Model Idea #1

Charles Marks

$$\begin{split} L(t+1) &= L(t) + \alpha(L(t), H(t)) - \beta(L(t), H(t)) - \gamma(L(t)) \\ H(t+1) &= H(t) + \beta(L(t), H(t)) - \delta(H(t)) \end{split}$$

 $\alpha(L, H) : L * \lambda_L + H * \lambda_H$ $\beta(L, H) : \frac{L - \eta * H}{\eta + 1}$

 $\gamma(L): L * x_L$

 $\delta(H): H * x_H$

 η : a set constant which $\frac{L}{H}$ maintains

 λ_L = the average number of initiates for a Low-Risk Initiator

 λ_H = the average number of initiates for a High-Risk Initiator

 x_L : "death" rate of L population

 x_H : "death" rate of H population