Rechtlicher Hinweis und Copyright Hochschule für angewandte Wissenschaften

Umgang mit dem Kursmaterial

- Das Kursmaterial ist durch das Copyright des Dozenten und/oder anderer Autoren geschützt.
- Das Material darf nur von Studenten der angegebenen Fachhochschule und nur zu Ausbildungszwecken im Rahmen des angegebenen Kurses verwendet werden.
- Die Veröffentlichung oder Verbreitung des Materials ist strafbar und ausdrücklich untersagt. Dazu zählen das Veröffentlichen auf Webseiten, Onlinespeichern wie Dropbox, Verbreiten per Email, die Verwendung in Vorträgen oder Publikationen etc.

Es gibt 10 Gruppen von Menschen:

Solche, die die Binärcodierung verstehen und die anderen!

Vorlesung_07

Speicher: Latch und Flipflop

Technische Grundlagen der Informatik

Prof. Dr. Claus Fühner
Fakultät Informatik
Ostfalia Hochschule für angewandte Wissenschaften
Braunschweig/Wolfenbüttel

Agenda

Einfache Speicherelemente

- Taktgesteuerte Elemente
- Register

Asynchrones RS-Latch (Reset/Set) Hochschule für angewandte

Definition

- **Einfachstes Speicherelement**
 - Einnahme der Zustände "0" oder "1"
 - 1-Bit Speicher
- Ein- und Ausgänge
 - s: Speicherinhalt auf 1 setzen (Set)
 - r: Speicherinhalt auf 0 zurücksetzen (Reset)
 - s=r=0: Speicherinhalt halten
 - q = aktueller Speicherinhalt
 - $-\overline{q}$ = negierter Speicherinhalt
- Asynchrones Verhalten: Set und Reset können zu beliebigen Zeitpunkten erfolgen
- Spezielle Eigenschaft: Verhalten des RS-Latches ist undefiniert, wenn Set und Reset gleichzeitig erfolgt.

Verhalten

- Ein Speicherelement hat einen **Zustand**.
- Das Verhalten eines Speicherelements (d.h. der Folgezustand) hängt von den Eingängen und dem aktuellen Zustand ab.
 - q^t bezeichnet den aktuellen Zustand
 - $-q^{t+1}$ den Folgezustand

S	r	q _t	q _{t+1}	Eigenschaft
0	0	0	0	Speichern
0	0	1	1	Speichern
0	1	0	0	Zurücksetzen
0	1	1	0	Zurücksetzen
1	0	0	1	Setzen
1	0	1	1	Setzen
1	1	0	?	Nicht erlaubt
1	1	1	?	Nicht erlaubt

Vereinfachte Wahrheitstabelle

S	r	q _{t+1}	Eigenschaft
0	0	q _t	Speichern
0	1	0	Zurücksetzen
1	0	1	Setzen
1	1	?	Nicht erlaubt

Beispielhaftes Zeitdiagramm

Beispielhaftes Zeitdiagramm

Realisierung

Aufbauvariante mit NOR-Gattern:

Wie verhält sich die Schaltung für r=s=0 mit (a) q=1 und (b) q=0

Analyse der Rückkopplung

	r	S	q'	q	q	Zustand
0	0	0	0			
1	0	0	1			
2	0	1	0			
3	0	1	1			
4	1	0	0			
5	1	0	1			
6	1	1	0			
7	1	1	1			

Bildquelle: http://commons.wikimedia.org/wiki/File:Scissors_left_and_right_handed.jpg

Zeitverhalten

Reale Gatter schalten im Gegensatz zu idealen Gattern nicht beliebig schnell, sondern leicht verzögert

Zustandsdiagramm RS-Latch

- Zustände sind mit Kreisen markiert
- Für jeden Ausgangszustand sind mögliche Zustandstransitionen mit Pfeilen (und entsprechenden Bedingungen) markiert
- Verhalten für (s,r)=(1,1) war nicht definiert
- Die theoretisch darstellbaren Zustände $(q, \overline{q}) = (0,0)$ und (1,1) werden hier nicht betrachtet diese würden evtl. für eine Analyse der Verhaltens bei (s,r)=(1,1) relevant.

Agenda

- Einfache Speicherelemente
 - Taktgesteuerte Elemente
- Register

- Der Takt ist ein periodisches Rechtecksignal, das in einen zusätzlichen Eingang (z. B. des Speicherelements) eingespeist wird
- Eine Periode (1-Phase mit anschließender 0-Phase) heißt auch Zyklus
- Periodenlänge: Dauer einer Periode, Einheit: s (Sekunde)
- Taktfrequenz: Anzahl der Zyklen pro Sekunde, Einheit: Hz ("Hertz")
- Periodenlänge ist Kehrwert der Taktfrequenz

- Asynchrone Speicherelemente (z.B. RS-Latch) ändern ihren Zustand zu beliebigen Zeitpunkten
- Synchrone Speicherelemente ändern ihren Zustand nur zu definierten Zeitpunkten
- Zeitpunkte werden durch einen Takt (zentral oder heute auch häufiger dezentral) definiert
- Digitale Schaltungen müssen sich einschwingen bis ein gültiges Ergebnis vorliegt - Taktsteuerung definiert Übernahmezeitpunkte
- Schaltgeschwindigkeit der Bausteine (z. B. 64-Bit Carry-Ripple Addierer) bestimmt maximale Taktfrequenz

