Canadian Society of Civil Engineers.

ADVANCE PROOF-(Subject to revision).

N.B.—This Society, as a body, does not hold itself responsible for the facts
and opinions stated in any of its publications.

RESULTS OF EXPERIMENTS ON THE STRENGTH OF WHITE PINE, RED PINE, HEMLOCK AND SPRUCE.

By Prof. H. T. BOVEY, LL.D., D.C.L.

To be read Thursday, 11th November, 1897.

(Read before Section G, British Association, Toronto, August, 1897.)

In a paper read before the Canadian Society of Civil Engineers in 1895, the results were given of a number of experiments on the transverse strength of timber beams; but in the calculations it was assumed that the distortion, or diminution of depth, at the bearing surface was sufficiently small to be disregarded. It often happens, however, and especially when the timber contains a large amount of moisture, that the change in depth due to compression is excessive, producing a corresponding increase in the skin-stress.

This increase is theoretically $2 \frac{f}{d} \Delta d$, f being the intensity of the skin-stress, d the depth, and Δd the change in depth.

The method of conducting these experiments was fully described in the Paper referred to, and therefore the following points only are noted:

All the transverse tests were made with the Wicksteed machine. The middle of the beam was supported on a hardwood bearing of 44 ins. diameter. The two ends were forced down by rams under hydraulic pressure, which can be gradually increased at any required rate or can be maintained constant for any given time.

The end-pressures were kept normal to the surface of the beam by means of spherical joints which allow the end bearings to revolve.

The elasticity coefficients have been calculated from the following formula:

(a) Coefficients from direct tensile and compressive experiments;

$$E = \frac{L}{A} \cdot \frac{\Delta W}{\Delta L}$$

L being the length of the specimen, A its sectional area and Δ W the increment of force producing a change Δ L in the length.

(b) Coefficients from transverse experiments;

$$E = \frac{1}{4} \frac{L^3}{b d^3} \cdot \frac{\Delta W}{\Delta D}$$

L being the length, b the breadth, d the depth and Δ W the increment of force producing an increment Δ D in the deflection.

An error Δd in the depth theoretically corresponds to an error in E, which is approximately measured by $3\frac{E}{d}$ Δd .

In previous experiments, the wire used in observing the deflections was found to be somewhat coarse, and a special wire was therefore drawn of .002-inch diameter.

The skin-stresses have been calculated by means of the ordinary flexure formula,

 $f = \frac{3 L y}{b d^3} (W_1 + \frac{1}{2} W_2)$

 W_1 being the total load on the beam, W_2 the weight of the beam, and y the distance of the skin from the neutral surface.

The flexure theory is admittedly unsatisfactory, and frequently gives results which are contrary to experience. Possibly, when a certain

limit has been passed there is a tendency towards equalization of stress, and the so-called neutral surface may be moved towards that portion of the beam which is best able to bear the stress. It may indeed be more correct to assume that the distances of this surface from the tension and compression faces are in the ratio of the ultimate tensile and compressive strengths of the beam. This assumption, at all events seems to give results which are more in accordance with practice. For example, in the case of a cast-iron Tee bar, tested in the University Laboratory, the tensile skin-stress should be 22,030-lbs. per sq. in., and the compressive skin-stress 102,050-lbs. per sq. in., whereas the ordinary theory gave 33,000-lbs. per sq. in. as the tensile and 20,800 lbs. per sq. in. as the compressive skin-stress.

The tables on the following pages give the breaking weights, skinstresses, (transverse) coefficients of elasticity and specific weights of a number of air-dried, saturated, frozen and kiln-dried beams, and also the breaking weights, tensile and compressive strengths per square inch, (direct) coefficients of clusticity and specific weights of specimens

prepared from these beams.

Character of failure.	Rt. end. Cripnled. Longitudinal shear. 27.274 Crippled. Crippled.	v ři	Tensile. Crippled. Tensile.
st when	Rt. end 13.21 27.274		
Per et. of weigh t lost when dried at 212° F. at	Centre. Left end. Rt. end. 17.29 12.89 13.21 28.262 27.014 27.274		Tensile. Crippled Tensile.
	Centre. 17.29 28.262		
Sp. wt. in lis, per cub. ft. a date of test.	36.43 38.64 27.121 27.983 23.794		22.007 22.105 20 674 22.648
Coefficient of elasticity in the per 8q. in,	E 1,296,950 1,359,050 1,078,230 1,368,300 1,625,220	TABLE II. White Pine dried at 212°	1,245,780 1,272,440 1,282,770 1,171,240
Skin stress (f) in the. Co	Mean 4889 4210 5342 8389	. Г.	2182 5740 9392 8542
	M. 417. 11. 4618 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	=	2164 5569 9247 7091
	Max. 5021 1774 1403 5531 8967	,	2201 5911 9538 9992
Breaking weight in Ibs.	23,850 22,690 39,000 16,000 5,200		5,000 8,000 23,000
nches.	15.2 15.25 15.21 12.25 12.25 5.9		11.925 5.925 5.9
Dimensions in inches.	6.225 6.32 9.1 6.025 5.725		5.95 2.965 5.7 6.05
Dimens	~ 4 8 8 8 8		150 150 150
No. of Beam.	51 82 84 84 84		38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Beams 15 and 16 were sawn out of trees felled at Keewatin in 1894, and were received into a Laboratory on the 13th of December, their weights being 415.75-lbs, and 457.78-lbs, respectively. They were both tested on the 2nd of February, 1895, when it was found that beam 15 had lost 36.69-lbs, or 8.8 p.c. of its weight, and that

beam 16 had lost 46.59-lbs. or 10.2 p.c. of its weight. When the beams were sawn through after the test they were still found to be completely saturated with water excepting for a depth of 1 inch from the surface. The beams were from the central portions of the trees, the heart running from end to end.

of

96

le

e.

r-

10

90

a

so

re

ns

in er, hey ind hat Beams 28 to 43 were sawn from trees felled in the water 1893-94 in Quinze Lake Co., P.Q. They remained in water one year, and were received into the Laboratory on October the 4th, 1895. They were all first quality timber, and, generally speaking, straight in grain and free from knots and shakes.

In order to determine the excess of moisture in the timber, three slabs, one near the middle and one at each end, were sawn out of the beams immediately after they had been tested and were at once placed in a chamber kept at a temperature of 212° F. by means of steam-pipes. The moisture was also removed from the whole beams by drying them in the same chamber.

Beam 36 failed suddenly under a very small load, the fracture commencing at a knot in the tension surface. On examination it was also found that the grain on the face was oblique to the neutral surface, while there were shakes running from end to end in the neighbourhood of the heart which, on the average, was below the middle of the depth of the beam. The results of this test should be discarded, as the beam was not of fair average quality.

Beam 38 was cut out of beam 36 in such manner that the grain was straight.

Beam 43 failed under a breaking load of 23,000-lbs., but a somewhat long continued and slowly increasing deflection under a load of 22,000-lbs. seemed to indicate that at this point the beam failed in compression, although there were no apparent signs of crippling.

		Tension Tests.	sts.			Con	Compression Tests.				She	Shearing Tests.	ests.		0
ec.	Coefficients of per	pec. Coefficients of elasticity in lbs.	Tensile Sp. wt.	E Ds.	Spec.	Coefficients of elasticity in the Compres Sp. wt. Shearing Sp. wt. Shearing present of the per Sq. in. Spec. in the per sq. in. Steep the per sq. in. Steep Spec. in the per sq. in.	dasticity in lbs. 4. in.	Compressive sive strength	Sp. wt.	Spec	Shearing strength in ibs. per	Sp. wt. in De.	Spec.	Shearing strength in lbs. per	
	Forward.	Return.	74. in.	cub, ft		Forward.	Return.	in 1bs. per fq. in.	cub. ft.		flats.	eub. ft.		sq. m. of rounds.	
20 6 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,749,520 1,659,770 1,932,660 1,934,680 1,940,370 2,062,680 1,823,860	1,762,500 1,956,220 1,951,120		f 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 E	1, 114	1,572,090 } 1,565,300 } 1,716,330	2916 3333 3751 3604 3718	29.258 27.918 33.103 29.025 29.025 29.033 25.033 25.033	222444	285, 64 28 529 m ₁ 447.26 21.752 m ₂ 55.21 26 632 m ₂ 22.78 27.61 o 822.78 27.61 o 822.78 27.61 o 82.35 26.65 d 862.75 26.65 d 862.75 26.65 d 862.75 26.65 d 862.75 26.65 d	28. 529 26. 632 26. 632 27. 561 27. 173 26. 655 27. 541 27. 541 27. 541	Position.	516.6 505.2 505.2 505.17 505.17 477.7 486	

DRIED SPECIMENS FROM WHITE PINE BEAM 13

Remarks.—The values of E for specimens a_n , b, c and d have been calculated from the first series of readings only, and are consequently smaller than if repeated readings had been taken.

The mean direct tensile strength is 2.68 times greater than the calculated mean skin-stress of the beam and 3.7 times greater than the mean compressive strength of the timber.

Specimens e_1 and e_2 contain the heart and show the least compressive strength. The ratios of length to least transverse dimensions in the compression specimens varied from 6.47 to 9.46, and the failure in each case was due to direct crushing.

The shearing strength of the round specimens is 1.42 times greater than that of the flat specimens.

The several specimens had lost considerably in weight during the interval of their preparation from the beam and the date of test.

Tension specimen b, after the first series of readings, was entirely relieved of load and was allowed to rest for two hours.

Between the two series of readings, compression specimen f_2 remained under the load of 50,000 lbs. for sixteen hours, the final reading varying from .01117 to .01172.

