>
      nthreads
                   = 14)
# featureCounts
                                                                        > table(keep)
counts <- featureCounts(files = paste0("./BAM/", bam),</pre>
                                                                        keep
                         annot.inbuilt
                                            = "mm39".
                                                                        FALSE
                                                                                 TRUE
                         useMetaFeatures
                                           = FALSE.
                                                                       179116 106815
                         allowMultiOverlap = TRUE.
                         isPairedEnd
                                            = FALSE.
                                                                        # normalization
                         nthreads
                                            = 14)
                                                                       v <- normLibSizes(v)</pre>
# red: reference genome (RefSeq) or index
                                                                        # orange: alternative splicing is sensitive to filtering
      for annotation keep updating
```

diffSplice: exon counts

. . .

			Basal-CT-3									
148161518	143	186	82	157	316	98	398	337	273	420	648	561
148166020	7	18	6	7	19	3	27	17	21	31	36	37
148166728	3	8	4	5	8	7	15	15	9	9	18	23
148168416	1	0	0	0	0	0	1	4	0	1	4	1
148172374	3	5	4	4	7	2	4	0	3	7	15	8
# Acads												

	Basal-CT-1	${\tt Basal-CT-2}$	${\tt Basal-CT-3}$	Basal-KO-1	Basal-KO-2	Basal-KO-3	$Lum\!-\!CT\!-\!1$	Lum-CT-2	Lum-CT-3	$Lum\!-\!K0\!-\!1$	Lum-K0-2	Lum-KO-3
115248358	56	76	43	60	111	42	176	220	92	143	201	229
115249153	6	11	8	6	15	4	24	24	13	16	15	20
115249378	10	4	7	10	17	1	26	26	10	16	25	20
115249696	9	15	5	17	23	6	32	46	15	30	48	37
115249916	26	22	12	21	34	13	47	64	26	39	60	51
115250299	18	28	8	24	38	8	50	70	17	38	51	55
115250824	9	15	12	11	23	8	36	31	23	32	31	40
115251123	10	25	11	22	36	7	47	52	22	32	44	58
115255624	15	21	6	15	41	8	40	44	34	32	54	49
115257284	6	7	5	3	12	3	18	16	6	11	24	21

red: large counts, a gene with less exons seems to have one or two large exon counts

diffSplice: exon counts

Α			

	${\tt Basal-CT-1}$	Basal-CT-2	Basal-CT-3	${\tt Basal-K0-1}$	Basal-KO-2	Basal-KO-3	${\tt Lum-CT-1}$	Lum-CT-2	Lum-CT-3	${\tt Lum-KO-1}$	${\tt Lum-K0-2}$	Lum-KO-3
69901009	96	143	96	150	117	80	120	163	131	150	181	181
69901351	47	58	34	62	53	38	56	77	40	64	81	85
69901524	41	45	32	48	53	30	45	67	39	37	77	53
69901675	60	63	35	55	70	44	60	50	43	55	92	88
69901832	57	82	64	94	74	60	83	92	76	95	119	107
69901994	92	120	86	124	139	105	113	135	109	128	165	170
69902171	83	117	74	123	124	106	117	120	87	122	141	176
69902362	57	49	37	74	56	38	65	56	44	76	67	84
69902510	60	70	32	58	53	46	69	62	47	58	75	79
69903012	91	87	68	104	92	68	98	119	82	98	125	136
69903274	124	185	115	154	133	145	121	153	121	165	203	212
69903784	104	137	79	104	124	100	140	139	82	120	166	173
69903998	82	99	66	90	111	83	115	92	78	118	116	133
69904260	97	112	78	115	100	86	98	99	83	112	160	140
69905071	79	127	66	101	126	81	100	131	79	109	140	135
69905305	36	30	29	25	27	29	39	37	26	45	56	59
69905457	60	76	47	83	80	61	87	61	47	73	102	96
69905619	44	48	30	52	55	46	58	65	35	62	64	71
69905943	32	55	36	49	43	37	54	45	38	52	77	63
69906089	40	36	39	77	42	52	64	58	29	50	77	76

red: relatively large counts, a gene with more exons seems to express randomly

diffSplice: pipeline using edgeR and limma

```
# limma
# edaeR
v <- estimateDisp(v. design)</pre>
                                                                        vfit <- voomLmFit(v, design)</pre>
fit <- glmQLFit(v, design, legacy = TRUE)
                                                                        vfit <- contrasts.fit(vfit. contr)</pre>
                                                                        vfit <- eBayes(vfit)</pre>
# diffsplice
                                                                        # diffsplice
dsp <- diffSplice(fit, contrast=contr,</pre>
                                                                        vsp <- diffSplice(vfit,</pre>
       geneid = "GeneID", exonid = "Start")
                                                                                geneid = "GeneID", exonid = "Start")
# cummarize recults
                                                                        # cummarize recults
# exon proportion change
                                                                        # exon proportion change
topSplice(dsp. test = "exon")
                                                                        topSplice(vsp. test = "t")
# simes method for gene level
                                                                        # simes method for gene level
topSplice(dsp, test = "simes")
                                                                        topSplice(vsp, test = "simes")
# F test for gene level
                                                                        # F test for gene level
topSplice(dsp, test = "gene")
                                                                        topSplice(vsp, test = "f")
# wisualization
                                                                        # wisualization
plotSplice(dsp. geneid = "Foxp1", genecolname = "Symbol")
                                                                        plotSplice(vsp, geneid = "Foxp1", genecolname = "Symbol")
# we are working on the S3 method for diffSplice, topSplice, and plotSplice
```

diffSplice: results using simes p-value

```
# limma diffsplice
# edgeR diffsplice
> topSplice(dsp, test = "simes")
                                                                   > topSplice(vsp, test = "simes")
       GeneID
                Chr Strand
                              Symbol NExons P. Value
                                                                              GeneTD
                                                                                       Chr Strand
                                                                                                     Symbol NExons P. Value
                                                         FDR.
