Modelli classici di programmazione lineare

ver 1.0.0

Fabrizio Marinelli

fabrizio.marinelli@staff.univpm.it tel. 071 - 2204823

Riferimento: C. Vercellis – sez. 2.1.2

Problema della dieta (economica)

Problema della dieta economica

• Si dispone di un certo numero di alimenti e di ognuno si conosce il costo per porzione e la composizione in termini di sostanze nutritive.

composizione degli alimenti

	pane	latte	uova	carne	dolce	req. minimi
calorie (cal)	110	160	180	260	420	2000
proteine (g)	4	8	13	14	4	50
calcio (mg)	2	285	54	80	22	700
costo × porzione	2	3	4	19	20	

Di ogni sostanza nutritiva è nota la quantità minima richiesta in un dato periodo.

dieta economica: obiettivo

composizione degli alimenti

	pane	latte	uova	carne	dolce	req. minimi
calorie (cal)	110	160	180	260	420	2000
proteine (g)	4	8	13	14	4	50
calcio (mg)	2	285	54	80	22	700
costo × porzione	2	3	4	19	20	

Quali alimenti acquistare e in quali quantità in modo da garantire il fabbisogno nutrizionale del periodo e minimizzare il costo?

dieta economica: elementi del problema

• Quali sono le variabili decisionali?

dieta economica: variabili

• • •

Una variabile decisionale per ogni coppia alimento/sostanza:

• $x_{ij} \in \mathbb{R}$: qtà della sostanza j dell'alimento i che fa parte della dieta

Una variabile decisionale per ogni alimento:

- $\bullet x_i \in \mathbb{R}$: numero di porzioni dell'alimento *i* che fanno parte della dieta
- • $x_i \in \{0,1\}$: = 1 se l'alimento *i* fa parte della dieta, 0 altrimenti

Una variabile decisionale per ogni sostanza:

- $x_j \in \mathbb{R}$: qtà di sostanza j presente nella dieta
- • $x_i \in \{0,1\}$: = 1 se la sostanza j è presente nella dieta, 0 altrimenti

dieta economica: variabili

• • •

Quali alimenti acquistare e in quali quantità in modo
da garantire il fabbisogno nutrizionale del periodo
e minimizzare il costo?

vincoli funzione obiettivo

decisioni

Una variabile decisionale per ogni alimento:

 $x_i \in \mathbb{R}$: numero di porzioni dell'alimento i che fanno parte della dieta

dieta economica: modello

• • •

composizione degli alimenti

	pane	latte	uova	carne	dolce	req. minimi
calorie (cal)	110	160	180	260	420	2000
proteine (g)	4	8	13	14	4	50
calcio (mg)	2	285	54	80	22	700
costo × porzione	2	3	4	19	20	

$$z = \min 2x_1 + 3x_2 + 4x_3 + 19x_4 + 20x_5$$

$$110x_1 + 160x_2 + 180x_3 + 260x_4 + 420x_5 \ge 2000$$

$$4x_1 + 8x_2 + 13x_3 + 14x_4 + 4x_5 \ge 50$$

$$2x_1 + 285x_2 + 54x_3 + 80x_4 + 22x_5 \ge 700$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

dieta economica: discussione

- Valgono le ipotesi della programmazione lineare, quindi non si considerano effetti combinati dovuti alla presenza di diversi alimenti.
- Le decisioni sono di natura quantitativa, e non qualitativa (quindi non si considerano i gusti soggettivi).
- Al problema possono essere aggiunti altri vincoli (quantità massime di sostanze nutrienti, e di alimenti, vincoli di budget,...).
- Le porzioni sono considerate frazionabili ma potrebbero non esserlo.

