Fast Structured Decoding for Sequence Models

(Sun et al., NeurIPS 2019)

愛媛大 M1 出口 祥之

e-mail: <deguchi@ai.cs.ehime-u.ac.jp>

第1回 NAT 勉強会: 2020/03/05

Links

- Fast Structured Decoding for Sequence Models (Sun et al, NeurIPS 2019)
 - https://papers.nips.cc/paper/ 8566-fast-structured-decoding-for-sequence-models
- ソースコード (Fairseq)
 - nat_crf_transformer.py
 - dynamic_crf_layer.py

Introduction

- 従来の Non-Autoregressive Transformer (NAT) は出力単語 同士において条件付き独立を仮定
 - ▶ 単語の共起性などをうまく考慮できず,生成文の一貫性を犠牲にする
- linear-chain Conditional Random Fields (CRF) レイヤを導入することで隣り合った単語間の共起性を考慮
 - ト 後述する低ランク近似とビーム近似により, 語彙数 $|\mathcal{V}|$ 依存の巨大な計算量 $O(|\mathcal{V}|^2)$ を抑える
 - ▶ 提案手法 Dynamic CRF transition により性能改善

Transformer-based Non-autoregressive Translation Model

- (Gu+, 2017) モデルをベースにし た翻訳モデル : NART
- デコーダの入力をシンプルに設計
 - ▶ fertility による単語コピーを行 わない
 - ► <pad>系列の末尾に <eos>を付加した系列を用いる
 - 訓練時は目的言語文の文長個
 - 推論時は後述
 - ▶ 入力がとてもシンプルだが,実 験ではうまく機能する

(b) Non-Autoregressive Transformer with Conditional Random Fields

Conditional random field

- Non-Autoregressive なモデルのマルチモダリティ問題を構造化推論モジュールにより対処
 - ▶ 出力単語をラベルとした系列ラベリング問題と見なし, CRF を用いる

$$P(y|x) = \frac{1}{Z(x)} \exp(\sum_{i=1}^{n} s(y_i, x, i) + \sum_{i=2}^{n} t(y_{i-1}, y_i, x, i))$$

Figure 2: Illustration of the decoding inconsistency problem in non-autoregressive decoding and how a CRF-based structured inference module solves it.

Incorporating CRF into NART model

$$P(y|x) = \frac{1}{Z(x)} \exp(\sum_{i=1}^{n} s(y_i, x, i) + \sum_{i=2}^{n} t(y_{i-1}, y_i, x, i))$$

- CRF をそのままモデルに適用すると遷移行列のサイズが $|\mathcal{V}| imes |\mathcal{V}|$ になる
 - ▶ 語彙数 32k のとき, 32k² = 1.024B となり, 実用不可
 - ▶ 低ランク近似とビーム近似により解決

Low-rank approximation for transition matrix

• 遷移行列 M を低ランクな行列の積で表現

$$M = E_1 E_2^{\top}$$
 where $E_1, E_2 \in \mathbb{R}^{|\mathcal{V}| \times d_t}$

• 分配関数 Z(x) ・ビタビ復号以外の計算効率化

7

Beam approximation for CRF

- 分配関数 Z(x)・ビタビ復号時の計算に使用
- 各位置でk-bestを求める
 - ▶ 分配関数 Z(x) に正解文の系列を含ませて計算
- k-best遷移行列を用いて計算 $(|\mathcal{V}| \times |\mathcal{V}| \rightarrow k \times k)$
- 低ランク近似とビーム近似によりCRFの計算量は $O(|\mathcal{V}|^2) o O(nk^2)$

Dynamic CRF transition

- 遷移行列 M は一系列に対して固定
- 位置iごとに変化する動的な遷移行列 M^i を定義

$$M_{dynamic}^{i} = f([h_{i-1}, h_{i}])$$

 $M^{i} = E_{1}M_{dynamic}^{i}E_{2}^{\top}$
 $t(y_{i-1}, y_{i}, x, i) = M_{y_{i-1}, y_{i}}^{i}$