                                                                                                                                FDR.
49079
       108655
               chr6
                               Foxp1
                                          20 4.2e-14 4.7e-10
                                                                   49079
                                                                              108655
                                                                                      chr6
                                                                                                      Foxp1
                                                                                                                20 4.4e-11 4.9e-07
122571 208263
               chr1
                          - Torlaip1
                                          11 1.4e-11 8.0e-08
                                                                   122571
                                                                              208263
                                                                                      chr1
                                                                                                 - Torlaip1
                                                                                                                11 5.7e-07 3.2e-03
9811
       102436
               chr9
                               Lars2
                                           9 4.0e-06 1.5e-02
                                                                   62164
                                                                               11687
                                                                                     chr11
                                                                                                     Alox15
                                                                                                                13 2.4e-06 8.9e-03
9555
       102103
               chr8
                               Mtus1
                                          11 3 0e-05 8 3e-02
                                                                   100783
                                                                               17758
                                                                                      chr9
                                                                                                       Map4
                                                                                                                21 4.6e-05 1.3e-01
                                                                   177764
62164
        11687
              chr11
                              Alox15
                                          13 1.2e-04 2.7e-01
                                                                               26942 chr15
                                                                                                      Spag1
                                                                                                                 4 9.7e-05 2.2e-01
79298
        13518
               chr1
                                 Dst
                                          93 4.8e-04 7.9e-01
                                                                   273944
                                                                               76866
                                                                                                      Morn1
                                                                                                                 4 2.8e-04 5.1e-01
                                                                                      chr4
69092
        12095
               chr3
                              Bglap3
                                          6 4.9e-04 7.9e-01
                                                                   86220
                                                                               14683
                                                                                      chr2
                                                                                                       Gnas
                                                                                                                14 3.2e-04 5.1e-01
213798
        56460
               chr7
                                Pkp3
                                         14 9.0e-04 1.0e+00
                                                                   17583
                                                                          102634756
                                                                                      chrX
                                                                                                   Gm32262
                                                                                                                 2 4.4e-04 6.2e-01
184804 319448 chr14
                              Fndc3a
                                         27 1.0e-03 1.0e+00
                                                                   9555
                                                                              102103
                                                                                                                11 5.4e-04 6.6e-01
                                                                                      chr8
                                                                                                      Mtus1
140303
        22228
                                Ucp2
                                           9 1.4e-03 1.0e+00
                                                                   138111
                                                                              219249 chr14
                                                                                                      Tdrd3
                                                                                                                13 7.3e-04 8.1e-01
               chr7
```

teal: expected results

red : could be an outier for edgeR

diffSplice: visualization for Foxp1

diffSplice: edgeR vs limma

- edgeR and limma share the same idea and results are similar
- edgeR performs one vs the average on the exon level test
- limma performs one vs the rest on the exon level test
- limma is more robust to the potential outliers, e.g Lars2

diffSplice: visualization for Lars2

diffSplice: exon counts for Lars2

# Lars2												
	${\tt Basal-CT-1}$	${\tt Basal-CT-}2$	${\tt Basal-CT-3}$	${\tt Basal-K0-1}$	${\tt Basal-K0-2}$	${\tt Basal-K0-3}$	${\tt Lum-CT-1}$	Lum-CT-2	${\tt Lum-CT-3}$	${\tt Lum-KO-1}$	${\tt Lum-K0-2}$	Lum-K0-3
123195992	3	3	4	2	3	6	12	14	2	7	10	12
123200920	5	6	8	8	4	7	20	10	18	17	28	31
123206766	3	8	3	2	5	3	10	11	7	9	6	4
123221848	2	4	8	2	7	4	2	4	4	1	8	7
123224016	3	0	1	0	1	0	1	3	0	1	0	4
123238679	2	0	1	0	0	0	2	3	4	3	3	6
123240938	2	2	5	4	5	0	5	9	6	8	7	11
123242082	0	0	3	0	0	0	0	0	1	0	0	0
123247244	1	5	1	0	2	3	4	5	9	4	5	12
123247700	4	3	6	4	5	3	5	6	2	8	6	6
123256512	0	0	1	1	1	3	5	2	3	6	6	5
123260951	4	0	2	0	2	2	12	7	6	7	11	4
123265182	8	11	6	1	5	6	15	21	13	9	19	25
123267200	0	3	2	1	4	1	7	6	7	5	5	10
123270529	5	5	5	2	4	1	11	11	11	12	15	12
123281810	2	3	6	6	4	5	13	2	11	5	7	10
123282276	7	5	8	4	10	4	13	17	15	11	17	20
123283775	2	8	5	3	7	3	9	7	15	17	19	23
123284025	2	1	3	2	4	1	10	3	11	6	8	9
123284958	5	5	2	2	2	5	7	10	9	3	16	16
123288557	8	7	9	4	5	5	18	24	21	10	16	24
123290564	2205	1379	1353	7522	1024	1066	1822	43934	2038	2093	1663	3142

[#] orange: filtered by filterByExpr
blue: line of interest; red: outlier

diffSplice: aim

- \blacksquare Assume a gene g has m exons
- Let Y_{ij} and $Z_{ij'}$ be the counts of exon i for sample j and j' in two groups k and k'.
