A Representation Theorem for Second-Order Functionals

MAURO JASKELIOFF CIFASIS, CONICET, Argentina FCEIA, Universidad Nacional de Rosario, Argentina

> RUSSELL O'CONNOR Google Canada Kitchener, Ontario, Canada

Abstract

Representation theorems relate seemingly complex objects to concrete, more tractable ones.

In this paper, we take advantage of the abstraction power of category theory and provide a general representation theorem for a wide class of second order functionals which are polymorphic over a class of functors. Types polymorphic over a class of functors are easily representable in languages such as Haskell, but are difficult to analyse and reason about. The concrete representation provided by the theorem is easier to analyse, but it might not be as convenient to implement. Therefore, depending on the task at hand, the change of representation may prove valuable in one direction or the other.

We showcase the usefulness of the representation theorem with a range of examples. Concretely, we show how the representation theorem can be used to show that traversable functors are finitary containers, how parameterised coalgebras relate to very well-behaved lenses, and how algebraic effects might be implemented in a functional language.

1 Introduction

When dealing with a type with advanced features such as polymorphism and higher-order types and functions, it is convenient to analyse whether there is another datatype that can represent it, as the alternative representation might be easier to program or to reason about. A simple example of a datatype that might be better understood through a different representation is the type of polymorphic functions $\forall A.\ A \rightarrow A$ which, although it involves a function space and a universal quantifier, has a rather limited set of inhabitants.

Hence, a representation theorem opens the design space for programmers and computer scientists, providing and connecting different views on some construction.

In this article we will consider second-order functions that are polymorphic over a class of functors, such as monads or applicative functors. In particular we will give a concrete representation for inhabitants of types of the form

$$\forall F. (A_1 \rightarrow F B_1) \rightarrow (A_2 \rightarrow F B_2) \rightarrow \ldots \rightarrow F C$$

Here A_i , B_i , and C are fixed types, and F ranges over an appropriate class of functors. There is a condition on the class of functors which will be made precise during the presentation of the theorem, but basically it amounts to the existence of free constructions.

In order to make the representation theorem more general, we use category theory to express it. Although the knowledge of category theory that is required should be covered by an introductory textbook, we introduce the more important concepts in Section 2. The usefulness of the representation theorem (Section 3) is illustrated with a range of examples. Concretely, we show how parameterised coalgebras related to very well-behaved lenses (Section 4), and how traversable functors, subjected to certain coherence laws, are exactly the finitary containers (Section 5). Finally we show an alternative view on the construction of free theories of algebraic effects (Section 6) and discuss related work (Section 7.)

1.1 A taste of the representation theorem

Consider the type

$$T = \forall F$$
: Functor. $(A \rightarrow FB) \rightarrow FC$.

What do the inhabitants of this type look like?

The inhabitants of T are functions $h = \lambda g.r.$ Given that the functor F is universally quantified, the only way of obtaining a result in F C is that in the expression r there is an application of the argument g to some $a \in A$. This yields something in F B rather than the sought F C, so a function $k: B \to C$ is needed in order to construct a map $F(k): FB \to FC$. This informal argument suggests that all inhabitants of T can be built from a pair of an element of A and a function $B \to C$. Hence, it is natural to propose the type $A \times (B \to C)$ as a simpler representation of the inhabitants of type T.

More formally, in order to check that the inhabitants of T are in a one-to-one correspondence with the inhabitants of $A \times (B \to C)$, we want to find an isomorphism

$$\forall F \colon \mathsf{Functor.}\ (A \to F\,B) \to F\,C \ \ \ \underbrace{\varphi}_{q^{-1}} \ A \times (B \to C).$$

We define φ^{-1} using the procedure described above.

$$\begin{array}{l} \varphi^{-1}\colon A\times (B\to C)\to \forall F\colon \text{Functor.}\ (A\to F\,B)\to F\ C\\ \varphi^{-1}\ (a,k)=\lambda g.\ F\ (k)\ (g\ a) \end{array}$$

In order to define φ , notice that $R \subset A \times (B \to C)$ is functorial on C. Hence, we can instantiate a polymorphic function h: T to the functor R to obtain h_R : $(A \to R B) \to R C$, or equivalently $h_R: (A \to (A \times (B \to B))) \to A \times (B \to C)$.

$$\varphi \colon (\forall F \colon \mathsf{Functor}. \ (A \to F \ B) \to F \ C) \to A \times (B \to C)$$

$$\varphi \ h = h_R \ (\lambda a. \ (a, id_B))$$

We leave the proof the φ and φ^{-1} are inverses as an exercise.

The simple representation $A \times (B \to C)$ is possible due to the restrictive nature of the type T: all we know about F is that it is a functor. What happens when F has more structure?

A Representation Theorem for Second-Order Functionals

Consider now the type

$$T' = \forall F : \mathsf{Pointed}. \ (A \to F B) \to F C.$$

In this case F ranges over *pointed functors*. That is, F is a functor equipped with a natural transformation $\eta_X: X \to F$ X. An inhabitant of T' is a function $h = \lambda g.r$, where r can be obtained in the same manner as before, or else by applying the point η_C at a given $c \in C$. Hence, the simpler type representing T' seems to be $A \times (B \to C) + C$.

More formally, we want an isomorphism

$$\forall F \colon \mathsf{Pointed.}\; (A \to F\; B) \to F\; C \underbrace{\qquad \qquad \cong \qquad}_{\varphi'^{-1}} \; A \times (B \to C) + C.$$

The definition of φ'^{-1} is the following.

$$\begin{array}{l} \varphi'^{-1}\colon A\times (B\to C)+C\to \forall F\colon \mathsf{Pointed.}\; (A\to F\,B)\to F\,C\\ \varphi'^{-1}\; (\mathsf{inl}\; (a,k))=\lambda g.\, F\; (k)\; (g\;a)\\ \varphi'^{-1}\; (\mathsf{inr}\;c) &=\lambda \dots\,\eta_C\;c \end{array}$$

In order to define φ' , notice that R' $C = A \times (B \to C) + C$ is a pointed functor on C, with $\eta = \text{inr}$. Hence, we can instantiate a polymorphic function $h \colon T'$ to the pointed functor R' to obtain $h_{R'} \colon (A \to R' B) \to R' C$, or equivalently $h_{R'} \colon (A \to (A \times (B \to B) + C)) \to A \times (B \to C) + C$.

$$\varphi'$$
: $(\forall F$: Pointed. $(A \to F B) \to F C) \to A \times (B \to C) + C$
 $\varphi' h = h_{R'} (\lambda a. \text{ inl } (a, id_B))$

We can play the same game in the case where the universally quantified functor is an applicative functor.

$$T'' = \forall F : Applicative. (A \rightarrow FB) \rightarrow FC.$$

An applicative functor is a pointed functor F equipped with a multiplication operation $\star_{X,Y}: (FX \times FY) \to F(X \times Y)$ natural in X and Y, which is coherent with the point (McBride & Paterson, 2008). An inhabitant of T'' is a function $h = \lambda g.r$, where r can be obtained by applying the argument g to n elements of A to obtain an $(FB)^n$, then joining the results with the multiplication of the applicative functor to obtain an $F(B^n)$, and finally applying a function $B^n \to C$ which takes n elements of B and yields a C.

$$\forall F \colon \mathsf{Applicative.} \ (A \to F \ B) \to F \ C \qquad \cong \sum_{\varphi'' = 1} \sum_{n \in \mathbb{N}} (A^n \times (B^n \to C)).$$

The definition of φ''^{-1} is the following.

$$\varphi''^{-1}$$
: $(\Sigma n: \mathbb{N}. A^n \times (B^n \to C)) \to \forall F$: Applicative. $(A \to FB) \to FC$ $\varphi''^{-1}(n, as, k) = \lambda g. F(k)$ (collect_n g as)

Here, collect_n: $\forall f$: Applicative. $(A \to F B) \to A^n \to F (B^n)$ is the function that uses the applicative multiplication to collect all the applicative effects, i.e.

$$\operatorname{collect}_n h(x_1, \dots, x_n) = h x_1 \star \dots \star h x_n$$

In order to define φ'' , notice that $R'' C = \sum_{n \in \mathbb{N}} (A^n \times (B^n \to C))$ is an applicative functor on C, with $\eta c = (0, *, \lambda x : 1. c)$ and the multiplication given by

$$(n,as,k)\star(n',as',k')=(n+n',as++as',\lambda bs.\ (k\ (take\ n\ bs),k'\ (drop\ n\ bs)))$$

Hence, we can instantiate a polymorphic function h:T'' to the applicative functor R''to obtain $h_{R''}: (A \to R'' B) \to R'' C$, or equivalently $h_{R''}: (A \to \sum_{n \in \mathbb{N}} (A^n \times (B^n \to B))) \to$ $\sum_{n\in\mathbb{N}} A^n \times (B^n \to C).$

$$\varphi' \colon (\forall F \colon \mathsf{Applicative}. \ (A \to F B) \to F \ C) \to \sum_{n \in \mathbb{N}} A^n \times (B^n \to C)$$
 $\varphi' \ h = h_{R''} \ (\lambda a. \ (1, a, id_B))$

We have seen three different isomorphisms which yield concrete representations for second order functionals which quantify over a certain class of functors (plain functors, pointed functors, and applicative functors, respectively.) The construction of each of the three isomorphisms has a similar structure, so it is natural to ask what the common pattern is. In order to answer this question and provide a general representation theorem we will make good use of the power of abstraction of category theory.

2 Categorical Preliminaries

For simplicity, we will work on the category Set of sets and total functions. However, the results can be generalised to other self-enriched categories with enough structure (cartesian closed, complete, small coproducts). We will denote by X both a set X and the identity function on X, although we will also denote the latter by id_X . We will write $X \Rightarrow Y$ for the exponentiation of the set Y to the set X. A category \mathscr{C} is said to be *locally small* when the collection of morphisms between any two objects X and Y is a proper set. We denote this set by $X \xrightarrow{\mathscr{C}} Y$ and extend it to a functor $X \xrightarrow{\mathscr{C}} -$ (the covariant Hom functor). When the category is Set we will omit the category from the notation and write $X \to Y$, conflating it with exponentiation. Given two categories $\mathscr C$ and $\mathscr D$ we will denote by $\mathscr D^{\mathscr C}$ the category which has as objects functors $F:\mathscr{C}\to\mathscr{D}$ and natural transformations as morphisms.

2.1 The Yoneda Lemma

The main result of this article hinges on the following famous result:

Theorem 1 (Yoneda Lemma)

Given a locally small category &, the Yoneda Lemma establishes the following isomorphism:

$$(B \xrightarrow{\mathscr{C}} -) \xrightarrow{\mathsf{Set}^{\mathscr{C}}} F \cong FB$$

natural in object $B: \mathscr{C}$ and functor $F: \mathscr{C} \to \mathsf{Set}$.

That is, the set FB is naturally isomorphic to the set of natural transformations between the functor $(B \xrightarrow{\mathscr{C}} -)$ and the functor F.

Naturality in *B* means that given any morphism $h: B \to C$, the following diagram commutes:

$$\begin{array}{ccc} \left((B \xrightarrow{\mathscr{C}} -) \xrightarrow{\operatorname{Set}^{\mathscr{C}}} F \right) \xrightarrow{\cong} FB \\ (h \xrightarrow{\mathscr{C}} -) \xrightarrow{\operatorname{Set}^{\mathscr{C}}} F \sqrt{} & & \downarrow Fh \\ \left((C \xrightarrow{\mathscr{C}} -) \xrightarrow{\operatorname{Set}^{\mathscr{C}}} F \right) \xrightarrow{\cong} FC \end{array}$$

Naturality in F means that given any natural transformation $\alpha : F \to G$, the following diagram commutes:

$$\begin{array}{ccc} \left(\left(B \xrightarrow{\mathscr{C}} -\right) \xrightarrow{\mathsf{Set}^{\mathscr{C}}} F\right) & \xrightarrow{\cong} FB \\ (B \xrightarrow{\mathscr{C}} -) \xrightarrow{\mathsf{Set}^{\mathscr{C}}} \alpha \sqrt{} & & & & \alpha_B \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

The construction of the isomorphism is as follows:

- Given a natural transformation $\alpha: (B \xrightarrow{\mathscr{C}} -) \to F$, its component at B is a function $\alpha_B: (B \xrightarrow{\mathscr{C}} B) \to FB$. Then, the corresponding element of FB is $\alpha_B(id_B)$.
- For the other direction, given x : FB, we construct a natural transformation $\alpha : (B \xrightarrow{\mathscr{C}} -) \to F$ in the following manner: the component at each object C, namely $\alpha_C : (B \xrightarrow{\mathscr{C}} C) \to FC$ is given by $\lambda f : B \to C$. F(f)(x).

