$Solutions \ Exercices \ MP/MP^*$

Table des matières

1	Algèbre Générale	2
2	Séries numériques et familles sommables	3
3	Probabilités sur un univers dénombrable	4
4	Calcul matriciel	5
5	Réduction des endomorphismes	6
6	Espaces vectoriels normés	7
7	Fonction d'une variable réelle	19
8	Suites et séries de fonctions	20
9	Séries entières	21
10	Intégration	22
11	Espaces préhilbertiens	23
12	Espaces euclidiens	24
13	Calcul différentiel	25
14	Équation différentielles linéaires	26

1 Algèbre Générale

2 Séries numériques et familles sommables

3 Probabilités sur un univers dénombrable

4 Calcul matriciel

5 Réduction des endomorphismes

Solution 5.1. Pour le sens indirect, soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)$. Pour tout $p \in \mathbb{N}$, $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M_p)$ donc $\det(M_p - \lambda I_n) = 0$. Par continuité du déterminant, on a $0 = \det(M_p - \lambda I_n) \xrightarrow[p \to +\infty]{} \det(-\lambda I_n)$. Donc $\lambda = 0$ et $\operatorname{Sp}_{\mathbb{C}}(M) = \{0\}$ donc M est nilpotente.

Pour le sens direct, soit $u \in \mathcal{L}(\mathbb{C}^n)$ canoniquement associée à M. On trigonalise u sur une base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ avec $u(\varepsilon_1) = 0, u(\varepsilon_2) = a_{1,2}\varepsilon_1, \dots, u(\varepsilon_n) = a_{1,n}\varepsilon_1 + \dots + a_{n-1,n}\varepsilon_{n-1}$. Posons pour $i \in \{1, \dots, n\}$, $\varepsilon_{i,p} = \frac{\varepsilon_i}{p^{i-1}}$. On pose $\mathcal{B}_p = (\varepsilon_{1,p}, \dots, \varepsilon_{n,p})$ et $M_p = \operatorname{mat}_{B_p}(u)$, semblable à M et $M_p \xrightarrow[p \to +\infty]{} 0$ car $\|M_p\| \leqslant \frac{1}{p} \|M_1\|$.

Solution 5.2. On pose $u \in \mathcal{L}(\mathbb{C}^n)$ canoniquement associée à M.

Pour le sens indirect, si M n'est pas diagonalisable, il existe une base $B = (\varepsilon_1, \dots, \varepsilon_n)$ de \mathbb{C}^n telle que

$$mat_{\mathcal{B}}(u) = D + N$$

où D est diagonale et N est nilpotente (décomposition de Dunford). En reprenant les bases \mathcal{B}_p définies à l'exercice précédent, on a

$$\operatorname{mat}_{\mathcal{B}_p}(u) = D + N_p \xrightarrow[p \to +\infty]{} D$$

Si $D \in S_M$, alors M est diagonalisable ce qui est exclu par hypothèse. Donc S_M n'est pas fermé. Pour le sens direct, si M est diagonalisable, soit $(M_p)_{p \in \mathbb{N}} \in (S_M)^{\mathbb{N}}$ avec $M_p \xrightarrow[p \to +\infty]{} M'$. Soit $\lambda \in \mathbb{C}$. On a $\chi_{M_p}(\lambda) = \det(\lambda I_n - M_p) = \chi_M(\lambda)$ car M et M_p sont semblables. Par continuité du déterminant, on a $\chi_{M'}(\lambda) = \chi_M(\lambda)$, donc $\chi_{M'} = \chi_M$. De plus, $A \mapsto \Pi_M(A)$ (polynôme minimal) est continue sur $\mathcal{M}_n(\mathbb{C})$ et pour tout $p \in \mathbb{N}$, on a $\Pi_M(M_p) = 0$ donc $\Pi_M(M') = 0$. M' est donc annulée par Π_M , donc M' est diagonalisable et comme $\chi_M = \chi_{M'}$, M et M' ont les mêmes valeurs propres avec les mêmes multiplicités. Donc $M' \in S_M$.

Remarque 5.1. Le polynôme caractéristique est une fonction continue de la matrice, mais c'est faux pour le polynôme minimal, par exemple pour

$$M_p = \begin{pmatrix} \frac{1}{p} & 0\\ 0 & \frac{2}{p} \end{pmatrix}$$

On a $M_p \xrightarrow[p \to +\infty]{} 0$ et $\Pi_{M_p} = (X - \frac{1}{p})(X - \frac{2}{p}) \xrightarrow[p \to +\infty]{} X^2 \neq X = \Pi_{M_\infty}$ donc $\lim_{p \to +\infty} \Pi_{M_p} \neq \prod_{\substack{\lim p \to +\infty}{}} M_p$.

6 Espaces vectoriels normés

Solution 6.1.

1. $A(x,y) \in \mathbb{R}^2$ fixé, la fonction

$$\varphi: \ \mathbb{R} \ \to \ \mathbb{R}$$

$$t \ \mapsto \ x\cos(t) + y\sin(2t)$$

est bornée, donc le sup sur \mathbb{R} existe. Pour la séparation, prendre t=0 et $t=\frac{\pi}{4}$. Pour l'inégalité triangulaire, montrer l'inégalité à t fixé puis passer au sup sur \mathbb{R} .

2. Si $|x| + |y| \le 1$, alors $N(x, y) \le 1$ donc on a la première inclusion. Si $N(x, y) \le 1$, utiliser t = 0 pour avoir $|x| \le 1$ et $t = \frac{\pi}{4}$ puis $t = -\frac{\pi}{4}$ pour pouvoir justifier

$$|2y| \leqslant \left| x \frac{\sqrt{2}}{2} + y \right| + \left| y - x \frac{\sqrt{2}}{2} \right| \leqslant 2$$

et donc $|y| \leq 1$. D'où la deuxième inclusion.

3. On fixe $(x,y) \in S_N(0,1) \cap (\mathbb{R}_+)^2$. φ est 2π -périodique, $\varphi(\pi-t) = \varphi(t)$ et $\sup_{t \in \mathbb{R}} |\varphi(t)| = 1$. On peut donc se limite à un intervalle de longueur 2π pour l'étude de φ .

On note que si $t \in [-\pi, 0]$, $\cos(t)$ et $\sin(2t)$ sont de signes opposés. Donc

$$|\varphi(t)| \le x|\cos(t)| + y|\sin(2t)| = |\varphi(-t)|$$

 $et -t \in [0, \pi]$. Donc le sup est atteint sur $[0, \pi]$.

On note maintenant, comme $|\varphi(\pi - t)| = |\varphi(t)| \ sur \left[0, \frac{\pi}{2}\right]$, que si $t \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$,

$$0\leqslant \varphi(t)=x\underbrace{\cos(t)}_{\in [0,\frac{\sqrt{2}}{2}]}+y\sin(2t)\leqslant x\underbrace{\cos(\frac{\pi}{2}-t)}_{\in [\frac{\sqrt{2}}{2},1]}+y\sin(2\times(\frac{\pi}{2}-t))=\varphi(\frac{\pi}{2}-t)$$

Donc le sup est atteint sur $[0, \frac{\pi}{4}]$. Soit maintenant $t_0 \in [0, \frac{\pi}{4}]$ tel que $\varphi(t_0)$ réalise le sup (existe car φ est continue sur un compact). Comme c'est aussi le sup sur \mathbb{R} qui est ouvert, on a la condition d'Euler du premier ordre : $\varphi'(t_0) = 0$.

