

# On constraining the spin of the MBH the GC via star orbits: the effects of stellar perturbations



## Zhang Fupeng, Sun Yat-sen University, China

Collaborator: Lu, Youjun (NAOC), Yu, Qingjuan (PKU), Lorenzo Iorio (MIUR)

2016. 2. 11, Aspen Center for Physics

#### Strong field GR test and the GC S-stars

- Clusters of young stars in the GC
- Provide a unique environment of testing GC by stellar orbits





## **Our previous works**

- The constraints of the spin parameters by observing the trajectories and the redshifts of the S-stars by future facilities (Zhang, Lu, & Yu 2015; Yu, Zhang, & Lu, submitted)
  - Full GR treatment
  - MCMC fitting
    - Magnitude and direction of spin, 6 orbital elements, MBH and R<sub>GC</sub>



- We can constraint the spin by observing the orbits of S2 or other inner S-stars
- But stellar perturbations are not considered



#### **Perturbations**

- Stars: Early and late type stars (Bartko, et, al. 2010)
- Stellar remnants
  - Stellar mass black holes: Mass segregation (Freitag, et, al. 2006)
  - Neutron stars, pulsars, white dwarfs: (Morris 1993)
- Intermediate mass black hole(s): 100-1000 solar mass, distance>200
   AU (Yu & Tremaine 2003, Gualandris & Merritt 2009; etc)
- Dark matter
- Distinguish
  - Gravitational perturbations from background sources
  - Spin-induced perturbations
  - Different predictions from other gravity theories (e.g., f(R) theory)

#### **Previous studies**

- Post-NW approximation (Merritt et al. 2010)
  - Frame-dragging obscured beyond 0.5mpc

$$\begin{aligned} \mathbf{a}_{J,1} &= -\frac{3G^2M_{\bullet}}{c^3} \sum_{j \neq 1} \frac{m_j}{r_{1j}^3} \bigg\{ \left[ \mathbf{v}_{1j} - \left( \mathbf{n}_{1j} \cdot \mathbf{v}_{1j} \right) \mathbf{n}_{1j} \right] \times \boldsymbol{\chi} - 2\mathbf{n}_{1j} \left( \mathbf{n}_{1j} \times \mathbf{v}_{1j} \right) \cdot \boldsymbol{\chi} \bigg\}, \\ \mathbf{a}_{J,j} &= \frac{2G^2M_{\bullet}^2}{c^3r_{1j}^3} \bigg\{ \left[ 2\mathbf{v}_{1j} - 3\left( \mathbf{n}_{1j} \cdot \mathbf{v}_{1j} \right) \mathbf{n}_{1j} \right] \times \boldsymbol{\chi} - 3\mathbf{n}_{1j} \left( \mathbf{n}_{1j} \times \mathbf{v}_{1j} \right) \cdot \boldsymbol{\chi} \bigg\}, \\ \dot{\boldsymbol{\chi}} &= \frac{G}{2c^2} \sum_{j \neq i} \frac{m_j}{r_{ij}^2} \left[ \mathbf{n}_{1j} \times (3\mathbf{v}_1 - 4\mathbf{v}_j) \right] \times \boldsymbol{\chi}, \\ r_{ij} &= |\mathbf{x}_i - \mathbf{x}_j|, \quad \mathbf{x}_{ij} \equiv \mathbf{x}_i - \mathbf{x}_j, \quad \mathbf{n}_{ij} = \mathbf{x}_{ij}/r_{ij}, \quad \mathbf{v}_{ij} \equiv \mathbf{v}_i - \mathbf{v}_j. \end{aligned}$$

- Hamiltonian perturbation (Angelil & Saha 2014)
  - Frame-Wavelet decomposition

$$H_{\text{stellar}} = \sum_{j} \frac{m_{j}}{M} \left( \frac{\boldsymbol{x} \cdot \boldsymbol{x}_{j}}{|\boldsymbol{x}_{j}|^{3}} - \frac{1}{|\boldsymbol{x} - \boldsymbol{x}_{j}|} \right),$$

Orbital perturbation theories
 Sadeghian & Will 2011; Iorio 2011; etc



Angelil & Saha 2014

# Motion of the perturbed target star

 Hamiltonian contributed by perturbation (Angelil & Saha 2014, Wisdom & Holman 1991)

target star

$$H_{\rm p} = \sum_{j}^{N_p} m_{{\rm p},j} \left( \frac{r}{r_j^2} \cos \zeta - \frac{1}{d} \right)$$



- Simplification
  - The multure interactions between perturber are ignored
  - The target star is a test particle (mass=0)
- Motions of the perturbers follows the unperturbed motion equation

$$H=H_0+H_p$$

# Light Tracing technique



$$\lambda = -\alpha \sin i,$$

$$q^2 = \beta^2 + (\alpha^2 - a^2)\cos^2 i.$$



Cunningham & Bardeen 1972



$$lpha r_{
m g}/R_{
m GC}$$
 R.A.  $eta r_{
m g}/R_{
m GC}$ . Dec

$$Z = \frac{\boldsymbol{p}_{\text{hit}} \cdot \boldsymbol{u}_{\star}}{\boldsymbol{p}_{\text{o}} \cdot \boldsymbol{u}_{\text{o}}} - 1 = -\frac{\boldsymbol{p}_{\text{hit}} \cdot \boldsymbol{u}_{\star}}{E_{\text{o}}} - 1.$$