Spec. Forward. Return. a 1,626,330 1,863,510 1,863,510 1,455,900 a 1,455,130 a 1,455,130 a 2,245,170 a 2,245,170 a 2,245,130 a 1,632,480	Tension Tests.			Con	Compression Tests.				Shea	Shearing Tests.	*	
Forward. 1,626,330 1,843,470 1,443,400 1,635,720 2,245,130 1,652,480	w.,	Sp. wt.	900	Coefficients of elasticity in lbs. Compression Rev. in lbs.	lasticity in lbs.	Compres-	Sp. wt.		b. wt. Shearing Sp. wt. Sh.	Sp. wt.		Str
~~		per ub. ft.		Forward.	Return,	strength per in lbs. per cub. ft. sq. in.	cub. ft.	Spec.	in lbs. per sq. in. of flats.	per cub. ft.	Spec	Ps Po
~	777,6			1,935 550	1,942 950	1		k,	321.90	26.552	2	55
_		:	6.3	1,634,000	1,690 900	39.8	32.75	P.	405,40	25.941		63
	5,772	:	14.	1,455,090	1.449,670		26.461	m	294.81	26.534	3 4	2 10
		: :	12	1,560,010	1,569,160	3331	28.668	20	331.21	26.807		
	10,884	:	1 3				34.157	d	342.80	26.584		
								52	410.45			
								99 4	334.68	26.540		

Remarks.—The values of E for specimens a, c, d and f have been calculated from the first series of readings only, and are consequently smaller than if repeated readings had been taken.

The mean direct tensile strength is 2.21 times greater than the calculated mean skin-stress of the beam and 27 times greater than the mean compressive strength of the timber.

een

ntly

cal-

the

ive the

ach

ter

the

ely

ned ry-

n

Specimens i_1 , i_2 , i_3 , contain the heart, and the heart also passes along one side of specimens g_1 , g_2 , g_3 . These specimens show the least strength. The ratio of length to least transverse dimensions was 37.1 for g_1 , 26.73 for g_2 , 34.157 for g_3 , 24.56 for h, 27.03 for i_1 and 28.88

The mean shearing strength of the round specimens is 1.76 times greater than that of the flat specimens.

The several specimens had lost considerably in weight in the interval between their preparation from the beam and the date of test.

Tension specimen b was entirely relieved of load after the first series of readings, and was allowed to rest for 16 hours.

sts.	Sp. wt.	per cub. ft.	25.16 25.887 23.473 25.418 25.337		24.598 24.561 22.491 24.047 24.616
Shearing Tests.	Shearing Sp. wt.	sq. in of flats.	336.97 374.28 322.11 313.14 379.89		252.00 215.22 263.18 243.18 234.27 221.78
S	Street		72 422		5.40 2.0 2.3
	Sp. wt.	eub, ff.	24.591 25.096 26.129 24.004	00	23.685 24.68 22.057 22.167
,	Compres- Sp. wt sive in lbs.	in los. per cub. ft	3675 3451 3187 4283		6518 8119 5654 6108
Compression Tests.	f clasticity.	Return.	1,271,500 1,298,800 1,591,210 1,325,630		F. FROM WHITE PINE BEAM 28, 12,1010 1,341,750 6518 23,688 0,420 1,734,100 8119 24,68 0,5400 1,522,420 6108 22,105 0,531,200 1,565,180 6108 22,105
Comp	Coefficients of elasticity,	Forward.	1,274,300 1,293,370 1,590,700 1,336,650		
		Spec.	2110		20 22 22 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
			24.296 23.51 22.612 22.335 21.238	22.656	N-DRIE 22.342 22.552 23.261 22.251
		strength per sq. in	6,689 6,377 6,381 12,803 10,104	8,402 5,069	13,632 1,577 6,250 6,966 10,050 9,385
Tension Tests.	of elasticity.	Return,	1,379,510 1,319,840 1,162,950 1,935,220 1,298,990 1,592,749	1,099,810	SPECIMENS KILN-DRIED AT 212" 2072.160
Tension Tests. Coefficients of elasticity.	Coefficients	Forward.	1,379,890 1,313,530 1,157,130 1,914,310 1,290,760 1,584,760	1,368,840	2,073,150 1,599,550 1,498,830 1,396,790 1,556,790 1,385,880
	500		-2122400	r→ ∞	11 11 11 12 13 14 14 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18

Remarks.—The mean direct tensile strength of the air-dried specimens was 1.9 times greater than the calculated mean skin-stress of the Beam and 2.19 times greater than the mean compressive strength.

By the kiln-drying, the mean co-efficients of elasticity were increased and the mean compressive strength was also increased more than 79 per cent. The mean shearing strength was reduced more than 32 per cent., and there was a slight diminution in the mean tensile strength.

The ratios of the lengths of the compression specimens to the least transverse dimension varied between 6.49 and 7.43, and the failure was in every case due to direct crushing.

The difference between the specific weights of the air and kiln-dried specimens was not great. The specific weight of the beam was 3 or 4 lbs. per cubic foot greater than that of the specimens.

Compression specimen 20, after the first series of readings, was left under 5000 lbs. for 42 hours, the final reading varying from .00137 to .00084.

	Tens	Tensire Tests.				Comp	Compression Tests.			Ž.	shearing Tests.	4
	Coefficients	Coefficients of elasticity.	Tensile	Sp. wt.		Coefficients	Coefficients of elasticity.	Compres	Sp. wt.	1	Shearing strength Sp. wt.	Sp. ut.
Shec.	Forward.	Return	in lbs. per	m fos.	S Pec	Forward.	Return.	in lbs. per	cub ft.		sq. in. of flats.	per cub, fi
0 0 0	1,497,090 1,497,570 1,706,480	1,513,680 1,504,610 1,704,480	10,623 10,014 9,931	24.777 25.001 25.855	12. 2. 2. 2. m	1,421,490	1,115,300	3,24 5.0 2,45 5.0 3,96 5.1 3,96 5.1 3,96 5.1 3,96 5.1	26.831 26.213 26.444 26.561 26.661 26.661	2200 2 L x	280.51 283.72 283.73 218.52 318.53 318.53 318.53	8.25.25 8.25 8
		SPECI	MENS KI	LN-DRI	ED A	SPECIMENS KILN-DRIED AT 212-F. PROM WHITE PINE BEAM 32	M WHITE P	INE BE	NA 32			
Te az	1,521.220 2,341,150 1,736,510 2,123,700	2,363,410 1,745,300 2,136,540	8,135 10,446 9,510 13,065	20.089 24.04 26.602	922 m22	1,502,430	1,800,110	1,040	4,640 24.701	2 H 2 0 0 4 0 4 0 4 0 4 0 4 0 0 4 0 0 0 0 0	251.62 236.06 289.15 267.63	25.559 26.047 21.518

Remarks.—The mean direct tensile strength of the air-dried specimens was 2.99 times the mean compressive strength and 1.9 times the calculated mean skin-stress of the beam.

By the kiln-drying, the coefficients of clasticity were increased and the mean compressive strength was increased more than 33.6 p. c. There was also a slight increase in the mean tensile strength, but the shearing strength was diminished more than 19.1 p. c.

The ratio of the length of the compression specimens to the least transverse dimension varied between 2.02 and 10.1, and the failure was in every case due to direct crushing, excepting in the case of specimen h, in suich the ratio was 29 and the failure was partly due to bending

The injured portion was removed from specimen g, which was then re-tested after it had lost in weight 1.08 lb. per cubic foot. Its compressive strength was found to be 6733 lbs. per square inch, or 1.86 times as great as in the first test.

The difference between the specific weights of the air and kilu-dried specimens was not great. The specific weight of the beam was from 2 to 4 lbs. per cubic foot greater than that of the specimens.

4

17

ci-

he

e, the ast vas nen nd-

Shearing Tests.	Shearing strength Sp. et.	fin. of p	235.10 21.38. 272.67. 22.38. 272.67. 22.38. 272.67. 22.38. 273.67. 22.39. 273.67. 22.39. 273.67. 27. 27. 27. 27. 27. 27. 27. 27. 27. 2
5			BEERE CONTRACTOR
s) uses en	Sp. wt.	aper in	221 546 20 58 20 91 1
	Compres-	in the per	1185 5006 5814 5312 5389 6013
Compression Tests.	of elasticity.	Return.	1,579,840 1,501,220 1,325,060 1,325,100 1,436,810 1,550,200
Com	Coefficients of elasticity	Forward.	1,581,040 1,596,8 to 1,536,8 to 1,563,4 to 1,641,300 1,601,4 to
	Sp. wt.	1 1 1	21 26 22 1983 22 078 22 078 22 180 20 69
	Tensi e	in the per	6236 21. 266 7574 21. 983 7574 21. 983 4914 22. 316 7446 20.69
Tension Tests.	of elasticity.	Return.	1, 106, 150 1, 411, 440 1, 385, 500 1, 286, 500 1, 214, 470 1, 286, 250
Te	Coefficients of clasticity.	Forward, .	1,165,780 1,408,190 1,578,04) 1,554,210 1,645,480 1,205,750 1,205,750 1,278,330
	Spec		5542.4655

Remarks.—The co-efficients of elasticity, tensile and compressive strength of this kiln-dried beam are all small, possibly on account of the obliquity of the grain in the timber.

The compressive strength, however, is again much greater and the shearing strength much less than the corresponding strengths in similar air-dried specimens.

Owing to some inherent weakness which could not be determined, specimen c failed under an abnormally low load, and before the extensioneter had been taken off.

TABLE III.
RED PLYE from ordinary stock.

Character of fullers	Crippled. Crip 4 & long, she Longitudinal shes Crippled. Longitudinal shea		Longitudinal shear Tensile.
f hat	B1 cm.		
Per et. of weight lest when dried at 212° F. at	Cattre, Left end. R't end. II. 38 12.94 8.8 8.1 8.1		
	the state of the s		
Sp. wt. in lie, per cab, ft. at date of test.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Casi +1	30.912 30.858 31.008
Sp. wt. in the per the call, it, as chasticity. Lest, test.	1,252,700 1,251,350 1 81,130 2,768,630 1,669,010	TABLE IV. Rep Pixedried at 212 F.	2,049,430 2,261,820 2,219,550
	Mean. 1126 1527 1654 1952 1170	Rep Pe	6656 9522 5674
Skin-stress (c) in the per sq. in.	1844年2月		5953 9472 5617
Skin	Max. 4531 1846 1856 1867 1867 1867 1867 1867 1867 1867 186		6160 9572 5732
Dimensions in inches, weight to life.	21,350 21,730 23,400 22,700		21,000 8,500 20,000
inches.	6.15 15 2 5.75 15 0 5.975 12 25 6.025 6.025 5.15 11.925		5.75 II.875 5.885 5.925 5.835 II.785
sions in	6.15 5.15 5.955 6.025 5.15		5.55
Dimen	~ 2 2 2 2 2		150 150 150
No. of Beams	52 H 25		13 = =

Remarks.—Beams 17 and 18, containing the heart, were out from trees felled at Keewatin in 1894, and were ordinary 1st quality timber. There were shakes in Beam 17, reaching the heart at points. The grain on the lower half of the beam was straight, but ran crosswise on the tension surface. From the time the beam was received into the Laboratory to the date of the test, a period of 57 days, the beam lost 13 p.e. of its weight. After the test a 3-inch slab was cut our, and the wight of this slab on Feb. 15th, 1897, by which time the natural drying can be considered to have been completed, was found to be 28,037 lbs. per cubic foot.

