http://www.stockton-press co.uk/gt

Sustained gene expression in transplanted skin fibroblasts in rats

MQ Wei^{1,2}, DV Lejnieks¹, N Ramesh¹, S Lau¹, J Seppen¹ and WRA Osborne¹

*Department of Pediatrics, University of Washington, Seattle, WA, USA: and *SASVRC. Royal Children's Hospital, Herston, Owersland, Australia

Retrovirus-mediated gene transfer into adult skin fibroblests has provided measurable emounts of therepeutic proteins in animal models. However, the major problem emerging from these exprenients was a finited time of vector encoded gene expression once transduced cells were engrafied. We hypothesized that sustained transduced gene expression in quiescent fibroblasts in vivo might be obtained by using a fibronectin (Fir) promoter, Fibronectin plays a key role in cell adhesion, migration and wound healing and is up-requisited in quiescent fibroblasts. Retroviral vectors containing human adenosine dearmans (ADA) «DNA linked to rat fibronectin promoter (INFRA) or vial LTR promoter (LASN) were compared for their ability to express ADA from transduced primary rat skin fibroblasis in vivo. Skin graffs formed from throblasis transduced with LNFAA showed strong human ADA enzyme activity from 1 week to 3 months. In contrast, skin graffs containing LASN-transduced fluorblasis tested positive for human ADA for weeks 1 and 2, were faintly positive at week 3 and showed no human ADA expression at 1, 2 and 3 months. Thus, a fibroneotin promoter provided sustained transduced gene expression at this five list of at least 3 months in transplanted rat skin throblasis, perhaps permitting the targeting of this issues for human gene therapy.

Keywords: gene therapy, retroviral vector, gene transfer; gene inactivation; genes regulatory sequences

Introduction

Skir fibroblasts can be easily obtained from small biopsies, rapidly grown to large numbers in culture and efficiently transduced with retroviral vectors. More importantly, they can be conveniently turplanted as skin equivalent grafts in vivo, and the nature of skin as a surface organ enables grafts to be easily monitored and retrieved if necessary. Transduced skin fibroblasts are able to deliver systemically therapeutic proteins, a reflection of their role in secreting cytokines involved in local, as well as systemic, metabolism and immunological function. Because no foreign material is necessary for cell engrafiment, as is the case with polyterallurorentlynee fibers or encapsulation devices, adverse immunological responses to implants are avoided.

Long-term in vivo gene expression requires both target cells and gene delivery vectors that permit continuous vector encoded activity. Of the common virus-based methods of gene transfer, retroviral vectors are probably the most useful for α vivo gene transfer. The retroviral vectors have many attractive features, such as safety and ability to transduce non-proliferating cells. In the one to possess advantages over retroviruses. Replication-defective retroviral vectors can be made with high tiers, will infect a wide variety of cell types and infection results in stable proviral interaction into the bost chromosome providine.

gene expression for the lifetime of the cell and its progeny. ¹⁻⁸ Recently, the incorporation of internal ribosome entry sites from picornaviruses into retroviral vectors has allowed the generation of bicistronic vectors and subsequent advantages in linked gene selection. ⁶⁻¹¹

Non-hematopoietic cells other fian fibroblasts studied as vehicles for gene therapy include myoblasts, vasular smooth muscle cells and keratinocytes. Transduced skeletal myoblasts have been used to deliver erythropoietin in mice. 11 and transplantation of retrovirally transduced skeletal muscle myoblasts has been successfully achieved in dogs with alpha-t-iduronidase deficiency. 15 Mooth muscle cells are present within the vasculature as a multilayered mass of long-lived cells in proximity to the circulation and have been investigated as targets for gene therapy. 16 m vivo gene expression from transduced keratinocyte implants has also been studied. 12 32

