2.2 Let n be in $\mathbb{N}\setminus\{0\}$. Let k, x be in \mathbb{Z} . We define the congruence class \bar{k} of the integer k as the set

$$\bar{k} = x \in \mathbb{Z} | x - k = 0 \pmod{n}$$

= $x \in \mathbb{Z} | \exists a \in \mathbb{Z} : (x - k = n.a)$

We now define $\mathbb{Z}/n\mathbb{Z}$ (sometimes written as \mathbb{Z}_n) as the set of all congruence classes modulo n. Euclidean division implies that this set is a finite set containing n elements:

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$$

For all $\bar{a}, \bar{b} \in \mathbb{Z}_n$, we define

$$\bar{a} \oplus \bar{b} \coloneqq \overline{a+b}$$

a. Show that (\mathbb{Z}_n, \oplus) is a group. Is it Abelian?

Solution.

To prove that (\mathbb{Z}_n, \oplus) is a group, we need to prove 4 conditions:

Closure, Associativity, Existence of neutral element, Existence of inverse element

Closure

We need to prove that $\forall \bar{a}, \bar{b} \in \mathbb{Z}_n : \bar{a} \oplus \bar{b} \in \mathbb{Z}_n$

$$\bar{a} \oplus \bar{b} \coloneqq \overline{a+b}$$

$$a + b < n \Longrightarrow \overline{a + b} \in \mathbb{Z}_n$$

 $a+b>n\Longrightarrow a+b$ can be expressed as the sum of a multiple of n, and a remainder r

$$\implies a + b = m * n + r$$
 where $m, r \in \mathbb{Z}$ and $r < n$

$$\Longrightarrow \overline{a+b} = \overline{m*n+r}$$

Since we are performing mod n,

$$\overline{m*n+r} = \overline{r}$$

$$\Longrightarrow \overline{a+b} = \overline{r}$$

$$r < n$$
, so $\overline{a+b} \in \mathbb{Z}_n$

Closure proved.

Extra notes for clarity:

$$\bar{0} = \{\dots -2n, -n, 0, n, 2n, \dots\}$$

$$\bar{1} = \{ \dots -2n+1, -n+1, 1, n+1, 2n+1, \dots \}$$

Associativity

To prove: $\forall \bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_n : (\bar{a} \oplus \bar{b}) \oplus \bar{c} = \bar{a} \oplus (\bar{b} \oplus \bar{c})$

LHS =
$$(\bar{a} \oplus \bar{b}) \oplus \bar{c} = \overline{a+b} \oplus \bar{c} = \overline{a+b+c}$$

RHS =
$$\bar{a} \oplus (\bar{b} \oplus \bar{c}) = \bar{a} \oplus \bar{b} + \bar{c} = \bar{a} + \bar{b} + \bar{c}$$

LHS = RHS. Associativity proved.

Existence of neutral element

To prove: $\exists \bar{e} \in \mathbb{Z}_n \forall \bar{a} \in \mathbb{Z}_n : \bar{a} \oplus \bar{e} = \bar{e} \oplus \bar{a} = \bar{a}$

$$\bar{a} \oplus \bar{e} = \bar{a} = \bar{e} \oplus \bar{a}$$

$$\Longrightarrow \overline{a+e} = \overline{a} = \overline{e+a}$$

This condition is satisfied if e = n * m where $m \in \mathbb{Z}$

Neutral element exists.

Existence of inverse element

To prove: $\forall \overline{a} \in \mathbb{Z}_n \exists \overline{b} \in \mathbb{Z}_n : \overline{a} \oplus \overline{b} = \overline{b} \oplus \overline{a} = \overline{e}$

 $\overline{a} \oplus \overline{b} = \overline{e} \Longrightarrow \overline{a+b} = \overline{n*m} \text{ where } m \in \mathbb{Z}$

$$\implies a = n - b \text{ for } m = 1$$

Therefore, inverse exists.

Hence proved that (\mathbb{Z}_n, \oplus) is a group.

To check if it is Abelian, we also need to check for commutativity.

To prove: $\forall \overline{a}, \overline{b} \in \mathbb{Z}_n : \overline{a} \oplus \overline{b} = \overline{b} \oplus \overline{a}$

$$\overline{a}\oplus \overline{b}=\overline{a+b}$$

 $=\overline{b+a}$ since scalar addition is commutative

 $= \overline{b} \oplus \overline{a}$

Hence proved that (\mathbb{Z}_n, \oplus) is an abelian group.

b. We now define another operation \otimes for all \overline{a} and \overline{b} in \mathbb{Z}_n as

$$\overline{a} \otimes \overline{b} = \overline{a \times b},$$

where $a \times b$ represents the usual multiplication in \mathbb{Z} .

