Speculative Betas¹

Harrison Hong David A.Sraer

S.M. Aghajanzadeh

Tehran Institute for Advanced Studies

May, 2021

- Introduction
- 2 Model
- 3 Emperical Works
- 4 Conclusion

Aghajanzadeh

Asset pricing theory

- Higher beta , higher expexted return
 - Aim to maximize economic utilities.
 - Are rational and risk-averse.
 - Are broadly diversified across a range of investments.
 - 4 Are price takers, i.e., they cannot influence prices.
 - 6 Can lend and borrow unlimited amounts under the risk free rate of interest.
 - Trade without transaction or taxation costs. Deal with securities that are all highly divisible into small parcels.
 - Assume all information is available at the same time to all investors.

3/26

High-risk, low-return puzzle

- Black (1972) by relaxing the assumption of borrowing at the risk-free rate or noise traders in Delong et al. (1990) or liquidity shocks as in Campbell,
 Grossman, and Wang (1993) reconcile a flat Security Market Line
- We show that by relaxing the other CAPM assumptions of
 - homogeneous expectations
 - costless short-selling

can deliver rich patterns in the Security Market Line, including an inverted-U shape or even a downward-sloping line

4 / 26

Main Results

- High-beta assets are overpriced compared to low beta assets when disagreement is high:
 - beta amplifies disagreement about the macroeconomy. Because of short-sales constraints, high-beta stocks are only held in equilibrium by optimists, as pessimists are sidelined.
- Testable implications:
 - Macrodisagreement is low, all investors are long and short-sales constraints do not bind
 - For high enough aggregate disagreement, the relationship between risk and return takes on an inverted-U shape
- Stocks' cash flow process is heteroskedasticity
 - large idiosyncratic variance makes optimist investors reluctant to demand of a stock

5 / 26

- Introduction
- 2 Model
- 3 Emperical Works
- 4 Conclusion

Model

Assets

•
$$\forall i \in \{1, \ldots, N\}, \tilde{d}_i = d + b_i \tilde{z} + \tilde{\epsilon}_i$$

•
$$E[\tilde{z}] = 0$$
, $Var[\tilde{z}] = \sigma_z^2$

$$ightharpoonup E[\tilde{\epsilon}_i] = 0, Var[\tilde{\epsilon}_i] = \sigma_{\epsilon}^2$$

•
$$s_i = \frac{1}{N}$$

$$\bullet$$
 0 < $b_1 < b_2 < \cdots < b_N$

Invesots

- Heterogeneous investors (fractio α)
 - Cannot short
 - ► Two groups:

$$\star$$
 A : $E^A[\tilde{z}] = \lambda$

★ B :
$$E^B[\tilde{z}] = -\lambda$$

- Homogeneous investors (fractio 1α)
 - ▶ No short-sales constraint
 - $ightharpoonup E^a[\tilde{z}] = 0$
- Investor's utility:

$$U(\tilde{w}^k) = E^k[\tilde{w}^k] - \frac{1}{2\gamma} Var(\tilde{w}^k) \qquad k \in \{a, A, B\}$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺灣 めへぐ

8/26

Equilibrium

Asset prices:

$$P_i(1+r) = \begin{cases} d - \frac{1}{\gamma} (b_i \sigma_z^2 + \frac{\sigma_\epsilon^2}{N}) & \text{for } i < \overline{i} \\ d - \frac{1}{\gamma} (b_i \sigma_z^2 + \frac{\sigma_\epsilon^2}{N}) + \underbrace{\frac{\theta}{\gamma} (b_i \sigma_z^2 \omega(\lambda) - \frac{\sigma_\epsilon^2}{N})}_{\pi^i = \text{speculative premimum}} & \text{for } i \geq \overline{i} \end{cases}$$

$$\omega(\lambda) = \frac{\lambda \gamma - \frac{\sigma_z^2}{N} (\sum_{i \ge \bar{i}} b_i)}{\sigma_z^2 (1 + \sigma_z^2 (\sum_{i < \bar{i}} \frac{b_i^2}{\sigma_z^2}))} \qquad \theta = \frac{\frac{\alpha}{2}}{1 - \frac{\alpha}{2}}$$

