1.

- a. Assuming $a \equiv b \pmod{m}$ we can expand the definition of that to get $m \mid (a b)$. Any multiple of a number divisible by m is also divisible by m, therefore $m \mid (-1 * (a b))$. Using some simple arithmetic this is equivalent to $m \mid (b a)$, therefore $b \equiv a \pmod{m}$.
- b. Assuming $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ we can expand those into $m \mid (a-b)$ and $m \mid (b-c)$. The sum of two numbers divisible by m is likewise divisible by m, therefore $m \mid ((a-b)+(b-c))$. Simplifying gives us $m \mid (a-c)$, which implies the result $a \equiv c \pmod{m}$.

2.

a. a = 1234, n = 4321

t	r
0	4321
1	1234
-3	619
4	615
-7	4
1075	3
-1082	1
-1082 < 0, final answer is 3239	0 stop here
	-

b. a = 24140, n = 40902

d = 11110,10 1030=	
t	r
0	40902
1	24140
-1	16762
2	7378
-5	2006
17	1360
-22	646
61	68
-571	34
The last value of r before 0 is	
not 1, there is no inverse	0 stop here

c. a = 550, n = 1769

,	
Т	r
0	1769
1	550
-3	119
13	74
-16	45
29	29
-45	16
74	13
-119	3

Jordan Alligood October 9, 2018

550	1
550 > 0, final answer is 550	0 stop here

3.

a. Reducible: $x^3 + 1 = (x + 1)(x^2 + x + 1)$

b. Irreducible

c. Reducible: $x^4 + 1 = (x + 1)^4$

4.

a. 1 (mod 2)

b. $x + 1 \pmod{3}$

5.
$$H(K|C) = -\left(\frac{1}{2}\left(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4} + 0\log_2\frac{0}{2}\right) + \frac{1}{4}\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{4}\log_2\frac{1}{4} + \frac{1}{4}\log_2\frac{1}{4}\right) + \frac{1}{8}\left(0\log_20 + \frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right)\right) = -\left(\left(\frac{3\log_3}{8\log_2} - 1\right) + \left(-\frac{3}{8}\right) + \left(-\frac{1}{8}\right)\right) = \frac{3\log_3}{8\log_2} - \frac{3}{2} = 0.9056$$