Online Supplemental Material (OSM) 1: Supplementary Figures and Tables

January 30, 2025

Figure S1: Calibrated radiocarbon dates from the two case studies. Details see Tab. S1.

Figure S2: Score and loading plots of MCA from recorded petro-features used to differentiate qualitatively defined petrofrabrics (cf. Cau et al., 2004).

Figure S3: A: Biplot of LDA on 25 samples with known provenance originating from 12 sites and map of sites (B; individually colored). The map (B) also shows all sites in the full XRF dataset (small black dots).

Figure S4: Elemental composition of samples from Pikunda and Munda, the two sites included in this study that are located in the Western Congo Basin. Colors represent distinct pottery styles shown in Figs. 2, S7, and S9.

Figure S5: Score and loading plots of PC 1 and 2 from the PCA's on the X-Ray intensities of six elements obtained from 169 ceramics sherds (grey dots). Highlighted are samples originating from the two case studies discussed in this paper. The coloration is derived of the sample containing sponge spicules or not. The presence of sponge spicules can be viewed as unambiguous evidence for the source clay procured by the pottery coming from a fluvial environment.

(a) Case study I: Western Congo Basin

Figure S6: Score plots of MCA from sample (blue) based on the assigned petro-fabrics and grouping from XRF analysis (red) supplemented by the associated pottery style (green) highlighting the overall similarities and differences between the samples from the individual case studies.

LABNR	C14AGE C	L4STD IntCal20	SITE	FEATURE	POTTERY	REFERENCE
KI-2887	2020	180 469-435 BCE (0.6%)	Munda	MUN 87/2-1-1	Pikunda-Munda	Eggert 1992: 16 Tab. 3; Seidensticker
		423 BCE-418 CE (94.8%)				2021: 328 Tab. 47
KI-2888	1990	65 151-130 BCE (2.2%)	Munda	MUN 87/2-1-3	Pikunda-Munda	Eggert 1992: 16 Tab. 3; Seidensticker
		121 BCE-207 CE (93.3%)				2021: 328 Tab. 47
KI-2881	1990	45 102-66 BCE (3.4%)	Munda	MUN 87/2-1-1	Pikunda-Munda	Eggert 1992: 16 Tab. 3; Seidensticker
		61 BCE-131 CE (90.7%)				2021: 334 Tab. 49
		141-158 CE (1.0%)				
		192-200 CE (0.4%)				
KI-2877	1980	100 347-315 BCE (1.7%)	Pikunda	PIK 87/1	Pikunda-Munda; Lusako	Eggert 1992: 16 Tab. 3; Wotzka 1995;
		205 BCE-251 CE (92.9%)				Seidensticker 2021: 299 Tab. 36
		293-315 CE (0.9 %)				
KI-2876	1980	41 89-81 BCE (0.5%)	Munda	MUN 87/2-1-3	Pikunda-Munda	Eggert 1992: 16 Tab. 3; Seidensticker
		54 BCE-141 CE (93.5%)				2021: 334 Tab. 49
		141-157 CE (1.0%)				
		193-199 CE (0.4%)				
KI-2886	1910	80 93-76 BCE (0.9%)	Munda	MUN 87/2-1-1	Pikunda-Munda	Eggert 1992: 16 Tab. 3; Seidensticker
		55 BCE-259 CE (90.0%)				2021: 328 Tab. 47
		279-335 CE (4.6%)				
RICH-30864	1850	24 126-240 CE (95.4%)	Pikunda	PIK 87/1	Pikunda-Munda	Seidensticker 2024: Tab. 2
KI-2885	1800	90 13-433 CE (95.4%)	Munda	MUN 87/2-1-1	Pikunda-Munda	Eggert 1992: 16 Tab. 3; Seidensticker
						2021: 328 Tab. 47
KI-2890	1680	90 204-590 CE (95.4%)	Munda	MUN 87/3	Pikunda-Munda	Eggert 1992: 16 Tab. 3; Seidensticker
						2021: 338 Tab. 51
KI-2889	1650	80 241-575 CE (95.4%)	Munda	MUN 87/3	Pikunda-Munda	Eggert 1992: 16 Tab. 3; Seidensticker
						2021: 338 Tab. 51
KI-2882	1110	110 675-1158 CE (95.4%)	Munda	MUN 87/1-0-1	indet	Seidensticker 2021: 320 Tab. 45
KI-2883	870	180 774-793 CE (1-0%)	Munda	MUN 87/1-0-1	indet	Seidensticker 2021: 320 Tab. 45
		798-1412 CE (94.4%)				
KI-2892	840	412 1051-1080 CE (5.3%)	Pikunda	PIK 87/3	indet	Seidensticker 2021: 304 Tab. 39
		1152-1276 (90.2%)				
KI-2891	600	75 1278-1438 CE (95.4%)	Pikunda	PIK 87/1	Mandombe	Seidensticker 2021: 299 Tab. 36
RICH-30866	328	22 1490-1639 CE (95.4%)	Munda	MUN 87/1-0-2	Ebambe	Seidensticker 2024: Tab. 2
KI-2884	250	40 1508-1594 CE (24.4%)	Munda	MUN 87/1-0-2	Ebambe	Seidensticker 2021: 320 Tab. 45
		1618-1686 CE (41.4%)				
		1732-1806 CE (27.1%)				
		1927-1950 CE (3.5%)				
RICH-30865	192	22 1657-1688 CE (22.2%)	Munda	MUN 87/1-0-2	Ebambe	Seidensticker 2024: Tab. 2
		1730-1807 CE (58.4%)				
		1925-1950 CE (14.8%)				

(a) Case study I: Dates from Pikunda and Munda.

