CS2040S Data Structures and Algorithms Dynamic Programming...

Puzzle of the Week:

The area of the bottom left square is 5. What's the area of the blue triangle?

Catriona Agg

https://twitter.com/cshearer41/status/1027844515338616832

Housekeeping:

No recitation this week. Good luck for CS2030S PE2!

Dynamic Programming Basics

Optimal sub-structure:

Optimal solution can be constructed from optimal solutions to smaller sub-problems.

Contrast: Both have optimal substructure

No overlapping subproblems

Divide-and-Conquer

Overlapping subproblems

Dynamic Programming

Basic strategy:

(bottom up dynamic programming)

Step 4: solve root problem

Step 3: combine smaller problems

Step 2: combine smaller problems

Step 1: solve smallest problems

Basic strategy: (DAG + topological sort)

Step 1: Topologically sort DAG
Step 2: Solve problems in reverse order

Basic strategy:

(top down dynamic programming)

Step 1: Start at root and recurse.

Step 2: Recurse.

Step 3: Recurse.

Step 4: Solve and memoize.

Only compute each solution once.

Roadmap

Dynamic Programming

- ✓ Basics of DP
- Example: Longest Increasing Subsequence
- ✓ Example: Bounded Prize Collecting
- Example: Vertex Cover on a Tree
- Example: All-Pairs Shortest Paths
- Example: Knapsack

Recall Rough Idea:

A problem can be solved via dynamic programming if:

If exhibits optimal sub-structure.

Solution to a problem uses optimal solutions to its sub-problems.

Solution to a problem uses optimal solutions to its sub-problems.

If node P lies on a shortest path from v to w, then a shortest path is made of:

- 1. a shortest path from v to P
- 2. a shortest path from P to w

Longest (simple) path problem:

Find a longest simple path from node **s** to node **t**

Longest (simple) path problem:

The longest path from s to t does not use longest paths from s to v nor s to u.

Longest (simple) path problem:

Longest path from **s** to **t**

Longest (simple) path problem:

Longest path from **s** to **u**

Longest (simple) path problem:

The longest path from s to t does not use longest paths from s to v nor s to u.

Vertex Cover

Input:

Undirected, unweighted graph G = (V,E)

Vertex Cover

Output:

Set of nodes C where every edge is adjacent to at least one node in C.

Vertex Cover

Intuition:

Every edge is "covered" by at least one of its endpoints.

Minimum Vertex Cover

NP-complete:

No polynomial time algorithm (unless P=NP).

Easy 2-approximation (via matchings).

Nothing better known.

Minimum Vertex Cover

NP-complete:

Solve this problem, win a million US dollars!

(Hurry before USD devalues)

Input:

- Undirected, unweighted **tree** G = (V,E)
- Root of tree r

Output:

size of the minimum vertex cover

Dynamic Programming Recipe

Step 1: Identify optimal substructure

Step 2: Define sub-problems

Step 3: Solve problem using sub-problems

Step 4: Write (pseudo)code.

Dynamic Programming Analysis

Step 1: Count Sub-problems

Step 2: Figure out total time taken to solve all sub-problems

Often times this is just: number of sub-problems x time taken per sub-problem

What are the subproblems?

S[v, 0] = size of vertex cover in subtree rooted at node v, if v is NOT covered.

S[v, 1] = size of vertex cover in subtree rooted at node v, if v IS covered.

How many subproblems?

- 1. 2
- 2. V
- 3. 2V
- 4. E
- 5. 2E
- 6. VE

What is the base case?

What is the base case?

Start at the leaves!

$$S[leaf, 0] = 0$$

 $S[leaf, 1] = 1$

What about the internal nodes?

How do we calculate S[v, 0]? (For internal node v)

How do we calculate S[v, 0]? (For internal node v)

E.g. this node: \(^\) What happens if we don't include it in the cover?

How do we calculate S[v, 0]?

If v is not in the cover, then v's children **needs to be** in the cover.

How do we calculate S[v, 0]?

If v is not in the cover, then v's children **needs to be** in the cover.

S[v, 0] = sum(S[n, 1]) for all n that are v's neighbours.

What about S[v, 1]?

This solution corresponds to including node v in the cover.

What about S[v, 1]?

This solution corresponds to including node v in the cover.

