

Trial & Error, Backtracking, Branch&Bound

- ☐ Sie kennen Probleme, die nur/am einfachsten mit Versuch und Irrtum gelöst werden können (Trial & Error)
- ☐ Sie kennen die Vorteile und Nachteile dieses Verfahrens
- ☐ Sie wissen was ein Entscheidungsbaum ist
- ☐ Sie können einige bekannte Probleme
- ☐ Sie wissen was eine Zielfunktion ist
- ☐ Sie wissen wie Branch&Bound Verfahren funktionieren
- ☐ Sie wissen was Pruning bedeutet

Versuch und Irrtum

- Eigentlich bessere Bezeichnung wäre: Versuch und Bewertung
- □ Die älteste Lösungsstrategie überhaupt
- Natur:
 - Mutation = Versuch
 - Selektion = Bewertung
- □ Resultat nach 4 Milliarde Jahren: der Mensch
- Schlussfolgerungen
 - Trial & Error ist ziemlich rechen- und zeitintensiv
 - Nicht unbedingt beste Lösung als Resultat
 - Zwei mögliche Resultate bei Trial & Error Ansatz
 - beste Lösung
 - akzeptable Lösung (unter den gegebenen Rahmenbedingungen)

Labyrinth

Beispiel: Labyrinth

- Probleme:
 - Maus sucht Käse
 - Katze sucht Maus
 - Maus sucht Ausgang (auf dem kürzesten Weg)
- Lösungsalgorithmus
 gehe einen Weg entlang bis
 Verzweigung
 gehe einem der möglichen Wege entlang
 i) bis am Ziel
 - ii) oder nicht mehr weiter (Sackgasse)gehe zur Verzweigung zurückversuche noch nicht probierten Weg

Entscheidungsbaum, Backtracking

- Es entsteht so ein *virtueller* Entscheidungsbaum. Jede Entscheidung
 (Verzweigung) entspricht darin einem Knoten.
- Teillösungen werden systematisch zu Gesamtlösungen erweitert bis Lösung gefunden oder Erweitern nicht mehr möglich ist (->Sackgasse).

Vorgehen bei Versuch und Irrtum Verfahren

- Lösung: Bsp. Pfad durch das Labyrinth
- Mit dem Vorwärtsgehen im Entscheidungsbaum wird die Teillösung erweitert.

```
solange Lösung nicht gefunden
    Erweiterung der bestehenden (Teil-)Lösung möglich
    ja ->
        füge Erweiterung hinzu
        überprüfe, ob erweiterte Lösung zum Ziel führt
        ja ->Lösung gefunden, Abbruch
        nehme Erweiterung zurück
nein ->
        keine Lösung möglich, Abbruch
```

☐ Es müssen systematisch alle möglichen Erweiterungen durchprobiert werden.

rekursive Suche im Labyrinth: Pseudocode


```
boolean search (Node currentNode) {
  mark currentNode:
  if currentNode == goal return true;
  else {
  for all nodes n adjacent to currentNode {
       if (!(marked(n)) {
          if (search(n)) return true;
   unmark currentNode;
   return false;
```


Springerproblem

Springerproblem

Aufgabe

 von einem beliebigen Schachfeld aus soll ein Springer nacheinander sämtliche Felder des Schachbretts genau einmal besuchen.

Bewegung des Springers

 zwei Felder in beliebige Richtung und ein Feld in dazu senkrechter Richtung

□ springerY =
$$\{1,-1, 2, 2, 1, -1, -2,-2\}$$

Datenstrukturen und Methoden

- Datenstruktur
 - int[][] schachbrett new int[n][n];
- □ int-Wert in Feld soll angeben, in welchem Zug das Feld besucht wurde.
- werden mit 0 initialisiert
- Methode: boolean versuch(int x, int y, int nr)
- x, y : Koordinaten des Feldes
- □ nr : Nummer des Zuges (>=1)