- ullet If lpha=0 then heta=0 , As a result $\pi^i=$ speculative premimum
- $\lambda \uparrow \pi^i \uparrow$ $b_i \uparrow \pi^i \uparrow$ $\alpha \uparrow \pi^i \uparrow$

Equilibrium

Beta and Expected Return

Expected excess return :

$$E[\tilde{R}_{i}^{e}] = \begin{cases} \beta_{i} \frac{\sigma_{z}^{2} + \frac{\sigma_{e}^{2}}{N}}{\gamma} & \text{for } i < \overline{i} \\ \beta_{i} \frac{\sigma_{z}^{2} + \frac{\sigma_{e}^{2}}{N}}{\gamma} (1 - \theta\omega(\lambda)) + \theta \frac{\sigma_{e}^{2}}{\gamma N} (1 + \omega(\lambda)) & \text{for } i \geq \overline{i} \end{cases}$$

Expected excess return (Heteroskedastic Idiosyncratic Variance) :

$$E[\tilde{R}_{i}^{e}] = \begin{cases} \beta_{i} \frac{\sigma_{z}^{2} + \sum_{j=1}^{N} \frac{\sigma_{j}^{2}}{N}}{\gamma} & \text{for } \frac{\beta_{i}}{\sigma_{i}^{2}} < \frac{\beta_{\tilde{i}}}{\sigma_{\tilde{i}}^{2}} \\ \beta_{i} \frac{\sigma_{z}^{2} + \sum_{j=1}^{N} \frac{\sigma_{j}^{2}}{N}}{\gamma} (1 - \theta\omega(\lambda)) + \theta \frac{\sigma_{i}^{2}}{\gamma N} (1 + \omega(\lambda)) & \text{for } \frac{\beta_{i}}{\sigma_{i}^{2}} \geq \frac{\beta_{\tilde{i}}}{\sigma_{\tilde{i}}^{2}} \end{cases}$$

Proof

May , 2021

Security Market Line

different levels of aggregate disagreement

- Introduction
- 2 Model
- 3 Emperical Works
- 4 Conclusion

12 / 26

β -Sorted Portfolios

- At the beginning of each calendar month, stocks are ranked in ascending order on the basis of their estimated beta at the end of the previous month
- The ranked stocks are assigned to 1 of 20 value-weighted portfolios

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
β	0.43	0.49	0.55	0.60	0.67	0.69	0.77	0.79	0.83	0.89	0.95	0.98	1.02	1.11	1.13	1.21	1.26	1.39	1.50	1.78
Median Vol.	1.56	1.14	1.10	1.11	1.13	1.14	1.15	1.17	1.22	1.23	1.28	1.33	1.34	1.43	1.50	1.58	1.70	1.88	2.26	3.16
$R_{i,t}^{(1)}$ $R_{i,t}^{(12)}$	0.12	0.39	0.63	0.61	0.61	0.73	0.87	0.61	0.79	0.60	0.67	0.64	0.53	0.57	0.73	0.54	0.58	0.44	-0.17	-0.72
$R_{i,t}^{(12)}$	3.21	5.58	7.98	7.74	8.19	7.94	8.10	8.15	8.92	6.88	8.28	8.51	7.46	7.82	8.08	7.86	8.23	6.62	-0.55	-11.69
Stock Disp.	2.97	2.76	2.81	2.78	2.89	3.02	3.24	3.35	3.44	3.38	3.54	3.56	3.60	3.72	3.94	3.93	4.29	4.71	5.03	6.91
% Mkt. Cap.	2.77	3.58	4.15	4.73	4.86	5.00	5.32	5.44	5.49	5.84	5.60	5.58	5.62	5.63	5.36	5.45	5.31	5.09	5.21	7.48
N stocks	171	143	145	147	149	154	157	160	161	169	164	166	167	167	167	168	175	186	210	365

