# Математический анализ-3

Лектор: проф. Подольский Владимир Евгеньевич 14 сентября 2025 г.



Конспект: Кирилл Яковлев, 208 группа

Контакты: Telegram, GitHub

# Содержание

| 1 | Ряды |                                          |    |
|---|------|------------------------------------------|----|
|   | 1.1  | Определение ряда и простейшие свойства   | 3  |
|   | 1.2  | Знакопостоянные ряды                     | 4  |
|   | 1.3  | Знакопеременные ряды                     | 12 |
|   | 1.4  | Функциональные последовательности и ряды | 17 |

# 1 Ряды

## 1.1 Определение ряда и простейшие свойства

Определение. Пара последовательностей

$$a_n, S_n = \sum_{k=1}^n a_k$$

называется числовым рядом и обозначается

$$\sum_{n=1}^{\infty} a_n$$

 $a_n$  называется общим членом ряда,  $S_n$  называется частичной суммой ряда.

Определение. Если существует предел

$$\lim_{n \to \infty} S_n = S$$

TO

$$\sum_{n=1}^{\infty} a_n$$

называется сходящимся, а S - суммой ряда.

Определение. Рассмотрим ряд

$$\sum_{n=1}^{\infty} a_n$$

тогда ряд

$$r_k = \sum_{n=k+1}^{\infty} a_n$$

называется остаточным рядом.

**Теорема.** (Критерий Коши сходимости ряда) Ряд

$$\sum_{n=1}^{\infty} a_n$$

сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} \in \mathbb{N}, \; \forall k, m > N_{\varepsilon} : \left| \sum_{n=k+1}^{m} a_n \right| < \varepsilon$$

Доказательство. По критерию коши для последовательности  $S_n$ :

$$\left| \sum_{n=k+1}^{m} a_n \right| = |S_m - S_k| < \varepsilon$$

Теорема. Пусть даны ряды

$$\sum_{n=1}^{\infty} a_n, \ \sum_{n=1}^{\infty} b_n$$

и они сходятся, тогда  $\forall c, \alpha, \beta \in \mathbb{R}$  ряды

1.

$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot \sum_{n=1}^{\infty} a_n$$

2.

$$\sum_{n=1}^{\infty} (\alpha \cdot a_n + \beta \cdot b_n) = \alpha \cdot \sum_{n=1}^{\infty} a_n + \beta \cdot \sum_{n=1}^{\infty} b_n$$

также сходятся.

Доказательство. Очев.

Теорема. (Необходимое условие сходимости ряда)

Если ряд

$$\sum_{n=1}^{\infty} a_n$$

сходится, то  $a_n \to 0$ .

Доказательство. Ряд сходится, значит существует предел

$$\lim_{n \to \infty} S_n = S$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = S - S = 0$$

### 1.2 Знакопостоянные ряды

В этом разделе считаем, что  $\forall n \in \mathbb{N} : a_n \geq 0$  или  $a_n \leq 0$ .

Теорема. Рассмотрим ряд

$$\sum_{n=1}^{\infty} a_n, \ a_n \ge 0 \tag{*}$$

Если последовательность  $S_n$  ограничена, то этот ряд сходится.

Доказательство. Поскольку  $a_n > 0$ , то последовательность  $S_n$  возрастает. Тогда по теореме Вейерштрасса у  $S_n$  существует предел, значит ряд (\*) сходится.

#### Теорема. (Признак сравнения)

Пусть даны ряды

$$\sum_{n=1}^{\infty} a_n \ (a_n \ge 0) \tag{1}$$

$$\sum_{n=1}^{\infty} b_n \ (b_n \ge 0) \tag{2}$$

и  $0 \le a_n \le b_n$ . Тогда

- 1. если ряд (2) сходится, то ряд (1) сходится.
- 2. если ряд (1) расходится, то ряд (2) расходится.

