NMRLipids VI: Polarizable Force Fields

Batuhan Kav,* O. H. Samuli Ollila, and Markus S. Miettinen

Forschungszentrum Juelich, Germany

E-mail: b.kav@fz-juelich.de

Abstract

For the initial project description, please refer to

https://github.com/batukav/NMR lipids VI polarizable FFs/blob/master/Manuscript/manuscript.pdf

Introduction

Methods

This project is performed using the "NMRLipids Databank" format and all related files, except the trajectories, are available under

"https://github.com/batukav/NMRlipidsVIpolarizableFFs/" Order parameters are calculated using the script "OrderParameters.py" under

"https://github.com/batukav/NMR lipids VI polarizable FFs/tree/master/scripts".

Dihedral distributions are calculated using the script "calcDihedral.py" under

 $"https://github.com/batukav/NMR lipids VI polarizable FFs/tree/master/scripts"\ .$

Simulation Details

1

${\rm Lipid/counter-ions}$	force field	$\mathrm{Ion}\;(\mathrm{M}) \mathrm{N}_l$	Z'		$N_w N_{ion}$	T(K)	\mathbf{t}_{sim} (ns)	$T(K)$ t_{sim} (ns) $t_{analysis}$ (ns)	files
POPC	CHARMM-Drude	NA	NA	6400	0	303	500	400	1
POPE	CHARMM-Drude	NA	NA	6400	0	303	350	300	2
	CHARMM-Drude	0.350	144	6400	41	303	500	400	3
	CHARMM-Drude	0.450	144	6400	51	303	200	400	4
POPC:INaCI	CHARMM-Drude	0.650	144	6400	22	303	200	400	ro
	${\rm CHARMM-Drude}$	1.0	144	6400	115	303	200	400	9
	CHARMM-Drude	0.350	144	6400	41	303	200	400	7
$\mathrm{POPC:CaCl}_2$	CHARMM-Drude	0.450	144	6400	52	303	200	400	∞
	CHARMM-Drude	0.650	144	6400	92	303	200	400	6
	CHARMM-Drude	1.0	144	6400	114	303	200	400	10

Results

Figure 1: The head group and glycerol backbone order parameters S_{CH} for the POPC simulations. The experimental values on the dashed lines mean that the different isomers 1/2 experimentally could not be resolved.

Figure 2: The head group and glycerol backbone order parameters S_{CH} for the POPC simulations without salt.

Figure 3: The change in the head group order parameters with respect to the simulations without salt as a function of the salt concentration.

Figure 4: The head group and glycerol backbone order parameters S_{CH} for the POPE simulations.

Figure 5: The distributions of the torsion angles for the head group atoms

Figure 6: The distributions of the torsion angles for the head group atoms without the presence of salt.

Figure 7: R1 times calculated for the POPC system. Experimental values are obtained from Ref. 11

Acknowledgement

Supporting Information Available

References

- (1) Kav, B. Pure POPC membrane simulations with the CHARMM- Drude force field (OpenMM 7.5.0). 2021; https://doi.org/10.5281/zenodo.4604630.
- (2) Kav, B. Pure POPE membrane simulations with the CHARMM- Drude force field (OpenMM 7.5.0). 2021; https://doi.org/10.5281/zenodo.4665773.
- (3) Kav, B. Pure POPC Membrane with 350mM NaCl simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4683386.
- (4) Kav, B. Pure POPC Membrane with 450mM NaCl simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4683398.
- (5) Kav, B. Pure POPC Membrane with 650mM NaCl simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4683405.
- (6) Kav, B. Pure POPC Membrane with 1000mM NaCl simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4683411.
- (7) Kav, B. Pure POPC Membrane with 350mM CaCl2 simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4683393.
- (8) Kav, B. Pure POPC Membrane with 450mM CaCl2 simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4683391.
- (9) Kav, B. Pure POPC Membrane with 650mM CaCl2 simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4683394.

- (10) Kav, B. Pure POPC membrane simulations with 1000 mM CaCl2 with the CHARMM-Drude force field (OpenMM). 2021; https://doi.org/10.5281/zenodo.4738966.
- (11) Antila, H. S.; Wurl, A.; Ollila, O.; Miettinen, M. S.; Ferreira, T. M. Quasi-uncoupled rotational diffusion of phospholipid headgroups from the main molecular frame. arXiv preprint arXiv:2009.06774 2020,