ARCOS Group

uc3m Universidad Carlos III de Madrid

Introduction to the course Computer Structure

Bachelor in Computer Science and Engineering
Bachelor in Applied Mathematics and Computing
Dual Bachelor in Computer Science and Engineering and Business Administration

Introduction

General information about the course

- Course development
- Evaluation system

Computer Structure at UC3M

- This is a second-year, first-semester course that is taught in three different degree programs:
 - Bachelor in Computer Science and Engineering
 - Bachelor in Applied Mathematics and Computing
 - Dual Bachelor in Computer Science and Engineering and Business Administration

Computer Structure

Bachelor in Computer Science and Engineering

Computer Structure

Bachelor in Computer Science and Engineering

Computer Structure

Bachelor in Computer Science and Engineering

Summary course profile

- COMPUTER STRUCTURE
- Coordinator
- Goals
- Program
- Bibliography

Course profile

COMPUTER STRUCTURE

- MANDATORY / BASIC INSTRUCTION
- YEAR: 2°
- QUARTER: I°
- ECTS credits: 6
- Coordinator: Félix García Carballeira (felix.garcía@uc3m.es)

COMPUTER STRUCTURE

To know and understand the main components and basic operation of a computer (concepts behind the design of computers).

COMPUTER STRUCTURE

To know and understand the main components and basic operation of a <u>computer</u> (concepts behind the design of computers).

COMPUTER STRUCTURE

To know and understand the main components and basic operation of a computer (concepts behind the design of computers).

Example 1

Let the following code be:

```
int n;
n = 40000;
printf("%d \n", n*n ); // 40000²

n = 50000;
printf("%d \n", n*n ); // 50000²
```

It produces the following output:

```
160000000
-1794967296
```

Is this correct, what is the problem?

Example 2

Let the following code be:

```
float x, y, z;

x = 1.0e20; y = -1.0e20; z = 3.14;

printf("%f\n", (x + y) + z);
printf("%f\n", x + (y + z));
```

It produces the following output:

```
3.140000
0.000000
```

▶ Is (x+y)+z == x+(y+z) satisfied?

Example 3

mp3 Encoding, iTunes 7.3, sec

Is a dual-core processor faster than a quad-core processor?

COMPUTER STRUCTURE

To know and understand the main components and basic operation of a computer (concepts behind the design of computers).

COMPUTER STRUCTURE

To know and understand the main components and basic operation of a computer (concepts behind the design of computers).

Course profile **Program**

- ▶ Lesson I. Introduction to computers
- Lesson 2. Data representation and basic
- Lesson 3. Introduction to assembly programming
- Lesson 4. Processor
- Lesson 5. Memory hierarchy
- Lesson 6. Input/output systems

Course profile Materials

▶ At Aula Global

Bibliography

basic

Problemas resueltos de Estructura de Computadores
 F. García Carballeira, J. Carretero Pérez,
 J. D. García, D. Expósito,
 Segunda edición,
 Editorial Paraninfo, 2015

 Computer Organization and Design The Hardware/Software Interface D.A. Patterson, J. Hennessy Quinta edición, 2014

Computer Organization and Design RISC-V Edition: The Hardware Software Interface, David A. Patterson, J. L. Hennessy, Segunda edición, 2021

Bibliography complementary

Fundamentos de Sistemas Digitales.
 Thomas L. Floyd
 Editorial Pearson, 2016

Computer Organization and Architecture.
 William Stallings
 Décima edición,
 Editorial Pearson, 2016

Complementary materials

- Computer History Museum
- Museo virtual de la Informática,
 Universidad de Castilla-la Mancha
- https://www.computer.org/cms/Computer.org/Publication s/timeline.pdf
- ▶ The EDSAC Simulator
- IBM archives
- Charles Babbage Institute
- Museo histórico de la Informática,
 Universidad Politécnica de Madrid

Introduction

General information about the course

Course development

Evaluation system

Schedule

- ▶ 14 weeks in total (presential classes)
 - ▶ 14 sessions of 100 min. in magistral group
 - ▶ 15 sessions of 100 min. in individual group
 - ▶ 4 of them are laboratories (presential)
 - ▶ Il sessions for exercises + mini-exam + ...

Desarrollo del curso

- ▶ 14 weeks in total (presential classes)
 - ▶ 14 sessions of 100 min. in magistral group
 - ▶ 15 sessions of 100 min. in individual group
 - ▶ 4 of them are laboratories (presential)
 - ▶ Il sessions for exercises + mini-exam + ...

100 m | 100 m | 4,6 h (personal work)

average weekly workload (8 hours)

