# A functional MRI mind-reading game

Charles Zheng and Yuval Benjamini

Stanford University

April 2, 2015

## Functional MRI



## Functional MRI

| Stimuli x                                                      | Response y                                                 |
|----------------------------------------------------------------|------------------------------------------------------------|
| $ \begin{pmatrix} 1.0 \\ 0 \\ 3.0 \\ 0 \\ -1.2 \end{pmatrix} $ | $\begin{pmatrix} 1.2 \\ 0 \\ -1.8 \\ -1.2 \end{pmatrix}$   |
| $\begin{pmatrix} 0 \\ -2.2 \\ -3.1 \\ 4.5 \\ 0 \end{pmatrix}$  | $\begin{pmatrix} -1.2 \\ -1.9 \\ 0.5 \\ 0.6 \end{pmatrix}$ |

# **Encoding vs Decoding**

- Encoding: predict y from x.
- Decoding: reconstruct x from y (mind-reading).
  - Classification: label response y by a class from the training data
  - Identification: label response y by a class *outside* of the training data
  - Reconstruction: infer x from y





## Identification



## Test Data (new images!)



#### Stage 1: model estimation

Estimate a receptive-field model for each voxel



Receptive-field model for one voxel

### Stage 2: image identification

(1) Measure brain activity for an image



(2) Predict brain activity for a set of images using receptive-field models



(3) Select the image (  $\bigstar$  ) whose predicted brain activity is most similar to the measured brain activity

## Reconstruction

# Test Data (new images!)



## Classification vs Identification vs Reconstruction

- Classification is easy: doesn't require domain-specific model
- Identification and reconstruction both require a model relating image features to responses

## Difficulty of Identification vs Reconstruction

|                | High dimensions | Number of candidate stimuli |
|----------------|-----------------|-----------------------------|
| Identification | Neutral         | Hard                        |
| Reconstruction | Hard            | Easy                        |

# Motivating questions

- Under what conditions would it be possible to get performance on reconstruction or identification?
- How can we develop methods which achieve better performance on these tasks?
- Can we interpret the performance metric (prediction error, misclassification error) of a model to draw scientific conclusions? (E.g. which features are important, information content of fMRI scan.)

## Classification vs Identification vs Reconstruction

## Supervised learning problems

|                | Misclassification Rate | Prediction error     |
|----------------|------------------------|----------------------|
| No covariates  | Classification         | (nothing to predict) |
| Covariates (x) | Identification         | Regression           |

- Reconstruction is regression  $x \sim y$
- Does there already exist statistical theory for identification?
- Next: a toy model for identification

## Section 2

# Theory

# The problem of identification

## Training data.

- Given training classes  $S_{\text{train}} = \{ \text{train}:1, \dots, \text{train}:k \}$  where each class train:i has features  $x_{\text{train}:i}$ .
- For  $t = 1, ..., T_{\mathsf{train}}$ , choose class label  $z_{\mathsf{train}:t} \in S_{\mathsf{train}}$ ; sample a response  $y_{\mathsf{train}:t}$  from that class.

### Test data.

- Given test classes  $S_{\text{test}} = \{\text{test:}1, \dots, \text{test:}\ell\}$  with features  $\{x_{\text{test:}1}, \dots, x_{\text{test:}\ell}\}$
- Task: for  $t = 1, ..., T_{\text{test}}$ , label  $y_{\text{test}:t}$  by class  $\hat{z}_{\text{test}:t} \in S_{\text{train}}$ ; try to minimize misclassification rate

# Additional assumptions

• For a point y from class with features x,

$$y = f(x) + \epsilon$$

where the noise  $\epsilon$  is drawn from some distribution and f is an unknown function

ullet The features for the training and test classes are sampled iid from the same distribution P

$$x_{\mathsf{train}:i} \sim P$$

$$x_{\mathsf{train}:i} \sim P$$

# Toy example I



- Features x are one-dimensional real numbers, as are responses y. Parameter  $\beta$  is also a real number.
- Model is linear:  $y \sim N(x\beta, \sigma_{\epsilon}^2)$



Suppose we estimated  $\hat{\beta}$  from training data.



Generate features  $x_{\text{test}:1}, \dots, x_{\text{test}:\ell}$  iid  $N(0, \sigma_x^2)$ .



