目录

1				-					
	1.1								
		1.1.1	Estimating class probabilities in multiclass classification via the softmax function						
		1.1.2	Broadening the output spectrum using a hyperbolic tangent						
2	Classifying Images with Deep Convolutional Neural Networks								
	2.1	The b	uilding blocks of CNNs						
		2.1.1	Discrete convolutions in one dimension						
		2.1.2	Subsampling layers						
	2.2	2 构建卷积神经网络							
		2.2.1	处理多个输入通道						
	2.3	3 使用卷积神经网络对人脸图像进行微笑分类							
		2.3.1	图像转化和数据增广						
3	用循环神经网络对序列数据建模								
	3.1	用于序	三列数据建模的循环神经网络						
		3.1.1	循环神经网络激活值计算						
		3.1.2	隐藏层循环与输出层循环						
		3.1.3	远距离学习面临的问题						

ii 目录

Chapter 1

1.1

1.1.1 Estimating class probabilities in multiclass classification via the softmax function

The softmax function is a soft form of the argmax function; instead of giving a single class index, it provides the probability of each class. Therefore, it allows us to compute meaningful class probabilities in multiclass settings (multinomial logistic regression).

In softmax, the probability of a particular sample with net input z belonging to the ith class can be computed with a normalization term in the denominator, that is, the sum of the exponentially weighted linear functions:

$$p(z) = \sigma(z) = \frac{e^{z_i}}{\sum_{j=1}^{M} e^{z_j}}$$
(1.1)

1.1.2 Broadening the output spectrum using a hyperbolic tangent

Another sigmoidal function that is often used in the hidden layers of artificial NNs is the hyperbolic tangent (commonly known as tanh), which can be interpreted as a rescaled version of the logistic function:

$$\sigma_{logistic}(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma_{tanh}(z) = 2 \times \sigma_{logistic}(2z) - 1 = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$
(1.2)

The advantage of the hyperbolic tangent over the logistic function is that it has a broader output spectrum ranging in the open interval (-1,1), which can improve the convergence of the backpropagation algorithm.

Note that using torch.sigmoid(x) produces results that are equivalent to torch.nn.Sigmoid()(x). torch.nn.Sigmoid is a class to which you can pass in parameters to construct an object in order to control the behavior. In contrast, torch.sigmoid is a function.

CHAPTER 1.

Activation fu	nction [Equation	1	Example	1D graph
Linear		σ(z) = 2	Z	Adaline, linear regression	
Unit step (Heaviside function)	σ(z)=	$\begin{cases} 0 \\ 0.5 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	
Sign (signum)	σ(z)=	{-1 0 1		Perceptron variant	
Piece-wise linear	$\sigma(z) = \begin{cases} \begin{cases} 1 & \text{if } z > 0 \end{cases} \end{cases}$	0 z + ½ 1	$z \le -\frac{1}{2}$ $-\frac{1}{2} \le z \le \frac{1}{2}$ $z \ge \frac{1}{2}$	Support vector machine	
Logistic (sigmoid)	σ(z)	=	1 · e ^{-z}	Logistic regression, multilayer NN	
Hyperbolic tangent (tanh)	σ(z)	$=\frac{e^{z}}{e^{z}}$	- e ^{-z} + e ^{-z}	Multilayer NN, RNNs	
ReLU	σ(z)	$= \begin{cases} 0 \\ z \end{cases}$	z < 0 z > 0	Multilayer NN, CNNs	

图 1.1: The activation functions covered

Chapter 2

Classifying Images with Deep Convolutional Neural Networks

2.1 The building blocks of CNNs

2.1.1 Discrete convolutions in one dimension

Determining the size of the convolution output

The output size of a convolution is determined by the total number of times that we shift the filter, \boldsymbol{w} , along the input vector. Let's assume that the input vector is of size n and the filter is of size m. Then, the size of the output resulting from $\boldsymbol{y} = \boldsymbol{x} * \boldsymbol{w}$, with padding p and stride s, would be determined as follows:

$$o = \left\lfloor \frac{n + 2p - m}{s} \right\rfloor + 1 \tag{2.1}$$

2.1.2 Subsampling layers

Subsampling is typically applied in two forms of pooling operations in CNNs: max-pooling and mean-pooling (also known as average-pooling). The pooling layer is usually denoted by $P_{n_1 \times n_2}$.

