

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

JUNE/JUNIE 2022

PHYSICAL SCIENCES: CHEMISTRY P2
MARKING GUIDELINE/
FISIESE WETENSKAPPE: CHEMIE V2
NASIENRIGLYN

MARKS/PUNTE: 150

This marking guideline consists of 13 pages./ Hierdie nasienriglyn bestaan uit 13 bladsye.

(2) [20]

QUESTION/VRAAG 1

1.10 D ✓ ✓

1.1	A✓✓	(2)
1.2	B√✓	(2)
1.3	A✓✓	(2)
1.4	C✓✓	(2)
1.5	B✓✓	(2)
1.6	D✓✓	(2)
1.7	B✓✓	(2)
1.8	A 🗸	(2)
1.9	B√√	(2)

(2)

QUESTION/VRAAG 2

2.1.2 Haloalkane ✓ (1)

2.2.2 D ✓ (1)

- 2.3 2.3.1 Compound that contains <u>carbon and hydrogen atoms only</u>. ✓ ✓ (2 or 0) Verbinding wat <u>slegs koolstof- en waterstof-atome bevat</u>. (2 of 0) (2)
 - 2.3.2 UNSATURATED ✓ Contains triple bond ✓/multiple bonds (between the C-atoms in die hydrocarbon chain)

 ONVERSADIG Bevat 'n drievoudige binding/ meervoudige bindings (tussen C-atome in die koolwaterstofketting) (2)
 - 2.3.3 6-ethyl ✓-2-methyl ✓oct-4-yne ✓ / 6-ethyl-2-methyl-4-octyne 6-etiel-2-metielokt-4-yne / 6-etiel-2-metiel-4-oktyn (3)

2.5 2.5.1 Butanal ✓√ (2)

2.5.2

2.6 2.6.1 Combustion √/Oxidation

Verbranding / Oksidasie (1)

2.6.2 $2 C_6H_{14} + 19 O_2 \checkmark \rightarrow 12 CO_2 + 14 H_2O \checkmark (\checkmark Balancing/ balansering)$ (3)

2.6.3 Compound A reacts exothermically with oxygen / releases heat when it reacts with oxygen. ✓
 Verbinding A reageer eksotermies met suurstof / hitte word vrygestel wanneer dit met suurstof reageer.
 (1)
 [22]

Copyright reserved/Kopiereg voorbehou

QUESTION/VRAAG 3

3.1 3.1.1 Boiling point is the temperature √at which the vapour pressure of a liquid equals the atmospheric pressure. ✓ Kookpunt is die temperatuur waarby die dampdruk van 'n vloeistof gelyk is aan die atmosferiese druk. (2)3.1.2 Functional group/ √ Homologous series/ Type of intermolecular forces. Funksionele groep / Homoloë reeks / Tipe intermolekulêrekragte. (1) London forces √/induced dipole forces/dispersion forces. 3.1.3 Londonkragte/geïnduseerde dipool kragte/verspreidingskragte. (1) 3.1.4 **C** has hydrogen bonds ✓ (in addition to London forces) **B** has dipole-dipole forces √ (in addition to London forces) Hydrogen bonds are stronger than dipole dipole-forces ✓ More energy is needed to overcome intermolecular forces in **C** ✓ **C** het waterstofbinding (bykomend tot Londonkragte) **B** het dipool-dipoolkragte (bykomend tot Londonkragte) Waterstofbindings is sterker as die dipool-dipoolkragte Meer energie word benodig om die intermolekulêrekragte te oorkom in **C** OR/OF **C** has hydrogen bonds ✓ (in addition to London forces) **B** has dipole-dipole forces √ (in addition to London forces) Dipole dipole forces are weaker than hydrogen bonds ✓ Less energy is needed to overcome intermolecular forces in **B** ✓ **C** het waterstofbinding (bykomend tot Londonkragte) **B** het dipool-dipoolkragte (bykomend tot Londonkragte) Dipool-dipool is swakker as die waterstofbindings Minder energie word benodig om die intermolekulêrekragte te oorkom in **B** (4)3.2 Vapour pressure is the <u>pressure exerted by a vapour</u> ✓ <u>in equilibrium</u> 3.2.1 with its liquid in a closed container./ < Dampdruk is die druk uitgeoefen deur 'n damp in ewewig met sy vloeistof in 'n geslote sisteem. (2)3.2.2 **p**₁ = 100 (kPa) √/101,3 (kPa) / 1 atmosphere / atmosfeer (1) 3.2.3 A is above its boiling point / Bo A se kookpunt ✓ (2)

