1

Termodinâmica e Dinâmica de Fluidos

1° Semestre – Ano Lectivo 2023/24

Exame -12/01/2024

Duração: 2 horas

I (3 valores)

Uma câmara cilíndrica, fechada por um pistão, contém amoníaco inicialmente à temperatura de -20 °C e com factor qualidade de 50%. O amoníaco é aquecido lentamente até um estado final à pressão de 6 bar e à temperatura de 180 °C. Enquanto a amoníaco é aquecido, a pressão dentro da câmara varia linearmente com volume.

- a) Represente o processo num diagrama p-v.
- b) Calcule o trabalho e a transferência de calor, em kJ/kg.

II (3.5 valores)

Um ciclo de potência opera entre a água superficial de um lago à temperatura de $25\,^{\circ}$ C e a água a uma profundidade cuja temperatura é $10\,^{\circ}$ C. No estado estacionário, o ciclo desenvolve uma potência de $10\,\mathrm{kW}$, enquanto transfere calor para a água a temperatura mais baixa à taxa de $14\,400\,\mathrm{kJ/min}$.

- a) Determine o rendimento do ciclo de potência.
- b) O ciclo de potência descrito no enunciado é um ciclo possível?

III (3.5 valores)

Uma massa ar passa por um processo desde um estado inicial $T_1 = 300 \,\mathrm{K}$, $v_1 = 0, 8 \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1}$, até um estado final onde $T_2 = 420 \,\mathrm{K}$, $v_2 = 0, 2 \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1}$. Suponha que o ar se comporta como um gás ideal com $c_v = 0, 72 \,\mathrm{kJ} \cdot \mathrm{kg}^{-1} \cdot \mathrm{K}^{-1}$.

a) O processo poderá ocorrer adiabaticamente? (Sugestão: Analise o balanço de entropia).

b) Se o processo puder ocorrer adiabaticamente, determine o trabalho, em kJ/kg. Caso contrário, determine a direcção da transferência de calor (não será necessário calcular o valor do calor).

IV (3 valores)

Água a $20\,^{\circ}$ C ($\rho = 997\,\mathrm{kg/m^3}$) flui continuamente através da caixa representada na Figura. A velocidade média em todas as portas é de 7 m/s. Sabendo que a componente vertical da força exercida pela caixa sobre a superfície em que assenta excede em 36 N o peso da caixa e da água, qual é a área da secção da entrada 1?

V (3 valores)

Um escoamento de ar através do tubo representado na Figura sai para a atmosfera ao nível médio do mar, à temperatura de 20 °C . Os diâmetros da secções 1 e 3 são 5 cm, e o diâmetro da secção 2 é 3 cm. Qual deverá ser o valor mínimo do fluxo de massa de ar para sugar a água, contida num recipiente 10 cm abaixo da secção 2, para dentro da conduta?

$$R = 287 \,\mathrm{J \cdot kg^{-1} \cdot K^{-1}}$$
 $p_a = 10^5 \,\mathrm{Pa}$

VI (4 valores)

Um líquido viscoso escorre numa placa inclinada de um ângulo θ , formando uma película de espessura h constante, conforme se mostra na Figura. O escoamento pode ser considerado laminar com o campo de velocidades dado por

$$u = f(y)$$
 $v = 0$ $w = 0$. (1)

A tensão de viscosidade com a atmosfera poder ser considerada nula. O líquido é incompressível e tem massa volúmica ρ_0 e coeficiente de viscosidade μ .

- a) Determine a função f(y).
- b) Qual será a componente x força exercida na placa por unidade de comprimento?