We should consider:

- 1. Solutions that include our children
- 2. Solutions that don't

What about S[v, 1]?

This solution corresponds to including node v in the cover.

E.g. optimal solution for this tree includes 2 adjacent nodes in the cover.

How do we calculate S[v, 1]?

We can either cover or uncover v's children (either is fine).

$$W_1 = min(S[w_1, 0], S[w_1, 1])$$

$$W_2 = min(S[w_2, 0], S[w_2, 1])$$

$$W_3 = min(S[w_3, 0], S[w_3, 1])$$

$$S[v, 1] = 1 + W_1 + W_2 + W_3 + ...$$

v.nbrList() = { $w_1, w_2, w_3, ...$ }

```
1 int treeVertexCover(V) { //Assume tree is ordered from root-to-leaf
       int[][] S = new int[V.length][2]; // create memo table S
 2
 3
       for (int v = V.length - 1; v >= 0; v--) { //From the leaf to the root
 4
 5
           if (v.childList().size() == 0) { // If v is a leaf...
               S[v][0] = 0;
 6
               S[v][1] = 1;
 8
           } else { // Calculate S from v's children.
 9
               int S[v][0] = 0;
10
               int S[v][1] = 1;
11
               for (int w: V[v].childList()) {
12
                   S[v][0] += S[w][1];
13
                   S[v][1] += Math.min(S[w][0], S[w][1]);
14
15
16
       return Math.min(S[0][0], S[0][1]); // returns min at root
17
18 }
```

```
1 int treeVertexCover(V) { //Assume tree is ordered from root-to-leaf
      int[][] S = new int[V.length][2]; // create memo table S
 2
 3
       for (int v = V.length - 1; v >= 0; v --) { //From the leaf to the root
 4
           if (v.childList().size() == 0) { // If v is a leaf...
 5
               S[v][0] = 0;
 6
               S[v][1] = 1;
           } else { // Calculate S from v's children.
 8
 9
               int S[v][0] = 0;
               int S[v][1] = 1;
10
               for (int w: V[v].childList()) {
11
12
                   S[v][0] += S[w][1];
13
                   S[v][1] += Math.min(S[w][0], S[w][1]);
14
15
16
       return Math.min(S[0][0], S[0][1]); // returns min at root
17
18 }
```

Store all 2 x V possible solutions to all the possible sub-problems

```
1 int treeVertexCover(V) { //Assume tree is ordered from root-to-leaf
       int[][] S = new int[V.length][2]; // create memo table S
 2
       for (int v = V.length - 1; v >= 0; v--) { //From the leaf to the root
           if (v.childList().size() == 0) { // If v is a leaf...
 5
               S[v][0] = 0;
               S[v][1] = 1;
 8
           } else { // Calculate S from v's children.
 9
               int S[v][0] = 0;
10
               int S[v][1] = 1;
11
               for (int w: V[v].childList()) {
12
                   S[v][0] += S[w][1];
                   S[v][1] += Math.min(S[w][0], S[w][1]);
13
14
15
16
       return Math.min(S[0][0], S[0][1]); // returns min at root
17
18 }
```

Solve for the base cases

```
1 int treeVertexCover(V) { //Assume tree is ordered from root-to-leaf
       int[][] S = new int[V.length][2]; // create memo table S
 2
 3
       for (int v = V.length - 1; v >= 0; v--) { //From the leaf to the root
 4
           if (v.childList().size() == 0) { // If v is a leaf...
 5
 6
               S[v][0] = 0;
               S[v][1] = 1;
 8
           } else { // Calculate S from v's children.
               int S[v][0] = 0;
 9
10
               int S[v][1] = 1;
11
               for (int w: V[v].childList()) {
12
                   S[v][0] += S[w][1];
                   S[v][1] += Math.min(S[w][0], S[w][1]);
13
14
15
16
       return Math.min(S[0][0], S[0][1]); // returns min at root
17
18 }
```

Inductive case

```
1 int treeVertexCover(V) { //Assume tree is ordered from root-to-leaf
       int[][] S = new int[V.length][2]; // create memo table S
 2
 3
       for (int v = V.length - 1; v >= 0; v--) { //From the leaf to the root
 4
           if (v.childList().size() == 0) { // If v is a leaf...
 5
               S[v][0] = 0;
 6
               S[v][1] = 1;
 8
           } else { // Calculate S from v's children.
 9
               int S[v][0] = 0;
               int S[v][1] = 1;
10
11
               for (int w: V[v].childList()) {
12
                   S[v][0] += S[w][1];
13
                   S[v][1] += Math.min(S[w][0], S[w][1]);
14
15
16
       return Math.min(S[0][0], S[0][1]); // returns min at root
17
18 }
```

The solution we care about.

