Low-Power Neural Network Accelerators: Advancements in Custom Floating-Point Techniques

Yarib Nevarez

Universität Bremen

May 22, 2024

Advancements in AI/ML for IoT and TinyML

- Advancements in AI/ML for IoT and TinyML
- Need for energy efficiency

- Advancements in AI/ML for IoT and TinyML
- Need for energy efficiency
- Hybrid precision approach

- Advancements in AI/ML for IoT and TinyML
- Need for energy efficiency
- Hybrid precision approach
- Design challenges

- Advancements in AI/ML for IoT and TinyML
- Need for energy efficiency
- Hybrid precision approach
- Design challenges
- Approximate computing and quantization

- Advancements in AI/ML for IoT and TinyML
- Need for energy efficiency
- Hybrid precision approach
- Design challenges
- Approximate computing and quantization
- Quality, interoperability, and compatibility

 Goal: To develop advanced methodologies for energy-efficient neural network accelerators with custom floating-point (FP) computation in low-power and resource constrained devices.

- Goal: To develop advanced methodologies for energy-efficient neural network accelerators with custom floating-point (FP) computation in low-power and resource constrained devices.
- Objectives:

- Goal: To develop advanced methodologies for energy-efficient neural network accelerators with custom floating-point (FP) computation in low-power and resource constrained devices.
- Objectives:
 - Optimal custom FP number representation

- Goal: To develop advanced methodologies for energy-efficient neural network accelerators with custom floating-point (FP) computation in low-power and resource constrained devices.
- Objectives:
 - Optimal custom FP number representation
 - Energy-efficient design strategies and custom FP arithmetic units

- Goal: To develop advanced methodologies for energy-efficient neural network accelerators with custom floating-point (FP) computation in low-power and resource constrained devices.
- Objectives:
 - Optimal custom FP number representation
 - Energy-efficient design strategies and custom FP arithmetic units
 - Precision and quantization impact analysis

- Goal: To develop advanced methodologies for energy-efficient neural network accelerators with custom floating-point (FP) computation in low-power and resource constrained devices.
- Objectives:
 - Optimal custom FP number representation
 - Energy-efficient design strategies and custom FP arithmetic units
 - Precision and quantization impact analysis
 - Hardware performance evaluation and bench marking

- Goal: To develop advanced methodologies for energy-efficient neural network accelerators with custom floating-point (FP) computation in low-power and resource constrained devices.
- Objectives:
 - Optimal custom FP number representation
 - Energy-efficient design strategies and custom FP arithmetic units
 - Precision and quantization impact analysis
 - Hardware performance evaluation and bench marking
 - Practical application

- Goal: To develop advanced methodologies for energy-efficient neural network accelerators with custom floating-point (FP) computation in low-power and resource constrained devices.
- Objectives:
 - Optimal custom FP number representation
 - Energy-efficient design strategies and custom FP arithmetic units
 - Precision and quantization impact analysis
 - Hardware performance evaluation and bench marking
 - Practical application
 - Future research

Outline

State-of-the-Art

2 Hybrid 8-bit Floating-Point and 4-bit Logarithmic Computation

State-of-the-Art

High-Performance FPGA-Based CNN Accelerator With Block-Floating-Point Arithmetic

Figure: (a) System architecture. (b) Processing element array.

A 200MHZ 202.4GFLOPS@10.8W VGG16 Accelerator in Xilinx VX690T

Figure: (a) System architecture. (b) Convolution accelerator.

Low-precision Floating-point Arithmetic for High-performance FPGA-based CNN Acceleration

Figure: (a) System architecture. (b) Processing element.

CNN Hardware Acceleration on a Low-Power and Low-Cost APSoC

Figure: (a) System architecture. (b) Convolution engine.

State-of-the-Art

Spike-by-Spike Neural Network

Figure: Spike-by-Spike (SbS) neural network architecture for handwritten digit classification task.

Spike-by-Spike Neural Network

Figure: Spike-by-Spike (SbS) neural network architecture for handwritten digit classification task.

Figure: Performance classification of SbS NN versus equivalent CNN.

Spike-by-Spike Layer Update

Figure: SbS inference population (IP) as independent computational entities.

$$h_{\mu}^{new}(i) = rac{1}{1+\epsilon} \left(h_{\mu}(i) + \epsilon rac{h_{\mu}(i) \mathcal{W}(s_t|i)}{\sum_{j} h_{\mu}(j) \mathcal{W}(s_t|j)}
ight)$$

HW/SW Co-Design Framework

Figure: System-level overview of the embedded software architecture.

Figure: System-level hardware architecture with scalable number of heterogeneous processing units (PU).

Processing Unit

Figure: Conv processing unit.

Processing Unit

Figure: Conv processing unit.

Figure: Dot-product hardware module.

Hybrid Dot-Product Approximation

$$r_{\mu}(s_{t}) = \sum_{i=0}^{N-1} h_{\mu}(j)W(s_{t}|j)$$
 (1)

$$E_{\min} = \log_2(\min_{\forall i}(W(i))) \tag{2}$$

$$N_E = \lceil \log_2(|E_{\min}|) \rceil \tag{3}$$

$$N_W = N_E + N_M \tag{4}$$

Figure: Dot-product hardware module.

Dot-Product with Standard Floating-Point (IEEE 754)

Figure: Dot-product hardware module with standard floating-point computation.

 $L_{f32} = 10N + 9$

Dot-Product with Hybrid Custom Floating-Point Approximation

Figure: Dot-product hardware module with hybrid custom floating-point approximation.

 $L_{custom} = 2N + 11$

Dot-product with Hybrid Logarithmic Approximation

Figure: Dot-product hardware module with hybrid logarithmic approximation.

$$L_{custom} = 2N + 7$$

Yarib Nevarez (Universität Bremen)

Figure: System overview of the top-level architecture with 8 processing units.

Figure: System overview of the top-level architecture with 8 processing units.

Figure: Computation on embedded CPU.

Figure: System overview of the top-level architecture with 8 processing units.

Figure: Computation on embedded CPU.

Figure: Performance of processing units with standard floating-point.

Figure: System overview of the top-level architecture with 8 processing units.

Figure: Computation on embedded CPU.

Figure: Performance of processing units with standard floating-point.

Figure: Performance bottleneck of cyclic computation on processing units with standard floating-point.

Acceleration with Custom Floating-Point

Figure: Performance on processing units with hybrid 8-bit floating-point.

Acceleration with Custom Floating-Point

Figure: Performance on processing units with hybrid 8-bit floating-point.

Figure: Performance of processing units with hybrid 4-bit logarithmic approximation.

Noise tolerance

Figure: Noise tolerance with standard floating-point.

Noise tolerance

Figure: Noise tolerance with standard floating-point.

Figure: Noise tolerance with hybrid 8-bit floating-point approximation.

Noise tolerance

Figure: Noise tolerance with standard floating-point.

Figure: Noise tolerance with hybrid 8-bit floating-point approximation.

Figure: Noise tolerance with hybrid 4-bit logarithmic approximation.

Accelerator Implementations

Table: Accelerator implementations.

Platform implementation	Power (W)	Clk (MHz)	Latency (ms)	Acceleration	Accuracy (%)
Standard floating-point	2.420	200	3.18	10.7x	98.98
Hybrid floating-point 8-bit	2.369	200	1.67	20.5x	98.97
Hybrid Logarithmic 4-bit	2.324	200	1.67	20.5x	98.84