

Dual N-Channel 2.5-V (G-S) MOSFET

PRODUCT SUMMARY			
V _{DS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)	
	0.05 @ V _{GS} = 4.5 V	5.0	
20	0.06 @ V _{GS} = 3.0 V	4.2	
	0.08 @ V _{GS} = 2.5 V	3.6	

2.5-V Rated

Ordering Information: Si9925DY Si9925DY-T1 (with Tape and Reel)

N-Channel MOSFET

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)						
Parameter		Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	20	.,		
Gate-Source Voltage		V _{GS}	±12			
O 11 D 1 O 1/T 1500010	T _A = 25°C		5.0			
Continuous Drain Current (T _J = 150°C) ^a	T _A = 70°C	I _D	4.0			
Pulsed Drain Current		I _{DM}	48	A		
Continuous Source Current (Diode Conduction) ^a		I _S	1.7			
Martine and Distriction 2	T _A = 25°C		2	14/		
Maximum Power Dissipation ^a	T _A = 70°C	P _D	1.3	- w		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C		

THERMAL RESISTANCE RATINGS				
Parameter	Symbol	Limit	Unit	
Maximum Junction-to-Ambienta	R _{thJA}	62.5	°C/W	

a. Surface Mounted on FR4 Board, $t \le 10$ sec.

 $For \ \ SPICE \ model \ information \ via \ the \ \ Worldwide \ \ Web: \ \ http://www.vishay.com/www/product/spice.htm$

Si9925DY

Vishay Siliconix

Specifications (T _J = 25°C Unless Otherwise Noted)						
Parameter	Symbol	Test Condition	Min	Тура	Max	Unit
Static			•	•	•	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.8			V
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = \pm 12 V			±100	nA
7. 0. 7. 5. 0	I _{DSS}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
Zero Gate Voltage Drain Current		$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 70^{\circ}\text{C}$			5	
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 5 \text{ V}$	30			Α
		$V_{GS} = 7.2 \text{ V}, I_D = 5.0 \text{ A}$	0.025	0.038	0.045	Ω
	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 5.0 \text{ A}$		0.041	0.05	
Drain-Source On-State Resistance ^b		V _{GS} = 3.0 V, I _D = 3.9 A		0.050	0.06	
		$V_{GS} = 2.5 \text{ V}, I_D = 1 \text{ A}$		0.062	0.08	
Forward Transconductance ^b	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 5.0 \text{ A}$		14		S
Diode Forward Voltage ^b	V _{SD}	$I_S = 5.0 \text{ A}, V_{GS} = 0 \text{ V}$		0.81	1.2	V
Dynamic ^a			•	•	•	
Total Gate Charge	Qg			9	20	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = 6 \text{ V}, \ V_{GS} = 4.5 \text{ V}, \ I_D = 5.0 \ \text{A}$		2		
Gate-Drain Charge	Q _{gd}			2.6		
Gate Resistance	R _g		1		2.9	Ω
Turn-On Delay Time	t _{d(on)}			14	40	ns
Rise Time	t _r	$V_{DD} = 6 \text{ V}, R_L = 6 \Omega$		13	30	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_G = 6 \Omega$		35	60	
Fall Time	t _f			9	30	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = 5.0 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		60	150	1

 $[\]begin{array}{ll} \text{Notes} \\ \text{a.} & \text{Guaranteed by design, not subject to production testing.} \\ \text{b.} & \text{Pulse test; pulse width} \leq 300~\mu\text{s, duty cycle} \leq 2\%. \\ \end{array}$

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

V_{DS} - Drain-to-Source Voltage (V)

V_{DS} = 6 V I_D = 5 A VGS - Gate-to-Source Voltage (V) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2 0 6 8 10

Q_g - Total Gate Charge (nC)

Gate Charge

ID - Drain Current (A)

V_{GS} - Gate-to-Source Voltage (V)

 V_{DS} - Drain-to-Source Voltage (V)

4.5

4.0

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

