Semaine du 16 septembre - Planche nº 1

Exercice no 1:

(Question de cours) : Montrer que toute fonction de $\mathbb R$ dans $\mathbb R$ s'écrit de manière unique comme la somme d'une fonction paire et d'une fonction impaire.

Exercice nº 2:

(Raisonnement/Logique):

- 1. Démontrer que si a et b sont deux entiers relatifs tels $a + b\sqrt{2} = 0$ alors a = b = 0
- 2. En déduire que si m, n, p, q sont des entiers relatifs, alors

$$m + n\sqrt{2} = p + q\sqrt{2} \iff (m = p \text{ et } n = q)$$

Exercice no 3:

(Ensembles): Soient E un ensemble, et $A, B, C \in \mathcal{P}(E)$. Les 2 questions sont indépendantes

1. Montrer que

$$(A \cup B) \cap C \subseteq A \cup (B \cap C)$$

2. Montrer que

$$A \cap B = A \cap C \iff A \cap B^c = A \cap C^c$$

Semaine du 16 septembre - Planche n° 2

Exercice no 1:

(Question de cours) : Montrer qu'un entier n est pair si et seulement si n^2 est pair.

Exercice nº 2:

(Raisonnement-Logique) : Montrer que toute fonction de \mathbb{R} dans \mathbb{R} s'écrit de manière unique comme somme d'une fonction constante et d'une fonction s'annulant en 0.

Exercice no 3:

(Ensembles): Soient A et B deux parties de E, on appelle différence symétrique de A et B, l'ensemble $A\Delta B = (A \backslash B) \cup (B \backslash A)$. Montrer de deux façons que

$$A\Delta B = (A \cup B) \backslash (A \cap B)$$

Indication : 1. globalement par ensemble 2. par les éléments

Semaine du 16 septembre - Planche nº 3

Exercice no 1:

(Question de cours) : Montrer que $\sqrt{2}$ est irrationnel.

Exercice $n^o 2$:

(Raisonnement-Logique) : Pour $n \in \mathbb{N}$, On considère la propriété suivante :

$$P_n: 2^n > n^2$$

- 1. Montrer que pour $n \geq 3, P_n \Longrightarrow P_{n+1}$.
- 2. Pour quelles valeurs de n la propriété est-elle vraie?

Exercice no 3:

(Ensembles) : Si A et B sont deux parties de \mathbb{R} , on définit l'ensemble A+B par

$$A + B = \{x + y | x \in A, y \in B\}$$

- 1. Montrer que pour toute partie non-vide A de \mathbb{R} , $A + \mathbb{R} = \mathbb{R}$.
- 2. Montrer que pour toute partie A, B et C de $\mathbb R$ telles que $A \subseteq B$, on a $A + C \subseteq B + C$.
- 3. Sommes de 2 segments :
 - a) Déterminer [-1, 1] + [-1, 1]
 - b) (Cas général) : Soient a, b, c et d quatres réels. Déterminer [a, c] + [b, d]

Semaine du 16 septembre - Exercices supplémentaires

Exercice no 1:

(Ensembles) : Montrer que si on considère E un ensemble et $A, B, C \in \mathcal{P}$, on a :

$$(A \cap B) \cup (B \cap C) \cup (C \cap A) = (A \cup B) \cap (B \cup C) \cap (C \cup A)$$

Exercice nº 2:

(Ensembles): Montrer que si on considère E un ensemble et $A, B, C \in \mathcal{P}$, on a :

$$A \cup B = A \cup C \iff A \cup B^c = A \cup C^c$$

Exercice nº 3:

(Ensembles): Pour tout $h \in \mathbb{R}_+^*$, on pose $J_h =]-h, h[$, Prouvez:

$$\bigcap_{h \in \mathbb{R}_+^*} J_h = \{0\} \quad \text{et} \quad \bigcup_{h \in \mathbb{R}_+^*} J_h = \mathbb{R}$$

Exercice nº 4:

(Ensembles) : Décrire $\mathcal{P}(E)$ pour $E = \{1, 2, 3\}$

Exercice no 5:

(Ensembles) : Décrire $\mathcal{P}(\mathcal{P}(\{1\}))$