Второй коллоквиум, семестр 4

12 мая 2019 г.

Оглавление

Глава 1

Определения

1.1 Равномерная сходимость несобственного интеграла

Ты проиграл

1.2 Нормальное топологическое пространство

Ты проиграл

1.3 Финитная функция

 $\varphi: \mathbb{R}^m \to \mathbb{R}$. \exists шар $B: \varphi \equiv 0$ вне B. Тогда ϕ — финитная. Множество непрерывных финитных функций обозначаем как $C_0(\mathbb{R}^m)$.

1.4 Гильбертово пространство

 \mathbb{H} — линейное пространство над \mathbb{R} или \mathbb{C} , в котором задано скалярное произведение, и полное относительно соответствуйющей нормы, называется Γ ильбертовым.

1.5 Ортогональный ряд

 $x_k \in \mathbb{H}, \sum x_k$ называется ортогональным рядом, если $\forall k, l : k \neq l : x_k \bot x_l$.

1.6 Сходящийся ряд в Гильбертовом пространстве

 $x_n \in \mathbb{H}$.

 $\sum x_n$ сходится к x, если

$$S_n := \sum_{k=1}^n x_k, \, S_n \to x \, \text{(то есть, } |S_n - x| \to 0 - \text{сходимость по норме)}.$$

1.7 Ортогональная система (семейство) векторов

 $\{e_k\}\in\mathbb{H}$ - ортогональное семейство векторов, если $\forall k\neq l\ e_k\bot e_l,\,\forall k\ e_k\neq 0.$

1.8 Ортонормированная система

 $\{e_k\} \in \mathbb{H}$ - ортонормированное семейство векторов, если e_k — ортогональное семейство векторов, и $\forall k \ |e_k| = 1$.

1.9 Коффициенты Фурье

 $\{e_k\}$ - ортогональное семейство векторов в $\mathbb{H}, x \in \mathbb{H}.$

 $c_k(x) = \frac{\langle x, e_k \rangle}{|e_k|^2}$ называются коэффициентами Фурье вектора x по ортогональной системе $\{e_k\}$.

1.10 Ряд Фурье в Гильбертовом пространстве

 $\sum c_k(x) \cdot e_k$ называется рядом Фурье вектора x по ортогональной системе $\{e_k\}$.

1.11 Базис, полная, замкнутая ОС

 $\{e_k\}$ — ортогональная система в \mathbb{H} .

1.
$$\{e_k\}$$
 — базис, если $\forall x \in \mathbb{H} \; \exists c_k$, что $x = \sum_{k=1}^{+\infty} c_k \cdot e_k$

2.
$$\{e_k\}$$
 — полная О.С., если $(\forall k \ z \perp e_k) \Rightarrow z = 0$.

3.
$$\{e_k\}$$
 — замкнутая О.С., если $\forall x \in \mathbb{H} \sum_{k=1}^{+\infty} |c_k(x)|^2 \cdot ||e_k||^2 = ||x||^2$.

1.12 Измеримое множество на элементарной двумерной поверхности в \mathbb{R}^3

 $M\subset R^3$ — простое 2-мерное многообразие, C^1 гладкости. $\phi: \underset{\text{откр. обл.}}{O}\subset R^2\to R^3,\,\phi\in C^1$ — гомеофорфизм, $\phi(O)=M$ $E\subset M$ — изм. по Лебегу, если $\phi^{-1}(E)$ — изм. по Лебегу в R^2

1.13 Мера Лебега на простой двумерной поверхности в \mathbb{R}^3

 $S(E):=\iint\limits_{\phi^{-1}(E)}|\phi'_u imes\phi'_v|dudv$ — взвеш. образ меры Лебега отн. ϕ . Значит это мера на \mathbb{A}_M

1.14 Поверхностный интеграл первого рода

M — простое, гл, 2-мерное в R^3 , ϕ — параметризация f — изм. отн. S (см. выше), f>0 (или f — суммируем. по S) — Тогда: $\int_M f dS$ — называет инт. первого рода функ. f по поверхности M

1.15 Кусочно-гладкая поверхность в \mathbb{R}^3

 $M\subset\mathbb{R}^3$ называется кусочно-гладкой, если M представляет собой объединение:

- конечного числа простых гладких поверхностей
- конечного числа простых гладких дуг
- конечного числа точек

1.16 Тригонометрический ряд

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

(где a_i, b_i – коэффициенты ряда).

• Другая форма:

$$\sum_{k=\mathbb{Z}} c_k e^{ikx}$$

Тогда
$$S_n := \sum_{k=-N}^N c_k e^{ikx}$$
.

1.17 Коэффициенты Фурье функции

•

$$a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \ dx$$

•

$$b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \ dx$$

•

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

1.18 Класс Липшица с константой M и показателем альфа

Ты проиграл

1.19 Сторона поверхности

Сторона (простой) гладкой двумерной поверхности — непрерывное поле единичных нормалей. Поверхность, для которой существует сторона, называется двусторонней. Если же стороны не существует, она называется односторонней.

1.20 Задание стороны поверхности с помощью касательных реперов

 F_1, F_2 – два касательных векторных поля к поверхности M.

