

Ejemplo

Suponga x_1, \dots, x_n son variables aleatorias i.i.d. Bernoulli(θ) y sea $y = \sum x_i$. Considere la transformación $\tau = \frac{\theta}{(1-\theta)}$, $\tau = \text{odds ratio}$.

- a) Determine la distribución de probabilidad de y. Escribala en función de τ .
- b) Encuentre la distribución a priori de Jeffreys para τ .
- c) Muestre que la distribución a priori de Jeffreys para θ es invariante con respecto a la transformación $\tau = \frac{\theta}{1-\theta}$.

Definición

Sea $p(x|\theta)$ la densidad de x dado θ . La información de Fisher es definida como:

$$\mathbf{I}(\theta) = -E \left[\frac{\partial^2 \log(p(x|\theta))}{\partial \theta^2} \right]$$

Si $\theta = (\theta_1, \cdots, \theta_p)$, entonces:

$$\mathbf{I}(\boldsymbol{\theta}) = -E\left[\frac{\left[\partial^2(\log(p(x|\boldsymbol{\theta})))\right]}{\partial\theta_i\partial\theta_j}\right]_{p\times p},$$

en este caso $I(\theta)$ es una matriz de dimensión pxp.

$$p(\theta) \propto |\mathbf{I}(\theta)|^{1/2}$$

$$(\mathbf{I}(\theta))^{1/2} = (\mathbf{I}(\psi(\theta)))^{1/2} \left| \frac{\partial \psi \theta}{\partial \theta} \right|$$

$$p(\theta) = p(\psi(\theta)) \left| \frac{\partial \psi(\theta)}{\partial \theta} \right|$$

0)
$$1 \sim Binomiol(n, 0)$$
 $1 \sim Binomiol(n, 0)$ $1 \sim$

b) In P(312) - In (2) + 3 In C 3 1 n 0 (3 (C) - 3 - 5 - 1 + t -8 1 20 1 m 2 d 3 - $-\frac{n\theta}{\tau^{\delta}} - \frac{n}{(1+t)^{2}} - \frac{n}{(1+\tau)^{2}}$ $\frac{1}{(1+v)v} - \frac{1}{(1+v)^2} - \frac{1}{(1+v)^2} - \frac{1}{(1+v)^2}$ $\frac{1}{(1+v)v} - \frac{1}{(1+v)^2} - \frac{1}{(1+v)^2}$

$$\frac{79}{5} = \frac{1}{12} = \frac{1}{12}$$

$$\frac{3^{2}}{80^{2}} \log Q(3|0) = \frac{3}{9^{2}} \frac{(n-3)}{(1-0)^{2}}$$

$$= \frac{3^{2}}{80^{2}} \log Q(3|0) = \frac{3}{9^{2}} \frac{(n-3)}{(1-0)^{2}}$$

$$= \frac{6}{9^{2}} + \frac{6}{(1-0)^{2}} = \frac{6}{(1-0)^{2}}$$

$$= \frac{6}{9^{2}} + \frac{6}{(1-0)^{2}} = \frac{6}{(1-0)}$$

$$= \frac{6}{9} + \frac{6}{(1-0)} = \frac{6}{(1-0)}$$

$$= \frac{6}{9} + \frac{6}{(1-0)} = \frac{6}{(1-0)}$$

$$= \frac{6}{9} + \frac{6}{(1-0)} = \frac{6}{(1-0)}$$

$$\frac{d \mathcal{C}}{d \theta} = \frac{d}{d \theta} \left(\frac{\theta}{1 - \theta} \right)$$

$$= \frac{(1 - \theta)}{(1 - \theta)^2} = \frac{(1 - \theta)^2}{(1 - \theta)^2}$$

$$= \frac{(1 - \theta)}{(1 - \theta)^2} = \frac{(1 - \theta)^2}{(1 - \theta)^2}$$

$$= \frac{d}{(1 - \theta)^2} = \frac{(1 - \theta)^2}{(1 - \theta)^2}$$

$$= \frac{d}{(1 - \theta)^2} = \frac{d}{(1 - \theta)^2}$$

Entoncez 6 (6) / 96/ $-\frac{(1-\theta)^{3/2}}{(1-\theta)^{2}} \times \frac{(1-\theta)^{2}}{(1-\theta)^{2}}$