Доказательство. Следует из неравенства на частичные суммы

$$\sum_{n=1}^{N} a_n \le \sum_{n=1}^{N} b_n$$

Теорема. (Признак сравнения в предельной форме)

Пусть даны ряды

$$\sum_{n=1}^{\infty} a_n \ (a_n \ge 0), \ \sum_{n=1}^{\infty} b_n \ (b_n > 0)$$

Если существует предел

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$$

то ряды сходятся или расходятся одновременно.

Доказательство. Выберем  $\varepsilon > 0$  такой, что

$$0 < c - \varepsilon < \frac{a_n}{b_n} < c + \varepsilon$$

$$(c-\varepsilon)\cdot b_n < a_n < (c+\varepsilon)\cdot b_n$$

по признаку сравнения получаем утверждение теоремы.

#### Примеры.

1. Ряд

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

расходится по Критерию Коши.

2. Ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

при  $\alpha < 1$  расходится по признаку сравнения с рядом из предыдущего примера.

3. Ряд

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)n} = \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) = 1$$

сходится.

4. Ряд

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$

сходится по признаку сравнения с рядом из предыдущего примера.

**Упражнение.** Доказать, что при  $\alpha > 1$  ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

сходится.

Теорема. (Признак Коши)

Пусть дан ряд

$$\sum_{n=1}^{\infty} a_n \tag{*}$$

такой, что  $\forall n : a_n \geq 0$ .

- 1. Если  $\forall n : \sqrt[n]{a_n} \le q < 1$ , то ряд (\*) сходится.
- 2. Если  $\exists \{n_k\}_{k=1}^{\infty}$ , что  $\sqrt[n]{a_{n_k}} \ge 1$ , то ряд (\*) расходится.

Доказательство.

1.  $\sqrt[n]{a_n} \le q < 1 \Rightarrow a_n \le q^n \Rightarrow$  ряд (\*) сходится по признаку сравнения с рядом геометрической прогрессии.

2.  $\sqrt[n]{a_{n_k}} \ge 1 \Rightarrow a_n \not\to 0 \Rightarrow$  ряд (\*) расходится.

Следствие. (Признак Коши в предельной форме)

1. Если

$$\overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q < 1$$

то ряд (\*) сходится

2. Если

$$\overline{\lim}_{n\to\infty}\sqrt[n]{a_n}=q>1$$

то ряд (\*) расходится

Доказательство.

- 1. q < 1, значит, начиная с некоторого номера, выполнено:  $\sqrt[n]{a_n} < Q < 1$  следовательно, по утверждению теоремы ряд (\*) сходится.
- 2. q>1, значит, начиная с некоторого номера, выполнено:  $\sqrt[n]{a_n}>1$  следовательно, по утверждению теоремы ряд (\*) расходится.

**Пример.** При q=1 ряд может как сходиться, так и расходиться:

1.

$$\sqrt[n]{\frac{1}{n}} \to 1$$

и ряд

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

расходится.

2.

$$\sqrt[n]{\frac{1}{n^2}} \to 1$$

и ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

сходится.

Теорема. (Интегральный признак)

Пусть f(x) определена на  $[1, +\infty)$ , монотонно убывает и неотрицательна (монотонно возрастает и неположительна). Тогда ряд и интеграл

$$\sum_{n=1}^{\infty} f(n), \int_{1}^{\infty} f(x) \ dx$$

сходятся или расходятся одновременно.

Доказательство. f(x) монотонно убывает, значит  $\forall k \in \mathbb{N}$  и  $x \in [k, k+1]$  :  $f(k) \geq f(x) \geq f(k+1)$ . Проинтегрируем неравенство на этом отрезке:

$$f(k) \ge \int_{k}^{k+1} f(x) \ dx \ge f(k+1)$$

теперь просуммируем

$$\sum_{k=1}^{N} f(k) \ge \int_{1}^{N+1} f(x) \ dx \ge \sum_{k=2}^{N+1} f(k)$$

отсюда получаем утверждение теоремы.

