МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Колебания в электрических цепях

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

Исследовано изменение периода колебаний колебательного RLC контура от его ёмкости. Исследовано изменение добротности контура при изменении его сопротивления. Изучен вид затухающих колебаний на фазовой диаграмме. Рассмотрен процесс установления колебаний в контуре.

Введение

Цель работы заключается в исследование характеристик колебательного контура, состоящего из катушки индуктивности, конденсатора и сопротивления.

Методика

Уравнение колебаний в последовательном контуре

Запишем равенство ЭДС в контуре относительно заряда:

$$L\ddot{q} + R\dot{q} + \frac{q}{C} = \varepsilon(t), \tag{1}$$

где L — индуктивность катушки, R — сопротивление резистора, C — ёмкость контенсатора. Поделим на L и введём новые обозначения:

$$\ddot{q} + 2\gamma \dot{q} + \omega_0^2 q = \frac{\varepsilon(t)}{L},$$

где $\gamma = \frac{R}{2L}$ — коэффициент затухания, $\omega_0 = \sqrt{\frac{1}{LC}}$ — собственная частота контура. Решение такого уравнения представляется в виде суммы частного решения общего решения уравнения:

$$\ddot{q} + 2\gamma \dot{q} + \omega_0^2 q = 0.$$

Запишем характеристическое уравнение:

$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0.$$

Это обыкновенное квадратное уравнение имеет. Запишем его дискриминант:

$$\frac{D}{A} = \gamma^2 - \omega^2$$

Общее решение имеет вид $\lambda = -\gamma \pm \sqrt{\gamma^2 - \omega^2}$ Тогда возможны 3 случая: $\gamma > \omega$, $\gamma = \omega$, $\gamma < \omega$. В первом случае дискриминант положителен, во втором случае уравнение имеет два совпадающий решения, в третьем случае уравнение имеет два комплексных решения. Можно ввести дополнительную величину

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}} > R > 0, \tag{2}$$

называемая волновым сопротивлением контура. Тогда общее решение для первого и третьего случая имеет вид:

$$q = Ae^{\left(-\gamma + \sqrt{\gamma^2 - \omega^2}\right)t} + Be^{\left(-\gamma - \sqrt{\gamma^2 - \omega^2}\right)t}.$$
 (3)

В первом случае уравнение останется в таком виде, тогда заряд будет экспоненциально уменьшаться до нуля, колебаний не произойдёт. Во третьем случае комплексные экспоненты преобразуются в синусы и косинусы по формуле Эйлера(при этом комплексные части сократятся), тогда решение можно переписать в виде:

$$q = q_0 e^{-\gamma t} \cos(\sqrt{\omega^2 - \gamma^2} t + \varphi_0) = q_0 e^{-\gamma t} \cos(w_1 t + \varphi_0). \tag{4}$$

Такой режим представляет затухающие колебания. Во втором же случае решение представляет собой

$$q = Ate^{\gamma t} + Be^{\gamma t}. (5)$$

Такой режим также представляет экспоненциально затухающее апериодическое поведение. После этого достаточно найти частное решение исходного уравнения и сложить с общим. Аналогичное уравнение может быть получено для U на конденсаторе делением полученного уравнения на C.

Установление колебаний

Рассмотрим внешнее ЭДС изменяющееся по закону:

$$\varepsilon = \varepsilon_0 \sin \omega t$$
.

Согласно предыдущему разделу общее решение представляется в виде:

$$U = U_0 e^{-\gamma t} \cos(w_1 t + \varphi_0) + A \cos(w t + \psi).$$

Примем в качестве начальных условий $U=0, \dot{U}=0$ и преобразуем уравнение:

$$U = A\left(\sin(wt + \psi) - e^{-\gamma t}\sin(w_1t + \psi)\right)$$

В случае сильного отличия w_1 от w будут наблюдаться биения, однако при небольшом отличие и высокой добротности контура уравнение установления колебаний будет иметь вид:

$$U = Q\varepsilon_0 \left(1 - e^{-\gamma t}\right) \sin \omega_0 t,\tag{6}$$

где Q - добротность контура.

