MENU SEARCH INDEX DETAIL JAPANESE

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-110428

(43)Date of publication of application: 20.04.2001

(51)Int.CI.

H01M 4/86 H01B 1/06 H01B 1/12 H01M 8/02 H01M 8/10 C08G 61/12 C08G 73/00

(21)Application number: 11-288085

5

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

MORITA JUNJI

(22)Date of filing:

08.10.1999

(72)Inventor:

GYOTEN HISAAKI YASUMOTO EIICHI KUSAKABE HIROKI SAKAI OSAMU UCHIDA MAKOTO SUGAWARA YASUSHI YOSHIDA AKIHIKO

YOSHIDA AKIHIKO KANBARA TERUHISA

(54) HIGH MOLECULAR ELECTROLYSIS TYPE FUEL CELL

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent a voltage from lowering greatly, when operating a high molecular electrolysis type fuel cell at high current density.

SOLUTION: Catalysit powder or a carrier body of the catalysit powder is coated with a mixed conductive polymer having conductivity both for electrons and ions, therefore, an electrode having a roll of both a hydrogen ion channel and of an electron conductive channel can be formed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-110428

(P2001-110428A)

(43)公開日 平成13年4月20日(2001.4.20)

(51) Int.Cl.7		識別記号	FΙ				5	マ コート*(参考)
H01M	4/86		H 0 1 M	4/86			В	4 J 0 3 2
H01B	1/06		H01B	1/06			Α	4J043
	1/12			1/12			Z	5 G 3 O 1
H 0 1 M	8/02		H 0 1 M	8/02			E	5 H O 1 8
	8/10			8/10				5H026
		審査請求	未請求 請求	項の数4	OL	(全 7	7 頁)	最終頁に続く
(21)出願番号	+	特顏平 11-288085	(71)出顧人				LT	
				松下電				THE LAG
(22)出願日		平成11年10月8日(1999.10.8)	(mo) Stend de	大阪府		大子門,	員1006	香地
			(72)発明者			_L.⇔## 7	etra nonc	antu +//⊤a⇒m
				大阪府			貸1000	番地 松下電器
			(72)発明者	産業株 行天		M		
			(12)光明祖			上学問1	er i nos	番地 松下電器
				産業株			₩ 1000	
			(74)代理人			r 3		
			(IA) (VEX	弁理士		→揺	<i>(M</i>	. 2 名)
				Л	421 TAN	_ Age	O F	2-117
								最終頁に続く

(54) 【発明の名称】 高分子電解質型燃料電池

(57)【要約】

【課題】 高分子電解質型燃料電池は、高い電流密度で 運転すると、極端に電圧が低下した。

【解決手段】 触媒粒子または触媒粒子の担体を、電子・イオン両導電性を有する混合導電性高分子で被覆し、これにより水素イオンチャンネルと電子伝導チャンネルを兼ね備えた電極を構成する。

2

【特許請求の範囲】

【請求項1】 プロトン伝導性高分子電解質膜を挟んで配置した一対の電極と、前記電極の一方に燃料を供給排出し、他方に酸化剤ガスを供給排出するガス流路を有する一対のセパレータ板とを具備した高分子電解質型燃料電池において、前記電極は触媒と、電子ープロトン両伝導性を有する混合導電性材料とを具備したことを特徴とする高分子電解質型燃料電池。

【請求項2】 電極は、プロトン伝導性高分子電解質を 具備したことを特徴とする請求項1記載の高分子電解質 10 型燃料電池。

【請求項3】 混合導電性高分子は、スルホン酸基またはアルキルスルホン酸基の少なくとも一方を側鎖に有するπ共役芳香族系高分子であることを特徴とする請求項1または2記載の高分子電解質型燃料電池。

【請求項4】 混合導電性高分子は、ヘテロ環骨格を有することを特徴とする請求項1、2または3記載の高分子電解質型燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明の高分子電解質型燃料 電池に関し、特にその構成要素である電極に関する。

[0002]

【従来の技術】高分子電解質型燃料電池の電極では、反応ガスの供給路となる細孔と、水素イオン導電性高分子電解質と、電子導電体である電極材料とが形成する、いわゆる三相界面の面積の大小が、電池の放電性能を左右する。

【0003】従来、この三相界面を増大させるため、電極材料と高分子電解質とを混合分散した層を、高分子電 30解質膜と多孔質電極の界面に付与する試みがなされてきた。例えば、特公昭62-61118号公報、特公昭62-61119号公報に記載の技術では、高分子電解質を分散した溶液と、触媒化合物との混合物を高分子電解質膜上に塗着し、これを電極材料と合わせてホットプレスした後、触媒化合物を還元する方法が提案されている。

