公式总结

1、 常用连续时间信号

函数名称	时域表达式
指数信号	$f(t) = ke^{at}, \ a \in R$
复指数信号	$e^{j\omega_0t}$
正弦信号	$f(t) = ksin(\omega t + \theta)$
抽样信号	$Sa(t) = \frac{sint}{t}$
单位阶跃函数	$ \varepsilon(t) = \begin{cases} 0, & t < 0 \\ \frac{1}{2}, & t = 0 \text{ (或者不定义)} \\ 1, & t > 0 \end{cases} $
符号函数	$sgn(t) = \begin{cases} 1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$
冲激信号	$\begin{cases} \delta(t) = 0, & t \neq 0 \\ \int_{-\infty}^{\infty} \delta(t) dt = 1 \end{cases}$
门函数	$g_{\tau}(t) = \varepsilon (t + \tau/2) - \varepsilon (t - \tau/2)$
单位斜坡函数 r(t)	$r(t) = \begin{cases} 0, & t < 0 \\ t, & t \ge 0 \end{cases}$

2、 能量与功率的计算方法

物理量	连续	离散
能量	$E = \lim_{T \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) ^2 dt$	$E = \lim_{N \to \infty} \sum_{k=-N}^{N} f(k) ^2$
功率	$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) ^2 dt$	$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} f(k) ^2$

3、 冲激函数与冲激偶信号的计算

性质名称	内容
奇偶性质	$\delta(t) = \delta(-t)$
	$\delta(at) = \delta(t)/ a $
尺度变换	$\delta'(at) = \delta'(t)/\left(a a \right)$
	$\delta[a(t-t_0)] = \delta(t-t_0)/ a $
地 海之北上並及之北和五	$f(t)\delta(t) = f(0)\delta(t)$
一 冲激函数与普通函数相乘 	$f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$
冲 激佣系数上並泽系数扣蓋	$f(t)\delta'(t) = f(0)\delta'(t) - f'(0)\delta(t)$
冲激偶函数与普通函数相乘 	$f(t)\delta'(t - t_0) = f(t_0)\delta'(t - t_0) - f'(t_0)\delta(t - t_0)$
	$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)$
(新选性质)	$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)$
师.迟.住版 	$\int_{-\infty}^{\infty} f(t)\delta'(t)dt = -f'(0)$
	$\int_{-\infty}^{\infty} f(t)\delta'(t-t_0)dt = -f'(t_0)$
冲激函数的复合公式	$\delta[f(t)] = \sum_{i=1}^{n} \frac{1}{ f'(t_i) } \delta(t - t_i)$
	其中 $t_i(i=1, 2,, n)$ 为 $f(t)=0$ 的 n 个不相等实根。

4、 微分方程的齐次解

特征根	齐次解 $y_h(t)$	
单实根	$e^{\lambda t}$	
r重实根	$(C_{r-1}t^{r-1} + C_{r-2}t^{r-2} + \dots + C_1t + C_0)e^{\lambda t}$	
一对共轭复根	$e^{\alpha t}[Ccos(\beta t) + Dsin(\beta t)]$ 或 $Acos(\beta t - \theta)$,其中 $Ae^{j\theta} = C + Dj$	
$\lambda_{1,2} = \alpha \pm j\beta$		
<i>r</i> 重共轭复根	$[A_{r-1}t^{r-1}cos(\beta t + \theta_{r-1}) + A_{r-2}t^{r-2}cos(\beta t + \theta_{r-2}) + \cdots$	
/ 里六化久似	$+A_0cos(\beta t+\theta_0)]e^{\alpha t}$	

5、 微分方程的特解

激励 <i>f</i> (t)	特解 $y_p(t)$	
t^m	① $P_m t^m + P_{m-1} t^{m-1} + \dots + P_1 t + P_0$ (所有的特征根均不等于 0);	
<i>t</i>	② $t^r[P_mt^m + P_{m-1}t^{m-1} + \dots + P_1t + P_0]$ (有 r 重等于 0 的特征根)	
	① <i>Pe^{αt}</i> (α不等于特征根);	
$e^{lpha t}$	② $(P_0 + P_1 t)e^{\alpha t}(\alpha$ 等于特征单根);	
cos(βt)	$Pcos(eta t) + Qsin(eta t)$ (所有的特征根均不等于 $\pm jeta$),或者	
或sin(βt)	$Acos(\beta t - \theta)$,其中 $Ae^{j\theta} = P + Qj$	