Beam 18 was tested after remaining in the Laboratory 42 days, in which time it was found to have lost 8.79 p.c. of its weight. It failed by crippling and longitudinal shear, simultaneously. The grain for about 10 inches on each side of the centre was clear, straight and free from knots.

The logs from which Beams 31 to 49 were sawn were felled in the Bonnechère district in the winter of 1894-95, and remained in the water for six months. They all contained the heart, and were ordinary 1st-quality timber.

Beam 32 failed by longitudinal shear along a shake in the neighbourhood of the neutral surface, but there were indications that this had been immediately preceded by a slight crippling.

Beam 41 was straight grained, but contained large shakes on the sides and on the compression surface due to seasoning and drying-

Beam 44 was straight grained and comparatively free from knots, but contained shakes which apparently extended from the heart outward to the sides. After remaining in the Laboratory 255 days it had lost 22.4 p.c. of its weight. A 1-inch slab cut from one end of the beam weighed, after being dried at 212°F., 30.31 lbs. per cub. ft.

Beam 45 was a dense timber of excellent quality with shakes occurring intermittently. A constantly increasing deflection indicated that crippling had taken place under a load of 7600 lbs., although the crippling was not apparent until the load was 8000 lbs.

Beam 49 was straight-grained, with a few intermittent shakes.

1 1 4

fests.	i di	in Ilbs. per cub. ft.	29,667	31.239	27.102	30,356	32 69	33,605	27 281	27.361	29 111	161.65	359 826
Shearing Tests.	Shearing	lle, per sq. in. of fate.	290.24	160.34	197. 33	469,93	363.35	484.60	376.53	129.72	410.66	403.83	16.9 8.
	.00	elg	P		,	0	N. P.	100	7:	1.	k.	k.	1
	Sp. wt. in	lbs. per cub. fr.	32.248	14.95	30.958	********	26,667	39.391					
si.		in lbe.	68.5.5	2,935	3, 1.31	7,684	2,696	4,421					
Compression Tests.	Coefficients of elasticity.	Return.	1,836,770			1,218,430	*************	***************************************					
Com	Coefficients	Forward.	1,835,160			1,222,660	************	1,265,440					
	.00	ds	a	63	a,	61	7	0	-				-
	Tensile	in Ibs. persq. in.	4,290	10 41-0	13,233	12,808	13.172	8,716	7.7.2		10,306	5,143	12,015
Tension Tests.	f chaticity.	Return.	1,478,130	1 900, out, 1	2,132,080	2,264,000	2,180,350	1,824,650	1,412,340	1 010,000,1	1,543,150	1,582,180	2,144,610
Tens	Coefficients of chatfelty.	Forward.	1,469,430	9 101 5-0	2,124,010	2,713,100	2,131,060	1,827,060	1,403,340	1,4.0,0,0	1,150,020	1,531,320	2,094,430
	*00	eds	_	7	10	9	÷	10	9		90	00	5

t from mber. The ise on to the m lost nd the atural to be

vs. in

failed

n for

d free

in the

n the

linary

neigh-

it this

Remarks .- The mean direct tensile strength is 2.12 times greater than the calculated mean skin-stress of the beam and 2.66 times greater than the mean compressive strength.

Specimens b, and b2 contain the heart, and shew the least compres sive strength. The ratios of length to least transverse dimensions in the compression specimens were 8.62 for a_1 , 8.82 for a_2 ; 5.78 for a_3 ; 11.98 for b_1 , 6.2 for b_2 ; and 5.84 for c. The failure was in each case due to direct crushing.

The average specific weight of the specimens was about 2 lbs per cubic foot less than the specific weight of the beam.

Tension specimen 6, after the first series of readings, was left under 1600 lbs. for $2\frac{1}{2}$ hours, and during this interval the final reading varied from .01065 to .0111.

AIR-DRIED SPECIMENS FROM RED PINE BEAM 18.

Coefficients of clasticity. Compressive sive	bec.	Sp. wt.	sile gth	Tensile strength
Forward.		s	1	sq. in, cub ft.
936,987			2=	2=
1,281,810			77	
			:	8,661
		-		
				-
		-		-
				-
		-		13,362
		_	_	

Remarks.—The mean direct tensile strength is 2.84 times greater than the calculated mean skin-stress of the beam and 3.93 times greater than the mean direct compressive strength.

Specimen 11 contained the heart and shews the least compressive strength.

The ratios of length to least transverse dimension were 6.43 for specimen 11, and 6.71 for specimen 12. In each case the failure was due to direct crushing.

The coefficients of elasticity for specimens 1, 2, 3, 4, 6, 7, 8, 9, were calculated from the first series of readings only, and are consequently smaller than if repeated readings had been taken.

The shearing strength of the round specimens is 1.79 times the mean shearing strength of the flat specimens.

The timber of the beam in question was unusually dense, and the mean specific weight of the beam does not seem to have been much greater than the mean specific weights of the compression and shearing specimens.

Tension specimen 4, after the first series of readings, was entirely relieved of load for 16 hours.

cater

eater

ssive

3 for

was

were ently nean the auch ring irely

1	Tensile Tests.				Com	Compression Tests.			מני	Shearing Tests.	BtE.
Coefficients of elasticity	of elasticity.	Tensile Sp. wt.	Sp. wt.	.09	C.efficients	Coefficients of elasticity.	Compressive	Sp. wt.	100	Shearing Sp. wt.	Sp. wt.
Forward.	Return.	in lbs. per	cub, ft.	ds	Forward.	Return.	in lbs. per sq. in.	per cub. it.	dg	sq. in. of fats.	per cub. ft.
2,179,100 2,387,050 2,337,200 2,180,050	2,192,170 2,383,650 2,337,630 2,192,110	12,212 14,213 12,510 112,91	35. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	4-1-50	9.00	0.77	2,062 5,062 5,063 4,489 699	38.33.3 38.3902 38.386 21.386	12 × 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	341.88 403.15 345.94 425.43	32.265 33.946 33.575 35.577
77.610.67	SPECIME	NS KIL	N. DIRIF	- A	SPECIMENS KILN DRIED AT 212 F. FROM RED PINE BEAM 31.	2,421,896 ROM RED P	6,337 INE BE	33.119 AM 31.			Managements
2,639,930	2,677,030	10,170	10,170 32,996	100 mm	1,519,860	1,510,130		6,098 32.237 11,726 31.705	. 5' - 2' 2' 2' 2' Z	222.94 261.04 300.86 313.10 331.00	30.553 30.502 32.021 31.945

Remarks .- The mean direct tensile strength is 1.65 times greater than the calculated mean skin-stress of the beam and 1.55 times greater than the mean direct compressive strength.

By the kiln-drying the tensile strength was diminished, the com. pressive strength was largely increased, and the shearing strength was diminished by 24.1 p.c.

The ratios of the length to the least transverse dimension in the compression specimens varied from 5 to 10, and in each case the failure was due to direct crushing.

Specimens h_1 and h_3 contain the heart and show the least compressive strength in the air and kiln-dried conditions, respectively. The loss of weight in kiln-drying varied from 1.344 lbs, to 3.003 lbs, per cubic ft.

TABLE V.
Henedek from ordinary stock.

Character of failure	39.93 47.85 Crippled. Crippled. Tensile.		1,379,860 31.346 Congitudinal ebear		
it lost	39.93				
Per ct. of weight lost when dried at 212° F.	39.93			1	
	50.13				
Sp. wt. in lbs. per cub. ft.	53.025 36.533 36.235	· F.	31.346		rozen.
Confficients of clasticity.	1,498,640 1,498,640	TABLE VI. Hemtock dried at 212° F.	1,379,860	TABLE VII.	HEMLOCK saturated and frozen.
in lhs.	Mean. 5063 6493 4096	Т.	5054 6500	TAI	LOCE Sal
Skin-stress (/) in lbs. per sq. in.	Min. 1995 6371 4058		5054		HEN
	Max. 5132 6615 4133		9162		
Dimensions in inches. Weight in 1bs.	13,000 20,000 20,040		3,500 7946		
inches.	b d 8.815 10.1 8.975 10.015 9.85 11.95		87 4.35 4.925		
Sions in	b d 8.815 10.1 8.975 10.01 9.85 11.95		5.3		
Dimen	222 186 186		X 72		
No. of Beam.	888		9		

57.42

49.75

51.

38.69 45.23 50.707

30,800 21,000 22,000

9.0 11.875 9.025 11.9 9.175 10.05

138 138

35 22

Remarks.—Beams 22, 23 and 35, containing the heart, had lain in the water for a considerable time, and were completely water-soaked. When tested, Beams 22 and 35 were found to be hard frozen. Beam 23 was also frozen, but not throughout, as was shewn when the beam was cut in two at the centre. Beam 22 was straight-grained, free from knots, and failed with a sudden sharp fracture. Incipient decay had commenced near the heart of Beam 23, which, however, was regarded as a fair specimen of ordinary commercial quality. It was full of large knots and the grain was curved from end to end. Beam 35 was straight-grained, clear, comparatively free from knots and of exceptionally good quality; beam 40 was cut out of beam 35 after the latter had been tested.

Beams 25, 26 and 29 all contained the heart. Beam 25 was a good specimen, and was completely water-soaked. Beam 26 was saturated throughout, excepting for a depth of 1½ inches from surface, and, although an apparently poor specimen, was considered to be of ordinary commercial quality. It was full of knots and its grain was curved.

