3. Zadania do wykładu Analiza IB, R. Szwarc

- 1. Sprawdzić, które z podanych warunków są równoważne zbieżności ciągu $\{a_n\}$ do liczby a. Symbol \forall oznacza "dla każdego(-ej)", natomiast symbol \exists oznacza "istnieje".
 - (a) $\forall (n \in \mathbb{N}) \exists (N \in \mathbb{N}) \forall (m \in \mathbb{N}) \{m > N \Rightarrow |a_m a| < \frac{1}{n}\}$
 - (b) $\exists (N \in \mathbb{N}) \forall (\varepsilon > 0) \forall (n \in \mathbb{N}) \{n > N \Rightarrow |a_n a| < \varepsilon\}$
 - (c) $\exists (N \in \mathbb{N}) \forall (n \in \mathbb{N}) \{n > N \Rightarrow |a_n a| < \frac{1}{N}\}$
 - (d) $\forall (N \in \mathbb{N}) \forall (n \in \mathbb{N}) \{n > N \Rightarrow |a_n a| < \frac{1}{N}\}$
 - (e) $\forall (n \in \mathbb{N}) \exists (N \in \mathbb{N}) \forall (m \in \mathbb{N}) \{m > 2^N \Rightarrow |a_m a| < \frac{1}{2^n}\}$
- 2. Obliczyć granice ciągów, korzystając np. z twierdzenia o trzech ciągach.

$$\frac{\sqrt[n]{2^n + 5^n}}{\sqrt[n]{2^n + 5^n}} \qquad \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \qquad \frac{\log_2(n+1)}{\log_3(n+1)}$$

$$\frac{n^3 - 2n^2 - 3}{n - 4n^2} \qquad \left(1 + \frac{1}{n}\right)^{n^2} \qquad \left(1 + \frac{1}{n^2}\right)^n \qquad n^{\frac{1}{\sqrt{n}}}$$

Wskazówka: Np. korzystając ze wzoru dwumianowego Newtona można pokazać, że wyrazy przedostatniego ciągu są mniejsze niż 1 + (2/n). Albo pokazać, że ciąg $(1 + (1/k))^k$ jest ograniczony np. przez 3 i podstawić $k = n^2$.

3. Zbadać zbieżność ciągów korzystając np. z twierdzenia o ograniczonym ciągu monotonicznym lub z twierdzenia o trzech ciągach.

$$\frac{10}{1} \cdot \frac{11}{3} \cdot \dots \cdot \frac{n+9}{2n-1} \qquad \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \dots \left(1 - \frac{1}{2^n}\right)$$
$$\left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{4}\right) \dots \left(1 + \frac{1}{2^n}\right) \qquad x_1 = 2, \ x_{n+1} = \frac{x_n}{1 + x_n}.$$

Wskazówka: Pierwszy ciąg jest malejący od pewnego miejsca lub jego wyrazy są mniejsze od np. $c(20/21)^n$. Zauważyć, że iloczyn wyrazów drugiego i trzeciego ciągu jest mniejszy niż 1. Następnie pokazać, że drugi ciąg nie jest zbieżny do zera, np. z korzystając z nierówności $1-2^{-n} \ge \xi_n/\xi_{n-1}$, dla $n \ge 3$ oraz $\xi_n = 1 + 2/(n-1)$.

- **4.** Ciąg $\{a_n\}$ jest ograniczony a ciąg $\{b_n\}$ jest rozbieżny do $+\infty$. Pokazać, że ciąg $\{a_n+b_n\}$ jest rozbieżny do $+\infty$. Jeśli dodatkowo ciąg $\{a_n\}$ ma wyrazy dodatnie, to czy ciąg $\{a_nb_n\}$ musi być rozbieżny do $+\infty$?
- **5.** Sprawdzić, które z podanych warunków są równoważne warunkowi Cauchy'ego dla ciągu $\{a_n\}$.
 - (a) $\forall (k \in \mathbb{N}) \exists (N \in \mathbb{N}) \forall (n, m \in \mathbb{N}) \{n > m > N \Rightarrow |a_m a_n| < \frac{1}{k}\}$
 - (b) $\forall (\varepsilon > 0) \exists N > 0 \forall (n, m \in \mathbb{N}) \{n > N, m > N^2 \Rightarrow |a_n a_m| < \varepsilon \}$
 - (c) $\forall (k \in \mathbb{N}) \exists (N \in \mathbb{N}) \forall (m, n \in \mathbb{N}) \ \{m > N, n \leqslant N \Rightarrow |a_m a_n| < \frac{1}{2k} \}$
- 6. Sprawdzić, czy podane ciągi spełniają warunek Cauchy'ego.

$$\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \qquad \frac{\arctan 1}{3} + \frac{\arctan 2}{3^2} + \dots + \frac{\arctan n}{3^n}
\frac{1}{2^2} + \frac{2}{3^2} + \dots + \frac{n}{(n+1)^2} \qquad x_1 = 0, \ x_{n+1} = \frac{3}{x_n + 2}.$$

Wskazówki: $1/n^2 \le 1/(n-1) - 1/n$. Dla ostatniego ciągu pokazać, że $|x_{n+1} - x_{m+1}| \le (3/4)|x_n - x_m|$.

- 7. Wiadomo, że ciąg b_n jest zbieżny. Czy ciąg $c_n = n(b_n b_{n-1})$ może być rozbieżny do $+\infty$?
- 8. Pokazać, że jeśli ciąg x_n jest zbieżny, to także ciąg średnich arytmetycznych $\xi_n = (x_1 + x_2 + \dots + x_n)/n$ jest zbieżny i posiada tę samą granicę.
- 9. Ciąg x_n jest określony następująco : $0 < x_1 < 1$, $x_n = x_{n-1}/2$ dla parzystych n, oraz $x_n = (1+x_{n-1})/2$ dla nieparzystych n. Jakie punkty skupienia ma ten ciąg ? Wskazówka: Obliczyć x_{2n} oraz x_{2n+1} .
- 10. Czy ciąg $\sin n$ jest zbieżny? * Czy zero jest punktem skupienia tego ciągu? ** Czy zero jest punktem skupienia ciągu $\sqrt{n}\sin n$?
- *11. Ciąg a_n ma własność $a_n < (a_{n-1} + a_{n+1})/2$ dla $n \ge 2$. Pokazać, że zachodzi jedna z trzech możliwości:
 - (a) a_n jest zbieżny
 - (b) $a_n \longrightarrow +\infty$
 - (c) $a_n \longrightarrow -\infty$
- *12. Ciąg x_n spełnia warunek $0 \le x_{n+m} \le x_n + x_m$. Pokazać, że

$$\lim_{n \to \infty} \frac{x_n}{n} = \inf_n \frac{x_n}{n}.$$

*13. Znaleźć granicę iloczynów

$$\frac{3}{2} \cdot \frac{5}{4} \cdot \frac{17}{16} \cdot \dots \cdot \frac{2^{2^n} + 1}{2^{2^n}}.$$

- *14. Obliczyć granicę $\lim_{n\to\infty} n \sin(2\pi e n!)$.
- *15. (zadanie dodatkowe do pierwszej listy) Niech x_n oznacza pierwszą od lewej cyfrę rozwinięcia dziesiętnego liczby 2^n . Czy liczba $0, x_1x_2x_3...$ jest wymierna?