Fundaments of Machine learning for and with engineering applications

Enrico Riccardi¹

Department of Mathematics and Physics, University of Stavanger (UiS). 1

Sep 2, 2025

© 2025, Enrico Riccardi. Released under CC Attribution 4.0 license

1 Recaps: Data concepts, Data types and Models

Descriptive and Predictive statistics

Simulations

4 Data properties

Data vs Physics

Uncertainty

- Def 1: Not knowing if an event is true or false. (Useful)
- Def 2: Things that cannot be measured. (Not useful)

Probability is how Uncertainty is quantified!

- Clarity test
- Assign a number between 0 and 1 to our degree of belief
- Error definition

Sentence also good for fortune cookies

Uncertainty is the only certainty

Uncertainty

- Def 1: Not knowing if an event is true or false. (Useful)
- Def 2: Things that cannot be measured. (Not useful)

Probability is how Uncertainty is quantified!

- Clarity test
- Assign a number between 0 and 1 to our degree of belief
- Error definition

Sentence also good for fortune cookies

Uncertainty is the only certainty

Uncertainty

- Def 1: Not knowing if an event is true or false. (Useful)
- Def 2: Things that cannot be measured. (Not useful)

Probability is how Uncertainty is quantified!

- Clarity test
- Assign a number between 0 and 1 to our degree of belief
- Error definition

Sentence also good for fortune cookies

Uncertainty is the only certainty

Uncertainty and Probability

Random quotes

- Probability: there is not science more worthy in out contemplations nor a more useful one for admission to our system of public education
- The theory of probabilities is at the bottom of nothing but common sense reduced to calculus.

What is Statistics

Clarity test. Beer drinker?

Rain in Stavanger?

Uncertainty and Probability

Random quotes

- Probability: there is not science more worthy in out contemplations nor a more useful one for admission to our system of public education
- The theory of probabilities is at the bottom of nothing but common sense reduced to calculus.

What is Statistics

Clarity test. Beer drinker?

Rain in Stavanger?

1 D

logs

2 D: maps

Quite limited but great for visualization

3 D

3d maps, seismic cubes. More informative, mostly ok in digital formats.

4 D

Trajectories

\times D

1 D

logs

2 D: maps

Quite limited but great for visualization

3 D

3d maps, seismic cubes. More informative, mostly ok in digital formats

4 D

Trajectorie

x D

1 D

logs

2 D: maps

Quite limited but great for visualization

3 D

 $3d\ maps,$ seismic cubes. More informative, mostly ok in digital formats.

4 L

Trajectorie

x D

1 D

logs

2 D: maps

Quite limited but great for visualization

3 D

 $3d\ maps,$ seismic cubes. More informative, mostly ok in digital formats.

4 D

Trajectories

\times \square

1 D

logs

2 D: maps

Quite limited but great for visualization

3 D

3d maps, seismic cubes. More informative, mostly ok in digital formats.

4 D

Trajectories

x D

Types of data

- Categorical / Nominal (classes)
- Categorical / Ordinal
- Continuous / Interval (e.g. Celsius)
- Continuous / Ratio
- Discrete: binned/grouped data
- Hard data: direct measurements
- Soft data: indirect measurements, very uncertain
- Primary data: variable(s) of interest
- Secondary data: descriptors
- Collective variables
- Latent variables

Types of data

- Categorical / Nominal (classes)
- Categorical / Ordinal
- Continuous / Interval (e.g. Celsius)
- Continuous / Ratio
- Discrete: binned/grouped data
- Hard data: direct measurements
- Soft data: indirect measurements, very uncertain
- Primary data: variable(s) of interest
- Secondary data: descriptors
- Collective variables
- Latent variables

Recaps: Data concepts, Data types and Models

2 Descriptive and Predictive statistics

3 Simulations

4 Data properties

Descriptive and Predictive statistics

Estimation

- Process of obtaining the best value or range of a property in an unsampled location
- Local accuracy takes precedence over global spatial variability
- Not appropriate for forecasting

Inference

- Predict unseen samples given assumptions about the population
- Test with a pre-trained model (ML definition)
- Generality versus Accuracy

Descriptive and Predictive statistics

Estimation

- Process of obtaining the best value or range of a property in an unsampled location
- Local accuracy takes precedence over global spatial variability
- Not appropriate for forecasting

Inference

- Predict unseen samples given assumptions about the population
- Test with a pre-trained model (ML definition)
- Generality versus Accuracy

Descriptive and Predictive statistics

Estimation

- Process of obtaining the best value or range of a property in an unsampled location
- Local accuracy takes precedence over global spatial variability
- Not appropriate for forecasting

Inference

- Predict unseen samples given assumptions about the population
- Test with a pre-trained model (ML definition)
- Generality versus Accuracy

Population

Exhaustive, finite list of properties of interest over area of interest.

