Machine Learning

CSCI 567 Spring 2021

Discussion: PCA

Date: Apr 2th, 2021

In this problem, we use proof by induction to show that the M-th principle component corresponds to the M-th eigenvector of X^TX sorted by the eigenvalue from largest to smallest. Here X is the centered data matrix and we denote the sorted eigenvalues as $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_d$. In the lecture, the results was proven for M=1. Now suppose the result holds for a value M, and you are going to show that it holds for M+1. Note that the M+1 principle component corresponds to the solution of the following optimization problem:

$$\max_{\boldsymbol{v}} \quad \boldsymbol{v}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{v}$$
s.t. $\|\boldsymbol{v}\|_2 = 1$ (2)

s.t.
$$\|\mathbf{v}\|_2 = 1$$
 (2)

$$\mathbf{v}^T \mathbf{v}_i = 0, i = 1, \dots, M \tag{3}$$

where v_i is the *i*-th principle component. Write down the Lagrangian of the optimization problem above, and show that the solution v_{M+1} is an eigenvector of X^TX . Then show that the quantity in (1) is maximized when the v_{M+1} is the eigenvector with eigenvalue λ_{M+1} .