On a donc $x\cos(t_0) + y\sin(2t_0) = 1$ et $-x\sin(t_0) + 2y\cos(2t_0) = 0$. On en déduit les valeurs de x et y en fonction de t_0 , en faisant attention que $\cos(t_0) \neq 0$ sinon $\sin(t_0) = 0$ aussi ce qui n'est pas le cas, et au cas où $t_0 = 0$.

Réciproquement, s'il existe $t_0 \in [0, \frac{\pi}{4}]$ tel que x et y s'écrivent de la façon demandée, alors t_0 est l'unique point satisfaisant $\varphi(t_0) = 1$ et $\varphi'(t_0) = 0$. Mais alors le sup de φ sur $[0, \frac{\pi}{4}]$ est atteint en un point t_1 qui vérifie les mêmes choses, donc $t_1 = t_0$ d'où N(x, y) = 1.

Solution 6.2.

1. Pour l'inégalité triangulaire, introduire la forme bilinéaire symétrique positive sur E

7

$$\varphi: E \times E \rightarrow \mathbb{R}$$

 $(f,g) \mapsto f(0)g(0) + \int_0^1 f'(t)g'(t)dt$

Alors $N(f) = \sqrt{\varphi(f, f)}$ et on utilise l'inégalité de Minkowski.

- 2. Pour $x \in [0,1]$, écrire |f(x)| = |f(0) + f(x) f(0)|, $f(x) f(0) = \int_0^x f'(t)dt$, utiliser Cauchy-Schwarz avec f' et 1 puis que $\sqrt{a} + \sqrt{b} \leqslant \sqrt{2}\sqrt{a+b}$, pour enfin passer au sup sur x.
- 3. Utiliser, pour $n \in \mathbb{N}^*$, la fonction

$$f_n: [0,1] \rightarrow \mathbb{R}$$
 $t \mapsto t^n$

Solution 6.3. Si f est ouverte, $f(\mathbb{R}^n)$ est un sous-espace vectoriel ouvert de \mathbb{R}^p . Donc f est surjective.

Si f est surjective, on prend F un supplémentaire de $\ker(f)$ dans \mathbb{R}^n avec $\dim(\ker(f)) = n - p$ et $\dim(F) = p$. Soit (e_1, \ldots, e_p) une base de F et (e_{p+1}, \ldots, e_n) une base de $\ker(f)$. On vérifie que $(f(e_1, \ldots, f(e_p)))$ est une base de \mathbb{R}^p . On définit

$$N_1: \quad \mathbb{R}^n \quad \to \quad \mathbb{R}$$

$$\sum_{i=1}^n x_i e_i \quad \mapsto \quad \max_{1 \leqslant i \leqslant n} |x_i|$$

norme sur \mathbb{R}^n et

$$N_2: \mathbb{R}^p \to \mathbb{R}$$

 $\sum_{i=1}^p y_i f(e_i) \mapsto \max_{1 \leq i \leq p} |y_i|$

norme sur \mathbb{R}^p .

Soit Θ un ouvert de \mathbb{R}^n , soit $y_0 \in f(\Theta)$, il existe $x_0 \in \Theta$: $y_0 = f(x_0)$. Si $x_0 = \sum_{i=1}^n \alpha_i e_i$, alors $y_0 = \sum_{i=1}^p \alpha_i f(e_i)$. Comme Θ est un ouvert, il existe $r_0 > 0$ tel que

$$B_{N_1}(x_0,r_0)\subset\Theta$$

Soit $y = \sum_{i=1}^{p} \beta_i f(e_i) \in \mathbb{R}^p$, si $N_2(y - y_0) < r_0$, pour tout $i \in \{1, ..., p\}, |\beta_i - \alpha_i| < r_0$ et

$$y = f\left(\sum_{i=1}^{p} \beta_i e_i + \sum_{i=p+1}^{n} \alpha_i e_i\right) \stackrel{def}{=} f(x)$$

avec $N_1(x - x_0) = \max_{1 \leq i \leq p} |\beta_i - \alpha_i| < r_0$. Ainsi $x \in \Theta$ et $y \in f(\Theta)$, donc $B_{N_2}(y_0, r_0) \subset f(\Theta)$ et $f(\Theta)$ est un ouvert.

Solution 6.4.

1. Classique.

2.

$$|f(x)| \le |f(0)| + |f(x) - f(0)| \le |f(0)| + \kappa(f)x \le N(f)$$

 $car \ x \leq 1$, $donc \ N_{\infty} \leq N$. Pour la non-équivalence, prendre

$$f_n: [0,1] \rightarrow \mathbb{R}$$
 $t \mapsto t^n$

3. On a $|f(0)| \leq N_{\infty}(f)$ donc $N(f) \leq N'(f)$. Ensuite, $N_{\infty} \leq N$ donne $N' \leq N + \kappa \leq 2N$. Donc N est N' sont équivalentes.

Remarque 6.1. Exemple de normes qui, en dimension infinie, ne se dominent pas mutuellement. On prend $(e_i)_{i\in I}$ une base (de Hamel), $J=(i_n)_{n\in\mathbb{N}}\subset I$ dénombrable. Si $x=\sum_{i\in I}x_ie_i$, on peut vérifier que

$$N_1(x) = \sum_{n \in \mathbb{N}} |x_{i_n}| + \sum_{i \in I \setminus J} |x_i|$$

et

$$N_2(x) = \sum_{n \in \mathbb{N}} n|x_{i_{2n}}| + \sum_{n \in \mathbb{N}} \frac{1}{n+1} |x_{i_{2n+1}}| + \sum_{i \in I \setminus J} |x_i|$$

ne se dominent pas.

Solution 6.5. Il existe $\alpha > 0$ tel que $B_{\|\cdot\|_{\infty}}(I_n, \alpha) \subset G$. Soient $i \neq j$ et $\lambda \in \mathbb{C}$. Il existe $p \in \mathbb{N}^*$ tel que $\frac{|\lambda|}{p} < \alpha$. Alors

$$\left\| T_{i,j} \left(\frac{\lambda}{p} \right) - I_n \right\|_{\infty} = \left| \frac{\lambda}{p} \right| < \alpha$$

donc $T_{i,j}(\lambda) \in G$ ($T_{i,j}$ est la matrice de transvection : $T_{i,j}(\lambda) = I_n + \lambda E_{i,j}$). Ainsi,

$$T_{i,j}(\lambda) = \left(T_{i,j}\left(\frac{\lambda}{p}\right)\right)^p \in G$$

Soit $\delta = \rho e^{\mathrm{i}\theta} \in \mathbb{C}^*$. On $a \lim_{n \to +\infty} \rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} = 1$ donc il existe $p \in \mathbb{N}^*$ tel que $|\rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} - 1| < \alpha$. On a alors

$$\left\| D_n \left(\rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} \right) - I_n \right\|_{\infty} < \alpha$$

donc $D_n(\delta) = D_n(\rho^{\frac{1}{p}} e^{i\frac{\theta}{p}})^p \in G$ (matrice de dilatation).

