MATLAB Cheat Sheet for Data Science - London School of Economics

MATLAB Cheat Sheet for Data Science

Ali Habibnia Eghbal Rahimikia

Last update: May, 2017 MATLAB r2017a

Preliminaries

fuc: This function or command requires a toolbox to execute.

Ways to get help

	doc	Display document	ation.
--	-----	------------------	--------

doc command Display documentation for function.

help Display documentation in command window.
help command Display help text in command window.

lookfor (X) Search all M-files for X.
docsearch (X) Search documentation for X.
demo Access demonstration examples.

which command Locate functions.

File extensions

. m	A MATLAB script, function, or class.
.mat	A MATLAB data, stores workspace.
.fig	MATLAB figure or GUI template.
.p	MATLAB protected function file.
.mlx	MATLAB live script.
.mex	MATLAB executable.
.mlapp	MATLAB App Designer template.
·mrapp	Will Elle Tipp Designer template.

.mdl .slx Simulink model.

.mdlp .slxp Simulink protected model.
.mlappinstall MATLAB app installer file.
.mltbx MATLAB toolbox file.

Common data types

single	Single precision numerical data (32 bits).
double	Double precision numerical data (64 bits).
char	Character array.
string	String array.
logical	True (1) or false (0) .
struct	Structure array.
cell	Cell array.

map container Map values to unique keys (dictionary).

Data import/export

xlsread/xlswrite	Read/write Excel spreadsheet.
load/save	Load/save MATLAB variables.
load/save -ascii	Load/save text files (.txt, .csv).
dlmread/dlmwrite	Read/write ASCII-delimited file.
readtable/writetable	Create/write table from file.
fscanf/fprintf	Read/write data from/to text file.
textscan	Read formatted data from text file
fgetl	Read line from file, removing
	newline characters.
fgets	Read line from file, keeping
	newline characters.
fread/fwrite	Read/write from/to binary file.
fopen/fclose	Open/close file.
importdata	Load data from file.
readall	Read data from data-store.
imread/imwrite	Read/write image file.
save filename	Save all variables to .mat file.
save filename x,y	Save x,y variables to .mat file.
load filename	Load all variables from .mat file.
webread/webwrite (URL)	Read/write content from/to URL.
websave (URL)	Save data from URL to file.

Basic commands

clc

clear

clear (X)	Clear (X) from memory.
close (X)	Close figure (X) .
close all	Close all figures.
	Continue entering statement.
clf	Clear current figure.
whos (X)	Size, bytes, class, and attributes of (X).
ver	List MATLAB version and toolboxes.
dir	List current folder contents.
tic/toc	Start/stop stopwatch timer.
beep	Produce system beep sound.
ans	Last answer.
pwd	Current directory.
path	View/change search directory.
pathtool	Open set path window.
mkdir	Make new directory.
cd	Change current directory.
what	List of MATLAB files in folder.
which	Find directory of functions.
lasterr	Last error message.
lastwarn	Last warning message.
rehash	Refresh caches.
home	Send cursor home.
exit	Close MATLAB.

Clear command window.

Clear workspace.

Create basic variables

	x=5	Define variable x to be 5.
	x=nan	Define variable x to be Not-a-Number.
	j:k	Row vector from j to k (step size: 1).
	j:i:k	Row vector from j to k (step size: i).
	linspace(a,b,n)	n numbers linearly spaced between a and b.
S.	logspace(a,b,n)	n numbers logarithmically spaced between a and b
).	NaN(a,b)	a × b matrix of NaN values.
ile.	ones(a,b)	$a \times b$ matrix of 1 values.
	zeros(a,b)	$a \times b$ matrix of 0 values.
file.	eye(a)	Identity matrix of size a.
t file.	sparse(a,b)	$a \times b$ sparse matrix.
	rand(a,b)	Uniform $\mathbf{a} \times \mathbf{b}$ random numbers in $[0,1)$.
	randi(imax,a,b)	Uniform $\mathbf{a} \times \mathbf{b}$ random integers in [1,imax].
	randn(a,b)	Gaussian a × b random numbers.
	randperm(a)	Integer random permutation in [1,a].
э.	diag(x)	Square matrix (vector x: diagonal elements).

Basic math functions

abs(x) sqrt(x) sign(x) round(x) ceil(x)	Absolute value of x. Square root of x. Sign of x. Round of x. Round x toward positive infinity.
fix(x)	Round x toward zero.
floor(x)	Round x toward negative infinity.
complex(a,b)	Complex array $(z = a + bi)$.
real(x)	Real part of complex number.
image(x)	Imaginary part of complex number.
conj(x)	Complex conjugate of x.
log(x)	Natural logarithm of x.
log10(x)	Common logarithm of x.
exp(x)	Exponential of \mathbf{x} (e^x).
rem(a,b)	Remainder after division of a by b.
mod(a,b)	Remainder after division of a by b (modulo operation).
lcm(a,b)	Least common multiples of a and b.
gcd(a,b)	Greatest common multiples of a and b.
nthroot(a,n)	Real n-th root of a.