Prof. José M. Castanheira

Formulário

$$\begin{split} pv &= RT; \qquad R = 287 \, \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{kg}^{-1}; \qquad \mathrm{T} \, \mathrm{ds} = \mathrm{du} + \mathrm{pd} v; \qquad \mathrm{T} \, \mathrm{ds} = \mathrm{dh} - v \mathrm{dp} \qquad \mathrm{du} = c_v(\mathrm{T}) \mathrm{dT} \\ \dot{Q} - \dot{W}_s - \dot{W}_{ss} &= \left(\hat{h} + \frac{1}{2} V^2 + gz \right)_{\mathrm{out}} \dot{m}_{\mathrm{out}} - \left(\hat{h} + \frac{1}{2} V^2 + gz \right)_{\mathrm{in}} \dot{m}_{\mathrm{in}}, \qquad \hat{h} = \hat{u} + \frac{p \mathcal{V}}{m} \end{split}$$

$$& \rho \frac{\mathrm{D}u}{\mathrm{D}t} = \rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \\ & \rho \frac{\mathrm{D}w}{\mathrm{D}t} = \rho g_y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) \\ & \rho \frac{\mathrm{D}w}{\mathrm{D}t} = \rho g_z - \frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) \\ & \tau_{xx} = 2\mu \frac{\partial u}{\partial x}, \quad \tau_{yy} = 2\mu \frac{\partial v}{\partial y}, \quad \tau_{zz} = 2\mu \frac{\partial w}{\partial z} \\ & \tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right), \quad \tau_{xz} = \tau_{zx} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \\ & \tau_{yz} = \tau_{zy} = \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \\ & \frac{\mathrm{d}B_{\mathrm{Sist}}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\mathrm{CV}} \rho \beta \mathrm{d} \mathcal{V} \right) + \int_{\mathrm{CS}} \rho \beta V \cos \theta \, \mathrm{d}A_{\mathrm{out}} - \int_{\mathrm{CS}} \rho \beta V \cos \theta \, \mathrm{d}A_{\mathrm{in}} \\ & \frac{\mathrm{d}B_{\mathrm{Sist}}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\mathrm{CV}} \rho \beta \mathrm{d} \mathcal{V} \right) + \int_{\mathrm{CS}} \rho \beta V \nabla_r \cdot \hat{n} \, \mathrm{d}A, \qquad \beta = \frac{\mathrm{d}B}{\mathrm{d}m} \end{split}$$

