# **Stochastic Game**

#### **Motivations**

## What if we didn't always repeat back to the same stage game?

- A stochastic game is a generalization of repeated games
  - agents repeatedly play games from a set of normal-form games
  - the game played at any iteration depends on the previous game played and on the actions taken by all agents in that game

### What if there are multiple decision makers in Markov Decision Process?

- A stochastic game is a generalized Markov decision process
  - there are multiple players one reward function for each agent
  - the state transition function and reward functions depend on the action choices of both players

#### **Motivations**



- Stochastic game is a moral general setting where learning is taking place
  - The game transits to another game depending on the joint actions by agents
  - Same players and same actions sets are used through games
- Most of the techniques discussed in the context of repeated games are applicable more generally to stochastic games
  - ✓ specific results obtained for repeated games do not always generalize.

#### **Formal Definition**

#### **Definition (Stochastic game)**

A stochastic game is a tuple (N, S, A, R, T), where

- *N* is a finite set of *n* players
- S is a finite set of states (stage games),
- $A = A_1 \times \cdots \times A_n$ , where  $A_i$  is a finite set of actions available to player i,
- $T: S \times A \times S \mapsto [0,1]$  is the transition probability function; T(s,a,s') is the probability of transitioning from state s to state s' after joint action a,
- $R = r_1 \dots, r_n$ , where  $r_i : S \times A \mapsto \mathbb{R}$  is a real-valued payoff function for player i

#### **Transition model**

- All agents (1, ..., n) share the joint state s
- The transition equation is similar to the Markov Decision Process decision transition:

$$MDP: \sum_{s'} T(s, \boldsymbol{a}, s') = \sum_{s'} p(s'|\boldsymbol{a}, s) = 1, \forall s \in S, \forall a \in A$$

SG: 
$$\sum_{s'} T(s, a_1, ..., a_i, ..., a_n, s') = \sum_{s'} p(s'|a_1, ..., a_i, ..., a_n, s) = 1$$

$$\forall s \in S, \forall a_i \in A_i, i = (1, ..., n)$$

#### **Reward function**

• Reward function  $r_i$  for agent i depends on the current joint state s, the joint action  $a=(a_1,\ldots,a_n)$ , and the next joint future state s'

$$\mathsf{MDP}: r(s, a, s')$$

SG: 
$$r_i(s, a_1, ..., a_i, ..., a_n, s')$$

## **Policy**



• Policy  $\pi_1$  will give the action that will be taken by player 1 at a given state (stage game):

$$a_1 = \pi_1(s), \ a_1 \in \{T, B\}$$

#### Value function

- As we did in MDP, we can define value function
- Let  $\pi_i$  be the policy of player  $i \in N$ . For a given initial state s, the value of state s for player i is defined as

$$V_{i}(s, \pi_{1}, \dots, \pi_{i}, \dots, \pi_{n}) = \sum_{t=0}^{\infty} \gamma^{t} E[r_{i,t} | \pi_{1}, \dots, \pi_{i}, \dots, \pi_{n}, s_{0} = s]$$

- > The accumulated rewards depends on the policies of other agents
- $\blacktriangleright$  The immediate reward is expressed as expected value, because some policy  $\pi_i$  can be stochastic
- In a *discounted stochastic game*, the objective of each player is to maximize the discounted sum of rewards, with discount factor  $\gamma \in [0,1)$ .

### **Equilibrium strategy**

#### **Definition (Nash equilibrium policy in Stochastic game)**

In a stochastic game  $\Gamma = (N, S, A, R, T)$ , a Nash equilibrium policy is a tuple of n policies  $\pi^* = (\pi_1^*, \dots, \pi_n^*)$  such that for all  $s \in S$  and  $i = 1, \dots n$ ,

$$V_i(s, \pi_1^*, ..., \pi_i^*, ..., \pi_n^*) \ge V_i(s, \pi_1^*, ..., \pi_i^*, ..., \pi_n^*)$$
 for all  $\pi_i \in \Pi_i$ 

- A Nash equilibrium is a joint policy where each agent's policy is a best response to the others
- For a stochastic game, each agent's policy is defined over the entire time horizon of the game
- A Nash equilibrium state value  $V_i(s, \pi_1^*, ..., \pi_n^*)$  is defined as the sum of discounted rewards when all agents following the Nash equilibrium policies  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ 
  - Notations:  $V_i^*(s) = V_i^{\pi^*}(s) = V_i(s, \pi_1^*, ..., \pi_n^*)$

## **Equilibrium policy**

## Theorem (Fink 1964)

Every n —player discounted stochastic game processes at least one Nash equilibrium policy in stationary policies

- Action selection rule for non-stationary policy is different depending on time
  - $\pi_t(s) \neq \pi_{t+1}(s)$
- There are generally a great multiplicity of non-stationary equilibria, whose fact is partially demonstrated by Folk Theorems

# Single agent

#### **Q-values**

 $Q^{\pi}(s,a)$ : The expected utility of taking action a from state s, and then following policy  $\pi$ 

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left( \sum_{k=0}^{\infty} \gamma^k r_{t+k} \middle| S_t = s, A_t = a \right)$$

#### **Optimal Q-values**

$$\begin{split} Q^*(s,a) &= \max_{\pi} Q^{\pi}(s,a) \\ &= \max_{\pi} \mathbb{E}[r(s,a,s') + \gamma V^{\pi}(s') | s_t = s, a_t = a] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{\pi} V^{\pi}(s') | s_t = s, a_t = a\right] \\ &= \mathbb{E}[r(s,a,s') + \gamma V^*(s') | s_t = s, a_t = a] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma V^*(s') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} V^{\pi}(s') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &: V^*(s') \equiv \max_{a'} Q^*(s',a') \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s_t = s, a_t = a\right] \\ &= \mathbb{E}\left[r(s,a,s') + \gamma \max_{a'} Q^*(s',a') | s$$

Optimization over policy becomes greedy optimization over action!

 Optimal Q-value for a single-agent is the sum of the current reward and future discounted rewards when playing the optimal strategy from the next period onward

# **Multi agents**

#### Q-values for agent i

 $Q_i^\pi(s,a_1,...,a_n)$ : The expected utility of taking joint action  $(a_1,...,a_n)$  from state s, and then following policy  $\pi$   $Q_i^\pi(s,a_1,...,a_n) = \mathbb{E}_\pi \left( \sum_{k=0}^\infty \gamma^k r_{i,t+k} \mid S_t = s, A = (a_1,...,a_n) \right)$ 

#### **Optimal Q-values for agent** *i*

$$\begin{split} Q_i^*(s, a_1, \dots, a_n) &= \max_{\pi_1, \dots, \pi_n} Q_i^\pi(s, a_1, \dots, a_n) \\ &= \max_{\pi_1, \dots, \pi_n} \mathbb{E}[r_i(s, a_1, \dots, a_n, s') + \gamma V_i(s', \pi_1, \dots, \pi_n) | s_t = s, a_t = (a_1, \dots, a_n)] \\ &= \mathbb{E}\left[r_i(s, a_1, \dots, a_n, s') + \gamma \max_{\pi_1, \dots, \pi_n} V_i(s', \pi_1, \dots, \pi_n) | s_t = s, a_t = (a_1, \dots, a_n)\right] \\ &= \mathbb{E}[r_i(s, a_1, \dots, a_n, s') + \gamma V_i(s', \pi_1^*, \dots, \pi_n^*) | s_t = s, a_t = (a_1, \dots, a_n)] \\ &= \mathbb{E}\left[r_i(s, a_1, \dots, a_n, s') + \gamma \max_{a_1, \dots, a_n} Q_i^*(s', a_1, \dots, a_n) | s_t = s, a_t = (a_1, \dots, a_n)\right] \end{split}$$

- Optimal Q-value for agent i occurs when all agents are jointly coordinating to maximize agent i's accumulated reward
  - Rarely occurs! : Optimal Q-values for all agents are not achieved simultaneously

# **Multi agents**

#### Q-values for agent i

 $Q_i^{\pi}(s, a_1, ..., a_n)$ : The expected utility of taking joint action  $(a_1, ..., a_n)$  from state s, and then following policy  $\pi$   $Q_i^{\pi}(s, a_1, ..., a_n) = \mathbb{E}_{\pi} \left( \sum_{k=0}^{\infty} \gamma^k r_{i,t+k} \mid S_t = s, A = (a_1, ..., a_n) \right)$ 

## **Optimal** Q-values for agent *i*

$$\begin{split} Q_i^*(s, a_1, \dots, a_n) &= \max_{\pi_1, \dots, \pi_n} Q_i^{\pi}(s, a_1, \dots, a_n) \\ &= \max_{\pi_1, \dots, \pi_n} \mathbb{E}[r_i(s, a_1, \dots, a_n, s') + \gamma V_i(s', \pi_1, \dots, \pi_n) | s_t = s, a_t = (a_1, \dots, a_n)] \\ &= \mathbb{E}\left[r_i(s, a_1, \dots, a_n, s') + \gamma \max_{\pi_1, \dots, \pi_n} V_i(s', \pi_1, \dots, \pi_n) | s_t = s, a_t = (a_1, \dots, a_n)\right] \\ &= \mathbb{E}[r_i(s, a_1, \dots, a_n, s') + \gamma V_i(s', \pi_1^*, \dots, \pi_n^*) | s_t = s, a_t = (a_1, \dots, a_n)] \\ &= \mathbb{E}\left[r_i(s, a_1, \dots, a_n, s') + \gamma \max_{a_1, \dots, a_n} Q_i^*(s', a_1, \dots, a_n) | s_t = s, a_t = (a_1, \dots, a_n)\right] \end{split}$$

- Optimal Q-value for agent i occurs when all agents are jointly coordinating to maximize agent i's accumulated reward
  - Rarely occurs! : Optimal Q-values for all agents are not achieved simultaneously

# **Multi agents**

#### Q-values for agent i

 $Q_i^\pi(s,a_1,...,a_n)$ : The expected utility of taking joint action  $(a_1,...,a_n)$  from state s, and then following policy  $\pi$   $Q_i^\pi(s,a_1,...,a_n) = \mathbb{E}_\pi \left( \sum_{k=0}^\infty \gamma^k r_{i,t+k} \ \middle| S_t = s, A = (a_1,...,a_n) \right)$ 