【0004】また、特公平2-48632号公報では、多孔質電極を成型後、電極上にイオン交換膜樹脂を分散した溶液を散布し、この電極とイオン交換膜とをホット 40プレスする方法が提案されている。さらに、特開平3-184266号公報では高分子樹脂表面に高分子電解質を被覆した粉末、特開平3-295172号公報では高分子電解質の粉末を電極中に混合する方法が提案されている。また、特開平5-36418号公報では、高分子電解質と触媒と炭素粉末とフッ素樹脂を混合し、成膜して電極とする方法が提案されている。以上の技術では、電極内で高分子電解質を形成するための溶液として、アルコール類が用いられている。

【0005】また、米国特許第5211984号に記載 50

の技術では、グリセリンもしくはテトラブチルアンモニウム塩を溶媒として、これに高分子電解質と触媒と炭素粉末とをインク状に分散した溶液を作成し、これをポリテトラフルオロエチレン(以下、PTFEという)製フィルム上に成型した後、固体高分子電解質膜表面に転写する方法や、固体高分子電解質膜の交換基をNa型に置換し、その膜の表面に前記のインク状分散液を塗布して125℃以上で加熱乾燥し、交換基を再度H型に置換する方法が報告されている。

【0006】一方、高分子電解質型燃料電池の特徴である高出力密度を実現するには、電極触媒層に反応ガスの供給路(ガスチャネル)を形成し、ガスの透過・拡散能を高めることが重要となる。そこでフッ素樹脂などの撥水材を電極触媒層に添加し、ガスチャネルを形成する試みがなされてきた。例えば特開平5-36418号公報に記載の技術では、PTFE粉末と触媒を担持した炭素粉末とを、高分子電解質溶液に分散・混練して触媒層を作製する方法が提案されている。また、特開平4-264367号公報に記載の技術では、触媒を担持した炭素粉末とPTFEのコロイド液との混合液を用いて電極が提案されている。

【0007】さらにJ. Electroanal. Chem. 197号 (1986年) の195頁では、PTF Eにより撥水処理した炭素粉末と触媒を担持した炭素粉末とを混合して、酸性電解液用のガス拡散電極が提案されている。一方、米国特許第5211984号では、上記のような撥水材を用いずに固体高分子電解質と触媒と炭素粉末のみで電極の触媒層を作製することが提案されている。

[0008]

【発明が解決しようとする課題】しかしながら、高分子電解質を分散した溶液に、触媒を担持した炭素粉末と、フッ素樹脂等の撥水剤、あるいは撥水処理された炭素粉末とを同時に添加すると、撥水剤や撥水処理された炭素粉末に、固体高分子電解質が多く吸着する。このとき、その分だけ固体高分子電解質と触媒との接触度合いが不均一な状態となり、結果的に、電極とイオン交換膜との界面で、十分な反応面積が確保できないという課題を有していた。

【0009】また、アルコール類の溶媒を用いた分散液を多孔質基板上に塗布した場合や、上記のインク状分散液を多孔質基板上に塗布した場合は、基板内部に分散液が侵入もしくは透過してしまうため、基板表面部分に直接に成型することができず、転写などの複雑な加工技術を必要とした。さらに上記に記載の膜表面にインク状分散液を直接塗布する方法では、膜の交換基を何度も置換する複雑な製造技術を必要とした。また、上記のフッ素樹脂の添加方法では、フッ素樹脂によって触媒微粒子が過多に被覆されて反応面積が減少し、分極特性が低下するという欠点を有していた。

【0010】一方、上記のJ. Electroana
1. Chem. 197号(1986年)195頁に記載の技術のように、PTFEにより撥水処理した炭素粉末を用いると、確かにPTFEにより触媒粒子が被覆されてしまうという現象を抑制することはできた。しかし、この提案には、高分子電解質を用いた場合の、撥水処理した炭素粉末の添加の有無や、その添加率による効果の検討が行われていなかった。さらに、触媒を担持した炭素粉末と固体高分子電解質のみとで電極を作製すると、燃料電池内で発生する生成水により、いわゆるフラッディング現象が起こり、これにより高電流密度で電池を駆動すると、電池の電圧が低くなり、不安定になるという欠点を有していた。

[0011]

【課題を解決するための手段】以上の課題を解決するために本発明の高分子電解質型燃料電池は、プロトン伝導性高分子電解質膜を挟んで配置した一対の電極と、前記電極の一方に燃料を供給排出し、他方に酸化剤ガスを供給排出するガス流路を有する一対のセパレータ板とを具備した高分子電解質型燃料電池において、前記電極は触 20 媒と、電子一プロトン両伝導性を有する混合導電性材料とを具備したことを特徴とする。

