Билет 1.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3\lambda^3}{x^4}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\ldots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 2.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5\lambda^5}{x^6}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{5n-1}{5n} \min_{k=1,n} \left\{X_k\right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}(\overrightarrow{X})$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 3

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{2\lambda^2}{r^3}, \quad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{X_k\right\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

Билет 4.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7\lambda^7}{x^8}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{7n-1}{7n} \min_{k=\overline{1},\overline{n}} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\ldots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

П	№ вопроса	1	2	$\Sigma = \max$	min
ĺ	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4\lambda^4}{r^5}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{4n-1}{4n} \min_{k=1,n} \{X_k\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=16 изделий. Построить доверительный интервал уровня $\gamma=0.9$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=192$ ч, $S^2(\overrightarrow{x})=16$ ч 2 . Распределение контролируемого признака считать нормальным.

 № вопроса
 1
 2
 ∑ = max
 min

 Баллы
 17
 17
 17
 34
 20

 ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 6

1. Непрерывная случайная величина У имеет плотность распределения

$$f_{Y}(y) = \frac{3\lambda^{3}}{y^{4}}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{3n-1}{3n} \min_{k=1,n} \left\{ Y_k \right\},\,$$

 $\hat{\lambda}\left(\overrightarrow{Y}\right)=\frac{3n-1}{3n}\min_{k=\overline{1,n}}\left\{Y_k\right\},$ где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{x}=15.32,\ S^2\left(\overrightarrow{x}\right)=6.25$ Билет 7.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{5\lambda^5}{y^6}, \qquad y \geqslant \lambda,$$

 $f_{Y}\left(y\right)=\frac{5\lambda^{5}}{y^{6}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \{Y_k\},\,$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m,\sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{2\lambda^2}{y^3}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \{Y_k\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 9

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{7\lambda^7}{y^8}, \qquad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{Y_k\right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) = 6.25$.

Билет 10.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4\lambda^4}{y^5}, \quad y \geqslant \lambda$$

 $f_{Y}\left(y\right)=\frac{4\lambda^{4}}{y^{5}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для опенки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{4n-1}{4n} \min_{k=1,n} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=26 изделий. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 322$ ч, $S^2(\overrightarrow{x}) = 36$ ч². Распределение контролируемого признака считать нормальным.

TAT .					
	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 11.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right) = \frac{3\lambda^{3}}{u^{4}}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{3n-1}{3n} \min_{k=\overline{1},n} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 12

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{5\lambda^5}{u^6}, \qquad u \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{5n-1}{5n} \min_{k=1,n} \{U_k\},$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

Билет 13.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u
ight) =rac{2\lambda ^{2}}{u^{3}},\qquad u\geqslant \lambda ,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{ U_k \right\},\,$$

где $\overrightarrow{U}=(U_1,\ldots,U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{7\lambda^7}{u^8}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{U_k\right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{\hat{2}}$. Пусть $X \sim \mathrm{Exp}\,(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 15

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{4\lambda^4}{u^5}, \quad u \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \{U_k\}$$

 $\hat{\lambda}\left(\overrightarrow{U}\right)=\frac{4n-1}{4n}\min_{k=\overline{1,n}}\left\{ U_{k}\right\} ,$ где $\overrightarrow{U}=\left(U_{1},\ldots,U_{n}\right)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=11 изделий. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=223$ ч. $S^2(\overrightarrow{x})=9$ ч². Распределение контролируемого признака считать нормальным

Билет 16.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{3\lambda^3}{v^4}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ V_k \right\},\,$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 17.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{5\lambda^5}{v^6}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{5n-1}{5n} \min_{k=1.n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 18.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{2\lambda^2}{v^3}, \quad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{V_k\right\},$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}(\overrightarrow{V})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билгет 19.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right) = rac{7\lambda^{7}}{v^{8}}, \qquad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{7n-1}{7n} \min_{k=\overline{1,n}} \{V_k\},\,$$

