(SURFACE CHEMISTRY)

Inside the Chapter.....

- 5.1 अधिशोषण
- 5.2 अधिशोषित की ऊष्पागतिकीय सम्भ्याव्यता
- **5.3** अधिशोषण के प्रकार
- 5.4 टोस अधिशोषकों पर गैसों का अधिशोषण
- 5.5 अधिशोषण समतापी

- 5.6 विलयन प्रावस्था से अधिशोषण
- 5.7 अधिशोषण के अनुप्रयोग
- 5.8 उत्प्रेरण
- 5.9 कोलाइड
- 5.10 पाठ्यपुस्तक के प्रश्न-उत्तर
- 5.11 प्रमुख प्रश्न उत्तर

पुष्ट रसायन (Surface Chemistry)

- रसायन विज्ञान की वह शाखा जिसमें ठोस अथवा द्रव की सतह या अंतरापृष्ठ पर होने वाली परिषटनाओं से सम्बन्धित अध्ययन किये जाते हैं, पृष्ठ रसायन (Surface Chemistry) कहलाती है।
- दो प्रावस्थाओं को पृथक करने वाली सीमा, सतह या पृष्ठ कहलाती हैं।
 दो प्रावस्थाओं को पृथक् दर्शाने के लिये हाइफन (-) या स्लैश (/)
 का उपयोग किया जाता है। उदाहरण के लिये ठोस और गैस के मध्य अंतरापृष्ठ को ठोस-गैस अथवा ठोस/गैस द्वारा लिखा जाता है।
- विभिन्न प्रावस्थाओं के मध्य सतह केवल कुछ अणुओं की मोटाई तक की होती है, परन्तु इसका क्षेत्र स्थूल प्रावस्थाओं के कणों के आकार पर निर्भर करता है।
- पृष्ठ रसायन द्वारा कुछ सामान्य परिघटनाओं जैसे उत्प्रेरण (catalysis),
 क्रिस्टलीयकरण (crystallisation), संक्षारण (corrosion) आदि को समझाया जा सकता है। पृष्ठ रसायन का अनुप्रयोग उद्योग, विश्लेषण कार्य आदि में किया जाता है।
- इस अध्याय में हम, अधिशोषण (Adsorption), उत्प्रेरण (catalysis)
 और कोलाइडी (colloidal state) अवस्था के विषय में पढ़ेंगे।

5.1 - SIRPIRVI (Admiration)

- जब किसी ठोस पदार्थ को द्रव या गैस के सम्पर्क में रखा जाता है तो ठोस की सतह पर द्रव या गैस स्थूल (Bulk) की अपेक्षा अधिक संचित हो जाती है यह प्रक्रिया अधिशोषण (Adsorption) कहलाती है।
- अधिशोषण से संबंधित शब्दावली इस प्रकार है-
- अधिशोष्य (Adsorbate) वह रासायनिक स्पीशीज जिसका किसी पृष्ठ पर अधिशोषण होता है, अधिशोष्य कहलाता है। इसे अधिशोषित भी कहते हैं।
 - अधिशोषक (Adsorbent)— वह ठोस या द्रव पदार्थ जिसकी सतह पर अधिशोषण होता है, अधिशोषक कहलाता है।
- अंतरा पृष्ठ—अधिशोषक की वह सतह जिस पर अधिशोष्य पदार्थ

संकेन्द्रित है, अंतरापृष्ठ कहलाती है।

- सक्रिय केन्द्र—अधिशोषक की अंतरा पृष्ट पर वे स्थान जहाँ मुक्त संयोजकताऐं अधिक होती हैं, सिक्रिय केन्द्र कहलाते हैं।
 - धनात्मक अधिशोषण-जब अधिशोष्य की सान्द्रता अधिशोषक की सतह पर स्थूल में सान्द्रता की अपेक्षा अधिक होती है तो यह अधिशोषण धनात्मक (+ve) अधिशोषण कहलाता है।
 - ऋणात्मक अधिशोषण-जब अधिशोष्य की सान्द्रता अधिशोषक की सतह पर स्थूल में सान्द्रता की अपेक्षा कम होती है, तो यह अधिशोषण ऋणात्मक (-ve) अधिशोषण कहलाता है।

विभिन्न क्रियाविधियों में अधिशोषण-

- (1) O_2 , N_2 , CO, Cl_2 , NH_3 , SO_2 आदि गैसों से भरे बंद पात्र में यदि चारकोल का चूर्ण डाल दिया जाता है तो गैस का दाब कम हो जाता है। क्योंकि गैस का कुछ भाग चारकोल द्वारा अधिशोषित कर लिया जाता है।
- (2) शर्करा के विलयन को रंगहीन करने के लिये उसे जान्तव चारकोल (animal charcoal) की परतों पर प्रवाहित किया जाता है। रंग का अधिशोषण जान्तव चारकोल द्वारा किया जाता है।
- (3) वायु से नमी हटाकर शुष्क करने के लिये सिलिका जैल का उपयोग किया जाता है।
- (4) कार्बनिक रंजक जैसे मेथिलीन ब्लू के रंग को भी जान्तव चारकोल द्वारा रंगहीन बनाया जा सकता है।

विशोषण (Desorption)

 िकसी अधिशोषित पदार्थ का अधिशोषक की सतह से हटने की प्रक्रिया विशोषण (Desorption) कहलाती है।

eceparticle (Unification)

- अवशोषण की प्रक्रिया में एक पदार्थ के अणु दूसरे सम्पूर्ण पदार्थ में समान रूप से वितिरत हो जाते हैं। अर्थात् अधिशोष्य के कण अधिशोषक के अन्दर चले जाते हैं तो यह प्रक्रिया अवशोषण कहलाती है।
- निर्जल CaCl₂ द्वारा जल वाष्प का अवशोषण, स्पंज द्वारा जल का अवशोषण आदि अवशोषण के उदाहरण है।

द्रा । अधिमाणके और अक्षेत्रीयक से किर्मेट

- अधिशोषण, अवशोषण से बिल्कुल भिन्न घटना है।
- अधिशोषण में असंतुलित आन्तरिक आकर्षण के कारण अधिशोषित पदार्थ ठोस अथवा द्रव की सतह पर आकर्षित होता है तथा इसकी सान्द्रता शेष स्थूल की तुलना में सतह पर बढ़ जाती है, जबिक अवशोषण में पदार्थ सतह से स्थूल द्रव या ठोस में जाता है तथा अन्दर तक चारों ओर समान रूप से विसरित हो जाता है।
- इन दोनों प्रक्रियाओं को निम्न उदाहरण से प्रदर्शित किया जा सकता है—
- एक चॉक स्याही से भर पात्र में डुबो कर निकाल लो। प्रेक्षण करने पर पाया जाता है कि चॉक की सतह पर स्याही का रंग अधिशोषित हो जाता है जबिक स्याही का विलायक (जल) अवशोषण के कारण चॉक में अन्दर तक चला जाता है। चॉक को तोड़ने पर सतह रंगीन दिखाई देती है, जबिक अन्दर से चॉक सफेद परन्तु विलायक (जल) से गीली दिखाई देती है।

निम्न चित्र द्वारा गैस के अधिषण ओर अवशोषण में भेद किया जा सकता है।

चित्रः 5.1 (a) अधिशोषण (b) अवशोषण अधिशोषण और अवशोषण का अन्तर सारणी 5.1 में दर्शाया गया है। सारणी 5.1: अधिशोषण और अवशोषण में अन्तर

अवशोषण अधिशोषण . यह एक सतही घटना (Surface यह एक स्थूल घटना (Bulk Phenomenon) है जो केवल (Phenomenon) है जो सम्पूर्ण अधिशोषक की सतह पर होता है। अवशोषक में एक समान होती है। 2. अधिशोषण में अधिशोष्य की अवशोषण में अधिशोष्य की सान्द्रत सान्द्रता सतह पर स्थूल से भिन्न सभी जगह एक समान होती है। होती है। प्रारम्भ में अधिशोषण की दर तीव्र सम्पूर्ण प्रक्रिया समान रहती है। होती है तथा साम्य स्थापित होने तक घटती है। 4. उदाहरण-(अ) सिलिका जैल पर उदाहरण-(अ) निर्जल कैल्शियम जल वाष्प (नमी) का अधिशोषण क्लोराइड द्वारा जल वाष्प का (ब) सक्रियं चारकोल पर गैसों अवशोषण (ब) जल द्वारा NH3 या (H₂, O₂, NH₃, SO₂) का CO_2 के अवशोषण से क्रमशः अधिशोषण । NH4OH तथा H2CO3 का बनना ।

- शोषण—अधिशोषण एवं अवशोषण दोनों प्रक्रियाऐं साथ—साथ सम्पन्न हों, तो यह प्रक्रम शोषण कहलाता है।
 उदाहरण—
- (i) H_2 गैस चारकोल पृष्ठ पर अधिशोषित होती है, परंतु कुछ समय पश्चात् यह चारकोल की आंतरिक सतह में विसरित हो जाती है।
- (ii) रंजक सर्वप्रथम रेशे की सतंह पर अधिशोषित होते हैं तथा अंत में रेशे द्वारा अवशोषित हो जाते हैं।

5.2 ऑड्रशॉबित की कंप्रागतिकीय सम्बाद्धता

- (i) अधिशोषण प्रक्रम में एक मोल अधिशोष्य के अधिशोषक पृष्ठ पर अधिशोषित होने पर मुक्त ऊष्मा की मात्रा मोलर अधिशोषण ऊष्मा कहलाती है।
- (ii) अधिशोषण सदैव एक ऊष्माक्षेपी प्रक्रिया है एवं ∆H का मान ऋणात्मक होता है।
- (iii) जब कोई गैस अधिशोषित होती है, तो अणुओं का संचालन कम हो जाता है एवं गैस की एन्ट्रोपी कम हो जाती है अर्थात् △S का मान ऋणात्मक होता है।
- (iv) गिब्स हेल्महोल्ट्ज समीकरण $\Delta G = \Delta H T\Delta S$ के अनुसार सामान्य ताप पर $\Delta H > T\Delta S$ अर्थात् ΔG का मान ऋणात्मक होता है, अतः अधिशोषण एक स्वतः प्रवर्तित प्रक्रम है।

5.3 अधिशीषण के प्रकार (Types of Adsorption)

- अधिशोष्यं और अधिशोषक के अणुओं के मध्य आकर्षण बलों के आधार पर अधिशोषण दो प्रकार का होता है।
- (1) भौतिक अधिशोषण (Physical Adsorption)— जब अधिशोष्य के कण अधिशोषक की सतह पर भौतिक बलों जैसे वाण्डरबाल बलों द्वारा बंधे होते हैं, तो इसे भौतिक अधिशोषण (Physical Adsorption या Physisorption) कहते हैं। वाण्डरवाल बल दुर्बल बल होते हैं अत: इन्हें सरलता से ताप बढाकर अथवा दाब घटा कर हटाया जा सकता है।
- भौतिक अधिशोषण में ऊष्मा परिवर्तन बहुत कम होता है। इसका मान 20-40 KJ / मोल के मध्य होता है। इसकी प्रकृति विशिष्ट नहीं होती है अर्थात् कोई भी गैस किसी भी अधिशोषक की सतह पर अधिशोषित हो सकती है।
- (2) रासायनिक अधिशोषण (Chemical Adsorption)
- जब गैस के अणु अधिशोषक के पृष्ठ पर रासायनिक बंधों द्वारा बंधे रहते
 हैं तो यह अधिशोषण रासायनिक अधिशोषण कहलाता है।
- रासायनिक बंध आयनिक या सहसंयोजक प्रकृति के हो सकते हैं।
- रासायनिक अधिशोषण के लिये उच्च सिक्रयण ऊर्जा की आवश्यकता होती है।
- इस प्रकार के अधिशोषण में अधिशोषक की सतह पर रासायनिक यौगिक बन जाता है अत: यह अनुत्क्रमणीय होता है।
- ताप बढ़ाने पर रासायनिक अधिशोषण में वृद्धि होती है।
- रासायनिक अधिशोषण को सिक्रयत अधिशोषण (Activated adsorption) या लैगम्बूर अधिशोषण भी कहते हैं।

सारणी 5.3 भौतिक एवं रासायनिक अधिशोषण की तुलना

गुण	भौतिक अधिशोषण	रासायनिक अधिशोषण
1. प्रकृति	अधिशोपक तथा अधिशोष्य	
	के मध्य दुर्बल वान्डर वाल	1
]	बल होते हैं।	रासायनिक क्रिया होती है।
		अतः प्रबल रासायनिक
		बन्ध बनते हैं।
2. विशिष्टता	इसकी प्रकृति विशिष्ट नहीं होती है।	विशिष्ट प्रकृति का होता है।
3. उत्क्रमणीयता	यह उत्कमणीय होता है।	यह अनुत्क्रमणीय होता है।
4. अधिशोष्य की		केवल वही गैस
प्रकृति	द्रवीकरण की सुगमता से	अधिशोषित होगी, जो
}	सम्बन्धित है। इसीलिए	अधिशोषक के साथ
	सरलता से द्रवित होने वाली	रासायनिक यौगिक बनाती
	गैसे (NH ₃ CO ₂)	हो।
	अधिशोषकों पर शीघ्रता से	(स)
	अधिशोयित होती हैं।	
5. अधिशोषण की	1	। एक आण्विक सतह बनती
परत की मोटाई	बनती है।	है।
े. 6. दाब का प्रभाव	दाब बढ़ाने पर अधिशोषण	दाब बढ़ाने का कोई सीधा
	की मात्रा बढ़ेगी, इसलिए यह	प्रभाव नहीं होता है।
	दाब के समानुपाती होता है।	2 11 19 911 91
7. ताप का प्रभाव	कम ताप पर यह तेजी से होता	। ताप बढ़ाने पर अधिशोषण
	हैं, लेकिन उच्च ताप पर घटता	में वृद्धि होती है।
	है।	2,40,01,11,01
8. अधिशोषण	इस ऊष्मा का मान कम होता	अधिशोषण ऊष्मा का मान
ऊष्मा	है। (20-40 kJ mol-1)	उच्च होता है। (80 से 240
	, (= , , = , , , , , , , , , , , , , , , ,	kJ mol ⁻¹)
9. सक्रियण ऊर्जा	सक्रियण ऊर्जा का मान कम	इसकी सक्रियण ऊर्जा का
	है। क्यों कि अधिशोष्य व	मान तुलनात्मक उच्च होता
1	अधिशोषक के मध्य कोई	है।
	रासायनिक बन्ध नहीं बनता	
-	है।	
10. अधिशोषक	अधिशोपक के पृष्ठ का	यह भी अधिशोषक के पृष्ठ
पृष्ठ का क्षेत्रफल		क्षेत्रफल बढ्ने पर बढता
		है।
	क्योंकि मुक्त संयोजकताओं में	
İ	वृद्धि होती है।	
	- -	

5.4 ठोस अधिशोषकों पर गैसों का अधिशोषपा

अधिशोष्य की प्रकृति या गैस की प्रकृति

• सरलता से द्रवित होने वाली गैसे जैसे SO₂, NH₃, HCl, CO₂ आदि अधिशोषकों की सतह पर शीघ्रता से अधिशोषित हो जाती है।

- ullet जबकि साधारण गैस $\mathrm{H}_2,\,\mathrm{O}_2,\,\mathrm{N}_2$ कम अधिशोषित होती है।
- निम्न सारणी से यह स्पष्ट है कि SO₂ की अधिशोषण क्षमता, N₂ की तुलना में अधिक है। (गैसों का क्रान्तिक ताप बढ़ने से, इनकी अधिशोषण क्षमता बढ़ती है।) शीघ्रता से द्रवित गैस या जल में शीघ्रता से घुलने वाली गैस, जल्दी अधिशोषित होगी। क्रान्तिक ताप का सम्बन्ध अन्तरा अणुक आकर्षण से होता है।

सारणी 5.2: 288 K व NTP पर 1g चारकोल द्वारा अधिशोषित गैसों का आयतन

				CH ₄	_		NH ₃	SO ₂
अधिशोषित आयतन							181	380
क्रांतिक ताप (K)	33	126	134	I90	304	324	406	430

क्रान्तिक ताप में वृद्धि → अधिशोषण में वृद्धि

सरलता से द्रवित होने की क्षमता में वृद्धि → अधिशोषण में वृद्धि

(2) अधिशोषक की प्रकृति तथा पृष्ठ क्षेत्रफल

(Nature & Surface area of Adsorbent)

- प्राय: यह देखा गया है कि समान ताप पर समान गैस विभिन्न ठोसों पर भिन्न-भिन्न मात्रा में अधिशोषित होती है। अर्थात् अधिशोषण अधिशोषक की प्रकृति पर निर्भर करता है।
- कठोर तथा रन्ध्रहीन (non-porous) पदार्थों की अपेक्षा रंध्रयुक्त (porous) तथा बारीक चूर्ण के रूप में ठोस पदार्थ जैसे चारकोल, सिलिका जैल, रैने निकल में अधिशोषण अधिक होता है।
- रन्ध्रयुक्त या बारीक चूर्ण के रूप में होने पर ठोस का पृष्ठ क्षेत्रफल बढ़ जाता है, जिससे अधिशोषण की मात्रा भी बढ़ जाती है। इसी कारण गैस मास्क में चारकोल का महीन पाउडर प्रयोग में लाते हैं।
- विभिन्न धातुओं की अधिशोषण क्षमता बारीक चूर्ण के रूप में निम्न क्रम में हैं—

कोलाइडी Pd > Pd > Pt > Au > Ni

 अधिशोषक के प्रति ग्राम पृष्ठ क्षेत्रफल (surface area) को विशिष्ट क्षेत्रफल (specific area) कहते हैं।

अधिशोषणं 🕳 पृष्ठ क्षेत्रफल

(3) दाब का प्रभाव-

- स्थिर ताप पर दाब में वृद्धि करने पर गैसों के अधिशोषण की मात्रा में वृद्धि होती है।
- निम्न ताप पर दाब बढ़ाने से गैसों के अधिशोषण की मात्रा तेजी से बढ़ती
 है, लेकिन उच्च ताप पर यह क्रम लागू नहीं होता।
- भिन्न स्थिर तापों पर गैसों के अधिशोषण में भिन्नता व दाब में सम्बन्ध के लिए 1 ग्राम चारकोल पर N₂ का अधिशोषण दर्शाया गया है—

चित्रः 5.4 दाब के साथ N_2 के चारकोल पर अधिशोषण में भिन्नता (स्थिर ताप पर)

(4) ताप का प्रभाव (Effect of Temperature) अधिशोषण एक ऊष्माक्षेपी प्रक्रम है, जिसमें निम्न साम्य होता है—

ठोस पर अधिशोषित गैस + ऊष्मा

इस साम्य में दो विपरीत प्रक्रम है-संघनन (या अधिशोषण) गैस का ठोस की सतह पर तथा वाध्यन (विशोषण) ठोस की सतह से गैस अणुओं का।

- संघनन (अधिशोषण) एक ऊष्माक्षेपी प्रक्रिया है, जबकि वाष्पन (विशोषण) एक ऊष्माशोषी।
- ला शातेलिए के नियमानुसार ताप बढ़ाने पर अधिशोषण घटेगा (अर्थात् प्रतीप अभिक्रिया होगी) जबकि ताप कम करने पर यह बढ़ेगा।
- अधिशोषण की मात्रा (x/m) स्थिर दाब पर ताप बढ़ाने पर घटती है। स्थिर दाब पर अधिशोषण की मात्रा एवं ताप के मध्य खींचा गया आरेख अधिशोषण दाबी कहलाता है।

भौतिक अधिशोषण हेतु समदाबी आरेख चित्र अनुसार प्राप्त होता है। परन्तु रासायनिक अधिशोषण हेतु आरंख चित्र (b) के अनुसार प्राप्त होता है। इसका कारण ताप बढ़ाने पर गैस अणुओं की सक्रियण उर्जा म वृद्धि होती है। जो कि अधिशोष्य की अधिशोषक

के साथ रासायनिक बंध बनाने में सहायक होती है। अतः प्रारम्भ में ताप के बढ़ाने पर अधिशोषण की मात्रा बढ़ती है। ताप में अधिक वृद्धि करने पर अब पहले से अधिशोषित अणुओं की उर्जा में वृद्धि होती है जो अब विशोषण की दर बढ़ा देती है। अतः ताप में वृद्धि पर x/m घटने लगता है।

अधिशोषण समदाबी वक्र भौतिक एवं रासायनिक अधिशोषण में विभेद में सहायक है।

- (5) अधिशोषक का सक्रियण (Activation of Adsorbent)— अधिशोषक की अधिशोषण क्षमता बढ़ाना अधिशोषक का सक्रियण कहलाता है। यह निम्न तीन प्रकार से किया जाता है।
- धात्विक अधिशोषण को सिक्रय बनाने के लिये उनकी सतह को खुरदरा (रफ) बनाया जाता है। इसके लिये उसकी सतह को यांत्रिक विधि द्वारा अथवा किसी रासायनिक क्रिया द्वारा अथवा किसी अन्य प्रक्रिया द्वारा धातु के अतिसूक्ष्म कणों की परत जमा कर रफ (rough) बना दिया जाता है।
- (2) अधिशोषक को सक्रिय बनाने के लिये उसे बहुत अधिक छोटे-छोटे टुकड़ों में बाँट दिया जाता है जिससे उसका पृष्ठीय क्षेत्रफल बढ़ जाता है और अधिर्पेषण क्षमता बढ़ जाती है।
- (3) कुछ अधिशोषकों को सक्रिय बनाने के लिये उन्हें अतितप्त वाष्प अथवा निर्वात में उच्च ताप (626 – 1273K) पर गर्म किया जाता है ताकि उनकी सतह पर पहले से अवशोषित गैसे (वायु) हट जाती है। चारकोल को सिक्रय बनाने के लिये इसे अतितृप्त वाष्य में गर्म किया जाता है।

5.5 Eggsjunut Angil (Adsoxptique Isotherns)

- स्थिर ताप पर अधिशोषित गैस की मात्रा और साम्यावस्था पर गैस के दाब के मध्य सम्बन्ध अधिशोषण समतापी कहलाता है।
- अधिशोषण की मात्रा को सामान्तया $\frac{x}{m}$ द्वारा प्रदर्शित किया जाता है यहाँ $_{\rm X}$ = अधिशोष्य की मात्रा (mass), $_{\rm m}$ = अधिशोषक की मात्रा है।
- अधिशोषण समतापी स्थिर ताप पर अधिशोषित गैस के दाब P तथा

अधिशोषित की मात्रा $\left(\frac{x}{m}\right)$ के मध्य संबंध अधिशोषण समतापी कहलाता है।

• चित्र 5.5 से यह स्पष्ट है कि अधिशोषित गैस की मात्रा $\left(\frac{x}{m}\right)$ का मान दाब (P) बढ़ाने पर बढ़ता है और P_S दाब पर अधिशोषण की मात्रा अधिकतम होती है। यहाँ P_S को **संतृप्ति दाब** (Saturation pressure) कहते तथा इस अवस्था को **संतृप्ति अवस्था** कहते हैं क्योंकि इस अवस्था में अधिशोषित गैस की मात्रा, विशोषित गैस की मात्रा के बराबर होती है। इसीलिए इस दाब पर अधिशोषण की मात्रा स्थिर रहती है तथा दाब बढ़ाने पर भी असर नहीं होता है।

फ्रायण्डलिक समतापी वक्र (Freundlich Isotherms)

- चित्र 5.5 में दिये गये एक गैस के समतापी वक्र को फ्रायण्डलिक ने गणितीय रूप से समझाया है अत: इसे फॉयण्डलिक समतापी वक्र कहते हैं। फ्रायण्डलिक ने वक्र को समझाने के लिये निम्न प्रेक्षण किये।
- (i) निम्न दाब पर— ग्राफ एक सरल रेखा के रूप में है, जो यह प्रदर्शित

करता है कि
$$\left(\frac{x}{m}\right)$$
दाब P के समानुपाती है—

चित्र: 5.5 अधिशोषण समतापी

अर्थात्
$$\frac{x}{m} \propto P$$
 $\frac{x}{m} = KP$ (1) यहाँ $K = \text{Reavis}$

(ii) उच्च दाब पर— ग्राफ पूर्णतया क्षैतिज हो गया है इसका अर्थ है कि $\frac{x}{m}$ पर दाब का कोई प्रभाव नहीं होता। इसे निम्न प्रकार दर्शाते हैं—

या
$$\frac{x}{m} \propto P^{o}$$
 ...(2)
$$\frac{x}{m} = KP^{o}$$
 ...(2)
$$\frac{x}{m} = K$$

(ii) मध्यम दाब पर $-\frac{x}{m}$ का मान दाब P के धातांक पर निर्भर करता है, जिसका मान शून्य से एक के मध्य होता है।

$$\frac{x}{m} \propto P^{1/n}$$

$$\frac{x}{m} = KP^{1/n}$$
...(3)

 ${f n}$ तथा ${f K}$ स्थिरांक है, जिनका मान अधिशोषित व अधिशोषक की प्रकृति पर निर्भर करता है ।

यह सम्बन्ध सर्वप्रथम फ्रेंडलिक ने दिया। इसीलिए इसे भी प्रायण्डलिक अधिशोषण समतापी समीकरण कहते हैं।

समी. (3) के दोनों तरफ का लघुगणक लेने पर

$$\log \frac{x}{m} = \log K + \frac{1}{n} \log P \qquad ...(4)$$

यदि $\log \frac{X}{m}$ तथा $\log P$ के मध्य एक ग्राफ आलेखित किया जावे तो एक सीधी रेखा प्राप्त होती है (चित्र 5.6)। इस रेखा का ढाल $\frac{1}{n}$ के बराबर होगा तथा अतः खण्ड (intercept) $\log K$ के बराबर होगा।

चित्र: 5.6 log x/m तथा log p के मध्य ग्राफ

फ्रायण्डलिक समतापी वक्र की वैधता भी $\log \frac{x}{m}$ और $\log P$ के मध्य ग्राफ द्वास प्रमाणित की जा सकती है। यदि $\log \frac{x}{m}$ और $\log P$ के मध्य ग्राफ एक सरल रेखा प्राप्त होती है तो फ्रायण्डलिक समतापी वक्र प्रमाणित है। अन्यथा नहीं।

5.6 CONTRACTOR CONTRACTOR

ठोस पदार्थ विलयनों में घुले हुये पदार्थों का भी अधिशोषण करते हैं। उदाहरण के लिये-

- (a) जब एसिटिक अम्ल के विलयन में चारकोल डाल कर हिलाया जाता है तो उसकी सान्द्रता में कमी आ जाती है क्योंकि CH₃COOH की कुछ मात्रा चारकोल द्वारा अधिशोषित कर ली जाती है।
- (b) लिटमस के विलयन को चारकोल के साथ हिलाने पर वह रंगहीन हो जाता है।

