2425-MA140 Engineering Calculus

Week 07, Lecture 2 (L20) The Fundamental Theorem of Calculus

Dr Niall Madden School of Maths, University of Galway

Wednesday, 30 October, 2024

Tutorials, Assignments, etc

- ► I'm very sorry yesterday's 3pm tutorial in ENG-2034, for Teams 3 and 4, didn't take place. If possible, please attend a different tutorial, ideally on Friday.
- Assignment 3 (resit): Last reminder: send my your results summary if the result you got does not agree with what you think you scored.
- ➤ Assignment 5 is open. Deadline is 5pm next Monday (4 November). You have 3 attempts for each question. However, Q1 will be manually graded after the deadline.

The exciting topics that await us in today:

See also: Sections 4.10 (Antiderivatives) and 5.3 (Fundamental Theorem of Calculus) of Calculus by Strang & Herman: math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)

Recall from yesterday:

If f(x) is a function defined on an interval [a, b]

ightharpoonup The **definite integral** of f from a to b is

$$\int_a^b f(x)dx := \lim_{n \to \infty} \sum_{i=0}^{n-1} hf(x_i),$$

where h = (b - a)/n and $x_i = a + ih$.

- This is the area of the region in space bounded by y = 0, y = f(x), x = a, and x = b.
- ▶ Given a function, f, we can define another, F as

$$F(\mathbf{x}) = \int_{a}^{\mathbf{x}} f(t) dt.$$

That is, the variable in *F* is the upper limit of integration on the right. For an nice illustration, see https://www.geogebra.org/m/ugTmVRHj

Recall from yesterday:

Fundamental Thm of Calculus: Part 1

Fundamental Theorem of Calculus: Part 1 (FTC1)

If f(x) is a continuous function on [a, b], and F(x) is defined as

$$F(x) = \int_{a}^{x} f(t)dt,$$

then F'(x) = f(x) for $x \in [a, b]$.

Roughly: the derivative of the integral of f is f. You can find a proof in Section 5.3 of the textbook.

Fundamental Thm of Calculus: Part 1

Example

Let
$$g(x) = \int_1^x \frac{1}{t^3 + 1} dt$$
. Find $g'(x)$.

FTC1+Chain Rule

Sometimes the limit of integration is a more complicated function of x. In that case, we can apply the **Chain Rule**, along with the FTC1.

Example

Let
$$F(x) = \int_{1}^{\sqrt{x}} \sin(t) dt$$
. Find $F'(x)$.

Idea: Let
$$u(x) = \sqrt{x} = x^{1/2}$$
. So $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$. Then...

$$F'(x) = \frac{dF}{du}\frac{du}{dx} = \sin(u(x))\left(\frac{1}{2\sqrt{x}}\right) = \frac{\sin(\sqrt{x})}{2\sqrt{x}}.$$

Antiderivatives

Definition: Antiderivative

A function F is an **antiderivative** of f on [a, b] if F'(x) = f(x) for all x in [a, b]. Thus,

f is the derivative of $F \Leftrightarrow F$ is an antiderivative of f.

Note: If F is an antiderivative of f, then the most general antiderivative of f is

$$F(x) + c$$
,

where c is an arbitrary constant, called a **constant of integration**.

Example: For any x, $F(x) = x^2 + c$ is an antiderivative of f(x) = 2x.

Antiderivatives

Example: The *general* antiderivative of $f(x) = 3x^2$ is $F(x) = x^3 + c$.

Antiderivatives

Examples

Find all antiderivatives of the following functions

(i)
$$f(x) = \frac{1}{x}$$
 for $x > 0$.

(ii)
$$f(x) = \sin(x)$$

(iii) $f(x) = e^x$.

(iii)
$$f(x) = e^x$$
.

Definition: indefinite integral

Given a function f, the **indefinite integral** of f, denoted

$$\int f(x) \, \mathrm{d}x$$

is the general antiderivative of f. That is, if F is an antiderivative of f, then

$$\int f(x) \, \mathrm{d}x = F(x) + C.$$

Examples:

$$\int x^2 dx = \frac{1}{3}x^3 + C.$$

Spotting the pattern we can deduce...

Power Rule of Integration

If $n \neq -1$, then

$$\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + C.$$

Note: For n = -1, we have

$$\int x^{-1} \, dx = \int \frac{1}{x} \, dx = \ln|x| + C \, .$$

Here is a list of the antiderivatives of some common functions.

Suimeálaithe

Tá tairisigh na suimeála fágtha ar lár.

f(x)	$\int f(x)dx$
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{x}$	$\ln x $
e^x	e^x
e^{ax}	$\frac{1}{a}e^{ax}$
a ^x	$\frac{a^x}{\ln a}$
cos x	$\sin x$
sin x	$-\cos x$
tan x	ln sec x

ealaithe

Integrals

Constants of integration omitted.

f(x)

f(x)	$\int f(x)dx$
$\cos^2 x$	$\frac{1}{2} \left[x + \frac{1}{2} \sin 2x \right]$
$\sin^2 x$	$\frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\frac{x}{a}$
$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\tan^{-1}\frac{x}{a}$

$$\int u dv = uv -$$

 $\ln \left| \frac{x + \sqrt{x^2 - a^2}}{a} \right|$

 $\int f(x)dx$

Suimeáil $\int u dv = uv - \int v du$ na míreanna

Integration by parts

Properties of Integration

1. If k is a constant, then

$$\int kf(x) dx = k \int f(x) dx.$$

2. Integration is additive:

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx.$$

Example

Evaluate the following integrals

1.
$$\int 2x^2 + 9x^7 \, dx.$$
2.
$$\int \frac{4}{1+x^2} \, dx.$$

$$2. \quad \frac{4}{1+x^2} \, \mathrm{d}x.$$

The Fundamental Thm of Calculus: Part 2

Now that we know all about antiderivatves, we can see how the link to **definite integrals**

Theorem (The Fundamental Thm of Calculus, Part 2)

If f(x) is continuous on [a, b], and F(x) is any antiderivative of f(x), then

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a).$$

Notation: We often write F(b) - F(a) as $F(x)\Big|_{x=a}^{x=b}$, or simply

$$F(x)\Big|_{a}^{b}$$

The Fundamental Thm of Calculus: Part 2

Example: Show that
$$\int_{-1}^{1} (x^2 + 2) dx = \frac{14}{3}$$

Example: Show that
$$\int_{-1}^{1} (x^3 + x) dx = 0$$

Exercises

Exer 7.2.1

Let $F(x) = \int_{x}^{2x} t \, dt$. Use the Fundamental Theorem of Calculus to evaluate F'(x).

Hint: we can split this into two integrals:

$$F(x) = \int_{x}^{2x} t \, dt = \int_{x}^{0} t \, dt + \int_{0}^{2x} t \, dt = -\int_{0}^{x} t \, dt + \int_{0}^{2x} t \, dt.$$

Now apply the FTC to each term, including the Chain Rule for the second.

Exer 7.2.2

Evaluate the following integrals.

$$1. \int e^{2x} + \frac{1}{2x} \, \mathrm{d}x$$

$$2. \int \frac{3}{\sqrt{2-x^2}} \, \mathrm{d}x$$

Exercises

Exer 7.2.3

Evaluate the definite integral $\int_{1}^{e} e^{2x} + \frac{1}{2x} dx$

Exer 7.2.4

Find two values of q for which $\int_{a}^{0} 2x + x^{2} dx = 0$.