Исследование подходов для построения векторных представлений текстов в задаче сопоставления вакансий и резюме

Петрова Александра, 417 группа

Происхождение задачи

Задача сопоставления вакансий и резюме связана с необходимостью выбора работодателями кандидатов на основе большого количества резюме.

Актуальность задачи

Задача стала особенно актуальной с развитием интернет-платформ для поиска работы, где количество резюме может быть значительным. Работодатели сталкиваются с проблемой переполнения информации и неэффективного использования времени на поиск подходящих кандидатов.

Формальная постановка задачи

Пусть есть выборка вакансий V и резюме R, множество $\{\mathbf{R}_v\}_{v=1}^l$, где \mathbf{R}_v — множество релевантных резюме для вакансии v

The Π_v — Minorectibo periebantinos pesione him bakancini v

Необходимо построить отображение $S\colon V o L^n,\, L^n$ — множество упорядоченных списков резюме из R длины n

Такое что:
$$MAP@n = rac{1}{l} \, \sum_{v=1}^l AP_v@n = rac{1}{l} \sum_{v=1}^l rac{1}{|R_v|} \sum_{k=1}^n I[L_v^n[k] \, \in R_v] \, P_v@k \, o \, \, \max_S,$$

где
$$P_v@k=rac{\left|L_v^k\cap R_v
ight|}{k},\,L_v^n$$
 — упорядоченный список резюме для вакансии v длины n

Обзор существующих методов

Job Recommendation Systems (JRS):

- Контентно-ориентированные системы (Content-Based JRS)
- Системы коллаборативной фильтрации (Collaborative Filtering JRS)
- Гибридные системы (Hybrid JRS)
- Системы на основе знаний (Knowledge-Based JRS)

В докладе будут рассматриваться методы, которые используют семантическое понимание и общий контекст, а не полагается на исторические данные или взаимодействия

Данные

- Данные: набор вакансий и резюме на русском языке, предоставленный HRотделом компании ACD/Labs.
- Для каждой вакансии известен перечень резюме кандидатов, приглашенных на собеседование. В выборке отсутствуют резюме, не связанные с конкретными вакансиями, и каждое резюме привязано к единственной вакансии
- Синтетические данные включают в себя пары соответствующих друг другу вакансий и резюме

Количество резюме	Количество вакансий	Описание
1	1	1 вакансия - 1 резюме
2	2	1 вакансия - 2 резюме
3	1	1 вакансия - 3 резюме
4	2	1 вакансия - 4 резюме
5	1	1 вакансия - 5 резюме
8	1	1 вакансия - 8 резюме
9	1	1 вакансия - 9 резюме
11	2	1 вакансия - 11 резюме
13	2	1 вакансия - 13 резюме
17	1	1 вакансия - 17 резюме
90	13	Total

Таблица 1: Распределение вакансий по количеству резюме

Метод решения

- 1. Предобработка текста, токенизация
- 2. Получение векторных представлений текстов с помощью моделей на архитектуре Transformer
- 3. Ранжирование на основе cosine similarity
- 4. Оценка качества: МАР@К

$$AP_v@K = \frac{1}{|R_v|} \sum_{k=1}^{K} 1 \left[L_v^K[k] \in R_v \right] P_v@k$$

$$similarity(A,B) = \frac{A \cdot B}{\|A\| \times \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Выбор моделей

Model	Parameters	Layers	Languages
bert-base-multilingual-cased	110M	12	104
bert-base-ru-cased	110M	12	Russian
paraphrase-MiniLM-L6-v2	22M	6	Multilingual
rugpt2large	774M	48	Russian
rugpt3large	760M	96	Russian
text-embedding-ada-002	-	-	Multilingual

Результаты экспериментов

	Random	BERT multilingual	BERT Russian	RuGPT2 Large	RuGPT3 Large	MiniLM	text-embeddi ng-ada-002
MAP@10	0.03	0.1	0.11	0.11	0.13	0.41	0.58
MAP@20	0.04	0.13	0.15	0.14	0.15	0.44	0.66

Линейное преобразование

- Эмбеддер: text-embedding-ada-002
- Вектора вакансий и резюме попадают в разные области общего векторного пространства
- Для проверки наличия разрыва: максимальное среднее расхождение (MMD)
- Для сокращения разрыва: полносвязный линейный слой: матрица W размера nxn, где n размерность векторов вакансий и резюме (нулевое смещение)

$$X,Y$$
 such that $k(X,Y)=\langle\phi(X),\phi(Y)
angle_{\mathcal{F}}$ $\mu_p\left(\phi(X)
ight)=\left[E[\phi(X_1],\cdots,E[\phi(X_m]]^T
ight. \ MMD^2(P,Q)=\|\mu_P-\mu_Q\|_{\mathcal{F}}^2 \ MMD^2(P,Q)=E_P\left[k(X,X)
ight]-2E_{P,Q}\left[k(X,Y)
ight]+E_Q\left[k(Y,Y)
ight]$

	MMD
(вакансии, резюме)	0.087
(вакансии, вакансии)	0.003
(резюме, резюме)	0.002

	MMD
(вакансии, резюме)	0.003
(вакансии, вакансии)	0.003
(резюме, резюме)	0.002

Fine-tuning

Fine-tuning Sentence-Transformer:

- 1. Сразу получаем вектор всего текста при помощи Sentence-Transformer
- 2. Сравниваем эмбеддинги (косинусное сходство).
- 3. Обучение через MultipleNegativesRankingLoss

$$Loss = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(\operatorname{sim}(\mathbf{u}_i, \mathbf{v}_i))}{\sum_{j=1}^{N} \exp(\operatorname{sim}(\mathbf{u}_i, \mathbf{v}_j))}$$

Результаты экспериментов

	MiniLM	MiniLM (fine-tuning)	text-embedding- ada-002	text-embedding- ada-002 (linear transformation)
MAP@10	0.24	0.91	0.9	0.95
MAP@20	0.25	0.91	0.9	0.95

Выводы

- Были рассмотрены разные архитектуры моделей из семейства Transformer в качестве эмбеддеров и предложены методы для улучшения качества сопоставления.
- Базовые BERT и GPT продемонстрировали схожие показатели качества, однако BERT содержит меньше параметров и более эффективен для использования.
- Sentence Transformer превзошел базовые трансформеры, обеспечив более высокие результаты. Это объясняется его адаптацией для задач сравнения текстов, таких как семантическое сходство, благодаря обучению на парах предложений.
- Moдель text-embedding-ada-002 продемонстрировала наилучший результат на экспертных данных.
- Линейное преобразование дало улучшение в качестве за счет уменьшения разрыва между областями векторов вакансий и резюме.
- Fine-tuning модели MiniLm из семейства Sentence-Transformer показал улучшение в качестве.
- В дальнейшем, можно рассматривать разные комбинации архитектур и методов.