Trigonometric functions

#/#d(x)	# of x in radians/degrees.
#h(x)	Hyperbolic # of x.
a#/a#d(x)	Inverse $\#$ of x in radians/degrees.
a#h(x)	Inverse hyperbolic $\#$ of x .
atan2/atan2d(x)	Four-quadrant inverse tan of x in
	radians/degrees.
hypot(x)	Square root of sum of squares of x.
deg2rad(x)	Convert x from degrees to radians.
rad2deg(x)	Convert x from radians to degrees.

#: sin, cos, tan, sec, or cot. sine, cosine, tangent, secant, or cotangent.

Linear algel	ora	x([i,j])	i-th and j-th elements.	char(x)		ate character from numeric array.
		If A is a matrix:		<pre>strfind(x1,ptrn) strjoin(x)</pre>		ch x1 char/str for ptrn pattern. struct char array using x char/str
x=[1,2,3]	1×3 vector (double array).	A(i,j)	* Element i,j of A $(i, j, l, m \ge 1)$.	buljuln(n)		nents.
x=[1;2;3]	3×1 vector.	A(i)	* Element i-th of A.	lower(x)		vert char/str to lowercase.
x=[1,2;3,4]	2×2 matrix (double array).	A(i:j,l:m)	* Elements in rows from i to j which are	upper(x)		vert char/str to uppercase.
x=[1,2;3,4;5,6]	3×2 matrix.	(1.), 1/	in columns from 1 to m.	strcmp(x1,x2)		pare char/str of x1 and x2.
x={1,'st'}	1×2 cell array.	A([a,b],[c,d])	* a-th and b-th elements in rows and c-th	strcmpi(x1,x2)		pare char/str of x1 and x2 (case
sx.x1=[1,2,3] sx.x2={1,'st'}	1×3 vector stored in sx structure array. 1×2 cell stored in sx structure array.	(21), (2), (2)	and d-th elements in columns.			nsitive).
x*y	Matrix multiplication.	A(:,i)	* i-th column elements.	split(x,dl)	Split	t strings in string array (x) at dl
x+y	Element by element addition.	A(:,[a,b])	a-th and b-th columns elements.			miters.
x-y	Element by element subtraction.	A(i,:)	* i-th row elements.	strsplit(x,dl)		t x char/str at dl delimiters.
x.*y	Element by element multiplication.	A([i,j],:)	* i-th and j-th rows elements.	sprintf('fmt',x1,x2) Form	nat data based on fmt structure.
x./y	Element by element division.	A>i	Logical array of elements higher than i.	strvcat(x1,x2)		cically concatenate x1 and x2
A^n	Normal matrix power of A.	find(A>i)	Indices of elements higher than i.		(ign	ore spaces).
A.^n	Element-wise power of A.	find(A==i)	Indices of elements equal to i.			
Α'	Transpose of A.	$\operatorname{diag}(\mathtt{A})$	Elements in the principal diagonal of A.	Regular expre	ssion	
inv(A)	Inverse.	tril(A)	Lower triangular part of A.	6		
size(A)	Size (rows and columns).	triu(A)	Upper triangular part of A.	regexp/regexpi(str,	(gxe	Search exp pattern in str char/
numel(A)	Number of elements.	A(i,j)=a	Replace element i,j of A with a.	.8. I8. I tal.	1,	str (case sensitive/insensitive).
min(A)	Smallest elements.	A(:,i)=[a;b]	Replace i-th column of A with [a;b].	regexprep(str,exp,r	oc)	Replace str which matches exp with
cummin(A)	Cumulative minimum of array elements.	A(i,:)=[]	* Delete i-th row of A.		•	the rpc.
max(A)	Largest elements.	A([i,j],:)=[]	* Delete i-th and j-th rows of A.	regexptranslate(type	e,str)	Translate str to regular expression
cummax(A)	Cumulative maximum of array elements.	A(A>m)=v	Replace all elements over m with v.	0 1	•	by type as type of translation.
sum(A)	Sum of array elements.	A(A==m)=v	Replace all elements is equal to m with v.			V VI
cumsum(A)	Cumulative sum of array elements.	arrayfun(func,A)	Apply a function to each element of A.	'IS*' functions	2	
mean(A)	Average of elements.	bsxfun(func,A,B)	Apply an element-wise binary operation	15 full colons	,	
median(A)	Median of elements.		specified by func to A and B.	Return true where:		
mode(A)	Mode of elements.	TO 4			Element	ts of X which are NaN.
<pre>prod(A)</pre>	Product of array elements.	If A is a cell:		isnumeric(X)	Element	ts of X which are numeric.
cumprod(A)	Cumulative product of array elements.		Above matrix operations which are marked	isinf(X)	Element	ts of X which are infinite.
diff(x,k)	Successive k-differences of x.		with asterisk(*). Output is cell array of	isinteger(X)	Element	ts of X which are integer.
std(A)	Standard deviation.	A ()	elements.	•	Element	ts of X which are floating-point.
var(A)	Variance.	A{i,j}	Element i,j of A $(i,j,l,m \ge 1)$.	<pre>isbetween(X,a,b)</pre>	Element	ts of X which are between a and b
cov(A)	Covariance.	$A(i,j)=\{a\}$	Replace element i,j of A with cell {a}.		(date an	nd time).
corrcoef(A)	Correlation coefficients (columns: random	$A(:,i)=\{a;b\}$	Replace i-th column of A with cell {a;b}.	ismember(X,B)	Element	ts of X which are found in B.
	variables, rows: observations).	cellfun(func,A)	Apply a function to each cell in A.	<pre>ismissing(X,B)</pre>	Element	ts of X which are missing.
eig(A)	Eigenvalues and eigenvectors.					
svd(A)	Singular values.	Character an	nd string	Return true if:		
norm(A)	Norms.	Character an	id string	<pre>isvector(X)</pre>	X is a ve	ector.
sort(A)	Sorts vector from smallest to largest.					gical array.
sortrows(A)	Sorts rows of A in ascending order.	st: string.				ring (char).
rank(A)	Rank.	char: character.				ell array.
chol(A)	Cholesky factorization of matrix.					ell array of strings.
det(A)	Determinant of square matrix.	x='text'	Define variable x to be 'text' (char).		X is a st	
factor(A)	Prime factors.	x(i)	i-th part of char.		X is a ta	
perm(A)	Permutations of the elements.	x(i:j)	i-th to j-th part of char.			gical array.
		<pre>x=string('text')</pre>	Define variable x to be 'text' (str).			$\operatorname{calar} (\operatorname{size}=[1,1]).$
Accessing/a	ssignment elements	x={'s1','s2'}	Define more than one char.			sn't imaginary value in X.
riccossing/e	2018 IIII CICIIICII	<pre>x=[string('st1')</pre>				w vector.
		<pre>,string('st2')]</pre>	Define more than one str.			blumn vector.
If x is a vector:		$x{i,j}$	Element i,j of x (char).	<u> </u>		wer diagonal matrix.
x(i)	Element i-th of $x (i, j \ge 1)$.	x(i,j)	Element i,j of x (str).			wer triangular matrix.
x(i:j)	Elements from the i-th to the j-th of x.	x{i}(j)	i-th part of j-th char/str.			pper triangular matrix.
x(i:end)	Elements from the i-th to the last one of x		i to m-th part of j-th char/str.	isdir(X)	A is dire	ectory (folder).
x(:)	All the elements of x.	strcat(x1,x2)	Concatenate characters/strings.			