	4		
	42		

57.42 Crirpled.

49.75

51.07

130 3.173 10.05 22,000 7188 6960 7074 1,633,050 50.707

in in

aked.

m 23

was

nots,

com-

as a

nots

ight-

good

sted.

good

ated ind, iary

	Shearing strength in 1be per 8q. in, of rounds.	613 22
sts.	*sedg	*
Shearing Tests.	Sp. wt. in lbs. per cub. ft.	34. 993 36. 176 38. 9. 9. 176 38. 9. 9. 177 38. 9. 95 37. 9. 95 37. 9. 95 37. 9. 95 37. 9. 95
She	Shearing Sp. wt. in lbs. per in lbs. eq. in. of per flats.	#552.8 #555.8 #555.6 #317.46 #317.46 #317.90 #317.91 #36.91 #36.91 #36.91 #36.91 #36.91 #36.91
	ghee:	*** **********************************
	Sp. wt. in lbs. per cub. ft.	41.875 42.132 38.391 36.326
	compression Sp. wt. strength in lbs. in lbs. per per sq. in. cub. ft.	8 16 18 18 18 18 18 18 18 18 18 18 18 18 18
Compression Tests.		1,050,600 1,289,860 1,284,400 1,538,950 1,110,110
Compres	Coefficients of clasticity.	1,055,110 1,315,240 1,315,040 1,556,510 1,413,050
	'oəds	k. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	Sp. wt. in lbs. per cub. ft.	28.50.98 28.00.98 28.00.00 28.00.00
	Tensile Sp. wt. strength in lbs. per in lbs.	1.51.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
Tension Tests.		781,510 919,120 1,129,140 1,919,540 1,111,560 1,101,350 1,250,1350
Tensio	Coefficients of clasticity.	766,411 881,338 11,147,359 939,920 1,667,220 1,667,220 1,123,780 1,233,010
	Pads	

Remarks.—The mean direct tensile strength is 1.43 times greater than the calculated mean skin-stress of the beam and 2.31 times greater than the mean direct compressive strength. The shearing strength of the round specimen is 1.52 times greater than the mean shearing strength of the flat specimens. The ratios of length to least transverse dimension in the compression specimens varied between 5.3 and 7.27, and the failure was in each case due to direct crushing.

The compression specimens had the appearance of being frozen, but the frost in the tension and shearing specimens had thawed, although they still remained very cold and water-soaked. In fact, the specific weight of several of the specimens was even greater than the mean specific weight of the frozen beam.

AIR-DRIED SPECIMENS FROM HEMLOCK BEAM 25.

,	II.	rension Tests.				0	Compression Tests	20			32	Shearing Tests.	ets.	
2000	Coefficients	Coefficients of Elasticity.	Tensile	Sp. wt.			Co-efficients of Elasticity.	Compres	Sp. w.C		Shearing			Shearing
	Forward.	Return	in lbs. per sq. inch.	cubic foot	o Dec.	Forward.	Return.	strength in the per sin the per sin the per sq. inch.	in the per cubic it.	Spec.	strength in Ibs. per sq. in. of flats.	oub, ff.	20 E	strength in the per sq. in. of rounds
- 0	1,345,310	1,367,250	7,680		2	1,611,630	1,000.140	2491	51.412	n,	393.90	17		7.0 7.07
1 00	1,728,280	1,607,759	X,985	39.27	d_2	1,477.400	1,507,750	3347	51.515	162	106.13	9.15	7 F	128.91
	1,826,190	1,856,350	8.079	38.61	9	1.838,000	000, 11.8.1			Š				
	2,034,780	2,091,950	13,514	57.10	4	1.576,700	1.564.290		4	5 ,	26.7.32	N	50	619.2×
42	1,706,210	1,753,400	6,409	50.01			00=1+0=1-		1	5 8	- 101 TB	47.37	3/1	663.73
-	1,668,330	1,708,410	13,000	39.39	8	1,430,680 }	1,424,860 }	× + 15	53.013	ء ۃ	186 77	20 299	22	110.86
Y.	0000 000 6	0.000000				1,392,550	1,407,390 (-	N		7-0.00	12	010.04
-	2,049,900	9 659 410	14,721	£	ų	1,472,160	1,468,870	3420	54.754	92	396, 79	49 172	1/10	670 53
-	1,906,590	1.946.310	107 11	7.	2	1 40* 400	0000			=	123.81	11.268	21	606.67
J	1,704,500	1,739 610	100	-	4 ^	1,400,230	1,415.300	31 +0	111.13	£ 100	441.02	45.47	04	630,67
	2,096,270	2,113,630	12 610	10.10	- 1	0/1/174	1,409,290	-	600 .00	81	420, 98	51.213	1 1	623. 15
-:		Combon 16	6.11.6C.7	10:16	200	1,000,300	1,001,790		51.503	21	361.48	30.38E	3	637. ×0
										7	421.20	38.38		556.29
			, -							-	42×.80	39.791		
			-		•				****	H,	105,09	46,268		
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	:			******	:::::::::::::::::::::::::::::::::::::::	18.2	444.95	19,975		
			:		:			:		ā	362.48	56, 402		0 0
								:		20	382, 13	55.596		

Remarks.—The mean direct tensile strength is 2.1 times greater than the encoulated mean skin-stress of the beam and 3.33 times greater than the mean compressive strength. The mean shearing strength of the round specimens is 1.59 times greater than the mean shearing strength of the flat specimens.

The ratios of the length to the least transverse dimension varied between 6.08 and 9.86, and the failure was in each case due to direct crushing. The results indicate that the teasile and shearing strengths are greatest in those specimens of the greatest specific weight.

Several of the specimens had a greater specific weight than the mean specific weight of the b cam.

Tension specimen b^1 , after the first series of readings, was left under 400 lbs., for 17 hours, the final reading varying from .00033 to .00017.

Compression specimen g, after the first series of readings, was wholly relieved of load for $1\frac{1}{3}$ hours.

Compression specimen d_2 , after the first series of readings, was wholly relieved of load for 15 hours.

Specificients of Elasticity Tensite Squart, in Section Specific Strength Speci		1	Fension Results.				Com	Compression Results.	.8		Œ.	Shearing Results.	
Forward Return Strength Becturn Strength Becturn Strength Becturn Strength Strength Becturn Strength Stren		Coefficients	of Elasticity.	Tensile	Sp. wt. in		Coefficients	of Elasticity.	Compres-	Sp. wt. in		demonstrate to	
1,511,510 1,815,7500 11,021 30,179 k	į.	Forward.	Return.	in Ds. per	ibs. per cub. ft.	Single	Forward.	Return	strength in the per	ibs. per cub. ft.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1,591,710	1,935,760	11,021	30.79 28.635	, k			3652	37 02 35.73	2 Z	334.06	3.88
1,522,230		1,265,660	1,277,750	1,610	28.622	ш			4416	37.67	C.	363.47	31.96
1,471,240		1,×32,230	1,853,060	11,636	29.993	2			3305	40,933	101	315.26	32.96
1701,200		1,497,260	1,539,700	5,653	31.647	ວ ້ວ ່	1,342,190	1,336,480	3483	37.38	î k	356.90	33.8
1911 910 1,877,100 11,738 1,677,030 1,461,250 22.294 371.00 2.143,420 2.184,230 8,566 31.359 79. 4,43,530 1,43,360 1,43,360 2.010,210 2.013,800 13,505 30.653 1,41,120 1,435,360 1,435,360 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,501,400 1,210,200 1,220,7		1,799,240	1,761,660		:	63	1,736 0.0	1,754,840	4020	31.755	- 1 ² 5		34.1
1,247,120		1,991,940	2,007,250	11,797		p_2	1,157,030	1,461,250	3899 2703	32.294		371.00	32.06
1,925,117		2,010,210	2,134,280 1,314,280 2,013,870	8,580 13,505	31.959	E.	1,441,020	1,435,366	3368	32 279			
SPECIMEN KILN DRIED AT 212° F, FROM HEMLOCK BEAM	-	1,926,110 } 1,951,400 }	1,900,360	13,423	28,665	6	1,631,750	1,634,750	211	33.78			
SPECIMEN KILN-DRIED AT 212° F. FROM HEMLOCK BEAM 1,833,120 1,833,120 7837 30.							1,210,850	1,211,280	4538	35.789			pringence in some of a
KILN-DRIED AT 212° F. FROM HEMLOCK BEAM i 1,833,420 1,843,120 7837 30.3	:		-			0 %	1,220,720	1 000 4.77 ft	3838	35,826			
7 1,833,420 1,833,420 7837	1		SP	ECIMEN		RIED		FROM HEN	ILUCK B	EAM 26.			
	:						1,833,420	1,833,120	7837	30.82			

Remarks.—The mean direct tensile strength was more than 2.36 times as great as the calculated mean skin-stress of the Beam and 3.6 times greater than the mean compressive strength. The kila-dried specimen shewed a compressive strength more than double the mean compressive strength of the air-dried specimens.

The ratios of the length to the least transverse dimensions in the compression members varied from 2.5 to 7.8, and the failure was in each case due to direct orushing.

Between the first and second series of readings, b remained under 400 lbs, for 16 hours, the final reading varying from .00457 to .00372.

Between the second and last series of readings the specimen was left under 400 ibs. for 47½ hours. The reading varied from .001 to .00398 in the first two hours, and the extensometer was then reset at zero. During the next hour it varied from zero to .001; and the final reading before recommencing the test was .00082. The average time occupied in each observation was about one minute. The variation in the value of the coefficient of elasticity was due to the gradual drying of the specimen, and also to the varying hygrometric condition of the atmosphere.

AIR-DRIED SPECIMENS FROM HEMLOCK BEAM

26

ican

nder to

than

ater

ugth

ring

ried

rect

gths

Specimen f was left under the load of 400 lbs. for 17 hours after the first series of readings, the final reading varying from .0033 to .01064. After the second test it was left under 400 lbs. for 23 hours, the final reading varying from .00281 to .00995. Between the third and fourth series of readings the specimen was left under 400 lbs for 5 hours, the final reading varying from .00163 to .00284. The variation of the reading was due to the gradual drying of the specimen and to the changing hygrometric condition of the atmosphere.

Hetween the two series of readings for specimen j there was an interval of 90 hours,

The small tensile strength of the specimen was chiefly due to the fact that the grain of the specimen was slightly oblique to the axis.

The compression specimen p_3 was left under a load of 5,000 lbs. after the first series of readings for 42 hours, the final reading varying from .00081 to .00398. After the second series of readings it remained under 5,000 lbs for 48 hours, the final reading only varying from .00401 to .00398.

