Lab 5: Numerical Solutions of Non- Linear Equations (Root finding methods)

1. Open Methods

- Newton Raphson Method
- Secant Method

Open Methods

Newton Raphson

To determine the value of f(x) = 0, Start from a single initial estimate, x_o , that is not too far from a root.

Repeat

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Set
$$x_n = x_{n+1}$$

Until $|f(x_{n+1})| < \text{tolerance level}$

Secant Method

Algorithm

To determine the value of f(x) = 0, given two values x_0 and x_1 that are near the root.

Repeat

$$x_2 = x_1 - f(x_1) * \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

Set
$$x_o = x_1$$

Else
$$x_1 = x_2$$

Until $|f(x_2)| < \text{tolerance level}$

LAB TASKS

1. The equation $x^2 - 10\cos x = 0$ has two solutions, ± 1.3793646 . Implement Newton's method in R to approximate the solutions to within error = 0 with the following values of x_0 .

a.
$$x_0 = -100$$

b.
$$x_0 = -50$$

c.
$$x_0 = -25$$

d.
$$x_0 = 25$$

e.
$$x_0 = 50$$

f.
$$x_0 = 100$$

Verify the results with the values given below:

$$f(x) = x^2 - 10\cos x$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$f'(x) = 2x + 10sinx$$

$$\varepsilon_a' = \left| x_{n+1}^{new} - x_{n+1}^{old} \right|$$

Iterations	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}	$arepsilon_a'$
0	-100	9991.3768	-194.93634	-48.7454385	
1	-48.7454385	2375.6105	-87.503753	-21.5967691	27.1486694
2	-21.5967691	475.65279	-47.035892	-11.4842196	10.11254952
3	-11.4842196	127.193	-14.138743	-2.48815834	8.996061228
4	-2.48815834	14.130939	-11.055485	-1.2099748	1.278183545
5	-1.2099748	-2.0663908	-11.776021	-1.38544925	0.175474457
6	-1.38544925	0.0765929	-12.599622	-1.37937027	0.006078983
7	-1.37937027	7.137E-05	-12.57608	-1.37936459	5.67528E-06
8	-1.379365	6.284833e-11	-1.257606e+01	-1.379365	3.623087e-10

9 -1.379365	-1.242965e-15	-1.257606e+01	-1.379365	0.000000e+00
-------------	---------------	---------------	-----------	--------------

A real root of given equation is -1.379365 with error = 0

2. Implement secant Method to determine a real root of $f(x) = 3x + sinx - e^x$. Using the tolerance value of 10^{-6} .