4.4.2 常系数齐次线性微分方程

基本思路:

求解常系数线性齐次微分方程

转化

求特征方程(代数方程)之根

二阶常系数齐次线性微分方程:

$$y'' + py' + qy = 0$$
 (p, q为常数) ①

因为 λ 为常数时,函数 $e^{\lambda x}$ 和它的导数只差常数因子,所以令①的解为 $y = e^{\lambda x}$ (λ) 为待定常数),代入①得 $(\lambda^2 + p\lambda + q)e^{\lambda x} = 0$

$$\lambda^2 + p\lambda + q = 0 \quad ②$$

- 称②为微分方程①的特征方程, 其根称为特征根.

2. 当 $p^2 - 4q = 0$ 时,特征方程有两个相等实根 $\lambda_1 = \lambda_2$ = $\frac{-p}{2}$,则微分方程有一个特解 $y_1 = e^{\lambda_1 x}$.

设另一特解 $y_2 = y_1 u(x) = e^{\lambda x} u(x)$ (u(x) 待定) 代入方程得:

$$e^{\lambda_1 x}[(u'' + 2\lambda_1 u' + \lambda_1^2 u) + p(u' + \lambda_1 u) + qu] = 0$$

 $u'' + (2\lambda_1 + p)u' + (\lambda_1^2 + p\lambda_1 + q)u = 0$
「注意 λ_1 是特征方程的重根
 $u'' = 0$

取 u = x,则得 $y_2 = xe^{\lambda x}$,因此原方程的通解为 $y = (C_1 + C_2 x)e^{\lambda x}$

3. 当 $p^2 - 4q < 0$ 时,特征方程有一对共轭复根 $\lambda_1 = \alpha + i\beta$, $\lambda_2 = \alpha - i\beta$

这时原方程有两个复数解:

$$y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} (\cos \beta x + i \sin \beta x)$$
$$y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

利用解的叠加原理,得原方程的线性无关特解:

$$\overline{y_1} = \frac{1}{2}(y_1 + y_2) = e^{\alpha x} \cos \beta x$$

$$\overline{y_2} = \frac{1}{2i}(y_1 - y_2) = e^{\alpha x} \sin \beta x$$

因此原方程的通解为

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

小结:

$$y'' + py' + qy = 0$$
 (p, q为常数)

特征方程: $\lambda^2 + p\lambda + q = 0$, 特征根: λ_1, λ_2

特征根	通	解	
$\lambda_1 \neq \lambda_2$ 实根	$y = C_1 e$	$^{\lambda_1 x} + C_2 e^{\lambda_2 x}$	
$\lambda_1 = \lambda_2 = -\frac{p}{2}$			
$\lambda_{1,2} = \alpha \pm i\beta$	$y = e^{\alpha x}$	$(C_1 \cos \beta x +$	$C_2 \sin \beta x$

以上结论可推广到高阶常系数线性微分方程.

推广:

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0 (a_k 均为常数)$$
特征方程: $\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$ 若特征方程含 k 重实根 λ ,则其通解中必含对应项 $(C_1 + C_2 x + \dots + C_k x^{k-1})e^{\lambda x}$

若特征方程含k重复根 $r=\alpha\pm i\beta$,则其通解中必含对应项

$$e^{\alpha x}[(C_1 + C_2 x + \dots + C_k x^{k-1})\cos \beta x + + (D_1 + D_2 x + \dots + D_k x^{k-1})\sin \beta x]$$

(以上 C_i , D_i 均为任意常数)

例. 求方程 y''-2y'-3y=0 的通解.

