ÁLGEBRA II (61.08 - 81.02)

Evaluación integradora Duración: 3 horas. Segundo cuatrimestre - 2022 22/II/23 - 9:00 hs.

Apellido y Nombres:

Legajo:

Curso:

En R² con el producto interno ⟨·,·⟩ definido por

$$\langle x,y \rangle = y^T \begin{bmatrix} 3 & 1 \\ 1 & 9 \end{bmatrix} x$$

se considera Π la proyección ortogonal sobre el subespacio $\mathbb{S} = \{x \in \mathbb{R}^2 : x_1 + 3x_2 = 0\}$. Hallar todos los $x \in \mathbb{R}^2$ tales que $\Pi(x) = \begin{bmatrix} -6 & 2 \end{bmatrix}^T$ cuya distancia al subespacio \mathbb{S} sea igual a 2.

2. Hallar la solución $Y \in C^{\infty}(\mathbb{R}, \mathbb{R}^2)$ del problema de valores iniciales

$$Y' = \begin{bmatrix} 2 & 4 \\ -9 & 2 \end{bmatrix} Y, \qquad Y(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

3. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz simétrica tal que $\begin{bmatrix} -3 & 2 & 6 \end{bmatrix}^T$ y $\begin{bmatrix} 0 & 2 & -3 \end{bmatrix}^T$ son autovectores de A, $\sigma(A) = \left\{ \frac{1}{3}, 1 \right\}$ y traza $A = \frac{5}{3}$. Hallar $\lim_{k \to \infty} A^k \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T$.

4. Se considera la matriz

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 4 \\ -6 & -3 & -6 \end{bmatrix}.$$

Hallar todas las soluciones por cuadrados mínimos de la ecuación $Ax = \begin{bmatrix} 9 & 3 & 2 \end{bmatrix}^T$ y determinar la de norma mínima.

5. Sea $\Pi: \mathbb{R}^3 \to \mathbb{R}^3$ la proyección sobre el plano $\{x \in \mathbb{R}^3 : x_1 = 0\}$ en la dirección de la recta gen $\{[1 \ 0 \ -2]^T\}$. Hallar y graficar la imagen por II de la esfera unitaria de \mathbb{R}^3 .