GLUE-urbanQuant

Q1: City-Specific Regressions

David Murray-Stoker

Contents

Load Data	2
City-Specific Regressions	3
Set Functions	3
ISC	5
HII	6
Mean NDVI	7
Min NDVI	8
Max NDVI	9
Mean Annual Temperature	10
Temperature Seasonality	11
Range Annual Temperature	12
Annual Precipitation	13
Precipitation Seasonality	14
	15
GDP 2005	16
SSP1 2030	17
SSP1 2100	18
SSP2 2030	19
SSP2 2100	20
SSP5 2030	21
SSP5 2100	22
Summaries	23
Data Management	$\frac{1}{23}$
	25
Export the Results	29
Workspace Information	30
References	31

Load Data

City-Specific Regressions

Set Functions

```
# Fit a linear model with an environmental variable as the response and distance,
# sampling design, and the two-way interaction as predictors.

## Set the function
fit_environmental_variable_by_distance_model <- function(df, response_variable) {
   # Set the response variable
   Response_Variable <- df %>% pull(response_variable)

   ## Fit the linear mixed-effects model
   fitted.regression <- lm(
        Response_Variable ~ Standardized_Distance + Sampling_Design + Standardized_Distance:Sampling_Design
        data = df
   )
   return(fitted.regression)
}</pre>
```

```
# Extract and format the ANOVA table for a fitted environmental
# variable-by-distance model
## Set the function
environmental_variable_by_distance_model_ANOVA <- function(fitted_model) {</pre>
  # ANOVA with Type III sums-of-squares
 regression.anova.table <- Anova(
   mod = fitted_model,
   type = "III"
  )
  # Format the ANOVA table for later data summaries
  formatted.regression.anova.table <- regression.anova.table %>%
   rownames to column(var = "Term") %>%
   select("Term", "Pr(>F)") %>%
   slice(2:4) %>%
   pivot_wider(names_from = "Term", values_from = "Pr(>F)") %>%
      Distance = Standardized_Distance,
      Distance_by_Sampling_Design = `Standardized_Distance:Sampling_Design`
   ) %>%
   mutate_at(1:3, round, 5)
 return(formatted.regression.anova.table)
}
```

```
# Calculate effect sizes for a fitted environmental variable-by-distance model
## Set the function
environmental_variable_by_distance_model_effect_sizes <- function(fitted_model) {</pre>
  # Get the adjusted R-squared
  regression.R.squared <- summary(fitted_model)$adj.r.squared
  # Effect sizes for the fixed effects
  regression.eta.squared <- eta_squared(fitted_model, partial = TRUE, ci = 0.95)
  # Combine the effect sizes into a summary table
  regression.effect.size.summary.table <- tibble(</pre>
   R2_adjusted = regression.R.squared,
   eta2 Predictor = regression.eta.squared[1, 2],
   eta2_Sampling_Design = regression.eta.squared[2, 2],
   eta2_Interaction = regression.eta.squared[3, 2]
 return(regression.effect.size.summary.table)
# Extract and format predictions (i.e., slopes) for a fitted environmental
# variable-by-distance model.
## Set the function
environmental_variable_by_distance_model_predictions <- function(fitted_model) {</pre>
  # Get the predictions from the fitted regression
 regression.predictions <- emtrends(</pre>
   fitted_model,
   specs = pairwise ~ Sampling_Design,
   var = "Standardized_Distance",
   weights = "cells",
   adjust = "none"
  # Format the model predictions for later data summaries and figures
  formatted.regression.predictions <- regression.predictions $emtrends %%
   as tibble() %>%
   rename(Estimated_Slope = Standardized_Distance.trend) %>%
    select(Sampling_Design:SE)
 return(formatted.regression.predictions)
```

ISC

```
## Fit the regressions
ISC.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "ISC_Mean"
## ANOVA
ISC.regression.ANOVAs <- map_dfr(</pre>
  ISC.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
ISC.regression.effect.sizes <- map_dfr(</pre>
  ISC.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
ISC.regression.predictions <- map_dfr(</pre>
  ISC.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

HII

