

UNIVERSIDAD TÉCNICA DE MACHALA UNIDAD ACADÉMICA DE INGENIERÍA CIVIL

MAESTRÍA EN SOFTWARE

IMPLEMENTACIÓN DE DLT PARA EL ALMACENAMIENTO SEGURO DE TRANSACCIONES FINANCIERAS EN APLICACIONES FINTECH

ING. JIMMY FERNANDO CASTILLO CRESPÍN

TUTOR: ING. DIXYS HERNÁNDEZ, PHD

MACHALA

2022

UNIVERSIDAD TÉCNICA DE MACHALA UNIDAD ACADÉMICA DE INGENIERÍA CIVIL

IMPLEMENTACIÓN DE DLT PARA EL ALMACENAMIENTO SEGURO DE TRANSACCIONES FINANCIERAS EN APLICACIONES FINTECH

ING. JIMMY FERNANDO CASTILLO CRESPÍN

PROYECTO TECNOLÓGICO AVANZADO

TUTOR: ING. DIXYS HERNÁNDEZ, PHD

COTUTOR: ING. FÉLIX FERNÁNDEZ, PHD.

MACHALA

2022

PENSAMIENTO

"Los seres excelentes son aquellos que están intentando hacer las cosas siempre en forma superior y luchan incansablemente por lograrlos."

Miguel Ángel Cornejo

DEDICATORIA

Dedico este trabajo, primeramente, a Dios, por brindarme la salud y fuerza necesaria para lograr cumplir todas mis metas propuestas durante la duración del periodo de mi maestría en software.

A mis padres, aquellos que me dieron la vida y siempre están ahí cuando se los necesita, tanto en momentos malos como en los buenos, resaltando todo su apoyo, consejos y ánimos entregados hacia mí día tras día.

A mi hermano, porque al igual que mis padres, me entregó todo su apoyo, ánimos y comprensión, lo cual me motivaron mucho para el cumplimiento de mis objetivos.

Ing. Castillo Crespín Jimmy Fernando.

AGRADECIMIENTO

Agradezco, primeramente, ante todo a Dios, el cual durante todo el transcurso de mi vida me ha dado fuerza, salud y me ha guiado por el camino del bien tanto en las cosas que me he propuesto realizar y en las decisiones que se me han presentado en mi convivir diario.

Agradezco a mi familia, los cuales son los seres más importantes en mi vida, ellos supieron criarme con los mejores valores y me han brindado sus apoyos tantos emocionales como económicos.

A los docentes de la Maestría en Software, por compartir los conocimientos y experiencias profesionales que han aportado considerablemente en mi formación profesional y académica.

A mis compañeros de maestría, los cuales a través de sus experiencias compartidas a lo largo de la duración de la maestría eh aprendido de ellos.

A la Universidad Técnica de Machala por darme la oportunidad de cursar mi Maestría en Software en una buena institución educativa, con buen ambiente y docentes.

Mi especial agradecimiento a mi tutor Ing. Dixys Hernandez, PHD, por su dedicación, conocimientos y apoyo hacia mí durante sus tutorías.

Ing. Castillo Crespín Jimmy Fernando.

RESPONSABILIDAD DE AUTORIA

Yo, Jimmy Fernando Castillo Crespín con C.I 0706829116, declaro que el trabajo de

"Desarrollo de una plataforma fintech utilizando tecnología de registro distribuidos para

el almacenamiento seguro de transacciones financieras", en opción al título de Magister

en Software, es original y auténtico; cuyo contenido: conceptos, definiciones, datos

empíricos, criterios, comentarios y resultados son de mi exclusiva responsabilidad.

Ing. Jimmy Fernando Castillo Crespín

CI: 0706829116

Machala, 2021/11/04

iii

REPORTE DE SIMILITUD TURNITIN

CERTIFICACION DEL TUTOR

Yo, Dixys Leonardo Hernández Rojas con CI: 0923026298 tutor del trabajo de

"Desarrollo de una plataforma Fintech utilizando tecnología de registro distribuidos

para el almacenamiento seguro de transacciones financieras", en opción al título de

Magister en Software, ha sido revisado, enmarcado en los procedimientos científicos,

técnicos, metodológicos y administrativos establecidos por el Centro de Posgrado de la

Universidad Técnica de Machala (UTMACH), razón por la cual doy fe de los méritos

suficientes para que sea presentado a evaluación.

Ing. Dixys Leonardo Hernández Rojas, PHD

C.I: 0923026298

Machala, 2021/11/04

v

CESIÓN DE DERECHOS

Yo, Jimmy Fernando Castillo Crespín con C.I: 0706829116, autor del trabajo de

titulación "Desarrollo de una plataforma Fintech utilizando tecnología de registro

distribuidos para el almacenamiento seguro de transacciones financieras", en opción al

título de Magister en Software, declaro bajo juramento que:

• El trabajo aquí descrito es de mi autoría, que no ha sido presentado previamente

para ningún grado o calificación profesional. En consecuencia, asumo la

responsabilidad frente a cualquier reclamo o demanda por parte de terceros de

manera exclusiva.

• Cede a la Universidad Técnica de Machala de forma exclusiva con referencia a

la obra en formato digital los derechos de:

a) Incorporar la mencionada obra en el repositorio institucional para su

demostración a nivel mundial, respetando lo establecido por la Licencia

Creative Commons Atribution-NoCommercial – Compartir Igual 4.0

Internacional (CC BY NCSA 4.0); la Ley de Propiedad Intelectual del

Estado Ecuatoriano y el Reglamento Institucional.

b) Adecuarla a cualquier formato o tecnología de uso en INTERNET, así

como correspondiéndome como autor la responsabilidad de velar por

dichas adaptaciones con la finalidad de que no se desnaturalice el

contenido o sentido de la misma.

Ing. Jimmy Fernando Castillo Crespín

CI: 0706829116

Machala, 2021/11/04

vi

RESUMEN

En el campo de las aplicaciones Fintech, se han detectado un aumento de casos de estafas, fraudes y robo de información entre los años 2020 - 2021 debido a la aparición del COVID-19 que obligó a pequeños empresarios a manejar sus negocios de manera online y a su vez, aumentando la demanda de los clientes e indirectamente de la ciberdelincuencia. El principal problema con muchas aplicaciones Fintech son las vulnerabilidades detectadas en los procesos de transporte y almacenamiento de información, dado a que almacenan la información en bases de datos centralizadas muchas de las veces sin encriptar que son más propensas al robo, fraude o manipulación y aunque se han propuesto distintos métodos de seguridad para mitigar estas vulnerabilidades, el problema sigue latente. En los últimos años se ha impulsado el uso de los DLT (tecnología de contabilidad distribuida) como nueva forma de protección de datos dado a las ventajas que ofrece como almacenamiento distribuido, uso de métodos criptográficos que garantizan seguridad, inmutabilidad y encriptación de la información. Por tal motivo, el presente trabajo detalla la implementación de DLT en microservicios cloud para disminuir casos de estafas y fraudes de primera persona en transacciones financieras realizadas en una aplicación Fintech. Tomando en consideración los diferentes tipos de DLT existentes, a través de un SLR se eligieron las Api's de IOTA, IoTex y Tatum como plataformas DLT por ser soluciones robustas, gratuitas y con gran potencial de escalabilidad; para su implementación en una aplicación web y móvil se siguió la metodología Agile Block Chain Dapp Engineering; se utilizó IONIC como framework para la aplicación móvil, Laravel como framework backend, VueJs como framework frontend, arquitectura de Google en servidores, firebase y mysql como base de datos y el framework expressJS para la programación de los endpoints de conexión entre las aplicaciones desarrolladas y las API's de Iota, IoTex y Tatum para el almacenamiento y seguridad de información. En la ejecución del artefacto, se tomaron en cuenta las transacciones realizadas por los usuarios de Pay2Meta desde antes y después de la implementación de los DLT, también se aplicaron diferentes pruebas funcionales y no funcionales. Luego de analizar los resultados, se concluye que el uso del DLT otorga una alta seguridad en el transporte y almacenamiento de transacciones financieras y disminución del índice de estafas y fraudes de primera persona en aplicaciones Fintech.

Palabras claves: blockchain, fintech, DLT, IOTA, Tatum, tangle.

ABSTRACT

In the field of Fintech applications, an increase in cases of scams, fraud and information theft have been detected between 2020 - 2021 due to the emergence of COVID-19 that forced small entrepreneurs to manage their businesses online and in turn, increasing the demand of customers and indirectly of cybercrime. The main problem with many Fintech applications is the vulnerabilities detected in the processes of transport and storage of information, since they store the information in centralized databases, many times unencrypted, which are more prone to theft, fraud or manipulation, and although different security methods have been proposed to mitigate these vulnerabilities, the problem remains latent. In recent years, the use of DLT (distributed ledger technology) has been promoted as a new form of data protection due to the advantages it offers such as distributed storage, use of cryptographic methods that guarantee security, immutability and encryption of information. For this reason, this paper details the implementation of DLT in cloud microservices to reduce cases of fraud and first-person fraud in financial transactions carried out in a Fintech application. Taking into consideration the different types of existing DLT, through an SLR, IOTA, IoTex and Tatum Api's were chosen as DLT platforms for being robust, free and with great scalability potential solutions; for its implementation in a web and mobile application, the Agile Block Chain Dapp Engineering methodology was followed; IONIC was used as framework for the mobile application, Laravel as backend framework, VueJs as frontend framework, Google architecture in servers, firebase and mysql as database and the expressJS framework for the programming of the connection endpoints between the developed applications and the API's of Iota, IoTex and Tatum for the storage and security of information. In the execution of the artifact, the transactions performed by Pay2Meta users from before and after the implementation of the DLTs were taken into account, also different functional and non-functional tests were applied. After analyzing the results, it is concluded that the use of DLT grants high security in the transport and storage of financial transactions and decrease in the rate of scams and first-person frauds in Fintech applications.

Keywords: blockchain, fintech, DLT, IOTA, Tatum, tangle.

ÍNDICE

1.8.3.1.	2.3 Plataforma	as blockchain	. 22
1.8.3.1.	2.4 IoTex		. 23
1.8.3.1.	2.5 Smart con	ntracts.	. 23
1.8.3.1.	2.6 Estándar I	ERC-721	. 23
1.8.3.1.	2.7 Estándar I	ERC-20	. 24
1.8.3.1.	2.8 Solidity		. 24
1.8.3.1.	2.9 Tatum		. 24
1.8.3.1.	3 Tangle DAC	G	. 24
1.8.3.1.	3.1 IOTA		. 25
1.8.3.1.	3.2 IOTA Stro	onghold	. 26
1.8.4	Fundamentació	ón teórica de la variable dependiente	. 26
1.8.4.1	La seguridad	d de la información	. 26
1.8.4.2	Cyber seguri	idad	. 27
1.8.4.3	Vulnerabilid	lades informáticas	. 28
1.8.4.4	Ataques y vi	ulnerabilidades en aplicaciones Fintech	. 29
1.8.4.4.	1 Carencia de	cifrado de datos	. 29
1.8.4.4.	2 Carencia de	doble factor de autenticación.	. 30
1.8.4.4.	3 Ingeniería so	ocial	. 30
1.8.4.4.	4 Repudio de i	información.	. 30
1.8.4.4.	5 Carencia de	seguridad en interfaces de programas de aplicación (API)	. 30
1.8.4.4.	6 Fraudes al u	tilizar tarjetas de créditos.	. 30
1.8.4.4.	7 Estafas al ve	ender o comprar productos online	. 31
1.8.4.4.	8 Metodología	a Agile Block Chain Dapp Engineering	. 31
1.9 A	Antecedentes cor	ntextuales	. 33
1.9.1	Delimitación d	del contexto de investigación	. 33
1.9.2	Propuesta de se	olución	. 33
CAPÍTUL	O II: MATERI	IALES Y MÉTODOS	. 36
2.1	Tipo de investiga	ación seleccionada	. 36
2.2 F	Paradigma de inv	vestigación realizada	. 36
2.3 I	Población y mues	stra de la investigación	. 38
2.4 N	Método teórico u	ıtilizado	. 38
2.5 N	Métodos empíric	cos utilizados	. 39
2.6	Técnicas estadíst	ticas utilizadas	. 41
CAPÍTUL	O III: RESULT	TADOS	. 42

3.1	Sele	ección de los DLT	42
3.2	Apl	icación de la metodología ABCDE	45
3.2.1	D	Definición del objetivo del sistema	45
3.2.2	Id	dentificación de actores	45
3.2.3	D	Definir historias de usuarios, casos de usos y diagrama de clase	46
3.2.4	D	Dividir el sistema en dos subsistemas.	48
3.2.4.1	l	Desarrollo de aplicaciones clientes	49
3.2.4.1	.1	Diseño arquitectónico.	49
3.2.4.1	.2	Diseño de las interfaces de usuario	50
3.2.4.1	1.3	Diseño de diagramas de procesos.	52
3.2.4.2	2	Desarrollo de sistemas DLT (IOTA, smart contracts y NFT)	55
3.2.4.2	2.1	Programación de los smart contract, IOTA y NFT.	55
3.2.4.2	2.2	Análisis de seguridad de los códigos de IOTA, smart contract y NFT	55
3.2.5	It	ntegración, testeo y despliegue del sistema completo.	56
oliogra	afía.		57
NEXO	S 7	70	
Presen	taci	ón de resultados del SLR	70
Encue	sta c	le satisfacción del comprador	82
	3.2 3.2.1 3.2.2 3.2.3 3.2.4.1 3.2.4.1 3.2.4.1 3.2.4.2 3.2.4.2 3.2.4.2 5.0 10 gra NEXO	3.2 Apl 3.2.1 D 3.2.2 Id 3.2.2 Id 3.2.3 D 3.2.4 D 3.2.4.1.1 3.2.4.1.2 3.2.4.1.3 3.2.4.2 3.2.4.2.1 3.2.4.2.2 3.2.4.2.1 bliografía. NEXOS 7 Presentaci	3.2.1 Definición del objetivo del sistema. 3.2.2 Identificación de actores. 3.2.3 Definir historias de usuarios, casos de usos y diagrama de clase. 3.2.4 Dividir el sistema en dos subsistemas. 3.2.4.1 Desarrollo de aplicaciones clientes. 3.2.4.1.1 Diseño arquitectónico. 3.2.4.1.2 Diseño de las interfaces de usuario. 3.2.4.1.3 Diseño de diagramas de procesos. 3.2.4.2 Desarrollo de sistemas DLT (IOTA, smart contracts y NFT). 3.2.4.2.1 Programación de los smart contract, IOTA y NFT. 3.2.4.2.2 Análisis de seguridad de los códigos de IOTA, smart contract y NFT.

ÍNDICE DE FIGURAS

Figura 1: Organización cronológica de los antecedentes de las fintech y blockchain.	. 17
Figura 2: Variables dependientes e independientes seleccionadas	. 18
Figura 3: Ledger centralizado y descentralizado en un ambiente Fintech	. 19
Figura 4: Clasificación de los DLT	. 20
Figura 5: Características de los DLT	. 21
Figura 6: Ejemplo de un smart contract con iotex	. 23
Figura 7: Arquitectura Blockchain vs Tangle	. 25
Figura 8: Framework de seguridad de la información para ambientes de pruebas	. 27
Figura 9: Seguridad en la cloud computing	. 28
Figura 10: Algoritmo RSA	
Figura 11: Proceso de la metodología ABCDE	. 32
Figura 12: Diagrama de flujo del proceso de identidad digital	. 34
Figura 13: Diagrama de flujo del proceso de recarga de billetera	. 34
Figura 14: Diagrama de flujo del proceso del Marketplace	. 35
Figura 15: Correlación entre variables de la investigación	. 36
Figura 16: Enfoque cuantitativo a nivel arquitectónico	. 37
Figura 17: Fases del enfoque cuantitativo	. 37
Figura 18: Cálculo de la muestra	. 38
Figura 19: Herramientas utilizadas en la investigación	. 40
Figura 20: Tabulación de selección de DLT	. 44
Figura 21: Caso de uso unificado	. 48
Figura 22: Diagrama de clases	. 48
Figura 23: Diseño arquitectónico de las aplicaciones clientes	. 49
Figura 24:Artefacto - aplicación móvil	. 50
Figura 25: Artefacto - aplicación web de links de cobros	. 50
Figura 26: Artefacto - aplicación web marketplace	. 51
Figura 27: Artefacto - aplicación web backoffice	. 51
Figura 28: Artefacto - aplicación web trading criptomonedas	. 52
Figura 29: Identidad digital con NFT	. 53
Figura 30: Proceso de recargar billetera con NFT e IOTA	. 54
Figura 31: Proceso de compra/venta en Marketplace	. 55
Figura 32: Análisis de seguridad del SC de Marketplace utilizando Mythril	. 56
Figura 33: Análisis de seguridad del SC de identidad digital utilizando Mythril	. 56

ÍNDICE DE TABLAS

Tabla 1: Preguntas de investigación para el SLR	10
Tabla 2: Total de artículos encontrados	12
Tabla 3: Fase de revisión del SLR	12
Tabla 4: Funcionalidades transaccionales de Pay2Meta	35
Tabla 5: Fases de experimentación	37
Tabla 6: Proceso sistemático del método teórico utilizado	39
Tabla 7: Pruebas de normalidad de Kolmogorov-Smirnov y Shapiro-Wilk	41
Tabla 8: Cuadro comparativo de DLT	43
Tabla 9: Identificación de actores del sistema	45
Tabla 10: Historia de usuario #1	46
Tabla 11: Historia de usuario #2	46
Tabla 12: Historia de usuario #3	47
Tabla 13: Historia de usuario #4	47

INTRODUCCIÓN

Desde su creación hace más de 30 años, el internet ha revolucionado el mundo tal y como lo conocemos y actualmente influye en muchos ámbitos sociales, en especial en el campo del comercio electrónico donde se realizan transacciones financieras de manera online desde la comodidad del hogar. Cabe recalcar que los métodos de pagos online mayormente utilizados por las personas en la actualidad son: tarjetas proporcionadas por bancos, transferencias bancarias, pasarelas de pagos entre los que se destaca Paypal como la mayormente utilizada por los negocios e-commerce [1] y finalmente las billeteras virtuales de criptomonedas empleadas principalmente para el trading y compra/venta de activos digitales [2].

Existe una constante que no puede dejarse de lado en cualquiera de las formas de pagos online anteriormente mencionadas y es que se han detectado un aumento progresivo de fraudes, estafas y robo de información tanto personal como de las tarjetas [3], estos problemas ocasionarían que las personas dejen de confiar en realizar compras online, afectando así a millones de aplicaciones Fintech.

Por tal razón, la comunidad científica ofrece soluciones aplicada a la seguridad en las transacciones financieras online como encriptaciones avanzadas y aprobadas mundialmente como AES o RSA para la protección de la información desde el lado del cliente, base de datos criptográficas en la nube como IOTA stronghold utilizada para la protección de secretos digitales (tokens, passwords etc) [4] y el uso de los DLT (tecnología de contabilidad distribuida) como una nueva forma de protección de datos dado a las ventajas que ofrece como almacenamiento distribuido, uso de métodos criptográficos que garantizan seguridad, inmutabilidad y encriptación de la información [5]. Brindar seguridad en los pagos online es de especial importancia debido a que potenciaría la confianza de los usuarios en el uso de aplicaciones Fintech.

