1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №7

Название Моделирование системы массового обслуживания на языке GPSS							
Дисципли	на Моделирование						
Студент 3	айцева А. А.						
Группа <u>И</u> У	77-72Б						
Оценка (б	аллы)						
Преподава	атель Рудаков И. В.						

1 Задание

Реализовать лабораторную работу №4 на языке GPSS.

Задание к лабораторной работе №4.

Промоделировать работу системы массового обслуживания, определить минимальный размер буфера памяти, при котором не будет потерянных заявок.

Время появления заявок распределено по равномерному закону, время обработки заявки обслуживающим аппаратом – по закону Пуассона (вариант из лабораторной работы №1). С заданной вероятностью обработанная заявка возвращается обратно в очередь на обслуживание.

2 Теоретические сведения

Равномерное распределение

Функция плотности распределения f(x) случайной величины X, имеющей равномерное распределение на отрезке [a,b] ($X\sim R(a,b)$), где $a,b\in R$, имеет следующий вид:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{иначе.} \end{cases}$$
 (1)

Соответствующая функция распределения $F(x)=\int_{-\infty}^x f(t)dt$ принимает вид:

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & x \in [a, b] \\ 1, & x > b. \end{cases}$$
 (2)

2.1 Распределение Пуассона

Дискретная случайная величина X имеет закон распределения Пуассона с параметром λ ($X\sim\Pi(\lambda)$), где $\lambda>0$, если она принимает значения 0,1,2,... с вероятностями:

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \{0, 1, 2, ...\}$$
 (3)

Соответствующая функция распределения принимает вид:

$$F(x) = P(X < x) = \sum_{k=0}^{x-1} P(X = k) = e^{-\lambda} \sum_{k=0}^{x-1} \frac{\lambda^k}{k!}$$
 (4)

3 Результаты работы программы

Для исследования разработанная программа была выполнена при фиксированном количестве заявок $n_tasks=1000$, фиксированных параметрах времени появления заявок (параметры a=0 и b=10 равномерного распределения), и переменных параметрах $lambda_value$ (параметр λ распределения Пуассона, по которому распределено время обработки заявки) и $p_reenter$ (вероятность повторного попадания в очередь), принимающих значения 4 или 10 и 0.1 или 0.5, соотвественно.

Для каждого набора параметров минимальный размер буфера памяти, при котором не будет потерянных заявок, равен максимальному размеру очереди THEQUEUE.

Результаты работы программы приведены в листингах 1-4.

Листинг 1 – Результат работы программы при $lambda_value = 4$ и p reenter = 0.1 (максимальный размер очереди – 11)

0	START TIME	END	TIME	BLOCKS FACII	LITIES	STORAC	GES			
1	0.000	5124.517	8	1	0					
2										
3	FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
4	O A	1111	0.873	4.028	1	0	0	0	0	0

```
5 QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
7 THEQUEUE 11 0 1111 243 2.040 9.411 12.046 0
```

Листинг 2 – Результат работы программы при $lambda_value = 4$ и

 $p \ reenter = 0.5 \ ($ максимальный размер очереди -605)

0	START TIME	END	TIME BLO	CKS FACI	LITIES	STORAC	GES			
1	0.000	7983.387	8	1	0					
2										
3	FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
4	O A	2004	0.998	3.976	1	1237	0	0	0	604
5										
6	QUEUE	MAX C	ONT. ENTRY	ENTRY(O)	AVE. COM	IT. AVE	E.TIME	A V E	E.(-0)	RETRY
7	THEQUEUE	605 60	2608	3	281.952	863	3.089	864	1.083	0

Листинг 3 – Результат работы программы при $lambda_value = 10$ и p reenter = 0.1 (максимальный размер очереди – 1239)

	** (**********************************
START TIME	END TIME BLOCKS FACILITIES STORAGES
0.000	10930.424 8 1 0
FACILITY	ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY
OA	1108 0.999 9.857 1 1054 0 0 0 1237
QUEUE	MAX CONT. ENTRY ENTRY(O) AVE.CONT. AVE.TIME AVE.(-0) RETRY
THEQUEUE	1239 1238 2345 1 631.423 2943.164 2944.420 0
	O.OOO FACILITY OA QUEUE

Листинг 4 — Результат работы программы при $lambda_value = 10$ и p reenter = 0.5 (максимальный размер очереди — 3034)

	START TIME	END	TIME BLO	CKS FACII	LITIES	STORAC	1F C	/		
				CK5 FRCII	111110	DIUMA	165			
1	0.000	19784.424	8	1	0					
2										
3	FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
4	O A	1997	1.000	9.903	1	1601	0	0	0	3033
5										
6	QUEUE	MAX CO	ONT. ENTRY	ENTRY(O)	AVE. COM	IT. AVE	E.TIME	E AVE	E.(-0)	RETRY
7	THEQUEUE	3034 303	5030	1 15	529.323	6015	5.262	6016	6.458	0

Для наглядности результаты также представлены в таблице 1.

Таблица 1 - Таблица с результатами исследования программы

lambda	р	максимальный размер очереди
4	0.1	11
4	0.5	605
10	0.1	1239
10	0.5	3034

Для сравнения на рисунке 1 приведена таблица результатов, полученных при исследовании программы с теми же параметрами из лабораторной работы №4.

+-		-+		+				+			
1	lambda вероятность повторного попадания в очередь максимальный размер очереди										
+-		-+		+				+			
1	4	1	0.1		Событийный:	8,	delta t:	8			
1	4	1	0.5		Событийный:	477,	delta t:	480			
1	10	1	0.1		Событийный:	1040,	delta t:	1039			
	10	T	0.5		Событийный:	2652,	delta t:	2653			
+-		-+		+				+			

Рисунок 1 — Таблица с результатами исследования программы к лабораторной работе №4

Соответствующие результаты, полученные двумя программами, схожи (небольшие отличия вызваны случайностью генерируемых данных).

Максимальная длина очереди растет по мере роста $lambda_value$ (так как время обработки заявки растет) и $p_reenter$ (так как все больше заявок попадают в очередь на обслуживание повторно).

4 Код программы

В листинге 5 приведен код программы.

Листинг 5 – Код программы

```
0 GENERATE
                (UNIFORM (1,0,10))
                                      ; Время генерации заявки R(0, 10)
2 AddInQueue
                  QUEUE TheQueue
                                      ; Вход в очередь, увеличение длины очереди
3 SEIZE
                                      ; Захват или ожидание ОА
 DEPART TheQueue
                                      ; Выход из очереди, уменьшение длины очереди
6 ADVANCE (POISSON(1,10))
                                      ; Обслуживание заявки в ОА ( время P(lambda))
7 RELEASE OA
                                      ; Обслуживание заявки в ОА окончено
8 TRANSFER 0.1, Finish, AddInQueue ; С заданной веорятностью заявка вновь попадает в очередь
10 Finish TERMINATE
                                      ; Окончание обслуживания заявки
11 START 1000
                                      ; Количество заявок
```