Lecture 30: Two-Dimensional Heat Equations

Rajen Kumar Sinha

Department of Mathematics
IIT Guwahati

Let
$$R : \{(x,y) \mid 0 < x < a, \ 0 < y < b\} \subset \mathbb{R}^2$$
, and $Q = R \times (0,T]$.

Consider the following model equation heat equation:

$$U_t = U_{xx} + U_{yy}$$
 in Q

IC:
$$U(x, y, 0) = f(x, y), 0 \le x \le a, 0 \le y \le b,$$

BCs:
$$U(0, y, t) = g_1(y, t), U(a, y, t) = g_2(y, t), 0 < y < b, t > 0,$$

$$U(x,0,t) = g_3(x,t), \ U(x,b,t) = g_4(x,t), \ 0 < x < a, \ t > 0.$$

Introduce the mesh parameters Δx , Δy and Δt along x, y and t directions, respectively such that

$$x_i = i\Delta x, i = 0, 1, 2, ..., M$$
 with $M\Delta x = a,$
 $y_j = j\Delta y, j = 0, 1, 2, ..., N$ with $N\Delta y = b,$
 $t_n = n\Delta t, n = 0, 1, 2, ..., J$ with $J\Delta t = T$.

Denote $U(x_i, y_j, t_n) = U(i\Delta x, j\Delta y, n\Delta t) = U_{i,j}^n$.

Define the following central difference operator:

$$\delta_{t}\phi_{i,j}^{n} = \phi_{i,j}^{n+\frac{1}{2}} - \phi_{i,j}^{n-\frac{1}{2}}
\delta_{x}\phi_{i,j}^{n} = \phi_{i+\frac{1}{2},j}^{n} - \phi_{i-\frac{1}{2},j}^{n}
\delta_{y}\phi_{i,j}^{n} = \phi_{i,j+\frac{1}{2}}^{n} - \phi_{i,j-\frac{1}{2}}^{n}.$$

Explicit scheme: Approximate the heat equation $U_t = U_{xx} + U_{yy}$ at the grid point $(i\Delta x, j\Delta y, n\Delta t)$ using FTCS (forward-time and central-space) scheme to have

$$(U_{t})_{i,j}^{n} \approx \frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} = \frac{1}{\Delta t} \delta_{t} u_{i,j}^{n+\frac{1}{2}}$$

$$(U_{xx})_{i,j}^{n} \approx \frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{(\Delta x)^{2}} = \frac{1}{(\Delta x)^{2}} \delta_{x}^{2} u_{i,j}^{n}$$

$$(U_{yy})_{i,j}^{n} \approx \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{(\Delta y)^{2}} = \frac{1}{(\Delta y)^{2}} \delta_{y}^{2} u_{i,j}^{n}$$

$$\frac{1}{\Delta t} \delta_{t} u_{i,j}^{n+\frac{1}{2}} = \frac{1}{(\Delta x)^{2}} \delta_{x}^{2} u_{i,j}^{n} + \frac{1}{(\Delta y)^{2}} \delta_{y}^{2} u_{i,j}^{n}.$$

$$\implies u_{i,j}^{n+1} = u_{i,j}^{n} + \Delta t \left(\frac{1}{(\Delta x)^{2}} \delta_{x}^{2} + \frac{1}{(\Delta y)^{2}} \delta_{y}^{2} \right) u_{i,j}^{n}. \tag{1}$$

Remarks.

- It is an explicit scheme
- T.E = $O(\Delta t) + O((\Delta x)^2) + O((\Delta y)^2)$
- This scheme is conditionally stable. The condition for stability is

$$\Delta t \left(\frac{1}{(\Delta x)^2} + \frac{1}{(\Delta y)^2} \right) \leq \frac{1}{2}.$$

In particular, for $\Delta x = \Delta y = h$, the scheme (1) becomes

$$u_{i,j}^{n+1} = u_{i,j}^{n} + \frac{\Delta t}{h^{2}} \left(\delta_{x}^{2} u_{i,j}^{n} + \delta_{y}^{2} u_{i,j}^{n} \right)$$
$$= u_{i,j}^{n} + r \left(\delta_{x}^{2} + \delta_{y}^{2} \right) u_{i,j}^{n}, \quad r = \frac{\Delta t}{h^{2}}.$$

