$Z_{(t)} * Z_{(t)}$	230	.166	.679	.265	2.372	2.286	.011
DD Noise Estimation	9	.015	.101	1.098	2.036	2.234	.006
$Mod \sigma_{V}^{2}(\angle(z_{(t)}))$	28	.029	.247	.388	1.261	1.358	.004
$\partial \angle (z_{(t)})$	81	.054	.359	.683	1.210	1.191	.008
$z_{(t)} * conj(z_{(t)})$	306	.341	1.471	.085	1.161	1.164	.035
$ z_{(t)} ^2$ Stats	36	.026	.241	.618	1.090	1.165	.004
$Mod \sigma_{\scriptscriptstyle V}^2(z_{(t)})$	18	.009	.064	.366	.730	.878	.003
$ z_{(t)} $ Stats	99	.075	.523	.174	.677	.812	.006
$z_{(t)}^4$ Stats	38	.075	.415	.211	.513	.513	.004
$P_{xx}(z_{(t)})$ Bins, $\ell = 64$	21	.006	.047	.038	.468	.515	.004
$ z_{(t)} ^4$ Stats	36	.017	.111	.196	.443	.527	.001
$P_{xx}(z_{(t)})$ Bins, $\ell = 128$	79	.014	.114	.056	.391	.390	.019
$z_{(t)}^2$ Stats	38	.056	.276	.085	.276	.308	.005
SNR_{α}	10	.017	.133	.030	.232	.236	.004
$P_{xx}(z_{(t)})$ Stats, $\ell = 64$	9	.017	.131	.116	.205	.212	.003
$P_{xx}(z_{(t)})$ Stats, $\ell = 128$	45	.017	.139	.051	.133	.148	.003
$\mathbb{R}e(\partial z_{[n]})$ Stats	9	.005	.051	.046	.127	.131	
Zero Crossings	6	.007	.064	.040	.119	.118	.001
FFT Bins	9	.010	.125	.019	.102	.110	.004
$Im(\partial z_{[n]})$ Stats	9	.004	.037	.051	.081	.099	.001
Hilbert Score	5	.003	.099	.032	.066	.074	
$Im(z_{(t)})$ Stats	9	.002	.013	.032	.059	.059	.003
$\angle(z_{(t)})$ Hist Stats	32	.006	.036	.030	.043	.035	.004
$\mathbb{R}e(z_{(t)})$ Stats	9	.002	.012	.012	.038	.045	.003
AM Hypothesis	2	.001	.032	.021	.024	.028	
$\angle(z_{(t)})$ Stats	45	.006	.046	.003	.023	.021	.003
$ z_{[n]} $ Stats	9	.006	.049	.004	.015	.025	.004
SNR _{M2M4}	2	.002	.018	.011	.011	.013	.001
$\angle(z_{(t)})$ Hist Bins	16	.006	.048	.001	.007	.007	.001
SNR_{α} 8 Hist Stats	9	.003	.021	.003	.005	.005	.001
SNR _{simple}	1		.002	.004	.004	.003	.002
SNR_{α} 16 Hist Stats	9	.002	.017	.002	.003	.003	.001
PAPR	1		.002	.001	.001	.001	
$\frac{\overline{z_{(t)}^4} - \overline{z_{(t)}^2}}{z_{(t)}^4 - z_{(t)}^3}$	1	.001	.002			.001	.002
	1	.001	.002				.002
Adjacent Phase Bins	1		.001				.004
Azzouz	1		.002				
	# _{feat}	ET_G	ET_P	NN_M	NN_{P1}	NN_{P2}	NN_C