context free languages and pushdown automata

on the abstract side but...wait!

def: cfg, more comfortable

$$G = (N, T, P, S)$$

$$P \subset N \times (N \cup T)^*$$

i.e.

$$A \to \varepsilon$$
, $A \in N$

allowed

def: cfg, more comfortable

$$G = (N, T, P, S)$$

$$P \subset N \times (N \cup T)^*$$

i.e.

$$A \to \varepsilon$$
, $A \in N$

allowed

def: cfg in Chomsky normal form Productions have the form

- $A \to BC$ with $A, B, C \in N$
- $A \rightarrow b$ with $A \in N$ and $b \in T$
- $S \rightarrow \varepsilon$

def: cfg, more comfortable

$$G = (N, T, P, S)$$

$$P \subset N \times (N \cup T)^*$$

i.e.

$$A \to \varepsilon$$
, $A \in N$

allowed

def: cfg in Chomsky normal form Productions have the form

- $A \to BC$ with $A, B, C \in N$
- $A \rightarrow b$ with $A \in N$ and $b \in T$
- $S \rightarrow \varepsilon$

you have almost seen this

where?

def: cfg, more comfortable

$$G = (N, T, P, S)$$

$$P \subset N \times (N \cup T)^*$$

i.e.

$$A \to \varepsilon$$
, $A \in N$

allowed

def: cfg in Chomsky normal form Productions have the form

- $A \rightarrow BC$ with $A, B, C \in N$
- $A \rightarrow b$ with $A \in N$ and $b \in T$
- $S \rightarrow \varepsilon$

Lemma 1. every cfg G (with new definition) can be transformed into a cfg G' in Chomsky normal form such that L(G) = L(G').

def: cfg, more comfortable

$$G = (N, T, P, S)$$

$$P \subset N \times (N \cup T)^*$$

i.e.

$$A \to \varepsilon$$
, $A \in N$

allowed

def: cfg in Chomsky normal form Productions have the form

- $A \rightarrow BC$ with $A, B, C \in N$
- $A \rightarrow b$ with $A \in N$ and $b \in T$
- $S \rightarrow \varepsilon$

Lemma 1. every cfg G (with new definition) can be transformed into a cfg G' in Chomsky normal form such that L(G) = L(G').

• start symbol does not appear on right: add new start symbol S' and production $S' \to S$.

def: cfg, more comfortable

$$G = (N, T, P, S)$$

$$P \subset N \times (N \cup T)^*$$

i.e.

$$A \to \varepsilon$$
, $A \in N$

allowed

def: cfg in Chomsky normal form Productions have the form

- $A \to BC$ with $A, B, C \in N$
- $A \rightarrow b$ with $A \in N$ and $b \in T$
- $S \rightarrow \varepsilon$

Lemma 1. every cfg G (with new definition) can be transformed into a cfg G' in Chomsky normal form such that L(G) = L(G').

• start symbol does not appear on right: add new start symbol S' and production $S' \to S$.

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \to a_1 \dots a_s \ s \ge 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \to a_1 \dots a_s \ s \ge 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

• eliminate ε -rules $A \to \varepsilon$. Order set of nonterminals different from S'

$$N \setminus \{S'\} = \{n_1, \ldots, n_k\}$$

for i = 1 to k:

if $n_i \to \varepsilon$: i) drop this rule; ii) for each rule with n_i on right side add a rule where each occurrence of n_i is dropped.

$$n \to x n_i$$
 or $n \to n_i x$: add $n \to x$

$$n_k \to n_i n_i \land k > i$$
: add $n \to \varepsilon$

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \rightarrow a_1 \dots a_s \ s \geq 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

• eliminate ε -rules $A \to \varepsilon$. Order set of nonterminals different from S'

$$N \setminus \{S'\} = \{n_1, \ldots, n_k\}$$

for i = 1 to k:

if $n_i \to \varepsilon$: i) drop this rule; ii) for each rule with n_i on right side add a rule where each occurrence of n_i is dropped.

$$n \to x n_i$$
 or $n \to n_i x$: add $n \to x$

$$n_k \to n_i n_i \land k > i$$
: add $n \to \varepsilon$

Lemma 2. Let G_i be the grammar after pass i of the loop. Then $L(G) = L(G_i)$.

induction on i. i = 0: $G = G_0$, trivial.

 $i-1 \rightarrow i$. not completely trivial!

- Let $w \in L(G)$. By induction hypothesis there is a derivation tree for w in G_{i-1} . It uses no productions $n_k \to \varepsilon$ for k < i. Uses of productions $n_i \to \varepsilon$ are replaced by G_i , thus $w \in L(G_i)$.
- Let $w \in L(G_i)$. Replace in a derivation tree for w in G_i each use of a new production by its original in G_{i-1} and $n_i \to \varepsilon$. Thus $w \in L(G_{i-1}) = L(G)$ by induction hypothesis.

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \rightarrow a_1 \dots a_s \ s \geq 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

• eliminate ε -rules $A \to \varepsilon$. Order set of nonterminals different from S'

$$N \setminus \{S'\} = \{n_1, \ldots, n_k\}$$

for i = 1 to k:

if $n_i \to \varepsilon$: i) drop this rule; ii) for each rule with n_i on right side add a rule where each occurrence of n_i is dropped.

$$n \to x n_i$$
 or $n \to n_i x$: add $n \to x$

$$n_k \to n_i n_i \land k > i$$
: add $n \to \varepsilon$

• for all chain rules between nonterminals $A \to B$ with $A, B \in N$ drop $A \to B$ and for all productions

$$B \to u$$
: add $A \to u$

repeat until no chain rules between nonterminals are left.

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \rightarrow a_1 \dots a_s \ s \geq 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

• eliminate ε -rules $A \to \varepsilon$. Order set of nonterminals different from S'

$$N \setminus \{S'\} = \{n_1, \ldots, n_k\}$$

for i = 1 to k:

if $n_i \to \varepsilon$: i) drop this rule; ii) for each rule with n_i on right side add a rule where each occurrence of n_i is dropped.

$$n \to x n_i$$
 or $n \to n_i x$: add $n \to x$

$$n_k \to n_i n_i \land k > i$$
: add $n \to \varepsilon$

• for all chain rules between nonterminals $A \to B$ with $A, B \in N$ drop $A \to B$ and for all productions

$$B \to u$$
: add $A \to u$

repeat until no chain rules between nonterminals are left.

