Wyznaczanie przyspieszenia ziemskiego metodą wahadła matematycznego Informatyka – profil praktyczny, semestr II Wydział Matematyki Stosowanej Politechnika Ślaska

Sekcja 5 Piotr Skowroński, Bartłomiej Pacia Czerwiec 2022

1 Wstęp teoretyczny

Wahadło matematyczne - jest to idealny układ mechaniczny składający się z punktowej masy, zawieszonej na nieważkiej i nierozciągliwej nici. Jest to szczególny przypadek wahadła fizycznego.

Przyspieszenie ziemskie - Przyspieszenie grawitacyjne ciał swobodnie spadających na Ziemie, bez oporów powietrza. Wartość przyspieszenia ziemskiego jest zależna od szerokości geograficznej oraz wysokości nad poziomem morza.

Siła grawitacji - Jest to siła wzajemnego oddziaływania ciał między sobą.

2 Pomiary

Podczas wykonywania doświadczenia w pracowni pomiary zapisywaliśmy ręcznie na kartce. Następnie przepisaliśmy wyniki naszych pomiarów do pliku CSV, by umożliwić ich wykorzystanie

Użyliśmy języka Python w środowisku Jupyter Notebook. Wykorzystaliśmy biblioteki numpy, pandas i matplotlib.

3 Obliczenia

Tabelka z danymi

Skorzystamy ze wzorów:

$$T=rac{t_{sr}}{N}$$

$$u_a(t_{sr})=\sqrt{rac{1}{N(N-1)}\sum_{i=1}^N(t_i-t_{sr})^2}\cdot t_{\alpha,N}$$

$$u(T)=rac{u_a(t_{sr})}{N}$$
 - z prawa przenoszenia niepewności

Niepewności:

$$u(L) = 0.001 \text{ m}$$

Lp.	L, m	\sqrt{L}, \sqrt{m}	t_{sr} , s	T, s	$u_a(t_{sr})$, s	u(T),
1.	0.85	0.922	18.000	1.8000	0.012	0.0012
2.	0.80	0.894	17.600	1.7600	0.007	0.0007
3.	0.75	0.866	17.3000	1.73000	0.0052	0.00052
4.	0.70	0.837	17.7000	1.77000	0.0095	0.00095
5.	0.65	0.806	16.0000	1.60000	0.0064	0.00064
6.	0.60	0.775	15.400	1.5400	0.009	0.0009
7.	0.55	0.742	15.200	1.520	0.001	0.001
8.	0.50	0.707	14.2000	1.42000	0.0012	0.00012
9.	0.45	0.671	13.4000	1.34000	0.0054	0.00054
10.	0.40	0.632	12.300	1.2300	0.065	0.0065

Wykres T(L) i $T(\sqrt{L})$

Aby policzyć współczynniki kierunkowe prostych i wyrazy wolne skorzystamy ze wzorów:

$$a = \frac{nS_{xy} - S_x S_y}{nS_{xx} - S_x^2}, b = \frac{S_{xx} S_y - S_x S_{xy}}{nS_{xx} - S_x^2}$$

Gdzie:

$$S_x = \sum_{i=1}^n x_i, \ S_y = \sum_{i=1}^n y_i, \ S_{xx} = \sum_{i=1}^n x_i^2, \ S_{xy} = \sum_{i=1}^n x_i \cdot y_i$$

Do obliczenia niepewności skorzystamy ze wzorów:

$$u(a) = \sqrt{\frac{n}{n-2} \cdot \frac{S_{\epsilon\epsilon}}{nS_{xx} - S_x^2}}, \ u(b) = \sqrt{\frac{1}{n-2} \cdot \frac{S_{xx}S_{\epsilon\epsilon}}{nS_{xx} - S_x^2}}$$

Gdzie:

$$S_{\epsilon\epsilon} = \sum_{i=1}^{n} \epsilon_i^2$$
, dla $\epsilon_i = y_i - ax_i - b$

Wartości współczynników:

$$a = 1.99000 \frac{s}{\sqrt{m}}, b = 0.00976 \text{ s}$$

Niepewności:

$$u(a) = 0.15 \frac{s}{\sqrt{m}}, u(b) = 0.12 \text{ s}$$

Wyznaczenie g

Przekształcając równanie na okres drgań wahadła:

$$T = 2\pi\sqrt{\frac{L}{q}}$$

Otrzymujemy:

$$g = \frac{4\pi^2 L}{T^2}$$

Z równania prostej mamy:

$$a = \frac{T}{\sqrt{L}} \implies \frac{1}{a^2} = \frac{L}{T^2}$$

Możemy to wstawić do równania na okres drgań i otrzymujemy:

$$g = \frac{4\pi^2}{a^2}$$

Dla naszego $a, g = 9.97 \frac{m}{s^2}$

Obliczenie niepewności u(g) z prawa przenoszenia niepewności

$$u(g) = \frac{8\pi^2 \cdot u(a)}{a^3} = 1.5 \frac{m}{s^2}$$

Obliczenie niepewności rozszerzonej

Aby policzyć niepewność rozszerzoną skorzystamy ze wzoru:

$$U(y) = k \cdot u(y).$$

Gdzie:

k - bezwymiarowy współczynnik rozszerzenia. Przyjmujemy k=2. u(y) - niepewność badanej wartości.

Dla g:

$$U(g) = 2 \cdot u(g) = 3.00 \frac{m}{s^2}.$$

$$g = 9.97 \pm 3.00 \frac{m}{s^2}.$$

Obliczenie przyspieszenia ziemskiego dla Gliwic i porównanie wyniku z otrzymaną wartością

Aby policzyć przyspieszenie ziemskie dla danej szerokości geograficznej i wysokości nad poziomem morza, skorzystamy ze wzoru:

$$g_{\varphi} \approx 9.780318(1 + 0.0053024\sin^2\varphi - 0.0000058\sin^22\varphi) - 3.086 \cdot 10^{-6}h$$

Gdzie:

 φ - szerokość geograficzna [°],

h - wysokość nad poziomem morza [m].

Przyjmując szerokość geograficzną $\varphi=50.3^\circ$ i wysokość nad poziomem morza h=219 m otrzymujemy:

$$g_0 = 9.80 \frac{m}{s^2}$$
.

Przeprowadzimy test zgodności otrzymanego g w wyniku doświadczenia z przyspieszeniem ziemskim g_0 dla Gliwic:

Test zgodności ma postać:

$$|y - y_0| < U(y)$$

Wstawiając q i q_0 :

$$|g - g_0| < U(g)$$
$$0.17 \frac{m}{s^2} < 3.00 \frac{m}{s^2}$$

Co pokazuje, że test zgodności zachodzi dla g zmierzonego przez nas.

4 Wnioski

Otrzymane wyniki potwierdziły poprawność wzoru na okres drgań wahadła matematycznego.

Wyniki porównane testem zgodności podają, że przyśpieszenie ziemi w pracowni jest podobne do przybliżonego przyśpieszenia dla Gliwic.