

Diamond Price Prediction

פרויקט גמר - מבוא למדעי הנתונים שירן אהל - **207332867**

שאלת המחקר

לאחר שחקרתי את הנושא, ונוכחתי לדעת שיש נתונים נוספים רבים אשר לא נלקחים בחשבון בקביעת מחיר היהלום, השאלה עליה רציתי לענות היא:

האם ניתן לחזות את מחיר היהלום בהתבסס על כל הנתונים שלו?

שאלות נוספות שניתן לענות עליהן (ביחס ל-Dataset) מניתוח מאגר הנתונים:

- איזה צבע יהלום הכי נפוץ?
- איזה ניקיון יהלום הכי נפוץ? .2
- איזה איכות חיתוך יהלום הכי נפוצה? .3

שלבי הפרויקט

- 1. Data Acquisition
- 2. Data Cleaning
- 3. EDA (Visualizations & Research)
- 4. Model train and prediction
- 5. Summary and conclusions

1. Data Acquisition

מצאתי את האתר <u>Brilliant Earth</u> אשר מוכר יהלומים אונליין, וכתבתי סקריפט בשביל לבצע Scraping על האתר, ובכך אספתי נתונים על כ - 5000 יהלומים עגולים בלבד, בטווחים של 0.90 עד 1.20 קראט.

לינק לסקריפט:

https://github.com/ShiranOhel/hit data science project/blob/main/scripts/fetch diamonds data.py

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4938 entries, 0 to 4937 Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	stock_number	4938 non-null	object
1	gemstone	4938 non-null	object
2	origin	4938 non-null	object
3	price	4938 non-null	object
4	carat	4938 non-null	float64
5	shape	4938 non-null	object
6	cut	4938 non-null	object
7	color	4938 non-null	object
8	clarity	4938 non-null	object
9	measurements	4938 non-null	object
10	table	4938 non-null	object
11	depth	4938 non-null	object
12	symmetry	4938 non-null	object
13	polish	4938 non-null	object
14	girdle	4938 non-null	object
15	culet	4933 non-null	object
16	fluorescence	4889 non-null	object
17	diamond id	4874 non-null	float64
22399	5.000 (100 ACC) (100 ACC)		

dtypes: float64(2), object(16)

st	tock_number	gemstone	origin	price	carat	shape	cut	color	clarity	measurements	table	depth	symmetry	polish	girdle	culet	fluorescence
0	5763178A	Natural, untreated diamond	Botswana Sort	\$2,470	0.9	Round	Good	F	SI2	5.96mm x 5.91mm x 3.89mm	63.0%	65.5%	Good	Very Good	6.5	Pointed	None
1	6450036Y	Natural, untreated diamond	Botswana Sort	\$2,470	0.9	Round	Very Good	J	VS2	6.04mm x 5.99mm x 3.88mm	59.0%	64.5%	Excellent	Very Good	Slightly Thick - Thick	None	Faint
2	6057071A	Natural, untreated diamond	Botswana Sort	\$2,470	0.9	Round	Very Good	1	SI2	6.00mm x 5.93mm x 3.85mm	57.0%	64.6%	Very Good	Very Good	Thick	None	None
3	5073535A	Natural, untreated diamond	Botswana Sort	\$2,470	0.9	Round	Very Good	н	SI2	6.14mm x 6.09mm x 3.85mm	57.0%	63.0%	Excellent	Excellent	4.5	Pointed	None
1	5985294A	Natural, untreated diamond	Botswana Sort	\$2,480	0.9	Round	Good	н	SI1	5.84mm x 5.79mm x 3.91mm	59.0%	67.3%	Very Good	Excellent	Very Thick	None	None

