Summer 2017 UAkron Dept. of Stats [3470: 461/561] Applied Statistics

Ch 4: Continuous RV

Contents

1	\mathbf{Pr}	Preliminaries		
	1.1	Continuous Random Variable	:	
	1.2	Uniform Distribution	1:	
2	No	ormal Distribution	16	
	2.1	Normal Distribution Normal Distribution	1	
	2.2	Empirical Rule	20	
	2.3	Standard Normal Distribution	2	
	2.4	Standardization of Normal:	2	
	2.5	Binomial Approximation	4	
3	Ex	ponential Distribution	42	
	3.1	Exponential Distribution Exponential Distribution	4:	
	3.2	Poisson Process	49	
	3.3	Memoryless property:	50	

Preliminaries

[ToC]

1.1 Continuous Random Variable

[ToC]

- r.v. whose range is a interval on a real line or a disjoint union of such intervals.
- This leads to major over-haul in pmf P(X = a).
- Suppose X is a r.v. which takes any value within the interval [0,1] with equal probability. (Called Uniform(0,1) r.v.)

What value can we assign to P(X = .5)?

It also must satisfy that for any constant c, P(X=c)=0.

Probability density function (pdf) of continuous r.v. X is a function f(x) such that for any two numbers a and b with $a \le b$,

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Pdf must satisfy:

- 1. $f(x) \ge 0$ for all x.
- $2. \int_{-\infty}^{\infty} f(x)dx = 1.$

5

Cumulative Distribution Function (CDF) of r.v. X is a function F(x) defined for every number x by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx$$

If X is a continuous r.v. with pdf f(x) and cdf F(x) then at every x at which the derivative F'(x) exists,

$$F'(x) = f(x).$$

Cdf must satisfy:

- 1. $F(-\infty) = 0$ and $F(\infty) = 1$.
- 2. non-decreasing.
- 3. right continuous.

For any number a and b with a < b,

$$P(X > a) = 1 - F(a)$$

$$P(a \le X \le b) = F(b) - F(a)$$

Percentiles

Let p a number between 0 and 1. The $(100 \times p)$ th percentile of the distribution of a continuous r.v. X, denoted η_p , is a number such that

$$F(\eta_p) = p$$

Example Let $\operatorname{rv} X$ have pdf

$$f(x) = \begin{cases} Kx^2 & \text{if } 1 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

- 1. What is K?
- 2. What is $P(1.5 \le X \le 2)$
- 3. What is F(x)
- 4. What is 70th percentile of X?

Expected Values

Expected or mean value of a continuous r.v. X with pdf f(x) is

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx.$$

If $h(\cdot)$ is any function, then

$$E(h(X)) = \int_{-\infty}^{\infty} h(x)f(x)dx.$$

Therefore,

$$E(h(X)) = h(E(x))$$

if $h(\cdot)$ is a linear function. In other words, E(aX + b) = aE(X) + b.

Variance

Variance of a continuous r.v. X with pdf f(x) is

$$V(X) = \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = E\left[(x - \mu)^2 \right]$$

and standard deviation (SD) of X is

$$\sigma = \sqrt{\sigma^2}$$
.

Example

Let rv X have pdf

$$f(x) = \begin{cases} Kx^2 & \text{if } 1 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

- 1. What is E(X)?
- 2. What is V(X)?

1.2 Uniform Distribution

[ToC]

• pdf

$$f(x) = \frac{1}{B - A}$$
 for $A \le x \le B$

and 0 otherwise.

• CDF

$$F(x) = P(X \le x) = \frac{x - A}{B - A}.$$

• Expectation and Variance:

$$E(X) = \frac{B+A}{2}$$
 $V(X) = \frac{(B-A)^2}{12}$

R code for Uniform(a, b)

```
dunif(.5, 0, 1)  #- F(3): CDF
punif(.5,0, 1)  #- p(3): pmf

layout( matrix(1:2, 1, 2) )

x <- seq(-.3,1.3,.01)
plot(x, dunif(x, 0, 1), type="l", ylim=c(0,1)) #- PMF plot -
plot(x, punif(x, 0, 1), type="l", ylim=c(0,1)) #- CDF plot -</pre>
```


Example:

- 1. If $X \sim \text{Unif}(0,1)$, what is P(X > .7)?
- 2. If $X \sim \text{Unif}(2,7)$, what is P(X=5)?
- 3. If $X \sim \text{Unif}(2,7)$, what is the 80th percentile of X?

Normal Distribution

[ToC]

2.1 Normal Distribution

[ToC]

• pdf for $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

• CDF

$$F(X) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

but this is analytically non-tractable, and must be evaluated numerically. We have a table for the case $(\mu, \sigma^2) = (0, 1)$.