Retrovirus-mediated gene transfer into primary skin fibroblasts has provided measurable amounts of therapeutic proteins in animal models, including adenosine deaminase (ADA).26.27 factor IX,28,29 β-glucuronidase30.33 and erythropoietin.32 A major problem emerging from experiments using skin equivalent grafts was the limited time of vector-encoded gene expression once transduced cells were implanted in vivo. We have shown in both rats and dogs that vector-derived gene expression was diminished at between 3 and 4 weeks despite the long-term presence of vector sequences in transplanted cells.28.27 in transplanted keratinocytes a similar property of downregulation of vector gene expression after cell implantation has been reported.33 However, we showed that the same promoters in retroviral vector constructs permitted stable gene expression for several months in transduced

hematopoietic stem cells34,35 and smooth muscle cells.18,18,27 These data suggested tissue-specific vector inactivation. When fibroblasts are in a quiescent state the choice of promoter for the transduced gene was a major determinant for long-term in vivo gene expression.36,37 When dibydrofolate reductase (DHFR) and CMV promoters were compared, long-term expression of Bgalactosidase was only achieved by DHFR promoter.36 This difference may reflect inactivation of the CMV viral promoter whereas DHFR, a house-keeping promoter, can still be active in quiescent cells. However, these studies used mouse embryo fibroblasts which may not correlate well with gene expression in non-embryonic cells, the only cells available for gene therapy protocols. Vector inactivation could be the reason, at least in part, why vical promoters, such as SV40, Moloney LTR as well as CMV immediate-early promoter drive high levels of gene expression in cultured skin fibroblasts, but became inactive after cells were implanted in vivo.29-28,36 Downregulation of retroviral vector sequences in transplanted keratinocytes has also been reported.33 In mice, phosphoglycerate kinase promoter has been used to derive longterm expression of β-glucuronidase 30.38 and ervthropoietin 17 in retrovirally transduced fibroblasts implanted into 'neo-organs' in the peritoneal cavity. The applicability of these data to transduced fibroblasts implanted in skin equivalent grafts is not known.

Fibronectin is a widely distributed extracellular matrix protein that plays a key role in cell adhesion, migration and wound healing.29 The fibronectin gene encodes a 250 kDa dimeric glycoprotein and although produced in many cell types the two major isoforms are synthesized by fibroblasts and hepatocytes. We hypothesized that sustained gene expression in quiescent fibroblasts might be obtained from a fibronectin promoter. Of particular importance to our proposed use, fibronectin is upregulated in quiescent/senescent fibroblasts. 40.41 The fibronectin promoter from humans and rats has been well characterized and regulatory elements identified. 42.43 We were encouraged by data showing that fibronecting increased and reached high levels in cells which were irreversibly arrested in G₀ phase and which had apparently exhausted their finite division potential.46 Additionally, a construct encoding a fibronectin promoter achieved high level expression of human interferon y in quiescent rat 3Y1 cells.44 When administered to mouse brain to correct lysosomal storage disease, retroviral vector transduced fibroblasts employing a viral promoter appeared to be down-regulated after implantation.45 Of interest, this study reported that the libronectin matrix intercalating the implanted cells was present at least I year after cell implantation, suggesting that the fibronectin promoter, unlike the vector promoter, was not inactivated.45 Therefore, to achieve long-term gene expression in fibroblasts in vivo we studied retroviral vectors encoding a rat fibronectin promoter.42

Results

Expression of human ADA in cultured fibroblasts

LNFnA, the viral vector expressing human ADA form the En promoter had a titer of 1 × 107 c.f.u./ml, which was similar to the titers obtained from LASN and LNSA (Figure 1). The retroviral vectors encoding human ADA were tested for transduced gene expression in primary fibroblasts obtained from both a patient with ADA deficiency and Fisher 344 rats. Pooled populations of G418-resistant cells were assayed for total ADA activity (Table 1). All the vectors tested showed significant expression of human ADA in enzyme-deficient patient fibroblasts. The viral LTR promoter produced the highest level of human ADA at activities comparable to our previous findings.27 Although the promoters derived from simian virus 40 and fibronectin were of similar activity in ADA-deficient human fibroblasts, the En promoter was the strongest. Total ADA-activities in transduced rat fibroblasts were of the same order as patient fibroblasts. indicating similar promoter activities in both human and rat cells. In rat fibroblasts the viral LTR promoter was about five-fold more active than the other promoters tested (Table 1). These results showed that, although the En promoter was three- to five-fold weaker than MoMLV LTR, it was as strong as simian virus 40, a promoter shown to be of high activity in vivo.35