где $\overrightarrow{V}=(V_1,\dots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 20.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{4\lambda^4}{v^5}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\widehat{\lambda}\left(\overrightarrow{V}\right) = \frac{4n-1}{4n} \min_{k=1,n} \{V_k\},$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{\hat{2}}$. Для определения среднего времени работы электронного устройства была протестирована партия из n=6 изделий. Построить доверительный интервал уровня $\gamma=0.8$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=241$ ч, $S^2(\overrightarrow{x})=25$ ч 2 . Распределение контролируемого признака считать нормальным.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, б-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

Билет 21

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3\lambda^3}{x^4}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{3n-1}{3n} \min_{k=\overline{1},n} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\dots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

ИУУ, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 22.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5\lambda^5}{x^6}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{5n-1}{5n} \min_{k=\overline{1},n} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\dots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 23.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{2\lambda^2}{r^3}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{ X_k \right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{x}=3.52,\,S^2\left(\overrightarrow{x}\right)=1.21.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 24.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7\lambda^7}{x^8}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{X_k\right\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

Билет 25.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4\lambda^4}{x^5}, \qquad x \geqslant \lambda,$$

 $f_X\left(x\right)=\frac{4\lambda^4}{x^5}, \qquad x\geqslant \lambda,$ где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{X_k\right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=16 изделий. Построить доверительный интервал уровня $\gamma=0.9$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 192$ ч, $S^2(\overrightarrow{x}) = 16$ ч². Распределение контролируемого признака считать нормальным.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 26.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3\lambda^3}{y^4}, \quad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 27

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5\lambda^5}{y^6}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \{Y_k\}$$

 $\hat{\lambda}\left(\overrightarrow{Y}\right)=\frac{5n-1}{5n}\min_{k=\overline{1},n}\left\{Y_{k}\right\},$ где $\overrightarrow{Y}=(Y_{1},\ldots,Y_{n})$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$ Билет 28

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{2\lambda^2}{y^3}, \quad y \geqslant \lambda,$$

 $f_{Y}\left(y\right)=\frac{2\lambda^{2}}{y^{3}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для опенки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 29.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{7\lambda^7}{y^8}, \qquad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{Y_k\right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) = 6.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 30

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{4\lambda^4}{y^5}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{4n-1}{4n} \min_{k=1, n} \left\{ Y_k \right\},\,$$

 $\hat{\lambda}\left(\overrightarrow{Y}\right)=\frac{4n-1}{4n}\min_{k=1,n}\left\{Y_{k}\right\},$ где $\overrightarrow{Y}=(Y_{1},\ldots,Y_{n})$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=26 изделий. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 322$ ч, $S^2(\overrightarrow{x}) = 36$ ч².

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 31.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u
ight) =rac{3\lambda ^{3}}{u^{4}},\qquad u\geqslant \lambda ,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{U_k\right\},\,$$

где $\overrightarrow{U}=(U_1,\dots,U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

٦	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 32.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{5\lambda^5}{u^6}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{5n-1}{5n} \min_{k=\overline{1},n} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 33

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{2\lambda^2}{u^3}, \quad u \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{2n-1}{2n} \min_{k=1,n} \left\{U_k\right\},$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

ИУУ, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 34.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right) = \frac{7\lambda^{7}}{u^{8}}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{ U_k \right\},\,$$

где $\overrightarrow{U}=(U_1,\dots,U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 35

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{4\lambda^4}{u^5}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{U_k\right\},$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=11 изделий. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=223$ ч, $S^2(\overrightarrow{x})=9$ ч². Распределение контролируемого признака считать нормальным.

١.						
	№ вопроса	1	2	$\Sigma = \max$	min	
	Баллы	17	17	34	20	ı

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 36

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{3\lambda^3}{v^4}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{3n-1}{3n} \min_{k=\overline{1},n} \left\{V_k\right\},\,$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

Билет 37.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right) = \frac{5\lambda^{5}}{v^{6}}, \qquad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \left\{ V_k \right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 38.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{2\lambda^2}{v^3}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 39

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{7\lambda^7}{v^8}, \quad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{V_k\right\},$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}(\overrightarrow{V})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\bar{x} = 4.32$, $S^2(\vec{x}) = 1.69$.

Билет 40.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{4\lambda^4}{v^5}, \qquad v \geqslant \lambda$$

 $f_{V}\left(v\right)=\frac{4\lambda^{4}}{v^{5}},\qquad v\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=6 изделий. Построить доверительный интервал уровня $\gamma=0.8$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 241$ ч, $S^2(\overrightarrow{x}) = 25$ ч². Распределение контролируемого признака считать нормальным.

