1 Advanced Designs

1.1 Dynamische Programmierung

Anwendung

Anwendung, wenn sich Teilprobleme überlappen

- 1. Wir charakterisieren die Struktur einer optimalen Lösung
- 2. Wir definieren den Wert einer optimalen Lösung rekursiv
- 3. Wir berechnen den Wert einer optimalen Lösung (meist bottom-up Ansatz)
- 4. Wir konstruieren eine zugehörige optimale Lösung aus berechneten Daten

• Stabzerlegungsproblem

Ausgangsproblem: Stangen der Länge n cm sollen so zerschnitten werden, dass der Erlös r_n maximal ist, indem die Stange in kleinere Stäbe geschnitten wird

Länge	i	0	1	2	3	4	5	6	7	8	9	10
Preis p	i	0	1	5	8	9	10	17	17	20	24	30

Beispiel: Gesamtstange hat Länge 4. Welchen Erlös kann man max. erhalten?

Optimaler Erlös: zwei 2cm lange Stücke (5 + 5 = 10)

- Aufteilung der Eisenstange:
 - * Stange mit Länge n kann auf 2^{n-1} Weisen zerlegt werden
 - st Position i: Distanz vom linken Ende der Stange
 - * Aufteilung in k Teilstäbe $(1 \le k \le n)$
 - * optimale Zerlegung: $n = i_1 + i_2 + ... + i_k$
 - * maximaler Erlös: $r_n = p_{i_1} + p_{i_2} + \ldots + p_{i_k}$
 - * z.B.: $r_4 = 10$ (siehe oben)

- Rekursive Top-Down Implementierung:

```
CUT-ROD(p,n) // p Preis-Array, n Stangenlänge

IF n== 0
return 0;
q = -\infty;
FOR i = 1 TO n // nicht Start bei 0, sonst kein Rekursionsschritt
q = max(q, p[i] + CUT-ROD(p, n - i));
return q;
```

- Stabzerlegung via Dynamischer Programmierung:
 - * Ziel:

Mittels dynamischer Programmierung wollen wir CUT-ROD in einen effizienten Algorithmus verwandeln.

* Bemerkung: Naiver rekursiver Ansatz ist **ineffizient**, da dieser immer wieder diesselben Teilprobleme löst.

- * Ansatz: Jedes Teilproblem nur einmal lösen. Falls die Lösung eines Teilproblems nochmal benötigt wird, schlagen wir diese nach.
- st Dynamische Programmierung wird zusätzlichen Speicherplatz benutzen um Laufzeit einzusparen.
- * Reduktion der exponentiellen Laufzeit auf polynomielle.
- Rekursive Top-Down mit Memoisation:
 - * Idee: Speicherung der Lösungen der Teilprobleme
 - * Laufzeit: $\Theta(n^2)$

```
MEMOIZED-CUT-ROD(p, n)

Let r[0...] be new array

FOR i = 0 TO n

r[i] = -\infty

return MEMOIZED-CUT-ROD-AUX(p, n, r)
```

- Bottom-Up Ansatz:
 - * Laufzeit: $\Theta(n^2)$
 - * Sortieren der Teilprobleme nach ihrer Größe und lösen in dieser Reihenfolge
 - * Immer alle kleineren Teilprobleme bei bestimmten Wert bereits gelöst

```
BOTTOM-UP-CUT-ROD(p, n)

Let r[0...n] be a new array
r[0] = 0
FOR j = i TO n
q = -\infty
FOR i = 1 TO j
q = max(q, p[i] + r[j - i])
r[j] = q
return r[n]
```

* Teilproblemgraph ($i \rightarrow j$ bedeutet, dass Berechnung von r_i den Wert r_j benutzt)

· Fibonacci-Zahlen

- $-F_1 = F_2 = 1$
- $F_n = F_{n-1} + F_{n-2}$
- Naiver rekursiver Algorithmus:

```
FIB(n)

1  IF n \le 2
2     f = 1;
3  ELSE
4     f = FIB(n-1) + FIB(n-2);
5  return f;
```