解:特征方程 $\lambda^2 - 2\lambda - 3 = 0$,特征根: $\lambda_1 = -1$, $\lambda_2 = 3$, 因此原方程的通解为 $y = C_1 e^{-x} + C_2 e^{3x}$

例. 求解初值问题
$$\left\{ \begin{array}{l} \frac{\mathrm{d}^2 s}{\mathrm{d} \, t^2} + 2 \frac{\mathrm{d} s}{\mathrm{d} \, t} + s = 0 \\ s\big|_{t=0} = 4 \,, \, \left. \frac{\mathrm{d} s}{\mathrm{d} \, t} \right|_{t=0} = -2 \end{array} \right.$$

解:特征方程 $\lambda^2 + 2\lambda + 1 = 0$ 有重根 $\lambda_1 = \lambda_2 = -1$, 因此原方程的通解为 $s = (C_1 + C_2 t)e^{-t}$ 利用初始条件得 $C_1=4$, $C_2=2$ 于是所求初值问题的解为 $s=(4+2t)e^{-t}$

内容小结

$$y''+py'+qy=0$$
 $(p,q为常数)$ 特征根: λ_1,λ_2

(1) 当
$$\lambda_1 \neq \lambda_2$$
 时, 通解为 $y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$

(2) 当
$$\lambda_1 = \lambda_2$$
 时, 通解为 $y = (C_1 + C_2 x)e^{\lambda_1 x}$

(3) 当
$$\lambda_{1,2} = \alpha \pm i\beta$$
 时, 通解为
$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

可推广到高阶常系数线性齐次方程求通解.

4.4.3 常系数非齐次线性微分方程

$$- \cdot f(x) = e^{\alpha x} P_m(x)$$
型

二、
$$f(x) = e^{\alpha x} [P_l(x) \cos \beta x + \tilde{P}_n(x) \sin \beta x]$$
 型

二阶常系数线性非齐次微分方程:

$$y'' + py' + qy = f(x)$$
 (p, q 为常数) ①

根据解的结构定理, 其通解为

$$y=Y+y*$$

齐次方程通解 非齐次方程特解

求特解的方法 — 待定系数法

根据 f(x) 的特殊形式,给出特解 y* 的待定形式, 代入原方程比较两端表达式以确定待定系数.

一、
$$f(x) = e^{\alpha x} P_m(x)$$
 型 α 为实数 , $P_m(x)$ 为 m 次多项式 . 设特解为 $y^* = e^{\alpha x} Q(x)$, 其中 $Q(x)$ 为待定多项式 , $y^{*'} = e^{\alpha x} [\alpha Q(x) + Q'(x)]$ $y^{*''} = e^{\alpha x} [\alpha^2 Q(x) + 2\alpha Q'(x) + Q''(x)]$

代入原方程,得

$$Q''(x) + (2\alpha + p)Q'(x) + (\alpha^{2} + p\alpha + q)Q(x) = P_{m}(x)$$

(1) 若 α 不是特征方程的根,即 $\alpha^2 + p\alpha + q \neq 0$,则取Q(x)为m次待定系数多项式 $Q_m(x)$,从而得到特解形式为 $y^* = e^{\alpha x}Q_m(x)$.

$$Q''(x) + (2\alpha + p)Q'(x) + (\alpha^2 + p\alpha + q)Q(x) = P_m(x)$$

(2) 若α是特征方程的单根,即

$$\alpha^2 + p\alpha + q = 0, \quad 2\alpha + p \neq 0,$$

则Q'(x)为m次多项式,故特解形式为 $y^* = xQ_m(x)e^{\alpha x}$.

(3) 若 α 是特征方程的重根,即

$$\alpha^2 + p\alpha + q = 0, \quad 2\alpha + p = 0,$$

则Q''(x)是m次多项式,故特解形式为 $y^* = x^2 Q_m(x)e^{\alpha x}$

小结 对方程①,当 α 是特征方程的k重根时,可设特解 $y^* = x^k Q_m(x) e^{\alpha x}$ (k = 0, 1, 2)

例. 求方程y''-2y'-3y=3x+1的一个特解.

解: 本题 $\alpha = 0$, 而特征方程为 $\lambda^2 - 2\lambda - 3 = 0$,

 $\alpha = 0$ 不是特征方程的根.

设所求特解为 $y^* = b_0 x + b_1$, 代入方程:

$$-3b_0x - 3b_1 - 2b_0 = 3x + 1$$

比较系数,得

$$\begin{cases} -3b_0 = 3 \\ -2b_0 - 3b_1 = 1 \end{cases} \longrightarrow b_0 = -1, \ b_1 = \frac{1}{3}$$

于是所求特解为 $y^* = -x + \frac{1}{3}$.