#### Nash Q-values for agent i

$$\begin{split} Q_i^*(s, a_1, ..., a_n) &= \underset{\pi_1, ..., \pi_n}{\operatorname{Nash}} \, Q_i^\pi(s, a_1, ..., a_n) \\ &= \underset{\pi_1, ..., \pi_n}{\operatorname{Nash}} \, \mathbb{E}[r_i(s, a_1, ..., a_n, s') + \gamma V_i(s', \pi_1, ..., \pi_n) | s_t = s, a_t = (a_1, ..., a_n)] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{\pi_1, ..., \pi_n}{\operatorname{Nash}} \, V_i(s', \pi_1, ..., \pi_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s') + \gamma \underset{a_1, ..., a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, ..., a_n) | s_t = s, a_t = (a_1, ..., a_n)\right] \\ &= \mathbb{E}\left[r_i(s, a_1, ..., a_n, s')$$

• A Nash Q value  $Q_i^*(s, a_1, ..., a_n)$  is the expected sum of discounted rewards when all agents take the joint action  $a = (a_1, ..., a_n)$  at given state s and follow a Nash equilibrium strategy  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ 

### **Nash Bellman equation**

#### For single agent:

$$V^{*}(s') = \max_{a} Q^{*}(s', a)$$

$$Q^{*}(s, a) = \mathbb{E}[r(s, a, s') + \gamma V^{*}(s') | s_{t} = s, a_{t} = a]$$

$$= \mathbb{E}\left[r(s, a, s') + \gamma \max_{a'} Q^{*}(s', a') | s_{t} = s, a_{t} = a\right]$$

#### For multiple agents:

$$\begin{split} V_i(s', \pi_1^*, \dots, \pi_n^*) &= \underset{a_1, \dots, a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, \dots, a_n) \\ Q_i^*(s, a_1, \dots, a_n) &= \mathbb{E}[r(s, a, s') + \gamma V_i(s', \pi_1^*, \dots, \pi_n^*) | s_t = s, a_t = a] \\ &= \mathbb{E}\left[r(s, a, s') + \gamma \underset{a_1, \dots, a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, \dots, a_n) \, | s_t = s, a_t = (a_1, \dots, a_n)\right] \end{split}$$

## How to compute A Nash (equilibrium) state value $V_i(s, \pi_1^*, ..., \pi_n^*)$

#### For multiple agents:

$$\begin{split} V_i(s', \pi_1^*, \dots, \pi_n^*) &= \underset{a_1, \dots, a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, \dots, a_n) \\ Q_i^*(s, a_1, \dots, a_n) &= \mathbb{E}[r(s, a, s') + \gamma V_i(s', \pi_1^*, \dots, \pi_n^*) | s_t = s, a_t = a] \\ &= \mathbb{E}\left[r(s, a, s') + \gamma \underset{a_1, \dots, a_n}{\operatorname{Nash}} \, Q_i^*(s', a_1, \dots, a_n) \, | s_t = s, a_t = (a_1, \dots, a_n)\right] \end{split}$$

- Nash **equilibrium** Q value  $\underset{a_1,...,a_n}{\operatorname{Nash}} Q_i^*(s',a_1,...,a_n)$  can be computed by computing player ith Nash equilibrium value for the stage game  $[Q_i^*(s',a_1,...,a_n),...,Q_n^*(s',a_1,...,a_n)]$ 
  - $\triangleright$  for example when i = 1,2

$$a_{2}^{1} \qquad \qquad a_{2}^{2}$$

$$a_{1}^{1} \qquad Q_{1}^{*}(s', a_{1}^{1}, a_{2}^{1}), Q_{2}(s', a_{1}^{1}, a_{2}^{1}) \qquad Q_{1}^{*}(s', a_{1}^{1}, a_{2}^{2}), Q_{2}(s', a_{1}^{1}, a_{2}^{2})$$

$$a_{1}^{2} \qquad Q_{1}^{*}(s', a_{1}^{2}, a_{2}^{1}), Q_{2}(s', a_{1}^{2}, a_{2}^{1}) \qquad Q_{1}^{*}(s', a_{1}^{2}, a_{2}^{2}), Q_{2}(s', a_{1}^{2}, a_{2}^{2})$$
Nash equilibrium

## **Simplifying Notation**

#### For multiple agents:

$$r_i(s, a_1, ..., a_n, s') \to r_i(s, \vec{a}, s')$$
 $V_i(s, \pi_1^*, ..., \pi_n^*) \to V_i^*(s)$ 
 $Q_i^*(s, a_1, ..., a_n) \to Q_i^*(s', \vec{a})$ 

$$\begin{split} Q_i^*(s, a_1, \dots, a_n) &= \mathbb{E}[r_i(s, a_1, \dots, a_n, s') + \gamma V_i(s', \pi_1^*, \dots, \pi_n^*) | s_t = s, a_t = (a_1, \dots, a_n)] \\ &= \mathbb{E}\left[r_i(s, a_1, \dots, a_n, s') + \gamma \underset{a_1, \dots, a_n}{\operatorname{Nash}} Q_i^*(s', a_1, \dots, a_n) | s_t = s, a_t = (a_1, \dots, a_n)\right] \end{split}$$

$$Q_{i}^{*}(s', \vec{a}) = \mathbb{E}[r_{i}(s, \vec{a}, s') + \gamma V_{i}^{*}(s') | s_{t} = s, a_{t} = \vec{a}]$$

$$= \mathbb{E}[r_{i}(s, \vec{a}, s') + \gamma \operatorname{Nash} Q_{i}^{*}(s') | s_{t} = s, a_{t} = \vec{a}]$$

$$\underset{a_1,...,a_n}{\operatorname{Nash}} Q_i^*(s', a_1, ..., a_n) = Q_i^*(s', \vec{a}_{NE}) = \operatorname{Nash} Q_i^*(s')$$

#### **Computing Nash Q-values analytically**

• If we know Nash equilibrium policy  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ , we can compute the Nash equilibrium state values  $V_i(s, \pi_1^*, ..., \pi_n^*)$  (i.e., policy evaluation)

$$V_i(s, \pi_1^*, ..., \pi_n^*) = \sum_{t=0}^{\infty} \gamma^t E[r_{i,t} | \pi_1^*, ..., \pi_n^*, s_0 = s]$$

• If we know Nash equilibrium state value  $V_i(s, \pi_1^*, ..., \pi_n^*)$  and transition models  $p(s'|s, a_1, ..., a_n)$ , we can compute Nash Q-values (i.e., Nash Q-function) using backward induction (analytical approach)

$$Q_i^*(s, a_1, ..., a_n) = \mathbb{E}[r_i(s, a_1, ..., a_n, s') + \gamma V_i(s', \pi_1^*, ..., \pi_n^*) | s_t = s, a_t = (a_1, ..., a_n)]$$

$$= r_i(s, a_1, ..., a_n, s') + \sum_{s'} p(s'|s, a_1, ..., a_n) V_i(s', \pi_1^*, ..., \pi_n^*)$$

#### **Grid Game 1**



- Grid game has deterministic moves
- Two agents start from respective lower corners, trying to reach their goal cells in the top row
- Agent can move only one cell a time, and in four possible directions: Left, Right, Up, Down
- If two agents attempt to move into the same cell (excluding a goal cell), they are bounced back to their previous cells
- The game ends as soon as an agent reaches its goal
  - The objective of an agent in this game is therefore to reach its goal with a minimum No. of steps
- Agents do not know
  - the locations of their goals at the beginning of the learning period
  - their own and the other agents' payoff functions
- Agent choose their action simultaneously and observe
  - the previous actions of both agents and the current joint state
  - the immediate rewards after both agents choose their actions



- The action space of agent i, i = 1,2, is  $A_i = \{Left, Right, Down, Up\}$
- The sate space is  $S = \{(0,1), (0,2), \dots, (8,7)\}$ 
  - $s = (l_1, l_2)$  represents the agents' joint location
  - $l_i \in \{0, 2, ..., 8\}$  is the indexed location
- The reward function is, for i = 1, 2,

$$r_i = \begin{cases} 100 \text{ if } L(l_i, a_i) = Goal_i \\ -1 \text{ if } L(l_1, a_1) = L(l_2, a_2) \text{ and } L(l_i, a_i) \neq Goal_i \text{ for } i = 1, 2 \\ 0 \text{ otherwise} \end{cases}$$

 $l_i' = L(l_i, a_i)$  is the next location when executing  $a_i$  at  $l_i$ 



• 
$$s = (l_1, l_2) = (0,2)$$

• 
$$s = (l_1, l_2) = (0,2)$$
  
•  $a = (a_1, a_2) = (Up, Left)$ 

| <b>\$</b> | 7     | 8<br><b>\$</b> |
|-----------|-------|----------------|
| 3 ag1     | 4     | 5              |
| 0         | 1 ag2 | 2              |

• 
$$s = (l_1, l_2) = (0.2)$$

• 
$$a = (a_1, a_2) = (Up, Left)$$



• 
$$s' = (L(l_1, a_1), L(l_2, a_2)) = (3, 1)$$
  
•  $r_1 = 0$ 

• 
$$r_1 = 0$$

• 
$$r_2 = 0$$



**Nash Equilibrium strategies** 



**Nash Equilibrium strategies** 



**Nash Equilibrium policies** 



**Nash Equilibrium policies** 



**Nash Equilibrium policies** 

| State s  | $\pi_1(s)$ |
|----------|------------|
| (0, any) | U          |
| (3, any) | Right      |
| (4, any) | Right      |
| (5, any) | Up         |

Nash strategy for agent 1

## All Nash Equilibrium policies



| 6 \$ | 7 | 7 |   | \$ |
|------|---|---|---|----|
|      |   |   | 1 |    |
| 3    | 4 | 4 |   |    |
|      | , |   |   |    |
| 0    | 1 |   | 2 |    |
|      |   | • |   | •  |

| 6 | 5 | 7 | 8 | \$ |
|---|---|---|---|----|
|   |   |   | • |    |
| 3 |   | 4 | 5 |    |
|   |   |   |   |    |
| 0 |   | 1 | 2 |    |
| • |   |   |   | 4" |





### Nash Q values for the initial state $s_0 = (0.2)$

• The value of the game for agent 1 is defined as its accumulated reward when both agents follow their Nash equilibrium polices  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ :

$$V_{1}(s_{0}, \pi_{1}^{*}, \pi_{2}^{*}) = \sum_{t=0}^{\infty} \gamma^{t} E[r_{i,t} | \pi_{1}^{*}, \dots, \pi_{n}^{*}, s_{0} = s]$$