LABNR	C14AGE C	14STD SHCal20	SITE	FEATURE	POTTERY	REFERENCE
Hv-12612	3305	250 2269-2261 BCE (0.1%)	Wafanya	WAF 83/16	(Monkoto); (Longa); (Bekongo);	Wotzka 1995: 368; Seidensticker
		2204-916 BCE (95.3%)			(Wafanya); (Botendo)	2017: Tab. 21
Hv-126112	2695	160 1224-396 BCE (95.4%)	Wafanya	WAF 83/16	(Monkoto); (Longa)	Wotzka 1995: 99, 127 Tab. 53, 368; Seidensticker 2017: Tab. 21
RICH-25306	2185	25 353-297 BCE (22.4%)	Salonga	SNP-01	cf. Bokuma	
		197-94 BCE (71.1%)		(60-70 cm)		
		79-68 CE (1.9%)				
Hv-12613	1920	90 60 BCE-363 CE (95.4%)	Wafanya	WAF 83/16	Monkoto; (Longa)	Wotzka 1995: 99, 127 Tab. 53, 368;
						Seidensticker 2017: Tab. 21
Hv-12622	1254	90 660-993 CE (95.4%)	Wafanya	WAF 83/3	(Wafanya)	Wotzka 1995; Seidensticker 2017:
						Tab. 21
RICH-25317	1239	25 771-894 CE (92.9%)	Salonga	SNP-03	indet	
		938-954 CE (2.6%)		(30-40 cm)		
RICH-33240	1169	28 882-993 CE (95.4%)	Wafanya	WAF 83/16	Bekongo	
RICH-25315	385	26 1460-1519 CE (33.9%)	Salonga	SNP-01		
		1525-1628 CE (61.5%)		(30-40 cm)		
KI-2365.01	280	70 1464-1471 CE (0.6%)	Wafanya	WAF 83/16	(Monkoto); (Longa); (Bekongo);	Wotzka 1995: 368; Seidensticker
		1481-1711 CE (59.3%)			Wafanya; Botendo	2017: Tab. 21
		1718-1814 CE (28.4%)				
		1835-1995 CE (4.7%)				
		1925-1950 CE (2.5%)				

(b) Case study II: Dates from Monkoto and Wafanya. Note, the samples Hv-12611 & Hv-12612 are considered not representative for the archaeological feature and finds they were associated with by Wotzka (1995, 99, 127 Tab. 53, 368) and are viewed as potential lab errors, following Geyh (1990).

Table S1: Calibrated ages of radiocarbondates from the two case studies (cf. Fig. S1). A comprehensive record of all published radiocarbon dates in Central Africa can be found in the online aDRAC repository Seidensticker and Hubau (2021). Entries in the pottery field marked in parentheses indicate that sherds of this style were found in association with the sample, but that the date was not regarded as representative for this pottery (Wotzka, 1995; Seidensticker, 2021, 193–204), potentially due to lab-errors (Geyh, 1990).

References

- M.-A. Cau, P. M. Day, M. J. Baxter, I. Papageorgiou, I. Iliopoulos, and G. Montana. Exploring automatic grouping procedures in ceramic petrology. *Journal of Archaeological Science*, 31(9): 1325–1338, Sept. 2004. ISSN 03054403. doi: 10.1016/j.jas.2004.03.006.
- M. A. Geyh. Radiocarbon dating problems using acetylene as counting gas. *Radiocarbon*, 32(3): 321–324, 1990. doi: 10.1017/S0033822200012947.
- O. P. Gosselain. Poteries du Cameroun méridionial: styles, techniques et rapports à l'identité. Number 26 in CRA monographies. CNRS éd, Paris, 2002. ISBN 978-2-271-06034-1.
- O. P. Gosselain and A. Livingstone Smith. The Source: Clay Selection and Processing Practices in sub-Saharan Africa. In A. Livingstone Smith and D. Bosquet, editors, *Pottery Manufacturing Processes: Actes Du XIVème Congrès UISPP, Université de Liège, Belgique, 2-8 Septembre 2001, Section 2: Archaeometry, Colloque = Symposium 2.1*, BAR International Series, pages 33–47. Archaeopress, Oxford, 2005. ISBN 1-84171-695-2.
- F. Persits, T. Ahlbrandt, M. Tuttle, R. Charpentier, M. E. Brownfield, and K. Takahashi. Maps showing geology, oil and gas fields and geological provinces of Africa Open-File Report 97-470-A, 1997.
- D. Seidensticker. Archäologische Untersuchungen zur eisenzeitlichen Besiedlungsgeschichte des nordwestlichen Kongobeckens. Tübingen University Press, Tübingen, Sept. 2021. ISBN 978-3-947251-48-3.
- D. Seidensticker and W. Hubau. aDRAC (Archive des datations radiocarbones d'Afrique centrale). Zenodo, Feb. 2021.
- I. K. Whitbread. Ceramic Petrology, Clay Geochemistry and Ceramic Productionfrom Technology to the Mind of the Potter. In D. R. Brothwell and A. M. Pollard, editors, *Handbook of Archaeological Sciences*, pages 449–459. J. Wiley, Chichester; New York, 2001. ISBN 978-0-471-98484-9.
- H.-P. Wotzka. Studien zur Archäologie des zentralafrikanischen Regenwaldes: Die Keramik des inneren Zaüre-Beckens und ihre Stellung im Kontext der Bantu-Expansion, volume 6 of Africa Praehistorica. Heinrich-Barth-Institut, Köln, 1995. ISBN 3-927688-07-X.