6、 卷积积分的性质

性质名称	内容
代数运算	x(t) * h(t) = h(t) * x(t)
	$x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$
	$x(t) * h_1(t) * h_2(t) = x(t) * [h_1(t) * h_2(t)]$
与冲激函数的卷积	$x(t-t_0) = x(t) * \delta(t-t_0)$
	$f(t) * \delta(t) = f(t)$
	$f(t) * \delta(t - t_1) = \delta(t - t_1) * f(t) = f(t - t_1)$
	$\delta(t-t_1) * \delta(t-t_2) = \delta(t-t_1-t_2)$
	$f(t - t_1) * \delta(t - t_2) = f(t - t_2) * \delta(t - t_1) = f(t - t_1 - t_2)$
	$[f_1(t) * f_2(t)]' = f_1'(t) * f_2(t) = f_1(t) * f_2'(t)$
微积分性质	$[f_1(t) * f_2(t)]^{(-1)} = f_1^{(-1)}(t) * f_2(t) = f_1(t) * f_2^{(-1)}(t)$
	$f^{(n)}(t) * h(t) = f(t) * h(t) * \delta^{(n)}(t) = f(t) * h^{(n)}(t)$
	$f_1(t) * f_2(t) = f_1^{(-1)}(t) * f_2'(t) = f_1'(t) * f_2^{(-1)}(t)$
与冲激偶函数的卷积	$f(t) * \delta'(t) = f'(t)$

$$f(t)*\delta'(t-t_0)=f'(t-t_0)$$

7、 常用离散时间信号

函数名称	时域表达式	波形
单位序列	$\delta(k) = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
单位阶跃 序列	$\varepsilon(k) = \begin{cases} 0, & k < 0 \\ 1, & k \ge 0 \end{cases}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
单位斜变 序列	$R(k) = k\varepsilon(k)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
矩形序列	$g_N(k) = \begin{cases} 1, & 0 \le k \le N - 1 \\ 0, & k < 0, N \le k \end{cases}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

8、 差分方程的齐次解

特征根	齐次解 $y_h(k)$	
单实根λ _i	$C_i \lambda_i^k$	
r 重实根λ _i	$(C_1k^{r-1} + C_2k^{r-2} + \dots + C_{r-1}k + C_r)\lambda_i^k$	
共轭复数根	* K(C (1-0) + C (1-0) 1-1 A - k (1-0) + A	
$\lambda_{1,2} = \rho e^{\pm j\Omega}$	$ ρ^k[C_1cos(kΩ) + C_1sin(kΩ)]$ 或 $Aρ^kcos(kΩ - φ)$	

r重共轭复数根	$\rho^{k}[C_{r-1}cos(k\Omega-\varphi_{r-1})+C_{r-2}cos(k\Omega-\varphi_{r-2})+\cdots+C_{1}cos(k\Omega-\varphi_{r-2})+\cdots+C_{1}cos(k\Omega-\varphi_{r-1})+\cdots+C_{1}cos(k\Omega-$
$\lambda_{1,2} = ho e^{\pm j\Omega}$	$-\varphi_1) + C_0 cos(k\Omega - \varphi_0)]$

9、 差分方程的特解

激励信号e(k)	特解 $y_p(k)$
E(常数)	P(常数)
k^m	$P_m k^m + P_{m-1} k^{m-1} + \dots + P_1 k + P_0$ (所有特征根均不为零)
	$k^{r}(P_{m}k^{m} + P_{m-1}k^{m-1} + \dots + P_{1}k + P_{0})$ (有 r 个为零的特征根)
a^k	Pa^k (a 不等于待征根)
	$(P_1k+P_0)a^k$ (a 等于一个特征根)
	$(P_r k^r + P_{r-1} k^{r-1} + \dots + P_1 k + P_0) a^k$ (a 等于 r 重特征根)
$cos(k\Omega-\varphi_0)$	$P_1 cos(k\Omega) + P_2 sin(k\Omega)$ 或 $B cos(k\Omega - \theta)$
$a^k cos(k\Omega - \varphi_0)$	$a^{k}[P_{1}cos(k\Omega) + P_{2}sin(k\Omega)]$ 或 $Ba^{k}cos(k\Omega - \theta)$

