

A Usability and User Experience Evaluation Technology for Touchable Holographic Solutions

Thiago Prado de Campos

Dra. Natasha M. C. Valentim (UFPR) - advisor

Dr. Eduardo F. Damasceno (UTFPR) - co-advisor

thiagocampos@utfpr.edu.br, natasha@inf.ufpr.br, damasceno@utfpr.edu.br

Doctoral Thesis

Postgraduate Program in Informatics (PPGInf) Federal University of Paraná (UFPR)

Technological Federal University of Paraná (UTFPR)

Campus Cornélio Procópio

Context

Go beyond 2D touchscreen or mouse/joystick **interaction**.

Holography blends into the real environment, in augmented/mixed reality.

Touchable holography: Use of natural touch gestures directly on virtual objects or interface elements, without feeling them.

Applications in medicine, education, engineering, entertainment, etc.

Ensure the **quality** of these new interactive systems.

Problem and Motivation

Diverse methods: test, inspection, inquiry, and simulation.

Gap: no evaluation tools for SHT usability/UX.

Limits: traditional tools, like SUS/UEQ, miss immersion, presence, mid-air touch.

Need: detect issues, boost satisfaction, increase adoption

Research Question

How can **THS** be evaluated by considering their **unique** interaction features while **integrating** usability and UX in context?

Goals

Propose a usability and UX **Evaluation Technology (ET)** for Touchable Holographic Solutions (THS), covering their specific characteristics.

Map evaluation technologies currently used in THS.

Identify usability and UX aspects relevant to the THS context.

Develop a usability and UX ET for THS.

Validate and improve the ET with empirical evidence.

Methodology

Inspired by **Shull et al.** (2001) and **Mafra et al.** (2006) for defining new software technologies. Integrated with instrument construction and validation guidelines from **DeVellis and Thorpe** (2022) and **Costa** (2021).

Systematic Mapping Study (SMS)

- Initial SMS (1): publications until April 25, 2021
- Extended SMS (2): April 26, 2021 April 25, 2023
 - to include recent publications;
 - to capture new trends;
 - to expand the relevance and accuracy of MSL1's findings.
- Protocol based on:
 - O **Kitchenham et al.** (2016) and;
 - Petersen et al. (2008).

Analyze	Scientific publications
With purpose of	To identify and characterize
Regarding	Usability and UX ETs
From the point of view of	HCI, SE, AR and MR researchers.
In the context of	Scientific publications available in the ACM DL, IEEE Xplore and Elsevier Scopus.

Goal-Question-Metrics (GQM) – **Basili et al.** (1994)

Findings of SMS

- Topic: relevant, multidisciplinary, but few proposals
- Integration: usability & UX rarely combined
- Evaluation:
 - O each THS → ~4–5 ETs
 - O each ET \rightarrow only 2–3 aspects
- Coverage: immersive aspects seldom addressed; overlaps common
- Quality: strong reliance on ad-hoc, nonvalidated questionnaires

Related Publications

Paper about Initial SMS on **IHC** (2023)

Article about Extended SMS on JIS (2025)

Full **Technical Report** about Initial SMS on FigShare (2023)

Full **Technical Report** about Extended SMS on FigShare (2025)

Exploratory Search

Aiming to understand, compare, aggregate and synthesize aspects/dimensions necessary to evaluate usability and UX;

Usability

- ISO/IEC 9241-11:2018
 Usability: Definitions and concepts
- ISO 9241-210:2019
 Human-centered design for interactive systems
- ISO 9241-110:2020 Interaction principles
- ISO/IEC 25010:2011
 Systems and Software Quality Requirements and Evaluation (SQuaRE) Quality models
- Nielsen (2012)
 Introduction to Usability

Lookup

Fact retrieval Know item search Verification Question answering

Exploratory Search

Learn

Knowledge acquision
Comprehension / Interpretation
Comparison
Aggregation / Integration

Investigate

Analysis
Synthesis
Evaluation
Discovery
Transformation

User Experience

- Hassenzahl et al. (2000)
- Hassenzahl (2004)
- Hassenzahl and Tractinsky (2006)
- Hassenzahl (2018)
- Bargas-Avila and Hornbæk (2011)
- Merčun and Žumer (2014)
- Merčun and Žumer (2017)
- Zarour and Alharbi (2017)
- Marques et al. (2019)
- Morville (2004)
- Guo (2012)

INTRO PHASE 1

Aspects for THS

Unique Aspects for SHT

Immersion

- Technical quality of the system;
- Sensory fidelity
 - O Breadth and depth of each **perceptual channel**;
 - O The degree to which users can modify the form and content of an environment in real time.
- Set of valid actions that a system allows users.