Описание установки

Рис. 1: Схема установки

На рисунке приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Г5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит тиристор D и ограничительный резистор R_1 . Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1 \text{ МОм}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

Результаты и их обсуждение

При нулевой ёмкости на конденсаторе измерен период затухающих колебаний. По полученным данным найдена ёмкость контура, которая составила $\Delta C \approx 1$ нФ. Далее катушке выставлена индуктивность L=0,1 Гн. Для первого опыта выставлено сопротивление R=410 Ом. Измерена зависимость периода колебаний от ёмкости конденсатора (Таблица 1).

C , мк Φ	T, MKC
0	65
0,001	91
0,002	111
0,003	127
0,004	142
0,005	155
0,006	168
0,007	179
0,008	190
0,009	200

Таблица 1: Данные измерения зависимости периода затухающий колебаний T от ёмкости конденсатора C.

По полученным данным построен график зависимости периода колебаний от ёмкости конденсатора (Рис. 2). На основании теоретической зависимости $T=2\pi\sqrt{LC}$ построена сглаживающая кривая. Видно, что кривая не выходит из точки (0,0), а сдвинута на ёмкость контура ΔC .

Рис. 2: График зависимости периода колебаний контура T от ёмкости конденсатора C.

Значения индуктивности катушки L и ёмкости конденсатора C установлены на 0,1 Гн и 5 + 1 мк Φ соответственно, критическое сопротивление конутра при таких параметрах можно рассчитать как $R_{\rm кp}=2\pi\sqrt{\frac{L}{C}}=8,1\pm0,1$ кОм. Измерены значения амплитуд затухающий колебаний в нескольких точках и на основе формулы

$$\theta = \frac{1}{k} \ln \frac{U_n}{U_{n+k}}$$

рассчитаны декременты затухания и добротность контура (Таблица 2).

k	R, Ом	U_1 , B	U_2 , B	θ	Q
4	410	2,22	0,54	$0,\!35$	8,89
4	810	2,59	0,17	0,68	4,61
3	1215	2,09	0,09	1,05	3,00
2	1620	1,7	0,11	1,37	2,29
2	2025	1,38	0,06	1,57	2,00
1	2430	1,12	0,16	1,95	1,61

Таблица 2: Таблица зависимости характеристик колебательного контура от сопротивления резистора. θ — логарифмический декремент затухания, Q — добротность

Согласно теории добротность контура может быть выражена как

$$Q = \frac{1}{2} \sqrt{\left(\frac{R_{\rm \kappa p}}{R}\right)^2 - 1}.$$

Построена линеаризирующуя зависимость $Q^2\left(\frac{1}{R^2}\right)$ (Рис. 3) по которой найдено критическое сопротивление контура $R_{\rm кp}=7.3\pm0.9$ кОм. Полученное значение совпало с рассчитаным теоретически с точность до погрешности.

Рис. 3: График линеаризованной зависимости добротности контура Q^2 от сопротивления контура R^{-2} .

Исследован процесс установления колебаний в конутре. Уствновлено, что при частоте источника, близкой к собственной частоте контура амплитуда колебаний монотонно возрастает (Рис. 4). В то время как при частотах, далёких от собственной наблюдаются биения (Рис. 5). Такое же поведение предсказывалось и теорией.

Рис. 4: График установления колебаний при частоте источника, близкой к собственной частоте контура.

Рис. 5: График установления колебаний при частоте источника, далёкой от собственной частоты контура.

Выводы

Измерена зависимость свободных колебаний контура в зависимоти от его ёмкости. Полученная зависимость полностью совпала с теоретически предсказанной. Получена зависимость добротно-

сти контура от его сопротивления. Несколькими способами определено критическое сопротивление контура. Рассмотрен процесс установления колебаний в контуре при различных частотах. Установлено, что при частотах, близких к собственной частоте контура наблюдается монотонновозрастающая зависимоть амплитуды колебаний от частоты, тогда как при частотах источника, сильно отличабщихся от собственной частоты, наблюдаются биения.

Использованная литература

Список литературы

[1] Лабораторный практикум по общей физике, Том 2, под редакцией А. Д. Гладуна