# Ultrasound Physics, Imaging and Therapy



Taha Ahmed

3. A (c)

# **MCQ Questions**

| 1. Q What can modern ultrasound systems be used for?                                      |
|-------------------------------------------------------------------------------------------|
| (a) Images of unborn babies                                                               |
| (b) Detailed measurements of blood movements in blood vessels and tissues                 |
| © Visualize moving structures in 3D                                                       |
| d All of the above                                                                        |
| 1. A (d)                                                                                  |
| 2. Q What can be visualized in 3D using modern ultrasound systems?                        |
| (a) Blood cells                                                                           |
| (b) Moving structures                                                                     |
| © Bacteria                                                                                |
| d Rocks                                                                                   |
| 2. A (b)                                                                                  |
| 3. Q How is a B-mode image constructed?                                                   |
| (a) It is created from x-rays passing through the body                                    |
| (b) It is generated by RF waves reflecting off the body's surface                         |
| © It is formed from echoes generated by ultrasound waves reflecting off tissue boundaries |
|                                                                                           |

d It is made from magnetic fields interacting with atoms in the body

| 4. Q What generates the echoes used to create a B-mode image?                               |
|---------------------------------------------------------------------------------------------|
| (a) X-rays passing through the body                                                         |
| <b>b</b> Scattered light waves within the body                                              |
| © Ultrasound waves reflecting off tissue boundaries and small irregularities within tissues |
| d All of the above                                                                          |
| 4. A (c)                                                                                    |
| 5. Q What is the primary axis used to represent depth in B-mode imaging?                    |
| $\stackrel{	ext{ (a)}}{}{x	ext{-axis}}$                                                     |
| $\stackrel{	ext{ }}{	ext{ }}$ $y	ext{-axis}$                                                |
| $\bigcirc$ z-axis                                                                           |
| d None of the above                                                                         |
| 5. A (c)                                                                                    |
| 6. Q In B-mode imaging, what is the primary axis used to represent azimuth?                 |
| $\stackrel{	ext{ (a)}}{} x	ext{-axis}$                                                      |
| $\bigcirc$ b y-axis                                                                         |
| © z-axis                                                                                    |
| d None of the above                                                                         |
| 6. A (a)                                                                                    |

9. A (a)

| 7. Q How is the position of an echo in B-mode imaging determined?         |
|---------------------------------------------------------------------------|
| (a) By its depth and angle of incidence                                   |
| (b) By its frequency and amplitude                                        |
| © By its acoustic transit time and beam direction in the plane            |
| d All of the above                                                        |
| 7. A (c)                                                                  |
| 8. Q In M-mode imaging, what is the primary axis used to represent depth? |
| (a) x-axis                                                                |
| $\bigcirc$ $y$ -axis                                                      |
| $\bigcirc$ z-axis                                                         |
| d None of the above                                                       |
| 8. A (b)                                                                  |
| 9. Q What is the main difference between B-mode and M-mode imaging?       |
| (a) B-mode imaging shows a cross-sectional image,                         |
| while M-mode imaging shows a time history of a single line                |
| (b) B-mode imaging is brightness-modulated,                               |
| while M-mode imaging is frequency-modulated                               |
| $\bigcirc$ B-mode imaging uses the <i>x</i> -axis to represent depth,     |
| while M-mode imaging uses the $y$ -axis                                   |
| $\bigcirc$ B-mode imaging uses the z-axis to represent time,              |
| while M-mode imaging uses the $x$ -axis                                   |

- 10. Q What is the primary purpose of Doppler-mode imaging?
- (a) To create 3D images of internal organs
- (b) To visualize the movement of tissues in the body
- (c) To estimate blood flow through blood vessels
- (d) To detect the presence of tumors in the body
- 10. A (c)
- 11. Q How is the direction of blood flow encoded in the CFM mode?
- (a) By changing the brightness of the image
- (b) By using different shades of gray
- (c) By plotting a graph of the velocity vs the direction
- (d) By using different colors
- 11. A (d)
- 12. Q In the following figure, what (1), (2), (3) represents respectively?
- (a) Transducer connector bays, Reset, Pedal
- (b) Peripheral device, System control panel, Display
- © System control panel, Reset, Peripheral device
- (d) Display, System control panel, Transducer connector bays
- 12. A (d)



- 13. Q In the following figure, what (1),
- (2), (3) represents respectively?
- (a) Focus, Freeze, Mode Selection
- (b) Mode Selection, Trackball, Freeze
- (c) Freeze, Trackball, Probe select
- (d) TGC, Scan depth, Focus



