8. hét, 2020. április 20.

Analízis I. Előadás

Tartalom

a) Sorok átrendezése

b) Sorok szorzása

c) Hatványsorok

Műveleti tulajdonságok: kommutativitás, asszociativitás Kommutativitás

Motiváció: az összeadás műveleti tulajdonságai érvényben maradnak-e végtelen összegekre is?

A tagok sorrendjének felcserélése, átrendezés

Kommutativitás:

- a) Alapeset: $a_1 + a_2 = a_2 + a_1$ $(a_1, a_2 \in \mathbb{R})$.
- b) Véges tagú összegekre való általánosítás: $n \in \mathbb{N}, n \ge 1, a_k \in \mathbb{R} \ (k = 0, ..., n), p : \{0, ..., n\} \rightarrow \{0, ..., n\}$ bijekció (permutáció) esetén

$$a_0 + a_1 + \ldots + a_n = a_{p_0} + a_{p_1} + \ldots + a_{p_n}$$
.

Sorok átrendezése (A kommutativitáskérdése végtelen sorokra.)

Átvihetők-e a véges összegekre ismert műveleti tulajdonságok végtelen összegekre? Definíció: Legyen $a: \mathbb{N} \to \mathbb{R}$ és $p: \mathbb{N} \to \mathbb{N}$ bijekció.

Ekkor a $\sum (a_{p_k})$ sort a $\sum (a_k)$ sor egy átrendezésének nevezzük.

A $p: \mathbb{N} \to \mathbb{N}$ bijekciót a természetes számok permutációjának nevezzük.

Tétel

Egy abszolút konvergens sor bármely átrendezése is abszolút konvergens, és a sorösszeg az átrendezés során nem változik meg.

Bizonyítás

Legyen $\sum (a_k)$ abszolút konvergens sor, p pedig $\mathbb N$ egy permutációja. Jelölje s_n az eredeti, σ_n pedig az átrendezett sor n-edik részletősszegét.

a) Az állítást először pozitív tagú sorokra igazoljuk.

Emlékeztető: pozitív tagú sorok részletösszegeinek sorozata monoton növekedő.

Tegyük fel tehát, hogy $a_k \ge 0 \ (k \in \mathbb{N})$.

Legyen $n \in \mathbb{N}$ és $N = \max\{p_0, ..., p_n\}$. Ekkor

$$\sigma_n = \sum_{k=0}^n a_{p_k} \le \sum_{\ell=0}^N a_\ell = s_N \le \sum_{\ell=0}^\infty a_\ell \in \mathbb{R}.$$

A (σ_n) sorozat \nearrow és korlátos, tehát konvergens, és

$$\sum_{k=0}^{\infty} a_{p_k} = \lim_{n=-\infty} \sigma_n \le \sum_{\ell=0}^{\infty} a_{\ell}.$$

Mivel a p^{-1} inverz permutációt véve a $\sum (a_k)$ sor a $\sum (a_{p_k})$ egy átrendezéseként tekinthető, ezért a fenti gondolatmenetből a fordított egyenlőtlenség is adódik.

b) Teszőleges $\sum (a_k)$ abszolút konvergens sor esetén legyen

$$a_k^+ = \left\{ \begin{array}{ll} a_k, & \text{ha } a_k \ge 0 \\ 0, & \text{ha } a_k < 0 \end{array} \right., \qquad a_k^- = \left\{ \begin{array}{ll} 0, & \text{ha } a_k \ge 0 \\ -a_k, & \text{ha } a_k < 0 \end{array} \right..$$

Nyilván: $a_k = a_k^+ - a_k^-$ és $|a_k| = a_k^+ + a_k^-$.

Bizonyítás, folytatás

Mivel $a_k^{\pm} \leq |a_k|$, ezért mind a $\sum (a_k^+)$, mind pedig a $\sum (a_k^-)$ pozitív tagú sor konvergens.

