5º LISTA DE EXERCÍCIOS ALGORITMOS (comandos de seleção)

```
1. Atribua valores para as variáveis usadas e determine o resultado da execução dos algoritmos abaixo:
ALGORITMO exercicio 1A
                                                         ALGORITMO exercicio 1B
VARIÁVEIS
                                                         VARIÁVEIS
   INTEIRO: numero
                                                            CARACTER: sexo
INÍCIO
                                                         INÍCIO
   LEIA (numero)
                                                            LEIA (sexo)
   SE (numero >= 20) E (numero <= 90) ENTÃO
                                                            SE (sexo = 'm') OU (sexo = 'f') ENTÃO
       ESCREVA ('número no intervalo [20,90]')
                                                                 ESCREVA ('sexo válido')
                                                            SENÃO
   SENÃO
       ESCREVA ('número fora do
                                                                 ESCREVA ('dado incorreto')
                                         intervalo
[20,90]')
                                                            FIMSE
   FIMSE
                                                         FIM
FIM
ALGORITMO exercicio 1C
VARIÁVEIS
   INTEIRO: a, b, c, d
INÍCIO
   LEIA (a, b, c)
   SE NÃO (c > 5) ENTÃO
       d \leftarrow (a + b) * c
   SENÃO
       d \leftarrow (a - b) * c
   FIMSE
   ESCREVA (d)
FIM
```

2. Determine o resultado da execução dos algoritmos abaixo, sendo os valores das variáveis a, b e c iguais a 1, 3 e 15, respectivamente. Quantas e quais expressões lógicas são avaliadas?

```
ALGORITMO exercicio 2A
                                                              ALGORITMO exercicio 2B
VARIÁVEIS
                                                              VARIÁVEIS
   INTEIRO: a, b, c, max
                                                                 INTEIRO: a, b, c, max
INÍCIO
                                                              INICIO
   LEIA (a, b, c)
                                                                 LEIA (a, b, c)
   SE a > b ENTÃO
                                        [1a.]
                                                                 SE (a > b) E (a > c) ENTÃO
                                                                                                     [1a.]
      SE a > c ENTÃO
                                                [2a.]
                                                                      max \leftarrow a
                                                                 FIMSE
           max \leftarrow a
      SENÃO
                                                                 SE (b > a) E (b > c) ENTÃO
                                                                                                     [2a.]
           max \leftarrow c
                                                                      max \leftarrow b
      FIMSE
                                                                 FIMSE
   SENÃO
                                                                 SE (c > a) E (c > b) ENTÃO
                                                                                                     [3a.]
      SE b > c ENTÃO
                                                [3a.]
                                                                      max \leftarrow c
                max \leftarrow b
                                                                 FIMSE
      SENÃO
                                                                 ESCREVA ('valor maior entre ', a, b, c, ' é ', max)
                                                             FIM
           max \leftarrow c
      FIMSE
   ESCREVA ('valor maior entre ', a, b, c, ' é ', max)
FIM
```

- 3. Escreva um algoritmo que leia três valores *a*, *b* e *c*, e calcule e escreva a média ponderada com pesos de 5 para o maior dos 3 valores e 2.5 para os outros 2 valores.
- 4. Faça um algoritmo que leia 1 caracter e escreva a mensagem 'caracter lido é vogal' ou 'caracter lido não é vogal', conforme o caso.
- 5. Escreva um algoritmo que leia 2 valores inteiros, a e b, e escreve-os juntamente com a mensagem ' $s\~ao$ m'altiplos' ou ' $n\~ao$ $s\~ao$ m'altiplos', conforme o caso.

EXEMPLO:	a
	3
	_

а	b	mensagem
3	4 não são múltiplos	
2	6 são múltiplos	
6	2	são múltiplos

6. Escreva um algoritmo que leia 4 números inteiros (opção, n₁, n₂, n₃) e escreve-os da seguinte maneira:

```
se opção = 1 escreva o número n_1
se opção = 2 escreva o número n_2
se opção = 3 escreva o número n_3
se opção for outro valor qualquer escreva opção inválida
```

7. Escreva um algoritmo que leia 4 valores (opção, a, b, c), onde <u>opção</u> é um valor inteiro e positivo e <u>a</u>, <u>b</u>, <u>c</u> são quaisquer valores reais. Escreva os valores lidos da seguinte maneira:

```
se opção = 1 \Rightarrow escreva os 3 valores a, b, c em ordem crescente
se opção = 2 \Rightarrow escreva os 3 valores a, b, c em ordem decrescente
se opção = 3 \Rightarrow escreva os 3 valores de forma que o maior valor entre a, b, c fica entre os outros 2.
```

