Student's note: A couple times in this assignment, I used a result from the Conway text, the squeeze theorem for sequences of functions. Upon review, I realised that the proof of this fact was not covered in class. So here I present my own proof of this fact.

Claim: Let $f_n, g_n, h_n : I \to \mathbb{R}$ be sequences of functions such that $g_n(x) \le f_n(x) \le h_n(x)$ for any $n \in \mathbb{N}$ and $x \in I$, and $g_n, h_n \xrightarrow{c.u}_I f$, Then $f_n \xrightarrow{c.u}_I f$

Proof. Let f_n, g_n, h_n be as above and $\varepsilon > 0$. Then there exist $N_1, N_2 : n_1 > N_1 \implies |g_n(x) - f(x)| < \varepsilon$ and $n_2 < N_2 \implies |h_n(x) - f(x)| < \varepsilon$ for any $x \in I$. Take $N = \max\{N_1, N_2\}$. Then we get the pair of double inequalities;

$$f(x) - \varepsilon < h_n(x) < f(x) + \varepsilon$$
, $f(x) - \varepsilon < g_n(x) < f(x) + \varepsilon$.

And combining this with our other assumption,

$$f(x) - \varepsilon < g_n(x) \le f_n(x) \le h_n(x) < f(x) + \varepsilon \implies |f_n(x) - f(x)| < \varepsilon$$
.

And therefore f_n converges uniformly to f on I.

1. Let $\{f_n\}$ be the sequence of functions defined by

$$f_n = \begin{cases} nx & \text{if } 0 \le x \le \frac{1}{n} \\ 1 & \text{if } \frac{1}{n} < x < 1 - \frac{1}{n} \\ n - nx & \text{if } 1 - \frac{1}{n} \le x \le 1 \end{cases}$$

(a) Find the pointwise limit *f* of the sequence.

Solution: Proceed by cases. If x = 0, then the first case of the function will always be taken since $0 \le x$. So $f_n(0) = n0 = 0$. Likewise if x = 1, then f(1) = n - n1 = n - n = 0.

Now, if $x \in (0, 1)$, then we observe that $\frac{1}{n} \to 0$, and $1 - \frac{1}{n} \to 1$. Therefore the middle case of our piecewise function gives us f(x) = 1 for all x in this open interval.

(b) Does $f_n \xrightarrow[0,1]{c.u} f$? Justify your answer.

Solution: This sequence is not uniformly convergent. Pick $\varepsilon = \frac{1}{3}$, and let $N \in \mathbb{N}$, and n > N. Pick $x = \frac{1}{2n}$ so that $0 \le x \le \frac{1}{n}$, and then $f_n(x) = nx = \frac{n}{2n} = \frac{1}{2}$. Then: $|f_n(x) - f(x)| = \left|\frac{1}{2} - 1\right| = \frac{1}{2} > \varepsilon$.

Therefore the sequence is not uniformly convergent.

- 2. Let $f_n(x) = \left(\cos\left(\frac{2x}{n}\right)\right)^{n^2}$
 - (a) Compute the pointwise limit f of the sequence $\{f_n\}$. **Hint:** Use the following double inequalities:

$$1 - \frac{1}{2}t^{2} \le \cos t \le 1 - \frac{1}{2}t^{2} + \frac{1}{24}t^{4}, \quad \forall t \in \mathbb{R}.$$
$$-t - t^{2} \le \ln(1 - t) \le -t, \quad \forall t \in \left[0, \frac{1}{2}\right].$$

Solution: Begin with the first inequality.

$$\begin{split} 1 - \frac{4x^2}{2n^2} & \leq \cos\left(\frac{2x}{n}\right) \leq 1 - \frac{4x^2}{2n^2} + \frac{16x^4}{24n^4} \\ & \ln\left(1 - \frac{2x^2}{n^2}\right) \leq \ln\left(\cos\left(\frac{2x}{n}\right)\right) \leq \ln\left(1 - \left(\frac{2x^2}{n^2} - \frac{2x^4}{3n^4}\right)\right) \qquad \text{In is increasing in } \mathbb{R} \\ & - \frac{2x^2}{n^2} - \frac{4x^4}{n^4} \leq \ln\left(\cos\left(\frac{2x}{n}\right)\right) \leq -\frac{2x^2}{n^2} + \frac{2x^4}{3n^4} \qquad \text{From the second inequality} \\ & - 2x^2 - \frac{4x^4}{n^2} \leq n^2 \ln\left(\cos\left(\frac{2x}{n}\right)\right) \leq -2x^2 + \frac{2x^4}{3n^2} \\ & - 2x^2 - \frac{4x^4}{n^2} \leq \ln\left(\left(\cos\left(\frac{2x}{n}\right)\right)^{n^2}\right) \leq -2x^2 + \frac{2x^4}{3n^2} \\ & \exp\left(-2x^2 - \frac{4x^4}{n^2}\right) \leq \left(\cos\left(\frac{2x}{n}\right)\right)^{n^2} \leq \exp\left(-2x^2 + \frac{2x^4}{3n^2}\right) \qquad \text{exp is increasing in } \mathbb{R}. \end{split}$$

Intuitively, according to squeeze theorem, it appears that the limit will become $\exp(e^{-2x^2})$, however this idea needs some formalizing.

