JC09 Rec'd PCT/PTO 2 6 SEP 2001

FORM PTO-1390 (REV. 11-2000) U S DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ATTORNEY'S DOCKET NUMBER TRANSMITTAL LETTER TO THE UNITED STATES Mo-6595/LeA 33,628 DESIGNATED/ELECTED OFFICE (DO/EO/US) (If known, see 37 CFR 1 5 CONCERNING A FILING UNDER 35 U.S.C. 371 INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE PCT/EP00/02292 15 March 2000 (15.03.00) 27 March 1999 (27.03.99) TITLE OF INVENTION SUBSTITUTED BENZOYLPYRAZOLES AS HERBICIDES APPLICANT(S) FOR DO/EO/US MULLER, Klaus-Helmut, et al. Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information: 1. X This is a FIRST submission of items concerning a filing under 35 U.S.C. 371. 2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include items (5), (6), (9) and (21) indicated below. 4. X The US has been elected by the expiration of 19 months from the priority date (Article 31). 5. X A copy of the International Application as filed (35 U.S.C. 371(c)(2)) is attached hereto (required only if not communicated by the International Bureau). b. has been communicated by the International Bureau. is not required, as the application was filed in the United States Receiving Office (RO/US). c. 6 X An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)). X is attached hereto. b. has been previously submitted under 35 U.S.C. 154(d)(4). Amendments to the claims of the International Aplication under PCT Article 19 (35 U.S.C. 371(c)(3)) are attached hereto (required only if not communicated by the International Bureau). have been communicated by the International Bureau. b. have not been made; however, the time limit for making such amendments has NOT expired. have not been made and will not be made. An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371 (c)(3)). An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). An English lanugage translation of the annexes of the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). Items 11 to 20 below concern document(s) or information included: An Information Disclosure Statement under 37 CFR 1.97 and 1.98. 12. X An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. 13. X A FIRST preliminary amendment. 14. A SECOND or SUBSEQUENT preliminary amendment. 15. A substitute specification. 16. A change of power of attorney and/or address letter. A computer-readable form of the sequence listing in accordance with PCT Rule 13ter.2 and 35 U.S.C. 1.821 - 1.825. 17. A second copy of the published international application under 35 U.S.C. 154(d)(4). A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4). Other items or information: Form PTO 1449 w/references

JC09 Rec'd PCT/PTO 2 6 SEP 2001

To Be Assigned	**************************************	INTERNATIONAL APPLICATION NO CT/EP00/02292		Mo-6595/Le	
	ving fees are submitte			CALCULATIONS F	TO USE ONLY
	FEE (37 CFR 1.492				
nor international se	earch fee (37 CFR 1.	ination fee (37 CFR 1.482) 445(a (2)) paid to USPTO pared by the EPO or JPO	\$1000.00		
International prelin	ninary examination f	tee (37 CFR 1.482) not paid to t prepared by the EPO or JPC	5 \$860.00		
International prelin	ninary examination f	ee (37 CFR 1.482) not paid to 445(a)(2)) paid to USPTO	o USPTO		
International prelin	ninary examination f	ee (37 CFR 1.482) paid to US	SPTO		
International prelin	ninary examination f	of PCT Article 33(1)-(4) ee (37 CFR 1.482) paid to US			
	*	T Article 33(1)-(4) ······ TE BASIC FEE AMO		\$ 860.00	
Surcharge of \$130.00 months from the earl	for furnishing the cliest claimed priority	oath or declaration later than date (37 CFR 1.492(e)).	20 30	\$ 0.00	
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	\$	
Total claims	10 -20 =	0	x \$18.00	\$ 0.00	
Independent claims	1 -3 =	0	x \$80.00	\$ 0.00	
MULTIPLE DEPENI	DENT CLAIM(S) (i	f applicable)	+ \$270.00	\$ 270.00	
internal for the state of the s	TOTA	L OF ABOVE CALCU	JLATIONS =	\$ 1,130.00	
Applicant claim are reduced by	s small entity status. 1/2.	\$ 0.00			
SUBTOTAL =			\$ 1,130.00		
Processing fee of \$1. months from the ear	30.00 for furnishing the liest claimed priority	\$ 0.00			
		\$ 1,130,00			
Fee for recording the accompanied by an a	e enclosed assignmer appropriate cover she	at (37 CFR 1.21(h)). The asset (37 CFR 3.28, 3.31). \$40	ignment must be .00 per property +	\$ 40.00	
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		TOTAL FEES F	ENCLOSED =	\$ 1,170.00	
The state of the s				Amount to be refunded:	\$
e e e e e e e e e e e e e e e e e e e	· · · · · · · · · · · · · · · · · · ·			charged:	\$
a. A check in	the amount of \$	to cover t	he above fees is enclose	sed.	
b. X Please char A duplicate	ge my Deposit According to this sheet is	ount No. <u>13-3848</u> in enclosed.	n the amount of \$ 1.1	70.00 to cover the	above fees.
		thorized to charge any addition to No. 13-3848 . A dupli			ıy
d. Fees are to	be charged to a cred	it card. WARNING: Inform	ation on this form may	y become public. Cree	lit card
intormatio	n snould not be incl	uded on this form. Provide	credit card information	and authorization on	PTO-2038.
NOTE: Where an 1.137 (a) or (b)) m	appropriate time linus linus to the filed and grant appropriate time linus to the filed and grant appropriate time linus to the filed and grant appropriate time linus time linu	nit under 37 CFR 1.494 or inted to restore the applicat	1.495 has not been m	et, a petition to reviv	e (37 CFR
SEND ALL CORRESPO	_			A / Harris	4
sign					
			Raymon NAME	d J. Harmuth	
			33,896		
				ATION NUMBER	

09/937631

JC09 Rec'd PCT/PTO 2 6 SEP 2001 PATENT APPLICATION Mo6595 LeA 33,628

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION OF)
KLAUS-HELMUT MÜLLER ET AL)) PCT EP 00/02292
SERIAL NUMBER: To be assigned)
FILED: Herewith)
TITLE: SUBSTITUTED BENZOYLPYRAZOLES) 5)

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington, D.C. 20231 Sir:

Applicants respectfully request consideration of the following amendments prior to examination of the above-referenced patent application.

	ng label number <u>ET146893815US</u> September 26, 2331
1.10 on the date in	this paper or fee is being deposited with the United State- press Mail Post Office to Addressee" service under 37 CFF icated above and is addressed to the Assistant Commissione emarks, Washington, D.C. 20231
D	onna J. Veatch
10	(Name of person mailing paper or fee)

In the Patent Claims

1. (Once Amended) A substituted benzoylpyrazole of the general formula (I),

$$\begin{array}{c|c}
R^{2} & O \\
N & A \\
R^{1} & R^{3}
\end{array}$$
(I)

in which

n represents the numbers 0, 1, 2 or 3,

A represents a single bond or represents alkanediyl (alkylene).

R¹ represents in each case optionally substituted alkyl, alkenyl, alkinyl or cycloalkyl,

R2 represents hydrogen, cyano, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkoxycarbonyl or cycloalkyl,

R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino or dialkylaminosulfonyl,

R4 represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino or dialkylaminosulfonyl,

Y represents hydrogen or represents in each case optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, alkylamino-carbonyl,

Mo6595

- dialkylaminocarbonyl, alkenyl, alkenylcarbonyl, alkenylsulfonyl, alkinyl, alkinylcarbonyl, cycloalkyl, cycloalkylcarbonyl, cycloalkylalkyl, phenylcarbonyl, phenylsulfonyl, phenylalkyl or phenylcarbonylalkyl, and
- represents an optionally substituted 4- to 12-membered saturated or unsaturated monocyclic or bicyclic heterocyclic grouping which contains 1 to 4 heteroatoms (up to 4 nitrogen atoms and optionally alternatively or additionally one oxygen atom or one sulfur atom, or an SO grouping or an SO₂ grouping) and which additionally contains one to three oxo groups (C=O) and/or thioxo groups (C=S) as component of the heterocycle,

including tautomeric forms and salts thereof.

- 2. (Once Amended) The compound according to Claim 1, wherein
 - n represents the numbers 0, 1 or 2,
 - A represents a single bond or represents alkanediyl (alkylene) having 1 to 4 carbon atoms,
 - R1 represents optionally cyano-, carboxyl-, carbamoyl-, halogen-, C_1 - C_4 -alkoxy-, C_1 - C_4 -alkyl-carbonyl-, C_1 - C_4 -alkoxy-carbonyl-, C_1 - C_4 -alkylsulfinyl- or C_1 - C_4 -alkylsulfonyl-substituted alkyl having 1 to 6 carbon atoms, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C_1 - C_4 -alkoxy-carbonyl-substituted alkenyl or alkinyl having in each case 2 to 6 carbon atoms, or represents optionally cyano-, carboxyl-, carbamoyl-, halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-carbonyl-substituted cycloalkyl having 3 to 6 carbon atoms,
 - R2 represents hydrogen, cyano, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally cyano-, halogen- or C₁-C₄-alkoxy-

Mo6595

substituted alkyl, alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms, represents optionally halogen-substituted alkylthio having 1 to 6 carbon atoms, or represents optionally cyano-, halogenor C_1 - C_4 -alkyl-substituted cycloalkyl having 3 to 6 carbon atoms,

represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally halogen, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulfonyl having in each case up to 4 carbon atoms in the alkyl groups,

represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulfonyl having in each case up to 4 carbon atoms in the alkyl groups,

represents hydrogen, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C₁-C₄-alkoxycarbonyl-substituted alkyl, alkylcarbonyl or alkoxycarbonyl having in each case up to 6 carbon atoms, represents in each case optionally halogen-substituted alkylsulfonyl, alkylaminocarbonyl or dialkylaminocarbonyl having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C₁-C₄-alkoxy-carbonyl-substituted alkenyl, alkenylcarbonyl, alkinyl or alkinyl-

carbonyl having in each case 2 to 6 carbon atoms, represents optionally halogen-substituted alkenylsulfonyl having up to 6 carbon atoms represents in each case optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted cycloalkyl, cycloalkylcarbonyl or cycloalkylalkyl having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally 1 to 3 carbon atoms in the alkyl moiety, or represents in each case optionally nitro-, cyano-, carboxyl-, carbamoyl-, halogen-, C_1 - C_4 -alkyl-, C_1 - C_4 -halogenoalkyl-, C_1 - C_4 -alkoxy- or C_1 - C_4 -halogenoalkoxy-substituted phenylcarbonyl, phenylsulfonyl, phenyl- C_1 - C_4 -alkyl or phenylcarbonyl- C_1 - C_4 -alkyl, and

Z represents one of the heterocyclic groupings below

in which in each case the broken bond is a single bond or a double bond,

- Q represents oxygen or sulfur,
- represents hydrogen, hydroxyl, mercapto, cyano, halogen, represents in each case optionally cyano-, halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl, alkylcarbonyl, alkoxy, alkoxy-carbonyl, alkylthio, alkylsulfinyl or alkylsulfonyl having in each

case up to 6 carbon atoms in the alkyl groups, represents propadienylthio, represents in each case optionally halogensubstituted alkylamino or dialkylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl, alkenyloxy, alkenylthio or alkenylamino having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogen-substituted cycloalkyl, cycloalkyloxy, cycloalkylthio, cycloalkylamino, cycloalkylalkyl, cycloalkylalkoxy, cycloalkylalkylthio or cycloalkylalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 4 carbon atoms in the alkyl moiety, represents in each case optionally halogen-, C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, represents pyrrolidino, piperidino or morpholino, or - if two adjacent radicals R⁵ and R⁵ are located on a double bond - together with the adjacent radical R⁵ also represents a benzo grouping, and

represents hydrogen, hydroxyl, amino, alkylideneamino having up to 4 carbon atoms, represents in each case optionally halogen- or C₁-C₄-alkoxy-substituted alkyl, alkoxy, alkylamino, dialkylamino or alkanoylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl or alkenyloxy having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogen-substituted cycloalkyl, cycloalkylalkyl or cycloalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 3 carbon atoms in the alkyl moiety, or represents

in each case optionally halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted phenyl or benzyl, or together with an adjacent radical R^5 or R^6 represents optionally halogen- or C_1 - C_4 -alkyl-substituted alkanediyl having 3 to 5 carbon atoms,

where the individual radicals R⁵ and R⁶ - if a plurality of these are attached to the same heterocyclic groupings, may have identical or different meanings within the scope of the above definition.

- 3. (Once Amended) The compound according to claim 1 or 2, wherein
 - n represents the numbers 0 or 1,
- A represents a single bond, methylene, ethylidene (ethane-1,1-diyl) or dimethylene (ethane-1,2-diyl),
 - represents in each case optionally fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, n- or i-propylsulfinyl-, methylsulfonyl-, ethylsulfonyl-, n- or i-propylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine-, chlorine- or bromine-substituted propenyl, butenyl, propinyl or butinyl, or represents in each case optionally cyano-, fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,
 - represents hydrogen, cyano, carbamoyl, thiocarbamoyl, represents in each case optionally cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl, represents in each case optionally fluorine- and/or

chlorine-substituted methylthio, ethylthio, n- or i-propylthio, or represents in each case optionally cyano-, fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,

represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, iodine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, methylsulfonyl- or ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, dimethylamino, sulfonyl or diethylaminosulfonyl,

represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, methylsulfonyl- or ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethyl-

Mo6595

amino, diethylamino, dimethylaminosulfonyl or diethylaminosulfonyl,

R⁵ represents hydrogen, hydroxyl, chlorine, bromine, methyl, ethyl, n- or ipropyl, n-, i-, s- or t-butyl, difluoromethyl, dichloromethyl, trifluoromethyl, trichloromethyl, chlorodifluoromethyl, fluorodichloromethyl, fluoroethyl, chloroethyl, difluoroethyl, dichloroethyl, fluoro-n-propyl, fluoro-i-propyl, chloro-n-propyl, chloro-i-propyl, methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or t-butoxy, fluoroethoxy, chloroethoxy, difluoroethoxy, dichloroethoxy, trifluoroethoxy, trichloroethoxy, chlorofluoroethoxy, chlorodifluoroethoxy, fluorodichloroethoxy, methylthio, ethylthio, n- or ipropylthio, fluoroethylthio, chloroethylthio, difluoroethylthio, dichloroethylthio, chlorofluoroethylthio, chlorodifluoroethylthio, fluorodichloroethylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, dimethylamino, propenylthio, butenylthio, propinylthio, butinylthio, cyclopropyl, cyclopropylmethyl, cyclopropylmethoxy, phenyl or phenoxy,

R6 represents amino, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, methylamino, dimethylamino, cyclopropyl or cyclopropylmethyl, or together with R⁵ represents propane-1,3-diyl (trimethylene), butane-1,4-diyl (tetramethylene) or pentane-1,5-diyl (pentamethylene), and

represents hydrogen, represents in each case optionally cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, acetyl, propionyl, n- or i-butyroyl, methoxycarbonyl or ethoxycarbonyl, represents in each case optionally fluorine-, chlorine- and/or bromine-substituted methyl-sulfonyl-, ethylsulfonyl-, n- or i-propylsulfonyl-, n-, i-, s- or t-butylsulfonyl-, methyl-aminocarbonyl, ethylaminocarbonyl, n- or i-propylaminocarbonyl, dimethylaminocarbonyl or diethylaminocarbonyl, represents in each case optionally fluorine-,

chlorine- or bromine-substituted propenyl, butenyl, propenylcarbonyl, butenyl-carbonyl, propenylsulfonyl, butenylsulfonyl, propinyl, butinyl, propinylcarbonyl or butinylcarbonyl, represents in each case optionally cyano-, fluorine-, chlorine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclopentyl, cyclohexyl, cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexyl-carbonyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl or cyclohexylmethyl, or represents in each case optionally nitro-, cyano-, fluorine-, chlorine-, bromine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, s- or t-butyl-, trifluoromethyl-, methoxy-, ethoxy-, n- or i-propoxy-, difluoromethoxy- or trifluoromethoxy-substituted phenylcarbonyl, phenylsulfonyl, benzyl or phenylcarbonylmethyl.

- 4. (Once Amended) The compound according to any of claims 1 to 3, wherein
 - Z represents the grouping below

$$\mathbb{Q}$$
 \mathbb{R}^{6}

- 5. (Once Amended) The compound according to any of claims 1 to 4, wherein
 - Q represents oxygen.
- 6. (Once Amended) The compound according to any of claims 1 to 5, wherein n represents 0.
- 7. (Once Amended) A process for preparing a compound according to any of claims 1 to 6, comprising the step of :
 - (a) reacting a pyrazole of the general formula (II)

in which

R¹, R² and Y are as defined in any of claims 1 to 3,

with

a substituted benzoic acid of the general formula (III),

HO
$$(R^4)_n$$
 $A Z$ (III)

in which

n, A, \mathbb{R}^3 , \mathbb{R}^4 and Z are as defined in any of claims 1 to 6,

in the presence of a dehydrating agent, optionally in the presence of one or more reaction auxiliaries and optionally in the presence of a diluent,

or

(b) reacting a pyrazole of the general formula (II)

in which

 R^1 , R^2 and Y are as defined in any of claims 1 to 3, with

a member selected from the group consisting of a substituted benzoic acid derivative of the general formula (IV)

$$X \xrightarrow{(R^4)_n} A Z$$
 R^3
(IV)

in which

n, A, \mathbb{R}^3 , \mathbb{R}^4 and Z are as defined in any of claims 1 to 6, and

X represents cyano, halogen or alkoxy,

and corresponding carboxylic anhydrides thereof

optionally in the presence of one or more reaction auxiliaries and optionally in the presence of a diluent,

or

(c) reacting a substituted benzoylpyrazole of the general formula (la)

in which

n, A, R^1 , R^2 , R^3 , R^4 and Z are as defined in any of claims 1 to 6, with

a compound of the general formula (V)

Mo6595

in which

- Y is as defined in any of claims 1 to 4, except for hydrogen,
 - and optionally further comprising the step of including as a reactant corresponding isocyanates or isothiocyanates thereof -

optionally in the presence of one or more reaction auxiliaries and optionally in the presence of a diluent,

and, optionally further comprising the step of subjecting the resulting compound of the formula (I) to on or more reactions selected from the group consisting of an electrophilic reaction, a nucleophilic reaction, an oxidation reaction, a reduction reaction and combinations thereof within the scope of the definition of the substituents, or further comprising the step of converting the compound of the formula (I) into a salt.

8. (Once Amended) A compound of the general formula (Ia)

in which

n, A, R^1 , R^2 , R^3 , R^4 and Z are as defined in any of claims 1 to 6.

- 9. (Once Amended) An herbicidal composition, comprising at least one of the compounds according to any of claims 1 to 6 and an extender.
- 10. (Once Amended) A method for controlling undesirable plants comprising the step of applying an herbicidally effective amount at least one compound according to any of claims 1 to 6 to a member selected from the group consisting of said plant and a habitat of said plant.

Mo6595

REMARKS

Claims 1-10 are pending, and the claims have been preliminarily amended to bring the claims into conformance with U.S. practice and to more particularly claim the present invention. Support for these amendments may be found in the original claims as filed and in the specification. These amended claims are not believed to introduce any new matter, and entry of these preliminary amendments is respectfully requested by the Applicants.

Respectfully submitted,

Βv

Raymond J. Harmuth Attorney for Applicants

Reg. No. 33,896

Bayer Corporation 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741 (412) 777-8366 FACSIMILE PHONE NUMBER: (412) 777-5449 s:\shared\jmf\RJH6595

VERSION MARKED TO SHOW CHANGES

1. (Once Amended) A sSubstituted benzoylpyrazoles of the general formula (I),

in which

- n represents the numbers 0, 1, 2 or 3.
- A represents a single bond or represents alkanediyl (alkylene),
- R1 represents in each case optionally substituted alkyl, alkenyl, alkinyl or cycloalkyl,
- R2 represents hydrogen, cyano, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkoxycarbonyl or cycloalkyl,
- R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino or dialkylaminosulfonyl,
- R4 represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino or dialkylaminosulfonyl,

- represents hydrogen or represents in each case optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, alkylamino-carbonyl, dialkylaminocarbonyl, alkenyl, alkenylcarbonyl, alkenylsulfonyl, alkinyl, alkinylcarbonyl, cycloalkyl, cycloalkylcarbonyl, cycloalkylalkyl, phenylcarbonyl, phenylsulfonyl, phenylalkyl or phenylcarbonylalkyl, and
- represents an optionally substituted 4- to 12-membered saturated or unsaturated monocyclic or bicyclic heterocyclic grouping which contains 1 to 4 heteroatoms (up to 4 nitrogen atoms and optionally alternatively or additionally one oxygen atom or one sulfur atom, or an SO grouping or an SO₂ grouping) and which additionally contains one to three oxo groups (C=O) and/or thioxo groups (C=S) as component of the heterocycle,

including all possible tautomeric forms and the possible salts thereof.

- 2. (Once Amended) <u>The c</u>Compounds according to Claim 1, characterized in that <u>wherein</u>
 - n represents the numbers 0, 1 or 2,
 - A represents a single bond or represents alkanediyl (alkylene) having 1 to 4 carbon atoms,
 - represents optionally cyano-, carboxyl-, carbamoyl-, halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkyl-carbonyl-, C₁-C₄-alkoxy-carbonyl-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl having 1 to 6 carbon atoms, represents in each case optionally cyano-, carboxyl-,

carbamoyl-, halogen- or C_1 - C_4 -alkoxy-carbonyl-substituted alkenyl or alkinyl having in each case 2 to 6 carbon atoms, or represents optionally cyano-, carboxyl-, carbamoyl-, halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-carbonyl-substituted cycloalkyl having 3 to 6 carbon atoms,

- represents hydrogen, cyano, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally cyano-, halogen- or C₁-C₄-alkoxy-substituted alkyl, alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms, represents optionally halogen-substituted alkylthio having 1 to 6 carbon atoms, or represents optionally cyano-, halogen- or C₁-C₄-alkyl-substituted cycloalkyl having 3 to 6 carbon atoms,
- represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally halogen, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulfonyl having in each case up to 4 carbon atoms in the alkyl groups.
- represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulfonyl having in each case up to 4 carbon atoms in the alkyl groups,

Υ represents hydrogen, represents in each case optionally cyano-. carboxyl-, carbamoyl-, halogen- or C₁-C₄-alkoxycarbonyl-substituted alkyl, alkylcarbonyl or alkoxycarbonyl having in each case up to 6 carbon atoms, represents in each case optionally halogen-substituted alkylsulfonyl, alkylaminocarbonyl or dialkylaminocarbonyl having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C_1 - C_4 alkoxy-carbonyl-substituted alkenyl, alkenylcarbonyl, alkinyl or alkinylcarbonyl having in each case 2 to 6 carbon atoms, represents optionally halogen-substituted alkenylsulfonyl having up to 6 carbon atoms represents in each case optionally cyano-, halogen- or C₁-C₄alkyl-substituted cycloalkyl, cycloalkylcarbonyl or cycloalkylalkyl having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally 1 to 3 carbon atoms in the alkyl moiety, or represents in each case optionally nitro-, cyano-, carboxyl-, carbamoyl-, halogen-, C1-C4alkyl-, C₁-C₄-halogenoalkyl-, C₁-C₄-alkoxy- or C₁-C₄-halogenoalkoxysubstituted phenylcarbonyl, phenylsulfonyl, phenyl-C₁-C₄-alkyl or phenylcarbonyl-C₁-C₄-alkyl, and

Z represents one of the heterocyclic groupings below

in which in each case the broken bond is a single bond or a double bond,

- Q represents oxygen or sulfur,
- R⁵ represents hydrogen, hydroxyl, mercapto, cyano, halogen, represents in each case optionally cyano-, halogen-, C₁-C₄alkoxy-, C_1 - C_4 -alkylthio-, C_1 - C_4 -alkylsulfinyl- or C_1 - C_4 alkylsulfonyl-substituted alkyl, alkylcarbonyl, alkoxy, alkoxycarbonyl, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 6 carbon atoms in the alkyl groups, represents propadienylthio, represents in each case optionally halogensubstituted alkylamino or dialkylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl, alkenyloxy, alkenylthio or alkenylamino having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogen-substituted cycloalkyl, cycloalkyloxy, cycloalkylthio, cycloalkylamino, cycloalkylalkyl, cycloalkylalkoxy, cycloalkylalkylthio or cycloalkylalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 4 carbon atoms in the alkyl moiety, represents in each case optionally halogen-, C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, represents pyrrolidino, piperidino or

morpholino, or - if two adjacent radicals R^5 and R^5 are located on a double bond - together with the adjacent radical R^5 also represents a benzo grouping, and

R6 represents hydrogen, hydroxyl, amino, alkylideneamino having up to 4 carbon atoms, represents in each case optionally halogen- or C₁-C₄-alkoxy-substituted alkyl, alkoxy, alkylamino, dialkylamino or alkanoylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl or alkenyloxy having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogensubstituted cycloalkyl, cycloalkylalkyl or cycloalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 3 carbon atoms in the alkyl moiety, or represents in each case optionally halogen-, C1-C4-alkyl- or C1-C4-alkoxysubstituted phenyl or benzyl, or together with an adjacent radical R^5 or R^6 represents optionally halogen- or C_1 - C_4 -alkylsubstituted alkanediyl having 3 to 5 carbon atoms.

where the individual radicals R⁵ and R⁶ - if a plurality of these are attached to the same heterocyclic groupings, may have identical or different meanings within the scope of the above definition.

