Today's Agenda

- 1. Review the components of time series data
- 2. Evaluate four forecasting tools:
 - Naïve
 - Moving Average
 - Weighted Moving Average
 - Exponential Smoothing

The Components of Time Series Data (Render, Stair, Jr., Hanna and Hale 2018)

Advance Retail Sales

Source: U.S. Census Bureau

Decomposition of additive time series

Random Variation

Random Variation Models

- Naïve Forecast
- Moving Average
- Weighted Moving Average
- Exponential Smoothing

Let's Build a Forecast

- Grab Dataset1-All_Years.xlsx from Moodle
- Copy gdp_rate for Missouri to a new sheet
- Insert a line plot

Forecast 1: Naive Forecast

Set forecast to the last observation

• Forecast $_{time+1} = \mathsf{Actual}_{time}$

Forecast 1: Naive Forecast

	Α	В	С
1	Time	Actual	Forecast
2	1998	X ₁₉₉₈	
3	1999	X ₁₉₉₉	= B2
4	2000	X ₂₀₀₀	= B3

Forecast 1: Naive Forecast

	Α	В	С
1	Time	Actual	Forecast
2	1998	X ₁₉₉₈	
3	1999	X ₁₉₉₉	= B2
4	2000	X ₂₀₀₀	= B3

• Forecast up to 2021 and update the line plot

	Α	В	С	D
1	State	year	gdp_rate	Naive
2	Missouri	1997		
3	Missouri	1998	0.039886236	
4	Missouri	1999	0.048625647	0.039886236
5	Missouri	2000	0.050845722	0.048625647
6	Missouri	2001	0.02026713	0.050845722
7	Missouri	2002	0.032502356	0.02026713
8	Missouri	2003	0.04283998	0.032502356
9	Missouri	2004	0.049801603	0.04283998
10	Missouri	2005	0.044917396	0.049801603
11	Missouri	2006	0.034729818	0.044917396
12	Missouri	2007	0.032139964	0.034729818
13	Missouri	2008	0.047005328	0.032139964
14	Missouri	2009	-0.001148231	0.047005328
15	Missouri	2010	0.025834259	-0.001148231
16	Missouri	2011	0.006776338	0.025834259
17	Missouri	2012	0.035498084	0.006776338
18	Missouri	2013	0.03173488	0.035498084
19	Missouri	2014	0.024668865	0.03173488
20	Missouri	2015	0.034130297	0.024668865
21	Missouri	2016	0.012976533	0.034130297

Accuracy: Mean Squared Error (MSE)

- Calculate the forecast error
 - Forecast Error = Actual Value Forecast Value
- Square each forecast error
- Calculate the mean of the squared errors

$$MSE = \frac{\sum (Error)^2}{n}$$

$$\mathsf{MSE} = \frac{\Sigma(\mathit{Error})^2}{n}$$

	Α	В	С	D
1	Time	Actual	Forecast	Error ²
2	1998	X ₁₉₉₈		
3	1999	X ₁₉₉₉	= B2	= (B3 - C3) ²
4	2000	X ₂₀₀₀	= B3	= (B4 - C4) ²

MSE = AVERAGE(D3:D4)

 $=(C4-D4)^2$ F4 f_x Α В D F State gdp rate Naive Sgared Error vear Missouri 1997 3 Missouri 1998 0.039886236 4 Missouri 1999 0.048625647 0.039886236 7.63773E-05 Missouri 2000 0.050845722 0.048625647 4.92873E-06 0.02026713 0.050845722 0.00093505 6 Missouri 2001 Missouri 2002 0.032502356 0.02026713 0.000149701 0.032502356 0.000106866 8 Missouri 2003 0.04283998 2004 0.049801603 0.04283998 4.84642F-05 9 Missouri Missouri 2005 0.044917396 0.049801603 2.38555E-05 10 0.034729818 0.044917396 0.000103787 11 Missouri 2006 Missouri 2007 0.032139964 0.034729818 6.70735E-06 12

G4		~ ×	f_x =AVERAGE(E4	:E25)			
	Α	В	С	D	Е	F	G
1	State	year	gdp_rate	Naive	Sqared Error		
2	Missouri	1997					
3	Missouri	1998	0.039886236				MSE
4	Missouri	1999	0.048625647	0.039886236	7.63773E-05		0.000446
5	Missouri	2000	0.050845722	0.048625647	4.92873E-06		
6	Missouri	2001	0.02026713	0.050845722	0.00093505		
7	Missouri	2002	0.032502356	0.02026713	0.000149701		
8	Missouri	2003	0.04283998	0.032502356	0.000106866		
9	Missouri	2004	0.049801603	0.04283998	4.84642E-05		
10	Missouri	2005	0.044917396	0.049801603	2.38555E-05		

