# Who Am Al? Speech to text & Server/Client communicatie

Wouter Ensink Paul Wienk

## Concept

- Het bekende spel 'Wie Is Het?', bestuurd door de stem
- De personen in het spel zijn Al gegenereerde gezichten
- Compositie op basis van huidskleur van de personen (biodata)
- De gebruiker kan vragen stellen én antwoorden (ja/nee) geven met zijn stem
- Hierdoor vallen er steeds meer 'gezichten' af, wat invloed heeft op de compositie (terugkoppeling)
- Als de gebruiker het weet (of denkt te weten), kan hij/zij bijv. zeggen:
   'Jij bent Henk'

Mocht dit juist zijn, dan wint deze gebruiker. Je hoort een leuk winst geluidje en het spel stopt

• • • Who Am Al?



Wacht tot het spel begint...



Karel

### Server <---> Client - MoSCoW

- Must
  - 2 clients, verbonden met 1 server
  - Communicatie in beide richtingen
  - o TCP
- Should
  - Over globale netwerk (buiten lokaal netwerk)
  - Zelf gemaakt Protocol
- Could
  - Asynchroon laten werken (coroutines)
- Won't
  - UDP

### Stappenplan Server & Client communicatie

- Zorg dat lokale server client werkt. (inclusief tests)
- Zorg dat server ook buiten het lokale netwerk werkt. (inclusief tests)
- Zorg dat lokale server met 2 clients werkt. (inclusief tests)
- Communicatie protocol bedenken
  - Kijken welke typen data we willen kunnen versturen
  - Zorgen dat het protocol tekst en getallen encode naar een string, waaruit nog steeds blijkt welk datatype het weer moet worden (met een header)
  - Zorgen dat ditzelfde protocol ook weer de gemaakte tekst terug kan omzetten in het originele datatype.
  - Unit tests maken die de werking bewijzen
- Het grotere systeem (met protocol) testen
- Maak bruikbare abstracties van dit systeem, zodat ze makkelijk te gebruiken zijn in het grote project
- Wederom testen of het nog steeds werkt met deze abstracties erbij

# Speech to Text - MoSCoW

- Must
  - Live spraak interpretatie
- Should
  - Mogelijkheid om vraag opnieuw te stellen / bevestigen
  - Nederlands
- Could
  - Punctuatie
- Won't
  - o Interpretatie, waarbij de text tussentijds terugkomt en steeds wordt aangevuld.

### Stappenplan Speech to Text

- Kijk of je een audio bestand kun analyseren in het engels
- Kijk of je een audio bestand kunt analyseren in het nederlands
- Zorg dat je ook met microfoon input iets kun analyseren
- Zorg dat je live interpretatie van een stem op kunt zetten
- Maak een abstractie die je kunt vragen om een nieuwe zin op te nemen en die je kunt vragen voor confirmatie

# Logboek

| Week               | Werkzaamheden                                                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Week 1             | <ul> <li>Concept bedacht en uitgewerkt</li> <li>MoSCow gemaakt</li> <li>Benodigdheden vastgesteld en aangeschaft</li> </ul>                  |
| Week 2             | - Werken aan eerste tests met speech to text en server-client                                                                                |
| Week 3             | <ul> <li>Server met meerdere clients testen</li> <li>Speech to text ook in het nederlands werkend gekregen</li> </ul>                        |
| Week 4             | Eerste stapjes in het maken van basis UI met PyGame     Protocol uitgewerkt + documentatie                                                   |
| Resilience<br>week | <ul> <li>Speech to text zichtbaar werkend gekregen in de UI</li> <li>Foto's en gezichts waardes verzameld (RGB van de huidskleur)</li> </ul> |
| Week 5             | <ul> <li>Wegstrepen van gezichten werkt</li> <li>Einde spel werkt</li> <li>Begin gemaakt aan de algoritmische compositie</li> </ul>          |
| Week 6             | <ul> <li>Documentatie &amp; filmpje gemaakt</li> <li>Laatste bugs eruit gehaald, van oa tekstweergave en muziek</li> </ul>                   |

### Demo

https://www.youtube.com/watch?v=ldQQaz5eks0