Feedback Voltage & Transconductance Amplifiers

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- **♦ Definitions**
- **♦** Series-shunt FB for Voltage amplifiers.
- **♦** Series-series FB for Transconductance amps.

Ideal feedback

$$v_{\varepsilon} = v_{IN} - H v_{OUT}$$

$$v_{OUT} = G v_{\varepsilon}$$

$$v_{IN} = \frac{G}{1 + GH} \approx \frac{1}{H}$$

if the loop gain LG = GH >> 1

Gray, Hurst, Lewis, Meyer: Design of analog integrated circuits, Wiley 2001

Shunt-shunt feedback configurations

$$LG = \frac{V_{OUT}}{V_{IN}} = A_{VOL} = A_0$$

$$A_0 \approx 10^4 \dots 10^6$$
OL Open Loop

$$A_R = R_F$$

$$R_{IN} \approx 0$$

Input shunt :
$$R_{IN} = \frac{R_{INOL}}{1+LG}$$

Output shunt :
$$R_{OUT} = \frac{R_{OUTOL}}{1+LG}$$

Calculation loop gain or return ratio

Independent sources : voltage source to zero current source to infinity

Break loop where impedances are very different Find the loop gain = return ratio

Calculation loop gain - alternate

LG =
$$\frac{v_{OUT}}{v_{IN}} = A_{vOL} = A_{OU}$$

$$A_0 \approx 10^4 \dots 10^6$$
OL Open Loop

Shunt-shunt FB pair in CMOS

Shunt-shunt FB pair in bipolar

$$A_R = R_F$$

$$LG = g_{m1}r_{o1} \frac{r_{\pi 1}}{R_F + r_{\pi 1}}$$

Loop gain or return ratio

Series-shunt feedback configurations

$$A_v = 1$$
 $R_{IN} = \infty$

IN: series FB: R_{IN} 1 OUT: shunt FB: R_{OUT}

IN: series FB: R_{IN}1 OUT: shunt FB: R_{OUT}

Calculation loop gain

$$LG = \frac{v_{OUT}}{v_{IN}} = \frac{R_1}{R_1 + R_2} A_{vOL}$$

$$A_{\text{vOL}} \approx A_0 \approx 10^4 \dots 10^6$$
OL Open Loop

$$A_{v} = 1 + \frac{R_{2}}{R_{1}}$$

$$R_{IN} \approx \infty$$

Input series : $R_{IN} = R_{INOL} (1+LG)$

Output shunt :
$$R_{OUT} = \frac{R_{OUTOL}}{1+LG}$$

Shunt & series at input & output

Shunt FB decreases the impedance

Series FB increases the impedance

$$R_{IN} = \frac{v_{IN}}{i_{IN}} \quad \text{ }$$

Input- & output impedances

Input Shunt Series
$$R_{OUT} = \frac{R_{OUTOL}}{1 + LG} \quad R_{OUT} = R_{OUTOL}(1 + LG)$$
Shunt $R_{IN} = \frac{R_{INOL}}{1 + LG}$ $\frac{v_{OUT}}{i_{IN}} = A_R$ $\frac{i_{OUT}}{i_{IN}} = A_I$

Series $R_{IN} = R_{INOL}(1 + LG)$ $\frac{v_{OUT}}{v_{IN}} = A_V$ $\frac{i_{OUT}}{v_{IN}} = A_G$

Shunt vs series feedback

Shunt feedback lowers impedance levels : higher bandwidths

Series feedback increases impedances : lower node poles

Ouput shunt best for interconnect to next stage!

Output series acts as current source!

Shunt versus series for sensors

Table of contents

- **♦** Definitions
- **♦** Series-shunt FB for Voltage amplifiers
- **♦** Series-series FB for Transconductance amps

Series-shunt FB configuration

Series-shunt FB: loop gain

Series-shunt FB: input resistance

Series-shunt FB: output resistance

Series-shunt FB pair: loop gain

Series-shunt FB pair: series input

Series-shunt FB pair: gain input stage

$$R_{L} < r_{o} + \frac{1}{R_{L}} v_{OUT} + \frac{1}{R_{2}} v_{OUT} + \frac{1}{R_{2}} v_{OUT} + \frac{1}{R_{1}} v_{OUT} + \frac{1}{R_{2}} v_{OUT} + \frac{1}$$