 $\forall p \in M \quad F_1(p), F_2(p) - \Pi.H.3.$ касательные векторы.

Тогда поле нормалей стороны определяется, как $n:=F_1\times F_2$

Репе́р - пара векторов из $F_1 \times F_2$.

1.21 Интеграл II рода

M — простая гладкая двусторонняя двумерная поверхность в \mathbb{R}^3 .

 n_0 — фиксированная сторона (одна из двух).

 $F: M \to \mathbb{R}^3$ – векторное поле.

 $\underline{\text{Тогда}}$ интегралом II рода назовем $\int\limits_{M}\langle F,n_{0}\rangle ds$ Замечания

- 1. Смена стороны эквивалентна смене знака.
- 2. Не зависит от параметризации.
- 3. F = (P, Q, R).

Тогда интеграл имеет вид $\iint Pdydz + Qdzdx + Rdxdy$.

 $\underline{\text{NB:}}\ Qdxdz = -Qdzdx.$

1.22 Ориентация контура, согласованная со стороной поверхности

Ориентация контура согласована со стороной поверхности, если она задает эту сторону.

<u>Пояснение</u>: Рассмотрим некоторый контур (замкнутую петлю) и точку на нем. Построим два касательных вектора к контуру в этой точке: первый — снаружи от контура (задает направление «движения» по петле), второй — внутри контура. Тогда будем называть такую ориентацию согласованной со стороной, если направление векторного произведения первого и второго векторов в точке совпадает с направлением нормали к поверхности.

1.23 Ядро Дирихле, ядро Фейера

1.23.1 Ядро Дирихле

$$D_n(t) = \frac{1}{\pi} (\frac{1}{2} + \sum_{k=1}^n \cos kt)$$

1.23.2 Ядро Фейера

$$\Phi_n(t) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(t)$$

1.24 Свертка

 $f,K \in L_1[-\pi,\pi]$ – пеорид.

$$(f * K)(x) = \int_{-\pi}^{\pi} f(x - t)K(t)dt$$

1.25 Аппроксимативная единица. (а. е.)

Пояснения: нужна 1-ца по свертке, но это не совсем функция, поэтому зададим её как предел последовательности.

 $D\subset R, h_0$ – предельная точка D в \overline{R} , тогда $\{K_h\}_{h\in D}$ – а. е. если:

AE1:
$$\forall h \in D \ K_h \in L_1[-\pi, \pi] \int_{-\pi}^{\pi} K_h = 1$$

AE2:
$$\exists M \ \forall h \ \int_{-\pi}^{\pi} |K_h| \leq M$$

АЕЗ:
$$\forall \delta \in (0,\pi) \int_{E_{\delta}} |K_h| \underset{h \to h_0}{\longrightarrow} 0$$
, где $E_{\delta} = [-\pi,\pi] \setminus [h_0 - \delta, h_0 + \delta]$

1.26 Усиленная аппроксимативная единица.

Изменяем свойство АЕЗ, на АЕЗ':

$$\forall h \ K_h \in L_{\infty}[-\pi, \pi]; \ \forall \delta \in (0, \pi) \ \ \underset{t \in E_{\delta}}{\operatorname{ess \, sup}} \left| K_h(t) \right| \underset{h \to h_0}{\longrightarrow} 0$$

1.27 Метод суммирования средними арифметиче-

$$\sum a_n = \lim_{n \to \infty} \frac{1}{n+1} \cdot \sum_{k=0}^n S_k$$

1.28 Суммы Фейера.

$$\sigma_n = \frac{1}{n+1} \sum_{k=0}^{n} S_k(f(x)) = \int_{-\pi}^{\pi} f(x-t) \Phi_n(t) dt$$

1.29 Ротор, дивергенция векторного поля

F=(P,Q,R) — векторное поле в \mathbb{R}^3 . $rot\ F=(R'_y-Q'_z,P'_z-R'_x,Q'_x-P'_y)$ — ротор, вихрь $div\ F=P'_x+Q'_y+R'_z$. Многомерный случай определяется аналогично.

1.30 Соленоидальное векторное поле

Векторное поле A — соленоидальное, если \exists векторное поле B : rot B = A. Тогда B называется векторным потенциалом поля A.

1.31 Бескоординатное определение ротора и дивергенции

 $rot\ F$ — это такое векторное поле, что $\forall a\ \forall n_0(rotF(a))_{n_0}=\lim_{r\to 0}\frac{1}{\pi r^2}\int\limits_{\partial B_r}F_ldl$ где B_r — круговой контур, n_0 — нормаль контура, F_l — проекция на касательное направление контура.

Пояснение:
$$\frac{1}{\pi r^2} \int\limits_{\partial B_r} F_l dl = \frac{1}{\pi r^2} \iint\limits_{B_r} \langle rot \ F, n_0 \rangle dS \underset{r \approx 0}{\approx} rot F(a)$$
$$div F(a) = \lim_{r \to 0} \frac{1}{\lambda_3(B(a,r))} \iiint\limits_{B(a,r)} div F \, dx \, dy \, dz = \lim_{r \to 0} \frac{1}{\lambda_3(B(a,r))} \iint\limits_{\partial B(a,r)} \langle F, n_0 \rangle dS$$