Comme les matrices de transvection et de dilatation engendrent $GL_n(\mathbb{C})$, on a bien $G = GL_n(\mathbb{C})$.

Remarque 6.2. C'est faux sur \mathbb{R} . Contre-exemple : matrices de déterminant positif.

Solution 6.6. Si f n'est pas continue en 0, il existe $\varepsilon_0 > 0$ tel que pour tout $\alpha > 0$, il existe $h \in E$ avec $||h|| \le \alpha$ et $||f(h)|| > \varepsilon_0$. On prends $\alpha_n = \frac{1}{n+1}$, d'où $||nh_n|| \le 1$ mais $\underbrace{||f(nh_n)||}_{\le M} > n\varepsilon_0 \xrightarrow[n \to +\infty]{} +\infty$.

Donc f est continue en 0. Comme f est linéaire, pour tout $x \in E$,

$$\lim_{\|h\| \to 0} f(x+h) = \lim_{\|h\| \to 0} f(x) + f(h) = f(x)$$

 $donc\ f\ est\ continue.$

On a f(px) = p(fx) pour tout $p \in \mathbb{Z}$ puis $qf(\frac{p}{q}x) = f(px) = pf(x)$ pour tout $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ donc pour tout $r \in \mathbb{Q}$, f(rx) = rf(x). Soit $\lambda \in \mathbb{E}$, il existe une suite de rationnels telle que $\lim_{n \to +\infty} r_n = \lambda$. Comme f est continue, on a

$$f(\lambda x) = \lim_{n \to +\infty} f(r_n x)$$
$$= \lim_{n \to +\infty} r_n f(x)$$
$$= \lambda f(x)$$

Donc f est linéaire.

Remarque 6.3. Soit $e_0 = 1$ et $e_1 = \sqrt{2}$ et $(e_i)_{i \in I}$ une \mathbb{Q} -base de \mathbb{R} $(0 \in I)$. On définie

$$f\left(\sum_{i\in I} \lambda_i e_i\right) = \lambda_0 e_0 + \sqrt{2} \sum_{i\in I\setminus\{0\}} \lambda_i e_i$$

f vérifie f(x+y)=f(x)+f(y), mais si $(r_n)_{n\in\mathbb{N}}$ est une suite de rationnels tendant vers $\sqrt{2}$, $f(r_n)=r_n\to\sqrt{2}\neq f(\sqrt{2})=2$.

Solution 6.7.

- 1. On a $\alpha(A) \subset \overline{A}$ donc $\overset{\circ}{A} \subset \overline{A}$ donc $\alpha(\alpha(A)) \subset \alpha(A)$. Comme $\alpha(A)$ est un ouvert inclus dans $\overset{\circ}{\overline{A}} \subset \overline{A}$ donc $\alpha(A) \subset \alpha(\alpha(A))$.
- 2. Si $\beta(A) = \overline{\mathring{A}}$, on montre aussi que $\beta(\beta(A)) = \beta(A)$. On a donc $A, \overline{A}, \mathring{A}, \overline{\mathring{A}}, \overline{\mathring{A}}, \overline{\mathring{A}}$ et $\overline{\mathring{A}}$ et $\overline{\mathring{A}}$ et c'est tout.

Solution 6.8.

1. $Si \ d_A = d_B$,

$$\overline{A} = \{x \in E \mid d_A(x) = 0\} = \{x \in E \mid d_B(x) = 0\} = \overline{B}$$

Réciproquement, soit $x \in E$ et $\varepsilon > 0$, il existe $a_1 \in \overline{A}$, $||x - a_i|| \le d_{\overline{A}}(x) + \frac{\varepsilon}{2}$ (par définition de l'inf). Il existe $a_2 \in A$, $||a_1 - a_2|| \le \frac{\varepsilon}{2}$ (par définition de la fermeture). Ainsi,

$$d_A(x) \le ||x - a_2|| \le ||x - a_1|| + ||a_1 - a_2|| \le d_{\overline{A}}(x) + \varepsilon$$

Ceci valant pour tout $\varepsilon > 0$, $d_A(x) \leqslant d_{\overline{A}}(x)$. Comme $A \subset \overline{A}$, $d_{\overline{A}} \leqslant d_A$, on $a d_A = d_{\overline{A}} = d_{\overline{B}} = d_B$.

2. Soit $x \in A$, on a $d_B(x) = |d_B(x) - d_A(x)| \le \rho(A, B)$ donc $\sup_{x \in A} d_B(x) \le \rho(A, B)$, de même pour $\sup_{y \in B} d_A(y)$ donc on on a un première inégalité.

Réciproquement, soit $x \in E$ et $\varepsilon > 0$, il existe $a \in A$ et $b \in B$ tel que $||x - a|| \le d_A(x) + \varepsilon$ et $||x - b|| \le d_B(x) + \varepsilon$. On a alors

$$d_A(x) \le ||x - a|| \le ||a - b|| + ||x - b|| \le d_B(x) + \varepsilon + \alpha(A, B)$$

Ceci vaut pour tout $\varepsilon > 0$, donc $d_A(x) \leq d_B(x) + \alpha(A, B)$. De même, $d_B(x) \leq d_A(x) + \alpha(A, B)$ donc $\rho(A, B) \leq \alpha(A, B)$.

Solution 6.9.

1. Soit $(y_n)_{n\in\mathbb{N}}\in P(F)^{\mathbb{N}}$ qui converge vers $y\in\mathbb{C}$ donc il existe $(x_n)\in F^{\mathbb{N}}$ telle que l'on ait pour tout $n\in\mathbb{N}$, $P(x_n)=y_n$. $(x_n)_{n\in\mathbb{N}}$ est bornée car $\lim_{z\to+\infty}|P(z)|=+\infty$ (car P est non constant), donc on peut extraire (Bolzano-Weierstrass) $x_{\sigma(n)}\to x$ et $x\in F$ car F est fermé. Par continuité de $z\mapsto P(z)$ sur \mathbb{C} , on a $y=P(x)\in P(F)$.

2. Soit Θ un ouvert de \mathbb{C} , soit $y \in P(\Theta)$, $\exists x \in \Theta$ tel que P(x) = y et il existe r > 0, $B(x,r) \subset \Theta$. Soit $y' \in \mathbb{C}$, supposons que pour tout $x' \in \mathbb{C}$ tel que P(x') = y', on a |x-x'| > r. Soit $Q(X) = P(X) - y' = a \prod_{i=1}^{n} (X-x_i)$ non constant où a est le coefficient dominatrice de P. Par hypothèse, pour tout $i \in \{1, \ldots, n\}: |x_i - x| > r$ (car $P(x_i) = y'$), ainsi

$$|Q(x)| = |y - y'| \geqslant |a|r^n$$

Par contraposée, si $|y - y'| \leq \frac{|a|r^n}{2}$, alors il existe $x' \in \mathbb{C}$ tel que P(x') = y' et |x' - x| < r. Ainsi, $x' \in B(x,r) \subset \Theta$ et $y' \in P(\Theta)$. Donc $B(y,|a|r^n) \subset P(\Theta)$ et $P(\Theta)$ est un ouvert.

