04_homework_linear_regression

February 2, 2018

1 Programming assignment 4: Linear regression

1.1 Your task

In this notebook code skeleton for performing linear regression is given. Your task is to complete the functions where required. You are only allowed to use built-in Python functions, as well as any numpy functions. No other libraries / imports are allowed.

1.2 Load and preprocess the data

I this assignment we will work with the Boston Housing Dataset. The data consists of 506 samples. Each sample represents a district in the city of Boston and has 13 features, such as crime rate or taxation level. The regression target is the median house price in the given district (in \$1000's).

More details can be found here: http://lib.stat.cmu.edu/datasets/boston

1.3 Task 1: Fit standard linear regression

```
In [2]: def fit_least_squares(X, y):
    """Fit ordinary least squares model to the data.

Parameters
------
X: array, shape [N, D]
    (Augmented) feature matrix.
y: array, shape [N]
    Regression targets.

Returns
------
w: array, shape [D]
    Optimal regression coefficients (w[0] is the bias term).
```

```
X_XTranspose_product_as_matrix=np.asmatrix(X_XTranspose_product);
            X_XTranspose_product_inverse=X_XTranspose_product_as_matrix.getI();
            X_XTranspose_product_inverse_asndarray = np.squeeze(np.asarray(
                                                                X_XTranspose_product_inverse));
            w=np.dot(X_XTranspose_product_inverse_asndarray,np.dot(np.transpose(X),y));
            return w
1.4 Task 2: Fit ridge regression
In [3]: def fit_ridge(X, y, reg_strength):
            """Fit ridge regression model to the data.
            Parameters
            _____
            X : array, shape [N, D]
                (Augmented) feature matrix.
            y : array, shape [N]
                Regression targets.
            reg\_strength: float
                L2 regularization strength (denoted by lambda in the lecture)
            Returns
            _____
            w : array, shape [D]
                Optimal regression coefficients (w[0] is the bias term).
            X_size=np.shape(X);
            lambda_plus_X_XTranspose=np.add(np.multiply(
                                                reg_strength,np.identity(X_size[1])),
                                                np.dot(np.transpose(X),X))
            lambda_plus_X_XTranspose_as_matrix=np.asmatrix(lambda_plus_X_XTranspose);
            lambda_plus_X_XTranspose_inverse=lambda_plus_X_XTranspose_as_matrix.getI();
            lambda_plus_X_XTranspose_inverse_asndarray = np.squeeze(np.asarray())
                                                             lambda_plus_X_XTranspose_inverse));
            w=np.dot(lambda_plus_X_XTranspose_inverse_asndarray,np.dot(np.transpose(X),y));
            return w;
   Task 3: Generate predictions for new data
In [4]: def predict_linear_model(X, w):
            """Generate predictions for the given samples.
            Parameters
            _____
            X : array, shape [N, D]
```

11 11 11

X_XTranspose_product=np.dot(np.transpose(X),X);

```
(Augmented) feature matrix.
w : array, shape [D]
    Regression coefficients.

Returns
-----
y_pred : array, shape [N]
    Predicted regression targets for the input data.
"""
y_pred=np.dot(X,w);
return y_pred
```

1.6 Task 4: Mean squared error

```
In [5]: def mean_squared_error(y_true, y_pred):
            """Compute mean squared error between true and predicted regression targets.
            Reference: `https://en.wikipedia.org/wiki/Mean_squared_error`
            Parameters
            _____
            y_true : array
                True regression targets.
            y_pred: array
                Predicted regression targets.
            Returns
            _____
            mse : float
               Mean squared error.
            n n n
            y_true_size=np.shape(y_true);
            mse=np.sum(np.power(np.subtract(y_pred,y_true),2))/y_true_size[0];
            return mse;
```

1.7 Compare the two models

The reference implementation produces * MSE for Least squares \approx 23.98 * MSE for Ridge regression \approx 21.05

You results might be slightly (i.e. $\pm 1\%$) different from the reference soultion due to numerical reasons.

```
test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)

# Ordinary least squares regression
w_ls = fit_least_squares(X_train, y_train)
y_pred_ls = predict_linear_model(X_test, w_ls)
mse_ls = mean_squared_error(y_test, y_pred_ls)
print('MSE for Least squares = {0}'.format(mse_ls))

# Ridge regression
reg_strength = 1
w_ridge = fit_ridge(X_train, y_train, reg_strength)
y_pred_ridge = predict_linear_model(X_test, w_ridge)
mse_ridge = mean_squared_error(y_test, y_pred_ridge)
print('MSE for Ridge regression = {0}'.format(mse_ridge))

MSE for Least squares = 23.984307611777403
MSE for Ridge regression = 21.051487033772723
```