

SÍLABO

Resistencia de Materiales

Código	ASUC01525	5	Carácter	Obligatorio
Prerrequisito	Mecánica Vectorial para Ingenieros			
Créditos	4			
Horas	Teóricas	2	Prácticas	4
Año académico	2025-00			

I. Introducción

Resistencia de Materiales es una asignatura obligatoria de facultad que se ubica en el quinto periodo académico de la Escuela Profesional de Ingeniería Industrial y de Ingeniería de Minas. El prerrequisito para llevar esta asignatura es Mecánica Vectorial para Ingenieros. Desarrolla a nivel intermedio la competencia transversal Conocimientos de Ingeniería. En virtud de lo anterior, su relevancia reside en desarrollar las competencias sobre las relaciones entre las cargas aplicadas a un cuerpo, los esfuerzos y deformaciones producidos en él, y su aplicación en la ingeniería.

Los contenidos generales que la asignatura desarrolla son los siguientes: introducción al estudio de la resistencia de materiales, elementos sometidos a tracción y compresión, teoría de la torsión, teoría general de la flexión, análisis de tensiones, análisis de deformación y de flexión simple, flexión compuesta en elementos isostáticos e hiperestáticos, teoría general de corte, solicitaciones combinadas (criterios de fallas de materiales).

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de interpretar los conceptos básicos de resistencia de materiales y aplicarlos en la solución de problemas de esfuerzos, deformaciones, leyes constitutivas en el cálculo de fuerzas exteriores, cálculo de sistemas isostáticos e hiperestáticos, flexión pura y flexión compuesta en el cálculo de vigas que se usan en ingeniería; deduciendo las relaciones que se emplean en teoría general de esfuerzos y la teoría de falla de materiales.

III. Organización de los aprendizajes

	Unidad 1 la resistencia de materiales, esfuerzos y debido a cargas axiales y cortantes y propiedades os materiales.	Duración en horas	24
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de fundamentales de esfuerzo y deformación en el c que involucren su cálculo debido a cargas axiales en cuenta sus propiedades.	nálisis de pr	oblemas .
Ejes temáticos:	 Esfuerzo normal, cortante, esfuerzos en apoyos Esfuerzos en superficies oblicuas y análisis y d pequeñas Deformación normal y cortante en elementos Propiedades mecánicas de los materiales 	liseño de est	tructuras

Esfuerzos y defoi teoría de la torsi	Unidad 2 rmaciones debido a carga axial, carga multiaxial y ón.	Duración en horas	24
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de o fundamentales del esfuerzo y deformación en el ar que involucren elementos sometidos a cargas unia: así como en problemas con elementos sometidos o	nálisis de prol xiales y multic	olemas axiales,
Ejes temáticos:	 Esfuerzo y deformaciones debido a carga axial Problemas estáticamente indeterminados y involucren temperatura Esfuerzos y deformaciones debido a carga multi. Esfuerzo y deformaciones debido a cargas estáticos y estáticamente indeterminados 	axial	·

	Duración	24			
	Teoría general de la flexión				
Resultado de aprendizaje de la unidad:	dizaje en los que se requiera calcular los estuerzos y				
Ejes temáticos:	 Flexión pura Flexión de elementos hechos de varios materiale Caso general de flexión excéntrica y flexión de e Análisis y diseño de vigas para flexión 		urvos		

	Duración	24	
Teo	en horas	24	
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz conceptos básicos de resistencia de materiales para la determinación de los esfuerzos cortantes cálculo de los esfuerzos cortantes en vigas de pare	aplicando d s en una vig	criterios
Ejes temáticos:	 Determinación de los esfuerzos cortantes en un Corte longitudinal en un elemento de viga con Esfuerzos cortantes en elementos de pared del Trasformación de esfuerzos y criterio de fallas 	forma arbitro	aria

IV. Metodología

a. Modalidad Presencial

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes.