- (c) जब Mg(OH)₂ (सफेद) को मेग्नेसॉन (नीला रंग) अभिकर्मक के साथ अवक्षेपित किया जाता है तो वह नीला रंग का प्राप्त होता है क्योंकि Mg(OH)₂ अवक्षेप विलयन में से मेग्नेसोन अभिकर्मक के नीले रंग को अधिशोषित कर लेता है।
- (d) शर्करा के अशुद्ध विलयन को रंगहीन बनाने के लिये जान्तव चारकोल (Animal charcoal or bone charcoal) का उपयोग किया जाता है। विलयन प्रावस्था से अधिशोषण की प्रक्रिया में भी निम्नलिखित प्रेक्षण किये गये हैं—
- (1) अधिशोषण की सीमा विलयन में उपस्थित विलेय की सान्द्रता पर निर्भर करती है।
- (2) ताप बढ़ाने से अधिशोषण की सीमा घटती है।
- (3) अधिशोषक का पृष्ठीय क्षेत्रफल बढ़ने से अधिशोषण की सीमा बढ़ती है।
- (4) अधिशोषण की सीमा, अधिशोष्य और अधिशोषक दोनों की प्रकृति पर निर्भर करती है।

फॉयण्डलिक समतापी समीकरण सन्निकट रूप में (लगभग) विलयन प्रावस्था में अधिशोषण के लिये भी लागू होती है, परन्तु दाब P के स्थान पर विलयन की सान्द्रता (C) को लिया जाता है।

अतः
$$\frac{x}{m} = KC^{1/n}$$

यहाँ C = विलयन की साम्य सान्द्रता है

$$\frac{\mathbf{x}}{\mathbf{m}}$$
 = अधिशोषण की मात्रा है।

लघुगणक (log) लेने पर

$$\log \frac{x}{m} = \log K + \frac{1}{n} \log C$$

यदि $\log \frac{x}{m}$ और $\log C$ के मध्य ग्राफ खींचा जाता है तो गैसों के समान यहाँ भी एक सरल रेखा प्राप्त होती है।

चित्र: 5.7 log x/m तथा log C के मध्य ग्राफ

उपरोक्त ग्राफ से n और K के मान ज्ञात किये जा सकते हैं। उपरोक्त समीकरण का सत्यापन एसिटिक अम्ल की विभिन्न सान्द्रताओं के विलयन का चारकोल द्वारा अधिशोषण करा कर किया जा सकता है।

5.7 अशिशोषण के अनुप्रश्रोग (Applications of Adsorption

अधिशोषण परिघटना के हमारे जीवन, उद्योगों, चिकित्सा क्षेत्र आदि में अनेक अनुप्रयोग हैं। इनमें से महत्वपूर्ण अनुप्रयोगों को नीचे दर्शाया गया है।

- उच्च निर्वात करने में (Creating high vaccum)—जिस पात्र में निर्वात करना होता है उसे सबसे पहले निर्वात पम्म (Vaccum Pump) से जोड़कर अधिकांश वायु निकाल दी जाती है। इसके पश्चात् शेष बची वायु को पात्र से निकालने के लिये उसमें चारकोल डाला जाता है। चारकोल पात्र के शेष वायु का अधिशोषण कर लेता है और उच्च कोटि का निर्वात प्राप्त होता है।
- 2. गैस मास्क (Gas Mask)— खानों में काम करने वाले (विशेष रूप से कोयला खानों में) गैस मास्क पहनते हैं, जिसमें सिक्रय चारकोल होता है, जो सांस लेते समय, विषैली गैसें का अधिशोषण कर लेता है और शुद्ध वायु ही मास्क के सरन्थ्रों से गुजर जाती है।
- 3. आर्द्रता पर नियंत्रण (Humidity Control) कुछ गैसों के निर्जलीकरण के लिये सिलिका जैल अथवा एल्यूमिनियम जैल का उपयोग करते हैं। ये दोनों प्रकार के जैल नमी (जलवाष्प) का अधिशोषण कर लेते हैं।
- 4. विलयनों को विरंजित करने में (Decolourisation of Solutions)— पेट्रोलियम, वनस्पति तेलों, शर्करा आदि के विलयनों को रंगहीन बनाने के लिये फुयूलर अर्थ (Fuller's Earth) और जान्तव चारकोल (Animal charcoal) का उपयोग किया जाता है, जोकि विलयन से रंगीन पदार्थ का अधिशोषण कर लेता है।
- 5. विषमांगी उत्प्रेरण (Hetrogeneous Catalysis)— औद्योगिक प्रक्रमों में किसी उत्प्रेरक की सिक्रयता, उत्प्रेरक सतह पर क्रियाकारकों के अधिशोषण के कारण होती है। अधिशोषण के परिणामस्वरूप उत्प्रेरक की सतह पर अभिकारकों की सान्द्रता बढ़ जाती है और अभिक्रिया वेग बढ जाता है।
- हेबर विधि द्वारा अमोनिया के निर्माण में Fe उत्प्रेरक का प्रयोग, सम्पर्क विधि द्वारा H₂SO₄ बनाने में Pt का उपयोग, तेलों के हाइड्रोजिनीकरण में सूक्ष्मविभाजित निकिल का उपयोग आदि विषमांगी उत्प्रेरण के उदाहरण हैं।
- 6. अक्रिय गैसों के पृथक्करण (Separation of Inert gases)— वायु में उपस्थित अक्रिय गैसों (उत्कृष्ट गैसें जैसे, He. Ne. Ar आदि) को पृथक करने के लिये नारियल चारकोल (Coconut charcoal) का विभिन्न तापों पर अधिशोषक के रूप में उपयोग करते हैं।
- चिकित्सा में (व्याधियों के उपचार में)— मरहम या लोशन लगाने पर घावों में उपस्थित जीवाणु उन पर अधिशोषित हो जाते हैं और मर जाते हैं।
- 8. झाग प्लावन प्रक्रम (Froth Flotation Process)— झाग प्लावन विधि द्वारा सल्फाइड अयस्क में उपस्थित अवांछनीय पदार्थ जैसे सिलिका, मृदा आदि को अलग किया जाता है। इस कार्य के लिये चीड़ का तेल या तारपीन के तेल का झाग कारक के रूप में उपयोग किया जाता है।
- 9. अधिशोषण सूचक (Adsorption Indicator)— कुछ अवक्षेपों की सतह जैसे सिल्वर हैलाइड पर ईओसिन का, Mg(OH)₂ अवक्षेप मेग्नेसॉन का अधिशोषण करके अभिक्रिया का पूर्ण होने की सूचना दे देते हैं और अन्तिम बिन्दु पर अभिलाक्षणिक रंग प्रदान करती है।
- 10. वर्णलेखनीय विश्लेषण (Chromatography)—

वर्ण लेखनीय विश्लेषण अधिशोषक पर किसी मिश्रण के विभिन्न घटकों की भिन्न-भिन्न अधिशोषण प्रवृत्ति पर आधारित है।

11. परम्यूटिट विधि में, परम्यूटिट (जिओलाइट) कठोर जल में उपस्थित Ca^{-2} तथा Mg^{-2} आयनों को अधिशोषित करता है।

12. अधिशोषण द्वारा कई पदार्थों का सान्त्रण भी किया जाता है। जैसे CH₃COOH तथा जल के मिश्रण को चारकोल से गुजारने पर, चारकोल CH₃COOH का अधिशोषण कर लेता है, जबिक जल का अधिशोषण नहीं होता। अधिशोषित CH₃COOH चारकोल पर से पुन: प्राप्त किया जा सकता है।

अभ्यास- 5.1

- प्र.1. अधिशोषण से आप क्या समझते हैं?
- प्र.2. अधिशोषण के कारण और क्रियाविधि को समझाइये।
- प्र.3. अधिशोषण और अवशोषण में परिभाषा द्वारा विभेद कीजिये।
- प्र.4. अधिशोषण की कार्य विधि की ऊष्मागतिकी द्वारा विवेचना कीजिये।
- प्र.5. विशोषण किसे कहते हैं? सामान्यतया विशोषण की प्रक्रिया ताप और दाब द्वारा किस प्रकार प्रभावित होती है।
- प्र.6. गैसों के अधिशोषण का उनके क्रान्तिक तापों से क्या सम्बन्ध है?
- प्र.7. अधिशोषक का विशिष्ट क्षेत्रफल (Specific Area) किसे कहते हैं?
- प्र.8. वनस्पति तेलों के हाइड्रोजिनीकरण में Ni के एक बड़े टुकड़ें की अपेक्षा उसका बारीक चूर्ण अधिक प्रभावी होता है, क्यों?
- प्र.१. फ्रायडलिक अधिशोषण समतापी का गणितीय समीकरण लिखिये।
- प्र.10.अधिशोषण समतापी किसे कहते हैं।
- प्र.11.अक्रिय गैसों के मिश्रण का पृथक्करण किस प्रकार के चारकोल द्वारा किया जाता है? इसका आधार क्या है?
- प्र.12.नमी को नियंत्रित करने के लिये किस अधिशोषक का उपयोग किया जाता है?
- प्र.13.जल की कठोरता दूर करने के लिये किस अधिशोषक का उपयोग किया जाता है?
- प्र.14.अधिशोषण द्वारा CH₃COOH के विलयन से CH₃COOH अम्ल कैसे प्राप्त किया जाता है?
- प्र.15.अधिशोषक के सक्रियण से आप क्या समझते हो। यह किस प्रकार किया जाता है?
- $y.16.NH_3$ और CO_2 में से कौन चारकोल द्वारा अधिक तीव्रता से अधिशोषित होगा और क्यों?
- प्र.17.शोषण से आप क्या समझते हो।
- प्र.18.सूक्ष्म विभाजित धातुओं की सतह पर किसी गैस का अधिशोषण क्या कहलाता है?
- प्र.19.जल की कठोरता दूर करने के लिए किस अधिशोषक का उपयोग करते हैं?
- प्र.20.उत्कृष्ट गैसों को वायु से पृथक् करने के लिए किस चारकोल का उपयोग किया जाता है?

उत्तरमाला

- उ.1. जब किसी ठोस पदार्थ को द्रव या गैस के सम्पर्क में रखा जाता है तो ठोस की सतह या पृष्ठ पर द्रव या गैस, स्थूल की अपेक्षा अधिक संचित हो जाती है। यह प्रक्रिया अधिशोषण कहलाती है।
- उ.2. पाठ्य सामग्री का खण्ड 5.1.2 देखिये।
- उ.3. अधिशोषण में अधिशोषित की सतह पर असंतुलित आन्तरिक आकर्षण के कारण अधिशोष्य पदार्थ ठोस सतह पर आकर्षित होता है तथा

- इसकी सान्द्रता शेष स्थूल की तुलना में सतह पर बढ़ जाती है। अवशोषण में अवशोषित होने वाला पदार्थ अवशोषक में अन्दर की ओर समान रूप से विसरित हो जाता है।
- उ.4. पाठ्य सामग्री का खण्ड 5.1.2 देखिए।
- 3.5. अधिशोष्य पदार्थ का अधिशोषक की सतह से हटना विशोषण कहलाता है। िकसी ठोस पदार्थ की सतह से अधिशोषित गैस को हटाने के लिये ताप बढ़ाया जाता है और दाब कम किया जाता है। अत: ताप बढ़ाने से और दाब कम किया जाता है।
- उ.6. हमें यह विदित है कि वे गैसें जो सरलता से द्रवित हो जाती है, उनका अधिशोषण अधिक होता है। जिन गैसों के क्रान्तिक ताप उच्च होते हैं, वे सरलता से द्रवित हो जाती हैं अत: जिन गैसों के क्रान्तिक ताप उच्च होते हैं उनका अधिशोषण अधिक होता है। अत: क्रान्तिक ताप में वृद्धि → सरलता से द्रवित होने की क्षमता में

वृद्धि → अधिशोषण में वृद्धि । 3.7. 1 ग्राम अधिशोषक के पृष्ठीय क्षेत्रफल को अधिशोषक का विशिष्ट

क्षेत्रफल कहते हैं।

3.8. अधिशोषण की मात्रा अधिशोषक के पृष्ठ के क्षेत्रफल के समानुपाती होती है। अतः Ni का पृष्ठीय क्षेत्रफल बढ़ाने के लिये उसे बारीक चूर्ण के रूप में लिया जाता है। ऐसा करने से उसकी सिक्रयता में वृद्धि हो जाती है।

उ.९. फाँचण्डलिक समतापी समीकरण के अनुसार

$$\frac{x}{m} = KP^{\frac{1}{n}}$$

या $\log \frac{x}{m} = \log K + \frac{1}{n} \log P$

यहाँ x/m = अधिशोष्य की मात्रा

P = दाब है।

x= अधिशोष्य का द्रव्यमान

m = अधिशोषक का द्रव्यमान है।

- 3.10. स्थिर ताप पर अधिशोष्य गैस की मात्रा (x/m) और साम्यावस्था पर गैस के दाब के मध्य सम्बन्ध को अधिशोषण समतापी कहते हैं।
- उ.11. अक्रिय गैसों के मिश्रण को पृथक करने के लिये, नारियल चारकोल (coconut charcoal) का उपयोग किया जाता है। पृथक्करण का आधार यह है कि अक्रिय गैसों की नारियल चारकोल के तल पर अधिशोषित होने की क्षमता भिन्न-भिन्न होती है।
- 3.12. नमी को नियंत्रित करने के लिये सिलिका जैल या ऐल्यूमिनियम जैल का उपयोग किया जाता है।
- 3.13. जल की कठोरता दूर करने के लिये जिओलाइट (सोडियम ऐल्यूमिनियम सिलीकेट) का उपयोग किया जाता है। यह कठोर जल में उपस्थित Ca²⁻ तथा Mg²⁻ आयनों का अधिशोषण कर लेता है।
- 3.14. CH₃COOH और H₂O के मिश्रण को (जलीय विलयन) सिक्रिय चारकोल के ऊपर से गुजारा जाता है। चारकोल CH₃COOH का अधिशोषण कर लेता है, जल का अधिशोषण नहीं होता है। अधिशोषित CH₃COOH को चारकोल से पुन: प्राप्त किया जा सकता है।
- 3.15. अधिशोषक की अधिशोषण क्षमता बढ़ाना अधिशोषक का सक्रियण कहलाता है। सक्रियण के लिये-
 - (i) उसकी सतह को खुरदरा (Rough) बनाया जाता है।
 - (ii) छोटे-छोटे टुकड़ों में बाँट दिया जाता है, ताकि पृष्ठीय क्षेत्रफल बढ़

सके

- (iii) अतितप्त वाष्प अथवा निर्वात में उच्च ताप (626–1273K) पर गर्म किया जाता है। चारकोल को सिक्रय बनाने के लिए इस विधि का उपयोग करते हैं।
- उ.16. NH3 का अधिशोषण CO2 की अपेक्षा तीव्रता से होता है क्योंकि धुवीय होने के कारण NH3 में वाण्डरवाल अधिक होते हैं।
- उ.17. जब अवशोषण और अधिशोषण दोनों प्रक्रियाएँ साथ-साथ होती हैं तो यह प्रक्रम शोषण कहलाता है।
- उ.18. सूक्ष्म विभाजित धातुओं की सतह पर किसी गैस का अधिशोषण अधिधारण (Occlusion) कहलाता है।
- उ.19. जल की कठोरता दूर करने के लिये जियोलाइट का उपयोग करते हैं, जो कठोर जल से Ca²⁺ और Mg²⁺ का अधिशोषण करके जल को मुद्द बनाता है।
- उ.20. वायु से उत्कृष्ट गैसों को पृथक करने के लिए नारियल चारकोल का उपयोग करते हैं। निम्न ताप पर इसकी इन गैसों को अधिशोषित करने की क्षमता भिन्न-भिन्न होती है।

5.8

- सर्वप्रथम 1835 में वर्जीलियस ने उत्प्रेरक पद का सुझाव दिया था।
 उन्होंने प्रयोगों के दौरान यह पाया कि कुछ बाहरी पदार्थों को यदि
 अभिक्रिया में मिला दिया जाता है तो उनके वेग में परिवर्तन हो जाता है।
- उदाहरण के लिए KClO₃ से डाईऑक्सीजन प्राप्त करने के लिए KClO₃
 को 653K से 873K की परास में गर्म करना होता है।

$$KClO_3 \xrightarrow{873K} 2KCl + 3O_2$$

 यदि उपरोक्त अभिक्रिया में कुछ मात्रा ठोस MnO₂ की मिला दी जाती है, तो यह अभिक्रिया कम ताप (611K) पर हो जाती है और अभिक्रिया वेग में भी वृद्धि हो जातीहै। विशेष प्रेक्षण यह है कि MnO₂ अभिक्रिया में भाग नहीं लेता ओर न ही उसके द्रव्यमान या संघटन में परिवर्तन होता है।

$$2KClO_3 \xrightarrow{MnO_2} 2KCl + 3O_2$$

 अतः वह पदार्थ जो रासायनिक अभिक्रिया के वेग को परिवर्तित कर देता है परन्तु स्वयं द्रव्यमान और संघटन की दृष्टि से अभिक्रिया के अन्त में अपरिवर्तित रहता है, उत्प्रेरक (Catalyst) कहलाता है और यह क्रिया उत्प्रेरण (Catalysis) कहलाती है।

उत्प्रेरकों के प्रकार (Types of Catalyst)

- धनात्मक उत्प्रेरक (Positive Catalyst)— वे पदार्थ जिनकी उपस्थिति में रासायनिक अभिक्रिया का वेग बढ़ जाता है, तो ऐसे पदार्थों को धनात्मक उत्प्रेरक कहते हैं। इस प्रक्रिया को धनात्मक उत्प्रेरण कहते हैं।
 - (i) H,O, का अपघटन-कोलाइडी Pt की उपस्थिति में-

$$2H_2O_2 \xrightarrow{Pt} 2H_2O + O_2$$

(ii) डीकन विधि द्वारा क्लोरीन के निर्माण में CuCl₂ उत्प्रेरक

 $4HCl + O_2 \xrightarrow{CaCl_{Z(4)}} 2Cl_2 + 2H_2O$

(iii) हैबर विधि में Fe व Mo का चूर्ण

$$N_{2(g)} + 3H_{2(g)} \xrightarrow{Fe_{(g)}} 2NH_{3(g)}$$

(iv) मेथिल ऐल्कॉहल का निर्माण -ZnO/Cr₂O₃ की उपस्थिति में-

$$CO_{(g)} + 2H_{2(g)} \xrightarrow{ZnO(s)} CH_3OH_{(g)}$$

धनात्मक उत्प्रेरक की उपस्थिति से सिक्रियण ऊर्जा का मान घट जाता है, जिससे क्रियाकारक के अधिक अणु उत्पाद में परिवर्तित हो जाते हैं और अभिक्रिया का वेग बढ़ जाता है। दूसरे शब्दों में ये उत्प्रेरक अभिक्रिया के मार्ग को ही बदल देते हैं, जिसमें कम सिक्रियण ऊर्जा वाला मध्यवर्ती बनता है (चित्र 5.8)।

चित्र: 5.8 उत्प्रेरक का संक्रियण ऊर्जा का प्रभाव

- 2. ऋणात्मक उत्प्रेरक (Negative Catalyst)–
- वे उत्प्रेरक जिनकी उपस्थिति में रासायनिक अभिक्रिया का वेग कम हो जाता है, ऋणात्मक उत्प्रेरक कहलाते हैं। इस प्रक्रिया को ऋणात्मक उत्प्रेरण कहते हैं। ऋणात्मक उत्प्रेरक को मंदक अथवा निरोधक (Inhibitor) कहते हैं।
- ऋणात्मक उत्प्रेरक की उपस्थित में सिक्रियण ऊर्जा का मान बढ़ जाता है, जिससे अभिक्रिया का वेग कम हो जाता है।

उदाहरण-

(i) सोडियम सल्फाइट का ऑक्सीकरण ऐल्कोहॉल की उपस्थिति में कम हो जाता है-

$$2Na_2SO_3 + O_2 \xrightarrow{\text{(general-effect)}} 2Na_2SO_4$$
(s) (g) (s)

यहाँ ऐल्कोहाँल ऋणात्मक उत्प्रेरक है।

(ii) हाइड्रोजन पराक्साइड का ग्लिसरीन की उपस्थिति में अपघटन कम हो जाता है।

$$2H_2O_2 \xrightarrow{\text{TYPERT}} 2H_2O + O_2$$
(I) (I) (I) (g)

(iii) क्लोरोफार्म का आक्सीकरण ऐथिल ऐल्कोहॉल की उपस्थिति में धीमा हो जाता है।

$$2CHCl_3 + O_2 \rightarrow 2COCl_2 + 2HCl \atop (l) \qquad (g) \qquad (l) \qquad (g)$$

(iv) बैन्जैल्डिहाइड का आक्सीकरण डाईफेनिल एमीन की उपस्थिति में धीमा हो जाता है।

$$2C_6H_5CHO + O_2 \xrightarrow{\text{as bitms inth}} 2C_6H_5COOH$$

- (v) TEL (टेट्राऐथिल लैंड), अपस्फोटरोधी के रूप में ऋणात्मक उत्प्रेरक है।
- 3. स्वतः उत्प्रेरक (Auto Catalyst) जब किसी अभिक्रिया में उत्पाद ही उत्प्रेरक का कार्य करता है तो उस पदार्थ को स्वतः उत्प्रेरक कहते हैं। जैसे-
- एस्टर के जल अपघटन की दर प्रारम्भ में कम होती है परन्तु कुछ समय बाद तीव्र हो जाती है, क्योंकि अभिक्रिया में उत्पन्न (CH₃COOH) द्वारा जनित H⁺ आयन उत्प्रेरक का कार्य करते है।

$$CH_3COOC_2H_3 + H_2O \xrightarrow{H^*} CH_3COOH + C_2H_3OH$$

(ii) निम्न अभिक्रिया में MnSO₄ से प्राप्त Mn²⁺ आयन उत्प्रेरक का कार्य करते हैं।

$$\begin{array}{c} 5\text{H}_2\text{C}_2\text{O}_4 + 2\text{KMnO}_4 + 3\text{H}_2\text{SO}_4 \to \\ \text{K}_2\text{SO}_4 + 2\text{MnSO}_4 + 10\text{CO}_2 + 8\text{H}_2\text{O} \end{array}$$

- 4. प्रेरित उत्प्रेरण (Induced Catalysis)— जब एक रासायनिक अभिक्रिया दूसरी रासायनिक अभिक्रिया वेग को बढ़ाती है तो इसे प्रेरित उत्प्रेरण कहते हैं। जैसे—
- (i) सोडियम सल्फाइट वायु द्वारा ऑक्सीकृत हो जाता है, परन्तु सोडियम आर्सेनाइट ऑक्सीकृत नहीं होता, यदि दोनों को मिला दिया जाये तो दोनों वायु द्वारा ऑक्सीकृत हो जाते हैं।

$$2Na_2SO_3 + O_2 \xrightarrow{arg} 2Na_2SO_4$$

 $Na_3AsO_{3(s)}+O_{2(g)} \xrightarrow{-s_4}$ कोई अभिक्रिया नहीं होती $Na_3SO_3+Na_3AsO_3+O_2 \to 2Na_2SO_4+Na_3AsO_4$

(ii) KMnO₄ का $H_2C_2O_4$ द्वारा अपचयन सुगमता से होता है जबिक H_3C_2 का H_3C_2 में अपचयन मंदगित से होता है। यदि दोनों मिला दें तो दोनों अभिक्रिया तीव्र वेग से होंगी।

5.8.1 उत्प्रेरण के प्रकार

- समांगी उत्प्रेरण (Homogeneous Catalysis)- यदि क्रियाकारक, क्रियाफल व उत्प्रेरक की प्रावस्था समान हो, तो वह समांग उत्प्रेरण अभिक्रिया कहलाती हैं तथा उत्प्रेरक, समांग उत्प्रेरक कहलाता है। समान प्रावस्थाएँ दो ही दशाओं में संभव होती है जैसे-
 - (a) जबिक अभिकारक, उत्पाद और उत्प्रेरक प्रत्येक गैसीय अवस्था में हो।
 - (b) जबकि अभिकारक, उत्पाद और उत्प्रेस्क प्रत्येक घुलनशील द्रव हो।
- (i) स्यूक्रोस के जल अपघटन की अभिक्रिया में सल्पयूरिक अम्ल, उत्प्रेरक

तथा क्रियाकारक दोनों विलयन (liquid) अवस्था में है । $C_{12}H_{22}O_{11} + H_2O + [H_2SO_4] \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6 + [H_2SO_4]$ जलीय विलयन जल जलीय विलयन ग्लूकोस क्रुक्टोस जलीय विलयन (ii) मेथिलऐसीटेट का जल अपघटन H^+ आयन द्वारा उत्प्रेरित होता है- $CH_3COOCH_3 + H_2O + [HCI] \rightarrow CH_3COOH + CH_3OH + [HCI]$

(iii)
$$2CO_{(g)} + O_{2(g)} + [NO_{(g)}] \rightarrow 2CO_{2(g)} + [NO_{(g)}]$$

यहाँ उत्प्रेरक को वर्ग कोष्ठक में दर्शाया गया है।

समांगी उत्प्रेरण की क्रिया विधि—माध्यमिक यौगिक सिद्धान्त—इस धारणा के अनुसार उत्प्रेरक, किसी एक क्रियात्मक के साथ माध्यमिक या मध्यवर्ती यौगिक बना लेता है। यह माध्यमिक यौगिक अस्थाई होता है जो अन्य अभिकारक से क्रिया कर उत्पाद बना कर मुक्त हो जाता है। एक अभिक्रिया A+B→AB अत्यन्त धीमी गति से सम्पन्न होती है जो X उत्प्रेरक की उपस्थिति में आसानी से होती है। ∵

$$A + X \rightarrow AX$$
 (माध्यमिक यौगिक)

$$AX + B \rightarrow AB + X$$

- मध्यवर्ती AX के निर्माण में कम सक्रियण उर्जा की आवश्यकता होती है अभिक्रिया तीव्र गति से सम्पन्न हो जाती है।
- उदाहरण–

(i)
$$SO_2 + \frac{1}{2}O_2 \xrightarrow{NO} SO_3$$
 अभिक्रिया में

$$NO + \frac{1}{2}O_2 \rightarrow NO_2$$
 एवं माध्यमिक यौगिक

$$SO_1 + NO_2 \rightarrow SO_3 + NO$$

(ii) $2C_2H_5OH \xrightarrow{H_2SO_4} C_2H_5OC_2H_5 + H_5O$ (विलियम सन सतत ईथरीकरण)

$$\mathbf{C_2H_5OH} + \mathbf{H_2SO_4} \longrightarrow \mathbf{C_2H_5HSO_4} + \mathbf{H_2O}$$

