- (1) The family $(u_k)_{k \in K}$ is a total orthogonal family.
- (2) For every vector $v \in E$, if $(c_k)_{k \in K}$ are the Fourier coefficients of v, then the family $(c_k u_k)_{k \in K}$ is summable and $v = \sum_{k \in K} c_k u_k$.
- (3) For every vector $v \in E$, we have the Parseval identity:

$$||v||^2 = \sum_{k \in K} |c_k|^2.$$

(4) For every vector $u \in E$, if $\langle u, u_k \rangle = 0$ for all $k \in K$, then u = 0. See Figure A.2.

Figure A.2: A schematic illustration of Proposition A.5. Since $(u_k)_{k\in K}$ is a Hilbert basis, V=E. Then given a vector of E, if we form the Fourier coefficients c_k , then form the Fourier series $\sum_{k\in K} c_k u_k$, we are ensured that v is equal to its Fourier series.

Proof. The equivalence of (1), (2), and (3) is an immediate consequence of Proposition A.2 and Proposition A.4.

(4) If $(u_k)_{k\in K}$ is a total orthogonal family and $\langle u, u_k \rangle = 0$ for all $k \in K$, since $u = \sum_{k\in K} c_k u_k$ where $c_k = \langle u, u_k \rangle / \|u_k\|^2$, we have $c_k = 0$ for all $k \in K$, and u = 0.

Conversely, assume that the closure V of $(u_k)_{k\in K}$ is different from E. Then by Proposition 48.7, we have $E=V\oplus V^{\perp}$, where V^{\perp} is the orthogonal complement of V, and V^{\perp} is nontrivial since $V\neq E$. As a consequence, there is some nonnull vector $u\in V^{\perp}$. But then u is orthogonal to every vector in V, and in particular,

$$\langle u, u_k \rangle = 0$$

for all $k \in K$, which, by assumption, implies that u = 0, contradicting the fact that $u \neq 0$.