 $lephi f: \mathbb{R}^{2d_{model}}
ightarrow \mathbb{R}^{d_t imes d_t}$ は2層のFeed Forward Network

9

Joint training with vanilla non-autoregressive loss

• モデル学習を効率的に行うため,目的関数 \mathcal{L} はCRFの出力の NLL 損失(\mathcal{L}_{CRF})と NART の NLL 損失(\mathcal{L}_{NAR})の荷重和とする

$$\mathcal{L} = \mathcal{L}_{CRF} + \lambda \mathcal{L}_{NAR}$$

※ λ は損失の重みをコントロールするハイパーパラメータ

Inference

目的言語文の文長T'

訓練時 正解文長を使用

推論時 ソース文長 T から決定: T' = T + C

- C は訓練データの文長の統計情報により決定される定数
 - ▶ 言語ごとの文の平均長によって決定

推論時の rescoreing

- [(T+C)-B,(T+C)+B] の範囲で異なるターゲット文長の翻訳候補を生成
 - B は 4 or 9 に設定 → 候補の数は 9 or 19 個
- Autoregressive な Transformer を教師モデルとして最適な 翻訳を選択

Experiments

- データセット: WMT14 En-De/De-En, IWSLT14 De-En
- 低ランク近似の遷移行列の埋め込み次元: $d_t=32$
- ビーム近似のビーム幅: k = 64
- 目的関数 $\mathcal{L} = \mathcal{L}_{CRF} + \lambda \mathcal{L}_{NAR}$: $\lambda = 0.5$

Results

- 既存の Non-autoregressive モデルより大幅に性能 改善
- WMTのEn-Deにおい て,強力な Autoregressiveモデル (LSTM-base, CNN-base)よりも優れ た性能
- ARTとNARTの性能差 (BLEU)を0.61まで縮 めた
- latencyについて、 NART-CRF/DCRFは、 rescoreringなしで 11.1/10.4, rescorering ありでも4.45/4.39 倍 の速度向上

Table 2: Performance of BLEU score on WMT14 En-De/De-En and IWSLT14 De-En tasks. The number in the parentheses denotes the performance gap between NART models and their ART teachers. "/" denotes that the results are not reported. LSTM-based results are from [2, 27]; CNN-based results are from [5, 28]; Transformer [1] results are based on our own reproduction.

