Trig Final (SLTN v620)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 4 meters. The arc length is 9.5 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

 $\theta = 2.375$ radians.

Question 2

Consider angles $\frac{13\pi}{4}$ and $\frac{-11\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{13\pi}{4}\right)$ and $\cos\left(\frac{-11\pi}{3}\right)$ by using a unit circle (provided separately).

Find $sin(13\pi/4)$

$$\sin(13\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $cos(-11\pi/3)$

$$\cos(-11\pi/3) = \frac{1}{2}$$

Question 3

If $\cos(\theta) = \frac{39}{89}$, and θ is in quadrant IV, determine an exact value for $\tan(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$39^{2} + B^{2} = 89^{2}$$

$$B = \sqrt{89^{2} - 39^{2}}$$

$$B = 80$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\tan(\theta) = \frac{\frac{-80}{89}}{\frac{39}{89}} = \frac{-80}{39}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 7.59 meters, a midline at y = 6.18 meters, and a frequency of 8.67 Hz. At t = 0, the mass is at the midline and moving up. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 7.59\sin(2\pi 8.67t) + 6.18$$

or

$$y = 7.59\sin(17.34\pi t) + 6.18$$

or

$$y = 7.59\sin(54.48t) + 6.18$$