'IS*' functions...

<pre>isequal(X,B)</pre>	X is equal to B.
isequaln(X,B)	X is equal to B (NaN values are equal).
issorted(X)	X elements are in ascending order.
isvarname(X)	X is a valid MATLAB variable name.

Convert functions

num2str(x)	Convert numeric array (x) to char array.
num2cell(x)	Convert numeric array (x) to cell array.
$\underline{\mathbf{n}}$ um2int(x)	Convert numeric array (x) to signed integer.
num2hex(x)	Convert numeric array (x) to IEEE
	hexadecimal string.
str2num(x)	Convert char array (x) to numeric array.
str2mat(x)	Convert char/str array (x) to matrix.
str2double(x)	Convert char/str array (x) to double
	precision.
str2func(x)	Convert char array (x) to function handle.
cell2mat(x)	Convert cell array (x) to matrix.
cell2table(x)	Convert cell array (x) to table.
cell2struct(x)	Convert cell array (x) to structure array.
cellstr(x)	Convert array x to cell array.
mat2str(x)	Convert matrix (x) to char array.
mat2cell(x)	Convert matrix (x) to cell array.
table2cell(x)	Convert table (x) to cell array.
table2array(x)	Convert table (x) to homogeneous array.
table2struct(x)	Convert table (x) to structure array.
struct2cell(x)	Convert structure array (x) to cell array.
struct2table(x)	Convert structure array (x) to table array.
int2str(x)	Convert integer (x) to char array.
datenum(x)	Convert date and time to a number.
datestr(x)	Convert date and time to string.

Programming

Script vs. Function vs. Live script

Script M-files: Contain a list of commands that MATLAB simply executes in order. They are useful to batch simple sequences of commonly used commands together.

Function M-files: Can be executed by specifying some inputs and return some desired outputs.

Live scripts: Contain MATLAB codes, embedded outputs, formated texts, equations, and images together in a single environment.

* Add comment: To put a comment within a line, type % followed by the comment in MATLAB command window, MATLAB script, or live script environment.

% This is a comment line. x=2; %This is a comment. y=3;

User-defined functions

Function structure: in1 and in2 are function inputs and out1 and out2 are function outputs.

Anonymous function structure: @ operator creates a function handle.

$$f = Q(x)(x.^2+exp(x))$$

% i.e. $f(2)$ returns 11.3891.

Return: return forces MATLAB to return control to the invoking function before reaching to the end of that function.

Flow control

If statement: An if statement can be followed by an (or more) optional elseif and an else statement, which is useful to test various condition.

if (Condition_1)

MATLAB Commands
elseif (Condition_2)

MATLAB Commands
else

MATLAB Commands
end

Switch statement: Evaluate a statement and selection one of the cases based on this evaluation.

switch (statement)
case (value1)
MATLAB Commands
case (value2)
MATLAB Commands

While loop statement: Repeat the commands while condition holds.

while (Condition)
MATLAB Commands

For loop statement: Loop from a to b in steps of s in the variable i.

for i = a:s:b

MATLAB Commands
end

Break: break terminates the execution of for or while loop. Code lines after the break do not execute. In nested loops, break exits from the loop in which it mentions.