Running time:

- 2V sub-problems
- O(V) time to solve all sub-problems.
 - Each edge explored once.
 - Each sub-problem involves exploring children edges.

Roadmap

Dynamic Programming

- ✓ Basics of DP
- Example: Longest Increasing Subsequence
- Example: Bounded Prize Collecting
- **✓** Example: Vertex Cover on a Tree
- Example: All-Pairs Shortest Paths
- Example: Knapsack

Input:

- Directed, weighted graph G = (V,E)

Goal:

- Preprocess G
- Answer queries: min-distance(v, w)?

Example:

On-line map service

Input:

- Directed, weighted graph G = (V,E)

Goal:

- Preprocess G
- Answer queries for any pair of nodes v, and w what is min-distance(v, w)?

Example:

On-line map service

Input:

Directed, weighted graph G = (V,E)

Goal:

- Preprocess G
- Answer queries for any pair of nodes v, and w what is min-distance(v, w)?

Note:

- When we pre-process G, we don't know what queries we might get.

Simple solution:

On query (v, w), run SSSP from source node v.

Cost:

- Preprocessing: 0
- Responding to q queries: O(q*E*log V)

Simple solution:

 For every node v, run SSSP, and store its distance to every other node. Total cost: O(VE log V)

Cost:

- Preprocessing: O(VE log V)
- Responding to q queries: O(q) time

What is the running time of running SSSP for every vertex in V on a connected graph with positive weights?

- 1. O(VE)
- 2. $O(V^2E)$
- 3. $O(V^2 + E^2)$
- 4. O(E log V)
- 5. $O(V^2 \log E)$
- √6. O(VE log V)

Preprocessing solution:

On preprocessing:

For all (v,w): calculate distance(v,w)

On query:

Return precalculated value.

Cost:

- Preprocessing: all-pairs-shortest-paths
- Responding to q queries: O(q)

Input:

Undirected, weighted graph G=(V, E)

Output:

The longest shortest path possible in the graph.

Input:

Undirected, weighted graph G=(V, E)

Output:

The longest shortest path possible in the graph.

max across all possible (u, v) { shortest-dist(u, v) }

Input:

Undirected, weighted graph G=(V, E)

Output:

The longest shortest path possible in the graph.

max across all possible (u, v) { shortest-dist(u, v) }

Note: Not the longest path problem!

Example:

diameter = 3

Input:

Undirected, weighted graph G=(V, E)

Output:

The longest shortest path possible in the graph.

max across all possible (u, v) { shortest-dist(u, v) }

Note: Not the longest path problem!

If we knew the shortest distances between any pair of nodes u, v:

Then we can just find the maximum possible shortest distance, and output that!

Input:

Weighted, directed graph G = (V,E)

Output:

dist[v,w]: shortest distance from v to w, for all pairs of vertices (v,w)

Input:

Weighted, directed graph G = (V,E)

Output:

dist[v,w]: shortest distance from v to w, for all pairs of vertices (v,w)

"Straightforward" Solution:

 Run single-source-shortest paths once for every vertex v in the graph.

Solution:

- Run single-source-shortest paths once for every vertex v in the graph .
- Assume weights are all positive...

Note:

- In a sparse graph where E = O(V): $O(V^2 \log V)$
 - We don't know how to do any better.

What is the running time of running SSSP for every vertex in V on a connected graph with all identical weights?

- **✓**1. O(VE)
 - 2. $O(V^2E)$
 - 3. $O(V^2 + E^2)$
 - 4. O(E log V)
 - 5. $O(V^2 \log E)$
 - 6. O(VE log V)

Solution:

- Run single-source-shortest paths once for every vertex v in the graph .
- Assume weights are all positive...