माध्यमिक योगिक

$$C_2H_5HSO_4 + HOC_2H_5 \longrightarrow C_2H_5OC_2H_5 + H_2SO_4$$

- भाध्यमिक यौगिक सिद्धान्त द्वारा निम्नांकित तथ्यों का स्पष्टीकरण नहीं किया जा सकता है।
 - (i) विषमांग उत्प्रेरण की क्रियाविधि (ii) उत्प्रेरक वर्द्धक एवं उत्प्रेरक विष की क्रिया विधि (iii) सक्रिय केन्द्रों का महत्व।
- विषमांगी उत्प्रेरण (Heterogeneous Catalysis)
 जब क्रियाकारक,
 क्रियाफल तथा उत्प्रेरक विभिन्न भौतिक प्रावस्थाओं में हो तो वह
 अभिक्रिया विषमांग उत्प्रेरण अभिक्रिया कहलाती है तथा उत्प्रेरक,
 विषमांग उत्प्रेरक कहलाता है। जैसे-

(i) अमोनिया की हैबर विधि-

$$N_{2(g)} + 3H_{2(g)} + [Fe + Mo]_{(s)} \rightarrow 2NH_{3(g)} + [Fe + Mo]_{(s)}$$

(ii) H₂SO₄ की सम्पर्क विधि-

$$2\mathrm{SO}_{2(g)} + \mathrm{O}_{2(g)} + [\mathrm{Pt}]_{(s)} \rightarrow 2\mathrm{SO}_{3(g)} + [\mathrm{Pt}]_{(s)}$$

(iii) HNO3 की ओस्टवाल्ड विधि-

$$4{\rm NH_{3(g)}} + 5{\rm O_{2(g)}} + [{\rm Pt}]_{(s)} \rightarrow 4{\rm NO_{(g)}} + 6{\rm H_2O_{(g)}} + [{\rm Pt}]_{(s)}$$

(iv) तेलों के हाइड्रोजनीकरण में-

वनस्पति तेल + H_2 + [Ni] \rightarrow वनस्पति घी + [Ni]

(*l*) (g) (

(

(v) प्रोपीन के बहुलीकरण में (जिंगलर नाटा उत्प्रेरक)-

$$\begin{array}{c}
CH_{3} \\
CH = CH_{2} \\
CH = CH_{2}
\end{array}$$

$$\begin{array}{c}
(S) \\
(S)
\end{array}$$

$$\begin{array}{c}
(S) \\
(S) \\
(S)
\end{array}$$

$$\begin{array}{c}
(S) \\
(S) \\
(S)
\end{array}$$

$$\begin{array}{c}
(CH_{3} \\
(CH - CH_{2} -) \\
(S)
\end{array}$$

$$\begin{array}{c}
(FR_{3}Al + TiCl_{4}] \\
(S)
\end{array}$$

ट्राइऐल्किल ऐल्युमिनियम व टाइटेनियम क्लोराइड (R3AI + TiCI4) के मिश्रण को जिंगलर-नाटा उत्प्रेरक कहते हैं।

(vi) ओस्टवाल्ड प्रक्रम में प्लेटिनम गाँज कीउपस्थिति में अमोनिया का नाइट्रिक ऑक्साइड में ऑक्सीकरण-

 $4NH_{3(g)} + 5O_{2(g)} + [Pt_{(g)}] \rightarrow 4NO_{(g)} + 6H_2O_{(g)} + [Pt_{(g)}]$

अमोनिया और \mathbf{O}_2 गैस प्रावस्था में है जबकि उत्प्रेरक ठोस अवस्था में है।

विषयांगी उत्पेरण का अधिशोषण सिद्धान्त (Adsorption theory of Hetrogeneous Catalysis)

- विषमांगी उत्प्रेरण की क्रिया विधि को अधिशोषण के सिद्धान्त द्वारा समझा जा सकता है। इस सिद्धान्त के अनुसार गैसीय अवस्था अथवा विलयन में अभिकारक ठोस उत्प्रेरक की सतह पर अधिशोषित हो जाते हैं। इस प्रकार उत्प्रेरक की सतह पर अभिकारकों की सान्द्रता में वृद्धि हो जाती है, परिणामस्वरूप अभिक्रिया वेग में भी वृद्धि हो जाती है।
- जैसा कि हमें विदित है अधिशोषण एक ऊष्माक्षेपी प्रक्रिया है अतः प्रक्रिया में ऊष्मा उत्पन्न होती है, जो कि अधिशोषण की ऊष्मा या एन्थैल्पी कहलाती है। यह ऊष्मा अभिकारकों द्वारा अवशोषित होकर उनके मध्य उपस्थित बंधों को दुर्बल करती है परिणामस्वरूप बन्ध शीघ्र टूटते हैं और नये बन्ध शीघ्र बनते हैं। इस प्रकार अभिक्रिया वेग में वृद्धि होती है। उदाहरण के लिये हैबर विधि में N₂ गैस Fe उत्प्रेरक की सतह पर अधिशोषित होती है और उत्पन्न ऊष्मा N ≡ N बंधों को विघटित करने में सहायक होती है।
- आधुनिक अधिशोषण सिद्धान्त प्राचीन अधिशोषण सिद्धान्त और मध्यवर्ती
 यौगिक निर्माण सिद्धान्त का मिला-जुला रूप है।
- उत्प्रेरण की क्रिया निम्निलिखित पदों में होती है। यहाँ यह ध्यान रखना आवश्यक है कि उत्प्रेरण क्रिया अधिशोषक उत्प्रेरकों की सतह पर ही होती है।

- उत्प्रेरक की सतह पर अभिकारकों का विसरण।
- (ii) उत्प्रेरक की सतह पर अभिकारकों का अधिशोषण।
- उत्प्रेरक की सतह पर रासायनिक अभिक्रिया द्वारा एक उचित ऊर्जा के मध्यवर्ती यौगिक का निर्माण।
- (iv) उत्प्रेरक की सतह से विशोषण द्वारा उत्पादों का हटना और सतह को फिर से अधिशोषण के लिये उपलब्ध कराना।
- (v) उत्पादों का उत्प्रेरक की सतह से विसरण द्वारा दूर हटना।
- इन पदों को निम्न चित्र (चित्र 5.9) द्वारा समझा जा सकता है। चित्र अभिक्रिया

$$A + B \xrightarrow{s \hat{n} \hat{n} \hat{n}} A - B$$

अभिकारक उत्पाद
के लिये बनाया गया है।

चित्र: 5.9 अभिकारकों का अधिशोषण मध्यवर्ती यौगिक का निर्माण और उत्पाद का विशोषण

इस सिद्धान्त से यह भी स्पष्ट है कि प्रक्रिया में उत्प्रेरक के रासायनिक संघटन और उसके द्रव्यमान में कोई परिवर्तन नहीं होता है। यहाँ यह भी स्पष्ट है कि किस प्रकार उत्प्रेरक की सूक्ष्म मात्रा भी अभिक्रिया वेग परिवर्तित करने में प्रभावी होती है।

5 8.2 ऍन्झड्स उत्प्रेग्ग (Enzyme Catalysis)

- एन्जाइम उच्च अणुभार वाले नाइट्रोजन युक्त जिटल कार्बनिक यौगिक अर्थात प्रोटीन होते है। ये जैव कोशिकाओं में बनते हैं, अतः इन्है जैव उत्प्रेरक भी कहते हैं।
- रासायनिक अभिक्रियाओं का एन्जाइमों द्वारा उत्प्रेरण, एन्जाइम उत्प्रेरण कहलाता है। इसे जैवरासयनिक उत्प्रेरण भी कहते हैं।
- ए-जाइम उत्प्रेरक जल में एक कोलाइडी विलयन बनाते हैं। यह जलीय विलयन ही उत्प्रेरक के रूप में काम आता हैं।
- एन्जाइम उत्प्रेरक प्रभावी उत्प्रेरक होते हैं।

- ये उत्प्रेरक प्राकृतिक प्रक्रमों से सम्बन्धित रासायनिक अभिक्रियाओं को उत्प्रेरित करते हैं। जैविक अभिक्रियाओं जैसे भोजन की पाचन क्रिया, आमाशय में प्रोटीन को पेप्टाइड में बदलना आदि क्रियाएँ ए-जाइम द्वारा ही उत्प्रेरित होती हैं।
- ये विषमांग उत्प्रेरक की तरह व्यवहार करते हैं।
- एन्जाइम उत्प्रेरण के उदाहरण निम्न हैं-

(a) शर्करा का प्रतीपन

$$C_{12}H_{22}O_{11}+H_2O \xrightarrow{\overline{s} - \overline{a} \xi \overline{a}} C_6H_{12}O_6+C_6H_{12}O_6 \ (aq) \ (a$$

(b) ग्लूकोस का C_2H_5OH में परिवर्तन

(c) स्टार्च का माल्टोज में परिवर्तन

$$2(C_6H_{10}O_5)_n + nH_2O$$
 डायस्टेज $nC_{12}H_{22}O_{11}$ (aq) (aq) $+nH_2O$ माल्योज

(d) यूरिया का जल अपघटन

$$\begin{array}{ccc} NH_2CONH_2 + H_2O & & & & & & & & & \\ & (aq) & (l) & & & & & & & & & \\ & & (g) & & (g) & & & & & & \\ \end{array}$$

(f) आमाशय में

आँतों में

प्रोटीन <u>रिप्सीन</u> एमीनोअम्ल

(g) एथिल एल्कोहॉल से एसिटिक अम्ल का बनना

 $C_2H_5OH+O_2$ माइकोडमां ऐसीटो $CH_3COOH+H_2O$

(h) माल्टोज का ग्लूकोस में परिवर्तन

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\text{unceton}} 2C_6H_{12}O_6$$
(aq)

(i) दुग्ध का दही में परिवर्तन यह भी एक एन्जाइम द्वारा सम्पन्न होने वाली प्रक्रिया है। यह दही में उपस्थित लेक्टो बैसिलम एन्जाइम द्वारा सम्पन्न होती है।

कुछ प्रमुख एन्जाइम उनके स्त्रोत और उनसे होने वाली क्रियाएँ सारणी 5.4 में संकलित की गई हैं।

एन्जाइम	स्त्रोत	एन्जाइमी अभिक्रिया
इन्बर्टेज	यीस्ट	सुक्रोस ग्लूकोस और प्रकटोस
जाइमेज	यीस्ट	ग्लूकोस एथिल एल्कोहॉल तथा CO
डायस्टेज	माल्ट	स्टार्च माल्टोस
माल्टेज	यीस्ट	माल्टोस ग्लूकोस
यूरिएज	सोयाबीन	यूरिया NH ₃ और CO ₂
पेप्सीन	आमाशय	प्रोटीन एमीनोअम्ल

एन्जाइम उत्प्रेरण के अभिलक्षण

1. सर्वोत्तम दक्षता

एन्जाइम सबसे अधिक प्रभावी उत्प्रेरक होते हैं। क्योंकि ये अन्य उत्प्रेरकों की तुलना में, अभिक्रिया की सक्रियण ऊर्जा को बहुत कम कर देते हैं, जिससे अभिक्रिया अत्यधिक वेग से सम्पन्न होने लगती है।

एन्जाइम का एक अणु, क्रियाकरकों के लाखों अणुओं को एक मिनट में क्रियाफल में बदल सकते हैं।

2. उच्च विशिष्टम प्रकृति

ए-जाइमों की प्रकृति विशिष्ट होती है। कोई एक ए-जाइम किसी एक विशिष्ट अभिक्रिया को ही उत्प्रेरित कर सकता है।

उदाहरण-

- (a) यूरिएस एन्जाइम केवल यूरिया के जल अपघटन की अभिक्रिया को उत्प्रेरित कर सकता है, अन्य किसी अभिक्रिया को नहीं।
- (b) ग्लूकोस का एथिल एल्कोल में परिवर्तन केवल जाइमेस एन्जाइम की उपस्थिति में संभव होता है।

3. इस्टतम ताप (अनुकूलतम ताप)

एन्जाइम की सक्रियता ताप पर निर्भर करती है। ये 25° C से 37° C (298-310K) ताप पर सर्वाधिक सक्रिय होते हैं। इसमें ताप घटने या बढ़ने पर, इनकी सक्रियता घटने लगती है और 70° C (343 K) पर ये स्कन्दित होकर नष्ट हो जाते हैं। अत: 25-35° C ताप को अनुकूलतम ताप अथवा इस्टमप ताप (optimum Temperature) कहलाता है

4. इष्टतम pH(अनूकुलतम pH)

एन्जाइम की सिक्रियता pH पर भी निर्भर करती है। एक निश्चित pH पर इनकी सिक्रियता सर्वाधिक होती है, जिसे अनुकूलतम pH कहते है अनुकूलतम pH का मान 5-7 तक होता है मानव शरीर के लिए pH का मान 7.4 होता है।

5. सक्रिकारक तथा सह एन्जाइम

कुछ अन्य पदार्थ जैसे- विटामिन, प्रोटीन, धातु आयन (Cu^{2+} , Ni^{2-} , Na^+ , Mn^{2+}) आदि की उपस्थिति में एन्जाइमों की सिक्रयता में वृद्धि हो जाती है। इन पदार्थों को **सिक्रयकारक या सहएन्जाइम** कहते हैं।

धात्विक आयन एन्जाइम अणुओं से दुर्बल रूप से अबन्धित होने पर उत्प्रेरकीय सिक्रयता बढ़ा देते हैं। एमीलेज Na⁺(NaCl) की उपस्थिति में अत्यिधक सिक्रय होता है।

6. समेदक एवं विष-

कुछ पदार्थों की उपस्थिति से एन्जाइमों की सिक्रयता में कमी आ जाती है अर्थात वे समेदिक एवं विषाकत हो जाते हैं। उदाहरण के लिए HCN, CS₂ आदि एन्जाइमों की सिक्रयता को कम कर देते हैं। इन्हें **समेदक अथवा विष** कहते हैं। ये पदार्थ एन्जाइम की सतह पर उपस्थित सिक्रय क्रियात्मक समूहों से अन्योन्य क्रिया करके एन्जाइमों की सिक्रयता को कम अथवा नष्ट कर देते हैं।

एन्जाइम उत्प्रेरण की क्रिया विधि (Mechanism of Enzyme Catalysis) – जैसा कि पहले बताया गया है कि एन्जाइम का कोलाइडी विलयन उत्प्रेरक का कार्य करता है। ए-जाइम के इन कोलाइडी कणों की सतह पर बहुत सी गुहिकार्ये (कटोर) या केविटी (Cavity) होती है। इन केविटी में सिक्रय समृह जैसे- NH2. - COOH, - SH. - OH आदि होते हैं। ये सब उत्प्रेरक के सिक्रय क्रेन्ड (active centres) होते हैं। जिनकी एक निश्चित आकृति होती है। वे अभिकारक के अणु जिनकी परिपूरक आकृति (complementry shape) होती है, इन केविटी में एक ताले में चाबी के समान फिट हो जाते हैं, जो सिक्रय समूहों से क्रिया करके सिक्रयत संकुल बनाते हैं जो विघटित हो कर उत्पाद बनाते हैं। सम्पूर्ण प्रक्रिया दो पदों में सम्पन्न होती हैं-

पद -1 E $-\cdot$ S \longrightarrow ES.

एन्जाइम अभिकारक

एन्जाइम -अभिकारक संकुल

पद 2 ES → E + P

संकुल एन्जाइम उत्पाद

चित्र 5.10 में सम्पूर्ण प्रक्रिया को समझाया गया है।

चित्र 5.10. एन्जाइम उत्प्रेरित अभिक्रियाओ की क्रिया विधि

5.8.३ जिओलाइट उत्प्रेरण का आकार वस्पालक उत्प्रेरण

जिओलाइट उत्प्रेरण (Zeolite Catalyst)

- भातुओं के ऐल्युमिनों सिलिकेटों कों जिओलाइट कहते हैं।
- इनका सामान्य सूत्र \mathbf{M}_{sm} $[(\mathbf{AIO}_2)_{\mathrm{x}}\ (\mathrm{SiO}_2)_{\mathrm{y}}]\ z\mathbf{H}_2\mathbf{O}$ होता है। यहाँ \mathbf{n} धातु आयन पर आवेश है।
- जिओलाइट में धनायन सामान्यत: Na . K⁻. Ca⁻²आदि होते हैं।
- जिओलाइट को निर्वात में गरम करने पर, इसका निर्जलीकरण हो जाता है, जिससे H₂Oअणु बाहर निकलने से इसमें रन्ध्र व गुहिकाओं का निर्माण हो जाता है। जिससे इनकी सरंचना मधुमक्खी के छत्ते के समान दिखती हैं। अर्थात जिओंलाइट सिलीकेट के त्रिविमीय नेटवर्क वाले सक्ष्मरंध्री ऐल्युमिनों सिलिकेट होते हैं।
- इन सिलिकेटों में कुछ सिलिकोन परमाणु ऐल्यूमिनियम के परमाणुओं
 द्वारा प्रतिस्थापित हो कर Al-O-Si ढांचा बनाते है।
- अत: इन रन्थ्रों के द्वारा निश्चित आकार के क्रियाकारकों के अणुओं का अधिशोषण किया जा सकता है। छोटा आकार के अणु इन रन्थ्रों में से फिसलकर बाहर निकल जाते है और बड़े आकार के अणुओं को यह अधिशोषित नहीं कर सकता है। अत: जिओलाइट को आकार वरणात्मक उत्प्रेरक (Shape selective catalyst)भी कहते हैं।

 अत: जिओलाइट की संक्रियता, इसमें उपस्थित रन्थ्रों के आकार पर निर्भर करती है। अत: इसे आण्विक छलनी भी कहते हैं।

उदाहरण-

(1) ZSM-5 नामक जिओलाइट उत्प्रेरक द्वारा एल्कोहल को गैसोलीन में बदला जाता है। ZSM-5 की मुहिकाओं द्वारा पहले एल्कोहल का निर्जलीकरण किया जाता है तथा फिर अनेकों हाइड्रोंकार्बन का मिश्रण प्राप्त होता है जो कि उच्च क्वालिटी का गैसोलीन (पेट्रोल) होता है।

यह उत्प्रेरक CH_3OH अणुओं को अधिशोषित करके इन्हें मेथीलीन कार्बीन ($:CH_2$)में बदल देता है जो कि विभिन्न प्रकार से जुड़कर अनेकों हाइड्रोकार्बन जैसे– मेथेन, एथेन, आइसोब्यूटेन, आइसोऑक्टेन, बेन्जीन, टॉलूईन आदि का मिश्रण बना देती है।

$$xCH_3OH \xrightarrow{ZSM-5} (CH_2)_X + xH_2O$$

- (2) सोडियम जिओलाइट से कठोर जल को मृदु बनाया जाता है।
- (3) जिओलाइट उत्प्रेरण का प्रयोग पेट्रोरसायन उद्योग में हाइड्रोकार्बन के भंजन, समावयवीकरण आदि करने में किया जाता है, जिससे ईधन तेल की गुणवत्ता बड जाती है।

अभ्यास- 5.2

प्र01. उत्प्रेरक किसे कहते है?

प्र०2. उत्प्रेरक व क्रियाकारकों की भौतिक अवस्था के आधार पर उत्प्रेरण कितने प्रकार के होते हैं?

प्र03. धनात्मक उत्प्रेरक सिक्रयण ऊर्जा को बढ़ाते हैं या घटाते हैं।

प्र०4. दो ऋणात्मक उत्प्रेरकों के नाम दीजिए।

प्र०5. एक स्वतः उत्प्रेरक की रासानियक अभिक्रिया दीजिए।

प्र०६. हैबर विधि में कौनसा उत्प्रेरक और वर्धक प्रयुक्त होता है?

प्र०७. उत्प्रेरक विष या प्रतिउत्प्रेरक किसे कहते हैं?

प्र०८. समांगी उत्प्रेरण किस सिद्धांत पर आधारित हैं?

प्रo9. विषमांगी उत्प्रेरण में प्रयुक्तसिद्धांत का नाम क्या है?

प्र०10. जिग्लर नाटा उत्प्रेरक किसे कहते है?

प्रo11. एन्जाइम क्या होते हैं? शर्करा को एथिल एल्कोहॉल में परिवर्तित करने में कौन–कौन से एन्जाइम उपयोग में आते हैं?

प्र०12. सह ए-जाइम क्या होते हैं? कुछ सहएन्जाइमों के नाम लिखिए।

प्र013. यूरिया का जल अपघटन किस एन्जाइम द्वारा होता है।

प्र०14. प्रोटीन को उत्प्रेरित करने वाले एन्जाइम के दो उदारहण दीजिये।

प्रo15. एन्जाइम किस पद्धति पर कार्य करती हैं। यह पद्धति किस वैज्ञानिक ने दी।

प्र०१६. जिओलाइट किसे कहते हैं इनका सामान्य सूत्र लिखिए।

प्र०17. पेट्रोरसायन में ऐल्काहॉल का गैसोलीन परिवर्तन किस जिओलाइट उत्प्रेरक द्वारा होता है?

प्र०18. दो जिओलाइट के नाम लिखिए।

प्रo19. किसी उत्प्रेरक की क्रियाशीलता पर ताप का क्या प्रभाव होता है? अनुकूलतम ताप (Optimum Temperature) किसे कहते हैं?

प्र॰२०. संक्रमण धातुएँ अच्छी उत्प्रेरक होती है? क्यों? समझाइए।

प्र.21. यदि CHC!, को लम्बे समय तक रखना हो तो उसमें एथिल एल्कोहॉल मिलाते हैं क्यों?

उत्तरमाला

- वे पदार्थ जो किसी रासायनिक अभिक्रिया में उपस्थित रहने पर रासायनिक अभिक्रिया का वेग परवर्तित कर दे तथा अभिक्रिया के अन्त में उसकी रासायनिक संघटन और द्रव्यमान में कोई अन्तर नहीं आता हैं, उत्प्रेरक कहलाते हैं, इस क्रिया को उत्प्रेरण कहते हैं।
- 2. दो, सामांगी उत्प्रेरण व विषमांगी उत्प्रेरण।
- सिक्रियण ऊर्जा को कम कर देते हैं।
- 4. (i) H_2O_2 के अपघटन मे ग्लिसरीन
 - (ii) Na₂SO₃ के ऑक्सीकरण में ऐल्कॉहल।
- 5. $5 H_2 C_2 O_4 + 2 KMnO_4 + 3 H_2 SO_4 \rightarrow K_2 SO_4 + 2 MnSO_4 + 10 CO_2 + 8 H_2 O$ यहाँ Mn^{2^4} स्वत: उत्प्रेरक का कार्य करता है।
- 6. Mo या V,O,
- त्रे पदार्थ जो किसी उत्प्रेरक की उत्प्रेरण की क्षमता को नष्ट कर दे।
- माध्यमिक गौिंगक सिद्धांत पर आधारित है।
- अधिशोषण सिद्धांत पर आधारित है।
- 10. R₃Al+TiCl₄ का मिश्रण।
- ए-जाइम उच्च अणुभार के नाइट्रोजन युक्त जटिल कार्बनिक यौगिक अर्थात् प्रोटीन होते हैं।
 - शर्करा को एथिल एल्कोहॉल में परिवर्तित करने के लिए एनवर्टेज और जाइमेज एन्जाइमें का प्रयोग होता है।
- 12. वे पदार्थ जो एन्जाइम को क्रियाशीलता बढ़ाते हैं, सह-एन्जाइम कहलाते हैं। ये सामान्यतया विटामिनों के व्युत्पत्र होते हैं, जैसे थाइमीन पायरोफॉस्फेट, पाइरीडोक्सल फॉस्फेट। इनके अतिरिक्त कुछ धातु आयन जैसे-Cu⁻, Ni²⁺ Mn²⁻ आदि और प्रोटीन आदि भी सह एन्जाइम की तरह कार्य करते हैं।
- 13. यूरिएज।
- 14. पेप्सीन एवं ट्रिप्सीन।
- 15. ''ताला–चाबी पद्धति '' इसे माइकेलिस व मेण्टेन ने प्रस्तुत किया।
- सृक्ष्मछिद्र युक्त एल्यूनिमों सिलीकेट जिओलाइट कहलाते हैं। इनका सामान्य सूत्र
 अ. (A)O.) (SiO.) L.D.O.
- $\frac{M_{xn} [(AlO_2)_x (SiO_2)_y]_z H_2O}{}$
- 17. ZSM-5
- 18. नेट्रोलाइट, ऐनेलासाइट, फौजासाइट।
- 19. प्रत्येक उत्प्रेरक की क्रियाशीलता एक निश्चित ताप पर अधिकतम होती है। जिस ताप पर क्रियाशीलता अधिकतम होती है, बह अनुकूलतम ताप कहलाता है।
- 20. संक्रमण धातुओं में d- कक्षक अपूर्ण होते हैं और उनमें अयुग्मित इलेक्ट्रॉन होते हैं। इनके कारण उनकी मुक्त संयोजकता (free valency) अधिक हो जाती है। अयुग्मित इलेक्ट्रॉन उनकी उचित ऊर्जा के माध्यमिक यौगिक बन्दने की क्षमता बढ़ा देते हैं।
- 21. CHCl₃ में C₂H₅OH को उसके वायु द्वारा ऑक्सीकरण को न्यूनतम रोकने के लिए मिलाया जाता है। एथिल एल्कोहॉल ऑक्सीकरण अभिक्रिया में ऋणात्मक उत्प्रेरक का कार्य करता है।

5.9 कोलाइड (Colloid)

