받은 학점 100% 최신 제출물 학점 100% 통과 점수: 80% 이상

다음 항목으로 이동

When building a ConvNet, typically you start wit	th some POOL layers followed by some CONV layers. True/False?	1/1점
False		
○ True		
₹ 더보기		
⊘ 맞습니다		
Correct. It is typical for ConvNets to use a layer after each CONV layer; but is not con	POOL layer after some Conv layers; sometimes even one POOL mmon to start with POOL layers.	
	ste valid convolutions, to avoid increasing the number of channels	1/1점
after every convolutional layer. True/False?		
○ True		
False		
₹ 더보기		
	g paper of LeNet - 5 was written padding wasn't used.	
	y deep networks are so good at fitting complex functions that	1/1점
when training them we almost always overfit the	e training data. True/False?	
○ True		
False		
∠^ 터보기		
맞습니다 Correct, very deep neural networks are ha	ard to train and a deeper network does not always imply lower	
training error. Residual Networks allow us	to train very deep neural networks.	
4. The following equation captures the computation	on in a ResNet block. What goes into the two blanks above?	1/1점
$a^{[l+2]} = g(W^{[l+2]}g(W^{[l+1]}a^{[l]} + b^{[l+1]}) + \\$	b ^{l+2} +) +	
$\bigcirc \ z^{[l]}$ and $a^{[l]}$, respectively		
 a and 0, respectively 		
0 and $a^{[l]}$, respectively 0 and $z^{[l+1]}$, respectively		
∠ 전보기		
In the best scenario when adding a ResNet block training, helping improve the overall performan	k it will learn to approximate the identity function after a lot of	1/1점
True	ice of the network. True/Falser	
False		
✓ 터보기		
맞습니다 Correct. When adding a ResNet block it ca	an easily learn to approximate the identity function, thus in a	
worst-case scenario, it will not affect the p	performance of the network at all.	
	407 407 90	
 For a volume of 125 × 125 × 64 which of the volume? 	e following can be used to reduce this to a $125 imes 125 imes 32$	1/1점
\bigcirc Use a 1×1 convolutional layer with a stride	e of 2, and 32 filters.	
$\begin{tabular}{ll} \hline \end{tabular}$ Use a 1×1 convolutional layer with a stride	e of 1, and 32 filters.	
\bigcirc Use a POOL layer of size 2×2 with a stride	of 2.	
\bigcirc Use a POOL layer of size $2 imes 2$ but with a str	ride of 1.	
✓ 터보기		
○ 맞습니다		
	reat way to reduce the depth dimension without affecting the	
7 Which once of the following statements on local		
1. Which ones of the following statements on more	ption Networks are true? (Check all that apply.)	1/1점

☑ Inception blocks usually use 1x1 convolutions to reduce the input data volume's size before applying 3x3 and 5x5 convolutions.

W = 30, Y = 20, Z = 20

W = 5, Y = 30, Z = 20

W = 30, Y = 30, Z = 5

○ W = 5, Y = 20, Z = 5

✓ 터보기

⊘ 맞습니다