BIOS 667: Longitudinal Data Analysis

Overdispersion - summary

The term *over-dispersion* refers to the case of a random variable having a larger variance than some theoretical distribution. So it is a relative term.

For example, extra-Poisson variation is relative to the Poisson distribution. A random variable Y is said to have extra-Poisson variation if var(Y) > E[Y]. A random variable that has extra-Poisson variation certainly can't have a Poisson distribution. The term is usually applied to counts, although it can be applied to any non-negative random variable.

Effect on inference: Underestimation of the variance; this affects the performance of confidence intervals and hypothesis tests.

Example: If we assume that Y_1, \ldots, Y_n are iid $Poisson(\mu)$, we obtain $\hat{\mu} = \bar{Y}$ and estimate $var(\bar{Y}) = \mu/n$ by $\hat{\mu}/n = \bar{Y}/n$. We would compute an approximate (for large n) 95% confidence interval for μ as $\bar{Y} \pm 1.96\sqrt{\bar{Y}/n}$. But suppose that Y_1, \ldots, Y_n are iid but not $Poisson(\mu)$, and $var(Y) = 4\mu$, then the above interval would be half as wide as it should be for proper 95% coverage. The coverage of $\bar{Y} \pm 1.96\sqrt{\bar{Y}/n}$ is about 67%.

Methods for handling extra-Poisson variation.

- 1. Replace the Poisson assumption by another parametric family such as the negative binomial. This typically introduces additional parameters that need to be estimated. The advantage is that maximum-likelihood estimation will be possible with all its advantages, provided the assumed family is correct. If it is not, then the consistency of the regression parameters β can be lost, even if the assumed model for the mean (link function and $X\beta$) is correct.
- 2. Use $\hat{\beta}$ from the Poisson model (i.e. likelihood), but use a robust variance estimator (RVE, this will be studied later). The RVE is a large-sample procedure that provides a valid estimate of $\operatorname{cov}(\hat{\beta})$ provided the assumed model for the mean (link function and $X\beta$) is correct.

Extra-binomial variation refers to the situation: Y takes values in [0, m], $E[Y] = \mu$ and $var(Y) > \mu(1-\mu/m)$. If we define $p = \mu/m$, then $\mu = mp$ and var(Y) > mp(1-p). Note that $\mu \in [0, m]$ and $p \in [0, 1]$. Again, this is commonly applied to counts, but in theory can be applied to continuous random variables too. Again, there are parametric families such as the beta-binomial that allow extra-binomial variation, but they have disadvantages as in the Poisson case. A good strategy is to use $\hat{\beta}$ from the Binomial model (i.e. likelihood), and a robust variance estimator.

An important case in which extra-binomial variation is mathematically impossible is: Y is Bernoulli, $Y \in \{0,1\}$, $E[Y] = \mu = p$. The variance is $var(Y) = \mu(1-\mu) = p(1-p)$, (and can't be anything else).