

CA378-AOIS_USB3-IFB ソフトウェアセットアップガイド

株式会社センチュリーアークス

2024/03/19

Version 1.3.2

目次

- 1. ソフトウェアのダウンロード手順
- 2. ソフトウェアのインストール手順
- 3. 撮影アプリケーション起動手順
- 4. 撮影アプリケーション操作手順
- 5. 現像サンプルプログラム
- 6. LEDのON/OFFについて
- 7. ライセンスについて
- 8. その他

1. ソフトウェアダウンロード手順

1.1. ダウンロード

以下のバイナリファイルをダウンロードしてください。

https://github.com/centuryarks/CA378-AOIS_USB3-IFB/releases/download/v1.3.2_release/USBCA_v1.3.2.zip

補足

ソースコードからビルドする場合は、以下のURLからGit Cloneを行い、 README.md の How to build を参照してください。

https://github.com/centuryarks/CA378-AOIS_USB3-IFB.git

2.1. 事前準備

GitHubからダウンロードしたUSBCA_v1.3.2.zipを展開したフォルダ構成は以下になります。

2.2. USBケーブルの接続

USBケーブルを接続をするとドライバのインストールが自動的に開始されます。 準備が完了するまでしばらくお待ちください。 セットアップに成功するとデバイスマネージャーのカメラに「USBCA-378」が認識されます。

図2.2. デバイスマネージャー画面

2.3. Microsoft Visual C++ 2015-2022 再頒布可能パッケージのインストール

以下のURLからプログラムを選択してダウンロードし、インストールします。

https://learn.microsoft.com/ja-jp/cpp/windows/latest-supported-vc-redist?view=msvc-170

64bit環境: https://aka.ms/vs/17/release/vc_redist.x64.exe

32bit環境: https://aka.ms/vs/17/release/vc_redist.x86.exe

最新の Microsoft Visual C++ 再頒布可能パッケージ バージョン

図2.3. Visual Studio 2015-2022 の Visual C++ 再頒布可能パッケージのインストール

2.4. COMのレジストリ登録

以下に格納されているbatファイルを右クリックし、管理者として実行します。 64bit環境: ¥USBCA_v1.3.2¥CAExtensionUnit¥bin¥x64¥CAExtensionDLL_Install.bat 32bit環境: ¥USBCA_v1.3.2¥CAExtensionUnit¥bin¥CAExtensionDLL_Install.bat ※COMのレジストリ解除する場合は、CAExtensionDLL Uninstall.batを管理者として実行します。

図2.4. COMレジストリ登録

3. 撮影アプリケーション起動手順

1) CA_ViewERフォルダのCA_ViewER.exeを起動します。

64bit環境: ¥USBCA_v1.3.2¥CA_ViewER¥bin¥x64¥CA_ViewER.exe 32bit環境: ¥USBCA_v1.3.2¥CA_ViewER¥bin¥x86¥CA_ViewER.exe

図3.1. アプリケーション起動

1) Sensor タブで次のパラメータを調整します。

図4.1. Sensor タブのパラメータ調整

項目	説明			
Mode Select	以下の解像度の設定を選択します。 4056 x 3040 @ 10fps USB2.0接続の場合は 3840 x 2160 @ 12fps 640 x 480 @ 30fpsのみ 1920 x 1080 @ 48fps 640 x 480 @ 60fps			
Capture	Stillボタンで静止画記録します。 Movieボタンで動画記録します。 Frameに保存フレーム数を指定します。 詳細は 6)を参照			
Exposure	露光時間(シャッター速度)を調整します。			
Analog Gain	明るさのゲインの調整をします。			
White Balance Gain	R/G/Bのゲインの調整をします。			
Black Level	ブラックレベル補正の調整をします。			
Defect Pixel	欠陥補正の有効/無効を設定します。			
LSC (Lens Shading Correction)	レンズシェーディング補正の有効/無効と 補正テーブルを選択します。			

※Sensorの調整値を初期値に戻す場合は、 CA378-AOIS_USB3-IFBのリセットボタンを押す、 またはUSBケーブルを抜き差しして、撮影アプリ ケーション(CA_ViewER.exe)を起動してください。