La propuesta de esta investigación surge tras las alertas de robos, fraudes y estafas en transacciones financieras online ocurridas especialmente entre los años 2020-2021 debido a la aparición del COVID-19 [6], esta pandemia mundial ha sido positiva en cierta medida para la industria de pagos digitales, según cifras de Mastercad y Americas Market Intelligence [7], se duplicó el número de personas que se volcaron a las transacciones online pasando del 45% al 83%, la explicación para este comportamiento

es sencillo, las cuarentenas impuestas por los gobiernos mundiales obligaron a las personas a realizar pagos online, potenciando indirectamente el crecimiento exponencial de las aplicaciones Fintech [8].

El COVID-19 también afectó significativamente el mercado de las criptomonedas [9] detectándose un incremento de usuarios y de mercados Fintech que se volcaron al trading de estas [10] y a su vez el interés de los hackers por encontrar vulnerabilidades en estas [11].

Los datos generados por las aplicaciones Fintech durante las transacciones financieras son de alto valor y contienen información sensible en muchos aspectos [12] y es de conocimiento público por numerosos artículos citados anteriormente, los informes de robos de información, fraudes y estafas cometidas por estas aplicaciones que no implementan un sistema de seguridad robusto [13]. Por tal motivo, detectar estas vulnerabilidades en dichas aplicaciones es un objetivo primordial para los hackers de todo el mundo.

Estas vulnerabilidades se encuentran detalladas en el trabajo realizado por los autores Kaur, LashKari & Habibi [14], donde concluyeron que, hasta en la actualidad, siguen aún existiendo vulnerabilidades humanas, tecnológicas y transaccionales presentes en aplicaciones financieras. Los mismos autores Kaur, LashKari & Habibi [15] en otro de sus artículos dieron más ejemplos de amenazas cibernéticas y las motivaciones que impulsan estos incidentes, aplicaron varias metodologías de modelado de amenazas como STRIDE, TRIKE, VAST y PASTA para mitigar ataques en diferentes aplicaciones Fintech, sin embargo, esto no bastó para mitigar por completo todas las amenazas.

Finalmente, el trabajo de los autores Huh, Cho & Kim [16] donde se implementó un sistema de encriptación de datos utilizando RSA para la protección de llaves privadas generados por Ethereum, una de las plataformas blockchain más populares actualmente, incluso en este trabajo no se han tomado en consideración otras medidas de seguridad presentes en los trabajos de Kaur, LashKari & Habibi.

Se evidencia que, en los trabajos anteriormente citados, muchas plataformas Fintech no cuentan con la seguridad suficiente para realizar transacciones financieras, inclusive cuando estas transaccionan con criptomonedas [17], surgiendo soluciones como los contratos inteligentes o smart contracts para la mitigación de fraudes y estafas

financieras, sobresaliendo Ethereum como la más utilizada para esta labor [18] [19]. Este asunto tan importante ha sido ignorado por la mayoría de empresas desarrolladoras de software por el afán de lanzar aplicaciones Fintech y ganar mercado en estos tiempos de pandemia [20].

En el trabajo realizado por Gatteschi [21] discute las ventajas y desventajas del blockchain y concluye que esta tecnología puede ser aplicada en cualquier sector, brindando grandes ventajas al sector Fintech [22]. Sin embargo, surgen varias limitantes sobre el uso de la tecnología blockchain demostradas por los autores Gatteschi y Mesengiser & Miloslavskaya [23] que podrían ser un problema a futuro para las aplicaciones Fintech y son el rendimiento, rentabilidad y sostenibilidad con el medio ambiente.

Con respecto al rendimiento, mientras más crece la red de blockchain, mayor será el tiempo de procesamiento de la transacción, bitcoin, por ejemplo, tiene la capacidad de procesar transacciones por segundo muy bajas dependiendo del congestionamiento de la red [24] a comparación de las 65.000 transacciones por segundo reportas por la empresa Visa en el año 2021 [25], esto afectaría negativamente a las aplicaciones Fintech debido a que las mayorías de estas, son aplicaciones móviles y requieren que estas transacciones sean rápidas y sean reflejadas al usuario en el menor tiempo posible sin afectar la usabilidad.

Con respecto a la sostenibilidad ambiental, los autores Vries & Stoll [26] y Vries [27] analizaron los daños ambientales producidos por las criptomonedas mayormente desarrollados bajo la tecnología blockchain, donde concluyeron que estos daños son exponenciales para el medio ambiente. Esta limitante ocasionaría un problema para muchas aplicaciones, incluidas las Fintech, dado a que a futuro muchas personas, empresas o instituciones gubernamentales como el gobierno de China por ejemplo [28], rechacen utilizar, apoyar o colaborar con aplicaciones desarrollados bajo la tecnología blockchain por el daño al medio ambiente que este ocasiona.

Con respecto a la rentabilidad, será menor a medida del crecimiento del blockchain dado a que genera un abismal consumo energético debido al tiempo que a estos le toman para resolver operaciones matemáticas complejas para concatenarse a la red [29] y a su vez generan residuos electrónicos [30]. Estos problemas se estudiaron mejor en la investigación realizado por Vries & Stoll [26] donde cuantificaron que toda la red del

bitcoin genera por año una cantidad de 30,7 kilotoneladas de residuos electrónicos, que, según estos mismos autores, esta cantidad es comparable con los desperdicios generados por equipos electrónicos pequeños del país de Holanda.

Entre las soluciones propuestas a estas limitaciones se encuentran diseñar estrategias de sostenibilidad ambiental para el blockchain propuesta por Bai & Sarkis & Cordeiro [31], los mismo autores Vries & Stoll [26] dan una solución de sustituir el sistema de minera (el protocolo Proof-of-work) en su totalidad, dado a que según los estudios de evaluación de este protocolo realizados por los autores Nair & Dorai [32] y Gemeliarana & Sari [33], concluyeron que la seguridad fue alta pero de rendimiento bajo debido al costo eléctrico alto, surgiendo de aquí propuestas como proof-of-contribution [34] o el proof-of-stake [35].

Es indiscutible que la utilización del blockchain proporciona una solución robusta, gratuita y segura, sin embargo, aplicar solamente blockchain no es suficiente, hay que implementarla en conjunto con otros métodos de seguridad [36], esta problemática surge por la variedad de tecnologías de las cuales están desarrolladas las diferentes aplicaciones que requieren protecciones tanto a nivel de servidores como de aplicación. A raíz de esto surgió IOTA como solución a los problemas de rendimiento, rentabilidad y sostenibilidad presentes en blockchain pero esta tecnología igualmente presenta sus limitaciones ocasionadas por ser una tecnología relativamente nueva [37].

Basados en las afirmaciones anteriores, la presente investigación utilizará el DLT de IOTA como solución a las problemáticas expuestas por los autores [21], [23], [29], [30] y [26] gracias a la creación de IOTA que fue la primera criptomoneda que se creó fuera del sistema blockchain [38], en su lugar utiliza Tangle que a diferencia del blockchain, solamente necesita confirmar dos transacciones de diferentes participantes para poder concatenar su transacción dentro del nodo de Tangle [39], resultando ser rentable para ser utilizado en aplicaciones Fintech debido a la rapidez en la confirmación de las transacción.

El Tangle de IOTA hace posible que no exista la necesidad de utilizar la minería como en blockchain y con esto no se afectaría al medio ambiente, en lugar de esto utiliza los propios dispositivos clientes como verificadores de transacciones; una de las ventajas más sobresalientes para ser utilizado en el internet de las cosas (IoT) [40], [41] y en transacciones financieras debido a que no existen comisiones (fee) [42] que se carguen a

las transacciones realizadas por los clientes en aplicaciones Fintech por citar un ejemplo.

Lastimosamente, los smart contracts de IOTA actualmente se encuentra en fase beta [43], lo que impide su implementación en un ambiente de producción, alternativas como lotex blockchain son viable para aplicaciones Fintech debido a sus bajas comisiones de transacción en comparación a otras blockchain como Ethereum o Cardano [44].

En base al trabajo de Taylor & otros [45] donde se realizó una revisión sistemática de literatura de las ventajas de seguridad cibernética ofrecidas por la utilización del blockchain y en base al trabajo realizado por Ali & otros [46] donde demuestran el estado actual de la utilización de los DLT en el sector financiero, se estableció el objetivo de esta investigación que busca la implementación de los DLT en aplicaciones Fintech para el almacenamiento seguro de las transacciones financieras, tomando en cuenta que la tecnología DLT estará presente en el futuro de la ciberseguridad financiera [47].

Por todo lo anteriormente redactado y con la intención de colaborar con el objetivo 3.7 propuesto en el plan nacional de desarrollo ecuatoriano [48] que incentiva a la producción y consumo ambiental de manera responsable con el fin de incrementar la productividad de tecnologías y así combatir con la obsolescencia programada y a su vez otorgar una adecuada utilidad a la información confidencial de los usuarios así como lo estipula el art. 66, #19 de la Constitución del Ecuador [49] y la Ley de Protección de Datos (LOPD) [50] se realizó esta investigación que tiene como objetivo la implementación de tecnologías de registros distribuidos en una arquitectura de microservicios de Google Cloud utilizando las plataformas de IOTA, IOTEX, Tatum para disminuir casos de delitos informáticos (estafas y fraudes de primera persona) realizadas en transacciones financieras de una aplicación Fintech, partiendo de la hipótesis de que utilizar DLT en una arquitectura de microservicios cloud disminuye casos de estafas y fraudes, otorgando ventajas como seguridad, inmutabilidad, integridad, no repudio, disponibilidad y confidencialidad de los datos generados en las transacciones financieras de una aplicación Fintech.

Para el cumplimiento del objetivo detallado anteriormente, se diseñó una aplicación web y móvil las cuales se encuentran funcionando en arquitecturas cloud bajo la plataforma de Google, son diferentes instancias las cuales proporcionan una arquitectura basado en

eventos y microservicios, estos microservicios proporcionan las Apis necesarias para el procesamiento de datos a través del protocolo https y la interfaz de programación API-REST y a su vez estos se encargarán de realizar el almacenamiento de los datos en los DLT utilizando IOTA que gracias a su coste cero en sus almacenamientos será utilizado cuando se trate de transacciones financieras generales, se programarán smart contracts utilizando IoTex cuando se trate de compras realizadas en el marketplace y trading de criptomonedas y finalmente se utilizará NFT con Tatum como plataforma blockchain para la identidad digital de los usuarios al realizar transacciones con tarjetas de crédito.

La investigación se realizará en un ambiente de producción controlado, tomando como caso práctico las transacciones realizadas por los usuarios en la plataforma Pay2Meta. Luego de la aplicación de las pruebas pertinentes realizadas al finalizar la implementación de la propuesta, se concluye que el Tangle de la plataforma de IOTA y de igual forma el blockchain proporcionado por IoTex y la plataforma Tatum aumentaron la seguridad y disminuyeron casos de fraudes y estafas de primera persona realizadas por los usuarios en sus transacciones financieras dentro de la plataforma Fintech. Sin embargo, también se debe tener a consideración las altas vulnerabilidades que se encuentran presentes cuando se utilizan pasarelas de pagos desarrollados por terceros. Se recomienda que estos procesos de pagos no solamente dependan de las bondades ofrecidas por blockchain o Tangle sino que también estos pagos tengan certificación PCI DSS mínimo de nivel 3, encriptación de datos de extremo a extremo y una certificación de seguridad como es la ISO 21000:2013.

La siguiente investigación está estructurada en cuatro capítulos comenzando con la introducción donde se indica al lector lo que se va a desarrollar. El capítulo uno trata sobre la elaboración del estado de arte la cual está conformada por los antecedentes históricos, conceptuales y contextuales, todos enfocados a los objetos de estudios que son las Fintech y los DLT. El capítulo dos indica los métodos y metodologías que se utilizaron en la investigación como el tipo de estudio, los enfoques, la población y muestra, métodos teóricos, empíricos y técnicas estadísticas utilizadas. El capítulo tres muestra los resultados obtenidos, fundamentados en los aportes prácticos y teóricos obtenidos en el capítulo dos. El capítulo cuatro se discute los resultados obtenidos con énfasis en aspectos como hallazgos obtenidos, su relación con otros trabajos, conclusiones y sugerencias para trabajos futuros. Finalmente, se elaboraron las conclusiones obtenidas de la investigación realizada y la bibliografía correspondiente.

CAPÍTULO I: ESTADO DE ARTE

El presente capítulo está destinado a la elaboración del estado de arte, el cual está compuesta por los antecedentes históricos, antecedentes conceptuales y finalmente los antecedentes contextuales. Para el desarrollo del mismo, se ha realizado una revisión sistemática de literatura (SLR) tomando en cuenta el procedimiento de la guía metodológica propuesta por Barbara Kitchenham [51].

1.1 Preguntas de investigación.

Se elaboraron las siguientes preguntas para la búsqueda de información acerca de las tecnologías de registros distribuidos y su aplicación en las aplicaciones Fintech, la tabla 1 detalla el resultado de las preguntas y dimensiones seleccionadas.

Preguntas	Dimensiones	
¿Qué tecnologías de registros distribuidos se han	Técnicas DLT, implementaciones	
aplicado en las Fintech para disminuir casos de	de DLT en Fintech, delitos	
delitos informáticos?	informáticos	
¿Cómo se implementa la metodología ABCDE	Metododología ABCDE,	
en conjunto con una arquitectura de	microservicios cloud.	
microservicios en Google Cloud para el		
desarrollo de sistemas Dapps?		
¿Cómo se implementa microservicios para	IOTA Tangle, identidad digital con	
registros transaccionales de coste cero con IOTA	NFT, Tatum.	
Tangle e identidad digital mediante verificación		
biométrica y NFT con Tatum para incrementar		
la probabilidad de ganar disputas financieras en		
casos de fraudes en transacciones financieras?		
¿Cómo se implementa smarts contracts en	Smarts contracts, IOTEX blockchain.	
microservicios con IOTEX blockchain para		
disminuir el porcentaje de casos de estafas en		
transacciones financieras?		

Tabla 1: Preguntas de investigación para el SLR

Fuente: Elaboración propia

1.2 Proceso de búsqueda.

Dentro del proceso de búsqueda, se seleccionaron las siguientes bases de datos propuestas por el instructivo de titulación de la maestría:

- IEEE Xplore
- Science Direct
- Taylor and Francis.
- Springer

1.3 Criterios de inclusión y exclusión.

Dentro de los criterios de exclusión se consideraron los siguientes parámetros:

- Estudios duplicados.
- Estudios que no se incluyeron en las bases de datos de selección.
- Resultados de libros, cursos-

Dentro de los criterios de inclusión se consideraron los siguientes parámetros:

- Solo estudios primarios.
- Solo investigaciones con resultados.
- Escritos en inglés y español.
- Estudios de los últimos 5 años.
- Estudios de aplicación de DLT en aplicaciones financieras o Fintech.
- Deben ser journals o conference paper.
- Temas principales: DLT y ciberseguridad.

1.4 Cadena de búsqueda.

La cadena de búsqueda se elaboró en base a las preguntas de investigación y se tomó en cuenta operadores lógicos como AND y OR y se seleccionó filtrando por aspectos como el título, palabras claves, metadatos etc, quedando de la siguiente manera:

"Cybersecurity in Fintech" and ("Distributed Ledger Technologies" or "Blockchain" or "Tangle" or "Smart Contracts" or "IOTA" or "IOTEX")

1.5 Selección de estudios y fase de revisión.

Para la selección de estudios se usó las bases de datos y cadena de búsqueda previamente seleccionadas y formada, la tabla 2 muestra el resultado de este proceso.

Bases de datos	Total de artículos encontrados
IEEE Xplorer	354
Science Direct	188
Springer	17
Taylor and Francis	72
Total	631

Tabla 2: Total de artículos encontrados Fuente: Elaboración propia

En base a la tabla anterior se realizó el siguiente cuadro estadístico.

Fuente: Elaboración propia

En base al total de artículos encontrados en las diferentes bases de datos científicas, se realizó la fase de revisión partiendo del total de artículos, seguido de los filtrados de remover artículos duplicados, leer abstracts y títulos, aplicar criterios de exclusión e inclusión y finalmente leer el texto completo, la tabla 3 muestra el resultado de esta fase de revisión.

Tabla 3: Fase de revisión del SLR Fuente: Elaboración propia

1.6 Presentación de resultados.

El resultado del SLR desarrollado se encuentra disponible en el Anexo 1, donde se detalla los 98 artículos científicos seleccionados para la elaboración de los antecedentes históricos, conceptuales y contextuales que se presentan a continuación.

1.7 Antecedentes históricos.

Las transacciones financieras online tuvieron su nacimiento en el año 1979 gracias al inventor Michael Aldrich, pero su idea fue puesta en producción en el año 1984 cuando la señora Jane Snowball realizó una compra por VideoTex [52], uno de los primeros sistemas e-commerce que implementaron las ventas online [53] surgiendo desde este momento el término Fintech 1.0 [54].

Seguidamente por los años 90 con la aparición de las primeras aplicaciones Fintech como Paypal donde se implementaron pagos online, se da paso a las Fintech 2.0 con el objetivo de proporcionar soluciones al sector financiero y a su vez dar un gran salto en la industria tecnológica [55]. Pero a su vez, el número de estafas, fraudes y robo de información incrementaron en diversas formas por parte de hackers que aún siguen presentes en tiempos actuales tal y como lo detallan los autores [56], [14] y [15].

Con respecto a las estafas o fraudes, debido a que estas nuevas formas de pago implementadas en su mayoría por sistemas e-commerce para aquella época, no eran tecnológicamente maduras [57], muchas de las veces se firmaban contratos entre las partes interesadas para asegurarse de que nadie cometa fraude. Cuando se menciona la palabra contrato, lo primero en que se piensa es en un papel escrito donde se establecen ciertas condiciones que, al ser leídas y aceptadas por las partes implicadas, los firmantes se comprometen a cumplir con dichas condiciones [58].

Desde los años 90 hasta la actualidad, se ha dado un importante avance en cuanto a la automatización, seguridad y garantías con respecto a los contratos físicos tradicionales debido al surgimiento de los smart contracts o contratos inteligentes que se llevan desarrollando desde 1997 gracias al criptógrafo Nick Szabo quién acuñó el término smart contract por primera vez, pero debido a las limitaciones tecnológicas de la época no fue factible su idea de desarrollar un sistema de pagos que llevase el concepto de los contratos tradicionales a lo digital [59]. Pero esta situación se volvió viable en el año 2009 con la aparición del bitcoin por Satoshi Nakamoto [60] gracias a la

implementación de las Tecnologías de Registros Distribuidos (DLT, por sus siglas en inglés).

Antes del nacimiento del bitcoin, en el año 2008 las Fintech dieron un salto tecnológico con su versión 3.0, naciendo de aquí el término startups, que son empresas emergentes cuya característica principal es tener proyectos de rápido crecimiento y vertiginoso [61] entre ellos, proyectos de tipo Fintech que debido a la creciente popularidad del bitcoin, muchas de estas aplicaciones se enfocaron en el trading de criptomonedas y esto fue conocido como la blockchain 1.0 [62].

Como se mencionó anteriormente, la idea propuesta por Szabo de implementar contratos inteligentes para la mitigación de estafas y fraudes en su tiempo no era posible, pero gracias al surgimiento de la blockchain 2.0 en el año 2013 fue factible realizarlo. Esta nueva versión del blockchain permitió la aplicación de esta tecnología a nuevos campos de investigación con la inclusión de los smart contracts, microtransacciones, smart property, aplicaciones descentralizadas (Dapps), organización autónoma descentralizada (DAOs) y corporaciones autónomas descentralizadas (DACs) [62] [63], todas estas nuevas funcionalidades son prácticas para dar solución a posibles delitos informáticos en aplicaciones informáticas.