Továbbá, ha
$$\sum_{k=0}^\infty a_k^+ = A \in \mathbb{R}$$
 és $\sum_{k=0}^\infty a_k^- = B \in \mathbb{R}$, akkor $\sum_{k=0}^\infty a_k = A - B$ és $\sum_{k=0}^\infty |a_k| = A + B$

Az a) részben igazoltak szerint $A = \sum_{k=0}^{\infty} a_{p_k}^+$ és $B = \sum_{k=0}^{\infty} a_{p_k}^-$, következésképpen $\exists \sum_{k=0}^{\infty} a_{p_k} = \sum_{k=0}^{\infty} a_{p_k}^+ - \sum_{k=0}^{\infty} a_{p_k}^- = A - B = \sum_{k=0}^{\infty} a_k$.

Másrészt
$$|a_k| = a_k^+ + a_k^-$$
 miatt

 $\sum_{k=0}^{\infty} |a_{p_k}| = \sum_{k=0}^{\infty} a_{p_k}^+ + \sum_{k=0}^{\infty} a_{p_k}^- = A + B = \sum_{k=0}^{\infty} |a_k|$, azaz az átrendezett sor is abszolút konvergens.

Megjegyzés

Komplex számsorozatokra is hasonlóan igazolható a tétel: valós és képzetes rész szétválasztása.

Kérdés: Mi van, ha nem abszolút konvergens a sor?

Tétel

Ha a $\sum (a_k)$ sor feltételesen konvergens, akkor

- i) $\forall C \in \overline{\mathbb{R}}$ esetén \exists olyan $p : \mathbb{N} \to \mathbb{N}$ permutáció, hogy $\sum_{k=0}^{\infty} a_{p_k} = C$,
- ii) van olyan p permutáció, hogy $\nexists \sum_{k=0}^{\infty} a_{p_k}$.

Bizonyítás nélkül.

Műveletek sorokkal

Szorzás

Téglány szorzás

Sorok: részletősszegek sorozata \implies Sorok szorzása: részletősszeg sorozatok szorzása.

Sorok: $\sum (a_k)$, $\sum (b_k)$. Részletösszegek: (s_n) , (σ_n) .

Sorok szorzata: $\sum (a_k) \cdot \sum (b_k) = (s_n \cdot \sigma_n)$.

Kérdés: az $(s_n \cdot \sigma_n)$ sorozat értelmezhető-e sorként.

Mivel

$$\begin{split} s_n \cdot \sigma_n &= \sum_{i=0}^n a_i \cdot \sum_{j=0}^n b_j = \sum_{\max\{i,j\} \leq n} a_i \cdot b_j = \sum_{k=0}^n \Big(\sum_{\max\{i,j\} = k} a_i \cdot b_j \Big) \,, \\ \text{ez\'ert ha } t_k &:= \sum_{\max\{i,j\} = k} a_i \cdot b_j \text{ akkor a } \sum(t_k) \text{ sor } n\text{-edik r\'eszlet\"osszege } s_n \cdot \sigma_n. \end{split}$$

Sorok téglányszorzata

 $a: \mathbb{N} \to \mathbb{R}, \ b: \mathbb{N} \to \mathbb{R}.$

Definíció. Legyen $t_k = \sum_{\max\{i,j\}=k} a_i \cdot b_j$ $(k \in \mathbb{N})$. Ekkor a $\sum (t_k)$ sort a $\sum (a_k)$, $\sum (b_k)$ sorok téglányszorzatának nevezzük.

Jelölés: $\sum (a_k) \cdot \sum (b_k) = \sum (t_k)$.

Tétel: A téglányszorzat konvergenciája

Ha $\sum (a_k)$ és $\sum (b_k)$ konvergens, akkor a $\sum (a_k) \cdot \sum (b_k) = \sum (t_k)$ téglányszorzat is konvergens, és $\sum_{k=0}^{\infty} a_k \cdot \sum_{k=0}^{\infty} b_k = \sum_{k=0}^{\infty} t_k$.

(A sorozatok szorzására vonatkozó konvergencia téle következménye.)

Hasonlóan: $\sum (a_k)$ és $\sum (b_k)$ konvergens $\Longrightarrow \sum (a_k) \cdot \sum (b_k)$ is abszolút konvergens.

Cauchy-szorzás

 $a: \mathbb{N} \to \mathbb{R}, \ b: \mathbb{N} \to \mathbb{R}.$

Definíció. Legyen $u_k = \sum_{i+j=k} a_i \cdot b_j$ $(k \in \mathbb{N})$. Ekkor a $\sum (u_k)$ sort a $\sum (a_k)$, $\sum (b_k)$ sorok Cauchy–szorzatának nevezzük.

