Universidad de Granada

Análisis Matemático II Ejercicios resueltos

Doble Grado de Informática y Matemáticas $$\operatorname{Curso}\ 2016/17$$

1. Sucesiones y series de funciones

Ejercicio 1. Probar que el espacio $C_B(A, \mathbb{R}^M)$ es un espacio de Banach, esto es, un espacio normado y completo.

Demostración. Empezamos probando que $(\mathcal{C}_B(A,\mathbb{R}^M),\|\cdot\|_{\infty})$ es un espacio normado:

- Positividad. En primer lugar puesto que la norma se ha definido como supremo de un conjunto de numeros positivos, tendremos que $||f||_{\infty} \ge 0$ para toda $f \in (\mathcal{C}_B(A, \mathbb{R}^M)$. Además, $|f||_{\infty} = 0 \iff \sup_{x \in A} |f(x)| = 0 \iff f(x) = 0, \ \forall x \in A \iff f$ es la función 0.
- Homogeneidad. Si $k \in \mathbb{R}$ entonces $||kf||_{\infty} = |k|||f||_{\infty} \iff \sup_{x \in A} |kf(x)| = \sup_{x \in A} |k||f(x)| = |k|\sup_{x \in A} |f(x)| = |k|||f||_{\infty}.$
- Desigualdad triangular. $|f + g|_{\infty} \leq |f|_{\infty} + |g|_{\infty} \iff \sup_{x \in A} |f(x) + g(x)| \leq \sup_{x \in A} |f(x)| + \sup_{x \in A} |g(x)|$. para cualesquiera $f, g \in \mathcal{C}_B(A, \mathbb{R}^M)$.

Para demostrar que $f_n \to f$ c.u. en A $\iff f_n \to f$ en $\mathcal{C}_B(A, \mathbb{R}^M)$, solo tenemos que observar que $f_n \to f$ c.u. en A significa que:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon, \ \forall x \in A,$$

lo cual equivale a decir

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow ||f_n - f||_{\infty} = \sup_{x \in A} |f_n - f| \le \varepsilon, \ \forall x \in A,$$

es decir, $f_n \to f$ en $\mathcal{C}_B(A, \mathbb{R}^M)$.

Por último, $C_B(A, \mathbb{R}^M)$ es de Banach si es completo, es decir si toda sucesión $\{f_n\}$ (de funciones en $C_B(A, \mathbb{R}^M)$) de Cauchy converge. La prueba es análoga a la que se hizo para ver que $C(A, \mathbb{R}^M)$, con $A \subseteq \mathbb{R}^N$ compacto, era completo. La única diferencia será que tras probar la convergencia uniforme de f_n a una función f, deberemos probar que $f \in C_B(A, \mathbb{R}^M)$, es decir que el límite uniforme de la sucesión $\{f_n\}$ de funciones continuas y acotadas es una función continua y acotada. Veámoslo.

Recordemos que ya sabemos por teoría que f es continua. Para la acotación, tomando $\varepsilon = 1$ en la definición de convergencia uniforme, obtenemos un $n_0 \in \mathbb{N}$ tal que $n \geq n_0 \Rightarrow |f_n(x) - f(x)| < 1 \ \forall x \in A$. Por otro lado, como f_{n_0} es acotada, existe un M > 0 tal que $|f_{n_0}(x)| \leq M \ \forall x \in A$. Entonces, se tiene que:

$$|f(x)| = |f(x) - f_{n_0}(x) + f_{n_0}(x)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x)| < 1 + M, \quad \forall x \in A$$

Por tanto, f está acotada.

Página 2 de 6

Ejercicio 2. Probar que en el espacio $\mathcal{C}(A, \mathbb{R}^M)$, con $A \subseteq \mathbb{R}^N$ compacto, cualquier bola cerrada y centrada en el origen es homeomorfa a una bola cerrada y centrada en un punto arbitrario.