No cabe duda que la funcionalidad con mayor interés en el campo de las Fintech son los smart contracts dado al impulso que tuvo en el año 2014 gracias a la creación de Ethereum (plataforma open-source mayormente utilizada para programar contratos inteligentes [64]). Los smart contracts funcionan en un sistema descentralizado que no puede ser manipulado por ninguna de las partes implicadas en el contrato ni por organismos externos. El contrato se cumple por condiciones programadas, firmadas por las partes implicadas y enviada a una cadena de bloques donde se asegura inmutabilidad e indelebilidad [65] y este aspecto es conveniente para ser utilizada en compras por internet de un marketplace por citar un ejemplo práctico.

Debido a estos avances del blockchain, fue a partir del año 2015 que entidades financieras decidieran invertir en la infraestructura blockchain. Entre las entidades más destacadas se encuentran: J.P Morgan Chase que creó una división enfocada enteramente al blockchain [66] de las cuales se obtuvieron como resultado su propia blockchain privada denominada Quorum desarrollado bajo el código Ethereum [67] y en el año 2019 lanzaron su propia criptomoneda llamada JPMCoin [68]. Cabe recalcar

que Quorum fue diseñado para satisfacer las necesidades de las instituciones financieras [69].

Otros casos significativos de implementación del blockchain en instituciones financieras se dio en el año 2016 por parte del Banco Santander de España, cuando inició sus pruebas en conjunto con la Empresa Ripple (creadora de la criptomoneda XRP [70]) para desarrollar servicios de pagos internacionales dando como resultado su servicio Fintech denominado Santander One Pay FX [71]; el banco The Hong Kong and Shanghai Banking Corporation (HSBC) de Reino Unido con su red privada blockchain FX Everywhere lanzada en el 2018, el Wells Fargo (EEUU) con su sistema Wells Fargo Digital Cash basado en blockchain R3, BTG Pactual (Brasil) con su token ReitBZ y Mitsubishi UFJ Financial Group (Japón) con su red privada blockchain Global Open Network y su criptomoneda MUFG Coin [72].

Pero no todo lo proporcionado por la blockchain 2.0 son ventajas, en los últimos 5 años se han elaborado artículos donde se detallan ciertos inconvenientes que a futuro serían un problema para todas las aplicaciones que utilicen blockchain y una de ellas es la rentabilidad [26]. Para que un nodo sea considerado como válido dentro de la red deberá ser aprobado por más del 50% de nodos en la red blockchain (one-cpu-one-vote) [73] lo que quiere decir que, mientras más crezca la red, mayor será el tiempo de procesar una transacción y esto ya no es tan rentable para aplicaciones desarrolladas por startups.

De igual forma sucede con las comisiones que se cobran por cada transacción en blockchain. Estas comisiones no están reguladas y varían dependiendo de varios factores como el congestionamiento de la red, el valor de la criptomoneda [74] agregando un costo adicional, muchas de las veces exageradamente alto, a las transacciones realizadas por los usuarios.

Como último inconveniente está el alto consumo de energía, esto se evidencia en los artículos elaborados por los autores [14], [15], [26], [27] & [31] y aunque existen soluciones como el Proof-of-work o Proof-of-stake para disminuir el consumo eléctrico, el problema de la sostenibilidad ambiental sigue presente en la actualidad.

Debido a estos problemas de rentabilidad, sostenibilidad y rendimiento documentados en los últimos años por la utilización de los DLT, en el año 2017 se dio paso a una próxima evolución del blockchain, conocido como la blockchain 3.0 que son redes creadas para soportar aplicaciones descentralizadas (Dapps) pero con la ventaja de tener

mayor capacidad que las redes pioneras del blockchain (bitcoin y Ethereum) [75], un producto de esta nueva tecnología es la red Cardano (criptomoneda ADA) [76].

Sin embargo, aunque estas nuevas redes que surgieron del blockchain 3.0 solucionan gran parte de los problemas ocasionados por la blockchain 1.0 y 2.0, aún siguen sin mitigarlas del todo, dando nacimiento al DLT IOTA como solución a todos los problemas mencionados anteriormente y es por esto que IOTA no es considerada un blockchain sino un Tangle basado en tecnología DAG (gráficos acíclicos dirigidos) [77].

Gracias al protocolo de consenso de IOTA, llamado FPC (Fast Probabilistics Consensus) [78], no existe distinción entre mineros y usuarios (ambos se consideran como nodos), haciendo que todos los nodos de la red sean participantes en operaciones computacionales que no requieren de mucho consumo de energía como almacenamiento y validaciones de transacciones, solucionando de esta manera el problema de la sostenibilidad ambiental dado por la tecnología blockchain.

Al no existir los mineros, ya no existe la necesidad de pagar por una comisión (fee) cada vez que se realiza una transacción. Cada transacción realizada con IOTA tiene un coste cero o también conocido como fee con valor cero [79], haciéndolo perfecto para ser utilizado en micropagos de IoT [80] o para aplicaciones Fintech.

En cuestión de la rentabilidad, IOTA no requiere que al menos el 50% de nodos de la red apruebe la transacción para unirla a la red. Cada usuario de IOTA puede realizar una transacción, pero para unirla a la red deberá validar al menos dos transacciones que antecederán a su nodo y posteriormente otro nodo validará la transacción inicial [81]. La ventaja de esto es que incrementa la rentabilidad en las transacciones realizadas en cualquier aplicación, en aspectos como velocidad, seguridad y escalabilidad.

Un aspecto negativo con respecto a IOTA, se debe a la carencia de implementación de los smart contracts, según el reporte del mes de octubre del 2021 de IOTA [43], los smart contract se encuentra actualmente en fase beta para los desarrolladores. Por lo tanto, Ethereum y Cardano son los más utilizados actualmente en la construcción de smart contracts [82].

Debido al surgimiento del COVID-19, las aplicaciones Fintech tuvieron un crecimiento considerable durante los años 2020-2021 [10]. Se registraron incrementos en la cantidad

de usuarios que se inclinaron por realizar compras online e invertir en la bolsa de valores de criptomonedas [83], pero a su vez se detectaron un incremento de la ciberdelincuencia en estas aplicaciones [84], [85], [86], [87] & [88].

La implementación de los DLT en el campo de las Fintech, con todas las virtudes descritas anteriormente en esta investigación, surge como una medida extra de seguridad para dichas aplicaciones y aunque estas no logren solucionar todos los delitos informáticos por completo, es un esfuerzo adicional que la comunidad científica ofrece como protección a posibles ataques informáticos relacionados a las aplicaciones Fintech, como se muestra en el trabajo realizado por Angelis y Ribeiro da Silva [89] & Mohanta y otros [90].

Actualmente se está trabajando en la blockchain 4.0 en conjunto con la industria 4.0, que a pesar que en esta investigación no se utilizará esta tendencia, la característica de inclusión de la inteligencia artificial al blockchain [91] sería un gran avance para la mitigación de fraudes y estafas en transacciones financieras online. La figura 1 ilustra una síntesis de los antecedentes históricos elaborado para esta investigación.

Figura 1: Organización cronológica de los antecedentes de las fintech y blockchain.

Fuente: Elaboración propia

1.8 Antecedentes conceptuales.

1.8.1 Hipótesis de la investigación.

Para esta investigación se elaboraron dos hipótesis, una de investigación (Hi) y otra nula (Ho) que serán analizadas durante el desarrollo de la investigación y su validez se mostrarán en el capítulo IV en la sección de discusión de resultados obtenidos.

Hi: La implementación de tecnologías de registros distribuidos (DLT) en una arquitectura de microservicios cloud disminuye casos de estafas y fraudes de primera persona en transacciones financieras online de sistemas DApps fintech.

Ho: La implementación de tecnologías de registros distribuidos (DLT) en una arquitectura de microservicios cloud no disminuye casos de estafas y fraudes de primera persona en transacciones financieras online de sistemas DApps fintech.

1.8.2 Red de categorías de las variables.

1.8.2.1 Variable independiente.

Tecnologías de registros distribuidos (DLT) en microservicios cloud.

1.8.2.2 Variable dependiente.

• Delitos informáticos (estafas y fraudes) en aplicaciones Fintech.

En la figura 2 se muestran las variables de investigación seleccionadas para la presente investigación.

Figura 2: Variables dependientes e independientes seleccionadas

Fuente: Elaboración propia

1.8.3 Fundamentación teórica de la variable independiente.

Las tecnologías de registros distribuidos en microservicios cloud fue la variable independiente seleccionada para esta investigación y como estas ayudarían a la seguridad de los datos personales y financieros en aplicaciones Fintech, partiendo desde lo más general como son los microservicios cloud a lo más específico que son las tecnologías de registros distribuidos.

1.8.3.1 Microservicios cloud.

Las arquitecturas de microservicios implementadas en cloud computing son actualmente una de las tendencias más utilizadas para el desarrollo de software complejas y distribuidas debido a su potencial de escalabilidad y seguridad para la información [92], esta afirmación viene fundamentada por los autores Hannousse & Yahiouche en su artículo [93] donde concluyeron que los microservicios nacieron con la finalidad de enfrentar la escalabilidad horizontal y vertical y los mantenimientos de los mismos mediante la utilización de patrones de diseños arquitectónicos.

Sin embargo, las vulnerabilidades en sistemas basados en microservicios en aspectos como el no repudio, integridad y confidencialidad han aumentado [94], surgiendo los DLT como una nueva forma de protección para la información, esta afirmación acerca de los DLT viene sustentada por los trabajos realizados por Yang [95] y Sheng [96].

1.8.3.1.1 Tecnologías de registros distribuidos (DLT).

Los DLT involucran varias tecnologías dando como resultado una base de datos que no es supervisada por ninguna entidad, es decir, es descentralizada, proporcionando la ventaja de aumentar de seguridad de los datos [97], ya que un hacker no podría acceder a esta información debido a que se encontraría distribuida en múltiples servidores. En la figura 3 se ilustra el funcionamiento de los DLT en un ambiente de sistemas DApps en el contexto de aplicaciones Fintech en un ledger centralizado en comparación con un ledger descentralizado.

Figura 3: Ledger centralizado y descentralizado en un ambiente Fintech

Fuente: Elaboración propia

Entre las ventajas de los DLT, el autor Hashimy [98] detalla que mejoran la eficiencia en la distribución de la información, también reduce los costos debido a que una institución ya no gastaría dinero en pagar servidores, sino que utilizaría el almacenamiento público de las redes de los DLT, al igual que la garantización de la inmutabilidad, trazabilidad, seguridad y transparencia de los datos almacenados.

En cuestión de su clasificación, el autor Zhuang [99] clasifica a los DLT en tres tipos, el blockchain, Tempo Ledger y DAG Ledger, en la figura 4 se muestra un organigrama elaborado por este mismo autor indicando los tipos de DLT y algunas tecnologías involucradas en ellas, es importante conocer esta clasificación debido a que en esta investigación se hará uso del blockchain y DAG como propuesta de solución y algo que llama la atención de la clasificación propuesta por Zhuang, es que coloca a IOTA como de tipo Tempo Ledger, esto entra a discusión con el autor Sadasiuvam [100] el cual indica que IOTA es un DAG al igual que HyperLedger Fabric que el autor Nawari [30] lo coloca de tipo blockchain y el autor Zhuang lo coloca de tipo DAG.

Figura 4: Clasificación de los DLT

Fuente: [99]

En la figura 5 elaborado por Bahar [101] proporciona más características de los DLT, una de ellas es su amplia aplicación en diferentes campos como puede ser en la medicina, Iot, finanzas, industrias y mucho más, demostrando la gran versatilidad de esta tecnología en ser aplicadas en muchos dispositivos tecnológicos (smart watch, celulares, laptos, routers etc).

Fig. 2: DLT Stack.

Figura 5: Características de los DLT

Fuente: [101]

Actualmente existen dos estructuras en como la información en los DLT se distribuye dentro de la red, la primera es en forma de cadena de bloques como es el caso del blockchain y como DAG en el caso del Tangle [102] y cada una de ellas manejan sus propios protocolos de consenso entre las más destacadas se encuentran el proof-of-work, proof-of-stake, proof-of-contribution, FPC (IOTA) [103] y también ventajas únicas como la implementación de smart contracts muy baratas con IoTex blockchain [44] o un almacenamiento con coste cero con IOTA [40].

1.8.3.1.2 Blockchain.

El blockchain es considerado un libro de cuentas, donde cada registro es único, consensuado, distribuido y cifrado entre múltiples bloques que forman parte de la red [104]. El autor Feng [105] la define como una base de datos distribuida que utiliza el P2P ofreciendo seguridad y privacidad en las transacciones que se registran, estas transacciones no solamente pueden ser económicas sino puede ser cualquier tipo de información proveniente de cualquier aplicación.

Para que la blockchain pueda funcionar requiere tener varios nodos que son considerados como mineros que se encargan de verificar estas transacciones utilizando diferentes protocolos de consenso para posteriormente validarlas y concatenarlas a la cadena de bloques [106].

1.8.3.1.2.1 Tipos de Blockchain.

La blockchain se encuentra clasificada en dos ámbitos, como son los permisos de acceso y la privacidad en los usuarios para verificar transacciones dentro de la red, esta clasificación se encuentra detallada a fondo en los trabajos realizados por [107] y [108] clasificándolos de la siguiente manera:

Permisos de acceso:

- Con permisos: Requiere autenticación para ingresar e interactuar con la red.
- Sin permisos: No requiere autenticación para ingresar e interactuar con la red.

Privacidad en transacciones:

- Transacciones públicas: cualquier persona puede ver las transacciones.
- Transacciones privadas: solo los usuarios pertenecientes a la red pueden ver las transacciones.

1.8.3.1.2.2 Ventajas del blockchain.

El autor Abdi & otros [109] detallaron en su trabajo muchas ventajas de la utilización de esta tecnología, convirtiéndola en primera opción para ser utilizada en muchos proyectos de diferentes áreas, entre las ventajas principales se destacan:

- Descentralización: las transacciones son procesados por múltiples servidores.
- Trazabilidad: los usuarios pueden estar pendientes del estado de sus transacciones.
- Transparencia: los datos no pueden ser alterados.
- Autonomía: los datos no son regulados por ninguna entidad.

1.8.3.1.2.3 Plataformas blockchain

Yang [108] y Nguyen [110] mencionan varias plataformas blockchain como:

- Bitcoin
- Ethereum
- Hyperledger Fabric
- Tatum
- IBM Blockchain
- Hydrachain
- Ripple
- R3 Corda
- Openchain

1.8.3.1.2.4 IoTex.

IoTex es una infraestructura de blockchain cuya principal característica es su protocolo de consenso en tiempo real llamado Roll-DPoS [111] que permite una comunicación rápida y eficaz entre la blockchain y los millones de dispositivos conectados debido a que este protocolo utiliza un sistema de votación de minería de entre 21 a 50 delegados dentro de la blockchain y a su vez cada blockchain interactúa con diferentes dispositivos [112].

Gracias al protocolo Roll-DPoS se obtiene una red con un rendimiento significativamente más alta y de costo menor por cada transacción en comparación a otras blockchain [44], haciéndola perfecta para ser utilizado para smart contracts por su rapidez y bajo costo en comisiones. En la figura 6 se muestra un ejemplo de smart contract implementado con IoTex blockchain.

```
1 import solc from "solc";
2
3 const solidityFileString = '
4 pragma solidity ^0.4.16;
5
6 contract SimpleStorage {
7    uint storedData;
8
9    function set(uint x) public {
10       storedData = x;
11    }
12
13    function get() public view returns (uint) {
14       return storedData;
15    }
16    }
17 ';
18    const contractName = ":SimpleStorage";
19    const output = solc.compile(solidityFileString, 1);
20    const abi = JSON.parse(output.contractS[contractName].interface);
21    const bytecode = output.contracts[contractName].bytecode;
```

Figura 6: Ejemplo de un smart contract con iotex

Fuente: Elaboración propia.

1.8.3.1.2.5 Smart contracts.

Los contratos inteligentes o smart contracts son programas especiales que ejecutan instrucciones en redes distribuidas para almacenarlos en la blockchain y así asegurar que dicha información sea inmutable, transparente y seguras [113].

1.8.3.1.2.6 Estándar ERC-721.

El estándar ERC-721 es un tipo especial de smart contract creado bajo la infraestructura de Ethereum con el objetivo de crear tokens únicos, no fungibles y no intercambiables. Gracias a este estándar se han creado los NFT's y la identidad digital en aplicaciones informáticas [114].

1.8.3.1.2.7 Estándar ERC-20.

El estándar ERC-20 goza de una estructura pre-programada diseñada para facilitar la implementación de smart contract bajo cualquier blockchain de tipo Ethereum, por tal motivo es el más popular para implementar nuevos smart contracts [115].

1.8.3.1.2.8 Solidity.

Solidity es un lenguaje de programación considerada de alto nivel que hizo posible la creación de las Dapps debido a que con este lenguaje hizo posible la programación de los smart contracts que generalmente se las utiliza con el EVM de Ethereum [116].

1.8.3.1.2.9 Tatum.

Según la definición de su web oficial, Tatum "es una plataforma opensource para simplificar el desarrollo de aplicaciones DLT soportando más de 40 protocolos de blockchain y activos digitales en una misma API" [117]. Tatum admite las siguientes redes de blockchain para su desarrollo e implementación [118]:

- Mainnet. red principal del blockchain.
- Testnet. red de pruebas del blockchain.
- Virtual accounts. cuentas virtuales pertenecientes a la red privada de Tatum.
- Base chain. otras cadenas de blockchain pertenecientes a otras billeteras.

1.8.3.1.3 Tangle DAG.

Tangle es el núcleo de la tecnología IOTA así como el blockchain lo es para el bitcoin o Ethereum y a diferencia del blockchain que utiliza una cadena de bloques, Tangle utiliza los DAG (gráficos acíclicos dirigidos) [120] el cual brinda mayores ventajas en los DLT como eliminar la necesidad de utilizar mineros debido a que utiliza los propios dispositivos clientes como nodos [121], en la figura 7 se muestra gráficamente la diferencia entre la arquitectura blockchain y Tangle.

Figura 7: Arquitectura Blockchain vs Tangle

Fuente: Elaboración propia.

El funcionamiento de Tangle permite hacer transacciones offline y posteriormente concatenarse a la red, es decir, cuando una transacción es enviada a la red de Tangle, debe aprobar dos transacciones y esperar a que otra transacción la apruebe y así formará parte de la red, pero hasta eso los clientes pueden seguir enviando transacciones [122].

Entre las ventajas que ofrece Tangle, los autores [120], [121] & [122] concuerdan con la siguientes:

- Registra información de manera segura, transparente, inmutable.
- No cobra comisiones ya que no existe los mineros.
- Alta escalabilidad.
- Mejor rendimiento por la ejecución de transacciones en paralelo.
- Su arquitectura es más ligera que el del blockchain.
- Mientras más crezca el Tangle, más rápida será los procesos de verificación de transacciones.
- Descentralización y modular.

1.8.3.1.3.1 IOTA

Gracias al Tangle fue posible la creación de IOTA y goza de todas las características previamente argumentadas en esta investigación como la no dependencia de mineros, alta escalabilidad, costo cero en comisiones y descentralización. Estas ventajas son posibles gracias al protocolo de conseso Fast Probabilistic Consensus (FPC), el cual según Popov & Buchanan lo definen como un "protocolo de consenso binario probabilísticos el cual no posee líder, de baja complejidad comunicacional, convirtiéndolo en una tecnología robusta" [123].