Continue: continue passes control to the next iteration of for or while loop. In nested loops, continue passes the iteration in which it mentions.

Errors

Common errors

Error using *: inner matrix dimensions must agree. The * operator performs matrix multiplication, where an NxM matrix is multiplied by an MxP matrix, resulting in an NxP matrix. Use .* instead of * to perform the element-wise multiplication.

Index exceeds matrix dimensions.

This error arises when you try to reference an element that doesn't exist. Some useful functions to check sizes and number of elements are numel(), size(), and length().

The expression to the left of the equals sign is not a valid target for an assignment.

This error message arises because of misuse of the = and == operators. The = operator does an assignment, and the == operator does a logical test for equality.

Subscripted assignment dimension mismatch.

This error message arises because of an attempt to assign a vector or matrix into a compartment that it does not fit in.

Matrix dimensions must agree.

This error message arises when you try to do operations on matrices with different dimensions. For example A+B when A is 2×2 and B is 2×3 .

Subscript indices must either be real positive integers or logicals.

This error message arises because of indexing problem. For example A(1) is the first element in a matrix not A(0) (like other programming languages).

Handling errors

Try, catch statement: try a statement, if it returns an error, catch it and do another statement.

> statements catch expression statements end

error('msg') warning('msg') assert('msg') st=MException(ID... ,txt)

Display message and abort function. Display warning message. Throw error if condition is false.

Capture information of a specific error and save it in the st object.

Parallel computing (CPU & GPU)

CPU:

Create a new parallel pool (size is number of parpool(size)

CPU workers).

Return the current parallel pool. gcp

ticBytes/...

tocBytes(gcp) Start/stop calculation of the bytes transferred

to the workers.

batch('scr') Run a script or function on a worker.

Transfer distributed array to local workspace. ylabel('lbl') gather(A)

parfor: Replace for with parfor to execute code on CPU workers or cores without any guaranteed order.

> parfor i = a:s:b MATLAB Commands end

spmd: Execute code in parallel on workers of a pool.

spmd statements spmd

parfeval: Directly execute a defined function on a specified worker.

p=gcp(); % Return current MATLAB pool. f=parfeval(p,@sum,4,3); % Parallel execution of 4+3. 'distributed': Partition listed functions out among the workers in a pool: zeros(5,5, 'distributed'), ones, false, true, NaN, inf, eye, rand, randi, and randn. 'codistributed': Access the arrays distributed among the workers in a pool: zeros(5,5, 'codistributed'), etc.

GPU:

gpuDevice(idx) Select GPU device specified by idx. Copy x array to GPU. gpuArray(x) arrayfun(func,A) Apply function to elements of A on GPU. bsxfun(func,A,B) Apply an element-wise binary operation specified by func to A and B on GPU. gather(A) Transfer gpuArray to local workspace. Determine if x is stored in GPU.

A basic calculation on GPU:

existsOnGPU(x)

W=rand(5, 'single'); % Basic random numbers. GD=gpuArray(W); % Send W to GPU. GO=GD.*GD; % Execute multiplication on GPU.

Plotting & Figures

figure Open up a new figure window. axis normal Default axis limits and scaling behavior. axis tight Force axis to be equaled to data range. Force axis to be scaled equally. axis equal Axis lines with equal lengths. axis square axis fill Lengths of each axis line fill the rectangle. Add a title at the top of the plot. title('Title') Label the x axis as 1b1. xlabel('lbl') Label the v axis as 1b1. Label the z axis as 1b1. zlabel('lbl') legend('v','w') Add label to v and w curves. Include/Omit a grid in the plot. grid on/off box on/off Display/hide the box outline around axes. Date formatted tick labels (fm is format). datetick('x'.fm) xtickformat(fm) X-axis label format. vtickformat(fm) Y-axis label format. xlim([min.max]) X-axis limits from min to max. vlim([min,max]) Y-axis limits from min to max. zlim([min,max]) Z-axis limits from min to max. hold on/off Allow/prevent plotting on the same graph. Add text to a point (x and y are scalars text(x,y,text) in data units). fn is a function:

fplot(fn,rn) fmesh(fn,rn) fsurf(fn.rn) fcontour(fn,rn)

Plot a 2-D plot using fn over rn range. Plot a 3-D mesh using fn over rn range. Plot a 3-D surface using fn over rn range. Plot contour using a function (fn) over

rn range.

plot(x,y) Plot y versus x (have same length).

plot(y) Plot y, with 1,2,3,... as the x axis. plot(x,f(x)) If f is a function, plot the points.

Input arguments:

Line styles: {-/:/--}. Markers: o: Circle / +: Plus sign / *: Asterisk / .: Point / x : Cross / s : Square / d: Diamond / p: Pentagram / h: Hexagram / ^: Upward triangle.