In vivo gene expression from transduced rat skin fibroblasts

Initial experiments monitored gene expression for up to 5 weeks because in previous experiments vector inactivation had occurred by this time. 27 Test rats received two skin implants each, one constructed with fibroblasts transduced with LNFnA vector and the other with LASN transduced cells and were harvested at intervals of 1 to 5 weeks (Figure 2). Skin grafts formed from fibroblasts transduced with the vector encoding fibronectin promoter to drive human ADA (LNFnA) showed strong human enzyme activity from week I to week 5, Skin grafts containing LASN-transduced fibroblasts, where human ADA is driven from the viral LTR promoter, tested positive for human ADA for weeks 1 and 2, were faintly positive at week 3 and showed no human ADA expression at week 4 (Figure 2, left side). The inactivation of LASN-transduced fibroblasts in vivo confirms our previous studies.26,27 In a second series of experiments, rats received implants which were harvested at intervals of 1, 2 and 3 months. Skin grafts formed from fibroblasts transduced with the vector encoding fibronectin promoter showed strong human enzyme activity at 1, 2 and 3 months (Figure 2, right panel). Some variability of observed human ADA expression may be due in part due to difficulty of harvesting the collagen implant alone and not including adjacent areas of non-transduced cells, particularly at time points beyond I month. At these times wound healing has occurred and engrafted tissue was not easily distinguishable from graft bed. For these reasons the specific ADA activities in cell extracts obtained from skin biopsies were variable (data not shown). We attempted to overcome this by inserting four steel clips at the circumference of the graft as an aid to graft retrieval. Skin grafts containing LASN-transduced fibroblasts, where human ADA is driven from the viral LTR promoter, were negative at 1 to 3 months (Figure 2. right panel). These data demonstrate the ability of the fibronectin promoter to provide sustained vectorencoded expression in vivo.

Discussion

These studies show that elements of the fibronectin promoter permit sustained transduced gene expression in

Figure 1. Humon ADA vectors. Retroviral vectors LASN, LNSA and LNFnA use three different promoters to express human ADA cDNA; the Moloney marine leakenils virus (MoMLV) promoter in the long terminal report (LTR), the simina virus 40 early promoter E3 and the human Brownertin promoter (F) and finding terrastription initiation sites and (M₃ are not/harden/virtion sites. These are color-printing units per millitter of virus supervate.

Table I ADA activity in transduced primary fibroblasts

Virus	Promoter	Fibroblesis	
		ADA-HDF	.Rat
None	Native	<0.01	0.9
LASN	LTR	37.7	33,9
LNSA	SV40	6.0	6.6
LNFnA	Fn	13.4	7.1

Enzyme activity units are µmol/h/mg protein. hADA⁻ are heman ADA-deficient fibroblasts. Normal human fibroblast ADA activity is 0.9 µmol/h/mg protein. Results are mean of chapiteste assays.

transplanted skin fibroblasts. At 1, 2 and 3 months after implantation: as skin equivalent grafts. human ADA expression was detectable at levels similar to that observed at 3 weeks, indicating that retrovital promoter inactivation was overcome in the construct encoding Fn promoter. In contrast fibroblast rensuduced with LASN vector did not express human ADA beyond 3 weeks, confirming our previous results of vector suppression from skin grafts in both rats/3 and dogs.3" The critical time-point in these experiments occurs between 2 and 3 weeks when wound healing has taken place, as judged by the

decline of scar tissue and hair regrowth, and implanted fibroblasts become quiescent. The down-regulation of fibroblast gene expression involved in cell proliferation and migration occurs at this time and this process may also down-regulate expression from integrated proviruses. This must be a global event because the transduced fibroblasts are composed of random pooled clones representing multiple integration sites.27 Methylation of down-regulated provinal sequences has been reported in murine hematopoietic stem cells in vivo.36 However, this may be secondary to vector inactivation and not the primary cause. As the LNFnA vector provided gene expression well beyond the 3- to 4-week time of wound healing previously associated with vector inactivation.26,27 we anticipate that sustained vector-encoded gene expression will last longer than the 3 months we have demonstrated.

