Translation Methods

Лабораторные:

- 1. perl
- 2. Ручное построение трансляторов
- 3. Использование автоматических генераторов трансляторов **e.g.** ANTLR (java), Bison + Yacc (c++), Happy (haskell)
- 4. Написание автоматического генератора транслятора
- 1 pcms, 2-4 защита

 $\Sigma, \Sigma^*, L \subset \Sigma^*$ - формальный язык

Базовый класс формальных языков - регулярные (= автоматные). Для порождения - регулярные выражения, для распознавания - конечные автоматы

Контекстно-свободные языки: КС-грамматики / МП-автоматы (магазинная память)

Токены (лексемы) - единые неделимые элементы языка ($\in \Sigma$)

Лексический анализ

Первый этап любого разбора - лексический анализ

Последовательность символов -> последовательность токенов ($\in \Sigma^*$)

e.g. арифмитические выражения

$$\Sigma = \{n, +, \times, (,)\}$$
 $(2 + 2) \times 2 \rightarrow (n + n) \times n$
 $n : (0|1|...|9)(0|1|...|9)^*$

жадный лексический анализ на базе регулярных выражений: пропускаем пробельные символы, смотрим первый непробельный, находим максимальный префикс какого-то возможного токена

- 1. Проверить, что строка выводится в грамматике Γ // алгоритм КЯК(???) $\mathrm{O}(n^3)$
- 2. Построить дерево разбора
- 3. Синтаксически управляемая трансляция

$$egin{array}{ll} E
ightarrow T \ E
ightarrow E + T \ T
ightarrow F \ T
ightarrow T imes F \ F
ightarrow n \ F
ightarrow (E) \end{array}$$

Аттрибутно-транслирующие грамматики - контекстно-свободные языки с добавлением двух элементов: аттрибуты и транслирующие символы

Транслирующие символы - фрагменты кода, которые вставляем в грамматику, которые могут взаимодействовать с аттрибутами

$$E \to E + T \{E_0.v = E_1.v + T.v\}$$

$$T
ightarrow T \, imes\, F\left\{T_0\,.\,v = T_1\,.\,v \,+\, F.\,v
ight\}$$

Нужно быстрее, чем за куб ⇒ накладываем ограничения на грамматики

Однозначность - если у любого слова не более одного дерева разбора в этой грамматике // Модификация алгоритма Эрли - $\mathrm{O}(n^2)$

LL, LR - грамматики, на которые наложены дополнительные ограничения, чтобы разбор работал за линейное время. LL(R) - L: left to right parse, L(R): leftmost derivation (right most derivation).

 Γ , w на вход

Можем строить дерево разбора сверзу вниз - **нисходящая трансляция**(used **LL**). Шаг называется раскрытие нетерминала

Снизу вверх - восходящий разбор (used LR). Шаг - свёртка

Метод нисходящих трансляций для LL грамматик

Def: Грамматика $\Gamma = \langle \Sigma, N, S, P \rangle$, где Σ - множество терминалов (terms), N - множество нетерминалов (nonterms), S - стартовый символ ($S \in N$), P - множество правил вывода (productions) $\alpha \to \beta$. Пусть Γ - контекстно-свободная (в левой части только одиночные нетерминалы)

Def: LL(k)-грамматика - если достаточно посмотреть на первые k символов γ , чтобы понять, какое правило применить для нетерминала A:

S - стартовый нетерминал, **w** - слово, префикс которого разобран. Рассмотрим два произвольных левосторонних вывода слова **w** .

$$\begin{array}{l} s \Rightarrow^* xA\xi \Rightarrow x\alpha\xi \Rightarrow^* x\gamma\eta \\ s \Rightarrow^* xA\xi \Rightarrow x\beta\xi \Rightarrow^* x\gamma\zeta \end{array}$$