TABLE A-13 Properties of Saturated Ammonia (Liquid-Vapor): Temperature Table

Pressure Conversions: 1 bar = 0.1 MPa		Specific Volume m³/kg		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg·K		
Toma	= 10 ² kPa	Sat. Liquid	Sat. Vapor	Sat. Liquid	Sat.	Sat. Liquid	From	Sat. Vapor	Sat. Liquid	Sat.	Tomas
Temp. °C	Press. bar	$v_f \times 10^3$	vapor υ _g	Liquia <i>u_f</i>	Vapor u _g	Liquid h _f	Evap. h _{fg}	h _g	Liquia S _f	Vapor S _g	Temp. °C
–50	0.4086	1.4245	2.6265	-43,94	1264.99	-43.88	1416.20	1372.32	-0.1922	6.1543	-50
-45	0.5453	1.4367	2.0060	-22.03	1271.19	-21.95	1402.52	1380.57	-0.0951	6.0523	-45
-40	0.7174	1.4493	1.5524	-0.10	1277.20	0.00	1388.56	1388.56	0.0000	5.9557	-40
-36	0.8850	1.4597	1.2757	17.47	1281.87	17.60	1377.17	1394.77	0.0747	5.8819	-36
-32	1.0832	1.4703	1.0561	35.09	1286.41	35.25	1365.55	1400.81	0.1484	5.8111	-32
_30	1.1950	1.4757	0.9634	43.93	1288.63	44.10	1359.65	1403.75	0.1849	5.7767	-30
-28	1.3159	1.4812	0.8803	52.78	1290.82	52.97	1353.68	1406.66	0.2212	5.7430	-28
-26	1.4465	1.4867	0.8056	61.65	1292.97	61.86	1347.65	1409.51	0.2572	5.7100	-26
-22	1.7390	1.4980	0.6780	79.46	1297.18	79.72	1335.36	1415.08	0.3287	5.6457	-22
-20	1.9019	1.5038	0.6233	88.40	1299.23	88.68	1329.10	1417.79	0.3642	5.6144	-20
-18	2.0769	1.5096	0.5739	97.36	1301.25	97.68	1322.77	1420.45	0.3994	5.5837	-18
-16	2.2644	1.5155	0.5291	106.36	1303.23	106.70	1316.35	1423.05	0.4346	5.5536	-16
-14	2.4652	1.5215	0.4885	115.37	1305.17	115.75	1309.86	1425.61	0.4695	5.5239	-14
-12	2.6798	1.5276	0.4516	124.42	1307.08	124.83	1303.28	1428.11	0.5043	5.4948	-12
-10	2.9089	1.5338	0.4180	133.50	1308.95	133.94	1296.61	1430.55	0.5389	5.4662	-10
-8	3.1532	1.5400	0.3874	142.60	1310.78	143.09	1289.86	1432.95	0.5734	5.4380	-8
-6	3.4134	1.5464	0.3595	151.74	1312.57	152.26	1283.02	1435.28	0.6077	5.4103	-6
-4	3.6901	1.5528	0.3340	160.88	1314.32	161.46	1276.10	1437.56	0.6418	5.3831	-4
-2	3.9842	1.5594	0.3106	170.07	1316.04	170.69	1269.08	1439.78	0.6759	5.3562	-2
0	4.2962	1.5660	0.2892	179.29	1317.71	179.96	1261.97	1441.94	0.7097	5.3298	0
2	4.6270	1.5727	0.2695	188.53	1319.34	189.26	1254.77	1444.03	0.7435	5.3038	2
4	4.9773	1.5796	0.2514	197.80	1320.92	198.59	1247.48	1446.07	0.7770	5.2781	4
6	5.3479	1.5866	0.2348	207.10	1322.47	207.95	1240.09	1448.04	0.8105	5.2529	6
8	5.7395	1.5936	0.2195	216.42	1323.96	217.34	1232.61	1449.94	0.8438	5.2279	8
10	6.1529	1.6008	0.2054	225.77	1325.42	226.75	1225.03	1451.78	0.8769	5.2033	10
12	6.5890	1.6081	0.1923	235.14	1326.82	236.20	1217.35	1453.55	0.9099	5.1791	12
16	7.5324	1.6231	0.1691	253.95	1329.48	255.18	1201.70	1456.87	0.9755	5.1314	16
20	8.5762	1.6386	0.1492	272.86	1331.94	274.26	1185.64	1459.90	1.0404	5.0849	20
24	9.7274	1.6547	0.1320	291.84	1334.19	293.45	1169.16	1462.61	1.1048	5.0394	24
28	10.993	1.6714	0.1172	310.92	1336.20	312.75	1152.24	1465.00	1.1686	4.9948	28
32	12.380	1.6887	0.1043	330.07	1337.97	332.17	1134.87	1467.03	1.2319	4.9509	32
36	13.896	1.7068	0.0930	349.32	1339.47	351.69	1117.00	1468.70	1.2946	4.9078	36
40	15.549	1.7256	0.0831	368.67	1340.70	371.35	1098.62	1469.97	1.3569	4.8652	40
45	17.819	1.7503	0.0725	393.01	1341.81	396.13	1074.84	1470.96	1.4341	4.8125	45
50	20.331	1.7765	0.0634	417.56	1342.42	421.17	1050.09	1471.26	1.5109	4.7604	50

 $v_{\rm f}$ = (table value)/1000

TABLE A-15		Properties of Superheated Ammonia Vapor (Continued)						
T	v	u	h	S	D	u		

