Atmospheric Chemistry Experiment Science Operations Center Department of Chemistry University of Waterloo Waterloo, Ontario, N2L 3G1

ACE - FTS

Atmospheric Chemistry Experiment

ACE-FTS Spectroscopy – Version 3.5

Document Number: ACE-SOC-0027

Issue: 1 Revision: A

Issue Date: January 22, 2016

	Function	Name	Signature	Date
Prepared by:	Operat. Specialist	Ryan Hughes		
Checked by:	Project Scientist	Chris Boone		
Approved by:	Mission Scientist	Peter Bernath		

DOCUMENT CHANGE RECORD

Issue	Rev.	Date	Change Detail
1	-	2014-Aug-16	First Issue of Document
	A	2016-Jan-22	Updated Microwindow and interferer tables for HCFC-22

TABLE OF CONTENTS

1.	Introduction	1
2.	Pressure and Temperature Microwindows	3
3.	Microwindows for all Routine Version 3.0 Species	5
4.	Microwindows for Subsidiary Isotopologues	41
5	I ine Parameters	69

LIST OF TABLES

Table 1: Signal-to-Noise Weighting of Wavenumber Ranges	2
Table 2: Microwindow list for Pressure/Temperature	3
Table 3: Microwindow list for O ₃	5
Table 4: Interfering Molecule(s) for O ₃	6
Table 5: Microwindow list for H ₂ O	7
Table 6: Interfering Molecule(s) for H ₂ O	8
Table 7: Microwindow list for CH ₄	
Table 8: Interfering Molecule(s) for CH ₄	10
Table 9: Microwindow list for N ₂ O	10
Table 10: Interfering Molecule(s) for N ₂ O	12
Table 11: Microwindow list for NO ₂	
Table 12: Interfering Molecule(s) for NO ₂	14
Table 13: Microwindow list for NO	14
Table 14: Interfering Molecules(s) for NO	15
Table 15: Microwindow list for HNO ₃	15
Table 16: Interfering Molecule(s) for HNO ₃	16
Table 17: Microwindow list for HCl	17
Table 18: Interfering Molecule(s) for HCl	17
Table 19: Microwindow list for HF	18
Table 20: Interfering Molecule(s) for HF	18
Table 21: Microwindow list for CO	18
Table 22: Interfering Molecule(s) for CO	19
Table 23: Microwindow list for CCl ₃ F (CFC-11)	20
Table 24: Interfering Molecule(s) for CCl ₃ F (CFC-11)	20
Table 25: Microwindow list for CCl ₂ F ₂ (CFC-12)	
Table 26: Interfering Molecule(s) for CCl ₂ F ₂ (CFC-12)	21
Table 27: Microwindow list for N ₂ O ₅	21
Table 28: Interfering Molecule(s) for N ₂ O ₅	21
Table 29: Microwindow list for ClONO ₂	21
Table 30: Interfering Molecules for ClONO ₂	22
Table 31: Microwindow list for COF ₂	22
Table 32: Interfering Molecule(s) for COF ₂	22
Table 33: Microwindow list for CF ₄	23
Table 34: Interfering Molecule(s) for CF ₄	
Table 35: Microwindow list for CH ₃ Cl	23
Table 36: Interfering Molecule(s) for CH ₃ Cl	24
Table 37: Microwindow list for C ₂ H ₆	
Table 38: Interfering Molecule(s) for C ₂ H ₆	
Table 39: Microwindow list for SF ₆	
Table 40: Interfering Molecule(s) for SF ₆	
Table 41: Microwindow list for OCS	
Table 42: Interfering Molecule(s) for OCS	26
Table 43: Microwindow list for HCN	
Table 44: Interfering Molecule(s) for HCN	
Table 45: Microwindow list for H ₂ CO.	27

Table 46: Interfering Molecule(s) for H ₂ CO	28
Table 47: Microwindow list for CO ₂	
Table 48: Microwindow list for HO ₂ NO ₂	
Table 49: Interfering Molecule(s) for HO ₂ NO ₂	
Table 50: Microwindow list for H ₂ O ₂	
Table 51: Interfering Molecule(s) for H ₂ O ₂	
Table 52: Microwindow list for CCl ₄	
Table 53: Interfering Molecule(s) for CCl ₄	
Table 54: Microwindow list for C ₂ H ₂	
Table 55: Interfering Molecule(s) for C ₂ H ₂	33
Table 56: Microwindow list for COCl ₂	
Table 57: Interfering Molecule(s) for COCl ₂	34
Table 58: Microwindow list for COCIF	
Table 59: Interfering Molecule(s) for COCIF	
Table 60: Microwindow list for HCOOH	
Table 61: Interfering Molecule(s) for HCOOH	35
Table 62: Microwindow list for CH ₃ OH	
Table 63: Interfering Molecule(s) for CH ₃ OH	
Table 64: Microwindow list for O ₂	
Table 65: Interfering Molecule(s) for O ₂	
Table 66: Microwindow list for N ₂	
Table 67: Interfering Molecule(s) for N ₂	37
Table 68: Microwindow list for CH ₃ CClF ₂ (HCFC-142b)	37
Table 69: Interfering Molecule(s) for CH ₃ CClF ₂ (HCFC-142b)	
Table 70: Microwindow list for CHF ₂ Cl (HCFC-22)	
Table 71: Interfering Molecule(s) for CHF ₂ Cl (HCFC-22)	
Table 72: Microwindow list for C ₂ Cl ₃ F ₃ (CFC-113)	
Table 73: Interfering Molecule(s) for C ₂ Cl ₃ F ₃ (CFC-113)	
Table 74: Microwindow list for CH ₃ CCl ₂ F (HCFC-141b)	
Table 75: Interfering Molecule(s) for CH ₃ CCl ₂ F (HCFC-141b)	
Table 76: Microwindow list for H ₂ O isotopologue 2 (H ¹⁸ OH)	
Table 77: Interfering Molecule(s) for H ₂ O isotopologue 2 (H ¹⁸ OH)	
Table 78: Microwindow list for H ₂ O isotopologue 3 (H ¹⁷ OH)	
Table 79: Interfering Molecule(s) for H ₂ O isotopologue 3 (H ¹⁷ OH)	
Table 80: Microwindow list for H ₂ O isotopologue 4 (HDO)	
Table 81: Interfering Molecule(s) for H ₂ O isotopologue 4 (HDO)	44
Table 82: Microwindow list for CO ₂ isotopologue 2 (O ¹³ CO)	44
Table 83: Interfering Molecule(s) for CO ₂ isotopologue 2 (O ¹³ CO)	46
Table 84: Microwindow list for CO ₂ isotopologue 3 (OC ¹⁸ O)	46
Table 85: Interfering Molecule(s) for CO ₂ isotopologue 3 (OC ¹⁸ O)	47
Table 86: Microwindow list for CO ₂ isotopologue 4 (OC ¹⁷ O)	48
Table 87: Interfering Molecule(s) for CO ₂ isotopologue 4 (OC ¹⁷ O)	49
Table 88: Microwindow list for CO ₂ isotopologue 5 (O ¹³ C ¹⁸ O)	
Table 89: Interfering Molecule(s) for CO ₂ isotopologue 5 (O ¹³ C ¹⁸ O)	
Table 90: Microwindow list for O ₃ isotopologue 2 (OO ¹⁸ O)	50
Table 91: Interfering Molecule(s) for O ₃ isotopologue 2 (OO ¹⁸ O)	50

Table 92: Microwindow list for O ₃ isotopologue 3 (O ¹⁸ OO)	51
Table 93: Interfering Molecule(s) for O ₃ isotopologue 3 (O ¹⁸ OO)	52
Table 94: Microwindow list for O ₃ isotopologue 5 (O ¹⁷ OO)	52
Table 95: Interfering Molecule(s) for O ₃ isotopologue 5 (O ¹⁷ OO)	53
Table 96: Microwindow list for N ₂ O isotopologue 2 (N ¹⁵ NO)	53
Table 97: Interfering Molecule(s) for N ₂ O isotopologue 2 (N ¹⁵ NO)	54
Table 98: Microwindow list for N ₂ O isotopologue 3 (¹⁵ NNO)	55
Table 99: Interfering Molecule(s) for N ₂ O isotopologue 3 (¹⁵ NNO)	56
Table 100: Microwindow list for N ₂ O isotopologue 4 (NN ¹⁸ O)	56
Table 101: Interfering Molecule(s) for N ₂ O isotopologue 4 (NN ¹⁸ O)	57
Table 102: Microwindow list for N ₂ O isotopologue 5 (NN ¹⁷ O)	58
Table 103: Interfering Molecule(s) for N ₂ O isotopologue 5 (NN ¹⁷ O)	58
Table 104: Microwindow list for CO isotopologue 2 (13CO)	59
Table 105: Interfering Molecule(s) for CO isotopologue 2 (13CO)	60
Table 106: Microwindow list for CO isotopologue 3 (C ¹⁸ O)	61
Table 107: Interfering Molecule(s) for CO isotopologue 3 (C ¹⁸ O)	61
Table 108: Microwindow list for CO isotopologue 4 (C ¹⁷ O)	
Table 109: Interfering Molecule(s) for CO isotopologue 4 (C ¹⁷ O)	62
Table 110: Microwindow list for CH ₄ isotopologue 2 (¹³ CH ₄)	63
Table 111: Interfering Molecule(s) for CH ₄ isotopologue 2 (¹³ CH ₄)	64
Table 112: Microwindow list for CH ₄ isotopologue 3 (CH ₃ D)	64
Table 113: Interfering Molecule(s) for CH ₄ isotopologue 3 (CH ₃ D)	65
Table 114: Microwindow list for OCS isotopologue 2 (OC ³⁴ S)	66
Table 115: Interfering Molecule(s) for OCS isotopologue 2 (OC ³⁴ S)	66
Table 116: Microwindow list for OCS isotopologue 3 (O ¹³ CS)	67
Table 117: Interfering Molecule(s) for OCS isotopologue 3 (O ¹³ CS)	68
Table 118: Sources of spectral line parameters	69

1. Introduction

Microwindow sets used for the ACE-FTS version 3.5 volume mixing ratio (VMR) retrievals are presented. Note that these microwindow sets are identical to those employed for ACE-FTS version 3.0 retrievals except for two molecules: C₂H₆ and HCFC-22. For C₂H₆, the upper altitude limits for two microwindows were lowered from 22 to 20 km. For HCFC-22, two broad microwindows were employed in version 3.0 retrievals. One of those microwindows was removed for version 3.5, and the set of interferers was reduced because we dropped all interferers that had no significant spectral contribution to the remaining HCFC-22 microwindow.

Also reported for these microwindow sets are the molecules explicitly included as interferers in the retrieval of the target molecule. The VMR profiles for these interferences are fitted simultaneously with the target VMR profile. Note that the retrieval results for interferers are not stored; only the results for the target molecule/isotopologue are saved.

For some molecules, additional interferences exist that are not explicitly retrieved, in which case the VMR profile for the interferers are fixed to the results of previous retrievals. Different isotopologues of a given molecule are assumed to have different VMR profiles. Thus, when more than one isotopologue of a molecule serves as an interferer, each isotopologue gets its own retrieved VMR profile.

Some molecules (such as C₂H₆) have altitude limits that vary with latitude. For these molecules, the altitude limits are presented as a range (e.g., 7-10). The first value in the range corresponds to the altitude limit at the poles, while the second value corresponds to the altitude limit at the equator. The variation with latitude typically goes as the square of the sine of the latitude.

For HCl and HF, upper altitude limits for most microwindows are given in terms of atmospheric density, providing a variation with both latitude and season.

The CO₂ microwindow set employed for pressure/temperature retrievals is the same set used to retrieve the CO₂ VMR profile reported in the version 3.0 results.

Some microwindow sets include windows that do not contain information on the target molecule, but instead are meant to improve the results for the interferences, particularly for cases where the spectral features from the interferences in the main microwindow set are relatively weak.

In the tables describing interferers, an isotopologue number of 0 is used to indicate "all isotopologues of the given molecule" but typically means only the main isotopologue of the molecule is interfering in the microwindow set. A number greater than 0 indicates a particular isotopologue of the molecule.

The weighting factor used for the least squares process varies with wavenumber because the signal-to-noise ratio (SNR) in the spectrum varies with wavenumber. The table below details the assumed SNR used to calculate the fitting weights (the weighting goes as the square of the SNR). Note that the actual SNR performance of the instrument is typically underestimated by these effective values. The purpose of these values is to apply a relative fitting weight for microwindows from different wavenumber ranges for a given molecule.

Table 1: Signal-to-Noise Weighting of Wavenumber Ranges

Range (cm ⁻¹)	Effective SNR
< 800	50
800 - 900	75
900 - 1000	100
1000 - 1850	150
1850 - 2500	200
2500 – 2750	125
2750 – 3900	100
3900 – 4100	70
4100 – 4200	50
> 4200	35

2. Pressure and Temperature Microwindows

 ${\bf Table~2:~Microwindow~list~for~Pressure/Temperature}$

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm^{-1})	Width (cm ⁻¹)	(km)	(km)
927.00	0.35	30	45
929.00	0.35	30	45
931.00	0.35	30	45
932.96	0.30	25	45
934.82	0.45	15	45
936.80	0.35	15	45
940.52	0.80	15	45
942.40	0.35	15	45
946.00	0.35	20	45
947.70	0.40	20	45
1899.17	0.30	30	58
1902.05	0.30	30	60
1905.16	0.40	35	45
1905.26	0.22	25	35
1906.48	0.30	30	65
1911.02	0.35	35	68
1911.12	0.30	30	35
1912.52	0.35	45	68
1914.12	0.30	30	70
1915.48	0.30	30	70
1917.06	0.35	30	70
1920.11	0.35	30	70
1924.71	0.35	40	65
1929.45	0.30	25	45
1930.90	0.27	15	45
1933.98	0.24	25	60
1934.78	0.24	22	45
1935.24	0.28	15	50
1936.44	0.30	25	50
1941.03	0.35	15	45
1950.68	0.30	15	45
1962.08	0.30	35	45
1968.64	0.30	35	45
1970.12	0.30	20	45
1975.10	0.30	15	40
2044.50	0.30	50	70
2045.97	0.30	53	73
2047.53	0.40	55	73
2049.05	0.40	53	75
2050.55	0.40	55	78
2052.10	0.30	50	79
2053.66	0.30	55	80
2055.11	0.35	60	80
2055.11	0.35	60	80

G / F	3.51	T 43.04 3	TT 41.04 T
Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
2056.72	0.30	55	85
2058.24	0.40	55	85
2061.33	0.35	60	85
2062.87	0.35	60	85
2066.03	0.35	60	85
2067.52	0.35	60	83
2070.65	0.40	62	80
2072.23	0.30	57	80
2289.20	0.35	105	125
2291.50	0.30	110	125
2293.90	0.35	78	125
2296.06	0.30	110	125
2298.24	0.30	105	125
2300.40	0.30	90	125
2306.85	0.30	95	125
2313.10	0.35	95	125
2319.14	0.26	90	125
2332.37	0.30	95	125
2354.37	0.26	90	125
2361.45	0.30	90	125
2364.10	0.30	90	125
2366.63	0.30	90	125
2367.88	0.30	90	125
2369.10	0.30	90	125
2370.27	0.35	90	125
2371.43	0.30	90	125
2372.56	0.30	90	125
2373.67	0.35	90	125
2374.23	0.28	50	65
2374.75	0.40	90	125
2375.40	0.28	50	60
2375.80	0.35	90	125
2376.84	0.35	90	125
2377.85	0.35	90	125
2378.83	0.35	75	125
2379.78	0.35	90	125
2380.72	0.35	85	125
2381.62	0.35	85	125
2382.48	0.40	82	125
2383.36	0.35	82	125
2384.20	0.35	90	125
2385.02	0.40	75	125
2385.79	0.35	73	125
2386.51	0.35	70	125
2387.26	0.35	65	125
2387.96	0.35	60	80
2388.64	0.35	55	77
	0.55		, ,

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		
2389.29	0.35	50	71
2389.92	0.30	35	68
2390.52	0.35	35	65
2391.13	0.30	22	62
2391.70	0.30	22	60
2392.10	0.30	20	55
2392.62	0.30	20	50
2393.06	0.30	20	50
2399.05	0.24	20	40
2403.00	0.26	20	40
2408.77	0.20	15	46
2412.47	0.30	30	46
2419.60	0.30	35	45
2421.19	0.30	15	46
2422.88	0.30	15	46
2424.60	0.30	25	45
2433.12	0.30	30	40
2434.56	0.28	30	45
2439.00	0.30	35	46
2444.27	0.24	35	46

3. Microwindows for all Routine Version 3.0 Species

Table 3: Microwindow list for O₃

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
829.03 [1]	0.50	5	21
923.16 [2]	0.80	5	25
1027.00	0.60	60	95
1028.62	1.20	60	95
1029.98	0.50	55	95
1030.75	0.80	55	95
1032.10	0.80	60	95
1033.15	0.60	60	95
1034.55	0.80	60	95
1049.38	0.80	55	95
1050.30	0.60	70	95
1051.20	1.00	60	95
1053.25	1.20	55	95
1054.15	0.60	70	95
1054.92	0.50	45	95
1056.75	0.50	45	60
1057.75	0.50	45	55
1058.12	1.20	55	95
1058.56	0.30	45	55
1059.58	0.60	45	60