• Mean and Variance

$$E(X) = \mu$$
 $V(X) = \sigma^2$

R code for Normal(μ, σ^2)

```
dnorm(.5, 0, 1)  #- F(3): CDF
pnorm(.5, 0, 1)  #- p(3): pmf

layout( matrix(1:2, 1, 2) )

x <- seq(-10,10,.01)
plot(x, dnorm(x, 0, 1), type="1", ylim=c(0,.4)) #- PMF plot -
lines(x,dnorm(x, 0, 2), col="red")
lines(x,dnorm(x, 2, 2), col="green")

plot(x, pnorm(x, 0, 1), type="1", ylim=c(0,1)) #- CDF plot -
lines(x, pnorm(x, 0, 2), col="red")
lines(x, pnorm(x, 2, 2), col="green")</pre>
```

$N(\mu = 0, \sigma = 1), N(\mu = 0, \sigma = 2) \text{ and } N(\mu = 2, \sigma = 2)$

[ToC]

In
$$X \sim N(\mu, \sigma^2)$$
, then

- 1. with probability .68, X is within 1 SD away from μ .
- 2. with probability .95, X is within 2 SD away from μ .
- 3. with probability .99.7, X is within 3 SD away from μ .

```
x \leftarrow seq(-7,17,.01)
plot(x, dnorm(x, 5, 3), type="1", ylim=c(0,.4))
```

$$\mathbf{N}(\mu = 5, \sigma^2 = 3^2)$$

2.3 Standard Normal Distribution

[ToC]

- N(0,1) is called Standard Normal Distribution.
- Pdf of standard normal distribution is

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

• CDF

$$F(t) = P(Z \le t) = \Phi(t).$$

• Table A.3 in the textbook lists values of $\Phi(t)$.

z_{α} Notation

- Z is used to denote Standard Normal random variable.
- z_{α} denotes $(1-\alpha)100$ th percentle of Z.
- i.e. $z_{.05} = [95$ th percentile of Z]

Using Normal Table

- Find $P(Z \le 1.4)$
- Find P(Z > .53)
- Find 90th percentile of Z
- Find $Z_{.05}$

2.4 Standardization of Normal:

[ToC]

$$X \sim N(\mu, \sigma^2)$$

$$Z \sim N(0, 1)$$

$$Z = \frac{X - \mu}{\sigma} \implies$$

$$\iff X = \mu + Z\sigma$$

Use Standardization to find F(x)

Using standardization, you can use $\Phi(\cdot)$ to figure out the cdf of X.

$$P(X \le a) = P\left(\frac{X-\mu}{\sigma} \le \frac{a-\mu}{\sigma}\right) = \Phi\left(\frac{a-\mu}{\sigma}\right)$$

Find $P(X \le 8)$ in N(5, 3²).

•

$$P(a \le X \le b) = P(X \le b) - P(X \le a) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

•

$$P(X > a) = 1 - P(X \le a) = 1 - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

- $P(X \ge a)$
- $\bullet \ P(X=a)$

Example: Tree Height

Diameter at breast height (in.) of trees of certain type is normally distributed with $\mu = 8.8$ and $\sigma = 2.8$.

- 1. What is probability that randomly chosen tree has diameter less than 10in?
- 2. What is probability that randomly chosen tree has diameter greater than 20in?
- 3. What is probability that randomly chosen tree has diameter between 5 and 15?
- 4. What is range of diameter represents the middle 68% of the trees?

 $X \sim N(8.8, 2.8^2)$

What is probability that randomly chosen tree has diameter greater than 20in?

 $X \sim N(8.8, 2.8^2)$

What is probability that randomly chosen tree has diameter between 5 and 15?

 $X \sim N(8.8, 2.8^2)$

What is range of diameter represents the middle 68% of the trees?

Finding percentile of $N(\mu, \sigma^2)$

Find 90th percentile of $N(5, 3^2)$.

Suppose X is Normal random variable with $\mu = 5$ and $\sigma = 2$. What is the 70th percentile of X?

Suppose X is Normal random variable with $\mu = 5$ and $\sigma = 2$. What is the 70th percentile of X?

• Z-table says

$$\Phi(0.52) = .6985$$

- That means for N(0,1), .52 is the 70th percentile.
- De-standardize .52 to $N(5, 2^2)$ by

$$X = \mu + Z\sigma = 5 + (.52)2 = 6.04.$$

• 6.04 is the 70th percentile of X.

Suppose X is a Normal random variable with μ and $\sigma = 2$. For what value of μ , the 70th percentile of X equal to 3.5?

Suppose X is a Normal random variable with μ and $\sigma = 2$. For what value of μ , the 70th percentile of X equal to 3.5?

• Z-table says 70th percentile is at .52.

$$\Phi(0.52) = .6985$$

• De-standardize .52 to $N(\mu, 2^2)$ by

$$X = \mu + Z\sigma = \mu + (.52)2.$$

• We need this to equal 3.5. Set up equation as

$$\mu + (.52)2 = 3.5$$
 \Rightarrow $\mu = 2.46$.

Example: Tree Height 2

Diameter at breast height (in.) of trees of certain type is normally distributed with $\mu = 8.8$ and $\sigma = 2.8$.