Generally the entire population is not accessible

Samples/experiments/instances

The set of values and location that have been measured.

How many experiments are needed?

Sampling distribution -(IID ?)

identical and independent distribution The set of values and location that have been measured.

Features

The values to be measured for each sample/experiment/instance

Population

Exhaustive, finite list of properties of interest over area of interest.

Generally the entire population is not accessible

Samples/experiments/instances

The set of values and location that have been measured.

How many experiments are needed?

Sampling distribution -(IID ?)

identical and independent distribution The set of values and location that have been measured.

Features

The values to be measured for each sample/experiment/instance

Population

Exhaustive, finite list of properties of interest over area of interest.

Generally the entire population is not accessible

Samples/experiments/instances

The set of values and location that have been measured.

How many experiments are needed?

Sampling distribution -(IID ?)

identical and independent distribution The set of values and location that have been measured.

Features

The values to be measured for each sample/experiment/instance

Population

Exhaustive, finite list of properties of interest over area of interest.

Generally the entire population is not accessible

Samples/experiments/instances

The set of values and location that have been measured.

How many experiments are needed?

Sampling distribution -(IID ?)

identical and independent distribution The set of values and location that have been measured.

Features

The values to be measured for each sample/experiment/instance.

Predictors = input variables, X_1 , ..., X_M

 ${\sf Response} = {\sf output} \ {\sf variables}$

Error

Deviation from ... exact value (or expected value, mean value, trend...?)

Errors without definitions are just numbers.

Erro

Values, without error, are just number!!

Predictor and Response Features

Given a model $Y = f(X_1, ..., X_M) + e$

Predictors = input variables, X_1 , ..., X_M

 ${\sf Response} = {\sf output} \ {\sf variables}$

Error

Deviation from \dots exact value (or expected value, mean value, trend...?)

Errors without definitions are just numbers.

Error

Values, without error, are just number!!

Predictor and Response Features

Given a model $Y = f(X_1, ..., X_M) + e$

Predictors = input variables, X_1 , ..., X_M

 ${\sf Response} = {\sf output} \ {\sf variables}$

Error

Deviation from \dots exact value (or expected value, mean value, trend...?)

Errors without definitions are just numbers.

Error

Values, without error, are just number!!

Predictor and Response Features

Given a model $Y = f(X_1, ..., X_M) + \epsilon$

Predictors = input variables, X_1 , ..., X_M

 ${\sf Response} = {\sf output} \ {\sf variables}$

Error

Deviation from \dots exact value (or expected value, mean value, trend...?)

Errors without definitions are just numbers.

Error

Values, without error, are just number!!

Predictor and Response Features

Given a model $Y = f(X_1, ..., X_M) + e$

Finding a suitable model

Soft modeling is in most cases based on **multivariate statistical methods**. Many of these methods may be viewed as sophisticated ways of performing curve fitting to data.

What would be the best model?

- Straight?: y(x) = ax + b
- Parabolic?: $y(x) = ax^2 + bx + c$
- Trigonometric?: y(x) = asin(x) + bcos(x)

Uncertainty Modeling

Given a model, Generate multiple simulation to represent uncertainty

- Realizations: for the same input parameters, different random numbers.
- Scenarios: different input parameters.

Sampling representative.

Random sampling

Each item of the population has an equal chance of being chosen.

- Very expensive
- Mostly not interesting
- Gives some global properties

Bias sampling

Selection of data is (arbitrarily) distorted

- Sample probability bias has to be corrected for
- Might not capture the global picture
- It might distort the system under study -> false results

Uncertainty Modeling

Given a model, Generate multiple simulation to represent uncertainty

- Realizations: for the same input parameters, different random numbers.
- Scenarios: different input parameters.

Sampling representative.

Random sampling

Each item of the population has an equal chance of being chosen.

- Very expensive
- Mostly not interesting
- Gives some global properties

Bias sampling

Selection of data is (arbitrarily) distorted

- Sample probability bias has to be corrected for
- Might not capture the global picture
- It might distort the system under study -> false results

Cognitive biases

- anchoring: The first bits are over-considered
- availability: over-estimating the importance of info
- bandwagon: P increases with the number of people holding a belief
- blind spot: not seen biases
- choice supporting: commitment/decision dependent
- clustering illusion: seeing patterns in random events
- confirmation bias
- conservatism bias
- Recency bias
- Supervision bias
- Many many more!

Bias DO NOT cancel out! They sum up (or multiply?)

Recaps: Data concepts, Data types and Models

Descriptive and Predictive statistics

3 Simulations

4 Data properties

Simulations

Process of obtaining one or more values of a property

- Improved Global accuracy
- Better property distributions

Why simulations then?