- Pegelsteuerung
 - Zustandsänderung während eine 1 auf der Taktleitung anliegt
- Flankensteuerung
 - Zustandsänderung bei positiver und/oder negativer Taktflanke

Taktzustands(-pegel)steuerung

- Eingänge wirken sich während der positiven Taktphase aus
- Zustand kann sich mehrmals innerhalb der selben Phase ändern
 - Auswertungszeitpunkte sind nicht klar definiert, nur Intervall
- Wird auch als "Pegelsteuerung" bezeichnet
- Takt<u>zustandsg</u>esteuerte Elemente heißen (synchrone) "Latches"

Taktflankensteuerung

- Eingänge wirken sich nur während der Taktflanke aus
 - Positive Flanke: $0 \rightarrow 1$
 - Negative Flanke: 1 → 0
- Vorteil: Auswertungszeitpunkte sind exakter definiert
- Takt<u>flankengesteuerte</u> Elemente heißen "Flipflops"

Synchrones RS-Latch und RS-Flipflop

С	S	r	$ q_{t+1} $
0	-	-	q _t
1	0	0	q_t
1	0	1	0
1	1	0	1

C	S	r	q _{t+1}
0	-	-	q _t
1	-	-	q_t
↑	0	0	q _t
\uparrow	0	1	0
\uparrow	1	0	1

Synchrones RS-Latch

Synchrones RS-Flipflop

Synchrones RS-Latch

Synchrones RS-Latch (taktzustandsgesteuert)

Schaltsymbol

Interner Aufbau

Synchrones RS-Latch

- = Asynchrones RS-Latch
 - + Vorverarbeitung für Takt

Synchrones D-Latch

Synchrones D-Latch (taktzustandsgesteuert)

Schaltsymbol

Schaltverhalten

С	d	q _{t+1}
0	-	q _t
1	0	0
1	1	1

(Synchrones) D-Flipflop

D-Flipflop (taktflankengesteuert)

Schaltsymbol

Interner Aufbau

Synchrones D-Flipflop aus 2 * Synchrones D-Latch

(Synchrones) RS-Flipflop

RS-Flipflop (taktflankengesteuert)

Schaltsymbol

Schaltverhalten

С	S	r	q _{t+1}
0/1/↓	-	-	q _t
\uparrow	0	0	q _t
\uparrow	0	1	0
↑	1	0	1

(Synchrone) Flipflops

T-Flipflop (Toggle)

Schaltsymbol

Schaltverhalten

С	t	q _{t+1}
0/1/↓	-	q _t
↑	0	q _t
\uparrow	1	$\neg q_t$

(Synchrone) Flipflops

JK-Flipflop – Kombination aus RS-Flipflop und T-Flipflop

Schaltsymbol

Schaltverhalten

С	j	k	q _{t+1}
0/1/↓	-	-	q _t
\uparrow	0	0	q_t
↑	0	1	0
\uparrow	1	0	1
\uparrow	1	1	$\neg q_t$

Übersicht: vorgestellte Speicherelemente Chschule für angewandte Wissenschaften

Schaltnetze und Schaltwerke

Schaltnetze (Kombinatorische Logik)

- In diese Gruppe fallen die zuvor betrachteten Schaltungen
- Aufbau durch elementare logische Funktionen (Gatter)
- Ausgabe hängt nur und unmittelbar von der aktuellen Eingabe ab (keine Rückkopplung von Signalen)
- Kein Gedächtnis (keine Speicherelemente, zustandslos)
- Asynchron (keine Taktleitung)

Schaltwerke (Sequentielle Logik)

- Ausgabe hängt von allen vorangegangenen Eingaben ab
- Schaltungen verfügen über ein "Gedächtnis" (zustandsbehaftet)
- Einsatz von Speicherelementen (Flipflops oder Latches)
- häufig Synchron (Taktsignal)

Übersicht Latches und Flipflops

Agenda

- Einfache Speicherelemente
- Taktgesteuerte ElementeRegister

Register

Anwendungsbeispiel

- Aufbau
 - Aneinanderreihung von einzelnen Flipflops
 - "Breite" des Registers = Anzahl der Flipflops
 - Typische Bit-Breiten: 8, 16, 32, 64, 128
 - Alle Flipflops teilen sich dieselbe Taktleitung
- Anwendung: Schneller Speicher in Prozessoren
 - für den Programmierer und direkt ansprechbar
 - · für Zwischenergebnisse, Anzahl variiert
- Eingänge und Ausgänge
 - n-fach entsprechend den Einzelflipflops:
 z.B. D, Set oder Reset
 - 1-fach (ein Eingang wirkt auf alle Flipflops des Registers): Clock, Enable
- Variationen (später!)
 - Schieberegister
 - Universalregister, Akkumulator

Agenda

- Einfache Speicherelemente
- Taktgesteuerte Elemente
- Register

