Systems with a Variable Number of Particles

Chemical Potential in Thermodynamics

The fundamental relation of TD is generalised for a variable number of particles to:

where it is the chemical potential defined as

This is the TD definition of chemical potential.
We usin now try and find the analogous Statistical definition.

Condition for Particle Equilibrium

if you remember in previous chapters, we had the equilibrium condition: $d\sigma = \frac{\partial \sigma}{\partial V_A} \Big|_{E_A} dV_A + \frac{\partial \sigma}{\partial E_A} \Big|_{V_A} dE_A = 0$ we now generalise this to:

As before, we split each partial derivative up since $\sigma = \sigma_A + \sigma_B$:

$$d\sigma = \left[\frac{\partial \sigma_{A}}{\partial V_{A}} \Big|_{E_{A}, N_{A}} - \frac{\partial \sigma_{B}}{\partial V_{B}} \Big|_{E_{A}, N_{A}} \right] dV_{A}$$

$$T \left[\frac{\partial \sigma_{A}}{\partial E_{A}} \Big|_{V_{A}, N_{A}} - \frac{\partial \sigma_{B}}{\partial E_{B}} \Big|_{V_{A}, N_{A}} \right] dE_{A}$$

$$+ \left[\frac{\partial \sigma_{A}}{\partial N_{A}} \Big|_{V_{A}, E_{A}} - \frac{\partial \sigma_{B}}{\partial N_{B}} \Big|_{V_{A}, E_{A}} \right] dN_{A} = 0$$

Since this scencrio is in complete TD equilibrium, we have $Y_A = Y_B$ $P_A = P_B$ and particle equilibrium:

which define statistical chemical potential us:

In fact, just as $t'=k_8T$ $\Pi=\rho$, we find Ms=Msince $s=k_8\sigma$ and $t'=k_8T$

Consider now the process of approaching particle equilibrium while themal and mechanical equilibrium have abready been reached:

$$\frac{d\sigma}{dt} = -\frac{1}{\tau} \frac{dN_A}{dE} \left(N_A - M_B \right) > 0 \quad \text{since extropy}$$
has to increase

so there is a net flow of particles from higher chambed potential system to lower chemical potential system, until particle equilibrium is reached Mx = M8 => dNx = 0

The modyranic Potentials

Let's generalise our themodynamic potentials.

Helmholtz Free Energy:

This was F= U-TS, but now:

:.
$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T}$$
 This definition is often more. Convenient.

In a system with constant volume and temperature, it can be shown f tends to a minimum in irreversible processes. i.e $\frac{\partial F}{\partial N} \leq 0$ if contact V and T

4 N can voy, system chooses N for which F is minimised.

since $M = \left(\frac{3f}{50}\right)_{V,T}$ than M = 0 at equilibrium for particles with no conservation laws (like photon).

Enthalpy:

This was $H = U + \rho V$ but now: $dH = TdS + Vd\rho + \mu dN$ so $H = H(S, \rho, N)$

Gibbs Function:

This was G = U - TS + PV but now: $dG = -SdT + VdP + \mu dN$ so G = G(T, P, N) $M = \left(\frac{\partial G}{\partial N}\right)_{P,T}$

 \Rightarrow G=MN Why is this true? Since a is extensive, like and TO potentials: G \Rightarrow χ G as N \Rightarrow χ N

 $\therefore G(T,P,N) = \lambda G(T,P,N) = Nf(P,T)$

tron mych it tonows e=MN

From G=U-TS+PV: MN=U-TS+pV

 $\Rightarrow S = \frac{U + pV - \mu N}{T} \quad \text{withing} \quad S = \frac{S}{V} \quad u = \frac{U}{N} \quad \Lambda = \frac{N}{V}$

S= 4+p-MA

Please for over

We now introduce on important TD potential:

grand potential is

$$S = -\left(\frac{3\phi^2}{3\phi^2}\right)^{1/4}$$

$$b = -\left(\frac{9\phi}{9\phi}\right)^{\perp}$$

$$N = -\left(\frac{\partial \Phi_G}{\partial M}\right)_{T,V}$$
 This is particularly useful. We will use it case.

Grand Caronical Essenble

Let's recorp on the nicrocanonical and conorcal ensembles:

Microcchonical Essemble:

E, N, V fixed. The system is isolated and three is no reservoir.

Cononical Enembie:

T, N, V fixed. The system is in the mad contact with a reservoir and an exchange every with it.

Reservoir has constant T, system has variable E.

Grand Caronical Ensemble:

Here, TUM are fixed. The system is in thursal contact with a reservoir and can eachange every and particles with it. The reservoir has constant T and M, system has variable E and N

The Grand Caronical distribution is:

$$\omega(E,N) = A'e^{-\frac{E-\mu N}{2}}$$
 where A' is the normalization constant.