The advantage of pooling is twofold:

- Pooling (max-pooling) introduces a local invariance. This means that small changes in a local neighborhood do not change the result of max-pooling. Therefore, it helps with generating features that are more robust to noise in the input data.
- Pooling decreases the size of features, which results in higher computational efficiency. Furthermore, reducing the number of features may reduce the degree of overfitting as well.

图 2.1: Implementing a CNN

Overlapping versus non-overlapping pooling

Traditionally, pooling is assumed to be non-overlapping. Pooling is typically performed on non-overlapping neighborhoods, which can be done by setting the stride parameter equal to the pooling size. For example, a non-overlapping pooling layer, $P_{n_1 \times n_2}$, requires a stride parameter $s = (n_1, n_2)$. On the other hand, overlapping pooling occurs if the stride is smaller than the pooling size.

2.2 构建卷积神经网络

2.2.1 处理多个输入通道

2.3 使用卷积神经网络对人脸图像进行微笑分类

2.3.1 图像转化和数据增广

以用五种不同类型的转换:

- 用一个边界框剪裁图像 cropping an image to a bounding box
- 水平翻转图像 flipping an image horizontally
- 调整对比度 adjusting the contrast
- 调整亮度 adjusting the brightness
- 剪裁中心图像并将生成的图像调整为原始大小 center-cropping an image and resizing the resulting image back to its original size

Chapter 3

用循环神经网络对序列数据建模

3.1 用于序列数据建模的循环神经网络

3.1.1 循环神经网络激活值计算

对于隐藏层,通过输入值的线性组合方式计算净输入 z_h ,即计算两个权重矩阵与对应输入向量的乘法的和,再加上偏置单元 b_h :

$$\boldsymbol{z}_{h}^{(t)} = \boldsymbol{W}_{xh} \boldsymbol{x}^{(t)} + \boldsymbol{W}_{hh} \boldsymbol{h}^{(t-1)} + \boldsymbol{b}_{h}$$
(3.1)

然后, 计算隐藏层在 t 时刻的激活值:

$$\boldsymbol{h}^{t} = \sigma_{h}(\boldsymbol{z}_{h}^{(t)}) = \sigma_{h}(\boldsymbol{W}_{xh}\boldsymbol{x}^{(t)} + \boldsymbol{W}_{hh}\boldsymbol{h}^{(t-1)} + \boldsymbol{b}_{h})$$
(3.2)

其中, $\sigma_h(\cdot)$ 为隐藏层的激活函数

如使用组合权重矩阵 $W_h = [W_{xh}; W_{hh}]$, 那么公式将变为:

$$\boldsymbol{h}^{t} = \sigma_{h} \left(\left[\boldsymbol{W}_{xh}; \boldsymbol{W}_{hh} \right] \begin{bmatrix} \boldsymbol{x}^{(t)} \\ \boldsymbol{h}^{(t-1)} \end{bmatrix} + \boldsymbol{b}_{h} \right)$$
(3.3)

在获得当前时刻隐藏层的激活值后,就可以计算输出层的激活值:

$$\boldsymbol{o}^{(t)} = \sigma_o(\boldsymbol{W}_{ho}\boldsymbol{h}^{(t)} + \boldsymbol{b}_o) \tag{3.4}$$

3.1.2 隐藏层循环与输出层循环

当存在输出层循环连接时,前一时刻输出层的激活值 $o^{(t-1)}$ 可以通过以下两种方式循环:

- 添加到当前时刻的隐藏层 $h^{(t)}$
- 添加到当前时刻的输出层 $o^{(t)}$

图 3.1: 计算单层循环神经网络隐藏层和输出层的激活值

图 3.2: 不同循环连接模型

图 3.3: 计算损失函数梯度时出现的问题

3.1.3 远距离学习面临的问题

在实践中,解决序列中远距离依赖问题常用的三种解决方案如下:

- 1. 梯度剪裁
- 2. 截断时序方向传播(TBPTT)
- 3. 长短期记忆网络

梯度剪裁是指为梯度设定一个截止值或阈值,如果梯度超过该值则将梯度设为此截止值。而TBPTT限制反向传播时刻数量。