Gleiche Teilprobleme werden wieder mehrmals gelöst

- Rekursiver Algorithmus mit Memoisation
 - * Wieder Abspeichern von Teilproblemen um Laufzeit einzusparen
 - * Laufzeit: $\Theta(n)$

```
MEMOIZED-FIB(n)

1 Let m[0...n-1] be a new array
2 FOR i = 0 TO n - 1
3 m[i] = 0
4 return MEMOIZED-FIB-AUX(n, m)
```

```
MEMOIZED-FIB-AUX(n, m)

IF m[n-1] != 0
    return m[n-1];    // Auslesen von gespeicherten Werten

IF n ≤ 2
    f = 1;

ELSE
    f = MEMOIZED-FIB-AUX(n-1, m) + MEMOIZED-FIB-AUX(n-2, m);

m[n-1] = f;
return f;
```

- Bottom-Up Algorithmus
 - * Hier wieder Berechnen aller Teilprobleme von unten beginnend

```
BOTTOM-UP-FIB(n)

Let m[0...n-1] be a new array

FOR i = 1 TO n

IF i = 0

f = 0;

ELSEIF i \leq 2

f = 1;

ELSE

f = m(i-1) + m(i-2);

m[i] = f;

return m[n];
```

1.2 Greedy-Algorithmus

• Idee

- Trifft stets die Entscheidung, die in diesem Moment am besten erscheint
- Trifft **lokale** optimale Entscheidung (evtl. nicht global die Beste)

· Aktivitäten-Auswahl-Problem

- Definition
 - * 11 anstehende Aktivitäten $S = \{a_1, ..., a_{11}\}$
 - * Startzeit s_i und Endzeit f_i , wobei $0 \le s_i < f_i < \infty$
 - * Aktivität a_i findet im halboffenen Zeitintervall $[s_i, f_i)$ statt
 - * Zwei Aktivititäten sind kompatibel, wenn sich deren Zeitintervalle nicht überlappen

i	1	2	3	4	5	6	7	8	9	10	11	Aktivitäten: $\{a_3, a_9, a_{11}\}$
s_i	1	3	0	5	3	5	6	8	8	2	12	Aktivitäten: $\{a_1, a_4, a_8, a_{11}\}$
f_i	4	5	6	7	9	9	10	11	12	14	16	Aktivitäten: $\{a_2, a_4, a_9, a_{11}\}$

- Ansatz mittels dynamischer Programmierung
 - * Menge von Aktivitäten, die starten nachdem a_i endet und enden, bevor a_j startet $S_{ij}=\{a\in S, a=(s,f): s\geq f_i, f< s_j\}$
 - * Definiere maximale Menge A_{ij} von paarweise kompatiblen Aktivitäten in S_{ij} . $c[i,j]=|A_{ij}|$
 - * Optimale Lösung für Menge S_{ij} die Aktivitäten a_k enthält: $c[i,j]=max_{a_k\in S_{ij}}\{c[i,k]+c[k,j]+1\}$ (0, falls $S_{ij}=\emptyset$)
- Greedy-Wahl
 - * lokal die beste Wahl
 - * Auswahl der Aktivität mit geringster Endzeit (möglichst viele freie Ressourcen)
 - * Also hier Teilprobleme, die nach a_1 starten
 - * $S_k = \{a_i \in S : s_i \geq f_k\}$: Menge an Aktivitäten, die starten, nachdem a_k endet
 - * Optimale-Teilstruktur-Eigenschaft Wenn a_1 in optimaler Lösung enthalten ist, dann besteht optimale Lösung zu ursprünglichem Problem aus Aktivität a_1 und allen Aktivitäten zur einer optimalen Lösung des Teilproblems S_1

- Rekursiver Greedy-Algorithmus
 - * Voraussetzung: Aktivitäten sind monoton steigend nach der Endzeit sortiert
 - * Laufzeit: $\Theta(n)$

```
RECURSIVE-ACTIVITY-SELECTOR(s,f,k,n)

// s Anfangszeitenarray, f Endzeitenarray,
// k Index von Teilproblem, n Größe Anfangsproblem

m = k + 1;
WHILE m \le n and s[m] < f[k] // Suche nach erster Kompatibilität

m = m + 1;
IF m \le n
// Ausgabe des Elements und Berechnung weiterer Aktivitäten
return \{a_m\} \cup RECURSIVE-ACTIVITY-SELECTOR(s,f,m,n)\}
ELSE
return \emptyset
```

