平成29年度日本留学試験(第1回)

試験問題

The Examination

平成29年度(2017年度)日本留学試験

数 学 (80分)

【コース 1 (基本, Basic)・コース 2 (上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

Ⅲ 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号), または、0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。
- 同一の問題文中に A. BC などが繰り返し現れる場合、2度目以降は、 A. BC のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し、 $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{ \textbf{A} \sqrt{\textbf{B}} }$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。
- (4) $\boxed{\textbf{DE}} x$ に -x と答える場合は、 $\boxed{\textbf{De}}$ ー、 $\boxed{\textbf{Ee}} 1$ とし、下のようにマークしてください。

【解答用紙】

Α	•	0	1	0	3	4	6	6	Ø	8	9	
В	Θ	0	1	0	•	4	6	6	0	8	9	
С	θ	0	0	0	3	•	9	6	0	8	9	
D	•	0	1	2	3	4	6	6	0	8	9	
E	Θ	0	•	0	3	4	9	6	0	8	9	

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号		*			*			
名 前								

数学 コース 2

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを<u>一つだけ</u>選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。

< 解答用約	氏記入例 >
解答コー	ス Course
コース 1 Course 1	Course 2
0	•

選択したコースを正しくマークしないと、採点されません。

~	. –

問 1 2次関数

$$y = 3x^2 - 6$$

を考える。

(1) $y = 3x^2 - 6$ のグラフを平行移動して、2 点 (1,5), (4,14) を通るようにする。このとき、このグラフを表す 2 次関数は

$$y = \begin{bmatrix} \mathbf{A} \end{bmatrix} x^2 - \begin{bmatrix} \mathbf{BC} \end{bmatrix} x + \begin{bmatrix} \mathbf{DE} \end{bmatrix}$$
 ①

である。このグラフは、 $y=3x^2-6$ のグラフをx軸方向に $oldsymbol{\mathsf{F}}$, y軸方向に $oldsymbol{\mathsf{G}}$ 平行移動したものである。

(2) 直線 y=c に関して $y=3x^2-6$ のグラフと対称なグラフを表す 2 次関数は

$$y = - \boxed{\mathbf{H}} x^2 + \boxed{\mathbf{I}} c + \boxed{\mathbf{J}} \qquad \dots \dots \qquad \textcircled{2}$$

である。

2 次関数 ① と ② のグラフが共有点を 1 つだけもつとき, c= **K** であり、共有点の座標は (L , M) である。

注) 対称な:symmetric

数学-18

- 問 2 白いカードが 4 枚、赤いカードが 3 枚、黒いカードが 3 枚あり、これら 10 枚のカード にはすべて異なる数字が記されている。
 - (1) 10 枚のカードから 2 枚のカードを選び、それらを 2 つの箱 A, B に 1 枚ずつ入れる。 この入れ方は全部で **NO** 通りある。
 - (2) 10 枚のカードから 2 枚のカードを選ぶ。 2 枚とも同じ色となるような選び方は **PQ** 通りあり、 2 枚の色が異なるような選び方は **RS** 通りある。

次に、この 10 枚のカードを 1 つの箱に入れ、その中からカードを 1 枚ずつ 2 度取り出す。ただし、最初に取り出したカードは箱に戻さないものとする。

- (3) 取り出した 2 枚のカードが同じ色である確率は **T** である。 **UV**
- (4) 最初に取り出したカードの色が白か赤であり、2度目に取り出したカードの色が赤か黒である確率は WX である。

I の問題はこれで終わりです。

問1 右図のように、1辺 OA を共有する三角形 OAB と三角形 OAC が、次の2つの条件を満たしているとする。

(i)
$$\overrightarrow{OC} = x \overrightarrow{OA} + \frac{1}{2} \overrightarrow{OB}$$

(ii) 三角形 OAC の重心 G は線分 AB 上にある

このとき, x の値を求め, \overrightarrow{OG} を \overrightarrow{OA} と \overrightarrow{OB} を 用いて表そう。

線分 OC と線分 AB の交点を D とおくと

$$\overrightarrow{OD} = \frac{x}{|\mathbf{A}|} \overrightarrow{OA} + \frac{|\mathbf{B}|}{|\mathbf{C}|} \overrightarrow{OB}$$

となる。また,D は線分 AB 上にあるので, $x = {\color{red} \begin{array}{c} \color{red} \color{red} \color{black} \color{black}$

したがって

$$\overrightarrow{OG} = \overline{\begin{array}{c} \mathbf{F} \\ \mathbf{G} \end{array}} \overrightarrow{OA} + \overline{\begin{array}{c} \mathbf{H} \\ \mathbf{I} \end{array}} \overrightarrow{OB}$$

である。

特に,
$$OA = 1$$
, $OB = 2$, $\angle AOB = 60^{\circ}$ のとき, $OG = \frac{\sqrt{\mbox{JK}}}{\mbox{L}}$ となる。

注) 重心: center of gravity

z は |z|=2 を満たす複素数とする。原点を O とする複素数平面上で 1+z, $1-\frac{1}{2}z$ を 表す点をそれぞれ A, B とおく。

まず、複素数 z は

$$z = \boxed{\mathbf{M}} (\cos \theta + i \sin \theta) \qquad (-\pi \le \theta < \pi)$$

