Lista grapo simitrico.

- 1. Sean X y Y conjuntos no vacíos, no necesariamente finitos, tales que |X| = |Y|. Pruebe que $S_X \cong S_Y$.
- 9. Pruebe que So no es un producto directo de ninguna familia no vacía de subgrupos propios

Dem:

Como |X| = |Y|, $\exists J: X \to Y$ una Junción biyectiva. Considere $g: S_X \to S_X$ dada como:

Como fyrson bijecciones, entonces for of loes, luego for of ESR. Por tanto g está bien definida. Veamos que es isomorfismo:

a) g es inyectiva.

Sean
$$r, \theta \in S_{\overline{X}} \cap g(r) = g(\overline{n})$$
, entonces:
 $f \circ r \circ f' = f \circ \theta \circ f'$
 $=> f \circ r \circ f'(y) = f \circ \theta \circ f'(y)$, $\forall y \in \overline{Y}$

Por ser + injectiva:

$$\Rightarrow \sigma \circ f^{-1}(y) = \theta \cdot f^{-1}(y), \forall y \in \overline{Y}$$
Sea $x \in \overline{X}$, por sor f^{-1} Suprayectiva, $f^{-1}(y) = 0$. In $f^{-1}(y) = 0$, lueyo:
$$\sigma(x) = \theta(x)$$

como ol x fue arbitrario, lo anterior se cumple $\forall x \in \overline{X}$. As: $\sigma = \theta$.

b) g es suprayectiva

Sea
$$C \in S_{\overline{Z}}$$
, $\exists f' \circ C \circ f : \overline{X} \rightarrow \overline{X} \in S_{\overline{Z}} \cap G$

$$g(f' \circ C \circ f) = f \circ f' \circ C \circ f \circ f^{-1}$$

$$= C$$

c) g es homomortismo.

Sean of ESx entonces:

9.e.d.

2. Pruebe que S_3 no es un producto directo de ninguna familia no vacía de subgrupos propios de S_3 .

3. Encuentre cuatro subgrupos diferentes de S_4 que sean isomorfos a S_3 , y nueve isomorfos a S_2 .

Sol.

Para Sz, sea i [1,4] Considere el conjunto:

$$2_{3}(i) = \{ \sigma \in S_{4} \mid \sigma(i) = i \} \subseteq S_{4}$$

y, para K = [1, 4] y 1 = [1, 4]/(K), Considere:

$$2_{\lambda}(K, l) = \{ \sigma \in S_{4} \mid \sigma(K) = K \ y \ \sigma(l) = \ell \}$$

Veamos que 2, (i) = S3 y 2, (K, 1) = S2. En efecto:

1) Sea +: S3 -> L3(i) dada como:

4. Pruebe que el conjunto $N = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$ es un subgrupo no de S_4 contenido en A_4 tal que $S_4/N \cong S_3$ y $A_4/N \cong \mathbb{Z}/3\mathbb{Z}$.														orr	nal											

de S_4 contenido en A_4 tal que $S_4/N\cong S_3$ y $A_4/N\cong \mathbb{Z}/3\mathbb{Z}$. 5. Pruebe que el grupo alternante A_4 no tiene subgrupos de orden 6. 6 Con n > 2 Drugha que los elementes de C

7. Pruebe que $A_n^{(1)} < S_n^{(1)} < A_n$, donde $A_n^{(1)}$ y $S_n^{(1)}$ son los subgrupos derivados conciderados.

8. Sea $n \geq 2$ y $H = \langle (1 \ 2) \rangle$. Pruebe que $S_n = HA_n$.

8. Sea $n \geq 2$ y $H = \langle (1 \ 2) \rangle$. Pruebe que $S_n = HA_n$.

0. Soon n > 2 y N un subconjunto do S. Pruobo lo signionto:

9. Sean $n \geq 2$ y N un subconjunto de S_n . Pruebe lo siguiente: a) Si N es subgrupo normal de S_n , $N \neq S_n$, tal que N contiene un 3-ciclo, entonces pruebe que $N = A_n$. b) Si N es subgrupo normal de A_n y N contiene un 3-ciclo, entonces pruebe que $N=A_n$.

10. Sea $n \geq 3$. Pruebe que el centro de S_n es trivial, y concluya que $\mathrm{Int}(S_n) \cong S_n$.

... 13. Si $n \geq 5$, entonces pruebe que A_n es el único subgrupo normal propio no trivial de S_n . Hallar un monomorfiemo $a:S\longrightarrow A$. (En particular la paridad no se conserva baio

15. Sea H un subgrupo de A_5 tal que $H \neq A_5$. Pruebe que $|H| \leq 12$.

 $(C_1,\mathbf{D}_1,\mathbf{1}_1,\ldots,C_{n-1},D_{n-1},\ldots,\mathbf{1}_{n-1},\ldots,\mathbf{1}_{n-1},\ldots,\mathbf{1}_{n-1},\mathbf{1}_{n-1},\mathbf{1}_{n-1})$

16. Probar que S_6 no tiene subgrupos de orden 15. 17 Sea C un grupo simple de orden 60. Pruehe que C es isomorfo a un subgrupo de 4-

10. I 100at que ω_6 no mene subgrupos de orden 15. 17. Sea G un grupo simple de orden 60. Pruebe que G es isomorfo a un subgrupo de A_5 . f - - 0 1 -/--1

18. Sean $n \geq 2$ y $N = \{ \sigma \in S_n \mid \sigma(n) = n \}$. Pruebe lo siguiente:

a) N es subgrupo de S_n ;

 $b) N \cong S_{n-1};$

c) Encuentre los n's tales que $N \triangleleft S_n$.