Solución. Sea $\varepsilon > 0$, y $\tilde{f} \in \mathcal{C}(A, \mathbb{R}^M)$. Consideremos la aplicación $\varphi : \overline{B}_{\infty}(0, \varepsilon) \to \overline{B}_{\infty}(\tilde{f}, \varepsilon)$ dada por $\varphi(f) = f + \tilde{f}$. Por un lado, φ está bien definida, pues:

$$\|\tilde{f} - \varphi(f)\|_{\infty} = \|\tilde{f} - f - \tilde{f}\|_{\infty} = \|f\|_{\infty} \le \varepsilon \Rightarrow \varphi(f) \in \overline{B}_{\infty}(\tilde{f}, \varepsilon)$$

Tenemos que φ es continua, pues la preimagen de un entorno básico (bolas abiertas) es un entorno básico. Para verlo, en lugar de φ vamos a tomar su extensión a todo el espacio (la llamaremos φ'), definiéndola de la misma forma $(f \mapsto f + \tilde{f})$.

$$\varphi'^{-1}(B_{\infty}(f,\varepsilon)) = \{x \in \mathcal{C}(A,\mathbb{R}^M) : \varphi'(x) = x + \tilde{f} \in B(f,\varepsilon)\} = \{x \in \mathcal{C}(A,\mathbb{R}^M) : ||f - \tilde{f} - x|| < \varepsilon\} = B(f - \tilde{f},\varepsilon)$$

Además, la inversa de φ existe: $\varphi^-1(g) = g - \tilde{f} \ \forall g \in \overline{B}_{\infty}(\tilde{f}, \varepsilon)$. Es continua por el mismo motivo que φ .

Por tanto, φ es un homeomorfismo.

Ejercicio 3. Sea $\{f_n\}$ una sucesión de funciones reales uniformemente continuas en todo \mathbb{R} que converge uniformemente a una función real f. ¿Puede concluirse que la función f es necesariamente uniformemente continua?.

Solución. La respuesta es afirmativa. Veamos la prueba.

Dado $\varepsilon > 0$, como $f_n \to f$ converge uniformemente, $\exists k > 0$ tal que

$$n > k \Rightarrow |f_n(x) - f(x)| < \varepsilon/3, \ \forall x \in A.$$

De otro lado, por ser f_k uniformemente continua en A, $\exists \delta > 0$ tal que

$$\forall x, y \in A \ con \ |x - y| < \delta, \ se \ tiene \ |f_k(x) - f_k(y)| < \varepsilon/3$$

Juntando ambas informaciones:

$$|f(x) - f(y)| \le |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)| < \varepsilon$$

Es decir, hemos probado que dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$\forall x, y \in A \ con \ |x - y| < \delta \ se \ verifica \ |f(x) - f(y)| < \varepsilon$$

Por tanto, f es uniformemente continua.

Ejercicio 4. Estudiar la convergencia puntual y uniforme de la sucesión de funciones f_n definidas en [0,1] mediante $f_n(x) = x - x^n$ para todo $x \in [0,1]$.

Solución. Sabemos que para $0 \le x < 1$, $f_n(x) = x - x^n \to x$, y para x = 1, tenemos que $f_n(x) = 1 - 1^n = 0 \to 0$. Por tanto, el límite puntual es:

$$f(x) = \begin{cases} x & si \quad 0 \le x < 1 \\ 0 & si \quad x = 1 \end{cases}$$

Como cada f_n es continua y f no es continua, no hay convergencia uniforme.

Ejercicio 5. Estudiad la convergencia uniforme de la sucesión de funciones f_n definidas en [0,99999] mediante $f_n(x) = x^n$ para todo $x \in [0,99999]$.

Solución. En efecto, la sucesión de funciones converge uniformemente. En primer lugar, $\{f_n\} \xrightarrow{c.p} f = 0$ por ser potencia de base menor que 1. Además, por ser una función potencial, el valor máximo que toma es $0,99999^n$. Por tanto: $|x^n| \le 0,99999^n \to 0$, luego $\{f_n\}$ converge uniformemente a f = 0.

Ejercicio 6. Estudiad la convergencia puntual y uniforme de la sucesión de funciones f_n definidas en [0,1] mediante $f_n(x) = (x - \frac{1}{n})^2$ para todo $x \in [0,1]$.