היו מספר עמודות לא רלוונטיות למודל לכן הורדתי אותן, וכמו כן הפכתי עמודות קטגוריאליות למספריות אותן הכוללות טקסט (\$, %) למספריות.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4899 entries, 0 to 4898
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	price	4899 non-null	float64
1	carat	4899 non-null	float64
2	cut	4899 non-null	int64
3	color	4899 non-null	int64
4	clarity	4899 non-null	int64
5	table_pct	4899 non-null	float64
6	depth_pct	4899 non-null	float64
7	symmetry	4899 non-null	int64
8	polish	4899 non-null	int64
9	x	4899 non-null	float64
10	У	4899 non-null	float64
11	z	4899 non-null	float64
dtyp	es: float64	(7), int64(5)	

dtypes: float64(7), int64(5) memory usage: 459.4 KB

	price	carat	cut	color	clarity	table_pct	depth_pct	symmetry	polish	X	у	z
0	2470.0	0.9	2	5	1	63.0	65.5	2	2	5.96	5.91	3.89
1	2470.0	0.9	3	1	3	59.0	64.5	4	2	6.04	5.99	3.88
2	2470.0	0.9	3	2	1	57.0	64.6	3	2	6.00	5.93	3.85
3	2470.0	0.9	3	3	1	57.0	63.0	4	3	6.14	6.09	3.85
4	2480.0	0.9	2	3	2	59.0	67.3	3	3	5.84	5.79	3.91

4. Model train and prediction

<u>המודל הנבחר</u>

רגרסיה לינארית Linear Regression

<u>סוג המודל</u>

מודל חיזוי מבוסס למידה מונחית Supervised learning predictive model

הסבר המודל

כיוון שהחיזוי הוא עבור ערך מספרי ממשי אינסופי (מחיר), רגרסיה לינארית הוא המודל המתאים ביותר

5. Summary and conclusions

לאחר ביצוע מספר הרצות של המודל, כאשר בכל ריצה השתמשתי בתכונות (features) שונות מתוך ה-Dataset. הגעתי למסקנה שהחיזוי המדויק ביותר מתקבל כאשר משתמשים רק בארבעת התכונות של היהלום (the diamond 4Cs) אשר המחירון מתבסס עליהן מלכתחילה.

שימוש בכל התכונות הקיימות ב-Dataset הניב תוצאה דומה:

model_train_and_predict(df, 'price', 0.25, 7)

```
y test y predicted
             4525.611696
     4950.0
     3720.0
             3376.848786
     7330.0
             5686.642339
     2960.0
             3795.031689
     6180.0
             6869.920258
     9960.0
             7671.247093
             7040.771144
     7960.0
     4830.0
             4662.611090
1223
     4160.0
             4520.784106
1224
     3560.0
             3939.163535
```

[1225 rows x 2 columns]

אך ניסיונות להשתמש בהרכבים שונים של התכונות הביאו תוצאות נמוכות יותר:

```
model_train_and_predict(df[['price', 'carat', 'clarity', 'cut', 'symmetry']], 'price', 0.25, 7)
     y_test y_predicted
     4950.0 4326.882359
     3720.0 3248.910968
     7330.0
             5664.021295
     2960.0 3662.030751
     6180.0
             5664.021295
                     ...
             6789.091187
     9960.0
     7960.0 6568.441043
             4440.925291
     4160.0 4779.092232
1224 3560.0 4067.250845
[1225 rows x 2 columns]
Model r2 score is 0.7294075844808778
```



```
model train and predict(df[['price', 'carat', 'clarity', 'cut']], 'price', 0.25, 7)
     y test y predicted
             4326.543060
             3250.895122
             5663.851164
      7330.0
             3658.868017
             5663.851164
             6789.227140
1221
             6568.322353
             4437.974462
             4778.778655
             4066.840912
[1225 rows x 2 columns]
Model r2 score is 0.7294099699535548
```

לסיכום, ניתן להבין שאכן ארבעת התכונות המרכזיות של היהלום: הן אכן המשפיעות ביותר בקביעת מחיר היהלום. Carat, Color, Clarity, Cut

אולם מצד שני, הדבר אינו מדויק במאת האחוזים, כאשר אפילו לשני יהלומים עם אותם נתונים מרכזיים דומים, הם עלולים להיות מתומחרים שונה.