#### 13. A (b)

- 14. Q What type of waves are used to form medical images with ultrasound?
- (a) Transverse waves
- $(\mathbf{b})$  Longitudinal waves
- (c) Electromagnetic waves
- (d) Radio waves

#### **14. A** (b)

- 15. Q What is the frequency range of ultrasound waves?
- (a) 2-15 MHz
- (b) 20-150 MHz
- (c) 2-20 MHz
- (d) 20-200 MHz

#### 15. A (a)

- 16. Q Is ultrasound an electromagnetic wave?
- (a) Yes
- (b) No

**16. A** (b)

## **Speed of sound**

$$c = f\lambda \tag{1}$$

Where

c: speed of sound

f: frequency

 $\lambda$  : wavelength

$$c = \sqrt{\frac{k}{\rho}} \tag{2}$$

Where

c: speed of sound

k: coefficient of stiffness

 $\rho$  : density

#### 17. Q What is the typical frequency range of medical ultrasound?

- (a) 2-15 MHz
- (b) 20-150 MHz
- (c) 2-20 MHz
- (d) 20-200 MHz
- 17. A (a)

18. Q How does the wavelength of ultrasound waves affect the resolution of the imaging system?

- (a) Longer wavelengths give rise to improved resolution
- (b) Shorter wavelengths give rise to improved resolution
- (c) Wavelength has no effect on resolution
- (d) Wavelength affects only the penetration depth of ultrasound waves

18. A (b)

19. Q Is the resolution of ultrasound imaging proportional or inversely proportional to penetration?

- (a) Proportional
- (b) Inversely proportional

19. A (b)

#### **Acoustic impedance**

Analogous to electrical impedance

$$z = \frac{p}{v} \tag{3}$$

Where

p: local pressure

v: local particle velocity

Or more commonly

$$z = \sqrt{\rho k} = \rho c$$
 (Rayls = kg m<sup>-2</sup> s<sup>-1</sup>) (4)

#### **Ultrasound Reflection**

For a acoustic wave passes from one substance with refractive index  $z_1$  into another with refractive index  $z_2$ , we define amplitude refraction coefficient as:

$$R_A = \frac{P_r}{P_i} = \frac{z_2 - z_1}{z_2 + z_1} \tag{5}$$

therefore the intensity refraction coefficient:

$$R_i = \frac{I_r}{I_i} = R_A^2 = \left(\frac{z_2 - z_1}{z_2 + z_1}\right)^2$$
 (6)



20. Q Two tissue types have speed of sound and density of

- (a) 1580 m  $\rm s^{-1}$  and 1.1  $\times\,10^3~kg~m^{-3}$
- (b)  $1460 \text{ m s}^{-1} \text{ and } 0.9 \times 10^3 \text{ kg m}^{-3}$ .

Calculate the intensity reflection coefficient for a large interface between them.

- (a) 0.2189
- (b) 0.3714
- (c) 0.019
- (d) 0.0235

$$z_1 = \rho_1 c_1 = 1.738 \times 10^6 \text{ kg m}^{-2} \text{s}^{-1}$$

$$z_2 = \rho_2 c_2 = 1.314 \times 10^6 \text{ kg m}^{-2} \text{s}^{-1}$$

$$R_I = \left(R_A
ight)^2 = \left(rac{z_2 - z_1}{z_2 + z_1}
ight)^2 = (0.138)^2 = 0.019$$

#### **Ultrasound Scattering**

$$W_s \propto \frac{d^6}{\lambda^4} \propto d^6 f^4$$
 (7)

## **Ultrasound Refraction (Refraction)**

$$\frac{\sin \theta_i}{\sin \theta_t} = \frac{c_1}{c_2} \tag{8}$$

- 21. Q What is attenuation in medical ultrasound?
- (a) The gradual gain of beam energy
- (b) The abrupt loss of beam energy
- (c) The gradual loss of beam energy
- d The abrupt gain of beam energy
- 21. A (c)
- 22. Q What is the unit of attenuation
- $\stackrel{\textstyle \bigcirc}{}$  dB cm<sup>-1</sup> MHz<sup>-1</sup>
- $\stackrel{\textstyle oldsymbol{ (b)}}{\textstyle \mathrm{d}\mathrm{B}^{-1}}~\mathrm{cm}^{-1}~\mathrm{MHz}$
- (c) dB cm MHz
- $(d) dB^{-1} cm^{-1} MHz^{-1}$
- **22.** A (a)

23. Q attenuation is ..... proportional to frequency and distance respectively

- (a) inversely, inversely
- (b) inversely, directly
- (c) directly, inversely
- d directly, directly

23. A (d)

24. Q A medium attenuates ultrasound at a rate of 0.7 dB cm<sup>-1</sup> MHz<sup>-1</sup>. A target at a depth of 5 cm below the transducer is imaged with a 3 MHz ultrasound pulse. By how many dB will the echo from the target be attenuated?

