Multiple Choice

1. What is the slope of an isocost line for a firm that faces w=28 and r=7, and has the production function $F(L,K) = L + \frac{K}{10}$ pos watter

2. What type of return to scales does the function $F(L,K) = L^{0.8} \cdot K^{0.3}$ feature?

A. Decreasing Lakb -> a+b? 1 >1: Increasing <1: Decreasing B. Constant **K** Increasing 0.810.3 > 1 = 1 : Constant D. Impossible to tell without a cost function

3. Currently, a firm with a cost function $C(Q) = \frac{1}{3}Q^2$ is producing 60 units. If the price they sell their good for is \$30, how would you describe their situation? MC=MP

X They are producing too much C. They are not producing enough $M = \frac{2}{3}Q \rightarrow \frac{2}{3} \cdot 60 = 40$ MC? MP B. They are profit maximizing

- D. Impossible to tell MD= 30
- 4. What are the average fixed costs for a firm with the cost function $C(Q) = \frac{1}{2}Q^3 + Q^2 + 3Q + 24$ that produces Q = 8?

Total Costs = VC + FC A. 13

B. 46

C. -3 AFC = $\frac{FC}{Q} = \frac{24}{Q} = \frac{24}{8} = 3$ **N**. 3

Short-Answer

5. For the production function F(L,K)=ln(L)+K, what are the cost minimizing L^* and K^* for the production of Q=375 when w=1 and r=1? Hint: ln(1)=0

MRTS =
$$\frac{MP_L}{MP_K} = \frac{1}{1} = \frac{1}{L} = \frac{1}{1} = \frac{w}{r} = Price Pation$$

Quantity Const.

$$375 = F(L_1 K) = In(L^2) + K$$

$$375 = In(1) + K \Rightarrow 375 = K^+$$

6. Imagine that a market that was in long-run equilibrium experiences a decrease in demand. What happens to the number of firms in the industry as it converges to its new long-run equilibrium and why? (2 sentences max.)

Long-Answer

- 7. Consider a firm with the cost function $C(Q) = \frac{1}{2}Q^2 + 3Q + 18$. This firm operates in a perfectly competitive market.
 - (a) What are marginal costs, average costs, average variable costs and average fixed costs of this firm?
 - (b) At what price will this firm make exactly zero profits?
 - (c) If the price is \$13, how much does the firm produce? What are their revenue, cost and profit?
 - (d) In the (Q, P) plane graph this firm's MC, AVC, AFC, and AC. Using a price of \$13, label the firm's quantity choice. Shade in the rectangle on the graph that corresponds to the firm's profits.
 - (e) Imagine there are 20 identical firms in this market. What is the short-run market supply curve? What is the market supply when the price is \$13?
 - (f) In the long-run, will firms enter or exit the industry? Why?

a.
$$mc = Q + 3$$
; $AC = \frac{1}{2}Q + 3 + \frac{19}{Q}$; $AVC = \frac{1}{2}Q + 3$
 $AFC = \frac{19}{Q}$

b.
$$\pi = 0$$
 when $P = \min(AC)$
 $\frac{\partial AC}{\partial Q} = \frac{1}{2} - \frac{18}{Q^2} = 0 \longrightarrow \frac{1}{2} = \frac{18}{Q^2} \longrightarrow Q^2 = 36 \longrightarrow Q^4 = 6$
 $P = \mu(Q^4) = \mu(Q^4) = 6 + 3 = 9$
 $P = \mu(Q^4) = \mu(Q^4) = 6 + 3 = 9$
 $P = \mu(Q^4) = \mu(Q^4) = 6 + 3 = 9$

C.
$$P = MC \rightarrow 13 = Q + 3 \rightarrow Q^{*} = 10$$

$$P(Q) = P \cdot Q = 13 \cdot 10 = 130$$

$$C(Q) = \frac{1}{2}(10)^{2} + 3(10) + 10 = 50 + 30 + 10 = 98$$

$$T(Q) = P(Q) - C(Q) = 130 - 98 = 32$$

Long-Answer

- 7. Consider a firm with the cost function $C(Q) = \frac{1}{2}Q^2 + 3Q + 18$. This firm operates in a perfectly competitive market.
 - (a) What are marginal costs, average costs, average variable costs and average fixed costs of this firm?
 - (b) At what price will this firm make exactly zero profits?
 - (c) If the price is \$13, how much does the firm produce? What are their revenue, cost and profit?
 - (d) In the (Q, P) plane graph this firm's MC, AVC, AFC, and AC. Using a price of \$13, label the firm's quantity choice. Shade in the rectangle on the graph that corresponds to the firm's profits.
 - (e) Imagine there are 20 identical firms in this market. What is the short-run market supply curve? What is the market supply when the price is \$13?
 - (f) In the long-run, will firms enter or exit the industry? Why?

Long-Answer

- 7. Consider a firm with the cost function $C(Q) = \frac{1}{2}Q^2 + 3Q + 18$. This firm operates in a perfectly competitive market.
 - (a) What are marginal costs, average costs, average variable costs and average fixed costs of this firm?
 - (b) At what price will this firm make exactly zero profits?
 - (c) If the price is \$13, how much does the firm produce? What are their revenue, cost and profit?
 - (d) In the (Q,P) plane graph this firm's MC, AVC, AFC, and AC. Using a price of \$13, label the firm's quantity choice. Shade in the rectangle on the graph that corresponds to the firm's profits.
 - (e) Imagine there are 20 identical firms in this market. What is the short-run market supply curve? What is the market supply when the price is \$13?
 - (f) In the long-run, will firms enter or exit the industry? Why?

e.
$$G^* = P - 3$$
 — $P = Q + 3$ — $P = MC$

may ket

 $Q_S = N \cdot Q^*$ firm

 $G_S = N \cdot Q^*$
 $G^* = 13 - 3 = 10$
 $Q_S = 20 \cdot 10 = 200$
 $Q_S = 20 \cdot 10 = 200$
 $Q_S = 100$
 $Q_S = 100$

f. T>0 → Firms enter → Qs + → P=min(AC)

Firms will enter blc firms are earning T>0

in the short-run.