Advanced Digital Signal Processing (ADSP)

徐林

ADSP

Power spectral density (PSD)

Harmonic process:
$$x[n] = \sum_{k=1}^{M} A_k \cos(\omega_k n + \phi_k)$$

 $\{\phi_k\}$ pairwise independent random variables uniform in $[0, 2\pi]$.

$$E\{x[n]\} = 0 \quad \forall n$$
 $r_x[l] = \frac{1}{2} \sum_{k=1}^{M} A_k^2 \cos(\omega_k l) \quad -\infty < l < \infty$

$$P_{x}[e^{j\omega}] = \sum_{k=-M}^{M} 2\pi \left(\frac{A_{k}^{2}}{4}\right) \delta(\omega - \omega_{k}) = \sum_{k=-M}^{M} \frac{\pi}{2} A_{k}^{2} \delta(\omega - \omega_{k}) - \pi < \omega < \pi$$

 $\omega_k/(2\pi)$ rational number, spectral lines equidistant (harmonically related)

Example:
$$x[n] = \cos(0.1\pi n + \phi_1) + 2\sin(1.5n + \phi_2)$$

 ϕ_1 and ϕ_2 IID, uniform in $[0, 2\pi]$

ADSP

Power spectral density (PSD)

<u>Cross-Power spectral density</u> Zero-mean, joint stationary

$$P_{xy}(e^{j\omega}) = \sum_{l=-\infty}^{\infty} r_{xy}[l]e^{-j\omega l} \quad \circ - \circ \quad r_{xy}[l] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{xy}(e^{j\omega}) e^{j\omega l} d\omega$$

 $P_{xy}(e^{j\omega})$ complex value

Periodicity : $X(e^{j\theta}) = X(e^{j\theta + l \cdot 2\pi})$ $l \in \mathbb{N}$

)
on
,

Symmetry :

LJ	\ /
Real, even	Real, even
Real, odd	Imaginary, odd
Imaginary, even	Imaginary, even
Imaginary, odd	Real, odd

ADSP

Power spectral density (PSD)

<u>Cross-Power spectral density</u> Zero-mean, joint stationary

$$P_{xy}(e^{j\omega}) = \sum_{l=-\infty}^{\infty} r_{xy}[l]e^{-j\omega l} \quad \text{o-o} \quad r_{xy}[l] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{xy}(e^{j\omega}) e^{j\omega l} d\omega$$

 $P_{\chi \nu}(e^{j\omega})$ complex value

$$r_{xy}[l] = r_{yx}^* \left[-l \right]$$

$$P_{xy}(e^{j\omega}) = P_{yx}^*(e^{j\omega})$$

Coherence function (normalized cross-PSD):

$$C_{xy}(e^{j\omega}) \triangleq \frac{P_{xy}(e^{j\omega})}{\sqrt{P_{x}(e^{j\omega})}\sqrt{P_{y}(e^{j\omega})}}$$

Properties coherence function:

- $0 \le |C_{\chi \nu}(e^{j\omega})| \le 1$
- $C_{xv}(e^{j\omega}) = 1$: x[n] = y[n]
- $C_{xy}(e^{j\omega}) = 0$: x[n] and y[n] not correlated

ADSP

Part A: Stochastic signal processing

Linear system with stationary random input

- x[n]: stationary h[n]: BIBO stable $\Rightarrow y[n] = h[n] \star x[n]$: stationary

Linear system with stationary random input

Time domain analysis

Output mean value

$$\mu_y = \sum_{k=-\infty}^{\infty} h[k] E\{x[n-k]\} = \mu_x \sum_{k=-\infty}^{\infty} h[k] = \mu_x \cdot H(e^{\mathbf{j}0}) = \text{constant}$$