Adapted from Steuer, 1992

Related Publication Article about Exploratory Search findings on IJHCI, Taylor & Francis (2024)

Presence

- From "telepresence": feeling like you're in another place.
- It's a multidimensional psychological state, influenced by technology;
- Human reaction to immersion;
- Not to be confused with other states of cognitive attention, such as involvement, or psychological, such as flow.

Propose of Evaluation Technology

Goals

- **Integrate** usability & UX (quant. + quali.)
- Focus on **end-user, episodic** & cumulative UX (Roto et al., 2011);
- Detect issues, reflect experience;
- Efficient, minimal effort, easy to apply;

Questionnaire

- Simple, low-cost, subjective focus;
- **Easy** handling & administration;
- Based on 20 identified aspects;
- Named "Usability and User **eXperience Evaluation in** Touchable Hologram" (UUXE-ToH)

Questionnaire Development Process

Item Development

Items per construct, adapted from existing questionnaires

PHASE 2

74 preliminary items (**v0**)

Response Options

7-point Likert scale (+ N/A, IDK)

Open-Ended Questions

- Q1: Positive/negative experience
- Q2: Problems faced
- Q3: Suggestions

Study 1 – with Experts

- Goal: refine UUXE-ToH v1
- Validity: content (relevance/overlap), face (clarity)
- Participants: 13 experts (CS, Design, Eng., and others);
- Ethics approved (June 2023);
- Data: June–Aug 2023;
- Results:
 Grounded Theory
 (Corbin and Strauss, 2014)

Invitation to RGs and specialized Labs

Expression of interest and scheduling

1st video call: introduction and consent

UUXE-ToH v1 analysis and form completion

Quantitative and Qualitative analyses

Related Publications

Paper about Qualitative Results and Evolution on **ICEIS** (2024)

Article about
Quantitative Results
on IJHCI, Taylor &
Francis (2024)

Study 1: Quantitative Results about v1

							50%	+		75%	+			Yes	No
Q1	P1	P2	Р3	P5	P6	Р7	P8	P10	P11	P12	P13	P4	P9	84,6%	15,4%
Q2	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	92,3%	7,7%
Q3	P1	P2	Р3	P5	P6	P7	P8	P9	P11	P12	P13	P10	P4	91,7%	8,3%
Q4	P1	P2	Р3	P6	P8	P9	P10	P11	P13	P4	P5	P6	P12	69,2%	30,8%
Q5	Р3	P6	P8	P9	P10	P11	P12	P1	P2	P4	P5	P7	P13	53,8%	46,2%
Q6	P1	P2	Р3	P5	P6	Р7	P8	P9	P10	P11	Р4	P9	P12	76,9%	23,1%
Q7	P1	P2	Р3	P4	P6	P7	P8	P10	P11	P12	P13	P5	P9	84,6%	15,4%

Q1 – **Suitable** for evaluating usability/UX in SHT;

Q2 – It **covers** sufficient aspects;

Q3 – Adequacy of the **Likert** scale;

Q4 – Usefulness of N/A;

Q5 – Usefulness of **IDK**;

Q6 – UUXE-ToH v1 is easy to learn and use;

Q7 – The quantity and content of **open-ended**

questions is adequate.

Study 1: Quant. Results about Sentences

PHASE 3

Contributes a lot

Contributes a little

Does not disturb or contributes

Disturbs a little

Disturbs a lot

Did not answer

PHASE 1

Study 1: Qualitative Results

The sentence 20 could be excluded to shorten the questionnaire, as it may already be included in others.

I think maybe grouping them into themes.

The sentence 8 is like the 2.

I was unsure between holography and hologram (...) Is holography the same as hologram? Will the user know the difference?