Пример. (Степенно-логарифмическая шкала)

1.

$$\int_{1}^{\infty} \frac{dx}{x^{\alpha}} \text{ при } \begin{cases} \alpha > 1 - \text{сходится} \\ \alpha \le 1 - \text{расходится} \end{cases}$$

значит

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ при } \begin{cases} \alpha > 1 - \text{сходится} \\ \alpha \le 1 - \text{расходится} \end{cases}$$

2.

$$\int_{2}^{\infty} \frac{dx}{x \cdot \ln^{\beta} x} \text{ при } \begin{cases} \beta > 1 - \text{сходится} \\ \beta \le 1 - \text{расходится} \end{cases}$$

значит

$$\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln^{\beta} n} \text{ при } \begin{cases} \beta > 1 - \text{сходится} \\ \beta \leq 1 - \text{расходится} \end{cases}$$

3.  $\int\limits_{10}^{\infty} \frac{dx}{x \cdot \ln^{\gamma} (\ln x)} \ \text{при} \ \begin{cases} \gamma > 1 - \text{сходится} \\ \gamma \leq 1 - \text{расходится} \end{cases}$ 

значит

$$\sum_{n=10}^{\infty} \frac{1}{x \cdot \ln^{\gamma}(\ln x)} \text{ при } \begin{cases} \gamma > 1 - \text{сходится} \\ \gamma \leq 1 - \text{расходится} \end{cases}$$

шкалу можно продолжать дальше.

Теорема. (Схема Куммера) Рассмотрим ряд

$$\sum_{n=1}^{\infty} a_n, \ a_n > 0 \tag{*}$$

1. Если  $\forall n \geq N$  существует последовательность  $\{c_n\}_{n=N}^{\infty},\ c_n>0$  и существует  $\alpha>0$  такие, что

$$c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} \ge \alpha$$

то ряд (\*) сходится.

2. Если ряд

$$\sum_{n=1}^{\infty} \frac{1}{c_n}$$

расходится и

$$c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} \le 0$$

то ряд (\*) расходится.

Доказательство.

1. Рассмотрим неравенства для n = N, N + 1, ..., N + k - 1:

$$\begin{cases} c_N \cdot a_N - c_N \cdot a_{N+1} \ge \alpha \cdot a_{N+1}, \\ \vdots \\ c_{N+k-1} \cdot a_{N+k-1} - c_{N+k} \cdot a_{N+k} \ge \alpha \cdot a_{N+k}. \end{cases}$$

сложив все неравенства, получим

$$c_N \cdot a_N - c_{N+k} \cdot a_{N+k} \ge \alpha \cdot \sum_{m=1}^k a_{N+m}$$

поскольку  $c_{N+k} \cdot a_{N+k} > 0$ , то

$$c_N \cdot a_N \ge \alpha \cdot \sum_{m=1}^k a_{N+m}$$

значит

$$\sum_{m=1}^{k} a_{N+m} \le \frac{c_N \cdot a_N}{\alpha}$$

и ряд сходится.

2.

$$c_n \cdot a_n - c_{n+1} \cdot a_{n+1} \le 0$$

$$\frac{c_n}{c_{n+1}} \le \frac{a_{n+1}}{a_n} \Leftrightarrow \frac{\frac{1}{c_{n+1}}}{\frac{1}{c}} \le \frac{a_{n+1}}{a_n}$$

Рассмотрим неравенства для  $n=N,\ N+1,\ \dots,\ N+k-1$ :

$$\begin{cases} \frac{1}{c_{N+1}} \le \frac{a_{N+1}}{a_N} \\ \vdots \\ \frac{1}{c_{N+k}} \\ \frac{1}{c_{N+k-1}} \le \frac{a_{N+k}}{a_{N+k-1}} \end{cases}$$

перемножив все неравенства, получим

$$\frac{\frac{1}{c_{N+k}}}{\frac{1}{c_N}} \le \frac{a_{N+k}}{a_N}$$

$$\frac{1}{c_{N+k}} \le \frac{1}{a_N \cdot c_N} \cdot a_{N+k}$$

отсюда, по признаку сравнения, ряд

$$\sum_{k=1}^{\infty} a_{N+k}$$

расходится, значит расходится и ряд (\*).