- 5. (Once Amended) The cCompounds according to claim 1 or 2, characterized in that wherein
 - n represents the numbers 0 or 1,

- A represents a single bond, methylene, ethylidene (ethane-1,1-diyl) or dimethylene (ethane-1,2-diyl),
 - represents in each case optionally fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, n- or i-propylsulfinyl-, methylsulfonyl-, ethylsulfonyl-, n- or i-propylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine-, chlorine- or bromine-substituted propenyl, butenyl, propinyl or butinyl, or represents in each case optionally cyano-, fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,
 - represents hydrogen, cyano, carbamoyl, thiocarbamoyl, represents in each case optionally cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, or represents in each case optionally cyano-, fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
 - R3 represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, iodine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methyl-thio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, methylsulfonyl- or ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy,

ethoxy, n- or i-propoxy, represents in each case optionally fluorine-and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, dimethylamino-sulfonyl or diethylaminosulfonyl,

represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, methylsulfonyl- or ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethyl-amino, diethylamino, dimethylaminosulfonyl,

represents hydrogen, hydroxyl, chlorine, bromine, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, difluoromethyl, dichloromethyl, trifluoromethyl, trichloromethyl, chlorodifluoromethyl, fluorodichloromethyl, fluoroethyl, chloroethyl, difluoroethyl, dichloroethyl, fluoro-n-propyl, fluoro-i-propyl, chloro-n-propyl, chloro-i-propyl, methoxymethyl, ethoxymethyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or t-butoxy, fluoroethoxy, chloroethoxy, difluoroethoxy, dichloroethoxy, trifluoroethoxy, trichloroethoxy, chlorofluoroethoxy, chlorodifluoroethoxy, fluorodichloroethoxy, methylthio, ethylthio, n- or i-propylthio, fluoroethylthio, chloroethylthio, difluoroethylthio, dichloro-

Mo6595 - 24 -

Υ

ethylthio, chlorofluoroethylthio, chlorodifluoroethylthio, fluorodichloroethylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, dimethylamino, propenylthio, butenylthio, propinylthio, butinylthio, cyclopropyl, cyclopropylmethyl, cyclopropylmethoxy, phenyl or phenoxy,

R6 represents amino, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, methylamino, dimethylamino, cyclopropyl or cyclopropylmethyl, or together with R⁵ represents propane-1,3-diyl (trimethylene), butane-1,4-diyl (tetramethylene) or pentane-1,5-diyl (pentamethylene), and

represents hydrogen, represents in each case optionally cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, acetyl, propionyl, n- or i-butyroyl, methoxycarbonyl or ethoxycarbonyl, represents in each case optionally fluorine-, chlorine- and/or bromine-substituted methylsulfonyl-, ethylsulfonyl-, n- or i-propylsulfonyl-, n-, i-, s- or t-butylsulfonyl-, methylaminocarbonyl, ethylaminocarbonyl, n- or i-propylaminocarbonyl, dimethylaminocarbonyl or diethylaminocarbonyl, represents in each case optionally fluorine-, chlorine- or bromine-substituted propenyl, butenyl, propenylcarbonyl, butenylcarbonyl, propenylsulfonyl, butenylsulfonyl, propinyl, butinyl, propinylcarbonyl or butinylcarbonyl, represents in each case optionally cyano-, fluorine-, chlorine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl or cyclohexylmethyl, or represents in each case optionally nitro-, cyano-, fluorine-, chlorine-, bromine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, s- or t-butyl-, trifluoromethyl-, methoxy-, ethoxy-, n- or i-propoxy-, difluoromethoxy- or trifluoromethoxysubstituted phenylcarbonyl, phenylsulfonyl, benzyl or phenylcarbonylmethyl.

- 6. (Once Amended) The cCompounds according to any of claims 1 to 3, characterized in that wherein
 - Z represents the grouping below

- 5. (Once Amended) <u>The c</u>Compounds according to any of claims 1 to 4, characterized in that <u>wherein</u>
 - Q represents oxygen.
- 6. (Once Amended) The cCompounds according to any of claims 1 to 5, characterized in that wherein n represents 0.
- 8. (Once Amended) A pProcess for preparing a compounds according to any of claims 1 to 6, characterized in that comprising the step of :
 - (a) reacting a pyrazoles of the general formula (II)

in which

 R^1 , R^2 and Y are as defined in any of claims 1 to 3,

are reacted with

a substituted benzoic acids of the general formula (III),

HO
$$(R^4)_n$$
 (III)

in which

n, A, R^3 , R^4 and Z are as defined in any of claims 1 to 6,

in the presence of a dehydrating agent, if appropriate optionally in the presence of one or more reaction auxiliaries and if appropriate optionally in the presence of a diluent,

or that

(b) reacting a pyrazoles of the general formula (II)

in which

 R^1 , R^2 and Y are as defined in any of claims 1 to 3,

are reacted with

a member selected from the group consisting of a substituted benzoic acid derivatives of the general formula (IV)

$$X \xrightarrow{(R^4)_n} A Z$$
 R^3
(IV)

in which

n, A, R^3 , R^4 and Z are as defined in any of claims 1 to 6, and

X represents cyano, halogen or alkoxy.

-or with and corresponding carboxylic anhydrides thereof-

if appropriate optionally in the presence of one or more reaction auxiliaries and optionally if appropriate in the presence of a diluent,

or that

(c) reacting a substituted benzoylpyrazoles of the general formula (la)

in which

n, A, R¹, R², R³, R⁴ and Z are as defined in any of claims 1 to 6,

are reacted with

a compounds of the general formula (V)

in which

Y is as defined in any of claims 1 to 4, except for hydrogen,

- or, if appropriate, with and optionally further comprising the step of including as a reactant -corresponding isocyanates or isothiocyanates thereof -

if appropriate optionally in the presence of one or more reaction auxiliaries and if appropriate optionally in the presence of a diluent,

and, if appropriate, optionally further comprising the step of subjecting the resulting compounds of the formula (I) are subsequently subjected in a customary manner to on or more reactions selected from the group consisting of an electrophilic reaction, or a nucleophilic reaction, and/or an oxidation reaction, or a reduction reactions and combinations thereof within the scope of the definition of the substituents, or further comprising the step of converting the compounds of the formula (I) are converted in a customary manner into a salts.

Mo6595

8. (Once Amended) A cCompounds of the general formula (la)

$$\begin{array}{c|c}
R^{2} & O \\
N & A \\
R^{1} & H
\end{array}$$
(Ia)

in which

n, A, R^1 , R^2 , R^3 , R^4 and Z are as defined in any of claims 1 to 6.

- 9. (Once Amended) An Hherbicidal compositions, characterized in that they comprise comprising at least one of the compounds according to any of claims 1 to 6 and customary an extenders.
- 10. (Once Amended) A method for controlling undesirable plants comprising the step of applying an herbicidally effective amount. Use of at least one compound according to any of claims 1 to 6 for controlling undesirable plants to a member selected from the group consisting of said plant and a habitat of said plant.

5

10

15

Substituted benzoylpyrazoles

The invention relates to novel substituted benzoylpyrazoles, to processes for their preparation and to their use as herbicides.

It is already known that certain substituted benzoylpyrazoles have herbicidal properties (cf. EP-A-352543, WO-A-96/26206, WO-A-97/35850, WO-A-97/41105, WO-A-97/41116, WO-A-97/41117, WO-A-97/41118, WO-A-97/46530, WO-A-98/28981, WO-A-98/31681, WO-A-98/31682, WO-A-99/07697). However, the activity of these compounds is not entirely satisfactory.

This invention now provides the novel substituted benzoylpyrazoles of the general formula (I)

$$\begin{array}{c|c}
R^{2} & O \\
N & A \\
R^{1} & R^{3}
\end{array}$$
(I)

in which

n represents the numbers 0, 1, 2 or 3,

A represents a single bond or represents alkanediyl (alkylene),

R¹ represents in each case optionally substituted alkyl, alkenyl, alkinyl or cycloalkyl,

"Express Mail" mailing label number <u>ET146893815US</u>

Date of Deposit <u>September 26, 2001</u>

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents and Trademarks, Washington, D.C. 20231

- R² represents hydrogen, cyano, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkoxycarbonyl or cycloalkyl,
- 5 R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino or dialkylaminosulfonyl,
- 10 R⁴ represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino or dialkylaminosulfonyl,
- 15 Y represents hydrogen or represents in each case optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkenyl, alkenylcarbonyl, alkenylsulfonyl, alkinylcarbonyl, cycloalkyl, cycloalkylcarbonyl, cycloalkylalkyl, phenylcarbonyl, phenylsulfonyl, phenylalkyl or phenylcarbonylalkyl, and
 - z represents an optionally substituted 4- to 12-membered saturated or unsaturated monocyclic or bicyclic heterocyclic grouping which contains 1 to 4 heteroatoms (up to 4 nitrogen atoms and optionally alternatively or additionally one oxygen atom or one sulfur atom, or an SO grouping or an SO2 grouping) and which additionally contains one to three oxo groups (C=O) and/or thioxo groups (C=S) as component of the heterocycle,
 - including all possible tautomeric forms of the compounds of the general formula (I) and the possible salts of the compounds of the general formula (I).

20

In the definitions, the hydrocarbon chains, such as alkyl or alkanediyl, are in each case straight-chain or branched - including in combination with heteroatoms, such as in alkoxy.

- 5 n preferably represents the numbers 0, 1 or 2.
 - A preferably represents a single bond or represents alkanediyl (alkylene) having 1 to 4 carbon atoms.
- 10 R¹ preferably represents optionally cyano-, carboxyl-, carbamoyl-, halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkyl-carbonyl-, C₁-C₄-alkoxy-carbonyl-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl having 1 to 6 carbon atoms, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C₁-C₄-alkoxy-carbonyl-substituted alkenyl or alkinyl having in each case 2 to 6 carbon atoms, or represents optionally cyano-, carboxyl-, carbamoyl-, halogen-, C₁-C₄-alkyl- or C₁-C₄-alkoxy-carbonyl-substituted cycloalkyl having 3 to 6 carbon atoms.
- preferably represents hydrogen, cyano, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally cyano-, halogen- or C₁-C₄-alkoxy-substituted alkyl, alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms, represents optionally halogen-substituted alkylthio having 1 to 6 carbon atoms, or represents optionally cyano-, halogen- or C₁-C₄-alkyl-substituted cycloalkyl having 3 to 6 carbon atoms.

preferably represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thio-carbamoyl, halogen, represents in each case optionally halogen, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulfonyl having in each case up to 4 carbon atoms in the alkyl groups.

25

5

10

15

20

25

Y

preferably represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulfonyl having in each case up to 4 carbon atoms in the alkyl groups.

preferably represents hydrogen, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C₁-C₄-alkoxycarbonyl-substituted alkyl, alkylcarbonyl or alkoxycarbonyl having in each case up to 6 carbon atoms, represents in each case optionally halogen-substituted alkylsulfonyl, alkylaminocarbonyl or dialkylaminocarbonyl having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C₁-C₄-alkoxy-carbonyl-substituted alkenyl, alkenylcarbonyl, alkinyl or alkinylcarbonyl having in each case 2 to 6 carbon atoms, represents optionally halogen-substituted alkenylsulfonyl having up to 6 carbon atoms represents in each case optionally cyano-, halogen- or C1-C4-alkyl-substituted cycloalkyl, cycloalkylcarbonyl or cycloalkylalkyl having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally 1 to 3 carbon atoms in the alkyl moiety, or represents in each case optionally nitro-, cyano-, carboxyl-, carbamoyl-, halogen-, C1-C4alkyl-, C₁-C₄-halogenoalkyl-, C₁-C₄-alkoxy- or C₁-C₄-halogenoalkoxysubstituted phenylcarbonyl, phenylsulfonyl, phenyl-C1-C4-alkyl or phenylcarbonyl- C_1 - C_4 -alkyl.

Z preferably represents one of the heterocyclic groupings below

He is the first of the second of the second

 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 $Q = \begin{pmatrix} P_5 & P_5$

10

15

in which in each case the broken bond is a single bond or a double bond,

Q represents oxygen or sulfur,

 R^5

represents hydrogen, hydroxyl, mercapto, cyano, halogen, represents in each case optionally cyano-, halogen-, C1-C4-alkoxy-, C1-C4-alkylthio-, C_1 - C_4 -alkylsulfinyl- or C_1 - C_4 -alkylsulfonyl-substituted alkyl, alkylcarbonyl, alkoxy, alkoxycarbonyl, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 6 carbon atoms in the alkyl groups, represents propadienylthio, represents in each case optionally halogen-substituted alkylamino or dialkylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl, alkenyloxy, alkenylthio or alkenylamino having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogensubstituted cycloalkyl, cycloalkyloxy, cycloalkylthio, cycloalkylamino, cycloalkylalkyl, cycloalkylalkoxy, cycloalkylalkylthio or cycloalkylalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 4 carbon atoms in the alkyl moiety, represents in each case optionally halogen-, C1-C4-alkyl- or C1-C4alkoxy-substituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, represents pyrrolidino,

20

piperidino or morpholino, or - if two adjacent radicals ${\rm R}^5$ and ${\rm R}^5$ are located on a double bond - together with the adjacent radical R⁵ also represents a benzo grouping, and

5

R6 represents hydrogen, hydroxyl, amino, alkylideneamino having up to 4 carbon atoms, represents in each case optionally halogen- or C1-C4alkoxy-substituted alkyl, alkoxy, alkylamino, dialkylamino or alkanoylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl or alkenyloxy having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogensubstituted cycloalkyl, cycloalkylalkyl or cycloalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 3 carbon atoms in the alkyl moiety, or represents in each case optionally halogen-, C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted phenyl

or benzyl, or together with an adjacent radical R⁵ or R⁶ represents

optionally halogen- or C₁-C₄-alkyl-substituted alkanediyl having 3 to

15

10

5 carbon atoms,

where the individual radicals R⁵ and R⁶ - if a plurality of these are attached to the same heterocyclic groupings, may have identical or different meanings

within the scope of the above definition.

Q preferably represents oxygen.

25

20

 R^5 preferably represents hydrogen, hydroxyl, mercapto, cyano, fluorine, chlorine, bromine, iodine, represents in each case optionally fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, n-, i-, s- or t-butoxy-, methylthio-, ethylthio-, n- or i-propylthio-, n-, i-, s- or t-butylthio-, methylsulfinyl-, ethylsulfinyl-, n- or i-propylsulfinyl-, methylsulfonyl-, ethylsulfonyl-, n- or i-propylsulfonyl-substituted methyl, ethyl, n- or ipropyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s-

10

15

20

25

or t-butoxy, methylthio, ethylthio, n- or i-propylthio, n-, i-, s- or tbutylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, represents methylamino, ethylamino, n- or i-propylamino, n-, i-, s- or t-butylamino, dimethylamino, diethylamino, di-n-propylamino or di-i-propylamino, represents in each case optionally fluorine- and/or chlorine-substituted ethenyl, propenyl, butenyl, ethinyl, propinyl, butinyl, propenyloxy, butenyloxy, propenylthio, butenylthio, propenylamino or butenylamino, represents in each case optionally fluorine- and/or chlorinesubstituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylthio, cyclobutylthio, cyclopentylthio, cyclohexylthio, cyclopropylamino, cyclobutylamino, cyclopentylamino, cyclohexylamino, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylcyclobutylmethoxy, cyclopentylcyclopropylmethoxy, methyl, cyclopropylmethylthio, cyclohexylmethoxy, methoxy, cyclobutylmethylthio, cyclopentylmethylthio, cyclohexylmethylthio, cyclobutylmethylamino, cyclopropylmethylamino, cyclopentylmethylamino or cyclohexylmethylamino, represents in each case optionally fluorine-, chlorine-, methyl-, ethyl-, n- or ipropyl-, n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or i-propoxysubstituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, represents pyrrolidino, piperidino or morpholino, or - if two radicals ${\bf R}^5$ and ${\bf R}^5$ are located on a double bond - together with the adjacent radical R5 also represents a benzo grouping.

30

preferably represents hydrogen, hydroxyl, amino, represents in each case optionally fluorine- and/or chlorine-, methoxy- or ethoxy-substituted, methyl, ethyl, n- or i-propyl, n-, i- or s-butyl, methoxy, ethoxy, n- or i-propoxy, methylamino, ethylamino or dimethylamino, represents in each case optionally fluorine- and/or chlorine-substituted

ethenyl, propenyl, ethinyl, propinyl or propenyloxy, represents in each case optionally fluorine- and/or chlorine-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutyl-methyl, cyclopentylmethyl, cyclohexylmethyl, or represents in each case optionally fluorine-, chlorine-, methyl-, ethyl-, n- or i-propyl, n-, i-, s- or t-butyl-, methoxy-, ethoxy-, n- or i-propoxy-substituted phenyl or benzyl, or together with an adjacent radical R⁵ or R⁶ represents in each case optionally methyl- and/or ethyl-substituted propane-1,3-diyl (trimethylene), butane-1,4-diyl (tetramethylene) or pentane-1,5-diyl (pentamethylene).

10

5

n particularly preferably represents the numbers 0 or 1.

A particularly preferably represents a single bond, methylene, ethylidene (ethane-1,1-diyl) or dimethylene (ethane-1,2-diyl).

15

 R^{1}

particularly preferably represents in each case optionally fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, n- or i-propylsulfinyl-, methylsulfonyl-, ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine-, chlorine- or bromine-substituted propenyl, butenyl, propinyl or butinyl, or represents in each case optionally cyano-, fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

25

20

particularly preferably represents hydrogen, cyano, carbamoyl, thiocarbamoyl, represents in each case optionally cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, or represents in each case

 R^3

5

10

15

20

25

30

 R^4

optionally cyano-, fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

particularly preferably represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, iodine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylsulfonyl- or ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfinyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, dimethylaminosulfonyl or diethylaminosulfonyl.

particularly preferably represents nitro, cyano, carboxyl, carbamoyl, thio-carbamoyl, fluorine, chlorine, bromine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, methylsulfonyl- or ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, dimethylaminosulfonyl or diethylaminosulfonyl.

particularly preferably represents hydrogen, hydroxyl, chlorine, bromine, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, difluoromethyl, dichloromethyl, trifluoromethyl, trichloromethyl, chlorodifluoromethyl, fluoro-

10

15

20

R6

Y

dichloromethyl, fluoroethyl, chloroethyl, difluoroethyl, dichloroethyl, fluoron-propyl, fluoro-i-propyl, chloro-i-propyl, chloro-i-propyl, methoxymethyl, ethoxymethyl, methoxyethyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or t-butoxy, fluoroethoxy, chloroethoxy, difluoroethoxy, dichloroethoxy, trifluoroethoxy, trichloroethoxy, chlorofluoroethoxy, chlorodifluoroethoxy, fluorodichloroethoxy, methylthio, ethylthio, n- or i-propylthio, fluoroethylthio, chloroethylthio, difluoroethylthio, dichloroethylthio, chlorofluoroethylthio, chlorodifluoroethylthio, fluorodichloroethylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, dimethylamino, propenylthio, butenylthio, propinylthio, butinylthio, cyclopropyl, cyclopropylmethyl, cyclopropylmethoxy, phenyl or phenoxy.

particularly preferably represents amino, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, methylamino, dimethylamino, cyclopropyl or cyclopropylmethyl, or together with R⁵ represents propane-1,3-diyl (trimethylene), butane-1,4-diyl (tetramethylene) or pentane-1,5-diyl (pentamethylene).

particularly preferably represents hydrogen, represents in each case optionally cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted methyl, ethyl, nor i-propyl, acetyl, propionyl, n- or i-butyroyl, methoxycarbonyl or ethoxy-carbonyl, represents in each case optionally fluorine-, chlorine- and/or bromine-substituted methylsulfonyl-, ethylsulfonyl-, n- or i-propylsulfonyl-, n-, i-, s- or t-butylsulfonyl-, methylaminocarbonyl, ethylaminocarbonyl, n- or i-propylaminocarbonyl, dimethylaminocarbonyl or diethylaminocarbonyl, represents in each case optionally fluorine-, chlorine- or bromine-substituted propenyl, butenyl, propenylcarbonyl, butenylcarbonyl, propenylsulfonyl, butenylsulfonyl, propinyl, butinyl, propinylcarbonyl or butinylcarbonyl, represents in each case optionally cyano-, fluorine-, chlorine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropyl, cyclobutylcarbonyl, cyclohexyl, cyclohexyl, cyclopropyl, cyclobutylcarbonyl, cyclohexyl, cyclohexyl,

25

cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl or cyclohexylmethyl, or represents in each case optionally nitro-, cyano-, fluorine-, chlorine-, bromine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, s- or t-butyl-, tri-fluoromethyl-, methoxy-, ethoxy-, n- or i-propoxy-, difluoromethoxy- or tri-fluoromethoxy-substituted phenylcarbonyl, phenylsulfonyl, benzyl or phenylcarbonylmethyl.

Z particularly preferably represents

10

5

n very particularly preferably represents 0.

15

very particularly preferably represents a single bond or represents methylene.

R¹ ve ch

Α

very particularly preferably represents in each case optionally fluorine, chlorine-, methoxy-, ethoxy-, methylthio-, ethylthio-, methylsulfinyl-, ethylsulfinyl-, methylsulfonyl- or ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, or represents optionally cyano-, fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted cyclopropyl.

20

R2 very particularly preferably represents hydrogen, cyano, carbamoyl, fluorine, chlorine, bromine, represents in each case optionally cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, or represents cyclopropyl.

25

very particularly preferably represents hydrogen, nitro, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, trifluoromethyl, methoxymethyl,

30

 R^3

methylthiomethyl, methylsulfinylmethyl, methylsulfonylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, or dimethylaminosulfonyl.

5

 R^4

particularly preferably represents nitro, cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, methoxymethyl, methylthiomethyl, methylsulfinylmethyl, methylsulfonylmethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, dimethylamino or dimethylaminosulfonyl.

10

R6 very particularly preferably represents methyl, cyclopropyl, dimethylamino, methoxy or ethoxy.

