Functions Calculus I

Wisnu Aribowo

President University, Cikarang

Week 2

Outline for the Day

- Concepts of Function
 - Definition
 - Domain of Functions
 - To Graph a Function
 - Odd and Even Functions
- Operations of Function
 - Algebraic Operations
 - Composite Functions
- Trigonometric Functions
 - Basic sin x and cos x function
 - The tan x function
 - Amplitudes and Periods
- 4 Exercise

Definition of Functions

Function is a rule of *correspondence* that assigns each object x in one set, called the **domain**, to a single value of f(x) from a second set. The set of all values so obtained is called the *range*.

Illustration

Figure: Visualization of Function as a Machine

Some Notes

- Not all "materials" can fit into any type of machine. So are functions, the collection of materials that can be put in some particular function, are called the **domain** of such functions.
- The output of a function machine is called the range of said function.
- Consistency: If two **identical** materials were put into two **identical** machines, the results will always be **identical**.

Example

Let $f: \mathbb{R} \to \mathbb{R}$ (is read as "f is a function from a real number to a real number" or "f is a real-to-real function" for short) with $f: x \mapsto 3x - 1$ (read as "f sends/maps/assigns x to 3x - 1", some other times it's going to be written as f(x) = 3x - 1).

- $f(1) = 3 \times 1 1 = 2$
- $f(-2) = 3 \times (-2) 1 = -7$
- f(a) = 3a 1

On Finding the (natural) Domains of a Function

Key point: **Exclude** the *problematic* numbers—if there aren't any, then the domain is **all Real numbers**.

Example: Find the natural domains of these functions:

$$f(x) = \frac{x+1}{x-1}$$

2
$$g(x) = 4x - \sqrt{x^2 - 4}$$

3
$$h(x) = \log(3x + 4)$$

Steps of sketching a simple function:

- 1 Plug in *some* values from the domain into the function.
- ② Plot the resulting points you have from step 1 into the cartesian coordinate as an ordered pair (x, f(x)). The horizontal axis (x-axis) and vertical axis (y-axis) will correspond to the domain (x value) and range (f(x) value) respectively.
- Onnect the dots to approximate the in-between values to make a smooth curve.

Example

Sketch the function $f(x) = x^2 - 3$.

Figure: Steps of Sketching Simple Functions

Special Function Graphs

Special Function 1: The Absolute Value Function

$$f(x) = |x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

Figure: The Graph of Absolute Function f(x) = |x|

Special Function Graphs

Special Function 2: The Floor Function

It's to state the biggest integer less than or equal to x.

$$f(x) = [x] = \begin{cases} 0 & 0 \le x < 1 \\ 1 & 1 \le x < 2 \\ 2 & 2 \le x < 3 \\ \dots \end{cases}$$

Special Function Graphs

Figure: The Graph of a floor function f(x) = [x]

On Odd and Even Functions

We can divide a function into two specific classes in regards of their **symmetry**.

- A function f is called an **even function** if it satisfies f(-x) = f(x) for all x in its domain.
- A function f is called an **odd function** if it satisfies f(-x) = -f(x) for all x in its domain.

These two types of functions can be distinguished easily by their graphs, for even functions are symmetrical to the **y-axis** while odd functions are symmetrical to **the origin point (0,0)**.

Example

Figure: Example of an Even Function

Figure: Example of an Odd Function

Keynote

Important note: A function can be **neither odd nor even**, so if the function is not even, it doesn't necessarily mean that the function is odd.

