

녹내장 환자를 위한 시야 보완 영상처리 시스템

의료영상처리의 이론 및 실습 프로젝트

01	INTRODUCTION	프로젝트 소개
02	DATA DESCRIPTION	데이터 설명
03	ALGORITHM	알고리즘 구현 과정
04	RESULT	결과 분석
05	DISCUSSION	한계점 및 향후 기대 방향

INTRODUCTION

BACKGROUND

Author Manuscript

Author Manu

HHS Public Access

Author manuscript

Am J Ophthalmol. Author manuscript; available in PMC 2021 February 01.

Published in final edited form as:

Am J Ophthalmol. 2020 February; 210: 125-135. doi:10.1016/j.ajo.2019.10.006.

Expansion of Peripheral Visual Field with Novel Virtual Reality Digital Spectacles

Ahmed M Sayed^{1,2}, Mostafa Abdel-Mottaleb³, Rashed Kashem³, Vatookarn Roongpoovapatr¹, Amr Elsawy^{1,3}, Mohamed Abdel-Mottaleb³, Richard K Parrish II¹, Mohamed Abou Shousha^{1,3,4}

¹Bascom Palmer Eye Institute, University of Miami, Miami, FL

²Biomedical Engineering Department, Helwan University, Helwan, Egypt

³Department of Electrical and Computer Engineering, University of Miami, Miami, FL

⁴Biomedical Engineering Department, University of Miami, Miami, FL

[출처] https://pmc.ncbi.nlm.nih.gov/articles/PMC7002244/pdf/nihms-1059599.pdf

사용자 맞춤형 녹내장 환자의 시야 보완 시스템에 관한 기존 연구

INTRODUCTION

BACKGROUND

현대적 시각 보조 기기의 안전성과 독립성 충분히 달성 X

기존 문제점

남은 시야를 축소하거나 재배치 → 해상도 감소 및 이미지 중첩 발생 시야 보완 효과 테스트를 2D 이미지에만 적용 → 실제 시뮬레이션에 대한 한계

INTRODUCTION | PURPOSE

2D → 비디오

2D 이미지 리매핑 ↓ 비디오 리매핑 맞춤형 보완

중심 시야 결손 보완
↓

환자 맞춤형 시야 결손
패턴 분석 후 보완

객체 강조

객체 강조를 위한 영상처리 적용 웹 구현

웹페이지 제작

DATA DESCRIPTION

UWHVF Dataset

[출처] https://tvst.arvojournals.org/article.aspx?articleid=2778219 https://github.com/uw-biomedical-ml/uwhvf

워싱턴 대학교 안과에서 공개한 Humphrey Visual Fields (HFA) Dataset

- 3,871명의 환자와 7,428개의 눈에서 28,943개의 Humphrey Visual Field(HVF) 검사를 포함하는 JSON 파일
- 측정 시기, 연령, 성별, 좌우 눈 정보 제공
- 민감도, 총 편차(TD), 패턴 편차(PD) 등의 값 포함 (민감도 및 TD 값은 8x9 matrix로 제공)
- JSON 형식으로 제공되어 기계학습에 활용 가능

Video Data

녹내장 환자의 시야 보완 알고리즘 테스트를 위한 다양한 비디오 선별

- 주변 객체 인식(ex. 사람, 동물 등)을 위한 테스트 비디오
- 차량 운전 비디오
- → 녹내장 환자가 일상생활에 가장 불편을 느끼는 상황
- 기타 테스트 비디오 (나무, 도로 등의 물체가 포함된 비디오)
- → Remapping 전과 후의 환자들의 주변 시야 능력을 비교

비디오 데이터 사용 시 장점

- 녹내장 환자의 시야 보완 처리가 실시간으로 잘 작동하는지, 영상의 자연스러 운 흐름을 방해하지 않는지 테스트 가능
- 움직이는 물체에 대한 시야 보완 처리를 확인할 수 있음
- 추후 VR 기기 개발 시 사용자가 실제 환경에서 시야 보완 효과를 테스트하여 인지적 반응(불편함, 어지러움 등)을 평가