Processing of Results to v2

PHASE 3

- Removed: General Usability, General UX
- New construct: Comfort (S7, S8, S54)
- Excluded IDK responses
- **Items:** –14, +7
- Emotions → 5 primary
- Standardized wording
- S38 → open-ended; Q1 → split
- Added 1 semantic differential (±)
- Items grouped, labeled; glossary added

Study 2 – with end-users

- Goal: refine UUXE-ToH v2
- **Reliability:** internal consistency
- Validity: semantic, structural, convergent (vs SUS & UEQ)
- **Ethics:** UFPR + partners (UTFPR, UDESC, UFOP), Mar-Jul 2024;
- Data: May-Aug 2024;
- Participants: 260 (5 cities: Londrina, Cornélio Curitiba, Joinville, Ouro Preto);
- **THS:** Meta Quest 2, 3, Pro → Cubism

Cubism's Trailer (Bouwel, 2025)

Publicity and Invitation

Scheduling Participation

Study Explanation and Signing of Consent Form

Wearing headset and playing game

Participant evaluates the game

Related Publications

Paper about Cubism Evaluation on **SVR** (2024)

Chapter Book about Semantic Validation and Evolution to UUXE-ToH v3 on Springer **LNBIP** (waiting publication)

Article about all Validations and Evolution to UUXE-ToH v4 on JIS (in revision)

Study 2: Semantic Validation

130 answers about:

- **I1** Clear and easy-to-understand instructions
- 12 Sentences and questions were easy to understand
- **I3** Questionnaire **covered** important aspects of the experience
- 14 Online format was easy to use
- **I5** Is there **repetition** or **redundancy** between items?

ltem	Average	SD	Median	Cronba 0,767	nch's α:		
I1	4.77	0.58	5		nald's Ω :		
12	4.63	0.66	5				
13	4.58	0.76	5	I5: Yes	I5: No		
14	4.75	0.68	5	20	109		
				20	109		
				15.4%	83.8%		

All questions were clear and easy to understand. I liked the format of the questions with their direct, clear and objective statements.

The explanation of occlusion was not clear.

basically used different words to ask the same thing.

Study 2: Internal Consistency Analyses

It checks the **reliability** of each construct; Based on α de Cronbach

e Ω de McDonald.

George e Mallery, 2016						
> 0,90	Excellent					
> 0,80	Good					
> 0,70	Acceptable					
>0,60	Questionable					
> 0,5	Poor					
< 0,5	Unacceptable					

Constructs	α	Ω	
Immersion	0,808	0,808	} good
Emotions	0,775	0,801	
Controllability	0,772	0,772	
Pleasure & Fun	0,762	0,762	
Comfort	0,760	0,784	- acceptable
Stimulation	0,746	0,773	
Effectiveness	0,732	0,768	
Usefulness	0,725	0,724	
Presence	0,686	0,716	
Beauty and Aesthetics	0,645	0,652	
Satisfactions	0,685	0,685	- questionabl
Memorability	0,620	0,620	
Trustworthiness	0,592	0,593	- poor
Learnability	0,470	0,473	- unacceptal

Study 2: Structural – Discriminant Validity

Weak or slightly moderate correlations are expected

Schober et al. 2018							
Very Strong							
Strong							
Moderate							
Weak							
Negligible							

