# GRAPHICS SYSTEMS AND INTERACTION

Lesson 1

#### **Abstract**

Project "Circle Equation"

Three.js installation

Creating a scene

João Paulo Pereira jjp@isep.ipp.pt

# Table of Contents

| Project "Circle Equation"                                                         | 1 |
|-----------------------------------------------------------------------------------|---|
| To-do #1 – Set and validate circle parameters $r$ , $x_0$ and $y_0$               | 2 |
| To-do #2 – Set the values of the starting angle and angle increment (in radians)  | 2 |
| To-do #3 – Set the for () loop parameters                                         | 2 |
| To-do #4 – Compute the values of point coordinates x and y                        | 2 |
| To-do #5 – Add the value of <i>i</i> to the newly created cell contents           | 2 |
| To-do #6 – Add the value of angle (in degrees) to the newly created cell contents | 2 |
| To-do #7 – Add the value of point coordinate x to the newly created cell contents | 3 |
| To-do #8 – Add the value of point coordinate y to the newly created cell contents | 3 |
| To-do #9 – Update the value of <i>angle</i>                                       | 3 |
| Three.js installation                                                             | 5 |
| Creating a scene                                                                  | 5 |
| References                                                                        | 7 |

# Table of Figures

| Figure 1 – Project "Circle Equation" | 1 |
|--------------------------------------|---|
| Figure 2 – A generic circle          | 2 |
| Figure 3 – Project "DEI logo"        | 5 |

| _   | 1              |        |          |               |      | •      |
|-----|----------------|--------|----------|---------------|------|--------|
| Ιコ  | n              | $\Box$ | $\cap$ t | $\vdash \cap$ | HIST | ions   |
| 1 Q | $\mathbf{\nu}$ |        | Οī       | ЬЧ            | uai  | .10113 |

Equation 1 – Parametric form of the circle equation ......2

#### Project "Circle Equation"

The aim of this project is to create a small HTML [1] / CSS [2] / JavaScript [3] program that lets you exercise the parametric form of the circle equation (Figure 1).



Figure 1 – Project "Circle Equation"

Download the folder "Circle Equation template". The project is composed by one single file:

"Circle\_Equation\_template.html"

Two tables are to be displayed: the data input table and the results output table.

The data input table has already been created and allows the user to choose the following parameters:

- The desired number of points equally distributed along a circle (n)
- The circle's radius (r)
- The circle's center coordinates  $(x_0 \text{ and } y_0)$

The results output table, to be populated when the user clicks the button "Build table" or presses the "Enter" key, comprises four columns and lists the following figures:

- The order number of each point (0, 1, 2, etc.)
- The corresponding angle in degrees (t)
- The point's coordinates (x and y)

Your assignment is to set and validate circle parameters and create the results output table.

#### To-do #1 – Set and validate circle parameters r, $x_0$ and $y_0$

Open the file "Circle\_Equation\_template.html" and look for comment "To-do #1". Follow the example of setting and validating parameter n.

#### To-do #2 – Set the values of the starting angle and angle increment (in radians)

Look for comment "To-do #2" and follow the instructions.

#### To-do #3 – Set the for () loop parameters

Look for comment "To-do #3" and follow the instructions.

#### To-do #4 – Compute the values of point coordinates x and y

Use the parametric form of the circle equation to compute the points coordinates (Figure 2 and Equation 1) [4].



Figure 2 – A generic circle

$$\begin{cases} x = r * \cos(t) + x_0 \\ y = r * \sin(t) + y_0 \end{cases}$$

Equation 1 – Parametric form of the circle equation

#### Where:

- (x, y) are the point coordinates
- $(x_0, y_0)$  are the center coordinates
- r is the radius
- t is a parametric variable in the range  $0.0 \le t < 2.0 * \pi$  (pi)

Don't forget that angles must be expressed in radians (180.0 degrees =  $\pi$  radians).

Look for comment "To-do #4" and follow the instructions.

#### To-do #5 – Add the value of *i* to the newly created cell contents

Look for comment "To-do #5" and follow the instructions.

#### To-do #6 – Add the value of angle (in degrees) to the newly created cell contents

Look for comment "To-do #6" and follow the instructions.

To-do #7 – Add the value of point coordinate x to the newly created cell contents Look for comment "To-do #7" and follow the instructions.

To-do #8 – Add the value of point coordinate y to the newly created cell contents Look for comment "To-do #8" and follow the instructions.

#### To-do #9 – Update the value of *angle*

Look for comment "To-do #9" and follow the instructions.

### Three.js installation

To install three.js [5] open the presentation file "Three.js Installation.pdf" and follow the instructions.

You should see a textured (DEI logo) spinning cube (Figure 3).



Figure 3 – Project "DEI logo"

## Creating a scene

Carefully read this <u>section</u> [6] of the manual. It gives you a brief introduction to three.js.

# References

- [1] Wikipedia, "HTML," [Online]. Available: https://en.wikipedia.org/wiki/HTML. [Accessed 05 August 2021].
- [2] Wikipedia, "CSS," [Online]. Available: https://en.wikipedia.org/wiki/CSS. [Accessed 05 August 2021].
- [3] Wikipedia, "JavaScript," [Online]. Available: https://en.wikipedia.org/wiki/JavaScript. [Accessed 05 August 2021].
- [4] Wikipedia, "Circle," [Online]. Available: https://en.wikipedia.org/wiki/Circle. [Accessed 25 July 2021].
- [5] Three.js, "Three.js JavaScript 3D Libray," [Online]. Available: https://threejs.org. [Accessed 25 July 2021].
- [6] Three.js, "Creating a scene," [Online]. Available: https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene. [Accessed 25 July 2021].