例. 求方程 $y'' - 5y' + 6y = xe^{2x}$ 的通解.

解:对应齐次方程的特征方程为 $\lambda^2 - 5\lambda + 6 = 0$,

其根为 $\lambda_1 = 2$, $\lambda_2 = 3$

对应齐次方程的通解为 $Y = C_1 e^{2x} + C_2 e^{3x}$

设非齐次方程特解为 $y^* = x(b_0 x + b_1)e^{2x}$ 本题 代入方程得 $-2b_0 x - b_1 + 2b_0 = x$ $\alpha = 2$

比较系数, 得 $\begin{cases} -2b_0 = 1 \\ 2b_0 - b_1 = 0 \end{cases} \longrightarrow b_0 = -\frac{1}{2}, b_1 = -1$

因此特解为 $y^* = x(-\frac{1}{2}x-1)e^{2x}$.

所求通解为 $y = C_1 e^{2x} + C_2 e^{3x} - (\frac{1}{2}x^2 + x)e^{2x}$.

二、 $f(x) = e^{\alpha x} [P_l(x) \cos \beta x + \widetilde{P}_n(x) \sin \beta x]$ 型分析思路:

第一步将f(x)转化为

$$f(x) = P_m(x)e^{(\alpha+i\beta)x} + \overline{P_m(x)e^{(\alpha+i\beta)x}}$$

第二步求出如下两个方程的特解

$$y'' + py' + qy = P_m(x)e^{(\alpha+i\beta)x}$$

 $y'' + py' + qy = P_m(x)e^{(\alpha+i\beta)x}$

第三步 利用叠加原理求出原方程的特解 第四步 分析原方程特解的特点

第一步 利用欧拉公式将f(x)变形

$$f(x) = e^{\alpha x} \left[P_l(x) \frac{e^{i\beta x} + e^{-i\beta x}}{2} + \widetilde{P}_n(x) \frac{e^{i\beta x} - e^{-i\beta x}}{2i} \right]$$

$$= \left[\frac{P_l(x)}{2} + \frac{\widetilde{P}_n(x)}{2i} \right] e^{(\alpha + i\beta)x}$$

$$+\left[\begin{array}{c}P_l(x)\\2\end{array}-\frac{\widetilde{P}_n(x)}{2i}\right]e^{(\alpha-i\beta)x}$$

令
$$m = \max\{n, l\}$$
,则

$$f(x) = P_m(x)e^{(\alpha+i\beta)x} + \overline{P_m(x)}e^{(\alpha-i\beta)x}$$
$$= P_m(x)e^{(\alpha+i\beta)x} + \overline{P_m(x)}e^{(\alpha+i\beta)x}$$

第二步求如下两方程的特解

$$y'' + py' + qy = P_m(x)e^{(\alpha + i\beta)x}$$
 2

$$y'' + py' + qy = P_m(x)e^{(\alpha + i\beta)x}$$
 3

设 $\alpha + i\beta$ 是特征方程的 k 重根 (k = 0, 1),则②有特解:

$$y_1^* = x^k Q_m(x) e^{(\alpha + i\beta)x} \quad (Q_m(x) 为 m 次 多 项 式)$$

故
$$(y_1^*)'' + p(y_1^*)' + qy_1^* \equiv P_m(x)e^{(\alpha+i\beta)x}$$

等式两边取共轭:

$$\overline{y_1}^* + p \overline{y_1}^* + q \overline{y_1}^* = \overline{P_m(x)} e^{(\alpha + i\beta)x}$$

这说明 y1* 为方程 ③ 的特解.