15

Y very particularly preferably represents hydrogen.

10

- A most preferably represents methylene.
- R1 most preferably represents methyl or ethyl.
- R² most preferably represents hydrogen or methyl.
- R³ most preferably represents hydrogen, fluorine, chlorine, bromine, trifluoromethyl or methylsulfonyl.
- R4 most preferably represents (2-)chlorine, (4-)chlorine, (6-)trifluoromethyl or (2-)methylsulfonyl.
- Preference according to the invention is given to compounds of the formula (I) which contains a combination of the meanings listed above as being preferred.
 - Particular preference according to the invention is given to the compounds of the formula (I) which contain a combination of the meanings listed above as being particularly preferred.
 - Very particular preference is given to the compounds of the formula (I) which contain a combination of the meanings listed above as being very particularly preferred.
- Most preference according to the invention is given to the compounds of the formula

 (I) which contain a combination of the meanings listed above as being most preferred.

10

The present invention in particular provides the compounds of the general formulae (IA), (IB) and (IC):

$$R^{1}$$
 N
 R^{2}
 N
 N
 N
 R^{6}
 R^{5}
(IA)

$$P^{1}$$
 P^{2}
 P^{2}
 P^{3}
 P^{5}
 P^{5}
 P^{5}
 P^{5}
 P^{5}
 P^{5}
 P^{5}
 P^{5}
 P^{5}

in which

n, A, Q, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and Y are as defined above.

10

15

20

The invention preferably also provides sodium, potassium, magnesium, calcium, ammonium, C_1 - C_4 -alkyl-ammonium, di- $(C_1$ - C_4 -alkyl)-ammonium, tri- $(C_1$ - C_4 -alkyl)-ammonium, tri- $(C_1$ - C_4 -alkyl)-sulfonium, C_5 -or C_6 -Cycloalkyl-ammonium and di- $(C_1$ - C_2 -alkyl)-benzylammonium salts of compounds of the formula (I), in which n, A, R^1 , R^2 , R^3 , R^4 , Y and Z are as defined above.

The abovementioned general or preferred radical definitions apply both to the end products of the formula (I) and, correspondingly to the starting materials or intermediates required in each case for the preparation. These radical definitions can be combined with one another as desired, i.e. including combinations between the given preferred ranges.

Examples of the compounds of the general formula (I) according to the invention are given in the groups below.

Group 1

Here, R³, (R⁴)_n, R⁵ and R⁶ have, for example, the meanings given in the table below:

	(Position)		
R^3	$(R^4)_n$	\mathbb{R}^5	\mathbb{R}^6
Н	-	CF ₃	CH ₃
F	-	CF ₃	CH ₃
Cl	-	CF ₃	CH ₃
Br	-	CF ₃	CH ₃
I	-	CF ₃	CH ₃
NO ₂	-	CF ₃	CH ₃
CN	-	CF ₃	CH ₃
CH ₃	-	CF ₃	CH ₃
OCH ₃	-	CF ₃	CH ₃
CF ₃	-	CF ₃	CH ₃
OCHF ₂	-	CF ₃	CH ₃
OCF ₃	-	CF ₃	CH ₃
SO ₂ CH ₃	-	CF ₃	CH ₃
Н	-	OCH ₃	CH ₃
F	-	OCH ₃	CH ₃
Cl	-	OCH ₃	CH ₃
Br	-	OCH ₃	CH ₃
I	-	OCH ₃	CH ₃
NO ₂	-	OCH ₃	CH ₃
CN	-	OCH ₃	CH ₃
CH ₃	-	OCH ₃	CH ₃
OCH ₃	-	OCH ₃	CH ₃
CF ₃	-	OCH ₃	CH ₃
OCHF ₂	-	OCH ₃	CH ₃

	(Position)		
R^3	$(R^4)_n$	R ⁵	\mathbb{R}^6
OCF ₃	-	OCH ₃	CH ₃
SO ₂ CH ₃	-	OCH ₃	CH ₃
Н	-	SCH ₃	CH ₃
F	-	SCH ₃	CH ₃
Cl	-	SCH ₃	CH ₃
Br	-	SCH ₃	CH ₃
I	-	SCH ₃	CH ₃
NO ₂	-	SCH ₃	CH ₃
CN	-	SCH ₃	CH ₃
CH ₃	-	SCH ₃	CH ₃
OCH ₃		SCH ₃	CH ₃
CF ₃	-	SCH ₃	CH ₃
OCHF ₂	-	SCH ₃	CH ₃
OCF ₃	-	SCH ₃	CH ₃
SO ₂ CH ₃	-	SCH ₃	CH ₃
Н	-	OC ₂ H ₅	CH ₃
F	-	OC ₂ H ₅	CH ₃
Cl	-	OC ₂ H ₅	CH ₃
Br	-	OC ₂ H ₅	CH ₃
I	-	OC ₂ H ₅	CH ₃
NO ₂	-	OC ₂ H ₅	CH ₃
CN	-	OC ₂ H ₅	CH ₃
CH ₃	-	OC ₂ H ₅	CH ₃
OCH ₃	-	OC ₂ H ₅	CH ₃
CF ₃	-	OC ₂ H ₅	CH ₃

	(Position)		
R^3	$(R^4)_n$	R ⁵	\mathbb{R}^6
OCHF ₂	_	OC ₂ H ₅	CH ₃
OCF ₃	_	OC ₂ H ₅	CH ₃
SO ₂ CH ₃	-	OC ₂ H ₅	CH ₃
Н	-	N(CH ₃) ₂	CH ₃
F	-	N(CH ₃) ₂	CH ₃
Cl	-	N(CH ₃) ₂	CH ₃
Br	-	N(CH ₃) ₂	CH ₃
I	-	N(CH ₃) ₂	CH ₃
NO ₂	-	N(CH ₃) ₂	CH ₃
CN	-	N(CH ₃) ₂	CH ₃
CH ₃	-	N(CH ₃) ₂	CH ₃
OCH ₃	-	N(CH ₃) ₂	CH ₃
CF ₃	-	N(CH ₃) ₂	CH ₃
OCHF ₂	-	N(CH ₃) ₂	CH ₃
OCF ₃		N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	-	N(CH ₃) ₂	CH ₃
Н	-	OCH ₃	
F	-	OCH ₃	\triangle
Cl	-	OCH ₃	\triangle
Br	-	OCH ₃	\triangle
I	-	OCH ₃	\triangle

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
NO ₂	-	OCH ₃	\triangle
CN	-	OCH ₃	\triangle
CH ₃	-	OCH ₃	\triangle
OCH ₃	-	OCH ₃	\triangle
CF ₃	-	OCH ₃	\triangle
OCHF ₂	-	OCH ₃	\triangle
OCF ₃	-	OCH ₃	\triangle
SO ₂ CH ₃		OCH ₃	\triangle
Н	(5-) Cl	CF ₃	CH ₃
F	(5-) Cl	CH ₃	CH ₃
Cl	(5-) Cl	OCH ₃	CH ₃
Br	(5-) Cl	Br	\triangle
Cl	(5-) Cl	CF ₃	CH ₃
NO ₂	(5-) Cl	CH ₃	CH ₃
Cl	(5-) Cl	SCH ₃	CH ₃
CH ₃	(5-) Cl	Cl	CH ₃
OCH ₃	(5-) Cl	OCH ₃	CH ₃

	(Position)		
\mathbb{R}^3	$(R^4)_n$	R ⁵	R ⁶
CF ₃	(5-) Cl	CF ₃	CH ₃
OCHF ₂	(5-) Cl	CH ₃	CH ₃
OCF ₃	(5-) Cl	CH ₃	CH ₃
SO ₂ CH ₃	(5-) Cl	OCH ₃	CH ₃

Group 2

Here, R^3 , $(R^4)_n$, R^5 and R^6 have, for example, the meanings given above in group 1.

Group 3

$$H_3C-N$$
 $H \rightarrow O$
 $H \rightarrow$

Here, R^3 , $(R^4)_n$, R^5 and R^6 have, for example, the meanings given above in group 1.

10

Group 4

Here, R^3 , $(R^4)_n$, R^5 and R^6 have, for example, the meanings given in the table below:

	(Position)		
\mathbb{R}^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) Cl	CF ₃	CH ₃
Cl	(2-) Cl	SCH ₃	CH ₃
Cl	(2-) Cl	SC ₂ H ₅	CH ₃
Cl	(2-) Cl	SC ₃ H ₇	CH ₃
Cl	(2-) Cl	SC ₃ H ₇ -i	CH ₃
Cl	(2-) Cl	s	CH ₃
Cl	(2-) Cl	S	СН3
Cl	(2-) Cl	s	CH ₃
Cl	(2-) Cl	S	CH ₃

 	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) Cl	∇	CH ₃
		s	
Cl	(2-) Cl	SCH=C=CH ₂	CH ₃
Cl	(2-) Cl	SCH ₂ CN	CH ₃
Cl	(2-) Cl	SCH ₂ CH ₂ CN	CH ₃
Cl	(2-) Cl	OCH ₃	CH ₃
Cl	(2-) Cl	OC ₂ H ₅	CH ₃
Cl	(2-) Cl	OC ₃ H ₇	CH ₃
Cl	(2-) Cl	OC ₃ H ₇ -i	CH ₃
Cl	(2-) Cl	OC ₄ H ₉	CH ₃
Cl	(2-) Cl	OCH ₂ CF ₃	CH ₃
Cl	(2-) Cl	∇	CH ₃
Cl	(2-) Cl	OC ₆ H ₅	CH ₃
Cl	(2-) Cl	Н	CH ₃
Cl	(2-) Cl	CH ₃	CH ₃
Cl	(2-) CI	C_2H_5	CH ₃
Cl	(2-) Cl	C ₃ H ₇	CH ₃
Cl	(2-) Cl	C ₃ H ₇ -i	CH ₃
Cl	(2-) Cl	C ₄ H ₉	CH ₃
Cl	(2-) Cl	C ₄ H ₉ -i	CH ₃
Cl	(2-) Cl	C ₄ H ₉ -s	CH ₃
Cl	(2-) Cl	C ₄ H ₉ -t	CH ₃
Cl	(2-) Cl	\triangle	CH ₃
Cl	(2-) Cl		CH ₃

	(Position)	1	T
2	(Position)	D5	R ⁶
R ³	$(R^4)_n$	R ⁵	
Cl	(2-) Cl	CH=CHCH ₃	CH ₃
Cl	(2-) Cl		CH₃
Cl	(2-) Cl	CI	CH ₃
Cl	(2-) Cl		CH ₃
Cl	(2-) Cl	N(CH ₃) ₂	CH ₃
Cl	(2-) Cl	N	CH ₃
Cl	(2-) Cl	Cl	CH ₃
Cl	(2-) Cl	Br	CH ₃
SO ₂ CH ₃	(2-) Cl	CF ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇	CH ₃
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	s	CH ₃
SO ₂ CH ₃	(2-) Cl	s	CH ₃
SO ₂ CH ₃	(2-) Cl	s	CH ₃

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	S	CH ₃
SO ₂ CH ₃	(2-) Cl	s	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH=C=CH ₂	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₂ CN	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₂ CH ₂ CN	CH ₃
SO ₂ CH ₃	(2-) Cl	OCH ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₄ H ₉	CH ₃
SO ₂ CH ₃	(2-) Cl	OCH ₂ CF ₃	CH ₃
SO ₂ CH ₃	(2-) Cl		CH₃
SO ₂ CH ₃	(2-) Cl	OC ₆ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	Н	CH ₃
SO ₂ CH ₃	(2-) Cl	CH ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -s	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -t	CH ₃

	(Position)	<u> </u>	
R^3	$(R^4)_n$	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	\triangle	CH ₃
SO ₂ CH ₃	(2-) CI		CH ₃
SO ₂ CH ₃	(2-) Cl	CH=CHCH ₃	CH ₃
SO ₂ CH ₃	(2-) CI		CH ₃
SO ₂ CH ₃	(2-) Cl	CI	CH ₃
SO ₂ CH ₃	(2-) Cl		CH ₃
SO ₂ CH ₃	(2-) Cl	N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	(2-) Cl	N	CH ₃
SO ₂ CH ₃	(2-) Cl	Cl	CH ₃
SO ₂ CH ₃	(2-) Cl	Br	CH ₃
Cl	(2-) SO ₂ CH ₃	CF ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇	CH ₃
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇ -i	CH ₃
Cl	(2-) SO ₂ CH ₃	s	CH ₃
Cl	(2-) SO ₂ CH ₃	S	CH₃

	(Position)		
\mathbb{R}^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	S	CH ₃
Cl	(2-) SO ₂ CH ₃	s	CH ₃
Cl	(2-) SO ₂ CH ₃	S	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH=C=CH ₂	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₂ CN	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₂ CH ₂ CN	CH ₃
C1	(2-) SO ₂ CH ₃	OCH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇	CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇ -i	CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₄ H ₉	CH ₃
Cl	(2-) SO ₂ CH ₃	OCH ₂ CF ₃	CH ₃
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₆ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	Н	CH ₃
CI	(2-) SO ₂ CH ₃	CH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇ -i	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -i	CH ₃

	(Position)		
R^3	$(R^4)_n$	\mathbb{R}^5	R ⁶
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -s	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -t	CH ₃
Cl	(2-) SO ₂ CH ₃	\triangle	CH ₃
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	CH=CHCH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	CI	CH ₃
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	N(CH ₃) ₂	CH ₃
Cl	(2-) SO ₂ CH ₃	N	CH ₃
Cl	(2-) SO ₂ CH ₃	CI	CH ₃
Cl	(2-) SO ₂ CH ₃	Br	CH ₃
Cl	(2-) Cl	CF ₃	
Cl	(2-) Cl	SCH ₃	
Cl	(2-) Cl	SC ₂ H ₅	
CI	(2-) Cl	SC ₃ H ₇	

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) Cl	SC ₃ H ₇ -i	
Cl	(2-) Cl	s	\triangle
Cl	(2-) Cl	s	
Cl	(2-) Cl	s	\triangle
Cl	(2-) Cl	s	\triangle
Cl	(2-) Cl	s	
Cl	(2-) Cl	SCH=C=CH ₂	\triangle
Cl	(2-) Cl	SCH₂CN	\triangle
Cl	(2-) Cl	SCH ₂ CH ₂ CN	\triangle
Cl	(2-) Cl	OCH ₃	\triangle
Cl	(2-) Cl	OC ₂ H ₅	

		,
_	*	170
	-	127
	March Later	Ī
	**	
	4	
	Ĭ.	i.
		-
	ř	ř
	10,00	
	1	
	197	
	E,	:==
	*	110
	12	
	There's said there would	
	ř.	F
	t demand	
	adfa	ρĨ

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) Cl	OC ₃ H ₇	\triangle
Cl	(2-) Cl	OC ₃ H ₇ -i	
Cl	(2-) Cl	OC ₄ H ₉	
Cl	(2-) Cl	OCH ₂ CF ₃	
Cl	(2-) Cl		
Cl	(2-) Cl	OC ₆ H ₅	
Cl	(2-) CI	Н	\triangle
Cl	(2-) Cl	CH ₃	\triangle
Cl	(2-) Cl	C ₂ H ₅	
Cl	(2-) Cl	C ₃ H ₇	\triangle
Cl	(2-) Cl	C ₃ H ₇ -i	
Cl	(2-) Cl	C ₄ H ₉	\triangle
Cl	(2-) Cl	C ₄ H ₉ -i	\triangle

	(Position)		
\mathbb{R}^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) Cl	C ₄ H ₉ -s	\triangle
Cl	(2-) Cl	C ₄ H ₉ -t	\triangle
Cl	(2-) Cl		\triangle
Cl	(2-) Cl	\sim	\triangle
Cl	(2-) Cl	CH=CHCH ₃	\triangle
Cl	(2-) Cl		\triangle
Cl	(2-) Cl	CI	
Cl	(2-) Cl		
Cl	(2-) Cl	N(CH ₃) ₂	\triangle
Cl	(2-) Cl	N	
Cl	(2-) Cl	Cl	
Cl	(2-) Cl	Br	

	(Position)		
R^3	$(R^4)_n$	R ⁵	\mathbb{R}^6
SO ₂ CH ₃	(2-) Cl	CF ₃	
SO ₂ CH ₃	(2-) Cl	SCH ₃	\triangle
SO ₂ CH ₃	(2-) CI	SC ₂ H ₅	
SO ₂ CH ₃	(2-) CI	SC₃H ₇	\triangle
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇ -i	\triangle
SO ₂ CH ₃	(2-) C1	s	
SO ₂ CH ₃	(2-) Cl	s	
SO ₂ CH ₃	(2-) Cl	s	
SO ₂ CH ₃	(2-) Cl	S	
SO ₂ CH ₃	(2-) Cl	s	
SO ₂ CH ₃	(2-) Cl	SCH=C=CH ₂	

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	SCH ₂ CN	\triangle
SO ₂ CH ₃	(2-) Cl	SCH ₂ CH ₂ CN	\triangle
SO ₂ CH ₃	(2-) Cl	OCH ₃	
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇	\triangle
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇ -i	\triangle
SO ₂ CH ₃	(2-) Cl	OC ₄ H ₉	\triangle
SO ₂ CH ₃	(2-) Cl	OCH ₂ CF ₃	\triangle
SO ₂ CH ₃	(2-) Cl		
SO ₂ CH ₃	(2-) Cl	OC ₆ H ₅	\triangle
SO ₂ CH ₃	(2-) Cl	Н	\triangle
SO ₂ CH ₃	(2-) Cl	CH ₃	
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	

	(Position)		
\mathbb{R}^3	$(R^4)_n$	\mathbb{R}^5	R ⁶
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	\triangle
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇ -i	\triangle
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉	\triangle
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -i	\triangle
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -s	\triangle
SO ₂ CH ₃	(2-) CI	C ₄ H ₉ -t	
SO ₂ CH ₃	(2-) Cl		
SO ₂ CH ₃	(2-) Cl		\triangle
SO ₂ CH ₃	(2-) Cl	CH=CHCH ₃	\triangle
SO ₂ CH ₃	(2-) Cl		\triangle
SO ₂ CH ₃	(2-) Cl	CI	
SO ₂ CH ₃	(2-) Cl		\triangle
SO ₂ CH ₃	(2-) Cl	N(CH ₃) ₂	

	(Position)	<u></u>	
\mathbb{R}^3	$(R^4)_n$	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	, N	\triangle
SO ₂ CH ₃	(2-) Cl	Cl	\triangle
SO ₂ CH ₃	(2-) Cl	Br	\triangle
Cl	(2-) SO ₂ CH ₃	CF ₃	\triangle
Cl	(2-) SO ₂ CH ₃	SCH ₃	\triangle
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	\triangle
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇	
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇ -i	
Cl	(2-) SO ₂ CH ₃	s	
Cl	(2-) SO ₂ CH ₃	s	
Cl	(2-) SO ₂ CH ₃	s	
Cl	(2-) SO ₂ CH ₃	S	

	(Position)		
\mathbb{R}^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	S	
Cl	(2-) SO ₂ CH ₃	SCH=C=CH ₂	\triangle
Cl	(2-) SO ₂ CH ₃	SCH ₂ CN	\triangle
Cl	(2-) SO ₂ CH ₃	SCH ₂ CH ₂ CN	\triangle
Cl	(2-) SO ₂ CH ₃	OCH ₃	\triangle
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	\triangle
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇	\triangle
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇ -1	\triangle
Cl	(2-) SO ₂ CH ₃	OC ₄ H ₉	\triangle
Cl	(2-) SO ₂ CH ₃	OCH ₂ CF ₃	\triangle
Cl	(2-) SO ₂ CH ₃		
Cl	(2-) SO ₂ CH ₃	OC ₆ H ₅	\triangle

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	Н	\triangle
Cl	(2-) SO ₂ CH ₃	CH ₃	\triangle
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	\triangle
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	\triangle
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇ -i	\triangle
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉	\triangle
CI	(2-) SO ₂ CH ₃	C ₄ H ₉ -i	\triangle
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -s	\triangle
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -t	\triangle
Cl	(2-) SO ₂ CH ₃	\triangle	\triangle
CI	(2-) SO ₂ CH ₃		\triangle
Cl	(2-) SO ₂ CH ₃	CH=CHCH ₃	\triangle
Cl	(2-) SO ₂ CH ₃		

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	CI	
Cl	(2-) SO ₂ CH ₃		
Cl	(2-) SO ₂ CH ₃	N(CH ₃) ₂	\triangle
Cl	(2-) SO ₂ CH ₃	N	\triangle
Cl	(2-) SO ₂ CH ₃	Cl	\triangle
Cl	(2-) SO ₂ CH ₃	Вг	\triangle
Cl	(2-) Cl	CF ₃	N(CH ₃) ₂
Cl	(2-) Cl	SCH ₃	N(CH ₃) ₂
Cl	(2-) Cl	SC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) Cl	SC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) Cl	SC ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) Cl	s	N(CH ₃) ₂
Cl	(2-) Cl	s	N(CH ₃) ₂
Cl	(2-) Cl	S	N(CH ₃) ₂

	(Position)		
R^3	(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) Cl	S	N(CH ₃) ₂
Cl	(2-) Cl	_s	N(CH ₃) ₂
Cl	(2-) Cl	SCH=C=CH ₂	N(CH ₃) ₂
Cl	(2-) Cl	SCH ₂ CN	N(CH ₃) ₂
Cl	(2-) Cl	SCH ₂ CH ₂ CN	N(CH ₃) ₂
Cl	(2-) Cl	OCH ₃	N(CH ₃) ₂
Cl	(2-) Cl	OC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) Cl	OC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) Cl	OC ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) Cl	OC ₄ H ₉	N(CH ₃) ₂
Cl	(2-) Cl	OCH ₂ CF ₃	N(CH ₃) ₂
Cl	(2-) Cl		N(CH ₃) ₂
Cl	(2-) Cl	OC ₆ H ₅	N(CH ₃) ₂
Cl	(2-) Cl	Н	N(CH ₃) ₂
Cl	(2-) Cl	CH ₃	N(CH ₃) ₂
Cl	(2-) Cl	C ₂ H ₅	N(CH ₃) ₂
Cl	(2-) Cl	C ₃ H ₇	N(CH ₃) ₂
Cl	(2-) Cl	C ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) Cl	C ₄ H ₉	N(CH ₃) ₂
Cl	(2-) Cl	C ₄ H ₉ -i	N(CH ₃) ₂
Cl	(2-) Cl	C ₄ H ₉ -s	N(CH ₃) ₂
Cl	(2-) Cl	C ₄ H ₉ -t	N(CH ₃) ₂

	(Position)		
R^3	(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) Cl	\triangle	N(CH ₃) ₂
Cl	(2-) Cl		N(CH ₃) ₂
Cl	(2-) Cl	CH=CHCH ₃	N(CH ₃) ₂
Cl	(2-) Cl		N(CH ₃) ₂
Cl	(2-) Cl	CI	N(CH ₃) ₂
CI	(2-) Cl		N(CH ₃) ₂
Cl	(2-) Cl	N(CH ₃) ₂	N(CH ₃) ₂
Cl	(2-) Cl	N	N(CH ₃) ₂
Cl	(2-) Cl	Cl	N(CH ₃) ₂
Cl	(2-) Cl	Br	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	CF ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SCH ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇ -i	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	S	N(CH ₃) ₂

	(Position)		
R^3	$(R^4)_n$	R^5	R ⁶
SO ₂ CH ₃	(2-) Cl	S	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	S	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SCH=C=CH ₂	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SCH ₂ CN	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SCH ₂ CH ₂ CN	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OCH ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇ -i	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₄ H ₉	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OCH ₂ CF ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl		N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₆ H ₅	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	Н	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	CH ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇ -i	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -i	N(CH ₃) ₂

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -t	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	\triangle	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	\bigcirc	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	CH=CHCH ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl		N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	Cl	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl		N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	N(CH ₃) ₂	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	N	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	Cl ·	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	Br	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	CF ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SCH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	5	N(CH ₃) ₂

	(Di4i)		T
2	(Position)	\mathbb{R}^5	$ _{R^6}$
R ³	(R ⁴) _n	R	
Cl	(2-) SO ₂ CH ₃	S	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	s	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	s	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	S	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SCH=C=CH ₂	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SCH ₂ CN	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SCH ₂ CH ₂ CN	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OCH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇ -i	$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	OC ₄ H ₉	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OCH ₂ CF ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₆ H ₅	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	Н	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	CH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C_2H_5	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C_3H_7	N(CH ₃) ₂

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -i	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -s	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -t	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	\triangle	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	\triangle	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	CH=CHCH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	CI	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
CI	(2-) SO ₂ CH ₃	N(CH ₃) ₂	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	N	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	Cl	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	Br	N(CH ₃) ₂
Cl	(2-) Cl	CH ₃	OCH ₃
Cl	(2-) Cl	C_2H_5	OCH ₃
Cl	(2-) Cl	C ₃ H ₇	OCH ₃
Cl	(2-) Cl	SCH ₃	OCH ₃
Cl	(2-) Cl	SC ₂ H ₅	OCH ₃
Cl	(2-) Cl	OCH ₃	OCH ₃

	(Position)		
R^3	$(R^4)_n$	R ⁵	R ⁶
Cl	(2-) Cl	OC ₂ H ₅	OCH ₃
Cl	(2-) Cl	CH ₃	OC ₂ H ₅
Cl	(2-) Cl	C ₂ H ₅	OC ₂ H ₅
Cl	(2-) Cl	C ₃ H ₇	OC ₂ H ₅
Cl	(2-) Cl	SCH ₃	OC ₂ H ₅
Cl	(2-) Cl	SC ₂ H ₅	OC ₂ H ₅
Cl	(2-) Cl	OCH ₃	OC ₂ H ₅
Cl	(2-) Cl	OC ₂ H ₅	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	CH ₃	OCH ₃
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	OCH ₃
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	OCH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₃	OCH ₃
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	OCH ₃
Cl	(2-) SO ₂ CH ₃	OCH ₃	OCH ₃
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	OCH ₃
Cl	(2-) SO ₂ CH ₃	CH ₃	OC ₂ H ₅
C1	(2-) SO ₂ CH ₃	C ₂ H ₅	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	SCH ₃	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	OCH ₃	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	Cl	OCH ₃
SO ₂ CH ₃	(2-) Cl	Br	OCH ₃
SO ₂ CH ₃	(2-) Cl	CH ₃	OCH ₃
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	OCH ₃
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	OCH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₃	OCH ₃
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	OCH ₃

	(Position)			
\mathbb{R}^3	$(R^4)_n$	R ⁵	R ⁶	
SO ₂ CH ₃	(2-) Cl	OCH ₃	OC ₂ H ₅	
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	OC ₂ H ₅	
SO ₂ CH ₃	(2-) Cl	CH ₃	OC ₂ H ₅	
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	OC ₂ H ₅	
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	OC ₂ H ₅	
SO ₂ CH ₃	(2-) Cl	SCH ₃	OC ₂ H ₅	
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	OC ₂ H ₅	
SO ₂ CH ₃	SO_2CH_3 (2-) Cl		OC ₂ H ₅	

Group 5

Here, R^3 , $(R^4)_n$, R^5 and R^6 have, for example, the meanings given above in group 4.