_					
	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 41.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3\lambda^3}{x^4}, \quad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{3n-1}{3n} \min_{k=1,n} \left\{ X_k \right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 42

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5\lambda^5}{r^6}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{5n-1}{5n} \min_{k=\overline{1},n} \left\{X_k\right\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}(\vec{X})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

Билет 43

1. Непрерывная случайная величина X имеет плотность распределения

$$f_{X}\left(x
ight) =rac{2\lambda ^{2}}{x^{3}},\qquad x\geqslant \lambda ,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{X_k\right\},\,$$

где $\overrightarrow{X}=(X_1,\ldots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

٦	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 44.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7\lambda^7}{x^8}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{ X_k \right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \mathrm{Exp}\,(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 45

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4\lambda^4}{x^5}, \quad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{ X_k \right\}$$

 $\hat{\lambda}\left(\overrightarrow{X}\right)=\frac{4n-1}{4n}\min_{k=\overline{1,n}}\left\{ X_{k}\right\} ,$ где $\overrightarrow{X}=(X_{1},\ldots,X_{n})$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=16 изделий. Построить доверительный интервал уровня $\gamma=0.9$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 192$ ч, $S^2(\overrightarrow{x}) = 16$ ч². Распределение контролируемого признака считать нормальным

Билет 46

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3\lambda^3}{y^4}, \quad y \geqslant \lambda$$

 $f_{Y}\left(y\right)=\frac{3\lambda^{3}}{y^{4}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для опенки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

П	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5\lambda^5}{y^6}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \left\{Y_k\right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$ 6.25.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 48

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{2\lambda^2}{y^3}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{2n-1}{2n} \min_{k=1,n} \left\{ Y_k \right\},\,$$

 $\hat{\lambda}\left(\overrightarrow{Y}\right)=\frac{2n-1}{2n}\min_{k=1,n}\left\{Y_k\right\},$ где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{x}=15.32,\ S^2\left(\overrightarrow{x}\right)=6.25$ 6.25.

Билет 49.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_{Y}(y) = \frac{7\lambda^{7}}{y^{8}}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{7n-1}{7n} \min_{k=\overline{1},\overline{n}} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y}=(Y_1,\dots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) = 6.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 50.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4\lambda^4}{y^5}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=26 изделий. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=322$ ч, $S^2(\overrightarrow{x})=36$ ч². Распределение контролируемого признака считать нормальным

 № вопроса
 1
 2
 ∑ = max
 min

 Баллы
 17
 17
 34
 20

ИУ7, 6-й сем., Математическая статистика, PK1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 51

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{3\lambda^3}{u^4}, \quad u \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \{U_k\},$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

Билет 52.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u
ight) =rac{5\lambda^{5}}{u^{6}},\qquad u\geqslant\lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \{U_k\},\,$$

где $\overrightarrow{U}=(U_1,\ldots,U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

П	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 53.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{2\lambda^2}{u^3}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 54.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right)=rac{7\lambda^{7}}{u^{8}},\qquad u\geqslant\lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\vec{x}) = 2.25$.

Билет 55.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{4\lambda^4}{u^5}, \qquad u \geqslant \lambda$$

 $f_U\left(u\right)=\frac{4\lambda^4}{u^5}, \qquad u\geqslant \lambda,$ где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \{U_k\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=11 изделий. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 223$ ч, $S^2(\overrightarrow{x}) = 9$ ч². Распределение контролируемого признака считать нормальным.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 56.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{3\lambda^3}{v^4}, \quad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{3n-1}{3n} \min_{k=\overline{1},n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 57

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{5\lambda^5}{v^6}, \quad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

Билет 58

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right) = \frac{2\lambda^{2}}{v^{3}}, \qquad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \{V_k\},\,$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

П	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 59.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{7\lambda^7}{v^8}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim \mathrm{Exp}\,(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 60

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right)=rac{4\lambda^{4}}{v^{5}}, \qquad v\geqslant\lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{V_k\right\},\,$$

 $\hat{\lambda}\left(\overrightarrow{V}\right)=\frac{4n-1}{4n}\min_{k=\overline{1,n}}\left\{ V_{k}\right\} ,$ где $\overrightarrow{V}=(V_{1},\ldots,V_{n})$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=6 изделий. Построить доверительный интервал уровня $\gamma=0.8$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 241$ ч, $S^2(\overrightarrow{x}) = 25$ ч². Распределение контролируемого признака считать нормальным.

Билет 61.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3\lambda^3}{x^4}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\ldots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

٦	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 62.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5\lambda^5}{x^6}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{5n-1}{5n} \min_{k=1,n} \left\{X_k\right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}(\overrightarrow{X})$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 63

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{2\lambda^2}{x^3}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{X_k\right\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

Билет 64

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7\lambda^7}{x^8}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{7n-1}{7n} \min_{k=\overline{1,n}} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\ldots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

T	№ вопроса	1	2	$\Sigma = \max$	min
ſ	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 65.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4\lambda^4}{x^5}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{4n-1}{4n} \min_{k=1,n} \{X_k\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=16 изделий. Построить доверительный интервал уровня $\gamma=0.9$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=192$ ч, $S^2(\overrightarrow{x})=16$ ч 2 . Распределение контролируемого признака считать нормальным.

 № вопроса
 1
 2
 ∑ = max
 min

 Баллы
 17
 17
 17
 34
 20

 ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 66

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{3\lambda^3}{y^4}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{3n-1}{3n} \min_{k=1,n} \left\{ Y_k \right\}$$

 $\hat{\lambda}\left(\overrightarrow{Y}\right)=\frac{3n-1}{3n}\min_{k=\overline{1,n}}\left\{Y_k\right\},$ где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{x}=15.32,\ S^2\left(\overrightarrow{x}\right)=6.25$ Билет 67.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{5\lambda^5}{y^6}, \quad y \geqslant \lambda$$

 $f_{Y}\left(y\right)=\frac{5\lambda^{5}}{y^{6}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \{Y_k\},\,$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 68

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{2\lambda^2}{y^3}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 69

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{7\lambda^7}{y^8}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{Y_k\right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) = 6.25$.

Билет 70.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4\lambda^4}{y^5}, \quad y \geqslant \lambda$$

 $f_{Y}\left(y\right)=\frac{4\lambda^{4}}{y^{5}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для опенки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{4n-1}{4n} \min_{k=1,n} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=26 изделий. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=322$ ч, $S^2(\overrightarrow{x})=36$ ч². Распределение контролируемого признака считать нормальным.

TAT .					
	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 71.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right) = \frac{3\lambda^{3}}{u^{4}}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 72

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u
ight)=rac{5\lambda^{5}}{u^{6}},\qquad u\geqslant\lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{5n-1}{5n} \min_{k=1,n} \{U_k\},$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

Билет 73.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u
ight) =rac{2\lambda ^{2}}{u^{3}},\qquad u\geqslant \lambda ,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{ U_k \right\},\,$$

где $\overrightarrow{U}=(U_1,\ldots,U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

٦	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}(u) = \frac{7\lambda^{7}}{u^{8}}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{U_k\right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \mathrm{Exp}\,(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 75

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{4\lambda^4}{u^5}, \quad u \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \{U_k\}$$

 $\hat{\lambda}\left(\overrightarrow{U}\right)=\frac{4n-1}{4n}\min_{k=\overline{1,n}}\left\{ U_{k}\right\} ,$ где $\overrightarrow{U}=\left(U_{1},\ldots,U_{n}\right)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=11 изделий. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=223$ ч. $S^2(\overrightarrow{x})=9$ ч². Распределение контролируемого признака считать нормальным

Билет 76.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right) = \frac{3\lambda^{3}}{v^{4}}, \qquad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ V_k \right\},\,$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 77.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{5\lambda^5}{v^6}, \quad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{5n-1}{5n} \min_{k=1.n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 78.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{2\lambda^2}{v^3}, \quad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{V_k\right\},$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}(\overrightarrow{V})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи); 2019-2020 уч. год Билет 79.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right) = rac{7\lambda^{7}}{v^{8}}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{7n-1}{7n} \min_{k=\overline{1},\overline{n}} \{V_k\},\,$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 80