Figure: The function $g(x) = \frac{2}{x-1}$ is neither odd nor even

Algebraic Operations of Functions

Just like numbers, we can also perform some basic algebraic operations on functions. Let $f,g:\mathbb{R}\to\mathbb{R}$, with D_f and D_g being the domains of f and g respectively

•
$$(f+g)(x) = f(x) + g(x)$$
 with domain $= D_f \cap D_g$

•
$$(f-g)(x) = f(x) - g(x)$$
 with domain $= D_f \cap D_g$

•
$$(fg)(x) = f(x) \times g(x)$$
 with domain $= D_f \cap D_g$

•
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 with domain $= (D_f \cap D_g) - \{x : g(x) \neq 0\}$

Composition of Functions

Figure: Illustration of Composite Functions

Composition of Functions

Let $f, g : \mathbb{R} \to \mathbb{R}$ and Range of $f \subseteq \mathsf{Domain}$ of g, then:

$$g\circ f(x)=g\left(f(x)\right)$$

Example: If f(x) = x - 3 and $g(x) = x^2 + 2$, then we can formulate the composite function $g \circ f(x)$ as

$$g \circ f(x) = g(f(x)) = g(x-3) = (x-3)^2 + 2 = x^2 - 6x + 11$$

Basic $\sin x$ and $\cos x$ function

The values of $\sin x$ and $\cos x$ on some special angles

t	sin t	cos t
0	0	1
$\pi/6$	1/2	$\sqrt{3}/2$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$
$\pi/3$	$\sqrt{3}/2$	1/2
$\pi/2$	1	0
$2\pi/3$	$\sqrt{3/2}$	-1/2
$3\pi/4$	$\sqrt{2}/2$	$-\sqrt{2}/2$
$5\pi/6$	1/2	$-\sqrt{3}/2$
π	0	-1

Figure: Trig values for special angles

Graph of $y = \sin x$ and $y = \cos x$

Figure: The basic graph of $\sin x$ and $\cos x$

Some Key Takeaways

- **①** The domain for $\sin x$ and $\cos x$ functions are all real numbers (\mathbb{R}) .
- ② The range for $\sin x$ and $\cos x$ functions are $-1 \le y \le 1$.
- **3** Both graph repeat itself after every 2π , this value is called the **period** of each graph.
- **1** The graph $\sin x$ is symmetrical by the origin while $\cos x$ is symmetrical by the y-axis. Hence, we know that $\sin x$ is odd while $\cos x$ is even.
- **5** The two graphs are practically similar, you can obtain $\cos x$ by translating $\sin x$ by $\pi/2$ units to the **left**.

The graph $y = \tan x$

Since we know that

$$\tan x = \frac{\sin x}{\cos x},$$

you can obtain the values for $\tan x$ in special angles by straight division. The graph will look like this:

Figure: The graph of $y = \tan x$

On Amplitudes and Periods

- Amplitudes of a trigonometric functions indicates the maximum deviation of such function from the baseline (or x-axis). The amplitude of a normal sin x and cos x function is 1.
- **Periods** of a trigonometric functions indicates **how long it takes** for such function **to repeat itself**. The period of a normal $\sin x$ and $\cos x$ function is 2π .

The functions $y = A \sin Bx$ and $y = A \cos Bx$

- **1** The functions $y = A \sin Bx$ and $y = A \cos Bx$ will be similar to its *parent function* of $y = \sin x$ and $y = \cos x$ respectively.
- ② The functions $y = A \sin Bx$ and $y = A \cos Bx$ have an amplitude of A and a period of $\frac{2\pi}{B}$.
- The key component of each graph (axes intercept(s), maximum/minimum value, etc) change slightly with regards to their amplitude and period.

Some Examples

For the function $y=\sin 2\pi t$, the amplitude is 1 while the period is $\frac{2\pi}{B}=\frac{2\pi}{2\pi}=1$. Hence,

Figure: The graph of $y = \sin 2\pi t$

Some Examples

For the function $y=2\cos 4x$, the amplitude is 2 while the period is $\frac{2\pi}{B}=\frac{2\pi}{4}=\frac{\pi}{2}$. Hence,

Figure: The graph of $y = 2\cos 4t$

Some Exercise

- Exercise 0.5: Problem 1, 4, 11, 13, 15, 19, 21, 25, 27, 31, 33, 35, 37
- Exercise 0.6: Problem 1, 4, 5, 11-14, 33
- Exercise 0.7: Problem 9, 10, 14ab, 16, 17