Let n=5. Draw the times table of the elements of $\mathbb{Z}_5\setminus\{\overline{0}\}$ under \otimes , i.e., calculate the products $\overline{a}\otimes\overline{b}$ for all \overline{a} and \overline{b} in $\mathbb{Z}_5\setminus\{\overline{0}\}$ under \otimes . Conclude that $(\mathbb{Z}_5\setminus\{\overline{0}\},\otimes)$ is an abelian group.

Solution.

$$\mathbb{Z}_5 \backslash \{\overline{0}\} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$$

\otimes	1	$\overline{2}$	$\overline{3}$	$\overline{4}$
1	1	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{2}$	$\overline{2}$	$\overline{4}$	1	3
3	3	1	$\overline{4}$	$\overline{2}$
$\overline{4}$	$\overline{4}$	3	$\overline{2}$	1

To prove that $(\mathbb{Z}_5 \setminus \{\overline{0}\}, \otimes)$ is an abelian group, we need to prove 5 conditions:

Closure, Associativity, Existence of neutral element, Existence of inverse element, and Commutativity.

Closure

We can see in the table that for all $\overline{a}, \overline{b} \in \mathbb{Z}_5 \setminus \{\overline{0}\}, \overline{a} \otimes \overline{b} \in \mathbb{Z}_5 \setminus \{\overline{0}\}$

Associativity

Let
$$\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_5 \setminus \{\overline{0}\}\$$

$$\begin{split} &(\overline{a}\otimes\overline{b})\otimes\overline{c}=\overline{(a\times b)}\otimes\overline{c}\\ &=\overline{(a\times b)\times c}\\ &=\overline{a\times (b\times c)} \qquad \text{because scalar multiplication is associative}\\ &=\overline{a}\otimes\overline{b\times c}\\ &=\overline{a}\otimes(\overline{b}\otimes\overline{c}) \end{split}$$

Associativity proved.

Existence of neutral element

We can see in the table, from the first row and the first column, that $\overline{x}\otimes\overline{1}=\overline{1}\otimes\overline{x}=\overline{x}$

Therefore $\overline{1}$ is the neutral element.

Existence of inverse element

We can see in the table that every row and every column in the table contains at least one $\overline{1}$, such that the result of the operation between the elements specific by the i^{th} row and the j^{th} column is $\overline{1}$.

Also, the result of the operation between the elements specific by the j^{th} row and the i^{th} column is also $\overline{1}$. The table is symmetric.

Commutativity

The table is symmetric. So the operation is commutative over $\mathbb{Z}_5\setminus\{0\}$.

Hence proved that $(\mathbb{Z}_5\backslash\{\overline{0}\},\otimes)$ is an abelian group.'

c. Show that $(\mathbb{Z}_8 \setminus \{\overline{0}\}, \otimes)$ is not a group.

Solution.

Times table for $\mathbb{Z}_8 \setminus \{\overline{0}\}$ under \otimes :

\otimes	1	$\overline{2}$	3	$\overline{4}$	$\overline{5}$	<u>6</u>	7
1	1	$\overline{2}$	3	$\overline{4}$	$\overline{5}$	<u>6</u>	7
$\overline{2}$	$\overline{2}$	$\overline{4}$	<u>6</u>	$\overline{0}$	$\overline{2}$	$\overline{4}$	<u>6</u>
3	3	<u>6</u>	1	$\overline{4}$	7	$\overline{2}$	5
$\overline{4}$	$\overline{4}$	$\overline{0}$	4	$\overline{0}$	$\overline{4}$	$\overline{0}$	$\overline{4}$
$\overline{5}$	5	$\overline{2}$	7	$\overline{4}$	1	<u>6</u>	3
$\overline{6}$	<u>6</u>	$\overline{4}$	$\overline{2}$	$\overline{0}$	<u>6</u>	<u>4</u>	$\overline{2}$
7	7	<u>6</u>	5	$\overline{4}$	3	$\overline{2}$	1

Since $\overline{0} \notin \mathbb{Z}_8 \setminus \{\overline{0}\}$, Closure property is violated, and $(\mathbb{Z}_8 \setminus \{\overline{0}\}, \otimes)$ is not a group.

d. We recall that the Bézout theorem states that two integers a and b are relatively prime (i.e., gcd(a,b)=1, if and only if there exist two integers u and v such that au+bv=1. Show that $(\mathbb{Z}_n\setminus\{\overline{0}\},\otimes)$ is a group if and only if $n\in\mathbb{N}\setminus\{0\}$ is prime.

Solution.