UWHVF DATASET

JSON 파일 분석

[UWHVF Dataset의 JSON File 데이터 세트 기본 구조]

```
기본 정보:
pts: 3871
eyes: 7428
hvfs: 28943 (Humphrey Visual Fields)
데이터 기본 정보:
총 레코드 수: 14510
컬럼 목록:
['patient_id', 'gender', 'year', 'age', 'hvf', 'hvf_seq', 'td', 'td_seq']
```

- 우리 프로젝트에서는 **시야 결손 패턴**이 필요하기에 'hvf' column을 사용
- 그리고 이를 활용하여 매트릭스를 시각화 → 시야 결손 패턴을 만들기 위해 VF 값 분석 진행

UWHVF DATASET

JSON 파일 분석

[특정 Patient ID의 HVF Matrix]

- 각 Value의 단위: dB(데시벨)
 - 。 이는 각 지점에서 환자가 감지할 수 있는 빛의 **감도**를 나타냄
 - 높은 숫자일수록 시야 검사 시 측정하는 더 약한 빛을 잘 감지하는
 영역 (해당 영역에서 시각이 더 민감하다는 뜻)
- **맹점:** (4,7) 위치의 0.0 dB
- 정상 범위: 대략 25-32 dB 사이
 - (그 이하일수록 잠재적 시야 결손을 시사)
- 측정 영역 밖: 100 dB
- 시야 결손 값의 기준?
 - Humphrey Visual Field Test 같은 시야 검사 기기에서는 보통 10 dB 이하를 완전한 결손 임계값으로 간주

[출처] <u>ssa.gov</u>

UWHVF DATASET

HVF Matrix 시각화

[출처] CRABB, D. P. A view on glaucoma—are we seeing it clearly?. Eye, 2016, 30.2: 304-313.

- 녹내장 환자들이 실제로 어떻게 보이는지 설문한 연구 논문 결과 대부분의 환자들이 **blurred parts**(주변에 흐리게 보이는 부분) 이 많았음
- 따라서 시야 결손 패턴 생성시 결손 부분을 **가우시안 블러 형태**로 처리

ALGORITHM 일고리즘 구현 과 정

1 **환자 ID 입력**

Streamlit 웹페이지에 환자 ID, 영상, json 파일 입력 후 "처리 시작"

2) 시야결손 매트릭스 생성

- json 파일에서 입력한 환자의 HVF 데이터 값 추출
- HVF 데이터로 시야 결손 matrix 생성

ALGORITHM | 알고리즘 구현 과 정

3

YOLO 탐지

YOLOv8로 객체(차량, 사람 등) 탐지 후 Bounding Box 생성

→ Bounding Box로 주요 객체를 강조하여 위험 발생 가능성 감소 효과

ex.

[출처] https://yolov8.com

ALGORITHM | 알고리즘 구현 과 정

시야결손 패턴 결합

- 시야 결손 Matrix를 영상 크기에 맞게 조정
- 시야 결손 Matrix와 영상 결합

ALGORITHM | 알고리즘 구현 과

정

[Visual Field Detect]

[Remapped Image]

전체 이미지를 잔여 시야 부분으로 이미지 리매핑 (결손부위로 안 보이던 부분을 볼 수 있는 시야 확장 효과)

ALGORITHM | 알고리즘 구현 과 정

민감도 기반 리매핑

민감도 **20 ~ 40dB** 부분에 Remapping(20 ~ 40dB 부분에서 일상생활 지장X 때문)

cf) 민감도 별 시야 결손 정도

30 ~ 40dB : 정상 시야

20 ~ 30dB : 일부 결손, 일상생활 지장 X

10 ~ 20dB : 불편함을 느끼기 시작

10dB 이하: 일상생활에 큰 불편함

20 ~ 40dB 해당하는 성분 중 가장 큰 연결 성분 찾기

- → 해당 부분의 가장 큰 영역 생성
- → 가장 큰 연결 성분의 좌표(x, y)를 찾고 시야 결손 패턴 값에 따라 좌표에 가중치 부여
- → 해당 영역의 중심 계산 후 축소 영상 배치

ALGORITHM | 알고리즘 구현 과 정

실제 시야처럼 재구성

웹페이지 제작

- 영상 Remapping 후 녹내장 환자가 실제 보는 것처럼 시야 결손 패턴 추가하여 재구성
- 웹페이지 제작 : 환자 ID 및 json 파일 입력 → 영상 Remapping 결과 저장

ex.