10、 卷积和的性质

	$f_1(k) * f_2(k) = f_2(k) * f_1(k)$	
代数运算	$f_1(k) * [f_2(k) + f_3(k)] = f_1(k) * f_2(k) + f_1(k) * f_3(k)$	
	$f_1(k) * [f_2(k) * f_3(k)] = [f_1(k) * f_2(k)] * f_3(k)$	
与单位脉冲卷积和	$f(k) * \delta(k) = f(k)$	
	$f(k) * \delta(k - k_1) = f(k - k_1)$	
移序性质	若 $f_1(k)*f_2(k)=f(k)$	
	则 $f_1(k-k_1)*f_2(k-k_2)=f(k-k_1-k_2)$	
与单位阶跃序列的 卷积和	$f(k) * \varepsilon(k) = \sum_{i=-\infty}^{k} f(i)$	
差分	$\Delta[f_1(k) * f_2(k)] = \Delta f_1(k) * f_2(k) = f_1(k) * \Delta f_2(k)$	

累和
$$\sum_{m=-\infty}^{k} [f_1(m) * f_2(m)] = \left[\sum_{m=-\infty}^{k} f_1(m)\right] * f_2(k)$$
$$= f_1(k) * \left[\sum_{m=-\infty}^{k} f_2(m)\right]$$
 差分、累和
$$f_1(k) * f_2(k) = \left[\sum_{m=-\infty}^{k} f_1(m)\right] * \nabla f_2(k) = \nabla f_1(k) * \left[\sum_{m=-\infty}^{k} f_2(m)\right]$$

11、 三角形式与指数形式的傅里叶级数

要点	三角函数形式	指数形式
展开式	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\Omega t) + b_n \sin(n\Omega t)$ $= \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega t + \varphi_n)$	$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t}$ $F_n = F_n e^{j\Phi_n}$
傅里叶系数	$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\Omega t) dt (n = 0,1,2, \dots)$ $b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\Omega t) dt (n = 1,2, \dots)$	$F_n=rac{1}{T}\int_{-rac{T}{2}}^{rac{T}{2}}f(t)\mathrm{e}^{-\mathrm{j}n\Omega t}\mathrm{d}t$ $n=0,\pm1,\pm2,$
系数间关系	$a_n = A_n \cos \varphi_n = F_n + F_{-n}$ $b_n = -A_n \sin \varphi_n = j(F_n - F_{-n})$ $A_n = 2 F_n $ 其中 a_n 是关于 n 的偶函数, b_n 是关于 n 的奇函	$F_n = F_n \mathrm{e}^{\mathrm{j} \varphi_n} = \frac{1}{2} A_n \mathrm{e}^{\mathrm{j} \varphi_n} = \frac{1}{2} (a_n - \mathrm{j} b_n)$ $ F_n = \frac{1}{2} A_n = \frac{1}{2} \sqrt{(a_n)^2 + (b_n)^2}$ $\varphi_n = -\arctan \frac{b_n}{a_n}$ 其中 F_n 是关于 n 的偶函数, φ_n 是关于 n 的奇

12、 傅里叶系数与实周期信号波形对称的关系

对称条件	所含分量	系数a _n	系数 b_n
偶函数	口右人分	$4 \int_{\overline{2}}^{T}$	0
f(t) = f(-t)	只有余弦	$\frac{1}{T}\int_0^2 f(t)\cos(n\Omega t)\mathrm{d}t$	U

奇函数	只有正弦	0	$\frac{4}{T}\int_{0}^{\frac{T}{2}}f(t)\sin(n\Omega t)\mathrm{d}t$
f(t) = -f(-t)			$T \int_0^{\infty} f(s) ds$
偶谐函数 $f(t) = f(t \pm T/2)$	只有偶次 谐波	$\frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\Omega t) dt$ $n = 0,2,4,$	$\frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\Omega t) dt$ $n = 0,2,4,$
$f(t)$ $= -f(t \pm T/2)$	只有奇次 谐波	$\frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\Omega t) dt$ $n = 1,3,5,$	$\frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\Omega t) dt$ $n = 1,3,5,$

13、 常用函数的傅里叶变换

序号	名称	时间函数	频谱函数
1	単边指数函数	$e^{-\alpha t}\varepsilon(t)(\alpha>0)$	$1/(\alpha+j\omega)$
2	双边指数函数	$e^{-\alpha t }(\alpha>0)$	$2\alpha/(\alpha^2+\omega^2)$
3	门函数	$g_{ au}(t)$	$\tau Sa(\omega \tau/2)$
4	冲激函数	$\delta(t)$	1
5	冲激偶函数	$\delta'(t)$	jω
6	符号函数	sgn(t)	2/jω
7	阶跃函数	$\varepsilon(t)$	$\pi\delta(\omega) + 1/(j\omega)$
8	余弦函数	$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
9	正弦函数	$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$

