单相在线式不间断电源

摘要:以 MSP430F6638 单片机和 FPGA 为控制核心,结合 PID 算法,设计制作了单相在线式不间断电源。系统包含变压器,Buck 拓扑电路,Boost 拓扑电路和逆变电源。变压器模块将市电降压,经全桥整流后输入直流变换电路,其中 Buck电路将电压降至 24V 并与直流源并联,随后 Boost 电路将电压升压后输入逆变电路,逆变电路输出所需交流电压。在交流电源断电后直流源受控接入电路,保证输出连续。经测试,系统完成了题目要求,输出电压有效值平均 30.1V,频率50.07Hz,总谐波失真不超过 1.7%,交流输入时负载调整率 3.6%,电压调整率1.4%,直流输入时效率约 91%。此外,系统可以通过按键步进设置输出电压,还可以通过手机蓝牙控制电源开关。系统稳定性和安全性高,功能丰富,人机交互良好。

关键词: 不间断电源; PID 算法; SPWM 波; 交流采样

1. 系统方案

1.1. 方案比较与选择

1.1.1. 直流变换电路方案论证

题目需要在整流后 50V 直流输入和直流源 24V 输入时均为后级逆变电路提供稳定的电压。主要方案有以下两种:

方案一: Boost-Buck 电路 方案二: Buck 电路与 Boost 电路级联

方案一可以用单一电路实现宽输入稳定输出功能,但电路结构稍复杂且输入电压迅速变化时电路具有一定不稳定性。方案二使用 Buck 电路将 50V 直流降压到 24V,并接直流稳压电源后再使用 Boost 电路将 24V 电压升压到逆变电路所需的 45V。这种方案电路稳定且直流源接入方便,不产生电压突变。故本系统使用方案二。

1.1.2. 整流电路方案论证

方案一 不控整流: 如图 1,利用二极管搭建整流桥,经大电容滤波得到直流输出, 其中二极管应根据要求选择导通压降应尽量小的,采用多个二极管并联可以减小损耗。

方案二 同步整流桥整流:如图 2,采用同步整流桥。利用理想桥控制芯片如 LT4320 控制 MOS 管实现超低压降同步整流,可以实现接近 99%的转换效率

同步整流桥整流相比不控整流转换效率高,但电路控制较复杂且对电流有限制。因 题目未要求交流输入效率,故整流方案以简洁稳定为主,采用方案一。

1.2. 总体方案描述

经过上述方案比较与选择,系统总体框图如图 3。220V 市电通过隔离变压器和自耦变压器降为 36Vrms 交流电,随后经过继电器输入全桥整流电路,得到约 50V 直流电。将其经过 Buck 电路降压为 24V 后与备用直流源并联。24V 直流电再通过 Boost 电路升压为 45V,随后输入逆变电路转换为 30Vrms 交流电。其中升压、降压和逆变电路均依据分别采样的输出电压,利用 PID 算法使之恒定在所需电压,以得到稳定的输出。当检测到交流输入断开时,单片机控制直流储能元件接入,完成电源切换,从而实现输出不间断。当采样输出电流超过规定值时,单片机控制断开 Boost 电路输入,完成过流保护。

图 3 系统整体框图

2. 理论分析与计算

2.1. 直流稳压主回路分析与计算

系统的直流稳压电路由降压 Buck 回路和升压 Boost 回路构成。

Boost 电路最恶劣工作情况为 24V→45V, 选定 PWM 波频率f = 20KHz, 则:

$$E_t = V_{IN} \cdot \frac{D}{f} = \frac{V_{IN}}{f} (1 - \frac{V_{IN}}{V_O}) = 560 \mu s \cdot V \tag{1}$$

取纹波率r = 0.4得

$$L \times I = \frac{E_t}{r} = \frac{560}{0.4} = 1.4mH \cdot A \tag{2}$$

根据题目要求交流输出 $I_{OUT(Max)}=1A$,过流保护阈值 $I_{O}=1\pm0.2A$,相应的,Boost 电路输出电流取 $I_{O}=0.8A$ 。

由式 $I_L = \frac{I_O}{1-D}$ 得 $I_L = 1.5A$,则 $I_O = 933\mu H$ 。考虑余量后选用1.3mH电感。

Buck 电路最恶劣工作情况为 60V→24V, 类似计算后选用925 μH电感。

2.2. 稳压控制方法

稳压控制通过采样输出交流电压有效值,使用 PID 算法计算 Boost 电路 PWM 波占空比,从而通过精确控制 Boost 电路输出控制交流电压输出。PID 理论公式如式(3)。在电源控制中只使用 P、I 控制。取经验值 K_p =0.95, T_t =1。

$$u(t) = K_p \left(e(t) + \frac{1}{T_t} \int_0^t e(t)dt + T_D \frac{de(t)}{dt} \right)$$
 (3)