Примеры. Рассмотрим ряд

$$\sum_{n=1}^{\infty} a_n \tag{*}$$

1. (Признак Д'Аламбера)

Возьмем  $c_n = 1$ :

$$1 \cdot \frac{a_n}{a_{n+1}} - 1 \ge \alpha$$

значит если

$$\frac{a_n}{a_{n+1}} \ge 1 + \alpha$$

то ряд (\*) сходится. Если

$$1 \cdot \frac{a_n}{a_{n+1}} - 1 \le 0$$

значит если

$$\frac{a_n}{a_{n+1}} \le 1$$

то ряд (\*) расходится. Запишем в предельной форме:

Если

$$\exists \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = q > 1$$

то ряд (\*) сходится. Если

$$\exists \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = q < 1$$

то ряд (\*) расходится.

2. (Признак Раабе)

Возьмем  $c_n = n$ :

$$n \cdot \frac{a_n}{a_{n+1}} - (n+1) \ge \alpha$$

Значит если

$$n \cdot (\frac{a_n}{a_{n+1}} - 1) \ge 1 + \alpha$$

то ряд (\*) сходится. Теперь

$$n \cdot \frac{a_n}{a_{n+1}} - n - 1 \le 0$$

Значит если

$$n \cdot (\frac{a_n}{a_{n+1}} - 1) \le 1$$

то ряд (\*) расходится. Запишем в предельной форме:

Если

$$\exists \lim_{n \to \infty} n \cdot (\frac{a_n}{a_{n+1}} - 1) = q > 1$$

то ряд (\*) сходится. Если

$$\exists \lim_{n \to \infty} n \cdot (\frac{a_n}{a_{n+1}} - 1) = q < 1$$

то ряд (\*) расходится.

3. (Признак Бертрана, без доказательства, знать формулировку) Возьмем  $c_n = n \cdot \ln(n)$  Если

$$\ln n \cdot (n(\frac{a_n}{a_{n+1}}) - 1) \ge 1 + \alpha$$

то ряд (\*) сходится. Если

$$\ln n \cdot \left( n(\frac{a_n}{a_{n+1}}) - 1 \right) \le 1$$

то ряд (\*) расходится. Запишем в предельной форме:

Если

$$\exists \lim_{n \to \infty} (\ln n \cdot (n(\frac{a_n}{a_{n+1}}) - 1)) = q > 1$$

то ряд (\*) сходится. Если

$$\exists \lim_{n \to \infty} (\ln n \cdot (n(\frac{a_n}{a_{n+1}}) - 1)) = q < 1$$

то ряд (\*) расходится.

4. (Признак Гаусса, без доказательства, знать формулировку) Выводится из признака Бертрана. Формулировка появится позже.

# 1.3 Знакопеременные ряды

Определение. Если для ряда

 $\sum_{n=1}^{\infty} a_n \tag{1}$ 

ряд

$$\sum_{n=1}^{\infty} |a_n|$$

сходится, то ряд (1) называется абсолютно сходящимся.

**Утверждение.** Если ряд

$$\sum_{n=1}^{\infty} a_n$$

абсолютно сходится, то он сходится.

Доказательство. По критерию Коши:

$$\left| \sum_{n=k}^{\infty} a_n \right| \le \sum_{n=k}^{\infty} |a_n| < \varepsilon$$

**Определение.** Биекция  $\sigma: \mathbb{N} \to \mathbb{N}$  называется перестановкой натурального ряда.

Теорема. Если ряд

$$\sum_{n=1}^{\infty} a_n \tag{1}$$

абсолютно сходится, то для любой перестановки  $\sigma$  натурального ряда, ряд

$$\sum_{n=1}^{\infty} a_{\sigma(n)} \tag{2}$$

абсолютно сходится и их суммы равны.