(b) Show that $f_n \xrightarrow[0,1]{c.u} f$.

Lemma: If $f_n \xrightarrow[0,1]{c.u} f$, and $g : \mathbb{R} \to \mathbb{R}$ is uniformly continuous, then $g \circ f_n \xrightarrow[0,1]{c.u} g \circ f$.

Since f_n is uniformly convergent, it must be uniformly bounded, say that $f_n < M$ for all $n \in \mathbb{N}$ and $x \in [0, 1]$. Let $\varepsilon > 0$, and by uniform continuity of g, there exists some δ such that $|a-b| < \delta \implies |g(a)-g(b)| < \varepsilon$.

Now, take $N \in \mathbb{N}$ so that $n > N \Longrightarrow |f_n(x) - f(x)| < \delta$.

Therefore $|g(f_n(x)) - g(f(x))| < \varepsilon$, and $g \circ f_n \xrightarrow[0,1]{c.u} g \circ f$.

Solution: For both our functions of the form $h_c(x) = -2x^2 + \frac{cx^4}{n^2}$, we know that they are continuous on the compact set [0,1], and so they must be bounded on that interval, say by M_c . The exponential is continuous, so it must be uniformly continuous on the compact set $[-M_c, M_c]$, which contains $\exp(h_c([0,1]))$. Since $-2x^2 + \frac{2x^4}{3n^2} \xrightarrow{c.u} -2x^2$, and $-2x^2 - \frac{4x^4}{n^2} \xrightarrow{c.u} -2x^2$, then by the above lemma both

the bounds found for f_n in part (a) must converge uniformly to $\exp(-2x^2)$. Then by squeeze theorem:

$$f_n \xrightarrow[0,1]{c.u} e^{-2x^2}$$
.

3. Let $a \in \mathbb{R}_+$. Compute the limit

$$\lim_{n\to\infty}\int_a^\pi \frac{\sin(nx)}{nx}\,dx.$$

What happens if a = 0?

Solution: We begin by considering our sequence of functions within the integral, each of which is a quotient and composition of continuous functions, and is itself continuous (for all but x=0). Call this $g_n(x)=\frac{\sin(nx)}{nx}$. Note that since $-1 \le \sin(nx) \le 1$, we can find (for nonzero x) that $-\frac{1}{nx} \le g_n(x) \le \frac{1}{nx}$. Both the sequences bounding g have a zero limit at infinity, so by the squeeze theorem on sequences of functions, we can say that for nonzero x, $g_n \to 0$. Now since we have already shown that our sequence g_n is bounded, and since each g_n is integrable, we can say:

$$\lim_{n \to \infty} \int_{a}^{\pi} \frac{\sin(nx)}{nx} dx = \int_{a}^{\pi} \lim_{n \to \infty} \frac{\sin(nx)}{nx} dx$$
$$= \int_{a}^{\pi} 0 dx$$
$$= 0 - 0$$
$$= 0.$$

a=0: Intuitively, since each function is not defined at 0, which will be the endpoint of integration, the supremum or infimum of the function over the first range in any partition $[0, x_1]$ will remain zero for sufficiently large n.

4. Construct a sequence of functions defined in [0, 1], each of which is discontinuous at every point of [0, 1] and which converges uniformly to a function that is continuous at every point

Solution: Take the series $\{f_n\}$ defined by:

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{if } x \in \mathbb{Q} \\ 0 & \text{Otherwise} \end{cases}$$

Claim: $\{f_n\}$ converges uniformly to the constant function 0, which we know to be continuous on the real line, as well as [0,1].

Let $\varepsilon > 0$, and choose N such that $0 < \frac{1}{N} < \varepsilon$. Then any $n \ge N$ will have $0 < \frac{1}{n} < \frac{1}{N} < \varepsilon$. Now by cases, if $x \in \mathbb{Q}$, then we have

$$|f_n(x)-f(x)|=\left|\frac{1}{n}-0\right|=\frac{1}{n}<\frac{1}{N}<\varepsilon.$$

And for $x \notin \mathbb{Q}$,

$$|f_n(x)-f(x)| = |0-0| = 0 < \varepsilon.$$

Now we must show that each of these functions is continuous nowhere in [0,1]. Suppose by way of contradiction that f_n is continuous at some $c \in [0,1]$. Then for $\varepsilon = \frac{1}{n+1}$, there must be some δ such that if $|x-c| < \delta$, $|f_n(x)-f_n(c)| < \frac{1}{n+1}$. Take $B_{\delta}(c)$ the δ -ball about c, and proceed by cases on c.