Solution 6.10.

1. Si $P \notin \mathcal{S}$, il existe $z_0 \in \mathbb{C} \setminus \mathbb{R}$ tel que $P(z_0) = 0$ et $|\Im(z_0)|^n > 0 = P(z_0)$. Par contraposée, si pour tout $z \in \mathbb{C}$, $|P(z)| \geqslant |\Im(z)|^n$, alors $P \in \mathcal{S}$.

Réciproquement, si $P = \prod_{i=1}^{n} (X - \lambda_i) \in \mathcal{S}$ avec $(\lambda_i)_{1 \leq i \leq n}$ réels, soit $z = a + ib \in \mathbb{C}$. On a

$$|P(z)| = \prod_{i=1}^{n} |a - \lambda_i + ib| \geqslant |b|^n$$

- 2. Soit $(P_p)_{p\in\mathbb{N}}\in\mathcal{S}^{\mathbb{N}}$ telle que $P_p\xrightarrow[p\to+\infty]{}P\in F$. Soit $z\in\mathbb{C}$, on a pour tout $p\in\mathbb{N}$, $|P_p(z)|\geqslant |\Im(z)|^n$ donc quand $p\to+\infty$, $|P(z)|\geqslant |\Im(z)|^n$ donc $P\in\mathcal{S}$ et S est fermé.
- 3. Soit $(M_p)_{p\in\mathbb{N}}$ une suite de matrice trigonalisable sur \mathbb{R} qui converge vers $M\in\mathcal{M}_n(\mathbb{R})$. Ib bite χ_p le polynôme caractéristique de M_p . Pour tout $p\in\mathbb{N}$, $\chi_p\in\mathcal{S}$ et $\chi_p\xrightarrow[p\to+\infty]{}\chi_M$. Comme \mathcal{S} est fermé, $\chi_M\in\mathcal{S}$ et M est trigonalisable sur \mathbb{R} .

Solution 6.11.

- 1. φ est linéaire et $\dim(\mathbb{K}_{m-1}[X] \times \mathbb{K}_{n-1}[X]) = m + n + = \dim(\mathbb{K}_{n+m-1}[X])$. Si φ est bijective, elle est surjective et il existe $(U,V) \in \mathbb{K}[X]^2$ tel que UA + BV = 1 et d'après le théorème de Bézout, on a $A \wedge B = 1$. Réciproquement, si φ n'est pas surjective, il existe $(U,V) \in (\mathbb{K}_{m-1}[X] \times \mathbb{K}_{n-1}[X]) \setminus \{(0,0)\}$ tel que $\varphi(U,V) = 0$ d'où AU = -BV. Soit $\delta = A \wedge B$, on écrit $A = \delta A_1$ et $B = \delta B_1$ avec $A_1 \wedge B_1 = 1$ et on a $A_1U = -B_1V$. D'après le théorème de Gauss, on a $A_1 \mid V$ et $B_1 \mid U$. Si U = 0, on a V = 0 et de même si V = 0, on a U = 0. On peut donc supposer $U \neq 0$ et $V \neq 0$, et on a alors $\deg(A_1) \leqslant \deg(V) \leqslant n - 1 < n = \deg(A)$ mais $A = \delta A_1$ donc $\deg(\delta) \geqslant 1$ et $A \wedge B \neq 1$.
- 2. Φ est continue car $R_{A,B}$ est un polynôme en les coefficients de A et B.
- 3. Comme on est dans \mathbb{C} , $\Delta = \{P \in \mathbb{C}_p[X] \mid P \wedge P' = 1\} = \{P \in \mathbb{C}_p[X] \mid R_{P,P'} \neq 0\}$. $\Phi_{P,P'}$ est continue d'après la question précédente, $\delta = \Phi_{P,P'}^{-1}(\mathbb{C}^*)$ donc Δ est ouvert. Sur \mathbb{R} , on n'a pas la caractérisation de scindé à racines simples si et seulement si $P \wedge P' = 1$ (contre-exemple : $P = X^2 + 1$). Dans $\mathbb{R}_3[X]$, X est scindé à racines simples et $X(1 + \varepsilon X)^2 \xrightarrow[\varepsilon \to 0]{} X$ et $-\frac{1}{\varepsilon}$ est racine double, donc Δ n'est pas ouvert.

Remarque 6.4. On peut cependant considérer

 $\Delta_n = \{ P \in \mathbb{C}_p[X] \mid P \text{ scind\'e à racines simples sur } \mathbb{R} \text{ et } \deg(P) = n \}$

Si $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ sont les racines (distinctes) de R sur \mathbb{R} , on choisit $\alpha_0 \in]-\infty, \lambda_1, \alpha_n \in]\lambda_n, +\infty[$ et $\alpha_i \in]\lambda_i, \lambda_{i+1}[$ si $i=1,\ldots,n-1$.

Pour tout $k \in \{0, ..., n-1\}$, on a $P(\alpha_k)P(\alpha_{k+1}) < 0$ (car les racines de P provoquent des changements de signe). Soit

$$\Psi: \mathbb{R}_n[X] \to \mathbb{R}^n$$

$$Q \mapsto (Q(\alpha_k)Q(\alpha_{k+1}))_{0 \leqslant k \leqslant n-1}$$

 Ψ est continue sur $\mathbb{R}_n[X]$ et $\Psi(P) \in (\mathbb{R}_-^*)^n$ qui est ouvert, donc il existe r > 0 tel que si ||P - Q|| < r, alors $\Psi(Q) \in (\mathbb{R}_-^*)^n$. Donc Q change n fois de signe, et admet au moins n racines. Mais $\deg(Q) = n$, donc Q est scindé à racines simples sur \mathbb{R} , donc Δ_n est ouvert dans $\{P \in \mathbb{R}[X] \mid \deg(P) = n\}$. Remarque 6.5.

 $\{M \in \mathcal{M}_n(\mathbb{C}) \mid M \text{ diagonalisable à racines simples}\} = \{M \in \mathcal{M}_n(\mathbb{C}) \mid \chi_M \text{ sciné à racines simples}\}$ est un ouvert de $\mathcal{M}_n(\mathbb{C})$ car $M \mapsto \chi_M$ est continue sur $\mathcal{M}_n(\mathbb{C})$, et c'est aussi vrai sur \mathbb{R} .

Solution 6.12.

1. Soit

$$f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$$

$$A \mapsto A^n$$

f est continue et $F = f^{-1}(\{0\})$ donc $F = \overline{F}$.

Soit $M_0 \in F$, X^n annule M_0 donc M_0 est trigonalisable : on écrit M_0 dans une base où les coefficients diagonaux sont tous nuls. Soit alors M_{ε} la même matrice dans la même base en rajoutant simplement ε en première position de la diagonale. Alors $M_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} M_0$ et $M_{\varepsilon} \notin F$ donc $\mathring{F} = \emptyset$. Notons que cela signifie que F est dense.

