MATH 313 HMWK 4

Daniel Xu

February 21, 2018

Problem 2.3.4

(a)

$$\lim \left(\frac{1 + 2a_n}{1 + 3a_n - 4a_n^2} \right) = \frac{\lim(1 + 2a_n)}{\lim(1 + 3a_n - 4a_n^2)}$$
$$= \frac{1}{1}$$
$$= 1$$

(b)

$$\lim \left(\frac{(a_n+2)^2-4}{a_n}\right) = \lim \left(\frac{a_n^2+4a_n+4-4}{a_n}\right)$$

$$= \lim \left(\frac{a_n^2+4a_n}{a_n}\right)$$

$$= \lim(a_n+4)$$

$$= \lim(a_n)+4$$

$$= 0+4$$

$$= 4$$

(c)

$$\lim \left(\frac{\frac{2}{a_n} + 3}{\frac{1}{a_n} + 5}\right) = \lim \left(\frac{\frac{2}{a_n} + 3}{\frac{1}{a_n} + 5} \cdot \frac{a_n}{a_n}\right)$$
$$= \lim \left(\frac{2 + 3a_n}{1 + 5a_n}\right)$$
$$= \left(\frac{\lim(2 + 3a_n)}{\lim(1 + 5a_n)}\right)$$
$$= 2$$

Problem 2.3.9

(a) If (a_n) is bounded, then there exists a number M > 0 such that $|a_n| \leq M$. If $\lim b_n = 0$, then for all $\epsilon_0 > 0$, there exists a $N_0 \in \mathbb{N}$ such that whenever $n \geq N_0$ it follows that $|b_n - 0| < \epsilon_0$. Then

$$\begin{aligned} |b_n - 0| &< \epsilon_0 \\ |b_n| &< \epsilon_0 \\ |a_n| \cdot |b_n| &< M \cdot \epsilon_0 \\ |a_n \cdot b_n| &< M \cdot \epsilon_0 \\ |a_n \cdot b_n - 0| &< M \cdot \epsilon_0 \end{aligned}$$

Whatever ϵ is chosen, we can find a N for ϵ for the sequence (a_nb_n) satisfying the definition of convergence in the following way. Divide the ϵ by the upper bound M to get a ϵ_0 and find a N_0 for that ϵ for the case of b_n . Then, we can use the same N_0 as N for a_nb_n . Thus, $\lim(a_nb_n)=0$ since a N can be found for any ϵ that satisfies the condition of convergence. We are not allowed to use the Algebraic Limit Theorem because it is not known whether a_n is convergent.

Problem 2.3.11 Seeing that x_n is convergent, we know by **Theorem 2.5.2** that x_n is also bounded. So there exists a M such that for all $x_n, x_n \leq M$. Even though M may be equal to some x_n , we can just choose a M slightly greater than the previous one. We can then add up all of the elements in the sequence from x_1 to x_n , and they will all be less than $n \cdot M$.

$$x_1 + x_2 + \dots + x_n < nM$$

$$x_1 + x_2 + \dots + x_n - nL < nM - nL$$

$$\frac{x_1 + x_2 + \dots + x_n}{n} - L < M - L$$

$$|y_n - L| < M - L$$

Then, we just use M-L as ϵ .

Problem 2.4.3 We first show that the limit of the sequence exists using the monotone convergence theorem. We proceed by induction to show that the sequence is monotone; that is, $\forall nx_{n+1} > x_n$. We consider the base case.

$$\sqrt{2+\sqrt{2}} \stackrel{?}{\geq} \sqrt{2}$$
$$2+\sqrt{2} > 2$$

We now proceed to the inductive step. We must show that if $x_{k+1} \ge x_k$ for some particular k, then it will also be true for $x_{k+2} \ge x_{k+1}$. So

$$x_{k+1} > x_k$$

$$2 + x_{k+1} > 2 + x_k$$

$$\sqrt{2 + x_{k+1}} > \sqrt{2 + x_k}$$

$$x_{k+1} > x_k$$

Now that we have show that $(x_n \text{ is monotone}, \text{ we must now show that it is bounded. We show that <math>x_k < 16$. We first consider the base case. $x_1 = \sqrt{2}$ is indeed less than 16. We can now proceed to the inductive step, where we show that if $x_k < 16$, then $x_{k+1} < 16$. We first assume to the contrary that $x_{k+1} \ge 16$. Then

$$\begin{array}{c|cc} x_{k+1} & \geq & 16 \\ \sqrt{2+x_k} & \geq & 16 \\ 2+x_k & \geq & 256 \\ x_k \geq 254 \end{array}$$

