BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Sistemas Distribuidos

Programa de Asignatura: Programación Concurrente y Paralela

Código: MCOM 20700

Tipo: Obligatoria

Créditos: 9

Fecha: Noviembre 2012

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA **FACULTAD DE CIENCIAS DE LA COMPUTACION**

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Programación Concurrente y Paralela
Ubicación:	Primer semestre (Obligatoria)

2. REVISIONES Y ACTUALIZACIONES

2. REVIOIONEO I MOTOMEIEMOTOTEO			
Autores:	Dr. Luis Carlos Altamirano Robles		
Fecha de diseño:	Noviembre 2012		
Fecha de la última actualización:	Marzo 2017		
Revisores:	Dr. Mario Rossainz López		
Sinopsis de la revisión y/o actualización:	Actualización de objetivos y criterios de evaluación		

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

3. OBJETIVOS GENERALES:

El alumno aprenderá a analizar, diseñar e implementar soluciones paralelas de problemas secuenciales o de problemas que se puedan paralelizar y mejorar el rendimiento o performance en sus aplicaciones.

4.- ESPECIFICOS

- El alumno utilizará un conjunto de notaciones y técnicas formales para describir el paralelismo potencial de un programa en la solución de problemas tales como CCS, CSP, Redes de Petri, Condiciones de Bernstein, Grafos de Precedencia, el par COBEGIN-COEND, entre otros.
- El alumno aprenderá a resolver los problemas intrínsecos que surgen en la programación concurrente al comunicar y sincronizar procesos cuando éstos comparten recursos: Mutex, condiciones de sincronización del tipo productor-consumidor, interbloqueos o deadlocks, regiones críticas, semáforos y monitores.
- El alumno conseguirá ejecutar un programa secuencial en menos tiempo utilizando para ello más de un procesador y analizará el rendimiento de la aplicación paralela utilizando diversas métricas de rendimiento: speedup, Amdahl, CPIs, etc.
- El alumno entenderá la relación que existe entre la programación concurrente y paralela y las taxonomías de multiprocesadores de memoria compartida, memoria distribuida y memoria compartida distribuida.
- El alumno aprenderá a programar concurrentemente utilizando el esquema de programación de memoria compartida y paso de mensajes en diversos lenguajes de programación: C++, JAVA, Pyton, C, Fortran, etc. y utilizando librerías diversas: MPI, PVM, JCSP, CTJ, etc, PThreads, etc.
- El alumno aprenderá a analizar y diseñar algoritmos paralelos utilizando patrones de comunicación entre procesos como farms o granjas, trees o árboles, pipelines o cauces, cubos, hipercubos, mallas de procesos, etc., en la solución de un problema
- El alumno conocerá las tendencias actuales de la programación concurrente y paralela tales como Cómputo de Alto Rendimiento, Cómputo en la Nube, Cómputo Distribuido, Cómputo Paralelo Estructurado, Programación Multicore o multinúcleo, etc.

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA **FACULTAD DE CIENCIAS DE LA COMPUTACION**

4. CONTENIDO

IENIDO		
Unidad	Contenido Temático/Actividades de aprendizaje	
1 Introducción a la	1.1. Concepto de concurrencia	
programación	1.2. Sincronización	
concurrente	1.3. Programación concurrente	
	1.4. Sistemas operativos y programación	
2 Abstracción de la	2.1. Exclusión mutua	
programación	2.1.1. Exclusión mutua con espera ocupada	
concurrente	(Algoritmo de Dekker)	
	2.1.2. Generación de procesos	
	2.2. Corrección	
	2.3. Implementación de las instrucciones	
	primitivas	
3 Problemas de la	3.1. Intento del primero al cuarto	
exclusión mutua	3.2. Aplicación del algoritmo de Dekker	
	3.3. Pruebas del algoritmo de Dekker	
4 Mecanismos de	4.1. Exclusión mutua de semáforos	
sincronización usando	4.2. Problemas del productor-consumidor	
memoria compartida	4.3. Monitores	
memena semparada	4.3.1. Definición de monitores	
	4.3.2. Simulación de un semáforo	
	4.3.3. Solución del problema lectores y	
	escritores	
	4.3.4. Pruebas de las propiedades de los	
	monitores	
	4.3.5. Simulación de monitores y semáforos	
	4.3.6. Señales sin restricción	
5 Modelo de la	1.0.0. Contains sin results did n	
programación		
distribuida		
6 Exclusión mutua	6.1. Transacciones atómicas	
distribuida	o.i. Transadolorido atornidad	
7 Introducción a la		
programación paralela		
8Algoritmo PRAM	8.1. Modelo de computación serial	
2.7	8.2. El modelo PRAM de computación paralela	
	8.3. Algoritmos PRAM	
	8.4. Reduciendo el número de procesadores	
	8.5. Problemas al definir soluciones rápidas en	
	PRAMS	
	1 10 1010	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA **FACULTAD DE CIENCIAS DE LA COMPUTACION**

1578	
Contenido Temático/Actividades de aprendizaje	
9.1. Organización de procesadores	
9.2. Arreglo de procesadores	
9.3. Multiprocesadores	
9.4. Multicomputadoras	
9.5. Taxonomía de Flynn	
9.6. Aceleración, aceleración escala y	
paralelizable	
10.1. Proceso de programación paralela	
10.2. C paralelo	
10.3. OCCAM	
10.4. Fortran 90	
10.5. C*	
11.1. PVM	
11.2. MPI	
11.3. C++	
12.1. Mapeo de datos	
12.2. Balance dinámico de carga en	
multicomputadoras	
12.3. Despacho estático en multiprocesadores	
UMA	
12.4. Bloqueos o" Deadlocks"	
13.1. Clasificando algoritmos MIMD	
13.2. Reducción	
13.3. "Broadcast"	
13.4. Sumas prefijas	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

Bibliografía		
Básica	Complementaria	
1. Raynal Michel. "Concurrent Programming: Algorithms, Principles and Foundations". Springer Verlag. 2012.	1. Breitman, K. K., Horspool R. N. "Patterns, Programming and Everything". Springer Verlag. 2012.	
2. Cook R.P. "An Introduction to Parallel Programming with OpenMP, PThreads and MPI". USA 2011.	2. Drozdowski, M. "Scheduling for Parallel Processing". Springer Verlag. London 2010.	
3. Wilkinson B., Allen M. "Parallel Programming. Techniques and Applications Using Networked Workstations and Parallel Computers". Prentice Hall. 2004.	3. Capel, I. M., Rodríguez S. "Sistemas Concurrentes y Distribuidos. Tomo II. Práctica". Universidad de Granada. España 2012.	
4. Almeida F., Giménez D., Mantas J.M., Vidal A. "Introducción a la Programación Paralela". Paraninfo CENGAGE Learning. España 2010.	4. Capel, I. M., Rodríguez S. "Sistemas Concurrentes y Distribuidos. Tomo I. Teoría". Universidad de Granada. España 2012.	
5. Butenhof D. R. "Programming with POSIX Threads". Addison-Wesley. 1997.	5. Pacheco, P. "An Introduction to Parallel Programming". Morgan Kaufmann Editorial. 2011	

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	25%
Participación en clase	
Tareas	10%
Exposiciones	
Simulaciones	
 Trabajo de investigación y/o de intervención 	20%
Prácticas de laboratorio	20%
Visitas guiadas	
 Reporte de actividades académicas y culturales 	
Mapas conceptuales	
Portafolio	
Proyecto final	25%
Total	100%