• In Grid game 1 and initial state  $s_0 = (0,2)$ , this becomes, given  $\gamma = 0.99$ ,

$$V_1(s_0, \pi_1^*, \pi_2^*) = 0 + 0.99 \times 0 + 0.99^2 \times 0 + 0.99^3 \times 100$$
  
= 97.0

$$s_0 = (0,2)$$

| <sup>6</sup> \$ | 7 | 8 \$     |
|-----------------|---|----------|
| 3               | 4 | 5        |
| 0<br>ag1        | 1 | 2<br>ag2 |

$$Q_1^*(s_0, a_1, a_2) = \mathbb{E}[r_1(s_0, a_1, a_2) + \gamma V_1(s', \pi_1^*, \pi_2^*) | s_t = s, a_t = (a_1, \dots, a_n)]$$

$$= r_1(s_0, a_1, a_2) + \gamma \sum_{s'} p(s' | s_0, a_1, a_2) V_1(s', \pi_1^*, \pi_2^*)$$

$$Q_1^*(s_0 = (0,2), Right, Left) = -1 + 0.99 \times V_1(s' = (0,2), \pi_1^*, \pi_2^*)$$
  
= -1 + 0.99 × 97 = 95.1



$$s' = s_0 = (0,2)$$



$$Q_1^*(s_0, a_1, a_2) = \mathbb{E}[r_1(s_0, a_1, a_2) + \gamma V_1(s', \pi_1^*, \pi_2^*) | s_t = s, a_t = (a_1, \dots, a_n)]$$

$$= r_1(s_0, a_1, a_2) + \gamma \sum_{s'} p(s' | s_0, a_1, a_2) V_1(s', \pi_1^*, \pi_2^*)$$

$$Q_1^*(s_0 = (0,2), Up, Up) = 0 + 0.99 \times V_1(s' = (3,5), \pi_1^*, \pi_2^*)$$
$$= 0 + 0.99 \times \{0 + 0.99 \times 0 + 0.99^2 \times 100\} = 97.0$$



$$Q_1^*(s_0, a_1, a_2) = \mathbb{E}[r_1(s_0, a_1, a_2) + \gamma V_1(s', \pi_1^*, \pi_2^*) | s_t = s, a_t = (a_1, \dots, a_n)]$$

$$= r_1(s_0, a_1, a_2) + \gamma \sum_{s'} p(s' | s_0, a_1, a_2) V_1(s', \pi_1^*, \pi_2^*)$$

$$Q_1^*(s_0 = (0,2), Up, Left) = 0 + 0.99 \times V_1(s' = (3,1), \pi_1^*, \pi_2^*)$$
$$= 0 + 0.99 \times \{0 + 0.99 \times 0 + 0.99^2 \times 100\} = 97.0$$



$$Q_1^*(s_0, a_1, a_2) = \mathbb{E}[r_1(s_0, a_1, a_2) + \gamma V_1(s', \pi_1^*, \pi_2^*) | s_t = s, a_t = (a_1, \dots, a_n)]$$

$$= r_1(s_0, a_1, a_2) + \gamma \sum_{s'} p(s' | s_0, a_1, a_2) V_1(s', \pi_1^*, \pi_2^*)$$

$$Q_1^*(s_0 = (0,2), Right, Up) = 0 + 0.99 \times V_1(s' = (1,5), \pi_1^*, \pi_2^*)$$
$$= 0 + 0.99 \times \{0 + 0.99 \times 0 + 0.99^2 \times 100\} = 97.0$$



|               | $a_2 = Left$                         | $a_2 = Up$                           |  |
|---------------|--------------------------------------|--------------------------------------|--|
| $a_1 = Right$ | $Q_1^*(s_0, R, L), Q_2^*(s_0, R, L)$ | $Q_1^*(s_0, R, U), Q_2^*(s_0, R, U)$ |  |
| $a_2 = Up$    | $Q_1^*(s_0, U, L), Q_2^*(s_0, U, L)$ | $Q_1^*(s_0, U, U), Q_2^*(s_0, U, U)$ |  |

$$a_2 = Left$$
  $a_2 = Up$   $a_1 = Right$  95.1, 95.1 97.0, 97.0 97.0, 97.0 97.0, 97.0

#### **Grid Game 2**

| 6        | <b>\$</b> | 8        |
|----------|-----------|----------|
| 3        | 4         | 5        |
| 0<br>ag1 | 1         | 2<br>ag2 |

- First to reach goal gets \$100
- If both reaches the money at the same time, both win
- Semi wall (50% go through)
- Cannot occupy the same grid

- Grid game has both **stochastic** and **deterministic** moves
- If agent choses Up from position 0 or 2, it moves up with probability 0.5 and remains in its previous position with probability 0.5



#### **Grid Game 2**





- There are two Nash equilibrium paths
- The value of the game for agent 1 is defined as its accumulated reward when both agents follow their Nash equilibrium strategies  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ :

$$V_1(s, \pi_1^*, \pi_2^*) = \sum_{t=0}^{\infty} \gamma^t E[r_{i,t} | \pi_1^*, \dots, \pi_n^*, s_0 = s]$$

- $V_1((0,1), \pi_1^*, \pi_2^*) = 0 + 0.99 \times 0 + 0.99^2 \times 0 = 0$
- $V_1((0,x),\pi_1^*,\pi_2^*)=0$  for x=3,...,8
- $V_1((1,2), \pi_1^*, \pi_2^*) = 0 + 0.99 \times 100 = 99$
- $V_1((1,3), \pi_1^*, \pi_2^*) = 0 + 0.99 \times 0 + 0.99^2 \times 0 = 0$
- $V_1((1,x),\pi_1^*,\pi_2^*) = 0 + 0.99 \times 0 + 0.99^2 \times 0 = 0$

• The value of the game for agent 1 is defined as its accumulated reward when both agents follow their Nash equilibrium strategies  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ :

$$V_1(s, \pi_1^*, \pi_2^*) = \sum_{t=0}^{\infty} \gamma^t E[r_{i,t} | \pi_1^*, \dots, \pi_n^*, s_0 = s]$$

• 
$$V_1((0,1), \pi_1^*, \pi_2^*) = 0 + 0.99 \times 0 + 0.99^2 \times 0 = 0$$



• The value of the game for agent 1 is defined as its accumulated reward when both agents follow their Nash equilibrium strategies  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ :

$$V_1(s, \pi_1^*, \pi_2^*) = \sum_{t=0}^{\infty} \gamma^t E[r_{i,t} | \pi_1^*, \dots, \pi_n^*, s_0 = s]$$

•  $V_1((0,x),\pi_1^*,\pi_2^*)=0$  for x=3,...,8



• The value of the game for agent 1 is defined as its accumulated reward when both agents follow their Nash equilibrium strategies  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ :

$$V_1(s, \pi_1^*, \pi_2^*) = \sum_{t=0}^{\infty} \gamma^t E[r_{i,t} | \pi_1^*, \dots, \pi_n^*, s_0 = s]$$

• 
$$V_1((1,2), \pi_1^*, \pi_2^*) = 0 + 0.99 \times 100 = 99$$



• The value of the game for agent 1 is defined as its accumulated reward when both agents follow their Nash equilibrium strategies  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ :

$$V_1(s, \pi_1^*, \pi_2^*) = \sum_{t=0}^{\infty} \gamma^t E[r_{i,t} | \pi_1^*, \dots, \pi_n^*, s_0 = s]$$

•  $V_1((1,3), \pi_1^*, \pi_2^*) = 0 + 0.99 \times 100 = 99 = V_1((1,5), \pi_1^*, \pi_2^*)$ 





• The value of the game for agent 1 is defined as its accumulated reward when both agents follow their Nash equilibrium strategies  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ :

$$V_1(s, \pi_1^*, \pi_2^*) = \sum_{t=0}^{\infty} \gamma^t E[r_{i,t} | \pi_1^*, \dots, \pi_n^*, s_0 = s]$$

•  $V_1((1,x),\pi_1^*,\pi_2^*)=0$  for x=4,6,8



• The value of the game for agent 1 is defined as its accumulated reward when both agents follow their Nash equilibrium strategies  $\pi^* = (\pi_1^*, ..., \pi_n^*)$ :

$$V_1(s, \pi_1^*, \pi_2^*) = \sum_{t=0}^{\infty} \gamma^t E[r_{i,t} | \pi_1^*, \dots, \pi_n^*, s_0 = s]$$

- $V_1((0,2), \pi_1^*, \pi_2^*) = V_1(s_0, \pi_1^*, \pi_2^*)$  can be computed only in expectation
- We solve  $V_1(s_0, \pi_1^*, \pi_2^*)$  from the state game  $(Q_1^*(s_0, a_1, a_2), Q_2^*(s_0, a_1, a_2))$

| 6        | 7 \$ | 8        |
|----------|------|----------|
| 3        | 4    | 5        |
| 0<br>ag1 | 1    | 2<br>ag2 |

$$Q_1^*(s_0, a_1, a_2) = \mathbb{E}[r_1(s_0, a_1, a_2) + \gamma V_1(s', \pi_1^*, \pi_2^*) | s_t = s, a_t = (a_1, \dots, a_n)]$$

$$= r_1(s_0, a_1, a_2) + \gamma \sum_{s'} p(s' | s_0, a_1, a_2) V_1(s', \pi_1^*, \pi_2^*)$$

$$Q_1^*(s_0 = (0,2), Right, Left) = -1 + 0.99 \times V_1(s_0, \pi_1^*, \pi_2^*)$$



$$s' = s_0 = (0,2)$$

| 6        | <sup>7</sup> \$ | 8        |
|----------|-----------------|----------|
| 3        | 4               | 5        |
| 0<br>ag1 | 1               | 2<br>ag2 |

$$Q_1^*(s_0, a_1, a_2) = \mathbb{E}[r_1(s_0, a_1, a_2) + \gamma V_1(s', \pi_1^*, \pi_2^*) | s_t = s, a_t = (a_1, \dots, a_n)]$$

$$= r_1(s_0, a_1, a_2) + \gamma \sum_{s'} p(s' | s_0, a_1, a_2) V_1(s', \pi_1^*, \pi_2^*)$$

$$Q_1^*(s_0 = (0,2), Right, Up) = 0 + 0.99 \times \left\{ \frac{1}{2} V_1((1,2), \pi_1^*, \pi_2^*) + \frac{1}{2} V_1((1,5), \pi_1^*, \pi_2^*) \right\}$$
$$= 0 + 0.99 \times (0.5 \times 99 + 0.5 \times 99) = 98$$







$$Q_1^*(s_0, a_1, a_2) = \mathbb{E}[r_1(s_0, a_1, a_2) + \gamma V_1(s', \pi_1^*, \pi_2^*) | s_t = s, a_t = (a_1, \dots, a_n)]$$

$$= r_1(s_0, a_1, a_2) + \gamma \sum_{s'} p(s' | s_0, a_1, a_2) V_1(s', \pi_1^*, \pi_2^*)$$

$$Q_1^*(s_0 = (0,2), Up, Left) = 0 + 0.99 \times \left\{ \frac{1}{2} V_1((3,1), \pi_1^*, \pi_2^*) + \frac{1}{2} V_1((0,1), \pi_1^*, \pi_2^*) \right\}$$
$$= 0 + 0.99 \times (0.5 \times 99 + 0.5 \times 0) = 49$$







