Mathematical Analysis II

Felix Chen

Contents

		roduction Recap	1	
2	Lebesgue integrals			
	2.1	Recap: Definition of Lebesgue integrals	:	
	2.2	Dominated convergence theorem	9	
	2.3	Integrable function space $\mathcal{L}^1(E)$	7	

§1 Introduction

Teacher: Yang Shiwu

Grading: Homework-Midterm-Endterm: 30-30-40

Contents of this course: Real analysis

§1.1 Recap

Definition 1.1 (Measurable space). Let X be a set and \mathcal{A} be a σ -algebra, we say (X, \mathcal{A}) is a measurable space if

- $\emptyset \in \mathcal{A}$;
- If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$;
- If $A_k \in \mathcal{A}$, then $\bigcup_{k=1}^{+\infty} \in \mathcal{A}$.

Outer measure m^* :

- $m^*(A) \ge 0$;
- $m^*(\bigcup_{k=1}^{\infty} A_k) \le \sum_{k=1}^{\infty} m^*(A_k);$
- $m^*(A) \leq m^*(B)$ when $A \subset B$.

Caratheodry condition:

$$m^*(T) = m^*(T \cap E) + m^*(T \cap E^c), \quad \forall T \subset X.$$

We define the measurable sets to be all the sets E satisfying above condition.

This implies the Lebesgue measure space $(\mathbb{R}^n, \mathcal{U}, m)$. It is a complete measure space, i.e. null sets are measurable.

Analysis II 1 INTRODUCTION

Proposition 1.2

Properties of measurable sets:

• Let E be a measurable set, there exists a G_{δ} set G and a F_{σ} set F such that

$$E = G \setminus Z_1 = F \cup Z_2$$
.

where Z_1, Z_2 are null sets.

• (Fatou's Lemma)

Measurable sets $E_k \nearrow E \implies \lim_{k\to\infty} m(E_k) = m(E)$ and

$$m\left(\liminf_{k\to\infty} E_k\right) \le \liminf_{k\to\infty} m(E_k).$$

Definition 1.3 (Measurable function). Let f be a map from measurable space (X, \mathcal{A}) to (Y, \mathcal{B}) . We say f is measurable if

$$\forall B \in \mathcal{B}, \quad f^{-1}(B) \in \mathcal{A}.$$

In the case of real functions, this is equivalent to

 $\forall t \in \mathbb{R}, \quad \{x; f(x) > t\} \text{ is a measurable set.}$

Proposition 1.4

Let f be a non-negative measurable function, $\exists \varphi_k \nearrow f$, where φ_k are simple functions. For a general measurable function f, decompose it to $f = f_+ - f_-$.

Theorem 1.5 (Egorov)

Let E be a measurable set and $m(E) < \infty$, $f_n \to f, a.e.$, Then $\forall \varepsilon > 0$, there exists a closed set F_{ε} s.t. $m(E \setminus F_{\varepsilon}) < \varepsilon$ and $f_n \to f$ uniformly on F_{ε} .

Theorem 1.6 (Lusin)

Let E be a measurable set and $m(E) < \infty$. Then $\forall \varepsilon > 0, \exists F_{\varepsilon}$ such that $f|_{F_{\varepsilon}}$ is continuous.

Convergence patterns:

- Converge almost everywhere: $f_n \to f, a.e.$
- Converge almost uniformly: $f_n \to f, a.u.$
- Converge in measure: $f_n \xrightarrow{m} f$

§2 Lebesgue integrals

§2.1 Recap: Definition of Lebesgue integrals

• Simple functions: $f = \sum_{k=1}^{N} a_k \chi_{E_k}$, define

$$\int f = \sum_{k=1}^{N} a_k m(E_k).$$

• $f: E \to \mathbb{R}^n$, where $m(E) < \infty$, f bounded. These functions form the set \mathcal{L}_0 . Then $\exists \varphi_k \to f$, φ_k simple, define

$$\int f = \lim_{k \to \infty} \int \varphi_k.$$

• Non-negative function:

$$\int f = \sup \left\{ \int g \mid 0 \le g \le f, g \in \mathcal{L}_0 \right\}.$$

• General functions:

$$\int f = \int f_{+} - \int f_{-}.$$

Integrable $\iff \int f_+, \int f_- < +\infty.$

Relations between Riemann integrals and Lebesgue integrals:

- f is Riemann integrable on [a, b] iff f bounded and the discontinuous points form a null set.
- If f is Riemann integrable on [a, b], then two types of integral yield the same result.

§2.2 Dominated convergence theorem

The critical question of this section: If a sequence of functions f_n converges to f (almost everywhere), when does their integrals $\int f_n$ converge to $\int f$?

We'll discuss this issue under various conditions and reach the famous Dominated Convergence Theorem.