Iota es un DLT de código abierto que nació para solucionar los múltiples inconvenientes del blockchain como son problemas de rendimiento, medio ambiente y alto costos en comisiones [124]. Su principal objetivo es la seguridad durante el flujo de la información en especial para el ambiente Iot [125].

Uno de los inconvenientes con Iota es que no es totalmente descentralizada, cuenta con un nodo origen llamado coordinador que se encarga principalmente de evitar ataques de red [126] [127] pero esto se quiere solucionar con el nuevo protocolo conocido como chrysalis con la salida de IOTA 2.0 nectar reléase [128].

La ejecución de los Smart contracts es también otro punto negativo por el momento en IOTA, pero en octubre del 2021, IOTA Foundation dió la noticia de que los Smart contract se encuentran en su fase beta [43] dando un gran paso sobre esta arquitectura.

1.8.3.1.3.2 IOTA Stronghold

Librería open-source escrita en Rust que utiliza una base de datos segura para proteger cualquier secreto digital de posibles hackers, como contraseñas, privates key etc y estas nunca sean revelados [129]. Gracias a esta librería, aumentaría la seguridad al momento de trabajar con contraseñas, llaves privadas o información sensible generadas en transacciones financieras Fintech.

1.8.4 Fundamentación teórica de la variable dependiente.

1.8.4.1 La seguridad de la información.

También conocida como S.I, nace para resguardar y proteger la información, donde se contempla un cúmulo de políticas de uso tanto preventivas como reactivas para el tratamiento de la información que se utilice dentro de alguna empresa y así evitar el acceso, utilización, divulgación o destrucción no autorizada de datos privados [130].

El objetivo principal de los S.I, según los autores Kirillova & otros [131] es garantizar de manera eficaz la protección de la información proveniente de los servicios, actividades, sistemas informáticos y comunicaciones dentro de una institución, protegiéndola contra violaciones que tengan que ver con la disponibilidad, integridad y confidencialidad de la información. Estos tres pilares se encuentran contemplados en la ISO/IEC 27001:2013 y para ponerlo en práctica las empresas identifican áreas con posibles vulnerabilidades de filtración de información, posteriormente evalúan los riesgos y finalmente otorgan los pasos necesarios para la reducción de los riesgos [132].

La detección de riesgos por lo general se los realiza en un ambiente de pruebas, el autor Wang [133] elaboró un marco tecnológico sobre la seguridad de la información realizados en un ambiente de pruebas, donde se contempla aspectos relevantes que pueden ser de utilidad en la seguridad de aplicaciones Fintech como es el no repudio, integridad, seguridad de los datos, confidencialidad, seguridad de la red y estructural, en la figura 8 se muestran más aspectos del mismo.

Figura 8: Framework de seguridad de la información para ambientes de pruebas

Fuente: [133]

1.8.4.2 Cyber seguridad.

La seguridad informática, según la Asociación de Auditoría y Control de Sistemas de Información (ISACA), es un nivel adicional de protección para la información, con este nivel se trabaja para mitigar cualquier amenaza ya sea interna o externa durante las fases de procesamiento, transportación y almacenamiento de la información desde cualquier dispositivo [134].

Sin embargo, el autor Tirumala [135] indica que la ciberseguridad consiste en proteger sistemas donde se gestiona información privada y sensible provenientes de diferentes medios como puede ser computadoras personales, servidores, redes informáticas, dispositivos móviles entre otros, de ataques digitales por parte de hackers, que, por lo general, logran acceder a puntos que no poseen la protección suficiente para modificar, eliminar o acceder a información personal para posteriormente extorsionar a los usuarios.

Aunque a lo largo del tiempo se han implementado medidas de seguridad dentro del software, los ataques informáticos siguen ocurriendo debido al aumento de las personas en utilizar dispositivos conectados a internet [136] y a la creatividad de los atacantes en utilizar la ingeniería social para penetrar sistemas [137].

1.8.4.3 Vulnerabilidades informáticas.

Las vulnerabilidades informáticas son todas aquellas que se originan cuando se produce un fallo o debilidad debido a una mala integración del software o hardware o simplemente limitaciones presentadas por la tecnología por la cual fue desarrollado el software [138]. Estas vulnerabilidades son explotadas por hackers accediendo sin autorización a diferentes sistemas informáticos mencionados anteriormente por el autor Tirumala, los atacantes una vez dentro del sistema, pueden comprometer los pilares de la seguridad de la información contemplados en la ISO/IEC 27001:2013.

Según Tundis [139], las vulnerabilidades informáticas pueden ser de tipo teórica y real, la real es conocida como los exploits, son fallos que se encuentran en muchas aplicaciones y sistemas operativos que son solucionados en próximas versiones.

Con la llegada de la cloud computing, muchas aplicaciones, especialmente del ámbito web, migraron a estas arquitecturas, apareciendo nuevas vulnerabilidades de las cuales el autor Kumar [140] elaboró un organigrama jerárquico (ver figura 9) detallando aspectos a tener en cuenta sobre la seguridad en la cloud computing, como los requerimientos, amenazas, vulnerabilidades y contra medidas que se deben considerar al utilizar esta arquitectura.

Figura 9: Seguridad en la cloud computing
Fuente: [140]

1.8.4.4 Ataques y vulnerabilidades en aplicaciones Fintech.

A lo largo de los años, han existido muchos ataques y amenazas informáticas pero debido a que en esta investigación se centrará en las aplicaciones Fintech, se ha recapitulado aquellas vulnerabilidades que ponen en los pilares de la información dentro de estas aplicaciones.

1.8.4.4.1 Carencia de cifrado de datos.

Las aplicaciones Fintech gestionan información tanto personal como financiera de los usuarios, por tal motivo, se recomienda que toda información sensible viaje a través de la red desde las aplicaciones cliente hasta los servidores, de manera cifrada utilizando algún algoritmo de cifrado como AES, RSA o un híbrido y en el caso de que los servidores estén en la cloud, el autor Yang [141] recomienda aplicar algoritmos de cifrado como el KP-ABE o el CP-ABE dentro del cloud storage. Aunque no existe un algoritmo de cifrado mejor o peor que otro, la selección de este algoritmo dependerá del contexto de la aplicación, por lo tanto, para la aplicación Fintech de "Pay2Meta" se ha optado por la utilización del algoritmo asimétrico RSA dado a su ventaja de utilizar una llave pública para el cifrado de datos desde las aplicaciones clientes y aunque un hacker realice un ataque de hombre de en medio (man-in-the-middle) jamás podrá desencriptar la información ya que para esto necesitaría la llave privada que se encuentra solamente en los servidores [142], en la figura 10 se observa de manera gráfica el funcionamiento del algoritmo RSA. Esta característica del RSA lo hace perfecta para ser utilizada en aplicaciones móviles, debido a que si un atacante realiza una ingeniería inversa a la app móvil solamente obtendría la llave pública y no haría nada con ese dato, caso contrario pasaría si se usase un algoritmo simétrico AES que utiliza la misma llave para cifrar y descifrar los datos [143], si un hacker la obtiene podría fácilmente desencriptar toda la información que fluya entre las aplicaciones clientes.

Figura 10: Algoritmo RSA

Fuente: Elaboración propia

1.8.4.4.2 Carencia de doble factor de autenticación.

La doble autenticación es una medida de seguridad extra implementado actualmente por muchas aplicaciones, debido a que aparte de solicitar las credenciales de email/usuario y password se requerirá de un código obtenido por aplicaciones de tercero o servicios de mensajería como SMS o email [144].

La carencia de un doble factor de autenticación en una aplicación Fintech es claramente una vulnerabilidad alta, por eso se recomienda implementarlo ya sea registrando un código PIN o solicitarlo por la aplicación de Google Authenticator [145].

1.8.4.4.3 Ingeniería social.

La ingeniería social está presente en cualquier aplicación, en especial donde se maneja comunidades de usuarios y flujo de dinero, los atacantes utilizan una serie de técnicas como el phishing para engañar a los usuarios, por lo general envían links donde se encuentran formularios solicitándole sus datos confidenciales o inyectándole malware e infectar sus dispositivos [146] y así robar información como claves, cuentas de usuarios, datos de tarjetas de crédito entre otros.

1.8.4.4.4 Repudio de información.

El no repudio de la información es uno de los principios de la seguridad informática y consiste en garantizar al receptor que el mensaje es enviado por el emisor original y no otra persona [147], este aspecto es importante en las aplicaciones Fintech, ya que tener la capacidad de demostrar que los usuarios realmente realizaron las transacciones financieras es vital para evitar fraudes o estafas.

1.8.4.4.5 Carencia de seguridad en interfaces de programas de aplicación (API)

Actualmente, la mayoría de aplicaciones se construye bajo la arquitectura de microservicios, donde la seguridad en las API es un aspecto primordial en dichas arquitecturas para proteger la confidencialidad de los datos que fluyen a través de estas API. Una API expuesta sin las seguridades suficientes son una de las principales causas de la filtración de datos confidenciales [148].

1.8.4.4.6 Fraudes al utilizar tarjetas de créditos.

Esta vulnerabilidad va de la mano con el no repudio de la información, si la aplicación Fintech no cuenta con mecanismos para demostrar el no repudio de los usuarios al momento de utilizar sus tarjetas, claramente existirán los fraudes afectando económicamente a la empresa desarrolladora de la aplicación. Existen tres tipos de fraudes con tarjetas que se deben tener a consideración [150]:

- Fraude en primera persona: se comete cuando la persona dueña de la tarjeta realiza un pago online pero luego se dirige al banco y miente diciendo que él no realizó dicho pago.
- Fraude en segunda persona: se comete cuando un amigo o alguien cercano al dueño de la tarjeta realiza un pago online sin el consentimiento del dueño.
- Fraude en tercera persona: se comete cuando el dueño de la tarjeta desconoce por completo quien fue la persona que realizo un pago online, en este caso el dueño de la tarjeta es claramente una víctima de la ciberdelincuencia.

1.8.4.4.7 Estafas al vender o comprar productos online.

Muchas grandes empresas como Alibaba, Facebook, Instagram, Amazon han optado por la utilización de los marketplaces, que son aplicaciones donde muchas negocios ofertan sus productos y cualquier persona puede crearse una cuenta, provocando un aumento del índice de estafas en compras y ventas debido a que no existe un ente regulador que compruebe que estas tiendas son reales y que los productos que se ofertan sean verídicas, esta información ha sido comprobada en varios artículos elaborados entre los años 2020-2021 citados en la sección de antecedentes históricos de esta investigación.

1.8.4.4.8 Metodología Agile Block Chain Dapp Engineering.

La metodología ABCDE se fundamenta en los principios de una metodología ágil debido a que fue creada a partir de la metodología SCRUM por lo tanto utiliza varias prácticas como [151]:

- Enfoques de desarrollo interactivos e incrementales
- Historias de usuarios.
- Roles y reuniones.
- Diagrama derivado del UML para modelar eficazmente la estructura de datos de los smart contracts.
- Diagramas de secuencias para intercambiar mensajes entre las entidades del sistema.

• Utiliza dos flujos para las actividades, el primero tiene que ver con los contratos inteligentes y el segundo con los softwares que interactúan con los DLT.

Un punto a tomar en cuenta es que esta metodología considera dos tipos de integraciones, la del software entre los componentes de los DLT (smart contracts, biblioteca, estructura de datos etc) y los componentes fuera de los DLT como microservicios y aplicaciones web o móvil, naciendo de aquí un completo sistema DApp [152]. La metodología ABCDE utiliza actividades como el diseño, desarrollo, pruebas e integración con Smart contracts y software fuera de los DLT, documentar los Smart contracts utilizando diagramas para su posterior evaluación de seguridad y mantenimiento [153]. En la figura 11, se presenta de manera gráfica como es el flujo de actividades propuestos por la metodología ABCDE.

Figura 11: Proceso de la metodología ABCDE

Fuente: [151]

Con lo anteriormente mencionado por los autores acerca de la metodología ABCDE, se utilizará la misma en esta investigación porque quedó demostrado que son adecuadas para ser implementadas en aplicaciones basadas en DLT donde los requerimientos varían constantemente por la volatibilidad de los DLT y también porque ofrece una metodología para la correcta utilización de los contratos inteligentes en Dapps.

1.9 Antecedentes contextuales.

1.9.1 Delimitación del contexto de investigación.

La siguiente investigación se lo hará en un ambiente de producción controlado, tomando como caso práctico las transacciones realizadas por los usuarios en las funcionalidades de links de cobros, marketplaces y recarga de billetera ofrecidas por la plataforma Fintech "Pay2Meta", que según su web oficial lo definen como un "eje de negocios digitales, enfocado principalmente a pequeños y medianos empresarios donde podrán comprar/vender productos o servicios, transaccionar con tarjetas de créditos y criptomonedas, poseer su propia billetera virtual, pagar servicios básicos entre otras funcionalidades" [154]. Su misión está enfocada en facilitar aspectos de negocios de los usuarios a través de procesos digitales de manera simple, rápida y segura. Su visión se centra en convertirse en el eje de negocios digitales más grande de América Latina [155], para esto, Pay2Meta requiere de la implementación de los DLT en los procesos financieros mencionados anteriormente para incrementar la seguridad de los datos transaccionales y a su vez mitigar los problemas de fraudes/estafas de primera persona detectadas en las funcionalidades de los marketplace y en la utilización de tarjetas de crédito dentro de la plataforma por parte de los usuarios. Mientras más va creciendo la plataforma, más seguridad se debe implementar tanto en el transporte como en el almacenamiento de los datos que son puntos potenciales de ataques para hackers.

1.9.2 Propuesta de solución.

Desde su creación hasta la actualidad, se han detectado vulnerabilidades en las aplicaciones Fintech, especialmente entre los años 2020-2021 por la presencia del COVID-19 y aunque la comunidad científica ha realizado investigaciones para aumentar la seguridad en estas aplicaciones, aún siguen existiendo estas vulnerabilidades. La presente investigación pretende solucionar los problemas de estafas y fraudes de primera persona en aplicaciones Fintech tomando como caso práctico la plataforma Pay2Meta, por tal motivo, se diseñó una aplicación web y móvil las cuales se encuentran funcionando en arquitecturas cloud bajo la plataforma de Google, son diferentes instancias las cuales proporcionan una arquitectura basado en eventos y microservicios, estos microservicios proporcionan las Apis necesarias para el procesamiento de datos a través del protocolo https y la interfaz de programación API-REST y a su vez estos se encargarán de realizar el almacenamiento de los datos en los DLT.

La propuesta de solución consta de tres puntos:

 Crear una identidad digital, en la figura 12 se ilustra la propuesta de solución utilizando la verificación biométrica proporcionado por la plataforma MATI en conjunto con smart contract ERC-721 deployados en Iotex para posteriormente crear NFT's con Tatum blockchain y el resultado de esto almacenarlo en IOTA para asegurar su inmutabilidad.

Figura 12: Diagrama de flujo del proceso de identidad digital

Fuente: Elaboración propia

• Utilizar los NFT del proceso anterior para las recargas de billeteras con tarjeta de crédito dentro de la plataforma, en la figura 13 se ilustra el proceso donde se hará uso de IOTA que gracias a su coste cero en sus almacenamientos se guardará información de transacciones financieras como ubicación, ip, dirección, últimas conexiones entre otras informaciones de los usuarios para posteriormente ser utilizado como soporte para defenderse ante un posible reclamo de fraude por parte de las entidades bancarias.

Figura 13: Diagrama de flujo del proceso de recarga de billetera

Fuente: Elaboración propia

Finalmente, en la figura 14 se ilustra la utilización del smart contract ERC-20
para mitigar problemas de estafas utilizando IoTex blockchain cuando se trate de
compras y ventas realizadas en el marketplace de productos/servicios y en el
marketplace de criptomonedas donde se realizarán tradings y las transacciones
financieras resultantes serán almacenadas en IOTA.

Figura 14: Diagrama de flujo del proceso del Marketplace

Fuente: Elaboración propia

Un resumen de lo anteriormente dicho se detalla en la tabla 4 donde consta las funcionalidades transaccionales donde se realizarán pruebas y se recolectarán los datos con sus respectivas propuestas de solución.

Nro	Funcionalidades transaccionales	Propuesta de solución
1	 Marketplace de productos/servicios y criptomonedas Links de cobros 	Smart contracts ERC-20 con Iotex y almacenamiento con Iota
2	Recarga de billetera con tarjetas de crédito	NFT con Tatum y almacenamiento con Iota
3	Identidad digital	Verificación biométrica con Mati, NFT con Tatum, Smart contract ERC-721 con Iotex y almacenamiento en Iota

Tabla 4: Funcionalidades transaccionales de Pay2Meta **Fuente:** Datos estadísticos obtenidos de la plataforma.

CAPÍTULO II: MATERIALES Y MÉTODOS

2.1 Tipo de investigación seleccionada.

Dado a la revisión sistemática de literatura y al planteamiento de aspectos como el problema, objetivos y variables realizados anteriormente, se determinó que el nivel de profundidad para esta investigación sea de tipo correlacional debido a que se desea determinar qué tipo de correlación es (negativa o nula) entre la variable independiente que son las tecnologías de registros distribuidos en arquitectura de microservicios cloud y la dependiente que son los delitos informáticos por estafas y fraudes en aplicaciones Fintech, es decir, si se implementa los DLT en microservicios cloud, ayudaría a disminuir o no afectar la tasa de delitos informáticos por estafas y fraudes en aplicaciones Fintech. En la figura 15 se ilustra la correlación negativa entre las variables de la presente investigación.

Figura 15: Correlación entre variables de la investigación

Fuente: Elaboración propia.

2.2 Paradigma de investigación realizada.

Esta investigación se la realizó bajo un enfoque cuantitativo debido principalmente a que se manipularán valores numéricos como latencia, cantidad de transacciones entre otros aspectos (ver figura 16) para su posterior medición con técnicas estadísticas y también esta investigación se ajusta al proceso cuantitativo propuesto por Sampieri en su libro de metodología de la investigación científica (ver figura 17) la misma que será utilizada para el cumplimiento de los objetivos propuestos.

Figura 16: Enfoque cuantitativo a nivel arquitectónico Fuente: Elaboración propia.

Figura 17: Fases del enfoque cuantitativo **Fuente:** [156]

Finalmente, según el grado de uso de la variable, la investigación será de tipo cuasiexperimental por las razones de que en esta investigación no será posible seleccionar la población al azar sino que existirá un grupo determinado de transacciones etiquetadas potencialmente como fraudulentas o estafas, también porque la variable independiente será manipulada en un ambiente de producción con un grupo específico de sujetos obtenidos de las transacciones financieras realizadas por los usuarios de la aplicación de Pay2Meta para posteriormente verificar el comportamiento de los DLT ante distintas funcionalidades de la aplicación Fintech donde se han detectado casos de estafas y fraudes. En la tabla 5 se muestra las dos fases de experimentación que se utilizarán para esta investigación, con sus respectivas descripciones y aplicación.

Fases	Descripción	Aplicación		
Baja	Son aquellas transacciones que tomarán un	Se aplicarán en aquellas		
transaccionalidad	tiempo en concatenarse a los DLT.	funcionalidades que requieran de la utilización de los smart contracts.		
Alta	Son aquellas transacciones que se	Se aplicarán en aquellas		
transaccionalidad	concatenarán a los DLT ni bien termine la	funcionalidades que requieran de la		
	operación del usuario.	utilización de IOTA y NFT de Tatum.		

Tabla 5: Fases de experimentación Fuente: Elaboración propia.