## Nash Q values for the initial state $s_0 = (0.2)$

$$Q_1^*(s_0, a_1, a_2) = \mathbb{E}[r_1(s_0, a_1, a_2) + \gamma V_1(s', \pi_1^*, \pi_2^*) | s_t = s, a_t = (a_1, ..., a_n)]$$

$$= r_1(s_0, a_1, a_2) + \gamma \sum_{s'} p(s' | s_0, a_1, a_2) V_1(s', \pi_1^*, \pi_2^*)$$

$$Q_1^*(s_0 = (0,2), Up, Up) = 0 + 0.99 \times \left\{ \frac{1}{4} V_1^*((0,2)) + \frac{1}{4} V_1^*((0,5)) + \frac{1}{4} V_1^*((3,2)) + \frac{1}{4} V_1^*((3,5)) \right\}$$
$$= 0 + 0.99 \times \left\{ \frac{1}{4} V_1^*(s_0) + \frac{1}{4} \times 0 + \frac{1}{4} \times 99 + \frac{1}{4} \times 99 \right\} = 0.99 \times \frac{1}{4} V_1^*(s_0) + 49$$







| s' = (3,2)   |                        |          |
|--------------|------------------------|----------|
| 6            | <sup>7</sup> <b>\$</b> | 8        |
| 3 <b>ag1</b> | 4                      | 5        |
| 0            | 1                      | 2<br>ag2 |

| S = (3,3) |                 |              |
|-----------|-----------------|--------------|
| 6         | <sup>7</sup> \$ | 8            |
| 3 ag1     | 4               | 5 <b>ag2</b> |
| 0         | 1               | 2            |

c' - (2.5)

|               | $a_2 = Left$                         | $a_2 = Up$                           |
|---------------|--------------------------------------|--------------------------------------|
| $a_1 = Right$ | $Q_1^*(s_0, R, L), Q_2^*(s_0, R, L)$ | $Q_1^*(s_0, R, U), Q_2^*(s_0, R, U)$ |
| $a_2 = Up$    | $Q_1^*(s_0, U, L), Q_2^*(s_0, U, L)$ | $Q_1^*(s_0, U, U), Q_2^*(s_0, U, U)$ |

$$a_{2} = Left a_{2} = Up$$

$$a_{1} = Right -1 + 0.99V_{1}^{*}(s_{0}), -1 + 0.99V_{2}^{*}(s_{0}) 98,49$$

$$a_{2} = Up 49,98 49 + \frac{0.99}{4}V_{1}^{*}(s_{0}), 49 + \frac{0.99}{4}V_{2}^{*}(s_{0})$$

$$V_1^*(s_0) = \text{Nash}\{Q_1^*(s_0, a_1, a_2), Q_2^*(s_0, a_1, a_2)\}$$

**Case 1**: 
$$V_1^*(s_0) = 49$$

|       | Left  | Up     |
|-------|-------|--------|
| Right | 47,96 | 98, 49 |
| Up    | 49,98 | 61,73  |

$$a_{2} = Left a_{2} = Up$$

$$a_{1} = Right -1 + 0.99V_{1}^{*}(s_{0}), -1 + 0.99V_{2}^{*}(s_{0}) 98,49$$

$$a_{2} = Up 49,98 49 + \frac{0.99}{4}V_{1}^{*}(s_{0}), 49 + \frac{0.99}{4}V_{2}^{*}(s_{0})$$

$$V_1^*(s_0) = \text{Nash}\{Q_1^*(s_0, a_1, a_2), Q_2^*(s_0, a_1, a_2)\}$$

Case 2: 
$$V_1^*(s_0) = 98$$

|       | Left  | Up     |
|-------|-------|--------|
| Right | 96,47 | 98, 49 |
| Up    | 49,98 | 73,61  |

$$V_1^*(s_0) = \text{Nash}\{Q_1^*(s_0, a_1, a_2), Q_2^*(s_0, a_1, a_2)\}$$

Case 3: 
$$\{\pi_1(s_0), \pi_2(s_0)\} = (\{p(R) = 0.97, p(U) = 0.03\}, \{p(L) = 0.97, p(U) = 0.03\})$$

|       | Left         | Up         |
|-------|--------------|------------|
| Right | 47.48, 47.48 | 98, 49     |
| Up    | 49,98        | 61.2, 61.2 |

## **Optimal Q-function v.s. Nash Q-function**

## **Definition (Optimal Q-function)**

Optimal Q function is defined as

$$Q^*(s, a) = r(s, a, s') + \gamma \sum_{s' \in S} p(s'|s, a) V^*(s')$$

- $\triangleright$  With **optimum** policy  $\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$

## **Definition (Nash Q-function)**

Nash-Q function is defined as

$$Q_i^*(s, \vec{a}) = r_i(s, \vec{a}, s') + \gamma \sum_{s' \in S} p(s'|s, \vec{a}) \frac{V_i^*(s')}{Nash \, O_i(s')}$$

 $V_i^*(s') = \text{Nash } Q_i^*(s')$  is Nash equilibrium value that can be computed by solving the following state game

$$(Q_1^*(s',\vec{a}),...,Q_n^*(s',\vec{a}))$$

## **Definition (Nash equilibrium policy in Stochastic game)**

Compute the Nash equilibrium policies  $\pi^* = (\pi_1^*, \pi_2^*)$  such that for all  $s \in S$  and i = 1, ... 2,

$$V_i(s, \pi_i^*, \pi_{-i}^*) \ge V_i(s, \pi_i^*, \pi_{-i}^*)$$
 for all  $\pi_i \in \Pi_i$ 

## Value Function Based Multi-agent Reinforcement Learning

## **Multi Agent Reinforcement Learning (MARL)**

#### **Multi Agent Q-learning Template**

```
MultiQ(StochastiGame, f, \gamma, \alpha, T)

Inputs equilibrium selection function f
discounting factor \gamma
learning rate \alpha
total training time T

Outputs state — value functions V_i^*
action — value functions Q_i^*

Initialize s, a_1, ..., a_n and Q_1, ..., Q_n
```

# for t=1:T1. simulate actions $\vec{a}=(a_1,...,a_n)$ in state s2. observe rewards $r_1,...,r_n$ and next state s'

- 3. for i = 1 to n (for each agent)
  - (a)  $V_i(s') = f_i(Q_1(s', \vec{a}), ..., Q_n(s', \vec{a}))$

(b) 
$$Q_i(s, \vec{a}) = (1 - \alpha_i)Q_i(s, \vec{a}) + \alpha_i[r_i + \gamma V_i(s')]$$

- 4. agent choose actions  $a'_1, ..., a'_n$
- 5. s = s',  $a_1 = a'_1$ , ...,  $a_n = a'_n$
- 6. adjust learning rate  $\alpha = (\alpha_1, ..., \alpha_n)$

## **Multi Agent Reinforcement Learning (MARL)**

#### **Multi Agent Q-learning Template**

Equilibrium selection function 
$$f: V_i(s') = f_i(Q_1(s', \vec{a}), ..., Q_n(s', \vec{a}))$$

- We going to study the following equilibrium concept:
  - Value function based (Bellman function based)
    - Single agent Q-learning
    - Independent Q learning by multiple agents
    - Nash-Q learning (Hu and Wellman 1998)
    - Minmax-Q learning (Littman 1994)
    - Friend-or-Foe Q learning (Littman 2001)
    - Correlated Q learning (Greenwald and Hall 2003)
  - Policy gradient methods (direct search for policy)
    - Wind-or-Learn-Fast Policy Hill Climbing (WOLF-PHC) (Policy gradient method)

## Single agent Q learning

(a) 
$$V(s') = f(Q(s',a)) = \max_{a} Q(s',a)$$
(b) 
$$Q(s,a) = (1-\alpha)Q(s,a) + \alpha[r + \gamma V(s')]$$

$$= (1-\alpha)Q(s,a) + \alpha[r + \gamma \max_{a} Q(s',a)]$$

Equivalent to Q-learning algorithm we have discussed couple weeks a go

#### **Independent Q learning by multiple agents**

(a) 
$$V_i(s') = f_i(Q_1(s', a_1), \dots, Q_i(s', a_i), \dots, Q_n(s', a_n)) = \max_{a_i} Q_i(s', a_i)$$

(b) 
$$Q_i(s, a_i) = (1 - \alpha)Q_i(s, a_i) + \alpha[r_i + \gamma V_i(s')]$$
  
=  $(1 - \alpha)Q_i(s, a_i) + \alpha[r_i + \gamma \max_{a_i} Q_i(s', a_i)]$ 

- There are n agents whose Q-table is being independently updated regardless of the actions taken by other users
  - $Q_i(s', a_i) \sim Q_i(s', a_1, \dots, a_n)$
- Still the transition of joint state s depends on the all the actions taken by all agents, i.e.,  $p(s'|s, a_1, ..., a_i, ..., a_n)$ 
  - Independent Q-learning thus ignore the effects of other agents' actions on state transition
    - treats other agents as a part of stochastic environment
    - Due to incomplete information on others' action, the agent cannot accurately learn the dynamic of the system

## **Nash-Q learning**

## **Definition (Optimal Q-function)**

Optimal Q function is defined as

$$Q^*(s, a) = r_i(s, a, s') + \gamma \sum_{s' \in S} p(s'|s, a) V_i^*(s')$$

- $V_i^*(s') = \max_{a} Q^*(s', a)$
- $\triangleright$  With **optimum** policy  $\pi^*(s') = \underset{a}{\operatorname{argmax}} Q^*(s', a)$