The compression specimen s was left under 5,000 lbs. for 18 hours after the first series of readings, the final reading varying from .0026 to .00268. After the second series of readings it was left under 5,000 lbs. for $4\frac{1}{2}$ hours, the final reading varying from .00278 to .002805.

After specimen p_2 had been tested the injured portion was removed and the remainder retested when it had lost 2.4 lbs, per cubic foot of its weight. Its compressive strength was 4,097 lbs. per square inch,

		Tension Tests.				Co	Compression Tests.				Shearing Tests.	ests,
Spec.	-	Coefficients of elasticity.	Tensile	Sp. wt. in		Coefficients	Coefficients of elasticity.	Compressive			Shearing	
	Forward.	Return.	in ibs. per	in lbs. per lbs. per	a/iec	Forward,	Return.	strength m lts. per sq. in.	strength No. wt. in lbs. per all. per cub. ft.	Spec.	firengtii in Ibs. per 69. in. of flats.	Sp. wt. in lbs. per cub. ft.
900	1,212,920 1,368,490 1,115,370 1,137,000	1,221,3 to 1,378,790 1,1 to,190 1,1 19,880	1387 3113 3240 3250	25.69 27.813 25.194 26.852	2 4 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,242,410	1,242,410 1,241,540	3673 2089 2864 1524	30.51 32.70	~.~.~	390.16 360.41 424.95	30.916 34.58 32.661
			Fai		\$ 2,84			246× 3354 3429 2311	32, 765 31, 146 28, 82 31, 50		10.000	027.113
		S	PECIME	NS KILN	-DRIE	D AT 212° F	SPECIMENS KILN-DRIED AT 212° F. FROM BEMLOCK BEAN 29.	MLOCK	BEAM 2	æ ⁴	_	
8	1,310,770 1,298,970	$1,321,290$ } $1,300,430$ }	7022	22.473	31	1,190,580	1,468,060	†10 †	23.503	12. 22.	324.20	24.309
				miles a						22	285.87	24.71

urs after the 3 to .01064. ars, the final e third and 00 lbs for 5 The varia-

Remarks .- The mean direct tensile strength is less than the cal-

culated mean skin-stress of the beam and only 1.24 times as great as the

mean compressive strength. This result is doubtless due to the fact

that the timber was of very poor quality and full of knots and shakes.

18 per cent., and the mean shearing strength was diminished by 9.9

The ratios of length to least transverse dimension in the compression members varied from 2.14 to 10.52, and the failure in each case was

due to direct crushing, excepting in the case of k in which the ratio

ing which the specimen was left under a load of 100 lbs., was 1 hour,

In the case of a2, the interval between the two series of readings, dur-

After k had been tested the injured portion was removed and the uninjured portion of the specimen was re-tested, when it failed by

direct crushing under 4122 lbs. per square inch, the specific weight

being 28.4 lbs. per cubic foot, and the ratio of the length to the least

នឹងនិនិនិនិនិនិ

555598988 8678985

25 THE STREET

なるない 日本語

21

-3

1,173,020 1,465,030 1,181,260 1,492,730 1,491,620 1,506,680

1,372,940 1,472,940 1,472,650 1,487,650 1,494,100 1,505,000

. ...

135 7

25

1,626,520

1,621,920

26.

25.35 27.106 25.81 25.73

8948 4275 4275 4275

2.2.2°

233 234 234 234 234 234 234

8128822

2,277,990 1,585,130 1,756,920 2,088,470 1,602,350

1,5×2,810 1,74×,500 2,0×0,120 1,5×6,910

3 26,23 8

BEAM

212° F. FROM HEMLOCK

AT

KILN-DRIED

SPECIMENS

48. 142 49. 540 49. 540 51. 156 19. 161 48. 865 48. 865

2488348368

9 5 5 5 5 5

4119 3861 4131 2951 3611 3618

535,046 1,222,700 1,444,010 1,149,300

841,150 1,244,060 1,140,900

300 822 822 822 110 110 110 110 110 110

566,269 583,150 720,450 1,250,450 1,65,650 1,66,520 1,66,520 1,701,440

35,800

17

1,454,480

was 19.6 and which partly failed by bending.

transverse dimension 5.2.

. wt. in 98. per 1b. ft.

Sp. " lbs. cub.

strength sim lbs. per sq. in of thats.

Sper. s. per.

Sp. w lbs. cub.

compressive strength in 158. per sq. in.

Keturn

Forward.

Spe Per

Sp. wt lbs. p

Tensile Strength Sin lbs. per sp. inch.

Return

Forward,

Coefficients of elasticity

Tension

Coefficients of elasticity,

Compression

Shearing Tests.

35

BEAM

SPECIMENS FROM FROZEN HEMLOCK

and the final rending varied from .00054 to .00059.

per cent.

By kiln-drying, the coefficients of elasticity were increased, the tensile strength was doubled, the compressive strength was increased by

ecimen and ere was an

to the fact is.

00 lbs. after rying from remained rying from

18 hours rom .0026 nder 5,000 02805.

s removed bic foot of

are inch. 285.87, 24.71

3

Remarks.—The mean direct tensile strength of the cold and water-soaked specimens is 1.4 times greater than the calculated mean skin-stress of the beam and 2.82 times greater than the mean direct compressive strength.

By the kiln-drying the tensile strength was diminished, the compressive strength increased more than 87 p.c., and the shearing strength diminished more than 33 per cent. The coefficients of elasticity were also increased.

The ratios of the length to the least transverse dimension in the compression specimens varied between 4.43 and 5.57, and in each case the failure was due to direct crushing.

After h_2 had been tested, the injured portion was removed, and the specimen was dried at 212 °F, and re-tested with the following results: —coefficient of elasticity =1,511,000 (forward), 1,517,830 (return); compressive strength = I107.8 lbs. per square inch; specific weight= 27,017 lbs. per cubic foot.

After h2 had been tested the injured portion was removed and the specimen was allowed to dry gradually in the laboratory for about a month. It was then re-tested, with the following results:—coefficient of elasticity = 1,526,200 (forward), 1,521,590 (return); compressive strength = 3636,3 lbs. per square inch; specific weight = 38.07 lbs. per cubic foot.

After j had been tested the injured portion was removed and the specimen was immediately re-tested, with the following results:—coefficient of elasticity = 1,608,560 (forward), 1,615,300 (return); compressive strength = 3592.5 lbs. per square inch; specific weight = 52.02 lbs. per cubic foot.

The injured portion was removed, and the specimen dried at 212 °F, when it was re-tested, with the following results:—co-officient of clasticity=1,662,500 (forward), 1,657,900 (return); compressive strength=6246 lbs. per square inch; specific weight=25.33 lbs. per cubic finet.

In the case of specimen j.,

After 1st series of readings it was left under 20,000 lbs. for 18½ hours, the final reading varying from .00755 to .00766.

After 2nd series of readings it was left under 20,000 lbs, for $47\frac{1}{2}$ hours, the final reading varying from .00678 to .00741.

After 3rd series of readings it was left under 20,000 lbs., for 3½ hours, the final reading varying from .00723 to .00726.

After 4th series of readings it was loft under 100 lbs. for 17‡ hours, the final reading varying from .00149 to .001s.

After 5th series of readings it was left under 100 lbs. for 34 hours, the final reading varying from .00176 to .00188.

After j_s had been tested the injured portion was removed and the specimen immediately re-tested, with the following results:—coefficient of elasticity = 1,284,450 (forward), 1,278,860 (return); compressive strength = 34,328 lbs. per square inch; specific weight = 46.61 lbs. per cubic foot.

The injured portion was removed and the specimen dried at 212 °F, and re-tested, with the following results:—

From 1st series of readings, coefficient of elasticity =1,496,940 (forward), 1,503,930 (return).

From 2nd series of readings, coefficient of elasticity = 1,465,810 (forward), 1,459,920 (return).

From 3rd series of readings, coefficient of elasticity = 1,471,140 (forward), 1,473,230 (return); the compressive strength = 7021.6 lbs. per cubic foot; the specific weight = 24.66 lbs. per cubic foot. Between the 1st and 2nd readings the specimen remained under 100 lbs. for about ½ hour, the final reading varying from .00043 to .00021. Between the 2nd and 3rd readings the specimen remained under 100 lbs. for about 1 hour, the final reading varying from .0007 to .00056.

waterskint com-

mpresrength y were

in the h caso and the

esults: turn); eight= and the

ibout a fficient ressive 07 lbs.

and the ults:eturn) ; weight

12 ° F. of clastrength r cubic

or 185 for 47½

for 31/2

hours, hours,

and the --coeffi-; comeight =

212 ° F.

496,940 465,810

471,140 7021.6 ic foot. der 100

.00021. nder 100 .00056. TABLE VIII.

Character of fallure.

Per et. of weight lest in drying at 212° F.

B't end.

Centre. 26.7

Sp. wt. in the per cub. ft. at date of test.	29.351 29.351 30.663	۵
clasticity.	1,629,050 1,458,360 2,020,300	TABLE IN.
	Mean. 6027 4829 3720	TA
ress (/) i	Min. 5846 4758 3642	
1 2 2	Max. 6208 4899 3758	
Breaking weight in lbs.	15,800	
indies.	$\begin{matrix} d \\ 10.1125 \\ 10.025 \\ 11.875 \\ \end{matrix}$	
inensions in	9 x x 15 15 15 15 15 15 15 15 15	-
	Breaking Skin-stress (r) in He. woght in He. per sq. in.	Recalible Samestress (*) in the coefficient of seeglift Per sq. In. Coefficient of in the coefficient of seeglift Nax. Min. Mean. 1,629,650 10,025 14,600 4899 47.58 4829 1,458,500 11,875 15,900 37.58 16,829,670 1,458,500

14,000 7212 6887 7050 2,373,080	1020	1889	7212		10	186 9.2 10	. 38	. :3
Searce saturated and fro	rce sata	X.						
TABLE N.	TA							
9,5653,050		5,800 9774 9603 9689	9-1-6	5,800	4.35	5 3.775 4.35	7) 1+	£
								1
SPRICE dried at 212° F	весе ф	S						

Langitudinal shear.

33,55

30,618

39.18

and fruzen.