Note:

- In a sparse graph where E = O(V): $O(V^2 \log V)$
 - We don't know how to do any better.
- Identical weights, use BFS: O(V(E+V)) = O(VE)
 - In dense graph: O(V³)
 - In sparse graph: O(V²)

Dynamic Programming Recipe

Step 1: Identify optimal substructure

Step 2: Define sub-problems

Step 3: Solve problem using sub-problems

Step 4: Write (pseudo)code.

Dynamic programming:

Shortest paths have optimal sub-structure:

If P is a shortest path $(u \rightarrow v \rightarrow w)$, then P contains a shortest path from $(u \rightarrow v)$ and from $(v \rightarrow w)$.

•Dynamic programming:

Shortest paths have optimal sub-structure:

If P is a shortest path $(u \rightarrow v \rightarrow w)$, then P contains a shortest path from $(u \rightarrow v)$ and from $(v \rightarrow w)$.

Shortest paths have overlapping subproblems

Many shortest path calculations depends on the same sub-pieces.

•Dynamic programming:

Shortest paths have optimal sub-structure:

If P is a shortest path $(u \rightarrow v \rightarrow w)$, then P contains a shortest path from $(u \rightarrow v)$ and from $(v \rightarrow w)$.

Shortest paths have overlapping subproblems

Many shortest path calculations depends on the same sub-pieces.

To solve shortest path, we're solving "smaller" shortest path problems.

•Dynamic programming:

Shortest paths have optimal sub-structure:

If P is a shortest path $(u \rightarrow v \rightarrow w)$, then P contains a shortest path from $(u \rightarrow v)$ and from $(v \rightarrow w)$.

Shortest paths have overlapping subproblems

Many shortest path calculations depends on the same sub-pieces.

Hard question: what are the right subproblems?

Dynamic programming:

Actually, we store distance

Let S[v,w,P] be a shortest path from v to w that only uses intermediate nodes in the set P.

Dynamic programming:

Let S[v,w,P] be a shortest path from v to w that only uses intermediate nodes in the set P.

We will try to be efficient about how to represent P later.

Let S[v,w,P] be a shortest path from v to w that only uses intermediate nodes only in the set P.

P1 = no nodes (empty set)

P2 = green nodes

P3 = purple nodes

Let S[v,w,P] be a shortest path from v to w that only uses intermediate nodes only in the set P.

P1 = no nodes (empty set)

P2 = green nodes

P3 = purple nodes

$$S(v, w, P1) = 100$$

$$S(v, w, P2) = 80$$

$$S(v,w,P3) = 30$$

Let S[v,w,P] be a shortest path from v to w that only uses intermediate nodes only in the set P.

Base case:

Let S[v,w,P] be a shortest path from v to w that only uses intermediate nodes only in the set P.

Base case:

 $S[v, w, \emptyset] = E[v,w]$

E[v,w] = weight ofedge from v to w. Can't take any intermediate nodes so we have to rely on single edges

Dynamic programming:

Let S[v,w,P] be a shortest path from v to w that only uses intermediate nodes in the set P.

How many subproblems do we have?

Dynamic programming:

Let S[v,w,P] be a shortest path from v to w that only uses intermediate nodes in the set P.

Problem: 2ⁿ possible sets P

→ slow to solve all n²2ⁿ subproblems

What if we limit ourselves to n+1 different sets P:

$$P_0 = \emptyset$$
 $P_1 = \{1\}$
 $P_2 = \{1, 2\}$
 $P_3 = \{1, 2, 3\}$
 $P_4 = \{1, 2, 3, 4\}$
...
 $P_n = \{1, 2, 3, 4, ..., n\}$

Dynamic Programming Recipe

Step 1: Identify optimal substructure

Shortest paths are built out of shortest paths.

Step 2: Define sub-problems

- S(u,v,P) = shortest path from u to v using nodes in P.
- Consider only (n+1) sets P of increasing size.

Step 3: Solve problem using sub-problems

Step 4: Write (pseudo)code.

Use the precalculated subproblems:

Assume we have calculated $S[v,w,P_7] = 42$. How do we calculate $S[v,w,P_8]$?

Use the precalculated subproblems:

Assume we have calculated $S[v,w,P_7] = 42$. How do we calculate $S[v,w,P_8]$?

Two possibilities:

- 1. Shortest path using nodes P₈ includes node 8.
- 2. Shortest path using nodes P₈ does not include node 8.

