TASK-1

BUSINESS PROBLEM-Create a bar chart or histogram to visualize the distribution of a categorical or continuous variable, such as the distribution 0f ages or genders in a population.

```
import pandas as pd
In [2]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings('ignore')
In [3]: =pd.read_csv(r"C:\Users\Kokat\Downloads\prodigy_tech\SP.POP.TOTL\adult.csv")
        .head()
         4
Out[3]:
        n.num
               marital.status occupation
                                      relationship
                                                          sex capital.gain capital.loss hours.per.week
                                                                                                  native.c
                                                  race
            q
                   Widowed
                                                 White
                                                      Female
                                                                       0
                                                                               4356
                                                                                                   United-
                                      Not-in-family
                                                                                              40
                                Exec-
            9
                   Widowed
                                                                       n
                                                                               4356
                                                                                                   United-
                                      Not-in-family
                                                 White
                                                       Female
                                                                                              18
                            managerial
            10
                   Widowed
                                        Unmarried Black Female
                                                                       0
                                                                               4356
                                                                                              40
                                                                                                   United-
                              Machine-
            4
                   Divorced
                                                                       0
                                                                                                   United-
                                        Unmarried White Female
                                                                               3900
                                                                                              40
                              op-inspct
                                 Prof-
            10
                  Separated
                                        Own-child White Female
                                                                               3900
                                                                                                   United-
                                                                                              40
                              specialty
In [4]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 32561 entries, 0 to 32560
         Data columns (total 15 columns):
          #
              Column
                               Non-Null Count Dtype
         _ _ _
              -----
                               -----
          0
                               32561 non-null int64
              age
          1
              workclass
                               32561 non-null
                                                object
          2
              fnlwgt
                               32561 non-null
                                                int64
          3
              education
                               32561 non-null
                                                object
          4
                               32561 non-null
                                                int64
              education.num
          5
              marital.status 32561 non-null
                                                object
          6
              occupation
                               32561 non-null
                                                object
          7
              relationship
                               32561 non-null
                                                object
          8
                               32561 non-null
                                                object
              race
          9
              sex
                               32561 non-null
                                                object
          10
              capital.gain
                               32561 non-null
                                                int64
              capital.loss
                               32561 non-null
                                                int64
          11
              hours.per.week 32561 non-null
                                               int64
          12
          13
              native.country
                               32561 non-null object
                               32561 non-null
          14 income
                                               object
```

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

```
In [5]: ages = df["age"]

# Create the histogram
plt.hist(ages, bins=20) # Adjust the number of bins as needed
plt.xlabel("Age")
plt.ylabel("Number of People")
plt.title("Distribution of Age in Adult Census Income Data")
plt.show()
```



```
In [6]: # Create the bar chart
    plt.bar(df['age'],df['hours.per.week'])
    plt.xlabel("Age")
    plt.ylabel("Hours.per.week")
    plt.title("Distribution of Age in Adult Census Income Data")
    plt.xticks(rotation=45) # Rotate x-axis labels for better readability
    plt.show()
```


In []:

TASK-2

BUSINESS PROBLEM - Perform data cleaning and exploratory data analysis (EDA) on a dataset of your choice, such as the Titanic dataset from Kaggle. Explore the relationships between variables and identify patterns and trends in the data.

```
In [7]:
        df=pd.read_csv(r"C:\Users\Kokat\Downloads\prodigy_tech\prodigy_tech\titanic\train.csv")
        df.head()
```

Out[7]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	٤
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	٤
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	٤
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	٤
4												•

In [8]: | df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
dtypes: float64(2), int64(5), object(5)						

In [9]: df.isnull().sum()

memory usage: 83.7+ KB

Out[9]: PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2

dtype: int64

```
In [10]: df.drop('Cabin', axis=1, inplace=True)
In [11]: df.isnull().sum()
Out[11]: PassengerId
                          0
         Survived
                          0
         Pclass
                          0
         Name
                          0
                          0
         Sex
         Age
                        177
         SibSp
                          0
         Parch
                          0
         Ticket
                          0
         Fare
                          0
         Embarked
                          2
         dtype: int64
In [12]: |# Assuming you want to fill missing values in 'Age' with the mean value
         mean_age = df['Age'].mean()
         df['Age'].fillna(mean_age, inplace=True)
         # Assuming 'Embarked' is the categorical column
         most_frequent_category = df['Embarked'].mode()[0]
         df['Embarked'].fillna(most_frequent_category, inplace=True)
In [13]: df.isnull().sum()
Out[13]: PassengerId
         Survived
                        0
         Pclass
                        0
         Name
                        0
         Sex
                        0
                        0
         Age
         SibSp
                        0
         Parch
                        0
         Ticket
                        0
                        0
         Fare
                        0
         Embarked
         dtype: int64
In [14]: from sklearn.preprocessing import LabelEncoder
         le=LabelEncoder()
         df['Sex']=le.fit_transform(df['Sex'])
         df['Embarked']=le.fit_transform(df['Embarked'])
```

