- b. Discuss about AVL tress in detail.
- 31. a. Apply kruskal's algorithm and find the minimum spanning tree for the given graph.

(OR)

- b. Explain Dijkstra's shortest path algorithm with an example.
- 32. a. Discuss the sum of subset problem using backtracking method.

(OR)

b. Write down the divide and conquer algorithm for matrix multiplication with example.

* * * * *

Reg. No.								

B.Tech. DEGREE EXAMINATION, MAY 2019

3rd to 8th Semester

15CS252J – DATASTRUCTURES AND ALGORITHMS

(For the candidates admitted during the academic year 2015 – 2016 to 2017-2018)

TA T		
130	OTO:	

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- (ii) Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1.	(A)	queue insertion can take place only at o Rear Bottom	(B)	nd called Front Top
2.	(A)	_ is the term used to insert an element Pull	(B)	Push
	(C)	Bottom	(D)	Pop
3.	(A)	linked field in a node contains Address of next node Data of next node	` '	Address of previous node Data of current node
4.	-	refers to the situation when one was	nts to	add data into a data structure that is ful
	(A)	Underflow	(B)	Free space
	(C)	Overflow	(D)	Full state
5.	Whi	ch of the below series is in non-increas	ing o	rder?
		1,3,4,6,8,9	_	9,8,6,4,3,1
		1,3,3,6,8,9	` '	9,8,6,3,3,1
6	Onic	ck sort running time depends on the sele	ection	n of
٠.	-	Size of an array		Pivot element
	` '	Sequence of values	` '	Size of the memory
7.	Line	ear arrays are also called		
		One dimensional array	(B)	Vertical array
	` '	Horizontal array	(D)	Multi-dimensional array
8.	The	operation of processing each element is	n the	list is known as
	(A)	Inserting	(B)	Traversal
		Merging	(D)	Sorting
9.	Whi	ch of the following condition checks av	zailab	ole free space in avail list?
		Avail = top		Null = avail

(D) Avail = max stack

(C) Avail = null

10.	The post fix form of $A*B+C/D$ is		
	(A) $ABCD + /*$	(B)	AB*CD/+
	(C) $*AB/CD+$		A*BC+/D
11.	notation refers to the notation in w	hich 1	the operator symbol is placed before its two
11.	operands.	псп	the operator symbol is placed before its two
	(A) Prefix	(B)	Postfix
	(C) Polix	` ′	Reverse polish
10	A tooksigue for direct goods is		•
14.	A technique for direct search is (A) Tree search	(D)	Dinairy goorah
		. ,	Binary search Linear search
	(C) Hashing	(D)	Linear search
13.	A graph G is if every node x in G is	adjac	ent to every node y in G.
	(A) Spanning	(B)	Balanced
	(C) Tree	(D)	Complete
14	Which data structure is suitable to represent	hier	archical relationship between elements?
1.4.	(A) Graph		Tree
	(C) Dequeue	` '	Priority
	(C) Dequeue	(D)	Thority
15.	Which data structure is used in breadth first	sear	ch of a graph to hold nodes?
	(A) Stack	(B)	Queue
	(C) Tree	(D)	Array
16.	A binary search tree whose left subtree and	l righ	t subtree differ in height by at most 1 unit is
-0.	called		sastro dirior in noight of at most 1 dint is
	(A) AVL tree	(B)	Red-black tree
	(C) Lemma tree	(D)	B tree
17	In a expression $AB + C * D$ / if $A = 2$, $B = 3$	3 C =	$= A \cdot D = A$ then result in a stack is
1 7. *		(B)	
	(C) 1/5	(D)	
		(1)	· ·
18.	The complexity of the average case in an al	goritl	nm is
	(A) Much more simpler than worst case	(B)	Much more complicated to analyze than
		` ,	that of average case
	(C) Much more complicated to analyze	(D)	Much more simpler than best case
	than that of worst case	` /	· .
19.	The quick sort algorithm exploit des	sign t	echnique.
	(A) Divide and conquer		Back tracking
	(C) Dynamic programming		Greedy
20	An alcouithm that call itself directly and	ma a41-	·
20.	An algorithm that calls itself directly or indi	_	
	(A) Sub algorithm (C) Polish notation	. ,	Recursion Traversal algorithm
	(C) Polish notation	(D)	Traversal algorithm

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Compare last in first out with first in first out order in data structures.
- 22. Write a note on singly linked list.
- 23. How deletion operations are performed in a binary tree?
- 24. Differentiate directed and undirected graph.
- 25. What is the need of backtracking?
- 26. Perform pre order and post order traversel for the given tress.

27. Consider the graph given below and find out the degree of each node.

PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions

28. a. Define an array. Explain the various operations on arrays with example.

(OR)

- b. Discuss about the insertion and deletion algorithm of a queue with an example.
- 29. a. Write a C program to sort the number using merge sort.

(OR)

- b. Write down the procedure for insertion and deletion of a node in a binary search tree.
- 30. a. Illustrate on open addressing with an example.

(OR)