Assignment 13 Advanced Algorithms & Data Structures PS

Christian Müller 1123410 Daniel Kocher, 0926293

June 29, 2016

Aufgabe 23

Finden Sie die optimale Klammerung für das Matrixkettenprodukt gegeben durch die Folge von Dimensionen (41, 40, 4, 25, 34, 12). Geben Sie alle m[i, j] und s[i, j] an.

m[i,j] ... minimale Anzahl von Operationen zur Berechnung des Teilprodukts $A_{i,...,j}$.

s[i,j] ... optimaler Splitwert k, für den das Minimum angenommen wird.

$$m[i,j] = \begin{cases} 0, & \text{falls } i = j\\ \min_{i \le k < j} \left\{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \right\}, & \text{sonst} \end{cases}$$
(1)

$$P = \{ p_0 = 41, p_1 = 40, p_2 = 4, p_3 = 25, p_4 = 34, p_5 = 12 \}$$
 (2)

Aus P kann man also entnehmen, dass wir n=5 Matrizen multiplizieren wollen:

 $A_1: 41 \times 40$ $A_4: 25 \times 34$ $A_2: 40 \times 4$ $A_5: 34 \times 12$ $A_6: 4 \times 25$

Zur Ermittlung der optimalen Klammerung sowie aller Werte für m[i,j] bzw. s[i,j], wenden wir nun den dynamischen Algorithmus dyn-mat-ket und den rekursiven Algorithmus Opt-Klam an. Im Folgenden sind die Ergebnisse für m[i,j] (Table 1) bzw. s[i,j] (Table 2) zusammengefasst. Darunter sind die Berechnungsschritte angegeben (die ersten wurden weggelassen, da ohnehin immer der berechnete Wert bleibt, da das min mit ∞ gebildet wird). Die fett markierten Werte sind jene, die in m[i,j] bzw. s[i,j] eingetragen wurden.

$j \setminus i$	1	2	3	4	5
5	13560	6952	5032	10200	0
4	15536	8840	3400	0	-
3	10660	4000	0	-	-
2	6560	0	-	-	-
1	0	-	-	-	-

Table 1: m[i, j] für $1 \le i, j \le 5$.

$j \setminus i$	1	2	3	4
5	2	2	4	4
4	2	2	3	-
3	2	2	-	-
2	1	-	-	-

Table 2: s[i, j] für $1 \le i \le 4$ und $2 \le j \le 5$.

$$m[1,3] = \min_{1 \le k \le 3} \left\{ m[1,k] + m[k+1,3] + p_0 p_k p_3 \right\}$$
(3)

$$m[1,3] = \min \begin{cases} m[1,1] + m[2,3] + p_0 p_1 p_3 = 0 + 4000 + 41000 = 45000(k=1) \\ m[1,2] + m[3,3] + p_0 p_2 p_3 = 6560 + 0 + 4100 = 10660 (k=2) \end{cases}$$
(4)

$$m[2,4] = \min_{2 \le k < 4} \left\{ m[2,k] + m[k+1,4] + p_1 p_k p_4 \right\}$$
 (5)

$$m[2,4] = \min \begin{cases} m[2,2] + m[3,4] + p_1 p_2 p_4 = 0 + 3400 + 5440 = 8840 \text{ (k = 2)} \\ m[2,3] + m[4,4] + p_1 p_3 p_4 = 4000 + 0 + 34000 = 38000(k = 3) \end{cases}$$

$$(6)$$

$$m[3,5] = \min_{3 \le k < 5} \left\{ m[3,k] + m[k+1,5] + p_2 p_k p_5 \right\}$$
 (7)

$$m[3,5] = \min \begin{cases} m[3,3] + m[4,5] + p_2 p_3 p_5 = 0 + 10200 + 1200 = 11400(k=3) \\ m[3,4] + m[5,5] + p_2 p_4 p_5 = 3400 + 0 + 1632 = 5032 (k=4) \end{cases}$$
(8)