• replacing for $A, B, C \in N$ and $b, c \in T$

$$A \rightarrow bC$$
, $a \rightarrow Bc$, $A \rightarrow bc$

exercise

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \rightarrow a_1 \dots a_s \ s \geq 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

• eliminate ε -rules $A \to \varepsilon$. Order set of nonterminals different from S'

$$N \setminus \{S'\} = \{n_1, \ldots, n_k\}$$

for i = 1 to k:

if $n_i \to \varepsilon$: i) drop this rule; ii) for each rule with n_i on right side add a rule where each occurrence of n_i is dropped.

$$n \to x n_i$$
 or $n \to n_i x$: add $n \to x$

$$n_k \to n_i n_i \land k > i$$
: add $n \to \varepsilon$

}

• for all chain rules between nonterminals $A \to B$ with $A, B \in N$ drop $A \to B$ and for all productions

$$B \to u$$
: add $A \to u$

repeat until no chain rules between nonterminals are left.

• replacing for $A, B, C \in N$ and $b, c \in T$

$$A \rightarrow bC$$
, $a \rightarrow Bc$, $A \rightarrow bc$

exercise

2 Deciding the 'word problem' $w \in L$ for context free languages:

Lemma 3. For each cf language L there is an algorithm which decides $w \in L$ in time $O(n^3)$ for n = |w|.

Proof. dynamic programing; Younger's algorithm from I2EA

def: nondeterministic pushdown automaton (npda)

$$M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$$

- Z finite set of states
- Σ finite input alphabet.

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

 ε ignores current input symbol.

• Γ finite pushdown/stack alphabet

$$\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$$

Pushdown actions:

$$PA = \{pop\} \cup \{push \ \gamma : \ \gamma \in \Gamma_{\varepsilon}\}$$

 $push(\epsilon)$: no pop on stack

 ε ignores current top symbol of stack.

nondeterministic transition function

$$\delta: Z \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to 2^{Z \times PA}$$

1 step: $(z', pa) \in \delta(z, a, \gamma)$ means: if M reads input a and top of stack γ , then it can go to state z' and perform pushdown action pa. It moves the input head to the right of a (if $a = \varepsilon$ the head does not move).

• no pop ignoring (or from empty) stack: $(z', pop) \notin \delta(z, a, \epsilon)$

- $z_0 \in Z$ start state
- $Z_A \subseteq Z$ set of accepting states

def: nondeterministic pushdown automaton (npda)

$$M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$$

- Z finite set of states
- Σ finite input alphabet.

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

 ε ignores current input symbol.

• Γ finite pushdown/stack alphabet

$$\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$$

Pushdown actions:

$$PA = \{pop\} \cup \{push \ \gamma : \ \gamma \in \Gamma_{\varepsilon}\}$$

 $push(\epsilon)$: no pop on stack

 ε ignores current top symbol of stack.

nondeterministic transition function

$$\delta: Z \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to 2^{Z \times PA}$$

1 step: $(z',pa) \in \delta(z,a,\gamma)$ means: if M reads input a and top of stack γ , then it can go to state z' and perform pushdown action pa. It moves the input head to the right of a (if $a = \varepsilon$ the head does not move).

• no pop ignoring (or from empty) stack: $(z', pop) \notin \delta(z, a, \epsilon)$

- $z_0 \in Z$ start state
- $Z_A \subseteq Z$ set of accepting states

def: configurations

$$k = (z, w, p)$$

- $z \in Z$ current state
- $w \in \Sigma^*$ remaining input
- $p \in \Gamma^*$ pushdown tape/stack. From top to bottom $p_1 \dots p_k$

def: initial configuration with input w:

$$k_0 = (z_0, w, \boldsymbol{\varepsilon})$$

def: possible next/successor configuration

$$k = (z, w, p) \vdash k' = (z', w', p')$$

holds if one of the following holds

input tape not ignored and pop

$$(z',pop) \in \delta(z,w_1,p_1) \cup \delta(z,w_1,\varepsilon)$$
, $w' = tail(w)$, $p' = tail(p)$

input not ignored and push

$$(z', push \gamma) \in \delta(z, w_1, p_1) \cup \delta(z, w_1, \varepsilon)$$
, $w' = tail(w)$, $p' = \gamma \circ p$

def: configurations

$$k = (z, w, p)$$

- $z \in Z$ current state
- $w \in \Sigma^*$ remaining input
- $p \in \Gamma^*$ pushdown tape/stack. From top to bottom $p_1 \dots p_k$

def: initial configuration with input w:

$$k_0 = (z_0, w, \varepsilon)$$

def: possible next/successor configuration

$$k = (z, w, p) \vdash k' = (z', w', p')$$

holds if one of the following holds

input tape not ignored and pop

$$(z',pop) \in \delta(z,w_1,p_1) \cup \delta(z,w_1,\varepsilon)$$
, $w' = tail(w)$, $p' = tail(p)$

input not ignored and push

$$(z', push \gamma) \in \delta(z, w_1, p_1) \cup \delta(z, w_1, \varepsilon)$$
, $w' = tail(w)$, $p' = \gamma \circ p$

input ignored and pop

$$(z', pop) \in \delta(z, \varepsilon, p_1) \cup \delta(z, \varepsilon, \varepsilon)$$
, $w' = w$, $p' = tail(p)$

input ignored and push

$$(z', push \gamma) \in \delta(z, \varepsilon, p_1) \cup \delta(z, \varepsilon, \varepsilon)$$
, $w' = w$, $p' = \gamma \circ p$

Pop only possible with $p \neq \varepsilon$.

def: configurations

$$k = (z, w, p)$$

- $z \in Z$ current state
- $w \in \Sigma^*$ remaining input
- $p \in \Gamma^*$ pushdown tape/stack. From top to bottom $p_1 \dots p_k$

def: initial configuration with input w:

$$k_0 = (z_0, w, \varepsilon)$$

def: possible next/successor configuration

$$k = (z, w, p) \vdash k' = (z', w', p')$$

holds if one of the following holds

input tape not ignored and pop

$$(z',pop) \in \delta(z,w_1,p_1) \cup \delta(z,w_1,\varepsilon)$$
, $w' = tail(w)$, $p' = tail(p)$

input not ignored and push

$$(z', push \gamma) \in \delta(z, w_1, p_1) \cup \delta(z, w_1, \varepsilon)$$
, $w' = tail(w)$, $p' = \gamma \circ p$

input ignored and pop

$$(z', pop) \in \delta(z, \varepsilon, p_1) \cup \delta(z, \varepsilon, \varepsilon)$$
, $w' = w$, $p' = tail(p)$

input ignored and push

$$(z', push \gamma) \in \delta(z, \varepsilon, p_1) \cup \delta(z, \varepsilon, \varepsilon)$$
, $w' = w$, $p' = \gamma \circ p$

Pop only possible with $p \neq \varepsilon$.

def: computation sequence $(k_0, ..., k_m)$ with $k_i \vdash k_{i+1}$ for i < m. Accepting if state of k_m in Z_A and stack of k_m empty

$$k_m = (q, \varepsilon, \varepsilon), q \in Z_A$$

Variations: i) accept by empty stack ii) by final state in Z_A .

def: L(M) M accepts w if there exists and accepting computation of M started with w.

$$L(M) = \{ w \in \Sigma^* : M \text{ accepts } w \}$$

example

$$w \in A^*$$

$$w = w_1 \dots w_n$$

$$w^R = w_n \dots w_1$$

$$L = \{ww^R : w \in \mathbb{B}\}$$

L is context free:

$$S \rightarrow 0S0 \mid 1S1 \mid \varepsilon$$

example

$$w \in A^*$$

$$w = w_1 \dots w_n$$

$$w^R = w_n \dots w_1$$

$$L = \{ww^R : w \in \mathbb{B}\}$$

L is context free:

$$S \rightarrow 0S0 \mid 1S1 \mid \varepsilon$$

pushdown automaton for L:

$$Z = \{z,z'\} \quad , \quad z_0 = z \quad , \quad Z_A = \{z'\}$$

$$\text{push w} \quad \begin{array}{l} (z,push\ 0) \in & \delta(z,0,\varepsilon) \\ (z,push\ 1) \in & \delta(z,1,\varepsilon) \end{array}$$

$$\text{guess middle} \quad (z',push\ \varepsilon) \in & \delta(z,\varepsilon,\varepsilon)$$

$$\text{check matching symbols} \quad \begin{array}{l} (z',pop) \in & (z',0,0) \\ (z',pop) \in & (z',1,1) \end{array}$$

example

$$w \in A^*$$

$$w = w_1 \dots w_n$$

$$w^R = w_n \dots w_1$$

$$L = \{ww^R : w \in \mathbb{B}\}$$

L is context free:

$$S \rightarrow 0S0 \mid 1S1 \mid \varepsilon$$

pushdown automaton for *L*:

$$Z = \{z,z'\} \quad , \quad z_0 = z \quad , \quad Z_A = \{z'\}$$

$$\text{push w} \quad \begin{array}{l} (z,push\ 0) \in & \delta(z,0,\varepsilon) \\ (z,push\ 1) \in & \delta(z,1,\varepsilon) \end{array}$$

$$\text{guess middle} \quad (z',push\ \varepsilon) \in & \delta(z,\varepsilon,\varepsilon)$$

$$\text{check matching symbols} \quad \begin{array}{l} (z',pop) \in & (z',0,0) \\ (z',pop) \in & (z',1,1) \end{array}$$

Figure 2: computation of the npda with input w = 0110

Lemma 5. Let G = (N, T, P, S) be a cf grammar. Then there is an npda $M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$ with

$$L(M) = L(G)$$

Proof in 3 steps:

- 1. construction of M from G
- 2. $w \in L(G) \rightarrow w \in L(M)$
- 3. $w \in L(M) \rightarrow w \in L(G)$

Lemma 5. Let G = (N, T, P, S) be a cf grammar. Then there is an npda $M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$ with

$$L(M) = L(G)$$

Proof in 3 steps:

- 1. construction of M from G
- 2. $w \in L(G) \rightarrow w \in L(M)$
- 3. $w \in L(M) \rightarrow w \in L(G)$

4.1 Construction of M

$$\Sigma = T$$
 , $\Gamma = N \cup T$

Number productions

$$P = \{P_1, \dots, P_n\}$$

production i

$$P_i$$
: $n_i = X_{i_1} \dots X_{i_{g(i)}}$ with $g_i \in \mathbb{N}_0$

use state $r \in Z$ to guess what production should be applied next

Lemma 5. Let G = (N, T, P, S) be a cf grammar. Then there is an npda $M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$ with

$$L(M) = L(G)$$

Proof in 3 steps:

- 1. construction of M from G
- 2. $w \in L(G) \rightarrow w \in L(M)$
- 3. $w \in L(M) \rightarrow w \in L(G)$

4.1 Construction of M

$$\Sigma = T$$
 , $\Gamma = N \cup T$

Number productions

$$P = \{P_1, \dots, P_n\}$$

production i

$$P_i$$
: $n_i = X_{i_1} \dots X_{i_{g(i)}}$ with $g_i \in \mathbb{N}_0$

use state $r \in \mathbb{Z}$ to guess what production should be applied next

1. initially push start symbol and prepare to guess

$$\delta(z_0, \varepsilon, \varepsilon) = \{(r, push S)\}$$

Lemma 5. Let G = (N, T, P, S) be a cf grammar. Then there is an npda $M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$ with

$$L(M) = L(G)$$

Proof in 3 steps:

- 1. construction of M from G
- 2. $w \in L(G) \rightarrow w \in L(M)$
- 3. $w \in L(M) \rightarrow w \in L(G)$

4.1 Construction of *M*

$$\Sigma = T$$
 , $\Gamma = N \cup T$

Number productions

$$P = \{P_1, \dots, P_n\}$$

production i

$$P_i$$
: $n_i = X_{i_1} \dots X_{i_{g(i)}}$ with $g_i \in \mathbb{N}_0$

use state $r \in Z$ to guess what production should be applied next

1. initially push start symbol and prepare to guess

$$\delta(z_0, \varepsilon, \varepsilon) = \{(r, push S)\}$$

2. choose a production P_i matching the top symbol $n \in N$ on stack

$$\delta(r, \varepsilon, n) = \{(r_i, push \varepsilon) : n_i = n\}$$

now replace $n = n_i$ on stack by right hand side $X_{i_1} \dots X_{i_{g(i)}}$ of production P_i

$$\delta(r_i, \varepsilon, n_i) = \begin{cases} \{(r_{i,g(i)}, pop)\} & g(i) \ge 1 \\ \{(r, pop)\} & g(i) = 0 \text{ i.e. } n_i \to \varepsilon \end{cases}$$

$$\delta(r_{i,j}, \varepsilon, \varepsilon) = \begin{cases} \{(r_{i,j-1}, push X_{i_j})\} & j \ge 2 \\ \{(r, push X_{i_1})\} & j = 1 \end{cases}$$

Effect of these transitions:

$$(r, w, n_i\alpha) \vdash^* (r, w, X_{i_1} \dots X_{i_{g(i)}}\alpha)$$

Lemma 5. Let G = (N, T, P, S) be a cf grammar. Then there is an npda $M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$ with

$$L(M) = L(G)$$

Proof in 3 steps:

- 1. construction of M from G
- 2. $w \in L(G) \rightarrow w \in L(M)$
- 3. $w \in L(M) \rightarrow w \in L(G)$

4.1 Construction of *M*

$$\Sigma = T$$
 , $\Gamma = N \cup T$

Number productions

$$P = \{P_1, \dots, P_n\}$$

production i

$$P_i$$
: $n_i = X_{i_1} \dots X_{i_{g(i)}}$ with $g_i \in \mathbb{N}_0$

use state $r \in \mathbb{Z}$ to guess what production should be applied next

1. initially push start symbol and prepare to guess

$$\delta(z_0, \varepsilon, \varepsilon) = \{(r, push S)\}$$

2. choose a production P_i matching the top symbol $n \in N$ on stack

$$\delta(r, \varepsilon, n) = \{(r_i, push \varepsilon) : n_i = n\}$$

now replace $n = n_i$ on stack by right hand side $X_{i_1} \dots X_{i_{g(i)}}$ of production P_i

$$\delta(r_i, \varepsilon, n_i) = \begin{cases} \{(r_{i,g(i)}, pop)\} & g(i) \ge 1 \\ \{(r, pop)\} & g(i) = 0 \text{ i.e. } n_i \to \varepsilon \end{cases}$$

$$\delta(r_{i,j}, \varepsilon, \varepsilon) = \begin{cases} \{(r_{i,j-1}, push X_{i_j})\} & j \ge 2 \\ \{(r, push X_{i_1})\} & j = 1 \end{cases}$$

Effect of these transitions:

$$(r, w, n_i\alpha) \vdash^* (r, w, X_{i_1} \dots X_{i_{g(i)}}\alpha)$$

3. cancel matching terminals $\in T$

$$\delta(r,t,t) = \{(R,pop)\}$$

Effect

$$(r,t\beta,t\alpha)\vdash^* (r,\beta,\alpha)$$

Lemma 6. Let $w, \beta \in T^*$ and $v \in N \cup T$ and $v \to^* w$ by a derivation tree of depth $\leq t.$ Then

$$(r, w\beta, v\alpha) \vdash^* (r, \beta, \alpha)$$

Lemma 6. Let $w, \beta \in T^*$ and $v \in N \cup T$ and $v \to^* w$ by a derivation tree of depth $\leq t.$ Then

$$(r, w\beta, v\alpha) \vdash^* (r, \beta, \alpha)$$

Lemma implies claim: $w \in L(G)$ implies derivation tree as in figure 4

$$(z_0, w, \varepsilon) \vdash (r, w, S)$$
 (construction 1) pushing S
 $\vdash^* (r, \varepsilon, \varepsilon)$ (lemma 6)

Lemma 6. Let $w, \beta \in T^*$ and $v \in N \cup T$ and $v \to^* w$ by a derivation tree of depth $\leq t.$ Then

$$(r, w\beta, v\alpha) \vdash^* (r, \beta, \alpha)$$

proof of lemma 6 by induction on *t*:

• t = 0: $v = w \in T$. Construction $3 \rightarrow$ claim. cancelling matching terminals

Lemma 6. Let $w, \beta \in T^*$ and $v \in N \cup T$ and $v \to^* w$ by a derivation tree of depth $\leq t.$ Then

$$(r, w\beta, v\alpha) \vdash^* (r, \beta, \alpha)$$

proof of lemma 6 by induction on *t*:

- t = 0: $v = w \in T$. Construction $3 \rightarrow$ claim.
- $t-1 \rightarrow t$: special case $v \rightarrow \varepsilon$. Construction 2 for $g(i) = 0 \rightarrow$ claim.

$$\delta(r_i, \varepsilon, n_i) = \begin{cases} \{(r_{i,g(i)}, pop)\} & g(i) \ge 1 \\ \{(r, pop)\} & g(i) = 0 \text{ i.e. } n_i \to \varepsilon \end{cases}$$

Lemma 6. Let $w, \beta \in T^*$ and $v \in N \cup T$ and $v \to^* w$ by a derivation tree of depth $\leq t.$ Then

$$(r, w\beta, v\alpha) \vdash^* (r, \beta, \alpha)$$

proof of lemma 6 by induction on *t*:

- t = 0: $v = w \in T$. Construction $3 \rightarrow$ claim.
- $t-1 \rightarrow t$: special case $v \rightarrow \varepsilon$. Construction 2 for $g(i) = 0 \rightarrow$ claim.

otherwise: $n = n_i$ derivation tree as in figure 5

Figure 5: derivation tree of w from $v = n_i$

$$(r, w\beta, v\alpha) \vdash_{constr.2}^{*} (r, w_1 \dots w_{g(i)}\beta, X_{i_1} \dots X_{i_{g(i)}}\alpha)$$

$$\vdash_{IH}^{*} (r, w_2 \dots w_{g(i)}\beta, X_{i_2} \dots X_{i_{g(i)}}\alpha)$$

$$\dots$$

$$\vdash_{IH}^{*} (r, \beta, \alpha)$$

Lemma 6. Let $w, \beta \in T^*$ and $v \in N \cup T$ and $v \to^* w$ by a derivation tree of depth $\leq t.$ Then

$$(r, w\beta, v\alpha) \vdash^* (r, \beta, \alpha)$$

proof of lemma 6 by induction on *t*:

- t = 0: $v = w \in T$. Construction $3 \rightarrow$ claim.
- $t-1 \rightarrow t$: special case $v \rightarrow \varepsilon$. Construction 2 for $g(i) = 0 \rightarrow$ claim.

otherwise: $n = n_i$ derivation tree as in figure 5

Figure 5: derivation tree of w from $v = n_i$

$$(r, w\beta, v\alpha)$$
 $\vdash_{constr.2}^*$ $(r, w_1 \dots w_{g(i)}\beta, X_{i_1} \dots X_{i_{g(i)}}\alpha)$
 \vdash_{IH}^* $(r, w_2 \dots w_{g(i)}\beta, X_{i_2} \dots X_{i_{g(i)}}\alpha)$
 \dots
 \vdash_{IH}^* (r, β, α)

$$Z_A = \{z_s, r\}$$

Let $w \in L(M)$. Consider accepting computation

$$R=(k_0,\ldots,k_s)$$

of M started with w

$$k_0 = (z_0, w, \varepsilon)$$
 , $k_s = (r, \varepsilon, \varepsilon)$

For

$$k \in \{k_0,\ldots,k_s\}$$
, $k = (r,\mu,p\alpha)$, $p \in N \cup T$

define N(k) as first configuration after k with state r and stack α

$$N(k) = (r, \mu', \alpha)$$

Define $\tau(k)$ as number of steps between k and N(k).

Let $w \in L(M)$. Consider accepting computation

$$R = (k_0, \ldots, k_s)$$

of M started with w

$$k_0 = (z_0, w, \varepsilon)$$
 , $k_s = (r, \varepsilon, \varepsilon)$

For

$$k \in \{k_0,\ldots,k_s\}$$
, $k = (r,\mu,p\alpha)$, $p \in N \cup T$

define N(k) as first configuration after k with state r and stack α

$$N(k) = (r, \mu', \alpha)$$

Define $\tau(k)$ as number of steps between k and N(k).

Lemma 7. If

$$k = (r, \mu \beta, \nu \alpha), N(k) = (r, \beta, \alpha)$$

then

$$v \rightarrow^* \mu$$

Claim follows with $\alpha = \beta = \varepsilon$

Let $w \in L(M)$. Consider accepting computation

$$R=(k_0,\ldots,k_s)$$

of M started with w

$$k_0 = (z_0, w, \varepsilon)$$
 , $k_s = (r, \varepsilon, \varepsilon)$

For

$$k \in \{k_0,\ldots,k_s\}$$
, $k = (r,\mu,p\alpha)$, $p \in N \cup T$

define N(k) as first configuration after k with state r and stack α

$$N(k) = (r, \mu', \alpha)$$

Define $\tau(k)$ as number of steps between k and N(k).

Lemma 7. If

$$k = (r, \mu \beta, \nu \alpha), N(k) = (r, \beta, \alpha)$$

then

$$v \rightarrow^* \mu$$

Claim follows with $\alpha = \beta = \varepsilon$

proof of lemma : induction on $\tau(k)$

• $\tau(k) = 1$: construction 3 \rightarrow

cancelling matching terminals

 $\mu = v \in T$, $v \to^0 \mu$

Let $w \in L(M)$. Consider accepting computation

$$R=(k_0,\ldots,k_s)$$

of M started with w

$$k_0 = (z_0, w, \varepsilon)$$
 , $k_s = (r, \varepsilon, \varepsilon)$

For

$$k \in \{k_0,\ldots,k_s\}$$
, $k = (r,\mu,p\alpha)$, $p \in N \cup T$

define N(k) as first configuration after k with state r and stack α

$$N(k) = (r, \mu', \alpha)$$

Define $\tau(k)$ as number of steps between k and N(k).

Lemma 7. *If*

$$k = (r, \mu \beta, \nu \alpha), N(k) = (r, \beta, \alpha)$$

then

$$v \rightarrow^* \mu$$

Claim follows with $\alpha = \beta = \varepsilon$

proof of lemma : induction on $\tau(k)$

• $\tau(k) = 1$: construction 3 \rightarrow

$$\mu = v \in T$$
 , $v \to^0 \mu$

• $\tau(k) > 1$ special case of construction 2: g(i) = 0. Then

$$v \to \varepsilon \in P$$
, $\mu = \varepsilon$, $v \to^1 \mu$

$$\delta(r_i, \varepsilon, n_i) = \begin{cases} \{(r_{i,g(i)}, pop)\} & g(i) \ge 1 \\ \{(r, pop)\} & g(i) = 0 \text{ i.e. } n_i \to \varepsilon \end{cases}$$

Lemma 7. *If*

$$k = (r, \mu \beta, \nu \alpha), N(k) = (r, \beta, \alpha)$$

then

$$v \rightarrow^* \mu$$

Claim follows with $\alpha = \beta = \varepsilon$

proof of lemma : induction on $\tau(k)$

• $\tau(k) = 1$: construction 3 \rightarrow

$$\mu = v \in T$$
 , $v \to^0 \mu$

• $\tau(k) > 1$ special case of construction 2: g(i) = 0. Then

$$v \to \varepsilon \in P$$
, $\mu = \varepsilon$, $v \to^1 \mu$

otherwise

$$g(i) \ge 1, v = n_i$$

decompose computation

$$(r,\mu\beta,\nu\alpha) \qquad \vdash^* \qquad k_1 = (r,\mu\beta,X_{i_1}\dots X_{i_{g(i)}}\alpha) \quad \text{(construction 2)}$$

$$\vdash^{\tau(k_1)} \qquad k_2 = (r,\overline{\mu_1}\beta,X_{i_2}\dots X_{i_{g(i)}}\alpha) \quad \text{with } \mu = \mu_1 \circ \overline{\mu_1}$$

$$\dots$$

$$\vdash^{\tau(k_{g(i)-1})} \qquad k_{g(i)} = (r,\overline{\mu_{g(i)-1}}\beta,X_{i_{g(i)}}\alpha)$$

$$\vdash^{\tau(k_{g(i)})} \qquad N(k) = (r,\beta,\alpha)$$

with $\tau(k_j) < \tau(k)$ for all j.

Figure 6: derivation tree of w from $v = n_i$. Upper subtrees exist by induction hypothesis, production at the root exists by construction of M.

Lemma 7. If

$$k = (r, \mu \beta, \nu \alpha), N(k) = (r, \beta, \alpha)$$

then

$$v \rightarrow^* \mu$$

Claim follows with $\alpha = \beta = \varepsilon$

proof of lemma : induction on $\tau(k)$

• $\tau(k) = 1$: construction 3 \rightarrow

$$\mu = v \in T$$
 , $v \to^0 \mu$

• $\tau(k) > 1$ special case of construction 2: g(i) = 0. Then

$$v \to \varepsilon \in P$$
, $\mu = \varepsilon$, $v \to^1 \mu$

otherwise

$$g(i) \ge 1, v = n_i$$

part 1: reasonably straight forward construction parts 2 and 3: clever induction hypothesis, Then: bookkeeping.

decompose computation

$$(r,\mu\beta,\nu\alpha) \qquad \vdash^* \qquad k_1 = (r,\mu\beta,X_{i_1}\dots X_{i_{g(i)}}\alpha) \quad \text{(construction 2)}$$

$$\vdash^{\tau(k_1)} \qquad k_2 = (r,\overline{\mu_1}\beta,X_{i_2}\dots X_{i_{g(i)}}\alpha) \quad \text{with } \mu = \mu_1 \circ \overline{\mu_1}$$

$$\dots$$

$$\vdash^{\tau(k_{g(i)-1})} \qquad k_{g(i)} = (r,\overline{\mu_{g(i)-1}}\beta,X_{i_{g(i)}}\alpha)$$

$$\vdash^{\tau(k_{g(i)})} \qquad N(k) = (r,\beta,\alpha)$$

with $\tau(k_j) < \tau(k)$ for all j.

Figure 6: derivation tree of w from $v = n_i$. Upper subtrees exist by induction hypothesis, production at the root exists by construction of M.

5 Languages accepted by npda's are context free

,computing with grammars'

Lemma 8. Let $M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$ be an npda. Then there is a context free grammar G = (N, T, P, S) with

$$L(M) = L(G)$$

5 Languages accepted by npda's are context free

,computing with grammars'

Lemma 8. Let $M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$ be an npda. Then there is a context free grammar G = (N, T, P, S) with

$$L(M) = L(G)$$

Proof in 3 steps:

1. construction of *G*

2.
$$x \in L(G) \rightarrow x \in L(M)$$

3.
$$x \in L(M) \rightarrow x \in L(G)$$

Notation For $n \in N$ we define the language generated by n as

$$L(n) = \{ w \in T^* : n \to^* w \}$$

Lemma 8. Let $M = (Z, \Sigma, \Gamma, \delta, z_0, Z_A)$ be an npda. Then there is a context free grammar G = (N, T, P, S) with

$$L(M) = L(G)$$

Notation For $n \in N$ we define the language generated by n as

$$L(n) = \{ w \in T^* : n \to^* w \}$$

5.1 Construction of *G*

$$T = \Sigma$$

 $N = \{\langle q, A, p \rangle : p, q \in \mathbb{Z}, A \in \Gamma_{\varepsilon}\} \cup \{S\}$
 $S = S$

intention:

$$L(\langle q, A, p \rangle) = \{ w : (q, w, A) \vdash^* (p, \varepsilon, \varepsilon) \}$$

Figure 7: Symbol $\langle q, A, p \rangle$ should generate all words w such that M started in state q with input w and stack A consumes the input, empties the stack and ends in state p

5.1 Construction of *G*

$$T = \Sigma$$

 $N = \{\langle q, A, p \rangle : p, q \in \mathbb{Z}, A \in \Gamma_{\varepsilon}\} \cup \{S\}$
 $S = S$

intention:

$$L(\langle q, A, p \rangle) = \{ w : (q, w, A) \vdash^* (p, \varepsilon, \varepsilon) \}$$

Figure 7: Symbol $\langle q, A, p \rangle$ should generate all words w such that M started in state q with input w and stack A consumes the input, empties the stack and ends in state p

1. for all accepting states $f \in Z_A$:

$$S \to \langle z_0, \varepsilon, f \rangle$$

2. if

 $(r, push\ a) \in \delta(q, u, A) \quad \text{with} \quad u \in \Sigma_{\varepsilon} \quad a \in \Gamma_{\varepsilon}, \quad A \in \Gamma$ then for all $q_1, p \in Z$ intermediate and end states

$$\langle q, A, p \rangle \to u \langle r, a, q_1 \rangle \langle q_1, A, p \rangle$$

3. similar; if

$$(r, push a) \in \delta(q, u, \varepsilon)$$
 with $u \in \Sigma_{\varepsilon}$ $a \in \Gamma_{\varepsilon}$

then for all $q_1, p \in Z$ and $b \in \Gamma_{\varepsilon}$: also possible top(stack)

$$\langle q, b, p \rangle \to u \langle r, a, q_1 \rangle \langle q_1, b, p \rangle$$

5.1 Construction of *G*

$$T = \Sigma$$

 $N = \{\langle q, A, p \rangle : p, q \in \mathbb{Z}, A \in \Gamma_{\varepsilon}\} \cup \{S\}$
 $S = S$

intention:

$$L(\langle q, A, p \rangle) = \{ w : (q, w, A) \vdash^* (p, \varepsilon, \varepsilon) \}$$

Figure 7: Symbol $\langle q, A, p \rangle$ should generate all words w such that M started in state q with input w and stack A consumes the input, empties the stack and ends in state p

1. for all accepting states $f \in Z_A$:

$$S \to \langle z_0, \varepsilon, f \rangle$$

2. if

 $(r, push\ a) \in \delta(q, u, A) \quad \text{with} \quad u \in \Sigma_{\mathcal{E}} \quad a \in \Gamma_{\mathcal{E}}, \quad A \in \Gamma$ then for all $q_1, p \in Z$ intermediate and end states

$$\langle q, A, p \rangle \to u \langle r, a, q_1 \rangle \langle q_1, A, p \rangle$$

3. similar; if

$$(r, push a) \in \delta(q, u, \varepsilon)$$
 with $u \in \Sigma_{\varepsilon}$ $a \in \Gamma_{\varepsilon}$

then for all $q_1, p \in Z$ and $b \in \Gamma_{\varepsilon}$: also possible top(stack)

$$\langle q, b, p \rangle \to u \langle r, a, q_1 \rangle \langle q_1, b, p \rangle$$

4. if

$$(r,pop) \in \delta(q,u,A) \quad \text{with} \quad u \in \Sigma_{\mathcal{E}} \quad A \in \Gamma_{\mathcal{E}}$$
 then for all $p \in Z$ end states $\langle q,A,p \rangle \to u \langle r,\mathcal{E},p \rangle$

5. similar; if

$$(r, pop) \in \delta(q, u, \varepsilon)$$
 with $u \in \Sigma_{\varepsilon}$

then for all $b \in \Gamma$ and $p \in Z$ also possible top(stack)

$$\langle q, b, p \rangle \to u \langle r, \varepsilon, p \rangle$$

Construction of G

$$T = \Sigma$$

 $N = \{\langle q, A, p \rangle : p, q \in \mathbb{Z}, A \in \Gamma_{\varepsilon}\} \cup \{S\}$
 $S = S$

intention:

$$L(\langle q, A, p \rangle) = \{ w : (q, w, A) \vdash^* (p, \varepsilon, \varepsilon) \}$$

Figure 7: Symbol $\langle q, A, p \rangle$ should generate all words w such that M started in state q with input w and stack A consumes the input, empties the stack and ends in state 5. similar; if

6. for all $q \in Z$

$$\langle q, \varepsilon, q \rangle \to \varepsilon$$

1. for all accepting states $f \in Z_A$:

$$S \to \langle z_0, \varepsilon, f \rangle$$

2. if

$$(r, push\ a) \in \delta(q, u, A)$$
 with $u \in \Sigma_{\varepsilon}$ $a \in \Gamma_{\varepsilon}$, $A \in \Gamma$ then for all $q_1, p \in Z$ intermediate and end states

$$\langle q, A, p \rangle \to u \langle r, a, q_1 \rangle \langle q_1, A, p \rangle$$

3. similar; if

$$(r, push a) \in \delta(q, u, \varepsilon)$$
 with $u \in \Sigma_{\varepsilon}$ $a \in \Gamma_{\varepsilon}$

then for all $q_1, p \in Z$ and $b \in \Gamma_{\varepsilon}$: also possible top(stack)

$$\langle q, b, p \rangle \to u \langle r, a, q_1 \rangle \langle q_1, b, p \rangle$$

4. if

$$(r,pop)\in \delta(q,u,A) \quad ext{with} \quad u\in \Sigma_{\mathcal E} \quad A\in \Gamma_{\mathcal E}$$
 then for all $p\in Z$ end states $\langle q,A,p
angle o u\langle r,{\mathcal E},p
angle$

$$(r, pop) \in \delta(q, u, \varepsilon)$$
 with $u \in \Sigma_{\varepsilon}$

also possible top(stack) then for all $b \in \Gamma$ and $p \in Z$

$$\langle q, b, p \rangle \to u \langle r, \varepsilon, p \rangle$$

$$5.2 \quad x \in L(G) \to x \in L(M)$$

$$x \in L(\langle q,A,p\rangle) \to (q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$$

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$.

• t = 1 only for construction 6.

$$\langle q, \varepsilon, q \rangle \to \varepsilon$$
 , $\varepsilon \in T^*$

$$p=q, x=A=\varepsilon$$

$$(q, x, A) = (q, \varepsilon, \varepsilon) \vdash^{0} (q, \varepsilon, \varepsilon) = (p, \varepsilon, \varepsilon)$$

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$.

• $t-1 \rightarrow t$

construction 2: see figure 9 push a with $A \neq \epsilon$

Figure 9: derivation tree for case 2 of the construction. The input word is $x = uz_1z_2$

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$.

•
$$t-1 \rightarrow t$$

construction 2: see figure 9 push a with $A \neq \epsilon$

Figure 9: derivation tree for case 2 of the construction. The input word is $x = uz_1z_2$

$$(q,x,A) \vdash (r,z_1z_2,aA)$$
 (construction of G)
 $(r,z_1,a) \vdash^* (q_1,\varepsilon,\varepsilon)$ (induction hypothesis for T_1)

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$.

construction 2: see figure 9

Figure 9: derivation tree for case 2 of the construction. The input word is $x = uz_1z_2$

$$(q,x,A) \vdash (r,z_1z_2,aA)$$
 (construction of G)
 $(r,z_1,a) \vdash^* (q_1,\varepsilon,\varepsilon)$ (induction hypothesis for T_1)

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$.

construction 2: see figure 9

Figure 9: derivation tree for case 2 of the construction. The input word is $x = uz_1z_2$

$$(q,x,A) \vdash (r,z_1z_2,aA)$$
 (construction of G)
 $(r,z_1,a) \vdash^* (q_1,\varepsilon,\varepsilon)$ (induction hypothesis for T_1)

hence

$$(r, z_1 z_2, aA)$$
 \vdash^* (q_1, z_2, A) (pushdown automata work this way, def of \vdash) \vdash^* $(p, \varepsilon, \varepsilon)$ (induction hypothesis for T_2)

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$.

construction 2: see figure 9

Figure 9: derivation tree for case 2 of the construction. The input word is $x = uz_1z_2$

$$(q, x, A) \vdash (r, z_1 z_2, aA)$$
 (construction of G)
 $(r, z_1, a) \vdash^* (q_1, \varepsilon, \varepsilon)$ (induction hypothesis for T_1)

hence

$$(r, z_1 z_2, aA)$$
 \vdash^* (q_1, z_2, A) (pushdown automata work this way, def of \vdash) \vdash^* $(p, \varepsilon, \varepsilon)$ (induction hypothesis for T_2)

construction 3: exercise

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$.

construction 4: pop with $A \neq \epsilon$

Figure 10: derivation tree for case 4 of the construction. The input word is $x = uz_1$

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$.

construction 4: pop with $A \neq \epsilon$

Figure 10: derivation tree for case 4 of the construction. The input word is $x = uz_1$

$$(q,x,A) \vdash (r,z_1,\varepsilon)$$
 (construction of G)
 $\vdash^* (p,\varepsilon,\varepsilon)$ (induction hypothesis for T_1)

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon)$.

construction 4: pop with $A \neq \epsilon$

Figure 10: derivation tree for case 4 of the construction. The input word is $x = uz_1$

$$(q,x,A) \vdash (r,z_1,\varepsilon)$$
 (construction of G)
 $\vdash^* (p,\varepsilon,\varepsilon)$ (induction hypothesis for T_1)

-construction 5: exercise

classical place for errors (although I did not find it yet)

$$x \in L(\langle q, A, p \rangle) \to (q, x, A) \vdash^* (p, \varepsilon, \varepsilon)$$

Proof by induction on depth t of derivation tree from $\langle q, A, p \rangle$ to x

Figure 8: by induction on the depth t of the derivation tree we want to conclude $(q,x,A) \vdash^* (p,\varepsilon,\varepsilon).$

lemma implies claim $w \in L(G) = L(S)$ has derivation tree as in figure 11.

