MTHE 474 Notes

Timothy Liu Fall 2022

Contents

1	Cha	ter 2 Topics
	1.1	nformation Measures for Discrete Systems
		.1.1 Definitions
		.1.2 Lemmas/Theorems
	1.2	Information
		.2.1 Definitions
		.2.2 Lemmas
	1.3	Conditional Divergence
		.3.1 Definitions
		.3.2 Theorems
	1.4	Oata Processing Inequality
		.4.1 Definitions
		.4.2 Theorems
	1.5	Convex/Concavity of Information Measures
		.5.1 Definitions
		.5.2 Theorems
2	Tut	ial Proofs
	2.1	Veek 2 Tutorial

1 Chapter 2 Topics

1.1 Information Measures for Discrete Systems

1.1.1 Definitions

• **Definition 2.2:** Entropy of discrete random variable X with pmf $P_X(*)$ is defined as

$$H(X) := -\sum_{x \in X} P_X(x) * \log_2 P_X(x)$$

• **Definition 2.2:** Entropy of discrete random variable X with pmf $P_X(*)$ is defined as

$$H(X) := -\sum_{x \in X} P_X(x) * \log_2 P_X(x)$$

• Definition 2.8 (Joint entropy):

$$H(X,Y) := -\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) * \log_2 P_{(X,Y)}(x,y)$$

• Definition 2.9 (Conditional entropy):

$$H(Y|X) := \sum_{x \in \mathcal{X}} P_X(x) \left(-\sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) * \log_2 P_{Y|X}(y|x)\right)$$

•

1.1.2 Lemmas/Theorems

• Lemma 2.4 (Fundamental Inequality): $\forall x > 0$ and D > 1 we have

$$\log_D(x) \le \log_D e * (x - 1)$$

- Lemma 2.5 (Non-negativity): $H(X) \ge 0$
- Lemma 2.6 (Entropy Upper-Bound): $H(X) \leq \log_2 |\mathcal{X}|$ where random variable X takes values from finite set \mathcal{X}
- Lemma 2.7 (Log-Sum inequality): For nonnegative numbers, a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n

$$\sum_{i=1}^{n} (a_i \log_D \frac{a_i}{b_i}) \le (\sum_{i=1}^{n} a_i) \log_D \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}$$

with equality iff for all $i = 1, \ldots, n$

$$\frac{a_i}{b_i} = \frac{\sum_{j=1}^{n} a_j}{\sum_{j=1}^{n} b_j}$$

is constand and does not depend on i

• Theorem 2.10 (Chain rule for entropy): H(X,Y) = H(X) + H(Y|X)

1.2 Mutual Information

1.2.1 Definitions

• Definition 2.2.1 (Mutual Information):

$$I(X;Y) := H(X) - H(X|Y)$$

• Definition 2.2.2 (Conditional Mutual Information):

$$I(X;Y|Z) := H(X|Z) - H(X|Y,Z)$$

1.2.2 Lemmas

• Lemma 2.15 (Properties of Mutual Information):

1.
$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X,Y}(x,y) \log_2 \frac{P_{X,Y}(x,y)}{P_X(x)P_Y(y)}$$
 (1)

$$2. I(X;Y) = I(Y;X) = H(Y) - H(Y|X)$$
(2)

3.
$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$
 (3)

4.
$$I(X;Y) \le H(X)$$
 equality iff X is a function of Y (4)

5.
$$I(X;Y) \le 0$$
 with equality iff X and Y are independent (5)

$$6. I(X;Y) \le \min\{\log_2 |\mathcal{X}|, \log_2 |\mathcal{Y}|\} \tag{6}$$

• Lemma 2.16 (Chain Rule for Mutual Information):

$$I(X;Y,Z) = I(X;Y) + I(X;Z|Y) = I(X;Z) + I(X;Y|Z)$$

• Theorem 2.17 (Chain Rule for entropy): $X^n := (X_1, \ldots, X_n)$ and $x^n := (x_1, \ldots, x_n)$

$$H(X^n) = \sum_{i=1}^n H(X_i|X^{i-1})$$

• Theorem 2.18 (Chain Rule for conditional entropy):

$$H(X_1, X_2, \dots, X_n | Y) = \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1, Y)$$

