머신러닝(딥러닝)을 공부하는대 수학이필요한이유

머신러닝 이론을 반복적으로 데이터를 학습하여 어떤지능 적인 결과를 얻기위해

발전된것이므로 컴퓨터공학,알고리즘,수학등이 교차하는분야

머신러닝 및 딥러닝 알고리즘의 내부작동을 잘파악하고 좋은 결과를

얻을려면 이러한 기술 중 많은 부분을 수학적으로 이해하는 것이 필요

선형대수와머신러닝

선형대수는 머신러닝에대한 심층적이해를위한 전제조건으로서

보편적으로 동의되는 수학분야

선형대수는 많은 난해한 이론과 결과가 있는 큰분야지만,다양한 표기법과 도구는 머신러닝 실무자에게 유용함

선형대수는 데이터의수학으로 통계의이해를 필요로하고,푸리애시리즈 및 컴퓨터그래픽과 같은 많은 실용적인 수학도구의 기초임

(1) 백터 Norms

백터 는 하나또는 그이상의 스칼라 값으로 구성된 튜플

$$v = (a_1, a_2, a_3) = \begin{bmatrix} a_1, a_2, a_3 \end{bmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

백터의 내적

 $u \cdot v = |u| |v| \cos\theta$

u=(1,2,3),v=(4,5,6)

 $u \cdot v = (1 \times 4) + (2 \times 5) + (3 \times 6) = 4 + 10 + 18 = 32$

백터의 외적

uxv:방향은 u,v에 동시에 수직이며 크기는 $|u^*v|=|u||v|\sin\theta$ 인 백터 코드

create a vector

import numpy as np

define vector

v = np.array([1, 2, 3])

print(v)

A = (Ax, Ay, Az), B = (Bx, By, Bz)에 대한 외적은 다음과 같이 정의됩니다

$$\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y) \mathbf{i} - (A_x B_z - A_z B_x) \mathbf{j} + (A_x B_y - A_y B_x) \mathbf{k}$$

```
i 성분:
(2×6-3×5)=12
-15
=-3(2×6-3×5)=12-15=-3
j
j 성분:
(1×6-3×4)=6-12
=-6(1×6-3×4)=6-12=-6 → 부호 변경:
+6+6
k
k 성분:
(1×5-2×4)=5-8=-3(1×5-2×4)=5-8=-3
u×v=(-3,6,-3)
```

외적 벡터의 크기는:

$$|(-3,6,-3)| = \sqrt{(-3)^2 + 6^2 + (-3)^2} = \sqrt{9 + 36 + 9} = \sqrt{54} = 3\sqrt{6}$$

백터 Norms

백터의 길이또는 크기를 계산하는 방법 머신러닝의 정규화한 방법이나 백터또는 행렬연산에서 사용될수있음 norm 이측정한 백터의 크기:원점에서 백터좌표까지의 거리,magnitude

Lp Norm

$$L_p(v) = (\sum_i^n |a_i|^p)^{rac{1}{p}}$$

p는 Norm의차수 :p=1이면 L1 Norm 이고 p=2이면 L2Norm 이다. n은대상 백터의수

L1 Norm (맨해튼 거리, 택시 거리)

L1 노름(L1norm)은 벡터의 각 성분의 절댓값을 모두 더한 값입니다. 이는 맨해튼 거리(Manhattan distance) 또는 택시 거리라고도 불립니다.

$$L_1(v)=(\sum_i^n|a_i|)=||v||_1$$
 $L_1(v)=(\sum_i^3|a_i|)=|a_1|+|a_2|+|a_3|$ • L_1 Norm은 L1 정규화(regularization), 컴퓨터 비전 등에서 사용

예제 1: 3차원 벡터

벡터

v = (3, -4, 5)v L1 노름을 계산해 보겠습니다.

 $\|\mathbf{v}\| = \|3\| + \|-4\| + \|5\| = 3 + 4 + 5 = 12$

예제 2: 2차원 벡터

벡터

u=(-2,7)u의 L1 노름을 계산하면:

||u||1=|-2|+|7|=2+7=9

L2 Norm (유클리드 거리, Euclidean Norm)

L2 노름(L2norm)은 벡터의 크기를 측정하는 가장 일반적인 방법으로, 유클리드 거리 (Euclidean distance)라고도 불립니다.