Problema della dieta: modello parametrico

Parametri

- n numero di alimenti (ad es. pasta, carne, frutta, ...)
- m numero di sostanze nutritive (ad es. proteine, carboidrati,).
- a_{ii} q.tà di nutriente j contenuta in una porzione di alimento i
- c_i costo di una porzione di alimento i
- b_j q.tà minima di nutriente j richiesta per la sussistenza nel periodo dato

variabili decisionali

• $x_i \in \mathbb{R}$: numero di porzioni dell'alimento i che fanno parte della dieta

Problema della dieta: modello parametrico

• • •

funzione obiettivo:

minimizzazione del costo totale

vincoli:

- Per ogni requisito nutrizionale occorre garantire l'assunzione della quantità minima
- Il numero di porzioni di ogni alimento è una quantità non negativa

$$z = \min \sum_{i=1}^{n} c_i x_i$$

$$\sum_{i=1}^{n} a_{ji} x_i \ge b_j \quad \forall j = 1, \dots, m$$

$$x_i \ge 0$$
 $\forall i = 1, ..., n$

Problema della dieta: esercizi

Una soluzione del modello della dieta fornisce le quantità di alimenti necessarie per un intero periodo (per esempio un mese). Scrivere una variante del modello matematico che:

- [A] decida anche la composizione di ogni pasto (siano *T* i pasti nel periodo considerato). Come si può evitare che le soluzioni contengano digiuni?
- [B] Si supponga che (*i*) dolce e uova non possano mai stare insieme nello stesso pasto e che (*ii*) se il pasto prevede il latte allora ci sia anche del pane.
- [C] In una dieta «ragionevole» si vuole che ogni alimento **previsto nel pasto** non possa essere assunto in una quantità inferiore a un numero dato p_{min} di porzioni.

dieta economica: modello alternativo

• • •

• $x_{ij} \in \mathbb{R}$: qtà della sostanza j dell'alimento i che fa parte della dieta

vincoli:

• I valori delle x_{ij} devono essere coerenti con il numero di porzioni acquistate, quindi per ogni alimento i deve essere

$$\frac{x_{i1}}{a_{1i}} = \frac{x_{i2}}{a_{2i}} = \dots = \frac{x_{im}}{a_{mi}}$$

• Inoltre, il soddisfacimento dei requisiti nutrizionali richiede che per ogni sostanza *j* deve valere

$$\sum_{i=1}^{n} x_{ij} \ge b_j$$

dieta economica: modello alternativo

• • •

Tuttavia, si verifica facilmente che ponendo

$$x_i = \frac{x_{i1}}{a_{1i}} = \frac{x_{i2}}{a_{2i}} = \dots = \frac{x_{im}}{a_{mi}}$$

si ottiene esattamente il modello illustrato in precedenza (ma con molte variabili in meno)

Problema di miscelazione

Problema di miscelazione

• Si vuole produrre un nuovo tipo di latte ottenuto miscelando le varietà di latte L1, L2 e L3 provenienti da tre diverse fattorie. Ogni varietà ha una composizione specifica di sostanze e un costo dato (vedi tabella).

La nuova miscela deve avere le caratteristiche nutrizionali minime (espresse in g/litro di ogni sostanza) riportate nell'ultima colonna della tabella.

	L1	L2	L3	requisiti minimi (g/litro)
proteine (g/litro)	31	35	32	32
grassi (g/litro)	48	40	50	45
carboidrati (g/litro)	35	38	32	36
calcio (g/litro)	1.2	1.5	1.4	1.3
costo (€/litro)	0.5	0.6	0.4	

Problema di miscelazione: obiettivo

Qual è la composizione delle varietà di latte che costituisce la miscela richiesta di costo minimo?

	L1	L2	L3	requisiti minimi (g/litro)
proteine (g/litro)	31	35	32	32
grassi (g/litro)	48	40	50	45
carboidrati (g/litro)	35	38	32	36
calcio (g/litro)	1.2	1.5	1.4	1.3
costo (€/litro)	0.5	0.6	0.4	

Problema di miscelazione: elementi

Qual è la composizione delle varietà di latte che costituisce la miscela richiesta di costo minimo?

decisioni vincoli

• Quali sono le variabili decisionali ?