- Iterativer Greedy-Algorithmus
 - * Voraussetzung: Aktivitäten sind monoton steigend nach der Endzeit sortiert
 - * Laufzeit: $\Theta(n)$

1.3 Backtracking

· Suchbaum - Baum der Möglichkeiten

- Darstellung aller für ein Problem bestehenden Möglichkeiten
- Problem: Dreimal hintereinander der selbe Buchstabe (A,B)

· Backtracking - Idee

- Lösung finden via Trial and error
- Schrittweises Herantasten an die Gesamtlösung
- Falls Teillösung inkorrekt ightarrow Schritt zurück und andere Möglichkeit
- Voraussetzung:
 - * Lösung setzt sich aus Komponenten zusammen (Sudoku, Labyrinth,..)
 - * Mehrere Wahlmöglichkeiten für jede Komponente
 - * Teillösung kann getestet werden

Allgemeiner Backtracking-Algorithmus

```
IF alle Komponenten richtig gesetzt
return true;

ELSE
WHILE auf aktueller Stufe gibt es Wahlmöglichkeiten
wähle einen neuen Teillösungsschritt
Teste Lösungsschritt gegen vorliegende Einschränkungen
IF keine Einschränkung THEN
setze die Komponente
ELSE
Auswahl(Komponente) rückgängig machen
BACKTRACKING(A, s + 1)
```

Damenproblem

Auf einem Schachbrett der Größe $n \cdot n$ sollen n Damen so positioniert werden, dass sie sich gegenseitig nicht schlagen können. Wie viele Möglichkeiten gibt es, n Damen so aufzustellen, dass keine Damen eine andere schlägt.

- * n = 8: 4 Milliarden Positionierungen
- * Optimierte Suche: In jeder Zeile/Spalte nur eine Dame
- * Reduziert Problem auf 40.000 Positionierungen (ohne Diagonale)

```
PLACE-QUEENS(Q,r) // Q Array, r Index der ersten leeren Zeile

IF r == n
return Q

ELSE
FOR j = 0 TO n - 1 // Mögliche Positionierungen
legal = true;
FOR i = 0 TO r - 1 // Evaluation der mgl. Bedrohungen
IF (Q[i] == j) OR (Q[i==j + r - i]) OR (Q[i] == j - r + i)
legal = false;

IF legal == true
Q[r] = j;
PLACE-QUEENS(Q, r + 1)
```


1.4 Metaheuristiken

• Optimierungsproblem

- * Lösungsstrategien:
 - · Exakte Methode
 - · Approximationsmethode
 - · Heuristische Methode
- * Einschränkungen
 - · Antwortzeit
 - \cdot Problemgröße
 - ⇒ exkludieren oft exakte Methoden

Heuristik

- Technik um Suche zur Lösung zu führen
- Metaheuristik (Higher-Level-Strategie)
 - * soll z.B. Hängenbleiben bei lokalem Maxima verhindern
- Leiten einer Suche
 - (a) Finde eine Lösung (z.B. mit Greedy-Algorithmus)
 - (b) Überprüfe die Qualität der Lösung
 - (c) Versuche eine bessere Lösung zu finden
 - * Herausfinden in welcher Richtung bessere Lösung evtl. liegt
 - * ggf. Wiederholung dieses Prozesses
- Finden einer besseren Lösung
 - * Modifikation der Lösung durch erlaubte Operationen
 - * Dadurch erhalten wir Nachbarschaftslösungen
 - ⇒ Suche nach besseren Lösungen in der Nachbarschaft

Rucksackproblem

	1	2	3	4	5	6	7	8	9
Wert	79	32	47	18	26	85	33	40	45
Größe	85	26	48	21	22	95	43	45	55

- Rucksack hat eine Kapazität von 101, 9 verschiedene Gegenstände
- Ziel: Höchster Wert der Gegenstände im Rucksack
- Beispiellösung: 3 + 5 (Wert 73, Größe 70)
- Nachbarschaftslösungen:
 - * 2,3 und 5: Wert 105, Größe 96
 - * 1,3 und 5: Wert 152, Größe 155 (problematisch)
 - * 3: Wert 47, Größe 48

Nachbarschaft:

- * Suchraum S kann sehr groß sein
- * Einschränkung des Suchraums in der Nähe des Punktes
- * Distanz
funktion $d: SxS \to \mathbb{R}$
- * Nachbarschaft: $N(x) = \{y \in S : d(x,y) \le \epsilon\}$

Zufällige Suche

- Idee und Ablauf
 - * Suche nach globalem Optimum
 - * Anwenden der Technik auf aktuelle Lösung im Suchraum
 - * Wahl einer neuen zufälligen Lösung in jeder Iteration
 - * Falls die neue Lösung besseren Wert liefert ⇒ neue **aktuelle** Lösung
 - * Terminierung, falls keine weiteren Verbesserungen oder Zeit vorbei
- Code

```
RANDOM-SEARCH

best <- irgendeine initiale zufällige Lösung
REPEAT

S <- zufällige Lösung
IF (Quality(S) > Qualityy(best)) THEN
best <- S

UNTIL best ist die ideale Lösung oder Zeit ist vorbei
return best
```

- Nachteile
 - * Potentiell lange Laufzeit
 - * Laufzeit abhängig von der initialien Konfiguration
- Vorteile
 - * Algorithmus **kann** beim globalen Optimum terminieren

• Bergsteigeralgorithmus

- Idee und Ablauf
 - * Nutzung einer iterativen Verbesserungstechnik
 - * Anwenden der Technik auf aktuelle Lösung im Suchraum
 - * Auswahl einer neuen Lösung aus Nachbarschaft in jeder Iteration
 - * Falls diese besseren Wert liefert, überschreiben der aktuellen Lösung
 - * Falls nicht, Wahl einer anderen Lösung aus Nachbarschaft
 - * Terminierung, falls keine weiteren Verbesserungen oder Zeit vorbei
- Code

```
HILL-CLIMBER
  T <- Distribution von möglichen Zeitintervallen
  S <- irgendeine initiale zufällige Lösung
  best <- S
  REPEAT
      time <- zufälliger Zeitpunkt in der Zukunft aus T
      REPEAT
           wähle R aus der Nachbarschaft von S
           IF Quality(R) > Quality(S) THEN
               S < - R
      UNTIL S ist ideale Lösung oder time ist erreicht oder totale Zeit erreicht
      IF Quality(S) > Quality(best) THEN
          best <- S
12
      S <- irgendeine zufällige Lösung
13
  UNTIL best ist die ideale Lösung oder totale Zeit erreicht
14
  return best
```

- Nachteile
 - * Algorithmus terminiert in der Regel bei lokalem Optimum
 - * Keine Auskunft, inwiefern sich lokale Lösung von Globaler unterscheidet
 - * Optimum abhängig von Initialkonfiguration
- Vorteile
 - * Einfach anzuwenden

· Iterative lokale Suche

- Idee und Ablauf
 - * Suche nach anderen lokalen Optima bei Fund eines lokalen Optimas
 - * Lösungen nur in der Nähe der "Homebase"
 - * Entscheidung, ob neue oder alte Lösung
 - * Bergsteigeralgo zu Beginn, danach aber großen Sprung um anderes Optimum zu finden
- Code

```
ITERATIVE-LOCAL-SEARCH
  T <- Distribution von möglichen Zeitintervallen
  S <- irgendeine initiale zufällige Lösung
  H <- S
              // Wahl des Homebasepunktes
  best <- S
  REPEAT
      time <- zufälliger Zeitpunkt in der Zukunft aus T
      REPEAT
          wähle R aus der Nachbarschaft von S
          IF Quality(R) > Quality(S) THEN
               S <- R
      UNTIL S ist ideale Lösung oder time ist erreicht oder totale Zeit erreicht
11
      IF Quality(S) > Quality(best) THEN
12
          best <- S
13
      H <- NewHomeBase(H,S)</pre>
14
      S <- Perturb(H)
15
  UNTIL best ist die ideale Lösung oder totale Zeit erreicht
  return best
```

- * Perturb:
 - · ausreichend weiter Sprung (außerhalb der Nachbarschaft)
 - · Aber nicht soweit, dass es eine zufällige Wahl ist
- * NewHomeBase:
 - · wählt die neue Startlösung aus
 - · Annahme neuer Lösungen nur, wenn die Qualität besser ist