Der Algorithmus


```
Position
                                                                         erlaubt
public static boolean queltigePosition(int x, int y) {
  return (0 \le x) \&\& (x \le n) \&\& (0 \le y) \&\& (y \le n) \&\& schachbrett[x][y] == 0;
public static boolean versuchen(int x, int y, int nr) {
  schachbrett[x][y] = nr; // Feld besetzen
                                                                        Lösung
                                                                        gefunden
  if (nr == n*n) return true;
  else {
    for (int versuch = 0; versuch < springerX.length; versuch++) {</pre>
      int xNeu = x + springerX[versuch];
      int yNeu = y + springerY[versuch];
      if (gueltigePosition(xNeu, yNeu)) {
                                                                              neue
                                                                              Position
        if (versuchen (xNeu, yNeu, nr+1)) return true;
  schachbrett[x][y] = 0; // Feld freigeben
  return false;
```


8 Damenproblem

Das 8 Damenproblem

Historisches

□ wurde von C.F. Gauss (1777-1855) gestellt

Aufgabe

 es soll eine Stellung für acht Damen auf einem Schachbrett gefunden werden, so dass keine zwei Damen sich gegenseitig schlagen können.

Bewegung der Dame

horizontal, vertikal und diagonal

Datenstrukturen und Methoden

- int[] dameInDerSpalte = new int[n];
- static boolean[] reihe = new boolean[n];
- int diagN = 2*n -1;
- boolean[] diagLinks = new boolean[diagN];

1,5		
	2,4	
		3,3

 \square rechts = (diagN + x - y) % diagN;

Reihe

School of Engineering

Zwei Hilfsmethoden


```
// testet ob Position möglich ist
// Wert in 3 Arrays true -> Position besetzt
public static boolean queltigeDamePosition(int x, int y) {
  return !(reihe[y] || diagLinks[(x + y) % diagN]
            || diagRechts[(diagN + x - y) % diagN]);
// setzt/löscht die Dame von der Position
public static void setzeDame(int x, int y, boolean val) {
  reihe[y] = val;
  diagLinks[(x + y) % diagN] = val;
  diagRechts[(diagN + x - y) % diagN] = val;
  dameInDerSpalte[x] = (val)?y:-1;
```

Der Algorithmus


```
public static boolean versuchen(int x) {
  if (x == n) return true;
  else {
    for (int y = 0; y < n; y++) {
      if (gueltigeDamePosition(x,y)) {
        setzeDame(x, y, true);
        if (versuchen(x+1)) return true;
        setzeDame(x,y,false);
    return false;
```


Rucksackproblem

Das Rucksackproblem

□ Das Rucksackproblem

Ein Dieb, der eine Wohnung ausraubt, findet K verschiedene Gegenstände unterschiedlicher Grösse und unterschiedlichen Werts, hat aber nur einen Rucksack der Grösse M zur Verfügung, um die Gegenstände zu tragen.

Das Rucksack-Problem besteht darin, diejenige Kombination von Gegenständen zu finden, die der Dieb auswählen sollte, so dass der Gesamtwert der vom ihm geraubten Gegenstände maximal wird.

Gegenstände in der Wohnung

- □ Beispiel: Der Rucksack besitzt ein Fassungsvermögen von 17l, in der Wohnung befinden sich diese 5 Gegenstände von unterschiedlicher Grösse und den angegebenen Werten.
- □ Die Bezeichnungen der Gegenstände werden im Programm in Indizes umgewandelt: 0 bis 4

Das Rucksackproblem - Pseudocode

systematisch alle möglichen Varianten ausprobieren: Trial & Error

```
void teste (Gegenstand k) {
   teste k + 1 // ohne Gegenstand k
  fall Gegenstand k noch Platz
       füge Element k zu der Menge hinzu
       falls neues Maximum speichere das
       teste k+1 // mit Gegenstand k
       nehme Element k aus der Menge weg
```