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{4\lambda^4}{v^5}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{4n-1}{4n} \min_{k=1,n} \{V_k\},$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{\hat{2}}$. Для определения среднего времени работы электронного устройства была протестирована партия из n=6 изделий. Построить доверительный интервал уровня $\gamma=0.8$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=241$ ч, $S^2(\overrightarrow{x})=25$ ч 2 . Распределение контролируемого признака считать нормальным.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, б-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

Билет 81

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3\lambda^3}{r^4}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\dots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 82.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5\lambda^5}{x^6}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\dots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

Nº BOI	проса	1	2	$\Sigma = \max$	min
Бал	лы	17	17	34	20

Билет 83.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{2\lambda^2}{r^3}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{2n-1}{2n} \min_{k=1,n} \left\{ X_k \right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{x}=3.52,\,S^2\left(\overrightarrow{x}\right)=1.21.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

Билет 84.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7\lambda^7}{r^8}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{X_k\right\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

Билет 85.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4\lambda^4}{x^5}, \qquad x \geqslant \lambda,$$

 $f_X\left(x\right)=\frac{4\lambda^4}{x^5}, \qquad x\geqslant \lambda,$ где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{X_k\right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=16 изделий. Построить доверительный интервал уровня $\gamma=0.9$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 192$ ч, $S^2(\overrightarrow{x}) = 16$ ч². Распределение контролируемого признака считать нормальным.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 86.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3\lambda^3}{y^4}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 87

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5\lambda^5}{y^6}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \{Y_k\}$$

 $\hat{\lambda}\left(\overrightarrow{Y}\right)=\frac{5n-1}{5n}\min_{k=\overline{1,n}}\left\{Y_{k}\right\},$ где $\overrightarrow{Y}=(Y_{1},\ldots,Y_{n})$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$ Билет 88

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{2\lambda^2}{y^3}, \quad y \geqslant \lambda$$

 $f_{Y}\left(y\right)=\frac{2\lambda^{2}}{y^{3}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для опенки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 89.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{7\lambda^7}{y^8}, \qquad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{Y_k\right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) = 6.25$.

	№ вопроса	1	2	$\Sigma = \max$	min
П	Баллы	17	17	34	20

Билет 90

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{4\lambda^4}{v^5}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{4n-1}{4n} \min_{k=1, \dots} \left\{ Y_k \right\},\,$$

 $\hat{\lambda}\left(\overrightarrow{Y}\right)=\frac{4n-1}{4n}\min_{k=1,n}\left\{Y_{k}\right\},$ где $\overrightarrow{Y}=(Y_{1},\ldots,Y_{n})$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=26 изделий. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 322$ ч, $S^2(\overrightarrow{x}) = 36$ ч².

Билет 91.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u
ight)=rac{3\lambda^{3}}{u^{4}},\qquad u\geqslant\lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{U_k\right\},\,$$

где $\overrightarrow{U}=(U_1,\ldots,U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 92.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right)=rac{5\lambda^{5}}{u^{6}},\qquad u\geqslant\lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{5n-1}{5n} \min_{k=\overline{1},n} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 93

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{2\lambda^2}{u^3}, \quad u \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{2n-1}{2n} \min_{k=1,n} \left\{U_k\right\},$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

Билет 94

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right) = \frac{7\lambda^{7}}{u^{8}}, \qquad u \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{7n-1}{7n} \min_{k=\overline{1,n}} \left\{ U_k \right\},\,$$

где $\overrightarrow{U}=(U_1,\dots,U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

T	№ вопроса	1	2	$\Sigma = \max$	min
ſ	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{4\lambda^4}{u^5}, \quad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{4n-1}{4n} \min_{k=1,n} \left\{U_k\right\},$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=11 изделий. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=223$ ч, $S^2(\overrightarrow{x})=9$ ч². Распределение контролируемого признака считать нормальным

٠.					
	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

Валлы 17 17 34 20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 96

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{3\lambda^3}{v^4}, \quad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{3n-1}{3n} \min_{k=\overline{1},n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

Билет 97.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right) = \frac{5\lambda^{5}}{v^{6}}, \qquad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \left\{ V_k \right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 98

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{2\lambda^2}{v^3}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 99

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{7\lambda^7}{v^8}, \quad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{7n-1}{7n} \min_{k=\overline{1,n}} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\bar{x} = 4.32$, $S^2(\vec{x}) = 1.69$.