We leave as an exercise for the reader to check that this construction indeed yields a natural isomorphism.

In order to make the relation between the programs and the category theory more evident, it is convenient to express the Yoneda lemma in end form:

$$\int_{X \in \mathscr{C}} (B \xrightarrow{\mathscr{C}} X) \to FX \quad \cong \quad FB \tag{1}$$

The intuition is that an end corresponds to a universal quantification in a programming language, and therefore the above isomorphism could be understood as stating an isomorphism of types:

$$\forall X. (B \rightarrow X) \rightarrow FX \cong FB$$

Hence, functional programmers not used to categorical ends can get the intuitive meaning just by replacing in their minds ends by universal quantifiers. A precise definition of ends and their properties can be found in the standard reference (Mac Lane, 1971).

Remark 1

Given categories \mathscr{C}, \mathscr{D} , and functors $F, G : \mathscr{C} \to \mathscr{D}$,

$$F \xrightarrow{\mathscr{D}^{\mathscr{C}}} G \cong \int_{X \in \mathscr{C}} FX \xrightarrow{\mathscr{D}} GX$$
 (2)

Hence, if the end on the right-hand side exists, then it is equivalent to the set of natural transformations between F and G. This equivalence justifies the definition in Haskell of the type of natural transformations between functors f and g as

type
$$NatTrf g = \forall x. f x \rightarrow g x$$

A simple application of the Yoneda lemma is the following proposition.

Proposition 1

Consider an endofunctor $F : \mathsf{Set} \to \mathsf{Set}$, and the functor $R : \mathsf{Set} \times \mathsf{Set}^\mathsf{op} \times \mathsf{Set} \to \mathsf{Set}$ defined as $R(A, B, X) = A \times (B \to X)$, where we write $R_{A,B}X$ for R(A, B, X). Then

$$A \to FB \cong R_{A.B} \xrightarrow{\mathsf{Set}^{\mathsf{Set}}} F$$
 (3)

Proof

$$\begin{array}{ll} A \to FB \\ & \text{ { Yoneda } } \\ A \to \int_X ((B \to X) \to FX) \\ \cong & \text{ { Preservation of limits } } \\ \int_X A \to ((B \to X) \to FX) \\ \cong & \text{ { Adjoints (currying) } } \\ \int_X A \times (B \to X) \to FX \\ \cong & \text{ { Definition of $R_{A,B}$ } } \\ \int_X R_{A,B} X \to FX \\ \cong & \text{ { Remark 1 } } \\ R_{A,B} \xrightarrow{\text{Set}^{\text{Set}}} F \end{array}$$

More concretely, the isomorphism is witnessed by the following functions:

$$\alpha_{F} : (A \Rightarrow FB) \to R_{A,B} \xrightarrow{\mathsf{Set}^{\mathsf{Set}}} F$$

$$\alpha_{F}(f) = \tau \quad \text{where} \quad \tau_{X} : A \times (B \to X) \to FX$$

$$\tau_{X}(a,g) = F(g)(f(a))$$

$$\alpha_{F}^{-1} : (R_{A,B} \xrightarrow{\mathsf{Set}^{\mathsf{Set}}} F) \to A \Rightarrow FB$$

$$\alpha_{F}^{-1}(h) = \lambda a. \ h_{B}(a,id_{B})$$

This isomorphism is natural in *A* and *B*.

2.2 Adjunctions

An adjunction is a relation between two categories which is weaker than isomorphism of categories. Consider the following situation:

$$\mathscr{C} \xrightarrow{L} \mathscr{D}$$

While in an isomorphism we would require

$$I_{\mathscr{C}} = R \circ L$$

 $L \circ R = I_{\mathscr{D}}$

(where $I_{\mathscr{C}}$ is the identity functor on the category \mathscr{C}) in an adjunction we require just a natural transformation instead of equality.

$$egin{array}{lll} I_{\mathscr C} & & \to & R \circ L \\ L \circ R & \to & I_{\mathscr D} \end{array}$$

These natural transformations must obey certain coherence laws. More precisely,

Definition 1 (Adjunction)

Given categories $\mathscr C$ and $\mathscr D$, functors $L:\mathscr C\to\mathscr D$ and $R:\mathscr D\to\mathscr C$, and natural transformations $\eta:I\to R\circ L$ and $\varepsilon:L\circ R\to I$, an *adjunction* is a tuple $(L,R,\eta,\varepsilon):\mathscr C\to\mathscr D$ such that the following diagrams commute

In an adjunction $(L, R, \eta, \varepsilon)$, we say that L is a *left adjoint* to R, and that R is a *right adjoint* to L and write $L \dashv R$. The natural transformations η and ε are called the *unit* and the *counit* of the adjunction, respectively.

Equivalently, given categories $\mathscr C$ and $\mathscr D$, functors $L:\mathscr C\to\mathscr D$ and $R:\mathscr D\to\mathscr C$, an adjunction is given by a tuple $(L,R,\lfloor-\rfloor,\lceil-\rceil)$, where $\lfloor-\rfloor$ and $\lceil-\rceil$ are the components of the following isomorphism of sets of morphisms:

$$\lfloor - \rfloor : LC \xrightarrow{\mathscr{D}} D \cong C \xrightarrow{\mathscr{C}} RD : \lceil - \rceil \tag{4}$$

which is natural in $C \in \mathcal{C}$ and $D \in \mathcal{D}$. That is, for $f : LC \to D$ and $g : C \to RD$ we have

$$|f| = g \quad \Leftrightarrow \quad f = \lceil g \rceil \tag{5}$$

The components of the isomorphism $\lfloor - \rfloor$ and $\lceil - \rceil$ are called *adjuncts*. That the isomorphism is natural means that for any $C, C' \in \mathcal{C}$; $D, D' \in \mathcal{D}$; $h : C' \to C$; $k : D \to D'$; $f : LC \to D$; and $g : C \to RD$, the following equations hold:

$$Rk \circ |f| \circ h = |k \circ f \circ Lh| \tag{6}$$

$$k \circ \lceil g \rceil \circ Lh = \lceil Rk \circ g \circ h \rceil \tag{7}$$

The characterisation of adjunctions in terms of unit and counit and the characterisation in terms of adjuncts are indeed equivalent. The unit and counit can be characterised in terms of adjuncts:

$$\eta = |id| \qquad \varepsilon = [id];$$
(8)

and the adjuncts can be characterised in terms of the unit and counit:

$$\lfloor f \rfloor = Rf \circ \eta \qquad \qquad \lceil g \rceil = \varepsilon \circ Lg.$$
 (9)

For more details, please see (Mac Lane, 1971; Awodey, 2006).

3 A representation theorem for second order functionals

Consider a small sub-category F of SetSet, the category of endofunctors on Set. 1 By Yoneda,

$$\int_{F \in \mathscr{F}} (G \xrightarrow{\mathscr{F}} F) \to HF \cong HG$$
 (10)

Note that G is any functor in \mathscr{F} and H is any functor $\mathscr{F} \to \mathsf{Set}$. In particular, given a set X, we obtain the functor $(-X): \mathscr{F} \to \mathsf{Set}$ that applies a functor in \mathscr{F} to X. That is, the action on objects is $F \mapsto FX$. The above equation, specialised to (-X) is

$$\forall G \in \mathscr{F}. \qquad \int_{F} (G \xrightarrow{\mathscr{F}} F) \to FX \quad \cong \quad GX \tag{11}$$

For example, let $R_{A,B}X = A \times (B \to X)$ as in Proposition 1, and let $\mathscr E$ be a small full sub-category of Set^{Set} such that $R_{AB} \in \mathcal{E}$.

Then, we calculate

$$\int_{F \in \mathscr{E}} (A \to FB) \to FX$$

$$\cong \qquad \{ \text{ Equation (3) } \}$$

$$\int_{F \in \mathscr{E}} (R_{A,B} \xrightarrow{\mathscr{E}} F) \to FX$$

$$\cong \qquad \{ \text{ Equation (11) } \}$$

$$R_{A,B}X$$

That is, we have proven that

$$\int_{F} (A \to FB) \to FX \cong R_{A,B}X \tag{12}$$

This isomorphism provides a justification for the first isomorphism of the introduction, namely:

$$\forall F : \mathsf{Functor.} \ (A \to F B) \to F C \cong A \times (B \to C)$$

3.1 Unary Representation Theorem

Let us now consider categories of endofunctors that carry some structure. For example, a category F may be the category of monads and monad morphisms, or the category of applicative functors and applicative morphisms. Then we have a functor that forgets the extra structure and yields a plain functor. For example, the forgetful functor $U: \mathcal{M}on \to \mathcal{E}$ maps a monad $(T, \mu, \eta) \in \mathcal{M}on$ to the endofunctor T, forgetting that the functor has a monad structure given by μ and η . It often happens that this forgetful functor has a left adjoint $(-)^*: \mathscr{E} \to \mathscr{F}$ which takes an arbitrary endofunctor F and constructs the free structure on F. For example, in the monad case, F^* would be the free monad on F. The adjunction establishes the following natural isomorphism between set of morphisms in \mathscr{F}

We are interested in functors representable in a programming language, so it is reasonable to assume smallness.

1:41

9

and \mathscr{E} :

$$E^* \xrightarrow{\mathscr{F}} F \cong E \xrightarrow{\mathscr{E}} UF \tag{13}$$

In this situation we have the following representation theorem.

Theorem 2 (Unary Representation)

Consider an adjunction $((-)^*, U, |-|, [-]) : \mathscr{E} \to \mathscr{F}$, where \mathscr{F} is a small category of Set endofunctors. Let A, B be sets, and let $R_{A,B}X = A \times (B \to X)$. Then, we have the following isomorphism natural in A, B, and X.

$$\int_{F} (A \to UFB) \to UFX \quad \cong \quad UR_{A,B}^{*}X \tag{14}$$

Proof

$$\int_{F} (A \to UF B) \to UF X$$

$$\cong \qquad \{ \text{ Equation (3) } \}$$

$$\int_{F} (R_{A,B} \xrightarrow{\mathscr{E}} UF) \to UF X$$

$$\cong \qquad \{ (-)^{*} \text{ is left adjoint to } U \text{ (see Eq. 13) } \}$$

$$\int_{F} (R_{A,B}^{*} \xrightarrow{\mathscr{F}} F) \to UF X$$

$$\cong \qquad \{ \text{ Equation (10) } \}$$

$$UR_{A,B}^{*} X$$

Every isomorphism in the proof is natural in X, the first one is natural in A and B, and the last two are natural in $R_{A,B}$. Therefore, the resulting isomorphism is also natural in A and В.

This theorem explains all the isomorphisms in the introduction. Furthermore, it explains the structure of the representation functor (it is the free construction on $R_{A,B}$) and what's more, it tell us that the isomorphism is natural. And all of this in one fell swoop!

For the sake of concreteness, we present the functions witnessing the isomorphism in the theorem:

$$\begin{split} \varphi & : \left(\int_F (A \to UFB) \to UFX \right) \to UR_{A,B}^* X \\ \varphi(h) & = h_{R_{A,B}^*} \left(\alpha_{UR_{A,B}^*}^{-1} (\eta_{R_{A,B}}) \right) \\ \\ \varphi^{-1} & : UR_{A,B}^* X \to \int_F (A \to UFB) \to UFX \\ \varphi^{-1}(r) = \tau & \text{where} \quad \tau_F & : (A \to UFB) \to UFX \\ \tau_F(g) = \left(U \left\lceil \alpha_{UF}(g) \right\rceil_X \right) (r) \end{split}$$

Here, η is the unit of the adjunction, and α is the isomorphism in proposition 1.

3.2 Generalization to many functional arguments

Let us consider functionals of the form

$$\forall F. (A_1 \rightarrow F B_1) \rightarrow \ldots \rightarrow (A_n \rightarrow F B_n) \rightarrow F X$$

The representation theorem 2 can be easily generalized to include the above functional.