Use the precalculated subproblems:

$$S[v,w,P_8] = min(S[v, w, P_7], S[v, 8, P_7] + S[8, w, P_7])$$

Example:

Initially:

	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	∞	3	0	5
4	∞	∞	∞	∞	0

Step:
$$P = \{0\}$$

	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	∞	3	0	5
4	∞	∞	∞	∞	0

	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	3	2	0	4
4	∞	∞	∞	∞	0

Step:
$$P = \{0, 1\}$$

	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	3	2	0	4
4	∞	∞	∞	∞	0

	0	1	2	3	4
0	0	2	1	6	3
1	∞	0	∞	4	∞
2	∞	1	0	5	1
3	1	3	2	0	4
4	∞	∞	∞	∞	0

Step:
$$P = \{0, 1, 2\}$$

	0	1	2	3	4
0	0	2	1	6	3
1	∞	0	∞	4	∞
2	∞	1	0	5	1
3	1	3	2	0	4
4	∞	∞	∞	∞	0

	0	1	2	3	4
0	0	2	1	6	2
1	∞	0	∞	4	∞
2	∞	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

Step:
$$P = \{0, 1, 2, 3\}$$

	0	1	2	3	4
0	0	2	1	6	2
1	∞	0	∞	4	∞
2	∞	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

	0	1	2	3	4
0	0	2	1	6	2
1	5	0	6	4	7
2	6	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

Done: $P = \{0, 1, 2, 3, 4\}$

	0	1	2	3	4
0	0	2	1	6	2
1	5	0	6	4	7
2	6	1	0	5	1
3	1	3	2	0	3
4	00	∞	00	00	0

Use the precalculated subproblems:

$$S[v,w,P_8] = min(S[v, w, P_7], S[v, 8, P_7] + S[8, w, P_7])$$


```
1 int[][] APSP(E) { // Adjacency matrix E
       int[][] S = new int[V.length][V.length]; //create memo table S
 3
       // Initialize every pair of nodes
 5
       for (int v = 0; v < V.length; v++)
 6
           for (int w = 0; w < V.length; w++)
               S[v][w] = E[v][w];
 8
       // For sets P0, P1, P2, P3, ..., for every pair (v,w)
10
       for (int k = 0; k < V.length; k++)
           for (int v = 0; v < V.length; v++)
11
12
               for (int w = 0; w < V.length; w++)
13
                 S[v][w] = min(S[v][w], S[v][k] + S[k][w]);
14
       return S;
15 }
```

```
1 int[][] APSP(E) { // Adjacency matrix E
       int[][] S = new int[V.length][V.length]; //create memo table S
       // Initialize every pair of nodes
 5
       for (int v = 0; v < V.length; v++)
           for (int w = 0; w < V.length; w++)
               S[v][w] = E[v][w];
       // For sets P0, P1, P2, P3, ..., for every pair (v,w)
       for (int k = 0; k < V.length; k++)
10
           for (int v = 0; v < V.length; v++)
11
12
               for (int w = 0; w < V.length; w++)
13
                 S[v][w] = min(S[v][w], S[v][k] + S[k][w]);
14
       return S;
15 }
```

```
1 int[][] APSP(E) { // Adjacency matrix E
       int[][] S = new int[V.length][V.length]; //create memo table S
       // Initialize every pair of nodes
 5
       for (int v = 0; v < V.length; v++)
           for (int w = 0; w < V.length; w++)
               S[v][w] = E[v][w];
       // For sets P0, P1, P2, P3, ..., for every pair (v,w)
       for (int k = 0; k < V.length; k++)
10
           for (int v = 0; v < V.length; v++)
11
               for (int w = 0; w < V.length; w++)
12
13
                 S[v][w] = min(S[v][w], S[v][k] + S[k][w]);
14
       return S;
15 }
```

```
1 int[][] APSP(E) { // Adjacency matrix E
       int[][] S = new int[V.length][V.length]; //create memo table S
       // Initialize every pair of nodes
       for (int v = 0; v < V.length; v++)
           for (int w = 0; w < V.length; w++)
               S[v][w] = E[v][w];
 8
       // For sets P0, P1, P2, P3, ..., for every pair (v,w)
10
       for (int k = 0; k < V.length; k++)
           for (int v = 0; v < V.length; v++)
11
               for (int w = 0; w < V.length; w++)
12
                 S[v][w] = min(S[v][w], S[v][k] + S[k][w]);
13
14
       return S:
15 }
```

What is the running time of Floyd Warshall?

