Simulation Exercise

Mark Culp March 25, 2017

Overview:

This paper explores simulations on an Exponential Distribution.

```
# Set parameters for distribution
n < -40
lambda <- 0.2
# Generate random deviates for distribution
rexp(n, lambda)
   [1] 10.28365909 4.10312653 7.48038935
                                           2.66987870
                                                       6.13597047
   [6] 0.85494179 4.80878703
                               9.49568743 0.58027955
                                                       0.41881537
## [11] 10.97739297 2.89869027 1.88899494 4.81928728
                                                       0.81763812
## [16]
       0.38720357  0.25183840  4.12617038  12.14890796  5.67075531
## [21] 9.83159943 13.00662617 10.36798405 12.43598889 7.19664052
       8.98313511 1.37671792 14.08851806 0.02409396
## [26]
                                                       3.39073339
## [31] 17.93265405 4.51978441 0.07174924 14.35649544 2.47090622
       7.37542746 8.27102653 1.32594527 3.87568350 8.50061088
# An exploratory plot
```

Simulations:

Sample Mean versus Theoretical Mean

This distribution is centered at ... The theoretical center, or mean of the distribution is centered at ...

Sample Variance versus Theoretical Variance

This distribution's variance is ... The theoretical variance of this distribution would be ...

Distribution

We know this distribuion is normal because ...

Our conclusions and assumptions ...

```
hist(runif(1000))
```

Histogram of runif(1000)


```
mns = NULL
for (i in 1:1000) mns = c(mns, mean(runif(40)))
hist(mns)
```

Histogram of mns

