SESIÓN 1: ÁRBOLES DE DECISIÓN

 Suponga el siguiente árbol simple T con sólo dos nodos (hojas) terminales. En el nodo raíz se tiene 100 individuos que se dividen en dos nodos hijos de 60 y 40 individuos cada uno. La variable de respuesta indica la compra (No o Si) de un cierto producto:

Calcule la reducción de impureza que se obtiene al pasar del nodo padre a los dos nodos hijos.

Teniendo en cuenta que la raíz is No, el nodo hoja izquierdo es No(60), el derecho Si(40), y lo mismo con los valores, No = 80,59,21 y Si = 20,1,19, procedemos a hacer los cálculos. Impureza nodo 1 = (80/100)*(1-(80/100)) + (20/100)*(1-(20/100)) = 0.32 Impureza nodo 2 = (59/60)*(1-(59/60)) + (1/60)*(1-(1/60)) = 0.032 Impureza nodo 3 = (21/40)*(1-(21/40)) + (19/40)*(1-(19/40)) = 0.498

2. Con el mismo árbol precedente, calcule su coste de mal clasificación R(T).

la mal clasificación (o missclassification o r(t)) de cada nodo se calcula con r(t)=1-Max(p(j/t)) así que: r1 <-1-(20/100) r2 <-1-(1/60) r3 <-1-(21/40) Y la fórmula de R(t) nos dice que es igual a: Rt <-(((0.6)*r2 + (0.4)*r3)/r1)*100 Lo que es igual a 97.5

3. Retome los datos del problema *churn*. Se trata ahora de obtener un árbol de decisión que nos permita efectuar predicciones sobre la probabilidad de baja de los clientes. Cargue en R la Liberia *rpart* y obtenga un árbol máximo (cp=0.0001) con crossvalidación (xval=10).

```
> d <- read.csv(file="churn.txt", sep=" ")</pre>
> m<-rpart(Baja ~ ., data=d, control=rpart.control( cp = 0.0001,
xval=10))
> printcp(m)
Classification tree:
rpart(formula = Baja ~ ., data = d, control = rpart.control(cp =
1e-04,
   xval = 10)
Variables actually used in tree construction:
[1] Debito aff Nomina
                                           Pension
Total Plazo
                   Total Seguros
                                       Total Vista
[7] Total activo
                        antig
                                            dif CC
dif_Hipoteca
                   dif_Largo_plazo
                                        dif Libreta
[13] dif Planes pension dif Plazo
                                           dif Prest personales
dif_Seguros
                                       oper ven Libreta
                   edatcat
[19] sexo
```

67

27 0.00010000

4. Determine ahora el árbol óptimo y su valor del *complexity parameter* (cp). Diga cuales son las variables más importantes en la definición del árbol óptimo.

0.240 0.435 0.018450

```
> m$cptable = as.data.frame(m$cptable)
> ind = which.min(m$cptable$xerror)
> xerr <- m$cptable$xerror[ind]</pre>
> xstd <- m$cptable$xstd[ind]</pre>
> i=1
> while (m$cptable$xerror[i] > xerr+xstd) i = i+1
> alfa = m$cptable$CP[i]
> m1 <- prune(m,cp=alfa)</pre>
> m1
n = 2000
node), split, n, loss, yval, (yprob)
      * denotes terminal node
   1) root 2000 1000 Baja NO (0.50000000 0.50000000)
     2) Total Vista< 327.5 1191 419 Baja NO (0.64819479
0.35180521)
       4) dif_Libreta>=-22.045 911 242 Baja NO (0.73435785
0.26564215)
```

```
8) Total_activo< 793 793 169 Baja NO (0.78688525 0.21311475)
```

Según m1, la variable con más importancia es Total_Vista, seguida de dif_Libreta y Total_activo. El análisis da un conjunto de variables más grande, pero estas son las primeras y por las que se hacen las divisiones principales desde la raíz del árbol.

5. Represente gráficamente el árbol óptimo y liste sus reglas de decisión.

```
> install.packages("rpart.plot")
```

- > library("rpart.plot")
- > rpart.plot(m1)


```
library("rattle")
asRules(m1)
Rule number: 89 [Baja=Baja SI cover=7 (0%) prob=1.00]
  Total_Vista< 327.5
  dif_Libreta< -22.05
  Total_Vista>=23.5
  oper_ven_Libreta>=-2.25
```

```
edatcat=edatcat 16-17,edatcat 66..
  Total Plazo>=4520
Rule number: 65 [Baja=Baja SI cover=8 (0%) prob=1.00]
  Total Vista< 327.5
  dif Libreta>=-22.05
  Total activo< 793
  Total Seguros < 901
  dif_Plazo>=-282.5
  dif_Planes_pension< -7.08
Rule number: 13 [Baja=Baja SI cover=32 (2%) prob=0.97]
  Total Vista>=327.5
  dif Libreta>=289.9
  dif Seguros< -0.935
Rule number: 25 [Baja=Baja SI cover=20 (1%) prob=0.95]
  Total Vista>=327.5
  dif Libreta>=289.9
  dif_Seguros>=-0.935
  dif_Plazo< -0.1
Rule number: 1035 [Baja=Baja SI cover=14 (1%) prob=0.93]
  Total Vista< 327.5
  dif Libreta>=-22.05
  Total activo< 793
  Total Seguros < 901
  dif_Plazo>=-282.5
  dif Planes pension>=-7.08
  edatcat=edatcat 56-65
  Total Plazo< 398
  Total Vista< 71
  Total Vista>=21.5
. . .
```

