Theoretical Results

Egg Beaters

<2015-05-26 Tue>

 $1 \quad \hbox{Intermediate points of fixed points compatible} \\ \text{words lie in } \mathbf{A}$

Daniel

2 Coordinates of intermediate points

Claim 2.1. Given a fixed word $\omega \in \mathbb{F}_2 \langle H, V \rangle$ and a compatible homotopy class α , the coordinates of fixed points of $\Phi_{\lambda}(\omega)$ are determined up to $O(1/\lambda)$

Proof. Assume ω starts with H^N . Due to our assumption that intermediate points lie in A, we know that

$$y+N\lambda(1-|x|)=[ML-1,ML+1]$$

therefore

$$1 - |x| \in \left[\frac{ML - 1 - y}{N\lambda}, \frac{ML + 1 - y}{N\lambda} \right]$$

or

$$1 - |x| = \frac{ML}{N\lambda} + O(\frac{1}{\lambda})$$

Same calculation shows this for words starting with V.

3 Actions

Claim 3.1. Given a fixed word $\omega \in \mathbb{F}_2 \langle H, V \rangle$ and a compatible homotopy class α , all the actions relative to the loop having (alternatingly) x = 0, y = 0 are determined up to O(1).

Proof. For each part of type H^N or V^N the action is

$$A = NF(x) - N\lambda x(1 - |x|)$$

Now, $F(x) = \lambda x (1 - \frac{|x|}{2})$ and therefore

$$\mathsf{A} = \lambda N x (1 - \frac{|x|}{2}) - \lambda N x + N \lambda |x| = N \lambda x \frac{|x|}{2}$$

For positive x we get:

$$\mathsf{A} = N\lambda \frac{x^2}{2} = \frac{N\lambda}{2} \left(1 - \frac{ML}{N\lambda} - O(\frac{1}{\lambda})\right)^2 = \frac{N\lambda}{2} - ML = -\frac{N\lambda}{2} + O(1)$$

For a general word, we have a sum of such terms, up to double counting the area at the corners. However, there is a fixed amount of corners depending on the word, and the area of each corner is bounded by 4.