DM1

Lei Bichang

February 16, 2025

1 Factoring and Modular Square Roots

Question 1.1. Description of an algorithm. First, use the extended Euclidean division to find $u, v \in \mathbb{Z}$ s.t. uM + vN = 1. Then x := vNa + uMb does the job:

```
x \equiv vNa \equiv a \mod M, x \equiv uMb \equiv b \mod N.
```

Denote by ExtGCD a realization of the extended Euclidean division algorithm.

Algorithm 1: CongruenceModTwoIntegers

```
Input: (M, N, a, b) \in \mathbb{Z}^4, gcd(M, N) = 1

Output: x \in \mathbb{Z}, x \equiv a \mod M, x \equiv b \mod N

(u, v) \leftarrow \text{ExtGCD}(M, N), s.t. uM + vN = 1;

return vNa + uMb
```

Analysis of the algorithm. This algorithm involves only a fixed number of steps more than ExtGCD. Hence its complexity is $O(\log(M)\log(N))$.

Question 1.2. Assume that we have an oracle \mathcal{O}_F for the problem Factoring. Let N=pq with p,q two distinct odd primes. Since $(\mathbb{Z}/N\mathbb{Z})^{\times} \simeq \mathbb{F}_p^{\times} \times \mathbb{F}_q^{\times}$ via $x \mapsto (x \mod p, x \mod q)$, an integer x is a square modulo N if and only if it is a square modulo p and q. In addition, if we have found integers a and b s.t. $x=a^2 \mod p$ and $x=b^2 \mod q$, then an integer y satisfying

```
y \equiv a \mod p, y \equiv b \mod q
```

would satisfy $x \equiv y^2 \mod p$ and mod q, and thus $y^2 \equiv x \mod N$.

For a prime p and an integer x, denote by $\operatorname{Sq}(p,x)$ an algorithm that provides an integer that is a square root of x modulo p. By factoring the polynomial $X^2 - x \in \mathbb{F}_p[X]$, $\operatorname{Sq}(p,x)$ can be realized as a probabilistic polynomial time algorithm. This provides us with the following probabilistic polynomial time algorithm with access to the oracle \mathcal{O}_F .

Algorithm 2: SquareRootMod- \mathcal{O}_F

```
Input: N: RSA integer, x \in \mathbb{Z}

Output: y \in \mathbb{Z} s.t. x = y^2 \mod N or False if x is not a square modulo N

(p,q) \leftarrow \mathcal{O}_F(N);

if x^{\frac{p-1}{2}} = 1 and x^{\frac{q-1}{2}=1} then

\begin{vmatrix} a \leftarrow \operatorname{Sq}(p,x), \ b \leftarrow \operatorname{Sq}(q,x); \\ y \leftarrow \operatorname{CongruenceModTwoIntegers}(p,q,a,b); \\ \operatorname{return} y \end{vmatrix}

else

\begin{vmatrix} \operatorname{return} False \end{vmatrix}
```

Question 1.3. Let N = pq be the prime factorization of N.

Assume first that $2 \nmid N$. Let $y \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ be a square root of x^2 , then $y = \varepsilon x$ with

$$\varepsilon \in \mu_2(\mathbb{Z}/N\mathbb{Z}) = \{ a \in \mathbb{Z}/N\mathbb{Z} \mid a^2 = 1 \} \stackrel{f}{\simeq} \{ \pm 1 \} \times \{ \pm 1 \}$$

where f is the restriction of the isomorphism $(\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{F}_p^{\times} \times \mathbb{F}_q^{\times}$ obtained from Chinese remainder theorem. So we have

$$x-y\equiv x-\pm x=\begin{cases} 0\bmod p, & \varepsilon\equiv 1\bmod p,\\ x\bmod p, & \varepsilon\equiv -1\bmod p,\end{cases}$$

i.e. $p \mid x - y \iff \varepsilon \equiv 1 \mod p$. A similar result holds for q. Hence

$$\gcd(x-y,N) = \begin{cases} N, & f(\varepsilon) = \{1,1\}, \\ p, & f(\varepsilon) = \{1,-1\}, \\ q, & f(\varepsilon) = \{-1,1\}, \\ 1, & f(\varepsilon) = \{-1,-1\} \end{cases}$$

If y is uniformly random, gcd(x - y, N) is also uniformly random in $\{1, p, q, N\}$.

Now assume that $2 \mid N$, say q = 2 and N = 2p. In this case $\mu_2(\mathbb{Z}/N\mathbb{Z}) \simeq \{\pm 1\}$, so if y is a uniformly random square root of x in $\mathbb{Z}/N\mathbb{Z}$, then $\gcd(x - y, N)$ is uniformly random in

$$\{\gcd(0,N),\ \gcd(2x,N)\}=\{N,2\}.$$

Question 1.4. Let \mathcal{O}_S be an oracle for SquareRootMod.

