

Learning Objectives

This week, we learn:

- The notion of random variables
- The properties of a probability distribution
- To compute the expected value and variance of a probability distribution
- To compute probabilities from binomial and Poisson distributions
- How the binomial and Poisson distributions can be used to solve business problems
- Applications to Finance

Definitions

 Random variable is a quantity that depends on chance.

Example: gender of 3 children (tossing 3 coins). Let X be the number of girls. X is unknown but we know this:

X can be 0, 1, 2, or 3. $\{X=0\}$, $\{X=1\}$, $\{X=2\}$, $\{X=3\}$ are events, they have probabilities.

Random variables, example

X is the number of girls in a family of 3 children.

Value of X	Probability	Equally likely outcomes		
0	1/8	BBB		
1	3/8	GBB, BGB, BBG		
2	3/8	GGB, GBG, BGG		
3	1/8	GGG		

• G=girl, B=boy

A coin is tossed 3 times. X is the number of heads. Same values, same probabilities. Same distribution.

Discrete variables take only separate, isolated values. Continuous variables can take any value in an interval.

Discrete Random Variables

Can only assume a countable number of values

Examples:

- Roll a die
 Let X be the number of dots.
- Number of shares bought
- Number of satisfied customers
- Proportion of satisfied customers, in a sample of 100

Probability Distribution For A Discrete Random Variable

 A probability distribution for a discrete random variable is a list of its all possible values along with the corresponding probabilities.

Example:

X	P(x)		
values of X	probabilities		
0	1/8		
1	3/8		
2	3/8		
3	1/8		

Expected Value

 Expected Value (or mean) of a discrete variable is (Weighted Average)

$$\mu = E(X) = \sum_{x} xP(x)$$

Example: Toss 2 coins,
 X = # of heads,
 compute expected value of X:
 E(X) = (0)(0.25) + (1)(0.50) + (2)(0.25)
 = 1.0

x	P(x)
0	0.25
1	0.50
2	0.25

Variance and Standard Deviation

Variance of a discrete random variable

$$\sigma^2 = Var(X) = E(X - \mu)^2 = \sum_{x} [x - E(X)]^2 P(x)$$

Standard Deviation of a discrete random variable

$$\sigma = \sqrt{\sigma^2}$$

Covariance and Applications to Finance

Covariance

The covariance measures the strength of the linear relationship between two discrete random variables X and Y.

- A positive covariance indicates a positive relationship.
- A negative covariance indicates a negative relationship.

The Covariance Formula

The covariance formula:

$$\sigma_{XY} = E(X - \mu_X)(Y - \mu_Y) = \sum_{x} \sum_{y} (x - EX)(y - EY)P(x, y)$$

where: X = discrete random variable X

x = value of X

Y = discrete random variable Y

y = value of Y

P(x,y) = P(X=x and Y=y)

= probability of a joint event {X=x and Y=y}

Investment Returns The Mean

Consider the return per \$1000 for two types of investments.

	Economic Condition	Investment			
Prob.	Loononiio Condition	Passive Fund X	Aggressive Fund Y		
0.2	Recession	- \$25	- \$200		
0.5	Stable Economy	+ \$50	+ \$60		
0.3	Expanding Economy	+ \$100	+ \$350		

Investment Returns The Mean

$$E(X) = \mu_X = (-25)(.2) + (50)(.5) + (100)(.3) = 50$$

$$E(Y) = \mu_Y = (-200)(.2) + (60)(.5) + (350)(.3) = 95$$

Interpretation: Fund X is averaging a \$50.00 return and fund Y is averaging a \$95.00 return per \$1000 invested.

These are expected returns.

Investment Returns Standard Deviation

$$\sigma_{X} = \sqrt{(-25-50)^{2}(.2) + (50-50)^{2}(.5) + (100-50)^{2}(.3)}$$

$$= 43.30$$

$$\sigma_{Y} = \sqrt{(-200 - 95)^{2}(.2) + (60 - 95)^{2}(.5) + (350 - 95)^{2}(.3)}$$

$$= 193.71$$

Interpretation: Even though fund Y has a higher average return, it is subject to much more variability.

Investment Returns Covariance

$$\sigma_{XY} = (-25 - 50)(-200 - 95)(.2) + (50 - 50)(60 - 95)(.5)$$
$$+ (100 - 50)(350 - 95)(.3)$$
$$= 8,250$$

Interpretation: Since the covariance is large and positive, there is a positive relationship between the two investment funds, meaning that they will likely rise and fall together.

The Sum of Two Random Variables

Expected Value of the sum of two random variables:

$$E(X+Y)=E(X)+E(Y)$$

Variance of the sum of two random variables:

$$Var(X + Y) = \sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2\sigma_{XY}$$

Standard deviation of the sum of two random variables:

$$\sigma_{X+Y} = \sqrt{\sigma_{X+Y}^2}$$

The Weighted Sum Two Random Variables

Expected Value of a weighted sum:

$$E(aX + bY) = aE(X) + bE(Y)$$

Variance of a weighted sum:

$$Var(aX + bY) = a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\sigma_{XY}$$

Standard deviation of a weighted sum:

$$\sigma_{aX+bY} = \sqrt{\sigma_{aX+BY}^2}$$

Portfolio Expected Return and Expected Risk

 Investment portfolios usually contain several different funds (random variables)

 Investment Objective: Maximize return (mean) while minimizing risk (standard deviation).

