МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Вычислительная математика» ТЕМА: ИССЛЕДОВАНИЕ ОБУСЛОВЛЕННОСТИ ЗАДАЧИ НАХОЖДЕНИЯ

КОРНЯ УРАВНЕНИЯ НА ПРИМЕРЕ ЛИНЕЙНОЙ ФУНКЦИИ.

Студент гр. 1304	Шаврин А.П
Преподаватель	 Попова Е.В.

Санкт-Петербург

2022

Цель работы.

Исследование обусловленности задачи нахождения корня уравнения на примере линейной функции.

Задание.

Используя программы-функции BISECT и Round, исследовать обусловленность задачи нахождения корня уравнения f(x) = 0. Значения функции f(x) следует вычислить приближенно с точностью Δ , варьируемой в пределах от 0.1 до 0.000001. Порядок выполнения работы следующий:

- 1) Отделение корня уравнения f(x) = 0.
- 2) Составление подпрограммы вычисления функции f(x) для параметра с вводимая с клавиатуры.
- 3) Составление головной программы, вычисляющей корень уравнения с заданной точностью є, и содержащую обращение к подпрограмме F, программамфункциям BISECT, Round и представление результатов.
- 4) Проведение вычислений по программе, варьируя значения параметров.
- 5) Анализ результатов.
- 1. Параметр с варьируется от а до в (допустимых). Параметры eps и delta постоянны и равны значению 0.01.
- 2. Параметр с постоянен и равен 5, eps постоянен и равен 0.01, delta варьируется от 0.00001 до 0.1.
- 3. Параметр с постоянен, delta постоянна и равна 0.01, eps варьируется от 0.000001 до 10.
- 4. Параметр с постоянен, delta и eps одновременно варьируются от 0.000001 до 1. Построить график зависимости eps от количества итераций.
- 5. Параметр eps постоянен и равен 0.01, с и delta варьируются независимым друг от друга образом.

Основные теоретические положения.

Под обусловленностью вычислительной задачи понимают чувствительность ее решения к малым погрешностям входных данных. Задачу называют хорошо обусловленной, если малым погрешностям входных данных отвечают малые погрешности решения, и плохо обусловленной, если возможны сильные изменения решения. Количественной мерой степени обусловленности вычислительной задачи является число обусловленности, которое можно интерпретировать как коэффициент возможного возрастания погрешностей в решении по отношению к вызвавшим их погрешностям входных данных. Пусть между абсолютными погрешностями входных данных х и решения у установлено неравенство:

$$\Delta(y^*) \leq \nu_{\Delta} \cdot \Delta(x^*),$$

где x^* и y^* - приближённые входные данные и приближённое решение соответственно. Тогда величина ν_{Δ} называется абсолютным числом обусловленности. Если же установлено неравенство

$$\delta(y^*) \le \nu_\delta \cdot \delta(x^*)$$

между относительными ошибками данных и решения, то величину v_{δ} называют относительным числом обусловленности. Для плохо обусловленной задачи $v \gg 1$. Грубо говоря, если $v_{\delta} = 10^N$, где v — относительное число обусловленности, то порядок N показывает число верных цифр, которое может быть утеряно в результате по сравнению с числом верных цифр входных данных. Ответ на вопрос о том, при каком значении v задачу следует признать плохо обусловленной, зависит, с одной стороны, от предъявляемых требований 3 к точности решения u, с другой, — от уровня обеспечиваемой точности исходных данных. Например, если требуется найти решение с точностью 0.1%, а входная информация задается с точностью 0.02%, то уже значение v = 10 сигнализирует о плохой обусловленности. Однако, при тех же требованиях к точности результата, гарантия, что исходные данные задаются с точностью не ниже 0.0001%, означает, что при $v = 10^3$ задача хорошо обусловлена. Если

рассматривать задачу вычисления корня уравнения y = f(x), то роль числа обусловленности будет играть величина

$$\nu_{\Delta} = \frac{1}{|f'(x^0)|},$$

где x^0 — корень уравнения.

Выполнение работы.

Вариант 29.

Уравнение: $f(x) = 1/(c*\sin(x))+1$;

1. График функции при с = 1: 8 2

Область определения функции от 0 до π .