2. La norme dérive du produit scalaire $(A|B) \mapsto \operatorname{Tr}(A^{\mathsf{T}}B)$. Soit $M \in F$, on a $\|M - I_n\|^2 = \|M\|^2 + \|I_n\|^2 - 2(M|I_n)$. On a $(M|I_n) = \operatorname{Tr}(M) = 0$ car M est nilpotente. Donc $\|M - I_n\|^2$ est minimale pour $\|M\|^2$ minimale, donc pour $M = 0 \in F$. Donc $d(I_n, F) = \|I_n\| = \sqrt{n}$ (et la distance est atteinte pour $0_{\mathcal{M}_n(\mathbb{R})}$).

Solution 6.13.

- 1. $A \mapsto \det(A)$ est continue et $GL_n(\mathbb{K}) = \det^{-1}(\mathbb{K}^*)$ est donc ouvert. Si $A \in \mathcal{M}_n(\mathbb{K})$, pour $p \in \mathbb{N}$, on pose $A_p = A \frac{1}{p+1}I_n$. Comme $\operatorname{Sp}(A)$ est fini, il existe $N \in \mathbb{N}$, tel que pour tout $p \geqslant N$, $\frac{1}{p+1} \notin \operatorname{Sp}(A)$. Donc pour tout $p \geqslant N$, $A_p \in GL_n(\mathbb{K})$, et $A_p \xrightarrow[p \to +\infty]{} A$ donc $GL_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.
- 2. On fixe $B \in \mathcal{M}_n(\mathbb{K})$. Soit $A \in GL_n(\mathbb{K})$. On écrit $BA = A^{-1}(AB)A$ donc AB et BA sont semblables donc $\chi_{AB} = \chi_{BA}$. Comme, à B fixé, $A \mapsto \chi_{AB}$ et $A \mapsto \chi_{BA}$ sont continues sur $\mathcal{M}_n(\mathbb{K})$, on a le résultat par densité.

Solution 6.14.

1. On a $v_p \circ (id_E - u) = (id_E - u) \circ v_p = \frac{1}{p} (id_E - u^p)$, donc $||v_p \circ (id_E - u)|| \leq \frac{1}{p} (||id_E|| + ||u^p||) \xrightarrow[p \to +\infty]{} 0$.

Soit $x \in \ker(u - id_E) \cap \operatorname{Im}(u - id_E)$, on a u(x) = x et il existe $y \in E$, $x = (u - id_E)(y)$. On a $v_p(x) = \frac{1}{p}(px) = x$ et $v_p(x) = v_p \circ (u - id_E)(y) \xrightarrow[p \to +\infty]{} 0$ d'où x = 0. Le théorème du rang permet de conclure.

2. Soit $x \in E$, on écrit $x = x_1 + x_2$ avec $\Pi(x) = x_1$ et $x_2 = (u - id_E)(y_2)$. Alors $v_p(x) = x_1 + v_p \circ (u - id_E)(y_2) \xrightarrow[p \to +\infty]{} x_1 = \Pi(x)$.

Solution 6.15.

1. Pour tout $x \in A$, $f_n(x) \in A$ car A est convexe. Soit $(x, y) \in A^2$, on a

$$||f_n(x) - f_n(y)|| = \left(1 - \frac{1}{n}\right)||f(x) - f(y)|| \le \left(1 - \frac{1}{n}\right)||x - y||$$

Donc f_n est $(1-\frac{1}{n})$ -lipschitzienne. On forme

$$g_n: A \to \mathbb{R}$$

 $x \mapsto ||f_n(x) - x||$

qui est continue. Soit $x_n \in A$ telle que $g_n(x_n) = \min_{x \in A} g_n(x)$ (existe car A est compact et g_n continue). On a $x_n \in A$, d'où $f_n(x_n) \in A$ et

$$g_n(f_n(x_n)) = \|f_n(f_n(x_n)) - f_n(x_n)\| \le \left(1 - \frac{1}{n}\right) \|f_n(x_n) - x_n\| = \left(1 - \frac{1}{n}\right) g_n(x_n)$$

Si $g_n(x_n) \neq 0$, alors on aurait $g_n(f(x_n)) < g_n(x_n)$ ce qui n'est pas possible. Donc $g_n(x_n) = 0$ et $f_n(x_n) = x_n$.

Soit y_n un autre point fixe, on a

$$||f_n(x_n) - f_n(y_n)|| = ||x_n - y_n|| \le \left(1 - \frac{1}{n}\right) ||x_n - y_n||$$

 $donc \ x_n = y_n.$

2. On a $(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ et on extrait (car A est compact) et on a

$$x_{\sigma(n)} \xrightarrow[n \to +\infty]{} x \in A$$

On a

$$f_{\sigma(n)}(x_{\sigma(n)}) = x_{\sigma(n)} = \underbrace{\frac{1}{\sigma(n)} f(x_0)}_{n \to +\infty} + \underbrace{\left(1 - \frac{1}{\sigma(n)}\right) f(x_{\sigma(n)})}_{n \to +\infty}$$

par continuité de f. Donc f(x) = x.

3. Soit $(x,y) \in A^2$, points fixes de f, et $t \in [0,1]$, on pose z = tx + (1-t)y. On a

$$||x - y|| = ||f(x) - f(y)||$$

$$\leq ||f(x) - f(z)|| + ||f(z) - f(y)||$$

$$\leq ||x - z|| + ||z - y||$$

$$= (1 - t)||x - y|| + t||x - y||$$

$$= ||x - y||$$

On a donc égalité partout : ||f(x) - f(y)|| = ||f(x) - f(z)|| + ||f(z) - f(y)|| et ||f(x) - f(z)|| = ||x - z||, ||f(z) - f(y)|| = ||z - y|| car f est 1-lipschitzienne.

Comme la norme est euclidienne, il existe $\lambda \in \mathbb{R}_+$ tel que $f(x) - f(z) = \lambda(f(z) - f(y))$ d'où $f(x) + \lambda f(y) = (\lambda + 1)f(z)$ d'où $f(z) = \frac{x + \lambda y}{\lambda + 1} = t'x + (1 - t')y$ avec $t' = \frac{1}{\lambda + 1} \in [0, 1]$. En reportant, on a

$$||f(x) - f(z)|| = ||x - t'x - (1 - t')y|| = (1 - t')||x - y|| = ||x - z|| = (1 - t)||x - y||$$

Si $x \neq y$, alors t = t' et f(z) = tx + (1 - t)y = z.

4. Soit dans \mathbb{R}^2 , $\overline{B_{\|\cdot\|}(0,1)} = [-1,1]^2 = A$. Soit

$$f: A \to A (x,y) \mapsto (x,|x|)$$

On a

$$||f(x_1, y_1) - f(x_2, y_2)||_{\infty} = ||(x_1, |x_1|)(x_2, |x_2|)||_{\infty}$$

$$= \max\{|x_1 - x_2|, ||x_1| - |x_2||\}$$

$$= |x_1 - x_2|$$

$$\leq ||(x_1, y_1) - (x_2, y_2)||_{\infty}$$

Donc f est 1-lipschitzienne, on a f(x,y) = (y,x) si et seulement si y = |x|. Donc ici, F n'est pas convexe.