														4			
	В	C	D	\mathbf{E}	\mathbf{F}	G	H	I	J	K	L	\mathbf{M}	N	o	P	Q	\mathbf{R}
A	0.474	0.346	0.409	0.321	0.542	0.413	0.376	0.559	0.380	0.278	0.247	0.360	0.256	0.305	0.444	0.395	0.237
В		0.150	0.335	0.346	0.415	0.288	0.253	0.324	0.281	0.124	0.201	0.298	0.141	0.063	0.293	0.241	0.247
C			0.256	0.264	0.252	0.320	0.221	0.296	0.259	0.228	0.217	0.189	0.206	0.243	0.288	0.331	0.188
D				0.378	0.458	0.358	0.315	0.399	0.349	0.231	0.318	0.302	0.267	0.205	0.343	0.325	0.299
\mathbf{E}					0.401	0.364	0.303	0.385	0.251	0.238	0.311	0.287	0.221	0.200	0.359	0.385	0.392
\mathbf{F}						0.528	0.389	0.544	0.416	0.331	0.331	0.450	0.238	0.220	0.575	0.429	0.374
\mathbf{G}							0.503	0.567	0.391	0.304	0.369	0.540	0.260	0.277	0.508	0.379	0.295
Η								0.468	0.478	0.447	0.457	0.476	0.433	0.342	0.489	0.494	0.333
I									0.542	0.310	0.377	0.509	0.266	0.354	0.508	0.423	0.300
J										0.481	0.449	0.437	0.371	0.270	0.547	0.495	0.284
K	F	liahes	t corr	elatio	ns (>	0.55):					0.494	0.323	0.404	0.224	0.443	0.429	0.289
\mathbf{L}		_			ı vs Ple	_	& Fui	า				0.372	0.432	0.242	0.481	0.511	0.281
\mathbf{M}					lity vs								0.361	0.330	0.549	0.432	0.244
\mathbf{N}					iness x									0.225	0.367	0.484	0.320
O	•				ss x Tr										0.396	0.329	0.199
P	U	.555 –	Elleci	uvene	55 X 11	ustwo	шше	55								0.621	0.423
Q																	0.484

Legend: Each letter represents a construct in UUXE-ToH. A - Effectiveness, B - Efficiency, C - Confort, D - Learnability, E -Memorability, F - Controllability, G - Immersion, H - Usefulness, I - Trustworthiness, J - Value, K - Desirability, L - Stimularion, M -Beauty and Aesthetics, N - Desirability, O - Presence, P - Satisfaction, Q - Pleasure & Fun, and R - Emotions

Presence

Study 2: Exploratory Factorial Analyses

Approaches

- **A:** \leq 20 items (36 EFAs / 6 scenarios)
- **B:** Constructs \geq 3 items (8 constructs, 39 items)
- **Criteria:** RMSEA<0.05, CFI>0.95, remove weak items

Findings

A: factors → Comfort, Controllability, Emotions

- **Overlaps:** Stimulation–Desirability, Immersion–Trustworthiness
- **Discarded:** S12, S50, S56, S30, S34, S42, S45

B: factors → Comfort, Emotions, Stimulation, Presence

- **Link:** Immersion ↔ Aesthetics (visual quality → immersiveness)
- **Discarded:** Effectiveness, Learnability, some Immersion/Presence/Aesthetics

Table 4. Factor Loadings for Group A in Scenario 3

				•	
	F 1	F 2	F 3	F 4	Uniqueness
S7		0.832			0.327
S8	(0.492			0.663
S0		0.786			0.371
S13			1	0.508	0.548
S14			\sim $'$	0.702	0.508
S15			0.841		0.319
\$16			0.704		0.390
557 (0	0.704				0.461
S58 0	0.816				0.307
S59 0	0.833				0.351
S60 (0	0.563				0.535

Study 2: Convergent Validity

PHASE 3

Method

- Subsample answered SUS & UEQ
- Spearman correlations (construct medians)

Results

- All Pragmatic aspects \leftrightarrow SUS
- Hedonic aspects ↔ UEQ
- $AII \leftrightarrow UEQ$

Discussion

- Confirms consistency with traditional tools
- Adds Immersion & Presence (missing in SUS/UEQ)
- UUXE-ToH usable as complementary or standalone

Positive moderate

correlations are expected

Table 15. Correlation for Usability in UUXE-ToH vs SUS Score

UUXE-ToH Construct	ρ	p-value
Effectiveness	0.62592267	3.1889E-09
Efficiency	0.32466828	0.00507181
Comfort	0.32064883	0.00567879
Learnability	0.27723047	0.01757172
Memorability	0.19327560	0.10135213
Controllability	0.25775797	0.0276921
Usefulness	0.44455999	8.1387E-05
Trustworthiness	0.36904677	0.00131384
Satisfaction	0.46589953	3.2693E-05
Immersion	0.18553807	0.11605356
Traditional Usability	0.55547620	3.3813E-07
Trad. Usability + Immersion	0.51047226	3.9526E-06

