Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Conectividad

3. Representaciones

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Conectividad

3. Representaciones

Ejemplo 1: Mapa de ciudades

Ciudades conectadas por **Rutas**

Ejemplo 2: Prerrequisitos de un curso

Ejemplo 3: Redes sociales

Personas conectadas en una red social

Ejemplo 4: Red de pases de un partido de fútbol

Red de pases para el Barcelona y el AC Milan de un partido de Liga de Campeones. Las flechas más oscuras y gruesas indican más pases entre cada jugador.

Terminología

- ☐ Grafo→ modelo para representar relaciones entre elementos de un conjunto.
- ☐ **Grafo**: (V,E), V es un conjunto de vértices o nodos, con una relación entre ellos; E es un conjunto de pares (u,v), u,v ∈ V, llamados aristas o arcos.
- ☐ Grafo dirigido: la relación sobre V no es simétrica. Arista = par ordenado (u,v). (Ejemplo 3)
- ☐ Grafo no dirigido: la relación sobre V es simétrica. Arista \equiv par no ordenado $\{u,v\}$, $u,v \in V$ y $u \neq v$. (Ejemplos 1 y 2)

Terminología (cont. 1)

Ejemplos

Grafo dirigido G(V,E).

$$V = \{C, D, E, F, H\}$$

 $E = \{(C, D), (D, F), (E, C), (E, H), (H, E)\}$

Grafo no dirigido G(V,E).

$$V = \{C, D, E, F, H\}$$
 $V = \{2, 3, 5, 7, 9\}$
 $E = \{(C, D), (D, F), (E, C), (E, H), E = \{\{2, 3\}, \{2, 7\}, \{2, 9\}, \{3, 9\}, \{4, E)\}\}$

Terminología (cont. 2)

- \square v es **adyacente** a u si existe una arista (u,v) \in E.
 - \square en un grafo no dirigido, $(u,v) \in E$ incide en los nodos u, v.
 - \square en un grafo dirigido, $(u,v) \in E$ **incide** en v, y **parte** de u.
- ☐ En grafos no dirigidos:
 - El grado de un nodo: número de arcos que inciden en él.
- En grafos dirigidos:
 - existen el grado de salida (grado_out) y el grado de entrada (grado_in).
 - ☐ el grado_out es el número de arcos que parten de él y
 - ☐ el **grado_in** es el número de arcos que inciden en él.
 - El **grado** del vértice será la suma de los grados de entrada y de salida.
- **Grado de un grafo**: máximo grado de sus vértices.

Terminología (cont. 3)

Camino desde $u \in V$ a $v \in V$: secuencia $v_1, v_2, ..., v_k$ tal que $u=v_1, v=v_k, y(v_{i-1},v_i) \in E$, para i=2,...,k. Ej: camino desde \mathbf{a} a $\mathbf{d} \rightarrow \langle a,b,e,c,d \rangle$.

Longitud de un camino: número de arcos del camino. Ejs: long. del camino desde \mathbf{a} a $\mathbf{d} \rightarrow \langle a,b,e,c,d \rangle$ es 4. (a) long. del camino desde \mathbf{a} a $\mathbf{d} \rightarrow \langle a,b,e,f,b,e,c,d \rangle$ es 7. (b)

Terminología (cont. 4)

Camino simple: camino en el que todos sus vértices, excepto, tal vez, el primero y el último, son distintos. P1 es un camino simple desde U a Z.

Ejemplos anteriores: (a) es camino simple, (b) no lo es.

Terminología (cont. 5)

 \square Ciclo: camino desde v_1, v_2, \dots, v_k tal que $v_1 = v_k$

Ej: <2,5,4,2> *es un ciclo de longitud 3*.

El ciclo es simple si el camino es simple.

☐ Bucle: ciclo de longitud 1.

☐ Grafo acíclico: grafo sin ciclos.

Terminología (cont. 6)

 \square Dado un grafo G=(V, E), se dice que G'=(V', E') es un **subgrafo** de G, si $V'\subseteq V$ y $E'\subseteq E$.

Terminología (cont. 7)

☐Un subgrafo inducido por $V' \subseteq V : G' = (V',E')$ tal que $E' = \{(u,v) \in E \mid u,v \in V'\}$.