Problema di miscelazione: variabili

• • •

Una variabile decisionale per ogni coppia varietà/sostanza:

• $x_{ij} \in \mathbb{R}$: qtà della sostanza j della varietà i che fa parte della miscela

Una variabile decisionale per ogni varietà:

- $x_i \in \mathbb{R}$: litri utilizzati di varietà di latte i
- $x_i \in \mathbb{R}$: frazione di (una unità di) miscela ottenuta con la varietà i

Una variabile decisionale per ogni requisito minimo:

- $x_j \in \mathbb{R}$: qtà di sostanza j presente in un litro di latte
- $x_j \in \{0,1\}$: se il requisito minimo j è soddisfatto, 0 altrimenti

Problema di miscelazione: variabili

Qual è la composizione delle varietà di latte che costituisce la miscela richiesta di costo minimo?

decisioni

funzione obiettivo

vincoli

[Osservazione] il problema è simile al problema della dieta, ma in questo caso occorre stabilire la composizione di una unità di miscela.

• Una variabile decisionale per ogni varietà di latte:

 $x_i \in \mathbb{R}$: frazione di (una unità di) miscela costituita dalla varietà di latte i

Problema di miscelazione: modello

	L1	L2	<u>L3</u>	req. min.
proteine (g/litro)	31	35	32	32
grassi (g/litro)	48	40	50	45
carboidrati (g/litro)	35	38	32	36
calcio (g/litro)	1.2	1.5	1.4	1.3
costo (€/litro)	0.5	0.6	0.4	

$$\begin{aligned} \chi &= \min 0.5L_1 + 0.6L_2 + 0.4L_3 \\ 31L_1 + 35L_2 + 32L_3 &\geq 32 \\ 48L_1 + 40L_2 + 50L_3 &\geq 45 \\ 35L_1 + 38L_2 + 32L_3 &\geq 36 \\ 1.2L_1 + 1.5L_2 + 1.4L_3 &\geq 1.3 \\ L_1 + L_2 + L_3 &= 1 \\ L_1, L_2, L_3 &\geq 0 \end{aligned}$$

Problema di miscelazione

- Si vuole ottenere una miscela utilizzando n prodotti P_1, \ldots, P_n .
- Di ogni prodotto si conosce il costo unitario e la composizione in sostanze $S_1,...,S_m$, ognuna presente in una data quantità.
- La miscela deve contenere almeno una percentuale stabilita di ognuna delle *m* sostanze.

Quali prodotti utilizzo e in quali proporzioni al fine di ottenere la miscela con le caratteristiche richieste al costo minimo?

Problema di miscelazione: modello parametrico ...

Parametri

- n numero di prodotti
- m numero di sostanze componenti
- a_{ji} q.tà di sostanza j contenuta <u>in una unità</u> di prodotto i
- c_i costo unitario del prodotto i
- *b_j* q.tà minima di sostanza *j* richiesta nella composizione di <u>una unità</u> di miscela.

variabili decisionali

• $x_i \in \mathbb{R}$: frazione di miscela costituita dal prodotto *i*

Problema di miscelazione: modello parametrico ...

funzione obiettivo:

minimizzazione del costo totale

vincoli:

- Per ogni sostanza occorre garantire la q.tà minima richiesta
- •Le variabili rappresentano frazioni, la loro somma quindi deve essere pari a 1...
- ... e sono numeri non negativi

$$z = \min \sum_{i=1}^{n} c_i x_i$$

$$\sum_{i=1}^{n} a_{ji} x_i \ge b_j \quad \forall j = 1, \dots, m$$

$$\sum_{i=1}^{n} x_i = 1$$

$$x_i \ge 0$$
 $\forall i = 1, ..., n$

Problema di miscelazione: esercizi

- Un problema di miscelazione
- Mi fonde il cervello

Esercizi tratti dall'eserciziario «Esercizi di Programmazione Matematica» link sulla pagina moodle del corso

Mix produttivo

Mix produttivo

• Un'azienda utilizza tre reparti (1, 2 e 3) per produrre due composti (A e B). Ogni kg di A e B richiede un dato numero di ore di lavorazione in ciascun reparto e ogni reparto ha una data capacità produttiva, ossia è disponibile per un certo numero di ore al giorno (vedi schema).