• Theorem 2.19 (Chain Rule for Mutual information):

$$I(X_1, X_2, \dots, X_n; Y) = \sum_{i=1}^n I(X_i; Y | X_{i-1}, \dots, X_1)$$

Where
$$I(X_i; Y | X_{i-1}, ..., X_1) := I(X_1, Y)$$
 for $i = 1$

1.3 Conditional Divergence

- 1.3.1 Definitions
- 1.3.2 Theorems

1.4 Data Processing Inequality

1.4.1 Definitions

• Lecture 7 Definition (Markov Chain): Three jointly distributed random variables X, Y, Z are said to form a Markov Chain (in that order), denoted by $X \to Y \to Z$ if:

$$P_{XZ|Y}(x,y|z) = P_{X|Y}(x|y)P_{Z|Y}(z,y) \iff P_{Z|XY}(z|x,y) = P_{Z|Y}(z|y)$$

$$\forall x \in X, y \in Y, z \in Z$$

1.4.2 Theorems

• Lecture 7 Theorem (Data Processing Inequality): If $X \to Y \to Z$, then

$$I(X;Y) \leq I(X;Z)$$

1.5 Convex/Concavity of Information Measures

1.5.1 Definitions

• Lecture 6 Definition (Convex Set):

A subset K of \mathbb{R} is called convex if the line segment joining any two points in K also lies in K

• Lecture 6 Definition (Convex Function): The function $f: k \to \mathbb{R}$ where k is a convex subset of \mathbb{R}^n , is called convex on k if $\forall x_1, x_2 \in k$ and $\lambda \in [0, 1]$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Strict equality holds whenever $x_1 \neq x_2$ and $0 < \lambda < 1$ then f is called strictly convex

• Lecture 6 Definition (Concave Function): $f: k \to \mathbb{R}$ is concave on k (where $k \subseteq \mathbb{R}^n$ is a concave subset) if -f is convex. In other words: if $\forall x_1, x_2 \in k$ and $\lambda \in [0, 1]$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2)$$

1.5.2 Theorems

• Lecture 6 Theorem (Jensen's Inequality): Let $K \subseteq \mathbb{R}$ (where K is a convex set?) and let $f: k \to \mathbb{R}$ be a convex function. Also let x be a RV with alphabet $\mathcal{X} \subseteq k$ and finite mean, then

$$E[f(x)] \le f(E[x])$$

Also if f is strictly convex, then the inequality is strict unless x is deterministic

• Lecture 7 Theorem (Convexity/Concavity of Information Measures): i. D(p||q) is convex in the pair (p,q) (ie: if p_1,q_1 and p_2,q_2 are two pairs of PMFs defined on \mathcal{X}) then:

$$D(\lambda p_1 + (1 - \lambda)p_2||\lambda q_1 + (1 - \lambda)q_2) \le \lambda d(p_1||q_1) + (1 - \lambda)D(p_2||q_2)$$

 $\forall \lambda \in [0,1]$

ii. if $x P_x$, then

$$H(x) = H(p_x)$$
 is concave in P_x

iii. If (x,y) $P_X P_{Y|X}$, then $I(X;Y) = I(P_X, P_{Y|X})$ is concave in P_X for fixed $P_{Y|X}$ and convex in $P_{Y|X}$ for fixed P_X

2 Tutorial Proofs

2.1 Week 2 Tutorial

ullet Given 2 discrete RVs, X,Y we have that

$$H(Y|X) = 0 \iff Y$$
 is a function of X

• Given RV X with alphabet \mathcal{X} and function $f: x \to \mathbb{R}$

$$H(X) \le H(f(X))$$