Customer Clustering Report

The report is of the clustering analysis performed on the customer dataset using the K-Means clustering algorithm. Below is a detailed summary of the clustering process and its outcomes.

1. Number of Clusters Formed

- After testing the K-Means clustering algorithm with different numbers of clusters (from 2 to 10), the optimal number of clusters was determined to be **2**.
- This was based on the **Davies-Bouldin Index** (DB Index), a metric used to evaluate clustering quality. Lower DB Index values indicate tighter and well-separated clusters, signifying better clustering.

2. Davies-Bouldin Index

• The Davies-Bouldin Index evaluates the compactness and separation of clusters. It calculates the average similarity ratio between each cluster and the one most similar to it.

Findings:

- The lowest DB Index value, 0.627, was observed for 2 clusters, making it the optimal choice.
- For clusters greater than 2, the DB Index increased, indicating a decline in clustering quality.
- DB Index Scores for Different Cluster Counts

Number of Clusters	Davies-Bouldin Index	
2	0.627	
3	0.709	
4	0.721	
5	0.777	
6	0.823	
7	0.878	
8	0.943	
9	0.881	
10	0.814	

• Interpretation:

- As the number of clusters increases beyond 2, the clustering quality deteriorates (higher DB Index).
- This trend suggests that adding more clusters introduces overlap between clusters and reduces compactness.

3. Customer Features Used

- The clustering was performed using the following customer-specific features:
 - o **Total Spend**: Total amount spent by the customer.
 - o **Quantity Purchased:** Total number of items purchased by the customer.
- These features were extracted and aggregated from the transaction dataset.
- Sample of Aggregated Features

CustomerID	TotalSpend	Quantity
C0001	3354.52	12
C0002	1862.74	10
C0003	2725.38	14
C0004	5354.88	23
C0005	2034.24	7

4. Visualization of Clusters

A scatter plot was created to visualize the clustering results:

Axes:

o X-axis: Total Spend, Y-axis: Quantity Purchased

• Clusters:

- Each point represents a customer, with its color indicating the assigned cluster.
- Cluster 0 (High Spend, High Quantity) and Cluster 1 (Moderate Spend, Moderate Quantity) are visually distinct.

Interpretation of the Scatter Plot:

 Customers in Cluster 0 are concentrated in the top-right region, reflecting high spenders. Customers in Cluster 1 are distributed in the mid-range, reflecting moderate spending and purchasing behavior.

5. Conclusion and Insights

- Optimal Number of Clusters: 2 clusters.
- Clustering Quality: The low Davies-Bouldin Index (0.627) indicates well-defined and separated clusters. Increasing the number of clusters beyond 2 resulted in overlapping and less-compact clusters.
- Business Implications:
 - Cluster 0 (High Value Customers): Target with premium services, loyalty programs, and exclusive offers to maximize revenue.
 - Cluster 1 (Moderate Value Customers): Focus on promotional campaigns or discounts to increase spending and engagement.