- (a) 10.5 dB
- (b) 7 dB
- (c) 21 dB
- (d) 28.5 dB

The total distance traveled d is  $2x = 2 \times 5$  cm = 10 cm

 $\therefore$  Attenuation is  $\alpha \times d \times f = 0.7 \times 10 \times 3 = 21$  db

24. A (c)

25. Q Recalculate for a target at a depth of 1 cm

- (a) 12.3 dB
- (b) 2.1 dB
- (c) 4.2 dB
- (d) 8.4 dB

The total distance traveled d is  $2x = 2 \times 1$  cm = 2 cm

 $\therefore$  Attenuation is  $\alpha \times d \times f = 0.7 \times 2 \times 3 = 4.2 \text{ db}$ 

25. A (c)

| <b>26. Q</b> Which type of tissue tends to show high absorption of ultrasound waves? |
|--------------------------------------------------------------------------------------|
| (a) Tissues with high fat content                                                    |
| (b) Tissues with low fat content                                                     |
| © Tissues with high collagen content                                                 |
| d Tissues with low collagen content                                                  |
| 26. A (c)                                                                            |
| 27. Q How does tissue composition affect absorption of ultrasound waves?             |
| (a) It has no effect on absorption                                                   |
| <b>b</b> Tissues with high water content show higher absorption                      |
| © Tissues with high collagen content show higher absorption                          |
| d Tissues with high fat content show higher absorption                               |
| 27. A (c)  28. Q What does the term B-mode stand for in medical imaging?             |
| What does the term B mode stand for in medical imaging.                              |
| (a) Brightness-mode                                                                  |
| (b) Blood-flow mode                                                                  |
| © Bone-density mode                                                                  |
| d Brain-activity mode                                                                |
| 28. A (a)                                                                            |

- 29. Q How is a B-mode image constructed?
- (a) From transmission of waves through tissue
- (b) From absorption of waves by tissue
- (c) From echoes of waves reflected and scattered by tissue
- (d) From refraction of waves by tissue
- 29. A (c)
- 30. Q What is the relationship between brightness and echo strength in a B-mode image?
- (a) Brightness is unrelated to echo strength
- (b) Brightness is directly proportional to echo strength
- (c) Brightness is inversely proportional to echo strength
- (d) Brightness is unrelated to the strength of echoes from tissue boundaries
- **30. A** (b)
- 31. Q What are the two pieces of information required for the B-mode system to display each echo in a position corresponding to that of the interface or feature that caused it?
- (a) Frequency and amplitude of the ultrasound wave
- (b) Range and position of the transducer
- (c) Amplitude and intensity of the echo
- (d) Scattering and reflection of the ultrasound wave
- **31. A** (b)

#### 32. Q which of the following transducers is a reposoidal transducer



32. A (c)

Note:

- (a) Rectangular Transducer.
- (b) Curvilinear Transducer.
- (c) Reposoidal Transducer.
- (d) Sector Transducer
- (e) Radial Transducer

#### Near field length

near field length = 
$$\frac{a^2}{\lambda}$$
 (9)

Where a: diameter of transducer

#### Angle of divergence

$$\sin \theta = 0.61 \frac{\lambda}{a} \tag{10}$$

# **Foucsing**

The beam width W at the focus for strong focusing is given approximately by the equation

$$W = \frac{F\lambda}{a} \tag{11}$$

Where F: the focal length

33. Q How is focusing achieved in ultrasound imaging using a single-element source?

- (a) By using a flat source
- ${f (b)}$  By using a source with a sharp edge
- (c) By using a curved source or an acoustic lens
- d By using a rotating source

33. A (c)

34. Q When is focusing considered weak in ultrasound imaging?

- (a) When the focal length is less than half of the near-field length
- (b) When the focal length is more than half of the near-field length
- (c) When the B-mode is used
- (d) When the M-mode is used

34. A (b)

35. Q A plane disc transducer, with a diameter of 1.5 cm, is driven at 3 MHz to produce a continuous-wave beam in tissue with a speed of sound of 1500 m/s Calculate the near-field length of the beam