【0012】このとき、電極はプロトン伝導性高分子電解質を具備することも可能である。

【0013】また、混合導電性高分子は、スルホン酸基 またはアルキルスルホン酸基の少なくとも、また、混合 導電性高分子は、ヘテロ環骨格を有することが有効であ る。

[0014]

【発明の実施の形態】本発明はこのような課題を解決す 30 るもので、プロトン伝導性高分子電解質と触媒とを充分かつ均一に接触させることにより、電極内部の反応面積を増大させ、より高い性能を発揮することを目的とする。

【0015】また、混合導電性高分子電解質を用い触媒 担体を被覆することで水素イオンチャネルと電子伝導チャネルを形成し、触媒利用率を向上させることで高い性 能を発揮する固体高分子型燃料電池の製造方法を提供することを目的とする。

【0016】このためには、触媒担持カーボンと、電子 40 伝導性を有する高分子電解質とを混練することで、触媒 層中に高分散した触媒担持カーボンの間を高分子電解質 が被覆し、これにより、触媒担持カーボン相互に連続した電子伝導チャンネルを形成する。

【0017】このとき、高分子電解質はヘテロ環構造を有することで連続した π 電子共役を形成し、触媒担持カーボンとの間に不断無く電子伝導性を維持する。この π 電子共役は複雑な立体制御を必要とする。しかし、ポリアニリンもしくは該誘導体を用いることで容易に立体制御が可能となる。

【0018】さらに、高分子電解質は側鎖の末端官能基として、水素イオン交換能を有するスルホン酸基またはアルキルスルホン酸基を兼ね備えることで、触媒担持カーボンを被覆しても触媒利用率を低減することなく連続した電子伝導チャンネルを形成することができる。

【0019】このとき、高分子電解質は10-0~10-1 S/cm程度の電子伝導度を有する必要がある。この電子伝導度を維持することで、触媒担持カーボンと高分子電解質相互の電子伝導を維持すると同時に、内部抵抗による電池性能の低下を抑制することができる。

【0020】一方、高分子電解質は10-2~10-4 S/cm程度のイオン伝導性を有することで前述同様内部抵抗による電池性能の低下が制御できると同時に触媒利用率を向上できる。

【0021】さらに前記触媒担持カーボンと前記混合導電性高分子電解質に加え、イオン伝導性高分子電解質を添加することで水素イオン交換能が向上する。この効果は、特に電池を高電流密度で駆動したときに顕著である。

【0022】以上の構成の例を図を用いて説明する。図1に従来の触媒層の模式図を示した。図1は高分子電解質膜4と電極支持体5の間の触媒層の様子を示したものである。触媒担持カーボン1-1と、触媒担持カーボン1-2、触媒粒子2およびイオン交換樹脂3-1の間において、1-1,1-2両触媒担体表面で水素ガスの水素イオンへの解離反応が生じる。しかし、1-1,1-2それぞれで発生した電子は、触媒担体相互の間を移動することが難しく、その結果、触媒利用率を低下させてしまう。

【0023】一方、図2に記載したように、触媒担持カーボン1-1,1-2の間に混合導電性高分子を配置することで、1-1,1-2相互の電子のやりとりが可能になり、触媒利用率が向上する。さらに前記触媒担持カーボンと前記混合導電性高分子とのつながりが電極触媒層中で連続的に続くことで全体的に触媒利用率が向上される。

[0024]

【実施例】以下、本発明の具体例を説明する。

【0025】(実施例1) 粒径1~10nmの白金粒子を20重量%担持した触媒担持炭素粉末を、混合導電性高分子溶液(5重量%アルコール溶液)に加え、さらに等量のメタノールを加え撹拌することで触媒担持カーボンの分散溶液を得た。分散液は担体であるカーボンと混合伝導性高分子との固形分重量比を1/1に調製した。この時、溶媒は前記混合導電性高分子の溶解性と前記触媒担持カーボンの分散性が良好であれば、アルコールに制限されることはない。ここで混合導電性高分子としては、側鎖に一(CH2)2SO3Hを有するスルホン化ポリアニリンを用いた。

【0026】この触媒担持カーボン分散液を、カーボン

ペーパー (東レ製TGP-H-120) に膜厚0.36 mmで塗工し、触媒反応層を有する電極を得た。この電極を触媒面を内側にして、高分子電解質膜 (Dupon製、Nafion112)の両側に配し、ホットプレスを行い、電極一電解質接合体 (MEA) を作製した。この電極一膜接合体は、正極、負極共に単位電極面積あたりの白金触媒量が0.5 mg/cm²、混合導電性高分子及び混合導電性高分子とイオン交換樹脂の添加量が1.2 mg/c m²となるよう作成した。