Theorem 3 (N-ary Representation)

Let \mathscr{F} be a small category of endofunctors such that there is an adjunction $(-)^* \dashv U : \mathscr{E} \rightharpoonup \mathscr{F}$. Let A_i, B_i be sets for $i \in \{1, \dots, n\}, n \in \mathbb{N}$, and let $R_{A,B}X = A \times (B \to X)$. Then, we have the following isomorphism

$$\int_{F} \left(\prod_{i} (A_{i} \to UFB_{i}) \right) \to UFX \quad \cong \quad U(\sum_{i} R_{A_{i},B_{i}})^{*}X \tag{15}$$

natural in A_i , B_i , and X.

Proof

The proof follows the same path as the one in theorem 2, except that now we use the isomorphism $(A \Rightarrow C) \times (B \Rightarrow C) \cong (A+B) \Rightarrow C$ that results from the universal property of coproducts. More precisely, the proof is as follows:

$$\begin{array}{ll} \int_{F}(\prod_{i}(A_{i}\rightarrow UFB_{i}))\rightarrow UFX\\ \cong & \left\{ \text{ Equation (3)} \right\}\\ & \int_{F}(\prod_{i}(R_{A_{i},B_{i}}\overset{\mathscr{E}}{\rightarrow}UF))\rightarrow UFX\\ \cong & \left\{ \text{ Coproducts} \right\}\\ & \int_{F}(\sum_{i}R_{A_{i},B_{i}}\overset{\mathscr{E}}{\rightarrow}UF)\rightarrow UFX\\ \cong & \left\{ \begin{array}{c} (-)^{*} \text{ is left adjoint to }U \text{ (see Eq. 13)} \end{array} \right\}\\ & \int_{F}((\sum_{i}R_{A_{i},B_{i}})^{*}\overset{\mathscr{F}}{\rightarrow}F)\rightarrow UFX\\ \cong & \left\{ \text{ Equation (10)} \right\}\\ & U(\sum_{i}R_{A_{i},B_{i}})^{*}X \end{array}$$

Naturality follows from naturality of its component isomorphisms. \Box

The functions witnessing the isomorphism in the theorem are:

$$\begin{array}{ll} \psi & : (\int_F \prod_i (A_i \to UFB_i) \to UFX) \to U(\sum_i R_i)^* X \\ \psi(h) & = h_{(\sum_i R_{A_i,B_i})^*} (\lambda i. \ \alpha_{U(\sum_j R_{A_j,B_j})^*}^{-1} (\eta_{\sum_j R_{A_j,B_j}} \circ \operatorname{inj}_i)) \\ \\ \psi^{-1} & : U(\sum_i R_i)^* X \to \int_F \prod_i (A_i \to UFB_i) \to UFX \\ \psi^{-1}(r) = \tau \quad \text{where} \quad \tau_F \quad : \prod_i (A_i \to UFB_i) \to UFX \\ & \tau_F(g) = (U \lceil \lambda(i,r_i). \ (\alpha_{UF}(gi))(r_i) \rceil_X)(r) \end{array}$$

Here, η is the unit of the adjunction $(-)^* \dashv U$, and α is the isomorphism in proposition 1.

4 Parameterised Comonads and Very Well-Behaved Lenses

The functor $R_{A,B}X = A \times (B \to X)$ plays a fundamental role in theorems 2 and 3. Such a functor R, is sometimes called a parameterised store comonad, and has both the structure of a parameterised comonad (Atkey, 2009b; Atkey, 2009a) and the structure of a very well-behaved lens (Foster *et al.*, 2007). As a first application of the representation theorem we analyse the relation between coalgebras for this parameterised comonad and very well-behaved lenses.

Definition 2 (Parameterised Comonad)

Fix a category \mathscr{P} of parameters. A \mathscr{P} -parameterised comonad on a category \mathscr{C} is a triple (C, ε, δ) , where:

- C is a functor $\mathscr{P} \times \mathscr{P}^{\mathrm{op}} \times \mathscr{C} \to \mathscr{C}$. We write the parameters as (usually lowercase) subindexes. That is, $C_{a,b}X = C(a,b,X)$.
- the *counit* ε is a family of morphisms $\varepsilon_{a,X}:C_{a,a}X\to X$ which is natural in X and dinatural in a,
- the *comultiplication* δ is a family of morphisms $\delta_{a,b,c,X}: C_{a,c}X \to C_{a,b}(C_{b,c}X)$ natural in a,c and X and dinatural in b,

These must make the following diagrams commute:

Definition 3 (Coalgebra for a Parameterised Comonads)

Let C be a \mathscr{P} -parameterised comonad on \mathscr{C} . Then a C-coalgebra is a pair (J,k) of a functor $J: \mathscr{P} \to \mathscr{C}$, and a family $k_{a,b}: Ja \to C_{a,b}(Jb)$, natural in a and dinatural in b, such that the following diagrams commute:

The definitions of parameterised comonad and of coalgebra for a parameterised comonad are dualisations of the ones found in (Atkey, 2009a).

Example 1

The functor $R_{A,B}X = A \times (B \to X)$ is a parameterised comonad, with the following counit and comultiplication:

$$\begin{array}{lcl} \varepsilon_{A,X} & : & R_{A,A}X \to X \\ \varepsilon_{A,X} \left(x,f \right) & = & fx \end{array}$$

$$\begin{array}{lcl} \delta_{A,B,C,X} & : & R_{A,C}X \to R_{A,B} \left(R_{B,C}X \right) \\ \delta_{A,B,C,X} \left(x,f \right) & = & \left(x,\lambda y. \left(y,f \right) \right) \end{array}$$

Given a functor $K :: \mathscr{P} \to Set$, define the functor $R_{a,b}^{(K)}X = R_{Ka,Kb}X : \mathscr{P} \times \mathscr{P}^{op} \times Set \to Set$. For every functor K, $R^{(K)}$ is a parameterised comonad, with the following counit and comultiplication:

$$\begin{array}{lcl} \boldsymbol{\varepsilon}_{a,X} & : & R_{a,a}^{(K)} \, \boldsymbol{X} \to \boldsymbol{X} \\ \boldsymbol{\varepsilon}_{a,X} \, \left(\boldsymbol{x}, f \right) & = & f \boldsymbol{x} \\ \\ \boldsymbol{\delta}_{a,b,c,X} & : & R_{a,c}^{(K)} \, \boldsymbol{X} \to R_{a,b}^{(K)} \, \left(R_{b,c}^{(K)} \, \boldsymbol{X} \right) \\ \boldsymbol{\delta}_{a,b,c,X} \, \left(\boldsymbol{x}, f \right) & = & \left(\boldsymbol{x}, \lambda \boldsymbol{y}, (\boldsymbol{y}, f) \right) \end{array}$$

The parameterised comonad R is the same as $R^{(I)}$ where I is the identity functor.

The proposition below shows how the comonadic structure of $R^{(K)}$ interacts nicely with the isomorphism of Proposition 1.

Proposition 2

Let $F,G: Set \rightarrow Set, f: a \rightarrow Fb$, and $g: b \rightarrow Gc$, then the following equations hold.

a)
$$\varepsilon_{a,X} = \alpha_I(id_{Ka})_X$$
 : $R_{a,a,X}^{(K)} \to X$
b) $(\alpha_F(f) \cdot \alpha_G(g))_X \circ \delta_{a,b,c,X} = \alpha_{F \cdot G}(Fg \circ f)_X$: $R_{a,c}^{(K)} X \to F(GX)$

where $F \cdot G$ is functor composition and where $\alpha \cdot \beta$ is the horizontal composition of natural transformations. That is, given natural transformations $\alpha : F \to G$, and $\beta : F' \to G'$, horizontal composition $\alpha \cdot \beta : F \cdot F' \to G \cdot G'$ is given by $\alpha \cdot \beta = G(\beta) \circ \alpha_{F'}$.

Example 3

The pair $((\times C), k)$ is an *R*-coalgebra with

$$k_{A,B}$$
 : $A \times C \rightarrow R_{A,B}(B \times C)$
 $k_{A,B}(a,c) = (a, \lambda b.(b,c))$

Parameterised $R^{(K)}$ -coalgebras play an important role in functional programming as they are precisely the type of very well-behaved lenses, hereafter called lenses (Foster *et al.*, 2007). A lens provides access to a component B inside another type A. More formally a lens from A to B is an isomorphism $A \cong B \times C$ for some residual type C. A lens from A to B is most easily implemented by a pair of appropriately typed getter and setter functions

$$\begin{array}{ccc} get & : & A \rightarrow B \\ set & : & A \times B \rightarrow A \end{array}$$

satisfying three laws

$$set(x, get(x)) = x$$

$$get(set(x,y)) = y$$

$$set(set(x,y_1),y_2) = set(x,y_2)$$

More generally, we can form a parameterised lens from a parameterised type $J: \mathscr{P} \to Set$ to another parameterised type $K: \mathscr{P} \to Set$ with a family of getters and setters.

$$get_a$$
 : $Ja \rightarrow Ka$
 $set_{a,b}$: $Ja \times Kb \rightarrow Jb$

1:41

satisfying the same three laws. By some simple algebra we see that the type of lenses is isomorphic to the type of coalgebras of the parameterised comonad $R^{(K)}$.

$$(Ja \rightarrow Ka) \times (Ja \times Kb \rightarrow Jb) \cong Ja \rightarrow R_{ab}^{(K)}(Jb)$$

Furthermore the coalgebra laws are satisfied if and only if the corresponding lens laws are satisfied. For instance, the parameterised coalgebra given in Example 3 is a parameterised lens into the first component of a pair.

Using the representation theorem and some simple manipulations we can define a third way to represent a parameterised lens from J to K, the so-called van Laarhoven representation (van Laarhoven, 2009a; O'Connor, 2011).

$$\int_{F\cdot\mathscr{E}}(Ka\to FKb)\to Ja\to FJb$$

The corresponding laws for the van Laarhoven representation of lenses are

• the linearity law For all $f: Ka \to FKb$ and $g: Kb \to GKc$,

$$v_{a,c,F\cdot G}(Fg\circ f) = Fv_{b,c,G}(g)\circ v_{a,b,F}(f)$$

• and the unity law

$$v_{a,a,I}(id_{Ka})=id_{Ja}.$$

The following theorem proves that the coalgebra representation and van Laarhoven representation of parameterised lenses are equivalent.

Theorem 4 (Lens Representation)

Given \mathscr{E} , a small full subcategory of Set^{Set} and given functors $J,K:\mathscr{P}\to Set$, then the families $k_{a,b}: Ja \to R_{a,b}^{(K)}(Jb)$ which form $R^{(K)}$ -coalgebras (J,k) are isomorphic to the families of ends

$$\int_{F:\mathscr{E}} (Ka \to FKb) \to Ja \to FJb$$

which satisfy the linearity and unity laws.

Proof

First, we prove the isomorphism of families without regard to the laws

$$Ja \rightarrow R_{a,b}^{(K)}(Jb)$$

$$\cong \qquad \{ \text{ definition of } R^{(K)} \}$$

$$Ja \rightarrow R_{Ka,Kb}(Jb)$$

$$\cong \qquad \{ \text{ Equation 12} \}$$

$$Ja \rightarrow \int_F (Ka \rightarrow FKb) \rightarrow FJb$$

$$\cong \qquad \{ \text{ Preservation of limits} \}$$

$$\int_F Ja \rightarrow (Ka \rightarrow FKb) \rightarrow FJb$$

$$\cong \qquad \{ \text{ Swap argument} \}$$

$$\int_F (Ka \rightarrow FKb) \rightarrow Ja \rightarrow FJb$$

This isomorphism is witnessed by the following functions:

M. Jaskelioff and R. O'Connor

$$\begin{array}{ll} \gamma & : (\int_F (Ka \to FKb) \to Ja \to FJb) \to (Ja \to R_{a,b}^{(K)} Jb) \\ \gamma(h) & = h_{R_{a,b}^{(K)}} (\alpha_{R_{a,b}^{(K)}}^{-1} (id)) \end{array}$$

$$\gamma^{-1} : (Ja \to R_{a,b}^{(K)} Jb) \to \int_F (Ka \to fKb) \to (Ja \to fJb)$$

$$\gamma^{-1}(k) = \tau \quad \text{where} \quad \tau_F : (Ka \to FKb) \to Ja \to FJb$$

$$\tau_F(g) = \alpha_F(g)_{Jb} \circ k$$

In order to prove that the laws of coalgebras for parameterised comonads correspond to unity and linearity, we first prove two technical lemmas.

