ME 599/699 Robot Modeling & Control

Motion Planning II

Spring 2020 Hasan Poonawala

Motion Planning Problem

Simplified Problem

Choose potential function $U(q) = \|q - q_g\|^2$

Level sets of U(q) are circles, gradients are perpendicular to level sets

Gradient steps generate a sequence of points

Clearly this solution is invalid. Need to add a term to handle obstacles

Our potential is the sum of the potential $U_{attr}(q)$ due to the goal and $U_{rep}(q)$ due to the obstacle

The negative gradient $-\nabla U_{attr}(q)$ pulls us to goal, $-\nabla U_{rep}(q)$ pushes us away from obstacle, their sum is the blue arrow.

Repeating this process after every step along the blue arrows generates a sequence.

Scaling $U_{attr}(q)$, which scales its gradient, pulls path closer to the obstacle.

Next step: convert sequence of nodes/configurations into a trajectory.

Full Trajectory

▶ PRM, RRT, Potential-functions etc generate a sequence of configurations/nodes; a path in a graph.

Full Trajectory

- ▶ PRM, RRT, Potential-functions etc generate a sequence of configurations/nodes; a path in a graph.
- ► To get a full trajectory, we need to use a local planner to convert an edge in the graph to a trajectory.

Full Trajectory

- ▶ PRM, RRT, Potential-functions etc generate a sequence of configurations/nodes; a path in a graph.
- ► To get a full trajectory, we need to use a local planner to convert an edge in the graph to a trajectory.
- Essentially, we will fit parametrized functions of time to pairs of points.

Let two nodes in the sequence by q_1 and q_2 , where we want the trajectory to pass through them at t_1 and t_2 ($> t_1$) respectively

Let two nodes in the sequence by q_1 and q_2 , where we want the trajectory to pass through them at t_1 and t_2 ($>t_1$) respectively

Linear interpolation in time provides a simply trajectory

$$q(t) = q_1 + \frac{t - t_1}{t_2 - t_1}(q_2 - q_1) = a_1t + a_0$$

where

$$a_0 = \frac{q_1t_2 - q_2t_1}{t_2 - t_1}, \quad a_1 = \frac{q_2 - q_1}{t_2 - t_1}.$$

This interpolation satisfies $q(t_1) = q_1$, $q(t_2) = q_2$

Let two nodes in the sequence by q_1 and q_2 , where we want the trajectory to pass through them at t_1 and t_2 ($>t_1$) respectively

Linear interpolation in time provides a simply trajectory

$$q(t) = q_1 + \frac{t - t_1}{t_2 - t_1}(q_2 - q_1) = a_1t + a_0$$

where

$$a_0 = \frac{q_1t_2 - q_2t_1}{t_2 - t_1}, \quad a_1 = \frac{q_2 - q_1}{t_2 - t_1}.$$

This interpolation satisfies $q(t_1) = q_1$, $q(t_2) = q_2$

For
$$t \in [t_1, t_2]$$
,

$$\dot{q}(t) = a_1 = \frac{q_2 - q_1}{t_2 - t_1}.$$

The velocity is constant during this time interval.

Take three configurations q_1 , q_2 , and q_3 . Let times be t_1 , t_2 , t_3 .

Take three configurations q_1 , q_2 , and q_3 . Let times be t_1 , t_2 , t_3 .

Use linear interpolation for q_1 and q_2 to get a function $q^a(t)$, and also for q_2 and q_3 to get $q^b(t)$.

We know that we will achieve $q^a(t_1)=q_1$, $q^a(t_2)=q_2=q^b(t_2)$, and $q^b(t_3)=q_3$

Take three configurations q_1 , q_2 , and q_3 . Let times be t_1 , t_2 , t_3 .

Use linear interpolation for q_1 and q_2 to get a function $q^a(t)$, and also for q_2 and q_3 to get $q^b(t)$.

We know that we will achieve $q^a(t_1)=q_1$, $q^a(t_2)=q_2=q^b(t_2)$, and $q^b(t_3)=q_3$

However, for $t \in [t_1, t_2]$,

$$\dot{q}^a(t) = \frac{q_2 - q_1}{t_2 - t_1},$$

and for $t \in [t_2, t_3]$,

$$\dot{q}^b(t) = \frac{q_3 - q_2}{t_3 - t_2}.$$

Take three configurations q_1 , q_2 , and q_3 . Let times be t_1 , t_2 , t_3 .

Use linear interpolation for q_1 and q_2 to get a function $q^a(t)$, and also for q_2 and q_3 to get $q^b(t)$.

We know that we will achieve $q^a(t_1)=q_1$, $q^a(t_2)=q_2=q^b(t_2)$, and $q^b(t_3)=q_3$

However, for $t \in [t_1, t_2]$,

$$\dot{q}^a(t) = \frac{q_2 - q_1}{t_2 - t_1},$$

and for $t \in [t_2, t_3]$,

$$\dot{q}^b(t) = \frac{q_3 - q_2}{t_3 - t_2}.$$

Generally, $\dot{q}^a(t_2) \neq \dot{q}^b(t_2)$. [Why is this bad?]

To make the velocity continuous at t_2 , maybe we should use quadratic functions for $q^a(t)$ and $q^b(t)$, and make sure that $\dot{q}^a(t_2) = \dot{q}^b(t_2)$.

To make the velocity continuous at t_2 , maybe we should use quadratic functions for $q^a(t)$ and $q^b(t)$, and make sure that $\dot{q}^a(t_2) = \dot{q}^b(t_2)$.

We can use higher order polynomials to make acceleration, jerk, snap, and so on continuous at each node.

To make the velocity continuous at t_2 , maybe we should use quadratic functions for $q^a(t)$ and $q^b(t)$, and make sure that $\dot{q}^a(t_2) = \dot{q}^b(t_2)$.

We can use higher order polynomials to make acceleration, jerk, snap, and so on continuous at each node.

We use all these polynomials to define q(t) over the time interval $[t_0, t_N]$ where there are N+1 nodes.

Other Approaches

Parabolic blends: assume we have to be stopped at node (sensor task/way-station task).
Divide time interval into three intervals: middle has a given velocity v_d, first and third represent smooth transition from 0 to v_d and v_d back to 0.

- Minimum-time parabolic blends: make the transition times $t_a t_1$ and $t_2 t_b$ as short as possible, and v_d as high as possible.
- ► B-Splines, Bezier Curves etc.

▶ Use graph search to find a path - CS approach

- ▶ Use graph search to find a path CS approach
- Challenge: converting continuous state space to graph (PRM, RRT, etc)

- ▶ Use graph search to find a path CS approach
- Challenge: converting continuous state space to graph (PRM, RRT, etc)
- ► Challenge: converting graph to continuous trajectory (Polynomials, parabolic, splines, etc)

- ▶ Use graph search to find a path CS approach
- Challenge: converting continuous state space to graph (PRM, RRT, etc)
- Challenge: converting graph to continuous trajectory (Polynomials, parabolic, splines, etc)
- Challenge: implementing continuous trajectory (feedback control & state estimation)