The expression of bacterial neomycin phusphortansferase and human ADA from LNFAA Virus did not appear to cause an immune-mediated loss of transplanted cells. This is supported by the sustained human ADA expression from fibroblast implants. The elimination of antologous transduced cells by an immune-mediated mechanism to foreign transgenes has been reported in rats receiving glioma cells and human T cell transplantations. However, the fibroblasts we targeted for gene expression and implantation are not usually involved in antigen processing and presentation and furthermore the

Figure 2 Detection of human ADA in implanted skin fibroblasts. Skin biopsies were barvested at the indicated times and analyzed by starch get electrophocesis, Rai and human ADA controls were from thymocytes and T tymphoblasts, respectively.

neo and ADA genes are expressed in the cytosol and not secreted.

LNFnA-transduced ADA-negative fibroblasts expressed ADA at 12-fold higher levels than normal fibroblasts, which have an ADA activity of 0.9 µmol per hour per milligram of cell protein.49 We have previously estimated the number of LNSA-transduced patient fibroblasts necessary to provide treatment at 4 × 10°, based on data from red cell therapy.27 As LNFnA and LNSA vectors express similar amounts of ADA in transduced fibroblasts, then 4 × 108 cells expressing ADA from the fibronectin promoter would provide enzyme to metabolize the cytotoxic ADA substrates deoxyadenosine and adenosine that accumulate in ADA deficiency. 49,59 Transfer of this number of cells is feasible using skin equivalent grafts. It is likely that the calculated number is an overestimate as genetically modified cells continually produce ADA, whereas transfused red cells have a 20- to 30-day half-life with diminishing therapeutic ADA activity. Attachment of a leader sequence to ADA cDNA will allow delivery of ADA to plasma. This should provide increased turnover of cytotoxic ADA substrates because their transportation to and diffusion into the skin graft for metabolism, probably rate-limiting steps, would be eliminated.

The demonstration that the fibronectin promoter provides sustained ADA gene expression enables consideration of treatment of other diseases. It has been demonstrated that fibroblasts can be engineered to secrete enzymatically active clotting factor IX but vector inactivation/suppression in transplanted cells precluded this approach to the treatment of hemophilia.28 Vectors employing fibronectin promoter will enable this form of treatment of hemophiliacs to be considered. The expression from fibroblast implants of therapeutic cytokines such as erythropoletin for the treatment of anemia associated with end-stage renal disease or granulocyte colony-stimulating factor for neutrophilias may be achievable. The fibroblast-mediated delivery of hormones or cytokines is particularly attractive because, in comparison to enzyme delivery, relatively small amounts of bioactive peptide are required for therapy.

Materials and methods

Cell culture

Primary skin fibroblasts were cultured from skin blopstes obtained from an ADA-deficient patient or Fischer 344 rates. Primary skin fibroblasts, PE50l and PA317 packaging cells and NiH 3T3 TK: murine fibroblasts were grown in Dulbecco's modified Eagle medium supplemented with 10% fetal calf serum at 37°C in an atmosphere containing 5% CO₂ and 1% penicillin and streptomycin. Medium for cell infection contained 4 µg/ml polybrene.