- We need to capture the full distribution of properties, extremes matter!
- We need more realistic models.

Why not?

- High dimensionality level
- Computationally expensive
- Convergence limitations
- Constitutive equations need to be rather accurate

Simulations

Process of obtaining one or more values of a property

- Improved Global accuracy
- Better property distributions

Why simulations then?

- We need to capture the full distribution of properties, extremes matter!
- We need more realistic models.

Why not?

- High dimensionality level
- Computationally expensive
- Convergence limitations
- Constitutive equations need to be rather accurate.

Simulations

Process of obtaining one or more values of a property

- Improved Global accuracy
- Better property distributions

Why simulations then?

- We need to capture the full distribution of properties, extremes matter!
- We need more realistic models.

Why not?

- High dimensionality level
- Computationally expensive
- Convergence limitations
- Constitutive equations need to be rather accurate.

Recaps: Data concepts, Data types and Models

2 Descriptive and Predictive statistics

3 Simulations

Data properties

Data

Representation

A representation should capture the nature of the subject being studied.

Example: If you want to evaluate the 3D structure of a wind turbine, a set of descriptors an be:

- Blade length
- 2 Turbine height
- Geographical position
- Output power
- 6 Wind direction

which are two decimal numbers, a 2d tuple, a 1D time series and a 2D time series (or 3D even).

Representation

A representation should capture the nature of the subject being studied.

- Blade length
- 2 Turbine height
- Geographical position
- Output power
- Wind direction

which are two decimal numbers, a 2d tuple, a 1D time series and a 2D time series (or 3D even).

Representation

A representation should capture the nature of the subject being studied.

Example: If you want to evaluate the 3D structure of a wind turbine, a set of descriptors an be:

- Blade length
- 2 Turbine height
- 3 Geographical position
- Output power
- Wind direction

which are two decimal numbers, a 2d tuple, a 1D time series and a 2D time series (or 3D even).

Comparability

Same meaning represenations for different objects (inputs).

Discussion point!

How do we compare two wind turbines accounting for the 5 variables previously introduced?

Comparability

Same meaning represenations for different objects (inputs).

Discussion point!

How do we compare two wind turbines accounting for the 5 variables previously introduced?

Data properties

- All starts from data: what are data-properties?
- Are there such things as good data and bad data?

Life lesson (or exam question, same thing;))

Data DO NOT always have value.

TRASH in TRASH out

- An intuitive way to represent curves and spectra is the sampling point representation.
- We sample at regular intervals where each sample point is represented by a variable

- An intuitive way to represent curves and spectra is the sampling point representation.
- We sample at regular intervals where each sample point is represented by a variable

- An intuitive way to represent curves and spectra is the sampling point representation.
- We sample at regular intervals where each sample point is represented by a variable

 SPR is useful until point i in a curve has the same meaning of the point i in another curve.

• Which parts of the profiles or shapes are comparable, i.e. have the same meaning?

• SPR is useful until point *i* in a curve has the same meaning of the point *i* in another curve.

• Which parts of the profiles or shapes are comparable, i.e. have the same meaning?

• SPR is useful until point *i* in a curve has the same meaning of the point *i* in another curve.

• Which parts of the profiles or shapes are comparable, i.e. have the same meaning?

Data structures

Given a representation, it is then needed to decide on a suitable ${\bf data}$ structure for the problem.

Definition

A data structure is a way of storing and organising data in a computer so that it can be used effectively.

Typical data structures used in data analysis are:

- Data points
- Arrays (vectors, matrices, N-mode (way) arrays)
- Graphs (trees)
- Databases

Data structures

Given a representation, it is then needed to decide on a suitable ${\it data\ structure}$ for the problem.

Definition

A data structure is a way of storing and organising data in a computer so that it can be used effectively.

Typical data structures used in data analysis are:

- Data points
- Arrays (vectors, matrices, N-mode (way) arrays)
- Graphs (trees)
- Databases

- Plan experiments: Use experimental design to set up experiments in a systematic way
- 2 Pre-processing: Is there systematic variation in the data which should be removed Can cross-checking/validation procedures be designed?
- Examine the data: Look at data (tables and plots). Strange behaviours? Smooth behaviour? WARNING!
- Define desired model outcomes (speed, accuracy, false positive/negatives rate
- Estimate and validate model: What do the results tell us? Is the generated model general (valid for future sampling)?
- Apply model to unknown samples

- Plan experiments: Use experimental design to set up experiments in a systematic way
- Pre-processing: Is there systematic variation in the data which should be removed Can cross-checking/validation procedures be designed?
- Examine the data: Look at data (tables and plots). Strange behaviours? Smooth behaviour? WARNING!
- Opening desired model outcomes (speed, accuracy, false positive/negatives rate)
- Estimate and validate model: What do the results tell us? Is the generated model general (valid for future sampling)?
- Apply model to unknown samples