Table 16. Correlation for UX in UUXE-ToH vs UEO

Comparison	ρ	p-value
UEQ vs Q1/UUXE-ToH	0.4575003	3.681416e-05
Efficiency/UEQ vs Effectiveness, Efficiency, and Comfort / UUXE-ToH	0.4273898	1.459477e-04
Dependability/UEQ vs Controllability and Trustworthiness / UUXE-ToH	0.3687768	1.224574e-03
Perspicuity/UEQ vs Learnability and Memorability / UUXE-ToH	0.4992576	5,95533E-06
Stimulation/UEQ vs Stimulation and Pleasure & Fun/UUXE-ToH	0.4069831	3.200525e-04
Novelty/UEQ vs Creativity and Novelty, and Desirability / UUXE-ToH	0.4930889	8,06814E-06
Attractiveness/UEQ vs Beauty and Aesthetics, and Satisfaction / UUXE-ToH	0.4544422	4.75767E-05
Attractiveness Stimulation and Novelty / UEQ vs UX constructs in UUXE ToH	0.3990910	4.279510e-04
UEQ aspects vs all items of UUXE-ToH	0.6573284	1.999383e-10

Processing of Results to v4

PHASE 3

Integration

- Combined semantic, structural, discriminant, convergent, reliability
- Identified strong vs. weak constructs

Refinements

- Removed redundant/problematic items
- Split Stimulation / merged overlaps (e.g., Stimulation & Desirability)
- Adjusted Learnability, Presence, Satisfaction for clarity/reliability

Final Outcome (v4)

- Balanced constructs, theory-based
- Multidimensionality with less redundancy
- Stronger Immersion & Presence coverage
- Clearer wording, better comprehension, shorter time

Study 3 – with evaluaters

- **Goal**: assess UUXE-ToH v4 about:
 - O **Performance:** effectiveness and efficiency to identify issues
 - O Acceptance: TAM 3 and user feedback
 - **Two Groups:**
 - A· IIIIXF-ToH v4
 - B: USE + Slater-Usoh-Steed (SUS) + UEQ
- **Ethics:** Set 2024:
- **Data:** Oct. 8, 2024, during workshop on IHC

2025, in Brasilia, DF;

■ Participants: 14

Invitation during workshop

Signing of IC and demographic form

Wearing the headset and gaming experience

Issues Table

Issues Table USE+SUS+UEO

Participant Game Evaluation

Related Publications/Submissions

Paper about Performance and Acceptance of UUXE-ToH v4 on **ICEIS** (2025)

Article about Evaluation of a MR Puzzle Game Using Questionnaires on **JIS** (2025)

Chapter Book about Evaluation of Usability and UX in AR and VR on IHC (2025)

Study 3: Performance Results

	Grupo A UUXE-ToH v4	Grupo B USE+SUS+UEQ	Total
Unique Issues (UI)	26	14	40
Duplicated Issues (DI)	5	1	6
Total Issues (TI)	31	15	46
Identifiable Issues (II)	29	15	43
II Coverage (IIC)	67.4%	34.8%	
Average / Participant	~4.1	~2.1	
Velocity (IT/minute)	2.82	2.50	

	Teste	Estatística	df	p
PT	Student	2.874	12	0.014
	Mann-Whitney	43.000		0.017
Cobertura	Student	2.868	12	0.014
	Mann-Whitney	43.000		0.017

Significant difference p-value < 0.05

	Teste	Estatística	df	p
Minutos	Student	0.819	9	0.434
	Mann-Whitney	16.000		0.925
VPT	Student	1.321	9	0.219
	Mann-Whitney	20.000		0.410

Non-significant difference p-value > 0.05

Aspect	Α	В
Effectiveness	5	1
Efficiency		
Comfort		1
Learnability	2	1
Memorability		
Controllability and Operability	10	6
Error Prevention and Recovery	5	1
Immersion	5	5
Usefulness		
Trustworthiness	2	
Value		
Beauty and Aesthetics	1	
Interest		
Absorption (Engagement, Flow)		
Presence	1	
Satisfaction		
Pleasure and Fun		
Emotions		
Total	31	15