Colors: y: Yellow / m: Magenta / c: Cyan /r: Red /g: Green /b: Blue

/w: White /k: Black.

Name-value pair arguments:

Color Line color. Line style. LineStyle LineWidth Line width. Marker Marker symbol.

MarkerIndices Indices of marker data points.

MarkerEdgeColor Marker outline color. MarkerFaceColor Marker fill color. MarkerSize Size of marker.

semilogx(x,y) Logarithmic x axis. semilogy(x,y) Logarithmic v axis.

Data science

Neural network

nnstart patternnet(s,t,p) Neural network app (GUI).

A pattern recognition (classification) network with s, t, and p as number of hidden layers, train, and performance function.

feedforwardnet(s,t) An approximation (regression) network with s

and t as number of hidden layers and train

function.

Function fitting network with s and t as fitnet(s,t) number of hidden layers and train function.

cascade... forwardnet(s,t)

An approximation (regression) network with s

and t as number of hidden layers and train function.

Design a self-organizing map.

selforgmap competlayer(nc)

Design a competitive layer network with nc as

number of classes.

Design a custom neural network with different network

properties.

view(net) View a designed neural network.

train(net,i,o) Train a network using i and o as input and

output.

<pre>predict(net,i)</pre>	Predictions for i as input by net.
perform(net,i,o)	Calculate network performance using i
_	and o as input and output.

Levenberg-Marquardt backpropagation.

 mae
 Mean absolute error performance function.

 sae
 Sum absolute error performance function.

 sse
 Sum squared error performance function.

 crossentropy
 Cross entropy performance function.

learning functions:

trainlm

<u>c</u> r armim	Levenberg-Marquardt backpropagation.
$\underline{\mathtt{t}}\mathtt{rainbr}$	Bayesian regularization backpropagation.
$\underline{\mathtt{t}}\mathtt{rainrp}$	Resilient backpropagation.
$\underline{\mathtt{t}}\mathtt{rainscg}$	Scaled conjugate gradient backpropagation.
$\underline{\mathtt{t}}$ rainbfg	BFGS quasi-Newton backpropagation.
$\underline{\mathtt{t}}\mathtt{raincgb}$	Conjugate gradient backpropagation with
	Powell-Beale restarts.
$\underline{\mathtt{t}}\mathtt{raincgp}$	Conjugate gradient backpropagation with
	Polak-Ribire updates.
<u>t</u> raincgf	Conjugate gradient backpropagation with
	Fletcher-Reeves updates.
<u>t</u> raingda	Gradient descent with adaptive learning rate
	backpropagation.
$\underline{\mathtt{t}}$ raingdx	Gradient descent with momentum and adaptive
	learning rate backpropagation.
$\underline{\mathtt{t}}$ raingdm	Gradient descent with momentum backpropagation.
<u>t</u> rainru	Unsupervised random order weight/bias training.
$\underline{\mathtt{t}}\mathtt{rainr}$	Random order incremental training.
$\underline{\mathtt{t}}\mathtt{rains}$	Sequential order incremental training.
$\underline{1}$ earncon	Conscience bias learning function.
$\underline{\mathtt{l}}\mathtt{earnk}$	Kohonen weight learning function.
$\underline{\mathtt{l}}\mathtt{earnis}$	Instar weight learning function.
<u>l</u> earnos	Outstar weight learning function.

Transfer functions:

<u>t</u> ansig	Hyperbolic tangent sigmoid transfer function.
radbas	Radial basis transfer function.
radbasn	Normalized radial basis transfer function.
<u>l</u> ogsig	Log-sigmoid transfer function.
<u>t</u> ribas	Triangular basis transfer function.
purelin	Linear transfer function.
_ satlin	Saturating linear transfer function.
poslin	Positive linear transfer function.
$\underline{\underline{s}}$ atlins	Symmetric saturating linear transfer function.
<u>h</u> ardlim	Hard-limit transfer function.
$\underline{\mathtt{h}}\mathtt{ardlims}$	Symmetric hard-limit transfer function.
\underline{e} lliotsig	Elliot symmetric sigmoid transfer function.
<u>e</u> lliot2sig	Elliot 2 symmetric sigmoid transfer function.
\underline{s} oftmax	Soft max transfer function.
compet	Competitive transfer function.

Performance functions:

<u>m</u> se	Mean squared normalized error performance
	function.

Input/Output process functions:

$\underline{\mathtt{m}}\mathtt{apminmax}$	Normalize inputs/outputs between -1 and 1.
<u>m</u> apstd	Zero mean and unity variance normalization.
$\underline{\underline{\mathtt{processpca}}}$	Principal component analysis for input.
<u>r</u> emovecons	
tantrows	Remove constant inputs/outputs.

Process unknown inputs.

Plot error histogram.

Plot linear regression.

Plots:

fixunknowns

ploterrhist

plotregression

plotfit	Plot function fit.
plotperform	Plot network performance.
_ plottrainstate	Plot training state values.
plotconfusion	Plot classification confusion matrix.
plotroc	Plot receiver operating characteristic.
plotsomtop	Plot self-organizing map topology.
plotsomhits	Plot self-organizing map sample hits.
plotsomnc	Plot self-organizing map neighbor
	connections.
plotsomnd	Plot self-organizing map neighbor distances.
plotsomplanes	Plot self-organizing map weight planes.
$\underline{\underline{p}}$ lotsompos	Plot self-organizing map weight positions.