Simulated Annealing

- Idee und Ablauf
 - * Wenn neue Lösung besser, dann wird diese immer gewählt
 - * Wenn neue Lösung schlechter, wird diese mit gewisser Wahrscheinlichkeit gewählt $Pr(R,S,t)=e^{\frac{Quality(R)-Quality(S)}{t}}$
 - $^{\ast}\,$ Der Bruch ist negativ, daR schlechter ist als S
- Code

```
SIMULATED-ANNEALING
  t <- Temperatur, initial eine hohe Zahl
  S <- irgendeine initiale zufällige Lösung
  best <- S
  REPEAT
       wähle R aus der Nachbarschaft von S
       IF Quality(R) > Quality(S) oder zufälliges
                    Z \in [0,1] < e^{\frac{Quality(R) - Quality(S)}{4}} THEN
                S <- R
       dekrementiere t
9
       IF Quality(S) > Quality(best) THEN
10
           best <- S
11
  UNTIL best ist die ideale Lösung oder Temperatur \leq 0
  return best
```

- Tabu-Search

- * Idee und Ablauf
 - · Speichert alle bisherigen Lösungen und Liste und nimmt diese nicht nochmal
 - · Kann sich jedoch von der optimalen Lösung entfernen
 - · Tabu List hat maximale Größe, falls voll, werden älteste Lösungen gelöscht
- * Code

```
TABU-SEARCH
   1 <- maximale Größe der Tabu List
  n <- Anzahl der zu betrachtenden Nachbarschaftslösungen
  S <- irgendeine initiale zufällige Lösung
  best <- S
   L <- \{ \} Tabu List der Länge 1
   Füge S in L ein
   REPEAT
       IF Length(L) > 1 THEN
           Entferne ältestes Element aus L
       wähle R aus Nachbarschaft von S
10
       FOR n - 1 mal DO
           Wähle W aus Nachbarschaft von S
12
           IF W \notin L und (Quality(W) > Quality(R)) oder R \in L) THEN
13
               R <- W
14
       \text{IF R} \notin \text{L THEN}
15
           S <- R
           Füge R in L ein
17
       IF Quality(S) > Quality(best) THEN
           best <-
19
   UNTIL best ist die ideale Lösung oder totale Zeit erreicht
20
   return best
```

Populationsbasierte Methode

- Bisher: Immer nur Betrachtung einer einzigen Lösung
- Hier: Betrachtung einer Stichprobe von möglichen Lösungen
- Bei der Bewertung der Qualität spielt die Stichprobe die Hauptrolle
- z.B. Evolutionärer Algorithmus

• Evolutionärer Algorithmus

- Idee und Ablauf
 - * Algorithmus aus der Klasse der Evolutionary Computation
 - * generational Algorithmus: Aktualisierung der gesamten Stichprobe pro Iteration
 - * steady-state Algorithmus: Aktualisierung einzelner Kandidaten der Probe pro Iteration
 - * Resampling-Technik: Generierung neuer Strichproben basierend auf vorherigen Resultaten
- Abstrakter Code (Allgemeiner Breed und Join)

```
ABSTRACT-EVOLUTIONARY-ALGORITHM

P \leftarrow \text{generiere initiale Population}
\text{best} \leftarrow \boxed{-} // \text{leere Menge}
\text{REPEAT}
\text{AssesFitness}(P)
\text{FOR jedes individuelle } P_i \in P \text{ DO}
\text{IF best} = \boxed{-} \text{ oder Fitness}(P_i) > \text{Fitness(best) THEN}
\text{best} \leftarrow P_i
\text{P} \leftarrow \text{Join}(P, \text{Breed}(P))
\text{UNTIL best ist die ideale Lösung oder totale Zeit erreicht}
\text{return best}
```

- * Breed: Erstellung neuer Stichprobe mithilfe Fitnessinformation
- * Join: Fügt neue Population der Menge hinzu
- Initialisierung der Population
 - * Initialisierung durch zufälliges Wählen der Elemente
 - * Beeinflussung der Zufälligkeit bei Vorteilen möglich
 - * Diversität der Population (alle Elemente in Population einzigartig)
 - * Falls neue zufällige Wahl eines Individuums
 - · Entweder Vergleich mit allen bisherigen Individuen $(O(n^2))$
 - · Oder besser: Nutzen eines Hashtables zur Überprüfung auf Einzigartigkeit (O(n))