Билет 100.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{4\lambda^4}{v^5}, \qquad v \geqslant \lambda$$

 $f_{V}\left(v\right)=\frac{4\lambda^{4}}{v^{5}},\qquad v\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{ V_k \right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=6 изделий. Построить доверительный интервал уровня $\gamma=0.8$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 241$ ч, $S^2(\overrightarrow{x}) = 25$ ч². Распределение контролируемого признака считать нормальным.

_					
	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

Билет 101.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3\lambda^3}{x^4}, \quad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{3n-1}{3n} \min_{k=1,n} \left\{ X_k \right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{x}=3.52$, S^2 $(\overrightarrow{x})=1.21$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 102.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5\lambda^5}{r^6}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{5n-1}{5n} \min_{k=\overline{1},n} \left\{X_k\right\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}(\vec{X})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

Билет 103.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_{X}\left(x
ight) =rac{2\lambda ^{2}}{x^{3}},\qquad x\geqslant \lambda ,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{2n-1}{2n} \min_{k=1, n} \left\{ X_k \right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

-	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 104.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7\lambda^7}{x^8}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{X_k\right\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{\hat{2}}$. Пусть $X \sim \mathrm{Exp}\,(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 105

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4\lambda^4}{x^5}, \quad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{ X_k \right\}$$

 $\hat{\lambda}\left(\overrightarrow{X}\right)=\frac{4n-1}{4n}\min_{k=\overline{1,n}}\left\{ X_{k}\right\} ,$ где $\overrightarrow{X}=(X_{1},\ldots,X_{n})$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=16 изделий. Построить доверительный интервал уровня $\gamma=0.9$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=192$ ч. $S^2(\overrightarrow{x})=16$ ч². Распределение контролируемого признака считать нормальным

Билет 106.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3\lambda^3}{y^4}, \quad y \geqslant \lambda$$

 $f_{Y}\left(y\right)=\frac{3\lambda^{3}}{y^{4}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для опенки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 107.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5\lambda^5}{y^6}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \left\{Y_k\right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$ 6.25.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 108

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{2\lambda^2}{y^3}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{2n-1}{2n} \min_{k=1,n} \left\{ Y_k \right\},\,$$

 $\hat{\lambda}\left(\overrightarrow{Y}\right)=\frac{2n-1}{2n}\min_{k=1,n}\left\{Y_k\right\},$ где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{x}=15.32,\ S^2\left(\overrightarrow{x}\right)=6.25$ 6.25.

Билет 109.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_{Y}\left(y\right) = \frac{7\lambda^{7}}{y^{8}}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{7n-1}{7n} \min_{k=\overline{1},\overline{n}} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y}=(Y_1,\dots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) = 6.25$.

_					
-	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 110.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4\lambda^4}{y^5}, \quad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=26 изделий. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 322$ ч. $S^2(\overrightarrow{x}) = 36$ ч². Распределение контролируемого признака считать нормальным

	4.0	_	[№ вопроса	1	2	$\Sigma = \max$	min
. M HL	11.2			Баллы	17	17	34	20
411	ИУ7, 6-й сем.	, Математическая	статистика, Р	K1 (модуль 1, т	геория	и задач	ни), 2019-2020	уч. год

Билет 111

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{3\lambda^3}{u^4}, \quad u \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

Билет 112.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u
ight) =rac{5\lambda ^{5}}{u^{6}},\qquad u\geqslant \lambda ,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{5n-1}{5n} \min_{k=1,n} \left\{ U_k \right\},\,$$

где $\overrightarrow{U}=(U_1,\ldots,U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

П	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 113.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right) = \frac{2\lambda^{2}}{u^{3}}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 114

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right)=\frac{7\lambda^{7}}{u^{8}},\qquad u\geqslant\lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

Билет 115.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_U(u) = \frac{4\lambda^4}{u^5}, \qquad u \geqslant \lambda,$$