However, this contradicts our original assumption that $x_k < 16$. Thus, we deduce that x_n converges to some limit L. Now we define a sequence $y_n = x_{n+1}$. y_n , which is a subsequence of x_n , converges to the same limit that y_n does. So

$$x_n \to y$$

$$2 + x_n \to 2 + y$$

$$\sqrt{5 + x_n} \to \sqrt{2 + y}$$

$$y_n \to \sqrt{2 + y}$$

Then

$$y = \sqrt{2+y}$$

$$y^2 = 2+y$$

$$y^2 - y - 2 = 0$$

$$(y+1)(y-2) = 0$$

$$y = 2$$

Problem 2.4.5

(a) We proceed by induction. For the base case, $x_1^2=2^2=4\geq 2$. Now for the

inductive step. We must now show that if $x_k^2 \geq 2$, then $x_{k+1}^2 \geq 2$. So

$$x_{k}^{2} \ge 2$$

$$x_{k}^{2} - 2 \ge 0$$

$$(x_{k}^{2} - 2)^{2} \ge 0$$

$$x_{k}^{4} - 4x_{k}^{2} + 4 \ge 0$$

$$x_{k}^{2} - 4 + \frac{4}{x_{k}^{2}} \ge 0$$

$$x_{k}^{2} + 4 + \frac{4}{x_{k}^{2}} \ge 8$$

$$\frac{1}{4} \left(x_{k}^{2} + 4 + \frac{4}{x_{k}^{2}} \right) \ge 2$$

$$\frac{1}{4} \left(x_{k} + \frac{2}{x_{k}} \right)^{2} \ge 2$$

$$x_{k+1}^{2} \ge 2$$

Thus, we know that $x_n^2 \geq 2$. Now, we have to show that $x_n - x_{n+1} \geq 0$. So

$$x_n^2 \ge 2$$

$$x_n^2 - 2 \ge 0$$

$$\frac{1}{2x_n} \cdot (x_n^2 - 2) \ge \frac{1}{2x_n} \cdot 0$$

$$\frac{1}{2}x_n - \frac{1}{x_n} \ge 0$$

$$\frac{1}{2}x_n - \frac{1}{x_n} \ge 0$$

$$x_n - \frac{1}{2}\left(x_n + \frac{2}{x_n}\right) \ge 0$$

$$x_n - x_{n+1} \ge 0$$

Now we have to how that $\lim x_n = \sqrt{2}$. We proceed in a fashion similar to the last problem. We let $y_n = x_{n+1}$, which will converge to the same limit y as x_n . Then

$$y = \frac{1}{2} \left(y + \frac{2}{y} \right)$$
$$2y = y + \frac{2}{y}$$
$$2y^{2} = y^{2} + 2$$
$$y^{2} = 2$$
$$y = \sqrt{2}$$

(b) Let $x_1 = c$ and define

$$x_{n+1} = \frac{x_n + \frac{x_n}{c}}{2}$$

Problem 2.4.8

- (a) A explicit formula would be $1 \frac{1}{2^n}$. The sequence converges to 1.
- (b) A explicit formula would be $\frac{n}{n+1}$. The sequence converges to 1.
- (c) A explicit formula would be log(n+1).

Problem 2.5.1

- (a) Impossible. According to the Bolzano-Weierstrass Theorem, every bounded sequence contains a convergent subsequence. Since the sequence has a bounded subsequence, the bounded subsequence contains a subsubsequence that converges which is itself a subsequence of the original sequence.
- (b) Define

$$x_n = \frac{1}{2} + \frac{1}{2}(-1)^k \frac{k}{k+1}$$

- (c) In Theorem 1.5.6, we saw that the rational numbers were countable, meaning that there exists a bijection from the natural numbers to the rational numbers. Such a bijection would contain a subsequence that converges to all numbers in the sequence $\{1, 1/2, 1/3, 1/4, 1/5, \ldots\}$
- (d) Impossible. Such a sequence would contain a subsequence that converges to zero, since the sequence $x_n = 1/n$ itself converges to zero, which is a point outside of the set $\{1, 1/2, 1/3, 1/4, 1/5, \ldots\}$.

Exercise 2.5.2

- (a) True. Define a proper subsequence (y_n) of (x_n) such that $y_n = x_{n+1}$. It can be easily seen that if y_n converges, then so will x_n
- (b) True. Consider the contrapositive of the statement, if (x_n) converges, then x_n contains a convergent subsequence. Since x_n is a subsequence of itself, then x_n will always have a convergent subsequence. Since the contrapositive of the statement is true, the statement is true.
- (c) True.
- (d) True.