Basic Neural Network implementations (classification & regression):

```
%% Classification:
[i,o]=iris_dataset; % Import iris dataset.
nt=patternnet(5); % Design a netwrok.
i_w=nt.IW; % Store initial input weights.
%% Regression:
[i,o]=simplefit_dataset; % Import a sample dataset.
nt=feedforwardnet(10); % Design a network.
nt.performFcn='mae'; % Change performance func.
nt.inputs{1}.processFcns={'processpca'}; % PCA for
                                            input 1.
[nt,tx]=train(nt,i,o); % Train the network.
view(nt) % Show the network.
y=nt(i); % Insert input into the network.
perf=perform(nt,o,y); % Calculate performance.
plotconfusion(c,y); % Plot confusion matrix.
plotperform(tx); % Plot network performance.
```

Support vector machines/regression

Support vector machines:

classi...

regres...

ficationLearner	Open classification learner app (GUI).
<pre>fitcsvm(i,o)</pre>	Train SVM with i as input and o as binary output for low or moderate dimensional data.
$\underline{\mathbf{f}}$ itclinear(i,o)	Train linear SVM with i as input and o as binary output for high dimensional data.
<pre>fitcecoc(i,o)</pre>	Train SVM with i as input and o as multi-class output by error-correcting output codes model.
<u>f</u> itSVM	
Posterior(svm_m)	Return trained SVM that contains the estimated score transformation function (svm_m is trained model).
<u>t</u> emplateSVM	
/Linear/ECOC	SVM/Linear SVM/Error-correcting output templates.
<pre>predict(svm_c,i)</pre>	Predict class labels using svm_c trained model and i as predictor data.

Support vector regression:

_ 0	
sionLearner	Open regression learner app (GUI).
<pre>fitrsvm(i,o)</pre>	Train SVR with i as input and o as output for
	low or moderate dimensional data.
fitrlinear(i,o)	Train linear SVR with i as input and o as output
	for high dimensional data.
<pre>predict(svm_r,i)</pre>	Predict response using svm_r trained model and

Basic Support Vector Machines & Support Vector Regression implementations:

i as predictor data.

```
%% Classification:
load fisheriris; % Load iris dataset.
i=meas; % Input data.
o=species; % Output data.
sz=numel(o); % Sample size.
trn_r=1:1:sz-40; % Train range.
tst_r=sz-39:1:sz; % Test range.
svm_c=fitcecoc(i(trn_r,:),o(trn_r,:)); % Train SVM.
svm_cl=crossval(svm_c); % Cross-validation.
svm_c_loss=kfoldLoss(svm_cl); % Error estimation.
pr_out=predict(svm_c,i(tst_r,:)); % Prediction.
%% Regression:
[i,o]=simplefit_dataset; % Import a sample dataset.
svm_r=fitrsvm(i',o'); % Train SVR.
svm_r_loss_1=resubLoss(svm_r); % Resubstitution loss.
conv=Mdl.ConvergenceInfo.Converged; % Convergance info.
nml=Mdl.NumObservations; % Number of observations.
```

Deep learning

classificationLayer regressionLayer

Classification output layer. Regression output layer.

Basic Autoencoder & Convolutional Neural Network

Autoencoder:

implementations: dp1=train... Autoencoder(i,hs) Train an Autoencoder. Encode input data (x) using dp1. encode(dp1,x) decode(dp1,v) Decode encoded data (v) using dp1. network(dp1) Convert Autoencoder to network object. plotWeights(dp1) Plot encoder weights of trained Autoencoder. view(autoenc) View Autoencoder structure. stack(dp1,dp2) Stack encoders together. predict(dp1,in) Predict response using dp1 trained model and in as predictor data.

Convolutional neural network:

op=training... Options(sv,ops) dp2=trainNet... work(i,o,lyr,op) predictor and response variables (op: options). activations(... Network activations for lyr layer using i and dp2,i,lyr) dp2 as data and trained network. predict(dp2,i) Predict response using dp2 model and i as model and predictor data. classify(dp2,i) Classify data using dp2 model and i as predictor data. importCaffe...

Import pretrained networks models (Caffe). $dt1=\underline{f}itctree(i,o)$ Network importCaffe... Lavers Import network layers (Caffe).

Pretrained AlexNet network. dp3=alexnet dp4=vgg16 Pretrained VGG-16 network. dp5=vgg19 Pretrained VGG-19 network.

imageInputLayerImage input layer. reluLayer Rectified linear unit layer. Create 2-D convolutional layer. convolution2dLayer maxPooling2dLayer Max pooling layer. fullyConnectedLayer Fully connected layer.

averagePooling Average pooling layer. 2dLayer crossChannel...

NormalizationLayer Channel-wise local response normalization layer.

softmaxLayer dropoutLayer

Lavers:

Softmax layer. Dropout layer.