Forecast 2: Moving Average Forecast

$$F_{t+1} = \frac{Y_t + Y_{t-1} + \cdots + Y_{t-n+1}}{n}$$

$$F_{t+1}$$
 = forecast for time period $t+1$
 Y_t = actual value in time period t
 n = number of periods to average

Forecast 2: Moving Average Forecast (3)

	Α	В	С
1	Time	Actual	Forecast
2	1998	X ₁₉₉₈	
3	1999	X ₁₉₉₉	
4	2000	X ₂₀₀₀	
5	2001	X ₂₀₀₁	= (B2 + B3 + B4) / 3
6	2002	X ₂₀₀₂	= (B3 + B4 + B5) / 3
7	2003	X ₂₀₀₃	= (B4 + B5 + B6) / 3

• Forecast up to 2021 and update the line plot

Forecast 3: Weighted Moving Average Forecast

$$F_{t+1} = rac{\Sigma({ ext{Weight in period i}})({ ext{Actual value in period i}})}{\Sigma({ ext{Weights}})}$$

Forecast 3: Weighted Moving Average Forecast

$$F_{t+1} = rac{\Sigma({\sf Weight \ in \ period \ i})({\sf Actual \ value \ in \ period \ i})}{\Sigma({\sf Weights})}$$

$$\mathsf{Forecast}_t = \frac{(\mathsf{Actual}_{t-1} \times 3 + \mathsf{Actual}_{t-2} \times 2 + \mathsf{Actual}_{t-3} \times 1)}{6}$$

Forecast 3: Weighted MA-3 Forecast

	Α	В	С
1	Time	Actual	Forecast
2	1998	X ₁₉₉₈	
3	1999	X ₁₉₉₉	
4	2000	X ₂₀₀₀	
5	2001	X ₂₀₀₁	= (B2*1 + B3*2 + B4*3) / 6
6	2002	X ₂₀₀₂	= (B3*1 + B4*2 + B5*3) / 6
7	2003	X ₂₀₀₃	= (B4*1 + B5*2 + B6*3) / 6

• Forecast up to 2021 and update the line plot

Forecast 4: Exponential Smoothing Forecast

$$F_{t+1} = F_t + \alpha (Y_t - F_t)$$

$$F_{t+1}$$
 = new forecast (for time period $t+1$)
 F_t = previous forecast (for time period t)
 α = smoothing constant ($0 \le \alpha \le 1$)
 Y_t = previous period's actual demand

Forecast 4: Exponential Smoothing (.2)

	Α	В	С
1	Time	Actual	Forecast
2	1998	X ₁₉₉₈	= B2
3	1999	X ₁₉₉₉	
4	2000	X ₂₀₀₀	
5	2001	X ₂₀₀₁	
6	2002	X ₂₀₀₂	
7	2003	X ₂₀₀₂	

Forecast 4: Exponential Smoothing (.2)

	Α	В	С	
1	Time	Actual	Forecast	
2	1998	X ₁₉₉₈	= B2	
3	1999	X ₁₉₉₉	= C2 + .2 * (B2 - C2)	
4	2000	X ₂₀₀₀	= C3 + .2 * (B3 - C3)	
5	2001	X ₂₀₀₁	= C4 + .2 * (B4 - C4)	
6	2002	X ₂₀₀₂	= C5 + .2 * (B5 - C5)	
7	2003	X ₂₀₀₂	= C6 + .2 * (B6 - C6)	

Forecast Tool	MSE	Prediction
Naive Forecast	0.00045	-2%
MA-3	0.00038	2%
Weighted MA-3	0.00038	1%
Exp Smoothing (.2)	0.00029	2%

State	year	GDP_Rate	Naive	MA3	WMA3	ExpSmth
Missouri	1997	NA	NA	NA	NA	NA
Missouri	1998	0.04	NA	NA	NA	0.04
Missouri	1999	0.05	0.04	NA	NA	0.04
Missouri	2000	0.05	0.05	NA	NA	0.04
Missouri	2001	0.02	0.05	0.05	0.05	0.04
Missouri	2002	0.03	0.02	0.04	0.04	0.04
Missouri	2003	0.04	0.03	0.03	0.03	0.04

To compare forecasts ONLY calculate the MSE on the rows with no missing data!

e.g. starting at row 2001.

Forecast Tool	MSE	Prediction
Naive Forecast	0.00049	-2%
MA-3	0.00038	2%
Weighted MA-3	0.00038	1%
Exp Smoothing (.2)	0.00032	2%

Assignment for Tuesday

What is the best forecast model of homeownership rates in MO?

- Naïve
- MA (3)
- Weighted MA (3), or
- Exponential Smoothing (0.2)

Predict 2021 and calculate the MSE!