

Generic Timer Module (GTM)

To manage a second global frequency CMU_GCLK_EN could be replaced by ECLK[1]_EN for CMU_CLK[x](x:0..7). Also the all-time enabled CMU_CLK8 could be replaced by ECLK[0]_EN.

Each of the external clocks dividers are enabled and disabled by setting the appropriate bit field **EN_ECLK[z]** in the register **CMU_CLK_EN**.

The clock frequencies $f_{CMU_ECLK[z]} = 1/T_{CMU_ECLK[z]}$ of the external clocks are controlled with the registers **CMU_ECLK_[z]_NUM** and **CMU_ECLK_[z]_DEN** as follows:

$T_{CMU_ECLK}[z] = (ECLK[z]_NUM/ECLK[z]_DEN) * T_{CLSO_CLK}$

and is implemented according the following algorithm

(Z:CMU_ECLK_[z]_NUM(23:0); N: CMU_ECLK_[z]_DEN(23:0); Z,N >0; Z>=N; CMU_ECLK[z]='0'):

- (1) Set remainder (*R*), operand1 (*OP1*) and operand2 (*OP2*) register during INIT-phase (with implicit conversion to signed): *R*=*Z*, *OP1*=*N*, *OP2*=*N*-*Z*;
- (2) After leaving INIT-phase (CMU_ECLK[z] has been enabled) the sign of remainder R for each CLSO_CLK cycle will be checked:
- (3) If R>0 keep updating remainder and keep CMU_ECLK[z]: R=R-OP1;
- (4) If R<0 update remainder and toggle CMU_ECLK[z]: R=R-OP2;

After at most (Z/N+1) subtractions (3) there will be a negative R and an active phase of the generated clock enable (for one cycle) will be triggered (4). The remainder R is a measure for the distance to a real Z/N clock and will be regarded for the next generated clock toggle phase. The new R value will be R=R+(Z-N). In the worst case the remainder R will sum up to an additional cycle in the generated clock toggle period after Z-cycles. In the other cases equally distributed additional cycles will be inserted for the generated clock toggle. If Z is an integer multiple of N no additional cycles will be included for the generated clock toggle at all. Note that for a better resource sharing all arithmetic has been reduced to subtractions and the initialization of the remainder R uses the complement of (Z-N).

The default value of the CMU_ECLK[z] output is low.

28.10.6 CMU Configuration Register Overview

Table 25 CMU Configuration Register Overview

Register Name	Description	see Page
CMU_CLK_EN	CMU clock enable	107
CMU_GCLK_NUM	CMU global clock control numerator	108
CMU_GCLK_DEN	CMU global clock control denominator	108
CMU_CLK_[z]_CTRL	CMU control for clock source z	109
CMU_ECLK_[z]_NUM	CMU external clock z control numerator	110
CMU_ECLK_[z]_DEN	CMU external clock z control denominator	110
CMU_FXCLK_CTRL	CMU control FXCLK sub-unit input clock	111
CMU_GLB_CTRL	CMU synchronizing ARU and clock source	112
CMU_CLK_CTRL	CMU control for clock source selection	113