

Introduzione e modellistica dei sistemi

Modellistica dei sistemi elettromeccanici

Modellistica dei sistemi elettromeccanici

- Principi fisici di funzionamento
- Motore elettrico in corrente continua (DC-motor)
- DC-motor con comando di armatura
- DC-motor con comando di eccitazione
- Esempio di rappresentazione in variabili di stato

Modellistica dei sistemi elettromeccanici

Principi fisici di funzionamento

- ➤ I **sistemi elettromeccanici** operano una conversione elettromeccanica di energia:
 - Conversione di energia elettrica in energia meccanica
 motori elettrici
 - Conversione di energia meccanica in energia elettrica
 ⇒ generatori elettrici o dinamo elettriche
- Per esigenze di brevità, in questo modulo saranno considerati soltanto i motori elettrici e in particolare quelli alimentati in corrente continua, noti più semplicemente come DC-motor
- Saranno ora richiamati i principi fisici che sono alla base del funzionamento dei sistemi elettromeccanici

Forza di Lorentz

Un conduttore elettrico di lunghezza ℓ percorso da una corrente i(t) e immerso in un campo magnetico d'intensità B(t) è sottoposto alla **forza di Lorentz**

Coppia di Lorentz

Una spira conduttrice di superficie A percorsa da una corrente i(t) e immersa in un campo magnetico d'intensità B(t) è sottoposta alla coppia di Lorentz

$$T(t) = i(t) AB \sin \theta(t)$$

Interazioni magn./elettr.

Alonso/Finn, "Elementi di fisica per l'università", Addison-Wesley

Interazioni magn./elettr.

Bateson, "Introduction to control system technology", Prentice Hall

Legge dell'induzione elettromagnetica

Se un conduttore elettrico forma un circuito chiuso e concatena un flusso $\Phi(t)$ di un campo magnetico, per la legge di Faraday – Henry – Lenz dell'induzione elettromagnetica viene a crearsi nel conduttore una tensione nota come **forza elettromotrice indotta** (o **f.e.m. indotta**)

$$e(t) = -\frac{d\Phi(t)}{dt}$$

Modellistica dei sistemi elettromeccanici

Motore elettrico in corrente continua (DC-motor)

Parti principali di un DC-motor (1/4)

Un motore elettrico alimentato in corrente continua è costituito da

- Uno statore : è la parte più esterna e non rotante, responsabile della generazione del campo magnetico mediante
 - Semplici magneti permanenti e/o
 - Una serie opzionale di avvolgimenti alimentati in corrente continua, costituenti il circuito di eccitazione

Parti principali di un DC-motor (2/4)

Un motore elettrico alimentato in corrente continua è costituito da

Un rotore : è la parte più interna e mobile, costituita da un cilindro di materiale ferromagnetico lamellato e opportunamente sagomato, su cui sono posti numerosi avvolgimenti che formano il circuito di armatura; tale circuito genera un campo magnetico concatenato con quello dello statore

Parti principali di un DC-motor (3/4)

Un motore elettrico alimentato in corrente continua è costituito da

Un interruttore rotante detto collettore a spazzole o anello di Pacinotti: permette al circuito di armatura di entrare in contatto elettrico con due spazzole, attraverso le quali il motore riceve energia elettrica sotto forma di corrente di armatura

Parti principali di un DC-motor (4/4)

Un motore elettrico alimentato in corrente continua è costituito da

Un albero motore : solidale con il rotore e dotato di un proprio momento d'inerzia, è di solito collegato meccanicamente alla carcassa del motore mediante uno o più cuscinetti a sfera

Modello di un DC-motor (1/6)

Il modello del DC-motor è di natura ibrida:

Infatti è costituito da:

- Un modello di tipo elettrico del rotore e dello statore (nel caso in cui siano presenti avvolgimenti statorici)
- Un modello di tipo meccanico del rotore e dell'eventuale carico applicato

Modello di un DC-motor (2/6)