2. Определено, что корень уравнения $1/(c*\sin(x))+1$ находится на отрезке $[-\pi/2 + \pi k; 0 + \pi k]$, при c >= 1 (далее будем считать, что k = 0).

Локализация корня = $[-\pi; -\pi/2]$.

График функции при с = 1

График функции при с = 10

- 3. Была написана функция F, которая принимает на вход вещественные аргументы x и c. Возвращается значение функции $1/(c*\sin(x))+1$.
- Написана функция main, в которой происходит считывание с клавиатуры значений c, ε, Δ и вывод в консоль округленного значения корня, значение функции в точке, а также кол-во итераций, понадобившееся для нахождения корня.
- 5. Проведены вычисления и выполнен анализ результатов.
- 1) Параметр с варьируется от 1 до 5. Параметры eps и delta постоянны и равны значению 0.01.

Результаты вычислений приведены в таблице 1.

Таблица 1: Результаты вычислений 1.

С	Δ	3	X	N	f(x)	$ u_{\Delta}$	$v_{\Delta} max$	Оценка
1	0.01	0.01	-1.5708	1	0	272241,8	1	плохо

3	0.01	0.01	-2.81025	9	-0.02	0,335748	1	хорошо
5	0.01	0.01	-2.93297	9	0.03	0,219232	1	хорошо
7	0.01	0.01	-3.0066	9	-0.06	0,127952	1	хорошо
10	0.01	0.01	-3.03115	9	0.09	0,122225	1	хорошо
20	0.01	0.01	-3.08023	9	0.18	0,075355	1	хорошо
30	0.01	0.01	-3.12932	9	-0.63	0,004519	1	хорошо

Вывод: при заданных eps и delta (0.01) данная задача обусловлена хорошо при с больше 1.

2) Параметр с постоянен и равен 5, ерѕ постоянен и равен 0.01, delta варьируется от 0.00001 до 0.1.

Результаты вычислений приведены в таблице 2.

Таблица 2: Результаты вычислений 2.

С	Δ	3	X	N	f(x)	$ u_{\Delta}$	$v_{\Delta} max$	Оценка
5	0.1	0.01	-2.93297	9	0	0,219232	0,1	плохо
5	0.01	0.01	-2.93297	9	0.03	0,219232	1	хорошо
5	0.001	0.01	-2.93297	9	0.034	0,219232	10	хорошо
5	0.0001	0.01	-2.93297	9	0.0343	0,219232	100	хорошо
5	0.00001	0.01	-2.93297	9	0.03434	0,219232	1000	хорошо

Вывод: при заданных eps (0.01) и c = 5 данная задача обусловлена, хорошо, при значениях delta меньше 0.1.

3) Параметр с постоянен, delta постоянна и равна 0.01, eps варьируется от 0.000001 до 10.

Результаты вычислений приведены в таблице 3.

Таблица 3: Результаты вычислений 3.

С	Δ	3	X	N	f(x)	$ u_{\Delta}$	v_{Δ} max	Оценка
5	0.01	0.000001	-2.94024	22	0	0,204113	0,0001	плохо
5	0.01	0.00001	-2.94025	19	0	0,204093	0,001	плохо
5	0.01	0.0001	-2.94007	15	0	0,204461	0,01	плохо
5	0.01	0.001	-2.94064	12	0	0,203298	0,1	плохо
5	0.01	0.01	-2.93297	9	0.03	0,219232	1	хорошо
5	0.01	0.1	-2.94524	5	-0.03	0,194036	10	хорошо
5	0.01	1	-1.5708	2	0.8	1361209	100	хорошо
5	0.01	10	0	0	-	-	1000	-
					9.22337e+16			

Вывод: при заданных delta (0.01) и с = 5 данная задача обусловлена, хорошо, при значениях eps от 0.01 до 1.

4) Параметр с постоянен, delta и eps одновременно варьируются от 0.000001 до 1.

Результаты вычислений приведены в таблице 4.

График зависимости eps от количества итераций на рисунке.

Таблица 4: Результаты вычислений 4.

