```
import numpy as np
import pandas as pd
import sklearn
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import seaborn as sns
```

New Section

```
df = pd.read_csv('energy_efficiency_data.csv')
df.head()
```

	Relative_Compactness	Surface_Area	Wall_Area	Roof_Area	Overall_Height	Orienta
0	0.98	514.5	294.0	110.25	7.0	
1	0.98	514.5	294.0	110.25	7.0	
2	0.98	514.5	294.0	110.25	7.0	
3	0.98	514.5	294.0	110.25	7.0	
4	0.90	563.5	318.5	122.50	7.0	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Relative_Compactness	768 non-null	float64
1	Surface_Area	768 non-null	float64
2	Wall_Area	768 non-null	float64
3	Roof_Area	768 non-null	float64
4	Overall_Height	768 non-null	float64
5	Orientation	768 non-null	int64
6	Glazing_Area	768 non-null	float64
7	Glazing_Area_Distribution	768 non-null	int64
8	Heating_Load	768 non-null	float64
9	Cooling_Load	768 non-null	float64

dtypes: float64(8), int64(2)
memory usage: 60.1 KB

df.describe()

	Relative_Compactness	Surface_Area	Wall_Area	Roof_Area	Overall_Height	Or
count	768.000000	768.000000	768.000000	768.000000	768.00000	
mean	0.764167	671.708333	318.500000	176.604167	5.25000	
std	0.105777	88.086116	43.626481	45.165950	1.75114	
min	0.620000	514.500000	245.000000	110.250000	3.50000	
25%	0.682500	606.375000	294.000000	140.875000	3.50000	
50%	0.750000	673.750000	318.500000	183.750000	5.25000	
75%	0.830000	741.125000	343.000000	220.500000	7.00000	
max	0.980000	808.500000	416.500000	220.500000	7.00000	

df.columns

```
plt.hist(df["Heating_Load"])
plt.xlabel("Heating Load")
plt.ylabel('Frequency')
plt.show()
```



```
plt.hist(df["Cooling_Load"])
plt.xlabel("Cooling Load")
plt.ylabel('Frequency')
plt.show()
```


df.isnull().sum()

Relative_Compactness		
Surface_Area		
Wall_Area	0	
Roof_Area	0	
Overall_Height	0	
Orientation		
Glazing_Area	0	
Glazing_Area_Distribution	0	
Heating_Load	0	
Cooling_Load	0	
dtype: int64		

```
missing = pd.DataFrame((df.isnull().sum())*100/df.shape[0]).reset_index()
plt.figure(figsize=(16,5))
ax = sns.pointplot('index', 0 , data=missing)
plt.title("missing values")
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

sns.pairplot(df)

√ 46s completed at 9:33 AM

×