Il modello elettrico del rotore è descritto da

$$V_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + e(t)$$

 v_a , i_a = tensione e corrente di armatura

 R_a , L_a = resistenza ed induttanza equivalenti di armatura (proporzionali al numero di spire del rotore)

e = forza elettromotrice indotta (f.e.m. indotta del rotore)₁₄

Modello di un DC-motor (3/6)

➤ Se sono presenti avvolgimenti sullo statore ⇒ il modello elettrico dello statore è descritto da

$$V_e(t) = R_e i_e(t) + L_e \frac{di_e(t)}{dt}$$

 v_e , i_e = tensione e corrente di eccitazione

 R_e , L_e = resistenza ed induttanza equivalenti di eccitazione (proporzionali al numero di spire dello statore)

15

Modello di un DC-motor (4/6)

Il modello meccanico del rotore è descritto da

$$J\ddot{\theta}(t) = J\dot{\omega}(t) = T_m(t) - T_r(t) - \beta\omega(t)$$

J = inerzia dell'albero motore, avente posizione angolare θ

 T_m = coppia motrice del motore

 T_r = coppia resistente (dovuta al carico applicato al motore)

 β = coefficiente d'attrito equivalente (tiene conto dei vari fenomeni d'attrito, fra cui quelli dovuti ai cuscinetti) $_{16}$

Modello di un DC-motor (5/6)

Il fenomeno della conversione elettromeccanica di energia è descritto dalle relazioni:

$$e(t) = K \Phi(t) \omega(t)$$
$$T_m(t) = K \Phi(t) i_a(t)$$

```
e = forza elettromotrice indotta (f.e.m. indotta), [e] = V K = costante caratteristica del motore, [K] = V T<sup>-1</sup> m<sup>-2</sup> s/rad \Phi = flusso del vettore di induzione magnetica, [\Phi] = T m<sup>2</sup> \omega = velocità angolare dell'albero motore, [\omega] = rad/s T_m = coppia motrice del motore, [T_m] = N m T_m = corrente di armatura, [T_m] = A
```

Modello di un DC-motor (6/6)

- Se il flusso magnetico dello statore è generato da magneti permanenti $\Rightarrow \Phi(t) = \overline{\Phi} = \text{costante}, \forall t$
- Se il flusso magnetico dello statore è generato da spire percorse dalla corrente di eccitazione $i_e(t) \Rightarrow \Phi(t)$ risulta essere una funzione non lineare di $i_e(t)$ del tipo: $\Phi(t)$

Modalità di funzionamento di un DC-motor

- Nel caso di DC-motor con comando di armatura
 - Il flusso magnetico dello statore è tenuto costante, utilizzando magneti permanenti e/o alimentando il circuito di eccitazione con una corrente costante
 - Il comando del motore è la tensione variabile $v_a(t)$ applicata al circuito di armatura del rotore
- ➤ Nel caso di DC-motor con comando di eccitazione
 - La corrente di armatura nel rotore è tenuta costante
 - Il comando del motore è la tensione variabile $v_e(t)$ applicata al circuito di eccitazione dello statore ⇒ variano sia la corrente di eccitazione $i_e(t)$ sia il flusso magnetico dello statore $\Phi(t) = \Phi(i_e(t))$

Modellistica dei sistemi elettromeccanici

DC-motor con comando di armatura

DC-motor con comando di armatura (1/2)

Il flusso magnetico dello statore è tenuto costante $\Phi(t) = \overline{\Phi}, \ \forall t$ utilizzando magneti permanenti e/o alimentando le spire dello statore con una corrente costante $\overline{i_e} \Rightarrow$ l'equazione del circuito di eccitazione è di tipo statico:

$$V_e(t) = R_e \overline{i_e} + L_e \frac{d\overline{i_e}}{dt} = R_e \overline{i_e} = \overline{V_e}, \forall t$$

> Le equazioni dinamiche si riducono quindi a:

$$V_{a}(t) = R_{a}i_{a}(t) + L_{a}\frac{di_{a}(t)}{dt} + K\overline{\Phi}\omega(t)$$

$$J\ddot{\theta}(t) = J\dot{\omega}(t) = K\overline{\Phi}i_{\partial}(t) - T_{r}(t) - \beta\omega(t)$$

