Uncertainty on Asynchronous Time Event Prediction

Marin Biloš*, Bertrand Charpentier*, Stephan Günnemann

(d)

tl;dr

- ☐ Adaptive prediction for the next event
- ☐ Real time uncertainty estimation in asynchronous event prediction

Asynchronous events

- ☐ Discrete events occurring irregularly over time
- ☐ At a given time, the most probable event can change

Research questions

- (1) Prediction: At a given time, what event is likely to occur?
- (2) Uncertainty estimation: How sure are we in our prediction?

(1) Prediction

(2) Uncertainty estimation

Model overview

- 1. For each class c, generate M pseudo points $(w_i^{(c)}, \tau_i^{(c)}, y_i^{(c)})$ based on a hidden state of an RNN whose input is a sequence.
- 2. Fit a complex evolution of the predicted categorical distribution $p(\tau) \sim P(\theta(\tau))$. The distribution over the simplex $P(\theta(\tau))$ gives certainty localized around pseudo points.

*Equal contribution

Model 1: Logistic Normal via Weighted Gaussian Process

 \square The pseudo points $(au_j^{(c)}, y_j^{(c)})$ weighted with $w_j^{(c)}$ are used to generate a Weighted Gaussian Process in the logit-space. The weights $w_i^{(c)}$ allow to discard unecessary training points in Gaussian Process.

(Kernel)
$$k'(\tau_1, \tau_2) = min(w_1, w_2)k(\tau_1, \tau_2)$$

The distribution $p_c(\tau) \sim logistic N(\tau_c(\tau), \sigma_c^2(\tau))$ follows a Logistic Normal distribution.

Model 2: Dirichlet via Function Decomposition

The pseudo points $(w_i^{(c)}, \tau_i^{(c)}, \sigma_i^{(c)})$ are used to describe the evolution of the Dirichlet parameters over time via function decomposition.

$$\log \alpha_c \ (\tau) = \sum_{j=1}^M w_j^{(c)} \cdot N(\tau | \tau_j^{(c)}, \sigma_j^{(c)}) + \vartheta$$
 Effective number of observations of class c at time τ

The distribution $p(\tau) \sim Dir(\alpha_c(\tau))$ follows a Dirichlet distribution.

Uncertainty Cross Entropy

☐ The classic Cross Entropy loss looks only at the mean of the distribution $P(\theta(\tau))$:

$$\mathcal{L}_i^{\textit{UCE}} = \mathsf{H}[oldsymbol{p}_i^*, \overline{oldsymbol{p}}_i]$$

Not suited for uncertainty

 \Box The Uncertainty Cross entropy loss looks at the distribution $P(\theta(\tau))$:

$$\mathcal{L}_{i}^{\textit{UCE}} = \mathbb{E}_{\boldsymbol{p}_{i} \sim P_{i}(\theta(\tau_{i}^{*}))}[H[\boldsymbol{p}_{i}^{*}, \boldsymbol{p}_{i}]]$$

where $\overline{m{p}}_i(au) = \mathbb{E}_{m{p}_i \sim P_i(heta(au_i))}[m{p}_i]$

Take care of uncertainty estimation

☐ Regularizer adjust uncertainty estimation of out-of-distribution data:

$$r_c = \alpha \int_0^T (\mu_c)^2 d\tau + \beta \int_0^T (\vartheta - \sigma_c^2) d\tau$$

Pushes mean to 0 Pushes variance to ϑ

Computed by sampling

Experiment: Visualization

Experiment: Prediction

(a)

(c)

Experiment: Uncertainty

