HW4_ssoon

Samuel Soon

10/11/2021

\mathbf{A}

Table 1: Duplicate Measurements of Wall Parts Taken By Operators

Part	Operator	Measurement	Thickness
1	O1	1	0.953
2	O1	1	0.956
3	O1	1	0.956
4	O1	1	0.957
5	O1	1	0.957
6	O1	1	0.958

```
kable(summary(parta), caption="Summary")
```

Table 2: Summary

Part	Operator	Measurement	Thickness
Length:60	Length:60	Min. :1.0	Min. :0.9520
Class :character	Class:character	1st Qu.:1.0	1st Qu.:0.9550
Mode :character	Mode :character	Median $:1.5$	Median $:0.9570$
NA	NA	Mean $:1.5$	Mean $:0.9561$
NA	NA	3rd Qu.:2.0	3rd Qu.:0.9570
NA	NA	Max. :2.0	Max. $:0.9580$

```
sum <- aggregate(parta$Thickness, list(parta$Part, parta$Operator), FUN=mean)
sum$x = sum$x - mean(sum$x)
sum$Group.1 <- as.factor(as.numeric(sum$Group.1))
# Chose to plot a graph that showed how each wall measurement differed from average observed wall thick
ggplot(sum,aes(x = Group.1,y = x,group=Group.2 ,fill = Group.2)) +
    geom_bar(stat = "identity",position = "dodge") +
    labs(x="Part", y="Residual Average Thickness", fill = "Operator",title="Residual Average Wall Thickness")</pre>
```

Residual Average Wall Thickness Measurement Per Part, Per Operator

\mathbf{B}

Table 3: Brain and Body Weight for 62 Species

Body_Wt	Brain_Wt
3.385	44.5
0.480	15.5
1.350	8.1
465.000	423.0
36.330	119.5
27.660	115.0

kable(summary(partb), caption="Summary")

Table 4: Summary

$\operatorname{Body}_{\operatorname{U}}$	Brain_Wt
Min.: 0.005	Min.: 0.10
1st Qu.: 0.600	1st Qu.: 4.25
Median: 3.342	Median : 17.25
Mean: 198.790	Mean: 283.13
3rd Qu.: 48.202	3rd Qu.: 166.00
Max. $:6654.000$	Max. $:5712.00$

```
model <- lm(Body_Wt ~ Brain_Wt, partb)

# Chose scatterplot with line of best fit to display the distribution of body weight

plot(partb, main="Brain vs Body Weight",pch=19)

abline(model, col="blue")</pre>
```

Brain vs Body Weight

\mathbf{C}

Table 5: Long Jump Distance by Year

Year	LongJump
-4	249.75
0	282.88
4	289.00
8	294.50
12	299.25
20	281.50

kable(summary(partc), caption="Summary")

Table 6: Summary

Year	LongJump
Min. :-4.000	Min. :249.8
1st Qu.: 1.000	1st Qu.:281.8
Median: 6.000	Median :285.9
Mean: 6.667	Mean $:282.8$
3rd Qu.:11.000	3rd Qu.:293.1
Max. $:20.000$	Max. :299.2

```
model <- lm(LongJump ~ Year, partc)

# Chose scatterplot with line of best fit to display the potential linear relationship between year and
plot(partc,main="Long Jump Distance vs Year", pch=19)
abline(model, col="blue")</pre>
```

Long Jump Distance vs Year

D

partd <- partd %>% tidyr::extract(Density_Measure, into=c("Density", "Measurement_Number"),

```
regex='([^_]+)_([^_]+)', convert=TRUE)
kable(head(partd),caption="Tomato Yield Based on Variety, Planting Densities")
```

Table 7: Tomato Yield Based on Variety, Planting Densities

Variety	Density	Measurement_Number	Yield
Ife#1	10000	1	16.1
PusaEarlyDwarf	10000	1	8.1
Ife#1	10000	2	15.3
PusaEarlyDwarf	10000	2	8.6
Ife#1	10000	3	17.5
${\bf Pusa Early Dwarf}$	10000	3	10.1

kable(summary(partd), caption="Summary")

Table 8: Summary

Variety	Density	Measurement_Number	Yield
Length:18	Min. :10000	Min. :1	Min.: 8.10
Class:character	1st Qu.:10000	1st Qu.:1	1st Qu.:12.95
Mode :character	Median $:20000$	Median :2	Median $:15.35$
NA	Mean $:20000$	Mean :2	Mean $:15.07$
NA	3rd Qu.:30000	3rd Qu.:3	3rd Qu.:17.88
NA	Max. $:30000$	Max. :3	Max. $:21.00$

```
sum <- aggregate(partd$Yield, list(partd$Variety, partd$Density), FUN=mean)
# I chose to use a barplot to compare the mean observed crop yield between planting densities.

ggplot(sum,aes(x = Group.1,y = x,group=Group.2 ,fill = Group.2)) +
    geom_bar(stat = "identity",position = "dodge") +
    labs(x="Tomato Variety", y="Mean Yield", fill = "Planting Density",title="Mean Crop Yield Based on Planting Density",title="Mean Crop Yield Based
```

Mean Crop Yield Based on Planting Density and Tomato Variety

\mathbf{E}

Table 9: Larvae Counts Based on Age, Treatment

Block	Age	Treatment	Count
1	1	1	13
2	1	1	29
3	1	1	5
4	1	1	5
5	1	1	0
6	1	1	1

kable(summary(parte), caption="Summary")

Table 10: Summary

Block	Age	Treatment	Count
Min. :1.00	1:40	Min. :1	Min.: 0.00
1st Qu.:2.75	2:40	1st Qu.:2	1st Qu.: 2.75
Median $:4.50$	NA	Median :3	Median: 5.50
Mean $:4.50$	NA	Mean $:3$	Mean $:10.50$
3rd Qu.:6.25	NA	3rd Qu.:4	3rd Qu.:13.00
Max. $:8.00$	NA	Max. :5	Max. :61.00

```
# I chose to use a barplot that displays the count produced based on each age group across all blocks,
ggplot(parte,aes(x = Block,y = Count,group=Age,fill = Age, alpha=Treatment)) +
  geom_bar(stat = "identity",position = "dodge", color="black") +
  labs(title="Effect of Age Group and Treatment Type on Larvae Count by Block") +
  scale_x_continuous(breaks = seq(0, 10, by = 1))
```


