Reinforcement Learning

5. Off-policy versus on-policy RL

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Introduction

- ▶ We have said that SARSA was on-policy and Q-LEARNING was off-policy.
- ▶ The goal of this class is to understand precisely what this means
- ► This distinction matters a lot for deep RL research
- Off-policy algorithms like DDPG are generally more sample efficient but less stable than on-policy algorithms like PPO

Basic concepts

- ▶ To understand the distinction, one must consider three objects:
 - ▶ The behavior policy $\beta(s)$ used to generate samples.
 - ▶ The critic, which is generally V(s) or Q(s, a)
 - ▶ The target policy $\pi(s)$ used to control the system in exploitation mode.

Off-policiness: definition

- "Off-policy learning" refers to learning about one way of behaving, called the target policy, from data generated by another way of selecting actions, called the behavior policy.
- ► Two notions:
 - Off-policy policy evaluation
 - Off-policy control

Maei, H. R., Szepesvári, C., Bhatnagar, S., & Sutton, R. S. (2010) Toward off-policy learning control with function approximation. *ICML*, pages 719–726.

Off-policy policy evaluation: Definition

- ▶ Can evaluate the critic of a target policy $\pi(s)$ from playing a different behavior policy $\beta(s)$?
- ▶ Obviously, $\beta(s)$ and $\pi(s)$ generate different values V(s) or Q(s,a)
- ▶ The goal of "off-policy correction" is to correct for the sample mismatch
- ▶ The target policy does not need to be optimal
- ► This is a weak notion of off-policiness (not covered here)

Precup, D. (2000) Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty Publication Series

Munos, R., Stepleton, T., Harutyunyan, A., & Bellemare, M. G. (2016) Safe and efficient off-policy reinforcement learning. In `Advances in Neural Information Processing Systems, pages 1054–1062

Off-policy control: Definition

- Whatever the behavior policy (as few assumptions as possible)
- ▶ The target policy should be an approximation to the optimal policy
- ▶ Ex: stochastic behavior policy, deterministic target policy
- An algorithm might be more or less off-policy depending on the assumptions on $\beta(s)$

Why prefering off-policy to on-policy control?

- ▶ More freedom for exploration
- Learning from human data (imitation)
- Reusing old data, e.g. from a replay buffer (sample efficiency)
- ► Transfer between policies in a multitask context

Approach

- ► Two steps: open-loop study then closed-loop study
 - Use uniform sampling as "behavior policy" (few assumptions)
 - ▶ No exploration issue, no bias towards good samples
 - ▶ NB: in uniform sampling, samples do not correspond to an agent trajectory
 - ▶ An alternative is random walk, but may raise exploration issues
 - Study critic learning from these samples
- ► Then close the loop:
 - ▶ Use the target policy + some exploration as behavior policy
 - ▶ If the target policy gets good, bias more towards good samples

Learning a critic from samples

Two random actions

- ▶ General format of samples $S: (s_t, a_t, r_t, s_{t+1}, a')$
- ▶ Makes it possible to apply a general update rule:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_t + \gamma Q(s_{t+1}, a') - Q(s_t, a_t)]$$

- ▶ There are three possible update rules:
 - 1. $a' = \operatorname{argmax} aQ(s_{t+1}, a)$ (corresponds to Q-LEARNING)
 - 2. $a' = \beta(s_{t+1})$ (corresponds to SARSA)
 - 3. $a'=\pi(s_{t+1})$ (corresponds e.g. to DDPG, an ACTOR-CRITIC algorithm)

Off-policiness with uniform sampling

▶ We add a negative reward for hitting walls

Detailed mechanism: Rule 1 (Q-LEARNING)

- $ightharpoonup a' = \operatorname{argmax} aQ(s_{t+1}, a)$
- Always backpropagates the highest value
- lacktriangle Thus Q(s,a) consistently converges to the value of acting optimally

Detailed mechanism: Rule 2 (SARSA)

- $ightharpoonup a' = \beta(s_{t+1})$
- ightharpoonup Due to uniform sampling, the probabilities to take any a' are uniform
- Thus Q(s, a) converges to some average, corresponding to performing random walk
- ▶ Being greedy wrt Q(s, a) does not result in the optimal target policy

Detailed mechanism: Rule 3 (DDPG-like)

- $a' = \pi(s_{t+1})$
- $\pi(s_{t+1})$ evolve consistently with action values (update of $\alpha\delta$)
- ► Thus actions with higher values get sampled more often (vs uniformly in SARSA)
- ▶ If a good a' is sampled, increase the updated value
- ▶ If a bad a' is sampled, decrease it
- Results in more structured fluctuations

Results

- ► Rule 1 learns an optimal critic (thus Q-LEARNING is truly off-policy)
- Rule 2 fails (thus SARSA is not off-policy)
- ► Rule 3 fails too (thus an algorithm like DDPG is not truly off-policy!)
- ▶ NB: different ACTOR-CRITIC implementations behave differently
- ▶ E.g. if the critic estimates V(s), then equivalent to Rule 1

Sarsa and DDPG will only work when beta(s)=pi*(s)!!!!!!

Closing the loop

- If $\beta(s) = \pi^*(s)$, then Rules 2 and 3 are equivalent,
- ▶ Furthermore, Q(s, a) will converge to $Q^*(s, a)$, and Rule 1 will be equivalent too.
- ▶ Quite obviously, Q-LEARNING still works
- ▶ SARSA and ACTOR-CRITIC work too: the $\beta(s)$ becomes "Greedy in the limit of infinite exploration" (GLIE)

Corresponding labs

- ► See https://github.com/osigaud/rl_labs_notebooks
- ▶ One notebook about off-policy versus on-policy learning
- ▶ Check the three rules convergence properties when $\beta(s)$ is uniform random sampling

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Maei, H. R., Szepesvári, C., Bhatnagar, S., & Sutton, R. S. (2010).

Toward off-policy learning control with function approximation.

Edité dans ICML, pages 719-726.

Munos, R., Stepleton, T., Harutyunyan, A., & Bellemare, M. G. (2016).

Safe and efficient off-policy reinforcement learning.

Edité dans Advances in Neural Information Processing Systems, pages 1054-1062.

Precup, D. (2000).

Eligibility traces for off-policy policy evaluation.

Computer Science Department Faculty Publication Series, page 80.

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvári, C. (2000).

Convergence results for single-step on-policy reinforcement-learning algorithms. *Machine learning*, 38(3):287–308.