Retroviral vectors

LASN¹¹ was constructed from LPNSN-2⁵² by insertion of human ADA cDNA in place of purine meleoside phosphorylase (PN) cDNA. LNSA was generated by inserting a 12 kb Cfal fragment of ADA coding sequences from LNCA⁵¹ into Cfal site of plasmid LNSX.⁵³ LNFnA was constructed by doning the fibrone-tin promoter and its 5′ regulatory region 5mal + P3d fragment (bp 687 to bp 1426) from plasmid p.RPI [a kind gift of Dr Richard LPAC [bronn plasmid p.RPI [a kind gift of Dr Richard [bronn plasmid p.RPI [a kind gift of Dr Richard [bronn plasmid p.RPI [a kind gift of Dr Richard [bronn plasmid p.RPI [a kind gift of Dr Richard [bronn plasmid p.RPI [a kind gift of Dr Richard [bronn plasmid p.RPI [bronn pl

Hynes, Center for Canoer Research, MIT) into Nrnl+Stulsities in LNSA. Plasmitis rontaining the viral construct were transferted into PES01 cells and after 2 days virus was harvested and used to infect PA317 amphotropic producer cells.³⁷ These cells were selected in medium containing 1 mg/ml C418 and clonal cell lines containing single integrated proviruses were isolated. Virus production from the clonal lines was measured by using NIH 373 TK: cells as recipients.³²

Implantation of transduced fibroblasts

Primary rat skin fibroblasts were implanted in collagen matrices,26 Briefly, infected and G418-selected fibroblasts are treated with tryosin, washed and for each patch 1 × 106 cells were resuspended in 2 ml of medium, 2 ml of collagen solution in 0.1 M HCl (3 mg/ml rat collagen type I, tissue culture grade, Sigma), 2 ml of 0.1 M NaOH to neutralize the acidic collagen solution, 2 ml 2 × DME and 2 inl rat serum. The inixtures were plated in 10-cm bacterial dishes and formed condensed matrices after 3 days in culture (final size about 2 cm diameter × 1 mm thick). Two collagen-fibroblast matrices were implanted subcutaneously per rat, one on each flank and four steel clips were placed equidistantly around each graft. We found this necessary because otherwise at time-points beyond 1 month, after which wound healing had occurred, the grafts were difficult to locate. At timepoints from 1 week to 3 months implants were removed for ADA assay.

ADA assavs

Skin graft biopsies were macerated and cultured cells pelleted, sonicated on ice, centrifuged and clear supernate assayed for ADA activity by spectrophotometric assay with adenosine as substrate. Set Human ADA expression in skin graft extracts was assessed by using starth gef electrophoresis to separate human from endogenous rat ADA. 3435

Acknowledgements

We thank Dr RO Hynes for kindly supplying the rat fibronectin promoter. This work was supported by NIH grants DK 47754. DK 50686 and DK 42727.

References

- 1 Miller AD. Human gene therapy comes of age. Nature 1992: 357: 455-460.
- 2 Morgan RA, Anderson WF, Human gene therapy, Annu Rev Biothem 1993; 62, 191–217.
- 3 Mulligan RC. The basic science of gene therapy. Science 1993; 260: 926-932
- 4 Kohn DB. The current status of gene therapy using hematopoletic stem cells. Curr Onin Ped 1995; 7: 56-63.
- 5 Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells. In: Muzyczka N (ed). Current Topics in Microbiology and Immunology. Viral Expression Vectors, vol 158. Springer-Verlag: New York, 1992. pp 97-129.
- 6 Samulski RJ Adeno-associated virus: integration at a specific chromosomal locus. Curr Opin Gener Dev 1993; 3: 74–80.
- 7 Kapitu MG et al. Long-term gene expression and phenotypic correction using adenc-associated virus vectors in mammallanbrain. Nat Genet 1994; 8: 148-154.
- 8 Snyder RO et al. Persistent and therapeutic concentrations of humon factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 1997; 16: 270–276.