Remarks .- Beam 24 was wet, but was in good condition and comparatively free from knots. Beam 27 was of ordinary commercial quality, with fairly straight grain and [a large number of small knots. Beam 30 was of ordinary commercial quality, but with large shakes running from end to end and dividing the beam practically into four sections. Beam 33 was water-sooked and hard frozen when tested. It was of exceptionally good quality, free from shakes and had clear, straight grain. Beam 39 was cut out of Beam 33 after the latter had been tested.

2128

AIR-DRIED SPECIMENS PROM SPRUCE BEAM 21.

	Tension Results.				20.0	Compressiva Beatts.	ilts.			Spen	Shearing Besulta	alla.	
efficients	Coefficients of clasticity.	Tensile	Sp. in Sp		Coefficients	Coefficients of elasticity.	Comparestve Sp. wt.		1	Shearing Sp. wt.	Sp. wit.	1	Shearing
Forward.	Return.	lbs. per			Forward,	Return.	A T	mer cub. ft		of flate.	Per cush. ft.	Ĺ	of rough
2,161,000 2,000,000 2,001,000 2,011,20 2,011,20 1,06,50 1,011,70 1,619,710 1,619,710	2.181.220 1.55.2.10] 2.045.330 2.065.110 1.965.500 1.965.320 2.117.330 2.117.330 2.117.330 2.117.330 1.594.110	1,603.7 1,461.7 12,106.6 10,218.6 10,218.7 11,809.3 11,880.3 11,887.1		- 11.0 - 12.4 ×	1,295,130 1,295,130 1,717,590 1,717,590 1,563,240 1,563,240 1,563,240 1,563,240 1,563,240 1,563,240 1,563,240	1,289,230 1,289,230 1,711,560 1,711,560 1,301,990 1,301,470 1,501,470 1,501,470	2.1.1.2.9.9.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	유명을 및 변문점 11 12 12 12 12 12 12 12 12 12 12 12 12 1	225555555555555	249.11 249.11 246.23 241.33 241.33 241.33 241.33 241.33 241.33 241.34 258.29 258.20 25	30.00 30.00 30.00 30.00 31	448 mm m	600.94 632.10 632.10 635.55 635.50 636.50 636.50

Remarks.—The mean direct tensile strength was more than double the calculated mean skin-stress and 4,21 times the mean direct compressive strength.

The mean shearing strength of the round specimens was 1.86 times the mean shearing strength of the flat specimens.

Tension specimen a_3 , after the first series of readings, was left under the load of 1600 lbs. for 43% hours, the final reading varying from .01243 to .01707.

The ratios of length to least transverse dimension in the compression specimens varied between 6.81 and 8.9, and the failure was in each case due to direct crushing.

Between the first and second series of readings g_1 was entirely relieved of load for 17 hours. After two repetitions of loading and relieving from load, specimen f_3 was left under 5,000 lbs, for $1\frac{1}{2}$ hours, and during this interval the reading varied from .00099 to .00092.

double

t com-

6 times

t under

g from

ression

ch case

entirely

ng and

hours.

092.

souler.	ig. da	A P	25.52 25.52 25.53	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stearing Besults.	Shearing	1 m	11.00 11.00	
Ř	3		٥ ٥٠ مرميم ۾ هيا	
	Sp. u.t.	100	5447 3 8 5 5 8 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	28.015
el el	Compressive Sp. wt.	Me, per	3865.9 1368.4 3218.9 3450. 3429.8 3671.9 4677.6 4777.6 4773.0	5907.1
Compression Results	Coefficients of classicity.	British.	1,477,850 1,47,670 1,105,700 1,105,700 1,105,700 1,105,700 1,105,700 1,65,500 1,65,500 1,65,500 1,85,520 1,96,700 2,011,200 2,	1,502,420 100,420 100,420
Cour	Coefficients	Forumd,	1,477,850 1,105,850 1,127,500 1,127,500 1,675,630 1,545,520 1,545,520 2,011,200	1,565.270
		<u>9</u>	-ಚರ್ಚನ್ನ ಸ್ವೈ ಇರವು ಟೆ	5.5
	Sp. wt. in libe. Spec- per cah. ft.		29 013.7 1 29 012.2 2 27 06 4 4 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2	100
	Tensile	lbs. per sq. in.	220 6635.8 6639 6530 6540 14,920 6546.2 14,920 16,737. 1724. 7724. 7724. 7724.	6182
Tension Results.	f elasticity.	Return.	1,381,220 1,400,000 1,400,000 1,435,140 1,918,130 1,191,320 1,191,320 1,191,320 2,150,770 2,150,770	1,541,120
T	Coefficients of clasticity.	Forward.	1,383,460 1,490,446 1,991,550 1,991,550 1,10,174,260 1,184,130 1,184,130 2,169,940	1,525,080
			-01 ಣ +v ಕ ನ	a.,

Remarks.—The mean tensile strength of the air-dried specimons was more than double the calculated mean skin-stress of the Beam, and 2.67 times the direct mean compressive strength. By kiin-drying the tensile strength was diminished, and the mean compressive strength was increased more than 65 per cent.

Specimen 3, after the first series of readings, was left under 400 lbs, for 46 hours, and during this interval the final reading only varied from .00258 to .00260.

Specimen a_0 , after the first series of readings, was left under 400 lbs, for 22 hours, and during this interval the final reading varied from .00378 to .00567.

The ratios of the length to the least transverse dimensions in the compression members varied between 4.23 and 8.89, and in each case the failure was due to direct crushing, excepting in the cases of specimens 5 and 6, in which the ratios were 18.76 and 14.32 respectively, which failed to some extent from bending.

Specimen $c_{i'}$ between the two sets of readings, was left under 5,000 lbs. for 41 hours, the final reading varying from .00049 to .00103,

Specimen d_2 , between the two sets of readings, was left under 5,000 lbs. for 41 hours, the final reading varying from .00128 to .00079.

After compression specimen 2 had been tested, the injured portion was removed and the remainder re-tested, when its specific weight was

25,965 lbs, per cubic foot and its compressive strength 4849 lbs. per square inch.

The injured portion was removed from this last, and the remainder again tested, when its weight was 26,024 lbs. per cubic foot and its compressive strength 6621.2 lbs. per square inch.

Specimens 3, σ_{ij} , σ_{ij} , σ_{ij} , all contain the heart and show the least compressive atrength.

romite	atrens	gth.			
	5	35.00	1	######################################	####### #######
	Shearing Tests.	Shearing strength	10	60.72 26.88	24 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	7.	1		554	がかりを直接
		Sp. wt.		45955 45255	6
N 28.		Compressive strength in	ži.	6631 6633 7660 7660 3183	5000
RUCE BEA	Сопресеба Тояв.		Brian.	0. SPIRITE	
AIR-DRIEG SPECIMENS PROM SPRUCE BEAM 330.	(.en	Conficults of challeity.		18.0 13,389 29 666 di 20,282 10,282	0 10 10 10 10 10 10 10 10 10 10 10 10 10
NME			ž.	400° 5	1 2
SO SPEC		4 a a a a a a a a a a a a a a a a a a a		29 666 30 392 30 341 11 843	12 25 25 25 25 25 25 25 25 25 25 25 25 25
AIR-DRI		Tensile	The per	13,380 22,153 22,153 8,053 14,397 16,571	13,932 19,192 16,797
	Tension Tests.	elastienty.	Return.	2,30.,180 2,130.,180 2,131.460 2,131.460 2,138.010 2,236.3180 2,340.3180	2,765,020 2,650,330 2,868,760
	Ţ	Coefficients of classiforty	Forward	2,293.550 2,555,260 2,139,450 2,139,450 2,323,210 2,312,510	2,559,620 2,647,640 2,847,540
			Si vi	ಕ್ಷ್ ೯	51 21 53 5 Q

Remarks.—The mean direct tensile strength of the niredvice armons was 3,9 times the calculated mean skin-stress of the beam, and 2 35 times the mean direct compressive strength.

By the kiln-drying, the mean tensile strength seems to have been increased, but specimen c_1 , failed under an abnormally small load, probably because of some inherent weakness. The compressive strength was increased 77 per cent., and the mean shearing strength originished more than 22 per cent.

The ratio of the length of d to its least transverse dimension was 20.925.

The ratios of the length to the least transverse dimension in the remainder of the compression members varied between 2,06 and 10.1, and in each case the failure was due to direct crushing.

WET AND FROZEN SPECIMENS PROM SPRICE BEAM 33.

id,

ve

als

he

.1,

4			655553333 888688888	713748
Seame Teeth			2000 2000	= 7.68 6.6 6.
	1	-	ए सेवीबीब वीबीबेल	के के बे के के की
	N. A.	I.	5 6 9 A A 3	M .:.
	('outpret-	i i	00 1 1 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CE 8E3
a fests	rla-monty	Keduru	1.00 (1.00 d) 1.00 (1.00 d) 1.00 (1.00 d) 1.00 (1.00 d)	E. FROM SPRICE BEAM ALIEN 2007 120 120 120 120 120 120 120 120 120 120
s supersoon feets.	Geetherente of	Forward Return Forward 1513, [240, 240]	1.140,240 1.140,240 1.140,240 1.140,240 1.140,240	
		sper.	1 285	14
	, w.t.	per cub. ft.	1981 P A SHEET A	
	Tensile		15,040 15,610 15,610 10,681 11,113 11	SPECTMENS KILN DRIFD AT 212 10, 750 1
steel normal		Return,	2,272,550 2,261,710 2,261,710 2,067,510 2,565,910 1,961,210 2,627,710	SPECING 2010 25.01.01.01.01.01.01.01.01.01.01.01.01.01.
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Coefficients of classicity	Forward.	2,219,660 2,233,176 2,233,176 2,025,116 2,025,110 2,025,110	2, 141, 240 2, 511, 240 2, 511, 240 2, 513, 513 2,
		- Ker	12212011	明白 のできる 野田 東京

Remarks.—The mean direct tensile strength of the saturated specimens was nearly double the calculated mean skin-stress of the beam and 3.88 times the mean compressive strength.

By the kiln-drying, the tensile strength seems to have been slightly increased, the compressive strength was increased 80 per cent, and the shearing strength was diminished more than 12 per cent. The coefficients of elasticity were also increased.

The ratios of the length to the least transverse dimension in the compression members varied from 4.07 to 5.85, and failure was in each case due to direct crushing.