14、 傅里叶变换的性质

名称	时域 $f(t)$	频域F(jω)
定义	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega$	$F(j\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$
线性性质	$af_1(t) + bf_2(t)$	$aF_1(j\omega) + bF_2(j\omega)$
奇偶性	f(t) = f(-t)	$F(j\omega) = R(\omega), \ X(\omega) = 0$

(实函数)	f(t) = -f(-t)	$F(j\omega) = jX(\omega), R(\omega) = 0$
		$F(-\mathrm{j}\omega) = F^*(\mathrm{j}\omega)$
		$ F(j\omega) = F(-j\omega) $
	非奇非偶函数	$X(\omega) = -X(-\omega)$
		$\varphi(\omega) = -\varphi(-\omega)$
		$R(\omega) = R(-\omega)$
		$F(-j\omega) = -F^*(j\omega)$
奇偶性	f(t) = jx(t)	$ F(j\omega) = F(-j\omega) $
(虚函数)	x(t)为非奇非偶实函数	$X(\omega) = X(-\omega)$
		$\varphi(\omega) = -\varphi(-\omega)$
		$R(\omega) = -R(-\omega)$
对称性	F(jt)	$2\pi f(-\omega)$
尺度变换	$f(at)(a \neq 0)$	$F(j\omega/a)/ a $
时移性质	$f(t \pm t_0)$	$\mathrm{e}^{\pm\mathrm{j}\omega t_0}F(\mathrm{j}\omega)$
频移性质	$f(t)\mathrm{e}^{\mp\mathrm{j}\omega_0t}$	$F[j(\omega \pm \omega_0)]$
时域卷积定理	$f_1(t) * f_2(t)$	$F_1(j\omega)F_2(j\omega)$
频域卷积定理	$2\pi f_1(t)f_2(t)$	$F_1(j\omega) * F_2(j\omega)$
时域微分	$f^{(n)}(t)$	$(\mathrm{j}\omega)^{(n)}F(\mathrm{j}\omega)$
时域积分	$\int_{-\infty}^{t} f(\tau) \mathrm{d}\tau \ [f(-\infty) = 0]$	$\pi F(0)\delta(\omega) + [F(j\omega)/j\omega]$
频域微分	$(-jt)^n f(t)$	$F^{(n)}(j\omega)$
频域积分	$\pi f(0)\delta(t) + [f(t)/(-jt)]$	$\int_{-\infty}^{\omega} F(j\tau) d\tau \ [F(-j\infty) = 0]$
能量定理	$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) ^2$	$d\omega = \int_{-\infty}^{\infty} f(t) ^2 dt$
功率定理	$P = \frac{1}{T} \int_0^T f^2(t) dt = \left(\frac{A_0}{2}\right)^2 + \sum_{n=1}^{\infty} \frac{1}{2} A_n^2 = \sum_{n=-\infty}^{\infty} F_n ^2$	

15、 理想低通滤波器的特性

要点	
----	--

频率响应	$H(j\omega) = \begin{cases} e^{-j\omega t_d}, \omega < \omega_C \\ 0, \omega > \omega_C \end{cases} = e^{-j\omega t_d} g_{2\omega_C}(\omega)$
频率响应波形	$ \begin{array}{c c} & H(j\omega) \\ \hline & & \omega \\ \hline & & \omega_c \\ \hline & & \Theta(\omega) \end{array} $
冲激响应	$rac{\omega_c}{\pi} Sa[\omega_c(t-t_d)]$
阶跃响应	$\frac{1}{2} + \frac{1}{\pi} \int_0^{\omega_c(t-t_d)} \frac{\sin x}{x} \mathrm{d}x$

16、 拉普拉斯变换的定义

类别	正变换	反变换
单边	$J_{-\infty}$	$f(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds$
双边	$F(s) = \int_{0_{-}}^{\infty} f(t) e^{-st} dt$	$f(t) = \begin{cases} 0, t < 0 \\ \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s)e^{st}ds, t > 0 \end{cases}$