DC-motor con comando di armatura (2/2)

> Poiché le equazioni dinamiche sono:

$$V_{a}(t) = R_{a}i_{a}(t) + L_{a}\frac{di_{a}(t)}{dt} + K\overline{\Phi}\omega(t)$$
$$J\ddot{\theta}(t) = J\dot{\omega}(t) = K\overline{\Phi}i_{a}(t) - T_{r}(t) - \beta\omega(t)$$

le variabili di stato sono, in generale:

$$x(t) = \begin{bmatrix} i_{a}(t) \\ \theta(t) \\ \omega(t) \end{bmatrix} = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \end{bmatrix}$$

mentre le variabili di ingresso sono:

$$u(t) = \begin{bmatrix} v_{a}(t) \\ T_{r}(t) \end{bmatrix} = \begin{bmatrix} u_{1}(t) \\ u_{2}(t) \end{bmatrix}$$

Modellistica dei sistemi elettromeccanici

DC-motor con comando di eccitazione

DC-motor con comando di eccitazione (1/4)

La corrente di armatura del rotore è tenuta costante $i_a(t) = \overline{i_a}, \ \forall t$ utilizzando un generatore ideale di corrente $\overline{i_a} \Rightarrow$ l'equazione del circuito di armatura è di tipo statico:

$$V_{a}(t) = R_{a}\overline{i_{a}} + L_{a}\frac{d\overline{i_{a}}}{dt} + K\Phi(t)\omega(t) = R_{a}\overline{i_{a}} + K\Phi(t)\omega(t), \forall t$$

> Le equazioni dinamiche si riducono quindi a:

$$V_e(t) = R_e i_e(t) + L_e \frac{di_e(t)}{dt}$$

$$J\ddot{\theta}(t) = J\dot{\omega}(t) = K \Phi(t) \overline{i_a} - T_r(t) - \beta \omega(t)$$

DC-motor con comando di eccitazione (2/4)

La corrente di eccitazione dello statore $i_e(t)$ varia nell'intorno del punto di funzionamento $\overline{i_e} \Rightarrow$ il flusso magnetico dello statore varia a sua volta nell'intorno del valore $\Phi(i_e(t)) = \Phi(\overline{i_e}) = \overline{\Phi} = K_e \overline{i_e} \Rightarrow$ si può approssimare la caratteristica non lineare di Φ con la legge lineare $\Phi \uparrow \qquad / K_e i_e$

 $\Phi(t) \cong K_e i_e(t)$

DC-motor con comando di eccitazione (3/4)

y(t) = Cx(t)

Solution Grazie all'approssimazione lineare $\Phi(t) \cong K_e i_e(t)$, l'equazione dinamica della parte meccanica diventa:

$$J\ddot{\theta}(t) = J\dot{\omega}(t) = K \Phi(t) \overline{i_a} - T_r(t) - \beta \omega(t)$$

$$\cong K K_e i_e(t) \overline{i_a} - T_r(t) - \beta \omega(t)$$

$$K^*$$

$$= K^* i_e(t) - T_r(t) - \beta \omega(t)$$

 \Rightarrow la si può ritenere in prima approssimazione lineare:

$$J\ddot{\theta}(t) = J\dot{\omega}(t) \cong K^*i_e(t) - T_r(t) - \beta\omega(t)$$

DC-motor con comando di eccitazione (4/4)

