projections

VON NEUMANN, HALPERIN let $M_1, \ldots, M_k \leq H$ be closed subspaces. then $(\operatorname{Proj}_{M_1} \ldots \operatorname{Proj}_{M_k})^n \stackrel{p}{\longrightarrow} \operatorname{Proj}_{\cap M_i}$ pointwise. proof (Netyanun, Solomon) write $T = \operatorname{Proj}_{M_1} \dots \operatorname{Proj}_{M_k}$, $M = \bigcap M_j$. we'll proceed in steps. step i : $H = M \oplus \overline{\operatorname{img}(I - T)}$. proof we have $M = \{ \text{fixed pts of } T \} = \ker(I - T)$. indeed, \subseteq is obvious and the other direction follows as each projection decreases the length of x if it isn't fixed. similarly $M = \ker(I - T^*) = \operatorname{img}(I - T)^{\perp}$ as T^* is T in reversed order. step ii : $||(I - T)y||^2 \le k (||y||^2 - ||Ty||^2)$. <u>proof</u> we have $||(I-T)y|| \le \sum ||S_jy - S_{j+1}y||$ where $S_j = P_1 \dots P_j$. now $||S_jy - S_{j+1}y||^2 = ||S_jy||^2 - ||S_{j+1}y||^2$ by Pythagoras, so it remains to note that $\left(\sum_{j=1}^k a_j\right)^2 \le k \sum_{j=1}^k a_j^2$ by Cauchy-Schwarz. proof (Kakutani) $||T^nx||$ is decreasing and hence convergent. so we're done by letting $y = T^nx$ in step ii. the result is trivial if $x \in M$. step iii gives the result for $x \in \text{img}(I-T) \subseteq M^{\perp}$, which one extends to $\overline{\text{img}(I-T)} = M^{\perp}$. the following is a linear analog of Banach's fixed point theorem $\underline{\text{VON Neumann}} \text{ let } ||A|| \leq 1 \text{ be a contraction operator on } H \text{ and } M = \{\text{fixed pts of } A\}. \text{ then } A^n x \overset{a}{\longrightarrow} \mathrm{Proj}_M(x).$ $\underline{\text{lemma}} \ M^{\perp} = \overline{\text{img}(I - A)}.$ proof it suffices to show $M = \{\text{fixed pts of } A^*\} = \ker(I - A^*)$. but as $||A|| = ||A^*|| \le 1$, we need to show only one inclusion. for unit x we have $Ax = x \implies 1 = \langle Ax, x \rangle = \langle x, A^*x \rangle$ and $A^*x = x$ by Cauchy Schwarz. <u>proof</u> the result is trivial if $x \in M$. also if $x = (A - I)y \in \text{img}(I - A)$ then $\frac{1}{n+1} \sum_{k=0}^{n} A^k x = \frac{A^{n+1}y - y}{n+1} \to 0$. one easily extends this to $x \in \overline{\operatorname{img}(I-A)} = M^{\perp}$ and is done by linearity.