BAC BLANC

EPREUVE DE MATHS

W. amimat Classes:7Dmy

Durée: 4H 30/03/2018

Exercice 1 (3 points)

Pour tout entier naturel n on pose : $U_n = 2^{2n+1} + 4n - 6$ et $V_n = 2^{2n+1} - 2n + 3$:

$$a_n = U_n - V_n \quad et \quad b_n = U_n + 2V_n.$$

- 1.a) Calculer a_0 , a_1 , b_0 et b_1 .
- b) Montrer que (a_n) est une suite arithmétique dont on donnera le premier terme et la raison
- c) Montrer que (b_n) est une suite géométrique dont on précisera le premier terme et la raison
- 2) On pose pour tout entier naturel n: $c_n = \ln b_n$.
- b) Soit $S_n = c_0 + c_1 + ... + c_n$. Vérifier que S_n peut s' écrire sous la forme $S_n = \alpha n^2 + \beta n + \gamma$ où
- α, β et γ sont des réels à déterminer. ww.amimath.mr

Exercice 2 (4 points)

Soit f la fonction définie sur]1, +\infty[par : f(x) = $\frac{2}{x(x^2-1)}$

- 1)a) Déterminer les réels a ,b et c tels que : $\forall x > 1$; $f(x) = \frac{a}{v} + \frac{b}{v-1} + \frac{c}{v+1}$
- b) En déduire une primitive F de f sur $]1; +\infty[$
- c) Calculer l' intégrale $I = \int_2^3 f(x) dx$ et montrer que $I = \ln(\frac{32}{27})$
- 2) Montrer que : $\forall x \ge 2$ on peut écrire f(x) sous la forme $f(x) = \frac{1}{x(x-1)} \frac{1}{x(x+1)}$.
- 3) On pose $\forall n \ge 2$, $S_n = f(2) + f(3) + f(4) + ... + f(n)$.
- a) Montrer que: $S_n = \frac{1}{2} \frac{1}{n(n+1)}$ www.amimath.
- b) Simplifier la somme : $A = \frac{2}{1223} + \frac{2}{2334} + \frac{2}{3445} + \cdots + \frac{2}{20162201722018}$

Exercice 3 (5 points)

Dans l'ensemble des nombres complexes \mathbb{C} , on pose :

$$P(z) = z^3 - (5+6i)z^2 + (-4+14i)z + 8 - 8i$$

- 1.a) calculer P(1)
- b) Déterminer les complexes a et b tel que : $P(z) = (z-1)(z^2 + az + b)$
- c) Résoudre l'équation P(z)=0
- 2) Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) on considère les quatre points A,B, C et D tels que : $Z_A = 2i$, $Z_B = 1$, $Z_C = 4 + 4i$ et D le quatrième sommet du parallélogramme ABCD.

7° D

- a) Déterminer Z_D et placer les points A, B, C et D.
- b) Calculer $\frac{Z_C Z_A}{Z_R Z_A}$ et interpréter ce résultat.
- 3) Pour tout nombre $z \ne 1$, on pose : $f(z) = \frac{Z-4-4i}{7-4}$
- a) Déterminer est construire l'ensemble Γ_1 des points M(z) tels que : |f(z)| = 1
- b) Déterminer et construire l'ensemble Γ_2 des points M(z) tels que :

|f(z)-1|=5

- 4) Soient les points M_n d'affixes $Z_n = (Z_0)^n$; $(n \ge 1)$
- a) Pour quelles valeurs de n les points M_n sont situés sur l'axe (Ox)?
- b) Déterminer n pour que $OM_n > 2018$.

Exercice 4(8 points)

Partie A

www amimath

On considère la fonction g définie par : $\forall x > 0$, $g(x) = x^4 + 2 - 4\ln x$. 1) Calculer $\lim_{x \to 0^+} g(x)$ et $\lim_{x \to 0^+} g(x)$.

- 2.a) Calculer g'(x).

b) Dresser le tableau de variations de g . 3) En déduire que $\forall \ x > 0 \ , \ g(x) > 0 \ .$

Soit la fonction f définie par : $\forall x > 0$; $f(x) = \frac{x^2}{2} + \frac{2\ln x}{x^2}$ et soit (C) sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}) d'unité 2 cm.

- 1.a) Montrer que $\lim_{x\to\infty} f(x) = -\infty$. Interpréter graphiquement ce résultat.
- b) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.
- **2.a)** Montrer que $\forall x > 0$; $f'(x) = \frac{g(x)}{x^3}$.
- b) Dresser le tableau de variations de f.
 3.a) Montrer que f réalise une bijection de]0; +∞[sur un intervalle J à déterminer.
- b) Montrer que l'équation f(x) = 0 admet une unique solution \propto dans $]0; +\infty[$ et vérifier que $0.8 < \infty < 0.9$
- c) Déterminer l'équation de la tangente (T) à la courbe (C) au point d'abscisse $x_0 = 1$.
- 4.a) Dresser le tableau de variations de f^{-1} .
- b) Calculer $(f^{-1})'(\frac{1}{2})$.
- c) Déterminer l'équation de la tangente (T') à la courbe (C') représentative de f^{-1} au point d'abscisse $\frac{1}{2}$.
- d) Tracer dans le même repère (T), (T'), (C) et (C').
- 5. a) En utilisant une intégration par parties, calculer $I_1 = \int_1^2 \frac{\ln x}{x^2} dx$.
- b) En déduire l'aire du domaine plan limité par la courbe (C), l'axe (Ox) et les droites d'équations x = 1 et x = 2.

Fin.