```
## Fit the regressions
HII.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "HII"
## ANOVA
HII.regression.ANOVAs <- map_dfr(</pre>
 HII.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
HII.regression.effect.sizes <- map_dfr(</pre>
 HII.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
HII.regression.predictions <- map_dfr(</pre>
 HII.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

Mean NDVI

```
## Fit the regressions
mean.NDVI.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "Mean_NDVI"
## ANOVA
mean.NDVI.regression.ANOVAs <- map_dfr(</pre>
  mean.NDVI.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
mean.NDVI.regression.effect.sizes <- map_dfr(</pre>
  mean.NDVI.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
mean.NDVI.regression.predictions <- map_dfr(</pre>
  mean.NDVI.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

Min NDVI

```
## Fit the regressions
min.NDVI.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "Min_NDVI"
## ANOVA
min.NDVI.regression.ANOVAs <- map_dfr(</pre>
  min.NDVI.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
min.NDVI.regression.effect.sizes <- map_dfr(</pre>
  min.NDVI.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
min.NDVI.regression.predictions <- map_dfr(</pre>
  min.NDVI.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

Max NDVI

```
## Fit the regressions
max.NDVI.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "Max_NDVI"
## ANOVA
max.NDVI.regression.ANOVAs <- map_dfr(</pre>
  max.NDVI.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
max.NDVI.regression.effect.sizes <- map_dfr(</pre>
  max.NDVI.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
max.NDVI.regression.predictions <- map_dfr(</pre>
  max.NDVI.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

Mean Annual Temperature

```
## Fit the regressions
mean.annual.temperature.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "Mean_Annual_Temperature"
## ANOVA
mean.annual.temperature.regression.ANOVAs <- map_dfr(</pre>
  mean.annual.temperature.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
mean.annual.temperature.regression.effect.sizes <- map_dfr(</pre>
  mean.annual.temperature.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
mean.annual.temperature.regression.predictions <- map_dfr(</pre>
  mean.annual.temperature.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

Temperature Seasonality

```
## Fit the regressions
temperature.seasonality.regression.list <- map(</pre>
  city.specific.data.list,
 fit_environmental_variable_by_distance_model,
 response_variable = "Temperature_Seasonality"
## ANOVA
temperature.seasonality.regression.ANOVAs <- map_dfr(</pre>
 temperature.seasonality.regression.list,
  environmental_variable_by_distance_model_ANOVA
 add_column(City = names(city.specific.data.list))
## Effect sizes
temperature.seasonality.regression.effect.sizes <- map_dfr(</pre>
 temperature.seasonality.regression.list,
 environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
temperature.seasonality.regression.predictions <- map_dfr(</pre>
  temperature.seasonality.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
 add_column(City = rep(names(city.specific.data.list), each = 4))
```

Range Annual Temperature

```
## Fit the regressions
range.annual.temperature.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "Range_Annual_Temperature"
## ANOVA
range.annual.temperature.regression.ANOVAs <- map_dfr(</pre>
  range.annual.temperature.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
range.annual.temperature.regression.effect.sizes <- map_dfr(</pre>
  range.annual.temperature.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
range.annual.temperature.regression.predictions <- map_dfr(</pre>
  range.annual.temperature.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

Annual Precipitation

```
## Fit the regressions
annual.precipitation.regression.list <- map(</pre>
  city.specific.data.list,
 fit_environmental_variable_by_distance_model,
 response_variable = "Annual_Precipitation"
## ANOVA
annual.precipitation.regression.ANOVAs <- map_dfr(</pre>
  annual.precipitation.regression.list,
  environmental_variable_by_distance_model_ANOVA
 add_column(City = names(city.specific.data.list))
## Effect sizes
annual.precipitation.regression.effect.sizes <- map_dfr(</pre>
 annual.precipitation.regression.list,
 environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
annual.precipitation.regression.predictions <- map_dfr(</pre>
  annual.precipitation.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
 add_column(City = rep(names(city.specific.data.list), each = 4))
```

Precipitation Seasonality

