Strojno učenje – pismeni ispit

UNIZG FER, ak. god. 2019./2020.

7. rujna 2020.

spit traje 150 minuta i nosi 35 bodova. Svaki zadatak rješavajte na zasebnoj stranici. Pišite uredno i čitko. Jemojte pretpostavljati da je nešto očito; Vaše znanje može se ocijeniti samo na temelju onog što napišete. Kod sica grafikona, označite osi, budite uredni i precizni te označite ekstreme krivulja, ako postoje.

1. (5 bodova) Osnovni koncepti.

- (a) Skup označenih primjera je $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i = \{((0,0),1), ((0,1),1), ((1,1),0)\}$. Razmatramo linearan klasifikacijski model \mathcal{H} s parametrima $\theta \in \mathbb{R}^3$. Odredite $|\mathcal{H}|$ i $|VS_{\mathcal{H},\mathcal{D}}|$ za slučajeve (1) $\mathcal{X} = \{0,1\}^2$, (2) $\mathcal{X} = \mathbb{Z}^2$ i (3) $\mathcal{X} = \mathbb{Z}^2$ uz proširenje skupa \mathcal{D} primjerom ((-1,1),0).
- (b) Objasnite što su to induktivna pristranost jezika i pretraživanja. Na primjeru objasnite je li moguće deduktivno odrediti oznaku svakog primjera x iz $\mathcal{D} = \left\{ (x^{(i)}, y^{(i)}) \right\}_{i=1}^N$ služeći se samo pristranošću jezika. A samo pristranošću pretraživanja?

2. (4 boda) Linearna regresija.

- (a) Model regresije treniramo na podatcima koji su generirani funkcijom $f(x) = 3 \cdot (x-2)^2 + 1$. Koristimo funkciju preslikavanja $\phi(x) = (1, x, x^2)$. Skicirajte izokonture neregularizirane funkcije pogreške u ravnini \mathbb{R}^2 koju definiraju parametri w_1 i w_2 i izokonture L2-regularizacijskog izraza. Ako je faktor λ odabran tako da se jednak značaj pridaje složenosti modela i minimizaciji pogreške, skicirajte (otprilike) vektor optimalnih težina (w_1^*, w_2^*) .
- (b) Ukratko opišite kako se algoritam linearne regresije može upotrijebiti za binarnu klasifikaciju. Objasnite koji je glavni nedostatak takvog postupka kroz primjer i kroz skicu funkcije gubitka tog algoritma (graf od L u ovisnosti o $yh(\mathbf{x})$).

3. (4 boda) Logistička regresija.

- (a) Izvedite pogrešku unakrsne entropije i objasnite sve korake te korištene pretpostavke.
- (b) Koristimo model multinomijalne logističke regresije za klasifikaciju primjera u K=4 klase. Uz danu matricu težina \mathbf{W} , je li vjerojatnije da je primjer $\mathbf{x}=(2,5)$ član prve ili treće klase? Napišite čitav postupak kojim ste došli do zaključka.

$$\mathbf{W} = \begin{pmatrix} 0.3 & 0.4 & 0.5 \\ 0.1 & 0.9 & 0.9 \\ 2.5 & 1.0 & 0.5 \\ 1.0 & 1.2 & 0.4 \end{pmatrix}$$

- 4. (3 boda) Stroj potpornih vektora, jezgrene i neparametarske metode.
 - (a) Neka su potporni vektori linearnog SVM-a $\mathbf{x}^{(1)} = (-2, 3, 5, 5)$ i $\mathbf{x}^{(2)} = (6, 4, 3, 1)$. Prvi primjer je negativan, a drugi pozitivan. Dualni parametri su $\alpha_1 = 0.2$ i $\alpha_2 = 0.5$, a pomak je $w_0 = -2$. Napišite izraz za gubitak zglobnice i odredite gubitak hipoteze za primjer $\mathbf{x}^{(3)} = (1, 1, 1, 1)$, ako $y^{(3)} = -1$.
 - (b) Skicirajte pogreške učenja i ispitivanja kao funkcije od k za model k-NN.
- 5. (8 bodova) Procjenitelji, Bayesov klasifikator i probabilistički grafički modeli.
 - (a) Izvedite, korak po korak, ML-procjenitelj parametra μ Bernoullijeve razdiobe. Na primjeru ilustrirajte problem prenaučenosti kod izvedenog procjenitelja te kako biste taj problem ublažili.
 - (b) Definirajte KL-divergenciju i uzajamnu informaciju, te objasnite kako biste ih iskoristili kao kriterij za odabir modela kod polunaivnog Bayesovog klasifikatora.
 - (c) Bayesovom mrežom modeliramo vjerojatnost oboljenja od kardiovaskularnih bolesti. Mreža sadrži četiri varijable: spol osobe (S), koliko često osoba tjedno odlazi u teretanu (T), je li osoba pušač (P), te varijablu koja govori o kakvom se riziku radi (R). Pritom vrijedi $s \in \{muški, ženski\}$, $p \in \{\bot, \top\}$, $t \in \{1, 3, 5\}$ i $r \in \{nizak, umjeren, visok\}$. Zajednička razdioba faktorizirana je kao P(S, T, P, R) = P(S)P(P)P(T|S, P)P(R|T). Primjenom (Laplaceovog) MAP-procjenitelja procijenite P(T|S, P). Pritom je dan skup podataka \mathcal{D} :

S	P	T	R
ženski	T	1	visok
ženski	T	5	umjeren
muš ki	1	3	nizak
ženski	1	1	umjeren
$mu\check{s}ki$	T	5	nizak
ženski	Τ	1	nizak

- 6. (6 bodova) Vrednovanje klasifikatora i odabir značajki.
 - (a) Od N=1000 primjera, klasifikator je za prvu, drugu i treću klasu ispravno klasificirao njih 590, 146 odnosno 134. Od preostalih 130 neispravno klasificiranih primjera, 30 ih je klasificirano u drugu klasu umjesto u prvu, 60 u drugu umjesto u treću, a 40 u treću umjesto u prvu klasu. Izračunajte mikro- F_2 .
 - (b) Pretpostavimo skup podataka \mathcal{D} s N=100 primjera, pri čemu je 60 primjera jedne klase, a 40 druge. Provodimo binarnu klasifikaciju korištenjem modela većinskog glasanja. Ako koristimo stratificiranu 10-struku unakrsnu provjeru za procjenu pogreške, hoće li se procjena pogreške promijeniti ako ponovimo isti postupak koristeći po 50% primjera obje klase? Ako da, hoće li biti veća ili manja? Detaljno obrazložite.
 - (c) Opišite metodu "izdvoji" jednog i navedite njene nedostatke.
- 7. (5 bodova) Grupiranje.
 - (a) Napišite pseudokôd algoritma k-medoida. Koje su prednosti, a koje mane ovog algoritma nad algoritmom k-sredina?
 - (b) Raspolažemo manjim skupom od 7 primjera $(x_1, x_2, ..., x_7)$. Referentno grupiranje ovih primjera grupe definirano je vektorom pridjeljivanja primjera grupama $x_i \mapsto j$: (1, 2, 1, 3, 4, 4, 1). Algoritmom k-medoida dobiveno je grupiranje (2, 2, 1, 1, 2, 3, 1). (Dakle, četvrti primjer je u referentnom grupiranju član grupe 3, dok je u dobivenom grupiranju član grupe 1.) Izračunajte Randov indeks dotičnog grupiranja.