이는 원점에서 벡터까지의 직선 거리(피타고라스 정리 기반)를 의미합니다.

$$L_2(v) = \sqrt{(\sum_i^n |a_i|^2)} = ||v||_2$$

$$L_2(v) = \sqrt{(\sum_i^3 |a_i|^2)} = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

ullet L_2 Norm은 L2 정규화(regularization), kNN 알고리즘, kmeans 알고리즘 등에서 사용

벡터

v=(3,-4,5)v의 L2 노름을 계산하면:

$$\|v\|_2 = \sqrt{3^2 + (-4)^2 + 5^2}$$

$$=\sqrt{9+16+25}=\sqrt{50}=5\sqrt{2}\approx 7.07$$

좌표 공간에서 L1과 L2 Norm 시각화

벡터 $B=(eta_0,eta_1)$ 가 있을 때 $L_2(B)=1$ 이면,

$$||B||_2 = 1 = \sqrt{eta_0^2 + eta_1^2}$$

만약 $L_1(B)=1$ 이면,

$$||B||_1 = 1 = |eta_0| + |eta_1|$$

L1과 L2 Norm의 직관적 차이 (벡터와 벡터(원점) 사이의 거리 측면)

- ullet 위 그림에서 두 개의 검은 점(벡터)를 잇는 여러 선들이 존재 ightarrow 벡터 사이의 거리를 재는 서로 다른 Norm을 표기
- 초록색 선: Euclidean distance = L2 Norm \rightarrow 단 하나의 경우만 존재.
- ullet 빨간, 파란, 노란 선은 서로 다른 경로지만 모두 같은 L1 Norm임 ightarrow Taxicab geometry

행렬

일반적으로 하나이상의 스칼라 행과 열을 가지는 2차원배열을 가르킴 선형대수의 기본요소로 머신러닝 분야 전반에서 사용됨 알고리즘을 훈련할 때 입력데이터 변수(x)와 같은 알고리즘 프로세스 및기술에 사용 행렬의 표기법은 A와 같은 대문자이며 aij와 같은 (i행) 및 j열의 2처원첨자로 참조 백터자체는 하나의 열과 여러행이 있는 행렬로 간주

$$A = egin{pmatrix} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \ a_{3,1} & a_{3,2} \end{pmatrix} = egin{bmatrix} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \ a_{3,1} & a_{3,2} \end{bmatrix}$$

╯ 행렬 곱 (Hadamard Product)

$$A=egin{bmatrix} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \ a_{3,1} & a_{3,2} \end{bmatrix}$$
 , $B=egin{bmatrix} b_{1,1} & b_{1,2} \ b_{2,1} & b_{2,2} \ b_{3,1} & b_{3,2} \end{bmatrix}$

$$C = A \circ B = egin{bmatrix} a_{1,1} imes b_{1,1} & a_{1,2} imes b_{1,2} \ a_{2,1} imes b_{2,1} & a_{2,2} imes b_{2,2} \ a_{3,1} imes b_{3,1} & a_{3,2} imes b_{3,2} \end{bmatrix}$$

행렬 내적 (Dot product)

- $C = A \cdot B = AB$
- 첫 번째 행렬(A)의 열 수는 두 번째 행렬(B)의 행 수와 같아야 함

$$A=egin{bmatrix} a_{1,1} & a_{1,2}\ a_{2,1} & a_{2,2}\ a_{3,1} & a_{3,2} \end{bmatrix}$$
 , $B=egin{bmatrix} b_{1,1} & b_{1,2}\ b_{2,1} & b_{2,2} \end{bmatrix}$

$$A = egin{bmatrix} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \ a_{3,1} & a_{3,2} \end{bmatrix}$$
 , $B = egin{bmatrix} b_{1,1} & b_{1,2} \ b_{2,1} & b_{2,2} \end{bmatrix}$ $C = A \cdot B = AB = egin{bmatrix} a_{1,1} imes b_{1,1} + a_{1,2} imes b_{2,1} & a_{1,1} imes b_{1,2} + a_{1,2} imes b_{2,2} \ a_{2,1} imes b_{1,1} + a_{2,2} imes b_{2,1} & a_{2,1} imes b_{1,2} + a_{2,2} imes b_{2,2} \ a_{3,1} imes b_{1,1} + a_{3,2} imes b_{2,1} & a_{3,1} imes b_{1,2} + a_{3,2} imes b_{2,2} \end{bmatrix}$