- 1. To protect younger tree from being cut, we want to ban cutting of smallest 70% of the trees. For what diameters should we ban the cutting?
- 2. For what value of c does interval $(8.8 \pm c)$ contain 95% of diameters?

Example: Cereal Box

Cereal box is being filled at a factory. Box says it contains 32oz. Let the machine to have $\sigma^2 = 2$ and define [underfilled] as Box< 30, [overfilled] as Box> 33.

- 1. Determine μ if we want P(underfilled) = .03?
- 2. For that μ , what is P(overfilled)?
- 3. For the same μ , what σ is needed so that P(overfilled) = .05?

2 For that μ , what is P(overfilled)?

3 For the same μ , what σ is needed so that P(overfilled) = .05?

2.5 Binomial Approximation

[ToC]

• If n is sufficiently large $(np \ge 10 \text{ and } n(1-p) \ge 10)$,

Binomal
$$(n, p) \approx \text{Normal}(np, np(1-p))$$

• Continuity correction of binomial approximation is done by the formula

$$P(X \le x) = \Phi\left(\frac{x + .5 - np}{\sqrt{np(1-p)}}\right).$$

Exponential Distribution

[ToC]

3.1 Exponential Distribution

[ToC]

• pdf of $\text{Exp}(\lambda)$

$$f(x) = \lambda e^{-\lambda x} \qquad \text{for } x \ge 0$$

• CDF

$$F(x) = P(X \le x) = 1 - \lambda e^{-\lambda x}$$

• Mean and Variance

$$E(X) = 1/\lambda$$
 $V(X) = 1/\lambda^2$

R code for Exponential(λ)

```
dexp(.5, 1/5)  #- F(3): CDF
pexp(.5, 1/5)  #- p(3): pmf

layout( matrix(1:2, 1, 2) )

x <- seq(0,30,.01)
plot(x, dexp(x, 1/5), type="l", ylim=c(0,.3)) #- PMF plot -
plot(x, pexp(x, 1/5), type="l", ylim=c(0,1)) #- CDF plot -</pre>
```


CDF of exponential

$$F(x;\lambda) = P(X \le x)$$

$$= \int_0^x \lambda e^{-\lambda y} dy$$

$$= -\frac{\lambda}{\lambda} e^{-\lambda y} \Big|_0^x$$

$$= 1 - e^{-\lambda x}.$$

Mean

If $X \sim \text{Exp}(\lambda)$, then

$$E(X) = \int_0^\infty x \cdot \lambda e^{-\lambda x} dx$$
Integraing by parts,
$$= -x\lambda e^{-\lambda x} \Big|_0^\infty + \int_0^\infty e^{-\lambda x} dx$$

$$= 0 - \frac{1}{\lambda} e^{-\lambda x} \Big|_0^\infty$$

$$= \frac{1}{\lambda}$$

Variance

If $X \sim \text{Exp}(\lambda)$, then

$$V(X) = \frac{1}{\lambda^2}.$$

$$E(X^2) = \int_0^\infty x^2 \cdot \lambda e^{-\lambda x} dx$$
Integraing by parts,
$$= -x^2 \lambda e^{-\lambda x} \Big|_0^\infty + \int_0^\infty 2x e^{-\lambda x} dx$$

$$= 0 + \frac{2}{\lambda} \int_0^\infty x \lambda e^{-\lambda x} dx$$

$$= 0 - \frac{2}{\lambda} E(X) = \frac{2}{\lambda^2}$$

Therefore,

$$V(X) = E(X^2) - (E(X))^2 = \frac{1}{\lambda^2} - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2}.$$

3.2 Poisson Process

- Exponential distribution is often used as a model of distribution of times between the occurrence of successive events, such as time between two calls received in customer service desk, or time between two accidents on highway.
- Poisson process is a model for occurrence of events over time such that number of events in time interval of length t is Poisson distributed with parameter λt , and number of events in any non-overlapping time intervals are independent. Then time between two successive events is exponentially distributed with parameter λ .

3.3 Memoryless property:

• Let $X \sim \text{Exp}(\lambda)$. Then probability of X being more than $t + t_0$ given that it already is more than t_0 is the same as probability of X being more than t.

$$P(X \ge t + t_0 | X \ge t_0) = \frac{P((X \ge t + t_0) \cap (X \ge t_0))}{P(X \ge t_0)}$$

$$= \frac{P(X \ge t + t_0)}{P(X \ge t_0)}$$

$$= \frac{1 - P(X < t + t_0)}{1 - P(X < t_0)}$$

$$= \frac{1 - P(X \le t + t_0)}{1 - P(X \le t + t_0)}$$

$$= \frac{e^{-\lambda(t + t_0)}}{e^{-\lambda t_0}}$$

$$= e^{-\lambda t}$$

$$= 1 - P(X \le t)$$

$$= P(X > t).$$

Example: Half Life of C14

about 5700

which means lambda is about .0001216

 $\label{eq:min_def} \mbox{Min and Max of Exponential RV}$