- 1. O(VE)
- 2. O(VE²)
- 3. $O(V^2E)$
- **√**4. O(V³)
 - 5. $O(V^3 \log E)$
 - 6. $O(V^4)$

Dynamic programming:

Let S[v,w,P] be a shortest path from v to w that only uses intermediate nodes only in the set P.

Dynamic Programming Recipe

Step 1: Identify optimal substructure

Shortest paths are built out of shortest paths.

Step 2: Define sub-problems

- S(u,v,P) = shortest path from u to v using nodes in P.
- Consider only (n+1) sets P of increasing size.

Step 3: Solve problem using sub-problems

- $S(u,v,P_8) = min(S[v,w,P_7], S[v, 8, P_7] + S[8, w, P_7]).$

Step 4: Write (pseudo)code.

Path Reconstruction:

- Return the actual path from (v,w).
- Storing all the shortest paths requires (potentially) n³ space!

(n choose 2) pairs * n hops on the path

- How to represent it succinctly?
- How to store it efficiently?

Optimal substructure:

Shortest path from $(v \rightarrow w)$ is: $(z + shortest path (z \rightarrow w)).$

Optimal substructure:

Only store first hop for each destination.

→ routing table!

How much space to store all shortest paths in a routing table?

- ✓1. O(V^2)
 - 2. O(VE)
 - 3. O(VE²)
 - 4. $O(V^2E)$
 - 5. $O(V^3)$
 - 6. $O(V^3 \log E)$

Optimal substructure:

Store some node z on the shortest path from v to w. Recursively find shortest path from $v \rightarrow z$ and $z \rightarrow w$.

Optimal substructure:

In Floyd-Warshall, store "intermediate node" whenever you modify/update the matrix entry for a pair.

Transitive Closure:

Return a matrix M where:

- M[v,w] = 1 if there exists a path from v to w;
- M[v,w] = 0, otherwise.

Minimum Bottleneck Edge:

- For (v,w), the bottleneck is the heaviest edge on a path between v and w.
- Return a matrix B where:

B[v,w] = weight of the minimum bottleneck.

Roadmap

Dynamic Programming

- ✓ Basics of DP
- Example: Longest Increasing Subsequence
- Example: Bounded Prize Collecting
- ✓ Example: Vertex Cover on a Tree
- ☑ Example: All-Pairs Shortest Paths
- Example: Knapsack

Knapsack

Given a set of n items, each item has a weight and a value.

weight: 9000 value: 1000

weight: 2 value: 500

weight: 1 value: 600

Knapsack

Given a set of n items, each item has a weight and a value.

Limited knapsack weight limit: C

weight: 9000 value: 1000

weight: 2 value: 500

weight: 1 value: 600

Given a set of n items, each item has a weight and a value.

Limited knapsack weight limit: C

weight: 9000

value: 1000

weight: 2

value: 500

weight: 1

value: 600

Total value: 1000 + 500

Total weight: 9000 + 2

Given a set of n items, each item has a weight and a value.

Limited knapsack weight limit: C

Goal: Want to maximise value, but cannot

exceed limit.

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

How should we formulate Value(S, L) recursively?

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

How should we formulate Value(S, L) recursively?

Let x = (v, w), be an item with value v and weight w.

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

How should we formulate Value(S, L) recursively?

Let x = (v, w), be an item with value v and weight w.

What happens if x **is part** of the optimal solution?

Value(S, L) = ???

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

How should we formulate Value(S, L) recursively?

Let x = (v, w), be an item with value v and weight w.

What happens if x **is part** of the optimal solution?

$$Value(S, L) = Value(S \setminus \{x\}, L - w) + v$$

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

How should we formulate Value(S, L) recursively?

Let x = (v, w), be an item with value v and weight w.

What happens if x **is part** of the optimal solution?

$$Value(S, L) = Value(S \setminus \{x\}, L - w) + v$$

Since x is part of the optimal solution, to include the item, recurse on L - w as our new limit, and v to our earned value.

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

How should we formulate Value(S, L) recursively?