- Plan experiments: Use experimental design to set up experiments in a systematic way
- 2 Pre-processing: Is there systematic variation in the data which should be removed Can cross-checking/validation procedures be designed?
- Examine the data: Look at data (tables and plots). Strange behaviours' Smooth behaviour? WARNING!
- 4 Define desired model outcomes (speed, accuracy, false positive/negatives rate
- Estimate and validate model: What do the results tell us? Is the generated model general (valid for future sampling)?
- Apply model to unknown samples

- Plan experiments: Use experimental design to set up experiments in a systematic way
- Pre-processing: Is there systematic variation in the data which should be removed Can cross-checking/validation procedures be designed?
- Smooth behaviour? WARNING!
 Smooth behaviour? WARNING!
- 4 Define desired model outcomes (speed, accuracy, false positive/negatives rate
- Stimate and validate model: What do the results tell us? Is the generated model general (valid for future sampling)?
- Apply model to unknown samples

- Plan experiments: Use experimental design to set up experiments in a systematic way
- 2 Pre-processing: Is there systematic variation in the data which should be removed Can cross-checking/validation procedures be designed?
- Examine the data: Look at data (tables and plots). Strange behaviours? Smooth behaviour? WARNING!
- Oefine desired model outcomes (speed, accuracy, false positive/negatives rate)
- 5 Estimate and validate model: What do the results tell us? Is the generated model general (valid for future sampling)?
- 6 Apply model to unknown samples

- Plan experiments: Use experimental design to set up experiments in a systematic way
- 2 Pre-processing: Is there systematic variation in the data which should be removed Can cross-checking/validation procedures be designed?
- Examine the data: Look at data (tables and plots). Strange behaviours? Smooth behaviour? WARNING!
- 4 Define desired model outcomes (speed, accuracy, false positive/negatives rate)
- **5** Estimate and validate model: What do the results tell us? Is the generated model general (valid for future sampling)?
- 6 Apply model to unknown samples

- Plan experiments: Use experimental design to set up experiments in a systematic way
- Pre-processing: Is there systematic variation in the data which should be removed Can cross-checking/validation procedures be designed?
- Examine the data: Look at data (tables and plots). Strange behaviours? Smooth behaviour? WARNING!
- Oefine desired model outcomes (speed, accuracy, false positive/negatives rate)
- **5** Estimate and validate model: What do the results tell us? Is the generated model general (valid for future sampling)?
- 6 Apply model to unknown samples

Spatial and Temporal Data

Statistics is collecting, organising, and interpreting data

Spatial and temporal statistics is a branch of applied statistics that emphasises:

- 1 the geo context of the data
- 2 the spatial and time dependent relationship between data
- 3 the different relative value and precision of the data.

Spatial and Temporal Data

Statistics is collecting, organising, and interpreting data

Spatial and temporal statistics is a branch of applied statistics that emphasises:

- 1 the geo context of the data
- 2 the spatial and time dependent relationship between data
- 3 the different relative value and precision of the data.

Actual data

The data matrix is an extremely common data structure.

$$X = \begin{bmatrix} 95 & 89 & 82 \\ 23 & 76 & 44 \\ 61 & 46 & 62 \\ 49 & 2 & 79 \end{bmatrix}$$

In python these can be saved as

- lists (vanilla python)
- numpy.arrays
- pandas dataframes

Actual data

The data matrix is an extremely common data structure.

$$X = \begin{bmatrix} 95 & 89 & 82 \\ 23 & 76 & 44 \\ 61 & 46 & 62 \\ 49 & 2 & 79 \end{bmatrix}$$

In python these can be saved as

- lists (vanilla python)
- numpy.arrays
- pandas dataframes

Nomenclature Reminder

There are different conventions. Commonly we will construct data matrix such that:

- Rows are called instances, objects or samples.
- Columns are called features, variables.

One can think of each row to be an experiment, and the rows its properties. Each row (experiment, object, sample, \dots) is thus a list of values, one for property.

Note

Mathematically speaking, this is just a notation. As long as one keeps track and is consistent, columns can be used as rows and vice versa.

A quick example

Environmental measurements of rivers. The features (properties) can be:

- pH
- Temperature
- Concentration of pollutants
- Flow rate
- water speed

The experiments/observations/sample can be:

- Po
- Danube
- Rio delle Amazzoni
- Sjoa
- Atna

A quick example

Environmental measurements of rivers. The features (properties) can be:

- pH
- Temperature
- Concentration of pollutants
- Flow rate
- water speed

The experiments/observations/sample can be:

- Po
- Danube
- Rio delle Amazzoni
- Sjoa
- Atna