Mix produttivo: obiettivo

	Rep 1	Rep 2	Rep 3	Profitto (€/kg)
Composto A	2	1	3	5
Composto B	3	2	1	4
Capacità (ore)	9	10	8	

Considerato che ogni composto ha un dato prezzo di vendita al kg (ultima colonna della tabella), qual è la produzione di A e B che, nel rispetto delle capacità produttive dei reparti, massimizza il profitto dell'azienda?

Mix produttivo: elementi del problema

Qual è la produzione di A e B che, nel rispetto delle capacità produttive dei reparti, massimizza il profitto dell'azienda?

decisioni vincoli funzione obiettivo

• Quali sono le variabili decisionali ?

Mix produttivo: variabili

• • •

• $x_i \in \mathbb{R}$: kg di composto *i* che si decide di produrre

• $x_j \in \mathbb{R}$: carico di lavoro (numero di ore) del reparto j

• $x_{ik} \in \mathbb{R}$: kg di composto *i* realizzati nel reparto k

Mix produttivo

	Rep 1	Rep 2	Rep 3	Profitto (€/kg)
Composto A	2	1	3	5
Composto B	3	2	1	4
Capacità (ore)	9	10	8	

$$z = \max 5x_A + 4x_B$$

$$2x_A + 3x_B \le 9$$

$$x_A + 2x_B \le 10$$

$$3x_A + x_B \le 8$$

$$x_A, x_B \ge 0$$

Mix produttivo: problema generale

- Un'azienda produce n articoli $P_1, ..., P_n$ utilizzando un impianto con m reparti $R_1, ..., R_m$.
- Ogni unità dell'articolo P_i assicura all'azienda un profitto netto di p_i € e richiede a_{ji} ore di lavorazione nel reparto R_j .
- Ogni reparto R_j ha una capacità produttiva giornaliera di b_j ore.

Qual è il *mix produttivo* giornaliero più redditizio per l'azienda, cioè quali sono le quantità di ogni articolo che l'azienda deve produrre per massimizzare il profitto rispettando le capacità produttive dei reparti?

Mix produttivo: modello parametrico

• •

Parametri

- n numero di articoli
- m numero di reparti
- a_{ii} ore di lavorazione in R_i per produrre un pezzo di P_i
- p_i profitto unitario dell'articolo P_i
- b_j capacità produttiva del reparto R_j

variabili decisionali

• $x_i \in \mathbb{R}$: qtà di P_i che si decide di produrre (i = 1, ..., n)

Mix produttivo: modello parametrico

• • •

funzione obiettivo:

Massimizzazione del profitto totale

vincoli:

- Ogni reparto non può essere utilizzato per un numero di ore superiore alla propria capacità produttiva
- I livelli di produzione sono quantità non negative

$$z = \max \sum_{i=1}^{n} p_i x_i$$

$$\sum_{i=1}^{n} a_{ji} x_i \le b_j \quad \forall j = 1, \dots, m$$

$$x_i \ge 0$$
 $\forall i = 1, ..., n$

Mix produttivo: discussione e varianti

- Valgono le ipotesi della programmazione lineare:
 - 1. I composti possono essere prodotti in frazioni di kg arbitrariamente piccole;
 - 2. la tecnologia è lineare: il numero di ore impiegate per ciascun composto in ciascun reparto è direttamente proporzionale alla quantità di composto prodotta;
 - 3. il profitto derivante da ciascun composto è direttamente proporzionale alla quantità prodotta (per esempio non si applicano sconti per quantità)