Pick $x \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ uniformly at random. First, consider $y := \mathcal{O}_S(x^2, N)$. If $y \not\equiv \pm x \mod N$, $\gcd(x-y, N)$ is a non-trivial factor of N by the discussion above. If $y \equiv \pm x \mod N$, we try another random x and repeat this procedure.

```
Algorithm 3: Factoring-\mathcal{O}_S
Input: N: RSA integer
Output: p,q: primes s.t. N=pq
repeat
\begin{array}{c|c} x \leftarrow \text{uniformly random in } (\mathbb{Z}/N\mathbb{Z})^{\times}; \\ y \leftarrow \mathcal{O}_S(x^2,N); \\ \text{if } y \not\equiv \pm x \text{ then} \\ p \leftarrow \gcd(x-y,N); \\ \text{return } (p,N/p) \end{array}
```

Analysis of the algorithm. Choosing a uniformly random $x \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ is equivalent to choosing a uniformly random square $z \in ((\mathbb{Z}/N\mathbb{Z})^{\times})^2$ then choosing a uniformly random square root x of z. Therefore, the probability that one loop successfully factors N is the probability of the following event: for a uniformly random square z, a uniformly random square root of z does not equal $\pm \mathcal{O}_S(z, N)$.

Let $\Omega = ((\mathbb{Z}/N\mathbb{Z})^{\times}, \mathcal{B}, \mathbb{P})$ be the probability space where \mathcal{B} is the powerset of $(\mathbb{Z}/N\mathbb{Z})^{\times}$ and \mathbb{P} is the uniform distribution. For each $a \in (\mathbb{Z}/N\mathbb{Z})^{\times}$, fix a square root $\sqrt{a} \in (\mathbb{Z}/N\mathbb{Z})^{\times}$. Let X (resp. Z, E) be the inclusion maps from $(\mathbb{Z}/N\mathbb{Z})^{\times}$ (resp. $((\mathbb{Z}/N\mathbb{Z})^{\times})^2$, $\mu_2(\mathbb{Z}/N\mathbb{Z})$) to $(\mathbb{Z}/N\mathbb{Z})^{\times}$. Each of them is a uniformly random variable on its domain¹ with value in Ω , and the chance for one loop to successfully factor N is

$$\mathbb{P}(X \neq \pm \mathcal{O}(X^2)) = \mathbb{P}\left(E\sqrt{Z} \neq \pm \mathcal{O}\left(\left(E\sqrt{Z}\right)^2\right)\right) = \mathbb{P}\left(E\sqrt{Z} \neq \pm \mathcal{O}\left(Z\right)\right) = \mathbb{P}\left(E \neq \frac{\mathcal{O}(Z)}{\sqrt{Z}}\right).$$

until;

 $^{^1\}mathrm{As}$ a probability subspace of $\Omega.$

Since the random variables E and $f(Z) := \mathcal{O}(Z)/\sqrt{Z}$ are independent,

$$\mathbb{P}\left(E \neq \pm f(Z)\right) = 1 - \sum_{\varepsilon \in \mu_2(\mathbb{Z}/N\mathbb{Z})} \mathbb{P}(E = \varepsilon) \left(\mathbb{P}(f(Z) = \varepsilon) + \mathbb{P}(f(Z) = -\varepsilon)\right)$$
$$= 1 - \frac{1}{4} \sum_{\varepsilon \in \mu_2(\mathbb{Z}/N\mathbb{Z})} \left(\mathbb{P}(f(Z) = \varepsilon) + \mathbb{P}(f(Z) = -\varepsilon)\right)$$
$$= 1 - \frac{1}{4} \cdot 2 = \frac{1}{2}.$$

Therefore, each loop has an $\frac{1}{2}$ chance to factor N, ragardless of how \mathcal{O}_S works. The expected number of loops required to factor N is 2. Since every loop costs polynomial time, we get a probabilistic polynomial time algorithm to factor N.

2 Evaluating an isogeny of degree ℓ^n from its kernel

Question 2.2. Since ℓ is a prime, it suffices to show that $g_n^i(P) \neq 0$ and $\ell \cdot g_n^i(P) = 0$. Because $\varphi_{\ell^{n-i}P}$ is a group homomorphism from E with kernel generated by $\ell^{n-i}P$, we have

$$\ell g_n^i(P) = \ell \varphi_{\ell^{n-i}P}(\ell^{n-1-i}P) = \varphi_{\ell^{n-i}P}(\ell^{n-i}P) = 0.$$

If $g_n^i(P) = 0$, then $\ell^{n-1-i}P = a\ell^{n-i}P$ for some $a \in \mathbb{Z}$. Because $\ell^{n-i-1}P$ has order i+1, it cannot be a multiple of $\ell^{n-i}P$ which has order i. So $g_n^i(P) = \varphi_{\ell^{n-i}P}(\ell^{n-1-i}P) \neq 0$.