Training options (ops) of a network (sv: solver

Train a convolutional network using i and o as

dt2=fitrtree(i,o)

templateTree dt3=fitc... ensemble(i,o)

dt4=fitr... ensemble(i,o)

templateEnsemble dt5=Tree... Bagger(nt,i,o)

md:

predict(md,in)

mdo: oobPredict(mdo)

%% Autoencoder: dt=abalone_dataset; % Load Abalone dataset. dp1=trainAutoencoder(dt); % Train network. dt_p=predict(dp1,dt); % Reconstruction. mse_er=mse(dt-dt_p) % Calculate MSE.

%% Convolutional neural network: load lettersTrainSet: % Load train data. load lettersTestSet;; % Load test data. lyrs=[imageInputLayer([21 21 1]); convolution2dLayer(8,15); reluLayer();

fullyConnectedLayer(2); softmaxLayer(); classificationLayer()];

ops=trainingOptions('sgdm'); % Settings. rng('default') % For reproducibility. nt=trainNetwork(XTrain,TTrain,lyrs,ops) % Train network.

o_t=classify(nt,XTest); % Classify test data. r_t=testDigitData.Labels; % Real test labels. acc=sum(o_t==r_t)/numel(r_t); % Test accuracy.

Decision tree

Fit a binary classification decision tree to i and o as predictor and response. Fit a binary regression decision tree to i and o as predictor and response.

Fit ensemble of classification decision trees to i and o as predictor and response.

Design a decision tree template.

Fit ensemble of regression decision trees to o and i as predictor and response. Design an ensemble model template.

Fit bag of decision trees to i and o as predictor and response (nt: number of trees.).

dt1, dt2, dt3, dt4, or dt5. Predict response using mt fitted model and in as predictor data.

dt3, dt4, or dt5. Predict out-of-bag response of mdo. Two basic Decision Trees implementations:

```
%% A simple classification decision tree.
load fisheriris; % Load iris dataset.
i=meas: % Input data.
o=species; % Output data.
dt1=fitctree(i,o,'CrossVal','on'); % Fit decision tree
                       to data using cross validation.
view(dt.Trained{1},'Mode','graph'); % Graph.
er=kfoldLoss(dt1) % Cross validation error rate.
%% An ensemble learner.
dt2=fitcensemble(i,o,'Method','Subspace'); Fit an ensemble
                                    using Subspace method.
er=resubLoss(dt2); % Resubstitution loss.
```

Linear/Nonlinear regression

Linear:

fitlm(x,y)

fitglm(x,v)

Trgim(x,y)	input and response.
\underline{s} tepwiselm(x,y)	Fit stepwise linear regression to x and y as input and response.
\underline{s} tepwiseglm(x,y)	Fit generalized stepwise linear regression to x and y as input and response.
regress(x,y)	Fit multiple linear regression to x and y as input and response.
\underline{f} itrlinear(x,y)	Fit linear regression to x and y as input and response for high dimensional data.
robustfit(x,y)	Fit robust linear regression to x and y as input and response for high dimensional data.
$\underline{\mathbf{m}}$ vregress(x,y)	Fit multivariate linear regression to x and y as input and response.
\underline{f} itlme(tb,fml)	Fit linear mixed-effects model for tb and fml as data table and specified formula.
<pre>fitglme(tb,fml)</pre>	Fit generalized linear mixed-effects model for tb and fml as data table and specified formula.
ls= <u>l</u> asso(x,y)	Fit regularized least-squares regression to \mathbf{x} and \mathbf{y} as input and response using lasso or elastic net algorithms.
ls= <u>l</u> assoglm(x,y)	Fit regularized least-squares regression to x and y as input and response using lasso or elastic net. algorithm (generalized linear model regression).
<u>l</u> asso(ls)	Trace plot of lasso fitted model.
\underline{r} idge(y,x,k)	Fit multilinear ridge regression to x , y , and k as input, response, and ridge parameters.
plsreg	
ress(x,y,nc)	Fit Partial Least-Squares (PLS) regression to x and y as input and response(nc : PLS components)