Solution 6.16.

1. On a pour tout $(x,y) \in E^2$, f(x+y) = f(x) + f(y) et par récurrence, pour tout $n \in \mathbb{Z}$, f(nx) = nf(x). Pour $r = \frac{p}{q} \in \mathbb{Q}$, on a f(qrx) = qf(rx) = f(px) = pf(x) donc f(rx) = rf(x). Par densité de \mathbb{Q} dans \mathbb{R} et continuité de f, on a pour tout $\lambda \in \mathbb{R}$, $f(\lambda x) = \lambda f(x)$. Donc f est linéaire.

Pour $\mathbb{K} = \mathbb{C}$, cela ne marche pas. Contre-exemple : la conjugaison dans \mathbb{C} .

2. On étudie la série, pour x fixé de terme général

$$||v_{n+1}(x) - v_n(x)|| = \frac{1}{2^n} ||f(2^{n+1}x) - 2f(2^nx)|| \le \frac{M}{2^{n+1}}$$

qui est donc convergente. Donc $(v_n)_{n\in\mathbb{N}}$ converge.

- 3. On a $v_0(x) = f(x)$, donc $\sum_{n=0}^{+\infty} v_{n+1}(x) v_n(x) = g(x) f(x)$. f étant continue, v_n l'est aussi, et pour tout $n \in \mathbb{N}$, comme pour tout $x \in E$, $||(v_{n+1} v_n)(x)|| \leq \frac{M}{2^{n+1}}$, donc g est continue.
- 4. On a, pour tout $(x,y) \in E^2$,

$$||v_n(x+y) - v_n(x) - v_n(y)|| = ||\frac{1}{2^n} f(2^n(x+y)) - \frac{1}{2^n} (f(2^nx) + f(2^ny))|| \le \frac{M}{2^n}$$

Donc quand $n \to +\infty$, g(x+y) = g(x) + g(y). On a pour tout $x \in E$,

$$||g(x) - f(x)|| = \left\| \sum_{n=0}^{+\infty} v_{n+1}(x) - v_n(x) \right\| || \leqslant \sum_{n=0}^{+\infty} ||v_{n+1}(x) - v_n(x)|| \leqslant \sum_{n=0}^{\infty} \frac{M}{2^n} = M$$

 $Soit \ maintenant \ h \ linéaire \ continue \ telle \ que \ h-f \ soit \ bornée, \ soit \ M' = \sup_{x \in E} \|h(x) - f(x)\|.$

On a donc

$$||v_n(x) - h(x)|| = \left\| \frac{1}{2^n} f(2^n x) - \frac{1}{2^n} h(2^n x) \right\| \leqslant \frac{M'}{2^n}$$

 $car\ h\ est\ lin\'eaire.\ Donc\ quand\ n\to +\infty,\ g(x)=h(x)\ car\ \lim_{n\to +\infty}v_n(x)=g(x).$

Solution 6.17. En particulier, pour t = f(0), $f^{-1}(\{f(0)\}) = \{x \in E \mid f(x) = f(0)\}$ est borné (car compact). Donc il existe A tel que $f^{-1}(\{f(0)\}) \subset \overline{B(0,A)}$. Par contraposée, pour tout $x \in E$, si ||x|| > A, alors $f(x) \neq f(0)$.

On montre alors que $E \setminus \overline{B(0,A)}$ est connexe par arcs (faire le tour de la boule par l'extérieur). f étant continue, d'après le théorème des valeurs intermédiaires, on a soit pour tout $x \in E \setminus \overline{B(0,A)}$, f(x) > f(0) soit f(x) < f(0). Quitte à remplacer f par -f, on se place dans le cas f(x) > f(0). Comme on est en dimension finie sur $\overline{B(0,A)}$ compact, f atteint son minimum et ce minimum est plus petit que f(0), c'est donc un minimum global.

Remarque 6.6. C'est faux pour n=1. Contre-exemple : $f=id_{\mathbb{R}}$.

Solution 6.18. Si c'était le cas, on prend un cercle \mathcal{C} compact (et connexe par arcs). $f(\mathcal{C})$ est compact connexe par arc dans \mathbb{R} . On note $f(\mathcal{C}) = [a,b]$ (avec a < b car f injective). Si $x \in \mathcal{C}$ est tel que $f(x) = \frac{a+b}{2}$, on $\underbrace{f(\mathcal{C} \setminus \{x\})}_{connexe\ par\ arc} = \underbrace{[a,b] \setminus \left\{\frac{a+b}{2}\right\}}_{pas\ connexe\ par\ arc}$ donc une telle fonction n'existe pas.

Solution 6.19.

1. Pour tout $n \in \mathbb{N}$, $||e_n||_{l^1} = 1$ et $|K_n| = |\varphi(e_n)| \leq |||\varphi|||$ donc $(K_n)_{n \in \mathbb{N}}$ est bornée. On note $M = \sup |K_n| \leq |||\varphi|||$.

Soit maintenant $u = (u_n)_{n \in \mathbb{N}} \in l^1$. On a, pour $N \in \mathbb{N}$,

$$\left\| u - \sum_{n=0}^{N} u_n e_n \right\|_{1} = \sum_{n=N+1}^{\infty} |u_n| \xrightarrow[N \to +\infty]{} 0$$

(reste d'une série convergente). Par continuité de φ , on a donc

$$|\varphi(u)| \leqslant \sum_{n=0}^{\infty} |u_n||K_n| \leqslant M||u||_1$$

Ainsi, $\|\|\varphi\|\| \leqslant M$ et donc $\|\|\varphi\|\| = M$.

2. F est linéaire et une isométrie d'après la question précédente, donc injective. Soit $(K_n)_{n\in\mathbb{N}}\in l^{\infty}$. On définit

$$\varphi: \quad l^1 \quad \to \quad \mathbb{R}$$
$$u = (u_n)_{n \in \mathbb{N}} \quad \mapsto \quad \sum_{n=0}^{\infty} u_n K_n$$

Elle est bien définie car $\sum_{n=0}^{+\infty} |u_n| < +\infty$ et $(K_n)_{n\in\mathbb{N}}$ est bornée. Elle est linéaire, et continue car $|\varphi(u)| \leq \|(K_n)_{n\in\mathbb{N}}\|_{\infty} \|u\|_1$.

Enfin, pour tout $n \in \mathbb{N}$, $\varphi(e_n) = K_n$. Donc $F(\varphi) = (K_n)_{n \in \mathbb{N}}$ et F est surjective. Donc F est une isométrie bijective et le dual topologique de l^1 est équivalent à l^{∞} .

Solution 6.20.