где x и γ - цепочки из терминалов - разобранная часть слова ${\bf w}, A$ - нетерминал грамматики, в которой есть правила $A \to \alpha, A \to \beta$, причем $\alpha, \beta, \xi, \eta, \zeta$ - последовательности из terms и nonterms. Если из выполнения условий, что ($|\gamma|=k$) или ($|\gamma|< k, \eta=\zeta=\epsilon$) , следует равенство $\alpha=\beta$, то Γ называется ${\bf LL}({\bf k})$ -грамматикой

Грамматика Γ называется **LL(1) грамматикой** (посмотрев на первый символ можно понять какое следующее правило нужно применить), если $s \Rightarrow^* xA\xi \Rightarrow x\alpha\xi \Rightarrow^* xc\eta$

$$s \Rightarrow^* xA\xi \Rightarrow x\beta\xi \Rightarrow^* xc\zeta$$

$$\alpha = \beta$$

(Смотрим на символ c в строке и сразу понимаем, что $\alpha=\beta$, что значит, что мы используем одно и то же правило для A)

Example 1: Рассмотрим грамматику и покажем, что она LL(1).

$$S
ightarrow aA|bB$$
 $A
ightarrow aB|cB$ $B
ightarrow bC|a$ $C
ightarrow bD$ $D
ightarrow d$

 $\mathbf{w} = aaabd$

```
S\Rightarrow aA\Rightarrow aaB\Rightarrow aaaC\Rightarrow aaabD\Rightarrow aaabd
S\Rightarrow^*aaabd
```

Каждый раз когда мы смотрели на очередной символ мы сразу определяли правило для дальнейшего вывода.

Example 2: Рассмотрим грамматику, которая по первому символу не позволяет определить правило для дальнейшего вывода.

```
S \rightarrow abB|aaA B \rightarrow d A \rightarrow c|d \mathbf{w} = \mathrm{abd}
```

Смотрим на первый символ **w**, он подходит под несколько правил стартового нетерминала, только со второго символа понятно какое правило выбирать ⇒ не **LL(1)-грамматика**.

```
\begin{aligned} & \mathsf{def}\, \mathit{FIRST}\colon (N \cup \Sigma)^* \to 2^{\Sigma \cup \{\epsilon\}} \\ & c \in \mathit{FIRST}(\alpha) \Leftrightarrow \alpha \Rightarrow^* \mathit{cx} \\ & e \in \mathit{FIRST}(\alpha) \Leftrightarrow \alpha \Rightarrow^* \epsilon \end{aligned} & e.\mathsf{g.}\, S \to SS \\ & S \to (S) \\ & S \to \epsilon  & \mathit{FIRST}(S) = \{c, \epsilon\}  & \mathit{FIRST}('S)') = \{(,)\}  & \mathit{FIRST}(\epsilon) = \{\epsilon\}  & \mathit{FIRST}('))((') = \{')'\} \end{aligned}
```

Алгортим удаления бесполезных символов

- 1. Удалить непорождающие символы
- 2. Удалить недостижимые

Менять шаги алгоритма нельзя

ex: Grammar:

Удаление непорождающих символов

1. Множество непорождающих символов $Gen=\emptyset$

```
do {  \text{for A} \to \alpha \\ \text{if } \alpha \in (\Sigma \cup Gen)^* \colon \\ \text{Gen } \cup = \mathsf{A} \\ \} \text{ while Gen change} \\ \text{NonGen} = \mathsf{N} \setminus \mathsf{Gen}
```

```
A - порождающий, но Алгоритм 1 выбрал как порождающий $A \Rightarrow \alpha \Rightarrow^{k - 1} x$
```

Лемма о рекурсивном вычислении FIRST

```
\begin{split} &\alpha = c\beta \\ &FIRST(\alpha) = \{c\} \\ &\alpha = A\beta \\ &FIRST(\alpha) = (FIRST(A)) \setminus \epsilon) \cup (FIRST(\beta) \ if \ \epsilon \in FIRST(A)) \\ &FIRST(\epsilon) = \{\epsilon\} \end{split}
```

