Authentication: Part 5

Gaurav S. Kasbekar

Dept. of Electrical Engineering

IIT Bombay

NPTEL

References

- J. Kurose, K. Ross, "Computer Networking: A Top Down Approach", Sixth Edition, Pearson Education, 2013
- C. Kaufman, R. Perlman, M. Speciner, "Network Security: Private Communication in a Public World", Pearson Education, 2nd edition, 2002

NPTEL

Authentication Using a Key Distribution Center (KDC)

NPTEL

Establishing Shared Symmetric Keys

- Suppose two network nodes, Alice and Bob, want to securely communicate over a network
- Recall: they need to first agree on a shared secret key K_{AB}
- One way: public key cryptography
- However, this requires public key infrastructure
- Now, assume that public key infrastructure is not available
- Want a mechanism using which any two nodes in a network can agree on a shared secret key
- One way is to use a trusted node called Key Distribution Center (KDC)

Key Distribution Center (KDC)

- Whenever a new node is installed in the network:
 - ☐ that node and the KDC are configured (e.g., manually, via post) with a shared secret key
- If node α wants to talk to node β :
 - $\square \alpha$ connects with KDC and asks for a key with which to talk to β
 - \square KDC authenticates α , chooses a random number, say $R_{\alpha\beta}$, and sends $R_{\alpha\beta}$ after encrypting it to α
 - \square KDC also encrypts and sends $R_{\alpha\beta}$ to β , with the instruction that it is to be used for communicating with α
 - \circ Alternatively, KDC encrypts $R_{\alpha\beta}$ and gives it to α for forwarding to β
 - \square Now α and β have a shared secret key $R_{\alpha\beta}$; they mutually authenticate and then start exchanging data
- Above is an outline with some details omitted; we will later discuss, in detail, protocols for KDC-mediated authentication

Advantages and Disadvantages of KDC

•	Advantages:
	☐ When a new user is being installed into network, or a user's key is compromised and needs to be changed, there is a single location (KD that needs to be configured
	 Alternative: install the user's information at every server to which the user might need access (difficult)
•	Disadvantages:
	If KDC is compromised, all network resources are vulnerable
	☐ Single point of failure: if KDC fails (e.g., crashes), no new communication can be initiated, although keys previously distributed can continue to be used
	KDC can be a performance bottleneck, since all network nodes frequently need to communicate with it
•	Alternative that overcomes second and third of above disadvantages:
	have multiple KDCs, which share same database of keys
•	Disadvantages:
	☐ all copies of KDC need to be protected
	additional cost and complexity; need for replication protocols

Mediated Authentication Using KDC

- Consider a network in which each user has a secret shared key with a KDC
- When Alice wants to communicate with Bob, protocol shown in fig. can be used
- Shortcoming of this protocol:
 - \Box increases load on KDC, since it needs to initiate connection with Bob and share K_{AB} with him
- Hence, instead, in message from KDC to Alice, a "ticket" is included, which Alice needs to send to Bob

Mediated Authentication Using KDC (contd.)

- Fig shows revised protocol
- After protocol shown in fig., mutual authentication between Alice and Bob needs to be performed
- Can be performed:
 - using one of the protocols we discussed for mutual authentication
- However, this protocol has some vulnerabilities, e.g.:
 - □ Suppose an intruder, Trudy, stole Alice's key and also recorded msg. 2 when Alice contacted KDC to talk to Bob; later, Alice changed her key; but Trudy can still use the old key and recorded msg. 2 to impersonate herself as Alice to Bob
- We will discuss improved protocols