Mix produttivo: discussione e varianti

- Setup delle linee: se un articolo viene prodotto, il numero di pezzi deve essere superiore a una soglia minima che giustifichi la configurazione del reparto
- Schedulazione: Non si tiene conto della dimensione dei lotti di produzione e della presenza di magazzini intermedi.
- Domanda: in genere, il mercato ha una capacità di assorbimento pari a una data quantità massima di pezzi

Mix produttivo: discussione e varianti

- Presenza di più risorse: in generale, le risorse necessarie per produrre un articolo sono molteplici (reparti, materie prime, personale)
- Costo delle risorse: i reparti hanno anche un costo di utilizzo (per es. l'energia elettrica) e esistono vincoli di budget

Mix produttivo: esercizi

- Un problema di mix produttivo
- Un altro problema di mix produttivo
- Un problema di produzione
- Un problema di produzione (3)

Esercizi tratti dall'eserciziario «Esercizi di Programmazione Matematica» link sulla pagina moodle del corso

Problema di trasporto

Problema di trasporto

Due depositi (A e B) di carburante riforniscono tre aree di servizio (1,2 e 3). Ogni deposito ha una disponibilità limitata di carburante e ogni area di servizio ha una richiesta nota. I costi di trasporto tra depositi e aree di servizio dipende dalla distanza e dalla quantità di carburante.

Problema di trasporto: obiettivo

		Aree di servizio			
	disponibilità (kl)	Milano (1)	Roma (2)	Napoli (3)	_
deposito A	1000	13	11	16	costi di
deposito B	1400	12	15	14	trasporto (€/kl)
	richiesta ((kl) 800	700	900	_

Quanto carburante inviare da ogni deposito a ogni area di servizio in modo da soddisfare tutte le richieste al costo minimo?

Problema di trasporto: elementi

Quanto carburante inviare da ogni deposito a ogni area di servizio in modo da soddisfare tutte le richieste al costo minimo?

decisioni vincoli funzione obiettivo

• Quali sono le variabili decisionali ?

Problema di trasporto: variabili

• • •

• $x_i \in \mathbb{R}$: litri di carburante prelevati dal deposito i

• $x_j \in \mathbb{R}$: litri di carburante consegnati all'area di servizio j

• $x_{ik} \in \mathbb{R}$: litri di carburante prelevati dal deposito i e consegnati all'area di servizio k

• $x_{ik} \in \mathbb{N}$: numero di viaggi dal deposito *i* all'area di servizio *k*

Problema di trasporto: variabili

• •

Quanto carburante inviare da ogni deposito a ogni area di servizio in modo da soddisfare tutte le richieste al costo minimo?

decisioni vincoli funzione obiettivo

• Una variabile decisionale per ogni coppia deposito-area di servizio:

 $x_{ij} \in \mathbb{R}$: litri di carburante trasportati dal deposito *i* all'area di servizio *j*

Problema di trasporto: modello

• •

	disponibilità (kl)	(1)	(2)	(3)	_
deposito A	1000	13	11	16	costi di
deposito B	1400	12	15	14	trasporto (€/kl)
	richiesta ((kl) 800	700	900	

$$z = \min 13x_{A1} + 12x_{B1} + 11x_{A2} + 15x_{B2} + 16x_{A3} + 14x_{B3}$$

$$x_{A1} + x_{A2} + x_{A3} \leq 1000$$

$$x_{B1} + x_{B2} + x_{B3} \leq 1400$$

$$x_{A1} + x_{B1} \geq 800$$

$$x_{A2} + x_{B2} \geq 700$$

$$x_{A3} + x_{B3} \geq 900$$

$$x_{A1}, x_{B1}, x_{A2}, x_{B2}, x_{A3}, x_{B3} \geq 0$$

Problema di trasporto: formulazione generale

- Una rete logistica (*single-commodity*) è formata da n sorgenti S_1, \ldots, S_n e m destinazioni T_1, \ldots, T_m .
- Dati la disponibilità di prodotto di ogni sorgente, la richiesta di prodotto di ogni destinazione e il costo unitario di trasporto per ogni coppia sorgente-destinazione,

Quanto prodotto trasportare da ogni sorgente a ogni destinazione in modo da rispettare le disponibilità delle sorgenti e soddisfare le richieste delle destinazioni al costo minimo?