```
## Fit the regressions
precipitation.seasonality.regression.list <- map(</pre>
  city.specific.data.list,
 fit_environmental_variable_by_distance_model,
 response_variable = "Precipitation_Seasonality"
## ANOVA
precipitation.seasonality.regression.ANOVAs <- map_dfr(</pre>
 precipitation.seasonality.regression.list,
 environmental_variable_by_distance_model_ANOVA
 add_column(City = names(city.specific.data.list))
## Effect sizes
precipitation.seasonality.regression.effect.sizes <- map_dfr(</pre>
 precipitation.seasonality.regression.list,
 environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
precipitation.seasonality.regression.predictions <- map_dfr(</pre>
 precipitation.seasonality.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
 add_column(City = rep(names(city.specific.data.list), each = 4))
```

Aridity Index

```
## Fit the regressions
aridity.index.regression.list <- map(</pre>
  city.specific.data.list,
 fit_environmental_variable_by_distance_model,
 response_variable = "Aridity_Index"
## ANOVA
aridity.index.regression.ANOVAs <- map_dfr(</pre>
  aridity.index.regression.list,
  environmental_variable_by_distance_model_ANOVA
 add_column(City = names(city.specific.data.list))
## Effect sizes
aridity.index.regression.effect.sizes <- map_dfr(</pre>
 aridity.index.regression.list,
 environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
aridity.index.regression.predictions <- map_dfr(</pre>
  aridity.index.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(
    City = c(
      rep(names(city.specific.data.list[1:135]), each = 4), rep(names(city.specific.data.list[136]), ea
    )
 )
```

GDP 2005

```
## Fit the regressions
GDP.2005.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "GDP_2005"
## ANOVA
GDP.2005.regression.ANOVAs <- map_dfr(</pre>
 GDP.2005.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
GDP.2005.regression.effect.sizes <- map_dfr(</pre>
 GDP.2005.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
GDP.2005.regression.predictions <- map_dfr(</pre>
  GDP.2005.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

SSP1 2030

```
## Fit the regressions
SSP1.2030.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "SSP_1_2030"
## ANOVA
SSP1.2030.regression.ANOVAs <- map_dfr(</pre>
  SSP1.2030.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
SSP1.2030.regression.effect.sizes <- map_dfr(
  SSP1.2030.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
SSP1.2030.regression.predictions <- map_dfr(
  SSP1.2030.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

SSP1 2100

```
## Fit the regressions
SSP1.2100.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "SSP_1_2100"
## ANOVA
SSP1.2100.regression.ANOVAs <- map_dfr(
  SSP1.2100.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
SSP1.2100.regression.effect.sizes <- map_dfr(
  SSP1.2100.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
SSP1.2100.regression.predictions <- map_dfr(</pre>
  SSP1.2100.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

SSP2 2030

```
## Fit the regressions
SSP2.2030.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "SSP_2_2030"
## ANOVA
SSP2.2030.regression.ANOVAs <- map_dfr(</pre>
  SSP2.2030.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
SSP2.2030.regression.effect.sizes <- map_dfr(
  SSP2.2030.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
SSP2.2030.regression.predictions <- map_dfr(
  SSP2.2030.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

SSP2 2100

```
## Fit the regressions
SSP2.2100.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "SSP_2_2100"
## ANOVA
SSP2.2100.regression.ANOVAs <- map_dfr(</pre>
  SSP2.2100.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
SSP2.2100.regression.effect.sizes <- map_dfr(</pre>
  SSP2.2100.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
SSP2.2100.regression.predictions <- map_dfr(</pre>
  SSP2.2100.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
 add_column(City = rep(names(city.specific.data.list), each = 4))
```

SSP5 2030

```
## Fit the regressions
SSP5.2030.regression.list <- map(
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "SSP_5_2030"
## ANOVA
SSP5.2030.regression.ANOVAs <- map_dfr(
  SSP5.2030.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
SSP5.2030.regression.effect.sizes <- map_dfr(
  SSP5.2030.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
SSP5.2030.regression.predictions <- map_dfr(
  SSP5.2030.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
  add_column(City = rep(names(city.specific.data.list), each = 4))
```

SSP5 2100