행렬-벡터 간 내적

- ullet $c = A \cdot v = Av$
- 벡터를 행렬로 보면 행렬 간 내적과 동일

$$A=egin{bmatrix} a_{1,1}&a_{1,2}\a_{2,1}&a_{2,2}\a_{3,1}&a_{3,2} \end{bmatrix}$$
 , $v=egin{bmatrix} v_1\v_2 \end{bmatrix}$

$$c = A \cdot v = Av = egin{bmatrix} a_{1,1} imes v_1 + a_{1,2} imes v_2 \ a_{2,1} imes v_1 + a_{2,2} imes v_2 \ a_{3,1} imes v_1 + a_{3,2} imes v_2 \end{bmatrix}$$

행렬 연산

전치 (transpose)

• 전치행렬: 행과 열의 수가 뒤집힌 행렬

$$C = A^T$$

$$A=egin{bmatrix}1&2\3&4\5&6\end{bmatrix}$$
 , $A^T=egin{bmatrix}1&3&5\2&4&6\end{bmatrix}$

• 행렬이 대칭(symmetrix)일 경우 전치행렬은 원행렬과 동일

$$A=egin{bmatrix} 3 & -2 & 4 \ -2 & 6 & 2 \ 4 & 2 & 3 \end{bmatrix}$$
 , $A^T=egin{bmatrix} 3 & -2 & 4 \ -2 & 6 & 2 \ 4 & 2 & 3 \end{bmatrix}$

역 (inverse)

• 행렬의 역은 행렬을 곱하여 단위행렬(unit matrix)이 되는 다른 행렬을 찾는 과정

 $AB=BA=I_n$ (n: 행(열)의 크기)

• 행렬의 역은 위 첨자 -1로 표시

 $B=A^{-1}$

- 모든 행렬이 역행렬을 구할 수 있는 것은 아님
- 역을 구할 수 없는 정방행렬(정사각형 모양 행렬)을 특이행렬(singluar matrix)이라 함
- 역행렬은 일반적으로 직접 계산할 수 없으며, 행렬 분해(decomposition) 형태의 방법이 가능할 때, 수치 연산을 통해 발견됨

대각합 (trace)

- 행렬의 주 대각선 값의 합
- ullet 정방행렬에서 대각합을 계산하는 연산: $tr(\cdot)$

$$tr(A) = a_{1,1} + a_{2,2} + a_{3,3}$$

희소행렬 (Sparce Matrix)

- 대부분 0 값으로 구성된 행렬
- 대부분 0이 아닌 값으로 구성된 행렬: 조밀 행렬(dense matrix)
- 희소도(sparcity) = (0인 원소의 수) / (전체 원소 수)

$$A = egin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 & 0 & 1 \ 0 & 0 & 0 & 2 & 0 & 0 \end{pmatrix}$$

A의 희소도 = 13/18 = 72.2%

• 매우 큰 행렬이 희소행렬일 경우 저장을 위한 메모리 자원 낭비 및 계산 낭비가 심함

희소행렬의 활용

- 특정 유형의 데이터, 특히 활동의 발생 또는 횟수를 기록하는 관측치에서 많이 나타남
 - 사용자가 영화 카탈로그의 영화를 시청했는지 여부
 - 사용자가 제품 카탈로그에서 제품을 구매했는지 여부
 - 노래 카탈로그에서 노래를 청취 한 횟수

텐서(tensor)

- 벡터와 행렬의 일반화 ightarrow 다차원배열
- 축(axis) 수가 가변적인 일반 그리드에 배열된 숫자 배열
- 행렬의 성질을 공유함: 합, 차, 곱(Hadamard Product), 몫

텐서 곱(tensor product)

- ullet q 차원의 텐서 A와 r 차원의 텐서 B가 주어질 때 텐서 곱은 q+r 차원의 새로운 텐서를 만듦
- 표기법: ⊗

$$a=inom{a_1}{a_2}$$

$$b=egin{pmatrix} b_1\ b_2 \end{pmatrix}$$

$$C=a\otimes b=egin{pmatrix} a_1 imesegin{pmatrix} b_1\b_2\a_2 imesegin{pmatrix} b_1\b_2\b_2 \end{pmatrix}=egin{pmatrix} a_1 imes b_1\a_2 imes b_1\a_2 imes b_2 \end{pmatrix}$$

(3) 행렬 분해(Matrix Decomposition, Matrix Factorization)

