

Solution of Simultaneous Linear Equations Ex 8.2 Q1

$$2x - y + z = 0$$

$$3x + 2y - z = 0$$

$$x + 4y + 3z = 0$$

The systm can be written as

$$\begin{bmatrix} 2 & -1 & 1 \\ 3 & 2 & -1 \\ 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A \qquad x = 0$$

Now
$$|A| = 2(10) + 1(10) + 1(10)$$

= 40
 $\neq 0$

Since $|A| \neq 0$, hence x = y = z = 0 is the only solution of this homogeneous system.

Solution of Simultaneous Linear Equations Ex 8.2 Q2

$$2x - y + 2z = 0$$

 $5x + 3y - z = 0$
 $x + 5y - 5z = 0$

$$\begin{bmatrix} 2 & -1 & 2 \\ 5 & 3 & -1 \\ 1 & 5 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
or $A \quad x = 0$

$$|A| = 2(-10) + 1(-24) + 2(22)$$

= -20 - 24 + 44
= 0

Hence, the system has infinite solutions.

Let
$$z = k$$

 $2x - y = -2k$
 $5x + 3y = k$
 $\begin{bmatrix} 2 & -1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2k \\ k \end{bmatrix}$
 $A = x = B$

$$|A| = 6 + 5 = 11 \neq 0$$
 so A^{-1} exist

Now adj
$$A = \begin{bmatrix} 3 & -5 \\ 1 & 2 \end{bmatrix}^{'} = \begin{bmatrix} 3 & 1 \\ -5 & 2 \end{bmatrix}$$

$$X = A^{-1}.B = \frac{1}{|A|} (adj A) B = \frac{1}{11} \begin{bmatrix} 3 & 1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} -2k \\ k \end{bmatrix} = \begin{bmatrix} \frac{-5k}{11} \\ \frac{12k}{11} \end{bmatrix}$$

Hence,
$$x = \frac{-5k}{11}$$
, $y = \frac{12k}{11}$, $z = k$

Solution of Simultaneous Linear Equations Ex 8.2 Q3

$$3x - y + 2z = 0$$

 $4x + 3y + 3z = 0$
 $5x + 7y + 4z = 0$

$$|A| = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 3 & 3 \\ 5 & 7 & 4 \end{bmatrix}$$
$$= B(-9) + 1(1) + 2(13) = -27 + 1 + 26 = -27 + 27$$

Hence, it has infinite solutions.

Let
$$z = k$$

 $3x - y = -2k$
 $4x + 3y = -3k$

or
$$\begin{bmatrix} 3 & -1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2k \\ -3k \end{bmatrix}$$
or
$$A \quad x = B$$

$$|A| = 9 + 4 = 13 \neq 0$$
 hence A^{-1} exists

$$adj \ A = \begin{bmatrix} 3 & -4 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -4 & 3 \end{bmatrix}$$

Now
$$x = A^{-1}B = \frac{1}{|A|} (adj A)B$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{13} \begin{bmatrix} 3 & 1 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} -2k \\ -3k \end{bmatrix} = \frac{1}{13} \begin{bmatrix} -9k \\ -k \end{bmatrix}$$

Hence,
$$x = \frac{-9k}{13}$$
, $y = \frac{-k}{13}$, $z = k$

Solution of Simultaneous Linear Equations Ex 8.2 Q4

$$x + y - 6z = 0$$
$$x - y + 2z = 0$$
$$-3x + y + 2z = 0$$

Hence,
$$|A| = \begin{bmatrix} 1 & 1 & -6 \\ 1 & -1 & 2 \\ -3 & 1 & 2 \end{bmatrix}$$

= $1(-4) - 1(8) - 6(-2)$
= $-4 - 8 + 12$
= 0

Hence, the system has infinite solutions.

Let
$$z = k$$

 $x + y = 6k$
 $x - y = -2k$

or
$$\begin{bmatrix} 1 & +1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6k \\ -2k \end{bmatrix}$$
or
$$A \quad x = B$$

$$|A| = -1 - 1 = -2 \neq 0$$
 hence A^{-1} exists.

$$adj A = \begin{bmatrix} -1 & -1 \\ -1 & +1 \end{bmatrix}$$

$$x = A^{-1}B = \frac{1}{|A|} (adj A) B = \frac{1}{-2} \begin{bmatrix} -1 & -1 \\ -1 & +1 \end{bmatrix} \begin{bmatrix} 6k \\ -2k \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-2} \begin{bmatrix} -6k + 2k \\ -6k - 2k \end{bmatrix} = \left(\frac{1}{-2}\right) \begin{bmatrix} -4k \\ -8k \end{bmatrix} = \frac{-1}{2} \begin{bmatrix} -4k \\ -8k \end{bmatrix} = \begin{bmatrix} 2k \\ 4k \end{bmatrix}$$

Hence,
$$x = 2k$$
, $y = 4k$, $z = k$

********** END *******