- Let p_i and q_i be the relative proportion of exon i in two groups k and k'

$$p_i = rac{\mu_{ik}}{\sum_i \mu_{ik}}$$
 and $q_i = rac{\mu_{ik'}}{\sum_i \mu_{ik'}}$

where μ_{ik} and $\mu_{ik'}$ are the group means for exon i

■ The aim is test

$$p_i = q_i$$

diffSplice: Exon level

- Let β_i be the log fold change for exon i
- Let β_g be the log fold change for gene g
- lacksquare β_g is the same as the average log fold change for all exons
- Then testing

$$p_i = q_i$$

is equivalent to testing

$$\beta_i = \beta_g$$

■ The EB process is performed on gene level σ_g^2 , estimated using all exons

diffSplice: Gene level Simes p-value

- Let p_i be the p-values for m tests of exons $H_i: \beta_i = \beta_g$
- The m tests for exons are correlated and m-1 of m tests are independent
- The Simes p-value p_g^s for the gene g is

$$p_g^s = \min_j \{ (m-j)p_j' \}$$

where p'_{j} is the ordered p-values

- p_g^s is sensitive to the extremely small p-values from one test
- p_g^s is sensitive to the significant log fold change for one exon

diffSplice: Gene level F-test

Let H_g be the test for the gene g

$$H_g: \beta_1 = \beta_2 = \cdots = \beta_m = \beta_g$$

Let p_g^f be the p-value for the F test of the gene g

$$F = (s_g^2)^{-1} \Delta \ell \sim F_{m-1, d_g + d_0}$$

where s_g^2 is the posterior of σ_g^2 and d_0 is the prior df

lacksquare p_g^f is sensitive to the sum of log fold change among exons

diffSplice: expression vs usage

- Expression analysis only cares about the absolute counts
- Usage analysis cares about the relative proportion
- Filtering affects expression analysis through FDR and the EB process indirectly
- Filtering affects usage analysis by direct proportion calculation
- Usage analysis depends on a complete reference set

diffSplice: filtering

- filterByExpr may filter exons causing alternative splicing
- Approach I: filter those genes with zero counts
- Approach II. filter those exons with zero counts
- Both keep the same exons with non-zero counts
- Approach II may have slightly smaller simes p-value

diffSplice: edgeR-v4 QL method

```
# edgeR-v4: filtering exon with zero counts
                                                                  # edgeR-v4: filtering exon with zero counts
> topSplice(dsp, test = "simes")
                                                                  > topSplice(dsp, test = "gene")
                                                                                  Chr Strand
       GeneTD
                Chr Strand
                             Symbol NExons P. Value
                                                                         GeneTD
                                                                                               Symbol NExons gene.F P. Value
                              Foxp1
                                         32 1.7e-15 3.8e-11
                                                                                 chrq
                                                                                                Lars2
                                                                                                                18.3 1.2e-36 2.8e-32
49079
       108655
               chr6
                                                                         102436
122571 208263
                         - Torlaip1
                                        13 1 4e-11 1 6e-07
                                                                  49079
                                                                         108655
                                                                                                Foxp1
                                                                                                                 6.5.2.6e-19.2.9e-15
               chr1
                                                                                 chr6
9811
       102436
               chr9
                              Lars?
                                         22 1 1e-08 8 6e-05
                                                                  216231
                                                                         57738
                                                                                chr16
                                                                                              S1c15a2
                                                                                                                 4.7 6.3e-10 4.8e-06
       59013 chr11
                            Hnrnph1
                                        14 4.0e-08 2.2e-04
                                                                  122571 208263
                                                                                           - Torlaip1
                                                                                                                 6.6 5.5e-09 3.1e-05
217841
                                                                                 chr1
277722
       78334 chr10
                              Cdk19
                                         14 1.0e-07 4.5e-04
                                                                  69092
                                                                          12095
                                                                                 chr3
                                                                                               Bglap3
                                                                                                                 8.9 4.2e-07 1.9e-03
100783
       17758
               chr9
                               Map4
                                        21 4.9e-06 1.9e-02
                                                                  9558
                                                                                 chr8
                                                                                                Mtus1
                                                                                                                 3.8 7.9e-07 3.0e-03
140303
       22228
               chr7
                               Ucp2
                                       9 7.7e-06 2.5e-02
                                                                  150669 229487
                                                                                 chr3
                                                                                                 Gatb
                                                                                                                 4.2 3.9e-06 1.3e-02
184805 319448 chr14
                             Fndc3a
                                        31 1.1e-05 3.0e-02
                                                                  192361 329977
                                                                                                Fhad1
                                                                                                                 2.6 8.5e-06 2.4e-02
                                                                                 chr4
88907
        15257
               chr3
                              Hipk1
                                        18 1 80-05 4 40-02
                                                                  136170 218194 chr13
                                                                                              Phactr1
                                                                                                                 3 2 4 20-05 1 10-01
9558
      102103
               chr8
                              Mtus1
                                        20 2.6e-05 5.9e-02
                                                                  193001 330450
                                                                                                  Far2
                                                                                                                 3.9 9.0e-05 2.0e-01
                                                                                 chr6
# teal: expected results
                                                                  # filter zero counts
                                                                                                     # filter by filterBuExpr
# red : new results using simes method
                                                                  > keep <- rowSums(y$counts) > 0
                                                                                                     > keep <- filterByExpr(y)</pre>