- Evolutionsstrategien Ideen
 - * Generiere Population zufällig
 - * Beurteile Qualität jedes Individuums
 - * Lösche alle bis auf die μ besten Individuen
 - * Generie $\frac{\lambda}{\mu}\text{-viele}$ Nachfahren pro bestes Individuum
 - * Join Funktion: Die Nachfahren ersetzen die Individuen
- Algorithmus der Evolutionsstrategie

```
(\mu, \lambda)-EVOLUTION-STRATEGY
  \mu <- Anzahl der Eltern (initiale Lösung)
_{\scriptscriptstyle 2} \lambda <- Anzahl der Kinder
  P <- {}
   FOR \lambda-oft DO
       P <- {neues zufälliges Individuum}
  best <- ⊡
  REPEAT
       FOR jedes individuelle P_i \in P DO
             AssesFitness(P_i)
             IF best = \odot oder Fitness(P_i) > Fitness(best) THEN
                  best <- P_i
        Q <- die \mu Individueen deren Fitness() am Größten ist
        P <- {}
13
       FOR jedes Element Q_j \in Q DO
            FOR \frac{\lambda}{\mu}-oft DO
15
                 P \leftarrow P \cup \{MUTATE(Q_j)\}
  UNTIL best ist die ideale Lösung oder totale Zeit erreicht
17
   return best
```

1.5 Amortisierte Analyse

Kosten von Operationen

- Bisher: Betrachtung von Algorithmen, die Folge von Operationen auf Datenstrukturen ausführen
- Abschätzung der Kosten von n Operationen im Worst-Case
- Dies liefert die obere Schranke für die Gesamtkosten der Operationenfolge
- Nun: Amortisierte Analyse: Genauere Abschätzung des Worst Case
- Voraussetzung: Nicht alle Operationen in der Operationenfolge gleich teuer
- z.B. eventuell abhängig vom aktuellen Zustand der Datenstruktur
- Amortisierte Analyse garantiert die mittlere Performanz jeder Operation im Worst-Case

· Beispiel Binärzähler

- Eigenschaften
 - * k-Bit Binärzähler hier als Array
 - * Codierung der Zahl als $x = \sum_{i=0}^{k-1} 2^i b_i$
 - * Initialer Array für x = 0:

b_{k-1}	b_{k-2}			b_2	b_1	b_0
0	0			0	0	0

- Inkrementieren eines Binärzählers
 - * Erhöhe x um 1
 - * Beispiel: x = 3
 - * INCREMENT kostet 3, da sich drei Bitpositionen ändern

- Teuerste INCREMENT-Operation
 - * INCREMENT flippt k-1 Bits von 1 zu 0 und 1 Bit von 0 auf 1
 - * Kosten nicht konstant, stark abhängig von Datenstruktur

- Traditionelle Worst-Case Analyse
 - * Worst-Case Kosten von n INCREMENT-Operationen auf k-Bit Binärzähler
 - * Anfangswert x = 0
 - * Schlimmster Kostenfall: INCREMENT-Operation hat k Bitflips
 - * n-mal inkrementieren sorgt für Kosten: $T(n) \le n \cdot k \in O(kn)$

• Aggregat Methode - Beispiel Binärzähler

- Eigenschaften
 - * Methode für Amortisierte Analyse
 - * Sequenz von n-Operationen kostet Zeit T(n)
 - * Durchschnittliche Kosten pro Operation $\frac{T(n)}{n}$
 - * Ziel: T(n) genau berechnen, **ohne** jedes Mal Worst-Case anzunehmen
 - * Ansatz: Aufsummation der tatsächlich anfallenden Kosten aller Operationen

- Durchführung

- Genauere Kostenanalyse
 - * Nun in der Lage T(n) genau auszurechnen
 - * Bei n Operationen ändert sich das Bit b_i genau $\left\lfloor \frac{n}{2^i} \right\rfloor$ -mal
 - * Bits b_i mit $i > log_2$ n ändern sich nie
 - * Über alle k Bits aufsummieren liefert:

$$T(n) = \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor = n \sum_{i=0}^{k-1} \frac{1}{2^i} < n \sum_{i=0}^{\infty} \frac{1}{2^i} \le 2n \in O(n)$$