2.3 Población y muestra de la investigación.

La población con la cual se trabajará en la presente investigación serán las transacciones detectadas como potencialmente fraudulentas o estafas realizadas por usuarios seleccionados para la fase beta de la plataforma Pay2Meta en los meses de enero, febrero, marzo y abril del 2022 y debido a que ya se tiene una cantidad fija de transacciones realizadas, se determinó que la población será finita. El tipo de muestreo será probabilístico sistemático debido a que la muestra se obtendrá de una población previamente definida por el investigador, para eso se utilizó la fórmula de tamaño de muestra para poblaciones finitas mostrado en la figura 18, donde se estableció una población de 202 transacciones, un nivel de confianza del 99% con su respectivo valor z-score de 2.580, un margen de error de 3% y probabilidad de éxito y fracaso del 50%, los resultados de la aplicación de la fórmula se muestran a continuación:

n= muestra = ?

N= población= 202

p= probabilidad a favor = 50%

q= probabilidad en contra = 50%

z= nivel de confianza = 2.580 (99%)

e= error de muestra = 3%

$$n = \frac{N * z^2 * p * q}{e^2 * (N-1) + z^2 * p * q} = \frac{202 * 2.580^2 * 0.50 * 0.50}{0.03^2 * (202 - 1) + 2.580^2 * 0.50 * 0.50} = 182$$

Figura 18: Cálculo de la muestra

Fuente: Elaboración propia.

Obteniendo un resultado de 182 transacciones que deberán ser analizadas para la comprobación de la hipótesis.

2.4 Método teórico utilizado.

El método teórico seleccionado fue el hipotético-deductivo, debido a que esta investigación plantea una hipótesis y se requiere verificarla o refutarla. Entonces, analizando los pasos que conlleva este método, las mismas serán útiles para cumplir con el objetivo general de la investigación. En la tabla 6 se ilustra el método hipotético-deductivo propuesto por el autor Rodríguez J. [157] el mismo que fue adaptado para esta investigación.

Proceso del método hipotético-deductivo				
Observación	Uso del instrumento de registro anecdótico en las muestras seleccionadas			
Observacion	en la investigación obtenidas de las bases de datos de firebase y mysql.			
	La implementación de tecnologías de registros distribuidos (DLT) en			
Elaboración de	una arquitectura de microservicios cloud disminuye casos de estafas y			
hipótesis	fraudes de primera persona en transacciones financieras online de			
	sistemas DApps fintech.			
Deducción de	Los casos de fraudes y estafas de primera persona serán menores o nulos			
consecuencias	con la implementación de los DLT.			
	- Pruebas: Ejecución de los artefactos de software para estudiar la			
	incidencia de una muestra obtenida de la población, en este caso las			
	transacciones financieras, antes y después de la implementación de los			
	DTL.			
Experimentación	- Encuestas: Aplicados a los usuarios que realicen compras/ventas en			
	los marketplaces de la aplicación Fintech para conocer el nivel de			
	satisfacción del producto obtenido y deducir si se produjeron estafas			
	durante el proceso de compra/venta. El formato de la encuesta se ve			
	reflejado en el anexo 2.			
Refutación o	Se muestran los resultados obtenidos a través de estadística inferencial			
verificación	para comprobar o no la hipótesis planteada inicialmente.			

Tabla 6: Proceso sistemático del método teórico utilizado

Fuente: Adaptado de [157]

2.5 Métodos empíricos utilizados.

Para esta investigación, se utilizaron los siguientes métodos empíricos:

• Experimento

Como se explicó en el punto 2.2, el tipo de investigación seleccionada es cuasiexperimental, por tal motivo se hará uso de este método en dos escenarios de experimentación planteadas en la tabla 5 con la población y muestra explicada en el punto 2.3. Para cada uno de estos escenarios, se diseñará e implementará diferentes arquitecturas de software donde se manipulará la variable independiente, es decir, se hará uso de distintos microservicios con DLT para posteriormente verificar el comportamiento de la variable dependiente.

• Artefactos

Se desarrollará en total tres artefactos entregables. El primer artefacto son todos los diseños de arquitecturas de microservicios en Google Cloud siguiendo la metodología ABCDE. El segundo artefacto serán los códigos fuentes correspondientes a las funcionalidades más destacadas donde involucren smart contracts, NFT y registros con IOTA. Finalmente, el tercer artefacto serán la aplicación web y móvil desarrollados para testear las implementaciones.

• SLR

Se desarrollará un SLR usando la guía metodológica de B. Kitchenham para posteriormente elaborar un cuadro comparativo donde se seleccionará las tecnologías de registros distribuidos a utilizarse en la investigación.

• Herramientas utilizadas

Las herramientas seleccionadas para esta investigación se encuentran dividido en tres grupos tal y como se ilustra en la figura 19, el primer grupo será utilizado para el análisis de datos, siendo seleccionada la herramienta IBM SPSS y validándolo con R Studio. El segundo será utilizado para la recolección de datos, en este grupo se encuentran bases de datos como Firebase y Mysql de donde se obtendrán los registros transaccionales y Google Forms para obtener los resultados de las encuestas aplicados a los usuarios de la aplicación Fintech. El tercer grupo está enfocado a la realización de pruebas donde se encuentra JMeter que será utilizado para realizar pruebas funcionales, testeo de aplicaciones y servicios web; Postman para testeo de endpoints; Mythrill para el análisis de vulnerabilidades en Smart contracts y Kiuwan para el análisis de calidad del código fuente.

Figura 19: Herramientas utilizadas en la investigación Fuente: Elaboración propia

2.6 Técnicas estadísticas utilizadas.

Para el análisis de datos cuantitativos se usará la estadística inferencial para probar la hipótesis planteada y debido a que esta investigación es de tipo correlacional, se debe optar por seleccionar alguna técnica correlacional como Pearson, Spearman o Kendall, pero para esto primeramente se debe establecer si la investigación es paramétrica o no paramétrica aplicando pruebas de normalidad.

Las pruebas de normalidad aplicadas fueron las de Kolmogorov-Smirnov y Shapiro-Wilk utilizando el software estadístico SPSS en base a los datos transaccionales obtenidos de los meses de enero y febrero proporcionados por la aplicación Fintech de Pay2Meta, en la tabla 7 se ilustra el resultado de esta prueba, donde según los autores Vance & YanYan [158], cuando la población es mayor a 50 se debe optar por seleccionar los resultados de la prueba de Kolmogorov-Smirnov caso contrario seleccionar Shapiro-Wilk y en esta prueba la población o grados de libertad (gl) fue de 59 por tal motivo se seleccionará los resultados obtenidos de la prueba de Kolmogorov-Smirnov. Para conocer si los datos son normales, según la regla de Kolmogorov-Smirnov, si el nivel de significancia es mayor a 0.05 quiere decir que los datos son normales por lo tanto se deberá usar un análisis paramétrico donde se encuentra el coeficiente de correlación de Pearson, caso contrario no son normales y se debe optar por utilizar un análisis no paramétrico como pueden ser el coeficiente de correlación de Spearman o Kendall.

Pruebas de normalidad						
	Kolmogorov-Smirnov ^a Shapiro-Wilk					
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Cant_Transacciones	,133	59	,011	,934	59	,003
Tran_Frau_Est	,226	59	,000	,776	59	,000

Tabla 7: Pruebas de normalidad de Kolmogorov-Smirnov y Shapiro-Wilk Fuente: Elaboración propia

Por tal motivo, según el nivel de significancia de la prueba de Kolmogorov-Smirnov mostrada en la tabla 7 que fue de 0.011 es menor a 0.05 se concluye que la técnica estadística para el análisis de datos cuantitativos que se usará para esta investigación será el coeficiente de correlación de Spearman. Finalmente se realizará una comparación pre y pos testing de los datos y para esto se hará uso del método U Mann-Whitney debido a que esta técnica es usada para análisis de datos no paramétricas.

CAPÍTULO III: RESULTADOS

El capítulo III corresponde al desarrollo de los resultados obtenidos en el proyecto investigativo, iniciando con un SLR elaborado en el capítulo I sobre las tecnologías de registros distribuidos para seleccionar cuál de estas se utilizarán en la investigación mediante la realización de un cuadro comparativo, seguidamente de la aplicación de la metodología ABCDE para la elaboración de los sistemas Dapps sobre una arquitectura de microservicios en Google Cloud, posteriormente se detallará la implementación de IOTA, NFT y los smart contract con Iotex y finalmente se describirán las pruebas funcionales y no funcionales realizadas.

3.1 Selección de los DLT.

Actualmente existen varias plataformas DLT, cada una implementada en diferentes versiones de blockchain (1.0, 2.0 y 3.0) y de Tangle (DAG) ofreciendo diferentes características que podrían ser no ventajosas para ser implementadas en aplicaciones Fintech como comisiones altas, redes privadas, carencia de creación de smart contract o de NFT's entre otros. Tras una exhaustiva revisión sistemática de literatura usando la guía metodológica de B. Kitchenham cuyo resultado se ve reflejado en el Anexo 1 se ha podido realizar el siguiente cuadro comparativo ilustrado en la tabla 8 de algunas tecnologías DLT con sus características seleccionadas bajo criterios generales que ayudarían a cumplir con los objetivos propuestos para esta investigación las cuales son las siguientes:

- Tipo de red DLT.
- Madurez de la tecnología.
- Mecanismos de consenso.
- Costos de transacciones
- Aplicabilidad para Smart contract, NFT y Dapps.
- Tiempo de confirmación de transacción.
- Transacciones por segundo
- Descentralización.
- Lenguajes de programación soportado en sus Apis.
- Permisionado.

	Tecnologías de Registros Distribuidos (DLT)								
Características	Ethereum	• \ IOTA	loTeX	TATUM	.: ∴ Quorum	HYPERLEDGER FABRIC	r3.c.rda	XUPER 百度超级链	
Madurez (años)	Alto	Medio	Medio	Medio	Medio	Alto	Medio	Bajo	
Tecnología	Blockchain	Tangle	Blockchain	Blockchain	Blockchain	Blockchain	DAG	Blockchain	
Mecanismo de consenso	Proof-of-work (PoW)	FPC	Roll-DPoS	Depende del DLT.	Raft-consensus	Proof of Stake	Pluggable consensus	TDPOS	
Permisionado	No	No	No	No	Solo validadores	Permisionado fino	Permisionado grueso	Permisionado grueso	
Tipo de red	Pública	Pública	Pública	Pública y privada	Privado y Federado	Privado y Federado	Privado y Federado	Privado y Federado	
Smart contracts	Si	Si (fase beta)	Si	Si	Si	Si	Si	Si (fase beta)	
Lenguajes soportados	Solidity	NodeJs, Rust, Go, C, python	NodeJS, Go	NodeJS, Python, Java, Go, Ruby	Solidity	Go, Python, Java	Kotlin, Java	Java	
NFT (tokens)	Si	Si (fase beta)	Si	Si	Si	Si	Si	Si (fase beta)	
Tiempo de confirmación	14-15 segundos	< 10 segundos	5 segundos	< 5 segundos	4 a 10 segundos	5 a 10 segundos	5 a 10 segundos	2 a 5 segundos	
CPT (costos)	21.000 gas	\$0.00	\$0.01	Depende del DLT.	\$0.20/h	\$0.15/h	\$0.665/h	\$0.15/h	
TPS (transacciones)	-20 TPS	1000 TPS	2000 TPS	-100 TPS	-100 TPS	>2000 TPS	-170 TPS	10.000 TPS	
Dapps	Si	Si	Si	Si	Si	Si	Si	Si	
Descentralización	Si	Si (fase beta)	Si	Si	Si	Si	Si	No	

Tabla 8: Cuadro comparativo de DLT Fuente: Elaboración propia

Entre los aspectos poco relevantes para la selección de los DLT en esta investigación se encuentra primeramente los lenguajes de programación para ser implementados, seguidamente del tipo de tecnología sea (blockchain, tangle o DAG) debido a que esta investigación trata sobre los DLT y todas las tecnologías mencionadas anteriormente lo son y tampoco importa los mecanismos de consenso debido a que cada DLT maneja consensos distintos y todas ofrecen tantas ventajas como desventajas. También se optó por aquellos DLT que tengan una madurez alta o media, descartando entonces XuperChain debido a que la mayoría de sus funcionalidades aún siguen en fase beta (NFT y smart contract por ejemplo) por ser relativamente nueva al ser lanzada en el año 2020. Sobre el permisionado, por cuestiones de descentralización y transparencia, se optaron por aquellos DLT que sean públicas o privadas, pero no federadas para respetar el principio de los DLT de no pertenecer a ninguna institución privada o gubernamental. Finalmente, otros aspectos a tener en cuentan son: deben contar con las funcionalidades de smarts contracts y NFT's, costo bajo en comisiones, transacciones por segundos mayores a 100, tiempo de confirmación de transacción menor a 10 segundos y soportar DApps y descentralización. En la figura 20 se ilustra la tabulación de cumplimiento de requisitos para selección bajo criterios de "si" y "no" con puntuación de 1 y 0 respectivamente.

Figura 20: Tabulación de selección de DLT

Fuente: Elaboración propia

Por tal motivo, para funcionales de registros transaccionales financieras se ha seleccionado la tecnología IOTA por su gran cantidad de TPS, coste cero en transacciones, madurez media y soporta múltiples lenguajes de programación para su integración con DApps. Para la implementación de contratos inteligentes se ha seleccionado Iotex blockchain debido a su coste de comisión relativamente baja para el deploy de dichos contratos a comparación del resto de tecnologías y también es una red pública, garantizando transparencia al momento de ejecutar los contratos. En cuestión de los NFT's para la identidad digital en las aplicaciones Fintech se ha seleccionado la plataforma Tatum debido a su bajo coste de comisión para implementar tokens no fungibles con una red blockchain a elección del programador y gracias a su red privada, las identidades digitales no serán visibles para todo el mundo.

3.2 Aplicación de la metodología ABCDE.

Según lo detallado por el autor Tonelli [151] acerca del proceso de la metodología ABCDE, los pasos para el desarrollo de sistemas Dapps son los siguientes:

3.2.1 Definición del objetivo del sistema.

Implementar tecnologías de registros distribuidos en una arquitectura de microservicios de Google Cloud utilizando Blockchain, Tangle y la metodología ABCDE para disminuir casos de estafas y fraudes de primera persona realizadas en transacciones financieras online de un sistema Dapp's Fintech.

3.2.2 Identificación de actores.

Actores	Descripción
Clientes	Son usuarios registrados dentro del sistema, hacen uso de las diferentes
registrados	funcionalidades del sistema interactuando como clientes.
Comercios registrados	Son usuarios registrados dentro del sistema, pero se diferencia de los clientes debido a que los comercios generan ganancias en los marketplaces.
Usuarios externos	Son usuarios que no pertenecen a la plataforma, pero realizan pagos a través de links de cobros generados por usuarios registrados.
Sistema	Es toda la arquitectura informática vista como un sistema, encargada de ejecutar eventos, enviar notificaciones, ejecutar smart contracts entre otras funcionalidades.

Tabla 9: Identificación de actores del sistema Fuente: Elaboración propia

3.2.3 Definir historias de usuarios, casos de usos y diagrama de clase.

Para la elaboración de las historias de usuarios se usará las plantillas proporcionadas por el marco de trabajo de SCRUM.

Historias de usuarios		
Número: 1	Usuario: Usuarios registrados.	
Nombre de historia: Recarg	gas de billeteras	
Prioridad: Alta	Riesgo en desarrollo: Alta	
Puntos estimados: 20	Iteración asignada: 1	
Programador responsable: Ing. Fernando Castillo		
Descripción:		
Como usuario registrado de la plataforma quiero poder realizar recargas de billetera.		
Validación:		
El usuario cuando lo desee puede realizar recargas de billetera utilizando sus tarjetas de crédito		
o débito.		

Tabla 10: Historia de usuario #1 Fuente: Elaboración propia

Historias de usuarios		
Número: 2	Usuario: Usuarios externos y registrados.	
Nombre de historia: Links de cobros		
Prioridad: Alta Riesgo en desarrollo: Alta		
Puntos estimados: 40	Iteración asignada: 2	
Programador responsable: Ing. Fernando Castillo		
Descripción:		
Como usuario registrado de la plataforma quiero crear links de pagos.		

Validación:

El usuario cuando lo desee puede crear links de cobros para que usuarios externos a la plataforma puedan realizar pagos.

Tabla 11: Historia de usuario #2 Fuente: Elaboración propia

Historias de usuarios		
Número: 3	Usuario: Usuarios y comercios registrados.	
Nombre de historia: Marketplaces de criptomonedas y de productos o servicios.		
Prioridad: Alta Riesgo en desarrollo: Alta		
Puntos estimados: 60 Iteración asignada: 3		
Programador responsable: Ing. Fernando Castillo		

Descripción:

Como comercio registrado de la plataforma quiero realizar anuncios de compras o ventas de criptomonedas y de productos o servicios para que usuarios registrados los compren.

Validación:

El comercio cuando lo desee puede crear anuncios y los usuarios realizar transacciones de compra y venta en los marketplaces.

Tabla 12: Historia de usuario #3 Fuente: Elaboración propia

Historias de usuarios		
Número: 4	Usuario: Usuarios registrados.	
Nombre de historia: Identidad digital de usuarios.		
Prioridad: Alta	Riesgo en desarrollo: Alta	
Puntos estimados: 20	Iteración asignada: 4	
Duagrama dan yagnangahlar Ing Farmanda Castilla		

Programador responsable: Ing. Fernando Castillo

Descripción:

Como usuario registrado de la plataforma quiero verificarme como usuario y obtener una identidad digital con NFT.

Validación:

El usuario cuando lo desee puede verificarse biométricamente y posteriormente generar su identidad digital con NFT.

Tabla 13: Historia de usuario #4 Fuente: Elaboración propia

Una vez obtenido las historias de usuarios, el siguiente paso es diseñar los casos de usos, en la figura 21 se ilustra el caso unificado de estas historias de usuarios, con sus respectivos sub sistemas y actores.

Figura 21: Caso de uso unificado Fuente: Elaboración propia

Finalmente, se diseña el diagrama de clases tal y como se ilustra en la figura 22.

Figura 22: Diagrama de clases Fuente: Elaboración propia

3.2.4 Dividir el sistema en dos subsistemas.

La metodología ABCDE sugiere dividir las aplicaciones en dos subsistemas, el primero hace referencia al desarrollo de las aplicaciones clientes como web o móvil y el segundo todo lo relacionado con aplicaciones con tecnologías de registros distribuidos.

3.2.4.1 Desarrollo de aplicaciones clientes.

Este punto de la metodología ABCDE es dedicada al desarrollo de aplicaciones clientes y abarca aspectos como el diseño arquitectónico, interfaces de usuario, diseño de módulos, base de datos y evaluación de seguridad de las aplicaciones.

3.2.4.1.1 Diseño arquitectónico.

La arquitectura utilizada fue una de microservicios usando Google Cloud, en la figura 23 se ilustra el diseño utilizado, el cual consta de varias aplicaciones clientes entre móvil y web, además todos los datos provenientes de estas aplicaciones clientes serán encriptadas con RSA hacia los api Gateway el mismo que se encargará de balancear y distribuir las peticiones https hacia los diferentes microservicios, estos microservicios se encargarán de desencriptar la información y volverla a encriptar con AES usando las llaves privadas obtenidas de la base de dato criptográfica de IOTA Stronghold para posteriormente almacenar la información en diferentes base de datos relacionales y no relacionales. Finalmente, estos microservicios realizarán envíos de notificaciones utilizando el balanceador de carga y cloud pub/sub de Google; y también conexiones con plataformas externas como Stripe, Paymentez; almacenamientos en IOTA y elaboración de smart contracts con Iotex y Tatum.