# blue: new results using F test
                                                                  > table(keep)
                                                                                                     > table(keep)
                                                                  keep
                                                                                                     keep
                                                                   FALSE
                                                                           TRUE
                                                                                                      FALSE
                                                                                                              TRUE
                                                                   74741 211190
                                                                                                     179116 106815
```

edgeR-v4: Cdk19

Cdk19

	${\tt Lum-CT-1}$	Lum-CT-2	Lum-CT-3	${\tt Lum-KO-1}$	Lum-KO-2	Lum-KO-3
40225283	57	44	40	40	79	73
40270321	27	25	26	27	37	53
40309891	1	4	0	9	24	73
40310300	39	39	47	47	70	96
40312068	51	65	61	67	98	143
40330011	10	7	11	2	16	31
40342634	65	62	70	65	99	160
40345575	55	48	58	55	72	118
40345882	26	23	37	28	35	66
40351565	17	20	28	32	44	58
40352153	42	45	64	48	76	139
40352885	20	28	33	31	54	80
40353698	82	88	96	72	158	204
40355671	1159	1270	1715	1280	2163	3305

orange: filtered by filterByExpr

edgeR-v4: Hurnph1

#	U_m	മാമ	m	h	1

-	${\tt Lum-CT-1}$	Lum-CT-2	Lum-CT-3	${\tt Lum-KO-1}$	Lum-KO-2	${\tt Lum-KO-3}$
50266084	0	2	0	13	10	10
50268141	11	17	8	13	8	13
50269063	331	268	260	236	169	322
50270295	517	485	490	434	331	538
50270648	2642	2862	2434	1926	1514	2460
50273364	854	783	761	637	512	836
50273627	322	330	290	234	191	323
50273755	630	530	503	410	316	616
50274006	534	431	499	401	298	518
50274507	308	207	314	184	131	229
50274658	297	343	294	307	221	373
50275471	536	481	420	369	280	503
50275968	321	305	269	227	183	334
50276604	2733	2410	2594	1900	1442	2721

orange: filtered by filterByExpr

edgeR-v4: Bglap3

Bglap3

	${\tt Lum-CT-1}$	Lum-CT-2	Lum-CT-3	${\tt Lum-K0-1}$	Lum-KO-2	Lum-KO-3
88275923	426	339	228	577	208	325
88276402	28	29	24	39	25	16
88276603	6	8	2	6	5	Ę
88276780	345	255	224	562	206	236
88277435	228	286	112	65	60	37
88278681	136	184	77	29	24	31
88279846	130	209	87	41	41	30

edgeR-v4 vs edgeR-v3

- edgeR-v4 extends to low counts without filtering
- edgeR-v4 is able to find those exon filtered before, causing alternative splicing
- edgeR-v4 is sensitive to significant change in low counts, especially

Zeros vs. Non-zeros

- edgeR-v3 fails to perform differential expression analysis for low counts
- edgeR-v3 performs better in usage than expression analysis for low counts

edgeR-v4 vs edgeR-v3: results

```
# edgeR-v4
                                                                  # edgeR-v3
> topSplice(dsp, test = "simes")
                                                                  > topSplice(dsp, test = "simes")
       GeneID
                Chr Strand
                              Symbol NExons P. Value
                                                        FDR
                                                                         GeneID
                                                                                  Chr Strand
                                                                                                Symbol NExons P. Value
                                                                                                                           FDR
49079
       108655
               chr6
                               Foxp1
                                         32 1.7e-15 3.8e-11
                                                                  49079
                                                                         108655
                                                                                  chr6
                                                                                                 Foxp1
                                                                                                           32 9.3e-14 2.1e-09
122571
       208263
               chr1
                         - Torlaip1
                                         13 1.4e-11 1.6e-07
                                                                  122571
                                                                         208263
                                                                                  chr1
                                                                                            - Torlaip1
                                                                                                           13 2.2e-11 2.4e-07
9811
       102436
               chr9
                               Lars?
                                         22 1.1e-08 8.6e-05
                                                                  9811
                                                                         102436
                                                                                  chr9
                                                                                                 Lars?
                                                                                                           22 5.9e-08 4.5e-04
217841
        59013 chr11
                            Hnrnph1
                                        14 4.0e-08 2.2e-04
                                                                  277722
                                                                          78334 chr10
                                                                                                 Cdk19
                                                                                                           14 3.7e-07 2.1e-03
277722
       78334 chr10
                               Cdk19
                                         14 1.0e-07 4.5e-04
                                                                  217841
                                                                          59013 chr11
                                                                                               Hnrnph1
                                                                                                           14 7.3e-06 3.3e-02
        17758
100783
               chr9
                               Map4
                                         21 4.9e-06 1.9e-02
                                                                  9558
                                                                         102103
                                                                                 chr8
                                                                                                 Mtus1
                                                                                                           20 4.5e-05 1.7e-01
140303
        22228
               chr7
                               Ucp2
                                          9 7.7e-06 2.5e-02
                                                                  62164
                                                                          11687
                                                                                chr11
                                                                                                Alox15
                                                                                                           15 1.5e-04 4.7e-01
184805 319448 chr14
                              Fndc3a
                                         31 1.1e-05 3.0e-02
                                                                  69092
                                                                          12095
                                                                                  chr3
                                                                                                Bglap3
                                                                                                            7 2.7e-04 7.5e-01
88907
        15257
               chr3
                               Hipk1
                                         18 1.8e-05 4.4e-02
                                                                  79298
                                                                          13518
                                                                                 chr1
                                                                                                   Dst.