Lemma 1

$$\gamma^{-1}(k_{a,c})_{F \cdot G}(Fg \circ f) = (\alpha_F(f) \cdot \alpha_G(g))_{Jc} \circ \delta_{a,b,c,Jc} \circ k_{a,c}$$

Proof

This follows from Proposition 2. \square

Lemma 2

$$F(\gamma^{-1}(k_{b,c})_G(g)) \circ \gamma^{-1}(k_{a,b})_F(f) = (\alpha_F(f) \cdot \alpha_G(g))_{J_C} \circ R_{a,b}^{(K)}(k_{b,c}) \circ k_{a,b}$$

By the previous two lemmas, to prove that the comultiplication-coalgebra law is equivalent to the linearity law it suffices to prove the following:

$$\begin{array}{cccc} R_{a,b}^{(K)}(k_{b,c})\circ k_{a,b} & = & \delta_{a,b,c,Jc}\circ k_{a,c} \\ & \Longleftrightarrow & \\ \forall FGfg.(\alpha_F(f)\cdot\alpha_G(g))\circ R_{a,b}^{(K)}(k_{b,c})\circ k_{a,b} & = & (\alpha_F(f)\cdot\alpha_G(g))\circ \delta_{a,b,c,Jc}\circ k_{a,c} \end{array}$$

The forward implication is clear. To prove the reverse implication take $F=R_{a,b}^{(K)}$ and $f=\alpha_{R_{a,b}^{(K)}}^{-1}(id)_{Jb}$. Also take $G=R_{b,c}^{(K)}$ and $g=\alpha_{R_{b,c}^{(K)}}^{-1}(id)_{Jc}$. Then $\alpha_F(f)=id$ and $\alpha_G(g)=id$. Therefore, $\alpha_F(f)\cdot\alpha_G(g)=id$ and the result follows.

To prove that the counit-coalgebra law is equivalent to the unity law it suffices to prove that $\varepsilon_{a,Ja} \circ k_{a,a} = \gamma^{-1}(k_{a,a})_I(id)$.

$$\begin{aligned} & \gamma^{-1}(k_{a,a})_I(id) \\ &= & \{ \text{ definition of } \gamma^{-1} \} \\ & \alpha_I(id)_{Ja} \circ k_{a,a} \\ &= & \{ \text{ Proposition 2(a) } \} \\ & \varepsilon_{a,Ja} \circ k_{a,a} \end{aligned}$$

The previous theorem can be generalized to the case where we have an adjunction.

Theorem 5 (Generalized Lens Representation)

Let $\mathscr E$ and $\mathscr F$ be two small categories of Set-endofunctors, such that $\mathscr E$ and $\mathscr F$ are (strict) monoidal with respect to the identity functor I and functor composition $-\cdot-$, and $\mathscr E$ is a full sub-category. Let $(-)^*\dashv U:\mathscr E \rightharpoonup \mathscr F$, be an adjunction between them, such that U is strict monoidal. Then

- 1. $UR^{(K)*}$ is a parameterised comonad.
- 2. Given functors $J,K: \mathscr{P} \to Set$, then the family $k_{a,b}: Ja \to UR_{a,b}^{(K)*}(Jb)$ which form the $UR^{(K)*}$ -coalgebras (J,k) are isomorphic to the family of ends

$$\int_{F:\mathscr{F}}(Ka\to UFKb)\to Ja\to UFJb$$

which satisfy the linearity and unity laws.

Proof

See appendix A. \Box

4.1 Lenses in Haskell

The Lens Representation theorem demonstrates that the coalgebra representation of lenses and the van Laarhoven representation are isomorphic. Both representations can be implemented in Haskell.

-- Parameterized store comonad

data *PStore* a b x = *PStore* $(b \rightarrow x)$ a

-- Coalgebra representation of lenses

newtype *KLens ja jb ka kb* = *KLens* $(ja \rightarrow PStore\ ka\ kb\ jb)$

-- van Laarhoven representation of lenses

type *VLens*
$$ja$$
 jb ka $kb = \forall f$. Functor $f \Rightarrow (ka \rightarrow f \ kb) \rightarrow ja \rightarrow f \ jb$

There are a few observations to make about this Haskell code. Firstly, neither the parameterised coalgebra laws nor the linearity and unity laws of the van Laarhoven representation can be enforced by Haskell's type system. We require that the programmer establish these invariants by hand. We have accordingly omitted writing out the parameterised comonad operations of *PStore*. Secondly, rather than taking *J* and *K* as parameters, we take source and target types for each functor. By not explicitly using functors as parameters, we avoid **newtype** wrapping and unwrapping functions that would otherwise be needed. Consider the example of building a lens to access the first component of a pair.

fstLens :: VLens a b
$$(a,y)$$
 (b,y)
fstLens f $(a,y) = (\lambda b \rightarrow (b,y))$ 'fmap' $(f \ a)$

Above we are constucting a VLens value but the argument applies equally well to a KLens value. The pair type is functorial in two arguments. For fstLens, we care about pairs being functorial with respect to the first position. If we were required to pass a J functor explicitly to VLens, we would need to add a wrapper around (a,b) to make it explicitly a functor of the first position. Furtermore, we are implicitly using the identity functor for the K functor. If we were required to pass a K functor explicitly to VLens we would have to

wrap and unwrap the Identity functor in Haskell in order to use the lens. Fortunately, all lens functionality can be implemented without explicitly mentioning the functor parameters.

The third thing to note about the VLens formulation is that we use a type alias rather than a **newtype**. This allows us to compose a lens of type VLens ja jb ka kb and another lens of type VLens ka kb la lb by simply using the standard function composition operator. There is another advantage that the type alias gives us, which we will see later.

The isomorphism between the two representations can be written out explicitly in Haskell.

```
instance Functor (PStore i j) where
   fmap f(PStore\ h\ x) = PStore\ (f \circ h)\ x
                 :: KLens ja jb ka kb \rightarrow VLens ja jb ka kb
kLens2VLens
kLens2VLens\ kf = (\lambda(PStore\ h\ x) \rightarrow h\ fmap\ f\ x) \circ k
                   :: VLens ja jb ka kb \rightarrow KLens ja jb ka kb
vLens2KLens
vLens2KLens v = v (PStore id)
```

The generalised lens representation theorem gives us pairs of representations of various lens derivatives. Using pointed functors, i.e. using the free pointed functor generated by PStore in the case of the coalgebra representation, or quantifying over pointed functors in the case of the van Laarhoven representaion, gives us the notion of a partial lens (O'Connor et al., 2013), also known as an affine traversal (Kmett, 2013).²

```
newtype FreePointedPStore\ a\ b\ x = Unit\ x
                                         | FreePointedPStore (b \rightarrow x) a
   -- coalgebra representation of partial lenses
newtype KPartialLens ja jb ka kb = KPartialLens (ja \rightarrow FreePointedPStore ka kb jb)
class Functor f \Rightarrow Pointed f where
  point:: a \rightarrow f \ a
  -- van Laarhoven representation of partial lenses
type VPartialLens ja jb ka kb = \forall f. Pointed f \Rightarrow (ka \rightarrow f kb) \rightarrow ja \rightarrow f jb
```

A partial lens provides a reference to 0 or 1 occurrences of K within J. If we instead use applicative functors, we get a reference to a sequence of 0 or more occurrences of K within J. This lens derivative is called a traversal.

```
newtype FreeApplicativePStore abx =
     Unit x
   | FreeApplicativePStore (FreeApplicativePStore a b (b \rightarrow x)) a
  -- coalgebra representation of traversals
newtype KTraversal ja jb ka kb = KTraversal (ja \rightarrow FreeApplicativePStore ka kb jb)
   -- van Laarhoven representation of traversals
type VTraversal ja jb ka kb = \forall f. Applicative f \Rightarrow (ka \rightarrow f \ kb) \rightarrow ja \rightarrow f \ jb
```

² An affine traversal from A to B is so called because it specifies an isomorphism between A and F B for some affine container F, i.e. for some functor F where $FX \cong C_1 \times X + C_2$.

The Haskell implementation of the isomorphism between KPartialLens and VPartialLens and the isomorphism between KTraversal and VTraversal is left as an exercise to the interested reader.

The second advantage of using a type synonym for the van Laarhoven representation is that values of type VLens are values of type VPartialLens and VTraversal, while the values of type KLens need to be explicitly converted to KPartialLens and KTraversal. If Haskell's standard library were modified such that Pointed was a superclass of Applicative, then values of type *VPartialLens* would be of type *VTraversal* as well.

5 The Finiteness of Traversals

In this section we show another application of the representation theorem. We show that traversable functors are exactly the finitary containers. We first introduce the relevant definitions and then provide the proof.

5.1 Applicative functors

The cartesian product gives the category Set a monoidal structure (Set, \times , 1, α , λ , ρ), where $\alpha_{X,Y,Z}: X \times (Y \times Z) \to (X \times Y) \times Z$, $\lambda_X: \mathbf{1} \times X \to X$, and $\rho_X: X \times \mathbf{1} \to X$ are natural isomorphisms expressing associativity of the product, left unit and right unit, respectively.

Definition 4 (Applicative Functor)

An applicative functor is a functor $F \colon \mathsf{Set} \to \mathsf{Set}$ which is strong lax monoidal with respect to this monoidal structure. That is, it is equipped with a map and a natural transformation:

$$u$$
: $\mathbf{1} \to F \mathbf{1}$ (monoidal unit)
 $\star_{X,Y}$: $FX \times FY \to F(X \times Y)$ (monoidal action)

such that

$$\begin{array}{c|cccc}
\mathbf{1} \times FX & \xrightarrow{\lambda} FX & \xrightarrow{\rho} FX \times \mathbf{1} \\
u \times FX & & & & & & & & & & & \\
F\mathbf{1} \times FX & & & & & & & & & \\
\downarrow FX \times u & & & & & & & & & \\
F\mathbf{1} \times FX & & & & & & & & & \\
\downarrow FX \times F\mathbf{1} & & & & & & & \\
\downarrow \star & & & & & & & \\
F(1 \times x) & \xrightarrow{F\lambda} FX & \xrightarrow{F\rho} F(X \times \mathbf{1})
\end{array}$$

All Set functors are strong, but the strength $\tau \colon FX \times Y \to F(X \times Y)$ of an applicative functor F is required to be coherent with the monoidal action, i.e. the following diagram 18

M. Jaskelioff and R. O'Connor

commutes.

Applicative functors may alternatively be given as a functor $F \colon \mathsf{Set} \to \mathsf{Set}$ equipped with two natural transformations $pure_X \colon X \to FX$ and $\circledast_{X,Y} \colon F(X \to Y) \times FX \to FY$, together with some equations (see (McBride & Paterson, 2008) for details). This presentation is more useful for programming and therefore is the one chosen in Haskell. However, for our purposes, the presentation of applicative functors as monoidal functors is more convenient.

Definition 5 (Applicative Morphism)

Let F and G be applicative functors. An *applicative morphism* is a natural transformation $\tau \colon F \to G$ that respects the unit and multiplication. That is, a natural transformation τ such that the following diagrams commute.

Applicative functors and applicative morphisms form a strict monoidal category \mathscr{A} . The identity functor is an applicative functor, and the composition of applicative functors is an applicative functor. Hence, \mathscr{A} has the structure of a strict monoidal category.