【0027】このMEAをセパレータ板で挟み込んで単 10 電池の構成とした。ここで用いたセパレータ板は、カーボン粉末材料を冷間プレス成形したカーボン板に、フェノール樹脂を含浸・硬化させガスシール性を改善した樹脂含浸したものを用い、これに切削加工でガス流路を形成した。ガス流路は、幅2mm、深さ1mmとした。ガス流路の周辺部には、ガス供給・排出用と、電池の温度を制御するための冷却水を供給・排出するためのマニホルド孔を設けた。

【0028】このようにして単電池を50セル積層し、両端部に金属製の集電板と電気絶縁材料でできた絶縁板、さらに端板を順に重ね合わせ、そして、これらを貫通させたボルトとナットにより、両端板を締結して積層電池を作製した。この時の締結圧はセパレータの面積当たり10kgf/cm²とした。電池モジュール締結のための締結ロッド部は、ガスの給排出口が開いている側面とは異なる側面に設けた。

【0029】次に、フェノール樹脂をガスシール材として用い、この溶液を積層電池の側面に塗布乾燥させることによって積層電池の側面を被覆し、シール部を形成した。この時、ガスの供給排出口、冷却水の供給排出口が、シール材により閉塞されないようにした。また、外部マニホールドのシール面と接する部分は、できるだけ平滑な面が得られるよう注意してフェノール樹脂を塗布した

【0030】つぎに、ステンレス鋼製の半円筒状の外部マニホールドを積層電池側面に露出する空気の供給口の列を覆うように設けた。同様にして、空気の排出口、水素の供給口とその排出口、冷却水の供給口とその排出口の列をそれぞれ覆うようにマニホールドを設けた。これ

らの外部マニホールドの固定は端板部ビスで行った。また、外部マニホールドと電池の側表面を覆うシール材との間のシールは、独立気泡を有するのエチレンープロピレンージエン三元共重合体配合物(EPDM)シートを所定の外部マニホールドシール面の形にカットしてガスケットとした。

【0031】このようにして作成した電池スタックを本 実施例の電池Aとした。

【0032】(実施例2)本実施例では、触媒担持カーボンの分散溶液にイオン交換樹脂を添加したものを作成した。まず、粒径1~10nmの白金粒子を20重量%担持した触媒担持炭素粉末を混合導電性高分子溶液(5重量%エタノール溶液)に加え、更にイオン交換樹脂

(デュポン社製Nafionの5重量%エタノール溶液)を加え撹拌することで、触媒担持カーボンの分散溶液を得た。分散液は担体であるカーボンに対し混合導電性高分子とイオン交換樹脂の固形分重量比を1/1に調製した。この溶液を用いて実施例1と同様に触媒層を形成し、電池スタックBを作成した。本実施例では、触媒用の溶液の組成以外は、実施例1と同一とした。

【0033】(比較例1)比較例とした、触媒層に混合 導電性高分子を添加していないものを作成した。まず、 粒径1~10nmの白金粒子を20重量%担持した触媒 担持炭素粉末を、イオン交換樹脂(デュポン社製Nafionの5重量%エタノール溶液)に加え、1ープタノールを加え、撹拌することで触媒担持カーボンの分散溶液を得た。この溶液を用いて実施例1および実施例2と同一のプロセスと構成材料で電池スタックXを作成した

【0034】(評価)以上の電池スタックA、Bおよび Xに対し、電池温度を75℃に設定し、負極側に水素ガスを露点80℃で加湿し利用率80%で導入し、正極には空気を露点60℃で加湿し利用率40%で導入し、放電試験を行った。その結果を、図3に示した。また、表1には、単セルあたりの電池電圧を850mVとした時の電流密度と、逆に駆動電流を電極面積あたり1000 A/cm²としたときの電池の閉路電圧を示した。

[0035]

【表 1 】

		850mVにおける 電流密度(mA/cm ²)	1000mA/cm ² における電池電圧(V)
従来例	×	9	0.45
実施例1	Α	60	0.57
実施例2	В	50	0.62

【0036】表1において、電池電圧を850mVとしたときの電流密度を比較してみると、実施例の電池AとBは、それぞれ60mA/cm²、50mA/cm²の値を示した。これは比較例の電池Xの9mA/cm2に対 50

し、 $5\sim6$ 倍の良好な特性を示した。この結果は、本実施例で作成した電池の電極触媒層における触媒反応面積が、 $5\sim6$ 倍になったことを示唆するものである。