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1063.05	0.50	45	60
1063.90	0.45	40	60
1093.20	0.90	5	45
1097.58	0.85	5	45
1103.85	0.95	5	45
1105.20 [3]	1.22	8	20
1113.70	0.60	5	45
1123.00	0.60	5	40
1124.93	0.85	5	50
1125.80	0.80	45	55
1128.44	0.35	5	40
1129.10	1.00	35	55
1139.00	1.00	5	50
1142.17	0.70	5	50
1145.34	0.90	10	50
1168.35	0.50	5	45
2149.75 ^[4]	0.60	5	15
2566.22 [5]	0.26	12	21
2623.95 ^[6]	0.65	5	21
2672.6 [7]	0.40	12	21

^[1] Included to improve results for interferer HCFC-22 (CHF₂Cl)

Table 4: Interfering Molecule(s) for O₃

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CCl ₂ F ₂	$0 \left(\text{CCl}_2 \text{F}_2 \right)$	5	25
CHF ₂ Cl	0 (CHF ₂ Cl)	5	21
CCl ₃ F	0 (CCl ₃ F)	5	25
N_2O	$1 (N_2O)$	5	40
$\mathrm{CH_{4}}$	3 (CH ₃ D)	5	25
CH ₄	1 (CH ₄)	5	35
N_2O	$4 (N_2^{18}O)$	5	21
N_2O	3 (¹⁵ NNO)	5	22
N_2O	$2 (N^{15}NO)$	5	21
НСООН	0 (HCOOH)	5	20
H_2O	4 (HDO)	5	21
CO_2	$3(OC^{18}O)$	5	21
CO ₂	1 (CO ₂)	5	45

^[2] Included to improve results for interferer CFC-12 (CCl₂F₂)

^[3] Included to improve results for interferer HCOOH

Included to improve results for interferer N_2O isotopologues 1,2 & 3 (N_2O , N_2O , N_2O)

^[5] Included to improve results for interferer N_2O isotopologue 2 ($N^{15}NO$)

^[6] Included to improve results for interferer CO₂ isotopologue 3 ($OC^{18}O$)

^[7] Included to improve results for interferer H₂O isotopologue 4 (HDO)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
O_3	$2 (O_2^{18}O)$	5	35
O_3	3 (O ¹⁸ OO)	5	30

Table 5: Microwindow list for H_2O

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
937.45	0.60	5	8
941.10	0.70	5	12
944.90	0.70	5	10
1195.34	0.35	5	8
1198.18	0.40	15	35
1207.28	0.50	5	15
1214.92	0.65	8	20
1227.13 [1]	0.30	12	20
1362.60	0.30	40	55
1375.06	0.35	45	60
1429.95	0.35	45	70
1446.50	0.35	30	50
1456.84	0.30	60	85
1501.55	0.30	20	35
1503.51 [2]	0.30	15	20
1505.57	0.35	55	101
1507.06	0.35	55	101
1539.06	0.35	70	101
1540.30	0.35	70	85
1553.00	0.35	25	40
1558.53	0.35	55	101
1560.26	0.35	60	101
1562.64	0.30	20	30
1568.94	0.35	55	70
1576.19	0.35	55	101
1616.71	0.35	75	101
1623.56	0.35	50	70
1635.65	0.35	55	85
1652.40	0.40	80	101
1653.20	0.30	55	101
1672.42	0.30	30	55
1684.84	0.35	55	101
1695.93	0.35	70	101
1699.94	0.35	70	85
1752.75	0.30	35	55
1805.13	0.30	35	55
1904.36	0.35	35	55
1945.34	0.35	40	60

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1946.31	0.30	35	55
1950.08	0.35	8	15
1959.52	0.50	8	25
1961.15	0.30	25	55
1966.26	0.35	30	55
1976.17	0.30	20	45
1987.44	0.35	15	35
1989.98	0.30	8	15
1997.70 ^[3]	0.30	8	20
2152.64	0.40	12	35
2620.81 [4]	0.45	5	20
2723.31 [5]	0.45	8	20
2933.76	0.35	12	30
2974.55	0.30	12	20
2987.94 ^[4]	0.40	14	20
2992.63	0.35	12	30

Included to improve results for interferer N_2O isotopologue 4 ($NN^{18}O$)

Table 6: Interfering Molecule(s) for H₂O

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	3 (H ¹⁷ OH)	8	20
H_2O	4 (HDO)	5	20
CO_2	1 (CO ₂)	5	35
CO_2	2 (O ¹³ CO)	5	20
CO_2	$3 (OC^{18}O)$	5	20
O_3	$0(O_3)$	5	42
N_2O	$1 (N_2O)$	5	25
N_2O	2 (N ¹⁵ NO)	12	35
N_2O	$4 (N_2^{18}O)$	8	20
CH ₄	1 (CH ₄)	5	30
$\mathrm{CH_{4}}$	2 (¹³ CH ₄)	5	20
CH ₄	3 (CH ₃ D)	8	22
COF ₂	0 (COF ₂)	8	25

Table 7: Microwindow list for CH₄

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1245.14	0.35	40	55

^[2] Included to improve results for interferer H_2O isotopologue 3 ($H^{17}OH$)

^[3] Included to improve results for interferer CO2 isotopologue 2 (O¹³CO)

^[4] Included to improve results for interferer CO_2 isotopologue 3 $(OC^{18}O)$

^[5] Included to improve results for interferer H₂O isotopologue 4 (HDO)

(cm¹) Width (cm¹) (km) (km) 1270.70 0.35 40 60 1283.55 0.40 45 75 1287.80 0.40 45 75 1302.10 0.40 45 75 1302.85 0.40 45 75 1303.65 0.40 45 75 1311.40 0.45 50 75 1311.80 0.45 50 75 1312.15 0.50 45 75 1322.15 0.50 45 75 1322.15 0.50 45 75 1322.15 0.50 45 75 1322.15 0.50 45 75 1322.16 0.50 40 75 1332.40 0.90 40 75 1341.80 0.60 45 75 1342.80 0.60 45 75 1364.65 0.40 30 45	Contro Engarance	Mionorrindorr	I array A 14:4 Ja	II on Altitudo
1270.70	Centre Frequency	Microwindow Width (cm ⁻¹)	Lower Altitude	Upper Altitude
1283.55 0.40 45 75 1287.80 0.40 55 75 1302.10 0.40 45 75 1302.85 0.40 45 75 1303.65 0.40 45 75 1311.40 0.45 50 75 1311.88 0.50 45 75 1322.15 0.50 45 75 1322.25 0.70 40 75 1327.25 0.70 40 75 1341.80 0.60 40 75 1342.80 0.60 45 75 1342.80 0.60 45 75 1343.43 0.35 15 25 1672.42 [1] 0.30 35 45 1876.62 [1] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50			` '	
1287.80				
1302.10				
1302.85				
1303.65				
1311.40				
1316.85				
1322.15 0.50 45 75 1327.25 0.70 40 75 1332.40 0.90 40 75 1341.80 0.60 40 75 1342.80 0.60 45 75 1364.65 0.40 30 45 1439.43 0.35 15 25 1672.42 [1] 0.30 35 45 1876.62 [1] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2659.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2667.85 0.45 5 20 2670.28 0.40 5 20 2671.60 0.30 5				
1327.25 0.70 40 75 1332.40 0.90 40 75 1341.80 0.60 40 75 1342.80 0.60 45 75 1364.65 0.40 30 45 1439.43 0.35 15 25 1672.42 [1] 0.30 35 45 1876.62 [1] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2664.50 0.35 15 30 2667.85 0.45 5 20 2667.85 0.45 5 20 2667.85 0.45 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2698.90 0.30 5				
1332.40 0.90 40 75 1341.80 0.60 40 75 1342.80 0.60 45 75 1364.65 0.40 30 45 1439.43 0.35 15 25 1672.42 [1] 0.30 35 45 1876.62 [1] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2618.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2653.85 0.40 5 20 2653.85 0.40 5 20 2664.50 0.35 15 30 2667.85 0.40 5 20 2667.85 0.45 5 20 26670.28 0.40 5 20 2670.28 0.40 5 <td></td> <td></td> <td></td> <td></td>				
1341.80 0.60 40 75 1342.80 0.60 45 75 1364.65 0.40 30 45 1439.43 0.35 15 25 1672.42 [1] 0.30 35 45 1876.62 [1] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2653.85 0.40 5 20 2658.65 0.35 15 30 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.28 0.45 5 20 2670.28 0.45 5 <td></td> <td></td> <td></td> <td></td>				
1342.80 0.60 45 75 1364.65 0.40 30 45 1439.43 0.35 15 25 1876.62 [1] 0.30 35 45 1876.62 [1] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2658.65 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2691.25 0.30 5				
1364.65 0.40 30 45 1439.43 0.35 15 25 1672.42 [11] 0.30 35 45 1876.62 [11] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2658.65 0.35 15 30 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 15 2698.90 0.30 5 <td></td> <td></td> <td></td> <td></td>				
1439.43 0.35 15 25 1672.42 [1] 0.30 35 45 1876.62 [1] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2653.85 0.40 5 20 2653.85 0.40 5 20 2658.65 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2691.25 0.30 25 35 2698.90 0.30 5				
1672.42 [1] 0.30 35 45 1876.62 [1] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2809.02 0.30 25				
1876.62 [1] 0.35 15 35 2610.20 0.35 10 25 2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2652.95 0.30 5 20 2652.95 0.30 5 20 2652.95 0.30 5 20 2652.95 0.30 5 20 2652.95 0.30 5 20 2652.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.28 0.45 5 20 2671.60 0.30 5 20 2671.60 0.30 5 <				
2610,20 0.35 10 25 2614,02 0.65 10 30 2614,85 0.50 20 30 2618,27 0.35 25 40 2620,84 [2] 0.50 10 20 2644,72 0.35 15 30 2650,67 0.40 5 20 2652,95 0.30 5 20 2653,85 0.40 5 20 2658,65 0.35 10 20 2664,50 0.35 15 30 2667,19 0.30 15 30 2667,85 0.45 5 20 2669,27 0.55 5 20 2670,28 0.40 5 20 2671,60 0.30 5 20 2691,25 0.30 25 35 2698,90 0.30 5 15 2809,02 0.30 25 40 2822,69 0.30 30 45 2825,05 0.30 30 <t< td=""><td></td><td></td><td></td><td></td></t<>				
2614.02 0.65 10 30 2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2653.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2691.25 0.30 5 15 2698.90 0.30 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30				
2614.85 0.50 20 30 2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2698.90 0.30 5 15 2809.02 0.30 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2825.05 0.30 30 45 2825.05 0.30 30 45 2825.05 0.30 30 <td< td=""><td></td><td></td><td></td><td></td></td<>				
2618.27 0.35 25 40 2620.84 [2] 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2825.05 0.30 30 45 2825.05 0.30 30 <t< td=""><td></td><td></td><td></td><td></td></t<>				
2620.84 23 0.50 10 20 2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2691.25 0.30 5 20 2698.90 0.30 5 15 2809.02 0.30 5 15 2809.02 0.30 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35				
2644.72 0.35 15 30 2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2825.05 0.30 30 45 2835.61 0.35 20 30 2847.73 0.35 15 30 2847.73 0.35 15 35<				
2650.67 0.40 5 20 2652.95 0.30 5 20 2653.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2825.05 0.30 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35<				
2652.95 0.30 5 20 2653.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2828.17 0.40 30 45 2835.61 0.35 20 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2653.85 0.40 5 20 2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2825.05 0.30 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2658.65 0.35 10 20 2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2822.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2825.05 0.30 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2664.50 0.35 15 30 2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2667.19 0.30 15 30 2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2667.85 0.45 5 20 2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2669.27 0.55 5 20 2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2670.28 0.40 5 20 2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2667.85	0.45	5	20
2671.60 0.30 5 20 2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 45 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2669.27	0.55		20
2691.25 0.30 25 35 2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 40 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2670.28	0.40	5	20
2698.90 0.30 5 15 2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 40 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2671.60	0.30	5	20
2700.28 0.35 5 15 2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 40 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2691.25	0.30	25	35
2809.02 0.30 25 40 2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 40 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2698.90	0.30		15
2820.80 0.35 25 40 2822.69 0.30 30 45 2825.05 0.30 30 40 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2700.28	0.35	5	15
2822.69 0.30 30 45 2825.05 0.30 30 40 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2809.02	0.30	25	40
2825.05 0.30 30 40 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2820.80	0.35	25	40
2825.05 0.30 30 40 2828.17 0.40 30 45 2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2822.69	0.30	30	45
2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25	2825.05	0.30	30	40
2835.61 0.35 20 30 2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2841.22 0.35 15 30 2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2847.73 0.35 30 45 2849.25 0.40 25 35 2857.50 0.35 15 25				
2849.25 0.40 25 35 2857.50 0.35 15 25				
2857.50 0.35 15 25				
	2861.00 [3]	0.45	13	22

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2867.10	0.40	30	40
2900.10	0.26	35	45
2958.13	0.45	50	75
2978.83	0.60	55	75
2988.92	0.50	50	75
3028.70	0.50	55	75
3038.50	0.40	65	75
3048.15	0.40	60	75
3057.70	0.45	65	75
3067.30	0.45	65	75
3076.63	0.45	55	75
3085.97	0.60	55	75

^[1] Included to improve results for interferer H₂O

Table 8: Interfering Molecule(s) for CH₄

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	$0 (H_2O)$	15	67
CO_2	$3 (OC^{18}O)$	5	30
CO_2	$4 (OC^{17}O)$	5	20
O_3	$0 (O_3)$	5	22
CH ₄	$2(^{13}CH_4)$	5	22

Table 9: Microwindow list for N₂O

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
829.03 [1]	0.50	5	25
1134.42	0.60	5	20
1139.78	0.60	5	20
1161.57	0.45	20	30
1163.23	0.55	20	30
1164.08	0.50	20	30
1167.93	0.40	5	15
1168.83	0.60	5	25
1169.74	0.50	15	25
1178.25	0.50	20	30
1180.85	0.60	20	30
1181.75	0.40	20	30
1182.60	0.40	20	30
1183.57	0.55	20	30
1186.05	0.50	20	30

^[2] Included to improve results for interferer CO_2 isotopologue 3 ($OC^{18}O$)

^[3] Included to improve results for interferer CH₄ isotopologue 2 (¹³CH₄) & O₂

C4 E	M:		TI A 14:4 J
Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1187.90	0.40	20	30
1194.10	0.40	15	25
		15	25
1195.80 1202.05	0.40 0.35	5	15
		5	
1202.85	0.60	5	20
1203.86	0.80		20
1204.70 1228.00 ^[2]	0.50	5	21
	0.40		20 40
1264.68 1266.65	0.35 0.40	30 30	40
			40
1270.10 1271.11	0.50	30 30	40
	0.30		
1272.80	0.40	30	40
1273.77	0.35	30	40
1274.55	0.40	30	40
1277.15	0.40	30	40
1354.15 ^[3]	0.45	20	30
1950.10 [4]	0.35	8-10	20
1977.60 ^[5]	0.50	5	21
2140.18 ^[6]	0.35	10	20
2195.00 [7]	0.35	20	35
2201.78	0.35	35	50
2203.25	1.20	53	95
2203.66	0.55	35	50
2205.65	0.40	35	53
2208.50	0.40	40	53
2209.05	1.20	53	95
2210.00	1.20	53	95
2210.50	0.45	35	53
2211.50	0.50	35	53
2212.75	1.20	53	95
2214.07	0.45	35	53
2215.20	0.40	40	53
2215.35	0.90	53	95
2216.29	1.25	53	95
2221.23	0.40	30	40
2230.50	0.90	53	70
2231.27	1.20	53	70
2232.90	1.20	53	80
2234.95	0.60	53	95
2235.67	1.20	65	95
2236.27	0.40	40	53
2236.75	1.20	53	95
2237.82	1.20	53	95
2239.20	0.60	53	95
2239.93	1.20	53	95
2241.25	0.80	53	88

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2241.97	1.20	53	88
2525.25 ^[8]	0.40	5-7	20
2566.22 ^[6]	0.26	5	10
2623.87 ^[9]	0.90	5	21

[1] Included to improve results for interferer CHF₂Cl

[4] Included to improve results for interferer H₂O

Table 10: Interfering Molecule(s) for N₂O

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	$3 (OC^{18}O)$	5	40
CHF ₂ Cl	0 (CHF ₂ Cl)	5	25
$\mathrm{CH_{4}}$	1 (CH ₄)	5	40
CH ₄	2 (¹³ CH ₄)	5	40
N_2O	$2 (N^{15}NO)$	5	35
H_2O	1 (H ₂ O)	5	40
H_2O	4 (HDO)	5	21
O_3	$0 (O_3)$	5	42
CO_2	$2 (O^{13}CO)$	30	88
CO_2	$5 (O^{13}C^{18}O)$	35	75
CO	0 (CO)	53	95
N_2O	3 (¹⁵ NNO)	5	39
CO_2	1 (CO ₂)	20	55
N_2O	$4 (N_2^{18}O)$	5	37
$\mathrm{CH_{4}}$	3 (CH ₃ D)	5	27
HNO ₃	0 (HNO ₃)	5	21
H ₂ O	2 (H ¹⁸ OH)	5	21

Table 11: Microwindow list for NO₂

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1204.38 [1]	0.28	8	15

^[2] Included to improve results for interferer N₂O isotopologue 4 (NN¹⁸O)

^[3] Included to improve results for interferer CH₄ isotopologue 1, 2 (CH₄, ¹³CH₄) & CO₂ isotopologue 3 (OC¹⁸O)

^[5] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$)

^[6] Included to improve results for interferer N_2O isotopologue 2 ($N^{15}NO$)

^[7] Included to improve results for interferer N_2O isotopologue 2, 3, 4 ($N^{15}NO$, $N^{18}O$) & CO_2

^[8] Included to improve results for interferer N₂O isotopologue 3 (15NNO)

^[9] Included to improve results for interferer CO2 isotopologue 3 (OC¹⁸O) & H2O isotopologue 4 (HDO)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1584.45	1.00	10.5-12.5	15
1586.55	0.45	13	35
1588.60	0.40	15	40
1592.60	0.30	15	35
1596.60	1.50	35	52
1597.04	0.40	15	35
1597.95	0.70	14	35
1599.95	0.50	15	35
1600.55	1.50	35	52
1602.60	1.00	35	52
1603.95	1.50	35	52
1604.48	0.45	15	35
1605.30	0.50	13	35
1606.35	1.10	35	52
1607.65	1.50	35	52
1608.15	0.30	13	35
1611.75	0.04	13	35
1625.55	1.50	35	52
1629.75	1.50	35	52
1629.75	0.50	15	35
1630.50	0.80	13	35
1636.90	0.40	25	40
1788.36 [3]	0.30	23	35
1808.66 [3]	0.30	13	23
2623.87 [4]	0.90	7	20
2650.67 [5]	0.40	7	15
2652.95 ^[5]	0.30	7	15
2669.27 [5]	0.55	7	15
2670.28 [5]	0.40	7	15
2672.70 [4]	0.60	10	20
2698.90 [5]	0.30	7	15
2891.20	1.25	9	25
2892.62 [2]	0.35	7	20
2903.50 [6]	0.40	7	20
2913.28	0.55	7	25
2914.65	1.00	7	25
2919.95	0.90	7	25
2921.20	0.80	7	25
2950.86 [1]	0.26	7	21

^[1] Included to improve results for interferer CH4 isotopologue 3 (CH3D)

^[2] Included to improve results for interferer CH₄ isotopologue 2 (¹³CH₄)

^[3] Included to improve results for interferer H_2O

^[4] Included to improve results for interferer H₂O isotopologue 4 (HDO)

^[5] Included to improve results for interferer CH₄

^[6] Included to improve results for interferer OCS

Table 12: Interfering Molecule(s) for NO_2

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	1 (H ₂ O)	13	52
H_2O	2 (H ¹⁸ OH)	35	52
$\mathrm{CH_{4}}$	1 (CH ₄)	7	35
H_2O	4 (HDO)	7	20
OCS	0 (OCS)	7	20
CO_2	$3 (OC^{18}O)$	7	20
CH ₄	2 (¹³ CH ₄)	7	25
CH ₄	3 (CH ₃ D)	7	21

Table 13: Microwindow list for NO

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1649.34 ^[1]	0.30	20	30
			95
1842.90	0.60	55	
1846.60	0.40	12	95 05
1850.10	0.40	12	95
1853.80	0.50	35	55
1853.80	0.80	55	107
1857.08	0.60	30	55
1857.10	0.80	55	95
1860.95	0.70	30	95
1864.15	0.60	55	95
1867.70	0.60	75	95
1884.30	0.60	75	95
1887.50	0.80	50	95
1887.51	0.40	7.5-10	50
1890.20	1.60	55	95
1890.80	0.50	25	55
1893.90	0.70	30	107
1896.90	0.60	60	107
1896.92	0.35	6-9	60
1900.08	0.80	65	107
1900.30	0.80	40	65
1903.10	0.80	65	107
1903.15	0.40	6-9	65
1906.06	0.32	6-9	40
1906.10	0.80	70	107
1906.40	1.00	40	70
1906.82	0.35	6-9	40
1909.15	0.80	75	107
1909.20	0.40	25	40
1909.32	0.65	40	55
1909.55	1.10	55	75
1912.30	0.80	40	107

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1914.98	0.30	7-9	45
1915.35	1.00	45	95
1920.80	0.50	10-12	40
1929.00	0.30	6-9	45
1930.08	0.35	6-9	35
1950.10 [1]	0.35	6-9	20
1977.60 ^[2]	0.50	6-9	20

Table 14: Interfering Molecules(s) for NO

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	1 (CO ₂)	6-9	75
O_3	$0 (O_3)$	6-9	45
CO_2	$2 (O^{13}CO)$	6-9	33
CO_2	$3 (OC^{18}O)$	6-9	20
CO_2	$4 (OC^{18}O)$	6-9	20
H_2O	1 (H ₂ O)	6-9	75
H_2O	2 (H ¹⁸ OH)	6-9	20
H_2O	3 (H ¹⁷ OH)	6-9	25
COF ₂	$0 (COF_2)$	6-9	35

Table 15: Microwindow list for HNO₃

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
865.45 [1]	0.70	5	9
866.55	1.00	5	30
867.75	1.50	5	30
869.50	1.20	5	30
872.95	1.40	5	30
874.25	1.20	5	30
876.50	1.00	5	25
879.90	0.80	5	30
885.55	0.80	5	30
886.20	0.50	5	30
889.40	0.50	5	30
901.55	0.50	5	30
903.50	1.00	5	30
905.05	0.40	5	30
907.35	0.35	5	30
923.16 ^[2]	0.80	5	20
1484.92 [3]	0.30	20	30

^[1] Included to improve results for interferer H₂O
[2] Included to improve results for interferer H₂O isotopologue 2 (H¹⁸OH)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1649.34 [1]	0.30	20	30
1695.42	0.40	42	59-62
1697.10	0.40	25	42
1697.10	1.00	42	59-62
1698.00	1.20	42	59-62
1698.50	1.20	25	42
1699.47	0.40	25	59-62
1700.05	0.70	50	59-62
1701.60	1.20	42	59-62
1702.08	1.15	25	42
1702.85	0.40	25	59-62
1703.60	0.60	25	50
1715.85	1.00	25	42
1717.05	1.80	42	59-62
1719.00	1.80	42	59-62
1719.40	1.00	25	42
1720.50	1.00	25	42
1720.90	1.80	42	59-62
1722.40	1.00	25	42
1722.70	1.80	42	59-62
1723.07	0.35	25	42
1724.20	0.90	25	42
1950.10 [1]	0.35	9	20
1977.60 [3]	0.50	5-7	20

[1] Included to improve results for interferer H₂O
[2] Included to improve results for interferer CO₂ & CCl₂F₂
[3] Included to improve results for interferer H₂O isotopologue 2 (H¹⁸OH)

Table 16: Interfering Molecule(s) for HNO₃

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CCl ₂ F ₂	$0 \left(\text{CCl}_2 \text{F}_2 \right)$	5	20
H_2O	1 (H ₂ O)	5	62
CO_2	1 (CO ₂)	5	20
CO_2	$2 (O^{13}CO)$	5	30
OCS	0 (OCS)	5	20
H_2O	2 (H ¹⁸ OH)	5	45
H_2O	3 (H ¹⁷ OH)	25	50
O ₃	$0(O_3)$	25	55

Table 17: Microwindow list for HCl

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (molecules/cm³)
1950.10 [1]	0.35	6-7	20^*
2624.07 [2]	1.30	6-7	15*
2703.03	0.30	11	3.00E+16
2727.77	0.35	6-7	1.50E+16
2752.05	0.45	6-7	9.00E+15
2775.73	0.30	6-7	6.00E+15
2798.95	0.35	40	4.50E+15
2821.52	0.40	16	4.50E+15
2843.66	0.28	6-7	4.50E+15
2865.06	0.45	30	4.50E+15
2906.22	0.45	30	4.50E+15
2925.87	0.30	6-7	4.50E+15
2942.67	0.40	15	1.00E+16
2944.95	0.35	14	4.50E+15
2951.30 [3]	0.35	6-7	17*
2963.14	0.50	14	4.50E+15
2981.00	0.50	17	4.50E+15
2998.50	1.30	40	6.50E+15

* Upper Altitude given in kilometers

[1] Included to improve results for interferer H₂O

Table 18: Interfering Molecule(s) for HCl

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
O_3	$0(O_3)$	6-7	40
$\mathrm{CH_4}$	1 (CH ₄)	6-7	52
$\mathrm{CH_{4}}$	2 (¹³ CH ₄)	6-7	40
CH ₄	3 (CH ₃ D)	6-7	23
H_2O	4 (HDO)	6-7	20
OCS	0 (OCS)	6-7	15-20
NO_2	$0 (NO_2)$	6-7	30
CO_2	$3 (OC^{18}O)$	6-7	25
N_2O	$0 (N_2O)$	6-7	28
H ₂ O	1 (H ₂ O)	6-7	40

^[2] Included to improve results for interferer H₂O isotopologue 4 (HDO) & CO₂ isotopologue 3 (OC¹⁸O)

^[3] Included to improve results for interferer CH₄ isotopologue 3 (CH₃D)

Table 19: Microwindow list for HF

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (molecules/cm³)
3787.60	1.60	40	2.00E+16
3788.28	0.60	12	40^*
3792.65 ^[1]	0.40	20	4.00E+01
3833.70	0.80	16	40^*
3834.30	1.60	40	9.00E+15
3877.60	0.80	12	9.00E+15
3920.15	0.70	25	9.00E+15
4000.87	0.65	12	9.00E+15
4038.82	1.00	12	9.00E+15
4075.35	0.80	25	9.00E+15
4109.75	0.80	25	2.00E+16

Table 20: Interfering Molecule(s) for HF

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	1 (H ₂ O)	12	65
H_2O	2 (H ¹⁸ OH)	12	50
H_2O	3 (H ¹⁷ OH)	12	40
H_2O	4 (HDO)	12	25
CO_2	1 (CO ₂)	12	40
O_3	$0(O_3)$	12	38
$\mathrm{CH_4}$	0 (CH ₄)	12	30
CO_2	$3 (OC^{18}O)$	12	20
N_2O	$0 (N_2O)$	12	30

Table 21: Microwindow list for CO

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1950.10 [1]	0.35	7	15
1986.09 [2]	0.30	6-7	22
2033.08 [3]	0.30	5	8
2046.29	0.24	8	25
2050.90	0.30	20	45
2081.88	0.48	13-15	100
2083.05 [4]	0.70	5	15
2086.36	0.40	15	100
2094.76	0.40	70	110
2098.97	0.50	40	110
2107.46	0.40	60	110

^{*} Upper Altitude given in kilometers [1] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
2115.50	0.60	40	110
2119.70	0.50	70	110
2131.65	0.50	18	105
2135.40	1.00	14-16	105
2139.35	1.00	13-15	105
2140.00	1.25	5	22
2140.80 [5]	0.60	5	22
2146.75	1.00	5	22
2147.05	0.90	13-15	105
2149.75 ^[6]	0.60	5	15
2150.90	0.70	16-17	105
2154.65	0.80	17-18	110
2158.30	0.50	19	110
2161.95	0.50	20	110
2164.00	0.50	10	20
2165.48	0.55	20	110
2169.13	0.55	20	110
2172.68	0.50	50	110
2176.25	0.45	20	110
2179.85	0.40	60	110
2183.20	0.40	40	110
2186.60	0.40	60	110
4209.38	0.40	5	15
4222.90	0.45	5	15
4227.37	0.70	5	15
4236.01	0.45	5	15
4248.34	0.40	5	15
4274.77	0.30	5	15
4285.10	0.55	5	15

[1] Included to improve results for interferer H₂O

Table 22: Interfering Molecule(s) for CO

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	1 (CO ₂)	5	60
H_2O	1 (H ₂ O)	5	45
O_3	$1 (O_3)$	5	63
OCS	0 (OCS)	5	22-30

^[2] Included to improve results for interferer H_2O isotopologue 3 ($H^{17}OH$)

^[3] Included to improve results for interferer CO_2 isotopologue 4 $(OC^{17}O)$

^[4] Included to improve results for interferer O₃ isotopologue 2 (OO¹⁸O), CO₂, OCS, O₃, CO₂ isotopologue 3 (OC¹⁸O)

^[5] Included to improve results for interferer CO isotopologue 2 (13 CO) ^[6] Included to improve results for interferer N₂O isotopologue 1, 2 & 3 (N₂O, N¹⁵NO & 15 NNO)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	4 (OC ¹⁷ O)	5	30
CO_2	$3 (OC^{18}O)$	5	30
O_3	$2(O_2^{18}O)$	5	35
N ₂ O	$1 (N_2O)$	5	40
N_2O	2 (N ¹⁵ NO)	5	38
N ₂ O	3 (¹⁵ NNO)	5	35
CH ₄	0 (CH ₄)	5	15
CO	$3 (C^{18}O)$	5	22
CO	2 (¹³ CO)	5	22
H ₂ O	3 (H ¹⁷ OH)	5	22

Table 23: Microwindow list for CCl₃F (CFC-11)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
844.00	28.00	5-6	23-28
1970.12 [1]	0.35	10	23-28
1977.60 ^[2]	0.50	6	21
2976.50 ^[3]	2.00	7	20

[1] Included to improve results for interferer CO2
[2] Included to improve results for interferer H₂O isotopologue 2 (H¹⁸OH)
[3] Included to improve results for interferer C₂H₆

Table 24: Interfering Molecule(s) for CCl₃F (CFC-11)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	$0 (CO_2)$	6-7	23-28
HNO_3	0 (HNO ₃)	6-7	23-28
H_2O	$1 (H_2O)$	6-7	23-28
O_3	$0(O_3)$	6-7	23-28
OCS	0 (OCS)	6-7	20
C_2H_6	$0 (C_2H_6)$	6-7	20
H_2O	2 (H ¹⁸ OH)	6-7	21
COCl ₂	0 (COCl ₂)	6-7	23-28

Table 25: Microwindow list for CCl₂F₂ (CFC-12)

Centre Frequency	Microwindow	Lower Altitude (km)	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)		(km)
921.90	3.80	5	28-36

Table 26: Interfering Molecule(s) for CCl₂F₂ (CFC-12)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	1 (CO ₂)	5	28-36
N_2O	$1 (N_2O)$	5	10
CO_2	$2 (O^{13}CO)$	5	28-33
H_2O	1 (H ₂ O)	5	23

Table 27: Microwindow list for N₂O₅

Centre Frequency	Microwindow	Lower Altitude (km)	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)		(km)
1244.00	30.00	8	45

Table 28: Interfering Molecule(s) for N_2O_5

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	4 (HDO)	8	26
H_2O	2 (H ¹⁸ OH)	8	20
CO_2	$3(OC^{18}O)$	8	45
CO_2	$4 (OC^{17}O)$	8	25
O_3	$0(O_3)$	8	35
CH ₄	2 (¹³ CH ₄)	8	45
CH ₄	3 (CH ₃ D)	8	28
N_2O	2 (N ¹⁵ NO)	8	32
N_2O	3 (¹⁵ NNO)	8	35
N_2O	$4(N_2^{18}O)$	8	32
N ₂ O	$5 (N_2^{17}O)$	8	26

Table 29: Microwindow list for ClONO₂

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
780.15	0.60	10	20
1108.03 [1]	0.40	10	20
1250.50 [2]	3.00	10	15.5-19
1292.50	5.00	15.5-19	41-36*
2672.70 [3]	0.60	10	15.5-19

^{*} Upper altitude at the poles is 41 km and 36 km at the equator

^[1] Included to improve results for interferer O₃

^[2] Included to improve results for all interferers

^[3] Included to improve results for interferer H₂O isotopologue 4 (HDO)

Table 30: Interfering Molecules for ClONO₂

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
N_2O	$1 (N_2O)$	10	31-36
CH ₄	1 (CH ₄)	10	31-36
$\mathrm{CH_4}$	$2(^{13}CH_4)$	10	31-36
O_3	$0 (O_3)$	10	20
HNO ₃	0 (HNO ₃)	10	32
N_2O	2 (N ¹⁵ NO)	10	32
N_2O	3 (¹⁵ NNO)	10	30
CO_2	$3 (OC^{18}O)$	10	28
H_2O	4 (HDO)	10	25
CO_2	$4 (OC^{17}O)$	10	25
CH ₄	3 (CH ₃ D)	10	25

Table 31: Microwindow list for COF₂

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1234.70	1.40	12	34-45
1236.90	1.40	25	34-45
1238.00	0.80	15	34-45
1239.90	1.00	15	34-45
1930.60	1.40	12-15	34-45
1936.48	0.65	12	34-45
1938.15	1.50	30	29-35
1939.55	1.20	30	29-35
1949.40	1.20	15	34-45
1950.70	0.50	12	34-45
1952.23	1.00	12	34-45
2672.70 [1]	0.60	12	20

^[1] Included to improve results for interferer H₂O isotopologue 4 (HDO)

Table 32: Interfering Molecule(s) for COF_2

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	1 (H ₂ O)	12	34-45
CO_2	1 (CO ₂)	12	34-45
$\mathrm{CH_{4}}$	1 (CH ₄)	12	34-45
NO	1 (NO)	12	34-45
$\mathrm{CH_{4}}$	2 (¹³ CH ₄)	12	34-45
CO_2	$3 (OC^{18}O)$	12	34-45
N_2O	$1 (N_2O)$	12	34-45
N_2O	$4 (N_2^{18}O)$	12	30-32
N_2O	3 (¹⁵ NNO)	12	25-27

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	4 (HDO)	12	24
CH ₄	3 (CH ₃ D)	12	23

Table 33: Microwindow list for CF₄

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1227.13 [1]	0.30	15	24
1266.17 [2]	0.35	15	26
1282.70	9.00	15	55
1292.65 [3]	1.70	19	30

^[1] Included to improve results for interferer N₂O isotopologue 4 (NN¹⁸O) [2] Included to improve results for interferer CH₄ isotopologue 3 (CH₃D) [3] Included to improve results for interferer ClONO₂

Table 34: Interfering Molecule(s) for CF₄

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
$\mathrm{CH_4}$	1 (CH ₄)	15	55
CH ₄	2 (¹³ CH ₄)	15	47
$\mathrm{CH_4}$	3 (CH ₃ D)	15	26
ClONO ₂	$0 (CIONO_2)$	15	30
H_2O	$1 (H_2O)$	15	55
H_2O	4 (HDO)	15	26
N_2O	$1 (N_2O)$	15	50
N_2O	2 (N ¹⁵ NO)	15	33
N_2O	3 (¹⁵ NNO)	15	33
N_2O	$4 (N_2^{18}O)$	15	24
N_2O	$5 (N_2^{17}O)$	15	22
CO_2	$3 (OC^{18}O)$	15	45
CO_2	4 (OC ¹⁷ O)	15	26
HNO ₃	0 (HNO ₃)	15	30

Table 35: Microwindow list for CH₃Cl

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1459.75	0.60	22	40
1864.30 [1]	0.40	15	20
1977.60 ^[2]	0.50	9-12	20
1986.09 [1]	0.30	9-12	15
2617.63 ^[3]	0.30	9-12	20

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
2624.07 [4]	1.30	9-12	13
2657.30 [4]	0.35	13	22
2966.35	2.50	13-15	40
2966.45	0.30	9-12	13-15
2967.17	0.45	9-12	13-15
2982.80 [5]	1.60	9-12	20

Included to improve results for interferer H_2O isotopologue 3 ($H^{17}OH$)

Table 36: Interfering Molecule(s) for CH₃Cl

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit(km)	Upper Altitude Limit (km)
O_3	$0(O_3)$	9-12	40
CH ₄	1 (CH ₄)	9-12	40
CH ₄	2 (¹³ CH ₄)	9-12	30
CH ₄	3 (CH ₃ D)	9-12	30
H_2O	$1 (H_2O)$	9-12	40
H_2O	2 (H ¹⁸ OH)	9-12	20
H_2O	3 (H ¹⁷ OH)	9-12	20
C_2H_6	$0 (C_2H_6)$	9-12	20
H_2O	4 (HDO)	9-12	30

Table 37: Microwindow list for C₂H₆

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1950.10 [1]	0.35	6-7	20
1977.60 [2]	0.50	6-7	20
2976.50	2.00	6-7	20

^[1] Included to improve results for interferer H₂O

^[2] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$)

^[3] Included to improve results for interferer CH₄ isotopologue 2 (13CH₃D)

^[4] Included to improve results for interferer H₂O isotopologue 4 (HDO) [5] Included to improve results for interferer H₂O & C₂H₆

^[2] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$)

Table 38: Interfering Molecule(s) for C₂H₆

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
O_3	$0 (O_3)$	6-7	20
CH ₄	1 (CH ₄)	6-7	20
H_2O	$2 (H^{18}OH)$	6-7	22
H_2O	1 (H ₂ O)	6-7	22
$\mathrm{CH_4}$	3 (CH ₃ D)	6-7	20

Table 39: Microwindow list for SF₆

Centre Frequency (cm ⁻¹)	Microwindow	Lower Altitude	Upper Altitude
	Width (cm ⁻¹)	(km)	(km)
948.00	9.00	8-12	32

Table 40: Interfering Molecule(s) for SF₆

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	1 (H ₂ O)	8-12	31
CO_2	1 (CO ₂)	8-12	32
CO_2	$3 (OC^{18}O)$	8-12	14

Table 41: Microwindow list for OCS

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1950.10 [1]	0.35	6-8	17
2039.01	0.40	6-8	19-26
2040.50	0.50	8-10	20-26
2043.51	0.40	10-12	17
2044.01	1.40	17	22-31
2045.18	0.30	6-8	22-31
2048.03	0.40	6-8	23-31
2049.95	0.40	16-18	23-31
2051.30	0.40	6-8	23-31
2053.21	0.30	13-15	23-31
2054.45	0.50	12-15	23-31
2055.90	0.60	6-8	12-15
2057.52	0.45	6-8	12-15

^[1] Included to improve results for interferer H₂O

Table 42: Interfering Molecule(s) for OCS

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit(km)	Upper Altitude Limit (km)
OCS	$2 (OC^{34}S)$	6-8	19-25
O_3	1 (O ₃)	6-8	23-31
O_3	$3 (O^{18}OO)$	6-8	23-31
CO_2	$3 (OC^{18}O)$	6-8	23-31
CO_2	$4 (OC^{17}O)$	6-8	23-31
CO_2	1 (CO ₂)	6-8	23-31
CO_2	$2 (O^{13}CO)$	6-8	23-31
H ₂ O	1 (H ₂ O)	6-8	23-31

Table 43: Microwindow list for HCN

G	3.51	- 17.1. T	77 17.4. 7
Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1396.95	0.50	10-13	25-30
1403.00	1.30	20	25-30
		9-12	
1426.65	0.55		35-42
1432.30	0.80	20	35-42
1437.90	1.90	30-35	35-42
1439.05	1.00	11-14	28-35
1441.60	0.70	30	35-42
1441.70	0.50	8-11	30
1445.00	0.70	9-12	35-42
1450.88	0.70	12-15	30
2624.07 [1]	1.30	6-8	20
2669.18 [2]	0.30	6-8	12
3268.25	0.80	6-8	15
3287.25	0.50	6-8	25
3287.85	1.50	25	35-42
3302.35	0.80	6-9.5	25
3302.90	1.10	25	35-42
3305.30	0.90	6-8	25
3305.90	1.10	25	35-42
3314.30	0.60	8-12	35-42
3317.33	0.45	19	35-42
3320.45	1.10	6-8	35-42
3323.05	0.40	17-20	35-42
3325.90	0.60	8-12	35-42
3328.70	1.00	6-8	35-42
3330.62	2.00	30	35-42
3331.55	0.60	6-8	30
3334.55	0.80	15-17	35-42
3336.85	0.90	20	35-42
3337.40	0.80	12-15	20
3339.90	0.35	10-13	35-42
3342.35	1.00	15	35-42
3374.33	1.00	13	33-74

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
3348.00	0.80	15	35-42
3353.30	0.35	5	35-42
3423.63 [3]	0.35	10	20

^[1] Included to improve results for interferer H₂O isotopologue 4 (HDO) & CO₂ isotopologue 3 (O¹³CO)

Table 44: Interfering Molecule(s) for HCN

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	1 (H ₂ O)	6-8	35-42
H_2O	2 (H ¹⁸ OH)	6-8	35-42
H_2O	3 (H ¹⁷ OH)	6-8	35
H_2O	4 (HDO)	6-8	30
CO_2	1 (CO ₂)	6-8	35-42
CO_2	3 (OC ¹⁸ O)	6-8	20
N_2O	$1 (N_2O)$	6-8	35-45
N_2O	3 (¹⁵ NNO)	6-8	20
CH ₄	0 (CH ₄)	6-8	35-42
C_2H_2	$0 (C_2H_2)$	6-8	18

Table 45: Microwindow list for H₂CO

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1721.30	1.30	20	45
1723.65	1.70	20	45
1769.90	1.35	25	45
1775.95	0.90	30	45
2566.22 [1]	0.28	8-10	22
2623.87 [2]	0.90	6-8	15
2739.85	0.60	5	25
2754.27	0.70	15	45
2759.05	0.70	15	45
2765.65	0.45	5	25
2765.68	0.85	25	45
2778.40	1.00	5	45
2780.00	0.50	15	45
2781.20	0.80	5	45
2807.60	0.80	15	45
2812.25	0.70	5	15
2812.50	0.75	15	45
2814.60	0.70	15	45

^[2] Included to improve results for interferer CH₄

^[3] Included to improve results for interferer N₂O isotopologue 3 (¹⁵NNO)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2817.00	0.80	20	45
2826.67	0.80	5	30

[1] Included to improve results for interferer N₂O isotopologue 2 (N¹⁵NO)
[2] Included to improve results for interferer CH₄, H₂O isotopologue 4 (HDO) & CO₂
isotopologue 3 (OC¹⁸O)

Table 46: Interfering Molecule(s) for H₂CO

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	4 (HDO)	5	30
H_2O	5 (HD ¹⁸ O)	5	12
CO_2	$3 (OC^{18}O)$	5	30
O_3	$0 (O_3)$	5	45
N_2O	$1 (N_2O)$	5	35
N_2O	2 (N ¹⁵ NO)	5	22
CH ₄	1 (CH ₄)	5	45
CH ₄	2 (¹³ CH ₄)	5	30
H_2O	1 (H ₂ O)	20	45
H_2O	2 (H ¹⁸ OH)	20	45
HNO ₃	0 (HNO ₃)	20	35

Table 47: Microwindow list for CO₂

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
927.00	0.35	30	45
929.00	0.35	30	45
931.00	0.35	30	45
932.96	0.30	25	45
934.82	0.45	15	45
936.80	0.35	15	45
940.52	0.80	15	45
942.40	0.35	15	45
946.00	0.35	20	45
947.70	0.40	20	45
1899.17	0.30	30	58
1902.05	0.30	30	60
1905.16	0.40	35	45
1905.26	0.22	25	35
1906.48	0.30	30	65
1911.02	0.35	35	68
1911.12	0.30	30	35
1912.52	0.35	45	68
1914.12	0.30	30	70

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1915.48	0.30	30	70
1917.06	0.35	30	70
1920.11	0.35	30	70
1924.71	0.35	40	65
1929.45	0.30	25	45
1930.90	0.27	15	45
1933.98	0.24	25	60
1934.78	0.24	22	45
1935.24	0.24	15	50
1936.44	0.30	25	50
1941.03	0.35	15	45
1950.68	0.30	15	45
1962.08	0.30	35	45
1968.64	0.30	35	45
1970.12	0.30	20	45
1975.10	0.30	15	40
2044.50	0.30	50	70
2045.97	0.30	53	73
2047.53	0.40	55	73
2047.33	0.40	53	75
2049.03	0.40	55	78
2050.55	0.30	50	79
2053.66	0.30	55	80
2055.11	0.35	60	80
2056.72	0.30	55	85
2058.24	0.40	55	85
2038.24	0.35	60	85
2062.87	0.35	60	85
2066.03	0.35	60	85
2067.52	0.35	60	83
2007.32	0.40	62	80
2070.03	0.30	57	80
2289.20	0.35	105	125
2291.50	0.30	110	125
2293.90	0.35	78	125
2296.06	0.30	110	125
2298.24	0.30	105 90	125
2300.40	0.30		125
2306.85	0.30	95	125
2313.10	0.35	95	125
2319.14	0.26	90	125
2332.37	0.30	95	125
2354.37	0.26	90	125
2361.45	0.30	90	125
2364.10	0.30	90	125
2366.63	0.30	90	125
2367.88	0.30	90	125

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm^{-1})	Width (cm ⁻¹)	(km)	(km)
2369.10	0.30	90	125
2370.27	0.35	90	125
2371.43	0.30	90	125
2372.56	0.30	90	125
2373.67	0.35	90	125
2374.23	0.28	50	65
2374.75	0.40	90	125
2375.40	0.28	50	60
2375.80	0.35	90	125
2376.84	0.35	90	125
2377.85	0.35	90	125
2378.83	0.35	75	125
2379.78	0.35	90	125
2380.72	0.35	85	125
2381.62	0.35	85	125
2382.48	0.40	82	125
2383.36	0.35	82	125
2384.20	0.35	90	125
2385.02	0.40	75	125
2385.79	0.35	73	125
2386.51	0.35	70	125
2387.26	0.35	65	125
2387.96	0.35	60	80
2388.64	0.35	55	77
2389.29	0.35	50	71
2389.92	0.30	35	68
2390.52	0.35	35	65
2391.13	0.30	22	62
2391.70	0.30	22	60
2392.10	0.30	20	55
2392.62	0.30	20	50
2393.06	0.30	20	50
2399.05	0.24	20	40
2403.00	0.26	20	40
2408.77	0.20	15	46
2412.47	0.30	30	46
2419.60	0.30	35	45
2421.19	0.30	15	46
2422.88	0.30	15	46
2424.60	0.30	25	45
2433.12	0.30	30	40
2434.56	0.28	30	45
2439.00	0.30	35	46
2444.27	0.24	35	46

Table 48: Microwindow list for HO₂NO₂

Centre Frequency	Microwindow	Lower Altitude (km)	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)		(km)
802.89	2.08	10	30

Table 49: Interfering Molecule(s) for HO₂NO₂

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CHF ₂ Cl	0 (CHF ₂ Cl)	10	21
H_2O	$0 (H_2O)$	10	30
CO_2	$0 (CO_2)$	10	30
O_3	$0(O_3)$	10	30

Table 50: Microwindow list for H₂O₂

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1231.81	1.50	5	25-39
1234.50	1.60	5	25-40
1237.92	0.60	15	25-40
1239.35	0.50	15	25-40
1240.15	0.50	15	25-40
1241.85	0.90	20	25-40
1246.96	0.60	15	25-40
1248.70	0.40	20	25-40
1950.10 [1]	0.35	6-7	15
2624.07 [2]	1.30	5	13
2657.30 [2]	0.35	13	21

^[1] Included to improve results for interferer H₂O

Table 51: Interfering Molecule(s) for H₂O₂

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	1 (H ₂ O)	5	25-40
H_2O	4 (HDO)	5	21
CO_2	$3 (OC^{18}O)$	5	25-40
CO_2	$5 (O^{13}C^{18}O)$	5	13
O_3	$0(O_3)$	5	32
N_2O	$1 (N_2O)$	5	25-40
N_2O	$2 (N^{15}NO)$	5	21-28
N_2O	3 (¹⁵ NNO)	5	23-32
N_2O	$4 (N_2^{18}O)$	5	23-32

^[2] Included to improve results for interferer H₂O isotopologue 4 (HDO)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
N_2O	$5 (N_2^{17}O)$	5	21-27
CH ₄	1 (CH ₄)	5	25-40
CH ₄	2 (¹³ CH ₄)	5	25-40
CH ₄	3 (CH ₃ D)	5	21-25
COF_2	0 (COF ₂)	5	24-32
H_2O	5 (HD ¹⁸ O)	5	10

Table 52: Microwindow list for CCl₄

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
780.15 [1]	0.60	6-7	25-30
796.50	18.00	6-7	25-30
829.12 [2]	0.26	6-7	25
1864.30 [3]	0.40	15	20
1977.60 [4]	0.50	7-9	20
1986.09 [3]	0.30	7-9	15
2013.55 [5]	0.40	6-7	25
2620.84 [6]	0.50	6-7	21
2976.50 [7]	2.00	6-7	20
3304.60 [8]	1.30	6-7	18

^[1] Included to improve results for interferer ClONO2

Table 53: Interfering Molecule(s) for CCl₄

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
$CIONO_2$	$0 (CIONO_2)$	6-7	25-30
CHF ₂ Cl	0 (CHF ₂ Cl)	6-7	25
H_2O	1 (H ₂ O)	6-7	25-30
CO_2	1 (CO ₂)	6-7	25-30
O_3	$0(O_3)$	6-7	25-30
H_2O	2 (H ¹⁸ OH)	6-7	21
CO_2	2 (O ¹³ CO)	6-7	25
H_2O	3 (H ¹⁷ OH)	6-7	21
C_2H_2	$0 (C_2H_2)$	6-7	18
CO_2	3 (OC ¹⁸ O)	6-7	21

