CS2100 Computer Organisation AY2021/22 Semester 1 Assignment 2 Answer Sheet

FULL NAME:	Toh Jia-Yih Ronald				
STUDENT ID: E.g., <axxxxxxxy></axxxxxxxy>	А0199937В				
TUTORIAL GROUP:	Т02				

Question 0. Submission instructions (3 marks)

a. Name your file with your student number (eg: AxxxxxxxY>.pdf). (1 mark)		
b. Submit your assignment as a single PDF file. (1 mark)		
c. Your submission has your tutorial group number, student number and name. (1 mark)	Υ	

Question 1. Datapath (8 marks)

Field	Value			
RegDst	X			
MemRead	0			
MemWrite	1			
ALUSrc	1			
RegWrite	0			
Instruction[31-26] *	0b 101011			
Instruction[25-21] *	0b 11101			
Instruction[20-16] *	0b 10010			
Instruction[15-11] *	0b 11111			
Instruction[5-0] *	0b 11000			
* (output from sign-extend)	0x FFFF FFD8			
2 *	0x 0000 0000			
3 *	0x 0000 00A4			
4 * (read data 2)	0x 0004 0200			
5 *	0x 7FFF F01E			
6 (ALU control output)	0010			

Question 2. Simplification (14 marks)

(a)
$$B \cdot Y \cdot E' \cdot (A' \cdot X + A \cdot X' + A \cdot X + A' \cdot X') + B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y + Y \cdot E' \cdot S'$$

[6 marks]

$B \cdot Y \cdot E' \cdot (1) + B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y + Y \cdot E' \cdot S'$	Complement Law
$B \cdot Y \cdot E' + B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y + Y \cdot E' \cdot S'$	One Element Law
$B \cdot Y \cdot E' + Y \cdot E' \cdot S' \cdot (B' \cdot L \cdot U \cdot K + 1)$	Distributive Law
$B\cdot Y\cdot E' + Y\cdot E'\cdot S'$	One Element Law
Y·E'·(B + S')	Distributive Law

(b)

(c)

[4 marks]

#PIs	4
#EPIs	3
Simplest SOP	$B \cdot C \cdot D' + A' \cdot D + B' \cdot D$
Simplest POS	C·(B+D')·(A'+B'+D')

[4 marks]

#PIs	6
#EPIs	3
Simplest SOP	$A \cdot B' + B' \cdot C + C \cdot D'$
Simplest POS	(A+C)·(B'+D')

Question 3. Circuit Design (8 marks)

(a) [2 marks]

A=1	1					
	0	1	1	0		
	0	1	1	1		
	0	1	1	0	\downarrow c	
В	0	1	1	0		
E						

(b) Write out the simplified SOP expression for M.

[3 marks]

 $E + A' \cdot C \cdot D' + A \cdot C \cdot D$

c) Draw the circuit for V.

[3 marks]

^{*}Labelling xnor and or in case drawing is too bad ._.

Question 4. Block-level design (7 marks)

(a)
$$F(A,B,C,D) = \Sigma m(1, 4, 5, 6, 7, 13)$$

[3 marks]

(b) $G(A,B,E) = \Sigma m(3,5)$

$$H(A,B,E) = \Sigma m(1,2,4,6)$$

[4 marks]

Α	В	Ε	G	Н	C1	S1	C2 = S1·E = G	S2 = A⊕B⊕E	H = A⊕B⊕E⊕C1
0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	1	1
0	1	0	0	1	0	1	0	1	1
0	1	1	1	0	0	1	1	0	0
1	0	0	0	1	0	1	0	1	1
1	0	1	1	0	0	1	1	0	0
1	1	0	0	1	1	0	0	0	1
1	1	1	0	0	1	0	0	1	0

(Add more columns to the table if there are insufficient columns.)