

MEDICIÓN E INSTRUMENTACIÓN

CONCEPTOS BÁSICOS SOBRE MEDICIÓN E INSTRUMENTACIÓN

Roberto Giovanni Ramírez-Chavarría

RRamirezC@iingen.unam.mx

Facultad de Ingeniería, UNAM

Semestre 2021-1

Sistema de Instrumentación

Medición: Obtener información del estado, cantidad, o valor de diversas variables.

Instrumentación: Uso de equipos y tecnologías para medir, procesar e interpretar datos experimentales.

Sistema de instrumentación

Curva de calibración, y vs x - Función de transferencia estática

Curva de Calibración y sus Parámetros

Rango ó campo de medida (S):

Curva de Calibración y sus Parámetros

Rango ó campo de medida: $R := x_{max} - x_{min}$

Curva de Calibración y sus Parámetros

Escala de salida: $ES := y_{max} - y_{min}$

Curva de Calibración y sus Parámetros

Sensibilidad:
$$S_i := \frac{dy_i}{dx_i} \quad \forall x = 0, 1, \cdots, N$$

Exactitud

Capacidad de un instrumento de dar lecturas \tilde{y} cercanas al valor verdadero o ideal y, con el cual el instrumento es calibrado.

 \star Generalmente \tilde{y} se desvía de y debido a interferencias internas o externas (humedad, temperatura, vibración, ...)

Exactitud (*Accuracy*) $\tilde{y} \approx y$

$$A := 1 - \left| \frac{y - \tilde{y}}{y} \right|$$
 6 $\%A := A * 100$

Precisión

Característica de un un instrumento que indica que tan cercanas son las mediciones \tilde{y} entre sí. Bajo las mismas condiciones.

 \star Probabilidad de que \tilde{y} se encuentre dentro de un conjunto de \bar{y} .

Precisión (*precision*) $\tilde{v} \approx \bar{v}$

$$\bar{y_n} = N^{-1} \sum_{n=1}^N \tilde{y}_n$$

$$P := 1 - \left| \frac{\tilde{y} - \bar{y}}{\bar{y}} \right|$$

N: muestras

Exactitud vs Precisión

Un sistema **exacto** es **preciso**, pero un sistema **preciso** no es necesariamente **exacto**.

Repetibilidad

Grado de cercanía de un conjunto de mediciones $\tilde{Y} = \{\tilde{y}_1, \tilde{y}_2, \dots, \tilde{y}_N\}$, bajo la misma entrada x y obtenidas por el mismo observador, con el mismo método y el instrumento con las mismas condiciones; pero con un **tiempo corto** de operación.

Reproducibilidad

Similar a la repetibilidad, pero la medición se realiza durante un largo periodo, con diferentes operadores y con diferentes instrumentos.

$$|\tilde{y}_{i+1} - \tilde{y}_i| = 95\%$$

Error

Desviación de la salida medida \tilde{y} del valor real y.

- Error absoluto

$$\epsilon := \tilde{y} - y$$

- Error porcentual

$$\%\epsilon := \frac{\tilde{y} - y}{ES} \times 100$$

- Error relativo

$$\%\epsilon := \frac{\tilde{y} - y}{v} \times 100$$

Corrección

Durante la calibración de un instrumento, el error debe ser compensado usando algún circuito, microcoprocesador o PC. La **corrección** es un valor que debe ser sumado al valor medido para alcanzar el valor verdadero.

$$Corr(r) := y - \tilde{y} := -\epsilon$$

Incertidumbre

Es el **rango** de la desviación entre valor medido \tilde{y} y el valor real y. En un conjunto de lecturas $\tilde{Y} = \{\tilde{y}_1, \tilde{y}_2, \dots, \tilde{y}_N\}$, la incertidumbre indica el **rango de errores**.

$$\mathcal{U} \in [-r_{\mathsf{max}}, +r_{\mathsf{max}}] \qquad \pm r_{\mathsf{max}}$$

Es un error límite, expresado comúnmente en porcentaje de la ES.

Resolución

Mínimo valor de salida que puede ser medido, dado un mínimo cambio en la variable de entrada.

Es inherente al instrumento y depende de sus características estructurales o geométricas. * Es un valor acotado.

Ejemplos.

¿Qué unidades tiene la resolución?

Linealidad

Cuando la sensibilidad es constante en un rango de operación

Denota la máxima desviación entre los valores medidos y la curva de calibración. ¿Cómo se obtiene ésta?

No Linealidad

Cuando la sensibilidad NO es constante en un rango de operación

En este caso, ¿cómo obtener la curva de calibración?

Offset

Valor constante en la salida y aun cuando la entrada x es nula.

$$y = Sx + offset$$
 ; $x = 0 \Longrightarrow y = offset$

Nivel de entrada ó Umbral

Mínimo valor de entrada que produce un valor no-nulo en la salida.

$$x := \frac{y + offset}{S}$$

Zona Muerta

Valor constante en la salida y, aún cuando la entrada x evolucione.

$$y = \mathsf{cte} \quad \forall x \in [x_1, x_2]$$

Ejercicio 1

Para una galga extensiométrica * de resistencia nominal 120 Ω , el cambio de resistencia ΔR se mide con un instrumento de medición confiable. Se toman tres mediciones consecutivas arrojando las siguientes lecturas.