【0037】電極の触媒層において、図2に示したよう

な孤立分散した触媒担持カーボンは、比較例1のように イオン交換樹脂で被覆した場合、触媒上で燃料ガスの酸 化反応は電子の電導経路が断たれるため進行しない。一 方、本発明の場合、孤立分散した触媒担持カーボンを混 合導電性高分子で被覆することで、触媒担持カーボン間 を連続した電子伝導経路で電気的に連結することが出来 る。これにより、今まで燃料ガスの酸化反応に起用して いなかった触媒を有効に利用できるようになると考え る。

高分子のイオン伝導度がイオン交換樹脂に比べ低く、これが触媒層中の分極の増大をもたらしたものと考える。これに対して、電池Bは触媒層中にイオン交換樹脂を加えることで、触媒の活性面積を向上すると共に、高い電流密度で運転したときも分極の増大を抑制することができたものと考える。

【0039】(実施例3)実施例1では、混合導電性高分子として、スルホン化ポリアニリンを用いたが、本実施例では、これ以外のヘテロ環骨格を有する混合伝導性材料を評価した。同時に、混合する量比の検討を行った。その結果を表2に示した。本実施例の電池は、混合導電性高分子の種類と混合量以外は実施例1の電池Aと同一とした。表2では、混合導電性高分子として、各種のスルホン化ポリアニリン、スルホン化ポリピロール、スルホン化ポリーpーフェニレンを用いた。

[0040]

【表 2】

高分子の種類	混合比 カーポン: 高分子	1A/cm ² における 電池電圧(V)
	1 : 0.5	0.60
ポリアニリン	1:1	0.57
倒鎖-(CH ₂) ₂ SO ₃ H	1 : 1.5	0.50
_	1 : 2	0.40
	1 : 0.5	0.62
ポリアニリン	1:1	0.59
侧鎖-(CH₂)₄ SO₃H	1 : 1.5	0.52
	1 : 2	0.45
-	1 : 0.5	0.64
ポリアニリン	1:1	0.60
側鎖-(CF ₂) ₄ SO ₃ H	1 : 1.5	0.55
	1 : 2	0.48
	1:0.5	0.58
ポリピロール	1:1	0.55
側鎖-(CH ₂) ₂ SO ₃ H	1 : 1.5	0.48
	1:2	0.38
	1 : 0.5	0.60
ポリピロール	1:1	0.57
側鎖-(CH ₂) ₄ SO ₃ H	1 : 1.5	0.50
	1 : 2	0.41
	1 : 0.5	0.63
ポリピロール	1:1	0.59
侧鎖-(CH ₂) ₄ SO ₃ H	1 : 1.5	0.54
	1 : 2	0.48

【0041】表2に於いて、触媒層を形成する際の触媒を担持したカーボンと混合導電性高分子との混合比は、カーボンの混合比が高いほど優れた特性を有することを確認したが、あまり高いとうまく塗布することが出来なかった。また、実施例1と同様にスルホン化ポリピロール、スルホン化ポリーpーフェニレンを用いても、優れた特性を持つ電池が構成できることを確認した。

[0042]

【発明の効果】以上の様に本発明は、電極の触媒層にお 50

いて混合導電性高分子が触媒担持カーボンを被覆し、分散した触媒担持カーボンを互いに電気的に結びつけ、連続な電子伝導経路を形成することで、有効に触媒を利用することが可能になり、高い効率の電池特性を得ることができる。

【図面の簡単な説明】

- 【図1】従来の電極の触媒層の構成を示した図
- 【図2】本発明の電極の触媒層の構成を示した図
- 【図3】本発明の第1実施例と第2実施例の電池の特性

を示した図

【符号の説明】

1-1 触媒担持カーボン

1-2 触媒担持カーボン

2 触媒粒子

3-1 イオン交換樹脂

- 2 混合導電体

高分子電解質膜

電極支持体

【図1】

【図2】

【図3】

フロントページの続き

(51) Int.C1.7 // C08G 61/12 73/00 識別記号

FΙ C 0 8 G 61/12 73/00 テーマコード(参考)

(72)発明者 安本 栄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 日下部 弘樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 酒井 修 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72) 発明者 内田 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)発明者 菅原 靖 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72) 発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

F ターム(参考) 4J032 BA14 BB01 CA04 CB01 CG01 4J043 PA02 PC186 QB02 SA05 SA82 SB01

5G301 CA30 CD01

5H018 AA06 AS02 AS03 BB08 DD06

EE03 EE05 EE17

5H026 AA06 BB04 BB08 CX05 EE02

EE11 EE18