Доказательство. Пусть  $a_n \ge 0$ . Рассмотрим

$$S_k^{\sigma} = \sum_{n=1}^k a_{\sigma(n)}$$

Пусть  $N = \max_{1 \le n \le k} \sigma(n), \ S_n \to S$ . Тогда

$$S_k^{\sigma} \le S_N \Rightarrow S_k^{\sigma} \le S \Rightarrow \exists S^{\sigma} = \lim_{k \to \infty} S_k^{\sigma}$$

Используя, что (2) абсолютно сходится, аналогично, поменяв ряды местами, получим:

$$S \le S^{\sigma} \Rightarrow S = S^{\sigma}$$

тогда

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} |a_{\sigma(n)}|$$

заметим, что

$$a + |a| = \begin{cases} 2a, \ a \ge 0, \\ 0, \ a < 0. \end{cases}$$

значит

$$\sum_{n=1}^{\infty} (a_n + |a_n|) = \sum_{n=1}^{\infty} (a_{\sigma(n)} + |a_{\sigma(n)}|)$$

отсюда

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\sigma(n)}$$

Определение. Рассмотрим ряды

$$\sum_{n=1}^{\infty} a_n, \ \sum_{n=1}^{\infty} b_n$$

а также всевозможные попарные произведения

$$\{a_n \cdot b_k\}_{n=1,k=1}^{\infty, \infty}$$

Будем записывать ряд по схеме:

$$a_1b_1 \ a_1b_2 \ a_1b_3 \ \dots$$
 $a_2b_1 \ a_2b_2 \ a_2b_3 \ \dots$ 
 $a_3b_1 \ a_3b_2 \ a_3b_3 \ \dots$ 
 $\vdots \ \vdots \ \vdots$ 
 $(*)$ 

то есть, запишем в порядке:  $a_1b_1,\ a_1b_2,\ a_2b_2,\ a_2b_1,\ a_1b_3,\ a_2b_3,\ a_3b_3,\ a_3b_2,\ a_3b_1,\ \dots$  Тогда ряд

$$\sum_{m=1}^{\infty} (a_n b_k)_m$$

называется произведением рядов по прямоугольной схеме (\*).

**Утверждение.** Пусть два ряда

$$\sum_{n=1}^{\infty} a_n = A, \ \sum_{n=1}^{\infty} b_n = B$$

сходятся абсолютно. Тогда

$$\sum_{m=1}^{\infty} (a_n b_k)_m \tag{*}$$

сходится абсолютно и равен AB.

Доказательство. Рассмотрим подпоследовательность частичных сумм ряда (\*), которые имеют вид  $S_{N^2}$ :

$$S_{N^2} = S_N^a \cdot S_N^b \Rightarrow S_{N^2} \to AB, \ N \to \infty$$

Теперь перейдем к общему виду  $S_{N^2+M},\ (1\leq M\leq 2N)$  и покажем, что вклад членов, добавляемых к квадратной частичной сумме, бесконечно мал

$$S_{N^2+M} = S_{N^2} + \sum_{m=N^2+1}^{N^2+M} (a_n \cdot b_k)_m$$

обозначим

$$S_{N,M} = S_{N^2+M} - S_{N^2} = \sum_{m=N^2+1}^{N^2+M} (a_n \cdot b_k)_m$$
$$|S_{N,M}| \le |b_{N+1}| \cdot (|a_1| + \dots + |a_{N+1}|) + |a_{N+1}| \cdot (|b_1| + \dots + |b_N|) \to 0$$

поскольку частичные суммы каждого ряда ограничены и члены, по необходимому признаку, стремятся к нулю. Значит  $S_{N^2+M} \to AB$ .

Определение. Если ряд

$$\sum_{n=1}^{\infty} a_n \tag{*}$$

сходится, а ряд

$$\sum_{n=1}^{\infty} |a_n|$$

расходится, то ряд (\*) называется условно сходящимся.

Утверждение. Пусть ряд

$$\sum_{n=1}^{\infty} a_n$$

условно сходится. Обозначим

$$a_n^+ \begin{cases} a_n, \ a_n > 0, \\ 0, \ a_n \le 0. \end{cases}$$
,  $a_n^- = \begin{cases} 0, \ a_n \ge 0, \\ a_n, \ a_n < 0. \end{cases}$ 

Тогда ряды

$$\sum_{n=1}^{\infty} a_n^+ \tag{1}$$

$$\sum_{n=1}^{\infty} a_n^- \tag{2}$$

расходятся к  $+\infty$  и  $-\infty$  соответственно.