Problema di trasporto: modello parametrico ...

Parametri

- n numero di sorgenti (ad es. depositi, impianti, ...)
- m numero di destinazioni (ad es. punti vendita, utenti, ...).
- c_{ij} costo unitario di trasporto dalla sorgente S_i alla destinazione T_j
- d_i disponibilità della sorgente S_i
- r_i richiesta della destinazione T_i

variabili decisionali

• $x_{ij} \in \mathbb{R}$: unità di prodotto trasportate dalla sorgente S_i alla destinazione T_i

Problema di trasporto: modello parametrico

• • •

funzione obiettivo:

minimizzazione del costo totale

vincoli:

- La quantità totale prelevata da ogni sorgente non può superare la disponibilità.
- La quantità totale consegnata a una destinazione deve essere almeno pari alla richiesta.
- Le quantità trasportate sono numeri non negativi.

$$z = \min \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij}$$

$$\sum_{j=1}^{m} x_{ij} \le d_i \qquad \forall i = 1, \dots, n$$

$$\sum_{i=1}^{n} x_{ij} \ge r_j \qquad \forall j = 1, \dots, m$$

$$x_{ij} \ge 0$$
 $\forall i = 1, ..., n$
 $\forall j = 1, ..., m$

Problema di trasporto esercizio

Problema di trasporto

[Problema] Una società di logistica movimenta container vuoti da M

magazzini a P porti.

La richiesta dei porti (vedi tabella) può essere soddisfatta prelevando i container vuoti da uno qualsiasi dei magazzini.

La Spezia	20
Trieste	15
Ancona	25
Napoli	33
Bari	21

Container richiesti

Ogni magazzino, tuttavia, ha una disponibilità limitata di container (vedi tabella)

	Container vuoti
Padova	10
Arezzo	12
Roma	20
Teramo	24
Lecce	18
Catanzaro	40

La movimentazione avviene attraverso una flotta di camion, ognuno dei quali può trasportare al massimo 2 container. Il costo di ogni viaggio dipende dalla distanza che intercorre tra magazzino e porto ed è descritto dalla seguente tabella:

	La Spezia	Trieste	Ancona	Napoli	Bari
Padova	8.700	3.450	10.650	21.450	24.300
Arezzo	11.400	10.200	4.950	11.400	18.300
Roma	15.150	15.900	8.550	6.600	13.500
Teramo	19.650	13.500	4.650	7.200	9.450
Lecce	30.300	25.200	16.500	9.150	2.850
Catanzaro	32.160	32.910	22.410	11.160	9.990

Come devono essere organizzate le consegne al fine di minimizzare il costo totale di movimentazione?

Indici

- $i \in \mu \equiv \{1, ..., M\}$
- $j \in \pi \equiv \{1, ..., P\}$

Parametri

- disponibilità, in numero di container, dell'i-esimo magazzino
- domanda del porto j-esimo
- costo di trasporto tra il magazzino i e il porto j