LOWER THAN/LAER AS ✓

3.2.4

(1)

3.2.5 Compound C only reached its boiling point at 117,7 °C where its vapour pressure will equal 101,3 kPa. ✓ ✓ Verbinding C bereik eers sy kookpunt by 117,7 °C waar sy dampdruk eers gelyk aan 101,3 kPa gaan wees.

(2)

[16]

(2)

QUESTION/VRAAG 4

- 4.1 Substitution √/Hydrolysis (of haloalkanes)

 Substitusie / Hidrolise (van haloalkane) (1)
- 4.2 $CH_3CH_2CH_2CH_2OH \checkmark\checkmark$ (2)
- 4.3 Primary alcohol ✓

 The carbon atom that contains the bydroxyl group

The carbon atom that contains the hydroxyl group (-OH) is bonded to one other carbon atom only. \checkmark

Primêre alkohol

Die koolstof-atoom wat die hidroksielgroep (-OH) bevat is verbind aan slegs een ander koolstof-atoom.

4.4 Esterification/Condensation ✓
Esterifikasie / Kondensasie (1)

4.5 Butyl ethanoate / Butiel-etanoaat ✓ ✓

Marking criteria/Nasienkriteria:

- Functional group/Funksionele groep. ✓ (1/2)
- Whole structure correct/ Hele struktuur korrek √ (2/2)

- 4.6 Dehydration / Dehidrasie ✓ (1)
- 4.7 (concentrated / gekonsentreerde) H₂SO₄ ✓ (1)
- 4.8 Compounds with <u>same molecular formula</u> ✓ but different positions of the <u>functional group</u> ✓/side chains/substituent on the parent chain./

 Verbindings met <u>dieselfde molekulêre formule</u> maar verskillende posisies van die <u>funksionele groep</u>/sykettings/substituent op die stamketting. (2)

4.9

Marking criteria/ Nasienkriteria

Reactants / Reaktanse

- Organic molecule correct/ Organiese molecule korrek ✓
- KOH/NaOH ✓

Products / Produkte

- Organic molecule / Organiese molekule
- Functional group/Funksionele groep. √ (1/2)
- Whole structure correct/ Hele struktuur korrek ✓

(2/2)

Inorganic products / Anorganiese produkte

- KBr/NaBr √
- H₂O √

(6)

[20]

QUESTION 5/VRAAG 5

Change in concentration ✓ per unit time. ✓ / Amount of product formed/reactant 5.1 used up per unit time.

<u>Verandering in konsentrasie per eenheid tyd / Hoeveelheid produk gevorm / </u> reaktanse opgebruik per eenheidstyd.

OR/OF

Rate of change in concentration (2 or 0) Tempo van verandering in konsentrasie (2 of 0) (2)

5.2 Concentration ✓ and a catalyst. ✓/ Konsentrasie en 'n katalisator. (2)

5.3.1 Concentration (of H₂O₂) decreases / Konsentrasie (van H₂O₂) 5.3 verlaag √ √ (2)

5.3.2 $t = 5000(s) \checkmark$ (1)

5.3.3 Rate/tempo = $-\Delta c/\Delta t = -(1,0-0) \sqrt{(0-5,000)}$ $= 2 \times 10^{-4} \text{ / mol dm}^{-3.}\text{s}^{-1}$ (3)

5.3.4 $\Delta c = 0.8 \text{ mol} \cdot \text{dm}^{-3}$

$$n (H_2O_2) = cV$$

= 0,8 x (0,15) \checkmark
= 0,12 mol

 $n (H_2O_2) = n (O_2) = 0.12 \text{ mol } \checkmark (Ratio / verhouding)$

n = V/Vm ✓

 $0.12 = V/25~000 \checkmark$

$$V = 3 \ 000 \ cm^3 \ \sqrt{(3 \ dm^3)}$$
 (5)