Доказательство. Если оба ряда сходятся, то

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-$$

сходится, противоречие. Если ряд (1) сходится, а (2) расходится, то

$$\sum_{n=1}^{\infty} a_n^- = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} a_n^+$$

сходится, противоречие. Аналогичное противоречие в случае, когда (2) сходится, а (1) расходится. Значит оба ряда расходятся.

Теорема. (Теорема Римана)

Если ряд

$$\sum_{n=1}^{\infty} a_n$$

сходится условно, то  $\forall \sigma_a$  такая, что

$$\sum_{n=1}^{\infty} a_{\sigma_a(n)} = a$$

 $\exists \sigma_{\pm\infty}$  такая, что

$$\sum_{n=1}^{\infty} a_{\sigma_{\pm\infty}} = \pm \infty$$

 $\exists \sigma$  такая, что

$$\sum_{n=1}^{\infty} a_{\sigma(n)}$$

расходится, но частичные суммы ограничены.

Доказательство. доказали картинками))))) доказательство появится немного позже

**Теорема.** (Признаки Абеля и Дирихле) Рассмотрим  $\{a_n\}_{n=1}^{\infty},\ \{b_n\}_{n=1}^{\infty}.$ 

(A): Если

$$\sum_{n=1}^{\infty} a_n$$

сходится, а  $b_n$  монотонна и ограничена, то

$$\sum_{n=1}^{\infty} a_n \cdot b_n$$

сходится.

 $(\mathcal{D})$ : Если существует M такая, что  $\forall N \in \mathbb{N}$ :

$$\left| \sum_{n=1}^{N} a_n \right| < M$$

и  $b_n$  монотонно сходится к 0, то

$$\sum_{n=1}^{\infty} a_n \cdot b_n$$

сходится.

Доказательство. Оценим

$$\left| \sum_{n=k}^{m} a_n \cdot b_n \right|$$

Введем

$$A_p = \sum_{n=k}^p a_n, \ A_0 = 0 \ \Rightarrow \ a_n = A_n - A_{n-1}$$

отсюда

$$\sum_{n=k}^{m} a_n \cdot b_n = \sum_{n=k}^{m} (A_n - A_{n-1}) \cdot b_n = \sum_{n=k}^{m} A_n \cdot b_n - \sum_{n=k+1}^{m} A_{n-1} \cdot b_n =$$

$$= \sum_{n=k}^{m} A_n \cdot b_n - \sum_{n=k}^{m-1} A_n \cdot b_{n+1} = \sum_{n=k}^{m-1} A_n \cdot (b_n - b_{n+1}) + A_M \cdot b_m$$

 $(\mathcal{A})$ :

$$\left| \sum_{n=k}^{m-1} A_n \cdot (b_n - b_{n+1}) + A_M \cdot b_m \right| \le \varepsilon \cdot (|b_k - b_m| + |b_m|) < \varepsilon \cdot 3B$$

 $(\mathcal{D})$ :

$$\left| \sum_{n=k}^{m-1} A_n \cdot (b_n - b_{n+1}) + A_M \cdot b_m \right| \le 2M \cdot (|b_k - b_m| + |b_m|) < 6M \cdot \varepsilon$$

Следствие. (Признак Лейбница)

Если  $a_n$  монотонно убывает и  $a_n \to 0$ , то

$$\sum_{n=1}^{\infty} (-1)^n \cdot a_n \tag{*}$$

сходится

Доказательство.

$$\left| \sum_{n=1}^{\infty} (-1)^n \right| \le 1, \ \forall N \in \mathbb{N}$$

Значит, по признаку Дирихле, ряд (\*) сходится.

### 1.4 Функциональные последовательности и ряды

**Определение.** Пусть  $\forall n \in \mathbb{N} : f_n(x)$  определены на  $A \subset \mathbb{R}$ . Если  $\forall x \in A$ :

$$\exists \lim_{n \to \infty} f_n(x) = f(x)$$

то говорят, что  $\{f_n(x)\}_{n=1}^{\infty}$  сходится на A поточечно.