^[2] Included to improve results for interferer CHF₂Cl

^[3] Included to improve results for interferer H_2O isotopologue 3 ($H^{17}OH$)

^[4] Included to improve results for interferer H₂O isotopologue 2 (H¹⁸OH) [5] Included to improve results for interferer CO₂ isotopologue 2 (O¹³CO)

Included to improve results for interferer CO_2 isotopologue 2 (O CO)

i to improve resuits for interferer CO2 isotopologue . ^[7] Included to improve results for interferer C2H6

^[8] Included to improve results for interferer C₂H₂

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
HO_2NO_2	$0 (HO_2NO_2)$	6-7	30
C_2H_6	$0 (C_2H_6)$	6-7	20
CH ₄	0 (CH ₄)	6-7	20

Table 54: Microwindow list for C₂H₂

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1962.00 [1]	0.45	11	20
2620.84 [2]	0.50	12	20
3268.30	0.80	5-8	20
3270.20	1.00	8-12	20
3278.45	1.00	12-14	20
3286.00	1.60	8-12	20
3287.45	0.90	7-10	20
3295.90	0.80	7-10	20
3300.40	0.80	12-15	20
3304.60	1.30	6-10	20
3304.95	0.80	5-8	6-10
3315.98	0.85	5-8	20
3317.80	0.60	10-14	20
3322.05	1.00	10	20
3331.40	0.80	5-8	20
3335.57	0.45	6-9	20

Table 55: Interfering Molecule(s) for C₂H₂

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	1 (H ₂ O)	5-8	20
H_2O	2 (H ¹⁸ OH)	5-8	20
H_2O	3 (H ¹⁷ OH)	5-8	20
N_2O	$0 (N_2O)$	5-8	20
CO_2	1 (CO ₂)	5-8	20
CO_2	2 (O ¹³ CO)	5-8	20
CO_2	$3 (OC^{18}O)$	5-8	20
O_3	$0(O_3)$	5-8	20
HCN	0 (HCN)	5-8	20

Included to improve results for interferer H_2O isotopologue 3 ($H^{17}OH$) [2] Included to improve results for interferer CO_2 isotopologue 3 ($OC^{18}O$)

Table 56: Microwindow list for COCl₂

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
844.00	28.00	8-10	23.5-28.5
1970.12 [1]	0.35	10	23.5-28.5
1977.60 ^[2]	0.50	8-10	21
2976.50 ^[3]	2.00	8-10	20

^[1] Included to improve results for interferer CO₂

Table 57: Interfering Molecule(s) for COCl₂

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CCl ₃ F	0 (CCl ₃ F)	8-10	23.5-28.5
CO_2	$0 (CO_2)$	8-10	23.5-28.5
HNO_3	$0 (\mathrm{HNO_3})$	8-10	23.5-28.5
H_2O	1 (H ₂ O)	8-10	23.5-28.5
O_3	$0(O_3)$	8-10	23.5-28.5
OCS	0 (OCS)	8-10	20
C_2H_6	$0 (C_2H_6)$	8-10	20
H ₂ O	2 (H ¹⁸ OH)	8-10	21

Table 58: Microwindow list for COCIF

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1553.00 [1]	0.35	13-15	24.2-32
1862.60	1.00	13-15	24.2-32
1864.40	0.60	13-15	24.2-32
1865.40	0.85	13-15	24.2-32
1866.82	0.35	13-15	24.2-32
1867.38	0.30	13-15	24.2-32
1869.98	0.35	13-15	24.2-32
1870.50	0.30	13-15	24.2-32
1881.65	0.70	13-15	24.2-32

^[1] Included to improve results for interferer H₂O

Table 59: Interfering Molecule(s) for COCIF

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	1 (H ₂ O)	13-15	24.2-32
H ₂ O	3 (H ¹⁷ OH)	13-15	24.2-32

^[2] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$)

^[3] Included to improve results for interferer C_2H_6

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	1 (CO ₂)	13-15	21
CO_2	$2 (O^{13}CO)$	13-15	24.2-32
CO_2	$3 (OC^{18}O)$	13-15	24.2-32
O_3	$0(O_3)$	13-15	24.2-32
N_2O	$0 (N_2O)$	13-15	24.2-32
NO	0 (NO)	13-15	24.2-32

Table 60: Microwindow list for HCOOH

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
829.03 [1]	0.50	5	20
1090.03 [2]	0.50	7-8	20
1105.60	10.00	5	20
1937.15 [3]	0.70	6-8	20
2624.07 [4]	1.30	5-7	13
2657.30 [5]	0.35	13	20

^[1] Included to improve results for interferer CHF2Cl

Table 61: Interfering Molecule(s) for HCOOH

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CCl ₂ F ₂	$0 \left(\text{CCl}_2 \text{F}_2 \right)$	5	20
CHF ₂ Cl	0 (CHF ₂ Cl)	5	20
H_2O	$1 (H_2O)$	5	20
CFH ₂ CF ₃	$0 (CFH_2CF_3)$	5	20
H_2O	2 (H ¹⁸ OH)	5	20
H_2O	3 (H ¹⁷ OH)	5	20
H_2O	4 (HDO)	5	20
CO_2	$0 (CO_2)$	5	20
O_3	$1 (O_3)$	5	20
O_3	$2 (OO^{18}O)$	5	20
O_3	$3 (O^{18}OO)$	5	20
CH ₄	1 (CH ₄)	5	20
CH ₄	3 (CH ₃ D)	5	20

^[2] Included to improve results for interferer CO₂

^[3] Included to improve results for interferer H₂O isotopologue 2 & 3 (H¹⁸OH & H¹⁷OH)
[4] Included to improve results for interferer H₂O isotopologue 4 (HDO)

Table 62: Microwindow list for CH₃OH

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
933.90 [1]	0.30	5-6	22
991.80	13.80	5-6	25
1001.90	6.40	5-6	25
1950.10 ^[2]	0.35	5-6	20

Included to improve results for interferer CO_2 isotopologue 2 ($O^{13}CO$)

[2] Included to improve results for interferer H_2O

Table 63: Interfering Molecule(s) for CH₃OH

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
O_3	$1 (O_3)$	5-6	25
O_3	$2 (OO^{18}O)$	5-6	25
O_3	3 (O ¹⁸ OO)	5-6	25
O_3	4 (OO ¹⁷ O)	5-6	25
CO_2	1 (CO ₂)	5-6	25
CO_2	2 (O ¹³ CO)	5-6	22
H_2O	$0 (H_2O)$	5-6	20
O_3	5 (O ¹⁷ OO)	5-6	25

Table 64: Microwindow list for O₂

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1470.20	0.60	15	30
1480.35	0.40	15	20
1482.50	0.30	15	30
1494.60	0.30	15	30
1518.60	0.30	15	30
1520.55	0.26	19	28
1530.30	0.40	15	30
1544.00	0.35	15	23
1549.05	0.30	17	27
1552.60	0.35	15	40
1553.47	0.30	15	40
1555.05	0.30	15	40
1555.52	0.35	15	40
1555.95	0.35	19	40
1556.28	0.30	15	40
1570.55	0.26	18	40
1572.53	0.35	15	35
1581.73	0.45	15	35
1592.88	0.30	15	35

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1603.86	0.40	15	35
1614.71	0.50	15	40
1876.62 [1]	0.35	15	35

^[1] Included to improve results for interferer H₂O

Table 65: Interfering Molecule(s) for O₂

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	3 (H ¹⁷ OH)	15	35
H_2O	2 (H ¹⁸ OH)	15	30
H_2O	4 (HDO)	15	30
NO_2	$0 \text{ (NO}_2)$	15	30
H ₂ O	$1 (H_2O)$	15	35

Table 66: Microwindow list for N₂

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2388.35	0.24	20	48
2395.96	0.28	15	45
2403.55	0.35	15	48
2411.13	0.35	15	48
2418.63	0.35	15	48
2426.14	0.40	15	43
2433.64	0.24	15	47

Table 67: Interfering Molecule(s) for N_2

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	0 (CO ₂)	15	30
N_2O	$1 (N_2O)$	15	30
CH ₄	0 (CH ₄)	15	22
N ₂ O	$4 (N_2^{18}O)$	15	23

Table 68: Microwindow list for CH₃CClF₂ (HCFC-142b)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
829.03 [1]	0.50	5	21
904.00	8.00	5	21
923.16 [2]	0.80	5	21

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1134.35	4.30	5	21
1193.50	3.50	5	21
1937.15 ^[3]	0.70	8	21
2481.30 [4]	0.30	17	21
2523.50 ^[5]	0.35	12	21
2566.22 [6]	0.28	15	21
2657.30 ^[7]	0.35	13	21
2861.00 [8]	0.45	10	21

^[1] Included to improve results for interferer CHF₂Cl

Table 69: Interfering Molecule(s) for CH₃CClF₂ (HCFC-142b)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CHF ₂ Cl	0 (CHF ₂ Cl)	5	21
CCl_2F_2	$0 \left(\text{CCl}_2 \text{F}_2 \right)$	5	21
H_2O	$1 (H_2O)$	5	21
H_2O	2 (H ¹⁸ OH)	5	21
H_2O	3 (H ¹⁷ OH)	5	21
H_2O	4 (HDO)	5	21
O_3	$1 (O_3)$	5	21
O_3	$2 (OO^{18}O)$	5	21
N_2O	$1 (N_2O)$	5	21
N_2O	2 (N ¹⁵ NO)	5	21
N_2O	3 (¹⁵ NNO)	5	21
N_2O	$4 (N_2^{18}O)$	5	21
CH ₄	1 (CH ₄)	5	21
CH ₄	2 (¹³ CH ₄)	5	21
CH ₄	3 (CH ₃ D)	5	21
CO_2	$0 (CO_2)$	5	21
HNO ₃	0 (HNO ₃)	5	21

^[2] Included to improve results for interferer CO₂ & CCl₂F₂

^[3] Included to improve results for interferer H_2O isotopologue 2 & 3 ($H^{18}OH$ & $H^{17}OH$)

^[4] Included to improve results for interferer N_2O isotopologue 4 ($NN^{18}O$)

^[5] Included to improve results for interferer N₂O isotopologue 3 (15NNO)

^[6] Included to improve results for interferer N_2O isotopologue 2 ($N^{15}NO$)

^[7] Included to improve results for interferer H₂O isotopologue 4 (HDO) [8] Included to improve results for interferer CH₄ isotopologue 2 (13CH₄)

Table 70: Microwindow list for CHF₂Cl (HCFC-22)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
817.50	25.00	5-7	30
1114.0	27.00	10-18	30

Table 71: Interfering Molecule(s) for CHF₂Cl (HCFC-22)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
ClONO ₂	0 (ClONO ₂)	5-7	30
$C_2Cl_3F_3$	$0 (C_2Cl_3F_3)$	5-7	20
H_2O	$0 (H_2O)$	5-7	30
C_2H_6	$0 (C_2H_6)$	5-7	15
CO_2	$0 (CO_2)$	5-7	30
O_3	$0(O_3)$	5-7	30
N_2O	$0 (N_2O)$	10-18	25
CH ₄	0 (CH ₄)	10-18	30
CCl_2F_2	$0 \left(\text{CCl}_2 \text{F}_2 \right)$	10-18	25
НСООН	0 (HCOOH)	10-18	20
CFH ₂ CF ₃	$0 (CFH_2CF_3)$	10-18	20

Table 72: Microwindow list for C₂Cl₃F₃ (CFC-113)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
817.50	25.00	7	20
1977.60 [1]	0.50	7	20
2620.81 [2]	0.45	7	20

Table 73: Interfering Molecule(s) for C₂Cl₃F₃ (CFC-113)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	1 (H ₂ O)	7	20
CO_2	1 (CO ₂)	7	20
O_3	$0(O_3)$	7	20
CHF ₂ Cl	0 (CHF ₂ Cl)	7	20
H_2O	2 (H ¹⁸ OH)	7	20
CO ₂	3 (OC ¹⁸ O)	7	20

^[1] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$) [2] Included to improve results for interferer CO_2 isotopologue 3 ($OC^{18}O$)

Table 74: Microwindow list for CH₃CCl₂F (HCFC-141b)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
926.50	6.00	6-8	22
1163.00	2.50	6-8	22
1202.85 [1]	0.60	6-8	22
1937.15 ^[2]	0.70	6-8	22
2723.31 [3]	0.45	10	22
2566.22 [4]	0.26	12	22

Included to improve results for interferer N_2O , CH_4 isotopologue 1 & 3 (CH_4 & CH_3D)

Table 75: Interfering Molecule(s) for CH₃CCl₂F (HCFC-141b)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	$1 (H_2O)$	6-8	22
CCl_2F_2	$0 \left(\text{CCl}_2 \text{F}_2 \right)$	6-8	22
H_2O	2 (O ¹³ CO	6-8	22
H_2O	$3 (OC^{18}O)$	6-8	22
H_2O	4 (HDO)	6-8	22
O_3	$0(O_3)$	6-8	22
N_2O	$1 (N_2O)$	6-8	22
N_2O	2 (N ¹⁵ NO)	6-8	22
N_2O	3 (¹⁵ NNO)	6-8	22
N_2O	$4(N_2^{18}O)$	6-8	22
CH_4	1 (CH ₄)	6-8	22
CH ₄	3 (CH ₃ D)	6-8	22
CO_2	1 (CO ₂)	6-8	22
CO_2	2 (O ¹³ CO)	6-8	22

^[2] Included to improve results for interferer H₂O isotopologue 2 & 3 (H¹⁸OH & H¹⁷OH)
[3] Included to improve results for interferer H₂O isotopologue 4 (HDO)
[4] Included to improve results for interferer N₂O isotopologue 2 (N¹⁵NNO)

4. Microwindows for Subsidiary Isotopologues

Table 76: Microwindow list for H₂O isotopologue 2 (H¹⁸OH)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1389.98	0.70	10-14	45
1400.56	0.50	9-13	50
1414.70	0.30	12-15	45
1424.90	0.40	9-14	40
1442.80	0.40	8-13	45
1449.54	0.30	9-13	35
1466.72	0.30	22	50-55
1483.18	0.30	9-12	25
1485.02	0.40	10-15	45-50
1500.64	0.35	25	40
1501.50	1.00	40	65-75
1533.10	0.40	40	65-75
1551.84	0.80	40	60-70
1554.45	0.50	50	65-70
1563.52	0.30	22	55-65
1569.90	0.45	45	65-75
1609.75	0.80	50	65-75
1646.10	0.60	45	65-75
1658.80 [1]	0.45	12-15	25
1677.70	0.40	45	60-75
1688.78	1.00	50	65-75
1753.80	0.30	18	45-50
1783.12	0.35	8-12	40
1877.80	0.40	5-9	20
1902.60	0.50	5-9	25
1911.82	0.30	5-9	20
1930.84	0.60	5-8	9-12
1950.10 [2]	0.35	5-8	15
1950.70 [3]	0.50	9-12	34-45
1977.66	0.60	5-8	20
1980.74	0.35	7-9	30
1982.06	0.55	5-8	12-15
2029.88	0.50	5-8	20

Included to improve results for interferer H_2O isotopologue 3 ($H^{17}OH$)

[2] Included to improve results for interferer H_2O

Table 77: Interfering Molecule(s) for H₂O isotopologue 2 (H¹⁸OH)

Molecule	Isotopologue No.	Lower Altitude	Upper Altitude
	(Molecular Formula)	Limit (km)	Limit (km)
H_2O	1 (H ₂ O)	5-8	65-75

^[3] Included to improve results for interferers COF₂ & CO₂

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	1 (CO ₂)	5-8	34-45
CO_2	$2 (O^{13}CO)$	5-8	20
CO_2	$3 (OC^{18}O)$	5-8	40
CO_2	$4 (OC^{17}O)$	5-9	29
O_3	$1 (O_3)$	5-8	40
O_3	$3 (O^{18}OO)$	5-8	20
CO	$3 (C^{18}O)$	5-8	20
CH ₄	1 (CH ₄)	9-13	33
CH ₄	2 (¹³ CH ₄)	9-14	25
CH ₄	3 (CH ₃ D)	10-14	22
OCS	0 (OCS)	5-8	20
COF_2	$0 (COF_2)$	5-8	34-45
H ₂ O	3 (H ¹⁷ OH)	5-9	25

Table 78: Microwindow list for H_2O isotopologue 3 $(H^{17}OH)$

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1168.35 [1]	0.50	30	40
1402.70	0.60	8-12	25
1502.30	1.20	40	52-62
1502.70	0.40	17	40
1504.00	0.30	17	52-62
1535.70	0.80	35	52-62
1535.90	0.35	25	35
1536.70	0.60	20	52-62
1554.75	1.20	45	52-62
1555.20	0.30	20	45
1566.57	0.40	15	40
1572.90	0.40	20	52-62
1642.00	0.30	15-17	40-50
1649.30	0.80	20	52-62
1658.80	0.45	12-15	40
1680.80	0.80	40	52-62
1692.26	0.40	40	52-62
1713.86	0.60	40	52-62
1862.28	0.40	5-9	20
1862.82	0.60	5-9	20
1864.30	0.60	9-11	30
1906.10	0.40	5-9	15
1937.15	0.70	5-9	20
1986.09	0.30	5-9	20
2523.50 [2]	0.35	12	22
2950.86 [3]	0.26	8-12	21