5.2 Traversable functors

McBride and Paterson (2008), characterise *traversable functors* as those equipped with a family of morphisms $\mathsf{traverse}_{F,A,B}: (A \to FB) \times TA \to F(TB)$, natural in an applicative functor F, and sets A and B. However, without further constraints this characterisation is too coarse. Hence, Jaskelioff and Rypáček (2012) proposed the following notion:

Definition 6 (Traversable Functor)

A functor $T: Set \rightarrow Set$ is said to be *traversable* if there is a family of functions

$$\mathsf{traverse}_{F.A.B}: (A \to FB) \times TA \to F(TB)$$

natural in F, A, and B that respects the monoidal structure of applicative functor composition. More concretely, for all applicative functors F, G: Set o Set and applicative

morphisms $\alpha : F \to G$, the following diagrams should commute:

5.3 Characterising Traversable Functors

Let \mathscr{A} be the category of applicative functors and applicative morphisms. In order to prove that traversable functors are finitary containers, we first note that we can apply theorem 5 to any traversal which satisfies the linearity and unity laws. Hence for every traversal on T

$$\mathsf{traverse}_{A,B}: \int_{F\cdot\mathscr{A}} (A \to UFB) \to TA \to UFTB$$

there is a corresponding parameterised coalgebra

$$t_{AB}: TA \rightarrow UR_{AB}^*(TB)$$

where $R_{A,B}^*$ is the free applicative functor for $R_{A,B}$. The following proposition tells us what this free aplicative functor looks like.

Proposition 3

The free applicative functor on $R_{A,B}$ is

$$R_{AB}^*X = \Sigma n : \mathbb{N}. A^n \times (B^n \to X)$$

with action on morphisms $R_{A,B}^{*}(h)$ $(n,as,f)=(n,as,h\circ f)$, and applicative structure:

$$\begin{array}{rcl} u & : & R_{A,B}^* \, 1 \\ u & = & (0,*,\lambda b s.*) \\ \\ \star_{X,Y} & : & R_{A,B}^* X \times R_{A,B}^* Y \to R_{A,B}^* (X \times Y) \\ (n,as,f) \star (m,as',g) & = & (n+m,as++as',\lambda b s.(f \ ({\sf take} \ n \ b s),g \ ({\sf drop} \ n \ b s))) \end{array}$$

where we write X^n for vectors of length n, i.e. the n-fold product $X \times \cdots \times X$, ++ for vector append, and take n and drop n for the functions that given a vector of size n + m return the first n elements and the last m elements respectively.

Hence $R_{A,B}^*X$ consists of

- 1. a natural number, which we call the *dimension*,
- 2. a finite vector, which we call the position,
- 3. a function from a finite vector, which allows us to peek into new positions.

In order to make it easier to talk about the different components we define projections: let $r = (n, i, g) : R_{A,B}^* X$, then dim r = n, pos r = i, and peek r = g.

20

M. Jaskelioff and R. O'Connor

Theorem 5 tells us that UR^* is a parameterised comonad with the following counit and comultiplication operations.

$$\mathcal{E}_{A,X}$$
 : $UR_{A,A}^*X \to X$
 $\mathcal{E}_{A,X}(n,as,f) = f as$

$$\begin{array}{lcl} \delta_{A,B,C,X} & : & UR_{A,C}^*X \to UR_{A,B}^*(UR_{B,C}^*X) \\ \delta_{A,B,C,X}(n,as,f) & = & (n,as,\lambda bs.(n,bs,f)) \end{array}$$

Furthermore, given a traversal of T, a parameterised coalgebra for UR^* , (T,t) is given by $t_{A,B} = \text{traverse}_{A,B} \text{ wrap}_{A,B}$, where

$$\mathsf{wrap}_{A,B}:A o UR_{A,B}^*B$$
 $\mathsf{wrap}_{A,B}\;a = (1,a,id_b)$

In the other direction, given a coalgebra for UR^* , (T,t), we obtain a traversal for T:

$$traverse_{A,B} f x = \mathbf{let} (n, as, g) = t x \mathbf{in} F(g) (collect_n f as)$$

where collect_n
$$f(x_1, ..., x_n) = f(x_1) \star \cdots \star f(x_n)$$
.

5.4 Finitary Containers

A *finitary container* is given by a set of shapes S, and an arity function $ar: S \to \mathbb{N}$. The *extension* of a finitary container (S, ar) is a functor [S, ar]: Set \to Set defined as follows.

$$\llbracket S, ar \rrbracket \ X = \Sigma \ s \colon S \colon X^{(ars)}$$

Given an element of an extension of a finitary container c = (s, xs): Σs : S. $X^{(ars)}$, we define projections shape c = s, and contents c = xs.

Lemma 3 (Finitary containers are traversable)

The extension of any finitary container (S, ar) is traversable with a canonical traversal given by:

$$\begin{array}{lll} \mathsf{traverse}_{F,X,Y} & : & (X \to F\,Y) \times \llbracket S, ar \rrbracket \, X \to F \, \llbracket S, ar \rrbracket \, Y \\ \mathsf{traverse}_{F,X,Y} \, (f,(s,xs)) & = & F(\lambda c. \, (s,c)) (\mathsf{collect}_{ar(s)} \, f \, xs) \end{array}$$

5.5 Finitary Containers from Coalgebras

For the first part of our proof we already showed that every traversal is isomorphic to an UR^* -coalgebra. For the second part, we show that if (T,t) is a UR^* -coalgebra then T is a finitary container.

Theorem 6

Let X: Set and let (T,t) be a parameterised coalgebra for UR^* . That is, T: Set \to Set is a functor and $t_{A,B}: TA \to UR^*_{a,b}$ (TB) is a family natural in A and dinatural in B such that certain laws hold (see Definition 3). Then TX is isomorphic to the extension of the finitary container $[T1, \lambda s. \dim (ts)] X$.

Proof

main

We define an isomorphism between TX and Σs : $T1.X^{(\dim(ts))}$.

Given a value x: TX, the contents of the resulting container are simply the position of (tx). The shape of the resulting container is obtained by peeking into (tx) at the trivial vector $*^n$: 1^n where n is the dimension of (tx). More formally we define one direction of the isomorphism as

$$\Phi : TX \to \Sigma s: T1. X^{(\dim(ts))}$$

$$\Phi x = \mathbf{let} (n, i, g) = tx \mathbf{in} (g (*^n), i)$$

Given a value (s, v): Σs : T1. $X^{(\dim(ts))}$ we can create a TX by peaking into (ts) at v. More formally, the other direction of the isomorphism is defined as

$$\Psi$$
 : $\Sigma s: TI. X^{(\dim(t s))} \to TX$
 $\Psi(s, v) = \text{peek } (t s) v$

First we prove that $\Psi (\Phi x) = x$.

$$\begin{split} \Psi\left(\Phi\,x\right) \\ &= \left\{ \begin{array}{l} \text{definition of } \Psi,\Phi \,\right\} \\ &= \left\{ \begin{array}{l} \textbf{let}\left(n,i,g\right) = t\,x\,\,\textbf{in}\,\,\text{peek}\,\left(t\,\left(g\,\left(*^{n}\right)\right)\right)\,i \\ \\ &= \left\{ \begin{array}{l} \text{map on morphisms of } UR_{a,b}^{*} \,\right\} \\ &= \left\{ \begin{array}{l} \textbf{let}\left(n,i,h\right) = UR_{a,b}^{*}\left(t\right)\,\left(t\,x\right)\,\textbf{in}\,\,\text{peek}\,\left(h\,\left(*^{n}\right)\right)\,i \\ \\ &= \left\{ \begin{array}{l} \textbf{comultiplication-coalgebra}\,\,\text{law} \,\right\} \\ &= \left\{ \begin{array}{l} \textbf{definition of } \delta\,\,\text{and peek} \,\right\} \\ &= \left\{ \begin{array}{l} \textbf{definition of } \epsilon\,\right\} \\ &= \left\{ \begin{array}{l} \textbf{definition of } \epsilon\,\right\} \\ &\in \left(t\,x\right) \\ \\ &= \left\{ \begin{array}{l} \textbf{counit-coalgebra}\,\,\text{law} \,\right\} \\ \end{array} \end{split}$$

Last we prove that $\Phi (\Psi (s, v)) = (s, v)$.

$$\Phi (\Psi (s, v))
= { definition of Ψ, Φ, and map on morphisms of $UR_{a,b}^* }$

$$\mathbf{let} \{ (_, _, h) = UR_{a,b}^* t (t s); (n, i, g) = h v \} \mathbf{in} (g (*^n), i)$$

$$= { comultiplication-coalgebra law }$$

$$\mathbf{let} \{ (_, _, h) = \delta (t s); (n, i, g) = h v \} \mathbf{in} (g (*^n), i)$$

$$= { definition of δ }$$

$$\mathbf{let} (n, j, g) = t s \mathbf{in} (g (*^n), v)$$

$$= { j = (*^n) because 1^n has a unique element }$$

$$\mathbf{let} (n, j, g) = t s \mathbf{in} (g j, v)$$

$$= { definition of ε }$$

$$(ε (t s), v)$$

$$= { counit-coalgebra law }$$

$$(s, v)$$$$

22

Corollary 1

Let X: Set and T: Set \to Set be a traversable functor. Then TX is isomorphic to the finitary container $[T1, \lambda s. \text{ dim (traverse wrap } s)] X$.

Proof

Apply Theorem 6 with the UR^* -coalgebra t = traversewrap.

All that remains to show is that this isomorphism maps the traversal of *T* to the canonical traversal of the finitary container.

Theorem 7

Let $T: \mathsf{Set} \to \mathsf{Set}$ be a traversable functor and let $\Phi: TX \to [\![TI, \lambda s.\ \mathsf{dim}\ (\mathsf{traverse}\ \mathsf{wrap}\ s)]\!]X$ be the isomorphism defined above. Let F be an arbitrary applicative functor and let $f: A \to FB$ and x: TA. Then, $F(\Phi)$ (traverse $f(\Phi)$) = traverse $f(\Phi)$.

Proof

Before beginning we prove two small lemmas. First that pos (traverse wrap x) = contents (Φx).

```
pos (traverse wrap x)

= { definition of pos }

let (\_, i, \_) = traverse wrap x in i

= { definition of \Phi }

contents (\Phi x)
```

Second, that Φ (peek (traverse wrap x) w) = (shape $(\Phi x), w$)

```
 \Phi \text{ (peek (traverse wrap } x) w) 
 = \left\{ \text{ definition of peek } \right\} 
 \text{ let } (\_,\_,g) = \text{ traverse wrap } x \text{ in } \Phi \left( g \, w \right) 
 = \left\{ \text{ definition of } \Phi \right\} 
 \text{ let } \left\{ \left( \_,\_,g \right) = \text{ traverse wrap } x; (n,i,h) = \text{ traverse wrap } \left( g \, w \right) \right\} \text{ in } \left( h \, \left( *^n \right),i \right) 
 = \left\{ \text{ definition of } UR_{a,b}^* \right\} 
 \text{ let } \left\{ \left( \_,\_,g \right) = UR_{a,b}^* \left( \text{ traverse wrap } \right) \left( \text{ traverse wrap } x \right); (n,i,h) = g \, w \right\} \text{ in } \left( h \, \left( *^n \right),i \right) 
 = \left\{ \text{ definition of } \delta \right\} 
 \text{ let } \left\{ \left( \_,\_,g \right) = \delta \left( \text{ traverse wrap } x \right); (n,i,h) = g \, w \right\} \text{ in } \left( h \, \left( *^n \right),i \right) 
 = \left\{ \text{ definition of } \delta \right\} 
 \text{ let } \left( \_,\_,g \right) = \text{ traverse wrap } x \text{ in } \left( g \, \left( *^n \right),w \right) 
 = \left\{ \text{ definition of } \Phi \right\} 
 \left( \text{ shape } \left( \Phi \, x \right),w \right)
```

Lastly, we prove our main result.

```
F\left(\Phi\right) \text{ (traverse } fx\text{)}
= \left\{ \text{ isomorphism in Theorem 5 } \right\}
\mathbf{let} (n,i,g) = \text{traverse wrap } x \mathbf{in} F\left(\Phi\right) \left(F\left(g\right) \left(\text{collect}_n f i\right)\right)
= \left\{ \text{ functors respect composition } \right\}
\mathbf{let} (n,i,g) = \text{traverse wrap } x \mathbf{in} F\left(\Phi \circ g\right) \left(\text{collect}_n f i\right)
= \left\{ \text{ application of above two lemmas } \right\}
\mathbf{let} (s,v) = \Phi x \mathbf{in} F\left(\lambda c. \left(s,c\right)\right) \left(\text{collect}_n f v\right)
= \left\{ \text{ definition of canonical traverse for finitary containers } \right\}
\text{traverse } f\left(\Phi x\right)
```

The isomorphism between T and $[TI, \lambda s.$ dim (traverse wrap s)] must be natural by construction. However, naturality is also an immediate consequence of the preceding theorem because traversing with the identity functor I is equivalent to the mapping on morphisms of a traversable functor.