Group 6

$$H_3C$$
 $N-N$
 CH_3
 $N-R^6$
 R^5
(IB-3)

Here, R³, (R⁴)_n, R⁵ and R⁶ have, for example, the meanings given above in group 4.

10

5

Group 7

Here, R³, (R⁴)_n, R⁵ and R⁶ have, for example, the meanings given in the table below:

	(Position)		
\mathbb{R}^3	(Position) $(R^4)_n$	R ⁵	R^6
Н	-	CF ₃	CH ₃
F	-	CF ₃	CH ₃
Cl	-	CF ₃	CH ₃
Br	-	CF ₃	CH ₃

Group 8

10

Here, R^3 , $(R^4)_n$, R^5 and R^6 have, for example, the meanings given above in group 7.

Group 9

Here, R³, (R⁴)_n, R⁵ and R⁶ have, for example, the meanings given above in group 7.

5

Group 10

$$H_3C-N$$
 H
 $(R^4)_n$
 N
 N
 R^5
(IC-1)

Here, R^3 , $(R^4)_n$, R^5 and R^6 have, for example, the meanings given in the table below:

10

	(Position)				
\mathbb{R}^3	(Position) (R ⁴) _n	R ⁵	\mathbb{R}^6		
Н	(2-) F	CF ₃	CH ₃		
Н	(2-) Cl	CF ₃	CH ₃		
Н	(2-) Br	CF ₃	CH ₃		
Н	-	CF ₃	CH ₃		

The first with the cost of the state of the cost of th

Group 11

Here, R³, (R⁴)_n, R⁵ and R⁶ have, for example, the meanings given above in group 10.

Group 12

5

10

15

$$H_3C$$
 N
 CH_3
 $R^4)_n$
 N
 N
 R^6
 R^5
(IC-3)

Here, R^3 , $(R^4)_n$, R^5 and R^6 have, for example, the meanings given above in group 10.

The novel substituted benzoylpyrazoles of the general formula (I) have strong and selective herbicidal activity.

Novel substituted benzoylpyrazoles of the general formula (I) are obtained when

(a) pyrazoles of the general formula (II)

in which

 R^1 , R^2 and Y are as defined above,

15

20

are reacted with substituted benzoic acids of the general formula (III),

HO
$$(R^4)_n$$
 (III)

5 in which

 n, A, R^3, R^4 and Z are as defined above,

in the presence of a dehydrating agent, if appropriate in the presence of one or more reaction auxiliaries and if appropriate in the presence of a diluent,

or when

(b) pyrazoles of the general formula (II)

in which

 R^1 , R^2 and Y are as defined above,

are reacted with substituted benzoic acid derivatives of the general formula (IV)

(IV)

$$X$$
 A
 Z
 A
 Z

in which

 n, A, R^3, R^4 and Z are as defined above, and

- 5 X represents cyano, halogen or alkoxy,
 - or with corresponding carboxylic anhydrides -

if appropriate in the presence of one or more reaction auxiliaries and if appropriate in the presence of a diluent,

or when

10

15

20

25

(c) substituted benzoylpyrazoles of the general formula (Ia)

in which

 n, A, R^1, R^2, R^3, R^4 and Z are as defined above,

are reacted with compounds of the general formula (V)

H-Y (V)

in which

Y is as defined above, except for hydrogen,

- or, if appropriate, with corresponding isocyanates or isothiocyanates -

25

if appropriate in the presence of one or more reaction auxiliaries and if appropriate in the presence of a diluent,

- and, if appropriate, the resulting compounds of the formula (I) are subsequently subjected in a customary manner to electrophilic or nucleophilic and/or oxidation or reduction reactions within the scope of the definition of the substituents, or the compounds of the formula (I) are converted in a customary manner into salts.
- The compounds of the formula (I) can be converted by customary methods into other compounds of the formula (I) in accordance with the above definition, for example by nucleophilic substitution (for example R^5 : $Cl \rightarrow OC_2H_5$, SCH_3) or by oxidation (for example R^5 : $CH_2SCH_3 \rightarrow CH_2S(O)CH_3$).
- Using. for example, 3-chloro-5-hydroxy-1-methyl-pyrazole and 2-(3-carboxy-5-fluoro-benzyl)-5-ethyl-4-methoxy-2,4-dihydro-3H-1,2,4-triazol-3-one as starting materials, the course of the reaction in the process (a) according to the invention can be illustrated by the following formula scheme:

Using, for example, 3-cyano-5-hydroxy-1-ethyl-pyrazole and 2-(3-methoxycarbonyl-5-chloro-benzyl)-4-ethyl-5-methylthio-2,4-dihydro-3H-1,2,4-triazol-3-one as starting materials, the course of the reaction in the process (b) according to the invention can be illustrated by the following formula scheme:

10

15

20

Using, for example, 4-methyl-5-trifluoromethyl-2-[3-chloro-4-(1-ethyl-5-hydroxy-pyrazol-4-yl-carbonyl)-phenyl]-2,4-dihydro-3H-1,2,4-triazol-3-one and benzoyl chloride as starting materials, the course of the reaction in the process (c) according to the invention can be illustrated by the following formula scheme:

The formula (II) provides a general definition of the pyrazoles to be used as starting materials in the process (a) according to the invention for preparing compounds of the general formula (I). In the general formula (II), R^1 . R^2 and Y preferably have those meanings which have already been mentioned above, in connection with the description of the compounds of the general formula (I) according to the invention, as being preferred, particularly preferred, very particularly preferred or most preferred for R^1 , R^2 and Y.

The starting materials of the general formula (II) are known and/or can be prepared by processes known per se (cf. EP-A-240001).

The formula (III) provides a general definition of the benzoic acids further to be used as starting materials in the process (a) according to the invention. In the formula (III), n, A, R^3 , R^4 and Z preferably have those meanings which have already been mentioned above, in connection with the description of the compounds of the

formula (I) according to the invention, as being preferred, particularly preferred, very particularly preferred or most preferred for n, A, R^3 , R^4 and Z.

Except for 2-(5-carboxy-2,4-dichlorophenyl)-4-difluoromethyl-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one - alias 2,4-dichloro-5-(4-difluoromethyl-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl)-benzoic acid (CAS Reg. No. 90208-77-8) and 2-(5-carboxy-2,4-dichloro-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-one - alias 2,4-dichloro-5-(4,5-dihydro-3,4-dimethyl-5-oxo-1H-1,2,4-triazol-1-yl)-benzoic acid (CAS Reg. No. 90208-76-7) - the starting materials of the general formula (III) have hitherto not been disclosed in the literature. However, except for 2-(5-carboxy-2,4-dichloro-phenyl)-4-difluoromethyl-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one and 2-(5-carboxy-2,4-dichloro-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-one (cf. JP-A-58225070 - cited in Chem. Abstracts 100:209881, JP-A-02015069 - cited in Chem. Abstracts 113:23929), they are the subject of an earlier application which, however, has not been published earlier (cf. DE-A-19833360).

The substituted benzoic acids of the general formula (III) are obtained when benzoic acid derivatives of the general formula (VI)

$$X^{1}$$
 A
 Z
 A
 Z
 (VI)

20

5

10

15

in which

 n, A, R^3 and R^4 and Z are as defined above, and

25 X¹ represents cyano, carbamoyl, halogenocarbonyl or alkoxycarbonyl,

are reacted with water, if appropriate in the presence of a hydrolysis auxiliary, such as, for example, sulfuric acid, at temperatures between 50°C and 120°C (cf. the Preparation Examples).

10

15

20

30

The formula (IV) provides a general definition of the substituted benzoic acid derivatives to be used as starting materials in the process (b) according to the invention for preparing compounds of the general formula (I). In the general formula (IV), n, A, R³, R⁴ and Z preferably have those meanings which have already been mentioned above, in connection with the description of the compounds of the general formula (I) according to the invention, as being preferred, particularly preferred, very particularly preferred or most preferred for n, A, R³, R⁴ and Z; X preferably represents cyano, fluorine, chlorine, bromine or C₁-C₄-alkoxy, in particular chlorine, methoxy or ethoxy.

The starting materials of the general formula (IV) – and the precursors of the general formula (VI) - are known and/or can be prepared by processes known per se (cf. DE-A-3839480, DE-A-4239296, EP-A-597360, EP-A-609734, DE-A-4303676, EP-A-617026, DE-A-4405614, US-A-5378681).

The formula (Ia) provides a general definition of the substituted benzoylpyrazoles to be used as starting materials in the process (c) according to the invention for preparing compounds of the general formula (I). In the general formula (Ia), n, A, R^1 , R^2 , R^3 , R^4 and Z preferably have those meanings which have already been mentioned above, in connection with the description of the compounds of the general formula (I) according to the invention, as being preferred, particularly preferred, very particularly preferred or most preferred for n, A, R^1 , R^2 , R^3 , R^4 and Z.

The starting materials of the general formula (Ia) are novel compounds according to the invention; they can be prepared by the processes (a) and (b) according to the invention.

The formula (V) provides a general definition of the compounds further to be used as starting materials in the [lacuna] (c) according to the invention. In the general formula (V), Y preferably has that meaning which has already been mentioned above, in connection with the description of the compounds of the general formula (I)

according to the invention, as being preferred, particularly preferred, very particularly preferred or most preferred for Y.

The starting materials of the general formula (V) are known chemicals for synthesis.

5

The process (a) according to the invention for preparing the novel substituted benzoylpyrazoles of the general formula (I) is carried out using a dehydrating agent. Suitable dehydrating agents are the customary chemicals suitable for binding water.

10 Examp

Examples which may be mentioned are dicyclohexylcarbodiimide and carbonyl-bisimidazole.

A particularly suitable dehydrating agent which may be mentioned is dicyclohexylcarbodiimide.

15

The process (a) according to the invention for preparing the novel substituted benzoylpyrazoles of the general formula (I) is, if appropriate, carried out using a reaction auxiliary.

20

Examples of suitable reaction auxiliaries which may be mentioned are sodium cyanide, potassium cyanide, acetone cyanohydrin, 2-cyano-2-(trimethylsilyloxy)-propane and trimethylsilyl cyanide.

25

A particularly suitable reaction auxiliary which may be mentioned is trimethylsilyl cyanide.

30

The process (b) according to the invention for preparing the novel substituted benzoylpyrazoles of the general formula (I) is, if appropriate, carried out using reaction auxiliaries.

Examples of suitable reaction auxiliaries which may be mentioned are (conc.) sulfuric acid, zinc chloride, aluminum chloride, and boron fluoride.

10

15

20

25

The processes according to the invention for preparing the novel substituted benzoylpyrazoles of the general formula (I) are, if appropriate, carried out using further reaction auxiliaries. Suitable (further) reaction auxiliaries for the processes according to the invention are, in general, basic organic nitrogen compounds, such as, for example, trimethylamine, triethylamine, tripropylamine, tributylamine, ethyl-di1 sopropylamine, N,N-dimethyl-cyclohexylamine, dicyclohexylamine, ethyl-dicyclohexylamine, N,N-dimethyl-aniline, N,N-dimethyl-benzylamine, pyridine, 2-methyl3-methyl-, 4-methyl-, 2,4-dimethyl-, 2,6-dimethyl-, 3,4-dimethyl- and 3,5-dimethylpyridine, 5-ethyl-2-methyl-pyridine, 4-dimethylamino-pyridine, N-methyl-piperidine,
1,4-diazabicyclo[2,2,2]-octane (DABCO), 1,5-diazabicyclo[4,3,0]-non-5-ene (DBN),
or 1,8-diazabicyclo[5,4,0]-undec-7-ene (DBU).

Suitable diluents for carrying out the processes (a), (b) and (c) according to the invention are especially inert organic solvents. These include, in particular, aliphatic, alicyclic or aromatic, optionally halogenated hydrocarbons, such as, for example, benzine, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, petroleum ether, hexane, cyclohexane, dichloromethane, chloroform, carbon tetrachloride or 1,4-dichloro-ethane; ethers, such as diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether or ethylene glycol diethyl ether; ketones, such as acetone, butanone or methyl isobutyl ketone; nitriles, such as acetonitrile, propionitrile or butyronitrile; amides, such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-formanilide, N-methyl-pyrrolidone or hexamethylphosphoric triamide; esters such as methyl acetate or ethyl acetate, sulfoxides, such as dimethyl sulfoxide.

When carrying out the processes (a), (b) and (c) according to the invention, the reaction temperatures can be varied within a relatively wide range. In general, the processes are carried out at temperatures between 0°C and 150°C, preferably between 10°C and 120°C.

The processes (a), (b) and (c) according to the invention are generally carried out under atmospheric pressure. However, it is also possible to carry out the processes according to the invention under elevated or reduced pressure - in general between 0.1 bar and 10 bar.

5

10

For carrying out the processes (a), (b) and (c) according to the invention, the starting materials are generally employed in approximately equimolar amounts. However, it is also possible to use a relatively large excess of one of the components. The reaction is generally carried out in a suitable diluent in the presence of a dehydrating agent, and the reaction mixture is generally stirred for a number of hours at the required temperature. Work-up is carried out by customary methods (cf. the Preparation Examples).

15

The active compounds according to the invention can be used as defoliants, desiccants, haulm killers and, especially, as weed killers. By weeds in the broadest sense there are to be understood all plants which grow in locations where they are undesired. Whether the substances according to the invention act as total or selective herbicides depends essentially on the amount used.

20

According to the invention, it is possible to treat all plants and parts of plants. By plants are understood here all plants and plant populations such as desired and undesired wild plants or crop plants (including naturally occurring crop plants). Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including transgenic plants and including plant varieties which may or may not be protected by plant variety protection rights. Parts of plants are to be understood as meaning all above-ground and below-ground parts and organs of plants, such as shoot, leaf, flower and root, examples which may be mentioned being leaves, needles, stems, trunks, flowers, fruit-bodies, fruits and seeds and also roots, tubers and rhizomes. Parts of plants also include crops, and vegetative and generative propagation material, for example seedlings, tubers, rhizomes, cuttings and seeds.

30

25

10

15

25

The treatment of the plants and parts of plants according to the invention with the active compounds is carried out directly or by action on their environment, habitat or storage area according to customary treatment methods, for example by dipping, spraying, evaporating, atomizing, broadcasting, brushing-on and, in the case of propagation material, in particular in the case of seeds, furthermore by single- or multi-layer coating.

The active compounds according to the invention can be used, for example, in connection with the following plants:

<u>Dicotyledonous weeds of the genera:</u> Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

<u>Dicotyledonous crops of the genera:</u> Gossypium, Glycine, Beta, Daucus, Phaseolus, 20 Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monocotyledonous weeds of the genera: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera, Aegilops, Phalaris.

Monocotyledonous crops of the genera: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

10

15

20

25

However, the use of the active compounds according to the invention is in no way restricted to these genera, but also extends in the same manner to other plants.

Depending on the concentration, the active compounds according to the invention are suitable for total weed control, for example on industrial terrain and rail tracks and on paths and areas with or without tree growth. Equally, the active compounds according to the invention can be employed for controlling weeds in perennial crops, for example forests, ornamental tree plantings, orchards, vineyards, citrus groves, nut orchards, banana plantations, coffee plantations, tea plantations, rubber plantations, oil palm plantations, cocoa plantations, soft fruit plantings and hop fields, on lawns and turf and pastures and for selective weed control in annual crops.

The compounds of the formula (I) according to the invention have strong herbicidal activity and a broad activity spectrum when applied to the soil and on above-ground parts of plants. To a certain extent, they are also suitable for selective control of monocotyledonous and dicotyledonous weeds in monocotyledonous and dicotyledonous crops, both by the pre-emergence and by the post-emergence method.

The active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusts, pastes, soluble powders, granules, suspoemulsion concentrates, natural and synthetic substances impregnated with active compound, and microencapsulations in polymeric substances.

These formulations are produced in a known manner, for example by mixing the active compounds with extenders, that is to say liquid solvents and/or solid carriers, optionally with the use of surfactants, that is to say emulsifiers and/or dispersants and/or foam formers.

If the extender used is water, it is also possible to use, for example, organic solvents as auxiliary solvents. Liquid solvents which are mainly suitable are: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated

aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols, such as butanol or glycol, and also their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulfoxide, and water.

Suitable solid carriers are: for example ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and silicates; suitable solid carriers for granules are: for example crushed and fractionated natural rocks, such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic meals, and granules of organic material, such as sawdust, coconut shells, maize cobs and tobacco stalks; suitable emulsifiers and/or foam formers are: for example nonionic and anionic emulsifiers such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfonates and protein hydrolyzates; suitable dispersants are: for example lignosulfite waste liquors and methylcellulose.

20

5

10

15

Tackifiers, such as carboxymethylcellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations. Other possible additives are mineral and vegetable oils.

25

30

It is possible to use colorants, such as inorganic pigments, for example iron oxide, titanium oxide, Prussian blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

10

15

20

25

30

The formulations generally comprise between 0.1 and 95 per cent by weight of active compound, preferably between 0.5 and 90%.

For controlling weeds, the active compounds according to the invention, as such or in the form of their formulations, can also be used as mixtures with known herbicides, finished formulations or tank mixes being possible.

Possible components for the mixtures are known herbicides, for example

acetochlor, acifluorfen(-sodium), aclonifen, alachlor, alloxydim(-sodium), ametryne, amidochlor, amidosulfuron, anilofos, asulam, atrazine, azafenidin, azimsulfuron, benazolin(-ethyl), benfuresate, bensulfuron(-methyl), bentazon, benzofenap, benzoylprop(-ethyl), bialaphos, bifenox, bispyribac(-sodium), bromobutide, bromofenoxim, bromoxynil, butachlor, butroxydim, butylate, cafenstrole, caloxydim, carbetamide, carfentrazone(-ethyl), chlomethoxyfen, chloramben, chloridazon, chlorimuron(ethyl), chlornitrofen, chlorsulfuron, chlortoluron, cinidon(-ethyl), cinmethylin, cinosulfuron, clethodim, clodinafop(-propargyl), clomazone, clomeprop, clopyralid, clopyrasulfuron(-methyl), cloransulam(-methyl), cumyluron, cyanazine, cybutryne, cycloate, cyclosulfamuron, cycloxydim, cyhalofop(-butyl), 2,4-D, 2,4-DB, 2,4-DP, desmedipham, diallate, dicamba, diclofop(-methyl), diclosulam, diethatyl(-ethyl), difenzoquat, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimexyflam, dinitramine, diphenamid, diquat, dithiopyr, diuron, dymron, epoprodan, EPTC, esprocarb, ethalfluralin, ethametsulfuron(methyl), ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop(-Pethyl), flamprop(-isopropyl), flamprop(-isopropyl-L), flamprop(-methyl), flazasulfuron, fluazifop(-P-butyl), fluazolate, flucarbazone, flufenacet, flumetsulam, flumiclorac(-pentyl), flumioxazin, flumipropyn, flumetsulam, fluometuron, fluorochloridone, fluoroglycofen(-ethyl), flupoxam, flupropacil, flurpyrsulfuron(-methyl, -sodium), flurenol(-butyl), fluridone, fluroxypyr(-meptyl), flurprimidol, flurtamone, fluthiacet(-methyl), fluthiamide, fomesafen, glufosinate(-ammonium), glyphosate(isopropylammonium), halosafen, haloxyfop(-ethoxyethyl), haloxyfop(-P-methyl), hexazinone, imazamethabenz(-methyl), imazamethapyr, imazamox, imazapic, imaza-

10

15

25

30

pyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, lactofen, lenacil, linuron, MCPA, MCPP, mefenacet, mesotrione, metamitron, metazachlor, methabenzthiazuron, metobenzuron, metobromuron, (alpha-)metolachlor, metosulam, metoxuron, metribuzin, metsulfuron(-methyl), molinate, monolinuron, naproanilide, napropamide, neburon, nicosulfuron, norflurazon, orbencarb, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, pelargonsäure, pendimethalin, pentoxazone, phenmedipham, picolinafen, piperophos, pretilachlor, primisulfuron(-methyl), prometryn, propachlor, propanil, propaquizafop, propisochlor, propyzamide, prosulfocarb, prosulfuron, pyraflufen(-ethyl), pyrazolate, pyrazosulfuron(-ethyl), pyrazoxyfen, pyribenzoxim, pyributicarb, pyridate, pyriminobac(-methyl), pyrithiobac(-sodium), quinchlorac, quinmerac, quinoclamine, quizalofop(-P-ethyl), quizalofop(-P-tefuryl), rimsulfuron, sethoxydim, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron(-methyl), sulfosate, sulfosulfuron, tebuthiuron, tepraloxydim, terbuthylazine, terbutryn, thiafluamide, thiazopyr, thidiazimin, thifensulfuron(-methyl), thiobencarb, tiocarbazil, tralkoxydim, triallate, triasulfuron, tribenuron(-methyl), triclopyr, tridiphane, trifluralin, triflusulfuron and tritosulfuron.