- 1861 में थॉमस ग्राहम ने पाया कि गोंद, जिलेटिन आदि जान्तव झिल्ली से विसरित नहीं हो पाते है जबकि शर्करा, नमक आदि के जलीय विलयन आसानी से जान्तव झिल्ली में से विसरित हो जाते है। इसी आधार पर उसने पदार्थी को दो श्रेणियों में विमाजित किया।
- 1. कोलॉइड— (Kolla ग्रीक शब्द का अर्थ गम अर्थात् गूद) ये जान्तव झिल्ली से विसरित नहीं हो पाते है। उदाहरण— गोंद, जिलेटिन, स्टार्च आदि।
- 2. क्रिस्टलॉयड- ये जान्तव झिल्ली से विसरित हो जाते है। उदाहरण- NaCl, शर्करा आदि।
- परन्तु ग्राहम द्वारा पदार्थों का यह वर्गीकरण पूर्ण रूप से संतोषजनक नहीं था क्योंकि कोई विशेष यौगिक एक विलायक में क्रिस्टलॉयड तथा अन्य विलायक में कोलॉइड का व्यवहार करता है।
- उदाहरण— NaCl का जलीय विलयन क्रिस्टलॉयड है जबिक यह बैंजीन में कोलॉइड का व्यवहार करता है।
- साबुन का जलीय विलयन कोलॉइड है जबिक एत्कोहॉलिक विलयन क्रिस्टलॉयड है।
- विशिष्ट परिस्थितियों में सोना, चाँदी, ताँबा आदि धातुओं को भी कोलॉइडी अवस्था में प्राप्त किया जाता है।
- अतः आधुनिक मतानुसार कोलॉइड कोई पदार्थ न होकर पदार्थ की ही एक अवस्था होती है जो पदार्थ के कणों के आकार पर निर्भर करती हैं कणों के आकार के आधार पर विलयन को तीन भागों में (विलयन, कोलॉइड, निलम्बन) बांटा जा सकता है।
- 1. वास्तिक विलयन— यह एक समांगी विलयन है जिसमें कणों (अणु अथवा आयन) का आकार (व्यास) Inm से कम होता है। इस विलयन में विलेय के कणों को अतिसूक्ष्मदर्शी (Ultra microscope) से भी नहीं देखा जा सकता। उदाहरण के लिये NaCl का विलयन या यूरिया का विलयन आदि।
- 2. निलम्बन— यह एक विषमांगी मिश्रण है। जिसमें विलेय के छोटे-छोटे कण विलायक में परिक्षित (dispersed) रहते हैं। इस विलयन में कणों का आकार (व्यास) 1000 nm से अधिक होता है। यद्यपि ये कण नग्न आँखों से दिखाई नहीं देते परन्तु उन्हें सूक्ष्मदर्शी द्वारा देखा जा सकता है। यदि निलम्बन को कुछ समय के लिये रखा रहने दिया जाता है तो विलेय के कण पात्र के पैंदे में जमा हो जाते हैं। उदाहरण के लिये पानी में धूल के कण या आंधी के पश्चात् वायु में तैरते हुये धूल के कण आदि।
- 3. कोलाइडी विलयन— कोलाइडी विलयन एक विषमांगी मिश्रण है जिसमें कणों का आकार (व्यास) 1nm से 1000nm के मध्य होता है। विलेय के कणों को नग्न आँखों से तो नहीं देखा जा सकता है परन्तु इन्हें अतिसूक्ष्मदर्शी द्वारा देखा जाता है।

कोलाइडी विलयन एक विषमांगी तन्त्र होता है जिसमें पदार्थ 1mm— $1000 \text{ nm} (10^{-9} \text{m} - 10^{-6} \text{m})$ के आकार के कणों के रूप में विलायक में परिक्षिप्त रहता है। यहाँ विलायक को **परिक्षेपण माध्यम** (परिक्षेपित माध्यम) और विलोय को **परिक्षिप्त प्रावस्था** कहा जाता है।

माध्यम) और विलय को **पाराक्षम प्रावस्था** कहा जाता है। कणों का छोटा आकार होने के कारण इनका प्रतिग्राम क्षेत्रफल बहुत अधिक होता है। इसका अनुमान इस उदाहरण से लगाया जा सकता है। Icm भुजा वाला एक घन (Cube) लेते हैं। यदि इस घन को 10¹² छोटे घनों में विभाजित किया जाये तो इन घनों का आकार एक बड़े कोलाइडी कण के बराबर हो जाता है। यदि इन घनों का कुल पृष्ठ क्षेत्रफल देखें तो वह 60000 cm² हो जाता है। इस अत्यधिक क्षेत्रफल के कारण कोलाइड के कुछ विशेष अभिलक्षण होते हैं।

सारणी 5.3 : वास्तविक विलयन, कोलॉइडी विलयन, निलम्बन में अन्तर

豖.	ग्ण	वास्तविक	कोलॉइडी	निलम्बन
₹.	3	विलयन	विलयन	
1.	प्रकृति	समांगी	विषमांगी	विषमांगी
2.	प्रावस्था संख्या	1	2	2
3.	कणों का आकार	<10⁻†am	10 ⁻⁵ –10 ⁻⁷ cm	> 10 ⁻⁵ cm
4.	कणों की दृश्यता		सूक्ष्मदर्शी से	आंखों से
		सकते हैं	देखना संभव है	देखना
				संभव है।
5.	गुरूत्वाकर्षण	नगण्य	नगण्य	प्रभावित
				होते है
6,	अधिशोषण	कम या	उच्च	नगण्य
		नगण्य	अधिशोषण	
7.	फिल्टरल			
	(i) साधारण	संभव नहीं	संभव नहीं	संभव
	फिल्टर पत्र से	•		
	(ii) अल्ट्रा–	संभव नहीं	संभव	संभव
	फिल्टरन			
8.	ब्राउनी गति	प्रदर्शित नहीं	करते है।	नहीं करते
		करते		है।

9.	टिण्डल प्रभाव	प्रदर्शित नहीं	करते है।	नहीं करते	
	;	करते		है।	
10.	विसरण	तीव्र गति से	धीमी गति से	संभव नहीं	.
11.	विद्युत क्षेत्र	धनायन	सभी कणों का	अप्रभावित]
		कैथोड की	विपरीत		
		ओर '	*		
		ऋणायन	आवेशित प्लेट		
		एनोड की	पर संकदन		
		ओर	या अवक्षेपण।		
12.	प्रकटता	पारदर्शी	समान्यतया	अपारदर्शी	
			पारदर्शी		

5,9.1 कोलाइड की प्रावस्थाएँ

- परिक्षिप्त प्रावस्था (Dispersed Phase)

 यह वितरित
 अथवा आंतरिक प्रावस्था भी कहलाती है। यह वह घटक है

 जिसकी मात्रा अल्प होती है।
- 2. परिक्षेपण माध्यम (Dispersion Medium)— यह वितरण अथवा बाह्य प्रावस्था भी कहलाती है यह वह घटक है जिसका आधिक्य होता है।
- उदाहरण— सिल्वर के जलीय कोलॉइड विलयन में सिल्वर परिक्षिप्त प्रावस्था एवं जल परिक्षेपण माध्यम की भाँति कार्य करता है।
- परिक्षेपण अथवा वितरण माध्यम के नाम के आधार पर कोलॉइडी विलयनों को निम्नांकित विषिष्ट नाम दिए गए है।
- ♦ पिरक्षेपण माध्यम जल होने पर हाइड्रोसॉल
- पिक्षेपण माध्यम एल्कोहल होने पर एक्कोसॉल
- परिक्षेपण माध्यम बैंजीन होने पर बैंजोसॉल
- परिक्षेपण माध्यम वायु या गैस होने पर ऐरासॉल
- परिक्षिप्त प्रावस्था एवं परिक्षेपण माध्यम की प्रकृति के आधार पर कोलॉइड तंत्र के प्रकार को निम्नांकित सारणी में सूचीबद्ध किया गया है।

सारणी 5.6 कुछ सामान्य कोलॉइडी तन्त्र

परिक्षिप्त प्रावस्था	परिक्षेपण	कोलॉइडी तन्त्र का	उदाहरण
	माध्यम	विशेष नाम	
 1. ठोस	गैस	ठोसों के वायुसॉल, धुआँ, एरोसॉल	धूल का तूफान, धुँआ
2. ठोस	द्रव	सॉल	सोने का सॉल या कोलॉइडी सोना, दलदल युक्त जल, जल में वितरित
			स्टार्च गोंद, अधिकांश रोगन (पेन्ट) Fe(OH), के कोलॉइडी विलयन
3. ठोस	ठोस	ठोस सॉल (Solid sol)	खनिज, काले हीरे, रूबी काँच तथा विभिन्न रत्न
4. द्रव	गैस	द्रवों के वायुसॉल, ऐरोसॉल	कोहरा, बादल, कीटनाशी दवाइयों का छिड़काव, फुहार ऐरोसॉल
5. द्रव	द्रव	पायस या इमल्सन	दूध, इमल्सीकृत तेल व कई दवाइयाँ, तेल जल मिश्रण
<i>6.</i> द्रव	ठोस .	जैল (gel)	पनीर, मक्खन, बूट पॉलिश, खाने की जिलेटिन, विभिन्न जेलियाँ
7. गैस	द्रव	झाग या फोम	साबुन विलयन, फेटी हुई क्रीम, बीयर का झाग, कोकाकोला के झाग
8. गैस	ठोस	ठोस सॉल	प्यूमिक पत्थर, रबड़, स्टाइरीन फोम, समुद्री फेन।

5.9.2 कोलॉइड का वर्गीकरण

- प्रावस्थाओं के मध्य आकर्षण या बंधुता के आधार पर-
- (i) दवस्नेही कोलॉइड या द्वरागी कोलॉइड (Lyophilic colloids)— जिन विलयनों में वितरित प्रावस्था व वितरण माध्यम के मध्य तीव्र आकर्षण हो, उन्हें दव स्नेही (lyophilic: lyo = solvent, philic = loving) कोलॉइडी कहा जाता है। यदि विलायक जल का प्रयोग हो रहा हो, तो उसे जल स्नेही कोलॉइड कहा जाता है। इनके लक्षण निम्न हैं—
- (a) इन्हें वितरित प्रावस्था व वितरण मध्यम को सीधा मिलाकर बनाया जा सकता है।
- (b) ये स्थायी होते हैं।
- (c) इनका शीघ्रता से स्कंदन (Coagulation) नहीं होता। इन्हें स्कंदित करने के लिए या तो इन्हें गर्म किया जाता है अथवा कोई विद्युत अपघट्य मिलाया जाता है।
- (d) ये उत्क्रमणीय (reversible) होते हैं अर्थात् स्कंदित होने के बाद वाष्पीकरण से ठोस प्राप्त करके, उसे वितरण माध्यम में घोलने से उन्हें पुन: प्राप्त किया जा सकता है।

 उदाहरण-स्टार्च, गोंद, सरेश, जिलेटिन आदि।

 प्रोटीनों का जल में कोलॉइड अथवा उच्च बहुलकों का कार्बनिक विलायकों में कोलॉइड, द्रव स्नेही कोलॉइडों के उदाहरण है।

- दिव विरोधी कोलॉइडी या द्वव विरागी कोलाइड (Lyophobic colloids)— जब वितरित प्रावस्था व वितरण माध्यम के मध्य आकर्षण न हो अथवा प्रतिकर्षण हो तो विलयनों को द्रव विरोधी या द्रव विरागी (lyophobic: lyo = solvent, phobic = hating) कोलॉइड कहाँ जाता है। विलायक के रूप में जल का प्रयोग करने पर उसे जलविरोधी कोलॉइड (hydrophobic) कहा जाता है। इनमें उपर्युक्त के विपरीत लक्षण होते हैं। अर्थात्
- (a) वितरित प्रावस्था व वितरित माध्यम को सीधा मिलाने से इन्हें प्राप्त नहीं किया जा सकता। इन्हें बनाने के लिए विशिष्ट विधियों का प्रयोग होता है।
- (b) ये अस्थायी होते हैं, अत: इन्हें संग्रहीत (Preserve) करने के लिए इनमें स्थायीकारक पदार्थ डालने की आवश्यकता पड़ती है।
- (c) ये शीघ्रता से स्कंदित हो जाते हैं।
- (d) ये अनुत्क्रमणीय होते हैं अर्थात् स्कंदित होने के बाद उन्हें वितरण माध्यम के मिलाने मात्र से सॉल में परिवर्तन नहीं किया जा सकता। कई धातुओं तथा उनके सल्फाइड, ऑक्साइड जैसे अघुलनशील लवणों के कोलॉइड आदि द्रव विरोधी कोलॉइडों के उदाहरण है।

As₂S₃, Fe(OH)₃, Au का सॉल। द्रव स्नेही तथा द्रव विरोधी कोलॉइडों का एक तुलनात्मक अध्ययन सारणी 5.7 में किया गया है।

सारणी :5.7 द्रव स्नेही तथा द्रव विरोधी कोलॉइड में तुलना

		· •
गुण	दव स्नेही या दव रागी कोलॉइड	दव विरोधी या दव विरागी कोलॉइड
निर्माण की विधि	सीधे मिलाकर आसानी से बनाये जा सकते हैं।	केवल विशिष्ट विधियों द्वारा ही बनाये जाते हैं।
प्रकृति	उत्क्रमणीय।	अनुत्क्रमणीय
दृश्यता	अल्ट्रामाइक्रोस्कोप द्वारा भी आसानी से नहीं	अल्ट्रामाइक्रोस्कोप द्वारा आसानी से देखे जा सकते
•	देखे जा सकते हैं।	8
स्थायित्व	स्वतः स्थायी होते हैं।	अस्थायी होते हैं। अतः स्थायित्व हेतु स्थायित्व प्रदान वाले
		कारक मिलाते हैं।
वैद्युत अपघट्य	वैद्युत अपघट्य की अधिक मात्रा द्वारा अवक्षेपित	वैद्युत अपघट्य की सूक्ष्म मात्रा द्वारा भी
की क्रिया	हो जाते हैं जिसे स्कंदन कहते है।	अवशोषित हो जाते है।
श्यानता	परिक्षेपण माध्यम से बहुत अधिक होता है।	प्रायः परिक्षेपण माध्यम के बराबर होता है।
पृष्ठ तनाव	परिक्षेपण माध्यम से कम होता है	परिक्षेपण माध्यम के लगभग बराबर होता है।
टिण्डल प्रभाव	प्रकट नहीं करते।	प्रकट करते है।
जल योजन	विलायक के प्रति आकर्षण के कारण	द्रव विरोधी होने के कारण इनमें जलयोजन नहीं
	अत्यधिक जलयोजित होते है।	होता है।
	निर्माण की विधि प्रकृति दृश्यता स्थायित्व वैद्युत अपघट्य की क्रिया श्यानता पृष्ठ तनाव टिण्डल प्रभाव	निर्माण की विधि प्रकृति प्रकृति दृश्यता अल्ट्रामाइक्रोस्कोप द्वारा भी आसानी से नहीं देखे जा सकते हैं। स्थायित्व वैद्युत अपघट्य वैद्युत अपघट्य की क्रिया हो जाते हैं जिसे स्कदन कहते है। श्यानता प्रक्षिपण माध्यम से बहुत अधिक होता है। प्रकु तनाव परिक्षेपण माध्यम से कम होता है टिण्डल प्रभाव जल योजन विलायक के प्रति आकर्षण के कारण

2. परिक्षिप्त अवस्था के कर्णों के आधार पर –

(1) बहुआणुविक कोलॉइडी (Multimolecular Colloids)

- ये कोलॉइड पदार्थ के परमाणुओं या छोटे अणुओं (जिनका आकार 1nm से कम हो) के झुण्ड या समृह के रूप में होते हैं।
- इन समूहों में परमाणु अथवा अणु परस्पर वाण्डरवाल्स बलों द्वारा बंधे होते हैं।
- उदाहरण के लिये गोल्डसॉल में कोलॉइडी कण गोल्ड परमाणुओं का समूह होते हैं। इसी प्रकार सल्फर सॉल में 1000 या इससे भी अधिक S₈ अणुओं के समूह के रूप में कोलॉइडी कण होते हैं।

(2) वृहद् अणुक कोलॉइडी (Macromolecular colloids)—

 इन विलयनों में कोलॉइडी कणों के रूप में बड़े-बड़े वृहद् अणु (Macro molecule) होते हैं। बड़ा आकार होने के कारण ये अणु ही कोलॉइडी कण के परिमाण (आकार) (1nm – 1000 nm) के हो जाते हैं और विलायकों में वितरित हो जाते हैं।

- ये विलयन अधिक स्थायी होते है।
- चूंकि इनमें शुद्ध अणुओं का परिक्षेपण होता है अत: ये यथार्थ विलयन (वास्तविक विलेयन) के समान होते है।
- प्राकृतिक रूप से पाये जाने वाले वृहदाणिविक कोलाइडों में स्टार्च, सेलुलोज, प्रोटीन, एन्जाइम आदि है।
- उदाहरण स्टार्च, सेलुलोस, प्रोटीन, पॉलिएथीन, पॅलिएस्टर, PMMA नाइलोन, संश्लेषित रबड़ आदि वृहत् अणुओं के उदाहरण है।

(iii) संगुणित कोलॉइड (Associated colloids)-

- ये वे कोलॉइड होते हैं, जो कम सान्द्रण पर साधारण प्रबल विद्युत अपघट्य की भाँति व्यवहार प्रदर्शित करते हैं, परन्तु उच्च सान्द्रण पर संगुणित हो जाते हैं, और कोलॉइडों विलयन की भाँति व्यवहार करने लगते हैं। ऐसे कोलॉइडों को संगुणित कोलॉइड कहते है और समूहन (aggregation) से बने कण को मिशेल (micelle) कहा जाता है।
- उदाहराण साबुन जैसे R-COONa, सोडियम स्टीयरेट $(C_{17}H_{35}COONa)$, सोडियम पामिटेट $(C_{15}H_{31}COONa)$, सोडियम आलिएट, अपमार्जक (detergents) सोडियम डोडेकाइल सल्फेट $C_{12}H_{25}SO_3Na^-$ आदि।

- मिशेल का निमाण विलयन में एक निश्चित सान्द्रता के ऊपर होता है, इसे क्रान्तिक मिशेलाइजेशन सान्द्रता (Critical micellization Concentration) या (CMC) कहते हैं। भिन्न-भिन्न मिशेल के लिए CMC का मान भिन्न-भिन्न होता है।
- मिशेल एक निश्चित ताप से अधिक ताप पर बनते हैं जिसे क्राफ्ट ताप (Kraft Temperature) कहते हैं।
- वे अणु जिनमें जल स्नेही व जल विराधी दोनों सिरे (ends) उपस्थित रहते हैं, मिशेल निर्माण की प्रवृति रखते हैं।
- मिशेल निर्माण की क्रियाविधि (Mechanism of micelle formation) या साबुन की अपमार्जन क्रिया (Cleansing Action of Soap)
- साबुन अथवा अपमार्जक में एक लम्बी हाइड्रोकार्बन श्रंखला के सिरे पर एक आयनिक लवण समृह होता है।
- उदाहरणार्थ, साबुन सोडियम स्टीयेस्ट C₁₇H₃₅COONa⁺ में 17 कार्बन परमाणुओं की एक संतृप्त सहसंयोजक हाइ ब्रेकाबन श्रंखला होती हैं जिसे पूँछ (tail) कहते हैं और आयनिक —COONa समूह होता है, जिसे 'सिर' (head) कहते हैं। इसी प्रकार किसी अपमार्जक (detergent) सोडियम डोडेकाइल सल्फेट (sodium dodecyl sulphate) C₁₂H₂₅SO₃Na⁺ में 12 कार्बन परमाणुओं की एक संतृप्त हाइ ब्रेकार्बन श्रंखला 'टेल' है व आयनिक समूह —SO₃Na⁺ 'हैड' है। अत: साबुन अथवा अपमार्जक को निम्न प्रकार से प्रदर्शित किया जा सकता है—

चित्र 5.11

चित्रः 5.12 (a) एक साबुन का अणु (b) संगुणित कोलॉइड (मिशेल)

साबुन अथवा अपमार्जकके इस प्रकार के उपर्युक्त संरचना वले अणुओं का आयनिक सिरा ध्रुवीय विलायक जल में घुलनशील होता है अर्थात वह सिरा 'जल रागी' (hydrophilic or water loving) हैं। जबिक शेष अणु सहसंयोजक है, अत: अध्रुवीय सिरा चिकनाई में घुलनशील होता हैं, जल में नहीं अर्थात अणु का यह सिरा 'जल विरागी' ('hydrophobic'-water hating) है। किसी साबुन अथवा अपमार्जक की 'अपमार्जन किया' (cleansing action) में होता यह है कि जलविरोधी चिकनाई व ग्रीस में अपमार्जक का जलविरोधी सिरा मिल जाता है

लेकिन उसके दूसरे सिरं का पायसीकरण हो जाता है। इस प्रकार जब बहुत सारे अणु ऐसी क्रिया करेंगे और साथ में यदि हाथ से मसलने की अथवा गरम जल में उबालने की अथवा धोने की मशीन से हिलाने की क्रिया होगी तो चिकनाई जिस सतह पर चिपकी हुई है वहाँ से छोटी-छोटी बूँदों के रूप में हटकर जल में फैलने लगेगी और कुछ समय बाद वह सतह गन्दगी से मुक्त हो जायेगी। किसी साबुन अथवा अपमोर्जक की अपमार्जन क्रिया को चित्र 5.13 द्वारा स्पष्ट किया जा सकता है।

चित्र 5.13 अपमार्जक क्रिया की विभिन्न अवस्थाएँ

कोलाइडी विलयन बनाने की विधियाँ-(Methods of Preparation of collodalsol)

- द्रव स्नेही कोलॉइडी को परिक्षित्त प्रावस्था के उपयुक्त परिक्षेपण माध्यम के साथ मिलाकर प्राप्त किया जा सकता है। इसका मुख्य कारण परिक्षित्त प्रावस्था एवं परिक्षेपण माध्यम में प्रबल बंधुता का होना है।
 उदाहरण—स्टार्च, गोंद, जिलेटिन आदि के कोलाइडी विलयन।
 द्रव विरोधी (द्रव विरागी) कोलाइडों के विलयन बनाने की दो विधियाँ प्रचलित हैं।
- (1) **परिक्षेपण विधियाँ** (Dispersion Methods) इस विधि में बड़े आकार के कणों को विभाजित करके कोलाइडी आकार के कण प्राप्त किये जाते हैं।
- (2) संघनन विधियाँ (Condensation Methods)— इन विधियों में छोटे कणों (1mm से कम) को समूहित (संधिनत) करके कोलाइडी आकार के कण प्राप्त किये जाते है। यहाँ कुछ परिक्षेपण विधियों और कुछ संघनन विधियों का वर्णन किया गया है।

(1) परिश्लेपण विधियाँ (Dispersion Method)-

(a) यान्त्रिक परिक्षेपण (Dispersion Method)-

- इस विधि में कोलॉइडी मिल (चक्की) का प्रयोग किया जाता है।
- इस विधि में सर्वप्रथम पदार्थ को पीसकर बारीक चूर्ण बनाते हैं। अब
 इस बारीक चूर्ण का उपयुक्त विलायक में स्थूल निलम्बन बनाते हैं।

चित्रः 5.14 यान्त्रिक परिश्लेपण कोलॉइडी चक्की

- अब इस स्थूल निलम्बन को कोलॉइडी चक्की में से गुजारा जाता है।
 कोलॉइडी चक्की में धातु के दो पाट होते हैं। ये दोनों पाट एक-दूसरे के विपरीत दिशा में बहुत तेजी से घूमते रहते हैं।
- इन पाटों क मध्य से गुजरते समय, पदार्थ के निलम्बन के कण, इनकी
 गति के प्रभाव से कोलॉइडी आकार के कणों में टूट जाते हैं। इस प्रकार
 पदार्थ का कोलॉइडी विलयन प्राप्त हो जाता है।
- पेन्ट, वार्निश, टूथपेस्ट, छापे को स्याही, टैल्कम पाऊडर आदि इसी विधि से बनाये जाते हैं।

(b) विद्युत परिक्षेपण या ब्रेडिंग आर्क विधि-

 यह विधि धातुओं जैसे Cu. Ag. Au. Pt. Pd आदि के कोलॉइडी विलयन बनाने में प्रयुक्त की जाती है।

- इस विधि में धातु की दो छड़ों को NaOH या KOH के तनु विलयन में डुबाकर छड़ों के मध्य विद्युत आर्क उत्पन्न करते है।
- आर्क के उच्च ताप से धातु छड़ों की कुछ धातु वाष्प (1mm से कम आकार के कण) में बदल जाती है और ठण्डे जल के सम्पर्क में होने के कारण संघितत होकर कोलॉइडी आकार के कण उत्पन्न करती है। इस प्रकार इस विधि में परिक्षेपण और संघनन दोनों होते है।
- इस प्रकार बने धातु के कोलॉइडी कण, विलायक (प्राय: जल) जल में चारों ओर फैल जाते हैं, जिससे धातु सॉल प्राप्त हो जाता है।
- धातु सॉल अत्यन्त अस्थायी होते हैं। यहाँ NaOH या KOH इनके स्थाईत्व को बढाते हैं।

चित्र: 5.15 ब्रेडिंग आर्क विधि या वैद्युत-निक्षेपण

संघनन विधियाँ (Condensation Methods)

संघनन विधियों में सामान्यतया रासायनिक अभिक्रियाओं द्वारा कोलाइडी विलयन का विरचन किया जाता है।

अपचयन द्वारा---

इस विधि द्वारा भारी धातुओं जैसे Ag, Au, Pt, Cu आदि के सॉल बनाये जाते हैं। धातु लवणों के जलीय विलयन का अपचयन अपचायकों जैसे HCHO, NH_2OH , NH_2NH_2 टैनिक अम्ल, स्टैनस क्लोराइड, आदि के द्वारा कराया जाता है। $AuCl_3$ के विलयन को $SnCl_2$ से अपचियत कराकर Au का कोलॉइडी विलयन मिलता है, जिसे **कासियस पर्पिल** (Cassius purple) कहते हैं।

$$2\mathrm{AuCl}_{3(\mathrm{aq})} + 3\mathrm{SnCl}_{2(\mathrm{aq})} o 3\mathrm{SnCl}_{4(\mathrm{aq})} + 2\mathrm{Au}$$
 सॉल (कासियस पर्पिल)

$$2AuCl_3 + 3HCHO + 3HOH \longrightarrow$$

$$2HAuCl_4 + 3H_2O_2 \longrightarrow 2Au + 8Cl + 3O_2$$
 क्लारा आरिक अम्ल

$$PtCl_2 + HCHO + HOH \longrightarrow Pt$$
 $\xrightarrow{\text{ahrifisel}} + HCOOH$

Au एवं Ag कोलॉइड में स्थायी कारक के रूप में क्रमश: जिलेटिन एवं अंडे की जर्दी का उपयोग करते हैं।

(2) **ऑक्सीकरण**—सल्फर, सेलिनियम, आयोडीन आदि अधातुओं के कोलॉइड इस विधि द्वारा प्राप्त किए जाते हैं।

$$2H_2S + SO_{2(aq)} \rightarrow 3S + 2H_2O$$

सल्फर सॉल
 $H_2S + 2HNO_3 \rightarrow 2NO_2 + 2H_2O + S$
सल्फर सॉल
 $H_2S + Br_{2(ac)} \rightarrow 2HBr + S$

$${
m H_2S+Br_{2(aq)}
ightarrow 2HBr+S} \ {
m HIO_3+5HI
ightarrow 3I_2+3H_2O} \ {
m time}$$

(3) उमय अपघटन—यह अभिक्रिया अविलेय कणों के कोलाइडी विलयन बनाने में काम आती है।

उदाहरण-

$$\begin{split} &Hg(CN)_2 + H_2S \longrightarrow \underset{\text{whirtfield}}{HgS} + 2HCl \\ &As_2O_3 + 3H_2S \longrightarrow As_2S_3 + 3H_2O \\ &AgNO_3 + \underset{(N=Br,1)}{K-X} \longrightarrow AgX + KNO_3 \end{split}$$

