

第十二讲 数列中的不等式

例1. 已知数列
$$\{a_n\}$$
满足 $\frac{1}{2} < a_1 < \frac{2}{3}$, $a_{n+1} = a_n (2 - a_{n+1})$ ($n = 1, 2, \cdots$).

求证:对任意正整数
$$n$$
,均有 $n + \frac{1}{2} < \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} < n + 2$.

证: 由
$$a_{n+1} = a_n \left(2 - a_{n+1}\right)$$
 可得 $a_{n+1} = \frac{2a_n}{a_n + 1}$.
利用不动点法可得 $\frac{a_{n+1} - 1}{a_{n+1}} = \frac{1}{2} \cdot \frac{a_n - 1}{a_n}$,即 $\frac{1}{a_{n+1}} - 1 = \frac{1}{2} \left(\frac{1}{a_n} - 1\right)$.
注意 $\frac{1}{2} < \frac{1}{a_1} - 1 < 1$,故 $\left(\frac{1}{a_1} - 1\right) + \left(\frac{1}{a_2} - 1\right) + \dots + \left(\frac{1}{a_n} - 1\right) \ge \left(\frac{1}{a_1} - 1\right) > \frac{1}{2}$;
 $\left(\frac{1}{a_1} - 1\right) + \left(\frac{1}{a_2} - 1\right) + \dots + \left(\frac{1}{a_n} - 1\right) = \left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}}\right) \left(\frac{1}{a_1} - 1\right) < 2 \left(\frac{1}{a_1} - 1\right) < 2$.
整理可得 $n + \frac{1}{2} < \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} < n + 2$.

例2. 数列
$$\{a_n\}$$
 满足 $a_1=1$, $a_2=\frac{1}{4}$, $a_{n+1}=\frac{(n-1)a_n}{n-a}$ $(n=2,3,\cdots)$.

- (1) 求数列的通项公式;
- (2) 求证:对任意正整数 n,均有 $\sum_{k=1}^{n} a_k^2 < \frac{7}{6}$.

(1) 解: 由
$$a_{n+1} = \frac{(n-1)a_n}{n-a_n}$$
 变形得 $\frac{1}{a_{n+1}} - 1 = \frac{n}{n-1} \left(\frac{1}{a_n} - 1\right)$,

由累乘法可得
$$\frac{1}{a_n} - 1 = (n-1) \left(\frac{1}{a_2} - 1 \right)$$
,于是求出通项 $a_n = \frac{1}{3n-2}$.(2)证:将通项公式代入,可得:

$$\sum_{k=1}^{n} a_k^2 = 1 + \frac{1}{4^2} + \frac{1}{7^2} + \dots + \frac{1}{\left(3n-2\right)^2} < 1 + \frac{1}{2 \times 5} + \frac{1}{5 \times 8} + \dots + \frac{1}{\left(3n-4\right)\left(3n-1\right)} = 1 + \frac{1}{3} \left(\frac{1}{2} - \frac{1}{3n-1}\right) < \frac{7}{6}.$$

例3. 数列
$$\{a_n\}$$
定义如下: $a_1 = 2$, $a_{n+1} = a_n^2 - a_n + 1(n = 1, 2, \cdots)$.

求证:
$$1 - \frac{1}{2000^{2000}} < \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{2000}} < 1$$

证: 由
$$a_{n+1}=a_n^2-a_n+1$$
变形得 $\frac{1}{a_n}=\frac{1}{a_n-1}-\frac{1}{a_{n+1}-1}$ 代入得 $\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_{2000}}=\frac{1}{a_1-1}-\frac{1}{a_{2000}-1}=1-\frac{1}{a_{2000}-1}<1$. 要证不等式左边,只要证明 $a_{2000}>2000^{2000}+1$ 即可.下证当 $n\geq 2$ 时, $a_n\geq 2^{2^{n-2}}+1$.

要证不等式左边,只要证明
$$a_{2000} > 2000^{2000} + 1$$
 即可. 下证当 $n \ge 2$ 时, $a_n \ge 2^{2^{n-2}} + 1$.

当n=2,3时显然成立.

若
$$n=k$$
 时成立. 则 $n=k+1$ 时, $a_{k+1}=a_k^2-a_k+1\geq \left(a_k-1\right)^2+1\geq \left(2^{2^{k-2}}\right)^2+1=2^{2^{k-1}}+1$, 命题成立. 于是得到 $a_{2000}\geq 2^{2^{1998}}+1>2^{\left(2^{10}\right)^{199}}+1>2^{1000^{199}}>2^{22000}+1=\left(2^{11}\right)^{2000}+1>2000^{2000}+1$.

于是得到
$$a_{2000} \ge 2^{2^{1998}} + 1 > 2^{(2^{10})^{199}} + 1 > 2^{1000^{199}} > 2^{22000} + 1 = (2^{11})^{2000} + 1 > 2000^{2000} + 1$$

综上即可得证.