After compression specimen 1 had been tested the injured portion was removed and the remainder re-tested, when its specific weight was 37.457 lbs. per cubic foot, its coefficient of elasticity 1,627,890 (forward) and 1,634,960 (return), and its compressive strength 3700 lbs. per square inch. The injured portion was removed from this last, and the remainder was dried at 212 °F, and then tested with the following results:—

Coefficient of clasticity from 1st series of readings =2.402.710 (forward), 2.400.340 (return).

Coefficient of elasticity from 2nd series of readings = 2,415,620 (forward), 2,411,810 (return).

Coefficient of clusticity from 3rd series of readings = 2,419,940 (forward), 2,421,360 (return).

Between the first and second readings the specimen was under 100 lbs, for 3 hours, the final reading varying from -.00005 to +.00002. Between the second and third readings the specimen was left under 100 lbs, for 25 minutes, the reading varying from -.00005 to +.05002. The specific weight of the dried specimen was 32.559 lbs, per cubic foot.

Spectages

Date

Mar. 28

Mar. 27

16 28

29

After f_1 , had been tested the injured portion was removed and the remainder retested, with the following results :—

Coefficient of custicity = 1,972,390 (forward), 1,562,020 (return); compressive strength = 3521.4 lbs. per square inch; specific weight = 36.777 lbs. per cubic foot.

After 2 had been tested the injured portion was removed and the remainder re-tested, with the following results:---

Coefficient of elasticity $\equiv 1.733,480$ (forward), 1,727,000 (return); compressive strength $\equiv 3736,7$ lbs. per square inch; specific weight $\equiv 37.602$ lbs. per cubic foot.

The injured portion was removed from the last and the remainder dried at 212 ° F., when it was tested, with the following results:—

Coefficient of charging = 2,690,130 (forward), 2,699,970 (return); compressive strength = 8465 lbs. per square inch; specific weight = 30 253 lbs. per cubic ft.

Specimen 2 contained the heart, and shows the least compressive strength.

Remarks on E.—It may be observed that the coefficient of clasticity and strength often differ widely in value, even in the case of specimens which were in the same alignment in the original beam, and which had been treated, as far as practicable, in a precisely similar manner. This may be due to a number of uncontrollable causes, as, for example, an inherent weakness or a want of parallelism in the grain, but it is certainly largely due to the proportion of moisture present in the specimen and perhaps to some but a much smaller extent, to a variation in the temperature.

Again the difference between the means of the forward and return observations diminishes as the moisture is eliminated, and as the material approaches the normal state, that is, the state in which it contains the greatest amount of moisture consistent with the bygrometric condition of the surrounding atmosphere. The same is true also of kilu-dried specimens, but the latter, on account of their small section, rapidly absorb moisture until the normal state is reached. The rate of loading was kept as uniform as possible, the average time per reading being 3/2 minute for tension and 3/4 minute for compression specimens. The following examples will serve as illustrations:—

A,-SPECIMEN OF WHITE PINE MARKED I. (KILN-DRIED).

This specimen was taken out of the kiln on March the 28th, 1895, and allowed to cool in the Laboratory during the night.

Its sectional area = .7288 square inches, and its specific weight = 21.788 lb., non-making the specific weight = .7288 square inches.

	Its sectional	area =	.7288 square	inches,	and i	ite	specific weight	=21.788	His.	ner	63
foot.										1	

Date.	No, of readings.	Mean forward reading.	Mean return reading.	Temp. (Fahr.) of Laboratory.	Mean pressure of vapour.	Mean Dew relative Dew humidity point,
Mar. 29	96 30 54 40 50 30 20 20 20 26 30 30 30 30 30 41 51	694,702 699,143 705,153 688,342 673,958 686,5 685,111 670,65 669,5 678,857 666,469 676,643	698 572 699 267 704 463 688 175 673 6 686 066 685 3 670 25 669 5 682 668 147 676 143	28 8 to 30°1 45°3 to 46°8 68°1 to 68°3 67°4 to 68°4 33° to 37°5 66°5 (64°5 5) 34°5 to 36°3 64°5 to 66°8 65°2 to 66°8 65°2 to 66°8 65°2 to 66°8 65°2 to 66°5 61°5	$\begin{smallmatrix} .2\\.2152\\.4\\.1793\\.1082\\.179\\.1173\\.1202\\.1557\\.1498\\.1382\\\end{smallmatrix}$	88.3 36.2 87.3 31.5 83.0 19.7 93.7 22 89 22.2 89 22.3 86 27.3 86 27.3 80 45.3

Tensile strength of specimen = 12,294 lbs, per sq. inch.

B. SPECIMENS OF RED PINE MARKED GI. (KILN-DRIED).

Specimen 1.—Sect. area = .6874 sq. ins.; sp. wt. = 30.9 lbs. per cub. ft.; tensile strength = 14,620 lbs. per sq. in.

Specimen 2.—Sect. area = .71775 sq. ins.; sp. wt. = 33.17 lbs. per cub. ft.; tensile strength = 12,023 lbs. per sq. in.

SPECIMEN 1.

Date,	No. of readings.	Mean forward reading.	Mean return reading.	Temp. (Fahr.) of Laboratory,	Mean pressure of vapour.	Mean relative humidity	Dew point.
Mar. 28	1 t 48 25	654 3/4 649.28 650.32	654 3/7 649.56 650.	55° to 64' 28' to 30' 25°5 to 27	.0945	85.0	17.0
· 30	617	000.02	0001	2000	,2152	58.3	36.2
			SPEC	CIMEN 2.			
Mar. 27	22 42 21	605.9 600.625 617.65	64.72 600.309 616.95	33° 27°5 65	.082 .0945	86.5 85.0	13.3 17.0

Again, a kiln-dried tension specimen, with a sectional area of .658 square inches, was placed in the testing machine on April the 10th, 1896, and was subjected to a load which was gradually increased up to 1000 lbs. Under this load, the extension during the first day was at the rate of 6.1 hundred-thousandths of an inch per hour. On every succeeding day this rate diminished, but irregularly, until the test piece had reached its normal state. At this point, the slightest change in the humidity produced a corresponding change of length in test piece. The maximum amount of extension, viz., .00708 inch, occurred on the 11th of May.

The greatest observed rates of extension and recovery per hour were 7 and 8 one hundred-thousandshs of an inch, respectively. On the 16th of May the load was reduced to 200 lbs., when the extension was also reduced to .0024 inch. One hour later the reading had fallen to .00233 inch, but an increase in the hundity then caused a corresponding increase in the extension of .00017 inch.

In the transverse experiments the greatest possible care was taken to increase the load at the same uniform rate, the average time occupied in adding each increment and in taking the corresponding rending being slightly greater than 1 minute. In many cases the beam was loaded, then relieved of load, and reloaded again, the rendings in all cares being carefully noted. This operation was sometimes repeated more than once. Whenever a beam or a specimen under tension or compression was subjected to repeated loadings, the first series of readings were almost invariably discarded as the increments of deflection, and changes of length were found to be more uniform after the preliminary loading. The initial loading seems to eliminate certain inequalities of resistance.

In Beam 15 there was an increment of .401 in. in the deflection, corresponding to an increment of 7,000 lbs. in the load. On reducing the load to 500 lbs., there was an apparent set of .006 in., which would have undoubtedly disappeared in a very short time. Upon re-loading the beam the increment of deflection for the same increment of load was .4 inch.

In Beam 17 the increments of deflection under the first and second loadings were exactly the same, viz., 415 inch for an increment of 7,000 lbs, in the load. When the load, after the first series of readings, was reduced to 500 lbs, there was an apparent set of .005 inch, which would have certainly disappeared had the beam been allowed to rest for a few minutes.

In Beam 24 (Spruce) for an increment of 6,000 lbs, in the load, the increment of deflection was 1.04 in, in the first loading and 1.034 in.

o cool in er cubic

> Dew point.

36.2

31.5 19.7

30.3 22 22.2

25.3

in the second. Upon being entirely relieved of load, there was an apparent, but evidently only apparent, set of .01 in.

In Beam 25 (Hemlock), for an increment of 6,000 lbs, in the load, the increment of deflection was 1.165 in. in the first loading and 1.155inch in the second, the apparent set when entirely relieved of load being .01 inch.

In Beam 27 (Spruce), after being loaded and then entirely relieved of load, there was an apparent set of .005, which in two hours had fallen

to .002 inch. In Beam 26 (Hemlock), after being loaded and then entirely relieved of load, there was an apparent set of .004 inch which had entirely disappeared after an interval of about two hours.

In the case of Beam 28 (White Pine) there were three sets of loadings, the increments of deflection corresponding to an increment of 12,000 lbs, in the load being :-

.238 in. and .234 in. for the first set,

.237 in. and .232 in. for the second set,

.237 in, and .232 in, and .232 in, for the third set,

When the Beam was entirely relieved of load after the first set, there was an apparent set of .002 in., which had entirely disappeared in 25 The second set of loadings commenced after an interval of minutes. 18 hours. The mean increment of deflection = .2344 in.; the mean compression = .0327 inch, and, using the ordinary formula, the corresponding value of E = 1,066,980 lbs.

The increments of deflection for repeated loadings corresponding to an increment of 6,000 lbs, in the load were :-

.675 in., .660 in., .650 in. for Beam 29 (Hemlock),

.335 in., .330 in., .337 in. for Beam 30 (Spruce),

.492 in., .485 in., .487 in. for Beam 31 (Red Pine)

.675 in., .655 in., .653 in. for Beam 32 (White Pine),

.313 in., .308 in., .305 in., .306 in. for Beam 49 (Red Pine)

The increments of deflection for repeated loadings, corresponding to an increment of 7,000 lbs. in the load, were :-

.625 in., .620 in., .620 in., .625 in, for Beam 33 (Spruce).

The increments of deflection for repeated loadings, corresponding to an increment of 5000 lbs. in the load, were :-

72 5

73 0 75°0 74°4 73°0 75°0

77°3 76°9 56°2 77°0 75°8 75°3 75°3

.590 in., .556 in., .555 in. for Beam 35 (Hemlock).

For beams dried at 212° F., the increments of deflection for repeated

loadings were: .420 in., .400 in., .405 in., .405 in., .405 in. for Beam 36 (White Pine) and an increment of 6,000 lbs.

