

	5,6,7,8	1,3,4	2,6,8
٥	2,6	5	2,6
1	8	4,3,1	7

	0	1	0	1,
A 5,6,7,8	C	Д	1	\boxtimes
B 1,3,4	Α	В		
C 2,6,8	С	Α		

	O	1
2,5,6,8	2,6	7
1,3,4	5	1,3,4
5,6,7	2,6	8

- Zminimalizować liczbę stanów automatu.
 Obliczyć wszystkie maksymalne klasy stanów zgodnych,
 Podać tablicę przejść-wyjść automatu minimalnego.

sx	0	1	0	1
1	5	4	0	0
3	2	7	1	1
3	ı	1	-	0
4	-	3	_	0
5	6	-	1	-
6	6	_	1	_
7	_	8	_	0
8	-	_	_	1

(20 pkt.)

Zaprojektować minimalny automat Mealy'ego z jednym wejściem i jednym wyjściem, którego
wyjście zmienia się z 0 na 1 po wykryciu na wejściu sekwencji < 1 1 0 > , następnie wraca
do stanu początkowego. Podać funkcję wyjścia i funkcje wzbudzeń dla realizacji na
przerzutnikach typu JK. (30 pkt.)