17、 常用的拉氏变换

信号	拉氏变换	ROC
$\delta(t)$	1	全部s平面
arepsilon(t)	$\frac{1}{s}$	Re(s) > 0
$e^{-at}\varepsilon(t)$	$\frac{1}{s+a}$	Re(s) > -a
$t^n arepsilon(t)$	$\frac{n!}{s^{n+1}}$	Re(s) > 0
$sin(\omega_0 t) \varepsilon(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	Re(s) > 0
$cos(\omega_0 t) \varepsilon(t)$	$\frac{s}{s^2 + \omega_0^2}$	Re(s) > 0
$e^{-at}\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$Re(s) > -\alpha$

$e^{-at}\cos(\omega_0 t)\varepsilon(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	Re(s) > -a
$te^{-at}\varepsilon(t)$	$\frac{1}{(s+a)^2}$	Re(s) > -a
$t^n e^{-at} \varepsilon(t), \ n \in N^+$	$\frac{n!}{(s+a)^{n+1}}$	Re(s) > -a

18、 单边拉氏变换主要性质

性质名称	内容
线性	$a_1 f_1(t) + a_2 f_2(t) \stackrel{LT}{\longleftrightarrow} a_1 F_1(s) + a_2 F_2(s), \sigma > \max(\sigma_1, \sigma_2)$
尺度变换	$f(at) \stackrel{LT}{\longleftrightarrow} \frac{1}{a} F\left(\frac{s}{a}\right), a > 0, \sigma > a\sigma_0$
时移	$f(t-t_0)\varepsilon(t-t_0) \stackrel{LT}{\longleftrightarrow} e^{-st_0}F(s), \sigma > \sigma_0$
复频移	$f(t)e^{s_0t} \stackrel{LT}{\longleftrightarrow} F(s-s_0), \sigma > \sigma_0 + Re(s_0)$
时域微分	$f'(t) \stackrel{LT}{\longleftrightarrow} sF(s) - f(0_{-}), \sigma > \sigma_0$
时域积分	$f^{(-1)}(t) \stackrel{LT}{\longleftrightarrow} \frac{F(s)}{s} + \frac{1}{s} f^{(-1)}(0_{-})$
时域卷积	$f_1(t) * f_2(t) \stackrel{LT}{\longleftrightarrow} F_1(s)F_2(s), \sigma > \max(\sigma_1, \sigma_2)$
时域相乘	$f_1(t) \cdot f_2(t) \stackrel{LT}{\longleftrightarrow} \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F_1(\eta) F_2(s-\eta) d\eta, \sigma_1 < c < \sigma - \sigma_2, \sigma > \sigma_1 + \sigma_2$
s域微分	$-tf(t) \stackrel{LT}{\longleftrightarrow} F'(s), \sigma > \sigma_0$
s域积分	$\frac{f(t)}{t} \stackrel{LT}{\longleftrightarrow} \int_{S}^{\infty} F(\eta) d\eta, \sigma > \sigma_{0}$
初值定理	$f(0_+) = \lim_{s \to +\infty} sF(s)$, $F(s)$ 为真分式
终值定理	$f(\infty) = \underset{s \to 0}{lims}F(s), \ \ s = 0$ 在 $sF(s)$ 的收敛域内

19、 拉氏反变换常用公式

情况分类	象函数	原函数
单极点	$F(s) = \sum_{i=1}^{n} \frac{K_i}{s - s_i}$	$f(t) = \sum_{i=1}^{n} K_i e^{s_i t} \varepsilon(t)$

共轭单极点	$F(s) = \frac{K_1}{s - \alpha - j\beta} + \frac{K_2}{s - \alpha + j\beta}$	$f(t) = 2e^{\alpha t} [A\cos(\beta t) - B\sin(\beta t)] \varepsilon(t)$	
	$\frac{\beta}{s^2 + \beta^2}$	$\sin(eta t) arepsilon(t)$	
	$\frac{s}{s^2 + \beta^2}$	$\cos(eta t) arepsilon(t)$	
	$\frac{\beta}{(s+\alpha)^2+\beta^2}$	$e^{-\alpha t}\sin(\beta t)\varepsilon(t)$	
	$\frac{s+\alpha}{(s+\alpha)^2+\beta^2}$	$e^{-\alpha t}\cos(\beta t)\varepsilon(t)$	
重极点	$F(s) = \frac{K_{11}}{(s - s_1)^r} + \frac{K_{12}}{(s - s_1)^{r-1}} + \dots + \frac{K_{1r}}{(s - s_1)}$	$f(t) = \left[\sum_{i=1}^{r} \frac{K_{1i}}{(r-i)!} t^{r-i}\right] e^{s_1 t} \varepsilon(t)$	