Portfolio Expected Return and Portfolio Risk

Consider a portfolio with:

w = proportion of portfolio value in asset X(1 - w) = proportion of portfolio value in asset Y

Portfolio expected return (weighted average return):

$$E(P) = wE(X) + (1-w)E(Y)$$

Portfolio risk (weighted variability)

$$\sigma_{P} = \sqrt{w^{2}\sigma_{X}^{2} + (1-w)^{2}\sigma_{Y}^{2} + 2w(1-w)\sigma_{XY}}$$

Portfolio Example 1

Investment X:
$$\mu_X = 50$$
 $\sigma_X = 43.30$

Investment Y:
$$\mu_{Y} = 95 \quad \sigma_{Y} = 193.21$$

$$\sigma_{XY} = 8250$$

Suppose 40% of the portfolio is in Investment X and 60% is in Investment Y:

$$E(P) = 0.4(50) + (0.6)(95) = 77$$

$$\sigma_{\rm P} = \sqrt{(0.4)^2 (43.30)^2 + (0.6)^2 (193.71)^2 + 2(0.4)(0.6)(8,250)}$$

= 133.30

The portfolio return and portfolio variability are always between the values for investments X and Y considered individually

Portfolio Example 2

We would like to invest \$10,000 into companies A and B. Shares of A cost \$20 per share. The market analysis shows that their expected return is \$1 per share with a standard deviation of \$0.5. Shares of B cost \$50 per share, with an expected return of \$2.50 and a standard deviation of \$1 per share, and returns from the two companies are independent.

What is the most optimal portfolio consisting of shares of A and B, in terms of the maximum expected return at the minimum risk?

Probability Distributions Commonly Used in Practice

Bernoulli Distribution

- The simplest non-trivial distribution:
- X takes two values, X=0 and X=1 (Bernoulli trials have two outcomes pass and fail, good and defective, girl and boy, "success" and "failure").
- Distribution of X:

$$P(X=1) = P(1) = \pi$$
 = probability of a success $P(X=0) = P(0) = 1-\pi$ = probability of a failure

•
$$E(X) = \pi$$
, $Var(X) = \pi(1 - \pi)$

Binomial Distribution

 X = number of "successes" in n independent Bernoulli trials

Examples:

number of A grades number of defective products number of votes for a particular candidate number of games won number of Stanley Cups won etc.

Business Applications of the Binomial Distribution

- A manufacturing plant labels items as either defective or acceptable
- A firm bidding for contracts will either get a contract or not
- A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
- New job applicants either accept the offer or reject it

Binomial Distribution Formula

$$P(X=x | n,\pi) = \frac{n!}{x! (n-x)!} \pi^{x} (1-\pi)^{n-x}$$

- $P(X=x|n,\pi)$ = probability of **x** events of interest in **n** trials, with the probability of an "event of interest" being π for each trial
 - x = number of "events of interest" in sample,<math>(x = 0, 1, 2, ..., n)
 - n = sample size (number of trials or observations)
 - π = probability of "event of interest"

Example: Flip a coin four times, let x = # heads:

$$n = 4$$

$$\pi = 0.5$$

$$1 - \pi = (1 - 0.5) = 0.5$$

$$X = 0, 1, 2, 3, 4$$

Counting Techniques Rule of Combinations

The number of combinations of selecting X objects out of n objects is

$$_{n}C_{x} = \frac{n!}{X!(n-X)!}$$

where:

$$n! = (n)(n - 1)(n - 2) \cdots (2)(1)$$

 $X! = (X)(X - 1)(X - 2) \cdots (2)(1)$
 $0! = 1$ (by definition)

Here, we have X successes in n Bernoulli trials

Counting Techniques Rule of Combinations

- How many possible 3 scoop combinations could you create at an ice cream parlor if you have 31 flavors to select from?
- The total choices is n = 31, and we select X = 3.

$$_{31}C_3 = \frac{31!}{3!(31-3)!} = \frac{31!}{3!28!} = \frac{31 \cdot 30 \cdot 29 \cdot 28!}{3 \cdot 2 \cdot 1 \cdot 28!} = 31 \cdot 5 \cdot 29 = 4,495$$

The Binomial Distribution Example

Suppose the probability of purchasing a defective computer is 0.02. What is the probability of purchasing 2 defective computers in a group of 10?