 $c \in \mathbb{Q}$: If c is rational, find some $d \notin \mathbb{Q}$ inside $B_{\delta}(c)$. Then we will have $f_n(c) = \frac{1}{n}$ and $f_n(d) = 0$

 $c \notin \mathbb{Q}$: If c is irrational, find some $d \in \mathbb{Q}$ inside $B_{\delta}(c)$. Then we will have $f_n(d) = \frac{1}{n}$ and $f_n(c) = 0$

Regardless of case, we will get $|f_n(c) - f_n(d)| = \frac{1}{n} > \frac{1}{n+1}$, and we have found our contradiction.

Therefore $\{f_n\}$ is a sequence of functions which are continuous nowhere, convergent to the zero function which is continuous everywhere.

- Name: Thomas Boyko; UCID: 30191728
- 5. Consider the series of functions $\sum_{n\geq 1} \frac{x}{n(n+x)}$.
 - (a) Show that the series converges uniformly in the interval [0, b] for any b > 0.

Solution:

$$\frac{x}{n(n+x)} = \frac{x}{n^2 + nx}$$

$$\leq \frac{x}{n^2}$$

$$\leq \frac{b}{n^2}.$$

Define $u_n = \frac{b}{n^2}$, then by the Weierstrass Comparison test, since $\sum_{n \ge 1} u_n$ is convergent as a p-series with p = 2, $\frac{x}{n(n+x)} \le u_n$, this series must converge.

(b) Let $F(x) = \sum_{n \ge 1} \frac{x}{n(n+x)}$. Show that $F'(x) = \sum_{n \ge 1} \frac{1}{(n+x)^2}$, $x \ge 0$.

Solution: Begin by considering the derivative of the partial sums, using the linearity of the derivative.

$$\frac{d}{dx} \sum_{k=1}^{n} \frac{x}{k(x+k)} = \sum_{k=1}^{n} \frac{d}{dx} \frac{x}{k(x+k)} = \sum_{k=1}^{n} \frac{1}{(k+x)^{2}}.$$

Then, since for $x \ge 0$, $\frac{1}{(x+k)^2} \le \frac{1}{k^2}$, a convergent p-series, this series must converge uniformly. Since this term-differentiated sequence of partial sums converges, we can say that $F'(x) = \sum_{n \ge 1} \frac{1}{(n+x)^2}$.

6. Consider the series of functions $\sum_{n\geq 1} \frac{x}{1+n^2x^2}$. Show that the series doesn't converge uniformly in \mathbb{R}_+ .

Hint: You could start by showing that $\frac{x}{1+n^2x^2} \ge \int_n^{n+1} \frac{x}{1+t^2x^2} dt$, $\forall x \in \mathbb{R}$.

Solution: Begin with the hint. If we take $P_0 = \{n, n+1\}$, the trivial partition on [n, n+1], then we will have the upper sum:

$$U\left(P_0, \frac{x}{1+t^2x^2}\right) = \sum_{k=1}^{1} \sup_{t \in [n,n+1]} \left(\frac{x}{1+t^2x^2}\right) ((n+1)-n) = \frac{x}{1+n^2x^2}.$$

But from the definition of the Riemann integral, we have (For σ the set of all partitions of [n, n+1]):

$$\int_{n}^{n+1} \frac{x}{1+t^2x^2} dt = \inf_{P \in \sigma} U\left(P, \frac{x}{1+t^2x^2}\right)$$

$$\leq U\left(P_0, \frac{x}{1+t^2x^2}\right)$$

$$= \frac{x}{1+n^2x^2}.$$

Suppose by way of contradiction that the series does converge uniformly. Then there exists some m such that, for any $x \in \mathbb{R}$

$$\left| \sum_{n=1}^{\infty} \frac{x}{1 + n^2 x^2} - \sum_{n=1}^{m} \frac{x}{1 + n^2 x^2} \right| < \frac{1}{2}.$$

However,

$$\left| \sum_{n=1}^{\infty} \frac{x}{1 + n^2 x^2} - \sum_{n=1}^{m} \frac{1}{1 + n^2 x^2} \right| = \left| \sum_{n=m+1}^{\infty} \frac{x}{1 + x^2 n^2} \right|$$

$$= \sum_{n=m+1}^{\infty} \frac{x}{1 + x^2 n^2}$$

$$\geq \sum_{n=m+1}^{\infty} \int_{n}^{n+1} \frac{x}{1 + t^2 x^2} dt$$

$$= \int_{m+1}^{\infty} \frac{1}{1 + t^2 x^2} dt \qquad \text{Let } u = tx$$

$$= \int_{(m+1)x}^{\infty} \frac{1}{1 + u^2} du \qquad du = xdt$$

$$= (\arctan u)_{u=(m+1)x}^{\infty}$$

$$= \frac{\pi}{2} - \arctan((m+1)x)$$

$$= \frac{\pi}{2} - \arctan(1) \qquad \text{Pick } x = \frac{1}{m+1}$$

$$= \frac{\pi}{2} - \frac{\pi}{4}$$

$$= \frac{\pi}{4}$$

$$\geq \frac{1}{2}.$$

A contradiction, so our series cannot converge uniformly.