Figura 23: Diseño arquitectónico de las aplicaciones clientes Fuente: Elaboración propia

3.2.4.1.2 Diseño de las interfaces de usuario.

A continuación, se presenta las interfaces más importantes realizadas en los diferentes artefactos. La aplicación móvil ilustrada en la figura 24 fue realizada con el framework Angular 12 e IONIC 5.

Figura 24:Artefacto - aplicación móvil Fuente: Elaboración propia

El artefacto de links de cobros ilustrada en la figura 25 fue realizada con el framework Laravel 8 como tecnología backend, los frameworks Livewire y VueJS como tecnología frontend y firebase como base de datos.

Figura 25:Artefacto - aplicación web de links de cobros Fuente: Elaboración propia

El artefacto de marketplace ilustrada en la figura 26 fue realizada con el framework Laravel 8 como tecnología backend, los frameworks Livewire y VueJS como tecnología frontend y firebase y mysql como base de datos.

Figura 26:Artefacto - aplicación web marketplace Fuente: Elaboración propia

El artefacto del backoffice ilustrada en la figura 27 fue realizada con el framework Laravel 8 como tecnología backend, los frameworks Livewire y VueJS como tecnología frontend y firebase como base de datos.

Figura 27:Artefacto - aplicación web backoffice Fuente: Elaboración propia

El artefacto del trading con criptomonedas ilustrada en la figura 28 fue realizada con el framework Laravel 8 como tecnología backend, los frameworks Livewire y VueJS como tecnología frontend, firebase como base de datos y Tatum como tecnología DLT.

Figura 28:Artefacto - aplicación web trading criptomonedas Fuente: Elaboración propia

3.2.4.1.3 Diseño de diagramas de procesos.

Fueron tres diagramas de procesos elaborados en esta investigación, el primero se ilustra en la figura 29 el cual consiste en el proceso de verificación biométrica de los usuarios, para eso se utiliza un sistema externo llamado Mati. Cuando termina la verificación, se procede a crear un QR de los datos del perfil del usuario verificado y esta imagen posteriormente se convertirá en una identidad digital utilizando un smart contract con Iotex y NFT's de la plataforma Tatum y el resultado de esto se almacenará en IOTA para asegurar su inmutabilidad. Cabe recalcar que, para realizar está identidad digital, los usuarios previamente deberán tener una billetera de criptomoneda de Ethereum, la misma que se puede crear en la plataforma Fintech estudiada y esta billetera deberá tener al menos un saldo de 5 centavos en ether para deployar el smart contract en Iotex.

Figura 29: Identidad digital con NFT Fuente: Elaboración propia

El segundo proceso ilustrado en la figura 30 es acerca de la funcionalidad de recargar billetera ofrecida por la aplicación Fintech estudiada en esta investigación. Esta funcionalidad fue escogida por el motivo de que involucra pagos con tarjetas de crédito o débito de los usuarios verificados biométricamente para utilizar los NFT's creados y en conjunto con los datos de la transacción almacenadas en IOTA; tratar de disminuir los casos de fraudes o si estas ocurren, tratar de ganar las disputas financieras ofreciendo está información adicional a los bancos.

Figura 30: Proceso de recargar billetera con NFT e IOTA Fuente: Elaboración propia

Finalmente, el tercer proceso ilustrado en la figura 31 es acerca de la funcionalidad de links de cobros y marketplace ofrecidas por la aplicación Fintech estudiada en esta investigación. Estas funcionalidades fueron escogidas por el motivo de que involucran a usuarios externos

Figura 31: Proceso de compra/venta en Marketplace

Fuente: Elaboración propia

3.2.4.2 Desarrollo de sistemas DLT (IOTA, smart contracts y NFT).

3.2.4.2.1 Programación de los smart contract, IOTA y NFT.

3.2.4.2.2 Análisis de seguridad de los códigos de IOTA, smart contract y NFT.

Se utilizó la herramienta Mythril en su versión python que fue elaborado por Ethereum y Quorum para analizar la seguridad de los EVM bytecode de los smart contracts [65], en este caso los smart contracts programados con el estándar ERC-20 en el caso del marketplace y el estándar ERC-721 en el caso de la identidad digital, en la imagen 32 se ilustra el resultado de la validación del smart contract utilizado en los marketplaces y en

la imagen 33 se ilustra el resultado del análisis del smart contract utilizado para la elaboración de los NFT.

```
> myth a C:\xampp\htdocs\nft_proyecto\marketplace_SC.sol -t 3
==== protected contract====
SWC ID: 101
Security: High
Contract: Marketplace
Function name: transfer()
PC address: 543
Estimated Gas Usage: 454 - 888
The contract not can be violated by anyone.
Anyone can't violated this contract.
```

Figura 32: Análisis de seguridad del SC de Marketplace utilizando Mythril

```
> myth a C:\xampp\htdocs\nft_proyecto\nft_SC.sol -t 3
==== protected contract====
SWC ID: 104
Security: High
Contract: IdentidadDigital
Function name: createNFT()
PC address: 543
Estimated Gas Usage: 2100 - 2400
The contract not can be violated by anyone.
Anyone can't violated this contract.
```

Figura 33: Análisis de seguridad del SC de identidad digital utilizando Mythril

3.2.5 Integración, testeo y despliegue del sistema completo.

Bibliografía

- [1 V. Creuz, «División financiera del trabajo en sistemas de pagos en Argentina y
- Brasil,» Revista Geográfica Venezolana, vol. 60, nº 2, pp. 430-445, 2019.
- [2 A. Cortez y A. Tulcanaza, «BITCOIN: SU INFLUENCIA EN EL MUNDO
- GLOBAL Y SU RELACIÓN CON EL MERCADO DE VALORES,» Revista Chakiñan de Ciencias Sociales y Humanidades, nº 5, pp. 54-72, 2018.
- [3 A. Pawlicka, M. Choraś, M. Pawlicki y R. Kozik, «A \$10 million question and other
-] cybersecurity-related ethical dilemmas amid the COVID-19 pandemic,» *Business Horizons*, 2021.
- [4 IOTA, «IOTA Stronghold,» 2021. [En línea]. Available:
-] https://stronghold.docs.iota.org/docs/welcome. [Último acceso: 2021].
- [5 A. Panwar y V. Bhatnagar, «Distributed Ledger Technology (DLT): The Beginning
- of a Technological Revolution for Blockchain,» 2nd International Conference on Data, Engineering and Applications (IDEA), pp. 1-5, 2020.
- [6 J. D. N. I. M. A. H. Y. B. d. l. Á. &. V. M. J. A. Tello Saldaña, «Impacto de los
- canales de comercialización online en tiempos del COVID-19,» *INNOVA Research Journal*, vol. 5, nº 3, pp. 15-39, 2020.
- [7] A. M. Intelligence, «La aceleración de la inclusión financiera durante la pandemia de
-] COVID-19. Oportunidades ocultas que salen a relucir,» 2020. [En línea]. Available: https://www.mastercard.com/news/media/qdxlk0nc/ami_201016_mastercard_financi al_inclusion_during_covid_es_short_03-1.pdf. [Último acceso: 2021].
- [8 M. T. Le, «Examining factors that boost intention and loyalty to use Fintech post-
- COVID-19 lockdown as a new normal behavior,» *Heliyon*, vol. 7, n° 8, 2021.
- [9 S. Lahmiri y S. Bekiros, «The effect of COVID-19 on long memory in returns and
-] volatility of cryptocurrency and stock markets,» *Chaos, Solitons & Fractals*, vol. 151, 2021,.
- [1 L. Y. M. A. N. Lan-TN Le, «Did COVID-19 change spillover patterns between
- 0] Fintech and other asset classes?,» *Research in International Business and Finance*, vol. 58, 2021.
- [1 C. F. Security, «Cybercrime in a time of coronavirus,» Computer Fraud & Security,
- 1] vol. 2020, n° 5, pp. 1-3, 2020.
- [1 J. Kang, «Mobile payment in Fintech environment: trends, security challenges, and
- 2] services,» Human-centric Computing and Information Sciences, vol. 8, n° 32, 2018.
- [1 S. R. Randy, B. Indra y P. Betty, «Challenges and Trends of Financial Technology
- 3] (Fintech): A Systematic Literature Review,» *Information*, vol. 11, n° 12, 2020.

- [1 G. Kaur, Z. H. Lashkari y A. H. Lashkari, «Cybersecurity Vulnerabilities in
- 4] FinTech,» Understanding Cybersecurity Management in FinTech. Future of Business and Finance. Springer, Cham, pp. 89-102, 2021.
- [1 G. Kaur, Z. H. Lashkari y A. H. Lashkari, «Cybersecurity Threats in FinTech,»
- 5] Understanding Cybersecurity Management in FinTech. Future of Business and Finance. Springer, Cham, pp. 65-87, 2021.
- [1 S. Huh, S. Cho y S. Kim, «Managing IoT devices using blockchain platform,» 19th
- 6] International Conference on Advanced Communication Technology (ICACT), pp. 464-467, 2017.
- [1 D. Luo, T. Mishra, L. Yarovaya y Z. Zhang, «Investing during a Fintech Revolution:
- 7] Ambiguity and return risk in cryptocurrencies,» *Journal of International Financial Markets, Institutions and Money*, vol. 73, 2021.
- [1 G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali y R. Hierons, «Smart
- 8] contracts vulnerabilities: a call for blockchain software engineering?,» *International Workshop on Blockchain Oriented Software Engineering (IWBOSE)*, pp. 19-25, 2018.
- [1 L. Liu, W.-T. Tsai, M. Z. A. Bhuiyan, H. Peng y M. Liu, «Blockchain-enabled fraud
- 9] discovery through abnormal smart contract detection on Ethereum,,» *Future Generation Computer Systems*, 2021.
- [2 P. K. Ozili, «Financial Inclusion and Fintech during COVID-19 Crisis: Policy
- 0] Solutions,» The Company Lawyer Journal, vol. 8, pp. 1-9, 2020.
- [2 V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda y V. Santamaría, «To
- 1] Blockchain or Not to Blockchain: That Is the Question,» *IT Professional*, vol. 20, n° 2, pp. 62-74, 2018.
- [2 W. (. Du, S. L. Pan, D. E. Leidner y W. Ying, «Affordances, experimentation and
- 2] actualization of FinTech: A blockchain implementation study,» *The Journal of Strategic Information Systems*, vol. 28, n° 1, pp. 50-65, 2019.
- [2 Y. Mesengiser y N. Miloslavskaya, «Problems of Using Redactable Blockchain
- 3] Technology,» Procedia Computer Science, vol. 190, pp. 582-589, 2021.
- [2 K. P. Tsang y Z. Yang, «The market for bitcoin transactions,» Journal of
- 4] International Financial Markets, Institutions and Money, vol. 71, 2021.
- [2 Visa, «VisaNet: el poder de conectar al mundo,» 2021. [En línea]. Available:
- 5] https://www.visa.com.ec/la-diferencia-visa/impacto-global/visanet-poder-conectar-mundo.html. [Último acceso: 06 10 2021].
- [2 A. d. Vries y C. Stoll, «Bitcoin's growing e-waste problem,» Resources,
- 6] Conservation and Recycling, vol. 175, 2021.
- [2 A. d. Vries, «Renewable Energy Will Not Solve Bitcoin's Sustainability Problem,»

- 7] *Joule*, vol. 3, n° 4, pp. 893-898, 2019.
- [2 G. Cao y W. Xie, «The impact of the shutdown policy on the asymmetric
- 8] interdependence structure and risk transmission of cryptocurrency and China's financial market,» *The North American Journal of Economics and Finance*, vol. 58, 2021.
- [2 J. A. PADILLA SÁNCHEZ, «Blockchain y contratos inteligentes: aproximación a
- 9] sus problemáticas y retos jurídicos,» *Revista de Derecho Privado*, nº 39, pp. 175-201, 2020.
- [3 N. O. Nawari y Shriraam Ravindran, «Blockchain and the built environment:
- 0] Potentials and limitations,» Journal of Building Engineering, vol. 25, 2019.
- [3 C. A. Bai, J. Cordeiro y J. Sarkis, «Blockchain technology: Business, strategy, the
- 1] environment and sustainability,» *Business Strategy and the Environment*, vol. 29, n° 1, pp. 321-322, 2019.
- [3 P. R. Nair y D. R. Dorai, «Evaluation of Performance and Security of Proof of Work
- 2] and Proof of Stake using Blockchain,» *Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV)*, pp. 279-283, 2021.
- [3 I. G. A. K. Gemeliarana y R. F. Sari, «Evaluation of Proof of Work (POW)
- 3] Blockchains Security Network on Selfish Mining,» *International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)*, pp. 126-130, 2018.
- [3 T. Xue, Y. Yuan, Z. Ahmed, K. Moniz, G. Cao y C. Wang, «Proof of Contribution:
- 4] A Modification of Proof of Work to Increase Mining Efficiency,» *IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC)*, pp. 636-644, 2018.
- [3 S. A. Y. Chicaiza, C. N. S. Chafla, L. F. E. Álvarez, P. F. I. Matute y R. D.
- 5] Rodriguez, «Analysis of information security in the PoW (Proof of Work) and PoS (Proof of Stake)blockchain protocols as an alternative for handling confidential nformation in the public finance ecuadorian sector,» *16th Iberian Conference on Information Systems and Technologies (CISTI)*, pp. 1-5, 2021.
- [3 S. Gomathi, M. Soni, G. Dhiman, R. Govindaraj y P. Kumar, «A survey on
- 6] applications and security issues of blockchain technology in business sectors,» *Materials Today: Proceedings*, 2021.
- [3 M. Bhandary, M. Parmar y D. Ambawade, «Securing Logs of a System An IoTA
- 7] Tangle Use Case,» 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 697-702, 2020.
- [3 P. Perazzo, A. Arena y G. Dini, «An Analysis of Routing Attacks Against IOTA
- 8] Cryptocurrency,» IEEE International Conference on Blockchain (Blockchain), pp.

- 517-524, 2020.
- [3 M. Bhandary, M. Parmar y D. Ambawade, «A Blockchain Solution based on
- 9] Directed Acyclic Graph for IoT Data Security using IoTA Tangle,» 5th International Conference on Communication and Electronics Systems (ICCES), pp. 827-832, 2020.
- [4 W. F. Silvano y R. Marcelino, «Iota Tangle: A cryptocurrency to communicate
- 0] Internet-of-Things data,» Future Generation Computer Systems, vol. 112, pp. 307-319, 2020.
- [4 F. Guo, X. Xiao, A. Hecker y S. Dustdar, «Characterizing IOTA Tangle with
- 1] Empirical Data,» IEEE Global Communications Conference, pp. 1-6, 2020.
- [4 B. M. Agostinho, M. M. Pereira, A. P. Back, A. S. R. Pinto y M. A. R. Dantas, «Iota
- 2] vs. Ripple: A Comparison Inside An Economy of Things Architecture for Industry 4.0,» *IEEE 6th World Forum on Internet of Things (WF-IoT)*, pp. 1-6, 2020.
- [4 I. Foundation, «IOTA Smart Contracts Beta Release,» 2021. [En línea]. Available:
- 3] https://blog.iota.org/iota-smart-contracts-beta-release/. [Último acceso: 21 10 2021].
- [4 M. A. Jan, J. Cai, X.-C. Gao, F. Khan, S. Mastorakis, M. Usman, M. Alazab y P.
- 4] Watters, «Security and blockchain convergence with Internet of Multimedia Things: Current trends, research challenges and future directions,» *Journal of Network and Computer Applications*, vol. 175, 2021.
- [4 P. J. Taylor, T. Dargahi, A. Dehghantanha, R. M. Parizi y K.-K. R. Choo, «A
- 5] systematic literature review of blockchain cyber security,» *Digital Communications* and *Networks*, pp. 147-156, 2020.
- [4 M. A. C. Y. D. Omar Ali, «The state of play of blockchain technology in the
- 6] financial services sector: A systematic literature review,» *International Journal of Information Management*, vol. 54, 2020.
- [4 S. Demirkan, I. Demirkan y A. McKee, «Blockchain technology in the future of
- 7] business cyber security and accounting,» *Journal of Management Analytics*, vol. 7, n° 2, pp. 189-208, 2020.
- [4 D. Secretaría Nacional de Planificación y, «Plan Nacional de Desarrollo 2017-2021-
- 8] Toda una Vida,» 2017. [En línea]. Available: https://www.planificacion.gob.ec/wp-content/uploads/downloads/2017/10/PNBV-26-OCT-FINAL_0K.compressed1.pdf.
- [4 E. Constitución de la República del, «Ministerio de Educación del Ecuador,» 2008.
- 9] [En línea]. Available: https://educacion.gob.ec/wp-content/uploads/downloads/2012/08/Constitucion.pdf. [Último acceso: 05 10 2021].
- [5 A. N. d. Ecuador, «Ley orgánica de datos personales,» 2021. [En línea]. Available:
- 0] https://www.telecomunicaciones.gob.ec/wp-content/uploads/2021/06/Ley-Organica-de-Datos-Personales.pdf. [Último acceso: 30 09 2021].