Theorem 2.1

Let E be a measurable set with finite measure. Measurable functions $f_n \to f, a.e.$ on E. Furthermore, f_n is uniformly bounded almost everywhere $(|f_n| < M, a.e.)$. Then we have

$$\int_{E} |f_n - f| \to 0 \implies \lim_{m \to \infty} \int_{E} f_n = \int_{E} f.$$

Proof. By Egorov's Theorem, $\forall \varepsilon > 0$, there exists $F_{\varepsilon} \subset E$ s.t. $f_n \to f$ uniformly on F_{ε} , and $m(E \setminus F_{\varepsilon}) < \varepsilon$.

Hence

$$\int_{E} |f_{n} - f| = \int_{F_{\varepsilon}} |f_{n} - f| + \int_{E \setminus F_{\varepsilon}} |f_{n} - f|$$

$$\leq \varepsilon_{0} m(E) + 2M\varepsilon,$$

which proves the result.

Lemma 2.2 (Fatou's Lemma)

If $f_n \geq 0$, then

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n.$$

Proof. For any $g \in \mathcal{L}_0$, $0 \le g \le \liminf_{n \to \infty} f_n$, we need to prove $\int g \le \liminf \int f_n$. Let $g_k = \min\{f_k, g\}$, assmue g is uniformly bounded so that $g_k \in \mathcal{L}_0$. We'll prove $g_k \to g$: Assmue by contradiction that $\exists \varepsilon_0 > 0, \exists x_0 \text{ s.t.}$

$$g(x_0) - g_{k'}(x_0) > \varepsilon_0.$$

then $g(x_0) - f_{k'}(x_0) > \varepsilon_0$, which contradicts with $g \leq \liminf_{n \to \infty} f_n$. Thus for sufficiently large k, $g_k(x) \leq g(x) \leq g_k(x) + \varepsilon_0$, $\Longrightarrow g_k \to g$. Therefore by Theorem 2.1 (note $g_k \in \mathcal{L}_0$),

$$\int g = \lim_{k \to \infty} \int g_k$$

$$\leq \liminf_{k \to \infty} \int f_k,$$

and we're done.

Remark 2.3 — This is nearly indentical to the measure version of Fatou's Lemma (Proposition 1.2). It shows some similarities between measure and integrals.

Theorem 2.4 (Beppo-Levi)

If non-negative functions $f_n \nearrow f$, we have

$$\lim_{n \to \infty} \int f_n = \int f.$$

Proof.

$$f_n \le f \implies \lim_{n \to \infty} \int f_n \le \int f$$
.

By Fatou's Lemma (2.2),

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n = \lim_{n \to \infty} \int f_n,$$

$$\implies \int f \le \lim_{n \to \infty} \int f_n.$$

Combining the two inequalities we get the desired equality.

Corollary 2.5

Let f_n be non-negative functions, then

$$\int \sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} \int f_k(x).$$

Proposition 2.6

Let f be an integrable function, $\forall \varepsilon > 0$, we have:

• There exists a set B with finite measure s.t.

$$\int_{B^c} |f| < \varepsilon.$$

• (Absolute continuity of integrals) $\exists \delta > 0$ s.t. $\forall E$, if $m(E) < \delta$,

$$\int_{E} |f| < \varepsilon.$$

This is equivalent to

$$\lim_{m(E)\to 0} \int_E |f| = 0.$$

Proof. Let $f_N(x) = |f(x)|$ when $|x| \le N, |f(x)| \le N$, and $f_N(x) = 0$ otherwise. Then $f_N \nearrow |f|$, so by Beppo-Levi (Theorem 2.4), we get

$$\lim_{N \to \infty} \int f_N = \int |f|.$$

Let $B = \{x \mid |x| \leq N, |f(x)| \leq N\}$, when N gets sufficiently large, we must have $\int_{B^c} |f| < \varepsilon$. For the second part, when N is sufficiently large we have $\int (|f| - f_N) < \frac{\varepsilon}{2}$, so

$$\int_{E} |f| = \int_{E} f_{N} + \int_{E} (|f| - f_{N})$$

$$\leq N \cdot m(E) + \frac{\varepsilon}{2}.$$

Let $\delta = \frac{\varepsilon}{2N}$ to finish.

Now we take a look at what we get so far:

- If bounded functions $f_n \in \mathcal{L}_0$, $f_n \to f$, then $\int f_n \to \int f$.
- If f_n is non-negative, then $\int \liminf f_n \leq \liminf \int f_n$. (Fatou) This corresponds to: $m(\liminf E_n) \leq \liminf m(E_n)$.
- If $f_n \nearrow f$, then $\int f_n \nearrow \int f$. (Beppo-Levi) This corresponds to: $E_n \subset E_{n+1} \implies m(\bigcup E_n) = \lim m(E_n)$.