The Grand Partition Function is:

$$\overline{t_c} = \sum_{N=0}^{N_{max}} \int e^{-\frac{E-NN}{2}} dW(N)$$

The normalisation condition: $\sum_{N=0}^{N_{\text{norm}}} \int \omega(E,N) d\omega(N) = 1$ from which we that $\frac{1}{2} = A'^{-1}$

so
$$w(\varepsilon, N) = \frac{1}{20} e^{\frac{\varepsilon - MN}{2}}$$

The Importance of the Grand Potential

In the conomical eventue, we saw $F = -K_8 T \ln 2$.
Hence how f and Z are related.

In the grand cononical eventue, we use ϕ_{e}^{-} F- μN instead of ϕ and ϕ grand partition function instead of partition function

grand partition tenetion

This is a generalisation of $F = -k_B T u + L_B T u + L$

The mean number of particles in a quarton discrete system is: $\langle N \rangle = \sum_{i} N_{i} P_{i} = \sum_{i} N_{i} \frac{e^{\beta(\mu N_{i} - E_{i})}}{Z_{G}}$

$$= \frac{1}{\beta Z_{c}} \frac{\partial}{\partial u} \sum_{i} e^{\beta(uN_{i}-E_{i})} = \frac{1}{\beta Z_{c}} \frac{\partial}{\partial u} Z_{c}$$

$$= k_{\delta}T \frac{\partial u Z_{c}}{\partial u}$$

Earlier we saw $N = -\left(\frac{3\phi_{G}}{3\mu}\right)_{T,V}$

setting (N)=N, we find:

we can also derive iteral everyy U.

$$U = \frac{\sum_{i=1}^{n} e^{-\beta E_{i}}}{\sum_{i=1}^{n} e^{-\beta E_{i}}} = \frac{3\beta}{3000} \quad \text{from the constitute expension}$$

$$0 = \frac{\sum_{i=1}^{n} e^{\beta(\mu N_{i} - E_{i})}}{\sum_{i=1}^{n} e^{\beta(\mu N_{i} - E_{i})}} = -\left(\frac{\partial L_{i}}{\partial \beta}\right)_{\beta \mu = cout} \frac{1}{cout} \frac{1}{cout}$$

Note the condition By = contact.

We will now discuss the ideal gas within the grand cononical ensemble. Let's ofert with:

Using dW = d3N N! i.e relating number of microslates to

$$Z_g = \sum_{N=0}^{\infty} \int \frac{d^{3N} \rho d^{3N} q}{h^{2N} N!} e^{\beta (NN - E)} = \sum_{N=0}^{\infty} e^{\beta NN} Z_N$$
where $Z_N = \int \frac{d^{3N} \rho d^{3N} q}{h^{3N} N!} e^{-E/N}$

using
$$e^{\chi} = \frac{\chi}{\xi} \frac{\chi_N}{\chi_N}$$
 with $\chi = \left(e^{kN} \frac{\lambda_N}{\lambda_N}\right)$, we can

rewrite this:

$$Z_g = \sum_{N=0}^{\infty} \frac{1}{N!} \left(e^{\beta N} \frac{V}{\lambda_{ux}^3} \right)^N = \exp \left[e^{\beta N} \frac{V}{\lambda_{ux}^3} \right]$$

we can now calculate grand pointial \$6=-KBTILtg

We can calculate the number of particles $N = -\left(\frac{\partial \phi_{c}}{\partial \mu}\right)_{T,V}$

comparing expressions for Φ_c and N, we see $\Phi_G = -Nk_BT$

Since $U = -\left(\frac{\partial L}{\partial \beta}\right)$ we can also do re the interest energy

$$U = \frac{3}{2} N K_B T$$
 the usual expression.

U= 3NKBT

Since $p = -\left(\frac{3\phi_0}{3V}\right)_{T,N}$ we an also calculate pressure

 $p = N \log T$ when $N = \frac{N}{V}$ so $PV = N \log T$ the expected equation which gives us constrained at $\Phi_G = -PV$

from $S = -\left(\frac{\partial \phi_c}{\partial \tau}\right)_{V,M}$:

8 = 2 [KOTEBU V]

After some algebra:

S = KOTN [S + M dB]

which we can combine with M= KoTM(n):

 $\sigma = N \left[\frac{5}{2} - LL \left(N 2 + LL^3 \right) \right]$

But this is weird. If we consider TDO, neither S nor CV varish, as is required for 3rd Law of TO. So manybe we need some quantum magic!