- (a) 0.45 m
- (b) 1.125 m
- $\odot$  0.45  $\times$  10<sup>-7</sup> m
- (d)  $1.125 \times 10^{-7} \text{ m}$

$$\lambda = rac{c}{f} = rac{1500}{3 imes 10^6} = 5 imes 10^{-4} \mathrm{\ m}$$

near-field length =  $\frac{a^2}{\lambda}=\frac{(1.5\times 10^{-2})^2}{5\times 10^{-4}}=0.45~\mathrm{m}$ 

**35. A** (a)

36. Q In the previous question, calculate its angle of divergence in the far field.

- (a) 0.163°
- (b) 1.163°
- (c) 2.163°
- (d) 3.163°

$$\sin \theta = 0.61 \frac{\lambda}{a} = 0.61 imes \frac{5 imes 10^{-4}}{1.5 imes 10^{-2}}$$

$$\theta=1.163^{\circ}$$

37. Q In the previous question, estimate the beam width at the focus if a lens is added with a focal length of 6 cm.

- (a) 2  $\mu$ m
- (b) 2 mm
- (c) 2 cm
- (d) 2 m

$$W = \frac{F\lambda}{a} = \frac{6 \times 10^{-2} \times 5 \times 10^{-4}}{1.5 \times 10^{-2}} = 2 \text{ mm}$$

38. Q What is a transducer in ultrasound imaging?

- (a) A device that determines the shape and position of the beams
- (b) A part of the scanner that controls the electrical signals
- © A device that converts electrical transmission pulses into ultrasonic pulses and vice versa
- (d) A part of the scanner that determines the brightness of the image
- 38. A (c)

39. Q What is the function of the beamformer in ultrasound imaging?

- (a) To convert electrical transmission pulses into ultrasonic pulses
- (b) To determine the shape and position of the beams
- (c) To convert ultrasonic echo pulses into electrical signals
- (d) To determine the brightness of the image

39. A (b)

40. Q Which part of the scanner determines the size, shape, and position of the beams in ultrasound imaging?

- (a) Transducer
- (b) Processor
- (c) Display
- (d) Beamformer

**40. A** (d)

#### Frame time / Frame rate



- 41. Q What is the frame time to scan 20 cm depth with 128 lines?
- (a) 0.0083
- (b) 0.0166
- (c) 0.0416
- (d) 0.0332

frame time = 
$$\frac{2 \times 20 \times 10^{-2} \times 128}{1540} = 0.0332 \text{ s}$$

- **41. A** (d)
- 42. Q In the previous question, what is the frame rate
- (a) 24 fps
- (b) 30 fps
- (c) 60 fps
- (d) 120 fps

 ${\rm frame\ rate}=1\ /\ {\rm frame\ time}=30\ {\rm fps}$ 

42. A (b)

43. Q Which of the following is a cause of the Doppler effect?

- (a) Changes in the medium through which the wave is travelling
- (b) Changes in the frequency of the source
- (c) Changes in the amplitude of the wave
- (d) Relative motion between the observer and the source

43. A (d)

# **Doppler Shift**

$$f_d = f_r - f_t = \frac{2f_t v \cos \theta}{c} \tag{14}$$

Therefore

$$v = \frac{cf_d}{2f_t \cos \theta} \tag{15}$$

44. Q Which of the following is not a Doppler display mode?

- (a) Color Doppler
- (b) Spectral Doppler
- (c) Brightness Doppler
- (d) All of the above
- 44. A (c)

45. Q Which of the following Doppler modes has a limitation on maximum velocity and accuracy?

- (a) Color Doppler
- (b) Spectral Doppler
- (c) Continuous Wave Doppler
- (d) Pulsed-Wave Doppler
- 45. A (d)

46. Q Which of the following is not true about of Continuous Wave Doppler?

- (a) No range information
- (b) Limitations on maximum velocity and accuracy
- (c) Only a small region for Doppler sensitivity
- (d) No limitation on maximum velocity and high velocity accuracy

**46. A** (b)

#### Pulse Repetition Frequency - Pulse Repetition Interval

PRI: the time interval between pulses

$$PRI = t_2 - t_1 \tag{16}$$

PRF: the number of pulses transmitted in 1 s (Hz or pps (pulses per second))

$$\mathbf{PRF} = \frac{1}{\mathbf{PRI}} \tag{17}$$

$$d_1 = \frac{ct_1}{2} \tag{18}$$

$$d_2 = \frac{ct_2}{2} \tag{19}$$

$$d_m = d_2 - d_1 = \frac{c(t_2 - t_1)}{2} \tag{20}$$

$$v = \frac{d_m}{\text{PRI}} = \frac{c(t_2 - t_1)}{2\text{PRI}} \tag{21}$$

(or) 
$$v = d_m PRF = \frac{c(t_2 - t_1)PRF}{2}$$
 (22)

$$f_{d \max} = \frac{\text{PRF}}{2} \tag{23}$$

47. Q Consider Doppler imaging of a vessel at depth  $d_1 = 10$  cm. derive the maximum detectable velocity if the transmitted signal frequency was 5 MHz and Doppler angle was  $45^{\circ}$ .