2.3. 提高效率的方法

(1) Buck 电路辅助电源采用整流输出作为输入,避免从直流源消耗功率。

- (2) 主电路连线尽量短,同一模块电路尽量紧凑,较小线路损耗。
- (3)Buck 电路和 Boost 电路均采用两个 MOS 管经两路 PWM 波控制的同步控制方法。 因 MOS 管导通电阻低至 $2.3m\Omega$,在流过相同电流条件下,其损耗功率仅为非同步控制电路中二极管损耗功率的6%。

3. 电路与程序设计

3.1. 交流变压及整流电路的设计

220V 有效值交流电依次通过隔离变压器和自耦变压器后,变换为与电网隔离的 29V~43V交流电,将其通过图 1 的全桥整流电路后得到28.7V~56.8V直流电。

3.2. 直流变换电路的设计

直流变换电路由 Buck 降压电路和 Boost 升压电路组成,完成直流电压调整和直流源接入功能。电路图见图 4。其中 Buck-HO、Buck-LO、Boost-HO、Boost-LO 分别为相应PWM 波经开关管驱动电路转换后的控制信号。

图 4 直流变换电路

3.3. 控制电路的设计

控制电路主要元件为开关管、开关管驱动器、采样芯片及控制芯片。

两个拓扑回路中开关管中通过的电流均较大,为提高效率,选择动态电阻较小的 MOS 场效应开关管。开关管 CSD19536 的导通电阻 $R_{DS(on)}=2.3m\Omega$,工作时产生的导通损耗小。开关管驱动芯片选择 UCC27211。UCC27211 的上升和下降时间极小,只有 7.2ns 和 5.5ns,且驱动输出电流可达 4A,因此在驱动 MOS 管的导通时仅会产生很少的开通损耗和关断损耗。开关管驱动电路见附图 1。

控制电路另一重要部分是对输出电压实时采样。系统使用 ADS8688 高精度 AD 转换器,其具有很高采样精度和低至 65mW 的功耗。将直流电压经分压后直接输入 8688 测量

引脚,而交流电压电流通过交流互感器后输入。交流电流互感器和交流电压互感器电路见附图 2、3。

控制芯片使用 MSP430 单片机和 FPGA,单片机完成 PID 调节、过流保护功能,而 FPGA 完成输出 PWM 波、SPWM 波和采样信号处理等功能,且工作时功耗较低。

3.4. 保护电路的设计

保护电路完成欠过压保护和过压保护功能。通过单片机判断采样电压电流是否超出规定限值。是则通过继电器断开响应输入或输出。继电器的连接电路见附图 4。

3.5. 程序设计

程序设计使用 PID 算法根据采样电压对 Buck 电路和 Boost 电路 PWM 波以及逆变电路 SPWM 波实时控制,并涉及与 ADS8688 芯片通信、电源切换、欠过压保护、过流保护等功能。

系统上电后向两直流控制电路输出默认 SPWM 波。 随后迅速采样交流输出电压、电流,交流输入 电压,并据此使用 PID 算法调节 Boost 电路 PWM 占空比,使输出交流电稳定在设定值。其 间循环判断输出电流和输入电压,输入欠过 压或输出过流时立即断开继电器,生效保护。 当输入交流电压急剧降低直至 0 时,说明交 流电源断开,此时立即打开直流源继电器,接 入直流电源,保证输出不间断。当按键有输入 时,FPGA 根据按键步进调节,使输出频率或 电压按需变化。当蓝牙有输入时,FPGA 根据 指令断开或接通 Boost 电路输入。流程图如图 5。

4. 测试方案与测试结果

4.1. 测试使用的仪器及型号

直流源: RIGOL DP832

功率分析仪: Tektronix PA1000

数字万用表: 固纬 GDM-8261A

4.2. 测试方案与结果

4.2.1. 交流供电输出电压和频率测试

固定输入交流电压为 220V 时,调整负载电阻使输出电流为 1A,随后测量变压器输出电压 U_1 、输出端交流电压 U_0 和频率f. 多次测试得到平均值 $U_1=36.02V$; $U_0=29.87V$; f=50.07Hz.输出电压和频率符合题目要求。

4.2.2. 交流供电负载调整率测试

固定 U_1 =36V,滑动负载电阻使输出电流从 0.1A 变化到 1A,测量输出电压 U_0 。结果记录于表 2。利用公式(4)计算得系统负载调整率不超过 1.4%。