Esfuerzo ($\zeta 10^{-6}$)	100	150	200
$\Delta R(\Omega)$	0.025	0.037	0.047

Sí el factor de galga es 2.0.Determine:

- a) La exactitud de las tres lecturas
- * Investigar qué es, para qué sirve y sus ecuaciones.

Resistencia
$$ightarrow R :=
ho rac{\ell}{A}$$
 Elongación $ightarrow \zeta := rac{\Delta \ell}{\ell}$

Ejercicio 1 - Galga extensiométrica

Factor de galga
$$\rightarrow K := \frac{\frac{\Delta R}{R}}{\frac{\Delta \ell}{\ell}} := \frac{\frac{\Delta R}{R}}{\zeta}$$

En el problema $R = 120\Omega$, ΔR y ζ son datos experimentales.

Pero ... podemos obtener los valores reales o verdaderos, a partir de la la ecuación de la galga,

$$\Delta R := k \times \zeta \times R$$

Esfuerzo ($\zeta 10^{-6}$)	100	150	200
$Medido: \tilde{\Delta R}(\Omega)$	0.025	0.037	0.047
$Real: \Delta R(\Omega)$	0.024	0.036	0.048

Ejercicio 1 - Galga extensiométrica

- a) La exactitud de las tres lecturas:
 - Lectura 1

$$A_1 = 1 - \left| \frac{0.024 - 0.025}{0.024} \right| = \frac{23}{24}$$
 % $A = 95.83\%$

Ejercicio 1 - Galga extensiométrica

- a) La exactitud de las tres lecturas:
 - Lectura 1

$$A_1 = 1 - \left| \frac{0.024 - 0.025}{0.024} \right| = \frac{23}{24}$$
 % $A = 95.83\%$

Lectura 2

$$A_2 = 1 - \left| \frac{0.036 - 0.037}{0.036} \right| = 0.9722$$
 % $A = 97.22\%$

Lectura 3

$$A_3 = 1 - \left| \frac{0.048 - 0.047}{0.048} \right| = 0.9791$$
 % $A = 97.91$ %

Ejercicio 1 - Galga extensiométrica REFLEXIÓN del ejercicio

¿Qué pasa con la exactitud, cuando ΔR aumenta?

¿Qué valor debemos considerar cómo el característico de nuestras mediciones?

Ahora calcule las desviaciones de las medidas

Ejercicio 1 - Galga extensiométrica REFLEXIÓN del ejercicio

¿Qué pasa con la exactitud, cuando ΔR aumenta?

¿Qué valor debemos considerar cómo el característico de nuestras mediciones?

Ahora calcule las desviaciones de las medidas

•

$$\epsilon_1 = \frac{0.024 - 0.025}{0.024} \times 100 = -4.16\%$$

•

$$\epsilon_2 = \frac{0.036 - 0.037}{0.036} \times 100 = -2.77\%$$

•

$$\epsilon_3 = \frac{0.048 - 0.047}{0.048} \times 100 = +2.08\%$$

Ejercicio 1 - Galga extensiométrica REFLEXIÓN del ejercicio

Por lo tanto, la exactitud puede escribirse como $\pm\epsilon$

b)Considere la misma galga extensiométrica. Para cada valor de ζ se realizan mediciones repetidas. Obtenga la precisión

Esfuerzo (ζ10 ⁻⁶)	100									
$Medido : \Delta R(\Omega)$	0.025	0.0252	0.0251	0.0248	0.0247	0.0253	0.0250	0.0250	0.0251	0.0249

¿Valor verdadero?

Ejercicio 1 - Galga extensiométrica REFLEXIÓN del ejercicio

Por lo tanto, la exactitud puede escribirse como $\pm\epsilon$

b)Considere la misma galga extensiométrica. Para cada valor de ζ se realizan mediciones repetidas. Obtenga la precisión

Esfuerzo (ζ10 ⁻⁶)	100									
$Medido : \Delta R(\Omega)$	0.025	0.0252	0.0251	0.0248	0.0247	0.0253	0.0250	0.0250	0.0251	0.0249

¿Valor verdadero? Valor medio

$$\bar{\Delta R} = 0.02501\Omega$$

Ejercicio 1 - Galga extensiométrica

Y usando la ecuación para la precisión:

$$P := 1 - \left| \frac{\tilde{\Delta R} - \bar{\Delta R}}{\bar{\Delta R}} \right|$$

Calculamos la precisión de cada repetición

Ejercicio 1 - Galga extensiométrica

Y usando la ecuación para la precisión:

$$P := 1 - \left| \frac{\tilde{\Delta R} - \bar{\Delta R}}{\bar{\Delta R}} \right|$$

Calculamos la precisión de cada repetición

Esfuerzo (ζ10 ⁻⁶)	100									
$Medido : \tilde{\Delta R}(\Omega)$	0.025	0.0252	0.0251	0.0248	0.0247	0.0253	0.0250	0.0250	0.0251	0.0249
Precisión (P _n)	99.96%	99.24%	99.64%	99.16%	99.76%	98.84%	99.96%	99.96%	99.64%	99.56 %

¿Qué valor debemos considerar cómo el característico de nuestras repeticiones?