```
## Fit the regressions
SSP5.2100.regression.list <- map(</pre>
  city.specific.data.list,
  fit_environmental_variable_by_distance_model,
  response_variable = "SSP_5_2100"
## ANOVA
SSP5.2100.regression.ANOVAs <- map_dfr(
  SSP5.2100.regression.list,
  environmental_variable_by_distance_model_ANOVA
  add_column(City = names(city.specific.data.list))
## Effect sizes
SSP5.2100.regression.effect.sizes <- map_dfr(
  SSP5.2100.regression.list,
  environmental_variable_by_distance_model_effect_sizes
  add_column(City = names(city.specific.data.list))
## Predictions
SSP5.2100.regression.predictions <- map_dfr(
  SSP5.2100.regression.list,
  environmental_variable_by_distance_model_predictions
) %>%
 add_column(City = rep(names(city.specific.data.list), each = 4))
```

Summaries

Data Management

```
## Combine all ANOVA tables
combined.ANOVA.table <- bind rows(</pre>
  ISC.regression.ANOVAs, HII.regression.ANOVAs, mean.NDVI.regression.ANOVAs,
  mean.annual.temperature.regression.ANOVAs, temperature.seasonality.regression.ANOVAs,
  range.annual.temperature.regression.ANOVAs, annual.precipitation.regression.ANOVAs,
  precipitation.seasonality.regression.ANOVAs, aridity.index.regression.ANOVAs,
  GDP.2005.regression.ANOVAs, SSP1.2030.regression.ANOVAs,
  SSP1.2100.regression.ANOVAs, SSP2.2030.regression.ANOVAs,
  SSP2.2100.regression.ANOVAs, SSP5.2030.regression.ANOVAs,
  SSP5.2100.regression.ANOVAs
) %>%
  add column(
   urban_environmental_variable = rep(
      c(
        "ISC", "HII", "Mean_NDVI", "Mean_Annual_Temperature",
        "Temperature Seasonality", "Range Annual Temperature",
        "Annual Precipitation", "Precipitation Seasonality",
        "Aridity_Index", "GDP_2005", "SSP_1_2030", "SSP_1_2100",
        "SSP_2_2030", "SSP_2_2100", "SSP_5_2030", "SSP_5_2100"
     ),
      each = 136
  )
## Combine all effect size tables
combined.effect.size.table <- bind_rows(</pre>
  ISC.regression.effect.sizes, HII.regression.effect.sizes, mean.NDVI.regression.effect.sizes,
  mean.annual.temperature.regression.effect.sizes, temperature.seasonality.regression.effect.sizes,
  range.annual.temperature.regression.effect.sizes, annual.precipitation.regression.effect.sizes,
  precipitation.seasonality.regression.effect.sizes, aridity.index.regression.effect.sizes,
  GDP.2005.regression.effect.sizes, SSP1.2030.regression.effect.sizes,
  SSP1.2100.regression.effect.sizes, SSP2.2030.regression.effect.sizes,
  SSP2.2100.regression.effect.sizes, SSP5.2030.regression.effect.sizes,
  SSP5.2100.regression.effect.sizes
) %>%
  add column(
    urban_environmental_variable = rep(
      c(
        "ISC", "HII", "Mean_NDVI", "Mean_Annual_Temperature",
        "Temperature_Seasonality", "Range_Annual_Temperature",
        "Annual_Precipitation", "Precipitation_Seasonality",
        "Aridity_Index", "GDP_2005", "SSP_1_2030", "SSP_1_2100",
        "SSP_2_2030", "SSP_2_2100", "SSP_5_2030", "SSP_5_2100"
      ),
      each = 136
   )
  )
## Combine ANOVA and effect size tables
full.regression.results <- combined.ANOVA.table %>%
```