6 Implementing algebraic theories

As a last application of the representation theorem, we take a look at the case where we consider \mathscr{M} , the category of monads with monad homomorphisms. In this situation, the functor $(-)*:\mathscr{E}\to\mathscr{M}$, maps any functor $F:\mathscr{E}$ to F^* , the free monad on F, while the functor $U:\mathscr{M}\to\mathscr{E}$ forgets the monad structure. The representation theorem then states that

$$\int_{M \in \mathcal{M}} (A \to UMB) \to UMX \quad \cong \quad UR_{A,B}^* X \tag{16}$$

where, $R_{A,B}X = A \times (B \rightarrow X)$ is the parameterised store comonad.

In Haskell, we can write the isomorphism (16) as

$$\forall m. \text{ Monad } m \Rightarrow (a \rightarrow m b) \rightarrow m x \cong Free (PStore \ a \ b) \ x$$

where *PStore* and the free monad construction are as follows:

```
newtype PStore a b x = PStore (b \rightarrow x) a data Free f x = Unit x | Branch (f (Free f x)) instance Functor f \Rightarrow Monad (Free f) where return = Unit Pure x \gg f = f x Branch xs \gg f = Branch (fmap (\gg f) xs)
```

This way of constructing a free monad from an arbitrary functor requires a recursive datatype. The isomorphism (16), on the other hand, shows a non-recursive way of describing the free monad on functors of the form *PStore a b*.

While this result seems to be of limited applicability, we note that every signature of an algebraic operation with parameter a and arity b determines a functor of this form. Hence, the theorem tell us how to construct the free monad on a given signature of a single algebraic operation. Intuitively the type

$$\forall m$$
. Monad $m \Rightarrow (a \rightarrow m b) \rightarrow m x$

describes a monadic computation m x in which the only source of impurity is the operation of type $a \to m b$ in the argument. This type can be implemented in Haskell in the following manner, where we have abstracted over the types of the argument operation.

```
newtype FreeOp primOp x = FreeOp \{ runOp :: \forall m. \text{ Monad } m \Rightarrow primOp \ m \rightarrow m \ x \}
instance Monad (FreeOp primOp) where
return \ x = FreeOp \ (const \ (return \ x))
x \gg f = FreeOp \ (\lambda op \rightarrow runOp \ x \ op \gg \lambda a \rightarrow runOp \ (f \ a) \ op)
```

Notice the bind operation for *FreeOp* is not recursive and is implemented in terms of the bind operation for an arbitrary abstract monad.

For example, exceptions in a type e can be given by a nullary operation *throw* with parameter e. 3

```
type Exc\ e\ m = e \rightarrow m\ \emptyset
```

where \emptyset is the empty type, and hence $FreeOp\ (Exc\ e)$ is the type of monadic computations which can throw an exception using the following operation:

We may model environments in r by an operation ask with parameter () and arity r.

```
type Env r m = () \rightarrow m r
```

Hence, FreeOp (Env r) is the type of monadic computation which can read an environment using the following operation:

```
ask :: FreeOp(Env r) r

ask = FreeOp(\lambda \_ ask \rightarrow \_ ask())
```

More generally, we may want to consider algebraic theories with more than one operation. Following the same argument as before, but considering the N-ary representation theorem, we can construct the free monad on any signature of algebraic operations.

For example, a simple teletype interface can be represented by the following functor (Swierstra, 2008):

```
data Teletype x = GetChar(Char \rightarrow x)
| PutChar Char x
```

The free monad generated by this Teletype functor produces a tree representing all the interactions with a teletype machine a user can have. The Teletype functor is isomorphic to a sum of instances of R

```
Teletype x \cong ((), Char \to x) + (Char, () \to x) \cong (R() Char + R Char()) x
```

By the N-ary representation theorem, the free monad generated by *Teletype* is isomorphic to

```
\forall m. \text{ Monad } m \Rightarrow (() \rightarrow m \text{ Char}) \rightarrow (\text{Char} \rightarrow m ()) \rightarrow m \text{ } x
```

We define a type for representing teletype operations. In order to reuse our previous definition of *FreeOp* and to get names for each argument, we define the type as a record in which each field corresponds to an operation.

```
data TTOp m = TTOp \{ \exists tGetChar :: m Char , \exists tPutChar :: Char \rightarrow m () \}
```

³ In order to avoid clutter, we sometimes use a type synonym where a real implementation would require a newtype, with its associated constructor and destructor.

We obtain the free monad for *TTOp* and define operations on it that basically choose the corresponding field from the record.

```
type FreeTT = FreeOp\ TTOp
ttGetChar :: FreeTT\ Char
ttGetChar = FreeOp\ \_ttGetChar
ttPutChar :: Char \to FreeTT\ ()
ttPutChar\ c = FreeOp\ (\lambda po \to \_ttPutChar\ po\ c)
```

Values of type *FreeTT* can be easily be interpreted in *IO*, by providing operations of the appropriate type.

```
runTTIO :: FreeTT a \rightarrow IO a runTTIO = runOp ttOpIO where ttOpIO :: TTOp IO ttOpIO = TTOp \{ \_ttGetChar = getChar , \_ttPutChar = putChar \}
```

Of course, the larger purpose is that *FreeTT* values can be intepreted in other ways, for example, by logging input, or for use in automated tests by replaying previously logged input. Furthermore, a *FreeOp* monad can easily be embedded into another *FreeOp* monad with a larger set of primitive commands, or interpreted into another *FreeOp* monad with a smaller, more primitive set of commands, providing a simple way of implementing handlers of algebraic effects (Plotkin & Pretnar, 2009). Hence, theorem 3 might provide the basis for a simple implementation of an algebraic-effects library.

7 Related Work

Traversable functors were introduced by McBride and Paterson (2008), generalising a notion of traversal by Moggi et al. (1999). The notion proposed was too coarse and Gibbons and Oliveira (2009), analysed several properties that should hold for all traversals. Based on some of these properties, Jaskelioff and Rypáček (2012) proposed a characterisation of traversable functors, and conjectured that they were isomorphic to finitary containers (Abbott *et al.*, 2003). The conjecture was proven correct by Bird et al. (2013). The proof of this same fact presented in Section 5 was found independently.

The representation of the free applicative functor on the parameterised store comonad, *R*, is a dependently typed version of van Laarhoven's *FunList* data type (van Laarhoven, 2009b). Van Laarhoven's applicative and parameterised comonad instances for this type have been translated to work on for the dependently typed implementation. A particular case of the representation theorem has been conjectured by van Laarhoven (2009c), and proved by O'Connor (2011). The proof of representation theorem for functors via the Yoneda lemma was discovered independently by Bartosz Milewski (2013).

The representation theorems applied to the case where the structured functors are monads (as in Section 6) yields isomorphisms analogous to the ones presented by Bauer et al. (2013). However, our proof is based on a categorical model, while theirs is based on a

parametric model. Also, as opposed to us, they do not explore the connection with algebraic effects.

Acknowledgements

Many thanks go to Edward Kmett who assisted the authors in the generalization of the *Rep* representation, and to Exequiel Rivas for helping us improve the presentation of the paper. We also thank Shachaf Ben-Kiki for explaining why affine traversals are called so.

References

- Abbott, Michael, Altenkirch, Thorsten, & Ghani, Neil. (2003). Categories of containers. Pages 23–38 of: Proceedings of Foundations of Software Science and Computation Structures.
- Atkey, Robert. (2009a). Algebras for parameterised monads. Pages 3-17 of: Kurz, Alexander, Lenisa, Marina, & Tarlecki, Andrzej (eds), Algebra and Coalgebra in Computer Science, Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5728. Springer.
- Atkey, Robert. (2009b). Parameterised notions of computation. Journal of functional programming, **19**(3 & 4), 335–376.
- Awodey, Steve. (2006). Category theory. Oxford University Press, USA.
- Bauer, Andrej, Hofmann, Martin, & Karbyshev, Aleksandr. (2013). On monadic parametricity of second-order functionals. Pages 225-240 of: Pfenning, Frank (ed), Foundations of Software Science and Computation Structures. Lecture Notes in Computer Science, vol. 7794. Springer Berlin Heidelberg.
- Bird, Richard, Gibbons, Jeremy, Mehner, Stefan, Voigtländer, Janis, & Schrijvers, Tom. (2013). Understanding idiomatic traversals backwards and forwards. Pages 25-36 of: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell. Haskell '13. New York, NY, USA: ACM.
- Foster, J. Nathan, Greenwald, Michael B., Moore, Jonathan T., Pierce, Benjamin C., & Schmitt, Alan. (2007). Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem. Acm trans. program. lang. syst., 29(3).
- Gibbons, Jeremy, & Oliveira, Bruno c. d. s. (2009). The essence of the iterator pattern. Journal of Functional Programming, 19(July), 377–402.
- Jaskelioff, Mauro, & Rypacek, Ondrej. (2012). An investigation of the laws of traversals. Pages 40-49 of: Chapman, James, & Levy, Paul Blain (eds), Proceedings of the Fourth Workshop on Mathematically Structured Functional Programming. EPTCS, vol. 76.
- Edward. 2013 (Oct.). lens-4.0: Lenses, folds traversals. and http://ekmett.github.io/lens/Control-Lens-Traversal.html.
- Mac Lane, Saunders. (1971). Categories for the working mathematician. Graduate Texts in Mathematics, no. 5. Springer-Verlag. Second edition, 1998.
- McBride, Conor, & Paterson, Ross. (2008). Applicative programming with effects. Journal of functional programming, 18(01), 1–13.
- 2013 Milewski, Bartosz. (Oct.). Lenses. and stores. yoneda. http://bartoszmilewski.com/2013/10/08/lenses-stores-and-yoneda.
- Moggi, Eugenio, Bellè, Giana, & Jay, C. Barry. (1999). Monads, shapely functors and traversals. Electronic notes in theoretical computer science, 29, 187 - 208. CTCS '99, Conference on Category Theory and Computer Science.
- O'Connor, Russell. (2011). Functor is to lens as applicative is to biplate: Introducing multiplate. Corr, abs/1103.2841v1.

O'Connor, Russell, Kmett, Edward A., & Morris, Tony. 2013 (Oct.). data-lens-2.10.4: Haskell 98 lenses. http://hackage.haskell.org/package/data-lens-2.10.4/docs/Data-Lens-Partial-Common.html.

Plotkin, Gordon, & Pretnar, Matija. (2009). Handlers of algebraic effects. *Pages 80–94 of:* Castagna, Giuseppe (ed), *Programming languages and systems*. Lecture Notes in Computer Science, vol. 5502. Springer Berlin Heidelberg.

Swierstra, Wouter. (2008). Data types à la carte. Journal of functional programming, 18(4), 423–436.

van Laarhoven, Twan. 2009a (Aug.). CPS based functional references. http://twanvl.nl/blog/haskell/cps-functional-references.

van Laarhoven, Twan. 2009b (Apr.). A non-regular data type challenge. http://twanvl.nl/blog/haskell/non-regular1.

van Laarhoven, Twan. 2009c (Apr.). Where do I get my non-regular types? http://twanvl.nl/blog/haskell/non-regular2.

A Generalised Lens Representation Theorem

For all the propositions below assume we have two small monoidal categories of endofunctors, $(\mathscr{E}, I, \cdot, \alpha, \lambda, \rho)$ and $(\mathscr{F}, I, \cdot, \alpha', \lambda', \rho')$, \mathscr{E} is a subcategory of endofunctors over a base category \mathscr{E} , and \mathscr{F} is a subcategory of endofunctors over a base category \mathscr{D} , and where the monoidal operation is composition of endofunctors (written $F \cdot G$) and with the identity functor, I, as the identity. Also assume we have an adjuction $(-)^* \dashv U : \mathscr{E} \rightharpoonup \mathscr{F}$, such that U is strict monoidal 4 (i.e., UI = I, $U(F \cdot G) = UF \cdot UG$, $U\lambda'_X = \lambda_{UX}$, etc.).