In [15]: # Explore relationships between variables
 # For example, visualize the survival rate based on passenger class
 sns.barplot(x='Pclass', y='Survived', data=df, ci=None)
 plt.title('Survival Rate by Passenger Class')
 plt.show()

In [16]: # Explore relationships between variables
For example, visualize the survival rate based on gender
sns.barplot(x='Sex', y='Survived', data=df, ci=None)
plt.title('Survival Rate by Gender')
plt.show()


```
In [17]: # Explore relationships between variables
    # For example, visualize the age distribution of passengers
    sns.histplot(df['Age'], bins=30, kde=True)
    plt.title('Age Distribution of Passengers')
    plt.show()
```


In []:

TASK -3

BUSINESS PROBLEM - Build a decision tree classifier to predict whether a customer will purchase a product or service based on their demographic and behavioral data. Use a dataset such as the Bank Marketing dataset from the UCI Machine Learning Repository.

```
In [18]: df=pd.read_csv(r"C:\Users\Kokat\Downloads\prodigy_tech\prodigy_tech\Bank Marketing\bank(to
df.head()
```

Out[18]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProdu
0	1	15634602	Hargrave	619	delhi	Female	42	2	0.00	
1	2	15647311	Hill	608	bangalore	Female	41	1	83807.86	
2	3	15619304	Onio	502	delhi	Female	42	8	159660.80	
3	4	15701354	Boni	699	delhi	Female	39	1	0.00	
4	5	15737888	Mitchell	850	bangalore	Female	43	2	125510.82	
4										>

```
In [19]: df.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10000 entries, 0 to 9999
         Data columns (total 14 columns):
          #
               Column
                                Non-Null Count
                                                 Dtype
                                 -----
           0
               RowNumber
                                10000 non-null int64
                                10000 non-null int64
           1
               CustomerId
           2
               Surname
                                10000 non-null
                                                 object
           3
               CreditScore
                                10000 non-null
                                                 int64
           4
               Geography
                                10000 non-null
                                                 object
           5
               Gender
                                10000 non-null
                                                 object
           6
               Age
                                10000 non-null
                                                 int64
           7
               Tenure
                                10000 non-null
                                                 int64
           8
                                10000 non-null float64
               Balance
           9
               NumOfProducts
                                10000 non-null int64
           10
               HasCrCard
                                10000 non-null
                                                 int64
           11
               IsActiveMember
                                10000 non-null int64
           12
               EstimatedSalary 10000 non-null float64
           13 Exited
                                 10000 non-null int64
         dtypes: float64(2), int64(9), object(3)
         memory usage: 1.1+ MB
In [20]: df.isnull().sum()
Out[20]: RowNumber
                             0
         CustomerId
                             0
         Surname
                             0
         CreditScore
                             0
                             0
         Geography
         Gender
                             0
                             0
         Age
                             0
         Tenure
         Balance
                             0
         NumOfProducts
                             0
                             0
         HasCrCard
                             0
         IsActiveMember
                             0
         EstimatedSalary
                             0
         Exited
         dtype: int64
In [21]: from sklearn.preprocessing import LabelEncoder
         label_encoder = LabelEncoder()
         df['Geography'] = label_encoder.fit_transform(df['Geography'])
         df['Gender'] = label_encoder.fit_transform(df['Gender'])
         df.head()
Out[21]:
             RowNumber
                       CustomerId Surname
                                           CreditScore
                                                      Geography
                                                                Gender Age
                                                                            Tenure
                                                                                     Balance NumOfProdu
          0
                      1
                          15634602
                                   Hargrave
                                                  619
                                                              1
                                                                     0
                                                                         42
                                                                                 2
                                                                                        0.00
          1
                     2
                          15647311
                                       Hill
                                                  608
                                                              n
                                                                     0
                                                                         41
                                                                                 1
                                                                                     83807.86
          2
                      3
                          15619304
                                                              1
                                                                     0
                                                                                    159660.80
                                      Onio
                                                  502
                                                                         42
                                                                                 8
          3
                      4
                          15701354
                                       Boni
                                                  699
                                                              1
                                                                     0
                                                                         39
                                                                                 1
                                                                                        0.00
                      5
                          15737888
                                    Mitchell
                                                  850
                                                              0
                                                                     0
                                                                         43
                                                                                   125510.82
In [22]: X=df.iloc[:,3:13].values
         y=df.iloc[:,-1].values
```

```
In [24]: X
Out[24]: array([[6.1900000e+02, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
                 1.0000000e+00, 1.0134888e+05],
                [6.0800000e+02, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00,
                 1.0000000e+00, 1.1254258e+05],
                [5.0200000e+02, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
                 0.0000000e+00, 1.1393157e+05],
                [7.0900000e+02, 1.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00,
                 1.0000000e+00, 4.2085580e+04],
                [7.7200000e+02, 2.0000000e+00, 1.0000000e+00, ..., 1.0000000e+00,
                 0.0000000e+00, 9.2888520e+04],
                 [7.9200000e+02, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
                 0.0000000e+00, 3.8190780e+04]])
In [25]: y
Out[25]: array([1, 0, 1, ..., 1, 1, 0], dtype=int64)
In [26]: | from sklearn.model_selection import train_test_split
         X train,X test,y train,y test=train test split(X,y,test size=0.20,random state=0)
         from sklearn.tree import DecisionTreeClassifier
In [27]:
         classifier=DecisionTreeClassifier()
         classifier.fit(X_train,y_train)
Out[27]:
          ▼ DecisionTreeClassifier
          DecisionTreeClassifier()
In [28]: y_pred=classifier.predict(X_test)
In [29]: |y_pred
Out[29]: array([0, 1, 0, ..., 0, 0, 1], dtype=int64)
In [30]: from sklearn.metrics import confusion_matrix
         cm=confusion_matrix(y_test,y_pred)
         print(cm)
         [[1381 214]
          [ 168 237]]
In [31]: from sklearn.metrics import accuracy_score
         ac=accuracy_score(y_test,y_pred)
         print(ac*100)
         80.9
In [ ]:
```