Measuring Aggregate Disagreement

- Measure stock-level disagreement as the dispersion in analyst forecasts
- \bullet Aggregate this stock-level disagreement measure, weighting each stock by its preranking β

Aghajanzadeh Speculative Betas May , 2021 14 / 26

Concavity of the Security Market Line

- ullet Average excess returns-to-eta relationship is mostly upward-sloping
- Inverted-U shape predicted by the theory

Formally test

- two-stage Fama and MacBeth regression
- First Stage:

$$r_{P,t}^{(12)} = \kappa_t + \pi_t \times \beta_P + \phi_t \times (\beta_P)^2 + \epsilon_{P,t}$$

Second Stage:

$$\left\{ \begin{array}{l} \phi_{t} = c_{1} + \psi_{1}.\textit{Dis}_{t-1} + \delta_{1}^{m}.\textit{R}_{m,t}^{(12)} + \delta_{1}^{\textit{HML}}.\textit{HML}_{t}^{(12)} + \delta_{1}^{\textit{SMB}}.\textit{SMB}_{t}^{(12)} + \delta_{1}^{\textit{UMD}}.\textit{UMD}_{t}^{(12)} + \sum_{x \in X} \delta_{1}^{x}.x_{t-1} + \zeta_{t} \\ \pi_{t} = c_{2} + \psi_{2}.\textit{Dis}_{t-1} + \delta_{2}^{m}.\textit{R}_{m,t}^{(12)} + \delta_{2}^{\textit{HML}}.\textit{HML}_{t}^{(12)} + \delta_{2}^{\textit{SMB}}.\textit{SMB}_{t}^{(12)} + \delta_{2}^{\textit{UMD}}.\textit{UMD}_{t}^{(12)} + \sum_{x \in X} \delta_{2}^{x}.x_{t-1} + \zeta_{t} \\ \kappa_{t} = c_{3} + \psi_{3}.\textit{Dis}_{t-1} + \delta_{2}^{m}.\textit{R}_{m,t}^{(12)} + \delta_{3}^{\textit{HML}}.\textit{HML}_{t}^{(12)} + \delta_{3}^{\textit{SMB}}.\textit{SMB}_{t}^{(12)} + \delta_{3}^{\textit{UMD}}.\textit{UMD}_{t}^{(12)} + \sum_{x \in X} \delta_{2}^{x}.x_{t-1} + \zeta_{t} \end{array} \right.$$

16 / 26

Estimation ressults

		9	b_t				π_t		κ_t					
Dep. Var:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)		
Panel B: Equal-Weighted Portfolios														
Agg. Disp. $_{t-1}$	-6.80** (-2.55)	-4.85*** (-2.62)	-6.48*** (-3.13)	-6.32*** (-3.12)	9.81** (2.25)	10.20** (2.52)	10.17** (2.34)	9.04** (2.20)	-3.43* (-1.95)	-3.12 (-1.48)	-0.67 (-0.32)	0.25 (0.13)		
$R_{m,t}^{(12)}$		-0.22** (-2.54)	-0.30*** (-3.53)	-0.30*** (-3.41)		1.09*** (6.35)	1.24*** (6.51)	1.26*** (6.14)		0.16 (1.62)	0.11 (1.12)	0.10 (0.88)		
$HML_t^{(12)}$		-0.69*** (-4.41)	-0.65*** (-5.01)	-0.66*** (-5,32)		0.87***	0.89***	0.96***		0.22	0.13	0.08		
$SMB_t^{(12)}$		0.01 (0.05)	0.12 (0.86)	0.12 (0.86)		0.69**	0.58* (1.85)	0.58*		-0.11 (-0.69)	-0.16 (-0.88)	-0.15 (-0.87)		
$\mathrm{UMD}_t^{(12)}$		-0.08 (-1.12)	-0.03 (-0.55)	-0.03 (-0.62)		0.06 (0.39)	-0.01 (-0.07)	0.02 (0.14)		0.03 (0.28)	0.04 (0.34)	0.01 (0.13)		
D/P_{t-1}			1.31 (0.61)	1.74 (0.67)			-6.12 (-1.36)	-9.14* (-1.76)			4.80** (2.37)	7.26** (3.28)		
$Inflation_{t-1}$			-4.68*** (-3.60)	-4.44*** (-3.20)			7.13** (2.07)	5.44 (1.41)			-0.90 (-0.48)	0.48 (0.22)		
Ted Spread _{t-1}				-0.75 (-0.43)				5.22 (1.36)				-4.25** (-2.23)		
Constant	-9.73*** (-4.75)	-4.51** (-2.31)	-4.41^{**} (-2.34)	-4.32** (-2.20)	21.57*** (4.97)	7.30 (1.59)	6.43 (1.38)	5.81 (1.18)	-0.92 (-0.46)	-3.27 (-1.39)	-2.47 (-1.00)	-1.97 (-0.76)		
N	385	385	385	385	385	385	385	385	385	385	385	385		