In this case, the stabilty criteria reads

$$r = \frac{\Delta t}{h^2} \le \frac{1}{4}.$$

Crank-Nicolson Scheme: Apply CTCS (central-time and central-space) schemes at the mesh point $(x_i, y_j, t_{n+1/2})$ to obtain

$$(U_t)_{i,j}^{n+\frac{1}{2}} \approx \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t}$$

$$(U_{xx})_{i,j}^{n+\frac{1}{2}} \approx \frac{1}{2(\Delta x)^2} \, \delta_x^2 (u_{i,j}^{n+1} + u_{i,j}^n)$$

$$(U_{yy})_{i,j}^{n+\frac{1}{2}} \approx \frac{1}{2(\Delta y)^2} \, \delta_y^2 (u_{i,j}^{n+1} + u_{i,j}^n)$$

With $\Delta x = \Delta y = h$, we have

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} = \frac{1}{2h^{2}} \left[\delta_{x}^{2} \left(u_{i,j}^{n+1} + u_{i,j}^{n} \right) + \delta_{y}^{2} \left(u_{i,j}^{n+1} + u_{i,j}^{n} \right) \right]$$

$$\implies u_{i,j}^{n+1} - u_{i,j}^{n} = \frac{r}{2} \left[\left(\delta_{x}^{2} + \delta_{y}^{2} \right) u_{i,j}^{n} + \left(\delta_{x}^{2} + \delta_{y}^{2} \right) u_{i,j}^{n+1} \right], \quad r = \frac{k}{h^{2}}$$

$$\implies \left[1 - \frac{r}{2} \left(\delta_{x}^{2} + \delta_{y}^{2} \right) \right] u_{i,j}^{n+1} = \left[1 + \frac{r}{2} \left(\delta_{x}^{2} + \delta_{y}^{2} \right) \right] u_{i,j}^{n}.$$

Remarks.

- It is an implicit scheme which is unconditionally stable.
- At each time level, we need to solve a linear system involving $(N-1) \times (N-1)$ unknowns.
- The local T.E. = $O(h^2) + O(k^2)$. $(\Delta t = k, \Delta x = \Delta y = h)$

Aternating Direction Implicit (ADI) Scheme: (Due to Peaceman and Rachford)

In this method, the computations from n^{th} time-level to $(n+1)^{th}$ time-level proceed as follows.

• **Step 1:** In the first step, we advance from n^{th} level to $(n + \frac{1}{2})^{th}$ level by approximating the term $\frac{\partial^2 U}{\partial x^2}$ by an implicit scheme, and for the term $\frac{\partial^2 U}{\partial y^2}$ use an explicit scheme.

With $\Delta x = \Delta y = h$ and $r = \frac{\Delta t}{h^2}$, we have

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n}}{\frac{\Delta t}{2}} = \frac{1}{h^{2}} \left[\delta_{x}^{2} u_{i,j}^{n+\frac{1}{2}} + \delta_{y}^{2} u_{i,j}^{n} \right]
\Longrightarrow \left(1 - \frac{r}{2} \delta_{x}^{2} \right) u_{i,j}^{n+\frac{1}{2}} = \left(1 + \frac{r}{2} \delta_{y}^{2} \right) u_{i,j}^{n}. \tag{2}$$

• Step 2: While advancing from $(n+\frac{1}{2})^{th}$ level to $(n+1)^{th}$ level, approximate $\frac{\partial^2 U}{\partial x^2}$ by an explicit scheme, and use an implicit scheme for the term $\frac{\partial^2 U}{\partial y^2}$. In this case, we get

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\frac{\Delta t}{2}} = \frac{1}{h^2} \left[\delta_x^2 u_{i,j}^{n+\frac{1}{2}} + \delta_y^2 u_{i,j}^{n+1} \right]
\Longrightarrow \left(1 - \frac{r}{2} \delta_y^2 \right) u_{i,j}^{n+1} = \left(1 + \frac{r}{2} \delta_x^2 \right) u_{i,j}^{n+\frac{1}{2}}.$$
(3)

The intermediate boundary values for $u_{i,j}^{n+\frac{1}{2}}$ can be obtained from (2) and (3) as follows:

$$u_{i,j}^{n+\frac{1}{2}} = \frac{1}{2} \left[\left(1 + \frac{r}{2} \delta_y^2 \right) u_{i,j}^n + \left(1 - \frac{r}{2} \delta_y^2 \right) u_{i,j}^{n+1} \right]$$

Remark:

- ADI scheme is unconditionally stable. Unlike Crank-Nicolson scheme, in this case we solve a linear system involving only N-1 unknowns.
- The local T.E. = $O(h^2) + O(k^2)$.