Question Number	Answer		Mark
18(a)	Use of trigonometry Vertical component = 34 (m s ⁻¹)	(1) (1)	2
	Example of calculation $52 \text{ m s}^{-1} \times \sin 41^{\circ} = 34.1 \text{ m s}^{-1}$		
18(b)	Method 1:		
	Use of $s = u t + \frac{1}{2} a t^2$ with $s = 11$ m and $a = -9.81$ m s ⁻²	(1)	
	Use of quadratic formula	(1)	
	t = 6.62 (s) [Allow ecf from (a)]	(1)	
	Method 2: Use of $v = u + at$, with $v = 0$ to find time to max height [3.48 s] Use of $s = \frac{1}{2}(u + v) t$, or other correct <i>suvat</i> equation, to find max height [59.3 m]	(1)	
	And Use of $s = u t + \frac{1}{2} a t^2$ to find time to fall to 11 m [3.14 s]	(1)	
	t = 6.62 (s) depending on rounding of (a) [Allow ecf from (a)]	(1)	3
	(allow ecf from (a))	(-)	
	[Allow any valid suvat method]		
	Example of calculation Let time to max height = t		
	$11 \text{ m} = 34.1 \text{ m s}^{-1} \times t - \frac{1}{2} \times 9.81 \text{ m s}^{-2} \times t^2$		
	$4.91 \times t^2 - 34.1 \text{ m s}^{-1} \times t + 11 \text{ m} = 0$		
	$t = (34.1 \pm \sqrt{(34.1^2 - 4 \times 11 \times 4.91)} \text{ m s}^{-1} \div 9.81 \text{ m s}^{-2}$ = 6.62 s (or 0.34 s)		
18(c)			
	Resolves for horizontal component of velocity	(1)	
	Use of $s = v t$	(1)	•
	260 m so no (Allow ecf from (b) with correct conclusion based on student's value)	(1)	3
	(Allow cer from (b) with correct conclusion based on student's value)		
	Example of calculation		
	Horizontal component of velocity = $52 \text{ m s}^{-1} \times \cos 41^{\circ} = 39.2 \text{ m s}^{-1}$ $s = 39.2 \text{ m s}^{-1} \times 6.62 \text{ s} = 260 \text{ m}$		
	$s = 39.2 \text{ m s}^{-1} \times 6.62 \text{ s} = 260 \text{ m}$ Distance required 245 m to 255 m and 260 m > 255 m so no.		
	time = 3.48 s		
	max height =59.32 m distance = 136.5 m		
	60		
	50		
	30		
	20		
	10		
	time = 0.00 s		
	horizontal velocity = 34.12 m s^{-1} vertical velocity = 39.24 m s^{-1} time = $3.48 \text{ s} + 3.14 \text{ s} = 6.62 \text{ s}$ height = 11.0 m		
	distance = 136.5 m + 123.2 m = 259.7 m		