- [5 B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey y S. Linkman,
- 1] «Systematic literature reviews in software engineering A systematic literature review,» *Information and Software Technology*, vol. 51, n° 1, pp. 7-15, 2009.
- [5 K. Hausken, «Cyber resilience in firms, organizations and societies,» Internet of
- 2] Things, vol. 11, 2020.
- [5 A. M. Chitnis y J. M. Costa, «Videotex Services: Network and Terminal
- 3] Alternatives,» *IEEE Transactions on Consumer Electronics*, Vols. %1 de %2CE-25, n° 3, pp. 269-278, 1979.
- [5 L. Abdillah, «An Overview of Indonesian Fintech Application,» The First
- 4] International Conference on Communication, Information Technology and Youth Study (I-CITYS2019), 2019.
- [5 G. Bayramoğlu, «An Overview of the Artificial Intelligence Applications in Fintech
- 5] and Regtech,» he Impact of Artificial Intelligence on Governance, Economics and Finance, vol. 1, p. 13, 2021.
- [5 A. W. Ng y B. K. Kwok, «Emergence of Fintech and cybersecurity in a global
- 6] financial centre: Strategic approach by a regulator,» *Journal of Financial Regulation* and Compliance, vol. 25, n° 4, pp. 422-434, 2017.
- [5 R. KISHORE, M. AGRAWAL y H. R. RAO, «Determinants of Sourcing During
- 7] Technology Growth and Maturity: An Empirical Study of e-Commerce Sourcing,» *Journal of Management Information Systems*, vol. 21, n° 3, pp. 47-82, 2014.
- [5 M. Castro de Cifuentes, «Los contratos normativos y los contratos marco en el
- 8] derecho privado contemporáneo,» *Revista Estudios Socio-Jurídicos*, vol. 21, nº 1, pp. 121-150, 2019.
- [5 S. Nick, «Formalizing and Securing Relationships on Public Networks,» First
- 9] Monday, 1997.
- [6 M. Rahouti, K. Xiong y N. Ghani, «Bitcoin Concepts, Threats, and Machine-
- 0] Learning Security Solutions,» *IEEE Access*, vol. 6, pp. 67189-67205, 2018.
- [6 C. C. Vergara y L. F. Agudo, «Fintech and Sustainability: Do They Affect Each
- 1] Other?,» Sustainability, vol. 13, n° 13, p. 7012, 2021.
- [6 M. Xu, X. Chen y G. Kou, «A systematic review of blockchain,» Financial
- 2] *Innovation*, vol. 5, n° 27, 2019.
- [6 R. Colomo-Palacios, M. Sánchez-Gordón y D. Arias-Aranda, «A critical review on
- 3] blockchain assessment initiatives: Atechnology evolution viewpoint,» *Journal of Software: Evolution and Process*, 2020.
- [6 S. Bistarelli, G. Mazzante, M. Micheletti, L. Mostarda, D. Sestili y F. Tiezzi,
- 4] «Ethereum smart contracts: Analysis and statistics of their source code and

- opcodes,» Internet of Things, vol. 11, 2020,.
- [6 A. L. Vivar, A. L. Sandoval, O. L. Javier y G. Villalba, «A security framework for
- 5] Ethereum smart contracts,» *Computer communications*, vol. 175, n° 15, pp. 119-129, 2021.
- [6 M. U. Chowdhury, K. Suchana, S. M. E. Alam y M. M. Khan, «Blockchain
- 6] Application in Banking,» *Journal of Software Engineering*, vol. 14, pp. 298-311, 2021.
- [6 M. Mazzoni, A. Corradi y V. D. Nicola, «Performance evaluation of permissioned
- 7] blockchains for financial applications: The ConsenSys Quorum case study,» *Blockchain: Research and Applications*, 2021.
- [6 A. I. Sanka, M. Irfan y R. C. C. Ian Huang, «A survey of breakthrough in blockchain
- 8] technology: Adoptions, applications, challenges and future research,» *Computer Communications*, vol. 169, 2021.
- [6 J. Polge, J. Robert y Y. L. Traon, «Permissioned blockchain frameworks in the
- 9] industry: A comparison,» ICT Express, vol. 7, n° 2, pp. 229-233, 2021.
- [7 J. J. R. Yasay, «The Dawn of Digital Coins: A Literature Review on Cryptocurrency
- 0] in the Philippines,» *International Journal of Innovative Science and Research Technology*, vol. 6, n° 5, 2021.
- [7 S. Perera, S. Nanayakkara, M. Rodrigo, S. Senaratne y R. Weinand, «Blockchain
- 1] technology Is it hype or real in the construction industry,» *Journal of Industrial Information Integration*, vol. 17, 2020.
- [7 E. Silva, X. Huang y H. Hassani, «Banking with blockchain-ed big data,» Journal of
- 2] *Management Analytics*, vol. 5, n° 4, pp. 256-275, 2018.
- [7 S. Wan, M. Li, G. Liu y C. Wang, «Recent advances in consensus protocols for
- 3] blockchain: a survey,» Wireless Networks, vol. 26, p. 5579–5593, 2020.
- [7 J. Duan, C. Zhang, Y. Gong, S. Brown y Z. Li, «A Content-Analysis Based
- 4] Literature Review in Blockchain Adoption within Food Supply Chain,» *International Journal of Environmental Research and Public Health*, vol. 17, n° 5, 2020.
- [7 D. F. Maesa, «Blockchain 3.0 applications survey,» Journal of Parallel and
- 5] Distributed Computing, vol. 138, pp. 99-114, 2020.
- [7 Johar, S. a. Ahmad, N. a. Asher, W. a. Cruickshank, H. a. Durrani y Amad,
- 6] «Research and Applied Perspective to Blockchain Technology: A Comprehensive Survey,» *Applied Sciences*, vol. 11, n° 14, 2021.
- [7 U. Sarfraz, M. Alam, S. Zeadally y A. Khan, «Privacy aware IOTA ledger:
- 7] Decentralized mixing and unlinkable IOTA transactions,» Computer Networks,

- Vols. %1 de %2148,, pp. 361-372, 2019.
- [7 A. Shahaab, B. Lidgey, C. Hewage y I. Khan, «Applicability and Appropriateness of
- 8] Distributed Ledgers Consensus Protocols in Public and Private Sectors: A Systematic Review,» *IEEE Access*, vol. 7, pp. 43622-43636, 2019.
- [7 M. Salimitari, M. Chatterjee y Y. P. Fallah, «A survey on consensus methods in
- 9] blockchain for resource-constrained IoT networks,» *Internet of Things*, vol. 11, 2020.
- [8 B. Bhushan, C. Sahoo, P. Sinha y A. Khamparia, «Unification of Blockchain and
- 0] Internet of Things (BIoT): requirements, working model, challenges and future directions,» *Wireless Networks*, vol. 27, p. 55–90, 2021.
- [8 U. Majeed, L. U. Khan, I. Yaqoob, S. A. Kazmi, K. Salah y C. S. Hong,
- 1] «Blockchain for IoT-based smart cities: Recent advances, requirements, and future challenges,» *Journal of Network and Computer Applications*, vol. 181, 2021.
- [8 Z. Wang, H. Jin, W. Dai, K.-K. R. Choo y D. Zou, «Ethereum smart contract
- 2] security research: survey and future research opportunities,» *Frontiers of Computer Science*, vol. 15, no 152802, 2021.
- [8 A. Daragmeh, C. Lentner y J. Sági, «FinTech payments in the era of COVID-19:
- 3] Factors influencing behavioral intentions of "Generation X" in Hungary to use mobile payment,» *Journal of Behavioral and Experimental Finance*, vol. 32, 2021.
- [8 J. Chigada y R. Madzinga, «Cyberattacks and threats during COVID-19: A
- 4] systematic literature review,» *South African Journal of Information Management*, vol. 23, pp. 1 11, 2021.
- [8 G. Iakovakis, C.-G. Xarhoulacos, K. Giovas y D. Gritzalis, «Analysis and
- 5] Classification of Mitigation Tools against Cyberattacks in COVID-19 Era,» *Security and Communication Networks*, vol. 2021, 2021.
- [8 A. Mihailović y N. Rašović, «Cybersecurity in the New Reality Systematic Review
- 6] in the context of covid 19,» *International Journal of Innovative Science and Research Technology*, vol. 5, n° 12, 2020.
- [8 A. R.O., C. M. y F. W, «Cybersecurity Attacks During COVID-19: An Analysis of
- 7] the Behavior of the Human Factors and a Proposal of Hardening Strategies,» *Advances in Cybersecurity Management*, 2021.
- [8 M. Hijji y G. Alam, «A Multivocal Literature Review on Growing Social
- 8] Engineering Based Cyber-Attacks/Threats During the COVID-19 Pandemic: Challenges and Prospective Solutions,» *IEEE Access*, vol. 9, pp. 7152-7169, 2021.
- [8 J. Angelis y E. R. d. Silva, «Blockchain adoption: A value driver perspective,»
- 9] Business Horizons, vol. 62, n° 3, pp. 307-314, 2019.
- [9 B. K. Mohanta, D. Jena, U. Satapathy y S. Patnaik, «Survey on IoT security:

- 0] Challenges and solution using machine learning, artificial intelligence and blockchain technology,» *Internet of Things*, vol. 11, 2020.
- [9 U. Bodkhe, «Blockchain for Industry 4.0: A Comprehensive Review,» *IEEE Access*, 1] vol. 8, pp. 79764-79800, 2020.
- [9 M. Younas, D. N. Jawawi, I. Ghani, T. Fries y R. Kazmi, «Agile development in the
- 2] cloud computing environment: A systematic review,» *Information and Software Technology*, vol. 103, pp. 142-158, 2018.
- [9 A. Hannousse y S. Yahiouche, «Securing microservices and microservice
- 3] architectures: A systematic mapping study,» *Computer Science Review*, vol. 41, 2021.
- [9 N. Mateus-Coelho, M. Cruz-Cunha y L. G. Ferreira, «Security in Microservices
- 4] Architectures,» Procedia Computer Science, vol. 181, pp. 1225-1236, 2021.
- [9 Y. Liu, D. He, M. S. Obaidat, N. Kumar, M. K. Khan y K.-K. R. Choo,
- 5] «Blockchain-based identity management systems: A review,» *Journal of Network* and Computer Applications, vol. 166, 2020.
- [9 D. Sheng, L. Ding, B. Zhong, P. E. Love, H. Luo y J. Chen, «Construction quality
- 6] information management with blockchains,» *Automation in Construction*, vol. 120, 2020.
- [9 A. Perdana, A. Robb, V. Balachandran y F. Rohde, «Distributed ledger technology:
- 7] Its evolutionary path and the road ahead,» *Information & Management*, vol. 58, n° 3, 2021.
- [9 L. Hashimy, H. Treiblmaier y G. Jain, «Distributed ledger technology as a catalyst
- 8] for open innovation adoption among small and medium-sized enterprises,» *The Journal of High Technology Management Research*, vol. 32, n° 1, 2021.
- [9 P. Zhuang, T. Zamir y H. Liang, «Blockchain for Cybersecurity in Smart Grid: A
- 9] Comprehensive Survey,» *IEEE Transactions on Industrial Informatics*, vol. 17, n° 1, pp. 3-19, 2021.
- [1 G. S. Sadasiuvam, «A critical review on using blockchain technology in education 00 domain,» *Handbook of Deep Learning in Biomedical Engineering*, pp. 85-121, 2021.
- [1 B. Farahani, F. Firouzi y M. Luecking, «The convergence of IoT and distributed
- 01 ledger technologies (DLT): Opportunities, challenges, and solutions,» Journal of
-] Network and Computer Applications, vol. 177, 2021.
- [1 A. I. Sanka y R. C. Cheung, «A systematic review of blockchain scalability: Issues,
- 02 solutions, analysis and future research,» Journal of Network and Computer
-] *Applications*, vol. 195, 2021.
- [1 X. Fu, H. Wang y P. Shi, «A survey of Blockchain consensus algorithms:

- 03 mechanism, design and applications,» *Science China Information Sciences*, vol. 64, 2021.
- [1 Y. Lu, «The blockchain: State-of-the-art and research challenges,» *Journal of* 04 *Industrial Information Integration*, pp. 80-90, 2019.
- [1 Q. Feng, D. He, S. Zeadally, M. K. Khan y N. Kumar, «A survey on privacy 05 protection in blockchain system,» *Journal of Network and Computer Applications*, vol. 126, pp. 45-58, 2019.
- [1 H. -N. Dai, Z. Zheng y Y. Zhang, «Blockchain for Internet of Things: A Survey,» 06 *IEEE Internet of Things Journal*, vol. 6, n° 5, pp. 8076-8094, 2019.
- [1 G. Sargsyan, N. Castellon, R. Binnendijk y P. Cozijnsen, «Blockchain Security by 07 Design Framework for Trust and Adoption in IoT Environment,» 2019 IEEE World Congress on Services (SERVICES), pp. 15-20, 2019.
- R. Yang, R. Wakefield, S. Lyu, S. Jayasuriya, F. Han, X. Yi, X. Yang, G.
 Amarasinghe y S. Chen, «Public and private blockchain in construction business
 process and information integration,» *Automation in Construction*, vol. 118, 2020.
- [1 A. I. Abdi, F. E. Eassa, K. Jambi, K. Almarhabi y A. S. A.-M. AL-Ghamdi, 09 «Blockchain Platforms and Access Control Classification for IoT Systems,»] *Symmetry*, vol. 12, n° 10, 2020.
- [1 D. C. Nguyen, P. N. Pathirana, M. Ding y A. Seneviratne, «Integration of
 10 Blockchain and Cloud of Things: Architecture, Applications and Challenges,» *IEEE*[1 Communications Surveys & Tutorials, vol. 22, n° 4, pp. 2521-2549, 2020.
- X. Fan y Q. Chai, «Roll-DPoS: A Randomized Delegated Proof of Stake Scheme for
 Scalable Blockchain-Based Internet of Things Systems,» In Proceedings of the 15th
 EAI International Conference on Mobile and Ubiquitous Systems: Computing,
 Networking and Services (MobiQuitous '18), 2018.
- A. Pieroni, N. Scarpato y L. Felli, «Blockchain and IoT Convergence—A
 Systematic Survey on Technologies, Protocols and Security,» *Applied Sciences*, vol.
 10, no 19, 2020.
- [1 C. Laneve y C. S. Coen, «Analysis of smart contracts balances,» *Blockchain:* 13 *Research and Applications*, 2021.
- [1 Q. Wang, R. Li, Q. Wang y S. Chen, «Non-Fungible Token (NFT): Overview, 14 Evaluation, Opportunities and Challenges,» *Cryptography and Security*, 2021.
- [1 T. Hewa, M. Ylianttila y M. Liyanage, «Survey on blockchain based smart contracts:

```
15 Applications, opportunities and challenges,» Journal of Network and Computer
] Applications, vol. 177, 2021.
[1 N. Khan, B. Kchouri, N. A. Yatoo, Z. Kräussl, A. Patel y R. State, «Tokenization of
16 sukuk: Ethereum case study,» Global Finance Journal, 2020.
[1 Tatum, «Welcome to Tatum,» 2021. [En línea]. Available: https://docs.tatum.io/.
17 [Último acceso: 02 11 2021].
1
[1 Tatum, «Supported Blockchains,» 2021. [En línea]. Available:
18 https://docs.tatum.io/supported-blockchains. [Último acceso: 02 11 2021].
1
[1 S. Sengupta, C.-F. Chiang, B. Andriamanalimanana, J. Novillo y A. Tekeoglu, «A
19 Hybrid Adaptive Transaction Injection Protocol and Its Optimization for
Verification-Based Decentralized System,» Future Internet, vol. 11, n° 8, 2019.
[1 K. Yeow, A. Gani, R. W. Ahmad, J. J. P. C. Rodrigues y K. Ko, «Decentralized
20 Consensus for Edge-Centric Internet of Things: A Review, Taxonomy, and Research
] Issues,» IEEE Access, vol. 6, pp. 1513-1524, 2018.
[1 J. Sengupta, S. Ruj y S. D. Bit, «A Comprehensive Survey on Attacks, Security
21 Issues and Blockchain Solutions for IoT and IIoT,» Journal of Network and
   Computer Applications, vol. 149, 2020.
[1 S. Popov y W. Buchanan, «FPC-BI: Fast Probabilistic Consensus within Byzantine
22 Infrastructures,» arXiv, 2021.
[1 S. Popov, «IOTA: Feeless and Free,» IEEE Blockchain Technical Briefs, 2019.
23
1
[1] A. Panarello, N. Tapas, G. Merlino, F. Longo y A. Puliafito, «Blockchain and IoT
24 Integration: A Systematic Survey,» Sensors, vol. 18, n° 8, 2018.
[1 I. Foundation, «The Coordicide,» 2019. [En línea]. Available:
25 https://files.iota.org/papers/20200120_Coordicide_WP.pdf.
1
[1 J. H. Khor, M. Sidorov y P. Y. Woon, «Public Blockchains for Resource-
26 Constrained IoT Devices—A State-of-the-Art Survey,» IEEE Internet of Things
Journal, vol. 8, n° 15, pp. 11960-11982, 2021.
```

[1 I. Foundation, «The new Chrysalis Network is Live!,» IOTA, 2021. [En línea]. 27 Available: https://blog.iota.org/the-new-chrysalis-network-is-live/. [Último acceso:

-] 2021].
- [1 I. Team, «Introducing IOTA Stronghold,» 19 07 2020. [En línea]. Available: 28 https://blog.iota.org/iota-stronghold-6ce55d311d7c/. [Último acceso: 20 01 2022].
- [1 U. A. M. R. S. a. M. M. Y. S. H. Bhaharin, «Issues and Trends in Information
- 29 Security Policy Compliance,» 6th International Conference on Research and
-] Innovation in Information Systems (ICRIIS), pp. 1-6, 2019.
- [1 E. A. Kirillova, U. M. Yakhutlov, X. Wenqi, G. Huiting y W. Suyu, «Information
- 30 Security in the Management of Personnel in a Modern Organization,» 2020
-] International Conference Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS), pp. 107-109, 2020.
- [1 S. V. Aleksandrova, V. A. Vasiliev y M. N. Aleksandrov, «Problems of
- 31 Implementing Information Security Management Systems,» 2020 International
- Conference Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS), pp. 78-81, 2020.
- [1 Y. Wang, J. Yao y X. Yu, «Information Security Protection in Software Testing,»
- 32 2018 14th International Conference on Computational Intelligence and Security [(CIS), pp. 449-452, 2018.
- [1 N. Shariffuddin y A. Mohamed, «IT Security and IT Governance Alignment: A
- 33 Review,» In Proceedings of the 3rd International Conference on Networking,
- Information Systems & Security (NISS2020), pp. 1-8, 2020.
- [1 S. S. Tirumala, M. R. Valluri y G. Babu, «A survey on cybersecurity awareness
- 34 concerns, practices and conceptual measures,» 2019 International Conference on
- *Computer Communication and Informatics (ICCCI)*, pp. 1-6, 2019.
- [1 Y. Lu y L. D. Xu, «Internet of Things (IoT) Cybersecurity Research: A Review of
- 35 Current Research Topics,» *IEEE Internet of Things Journal*, vol. 6, n° 2, pp. 2103-2115, 2019.
- [1 Z. Wang, L. Sun y H. Zhu, «Defining Social Engineering in Cybersecurity,» *IEEE* 36 *Access*, vol. 20, pp. 85094-85115, 2020.
- [1 M. Humayun, M. Niazi, N. Jhanjhi, M. Alshayeb y S. Mahmood, «Cyber Security
- 37 Threats and Vulnerabilities: A Systematic Mapping Study,» Arabian Journal for
- *Science and Engineering*, vol. 45, p. 3171–3189, 2020.
- [1 A. Tundis, W. Mazurczyk y M. Mühlhäuser, «A review of network vulnerabilities
- 38 scanning tools: types, capabilities and functioning,» In Proceedings of the 13th
-] International Conference on Availability, Reliability and Security (ARES 2018), p. 1–10, 2018.

```
[1 R. Kumar y R. Goyal, «On cloud security requirements, threats, vulnerabilities and 39 countermeasures: A survey,» Computer Science Review, vol. 33, pp. 1-48, 2019.
```

- [1 N. X. a. J. R. P. Yang, «Data Security and Privacy Protection for Cloud Storage: A 40 Survey,» *IEEE Access*, vol. 8, pp. 131723-131740, 2020.
- [1 M. Majid y P. Luo, «Forty years of attacks on the RSA cryptosystem: A brief 41 survey,» *Journal of Discrete Mathematical Sciences and Cryptography*, pp. 9-29, 2019.
- [1 P. Kumar y S. B. Rana, «Development of modified AES algorithm for data 42 security,» *Optik*,, vol. 127, n° 4, pp. 2341-2345, 2016.
- [1 M. D. Hire, M. Bhatt, M. Anand y C. Harde, «Literature Survey of Two-Way
 43 Authentication System,» *International Journal of Scientific Research & Engineering*[1 Trends, vol. 7, n° 2, 2021.
- [1 E. Huseynov y J.-M. Seigneur, «Chapter 50 Context-Aware Multifactor
 44 Authentication Survey,» Computer and Information Security Handbook (Third
 [1 Edition], pp. 715-726, 2017.
- [1 K. F. Steinmetz, A. Pimentel y W. R. Goe, «Performing social engineering: A 45 qualitative study of information security deceptions,» *Computers in Human* Behavior, vol. 124, 2021.
- [1 J. Li y L. Zhang, «Sender dynamic, non-repudiable, privacy-preserving and strong 46 secure group communication protocol,» *Information Sciences*, vol. 414, pp. 187-202, 2017.
- [1 B. L. y G. M., Microservices: The Evolution and Extinction of Web Services?, 47 Springer, Cham, 2020.
- [1 H. Chen, M. Pendleton, L. Njilla y S. Xu, «A Survey on Ethereum Systems Security: 48 Vulnerabilities, Attacks, and Defenses,» *ACM Computing Surveys*, vol. 53, n° 3, p. 1–43, 2020.
- I. Sadgali, N. Sael y F. Benabbou, «Detection of credit card fraud: State of art,»
 IJCSNS International Journal of Computer Science and Network Security, vol. 18,
 n° 11, 2018.
- [1 L. Marchesi, M. Marchesi y R. Tonelli, «ABCDE agile Block Chain DApp 50 Engineering,» *Blockchain: Research and Applications*, vol. 1, no 1, 2020.
- [1 A. Pinna, G. Baralla, M. Marchesi y R. Tonelli, «Raising Sustainability Awareness

- 51 in Agile Blockchain-Oriented Software Engineering,» IEEE International
- Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 696-700, 2021.
- [1 M. Marchesi, L. Marchesi y R. Tonelli, «An Agile Software Engineering Method to
- 52 Design Blockchain Applications,» Association for Computing Machinery, 2018.

