Math 220, Problem Set 4.

All paths/loops are piecewise of class C^1 .

- **1.** Let $f: U \to \mathbb{C}$ be a holomorphic function in a connected open set U.
 - (i) Assume that

$$|f(z) - 1| < 1$$

for all $z \in U$. Show that

$$\int_{\gamma} \frac{f'(z)}{f(z)} \, dz = 0$$

for all closed loops γ in U.

(ii) Assume that U is simply connected and $f(z) \neq 0$ for all $z \in U$. Show that

$$\int_{\gamma} \frac{f'(z)}{f(z)} \, dz = 0$$

for all closed loops γ in U.

(iii) Is it true in general that if $f(z) \neq 0$ for all $z \in U$ then

$$\int_{\gamma} \frac{f'(z)}{f(z)} \, dz = 0$$

for all closed loops γ in U?

2. Assume $f:U\to\mathbb{C}$ is a holomorphic function on a simply connected open set U such that $f(z)\neq 0$ for all $z\in U$. Let $n\geq 2$ be an integer. Show that there is a holomorphic function $g:U\to\mathbb{C}$ such that

$$g(z)^n = f(z).$$

Hint: This has something to do with problem 1(ii).

3. The following is a generalization of Liouville's theorem. Assume f is an entire function and p is a polynomial such that

$$|f(z)| \le |p(z)|$$

for |z| sufficiently large. Using Cauchy's estimate show that f is a polynomial as well.

- **4.** Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function.
 - (i) Show that if Re f is bounded (from above or below) then f is constant. You may wish to consider the function $g = e^{\pm f}$.
- (ii) Show that if Re $f \leq \text{Im } f$ then f is constant.

5. Find all entire functions $f:\mathbb{C}\to\mathbb{C}$ such that for all $z\in\mathbb{C}$ we have

$$|f(z)|^2 \le (\log(1+|z|))^3$$
.

6. Assume that $f: \Delta(0,2) \to \mathbb{C}$ is a holomorphic function such that $|f(z)| \leq M$ for |z| = 1. Show that for all $w_1, w_2 \in \overline{\Delta}(0, \frac{1}{2})$ we have

$$|f(w_1) - f(w_2)| \le 4M|w_1 - w_2|.$$

- 7. Let $f: \mathbb{C} \to \mathbb{C}$ be entire. Show that $\sum_{n=1}^{\infty} \frac{f^{(n)}(z)}{n!}$ converges uniformly on compact subsets of \mathbb{C} .
 - 8. Consider the power series expansion

$$\frac{z}{e^z - 1} = \sum_{k=0}^{\infty} B_k \cdot \frac{z^k}{k!}.$$

The expansion holds for $|z| < 2\pi$. The coefficients B_k are called the Bernoulli numbers.

- (i) Find the first non-zero Bernoulli numbers.
- (ii) Prove that $B_{2k+1} = 0$ for all $k \ge 0$.
- (iii) Show that

$$1^{p} + 2^{p} + \ldots + N^{p} = \frac{1}{p+1} \sum_{j=0}^{p} (-1)^{j} B_{j} {p+1 \choose j} \cdot N^{p+1-j}.$$

What does this formula give for p = 1, 2, 3?

Remark: More generally, the Bernoulli polynomials $B_k \in \mathbb{C}[w]$ are defined via the power series expansion

$$\frac{ze^{wz}}{e^z - 1} = \sum_{k=0}^{\infty} B_k(w) \cdot \frac{z^k}{k!}$$

so that $B_k(0) = B_k$.