Readme

Welcome to look at my cnn-based models! I will reply your question at any time!

Email: Z.Han9@student.liverpool.ac.uk

The project structure

train.py
MNIST_data
output
lenet_weights.hdf5
alexnet_weights.hdf5
hannet_weights.hdf5
imagesearch
cnn
networks

- **0**, the necessary packages are keras, numpy, argparse, cv2, matplotlib, collections.
- **1**, Click "run" button in "train.py" will execute the default LeNet model.
- **2**, "train.py" is the console to control all kinds of networks. You can change networks type on the top of the code, just change the variable name. (The default is LeNet model)
- **3**, The uploaded version is not included save model file in "output" folder because the alexnet files are too big. There are two ways to download the whole program.
 - Dropbox:
 https://www.dropbox.com/sh/ezkn4xeemzdvin6/AAD2jXmOiP23vHyZPtsDENt6a?dl=
 0
 Then copy the file to output folder
 - 2. Github: https://github.com/Master5u/219ass2
- **4**, **How to use save model?** I recommend you use commend:

(On Mac\$:) python train.py --load-model 1 --weights output/lenet_weights.hdf5

when you change different networks, remember to change different save model "output/hannet_weights.hdf5" or "output/alexnet_weights.hdf5"

Statement: Some parts of project structure are learned from http://goo.gl/S6RQiS It is not plagiarism!

I am very grateful for Adrian Rosebrock who is the authors of this tutorials. And I also thank for professor Xiaowei Huang who always answers my questions quickly.