SOLVER PERFORMANCE AND ACCELERATION

Anqi Guo | Yunze Lian | Shineun Yoon

INTRODUCTION

For this project, our team focused on Conjugate Gradient and Multigrid Methods.

Source: COMSOL

OUR GOAL

Comparing with different choices of conjugate gradient and multigrid methods with varying trade-offs and accelerate with openACC

MULTIGRID

MULTIGRID METHOD (GMG)

PERFORMANCE

CONJUGATE GRADIENT

Figure 7.13: Steepest descent (many small steps) vs. conjugate gradients.

CG minimizes the energy $\frac{1}{2}x^{T}Ax - x^{T}b$ recursively.

 $\alpha_{\mathbf{k}} = r_{k-1}^{\mathrm{T}} r_{k-1} / d_{k-1}^{\mathrm{T}} A d_{k-1}$ % Step length to next x_k $\mathbf{x_k} = x_{k-1} + \alpha_k d_{k-1}$ % Approximate solution $\mathbf{r_k} = r_{k-1} - \alpha_k A d_{k-1}$ % New residual from (14) $\beta_{\mathbf{k}} = r_k^{\mathrm{T}} r_k / r_{k-1}^{\mathrm{T}} r_{k-1}$ % Improvement this step $\mathbf{d_k} = r_k + \beta_k d_{k-1}$ % Next search direction

1
$$\alpha_{\mathbf{k}} = r_{k-1}^{\mathrm{T}} r_{k-1} / d_{k-1}^{\mathrm{T}} A d_{k-1}$$
 % Step length to next x_k
2 $x_{\mathbf{k}} = x_{k-1} + \alpha_k d_{k-1}$ % Approximate solution
3 $r_{\mathbf{k}} = r_{k-1} - \alpha_k A d_{k-1}$ % New residual from (14)
4 $\beta_{\mathbf{k}} = r_k^{\mathrm{T}} r_k / r_{k-1}^{\mathrm{T}} r_{k-1}$ % Improvement this step
5 $d_{\mathbf{k}} = r_k + \beta_k d_{k-1}$ % Next search direction

Rewrite Ax = b Sx = Tx + b.

Pure iteration
$$Sx_{k+1} = Tx_k + b$$
.

$$Se_{k+1} = Te_k$$
 which means $e_{k+1} = S^{-1}Te_k$.

THANK YOU!

RESOURCES

- Source1
- Source 2