(4) जल अपघटन—आयरन, क्रोमियम, एलुमिनियम के हाइड्रॉक्साइडों के कोलॉइडी विलयन को उनके लवणों के जल अपघटन से बनाया जाता है।

$$FeCl_3 + 3HOH \longrightarrow Fe(OH)_3 + 3HCl$$

- (5) विलायक के विनिमय से (Exchage of Solvent): जब कोई पदार्थ किसी एक विलायक में विलेय तथा दूसरे विलायक में अविलेय होता है तथा ये दोनों विलायक एक-दूसरे में मिश्रणीय होते हैं, तो विलायक बदल कर उस पदार्थ का कोलॉइडी विलयन बनाया जा सकता है। उदाहरणार्थ-सल्फर ऐल्कोहॉल में विलेय है तथा जल में अविलेय है तथा ये दोनों विलायक परस्पर मिश्रणीय है। सल्फर के ऐल्कोहॉलीय विलयन की अल्प मात्रा को जल में डालने पर सल्फर का जल में कोलॉइडी विलयन प्राप्त किया जाता है।
- (6) पदार्थ के वाष्पों का द्वव में संघनन जब किसी उबलते हुये पदार्थ के गर्म वाष्पों को किसी द्रव में प्रवाहित किया जाता है तो प्राय: उस पदार्थ का कोलॉइडी विलयन प्राप्त हो जाता है। इस विधि द्वारा सल्फर तथा पारे के कोलॉइडी विलयन सरलतापूर्वक प्राप्त किये जा सकते हैं।

5.9.3 जोलाइडी विलयनी का मुद्धिकरण (Parification of Colloids)

उपरोक्त विधियों से प्राप्त कोलॉइडी विलयन प्राय: अशुद्ध होते हैं। इन अशुद्धियों के प्रभाव से कोलॉइडी विलयन का स्थायित्व घट जाता है और धीरे-धीरे अपने आप स्कंदन होने लगता है। अत: इन अशुद्धियों

को दूर करना आवश्यक होता है। इनमें से अशुद्धियों को दूर करने की निम्न विधियाँ प्रमुख हैं—(i) अपोहन (dialysis), (ii) विद्युत अपोहन (Electrodialysis) तथा (iii) अतिसूक्ष्म फिल्टरन (Ultrafiltration)

(i) अपोहन (Dialysis)

- कोलॉइडी कण चर्मपत्र या जान्तव झिल्ली में से विसरित नहीं होते हैं, जबिक विलेय आयितक और अनआयितक अशुद्धियाँ विसरित हो जती है।
- अत: अशुद्ध सॉल को जान्तव झिल्ली की थैली में भरकर, इसे जल से भरे पात्र में लटका देते हैं (चित्र 5.16) तो अशुद्धियों के कण सूक्ष्म होने के कारण धीरे-धीरे बाहरी जल में विसरित हो जाते हैं तथा थैली में शुद्ध सॉल शेष बच जाता है।
- यह प्रक्रिया अपोहन और उपकरण अपोहक कहलाता है।

चित्र: 5.16 अपोहन

(ii) विद्युत अपोहन (Electrodialysis)---

- अपोहन की प्रक्रिया धीमी गति से होती है।
- यदि अशुद्ध सॉल से भरी जान्तव झिल्ली की थैली के दोनों ओर इलेक्ट्रोड़ लगा देते हैं (चित्र 5.17) तो अशुद्ध सॉल में उपस्थित आयनिक अशुद्धियाँ, इलेक्ट्रोडों द्वारा आकर्षित होकर तेजी से बाह्य जल में विसरित हो जाती है। जिससे सॉल शीघ्र शुद्ध हो जाता है।
- यह प्रक्रिया विद्युत अपोहन और उपकरण विद्युत अपोहक कहलाता
 है।

चित्र: 5.17 वैद्युत अपोहन

(iii) अतिसूक्ष्म फिल्टरन (अति सूक्ष्म निस्पंदन) (Ultra filtration)

- साधारण फिल्टर पेपर के रन्थ्रों का आकार बड़ा होने के कारण, इसमें से सभी अशुद्धि, विलायक और कोलॉइडी कण विसरित हो जाते हैं।
- यदि साधारण फिल्टर पेपर को जिलेटिन या कोलोडीयन के विलयन
 में डुबोकर सुखा लेते हैं तो अब फिल्टर पेपर के रन्थ्रों का आकार

- सूक्ष्म हो जाता है। अब इस सूक्ष्म फिल्टर पेपर से विलायक और अशुद्धियों के कण तो विसरित हो जाते हैं परन्तु कोलॉइडी कण विसरित नहीं हो सकते हैं।
- कोलोडियन सेल्यूलोस नाइट्रेट या नाइटो सेल्यूलोस का ऐथिल ऐल्कोहॉल अथवा ईथर में 4% विलयन होता है।
- अशुद्ध कोलॉइडी विलयन को इस सूक्ष्म फिल्टर पेपर में से छानने पर,
 अशुद्धि और विलायक के कण तो छन जाते हैं परन्तु कोलॉइडी कण फिल्टर पेपर के ऊपर ही शेष बच जाते हैं। इसे अति सूक्ष्म फिल्टरन कहते हैं।
- फिल्टर पेपर पर शेष बचे शुद्ध कोलॉइडी कणों को, अब शुद्ध विलायक में परिक्षिस करने पर, शुद्ध कोलॉइडी विलयन प्राप्त हो जाता है।

5.9.4 विष्मार्गी प्रकृति (Heterogeneous nature)

- 1. विषमांगी प्रकृति (Heterogeneous nature) कोलॉइडी विलयन विषमांगी निकाय होते हैं। इनमें दो प्रावस्थायें होती है, जिन्हें परिक्षिप्त प्रावस्था (विसरित अवस्था) तथा परिक्षेपण माध्यम (विसरण माध्यम) कहते हैं।
- 2. अस्थिरता (Unstability)— कोलॉइड मुख्यतः द्रव विरोधी कोलॉइड अस्थिर होते है क्योंकि प्रावस्था कणों का आकार बड़ा होता है एवं कुछ समय पश्चात् गुरुत्व बलों से निलम्बन हो जाता है।
- 3. सतही क्षेत्रफल (Surface area)— कोलॉइडी विलयन में उपस्थित कोलॉइडी कणों का कुल सतही क्षेत्रफल बहुत अधिक होता है, जिसके कारण कोलॉइडी विलयन उत्तम अधिशोषक की भाँति कार्य करते हैं तथा प्रभावशाली उत्प्रेरक के रूप में प्रयुक्त होते है।
- 4. रंग (Colour)— कोलॉइडी विलयनों का रंग परिक्षिप्त प्रावस्था द्वारा प्रकाश के प्रकीर्णित तरंगदैर्ध्य के आधार पर भिन्न—भिन्न होता है।
- कोलॉइडी कण प्रकाश के जिस तरंगदैर्ध्य का प्रकीर्णन सबसे अधिक करते हैं, कोलॉइडी विलयन उसी तरंगदैर्ध्य के रंग का दिखाई देता है। प्रकीर्णित तरंगदैर्ध्य का मान कोलॉइडी कणों के आकार और प्रकृति पर निर्मर करता है।
- उदाहरण— सिल्वर सॉल में उपस्थित, सिल्वर के कणों का आकार 6×10 5 mm होने पर सॉल का रंग पीला—नारंगी और 9×10-5 mm होने पर लाल—नारंगी होता है।
- 5. अवसादन (Sedimentation)— किसी सॉल को अपकेन्द्री मशीन में लेकर तेजी से घुमाने पर, सॉल के कण निःसादित हो जाते है। यह प्रक्रिया अवसादन कहलाती है। इस विधि द्वारा वृहद् अणुओं का आण्विक भार ज्ञात किया जा सकता है।

ब्राउनी गति (Brownian movement)— रॉबर्ट ब्राउन ने अति सूक्ष्मदर्शी द्वारा कोलॉइडी विलयनों का अवलोकन करने पर पाया कि विलयन में कोलॉइडी कण निरन्तर टेढे-मेढे ढंग से सभी दिशाओं में गतिशील

- रहते हैं। अतः कोलाइडी कणों की निरन्तर और अनियमित टेढी मेढी गति (चित्र 5.19(a)) **ब्राऊनी गति** कहलाती है।
- ब्राऊनी गति का कारण परिक्षेपण माध्यम के गतिशील अणुओं की कोलॉइडी कर्णों पर लगातार होने वाली असंत्लित टक्करें हैं।

चित्रः 5.19 (a) कौलाँइ ही कण द्वारा ब्राऊनी गति (b) परिश्लेपण माध्यम के कणों द्वारा कोलाँइ ही कण से असंतुलित टक्कर

(c) स्थूल निलम्बनों में ब्राऊनी गति न होना।

ब्राऊनी गित, कोलॉइडी कणों के आकार के व्युत्क्रमानुपाती होती है।
 अत: जैसे-जैसे कोलॉइडी कणों का आकार बढ़ता जाता है, वैसे-वैसे ब्राऊनी गित कम होती जाती है और एक स्थिति ऐसी आती है कि ब्राऊनी गित समाप्त हो जाती है।

3. प्रकाशिकी गुण (Optical Properties)

(i) টিण্डल प्रभाव (Tyndal effect)---

- वैज्ञानिक टिण्डल ने अध्ययन करके बताया कि-''किसी सॉल में से प्रकाश पुंज प्रवाहित करके, उसे प्रकाश की दिशा के लम्बवत् देखने पर, सॉल में प्रकाश पुंज का मार्ग चभकता हुआ दिखाई देता है। यह परिघटना टिण्डल प्रभाव कहलाती है।''
- अंधेरे में प्रकाश पुंज का पथ एक शंकु के समान दिखाई देता है, जिसे
 टिण्डल शंकु कहते हैं (चित्र 5.18)।

चित्रः 5.18 टिण्डल प्रभाव

वास्तविक विलयन में प्रकाश पूंज का मार्ग दिखाई नहीं देता है।

- कारण-वास्तिवक विलयन के कणों का आकार बहुत सूक्ष्म होने के कारण, ये प्रकाश का प्रकीर्णन नहीं कर सकते हैं। इस कारण प्रकाश पुंज का मार्ग दिखाई नहीं देता है परन्तु कोलॉइडी कणों का आकार बड़ा होने के कारण, ये प्रकाश का प्रकीर्णन कर देते हैं। इस कारण प्रकाश पुंज का मार्ग चमकता हुआ दिखाई देता है।
- िकसी सिनेमा हॉल में जब प्रोजेक्टर द्वारा स्क्रीन पर प्रकाश डाला जाता है तो प्रकाश के पथ में उपस्थित धूल के कणों के कारण प्रकाश का पथ दीप्तिमान हो जाता है।
- जब सूर्य की किरणें किसी अंधेरे कमरे में किसी छिद्र में से होकर आती है तो किरणों के पथ में उपस्थित धूल के कणों का दिखायी देना वास्तव में टिण्डल प्रभाव का सर्वोत्तम उदाहरण है।
- प्रकीर्णित प्रकाश की तीव्रता परिक्षेपण माध्यम तथा परिक्षिप्त प्रावस्था के अपवर्तनांकों (Refractive indexes) के अन्तर पर निर्भर करती है।
- द्रव स्नेही कोलॉइडी विलयनों में यह अन्तर कम होता है, इस कारण
 द्रव स्नेही कोलॉइडी विलयनों में टिण्डल प्रभाव बहुत ही क्षीण होता है।
- द्रव विरागी कोलॉइडी विलयनों में यह अन्तर अधिक होता है, अत: इनमें टिण्डल प्रभाव प्रबल होता है।
- टिण्डल प्रभाव का उपयोग कोलाइडी और वास्तविक विलयन में विभेद करने के लिये किया जाता है!

3. वैद्युत गुण (Electrical Properties) कोलॉइडी कण पर आवेश (Charge on colloid particle)

- कोलॉइडी कण विद्युतीय आवेश युक्त होते हैं।
- इन पर धनात्मक या ऋणात्मक विद्युतीय आवेश होता है।
- यह कोलॉइडी विलयनों का एक प्रमुख गुण है।
- िकसी कोलॉइडी विलयन में सभी कोलॉइडी कणों पर समान (धनात्मक या ऋणात्मक) विद्युतीय आवेश होता है तथा परिक्षेपण माध्यम पर इसके विपरीत तथा मात्रा में बराबर आवेश होता है। इस प्रकार पूर्ण विलयन विद्युतीय उदासीन होता है।
- कोलाइडी विलयनों का स्थायित्व कोलाँइडी कणों पर उपस्थित आवेश के आधार पर स्पष्ट किया जा सकता है। कोलाँइडी कणों पर समान आवेश उपस्थित रहने के कारण, वे एक दूसरे को प्रतिकर्षित करते हैं तथा कणों के समूह (Agreates) नहीं बना पाते हैं अर्थात् उनका स्कंदन नहीं हो पाता है।

सारणी 5.8 में कुछ धन आवेशित और कुछ ऋण आवेशित सॉल का संकलन किया गया है।

धनआवेशित सॉल 1. धात्मिक ऑक्साइड (जलयोजित) $Al_2O_3.xH_2O.Cr_2O_3.xH_2O$ $Fe_2O_3.xH_2O.SH_2O.Fe_2O_3.xH_2O.Fe_2O_3.xH_2O.Fe_2$

ऋणावेशित सॉल

- 4. TiO₂ सॉल
- धातुओं के सॉल
 Cu, Ag, Au. Pt सॉल
- धातु सल्फाइडों के सॉल As₂S₃, Sb₂S₃, CdS
- अम्लीय रंजक काँगो रेड, इओसिन सॉल
- स्टार्च, गोंद, जिलेटिन, चारकोल आदि के सॉल (धुँआ), सिलिसिक अम्ल, लेटेक्स, जल में अशुद्धियाँ।

कोलाइडी कणों पर विद्युतीय आवेश का कारण

कोलाइडी कर्णों पर आवेश उत्पन्न होने के अनेक कारण हैं।

- (a) कोलाइडी चक्की में घर्षण के कारण उत्पन्न आवेश कोलाइडी कणों पर आ जाता है।
- (b) धातुओं के वैद्युत परिक्षेपण के समय कोलाइडी कणों द्वारा इलेक्ट्रॉन ग्रहण (Electron capture) द्वारा उत्पन्न ऋण आवेश।
- (c) विलयन से आयनों का अधिमान्य अधिशोषण (Prefrencial adsorption) एवं/ या विद्युतीय दोहरी परत (Electrical double layer) बनने के कारण।
 - आयिनक प्रकार के कोलाइडी कण विलयन से उस आयन का अधिमान्य अधिशोषण करते हैं जो विलयन में उभयिनष्ठ हो। अर्थात् परिक्षेपण माध्यम में दो या दो से अधिक आयन होने पर कोलाइडी कण द्वारा उस आयन का अधिशोषण होता है जो कोलाइड में भी उपस्थित हो। उसे निम्नलिखित उदाहरणों द्वारा समझा जा सकता है—
- (I) यदि गर्म जल में FeCI₃ विलयन की बूंद-बूंद करके मिलाया जाता है तो Fe³ं आयनों का अधिशोषण, धन आवेशित सॉल

 Fe_2O_3 . xH_2O/Fe^{3+} या $Fe(OH)_3/Fe^{3+}$ बनता है। यदि $FeCl_3$ को NaOH के विलयन में डाला जाये तो OH^- के अधिशोषण के कारण ऋणात्मक सॉल बनता है।

Fe₂O₃.xH₂O/OH या Fe(OH)₃/OH

- (2) AgNO₃ के विलयन को KI विलयन में मिलाने पर AgI/I ऋणात्मक सॉल बनता है अर्थात् AgI द्वारा I आयनों का अधिशोषण होता है। यदि KI विलयन में AgNO₃ विलयन मिलाया जाता है तो AgI/Ag⁻ धनात्मक सॉल बनता है क्योंकि AgI द्वारा Ag⁻ का अधिशोषण किया जाता है।
- कोलॉइडी कण की सतह पर अधिशोषित आयन एक वैद्युत स्तर या सतह के रूप में रहते हैं तथा स्थिर रहते हैं। इस स्थिर सतह को प्राथमिक वैद्युत स्तर (primary electrical layer) या स्थिर वैद्युत स्तर (fixed electrical layer) कहते हैं। इस स्तर के चारों ओर विलयन में उपस्थित अन्य आयन (विपरीत आवेशित आयन) एक दूसरा वैद्युत स्तर बना लेते हैं, जो गतिशील या परिवर्तनशील होता है। इस स्तर में धनात्मक तथा ऋणात्मक दोनों प्रकार के आयन होते हैं लेकिन इस

स्तर में उपस्थित कुल आवेश प्राथमिक स्तर में उपस्थित कुल आवेश के मात्रा में बराबर परन्तु प्रकृति में विपरीत होता है। कोलॉइडी कण के चारों ओर उपस्थित यह दूसरा स्तर द्वितीयक वैद्युत स्तर (Secondary electrical layer) या गतिशील वैद्युत स्तर (mobile electrical layer) कहलाता है।

उदाहरण के लिये $Fe(OH)_3$ सॉल में Fe^{3+} आयन प्राथमिक विद्युत स्तर बनाते हैं तो Cl^- द्वितीयक विद्युत स्तर बनाते हैं :

 $Fe(OH)_3 + FeCl_3 \rightarrow Fe(OH)_3 Fe^{3\pi}$: $3Cl^+$ इसी प्रकार As_2S_3 'सॉल S^2 'का अधिशोषण करके ऋणात्मक प्राथमिक विद्युत स्तर और धनात्मक H^+ से द्वितीयक विद्युत स्तर बनाता है।

 $As_2S_3S^{2-}: 2H^+$

- फैरिक हाइड्रॉक्साइड के कोलॉइडी विलयन में द्वितीयक वैद्युत स्तर में मुख्यत: क्लोराइड (Cl-) आयन होते हैं।
- वैद्युत कण संचलन, स्कन्दन तथा रक्षण कोलाँइडी विलयनों के वैद्युत गुण है।
- प्राथमिक या स्थिर विद्युत स्तर और द्वितीयक अथवा गितशील विद्युत स्तरों के कारण आवेश का पृथक्करण होता है जो कि विभव का आधार होता है। अत: इन दोनों विद्युत स्तरों के मध्य उत्पन्न विभवान्तर विद्युत गितक विभव या जीटा विभव (Zeta potential) कहलाता है।
- कोलॉइडी कणों के आवेश के विषय में निम्न उदाहरण भी दिये जा
 सकते हैं।
- (1) Al(OH)₃ का सॉल कण धनावेशित होता है क्योंकि उपस्थित विद्युत अपघट्य AlCl₃ का Al³⁻ आयन इस कण पर अधिशोषित हो जाता है।

$$Al(OH)_3 + AlCl_{3(aq)} \rightarrow [Al(OH)_3]Ai^3$$
: $3Cl^-$
धनावेशित सगॅल कण

(2) कोलॉइडी कण पर आवेश की प्रकृति, उसके बनाने की विधि पर भी निर्भर करती है। जैसे KBr के आधिक्य विलयन में, AgNO, विलयन मिलाने पर प्राप्त AgBr सॉल कण ऋणावेशित होता है क्योंकि AgBr कण विद्युत अपघट्य KBr के Br आयन को अधिशोषित कर लेता है।

$$AgNO_{3(aq)} + KBr_{(aq)} \rightarrow [AgBr]Br^- : K^-$$

आधिक्य ऋणावेशित स्र्लं कण

(3) AgNO3 के आधिक्य में KBr विलयन मिलाने पर प्राप्त AgBr सॉल कण पर धनावेश होता है क्योंकि Ag' आयन AgBr पर अधिशोषित हो जाता है।

 $\mathrm{KBr}_{\mathrm{(aq)}}$ + $\mathrm{AgNO}_{\mathrm{3(aq)}}$ ightarrow [AgBr]Ag $^+$: NO_3 आधिक्य में धनावेशित सॉल कण

- (f) वैद्युत कण संचलन (Electrophoresis)—
- विद्युत क्षेत्र के प्रभाव में कोलॉइडी कणों का विपरीत आवेशित इलेक्ट्रोडों
 की ओर अभिगमन (migration), वैद्युत कण संचलन कहलाता है!
- कोलॉइडी कणों का कैथोड़ की ओर अभिगमन, धन कण संचलन (Cataphoresis) तथा ऐनोड की ओर अभिगमन, ऋण कण संचलन (Anaphoresis) कहलाता है।
- विद्युत कण संचलन की सहायता से कोलॉइडी कण पर उपस्थित आवेश की प्रकृति ज्ञात की जा सकती है। उदाहरणार्थ As₂S₃ के कोलॉइडी कण विद्युत क्षेत्र के प्रभाव में ऐनोड़ की ओर गित करते हैं, अत: ये कोलॉइडी कण ऋणावेशित होते हैं।
- विद्युत धारा प्रवाहित करने पर, आवेशित कोलॉइडी कण अपने से विपरीत आवेशित इलेक्ट्रोड पर पहुँचकर अपना आवेश त्याग देते हैं।
- अब उदासीन कोलॉइडी कण परस्पर संयुक्त होकर, बड़ै-बड़े कणों में बदलकर स्कंदित हो जाते हैं।

चित्रः 5.20 वैद्युत कण संचलन

5. कोलॉइडी विलयन का स्कंदन-

स्कन्दन (Coagulation)— कोलाइडी कण आवेशित होते हैं और आवेश उनके स्थायित्व का एक प्रमुख कारण है। यदि आवेश हटा दिया जाता है तो कोलाइडी कण एक दूसरे से संयुक्त होकर बड़े कण बनाते हैं जो कि अवक्षेप के रूप में नीचे बैठ जाते हैं या स्कन्दित हो जाते हैं। अत: किसी कोलाइडी विलयन के अवक्षेप में परिवर्तित होने की प्रक्रिया स्कन्दन (Coagulation) कहलाती है।

स्कन्दन निम्न प्रकार से किया जा सकता है—

- (i) विद्युत कण संचलन द्वारा— विद्युत क्षेत्र में कोलाइडी कण अपने विपरीत आवेशित इलेक्ट्रोड की ओर गृति करते हैं। वहाँ वे निरावेशित होकर स्कन्दित हो जाते हैं।
- (2) आधिक्य अपोहन द्वारा (Excessive dialysis)— यदि कोलॉइडी

विलयन का अधिक समय तक अपोहन किया जाता है, तो उसका स्कंदन हो जाता है। क्योंकि अधिक समय तक अपोहन करने पर, कोलॉइडी कणों पर उपस्थित आवेश भी अलग हो जाता है। अतः अब उदासीन कोलॉइडी कण परस्पर संयुक्त होकर स्कन्दित हो जाते हैं।

- पारस्परिक स्कन्दन द्वारा (By Mutual coagulation)— जब दो विपरीत आवेशित द्रव विरोधी कोलॉइडी विलयनों को उचित अनुपात में मिलाते हैं, तो दोनों विलयनों के कोलाइडी कण एक दूसरे के आवेश को नष्ट कर देते हैं। जिससे दोनों विलयनों का अवक्षेपण (स्कन्दन) हो जाता है। उदाहरणार्थ, फैरिक हाइड्रॉक्साइड (धनावेशित) के कोलॉइडी विलयन को आर्सेनियम सल्फाइड (ऋणावेशित) के कोलॉइडी विलयन में उचित अनुपात में मिलाने पर दोनों का स्कन्दन साथ-साथ हो जाता है।
 - इसी प्रकार जब धुँए के ऋणावेशित कार्बन कण, बादल के धनावेशित कोलॉइडी कणों के सम्पर्क में आते हैं तो बादल (ऐरोसॉल) का स्कन्दन हो जाता है। जिसके फलस्वरूप वर्षा होने लगती है। यह पारस्परिक स्कन्दन का उदाहरण है।
- (4) व्यथन द्वारा (By Boiling)— जब किसी सॉल को उबाला जाता है तो परिक्षेपण माध्यम के कणों की टक्करों के कारण कोलाइडी कणों की अधिशोषित परत छिन्न-भिन्न हो जाती है। जिससे उनका आवेश कम हो जाता है और वे संगुणित होकर बड़े कण बना कर नीचे बैठ जाते हैं।
- (5) विद्युत अपघट्य मिलाकर (By addition of an electrolyte)—
- जब किसी कोलॉइडी विलयन में विद्युत अपघट्य आधिक्य में मिलाया जाता है तो विद्युत अपघट्य का विपरीत आवेशित (आवेशित कोलॉइडी कण के विपरीत) आयन कोलॉइडी कण के आवेश का उदासीनीकरण करता है। अब कोलॉइडी कण उदासीन होकर परस्पर मिलकर बड़े होने लगते हैं और अवक्षेप के रूप में नीचे बैठ जाते हैं।
- यदि स्कन्दित कण, विलायक से हल्के होते हैं, तो वे विलायक पर तैरने लगते हैं, तब इसे ऊर्णन (Flocculation) कहते हैं।
- वैद्युत अपघट्य का वह आयन जो कोलॉइडी कणों के अवक्षेपण में सिक्रिय भाग लेता है, सिक्रिय आयन या स्कन्दन आयन (Coagulating ion) या समाक्षेपण आयन (flocculating ion) कहलाता है।
 - धनावेशित सॉल के कोलॉइडी कणों के आवेश का उदासीनीकरण विद्युत अपघट्य के ऋणायनों (anions) द्वारा होता है, जबिक ऋणावेशित सॉल के कोलॉइडी कणों के आवेश का उदासीनीकरण, विद्युत अपघट्य के धनायनों (Cations) द्वारा होता है।
- उदाहरणार्थ, आर्सीनियम सल्फाइड के कोलाइडी विलयन में BaCl₂
 विलयन मिलाने पर ऋणावेशित सॉल कणों का उदासीनीकरण Ba⁺⁺
 आयनों द्वारा होता है।

 $[As_2S_3]S^{--} + Ba^{++} \rightarrow [As_2S_3]S^{--} : Ba^{++}$ ऋणावेशित सॉल कण उदासीन कण

- धनावेशित कोलॉइडी विलयन के स्कन्दन में विद्युत अपघट्य का ऋणायन और ऋणावेशित कोलॉइडी विलयन के स्कन्दन में विद्युत अपघट्य का धनायन, प्रभावी आयन (effective ion) होता है।
- आयनों का स्कन्दन प्रभाव (Coagulation effect of ions)— आयनों का स्कन्दन प्रभाव उन पर उपस्थित आवेश के चिन्ह और उनकों संयोजकता पर निर्भर करता है।

