SUPPLEMENT TO "ASSESSMENT OF LOCAL INFLUENCE FOR THE ANALYSIS OF AGREEMENT"

CARLA LEAL, MANUEL GALEA, AND FELIPE OSORIO

APPENDIX A. ADDITIONAL SIMULATION RESULTS

We conducted and additional simulation experiment based on 500 datasets with sample sizes of n=25,50,100 and 200 following a normal distribution with parameters

$$\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad \boldsymbol{\Sigma} = \begin{pmatrix} 1.00 & 0.95 \\ 0.95 & 1.00 \end{pmatrix},$$

were generated. Two outliers were introduced replacing observations 1 and 10, i.e. $x_{2,1}$ and $x_{2,10}$ as $x_{2,1} + \delta$ and $x_{2,10} + \delta$, respectively, for $\delta = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0$ and 3.5. A summary of the results is presented in tables below (see Section 4 of the manuscript).

Table 1. Outlier detection percentage using different influence measures: $\hat{\rho}_c(\omega)$ as objective function.

\overline{n}	Influence				δ			
	measure	0.5	1.0	1.5	2.0	2.5	3.0	3.5
25	C	2.4	21.0	58.8	76.8	85.4	88.6	90.0
	B	2.4	21.0	58.8	76.8	85.4	88.6	90.0
	FI	2.4	14.4	39.4	53.8	58.2	59.4	59.6
	SI	2.4	21.0	58.8	76.8	85.4	88.6	90.0
	FI and SI	0.4	7.8	29.0	45.6	52.8	57.8	57.4
50	C	1.8	23.2	65.4	87.0	95.8	99.2	99.2
	B	1.8	23.2	65.4	87.0	95.8	99.2	99.2
	FI	3.8	34.2	74.2	87.8	92.2	94.6	94.4
	SI	1.8	23.2	65.4	87.0	95.8	99.2	99.2
	FI and SI	0.6	15.2	51.6	76.4	88.4	94.0	93.6
100	C	3.2	26.0	59.0	80.4	93.4	99.6	99.2
	B	3.2	26.0	59.0	80.4	93.4	99.6	99.2
	FI	4.6	48.2	87.0	96.6	98.4	99.6	99.2
	SI	3.2	26.0	59.0	80.4	93.4	99.6	99.2
	FI and SI	1.6	18.8	52.6	78.2	92.0	99.2	98.4
200	C	5.8	32.4	58.2	71.6	91.6	99.2	99.0
	B	5.8	32.4	58.2	71.6	91.6	99.2	99.0
	FI	6.0	55.4	92.2	99.8	99.6	100.0	100.0
	SI	5.8	32.4	58.2	71.6	91.6	99.2	99.0
	FI and SI	2.6	23.8	54.8	71.4	91.2	99.2	99.0

The authors were partially supported by FONDECYT grants 1140580 and 1150325, respectively.

1

Table 2. Outlier detection percentage using different influence measures: $\widehat{\psi}_c(\omega)$ as objective function.

	т О	1						
n	Influence				δ			
	measure	0.5	1.0	1.5	2.0	2.5	3.0	3.5
25	C	2.0	24.8	62.8	82.0	91.8	97.2	98.4
	B	2.0	24.8	62.8	82.0	91.8	97.2	98.4
	FI	1.8	16.8	43.6	61.2	72.0	78.8	79.4
	SI	2.0	24.8	62.8	82.0	91.8	97.2	98.4
	FI and SI	1.8	16.8	43.6	61.2	72.0	78.8	79.4
50	C	4.0	38.4	85.0	95.6	99.4	100.0	100.0
	B	4.0	38.4	85.0	95.6	99.4	100.0	100.0
	FI	4.0	37.8	78.6	92.4	97.0	99.0	99.2
	SI	4.0	38.4	85.0	95.6	99.4	100.0	100.0
	FI and SI	3.4	34.8	78.6	92.4	97.0	99.0	99.2
100	C	3.8	48.4	92.2	99.4	100.0	100.0	100.0
	B	3.8	48.4	92.2	99.4	100.0	100.0	100.0
	FI	4.2	54.6	90.0	97.8	100.0	100.0	100.0
	SI	3.8	48.4	92.2	99.4	100.0	100.0	100.0
	FI and SI	3.0	44.2	89.6	97.8	100.0	100.0	100.0
200	C	7.6	63.2	97.2	100.0	100.0	100.0	100.0
	B	7.6	63.2	97.2	100.0	100.0	100.0	100.0
	FI	6.6	64.2	95.2	100.0	100.0	100.0	100.0
	SI	7.6	63.2	97.2	100.0	100.0	100.0	100.0
	FI and SI	5.0	55.4	94.2	100.0	100.0	100.0	100.0

CENTRO REGIONAL DE INCLUSIÓN E INNOVACIÓN SOCIAL, UNIVERSIDAD VIÑA DEL MAR, CHILE

Current address: Diego Portales 90, Viña del Mar, Chile Orcid ID: https://orcid.org/0000-0003-1739-3456

E-mail address: cleal@uvm.cl

DEPARTAMENTO DE ESTADÍSTICA, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Current address: Avenida Vicuña Mackenna 4860, Santiago, Chile.

Orcid ID: [Dhttps://orcid.org/0000-0001-9819-5843]

E-mail address: mgalea@mat.uc.cl

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA, CHILE

Current address: Avenida España 1680, Valparaíso, Chile Orcid ID: https://orcid.org/0000-0002-4675-5201

E-mail address: felipe.osorios@usm.cl