1. Soit φ une forme linéaire non nulle telle que $K = \ker(\varphi)/Si$ F est dense, φ est discontinue. Soit $(a,b) \in (E \setminus H)^2$ et $(x_n)_{n \in \mathbb{N}} \in H^{\mathbb{N}}$ qui converge vers b-a (existe car H est dense). La suite $(a+x_n)_{n \in \mathbb{N}}$ converge vers b. Pour $n \in \mathbb{N}$, on a $\varphi(a+x_n) = \varphi(a) \neq 0$, et pour $t \in [0,1]$, $\varphi(t(a+x_n)+(1-t)(a+x_{n+1}))=\varphi(a)\neq 0$. Donc $[a+x_n,a+x_{n+1}]\subset E\setminus H$. Soit $\gamma:[0,1]\to E\setminus H$ telle que

$$\begin{cases} \gamma(t) = \alpha_n t + \beta_n \in [a + x_n, a + x_{n+1}] \subset E \setminus H & si \ t \in [1 - \frac{1}{n}, 1 - \frac{1}{n+1}] \\ \gamma(1) = b & si \ t \in [0, \frac{1}{2}] \end{cases}$$

On cherche à définir α_n et β_n : on veut $\gamma(1-\frac{1}{n})=a+x_n$ et $\gamma(1-\frac{1}{n+1})=a+x_{n+1}$ (pour la continuité en se raccordant au x_n). En résolvant le système, on trouve $\alpha_n=n(n+1)(x_n-x_{n+1})$ et $\beta_n=a+x_n-(n-1)(n+1)(x_n-x_{n+1})$.

Soit alors $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$: $||x_n + a - b|| < \varepsilon$ et pour tout $n \ge N$, pour tout $t \in [1 - \frac{1}{n}, 1 - \frac{1}{n+1}[, \gamma(t) \in [a + x_n, a + x_{n+1}] \subset B(b, \varepsilon)$ par convexité de la boule. Donc $\lim_{t \to 1} \gamma(t) = b$ et γ est continue. Donc $E \setminus H$ est connexe par arcs.

- 2. Soit φ une forme linéaire telle que $\ker(f) = H$ est fermé. Alors φ est continue (à redémontrer). Soit $x \in E \setminus H$, on a $\varphi(x)\varphi(-x) < 0$ et d'après le théorème des valeurs intermédiaires, si $E \setminus H$ était connexe par arcs, φ s'annulerait sur $E \setminus H$ ce qui n'est pas vrai. Donc $E \setminus H$ n'est pas connexe par arcs.
- 3. Si $\mathbb{K} = \mathbb{C}$, si H est dense alors $E \setminus H$ est connexe par arc d'après la première question. Si H est fermé, soit φ une forme linéaire continue telle que $\ker(f) = H$. Soit $(x_1, x_2) \in (E \setminus H)^2$.
 - $-Si \frac{\varphi(x_1)}{\varphi(x_2)} \notin \mathbb{R}_{-}^*, \ alors \ pour \ tout \ t \in [0,1], \ \varphi(\underbrace{tx_1 + (1-t)x_2}_{\in E \setminus H}) \neq 0 \ \ et \ on \ peut \ relier \ directe-$

 $ment x_1 et x_2.$

— Sinon, il existe $\theta \in \mathbb{R}, (\rho, \rho') \in (\mathbb{R}_+^*)^2$ avec $\varphi(x_1) = \rho e^{i\theta}$ et $\varphi(x_2) = \rho' e^{i(\theta+\pi)}$. Alors $x_3 = ix_1$ est tel que $[x_1, x_3] \subset E \setminus H$ et $[x_2, x_3] \subset E \setminus H$ (on contourne l'origine par une rotation de l'angle $\frac{\pi}{2}$). Par conséquent, on peut utiliser x_3 pour relier x_1 et x_2 donc $E \setminus H$ est connexe par arcs.

Solution 6.21. Soit

$$\varphi: \mathbb{R}_+^* \to \mathbb{R}$$

$$x \mapsto ((x, \sin(\frac{1}{x})))$$

 φ est continue et Γ) $\varphi(\mathbb{R}_+^*)$ est connexe par arcs.

On a $\overline{\Gamma} = \Gamma \cup \Gamma'$ avec $\Gamma' = \{(0,y) \mid y \in [-1,1]\}$. En effet, pour tout $y \in [-1,1]$, on pose $x_k = \frac{1}{\arcsin(y) + 2k\pi}$. On a $\sin(\frac{1}{x_k}) = y \xrightarrow[k \to +\infty]{} y$ donc $(0,y) = \lim_{k \to +\infty} (x_k, \sin(\frac{1}{x_k})) \in \overline{\Gamma}$.

Réciproquement, si $(x,y) \in \overline{\Gamma}$, il existe $(x_k) \in (\mathbb{R}_+^*)^{\mathbb{N}}$ avec $x = \lim_{k \to +\infty} x_k$ et $y = \lim_{k \to +\infty} \sin(\frac{1}{x_k})$. Si x > 0, par continuité, $y = \sin(\frac{1}{x})$ et $(x,y) \in \Gamma$. Si x = 0, $y \in [-1,1]$ donc $(x,y) \in \Gamma'$.

 $Si \overline{\Gamma}$ est connexe par arcs, il existe

$$\begin{array}{cccc} \gamma: & [0,1] & \to & \overline{\Gamma} \\ & t & \mapsto & (x(t),y(t)) \end{array}$$

continue telle que $\gamma(0) = (0,0)$ et $\gamma(1) = (\frac{1}{\pi},0)$. La première projection $t \mapsto x(t)$ est continue avec x(0) = 0 et $x(1) = \frac{1}{\pi}$. On définit maintenant $t_1 = \sup\{t \in [0,1] \mid x(t) = 0\}$. Par continuité, $x(t_1) = 0$ et donc $t_1 < 1$. Donc pour tout $t > t_1$, x(t) > 0 et $\gamma(t) = (x(t), \sin(\frac{1}{x(t)}))$ pour $t > t_1$ et $\gamma(t_1) = (0, y_1)$ avec $y_1 \in [-1, 1]$.

Or, -1 et 1 n'appartiennent pas simultanément à $]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$. On peut supposer que $1 \notin]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$. Comme γ est continue, il existe $t_2 > t_1$ tel que pour tout $t \in]t_1, t_2]$, $\sin(\frac{1}{x(t)}) \in]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$. Or $x(t_2) > 0$ et $x(t_1) = 0$ donc il existe $k \in \mathbb{N}^*$, $t_0 \in]t_1, t_2[$ tel que $x(t_0) = \frac{1}{2k\pi + \frac{\pi}{2}}$ (théorème des valeurs intermédiaires). Mais alors $\sin(\frac{1}{x(t_0)}) = 1 \notin]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$ ce qui contredit ce qui précède.

Donc $\overline{\Gamma}$ n'est pas connexe par arcs.

Solution 6.22.

1. Pour tout $n \in \mathbb{N}$, $u_n \in K$ car u_n est le barycentre de $(a, T(a), \dots, T^n(a))$ et K est convexe. Comme K est compact, on peut extraire $u_{\sigma(n)} \xrightarrow[n \to +\infty]{} u \in K$. Alors

$$(id_E - T)(u_{\sigma(n)}) = \frac{1}{\sigma(n) + 1}(id_E - T^{\sigma(n)+1})(a)$$

d'où

$$||(id_E - T)(u_{\sigma(n)})|| \leqslant \frac{1}{\sigma(n) + 1} \times 2M \xrightarrow[n \to +\infty]{} 0$$

avec $M=\sup_{x\in K}\|x\|$ (existe car K est compact donc borné). Par continuité de T, on a T(u)=u.