Teachers and classrooms

Leganés, Bachelor on CS&E

Estructura de Computadores (cod. 13874), 6 ECTS → Este es un horario general de la asignatura. Aquí puedes ver el horario completo. → La información de los horarios de esta titulación ha sido generada de forma automática. Los cambios realizados durante esta jornada no se reflejarán instantáneamente. → La equivalencia de semanas para los horarios puede consultarla en la siguiente tabla (la fecha corresponde al lunes de la semana en cuestión). 1er Custrimestre | St → 2208 | St → 1209 | Crupo 81 Responsable: GARCIA CARRALI EIRA EELIY Responsable grupo agregado: CALDERON MATEOS, ALEJANDRO Mar 11:00-13:00 Semanas: 3-17 Aulas: 2.3.D02 Vie 11:00-13:00 Semanas: 3-4, 6-7, 9, 11-12, 14-17 Aulas: 1.0.F01 Vie 11:00-13:00 Semanas: 5, 8, 10, 13 Aulas: INF 1.2.G.01 Crupo 83 Responsable: CASARES ANDRES, MARIA GREGORIA Responsable grupo agregado: CASARES ANDRES, MARIA GREGORIA Mar 17:00-19:00 Semanas: 3-17 Aulas: 2.3.C04 Jue 17:00-19:00 Semanas: 3-4, 6-7, 9, 11-12, 14-17 Aulas: 1.0.C01 Jue 17:00-19:00 Semanas: 5, 8, 10, 13 Aulas: INF 7.0.J03 DUAL + TEL Crupo 84 Responsable: No especificado Responsable grupo agregado: CASARES ANDRES, MARIA GREGORIA Mar 17:00-19:00 Semanas: 3-17 Aulas: 2.3.C04 Mie 15:00-17:00 Semanas: 3-17 Aulas: 2.3.B01 III Grupo 87 Responsable: RINCON FUENTES, FRANCISCO DANIEL Responsable grupo agregado: HERNANDEZ BRAVO, ANGEL Mar 15:00-17:00 Semanas: 3-17 Aulas: 7.0.J06 Jue 19:00-21:00 Semanas: 3-4, 6-7, 9, 11-12, 14-17 Aulas: 7.1.H01 Jue 19:00-21:00 Semanas: 5, 8, 10, 13 Aulas: INF 7.0.J02 DUAL+ TEL ₩ Grupo 88 Responsable: PEREZ TRAPERO, ANTONIO Responsable grupo agregado: HERNANDEZ BRAVO, ANGEL Mar 15:00-17:00 Semanas: 3-17 Aulas: 7.0.J06 Vie 15:00-17:00 Semanas: 3-4, 6-7, 9, 11-12, 14-17 Aulas: 1.0.B03 Vie 15:00-17:00 Semanas: 5, 8, 10, 13 Aulas: INF 1.2.G.03 DUAL ₩ Grupo 89 Responsable: TESSIER FERNANDEZ, CARLOS Responsable grupo agregado: HERNANDEZ BRAVO, ANGEL Mar 15:00-17:00 Semanas: 3-17 Aulas: 7.0.J06 Jue 15:00-17:00 Semanas: 3-4, 6-7, 9, 11-12, 14-17 Aulas: 7.0.J01 Jue 15:00-17:00 Semanas: 5, 8, 10, 13 Aulas: INF 1.2.G.01

Introduction

General information about the course

Course development

Evaluation system

▶ The student evaluation will be based on:

▶ The student evaluation will be based on:

Continuous evaluation

Labs

- ▶ TWO mandatory laboratories will be performed:
 - Minimum grade for each lab.: 2
 - Minimum average grade of all labs.: 4
- Weights of each lab.: 15%
- ▶ To be carried out in groups of two students
- If cheating is detected, both parties involved (copied and copiers) will be graded with a 0 (zero)

Continuous evaluation

Small Exams

- ▶ THREE small exams will be performed
 - ▶ Duration: ~15 a ~20 minutes.
 - All the knowledge acquired by the student up to that moment will be evaluated.
- Weight of each exam: 10%
- They are made individually.
- No exam will be repeated.
- Unless there is a medical reason justified sufficiently in advance, a student will not be allowed to take the exam in a group other than the one in which he/she is enrolled.

Continuous evaluation

Continuous evaluation is followed when:

- All laboratories are submitted with:
 - Minimum grade for each laboratory: 2
 - Minimum average grade for all labs: 4

The student evaluation will be based on:

final exam

- It includes all the content of the subject: all the theoretical and practical content of the course
 - The minimum grade in the final exam will be 4
 - If you do not take this exam, it will appear as **not presented** (even if you have passed the continuous evaluation).
- No reference material may be used for the exam, nor may it be copied.
- It will be necessary to present the ID card or university card to take the exam.

Ordinary call

- Continuous evaluation is followed
- No continuous evaluation is followed

Extraordinary call

- Continuous evaluation is followed
- No continuous evaluation is followed

Ordinary call + continuous eval. is followed:

▶ Ordinary call + <u>no</u> continuous eval. is followed:

▶ Ordinary call + <u>no</u> continuous eval. is followed:

Extraordinary call + <u>no</u> continuous eval. is followed:

Extraordinary call + continuous eval. is followed:

How important is continuous evaluation

	2014- 2015	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020
Students following continuous assessment	78%	74%	74%	71%	78%	88%
Students who pass the continuous evaluation	74%	64%	67%	66%	76%	84%
Students who pass the continuous evaluation with respect to those who follow it	87%	87%	90%	89%	89%	95%
Students who passed the course at the end but dropped out of continuous assessment	< 1 %	< %	< %	< %	<1%	<1%
Estudiantes que aprobaron la evaluación continua y han aprobado la asignatura al final	92%	89%	85%	86%	94%	90%
Students who completed and failed the continuous evaluation have passed the course at the end of the course	6%	7%	4%	6%	2%	<1%
Approved students	67%	66%	65%	62%	78%	82%
Students not presented	23%	20%	22%	26%	15%	9%
Failing students	10%	14%	13%	12%	7%	9%

Final grade

- The final grade will be increased by I point for those students who perform the following activities:
 - All continuous assessment tests.
 - All the small exams
 - All the laboratories
 - Dobtain more than a 7 out of 10 grade in the continuous evaluation and at least 4 out of 10 in the final exam.

ARCOS Group

uc3m Universidad Carlos III de Madrid

Introduction to the course Computer Structure

Bachelor in Computer Science and Engineering
Bachelor in Applied Mathematics and Computing
Dual Bachelor in Computer Science and Engineering and Business Administration

