Course notes from MITx 14.310x Data Analysis for Social Scientists (EdX)

James Solomon-Rounce 2018-09-19

Contents

P	reface	5
1	Module 1: Introduction to the Course 1.1 Introduction to R	7 7
2	Module 2: Fundamentals of Probability, Random Variables, Joint Distributions + Col-	
	lecting Data	11
	2.1 Fundamentals of Probability	11

4 CONTENTS

Preface

The following notes were taken by me for educational, non-commercial, purposes. If you find the information useful, buy the material/take the course.

Thank you to the original content providers. Additional ramblings are my own.

Core Resources

- Course Schedule
- Grading and Homework Policy
- Honor Code and Collaboration Guide
- Notes OLS Derivation
- Notes Matrix Notation
- R Studio Cheatsheets
- R for Data Science Book

6 CONTENTS

Chapter 1

Module 1: Introduction to the Course

Module Sections:

- Welcome to the Course
- Introduction to R
- Introductory Lecture Data is Beautiful, Insightful, Powerful, Deceitful
- Finger Exercises
- Module 1: Homework

Module Content:

- Module 1 Slides
- Homework 1 Background Paper The Persistent Effects Of Peru's Mining Mita
- R Instructions
- Intro to R Zip File
- Citations Data for Homework 1

1.1 Introduction to R

First we setup the environment and install the course files

```
library(swirl)
install_course_zip("./files/M1/14_310x_Intro_to_R_.zip",multi=FALSE)
swirl()
```

IF z is a three number vector e.g.

```
z <- c(1.1, 9, 3.14)
```

If we take the square root of z - 1 and assign it to a new variable called my_sqrt e.g.

```
my_sqrt <- sqrt(z - 1)</pre>
```

The result is a vector of length three e.g.

```
my_sqrt
```

```
## [1] 0.3162278 2.8284271 1.4628739
```

Next, if we create a new variable called my_div that gets the value of z divided by my_sqrt.

```
my_div <- z / my_sqrt</pre>
```

The first element of my_div is equal to the first element of z divided by the first element of my_sqrt, and so on...

```
my_div
```

```
## [1] 3.478505 3.181981 2.146460
```

When given two vectors of the same length, R simply performs the specified arithmetic operation (+, -, *, etc.) element-by-element. If the vectors are of different lengths, R 'recycles' the shorter vector until it is the same length as the longer vector.

If the length of the shorter vector does not divide evenly into the length of the longer vector, R will still apply the 'recycling' method, but will throw a warning.

```
c(1, 2, 3, 4) + c(0, 10, 100)
## Warning in c(1, 2, 3, 4) + c(0, 10, 100): longer object length is not a
## multiple of shorter object length
## [1] 1 12 103 4
```

1.1.1 Module 1 Homework

lcites = col_double()

##

This is a sample of some of the homework answers. Some questions were observational or required interpretation of maps for example, as such these are not included here.

```
library(tidyverse)
```

```
## -- Attaching packages ------ tidyverse 1.2.1 --
## v ggplot2 3.0.0
                     v purrr
                               0.2.5
## v tibble 1.4.2
                      v dplyr
                               0.7.6
## v tidyr
          0.8.1
                     v stringr 1.3.1
                    v forcats 0.3.0
## v readr
           1.1.1
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
papers <- as_tibble(read_csv("./files/M1/CitesforSara.csv"))</pre>
## Parsed with column specification:
## cols(
##
    .default = col_integer(),
##
    journal = col_character(),
##
    title = col_character(),
    au1 = col_character(),
##
##
    au2 = col_character(),
##
    au3 = col_character(),
    past5 = col_double(),
##
    aflpn90 = col_double(),
##
    aulpn90 = col_double(),
##
##
    aulpn80 = col_double(),
    aulpn70 = col_double(),
##
```