[1] Included to improve results for interferer O₃
[2] Included to improve results for interferer N₂O isotopologue 3 (¹⁵NNO)
[3] Included to improve results for interferer CH₄ isotopologue 3 (¹³CH₄)

Table 79: Interfering Molecule(s) for H₂O isotopologue 3 (H¹⁷OH)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	$1 (H_2O)$	5-9	52-62
H_2O	2 (H ¹⁸ OH)	5-9	52-62
H_2O	4 (HDO)	8-12	25
CH ₄	1 (CH ₄)	8-12	50
CO_2	$3 (OC^{18}O)$	5-9	25
CO_2	4 (OC ¹⁷ O)	5-9	20
HCN	0 (HCN)	8-12	25
O_3	$0(O_3)$	5-9	55
NO_2	$0 (NO_2)$	15-17	40
CO_2	2 (O ¹³ CO)	5-9	20
N_2O	$1 (N_2O)$	5-9	20
N_2O	3 (¹⁵ NNO)	5-9	22
CO_2	1 (CO ₂)	5-9	20
NO	0 (NO)	5-9	20
COF_2	0 (COF ₂)	5-9	20
CH ₄	3 (CH ₄)	8-12	25

Table 80: Microwindow list for H_2O isotopologue 4 (HDO)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1383.65	0.40	13-15	42-50
1425.80	0.60	30	42-50
1431.50	0.40	10-14	30
1431.70	0.80	30	42-50
1453.52	0.60	20	42-50
1469.30	0.40	10-14	42-50
1470.00	0.40	20	42-50
1480.25	0.50	10-14	35
1480.80	1.20	35	42-50
1483.92	0.90	16-20	42-50
1497.80	0.50	20	42-50
1510.95	0.40	20	42-50
2493.07 [1]	0.45	15	22
2605.22	0.80	5	10-14
2606.30	0.90	5	15
2612.45	1.50	5	15
2619.85	1.50	5	15
2621.75	1.40	5-8	20

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2622.90	1.00	7-10	20
2624.08	1.40	5	15
2644.60	1.40	5-8	20
2657.40	1.20	5-8	20
2659.42	1.20	5-7	15
2660.60	1.20	5-8	20
2666.24	1.20	5-8	20
2672.52	1.40	5-8	20

^[1] Included to improve results for interferer N₂O, CH₄, CO₂ isotopologue 3 (OC¹⁸O)

Table 81: Interfering Molecule(s) for H₂O isotopologue 4 (HDO)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	1 (H ₂ O)	10-14	42-50
H_2O	2 (H ¹⁸ OH)	10-14	42-50
H_2O	3 (H ¹⁷ OH)	10-14	42-50
H_2O	5 (HD ¹⁸ O)	5	15
CO_2	$3 (OC^{18}O)$	5	40-45
CO_2	4 (OC ¹⁷ O)	5	25-30
N_2O	$0 (N_2O)$	5	22
CH ₄	1 (CH ₄)	5	40-45
CH ₄	$2(^{13}CH_4)$	5	20-22

Table 82: Microwindow list for CO₂ isotopologue 2 (O¹³CO)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1183.57 [1]	0.55	25	35
1442.80 [2]	0.40	8-13	22
1862.28	0.40	5-10	20
1875.23	0.35	5-10	20
1881.02	0.60	5-10	40
1887.22	0.30	5-10	30
1898.20	0.28	5-10	20
1950.10 [3]	0.35	7-10	22
1999.22	0.30	20	35
2000.88	0.40	5-10	40
2002.55	0.50	5-10	40
2008.77	0.30	5-10	40
2010.40	0.40	5-10	45
2011.98	0.30	12	50
2013.60	0.35	12	50
2016.80	0.40	22	50

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
2019.90	0.45	15	50-55
2024.53	0.40	15	50-55
2027.68	0.35	15	45
2037.94	0.50	15	45
2039.38	0.40	5-10	40
2040.93	0.40	15	40
2219.42	0.30	35	60
2226.63	0.30	30	60
2228.63	0.45	40	60
2239.00	0.30	35	70
2243.00	0.35	35	70
2244.78	0.35	40	75
2248.60	0.40	35	70
2250.20	0.30	30	60
2254.09	0.30	45	75
2267.88	0.35	40	75
2268.50	0.35	90	110
2270.30	0.35	85	110
2272.05	0.30	80	110
2273.70	0.35	75	110
2275.38	0.35	95	110
2277.08	0.35	60	110
2278.70	0.35	95	110
2280.30	0.35	90	110
2287.30	0.35	95	110
2288.80	0.35	95	110
2290.30	0.30	85	110
2291.60	0.30	80	110
2291.99	0.40	45	60
2293.03	0.30	60	110
2294.56	0.35	60	110
2295.77	0.30	60	110
2299.84	0.30	60	110
2302.30	0.30	80	105
2303.58	0.35	70	105
2306.00	0.40	75	100
2308.10	0.40	70	95
2309.32	0.30	50	95
2310.42	0.35	60	95
2311.38	0.35	50-55	90
2350.69 [4]	0.28	45	55

^[1] Included to improve results for interferer N₂O

^[2] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$)

[3] Included to improve results for interferer H_2O

Included to improve results for interferer CO_2 isotopologue 4 $(OC^{17}O)$

Table 83: Interfering Molecule(s) for CO_2 isotopologue 2 ($O^{13}CO$)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	$1 (H_2O)$	5-10	40
H_2O	2 (H ¹⁸ OH)	5-10	22
H_2O	3 (H ¹⁷ OH)	5-10	20
CO_2	1 (CO ₂)	5-10	100
CO_2	$3(OC^{18}O)$	5-10	95
CO_2	$4 (OC^{17}O)$	45	80
CO_2	$5 (O^{13}C^{18}O)$	30	80
O_3	$1(O_3)$	5-10	45
O_3	$3 (O^{18}OO)$	5-10	35
N_2O	$0 (N_2O)$	5-10	55
OCS	1 (OCS)	5-10	25
OCS	$2 (OC^{34}S)$	5-10	20
OCS	$3 (O^{13}CS)$	5-10	20
CO_2	$6 (O^{13}C^{17}O)$	35	70
CO_2	$7(^{18}OC^{18}O)$	50-55	70
NO	0 (NO)	5-10	40

Table 84: Microwindow list for CO_2 isotopologue 3 ($OC^{18}O$)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1371.80	0.30	15	45
1372.52	0.30	20	45
1376.20	0.30	25	45
1379.25	0.30	15	45
1380.70	0.35	15	45
1383.65	0.40	17	45
1384.42	0.45	15	45
1385.28	0.45	30	45
1385.90	0.35	15	45
1950.10 [1]	0.35	5-7	21
2276.62	0.30	35	60
2281.08	0.40	35	60
2283.11 [2]	0.26	25	40
2283.17	0.40	35	60
2285.15	0.40	35	65
2287.78	0.40	40	60
2292.35	0.75	40	65
2307.63	0.40	55	95
2314.68	0.35	50	95
2316.25	0.40	90	105
2318.85	0.40	90	105
2319.74	0.40	90	105
2320.52	0.30	50	105

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
2337.05	0.50	55	95
2338.50	0.30	95	105
2340.20	0.30	45	60
2340.50	0.30	60	105
2341.85	0.40	75	105
2342.60	0.50	95	105
2343.08	0.35	60	105
2343.60	0.60	95	105
2344.90	0.35	90	105
2345.55	0.40	60	105
2346.87	0.35	60	105
2348.00	0.40	45	100
2349.30	0.35	45	100
2353.60	0.40	60	95
2354.82	0.30	60	90
2355.22	0.30	60	85
2356.37	0.30	60	85
2356.68	0.35	45	85
2357.83	0.30	60	85
2359.45	0.60	60	85
2360.59	0.30	60	80
2604.50	0.80	5	40
2609.80	0.45	5	40
2610.73	0.70	5	35
2611.34	0.40	5	35
2617.20	0.40	5	35
2620.10	0.40	12	40
2620.82	0.40	5	40
2621.50	0.35	15	40
2623.75	0.30	15	40
2623.87 [3]	0.90	5	21
2624.45	0.40	15	40
2626.35	0.40	5	40
2627.35	0.50	5	40
2629.48	0.35	12	40
2636.63	0.35	5	35

^[1] Included to improve results for interferer H₂O

Table 85: Interfering Molecule(s) for CO_2 isotopologue 3 $(OC^{18}O)$

Molecule	Isotopologue No.	Lower Altitude	Upper Altitude
	(Molecular Formula)	Limit (km)	Limit (km)
CO_2	1 (CO ₂)	25	105

^[2] Included to improve results for interferer CO_2 isotopologue 4 $(OC^{17}O)$

^[3] Included to improve results for interferer H₂O isotopologue 4 (HDO)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	$2 (O^{13}CO)$	25	65
CO_2	$4 (OC^{17}O)$	5	95
CO_2	$5 (O^{13}C^{18}O)$	25	65
CH ₄	1 (CH ₄)	5	40
$\mathrm{CH_{4}}$	2 (¹³ CH ₄)	5	20
N_2O	$0 (N_2O)$	5	25
H_2O	$1 (H_2O)$	5	21
H_2O	4 (HDO)	5	40
H_2O	3 (H ¹⁷ OH)	15	35
O_3	$0(O_3)$	15	30
CO_2	$6 (O^{13}C^{17}O)$	35	65
CO_2	$7(^{18}OC^{18}O)$	35	65
CO_2	$8(^{17}OC^{18}O)$	45	60

Table 86: Microwindow list for CO_2 isotopologue 4 $(OC^{17}O)$

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2329.55	0.50	90	100
2329.77	0.45	75	90
2347.05	0.30	90	100
2347.19	0.30	50	90
2348.02	0.40	50	90
2348.13	0.50	90	100
2349.15	0.50	90	100
2349.32	0.35	50	90
2350.64	0.30	50	90
2350.80	0.50	90	100
2351.22	0.30	70	90
2351.38	0.35	90	100
2352.03	0.30	50	90
2352.12	0.45	90	100
2353.11	0.45	90	100
2353.25	0.30	60	90
2353.80	0.35	50	90
2354.03	0.45	90	100
2355.15	0.30	50	90
2355.28	0.45	90	100
2359.30	0.30	50	85
2362.09	0.30	50	80
2385.02 [1]	0.40	75	92

^[1] Included to improve results for interferer CO₂

Table 87: Interfering Molecule(s) for CO₂ isotopologue 4 (OC¹⁷O)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	1 (CO ₂)	50	100
CO_2	$3 (OC^{18}O)$	50	100

Table 88: Microwindow list for CO_2 isotopologue 5 ($O^{13}C^{18}O$)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2228.27	0.30	50	55
2232.15	0.30	45	60
2250.22	0.30	45	65
2250.35	0.50	65	80
2252.40	0.60	55	80
2255.10	0.50	50	80
2258.45	0.35	45	80
2260.47	0.65	65	80
2260.70	0.40	45	65
2262.19	0.30	45	75
2264.15	0.30	45	55
2267.33	0.35	45	65
2274.70	0.80	70	80
2277.71	0.35	70	80
2279.40	0.50	65	80
2279.57	0.35	45	65
2280.25	0.40	60	80
2280.72	0.35	60	80
2282.50	0.35	45	70
2340.20 [1]	0.30	45	60

^[1] Included to improve results for interferer CO₂ isotopologue 3 (OC¹⁸O)

Table 89: Interfering Molecule(s) for CO_2 isotopologue 5 ($O^{13}C^{18}O$)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO_2	1 (CO ₂)	45	70
CO_2	2 (O ¹³ CO)	45	80
CO_2	$3 (OC^{18}O)$	45	60
CO_2	$4 (OC^{17}O)$	45	60
CO_2	$6 (O^{13}C^{17}O)$	45	70

Table 90: Microwindow list for O₃ isotopologue 2 (OO¹⁸O)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
981.62	0.35	5	25
988.08	0.60	5	35
990.52 [1]	1.10	5	20
991.05	0.45	5	35
993.70	0.80	5	40
995.11	0.50	5	40
996.28	0.65	5	40
1006.55	0.70	35	45
1007.15	0.50	40	50
1007.56	0.35	35	45
1008.15	0.50	40	50
1009.20	0.60	40	50
1010.20	0.45	35	50
1011.05	0.35	40	50
1012.03	0.60	40	50
1012.63	0.70	35	45
1013.11	0.30	45	50
1013.83	0.55	40	50
1014.82	0.40	35	50
1015.78	0.50	40	50
1016.65	0.45	40	50
1090.40	0.40	5	45
1096.60	0.60	5	35
1098.23	0.45	5	35
1104.18	1.20	5-7	35
1105.20	0.85	5	30
1480.25 [2]	0.50	10-14	22
1930.90 [3]	0.27	12	45
1950.10 [4]	0.35	6-8	22
2623.87 [5]	0.90	5-7	22

^[1] Included to improve results for interferer CH3OH

Table 91: Interfering Molecule(s) for O_3 isotopologue 2 ($OO^{18}O$)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CCl ₂ F ₂	0 (CCl ₂ F ₂)	5	25
CHF ₂ Cl	0 (CHF ₂ Cl)	5	22
O_3	1 (O ₃)	5	50

^[2] Included to improve results for interferer H_2O isotopologue 4 (HDO)

^[3] Included to improve results for interferer CO₂

^[4] Included to improve results for interferer H_2O

^[5] Included to improve results for interferer H₂O Isotopologue 4 (HDO), CO₂ isotopologue 3 (OC¹⁸O), & CH₄

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
O_3	$3 (O^{18}OO)$	5	45
O_3	$4(OO^{17}O)$	5	40
O_3	5 (O ¹⁷ OO)	5	40
H_2O	1 (H ₂ O)	5	22
H_2O	4 (HDO)	5	22
H_2O	1 (H ₂ O)	5	45
H_2O	2 (H ¹⁸ OH)	5	25
H_2O	3 (H ¹⁷ OH)	5	22
CH ₄	1 (CH ₄)	5	22
CH ₄	3 (CH ₃ D)	5	20
НСООН	0 (HCOOH)	5	20
CH ₃ OH	0 (CH ₃ OH)	5	20

Table 92: Microwindow list for O₃ isotopologue 3 (O¹⁸OO)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
979.12	0.45	5	40
980.32	0.75	5	40
981.46	0.65	7-12	40
985.04	0.45	5	40
988.13	0.70	5	50
989.79	0.50	5	40
990.52 [1]	1.10	5	20
991.08	0.40	5	50
991.90	0.80	35	50
993.59	0.50	5	40
995.11	0.50	5	50
996.24	6.00	5	45
996.92	0.65	35	50
999.53	0.50	35	50
1001.42	0.55	35	50
1003.22	0.50	40	50
1005.92	0.60	40	50
1018.65	0.65	40	50
1021.62	0.55	35	50
1024.49	0.50	40	50
1025.84	0.35	40	50
1950.10 [2]	0.35	5-7	22
2620.84 [3]	0.50	8	22

^[1] Included to improve results for interferer CH₃OH
[2] Included to improve results for interferer H₂O
[3] Included to improve results for interferer CO₂ isotopologue 3 (OC¹⁸O)

Table 93: Interfering Molecule(s) for O_3 isotopologue 3 ($O^{18}OO$)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
O_3	$1 (O_3)$	5	50
O_3	$2 (OO^{18}O)$	5	50
O_3	4 (OO ¹⁷ O)	5	40
O_3	5 (O ¹⁷ OO)	5	40
H_2O	$0 (H_2O)$	5	22
CO_2	1 (CO ₂)	5	45
CO_2	$2 (O^{13}CO)$	5	25
CO_2	$3 (OC^{18}O)$	5	22
CH ₃ OH	0 (CH ₃ OH)	5	40

Table 94: Microwindow list for O₃ isotopologue 5 (O¹⁷OO)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
987.62	0.95	5	30
989.80	0.50	5	30
990.52 [1]	1.10	5	20
990.70	0.48	5	30
991.28	0.50	5	35
992.48	0.45	5	35
993.72	0.75	5	35
995.10	0.55	5	35
996.25	0.60	5	40
997.59	0.45	5	35
998.94	0.72	7-12	40
1000.10	0.55	25	40
1002.29	0.62	25	50
1003.08	1.10	25	50
1003.78	0.35	25	40
1004.25	0.60	25	50
1006.60	0.60	30	50
1007.10	0.60	30	50
1007.59	0.30	30	50
1008.68	1.00	30	50
1009.50	0.60	30	50
1010.82	0.85	30	50
1012.50	0.40	35	50
1013.18	0.75	35	50
1013.80	0.60	35	50
1030.05	0.50	40	50
1032.82	0.40	40	45
1033.97	0.30	40	50
1034.75	0.45	40	50
1037.45	0.55	40	50

