

NEED of this Project:-

- Globally, **2.2 billion** people live with some form of vision impairment **(World Health Organization).**
- India alone has **4.95 million** blind individuals and **70 million** with vision impairments, including **0.24 million** blind children **(National Institutes of Health)**.
- In low-income countries, nearly **90% of people** with disabilities lack access to necessary assistive technology **(World Health Organization)**.
- The lack of affordable solutions limits the *independence* and *quality of life* for individuals with visual impairments.

Challenges blind peop

Limited Independence

Safety Concerns

Information Accessibility

Financial Constraints

Technology Barriers

Visi Companion — YOUR PATH TO INDEPENDENCE. —

VisiCompanion is a real-time grocery detection tool designed for visually impaired users. Using advanced YOLO models, it identifies grocery items and provides audio cues, allowing users to shop independently and with confidence.

Key Features:-

Real-Time Product Detection **Brand Recognition**

Voice Feedback System Optimized for Cluttered Environments Lightweight and Fast Inference

Future-Ready Features

Alignment with UN Sustainable Development Goals (SDGs)

Goal 3	Goal 8	Goal 9	Goal 10	Goal 11
Good Health and Well-Being:- • Improves independence and well-being for the visually impaired.al	Decent Work and Economic Growth:- • Promotes inclusion, enhancing job opportunities	Industry, Innovation, and Infrastructure:- • Uses innovative tech for real-time detection and efficient solutions.	Reduced Inequality:- • Reduces inequality by improving accessibility.	Sustainable Cities and Communities:- • Supports social inclusion in urban environments.

Step 1:

- Data Collection and Preprocessing-
- Collect and label a dataset of diverse grocery images. Apply resizing, normalization, and augmentation to enhance model compatibility and robustness.

Step 2:

- Model Selection-
- YOLOv8 is chosen for efficient, realtime performance on low-power devices. YOLOv9 offers higher accuracy for complex items but requires more processing power.

Methodology and Approach:-

Step 3:

- Training and Optimization-
- Train YOLOv8 and YOLOv9 on the preprocessed grocery dataset. Tune hyperparameters to optimize accuracy and speed.

Step 4:

- Evaluation and Comparison-
- Test each model for accuracy, speed, and efficiency in grocery detection.
 Determine the best model based on real-world performance needs.

Step 5:

- Deployment and User Feedback-
- Integrate the selected model into an accessible interface for users. Provide audio feedback for item identification, supporting independent grocery shopping.

emulated_0_DCIM_-convert_tmp_files_I 0107190907_20240108113539_jpg.rf.5cb6f 6494e4db48723eca817e1e98e7a

_storage_emulated_0_DCIM_-convert_tmp_files_l MG20240107190913_20240108113539_jpg.rf.eb1a dc8d5d8d8dd1e0784e46b133c42f

_storage_emulated_0_DCIM_-convert_tmp MG20240107190915_20240108113539_jpg.rl 53b5cb72200aeb222b643694d152

orage_emulated_0_DCIM_-convert_tmp_files_I

620240107094955_20240107111242_jpg.rf.8373e

2b643694d152

_storage_emulated_0_DCIM_-convert_tmp_files_I MG20240107095004_20240107111242_jpg.rf.f458d 0e3e2d8d67c153da94a2f6806e1

emulated 0_DCIM_-convert_tmp_files_I

_storage_emulated_0_DCIM_-convert_tmp_files_l MG20240107190932_20240108113538_jpg.rf.be0b

ELISH-OLOW

ELISH-

Grocery Data Set Samples:-

emulated_0_DCIM_-convert_tmp_files_I 7095142_20240107111240_jpg.rf.929d 160987711136849b3ebcf02

YOLOv8 Results

YOLOv9 Results

LIVE Detection

YOLOv9

YOLOv8

Which is Better: YOLOv8 or YOLOv9

YOLOv8

YOLOv9

Standard detection layers	Improved small object focus	
Lightweight but moderate efficiency	More optimized and faster	
Good accuracy, struggles small items	Better accuracy, fine details	
Adequate for large objects	Enhanced for tiny details	
Moderate FPS, real-time capable	Faster FPS, real-time optimized	
Moderate inference time	Faster frame processing	
Struggles with occluded items	Better handling of clutter	
Good in normal lighting	Handles varied lighting better	
Needs optimization for mobile	Optimized for mobile deployment	
Standard training time	Requires longer training	
Moderate resource consumption	More resource efficient	

mAP ? 91.4%

Precision ? 87.7%

Recall ③ 84.8%

YOLOv8 scores:-

Tools To Be Used:-

OpenCV

PyTorch

TensorFlow

Ultralytics YOLOv8

YOLOv9 Repository GPU (e.g., NVIDIA GPU)

Google Colab

AWS EC2

TensorBoard

Next Steps and Conclusion:-

Model Fine-Tuning-

Further adjust YOLOv8 and YOLOv9 models to enhance detection accuracy and efficiency for grocery items.

Interface **Enhancement**-

Refine the app's interface for a seamless experience, with responsive and accessible audio cues.

User Testing-

Conduct testing sessions with visually impaired users to gather insights and improve usability based on real-world feedback.

App Integration-

Integrate the selected model into a mobile app, ensuring compatibility, intuitive design, and easy access to audio feedback for users.

Deployment Optimization-

Optimize the system for deployment on mobile and edge devices, maintaining real-time performance and stability.

Scalability and Expansion

Expand item recognition capabilities and explore additional features like item categorization and nutritional details.

Team Members:-

Vibhore Jain

Tanmay Arora

Swapnil Bhatnagar

Neeraj Gandhi

Thank you