1.3. Разложение полинома на множители

Определение 1.3.1. Алгебраическим уравнением n-й степени одной переменной x называется уравнение вида

$$a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0$$
,

где $n \ge 1$, $a_0 \ne 0$, a_k , $k = \overline{0,n}$ — комплексные числа.

Теорема 1.3.1 (основная Теорема высшей алгебры). Любое алгебраическое уравнение имеет, по крайней мере, один корень (вещественный или комплексный). Доказательство теоремы приведено в работе [А.Г.Курош «Курс высшей алгебры»].

Теорема 1.3.2. Любой полином f(x), $\deg f(x) = n \ge 1$, с любыми числовыми коэффициентами имеет ровно n корней, если каждый корень считать столько раз какова его кратность.

<u>Доказательство.</u> Пусть $x=x_1$ является корнем полинома f(x). Это означает, что $f(x)=(x-x_1)f_1(x)$, где $f_1(x)$ — полином степени n— 1. Если $n-1\ge 1$, то в соответствии с основной теоремой высшей алгебры полином $f_1(x)$ имеет хотя бы один корень, например, $x=x_2$. Тогда полином $f_1(x)=(x-x_2)f_2(x)$, следовательно, $f(x)=(x-x_1)(x-x_2)f_2(x)$. Продолжая подобные рассуждения, окончательно получаем, что $f(x)=a_0(x-x_1)(x-x_2)\cdots(x-x_n)$. Заметим, что все числа x_i , $i=\overline{1,n}$, являются корнями полинома f(x), так как для любого $i=\overline{1,n}$ справедливо равенство $f(x_i)=0$.

Докажем теперь, что разложение полинома f(x) на множители определяется однозначно с точностью до порядка сомножителей. Доказательство этого факта проведем от противного.

Пусть существует другое разложение полинома f(x) на множители, т. е. $f(x) = a_0(x-x_1')(x-x_2')\cdots(x-x_n')$. Допустим, что среди корней x_i , $i=\overline{1,n}$, существует такой корень x_k , что $x_k \neq x_j'$, для любого $j=\overline{1,n}$. Подставляя x_k в очевидное равенство $(x-x_1)(x-x_2)\cdots(x-x_n)=(x-x_1')(x-x_2')\cdots(x-x_n')$, получаем, что выражение слева обращается в нуль, а справа стоит произведение, отличное от нуля. Таким образом, для любого $i=\overline{1,n}$ существует такое $j=\overline{1,n}$, что $x_i=x_j'$. Однако, из этого еще не следует, что разложение полинома f(x) на множители определяется однозначно, так как корни x_i для различных $i=\overline{1,n}$ могут совпадать.

Допустим, что среди корней x_i существует ровно m, равных x_1 , в то время как среди корней x_j' имеется только l, равных x_1 . Предположим, что m>l. Приравнивая различные разложения полинома f(x), получаем равенство $(x-x_1)^m f_m(x)=(x-x_1)^l f_l(x)$, причем $f_m(x_1)\neq 0$, $f_l(x_1)\neq 0$. Сокращая обе части этого соотношения на общий множитель $(x-x_1)^l$, получаем $(x-x_1)^{m-l} f_m(x)=f_l(x)$. Заметим, что при подстановке в последнее равенство $x=x_1$ левая часть обращается в нуль, в то время как правая отлична от нуля. Отсюда следует, что m=l.

Глава 1. Полиномы и их корни

Если объединить сомножители, отвечающие совпадающим корням, то полином

$$f(x) = a_0(x - x_1)^{k_1}(x - x_2)^{k_2} \cdots (x - x_s)^{k_s},$$

где $k_1 + k_2 + ... + k_s = n$, а $x_1, x_2, ..., x_s$ — различные корни полинома f(x).

Таким образом, полином степени n не может иметь более чем n корней.

Теорема 1.3.3. *Если полиномы* f(x), $\deg f(x) \le n$ и g(x), $\deg g(x) \le n$ имеют совпадающие значения в более чем n различных точках, то f(x) = g(x).

<u>Доказательство.</u> Рассмотрим полином h(x) = f(x) - g(x). Очевидно, что $\deg h(x) \le n$. Но по условию теоремы полином h(x) обращается в нуль в более чем n различных точках. Однако у этого полинома не может быть корней больше чем n. Поэтому $h(x) \equiv 0$, т. е. $f(x) \equiv g(x)$.