- * Obere Schranke: $T(n) \leq 2n$
- * Kosten jeder INCREMENT-Operation im Durchschnitt: $\frac{2n}{n} = 2 \in O(1)$

· Account Methode - Beispiel Binärzähler

- Eigenschaften
 - * Besteuerung einer Operationen, so dass sie Kosten anderer Operationen mittragen
 - * Zuweisung von höherer Kosten (Amortisierte Kosten), als ihre tatsächlichen Kosten sind
 - * Guthaben: Differenz zwischen amortisierten und tatsächlichen Kosten
 - * Nutzung dieses Guthabens für Operationen bei denen amortisiert < tatsächlich
 - * Guthaben darf nicht negativ werden:

Summe amortisierte Kosten > Summe tatsächliche Kosten

- Wahl der Amortisierten Kosten Binärzähler
 - * Setzen eines Bits von $0 \rightarrow 1$ zahlt 2 Einheiten ein / Bezeichnung f_i
 - * Setzen eines Bits von $1 \rightarrow 0$ zahlt 0 Einheiten ein / Bezeichnung e_i
 - * Tatsächliche Kosten t_i : Anzahl der Bitflips bei der i-ten INCREMENT-Operation $t_i=e_i+f_i$
 - * Amortisierte Kosten betragen: $a_i = 0 \cdot e_i + 2 \cdot f_i$
- Kostenbeispiel
 - * Jede Bitflip Operation kostet zusätzlich 1 Einheit
 - * Setzen Bit $0 \rightarrow 1$: Zahlt 2 ein, kostet aber $1 \rightarrow +1$ Guthaben
 - * Setzen Bit $1 \rightarrow 0$: Zahlt 0 ein, kostet aber $1 \rightarrow -1$ Guthaben

- Obere Schranken der Kosten
 - * Guthaben auf dem Konto entspricht der Anzahl der auf 1 gesetzten Bits
 - * Kosten: $T(n) \sum_{i=1}^{n} t_i \leq v \sum_{i=1}^{n} a_i$
 - * Nun Abschätzung dieser Formel zum Erhalten einer oberen Schranke
 - * Beobachtung: Bei jeder INCREMENT höchstens ein neues Bit von 0 auf 1
 - * Für alle i gilt damit $f_i \leq 1$
 - * Amortisierte Kosten jeder Operation höchstens $2 \cdot f_i \leq 2$
 - * Insgesamt: $T(n) = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i \le 2n \in O(n)$

• Potential-Methode - Beispiel Binärzähler

- Eigenschaften
 - * Betrachtung welchen Einfluss die Operationen auf die Datenstruktur haben
 - * Potentialfunktion $\phi(i)$: Hängt vom aktuellen Zustand der Datenstruktur nach i-ter Operation ab
 - * Ausgangspotential sollte vor jeglicher Operation nicht negativ sein $\phi(0) \geq 0$
- Amortisierte Kosten
 - * Amortisierte Kosten der i-ten Operation: (Summe tatsächliche Kosten + Potentialänderung) $a_i = t_i + \phi(i) \phi(i-1)$
 - * Summe der amortisierten Kosten:

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \phi(i) - \phi(i-1)) = \sum_{i=1}^{n} t_i + \phi(n) - \phi(0)$$

* Wenn für jedes i gilt $\phi(i) \geq \phi(0)$:

Summe der amor. Kosten ist gültige obere Schranke an Summe der tatsächlichen Kosten

- Potential-Methode anhand des Binärzählers
 - * $\phi(i)$: Anzahl der 1-en im Array nach i-ter INCREMENT-Operation $\to \phi(i)$ nie negativ und $\phi(0)=0$
 - * Angenommen i-te Operation setzt e_i Bits von 1 auf 0, dann hat diese Operation Kosten $t_i \leq e_i + 1$
 - * Neues Potential: $\phi(i) \leq \phi(i-1) e_i + 1 \Leftrightarrow \phi(i) \phi(i-1) \leq e_i$
 - * Amortisierte Kosten der i-ten INCREMENT-Operation:

$$a_i = t_i + \phi(i) - \phi(i-1) \le e_i + 1 + 1 - e_i = 2$$

* Insgesamt: $T(n) = \sum_{i=1}^n t_i \le \sum_{i=1}^n a_i \le 2n \in O(n)$