[AULA 20] Linguagem sensível ao contexto

Prof. João F. Mari joaof.mari@ufv.br

[AULA 20] Linguagem sensível ao contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 8.
 - + Slides disponibilizados pelo autor do livro.

Máquina de Turing com Fita Limitada

- Máquina de Turing com Fita Limitada
 - É uma máquina de Turing;
 - Com a fita limitada ao tamanho da entrada;
 - E mais duas células:
 - Marcadores de início e de fim de fita.
- O não-Determinismo?
 - Não é conhecido se aumenta o poder computacional.

Prof. João Fernando Mari (joaof.mari@ufv.br)

6

[AULA 20] Linguagem sensível ao contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

[DEF] Gramática Sensível ao Contexto

G = (V, T, P, S)

- Qualquer regra de produção de P é da forma $\alpha \rightarrow \beta$
 - β é palavra de (V ∪ T)*
 - α é palavra de (V ∪ T)+ tal que $|\alpha| \le |\beta|$
 - Exceto, eventualmente, para $S \rightarrow \epsilon$.
- Em uma gramática sensível ao contexto:
 - A cada etapa de derivação;
 - O tamanho da palavra derivada não pode diminuir;
 - Exceto quando gerar a palavra vazia, se esta pertencer à linguagem
- [DEF] Linguagem Sensível ao Contexto, Linguagem Tipo 1
 - É a linguagem gerada por uma gramática sensível ao contexto (GLC).

[EX] GSC: Palavra duplicada

 $L = \{ ww \mid w \in palavra de \{ a, b \}^* \}$

- G = ({ S, X, Y, A, B, <aa>, <ab>, <ba>, <bb> }, { a, b }, P, S)
- Produções de P:
 - $-S \rightarrow XY \mid aa \mid bb \mid \epsilon$,
 - $X \rightarrow XaA \mid XbB \mid aa < aa > \mid ab < ab > \mid ba < ba > \mid bb < bb >,$
 - Aa \rightarrow aA, Ab \rightarrow bA, AY \rightarrow Ya,
 - Ba \rightarrow aB, Bb \rightarrow bB, BY \rightarrow Yb,
 - <aa>a \rightarrow a<aa>, <aa>b \rightarrow b<aa>, <aa>Y \rightarrow aa,
 - <ab>a \rightarrow a<ab>, <ab>b \rightarrow b<ab>, <ab>Y \rightarrow ab,
 - <ba>a \rightarrow a<ba>, <ba>b \rightarrow b<ba>, <ba>Y \rightarrow ba,
 - <bb>a \rightarrow a<bb>, <bb>b \rightarrow b<bb>, <bb>Y \rightarrow bb

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 20] Linguagem sensível ao contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] GSC: Palavra duplicada

- Gera o primeiro w após X, e o segundo w após Y:
 - Cada terminal gerado após X,
 - gera uma variável correspondente.
 - A variável "caminha" na palavra até passar por Y;
 - E deriva o correspondente terminal.
- Para encerrar:
 - X deriva subpalavra de dois terminais
 - A variável correspondente "caminha" até encontrar Y.
 - Se X derivar uma palavra de apenas um terminal:
 - O lado direito seria menor que o esquerdo;
 - A gramática seria Livre de Contexto.

[EX] GSC: Palavra duplicada

- w = abaaba
- S ⇒ XY ⇒ XaAY ⇒ XaYa ⇒ ab<ab>aYa ⇒ aba<ab>Ya ⇒ abaaba
- S → XY, X → XaA, AY → Ya, X → ab<ab>, <ab>a → a<ab>,
 ab>Y → ab

Prof. João Fernando Mari (joaof.mari@ufv.br)

5

[AULA 20] Linguagem sensível ao contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

[DEF] Máquina de Turing com Fita Limitada

- Máquina de Turing com Fita Limitada MT_{FL}:
 - $MT_{FI} = (\Sigma, Q, \delta, q_0, F, V, \bigcirc, \dagger)$
 - Σ Alfabeto (de símbolos) de entrada;
 - Q Conjunto de estados possíveis da máquina (finito);
 - δ Função programa ou função de transição (função parcial);
 - Suponha que Σ ∪ V e { β, ♥ } são conjuntos disjuntos;

$$\delta$$
: Q × (Σ ∪ V ∪ {♠, † }) \rightarrow 2^Q × (Σ ∪ V ∪ {♠, † }) × { E, D }

- Transição da máquina: $\delta(p, x) = \{(q_1, y_1, m_1), ..., (q_n, y_n, m_n)\}$
- $-q_0$ Estado inicial: elemento distinguido de Q;
- F Conjunto de estados finais: subconjunto de Q;
- V Alfabeto auxiliar (pode ser vazio);
- Símbolo de início ou marcador de início da fita;
- + Símbolo de fim ou marcador de fim da fita.

[EX] MT com Fita Limitada – Palavra duplicada

- L = { ww|w é palavra de { a, b }* }
- A máquina de Turing com fita limitada
 - $-M = (\{a, b\}, \{q_0, q_1, ..., q_9, q_f\}, \delta, q_0, \{q_f\}, \{X, Y\}, \circlearrowleft, \dagger)$
- é tal que ACEITA(M) = L e REJEITA(M) = ~L
 - q₁, o início do primeiro w é marcado com um X;
 - q₂ e q₃ definem não-determinismos:
 - marcar com um Y o início do segundo w;
 - $-q_5$ a q_{11} verifica a igualdade das duas metades.

Prof. João Fernando Mari (joaof.mari@ufv.br)

q

[AULA 20] Linguagem sensível ao contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

Máquina de Turing Universal

[EX] MT com Fita Limitada – Palavra duplicada

Máquina de Turing Universal

[EX] MT com Fita Limitada – Palavra duplicada

- w = abaaba
 - abaaba † (q0)
 - ۞ (a)baaba † (q1)
 - ♥X (b)aaba † (q2)
 - **–** ...
 - ♠ X ba(Y)ba † (q4)
 - ♠X (b)aYba † (q5)
 - ♠ X X(a)Yba † (q8)
 - **–** ...
 - \$\times X \text{ Xa(Y)Ya } \tau (q10)
 - ... Mais 1 ciclo
 - ♠X XXY(Y)Y † (q10)
 - **–** ...
 - ♥X XXYYYY(†)(q11)

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[AULA 20] Linguagem sensível ao contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

Máquina de Turing Universal

Linguagem Sensível ao Contexto × MT com Fita Limitada

- L é uma linguagem sensível ao contexto sse
- Lé reconhecida por uma máquina de Turing com fita limitada.

[FIM]

- FIM:
 - [AULA 20] Linguagem sensível ao contexto
- Próxima aula:
 - [AULA 21] Máquina de Turing Computabilidade

Prof. João Fernando Mari (joaof.mari@ufv.br)