يا	.55c	2V	10:																	
I.	In	vers	e	Kine	2ma:	tics	•													
I.	Pa	der	, –	Kah	an	اسک	oprob	ler	·s											
I.				Ki				•												
	Pro	<u>bler</u>		1									952							
			•	and	des	ired	te	zo l	confi	9.	9.	ES	E(3)	, S	olve	9,				
																	•	tor	O .	
	E.	P	A 44 4	A	-Vm															
	<u> </u>								Foru	ard'	. x	(e)	= L,	(05/	9 . 1	- 0_	CCF.	(c) +	·Ø,)	
		()	(,4)										= L,							
				2.	<i>O</i> ₂						'ر		•		•	_				
		3 /		٥	Ø (IK:	G	iven	de	sired	l x	, y	fin	d	9		
			5/	10	1															
		Īģ	lea	· R		e i	۰ L	lar	coc	rdin	ate:	5								
				(x,y)	0.	۲	= \(\)	X²	+ 4	2	•	and	4	} =	ata	n 2	(y,	(x)	
			r!	N 04	1	/2									/	l,2	·Lz	`-r	: \	
		(· K		Y		L	سه	of	œş	ine:	s <i>:</i>	⋉ =	င္တေ\$	-1 (-	2	l, l	· 2	_)	
		9		4	91										\				/	
				K			Ste	: ۱ د	6) =	: TI	土	×	(2 5	m (a	s ↓	26 0	メ ≉	0)
			- 4																_	
			Ste	P 7:	0	[=	Ψ	רן − ^		u.h	<i>lere</i>		3 =	Cos	\-	2	l, r	228	-)	
								•					hosen		\	-	•		J	
					fe	ر مر (9,	ىر مام	CV @	1	ֿני.						C		,_	_ \
													=	> 2	Selve	ti on	s to	x (0,6	72)

- * Here we divided IK into "subproblems"
 - · Each sub problem can have zero, one, or mut solins
 - · We take analytical approach (possible for most industrial robot arms)
 - · But numerical approaches are becoming popular.

 (take ROB 511)

II. Paden - Kahan Subproblems

SPI: Rotation about a single axis

Let g be a zero-pitch unit twist (pure rotation) and (known) points $p, g \in \mathbb{R}^3$. Find o s.t. $e^{30} \cdot \bar{p} = \bar{q}$.

Solution (MLS, pg. 99) involves projections onto axis and orthogonal plane resulting in one or infinite (when p=g lie on axis), or zero sol'ns.

SP2: Rotation about two subsequent, intersecting axes.

Let ξ_1 , ξ_2 be zero-pitch unit twists w/ intersecting axes, and p, $q \in \mathbb{R}^3$ be two known points. Find O, O_2 s.t. $\frac{2}{3}O_1$ $e^{\frac{2}{3}2O_2}$. $\overline{p} = \overline{q}$

Solution (MLS, pg. 101) involves dividing into two cases of SPI, resulting in two, one, or no solutions.

SP3: Rotation to a given distance Let 3 be zero-pitch unit twist, and p, q ∈ R3 be two known points, and real 5>0. Find O s.t. 11 g - e ŝo = 1 = 5 Solution (MLS, pg. 102) involves projections & law of cosines, resulting in two, one, or no solutions. * See MLS for solutions and additional subproblems. Big Idea: Apply kinematic equations to special (known) points to simplify the IK problem so that it matches one of the PK subproblems. *Useful trick: Recall that $\exp(\hat{s}\Theta)\cdot\bar{p}=\bar{p}$ if \bar{p} is on the revolute axis of 3.