TASK-4

BUSINESS PROBLEM -Analyze and visualize sentiment patterns in social media data to understand public opinion and attitudes towards specific topics or brands.

```
In [1]: #Load the necessary libraries and datasets
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, accuracy_score
from sklearn.pipeline import Pipeline
```

```
In [2]: # Load the training and validation datasets without header
        df_training = pd.read_csv('/kaggle/input/twitter-entity-sentiment-analysis/twitter_traini
        df_validation = pd.read_csv('/kaggle/input/twitter-entity-sentiment-analysis/twitter_validation
        # Merge the two datasets
        df = pd.concat([df_training, df_validation], ignore_index=True)
        # Filter the dataset by 'Tweet content' for LeagueOfLegends
        df_league_of_legends = df[df['entity'].str.contains('LeagueOfLegends', case=False, na=Fal
        # Drop rows with missing values in 'Tweet content'
        df_league_of_legends = df_league_of_legends.dropna(subset=['Tweet content'])
        # Shuffle the dataset
        df league of legends = shuffle(df league of legends, random state=42)
        # Split the dataset into training and validation sets
        X = df league of legends['Tweet content']
        y = df_league_of_legends['sentiment']
        X_train, X_validation, y_train, y_validation = train_test_split(X, y, test_size=0.2, rand
        # Display information about the resulting datasets
        print("Training set size:", len(X_train))
        print("Validation set size:", len(X_validation))
```

Training set size: 1931 Validation set size: 483

```
In [3]:
        # Models
        models = [
            MultinomialNB(),
            SVC(),
            RandomForestClassifier(),
            LogisticRegression(),
            GradientBoostingClassifier()
        ]
        # Feature extraction methods
        vectorizers = [
            ('TF-IDF', TfidfVectorizer()),
            ('Count Vectorizer', CountVectorizer())
        ]
        # Example sentences
        new_examples = [
            "I love playing League of Legends!",
            "This game is terrible. I hate it.",
            "Neutral tweet about League of Legends."
        ]
        # Loop through models and vectorizers for training and evaluation
        for model in models:
            for vectorizer_name, vectorizer in vectorizers:
                # Define a pipeline with feature engineering and a machine learning algorithm
                pipeline = Pipeline([
                    ('vectorizer', vectorizer),
                    ('classifier', model)
                ])
                # Train the model
                pipeline.fit(X_train, y_train)
                # Evaluate the model
                y_pred = pipeline.predict(X_validation)
                accuracy = accuracy_score(y_validation, y_pred)
                report = classification_report(y_validation, y_pred)
                # Display results
                print(f"\nModel: {model.__class__.__name__}, Vectorizer: {vectorizer_name}")
                print("Accuracy:", accuracy)
                print("Classification Report:\n", report)
                # Predict the sentiment of new examples
                predicted sentiments = pipeline.predict(new examples)
                for example, sentiment in zip(new examples, predicted sentiments):
                    print(f"Example: '{example}' - Predicted Sentiment: {sentiment}")
                print("\n-----
```

Model: MultinomialNB, Vectorizer: TF-IDF

Accuracy: 0.8902691511387164

Classification Report:

	precision	recall	f1-score	support
Irrelevant	1.00	0.52	0.68	66
Negative	0.86	0.97	0.91	117
Neutral	0.86	0.96	0.91	175
Positive	0.95	0.92	0.93	125
accuracy			0.89	483
macro avg	0.92	0.84	0.86	483
weighted avg	0.90	0.89	0.88	483

Example: 'I love playing League of Legends!' - Predicted Sentiment: Positive Example: 'This game is terrible. I hate it.' - Predicted Sentiment: Negative Example: 'Neutral tweet about League of Legends.' - Predicted Sentiment: Negative

In []: