Math 635 Lecture 27

Thomas Cohn

3/24/21

Continuing from last time...

Thm: Let $q = \exp_p(t, v)$, ||v|| = 1 be a conjugate point of p. Then $\forall t_2 > t_1, t \mapsto \exp_p(tv)$ is not minimizing on $[0, t_2]$.

Proof: By the hypothesis, there's a Jacobi field J f γ such that $J \neq 0$, J(0) = 0, and $J(t_1) = 0$. We will construct a variation of γ on $[0, t_2]$ with E'' < 0. Define

$$\tilde{J}(t) = \begin{cases} J(t) & 0 \le t \le t_1 \\ 0 & t_1 \le t \le t_2 \end{cases}$$

Because $J(t_1) = 0$, this variation is continuous at t_1 , so it's clearly continuous on $[0, t_2]$. Let $W \in \Gamma_{\gamma}(TM)$ be smooth, supported near t_1 , and defined such that $W(t_1) = \Delta \tilde{J}'(t_1) \neq 0$. It's nonzero because $\Delta \tilde{J}'(t_1) = 0$ would imply that $J'(t_1) = 0$, which would mean J = 0, a contradiction with our original assumption. Now, we define the actual variation we're going to use. Let

$$V_{\varepsilon} = \tilde{J} + \varepsilon W$$

for some small $0 < \varepsilon \ll 1$. This is a proper variation of γ on $[0, t_2]$. Now compute E''(0) (associated with V_{ε}).

$$E''(0) = I(V_{\varepsilon}, V_{\varepsilon}) = I(\tilde{J} + \varepsilon W, \tilde{J} + \varepsilon W) = I(\tilde{J}, \tilde{J}) + 2\varepsilon I(\tilde{J}, W) + \varepsilon^2 I(W, W)$$

where I is the bilinear form defined previously. Well,

$$I(\tilde{J}, \tilde{J}) = -\int_{0}^{t_2} \left\langle \tilde{J}, \underline{\text{Jacobi operator on } \tilde{J}} \right\rangle^{0} - \left\langle \underbrace{\tilde{J}(t_1)}_{=0}, \Delta \tilde{J}'(t_1) \right\rangle dt = 0$$

$$I(\tilde{J}, W) = \int_{0}^{t_2} \left\langle \tilde{J}', W \right\rangle - \left\langle \mathcal{R}(\tilde{J}, \dot{\gamma}) \dot{\gamma}, W \right\rangle dt$$

We use integration by parts, with $\frac{d}{dt}\left\langle W,\tilde{J}'\right\rangle = \left\langle W',\tilde{J}'\right\rangle + \left\langle W,\tilde{J}''\right\rangle$, to compute

$$\int_{0}^{t_{2}} \left\langle \tilde{J}', W \right\rangle dt = -\int_{0}^{t_{2}} \left\langle W, \tilde{J}'' \right\rangle dt - \left\langle W(t_{1}), \Delta \tilde{J}'(t_{1}) \right\rangle$$

Now, we combine with the $\langle \mathcal{R}(\tilde{J},\dot{\gamma})\dot{\gamma},W\rangle$ term. Using the fact that \tilde{J} satisfies the Jacobi equation, they cancel, and we're left with

$$I(\tilde{J}, W) = -\left\langle W(t_1), \Delta \tilde{J}'(t_1) \right\rangle = -\left| \left| \Delta \tilde{J}'(t_1) \right| \right|^2 < 0$$

Thus, $E''(0) = \varepsilon^2 I(W, W) - 2\varepsilon \left| \left| \Delta \tilde{J}'(t_1) \right| \right|^2$. So for $\varepsilon \ll 1$, E''(0) <, so for s small enough, t-curves in a variation of γ with \tilde{V}_{ε} are shorter than γ . \square

Completeness

(Chpater 7 in Do Carmo)

Defn: M is geodesically complete iff $\forall p \in M$, \exp_p is defined on all of T_pM .

Ex: If M is compact, M is geodesically complete.

Why? Well, if M is compact, then the unit tangent bundle $TM_1 = \{(p, v) \in TM : ||v|| = 1\}$ is compact. So geodesic flow is given by the flow of a certain field on TM_1 (up to scaling by time), and smooth vector fields on compact manifolds are complete. \square

Defn: M is complete iff (M, d) is a complete metric space.

The **big idea** we're working towards is

Thm: (Hopf-Rinow) M is geodesically complete iff M is a complete metric space.

Thm: Let M be connected. Let $p \in M$ such that \exp_p is defined on all of T_pM . Fix $q \in M$. Then there's a geodesic γ from p to q, and $d(p,q) = \ell(\gamma)$.

Proof: Let $\varepsilon > 0$ be such that there's a geodesic sphere S_{ε} of radius ε centered at p. Let $p' \in S_{\varepsilon}$ be a point minimizing the map

$$S_{\varepsilon} \to \mathbb{R}$$
$$x \mapsto d(x, q)$$

That is, p' is the point on S_{ε} which is closest to q. By compactness, p' exists, and $p' = \exp_p(\varepsilon v)$ for some $v \in T_pM$ with ||v|| = 1. Now, we want to show $\exp_p(d(p,q)v) = q...$

 $\mathbf{Lemma:}\ d(p,q) = \underbrace{d(p,p')}_{} + d(p',q).$

Proof: \leq is just a direct application of the triangle inequality. For \geq , let c be any path from p to q, and let w be the point where c intersects S_{ε} . Then $\ell(c) = \ell(\widehat{pw}) + \ell(\widehat{wq}) \geq \varepsilon + d(p',q)$. Now, take the infimum over all such paths c. We get

$$d(p,q) = \inf_{c} \ell(c) \ge \varepsilon + d(p',q) = d(p,p') + d(p',q)$$

Returning to the proof of the theorem, introduce $\mathscr{T} \stackrel{\text{def}}{=} \{t \in [0, d(p, q)] \mid d(p, q) = t + d(\gamma(t), q)\}$. We observe the following facts about \mathscr{T} :

- $\mathscr{T} \neq \emptyset$ because $\varepsilon \in \mathscr{T}$ by the lemma.
- \bullet \mathscr{T} is closed, because it's the preimage of a closed set under a continuous function.
- $\forall t \in \mathcal{T}, d(\gamma(t), p) = t$.

We want to show $d(p,q) = \sup \mathscr{T}$. We will argue this by contradiction: assume $t_1 \stackrel{\text{def}}{=} \sup \mathscr{T} < d(p,q)$. Then $t_1 + \delta < d(p,q)$. S_{δ} exists centered at $\gamma(t)$, so then we'll show $t + \delta \in \mathscr{T}$, thus contradicting the definition of t_1 as the supremum of \mathscr{T} . We will do this next time.