Université d'Évry Val d'Essonne 2011-2012

M54 algèbre et arithmétique 2

Feuille 8 — Corps finis

Exercice 1. Donner la liste des entiers $n \leq 50$ tels qu'il existe un corps de cardinal n.

Exercice 2. Dire si les anneaux suivants sont des corps et donner leur caractéristique ainsi que leur cardinal :

- 1. $\mathbf{F}_2[X]/(X^2+X+1)$;
- 2. $\mathbf{F}_3[X]/(X^2+X+1)$;
- 3. $\mathbf{Q}[X]/(X^4+1)$;
- 4. $\mathbf{F}_3[X]/(X^4+1)$.

Exercice 3. 1. Donner la liste des polynômes irréductibles de degré 3 sur \mathbf{F}_2 .

- 2. On regarde \mathbf{F}_8 comme $\mathbf{F}_2[X]/(X^3+X+1)$ et on note α la classe de X dans ce quotient. Dresser la table de multiplication de \mathbf{F}_8 .
- 3. Donner la liste des polynômes irréductibles de degré 2 sur \mathbf{F}_3 .
- 4. On regarde \mathbf{F}_9 comme $\mathbf{F}_3[X]/(X^2+1)$ et on note i la classe de X dans ce quotient. Dresser la table de multiplication de \mathbf{F}_9 .

Exercice 4. On considère $K = \mathbf{F}_3[X]/(X^3 - X - 1)$ et on note α l'image de X dans K.

- 1. Montrer que K est un corps et donner sa caractéristique, ainsi que son cardinal.
- 2. Quel est l'inverse de $1 + \alpha^2$ dans K^{\times} ?
- 3. Montrer que $\alpha^{12} = (1 + \alpha)^4$ et exprimer cet élément dans la base $(1, \alpha, \alpha^2)$.
- 4. En déduire que α est d'ordre 13 dans K^{\times} .
- 5. En déduire un générateur de K^{\times} .

Exercice 5. On considère $K = \mathbf{F}_5[X]/(X^2+2)$ et on note α la classe de X dans K.

- 1. Montrer que K est un corps. Donner sa caractéristique ainsi que son cardinal.
- 2. Quel est l'inverse de $2 + 3\alpha$ dans K^{\times} ?
- 3. Quels sont les ordres respectifs de α et $2 + \alpha$ dans K^{\times} ?
- 4. En déduire un générateur de K^{\times} .