 $f_U\left(u\right)=\frac{4\lambda^4}{u^5}, \qquad u\geqslant \lambda,$ где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \{U_k\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=11 изделий. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 223$ ч, $S^2(\overrightarrow{x}) = 9$ ч². Распределение контролируемого признака считать нормальным.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 116.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{3\lambda^3}{v^4}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{3n-1}{3n} \min_{k=\overline{1},n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 117.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{5\lambda^5}{v^6}, \quad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

Билет 118.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right) = \frac{2\lambda^{2}}{v^{3}}, \qquad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{ V_k \right\},\,$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 119.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{7\lambda^7}{v^8}, \quad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim \mathrm{Exp}\,(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 120.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{4\lambda^4}{v^5}, \qquad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{ V_k \right\},\,$$

 $\hat{\lambda}\left(\overrightarrow{V}\right)=\frac{4n-1}{4n}\min_{k=\overline{1,n}}\left\{ V_{k}\right\} ,$ где $\overrightarrow{V}=(V_{1},\ldots,V_{n})$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=6 изделий. Построить доверительный интервал уровня $\gamma=0.8$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x} = 241$ ч, $S^2(\overrightarrow{x}) = 25$ ч². Распределение контролируемого признака считать нормальным.

Билет 121.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3\lambda^3}{x^4}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\ldots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

٦	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 122.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5\lambda^5}{x^6}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{5n-1}{5n} \min_{k=1,n} \left\{X_k\right\},\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}(\overrightarrow{X})$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 123.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{2\lambda^2}{r^3}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{X_k\right\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

Билет 124.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7\lambda^7}{x^8}, \qquad x \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{7n-1}{7n} \min_{k=\overline{1,n}} \left\{ X_k \right\},\,$$

где $\overrightarrow{X}=(X_1,\ldots,X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 3.52$, $S^2(\overrightarrow{x}) = 1.21$.

	№ вопроса	1	2	$\Sigma = \max$	min
ſ	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 125.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4\lambda^4}{x^5}, \qquad x \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{X}\right) = \frac{4n-1}{4n} \min_{k=1,n} \{X_k\},$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\lambda}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=16 изделий. Построить доверительный интервал уровня $\gamma=0.9$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=192$ ч, $S^2(\overrightarrow{x})=16$ ч 2 . Распределение контролируемого признака считать нормальным.

 № вопроса
 1
 2
 ∑ = max
 min

 Баллы
 17
 17
 34
 20

ИУ7, 6-й сем., Математическая статистика, РКІ (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 126

1. Непрерывная случайная величина У имеет плотность распределения

$$f_{Y}(y) = \frac{3\lambda^{3}}{y^{4}}, \quad y \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{3n-1}{3n} \min_{k=1,n} \left\{Y_k\right\},\,$$

 $\hat{\lambda}\left(\overrightarrow{Y}\right)=\frac{3n-1}{3n}\min_{k=\overline{1,n}}\left\{Y_k\right\},$ где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{x}=15.32,\ S^2\left(\overrightarrow{x}\right)=6.25$ Билет 127.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{5\lambda^5}{y^6}, \qquad y \geqslant \lambda,$$

 $f_{Y}\left(y\right)=\frac{5\lambda^{5}}{y^{6}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{5n-1}{5n} \min_{k=\overline{1,n}} \{Y_k\},\,$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 128.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{2\lambda^2}{y^3}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{Y_k\right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) =$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

 Баллы
 17
 17
 34
 20

 ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 129.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{7\lambda^7}{y^8}, \qquad y \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{Y_k\right\},$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = 15.32$, $S^2(\overrightarrow{x}) = 6.25$.

Билет 130.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4\lambda^4}{y^5}, \quad y \geqslant \lambda$$

 $f_{Y}\left(y\right)=\frac{4\lambda^{4}}{y^{5}},\qquad y\geqslant\lambda,$ где значение $\lambda>0$ неизвестно. Для опенки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{Y}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \left\{ Y_k \right\},\,$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=26 изделий. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=322$ ч, $S^2(\overrightarrow{x})=36$ ч 2 . Распределение контролируемого признака считать нормальным.

