Homework 3

May 3, 2017

Problem 1. In this problem we will study the difficulty of back-propagation in training deep neural networks. For simplicity, we consider the simplest deep neural network: one with just a single neuron in each layer, where the output of the neuron in the jth layer is $z_j = \sigma(a_j) = \sigma(w_j z_{j-1} + b_j)$. Here σ is some activation function whose derivative on x is $\sigma'(x)$. Let m be the number of layers in the neural network, L the training loss.

- 1. Derive the derivative of L w.r.t. b_1 (the bias of the neuron in the first layer).
- 2. Assume the activation function is the usual sigmoid function $\sigma(x) = 1/(1 + \exp\{-x\})$. The weights \boldsymbol{w} are initialized to be $|w_j| < 1$ (j = 1, ..., m).
 - (a) Explain why the above gradient $(\partial L/\partial b_1)$ tends to vanish $(\to 0)$ when m is large.
 - (b) Even if |w| is large, the above gradient would also tend to vanish, rather than explode $(\to \infty)$. Explain why. (A rigorous proof is not required.)
- 3. One of the approaches to (partially) address the gradient vanishing/explosion problem is to use the rectified linear (ReL) activation function instead of the sigmoid. The ReL activation function is $\sigma(x) = \max\{0, x\}$. Explain why ReL can alleviate the gradient vanishing problem as faced by sigmoid.

Problem 2. To show a concept class H has VC dimension d, we need to prove both the lower bound $VCdim(H) \ge d$ and the upper bound $VCdim(H) \le d$. Show that linear classifiers $h(x) = \mathbf{1}_{\{\mathbf{a}^T\mathbf{x} + \mathbf{b} > \mathbf{0}\}}$ in \mathbb{R}^n has VC dimension n + 1.

Hint: the following theorem might be useful in proving the upper bound. A set of n+2 points in \mathbb{R}^n can be partitioned into two disjoint subsets S_1 and S_2 such that their convex hulls intersect. The convex hull $\mathbf{conv}(\mathbf{C})$ of a set C is defined as the set of all convex combinations of points in C:

$$\mathbf{conv}(\mathbf{C}) = \{ \sum_{i=1}^{k} \alpha_i \mathbf{x}_i : \mathbf{x}_i \in \mathbf{C}, \alpha_i \ge \mathbf{0}, \sum_{i=1}^{k} \alpha_i = \mathbf{1} \}.$$
 (1)

You do not need to know anything about convexity beyond this hint to solve this problem.

Problem 3. Coding assignment. You are required to build a typical MLP with 1 hidden layer in this task. The number of nodes in the hidden layer is your choice. Please use the

data provided to build two different classifiers, one for distinguishing between **O** and **X**, the other for distinguishing between **O** and **D**. You are encourage to do feature selection instead of using all attributes provided. Please use the first 70% data as training set and set aside the last 30% as testing set. The details of the implementation and the classification accuracies (train and test) should be included in your report.