β -Sorted Portfolios

- Rank stocks based on preranking ratio of β to σ^2 and define as speculative stocks all stocks with a ratio above the median ratio
- Then, within each of these two groups creat 20 β -sorted portfolios

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
	(1)	(2)	(0)	(4)	(0)	(0)	(1)							(1-1)	(10)	(10)	(21)	(10)	(10)	(20)
								Panel	A: No	nspec	ılative	Stock	S							
β	0.42	0.46	0.50	0.61	0.64	0.72	0.77	0.83	0.83	0.90	1.00	1.05	1.08	1.17	1.20	1.25	1.33	1.43	1.55	1.9
Median Vol.	1.85	1.35	1.29	1.40	1.38	1.46	1.54	1.62	1.71	1.80	1.86	1.93	2.01	2.15	2.26	2.33	2.43	2.70	2.92	4.0
$\frac{\beta}{\sigma^2}$	0.12	0.25	0.30	0.31	0.33	0.33	0.32	0.31	0.28	0.27	0.29	0.28	0.26	0.25	0.23	0.22	0.22	0.19	0.18	0.1
$R_{i,t}^{(1)}$	0.05	0.21	0.34	0.35	0.57	0.46	0.79	0.59	0.66	0.82	0.82	0.61	0.61	0.93	0.43	0.90	0.75	0.51	0.76	-0.0
$R_{i,t}^{(12)}$	1.89	3.01	3.93	5.70	5.88	7.57	6.77	9.75	9.07	9.03	8.83	8.34	7.90	10.35	10.15	12.73	10.80	11.21	11.58	-2.7
Stock Disp.	3.12	2.85	3.06	3.56	3.34	3.36	3.54	3.80	3.87	4.16	4.74	4.73	4.83	4.95	5.17	5.66	5.96	6.06	6.24	7.9
% Mkt. Cap.	4.31	3.95	4.76	5.15	5.56	5.62	5.90	5.65	5.47	5.57	5.19	5.00	5.06	4.74	4.81	4.61	4.58	4.55	5.14	8.7
N stocks	96	73	71	75	81	84	87	89	93	96	97	98	100	101	108	111	118	126	151	339
								Par	el B: S	Specul	ative S	tocks								
β	0.38	0.51	0.61	0.64	0.70	0.76	0.82	0.84	0.90	0.93	0.95	1.02	1.05	1.11	1.15	1.21	1.32	1.36	1.47	1.7
Median Vol.	0.78	0.86	0.93	0.98	1.01	1.02	1.05	1.09	1.13	1.17	1.17	1.24	1.27	1.34	1.39	1.47	1.56	1.75	1.94	2.6
$\frac{\beta}{\sigma^2}$	0.62	0.68	0.70	0.66	0.68	0.71	0.73	0.70	0.69	0.68	0.68	0.65	0.65	0.62	0.59	0.56	0.54	0.44	0.39	0.2
R(1)	0.62	0.81	0.54	0.78	0.76	0.66	0.47	0.61	0.63	0.55	0.83	0.48	0.46	0.73	0.43	0.65	0.49	-0.24	0.00	-0.9
$R_{i,t}^{(1)}$ $R_{i,t}^{(12)}$	8.51	9.47	8.71	8.24	7.38	7.10	6.49	7.43	7.96	7.58	7.41	7.90	7.31	7.06	7.55	6.54	4.57	-1.52	-2.38	-11.6
Stock Disp.	1.95	2.17	2.33	2.66	2.76	2.90	2.98	3.07	3.16	3.24	3.23	3.17	3.31	3.49	3.50	3.75	4.21	4.55	5.03	6.5
% Mkt. Cap.	4.16	4.48	4.98	5.05	5.19	5.37	5.88	5.84	5.73	5.50	5.35	5.24	5.30	5.17	4.98	4.68	5.01	5.15	4.81	6.6
N stocks	57	58	58	60	63	64	65	67	68	67	68	69	67	66	65	66	65	66	68	90