Т	υ	u	h	S	v	u	h	S			
۰c	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K			
		5.5 bar =	0.55 MPa			p = 6.0 ba	r = 0.60 N				
		$(T_{\rm sat}=6.$			$(T_{\text{sat}} = 9.27^{\circ}\text{C})$						
Sat.	0.22861	1323.06	1448.80	5.2430	0.21038	1324.89	1451.12	5.2122			
10	0.23227	1329.88	1457.63	5.2743	0.21115	1326.47	1453.16	5.2195			
20	0.24335	1350.50	1484.34	5.3671	0.22155	1347.62	1480.55	5.3145			
30	0.25403	1370.35	1510.07	5.4534	0.23152	1367.90	1506.81	5.4026			
40 50	0.26441	1389.64 1408.53	1535.07 1559.53	5.5345 5.6114	0.24118 0.25059	1387.52 1406.67	1532.23 1557.03	5.4851 5.5631			
	0.28449	1427.13	1583.60	5.6848	0.25981	1425.49	1581.38				
60 80	0.28449	1463.85	1631.04	5.8230	0.25981	1462.52	1629.22	5.6373 5.7768			
100	0.32307	1500.36	1678.05	5.9525	0.29546	1499.25	1676.52	5.9071			
120	0.34190	1537.02	1725.07	6.0753	0.31281	1536.07	1723.76	6.0304			
140	0.36054	1574.07	1772.37	6.1926	0.32997	1573.24	1771.22	6.1481			
160	0.37903	1611.66	1820.13	6.3055	0.34699	1610.92	1819.12	6.2613			
180	0.39742	1649.88	1868.46	6.4146	0.36390	1649.22	1867.56	6.3707			
200	0.41571	1688.79	1917.43	6.5203	0.38071	1688.20	1916.63	6.4766			
		7.0 bar =	0.70 MP=			p = 8.0 ba	r _ 0 90 l	4Da			
	<i>p</i> =	(T _{sat} = 13					17.84°C)	ara			
Sat.	0.18148	1328.04	1455.07	5.1576	0.15958	1330.64	1458.30	5.1099			
20	0.18721	1341.72	1472.77	5.2186	0.16138	1335.59	1464.70	5.1318			
30	0.19610	1362.88	1500.15	5.3104	0.16948	1357.71	1493.29	5.2277			
40	0.20464	1383.20	1526.45	5.3958	0.17720	1378.77	1520.53	5.3161			
50	0.21293	1402.90	1551.95	5.4760	0.18465	1399.05	1546.77	5.3986			
60	0.22101	1422.16	1576.87	5.5519	0.19189	1418.77	1572.28	5.4763			
80	0.23674	1459.85	1625.56	5.6939	0.20590	1457.14	1621.86	5.6209			
100	0.25205	1497.02	1673.46	5.8258	0.21949	1494.77	1670.37	5.7545			
120	0.26709	1534.16	1721.12	5.9502	0.23280	1532.24	1718.48	5.8801			
140 160	0.28193 0.29663	1571.57 1609.44	1768.92 1817.08	6.0688 6.1826	0.24590 0.25886	1569.89 1607.96	1766.61 1815.04	5.9995 6.1140			
180	0.31121	1647.90	1865.75	6.2925	0.27170	1646.57	1863.94	6.2243			
200	0.32571	1687.02	1915.01	6.3988	0.28445	1685.83	1913.39	6.3311			
	p = 9.0 bar = 0.90 MPa (T _{sat} = 21.52°C)					p = 10.0 bar = 1.00 MPa (T _{sat} = 24.89°C)					
Sat.	0.14239	1332.82	1460.97	5.0675	0.12852	1334.66	1463.18	5.0294			
30	0.14872	1352.36	1486.20	5.1520	0.13206	1346.82	1478.88	5.0816			
40	0.15582	1374.21	1514.45	5.2436	0.13868	1369.52	1508.20	5.1768			
50	0.16263	1395.11	1541.47	5.3286	0.14499	1391.07	1536.06	5.2644			
60	0.16922	1415.32	1567.61	5.4083	0.15106	1411.79	1562.86	5.3460			
80	0.18191	1454.39	1618.11	5.5555	0.16270	1451.60	1614.31	5.4960			
100	0.19416	1492.50	1667.24	5.6908	0.17389	1490.20	1664.10	5.6332			
120	0.20612	1530.30	1715.81	5.8176	0.18478	1528.35	1713.13	5.7612			
140	0.21788	1568.20	1764.29	5.9379	0.19545	1566.51	1761.96	5.8823			
160	0.22948	1606.46	1813.00	6.0530	0.20598	1604.97	1810.94	5.9981			
180 200	0.24097 0.25237	1645.24 1684.64	1862.12 1911.77	6.1639 6.2711	0.21638 0.22670	1643.91 1683.44	1860.29 1910.14	6.1095 6.2171			
200	0.23231	1004.04	1911.77	0.2711	0.22010	1003.44	1910.14	0.2111			