```
full_join(combined.effect.size.table, by = c("City", "urban_environmental_variable")) %>%
select(
   City, urban_environmental_variable, Distance:Distance_by_Sampling_Design,
   eta2_Predictor:eta2_Interaction, R2_adjusted
)
```

Summary Tables

Table 1: Percent of models with P-values below specific thresholds for the distance term. Total number of models = 136.

urban_environmental_variable	P < 0.001	P < 0.025	P < 0.050	P < 0.100	P < 0.250
Annual_Precipitation	45.588	66.176	71.324	76.471	83.824
Aridity_Index	47.059	63.971	70.588	72.059	80.882
GDP_2005	94.118	96.324	97.794	98.529	99.265
HII	69.118	82.353	83.824	86.029	89.706
ISC	90.441	93.382	93.382	94.118	96.324
Mean_Annual_Temperature	74.265	83.824	86.029	88.235	88.971
Mean_NDVI	79.412	84.559	86.765	90.441	93.382
Precipitation_Seasonality	48.529	63.235	69.853	75.000	80.882
Range_Annual_Temperature	54.412	69.853	72.059	75.000	83.824
SSP_1_2030	90.441	94.853	97.059	97.794	98.529
SSP_1_2100	90.441	94.118	97.059	97.794	98.529
SSP_2_2030	90.441	94.853	97.059	97.794	98.529
SSP_2_2100	90.441	94.118	97.059	97.794	98.529
SSP_5_2030	90.441	94.853	97.059	97.794	98.529
SSP_5_2100	90.441	94.118	97.794	97.794	98.529
Temperature_Seasonality	55.882	71.324	72.794	77.941	83.088

Table 2: Percent of models with P-values below specific thresholds for the sample type term. Total number of models = 136.

urban_environmental_variable	P < 0.001	P < 0.025	P < 0.050	P < 0.100	P < 0.250
Annual_Precipitation	5.882	13.235	16.912	26.471	41.176
Aridity_Index	9.559	20.588	25.735	31.618	45.588
GDP_2005	56.618	80.147	83.088	88.971	94.118
HII	5.147	17.647	24.265	33.088	50.000
ISC	52.206	69.853	75.735	81.618	91.912
Mean_Annual_Temperature	5.882	24.265	31.618	41.176	50.735
Mean_NDVI	33.088	52.941	60.294	67.647	80.882
Precipitation_Seasonality	3.676	8.824	15.441	22.059	33.088
Range_Annual_Temperature	10.294	24.265	30.147	34.559	52.206
SSP_1_2030	60.294	83.824	85.294	91.176	94.853
SSP_1_2100	60.294	83.824	85.294	91.176	94.853
SSP_2_2030	60.294	83.824	85.294	91.176	94.853
SSP_2_2100	60.294	83.824	85.294	91.176	94.853
SSP_5_2030	60.294	83.824	85.294	91.176	94.853
SSP_5_2100	60.294	83.824	86.029	91.176	94.853
Temperature_Seasonality	6.618	20.588	23.529	30.147	50.000

Table 3: Percent of models with P-values below specific thresholds for the distance-by-sample-type interaction term. Total number of models = 136.

urban_environmental_variable	P < 0.001	P < 0.025	P < 0.050	P < 0.100	P < 0.250
Annual_Precipitation	41.912	58.824	63.235	71.324	83.824
Aridity_Index	35.294	56.618	63.235	69.118	79.412
GDP_2005	43.382	74.265	76.471	86.029	91.176
HII	29.412	53.676	61.029	68.382	79.412
ISC	38.971	58.824	67.647	73.529	85.294
Mean_Annual_Temperature	41.176	60.294	64.706	73.529	80.882
Mean_NDVI	27.206	49.265	58.088	66.176	79.412
Precipitation_Seasonality	30.882	58.088	64.706	69.118	80.882
Range_Annual_Temperature	30.147	52.206	60.294	68.382	75.735
SSP_1_2030	50.735	77.206	80.147	86.765	92.647
SSP_1_2100	51.471	77.206	80.147	86.765	92.647
SSP_2_2030	50.735	77.206	80.147	86.765	92.647
SSP_2_2100	50.735	77.206	80.147	86.765	92.647
SSP_5_2030	50.735	77.206	80.147	86.765	92.647
SSP_5_2100	51.471	77.206	80.147	87.500	92.647
${\bf Temperature_Seasonality}$	32.353	52.941	59.559	66.912	76.471

urban_environmental_variable	Distance_P_Value_Mean	$Sampling_Design_P_Value_Mean$	Interaction_P_Value_Mean	Distance_P_Value_SE San
Annual_Precipitation	0.114	0.416	0.121	0.020
Aridity_Index	0.129	0.371	0.148	0.021
GDP_2005	0.009	0.045	0.061	0.007
HII	0.065	0.347	0.145	0.015
ISC	0.021	0.073	0.122	0.009
Mean_Annual_Temperature	0.066	0.323	0.131	0.016
Mean_NDVI	0.041	0.125	0.145	0.011
Precipitation_Seasonality	0.123	0.451	0.132	0.020
Range_Annual_Temperature	0.116	0.348	0.157	0.021
SSP_1_2030	0.012	0.042	0.047	0.007
SSP_1_2100	0.012	0.041	0.046	0.007
SSP_2_2030	0.012	0.042	0.047	0.007
SSP_2_2100	0.012	0.041	0.046	0.007
SSP_5_2030	0.012	0.042	0.047	0.007
SSP_5_2100	0.013	0.041	0.046	0.008
${\bf Temperature_Seasonality}$	0.115	0.344	0.171	0.020

urban_environmental_variable	Distance_Effect_Size_Mean	$Sampling_Design_Effect_Size_Mean$	Interaction_Effect_Size_Mean	Distance_Effect_Size_
Annual_Precipitation	0.161	0.197	0.105	0.0
Aridity_Index	0.280	0.180	0.098	0.0
GDP_2005	0.431	0.065	0.107	0.0
HII	0.489	0.141	0.089	0.
ISC	0.523	0.114	0.102	0.
Mean_Annual_Temperature	0.505	0.201	0.107	0.0
Mean_NDVI	0.352	0.092	0.077	0.0
Precipitation_Seasonality	0.181	0.174	0.092	0.
Range_Annual_Temperature	0.265	0.173	0.081	0.
SSP_1_2030	0.357	0.057	0.114	0.0
SSP_1_2100	0.357	0.057	0.114	0.0
SSP_2_{2030}	0.357	0.057	0.114	0.
SSP_2_2100	0.357	0.057	0.114	0.
SSP_5_2030	0.357	0.057	0.114	0.
SSP_5_2100	0.357	0.057	0.114	0.
Temperature_Seasonality	0.291	0.169	0.089	0.0

Export the Results

