THESIS

1. Details on Specific Spaces

1.1. Surface Of Revolution. Consider a point x on a 3-surface U that is a surface of revolution and a vector v in the tangent space U_x .

Consider the component v_0 of v along S^2 .

Consider the great circle made by extending x to a geodesic in the direction of v_0 .

We can reflect across this great circle on all the spherical cross-sections of U.

By symmetry, the geodesic made by extending x in the v direction must stay on this slice of U.

This reduces finding the geodesic on a 3-surface of revolution to finding one on a 2-surface.

1.1.1. Finding the vectors from a point: Rather than mapping a sphere to \mathbb{R}^2 , we can embed it in \mathbb{R}^3 .

Given points $\mathbf{x}, \mathbf{y} \in S^2 \times \mathbb{R}$,

Let $\mathbf{v} =$ the normalization of the projection of \mathbf{y}_1 perpendicular to \mathbf{x}_1 .

Let θ = the angle between \mathbf{x} and $\mathbf{y} = \arccos \langle \mathbf{x}, \mathbf{y} \rangle$

Now we take the points $\mathbf{x}' = (0, x_4)$ and $\mathbf{y}' = (\theta, y_4)$ in the two-dimensional version.

Let \mathbf{z}' be a vector between them.

Let the S^2 component of **z** be z'_0 **v** and the **R** component be z'_1 .

z is a vector between the two points.

1.1.2. Finding a point from a vector: Given point \mathbf{x} and vector \mathbf{z} ,

Let
$$\mathbf{x}' = (0, x_2), \mathbf{z}' = (\|\mathbf{z}_1\|, z_2).$$

Let
$$\mathbf{v} = \|\mathbf{z}_1\|$$
.

Find \mathbf{y}' with the two-dimensional version.

$$\mathbf{y} = (\mathbf{x}_1 \cos y_1' + \mathbf{v} \sin y_1', y_2').$$

In order to find the rotation, we must work in a more relevant basis. We can do this by commuting with the appropriate matrix.

$$\mathbf{e}_1 \mapsto \mathbf{e}_1, \mathbf{v} \mapsto \mathbf{e}_2, \mathbf{x}_1 \mapsto \mathbf{e}_3, \mathbf{x}_1 \times \mathbf{v} \mapsto \mathbf{e}_4$$

$$(\mathbf{e}_1,\mathbf{v},\mathbf{x}_1,(\mathbf{x}_1\times\mathbf{v}))^{-1}$$

 $= (\mathbf{e}_1, \mathbf{v}, \mathbf{x}_1, (\mathbf{x}_1 \times \mathbf{v}))^T$, since it's a rotation matrix.

First, we use the rotation of the two-dimensional version to find the rotation between \mathbf{e}_1 and \mathbf{v} .

2 THESIS

$$\begin{pmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Next, we have to deal with the fact that the S^2 component rotates. Let $\phi = y_2' - x_2'$.

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \phi & -\sin \phi & 0 \\
0 & \sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Putting this all together, we get:

$$(\mathbf{e}_1, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{z})) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (\mathbf{e}_1, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{z}))^T$$

1.1.3. Portals: The intersection tells me the orientation as embedded in \mathbb{R}^3 . I need to convert that to $\mathbb{R} \times S^2 \subseteq \mathbb{R}^4$.

First, I just expand the matrix M to $\begin{pmatrix} M & 0 \\ 0 & 1 \end{pmatrix}$ to put it in $\mathbb{R}^3 \subseteq \mathbb{R}^4$.

Now I need to reflect it twice.

First, I will reflect along the t-axis, to get $\begin{pmatrix} M & 0 \\ 0 & -1 \end{pmatrix}$. This doesn't change anything, since that vector was orthogonal to reality, but it does guarantee that the final orientation will have the same sign.

Now I need to reflect between (1,0,0,0) and (0,v) where $v \in S^2$ is the position of the vector.

Let w be a vector I am moving with this, and R be the reflection matrix.

$$Rw = w - ((v,0) - (0,0,0,1)) \langle (v,0) - (0,0,0,1), w \rangle$$

$$= w - (v, -1) \langle (v, -1), w \rangle$$

$$= Iw - (v, -1)(v, -1)^Tw$$

$$= (I - (v, -1)(v, -1)^T)w$$

$$= (I - (v, -1)(v, -1)^{T})w$$

$$R = I - (v, -1)(v, -1)^{T}$$

This means that the final orientation is $R\begin{pmatrix} M & 0 \\ 0 & -1 \end{pmatrix}$.