A mixture with other known active compounds, such as fungicides, insecticides, acaricides, nematicides, bird repellents, plant nutrients and agents which improve soil structure, is also possible.

The active compounds can be used as such, in the form of their formulations or in the use forms prepared therefrom by further dilution, such as ready-to-use solutions, suspensions, emulsions, powders, pastes and granules. They are used in the customary manner, for example by watering, spraying, atomizing, scattering.

The active compounds according to the invention can be applied both before and after emergence of the plants. They can also be incorporated into the soil before sowing.

The first control of the control of the first contr

The amount of active compound used can vary within a relatively wide range. It depends essentially on the nature of the desired effect. In general, the amounts used are between 1 g and 10 kg of active compound per hectare of soil surface, preferably between 5 g and 5 kg per ha.

5

The preparation and the use of the active compounds according to the invention can be seen from the examples below.

Preparation Examples:

Example 1

$$H_5C_2$$
 H
 N
 N
 N
 N
 N
 N
 N
 CF_3

5

10

15

At room temperature (about 20°C), a mixture of 1.64 g (5 mmol) of 4-methyl-5trifluoromethyl-2-(3-chloro-4-carboxy-phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one, 0.62 g (5.5 mmol) of 1-ethyl-5-hydroxy-pyrazole and 40 ml of acetonitrile is admixed with stirring with 1.13 g (5.5 mmol) of dicyclohexylcarbodiimide, and the reaction mixture is stirred at room temperature for 16 hours. 1.0 g (10 mmol) of triethylamine and 0.2 g (2 mmol) of trimethylsilyl cyanide are then added, and the mixture is stirred at room temperature for three days. 60 ml of a 2% strength aqueous sodium carbonate solution are then added, and the mixture is stirred at room temperature for three hours. The precipitated dicyclohexylurea is removed by filtration with suction, and the mother liquor is extracted twice with diethyl ether. With stirring, the aqueous phase is adjusted by addition of conc. hydrochloric acid to a pH of about 1. The oily product that separates off during the addition is extracted with methylene chloride, and the extraction solution is dried with magnesium sulfate and filtered. From the filtrate, the solvent is carefully distilled off under waterpump vacuum.

20

This gives 1.5 g (72% of theory) of 4-methyl-5-trifluoromethyl-2-[3-chloro-4-(1ethyl-5-hydroxy-pyrazol-4-yl-carbonyl)-phenyl]-2,4-dihydro-3H-1,2,4-triazol-3-one as an amorphous product.

25

logP (determined at pH≈2): 2.63.

Similarly to Example 1, and in accordance with the general description of the preparation process according to the invention, it is also possible to prepare, for example, the compounds of the general formula (I) - or those of the formulae (IA), (IB) or (IC) - listed in Table 1 below.

5

Y
$$R^{1}$$
 R^{2} R^{2} R^{3} R^{5} (IB)

Examples of the compounds of the formula (I), (IA), (IB), (IC) Table 1: Here, Y in each case represents hydrogen

						(Posi-			(Formula)
Ex.	Α	Q	R ¹	R ²	R^3	tion)	R ⁵	R ⁶	Physical
No.						$(R^4)_n$			data
2	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	OC ₂ H ₅	СН3	(IA)
									$logP = 2.34^{a}$
3	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	SCH ₃	CH ₃	(IA)
									$logP = 2.22^{a}$
4	CH ₂	0	C ₂ H ₅	Н	SO ₂ CH ₃	-	SCH ₃	CH ₃	(IA)
						ļ			$logP = 1.24^{a}$
5	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	SC ₂ H ₅	CH ₃	(IA)
	·								$logP = 2.58^{a}$
6	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	SC ₃ H ₇ -i	CH ₃	(IA)
									$logP = 2.90^{a}$
7	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	OCH ₃	\wedge	(IA)
									$logP = 2.28^{a}$
8	CH ₂	0	C ₂ H ₅	Н	F	-	N(CH ₃) ₂	CH ₃	(IA)
					1				logP = 1.61 a)
9	CH ₂	0	CH ₃	CH ₃	F	-	N(CH ₃) ₂	CH ₃	(IA)
									$logP = 1.32^{a}$
10	CH ₂	0	CH ₃	CH ₃	F	-	OCH ₃	\wedge	(IA)
									$logP = 1.50^{a}$
11	CH ₂	0	CH ₃	CH ₃	F	-	OC ₂ H ₅	\wedge	(IA)
=									$logP = 1.80^{a}$
12	CH ₂	0	C ₂ H ₅	Н	Br	-		CH ₃	(IA)
							s		$logP = 2.69^{a}$
13	_	0	C ₂ H ₅	Н	Н	(6-) CF ₃	CF ₃	CH ₃	(IB)
							-		$logP = 2.83^{a}$
									_
14	-	0	C ₂ H ₅	Н	Н	(2-) Cl	CH ₃	CH ₃	(IC)
					!				$logP = 1.71^{a}$
15	-	0	C ₂ H ₅	Н	Н	-	CF ₃	CH ₃	(IA)
		<u>.</u>							$logP = 1.95^{a}$

					T	(Posi-			(Formula)
Ex.	A	Q	R^{1}	\mathbb{R}^2	\mathbb{R}^3	tion)	R ⁵	R ⁶	Physical
No.						$(\mathbb{R}^4)_n$			data
16	-	0	C ₂ H ₅	Н	Cl	-	CF ₃	CH ₃	(IA)
									$logP = 2.47^{a}$
17	CH ₂	0	C_2H_5	Н	Cl	(2-) Cl	CF ₃	CH ₃	(IB)
									$logP = 2.30^{a}$
18	CH ₂	0	C ₂ H ₅	Н	CI	(2-) Cl	SCH ₃	CH ₃	(IB)
									$logP = 1.91^{a}$
19	CH ₂	0	C ₂ H ₅	Н	CI	(2-) Cl	OC ₂ H ₅	CH ₃	(IB)
									$logP = 2.01^{a}$
20	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl			(IB)
									$logP = 2.14^{a}$
21	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	OCH ₃	CH ₃	(IB)
									$logP = 1.69^{a}$
22	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	OC ₃ H ₇ -i	CH ₃	(IB)
									$logP = 2.31^{a}$
23	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	OCH ₂ CF ₃	CH ₃	(IB)
									$logP = 2.33^{a}$
24	CH ₂	0	C_2H_5	Н	Cl	(2-) Cl	Br	CH ₃	(IB)
									$logP = 1.81^{-a}$
25	CH ₂	0	C_2H_5	Н	Cl	(2-) Cl	Н	CH ₃	(IB)
									$logP = 1.28^{a}$
26	CH ₂	0	C_2H_5	Н	Cl	(2-) Cl		CH ₃	(IB)
									$logP = 1.82^{a}$
27	-	0	C ₂ H ₅	Н	Br	-	CF ₃	CH ₃	(IA)
									$logP = 2.55^{a}$
28	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	N(CH ₃) ₂	CH ₃	(IB)
									$\log P = 1.77^{a}$
29	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	CH ₃	CH ₃	(IB)
									$logP = 1.38^{a}$
30	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	$R^5 + R^6$:	(cF. R ⁵)	(IB)
							(CH ₂) ₄		$logP = 1.55^{a}$
31	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	OCH ₃		(IB)
									$\log P = 1.99^{a}$

<u></u>	 _	T				(Posi-			(Formula)
Ex.	A	Q	\mathbb{R}^1	R^2	R ³	tion)	R ⁵	R ⁶	Physical
No.						$(\mathbb{R}^4)_n$			data
32	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	OC ₂ H ₅		(IB)
									$logP = 2.31^{a}$
33	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	OC ₃ H ₇ -i		(IB)
									$logP = 4.64^{a}$
34	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	OCH ₂ CF ₃		(IB)
									$logP = 2.65^{a}$
35	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) CI	SCH ₃		(IB)
									$logP = 2.27^{a}$
36	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	CH ₃		(IB)
									$\log P = 1.64^{a}$
37	CH ₂	0	C ₂ H ₅	Н	C1	(2-) Cl	N(CH ₃) ₂		(IB)
									$logP = 2.04^{a}$
38	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) Cl	C ₂ H ₅	OC ₂ H ₅	(IB)
		-							$logP = 2.16^{a}$
39	CH ₂	0	CH ₃	CH ₃	Cl	(2-) Cl	Br	CH ₃	(IB)
									$logP = 1.52^{a}$
40	CH ₂	0	CH ₃	Н	Cl	(2-) Cl	Br	CH ₃	(IB)
				ļ	ļ				$\log P = 1.53^{a}$
41	CH ₂	0	C_2H_5	CH ₃	Cl	(2-) Cl	SCH ₃	CH ₃	(IB)
									$\log P = 1.91^{a}$
42	CH ₂	0	C_2H_5	CH ₃	Cl	(2-) Cl	OC ₂ H ₅	CH ₃	(IB)
				<u> </u>					$\log P = 2.02^{a}$
43	CH ₂	0	C_2H_5	CH ₃	Cl	(2-) Cl	OCH ₃	CH ₃	(IB)
				ļ <u> </u>	-				$\log P = 1.71^{\text{ a}}$
44	CH ₂	0	C_2H_5	CH ₃	Cl	(2-) CI	Br	CH ₃	(IB)
		_	ļ <u>.</u>	ļ					$\log P = 1.81^{a}$
45	CH ₂	0	C_2H_5	CH ₃	Cl	(2-) CI	CH ₃	CH ₃	(IB)
				-	-				$\log P = 1.40^{\text{ a}}$
46	CH ₂	0	t- C ₄ H ₉	CH ₃	Cl	(2-) Cl	SCH ₃	CH ₃	(IB)
		_		1	1				$\log P = 3.30^{\text{ a}}$
47	CH ₂	0	t- C ₄ H ₉	CH ₃	Cl	(2-) Cl	OC ₂ H ₅	CH ₃	(IB)
L			C4F19				<u></u>		$logP = 3.44^{a}$

	T	T				(Posi-			(Formula)
Ex.	A	Q	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	tion)	R ⁵	R ⁶	Physical
No.						$(R^4)_n$			data
48	CH ₂	0	t-	CH ₃	Cl	(2-) Cl	OCH ₃	CH ₃	(IB)
			C ₄ H ₉						$logP = 3.02^{a}$
49	CH ₂	0	t-	CH ₃	Cl	(2-) Cl	Br	CH ₃	(IB)
			C ₄ H ₉						$logP = 3.19^{a}$
50	CH ₂	0	t-	CH ₃	Cl	(2-) Cl	CH ₃	CH ₃	(IB)
			C ₄ H ₉						$logP = 2.53^{a}$
51	CH ₂	0	CH ₃	CH ₃	Cl	(2-) Cl	SCH ₃	CH ₃	(IB)
									$logP = 1.66^{a}$
52	CH ₂	0	CH ₃	CH ₃	Cl	(2-) Cl	OC ₂ H ₅	CH ₃	(IB)
									$logP = 1.76^{a}$
53	CH ₂	0	CH ₃	CH ₃	Cl	(2-) Cl	OCH ₃	CH ₃	(IB)
									$logP = 1.48^{a}$
54	CH ₂	0	CH ₃	CH ₃	Cl	(2-) Cl	CH ₃	CH ₃	(IB)
i.									$logP = 1.20^{a}$
55	CH ₂	0	CH ₃	Н	Cl	(2-) Cl	SCH ₃	CH ₃	(IB)
									$logP = 1.67^{a}$
56	CH ₂	0	CH ₃	Н	Cl	(2-) Cl	OC ₂ H ₅	CH ₃	(IB)
									$logP = 1.77^{a}$
57	CH ₂	0	CH ₃	Н	Cl	(2-) Cl	OCH ₃	CH₃	(IB)
									$logP = 1.48^{a}$
58	CH ₂	0	CH ₃	Н	Cl	(2-) Cl	CH ₃	CH ₃	(IB)
							-		$logP = 1.19^{a}$
59	CH ₂	0	C_2H_5	Н	OCH ₃	(2-)	OC ₂ H ₅	CH ₃	(IC)
			:			NO ₂			$logP = 1.99^{a}$
60	CH ₂	0	C ₂ H ₅	Н	OCH ₃	(2-)	SCH ₃	CH ₃	(IC)
İ						NO ₂			$logP = 1.92^{a}$
61	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	SCH ₃	CH ₃	(IA-Na salt)
62	CH ₂	0	C ₂ H ₅	Н	Cl	(2-) F	SCH ₃	CH ₃	(IB)
									$logP = 1.99^{a}$
63	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	Н	CH ₃	(IA)
64	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	CH ₃	CH ₃	(IA)
									$logP = 1.80^{a}$

						(Posi-	T		(Formula)
Ex.	A	Q	R ¹	\mathbb{R}^2	R ³	tion)	R ⁵	R ⁶	Physical
No.						$(\mathbb{R}^4)_n$			data
65	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	CH ₂ OCH ₃	CH ₃	(IA)
									$logP = 1.98^{a}$
66	CH ₂	0	C ₂ H ₅	Н	CF ₃	-	OCH ₃	CH ₃	(IA)
									$logP = 2.27^{a}$
67	CH ₂	0	C ₂ H ₅	Н	SO ₂ CH ₃	-	CF ₃	CH ₃	(IA)
									$\log P = 1.60^{a}$
68	CH ₂	0	C ₂ H ₅	Н	SO ₂ CH ₃	-	OCH ₂ CF ₃	CH ₃	(IA)
									$\log P = 1.73^{a}$
69	CH ₂	0	C ₂ H ₅	Н	F	(2-) CI	CH ₃	CH ₃	(IB)
									$logP = 1.27^{a}$
70	CH ₂	0	C ₂ H ₅	Н	F	(2-) Cl	SCH ₃	CH ₃	(IB)
									$\log P = 1.76^{a}$
71	CH ₂	0	C_2H_5	Н	F	(2-) Cl	OCH ₃	CH ₃	(IB)
									$logP = 1.55^{a}$
72	CH ₂	0	C_2H_5	Н	F	(2-) Cl	$N(CH_3)_2$	CH₃	(IB)
									$logP = 1.62^{a}$
73	CH ₂	0	C_2H_5	Н	SO ₂ CH ₃	(2-) Cl	SCH ₃	CH ₃	(IB)
				ļ					m.p.: 204°C
74	CH ₂	0	C_2H_5	Н	SO ₂ CH ₃	(2-) Cl	OCH ₃	CH ₃	(IB)
									m.p.: 183°C
75	CH ₂	0	C_2H_5	Н	SO ₂ CH ₃	(2-) Cl	OCH ₂ CF ₃	CH ₃	(IB)
									m.p.: 192°C
76	CH ₂	0	C_2H_5	Н	SO ₂ CH ₃	(2-) Cl	CH ₃	CH ₃	(IB)
									m.p.: 200°C
77	CH ₂	0	C_2H_5	H	SO ₂ CH ₃	(2-) Cl	OCH ₃		(IB)
									m.p.: 205°C
78	CH ₂	0	C ₂ H ₅	Н	SO ₂ CH ₃	(2-) CI	SCH ₃		(IB)
									m.p.: 233°C
79	CH ₂	0	C ₂ H ₅	Н	SO ₂ CH ₃	(2-) Cl	CH ₃		(IB)
									m.p.: 223°C
80	CH ₂	0	C_2H_5	Н	SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	OC ₂ H ₅	(IB)
									m.p.: 163°C

Similarly to Example 1, and in accordance with the general description of the preparation process according to the invention, it is also possible to prepare, for example, the compounds of the general formula (I) - or of the formula (ID) - listed in Table 2 below.

The first state of the first sta

 $\underline{Table\ 2:}\ Further\ examples\ of\ the\ compounds\ of\ the\ formula\ \ (I)$

Ex. No.	R ¹	R ²	(Position)	(Position) (R ⁴) _n	(Position) -A-Z	Y	Physical data
ID-1	C ₂ H ₅	Н	(2-) CI	(4-) CI	(3-)	Н	logP = 1.64 a)
ID-2	C ₂ H ₅	Н	(2-) Cl	(4-) Cl	(3-) O CH	Н	logP = 1.77 a)
ID-3	CH ₃	Н	(2-) Cl	(4-) Cl	(3-) O CH	Н	logP = 1.52 ^{a)}
ID-4	CH ₃	СН3	(2-) CI	(4-) Cl	(3-) O CH	Н	logP = 1.50 ^{a)}
ID-5	C ₂ H ₅	CH ₃	(2-) Cl	(4-) Cl	(3-) O CH	н	logP = 1.72 a)
ID-6	t- C4H9	СН3	(2-) Cl	(4-) Cl	(3-) O CH	Н	logP = 3.01 a)

5	=
.,1,1,1	
1997	-
Section 19	
*	a,
£	Em.
Marie M	1110
	-
No.	
1	
House	
ř	f
and a	
ä	

Ex. No.	R ¹	R ²	(Position) R ³	(Position) $(R^4)_n$	(Position) -A-Z (2-)	Y Н	Physical data logP = 2.98 a)
1D-7	C2115		(4-) CF ₃		N S SCH		
ID-8	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) O CI	Н	logP = 2.75 a)
ID-9	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N OC ₂		logP = 3.82 a)
ID-10	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N SCH	SO ₂	logP = 3.73 a)
ID-11	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N OC ₂		logP = 3.25 a)

Ex. No.	R ¹	R ²	(Position)	(Position) (R ⁴) _n	(Position) -A-Z	Y	Physical data
ID-12	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) O N N N N N N N N N N N N N N N N N N	SO ₂ CH ₃	$logP = 2.82^{a}$
ID-13	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) O N N	CH ₃	$logP = 2.74^{a}$
ID-14	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) O N N	C ₂ H ₅	$logP = 2.82^{a}$
ID-15	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) O N N	1-C ₃ H ₇	logP = 3.11 a)
ID-16	C ₂ H ₅	H	(4-) CF ₃	-	(2-) O N N	CH ₂ HC CH ₂	logP = 2.99 a)
ID-17	C ₂ H ₅	Н	(4-) CF ₃	-	N=	CH ₂	$logP = 3.45^{a}$

Ex.			(Position)	(Position)	(Position)		Physical data
No.	R¹	R ²	\mathbb{R}^3	$(R^4)_n$	-A-Z	Y	
ID-18	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N OC,		logP = 3.79 a)
ID-19	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N OC	CH ₂ Br	$logP = 3.97^{a}$
ID-20	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N	CH ₂ CN	$logP = 3.12^{a}$
ID-21	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N	CH ₂ CH ₂ F	logP = 3.49 ^{a)}
ID-22	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N	CH ₂	logP = 3.85 a)

Ex. No.	R ¹	R ²	(Position)	(Position) (R ⁴) _n	(Position) -A-Z	Y	Physical data
ID-23	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N OC	CI	$logP = 4.26^{a}$
ID-24	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N OC	CH ₂	$logP = 3.84^{a}$
ID-25	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N OC	CH ₂ NO ₂	$logP = 3.33^{a}$
ID-26	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N OC	CH ₂ CF ₃	logP = 3.98 ^{a)}
ID-27	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N	CH ₂ CF	$\log P = 3.94^{a}$

		г					Tn
Ex. No.	R ⁱ	R ²	(Position) R ³	(Position) (R ⁴) _n	(Position) -A-Z	Y	Physical data
ID-28	C₂H₅	Н	(4-) CF ₃	-	(2-) N N	CC H ₂ C O CH ₃	logP = 3.57 a)
ID-29	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N		logP = 3.75 a)
ID-30	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N Sc	CH₃ -CI CH.	logP = 2.65 a)
ID-31	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) O N N N S	C₂H₅ CI	logP = 2.71 a)
ID-32	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) O N N N S	i-C ₃ H ₇ Cl	logP = 3.00 a)

Ex. No.	R ¹	\mathbb{R}^2	(Position)	(Position) $(R^4)_n$	(Position) -A-Z	Y	Physical data
ID-33	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N SC		logP = 2.89 ^{a)}
ID-34	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N SC	CH ₂	$logP = 3.37^{a}$
ID-35	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N=(SC	CH ₂ CH ₃	logP = 3.71 a)
ID-36	C ₂ H ₅	Н	(4-) CF ₃	-	N = N	CH ₂	$logP = 3.89^{a}$
ID-37	C ₂ H ₅	Н	(4-) CF ₃	-		CH ₂	$logP = 3.06^{a}$

Ex. No.	R ¹	\mathbb{R}^2	(Position) R ³	(Position) (R ⁴) _n	(Position) -A-Z	Y	Physical data
ID-38	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N SC	CH ₂	logP = 3.41 a)
ID-39	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N SC	CH ₂	logP = 3.78 a)
ID-40	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N SC	CH ₂ CI CI	logP = 4.17 a)
ID-41	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N	CH ₂	$logP = 3.76^{a}$
ID-42	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N SC	CH ₂	logP = 3.26 a)

Ex. No.	R ¹	R ²	(Position)	(Position) (R ⁴) _n	(Position) -A-Z	Y	Physical data
ID-43	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N N SC	CH ₂ CF ₃	$logP = 3.89^{a}$
ID-44	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) N= SC	CH ₂ CF ₃	$logP = 3.85^{a}$
ID-45	C ₂ H ₅	Н	(4-) CF ₃	-	(2-) O N N SC	H ₂ C O	logP = 3.19 a)
ID-46	C ₂ H ₅	Н	(4-) CF ₃	-	N=\N	CH H ₂ C O CH ₃	logP = 3.47 ^{a)}
ID-47	C ₂ H ₅	Н	(4-) CF	-	(2-) N N SC	CH H ₂ C O	logP = 3.64 a)

Ex. No.	R ¹	R ²	(Position)	(Position) $(R^4)_n$	(Position) -A-Z	Y	Physical data
ID-48	C ₂ H ₅	Н	(2-) OCH ₃	(4-) Cl	(3-)	Н	
ID-49	C ₂ H ₅	Н	(2-) OCH ₃	(4-) Cl	(3-) N	H ,ch	
ID-50	CH ₃	Н	(2-) Cl	(4-) Cl	(3-) N	H CH ₃	logP = 1.41 a)
ID-51	CH ₃	CH ₃	(2-) CI	(4-) Cl	(3-)	H CH ₃	$logP = 1.38^{a}$
ID-52	C ₂ H ₅	CH ₃	(2-) Cl	(4-) Cl	(3-)	H CH ₃	logP = 1.56 a)
ID-53	t- C ₄ H ₉	СН₃	(2-) Cl	(4-) Cl	(3-)	H CH ₃	logP = 2.79 a)

Ex. No.	R ¹	R ²	(Position)	(Position) $(R^4)_n$	(Position) -A-Z	Y	Physical data
ID-54	CH ₃	Н	(2-) Cl	(4-) Cl	(3-)	Н	$logP = 1.62^{a}$
					N C_2H_5		
ID-55	CH ₃	CH ₃	(2-) Cl	(4-) Cl	(3-)	Н	$logP = 1.57^{a}$
					N C_2H_{ϵ}	5	
ID-56	C ₂ H ₅	Н	(2-) CI	(4-) Cl	(3-)	Н	$\log P = 1.88^{a}$
					N N C_2H_1	5	
ID-57	C_2H_5	CH ₃	(2-) Cl	(4-) Cl	(3-)	Н	$\log P = 1.79^{a}$
					$N - C_2H$	5	
ID-58	t-	CH ₃	(2-) Cl	(4-) Cl	(3-)	Н	$\log P = 3.15^{a}$
	C ₄ H ₉				N C_2H	5	

The logP values given in Tables 1 and 2 were determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on a reversed-phase column (C 18). Temperature: 43°C.