                                                                                                          107 3.9e-04 9.7e-01
9558
       102103
               chr8
                                         20 2.6e-05 5.9e-02
                                                                  229432
                                                                          66793 chr16
                                                                                                  Clxn
                                                                                                           13 5.3e-04 1.0e+00
                               Mtus1
# teal: expected results
# red : new result identified by edgeR-v4
# edgeR-v1 has more power than edgeR-v3
```

edgeR-v4: Ucp2

Lum-CT-1	Lum-CT-2	${\tt Lum-CT-3}$	${\tt Lum-KO-1}$	Lum-KO-2	${\tt Lum-K0-3}$
113	150	99	121	158	209
275	314	241	273	366	505
18	13	8	5	2	4
347	377	303	319	442	609
244	295	213	214	337	450
287	345	241	265	383	483
253	262	214	216	280	419
319	409	309	293	430	598
590	723	593	592	795	1215
	113 275 18 347 244 287 253 319	113 150 275 314 18 13 347 377 244 295 287 345 263 262 319 409	113 150 99 275 314 241 18 13 8 347 377 303 244 295 213 287 345 241 253 262 214 319 409 309	113 150 99 121 275 314 241 273 18 13 8 5 347 377 303 319 244 295 213 214 287 345 241 265 253 262 214 216 319 409 309 293	275 314 241 273 366 18 13 8 5 2 347 377 303 319 442 244 295 213 214 337 287 345 241 265 383 253 262 214 216 280 319 409 309 293 430

red: edgeR-v4 is more sensitive to significant change
in small counts because of the biological variation
estimation, especially with many zeros

diffSplice: reference genome (RefSeq annotation)

- The reference genomes (RefSeq annotation) like mm39, hg38, keep updating
- More exons may be annotated for some genes
- The exon count matrix may change, causing different results
- More exons are counted using updated mm39

diffSplice: updated mm39 reference genome

```
# edgeR-v4: updated reference "mm39"
                                                                 # edgeR-v4: updated reference "mm39"
> topSplice(dsp, test = "simes")
                                                                 > topSplice(dsp, test = "gene")
                            Symbol NExons P. Value
GeneTD
         Chr Strand
                                                                    GeneID
                                                                             Chr Strand
                                                                                           Symbol NExons gene.F P. Value
                             Foxp1
                                        33 1.2e-15 2.9e-11
                                                                    102436
                                                                                                           18.3 1.5e-36 3.5e-32
108655
         chr6
                                                                             chrq
                                                                                            Iare?
208263
                          Tor1aip1
                                        15 6 0e-10 7 0e-06
                                                                     108655
                                                                             chr6
                                                                                            Foxp1
                                                                                                            6.4 1.1e-19 1.3e-15
        chr1
102436
        chr9
                             Lars?
                                        22 1 1e-08 8 8e-05
                                                                     13411 chr12
                                                                                           Dnah11
                                                                                                            2.6 2.6e-12 2.0e-08
 59013 chr11
                           Hnrnph1
                                       14 3.7e-08 2.2e-04
                                                                     57738 chr16
                                                                                          S1c15a2
                                                                                                            4.8 5.5e-10 3.2e-06
 78334 chr10
                             Cdk19
                                       14 1.1e-07 5.2e-04
                                                                    170788 chr1
                                                                                             Crb1
                                                                                                            8.3 8.0e-09 3.7e-05
 17758
        chr9
                              Map4
                                       21 5.4e-06 2.1e-02
                                                                     69707 chr16
                                                                                             Idcg
                                                                                                            6.0 1.7e-08 6.8e-05
319448 chr14
                            Fndc3a
                                       31 1.1e-05 3.6e-02
                                                                 100048534 chr19
                                                                                           Cfap43
                                                                                                            3.1 2.8e-08 9.3e-05
 15257
        chr3
                             Hipk1
                                       18 1.9e-05 5.5e-02
                                                                    208263
                                                                            chr1
                                                                                       - Torlaip1
                                                                                                            5.0 1.3e-07 3.7e-04
 26894
        chr6
                            Cops7a
                                       11 2.3e-05 5.9e-02
                                                                     12095
                                                                             chr3
                                                                                           Bglap3
                                                                                                            8.9 4.0e-07 1.0e-03
654318
        chr4
                   - C530005A16Rik
                                        3 2.8e-05 6.3e-02
                                                                    102103
                                                                            chr8
                                                                                            Mtus1
                                                                                                            3.2 3.1e-06 7.3e-03
# teal: expected results
                                                                 # updated reference
                                                                                                     # original reference
# red : new results using F test with updated reference genome
                                                                 > keep <- rowSums(y$counts) > 0
                                                                                                    > keep <- rowSums(y$counts) > 0
                                                                 > table(keep)
                                                                                                    > table(keep)
                                                                 keep
                                                                                                    keep
                                                                  FALSE
                                                                          TRUE
                                                                                                     FALSE
                                                                                                             TRUE
