Consider an array, $A = a_0, a_1, \ldots, a_{n-1}$, of n integers. We define the following terms:

• Subsequence

A subsequence of \boldsymbol{A} is an array that's derived by removing zero or more elements from \boldsymbol{A} without changing the order of the remaining elements. Note that a subsequence may have zero elements, and this is called *the empty subsequence*.

• Strictly Increasing Subsequence

A non-empty subsequence is *strictly increasing* if every element of the subsequence is larger than the previous element.

Subarray

A subarray of A is an array consisting of a contiguous block of A's elements in the inclusive range from index l to index r. Any subarray of A can be denoted by $A[l,r]=a_l,a_{l+1},\ldots,a_r$.

The diagram below shows all possible subsequences and subarrays of A = [2, 1, 3]:

We define the following functions:

- $\bullet \ \ sum(l,r) = a_l + a_{l+1} + \ldots + a_r$
- inc(l,r) = the maximum sum of some strictly increasing subsequence in subarray A[l,r]
- f(l,r) = sum(l,r) inc(l,r)

We define the *goodness*, \boldsymbol{g} , of array \boldsymbol{A} to be:

$$g = max \ f(l,r) \ ext{for} \ 0 \leq l \leq r < n$$

In other words, ${\it g}$ is the maximum possible value of ${\it f}({\it l},{\it r})$ for all possible subarrays of array ${\it A}$.

Let m be the length of the smallest subarray such that f(l,r)=g. Given A, find the value of g as well as the number of subarrays such that r-l+1=m and f(l,r)=g, then print these respective answers as space-separated integers on a single line.

Input Format

The first line contains an integer, n, denoting number of elements in array A. The second line contains n space-separated integers describing the respective values of $a_0, a_1, \ldots, a_{n-1}$.

Constraints

•
$$1 \le n \le 2 \cdot 10^5$$

• $-40 \le a_i \le 40$

Subtasks

For the 20% of the maximum score:

•
$$1 < n < 2000$$

•
$$-10 \le a_i \le 10$$

For the **60%** of the maximum score:

• $1 \le n \le 10^5$

• $-12 \leq a_i \leq 12$

Output Format

Print two space-seperated integers describing the respective values of g and the number of subarrays satisfying r-l+1=m and f(l,r)=g.

Sample Input 0

3 2 3 1

Sample Output 0

1 1

Explanation 0

The figure below shows how to calculate $\emph{\textbf{g}}$:

$$A = [2, 3, 1]$$

[l, r]	length	A[l, r]	sum(l ,r)	All possible increasing Subsequences	inc(l, r)	f(l, r) = sum(l, r) - inc (l, r)
[0, 0]	1	[2]	2	[2]	2	2 - 2 = 0
[1, 1]	1	[3]	3	[3]	3	3 - 3 = 0
[2, 2]	1	[1]	1	[1]	1	1 - 1 = 0
[0, 1]	2	[2, 3]	2+3=5	[2], [3], [2, 3]	2 + 3 = 5	5 - 5 = 0
[1, 2]	2	[3, 1]	3+1=4	[3], [1]	3	4 - 3 = 1
[0, 2]	3	[2, 3, 1]	2+3+1=	[2], [3], [1] [2, 3]	2 + 3 = 5	6 - 5 = 1

g = max(0, 0, 0, 0, 1, 1) = 1

m is the length of the smallest subarray satisfying f(l,r). From the table, we can see that m=2. There is only one subarray of length 2 such that f(l,r)=g=1.