1 矩阵

1.1 基础概念

- 1. m 行 n 列表格称为 $m \times n$ 矩阵,当 m = n 时,矩阵 A 称为 n 阶矩阵或 n **阶 方阵**
- 2. 如果一个矩阵的所有元素都是0,则称这个矩阵是**零矩阵**,可简记为0
- 3. 两个 $m \times n$ 型矩阵 $A = [a_{ij}]$, $B = [b_{ij}]$, 如果对应的元素都相等,即 $a_{ij} = b_{ij}(i = 1, 2, ..., m; j = 1, 2, ..., n)$, 则称矩阵 $A \ni B$ 相等,记作 A = B
- 4. n 阶方阵 $A=[a_{ij}]_{n\times n}$ 的元素所构成的行列式称为 n 阶方阵 A 的行列式,记作 |A| 或 det A
- 5. 把矩阵 A 的行换成同序数的列得到一个新矩阵,称为矩阵 A 的**转置矩阵**,记作 A^T
- 6. n 阶方阵 $A=[a_{ij}]_{n\times n}$,行列式 |A| 的每个元素 a_{ij} 的代数余子式 A_{ij} 所构成 的如下矩阵

$$A = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}$$

称为矩阵 A 的**伴随矩阵**

- 7. n 阶方阵 $A = [a_{ij}]_{n \times n}$,如果存在 n 阶方阵 B 使得 AB = BA = E(单位矩阵) 成立,则称 A 是**可逆矩阵**或**非奇异矩阵**,B 是 A 的逆矩阵
- 8. 对 $m \times n$ 矩阵, 下列三种变换
 - (a) 用非零常数 k 乘矩阵的某一行(列)
 - (b) 互换矩阵某两行(列)的位置
 - (c) 把某行(列)的 k 倍加至另一行(列)

称为矩阵的初等行(列)变换、统称为矩阵的初等变换

- 9. 如果矩阵 A 经过有限次初等变换变成矩阵 B,则称矩阵 A 与矩阵 B 等价,记作 $A \cong B$
- 10. 单位矩阵经过一次初等变换等到的矩阵称为初等矩阵
 - (a) $E_i(k)$ 单位矩阵第 i 行乘以常数 k
 - (b) E_{ij} 单位矩阵互换 i, j 行
 - (c) $E_{ii}(k)$ 单位矩阵第 j 行的 k 倍加至第 i 行
- 11. 设 $A \in n$ 阶矩阵,满足 $AA^T = A^TA = E$,称 $A \in \mathbf{E}$ **正交矩阵**:

12. 设 $\alpha = (a_1, a_2, \dots, a_n)^T$, $\beta = (b_1, b_2, \dots, b_n)^T$ 。向量内积: $(\alpha, \beta) = \alpha^T \beta = \beta^T \alpha = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$

$$\Leftrightarrow a_1^2 + a_2^2 + \dots + a_n^2 = 1$$

- $\Leftrightarrow a$
- $\Leftrightarrow A^T = A^{-1}$
- $\Leftrightarrow A$ 的行(列)向量两两正交(单位向量)
- \Leftrightarrow A 的每个行(列)向量长度均为 1
- $\Leftrightarrow A$ 的行(列)向量平方和为 1
- $\Rightarrow |A|^2 = 1 \Leftrightarrow |A| = 1 \vec{\mathbf{y}}|A| = -1$

1.2 定理

- 1. 若 A 是可逆矩阵,则矩阵 A 的逆矩阵**唯一**,记为 A^{-1}
- 2. n 阶矩阵 A 可逆

$$\Leftrightarrow |A| = 0$$

$$\Leftrightarrow r(A) = n$$

⇔ A的列(行)向量组线性无关

$$\Leftrightarrow A = P_1 P_2 \dots P_s, P_i (i = 1, 2, \dots, s)$$
是初等矩阵

- ⇔ A与单位矩阵等价
- ⇔ 0不是矩阵A的特征值
- 3. 若 $A \in n$ 阶矩阵,且满足 AB = E,则必有 BA = E
- 4. 用初等矩阵 P 左 (右) 乘矩阵 A,其结果 PA(AP) 就是对矩阵 A 作一次相应的初等行 (列) 变换
- 5. 初等矩阵均可逆, 其逆矩阵是同类型的初等矩阵, 即

倍乘 $E_i^{-1}(k) = E_i(1/k)$ 第 i 行(或列)乘以非零常数 k 的逆矩阵是第 i 行(或列)乘以 1/k

倍加 $E_{ij}^{-1}(k) = E_{ij}(-k)$ 第 i 行(或列)加上 k 倍第 j 行(或列)的逆矩阵是 第 i 行(或列)加上 -k 倍第 j 行(或列)

互换 $E_{ij}^{-1}=E_{ij}$ 交换第 i 行(或列)和第 j 行(或列)的逆矩阵是其本身

1.3 运算

- 1. 设 $A = [a_{ij}]$, $B = [b_{ij}]$ 是两个 $m \times n$ 矩阵, 则 $m \times n$ 矩阵 $C = [c_{ij}] = [a_{ij} + b_{ij}]$ 称为矩阵 $A \subseteq B$ 的和,记作 A + B = C
- 2. 设 $A = [a_{ij}]$ 是 $m \times n$ 矩阵, k 是一个常数, 则 $m \times n$ 矩阵 $[ka_{ij}]$ 称为数 k 与 矩阵 A 的数乘,记作 kA

3. 设 A, B, C, O 都是 $m \times n$ 矩阵, k, l 是常数, 则矩阵的加法和数乘运算满足:

(a)
$$A + B = B + A$$

(b)
$$(A+B)+C=A+(B+C)$$

(c)
$$A + O = A$$

(d)
$$A + (-A) = O$$

(e)
$$1A = A$$

(f)
$$k(lA) = (kl)A$$

(g)
$$k(A+B) = kA + kB$$

(h)
$$(k+l)A = kA + lA$$

4. 设 $A = [a_{ij}]$ 是 $m \times n$ 矩阵, $B = [b_{ij}]$ 是 $n \times s$ 矩阵,那么 $m \times s$ 矩阵 $C = [c_{ij}]$,其中

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

称为 A = B 的**乘积**,记作 C = AB

5. 矩阵乘法有下列法则:

(a)
$$A(BC) = (AB)C$$

(b)
$$A(B+C) = AB + AC$$

(c)
$$(A+B)C = AC + BC$$

(d)
$$(kA)(lB) = klAB$$

(e)
$$AE = EA = A$$

(f)
$$OA = AO = O$$

6. 设 $A \in n$ 阶矩阵,k 是正整数,

(a)
$$A$$
 的 k 次方幂 $A^k = A \cdot A \dots A(k \uparrow A)$

(b)
$$A^0 = E$$

(c)
$$A^k \cdot A^l = A^{k+l}$$

$$(d) (A^k)^l = A^{kl}$$

7.

8.

1.4 条件转换思路

1. 设 $\mathbf{A} \in m \times n$ 矩阵, $\mathbf{B} \in n \times s$ 矩阵,若 $\mathbf{AB} = \mathbf{O}$,则

(a) **B** 的列向量是其次方程组 $\mathbf{A}\mathbf{x} = 0$ 的解

(b)
$$r(\mathbf{A}) + r(\mathbf{B}) \le n$$