

Model Optimization and Tuning Report

Date	15 April 2024
Team ID	Team-738164
Project Title	Rainfall Prediction Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Report:

The Model Optimization and Tuning Report involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic		
Regression	Hyperparameter Tuning In [84]: logreg_params = { 'C': [1, 1e8, 1e16], 'fit_intercept': [True, False], 'max_iter': [50, 1e0, 150], 'random_state': [42] } logreg_gs = GridsearchcV(logreg, logreg_params, scoring='accuracy', n_jobs=-1, cv=3) logreg_gs.fit(X_train, y_train)	is [09]: ligreg.gs.hest.naram_ out[09]: ("C': 1000000000, "fit_intercept": True, "max_liter": 50, "random_state": 4J] Checking model fitness Train score: 0.8469 Test score: 0.8421
Random Forest	Hyperparameter Tuning In [104]: 'rf_params = { 'n_estimators': [10, 35, 100], 'criterion': ['gini', 'entropy'], 'max_depth': [3, 7, 11], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 3, 5], 'random_state': [42]	<pre>In [107]: rf_gs.best_params_ Out[107]: {'criterion': 'gini', 'max_depth': 11, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100, 'random_state': 42}</pre> Checking model fitness
rf_gs = GridsearchCV(rf, param_grid=rf_params, scoring='accuracy', n_jobs=rf_gs.fit(X_train, y_train)	rf_gs = GridsearchCV(rf, param_grid=rf_params, scoring='accuracy', n_jobs=-1, cv=3) rf_gs.fit(X_train, y_train)	Train score: 0.8821 Test score: 0.8493

Decision Tree		
		<pre>In [98]: clf_gs.best_params_</pre>
	Hyperparameter Tuning In [95]: parass = {	<pre>Out[98]: {'criterion': 'gini',</pre>
	"criterion': ['gin', 'entropy'],	Checking model fitness
	} clf_gs = GriddearckCV(clf, param_grid=params, scoring='accumacy', n_jobs=-1, cv=3) clf_gs.fli(X_train, y_train)	Train score: 0.8475 Test score: 0.8405
XG-Boost	Hyperparameter Tuning	In [116]: xgb_gs.best_params_ Out[116]: ('learning_rate': 0.1, 'max_depth': 10, 'n_estimators': 100)
	In [113]: xgb_params = { "n_estimators': [10, 35, 100], "max_depth': [5, 10, 15], "learning_rate': [0.01, 0.1, 0.25] } xgb_gs = GridSearch(V(xgb, xgb_params, scorings'accuracy', n_jobs=1, cv=2) xgb_gs.fit(X.train, y_train)	Checking model fitness Train score: 0.9329 Test score: 0.8616
	Out[113]: GridSearchCV(cv2) estimator=NGGCLsssifier(base_score=Hone, collams, collam	

Performance Metrics Comparison Report (2 Marks):

Final Model Selection Justification (2 Marks):

Final Model	Reasoning	
XG-Boost	The best performing model is the hyperparameter-tuned XG-Boost model with an accuracy of approximately 86%. The scores for both the training and testing data were similar, reducing concerns of the model being overfit.	