Proposition 4

Let $(C, \varepsilon^C, \delta^C)$ be a \mathscr{P} -parameterised comonad on \mathscr{C} , such that for every $a, b : \mathscr{P}$, we have an endofunctor $C_{a,b} : \mathscr{E}$. Then $(C^*, \varepsilon^{C^*}, \delta^{C^*})$ is a \mathscr{P} -parameterised comonad on \mathscr{D} where

$$\varepsilon_a^{C^*} : C_{a,a}^* \to I$$

$$\varepsilon_a^{C^*} = [\varepsilon_a^C]$$

$$\begin{array}{lcl} \delta^{C^*}_{a,b,c} & : & C^*_{a,c} \rightarrow C^*_{a,b} \cdot C^*_{b,c} \\ \delta^{C^*}_{a,b,c} & = & \lceil (\eta_{C_{a,b}} \cdot \eta_{C_{b,c}}) \circ \delta^C_{a,b,c} \rceil \end{array}$$

The tensor · in the term corresponds to horizontal composition of natural transformations.

Proof

The first parameterised comonad law is:

$$\lambda_{C_{a,b}} \circ (\varepsilon_a^C \cdot id) \circ \delta_{a,a,b}^C = id : C_{a,b} \xrightarrow{\mathscr{E}} C_{a,b}$$

We check that:

$$\lambda'_{C^*_{a,b}} \circ (\varepsilon_a^{C^*} \cdot id) \circ \delta_{a,a,b}^{C^*} = id : C^*_{a,b} \xrightarrow{\mathscr{F}} C^*_{a,b}$$

$$\lambda'_{C_{a,b}^*} \circ (\varepsilon_a^{C^*} \cdot id) \circ \delta_{a,a,b}^{C^*}$$

These propositions still hold under the assumption that *U* is a strong monoidal functor. In order to avoid excessive notation we use the simplifying assumption that *U* is strict.

M. Jaskelioff and R. O'Connor

$$= \left\{ \begin{array}{l} \text{Definition of } \delta^{C^*} \right\} \\ \lambda'_{C_{a,b}} \circ \left(\varepsilon_{a}^{C^*} \cdot id \right) \circ \left\lceil \left(\eta_{C_{a,a}} \cdot \eta_{C_{a,b}} \right) \circ \delta_{a,a,b}^{C} \right\rceil \\ = \left\{ \begin{array}{l} \text{Eq. 7} \right\} \\ \left\lceil U \lambda'_{C_{a,b}} \circ U \left(\varepsilon_{a}^{C^*} \cdot id \right) \circ \left(\eta_{C_{a,a}} \cdot \eta_{C_{a,b}} \right) \circ \delta_{a,a,b}^{C} \right\rceil \\ = \left\{ \begin{array}{l} U \text{ is strict monoidal.} \right\} \\ \left\lceil \lambda_{UC_{a,b}^*} \circ \left(U \varepsilon_{a}^{C^*} \cdot id \right) \circ \left(\eta_{C_{a,a}} \cdot \eta_{C_{a,b}} \right) \circ \delta_{a,a,b}^{C} \right\rceil \\ = \left\{ \begin{array}{l} \text{Bifunctor } \cdot, \text{ definition of } \varepsilon^{C^*} \right\} \\ \left\lceil \lambda_{UC_{a,b}^*} \circ \left(\left(U \left\lceil \varepsilon_{a}^{C} \right\rceil \circ \eta_{C_{a,a}} \right) \cdot \eta_{C_{a,b}} \right) \circ \delta_{a,a,b}^{C} \right\rceil \\ = \left\{ \begin{array}{l} \text{Eq 9} \right\} \\ \left\lceil \lambda_{UC_{a,b}^*} \circ \left(\left\lfloor \left\lceil \varepsilon_{a}^{C} \right\rceil \right\rfloor \cdot \eta_{C_{a,b}} \right) \circ \delta_{a,a,b}^{C} \right\rceil \\ = \left\{ \begin{array}{l} \text{ isomorphism } \right\} \\ \left\lceil \eta_{C_{a,b}} \circ \lambda_{C_{a,b}} \circ \left(\varepsilon_{a}^{C} \cdot \eta_{C_{a,b}} \right) \circ \delta_{a,a,b}^{C} \right\rceil \\ = \left\{ \begin{array}{l} \text{ first parameterised comonad law} \right\} \\ \left\lceil \eta_{C_{a,b}} \right\rceil \\ = \left\{ \begin{array}{l} \text{ isomorphism } \right\} \\ \left\lceil \iota id \right\rceil \\ = \left\{ \begin{array}{l} \text{ isomorphism} \right\} \\ \end{array} \right\} \\ \left\lceil \iota id \right\rceil \\ = \left\{ \begin{array}{l} \text{ isomorphism } \right\} \\ \left\lceil \iota id \right\rceil \\ = \left\{ \begin{array}{l} \text{ isomorphism } \right\} \\ \iota id \end{array} \right\} \end{array}$$

For the second parameterised comonad law we proceed in a similar way to the first. The third parameterised comonad law states

$$\alpha_{C_{a,b},C_{b,c},C_{c,d}} \circ (\delta_{a,b,c}^{C} \cdot id) \circ \delta_{a,c,d}^{C} = (id \cdot \delta_{b,c,d}^{C}) \circ \delta_{a,b,d}^{C} : C_{a,d} \xrightarrow{\mathscr{E}} C_{a,b} \cdot (C_{b,c} \cdot C_{c,d})$$

Let us prove that

$$\begin{split} \alpha'_{C^*_{a,b},C^*_{b,c},C^*_{c,d}} \circ (\delta^{C^*}_{a,b,c} \cdot id) \circ \delta^{C^*}_{a,c,d} &= (id \cdot \delta^{C^*}_{b,c,d}) \circ \delta^{C^*}_{a,b,d} : C^*_{a,d} \xrightarrow{\mathscr{F}} C^*_{a,b} \cdot (C^*_{b,c} \cdot C^*_{c,d}) \\ \alpha' \circ (\delta^{C^*}_{a,b,c} \cdot id) \circ \delta^{C^*}_{a,c,d} \\ &= \quad \{ \text{ Definition of } \delta^{C^*} \} \\ \alpha' \circ (\delta^{C^*}_{a,b,c} \cdot id) \circ \lceil (\eta_{C_{a,c}} \cdot \eta_{C_{c,d}}) \circ \delta^{C}_{a,c,d} \rceil \\ &= \quad \{ \text{ Eq. 7, } U \text{ strict monoidal } \} \\ \lceil \alpha \circ (U \delta^{C^*}_{a,b,c} \cdot id) \circ (\eta_{C_{a,c}} \cdot \eta_{C_{c,d}}) \circ \delta^{C}_{a,c,d} \rceil \end{split}$$

 $= \{ \cdot \text{ bifunctor } \}$

A Representation Theorem for Second-Order Functionals

29

$$\lceil \alpha \circ ((U\delta_{a,b,c}^{C^*} \circ \eta_{C_{a,c}}) \cdot \eta_{C_{c,d}}) \circ \delta_{a,c,d}^{C} \rceil$$

$$= \{ Eq 9 \}$$

$$\lceil \alpha \circ (\lfloor \delta_{a,b,c}^{C^*} \rfloor \cdot \eta_{C_{c,d}}) \circ \delta_{a,c,d}^{C} \rceil$$

$$= \{ Definition of \delta^{C^*} \}$$

$$\lceil \alpha \circ (\lfloor \lceil (\eta_{C_{a,b}} \cdot \eta_{C_{b,c}}) \circ \delta_{a,b,c}^{C} \rceil \rfloor \cdot \eta_{C_{c,d}}) \circ \delta_{a,c,d}^{C} \rceil$$

$$= \{ isomorphism \}$$

$$\lceil \alpha \circ ((\eta_{C_{a,b}} \cdot \eta_{C_{b,c}}) \circ \delta_{a,b,c}^{C}) \cdot \eta_{C_{c,d}}) \circ \delta_{a,c,d}^{C} \rceil$$

$$= \{ isomorphism \}$$

$$\lceil \alpha \circ ((\eta_{C_{a,b}} \cdot \eta_{C_{b,c}}) \circ \eta_{C_{c,d}}) \circ (\delta_{a,b,c}^{C} \cdot id) \circ \delta_{a,c,d}^{C} \rceil$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot (\eta_{C_{b,c}} \cdot \eta_{C_{c,d}})) \circ \alpha \circ (\delta_{a,b,c}^{C} \cdot id) \circ \delta_{a,c,d}^{C} \rceil$$

$$= \{ third parameterised comonad law \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot (\eta_{C_{b,c}} \cdot \eta_{C_{c,d}})) \circ (id \cdot \delta_{b,c,d}^{C}) \circ \delta_{a,b,d}^{C} \rceil$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{b,c}} \cdot \eta_{C_{c,d}})) \circ (id \cdot \delta_{b,c,d}^{C}) \circ \delta_{a,b,d}^{C} \rceil$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{b,c}} \cdot \eta_{C_{c,d}})) \circ (id \cdot \delta_{b,c,d}^{C})) \circ \delta_{a,b,d}^{C} \rceil$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{b,c}} \cdot \eta_{C_{c,d}})) \circ \delta_{b,c,d}^{C} \rceil)) \circ \delta_{a,b,d}^{C} \rceil$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{b,c}} \cdot \eta_{C_{c,d}})) \circ \delta_{b,c,d}^{C} \rceil)) \circ \delta_{a,b,d}^{C} \rceil$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{b,c}} \cdot \eta_{C_{c,d}})) \circ \delta_{b,c,d}^{C} \rceil)) \circ \delta_{a,b,d}^{C} \rceil$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{b,c}} \cdot \eta_{C_{c,d}})) \circ \delta_{b,c,d}^{C} \rceil)) \circ \delta_{a,b,d}^{C} \rceil$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{a,b}} \cdot \eta_{C_{b,d}})) \circ \delta_{a,b,d}^{C} \rceil)$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{a,b}} \cdot \eta_{C_{b,d}})) \circ \delta_{a,b,d}^{C} \rceil)$$

$$= \{ outrality of \alpha \}$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{a,b}} \cdot \eta_{C_{b,d}})) \circ \delta_{a,b,d}^{C} \rceil)$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{a,b}} \cdot \eta_{C_{b,d}})) \circ \delta_{a,b,d}^{C} \rceil)$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{a,b}} \cdot \eta_{C_{b,d}})) \circ \delta_{a,b,d}^{C} \rceil)$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{a,b}} \cdot \eta_{C_{b,d}})) \circ \delta_{a,b,d}^{C} \rceil)$$

$$\lceil ((\eta_{C_{a,b}} \cdot ((\eta_{C_{a,b}} \cdot \eta_{C_{a,b}})) \circ \delta_{a,b,d}^{C}$$

Proposition 5

Let $(D, \varepsilon^D, \delta^D)$ be a \mathscr{P} -parameterised comonad on \mathscr{D} , such that for every $a, b : \mathscr{P}$, we have an endofunctor $D_{a,b}: \mathscr{F}$. Then $(UD, \varepsilon^{UD}, \delta^{UD})$ is a \mathscr{P} -parameterised comonad on

M. Jaskelioff and R. O'Connor

 \mathscr{C} where

$$egin{array}{lcl} oldsymbol{arepsilon}_{a}^{UD} & : & UD_{a,a}
ightarrow I \ oldsymbol{arepsilon}_{a}^{UD} & = & Uoldsymbol{arepsilon}_{a}^{D} \ oldsymbol{\delta}_{a,b,c}^{UD} & : & UD_{a,c}
ightarrow UD_{a,b} \cdot UD_{b,c} \ oldsymbol{\delta}_{a,b,c}^{UD} & = & Uoldsymbol{\delta}_{a,b,c}^{D} \ \end{array}$$

Proof

The laws of a parameterised comonad follow directly from the fact that U is a strict monoidal functor. \square

Proposition 6 (Generalised Lens Representation)

Given a functor $K: \mathscr{P} \to Set$, define $R_{a,b}^{(K)}X = Ka \times (Kb \to X): \mathscr{P} \times \mathscr{P}^{op} \times Set \to Set$ as the parameterised comonad with counit $\varepsilon^{R^{(K)}}$ and comultiplication $\delta^{R^{(K)}}$ as defined in Example 2. Assume that $R_{a,b}^{(K)}: \mathscr{E}$ for every a and b. Then

- 1. $UR^{(K)*}$ is a parameterised comonad and
- 2. given a functor $J: \mathscr{P} \to Set$, then the families $k_{a,b}: Ja \to UR_{a,b}^{(K)*}(Jb)$ which form the $UR^{(K)*}$ -coalgebras (J,k) are isomorphic to the families of ends

$$\int_{F \cdot \mathscr{F}} (Ka \to UFKb) \to Ja \to UFJb$$

which satisfy the linearity and unity laws.

