Random Variables

by 刘成锴

Let (S, Σ) be a measurable space, so that Σ is a σ -algebra on S.

Definitions. Σ -measurable function, $m\Sigma$, $(m\Sigma)^+$, $b\Sigma$

Suppose that $h:S \to \mathbf{R}$. For $A \in \mathbf{R}$, define

$$h^{-1}(A):=s\in S:h(s)\in A$$

Then h is called Σ -measurable if $h^{-1}: \mathcal{B} \to \Sigma$, that is, $h^{-1}(A) \in \Sigma, \forall A \in \mathcal{B}$.

Here is a picture of a Σ -measurable function h:

$$S \stackrel{ ext{h}}{\longrightarrow} \mathbf{R}$$
 $\Sigma \stackrel{ ext{h}^{-1}}{\longleftarrow} \mathcal{B}$

 $m\Sigma$: the class of Σ -measurable functions on S

 $(m\Sigma)^+$: the class of non-negative elements in $m\Sigma$

 $b\Sigma$: the class of bounded Σ -measurable functions on S

Borel function

A function h from a topological space S to \mathbf{R} is called **Borel** if h is $\mathcal{B}(S)$ -measurable.

The most important case is when S itself is \mathbf{R} .

Elementary Propositions on measurability

(a) The map h^{-1} preserves all set operations:

$$h^{-1}\left(\cup_{lpha}A_{lpha}
ight)=U_{lpha}h^{-1}\left(A_{lpha}
ight),\quad h^{-1}\left(A^{c}
ight)=\left(h^{-1}(A)
ight)^{c}$$
, etc.

(b) If
$$\mathcal{C} \subseteq \mathcal{B}$$
 and $\sigma(\mathcal{C}) = \mathcal{B}$, then $h^{-1}: \mathcal{C} \to \Sigma \quad \Rightarrow \quad h \in \mathrm{m}\Sigma$

- (c) If S is topological and $h:S \to \mathbf{R}$ is continuous, then h is **Borel**.
- (d) For any measurable space (S,Σ) , a function $h:S o {f R}$ is Σ -measurable if

$$\{h \leq c\} := \{s \in S : h(s) \leq c\} \in \Sigma \quad (\forall c \in \mathbf{R})$$

Lemma. Sums and products of measurable functions are measurable

 $m\Sigma$ is an algebra over ${f R}$, that is,

if $\lambda \in \mathbf{R}$ and $h,h_1,h_2 \in m\Sigma$, then

$$h1+h2\in m\Sigma,\quad h_1h_2\in m\Sigma,\quad \lambda h\in m\Sigma$$

Composition Lemma 复合函数可测性引理

If $h \in m\Sigma$ and $f \in m\mathcal{B}$, then $f \, \circ \, h \in m\Sigma$.

Proof.

$$S \stackrel{ ext{h}}{\longrightarrow} \mathbf{R} \stackrel{ ext{f}}{\longrightarrow} \mathbf{R} \ \Sigma \stackrel{ ext{f}^{-1}}{\longleftarrow} \mathcal{B}$$

Definition. Random Variable

Let (Ω, \mathcal{F}) be our (sample space, family of events). A *random variable* is an element of $m\mathcal{F}$. Thus,

$$X:\Omega o {f R},\quad X^{-1}:{\cal B} o {\cal F}$$