Jelölés:
$$\sum (a_k) \times \sum (b_k) = \sum (\sum_{i+j=k} a_i b_j) = \sum (u_k)$$
.

Motiváció: konvolúció, korreláció, polinomok szorzása

Tétel: A Cauchy-szorzat konvergenciája

Ha $\sum (a_k)$ és $\sum (b_k)$ abszolút konvergens, akkor a $\sum (a_k) \times \sum (b_k) = \sum (u_k)$ Cauchy–szorzat is abszolút konvergens, és $\sum_{k=0}^{\infty} a_k \cdot \sum_{k=0}^{\infty} b_k = \sum_{k=0}^{\infty} u_k$.

Bizonyítás

A bizonyításhoz felhasználjuk a téglányszorzat konvergenciájára vonatkozó tételt.

Vezessük be a

$$T_{n} = \sum_{k=0}^{n} t_{k} = \sum_{k=0}^{n} \left(\sum_{\max\{i,j\}=k} a_{i} \cdot b_{j} \right),$$

$$T_{n}^{*} = \sum_{k=0}^{n} t_{k} = \sum_{k=0}^{n} \left(\sum_{\max\{i,j\}=k} |a_{i}| \cdot |b_{j}| \right),$$

$$U_{n} = \sum_{k=0}^{n} u_{k} = \sum_{k=0}^{n} \left(\sum_{i+j=k} a_{i} \cdot b_{j} \right)$$

$$U_{n}^{*} = \sum_{k=0}^{n} u_{k} = \sum_{k=0}^{n} \left(\sum_{i+j=k} |a_{i}| \cdot |b_{j}| \right)$$

jelöléseket.

Bizonyítás, folytatás

A téglányszorzatra vonatkozó tételből tudjuk, hogy $\lim_{n\to\infty} T_n = \sum_{k=0}^{\infty} a_k \cdot \sum_{k=0}^{\infty} b_k$.

A sorok szorzásának definíciói alapján a bevezett jelöléseket alkalmazva kapjuk, hogy

$$|T_n - U_n| = \Big| \sum_{\max\{i,j\} \le n, \ i+j > n} a_i \cdot b_j \Big| \le \sum_{\max\{i,j\} \le n, \ i+j > n} |a_i| \cdot |b_j|.$$

Mivel $\{\max\{i,j\} \le n, i+j > n\} \subset \{\lfloor n/2 \rfloor \le \max\{i,j\} \le n\}$, ezért

$$|T_n - U_n| \le |T_n^* - T_{[n/2]}^*|$$
.

A téglányszorzat abszolút konvergens \Longrightarrow (T_n^*) Cauchy-sorozat \Longrightarrow $\lim_{n\to\infty}|T_n^*-T_{\lfloor n/2\rfloor}^*|=0 \Longrightarrow \lim_{n\to\infty}|T_n-U_n|=0.$

Következésképpen
$$\exists \lim_{n\to\infty} U_n = \lim_{n\to\infty} T_n = \sum_{k=0}^{\infty} a_k \cdot \sum_{k=0}^{\infty} b_k$$
.

Megjegyzés

- a) A fenti tételben elég csak azt feltenni, hogy az egyik sor abszolút konvergens, a másik pedig konvergens (Mertens-tétel).
- Vannak olyan konvergens sorok, amelyeknek a Cauchy–szorzata nem konvergens.

Hatványsorok

Hatványsorok

Definíció: Legyen $x_0, x \in \mathbb{R}, a : \mathbb{N} \to \mathbb{R}$. Ekkor a $\sum (a_k(x - x_0)^k)$ sort hatványsornak nevezzük.

Elnevezések

- a) x_0 : a hatványsor középpontja,
- **b)** a_k 'k a hatványsor együtthatói.

Hatványsor konvergencia halmaza

Α

$$H = \{x \in \mathbb{R} : \sum (a_k(x - x_0)^k) \text{ konvergens} \}$$

halmazt a $\sum (a_k(x-x_0)^k)$ hatványsor konvergencia halmazának nevezzük.

Tétel

Egy hatványsor konvergencia halmaza intervallum.