.178 in., .173 in., .173 in. for Beam 37 (Red Pine) and an increment of 4,000 lbs.

.039 in., .042 in., .040 in., .040 in. for Beam 38 (White Pine) and an increment of 300 lbs.

.048 in., .048 in., .048 in., .0.49 in. for Beam 39 (Spruce) and an increment of 300 lbs.

.071 in., .070 in., .070 in., .070 in. for Beam 40 (Hemlock) and an increment of 300 lbs.

.363 in., .358 in., .358 in., .363 in. for Beam 41 (Red Pine) and an increment of 1,200 lbs.

.669 in., .672 in., .675 in. for Beam 42 (White Pine) and an in crement of 1,200 lbs.

.411 in., .416 in., .408 in., 402 in. for Beam 43 (White Pine) and an increment of 6,000 lbs.

.243 in., .240 in., .238 in., .241 in. for Beam 44 (Red Pine) and an increment of 6,000 lbs.

From these results and from the further observations up to the point of fracture, the following inferences may be at once drawn :-

(a) The increment of deflection diminishes and therefore the co-efficient of elasticity increases with the climination of the moisture from the beam.

(b) The increments of deflection are much more uniform in amount in the case of kiln-dried beams.

It is, of course, impossible to maintain a beam in a kiln-dried state. As soon as it is exposed to the atmosphere, it at once commences to absorb moisture, and the absorption continues until there is an equilibrium between the hygrometric conditions of the beam and atmosphere. The beam is then in its normal state, and the experiments indicate that the increments of deflection, corresponding to this state, are approximately uniform. The rate of absorption depends essentially upon the nature of the timber, and proceeds more slowly as the density increases. The weight of a central 2 inch slab of beam 30 (spruce) increased 3.6 per cent. in 24 days and 8.5 per cent. in 47 days.

The influence of moisture on the deflection of a beam was well illustrated in the case of 15 inch x 6 inch Douglas fir beam on 186 inch centres. On June 15th, 1895, it was placed in position and was loaded with a weight of 1000 lbs. at the centre, producing a deflection of .071 inch. The daily observations, extending over several months, showed a continually increasing deflection, until, by the evaporation of the moisture, the beam had attained its normal state. The average deflection now remained constant, varying, for example, between .09 inch on August 24th, and .082 inch on September 2nd, the greater deflection of course corresponding to an increase of moisture in the atmosphere. On the 4th of September, the load was increased to 2000 lbs., which produced a deflection of .127 inch. This load remained on the beam until January 8th, 1896, the deflection during the same period varying between .129 inch and .114 inch.

ť

ıe

to

0

te e-

an
an
in
an
ffiom

Changes of temperature produced no appreciable effect upon the deflection, but its sensitiveness to the presence of moisture is shown by the following table of daily observations, taken at 12 p.m., from August to December.

UNDER A LOAD OF 1,000 LBS. DURING AUGUST.

Temp.	Def.	Remarks.	Temp.	Def.	Remarks.	Temp.	Def.	Remarks.
72°5	.080		75°3	.089	Cloudy and show-	70°4	.085	Dull, cold and showery.
73 5	.080		74°9	.088	Cloudy.	70°6	.090	Continuous rain.
			740	.088	Fine.	72°2	.089	Showery, then
71 8	.081		140	.000	t me.			fine.
73°0	.083		75°9	.088	44	$72^{\circ}5$.089	Fine.
			76°7	.086	16	73°8	.089	£8
75°0	.083	1		.088	Stormy.	74°6	.089	66
74°4	.088		76°4		Stormy.	71°3	.089	Dull and cool.
73 0	.087		75°3	.088	**	75.5	.082	Fine.
75 0	. 057		73°5	.086				
75 -	.087		72°0	. 086	Fine and showery	74°9	.086	Showery.
74 9	hes.		70°8	.085	Dull, cold and showery.			

UNDER A LOAD OF 2,000 LBS. DURING SEPTEMBER.

Temp.	Def.	Remarks.	Temp.	Def.	Remarks.	Temp.	Def.	Remarks.
77 3 76 9 56 2 77 0 75 8 75 3 75 0	.129 .129 .126 .126	Cloudy, Rain. Fine and stormy. Stormy. Cloudy.	71°0 68°75 58°0 69°5 66°0 69°4 69°0	.129 .129 .125 .126 .124 .121 .125	Cloudy and cold. Fine and warm. Fine and cold. Fine and warm.	71°3 77°3 71°5 71°6 70°0 67°1 65°8	.126 .126 .128 .126 .128 .128 .128 .128 .126	Fine and warm. Fine, but cooler. Wet and stormy Fine.

UNDER A LOAD OF 2000 LBS. DURING OCTOBER.

Temp.	Def.	Remarks,	Tem p.	Def.	Remarks.	Temp.	Def.	Rem	arks
65°0	.127	Dull, cold and	75°0	.123		68°0	.118	Fine and	l cold.
		showery.	65°8	.123	Stormy.	68°0	.116	66	44
68°0	.125	Fine and warm.			Storing.	61°8	.119	Damp a	nd cold.
68.9	.125	16 16 16	64°3	.126	Est 1 1.1	63°5	.116	Fine and	cold an
66°2	.125	te te et	66°0	.120	Fine and cold.	00 0		dry.	Cold III
		48 66 66	66°4	.120	66 61	65°0	.114	**	44
66 0	.125				16 64	65°0	.115	66	4.6
65°0	.125	11 11 11	67°0	.122	6	68°0	.115	16	6.6
70°0	.125	Dull and cold.	65°8	.120		000	. 110		
		Laby, heated.				69°0	.111	66	46
67.0	.125	Dull and cold.	68°5	.120	46 64	69.0	.111		
0.0		Laby, heated.			1				
	1	naby neuten	60°0	.120	44 61		1		
		1	65°0	.120	6.6 41				
			66°2	.120	46 64		1		

UNDER 2000 LBS. DURING NOVEMBER.

68°5 70°0 58°6 65°0 67°8 68°0 66°3 60°0 53°0 53°0 58°0	.115 Rain114 Cloudy and cold114 Fine and cold115 " warm115 " " Rain and warm. Laby. door open120 Continuous rain122 Snow & freezing.	66°0 69°0 68°5 69°0 70°3 63°7 66°0 67°5 68°0 59°0	.120 .119 .119 .119 .119 .120 .120 .120 .120	Cloudy and cold. Fine and cold. Rain. Fine and warm. Fine. Dull and wet. Rain and warm. Cloudy and warm. Snow and cold.	62°0 66°0 57°8 60°0 67°5 69°7 69°0 69°3 70°0	.118 .115 .120 .115 .118 .118 .118 .118	Cold.Laby.heated. Snow. ** ** ** ** ** ** ** ** ** ** ** ** **
--	--	--	--	---	--	--	---

UNDER 2000 LBS. DURING DECEMBER.

Temp.	Def.	Remarks,	Temp,	Def,	Remarks.	Temp.	Def.	Remarks.
60° 62°5 64°5 64°0 68°0 62°5 61°5 61°5 62°3	.115 .115 .114 .115 .115 .115 .115 .115	Fine and cold. Snowstorm. Fine and cold. """" Snow and milder. """ fine. Fine and cold.	62°6 62°5 65°3 58°0 67°0 67°0 67°4 67°9	.115 .114 .114 .114 .114 .115 .115	Fine and cold.	56°5 66°0 59°8 64°0 64°5 63°0 64°5 65°0	.115 .115 .120 .120 .120 .120 .120 .120	Warm and dull. fine Dull and cooler. warm wa

Remarks on f ... It will be observed that of the 20 non-kiln dried beams, 11 failed by crippling on the compression side, 6 failed by longitudinal shear, and 3 hemlock beams only failed by the fracture on the tension side. The experiments on the direct tensile and compressive strength of the timbers show that this is precisely what might be expected to take place. In every case the direct tensile strength is very much greater than the direct compressive strength, and failure by crippling is likely to take place under a load much less than the material could bear in tension. Under all circumstances, therefore, in practice, it is advisable to place a beam so that the portion of the timber which is strongest and in the best condition should be in compression. Again, the experiments conclusively show that kiln-drying enormously increases the direct compressive strength, but greatly diminishes the shearing strength, while the direct tensile strength does not appear to be much affected, although in the majority of cases it was diminished, and sometimes considerably.

The large increase of strength in compression due to kiln-drying might have been naturally expected, as in the process of drying the walls of the cells are stiffened and hardened, and thus become better able to resist a compressive force. The walls, however, are at the same time much more brittle, and it is possible that a sudden blow might cause the failure of a kiln-dried column, which would have remained uninjured had the moisture not been eliminated. It may also be of interest to note that in the re-tests of specimens after the injured portion had been removed, the compressive strength was, almost without exception, increased.

and cold.

p and cold.

nd cold and

...

Laby heated.
v. "
and warm.
dy & warm.
and warm.

and cold.

Remarks. m and dull.

1

g y es it ig er ne lit ed of

ut

fine nd cooler. Hence, by kiln-drying a beam its compressive strength is made to approximate more closely to its tensile strength, and its transverse strength is consequently sometimes considerably increased. It must be remembered, however, that this kiln-drying invariably largely diminishes the shearing strength, and therefore proportionately increases the tendency to shear longitudinally. Thus, of the nine kiln-dried beams in the preceding tables, only one failed by crippling while four failed by fracture on the tensile side and four failed by longitudinal shear. Indeed, generally speaking, kiln-dried beams will fail either by a tensile fracture or by a longitudinal shear, and this result has been further verified by experiments subsequent to those referred to in the present Paper.

In practice, of course, beams cannot be maintained in a kiln-dried state, but they rapidly pass into the normal state. The question of how far it is desirable to eliminate the moisture depends essentially on the balance to be maintained between the tensile, shearing and compressive strengths, and a beam should always be placed so as to exert its relative strengths to the best advantage. Kiln-drying, unless some special method of prevention is adopted, develops shakes in the timber and causes existing shakes to become more pronounced. Some of these shakes often extend to a great depth and run the whole length of the beam, so that it not infrequently happens that only a slight layer is left to hold the beam together. Such a beam, although otherwise sound and clear, offers very little resistance to longitudinal shear, and might more justly be regarded as being made up of two or more superposed beams.

29