Contents

\$1 Mea	isures 1	
§1.1	Algebras and Sigma-Algebras	
	Measures	
§1.3	Outer Measures	
	Lebesgue Measure	
	Completeness and Regularity	
	Dynkin Classes	
	\$2 Functions and Integrals \$2.1 Measurable Functions	
	§2.1.1 Question 1	
	§2.1.2 Question 2	
	§2.1.3 Question 3	
	§2.1.4 Question 4	
§1	Measures	
§1.1	Algebras and Sigma-Algebras	
§1.2	Measures	
§1.3	Outer Measures	
§1.4	Lebesgue Measure	
§1.5	Completeness and Regularity	
§1.6	Dynkin Classes	
§2	Functions and Integrals	
§2.1	Measurable Functions	
§2.1.1	Question 1	
Observ	e that all this question wants us to prove is that	
	$\chi_{\limsup A_n} = \limsup \chi_{A_n}$	

This is easy and simply follows from the definition.

§2.1.2 Question 2

Let Y be a subset of $\mathbb R$ which is not Borel measurable. Then χ_Y cannot be Borel measurable (See Example 2.1.2 (b) in the book). Observe that Y cannot be countable for otherwise we could write Y as union of its singleton members of Y and hence Y would be Borel set. Thus, Y is uncountable. Now, consider the set of functions $J := \left\{ \chi_{\{y\}} : y \in Y \right\}$. It is easy to see that $\chi_Y = \sup \left\{ \chi_{\{y\}} : y \in Y \right\}$. Clearly, J is set of Borel measurable functions whose supremum is not Borel measurable.

§2.1.3 Question 3

Let $f: \mathbb{R} \to \mathbb{R}$ be a function which is differentiable everywhere. Consider the sequence of function $\{f_n\}_{n\in\mathbb{N}}$ which is given by $f_n(x)=\frac{f(x+\frac{1}{n})-f(x)}{1/n}$ for every $x\in\mathbb{R}$. Clearly, $f_n\to f$ pointwise on \mathbb{R} and each f_n is measurable. Since limit of Borel measurable functions is measurable, we have that f is Borel measurable.

§2.1.4 Question 4