Poiché le equazioni dinamiche sono:

$$v_e(t) = R_e i_e(t) + L_e \frac{di_e(t)}{dt}$$
$$J\ddot{\theta}(t) = J\dot{\omega}(t) \cong K^* i_e(t) - T_r(t) - \beta\omega(t)$$

le variabili di stato sono, in generale:

$$x(t) = \begin{bmatrix} i_e(t) \\ \theta(t) \\ \omega(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$$

mentre le variabili di ingresso sono:

$$u(t) = \begin{bmatrix} v_e(t) \\ T_r(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\begin{aligned}
& \nabla_{e}(h) = \int_{e}^{\infty} e^{-\lambda_{e}(h)} + \int_{e}^{\infty} \frac{d\lambda_{e}(h)}{dh} \\
& \int_{e}^{\infty} \frac{d\lambda_{e}(h)}{dh} = \int_{e}^{\infty} \frac{d\lambda_{e}(h)}{dh} + \int_{e}^{\infty} \frac{d\lambda_{e}(h)}{dh} \\
& \times_{e} \begin{bmatrix} \lambda_{e} \\ \theta \end{bmatrix} = \begin{bmatrix} \times_{i} \\ \times_{2} \end{bmatrix}, \quad M = \begin{bmatrix} \nabla_{e} \\ \nabla_{e} \end{bmatrix} \begin{bmatrix} M_{i} \\ M_{i} \end{bmatrix}, \quad Y = 0 \\
& \nabla_{e} \end{bmatrix} \begin{bmatrix} M_{i} \\ M_{i} \end{bmatrix}, \quad Y = 0 \\
& \nabla_{e} \end{bmatrix} \begin{bmatrix} M_{i} \\ M_{i} \end{bmatrix}, \quad Y = 0 \\
& \nabla_{e} \end{bmatrix} \begin{bmatrix} M_{i} \\ M_{i} \end{bmatrix}, \quad Y = 0 \\
& \nabla_{e} \end{bmatrix} \begin{bmatrix} M_{i} \\ M_{i} \end{bmatrix}, \quad M = \begin{bmatrix} M_{i} \\ M$$

Modellistica dei sistemi elettromeccanici

Esempio di rappresentazione in variabili di stato

Esempio di rappresentazione (1/12)

Ricavare la rappresentazione di stato del seguente sistema elettromeccanico, in cui $y = \theta_2$

Equazione dinamica della maglia di armatura:

1)
$$V_a = R_a i_a + L_a \frac{di_a}{dt} + \underbrace{K \overline{\Phi} \omega_1}_{e}$$

Esempio di rappresentazione (2/12)

Ricavare la rappresentazione di stato del seguente sistema elettromeccanico, in cui $y = \theta_2$

 \rightarrow Equazione del moto dell'albero motore d'inerzia J_1 :

2)
$$J_1 \ddot{\theta}_1 = \underbrace{K \overline{\Phi} i_a}_{T_m} - \beta_1 \omega_1 - K_{12} (\theta_1 - \theta_2) - \beta_{12} (\omega_1 - \omega_2)$$

Esempio di rappresentazione (3/12)

Ricavare la rappresentazione di stato del seguente sistema elettromeccanico, in cui $y = \theta_2$

ightharpoonup Equazione del moto del pannello solare d'inerzia J_2 :

3)
$$J_2\ddot{\theta}_2 = -T_d - K_{12}(\theta_2 - \theta_1) - \beta_{12}(\omega_2 - \omega_1)$$

Esempio di rappresentazione (4/12)

Ricavare la rappresentazione di stato del seguente sistema elettromeccanico, in cui $y = \theta_2$

Variabili di stato:

$$X(t) = \begin{bmatrix} I_a(t) \\ \theta_1(t) \\ \theta_2(t) \\ \omega_1(t) \\ \omega_2(t) \end{bmatrix} = \begin{bmatrix} X_1(t) \\ X_2(t) \\ X_3(t) \\ X_4(t) \\ X_5(t) \end{bmatrix}$$

Esempio di rappresentazione (5/12)

Ricavare la rappresentazione di stato del seguente sistema elettromeccanico, in cui $y = \theta_2$

Variabili di ingresso:

$$u(t) = \begin{bmatrix} v_{\partial}(t) \\ T_{\partial}(t) \end{bmatrix} = \begin{bmatrix} u_{1}(t) \\ u_{2}(t) \end{bmatrix}$$

Esempio di rappresentazione (6/12)

Equazioni dinamiche:

1)
$$V_a = R_a i_a + L_a di_a/dt + K \overline{\Phi} \omega_1$$

2)
$$J_1\ddot{\theta}_1 = K\bar{\Phi}I_a - \beta_1\omega_1 - K_{12}(\theta_1 - \theta_2) - \beta_{12}(\omega_1 - \omega_2)$$

3)
$$J_2\ddot{\theta}_2 = -T_d - K_{12}(\theta_2 - \theta_1) - \beta_{12}(\omega_2 - \omega_1)$$

Variabili di stato e di ingresso:

$$x(t) = \begin{bmatrix} i_a(t) \\ \theta_1(t) \\ \theta_2(t) \\ \omega_1(t) \\ \omega_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \\ x_5(t) \end{bmatrix}, \quad u(t) = \begin{bmatrix} v_a(t) \\ T_d(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\dot{X}_{1} = di_{a}/dt = \frac{V_{a}}{L_{a}} - \frac{R_{a}}{L_{a}}i_{a} - \frac{K\overline{\Phi}}{L_{a}}\omega_{1} = -\frac{R_{a}}{L_{a}}X_{1} - \frac{K\overline{\Phi}}{L_{a}}X_{4} + \frac{U_{1}}{L_{a}} = f_{1}(t, x, u)$$

Esempio di rappresentazione (7/12)

Equazioni dinamiche:

1)
$$V_a = R_a i_a + L_a di_a/dt + K \overline{\Phi} \omega_1$$

2)
$$J_1\ddot{\theta}_1 = K\bar{\Phi}I_{\partial} - \beta_1\omega_1 - K_{12}(\theta_1 - \theta_2) - \beta_{12}(\omega_1 - \omega_2)$$

3)
$$J_2\ddot{\theta}_2 = -T_d - K_{12}(\theta_2 - \theta_1) - \beta_{12}(\omega_2 - \omega_1)$$

Variabili di stato e di ingresso:

$$x(t) = \begin{bmatrix} i_a(t) \\ \theta_1(t) \\ \theta_2(t) \\ \omega_1(t) \\ \omega_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \\ x_5(t) \end{bmatrix}, \quad u(t) = \begin{bmatrix} v_a(t) \\ T_d(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\dot{x}_2 = d\theta_1/dt = \omega_1 = x_4 = f_2(t, x, u)$$

$$\dot{x}_3 = d\theta_2/dt = \omega_2 = x_5 = f_3(t, x, u)$$

Esempio di rappresentazione (8/12)

Equazioni dinamiche:

1)
$$V_a = R_a i_a + L_a di_a/dt + K \overline{\Phi} \omega_1$$

2)
$$J_1\ddot{\theta}_1 = K\bar{\Phi}I_a - \beta_1\omega_1 - K_{12}(\theta_1 - \theta_2) - \beta_{12}(\omega_1 - \omega_2)$$

3)
$$J_2\ddot{\theta}_2 = -T_d - K_{12}(\theta_2 - \theta_1) - \beta_{12}(\omega_2 - \omega_1)$$

Variabili di stato e di ingresso:

$$x(t) = \begin{bmatrix} i_a(t) \\ \theta_1(t) \\ \theta_2(t) \\ \omega_1(t) \\ \omega_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \\ x_5(t) \end{bmatrix}, \quad u(t) = \begin{bmatrix} v_a(t) \\ T_d(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\dot{X}_{4} = d\omega_{1}/dt = \ddot{\theta}_{1} = \left[K\overline{\Phi}i_{a} - \beta_{1}\omega_{1} - K_{12}(\theta_{1} - \theta_{2}) - \beta_{12}(\omega_{1} - \omega_{2})\right]/J_{1} = \frac{K\overline{\Phi}}{J_{1}}X_{1} - \frac{K_{12}}{J_{1}}X_{2} + \frac{K_{12}}{J_{1}}X_{3} - \frac{\beta_{1} + \beta_{12}}{J_{1}}X_{4} + \frac{\beta_{12}}{J_{1}}X_{5} = f_{4}(t, X, U)$$

Esempio di rappresentazione (9/12)