हाडी-शुरुवे निवम (Hardy-schulze Rule)---

किसी आयन (स्कन्दन आयन) की संयोजकता जितनी अधिक होती है, उसकी स्कन्दन करने की शक्ति उतनी ही अधिक होती है। इस नियम को हार्डी-शुल्जे नियम कहते हैं। दूसरे शब्दों में किसी कोलॉइडी विलयन का स्कन्दन करने में विद्युत अपघट्य का वह आयन प्रभावी होता है जिस पर आवेश का चिन्ह कोलॉइडी कणों के आवेश के चिन्ह के विपरीत होता है।

प्रभावी आयन की स्कन्दन क्षमता उसकी संयोजकता वृद्धि के साथ बढ़ती है।

 धनावेशित कोलॉइडी कण के प्रति ऋणायनों की स्कन्दन शक्ति का घटता हुआ क्रम है—

 $[Fe(CN)_6]^4 > PO_4^3 > SO_4^2 > Cl^{-1}$

 ऋणावेशित कोलॉइडी कण के प्रति धनायनों की स्कन्दन शक्ति का घटता हुआ क्रम है—

 $\mathrm{Sn}^{4+} > \mathrm{Al}^{3+} > \mathrm{Ba}^{-+} > \mathrm{Na}^{-}$

- प्रभावी आयन की स्कन्दन क्षमता, विद्युत अपघट्य के एक अणु में उपस्थित प्रभावी आयनों की संख्या पर निर्भर नहीं करती है। जैसे फैरिक हाइड्रॉक्साइड के कोलॉइडी विलयन के स्कन्दन में NaCl, CaCl₂AlCl₃ व SnCl₄ समान रूप से प्रभावी है क्योंकि प्रभावी आयन Cl⁻ सभी में समान आवेश का है। इसी प्रकार आर्सीनियस सल्फाइड के कोलॉइडी विलयन के स्कन्दन में NaBr. Na₂SO₄. Na₃PO₄, Na₄P₂O₇ समान रूप से प्रभावी है क्योंकि प्रभावी आयन Na⁺ सभी में समान आवेश का है।
- प्रभावी आयन की स्कन्दन क्षमता, उसकी कोलॉइडी कण पर अधिशोषित होने की प्रवृत्ति पर भी निर्भर करती है। अत: H+, Na+, K+ आदि आयन आर्सीनियस सल्फाइड के कोलॉइडी विलयन का स्कन्दन करने में समान रूप से प्रभावशाली नहीं होते हैं।

5.9.5 कोलॉइडॉ का रक्षण (Protection of Colloids)

• रक्षण (protection)- हम जानते हैं कि किसी द्रव विरोधी सॉल में थोड़ी मात्रा में विद्युत अपध्य्य मिलाने पर, उसका स्कन्दन हो जाता है, जबिक द्रव स्नेही कोलॉइड का स्कन्दन उसमें विद्युत अपध्य्य की थोड़ी मात्रा मिलाने पर नहीं होता है। यदि किसी द्रव विरोधी सॉल में थोड़ी मात्रा में, द्रव स्नेही कोलॉइड मिला दिया जाये तो यह पाया जाता है कि थोड़ी मात्रा में विद्युत अपध्य्य मिलाने पर द्रव विरोधी सॉल का स्कनदन नहीं होता है। अत: द्रव स्नेही कोलॉइड की विद्युत अपध्य्य द्वारा स्कन्दन से रक्षा करता है। अत: द्रव स्नेही कोलॉइड की त्रियुत अपध्य्य द्वारा स्कन्दन से रक्षा करता है। अत: द्रव स्नेही कोलॉइडी को रक्षी कोलॉइड कहते हैं।

- . द्रव स्नेही सॉल की उपस्थिति में द्रव विरोधी सॉल का विद्युत अपघट्य की थोड़ी मात्रा द्वारा स्कन्दन न होना, रक्षण (protection) कहलाता है।
- . सभी द्रव स्नेही कोलॉइड और पृष्ठ सक्रिय यौगिक (surface active compounds) रक्षक कोलॉइड की भाँति व्यवहार करते हैं।
- (i) काली स्याही बनाते समय, इसमें रक्षक कोलॉइड के रूप में बबूल का गोंद मिलाया जाता है, जो कि काली स्याही में उपस्थित कार्बन के कोलॉइडी कणों को स्कन्दित होने से रोकता है।
- ii) आइसक्रीम बनाते समय, इसमें रक्षक कोलॉइड के रूप में थोड़ा सा जिलेटिन मिलाया जाता है, जो कि आइसक्रीम में उपस्थित दूध, बर्फ और शर्करा के कोलॉइडी कणों का पारस्परिक स्कन्दन नहीं होने देता है। स्वर्ण संख्या या स्वर्णाक (Gold Number)— रक्षक कोलॉइडों की रक्षण क्षमता की तुलना करने के लिये जिग्मोण्डी (Zigmondy) नामक वैज्ञानिक ने स्वर्ण संख्या शब्द से परिचित कराया।

स्वर्ण संख्या को निम्नवत परिभाषित किया जाता है-

किसी शुष्क दव स्नेही कोलाइडी की मिली ग्राम में वह मात्रा, जो 10 मिली मानक गोल्ड सॉल में डालने पर, उसके स्कन्दन को 10% NaCl विलयन के 1ml विलयन द्वारा होने से रोक देती है, उस दव स्नेही कोलॉइडी की स्वर्ण संख्या कहलाती है।

- द्रव स्नेही कोलॉइड की रक्षण क्षमता क्र 1 स्वर्ण संख्या
 अर्थात् जिस द्रव स्नेही कोलॉइड की स्वर्ण संख्या कम होती है,
 उसकी रक्षण क्षमता अधिक होती है।
- जिलेटिन की स्वर्ण संख्या सबसे कम (0.005 0.01) तथा स्टार्च की स्वर्ण संख्या सबसे अधिक (25) होती है अर्थात् जिलेटिन सर्वोत्तम तथा स्टार्च सबसे निकृष्ट रक्षक कोलाइड होता है।

सारणी 5.10

दवस्नेही कोलॉइडी	स्वर्ण संख्या
जिलेटिन	0.005-0.01
हीमोग्लोबिन	0.03
ऐल्बुमिन	0.10
गम अरेबिक	0.15-0.25
आलू का स्टार्च	25
डेक्स्ट्रीन 	6–20

इमल्शन (पायस) (Emulsions)

- पायस ऐसे कोलॉइडी विलयनों को कहते हैं, जिनमें वितरित प्रावस्था तथा वितरण माध्यम दोनों ही द्रव हों।
- अर्थात् द्रव-द्रव सॉल को ही पायस (Emulsion) कहते हैं।
- डदाहरणार्थ, दूध (Milk) एक ऐसा पायस है, जिसमें द्रव व वसाएँ जल में वितरित होती है।
 पायस दो प्रकार के होते हैं...

(1) तेल में जल (Water in Oil, w/o)

 जब वितरित प्रावस्था के रूप में जल हो और वितरण माध्यम के रूप में तेल हो तो तेल में जल (w/o) प्रकार के पायस बनते हैं।

5.24

- मक्खन, कोल्ड क्रीम, कॉड लीवर तेल आदि इसके सामान्य उदाहरण है।
- इन्हें तेलीय पायस (Oily emulsion) भी कहते हैं।
- (2) जल में तेल (Oil in Water o/w)---
- यह उपर्युक्त से विपरीत प्रकार का होता है। इसमें जल वितरण माध्यम व तैलीय पदार्थ वितरित प्रावस्था होता है।

चित्र: 5.21 पायस (इमल्शन)

- दूध, वैनिशिंग क्रीम, आदि इस श्रेणी में सामान्य उदाहरण है।
- इन्हें जलीय पायस (Aqueous emulsion) भी कहते हैं।
- कोई पायस तेल में जल है अथवा जल में तेल है, इसे ज्ञात करने की तीन विधियाँ है—
- (1) सूचक विधि (Indicator method)— इस विधि में पायस में कोई ऐसा रंजक डालते हैं, जो तेल में विलेयशील हो, अब यदि विलयन रंगीन हो जाये तो वह होगा तेल में जल। क्योंकि मुख्य भाग तेल है जिसमें रंजक घुलकर घोल को रंगीन बना देता है। यदि पायस रंगीन न हो तो इसका निष्कर्ष यह है कि वह पायस है जल में तेल, क्योंकि उस स्थित में रंजक तो तेल में घुल गया और विलयन का मुख्य भाग जल रंगहीन ही रहा।
- (2) चालकता विधि (Conductivity method)— o/w प्रकार के पायसों की चालकता अधिक होती है जबकि w/o प्रकार के पायसों में चालकता की मात्रा कम होती है। अत: चालकता प्रयोगों से ज्ञात किया जा सकता है कि पायस o/w प्रकार का है अथवा w/o प्रकार का।
- (3) तनुता विधि (Dilution Method)— किसी पायस को वितरण माध्यम की कितनी भी मात्रा के साथ तनु किया जा सकता है लेकिन यदि इसे वितरित प्रावस्था से तनु करेंगे तो उसकी पृथक सतह बन जायेगी। अत: यदि पायस में जल मिलाने पर सतह पृथक् न हो तो इसका अर्थ है कि वह जल में तेल है। इसके विपरीत, यदि जल डालने पर सतहें पृथक हो जायें तो, इससे निष्कर्ष निकलता है कि वह पायस तेल में जल है।

पायस बनाने की विधि (Method or Preparing Emulsion)

- िकसी पायस को बनाने की क्रिया पायसीकरण (emulsification)
 कहलाती है।
- उपर्युक्त द्रवों को मिलाकर तेजी से हिलाकर अथवा अल्ट्रासोनिक

- तरंगों द्वारा पायस बनाये जाते हैं।
- सामान्यतया पायस अस्थायी होते हैं। अतः इनके स्थायीकरण के लिए कुछ पदार्थों का प्रयोग किया जाता है, जिन्हें पायसीकारक अथवा पायसी कर्मक (emulsifying agent) कहते हैं।
- ये द्रव की सृक्ष्म बूँदों के बीच में एक निश्चित दूरी को बनाये रखते हैं।
 जिससे वे एक दूसरे के साथ मिलकर द्रव की सतह के रूप में पृथक न हो सके।
 - सामान्य पायसी कारकों के रूप में निम्न को लिया जाता है।
- तेल/जल (o/w) पायसों के लिये प्रोटीन, गोंद साबुन, अपमार्जक, ऐगार आदि को लिया जाता है।
- जल/तेल पायसों के लिये, वसीय अम्लों के भारी धातुओं के लवण,
 लम्बी शृंखला के एल्कोहॉल आदि को लिया जाता है।

पायस के गुण (Properties of Emulsion)

- गर्म करने पर, विद्युत अपघट्य को आधिक्य में मिलाने पर या पायस में उपस्थित पायसीकारक को नष्ट करने पर, पायस अपने अवयवों में ट्रंट जाता है।
- (2) Oil in water प्रकार के पायस की विद्युत चालकता अधिक और श्यानता (Viscosity) कम होती है।
- (3) Water in oil प्रकार के पायस की श्यानता (Viscosity) अधिक और विद्युत चालकता कम होती है।
- (4) किसी पायस को परिक्षेपण माध्यम में मिलाकर तनु किया जा सकता है, जबकि परिक्षिप्त प्रावस्था पायस में अधुलनशील होती है।
- (5) पायसों में कोलॉइडी कणों का आकार सॉल की अपेक्षा थोड़ा बड़ा होता है।
- (6) पायस टिण्डल प्रभाव और ब्राऊनी गति प्रदर्शित करते हैं।

पायसों के अनुप्रयोग (Applications of Emulsions)

- (1) मानव शरीर में सम्पन्न होने वाली पाचन क्रिया, पायसीकरण के बिना सम्भव नहीं है। हम भोजन के साथ जो वसा व घी ग्रहण करते हैं। उसका कुछ भाग आँतों के क्षारीय द्रव द्वारा सोडियम साबुन में बदल जाता है। इस प्रकार बना हुआ सोडियम साबुन शेष वसा व घी का पायसीकरण कर देता है, जिससे वह आँतों में आसानी से पच जाता है।
- (2) उपर्युक्त के अतिरिक्त कई औषधियाँ, मरहम, क्रीम, लोशन आदि विभिन्न प्रकार के पायस ही होते हैं।
- (3) धातुकर्म (Metallurgy) में धातु अयस्कों के सान्द्रण में प्रयुक्त की जाने वाली झाग उत्प्लावन विधि (Froth floatation process) में भी तैलीय पायस का ही प्रयोग होता है। धातु अयस्क के महीन चूर्ण को जल में डालकर उसमें तैलीय पायस डालते हैं और वायु के बुलबुलों से झाग उत्पन्न करते हैं। जिससे इच्छित धात्विक यौगिक के कण तैरकर सतह पर आ जाते हैं, जिन्हें एकत्रित कर लिया जाता है।

विपायसीकरण (Demulsification)—

किसी पायस को तोड़कर उसके दोनों अवयवो की सतहों को पृथक करने की क्रिया को विपायसीकरण कहते हैं।

- दूध अथवा दही की मलाई को मथकर उससे मक्खन प्राप्त करने की प्रक्रिया, विपायसीकरण का ही उदाहरण है।
- कुछ तेल कुओं से पैट्रोलियम भी पायस के रूप में प्राप्त होता है, जिसे विभिन्न भौतिक अथवा रासायनिक विधियों द्वारा विपायसीकृत किया जाता है।

5.9.7 कोलाइडॉ के अनुप्रयोग (Applications of Colloids)

हमारे दैनिक जीवन में काम आने वाले अधिकांश पदार्थ कोलाइड होते हैं। खानेपीने की चीजें, दवाईयाँ, पहनने के कपड़े, मानव एवं जन्तुओं का रुधिर आदि सभी कोलाइडी पदार्थ हैं। कुछ कोलाइडी घटनायें निम्न प्रकार हैं—

- (1) आकाश का नीला रंग (Blue Colour of Sky)— हवा में निलम्बित धूल के कणों द्वारा प्रकीर्णित प्रकाश द्वारा ही हमें आकाश का रंग नीला दिखाई देता है।
- (2) कोहरा, धुंध और बरसात (Fog, mist and Rain)— वायु में उपस्थित नमी ओसोक से नीचे ताप पर वायु में उपस्थित धूल के कणों पर संघनित होकर छोटी-छोटी बूँद (droplets) या बिन्दुक बना लेती है। ये बूँदे कोलाइडी आकार की होने के कारण वायु में कोहरे या धुंध के रूप में तैरती रहती हैं। बादल भी जल की छोटी-छोटी बूँदों के रूप में बने ऐरोसॉल होते हैं। अपना आवेश खोने पर ये बड़ी बूँदें बन कर बरसात के रूप में पृथ्वी पर गिरती हैं। दो विपरीत आवेशित बादलों के टकराने के कारण भी बरसात होती है।

कृत्रिम बरसात के लिये बादलों पर विपरीत आवेशित धूल के कण अथवा ठोस कार्बनडाईऑक्साइड का चूर्ण या AgI के बारीक चूर्ण का वायुयान द्वारा स्प्रे कराया जाता है।

- (3) खाद्य सामग्री (Food Material)— दूध, दही, मक्खन, आइसक्रीम, मिठाइयाँ, हलवा आदि भी कोलाइडों के ही रूप है।
- (4) रक्त का स्कन्दन (Coagulation of blood)— रक्त ऐल्ब्यूमिनाइडों के ऋणावेशित कणों का जल में कोलाइडी विलयन होता है। ये ऋण आवेशित कण फिटकरी में उपस्थित Al³ आयनों द्वारा या फैरिक क्लोराइड में उपस्थित Fe³ आयनों द्वारा स्कन्दित हो जाते हैं, जिससे रक्त का थक्का (blood clot) जम जाता है, रक्त वाहिनियाँ बन्द हो जाती है और रक्त का बहना रूक जाता है।

(5) डेल्टा का निर्माण (Formation of Delta)

- उन स्थानों पर जहाँ निदयाँ समुद्र में जाकर मिलती है, मिट्टी की त्रिभुजाकार भूमि का निर्माण हो जाता है, जिसे डेल्टा कहते हैं।
- नदी के जल में रेत, मिट्टी तथा अन्य पदार्थ ऋणावेशित कोलाइडी कणों के रूप में निलम्बित रहते हैं। जब नदी समुद्र में मिलती है तो समुद्री जल में उपस्थित NaCl. MgBr₂, Kl व अन्य विद्युत अपघट्यों से प्राप्त धनायनों से रेत, मिट्टी आदि के कणों का आवेश नष्ट हो जाता है, जिससे वे अवक्षेपित हो जाते हैं तथा स्कन्दन के कारण डेल्टा बन जाता है।

चित्र: 5.22 डेल्टा

- (6) धुएँ का अवक्षेपण (Precipitation of Smoke) —
- धुआँ एक वायु प्रदूषक (air pollutant) है।
- इसमें कार्बन के ऋणावेशित कोलॉइडी कण वायु (गैस) में परिक्षिप्त रहते हैं।
- 👚 ये कार्बन कण श्वासोच्छवास के लिये हानिकारक है।
- अत: उन्हें धुएँ से पृथक् करना आवश्यक है।
- इसके लिये धुएँ को एक चिमनी में से प्रवाहित करते हैं जिसमें धनावेशित धातु का गोला रहता है। धातु के गोल का धनावेश, कार्बन कणों के ऋण आवेश को नष्ट कर देता है। आवेश के नष्ट होने से कार्बन के कण नीचे गिर जाते हैं तथा गर्म हवा चिमनी से निकल जाती है। इस गोले को कार्ट्रेल (Cottrel) अवश्लेपक कहते हैं।

चित्र: 5.23 काट्रेल अवश्लेपक

(7). पेय जल का शुद्धिकरण (Purification of drinking water)—

- प्राकृतिक स्त्रोतों से प्राप्त जल में मिट्टी के कण, रेत, बैक्टीरिया तथा
 अन्य अविलेय अशुद्धियां उपस्थित रहती है।
- इन कोलॉइडी अशुद्धियों पर ऋणावेश होता है।
- इस अशुद्ध जल में फिटकरी (Potash alum) मिलाते हैं। फिटकरी से प्राप्त Al³⁺ तथा K' कोलॉइडी अशुद्धियों के ऋणावेश को नष्ट कर देते हैं। इससे अशुद्धियाँ स्कन्दित होकर नीचे बैठ जाती है।

- (8) कोलॉइडी औषधियाँ (Colloidal Medicines)---
- बहुत सी औषधियाँ कोलाँइडी अवस्था में बनाई जाती है क्योंकि कोलाँइडी कणों का अवशोषण (assimilation) शरीर के पाचन तन्त्र द्वारा सुगमतापूर्वक होता है।
- मिल्क ऑफ मैग्नीशिया, Mg(OH)₂ का जल में कोलॉइडी परिक्षेपण है, इसे प्रति अम्ल (Aantiacid) के रूप में प्रयोग करते हैं।
- आर्जीरॉल (Argyrol) तथा प्रोटारगॉल (Protargol) औषिधयाँ सिल्वर के कोलॉइडी विलयन है, जो आँखों की बीमारियाँ के इलाज में प्रयुक्त की जाती है।
- कोलॉइडी सल्फर का उपयोग कीटाणुनाशक के रूप में होता है।
- कोलॉइडी ऐन्टीमनी कालाजार (Typhus) के इलाज में प्रयुक्त होकता है।
- (9) चर्मशोधन (Tanning of Leather)
- चमड़ा धनावेशित प्रोटीन कणों से युक्त कोलॉइडी निकाय होता है।
 टैनिन जल में ऋणावेशित सॉल बनता है। जब चमड़े को टैनिन विलयन में डुबाया जाता है तो धनावेशित प्रोटीन कणों तथा ऋणवेशित टैनिन कणों का पारस्परिक स्कन्दन हो जाता है। टैनिंग से चमड़ा कड़ा हो जाता है।
- (10) रखर प्लेटिंग (Rubber plating)— लेटेक्स (रबर के वृक्ष से प्राप्त दूध की तरह का तरल पदार्थ) में रबर के ऋण आवेशित कोलॉइडी कण में जल में परिक्षिप्त होते हैं। औजारों के हैंडिल या तारों को विद्युत का कुचालक बनाने के लिये उन पर रबर जमाई जाती है। जिस वस्तु पर रबर जमानी (deposit) होती है, उसे ऐनोड (धनोद) बनाते हैं। विद्युत प्रवाहित करने पर रबर के कण धनोद की ओर चलते हैं, जहाँ वे निरावेशित होकर जमा हो जाते हैं।
- (11) साबुन और अपमार्जक की शोधन क्रिया— गन्दे कपड़ों पर चिकनाई अर्थात् तैलीय द्रवों के धब्बे लगे रहते हैं। इन धब्बों पर तथा गन्दे कपड़ों पर अन्य स्थानों पर धूल तथा मिट्टी के कण भी जमा रहते हैं। जल तथा तैलीय द्रव एक दूसरे के साथ पायस (Emulsion) बनाते हैं लेकिन यह पायस अस्थायी होता है। केवल जल की सहायता से कपड़ों पर से चिकनाई के धब्बे नहीं हटाये जा सकते। कपड़ों को साफ करने के लिए साबुन या डिटरजेण्ट का प्रयोग किया जाता है। इनकी उपस्थिति में जल तथा तैलीय द्रवों का पयास स्थायी हो जाता है, कपड़ों पर से चिकनाई की पकड़ (grip) ढीली हो जाती है तथा जल के प्रवाह से चिकनाई की धब्बे अलग हो जाते हैं। इसके अतिरिक्त साबुन, जल के साथ एक कोलाइडी विलयन भी बनाता है जो धूल तथा मिट्टी के कणों को अधिशोषित (Adsorb) करके उन्हें कपड़ों पर से हटा देता है। इस प्रकार साबुन के प्रयोग से कोलाइडी विलयनों के सिद्धान्तों के आधार पर कपड़ों को साफ कर दिया जाता है।
- (12) फोटोग्राफी में (Photography)— जिलेटिन और पोटेशियम ब्रोमाइड के विलयन में AgNO₃ विलयन मिलाने पर AgBr के कण जिलेटिन में निलम्बित हो जाते हैं। इस कोलॉइडी विलयन का लेप काँच की प्लेट या सेलुलॉइड की फिल्म पर करके फोटोग्राफी प्लेट या फिल्म बनाई जाती है।

- (13) वाहितमल विसर्जन (Sewage disposal)— नालियों में बहने वाले गन्दे पानी में मल और मिट्टी आदि के आवेशित कण होते हैं। महानगरों में इसे शहर के बाहर बड़े-बड़े कुण्डों में जिनमें इलेक्ट्रोड़ लगे रहते हैं, में ले जाया जाता है। मल आदि के आवेशित कण विरोधी प्रकृति के इलेक्ट्रोड़ द्वारा आकर्षित होकर निरावेशित हो जाते हैं और नीचे बैठ जाते हैं। इस प्रकार पानी स्वच्छ हो जाता है तथा नीचे बैठी हुई गन्दगी का उर्वरकों के रूप में उपयोग करते हैं।
- (14) औद्योगिक उत्पाद (Industrial Products)— औद्योगिक उत्पाद जैसे-पेन्ट, स्याही, प्लास्टिक, रबड़, लुब्रिकेन्ट (स्नेहक) सीमेन्ट, आदि सभी कोलाइडी तन्त्र हैं।

अभ्यास- 5.3

- प्र.1. वास्तविक विलयन, कोलाइडी विलयन और निलम्बन में कणों के आकार की सीमा क्या है?
- प्र.2. ठोस का ठोस में कोलाइडी विलयन क्या बनता है? दो उदाहरण दीजिए।
- प्र.3. गैस का गैस में कोलाइडी विलयन नहीं कहलाता है, क्यों?
- प्र.4. द्रवरागी और द्रव विरागी कोलाइडी विलयनों के दो-दो उदाहरण लिखिए।
- प्र.5. संगुणित कोलाइड क्या है? उदाहरण लिखिए।
- प्र.6. क्रान्तिक मिशेलाइजेशन सान्द्रता (CMC) क्या है?
- प्र.7. द्रवरागी और द्रव विरागी कोलाइडों में अन्तर स्पष्ट कीजिए।
- प्र.8. कोलाइडी विलयन बनाने की परिक्षेपण और संघनन विधियाँ क्या है? समझाइए।
- प्र.9. कोलाइडी विलयनों का शुद्धिकरण कैसे किया जाता है? चित्र द्वारा समझाइये।
- प्र.10. किसी सॉल में प्रकाश पुंज प्रवाहित करने पर प्रकाश का मार्ग चमकता हुआ दिखाई देता है, समझाइए क्यों?
- प्र.11. क्या होता है जबकि फैरिक हाइड्रोक्साइड सॉल और आरसीनियस सल्फाइड सॉल को मिलाया जाता है,और क्यों?
- प्र.12. कोलाइडी कणों पर उत्पन्न होने वाले आवेश को समझाने की आधुनिक धारणा क्या है? समझाइए।
- प्र.13. हार्डी और शूल्ज नियम क्या है? उदाहरण देते हुए समझाइए।
- प्र.14. किसी विद्युत अपघट्य के स्कन्दन मान या ऊर्णन मान की परिभाषा लिखिए। ऊर्णन मान और स्कन्दन क्षमता में सम्बन्ध क्या होगा?
- प्र.15. द्रवरागी कोलाइडों का रक्षक गुण क्या होता है? समझाइए।
- प्र.16. स्वर्णांक या स्वर्ण संख्या किसे कहते हैं? कोलाइडों के रक्षक गुण से इसका क्या सम्बन्ध है?
- प्र.17. सबसे अधिक और सबसे कम स्वर्णांक वाले द्रवरागी कोलाइडों के नाम और उनके स्वर्णांक क्या हैं?
- प्र.18. फोटोग्राफी प्लेट बनाने में जिलेटिन किस प्रकार का कार्य करता है?
- प्र.19. कोलॉडियन क्या होता है? इसका क्या उपयोग है?
- प्र.20. साबुन के तनु विलयन और सान्द्र विलयन की प्रकृति कैसी होती है। स्यष्ट कीजिए।

उत्तरमाला

1. वास्तविक विलयन में कणों का आकार < Inm या 10³ pm

कोलाइडी विलयन में कणों का आकार 1nm – 1000 nm या 10⁶pm निलम्बन में कणों का आकार > 1000 nm या 10⁶pm

