Dijkstra's Algorithm Complexity Analysis

This report analyses the runtime behaviors of two implementations of Dijkstra's algorithm, with time complexity $O(N^2)$ and the other O(NlogN), verifying if they adhere to their respective complexity bounds.

Method

Both Python implementations of the algorithm were tested on networks of varying sizes using an automated script, run by entering 'python run_script.py' in the terminal. Networks were randomly generated with different numbers of nodes and links, ranging from 10 to 150 nodes. The probability of links between each node in the network can be adjusted in the 'generate_network()' function and was set to 0.3 to produce these results.

Result

For Dijkstra with N * N complexity		
Number of Nodes	Number of Links	Execution Time (N*N)
10	15	0.00787043571472168
50	385	0.007153511047363281
100	1471	0.00692439079284668
150	3300	0.007422924041748047
For Dijkstra with N log N complexity		
Number of Nodes	Number of Links	Execution Time (N log N)
10	15	0.007222175598144531
50	385	0.007271766662597656
100	1471	0.006852149963378906
150	3300	0.0073087215423583984

The table shows a summary of the run-time information printed by the script where it was noted that as the density of the network increased, the implementation of Dijkstra's algorithm with a time complexity O(NlogN) exhibited slightly faster execution times.