Applied Machine Learning Classification with Tensorflow

Ngan Le thile@uark.edu

Recap: Classification with sklearn

- X_train, X_validate, y_train, y_validate = train_test_split(....)
- model = LogisticRegression(....)

```
linear_model.LogisticRegression([penalty, ...])
                                                                               Logistic Regression (aka logit, MaxEnt) classifier.
search = GridSearch()
                              linear model.LogisticRegressionCV(*[, Cs, ...])
                                                                               Logistic Regression CV (aka logit, MaxEnt) classifier.
                              linear_model.PassiveAggressiveClassifier(*)
                                                                               Passive Aggressive Classifier
search.fit(X_train, y_
                              linear_model.Perceptron(*[, penalty, alpha, ...])
                                                                               Read more in the User Guide.
                              linear_model.RidgeClassifier([alpha, ...])
                                                                               Classifier using Ridge regression.
                              linear_model.RidgeClassifierCV([alphas, ...])
                                                                               Ridge classifier with built-in cross-validation.
print(search.best_est
                              linear model.SGDClassifier([loss, penalty, ...])
                                                                               Linear classifiers (SVM, logistic regression, etc.) with SGD training.
```

- model = search.best_estimator_
- model.fit(X_train, y_train)
- predictions = model.predict(X_validate)

Use the **TensorFlow** toolkit to create a deep neural network that can perform **classification**

Dataset: UCI Heart Disease

Predicting the presence of heart disease

Dataset: Features

Feature	Description
age	age in years
sex	sex 0 = female 1 = male
ср	chest pain type 1 = typical angina 2 = atypical angina 3 = non-anginal pain 4 = asymptomatic

Dataset: Features (continued)

Feature	Description
trestbps	resting blood pressure in Hg
chol	serum cholesterol in mg/dl
fbs	is fasting blood sugar > 120 mg/dl 0 = false 1 = true
restecg	results of a resting electrocardiograph 0 = normal 1 = ST-T wave abnormality 2 = left ventricular hypertrophy

Dataset: Features (continued)

Feature	Description
thalach	max heart rate
exang	exercise induced angina 0 = no 1 = yes
oldpeak	measurement of an abnormal ST depression
slope	slope of peak of exercise ST segment 1 = upslope 2 = flat 3 = downslope

Dataset: Features (continued)

Feature	Description
ca	count of major blood vessels colored by fluoroscopy 0, 1, 2, 3, or 4
thal	presence heart condition 0 = unknown 1 = normal 2 = fixed defect 3 = reversible defect

The Model: Output Layer

tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)

The Model: Loss

```
model.compile(
    loss='binary_crossentropy',
    optimizer='Adam',
    metrics=['accuracy']
)
```

The Model: Early Stopping

```
tf.keras.callbacks.EarlyStopping(
    monitor='loss',
    min_delta=1e-3,
    patience=5,
)
```

Your Turn