2. ठोस का ठोस ये कोलाइडी विलयन ठोस सॉल (Solid sol) कहलाता है।

उदाहरण - खनिज, रंगीन काँच

- 3. कोलाइडी विलयन एक विषमांगी तन्त्र है, परन्तु गैस का गैस में विलयन एक समांगी तन्त्र है, इसीलिये इस तन्त्र को कोलाइडी विलयन नहीं कहते हैं।
- द्रवरागी कोलाइडी स्टार्च, जिलेटिन द्रविरागी कोलाइडी - Fe(OH), सॉल, Au सॉल
- 5. पाठ्य सामग्री देखिए।
- 6. जिस निश्चित सान्द्रता के ऊपर संगुणित कोलाइड मिशेल बनाते हैं उस सान्द्रता को क्रान्तिक मिशेलाइजेशन सान्द्रता (CMC) कहते हैं।
- 7. पाठ्य सामग्री देखिए।
- 8. परिक्षेपण विधियों में, पदार्थ के बड़े कणों को विभाजित करके कोलाइडी आकार के कण प्राप्त किसे जाते हैं। संघनन विधियों में पदार्थ के सूक्ष्म कणों को समूहित (संघनन) करके कोलाइडी आकार के कण प्राप्त किये जाते हैं।
- पाठ्य सामग्री देखिए।
- 10. जब किसी सॉल में प्रकाशपुंज प्रवाहित किया जाता है, तो कोलाइडी कण प्रकाश का प्रकीर्णन करते हैं, क्योंकि कोलाइडी कणों का आकार बड़ा होता है। इस कारण प्रकाश पुंज का मार्ग चमकता हुआ दिखाई देता है।
- 11. फैरिक हाइड्रोक्साइड सॉल धन आवेशित है जबिक आरसीनियस सल्फाइड सॉल ऋणआवेशित है। जब इन दोनों को मिलाया जाता है तो दोनों का ही स्कन्दन हो जाता है।
- 12. पाठ्य सामग्री देखिए।
- 13. किसी सॉल का स्कन्दन करने में विद्युत अपघट्य का वह आयन प्रभावी होता है, जिसका आवेश, कोलाइडी कण के आवेश के विपरीत होता है।

हार्डी शूल्ज नियम के अनुसार प्रभावी आयन की स्कन्दन क्षमता अपनी संयोजकता में वृद्धि के साथ बढ़ती हैं।

उदाहरण के लिए धन आवेशित सॉल को स्कन्दित करने में ऋण आवेशित आयन प्रभावी होंगे। उनकी स्कन्दन क्षमता का क्रम

$$CI^- < SO_4^{2-} < PO_4^{3+} < [Fe(CN)_6]^{4-}$$

14. ऊर्णन मान-किसी विद्युत अपघट्य के मिलीमोलों की वह न्यूनतम संख्या जो एक लीटर कोलाइडी विलयन के स्कन्दन के लिए पर्याप्त हो, उसका स्कन्दन मान या ऊर्णन मान कहलाता है।

15. जब किसी द्रव विरागी कौलाइडी विलयन में द्रवरागी कोलाइडी मिला दिया जाता है तो द्रव विरागी कोलाइडी विलयन का स्थायित्व बढ़ जाता है, अर्थात् विद्युत अपघट्य मिलाने पर उसका स्कन्दन रूक जाता है। द्रवरागी कोलाइड का यह गुण उसका रक्षक गुण कहलाता है।

द्रवरागी कोलाइड द्रव विरागी कोलाइडी कणों के चारों ओर एक रक्षी

परत का निर्माण करते हैं, इस प्रकार उसका स्कन्दन थोड़े विद्युत अपषद्य मिलाने पर नहीं होता है।

16. स्वर्णांक-िक्सी शुष्क द्रवरागी कोलाइड की मिलीग्राम में वह मात्रा जो 10mL मानक गोल्ड सॉल में डालने पर, उसके स्कन्दन को 10% NaCl विलयन के 1mL द्वारा होने से रोक देती है। उस द्रवरागी कोलाइड का स्वर्णांक कहलाता है।

द्रवरागी कोलाइड की रक्षक क्षमता $\infty \frac{1}{\text{स्वर्णांक}}$

- 17. सबसे अधिक स्वर्णांक आलू स्टार्च (स्वर्णांक = 25) सबसे कम स्वर्णांक जिलेटिन (स्वर्णांक = 0.005 - 0.01)
- 18. फोटोग्राफी प्लेट बनाने में कोलाइडी AgBr का उपयोग होता है। जिलेटिन इस कोलाइडी विलयन के रक्षक कोलाइड का कार्य करता है।
- 19. नाइट्रोसेलूलोस का एल्कोहॉल और ईथर में 4% विलयन कॉलॉडियन कहलाता है। सामान्य फिल्टर पत्र को अति सूक्ष्म फिल्टर पत्र (Ultrafilter paper) बनाने में इसका विलयन सामान्य फिल्टर पत्र पर स्प्रे किया जाता है। ताकि उसके छिद्रों को अतिसूक्ष्म छिद्रों में परिवर्तित किया जा सके।
- 20. साबुन का तनु विलयन, वास्तविक विलयन होता है जबकि सान्द्र विलयन कोलाइडी विलयन (संगुणित कोलॉइडी विलयन) होता है।

5.10 पाठ्यपुस्तक के प्रश्न-**उ**त्तर

बहुचयनात्मक प्रश्न

प्र.1 अधिषोषण समतापी के लिए समीकरण है—

(31)
$$\frac{x}{m} = KP^{\frac{1}{n}}$$
 (4) $\frac{x}{m} = KP^n$

(स)
$$\frac{x}{m} = KP^{-n}$$
 (द) उपर्युक्त सभी (3)

- प्र.2 आकृति—वरणात्मक उत्प्रेरण वह अभिक्रिया है जो उत्प्रेरित होती है—
 - (अ) एंजाइम द्वारा
- (ब) जियोलाइट द्वारा
- (स) प्लैटिनम द्वारा
- (द) जिग्लर—नाटा उत्प्रेरक द्वारा
- प्र.3 भौतिक अधिषोषण के लिए अनुपयुक्त कथन है-
 - (अ) ठोस सतह पर अधिषोषण, उत्क्रमणीय है।
 - (ब) ताप बढ़ाने पर अधिषोषण की मात्रा बढ़ती है।
 - (स) अधिषोषण स्वतः प्रक्रिया है।
 - (द) अधिषोषण की ऐंग्थेल्पी एवं एंट्रोपी दोनों ऋणात्मक है। (ब)

(द) स्टार्च

- प्र.4 निम्न में से किसकी गोल्ड संख्या न्यूनतम होती है-
 - (अ) जिलेटिन

(स) गम ऐरेबिक

- (ब) अंडे की एल्ब्यूमिन
- (अ)

(ब)

प्र.5 As_2S_3 कॉलोइड ऋणावेषित है तो इसके स्कंदन की क्षमता

सर्वाधिक किसमें होगी-

(अ) AlCl,

(ৰ) Na,PO,

(स) CaCl,

(द) K,SO₄

(अ)

एंजाइम की सक्रियता सर्वाधिक है-

(अ) 300K पर

310 K पर (ৰ)

(द) 330 K पर

(स) 320K पर द्रवरागी सॉल, द्रवविरागी सॉल की तुलना में अधिक स्थायी है, प्र.7

(अ) कोलॉइडी कणों पर धन आवेष होता है।

(a) कोलॉइडी कणों पर कोई आवेष नहीं होता है।

(स) कोलॉइडी कण

(द) कोलॉइडी कणों के ऋण आवेषों के मध्य प्रबल वैद्युत स्थिर प्रतिक्षेपण होता है।

अधिषोष्य की अधिषोषण क्षमता में वृद्धि की जा सकती है-

(अ) पृष्ठीय क्षेत्रफल में वृद्धि करके।

(ब) इसे बारीक करके।

(स) छिद्र युक्त बनाकर

(द) (द) सभी विकल्प।

कौनसी पृष्ठीय परिघटना नहीं है-प्र.9

(अ) समांगी उत्प्रेरण

(ब) ठोसों का मिलना

(द) वैद्युत अपघटन प्रक्रिया (द) (स) जंग लगना

प्र.10 आरसेनिक सल्फॉइड सॉल पर ऋण आवेष है इसकी अवक्षेपण में बदलने की अधिकतम क्षमता है-

(3) H,SO₄

(ৰ) Na,PO

(स) CaCl,

(द) AlCl, (द)

प्र.11 मानव शरीर में रक्त शुद्धिकरण का तरीका है--

(अ) विद्युत कण संरचना (ब) वैद्युत परासरण

(स) अपोहन

(द) स्कंदन (स)

प्र.12 तनु HCl की कुछ बूंदे, ताजा फैरिक ऑक्साइड के अवक्षेपण पर डालने से लाल रंग का कोलॉइडी विलयन मिलता है इस प्रक्रम को कहते हैं–

(अ) अवक्षेपण क्रिया

(ब) अपोहन

(स) रक्षण क्रिया

(द) वियोज्य

(द)

प्र.13 कोलॉइडी कणों की अनियमित गति का अध्ययन किया-

(अ) जिंगमोण्डी

ऑस्टवाल्ड (ब)

(स) राबर्ट ब्राउन

(द) टिण्डल

(स)

प्र.14 वर्णलेखन का आधार है-

(अ) भौतिक अधिषोषण

रासायनिक अधिषोषण (ब)

(स) हाइड्रोजन आबंध

तलचटीकरण (द)

(अ)

प्र.15 स्वर्ण संख्या संबंधित है-

(अ) वैद्युत कण संचलन से

परपल ऑफ कैसियस से

(स) रक्षक कोलॉइडों से

(द) शुद्ध स्वर्ण की मात्रा से !

(स)

अतिलघूत्तरात्मक प्रश्न

प्र.1. कीलॉइडी विलयन में उपस्थित कोलॉइडी कण अच्छे

अधिशोषक क्यों होते हैं?

उत्तर- सूक्ष्म आकार होने के कारण पृष्ठीय क्षेत्रफल अधिक होता है।

प्र.2. पनीर किस प्रकार का कोलॉइड है?

उत्तर-पनीर जैल है। अर्थात् परिक्षिप्त प्रावस्था द्रव और परिक्षेपण माध्यम

प्र.3. समांगी एवं विषमांगी उत्प्ररेण का एक-एक उदाहरण लिखए।

 $2CO_{(g)} + O_{2(g)} + [NO_{(g)}] \rightarrow 2CO_{2(g)} + [NO_{(g)}]$ अभिकारक, उत्पाद और उत्प्रेरक NO_(g) सभी गैसीय अवस्था में है। $N_{2(g)} + 3H_{2(g)} + [Fe + Mo]_{(s)} \rightarrow 2NH_{3(g)} + [Fe + Mo]_{(s)}$ अभिकारक और उत्पाद गैस हैं, जबकि उत्प्रेरक Fe + Mo ठोस अवस्था में है।

प्र.4. कोलॉइडी विलयन टिण्डल प्रभाव प्रदर्शित करते है। दो कारण दीजिए।

उत्तर-(i) कोलाइडी कणों का आकार बड़ा होने के कारण ये प्रकाश का प्रकीर्णन कर देते हैं। इस कारण प्रकाश पुंज का मार्ग चमकता हुआ दिखाई देता है।

(2) परिक्षिस प्रावस्था और परिक्षेपण माध्यम के अपवर्तनांकों (Refrac-

tive index) में अन्तर अधिक होता है।

प्र.5. शरीर पर खरोंच लगने के कारण बहते हुए रक्त स्त्राव को रोकने के लिए फिटकरी का उपयोग क्यों किया जाता

उत्तर-रक्त एक ऋणआवेशित कोलाइडी विलयन है। इसके स्कन्दन के लिए (थक्का बनने के लिए) धन आवेशित आयन की आवश्यकता होती है। फिटकरी में उपस्थित Al³⁺ आयन स्कन्दन में काम आते हैं।

प्र.6. बहुआण्विक कोलॉइड किसे कहते है?

उत्तर-बहुआणुविक कोलाइड में कोलाइडी कण, पदार्थ के परमाणुओं अथवा अणुओं (जिनका आकार 1 nm से कम हो) के झुण्ड या समूह के रूप में होते हैं। इन समूहों में परमाणु अथवा अणु वाण्डरवाल बलों से बंधे रहते हैं। गोल्डसॉल तथा सल्फर सॉल इसके उदाहरण है।

प्र.त. अधिशोशण एवं अवशोषण में दो अंतर लिखिए।

उत्तर-(1) अधिशोषण एक सतही घटना है जो केवल अधिशोषक की सतह पर होता है। अवशोषण एक स्थूल घटना है, जो सम्पूर्ण अधिशोषक में एक समान होती है।

(2) प्रारम्भ में अधिशोषण की दर तीन्न होती है तथा साम्य स्थापित होने तक घटती है। जबकि अधिशोषण में सम्पूर्ण प्रक्रिया समान रहती

प्र.8. जल की कठोरता दूर करने के लिए किस अधिशोषक का प्रयोग करते हैं?

उत्तर-सोडियम जिओलाइट से कठोर जल को मृदु बनाया जाता है।

प्र.9. शोषण को परिभाषित कीजिए।

उत्तर- शोषण-जब किसी पदार्थ पर अधिशोषण और अवशोषण दोनों प्रक्रियाएँ साथ-साथ सम्पन्न होती है तो यह प्रक्रम शोषण कहलाता है।

प्र.10. एक स्वतः उत्प्ररेक की रासायनिक अभिक्रिया लिखिए।

उत्तर-स्वत: उत्प्रेरण का उदाहरण

 $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$ अभिक्रिया में उत्पन्न CH_3COOH द्वार जनित H^+ आयन स्वतः उत्प्रेरक होते हैं।

प्र.11. हैबर विधि में कौनसा उत्प्रेरक एवं वर्द्धक प्रयुक्त होता है?

उत्तर-हेबर विधि में $\mathrm{Fe}_{(s)}$ उत्प्रेरक और $\mathrm{Mo}_{(s)}$ वर्धक के रूप में प्रयुक्त होता है ।

प्र.12. एंजाइम उत्प्ररेण किस पद्धति पर कार्य करती है? यह पद्धति किस वैज्ञानिक ने दी?

उत्तर-एन्जाइम उत्प्रेरण ताला चाबी पद्धति पर कार्य करती है।

प्र.13. स्वर्ण संख्या को परिभाषित कीजिए।

उत्तर-किसी शुष्क द्रव स्नेही कोलाइडी की मिली ग्राम में वह मात्रा, जो 10 मिली मानक गोल्ड सॉल में डालने पर, उसके स्कन्दन को 10% NaCl विलयन के 1ml विलयन द्वारा होने से रोक देती है, उस द्रव स्नेही कोलॉइडी की स्वर्ण संख्या कहलाती है।

प्र.14. कारण बताइए सुक्ष्म विमाजित पदार्थ अधिक प्रमावी अधि शोषक होता है?

उत्तर-अधिशोषण की मात्रा अधिशोषक के पृष्ठीय क्षेत्रफल के समानुपाती होती है।सूक्ष्म विभाजित अवस्था में अधिशोषक का क्षेत्रफल अधिक हो जाता है। इसीलिए वह प्रभावी अधिशोषक होता है।

प्र.15. इमल्शन के प्रत्येक प्रकार का एक उदाहरण दीजिए।

उत्तर-1. मक्खन (Butter) तेल में जल (Water in oil) प्रकार का इमल्शन है।

2. दूध (Milk) जल में तेल (oil in water) प्रकार का इमल्शन है।

प्र.16. कैसियस पर्पल क्या है?

उत्तर-कैसियस पर्पल Au का कोलाइडी विलयन है जिसे $AuCl_3$ का $SnCl_2$ से अपचयन कराकर बनाया जाता है।

 $2AuCl_3 + 3SnCl_2 \rightarrow 3SnCl_4 + 2Au$ सॉल

(कैसियस पर्पल)

प्र.17. उस उत्प्रेरक का नाम लिखिए जो मैथेनॉल को गैसोलीन में बदलता है?

उत्तर-ZSM-5 नामक जिओलाइट

प्र.18. अम्लीय माध्यम में साबुन अपमार्जन क्रिया क्यों नहीं करते है?

उत्तर-अम्लीय माध्यम में साबुन का जल अपघटन हो जाता है इसलिए वह अपमार्जक क्रिया नहीं करता।

प्र.19. प्रेरित उत्प्रेरण अभिक्रिया का समीकरण लिखिए।

उत्तर- $2Na_2SO_4 + O_2 \xrightarrow{qq} 2Na_2SO_4$

 $\mathrm{Na_3AsO_3} + \mathrm{O_3} \stackrel{\mathrm{arg}}{---}$ कोई अभिक्रिया नहीं

 $Na_2SO_3 + Na_3AsO_3 + O_2 \rightarrow Na_2SO_4 + Na_3AsO_4$

प्र.20. निम्नलिखित को दव स्नेही एवं दव विरोधी कोलॉइड में वर्गीकृत कीजिए।

(31) As₂S₃

(ब) गोंद

(स) स्टार्च

(द) Au सॉल

उत्तर-द्रव स्नेही कोलाइडी (ब) गोंद (स) स्टार्च द्रव विरोधी कोलाइड (अ) As₂S₃ (द) Au सॉल

लघूत्तरात्मक प्रश्न

प्र.1. मिथेल निर्माण की क्रिया विधि समझाइए।

उत्तर-कृपया पाठ्य सामग्री देखें।

प्र.2. निम्न पर संक्षिप्त टिप्पणियां लिखिए।

(अ) अपोहन

(ब) कांट्रेल अवक्षेपक

उत्तर- (a) अयोहन (Dialysis)

- कोलॉइडी कण चर्मपत्र या जान्तव झिल्ली में से विसरित नहीं होते हैं, जबिक विलेय आयिनिक और अनआयिनिक अशुद्धियाँ विसरित हो जती है।
- अत: अशुद्ध सॉल को जान्तव झिल्ली की थैली में भरकर, इसे जल से भरे पात्र में लटका देते हैं (चित्र 5.16) तो अशुद्धियों के कण सूक्ष्म होने के कारण धीरे-धीरे बाहरी जल में विसरित हो जाते हैं तथा थैली में शुद्ध सॉल शेष बच जाता है।
- यह प्रक्रिया अपोहन और उपकरण अपोहक कहलाता है।

b) काट्रेल अवक्षेपक

धुएँ का अवक्षेपण (Precipitation of Smoke)—

- इसमें कार्बन के ऋणावेशित कोलॉइडी कण वायु (गैस) में परिक्षित रहते हैं।
- ये कार्बन कण श्वासोच्छवास के लिये हानिकारक है।

अतः उन्हें धुएँ से पृथक् करना आवश्यक है।

 इसके लिये धुएँ को एक चिमनी में से प्रवाहित करते हैं जिसमें धनावेशित धातु का गोला रहता है। धातु के गोले का धनावेश, कार्बन कणों के ऋण आवेश को नष्ट कर देता है। आवेश के नष्ट होने से कार्बन 5.30

के कण नीचे गिर जाते हैं तथा गर्म हवा चिमनी से निकल जाती है। इस गोले को काट्रेल (Cottrel) अवक्षेपक कहते हैं।

प्र.3. परिक्षेपण विधि द्वारा प्लेटिनम का जल में कोलॉइडी विलयन बनाने का वर्णन कीजिए। उपकरण का नामांकित चित्र भी बनाइए।

उत्तर-विद्युत परिक्षेपण या ब्रेडिंग आर्क विधि-

- यह विधि धातुओं जैसे Cu. Ag. Au, Pt. Pd आदि के कोलॉइडी विलयन बनाने में प्रयुक्त की जाती है।
- इस विधि में धातु की दो छड़ों को NaOH या KOH के तनु विलयन में डुबाकर छड़ों के मध्य विद्युत आर्क उत्पन्न करते हैं।
- आर्क के उच्च ताप से धातु छड़ों की कुछ धातु वाष्प (1nm. से कम आकार के कण) में बदल जाती है और ठण्डे जल के सम्पर्क में होने के कारण संघितत होकर कोलॉइडी आकार के कण उत्पन्न करती है। इस प्रकार इस विधि में परिक्षेपण और संघनन दोनों होते है।
- इस प्रकार बने धातु के कोलॉइडी कण, विलायक (प्राय: जल) जल में चारों ओर फैल जाते हैं, जिससे धातु सॉल प्राप्त हो जाता है।
- धातु सॉल अत्यन्त अस्थायी होते हैं। यहाँ NaOH या KOH इनके स्थाईत्व को बढाते हैं।

चित्रः ब्रेडिग आर्क विधि या वैद्युत-निश्लेपण

प्र.4. वैद्युत कण संचलन का स्वच्छ एवं नामांकित चित्र द्वारा प्रदर्शित कीजिए।

उत्तर-

चित्रः वैद्युत कण संचलन

प्र.5. फ्रायंडलिक अधिशोषण समतापी का गणितीय समीकरण लिखिए।

उत्तर-फ्रायंडलिक अधिशोषण समतापी का गणितीय समीकरण

$$\frac{x}{m} = Kp^{1/n}$$

यहाँ x = अधिशोष्य की मात्रा, m = अधिशोषक की मात्रा

k = स्थिरांक, P = दाब

n = स्थिरांक, जिसका मान शून्य से एक के मध्य होता है।

प्र.6. मौतिक अधिशोषण एवं रासायनिक अधिशोषण में चार अंतर लिखिए।

उत्तर-

भौतिक अधिशोषण	रासायनिक अधिशोषण
अधिशोषक तथा अधिशोष्य	अधिशोष्य तथा
के मध्य दुर्बल वान्डर वाल	अधिशोपक के मध्य
बल होते हैं।	रासायनिक क्रिया होती है।
	अत: प्रबल रासायनिक
•	बन्ध बनता है।
इसकी प्रकृति विशिष्ट नहीं	विशिष्ट प्रकृति का होता है।
	यह अनुत्क्रमणीय होता है।
। इस ऊष्मा का मान कम होता	अधिशोषण ऊष्मा का मान
है। (20-40 kJ mol-1)	उच्च होता है। (80 से 240
1	kJ mol-1)
	अधिशोषक तथा अधिशोष्य के मध्य दुर्बल वान्डर वाल बल होते हैं। इसकी प्रकृति विशिष्ट नहीं होती है। यह उत्कमणीय होता है। इस ऊष्मा का मान कम होता

प्र.7. बहु-आणविक एवं वृहद अणुक कोलॉइड में क्या अंतर है? प्रत्येक का एक उदाहरण दीजिए।

उत्तर-

(1) बहुआणुविक कोलॉइडी (Multimolecular Colloids)

- ये कोलॉइड पदार्थ के परमाणुओं या छोटे अणुओं (जिनका आकार 1nm से कम हो) के झुण्ड या समृह के रूप में होते हैं।
- इन समृहों में परमाणु अथवा अणु परस्पर वाण्डरवाल्स बलों द्वारा बंधे होते हैं।
- उदाहरण के लिये गोल्डसॉल में कोलॉइडी कण गोल्ड परमाणुओं का समूह होते हैं। इसी प्रकार सल्फर सॉल में 1000 या इससे भी अधिक S₂ अणुओं के समृह के रूप में कोलॉइडी कण होते हैं।

(2) वृहद् अणुक कोलॉइडी (Macromolecular colloids)—

- इन विलयनों में कोलॉइडी कणों के रूप में बड़े-बड़े वृहद् अणु (Macro molecule) होते हैं। बड़ा आकार होने के कारण ये अणु ही कोलॉइडी कण के परिमाण (आकार) (Inm – 1000 nm) के हो जाते हैं और विलायकों में वितरित हो जाते हैं।
- ये विलयन अधिक स्थायी होते है।
- चूंकि इनमें शुद्ध अणुओं का परिक्षेपण होता है अत: ये यथार्थ विलयन (वास्तविक विलेयन) के समान होते हैं।
- प्राकृतिक रूप से पाये जाने वाले वृहदाणिविक कोलाइडों में स्टार्च, सेलुलोज, प्रोटीन, एन्जाइम आदि है।
- उदाहरण स्टार्च, सेलुलोस, प्रोटीन, पॉलिएथीन, पॅलिएस्टर, PMMA नाइलोन, संशेषित रबंड आदि वृहत् अणुओं के उदाहरण है।

प्र.8. निम्नलिखित परिस्थितियों में क्या प्रेक्षण होंगे--

- (अ) जब प्रकाश किरण पुंज कोलॉइडी विलयन से गमन करती है।
- (ब) कोलॉइड विलयन में विद्युतधारा प्रवाहित की जाती है।
- उत्तर- (अ) जब प्रकाश किरण पुंज कोलाइडी विलयन से गमन करता है तो उसके पुंज का मार्ग टिण्डल प्रभाव के कारण दिखाई देता है। (ब) जब कोलाइडी विलयन में विद्युत धारा प्रवाहित की जाती है तो विद्युत का संचलन द्वारा, घन आवेशित कोलाइडी कणअथवा ऋण आवेशित कोलाइडी कण अपने विपरीत आवेशित इलेक्ट्रोडों की ओर
- प्र.9. एंजाइम उत्प्रेरकों के अभिलक्षण लिखिए।

उत्तर-1. सर्वोत्तम दक्षता

एन्जाइम सबसे अधिक प्रभावी उत्प्रेरक होते हैं। क्योंकि ये अन्य उत्प्रेरकों की तुलना में, अभिक्रिया की सिक्रियण ऊर्जा को बहुत कम कर देते हैं, जिससे अभिक्रिया अत्यधिक वेग से सम्पन्न होने लगती है। एन्जाइम का एक अणु, क्रियाकरकों के लाखों अणुओं को एक मिनट में क्रियाफल में बदल सकते हैं।

गमन करते हैं। वहाँ पर अपना आवेश खोकर स्कन्दित हो जाते हैं।

2. उच्च विशिष्टम प्रकृति

एन्जाइमों की प्रकृति विशिष्ट होती है। कोई एक एन्जाइम किसी एक विशिष्ट अभिक्रिया को ही उत्प्रेरित कर सकता है।

उदाहरण-

- (a) यूरिएस एन्जाइम केवल यूरिया के जल अपघटन की अभिक्रिया की उत्प्रेरित कर सकता है, अन्य किसी अभिक्रिया को नहीं।
- (b) ग्लूकोस का एथिल एल्कोल में परिवर्तन केवल जाइमेस एन्जाइम की उपस्थिति में संभव होता है।

3. इस्टतम ताप (अनुकूलतम ताप)

एन्जाइम की सिक्रियता ताप पर निर्भर करती है। ये 25° C से 37° C (298-310K) ताप पर सर्वाधिक सिक्रिय होते हैं। इसमें ताप घटने या बढ़ने पर, इनकी सिक्रियता घटने लगती है और 70° C (343 K) पर ये स्कन्दित होकर नष्ट हो जाते हैं। अत: 25-35° C ताप को अनुकूलतम ताप अथवा इस्टमप ताप (optimum Temperature) कहलाता है

4. इष्टतम pH(अनूकुलतम pH)

एन्जाइम की सक्रियता pH पर भी निर्भर करती है। एक निश्चित pH पर इनकी सक्रियता सर्वाधिक होती है, जिसे अनुकूलतम pH कहते है अनुकूलतम pH का मान 5-7 तक होता है मानव शरीर के लिए pH का मान 7.4 होता है।