- 보다 복잡한 행렬 연산을 더 쉽게 계산할 수 있도록 행렬을 구성 부분으로 줄이는 방법
- 선형 방정식 시스템 해 구하기, 역 계산 및 행렬의 행렬식 계산 등의 기본 작업에 사용
- 예)

$$\begin{bmatrix} 2 & 6 & 2 \\ -3 & -8 & 0 \\ 4 & 9 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$

만약 다음과 같이 분해 가능하다면(LU분해)

$$\begin{bmatrix} 2 & 6 & 2 \\ -3 & -8 & 0 \\ 4 & 9 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

식은,

$$\begin{bmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$

식의 중간 부분을 다음과 같이 정의하면,

$$egin{bmatrix} 1 & 3 & 1 \ 0 & 1 & 3 \ 0 & 0 & 1 \end{bmatrix} \cdot egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix}$$

전체 식은,

$$egin{bmatrix} 2 & 0 & 0 \ -3 & 1 & 0 \ 4 & -3 & 7 \end{bmatrix} \cdot egin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix} = egin{bmatrix} 2 \ 2 \ 3 \end{bmatrix}$$

따라서 행렬식을 쉽게 풀 수 있다.

고유값 분해 (Eigendecomposition)

- 정방행렬을 고유 벡터 및 고유 값의 집합으로 분해
- 벡터는 다음 방정식을 충족하는 경우 행렬의 고유 벡터(eigenvector)임
- $A \cdot v = \lambda \cdot v \Rightarrow Av = \lambda v$
 - \circ A: 분해 대상 부모 정방행렬
 - v: 행렬의 고유벡터
 - ο λ: 고유값(eigenvalue, 스칼라)
- 행렬은 부모 행렬의 각 차원에 대해 하나의 고유 벡터와 고유 값을 가질 수 있음
 - 모든 정방행렬이 고유 벡터와 고유 값으로 분해 될 수있는 것은 아니며 일부는 복소수가 필요한 방식으로만 분해 될 수 있음
- 부모 행렬은 고유 벡터와 고유 값의 곱으로 표시 될 수 있음
- $ullet A = Q \cdot \Lambda \cdot Q^{-1} \Rightarrow A = Q \Lambda Q^{-1}$
 - *Q*: 고유벡터로 구성된 행렬
 - Λ: 고유값으로 구성된 대각행렬
- 고유값 분해는 머신러닝에서 데이터의 차원을 줄이는 데 사용할 수 있는 주성분 분석 방법(PCA: Principal Component Analysis) 또는 PCA에서 행렬의 주성분을 계산하는 데 사용할 수도 있음

(1) 행렬 A 정의

다음과 같은 행렬 A가 있다고 가정하겠습니다.

$$A = egin{bmatrix} 4 & -2 \ 1 & 1 \end{bmatrix}$$

이 행렬의 고유값과 고유벡터를 구해 보겠습니다.

(2) 고유값 찾기

고유값을 찾으려면 **특성 방정식**을 풀어야 합니다.

$$\det(A - \lambda I) = 0$$

행렬 A에서 단위 행렬 I에 고유값 λ 을 곱한 행렬을 빼고, 행렬식(Determinant)을 계산합니다.

$$A-\lambda I=egin{bmatrix} 4-\lambda & -2\ 1 & 1-\lambda \end{bmatrix}$$

이 행렬의 행렬식을 계산하면,

$$(4 - \lambda)(1 - \lambda) - (-2)(1) = 0$$

전개하면,

$$4-4\lambda-\lambda+\lambda^2+2=0$$

$$\lambda^2 - 5\lambda + 6 = 0$$

因式分解(인수분해)하면,

$$(\lambda-3)(\lambda-2)=0$$

즉, 고유값은

$$\lambda_1=3,\quad \lambda_2=2$$

(3) 고유벡터 찾기

각 고유값에 대해 $A\mathbf{v}=\lambda\mathbf{v}$ 을 만족하는 고유벡터 \mathbf{v} 를 찾아야 합니다.

