## Applied Algorithms. Prof. Tami Tamir Missing Proofs, lecture 3. July 3<sup>rd</sup>.

## The Problem R | $|\Sigma_i C_i|$

**Theorem:** a minimum weight perfect matching corresponds to an optimal schedule.

**Proof:** Let M be a min-weight perfect matching. For every machine i, it holds that for some k the vertices corresponding to the last k positions on Mi are matched. Otherwise, it is possible to reduce the matchings' cost. Specifically, if  $w_{ik}$  is not matched and  $w_{i,k+1}$  is matched with vj, then the matching M'= M-{(vj,  $w_{i,k+1}$ )}  $\cup$  {(vj,  $w_{i,k}$ )} is cheaper by  $p_{ij}$ .

This implies that a min-weight perfect matching corresponds to a feasible schedule. By the construction, the matching has cost A iff  $\Sigma_i C_i = A$ . Thus min-weight iff min total flow time.

## Hardness of Open-shop scheduling

**Theorem:** The problem O3|| C<sub>max</sub> (Minimize makespan of an open-shop schedule on 3 machines) is NP-hard.

**Proof:** Reduction from *Partition*. The input for *Partition* is a set A of n integers  $a_1,...,a_n$  whose total sum is 2B. The problem is to find a subset of these integers whose total sum is exactly B. Given an instance A for *Partition* build the following instance for O3 | |  $C_{max}$ : There are n+3 jobs. For the first job  $p_{1,1}$ =2B,  $p_{2,1}$ = $p_{3,1}$ =0, for the second job,  $p_{1,2}$ = $p_{3,2}$ =0,  $p_{2,2}$ =2B, for the third job  $p_{1,3}$ =  $p_{2,3}$ =  $p_{3,3}$  =B. For the last n jobs, that is, for j=4,...,n+3,  $p_{1,j}$ =  $p_{2,j}$ =0,  $p_{3,j}$ = $a_j$ . (where  $p_{i,j}$  is the length of the task of Job j on  $M_i$ )

Claim:  $C_{max} = 3B$  if and only if the set S has a partition.

The proof has two parts – one for each direction of the 'if and only if'

1. Assume there is a schedule with  $C_{max}$  = 3B, it must be that the sub-jobs of job  $J_3$  are processed one after the other with no delay. Since  $J_1$  and  $J_2$  occupy  $M_1$  and  $M_2$  respectively for intervals of length 2B,  $J_3$  must be processed on one of these machines (w.l.o.g  $M_1$ ) during the interval [0,B], on  $M_2$  during the interval [2B,3B], and on  $M_3$  during the interval [8,2B] (see figure).



As a result, the processing of the n jobs j=4,...,n+3 on  $M_3$  splits between the intervals [0,B] and [2B,3B], inducing a partition of these jobs into two sets of total processing time B.

2. Assume the set S has a partition into two sets U and W each with total size B. A valid schedule with  $C_{max}$  = 3B is the following: On  $M_1$ :  $J_3$  followed by  $J_1$ . On  $M_2$ : J2 followed by  $J_3$ . On M3: the jobs originated from U, followed by  $J_3$ , followed by the jobs originated from W. Since the total processing time of job originated from U and from W is exactly B,  $M_3$  is processed with no idle and the jobs from U and W exactly fill the B-segments before and after the processing of  $J_3$ .