LEC13 Dijkstra's Algorithm notes

4.1 https://github.com/GUMI-21/MIT6.006_note

Review

- Single-Source Shortest Paths on weighted graphs SSSP
- Previously
 O(|V| + |E|) for small positive weights or DAGs BFS
 Bellman-Ford, O(|E||V|)-time for general graphs with detecting negative wegiths
- Today
 faster for gengeral graphs with non-negative edge weights.

$$e \in E, w(e) >= 0$$

Restrictions		SSSP Algorithm			
Graph	Weights	Name	Running Time $O(\cdot)$	Lecture	
General	Unweighted	BFS	V + E	L09	
DAG	Any	DAG Relaxation	V + E	L11	
General	Any	Bellman-Ford	$ V \cdot E $	L12	
General	Non-negative	Dijkstra	$ V \log V + E $	L13 (Today!)	

Non-negative Edge Weights

• idea: Generalize BFS approach to weighted graphs

Observation1

if weights >= 0, then distance increase along Shortest Paths.

a examle: if s -> u -> v is the SP => $\delta(s,u) <= \delta(s,v)$

Observation2

we can solve SSSP if given order of vertices in increasing distance.

The idea here is if I can construct a DAG in linear time, or means construct a topological order.

-if I konw the ordering of the increasing distance of verteices, then I can use DAG relaxation.

Dijkstra's Algorihm

Ideas

idea1

Relax edges from vertices in increasing distance from source.

idea2

Find next vertex efficiently using a Datastruct Changable Priority Queue

- -Q.build(X)
- -Q.delete min()
- -Q.decrease_key(id, k)

Priority Queue Q' cross-link with Dict D

Algorithm

- -Set d(s,v) = infinity for v in V, set d(s,s) = 0
- -Build CPQ Q with an item(v,d(s,v)) for each v in V

While Q not empty, delete (u,d(s,u)). from Q that has minimum estimate distance

For v in Adj+(u):

if d(s,v) > d(s,u) + w(u,v):

Relax edge(u,v): set d(s,v) = d(s,u) + w(u,v)

Decrease key of vertex v in Q to new d(s,v)

A examle

- 1. Q(S) = 0 (estimate distance) and others are infinity, so S is minimun, then relax edge outgoing from S => a= 10,c = 3, delete S in Q.
- 2. Q(c) = 3 is minimum, then relax outgoing edges from c and delete c in Q.
- 3. then recure this function

answeri of SSSP: 0,7,9,3,5

Correctness

• Claim: $d(s,v) = \delta(s,v)$ for all $v \in V$ at end

Proof:

-if ever reaxation sets $d(s,v) = \delta(s,v)$, still true at end. beacuse relaxation only decreases d(s,v), but safe: length of some path (*triangle inequality*)

-Suffices to show that $d(s,v) = \delta(s,v)$ When v removed from Q

· Proof by induction on first k vertices removed from Q

Base case:
$$k = 1$$
, $d(s,s) = 0$

Inductive Step: Assume true for k < k'

v' be k'th vertex.

set x & y in the shortest path from s to v'

$$\mathsf{d}(\mathsf{s},\mathsf{y}) \leq \delta(s,x) + w(x,y) = \delta(s,y) < \delta(s,v') < \delta(s,v') < \delta(s,y)$$

because we are popuping minimum from priority queue. => v' = y d=\delta

Running time

build once Q

delete minimum in Q |V| times

for every possible edge, we need to relax and decrese the key in our queue.

 assume build B time, delete M time, decrease D time then take O(B+|V|M + |E|D) time

Priority Queue Q'	Q Operations $O(\cdot)$			Dijkstra $O(\cdot)$
on n items	build(X)	delete_min()	decrease_key(id, k)	n = V = O(E)
Array	n	n	1	$\frac{ V ^2}{ E \log V }$
Binary Heap	n	$\log n_{(a)}$	$\log n$	$\frac{ E \log V }{ E + V \log V }$
Fibonacci Heap	n	$\log n_{(a)}$	$1_{(a)}$	

Fibonacci Heap can look at chapter 19 in CLRS O(|E| + |V|log|V|)

choose which datastruct to use to build priority Queue need to check the graph is sparse or dense.

sparse: V colse to E => use Binary Heap => O(|V|kig|V|)

dense: V less than E => use Array => O(|V|log|V| + |E|log|V|)