20、常见序列的 z 变换

序号	f(k)	F(z)	ROC
1	$\delta(k)$	1	$ z \ge 0$
2	arepsilon(k)	$\frac{z}{z-1}$	z > 1
3	$\varepsilon(k-1)$	$\frac{z}{z-1}$	z > 1
4	$k \varepsilon(k)$	$\frac{z}{(z-1)^2}$	z > 1
5	$k^2 \varepsilon(k)$	$\frac{z(z+1)}{(z-1)^3}$	z > 1

6	$\frac{k(k-1)}{2}\varepsilon(k)$	$\frac{z}{(z-1)^3}$	z > 1
7	$\frac{(k+1)k}{2}\varepsilon(k)$	$\frac{z^2}{(z-1)^3}$	z > 1
8	$a^k \varepsilon(k)$	$\frac{z}{z-a}$	z > a
9	$a^{k-1}\varepsilon(k-1)$	$\frac{1}{z-a}$	z > a
10	$-a^k \varepsilon(-k-1)$	$\frac{z}{z-a}$	z < a
11	$ka^k\varepsilon(k)$	$\frac{az}{(z-a)^2}$	z > a
12	$(k+1)a^k\varepsilon(k)$	$\frac{z^2}{(z-a)^2}$	z > a
13	$k^2a^k\varepsilon(k)$	$\frac{az(z+a)}{(z-a)^3}$	z > a
14	$e^{j\omega Tk}arepsilon(k)$	$\frac{z}{z - e^{j\omega T}}$	z > 1
15	$\cos{(eta k)}arepsilon(k)$	$\frac{z(z-\cos\beta)}{z^2-2z\cos\beta+1}$	z > 1
16	$\sin{(eta k)}arepsilon(k)$	$\frac{z \sin \beta}{z^2 - 2z \sin \beta + 1}$	z > 1
17	$\cos\left(\frac{\pi}{2}k\right)\varepsilon(k)$	$\frac{z^2}{z^2+1}$	z > 1

18	$\sin\left(\frac{\pi}{2}k\right)\varepsilon(k)$	$\frac{z}{z^2+1}$	z > 1
19	$\frac{1}{(n-1)!}k(k-1)\cdots(k-n+2)a^{k-n+1}\varepsilon(k)$	$\frac{z}{(z-a)^n}$	z > a

21、z 变换的性质

性质	内容
线性性质	$af_1(k) + bf_2(k) \leftrightarrow aF_1(z) + bF_2(z)$
双边移位性质	$f(k \pm m) \leftrightarrow z^{\pm m} F(z), \ \alpha < z < \beta$
单边移位性质	$f(k-m), m > 0$ $z^{-m}F(z) + \sum_{k=0}^{m-1} f(k-m)z^{-k}, z > \alpha$
	$f(k+m), m > 0$ $z^{m}F(z) - \sum_{k=0}^{m-1} f(k)z^{m-k}, z > \alpha$
z域尺度变换	$Z[a^k f(k)] = F\left(\frac{z}{a}\right), (\alpha a < z < \beta a)$
卷积定理	$Z[f_1(k) * f_2(k)] = F_1(z) F_2(z)$, $(R_1 < z < R_2)$
z 域微分	$Z[kf(k)] = -z\frac{\mathrm{d}}{\mathrm{d}z}F(z).$
z 域积分	$\frac{f(k)}{k+m} \leftrightarrow z^m \int_{z}^{\infty} \frac{F(\eta)}{\eta^{m+1}} d\eta, \alpha < z < \beta$ $\frac{f(k)}{k} \leftrightarrow \int_{z}^{\infty} \frac{F(\eta)}{\eta} d\eta, \alpha < z < \beta$
k 域反转	$f(-k) \leftrightarrow F(z^{-1}), \frac{1}{\beta} < z < \frac{1}{\alpha}$
部分和	$g(k) = \sum_{i=-\infty}^{k} f(i) \leftrightarrow \frac{z}{z-1} F(z), \max(\alpha, 1) < z < \beta$
初值定理	$\begin{cases} f(M) = \lim_{z \to \infty} z^M F(z) \\ f(M+1) = \lim_{z \to \infty} [z^{M+1} F(z) - z f(M)] \\ f(M+2) = \lim_{z \to \infty} [z^{M+2} F(z) - z^2 f(M) - z f(M+1)] \end{cases}$