Алгоритм

```
FIRST: map<N, set<\Sigma \cup \epsilon>> function getFIRST(\alpha) if \alpha = \epsilon return \{\epsilon\} if \alpha[i] \in \Sigma return \{\alpha[i]\} // \alpha[0] \in N return (FIRST[\alpha[0]] \setminus \epsilon) \cup (getFIRST(\alpha[1:]), if \epsilon \in FIRST[\alpha[0]])
```

Алгоритм построения FIRST

```
\begin{array}{l} \text{do } \{ \\ \text{for A} \rightarrow \alpha : \\ \\ \text{FIRST[A]} \cup = getFIRST(\alpha) \\ \} \text{ while FIRST changes} \\ \\ \textbf{def } FOLLOW : N \rightarrow 2^{\Sigma \cup \{\$\}} \\ \\ c \in FOLLOW(A) \Leftrightarrow S \Rightarrow^* \alpha Ac\beta \\ \\ \$ \in FOLLOW(A) \Leftrightarrow S \Rightarrow^* \alpha A \end{array}
```

Алгоритм FOLLOW

```
FOLLOW: map<N, set<\Sigma \cup \$>> FOLLOW(S) = \{\$\} do \{ for A \to \alpha for B in \alpha let \alpha = \xi B \eta FOLLOW(B) = FIRST(\eta) \ \epsilon if \epsilon \in FIRST(\eta)
```

} while FOLLOW changes

Теорема

```
\Gamma является LL(1) \Leftrightarrow \forall A \to \alpha, A \to \beta:

1. FIRST(\alpha) \cap FIRST(\beta) = \emptyset
2. \epsilon \in FIRST(\alpha) \Rightarrow FIRST(\beta) \cap FOLLOW(A) = \emptyset

Доказательство:
\Rightarrow) от противного:
] не (1)

1. \exists A \to \alpha, A \to \beta, c \in FIRST(\alpha) \cap FIRST(\beta)

S \Rightarrow^* xA\sigma \Rightarrow x\alpha\sigma \Rightarrow^* xc\xi\sigma

S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* xc\eta\sigma

2. \epsilon \in FIRST(\alpha) \cap FIRST(\beta)

S \Rightarrow^* xA\sigma \Rightarrow x\alpha\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau
```

Рекурсивный спуск

```
A\to\alpha_1|\alpha_2|\dots|\alpha_k Node: s{:}\ N\cup\Sigma ch{:}\ array(Node) token{:}\ \Sigma\cup\{\$\} next() FIRST'(A\to\alpha)=(FIRST(\alpha)\setminus\epsilon)\cup(FOLLOW(A)\ if\ \epsilon\in FIRST(\alpha))
```

```
res.addChild(x1)
            // X1 in N
            Node x2 = X2()
            res.addChild(x2)
            // X3 in Sigma
            assert x3 = token or Error()
            res.addChild(token)
            next()
            // X1 ...
            . . .
            return res
       FIRST'(A -> a2)
           . . .
       default:
           Error()
}
```

ETF (expression, therm, factor)

Grammar:

$$\begin{split} E &\rightarrow E + T \\ E &\rightarrow T \\ T &\rightarrow T \times F \\ T &\rightarrow F \\ F &\rightarrow n \\ F &\rightarrow (E) \end{split}$$

	FIRST
Е	n, (
Т	n, (
F	n, (

```
FIRST (E + T) = \{n, (\}\}
FIRST(T) = \{n, (\}\}
```

 $\operatorname{def}\Gamma$ называется *леворекурсивно*й, если в $\Gamma:A\Rightarrow^+Alpha$

