Wymagający złamania wierszy tytuł pracy w języku polskim

(English title)

Artur Rosa

Praca licencjacka

Promotor: dr Andrzej Łukaszewski

Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Informatyki

 $23~{\rm lipca}~2020$

	Streszczenie	
Polskie streszczenie		

English abstract

Spis treści

1.	$\mathbf{W}\mathbf{p}$	rowadz	zenie	7
	1.1.	Wstęp		7
	1.2.	Backg	round	7
		1.2.1.	Jakich danych i do czego potrzebują biolodzy	7
		1.2.2.	Pozyskiwanie danych	7
2.	$\mathbf{W}\mathbf{y}$	krywai	nie i śledzenie komórek	9
	2.1.	Opis p	problemu	9
		2.1.1.	Obrazy wejściowe	9
		2.1.2.	Pożądany efekt	9
	2.2.	Powią	zane prace	9
	2.3.	Wykry	ywanie komórek	9
		2.3.1.	Wstęp	9
		2.3.2.	Dane wejściowe	9
		2.3.3.	Wstępne przetwarzanie obrazu	10
		2.3.4.	Szkieletyzacja i wstępna detekcja komórek	10
		2.3.5.	Rozwiązywanie konfliktów	10
		2.3.6.	Korekta końcówek	10
	2.4.	Śledze	nie komórek w czasie	10
	2.5.	Intera	kcja ze strony użytkownika	10
3.	Opi	s impl	ementacji	11
	3.1.	Kod ź	ródłowy	11

6 SPIS TREŚCI

	3.2.	Kompilacja i uruchomienie	11
	3.3.	Struktury danych	11
	3.4.	Architektura	11
	3.5.	Opis wykorzystanego API ImageJ	11
	3.6.	Błędy w implementacji ImageJ i sposoby na ich obejście	11
	3.7.	Opis sposobu dalszego rozwoju, interfejsy	11
4.	Zak	ończenie	13
4.		ończenie Podsumowanie	
4.	4.1.		13
4.	4.1. 4.2.	Podsumowanie	13 13

Rozdział 1.

Wprowadzenie

- 1.1. Wstęp
- 1.2. Background
- 1.2.1. Jakich danych i do czego potrzebują biolodzy
- 1.2.2. Pozyskiwanie danych

Rozdział 2.

Wykrywanie i śledzenie komórek

- 2.1. Opis problemu
- 2.1.1. Obrazy wejściowe
- 2.1.2. Pożądany efekt
- 2.2. Powiązane prace
- 2.3. Wykrywanie komórek

2.3.1. Wstęp

Problem opisany w sekcji 2.1. zdefiniowany jest dla nagrań spod mikroskopu. Postanowiłem jednak najpierw rozwiązać podobny problem, ale zdefiniowany dla pojedynczego obrazu. Rozwiązanie tego problemu mogłoby z łatwością zostać uogólnione na stos obrazów (nagranie). W tym rozdziale opiszę rozwiązanie uproszczonego problemu: oznaczanie komórek widocznych na pojedynczym obrazie.

2.3.2. Dane wejściowe

Oznaczenie wszystkich komórek widocznych na obrazie można rozłożyć na dwa osobne problemy:

- 1. Określenie liczby oraz lokalizacji poszczególnych komórek
- 2. Oznaczenie kręgosłupów komórek.

W niniejszej pracy zdecydowałem się nie rozwiązywać automatycznie pierwszego problemu. Zamiast tego użytkownik zobowiązany jest ręcznie zaznaczyć dokładnie jeden punkt wewnątrz każdej komórki widocznej na obrazie. Wymóg ten dotyczy tylko pierwszej klatki nagrania, co opiszę dokładniej w dalszej części pracy (2.4.).

Danymi wejściowymi są zatem obraz ${\bf I}$ oraz zbiór punktów ${\bf P}$ lokalizujących komórki.

2.3.3. Wstępne przetwarzanie obrazu

Preprocessing (shape index), ale też zalety i wady różnych kanałów obrazów wejściowych

2.3.4. Szkieletyzacja i wstępna detekcja komórek

Wydzielanie kręgosłupów jako komórek

2.3.5. Rozwiązywanie konfliktów

2.3.6. Korekta końcówek

Poprawianie końcówek (dociąganie do krawędzi)

2.4. Śledzenie komórek w czasie

Opis jednej iteracji + sprawdzenia czy komórka nie powinna zostać podzielona

2.5. Interakcja ze strony użytkownika

Rozdział 3.

Opis implementacji

- 3.1. Kod źródłowy
- 3.2. Kompilacja i uruchomienie
- 3.3. Struktury danych
- 3.4. Architektura
- 3.5. Opis wykorzystanego API ImageJ
- 3.6. Błędy w implementacji ImageJ i sposoby na ich obejście
- 3.7. Opis sposobu dalszego rozwoju, interfejsy

Rozdział 4.

Zakończenie

- 4.1. Podsumowanie
- 4.2. Ograniczenia wynikające z zastosowanych metod
- 4.3. Dalszy rozwój

Bibliografia

 $[1]\,$ Example Women, A Document Preparation System. Addison Wesley, Massachusetts, 2nd Edition, 1994.