#### **Definition (Nash Q-function)**

Nash-Q function is defined as

$$Q_i^*(s, a_1, \dots, a_n) = r_i(s, a_1, \dots, a_n, s') + \gamma \sum_{s' \in S} p(s'|s, a_1, \dots, a_n) \underbrace{V_i(s', \pi_1^*, \dots, \pi_n^*)}_{Nash \, Q_i(s')}$$

- $V_i(s', \pi_1^*, ..., \pi_n^*) = Q_i^*(s, \pi_1^*(s'), ..., \pi_n^*(s')) = \text{Nash } Q_i(s')$
- with Nash **equilibrium** strategy  $(\pi_1^*, ..., \pi_i^*, ..., \pi_n^*)$  satisfying for all s' and i=1,...,n  $V_i(s', \pi_1^*, ..., \pi_i^*, ..., \pi_n^*) \geq V_i(s', \pi_1^*, ..., \pi_i, ..., \pi_n^*) \text{ for all } \pi_i \in \Pi_i$

#### **Nash-Q learning**

- Q-learning directly find optimal Q-function (Q table) instead of optimum finding policy  $\pi^*$
- Single agent Q-learning:
  - Iteratively find optimal Q values  $Q^*(s, a)$  (table)

$$Q(s,a) = (1 - \alpha)Q(s,a) + \alpha[r(s,a) + \gamma V(s')]$$
$$= (1 - \alpha)Q(s,a) + \alpha \left[r(s,a) + \gamma \max_{a} Q(s',a)\right]$$

- Nah Q-learning:
  - Iteratively find Nash-Q values Nash  $Q_i^*(s, a_1, ..., a_n)$  (table for each agent)

$$Q_i(s, \vec{a}) = (1 - \alpha)Q_i(s, \vec{a}) + \alpha[r_i + \gamma V_i(s')]$$
$$= (1 - \alpha)Q_i(s, \vec{a}) + \alpha[r_i + \gamma \operatorname{Nash} Q_i(s')]$$

 $Q_i(s',\vec{a})$ : Nash-Q values (state-action values) Nash  $Q_i(s')$ : Nash equilibrium value of Nash-Q values

• the learning agent updates its Nash Q-value depending on the joint strategy of all the players and not only its own expected payoff.

## The Nash Q-Learning algorithm

```
MultiQ(StochastiGame, f, \gamma, \alpha, T)

Inputs equilibrium selection function f

discounting factor \gamma

learning rate \alpha

total training time T

Outputs state — value functions V_i^*

action — value functions Q_i^*

Initialize s, a_1, ..., a_n and Q_1, ..., Q_n
```

```
for t=1:T

1. simulate actions a_1, ..., a_n in state s

2. observe rewards r_1, ..., r_n and next state s'

3. for i=1 to n (for each agent)

(a) V_i(s') = f_i(Q_1(s',\vec{a}), ..., Q_n(s',\vec{a})) = \operatorname{Nash}Q_i(s')

(b) Q_i(s,\vec{a}) = (1-\alpha_i)Q_i(s,\vec{a}) + \alpha_i[r_i + \gamma V_i(s')]

4. agent choose actions a'_1, ..., a'_n

5. s=s', a_1=a'_1, ..., a_n=a'_n

6. adjust learning rate \alpha=(\alpha_1, ..., \alpha_n)
```

## Nash-Q learning algorithm

For agent *i* 

(a) 
$$V_i(s') = f_i\left(Q_1(s', \overrightarrow{a}), \dots, Q_i(s', \overrightarrow{a}), \dots, Q_n(s', \overrightarrow{a})\right) = \operatorname{Nash} Q_i(s')$$
  
Nash Q values for agents  $i = 1:n$  Nash equilibrium value

(b) 
$$Q_i(s, \vec{a}) = (1 - \alpha)Q_i(s, \vec{a}) + \alpha[r_i + \gamma V_i(s')]$$
  
=  $(1 - \alpha)Q_i(s, \vec{a}) + \alpha[r_i + \gamma \operatorname{Nash} Q_i(s')]$ 

- It uses the principle of the Nash equilibrium where "each player effectively holds a correct expectation about the other players' behaviors, and acts rationally with respect to this expectation
  - "rationally" means that the agent will have a strategy that is a best response for the other players' strategies.
- Nash Q-Learning is more complex than multiagent Q-learning because each player needs to keep track of the other players actions and rewards.
  - Each agent needs to track Nash Q values  $Q_1(s', \vec{a}), ..., Q_n(s', \vec{a})$  for agents i = 1:n to compute the Nash equilibrium value Nash  $Q_i(s')$

## How to compute Nash $Q_i(s')$ ?

1. At state s', agent i have the n Nash Q-values being tracked

$$\{Q_1(s', \vec{a}), ..., Q_i(s', \vec{a}), ..., Q_n(s', \vec{a})\}$$

- In each state, the agent has to keep track of every other agent's actions and rewards.
- 2. Find the Nash equilibrium for the stage game  $\{Q_1(s',\vec{a}),...,Q_i(s',\vec{a}),...,Q_n(s',\vec{a})\}$ 
  - For example, in two player general sum game, the agent i will build the matrix game for state s' with the reward matrix of both players as shown

|             | $a_2^1$                                        | $a_2^2$                                        |
|-------------|------------------------------------------------|------------------------------------------------|
| $a_1^1$     | $Q_1(s', a_1^1, a_2^1), Q_2(s', a_1^1, a_2^1)$ | $Q_1(s', a_1^1, a_2^2), Q_2(s', a_1^1, a_2^2)$ |
| $a_{1}^{2}$ | $Q_1(s', a_1^2, a_2^1), Q_2(s', a_1^2, a_2^1)$ | $Q_1(s', a_1^2, a_2^2), Q_2(s', a_1^2, a_2^2)$ |

3. Compute the Nash equilibrium  $\vec{a}_{NE}$  for the stage game (i.e., greedy optimization in single agent Q learning) and compute the Nash equilibrium value Nash  $Q_i(s')$  for player i at state s'

Nash 
$$Q_i(s') = Q_i(s', \vec{a}_{NE})$$

## How to compute Nash $Q_i(s')$ ?

4. Update Nash Q-values using the computed Nash equilibrium values

$$a_{2}^{1} \qquad a_{2}^{2}$$

$$a_{1}^{1} Q_{1}(s', a_{1}^{1}, a_{2}^{1}), Q_{2}(s', a_{1}^{1}, a_{2}^{1}) Q_{1}(s', a_{1}^{1}, a_{2}^{2}), Q_{2}(s', a_{1}^{1}, a_{2}^{2})$$

$$a_{1}^{2} Q_{1}(s', a_{1}^{2}, a_{2}^{1}), Q_{2}(s', a_{1}^{2}, a_{2}^{1}) Q_{1}(s', a_{1}^{2}, a_{2}^{2}), Q_{2}(s', a_{1}^{2}, a_{2}^{2})$$

$$Q_1(s, a_1, a_2) = (1 - \alpha)Q_1(s, a_1, a_2) + \alpha[r_1 + \gamma \operatorname{Nash} Q_1(s')]$$

$$Q_2(s, a_1, a_2) = (1 - \alpha)Q_2(s, a_1, a_2) + \alpha[r_2 + \gamma \operatorname{Nash} Q_2(s')]$$

 $S_t$ 

 $R_{t+1}$   $S_{t+1}$ 

 $NashA_{t+1}$ 

 $S_{t+2}$ 



• Choose action  $\overrightarrow{a} = (a_1, ..., a_n)$  from s using current Nash Q values  $(Q_1(s, \overrightarrow{a}), ..., Q_n(s, \overrightarrow{a}))$ 

$$\overrightarrow{a} = \begin{cases} \overrightarrow{a}_{\text{NE}} \text{ for } (Q_1(s, \overrightarrow{a}), ..., Q_n(s, \overrightarrow{a})) & \text{with prob } 1 - \epsilon \\ \text{random action} & \text{with prob } \epsilon \end{cases}$$



 $NashA_{t+1}$   $S_{t+2}$ 

Take action  $\overrightarrow{a}=(a_1,\dots,a_n)$  given s and observe reward  $\overrightarrow{r}=(r_1,\dots,r_n)$  and the next state s'



Nash  $Q_1(s')$ , ..., Nash  $Q_n(s')$ 

• Update Nash-Q values,  $Q_1(s, \overrightarrow{a}), ..., Q_n(s, \overrightarrow{a})$ , using the Nash equilibrium values For i=1:n  $Q_i(s, \overrightarrow{a}) \leftarrow (1-\alpha)Q_i(s, \overrightarrow{a}) + \alpha[r_i + \gamma \operatorname{Nash} Q_i(s')]$ 



• Choose action  $\overrightarrow{a} = (a_1, ..., a_n)$  from s using current Nash Q values  $(Q_1(s', \overrightarrow{a}), ..., Q_n(s', \overrightarrow{a}))$ 

$$\overrightarrow{a} = \begin{cases} \overrightarrow{a}_{NE} \text{ for } (Q_1(s', \overrightarrow{a}), ..., Q_n(s', \overrightarrow{a})) & \text{with prob } 1 - \epsilon \\ \text{random action} & \text{with prob } \epsilon \end{cases}$$

Any exploration policy can be used



• Take action  $\overrightarrow{a}'=(a_1',\dots,a_n')$  given s' and observe  $\overrightarrow{r}'=(r_1',\dots,r_n')$  and s''

## **Nash-Q learning: Convergence**

The convergence of this Nash Q is based on three important assumptions:

- **Assumption 1**: Every state  $s \in S$  and action  $a_k \in A_k$  for k = 1, ..., n, are visited infinitely often.
- Assumption 2: The learning rate  $\alpha_t$  satisfies the following conditions for all  $s, t, a_1, ..., a_n$ :
  - $0 \le \alpha_t(s, a_1, ..., a_n) < 1, \sum_{t=0}^{\infty} \alpha_t(s, a_1, ..., a_n) = \infty, \sum_{t=0}^{\infty} [\alpha_t(s, a_1, ..., a_n)]^2 < \infty$
  - $\alpha_t(s, a_1, ..., a_n) = 0$  if  $(s, a_1, ..., a_n) \neq (s_t, a_1, ..., a_n)$ , meaning that agent will only update the Q-values for the present state and actions
- Assumption 3: One of the following conditions holds during learning:
  - Condition 1: Every stage game  $(Q_1^t(s), ..., Q_n^t(s))$ , for all t and s, has a global optimal point, and agents' payoffs in this equilibrium are used to update their Q-functions
  - Condition 1: Every stage game  $(Q_1^t(s), ..., Q_n^t(s))$ , for all t and s, has a saddle point, and agents' payoffs in this equilibrium are used to update their Q-functions

## **Minmax-Q learning**

- The Minimax-Q algorithm was developed by Littman in 1994 when he adapted the value iteration method of Q-Learning from a single player to a two player zero sum game
- This is for a fully competitive game where players have opposite goals and reward functions (R1 = -R2).
  - ➤ Each agent tries to maximize its reward function while minimizing the opponent's.