	WMT14		IWSLT14		
Models	En-De	De-En	De-En	Latency	Speedup
Autoregressive models					
LSTM-based [2]	24.60	/	28.53	/	/
CNN-based [5]	26.43	/	32.84	/	/
Transformer [1] (beam size = 4)	27.41	31.29	33.26	387ms‡	1.00×
Non-autoregressive models					
FT [6]	17.69 (5.76)	21.47 (5.55)	1	39ms [†]	15.6× [†]
FT [6] (rescoring 10)	18.66 (4.79)	22.41 (4.61)	/	79ms [†]	7.68× [†]
FT [6] (rescoring 100)	19.17 (4.28)	23.20 (3.82)	/	257ms [†]	2.36׆
IR [9] (adaptive refinement)	21.54 (3.03)	25.43 (3.04)	/	/	2.39× [†]
LT [15]	19.80 (7.50)	/	/	105ms [†]	/
LT [15] (rescoring 10)	21.00 (6.30)	/	/	/	/
LT [15] (rescoring 100)	22.50 (4.80)	/	/	/	/
CTC [13]	17.68 (5.77)	19.80 (7.22)	/	/	3.42׆
ENAT-P [29]	20.26 (7.15)	23.23 (8.06)	25.09 (7.46)	25ms†	24.3׆
ENAT-P [29] (rescoring 9)	23.22 (4.19)	26.67 (4.62)	28.60 (3.95)	50ms†	12.1׆
ENAT-E [29]	20.65 (6.76)	23.02 (8.27)	24.13 (8.42)	$24ms^{\dagger}$	25.3׆
ENAT-E [29] (rescoring 9)	24.28 (3.13)	26.10 (5.19)	27.30 (5.25)	49ms [†]	12.4׆
NAT-REG [8]	20.65 (6.65)	24.77 (6.52)	23.89 (9.63)	$22ms^{\dagger}$	27.6׆
NAT-REG [8] (rescoring 9)	24.61 (2.69)	28.90 (2.39)	28.04 (5.48)	$40ms^{\dagger}$	15.1× [†]
VQ-VAE [16] (compress 8×)	26.70 (1.40)	/	/	81ms [†]	$4.08 \times^{\dagger}$
VQ-VAE [16] (compress 16×)	25.40 (2.70)	/	/	58ms [†]	5.71× [†]
Non-autoregressive models (Ours)					
NART	20.27 (7.14)	22.02 (9.27)	23.04 (10.22)	26ms [‡]	14.9× [‡]
NART (rescoring 9)	24.22 (3.19)	26.21 (5.08)	26.79 (6.47)	50ms [‡]	7.74ׇ
NART (rescoring 19)	24.99 (2.42)	26.60 (4.69)	27.36 (5.90)	74ms [‡]	5.22ׇ
NART-CRF	23.32 (4.09)	25.75 (5.54)	26.39 (6.87)	35ms‡	11.1ׇ
NART-CRF (rescoring 9)	26.04 (1.37)	28.88 (2.41)	29.21 (4.05)	60ms‡	6.45ׇ
NART-CRF (rescoring 19)	26.68 (0.73)	29.26 (2.03)	29.55 (3.71)	87ms‡	4.45ׇ
NART-DCRF	23.44 (3.97)	27.22 (4.07)	27.44 (5.82)	37 <i>ms</i> ‡	10.4ׇ
NART-DCRF (rescoring 9)	26.07 (1.34)	29.68 (1.61)	29.99 (3.27)	63ms‡	6.14ׇ
NART-DCRF (rescoring 19)	26.80 (0.61)	30.04 (1.25)	30.36 (2.90)	88ms‡	4.39ׇ

Analysis

- Dynamic CRFの効果は、En-Deでは小さく、De-Enで大きい
 - ▶ 言語間の特性が原因
- ビーム近似の有効性
 - ▶ 完全な遷移行列にどれほど適合するか?
 - ト ビーム近似のビーム幅を64,評価時のビーム幅kを変えて実験
 - k = 16 以降の上がり幅は小さい
 - 訓練時のビーム幅よりも小さい k=16 の時点ですでに良く 近似できている

Conclusion and Future Work

Conclusion

- Non-autoregressive なモデルのマルチモダリティ問題を解決するため、 linear-chain CRFを導入し、単語間の共起関係を扱えるようにした
- 計算量が語彙数に依存しない, 低ランク近似, ビーム近似を提案
- 位置毎のコンテキストをモデル化するDynamic CRFを提案

Future Work

- Autoregressiveモデルとのギャップを埋める
- rescoring の処理によってlatencyが増加している
 - ▶ 目的言語文の文長を予測するモジュールが役立つかもしれない

	WMT14		IWSLT14		
Models	En-De	De-En	De-En	Latency	Speedup
Autoregressive models					
Transformer [1] (beam size = 4)	27.41	31.29	33.26	387ms‡	1.00×
Non-autoregressive models (Ours)					
NART-CRF	23.32 (4.09)	25.75 (5.54)	26.39 (6.87)	35ms‡	11.1ׇ
NART-CRF (rescoring 9)	26.04 (1.37)	28.88 (2.41)	29.21 (4.05)	60ms‡	6.45ׇ
NART-CRF (rescoring 19)	26.68 (0.73)	29.26 (2.03)	29.55 (3.71)	87ms‡	4.45ׇ
NART-DCRF	23.44 (3.97)	27.22 (4.07)	27.44 (5.82)	37ms‡	10.4ׇ
NART-DCRF (rescoring 9)	26.07 (1.34)	29.68 (1.61)	29.99 (3.27)	63ms‡	6.14ׇ
NART-DCRF (rescoring 19)	26.80 (0.61)	30.04 (1.25)	30.36 (2.90)	88ms‡	4.39ׇ