2) Expansion タブで次のパラメータを調整します。

図4.2. Expansion タブのパラメータ調整

項目	説明
Gamma Correction	ガンマ補正を調整します。
Color Correction Matrix	3x3のマトリクスでカラー補正をします。
Contrast	コントラストを調整します。

ガンマ補正を有効

カラー補正マトリクスを有効

3) AF & OIS タブで次のパラメータを調整します。

図4.3. AF & OIS タブのパラメータ調整

項目	説明
Focus Mode	Focus Positoin:フォーカス位置を指定します。 各ラジオボタン Infinity:フォーカス位置を無限遠に設定します。 Direct:フォーカス位置を直接指定します。 Macro:フォーカス位置を近距離に設定します。 Auto Focus:オートフォーカスをON/OFFします。 Focus Gain:オートフォーカスのゲインを調整します。
OIS Mode	OFF:OISを無効にします。 Zero Shutter:露光が始まるまでに時間がかかりません。 Zero Shutter Lagを実現するのに適しています。 Movie:カメラの動きに追随しやすく、アクティブな動きの対象に適しています。 High SR Movie:カメラの動きに追従しにくいため、非アクティブな被写体に適しています。 View Finder: Exposure Shake: View FinderモードとExposureモードは組み合わせて使用します。露光が開始される直前にレンズが中央に移動するので、OISの有効範囲は広く、光学歪みによる影響が小さくなります。

Page 11

4) EEPROM タブで次のパラメータを調整します。

図4.4. EEPROM タブのパラメータ調整

項目	説明
EEPROM	コンボボックスでTable1~16を選択します。 Saveボタンで調整パラメータをEEPROMへ書き込みます。 Loadボタンで調整パラメータをEEPROMから読み出します。 Set Defaultボタンで起動時のTable番号をセットします。 Clearボタンで調整パラメータをEEPROMからクリアします。
LSC (Lens Shading Correction) Table	パスを指定し、Uploadボタンでレンズシェーディングテーブルを EEPROMへ書き込みます。 パスを指定し、Downloadボタンでレンズシェーディングテーブル をEEPROMから読み出し、ファイルに保存します。

5) Layout タブで次のパラメータを調整します。

図4.5. Layout タブのパラメータ調整

項目	説明
Font	コンボボックスでフォントを選択します。 Font Points: フォントサイズを調整します。
Window	Left:ウィンドウの左側位置を調整します。 Top:ウィンドウの上側位置を調整します。 Width:ウィンドウの幅を調整します。 Height:ウィンドウの高さを調整します。 Applyボタンで適用します。

6) 静止画および動画はCA_ViewERフォルダに以下のフォーマットで保存されます。

raw10_yyyymmdd_hhmmss.bmp video_raw10_yyyymmdd_hhmmss.avi 例:

raw10_20190712_190624.bmp video raw10_20190712_190651.avi rgb_yyymmdd_hhmmss.tif video_rgb_yyyymmdd_hhmmss.avi

rgb_20190712_190624.tif video_rgb_20190712_190651.avi

図4.6. ファイルフォーマット

※AVIファイルでは4GBのサイズ制限があるため、保存できる最大フレーム数は以下になります。

4056 x 3040: 116 frame 3840 x 2160: 172 frame

1920 x 1080: 690 frame 640 x 480: 4660 frame

SampleProgramフォルダにRAW10からRGBへ変換サンプルプログラムを用意しています。 使用方法は以下のRAW2RGB.batを参考にしてください。

フォルダ構成は以下です。

└─RAW2RGB RAW10からRGBへ変換 ├─bin 実行ファイル └─src ソースコード

1) binフォルダのRAW2RGB.batを実行するとサンプルプログラムの画像が作成されます。

RAW2RGB.exe -i raw10_sample_3M.bmp -o rgb24_sample_3M.bmp -offset 16 -gain 2.0 2.0 2.0 -gamma 0.45 -interp 1 -flip 1