5. सक्रिकारक तथा सह एन्जाइम

कुछ अन्य पदार्थ जैसे– विटामिन, प्रोटीन, धातु आयन (Cu^2 , Ni^{2+} , Na^+ , Mn^{2+}) आदि की उपस्थिति में एन्जाइमों की सक्रियता में वृद्धि हो जाती है। इन पदार्थों को सक्रियकारक या सहएन्जाइम कहते हैं।

धात्विक आयन एन्जाइम अणुओं से दुर्बल रूप से अबन्धित होने पर उत्प्रेरकीय सक्रियता बढ़ा देते हैं। एमीलेज Na (NaCl) की उपस्थिति में अत्यधिक सक्रिय होता है।

6. समेदक एवं विष-

कुछ पदार्थों की उपस्थिति से एन्जाइमों की सिक्रयता में कमी आ जाती है अर्थात वे समेदिक एवं विषाकत हो जाते हैं। उदाहरण के लिए HCN. CS₂ आदि एन्जाइमों की सिक्रयता को कम कर देते हैं। इन्हें समेदक अथवा विष कहते हैं। ये पदार्थ एन्जाइम की सतह पर उपस्थित सिक्रय क्रियात्मक समूहों से अन्योन्य क्रिया करके एन्जाइमों की सिक्रयता को कम अथवा नष्ट कर देते हैं।

निबन्धात्मक प्रश्न

प्र.1. निम्नलिखित को सचित्र समझाइए।

(i) टिण्डल प्रभाव (ii) ब्रांउनी गति

उत्तर-टिण्डल प्रभाव-वैज्ञानिक टिण्डल ने अध्ययन करके बताया कि— "किसी सॉल में से प्रकाश पुंज प्रवाहित करके, उसे प्रकाश की दिशा के लम्बवत् देखने पर, सॉल में प्रकाश पुंज का मार्ग चमकता हुआ दिखाई देता है। यह परिधटना टिण्डल प्रभाव कहलाती है।"

अंधेरे में प्रकाश पुंज का पथ एक शंकु के समान दिखाई देता है, जिसे
 टिण्डल शंकु कहते हैं।

चित्रः टिण्डल प्रभाव

ब) बाउनी गति (Brownian movement)— रॉबर्ट ब्राउन ने अति सूक्ष्मदर्शी द्वारा कोलॉइडी विलयनों का अवलोकन करने पर पाया कि विलयन में कोलॉइडी कण निरन्तर टेढे-मेढे ढंग से सभी दिशाओं में गतिशील रहते हैं। अत: कोलाइडी कणों की निरन्तर और अनियमित टेढी मेढी गति (चित्र 5.19(a)) बाऊनी गति कहलाती है।

 ब्राऊनी गति का कारण परिक्षेपण माध्यम के गतिशील अणुओं की कोलॉइडी कणों पर लगातार होने वाली असंतुलित टक्करें हैं।

चित्रः (a) कोलॉइडी कण द्वारा ब्राऊनी गति (b) परिश्लेपण माध्यम के कणों द्वारा कोलॉइडी कण से असंतुलित टक्कर

(c) स्थूल निलम्बनों में ब्राऊनी गति न होना।

ब्राऊनी गित, कोलॉइडी कणों के आकार के व्युत्क्रमानुपाती होती है।
 अत: जैसे-जैसे कोलॉइडी कणों का आकार बढ़ता जाता है, वैसे-वैसे
 ब्राऊनी गित कम होती जाती है और एक स्थित ऐसी आती है कि
 ब्राऊनी गित समास हो जाती है।

प्र.2. कोलॉइडी विलयन बनाने की निम्नलिखित विधियों का वर्णन कीजिए।

(i) ब्रेडिंग आर्क विधि (ii) कोलॉइडी मिल

उत्तर-(i) ब्रेडिंग आर्क विधि-लघूत्तरात्मक प्रश्न का उत्तर संख्या 3 देखिए। (ii) कोलाइडीमिल- यान्त्रिक परिक्षेपण (Dispersion Method)-

इस विधि में कोलॉइडी मिल (चक्की) का प्रयोग किया जाता है।

इस विधि में सर्वप्रथम पदार्थ को पीसकर बारीक चूर्ण बनाते हैं। अब
 इस बारीक चूर्ण का उपयुक्त विलायक में स्थूल निलम्बन बनाते हैं।

चित्रः यान्त्रिक परिक्षेपण कोलॉडडी चक्की

- अब इस स्थूल निलम्बन को कोलॉइडी चक्की में से गुजारा जाता है।
 कोलॉइडी चक्की में धातु के दो पाट होते हैं। ये दोनों पाट एक-दूसरे के विपरीत दिशा में बहुत तेजी से घुमते रहते हैं।
- इन पाटों क मध्य से गुजरते समय, पदार्थ के निलम्बन के कण, इनकी
 गित के प्रभाव से कोलॉइडी आकार के कणों में टूट जाते हैं। इस प्रकार
 पदार्थ का कोलॉइडी विलयन प्राप्त हो जाता है।
- पेन्ट, वार्निश, टूथपेस्ट, छापे की स्याही, टैल्कम पाऊडर आदि इसी.
 विधि से बनाये जाते हैं।

प्र.3. आकार वरणात्मक उत्प्रेरक जिओलाइट पर टिप्पणी लिखिए। उत्तर-जिओलाइट उत्प्रेरण (Zeolite Catalyst)

- धातुओं के ऐल्युमिनों सिलिकेटों कों जिओलाइट कहते हैं।
- इनका सामान्य सूत्र $M_{x/n}$ [(AlO₂) $_x$ (SiO₂) $_y$] zH_2O होता है। यहाँ nधातु आयन पर आवेश है।
- जिओलाइट में धनायन सामान्यत: Na⁺, K⁺, Ca⁺²आदि होते हैं।
- जिओलाइट को निर्वात में गरम करने पर, इसका निर्जालकरण हो जाता
 है, जिससे H₂Oअणु बाहर निकलने से इसमें रन्ध्र व गुहिकाओं का
 निर्माण हो जाता है। जिससे इनकी सरंचना मधुमक्खी के छत्ते के समान
 दिखती है। अर्थात जिओंलाइट सिलीकेट के त्रिविमीय नेटवर्क वाले
 स्क्ष्मरंध्री ऐल्यूमिनों सिलिकेट होते हैं।
- इन सिलिकेटों में कुछ सिलिकोन परमाणु ऐल्यूमिनियम के परमाणुओं द्वारा प्रतिस्थापित हो कर Al-O-Si ढांचा बनाते है।
- अत: इन रन्ध्रों के द्वारा निश्चित आकार के क्रियाकारकों के अणुओं का अधिशोषण किया जा सकता है। छोटा आकार के अणु इन रन्ध्रों में से फिसलकर बाहर निकल जाते है और बड़े आकार के अणुओं को यह अधिशोषित नहीं कर सकता है। अत: जिओलाइट को आकार वरणात्मक उत्प्रेरक (Shape selective catalyst)भी कहते हैं।
- अत: जिओलाइट की सिक्रयता, इसमें उपस्थित रन्ध्रों के आकार पर निर्भर करती है। अत: इसे आण्विक छलनी भी कहते हैं।

उदाहरण-

(1) ZSM-5 नामक जिओलाइट उत्प्रेरक द्वारा एल्कोहल को गैसोलीन में बदला जाता है। ZSM-5 की गुहिकाओं द्वारा पहले एल्कोहल का निर्जलीकरण किया जाता है तथा फिर अनेकों हाइड्रोंकार्बन का मिश्रण प्राप्त होता है जो कि उच्च क्वालिटी का गैसोलीन (पेट्रोल) होता है।

यह उत्प्रेरक CH_3OH अणुओं को अधिशोषित करके इन्हें मेथीलीन कार्बीन $(:CH_2)$ में बदल देता है जो कि विभिन्न प्रकार से जुड़कर अनेकों हाइड्रोकार्बन जैसे- मेथेन, एथेन, आइसोब्यूटेन, आइसोऑक्टेन, बेन्जीन, टॉल्रूईन आदि का मिश्रण बना देती है।

$$xCH_3OH \xrightarrow{2SM-5} (CH_2)_X + xH_2O$$

- (2) सोडियम जिओलाइट से कठोर जल को मृदु बनाया जाता है।
- (3) जिओलाइट उत्प्रेरण का प्रयोग पेट्रोरसायन उद्योग में हाइड्रोकार्बन के भंजन, समावयवीकरण आदि करने में किया जाता है, जिससे ईधन तेल की गुणवत्ता बड़ जाती है।

प्र.4. कारण दीजिए।

- 🖰 (अ) फिटकरी पीने के जल को शुद्ध करती है।
 - (ब) एक ही पदार्थ कोलॉइड और क्रिस्टलाम दोनों हो सकता है।
 - (स) आकाश नीला दिखता है।
- उत्तर-(अ) जल में कुछ अशुद्धियाँ कोलाइडी कणों के रूप में होती है जिस पर ऋण (-ve) आवेश होता है। इन अशुद्धियों को स्कन्दित करने के लिए पीने के जल में फिटकरी को कुछ देर के लिए डाला जाता है। फिटकरी से प्राप्त Al³⁺ आयन ऋण आवेशित अशुद्धियों को स्कन्दित कर देते हैं। शुद्ध पानी का निथार लिया जाता है।
 - (ब) एक ही पदार्थ कोलाइड और क्रिस्टलाम दोनों हो सकते हैं। उदाहरण के लिए सल्फर जो कि एल्कोहॉल में विलेय है, क्रिस्टलाम की श्रेणी में आता है क्योंकि यह विलयन पार्चमेंट पेपर की थैली से बाहर निकल जायेगा। यदि इस विलयन की कुछ मात्रा जल में डाली जाती है तो विलायक के विनिमय से सल्फर का जल में कोलाइडी विलयन बन जाता है।
 - (स) आकाश नीला दिखाई देता है, क्योंिक हवा में तैरते हुए धूल के कोलाइडी कण सूर्य के प्रकाश को प्रकीर्णित करते हैं अन्य प्रकीर्णित रंगों के विकिरण की अपेक्षा नीले रंग की तीव्रता अधिक होती है। इसलिए आकाश नीला दिखाई देता है।
- प्र.5. ठोस पृष्ठ पर गैसों के अधिशोषण को प्रमावित करने वाले कारक का वर्णन कीजिए।

उत्तर-बिन्दु 5.4 पेज नं. 3 पर देखें।

5.11

- प्र.1. भौतिक अधिशोषण में अधिशोषक एवं अधिशोष्य कण एक दूसरे के प्रति कैसे आकर्षित होते हैं?
- उत्तर- ये वाण्डरवाल्स बलों द्वारा आकर्षित होते हैं।
- प्र.2. अधिशोषण की प्रकृति ऊष्माशोषी होती है या ऊष्माक्षेपी?
- उत्तर- ऊष्माक्षेपी होती है।
- प्र.3. जैल में परिश्लेपण माध्यम क्या होता है? उदाहरण दीजिए।
- उत्तर- ठोस होता है। उदाहरण-पनीर, मक्खन।
- प्र.4. भौतिक एवं रासायनिक अधिशोषण में कौन आसानी से उत्क्रमित किया जा सकता है?
- उत्तर- भौतिक अधिशोषण को।
- प्र.5. N₂, CO एवं CH₄ के क्रांतिक ताप क्रमशः 126, 134 एवं 190K है। इनको सक्रियित चारकोल पर अधिशोषण के बढ़ते क्रम में व्यवस्थित कीजिए।
- उत्तर- अधिशोषण की मात्रा ताप से सीधे संबंधित होती है । बढ़ता क्रम निम्न हैं—

 $N_2 < CO < CH_4$

प्र.६. पायस क्या है?

उत्तर- यह तेल एवं जल का अमित्रणीय मिश्रण होता है।

प्र.7. समांगी उत्प्रेरक वाली एक अभिक्रिया बताइये।

उत्तर- $2SO_2(g) + O_2(g) \xrightarrow{NO(g)} 2SO_3(g)$

प्र.8. दो औद्योगिक प्रक्रियाएँ बताइए जिनमें विषमांगी उत्प्रेरक प्रयुक्त होता है।

उत्तर- (i) हॉबर विधि से अमोनिया का निर्माण

(ii) सम्पर्क विधि से $\mathrm{H_2SO_4}$ का निर्माण

प्र.9. कोलॉइडी कणों के अनियमित पथ का नाम बताइए।

उत्तर- इसे ब्राउनी गति कहते हैं।

प्र.10. उस घटना का नाम बताइए जिसमें अधिशोषण एवं अवशोषण साथ-साथ होता है?

उत्तर- इसे शोषण (sorption) कहते हैं।

प्र.11. अमोनिया एवं CO में से कौन सिक्रियित चारकोल पर अधिक मात्रा में अधिशोषित होता है।

उत्तर- अमोनिया क्यों कि यह ध्रुवीय होता है और CO की तुलना में आसानी से द्रवित किया जा सकता है।

प्र.12. पेट्रोलियम उद्योग में प्रयुक्त आकार वरणात्मक उत्प्रेरक बताइए।

उत्तर-- यह ZSM - 5 है।

प्र13. फिटकरी पीने के पानी को कैसे शुद्ध करती है?

उत्तर- इसमें K⁺, Al³⁺, SO₄²⁻ आदि आयन होते हैं | ये जल में उपस्थित कोलॉइडी कणों को उदासीन कर देते हैं जो कि आवेश की अनुपस्थिति में स्कंदित होकर नीचे बैठ जाते हैं।

प्र.14. आप अपोहन को कैसे तेज कर सकते हैं?

उत्तर- कोलॉइडी सॉल वाले पार्चमेंट के थैले को घेरने वाले वैद्युत अपघटय (जल) में वैद्युत क्षेत्र लगाकर तेज किया जाता है।

प्र.15. धनावेशित फेरिक हाइड्रॉक्साइड के स्कंदन में निम्न में से कौन-सा अधिक प्रभावी है?

(i) KCl (ii) FeCl_3 (iii) $\operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6]$?

उत्तर- $K_4[Fe(CN)_6]$ अधिक प्रभावी है क्योंकि $[Fe(CN)_6]^4$ का स्कंदन क्षमता अधिक होता है।

प्र.16. द्रवरागी सॉल की रक्षी क्षमता को कैसे व्यक्त करते हैं?

उत्तर- इसे स्वर्ण संख्या के पदों में व्यक्त करते हैं।

प्र.17. जल में तेल प्रकार के पायस का एक उदाहरण दीजिए।

उत्तर- इसका उदाहरण दूध है।

प्र.18. जिलेटिन एवं हीमोग्लोबिन की स्वर्ण संख्या 0.005 तथा 0.03 है।इनमें से कौन-सा बेहतर रक्षी कोलॉइड है?

उत्तर- जिलेटिन क्योंकि इसकी स्वर्ण संख्या अपेक्षाकृत कम है।

प्र.19. यदि धनावेशित एवं ऋणावेशित सॉलों की सम-मोलर मात्रा को मिश्रित किया जाये तो क्या होगा?

उत्तर- स्कंदन होगा क्योंकि सॉल अपने आवेशों को परस्पर उदासीन कर देते हैं।

प्र.20. गोल्ड सॉल में जिलेटिन मिलाने पर क्या होता है?

उत्तर- गोल्ड सॉल में वैद्युत अपघट्य मिलाने पर स्कंदन रुक जाएगा।

प्र.21. यदि कोलॉइडी सॉल का लम्बे समय तक अपोहन कराया जाये तो क्या होगा?

उत्तर- यह स्कंदित हो जाएगा।

प्र.22. कोलॉइडॉन (Colloidon) क्या है?

उत्तर- यह एथिल एल्कोहॉल में सेलुलोज नाइट्रेट का कोलॉइडी विलयन होता है।

प्र.23. अपादर्शी द्रव कोलॉइड तथा वास्तविक विलयन का एक-एक उदाहरण दीजिए।

उत्तर- दूध अपारदर्शी कोलॉइडी विलयन का तथा सान्द्र KMnO₄ अपारदर्शी वास्तविक विलयन का उदाहरण है।

प्र.24. आग के धुँए का रंग प्रायः हल्का नीला क्यों होता है?

उत्तर- धुँआ कोलॉइडी प्रकृति का होता है। जब इसे प्रकाश स्रोत से किसी कोण पर देखते हैं तो टिण्डल प्रभाव के कारण यह नीला दिखता है।

प्र.25. खट्टा करने पर दूध से दही बनने की व्याख्या कीजिए।

उत्तर- जब लैक्टोज, जोकि एक दुग्ध शर्करा है, किण्वन करके लैक्टिक ऐसिड बनाता है तो दूध खट्टा हो जाता है। इस अम्ल के कारण स्कंदन होता है जिससे दूध में उपस्थित वसा दही में बदल जाती है।

प्र.26. परपल ऑफ कैसियस (Purple of Casius) क्या है?

उत्तर- यह स्वर्ण का कोलॉइडी विलयन होता है।

प्र.27. आप समान रंग के कोलॉइडी एवं वास्तविक विलयन में अन्तर कैसे करेंगे?

उत्तर- इनमें अलग-अलग प्रकाश पुंज डालने पर, कोलॉइडी विलयन में टिण्डल प्रभाव दिखता है, जबकि वास्तविक विलयन में नहीं।

प्र.28. लैंगम्यूर अधिशोषण समतापी का गणितीय व्यंजक बताइए।

उत्तर- $\frac{x}{m} = \frac{ap}{1+bp}$ (जहाँ a एवं b नियतांक है।)

प्र.29. कोलॉइडी सॉल पर वैद्युत क्षेत्र लगाने पर क्या होता है?

उत्तर- आवेशित कोलॉइडी कण विपरीत आवेशित इलेक्ट्रोड पर चले जाते हैं। इससे वे उदासीन होकर स्कंदित हो जाते हैं।

प्र.30. किसी ठोस पृष्ठ पर किसी गैस का रसोवशोषण ताप के साथ कैसे परिवर्तित होता है?

उत्तर- पहले यह ताप वृद्धि के साथ बढ़ता है और बाद में ताप वृद्धि के साथ घटता है।

प्र.31. आर्सेनिक सल्फाइड कोलॉइडी विलयन आप कैसे बनाएंगे?

उत्तर- आर्सेनिक ऑक्साइड (As_2O_3) के जलीय विलयन में H_2S गैस प्रवाहित करके,

 As_2O_3 (aq) + $3H_2S(g) \rightarrow As_2S_3$ (s) + $3H_2O(1)$ कोलॉइडी विलयन

प्र.32. अवक्षेपण मान को परिभाषित कीजिए।

उत्तर- पाठ्य भाग देखें।

प्र.33. मिल्क ऑफ मैग्नीशिया क्या है? इसका क्या उपयोग है?

उत्तर- यह जल में Mg(OH)₂ का गाढ़ा विलयन होता है जो प्राय: पायस के रूप में होता है। यह पेट की दवा है।

प्र.34. सफैक्टेंट (Surfactant) क्या है?

उत्तर- ये पृष्ठ सिक्रय कारक होते हैं। ये जल के पृष्ठ तनाव को कम कर देते हैं, उदाहरण के लिए डिटर्जेंट।

प्र.35. कोलॉइड का सम वैद्युत बिन्दु (Iso-electric point) क्या है?

उत्तर- यह एक विशिष्ट आयनिक सान्द्रता (या pH मान) को व्यक्त करता है, जिस पर कोलॉइडी कण अपरिवर्तित रहते हैं।

प्र.36. जेल अशु (Syneresis or Weeping) क्या है?

उत्तर- जेल लम्बे समय के लिए छोड़ देने पर वह सिकुड़ जाता है और अपना पूरा द्रव त्याग देता है। जेल का इस प्रकार सिकुड़ना जेल अश्रु कहलाता है।

प्र.37. व्याख्या कीजिए कि क्यों पोटैशियम सल्फेट मिलाने पर फेरिक हाइड्रॉक्साइड सॉल जेल स्कंदित हो जाता है?

उत्तर- K_2SO_4 विलयन से प्राप्त ऋणावेशित SO_4^{2-} के सम्पर्क में सॉल के धनावेशित कण उदासीन हो जाते हैं। परिणामस्वरूप वे स्कंदित हो जाते हैं।

प्र.38. कोलॉइडी विलयन से गुजरने वाले प्रकाश का पथ क्यों दृश्यमान होता है?

उत्तर—कोलॉइडी कणों द्वारा प्रकाश के प्रकीर्णन के कारण, जिसे टिण्डल प्रभाव कहते हैं।

प्र.39. पेप्टीकरण क्या है?

उत्तर- उत्तर के लिए पाठ्य भाग देखें।

प्र.40. फिटकरी लगाने से ताजे घाव से रक्त बहना रुक जाता है। व्याख्या कीजिए कि क्यों?

उत्तर- उत्तर के लिए पाठ्य भाग देखें।

प्र.41. अधिशोषण से आप क्या समझते हैं?

उत्तर- उत्तर के पाठ्य भाग देखें।

प्र.42. क्या कुछ पदार्थ कोलॉइड एवं क्रिस्टलाभ दोनों की भाँति कार्य कर सकते हैं?

उत्तर- जी हाँ। यह सम्भव है क्योंक ये दोनों पदार्थ के कणों के आकार से सम्बद्ध होते हैं। यदि यह 1nm से कम हो तो पदार्थ क्रिस्टलाभ की भाँति कार्य करता है और 1000nm से अधिक होने पर कोलाँइडी विलयन की भाँति।

प्र.43. कोलॉइडी विलयन से प्रकाश पुंज गुजरने पर उसका पथ चमकीला हो जाता है। व्याख्या कीजिए।

उत्तर- उत्तर के लिए पाठ्य भाग देखें।

प्र.44. आकाश नीला क्यों दिखता है?

उत्तर- उत्तर के लिए पाठ्य भाग देखें।

प्र.45. द्रविवरागी कोलॉइड की तुलना में द्रवरागी कोलॉइड अधिक स्थायी क्यों होते हैं?

उत्तर- द्रवरागी कोलॉइड में परिक्षित प्रावस्था एवं परिक्षेपण माध्यम के कणों

के बीच एक आकर्षण बल होता है। जल के परिश्वेपण माध्यम होने उत्तर- परिश्वेपण अथवा संघनन विधि। पर कण जलयोजित हो जाते हैं। मुक्त ऊर्जा स्थायित्व के लिए उत्तरदायी होती है। इसके विपरीत, जल विरागी में इन दोनों में प्रतिकर्षण होता है जिससें स्थायित्व कम हो जाता है।

- प्र.46. बहुआण्विक एवं वृहदाण्विक कोलॉइडों का एक-एक उदाहरण दीजिए।
- उत्तर- बहुआण्विक कोलॉइड का उदाहरण सल्फर एवं वृहदाण्विक का उदाहरण स्टार्च है।
- ${\rm V}.47.~{
 m Fe(OH)}_3$ एवं ${\rm As}_2{
 m S}_3$ के सममोलर कोलॉइडी विलयन को मिश्रित करने पर क्या होता है?
- उत्तर- Fe(OH) $_3$ का धनावेश $\mathrm{As}_2\mathrm{S}_3$ के ऋणावेश से उदासीन हो जाता है। परिणामस्वरूप दोनों स्कंदित हो जाते हैं।
- प्र.48. क्या होता है जब ताजे बने फेरिक हाइड्रॉक्साइड को तनु फेरिक क्लोराइड विलयन से उपचारित कराते हैं?
- उत्तर- Fe(OH), कणों के पृष्ठ पर Fe3+ आयन अधिशोषित हो जाते हैं। परिणामस्वरूप वे धनावेशित हो जाते हैं। आवेशित कणों के प्रतिकर्षण के कारण कोलॉइडी विलयन बनता है। इस प्रक्रिया तो पेप्टीकरण कहते हैं।

 $Fe(OH)_3 + Fe^{3\tau} \rightarrow [Fe(OH)_3 Fe^{3-\tau}]$ अवक्षेप (FeCl), कोलॉइडी विलयन

- प्र.49. दवविरागी, सॉल, दक्रागी सॉल की अपेक्षा जल्दी स्कंदित क्यों होते हैं?
- उत्तर- द्रविवरागी सॉल में परिक्षेपण माध्यम और परिक्षेपण प्रावस्था में अणुओं के बीच आकर्षण बल नाममात्र होता है। त: यह अस्थायी होते हैं और आसानी से स्कंदित होते हैं।

द्रवरागी सॉल में अणुओं के बीच आकर्षण बल अधिक होने के कारण यह आसानी से स्कंदित नहीं होते।

प्र.50. दो तरीके बताएं जिनसे द्रविवरागी सॉल स्कंदित होते हैं?

- प्र.51. हाइड्रेटिड फैरिक ऑक्साइड सॉल में NaCl विलयन की कुछ मात्रा मिलाने से क्या होता है?
- उत्तर- हाइड्रेटिड फेरिक ऑक्साइड, फैरिक हाइड्रोक्साइड का विलयन है और धनावेशित है। जल NaCl का जलीय विलयन इसमें मिलाते हैं तो Cl⁻आयन सॉल के धन आयनों को उदासीन कर देते हैं। आवेशों की अनुपस्थिति में भूरा अवक्षेप बनते हैं।
- प्र.52. ताप बढ़ाने से भौतिक अधिशोषण में कमी क्यों आती है?
- उत्तर- भौतिक अधिशोषण की प्रकृति ऊष्माक्षेपी है। (AH ऋणात्मक है) ताप बढ़ाने से उल्टक्रम विधि प्रभावित होती है। अर्थात् अधिशोषण ताप बढाने से घटता है।
- प्र.53. उस उत्प्रेरक का नाम लिखिए जो मेथेनॉल को गैसोलीन में परिवर्तित करता है।

उत्तर- ZSM-5

प्र.54. गोल्ड नम्बर की परिभाषा दें।

उत्तर- उत्तर के पाठ्य भाग देखें।

- प्र.55. फ्रॉयण्डलिच अधिशोषण समतापी वक्र विवेचना करें।
- उत्तर- उत्तर के लिए पाठ्य भाग देखें।
- प्र.56. व्याख्या करें आप क्या निरीक्षण करते हैं जब-
 - (a) फेरिक हाइड्रोक्साइड सॉल में जब विद्युत अपघट्य डाला जाता है।
 - (b) एक पायस को केन्द्र परसारित किया जा रहा है।
 - (c) प्रयावर्ति धारा को कोलॉइडी घोल से पास किया जाता है।
- उत्तर- (a) धनावेशी फेरिक हाइड्रोक्साइड सॉल का स्कंदन हो जाएगा।
 - (b) पायस का विपायसीकरण हो जाएगा और दोनों द्रव पृथक हो जायेंगे।
 - (c) कोलॉइडी कण विपरीत इलेक्ट्रोड की ओर गति करेंगे तथा आवेशहीन होकर वहीं जम जायेंगे।