1.1 Polynomial Regression

Matlab-Code

```
clear all;
close all;
load('linearregression homework.mat');
1 = 0:6;
calculate_plot( l,x_train,y_train );
calculate_plot( l,x_test,y_test,y_test_nonoise );
function calculate_plot( l,x,y,y_nonoise )
    x length = length(x);
    mse = 1;
    for degree = 1
        X matrix = ones(x length, degree+1);
        for exponent = 0:degree
           X_matrix(:,exponent+1) = x .^ exponent;
        end
        W = (X \text{ matrix'} * X \text{ matrix})^{-1} * X \text{ matrix'} * y;
        y_{calc} = X_{matrix} \times W;
        mse(degree+1) = sum((y calc - y) .^ 2) / x length
       figure;
       plot(x, y, '.b');
       hold all;
       plot(x, y calc, '-r');
       titles = ['input', 'approximated'];
       if nargin == 4
           plot(x, y_nonoise, '-g');
           legend('input', 'approximated', 'input without noise');
           legend('input', 'approximated');
       end
       xlabel('x');
       ylabel('y');
    end
    figure;
    plot(1, mse);
    title('Mean squared error as a function of the degree.');
end
```

Which value of I would you choose?

We will choose the value 2 for I.

<u>Plots</u>

Training data-points

Test data-points

1.2 Regularized Polynomial Regression

Matlab-Code

```
clear all;
close all;
load('linearregression homework.mat');
degree = 10;
space = logspace(-3, 0, 10);
train_plot style = 'b-';
test_plot_style = 'm-';
figure;
[calc y train, mse train, w train] = plot mse alpha(x train, y train, space,
degree, train plot style);
hold on;
[calc y test, mse test, w test] = plot mse alpha(x test, y test, space, degree,
test plot style);
legend('training data', 'test data');
hold off;
lowest alpha index = 1;
highest alpha index = length(space);
figure;
hold on;
    [min mse, best alpha index] = min(mse train);
    handle = plot(x train, calc y train(lowest alpha index, :), 'b-');
    set(handle, 'linewidth', 3);
    plot(x_train, calc_y_train(highest_alpha_index, :), 'g-');
    plot(x_train, calc_y_train(best_alpha_index, :), 'r-');
    plot(x train, y train, 'co');
    plot(x test, y test nonoise, 'm-');
xlabel('x');
ylabel('y');
legend('y for lowest alpha', 'y for highest alpha', 'y for best alpha',
'training points', 'target function');
title('y for different alphas');
hold off;
w mean = zeros(length(space), 1);
for index = 1:length(space)
   w = w train(index, :)
   w mean(index) = mean(abs(w));
end
figure;
semilogx(space, w mean);
title('mean absolute weight values');
```

```
function [y calc, mse, w] = plot mse alpha(x, y, space, degree, plot style)
    x length = length(x);
    X = ones(x_length, degree+1);
    for exponent = 0:degree
      X(:,exponent+1) = x .^ exponent;
    end
    space_length = length(space);
   mse = zeros(space length, 1);
    y calc = zeros(space length, x length);
    w = zeros(space length, degree+1);
    for index = 1:length(space)
        alpha = space(index);
        current w = calculate weight( alpha, X, y, degree );
        current_y_calc = X * current_w;
        w(index, :) = current w;
        y_calc(index, :) = current_y_calc;
        mse(index) = sum((current_y_calc - y) .^ 2) / x_length;
    end
    semilogx(space, mse, plot_style);
    xlabel('alpha');
    ylabel('mean squared error');
end
function [ w ] = calculate_weight( alpha, X, y, degree )
   N = length(y);
    w = inv(alpha^2*eye(degree+1) + (X' * X) / N) * ((X'*y)/N);
end
```

Regularized Polynomial Regression 9) Madrix - Foun $E(w) = 1 \sum_{k=0}^{N} (y_{i} - \sum_{k=0}^{N} x_{i} w_{k})^{2} + \alpha \sum_{k=0}^{2} w_{k}^{2}$ $\mathcal{L}^{2} \stackrel{10}{\underset{h=0}{\sum}} w_{k}^{2} = \mathcal{L}^{2} \stackrel{1}{\underset{N\times 11}{\sum}} \stackrel{7}{\underset{11\times N}{\sum}}$ $E(w) = \sqrt{(y-X-w)^{T}} \cdot (\sqrt{y-X,w})$ ·) Weight - Vector E'(w) = 0 E'(w) = 7.2 (y -xw) T. (+x) +22.2. + $\sqrt{2} \cdot \alpha^2 \vec{w}^T = \sqrt[3]{(\vec{y} - \vec{x} \vec{w})^T} \cdot \vec{x}$ w = (2.1 + 1 · x · x) · 1 · 1 · x · x

Plots

Mean squared error of the training and of the test set for the given alphas.

What is the best alpha?

Learned functions for the lowest, the highest and the best alpha.

Mean absolute weight values for the given alpha.

Interpretation:

1.3 Decomposition into structural and approximation error

Matlab-Code:

```
clear all;
close all;
load('linearregression homework 10.mat');
nDataSets = length(x train);
% Calculate optimal w
% This can be calculated with the big dataset (x true, y true
degree = 10;
X true = calculate matrix(x true, degree);
nr alphas = 25;
alphas = logspace(-2, 2, nr_alphas);
structure errors = zeros(nr alphas, 1);
approx errors = zeros(nr alphas, 1);
for i = 1:nr_alphas
    alpha = alphas(i);
    w_opt = calculate_weight(alpha, X_true, y_true, degree );
    structure_errors(i) = mean((y_true - X_true * w_opt) .^ 2);
    approx_error = zeros(nDataSets, 1);
    for j = 1:nDataSets
        X train = calculate matrix(x train{j}, degree);
        w = calculate weight(alpha, X train, y train{j}, degree);
        approx error(\overline{j}) = mean((X_{true} * w - X_{true} * w_{opt}) .^ 2);
    end
    approx errors(i) = mean(approx error);
end
expected errors = structure errors + approx errors;
semilogx(alphas, structure errors, 'c-');
semilogx(alphas, approx errors, 'r-');
semilogx(alphas, expected errors, 'b-');
hold off;
legend('Structure Error', 'Approximation Error', 'Expected Error');
function [ w ] = calculate weight( alpha, X, y, degree )
   N = length(y);
    w = inv(alpha^2*eye(degree+1) + (X' * X) / N) * ((X'*y)/N);
end
function [ X ] = calculate matrix( x, degree )
    x length = length(x);
    X = ones(x length, degree+1);
    for exponent = 0:degree
       X(:,exponent+1) = x .^ exponent;
    end
end
```


Compare your results to the previous example. Is there a difference in the best value? If so, why?