$$m[1,4] = \min_{1 \le k < 4} \left\{ m[1,k] + m[k+1,4] + p_0 p_k p_4 \right\}$$
(9)

$$m[1,4] = \min \begin{cases} m[1,1] + m[2,4] + p_0 p_1 p_4 = 0 + 8840 + 55760 = 64600(k = 1) \\ m[1,2] + m[3,4] + p_0 p_2 p_4 = 6560 + 3400 + 5576 = 15536 (k = 2) \\ m[1,3] + m[4,4] + p_0 p_3 p_4 = 10660 + 0 + 34850 = 45510(k = 3) \end{cases}$$
(10)

$$m[2,5] = \min_{2 \le k < 5} \left\{ m[2,k] + m[k+1,5] + p_1 p_k p_5 \right\}$$
(11)

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 = 0 + 5032 + 1920 = \mathbf{6952} \ (\mathbf{k} = \mathbf{2}) \\ m[2,3] + m[4,5] + p_1 p_3 p_5 = 4000 + 10200 + 12000 = 26200(k = 3) \\ m[2,4] + m[5,5] + p_1 p_4 p_5 = 8840 + 0 + 16320 = 25160(k = 4) \end{cases}$$
(12)

$$m[1,5] = \min_{1 \le k < 5} \left\{ m[1,k] + m[k+1,5] + p_0 p_k p_5 \right\}$$
(13)

$$m[1,5] = \min \begin{cases} m[1,1] + m[2,5] + p_0 p_1 p_5 = 0 + 6952 + 19680 = 26632(k=1) \\ m[1,2] + m[3,5] + p_0 p_2 p_5 = 6560 + 5032 + 1968 = 13560 (k=2) \\ m[1,3] + m[4,5] + p_0 p_3 p_5 = 10660 + 10200 + 12300 = 33160(k=3) \\ m[1,4] + m[5,5] + p_0 p_4 p_5 = 15536 + 0 + 16728 = 32264(k=4) \end{cases}$$

$$(14)$$

Damit ergibt sich nach Aufruf von Opt-Klam(A, s, 1, n) folgende optimale Klammerung: $((A_1)(A_2))((A_3)(A_4))(A_5)$. Mit dieser Klammerung ergeben sich die minimalen Kosten von 13560:

$$A' = A_1 \cdot A_2 \Rightarrow (41 \times 40) - \text{Matrix} \cdot (40 \times 4) - \text{Matrix} = 41 \cdot 40 \cdot 4 = 6560 \quad (41 \times 4) - \text{Matrix}$$
 (15)

$$A'' = A_3 \cdot A_4 \Rightarrow (4 \times 25) \cdot \text{Matrix} \cdot (25 \times 34) \cdot \text{Matrix} = 4 \cdot 25 \cdot 34 = 3400 \quad (4 \times 34) \cdot \text{Matrix}$$
 (16)

$$A''' = A'' \cdot A_5 \Rightarrow (4 \times 34)$$
-Matrix $\cdot (34 \times 12)$ -Matrix $= 4 \cdot 34 \cdot 12 = 1632 \quad (4 \times 12)$ -Matrix (17)

$$A'''' = A' \cdot A''' \Rightarrow (41 \times 4)$$
-Matrix $\cdot (4 \times 12)$ -Matrix $= 41 \cdot 4 \cdot 12 = 1968 \quad (41 \times 12)$ -Matrix (18)

Damit ergeben sich die Gesamtkosten dieser Klammerung mit 6560 + 3400 + 1632 + 1968 = 13560. Rekursion Opt - Klam(A, s, 1, n):

(a) Ende

*: bedeutet Opt - Klam(A, s, 1, n) $X = Opt - Klam(A, s, 1, s[1, 2] = 1) = A_1$ $Y = Opt - Klam(A, s, s[1, 2] + 1 = 2, 2) = A_2$ Return (XY)