Finally we come to the famous Lebesgue dominated convergence theorem:

Theorem 2.7 (Lebesgue Dominated Convergence Theorem)

Functions $f_n \to f, a.e.$, if there exists a function g s.t. $|f_n| \le g, a.e.$, then we have:

$$\int |f - f_n| \to 0. \left(\lim_{n \to \infty} \int f_n = \int f \right)$$

Proof. By Fatou's lemma (2.2), $2g - |f_n - f|$ is non-negative,

$$\int \liminf (2g - |f_n - f|) \le \liminf \int (2g - |f_n - f|)$$

$$\implies 0 \le \liminf \left(- \int |f_n - f| \right)$$

 $\implies \limsup \int |f_n - f| \le 0$, hence it must equal to 0.

Example 2.8

Non-examples of lebesgue dominated convergence theorem:

- Let $f_n = \chi_{[n,n+1]}$, g = 1, note that g is not integrable, so $\int f_n = 1$ while $f_n \to 0$.
- $f_n = \frac{1}{n}\chi_{[0,n]}, f_n \to 0, \int f_n = 1 \nrightarrow 0$. Since $g(x) = \min\{\frac{1}{x}, 1\}$, which isn't integrable.
- $f_n = n\chi_{(0,\frac{1}{n})}, f_n \to 0, \int f_n = 1 \not\to 0$. Here $g(x) = \frac{1}{x}\chi_{[0,1]}$ is not integrable.

Example 2.9

Suppose that

$$\lim_{n \to \infty} \int_E f_n = \int_E f$$

holds for any measurable set E. Then

$$\liminf_{n\to\infty} f_n \le f \le \limsup_{n\to\infty} f_n, a.e..$$

Proof. We only need to prove the case when f = 0.

For $\forall \varepsilon > 0$, define

$$E_n^{\varepsilon} = \{x : f_n(x) < -\varepsilon\}.$$

Note that

$$\liminf E_n^{\varepsilon} \subset \{x : \limsup f_n \le -\varepsilon\} \subset \liminf E_n^{\frac{\varepsilon}{2}}.$$

Because when $\limsup f_n(x) \leq -\varepsilon$, $\exists N$ such that $\sup_{n>N} f_n(x) < -\frac{\varepsilon}{2}$

$$\implies f_n(x) < -\frac{\varepsilon}{2}, \forall n > N$$

This implies $x \in E_n^{\frac{\varepsilon}{2}}, \forall n > N$, so $x \in \liminf E_n^{\frac{\varepsilon}{2}}$.

We proceed with the proof, by using the condition $(E = \bigcap_{k > N} E_k^{\varepsilon})$,

$$0 = \lim_{n \to \infty} \int_{\bigcap_{k > N} E_k^{\varepsilon}} f_n.$$

Since $x \in \bigcap_{k \ge N} E_k^{\varepsilon} \implies f_k(x) < -\varepsilon$, we deduce

$$0 = \lim_{n \to \infty} \int_{\bigcap_{k \ge N} E_k^{\varepsilon}} f_n \le (-\varepsilon) \cdot m(\bigcap_{k \ge N} E_k^{\varepsilon})$$

Hence $E = \bigcap_{k > N} E_k^{\varepsilon}$ is a null set.

§2.3 Integrable function space $\mathcal{L}^1(E)$

Definition 2.10 (\mathcal{L}^1 space). Denoted by $\mathcal{L}^1(E)$ the space consisting of all the integrable functions on E.

If f = g, a.e., then $\int |f - g| = 0$, we regard them as equivalent elements in $\mathcal{L}^1(E)$. Observe that $\mathcal{L}^1(E)$ is a vector space, define the norm:

$$||f|| = \int_E |f|.$$

It's easy to check that $\mathcal{L}^1(E)$ becomes a normal vector space.

Moreover, it's also a **Banach space** (complete normal vector space).

Theorem 2.11

 $\mathcal{L}^1(E)$ is a Banach space.

Proof. Let f_n be a Cauchy sequence in $\mathcal{L}^1(E)$, suppose $||f_{n_k} - f_{n_{k+1}}|| < 2^{-k}$. Let $f = \sum_{k=0}^{\infty} (f_{n_{k+1}} - f_{n_k})$, where $f_{n_0} = 0$. Because

$$\int_{E} \sum_{k=0}^{\infty} |f_{n_{k+1}} - f_{n_k}| = \sum_{k=0}^{\infty} \int_{E} |f_{n_{k+1} - f_{n_k}}| \le \sum_{k=0}^{\infty} 2^{-k} < +\infty.$$

so our f is well-defined (convergent). Now we compute

$$||f - f_m|| = ||f_m - f_{n_l}|| + \left\| \sum_{k=l}^{\infty} (f_{n_{k+1}} - f_{n_k}) \right\|$$

$$\leq ||f_m - f_{n_l}|| + \sum_{k=l}^{\infty} ||f_{n_{k+1}} - f_{n_k}||$$

$$\leq ||f_m - f_{n_l}|| + 2^{-l+1}.$$

As m gets large, $||f_m - f_{n_l}||$ and 2^{-l+1} both converge to 0, so $f_n \to f$ in $\mathcal{L}^1(E)$.