ساختماندادهها و الگوریتمها نیمسال اول ۰۲ـ۳۰

آزمون میانترم دوم

دانشکدهی مهندسی کامپیوتر مدرس: آبام ــ بهرامی

نام و نام خانوادگی:

مسئلهی ۱. میانگان [۱۵ نمره]

آرایه A شامل n عدد مختلف است. حال میخواهیم آرایه B را به این صورت پر کنیم که بهازای هر i, B[i] برابر با میانهی اعداد A[i] تا A[i] تا A[i] باشد. الگوریتمی از مرتبهی $O(n \log n)$ برای این مسئله ارائه دهید.

مسئلهی ۲. قرمز ـ سیاه و چرخش [۲۵ نمره]

- (آ) آیا میتوان گرههای هر درخت دودویی جست وجویی که ارتفاع آن حداکثر $1 \log n$ است را با رنگهای قرمز و سیاه و طبق قواعد درخت قرمز و سیاه رنگ آمیزی کرد؟ (۶ نمره)
- (ب) نشان دهید با عملهای چرخش به راست و چرخش به چپ می توان هر درخت دودویی جست وجویی را به هر درخت دودویی جست وجوی دیگری تبدیل کرد. (۶ نمره)
 - (ج) نشان دهید هر د.د.ج را با $\mathcal{O}(n \log n)$ چرخش میتوان به هر د.د.ج دیگر تبدیل کرد. (۱۳ نمره)

مسئلهی ۳. درخت دودویی جستجو [۲۰ نمره]

اعداد صحیح x_1, \dots, x_n را در یک درخت دودویی جستجو با ارتفاع h ذخیره کردهایم. فرض کنید هزینه جستجوی x_1, \dots, x_n را در نید درخت برای پیدا کردن x_1 برابر x_i برابر x_i برابر x_i برابر x_i برابر است. درستی یا نادرستی گزارههای زیر با ذکر دلیل (مثال نقض یا اثبات) مشخص کنید.

- $h = \mathcal{O}(\log n)$ ($\tilde{\mathsf{I}}$)
- $h = \mathcal{O}(\sqrt{n \log n})$ (\smile)
- $h = \Omega(n)$ باشد. (ج) میتوان مثالی زد که
 - $h = \Omega(\sqrt{n})$ (2)

مسئلهی ۴. جانمایی [۲۰ نمره]

فرض کنید آرایه A شامل یک جایگشت اعداد $1, \dots, n$ باشد. مشخص کنید در کد زیر اگر به جای X دستورهای X while بگذاریم آیا عناصر حتماً مرتب می شوند؟ دلیل خود را برای هر دو حالت بیان کنید.

```
sort(A) {
   for i = 1 to n
      X (A[i] <> i)
      swap(A[i], A[A[i]])
}
```

مسئلهی ۵. پیش زوجیت پویا [۲۰ نمره]

در این مسئله قصد داریم دادهساختاری برای بررسی زوجیت یک بازه از عناصر در یک آرایهی بیتی طراحی کنیم. این دادهساختار باید از اعمال زیر پشتیبانی کند:

- initialize(n): ساخت آرایهای به اندازه ی n و مقداردهی عناصر آن با صفر.
 - (flip(i): وارون کردن مقدار بیت iام.
 - parity(i): بازگرداندن زوجیت عناصر تا عنصر iام.

فرض میکنیم که عمل initialize در زمان $\mathcal{O}(n)$ انجام می شود.

- (آ) داده ساختاری طراحی کنید که اعمال $\mathcal{O}(\log n)$ و parity(i) و flip(i) انجام شود. (۱۲ نمره)
- (ب) داده ساختاری طراحی کنید که اعمال flip(i) و flip(i) و این $O(\log n/\log \log n)$ دهد. همچنین می توانید پیش پردازشی به روال initialize اضافه کنید به طوری که مرتبه ی زمانی آن را تغییر ندهد (راهنمایی: B-Tree استفاده کنید). (۸ نمره)