	$\begin{cases} f(0) = \lim_{z \to \infty} F(z) \\ f(1) = \lim_{z \to \infty} [zF(z) - zf(0)] \\ f(2) = \lim_{z \to \infty} [z^2F(z) - z^2f(0) - zf(1)] \end{cases}$
终值定理	$f(\infty) = \lim_{k \to \infty} f(k) = \lim_{z \to 1} [(z - 1)F(z)]$

22、逆z变换常用公式

情况分类	象函数	原函数
单极点	$\frac{F(z)}{z} = \frac{K_0}{z} + \sum_{i=1}^{n} \frac{K_i}{z - p_i}$	$f(k) = K_0 \delta(k) + \sum_{i=1}^{n} K_i(p_i)^k \varepsilon(k)$
共轭单极点	$\frac{F(z)}{z} = \frac{K_1}{z - c - jd} + \frac{{K_1}^*}{z - c + jd}$	$f(k) = 2 K_1 \alpha^k \cos(\beta k + \theta_1)\varepsilon(k)$
重极点	$\frac{F(z)}{z} = \frac{K_{11}}{(z-a)^r} + \frac{K_{12}}{(z-a)^{r-1}} + \cdots$ $\cdots + \frac{K_{1r}}{z-a}$	$\frac{k(k-1)\cdots(k-m+1)}{m!}a^{k-m}\varepsilon(k)$ $\leftrightarrow \frac{z}{(z-a)^{m+1}}$

【其他重要公式】

$$\frac{z}{(z-a)^2} \leftrightarrow ka^{k-1}\varepsilon(k), \ |z| > |a|$$

$$\frac{z}{(z-a)^3} \leftrightarrow \frac{1}{2}k(k-1)a^{k-2}\varepsilon(k), \ |z| > |a|$$

$$\frac{z}{(z-a)^2} \leftrightarrow -ka^{k-1}\varepsilon(-k-1), \ |z| < |a|$$

$$\frac{z}{(z-a)^3} \leftrightarrow -\frac{1}{2}k(k-1)a^{k-2}\varepsilon(-k-1), \ |z| < |a|$$

23、连续系统函数的极点分布与 h(t)的关系

极点位置及阶次		函数特性
	极点位于 s 平面的正实轴	$H(s) = K \frac{1}{s-a} \leftrightarrow h(t) = Ke^{at} \varepsilon(t)$
单极点	极点位于 s 平面的坐标原 点	$H(s) = K \frac{1}{s} \leftrightarrow h(t) = K\varepsilon(t)$
半 似点	极点位于 s 平面的负实轴	$H(s) = K \frac{1}{s+a} \leftrightarrow h(t) = Ke^{-at}\varepsilon(t)$
	H(s)的极点位于 s 平面的 右半开面的共轭极点	$H(s) = \frac{\omega}{(s-a)^2 + \omega^2} \leftrightarrow h(t) = e^{at} \sin(\omega t) \varepsilon(t)$

	H(s)的极点位于 s 平面的 虚轴	$H(s) = \frac{\omega}{s^2 + \omega^2} \leftrightarrow h(t) = \sin(\omega t)\varepsilon(t)$
	H(s)的极点是位于 s 平面的左半开面的共轭极点	$H(s) = \frac{\omega}{(s+a)^2 + \omega^2} \leftrightarrow h(t) = e^{-at} \sin(\omega t) \varepsilon(t)$
	位于坐标原点的二阶或三 阶极点	$H(s) = \frac{1}{s^2} \leftrightarrow h(t) = t\varepsilon(t)$ $H(s) = \frac{1}{s^3} \leftrightarrow h(t) = \frac{t^2}{2}\varepsilon(t)$
重极点	位于实轴上的二阶或三阶 极点	$H(s) = \frac{1}{(s+a)^2} \leftrightarrow h(t) = te^{-at} \varepsilon(t),$ $H(s) = \frac{1}{(s+a)^3} \leftrightarrow h(t) = \frac{1}{2} t^2 e^{-at} \varepsilon(t)$
	位于虚轴上的二阶共轭极 点	$H(s) = \frac{2\omega s}{(s^2 + \omega^2)^2} \leftrightarrow h(t) = t\sin(\omega t)\varepsilon(t)$