                                                                  68986 217522
                                                                                                     74741 211190
```

edgeR-v4: Crb1

edgeR-v4: Crb1

#	Conh 1 .	aum datas	l reference

#	Conh 1 .	oriainallu	fmom Fomm	1 Pdata	om lama

	Lum-CT-1	Lum-CT-2	Lum-CT-3	${\tt Lum-K0-1}$	Lum-KO-2	${\tt Lum-KO-3}$		Lum-CT-1	Lum-CT-2	Lum-CT-3	Lum-KO-1	Lum-KO-2	Lum-KO-3
139101288	100	134	144	106	115	212	139101288	0	0	0	0	0	1
139120765	0	0	0	2	7	6	139120765	0	0	0	2	7	6
139137494	0	0	0	1	0	1	139137494	0	0	0	1	0	1
139151139	0	0	0	3	3	1	139151139	0	0	0	3	3	1
139162465	0	0	0	1	2	2	139162465	0	0	0	1	2	2
139164560	0	0	0	10	9	4	139164560	0	0	0	10	9	4
139168829	0	0	0	0	1	1	139168829	0	0	0	0	1	1
139170716	0	0	0	3	3	2	139170716	0	0	0	3	3	2
139175857	0	0	0	14	11	6	139175857	0	0	0	14	11	6
139199145	0	0	0	0	0	0	139199145	0	0	0	0	0	0
139264768	0	0	0	2	0	0	139264768	0	0	0	2	0	0

red: much more counts for first exon

it seems Rsubread misses the first exon using original genome reference

edgeR will fail in the case that the gene has zero counts in one group, meaning no alternative splicing

edgeR-v4: Ucp2 update

edgeR-v4: Ucp2 update

# Ucp2: uj	pdated re	ference				# Ucp2: 0	riginally	from Fox	o1.Rdata	online			
	Lum-CT-1	Lum-CT-2	Lum-CT-3	Lum-KO-1	Lum-K0-2	Lum-KO-3		${\tt Lum-CT-1}$	Lum-CT-2	Lum-CT-3	${\tt Lum-K0-1}$	Lum-KO-2	Lum-KO-3
100142565	113	150	99	121	158	209	100142544	113	150	99	121	158	209
100142986	3	14	0	0	3	6							
100143421	275	314	241	273	366	505	100143421	275	314	241	273	366	505
100145207	19	14	9	5	3	4	100145293	18	13	8	5	2	4
100145933	347	377	303	319	442	609	100145933	347	377	303	319	442	609
100146302	244	295	213	214	337	450	100146302	244	295	213	214	337	450
100147285	290	349	241	265	385	483	100147285	287	345	241	265	383	483
100147555	256	266	214	216	282	419	100147555	253	262	214	216	280	419
100147776	329	419	317	297	431	618	100147943	319	409	309	293	430	598
100148443	590	723	593	592	795	1215	100148443	590	723	593	592	795	1215

[#] red : one more exon in updated reference genome

[#] blue: the exon counts change when updating the reference genome

Rsubread: align vs subjunc

- align reports the largest mappable regions for each read and soft-clips the remainder of the read
- subjunc reports discovered exon-exon junctions and it also performs full alignments for every read including exon-spanning reads
- subjunc requires the presence of donor and receptor sites when calling exon-exon junctions
- subjunc is more suitable for the exon level analysis
- subjunc may report more exon counts

diffSplice: exon counts from subjunc

```
# edgeR-v4: exon counts from subjunc
> topSplice(dsp, test = "simes")
GeneTD
         Chr Strand
                            Symbol NExons P. Value
                             Foxp1
                                       34 8.2e-21 1.9e-16
108655
         chr6
208263
                          Tor1aip1
                                        15 3.9e-15 4.6e-11
         chr1
 19899
        chr7
                             Rp118
                                        7 3.9e-10 3.0e-06
 78334 chr10
                             Cdk19
                                       14 1.6e-09 9.6e-06
102436
        chr9
                             Lars2
                                       22 1.1e-08 5.2e-05
 59013 chr11
                           Hnrnph1
                                       14 3.5e-08 1.4e-04
 17758
        chr9
                              Map4
                                       21 5.2e-07 1.8e-03
101772
        chr7
                                       30 9.6e-07 2.8e-03
                              Ano1
654318
         chr4
                   - C530005416Rik
                                       3 4 1e-06 1 1e-02
234663
        chr8
                          Dvnc1li2
                                       13 5.9e-06 1.4e-02
# teal: expected results
# red : new result using simes method
        with exon counts from subjunc
```

```
# edgeR-v4: exon counts from subjunc
> topSplice(dsp, test =
                        "gene")
  GeneID
           Chr Strand
                         Symbol NExons gene.F P. Value
  102436
           chrq
                                          25.2 4.7e-44 1.1e-39
                          Iare?
   108655
           chr6
                          Foxp1
                                           8.5.1.4e-27.1.6e-23
   13411 chr12
                         Dnah11
                                           2.6 2.0e-12 1.6e-08
   69707 chr16
                           Iqcg
                                           8.4 6.0e-12 3.6e-08
                         Cfap43
100048534 chr19
                                           4.0 1.6e-11 7.4e-08
  208263
          chr1
                     - Torlaip1
                                           7.1 3.1e-11 1.2e-07
   57738 chr16
                        S1c15a2
                                           4.8 7.3e-10 2.5e-06
  102103
          chr8
                          Mtus1
                                           4.5 1.2e-09 3.4e-06
  170788
          chr1
                           Crb1
                                           9 1 2 1e-09 5 5e-06
   19106 chr17
                        Eif2ak2
                                          5.6 8.7e-09 2.1e-05
# subjunc
                                   # alian
> keep <- rowSums(y$counts) > 0
                                   > keep <- rowSums(y$counts) > 0
> table(keep)
                                   > table(keep)
keep
                                  keep
FALSE
        TRUE
                                   FALSE
                                            TRUE
64659 221849
                                   68986 217522
```

edgeR-v4: Rpl18

edgeR-v4: Rpl18

```
# Rpl18: subjunc
                                                                    # Rpl18: align
         Lum-CT-1 Lum-CT-2 Lum-CT-3 Lum-KO-1 Lum-KO-2 Lum-KO-3
                                                                              Lum-CT-1 Lum-CT-2 Lum-CT-3 Lum-KO-1 Lum-KO-2 Lum-KO-3
45364891
                                                                                     3
                3
                                    5
                                             3
                                                                    45364891
                                                                                              2
                                                                                                        5
                                                                                                                  3
                                                                                                                                     8
45367343
               47
                         64
                                            36
                                                                    45367343
                                                                                    45
                                                                                             63
                                                                                                                 34
                                                                                                                                    54
45368677
               17
                                           256
                                                     159
                                                                    45368677
                                                                                    16
                                                                                                                 19
                                                                                                                          18
                                                                                                                                    26
45368953
             1057
                        981
                                 680
                                           862
                                                     971