To prove: $(\mathbb{Z}_n \setminus \{\overline{0}\}, \otimes)$ is a group $\iff n \in \mathbb{N} \setminus \{0\}$ is prime

So, we need to prove two statements:

$$(\mathbb{Z}_n \setminus \{\overline{0}\}, \otimes)$$
 is a group $\Longrightarrow n \in \mathbb{N} \setminus \{0\}$ is prime

and

$$n\in\mathbb{N}\backslash\{0\}$$
 is prime $\Longrightarrow (\mathbb{Z}_n\backslash\{\overline{0}\},\otimes)$ is a group

To prove that $(\mathbb{Z}_n\backslash\{\overline{0}\},\otimes)$ is a group, we need to prove 4 conditions:

Closure, Associativity, Existence of neutral element and Existence of inverse element

Closure

If n is not prime, then it can be factorized into a and b such that $a \times b = n$. Since a, b < n, $(a \times b) \mod n = 0$ and closure property is violated because $\overline{0} \notin \mathbb{Z}_n \setminus \{\overline{0}\}$.

So, we proved that \neg n is prime $\Longrightarrow \neg$ closure property holds

 \implies (closure property holds \implies n is prime)

Also, if n is prime, then $n > (a \times b) \mod n > 0$, and closure property holds.

 \implies (*n* is prime \implies closure property holds)

So we can say $(n \text{ is prime} \iff \text{closure property holds})$

Associativity

Let $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_n \setminus \{\overline{0}\}$

$$\overline{a}\otimes(\overline{b}\otimes\overline{c})$$

$$= \overline{a} \otimes \overline{(b \times c)}$$

$$= \overline{a \times (b \times c)}$$

$$= \overline{(a \times b) \times c}$$
 Scalar multiplication is associative

$$= \overline{(a \times b)} \otimes \overline{c}$$

$$= (\overline{a} \otimes \overline{b}) \otimes \overline{c}$$

Associativity proved.

Existence of identity element

Let $\overline{a} \in \mathbb{Z}_n \setminus \{\overline{0}\}$, and let \overline{e} be the identity element.

$$\overline{a} \otimes \overline{e} = \overline{a} = \overline{e} \otimes \overline{a}$$

$$\Longrightarrow \overline{a \times e} = \overline{a} = \overline{e \times a}$$

If e = 1, above condition is satisfied.

Identity element is 1.

Existence of inverse element

To prove:
$$\forall \overline{a} \in \mathbb{Z}_n \setminus \{\overline{0}\}, \exists \overline{b} \in \mathbb{Z}_n \setminus \{\overline{0}\} : \overline{a} \otimes \overline{b} = \overline{1}$$

If n is prime, then n and a are coprime.

As per Bézout theorem, this implies that

$$au + nv = 1$$

$$\implies au = 1 - nv$$

$$\implies \overline{au} = \overline{1 - nv} = \overline{1}$$

Case 1: $n > u \ge 1$ No problem in this case.

Case 2: $u \geq n, \ u$ can be represented as $m \times n + r$ where $m \in \mathbb{W}, n > r \geq 0$

In this case, $\overline{au} = \overline{a(mn+r)} = \overline{amn+ar} = \overline{ar}$

 $r\neq 0$ because that would make $\overline{au}=\overline{0}$

Therefore, r is the inverse here, where n > r > 0.

Case 3: u < 0

u can be represented as $r-m\times n$ where $m\in\mathbb{W}, n>r>0$

eg.
$$u = -11$$
, $n = 5$, $-11 = 4 - 5 \times 3$

Therefore, $\overline{au} = \overline{a(r - mn)} = \overline{ar - amn} = \overline{ar}$

Therefore, r is the inverse here.

Therefore, if n is prime, every element has an inverse.

If n is not prime, then n can be factorized into a and b such that $n=a\times b,\, n>a,b>1$

Now, let x be the inverse of a.

$$\implies \overline{a} \otimes \overline{x} = \overline{1}$$

$$\implies \overline{a} \otimes \overline{x} \otimes \overline{b} = \overline{1} \otimes \overline{b}$$

$$\implies \overline{a \times x \times b} = \overline{b}$$

$$\implies \overline{n \times x} = \overline{1}$$

$$\implies \overline{0} = \overline{1}$$

This is a contradiction, therefore, for any factors of n, inverse does not exist.

Therefore, if n is not prime, every element does not have an inverse, implying that if inverse exists for every element, n is prime.

We have proved the following : n is prime \iff inverse exists for every element.

Commutativity

 $\forall \overline{a}, \overline{b} \in \mathbb{Z}_n \backslash \{\overline{0}\}$

$$\overline{a}\otimes\overline{b}=\overline{a\times b}$$

$$=\overline{b\times a} \qquad \text{scalar multiplication is commutative}$$

Commutativity proved.

 $= \overline{b} \otimes \overline{a}$

So, for the properties of closure and existence of inverse, we have proved that n is prime \iff closure and existence of inverse.

Other properties are not impacted by n being prime. So, we have

proved that $(\mathbb{Z}_n \setminus \{\overline{0}\}, \otimes)$ is a group if and only if $n \in \mathbb{N} \setminus \{0\}$ is prime.