Before we begin...

Q: Who are the stakeholders that are interested?

A: Imagine all of you are part of BCA, HDB.

Evaluating Effectiveness of Cool Coating on Outdoors Environment

LIM ZHENG WEI

LEAD DATA SCIENTIST FOR "COOL SINGAPORE"

Background

More population living in urban regions

■3% in 1800 vs 61% projected by 2030 (Hien & Ignatius, 2016)

Responsible for up to 70% of greenhouse emissions (Hoornweg, Freire, Lee, Bhada-Tata, & Yuen, 2011)

Vegetation removed

Impacts of UHI

The temperature is higher in over-developed areas

Increased demand for air conditioning

Existing Solutions

Trees and vegetation (Ballinas & Barradas, 2016)

"Cool" roofs and pavement (Alchapar, Correa, & Cantón, 2014)

Urban planning with UHI consideration (Maimaitiyiming, et al., 2014)

Research Gap, Objective, Scope

Research Gap

- 1. Experiments conducted in small scale
- 2. Different climate

Objective

Assess effectiveness of cool coating on urban thermal balance

Scope

Analyse surface temperatures on roofs, pavement and walls

Proposal of Methodology

A) Collection of Data

- 1) Hydrotransmitter humidity and temperature
- 2) Air velocity transmitter air velocity
- 3) Datalogger records
- 4) Pyranometer solar irradiance
- 5) Pyrgeometer radiation

B) Duration: 3 months

Time interval: 5 minutes

Control

With coating

Potential Challenges

1) Site to conduct experiment

2) Installation of equipments

Conclusion

- 1) Expected to succeed
- 2) Cut in energy consumption, saving cost

Future work: Use data to show correlation between cool coating and cost of energy consumption

Reference

Hoornweg, D. A., Freire, M., Lee, M. J., Bhada-Tata, P., & Yuen, B. (2011). *Cities and climate change: Responding to an urgent agenda*. Washington, D.C.: World Bank. doi:10.1596/978-0-8213-8493-0

Hien, W. N. (n.d.). A Study of Urban Heat Island in Singapore. Retrieved from http://www.sde.nus.edu.sg/rsh/SDE_rsh_highlights_B01.html

Ballinas, M., & Barradas, V. L. (2016). The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico City: A Simple Phenomenological Model. *Journal of Environment Quality,45*(1), 157. doi:10.2134/jeq2015.01.0056

Alchapar, N. L., Correa, E. N., & Cantón, M. A. (2014). Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones. *Energy and Buildings*, 69, 22-32. doi:10.1016/j.enbuild.2013.10.012

Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, Ü, . . . Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. *ISPRS Journal of Photogrammetry and Remote Sensing*,89, 59-66. doi:10.1016/j.isprsjprs.2013.12.010