- 8. Faça um algoritmo que leia 3 valores x, y, z, e verifique se podem ser os comprimentos dos lados de um triângulo. Em caso afirmativo, verifique se é 'triângulo eqüilátero', 'triângulo isósceles' ou 'triângulo escaleno'. Em caso negativo, escreva uma mensagem: 'os valores lidos não formam um triângulo'. Considere que:
- o comprimento de cada lado de um triângulo é menor que a soma dos comprimentos dos outros lados
- um triângulo equilátero tem três lados iguais
- um triângulo isósceles tem dois lados iguais e um diferente
- um triângulo escaleno tem três lados diferentes.
- 9. Faça um algoritmo que leia 3 valores x, y, z, e verifique se podem ser os comprimentos dos lados de um triângulo. Em caso negativo, escreva uma mensagem 'os valores lidos não formam um triângulo'. Em caso afirmativo, verifique se é 'triângulo retângulo' $(h^2 = a^2 + b^2)$.
- 10. Faça um algoritmo para calcular as raízes reais de uma equação quadrática: $ax^2 + bx + c = 0$. Uma equação quadrática só tem raiz reais se (b^2 4ac) for maior ou igual a zero. O algoritmo deve ser capaz de tratar os casos em que há duas raízes distintas, duas raízes reais iguais ou duas raízes complexas.
- 11. Uma empresa decidiu conceder um aumento de salário a seus funcionários de acordo com a tabela:

em R\$	índice de aumento
salário ≤ 400.00	15%
400.00 < salário ≤ 700.00	12%
700.00 < salário ≤ 1000.00	10%
1000.00 < salário ≤ 1500.00	7%
1500.00 < salário ≤ 2000.00	4%
salário > 2000.00	sem aumento

Faça um algoritmo que leia o salário atual de um funcionário e escreva o índice de aumento e o valor do salário corrigido.

6º LISTA DE EXERCÍCIOS ALGORITMOS (comandos de seleção)

1. A 3NET decidiu dar a seus funcionários uma gratificação de Páscoa. Para cada empregado da empresa tem-se nome, número de horas extras trabalhadas e número de faltas. Para calcular o prêmio, subtrai-se dois terços das horas que o empregado não trabalhou de suas horas extras e atribui-se a gratificação segundo a tabela abaixo.

ht = horas extras - 2/3 * faltas	gratificação
ht > 40 horas	1000,00
$30 < ht \le 40$	800,00
20 < ht ≤ 30	600,00
10 < ht ≤ 20	800,00 600,00 400,00
ht ≤ 10	200,00

Faça um algoritmo que leia as informações de um funcionário e calcule a sua gratificação.

- 2. Escreva um algoritmo que leia a hora de início de um jogo e a hora final do jogo (considerando apenas horas inteiras) e calcule a duração do jogo em horas, sabendo-se que o tempo máximo de duração do jogo é de 24 horas e que o jogo pode iniciar em um dia e terminar no dia seguinte.
- 3. Escreva um algoritmo que leia a matrícula, as 3 notas obtidas por um aluno nas 3 verificações parciais e a média dos exercícios (ME) que fazem parte da avaliação. Calcule a média de aproveitamento, usando a fórmula: média de aproveitamento = VP1A + VP1B * 2 + VP2 * 3 + ME

A atribuição dos conceitos obedece à tabela abaixo:

média de aproveitamento	conceito
>= 9.0	Α
>= 7.5 e < 9.0	В
>= 6.0 e < 7.5	С
>= 4.0 e < 6.0	D
< 4.0	E

O algoritmo deve escrever a matrícula do aluno, as notas das verificações, a média dos exercícios, a média de aproveitamento, o conceito correspondente e a mensagem 'aprovado' caso o conceito seja A, B ou C, e 'reprovado' caso o conceito seja D ou E.

4. O departamento do meio ambiente mantém 3 listas (lista A, lista B e lista C) de indústrias conhecidas por serem altamente poluentes da atmosfera. Os resultados de várias medidas são combinados para formar o que é chamado de "índice de poluição". Isso é controlado regularmente. Normalmente os valores variam entre 0.05 e 0.25. Se o valor atingir 0.30, as indústrias da lista A serão chamadas a suspender as operações até que os valores retornem ao intervalo normal. Se o índice atingir 0.40, as indústrias da lista B serão notificadas também. Se o índice exceder 0.50, indústrias de todas as 3 listas serão avisadas para suspenderem as atividades. Faça um algoritmo para ler o índice de poluição e indicar as notificações apropriadas.

5. Uma lanchonete fast food apresenta a seguinte relação de produtos:

código	descrição	preço (R\$)
1	hamburger	4,50
2	chessburger	5,50
3	cachorro quente	4,00
4	sanduíche	3,50
5	refrigerante	1,00
6	suco de laranja	2,00
7	milk shake	1,50
8	sundae	3,00
9	casquinha	1,00

Cada cliente <u>sempre</u> deve pedir um item de alimentação (01 a 04), uma bebida (05 ou 06) e uma sobremesa (07 a 09). Escreva um algoritmo que leia os 3 códigos do pedido do cliente e informe a descrição/preço de cada item e o preço final a pagar. Caso ocorra algum problema (código inválido ou repetição de algum item), exibir apenas uma mensagem de erro.