Ejercicio 1 - Galga extensiométrica

c) Cálculo del error

Sí $\tilde{y}=0.037\Omega$ valor medido, y $y=0.036\Omega$ valor real.

Error absoluto

$$\epsilon = |\tilde{y} - y| = 0.001\Omega$$

Error relativo w.r.t y

$$\%\epsilon = \frac{\epsilon}{y} \times 100 = 2.77\%\Omega$$

Ejercicio 1 - Galga extensiométrica

d) Cálculo de sensibilidad

La sensibilidad real (cambio salida respecto al cambio en la entrada).

Factor de galga
$$\rightarrow K = \frac{\Delta R/R}{\zeta}$$

$$\frac{\Delta R}{\zeta} := K \times R = 2 \times 120\Omega = 240 \mu\Omega/\mu \text{def.}$$

Ejercicio 1 - Galga extensiométrica

d) Cálculo de sensibilidad

Para los tres puntos de operación 100, 150 y 200 μ deformaciones (def.)

•

$$S_1 = \frac{0.025\Omega}{100\mu} = 200.00\mu\Omega/\mu \text{def.}$$
 (1)

Ejercicio 1 - Galga extensiométrica

d) Cálculo de sensibilidad

Para los tres puntos de operación 100, 150 y 200 μ deformaciones (def.)

$$S_1 = \frac{0.025\Omega}{100\mu} = 200.00\mu\Omega/\mu \text{def.}$$
 (1)

$$S_2 = \frac{0.037\Omega}{150\mu} = 246.66\mu\Omega/\mu\text{def.}$$
 (2)

•

$$S_3 = \frac{0.047\Omega}{200\mu} = 235.00\mu\Omega/\mu\text{def.}$$
 (3)

Ejercicio 1 - Galga extensiométrica

- d) Cálculo de sensibilidad
- ¿Es constante la sensibilidad?
- ¿Geométricamente que representa en una recta?

Ejercicio 1 - Galga extensiométrica

- d) Cálculo de sensibilidad
- ¿Es constante la sensibilidad?
- ¿Geométricamente que representa en una recta?
- * La solución es describir a nuestras mediciones mediante un 'buen' modelo matemático ...

Ejercicio 1 - Galga extensiométrica

d) Cálculo de sensibilidad

¿Es constante la sensibilidad?

¿Geométricamente que representa en una recta?

* La solución es describir a nuestras mediciones mediante un 'buen' modelo matemático ...

MÍNIMOS CUADRADOS!

Error Sistemático - Sesgo -Bias

Asociados a la repetibilidad y reproducibilidad del instrumento. Fácil de modelar y reducir.(CORRECCIÓN).

Error Aleatorio - Ruido - Nosie

Externos al instrumento, no son predecibles. Difícil de modelar.

Se reduce mediante técnicas estadísticas.

Desviación

Sea el conjunto de N lecturas $\{\tilde{y}_1, \tilde{y}_2, \dots, \tilde{y}_n\}$ para una misma entrada. La i-ésima desviación es

$$d_i = \tilde{y}_i - \bar{y}_N$$

El promedio de las desviaciones

$$d_N = \frac{1}{N} \sum_{i=1}^{N} d_i$$

Raíz del Error cuadrático medio: (*Mean-Square-Error - RMSE*) de las desviaciones

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} d_i^2}$$

¿Que diferencia hay entre el RMSE y la desviación estándar?

¿Que diferencia hay entre el RMSE y la desviación estándar?

$$RMSE := \sigma \longrightarrow Desviación Estándar$$

Los errores aleatorios son modelados en la práctica como una PDF (*Probability Density Function*) Gaussiana ó distribución normal.

$$P(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(\tilde{y}-\mu)^2/2\sigma^2}$$

PDF Normal
$$P(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(\tilde{y}-\mu)^2/2\sigma^2}$$

PDF Normal

$$P(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(\tilde{y}-\mu)^2/2\sigma^2}$$

$$\mu = \bar{y}$$
 o Valor medio

$$\sigma = RMSE \rightarrow \mathsf{Desviación}$$
 estándar

$$\sigma^2 \qquad \qquad o \quad \mathsf{Varianza}$$

 * En la mayoría de los sistemas de instrumentación el ruido n es aditivo y considerado con $\mu=0$ y normalmente distribuido, i.e

$$\tilde{y} = y + n$$

Gracias!

Contact: https://rgunam.github.io

RRamirezC@iingen.unam.mx