Hidden labels  $z_{\text{test}:t}$  are iid uniform from  $S_{\text{train}}$ . Generate  $y_{\text{test}:t} \sim N(\beta x_{z_{\text{test}:t}}, \sigma_{\epsilon}^2)$ 

### Information given



Classify  $\hat{y}_{\text{test}:t}$ 





$$\hat{\mu}_{\mathsf{test}:i} = \hat{\beta} x_{\mathsf{test}:i}$$





$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z} \ell_{\hat{\mu}_{z}}(y_{\text{test}:t})$$





$$\hat{z}_{\mathsf{test}:t} = \mathsf{argmin}_z (\hat{\mu}_z - y_{\mathsf{test}:t})^2$$





### Misclassification



# Toy example I



- Generate features  $x_{\text{test}:1}, \dots, x_{\text{test}:\ell}$  iid  $N(0, \sigma_x^2)$ .
- Hidden labels  $z_{\text{test}:t}$  are iid uniform from  $S_{\text{train}}$ . Generate  $y_{\text{test}:t} \sim N(\beta x_{z_{\text{test}:t}}, \sigma_{\epsilon}^2)$
- ullet Classify  $\hat{y}_{ ext{test}:t}$  by maximum likelihood assuming  $\hat{eta}$  is correct. Thus:

$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z} (\hat{\beta} x_{z} - y_{\text{test}:t})^{2}$$

# Toy example I: Questions

- We know the prediction error is minimized when  $\hat{\beta} = \beta$ . Is it also true that misclassification error in the mind-reading game is minimized when  $\hat{\beta} = \beta$ ?
- ② Even if the answer to 1. is yes, should we estimate  $\hat{\beta}$  using the same methods as in least-squares regression?

# Question 1: Outline

We will find an answer to question 1 as follows

- $\bullet$  Write an explicit expression for the misclassification rate as a function of  $\hat{\beta}$
- $\bullet$  Take the derivative of that expression with respect to  $\hat{\beta}$  at the true  $\beta$
- Does that derivative equal zero?
- If so, look at second derivatives, lower bounds, etc.

### Write an explicit expression for the misclassification rate

• The expected misclassification error is the same if we take  $T_{\text{test}} = 1$ . Then let  $(x_*, y_*)$  be the feature-response pair in the test set, where

$$y_* = x_*\beta + \epsilon_*$$

- Denote the features for the incorrect classes as  $x_1, \ldots, x_{\ell-1}$ .
- Let  $\delta = \hat{\beta} \beta$ .

Write an explicit expression for the misclassification rate (cont.)

• Ignore the possibility of ties. The response  $y_*$  is misclassified if and only if

$$\min_{i=1,...,\ell-1} |y_* - x_i \hat{\beta}| < |y_* - x_* \hat{\beta}|$$

equivalently

$$\cup_{i=1,\ldots,\ell-1} E_i$$

where  $E_i$  is the event that

$$|y_*-x_i\hat{\beta}|<|y_*-x_*\hat{\beta}|$$

Write an explicit expression for the misclassification rate (cont.)

Use the following conditioning

$$\mathbf{E}[\mathsf{misclassification}] = \mathbf{E}[\mathbf{E}[\Pr_{x_1, \dots, x_\ell}[\cup_i E_i] | x_* = x, \epsilon_* = \epsilon]]$$

 Use the fact that events E<sub>i</sub> are independent and have the same probability, thus:

$$\mathbf{E}[\mathsf{misclassification}] = 1 - \mathbf{E}[\mathbf{E}[(1 - \mathsf{Pr}[E_1])^{\ell-1} | x_* = x, \epsilon_* = \epsilon]]$$

• Next: write an expression for  $Pr[E_1]$ 

Write an expression for  $Pr[E_1]$ .