#### Примеры.

1.  $\forall x \in [0, 1]$ 

$$x^n \to \begin{cases} 1, & x = 1, \\ 0, & x \in [0, 1]. \end{cases}$$

2.

$$\sin\frac{x}{n} \to 0, \ \forall x \in \mathbb{R}$$

**Определение.** Пусть  $\forall n: f_n(x)$  определены на  $A \subset \mathbb{R}$ . Если

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} : \forall n > N_{\varepsilon}, \; \forall x \in A : |f_n(x) - f(x)| < \varepsilon$$

то говорят, что  $f_n(x)$  сходится равномерно к f(x) на A и пишут  $f_n(x) \rightrightarrows f(x)$ .

#### Примеры.

1. Ha [0, 1]

$$x^n \not \rightrightarrows \begin{cases} 1, & x = 1, \\ 0, & x \in [0, 1]. \end{cases}$$

поскольку  $\exists \ \varepsilon_0 > 0, \ \forall N_\varepsilon \ \exists \ n > N_\varepsilon, \ \exists \ x_{\varepsilon_0} \in [0,1)$  такой, что  $x_{\varepsilon_0}^n > \varepsilon_0$ .

- 2. Ha  $[0, \frac{1}{2}] : x^n \Rightarrow 0$ .
- 3.  $f_n = x^n x^{2n}$  на  $[0, 1] : f_n \Rightarrow 0$ .

$$f'_n = n(x^{n-1} - 2x^{2n-1}) = n \cdot x^{n-1}(1 - 2x^n) = 0 \Rightarrow x_n = \frac{1}{\sqrt[n]{2}}, \ f_n(x_n) = \frac{1}{4}$$

4.  $f_n = \sin \frac{x}{n} \not\rightrightarrows 0$  на  $\mathbb{R}$ , но  $\forall [a, b] : \sin \frac{x}{n} \rightrightarrows 0$ .

Теорема. (Первый критерий равномерной сходимости последовательности)

$$f_n(x) \stackrel{A}{\Longrightarrow} f(x) \Leftrightarrow \sup_A |f_n(x) - f(x)| \to 0, \ n \to \infty$$

Доказательство.

 $(\Rightarrow)$ :

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} : \forall n > N_{\varepsilon}, \; \forall x \in A : |f_n(x) - f(x)| < \varepsilon$$

значит

$$\sup_{A} |f_n(x) - f(x)| < \varepsilon$$

 $(\Leftarrow)$ :

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} : \forall n > N_{\varepsilon} : \sup_{A} |f_n(x) - f(x)| < \varepsilon$$

значит

$$|f_n(x) - f(x)| < \varepsilon, \ \forall x \in A$$

Теорема. (Второй критерий равномерной сходимости последовательности)

 $f_n(x) \stackrel{A}{\Longrightarrow} f(x) \Leftrightarrow \forall \varepsilon > 0 \; \exists \; N_{\varepsilon} : \forall k, m > N_{\varepsilon}, \; \forall x \in A : |f_k(x) - f_m(x)| < \varepsilon$  Доказательство.

 $(\Rightarrow)$ :

$$|f_k(x)-f_m(x)| = |f_k(x)-f(x)+f(x)-f_m(x)| \le |f_k(x)-f(x)|+|f(x)-f_m(x)| < 2\varepsilon$$

 $(\Leftarrow)$ : Заметим, что есть поточечная сходимость  $f_n(x) \to f(x)$ , тогда

$$|f_k(x) - f_m(x)| < \varepsilon \Rightarrow |f_k(x) - f(x)| \le \varepsilon, \ n \to \infty$$

**Теорема.** (Признак Вейерштрасса равномерной сходимотси последовательности)

Пусть  $f_n(x) o f(x)$  на A. Если

$$\exists \{c_n\}_{n=1}^{\infty}, c_n \ge 0, c_n \to 0: |f_n(x) - f(x)| \le c_n \Rightarrow f_n \stackrel{A}{\Rightarrow} f$$

Доказательство. Очев по первому критерию.