

1º TESTE DE ANÁLISE MATEMÁTICA II-C - REPETIÇÃO 2020/2021 28 DE JANEIRO DE 2021

VERSÃO 1

PARA RESPONDER ÀS QUESTÕES DO GRUPO I ESCOLHA A LETRA CORRES-PONDENTE À ÚNICA ALTERNATIVA CORRECTA (de A a F).

GRUPO I

[1,5 valores] 1. Sejam V e F o vértice e o foco, respetivamente, da cónica de equação

$$x^2 + 4x - 8y - 4 = 0.$$

Então:

A.
$$V = (2,1) \text{ e } F = (2,2)$$
 B. $V = (-2,-1) \text{ e } F = (-2,-3)$ **C.** $V = (2,1) \text{ e } F = (2,0)$

D.
$$V = (2,1) e F = (2,3)$$
 E. $V = (-2,-1) e F = (-2,-2)$ **F**. $V = (-2,-1) e F = (-2,0)$

[1,5 valores] 2. Seja E um espaço vetorial real onde está definido um produto interno notado com o símbolo | e seja ||.|| a norma induzida por este produto interno. Apenas uma das seguintes expressões é falsa. Indique qual:

A. Se
$$v = \lambda u$$
 e $\lambda < 0$ então $u|v \le 0$. **B**. $(u - v)|(v - u) \le 0$, $\forall u, v \in E$.

B.
$$(u-v)|(v-u) \leq 0, \ \forall u,v \in E$$

C.
$$u|v \le ||u|| \, ||v||, \ \forall u, v \in E.$$

C.
$$u|v \le ||u|| \, ||v||, \ \forall u, v \in E.$$
 D. $(u+v)|(u+v) \ge u|u+v|v, \ \forall u, v \in E.$

E.
$$(-u)|(-v) = u|v$$
, $\forall u, v \in E$. **F**. $u|u > 0 \ \forall u \in E$.

$$\mathbf{F}. \quad u|u\geq 0 \ \forall u\in E$$

[1,5 valores] 3. Considere a função real de duas variáveis reais, definida por

$$f(x,y) = \begin{cases} \frac{1}{4}x - \frac{1}{3}y, & \text{se } xy \neq 0\\ 0, & \text{se } xy = 0. \end{cases}$$

- **A**. A função f(x,y) é descontínua no ponto (0,0).
- **B**. A função f(x,y) é contínua e diferenciável no ponto (0,0).
- C. A função f(x,y) não tem limite no ponto (0,0) mas possui nesse ponto derivadas parciais.
- **D**. A função f(x,y) tem limite no ponto (0,0) mas não possui derivadas parciais nesse ponto.
- **E**. A função f(x,y) tem derivada direcional no ponto (0,0) segundo qualquer vetor mas não é diferenciável em (0,0).
- **F**. A função f(x,y) tem derivada direcional no ponto (0,0) segundo qualquer vetor e é diferenciável em (0,0).

[1,5 valores] 4. Seja w = f(u) com f uma função continuamente derivável até à segunda ordem e $u = \sin x + \cos y$. Então:

A.
$$\cos x \frac{\partial^2 w}{\partial y^2} + \sin y \frac{\partial^2 w}{\partial y \partial x} = -f''(u) \cos x \cos y$$
 B. $\frac{\partial^2 w}{\partial y \partial x} = -f''(u) \sin y \sin x$

B.
$$\frac{\partial^2 w}{\partial u \partial x} = -f''(u)\sin y \sin x$$

C.
$$\frac{\partial^2 w}{\partial u^2} = -f'(u)\cos y - f''(u)\sin y$$

$$\mathbf{D.} \quad \frac{\partial^2 w}{\partial u \partial x} = -f''(u)\sin y$$

C.
$$\frac{\partial^2 w}{\partial y^2} = -f'(u)\cos y - f''(u)\sin y$$
D.
$$\frac{\partial^2 w}{\partial y \partial x} = -f''(u)\sin y$$
E.
$$\cos x \frac{\partial^2 w}{\partial y^2} + \sin y \frac{\partial^2 w}{\partial y \partial x} = -f'(u)\cos x \cos y$$
F.
$$\frac{\partial^2 w}{\partial y^2} = -f'(u)\cos y + f'(u)\sin^2 y$$

$$\mathbf{F.} \quad \frac{\partial^2 w}{\partial u^2} = -f'(u)\cos y + f'(u)\sin^2 y$$

$1^{\rm o}$ TESTE DE ANÁLISE MATEMÁTICA II-C - REPETIÇÃO 2020/2021 28 DE JANEIRO DE 2021

VERSÃO 1

GRUPO II

 $[2,5 \ valores]$ 1. Considere a função real f de duas variáveis reais, definida por

$$f(x,y) = \frac{\log(4 - x^2 - y^2)}{\sqrt{xy}}.$$

Indique o seu domínio D e esboce-o. Indique a fronteira de D. Diga, justificando, se D é um conjunto aberto. O conjunto D é conexo? Justifique.

2. Considere a função real de duas variáveis reais, definida por

$$f(x,y) = \begin{cases} x^3 \left(\frac{x-y}{x^2 + y^2} \right) & se(x,y) \neq (0,0) \\ 0 & se(x,y) = (0,0) \end{cases}$$

 $[2,5 \ valores]$ a) Dado $\delta > 0$ indique $\epsilon > 0$ tal que se $||(x,y)|| < \epsilon$ então $|f(x,y)| < \delta$. Diga, justificando, qual o valor do limite de f(x,y) no ponto (0,0).

 $[2,5 \ valores]$ b) Mostre que f(x,y) é diferenciável no ponto (0,0).

[3 valores] 3. Considere o sistema

$$\begin{cases} u+v-xy=0\\ uv-x+y=0 \end{cases}$$

Mostre que este sistema define implicitamente u e v como funções de x e y numa vizinhança do ponto $P_0 = (x_0, y_0, u_0, v_0) = (3, 1, 1, 2)$, e determine ainda o valor de $\frac{\partial u}{\partial y}(3, 1)$ e $\frac{\partial v}{\partial y}(3, 1)$.

GRUPO III

[2 valores] 1. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$f(x,y) = (y\cos x, y\sin x) = (u,v).$$

Mostre que a função f é invertível na vizinhança de qualquer ponto $(x_0, y_0) \in \mathbb{R}^2$, com $y_0 \neq 0$. Tendo em conta que $f\left(\frac{\pi}{6}, 1\right) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, determine $J_{f^{-1}}\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

 $[1,5 \ valores]$ 2. Considere em \mathbb{R}^2 as normas $||(x,y)||_1$ e $||(x,y)||_2$ definidas por

$$||(x,y)||_1 = Max\{|x|,|y|\} \in ||(x,y)||_2 = \sqrt{x^2 + y^2}.$$

Mostre que existem constantes reais positivas c_1, c_2 tais que:

$$c_1||(x,y)||_2 \le ||(x,y)||_1 \le c_2||(x,y)||_2, \quad \forall (x,y) \in \mathbb{R}^2,$$

o que prova que as duas normas consideradas são equivalentes.