## Minmax-Q learning

#### **Multi Agent Q-learning Template**

for t = 1: T

```
MultiQ(StochastiGame, f, \gamma, \alpha, T)

Inputs equilibrium selection function f

discounting factor \gamma

learning rate \alpha

total training time T

Outputs state — value functions V_i^*

action — value functions Q_i^*

Initialize s, a_1, ..., a_n and Q_1, ..., Q_n
```

```
    simulate actions  $\vec{a} = (a_1, ..., a_n)$ in state $s$
    observe rewards $r_1, ..., r_n$ and next state $s'$
    for $i = 1$ to $n$ (for each agent)

            (a) $\vec{V}_i(s') = f_i(Q_1(s', \vec{a}), ..., Q_n(s', \vec{a}))$
            (b) $Q_i(s, \vec{a}) = (1 - \alpha_i)Q_i(s, \vec{a}) + \alpha_i[r_i + \gamma V_i(s')]$

    agent choose actions $a'_1, ..., a'_n$
    $s = s', a_1 = a'_1, ..., a_n = a'_n$
```

6. adjust learning rate  $\alpha = (\alpha_1, ..., \alpha_n)$ 

### For agent i = 1:2

(a) 
$$V_i(s') = f_i(Q_1(s', a_i, a_{-i}), Q_2(s', a_i, a_{-i}),) = \max_{\pi_i(s', \cdot)} \min_{a_{-i} \in A_{-i}} \sum_{a_i \in A_i} Q_i(s', a_i, a_{-i}) \pi_i(s', a_i)$$
  

$$= \operatorname{Maxmin} Q_i(s')$$

(b) 
$$Q_i(s, a_i, a_{-i}) = (1 - \alpha)Q_i(s, a_i, a_{-i}) + \alpha[r_i + \gamma V_i(s')]$$
  
=  $(1 - \alpha)Q_i(s, a_i, a_{-i}) + \alpha[r_i + \gamma \operatorname{Maxmin} Q_i(s')]$ 

### Action selection strategy:

$$\pi_i(s',\cdot) = \underset{\pi_i(s',\cdot)}{\operatorname{argmax}} \min_{a_{-i} \in A_{-i}} \sum_{a_i \in A_i} Q_i(s', a_i, a_{-i}) \pi_i(s, a_i)$$

- Note that when computing the maxmin value, each agent can consider only its own action value function  $Q_i(s', a_i, a_{-i})$
- But, still each agent need to track the action taken by the other agent for updating

### For agent 1

(a) 
$$V_1(s') = f_1(Q_1(s', a_1, a_2), Q_2(s', a_1, a_2),) = \max_{\pi_1(s', \cdot)} \min_{a_2 \in A_2} \sum_{a_1 \in A_1} Q_1(s', a_1, a_2) \pi_1(s', a_1)$$
  
=  $\operatorname{Maxmin} Q_1(s')$ 

(b) 
$$Q_1(s, a) = (1 - \alpha)Q_1(s, a) + \alpha[r_1 + \gamma V_1(s')]$$
  
=  $(1 - \alpha)Q_1(s, a) + \alpha[r_1 + \gamma \operatorname{Maxmin} Q_1(s')]$ 

### For agent 2

(a) 
$$V_2(s') = f_1(Q_1(s', a_1, a_2), Q_2(s', a_1, a_2),) = \max_{\pi_2(s', \cdot)} \min_{a_1 \in A_1} \sum_{a_2 \in A_2} Q_2(s', a_1, a_2) \pi_2(s', a_2)$$
  
= Maxmin  $Q_2(s')$ 

(b) 
$$Q_2(s, a) = (1 - \alpha)Q_2(s, a) + \alpha[r_1 + \gamma V_2(s')]$$
  
=  $(1 - \alpha)Q_2(s, a) + \alpha[r_1 + \gamma \operatorname{Maxmin} Q_2(s')]$ 

• Because the property of a zero sum game,  $Q_2(s', a_1, a_2) = -Q_1(s', a_1, a_2)$ 

$$\max_{\pi_2(s',\cdot)} \min_{a_1 \in A_1} \sum_{a_2 \in A_2} Q_2(s', a_1, a_2) \pi_2(s', a_2) = \max_{\pi_2(s',\cdot)} \min_{a_1 \in A_1} \sum_{a_2 \in A_2} -Q_1(s', a_1, a_2) \pi_2(s', a_2)$$

$$= \min_{\pi_2(s',\cdot)} \max_{a_1 \in A_1} \sum_{a_2 \in A_2} Q_1(s', a_1, a_2) \pi_2(s', a_2) = \min_{\pi_2(s',\cdot)} \max_{a_1 \in A_1} \sum_{a_2 \in A_2} Q_1(s', a_1, a_2) \pi_2(s', a_2) = \min_{\pi_2(s',\cdot)} \max_{a_1 \in A_1} \sum_{a_2 \in A_2} Q_1(s', a_1, a_2) \pi_2(s', a_2)$$

• Therefore, player 2's Q-function can be updated using  $Q_1(s,a)$ 

(b) 
$$Q_2(s, a) = (1 - \alpha)Q_2(s, a) + \alpha[r_1 + \gamma V_2(s')]$$
  
=  $(1 - \alpha)Q_2(s, a) + \alpha[r_1 + \gamma \operatorname{Maxmin} Q_2(s')]$ 



This result concludes that in Minmax-Q learning, we can only keep updating Q-function for player 1,  $Q_1(s,a) \rightarrow Q(s,a)$ 

### Updating rule for agent 1

(a) 
$$V(s') = f_1(Q(s', a_1, a_2)) = \max_{\pi_1(s', \cdot)} \min_{a_2 \in A_2} \sum_{a_1 \in A_1} Q(s', a_1, a_2) \pi_1(s, a_1) = \operatorname{Maxmin} Q(s')$$

(b) 
$$Q(s, a) = (1 - \alpha)Q(s, a) + \alpha[r_1 + \gamma V(s')]$$
  
=  $(1 - \alpha)Q_1(s, a) + \alpha[r_1 + \gamma \operatorname{Maxmin} Q(s')]$ 

### Action selection rule for agent 1

$$\pi_1(s',\cdot) = \underset{\pi_1(s',\cdot)}{\operatorname{argmax}} \min_{a_2 \in A_2} \sum_{a_1 \in A_1} Q(s', a_1, a_2) \pi_1(s', a_1)$$

### Updating rule for agent 2

Agent 2's Q function  $Q_2(s, a) = -Q(s, a)$ 

### Action selection rule for agent 2

$$\pi_{2}(s',\cdot) = \underset{\pi_{2}(s',\cdot)}{\operatorname{argmax}} \min_{a_{1} \in A_{1}} \sum_{a_{2} \in A_{2}} -Q(s', a_{1}, a_{2})\pi_{2}(s, a_{2})$$

$$= \underset{\pi_{2}(s',\cdot)}{\operatorname{argmin}} \max_{a_{1} \in A_{1}} \sum_{a_{2} \in A_{2}} Q(s', a_{1}, a_{2})\pi_{2}(s, a_{2})$$

### Minmax-Q learning Algorithm

```
MultiQ(StochastiGame, f, \gamma, \alpha, T)

Inputs equilibrium selection function f

discounting factor \gamma

learning rate \alpha

total training time T

Outputs state — value functions V_i^*

action — value functions Q_i^*

Initialize s, a_1, ..., a_n and Q_1, ..., Q_n
```

```
for t=1:T

1. simulate actions a_1, ..., a_n in state s

2. observe rewards r_1, ..., r_n and next state s'

3. for i=1 to n (for each agent)

(a) V_i(s') = f_i(Q_1(s',a), ..., Q_n(s',a)) = \text{Minmax}Q_i(s')

(b) Q_i(s,a) = (1-\alpha_i)Q_i(s,a) + \alpha_i[r_i + \gamma V_i(s')]

4. agent choose actions a'_1, ..., a'_n

5. s=s', a_1=a'_1, ..., a_n=a'_n

6. adjust learning rate \alpha=(\alpha_1, ..., \alpha_n)
```



- This algorithm was developed by Littman (1998) and tries to fix some of the convergence problems of Nash-Q Learning
- The main concern lies within assumption 3, where every stage game needs to have either a global optimal point or a saddle point.
  - These restrictions cannot be guaranteed during learning.
- To alleviate this restriction, this new algorithm is built to always converge by changing the update rules depending on the opponent.
  - > The learning agent has to classify the other agent as "friend" or "foe".
  - $\triangleright$  Player i's friends are assumed to work together to maximize player i's value
  - $\triangleright$  Player i's foes are assumed to work together to minimize player i's value
- Thus, n-player general-sum stochastic game can be treated as a two-player zerosum game with an extended action set.