Question 2.3. Let P be of order ℓ^n . Note that for $0 \le i \le n-1$, we have $g_n^i(P) \in E/\langle \ell^{n-i}P \rangle$, and

$$\ker \left(E / \left\langle \ell^{n-i} P \right\rangle \to E / \left\langle \ell^{n-i-1} P \right\rangle \right) = \left\langle \varphi_{\ell^{n-i} P} (\ell^{n-i-1} P) \right\rangle = \left\langle g_n^i(P) \right\rangle.$$

Hence

$$(E/\langle \ell^{n-i}P\rangle)/\langle g_n^i(P)\rangle \simeq E/\langle \ell^{n-i-1}P\rangle.$$

Thereofre, we can evaluate $\varphi_P(Q)$ along the path

$$E \xrightarrow{\text{V\'elu}} E / \left\langle g_n^0(P) \right\rangle \longrightarrow \simeq \longrightarrow E / \left\langle \ell^{n-1} P \right\rangle$$

$$E / \left\langle \ell^{n-2} P \right\rangle \longleftarrow \simeq \longrightarrow \left(E / \left\langle \ell^{n-1} P \right\rangle \right) / \left\langle g_n^1(P) \right\rangle$$

$$\vdots \\ \downarrow \\ \left(E / \left\langle \ell^{n-2} P \right\rangle \right) / \left\langle g_n^{n-2}(P) \right\rangle \longrightarrow \simeq \longrightarrow E / \left\langle \ell^2 P \right\rangle$$

$$E / \left\langle \ell P \right\rangle \longleftarrow \simeq \longrightarrow \left(E / \left\langle \ell^{n-2} P \right\rangle \right) / \left\langle g_n^{n-2}(P) \right\rangle$$

$$V \neq 0$$

$$V \neq$$

where horizontal arrows are isomrophisms and vertical arrows are ℓ -isogenies. The elliptic curves E and $E/\langle \ell^j(P)\rangle$'s are given by $f_n(P)$, and every other elliptic curve will be computed as the target of an ℓ -isogeny.

Since every curve is stored as a Weierstrass equation, the isomorphisms can be computed in O(1)-times $\bar{\mathbb{F}}_q$ operations.

Consequently, this algorithm requires ℓ -isogeny n-times and no multiplication-by- ℓ .

Question 2.4. We have

$$g_m^i(\ell^{n-m}P) = \varphi_{\ell^{m-i}\ell^{n-m}P}(\ell^{m-i-1}\ell^{n-m}P) = \varphi_{\ell^{n-i}P}(\ell^{n-i-1}P) = g_n^i(P).$$

By an argument similar to that in Question 2.3,

$$(E/\langle \ell^{n-m}P\rangle)/\langle \varphi_{\ell^{n-m}P}(\ell^{n-m-i}P)\rangle \simeq E/\langle \ell^{n-m-i}P\rangle,$$

SO

$$\begin{split} g_{n-m}^i(\varphi_{\ell^{n-m}P}(P)) &= \varphi_{\ell^{n-m-i}\varphi_{\ell^{n-m}P}(P)} \left(\ell^{n-m-i-1}\varphi_{\ell^{n-m}P}(P) \right) \\ &= \varphi_{\varphi_{\ell^{n-m}P}(\ell^{n-m-i}P)} \left(\varphi_{\ell^{n-m}P}(\ell^{n-m-i-1}P) \right) \\ &= \varphi_{\ell^{n-m-i}P}(\ell^{n-m-i-1}P) = g_n^{m+i}(P). \end{split}$$

Hence

$$f_m(\ell^{n-m}P) = \left(g_m^0(\ell^{n-m}P), \dots, g_m^{m-1}(\ell^{n-m}P)\right) = \left(g_n^0(P), \dots, g_n^{m-1}(P)\right),$$

$$f_{n-m}(\varphi_{\ell^{n-m}P}(P)) = \left(g_{n-m}^0(\varphi_{\ell^{n-m}P}(P)), \dots, g_{n-m}^{n-m-1}(\varphi_{\ell^{n-m}P}(P))\right) = \left(g_n^m(P), \dots, g_n^{n-1}(P)\right)$$

as desired.

Question 2.5. The list $f_0(P)$ is empty for every P of order $\ell^0 = 1$ (namely P = O). The complexity is O(1).

