Гиперболические системы уравнений

Вариант 2

Рассматривается система линейных гиперболических уравнений

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{u}}{\partial x} = \mathbf{b}(x), 0 \leqslant x \leqslant 1, 0 \leqslant t \leqslant 1, \quad \mathbf{u}(x, 0) = \begin{pmatrix} \sin \pi x \\ \cos \pi x \\ 1 + \sin \pi x \end{pmatrix}.$$

$$\mathbf{A} = \begin{pmatrix} -2 & -2 & 4 \\ -4 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix}, \mathbf{b}(x) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Привести систему к характеристическому виде, предложить корректную постановку граничных условий.

Решить численно систему уравнений с использованием двух указанных схем. Для каждой из схем выписать ПДП, определить, диссипативная или дисперсионная ошибка преобладает. Монотонна ли схема? Оценить апостериорно порядок сходимости каждой схемы.

Разностные схемы

Схемы приводятся для модельного уравнения $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, a = const > 0$ на сетке $x_m = mh, m = 0..M, Mh = 1; t^n = n\tau, n = 0..N, N\tau = 1$. При необходимости преобразовать схемы для случая a = const < 0.

1) Схема П. Лакса

$$\frac{u_m^{n+1} - 0.5\left(u_{m+1}^n + u_{m-1}^n\right)}{\tau} + a\frac{u_{m+1}^n - u_{m-1}^n}{2h} = 0$$

2) Полностью симметричная разностная схема (схема бегущего счета):

$$\frac{1}{2\tau} \left[\left(u_{m+1}^{n+1} + u_m^{n+1} \right) - \left(u_{m+1}^n - u_m^n \right) \right] + \frac{1}{h} \left[\left(u_{m+1}^{n+1} + u_{m+1}^n \right) - \left(u_m^{n+1} - u_m^n \right) \right] = 0$$