Probabilistic models for Pronunciation and Spelling

Probabilistic models for Pronunciation and Spelling

- In this Topic discusses the Problem of detecting and Correcting spelling errors.
- a. First introduce the problems of detecting and Correcting spelling errors; also summarize typical human spelling error patterns
- b. Introduce ways to solve the spelling problem: Bayes Rule and the noisy channel model.

Probabilistic models for Pronunciation and Spelling

- Dealing with spelling errors.
- Spelling error patterns.
- Detecting non word errors.
- Probabilistic model.
- Applying the Bayesian method to spelling
- Minimum edit distance

Dealing with spelling errors

- Classification of Spelling correction.
 - **1. Non word error detection :** Detecting spelling errors that result in non-words.
 - Isolated-word error correction: Correcting spelling errors that result in non words. (correcting graffe to giraffe, but looking only at the word in isolation.)
 - **3. Context dependent error detection and correction:** using the context to help detect and correct real word errors. (dessert for desert or there for their)

Dealing with spelling errors

- Application area
 - Typed Text (Word Processor)
 - Optical character recognition OCR (Optical scanner)
 - Online handwritten recognition

Spelling errors patterns

• The number and nature of spelling errors in human typed text differs from those caused by pattern recognition devices like OCR and handwriting recognizers.

-Number

- 1-3 % in human typed text.
- Vary 0.2 -20% for OCR.

-Nature.

Nature of Spelling errors

- Human typing errors
- -Insertion: the as ther
- -Deletion: the as th
- Substitution : the as thw
- Transposition : the as the

Nature of Spelling errors

- Other dimension of classification
- Typographic errors : keyboard related. Spell as spwll
- Cognitive errors: the writer doesn't know how to spell. Separate as separate.

Nature of spelling errors

- OCR errors.
- -Substitution
- Multi substitution
- Space deletion
- Insertion
- Failure

An example for OCR errors

- Correct: The quick brown fox jumps over the lazy dog.
- Recognized: 'lhe q~ick brown foxjurnps over the lazy dog.
- **Errors**: Substitution (e->c) and multisubstitutions (T-> 'l, m -> rn, he -> b) are caused by visual similarity rather than keyboard distance; failure(u-> ~) are cases where OCR does not select any letter with sufficient accuracy.

Detecting non-word errors

- Detecting non-word errors in text, whether typed by humans ro scanned, is commonly done by using dictionary.
- Small or big dictionary ?
 - -small: Large dictionary contains rare words that resemble misspelling of other words: wont as won't
 - -Large: Emperical study found large dictionary are more helpful than harmful.
- Use model of morphology for to deal with inflection.

Probabilistic Model

• The noisy channel model.

Applying Bayesian Method

- Bayesian algorithm
 - -proposing candidate correlation
 - -Scoring the candidate
- Proposing the candidate
 - -Simplifying assumption: single spelling errors
 - -Example misspelling acress

Example

Error	- 1	Transformation			
	Correction	Correct	Error Letter	Position (Letter #)	Type
acress	actress	t	-	2	deletion
acress	cress	_	a	0	insertion
acress	caress	ca	ac	0	transposition
acress	access	c	r	2	substitution
acress	across	0	e	3	substitution
acress	acres		2	5	insertion
acress	acres	-	2	4	insertion

Figure 5.2 Candidate corrections for the misspelling acress, together with the transformations that would have produced the error (after Kernighan et al. (1990)). "-" represents a null letter.

Minimum edit distance

- Previous section relied on the simplifying assumption- single spelling error.
- We need to more powerful algorithm to handle multiple errors.
- Minimum edit distance Algorithms
 - -String distance, is some metric of how alike two strings are to each other.
 - -The minimum edit distance between two string is the minimum number of editing operation.

Three method of Representing errors.