 ${f comment} \ \Gamma$ - леворекурсивная $\Rightarrow \ \Gamma
otin LL(1)$

$$A\Rightarrow eta\Rightarrow^* Alpha \ A\Rightarrow^* B\xi\Rightarrow \gamma\xi\Rightarrow^* Alpha \ A\Rightarrow^* B\xi\Rightarrow \delta\xi\Rightarrow^* x=cy \ c\in (FIRST(\delta))\setminus\epsilon\cup (FIRST(\xi)\ if\ \epsilon\in FIRST(\delta)) \ c\in FIRST(\gamma)\setminus\epsilon\cup (FIRST(\xi)\ if\ \epsilon\ inFIRST(\gamma))$$

```
A 	o A lpha - непосредственная левая рекурсия A 	o eta eta lpha^*
```

Устранение левой рекурсии:

$$A
ightarroweta A'
ightarrow \epsilon \ A'
ightarrow lpha A'$$
 $E
ightarrow E + T \ E
ightarrow T$

Грамматика с устранённой непосредственной левой рекурсией

$$E
ightarrow TE' \ E'
ightarrow \epsilon \ E'
ightarrow + TE' \ T
ightarrow FT' \ T'
ightarrow \epsilon \ T'
ightarrow \times FT' \ F
ightarrow n \ F
ightarrow (E)$$

	FIRST	FOLLOW
Е	(n	\$)
E'	+ e	\$)
Т	(n	+ \$)
T'	* e	+ \$)
F	(n	* + \$)

```
Node E()
   Node res = Node(E)
    switch (token)
       case n, (:
           // E -> TE'
           Node t = T()
           res.addChild(t)
            Node e' = E'()
            res.addChild(e')
            return res
        default:
           Error()
Node E'()
    Node res = Node(E')
    switch (token)
       case $, ):
          // E' -> e
          return res
       case +, e:
          // E' -> +TE'
```

```
assert token == +
           res.addChild(Node(t))
           next()
           Node t = T()
           res.addChild(t)
           Node e' = E'()
           res.addChild(e')
           return res
       default:
           Error()
    // T and T' are similar with above
Node F()
   Node res = Node(F)
    switch (token)
        case n:
            assert token == n
            res.addChild(n)
            next()
            return res
        case (:
           assert token == (
            res.addChild(\()
            next()
            Node e = E()
            res.addChild(e)
            assert token == )
            res.addChild(Node(\)))
            next()
            return res
```

$$A
ightarrow A lpha \ A
ightarrow eta \ A
ightarrow eta A'
ightarrow lpha A' \ A'
ightarrow \epsilon$$

```
etalpha^* A switch FIRST'(A	oeta_1) eta_1 FIRST'(A	oeta_2) eta_2 ... while (token \in FIRST'(A	o Alpha))
```


$$A\Rightarrow^+Alpha \ A o Xlpha,\ X\in\Sigma$$
 или $\#X>\#A \ A_1,A_2,\ldots,A_n,\ \#A_i=i$

$$A_1 \rightarrow A_1 \alpha$$

$$A_1 \rightarrow \beta$$

$$A_1 \rightarrow \beta A'_1$$

$$A'_1 \rightarrow \alpha A'_1$$

$$A'_1 \rightarrow \epsilon$$

1. Избавиться от ϵ -правила

```
A_1	oeta A_1'
A_1	oeta
A_1'\tolpha A_1'
A_1'\tolpha A_1'
A_1'\tolpha
2. A_2	o A_1lpha	o A_2	o \xilpha для всех A_1	o\xi (A_2	o A_2eta,A_2	o\gamma)
A_2	o A_2eta
A_2	o\gamma
```

```
for i = 1..n
  for j = 1..i - 1
     A_i -> A_j alpha
     for A_j -> xi alpha
        add A_i -> xi alpha
     remove A_i -> A_j alpha
```

$$A olphaeta \ A olpha\gamma \ L(lpha)
eq \{\epsilon\}$$
 , to LL(1) $A olpha A' \ A' oeta \ A' o\gamma$

Построение нерекурснвных нисходящих разборов

Стек, управлящая таблица

			Σ	С		\$
N	А					
					ERROR	
Σ			SKIP			ERROR
		ERROR				

$$\begin{split} E \rightarrow TE' \\ E' \rightarrow \epsilon \\ E' \rightarrow +TE' \\ T \rightarrow FT' \\ T' \rightarrow \epsilon \\ T' \rightarrow \times FT' \\ F \rightarrow n \\ F \rightarrow (E) \end{split}$$

