Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

Институт компьютерных наук и технологий Программная инженерия

Отчёт по лабораторной работе

по дисциплине

«Языки моделирования и описания цифровой аппаратуры» Программная и аппаратная реализация алгоритма сортировки вставками

Студент гр. 5130904/30008 Ребдев П.А

Студент гр. 5130904/30008 Мунгой Шеллер Валмиро Да Линда

Проверил: Амосов В.В

Оглавление

1. Техническое задание	3
2. Описание алгоритма	
3. Аппаратная реализация	
3.1 Блок-схема	
3.2 Verilog код	
3.3 Симуляция (тестирование)	
3.4 Технологическая схема	
6. Ручной расчёт	

1. Техническое задание

- 1) Разработать аппаратную реализацию сортировки вставсками массива на языке Verilog
- 2) Произвести симуляцию Verilog кода
- 3) Создать RTL схему в среде Quartus II
- 4) Создать технологическую схему
- 5) Сделать ручной расчёт сортировки

2. Описание алгоритма

На вход алгоритма подаётся последовательность n чисел. Алгоритм состоит из прохода по массиву. На каждом шагу следующий элемент сравнивается с текущим, если порядок неверный, то следующий элемент вставляется в отсортированную часть. Проход по массиву проводиться однократно, на каждом шаге отсортированная часть увеличивается, а не отсортированная уменьшается

3. Аппаратная реализация

3.1 Блок-схема

3.2 Verilog код

module insert_sort(clk, start, reset, inData, done, outData);
parameter size = 8;

```
input clk, start, reset;
input [31:0] inData;
output reg done;
output reg [31:0] outData;
integer localData[(size - 1) : 0];
integer i = 0, j = 0, temp = 0;
reg isWorking = 0, inFlag = 0, outFlag = 0;
always @(posedge clk)
begin
if (reset)
begin
  outData = 0;
  done = 0;
 isWorking = 0;
 inFlag = 0;
 outFlag = 0;
 end
 else if (start)
 begin
  outData = 0;
  done = 0;
 inFlag = 1;
 localData[0] = inData;
 i = 1;
 j = 0;
 end
 else if (inFlag)
 begin
  localData[i] = inData;
  i = i + 1;
  if (i == size)
  begin
  i = 0;
   inFlag = 0;
   isWorking = 1;
  end
 end
 else if (isWorking == 1)
 begin
  if (i < (size - 1))
  begin
   if ((j \ge 0) \&\& (localData[j] > localData[j + 1]))
   begin
    temp = localData[j];
    localData[j] = localData[j + 1];
    localData[j + 1] = temp;
    j = j - 1;
   end
   else
   begin
    j = i + 1;
    i = i + 1;
   end
  end
```

```
else
   begin
    done = 1;
    outFlag = 1;
    isWorking = 0;
    i = 0;
   i = 0;
   end
  end
  else if (outFlag)
  begin
   outData = localData[i];
   i = i + 1;
   if (i == size)
   begin
    outFlag = 0;
    i = 0;
   end
  end
 end
endmodule
```

3.3 Симуляция (тестирование)

3.4 Технологическая схема

3.5 RTL схема

3.6 Отчёт в среде Quartus

Flow Status	Successful - Thu May 27 14:54:39 2021		Resource	Usage
Quartus II Version	5.0 Build 148 04/26/2005 SJ Full Version	1	Total logic elements	950
Revision Name	Lab8	2	Total combinational functions	950
Top-level Entity Name	insert_sort	3	Total 4-input functions	489
Family	Stratix	4	Total 3-input functions	325
Met timing requirements	Yes	5	Total 2-input functions	72
Total logic elements	950 / 10,570 (8 %)	6	Total 1-input functions	64
Total pins	68 / 336 (20 %)	7	Total 0-input functions	0
Total virtual pins	0	8	Combinational cells for routing	0
Total memory bits	0 / 920,448 (0 %)	9	Total registers	356
DSP block 9-bit elements	0/48(0%)	10	Total logic cells in carry chains	96
Total PLLs	0/6(0%)	11	I/O pins	68
Total DLLs	0/2(0%)	12	Maximum fan-out node	clk
Device	EP1S10F484C5	13	Maximum fan-out	356
Timing Models	Final	14	Total fan-out	4585
		15	Average fan-out	4.50

6. Ручной расчёт

Возьмём 8 случайно сгенерированых тестовых чисел: 3 6 7 5 3 5 6 2