Figure 11: derivation tree for x from start symbol S

The lemma implies

$$(z_0, x, \varepsilon) \vdash^* (f, \varepsilon, \varepsilon)$$

 $f \in Z_A \to x \in L(M)$

$$f \in Z_A \to x \in L(M)$$

$$5.3 \quad x \in L(M) \to x \in L(G)$$

$$(q,x,A)\vdash^t (p,\varepsilon,\varepsilon)$$

then

$$\langle q, A, p \rangle \to^* x$$

$$5.3 \quad x \in L(M) \to x \in L(G)$$

$$(q,x,A)\vdash^t (p,\varepsilon,\varepsilon)$$

then

$$\langle q, A, p \rangle \to^* x$$

lemma implies claim: choose

$$q = z_0$$
, $A = \varepsilon$, $p = f \in Z_A$

Then

$$S \to \langle z_0, \varepsilon, f \rangle \to^* x$$

$$5.3 \quad x \in L(M) \to x \in L(G)$$

$$(q,x,A)\vdash^t (p,\varepsilon,\varepsilon)$$

then

$$\langle q, A, p \rangle \to^* x$$

proof of lemma by induction on t

•
$$t=0$$

$$q=p \;,\; x=\varepsilon \;,\; A=\varepsilon$$

$$\langle q,\varepsilon,q\rangle \to \varepsilon \quad \text{(construction 6)}$$

$$5.3 \quad x \in L(M) \to x \in L(G)$$

$$(q,x,A)\vdash^t (p,\varepsilon,\varepsilon)$$

then

$$\langle q, A, p \rangle \to^* x$$

• $t-1 \rightarrow t$:

case 1: computation starts with *push* a for some $a \in \Gamma_{\varepsilon}$.

$$(q,x,A) \vdash (r,z,aA) \vdash^{t-1} (p,\varepsilon,\varepsilon) \quad , \quad x = uz , u \in \Sigma_{\varepsilon}$$

$$5.3 \quad x \in L(M) \to x \in L(G)$$

$$(q,x,A)\vdash^t (p,\varepsilon,\varepsilon)$$

then

$$\langle q, A, p \rangle \to^* x$$

• $t-1 \rightarrow t$:

case 1: computation starts with *push* a for some $a \in \Gamma_{\varepsilon}$.

$$(q,x,A) \vdash (r,z,aA) \vdash^{t-1} (p,\varepsilon,\varepsilon) , x = uz, u \in \Sigma_{\varepsilon}$$

then

$$(r, push a) \in \delta(q, u, A)$$
 or $(r, push a) \in \delta(q, u, \varepsilon)$

in both cases by construction 2 and 3 there is production

$$\langle q, A, p \rangle \to u \langle r, a, q_1 \rangle \langle q_1, A, p \rangle$$
 for all $q_1 \in Z$

5.3
$$x \in L(M) \rightarrow x \in L(G)$$

$$(q,x,A)\vdash^t (p,\varepsilon,\varepsilon)$$

then

$$\langle q, A, p \rangle \to^* x$$

• $t-1 \rightarrow t$:

case 1: computation starts with *push* a for some $a \in \Gamma_{\varepsilon}$.

$$(q,x,A) \vdash (r,z,aA) \vdash^{t-1} (p,\varepsilon,\varepsilon) , x = uz, u \in \Sigma_{\varepsilon}$$

then

$$(r, push a) \in \delta(q, u, A)$$
 or $(r, push a) \in \delta(q, u, \varepsilon)$

in both cases by construction 2 and 3 there is production

$$\langle q, A, p \rangle \to u \langle r, a, q_1 \rangle \langle q_1, A, p \rangle$$
 for all $q_1 \in Z$

Determining q_1 : choose t_1 as first t when a is popped from stack.

$$(r, z, aA) \vdash^{t_1} (q_1, z_2, A) \vdash^{t_2} (p, \varepsilon, \varepsilon)$$
 with $z = z_1 z_2, t_1 + t_2 = t$

M is pushdown automaton/definition of \vdash :

$$(r,z_1,a)\vdash^{t_1}(q_1,\varepsilon,\varepsilon)$$

induction hypothesis gives derivation trees T_1 , T_2 of figure 12

Figure 12: derivation tree for x if the computation starts with push a

$$5.3 \quad x \in L(M) \to x \in L(G)$$

$$(q,x,A)\vdash^t (p,\varepsilon,\varepsilon)$$

then

$$\langle q, A, p \rangle \to^* x$$

case 2: computation starts with *pop*

$$(q,x,A) \vdash (r,z,\varepsilon) \vdash^{t-1} (p,\varepsilon,\varepsilon) \quad , \quad x = uz , u \in \Sigma_{\varepsilon}$$

then

$$(r, pop) \in \delta(q, u, A)$$
 or $(r, pop) \in \delta(q, u, \varepsilon)$

in both cases by construction 4 and 5 there is production

$$\langle q, A, p \rangle \to u \langle r, \varepsilon, p \rangle$$

5.3
$$x \in L(M) \rightarrow x \in L(G)$$

$$(q,x,A)\vdash^t (p,\varepsilon,\varepsilon)$$

then

$$\langle q, A, p \rangle \to^* x$$

case 2: computation starts with pop

$$(q,x,A) \vdash (r,z,\varepsilon) \vdash^{t-1} (p,\varepsilon,\varepsilon) \quad , \quad x = uz , u \in \Sigma_{\varepsilon}$$

then

$$(r, pop) \in \delta(q, u, A)$$
 or $(r, pop) \in \delta(q, u, \varepsilon)$

in both cases by construction 4 and 5 there is production

$$\langle q, A, p \rangle \to u \langle r, \varepsilon, p \rangle$$

induction hypothesis gives derivation tree T_1 of figure 13

Figure 13: derivation tree for x if the computation starts with pop

5.3
$$x \in L(M) \rightarrow x \in L(G)$$

$$(q,x,A)\vdash^t (p,\varepsilon,\varepsilon)$$

then

$$\langle q, A, p \rangle \to^* x$$

case 2: computation starts with pop

$$(q,x,A) \vdash (r,z,\varepsilon) \vdash^{t-1} (p,\varepsilon,\varepsilon) \quad , \quad x = uz \; , \; u \in \Sigma_{\varepsilon}$$

then

$$(r, pop) \in \delta(q, u, A)$$
 or $(r, pop) \in \delta(q, u, \varepsilon)$

in both cases by construction 4 and 5 there is production

$$\langle q, A, p \rangle \to u \langle r, \varepsilon, p \rangle$$

done

remember: this is hardcore CS from 1962

I was 11 years old

induction hypothesis gives derivation tree T_1 of figure 13

Figure 13: derivation tree for x if the computation starts with pop