Incorporation des matériaux à changement de phase dans l'isolation thermique d'un bâtiment

VIELLEPEAU Axel TIPE 2025

Introduction – Contexte

- Augmentation des températures dû à la crise climatique
- Importance du secteur du bâtiment concernant les gaz à effet de serre
- Système de climatisation active énergivore

Introduction

Problématique :
Comment améliorer le confort thermique d'un bâtiment grâce aux matériaux à changement de phase ?

Introduction

Les Objectifs

- étudier l'inertie thermique avec le MCP
- Développé un modèle numérique de l'équation de la chaleur incorporant des MCP
- Réaliser une maquette de pièce isolé avec et sans MCP

Plan d'étude

- 1.La Théorie des MCP
- 2. Caractérisation du MCP
- 3. Mise en équation
- 4. Modèle numérique
- 5.Expérimentation
- 6.conclusion

Le MCP dans tous ses états

- Chaleur sensible/chaleur latente
- Changement de température jour/nuit
- ♦ Augmentation de l'inertie thermique

Choix du MCP

Paraffine:

- Point de fusion bas
- Bon marché
- ♦ Non toxique

Étude du point de fusion

Étude de la conductivité thermique

Mise en équation

Equation de diffusion de la chaleur

$$\frac{\partial H(x,t)}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2}$$

Décomposition de l'enthalpie

$$H = \rho c T + \rho L_f f$$

Modèle numérique

Hypothèses

- Propriété thermo-physique constantes
- Transfert de chaleur unidimensionnel et réalisé par la conduction
- ♦ Mur entièrement fait de MCP

i-2

Discrétisation de l'expression

Déroulé du code

H
$$H = \rho c_p T$$
 $H = \rho C_p T + \rho L \frac{T - (T_m - \delta)}{2\delta}$ $H = \rho c_p T + \rho L$
État solide solide + liquide liquide $T_m - \delta$ $T_m + \delta$

Premier essaie

Condition de stabilité : $\Delta t \leq \frac{\rho c \Delta x^2}{2k}$

Condition de stabilité respecté

Insérer essaie expérimental

Résultat numérique

Résultat expérimental

Évolution de la température dans un pièce

Évolution de la température dans un pièce corrigé

Réalisation de la maquette

Expérimentation

Capteur de température

maquette

Carte Arduino

Résultats expérimentaux

[ajouter axes et interprétation]

conclusion

```
// Constantes
const int pinLM35 = A0; // Broche connectée au capteur LM35
void setup() {
  Serial.begin(9600); // Initialisation de la communication série
void loop() {
  // Lecture de la valeur brute (0-1023) sur le port analogique
  int valeurBrute = analogRead(pinLM35);
  // Conversion de la valeur brute en tension (en volts)
  float tension = valeurBrute * (5.0 / 1023.0);
  // Conversion de la tension en température (en °C)
  float temperature = tension * 100.0; // LM35 : 10 mV = 1°C
  // Affichage de la température dans le moniteur série
  Serial.print("Température : ");
  Serial.print(temperature);
  Serial.println(" °C");
  // Attente avant la prochaine mesure
  delay(1000); // 1 seconde
```