

A linear boundary separates two classes.

- o Feed a sample and find the output (forward pass)
- Find the difference between actual and desired outputs (cost function)
- o Find the effect of each weight on the cost (derivative)
- o Update the weights with a learning rate (GD

e.g., input 7x7 3x3 filter applied with stride 1 pad with 1 pixel border What is the output size? Size = 7x7 Note: output Size: (N-F)/stride + 1

Common to Zero-pad the border in practice

		0	0	0	0
			0	0	

Output Size = 7x7

In general, it is common to have conv layers with stride 1, filter size FxF, and zero padding (F-1)/2, preserving spatial size

- F=3 → zero pad with 1
- F=5 → zero pad with 2
- F=7 → zero pad with 3

Summary

- CNNs are a series of CONV, ReLU, Pool, FC layers
- CNNs are computationally efficient and compact
- Parallels to human/animal visual system.
- Learnt features can be used for classification
- Recent Trends:
 - Stick with 3x3 filters, make the network deeper
 - o Improve connectivity
 - Several innovations for specific applications