4 Econom~

5 Econom~

6 Econom~ 1971

7 Econom~ 1972

8 Econom~ 1972

1971

1971

##

##

##

```
## )
## See spec(...) for full column specifications.
Q. 19 Let's take a look at some of the most popular papers. Using the filter() method, how many records
exist where there are greater than or equal to 100 citations?
#First lets look at our data
head(papers)
## # A tibble: 6 x 22
##
     journal year cites title au1
                                                  female1 female2 female3 page
                                      au2
                                            au3
             <int> <int> <chr> <chr> <chr> <chr>
                                                    <int>
                                                            <int>
                                                                     <int> <int>
                      31 Jeux~ Kanb~ Keen~ <NA>
## 1 Americ~ 1993
                                                        0
                                                                0
                                                                        NA
                                                                              16
## 2 Americ~ 1993
                       4 Chan~ Jame~ <NA>
                                            <NA>
                                                        0
                                                                        NA
                                                                              22
                                                               NΑ
                      28 Fact~ Bert~ <NA> <NA>
## 3 Americ~ 1993
                                                        0
                                                               NA
                                                                        NA
                                                                              15
## 4 Americ~ 1993
                      10 Stra~ Garf~ Oh, -~ <NA>
                                                        1
                                                                0
                                                                        NA
                                                                              19
## 5 Americ~ 1993
                       5 Will~ Coat~ Lour~ <NA>
                                                        0
                                                                 0
                                                                        NA
                                                                              21
## 6 Americ~ 1993
                      21 Merg~ Kim,~ Sing~ <NA>
                                                        0
                                                                        NA
                                                                              21
## # ... with 11 more variables: order <int>, nauthor <int>, past5 <dbl>,
       aflpn90 <dbl>, spage <int>, field <int>, subfld <int>, aulpn90 <dbl>,
       aulpn80 <dbl>, aulpn70 <dbl>, lcites <dbl>
arrange(papers,desc(cites), title)
## # A tibble: 4,182 x 22
##
      journal year cites title au1
                                       au2
                                             au3
                                                   female1 female2 female3
##
              <int> <int> <chr> <chr> <chr> <chr>
      <chr>
                                                     <int>
                                                             <int>
                                                                      <int>
               1980 2251 A He~ Whit~ <NA> <NA>
   1 Econom~
                                                         0
                                                                NA
                                                                         NΑ
  2 Econom~ 1979 2227 Pros~ Kahn~ Tver~ <NA>
##
                                                         0
                                                                 0
                                                                         NΑ
  3 Econom~ 1987 2164 Co-i~ Engl~ Gran~ <NA>
                                                         0
                                                                 0
                                                                         NΑ
##
   4 Econom~ 1979 1602 Samp~ Heck~ <NA>
                                             <NA>
                                                         0
                                                                NA
                                                                         NA
   5 Econom~ 1978 1217 Spec~ Haus~ <NA>
                                             <NA>
                                                         0
                                                                NA
                                                                         NA
  6 Econom~ 1982 1077 Auto~ Engl~ <NA>
                                             <NA>
                                                         0
                                                                NA
                                                                         NA
  7 Econom~ 1981 1031 Like~ Dick~ Full~ <NA>
                                                         0
                                                                 0
                                                                         NA
                      983 Larg~ Hans~ <NA> <NA>
              1982
## 8 Econom~
                                                         0
                                                                NA
                                                                         NA
## 9 Econom~ 1980
                      864 Macr~ Sims~ <NA> <NA>
                                                         0
                                                                NA
                                                                         NA
## 10 Econom~ 1982
                      563 Time~ Kydl~ Pres~ <NA>
                                                                 0
## # ... with 4,172 more rows, and 12 more variables: page <int>,
       order <int>, nauthor <int>, past5 <dbl>, aflpn90 <dbl>, spage <int>,
       field <int>, subfld <int>, aulpn90 <dbl>, aulpn80 <dbl>,
## #
       aulpn70 <dbl>, lcites <dbl>
papers %>%
 filter(cites >= 100)
## # A tibble: 205 x 22
##
      journal year cites title au1
                                       au2
                                             au3
                                                   female1 female2 female3
              <int> <int> <chr> <chr> <chr> <chr>
##
                                                     <int>
                                                             <int>
                                                                      <int>
##
   1 Americ~
               1994
                      117 Is I~ Pers~ Tabe~ <NA>
                                                         0
                                                                 0
                                                                         NA
##
   2 Econom~
               1971
                      149 Furt~ Nerl~ <NA>
                                             <NA>
                                                         0
                                                                         NA
                                                                NA
                     170 The ~ Madd~ <NA>
   3 Econom~
               1971
                                             <NA>
                                                        NA
                                                                NA
                                                                         NA
```