已知数列 $\{a_n\}$ 的各项均为非负实数,且 $a_n^2 - a_n + a_{n+1} \le 0$ ($n=1,2,\cdots$).

求证:对所有不小于 2 的正整数 n,均有 $a_n \leq \frac{1}{n+2}$

证: 当 n=2 时, 由 $a_1^2-a_1+a_2\leq 0$ 可得 $a_2\leq -a_1^2+a_1=-\left(a_1-\frac{1}{2}\right)^2+\frac{1}{4}\leq \frac{1}{4}$, 命题成立. 若 n = k 成立, n = k + 1 时,由 $a_k^2 - a_k + a_{k+1} \le 0$ 可得 $a_{k+1} \le -a_k^2 + a_k$,由归纳假设, $a_k \le \frac{1}{k+2} < \frac{1}{2}$,故 $a_{k+1} \le -\frac{1}{\left(k+2\right)^2} + \frac{1}{k+2} < \frac{1}{k+3}$,命题成立 综上,原命题得证.

例5. 给定实数 a,使得 0 < a < 1,数列 $\{a_n\}$ 满足 $a_1 = 1 + a$, $a_{n+1} = \frac{1}{a} + a$ ($n = 1, 2, \cdots$). 求证:对任意正整数n,均有 $a_n > 1$.

证一:加强命题,证明 $1 < a_n < \frac{1}{1-a}$.

当 n=1 时, $1<1+a<\frac{1}{1-a}$, 命题成立.

若 n = k 时成立,则 n = k + 1 时, $a_{k+1} = \frac{1}{a_k} + a < \frac{1}{1} + a = 1 + a < \frac{1}{1-a}$, $a_{k+1} = \frac{1}{a_k} + a > \frac{1}{1-a} + a = 1$. 综上即可得证.

证二: 当n=1时, $a_1=1+a>1$, 命题成立.

当 n=1时, $a_2=\frac{1}{a_1}+a=\frac{1}{1+a}+a=\frac{1+a+a^2}{1+a}>1$,命题成立.

若 n = k 时命题成立,则 n = k + 2 时: $a_{k+2} = \frac{1}{a_{k+1}} + a = \frac{1}{\frac{1}{a+a}} + a = \frac{(1+a^2)a_k + a}{a \cdot a_k + 1} = \frac{1+a^2}{a} - \frac{1}{a^2 \cdot a_n + a} > \frac{1+a^2}{a} - \frac{1}{a^2 + a} = \frac{a^3 + a^2 + a}{a^2 + a} > 1.$

综上即可得证.

例6. 已知数列 $\{a_n\}$ 满足 $a_1 = 4$, $a_{n+1} = \sqrt{2a_n + 3}$ ($n = 1, 2, \cdots$),

求证:对任意正整数 n,均有 $3-\left(\frac{2}{3}\right)^{n-1} \le a_n \le 3+\left(\frac{2}{3}\right)^{n-1}$.

证: 本题即证 $|a_{n+1}-3| \le \left(\frac{2}{3}\right)^{n-1}$. 由条件 $|a_{n+1}-3| = \left|\sqrt{2a_n+3}-3\right| = \frac{|2a_n-6|}{\sqrt{2a_n+3}+3} \le \frac{2}{3}|a_n-3|$.

从而 $|a_n-3| \le \left(\frac{2}{3}\right)^{n-1} |a_1-3| = \left(\frac{2}{3}\right)^{n-1}$. 综上即可得证.

例7. 对任意正整数 n,求证: $\sum_{k=1}^{n} \frac{1}{3^k + (-2)^k} < \frac{7}{6}$.

$$\vec{\text{UE}} \colon \; \vec{\text{UE}} = \frac{1}{3^k + (-2)^k} \;, \quad \vec{\text{ABDUE}} \; S_n = \sum_{k=1}^n a_k < \frac{7}{6} \;.$$

$$a_{2k} + a_{2k+1} = \frac{1}{3^{2k} + 2^{2k}} + \frac{1}{3^{2k+1} - 2^{2k+1}} = \frac{3^{2k} + 2^{2k} + 3^{2k+1} - 2^{2k+1}}{\left(3^{2k} + 2^{2k}\right)\left(3^{2k+1} - 2^{2k+1}\right)} = \frac{4 \cdot 3^{2k} - 2^{2k}}{3^{4k+1} + \left(3^{2k} - 2^{2k+1}\right)2^{2k}} < \frac{4}{3^{2k+1}} \;.$$

故 $S_n < a_1 + (a_2 + a_3) + (a_4 + a_5) + \dots = 1 + \frac{4}{27} + \frac{16}{243} + \dots = 1 + \frac{4}{27} \cdot \frac{1}{1 - \frac{1}{2}} = \frac{7}{6}$.