

Addition

- Consider a 4-digit decimal example
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- Step 1: Align decimal points
 - Shift number with smaller exponent
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1}$
- Step 2: Add significands
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- Step 3: Normalize result & check for over/underflow
 - \blacksquare 1.0015 \times 10²
- Step4: Round and renormalize if necessary
 - -1.002×10^{2}

3

Addition - cont'd

- Now consider a 4-digit binary example
 - $-1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$
- Step 1: Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- Step 2: Add significands
 - $\begin{tabular}{ll} & 1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1} \\ \end{tabular}$
- Step 3: Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- Step 4: Round and renormalize if necessary
 - 1.000₂ × 2⁻⁴ (no change)

FP Adder Hardware

- Much more complex than integer adder
- Operations take too long for one clock cycle
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined
 - Exploit <u>sub-instruction</u> level parallelism

5

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- Step 1: Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- Step 2: Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- Step 3: Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- Step 4: Round and renormalize if necessary
 - 1.021 × 10⁶
- Step 5: Determine sign of result from signs of operands
 - +1.021 × 10⁶

7

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2}$
- Step 1: Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- Step 2: Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110_2 \implies 1.110_2 \times 2^{-3}$
- Step 3: Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- Step 4: Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- Step 5: Determine sign
 - $-1.110_2 \times 2^{-3}$

FP Multiplier Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

9

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3,...
 Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
 - Release 2 of Miles ISA supports 32 × 64-bit FP reg s
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions

FP Instructions in MIPS

```
• Single-precision arithmetic
```

```
- add.s, sub.s, mul.s, div.s
- e.g., add.s $f0, $f1, $f6
```

Double-precision arithmetic

```
- add.d, sub.d, mul.d, div.d
- e.g., mul.d $f4, $f4, $f6
```

• Single- and double-precision comparison

Branch on FP condition code true or false

```
- bc1t, bc1f
- e.g., bc1t TargetLabel
```

11

FP Example: °F to °C

• C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space

Compiled MIPS code:

```
f2c: lwc1  $f16, const5($gp)
    lwc1  $f18, const9($gp)
    div.s $f16, $f16, $f18
    lwc1  $f18, const32($gp)
    sub.s $f18, $f12, $f18
    mul.s $f0, $f16, $f18
    jr $ra
```

FP Example: Array Multiplication

- $\bullet \quad X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

13

FP Example: Array Multiplication

MIPS code:

```
li.
        $t1, 32
                     # $t1 = 32 (row size/loop end)
        $s0, 0  # i = 0; initialize 1st for loop
   li.
L1: li
        $s1, 0
                    # j = 0; restart 2nd for loop
                # k = 0; restart 3rd for loop
        $s2, 0
L2: 1i
   $11 $t2, $s0, 5 # $t2 = i * 32 (size of row of x)
   addu t2, t2, t2, t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 # t2 = byte address of <math>x[i][j]
   1.d f4, 0(t2) # f4 = 8 bytes of x[i][j]
L3: $11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

FP Example: Array Multiplication

```
$t0, $s0, 5
                       # $t0 = i*32 (size of row of y)
addu $t0, $t0, $s2
                       # $t0 = i*size(row) + k
      $t0, $t0, 3
                       # $t0 = byte offset of [i][k]
s11
addu $t0, $a1, $t0
                       # $t0 = byte address of y[i][k]
                       # $f18 = 8 \text{ bytes of y[i][k]}
      $f18, 0($t0)
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d $f4, $f4, $f16
                       # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1
                       # k k + 1
                       # if (k != 32) go to L3
      $s2, $t1, L3
                       \# x[i][j] = $f4
      $f4, 0($t2)
addiu $s1, $s1, 1
                       # $j = j + 1
                       # if (j != 32) go to L2
      $s1, $t1, L2
addiu $s0, $s0, 1
                       # \$i = i + 1
      $s0, $t1, L1
                       # if (i != 32) go to L1
```

15

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

- Optional variations
 - I: integer operand
 - P: pop operand from stack
 - R: reverse operand order
 - But not all combinations allowed

17

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - -2×64 -bit double precision
 - -4×32 -bit single precision
 - Instructions operate on them simultaneously
 - $\bullet \ \underline{S}ingle-\underline{I}nstruction \ \underline{M}ultiple-\underline{D}ata \\$

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

19

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, *The Pentium Chronicles*

Interpretation of Data

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

21

MIPS Design Principles

- Simplicity favors regularity
 - fixed size instructions
 - small number of instruction formats
 - opcode always the first 6 bits
- · Smaller is faster
 - limited instruction set
 - limited number of registers in register file
 - limited number of addressing modes
- Make the common case fast
 - arithmetic operands from the register file (load-store machine)
 - allow instructions to contain immediate operands
- Good design demands good compromises
 - three instruction formats