第三步 求原方程的特解 原方程

$$y'' + py' + qy = e^{\alpha x} [P_l(x) \cos \beta x + \widetilde{P}_n(x) \sin \beta x]$$

利用第二步的结果,根据叠加原理,原方程有特解:

$$y^* = y_1^* + \overline{y_1^*}$$

$$= x^k e^{\alpha x} [Q_m e^{i\beta x} + \overline{Q_m} e^{-i\beta x}]$$

$$= x^k e^{\alpha x} [Q_m (\cos \beta x + i \sin \beta x) + \overline{Q_m} (\cos \beta x - i \sin \beta x)]$$

$$= x^k e^{\alpha x} [R_m \cos \beta x + \widetilde{R}_m \sin \beta x]$$

其中 R_m , \widetilde{R}_m 均为m次多项式.

第四步分析 y*的特点

因

$$y^* = y_1^* + \overline{y_1^*}$$

$$= x^k e^{\alpha x} [R_m \cos \beta x + \widetilde{R}_m \sin \beta x]$$

$$\overline{y^*} = \overline{y_1^* + \overline{y_1^*}} = \overline{y_1^* + \overline{y_1^*}}$$

 $= y_1^* + y_1^*$ $= v^*$

所以 y^* 本质上为实函数,因此 R_m , \widetilde{R}_m 均为m次实多项式。

小结:

对非齐次方程

$$y'' + py' + qy = e^{\alpha x} [P_l(x) \cos \beta x + \widetilde{P}_n(x) \sin \beta x]$$
$$(p, q 为常数)$$

 $\alpha + i\beta$ 为特征方程的 k 重根 (k = 0, 1), 则可设特解:

$$y^* = x^k e^{\alpha x} [R_m(x) \cos \beta x + \widetilde{R}_m(x) \sin \beta x]$$

其中 $m = \max\{n, l\}$

上述结论也可推广到高阶方程的情形.

例. 求方程 $y'' + y = x \cos 2x$ 的一个特解.

解: 本题 $\alpha = 0$, $\beta = 2$, $P_l(x) = x$, $\widetilde{P}_n(x) = 0$, 特征方程 $\lambda^2 + 1 = 0$

 $\alpha + i\beta = 2i$ 不是特征方程的根,故设特解为 $y^* = (ax+b)\cos 2x + (cx+d)\sin 2x$

代入方程得

$$(-3ax - 3b + 4c)\cos 2x - (3cx + 3d + 4a)\sin 2x = x\cos 2x$$

比较系数,得
$$\begin{cases} -3a=1\\ -3b+4c=0\\ -3c=0\\ -3d+4a=0 \end{cases} \therefore a=\frac{-1}{3}, d=\frac{4}{9}$$

于是求得一个特解 $y^* = \frac{-1}{3}x\cos 2x + \frac{4}{9}\sin 2x$.

例. 求方程 $y'' + 9y = 18\cos 3x - 30\sin 3x$ 的通解. 解:特征方程为 $\lambda^2 + 9 = 0$, 其根为 $\lambda_{1,2} = \pm 3i$ 对应齐次方程的通解为 $Y = C_1 \cos 3x + C_2 \sin 3x$ ±3i为特征方程的单根,因此设非齐次方程特解为 $y^* = x(a\cos 3x + b\sin 3x)$ 代入方程: $6b\cos 3x - 6a\sin 3x = 18\cos 3x - 30\sin 3x$

比较系数, 得 a=5, b=3, 因此特解为 $y^*=x(5\cos 3x+3\sin 3x)$ 所求通解为

 $y = C_1 \cos 3x + C_2 \sin 3x + x (5 \cos 3x + 3 \sin 3x)$

内容小结

- $1. y'' + p y' + q y = e^{\alpha x} P_m(x)$ α 为特征方程的 k (= 0, 1, 2) 重根,则设特解为 $y^* = x^k Q_m(x) e^{\alpha x}$
- 2. $y'' + p y' + q y = e^{\alpha x} [P_l(x) \cos \beta x + \widetilde{P}_n(x) \sin \beta x]$ $\alpha + i\beta$ 为特征方程的 k (= 0, 1) 重根,则设特解为 $y^* = x^k e^{\alpha x} [R_m(x) \cos \beta x + \widetilde{R}_m(x) \sin \beta x]$ $m = \max\{l, n\}$
 - 3. 上述结论也可推广到高阶方程的情形.