Terminología (cont. 8)

☐ Un grafo **ponderado**, **pesado o con costos**: cada arco o arista tiene asociado un valor o etiqueta. (Ejemplos 2 y 4)

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Conectividad

3. Representaciones

Conectividad en grafos no dirigidos

Un grafo no dirigido es conexo si hay un camino entre cada par de vértices.

Conexo

No Conexo

Conectividad: bosque y árbol

- ☐ Un **bosque** es un grafo sin ciclos.
- ☐ Un **árbol libre** es un bosque conexo.
- Un **árbol** es un árbol libre en el que un nodo se ha designado como raíz.

Propiedades

☐ Sea G un grafo no dirigido con **n** vértices y **m** arcos, entonces

$$\sum_{v \in G} deg(v) = 2*m$$

✓ Siempre:
$$m \le (n*(n-1))/2$$

$$\checkmark$$
Si G árbol: $m=n-1$

Conectividad en grafos dirigidos

- U v es alcanzable desde u, si existe un camino de u a v.
- ☐ Un grafo dirigido se denomina **fuertemente conexo** si existe un camino desde cualquier vértice a cualquier otro vértice

Fuertemente Conexo

No Fuertemente Conexo Débilmente Conexo

☐ Si un grafo dirigido no es fuertemente conexo, pero el grafo subyacente (sin sentido en los arcos) es conexo, el grafo es **débilmente conexo**.

Componentes conexas

En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga.

Es un subgrafo conexo maximal.

Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.

Componentes conexas

En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga.

Es un subgrafo conexo maximal.

Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.

Componentes conexas

En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga.

Es un subgrafo conexo maximal.

Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.

Componentes fuertemente conexas

En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.

No Fuertemente Conexo

Fuertemente Conexo

Componentes fuertemente conexas

En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.

No Fuertemente Conexo

Fuertemente Conexo

Componentes fuertemente conexas

En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.

No Fuertemente Conexo

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Conectividad

3. Representaciones

Agenda - Grafos

- Representaciones
 - Matriz de Adyacencias
 - Lista de Adyacencias

Representaciones: Matriz de Adyacencias

 \square G = (V, E): matriz A de dimensión $|V| \times |V|$.

□ Valor a_{ij} de la matriz:

$$a_{ij} = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{en cualquier otro caso} \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Representaciones: Matriz de Adyacencias

- \square Costo espacial: $O(|V|^2)$
- □ Representación es útil para grafos con número de vértices pequeño, o grafos densos $(|E|\approx|V|\times|V|)$
- □ Comprobar si una arista (u,v) pertenece a $E \rightarrow$ consultar posición A(u,v)
 - $\square Costo \ de \ tiempo \ T(|V|,|E|) = O(1)$

Representaciones: Matriz de Adyacencias

- □ Representación aplicada a Grafos pesados
- □ El peso de (i,j) se almacena en A (i, j)

$$a_{ij} = \begin{cases} w(i,j) & \text{si } (i,j) \in E \\ 0 & o \infty \end{cases}$$
 en cualquier otro caso

	1	2	3	4	5	6
1	0	10	0	8	0	0
2	0	0	0	0	7	0
3	0	0	0	0	-1	15
4	0	12	0	0	0	0
5	0	0	0	9	0	0
6	0	0	0	0	0	9

Representaciones: Lista de Adyacencias

- $\square G = (V, E)$: vector de tamaño |V|.
- □ Posición $\mathbf{i} \rightarrow puntero$ a una lista enlazada de elementos (lista de adyacencia).

Los elementos de la lista son los vértices adyacentes a i

Representaciones: Lista de Adyacencias

- \square Si G es dirigido, la suma de las longitudes de las listas de adyacencia será |E|.
- \square Si G es no dirigido, la suma de las longitudes de las listas de adyacencia será 2|E|.
- \square Costo espacial, sea dirigido o no: O(|V|+|E|).
- \square Representación apropiada para grafos con |E| menor que $|V|^2$.
- □ **Desventaja**: si se quiere comprobar si una arista (u,v) pertenece $a E \Rightarrow buscar v$ en la lista de adyacencia de u.
 - \square Costo temporal T(|V|, |E|) será $O(Grado G) \subseteq O(|V|)$.

Representaciones: Lista de Adyacencias

- □ Representación aplicada a Grafos pesados
- \square El **peso de (u,v)** se almacena en el nodo de \mathbf{v} de la lista de adyacencia de \mathbf{u} .