                                                                    45368953
                                                                                   434
                                                                                            387
                                                                                                                328
                                                                                                                                  510
                                                             1304
                                                                                                      294
                                                                                                                         390
45369344
             1051
                        985
                                 715
                                           907
                                                     991
                                                             1359
                                                                    45369344
                                                                                  1065
                                                                                           1033
                                                                                                      695
                                                                                                                924
                                                                                                                        1038
                                                                                                                                  1401
45369718
             1372
                       1261
                                 979
                                          1121
                                                    1369
                                                             1790
                                                                    45369718
                                                                                   986
                                                                                            931
                                                                                                      680
                                                                                                                795
                                                                                                                         989
                                                                                                                                  1303
45370138
               80
                         59
                                  46
                                            69
                                                      70
                                                              103
                                                                    45370138
                                                                                    78
                                                                                             54
                                                                                                       45
                                                                                                                 68
                                                                                                                          57
                                                                                                                                   102
```

```
# red: significant change of exon counts between subjunc and align
# it may be due to featureCounts failing to match the correct gene
# as few counts of that exon are observed
```

edgeR-v4: Rpl18

diffSplice: exon-exon junction

- Exon counts are correlated because of exon-exon junction
- Exon internal and exon-exon junction are independent
- Exon-exon junctions can be novel and reveal more alternative splicing types
- Exon-exon junction change does not guarantee alternative splicing
- featureCounts may fail to locate the exon-exon junction to correct genome
- featureCounts may not report strand for exon-exon junctions

diffSplice: exon-exon junction

```
# edgeR-u/: exon-exon junction counts
                                                              # edgeR-v4: exon-exon junction counts
> topSpliceDGE(dsp, test = "simes", n=15)
                                                             > topSpliceDGE(dsp, test = "gene",n=15)
GeneID
         Chr
                Symbol NExons P. Value
                                                                GeneID
                                                                         Chr
                                                                                     Symbol NExons gene.F P.Value
                                                                                                                       FDR
                                           EDB
213326 chr10
                 Scy12
                           59 1.5e-17 3.5e-13
                                                                102436
                                                                        chr9
                                                                                      Lars2
                                                                                                       8.9 8.8e-50 2.1e-45
                           19 9 7e-17 1 2e-12
19899
        chr7
                 Rp118
                                                                213326 chr10
                                                                                      Scv12
                                                                                                59
                                                                                                      3.6.2.2e-14.2.6e-10
        chr5
                  Wdr1
                           52 9.0e-14 7.2e-10
                                                                 19899
                                                                        chr7
                                                                                      Rp118
                                                                                                      6.6 1.1e-12 8.8e-09
19652
        chrX
                  Rbm3
                           22 5.0e-13 3.0e-09
                                                                 108655
                                                                         chr6
                                                                                      Foxp1
                                                                                                162
                                                                                                       2.1 2.3e-12 1.4e-08
        chr1
                Hnrnpu
                           53 1 1e-12 5 1e-09
                                                                 12095
                                                                        chr3
                                                                                     Bglap3
                                                                                                 23
                                                                                                      4.9.2.8e-10.1.3e-06
108655
        chr6
                 Foxp1
                          162 1.3e-12 5.1e-09
                                                                  57738 chr16
                                                                                    Slc15a2
                                                                                                       2.7 2.0e-09 8.1e-06
208263
              Tor1aip1
                           41 1.7e-12 5.7e-09
                                                                  20005
                                                                        chr5
