Calculabilitate si Complexitate

4 mai 2022

La exercitiile 1, 2 si 3 puteti folosi faptul ca operatiile aritmetice, inclusiv DIV si MOD, sunt LOOP calculabile. De asemeni, testele de egalitate si de ordine sunt LOOP calculabile.

- 1. Aratati ca functia $f(n) = 2^n$ este primitiv recursiva.
- 2. Fie $P\subset\mathbb{N}$ multimea numerelor prime si fie χ_P functia caracteristica a acestei multimi. Aratati ca χ_P este primitiv recursiva.
- 3. Fie functia $p: \mathbb{N} \to \mathbb{N}$ astfel incat p(0) = 1, p(1) = 2, p(2) = 3, p(3) = 5 si in general, p(n) =al n-lea numar prim. Folosind inegalitatea $p(n) \le 2^n$ si exercitiile anterioare, aratati ca functia p(n) este primitiv recursiva.
- 4. Fie I multimea inputurilor de forma (G, w) in care $G = (V, \Sigma, P, S)$ este o gramatica iar $w \in \Sigma^*$ este un cuvant. Aratati ca nu exista nicio masina Turing T care opreste pentru fiecare input $(G, w) \in I$ si returneaza 1 daca $w \in L(G)$ si 0 in caz contrar.
- 5. Se da graful neorientat casuta G=(V,E) unde $V=\{1,2,3,4,5\}$ si $E=\{12,23,34,14,35,45\}$. Aratati ca acest graf contine un circuit hamiltonian.
- 6. Fie A un algoritm in timp polinomial care pentru orice formula propozitionala φ calculeaza un cuvant $A(\varphi) \in \{1\}^*$ astfel incat:

pentru orice doua formule φ_1 si φ_2 ,

daca $A(\varphi_1) = A(\varphi_2)$ atunci [$\varphi_1 \in SAT$ daca si numai daca $\varphi_2 \in SAT$].

Folosind algoritmul A, descrieti un algoritm B care decide SAT in timp polinomial.