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1950.10 ^[2]	0.35	5-7	22

^[1] Included to improve results for interferer CH₃OH [2] Included to improve results for interferer H₂O

Table 95: Interfering Molecule(s) for O_3 isotopologue 5 ($O^{17}OO$)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
O ₃	1 (O ₃)	5	50
O_3	$2 (OO^{18}O)$	5	50
O_3	$3 (O^{18}OO)$	5	50
O_3	4 (OO ¹⁷ O)	5	40
H_2O	$0 (H_2O)$	5	22
CO_2	1 (CO ₂)	5	35
CO_2	2 (O ¹³ CO)	5	20
CH ₃ OH	0 (CH ₃ OH)	5	30

Table 96: Microwindow list for N_2O isotopologue 2 ($N^{15}NO$)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
933.90 [1]	0.30	7	22
1950.10 ^[2]	0.35	5-8	20
2140.24	0.50	10	25
2141.15	0.30	5	25
2143.30	0.60	5	25
2144.25	0.70	8	30
2146.48	0.40	5	35
2148.12	0.65	10	20
2149.70	0.30	10	35
2153.74	0.40	10	35
2155.73	0.45	10	35
2156.70	0.50	20	35
2157.25	0.30	8	20
2158.05	0.90	35	42-45
2158.48	0.60	35	42-45
2159.60	0.45	35	42-45
2160.60	0.30	25	35
2161.70	0.80	35	42-45
2161.95 [3]	0.50	20	35
2162.28	0.80	35	42-45
2165.45	0.50	35	42-45
2166.00	1.00	35	42-45
2169.10	0.40	35	42-45

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2169.55	0.90	35	42-45
2187.20	0.40	30	35
2189.10	1.00	35	42-45
2190.45	1.10	35	42-45
2190.84	0.35	15	35
2191.50	0.40	35	42-45
2192.40	0.40	35	42-45
2193.08	0.35	20	35
2193.35	0.90	35	42-45
2195.40	0.90	35	42-45
2196.80	1.00	35	42-45
2513.70 ^[4]	0.40	9	20
2524.10	0.30	5-7	15
2527.32	0.40	5-8	20
2528.32	0.40	5-7	22
2543.80	0.35	5-7	20
2560.40	0.26	5	20
2566.22	0.26	5	20

Included to improve results for interferer CO₂ isotopologue 2 ($O^{13}CO$) & CO_2 [2] Included to improve results for interferer H_2O

Table 97: Interfering Molecule(s) for N₂O isotopologue 2 (N¹⁵NO)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
N ₂ O	1 (N ₂ O)	5	42-45
N_2O	3 (¹⁵ NNO)	5	40
N_2O	4 (NN ¹⁸ O)	9	35
N_2O	5 (NN ¹⁷ O)	7	35
H_2O	$0 (H_2O)$	5	42-45
CO_2	1 (CO ₂)	5	42-45
CO_2	2 (O ¹³ CO)	5	22
CO_2	$3 (OC^{18}O)$	5-7	22
O_3	$0 (O_3)$	5	42-45
CO	1 (CO)	20	42-45
CO	2 (¹³ CO)	8	30
CO	$3(C^{18}O)$	5	20
CH ₄	1 (CH ₄)	5-7	22
CH ₄	2 (¹³ CH ₄)	5	20
CH ₄	3 (CH ₃ D)	8	22

^[3] Included to improve results for interferer CO, H_2O , O_3 , N_2O & N_2O isotopologue 3 (15NNO)

^[4] Included to improve results for interferer N₂O isotopologue 4 (NN¹⁸O), N₂O isotopologue 5 (NN¹⁷O), CH₄ isotopologue 2 (13 CH₄) & CO₂ isotopologue 4 (OC¹⁷O)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
СО	4 (C ¹⁷ O)	10	20
CO_2	$4 (OC^{17}O)$	9	20

Table 98: Microwindow list for N_2O isotopologue 3 (^{15}NNO)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1231.37	0.45	7-9	15
1232.23	0.56	7-9	15
1234.25	0.50	7-9	20
1239.90	1.00	7-9	25
1241.00	1.30	7-9	25
1242.65	0.65	10	20
1250.65	0.70	10	30
1480.25 [1]	0.50	10-14	22
1501.55 [2]	0.30	20	35
2160.63	0.75	7-9	20
2163.98	0.50	7-9	20
2174.35	0.45	15	30-35
2175.45	0.35	15	30-35
2177.88	1.20	30-35	45
2181.76	1.20	30-35	45
2183.64	1.20	30-35	45
2185.14	0.30	20	45
2187.04	0.40	30-35	45
2187.82	0.40	15	35
2188.02	0.50	30-35	45
2188.80	0.40	15-20	35
2189.50	0.60	30-35	45
2189.72	0.30	20	30-35
2190.48	0.40	30-35	45
2195.00	0.35	20	35
2195.14	0.60	30-35	45
2210.42	1.00	30-35	45
2211.15	1.00	30-35	45
2212.80	0.50	25	45
2214.00	1.10	30-35	45
2216.70	0.90	30-35	45
2218.65	1.00	30-35	45
2219.48	0.50	30	45
2220.56	1.00	30-35	45
2220.88	0.30	20	35

^[1] Included to improve results for interferer H_2O isotopologue 4 (HDO), H_2O & O_2 [2] Included to improve results for interferer H_2O

Table 99: Interfering Molecule(s) for N_2O isotopologue 3 (^{15}NNO)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
N_2O	$1 (N_2O)$	7-9	45
N_2O	2 (N ¹⁵ NO)	7-9	40
N_2O	$4 (NN^{18}O)$	7-9	35
N_2O	5 (NN ¹⁷ O)	7-9	30
H_2O	1 (H ₂ O)	7-9	35
H_2O	4 (HDO)	7-9	22
CO_2	1 (CO ₂)	7-9	45
CO_2	$2 (O^{13}CO)$	20	45
CO_2	$3(OC^{18}O)$	7-9	30
CO_2	$5 (O^{13}C^{18}O)$	25	45
O_3	$0(O_3)$	7-9	45
CO	0 (CO)	25	45
$\mathrm{CH_{4}}$	1 (CH ₄)	7-9	25
CH ₄	$2(^{13}CH_4)$	7-9	25
$\mathrm{CH_4}$	3 (CH ₃ D)	7-9	25
H_2O_2	$0 (H_2O_2)$	7-9	30
COF ₂	0 (COF ₂)	7-9	30

Table 100: Microwindow list for N_2O isotopologue 4 ($NN^{18}O$)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1223.67	0.30	5-7	15
1224.49	0.45	10	20
1226.99	0.45	12	20
1228.00	0.40	5	25
1231.38	0.45	5	25
1232.10	0.40	5	25
1232.82	0.60	5	25
1233.07	0.35	5-8	25
1233.88	0.40	5	25
1234.27 [1]	0.45	8	15
1234.70	0.45	5-8	25
1235.50	0.30	5-8	25
1480.25 [2]	0.50	10-14	22
1950.10 ^[3]	0.35	7-8	15
1950.70 [4]	0.50	15	34-45
2177.88	0.35	12	25
2178.90	0.40	12	25
2185.26	0.30	15	25
2192.83 [1]	0.26	15	20
2195.00	0.35	17-20	35
2195.98	0.30	20	35
2197.60	0.60	30	45

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2200.48	0.30	25	35
2200.70	0.40	35	45
2201.70	0.60	30	45
2202.85	1.10	35	45
2203.20	0.40	17-20	35
2204.62	1.10	35	45
2205.06	0.30	20	35
2205.75	0.60	30	45
2206.67	0.50	30	45
2210.12	0.30	25	35
2210.98	0.30	17-20	35
2222.80	0.40	30	45
2224.96	0.40	20	45
2226.30	0.50	30	45
2229.83	0.35	20	35
2230.30	0.60	35	45
2333.63	0.35	25	35
2560.40 [5]	0.26	5	12

[1] Included to improve results for interferer N₂O isotopologue 5 (NN¹⁷O)

[2] Included to improve results for interferer H₂O isotopologue 4 (HDO), H₂O & O₂

[3] Included to improve results for interferer H₂O

[4] Included to improve results for interferer COF₂ & CO₂

[5] Included to improve results for interferer N_2O isotopologue 2 ($N^{15}NO$)

Table 101: Interfering Molecule(s) for N₂O isotopologue 4 (NN¹⁸O)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
N_2O	$1 (N_2O)$	5	45
N_2O	2 (N ¹⁵ NO)	5	40
N_2O	3 (¹⁵ NNO)	5	40
N_2O	5 (NN ¹⁷ O)	5	33
H_2O	1 (H ₂ O)	5	25
H_2O	4 (HDO)	5	22
CO_2	$2 (O^{13}CO)$	20	45
CO_2	$3 (OC^{18}O)$	5	25
CO_2	$5 (O^{13}C^{18}O)$	17-20	45
CO_2	$6 (O^{13}C^{17}O)$	20	45
O_3	$0(O_3)$	5	45
CO	0 (CO)	17-20	45
CH ₄	1 (CH ₄)	5	25
CH ₄	2 (¹³ CH ₄)	5	25
CH ₄	3 (CH ₃ D)	5	25
H_2O_2	$0 (H_2O_2)$	5	25
COF ₂	0 (COF ₂)	5	34-45

Table 102: Microwindow list for N₂O isotopologue 5 (NN¹⁷O)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1231.55	0.80	10-14	12
1232.45	0.35	10-14	15
1234.27	0.35	10-14	15
1234.95	1.00	10-14	20
1241.58	0.40	10-14	20
1242.66	0.60	10-14	20
1244.43	0.35	15	25
1246.12	0.30	15	25
1246.85	0.50	10-14	25
1250.67	0.65	10-14	25
1251.22	0.40	15	25
1252.10	0.35	10-14	25
1252.95	0.40	13-14	25
1254.45	0.70	12-14	25
1255.55	0.70	12-14	25
1258.20	0.80	14	22
1950.10 [1]	0.35	10-14	15
1950.70 [2]	0.50	15	34-35
2202.75	0.65	25	35
2204.44	0.28	25	35
2205.29	0.30	20	35
2206.20	0.40	20	35
2207.10	0.40	20	35
2208.09	0.30	20	35
2208.98	0.30	20	35
2210.00	0.35	20	35
2210.12 [3]	0.30	25	35
2210.85	0.30	25	35
2212.35	0.50	25	35
2623.87 [4]	0.90	10-14	12

[1] Included to improve results for interferer H₂O

Table 103: Interfering Molecule(s) for N_2O isotopologue 5 ($NN^{17}O$)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
N ₂ O	$1 (N_2O)$	10-14	35
N_2O	2 (N ¹⁵ NO)	10-14	35
N_2O_5	$0 (N_2O_5)$	10-14	25

^[2] Included to improve results for interferer COF₂ & CO₂

^[3] Included to improve results for interferer N_2O isotopologues 1, 2, 3 & 4, $(N_2O, N^{15}NO, ^{15}NNO, & NN^{18}O)$ and O_3

^[4] Included to improve results for interferer H₂O isotopologue 4 (HDO) & CO₂ isotopologue 3 (OC¹⁸O)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
N ₂ O	3 (¹⁵ NNO)	10-14	35
N_2O	4 (NN ¹⁸ O)	10-14	35
H_2O	1 (H ₂ O)	10-14	35
H_2O	4 (HDO)	10-14	25
CO_2	$2 (O^{13}CO)$	20	35
CO_2	$3 (OC^{18}O)$	10-14	25
CO_2	$4 (OC^{17}O)$	10-14	25
CO_2	$5 (O^{13}C^{18}O)$	10-14	35
O_3	$0(O_3)$	10-14	35
CH ₄	1 (CH ₄)	10-14	25
$\mathrm{CH_{4}}$	2 (¹³ CH ₄)	10-14	25
CH ₄	3 (CH ₃ D)	10-14	22
H_2O_2	$0 (H_2O_2)$	10-14	25
COF_2	$0 (COF_2)$	10-14	34-35

Table 104: Microwindow list for CO isotopologue 2 (13 CO)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1446.50 [1]	0.35	30	50
1649.34 ^[1]	0.30	20	30
1950.10 [1]	0.35	5-7	20
1977.66 ^[2]	0.60	5-7	22
1986.09 ^[3]	0.30	5-7	22
2020.90	0.40	5-8	12
2024.90	0.40	5	12
2033.37	0.30	5	15
2045.67	0.35	12	20
2045.90	0.40	50	85
2049.42	1.00	50	85
2049.92	0.40	12	50
2053.74	0.40	50	85
2057.80	0.30	15	50
2058.05	0.50	50	90
2061.57	0.70	50	90
2061.87	0.35	12	50
2065.82	0.40	50	90
2069.60	0.26	20	90
2073.38	0.55	50	90
2077.45	0.50	60	90
2081.60	1.00	45	90
2084.98	0.40	10	90
2088.77	0.40	45	90
2092.43	0.30	12	20
2103.32	0.40	45	90

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
2107.15	0.70	55	90
2111.00	1.25	50	90
2113.95	0.40	50	90
2117.35	0.35	55	90
2120.90	0.35	55	90
2124.00	0.80	60	90
2127.65	0.30	60	90
2131.34	1.00	40	90
2134.35	0.35	45	90
2137.60	0.30	5-9	85
2140.80	0.60	5	40
2144.10	0.40	5	45
2147.10	0.40	20	40
2153.28	0.45	5	12
2159.60	0.40	5-7	12

Table 105: Interfering Molecule(s) for CO isotopologue 2 (13CO)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	$1 (H_2O)$	5	60
N_2O	$2 (N^{15}NO)$	5	22
N_2O	3 (¹⁵ NNO)	5	22
CO_2	1 (CO ₂)	5	80
CO_2	2 (O ¹³ CO)	5-8	22
CO_2	$3 (OC^{18}O)$	5	40
CO_2	$4 (OC^{17}O)$	12	30
O_3	1 (O ₃)	5	65
O_3	$2 (OO^{18}O)$	10	40
O_3	$3 (O^{18}OO)$	5	40
O_3	$4 (OO^{17}O)$	12	30
O_3	5 (O ¹⁷ OO)	10	30
N_2O	$0 (N_2O)$	5	25
CO	1 (CO)	20	90
CO	$3 (C^{18}O)$	10	60
CH ₄	0 (CH ₄)	5	20
OCS	0 (OCS)	5	22-31

^[1] Included to improve results for interferer H_2O [2] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$) [3] Included to improve results for interferer H_2O isotopologue 3 ($H^{17}OH$)

Table 106: Microwindow list for CO isotopologue 3 (C¹⁸O)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1442.80 [1]	0.40	8-13	22
1977.60 [1]	0.50	7-9	8-13
2013.55 [2]	0.40	12	22
2025.53	0.35	5-6	15
2029.95	0.90	5-6	15
2050.00	0.50	10	25
2061.87	0.35	10	30
2069.77	0.30	15	30
2084.80	0.50	8	30
2095.85	0.45	8	15
2106.37	0.50	12	30
2113.34	0.40	12	30
2116.80	0.60	10	30
2130.18	0.40	8	30
2133.50	0.50	5-6	30
2136.67	0.45	12	30
2140.10	0.80	8-9	30
2143.30	0.60	5-6	30
2146.25	0.35	5-6	20
2149.13	0.50	5-6	20
2161.95 [3]	0.50	15	30
2492.37 [1]	0.35	10	22

Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$)

Table 107: Interfering Molecule(s) for CO isotopologue 3 (C18O)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	$1 (H_2O)$	5-6	30
H_2O	2 (H ¹⁸ OH)	5-6	22
CO_2	1 (CO ₂)	5-6	30
CO_2	2 (O ¹³ CO)	5-6	22
CO_2	$3 (OC^{18}O)$	5-6	25
CO_2	$4 (OC^{17}O)$	5-6	25
O_3	$1 (O_3)$	5-6	30
O_3	$2 (OO^{18}O)$	8	30
O_3	$3 (O^{18}OO)$	5-6	30
O_3	4 (OO ¹⁷ O)	8	30
O_3	$5 (O^{17}OO)$	8	30
N_2O	$1 (N_2O)$	5-6	22
N_2O	$2 (N^{15}NO)$	5-6	30

^[2] Included to improve results for interferer CO2 isotopologue 2 (H¹⁸OH)

^[3] Included to improve results for interferer CO, H₂O, O₃, N₂O & N₂O isotopologue 3 (15NNO)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
CO	1 (CO)	8	30
CO	2 (¹³ CO)	8	30
OCS	0 (OCS)	5-6	30

Table 108: Microwindow list for CO isotopologue 4 (C¹⁷O)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
933.90 [1]	0.30	8	22
1950.10 [2]	0.35	8-10	22
1977.66 [3]	0.60	8-9	22
2081.35	0.30	8	22
2137.98	0.30	10-12	25
2140.80 [4]	0.60	8	22
2141.45	0.80	8	25
2145.00	0.60	8	25
2148.49	0.60	8	25
2151.96	0.40	8	25
2950.86 ^[5]	0.26	8-12	22

^[1] Included to improve results for interferer CO₂ & CO₂ isotopologue 2 (O¹³CO)