- (a) 0.208 m/s
- (b) 0.417 m/s
- $\bigcirc$  0.837 m/s
- (d) 1.668 m/s

time to scan 1 cm:

$$t = \frac{2d}{c} = \frac{2 \times 1 \times 10^{-2}}{1540} = 13 \,\mu\text{s}$$

Therefore PRI =  $13 \,\mu\text{s} \times 10 \text{ cm} = 130 \,\mu\text{s}$ 

Sampling frequency =  $PRF = \frac{1}{PRI} = 7692$  sample per second =  $2f_{d \max}$  max

Remember

$$v = rac{cf_d}{2f_t\cos heta}$$

Therefore

$$v_{
m max} = rac{1540 imes 7692/2}{2 imes 5 imes 10^6 imes \cos 45^\circ} = 0.837 \; {
m m/s}$$

| 47. A (c)                                                                     |
|-------------------------------------------------------------------------------|
| 48. Q What is ultrasound treatment not used for?                              |
| (a) Treating bone fractures                                                   |
| (b) Treating kidney stones                                                    |
| © Treating joint sprains                                                      |
| d Treating muscle sprains                                                     |
| 48. A (a)                                                                     |
| 49. Q What are some benefits of ultrasound treatment?                         |
| (a) Reducing blood flow                                                       |
| (b) Increasing joint stiffness                                                |
| © Increasing muscle spasms                                                    |
| d Reducing inflammation                                                       |
| 49. A (d)                                                                     |
| 50. Q How does ultrasound treatment work?                                     |
| (a) By sending low frequency sound waves through the body                     |
| (b) By delivering medication directly to the injured area                     |
| © By creating a magnetic field around the injured area                        |
| d By vibrating tissues to create heat and draw more blood to the injured area |
| <b>50. A</b> (d)                                                              |

| 51. Q What is the purpose of Lithotripsy?                    |
|--------------------------------------------------------------|
| a Treating benign and malignant tumors                       |
| (b) Cleaning teeth in dental hygiene                         |
| © Breaking up kidney stones                                  |
| d Detecting prostate cancer early                            |
| 51. A (c)                                                    |
| 52. Q What is Focused Ultrasound Surgery (FUS) used for?     |
|                                                              |
| (a) Treating benign and malignant tumors and other disorders |
| b Cleaning teeth in dental hygiene                           |
| © Detecting prostate cancer early                            |
| d Breaking up kidney stones                                  |
|                                                              |
| <b>52.</b> A (a)                                             |
| 53. Q What is Low intensity pulsed ultrasound used for?      |
|                                                              |
| (a) Treating benign and malignant tumors                     |
| (b) Cleaning teeth in dental hygiene                         |
| © Detecting prostate cancer early                            |
| d Therapeutic tooth and bone regeneration                    |
|                                                              |

**53. A** (d)

| 54. Q What is one of the potential dangers of ultrasound?                                                                    |
|------------------------------------------------------------------------------------------------------------------------------|
| a Joint stiffness                                                                                                            |
| (b) Headaches                                                                                                                |
| © Development of heat in tissues                                                                                             |
| d Decreased appetite                                                                                                         |
| 54. A (c)                                                                                                                    |
| 55. Q What happens when dissolved gases within the body come out of solution due to local heat caused by ultrasound?         |
| (a) Formation of bubbles                                                                                                     |
| (b) Increase in blood pressure                                                                                               |
| © Decrease in heart rate                                                                                                     |
| d None of the above                                                                                                          |
| <ul><li>55. A (a)</li><li>56. Q Have there been any substantiated ill-effects of ultrasound documented in studies?</li></ul> |
| a Yes, in both humans and animals                                                                                            |
| (b) No, in either humans or animals                                                                                          |
| © Only in animals, not humans                                                                                                |
| d Only in humans, not animals                                                                                                |
| 56. A (b)                                                                                                                    |