```
## Combined ANOVA and effect size tables
write_csv(
  full.regression.results,
  "data/analysis_data/city_specific_regressions/full_regression_results.csv"
)
```

Workspace Information

Table 6: Packages required for data management and analyses.

Package	Loaded Version	Date
bayestestR	0.13.2	2024-02-12
broom	1.0.5	2023-06-09
car	3.1-2	2023-03-30
carData	3.0-5	2022-01-06
correlation	0.8.4	2023-04-06
datawizard	0.9.1	2023-12-21
dplyr	1.1.4	2023-11-17
easystats	0.7.0	2023 - 11 - 05
effectsize	0.8.6	2023-09-14
emmeans	1.10.0	2024-01-23
forcats	1.0.0	2023-01-29
ggplot2	3.4.4	2023-10-12
insight	0.19.8	2024-01-31
kableExtra	1.4.0	2024-01-24
knitr	1.45	2023-10-30
lubridate	1.9.3	2023-09-27
modelbased	0.8.7	2024-02-15
parameters	0.21.5	2024-02-07
performance	0.10.9	2024-02-17
purrr	1.0.2	2023-08-10
readr	2.1.5	2024-01-10
report	0.5.8	2023-12-07
see	0.8.2	2024-02-14
stringr	1.5.1	2023 - 11 - 14
tibble	3.2.1	2023-03-20
tidyr	1.3.1	2024-01-24
tidyverse	2.0.0	2023-02-22

References