Solución. Sabemos que $\{\frac{1}{n}\}\to 0$, por lo que podemos afirmar que $\{f_n(x)\}\to x^2$ puntualmente en [0,1]. Veamos que también hay convergencia uniforme:

$$|f_n(x) - x^2| = \left| -\frac{2x}{n} + \frac{1}{n^2} \right| \le \frac{2}{n} + \frac{1}{n^2} \to 0, \ \forall x \in [0, 1].$$

Ejercicio 7. Estudiar el caracter de la siguientes series de funciones.

$$\sum_{n\geq 1} (\frac{x^n}{n!})^2 = \frac{x^{2n}}{(n!)^2}$$

$$\sum_{n\geq 1} \frac{1}{x^2+n^2}$$

$$\sum_{k>1} \frac{x^k}{k^2}$$

$$\sum_{k\geq 1} k! x^k = \sum_{k\geq 1} a_k x^k$$

$$\forall x \in (-1,1)$$
 $\frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1}$

$$(i) \sum_{n>1} \frac{sen(nx)^2}{n^2}$$

$$|sen(nx)| < 1 \implies |\frac{sen(nx)^2}{n^2}| \le \frac{1}{n^2}.$$

$$\left|\frac{sen(nx)^2}{n^2}\right| \le \frac{1}{n^2}$$

$$\sum_{n\ge 1} \frac{1}{n^2}$$
 $\Longrightarrow \sum \left|\frac{sen^2(nx)}{n^2}\right| c.u \iff \sum_{n\ge 1} \frac{sen^2(nx)}{n^2} \text{ es abs. convergente. } \Longrightarrow$

$$\sum \frac{sen^2(nx)}{n^2}$$
 converge uniformamente.

$$\frac{x^{2n}}{(n!)^2} \leq \frac{M^{2n}}{(n!)^2} con \ |x| \leq M$$

$$\frac{M^{2n}}{(n!)^2} converge$$
 $\Longrightarrow (\frac{x^n}{(n!)})^2 \text{ es c.u en } [-M, M]$ Por que,
$$\lim_{\substack{M^{2(n+1)} \\ \frac{M^{2n}}{(n!)^2} \\ \frac{M^{2n}}{(n!)^2}}} = \lim_{\substack{M^2 \\ (n+1)^2}} \frac{M^2}{(n+1)^2} = 0 < 1.$$

Ejercicio 8. Probar que
$$\frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1} \ \forall x \in (-1,1)$$

Solución. Para probarlo, se podría estudiar la convergencia de la serie de potencias, o también desarrollar el término de la izquierda como su suma de Taylor, y ver que coinciden. Sin embargo, procederemos de otro modo.

En primer lugar, notemos que $kx^{k-1} = \frac{d}{dx}(x^k)$. Por tanto, estudiemos el carácter de la serie $\sum_{k\geq 0} x^k$. Como es una serie de potencias, calculamos su radio de convergencia, y tenemos que R=1, pues $a_k=1 \ \forall k\geq 0$.

Por otro lado, consideramos la función $f(x) = \frac{1}{1-x}$. Sin mucho esfuerzo, podemos probar por inducción que $f^{k)}(0) = k! \ \forall k \geq 0$. Por tanto, tenemos que la serie de Taylor en a = 0 de f(x) es:

$$f(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \quad \forall x \in (-1,1),$$

pues la serie converge dentro del disco de convergencia. Sabemos también que la serie es derivable, y dentro del disco de convergencia, se da la siguiente igualdad, derivando en ambos miembros:

$$\frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1} \quad \forall x \in (-1,1)$$

Ejercicio 9. Encontrar un ejemplo de una sucesión de funciones $f_k:A\subseteq\mathbb{R}\to\mathbb{R}$ que cumpla:

(i)
$$\{f_k\} \to 0$$
 c.u.

$$(ii) \int_A f_k \not\to \int_A 0 = 0$$

Solución. Sea $A = [0, +\infty)$, y tomo f_k tales que $0 \le f_k(x) \le \frac{1}{k}$, y que además su integral se mantenga constante y distinta de 0. Un ejemplo de una tal función es:

$$f_k(x) = \begin{cases} 1/k & si \ 0 \le x \le k \\ 0 & si \ x \ge k \end{cases}$$

Entonces, tenemos que $\int_0^\infty f_k(x) \ dx = \int_0^k \frac{1}{k} \ dx = 1 \to 1 \neq 0.$