衣 1 贝敦侗登平							
输出电流值(A)	0.1	0.2	0.5	0.7	0.9	1.0	
输出电压 U_0 (V)	29.90	29.83	29.71	29.67	29.59	29.46	
$S_I = \left \frac{U_{O2} - U_{O1}}{U_{O2}} \right \times 100\%$							

4.2.3. 交流供电电压调整率测试

调整自耦变压器使输入电压 U_1 从 29V 变化到 43V,测量实际输出电压。结果记录于表 3. 据公式(5)计算得系统电压调整率不超过 3.6%。

表 9 由压调整率

· · · · · · · · · · · · · · · · · · ·								
输入电压 U_1 (V)	29	31	33	36	37	39	41	43
输出电压 U_0 (V)	29. 13	29. 32	29.45	29.78	29.85	29.91	30.11	30. 23
$S_U = \left \frac{U_{O2} - U_{O1}}{U_O} \right \times 100\%$							(5)	

4.2.4. 交流供电时输出失真度测试

固定 $U_1=36$,输出电压 $U_0=30V$,输出电流为 1A,用功率分析仪测试输出电压波形失真度。测试得系统总谐波失真 THD 不超过 1.7%,满足题目要求。

4.2.5. 直流供电输出电压及频率测试

断开交流输入,系统应立刻接入 24V 直流源,输出电压不应中断。测试此时的输出电压 U_0 和频率f。多次测试得到平均值 $U_d=23.96V$; $U_0=30.11V$; f=50.02Hz.测试表明系统可以在交流输入中断时立刻切换至直流输入,且输出电压和频率符合要求。

4.2.6. 直流供电效率测试

测试系统效率时固定直流输入电压为 24V,输出电压 30V,输出电流 1A。用万用表测试输入电压、电流,用功率分析仪测量输出功率,随后计算效率。结果记录于表 4.测试表明,系统效率平均值为 90.77%。

表 3 效率测量表

次数	1	2	3
输入电压(V)	23. 97	24.11	23. 79
输入电流(A)	1.379	1.413	1. 385
输出功率(W)	30. 12	30.77	29.89
效率	91.1%	90.5%	90. 7%

4.2.7. 其他功能测试

- (1) **欠过压和过流保护功能:** 交流供电时调整输入电压大于 44V 或小于 28V, 或直流供电时调整输入电压大于 25V 或小于 23V, 系统均可以立即切断交流输入。调整负载电阻使输出电流大于 1.2A 时系统也可以立即断开, 故具有可靠的欠过压和过流保护功能。
- (2)**输出电压幅值、频率调整功能:**在 FPGA 上通过按键步进调整输出交流电压和频率,系统输出可以根据设定调整,故系统具有输出电压幅值、频率调整功能。
- (3) **蓝牙控制功能:** 在与系统通过蓝牙连接的手机上发送指令,可以控制 Boost 电路通断,从而开启或关闭交流输出。故系统具有蓝牙控制功能。

4.3. 测试结果分析

- (1) 系统以 Buck 电路、Boost 电路和逆变电路为主拓扑结构,利用电压控制输出的方式完成了不间断电源的功能,负载调整率和电压调整率稍高,但输出波形总谐波失真较低,满足题目要求。
- (2) 系统具有欠过压、过流保护功能,输入输出异常时能迅速切断输出,安全可靠。
- (3) 系统具有输出电压幅值、频率调整和蓝牙开关等丰富的拓展功能,屏幕电流电压显示直观, 人机交互良好。

5. 结论

系统以 MSP430 单片机和 FPGA 为控制核心,结合 PID 算法,使用变压器,Buck 拓扑结构,Boost 拓扑结构和逆变电源,设计制作了单相在线式不间断电源。220V 市电经变压器降为 36Vrms 交流电,再进行全桥整流得到约 50V 直流电。将其经过 Buck 电路降压为 24V 后与备用直流储能器件并联。24V 直流电再通过 Boost 电路升压为 45V 后输入逆变电路转换为 30Vrms 交流电接至负载。经测试,系统完成了题目部分要求,输出电压有效值平均 30.1V,频率 50.07Hz,总谐波失真不超过 1.7%,交流输入时负载调整率 3.6%,电压调整率 1.4%,直流输入时效率约 91%。在交流输入中断时系统可以立刻切换至直流输入,输出连续,质量较高。系统稳定性和安全性高,人机交互良好。

附录一 电路图

附图 1 开关管驱动电路

附图 2 交流电压采样电路

附图 3 交流电流采样电路

附图 4 继电器控制电路

附图 5 +12V 稳压电路

附图 6 +12V→+5V 稳压电路