Variabili decisionali

- numero di container inviati $\sim \chi_{ij}$ dal magazzino i al porto j
- numero di camion che viaggiano y_{ij} dal magazzino i al porto j

$$x_{ij}, y_{ij} \ge 0$$
$$x_{ij}, y_{ij} \in \mathbb{N}$$

$$x_{ij}, y_{ij} \in \mathbb{N}$$

Problema di trasporto: obiettivo e vincoli

• • •

Funzione Obiettivo

$$\min \sum_{i \in \mu} \sum_{j \in \pi} c_{ij} y_{ij}$$

Vincoli

$$\sum_{i \in \pi} x_{ij} \le m_i$$

$$\forall i \in \mu$$

$$\sum_{i=1}^{n} x_{ij} \ge r_j$$

$$\forall j \in \pi$$

$$2y_{ij} \ge x_{ij}$$

$$\forall i \in \mu, \forall j \in \pi$$

Problema di trasporto: esercizi

- Un problema di trasporto
- Un problema di logistica

Esercizi tratti dall'eserciziario «Esercizi di Programmazione Matematica» link sulla pagina moodle del corso

Problema di assegnamento

Assegnamento di risorse

• Un sistema multiprocessore con 3 CPU (A,B e C) deve eseguire 3 processi (1,2 e 3). Ogni processo richiede 10 ms di CPU time e può essere frazionato tra le CPU ma ogni CPU è disponibile per una quantità di tempo al massimo pari a 10 ms.

Date le differenti caratteristiche delle CPU, i costi unitari di processamento dipendono dalla coppia processo-CPU (vedi tabella).

CPU processi	A	В	С
1	7	11	9
2	8	10	12
3	13	12	8

Assegnamento di risorse: elementi

Come assegnare i processi alle CPU in modo da minimizzare il costo totale?

decisioni funzione obiettivo vincoli

• Quali sono le variabili decisionali ?

Assegnamento di risorse: variabili

• • •

• $x_i \in \mathbb{R}$: costo di elaborazione dei processo *i*

• $x_{ik} \in \mathbb{R}$: frazione di processo *i* eseguito dalla CPU k

• $x_k \in \mathbb{N}$: numero di processi eseguiti dalla CPU k

• $x_{ij} \in \{0,1\}$: se il processo *i* è eseguito prima del processo *j*

Assegnamento di risorse

• •

Come assegnare i processi alle CPU in modo da minimizzare il costo totale?

decisioni funzione obiettivo vincoli

• Una variabile decisionale per ogni coppia processo-CPU:

 $x_{ij} \in \mathbb{R}$: frazione di processo *i* eseguito dalla CPU *j*

Assegnamento di risorse: esempio

• • •

CPU processi	A	В	С
1	7	11	9
2	8	10	12
3	13	12	8

$$z = \min 7x_{1A} + 11x_{1B} + 9x_{1C} + 8x_{2A} + 10x_{2B} + 12x_{2C} + 13x_{3A} + 12x_{3B} + 8x_{3C}$$

$$x_{1A} + x_{1B} + x_{1C} = 1$$

$$x_{1A} + x_{2A} + x_{3A} = 1$$

$$x_{2A} + x_{2B} + x_{2C} = 1$$

$$x_{1B} + x_{2B} + x_{3B} = 1$$

$$x_{1C} + x_{2C} + x_{3C} = 1$$

$$0 \le x_{ij} \le 1$$

Assegnamento di risorse: commenti

- Valgono le ipotesi della programmazione lineare.
- In particolare, si suppone che i processi siano frazionabili, ossia, possono essere interrotti e ripresi successivamente su un'altra CPU.
- Una variante interessante è quella in cui i costi sono tempi di processamento e si vuole minimizzare il tempo di completamento dei processi (problema di *scheduling*).

Problema di assegnamento

- Due insiemi A e B sono costituiti ognuno da n elementi.
- Ogni elemento di A deve essere assegnato a un elemento di B (o frazionato tra più elementi di B);
- a ogni elemento di B può essere assegnato al più un elemento di A (o frazioni di elementi di A che sommano 1).
- Assegnare l'elemento $i \in A$ all'elemento $j \in B$ costa c_{ij} .

Qual è l'assegnamento di costo minimo?

Prob. di assegnamento: modello parametrico ...