1

- [1 PEF, «Presentación de negocios 2021 de Pagar es Fácil,» 2021. [En línea].
- 53 Available:
- https://firebasestorage.googleapis.com/v0/b/backservicespagos.appspot.com/o/prese ntaciones%2FPRESENTACIO%CC%81N%20DE%20NEGOCIOS%202021%20-ECUADOR-.pdf?alt=media&token=464dd77e-cebb-4fa0-9bad-9c8d946040bb. [Último acceso: 27 10 2021].
- [1 PEF, «Quienes somos Pagar es Fácil,» 2021. [En línea]. Available:
- 54 https://www.pagaresfacil.com/quienes-somos-pagar-es-facil. [Último acceso: 27 10] 2021].
- [1 R. Sampieri, Metodología de la investigación, México: McGraw Hill, 2014. 55

1

- [1 A. Rodríguez Jiménez y A. O. Pérez Jacinto, «Métodos científicos de indagación y 56 de construcción del conocimiento,» Revista Escuela de Administración de Negocios, n° 82, pp. 1-26, 2017.
- [1 V. W. Berger y Y. Zhou, «Kolmogorov–Smirnov Test: Overview,» Wiley Online 57 Library, 2014.

- [1 B. Gutiérrez-Nieto y C. Serrano-Cinca, «20 years of research in microfinance: An 58 information management approach,» International Journal of Information *Management*, vol. 47, pp. 183-197, 2019.
- [1 S. Yulianto, C. Lim y B. Soewito, «Information security maturity model: A best 59 practice driven approach to PCI DSS compliance,» 2016 IEEE Region 10] *Symposium (TENSYMP)*, pp. 65-70, 2016.
- [1 J. R. A. Yupanqui y S. B. Oré, «Políticas de Seguridad de la Información: Revisión 60 Sistemática de las Teorías que Explican su Cumplimiento,» RISTI - Revista Ibérica de Sistemas e Tecnologias de Informação, nº 25, 2017.
- [1 Tatum, «Arquitectura de Tatum,» 2021. [En línea]. Available:
- 61 https://docs.tatum.io/tatum-architecture. [Último acceso: 02 11 2021].

1

ANEXOS

Presentación de resultados del SLR

No.	Título	Ref.	Base de	Tipo de	SJR	Año	País
			datos	artículo	Cuartil		
1	A \$10 million question	[3]	Science	Jorunal	Q1	2021	United
	and other cybersecurity-		Direct				Kingdom
	related ethical dilemmas						
	amid the COVID-19						
	pandemic						
2	División financiera del	[1]	Redalyc	Journal	Q4	2019	Venezuela
	trabajo en sistemas de						
	pagos en Argentina y						
	Brasil						
3	Distributed Ledger	[5]	IEEE	Conferences	Q1	2020	United
	Technology (DLT): The			paper			States
	Beginning of a						
	Technological						
	Revolution for						
	Blockchain						
4	Examining factors that	[8]	Science	Journal	Q1	2021	Netherlands
	boost intention and		Direct				
	loyalty to use Fintech						
	post-COVID-19						
	lockdown as a new						
	normal behavior						
5	The effect of COVID-	[9]	Science	Journal	Q1	2021	United
	19 on long memory in		Direct				Kingdom
	returns and volatility of						
	cryptocurrency and						
	stock markets						
6	Did COVID-19 change	[10]	Science	Journal	Q2	2021	Netherlands
	spillover patterns		Direct				
	between Fintech and						
	other asset classes?						
7	Cybercrime in a time of	[11]	Science	Journal	Q2	2020	United

	coronavirus		Direct				Kingdom
8	Cybersecurity Vulnerabilities in	[14]	Springer	Book		2021	Switzerland
	FinTech						
9	Cybersecurity Threats	[15]	Springer	Book		2021	Switzerland
10	in FinTech Managing IoT devices	[16]	IEEE	Conforma	02	2017	United
10	using blockchain	[16]	IEEE	Conferences paper	Q2	2017	States
	platform			puper			States
11	Investing during a	[17]	Science	Journal	Q1	2021	Netherlands
	Fintech Revolution:		Direct				
	Ambiguity and return						
	risk in cryptocurrencies,						
12	Smart contracts	[18]	IEEE	Conferences	Q1	2018	United
	vulnerabilities: a call for			paper			States
	blockchain software						
13	engineering? Blockchain-enabled	[19]	Science	Journal	Q1	2021	Netherlands
13	fraud discovery through		Direct	Journal	Q1	2021	recticitatios
	abnormal smart contract		Birect				
	detection on Ethereum						
14	To Blockchain or Not to	[21]	IEEE	Journal	Q2	2018	United
	Blockchain: That Is the						States
	Question						
15	Affordances,	[22]	Science	Journal	Q1	2019	Netherlands
	experimentation and		Direct				
	actualization of FinTech: A blockchain						
	implementation study						
16	Problems of Using	[23]	Science	Journal	Q2	2021	Netherlands
	Redactable Blockchain		Direct				
	Technology						
17	The market for bitcoin	[24]	Science	Journal	Q1	2021	Journal of
	transactions		Direct				International
							Financial
							Markets

18	Renewable Energy Will	[27]	Science	Journal	Q1	2019	United
	Not Solve Bitcoin's		Direct				States
	Sustainability Problem						
19	The impact of the	[28]	Science	Journal	Q2	2021	United
	shutdown policy on the		Direct				States
	asymmetric						
	interdependence						
	structure and risk						
	transmission of						
	cryptocurrency and						
	China's financial						
	market						
20	A survey on	[36]	Science	Journal	Q2	2021	United
	applications and		Direct				Kingdom
	security issues of						
	blockchain technology						
	in business sectors						
21	Securing Logs of a	[37]	IEEE	Conferences	Q2	2020	United
	System - An IoTA			paper			States
	Tangle Use Case						
22	Blockchain and the built	[30]	Science	Journal	Q1	2019	Netherlands
	environment: Potentials		Direct				
	and limitations						
23	Blockchain technology:	[31]	Science	Journal	Q1	2019	United
	Business, strategy, the		Direct				Kingdom
	environment and						
	sustainability						
24	Evaluation of	[32]	IEEE	Conferences	Q1	2021	India
	Performance and			paper			
	Security of Proof of						
	Work and Proof of						
	Stake using Blockchain						
25	Evaluation of Proof of	[33]	IEEE	Conferences	Q2	2018	United
	Work (POW)			paper			States
	Blockchains Security						
	Network on Selfish						

	Mining						
26	Proof of Contribution:	[34]	IEEE	Conferences	Q1	2018	United
	A Modification of Proof			paper			States
	of Work to Increase						
	Mining Efficiency						
27	Analysis of information	[35]	IEEE	Conferences	Q1	2021	United
	security in the PoW			paper			States
	(Proof of Work) and						
	PoS (Proof of						
	Stake)blockchain						
	protocols as an						
	alternative for handling						
	confidential nformation						
	in the public finance						
	ecuadorian sector						
28	An Analysis of Routing	[38]	IEEE	Conferences	Q2	2020	United
	Attacks Against IOTA			paper			States
	Cryptocurrency						
29	A Blockchain Solution	[39]	IEEE	Conferences	Q1	2020	United
	based on Directed			paper			States
	Acyclic Graph for IoT						
	Data Security using						
	IoTA Tangle						
30	Iota Tangle: A	[40]	Science	Journal	Q1	2020	Netherlands
	cryptocurrency to		Direct				
	communicate Internet-						
	of-Things data						
31	Characterizing IOTA	[41]	IEEE	Conferences	Q1	2020	United
	Tangle with Empirical			paper			States
	Data						
32	Iota vs. Ripple: A	[42]	IEEE	Conferences	Q1	2020	United
	Comparison Inside An			paper			States
	Economy of Things						
	Architecture for						
	Industry 4.0						
33	A systematic literature	[45]	Science	Journal	Q1	2020	China

	review of blockchain		Direct				
	cyber security						
34	The state of play of	[46]	Science	Journal	Q1	2020	United
	blockchain technology		Direct				Kingdom
	in the financial services						
	sector: A systematic						
	literature review						
35	Blockchain technology	[47]	Taylor	Journal	Q1	2020	United
	in the future of business		and				Kingdom
	cyber security and		Francis				
	accounting						
36	An Overview of the	[55]	Springer	Book		2021	Shingapore
	Artificial Intelligence						
	Applications in Fintech						
	and Regtech						
37	Emergence of Fintech	[56]	Taylor	Journal	Q3	2017	United
	and cybersecurity in a		and				Kingdom
	global financial centre:		Francis				
	Strategic approach by a						
20	regulator	5.603	*****		0.1	2010	**
38	Bitcoin Concepts,	[60]	IEEE	Journal	Q1	2018	United
	Threats, and Machine-						States
	Learning Security						
20	Solutions	[61]	Caianaa	Tours of	02	2021	Switzerland
39	Fintech and	[61]	Science Direct	Journal	Q2	2021	Switzerland
	Sustainability: Do They Affect Each Other?		Direct				
40	A systematic review of	[62]	Springer	Journal	Q2	2019	Germany
70	blockchain	[02]	Springer	Journal	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2019	Germany
41	Ethereum smart	[64]	Science	Journal	Q1	2020	United
71	contracts: Analysis and	[0+]	Direct	Journal	Α1	2020	States
	statistics of their source		211001				States
	code and opcodes						
42	A security framework	[65]	Science	Journal	Q1	2021	Netherlands
	for Ethereum smart	[55]	Direct	3 3 3 3 1 1 1 1 1	×.		1.001011dildb
	contracts						

43	Performance evaluation	[67]	Science	Journal	Q1	2021	United
	of permissioned		Direct				States
	blockchains for						
	financial applications:						
	The ConsenSys Quorum						
	case study						
44	A survey of	[68]	Science	Journal	Q1	2021	Netherlands
	breakthrough in		Direct				
	blockchain technology:						
	Adoptions, applications,						
	challenges and future						
	research						
45	Permissioned	[69]	Science	Journal	Q1	2021	South Korea
	blockchain frameworks		Direct				
	in the industry: A						
	comparison						
46	Blockchain technology -	[71]	Science	Journal	Q1	2020	Netherlands
	Is it hype or real in the		Direct				
	construction industry						
47	Banking with	[72]	Taylor	Journal	Q2	2018	United
	blockchain-ed big data		and				Kingdom
			Francis				
48	Recent advances in	[73]	Springer	Journal	Q2	2020	
	consensus protocols for						Netherlands
	blockchain: a survey						
49	Blockchain 3.0	[75]	Science	Journal	Q1	2020	United
	applications survey		Direct				States
50	Privacy aware IOTA	[77]	Science	Journal	Q1	2019	Netherlands
	ledger: Decentralized		Direct				
	mixing and unlinkable						
	IOTA transactions,						
51	Applicability and	[78]	IEEE	Journal	Q1	2019	United
	Appropriateness of						States
	Distributed Ledgers						
	Consensus Protocols in						
	Public and Private						

	Sectors						
52	A survey on consensus methods in blockchain for resource-constrained IoT networks	[79]	Science Direct	Journal	Q1	2020	United States
53	Unification of Blockchain and Internet of Things (BIoT): requirements, working model, challenges and future directions	[80]	Springer	Journal	Q2	2021	Netherlands
54	Blockchain for IoT- based smart cities: Recent advances, requirements, and future challenges	[81]	Science Direct	Journal	Q1	2021	United States
55	Ethereum smart contract security research: survey and future research opportunities	[82]	Springer	Journal	Q2	2021	United States
56	FinTech payments in the era of COVID-19: Factors influencing behavioral intentions of "Generation X	[83]	Science Direct	Journal	Q2	2021	Netherlands
57	Cybersecurity Attacks During COVID-19: An Analysis of the Behavior of the Human Factors and a Proposal of Hardening Strategies	[87]	Springer	Journal	Q1	2021	United States
58	A Multivocal Literature Review on Growing Social Engineering Based Cyber- Attacks/Threats During	[88]	IEEE	Journal	Q1		United States

	the COVID-19						
	Pandemic: Challenges						
	and Prospective						
	Solutions						
60	Blockchain adoption: A	[89]	Science	Journal	Q1	2019	United
	value driver perspective		Direct				Kingdom
61	Survey on IoT security:	[90]	Science	Journal	Q1	2020	United
	Challenges and solution		Direct				States
	using machine learning,						
	artificial intelligence						
	and blockchain						
	technology						
61	Blockchain for Industry	[91]	IEEE	Journal	Q1	2020	United
	4.0: A Comprehensive						States
	Review						
63	20 years of research in	[159]	Science	Journal	Q1	2019	United
	microfinance: An		Direct				Kingdom
	information						
	management approach						
64	Agile development in	[92]	Science	Journal	Q2	2018	Netherlands
	the cloud computing		Direct				
	environment: A						
	systematic review						
65	Blockchain-based	[95]	Science	Journal	Q1	2020	United
	identity management		Direct				States
	systems: A review						
66	Construction quality	[96]	Science	Journal	Q1	2020	Netherlands
	information		Direct				
	management with						
	blockchains						
67	Distributed ledger	[97]	Science	Journal	Q1	2021	Netherlands
	technology: Its		Direct				
	evolutionary path and						
	the road ahead						
68	Distributed ledger	[98]	Science	Journal	Q2	2021	United
	technology as a catalyst		Direct				Kingdom

69	for open innovation adoption among small and medium-sized enterprises Blockchain for	[99]	IEEE	Journal	Q1	2021	United
	Cybersecurity in Smart Grid: A Comprehensive Survey						States
70	A critical review on using blockchain technology in education domain,	[100]	Springer	Book		2021	Singapore
71	The convergence of IoT and distributed ledger technologies (DLT): Opportunities, challenges, and solutions	[101]	Science Direct	Journal	Q1	2021	United States
72	A systematic review of blockchain scalability: Issues, solutions, analysis and future research,	[102]	Science Direct	Journal	Q1	2021	United States
73	A survey of Blockchain consensus algorithms: mechanism, design and applications	[103]	Springer	Journal	Q1	2020	China
74	Security and blockchain convergence with Internet of Multimedia Things: Current trends, research challenges and future directions	[44]	Science Direct	Journal	Q1	2021	United States
75	The blockchain: State- of-the-art and research challenges	[104]	Science Direct	Journal	Q1	2019	Netherlands

76	A survey on privacy	[105]	Science	Journal	Q1	2019	United
	protection in blockchain		Direct				States
	system						
77	Blockchain for Internet	[106]	IEEE	Journal	Q1	2019	United
	of Things: A Survey						States
78	Blockchain Security by	[107]	IEEE	Conferences	Q1	2019	United
	Design Framework for			Journal			States
	Trust and Adoption in						
	IoT Environment						
79	Public and private	[108]	Science	Journal	Q1	2020	Netherlands
	blockchain in		Direct				
	construction business						
	process and information						
	integration						
80	Integration of	[110]	IEEE	Journal	Q1	2020	United
	Blockchain and Cloud						States
	of Things: Architecture,						
	Applications and						
	Challenges						
81	Analysis of smart	[113]	Science	Journal	Q1	2021	Netherlands
	contracts balances		Direct				
82	Tokenization of sukuk:	[116]	Science	Journal	Q2	2022	Netherlands
	Ethereum case study		Direct				
83	A Comprehensive	[122]	Science	Journal	Q1	2020	United
	Survey on Attacks,		Direct				States
	Security Issues and						
	Blockchain Solutions						
	for IoT and IIoT						
84	IOTA: Feeless and Free,	[124]	IEEE	Journal	Q1	2019	United
							States
85	Issues and Trends in	[130]	IEEE	Conferences	Q1	2019	United
	Information Security			Journal			States
	Policy Compliance						
86	Information Security in	[131]	IEEE	Conferences	Q1	2020	United
	the Management of			Journal			States
	Personnel in a Modern						

	Organization						
87	Problems of Implementing	[132]	IEEE	Conferences Journal	Q1	2020	United States
	Information Security Management Systems						
88	Information Security	[133]	IEEE	Conferences	Q1	2018	United
	Protection in Software Testing			Journal			States
89	A survey on	[135]	IEEE	Conferences	Q1	2019	United
	cybersecurity awareness			Journal			States
	concerns, practices and						
	conceptual measures						
90	Internet of Things (IoT)	[136]	IEEE	Journal	Q1	2019	United
	Cybersecurity Research:						States
	A Review of Current						
	Research Topics						
91	Cyber Security Threats	[138]	Springer	Journal	Q2	2020	Germany
	and Vulnerabilities: A						
	Systematic Mapping						
	Study						
92	On cloud security	[140]	Science	Journal	Q1	2019	Ireland
	requirements, threats,		Direct				
	vulnerabilities and						
	countermeasures: A						
	survey						
93	Data Security and	[141]	IEEE	Journal	Q1	2020	United
	Privacy Protection for						States
	Cloud Storage: A						
	Survey						
94	Forty years of attacks	[142]	Taylor	Journal	Q3	2019	United
	on the RSA		and				Kingdom
	cryptosystem: A brief		Francis				
	survey						
95	Development of	[143]	Science	Journal	Q2	2016	Germany
	modified AES		Direct				
	algorithm for data						

	security						
96	Microservices: The	[148]	Springer	Book		2019	Italy
	Evolution and						
	Extinction of Web						
	Services						
97	Information security	[160]	IEEE	Conferences	Q1	2016	United
	maturity model: A best			Journal			States
	practice driven						
	approach to PCI DSS						
	compliance						
98	Mobile payment in	[12]	Springer	Journal	Q1	2018	United
	Fintech environment:						States
	trends, security						
	challenges, and services						

Encuesta de satisfacción del comprador

ENCUESTA DE SATISFACCIÓN DE PRODUCTO/SERVICIO

Encuestador: Fernando Castillo - Pay2Meta

Fecha: dd-mm-yyyy hh:mm:sss

Presentación del encuestador

Buenos días/tardes:

Mi nombre es Fernando Castillo, representante de la empresa Pay2Meta, el motivo de esta encuesta es debido a que estamos realizando una valoración de satisfacción de producto cuya principal característica se centra en la mitigación de estafas realizadas con el comercio dentro del Marketplace donde realizó su compra o venta.

Estamos interesados en conocer su opinión, así que ¿Sería tan amable de contestar las siguientes preguntas? La información proporcionada no será pública, además se asegura su anonimato y solo será utilizada para el objetivo planteado anteriormente. La encuesta dura 1 minuto aproximadamente. Gracias.

Encuesta

Marque con una "x" su nivel de satisfacción:

Preguntas	Muy Insatisfecho	Insatisfecho	Normal	Conforme	Muy satisfecho
Tiempo de entrega del					
producto o servicio					
Experiencia de compra/venta					
Calidad del producto /servicio					
entregado/ofrecido					