고유값 $\lambda_1=3$ 에 대한 고유벡터

$$(A - 3I)\mathbf{v} = 0$$

$$\begin{bmatrix} 4 - 3 & -2 \\ 1 & 1 - 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

첫 번째 식:

$$x - 2y = 0 \quad \Rightarrow \quad x = 2y$$

즉, 고유벡터는

$$\mathbf{v}_1 = egin{bmatrix} 2 \ 1 \end{bmatrix}$$

고유값 $\lambda_2=2$ 에 대한 고유벡터

$$(A-2I)\mathbf{v}=0$$

$$egin{bmatrix} 4-2 & -2 \ 1 & 1-2 \end{bmatrix} m{x} \ y \end{bmatrix} = m{0} \ 0 \end{bmatrix}$$

$$m{2} \ -2 \ 1 & -1 \end{bmatrix} m{x} \ y \end{bmatrix} = m{0} \ 0 \end{bmatrix}$$

첫 번째 식:

$$2x - 2y = 0 \quad \Rightarrow \quad x = y$$

즉, 고유벡터는

$$\mathbf{v}_2 = egin{bmatrix} 1 \ 1 \end{bmatrix}$$

(4) 고유값 분해

고유값과 고유벡터를 사용하여 행렬 A를 분해할 수 있습니다.

ullet 고유벡터 행렬 P

$$P = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

• 대각행렬 D (고유값을 대각성분으로 가지는 행렬)

$$D = egin{bmatrix} 3 & 0 \ 0 & 2 \end{bmatrix}$$

이제 고유값 분해 공식을 적용하면,

$$A = PDP^{-1}$$

 P^{-1} 을 계산하여 확인하면 원래의 행렬 A가 나옵니다.

1. 3×3 행렬에서 고유값 분해 적용

우선, 다음과 같은 3×3 행렬 A를 예제로 사용하겠습니다.

$$A = egin{bmatrix} 2 & -1 & 0 \ -1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix}$$

이제 이 행렬을 고유값 분해해 보겠습니다.

고유값 찾기

특성 방정식을 계산하기 위해 행렬식(Determinant)을 구합니다.

$$\begin{vmatrix} 2 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 2 - \lambda \end{vmatrix} = 0$$

행렬식을 전개하면,

$$(2-\lambda)\begin{vmatrix} 2-\lambda & -1 \\ -1 & 2-\lambda \end{vmatrix} - (-1)\begin{vmatrix} -1 & -1 \\ 0 & 2-\lambda \end{vmatrix} = 0$$

$$(2-\lambda)\left((2-\lambda)(2-\lambda) - (-1)(-1)\right) - (-1)((-1)(2-\lambda) - (-1)(0)) = 0$$

$$(2-\lambda)\left((2-\lambda)^2 - 1\right) + (2-\lambda) = 0$$

$$(2-\lambda)\left(\lambda^2 - 4\lambda + 4 - 1\right) + (2-\lambda) = 0$$

$$(2-\lambda)(\lambda^2 - 4\lambda + 3) = 0$$

인수분해하면,

$$(2-\lambda)(\lambda-3)(\lambda-1)=0$$

따라서 고유값은

$$\lambda_1=3,\quad \lambda_2=2,\quad \lambda_3=1$$

고유벡터 찾기

각 고유값에 대해 $A\mathbf{v} = \lambda \mathbf{v}$ 을 만족하는 고유벡터를 찾습니다.

고유값 $\lambda_1=3$ 에 대한 고유벡터

$$(A - 3I)\mathbf{v} = 0$$

$$\begin{bmatrix} -1 & -1 & 0 \\ -1 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

이 방정식을 풀면, 하나의 고유벡터는

$$\mathbf{v}_1 = egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

고유값 $\lambda_2=2$ 에 대한 고유벡터

$$(A-2I)\mathbf{v}=0$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

이를 풀면, 하나의 고유벡터는

$$\mathbf{v}_2 = egin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}$$

고유값 $\lambda_3=1$ 에 대한 고유벡터

$$(A-I)\mathbf{v}=0$$

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

이를 풀면, 하나의 고유벡터는

$$\mathbf{v}_3 = egin{bmatrix} 1 \ -2 \ 1 \end{bmatrix}$$

고유값 분해

이제 행렬 A를 **고유값 분해** 형태로 나타낼 수 있습니다.

ullet 고유벡터 행렬 P

$$P = egin{bmatrix} 1 & -1 & 1 \ 1 & 0 & -2 \ 1 & 1 & 1 \end{bmatrix}$$

• 대각행렬 D (고유값을 대각성분으로 가지는 행렬)

$$D = egin{bmatrix} 3 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

따라서,

$$A=PDP^{-1}$$

(4) 행렬과 통계

• 통계는 머신러닝에서 데이터를 더 잘 이해하기 위한 유용한 도구

기대값(Expected Value)과 평균(Mean)