と表すことができる。

z が実数でないとき、三角形 OAB の面積 S は S= $lackbr{N}$ である。ただし、 $lackbr{N}$

したがって、 $\theta = \pm \frac{ \bullet }{ \bullet } \pi$ のとき S は最大になる。

- $\left| \sin \left(\theta + \frac{1}{3} \pi \right) \right| \qquad \left| \sin \theta \right| \qquad \left| \sin \left(\theta \frac{1}{3} \pi \right) \right|$

(2)三角形 OAB が OA = OB である二等辺三角形となるとき

$$|1+z| = \left|1 - \frac{1}{2}z\right| = \sqrt{\mathbf{Q}}$$

である。また, $-\pi \le \arg(1+z) < \pi$, $-\pi \le \arg\left(1-\frac{1}{2}z\right) < \pi$ とすると

$$arg(1+z) = \pm \frac{\mathbf{R}}{\mathbf{S}} \pi$$
, $arg\left(1 - \frac{1}{2}z\right) = \mp \frac{\mathbf{T}}{\mathbf{U}} \pi$ (複号同順)

である。

注) 複素数: complex number, 複素数平面: complex plane

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{V}$ \sim $oxed{Z}$ はマークしないでください。

関数
$$y = \frac{2^{x^2}}{5^{3x}} (x \ge 0)$$
 を考える。

(1) y が最小になる x を求めよう。 y を微分して

$$\frac{dy}{dx} = \frac{2^{x^2}}{5^{3x}} \left(2x \log_e \boxed{\mathbf{A}} - \boxed{\mathbf{B}} \log_e \boxed{\mathbf{C}} \right)$$

を得る。

したがって、yが最小になるxの値を常用対数を用いて表すと

$$x = \frac{\boxed{\mathbf{D}} (1 - \log_{10} \boxed{\mathbf{E}})}{\boxed{\mathbf{F}} \log_{10} \boxed{\mathbf{G}}}$$

である。

(2) $\frac{2^{x^2}}{5^{3x}} > 1000$ となるような最小の正の整数 x を求めよう。 不等式 y > 1000 より

を得る。 $\log_{10} 2 = 0.301$ … の近似値として 0.3 を用いて, 不等式 ① を解くと

を得る。

注) 常用対数: common logarithm, 近似值: approximate value

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{R}$ \sim $oxed{Z}$ はマークしないでください。

区間 $0 \le x \le \pi$ で関数 $f(x) = x \sin^2 x$ を考える。曲線 y = f(x) の接線で原点を通るものを ℓ とする。ただし、 ℓ は x 軸ではないとする。このとき、曲線 y=f(x) と接線 ℓ で囲まれる 部分の面積Sを求めよう。

(1) 次の文中の **A** ~ **D** には、下の選択肢 (0) ~ (9) の中から適するものを選び なさい。

曲線 y=f(x) と接線 ℓ の接点を (t,f(t)) とおくと、 ℓ は原点を通るので、等式 Λ が成り立つ。さらに

$$f'(t) =$$
 B $+2t$ C

であるから、接点の x 座標は $t = \begin{bmatrix} \mathbf{D} \end{bmatrix}$ である。

- ② $\sin t$ ③ $\sin^2 t$ ④ $\cos^2 t$ ⑤ $\sin t \cos t$

- (6) $\frac{\pi}{2}$ (7) $\frac{\pi}{3}$ (8) $\frac{\pi}{4}$ (9) $\frac{\pi}{6}$

(IV)は次ページに続く)

(2)	次の文中の $oldsymbol{E}$ \sim $oldsymbol{G}$ には,下の選択肢 $oldsymbol{0}$ \sim $oldsymbol{9}$ の中から適するものを選びなさい。 $oldsymbol{g}$ 数 $f(x)$ の不定積分は $\int f(x) dx = oldsymbol{E} oldsymbol{Q}(2x^2 - 2x oldsymbol{F}) - oldsymbol{G}) + C (C は積分定数)$
	である。
	① $\frac{1}{8}$ ① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ 2 ④ 4 5 8 ⑥ $\sin x$ ⑦ $\cos x$ ⑧ $\sin 2x$ ⑨ $\cos 2x$
(3)	曲線 $y=f(x)$ と接線 ℓ で囲まれる部分の面積 S は $S = \begin{array}{c c} \mathbf{H} & \pi^{\mathbf{K}} & - & \mathbf{L} \\ \hline \mathbf{IJ} & \pi^{\mathbf{K}} & - & \mathbf{M} \end{array}$
	である。
 注)	不定積分:antiderivative,積分定数:constant of integration
	\overline{IV} の問題はこれで終わりです。 \overline{IV} の解答欄 \overline{N} \sim \overline{Z} はマークしないでください。 コース 2 の問題はこれですべて終わりです。解答用紙の \overline{V} はマークしないでください。 解答用紙の解答コース欄に「コース 2 」が正しくマークしてあるか, もう一度確かめてください。
F	この問題冊子を持ち場ることはできません。