•  $E_1$  can also be written as the event

$$|x_*\beta + \epsilon_* - x_1(\beta + \delta)| < |-\delta x_* + \epsilon_*|$$

• Conditioning on  $\epsilon_*$  and  $x_*$ , we have

$$\Pr[E_1] = \left| \Phi\left(\frac{x_*}{\sigma_X}\right) - \Phi\left(\frac{x_*(\beta - \delta) + 2\epsilon_*}{\sigma_X(\beta + \delta)}\right) \right|$$

An exact expression for expected misclassification is therefore

$$1 - \int_{\epsilon} \left\lceil \int_{\mathsf{X}} \left( 1 - \left| \Phi\left(\frac{\mathsf{X}}{\sigma_{\mathsf{X}}}\right) - \Phi\left(\frac{\mathsf{X}(\beta - \delta) + 2\epsilon}{\sigma_{\mathsf{X}}(\beta + \delta)}\right) \right| \right)^{\ell - 1} d\Phi(\frac{\mathsf{X}}{\sigma_{\mathsf{X}}}) \right\rceil d\Phi(\frac{\epsilon}{\sigma_{\epsilon}})$$

Take the derivative of the expression with respect to  $\delta$ 

Fix  $\epsilon>0$ . The derivative of the inner integral wrt  $\delta=0$  is proportional to

$$\int_{x} (1 - \Phi(\frac{x\beta + 2\epsilon}{\sigma_{x}\beta}) + \Phi(\frac{x}{\sigma_{x}})) \phi(\frac{x\beta + 2\epsilon}{\sigma_{x}\beta}) (x + \frac{\epsilon}{\beta}) \phi(\frac{x}{\sigma_{x}}) dx$$

Is the derivative zero?

Is the derivative zero?

Note that

$$\phi\left(\frac{x\beta+2\epsilon}{\sigma_x\beta}\right)\phi\left(\frac{x}{\sigma_x}\right)\propto\phi\left(\frac{\sqrt{2}(x+\frac{\epsilon}{\beta})}{\sigma_x}\right)$$

which is the density of a normal variate with mean  $-\epsilon/\beta$  But now note that the other terms

$$\left(1 - \Phi\left(\frac{x\beta + 2\epsilon}{\sigma_x\beta}\right) + \Phi\left(\frac{x}{\sigma_x}\right)\right) \left(x - \frac{\epsilon}{\beta}\right)$$

are antisymmetric about  $x = -\frac{\epsilon}{\beta}$ .

Thus by symmetry, the derivative of the inner integral  $\delta=0$  vanishes. The same argument works for  $\epsilon<0$ , hence the misclassification rate is stationary at  $\hat{\beta}=\beta$ .

(We'll skip the second derivative checking, etc.)

# Question 1: Remarks

Optimal 
$$\hat{\beta} = \beta$$

- Obvious for  $\epsilon \sim N(0, \sigma_{\epsilon}^2)$  no matter the distribution of x... but
- ullet can have any distribution... if x is normally distributed
- Don't know for  $\epsilon$  arbitrary and x arbitrary...

### Toy example I: Estimation

- Second question: what about estimation?
- ullet Take a Bayesian viewpoint: suppose we have a prior distribution for eta
- For *least-squares regression*, we would use  $\hat{\beta} = \int \beta p_{posterior}(\beta) d\beta$ , the posterior mean.
- For identification, we would choose

$$\hat{\beta} = \operatorname{argmin}_{\hat{\beta}} \int R(\beta; \hat{\beta}) p_{posterior}(\beta) d\beta$$

where R is the expected misclassification rate.

• How will these differ?



Point estimate for identification (black dashed) is larger than posterior mean (blue dotted)

### Toy example I: Estimation

Why the upward bias?

$$\beta = 0$$



$$\beta = 1$$



$$\beta = 2$$



Risk function is more sensitive for large  $\beta$ .

### Estimation: questions

- Is the optimal  $\hat{\beta}$  for identification is in general "larger" than the optimal  $\hat{\beta}$  for regresssion, in a frequentist (e.g. minimax) sense?
- Lasso/Ridge penalized regression models are commonly used for identification
- Hypothesis: the optimal  $\lambda$  for identifying x from y will be smaller (hence produce less sparse  $\hat{\beta}$ ) than the optimal  $\lambda$  for regression  $y \sim x$ .