Y así es como se pueden imprimir todas las reglas. Faltan muchas más que me dejé por copiar.

En ellas se puede ver como cual es el tipo del nodo/hoja, de que pasos se ha llegado hasta ahí y cual es la

6. Las probabilidades de baja no están por fortuna equidistribuidas, sino que la probabilidad de baja es muy inferior (un 5%). Exporte a Excel la tabla de resultados por hoja y pondere estos resultados de acuerdo con las probabilidades a priori mencionadas. Obsérvese que en este caso no utilizamos una muestra test de validación del árbol obtenido (en general deberíamos obtener la predicción del árbol en una muestra independiente (test) y validar la calidad del árbol con los resultados obtenidos en esta muestra test).

```
> m1.leaf=subset(m1$frame, var=="<leaf>",select=c(n,yval2))
> num_leaf = row.names(m1.leaf)
> m1.leaf=data.frame(m1.leaf$n,m1.leaf$yval2)
> names(m1.leaf) =
c("n_train","class_train","n1_train","n2_train","p1_train","p2_train","probnode train")
```

```
> row.names(m1.leaf) = num_leaf
> m1.leaf=m1.leaf[order(-m1.leaf$p2_train),] # ordering by
decreasing > positive probabilities
```

- > install.packages('xlsx')
- > install.packages('rJava')
- > install.packages('xlsxjars')
- > library(xlsx)

write.xlsx(m1.leaf, "resultats.xlsx")

_	Α	В	C	D	E	F	G	H	
1		n_train	class_train	n1_train	n2_train	p1_train	p2_train	probnode_	train
2	65	8	2	0	8	0	1	0,004	
3	89	7	2	0	7	0	1	0,0035	
4	13	32	2	1	31	0,03125	0,96875	0,016	
5	25	20	2	1	19	0,05	0,95	0,01	
6	1035	14	2	1	13	0,071429	0,928571	0,007	
7	35	23	2	2	21	0,086957	0,913043	0,0115	
8	33	11	2	1	10	0,090909	0,909091	0,0055	
9	79	74	2	8	66	0,108108	0,891892	0,037	
10	49	15	2	2	13	0,133333	0,866667	0,0075	
11	21	7	2	1	6	0,142857	0,857143	0,0035	
12	181	13	2	2	11	0,153846	0,846154	0,0065	
13	91	57	2	9	48	0,157895	0,842105	0,0285	
14	23	103	2	17	86	0,165049	0,834951	0,0515	
15	7	560	2	94	466	0,167857	0,832143	0,28	
16	259	12	2	3	9	0,25	0,75	0,006	
17	195	40	2	10	30	0,25	0,75	0,02	
18	180	29	1	21	8	0,724138		0,0145	
19	34	11	1	8	3	0,727273	0,272727	0,0055	
20	78	11	1	8	3	0,727273		0,0055	
21	88	37	1	29	8	0,783784	0,216216	0,0185	
22	194	37	1	30	7	0,810811	0,189189	0,0185	
23	18	23	1	19	4	0,826087	0,173913	0,0115	
24	1034	18	1	15	3	0,833333	0,166667	0,009	
25	128	670	1	571	99	0,852239	0,147761	0,335	
26	96	105	1	90	15	0,857143	0,142857	0,0525	
27	516	26	1	23	3	0,884615		0,013	
28	20	27	1	24	3	0,888889	0,111111	0,0135	
29	38	10	1	10	0	1	0	0,005	
30									
31									

7. Obtenga gráficamente las curvas de concentración y ROC correspondientes.

```
> pred_test = as.data.frame(predict(m1, newdata=d[-
learn,],type="prob"))
```

- > pred <- prediction(pred test\$"Baja SI", d\$Baja[-learn])</pre>
- > roc <- performance(pred,measure="tpr",x.measure="fpr")</pre>
- > plot(roc, main="ROC curve")

ROC curve

> con <- performance(pred,measure="tpr",x.measure="rpp")</pre>

> plot(con, main="Concentration curve")

Concentration curve

8. Decida un umbral de decisión para la predicción de "baja" y obtenga el "error_rate", la precisión en la predicción positiva, la precisión en la predicción negativa, el promedio de ambas precisiones y el Recall asociado al umbral escogido.