Rucksackproblem - Trial&Error Algorithmus


```
double[] volumen= {1,2,7,8,9};
  double[] wert = \{2, 3, 10, 11, 17\};
  Set<Integer> maxRucksack;
 final double MAXV = 18;
  double maxW = 0:
      static public void test(Set<Integer> rucksack, int k, double aktW, double aktV) {
        if (k < volumen.length) {</pre>
                                                             teste zuerst ohne
            test(rucksack, k + 1, aktW, aktV);
                                                             Gegenstand k
            double newV = aktV + volumen[k];
            if (newV <= MAXV) {</pre>
                                                         füge
teste ob
               rucksack.add(k);
ok
                                                         hinzu
               double newW = aktW + wert[k];
                                                                    neues
               if (newW > maxW) {
                                                                    Maximum?
                  maxRucksack = new HashSet<Integer>(rucksack);
                  maxW = newW;
               test(rucksack, k + 1, newW, newV);
               rucksack.remove(k);
                                                  nehme
                                                  weg
```

Aufwandsbetrachtung: Statistik

Frage: auf wie viele Arten kann ich 1,2,3,..,K unterscheidbare Gegenstände auswählen, jeden Gegenstand nur einmal

Statistiker sprechen von Kugeln und Fächer :0, 1, 2, 3,...,K

- #1 Kugel: <0>: 1
- #2 Kugeln: <0>,<1>,<1,0>: 3
- □ #3 Kugeln: <0>,<1>,<1,0>, <2> <2,0>,<2,1>,<2, 1,0>: 7
- #4 Kugeln: <"3 Kugeln">, <4>, <4,"3 Kugeln">: 15
-
- #K Kugeln: 2 * #(K-1 Kugeln) + 1 -> 2*2*2*2,...

Aufwand: O(2ⁿ)

Anwendungen des Rucksackproblems

Transportunternehmer:

Optimale Beladung eines Lastwagens bei gegebenen Maximalgewicht und unterschiedlichen Speditionsgebühren (Wert).

Reederei-Besitzer:

Optimale Beladung eines Schiffes mit unterschiedlichen Containern (Wert), bei gegebenen Volumen (Gewicht).

Erschöpfende Suche

- Das Rucksackproblem ist ein Beispiel von einer Klasse von algorithmischen Problemen, bei denen keine bessere Lösung bekannt ist, als Ausprobieren sämtlicher Möglichkeiten: Versuch & Irrtum
- Durchsuche aller Möglichkeiten -> erschöpfende Suche (exhaustive search)
- Der Aufwand bei diesen Algorithmen ist meist O(2ⁿ) oder O(n!), entsprechenden der Anzahl möglichen Kombinationen (oder Permutationen).
- Frage: gibt es eine Ordnung/Klassifikation in den Komplexität von Problemen?

Algorithmus & Probleme

Genereller rekursiver Backtracking Algorithmus: "Greedy"


```
public static boolean versuchen(int k) {
    if (LösungGefunden) return true;
    else {
      for all l in ErweiterungVonTeilloesungen {
        if (moeglicheErweiterung(1)) {
          fuegeZuLoesungHinzu(1)
          if (versuchen(k+1)) return true;
          nehmeVonLoesungWeg(1);
      return false;
```

Optimierungsprobleme

- Transportwesen
 - optimale Beladung eines LKWs (Gewicht, Wert der Ware)
- Schule
 - Stundenplan (Pausenminimierung & Raumbelegung)
- ☐ Spiele:
 - bester Zug im Schach
- Gemeinsam:
 - es müssen sehr viele Möglichkeiten ausprobiert werden
 - es kann eine Art "Güte" der Teillösung bestimmt werden

Die kombinatorische Explosion

- Das Problem der Versuch und Irrtum Methode ist, dass alle möglichen Kombinationen ausprobiert werden müssen.
- □ z.B. beim Springer max. 8 mögliche Positionen pro Zug ->
- □ Abschätzung: 8*8*8 ... *8 bei 64 Felder -> 8⁶⁴ = 6.3 * 10⁵⁷
 - □ hier wird aber vernachlässigt, dass die Anzahl möglicher Züge mit der Zeit abnimmt.
- □ Die Anzahl der möglichen Fälle (Kombinationen) wächst kⁿ oder n!
- schon für relativ kleine Werte von n (n ~ 10-100) dauert die Berechnung meist zu lange.
- □ Alter des Universum: 5*10¹⁷ sek
 Masse der Sonne 2*10³³ g
 Anzahl Atome im Weltall: 10⁷⁷