Let x = (v, w), be an item with value v and weight w.

What happens if x **is not part** of the optimal solution?

Value(S, L) = ??

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

How should we formulate Value(S, L) recursively?

Let x = (v, w), be an item with value v and weight w.

What happens if x **is not part** of the optimal solution?

 $Value(S, L) = Value(S \setminus \{x\}, L)$

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

How should we formulate Value(S, L) recursively?

Let x = (v, w), be an item with value v and weight w.

What happens if x **is not part** of the optimal solution?

$$Value(S, L) = Value(S \setminus \{x\}, L)$$

Since x is not part of the optimal solution, we can ignore it.

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

How should we formulate Value(S, L) recursively?

Let x = (v, w), be an item with value v and weight w.

Since we don't know whether x is in the solution or not:

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How many states do we have?

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

$$Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$$

How many states do we have?

$$(L+1) \times 2^{n}$$

Step 1: Formulate recurrence.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

$$Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$$

How many states do we have?

(L+1) x 2ⁿ : L+1 possible limit values, 2ⁿ possible subsets.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

 $Value(S, L) = max(Value(S \setminus \{S_n\}, L), Value(S \setminus \{S_n\}, L - w) + v)$

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

Value(S, L) = max(Value(S \
$$\{S_n\}$$
, L), Value(S \ $\{S_n\}$, L - w) + v)

Solving for the first n items

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

$$Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

Value(S, L) = max(Value(S \
$$\{S_n\}$$
, L), Value(S \ $\{S_n\}$, L - w) + v)

Solving for the first n items

solving for the first n - 1 items

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

 $Value(S, L) = max(Value(S \setminus \{S_n\}, L), Value(S \setminus \{S_n\}, L - w) + v)$

What are we missing?

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

 $Value(S, L) = max(Value(S \setminus \{S_n\}, L), Value(S \setminus \{S_n\}, L - w) + v)$

What are we missing?

What is Value(S, 0)?

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

 $Value(S, L) = max(Value(S \setminus \{S_n\}, L), Value(S \setminus \{S_n\}, L - w) + v)$

What are we missing?

What is Value(S, 0)? We should return 0.

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

 $Value(S, L) = max(Value(S \setminus \{S_n\}, L), Value(S \setminus \{S_n\}, L - w) + v)$

What else are we missing?

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

 $Value(S, L) = max(Value(S \setminus \{S_n\}, L), Value(S \setminus \{S_n\}, L - w) + v)$

What else are we missing?

What happens if the weight of S_n is larger than L?

Value(S, L): Outputs the maximum attainable value using items from set S, subject to not exceeding limit L.

 $Value(S, L) = max(Value(S \setminus \{x\}, L), Value(S \setminus \{x\}, L - w) + v)$

How about we order the set items:

$$S = \{s_1, s_2, s_3, ..., s_n\}$$

 $Value(S, L) = max(Value(S \setminus \{S_n\}, L), Value(S \setminus \{S_n\}, L - w) + v)$

What happens if the weight of S_n is larger than L?

Should not recurse on Value($S \setminus \{S_n\}$, L - w)!

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)							
s2 = (10, 1)							
s3 = (8, 6)							
s4 = (1, 2)							

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)							
s2 = (10, 1)							
s3 = (8, 6)							
s4 = (1, 2)							

L+1 possible columns

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)							
s2 = (10, 1)							
s3 = (8, 6)							
s4 = (1, 2)							

n possible rows

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)							
s2 = (10, 1)							
s3 = (8, 6)							
s4 = (1, 2)							

Want to store at each table element: the optimal solution.

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)							
s2 = (10, 1)							
s3 = (8, 6)							
s4 = (1, 2)							

E.g. 3rd row, 5th column represents:

Value({s1, s2, s3}, 5) - optimal solution using first 3 items, with limit 5.

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)							
s2 = (10, 1)							
s3 = (8, 6)							
s4 = (1, 2)							

What should we do on the first row?

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)							
s2 = (10, 1)							
s3 = (8, 6)							
s4 = (1, 2)							

What should we do on the first row? That's the base case.

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)							
s2 = (10, 1)							
s3 = (8, 6)							
s4 = (1, 2)							

E.g. first item has a weight of 3.

How should we fill out our first row?

