Study design of a single-center, open-label, three-period, fixed sequence phase 1 study of **cannabidiol and tacrolimus**

Gerald C So¹, Ying-Hua Cheng¹, Jennifer S Stuart¹, Kelsey McClara¹, Jessica B Lu¹, Debora L Gisch¹, Travis R Beamon¹, Zachary J Cowsert¹, Zeruesenay Desta¹, Michael T Eadon¹

¹Department of Medicine, Indiana University School of Medicine, Indianapolis, IN

Background

A case study demonstrated a potential pharmacokinetic drug-drug interaction between cannabidiol and tacrolimus.¹ Our clinical trial dedicates to investigating the interactions cannabidiol (CBD) and tacrolimus (Tac). ClinicalTrials.gov: NCT05490511

Tacrolimus

- Tacrolimus is a staple immunosuppressant to prevent graft rejection for transplant recipients through blocking interleukin-2 (IL-2) transcription.
- Outside of its narrow therapeutic window can cause graft rejection or nephrotoxicity.
- It is metabolized by CYP3A4/5. CYP3A5 polymorphism contributes up to 45% inter-individual variability.²

Cannabidiol

- Cannabidiol was reported to **inhibit CYP3A5** 7-fold stronger than CYP3A4 *in vitro*.³
- In addition, cannabidiol has **immunosuppressive properties**. However, the mechanism remains unclear.

Hypotheses

- Pharmacokinetics: AUCR_{0- ∞} of <u>Tac with CBD</u> to <u>Tac alone</u> will be increased in CYP3A5 expressors (*1 allele carriers) to a greater extent than in CYP3A5 non-expressors.
- Pharmacodynamics: CBD will induce regulatory T cells (Tregs) causing immunosuppression that may add to that of Tac.

Trial Initial Results: See Poster LB-009

In Vitro Experiment: See Poster PT-027

Cell culture schema

- Inclusion criteria: Adults aged 18-65
- **Exclusion criteria**: CYP3A4*22/*22 carrier, positive urine test for cannabinoids, liver impairment, and end-stage renal disease
- Stratification based on CYP3A5 genotype and chronic kidney disease (CKD) status

Primary Outcome [Pharmacokinetics]

- $AUCR_{0-\infty}$ of Tac with CBD to Tac alone between CYP3A5 expressors and non-expressors
- Each period has 10 blood draws, follow-up visits are up to 48 hours for tacrolimus and 96 hours for cannabidiol

Secondary Outcomes [Pharmacodynamics]

- Degree suppression of lymphocyte proliferation (cell proliferation assay)
- Lymphocyte population distribution and differential gene expression (single-cell RNA sequencing)

Time Point	Condition	Ex Vivo Treatment	Cannabidiol Plasma Concentration
	1	No treatment	None
Period 1	2	CD3/28	None
	3	CD3/28 & tacrolimus	None
	4	No treatment	Steady-state concentration
Period 3	5	CD3/28	Steady-state concentration
	6	CD3/28 & tacrolimus	Steady-state concentration

CD3/28, anti-CD3/28 antibody for T lymphocyte stimulation

Resi	114	_
RESI		

Enrollment status (as of 3/7/2024)			
Study Status	Subjects Screened		
Completed	21		
Ongoing	2		
Scheduled to start	3		
Withdrawn			
Due to adverse event	1		
Due to scheduling conflict	1		
Prior to start	6		
Ineligible	4		
Total	38		

Baseline characteristics of subjects who have received ≥1 dose (as of 3/7/2024)

Subject Characteristics	All Subjects (n=23)	
Age, yr	41.1 ± 16.6	
Sex		
Male	6 (26.1%)	
Female	17 (73.9%)	
BMI, kg/m ²	27.3 ± 4.6	
Race		
White	14 (60.9%)	
Black	7 (11.5%)	
Asian	2 (8.7%)	
Ethnicity		
Hispanic	1 (4.3%)	
Non-Hispanic	22 (95.7%)	
Hct, %	39.3 ± 4.1	
Albumin, g/dL	4.3 ± 0.3	
SCr, mg/dL	0.9 ± 0.3	
eGFR, mg/mL/1.73 m ²	95.3 ± 18.8	
> 60 mg/mL/1.73 m ²	21 (91.3 %)	
< 60 mg/mL/1.73 m ²	2 (8.7 %)	

References: ¹Leino AD, et al. (2019). Am J Transplant **19**(10):2944-2948. ²Haufroid V, et al. (2004). Pharmacogenetics **14**(3):147-154. ³Yamaori S, et al. (2011). Life Sci **88**(15-16):730-736.