15

- (a) Mobile phases for the determination in the acidic range: 0.1% aqueous phosphoric acid, acetonitrile; linear gradient from 10% acetonitrile to 90% acetonitrile corresponding measurement results in Table 1 are marked a).
- (b) Mobile phases for the determination in the neutral range: 0.01 molar aqueous phosphate buffer solution, acetonitrile; linear gradient from 10% acetonitrile to 90% acetonitrile corresponding measurement results in Table 1 are marked b).
- Calibration was carried out using unbranched alkan-2-ones (having 3 to 16 carbon atoms) with known logP values (determination of the logP values by the retention times using linear interpolation between two successive alkanones).

The lambda max values were determined in the maxima of the chromatographic signals using the UV spectra from 200 nm to 400 nm.

Starting materials of formula (III):

Example (III-1)

5

4.5 g (15 mmol) of 2-(3-chloro-4-cyano-phenyl)-4-methyl-5-trifluoromethyl-2,4-dihydro-3H-1,2,4-triazol-3-one are taken up in 80 ml of 60% strength sulfuric acid, and the mixture is heated at reflux for 6 hours. After cooling to room temperature, the resulting crystalline product is isolated by filtration with suction.

10

This gives 4.5 g (91% of theory) of 2-(3-carboxy-4-chloro-phenyl)-4-methyl-5-tri-fluoromethyl-2,4-dihydro-3H-1,2,4-triazol-3-one of melting point 223°C.

Example (III-2)

15

20

2 g (4.9 mmol) of 5-bromo-4-methyl-2-(2-ethoxycarbonyl-5-trifluoromethyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (cf. Example IV-1) are dissolved in 30 ml of 10% strength ethanolic potassium hydroxide solution and heated at reflux for 2 hours. The reaction mixture is concentrated under waterpump vacuum and the residue is taken up in 20 ml of water and acidified with dilute hydrochloric acid. The precipitated solid is filtered and dried.

10

15

20

25

This gives 1.2 g (71% of theory) of 5-ethoxy-4-methyl-2-(2-carboxy-5-trifluoro-methyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one as a solid product.

5 $\log P: 2.18a$)

Example (III-3)

13.4 g (35 mmol) of 4-methyl-5-trifluoromethyl-2-(2,6-dichloro-3-methoxycarbonyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one are initially charged in 60 ml of 1,4-dioxane, and a solution of 1.54 g (38.5 mmol) of sodium hydroxide in 20 ml of water 1s slowly metered in at room temperature. The reaction mixture is stirred at 60°C for 150 minutes and then concentrated under waterpump vacuum. The residue is dissolved in 100 ml of water, and the pH of the solution is adjusted to 1 by addition of conc. hydrochloric acid. The resulting crystalline product is isolated by filtration with suction.

This gives 11.7 g (90% of theory) of 4-methyl-5-trifluoromethyl-2-(2,6-dichloro-3-carboxy-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one of melting point 207°C.

Similarly to Examples (III-1) to (III-3), it is also possible to prepare, for example, the compounds of the general formula (III) listed in Table 3 below.

HO
$$(R^4)_n$$
 (III)

Table 32: Examples of the compounds of the formula (III)

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-4	(4-) Cl	-	(2-) N CH ₃ CH ₃	logP = 1.39 a)
III-5	(4-) SO ₂ CH ₃	_	(3-) N=N	logP = 1.47 ^{a)}
Ш-6	(4-) F	-	N N N N N N N N N N	logP = 1.73 a)
Ш-7	(4-) CF ₃	-	(2-) N N Br	logP = 1.65 ^{a)}
Ш-8	(4-) Br	-	(2-) N—CH ₃ N(CH ₃) ₂	$logP = 1.74^{a}$

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-9	(4-) CF ₃	-	(2-) N C ₂ H ₅ OC ₂ H ₅	$logP = 2.43^{a}$
Ш-10	(4-) CF ₃	-	(2-) N=C ₂ H ₅ OCH ₃	logP = 2.12 a)
Ш-11	(4-) CF ₃	-	(2-) N CH ₃ CH ₃	logP = 1.61 a)
Ш-12	(4-) CF ₃	-	(2-) N CH ₃ N(CH ₃) ₂	logP = 1.93 ^{a)}
Ш-13	(4-) CF ₃	-	(2-) N N CH ₃ Br	$logP = 2.01^{a}$

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-14	(4-) CF ₃		(2-)	logP = 1.77 a)
Ш-15	(3-) CH ₃	_	N N N CH_3 OC_2H_5	logP = 1.70 a)
Ш-16	(4-) SO ₂ CH ₃		(2-) N CH ₃ SCH ₃	logP = 1.07 ^{a)}
III-17	(4-) CF ₃	-	$(2-)$ $N \longrightarrow CH_3$ SC_2H_5	logP = 2.35 ^{a)}
Ш-18	(4-) CF ₃	-	$(2-)$ $N \longrightarrow CH_3$ $N \longrightarrow SC_3H_7-i$	logP = 2.63 ^{a)}

				T
Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-19	(4-) CF ₃	-	(2-)	$logP = 2.13^{a}$
			OCH ₃	
Ш-20	(4-) CF ₃	-	(2-) O N	$logP = 1.82^{a}$
			N=()	11- D 2 40 2)
Ш-21	(4-) CF ₃	-	(2-) N CH ₃ OCH ₂ CF	$\log P = 2.48^{a}$
Ш-22	(4-) CF ₃	-	(2-)	$logP = 1.73^{a}$
			H ₃ C O	
Ш-23	(4-) CF ₃	-	N S CF ₃	$logP = 3.11^{a}$

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-24	(4-) F	-	(2-) N—CH ₃ N(CH ₃) ₂	logP = 1.43 ^{a)}
Ш-25	(4-) F	-	(2-) N CH ₃ OC ₃ H ₇ -n	
Ш-26	(4-) F	-	(2-) N—CH ₃ CH ₂ OCH	$logP = 1.30^{a}$
Ш-27	(4-) F	-	(2-) N OCH ₃	logP = 1.63 ^{a)}
Ш-28	(4-) F	-	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	logP = 1.93 ^{a)}

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-29	(4-) CF ₃	-	(2-) O CH ₃ CH ₃ CH ₃	$logP = 1.78^{a}$
Ш-30	(2-) Cl	(4-) Cl	(3-) N CH ₃ SCH ₃	m.p.: 230°C logP = 1.63 a)
Ш-31	(2-) Cl	(4-) Cl	$(3-)$ $N \longrightarrow CH_3$ OC_2H_5	m.p.: 190°C logP = 1.73 ^{a)}
Ш-32	(2-) Cl	(4-) Cl	(3-) N	m.p.: 210°C logP = 1.87 a)
Ш-33	(2-) Cl	(4-) Cl	(3-) N CH ₃ OCH ₃	m.p.: 210°C logP = 1.43 a)

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-34	(2-) Cl	(4-) Cl	(3-)	m.p.: 164°C
			N CH ₃ OC ₃ H ₇ -i	$logP = 2.01^{a}$
III-35	(2-) Cl	(4-) Cl	(3-)	m.p.: 168°C
			N CH ₃ OCH ₂ CF ₃	$logP = 2.04^{a}$
III-36	(2-) Cl	(4-) Cl	(3-)	m.p.: 218°C
			N CH ₃	$logP = 1.53^{a}$
Ш-37	(2-) Cl	(4-) Cl	(3-)	m.p.: 259°C
			N—CH ₃	$logP = 0.98^{a}$
Ш-38	(2-) Cl	(4-) Cl	(3-)	m.p.: 210°C
			N CH ₃	$\log P = 1.56^{a}$

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-39	(2-) Cl	(4-) Cl	(3-)	m.p.: 197°C
			O	$\log P = 1.51^{a}$
			N—N—CH ₃	
			N(CH ₃) ₂	
Ш-40	(2-) Cl	(4-) Cl	(3-)	m.p.: 262°C
				$\log P = 1.11^{a}$
			N CH ₃	
			CH ₃	
Ш-41	(2-) Cl	(4-) Cl	(3-)	m.p.: 249°C
				$\log P = 1.30^{a}$
			N=N	
Ш-42	(2-) Cl	(4-) Cl	(3-)	m.p.: 200°C
				$\log P = 1.71^{a}$
			N=OCH ₃	
Ш-43	(2-) Cl	(4-) Cl	(3-)	m.p.: 189°C
				$logP = 2.01^{a}$
			N= N	
			OC ₂ H ₅	

Ex. No.	(Position)	(Position)	(Position)	Physical data
	R ³	$(R^4)_n$	-A-Z	
Ш-44	(2-) Cl	(4-) Cl	(3-)	m.p.: 178°C
			N N N N N N N N N N	$logP = 2.28^{a}$
Ш-45	(2-) Cl	(4-) Cl	(3-)	m.p.: 161°C
			N N OCH ₂ CF ₃	$logP = 2.31^{a}$
Ш-46	(2-) Cl	(4-) Cl	(3-)	m.p.: 200°C
			N N SCH ₃	$logP = 1.98^{a}$
Ш-47	(2-) Cl	(4-) Cl	(3-)	m.p.: 201°C
			N CH ₃	$logP = 1.39^{a}$
Ш-48	(2-) Cl	(4-) Cl	(3-)	m.p.: 207°C
			N (CH ₃) ₂	logP = 1.77 a)

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(\mathbb{R}^4)_{\mathbf{n}}$	-A-Z	
III-49	(2-) Cl	(4-) Cl	(3-)	m.p.: 140°C
			P	$logP = 1.88^{a}$
			$N \longrightarrow N \longrightarrow$	
			N=(
			C ₂ H ₅	
III-50	(4-)	-	(2-)	m.p.: 154°C
	OCH ₂ CHF ₂			$logP = 2.14^{a}$
			N CH3	
			N=(
			CF ₃	
Ш-51	-	-	(2-)	m.p.: 214°C
			0	$\log P = 1.87^{a}$
**************************************	4		N N	
			N _N	
III-52				m.p.: 194°C
III-32	-	-	N.	$\log P = 2.07^{a}$
				log1 = 2.07
			(2-)	
Ш-53	_	-	(2-)	m.p.: 181°C
			o o	$logP = 1.97^{a}$
			N CI	
			CI	
Ш-54		-	S	m.p.: 251°C
			NH NH	$logP = 1.14^{a}$
			(2-)	

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
III-55	(2-) Cl	(4-) Cl	(3-) O N CH ₃	$logP = 1,38^{a}$
Ш-56	(2-) Cl	(4-) Cl	(3-) N CH ₃	logP = 1.48 ^{a)}
Ш-57	(2-) Cl	(4-) Cl	(3-) N SO ₂	
Ш-58	(4-) Cl	-	(2-) N CH ₃ CF ₃	¹ H-NMR (DMSO-D6, δ): 5.42 ppm.
Ш-59	(4-) CF ₃	-	$(2-)$ $N = CH_3$ CH_3	¹ H-NMR (DMSO-D6, δ): 5.48 ppm.
III-60	(4-) CF ₃	-	(2-) N—CH ₃ CF ₃	¹ H-NMR (DMSO-D6, δ): 5.60 ppm. $logP = 2.47$ ^{a)}

Ex. No.	(Position)	(Position)	(Position)	Physical data
	R ³	$(R^4)_n$	-A-Z	
Ш-61	(4-) CF ₃	-	(2-) N= N=	logP = 2.33 ^{a)}
Ш-62	(4-) SO ₂ CH ₃	_	(3-) N CH ₃ CF ₃	¹ H-NMR (DMSO-D6, δ): 5.14 ppm.
Ш-63	(4-) SO ₂ CH ₃		(2-) N — CH ₃ CH ₃	¹ H-NMR (DMSO-D6, δ): 5.27 ppm.
III-64	(4-) Cl	-	(3-) N CH ₃ CH ₃	¹ H-NMR (CDCl ₃ , δ): 5.12 ppm.
Ш-65	(4-) Cl	-	(3-) N CH ₃ CF ₃	¹ H-NMR (DMSO-D6, δ): 5.20 ppm.

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-66	(4-) Cl	-	(2-)	¹ H-NMR
				(DMSO-D6, δ):
			N N N	5.03 ppm.
) N=	
Ш-67	(4-) Br	-	(2-)	¹ H-NMR
			Q	(DMSO-D6, δ):
			N OC ₂ H ₅	5.24 ppm.
			N=(
			C ₂ H ₅	
Ш-68	(4-) Br		(2-)	¹ H-NMR
III oo	(,) = -		Q	(DMSO-D6, δ):
			N CH ₃	5.39 ppm.
			N=(
			CF ₃	
Ш-69	(4-) F	-	(2-)	¹H-NMR
			o o	(DMSO-D6, δ):
			N CH3	5.19 ppm.
			N=	
			OC ₂ H ₅	
Ш-70	(4-) F	-	(2-)	¹H-NMR
			0	(DMSO-D6, δ):
			N N CH ₃	5.30 ppm.
			N=(
			SCH ₃	

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-71	(4-) F	-	(2-)	¹H-NMR
	55		Q	(DMSO-D6, δ):
			N CH3	5.43 ppm.
			N=\ SO ₂ CH ₃	
Ш-72	(4-) Br	-	(3-)	¹ H-NMR,
			Q	(CDCl ₃ δ):
			N N CH ₃	5.10 ppm.
			N=(CH₃	
Ш-73	(4-) Br	-	(3-)	¹ H-NMR
			Ŷ	(DMSO-D6, δ):
			N—CH ₃	5.03 ppm.
			OC ₂ H ₅	
III-74	(4-) Br	-	(3-)	¹ H-NMR
	vegana mel		Q II	(DMSO-D6, δ):
			N CH ₃	5.19 ppm.
			CF ₃	
Ш-75	(4-) Br	-	(2-)	¹H-NMR
			0	(DMSO-D6, δ):
			N N	5.01 ppm.

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-76	(4-) Cl	_	(2-)	¹ H-NMR
			0	(DMSO-D6, δ):
			N N N	5.14 ppm.
			$N = \langle OC_2H_5 \rangle$	
Ш-77	(4-) Cl	-	(2-)	¹ H-NMR
			O	(DMSO-D6, δ):
			N-OC ₂ H ₅	5.25 ppm.
			$N = C_2H_5$	
III-78	(4-) NO ₂	-	(2-)	¹ H-NMR
				(DMSO-D6, δ):
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5.23 ppm.
			$N = \langle OC_2H_5 \rangle$	
III-79	(4-) NO ₂	-	(2-)	¹ H-NMR
			O II	(DMSO-D6, δ):
			N CH ₃	5.37 ppm.
			N=\ SCH ₃	
Ш-80	(4-) CF ₃	-	(2-)	$\log P = 2.46^{a}$
			$N = \langle OC_2H_5 \rangle$	

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-81	(4-) CF ₃	-	(2-)	¹ H-NMR
		West of the second	O	(DMSO-D6, δ):
			N N OC_2H_5	5.31 ppm.
	La constant de la con		N=(
			C ₂ H ₅	
Ш-82	(4-) CF ₃	_	(2-)	$logP = 2.08^{a}$
			N CH ₃	
			SCH ₃	
Ш-83	(4-) OCH ₃	-		¹ H-NMR
ш-63	(4-) OCH3	-	(2-)	$(CDCl_3, \delta)$:
	***************************************		N CH ₃	5.38 ppm.
			N= N - 0 · · · 3	5.56 ррш.
			OC ₂ H ₅	
Ш-84	(4-) OCH ₃	-	(2-)	¹ H-NMR
			O II	(CDCl ₃ , δ):
			N N OC_2H_5	5.43 ppm.
			N=(
			C ₂ H ₅	
Ш-85	(4-) CF ₃	_	(2-)	¹ H-NMR
				(CDCl ₃ , δ):
			N CH ₃	5.47 ppm.
			CH ₂ OCH ₃	
			2 - 2 - 3	
	L	<u> </u>		

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-86	(4-) Br	-	(2-) N=N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	logP = 1.44 a)
Ш-87	(4-) Br	-	(2-) N=N	$logP = 1.63^{a}$
Ш-88	(4-) Br	-	$(2-)$ $N = CH_3$ OC_3H_7-i	$logP = 2.27^{a}$
Ш-89	(4-) Br	-	(2-) N CH ₃ OC ₃ H ₇ -n	$logP = 2.31^{a}$
Ш-90	-	-	(2-) N CH ₃ CF ₃	$logP = 1.82^{a}$
Ш-91	(4-) Br	-	$(2-)$ $N \longrightarrow CH_3$ OC_2H_5	¹ H-NMR (CDCl ₃ , δ): 5.32 ppm.

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-92	(4-) Br	-	(2-)	¹ H-NMR
			O II	(CDCl ₃ , δ):
			N N CH3	5.53 ppm.
			N=CF ₃	
Ш-93	(4-) F	-	(2-)	¹ H-NMR
			Q	(CDCl ₃ , δ):
			N CH ₃	5.39 ppm.
			N=C ₂ H ₅	
III-94	(4-) F	-	(2-)	¹ H-NMR
			Ŷ	(CDCl ₃ , δ):
			N CH ₃	5.57 ppm.
			CF ₃	
Ш-95	(4-) F	-	(2-)	¹H-NMR
			O II	(CDCl ₃ , δ):
			N-OC ² H	H ₅ 5.44 ppm.
			$N = C_2H_5$	
Ш-96	(4-) F	-	(2-)	¹ H-NMR
			P	(CDCl ₃ , δ):
			N CH	5.41 ppm.
			N=(OCH3	

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-97	-	-	(2-)	¹ H-NMR
ll .				(CDCl ₃ , δ):
			N CH3	5.34 ppm.
			N=(
			OC ₂ H ₅	
Ш-98	-	-	(2-)	¹ H-NMR
				(CDCl ₃ , δ):
			N CH ₃	5.38 ppm.
			N=	
			OCH ₃	
Ш-99	_	-	(2-)	¹ H-NMR
				$(CDCl_3, \delta)$:
			N N	5.26 ppm.
			N=	
Ш-100	-	-	(2-)	¹H-NMR
			O	(CDCl ₃ , δ):
			N CH ₃	5.43 ppm.
) N=(
			`SCH₃	
Ш-101	-	-	(2-)	$logP = 1.23^{a}$
			0	
			N N CH3	
			N=(
			SO ₂ CH ₃	

77. NT.	(D ::::)	(Danisian)	(Position)	Physical data
EX. No.	(Position)	(Position)	(Position)	1 Hysicai data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-102	(4-) SO ₂ CH ₃	-	(2-) N CH ₃	$logP = 1.14^{a}$
Ш-103	(4-) CF ₃	-	$N = \langle OC_2H_5 \rangle$	$logP = 2.45^{a}$
			N—CH ₃ OC ₃ H ₇ -i	
III-104	(4-) CF ₃	-	$(2-)$ $N = CH_3$ OC_3H_7-n	$logP = 2.48^{a}$
Ш-105	(4-) Br	-	(2-) N CH ₃ Br	logP = 1.85 a)
Ш-106	(4-) CF ₃	-	(3-) N OC ₃ H ₇ -i	logP = 2.74 a)

Ex. No.	(Position)	(Position)	(Position)	Physical data
22.1.1.01	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-107	(4-) CF ₃	-	(2-) N N CH ₂ OCH ₃	logP = 2.01 a)
Ш-108	(4-) CF ₃	-	(2-) N—CH ₃ CH ₂ OCH ₃	logP = 1.79 a)
Ш-109	(4-) CF ₃	-	(2-) N CH ₃ Br	$logP = 1.65^{a}$
III-110	(4-) Br	-	(2-) N— N—CH ₃ SCH ₃	$logP = 1.90^{a}$
Ш-111	(4-) Cl	-	(2-) N——N——CH ₃ SCH ₃	logP = 1.83 ^{a)}

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-112	(4-) I	-	$ \begin{array}{c c} (2-) & O \\ N \longrightarrow CH_3 \\ OC_2H_5 \end{array} $	$logP = 2.06^{a}$
Ш-113	(4-) I	-	(2-) N CH ₃ CF ₃	m.p.: 104°C logP = 2.39 a)
Ш-114	(4-) Br	-	(2-) N	m.p.: 191°C
Ш-115	(4-) Br	-	(2-) N N N	m.p.: 213°C
Ш-116	-	-	(2-)	
Ш-117	-	-	(2-) N— CF ₃	m.p.: 112°C

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-118	(4-) CF ₃	-	(2-) N CH ₃ CF ₃	m.p.: 158°C
Ш-119	(4-) CF ₃	-	(2-) N N	m.p.: 162°C
Ш-120	(4-) Cl	(5-) Cl	(2-) N CH ₃ CF ₃	m.p.: 167°C
Ш-121	-	-	N − CH ₃	m.p.: 188°C
Ш-122		-	(2-) N=N	
Ш-123	-	-	N CH ₃	m.p.: 131°C

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
Ш-124	(4-) Cl	-	(2-) N CH ₃ CF ₃	m.p.: 109°C
Ш-125	(4-) I	-	(2-) N— N— CF ₃	m.p.: 104°C
Ш-126	(4-) Br	-	(2-) N CH ₃ CF ₃	m.p.: 99°C
Ш-127	(4-) Br	-	(2-) N	m.p.: 174°C
Ш-128	-	-	(2-) N CH ₃ SCH ₃	m.p.: 122°C

Ex. No.	(Position)	(Position)	(Position)	Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	
III-129	(4-) Br	-	(2-) N— N— SCH ₃	m.p.: 164°C
Ш-130	-	-	(2-) N CH ₃ OC ₃ H ₇ -i	m.p.: 154°C
Ш-131	(4-) Br	-	$(2-)$ $N \longrightarrow CH_3$ OC_3H_7 -i	m.p.: 161°C
Ш-132	(4-) CN	-	(2-) N CH ₃ CF ₃	m.p.: 196°C
Ш-133	-	-	(2-) N N	m.p.: 192°C
Ш-134	-	-	O N	

The logP values given in Table 3 were determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on a reversed-phase column (C 18). Temperature: 43°C.

5

(a) Mobile phases for the determination in the acidic range: 0.1% aqueous phosphoric acid, acetonitrile; linear gradient from 10% acetonitrile to 90% acetonitrile - corresponding measurement results in Table 1 are marked a).

10

(b) Mobile phases for the determination in the neutral range: 0.01 molar aqueous phosphate buffer solution, acetonitrile; linear gradient from 10% acetonitrile to 90% acetonitrile - corresponding measurement results in Table 1 are marked $^{\rm b}$).

15

Calibration was carried out using unbranched alkan-2-ones (having 3 to 16 carbon atoms) with known logP values (determination of the logP values by the retention times using linear interpolation between two successive alkanones).

The lambda max values were determined in the maxima of the chromatographic signals using the UV spectra from $200~\mathrm{nm}$ to $400~\mathrm{nm}$.

Starting materials of the formula (IV):

Example (IV-1)

Step 1

5

10

15

10 g (49 mmol) of 2-methyl-4-trifluoromethyl-benzoic acid are dissolved in 150 ml of ethanol and admixed with 1 ml of conc. sulfuric acid. The solution is heated at reflux for 24 hours and then concentrated, the residue is taken up in methylene chloride and the mixture is extracted with aqueous sodium bicarbonate solution. The methylene chloride phase is dried over sodium sulfate and concentrated under waterpump vacuum.

This gives 9 g (80% of theory) of ethyl 2-methyl-4-trifluoromethyl-benzoate as an amorphous residue.

20

Step 2

$$O$$
 OC_2H_5 Br CF_3

9 g (39 mmol) of ethyl 2-methyl-4-trifluoromethyl-benzoate are dissolved in 200 ml of carbon tetrachloride and admixed with 7 g (39 mmol) of *N*-bromo-succinimide and 0.1 g of dibenzoyl peroxide. The mixture is heated at reflux for 6 hours, and the precipitated succinimide is then filtered and the filtrate is concentrated under waterpump vacuum.