## Generalizing to higher dimensions

### Model fitting

- x is p-dimensional column vector, y is q-column vector
- Using training data, learn a model

$$y = B^T x + b^T + \epsilon$$

where B is a  $p \times q$  matrix and b is a q-row vector.

ullet Using residuals from training data, estimate  $\hat{\Sigma}_\epsilon$ 

#### Identification

• For each test class feature  $x_{\text{test}:i}$ , compute the predicted mean response

$$\mu_{\mathsf{test}:i} = B^\mathsf{T} x_{\mathsf{test}:i} + b^\mathsf{T}$$

• (MLE) Label a new response  $y_*$  with test class z that minimizes

$$(\mu_z - y_*)^T \hat{\Sigma}_{\epsilon}^{-1} (\mu_z - y_*)$$



### Section 3

# Experiments

#### Data

- From Kay et al. paper
- 1750 images with averaged responses from 2 repeats
- Responses y: 100 selected voxels from the most basic visual subsystem, V1
- Features x: 10921 image features based on Gabor filters



## Regression vs Identification

#### Partition

• Randomly partition into training set (1725) and test set (25)

### Model fitting via lasso

- Notation:  $Y = (y_{\text{train}:1}, \dots, y_{\text{train}:1725})^T$ ,  $X = (x_{z_{\text{train}:1}}, \dots, x_{z_{\text{train}:1725}})^T$
- Fix  $\lambda$ . Fit a separate Lasso regression for each voxel:

$$\mathsf{minimize} \frac{1}{2} ||Y_i - \hat{\beta}^{(i)}X + \hat{\beta}_0^{(i)}||^2 + \lambda ||\hat{\beta}||_1$$

• Let  $B = (\hat{\beta}^{(1)}, \dots, \hat{\beta}^{(100)}), b = (\hat{\beta}_0^{(1)}, \dots, \hat{\beta}_0^{(100)})$ 

#### Performance on test set

- Regression: use test labels to predict  $\hat{y}$
- Identification: for test responses y, estimate label using MLE

Perform this experiment for  $\lambda \in [0, 0.025]$  for 200 random partitions

### Results



Optimal  $\lambda$  for identification is smaller... but difference not significant.

### Section 4

# Nonlinear toy example

### More questions

- **3** What happens if the true regression function f is nonlinear, but we restrict  $\hat{f}$  to be linear?
- What happens when the number of classes  $\ell$  increases? What if  $\ell$  increases while  $\sigma^2_\epsilon$  decreases?

# Toy example IIa



## Toy example IIa



Effect of increasing  $\ell$ .





# Why is this?

- We can relate identification to regression with a different loss function
- Least squares loss

$$\mathbf{E}[(y-\hat{y})^2]$$

Identification loss

$$\mathsf{E}[1 - \mathsf{Pr}[|y - \hat{y}'| < |y - \hat{y}|]^{\ell-1}]$$

where  $\hat{y}'$  is the predicted value for a randomly drawn x.

# Why is this?

Identification loss more closely resembles 0-1 loss as  $\ell$  increases.



# Toy example IIb





# Toy example IIb



Effect of increasing  $\ell$ .



Effect of increasing  $\ell$ : global trends will become ignored in favor of locally linear trends!

### **Implications**

- "The model is always wrong"
- Statistical methods should be robust to small deviations from the model
- Even when minor nonlinearities exist in the model, identification performance fails to reflect global fit

### **Conclusions**

- The problem of decoding, predicting x from y, is of interest to many neuroscientists
- Different formulations of the decoding problem: classification, identification, and reconstruction (regression) have different properties and advantages
- Statistical theory can help with training the models and with interpreting the results

### In particular...

- Identification is similar to regression  $y \sim x$  in a special case, but can benefit from less sparse estimates.
- $\bullet$  Identification can lead to counterintuitive results when there are nonlinearities and  $\ell$  is large

### References

- Kay, KN., Naselaris, T., Prenger, R. J., and Gallant, J. L. "Identifying natural images from human brain activity". *Nature* (2008)
- Naselaris, et al. "Bayesian reconstruction of natural images from human brain activity". Neuron (2009)
- Vu, V. Q., Ravikumar, P., Naselaris, T., Kay, K. N., and Yu, B. "Encoding and decoding V1 fMRI responses to natural images with sparse nonparametric models", The Annals of Applied Statistics. (2011)
- Chen, M., Han, J., Hu, X., Jiang, Xi., Guo, L. and Liu, T. "Survey of encoding and decoding of visual stimulus via fMRI: an image analysis perspective." *Brain Imaging and Behavior*. (2014)