The list $f_1(P)$ contains only one element $g_1^0(P) = \varphi_{\ell P}(P) = \varphi_O(P) = P$ is also trivial for P of order ℓ . The complexity is O(1).

Question 2.6. For $P \in E[\ell] \setminus \{O\}$ and $Q \in E$, let Velu(-,-) be an algorithm such that $Velu(P,Q) = \varphi_P(Q)$. For $P \in E[\ell^n] \setminus E[\ell^{n-1}]$ and $Q \in E$, let $Compute(-,-,-,-)^2$ be the algorithm described in Question 2.3., so that $Compute(n,P,f_n(P),Q) = \varphi_P(Q)$. In particular, if n=1, then $Compute(1,P,f_1(P),Q) = Velu(P,Q)$.

To compute $\varphi_P(Q)$, we use the following algorithm $\operatorname{Aux}(-,-)$ to find $f_n(P)$ so that we can use Compute.

Algorithm 4: Aux

```
Input: n \in \mathbb{Z}_{\geq 0}, P \in E(\mathbb{F}_q) of order \ell^n
Output: f_n(P)
if n = 0 then
| return \varnothing
else
| if n = 1 then
| return (P)
| else
| m \leftarrow \lfloor n/2 \rfloor;
| R \leftarrow \ell^{n-m}P;
| f \leftarrow \operatorname{Aux}(m,R);
| \varphi_R(P) \leftarrow \operatorname{Compute}(m,R,f,P);
| return f \sqcup \operatorname{Aux}(n-m,\varphi_R(P))
```

²This realization requires redundant arguments to make it more clear for me.

Analysis of the algorithm. Let $T_a(n)$ (resp. $T_c(n)$) be the numbers of multiplications by ℓ and ℓ -isogeny evaluations required for $\operatorname{Aux}(n,-)$ (resp. $\operatorname{Compute}(n,-,f_n(-),-)$ when the list $f_n(-)$ is given). By Question 2.3 and Question 2.5, $T_a(0) = T_a(1) = 0$, $T_c(n) = n$. By definition of the algorithm Aux,

$$T_a(n) = T_a(\lfloor n/2 \rfloor) + T_a(n - \lfloor n/2 \rfloor) + T_c(\lfloor n/2 \rfloor) + (n - \lfloor n/2 \rfloor)$$
$$= T_a(\lfloor n/2 \rfloor) + T_a(n - \lfloor n/2 \rfloor) + n$$

Lemma 2.1. The function T_a on $\mathbb{Z}_{\geq 0}$ is non-decreasing.

Proof. We show that $T_a(n+1) \ge T_a(n)$ by induction. Clearly, that $T_a(2) = 2 > T(1) = T(0)$. Assume that $T_a(m+1) \ge T_a(m)$ for all m < n, and set $r := \lfloor n/2 \rfloor$. If n is even, i.e. n = 2r,

$$T_a(n+1) - T_a(n) = T_a(r) + T_a(r+1) - 2T_a(r) + 1 = T_a(r+1) - T_a(r) + 1 > 0$$

by induction hypothesis. If n is odd, i.e. n = 2r + 1,

$$T_a(n+1) - T_a(n) = 2T_a(r+1) - (T_a(r) + T_a(r+1)) + 1 = T_a(r+1) - T_a(r) + 1 > 0$$

by induction hypothesis. Hence T is non-decreasing.

Now for $n = 2^r$ with $r \in \mathbb{Z}_{>0}$, we have

$$T_a(2^r) = 2T_a(2^{r-1}) + 2^r,$$

and it is plain to show that

$$T_a(2^r) = 2^r(r + T(0)) = r \cdot 2^r.$$

For general n, let $r := \lfloor \log_2 n \rfloor$, so that $2^r \le n < 2^{r+1}$, then

$$r \cdot 2^r < T(n) < (r+1)2^{r+1}$$

by the above lemma, which implies that $T(n) = O(n \log n)$.

Therefore, computing $\varphi_P(Q)$ takes

$$T_a(n) + T_c(n) = T_a(n) + n = O(n \log n)$$

multiplications by ℓ and ℓ -isogeny evaluations.

Question 2.7. Please see the other file. Unlike what we described in Question 2.3, we do not need to compute the isomorphisms

$$(E/\langle \ell^{n-i}P\rangle)/\langle g_n^i(P)\rangle \simeq E/\langle \ell^{n-i-1}P\rangle$$

in the actual function Compute, probably because the list $f_n(P)$ is computed recursively when running the functions, and every isogeny is computed via Vélu's formula. But I chose to keep the isomorphism-computation part for more generality.

Question 2.8. Please see the other file.