Suchverfahren mit Zielfunktion

Die Zielfunktion

- □ Umgehen der kombinatorischen Explosion:
 - man wählt nur die Lösung aus, die zum Ziel führt
 - man berechnet zu jedem Knoten im Entscheidungsbaum den Zielwert, den man über diesen Knoten erreichen kann
- ☐ Diese Funktion wird als Zielfunktion f(v) bezeichnet

Algorithmus mit Zielfunktion

- ☐ für jeden Knoten
 - berechne zu jedem Nachfolgeknoten im Entscheidungsbaum die Zielfunktion f(v), Kostenfunktion c(v) = 1/f(v)
 - gehe der Kante entlang (wähle die Teillösung aus), die zum Knoten mit dem höchsten Zielfunktionswert führt
- Problem gelöst
 - keine kombinatorische Explosion
 - sehr effizienter Algorithmus : ~ Log(n)
- ☐ Aber: zur Berechnung der Zielfunktion muss das Problem meist schon gelöst sein, d.h. z.B. der Entscheidungsbaum unterhalb des Knotens vollständig durchlaufen sein -> wir haben nichts gewonnen.

Geschätzte obere Schranke

- es wird nicht die exakte Zielfunktion selber, sondern eine einfacher zu bestimme
 Funktion
- □ "Score der Lösung", Fittness Function, Kostenfunktion
- Es wird eine Funktion bestimmt, die immer bessere Werte liefert als die exakte Zielfunktion: obere Schranke b(v) >= f(v)
- Bound Funktion: Schranke

Algorithmus: Bestfirst Search

- gehe dem Pfad mit dem höchsten Bound-Wert zuerst entlang
 - Bestfirst Search
- korrigiere den b(v)-Wert des betrachteten Knotens anhand der Bound-Werte der darunter liegenden Konten bzw. des erreichten Ergebnisses; Bound Wert ist das Maximum der Bound Werte der direkten Nachfolger.
- Kombination aus Breitensuche und Tiefensuche

Abschneiden (Cutoff, Pruning)

- □ Falls eine bereits gefundene Lösung besser ist, als die mittels der oberen Schranke b(v) geschätzte bestmögliche Lösung über einen Knoten, dann muss dieser Teilbaum nicht mehr betrachtet werden.
- Das "Abschneiden" eines Astes im Entscheidungsbaum wird als Pruning bezeichnet

Bound Funktion für Routensuche (A*)

- ☐ Hier wird eine zu optimistische untere Schranke berechnet
- ☐ Die kürzeste Strecke kann nicht besser sein als die Luftlinie

http://www.luftlinie.org

Betrachtungen Branch&Bound

- mittels Branch&Bound lässt sich das Problem der kombinatorischen Explosion eindämmen
- Branch&Bound Verfahren setzen eine mit vernünftigem Aufwand berechenbare b(v) Funktion voraus.
- Problem der Bestimmung einer "guten" b(v) Funktion
 - genau -> Berechnung ist zu teuer
 - ungenau (zu gross) -> es können keine/wenige Teilbäume abgeschnitten werden -> kombinatorische Explosion

Beispiel Schach

- Entscheidungsbaum
 - alle möglichen Züge
- Berechne für jede Position einen b(v)Wert
- Auch als Bewertungsfunktion bezeichnet, Score
- ☐ Figuren Werte:
 - König 100; Dame 9; Turm 5; Springer/Läufer 3.5; Bauer 1
- Position:
 - Beherrschung des Zentrums
 - Schutz des Königs und der restlichen Figuren
 - Bedrohung der gegnerischen Königs&Figuren
 - ...
- ☐ Wichtig: b(v) ist obere Schranke, d.h. zu optimistisch

Beispiel Schach

- jeder Zug führt zu einer anderen Position, die bewertet werden kann.
- Aber: es kommen beide Spieler abwechseln an die Reihe

Der Gegenzug

 Schwarz wird (Annahme: Schwarz macht den besten Zug) einen Gegenzug machen, der das "eigene" b(v) möglichst minimiert