Se utilizarán los siguientes métodos para el desarrollo del curso:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Flipped classroom
- Aprendizaje basado en proyectos
- Resolución de ejercicios y problemas
- Exposiciones (del profesor y de los estudiantes)

El uso de las TIC (diapositivas y videos) potenciará el desarrollo teórico-práctico creando un ambiente de aprendizaje colaborativo y participativo.

b. Modalidad A Distancia

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes.

Se utilizarán los siguientes métodos para el desarrollo del curso:

- Aprendizaje colaborativo
- Aprendizaje basado en proyectos
- Resolución de ejercicios y problemas
- Exposiciones del profesor durante las videoclases

El uso de las TIC (diapositivas y videos) potenciará el desarrollo teórico-práctico creando un ambiente de aprendizaje colaborativo y participativo.

c. Modalidad Semipresencial-Virtual

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes.

Se utilizarán los siguientes métodos para el desarrollo del curso:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Aprendizaje basado en proyectos
- Resolución de ejercicios y problemas
- Exposiciones (del profesor y de los estudiantes)

El uso de las TIC (diapositivas y videos) potenciará el desarrollo teórico-práctico creando un ambiente de aprendizaje colaborativo y participativo.

V. Evaluación

Modalidad Presencial

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso Parcial	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba mixta	0 %	
Consolidado 1 C1	1	Semana 3	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	40 %	20.97
	2	Semana 6	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	60 %	20 %
Evaluación parcial EP	1 y 2	Semana 8	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	20	0%
Consolidado 2 C2	3	Semana 11	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	40 %	20.97
	4	Semana 14	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	60 %	20 %
Evaluación final EF	Todas las unidades	Semana 16	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	40	0%
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Sí aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial – Virtual

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba mixta	0 %
Consolidado 1 C1	1	Semana 1-3	Evaluación individual escrita teórico- práctica / Prueba de desarrollo	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual escrita teórico- práctica / Prueba de desarrollo	20 %
Consolidado 2 C2	3	Semana 5-7	Evaluación individual escrita teórico- práctica / Prueba de desarrollo	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual escrita teórico- práctica / Prueba de desarrollo	40 %
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Sí aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad A Distancia

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba objetiva	0 %
Consolidado 1	1	Semana 2	Evaluación individual teórico-práctica / Prueba mixta	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual teórico-práctica / Prueba de desarrollo	20 %
Consolidado 2	3	Semana 6	Evaluación grupal de elaboración de proyectos / Rúbrica de evaluación	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual teórico-práctica / Prueba de desarrollo	40 %
Evaluación sustitutoria	Todas las unidades	Fecha posterior a la evaluación final	Sí aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

$$PF = C1 (20 \%) + EP (20 \%) + C2 (20 \%) + EF (40 \%)$$

VI. Bibliografía

Básica

Beer, F., Johnston, E., y Dewolf, J. (2021). *Mecánica de materiales*. (8.º ed.). McGraw-Hill. https://bit.ly/40n9mJK

Beer, F., Johnston, E., y Mazurek, D. (2021). *Mecánica vectorial para ingenieros:estática*. (12.º ed.). McGraw-Hill. https://bit.ly/3HrSLM1

Complementaria:

Hibbeler, R. (2015). Mecánica de Materiales. 10° ed. New Jersey: Pearson Prentice Hall.

James, M. y Barry J. (2009). *Mecánica de Materiales*. 7° ed. Mexico.D.F. Cengage learning.

Villarreal, G. (2013). Mecánica de Materiales / prácticas exámenes. Perú: Cengage learning.

VII. Recursos digitales

El Canal del Ingeniero. (2012). Resistencia de Materiales. Recuperado de:

https://www.youtube.com/watch?v=istNkAW2ICY

Villarreal, G. (2012). Resistencia de Materiales I. Perú. Recuperado de

https://www.youtube.com/watch?v=CPEsFyFiagE&list=PLtilqewKygqh09DwAK9hiP MpD1gmuQNxy