#### Perturbations on the observational quantities

Positions of the star in the sky at time t

$$\delta R.A.$$

$$\delta \mathrm{Dec}$$

$$\delta R.A.$$
  $\delta Dec$   $\delta R(t) = \sqrt{\delta R.A.^2 + \delta Dec^2}$ 

Redshift at time t

$$\delta Z(t)$$

Root mean square value (in three orbits)

$$\delta R_{\rm rms} = \sqrt{\frac{1}{T_{\rm ob}} \int^{T_{\rm ob}} \delta R(t)^2 dt}$$

$$\delta R_{\rm rms} = \sqrt{\frac{1}{T_{\rm ob}}} \int^{T_{\rm ob}} \delta R(t)^2 dt$$
  $\delta Z_{\rm rms} = \sqrt{\frac{1}{T_{\rm ob}}} \int_0^{T_{\rm ob}} \delta Z(t)^2 dt,$ 

Spin-induced effects:

unperturbed target star, *a=0.99* 



unperturbed target star, **a=0.0** 

**Stellar perturbations:** 

perturbed target star, a=0.0



unperturbed target star, a=0.0

Total perturbations:

perturbed target star, a=0.99



unperturbed target star, a=0.0

# Results: Single Perturber

#### S2/S0-2 and S0-102

- S2/S0-2
  - Orbital period of 15 years
  - Pericenter distance of 100AU

- S0-102
  - Orbital period of 11 years
  - e~0.68

#### How S0-102 affects the orbital motion of S2?



Gillessen et al. 2013

## S2 perturbed by S0-102



## S2 perturbed by S0-102



## Orbits of S2 perturbed by S0-102

$$\delta R(t) = \sqrt{\delta R.A.^2 + \delta Dec^2}$$



#### Orbits of S2 perturbed by S0-102



#### Orbits of S2 perturbed by S0-102

Variations of the orbital elements of S2



The orbital period of S2 is perturbed: ldt₀l~ 0.3 day after 45 years —>
 ~40 uas difference in sky position (> spin :10 uas)

## Inner S-stars perturbed by a single perturber



The stellar perturbations are dominated by perturbers inside the target star

# Results: Perturbations due to a star cluster

#### Star clusters

- ullet Density profile  $n(r) \propto r^{-\gamma}$ 
  - Bahcall-Wolf Cusp (Bahcall & Wolf 1976)  $\gamma = 1.75$
  - Core-like profile (Do et al. 2009)  $\gamma=0.5$
- Initial conditions (Merritt et al. 2011)

$$f(a_{\text{orbp}}) \propto a_{\text{orbp}}^{2-\gamma}$$
  $f(e_{\text{orbp}}^2) \propto (1 - e_{\text{orbp}}^2)^{-\beta}$   $\beta \leq \gamma - 1/2$ 

| name | $M_{10}{}^{\mathrm{a}}~(M_{\odot})$ | $M_1{}^{ m b}~(M_\odot)$ | $\gamma$ | β    | $m~(M_{\odot})$ | $N_p{}^{ m c}$ | $N_{ m cluster}$ |
|------|-------------------------------------|--------------------------|----------|------|-----------------|----------------|------------------|
| M1   | 1780                                | 100                      | 1.75     | 0.5  | 10              | 178            | 80               |
| M2   | 1780                                | 100                      | 1.75     | 0.5  | 1               | 1780           | 8                |
| M3   | 530                                 | 30                       | 1.75     | 0.5  | 10              | 53             | 280              |
| M4   | 530                                 | 30                       | 1.75     | 0.5  | 1               | 530            | 28               |
| M5   | 1581                                | 5                        | 0.5      | -0.5 | 1               | 1581           | 10               |
| M6   | 316                                 | 1                        | 0.5      | -0.5 | 1               | 316            | 48               |

<sup>&</sup>lt;sup>a</sup> The total mass of the stars with  $a_{\rm orb} < 10 {\rm mpc} (\sim 2062 {\rm ~AU~or} \sim 0.26 {\rm ~mas})$ .

<sup>&</sup>lt;sup>b</sup> The total mass of the stars with  $a_{\rm orb} < 1 \rm mpc$  ( $\sim 206 \rm \ AU \ or \sim 0.026 \ mas$ ).

<sup>&</sup>lt;sup>c</sup> The total number of the stars with  $a_{\rm orb} < 10 \rm mpc$ .

#### Stellar perturbation due to a star cluster









Position difference in sky position

Target star a<sub>orb</sub>=126AU





# Position difference in sky plane

Target star a<sub>orb</sub>=126AU





#### **Redshift difference**

Target star a<sub>orb</sub>=126AU

## Summary and discussion

- The spin-induced effects of S2/S0-2 are very likely obscured by the stellar perturbations from the S0-102.
- The stellar perturbations are dominated by perturbers inside the target star
- The stellar perturbations peaks around pericenter.
- Perturbed orbital period of stars
- The spin-induced effects dominates the signal for target stars inside 100-200AU if a clusters of stars exists around the MBH. But in principle the stellar perturbations are separable

# Thank you!~~