С	Δ	3	X	N	f(x)	$ u_{\Delta} $	$v_{\Delta} max$	Оценка
5	0.000001	0.000001	-2.94024	22	2e-06	0,204113	1	хорошо
5	0.00001	0.00001	-2.94025	19	-5e-05	0,204093	1	хорошо
5	0.0001	0.0001	-2.94007	15	0.0008	0,204461	1	хорошо
5	0.001	0.001	-2.94064	12	-0.002	0,203298	1	хорошо
5	0.01	0.01	-2.93297	9	0.03	0,219232	1	хорошо
5	0.1	0.1	-2.94524	5	0	0,194036	1	хорошо
5	1	1	-1.5708	2	1	1361209	1	плохо

Рисунок: График зависимости eps от количества итераций (N)

Вывод: при заданном значении c=5 данная задача обусловлена, хорошо, при значениях ерѕ и delta от 0.000001 до 0.1.

5) Параметр eps постоянен и равен 0.01, с и delta варьируются независимым друг от друга образом.

Результаты вычислений приведены в таблице 5.

Таблица 5: Результаты вычислений 5.

С	Δ	3	X	N	f(x)	$ u_{\Delta}$	$v_{\Delta} max$	Оценка
1	0.000001	0.01	-1.5708	1	0	272241,8	10000	хорошо
3	0.001	0.01	-2.81025	9	-0.025	0,335748	10	хорошо
5	0.1	0.01	-2.93297	9	0	0,219232	0.1	плохо
7	1	0.01	-3.0066	9	0	0,127952	0.01	плохо
10	0.0001	0.01	-3.03115	9	0.0927	0,122225	100	хорошо
20	0.00001	0.01	-3.08023	9	0.18462	0,075355	1000	хорошо
30	0.01	0.01	-3.10478	9	0.09	0,040664	1	плохо

Вывод: при заданном значении eps (0.01) данная задача обусловлена, хорошо, при значениях delta от 0.001 до 0.000001.

Выводы.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lab2.cpp

```
#include <iostream>
#include <cmath>
double F(double x, double c) {
    return 1/(c*sin(x))+1;
}
double BISECT(double Left, double Right, double Eps, double c, int &N) {
    double E = fabs(Eps) *2.0;
    double FLeft = F(Left, c);
    double FRight = F(Right, c);
    double X = (Left + Right) / 2.0;
    double Y;
    if (FLeft*FRight>0.0) {
        puts ("PkPuPIPuCTPSPs P·P°PrP°PS PëPSC, PuCTPIP°P»\n");
        exit(1);
    }
    if (Eps <= 0.0) {
        puts ("PκPμPIPμCЂPSPs P·P°PrP°PSP° C, PsC‡PSPsCΓC, CЊ\n");
        exit(1);
    }
    N = 0;
    if (FLeft == 0.0)
        return Left;
    if (FRight == 0.0)
        return Right;
    while ((Right - Left) >= E) {
        X = 0.5*(Right + Left);
        Y = F(X, c);
        if (Y == 0.0)
            return (X);
        if (Y*FLeft < 0.0)
            Right = X;
        else{
            Left = X; FLeft = Y;
        }
        N++;
    };
    return(X);
}
double Round(double X, double Delta) {
    if (Delta \leq 1E-9) {
        puts ("PĸPpPIPpCTPSPs P·P°PrP°PSP° C, PsC‡PSPsCfC, Ctb
PsPeChCήPiP»PμPSPëCμ\n");
```

```
exit(1);
    }
    if (X>0.0)
        return (Delta*(long((X / Delta) + 0.5)));
    else
        return (Delta*(long((X / Delta) - 0.5)));
}
int main(){
    int N = 0;
    double delta, eps, c;
    std::cout<<"c = ";
    std::cin>>c;
    std::cout<<"delta = ";</pre>
    std::cin>>delta;
    std::cout<<"eps = ";</pre>
    std::cin>>eps;
    double root = BISECT(-M PI, -M PI/2, eps, c, N);
    double value = Round(F(root, c), delta);
    double obusl = 1/fabs(-cos(root)/(c*pow(sin(root), 2)));
    double obusl max = eps/delta;
    bool est = obusl < obusl max;</pre>
    std::cout<<"\nroot = "<<root<<"\nvalue = "<<value<<"\nN =</pre>
"<<N<<"\\n\ = "<<obusl<="nobusl max = "<<obusl max<<"\\nest = ">
"<<est<<'\n';
    return 0;
}
```