녹내장 환자 시야 확보 영상 처리			
환자 ID를 입력하세요:			
3645			
동영상 파일 경로:			
HVF 데이터 JSON 경로:			
	\alldata.json		
처리 시작			

RESULT | 결과 분석

>>> 동영상 시연 결과

→ 환자 ID: 3645

RESULT | 결과 분석

>>> 동영상 시연 결과

시야 결손이 큰 경우 지나친 이미지 축소 및 왜곡을 줄이기 위해 정상 시야 내에 완전히 리매핑을 하지 않았음

→ 환자 ID: 248

<원본 이미지>

<환자가 바라보는 시야 이미지>

<알고리즘 적용 후 이미지>

정상 시야 중 가장 큰 영역

적용한 알고리즘이 환자에게 어떻게 보이는지 시뮬레이션

RESULT | 결과 분석

>>> 동영상 시연 결과

→ 환자 ID: 248 (시야 결손이 큰 녹내장 환자 케이스)

<원본 이미지>

<환자가 바라보는 시야 이미지>

<알고리즘 적용 후 이미지>

알고리즘 적용 전: 1명의 객체 감지

알고리즘 적용 후: 7개의 객체 탐지

RESULT 결과 분석

>>> 이미지 시연 결과 (시야 결손이 적은 경우)

→ 환자 ID: 1930

→ 정확한 객체 탐지

→ 부정확한 객체 탐지

환자 ID 248보다 시야 결손이 적기 때문에 리매핑된 이미지에서도 시야 결손 패턴이 이미지에 크게 영향을 주지 않음

RESULT 결과 분석

>>> 이미지 시연 결과 (시야 결손이 적은 경우)

→ 환자 ID: 2577

→ 정확한 객체 탐지

→ 부정확한 객체 탐지 → 작은 객체 인식 성능이 낮은 YOLO의 한계

→ <mark>환자 ID 1930과 2577 비교 :</mark> 두 환자의 경우 시야 결손 패턴이 이미지 축소 및 왜곡에 <mark>적게</mark> 영향을 받음 → 같은 이미지에서의 객체 탐지 개수가 일정하므로 이러한 경우 객체 탐지 자체는 시야 결손보다는 시야 결손에 따른 리매핑 적용 전후의 이미지 or 영상에만 영향을 받음

DISCUSSION 한계점

영상 조건에 따른 성능 변화

비디오 해상도, 조명, 동작 속도 등 환경적 요인이 시스템 성능에 영향을 미침.

작은 객체 인식 한계

객체의 크기가 작은 경우 객체 인식 불가

개인화 모델의 데이터 요구

환자별 최적화를 위해 대규모 데이터와 학습이 필요하지만, 시간과 비용 측면에서 제약이 큼.

말기 환자 리매핑 한계

녹내장 말기 환자의 좁은 시야로 인해 리매핑 시 과도한 왜곡이 발생하여 공간 지각이 어려울 수 있음.

VR 적용 시 하드웨어 한계

VR 기기로 개발할 경우, 무게와 배터리 지속 시간, 실시간 처리 딜레이 등이 사용자 경험에 부정적 영향을 줄 수 있음.

결손 부위 처리의 한계

결손 부위를 가우시안 블러로 처리하였지만, 실제 환자 개인마다 결손 방식이 다르기 때 문에 환자 맞춤형 결손 부위 표현 방식을 고 려해야함.

DISCUSSION 기대 효과

Remapping 개선 가능성

정상 시야 영역으로 리매핑 후 축소된 객체를 탐 지하여 객체 인지 능력을 강화하는 방향으로 시 스템 보완 가능.

경량화된 알고리즘의 활용성

기존 논문(Digital Spectacles) 시스템보다 경량화된 알고리즘을 통해 추후 VR 기기 개발에 기여 가능.

Q & A