TAT .					
	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 131.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right) = \frac{3\lambda^{3}}{u^{4}}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{3n-1}{3n} \min_{k=\overline{1,n}} \left\{ U_k \right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 132

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u
ight)=rac{5\lambda^{5}}{u^{6}},\qquad u\geqslant\lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{5n-1}{5n} \min_{k=1,n} \{U_k\},$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

Билет 133.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u
ight) =rac{2\lambda ^{2}}{u^{3}},\qquad u\geqslant \lambda ,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{2n-1}{2n} \min_{k=\overline{1,n}} \left\{ U_k \right\},\,$$

где $\overrightarrow{U}=(U_1,\ldots,U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 134.

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right) = \frac{7\lambda^{7}}{u^{8}}, \qquad u \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{7n-1}{7n} \min_{k=1,n} \left\{U_k\right\},\,$$

где $\overrightarrow{U} = (U_1, \dots, U_n)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{\hat{2}}$. Пусть $X \sim \mathrm{Exp}\,(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 2.25$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 135

1. Непрерывная случайная величина U имеет плотность распределения

$$f_{U}\left(u\right)=rac{4\lambda^{4}}{u^{5}},\qquad u\geqslant\lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{U}\right) = \frac{4n-1}{4n} \min_{k=\overline{1,n}} \{U_k\}$$

 $\hat{\lambda}\left(\overrightarrow{U}\right)=\frac{4n-1}{4n}\min_{k=\overline{1,n}}\left\{ U_{k}\right\} ,$ где $\overrightarrow{U}=\left(U_{1},\ldots,U_{n}\right)$ — случайная выборка из генеральной совокупности U. Является ли оценка $\hat{\lambda}\left(\overrightarrow{U}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=11 изделий. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=223$ ч. $S^2(\overrightarrow{x})=9$ ч². Распределение контролируемого признака считать нормальным

Билет 136.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right) = \frac{3\lambda^{3}}{v^{4}}, \qquad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{3n-1}{3n} \min_{k=\overline{1.n}} \left\{ V_k \right\},\,$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значение m неизвестно, а $\sigma^2 = 4$. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

Баллы 17 17 34 20	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 137.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{5\lambda^5}{v^6}, \quad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{5n-1}{5n} \min_{k=1.n} \left\{V_k\right\},\,$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

 $\mathbf{2}$. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 138

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{2\lambda^2}{v^3}, \quad v \geqslant \lambda,$$

где значение $\lambda > 0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{2n-1}{2n} \min_{k=\overline{1},n} \left\{V_k\right\},$$

где $\overrightarrow{V} = (V_1, \dots, V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}(\overrightarrow{V})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 139.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_{V}\left(v\right) = \frac{7\lambda^{7}}{v^{8}}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{7n-1}{7n} \min_{k=\overline{1,n}} \{V_k\},\,$$

где $\overrightarrow{V}=(V_1,\dots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\hat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.8$, если после n = 6 испытаний получены значения $\overline{x} = 4.32$, $S^2(\overrightarrow{x}) = 1.69$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 140.

1. Непрерывная случайная величина V имеет плотность распределения

$$f_V(v) = \frac{4\lambda^4}{v^5}, \qquad v \geqslant \lambda,$$

где значение $\lambda>0$ неизвестно. Для оценки параметра λ используется статистика

$$\hat{\lambda}\left(\overrightarrow{V}\right) = \frac{4n-1}{4n} \min_{k=1,n} \{V_k\},$$

где $\overrightarrow{V}=(V_1,\ldots,V_n)$ — случайная выборка из генеральной совокупности V. Является ли оценка $\widehat{\lambda}\left(\overrightarrow{V}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения среднего времени работы электронного устройства была протестирована партия из n=6 изделий. Построить доверительный интервал уровня $\gamma=0.8$ для среднего времени работы устойства, если для проверенной партии получено $\overline{x}=241$ ч, $S^2(\overrightarrow{x})=25$ ч². Распределение контролируемого признака считать нормальным.

•	№ вопроса	1	2	$\Sigma = \max$	min
ФЦ-12 ФЦ-	Баллы	17	17	34	20
- N/FP-FE					

MITY MITY MITS

ФН-12 ФН-12

МГТУ МГТУ МГТУ