Study 3: Acceptance Results

						•					•				•
ld	Grupo	PU1	PU2	PU3	PU4	PU	PEOU1	PEOU2	PEOU3	PEOU4	PEOU	BI1	BI2	ВІЗ	BI
P1	Α	7	7	7	7	7	7	7	7	7	7	7	7	7	7
P2	Α	6	5	7	7	6,5	7	5	6	7	6,5	6	6	3	4,5
P3	Α	7	6	4	7	6,5	7	7	7	7	7	7	7	6	6,5
P4	Α	7	7	7	7	7	6	7	7	7	7	7	6	6	6
P5	Α	7	7	7	7	7	6	6	6	7	6	6	6	4	5
P6	Α	7	7	7	7	7	6	7	7	7	7	7	7	7	7
P7	Α	6	7	7	7	7	7	7	7	6	7	7	7	6	6,5
P8	В	5	5	5	6	5	5	5	3	4	4,5	5	6	3	4,5
P9	В	7	7	7	7	7	6	7	7	7	7	7	7	3	5
P10	В	7	7	7	7	7	7	5	7	6	6,5	7	7	7	7
P11	В	7	6	7	7	7	7	5	7	7	7	7	7	4	5,5
P12	В	7	7	7	7	7	7	7	7	7	7	4	4	4	4
P13	В	6	6	7	7	6,5	7	5	6	6	6	4	3	3	3
P14	В	7	7	7	7	7	6	6	6	6	6	7	6	5	5,5

P-values close to 0.05 for PEOU2 and PEOU4, but not below.

	Teste	Estatística	df	p
BI1	Student	1.470	12	0.084
	Mann-Whitney	31.000		0.185
BI2	Student	1.342	12	0.102
	Mann-Whitney	31.000		0.200
BI3	Student	1.796	12	0.049
	Mann-Whitney	36.500		0.066
BI	Student	1.886	12	0.042
	Mann-Whitney	37.000	1	0.061

Significant difference for BI3 and BI p-value < 0.05

	U	df	p
PEOU1	26.000		0.442
PEOU2	36.500		0.053
PEOU3	29.000		0.273
PEOU4	35.500		0.056
PEOU	33.000		0.127

Limitations

- Methodological: limited scope (until Apr 2023), small Brazilian sample, single MR game/device
- Operational: scarce & costly equipment, few THS apps, in-person recruitment, short sessions, low diversity
- Instrumental: long questionnaire, excluded items, small/uneven samples

Future Works

Expand Scope: Disseminate UUXE-ToH, encourage broader use, collect feedback;

Tools: Official site, manual, digital platform with interactive reports;

Cross-Cultural: Translation & adaptation, study cultural influences;

Research: Use Structural Equations Modeling (SEM) for construct analysis, develop shorter/modular versions.

INTRO PHASE 1 PHASE 2 PHASE 3 FINAL

Publications & Research Products

Publications

- International Journal of Human-Computer Interaction (IJHCI 2024)
- Journal on Interactive Systems (JIS 2025) two articles
- Lecture Notes in Business Information Processing (LNBIP 2025, accepted)
- Brazilian Symposium on Human Factors in Computing Systems (IHC 2023, 2024)
- Symposium on Virtual and Augmented Reality (SVR 2024)
- International Conference on Enterprise Information Systems (ICEIS 2024, 2025)

Questionnaire

- **UUXE-ToH Questionnaire** (v1–v4) validated in multiple studies
- User Manual with guidelines and examples
- Official Website & Digital Platform forms, dashboards, interactive reports
- Technical Reports from Systematic Mapping Studies
- Porifera Tool collaborative system for systematic reviews and mapping studies
- Publications about Porifera:
 iSys (2023), SBES (2022), and SBSI (2022)

Contributions

- **Classification** of THS and evaluation technologies
- Theoretical basis for usability & UX in immersive systems
- Structured methodology for questionnaire validation
- **UUXE-ToH**: integrates pragmatic & UUXE - ToH hedonic aspects
- Applicable across contexts, devices, and user profiles
- Delivers HCI community a validated tool tailored to THS evaluation.

References (part 1)

Bargas-Avila, J. A. e Hornbæk, K. (2011). Old wine in new bottles or novel challenges: a critical analysis of empirical studies of user experience. Em Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, páginas 2689–2698, Vancouver BC Canada. ACM.

Basili, V. R., Caldiera, G. e Rombach, H. D. (1994). The Goal Question Metric Approach.

Corbin, J. e Strauss, A. (2014). Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. SAGE Publications, London, UK.