                                                                                                       5.5 3.8e-08 1.3e-04
        chr1
                                                                                       Rp19
18674 chr10
               S1c25a3
                           41 1 2e-11 3 5e-08
                                                                  19652
                                                                         chrX
                                                                                       Rbm3
                                                                                                      4 1 5 7e-08 1 7e-04
18148 chr11
                  Npm1
                           34 1.1e-10 3.0e-07
                                                                  69707 chr16
                                                                                       Igcg
                                                                                                      3.7 1.7e-07 4.4e-04
20005
       chr5
                  Rp19
                           14 1.3e-10 3.2e-07
                                                             100302730
                                                                        chr3 5830417T10Rik
                                                                                                       2.9 2.0e-07 4.8e-04
76808
        chr8
                Rpl18a
                           14 9.1e-10 2.0e-06
                                                                  13411 chr12
                                                                                     Dnah11
                                                                                                173
                                                                                                       1.7 3.2e-07 6.9e-04
12034
        chr6
                  Phh2
                           23 1 7e-09 3 3e-06
                                                                  20084 chr17
                                                                                      Rps18
                                                                                                       5.5 4.0e-07 7.9e-04
20733
        chr7
                Spint2
                           29 2.9e-09 5.2e-06
                                                                  55936
                                                                                                       2.3 1.3e-06 2.4e-03
                                                                        chrX
                                                                                      Ctps2
55936
                           59 5.7e-09 9.7e-06
                                                                                                       3.0 1.4e-06 2.4e-03
        chrX
                 Ctps2
                                                                  18044 chr17
                                                                                       Nfva
19231
        chr1
                  Ptma
                           21 8 50-09 1 30-05
                                                                 170788
                                                                                       Crb1
                                                                                                      4 1 2 20-06 3 60-03
                                                                         chr1
```

```
# teal: expected results
```

[#] red : new result using simes method with exon-exon junction counts, seems new alternative splicing

[#] blue: new result using simes method with exon-exon junction counts, seems new alternative splicing

[#] orange: not interesting, might be false discoveries using exon-exon junction counts

edgeR-v4: Scyl2

Scul2

# DCy 6	6							
	Start	End	LumCT	LumCT	LumCT	LumKO	LumKO	LumKO
203945	89474582	89476978	684	559	764	545	553	832
203946	89477853	89477972	18	7	11	11	15	16
203947	89481324	89481419	25	17	15	5	10	15
203958	89495997	89496218	68	54	42	43	53	81
203959	89498178	89498327	10	12	22	12	17	17
203960	89502579	89502723	11	13	15	13	18	21
203961	89505507	89505664	19	10	20	13	12	23
203962	89514140	89514344	28	28	23	23	27	40
203963	89521900	89522179	46	23	20	33	17	33
203968	89476978	89477853	68	52	64	51	39	70
203969	89477972	89479987	0	1	0	0	0	0
203970	89477972	89481324	56	30	42	39	36	60
203974	89481416	89481539	34	33	36	0	0	0
203975	89481419	89481539	0	0	0	41	28	52
203976	89481605	89482621	43	44	51	42	26	58

red and blue: two different junctions between same exons
it shares the same End, slightly different Start
...: omitted exon or exon-exon junctions

edgeR-v4: Scyl2

edgeR-v4: Rpl18a

Rn 1.18a

# nptit	o a							
	Start	End	LumCT	LumCT	LumCT	LumKO	LumKO	LumKO
499015	71347366	71348151	576	628	475	506	552	775
499016	71348244	71348353	130	159	112	109	145	203
499017	71348560	71348689	465	446	350	383	440	618
499018	71348777	71348956	1617	1675	1172	1314	1436	2080
499019	71350003	71350087	3	4	3	3	1	1
499020	71342351	71347911	0	0	0	0	0	0
499021	71348151	71348244	253	313	202	227	280	354
499022	71348353	71348560	8	3	1	7	0	10
499023	71348353	71348777	0	0	0	0	0	0
499024	71348353	71349977	0	0	0	0	0	0
499025	71348689	71348777	1723	1842	1358	1361	1596	2326
499026	71348824	71350003	0	1	0	0	0	0
499027	71348956	71349977	12	10	8	15	17	22
499028	71348956	71350003	22	21	15	0	0	0

blue: same junction between last two exons

red : new junction between last two exons in one group

edgeR-v4: Rpl18a

edgeR-v4: Wdr1

Wdr1

	Start	End	LumCT	LumCT	LumCT	LumKO	LumKO	LumKO
236376	38684149	38685255	889	612	1446	856	1037	2033
236377	38686868	38687012	62	42	93	44	50	101
236390	38718423	38718544	20	19	37	28	25	75
236391	38718859	38720265	15	10	18	13	11	29
236392	38685255	38686868	102	63	157	102	111	260
236395	38687012	38687280	93	74	145	71	101	197
236401	38688468	38690827	100	57	152	62	99	185
236402	38690081	38690827	0	0	0	0	1	0
236403	38690914	38692527	120	75	200	97	142	277
236404	38690914	38697356	1	0	0	1	0	0
236405	38692678	38694477	0	0	162	0	0	0
236406	38694569	38697356	123	77	174	120	134	260

red: the junction observed in only one sample
...: omitted exon or exon-exon junction counts

edgeR-v4: Wdr1

igv coverage plot

igv sushimi plot

edgeR-v4: Rbm3

Rhm3

# RUMO									
	Start	End	LumCT	LumCT	LumCT	LumKO	LumKO	LumKO	
174344	8005214	8007447	55	48	54	91	59	78	
174345	8008595	8009194	432	432	433	413	352	607	
174346	8009486	8009571	19	23	23	15	12	28	
174347	8009897	8009990	22	21	19	6	12	19	
174348	8010087	8010186	32	73	19	49	51	86	
174349	8010812	8010918	73	118	81	140	72	130	
174350	8011194	8011311	24	31	20	14	20	14	
174358	8009194	8009486	36	34	41	27	17	28	
174359	8009568	8010812	1	0	0	0	0	0	
174360	8010186	8010414	5	8	5	2	5	0	
174361	8010186	8010484	8	0	0	0	0	0	
174362	8010186	8010527	0	0	0	0	0	0	
174363	8010186	8010812	102	0	188	0	0	0	
174364	8010684	8010812	6	5	5	8	6	7	
174365	8011311	8011877	116	133	93	120	122	166	

red: the junction observed in only two samples
...: omitted exon or exon-exon junction counts

edgeR-v4: Rbm3

diffSplice: exon vs transcripts

- Exons are well annotated, compared with transcripts
- Exon-exon junctions can be novel
- The reference for transcripts may not be complete
- Transcripts may be novel or un-annotated
- Exon level analysis seems more powerful for alternative splicing

diffSplice: Simulation

- Simulating exon counts directly from NB distribution is impossible
- Simulating exon and exon-exon junction counts is more complicated
- Multinomial distribution is not suitable because of BCV assumption
- Simulating transcript reads is a better approach
- The reference for transcript may not be complete

Summary

- diffSplice is able to find the proportion change in count matrix
- diffSplice is a powerful tool for alternative splicing analysis
- The exon or exon-exon junction count matrix is complicated
- It is difficult to prepare a biologically meaningful count matrix
- It requires careful align and count on the reads both on exon or transcript
- Novel exon-exon junction or transcript can be essential

Acknowledgement

Smyth Lab

Gordon Smyth

Hannah Coughlan

Pedro Baldoni

Waruni Abeysekera

Mengbo Li

Jinming Cheng

Chen Lab

Andy Chen

Davidson Lab

Alex Yan

Visvader Lab

Thank you

in Walter and Eliza Hall Institute