Credit Card Fraud Detection

8		Date No.
3	+	ML with Python
3	\rightarrow	Mr with Python Credit land pata -> Data Pre Processing -> Data
3		Credit land pata -> Data Pre Processing -> Data (Imbalance) Analysis
3		↓ 0
		Evaluation - Logistic Regression - Train Test
3		Evaluation Logistic Regression Train Test Model Split
1		
1		① Dependies → Libraries
3	,	Snift + Enter = Run
3		Import the dependencies
3	1	import numpy as np - Marking arrays
<u> </u>	2.	import pandas as gd - Pointers
	3،	from Skleam model-selection pata Frames
		import train-test-split
	4.	from skleam learn model spett data into
i		import eogistic Regression to diving test data
3	۲٠	from Skleam metrics import-acurary sione
=		
		(2) Load dateset to landas paragrame
	1.	creait - card - data = pd. recol csv()
		=) copy patr of credit-data chr parte
3		(3) First 5 hours of dataset
3		Credit—card—data. head()
=		Laselo
		Lasel
_		
_		
-3		MatrikaS

-> Credit - card - data taill)

After 2 days of transaction | Last 5 nows Pataset information cudit- and-data info () Checking no of missing values in each column credit - coud - data is much () - sum!) Distribution of light transaction & frauduleus credit-cond-data ['Uass'] ·value_counts() This dataset is highly umbalance. - Normal Transaction - Fraudulent Transaction Separating the data for analysis ccd light = (d Celait_cald-data. Class = = 0] fraud = [hait-card-data-llass = = 1] print left shape) print (floud hepe) Statistice measures of the data O light. Amount - describe() Depard Amount des wise ()
Mean - More man legit.

> ONW_ dataset head () (2) New_dataset tail() Last 5 lous. New_dataset ['llas']. Value _ counts () 0 492] show (4) new - dataset - group by ('lles') . mean() (Nature of dataset not changed). Split me data into features & larger-[x = new - dataset - disp(columns = 'Cless', if y = new - dataset [(Cless') axis=1 Don't have clay column Split dates into Training & lesting Data X- train, X-test, 4-train, 4-test Stratify = 4, Sandom = State = 2) 1 distribution of your nata

MATRIKAS

Date No. Machine rearning -> Band on Redictions Ex: for instance 100 Records
Types - O supervised (Gradited) 2) Unsupervised 10 - doesn't pay hoad. Why ? - Reasons - (Burch of Ressons) 1 Take Dataset Customer a = 100K 20K (green) BOK(left) find + Avg. age, financial tituations -- ete then decide whether he she is pland of not. (2) Make a characteristic to determine fraud E: [Age: 30, salary 250K, G7=Male] Bank issue credit card os not. Smalid Not Paying am ount Dataset C2 C3 C4 C5-... to Ran K whether paint or not on time variables - (orgendent variage) that you will predict - independent variable Dependent Variable - 1 Categorical Moblem Mary pixed no. - frand, ontime, hofit / hors - ML Model, of values Clash pication Models. (1) hopericture, Decision days, Name Bay Aby oumm MATRIKAS

Random forest KNN, CVPA, LDA

	Date No.
	(2) Numerical - Saly, Propit, Salury ? - 1 M2 Models
	Regressing 1
	Models
-)	Linear Kyruksion, Decision True, RF -1 Kandom toust, KNN, SVM
	KNN, SVM
	Random forest Decision tree
	The Based Model Root (Ties)
	Verben /
	ways to optimize tree wodes of o
	Ex: Strees - Test all tills Terminal
	and then count the prediction Impially I tree prediction
	from each tree. Then forest of trees
	GLOOD MODEL CHARACTERISTICS
	1) Accuracy 2) Stability
	2 stability
, •	Datasut
lime	V, V28 Amount Class
	0 + Legit
	1 - Fraud.