Рассмотрим пример. Пусть ДИБП имеет алфавит объемом L=4, $A=\{a_1,a_2,a_3,a_4\}$. Символы появляются с вероятностями $p(a_1)=\frac{1}{2}, p(a_2)=\frac{1}{4},$ $p(a_3)=p(a_4)=\frac{1}{8}$. Предположим, что они кодируются следующим образом:

код 1:
$$a_1 \to 0$$
, $a_2 \to 01$, $a_3 \to 011$, $a_4 \to 111$, код 2: $a_1 \to 0$, $a_2 \to 10$, $a_3 \to 110$, $a_4 \to 111$

Пусть принимается последовательность 00100101111... Тогда декодирование кода 1 дает результат: $a_1, a_2, a_1, a_2, a_1, a_4$ или a_1, a_2, a_1, a_2, a_3 . Т.е. имеем не однозначное декодирование. По коду 2: $a_1, a_1, a_2, a_1, a_2, a_4$. Здесь существует только один вариант декодирования. Ни одно кодовое слово кода 2 не является началом (**префиксом**) другого кодового слова.

В общем, **префиксное условие** кода требует, чтобы для кодового слова длины K ($b_1....b_Mb_{M+1}....b_K$) не существовало других кодовых слов длины M < K с элементами ($b_1....b_M$). Это свойство делает кодовые слова однозначно декодируемыми.

Критерий оптимальности однозначно декодируемых кодов переменной длины имеет вид:

$$\overline{K} = \sum_{k=1}^{L} n_k p(a_k) = \min,$$
 (4.13)

где \overline{K} - среднее число бит, приходящихся на один символ источника, n_k - длина k - го кодового слова.

Теорема Шеннона кодирования ДИБП. Пусть X - ансамбль символов ДИБП с конечной энтропией H(X) и выходными символами из алфавита $A = \{a_1,, a_L\}$ с вероятностями выхода $p(a_k), k = 1, 2, ..., L$. Тогда существует возможность создать код, который удовлетворяет префиксному условию и имеет среднюю длину \overline{K} , удовлетворяющую неравенству

$$H(X) \le \overline{K} < H(X) + 1 \tag{4.14}$$

Алгоритм кодирования Фано.

Пример. Рассмотрим ДИБП с объемом алфавита L=8. Символы источника имеют вероятности выхода

$$p(a_1) = p(a_2) = \frac{1}{4}, p(a_3) = p(a_4) = \frac{1}{8}, p(a_5) = p(a_6) = p(a_7) = p(a_8) = \frac{1}{16}.$$

1) Располагаем сообщения источника в порядке не возрастания их вероятностей.