Minimax Algorithmus, Alphabeta-Pruning

- Der Algorithmus wechselt zwischen Maximieren und Minimieren des b(v) Werts ab.
- □ Falls mit Pruning gearbeitet wird: Alphabeta-Pruning
 - alpha: Grenze bei der Optimierungsebene
 - beta: Grenze bei der Minimierungsebene
- Bei jeder Stellung ca. 8-10 Züge möglich
 - Anzahl Stellungen 10ⁿ
 - für jeden weiteren Zug-Gegenzug muss jeweils 100-mal länger gerechnet werden
 - es können nur eine begrenzte Anzahl Züge vorausberechnet werden: 8 bis 9

Der Horizont Effekt

- ☐ Die Berechnung muss nach n Zügen abgebrochen werden.
- Dies wird als der Horizont bezeichnet
- Problem:
 - gleich hinter dem Horizont kann sich die gefundene Lösung als schlecht erweisen.
- ☐ Lösung:
 - die ausgewählte Lösung (und nur diese) wird noch ein paar Stufen weiter ausgewertet.

Tic-Tac-Toe

Tic-Tac-Toe

 Spiel, bei dem der ganze Entscheidungsbaum berechnet werden kann

Ziel: zuerst eine 3 X oder O in einer Reihe, Spalte oder Diagonalen

Besonderes:

- es gibt keine Gewinnstrategie -> wenn keiner einen Fehler macht, dann immer unentschieden
- ☐ Sämtliche möglichen Züge können vorausberechnet werden
- ☐ Es sind jedoch 549'946 rekursive Anrufe nötig, um den ersten Zug zu bestimmen

Datenstrukturen


```
static int n = 3;
static int diagN = 2*n -1;
static int[][] spalte = new int[2][n];
static int[][] reihe = new int[2][n];
static int[][] diagLinks = new int[2][diagN];
static int[][] diagRechts= new int[2][diagN];
static int[][] board = \{\{-1,-1,-1\},\{-1,-1,-1\},\{-1,-1,-1\}\};
static final int COMPUTER WIN = 2;
static final int UNCLEAR = 1;
static final int HUMAN WIN = 0;
static final int COMPUTER = 1;
static final int HUMAN = 0;
static final int FREE = -1;
static int bestX, bestY;
```


spalte

Hilfsmethoden


```
public static void setze(int side, int x, int y)
   spalte[side][x]++;
  reihe[side][y]++;
   diagLinks[side][(x + y) % diagN]++;
   diagRechts[side][(diagN + x - y) % diagN]++;
  board[x][y] = side;
public static void loesche (int side, int x, int
 y) {
   spalte[side][x]--;
   reihe[side][y]--;
   diagLinks[side][(x + y) % diagN]--;
   diagRechts[side][(diagN + x - y) % diagN]--;
  board[x][y] = FREE;
```

Algorithmus


```
public static int tryMove(int side, int draw) {
  int score, bX=-1, bY=-1;
  if (draw == n*n) return UNCLEAR;
  else {
                                                                   gewonnen
    score = win();
    if (score != UNCLEAR) return score;
    score = (side == COMPUTER)?HUMAN WIN:COMPUTER WIN;
    for (int x = 0; x < 3; x++) {
      for (int y = 0; y < 3; y++) {
                                                          gültige Position
        if (board[x][y] == FREE) {
          setze(side, x, y);
          int val = tryMove((side+1)%2,draw+1);
          if ((side == COMPUTER) && (val > score)) {
                                                                    maximiere
              bX = x; bY = y; score = val;
          else if ((side == HUMAN) && (val < score))</pre>
              bX = x; bY = y; score = val;
                                                                  minimiere
          loesche (side, x, y);
  bestX = bX, bestY = bY;
  return score;
```

Zusammenfassung

Versuch und Irrtum

- Entscheidungsbaum
- Backtracking
- Beispiele
 - Labyrinth
 - Springer
 - □ 8 Damen
 - Rucksack
- kombinatorische Explosion
- Zielfunktion
- obere Schranke
- Bestfirst Search
- Pruning
- Minimax Problem
- alphabeta Pruning
- Tic-Tac-Toe