155 Inve~ Luca~ Pres~ <NA>

164 Meth~ Fair~ Jaff~ <NA>

150 Exis~ Radn~ <NA> <NA>

139 Some~ Crag~ <NA>

108 Iden~ Roth~ <NA>

0

0

0

0

<NA>

<NA>

0

NA

NA

0

NA

NΑ

NΑ

NA

NΑ

NΑ

[1] 2332

```
361 Mani~ Gibb~ <NA> <NA>
## 9 Econom~ 1973
                                                                  NA
## 10 Econom~ 1973
                       107 On a~ Kram~ <NA> <NA>
                                                           0
                                                                  NΑ
                                                                          NΑ
## # ... with 195 more rows, and 12 more variables: page <int>, order <int>,
       nauthor <int>, past5 <dbl>, aflpn90 <dbl>, spage <int>, field <int>,
       subfld <int>, aulpn90 <dbl>, aulpn80 <dbl>, aulpn70 <dbl>,
## #
       lcites <dbl>
Q.20 Use the group_by() function to group papers by journal. How many total citations exist for the journal
"Econometrica"?
papers %>%
  group_by(journal) %>%
  summarise(sum(cites))
## # A tibble: 7 x 2
                                          `sum(cites)`
##
     journal
##
     <chr>>
                                                 <int>
## 1 American-Economic-Review
                                                  3738
## 2 Econometrica
                                                 75789
## 3 Journal-of-Political-Economy
                                                  3398
## 4 Quarterly-Journal-of-Economics
                                                  8844
## 5 Review-of-Economic-Studies
                                                 21937
## 6 Review-of-Economics-and-Statistics
                                                  8473
## 7 <NA>
                                                    14
#or
summarize(group_by
           (papers, journal),
          SumOfCites = sum(cites))
## # A tibble: 7 x 2
                                          SumOfCites
##
     journal
     <chr>
                                               <int>
## 1 American-Economic-Review
                                                3738
## 2 Econometrica
                                               75789
## 3 Journal-of-Political-Economy
                                                3398
## 4 Quarterly-Journal-of-Economics
                                                8844
## 5 Review-of-Economic-Studies
                                               21937
## 6 Review-of-Economics-and-Statistics
                                                8473
## 7 <NA>
                                                  14
Q.21 How many distinct primary authors (au1) exist in this dataset?
papers %>%
  summarise(n_distinct(au1))
## # A tibble: 1 x 1
     `n_distinct(au1)`
##
                  <int>
## 1
                   2332
n_distinct(papers$au1)
```

Chapter 2

Module 2: Fundamentals of Probability, Random Variables, Joint Distributions + Collecting Data

Module Sections:

- Fundamentals of Probability
- Random Variables, Distributions, and Joint Distributions
- Gathering and Collecting Data
- Module 2: Homework

Module Content:

• Module 2 Slides

2.1 Fundamentals of Probability

2.1.1 Set Theory

- A sample space is collection of all possible outcomes
- An event is any collection of outcomes could be one, all or none
- If the outcome is a member of an event, the event is said to have occured
- Event B is said to be contained by A, if all outcomes in B also are in A
- This is the basis of set theory and used widely in probability, although there are some differences between set and probability theory
- If there is no symbol, then this usually means intersection AB in probability in set theory we would write an inverted U e.g. $A \cap B$
- A and B are mutually exclusive (disjoint in set theory) if they have no outcomes in common
- A and B are exhaustive (complimentary in set theory) if their union is S (the entire sample space)
- A and B are both mutually exclusive and exhaustive, their union is equal to the sample space but they have no events in common they are a partition of the sample space

2.1.2 Defining Probability

We assign every event a number P(A) which is the prob. the event will occur

1 We require that the probability is greater than one for all events in the sample space - P(A) >= 0 for all A c S 2 The entire sample space must be equal to one - P(S) = 1 3 For any sequence of disjoint sets, the prob. of the union of that sequence is equal to the sum of the probabilities of those events - A_1 , A_2 , ..., is $P(V_i) = \sum_i P(A_i)$

So we have a sample space, and if it satisfies these three properties, then we call it a probability. Sometimes this is referred to as a probability function or a probability distribution, but there is no standard terminology for all probability theory. Set theory helps to prove aspects of probability mathematically, for the purposes on this course, we just need to know what some useful facts are.

•
$$P(A^c) = 1 - P(A) =$$

The probability of A compliment, which is the event that contains all of the outcomes that are not in the event A, the probability of A compliment is just equal to 1 minus the probability of A. This is useful if the probability of A compliment $(P(A^c))$ is difficult to compute, where as the probability of A might be very easy to compute.

•
$$P(\emptyset) =$$

The probability of the empty set is zero.

• If A
$$_{c}$$
 B then $P(A) \leq P(B) =$

If A is contained in B then the probability of A is less than or equal to the probability of B

• For all A,
$$0 \le P(A) \le 1 =$$

For any events, the probability of that event is between 0 and 1.

•
$$P(AUB) = P(A) + P(B) - P(AB) =$$

Probability of A union B is just equal to the sum of the probabilities of those two events minus the probability of the their intersection.

•
$$P(AB^c) = P(A) - P(AB) =$$

The probability of A times B complement is equal to the probability of A minus the probability of the intersection.

2.1.3 An example

Suppose you have a finite sample space. Let the function n(.) give the number of elements in a set.

Then define P(A) = n(A)/n(S). This is called a simple sample space, and it is a probability - we count the number of outcomes and divide by the number of possible outcomes in the sample space.

We can check that it satisfies the three axioms to ensure it is a probability:

- 1. P(A) will always be non-negative because it's a count
- 2. P(S) will equal 1, by definition
- 3. P(AUB) = n(AUB)/n(S) = n(A)/n(S) + n(B)/n(S) = P(A) + P(B).

If you can put your experiment in to this sample space where each outcome is equally likely, we just need to count to calculate probabilities of events. So for example, if you want to know how likely it is you will roll a specific number, say 6, on two dice, we calculate all the different ways that six occurs then divide this by all possible outcomes (sample space) - = 5 / 36 = or 13.9%

2.1.4 Another example

If the state of Massachusetts issues 6-character license plates, using one of 26 letters and 10 digits randomly for each character, what is the probability that I will receive an all digit license plate?

n(S) = 36 (26 + 10) possibilities for each of 6 characters = $36^6 = 2.176b n(A) = 10$ possibilities (for digits only) for each of 6 characters = $10^6 = 1m$ so P(A) = .0005

This is called sampling with replacement

What if Massachusetts does not reuse a letter or digit?

Now, in the sample space, there are 36 possibilities (26 + 10) for the 1st character, 35 left for the 2nd, and so on.

$$n(S) = 36x35x34x33x32x31 = 36!/30! = 1.402b$$

Similarly, in the event, there are 10 possibilities for the 1st character, 9 left for the 2nd, and so on.

$$n(A) = 10x9x8x7x6x5 = 10!/4! = 151k$$

so
$$P(A) = 1.402b / 151k = .0001$$

This is called *sampling without replacement*