- 9 Adam MA et al. Internal initiation of translation in retroviral vectors carrying picornavirus 5' nontranslated regions. J Vital 1991; 65: 4985-4990.
 - 10 Morgan RA et al. Retroviral vectors containing putative internal fibosome entry sites: development of a polycismonic gene transfer system and applications to human gene therapy. Nucleic Acids Res 1992, 20: 1293–1299.
 - 11 Ramesh N et al. High-titer bicistronic vectors employing footand-mouth disease virus Internal ribosome entry site. Nucleic Acids Res 1996, 24: 2697–2700.
 - 12 Barr E, Tripathy S, Laiden JM. Genetically modified myoblasts for the treatment of erythropoietin-responsive anemias. J Cell Biochem 1994; (Suppl. 18A): DZ012.
 - 13 Hamamori Y et al. Myoblast transfer of human erythropoletin gene in a mouse model of renal failure. J Clin Invest 1995; 95: 1808–1813.
 - 14 Naffakh N et al. Long-term secretion of therapeutic proteins from genetically modified skeletal muscles. Hum Gene Ther 1996; 7: 11-21
 - 15 Shull RM et al. Myoblast gene therapy in canine mucopolysaccharidosis. It abrogation by an himmine response to alpha-uiduronidase. Hum Gene Ther 1996; 7: 1595-1603.
 - 16 Clowes MM et al. Long-term biological response of Injured rat carotid arrery seeded with smooth muscle cells expressing retrovirally introduced human genes. J Clin Invest 1994: 93: 644–651.
 17 Geary RI, et al. Gene transfer in bahoons using prosthetic vascu-
 - 17 Geary RL et al. Gene transfer in baboons using prosthetic vascular grafts seeded with retrovirally transduced smooth muscle cells: a model for local and systemic gene therapy. Hum Gene Ther 1994; 5: 1213-1218.
 - 18 Osborne WRA et al. Gene therapy for long-term expression of erythropoietin in rats. Proc Natl Acad Sci USA 1995; 92: 8055-8058.
 - Ohno T et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 1994; 265: 781–784.
 Plautz G, Nabel EG, Nabel GJ. Introduction of vascular smooth
 - 20 Piatrz C., Nabel E.G., Nabel C.J. Introduction of vascular smooth muscle cells expressing recombinant genes in vivo. Circulation 1991, 83: 578–583.
 - 21 Lejnieks DV et al. Granulocyte colony-stimulating factor expression from transduced vascular smooth muscle cells provices sustained neutrophil increases in rats. Hum Gene Ther 1996; 7: 1431–1436.
 - 22 Lynch CM et al. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: a model for gene therapy. Proc. Natl. Acad. 5ct. USA 1992; 89: 1138–1142.
 - 23 Fenjves ES et al. Systemic distribution of apolipoprotein E secreted by grafts of epidermal keratinocytes: implications for epidermal function and gene therapy. Proc Natl Acad Sci USA 1986; 88: 8803–8807.
 - 24 Flowers MED et al. Long-term transplantation of canine keratinocytes made resistant to G418 through retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 1990; 87: 2349–2353.
 - gene transfer. Proc Natl Acad Sci USA 1990; 87: 2349–2353.
 25 Deng H, Lin Q, Khavart PA. Sustainable cutaneous gene therapy. Nature Biotechnol 1997; 15: 1388–1391.
 - 26 Ramesh N et al. High-level human adenosine deaminase expression in dog skin fibroblasts is not sustained following transplantation. Hum Gene Ther 1993; 4: 3-7.
 - 27 Palmer TD et al. Genetically modified skin fibroblasts persist long after transplantation but gradually macrivate introduced genes. Proc Natl Acad Sci USA 1991: 88: 1330-1334.
 - 28 Palmer TD, Thompson AR, Miller AD. Production of human factor IX in animals by genetically modified skin fibrobiasts:
 - potential therapy for hemophilia B. Blood 1989; 73: 438-445.
 St Louis D. Verma I. An alternative approach to somatic cell gene therapy. Proc Natl Acid Sci USA 1988; 85: 3150-3154.
 - 30 Mouther P et al. Correction of lysosomal storage in the liver and spleen of MPS VII unice by haplantation of genetically modified skin fibroblasts. Nat Genet 1993: 4: 154–159.
 - 31 Mostlier P et al. Long-term delivery of a tysosomal enzyme by genetically modified fibroblasts in dogs. Nature Med 1995; 1: 353, 357.
 - 32 Naffakh N et al. Sustained delivery of erythropoletin in mice by