Megjegyzés

- a) A konvergencia halmaz nem üres. $\forall \sum (a_k(x-x_0)^k)$ hatványsor esetén $x_0 \in H$.
- b) A H intervallum lehet egyelemű, lehet nyílt, zárt, de lehet pl. maga az $\mathbb R$ is.

Bizonyítás

Tegyük fel, hogy $\sum (a_k(x-x_0)^k)$ sor konvergens egy $x_0 \neq z \in \mathbb{R}$ pontban.

A sor konvergenciájából következik, hogy $(a_k(z-x_0)^k)$ nullsorozat, tehát korlátos is:

$$\exists K > 0 \text{ amelyre } |a_k(z - x_0)^k| < K \ (k \in \mathbb{N}).$$

Legyen x olyan valós szám, amire $|x-x_0|<|z-x_0|=:r$. Ekkor $q:=\frac{|x-x_0|}{|z-x_0|}<1$ és

$$|a_k(x-x_0)^k| = |a_k(z-x_0)^k| \cdot \frac{|x-x_0|^k}{|z-x_0|^k} < K \cdot q^k.$$

Mivel a $\sum (K \cdot q^k)$ geometriai sor konvergens, ezért a pozitív sorokra vonatkozó öszehasonlíto kritériumból követezik, hogy a $\sum (a_k(x-x_0)^k)$ sor abszolút konvergens minden olyan x-re, amire $|x-x_0|<|z-x_0|$ teljesül, azaz ami közelebb van x_0 -hoz, mint z.

Ha tehát
$$r := |z - x_0|$$
, akkor $(x_0 - r, x_0 + r) \subset H$.

Hatványsor konvergencia sugara

Definíció: Jelölje H a $\sum (a_k(x-x_0)^k)$ hatványsor konvergencia halmazát. Az $R:=\sup H-x_0\in \overline{\mathbb{R}}$ számot a szóban forgó sor konvergencia sugarának nevezzük. A definícióból nyilvánvaló, hogy $R\geq 0$, és hogy $\sup H=+\infty$ esetén $R=+\infty$.

A tétel következménye

- a) Ha H nem korlátos, akkor $H = \mathbb{R}$.
- b) Ha H korlátos, akkor $(x_0 R, x_0 + R) \subset H \subset [x_0 R, x_0 + R]$.
- c) Ha R = 0, akkor $H = \{x_0\}$.

Tétel (Cauchy-Hadamard)

Tegyük fel, hogy $a: \mathbb{N} \to \mathbb{R}$ olyan sorozat, amelyre $\exists \lim_{k \to \infty} \sqrt[k]{|a_k|} \in \overline{\mathbb{R}}$.

Legyen

$$r:=\left\{\begin{array}{ll} +\infty, & \text{ha } \lim_{k\to\infty}\sqrt[k]{|a_k|}=0\\ \frac{1}{\lim_{k\to\infty}\sqrt[k]{|a_k|}}, & \text{ha } \lim_{k\to\infty}\sqrt[k]{|a_k|}>0 \end{array}\right.$$

Ekkor a $\sum (a_k(x-x_0)^k)$ hatványsor konvergenciájával kapcsolatban az alábbi állítás igaz:

- a) ha r > 0 (, azaz $\lim_{k \to \infty} \sqrt[k]{|a_k|} \neq \infty$), akkor $\forall x \in \mathbb{R}, |x x_0| < r$ esetén a $\sum (a_k(x x_0)^k)$ hatványsor abszolút konvergens,
- b) ha $r<+\infty$, akkor $\forall \ x\in\mathbb{R},\ |x-x_0|>r$ esetén a $\sum (a_k(x-x_0)^k)$ hatványsor divergens.

Megjegyzés

- a) A tételben megfogalmazott állítás azt jelenti, hogy ha $\exists \lim_{k\to\infty} \sqrt[k]{|a_k|} \in \overline{\mathbb{R}}$, akkor a hatványsor konvergencia sugara a fenti r.
- b) A tételnek a korábban említett lim sup fogalom segítségével megfogalmazható egy általános, minden hatványsor esetére alkalmazható alakja.

