Qubit Gates

Schematic symbols are used to denote unitary transforms useful in the design of the quantum circuits.

For example, Hadamard gate H denotes the unitary transformation

$$\begin{pmatrix} |\xi\rangle \\ |\eta\rangle \end{pmatrix} \longleftarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} |0\rangle \\ |1\rangle \end{pmatrix}$$

where

$$|\xi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}; \quad |\eta\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Here, $|0\rangle$ and $|1\rangle$ denote orthogonal quantum-mechanical states.e.g Energy states labelled by a quantum number, n with values 0 and 1 respectively. The inputs are pure states (called classical bits) and outputs $|\xi\rangle$ and $|\eta\rangle$ are superposed states.

One can consider the unitary transformation as an operation. The Hadamard operator, \hat{H} can be defined as

$$\hat{H}|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

and

$$\hat{H}|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Notice

$$H_{00} = \langle 0|\hat{H}|0\rangle = \left\langle \frac{\langle 0| + \langle 1|}{\sqrt{2}} \middle| \hat{H} \middle| \frac{|0\rangle + |1\rangle}{\sqrt{2}} \right\rangle$$

$$= \frac{1}{2} \left[\langle 0|\hat{H}|\hat{0}\rangle + \langle 0|\hat{H}|1\rangle + \langle 1|\hat{H}|\hat{0}\rangle + \langle 1|\hat{H}|1\rangle \right]$$

$$= \frac{1}{2} \left[\frac{\langle 0|0\rangle + \langle 0|1\rangle}{\sqrt{2}} + \frac{\langle 0|0\rangle - \langle 0|1\rangle}{\sqrt{2}} + \frac{\langle 1|0\rangle + \langle 1|1\rangle}{\sqrt{2}} + \frac{\langle 1|0\rangle - \langle 1|1\rangle}{\sqrt{2}} \right]$$

$$= \frac{1}{2} \left[\frac{1+0}{\sqrt{2}} + \frac{1-0}{\sqrt{2}} + \frac{0+1}{\sqrt{2}} + \frac{0-1}{\sqrt{2}} \right]$$
$$= \frac{1}{2} \frac{2}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

We have taken $|0\rangle$ and $|1\rangle$ to be orthonormal states.

similarly,
$$H_{01} = \frac{1}{\sqrt{2}} = H_{10}$$
 and $H_{11} = -\frac{1}{\sqrt{2}}$

Thus, matrix representation of the Hadamard operator in the basis $|0\rangle$ and

$$|1\rangle$$
 is $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Some more examples of qubit gates: Matrix representation corresponding to quantum-mechanical operator

$$\begin{array}{c|c}
\underline{\text{Pauli } X} \\
\hline
\hline
 & x
\end{array}
\qquad
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}$$

 $\hat{\sigma}_x \equiv \frac{2}{\hbar} \hat{S}_x$ (in the basis $|\alpha\rangle$ and $|\beta\rangle$) where $|\alpha\rangle \equiv |m_s = \frac{1}{2}$ and $|\beta\rangle \equiv |m_s = -\frac{1}{2}$

$$\begin{array}{c|c}
\underline{\text{Pauli Y}} \\
\hline
 & Y
\end{array}
\qquad
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}$$

 $\hat{\sigma}_y \equiv \frac{2}{\hbar} \hat{S}_y$ (in the form $|\alpha\rangle$ and $|\beta\rangle$)

$$\frac{\text{Pauli Z}}{\text{Z}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\hat{\sigma}_z \equiv \frac{2}{\hbar} \hat{S}_z$$
 (in the basis $|\alpha\rangle$ and $|\beta\rangle$)

The change in a qubit passing through such a gate is described in terms of a unitary matrix.

The transformation matrix corresponding to a
$$Z$$
 gate is easy to obtain.
$$S_{\mathbf{z}} = \begin{pmatrix} \langle \alpha | S_z | \alpha \rangle & \langle \alpha | S_z | \beta \rangle \\ \langle \beta | S_z | \alpha \rangle & \langle \beta | S_z | \beta \rangle \end{pmatrix} = \frac{\mathbf{h}}{\mathbf{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

We will follow the procedure below to obtain the matrices corresponding to the X-gate, Y-gate:

Define operators \hat{S}_{+} and \hat{S}_{-} as : $\hat{S}_{+}|\alpha\rangle = 0$; $\hat{S}_{+}|\beta\rangle = \hbar|\alpha\rangle$

and $\hat{S}_{-}|\alpha\rangle = \hbar|\beta\rangle$; $\hat{S}_{-}|\beta\rangle = 0$ (please note that there was an error in the original question, there was a factor of $\frac{1}{2}$ icluded by mistake.

 \hat{S}_{+} and \hat{S}_{-} are the raising and lowering operators for the spin states $|\alpha\rangle$ and $| \hat{eta} \rangle$ with the quantum number for the z-component of the spin angula r momentum $+\frac{1}{2}$ and $-\frac{1}{2}$ respectively. (Notice that the raising operator can only raise $|\beta\rangle$ to $|\alpha\rangle$ and likewise the lowering operator can only lower $|\alpha\rangle$ to $|\beta\rangle$. Any other operation gives the result 0).

Build the matrices
$$S_{\pm}$$
 as $\begin{pmatrix} S_{\pm\alpha\alpha} & S_{\pm\alpha\beta} \\ S_{\pm\beta\alpha} & S_{\pm\beta\beta} \end{pmatrix}$

Here it is:
$$S_{+} = \begin{pmatrix} \langle \alpha | S_{+} | \alpha \rangle & \langle \alpha | S_{+} | \beta \rangle \\ \langle \beta | S_{+} | \alpha \rangle & \langle \beta | S_{+} | \beta \rangle \end{pmatrix} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

and
$$S_{-} = \begin{pmatrix} \langle \alpha | S_{-} | \alpha \rangle & \langle \alpha | S_{-} | \beta \rangle \\ \langle \beta | S_{-} | \alpha \rangle & \langle \beta | S_{-} | \beta \rangle \end{pmatrix} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Now obtain $S_{X} = \frac{S_{+} + S_{-}}{2} = \frac{1}{2}\hbar \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
and $S_{Y} = \frac{S_{+} - S_{-}}{2i} = \frac{1}{2}\hbar \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
The Pauli X matrix $\sigma_{X} = \frac{2}{\hbar}S_{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
and Pauli Y matrix $\sigma_{Y} = \frac{2}{\hbar}S_{Y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
are the matrices corresponding to the X-gate, Y-gate respectively.