パラメータは以下になります。

オプション	説明
-i	入力ファイル名(RAW10ファイル)
-O	出力ファイル名(RGBファイル)
-offset	Offset減算
-gain	R/G/Bのゲイン調整(ソフトウェア)
-gamma	ガンマ補正(通常0.45)
-interp	0:最近隣法(nearest neighbor) 1:バイリニア補間(bilinear interpolation)
-flip	0:反転なし 1:垂直方向に反転

2) srcフォルダのソースコードを公開していますので、ビルドすることが可能です。

ご使用のVisual Studioのバージョンのソリューションファイル(RAW2RGB_V<バージョン>.sln) をお使いください。

ご使用のVisual Studioのバージョンのソリューションファイルがない場合は、前のバージョンのソリューションファイルをコンバートしてお使いください。

RAW2RGB.vcxprojのプロパティから、開発環境に合わせてWindows SDK バージョンおよびプラットフォームツールセットを変更してください。

現像処理は以下のフローになります。

RAW10フォーマットについて

以下に示すように4画素を5バイトに詰めて送られます。

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1バイト目	P0[9]	P0[8]	P0[7]	P0[6]	P0[5]	P0[4]	P0[3]	P0[2]
2バイト目	P1[9]	P1[8]	P1[7]	P1[6]	P1[5]	P1[4]	P1[3]	P1[2]
3バイト目	P2[9]	P2[8]	P2[7]	P2[6]	P2[5]	P2[4]	P2[3]	P2[2]
4バイト目	P3[9]	P3[8]	P3[7]	P3[6]	P3[5]	P3[4]	P3[3]	P3[2]
5バイト目	P3[1]	P3[0]	P2[1]	P2[0]	P1[1]	P1[0]	P0[1]	P0[0]

RAW10の場合、5の倍数の画素数で送る必要があります。

RGB24フォーマットの場合、4の倍数の画素数で送る必要があります。

出力サイズが4056 x 3040の場合は、1700 x 3040になり右端を0で埋めてデータが送られます。 整数演算で計算すると以下の式になります。

((4056 / 24 * 10) / 20) + 1) * 20 = 1700

デモザイク処理(最近隣法)

デモザイク処理(バイリニア補間)

6. LEDのON/OFFについて

LEDのON/OFFについては、以下の状態で規定しています。 ただし、システムフリーズや致命的エラーが発生した場合は制御できない可能性があります。

状態	正常時	異常時
電源投入時	ON (3回点滅)	OFF
撮影アプリケーション起動	ON	OFF
画像転送時	ON	OFF
Extension Unit通信	ON	OFF
システムエラー発生	_	OFF
システムフリーズ/致命的エラー	_	_

7. ライセンスについて

現像アルゴリズムはSampleProgramフォルダに同処理のソースコードを公開しております。 ごく標準的なアルゴリズムを用いて作成しておりますので、ご自由にお使いください。

USBCAExtensionUnitは通信プロトコルを規定している処理ですので、ソースコードはご自由に参照ください。

CAExtensionUnitはMicrosoft社のUVC 拡張ユニットコード サンプルを参考しています。 https://docs.microsoft.com/ja-jp/windows-hardware/drivers/stream/uvc-extension-unit-code-samples

CA_ViewERのソースコードはBSDライセンスとして一般公開しております。 OpenCVはBSDライセンス、QtはGPLv3はLGPLv3ライセンスになりますのでご注意ください。

開発環境

Windows のバージョン: 10 (バージョン 22H2 (OSビルド 19045.3930))

Windows SDKのバージョン: 10.0.22621.0

Visual Studio のバージョン: 2022

動作確認済みPC

一体型デスクトップPC:

CPU: Intel Celeron 1.6GHz 1.6GHz

Memory: 4GB

OS: 64bit Windows 10 Pro

ノートPC:

CPU: Intel Core i5 1.6GHz 2.11GHz

Memory: 8GB

OS: 64bit Windows 10 Pro

ソフトウェアの免責事項

※本ソフトウェアはすべてのWindows 10コンピュータの動作を保証するものではありません。