This gives 12 g of an amorphous residue which, in addition to ethyl 2-bromomethyl-4-trifluoromethyl-benzoate, also contains 17% of ethyl 2,2-dibromomethyl-4-trifluoromethyl-benzoate and 12% of ethyl 2-methyl-4-trifluoromethyl-benzoate.

15 <u>Step 3</u>

$$\begin{array}{c|c} OC_2H_5 & O\\ \hline \\ N & \\ CF_3 \end{array}$$

4 g of ethyl 2-bromomethyl-4-trifluoromethyl-benzoate (about 70% pure) and 2.28 g (12.8 mmol) of 5-bromo-4-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one are dissolved in 150 ml of acetonitrile, admixed with 5.3 g (38.4 mmol) of potassium carbonate and, with vigorous stirring, heated at reflux for 2 hours. The reaction mixture is taken up in water and extracted repeatedly with methylene chloride. The combined

methylene chloride phases are dried over sodium sulfate, concentrated under waterpump vacuum and chromatographed.

This gives 2 g (38% of theory) of 5-bromo-4-methyl-2-(2-ethoxycarbonyl-5-trifluoro-methyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one as an amorphous product.

 1 H-NMR (CDCl₃, δ): 5.46 ppm.

Example (IV-2)

10

15

20

25

5

6.7 g (40 mmol) of 4-methyl-5-trifluoromethyl-2,4-dihydro-3H-1,2,4-triazol-3-one are initially charged in 150 ml of acetonitrile and stirred with 11 g (80 mmol) of potassium carbonate. The mixture is heated to 50°C, and a solution of 13.1 g (44 mmol) of methyl 3-bromomethyl-2,4-dichloro-benzoate in 20 ml of acetonitrile is then added dropwise with stirring, and the reaction mixture is heated at reflux with stirring for 15 hours. The mixture is then concentrated under waterpump vacuum and the residue is taken up in methylene chloride, washed with 1N hydrochloric acid, dried with sodium sulfate and filtered. The filtrate is concentrated under reduced pressure, the residue is digested with petroleum ether and the resulting crystalline product is isolated by filtration with suction.

This gives 14.9 g (97% of theory) of 4-methyl-5-trifluoromethyl-2-(2,6-dichloro-3-methoxycarbonyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-one of melting point 109°C.

$$X \xrightarrow{(R^4)_n} A Z$$
 (IV)

Table 4: Examples of the compounds of the formula (IV)

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-3	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 229°C
					$\log P = 2.27^{a}$
			N CH ₃		
			N=(
			`SCH ₃		
IV-4	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 120°C
			O O		$\log P = 2.38^{a}$
			N CH3		
			$N=\langle$		
			OC ₂ H ₅		
IV-5	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 127°C
			0		$\log P = 2.55^{a}$
			N N N		
			N=		
IV-6	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 121°C
	(2) 0.	(,,)	Q		$\log P = 2.04^{a}$
			N-CH ₃		
			OCH3		
IV-7	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 68°C
			ļ ņ		$\log P = 2.73^{a}$
			N CH ₃		
) N=(
			OC ₃ H ₇ -i		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-8	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 129°C
					$\log P = 2.72^{a}$
			N CH3		
			N=(
			OCH ₂ CF	3	
TVO	(2.) (1	(4-) Cl	(3-)	OCH ₃	m.p.: 164°C
IV-9	(2-) Cl	(4-) C1	0		$\log P = 2.18^{a}$
			N CH ₃		
			N N N S N 3		
			Br		
IV-10	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 158°C
			Q		$\log P = 1.55^{a}$
			N CH ₃		
			N=(
			Ĥ		
IV-11	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 106°C
					$\log P = 2.16^{a}$
			N N CH3		
			N=<		
IV-12	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 126°C
			Q.		$\log P = 2.11^{a}$
			N CH ₃		
			N=(
			N(CH ₃) ₂		
L	<u> </u>				

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-13	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 146°C
			N CH ₃		$logP = 1.65^{a}$
TV 14	(2.) (1	(4-) Cl	N=(CH ₃	OCH ₃	m.p.: 178°C
IV-14	(2-) Cl	(4-) CI	(3-)	OCI13	$\log P = 1.86^{a}$
			N=N		
IV-15	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 97°C
			OCH ₃		$logP = 2.36^{a}$
IV-16	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 99°C
			$N = \bigcup_{N=0}^{N} N$ OC_2H_5		$logP = 2.73^{a}$
IV-17	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 56°C
			OC ₃ H ₇ -i		$logP = 3.08^{a}$

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-18	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 102°C
			N=OCH ₂ C	F ₃	$\log P = 3.05^{a}$
IV-19	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 131°C
					$\log P = 2.70^{a}$
			SCH ₃		
IV-20	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 135°C
			N CH ₃		$logP = 1.97^{a}$
IV-21	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 143°C
			N(CH ₃)	2	$logP = 2.42^{a}$
IV-22	(2-) Cl	(4-) Cl	(3-)	OCH ₃	m.p.: 85°C
A CONTRACTOR OF THE CONTRACTOR			$ \begin{array}{c c} & O \\ & N \\ & O \\$	H ₅	$\log P = 2.58^{a}$

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-23	(2-) Cl	(4-) Cl	(3-) N CH ₃	OCH ₃	logP = 1.98 ^{a)}
IV-24	(2-) Cl	(4-) Cl	(3-) O CH ₃	OCH ₃	$\log P = 2.07^{a}$
IV-25	(2-) C1	(4-) Cl	(3-) SO ₂	OCH ₃	m.p.: 157°C logP = 2.94 ^{a)}
IV-26	(4-) CF ₃	-	(2-) N CH ₃ SO ₂ CH ₃	OC ₂ H ₅	¹ H-NMR (CDCl ₃ , δ): 5.53 ppm.
IV-27	(4-) NO ₂		(3-) N CH ₃ CF ₃	OC ₂ H ₅	¹ H-NMR (CDCl ₃ , δ): 5.48 ppm.
IV-28	(4-) NO ₂	-	(3-) N= N=	OC ₂ H ₅	¹ H-NMR (CDCl ₃ , δ): 5.30 ppm.

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-29	(4-) SO ₂ CH ₃	-	(3-)	OC ₂ H ₅	¹ H-NMR
			Q		$(CDCl_3, \delta)$:
			N N CH3		5.61 ppm.
) N=		
			CF ₃		
IV-30	(4-) Cl	-	(3-)	OC ₂ H ₅	¹ H-NMR
					(CDCl ₃ , δ):
			N CH3		5.08 ppm.
			N=(
			CH ₃		
IV-31	(4-) Cl		(3-)	OC ₂ H ₅	¹ H-NMR
					(CDCl ₃ , δ):
			N CH³		5.17 ppm.
			N=(
			CF ₃		
IV-32	(4-) Cl	-	(3-)	OC ₂ H ₅	¹ H-NMR
					(CDCl ₃ , δ):
			N N		5.00 ppm
			N=		
IV-33	(4-) SO ₂ CH ₃	_	0	OC ₂ H ₅	$\log P = 1.53^{a}$
			(2-)		
		1	<u> </u>		L

_	
i i	2
14.5	
171	
Hereit.	Ļ
-	il.
9,,,48	
	Ļ
ndb.	=
100	
100	
100	
outh age: 15th Sile	
the their spirit then their	
the their spirit then their	

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-34	(4-) Br		(2-)	OC ₂ H ₅	$\log P = 3.24^{a}$
			N OC ₂ H ₅		
			$N = C_2H_5$		
IV-35	(4-) Br	-	(2-)	OC ₂ H ₅	$\log P = 3.40^{a}$
14-55	(4-) D1		Q Q		
			N CH ₃		
			N=		
			CF ₃		
IV-36	(4-) F	-	(3-)	OC ₂ H ₅	$\log P = 2.41^{a}$
			N CH ₃		
			Br		
IV-37	(4-) F	-	(2-)	OC ₂ H ₅	$\log P = 2.45^{a}$
			O		
			N N CH ₃		
			N=(SCH ₃		
11/ 20	(4) Pr		(3-)	OC ₂ H ₅	$\log P = 2.06^{a}$
IV-38	(4-) Br	_	Q Q		1051 - 1.00
			N CH ₃		
			N=(
			,CH ³		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-39	(4-) Br	-	$(3-)$ $N \longrightarrow CH_3$ R R	OC ₂ H ₅	$logP = 2.64^{a}$
IV-40	(4-) Br	-	(3-) N—CH ₃ CF ₃	OC ₂ H ₅	$\log P = 3.23^{a}$
IV-41	(4-) Br	-	(3-) N	OC ₂ H ₅	$\log P = 3.02^{a}$
IV-42	(4-) Cl	-	(2-) N= OC ₂ H ₅	OC ₂ H ₅	$\log P = 3.23^{a}$
IV-43	(4-) C1	-	(2-) N CH ₃ CF ₃	OC ₂ H ₅	$logP = 3.31^{a}$

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(\mathbb{R}^4)_n$	-A-Z	X	
IV-44	(4-) Cl	-	(2-)	OC ₂ H ₅	$\log P = 3.14^{a}$
			N OC ₂ H ₅		
			$N = \langle C_2H_5 \rangle$		
				OC ₂ H ₅	$\log P = 2.42^{a}$
IV-45	(4-) NO ₂	-	(2-)	0002115	log1 = 2.42
			N=(
			OC ₂ H ₅		
IV-46	(4-) NO ₂	-	(2-)	OC ₂ H ₅	$\log P = 2.82^{a}$
			Q II		
			N CH3		
			N=\ SCH ₃		
			V	OC II	$logP = 3.48^{a}$
IV-47	(4-) CF ₃	-	(2-)	OC ₂ H ₅	$\log P = 5.40$
			N=(N		
			OC ₂ H ₅		
IV-48	(4-) CF ₃	-	(2-)	OC ₂ H ₅	$\log P = 3.38^{a}$
		è	0		
			N N OC_2H_5		
			$N = \langle C_2H_5 \rangle$		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-49	(4-) CF ₃	-	(2-)	OC ₂ H ₅	$\log P = 3.02^{a}$
			Q .		
			N CH3		
			N=(
			SCH ₃		2 2 2 3
IV-50	(4-) CF ₃	-	(2-)	OC ₃ H ₇	$\log P = 3.91^{a}$
			N N		
			OC ₂ H ₅		
IV-51	(4-) OCH ₃	-	(2-)	OC ₂ H ₅	
			O II		
			N CH ₃		
			N=(Br		
IV-52	(4-) OCH ₃	-	(2-)	OC ₂ H ₅	
1 7 32	(,) 5 5123		Q		
			$N - OC_2H_5$		
			1 '' \		
			C ₂ H ₅		levan en
IV-53	(4-) CF ₃	-	(2-)	OC ₂ H ₅	¹ H-NMR
			N CH ₃		(CDCl ₃ , δ): 5.37 ppm.
			N=(3.57 ppm.
			OC ₂ H ₅		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-54	(4-) CF ₃	-	(2-)	OC ₂ H ₅	¹ H-NMR
			Q Q		(CDCl ₃ , δ):
			N CH ₃		5.37 ppm.
			N=(
			,OCH ³		
IV-55	-	-	(2-)	OC ₂ H ₅	
			Q		
			N CH ₃	-	
			N=(
			OC ₂ H ₅		
IV-56	-	_	(2-)	OC ₂ H ₅	¹ H-NMR
			Q		(CDCl ₃ , δ):
			N CH ₃		5.37 ppm.
			N=		
			OCH ₃		
IV-57	-	-	(2-)	OC ₂ H ₅	¹ H-NMR
			O		(CDCl ₃ , δ):
			N OC ₂ H ₅		5.40 ppm.
			N=		·
			C ₂ H ₅		
IV-58	(4-) Br	-	(2-)	OC ₂ H ₅	$\log P = 2.95^{a}$
			O		
			N CH ₃		
			N=(
			OC ₂ H ₅		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	R^3	$(R^4)_n$	-A-Z	X	
IV-59	(4-) Br	-	(2-)	OC ₂ H ₅	¹ H-NMR
			P		$ (CDCl_3, \delta): $
			N CH ₃ OCH ₃		5.31 ppm.
IV-60	(4) Dr		0	OC ₂ H ₅	$\log P = 2.44^{a}$
17-00	(4-) Br				
			(2-)	OC ₂ H ₅	¹H-NMR
IV-61	(4-) F	-	(2-)	OC2H5	$(CDCl_3, \delta)$:
			N CH ₃		5.35 ppm.
			$N = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$		
IV-62	(4-) F	-	(2-)	OC ₂ H ₅	¹ H-NMR
			P		(CDCl ₃ , δ):
			N CH ₃		5.53 ppm.
IV-63	(4-) F		(2-)	OC ₂ H ₅	¹H-NMR
17-05	(4-)1		0	002113	$(CDCl_3, \delta)$:
			$N = N - OC_2H_{\epsilon}$,	5.40 ppm.
			C ₂ H ₅		
IV-64	(4-) F	-	(2-)	OC ₂ H ₅	¹ H-NMR
			Q		(CDCl ₃ , δ):
			N CH ₃		5.36 ppm.
			, OCH3		

E N-	(Desition)	(Position)	(Position)	Ţ	Physical data
Ex. No.	(Position)	(Position)		**	i nysicar data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-65	(4-) Br	-	(2-)	OC ₂ H ₅	$logP = 3.34^{a}$
			Q		
			CH.		
			N CH ₃		
			OC ₃ H ₇ -i	}	
			3, 17, 1		
IV-66	(4-) Br	-	(2-)	OC ₂ H ₅	$logP = 3.38^{a}$
			Q		
			N CH3		
			OC ₃ H ₇ -n		
			2 - 3 - 7		
			(0)	OC ₂ H ₅	$\log P = 3.31^{a}$
IV-67	(4-) Br	-	(2-)	OC2H5	logr = 3.31
			N CH3		
And the second s) N=		
			OCH ₂ CF	3	
IV-68	(4-) Br	_	(2-)	OC ₂ H ₅	$\log P = 2.16^{a}$
			Q		
			N, N—		
			N=		
TV 60	(4.) D.:		(2)	OC ₂ H ₅	$logP = 2.41^{a}$
IV-69	(4-) Br	-	(2-)	002115	1051 - 2.71
			N N		
			N=()		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-70	(4-) CF ₃	-	N N N N N N N N N N	OC ₂ H ₅	$logP = 3.51^{a}$
IV-71	(4-) CF ₃	-	N N N N N N N N N N	OC ₂ H ₅	$logP = 3.54^{a}$
IV-72	(4-) Br	-	N 0	OC ₂ H ₅	$logP = 2.36^{a}$
IV-73	(4-) Br	-	N CH ₃	OC ₂ H ₅	$logP = 2.88^{a}$
IV-74	(4-) CF ₃	-	(2-) N CH ₃	OC ₂ H ₅	$logP = 2.68^{a}$
IV-75	(4-) Br	-	(2-) N CH ₃ Br	OC ₂ H ₅	$logP = 2.80^{a}$

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-76	(4-) CF ₃	-	(3-) N OCH ₃	OC ₂ H ₅	logP = 3.87 ^{a)}
IV-77	(4-) CF ₃	-	(2-) N CH ₂ OCH	OC ₂ H ₅	$logP = 2.88^{a}$
IV-78	(4-) CF ₃		(2-) N — CH ₃ CH ₂ OCH	OC ₂ H ₅	$logP = 2.60^{a}$
IV-79	(4-) CF ₃	-	(2-) N N Br	OC ₂ H ₅	$\log P = 3.35^{a}$
IV-80	(4-) Br		(2-) N CH ₃ SCH ₃	OC ₂ H ₅	$logP = 2.86^{a}$

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-81	(4-) Cl	-	(2-) N— N— SCH ₃	OC ₂ H ₅	$logP = 2.83^{a}$
IV-82	(4-) Br	-	(2-) N CH ₃	OC ₂ H ₅	$logP = 2.60^{a}$
IV-83	(4-) CF ₃	-	N(CH ₃) ₂ (2-) O	OC ₂ H ₅	¹ H-NMR (CDCl ₃ , δ):
			$ \begin{array}{c c} & & \\$		5.36 ppm.
IV-84	(4-) CF ₃	-	(2-) N C ₂ H ₅ OCH ₃	OC ₂ H ₅	¹ H-NMR (CDCl ₃ , δ): 5.37 ppm.
IV-85	(4-) CF ₃	_	$(2-)$ $N \longrightarrow CH_3$ $N = (CH_3)_2$	OC ₂ H ₅	logP = 2.79 ^{a)}

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-86	(4-) CF ₃	-	(2-) SO ₂	OC ₂ H ₅	$logP = 3.67^{a}$
IV-87	(4-) CF ₃	-	(2-)	OC ₂ H ₅	$logP = 3.80^{a}$
IV-88	(3-) CH ₃	-	(2-) N CH ₃ OC ₂ H ₅	OC ₂ H ₅	$logP = 2.54^{a}$
IV-89	(4-) SO ₂ CH ₃	-	(2-) N CH ₃ SCH ₃	OC ₂ H ₅	$logP = 1.82^{a}$
IV-90	(4-) CF ₃	-	(2-) N N O CF ₃	OC ₂ H ₅	logP = 2.93 ^{a)}

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-91	(4-) CF ₃	-	(2-)	OC ₂ H ₅	$\log P = 3.08^{a}$
			N N		
			N=(OCH ₃		
TV 02	(4) CE		0	OC ₂ H ₄	$logP = 3.04^{a}$
IV-92	(4-) CF ₃	-		002115	log1 = 3.04
			N=(
	4		(2-) CH ₃		
IV-93	(4-) CF ₃	-	(2-)	OC ₂ H ₅	$\log P = 3.45^{a}$
			O II		
			N CH ₃		
			N= OCH₂CF		
				3	
IV-94	(4-) F	-	(2-)	OC ₂ H ₅	$\log P = 2.21^{a}$
Control of the Contro			0		
and the state of t			N N CH ₃		
			$N = \langle N(CH_3) \rangle$		
IV-95	(4-) F		(2-)	OC ₂ H ₅	$\log P = 2.96^{a}$
1, 55		:	Q Q		
:			N CH3		
			N=		
			OC ₃ H ₇ -r		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-96	(4-) F	-	(2-) N CH ₂ O		$logP = 2.05^{a}$
IV-97	(4-) F	-	(2-) N=(N-)	OC_2H_5	$logP = 2.50^{a}$
IV-98	(4-) F	-	(2-) O N N N	OC ₂ H ₅	$\log P = 2.89^{a}$
IV-99	(4-) CF ₃	-	OC ₂ H	OC ₂ H ₅	$logP = 2.91^{a}$
IV-100	(4-) Cl	-	(2-) N=(CH ₃ CH ₃	OC ₂ H ₅	¹ H-NMR (CDCl ₃ , δ): 5.39 ppm.

Ex. No.	(Position)	(Position)	(Position)		Physical data
	R^3	$(R^4)_n$	-A-Z	x	
IV-101	(4-) Cl	-	(2-)	OC ₂ H ₅	¹ H-NMR
			Q Q		(CDCl ₃ , δ):
			N CH3		5.50 ppm.
			N=		
			CF ₃		
IV-102	(4-) Cl	-	(2-)	OC ₂ H ₅	¹ H-NMR
					(CDCl ₃ , δ):
			N CH3		5.49 ppm.
			N=(
			`SO ₂ CH ₃		
IV-103	(4-) CF ₃	-	(2-)	OC_2H_5	¹ H-NMR
			0		(CDCl ₃ , δ):
			N CH ₃		5.29 ppm.
			N=(CH ₃		
				00.11	ITT NIMED
IV-104	(4-) CF ₃	-	(2-)	OC ₂ H ₅	¹ H-NMR
					(CDCl ₃ , δ):
			N CH ₃		5.53 ppm.
			CF ₃		
IV-105	(4-) CF ₃		(2-)	OC ₂ H ₅	¹ H-NMR
1 v -103	(4-) C13		0		$(CDCl_3, \delta)$:
					5.34 ppm.
			N=N-		
			V		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	R^3	$(R^4)_n$	-A-Z	X	
IV-106	(4-) SO ₂ CH ₃	-	(2-)	OC ₂ H ₅	¹ H-NMR
			O A		(CDCl ₃ , δ):
			N		5.39 ppm.
			N=(
IV-107	(4-) SO ₂ CH ₃	-	(2-)	OC ₂ H ₅	¹ H-NMR
			Q		(CDCl ₃ , δ):
			N CH ₃		5.43 ppm.
			N=(
			,CH ³		
IV-108	(4-) SO ₂ CH ₃	-	(2-)	OC ₂ H ₅	¹H-NMR
					(CDCl ₃ , δ):
			N CH3		5.40 ppm.
			N=		
			N(CH ₃) ₂		
IV-109	(4-) SO ₂ CH ₃	-	(2-)	OC ₂ H ₅	¹ H-NMR
		A Commonwealth of the Comm			(CDCl ₃ , δ):
			N N CH3		5.38 ppm.
			N=		
			OC ₂ H ₅		
IV-110	(4-) Br	-	(2-)	OC ₂ H ₅	
					$(CDCl_3, \delta)$:
			N N CH ₃		5.49 ppm.
			N=(CF ₃		
			3		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-111	-	-	(2-)	OC ₂ H ₅	¹ H-NMR
			0		(CDCl ₃ , δ):
			N N	And the state of t	5.3 ppm.
			>		
IV-112		-	(2-)	OC ₂ H ₅	H-NMR
					(CDCl ₃ , δ):
			N CH ₃		5.44 ppm.
IV-113	(4-) CF ₃	-	(2-)	OC ₂ H ₅	$\log P = 2.58^{a}$
			H ₃ C O		
IV-114	(4-) SO ₂ CH ₃	_	(2-)	OCH ₃	$logP = 1.53^{a}$
			N CH ₃		
IV-115	(4-) SO ₂ CH ₃	-	(2-)	OCH ₃	$logP = 1.59^{a}$
			$ \begin{array}{c c} & O \\ & N - CH_3 \\ & OC_2H_5 \end{array} $		

Ex. No.	(Position)	(Position)	(Position)		Physical data
	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	
IV-116	(4-) I	-	(2-)	OCH ₃	$logP = 2.68^{a}$
			$ \begin{array}{c c} O \\ N \\ OC_2H_5 \end{array} $		
IV-117	(4-) CF ₃	-	(2-)	OCH ₃	$\log P = 2.74^{a}$
			N N N N N N N N N N		
IV-118	(4-) CF ₃	-	(2-)	OCH ₃	$\log P = 2.65^{a}$
			N CH ₃ SCH ₃		
IV-119	(4-) CF ₃	-	(2-) N CH ₃ Br	OC ₂ H ₅	$logP = 2.96^{a}$
IV-120	-	-	(2-) N CH ₃	OCH ₃	m.p.: 106°C

The logP values given in Tables 4 were determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on a reversed-phase column (C 18). Temperature: 43°C.

- (a) Mobile phases for the determination in the acidic range: 0.1% aqueous phosphoric acid, acetonitrile; linear gradient from 10% acetonitrile to 90% acetonitrile corresponding measurement results in Table 1 are marked a).
- (b) Mobile phases for the determination in the neutral range: 0.01 molar aqueous phosphate buffer solution, acetonitrile; linear gradient from 10% acetonitrile to 90% acetonitrile corresponding measurement results in Table 1 are marked $^{\rm b}$).
- Calibration was carried out using unbranched alkan-2-ones (having 3 to 16 carbon atoms) with known logP values (determination of the logP values by the retention times using linear interpolation between two successive alkanones).
 - The lambda max values were determined in the maxima of the chromatographic signals using the UV spectra from 200 nm to 400 nm.

10

15

30

Use Examples:

Example A

Pre-emergence test

Solvent:

5 parts by weight of acetone

Emulsifier:

1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.