Aghajanzadeh Speculative Betas May , 2021 18 / 26

Concavity of the Security Market Line

- For nonspeculative stocks, the Security Market Line is not related with aggregate disagreement.
- For speculative stocks when aggregate disagreement is high, the Security Market Line exhibits an inverted-U shape

(a) Nonspeculative Stocks

(b) Speculative Stocks

Aghajanzadeh Speculative Betas May , 2021 19 / 26

- Introduction
- 2 Model
- 3 Emperical Works
- 4 Conclusion

20 / 26

Conclusion

- High-beta assets are more speculative because they are more sensitive to disagreement about common cash flows
- As aggregate disagreement rises, the slope of the Security Market Line is piecewise constant, higher in the low-beta range and potentially negative for the highbeta range

May , 2021

Iran's Data

6 Proof

Aghajanzadeh Speculative Betas May , 2021 22 / 26

Return & β

Return & β/σ

Iran's Data

6 Proof

25 / 26

Equilibrium

Beta and Expected Return

•
$$\tilde{R}_i^e = d + b_i \tilde{z} + \tilde{\epsilon}_i - (1+r)P_i$$

•
$$E[\tilde{R}_{i}^{e}] = d - (1+r)P_{i} \rightarrow (1+r)P_{i} = d - E[\tilde{R}_{i}^{e}]$$

•
$$d - E[\tilde{R}_i^e] = d - \frac{1}{\gamma} (b_i \sigma_z^2 + \frac{\sigma_\epsilon^2}{N}) + \frac{\theta}{\gamma} (b_i \sigma_z^2 \omega(\lambda) - \frac{\sigma_\epsilon^2}{N})$$

•
$$E[\tilde{R}_i^e] = \frac{1}{\gamma} (b_i \sigma_z^2 + \frac{\sigma_\epsilon^2}{N}) - \frac{\theta}{\gamma} (b_i \sigma_z^2 \omega(\lambda) - \frac{\sigma_\epsilon^2}{N})$$

$$E[\tilde{R}_{i}^{e}] = \frac{b_{i}\sigma_{z}^{2} + \frac{\sigma_{e}^{2}}{N}}{\gamma}(1 - \theta\omega(\lambda)) + \theta\frac{\sigma_{e}^{2}}{\gamma N}(1 + \omega(\lambda))^{\circ}$$
$$= \beta_{i}\frac{\sigma_{z}^{2} + \frac{\sigma_{e}^{2}}{N}}{\gamma}(1 - \theta\omega(\lambda)) + \theta\frac{\sigma_{e}^{2}}{\gamma N}(1 + \omega(\lambda))$$

◆□▶◆률▶◆불▶ 분별 쒸٩○