$$x = 2$$
, $n = 10$, and $\pi = 0.02$

$$P(X = 2 | 10, 0.02) = \frac{n!}{x!(n-x)!} \pi^{x} (1-\pi)^{n-x}$$

$$= \frac{10!}{2!(10-2)!} (.02)^{2} (1-.02)^{10-2}$$

$$= (45)(.0004)(.8508)$$

$$= .01531$$

Binomial Distribution Characteristics

Mean

$$\mu = E(X) = n\pi$$

Variance and Standard Deviation

$$\sigma^2 = n\pi(1-\pi)$$

$$\sigma = \sqrt{n\pi(1-\pi)}$$

Where n = sample size

 π = probability of the event of interest for any trial

 $(1 - \pi)$ = probability of no event of interest for any trial

Using Excel For The Binomial Distribution

4	Α	В	
1	Binomial Probabilities		
2			
3	Data		
4	Sample size	4	
5	Probability of an event of interest	0.1	
6			
7	Statistics		
8	Mean	0.4	=B4 * B5
9	Variance	0.36	=B8 * (1 - B5)
10	Standard deviation	0.6	=SQRT(B9)
11			
12	Binomial Probabilities Table		
13	X	P(X)	
14	0	0.6561	=BINOM.DIST(A14, \$B\$4, \$B\$5, FALSE)
15	1	0.2916	=BINOM.DIST(A15, \$B\$4, \$B\$5, FALSE)
16	2	0.0486	=BINOM.DIST(A16, \$B\$4, \$B\$5, FALSE)
17	3	0.0036	=BINOM.DIST(A17, \$B\$4, \$B\$5, FALSE)
18	4	0.0001	=BINOM.DIST(A18, \$B\$4, \$B\$5, FALSE)

Poisson Distribution

- Poisson distribution describes a number of unexpected events that occur independently, one by one, at random times
 - The number of scratches in a car's paint
 - The number of mosquito bites on a person
 - The number of computer crashes in a day
 - The number of thunderstorms in a given month
 - The number of traffic accidents in a given day
 - The number of calls to a customer service

The Poisson Distribution

- Apply the Poisson Distribution when:
 - You wish to count the number of times an event occurs in a given area of opportunity
 - The probability that an event occurs in one area of opportunity is the same for all areas of opportunity
 - The number of events that occur in one area of opportunity is independent of the number of events that occur in the other areas of opportunity
 - The probability that two or more events occur in an area of opportunity approaches zero as the area of opportunity becomes smaller
 - The average number of events per unit is λ (lambda)

Poisson Distribution Formula

$$P(X = x \mid \lambda) = \frac{e^{-\lambda} \lambda^{x}}{X!}$$

where:

x = number of events in an area of opportunity

 λ = expected number of events

e = base of the natural logarithm system (2.71828...)

Poisson Distribution Characteristics

Mean

$$\mu = \lambda$$

Variance and Standard Deviation

$$\sigma^2 = \lambda$$

$$\sigma = \sqrt{\lambda}$$

where λ = expected number of events

Using Excel For The Poisson Distribution

	4	Α	В	С	D	Е	
	1	Poisson Prob	abilities				
4	2						
	3		D	ata			
4	4	Mean/Expec	ted number of e	vents of ir	nterest:	3	
	5						
(6	Poisson Prob	abilities Table				
	7	X	P(X)				
- (8	0	0.0498	=POISSON	N.DIST(A8	, \$E\$4, FAL	SE)
(9	1	0.1494	=POISSON	N.DIST(A9	, \$E\$4, FAL	SE)
1	10	2	0.2240	=POISSON	N.DIST(A1	.0, \$E\$4, FA	LSE)
1	11	3	0.2240	=POISSON	N.DIST(A1	1, \$E\$4, FA	LSE)
1	12	4	0.1680	=POISSON	N.DIST(A1	2, \$E\$4, FA	LSE)
1	13	5	0.1008	=POISSON	N.DIST(A1	3, \$E\$4, FA	LSE)
1	14	6	0.0504	=POISSON	N.DIST(A1	.4, \$E\$4, FA	LSE)
1	15	7	0.0216	=POISSON	N.DIST(A1	5, \$E\$4, FA	LSE)
1	16	8	0.0081	=POISSON	N.DIST(A1	.6, \$E\$4, FA	LSE)
1	17	9	0.0027	=POISSON	N.DIST(A1	7, \$E\$4, FA	LSE)
1	18	10	0.0008	=POISSON	N.DIST(A1	.8, \$E\$4, FA	LSE)
1	19	11	0.0002	=POISSON	N.DIST(A1	9, \$E\$4, FA	LSE)
2	20	12	0.0001	=POISSON	N.DIST(A2	0, \$E\$4, FA	LSE)
2	21	13	0.0000	=POISSON	N.DIST(A2	1, \$E\$4, FA	LSE)
2	22	14	0.0000	=POISSON	N.DIST(A2	2, \$E\$4, FA	LSE)
2	23	15	0.0000	=POISSON	N.DIST(A2	3, \$E\$4, FA	LSE)

Deciding between Binomial and Poisson distribution:

1. The meaning of X:

Binomial variable = number of "successes" in n trials

Poisson variable = number of events that occur unexpectedly at random times

2. Possible values of X.

Binomial X = 0 through n

Poisson X = from 0 to infinity

3. Parameters of the distribution:

Binomial: n = number of trials, pi = probability of success;

Poisson: lambda = frequency of events

Chapter Summary

In this chapter we discussed

- The probability distribution of a discrete random variable
- Expectation, variance, and standard deviation of a random variable
- Evaluating the risk of a portfolio
- The Binomial distribution
- The Poisson distribution