Proof

The previous two propositions entail that $UR^{(K)*}$ is a parameterised comonad with the following counit and comultiplication.

$$\begin{array}{lcl} \boldsymbol{\varepsilon}_{a}^{UR^{(K)*}} & : & UR_{a,a}^{(K)*} \to I \\ \boldsymbol{\varepsilon}_{a}^{UR^{(K)*}} & = & U\lceil\boldsymbol{\varepsilon}_{a}^{R^{(K)}}\rceil \\ \\ \boldsymbol{\delta}_{a,b,c}^{UR^{(K)*}} & : & UR_{a,c}^{(K)*} \to UR_{a,b}^{(K)*} \cdot UR_{b,c}^{(K)*} \\ \boldsymbol{\delta}_{a,b,c}^{UR^{(K)*}} & = & U\lceil(\boldsymbol{\eta}_{R_{a,b}^{(K)}} \cdot \boldsymbol{\eta}_{R_{b,c}^{(K)}}) \circ \boldsymbol{\delta}_{a,b,c}^{R^{(K)}}\rceil \end{array}$$

The unary representation theorem entails the isomorphism

$$Ja o UR_{a,b}^{(K)*}(Jb) \quad \cong \quad \int_{F:\mathscr{F}} (Ka o UFKb) o Ja o UFJb$$

witnessed by the following functions

$$\begin{array}{ll} \gamma & : \left(\int_F (Ka \rightarrow UFKb) \rightarrow Ja \rightarrow UFJb\right) \rightarrow (Ja \rightarrow UR_{a,b}^{(K)*}Jb) \\ \gamma(h) & = h_{R_{a,b}^{(K)*}} \left(\alpha_{UR_{a,b}^{(K)*}}^{-1}(\eta_{R_{a,b}^{(K)}})\right) \end{array}$$

$$\begin{array}{ll} \gamma^{-1} & : (Ja \rightarrow UR_{a,b}^{(K)*}Jb) \rightarrow \int_F (Ka \rightarrow UfKb) \rightarrow (Ja \rightarrow UfJb) \\ \gamma^{-1}(k) = \tau & \text{where} \quad \tau_F & : (Ka \rightarrow UFKb) \rightarrow Ja \rightarrow UFJb \\ & \tau_F(g) = U\lceil \alpha_{UF}(g)\rceil_{Jb} \circ k \end{array}$$

All that remains is to show that $k_{a,b}$ satisfies the coalgebra laws if and only if $\gamma^{-1}(k_{a,b})$ satisfies the linearity and unity laws.

First we prove two lemmas:

Lemma 4

main

For all $F, G : \mathscr{F}$ and $f : Ka \to UF(Kb)$ and $g : Kb \to UG(Kc)$ we have that

$$\gamma^{-1}(k_{a,c})_{F \cdot G}(UFg \circ f) = U(\lceil \alpha_{UF}(f) \rceil \cdot \lceil \alpha_{UG}(g) \rceil)_{Jc} \circ \delta_{a,b,c,Jc}^{UR^{(K)*}} \circ k_{a,c}$$

Proof

$$\begin{split} &\gamma^{-1}(k_{a,c})_{F\cdot G}(UFg\circ f)\\ &= \big\{\text{ Definition of }\gamma^{-1}\big\}\\ &U\big\lceil\alpha_{UF\cdot UG}(UFg\circ f)\big\rceil_{Jc}\circ k_{a,c}\\ &= \big\{\text{ Proposition 2(b)}\big\}\\ &U\big\lceil(\alpha_{UF}(f)\cdot\alpha_{UG}(g))\circ\delta_{a,b,c}^{R^{(K)}}\big\rceil_{Jc}\circ k_{a,c}\\ &= \big\{\text{ isomorphism }\big\}\\ &U\big\lceil(\big\lfloor\big\lceil\alpha_{UF}(f)\big\rceil\big\rfloor\cdot\big\lfloor\big\lceil\alpha_{UG}(g)\big\rceil\big\rfloor\big)\circ\delta_{a,b,c}^{R^{(K)}}\big\rceil_{Jc}\circ k_{a,c}\\ &= \big\{\text{ Eq 9}\big\}\\ &U\big\lceil((U\big\lceil\alpha_{UF}(f)\big\rceil\circ\eta_{R^{(K)}_{a,b}})\cdot(U\big\lceil\alpha_{UG}(g)\big\rceil\circ\eta_{R^{(K)}_{b,c}}))\circ\delta_{a,b,c}^{R^{(K)}}\big\rceil_{Jc}\circ k_{a,c}\\ &= \big\{\text{ bifunctor and U is strict }\big\}\\ &U\big\lceil U\big(\big\lceil\alpha_{UF}(f)\big\rceil\cdot\big\lceil\alpha_{UG}(g)\big\rceil\big)\circ(\eta_{R^{(K)}_{a,b}}\cdot\eta_{R^{(K)}_{b,c}})\circ\delta_{a,b,c}^{R^{(K)}}\big\rceil_{Jc}\circ k_{a,c}\\ &= \big\{\text{ Eq 7 and U is strict }\big\}\\ &(U\big(\big\lceil\alpha_{UF}(f)\big\rceil\cdot\big\lceil\alpha_{UG}(g)\big\rceil\big)\circ U\big\lceil(\eta_{R^{(K)}_{a,b}}\cdot\eta_{R^{(K)}_{b,c}})\circ\delta_{a,b,c}^{R^{(K)}}\big\rceil)_{Jc}\circ k_{a,c}\\ &= \big\{\text{ Definition of }\delta^{UR^{(K)*}}\big\}\\ &U\big(\big\lceil\alpha_{UF}(f)\big\rceil\cdot\big\lceil\alpha_{UG}(g)\big\rceil\big)_{Jc}\circ\delta_{a,b,c,Jc}^{UR^{(K)*}}\circ k_{a,c} \end{split}$$

Lemma 5

For all $F, G : \mathscr{F}$ and $f : Ka \to UF(Kb)$ and $g : Kb \to UG(Kc)$ we have that

$$UF(\gamma^{-1}(k_{b,c})_G(g)) \circ \gamma^{-1}(k_{a,b})_F(f) = U(\lceil \alpha_{UF}(f) \rceil \cdot \lceil \alpha_{UG}(g) \rceil)_{Jc} \circ UR_{a,b}^{(K)*}(k_{b,c}) \circ k_{a,b}$$

Proof

$$UF(\gamma^{-1}(k_{b,c})_{G}(g)) \circ \gamma^{-1}(k_{a,b})_{F}(f)$$

$$= \{ \text{ Definition of } \gamma^{-1} \}$$

$$UF(U\lceil \alpha_{UG}(g) \rceil_{Jc} \circ k_{b,c}) \circ U\lceil \alpha_{UF}(f) \rceil_{Jb} \circ k_{a,b}$$

$$= \{ UF \text{ is a functor } \}$$

main

M. Jaskelioff and R. O'Connor

$$UFU \lceil \alpha_{UG}(g) \rceil_{Jc} \circ UF(k_{b,c}) \circ U \lceil \alpha_{UF}(f) \rceil_{Jb} \circ k_{a,b}$$

$$= \{ U \lceil \alpha_{UF}(f) \rceil \text{ is natural } \}$$

$$UFU \lceil \alpha_{UG}(g) \rceil_{Jc} \circ U \lceil \alpha_{UF}(f) \rceil_{UR_{b,c}^{(K)*}(Jc)} \circ UR_{a,b}^{(K)*}(k_{b,c}) \circ k_{a,b}$$

$$= \{ \text{ Definition of } \cdot \}$$

$$(U \lceil \alpha_{UF}(f) \rceil \cdot U \lceil \alpha_{UG}(g) \rceil)_{Jc} \circ UR_{a,b}^{(K)*}(k_{b,c}) \circ k_{a,b}$$

$$= \{ U \text{ is strict } \}$$

$$U(\lceil \alpha_{UF}(f) \rceil \cdot \lceil \alpha_{UG}(g) \rceil)_{Jc} \circ UR_{a,b}^{(K)*}(k_{b,c}) \circ k_{a,b}$$

The linearity law for the image of γ^{-1} states

$$\forall F, G, f, g. \gamma^{-1}(k_{a,c})_{F \cdot G}(UFg \circ f) = UF(\gamma^{-1}(k_{b,c})_{G}(g)) \circ \gamma^{-1}(k_{a,b})_{F}(f)$$

By the previous two lemmas, this linearity law is equivalent to

$$\forall F, G, f, g. U(\lceil \alpha_{UF}(f) \rceil \cdot \lceil \alpha_{UG}(g) \rceil)_{Jc} \circ \delta_{a.b.c.Jc}^{UR^{(K)*}} \circ k_{a,c} = U(\lceil \alpha_{UF}(f) \rceil \cdot \lceil \alpha_{UG}(g) \rceil)_{Jc} \circ UR_{a.b}^{(K)*}(k_{b,c}) \circ k_{a.b}$$

With this reformulation we see that the comultiplication-coalgebra law,

$$\delta^{UR^{(K)*}}_{a,b,c,Jc} \circ k_{a,c} = UR^{(K)*}_{a,b}(k_{b,c}) \circ k_{a,b}$$

trivially implies the linearity law. To derive the comultiplication-coalgebra law from the linearity law consider the instance where $F=R_{a,b}^{(K)},\,f=\alpha_{UR_{a,b}^{(K)*}}^{-1}(\eta_{R_{a,b}^{(K)}}),\,G=R_{b,c}^{(K)},$ and

$$g=lpha_{UR_{b,c}^{(K)*}}^{-1}(\eta_{R_{b,c}^{(K)}}).$$
 In this case we have

$$\begin{split} &U(\lceil\alpha_{UF}(f)\rceil\cdot\lceil\alpha_{UG}(g)\rceil)\\ &= \{\text{ definition of }f\text{ and }g\}\\ &U(\lceil\alpha_{UR_{a,b}^{(K)*}}(\alpha_{UR_{a,b}^{(K)*}}^{-1}(\eta_{R_{a,b}^{(K)}}))\rceil\cdot\lceil\alpha_{UR_{b,c}^{(K)*}}(\alpha_{UR_{b,c}^{(K)*}}^{-1}(\eta_{R_{b,c}^{(K)}}))\rceil)\\ &= \{\text{ isomorphism }\}\\ &U(\lceil\eta_{R_{a,b}^{(K)}}\rceil\cdot\lceil\eta_{R_{b,c}^{(K)}}\rceil)\\ &= \{\text{ Eq. 8 }\}\\ &U(\lceil\lfloor id\rfloor\rceil\cdot\lceil\lfloor id\rfloor\rceil)\\ &= \{\text{ isomorphism }\}\\ &U(id\cdot id)\\ &= \{\text{ identity }\}\\ &id \end{split}$$

and then the comultiplication-coalgebra law follows.

The unity law for the image of γ^{-1} states

$$\gamma^{-1}(k_{a,a})_I(id) = id: Ja \rightarrow Ja$$

The counit-coalgebra law states

$$\varepsilon^{UR^{(K)*}} \circ k_{a,a} = id: Ja \rightarrow Ja$$

Therefore, in order to show that these laws are equivalent, it suffices to prove the following.

$$\gamma^{-1}(k_{a,a})_I(id) = \varepsilon^{UR^{(K)*}} \circ k_{a,a}$$

$$\begin{split} & \gamma^{-1}(k_{a,a})_I(id) \\ &= \left\{ \text{ definition of } \gamma^{-1} \right\} \\ & U(\lceil \alpha_I(id) \rceil)(Ja) \circ k_{a,a} \\ &= \left\{ \text{ Proposition 2} \right\} \\ & U(\lceil \varepsilon_a^{R^{(K)}} \rceil)(Ja) \circ k_{a,a} \\ &= \left\{ \text{ Definition of } \varepsilon^{UR^{(K)*}} \right\} \\ & \varepsilon^{UR^{(K)*}} \circ k_{a,a} \end{split}$$