Seeds of the test plants are sown in normal soil. After about 24 hours, the soil is sprayed with the preparation of active compound such that the particular amount of active compound is applied per unit area. The concentration of the spray liquor is chosen such that the particular amount of active compound desired is applied in 1000 liters of water per hectare.

After three weeks, the degree of damage to plants is rated in % damage in comparison to the development of the untreated control.

The figures denote:

25 0%

no effect (like untreated control)

100% =

total destruction

In this test, for example, the compounds of Preparation Example 2 and 3 exhibit strong activity against weeds, and they are tolerated well by crop plants such as, for example, corn.

Example B

Post-emergence test

5 Solvent:

5 parts by weight of acetone

Emulsifier:

1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.

Test plants of a height of 5 - 15 cm are sprayed with the preparation of active compound such that the particular amounts of active compound are applied per unit area. The concentration of the spray liquor is chosen such that the particular amounts of active compound desired are applied in 1000 l of water/ha.

After three weeks, the degree of damage to the plants is rated in % damage in comparison to the development of the untreated control.

20

10

15

The figures denote:

0% = no effect (like untreated control)

100% = total destruction

25

In this test, for example, the compound of Preparation Example 2 and 3 exhibit strong activity against weeds.

Patent Claims

1. Substituted benzoylpyrazoles of the general formula (I),

$$\begin{array}{c|c}
R^2 & O \\
N & A \\
R^3
\end{array}$$
(I)

5

in which

n represents the numbers 0, 1, 2 or 3,

10

A represents a single bond or represents alkanediyl (alkylene),

R¹ represents in each case optionally substituted alkyl, alkenyl, alkinyl or cycloalkyl,

15

R² represents hydrogen, cyano, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkoxycarbonyl or cycloalkyl,

20

R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino or dialkylaminosulfonyl,

25

R⁴ represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino or dialkylaminosulfonyl,

10

15

20

25

30

- Y represents hydrogen or represents in each case optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkenyl, alkenylcarbonyl, alkenylsulfonyl, alkinyl, alkinylcarbonyl, cycloalkyl, cycloalkylalkyl, phenylcarbonyl, phenylsulfonyl, phenylalkyl or phenylcarbonylalkyl, and
- z represents an optionally substituted 4- to 12-membered saturated or unsaturated monocyclic or bicyclic heterocyclic grouping which contains 1 to 4 heteroatoms (up to 4 nitrogen atoms and optionally alternatively or additionally one oxygen atom or one sulfur atom, or an SO grouping or an SO₂ grouping) and which additionally contains one to three oxo groups (C=O) and/or thioxo groups (C=S) as component of the heterocycle,

including all possible tautomeric forms and the possible salts.

- 2. Compounds according to Claim 1, characterized in that
- n represents the numbers 0, 1 or 2,
 - A represents a single bond or represents alkanediyl (alkylene) having 1 to 4 carbon atoms,
 - R¹ represents optionally cyano-, carboxyl-, carbamoyl-, halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkyl-carbonyl-, C₁-C₄-alkoxy-carbonyl-, C₁-C₄-alkyl-thio-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl having 1 to 6 carbon atoms, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C₁-C₄-alkoxy-carbonyl-substituted alkenyl or alkinyl having in each case 2 to 6 carbon atoms, or

 \mathbb{R}^2

represents optionally cyano-, carboxyl-, carbamoyl-, halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-carbonyl-substituted cycloalkyl having 3 to 6 carbon atoms,

5

represents hydrogen, cyano, carbamoyl, thiocarbamoyl, halogen, reprsents in each case optionally cyano-, halogen- or C_1 - C_4 -alkoxy-substituted alkyl, alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms, represents optionally halogen-substituted alkylthio having 1 to 6 carbon atoms, or represents optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted cycloalkyl having 3 to 6 carbon atoms,

10

R³ represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thio-carbamoyl, halogen, represents in each case optionally halogen, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulfonyl having in each case up to 4 carbon atoms in the alkyl groups,

15

R⁴ represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, represents in each case optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulfinyl- or C₁-C₄-alkylsulfonyl-substituted alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 4 carbon atoms in the alkyl groups, or represents alkylamino, dialkylamino or dialkylaminosulfonyl having in each case up to 4 carbon atoms in the alkyl groups,

20

Y represents hydrogen, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C₁-C₄-alkoxycarbonyl-substituted alkyl, alkylcarbonyl or alkoxycarbonyl having in each case up to 6 carbon atoms, represents in each case optionally halogen-substituted

25

10

15

alkylsulfonyl, alkylaminocarbonyl or dialkylaminocarbonyl having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally cyano-, carboxyl-, carbamoyl-, halogen- or C₁-C₄alkoxy-carbonyl-substituted alkenyl, alkenylcarbonyl, alkinyl or alkinylcarbonyl having in each case 2 to 6 carbon atoms, represents optionally halogen-substituted alkenylsulfonyl having up to 6 carbon atoms represents in each case optionally cyano-, halogen- or C₁-C₄alkyl-substituted cycloalkyl, cycloalkylcarbonyl or cycloalkylalkyl having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally 1 to 3 carbon atoms in the alkyl moiety, or represents in each case optionally nitro-, cyano-, carboxyl-, carbamoyl-, halogen-, C₁-C₄-alkyl-, C₁-C₄-halogenoalkyl-, C₁-C₄-alkoxy- or C₁-C₄-halogenoalkoxy-substituted phenylcarbonyl, phenylsulfonyl, phenyl-C₁-C₄alkyl or phenylcarbonyl-C₁-C₄-alkyl, and

Z represents one of the heterocyclic groupings below

in which in each case the broken bond is a single bond or a double bond,

 R^5

10

5

The first series will be the series of the s

25

30

Q represents oxygen or sulfur,

represents hydrogen, hydroxyl, mercapto, cyano, halogen, represents in each case optionally cyano-, halogen-, C1-C4alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulfinyl- or C₁-C₄alkylsulfonyl-substituted alkyl, alkylcarbonyl, alkoxy, alkoxycarbonyl, alkylthio, alkylsulfinyl or alkylsulfonyl having in each case up to 6 carbon atoms in the alkyl groups, represents propadienylthio, represents in each case optionally halogensubstituted alkylamino or dialkylamino having in each case up to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl, alkenyloxy, alkenylthio or alkenylamino having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogen-substituted cycloalkyl, cycloalkyloxy, cycloalkylthio, cycloalkylamino, cycloalkylalkyl, cycloalkylalkoxy, cycloalkylalkylthio or cycloalkylalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 4 carbon atoms in the alkyl moiety, represents in each case optionally halogen-, C1-C4-alkyl- or C1-C4alkoxy-substituted phenyl, phenyloxy, phenylthio, phenylamino, benzyl, benzyloxy, benzylthio or benzylamino, represents pyrrolidino, piperidino or morpholino, or - if two adjacent radicals R⁵ and R⁵ are located on a double bond together with the adjacent radical R⁵ also represents a benzo grouping, and

R6 represents hydrogen, hydroxyl, amino, alkylideneamino having up to 4 carbon atoms, represents in each case optionally halogen- or C₁-C₄-alkoxy-substituted alkyl, alkoxy, alkylamino, dialkylamino or alkanoylamino having in each case up

5

10

15

20

25

30

to 6 carbon atoms in the alkyl groups, represents in each case optionally halogen-substituted alkenyl, alkinyl or alkenyloxy having in each case up to 6 carbon atoms in the alkenyl or alkinyl groups, represents in each case optionally halogen-substituted cycloalkyl, cycloalkylalkyl or cycloalkylamino having in each case 3 to 6 carbon atoms in the cycloalkyl groups and optionally up to 3 carbon atoms in the alkyl moiety, or represents in each case optionally halogen-, C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted phenyl or benzyl, or together with an adjacent radical R⁵ or R⁶ represents optionally halogen- or C₁-C₄-alkyl-substituted alkanediyl having 3 to 5 carbon atoms,

where the individual radicals R^5 and R^6 - if a plurality of these are attached to the same heterocyclic groupings, may have identical or different meanings within the scope of the above definition.

- 3. Compounds according to claim 1 or 2, characterized in that
 - n represents the numbers 0 or 1,
 - A represents a single bond, methylene, ethylidene (ethane-1,1-diyl) or dimethylene (ethane-1,2-diyl),
 - R¹ represents in each case optionally fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, n- or i-propylsulfinyl-, methylsulfonyl-, ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, 1-, s- or t-butyl, represents in each case optionally fluorine-, chlorine- or bromine-substituted propenyl, butenyl, propinyl or butinyl, or represents in each case optionally cyano-, fluorine-,

chlorine-, bromine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,

R² represents hydrogen, cyano, carbamoyl, thiocarbamoyl, represents in each case optionally cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, or represents in each case optionally cyano-, fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,

represents hydrogen, nitro, cyano, carboxyl, carbamoyl, thio-carbamoyl, fluorine, chlorine, bromine, iodine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, methylsulfonyl- or ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, dimethylaminosulfonyl, or diethylaminosulfonyl,

R⁴ represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, fluorine, chlorine, bromine, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, methylthio-, ethylthio-, n- or i-propylthio-, methylsulfinyl-, ethylsulfinyl-, methylsulfonyl- or

15

 R^3

5

10

20

25

ethylsulfonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, represents in each case optionally fluorine- and/or chlorine-, methoxy-, ethoxy-, n- or i-propoxy-substituted methoxy, ethoxy, n- or i-propoxy, represents in each case optionally fluorine- and/or chlorine-substituted methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, or represents methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, dimethylaminosulfonyl or diethylaminosulfonyl,

10

15

5

 R^5 represents hydrogen, hydroxyl, chlorine, bromine, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, difluoromethyl, dichloromethyl, trifluoromethyl, trichloromethyl, chlorodifluoromethyl, fluorodichloromethyl, fluoroethyl, chloroethyl, difluoroethyl, dichloroethyl, fluoro-n-propyl, fluoro-i-propyl, chloro-n-propyl, chloro-i-propyl, methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, methoxy, ethoxy, n- or ipropoxy, n-, i-, s- or t-butoxy, fluoroethoxy, chloroethoxy, difluoroethoxy, dichloroethoxy, trifluoroethoxy, trichloroethoxy, chlorofluoroethoxy, chlorodifluoroethoxy, fluorodichloroethoxy, methylthio, ethylthio, n- or i-propylthio, fluoroethylthio, chloroethylthio, difluoroethylthio, dichloroethylthio, chlorofluoroethylthio, chlorodifluoroethylthio, fluorodichloroethylthio, methylsulfinyl, ethylsulfinyl, n- or i-propylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or i-propylsulfonyl, dimethylamino, propenylthio, butenylthio, propinylthio, butinylthio, cyclopropyl, cyclopropylmethyl, cyclopropylmethoxy, phenyl or

20

25

phenoxy,

R6 represents amino, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, methylamino, dimethylamino, cyclopropyl or cyclopropylmethyl, or together with R⁵ represents propane-1.3-divl

Y

5

10

15

20

represents hydrogen, represents in each case optionally cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted methyl, ethyl, nor i-propyl, acetyl, propionyl, n- or i-butyroyl, methoxycarbonyl or ethoxycarbonyl, represents in each case optionally fluorine-, chlorineand/or bromine-substituted methylsulfonyl-, ethylsulfonyl-, n- or ipropylsulfonyl-, n-, i-, s- or t-butylsulfonyl-, methylaminocarbonyl, ethylaminocarbonyl, n- or i-propylaminocarbonyl, dimethylaminocarbonyl or diethylaminocarbonyl, represents in each case optionally fluorine-, chlorine- or bromine-substituted propenyl, butenyl, propenylcarbonyl, butenylcarbonyl, propenylsulfonyl, butenylsulfonyl, propinyl, butinyl, propinylcarbonyl or butinylcarbonyl, represents in each case optionally cyano-, fluorine-, chlorine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclopenyl, cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl or cyclohexylmethyl, or represents in each case optionally nitro-, cyano-, fluorine-, chlorine-, bromine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, sor t-butyl-, trifluoromethyl-, methoxy-, ethoxy-, n- or i-propoxy-, difluoromethoxy- or trifluoromethoxy-substituted phenylcarbonyl, phenylsulfonyl, benzyl or phenylcarbonylmethyl.

- 25 4. Compounds according to any of claims 1 to 3, characterized in that
 - Z represents the grouping below

10

- 5. Compounds according to any of claims 1 to 4, characterized in that
 - Q represents oxygen.
- 5 6. Compounds according to any of claims 1 to 5, characterized in that n represents 0.
 - 7. Process for preparing compounds according to any of claims 1 to 6, characterized in that

(a) pyrazoles of the general formula (II)

in which

 R^1 , R^2 and Y are as defined in any of claims 1 to 3,

are reacted with substituted benzoic acids of the general formula (III),

HO
$$(R^4)_n$$

$$A Z$$

$$R^3$$
(III)

in which

25

n, A, \mathbb{R}^3 , \mathbb{R}^4 and Z are as defined in any of claims 1 to 6,

in the presence of a dehydrating agent, if appropriate in the presence of one or more reaction auxiliaries and if appropriate in the presence of a diluent, or that

(b) pyrazoles of the general formula (II)

5

in which

R¹, R² and Y are as defined in any of claims 1 to 3,

10

are reacted with substituted benzoic acid derivatives of the general formula (IV)

$$X \xrightarrow{(R^4)_n} A Z$$

$$R^3 \qquad (IV)$$

15

in which

n, A, \mathbb{R}^3 , \mathbb{R}^4 and Z are as defined in any of claims 1 to 6, and

X represents cyano, halogen or alkoxy,

20

- or with corresponding carboxylic anhydrides -

if appropriate in the presence of one or more reaction auxiliaries and if appropriate in the presence of a diluent,

or that

(c) substituted benzoylpyrazoles of the general formula (Ia)

$$R^2$$
 O $(R^4)_n$ A Z R^3 (Ia)

in which

5

10

15

20

25

n, A, R^1 , R^2 , R^3 , R^4 and Z are as defined in any of claims 1 to 6,

are reacted with compounds of the general formula (V)

H-Y (V)

in which

Y is as defined in any of claims 1 to 4, except for hydrogen,

- or, if appropriate, with corresponding isocyanates or isothiocyanates -

if appropriate in the presence of one or more reaction auxiliaries and if appropriate in the presence of a diluent,

and, if appropriate, the resulting compounds of the formula (I) are subsequently subjected in a customary manner to electrophilic or nucleophilic and/or oxidation or reduction reactions within the scope of the definition of the substituents, or the compounds of the formula (I) are converted in a customary manner into salts.

8. Compounds of the general formula (Ia)

in which

undesirable plants.

5

n, A, R^1 , R^2 , R^3 , R^4 and Z are as defined in any of claims 1 to 6.

10

9.

10. Use of at least one compound according to any of claims 1 to 6 for controlling

Herbicidal compositions, characterized in that they comprise at least one of

the compounds according to any of claims 1 to 6 and customary extenders.

5

10

15

- R⁴ represents nitro, cyano, carboxyl, carbamoyl, thiocarbamoyl, halogen, or represents in each case optionally substituted alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino or dialkylaminosulfonyl,
- represents hydrogen or represents in each case optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkenyl, alkenylcarbonyl, alkenylsulfonyl, alkinylcarbonyl, cycloalkyl, cycloalkylcarbonyl, cycloalkylalkyl, phenylcarbonyl, phenylsulfonyl, phenylalkyl or phenylcarbonylalkyl, and
- represents an optionally substituted 4- to 12-membered saturated or unsaturated monocyclic or bicyclic heterocyclic grouping which contains 1 to 4 heteroatoms (up to 4 nitrogen atoms and optionally alternatively or additionally one oxygen atom or one sulfur atom, or an SO grouping or an SO₂ grouping) and which additionally contains one to three oxo groups (C=O) and/or thioxo groups (C=S) as component of the heterocycle,

and also to processes for their preparation and to their use as herbicides.

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought

on the invention entitled

"SUBSTITUTED BENZOYLPYRAZOLES AS HERBICIDES"

the specification of which is attached hereto,

or was filed on March 15, 2000 /

as a PCT Application Serial No. PCT/EP00/02292

I hereby state that I have reviewed and understand the contents of the aboveidentified specification, including the claims.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, \$119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s), the priority(ies) of which is/are to be claimed:

199 14 140.1 — Germany — (Country)

March 27, 1999 (Month/Day/Year Filed)

I hereby claim the benefit under Title 35, United States Code, \$120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, \$112, I acknowledge the duty to disclose the material information as defined in Title 37, Code of Federal Regulations, \$1.56 which occured between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.)	(Filing Date)	(Status)
		(patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status)
	_	(patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Le A 33 628-US

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and this application and to transact all business in the Patent and Trademark Office conne

JOSEPH C. GIL, Patent Office Registration <u>Number 26,602</u> ARON PREIS, Patent Office Registration <u>Number 29,426</u> LYNDANNE M. WHALEN, Patent Office Registration <u>Number 29,457</u> THOMAS W. ROY,

Patent Office Registration Number 29,582 RICHARD E. L. HENDERSON, Patent Office Registration Number 31,619 GODFRIED R. AKORLI, Patent Office Registration Number 28,779 N. DENISE BROWN, Patent Office

Registration Number 36.097 NOLAND J. CHEUNG, Patent Office Registration Number 39,138

DIDERICO VAN EYL, Patent Office Registration Number 38,641 CAROLYN M. SLOANE, Patent Office Registration Number 44,339 JAMES R. FRANKS, Patent Office Registration Number 42,552

JACKIE ANN ZURCHER, Patent Office Registration Number 42,251 RAYMOND J. HARMUTH, Patent Office Registration Number 33,896

all of Bayer Corporation, Pittsburgh, Pennsylvania 15205-9741

	Send Correspondence To: Direct Telephone Patent Department Bayer Corporation (412) 777-2349 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741	Calls To:		
	FULL NAME OF SOLE OR FIRST INVENTOR	INVENTOR'S SAGNATUR	E _l	DATE 7rd Of
1-00	<u>Klaus-Helmut Müller</u>	CC-/fel		DATE 3rd of August 2001
, -	RESIDENCE		CITIZENSHIP	0
Ţ.	D 40593 Düsseldorf, Germany		Austrian /	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	POST OFFICE ADDRESS			
113	c/o BAYER AKTIENGESELLSCHAFT, D 51368 Le	278		,
	FULL NAME OF SECOND INVENTOR	INVENTOR'S SIGNATURE		DATE
2-09	Stefan Lehr	Skfor Ju		2001-08-06
5 75	D 40764 Langenfeld, Germany	<i>(</i>	CITIZENSHIP	
IJ	POST OFFICE ADDRESS		German	
ļ. 	c/o BAYER AKTIENGESELLSCHAFT, D 51368 Le	varkusan Carmany	7	
3	FULL NAME OF THIRD INVENTOR	INVENTOR'S PIGNATURE		DATE
	Otto Schallner	THE STATE OF THE S	illan	2001-08-14
3-04	RESIDENCE	CAMP SOUN	CITIZENSHIP	THOUX OR ILI
Bun Bun	D 40789 Monheim, Germany DEX		German	
ĮÑ,	POST OFFICE ADDRESS	· · · · · · · · · · · · · · · · · · ·		
17 10000 17 10000 18 10000 18 10000	c/o BAYER AKTIENGESELLSCHAFT, D 51368 Le	verkusen, Germany	7	
of page	FULL NAME OF FOURTH INVENTOR	INVENTOR'S SIGNATUR		DATE
1-18	Hans-Georg Schwarz	Halm- Linn	n Schwarz	2001-09-18
7 0 9	RESIDENCE	7.	CTIZENSHIP	
	D 40764 <u>Langenfeld</u> , Germany DEX	U	√ German ✓	
	POST OFFICE ADDRESS			
	c/o BAYER AKTIENGESELLSCHAFT, D 51368 Le	verkusen, Germany	7	
	FULL NAME OF FIFTH INVENTOR	INVENTOR'S SIGNATUR	E O. I. O. Si	DATE
500	Heinz-Jürgen Wroblowsky_	Hert-paren	process	2031-08-14
	D 40764 Langenfeld, Germany DEX	1 9 1	CITIZENSHIP	′
	POST OFFICE ADDRESS		German 🕳	
	c/o BAYER AKTIENGESELLSCHAFT, D 51368 Le	verkusen Cormans	7	
	FULL NAME OF SIXTH INVENTOR			DATE
-18	Mark Wilhelm Drewes	INVENTOR; S SIGNATUR	h drewes	2001-08-16
). <i>U</i> U	RESIDENCE		CITIZENSHIP	1
	D 40764 Langenfeld, Germany		German	
	POST OFFICE ADDRESS			
	c/o BAYER AKTIENGESELLSCHAFT, D 51368 Le	verkusen, Germany	J	
	FULL NAME OF SEVENTH INVENTOR	INVENTOR'S SECNATUR		DATE
7-00	<u>Dieter Feucht</u>	There guill	ut	1001-18-16
. •	RESIDENCE		CITIZENSHIP	
	D 40789 Monheim, Germany DEX		German German	
	POST OFFICE ADDRESS			
	c/o BAYER AKTIENGESELLSCHAFT, D 51368 Le	verkusen, Germany	J	

FULL NAME OF EIGHTH INVENTOR	INVENTOR'S SIGNAT	TIDE Î	DATE			
Rolf Pontzen	INVIRIOR S SIGNAL	OKE D.	2001-08			
RESIDENCE	1 100	CITIZENSHIP	1007 0			
D 42799 Leichlingen, Germany DE	· ×	German				
POST OFFICE ADDRESS						
c/o BAYER AKTIENGESELLSCHAFT, D 5	1368 Leverkusen, Germa	anv.				
FULL NAME OF NINTH INVENTOR			DATE			
Ingo Wetcholowsky	INVENTOR'S SIGNAT	are X	2001-09			
RESIDENCE		CITIZENSHIP	-			
Vinhedo, S.P., CEP13280000, Cond. E	Istancia Marambaia, Bra					
ST OFFICE ADDRESS						
Vinhedo, S.P., CEP 13280000, Cond. Estancia Marambaia, Rua Avare 500, Brazil						
FULL NAME OF TENTH INVENTOR	INVENTOR'S SIGNA	TURE	DATE			
RESIDENCE		CITIZENSHIP				
POST OFFICE ADDRESS		- Laurence -				
FULL NAME OF ELEVENTH INVENTOR	INVENTOR'S SIGNA	TURE	DATE			
RESIDENCE		CITIZENSHIP				
OST OFFICE ADDRESS						
FULL NAME OF TWELFTH INVENTOR	INVENTOR'S SIGNA	TURE	DATE			
RESIDENCE		CITIZENSHIP				
POST OFFICE ADDRESS						
FULL NAME OF THIRTEENTH INVENTOR	INVENTOR'S SIGNA	TURE	DATE			
RESIDENCE		CITIZENSHIP				
POST OFFICE ADDRESS						
FULL NAME OF FOURTHEENTH INVENTOR	OF FOURTHEENTH INVENTOR INVENTOR'S SIGNATURE		DATE			
RESIDENCE		CITIZENSHIP				

POST OFFICE ADDRESS						
FULL NAME OF FIFTEENTH INVENTOR	INVENTOR'S SIGNA	TURE	DATE			
RESIDENCE	1.	CITIZENSHIP				
POST OFFICE ADDRESS						
FULL NAME OF SIXTEENTH INVENTOR	INVENTOR'S SIGNA	TURE	DATE			
RESIDENCE		CITIZENSHIP				
POST OFFICE ADDRESS						
	T : : :		T = ==			
FULL NAME OF SEVENTEENTH INVENTOR	INVENTOR'S SIGNA	TURE	DATE			
RESIDENCE		CITIZENSHIP				
POST OFFICE ADDRESS	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
POST OFFICE ADDRESS						