$H(e^{j0})$ is the DC gain of the system

Input output cross-correlation

$$r_{xy}[l] = E\{x[n+l]y^*[n]\} = \sum_{k=-\infty}^{\infty} h^*[k]E\{x[n+l]x^*[n-k]\}$$

$$= \sum_{k=-\infty}^{\infty} h^*[k]r_x[l+k] = \sum_{m=-\infty}^{\infty} h^*[-m]r_x[l-m]$$

$$r_{xy}[l] = h^*[-l] \star r_x[l] \qquad \qquad r_{yx}[l] = h[l] \star r_x[l]$$

Part A: Stochastic signal processing 上海科技大学 Shanghai Tech University

ADSP

Linear system with stationary random input

Output auto-correlation

$$x[n] \xrightarrow{\text{LTI}} h \xrightarrow{y[n]}$$

$$r_{y}[l] = E\{y[n]y^{*}[n-l]\} = \sum_{k=-\infty}^{\infty} h[k]E\{x[n-k]y^{*}[n-l]\}$$
$$= \sum_{k=-\infty}^{\infty} h[k]r_{xy}[l-k] = h[l] \star r_{xy}[l]$$

$$r_{\chi \gamma}[l] = h^*[-l] \star r_{\chi}[l]$$

$$r_{y}[l] = h[l] \star h^{*}[-l] \star r_{x}[l] = r_{h}[l] \star r_{x}[l]$$

Linear system with stationary random input

Output auto-correlation

$$r_{y}[l] = h[l] \star h^{*}[-l] \star r_{x}[l] = r_{h}[l] \star r_{x}[l]$$

ADSP

Linear system with stationary random input

Output power

$$x[n] \xrightarrow{\text{LTI}} h \xrightarrow{y[n]}$$

$$P_{y} = r_{y}[0] = r_{h}[l] \star r_{x}[l]_{l=0} = \sum_{k=-\infty}^{\infty} r_{h}[k] r_{x}[-k] = \sum_{k=-\infty}^{\infty} r_{h}[k] r_{x}[k]$$

$$r_{y}[l] = r_{h}[l] \star r_{x}[l]$$

If x[n] is real

ADSP

Linear system with stationary random input

Frequency domain

$$x[n] \xrightarrow{LTI} h \xrightarrow{y[n]}$$

$$Z\{h[n]\} = H(z)$$
 $Z\{h^*[-n]\} = H^*(\frac{1}{z^*})$

$$r_{xy}[l] = h^*[-l] \star r_x[l]$$

$$R_{xy}(z) = H^*(\frac{1}{z^*})R_x(z)$$

$$r_{vx}[l] = h[l] \star r_x[l]$$

$$R_{\gamma\chi}(z) = H(z)R_{\chi}(z)$$

$$r_{y}[l] = h[l] \star h^{*}[-l] \star r_{x}[l]$$

$$R_{\mathcal{Y}}(z) = H(z)H^*\left(\frac{1}{z^*}\right)R_{\mathcal{X}}(z)$$

Linear system with stationary random input

Frequency domain

h[n] stable, $z=e^{j\omega}$ within the ROC of H[z] and $H[z^{-1}]$

$$R_{\chi\gamma}(e^{j\omega}) = H^*(e^{j\omega})R_{\chi}(e^{j\omega})$$

$$R_{\gamma\chi}(e^{j\omega}) = H(e^{j\omega})R_{\chi}(e^{j\omega})$$

$$R_{\mathcal{Y}}(e^{j\omega}) = H(e^{j\omega})H^*(e^{j\omega})R_{\mathcal{X}}(e^{j\omega}) = |H(e^{j\omega})|^2 R_{\mathcal{X}}(e^{j\omega})$$

Power:
$$P_y = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega})|^2 P_x(e^{j\omega}) d\omega$$

$$= r_y(0) = \sum_{l=-\infty}^{\infty} r_h[l] r_x[l] = E\{|y[n]|^2\}$$

ADSP

Linear system with stationary random input

Frequency domain

$$x[n] \longrightarrow h \longrightarrow y[n]$$

$$H(e^{j\omega}) = \begin{cases} 1 & \omega_c - \frac{\Delta\omega}{2} \le \omega \le \omega_c + \frac{\Delta\omega}{2} \\ 0 & \text{elsewhere} \end{cases}$$

$$P_{y} = \mathrm{E}\{|x[n]|^{2}\} = \frac{1}{2\pi} \int_{\omega_{c} - \frac{\Delta\omega}{2}}^{\omega_{c} + \frac{\Delta\omega}{2}} |H(e^{j\omega})|^{2} P_{x}(e^{j\omega}) d\omega = \frac{\Delta\omega}{2\pi} P_{x}(e^{j\omega})|_{\omega = \omega_{c}}$$

