CSE-344 Course Project

Yoga Pose Classification using features extracted from keypoint detection

Team

Aniket Verma (2019233)

Hardik Garg (2019040)

Tarini Sharma (2019451)

Problem Statement

Goal: Classification and Grading of yoga poses using Computer Vision and Machine Learning techniques

Input: Poses from Yoga-82 dataset (19k images and 82 poses)

Output: Given an input image, classify the yoga pose and assign a score based on the pose similarity

Yoqa82 paper

Methodology

Data Extraction

Load Yoga-82 dataset and remove corrupted images

Keypoint Extraction

Extract 33 keypoints for the human body using Mediapipe

Feature Engineering

Design explainable features from keypoints using 3D angles and geometric properties

ML Models

Training ML models on raw and custom features and comparing the results

Pose Evaluation

For each pose, compare feature-wise similarity and suggest correction areas

Yoga-82 dataset

- 15516 data points
- 75:25 train-test split
- 82 different poses

Note: corrupted files were removed

Keypoint Extraction using Mediapipe

For each keypoint -

- x coordinate
- y coordinate
- z coordinate
- visibility ratio

Note: cartoon images did not yield any keypoints hence discarded.

- 0. nose
- left_eye_inner
- 2. left_eye
- left_eye_outer
- 4. right_eye_inner
- 5. right_eye
- 6. right_eye_outer
- 7. left_ear
- 8. right_ear
- 9. mouth_left
- 10. mouth_right
- 11. left_shoulder
- 12. right_shoulder
- 13. left_elbow
- 14. right_elbow
- 15. left_wrist
- 16. right_wrist

- 17. left_pinky
- 18. right_pinky
- 19. left_index
- 20. right_index
- 21. left_thumb
- 22. right_thumb
- 23. left_hip
- 24. right_hip
- 25. left_knee
- 26. right_knee
- 27. left_ankle
- 28. right_ankle
- 29. left_heel
- 30. right_heel
- 31. left_foot_index
- 32. right_foot_index

Feature Engineering

Elbow to Elbow Angle	Min Foot Angle Min Foot Angle Nose to Heel Angle Feet to Shoulder Ratio			
Max Hand Angle				
Min Hand Angle				
Knee to Knee Angle				
Max Elbow to Knee Angle	Hand to Shoulder Ratio			
Min Elbow to Knee Angle	Centroid Distances			

Elbow to Elbow Angle - UBS	Max Foot Angle LBS		
Max Hand Angle UBS	Min Foot Angle LBS		
Min Hand Angle UBS	Nose to Heel Angle		
Knee to Knee Angle LBS	Feet to Shoulder Ratio LBSp		
Max Elbow to Knee Angle EKC	Hand to Shoulder Ratio UBSp		
Min Elbow to Knee Angle EKC	Centroid Distances BB		

Pose Evaluation

Similarity calculated for each feature -

$$sim(x,y) = 1 - |x-y| / |x+y|$$

x and y are features(can either be angle or distance) values.

- Mean feature values calculated for each pose using training set
- Feature-wise similarity between mean features (true features) and predicted features is calculated and the three most dissimilar features are reported for correction

Pose Evaluation Image

alamy Inage ID: RETORS www.alamy.com

Experimental Results

Metric	Feature Type	COSINE SIMILARITY	GAUSSIAN NAIVE BAYES	RANDOM FOREST	XGBOOST	KNN CLASSIFIER
Accuracy	Raw Mediapipe Features (132)	0.2843	0.2904	0.7743	0.7654	0.7465
	Custom Geometric Features (25)	0.3786	0.883	0.9296	0.91253	0.7056
F1 Score	Raw Mediapipe Features (132)	0.2943	0.2671	0.7680	0.7609	0.7425
	Custom Geometric Features (25)	0.3786	0.8840	0.9292	0.9122	0.7005

Benchmark: Yoga-82 DenseNet-201 based best model has F1 of 85.1

Conclusion and Contributions

- In this project we introduced features for yoga poses with the following characteristics -
- Better Explainability
- Improved Performance
- Lesser in Number (from 132 to 25)
- robust to "lateral inversion" and shift invariant

Introduced method for pose correction

Keypoints detected through Mediapipe

References

Human Activity Recognition Using Pose Estimation and Machine Learning

Yoga-82: A New Dataset for Fine-grained Classification of Human Poses

Yoga pose detection and classification using machine learning techniques

Yoq-quru: Real-time yoqa pose correction system using deep learning methods

Real-time Yoga recognition using deep learning

<u>Detection of Gait Abnormalities caused by Neurological Disorders</u>