

# Day 3 - Introduction to Neural Networks and Deep Learning



Mariana G Ferreira | Software Engineer Ricardo Henriques' lab

## What is deep learning?

Deep learning is a subset of machine learning that's was first thought in the 1960s

#### **Artificial Intelligence:** Mimicking the intelligence or behavioural pattern of humans or any other living entity. **Machine Learning:** A technique by which a computer can "learn" from data, without using a complex set of different rules. This approach is mainly based on training a model from datasets. **Deep Learning:** A technique to perform machine learning inspired by our brain's own network of neurons.



1960s: Alexey Ivakhnenko works on deep neural networks



1986: Geoffrey Hinton proposes the backpropagation algorithm in its current form

For a long time, there were no more advancements, mostly because of lack of hardware capable of performing the massive calculations needed

# The "boom" of Deep Learning



2000s: G. Hinton introduces "deep belief networks"

**2012: AlexNet wins the ImageNet competition** 



Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264-4096–4096–1000.

## Recent years:



Google's DeepMind capable of defeating world champion level players of Go



Large Language Models (LLM) capable of receiving questions from users and reply in a dialogue manner



# The "boom" of Deep Learning

In more recent years aka yesterday:



John J. Hopfield Geo

Geoffrey E. Hinton

"for foundational discoveries and inventions that enable machine learning with artificial neural networks"

THE ROYAL SWEDISH ACADEMY OF SCIENCES



## What is a neural network?

Example network for classifying pictures as cats or dogs





## What is a neuron?

Neurons form the building blocks of neural networks.

A neuron (perceptron) will take in an input, multiply it by a weight and then apply a filter.

The result of this filter is then passed on to the other layers of the network









## **Neural networks**

Deep learning neural networks are fairly like how neurons work in the human brain



 $x_1$   $w_2$   $max(0, \cdot)$   $w_1$   $x_3$ 

$$u_1 = \max(w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3 + w_4, 0).$$









## How a neural network learns a given task

The training dataset will go through the network and the output is measured, then the network will automatically adjust the filters and weights and repeat the process, trying to achieve the maximum accuracy possible





## **Key Concepts**

- Layer set of neurons in a network, can be Input, Output or Hidden
- **Feature** input variable for a NN
- **Neuron** distinct unit within a hidden layer
- Activation Function enables non-linear relationships between features and label
- **Bias** discrete offset from origin
- Forward propagation
- Backward propagation



https://mriguestions.com/what-is-a-neural-network.html

https://developers.google.com/machine-learning/glossary



## **Key Concepts**

- Training dataset
- Validation dataset
- Epoch one pass over the whole training dataset
- Batch size number of examples per iteration
- Iterations updates of the weights and biases, one forward and one backwards pass
- Patch size subset of the input image being fed to the NN



https://www.researchgate.net/figure/Illustration-of-batch-size-iteration-and-epoch\_fig1\_378880342

https://developers.google.com/machine-learning/glossary



## Common architectures

# Autoencoders Latent Representation Output Encoder Decoder

#### **Channel attention**





#### **U-Net**



#### ResNet

(residual/skip connections)







# U-NET

### **Convolutional layers**



### **Pooling layers**



https://adamharley.com/nn\_vis/cnn/2d.html



## Example code

VGG-16 [1]



[1] Very Deep Convolutional Networks for Large-Scale Image Recognition, Karen Simonyan and Andrew Zisserman, 2015



```
class VGG(nn.Module):
def__init__(self):
 super().__init__()
 self.features = nn.Sequential(
   nn.Conv2d(3, 64, 3, padding=1),
   nn.ReLU(),
   nn.Conv2d(64, 64, 3, padding=1),
    nn.ReLU(),
    nn.Max Pool2d(2, stride=2, return indices=True),
   nn.Conv2d(64, 128, 3, padding=1),
   nn.ReLU(),
    nn.Conv2d(128, 128, 3, padding=1),
    nn.ReLU(),
    nn.Max Pool2d(2, stride=2, retum_indices=True),
   nn.Conv2d(128, 256, 3, padding=1),
   nn.ReLU(),
   nn.Conv2d(256, 256, 3, padding=1),
   nn.ReLU(),
    nn.Conv2d(256, 256, 3, padding=1),
   nn.ReLU().
    nn.Max Pool2d(2, stride=2, retum_indices=True),
    nn.Conv2d(256, 512, 3, padding=1),
   nn.ReLU(),
   nn.Conv2d(512, 512, 3, padding=1),
   nn.ReLU(),
    nn.Conv2d(512, 512, 3, padding=1),
    nn.ReLU(),
    nn.Max Pool2d(2, stride=2, retum_indices=True),
   nn.Conv2d(512, 512, 3, padding=1),
    nn.Conv2d(512, 512, 3, padding=1),
    nn.Conv2d(512, 512, 3, padding=1),
   nn Rel III()
   nn.Max Pool2d(2, stride=2, retum_indices=True)
 self.classifier = nn.Sequential(
   nn.Linear(512 * 7 * 7, 4096),
   nn.ReLU(),
   nn.Dropout(),
   nn.Linear(4096, 4096),
   nn Rel III()
    nn.Dropout(),
    nn.Linear(4096, 1000)
 self.conv_layer_indices = [0, 2, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28]
 Self.feature maps = OrderedDict()
 self.pool_locs = OrderedDict()
def forward(self, x):
 for layer in self.features:
   if isinstance(layer, nn.MaxPool2d):
     x, location = layer(x)
     x = layer(x)
 x = x.view(x.size()[0], -1)
 x = self.classifier(x)
 retum x
```

## Agenda for the afternoon

Notebook #4- Create your own Neural Network (Perceptron)



## Agenda for the afternoon

## Notebook #5 – Deep Learning use case - Cellpose

Built-in Graphical User Interface (GUI)



#### Via Python code





## Agenda for the afternoon

Notebook #6 - Accessible tools to use Deep Learning





