- genetically modified skin fibroblasts. Proc Natl Acad Sci USA 1995; 92: 3194-3198.
- 33 Fenjves ES et al. Loss of expression of a retrovirus-transduced gene in human keratinocyses. J Invest Dermatol 1996; 106: 576-578.
- 34 Kaleko M et al. Expression of human adenosine deaminase in mice after transplantation of genetically modified bone macrow. Blood 1990; 75: 1733–1741
- 35 Osborne WRA et al. Long-term expression of human adenosine deaminase in mice after transplantation of bone marrow inferred with amphotropic retroviral vectors. Hum Gene Ther 1990; 1: 31–41.
- 36 Scharfmann R, Axelrod JH, Verma IM. Long-term in vivo expression of retrovirus-mediated gene transfer in mouse skin fibroblasts. Proc Natl Acad Sci USA 1991; 88: 4626-4630.
- 37 Naughron BA et al. Long-term expression of a retrovirally introduced bera-galactosidase gene in rodent cells implanted in vivo using biodegradable polymer meshes. Somm Cell Mol Genet 1992; 18: 451-462.
- 38 Moullier P et al. Continuous systemic secretion of a lysosomal enzyme by genetically modified mouse skin fibroblasts. Transplantation 1993; 56: 427–432.
- 39 Hynes RO Fibronectins. Springer-Verlag: New York, 1990
- 40 Khandjian EW et al. Fibronectin gene expression in proliferating, quiescent and SV-40 infected mouse kidney cells. Exp Cell Res 1992; 202. 461–470.
- 41 Kamazaki T. Kobayashi M. Mitsui Y. Enhanced expression of fibronectin during in vivo cellular aging of human endothelial cells and fibroblasts. Exp Cell Res 1993; 205: 396-402.
- 42 Patel RS et al. Organization of the fibronectin gene provides evidence for exon shuffling during evolution. EMBO J 1987; 6: 2505–2572.
- 43 Dean DC, Bowles CL, Bourgaois S. Cloning and analysis of the promoter region of the human fibronectin gene. Proc Natl Acad Sci. USA 1987: 84: 1876–1890.
- Sci USA 1987; 84: 1876–1880. 44 Nakajima T et al. E1A-responsive elements for repression of rat
- Bhoriestin gene transcripton. Mol Cell Biol 1992; 12: 2837–2846. 45 Taylor RM, Wolfe JH. Decreesed lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of B-glucuronidase. Nature Med 1997; 3: 771–774.
- 46 Chalifa PM, Kohn DB, Lack of expression from a retroviral vector after transduction of murine hematopoletic stem cells is associated with methylation in vivo. Proc Natl Acad Sci USA 1994; 91: 2567–2571.
- 47 Tapscott SJ et al. Gene therapy of rat 9L gliosarcoma tumors by transduction with selectable genes does not require drug selection. Proc Natl Acad Sci USA 1994; 91: 8185-8189.
- 48 Riddel SR et al. T cell-mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV patients. Nature Med 1996; 2: 216-223.
- 49 Palmer TD et al. Efficient retrovirus-mediated transfer and expression of a human adenosine deamhrase gene in diploid skin fibroblasts from an adenosine deamhrase-deficient human. Proc Natl Arad Sci USA 1987: 84. 1055-1059.
- 55 Hershfield MS, Mitchell BS, Immunodelicieuxy diseases caused by adenosine deaminase deliciency and purme uncleoside phosphorylase deficiency. In: Seriver CR, Beauder AL, Sly WS, Valle D (eds). The Metabolic and Molecular Bases of Inherited Disease McGraw-Hill. New York, 1995, pp 1725–1768.
- 51 Hock RA, Miller AD, Osborne WRA. Expression of human asterosine deaminase from various strong promoters after gene transfer into human hematopoletic cell lines. *Blood*, 1989; 74: 876-881.
- 52 Osborne WRA, Miller AD. Design of vectors for efficient expression of human purine macleoside phosphorylase in skin fibroblasts from enzyme-deficient humans. Proc Natl Acad Sci USA 1988, 85: 6851-6855.
- 53 Millier AD, Rosman GJ, Improved retroviral vectors for gene transfer and expression. BioTechniques 1989, 7: 980–990.