5.4 5.4.1 Decrease / Verlaag ✓ (1)

5.4.2 Remains the same / Bly dieselfde ✓ (1)

Minimum energy required for a reaction to take place. ✓✓/ 5.5 5.5.1 Minimum energie benodig vir 'n reaksie om plaas te vind. (2)

5.5.2 Particles with sufficient kinetic energy to react. ✓/ Deeltjies met genoeg kinetiese energie om te reageer. (1) 5.5.3 E₂ ✓

Calatyst lowers the activation energy ✓
More particles have sufficient kinetic energy to react ✓
More effective collisions per unit time ✓/Frequency of effective collisions increases

'n Katalisator verlaag die aktiveringsenergie. Meer deeltjies het genoeg kinetiese energie om te reageer Meer effektiewe botsings per eenheid tyd / Frekwensies van die effektiewe botsings neem toe

(4)

[24]

QUESTION 6/VRAAG 6

6.1.2 HIGHER THAN /
$$HO\ddot{E}R$$
 AS $\checkmark\checkmark$ (2)

6.1.3 EQUAL TO / GELYK AAN
$$\checkmark$$
 (1)

6.2 OPTION 1/ OPSIE 1 : MOLE OPTION / MOL OPSIE Marking Criteria/ Nasienkriteria:

- Divide by 17 to calculate n(NH₃)_{equilibrium}. √ Deel deur 17 om n(NH₃)_{ewewig} te bereken.
- ∆n NH₃ ✓
- Use mole ratio N₂:H₂: NH₃ / Gebruik mol verhouding N₂:H₂: NH₃ ✓
- n equilibrium / ewewig N₂ and/en H₂ ✓
- Divide 2 dm³ all n equilibrium / Deel deur 2 dm³ in alle newewig ✓
- Correct K_c expression/Korrekte K_c uitdrukking. ✓
- Substitution into K_c expression √/*Vervanging in K_c uitdrukking.*
- Final answer / Finale antwoord (0,41) ✓

$$n (NH_3) = m/M = 41,48/17 \checkmark = 2,44 \text{ mol}$$

	N_2	3 H ₂	2 NH₃	
ni	4,88	6,18	0	
Δn	1,22	3,66	2,44 ✓	Ratio / verhouding
ne	3,66	2,52 ✓	2,44 ✓	
Ce	1.83	1.26	1.22 ✓	(Div/by deel met 2 dm ³)

 $Kc = [NH_3]^2/[N_2].[H_2]^3 \checkmark$

 $= 1,22^2/1,83 \times 1,26^3 \checkmark$

= 0.41 √

OPTION 2: CONCENTRATION / OPSIE 2: KONSENTRASIE Marking criteria/ Nasienkriteria:

- Calculate c (NH₃)_{equilibrium.} ✓ Bereken c(NH₃)_{ewewig}
- Δc NH₃ ✓
- c_i N₂ and/en H₂ ✓
- Use conc. ratio N₂:H₂: NH₃/Gebruik gekonsen. verhouding N₂:H₂: NH₃ ✓
- c equilibrium /ewewig N₂ and/en H₂ ✓
- Correct K_c expression/Korrekte K_c uitdrukking. ✓
- Substitution into Kc expression $\sqrt{|Vervanging|}$ in K_c uitdrukking.
- Final answer/Finale antwoord (0,41) ✓

$$n (NH_3) = m/M = 41,48/17 = 2,44 \text{ mol}$$

 $c_e (NH_3) = n/V = 2,44/2 \checkmark = 1,22 \text{ mol} \cdot dm^{-3}$

$$c_i (N_2) = n/V = 4.88/2 = 2.44 \text{ mol} \cdot \text{dm}^{-3}$$

$$c_i (H_2) = n/V = 6,18/2 = 3,09 \text{ mol} \cdot dm^{-3}$$

 $Kc = [NH_3]^2/[N_2].[H_2]^3 \checkmark$

$$= 1.22^2/1.83 \times 1.26^3 \checkmark$$

6.3 Temperature / Temperatuur ✓

(1)

6.4 **A** ✓

> At a given temperature the yield of NH₃ is the highest ✓ (in graph **A**) Increase pressure favours reaction which produces less gas moles ✓ Forward reaction is favoured ✓