Equazioni dinamiche:

1)
$$V_a = R_a i_a + L_a di_a/dt + K \overline{\Phi} \omega_1$$

2)
$$J_1\ddot{\theta}_1 = K\bar{\Phi}I_a - \beta_1\omega_1 - K_{12}(\theta_1 - \theta_2) - \beta_{12}(\omega_1 - \omega_2)$$

3)
$$J_2\ddot{\theta}_2 = -T_d - K_{12}(\theta_2 - \theta_1) - \beta_{12}(\omega_2 - \omega_1)$$

Variabili di stato e di ingresso:

$$x(t) = \begin{bmatrix} i_a(t) \\ \theta_1(t) \\ \theta_2(t) \\ \omega_1(t) \\ \omega_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \\ x_5(t) \end{bmatrix}, \quad u(t) = \begin{bmatrix} v_a(t) \\ T_a(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\dot{X}_{5} = d\omega_{2}/dt = \ddot{\theta}_{2} = \left[-T_{d} - K_{12}(\theta_{2} - \theta_{1}) - \beta_{12}(\omega_{2} - \omega_{1})\right]/J_{2} = \frac{K_{12}}{J_{2}}X_{2} - \frac{K_{12}}{J_{2}}X_{3} + \frac{\beta_{12}}{J_{2}}X_{4} - \frac{\beta_{12}}{J_{2}}X_{5} - \frac{u_{2}}{J_{2}} = f_{5}(t, X, u)$$

Esempio di rappresentazione (10/12)

Equazioni dinamiche:

1)
$$V_a = R_a i_a + L_a di_a/dt + K \overline{\Phi} \omega_1$$

2)
$$J_1\ddot{\theta}_1 = K\bar{\Phi}i_a - \beta_1\omega_1 - K_{12}(\theta_1 - \theta_2) - \beta_{12}(\omega_1 - \omega_2)$$

3)
$$J_2\ddot{\theta}_2 = -T_d - K_{12}(\theta_2 - \theta_1) - \beta_{12}(\omega_2 - \omega_1)$$

Variabili di stato e di ingresso:

$$x(t) = \begin{bmatrix} i_a(t) \\ \theta_1(t) \\ \theta_2(t) \\ \omega_1(t) \\ \omega_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \\ x_5(t) \end{bmatrix}, \qquad u(t) = \begin{bmatrix} v_a(t) \\ T_a(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Equazione di uscita:

$$y = \theta_2 = x_3 = g(t, x, u)$$

Esempio di rappresentazione (11/12)

- **Equaz.** di uscita: $y = x_3$
- ightharpoonup Se $J_1, J_2, K_{12}, \beta_1, \beta_{12}, R_{al}, L_{al}, K \in \Phi$ sono costanti \Rightarrow il sistema è LTI \Rightarrow ha come rappresentazione di stato

y(t) = Cx(t)

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = C x(t) + D u(t)$$

Esempio di rappresentazione (12/12)

Se $J_1, J_2, K_{12}, \beta_1, \beta_{12}, R_a, L_a, K \in \overline{\Phi}$ sono costanti \Rightarrow il sistema è LTI \Rightarrow ha come rappresentazione di stato

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = C x(t) + D u(t)$$

$$A = \begin{bmatrix} -\frac{R_{a}}{L_{a}} & 0 & 0 & -\frac{K\overline{\Phi}}{L_{a}} & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \frac{K\overline{\Phi}}{J_{1}} & -\frac{K_{12}}{J_{1}} & \frac{K_{12}}{J_{1}} & -\frac{\beta_{1}+\beta_{12}}{J_{1}} & \frac{\beta_{12}}{J_{2}} \\ 0 & \frac{K_{12}}{J_{2}} & -\frac{K_{12}}{J_{2}} & \frac{\beta_{12}}{J_{2}} & -\frac{\beta_{12}}{J_{2}} \end{bmatrix}, B = \begin{bmatrix} \frac{1}{L_{a}} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -\frac{1}{J_{2}} \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \end{bmatrix}$$