2. Posons $F' = \{u \in K \mid T(u) = u\}$ fermé car $K' = K \cap \left(\underbrace{(id_E - T)^{-1}}_{continu} \{0\}\right)$. Donc K' est compact et non vide d'après la première question. De plus, pour tout $(u_1, u_2) \in K'^2$, pour tout $t \in [0, 1]$, par linéarité de T, on a

$$T(tu_1 + (1-t)u_2) = tu_1 + (1-t)u_2$$

donc K' convexe. De plus, comme $U \circ T = T \circ U$, pour tout $u \in K'$, on a T(U(u)) = U(T(u)) = U(u) donc $U(u) \in K'$. On applique alors la question 1 à K' est il existe $y \in K'$: U(y) = y et T(y) = y.

Solution 6.23.

- 1. C'est le théorème du rang car $\operatorname{rg}(u) \leq n \leq p-2$, et $H = \{(\alpha_1, \ldots, \alpha_p) \mid \sum_{i=1}^p \alpha_i = \}$ est de dimension p-1 donc $H \cap \ker(u) \neq \{0\}$ (formule de Grassmann).
- 2. On a

$$\sum_{i=1}^{p} (\lambda_i + t\alpha_i) x_i = \sum_{i=1}^{p} \lambda_i x_i + t \sum_{i=1}^{p} \alpha_i x_i = x$$

et

$$\sum_{i=1}^{p} (\lambda_i + t\alpha_i) = \sum_{i=1}^{p} \lambda_i + t \sum_{i=1}^{p} \alpha_i = 1$$

 $Soit \ I_{+} = \{i \in \{1, \dots, p\} \mid \alpha_{i} > 0\} \ et \ I_{-} = \{i \in \{1, \dots, p\} \mid \alpha_{i} < 0\}. \ On \ a \ I_{+} \neq \emptyset \ et \ I_{-} \neq \emptyset \ car \sum_{i=1}^{p} \alpha_{i} = 0 \ et \ (\alpha_{1}, \dots, \alpha_{p}) \neq (0, \dots, 0). \ Soit \ t \geqslant 0. \ Pour \ tout \ i \in I_{+}, \ \lambda_{i} + t\alpha_{i} \geqslant 0. \ Pour \ i \in I_{-}, \ \lambda_{i} + t \underbrace{\alpha_{i}}_{<0} \geqslant 0 \ si \ et \ seulement \ si \ t \leqslant -\frac{\lambda_{i}}{\alpha_{i}}. \ Prenons \ alors$

$$t = \min_{i \in I_{-}} \left(-\frac{\lambda_i}{\alpha_i} \right)$$

On au aussi pour tout $i \in I_-$, $\lambda_i + t\alpha_i \geqslant 0$ et il existe $i_0 \in I_-$ tel que $\lambda_{i_0} + t\alpha_{i_0} = 0$.

- 3. Par récurrence descendante, on se ramène à n+1 points car si x est barycentre de p points avec $p \ge n+2$, alors il est barycentre de p-1 points.
- 4. Soit $A = \{(\lambda_1, \dots, \lambda_{n+1}) \in \mathbb{R}^{n+1}_+ \mid \sum_{i=1}^{n+1} \lambda_i = 1\}$ fermé et borné en dimension finie donc compact. Soit

$$f: A \times K^{n+1} \to \operatorname{conv}(K)$$
$$((\lambda_1, \dots, \lambda_n), (x_1, \dots, x_{n+1})) \mapsto \sum_{i=1}^{n+1} \lambda_i x_i$$

f est surjective et continue, donc conv(K) est l'image continue d'un compact donc conv(K) est compact.

7 Fonction d'une variable réelle

Solution 7.1. On note $A_h = \{ |\varphi(x) - \varphi(y)| \mid (x, y) \in I^2 \text{ et } |x - y| \leq h \}.$

- 1. ω_{φ} est bien défini car $|\varphi(x) \varphi(y)| \leq 2||\varphi||_{\infty}$). Si $0 < h \leq h'$, alors $A_h \subset A_{h'}$ donc $\sup(A_h) \leq \sup(A_{h'})$ donc $\omega_{\varphi}(h) \leq \omega_{\varphi}(h')$.
- 2. $Soit(h,h') \in (\mathbb{R}_+^*)^2$, $soit(x,y) \in I^2$ tel que $|x-y| \leqslant h+h'$ (où on peut supposer que $x \leqslant y$).
 - $Si \ y \in [x, x+h], \ alors \ |x-y| \leqslant h \ donc \ |\varphi(x)-\varphi(y)| \leqslant \omega_{\varphi}(h) \leqslant \omega_{\varphi}(h) + \omega_{\varphi}(h')$
 - $-Si y \in [x+h, x+h+h'], |\varphi(x)-\varphi(y)| \leq |\varphi(x)-\varphi(x+h)|+|\varphi(x+h)-\varphi(y)| \leq \omega_{\varphi}(h)+\omega_{\varphi}(h')$ $car |x-(x+h)| \leq h \ et \ |x+h-y| \leq h'.$

Donc $\omega_{\varphi}(h+h') \leq \omega_{\varphi}(h) + \omega_{\varphi}(h')$.

3. Par récurrence sur $n \in \mathbb{N}$, on a $\omega_{\varphi}(nh) = n\omega_{\varphi}(h)$. Si $\lambda \in \mathbb{R}_{+}^{*}$, on a $\lambda h \leq (\lfloor \lambda \rfloor + 1)h$ et par croissance et ce qui précède, on a

$$\omega_{\varphi}(\lambda h) \leqslant (\lfloor \lambda \rfloor + 1)\omega_{\varphi}(h) \leqslant (\lambda + 1)\omega_{\varphi}(h)$$

4. Soit $\varepsilon > 0$. φ étant uniformément continue, il existe $\alpha > 0$ tel que pour tout $(x,y) \in I^2$, si $|x - y|\alpha$ on a $|\varphi(x) - \varphi(y)| \leqslant \varepsilon$ et on a pour $h \leqslant \alpha$, $\omega_{\varphi}(h) \leqslant \varepsilon$ d'où $\lim_{h \to 0} \omega_{\varphi}(h) = 0$.

Soit alors $h_0 > 0$ fixé et h > 0,

- $si h_0 \leqslant h$, on $a 0 \leqslant \omega_{\varphi}(h) \omega_{\varphi}(h_0) \leqslant \omega_{\varphi}(h h_0)$.
- $si h \leqslant h_0$, on $a 0 \leqslant \omega_{\varphi}(h_0) \omega_{\varphi}(h) \leqslant \omega_{\varphi}(h_0 h)$.

Dans tous les cas, on a $|\omega_{\varphi}(h) - \omega_{\varphi}(h_0)| \leq \omega_{\varphi}(|h_0 - h|)$. Donc on a bien $\lim_{h \to h_0} \omega_{\varphi}(h) = \omega_{\varphi}(h_0)$.

Donc ω_{φ} est continue (et même uniformément).

8 Suites et séries de fonctions

9 Séries entières

10 Intégration

11 Espaces préhilbertiens

12 Espaces euclidiens

13 Calcul différentiel

14 Équation différentielles linéaires