Parametri

- n numero di elementi di A e B (processi-CPU, persone-compiti, ...)
- c_{ij} costo per assegnare l'elemento $i \in A$ all'elemento $j \in B$

variabili decisionali

• $x_{ij} \in \mathbb{R}$: <u>frazione</u> di elemento $i \in \mathbb{A}$ assegnato all'elemento $j \in \mathbb{B}$

Prob. di assegnamento: modello parametrico ...

funzione obiettivo:

minimizzazione del costo totale

vincoli:

- Ogni elemento di A deve essere assegnato completamente.
- A ogni elemento di B può essere assegnata una quantità al più pari a 1
- Le quantità assegnate sono non negative.

$$z = \min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad \forall i = 1, \dots, n$$

$$\sum_{i=1}^{n} x_{ij} \le 1 \qquad \forall j = 1, \dots, n$$

$$x_{ij} \ge 0$$
 $\forall i = 1, ..., n$ $\forall j = 1, ..., n$

Problema di assegnamento: commenti

• Se gli elementi di A (per es. i processi) non sono frazionabili allora occorre trasformare le variabili continue in variabili intere (e così diventano variabili logiche di *assegnamento*).

$$x_{ij} = \begin{cases} 1 \text{ se assegno l'elemento } i \in A \text{ all'elemento } j \in B \\ 0 \text{ altrimenti} \end{cases}$$

cioè $x_{ij} = 1$ se nella tabella dei costi seleziono la casella nella riga i e colonna j

Prob. di assegnamento: modello parametrico ...

funzione obiettivo:

minimizzazione del costo totale

vincoli:

- Selezione <u>esattamente</u> un elemento per ogni riga della tabella dei costi
- Selezione <u>esattamente</u> un elemento per ogni colonna della tabella dei costi

$$z = \min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad \forall i = 1, \dots, n$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad \forall j = 1, \dots, n$$

$$x_{ij} \in \{0,1\}$$

Assegnamento di risorse e grafi

Il problema può essere descritto con un grafo bipartito in cui

- i nodi rappresentano processi e CPU,
- l'arco {i, j} descrive l'assegnamento del processo i alla CPU j (ed è quindi pesato con il corrispondente costo c_{ij} di processamento)

Assegnamento di risorse: esempio

Tabella dei costi

CPU processi	A	В	С
1	7	11	9
2	8	10	12
3	13	12	8

Quanti sono i possibili assegnamenti? n!

1. {A1, B2, C3}

di costo 25

2. {A1, B3, C2}

di costo 31

3. {A2, B1, C3}

di costo 27

4. {A2, B3, C1}

di costo 29

5. {A3, B2, C1}

di costo 32

6. {A3, B1, C2}

di costo 36

La soluzione ottima è l'assegnamento {A1,B2,C3}

Assegnamento di risorse: esercizio

• dati n numeri interi a_1, \ldots, a_n , formulare un modello di programmazione matematica la cui regione ammissibile (o la soluzione ottima) descriva la sequenza (o le sequenze) in ordine crescente degli n numeri.

variabili decisionali

- x_i posizione dell'elemento *i* nel vettore ordinato
- $x_{ij} \in \{0,1\} = 1$ se l'elemento *i* del vettore iniziale viene posto in posizione *j* nel vettore ordinato

Problema di assegnamento: esercizi

- Con l'acqua alla gola
- Assegnamento di frequenze
- Il quadrato magico

Esercizi tratti dall'eserciziario «Esercizi di Programmazione Matematica» link sulla pagina moodle del corso

The big picture

Bibliografia

- Lezioni e esercitazioni dei proff. Claudio Arbib,
 Fabrizio Rossi, Stefano Smriglio (<u>www.oil.di.univaq.it</u>)
- 2. AMPL: A Modeling Language for Mathematical Programming, Robert Fourer, David M. Gay, e Brian W. Kernighan, 2003