	FIRST	FOLLOW
Е	(n	\$)
E'	+ e	\$)
Т	(n	+ \$)
T'	* e	+ \$)
F	(n	* + \$)

	n	+	*	()	\$
E	1			1		
E'		2			3	3
Т	4			4		
T'		6	5		6	6
F	7			8		

пустые ячейки соответствуют ошибке

e.g. to parse: 2 + 2 * 2

tree:

Атрибутно-транслирующие грамматики (АТГ)

 $N,S\in N;\Sigma;P$ - правила

Расширим определние грамматики

N & Σ определяется в Z

атрибуты

 Σ, N

- 0. имя
- 1. тип
- 2. значение (может быть не определено)
- 3. правило вычисления S-атрибуты - только присваивание атрибута

Атрибуты бывают:

1. Синтезируемые атрибуты

Если его значение зависит только от поддерева, в том числе, когда этот атрибут - атрибут терминала и его значение на этапе лексического анализа

2. Наследуемый атрибут

Значение зависит от родителей или братьев L-атрибутная **Транслирующий символ** - специальный нетерминал, у которого единственное правило раскрыть его в ϵ и которого есть связанный с ним код, внутри которого мы можем работать с атрибутами

Могут быть именными и анонимными

E o E + T	\$MUL op1 = $T_1.v$ \$MUL op2 = $F.v$ $T_0.v$ = \$MUL res
E o T	E.V = T.V
$T_0 ightarrow T_1 \hspace{0.1cm} imes_2 \hspace{0.1cm} F_3$	$MUL op1 = T_1.v$ MUL op2 = F.v $T_0.v = MUL res$
T o F	T.V = F.V
F o n	F.V = n.V
F o(E)	F.V = E.V

```
$MUL {
res = op1 * op2
}
```

$$\$MUL \left\{ egin{array}{l} op1 & {}_{ ext{наследуемый} \ op2 & {}_{ ext{наследуемый} \ res \ cuhtesupyemый} \end{array}
ight.$$

```
$ADD {
add = op1 + op2
}
```

Е	V	
Т	V	
F		синтезируемый
n		синтезируемый

E o TE'		E'.a = T.v E.v = E'.v
E' ightarrow + TE'	\$ADD E'	$ADD op1 = E'_0a$ ADD op2 = T.v $E'_4.a = ADD.res$
$E' o \epsilon$		E'.v = E'.a
T o FT'		T'.a = E'.a T.v = T'.v
T' o imes FT'	\$MUL T'	$MUL op1 = T'_0.a$ MUL op2 = F.v $T'_4.a = MUL res$
$T' ightarrow \epsilon$		T'.v = T'.a
F o n		F.v = n.v
F o (E)		F.v = E.v

Е	v
Т	V
F	v синтезируемый
n	v синтезируемый
E'	а наследуемый v синтезируемый
T'	а наследуемый v синтезируемый

2 + 3 * 4


```
E'(a: int): int
    switch
    case // -> e
        return a
    case // +T $ADD E'
        skip +
        T.v = T()
        $ADD.res = $ADD(a, T.v)
        E'.v = E'($ADD.res)
```

```
return E'.v
E(): int
  switch
      case
          T.v = T()
          E'v. = E'(T.v)
          return E'.v
$ADD(op1, op2: int): int
   return op1 + op2
// alternative:
Node E'(a)
    Node res = Node(E, atr = \{a.a\})
    switch
          res v = res.a
          return res
       -> +TE'
          skip +
          T = T()
          E'4.a = res.a + T.v
          E' = E'(E'4.a)
          res.v = E'v
           return res
```

Регистровые машины и Стековые машины

операции регистровых машин: load загрузить значение и store выгрузить в память преимущество перед регистровыми, в регистровых конечное количество регистров, здесь есть стек и операции push, pop