By 'n gegewe temperatuur is die opbrengs van NH₃ die hoogste (in grafiek **A**) Toename in druk bevoordeel die reaksie wat die minste gas mol produseer Voorwaartse reaksie word bevoordeel

6.5.1 Increase / Toeneem ✓ 6.5 (1)

[20]

(4)

QUESTION 7/VRAAG 7

7.1.2
$$H_2O \checkmark \text{ and } / en H_2SO_4^{-} \checkmark$$
 (2)

7.1.3
$$H_2O$$
 or/of HSO_4^- (Any ONE / Enige EEN \checkmark) (1)

7.2.2
$$H_2SO_4\checkmark$$
 (1)

7.2.3 pH =
$$-\log [H_3O^+] \checkmark$$

 $3 = - \log [H_3O^+] \checkmark$

 $[H_2SO_4] = \frac{1}{2} \times 10^{-3} \checkmark$

 $[H_3O^+] = 1 \times 10^{-3} \text{ mol} \cdot \text{dm}^{-3}$

Marking criteria/ Nasienkriteria

- pH formula / formule
- Substitution / Substitusie
- Ratio / Verhouding
- Final answer / Finale antwoord

=
$$5 \times 10^{-4} \text{ mol.dm}^{-3} \checkmark$$
 (4)

7.2.4
$$CO_3^{2-} + H_2O \checkmark \rightarrow HCO_3^{-} + OH^{-} \checkmark$$

7.3.2	OPTION 1 / OPSIE 1:	OPTION 2 / OPSIE 2:
	n = m/M	
	n = 1,74/58 ✓	c = m/MV
	= 0,03 mol	$c = 1.74 / (58)(0.2) \checkmark \checkmark$
	c = n/V	= 0,15 mol·dm ⁻³
	= 0,03 / 0,2 ✓	
	= 0,15 mol·dm ⁻³	
	OPTION 3 / OPSIE 3:	OPTION 4 / OPSIE 4:
	<u>OPTION 3 / OPSIE 3:</u> n = cV	OPTION 4 / OPSIE 4: m = cMV
	n = cV	m = cMV
	n = cV = (0,15)(0,2) \checkmark	m = cMV = (0,15)(58)(0,2) $\checkmark\checkmark$
	n = cV = (0,15)(0,2) \checkmark n = 0,3 mol	m = cMV = (0,15)(58)(0,2) $\checkmark\checkmark$

(2)

7.3.3 Marking guideline / Nasienriglyn

- Calculating mole for Mg(OH)₂ / Bereken mol vir Mg(OH)₂
- Calculating the diluted concentration for HCl / Bereken die verdunde konsentrasie van HCl
- Calculating the total mole for HCl / Bereken die totale mol van HCl
- Calculating the reacted mole for HCl / Bereken die mol van HCl wat gereageer het
- Determining the remaining mole for HCI / Bepaal die mol van HCI wat oorbly
- Use of formula c = n/V in calculating the concentration of excess ions / Gebruik formule c = n/V om die konsentrasie van die oormaat ione te bereken
- Substituting into / Vervanging in c = n/V
- Final answer/ Finale antwoord

n [Mg(OH)₂] = cV
= 0,15 x 0,04
$$\checkmark$$

= 0,006 mol

$$c_1V_1 = c_2V_2$$

 $5 \times 10 = c_2(100) \checkmark$ **OR/OF**
 $c_2 = 0.5 \text{ mol·dm}^{-3}$

n = cV
= (10)5 x 10⁻³)
n = 0,05 mol
c =
$$\frac{n}{V}$$

= $\frac{0,05}{0,1}$
c = 0,5 mol.dm⁻³

n (HCl) = cV
=
$$0.5 \times 0.05 \checkmark$$

= 0.025 mol

n (HCI) reacting = $2 \times 0,006 \checkmark = 0,012 \text{ mol}$

n (HCI) remaining = $0.025 - 0.012 \checkmark \checkmark = 0.013$ mol

c (HCl) =
$$n/V \checkmark = 0.013 / (0.09) \checkmark = 0.14 \text{ mol-dm}^{-3} \checkmark$$
 (9) [28]

TOTAL/TOTAAL: 150