[2] Included to improve results for interferer H₂O

Table 109: Interfering Molecule(s) for CO isotopologue 4 ($C^{17}O$)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	1 (H ₂ O)	8	22
H_2O	2 (H ¹⁸ OH)	8	22
CO_2	1 (CO ₂)	8	25
CO_2	$2 (O^{13}CO)$	8	22
O_3	$1 (O_3)$	8	25
O_3	$2 (OO^{18}O)$	8	22
N_2O	$1 (N_2O)$	8	25
N_2O	2 (N ¹⁵ NO)	8	25
N_2O	3 (¹⁵ NNO)	8	22
CO	2 (¹³ CO)	8	22
CH ₄	3 (CH ₃ D)	8	22
OCS	0 (OCS)	8	22

^[3] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$)

^[4] Included to improve results for interferer H₂O isotopologue 2 (H¹⁸OH)

^[5] Included to improve results for interferer CH4 isotopologue 3 (CH3D)

Table 110: Microwindow list for CH₄ isotopologue 2 (¹³CH₄)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1202.85 [1]	0.60	7	20
1219.17	0.35	12	25
1231.37	0.45	5	35
1234.25	0.50	5	35
1234.50 [2]	1.60	10	25-40
1235.05	0.30	15	30
1239.12	0.35	15	30
1244.43 [3]	0.35	15	25
1260.70	0.50	30	50
1263.40	0.40	40	50
1274.15	0.40	25	40
1275.55	0.60	40	50
1275.90	0.40	25	40
1280.20	0.40	25	50
1294.30	0.40	30	50
1295.85	0.30	25	50
1298.15	0.40	30	50
1318.80	0.60	35	50
1324.05	0.60	35	50
1329.43	1.10	35	50
1332.90	0.60	35	50
1334.10	0.60	20	50
1338.50	0.60	35	50
1339.17	0.55	17	30
1950.70 [4]	0.50	19-25	34-45
2566.22 [5]	0.26	7	22
2617.51	0.30	5-8	20
2623.87 [6]	0.90	5-7	20
2688.80	0.40	5	20
2700.00	0.45	5	15
2703.33	0.35	5	20
2733.10	0.60	5-8	25
2748.47	0.35	5	25
2817.50	0.30	5	25
2896.55	0.30	15	30
2938.90	0.40	15	30

^[1] Included to improve results for interferer N₂O, CH₄ & O₃
[2] Included to improve results for interferer H₂O₂

Included to improve results for interferer N_2O isotopologue 5 ($NN^{17}O$)

[4] Included to improve results for interferer COF_2 & CO_2

^[5] Included to improve results for interferer N₂O isotopologue 2 (N¹⁵NO)

^[6] Included to improve results for interferer H_2O isotopologue 4 (HDO), CO_2 isotopologue 3 ($OC^{18}O$) & CH_4

Table 111: Interfering Molecule(s) for CH_4 isotopologue 2 ($^{13}CH_4$)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	1 (H ₂ O)	20	50
H_2O	2 (H ¹⁸ OH)	18	35
H_2O	4 (HDO)	5	35
CO_2	$3(OC^{18}O)$	5	45
O_3	$0(O_3)$	5	30
N_2O	$1 (N_2O)$	5	50
N_2O	$2 (N^{15}NO)$	5	22
N_2O	3 (¹⁵ NNO)	5	35
N_2O	4 (NN ¹⁸ O)	5	30
N_2O	5 (NN ¹⁷ O)	5	30
CH ₄	1 (CH ₄)	5	50
CH ₄	3 (CH ₃ D)	5	25
HNO ₃	0 (HNO ₃)	17	40
H_2O_2	$0 (H_2O_2)$	5	25-40
COF ₂	0 (COF ₂)	5	34-45

Table 112: Microwindow list for CH₄ isotopologue 3 (CH₃D)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
923.16 [1]	0.80	6	22
1109.60	0.50	6	15
1113.88	0.40	6	20
1118.97	0.50	6	22
1122.90	0.40	6	20
1123.50	0.40	6	15
1126.60	0.40	6	20
1130.84	0.40	6	20
1134.80	0.35	8	20
1139.15	0.40	6	20
1143.35	0.35	6	20
1157.77	0.30	6	15
1159.39	0.28	6	12
1167.95	0.40	6	15
1171.90	0.32	5-8	15
1176.99	0.30	10	20
1181.34	0.26	5-8	15
1183.15	0.30	6	15
1188.70	0.40	6	25
1194.45	0.30	6	12
1200.22	0.60	5-8	20
1201.99	0.35	6	22
1204.38	0.30	6	20
1206.90	0.30	5-9	20

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1231.13 [2]	0.30	6	25
1231.37	0.50	6	25
1480.25 [3]	0.50	10-14	22
1950.10 [4]	0.35	6	20
1950.70 ^[5]	0.50	20	30-35
1986.09 [6]	0.30	6-7	22
2623.87 ^[7]	0.90	6-7	10-14
2950.70	0.50	20	30-35
2972.20	0.50	25	30-35
2972.40	0.40	10	25
2980.30	0.40	25	30-35
2987.93	0.55	17	30-35
3061.30	0.60	20	30-35
3063.35	0.40	12	30-35
3069.05	0.50	25	30-35
3072.66	0.60	15	30-35
3082.00	0.60	15	30-35
3083.80	0.40	30	30-35
3089.60	0.45	25	30-35
3091.30	0.55	25	30-35
3096.95	0.40	20	30-35

[1] Included to improve results for interferer CO₂ & CCl₂F₂
[2] Included to improve results for interferer H₂O₂
[3] Included to improve results for interferer H₂O isotopologue 4 (HDO)
[4] Included to improve results for interferer H₂O
[5] Included to improve results for interferer COF₂ & CO₂
[6] Included to improve results for interferer H₂O isotopologue 3 (H¹⁷OH)

Table 113: Interfering Molecule(s) for CH₄ isotopologue 3 (CH₃D)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	$1 (H_2O)$	6	30-35
H_2O	3 (H ¹⁷ OH)	6	22
CCl_2F_2	$0 \left(\text{CCl}_2 \text{F}_2 \right)$	6	22
CHF ₂ Cl	0 (CHF ₂ Cl)	6	25
H_2O	4 (HDO)	6	22
CO_2	$3 (OC^{18}O)$	6	25
O_3	$1 (O_3)$	6	30-35
O_3	$2 (OO^{18}O)$	6	22
O_3	$3 (O^{18}OO)$	6	22
N_2O	$1 (N_2O)$	6	25
N ₂ O	3 (¹⁵ NNO)	6	25

^[7] Included to improve results for interferer H_2O isotopologue 4 (HDO), CO_2 isotopologue 3 ($OC^{18}O$) & CH_4

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
N_2O	$4 (NN^{18}O)$	6	25
CH ₄	1 (CH ₄)	6	30-35
CH ₄	2 (¹³ CH ₄)	6	30
H_2O_2	$0 (H_2O_2)$	6	25
COF_2	0 (COF ₂)	6	30-35
НСООН	0 (HCOOH)	6	20

Table 114: Microwindow list for OCS isotopologue 2 (OC34S)

Centre Frequency (cm ⁻¹)	Microwindow Width (cm ⁻¹)	Lower Altitude (km)	Upper Altitude (km)
1950.10 [1]	0.35	8-10	22
2040.31	0.35	8-10	23-31
2042.33	0.30	8-10	23-31
2042.93	1.05	8-10	23-31
2045.35	0.35	8-10	23-31
2048.06	0.40	8-10	23-31
2048.50	0.30	12	23-31
2049.92 [2]	0.40	15	23-31
2051.31	0.30	8-10	23-31
2052.88	0.85	8-10	23-31
2054.05	0.30	15	23-31
2054.47	0.45	8-10	23-31
2054.73	0.30	12	23-31
2055.90	0.55	8-12	23-31
2068.26	0.40	10	23-31
2070.02	0.60	12	23-31
2141.60 [3]	0.35	8-10	20

Table 115: Interfering Molecule(s) for OCS isotopologue 2 (OC³⁴S)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H_2O	1 (H ₂ O)	8-10	22
H_2O	2 (H ¹⁸ OH)	8-10	22
CO_2	1 (CO ₂)	8-10	23-31
CO_2	2 (O ¹³ CO)	8-10	23-31
CO_2	$3 (OC^{18}O)$	8-10	23-31
CO_2	4 (OC ¹⁷ O)	8-10	23-31
O_3	$1(O_3)$	8-10	23-31
O_3	2 (OO ¹⁸ O)	8-10	23-31

^[1] Included to improve results for interferer H₂O
[2] Included to improve results for interferer CO isotopologue 2 (¹³CO)
[3] Included to improve results for interferer CO isotopologue 4 (C¹⁷O)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
O_3	3 (O ¹⁸ OO)	8-10	23-31
O_3	$4 (OO^{17}O)$	12	23-31
O_3	5 (O ¹⁷ OO)	12	23-31
CO	2 (¹³ CO)	12	23-31
CO	$3(C^{18}O)$	8-10	23-31
CO	$4 (C^{17}O)$	8-10	20
OCS	1 (OCS)	8-10	23-31
OCS	$4 (OC^{33}S)$	8-10	20

Table 116: Microwindow list for OCS isotopologue 3 (${
m O}^{13}{
m CS}$)

Centre Frequency	Microwindow	Lower Altitude	Upper Altitude
(cm ⁻¹)	Width (cm ⁻¹)	(km)	(km)
1930.90 [1]	0.27	12	22
1950.10 [2]	0.35	7-9	22
1977.66 ^[3]	0.60	7-9	22
1986.09 [4]	0.30	7-9	22
1996.20	0.30	7-9	23-31
1996.91	0.35	7-9	23-31
1998.30	0.40	12	23-31
1999.73	0.30	12	23-31
2000.37	0.45	7-9	23-31
2000.87	0.50	7-9	23-31
2001.75	0.50	7-9	23-31
2002.55	0.50	7-9	23-31
2003.45	0.40	15	23-31
2004.59	0.35	7-9	15
2006.23	0.35	7-9	15
2012.47	0.30	7-9	15
2013.12	0.30	7-9	15
2013.93	0.35	7-9	23-31
2014.50	0.70	10	23-31
2015.53	0.60	15	23-31
2016.21	0.30	12	23-31
2017.60	0.40	10	23-31
2017.83	0.35	12	23-31
2018.73	0.50	15	23-31
2019.30	0.30	15	23-31
2019.57	0.30	7-9	23-31
2020.23	0.30	7-9	23-31
2021.06	0.30	7-9	23-31
2022.00	0.40	7-9	23-31

Table 117: Interfering Molecule(s) for OCS isotopologue 3 (O¹3CS)

Molecule	Isotopologue No. (Molecular Formula)	Lower Altitude Limit (km)	Upper Altitude Limit (km)
H ₂ O	1 (H ₂ O)	7-9	22
H_2O	2 (H ¹⁸ OH)	7-9	22
H_2O	3 (H ¹⁷ OH)	7-9	22
CO_2	1 (CO ₂)	7-9	22
CO_2	2 (O ¹³ CO)	7-9	23-31
CO_2	$3 (OC^{18}O)$	7-9	23-31
O_3	1 (O ₃)	7-9	23-31
O_3	3 (O ¹⁸ OO)	7-9	23-31

^[1] Included to improve results for interferer CO₂ [2] Included to improve results for interferer H₂O

^[3] Included to improve results for interferer H_2O isotopologue 2 ($H^{18}OH$) [4] Included to improve results for interferer H_2O isotopologue 3 ($H^{17}OH$)

5. Line Parameters

Table 118: Sources of spectral line parameters

Molecule	Source
O ₃	L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 110 (2009) 533–572
$_{ m H_2O}$	L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 110 (2009) 533–572
CH ₄	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
N_2O	Adjustments: 1206.48614 cm ⁻¹ changed to 1206.48382 cm ⁻¹ 1207.38207 cm ⁻¹ changed to 1207.377 cm ⁻¹ 1208.26319 cm ⁻¹ changed to 1208.267 cm ⁻¹ 1209.15774 cm ⁻¹ changed to 1209.167 cm ⁻¹
NO_2	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
NO	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
HNO_3	HITRAN 2004 Update #12: JM. Flaud et al., MIPAS database: Validation of HNO ₃ line parameters using MIPAS satellite measurements, <i>Atmospheric Chemistry & Physics</i> , 6 (2006) 5037-5048
HCl	J.A. Coxon et al., The Radial Hamiltonians for the $X^1\Sigma^+$ and $B^1\Sigma^+$ States of HCl, <i>Journal of</i> Molecular Spectroscopy, 203 (2000) 49-64
HF	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204

Molecule	Source
СО	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CCl₃F (CFC-11)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CCl ₂ F ₂ (CFC-12)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
N ₂ O ₅	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
$CIONO_2$	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
COF_2	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CF ₄	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CH ₃ Cl	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
$\mathrm{C_2H_6}$	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
SF_6	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
OCS	HITRAN 2004 Update #19: L. Régalia-Jarlot et al., Line intensities of the: v ₃ , 4v ₂ , v ₁ +v ₃ , 3v ₁ and 2v ₁ +2v ₂ bands of ¹⁶ O ¹² C ³² S molecule, Journal of Quantitative Spectroscopy & Radiative Transfer, 74 (2002) 455–470

Molecule	Source
HCN	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
H ₂ CO	L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 110 (2009) 533–572
CO_2	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
HO ₂ NO ₂	Brown, L.R. et al., The 1995 ATMOS linelist, <i>Applied Optics</i> , 35 (1996) 2828-2848
$\mathrm{H}_2\mathrm{O}_2$	 A. Perrin et al., The 7.9-μm Band of Hydrogen peroxide: Line Positions and Intensities, <i>Journal of Molecular Spectroscopy</i>, 171, (1995) 358-373 S. Klee et al., Absolute Line Intensities for the v6 Band of H₂O₂, <i>Journal of Molecular Spectroscopy</i>, 195, (1999) 154-161
CCl ₄	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
$\mathrm{C_2H_2}$	 HITRAN 2004 Update #26: O.M. Lyulin et al., Line intensities of acetylene: Measurements in the 2.5-μm spectral region and global modeling in the Δp=4 and 6 series, Journal of Quantitative Spectroscopy and Radiative Transfer, 103 (2007) 496-523 D. Jacquemart et al., Multispectrum fitting of line parameters for ¹²C₂H₂ in the 3.8-μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 103 (2007) 478-495
COCl ₂	Brown, L.R. et al., The 1995 ATMOS linelist, <i>Applied Optics</i> , 35 (1996) 2828-2848
COCIF	Brown, L.R. et al., The 1995 ATMOS linelist, <i>Applied Optics</i> , 35 (1996) 2828-2848
НСООН	A. Perrin et al., An improved database for the 9μm region of the formic acid spectrum, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 108 (2007) 363–370

Molecule	Source
СН₃ОН	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
${ m O}_2$	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
N_2	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
	Adjustments: Line strengths scaled by a factor of 1.039
CH ₃ CClF ₂ (HCFC-142b)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CHF ₂ Cl (HCFC-22)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
C ₂ Cl ₃ F ₃ (CFC-113)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CH ₃ CCl ₂ F (HCFC-141b)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
H ₂ O isotopologue 2 (H ¹⁸ OH)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
H ₂ O isotopologue 3 (H ¹⁷ OH)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
H ₂ O isotopologue 4 (HDO)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204

Molecule	Source
CO ₂ isotopologue 2 (O ¹³ CO)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CO ₂ isotopologue 3 (OC ¹⁸ O)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CO ₂ isotopologue 4 (OC ¹⁷ O)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CO ₂ isotopologue 5 (O ¹³ C ¹⁸ O)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
O ₃ isotopologue 2 (OO ¹⁸ O)	L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 110 (2009) 533–572
O ₃ isotopologue 3 (O ¹⁸ OO)	L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 110 (2009) 533–572
O ₃ isotopologue 5 (O ¹⁷ OO)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
N ₂ O isotopologue 2 (N ¹⁵ NO)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
N ₂ O isotopologue 3 (15NNO)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
N ₂ O isotopologue 4 (NN ¹⁸ O)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
N ₂ O isotopologue 5 (NN ¹⁷ O)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204

Molecule	Source
CO isotopologue 2 (13CO)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CO isotopologue 3 (C ¹⁸ O)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CO isotopologue 4 (C ¹⁷ O)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CH ₄ isotopologue 2 (¹³ CH ₄)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
CH ₄ isotopologue 3 (CH ₃ D)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204
OCS isotopologue 2 (OC ³⁴ S)	HITRAN 2004 Update #19: L. Régalia-Jarlot et al., Line intensities of the: v ₃ , 4v ₂ , v ₁ +v ₃ , 3v ₁ and 2v ₁ +2v ₂ bands of ¹⁶ O ¹² C ³² S molecule, Journal of Quantitative Spectroscopy & Radiative Transfer, 74 (2002) 455–470
OCS isotopologue 3 (O ¹³ CS)	L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database, <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> , 96 (2005) 139–204