- ullet 확률에서 어떤 확률변수(random variable) X의 평균 값을 기대값(expected value, expectation)이라 함
- 기대값은 E(X)로 표기하며 확률 가중 합계로 계산

$$E(X) = \sum x_1 imes p_1, x_2 imes p_2, x_3 imes p_3, \cdots, x_n imes p_n$$

• 각 이벤트의 확률이 비슷할 경우 기대값은 모든 값의 합계를 이벤트의 수로 나누어 계산

$$E(X) = rac{1}{n} imes \sum x_1, x_2, x_3, \cdots, x_n$$

ullet 통계에서 산술 평균 또는 표본 평균은 도메인에서 가져온 예제 샘플에서 추정 가능하며 이때 평균은 μ 로 표시

$$\mu = rac{1}{n} imes \sum x_1, x_2, x_3, \cdots, x_n = P(x) imes \sum x$$

(\$x\$: 관측값 벡터, \$P(x)\$ 각 관측값에 대해 계산된 확률)

ullet x와 같은 특정 변수에 대해 계산할 때 평균은 $ar{x}$ 로 표시

$$ar{x} = rac{1}{n} imes \sum_{i=1}^n x_i$$

분산(Variance)과 표준편차(Standard Deviation)

- ullet 확률에서 랜덤변수 X의 분산은 분포의 값이 평균에 대해 평균적으로 얼마나 달라지는지의 정도: Var[X]
- 분포에서 각 값의 평균 제곱 차이로 계산

$$Var[X] = E[(X - E[X])^2]$$

ullet 변수의 기대값이 계산되었다고 가정하면(E[X]), 확률변수의 분산은 다음과 같이 계산

$$Var[X] = \sum p(x_1) imes (x_1 - E[X])^2, p(x_2) imes (x_2 - E[X])^2, \cdots, p(x_n) imes (x_n - E[X])^2$$

• 분포에 있는 각 값의 확률이 같으면

$$Var[X] = rac{1}{n} imes \sum (x_1 - E[X])^2, (x_2 - E[X])^2, \cdots, (x_n - E[X])^2$$

- ullet 통계에서 분산은 도메인에서 가져온 예제 샘플(표본)에서 추정 할 수 있으며 표본 분산은 σ^2 로 표기
- 차이 제곱의 합에 표본의 편향(표본은 일부이므로 분산을 과소평가할 수 있음)을 수정하기 위해 예제 수에서 1을 뺀 값의 역수로 곱함

$$\sigma^2 = rac{1}{n-1} imes \sum_{i=1}^n (x_i-\mu)^2$$

공분산(Covariance)과 상관관계(Correlation)

- 확률에서 공분산은 두 확률 변수에 대한 결합 확률의 척도로 두 변수가 함께 어떻게 변하는 지 설명함
- X와 Y가 확률변수일때 공분산은 cov(X,Y)로 표기
- 공분산은 각 랜덤 변수와 기대값의 차이 곱의 평균 또는 기대값으로 계산

$$cov(X,Y) = E[(X-E[X]) \times (Y-E[Y])]$$

• X와 Y의 기대값이 계산되었다고 가정하면,

$$cov(X,Y) = rac{1}{n} imes \sum_{i=1}^n (x_i - E[X]) imes (y_i - E[Y])$$

• 통계에서 표본 공분산은 분산과 동일한 편향 교정을 통해 계산 가능

$$cov(X,Y) = rac{1}{n-1} imes \sum_{i=1}^n (x_i - \mu_x) imes (y_i - \mu_y)$$

- 공분산의 부호는 두 변수가 같이 증가하는지 (양수) 또는 서로 다르게 증감하는지 (음수)로 해석 될 수 있음
- 공분산의 크기는 쉽게 해석하기 어려움. 공분산 값이 0이면 두 변수가 완전히 독립적임을 나타냄

상관계수(Correlation Coefficient)

- 공분산을 X와 Y의 표준 편차로 나누어 -1과 1 사이의 정규화된 크기로 해석 가능하도록 만들 수 있음
- Pearson 상관계수(correlation coefficient): r

$$r = rac{cov(X,Y)}{s_Y imes s_Y}$$

공분산 행렬(Covariance Matrix)