### **Multi Agent Q-learning Template**

for t = 1: T

```
MultiQ(StochastiGame, f, \gamma, \alpha, T)

Inputs equilibrium selection function f

discounting factor \gamma

learning rate \alpha

total training time T

Outputs state — value functions V_i^*

action — value functions Q_i^*

Initialize s, a_1, ..., a_n and Q_1, ..., Q_n
```

```
    simulate actions  $\vec{a} = (a_1, ..., a_n)$ in state $s$
    observe rewards $r_1, ..., r_n$ and next state $s'$
    for $i = 1$ to $n$ (for each agent)

            (a) $V_i(s') = f_i(Q_1(s', \vec{a}), ..., Q_n(s', \vec{a}))$
            (b) $Q_i(s, \vec{a}) = (1 - \alpha_i)Q_i(s, \vec{a}) + \alpha_i[r_i + \gamma V_i(s')]$

    agent choose actions $a'_1, ..., a'_n$
    $s = s', a_1 = a'_1, ..., a_n = a'_n$
```

6. adjust learning rate  $\alpha = (\alpha_1, ..., \alpha_n)$ 

### For agent *i*

$$(a) \ \textit{V}_{i}(s') = f_{i} \big( Q_{1}(s',\vec{a},\vec{o}), ..., Q_{i}(s',\vec{a},\vec{o}), ..., Q_{n}(s',\vec{a},\vec{o}) \big)$$
 
$$= \max_{\pi_{1}(s',\cdot),...,\pi_{n_{1}}(s',\cdot)} \min_{o_{1},...,o_{n_{2}} \in O_{1} \times \cdots \times O_{n_{2}}} \sum_{a_{i} \in A_{i}} Q_{i}(s',\vec{a},\vec{o}) \pi_{1}(s,a_{1}) \cdots \pi_{n_{1}}(s,a_{n_{1}})$$
 
$$\vec{a} = (a_{1},...,a_{n_{1}}) \text{: actions for the friends agents}$$
 
$$\vec{o} = (o_{1},...,o_{n_{2}}) \text{: actions for the foe agents}$$

(b) 
$$Q_i(s, \vec{a}, \vec{o}) = (1 - \alpha)Q_i(s, \vec{a}, \vec{o}) + \alpha[r_i + \gamma V_i(s')]$$
  
=  $(1 - \alpha)Q_i(s, \vec{a}, \vec{o}) + \alpha[r_i + \gamma FoF Q_i(s')]$ 

### For two player case (described in terms of player 1)

$$(a) \ \textit{V}_{1}(s') = f_{1}\big(Q_{1}(s', a_{1}, a_{2}), Q_{2}(s', a_{1}, a_{2})\big)$$
 
$$= \underbrace{\begin{pmatrix} \max_{a_{1} \in A_{1}, a_{2} \in A_{2}} Q_{1}(s', a_{1}, a_{2}) \\ \max_{a_{1} \in A_{1}, a_{2} \in A_{2}} \sum_{a_{i} \in A_{i}} Q_{1}(s', a_{1}, a_{2}) \pi_{1}(s, a_{1}) \end{pmatrix} }_{\text{ $m$ other player is foe:}}$$

(b) 
$$Q_1(s, a_1, a_2) = (1 - \alpha)Q_1(s, a_1, a_2) + \alpha[r_i + \gamma V_1(s')]$$
  
=  $(1 - \alpha)Q_1(s, a_1, a_2) + \alpha[r_i + \gamma FoFQ_1(s')]$ 

```
FoFQ(StochastiGame, f, \gamma, \alpha, T)

Inputs equilibrium selection function f = Friend or Foe discounting factor \gamma learning rate \alpha total training time T

Outputs state — value functions V_i^* action — value functions Q_i^*

Initialize s, a_1, ..., a_n and Q_1, ..., Q_n
```

## for t = 1:T

- 1. simulate actions  $\vec{a} = (a_1, ..., a_n)$  in state s
- 2. observe rewards  $r_1, ..., r_n$  and next state s'
- 3. for i = 1 to n (for each agent)

(a) 
$$V_i(s') = FoF(Q_1(s', \vec{a}), ..., Q_n(s', \vec{a}))$$

(b) 
$$Q_i(s, \vec{a}) = (1 - \alpha_i)Q_i(s, \vec{a}) + \alpha_i[r_i + \gamma V_i(s')]$$

- 4. agent choose actions  $a'_1, ..., a'_n$
- 5.  $s = s', a_1 = a'_1, ..., a_n = a'_n$
- 6. adjust learning rate  $\alpha = (\alpha_1, ..., \alpha_n)$

Correlated equilibrium

|      | Go         | Wait     |  |
|------|------------|----------|--|
| Go   | -100, -100 | 10, 0    |  |
| Wait | 0, 10      | -10, -10 |  |

Traffic game



- What is the natural solution here?
  - A traffic light: a fair randomizing device that tells one of the agents to go and the other to wait.
- Benefits:
  - the negative payoff outcomes are completely avoided
  - fairness is achieved
  - the sum of social welfare exceeds that of mixed Nash equilibrium

### **Definition**

A joint probability distribution  $\pi \in \Delta(A)$  is a correlated equilibrium of a finite game if and only if

$$\sum_{a_{-i} \in A_{-i}} \pi(a) u_i(a_i, a_{-i}) \ge \sum_{a_{-i} \in A_{-i}} \pi(a) u_i(a_i', a_{-i})$$

For all players i, all  $s_i \in S_i$ ,  $t_i \in S_i$  such that  $a_i' \in A_i$ 

### Theorem (Correlated equilibrium)

For every Nash equilibrium  $\sigma^*$  there exists a corresponding correlated equilibrium  $\sigma$ 

Correlated equilibrium is a strictly weaker notion than Nash

Correlated equilibrium

Nash equilibrium

### **Computing correlated equilibria: Example**

|   | L    | R   |
|---|------|-----|
| Т | 6, 6 | 2,8 |
| В | 8, 2 | 0,0 |

- Each correlated equilibrium corresponds to a probability distribution (a, b, c, d) over the possible pairs of actions,  $\{(T, L), (T, R), (B, L), (B, R)\}$ .
- The conditions needed to be correlated equilibrium, in addition to (a, b, c, d) being a probability distribution, are

$$(T \rightarrow B)$$
  $6a + 2b \ge 8a + 0b$ 

$$(B \rightarrow T)$$
  $8c + 0d \ge 6c + 2d$ 

$$(L \rightarrow R)$$
  $6a + 2c \ge 8a + 0c$ 

$$(R \rightarrow L)$$
  $8b + 0d \ge 6b + 2d$ 

where, for example, the equation for  $(T \to B)$  insures that the first player would not receive a higher expected payoff by using B whenever told to play T.

• The equations reduce to (a, b, c, d) is a probability vector such that  $a \le b, a \le c. d \le b$ , and  $d \le c.$ 

### **Multi Agent Q-learning Template**

for t = 1: T

```
MultiQ(StochastiGame, f, \gamma, \alpha, T)

Inputs equilibrium selection function f

discounting factor \gamma

learning rate \alpha

total training time T

Outputs state — value functions V_i^*

action — value functions Q_i^*

Initialize s, a_1, ..., a_n and Q_1, ..., Q_n
```

# simulate actions \$\vec{a} = (a\_1, ..., a\_n)\$ in state \$s\$ observe rewards \$r\_1, ..., r\_n\$ and next state \$s\$' for \$i = 1\$ to \$n\$ (for each agent) (a) \$V\_i(s') = f\_i(Q\_1(s', \vec{a}), ..., Q\_n(s', \vec{a}))\$ (b) \$Q\_i(s, \vec{a}) = (1 - \alpha\_i)Q\_i(s, \vec{a}) + \alpha\_i[r\_i + \gamma V\_i(s')]\$ agent choose actions \$a'\_1, ..., a'\_n\$ \$s = s', a\_1 = a'\_1, ..., a\_n = a'\_n\$

6. adjust learning rate  $\alpha = (\alpha_1, ..., \alpha_n)$ 

### For agent *i*

(a) 
$$V_i(s') = f_i(Q_1(s',\vec{a}),...,Q_i(s',\vec{a}),...,Q_n(s',\vec{a})) = \text{CE } Q_i(s')$$

Q values for agents  $i = 1:n$  Correlated equilibrium value

(b) 
$$Q_i(s, \vec{a}) = (1 - \alpha)Q_i(s, \vec{a}) + \alpha[r_i + \gamma V_i(s')]$$
  
=  $(1 - \alpha)Q_i(s, \vec{a}) + \alpha[r_i + \gamma CE Q_i(s')]$ 

### **Variants of Correlated-Q learning**

How to compute  $CE Q_i(s')$ ?

1. First compute the Correlated equilibrium  $\pi(s',\vec{a})$  by solving the following constrain satisfaction problem

$$\sum_{\vec{a} \in A \mid a_i \in \vec{a}} \pi(s, \vec{a}) Q_i(s', \vec{a}) \ge \sum_{\vec{a} \in A \mid a_i \in \vec{a}} \pi(s, \vec{a}) Q_i(s', a'_i, a_{-i}), \forall i \in N, \forall a_i, a'_i \in A_i$$

$$\pi(s', \vec{a}) > 0, \ \forall \vec{a} \in A$$

$$\sum_{\vec{a} \in A} \pi(s', \vec{a}) = 1$$

$$(3)$$

- Variables:  $\pi(s', \vec{a})$ , constants:  $\{Q_i(s', \vec{a}), ..., Q_i(s', \vec{a}), ..., Q_n(s', \vec{a})\}$
- 2. With the correlated equilibrium strategy  $\pi(s, \vec{a})$ , compute the correlation equilibrium value  $CE Q_i(s')$  for player i at state s as

$$CE Q_i(s') = \sum_{\vec{a} \in A} \pi(s', \vec{a}) Q_i(s', \vec{a})$$

### **Variants of Correlated-Q learning**

- The difficulty in learning equilibria in Markov games stems from the equilibrium selection problem:
  - ➤ How can multiple agents select among multiple equilibria?
- We introduce four variants of correlated-Q learning, which determine a unique Eq.
  - ➤ Resolves the equilibrium selection problem with its respective choice of objective function

### **Variants of Correlated-Q learning**

• Utilitarian equilibrium: an equilibrium which maximizes the sum of the expected payoffs of the players:

$$\sigma \in \operatorname*{argmax}_{\sigma \in CE} \sum_{i \in N} \sum_{\vec{a} \in A} \sigma(\vec{a}) Q_i(s, \vec{a})$$

Egalitarian equilibrium: an equilibrium which maximizes the minimum expected payoff of a player

$$\sigma \in \operatorname*{argmax} \min_{\sigma \in CE} \sum_{i \in N} \sum_{\vec{a} \in A} \sigma(\vec{a}) Q_i(s, \vec{a})$$

Republican equilibrium: an equilibrium which maximizes the maximum expected payoff of a player

$$\sigma \in \operatorname*{argmax} \max_{\sigma \in CE} \sum_{i \in N} \sum_{\vec{a} \in A} \sigma(\vec{a}) Q_i(s, \vec{a})$$

