1 Решение задачи 1

Пусть \mathcal{L} — язык сентенциальных форм, порождаемых грамматикой

```
I S \rightarrow aSSbS,
```

II $S \to bSb$,

III $S \to a$,

и содержащих одинаковое число встречающихся в них термов. Рассмотрим слово $w_0 = a^3b(aS^2b)^2bSb$. Заметим, что $w_0 \in \mathcal{L}$. Действительно, $|w_0|_a = |w_0|_b = |w_0|_S = 5$, а само w_0 получается применением к стартовому нетерминалу S трёх правил грамматики I, одного правила II и двух правил III.

Если применить к w_0 четыре правила I, одно правило II и два правила III, получим слово $w_1=(a^3b)^2(aS^2b)^5b^2Sb^2\in\mathcal{L},\ |w_1|_a=|w_1|_b=|w_1|_S=11,$ причём w_1 — «наименьшее» слово языка, получаемое из w_0 .

Аналогично, применение четырёх правил I, одного правила II и двух правил III к w_1 порождает $w_2=(a^3b)^3(aS^2b)^8b^3Sb^3\in\mathcal{L},\ |w_2|_a=|w_2|_b=|w_2|_S=17,$ и w_2 — «наименьшее» слово языка, получаемое из w_1 .

В общем случае получаем $w_i = (a^3b)^{i+1}(aS^2b)^{3i+2}b^{i+1}Sb^{i+1}$, где $|w_i|_a = |w_i|_b = |w_i|_S = 6i+5$. Покажем, что язык $\mathcal{L} \notin \mathsf{CFG}$, применяя лемму о накачке для CFL к слову w_i . Будем предполагать выполненным пересечение с регулярной аппроксимацией $\mathcal{R} = (a^3b)^+(aS^2b)^+b^+Sb^+$.

Пусть n — длина накачки, и пусть $w=(a^3b)^{n+1}(aS^2b)^{3n+2}b^{n+1}Sb^{n+1}$. Рассмотрим всевозможные разбиения $w=w_0w_1w_2w_3w_4, |w_1w_3|>0, |w_1w_2w_3|\leq n$, и покажем, что w не накачивается.

- 1. $w_1w_3=(a^3b)^i$ для некоторого i (заметим, что при ином выборе фрагментов накачек в $(a^3b)^{n+1}$ слово выпадает из языка в силу пересечения с \mathcal{R}). Тогда при отрицательной накачке в слове уменьшится число букв a,b, но число букв S останется неизменным слово окажется не в языке:
- 2. $w_1 = (a^3b)^i$, $w_3 = (aS^2b)^j$ для некоторых i, j. Аналогично, при выборе других фрагментов накачек в $(a^3b)^{n+1}$ и $(aS^2b)^{3n+2}$ соответственно слово оказывается не в языке. Отрицательной накачкой удаляется большее число букв a, чем b и c;
- 3. $w_1w_3 = (aS^2b)^i$ для некоторого i. Вновь отрицательная накачка удаляет из слова букв S больше, чем a, b;
- 4. $w_1 = (aS^2b)^i$, $w_3 = b^j$ для некоторых i, j. С отрицательной накачкой в слове остаётся различное число букв;
- 5. $w_1w_3 = b^i$ для некоторого i. Отрицательная накачка удаляет в слове только буквы b;
- 6. случай $w_1 = b^i$, $w_3 = b^j$ для некоторых i, j аналогичен предыдущему.

Таким образом, при любом разбиении слово оказывается не в языке (даже не за счёт невозможности вывести данную сентенциальную форму, а просто из-за дисбаланса термов — всё благодаря пересечению с \mathcal{R}). Язык $\mathcal{L} \notin \mathtt{CFL}$.

2 Решение задачи 2

Пусть $\mathcal{L} = \{c^i a^n b^k a^j \mid (k>n) \lor (i=j \& n>2)\}$. Язык $\mathcal{L} \in \mathsf{CFL}$, поскольку $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$, где

$$\mathcal{L}_1=\{c^ia^nb^ka^j\,|\,k>n\}\in \text{CFL},$$

$$\mathcal{L}_2=\{c^ia^nb^ka^j\,|\,i=j\,\&\,n>2\}\in \text{CFL}.$$

Язык \mathcal{L} недетерминирован. Докажем это с помощью леммы о накачке для DCFL. Пусть n- длина накачки. Рассмотрим слова

$$w_1 = c^n a^{n+2} \in \mathcal{L},$$

$$w_2 = c^n a^{n+2} b a^n \in \mathcal{L}.$$

У них общий префикс $x=c^na^{n+1}$, |x|>n, и различные суффиксы y=a и $z=aba^n$ соответственно, причём y[0]=z[0]. Будем предполагать выполненным пересечение с регулярной аппроксимацией $c^*a^2a^*b^2a^*$.

Пусть накачивается только префикс x, т.е. существует разбиение $x=x_0x_1x_2x_3x_4, |x_1x_3|>0, |x_1x_2x_3|\leq n$, такое, что $(\forall i\in\mathbb{N})\ x_0x_1^ix_2x_3^ix_4y\in\mathcal{L}$ и $x_0x_1^ix_2x_3^ix_4z\in\mathcal{L}$. Рассмотрим разбиения префикса x.

- $x_1x_3 = c^i$ для некоторого *i*. Отрицательная накачка рассинхронизирует число букв *c* и *a* в слове w_1 ;
- $x_1 = c^i, x_3 = a^j$ для некоторых i, j. При отрицательной накачке наблюдаем рассинхронизацию числа букв c и a уже в слове w_2 ;
- $x_1x_3 = a^i$ для некоторого i. Вновь отрицательная накачка рассинхронизирует число букв c и a в слове w_1 .

Пусть теперь префикс x и суффиксы y,z накачиваются синхронно, т.е. существуют разбиения $x=x_0x_1x_2,\ y=y_0y_1y_2,\ z=z_0z_1z_2,\ rде\ |x_1x_2|\le n,\ |x_1|>0,$ такие, что $(\forall i\in\mathbb{N})\ x_0x_1^ix_2y_0y_1^iy_2\in\mathcal{L}$ и $x_0x_1^ix_2z_0z_1^iz_2\in\mathcal{L}$. Заметим, что $x_1=a^i$ для некоторого і. Какое бы мы ни выбрали разбиение $y\ (y_1=a$ или $y_1=\varepsilon)$, при отрицательной накачке слово w_1 выходит из языка из-за рассинхронизации числа букв a и c.

Таким образом, $\mathcal{L} \notin \mathsf{DCFL}$.