Series-shunt FB pair: input & output resistance

Series-shunt FB pair: loop gain

Series-shunt FB pair: output loading

$$A_V = \frac{R_2 + R_1}{R_1}$$

$$g_{m1}r_{o1}\,g_{m2}\,\,\frac{r_{o2}\,R_1}{R_1\!+\!R_2\!+\!r_{o2}}$$

$$R_{OUT} = \frac{(R_1 + R_2)//r_{o2}}{LG} \approx 0 ??$$

Output loading: $R_2 \approx r_{o2}$

Series-shunt FB pair: output loading with R

$$A_V = \frac{R_2 + R_1}{R_1}$$

$$g_{m1}r_{o1}g_{m2} = \frac{r_{o2}//R_3 R_1}{R_1 + R_2 + r_{o2}//R_3}$$

$$R_{OUT} = \frac{(R_2 + R_1)//r_{o2}//R_3}{LG} \approx 0.22$$

Output loading: $R_2 \approx R_3 \approx r_{o2}$

Series-shunt pair in BiCMOS

$$A_{V} = \frac{R_{2} + R_{1}}{R_{1}}$$

$$LG =$$

$$g_{m1}r_{o1} g_{m2}r_{o2} \frac{R_{1}}{R_{1} + R_{2}}$$

$$R_{IN} = R_{INOL} LG \approx \infty$$

$$R_{INOL} = r_{\pi 1} + \beta (R_{1}//R_{2})$$

$$R_{OUT} = \frac{1/g_{m3}}{R_{1}} \approx 0$$

Series-shunt FB pair with resistances

Input loading : R_{IN} < ∞

$$R_{OUTOL} = \frac{1}{g_{m3}} + \frac{R_{L2}//r_{o2}}{\beta}$$

Table of contents

- **◆** Definitions
- **♦** Series-shunt FB for Voltage amplifiers.
- **♦** Series-series FB for Transconductance amps.

Series-series feedback: gain

Series-series feedback: in- & output resistances

Series-series feedback with load RL

Ideal current source

$$i_{OUT} = \frac{v_{IN}}{R_E}$$

$$LG = A_0$$

$$R_{OUT} = R_{OUTOL} LG$$

 $R_{OUTOL} \approx r_o (1+g_m R_E)$

Series-series feedback: two outputs

Series-series FB triple

Series-series FB triple

Series-series triple

Input loading : R_{IN} < ∞

Wooley, JSSC Feb.71, 24-34

$$A_V = -\frac{R_2 + R_1}{R_1} \frac{R_{L3}}{R_{E12}}$$

$$R_{E12} = R_E // (R_1 + R_2)$$

LG ≈
$$g_{m2}(r_{o2}//R_{L2}) \frac{R_{L1}//r_{\pi 2}}{R_2}$$

$$R_{IN} = R_{INOL} LG \approx \infty$$

$$R_{INOL} = r_{\pi 1} + \beta (R_1 / / R_2)$$

$$R_{OUT} = R_{L3}$$

Nonideal single-transistor FB

$$A_G \approx \frac{1}{R_E} \quad A_v \approx -\frac{R_L}{R_E}$$

$$LG = g_m R_E (>>1)$$

$$R_{IN} = r_{\pi} + \beta R_{E}$$

$$R_{OUT} = R_L // r_{oL}$$

Output loading: $R_L \approx r_{oL} = r_o (g_m R_E)$

Input loading : $R_S < R_{IN}$ $R_{IN} = r_{\pi} + \beta R_E$

Decreasing distortion by feedback

By tunable feedback

Ref.Torrance et al CAS Nov.85, 1097-1104

Decreasing distortion by more feedback

Additional local FB

More FB with opamps

Low-pass filter

High-frequency booster

$$A_{v0} = 2 R_L/R_E$$

$$A_v = A_{v0} (1 + j \frac{f}{f_z})$$

$$f_z = \frac{1}{2\pi R_E C_E}$$

Single-transistor FB with two outputs

$$A_{v1} \approx -\frac{R_L}{R_E}$$
 $A_{v2} \approx 1$

$$LG = g_m R_E (>>1)$$

$$R_{IN} = r_{\pi} + \beta R_{E}$$

$$R_{OUT1} = R_L // r_{oL}$$

$$R_{OUT2} = 1/g_m + R_S/\beta$$

Output loading: $R_L \approx r_{oL} = r_o (g_m R_E)$

Input loading : $R_S < R_{IN}$ $R_{IN} = r_{\pi} + \beta R_E$

Table of contents

- **◆** Definitions
- **♦** Series-shunt FB for Voltage amplifiers.
- **♦** Series-series FB for Transconductance amps.