Bizonyítás

A tétel bizonyítása a gyökkritériumnak a $\sum (a_k(x-x_0)^k)$ sorra való alkalmazásával a közvetlenül adódik.

a) Legyen r > 0 és $|x - x_0| < r$. Ekkor

$$\lim_{k \to \infty} \sqrt[k]{|a_k(x - x_0)^k|} = \lim_{k \to \infty} \sqrt[k]{|a_k|} \cdot |x - x_0| = |x - x_0| \lim_{k \to \infty} \sqrt[k]{|a_k|} = \frac{|x - x_0|}{r} < 1$$

Következésképpen a $\sum (a_k(x-x_0)^k)$ sor abszolút konvergens.

b) Legyen $r < \infty$ és $|x - x_0| > r$. Ekkor

$$\lim_{k\to\infty} \sqrt[k]{|a_k(x-x_0)^k|} = \lim_{k\to\infty} \sqrt[k]{|a_k|} \cdot |x-x_0| = |x-x_0| \lim_{k\to\infty} \sqrt[k]{|a_k|} = \frac{|x-x_0|}{r} > 1.$$
 Következésképpen a $\sum (a_k(x-x_0)^k)$ sor divergens.

Példák

- a) $\sum (k! \cdot x^k) : x_0 = 0$, $\lim_{k \to \infty} \sqrt[k]{k!} = +\infty$, tehát r = 0. A sor csak az x = 0 pontban konvergens.
- **b)** $\sum \left(\frac{x^k}{k!}\right) : x_0 = 0$, $\lim_{k \to \infty} \sqrt[k]{\frac{1}{k!}} = 0$, tehát $r = +\infty$. A sor minden $x \in \mathbb{R}$ pontban konvergens.
- c) $\sum \left(\frac{x^k}{2^k}\right): x_0=0$, $\lim_{k\to\infty} \sqrt[k]{\frac{1}{2^k}}=\frac{1}{2}$, tehát r=2. A sor a (-2,2) intervallum minden pontjában konvergens, a [-2,2] intervallumon kívül eső pontokban pedig divergens.

Analitikus függvények

Definíció: Egy r>0 konvergencia sugarú $\sum (a_k(x-x_0)^k)$ hatványsor esetén a hatványsor összegfüggvényét az (x_0-r,x_0+r) nyílt intervallumon, azaz az

$$f: (x_0 - r, x_0 + r) \to \mathbb{R}, \qquad f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

függvényt analitikus függvénynek nevezzük.

Példák

$$\mathbf{a)} \ \sum \left(\frac{x^k}{k!}\right) : r = +\infty, \, \exp : \mathbb{R} \to \mathbb{R}, \ \exp x := \sum_{k=0}^{\infty} \frac{x^k}{k!} \, ,$$

b)
$$\sum \left(\frac{(-1)^k}{(2k+1)!}x^{2k+1}\right): r=+\infty, \sin x:=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)!}x^{2k+1},$$

c)
$$\sum \left(\frac{(-1)^k}{(2k)!}x^{2k}\right): r = +\infty, \cos : \mathbb{R} \to \mathbb{R}, \ \cos x := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!}x^{2k},$$

d)
$$\sum (x^k) : r = 1, \ f : (-1, 1) \to \mathbb{R}, \ f(x) = \sum_{k=0}^{\infty} x^k = \frac{1}{1 - x}.$$

Kérdések

- a) Minden intervallumon értelmezett üggvény analitikus?
- b) Kölönböző hatványsorok különböző analitikus függvény definiálnak?

Tétel (Hatványsor középpontjának megváltoztatása, bizonyítás nélkül)

Legyen $\sum (a_k(x-x_0)^k)$ amelynek hatványsugara r>0, továbbá legyen $x_0^* \in \mathbb{R}$,

Legyen $\sum (a_{\kappa}(x-x_0)^*)$ amelynek hatvanysugara r>0, tovabba legyen $x_0^*\in\mathbb{R},$ $|x_0^*-x_0|< r$ és $\rho:=r-|x_0^*-x_0|>0$.

Ekkor
$$\sum_{k=0}^{\infty} a_k (x - x_0)^k = \sum_{k=0}^{\infty} b_k (x - x_0^*)^k,$$

ahol
$$b_k = \sum_{j=1}^{\infty} {j \choose k} a_j (x_0^* - x_0)^j$$
 és $|x - x_0^*| < \rho$.