Fit linear regression to x and y as input and

Fit generalized linear regression to x and y as

Linear:		Clustering		\underline{p} cares(x,d)	Residuals from principal component analysis for ${\tt x}$
a				f=factoran(x,m)	and d as data and number of dimensions. Factor analysis of x and m as data and number of
$\underline{\mathbf{m}}$ nrfit(x,y)	Fit multinomial logistic regression to x and y as input and response.			_	factors.
<pre>glmfit(x,y)</pre>	Fit generalized linear model regression to x	\underline{l} inkage(x)	Agglomerative hierarchical cluster tree for x as data.	$\underline{\mathbf{r}}$ otatefactors(f)	Rotate factor loadings.
8	and y as input and response.	clusterdata(x,cf)	Agglomerative clusters for x and cf as	sequentialfs	
<pre>predict(lr,xn)</pre>	Predict response using 1r trained model and	<u></u>	data and cutoff.	(fun,i,o)	Sequential feature selection using i, o, and fun as input, predictor, and function handle that defines
	xn as predictor data.	$\underline{\underline{k}}$ means(x,k)	K-means clustering using ${\tt x}$ and ${\tt k}$ as data		criterion.
$\underline{\mathtt{d}}\mathtt{isplay}(\mathtt{mdl})$	Display fitted model.	61-1-1-1	and number of clusters.	<pre>relieff(i,o,k)</pre>	ReliefF algorithm attributes importance extraction
		<pre>findcluster subclust(x,rng)</pre>	Fuzzy clustering tool (GUI). Fuzzy subtractive clustering using x and		using i, o, and k as input, predictor, and number of
Nonlinear:		<u>-</u> assiass (,1.1.8)	rng as data and cluster influence range.		neighbors.
		$\underline{\mathbf{f}}$ cm(x,k)	Fuzzy c-means clustering using x and k		
fitnlm(x,y,		l	as data and number of clusters.	Cross-validat	ion
mdf,beta)	Fit specified model of mdf for x , y and $beta$	\underline{k} medoids(x,k)	Kmedoids clustering using x and k as data and number of clusters.		
	as input, response, and coefficients.	ts=KDTree		<pre>c=cvpartition (o,'KFold',k)</pre>	K-fold cross-validation (o: predictor).
$\underline{\mathbf{n}}$ linfit(x,y, mdf,beta)	Fit specified model of mdf for x, y and beta	Searcher(x)	Grow kd-tree using x as data.	repartition(c)	Data repartition for cross-validation.
mar, bood)	as input, response, and coefficients.	\underline{c} reatens(x)	Create object for growing kd-tree using x as data.	<pre>crossval(fun,x)</pre>	Loss estimate of cross-validation for the function
$\underline{\mathbf{m}}$ nrfit(x,y,		ts=Exhaustive	as data.	t	fun and x as data.
<pre>gr,v,mdf,beta)</pre>	Fit nonlinear mixed-effects regression for x,	Searcher(x)	Prepare exhaustive nearest neighbors	<pre>training(c,ix) test(c,ix)</pre>	Training indices of cross-validation for repetition ix. Test indices of cross-validation for repetition ix.
	y, gr, v, mdf, and beta as input, response, groups, predictor (take the same value in a		searcher using x as data.	testcholdout	Topo marcos of cross variation for repeatable 211
	group), function, and initial estimates for	\underline{k} nnsearch(ts,y)	Search for the nearest neighbor in ts to each point in y.	(y1,y2,yr)	Compare predictive accuracies of two classification
	fixed effects.	range	each point in y.		models (McNemar test) using y1, y2, and yr as first model output, second model output, and true labels.
$\underline{\mathtt{n}}\mathtt{lmefitsa}()$	Fit nonlinear mixed-effects model with	search(ts v r)	Find all neighbors within specified	testckfold	model output, second model output, and true labels.
<pre>fitrgp(x,y)</pre>	stochastic EM algorithm using above inputs Fit a Gaussian Process Regression (GPR)	•	distance in ts to each point in y (r:	(c1,c2,x1,x2)	Compare predictive accuracies of two classification
or (1,) /	110 a caabban 1 1000bb 100grobbion (GI 10)		radius around each ts to each point).		and delegate the second Discourse and delegate the transfer of

Basic linear & nonlinear regression implementations:

model to x and y as input and response.

```
%% Linear regression:
load carsmall; % Load carsmall dataset.
x=[Weight,Acceleration]; % Input data.
y=MPG; % Response data.
lm=fitlm(x,y); % Fit linear regression.
display(lm); % Display reports.
plot(lm); % Scatter plot.
plotAdjustedResponse(lm,1); % Adjusted response plot
                                      of variable 1.
predict(lm,x); % Reconstruct response.
%% Nonlinear regression:
mdf = 0(b,x)b(1)+b(2)*x(:,1);
                            % Model function.
bt=[-50 500]; % Beta values.
nl=fitnlm(x(:,1),y,mdf,bt); % Fit nonlinear
                                regression.
display(nl); % Display reports.
predict(nl,x(:,1)); % Reconstruct response.
```

Two basic clustering models implementations:

```
% k-means clustering.
load fisheriris; % Load iris dataset.
data=meas(:,1:2); % Select data.
[inx,c]=kmeans(data,3); % k-means clustering.
% inx: cluster indices, c: cluster centers.
% Fuzzy c-means clustering.
[cnt,u]=fcn(data,3); % Fuzzy c-means clustering.
% cnt: cluster centers, u: fuzzy partition matrix.
```

Dimension reduction/feature selection

c=pca(x)	Principal component analysis of x.
c=ppca(x,m)	Probabilistic principal component analysis
_	of x and m as data and number of
	components.
<pre>biplot(c)</pre>	Biplot of the PCA coefficients.
pcacov(w)	Principal component analysis on w as
_	covariance matrix.

> Compare predictive accuracies of two classification models by paired F cross-validation test using c1. c2, x1, and x2 as first model, second model, first data table and second data table.

Copyright ©2017 / MATLAB R2017a Ali Habibnia a.habibnia@lse.ac.uk Eghbal Rahimikia erahimi@ut.ac.ir Download page: http://personal.lse.ac.uk/habibnia/

* Feel free to send your feedback.