Непосредственная левая рекурсия

 $A \to A\alpha$

A o eta

х - синтезируемый атрибут А

A o eta A'

 $A' o \epsilon$

A' o lpha A'

А' х - соответствует Ах - синтезируемый а - аккумулятор - наследуемый

$$egin{aligned} A &
ightarrow eta A' & A'a = f(eta) \ A' &
ightarrow \epsilon \ A' &
ightarrow lpha A' \end{aligned}$$

A s - синтезируемый атрибут

а - наследуемый атрибут

A(a) -> s

```
switch ()
    . . .
    // A -> a
    s = f(alpha)
    // alpha_k = B
    B(<->)
```

Но вообще генерируются парсеры со стеком

Восходящий разбор

LR - анализ

LR(0) редко используется, есть LR(1) LR -> SLR (Simple LR) -> LALR -> LR(1)

$$\eta Bu\Rightarrow \eta eta u=\xi At\Rightarrow \xi lpha t=\omega$$

$$\gamma=\xi t$$
 $S\Rightarrow^*\gamma$ $\xi\in(\Sigma\cup N)^*, t\in\Sigma^*$ $lpha$ - подстрока γ $\gamma=\xi'lpha t'$ ξ' - подстрока ξ , t' - суффикс t $S\Rightarrow^*\xi'At'\Rightarrow\xi'lpha t'=\xi t$

Ситуации (items)

LR(1) - ситуация ($A o lpha, K \in \{0, \dots, |lpha|\}$)

Теорема

Ели строка альфа допускается автоматом, построенным по этим правилам, то:

1. Существует правио $B
ightarrow \gamma$, γ - суффикс lpha

9									
	IE	T	F	()	n	+	*	
[E0+1][E+E+][E+T][F+T][F+T][F+F][F+(E)][F+B)	2	3	4	5		6			
[E,-E-)[E-E-17]							7		
3 [E-T-] (T-T- OF)								8	
Y(T→ f·)									
5 [F+(+E)][F+F+][F+T)[F+T+F)[F++[F][F++(E)][F+++]	9	2	4	5		6			-
6 (F-n.)		-		9		0			
+ (E+F+1)(T++7+F)(F+F)(F+(E))(F++1)		10	4	-					
8 (1-str.f) (F- (E)] (F-1)				5		6			
5[F+(E)][E+E++7]			1	5		6			
(E+E+T) [F+T-XF]					12		7		
1 [[-7]xf.]								8	
								9	
[2(E~(E)·)									

	IE	T	n	+
amapm)[E = . E][E E + T](E - T)(T n)	2	3	4	
2)[EE.][E-E.+T]				5
3)(€→Т-)				
4) [I-n.]				
5) [E > E+.T] [T-1.n]		6	4	
(E > E+T.) () [E > E+T.)				-

def Грамматика называется *LR0 грамматикой*, если детерминированная версия автомата по поиску основы каждое состояние содержит либо одно состояние недетерминированного автомата и ничего больше, либо содержит только нетерминальные состояния недетермнированного автомата.

Конфликт свёртки/свёртки ноль нетерминальных и больше одного терминала Конфликт переноса/свёртки: больше нуля нетерминальных и больше нуля терминальных

Когда не работает SLR:

LR1

def *LR1-ситуация* - это тройка из правила, числа от 0 до длины правой части и символа, который называется *символом предпросмотра (look ahead)

$$egin{aligned} [A
ightarrow lpha ullet eta, c] \ [A
ightarrow lpha ullet d eta, c] & \stackrel{d}{
ightarrow} [A
ightarrow lpha a ullet eta, c] \end{aligned}$$

lr1 - грамматике - если в детерминированном автомате по поиску lr1 основ

одно из них терминальное, а другое нетерминальное, то их символ предпросмотра отличается от символа перед которым находится позиция в правой части нетерминального

если они оба терминальные, то их символ предпросмотра не совпадает

lr1 приколюхи