• Libertarian i equilibrium: an equilibrium which maximizes the maximum of each individual player i's rewards:  $\sigma = \prod_i \sigma^i$ , where

$$\sigma_i \in \operatorname*{argmax}_{\sigma \in CE} \sum_{\vec{a} \in A} \sigma(\vec{a}) Q_i(s, \vec{a})$$

for t = 1:T

```
FoFQ(StochastiGame, f, \gamma, \alpha, T)

Inputs equilibrium selection function f = Correlated eq. discounting factor \gamma learning rate \alpha total training time T

Outputs state — value functions V_i^* action — value functions Q_i^*

Initialize s, a_1, ..., a_n and Q_1, ..., Q_n
```

# simulate actions \$\vec{a} = (a\_1, ..., a\_n)\$ in state \$s\$ observe rewards \$r\_1, ..., r\_n\$ and next state \$s'\$ for \$i = 1\$ to \$n\$ (for each agent) (a) \$V\_i(s') = CE(Q\_1(s', \vec{a}), ..., Q\_n(s', \vec{a}))\$ (b) \$Q\_i(s, \vec{a}) = (1 - \alpha\_i)Q\_i(s, \vec{a}) + \alpha\_i[r\_i + \gamma V\_i(s')]\$ agent choose actions \$a'\_1, ..., a'\_n\$

5. s = s',  $a_1 = a'_1$ , ...,  $a_n = a'_n$ 

6. adjust learning rate  $\alpha = (\alpha_1, ..., \alpha_n)$ 

### **Recall Policy Hill Climbing (PHC) for Repeated Game**

PHC algorithm has been discussed as a way to solve a repeated matrix game

# Algorithm Policy hill – climbing (PHC) algorithm for agent i**Initialize**

learning rate  $\alpha \in (0,1], \delta \in (0,1]$ 

discunt factor  $\gamma \in (0,1)$ 

exploration rate 
$$\epsilon$$
 $Q_i(a_i) \leftarrow 0 \text{ and } \pi_i(a_i) \leftarrow \frac{1}{|A_i|} \ \forall a_i \in A_i$ 

### Repeat

- select an action  $a_i$  according to the straegy  $\pi(a_i)$  with some exploration rate  $\epsilon$
- observe the immediate reward  $r_i$
- update Q values:

$$Q_i(a_i) = (1 - \alpha)Q_i(a_i) + \alpha \left(r_i + \gamma \max_{a_i'} Q_i(a_i')\right)$$

Update the strategy  $\pi_i(a_i)$  and constrain it to a legal probability distribution

$$\pi_i(a_i) = \pi_i(a_i) + \begin{cases} \delta & if \ a_i = \max_{a_i'} Q_i(a_i') \\ -\frac{\delta}{|A_i| - 1} & otherwise \end{cases}$$

### Policy Hill Climbing (PHC) for Stochastic Game

We will expand the PHC algorithm so that it can be used for a general sum stochastic game

# Algorithm Policy hill – climbing (PHC) algorithm for agent i**Initialize**

learning rate  $\alpha \in (0,1], \delta \in (0,1]$ 

discunt factor  $\gamma \in (0,1)$ 

exploration rate 
$$\epsilon$$
 $Q_i(s, a_i) \leftarrow 0 \text{ and } \pi_i(s, a_i) \leftarrow \frac{1}{|A_i|} \ \forall a_i \in A_i$ 

### Repeat

- select an action  $a_i$  according to the straegy  $\pi(s, a_i)$  with some exploration rate  $\epsilon$
- observe the immediate reward  $r_i$
- update *Q* values:

$$Q_i(s, a_i) = (1 - \alpha)Q_i(s, a_i) + \alpha \left(r_i + \gamma \max_{a_i'} Q_i(s, a_i')\right)$$

Update the strategy  $\pi_i(s, a_i)$  and constrain it to a legal probability distribution

$$\pi_i(s, a_i) = \pi_i(s, a_i) + \begin{cases} \delta & \text{if } a_i = \max_{a_i'} Q_i(s, a_i') \\ -\frac{\delta}{|A_i| - 1} & \text{otherwise} \end{cases}$$

### The WoLF-Policy Hill Climbing (PHC) for Stochastic Game

- The Wolf-PHC algorithm is an extension of the PHC algorithm
  - ➤ Wolf(win-or-learn-fast) allows variable learning rate → faster convergence



$$Q_i(s, a_i) = (1 - \alpha)Q_i(s, a_i) + \alpha \left(r_i + \gamma \max_{a_i'} Q_i(s, a_i')\right)$$

update estimate of average policy  $\bar{\pi}(s, a')$ :

$$C(s) \leftarrow C(s) + 1$$

$$\forall a' \in A_i, \quad \bar{\pi}_i(s, a') \leftarrow \pi_i(s, a') + \frac{1}{C(s)} \left( \pi_i(s, a') - \bar{\pi}_i(s, a') \right)$$

(d) Update the strategy  $\pi_i(s, a_i)$  and constrain it to a legal probability distribution

**WoLF** 

$$\pi_i(s, a_i) = \pi_i(s, a_i) + \begin{cases} \delta & \text{if } a_i = \max_{a_i'} Q_i(s, a_i') \\ -\frac{\delta}{|A_i| - 1} & \text{otherwise} \end{cases}$$

where

$$\delta = \begin{cases} \delta_w & \text{if } \sum_{a_i} \pi_i(s, a_i) Q_i(s, a_i) > \sum_{a_i} \overline{\pi}_i(s, a_i) Q_i(s, a_i) \\ \delta_l & \text{otherwise} \end{cases}$$

### The Wolf-Policy Hill Climbing (PHC) for Stochastic Game

- This algorithm has two different learning rates
  - ✓ When the algorithm is wining
  - ✓ When the algorithm is losing
- The losing learning rate  $\delta_l$  is larger than wining learning rate  $\delta_w$ 
  - When an agent is losing, it learns faster than when it is winning
  - This causes the agent to adapt quickly to the changes in the strategies of the other agents when it is doing more poorly than expected
  - Learns cautiously when it is doing better than expected
  - Also gives the other agents the time to adapt to the agent's strategy changes
- The different between the average strategy and the current strategy is used as a criterion to decide when the algorithm wins or loses
- The Wolf-PHC algorithm exhibits the property of convergence as it makes the agent converge to one of its Nash equilibria (no proof, but empirical results)
- The algorithm is also a rational learning algorithm as it makes the agent converge to its optimal strategy when its opponent plays a stationary strategy

### **Comparison of MARL algorithms**

| Algorithm       | Applicability   | Rationality | Convergence | Required info                 |
|-----------------|-----------------|-------------|-------------|-------------------------------|
| Minmax-Q        | Zero-sum SGs    | NO          | YES         | Other agent's action, rewards |
| Nash-Q          | general sum SGs | NO          | YES         | Other agent's action, rewards |
| Friend-or-foe Q | general sum SGs | NO          | YES         | Other agent's action, rewards |
| Correlated-Q    | general sum SGs | NO          | YES         | Other agent's action, rewards |
| WoLF-PHC        | General sum SGs | YES         | NO          | Own action, reward            |

- The Wolf-PHC algorithm does not need to observe the other player's strategies and actions
- The Wolf-PHC does not require to solve Linear programming nor quadratic programming



# **Team game** ⊂ **Cooperative gameTeam game** ⊂ **Non-cooperativeTeam game**

|                                                                          |                                                                                                                      |                                                                                                                                                                 | <u> </u>                                                                                                                                                                          |                                                                                                |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Actor-Critic algorithm is used                                           | Counterfactual MAPG (Oxford)                                                                                         | Fully-decentralized MARL with networked agent (UIUC)                                                                                                            | MADDPG<br>(OpenAl)                                                                                                                                                                | Correalted-DDPG<br>(KAIST)                                                                     |
| <b>Reward function</b> Common reward $R^{i}(s, a) = R(s, a) \ \forall i$ |                                                                                                                      | Independent $R^{i}(s,a), i=1,,n$                                                                                                                                | Independent $R^{i}(s,a), i=1,,n$                                                                                                                                                  | Independent $R^{i}(s,a), i = 1,,n$                                                             |
| <b>Q</b> function                                                        | Common central Q $Q(s,a) = \sum_{t=0}^{T} \gamma^{t} r_{t}$                                                          | Common central Q $Q(s,a) = \sum_{t=0}^{T} \sum_{i=1}^{N} \gamma^{t} r_{t}^{i}$                                                                                  | Independent Q $Q^i(s,a) = \sum_{t=0}^T \gamma^t r_t^i,$ $i=1,\dots,n$                                                                                                             | Independent Q $Q^i(s,a) = \sum_{t=0}^T \gamma^t r_t^i$ , $i=1,,n$                              |
| Game type                                                                | Team game                                                                                                            | Cooperative game                                                                                                                                                | Non-cooperative game                                                                                                                                                              | Non-cooperative game                                                                           |
| Equilibrium concept                                                      | Optimum Q (single)                                                                                                   | Optimum Q (single)                                                                                                                                              | Nash Q                                                                                                                                                                            | Correlated Q                                                                                   |
| Policy $\pi(s,a) = \prod_{i=1}^{N} \pi^{i}(s,a^{i})$                     | Decentralized independent policy $\pi^i(o^i,a^i), o^i=h^i(s)$                                                        | Decentralized independent policy $\pi^i(s,a^i)$                                                                                                                 | Decentralized independent policy $\pi^i(o^i, a^i), o^i = h^i(s)$                                                                                                                  | Decentralized independent policy $\pi^i(s,a^i)$                                                |
| Consensus mechanism (how the mutual interaction is modeled?)             | Each agent Learn central $Q(s,a)$ and train $\pi^i (o^i,a^i)$ Automatically each agent will have the common $Q(s,a)$ | Each agent Learn central $Q(s,a)$ using its own local reward by sharing $Q(s,a)$ parameters and train $\pi^i(o^i,a^i)$ independently (distributed optimization) | $Q^{i}(s,a)$<br>= $Q^{i}(s,\pi^{1}(s),,\pi^{N}(s))$<br>Learn other player's<br>policy and use that to<br>estimate $Q^{i}(s,a)$<br>Imitation learning +<br>Best response principle | Use collective gradient or coordinated gradient  (coordination is considered through gradient) |
| Limitation                                                               |                                                                                                                      | Take long time to reach consensus in $Q(s,a)$                                                                                                                   | Separate training for $\pi$ and $Q$ in $Q^i(s, \pi^1(s),, \pi^N(s))$                                                                                                              |                                                                                                |