Finstad, K. (2010). Response Interpolation and Scale Sensitivity: Evidence Against 5-Point Scales - JUX. JUS - Journal of Usability Studies, 5(3):104–110.

George, D. and Mallery, P. (2016). IBM SPSS statistics 23 step by step: a simple guide and reference. Fourteenth edition ed. New York, NY: Routledge.

Guo, F. (2012). More Than Usability: The Four Elements of User Experience, Part I:: UXmatters.

Hair, J., Black, W., Babin, B., Anderson, R. and Tatham, R. (2009). Análise Multivariada De Dados. 6th. ed. Porto Alegre, RS, Brasil: Bookman.

Hassenzahl, M., Platz, A., Burmester, M. e Lehner, K. (2000). Hedonic and ergonomic quality aspects determine a software's appeal. Em Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '00, páginas 201–208, New York, NY, USA. Association for Computing Machinery.

Hassenzahl, M. (2004a). Emotions can be quite ephemeral; we cannot design them. Interactions, 11(5):46–48.

Hassenzahl, M. (2018). The Thing and I: Understanding the Relationship Between User and Product. Em Blythe, M. e Monk, A., editores, Funology 2: From Usability to Enjoyment, Human–Computer Interaction Series, páginas 301–313. Springer International Publishing, Cham.

Hassenzahl, M. e Tractinsky, N. (2006). User experience - a research agenda. Behaviour & Information Technology, 25(2):91–97ISO 2018

ISO (2019). ISO 9241-210:2019 - Ergonomics of human-system interaction—Part 210: Human centred design for interactive systems. Standard, International Organization for Standardization, Geneva, Switzerland

References (part 2)

ISO (2020). ISO 9241-110:2020 - Ergonomics of human-system interaction — Part 110: Interaction principles. Relatório técnico, International Organization for Standardization, Geneva, Switzerland.

ISO (2011). ISO/IEC 25010:2011 - Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models. Relatório técnico, International Organization for Standardization, Geneva, Switzerland.

Joshi, A., Kale, S., Chandel, S. e Pal, D. (2015). Likert Scale: Explored and Explained. British. Journal of Applied Science & Technology, 7(4):396–403.

Mafra, S. N., Barcelos, R. F. e Travassos, G. H. (2006). Aplicando uma Metodologia Baseada em Evidência na Definição de Novas Tecnologias de Software. Em Anais do Simpósio Brasileiro de Engenharia de Software (SBES), páginas 239–254. SBC.

Marques, L., Barcellos, M. P., Gadelha, B. e Conte, T. (2024). Characterizing UX Assessment in the Context of Immersive Experiences: A Systematic Mapping Study. International Journal of Human–Computer Interaction, páginas 1–17.

Merčun, T. e Žumer, M. (2014). Dimensions of User Experience and Reaction Cards. Em Tuamsuk, K., Jatowt, A. e Rasmussen, E., editores, The Emergence of Digital Libraries – Research and Practices, Lecture Notes in Computer Science, páginas 365–370, Cham. Springer International Publishing

Merčun, M. e Žumer, T. (2017). Exploring the influences on pragmatic and hedonic aspects of user experience.

Morville, P. (2004). User Experience Design.

Nielsen, J. (2012). Usability 101: Introduction to Usability.

Roto, V., Obrist, M. e Väänänen-vainio mattila, K. (2009). User Experience Evaluation Methods in Academic and Industrial Contexts. Em Proceedings of the Workshop UXEM'09, volume II, página 4 p, Uppsala, Sweden. Springer.

Schober, P., Boer, C. e Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia, 126(5):1763–1768.

Shull, F., Carver, J. e Travassos, G. H. (2001). An empirical methodology for introducing software processes. ACM SIGSOFT Software Engineering Notes, 26(5):288–296.

Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4):73–93

Acknowledgments

Advisor and co-advisor: Natasha and Eduardo!

Family: My wife and daughter, by support.

Funding: CAPES (publication fees, events

participation)

Institutional support: UTFPR (leave of absence &

reduced workload)

Software: Cubism license by Thomas Van Bouwel

Infrastructure: LARVA (UDESC) & XR4Good

(UFOP) labs

Expertise: Prof. Marcelo Housell (UDESC) and

Prof. Saul Delabrida (UFOP)

Writing support: ChatGPT-4 (grammar & English

writing)

