- 1. What is the lowest total resistance that can be combination of four coils of resistance 4 Ω , 8 Ω , 12 Ω and 24 Ω ?
 - (A) 2Ω
- (B) 1Ω
- (C) $\frac{1}{2}\Omega$
- (D) 0.1 Ω
- 2. The current in the circuit shown in figure is:

- (A) 3 A
- (B) 2 A
- (C) 1 A
- (D) 0.75 A
- 3. An equilateral resistance is formed with each side having a resistance 6 Ω , What is he resistance across any side of the triangle?
 - (A) 2Ω
 - (B) 6Ω
 - (C) 4Ω
 - (D) None of these
- **4.** What is the current in the circuit shown (figure)?

- (A) 1.5 A
- (B) 0.5 A
- (C) 2.5 A
- (D) None of these

5. In the circuit shown in figure. The reading of the voltmeter V will be

- (A) 4 V
- (B) 2 V
- (C) 6 V
- (D) 3 V

6. Which of the following networks yields maximum effective resistance between *A* and *B*

7. What is the resistance between P and Q?

- (A) $\frac{3}{4}\Omega$
- (B) $\frac{4}{3}\Omega$
- (C) $\frac{16}{3}\Omega$
- (D) infinity
- **8.** What is the current (*I*) in the circuit?

- (A) $\frac{1}{2}$ A
- (B) 2 A
- (C) $\frac{3}{2}$ A
- (D) None of these

- **9.** The resistance of a semiconductor material (germanium of Silicon) ____ with rise in temperature.
 - (A) Increases
 - (B) Decreases
 - (C) remains the same
 - (D) First increases then decreases

Note: Kindly find the Video Solution of DHAs Questions in the DPPs Section.

		T T 7		RS	٦
4		W	н	КЧ	١

1. (A)
------	----

2. (**D**)

3. (C)

4. (A)

5. (A)

6. (A)

7. (C)

8. (B)

9. **(B)**

Hints and Solutions

1. (A)

In parallel combination equivalent resistance is always less than the individual resistance.

2. (D)

Find equivalent resistance and then use formula [V = IR]

3. (C)

Use concept of series and parallel combination of resistance.

4. (A)

Use concept of series and parallel combination of resistance and then use formula [V = IR]

5. (A)

Find current across 100Ω resistance and then use formula [V = IR] for finding the voltmeter reading.

6. (A)

Use concept of series and parallel combination of resistance.

7. **(C)**

Use concept of series and parallel combination of resistance.

8. (B)

Use concept of series and parallel combination of resistance and then use formula [V = IR]

9. (B)

The resistance of semiconductor decreases with rise in temperature.

