Agenda

Simple Linear Regression

Multiple Regression

Independent Categorical variables

Non-linear Regression

Introduction

- **Dependent variable** or response: Variable being predicted.
- **Independent variables** or predictor variables: Variables being used to predict the value of the dependent variable.
- **Simple linear regression**: A regression analysis for which any one unit change in the independent variable, *x*, is assumed to result in the same change in the dependent variable, *y*.
- Multiple linear regression: A regression analysis involving two or more independent variables.

Simple Linear Regression

Estimate a **relationship** between a **dependant** and an $y = \beta_0 + \beta_1 x + \varepsilon$ independent variable

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Parameters: The characteristics of the population, β_0 and β_1 .

Random variable: Error term, \mathcal{E} .

accounts for the variability in y that cannot be explained by the linear relationship between x and y.

Sample

Sample statistics instead of population $\hat{y} = b_0 + b_1 x$ parameters

$$\hat{y} = b_0 + b_1 x$$

Simple Linear Regression

 \hat{y} is the point estimator of E(y|x)

Least Squares method

Find the values of slope and intercept that minimizes the sum of squares errors

$$\min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \min \sum_{i=1}^{n} (y_i - b_0 - b_1 x_1)^2$$
 (7.4)

where

 y_i = observed value of the dependent variable for the i^{th} observation

 \hat{y}_i = predicted value of the dependent variable for the i^{th} observation

n = total number of observations

Trendline Data Analysis → Regression

$$b_0 = \overline{y} - b_1 \overline{x} \qquad b_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Least Squares method

Manual calculation Slope
$$\rightarrow b_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 y-Intercept $\rightarrow b_0 = \overline{y} - b_1 \overline{x}$

- Sum of predicted values, ŷ = Sum of values of independent variable (y)
- Sum of residuals (e) = 0
- Sum of squared residuals is **Minimized**

Multiple Regression

Estimate a **relationship** between a **dependant** and **two**or more independent variables

$$\cdots \longrightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_q x_q + \varepsilon$$

ESTIMATED MULTIPLE REGRESSION EQUATION

Sample where

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_q x_q$$

 $b_0, b_1, b_2, \dots, b_q$ = the point estimates of $\beta_0, \beta_1, \beta_2, \dots, \beta_q$ \hat{y} = estimated mean value of y given values for x_1, \dots, x_q

$$\lim_{n \to \infty} \min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \min \sum_{i=1}^{n} (y_i - b_0 - b_1 x_1 - \dots - b_q x_q)^2 = \min \sum_{i=1}^{n} e_i^2$$
 (7.12)

Data Analysis → Regression

Inference and Regression

Statistical inference: Process of making estimates and drawing conclusions about one or more characteristics of a population (the value of one or more parameters) through the analysis of sample data drawn from the population.

Conditions for inference

Inference and Regression

Testing individual regression parameters

• Use a t-test to test the hypothesis that a regression parameter, β_i is 0.

$$t = \frac{b_j}{s_{b_j}}.$$

 $s_{b_i} = Estimate standard deviation of <math>b_j$.

The **null hypothesis**, **βj is equal to zero** is **rejected** when the corresponding **p value is smaller than some predetermined level of significance** (usually 0.05 or 0.01).

Multicollinearity

- refers to the <u>correlation</u> among the independent variables.
- Correlation exceeds 0.7 between any 2 independent variables.
- Larger values of F provide stronger evidence of an overall regression relationship.

$$F = \frac{SSR/q}{SSE/(n-q-1)}$$

Overall Regression relationship (F-test)

SSR = Sum of squares due to regression, SSE = Sum of squares due to error, q = the number of independent variables in the regression model, n = the number of observations in the sample.

Categorical independent variables

Dummy variable
$$(k-1)$$
 Categorical \rightarrow Numerical $(male, female \rightarrow 0,1)$

Categorical variable, rush hour $(x_3) - 0$ or 1

(1 - assignment includes travel on the congested segment of highway during afternoon rush hour)

Travel time =
$$-0.3302 + 0.0672x_1 + 0.6735x_2 + 0.9980x_3$$
....

Increases by 0.998 hours if an assignment included travel on a congested segment of highway during afternoon rush hour

Categorical va	riable: Region	→ (A,B,C)
----------------	-----------------------	-----------

Region	x ₁	X ₂
А	0	0
В	1	0
С	0	1

Nonlinear relationships - need

Nonlinear relationships

Quadratic regression model

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_1^2$$

Nonlinear relationships

Piecewise regression model

$$\hat{y} = b_0 + b_1 x_1 + b_2 (x_1 - x^{(k)}) x_k$$

$$x_k = \begin{cases} 0 \text{ if } x_1 \le x^{(k)} \\ 1 \text{ if } x_1 > x^{(k)} \end{cases}$$

Nonlinear relationships

Interaction between independent variables

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2$$

Model fitting

Variable Selection Procedure

Special procedures are sometimes employed to select the independent variables to include in the regression model.

- Iterative procedures: At each step of the procedure, a single independent variable is added or removed and the new model is evaluated. Iterative procedures include:
 - Backward elimination.
 - Forward selection.
 - Stepwise selection.
- Best subsets procedure: Evaluates regression models involving different subsets of the independent variables.

Overfitting

- Three possible ways to execute cross-validation:
 - Holdout method.
 - k-fold cross-validation.
 - Leave-one-out cross-validation.

Prediction with regression

Confidence interval

$$\cdots \qquad \hat{y} \pm t_{\alpha/2} s_{\hat{y}}$$

Prediction interval

$$\cdots \qquad \qquad \hat{y} \pm t_{\alpha/2} \sqrt{s_{\hat{y}}^2 + \frac{SSE}{n - q - 1}}$$

Summary

Simple Linear Regression

Multiple Regression

Independent Categorical variables

Non-linear Regression