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	0	0	0	0

- 1. Set everything to 5
- 2. Set everything to 0
- 3. Set columns 0, 1, 2 to 0 Set columns 3, 4, 5, 6 to 5

How should we fill out our first row?

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	0	0	0	0

- 1. Set everything to 5
- 2. Set everything to 0
- 3. Set columns 0, 1, 2 to 0 Set columns 3, 4, 5, 6 to 5

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)							
s3 = (8, 6)							
s4 = (1, 2)							

What about the 0th column?

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0						
s3 = (8, 6)	0						
s4 = (1, 2)	0						

What about the 0th column?

Base case also, set it to 0

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0						
s3 = (8, 6)	0						
s4 = (1, 2)	0						

What about 2nd row, 1st column?

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0						
s3 = (8, 6)	0						
s4 = (1, 2)	0						

What about 2nd row, 1st column? either don't take the current item,

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0 +10	0	5	5	5	5
s2 = (10, 1)	0						
s3 = (8, 6)	0						
s4 = (1, 2)	0						

What about 2nd row, 1st column? either don't take the current item, or take current item, add 10 to it

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0 +10	0	5	5	5	5
s2 = (10, 1)	0	10					
s3 = (8, 6)	0						
s4 = (1, 2)	0						

What about 2nd row, 1st column? either don't take the current item, or take current item, add 10 to it. Take max.

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10					
s3 = (8, 6)	0						
s4 = (1, 2)	0						

What about 2nd row, 1st column? either don't take the current item, or take current item, add 10 to it. Take max.

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10					
s3 = (8, 6)	0						
s4 = (1, 2)	0						

The column we check depends on the weight.

E.g. weight 1, check 1 column to the left.

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10					
s3 = (8, 6)	0						
s4 = (1, 2)	0						

The column we check depends on the weight.

E.g. weight 1, check 1 column to the left.

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0 +10	5	5	5	5
s2 = (10, 1)	0	10					
s3 = (8, 6)	0						
s4 = (1, 2)	0						

Similarly, 2nd row, 2nd column is max of:

- 1. 1st row, 2nd column
- 2. 1st row, 1st column + 10

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10			
s3 = (8, 6)	0						
s4 = (1, 2)	0						

Notice:

With limit 4, we can take both item 1 and item 2.

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0						
s4 = (1, 2)	0						

Notice:

With limit 4, we can take both item 1 and item 2.

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0						
s4 = (1, 2)	0						

What about third row, first column? (Item has value 8, weight 6)

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0						
s4 = (1, 2)	0						

What about third row, first column? (Item has value 8, weight 6)

Item is too heavy! We cannot take the item!

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0	10					
s4 = (1, 2)	0						

What about third row, first column? (Item has value 8, weight 6)

Item is too heavy! We cannot take the item!

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0	10	10	10	15	15	
s4 = (1, 2)	0						

What about third row, first column? (Item has value 8, weight 6)

Same for all columns before 6

How should we fill out this cell?

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0	10	10	10	15	15	
s4 = (1, 2)	0						

- 1. 15
- 2.8
- 3. 23
- 4. 18

How should we fill out this cell?

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0	10	10	10	15	15	15
s4 = (1, 2)	0						

. 15

2. 8

3. 23

4. 18

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0	10	10	10	15	15	15
s4 = (1, 2)	0	10	10	11	15	15	16

Filling out the last row:

Knapsack Analysis:

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0	10	10	10	15	15	15
s4 = (1, 2)	0	10	10	11	15	15	16

O(n L) subproblems, each sub-problem takes O(1) to compute.

Knapsack Analysis:

(value, weight)	0	1	2	3	4	5	6
s1 = (5, 3)	0	0	0	5	5	5	5
s2 = (10, 1)	0	10	10	10	15	15	15
s3 = (8, 6)	0	10	10	10	15	15	15
s4 = (1, 2)	0	10	10	11	15	15	16

O(n L) subproblems, each sub-problem takes O(1) to compute.

O(nL) time!

Roadmap

Dynamic Programming

- ✓ Basics of DP
- Example: Longest Increasing Subsequence
- Example: Bounded Prize Collecting
- ✓ Example: Vertex Cover on a Tree
- ☑ Example: All-Pairs Shortest Paths
- ☑ Example: Knapsack