7º LISTA DE EXERCÍCIOS ALGORITMOS (comandos de seleção)

1. Faça um algoritmo leia um caracter indicando uma opção

```
se opção = 'T' ou opção = 't' \Rightarrow calcular a área de um triângulo de base b e altura h se opção = 'Q' ou opção = 'q' \Rightarrow calcular a área de um quadrado de lado l se opção = 'R' ou opção = 'r' \Rightarrow calcular a área de um retângulo de base b e altura h
```

- 2. Faça um algoritmo que leia o sexo e altura de uma pessoa e calcule seu peso ideal, considerando que para homens o peso ideal é igual a (72,7 * altura) 58 e para mulheres o peso ideal é igual a (62.1 * altura) 44.7.
- 3. Faça um algoritmo que, dada a idade de um nadador, classifique-o em uma das seguintes categorias

pré-mirim 5 - 7 anos mirim 8 - 10 anos infantil 11 - 13 anos infanto-juvenil 14 - 17 anos juvenil 18 - 20 anos adulto maiores de 21 anos

4. Faça um algoritmo que leia 2 números, o primeiro é o código da moeda de um país e o segundo é um valor naquela moeda. Escreva o valor seguido do nome da moeda. As moedas foram codificadas da seguinte forma

coalgo	<u>moeda</u>
1	libra esterlina
2	franco suíço
3	dólar americano
4	marco alemão
5	real

5. O cardápio de uma lanchonete é dado pela tabela abaixo

código	produtos	preço unitário (R\$)
100	cachorro quente + refrigerante	3,00
101	misto quente + refrigerante	2,50
102	misto frio + refrigerante	2,00
103	queijo quente + refrigerante	2,25

Durante essa semana, a lanchonete está em promoção: <u>para qualquer lanche de um mesmo tipo adquirido, leve 5 e pague 4</u>. Faça um algoritmo que leia o código do pedido e o número de itens de um mesmo tipo a ser adquirido por um consumidor e escreva o valor a pagar. Caso o código do pedido não seja válido, escreva apenas uma mensagem de erro. O consumidor só pode pedir itens de um mesmo tipo.

6. Descreva o objetivo do algoritmo abaixo. Estabeleça valores para as variáveis a, b e operador e informe qual o valor armazenado na variável resultado. Reescreva o algoritmo abaixo usando o comando de seleção ESCOLHA.

```
ALGORITMO exercicio 6A
VARIÁVEIS
        CARACTER
                       : operador
        REAL
                       : a, b, resultado
INÍCIO
        LEIA (operador, a, b)
        SE operador = '+' ENTÃO
               resultado← a + b
        SENÃO
                SE operador = '-' ENTÃO
                       resultado← a - b
                SENÃO
                        SE operador = '*' ENTÃO
                               resultado← a * b
                       SENÃO
                                SE operador = '/' ENTÃO
                                       resultado← a / b
                               FIMSE
                       FIMSE
                FIMSE
        FIMSE
        ESCREVA (resultado)
FIM
```

7. Dado o algoritmo abaixo

```
ALGORITMO exercicio_7A
VARIÁVEIS
        INTEIRO
                          : nro
INÍCIO
         LEIA (nro)
         SE (nro mod 2 = 0) E (nro > 0) ENTÃO
                 nro \leftarrow nro div 2
         SENÃO
                  SE (nro mod 2 < > 0) ENTÃO
                           nro \leftarrow nro -1
                           ESCOLHA nro
                                   1..5:
                                            nro ← nro * 2
                                    10..50: nro \leftarrow nro \mod 2
                           SENÃO
                                    SE (nro > 50) ENTÃO
                                            nro \leftarrow nro div 10
                                    SENÃO
                                            nro \leftarrow nro * (-1)
                                   FIMSE
                           FIMESCOLHA
                  FIMSE
         FIMSE
         ESCREVA ('Nro.: ', nro)
FIM
```

Quais valores serão escritos considerando que o valor armazenado na variável nro pode ser 10, 101 e -10.

- 8. Faça um algoritmo que leia um número inteiro representando um determinado mês do ano e escreva o mês por extenso. Para valores menores do que 1 ou maiores do que 12 informe que o valor não é válido.
- 9. Uma empresa está aumentando o salário de seus empregados de acordo com a categoria ocupada seguindo a tabela abaixo

categoria	% de aumento sobre salário atual
A, C, F, H	10
B, D, E, G	15
I, K até R	20
J, S até Z	25

Faça um algoritmo que leia o nome, a categoria e o salário atual de um funcionário e escreva o nome e o salário reajustado.