Check-list pour se préparer aux questions de cours de l'examen de Traitement des Signaux Aléatoires

$\hfill \Box$ Je sais définir les propriétés statistiques d'un signal aléatoire à une date donnée (moyenne
statistique, puissance moyenne statistique, variance)
\square Je sais définir les propriétés statistiques d'un signal aléatoire entre deux dates
(autocorrélation statistique, covariance)
\square Je sais définir l'espérance mathématique d'un signal aléatoire à une date donnée en
fonction de sa densité de probabilité à cette date
$\hfill \square$ Je sais exploiter les propriétés de l'espérance mathématique (linéarité, espérance d'une
fonction de la variable aléatoire, espérance du produit de 2 variables aléatoires
indépendantes)
☐ Je sais déterminer si un signal aléatoire est centré à une date donnée
☐ Je sais centrer à une date donnée un signal aléatoire qui ne le serait pas
☐ Je sais définir la stationnarité d'un signal aléatoire
☐ Je sais vérifier si un signal aléatoire est stationnaire à l'ordre 1 et à l'ordre 2
☐ Je sais définir la propriété d'ergodisme d'un signal aléatoire stationnaire
□ Je connais les principales propriétés de la fonction d'autocorrélation statistique d'un
signal stationnaire à l'ordre 2 (valeur à l'origine, notion de rayon de corrélation pour les
signaux sans composante périodique, symétrie hermitienne/parité)
☐ Je sais définir la densité spectrale de puissance moyenne d'un signal aléatoire stationnaire
à partir de sa fonction d'autocorrélation (et réciproquement).
$\hfill \square$ Je connais les principales propriétés de la densité spectrale de puissance moyenne d'un
signal aléatoire stationnaire (fonction réelle positive ou nulle, parité si le signal aléatoire
est réel)
$\hfill \square$ Je sais déterminer la puissance moyenne d'un signal aléatoire stationnaire en utilisant
l'espérance mathématique ou la fonction d'autocorrélation ou encore la densité
spectrale de puissance moyenne.
☐ Je sais définir la fonction d'autocorrélation d'un bruit blanc
$\hfill \Box$ Je sais définir et représenter la densité spectrale de puissance moyenne d'un bruit blanc
sur une bande spectrale limitée
☐ Je sais définir les propriétés statistiques d'un signal aléatoire stationnaire gaussien
☐ Je connais le théorème central limite
☐ Je sais définir l'intercorrélation et l'interspectre entre 2 signaux aléatoires stationnaires

Check-list pour se préparer aux questions de cours de l'examen de Traitement des Signaux Aléatoires

$\hfill \Box$ Je sais exprimer le signal aléatoire en sortie d'un filtre linéaire invariant en fonction du
signal aléatoire stationnaire à l'entrée et de la réponse impulsionnelle du filtre
☐ Je sais exprimer la moyenne statistique du signal aléatoire en sortie d'un filtre en fonction
des propriétés du filtre et de la moyenne statistique du signal aléatoire stationnaire en
entrée de filtre
☐ Je sais exprimer la densité spectrale de puissance moyenne du signal aléatoire en sortie
d'un filtre en fonction des propriétés du filtre et de la densité spectrale de puissance
moyenne du signal aléatoire en entrée
☐ Je sais définir et calculer le biais d'un estimateur
☐ Je sais définir et calculer la variance d'un estimateur
☐ Je connais le critère d'optimisation qui permet de déterminer le filtre adapté (détection)
□ Je sais définir le filtre adapté à un signal certain dans le cas général et en présence d'un
bruit blanc
□ Je connais le critère d'optimisation qui permet de déterminer le filtre de Wiener
(estimation)
☐ Je connais le principe d'orthogonalité
□ Je sais définir le filtre de Wiener non causal en temps continu à partir de l'équation de
Wiener-Kolmogorov
$\ \square$ Je sais exprimer l'équation de Wiener-Hopf (équations normales) pour le filtre de Wiener
non causal à réponse impulsionnelle infinie (RII-IIR) ou à réponse impulsionnelle finie
(RIF-FIR)

P. Pittet, 2016 -2017