- 둘 이상의 랜덤 변수 간의 공분산을 설명하는 정방 대칭 행렬
- 공분산 행렬의 대각선은 분산-공분산 행렬이라고 불리는 각 랜덤 변수의 분산
- 두 변수의 공분산을 일반화 한 것으로 데이터 세트의 모든 변수가 함께 변경 될 수있는 방식을 포착
- \$ \Sigma = E[(X-E[X]\times(Y-E[Y])] \$, 이때 \$\sum {i,i} = cov(X i, X i) \$
 - 공분산 행렬은 랜덤 변수 행렬에서 구조화 된 관계를 분리하는 데 유용

(5) 주성분 분석 (PCA: Principle Component Analysis)

- 데이터의 차원을 줄이는 방법 m열(특징)이 있는 데이터를 m개 이하의 열이 있는 부분 공간에 투영하면서 원본 데이터의 본질을 유지하는 프로젝션 방법

$$A = egin{bmatrix} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \ a_{3,1} & a_{3,2} \end{bmatrix}$$

B = PCA(A)

단계 1: 각 열의 평균 값 계산

$$M=mean(A)$$

• 단계 2: 평균 열 값을 빼서 각 열 값을 중앙에 배치

$$C = A - M$$

• 단계 3: 중심 행렬 C의 공분산 행렬 계산 - 두 열이 함께 변경되는 양과 방향(양수 또는 음수)의 정규화 된 값

$$V = cov(C)$$

• 단계 4: 공분산 행렬 V의 고유값 분해 계산

$$values, vectors = eig(V)$$

- ullet 고유벡터(vectors): B의 축소 된 부분 공간에 대한 방향 또는 구성 요소
- 고유값(values): 방향의 크기
- ullet 고유벡터는 A에 대한 새 부분 공간의 구성 요소 또는 축의 순위를 제공하기 위해 고유값을 기준으로 내림차순으로 정렬 할 수 있음
- 모든 고유값이 비슷한 값을 갖는 경우 기존 표현이 이미 합리적으로 압축되거나 조밀 할 수 있음 0에 가까운 고유값은 버릴 수있는 B의 구성 요소 또는 축을 나타냄
- ullet 가장 큰 k개의 고유값을 갖는 k개의 고유벡터(주성분) 선택

$$B = select(values, vectors)$$

- 특이값 분해(SVD)와 같은 다른 행렬 분해 방법도 사용 가능
- 고유값과 고유벡터가 선택되면 데이터는 다음 행렬곱을 통해 부분공간으로 투영(projection)됨

$$P = B^T \cdot A$$

선형 회귀란?

- 입력 변수 x와 출력 변수 y의 두 스칼라 값 간의 관계를 모델링하는 방법
- 모델은 y가 선형 함수 또는 입력 변수의 가중 합이라고 가정

$$y=f(x)=b_0+b_1\times x_1$$

• 모델은 다음과 같은 여러 입력 변수가 주어질 때 출력 변수를 모델링하는 데 사용할 수도 있음

$$y = f(x) = b_0 + (b_1 imes x_1) + (b_2 imes x_2) + \cdots$$

• 선형 회귀 모델을 만드는 목적은 출력 변수 y의 예측에서 오류를 최소화하는 값 (b)를 찾는 것임

- 회귀(regression): 옛날 상태로 돌아가는 것
 - 영국의 유전학자 프랜시스 골턴이 부모의 키와 아이들의 키 사이의 연관 관계를 연구하면서 부모와 자녀의 키사이에는 선형적인 관계가 있고 키가 커지거나 작아지는 것보다는 전체 키 평균으로 돌아가려는 경향이 있다는 가 설을 세웠으며 이를 분석하는 방법을 "회귀분석"이라고 함
- ullet 방정식 수 (y_1,y_2,y_3,y_4) 가 미지수 (b_1,b_2,b_3) 보다 많은 초과 결정(over-determined) 시스템
 - 방정식이 서로 모순되서(inconsistent) 해를 가지지 않는 경우가 많음
- ullet 약간의 오차를 허용하는 해결책 필요: 제곱 오차를 최소화(minimize squared error) o 최소제곱법(Least Linear Squares)

$$||X \cdot b - y||^2 = \sum_{i=1}^m \sum_{j=1}^n (X_{i,j} \cdot b_j - y_i)^2$$

• 정규방정식(normal equation)을 사용한 공식

$$X^T \cdot X \cdot b = X^T \cdot y$$
 $b = (X^T \cdot X)^{-1} \cdot X^T \cdot y$ $\hat{y} = X \cdot b$