1 Necessary Conditions (July 28)

1.1 Necessary Conditions, Brachistochrone Problem

For the brachistochrone problem, we derived the following mathematical formulation:

minimize
$$F[u] := \int_0^b \left(\frac{1 + u'(x)^2}{2g(a - u(x))} \right)^{1/2} dx$$
 subject to $u \in \mathcal{A}$.

where $\mathcal{A} = \{v \in C^1([0,b]) : v(0) = a, v(b) = 0\}$. We would like to find necessary conditions for a minimizer.

Suppose u_* is the minimizer of F on \mathcal{A} . Fix a test function v on [0, b]. Consider the function $u_* + sv$, for $s \in \mathbb{R}$. Clearly $u_* + sv \in \mathcal{A}$, which implies that $F[u_*] \leq F[u_* + sv]$ for all $s \in \mathbb{R}$ and all test functions v on [0, b]. Define $f(s) := F[u_* + sv]$; then f is minimized at s = 0 and it's C^1 , so we have f'(0) = 0, or

$$\frac{d}{ds}\bigg|_{s=0} F[u_* + sv] = 0.$$

We'd like to compute this derivative. This is deferred to a homework problem, which will require a result which we give later today. The answer is that u_* satisfies

$$(1 + u'_*(x)^2)(a - u_*(x))c^2 = 1$$
 c is some constant. (*)

This is a differential equation. Note that a > 0 and $a > u_*(x)$. We claim (guess) that $u_*(x(t)) = a - l(1 - \cos(t))$. Some computations give

$$u'_*(x(t))x'(t) = \frac{d}{dt}u_*(x(t)) = -k\sin(t),$$

or

$$u_*(x(t)) = -\frac{k\sin(t)}{x'(t)}.$$

Substituting these into (*) gives

$$c^{2}k\left(1 + \frac{k^{2}\sin^{2}(t)}{x'(t)^{2}}\right)(1 - \cos(t)) = 1.$$

Choose c so that $c^2k = 1/2$. Then

$$\left(1 + \frac{k^2 \sin^2(t)}{x'(t)^2}\right) (1 - \cos(t)) = 2.$$

Expansion of the left side results in

$$\frac{k^2 \sin^2(t)}{x'(t)^2} (1 - \cos(t)) + (1 - \cos(t)) = 2.$$

Move the second $1 - \cos(t)$ to the right to get

$$\frac{k^2 \sin^2(t)}{x'(t)^2} (1 - \cos(t)) = 1 + \cos(t).$$

Multiply both sides by $x'(t)^2$ to get

$$k^2 \sin^2(t)(1 - \cos(t)) = x'(t)^2 (1 + \cos(t)).$$

Multiply both sides by $1 - \cos(t)$ to get

$$k^2 \sin^2(t)(1 - \cos(t)) = x'(t)^2 \sin^2(t),$$

and cancelling the $\sin^2(t)$'s gives

$$k^2(1-\cos(t))^2 = x'(t)^2,$$

and taking square roots gives

$$x'(t) = k(1 - \cos(t)).$$

Integration gives

$$x(t) = kt - k\sin(t),$$

where the constant of integration is 0 since x(0) = 0. Therefore

$$c(t) = \begin{pmatrix} x(t) \\ u_*(x(t)) \end{pmatrix} = \begin{pmatrix} k(t - \sin(t)) \\ a - k(1 - \cos(t)) \end{pmatrix}$$

is a candidate for a minimizer. By writing c(T) = (b, 0), we can solve to T, k.

1.2 First Order Necessary Conditions

Our general space of functions will be

$$\mathcal{A} \coloneqq \{ u \in C^1([a,b]) : u(a) = A, u(b) = B \},$$

and the functionals to be minimized will be of the form

$$F[u] := \int_a^b L(x, u'(x), u'(x)) dx$$

for some real-valued function L = L(x, z, p) defined on $[a, b] \times \mathbb{R}^2$. We shall use subscripts to denote partial derivatives.

Definition 1. Given $u \in \mathcal{A}$, suppose there is a function $g:[a,b] \to \mathbb{R}$ such that

$$\left. \frac{d}{ds} \right|_{s=0} F[u+sv] = \int_a^b g(x)v(x) \, dx$$

for all test functions v on [a,b]. Then g is called the variational derivative of F at u. We denote the function g by $\frac{\delta F}{\delta u}(u)$. (Why is this unique?)

We can think of $\frac{\delta F}{\delta u}(u)$ as an analogue of the gradient. We have

$$\frac{d}{ds}\Big|_{s=0} F[u+sv] = \int_a^b \frac{\delta F}{\delta u}(u)(x)v(x) dx$$

for all test functions v on [a,b]. Compare this with the finite-dimensional formula

$$\frac{d}{ds}\Big|_{s=0} f(u+sv) = \nabla f(u) \cdot v = \sum_{i=1}^{n} \nabla f(u)_{i} v_{i};$$

if one thinks of the integral as an "infinite sum of infinitesimally small pieces", then we can understand how the functional derivative might be an "infinite-dimensional" version of the gradient.

We now work towards deriving the desired first order necessary conditions for a minimizer.

Proposition 1. Suppose $u_* \in \mathcal{A}$ satisfies $u_* + v \in \mathcal{A}$ for all test functions v on [a,b]. Then if u_* minimizes F on \mathcal{A} and if $\frac{\delta F}{\delta u}(u_*)$ exists and is continuous, then $\frac{\delta F}{\delta u}(u_*) \equiv 0$.

Proof. This is an easy application of the fundamental lemma of the calculus of variations. \Box

We would like to find a formula for the variational derivative.

Theorem 1.1. Suppose L, u are C^2 functions. Then $\frac{\delta F}{\delta u}(u)$ exists, is continuous, and

$$\frac{\delta F}{\delta u}(u)(x) = -\frac{d}{dx} L_p(x, u(x), u'(x)) + L_z(x, u(x), u'(x)). \tag{**}$$

Equation (**) is known as the Euler-Lagrange equation. Recall that L = L(x, z, p).

Proof. Let v be a test function on [a,b]. Then

$$\frac{d}{ds}\Big|_{s=0} F[u+sv] = \frac{d}{ds}\Big|_{s=0} \int_{a}^{b} L(x,u(x)+sv(x),u'(x)+sv'(x)) dx
= \int_{a}^{b} \frac{d}{ds}\Big|_{s=0} L(x,u(x)+sv(x),u'(x)+sv'(x)) dx
= \int_{a}^{b} \left(L_{x}(\cdots)\frac{dx}{ds} + L_{z}(\cdots)\frac{d}{ds}(u(x)+sv(x)) + L_{p}(\cdots)\frac{d}{ds}(u'(x)+sv'(x))\right) dx
= \int_{a}^{b} \left(L_{z}(x,u(x),u'(x))v(x) + L_{p}(x,u(x),u'(x))v'(x)\right) dx
= \int_{a}^{b} L_{z}(x,u(x),u'(x))v(x) dx + \int_{a}^{b} L_{p}(x,u(x),u'(x))v'(x) dx
= \int_{a}^{b} \left(-\frac{d}{dx}L_{p}(x,u(x),u'(x)) + L_{z}(x,u(x),u'(x))\right)v(x) dx \quad \text{integration by parts.}$$

Since u and L are C^2 , the function in the integrand is continuous. By the definition of the variational derivative we have the desired result.