中国神学技术大学实验报告

计算方法 Final Project

学生姓名: 朱云沁

学生学号: PB20061372

完成时间: 二〇二二年五月三十日

计算方法: Final Project

目录

一 、	实验题目 ····································	2
<u>-</u> , 2	实验结果 ····································	3
1.	第 1 题 · · · · · · · · · · · · · · · · · ·	3
2.	第 2 题 ·····	3
3.	第 3 题 · · · · · · · · · · · · · · · · · ·	5
4.	第 4 题 ·····	6
5.	第 5 题 · · · · · · · · · · · · · · · · · ·	7
6.	第 6 题 · · · · · · · · · · · · · · · · · ·	7
三、	解题过程 ····································	8
1.	$\alpha=0$ · · · · · · · · · · · · · · · · · · ·	8
	1) 线性方程组 · · · · · · · · · · · · · · · · · · ·	8
	2) Jacobi 迭代法··········	9
	3) Gauss-Seidel 迭代法 · · · · · · · · · · · · · · · · · · ·	11
2.	$\alpha = 1$ · · · · · · · · · · · · · · · · · ·	12
	1) 非线性方程组 · · · · · · · · · · · · · · · · · · ·	12
	2) Newton 迭代法 · · · · · · · · · · · · · · · · · · ·	13
3.	最小二乘法求收敛阶 ·····	14
附录 A	Python 程序代码 · · · · · · · · · · · · · · · · · · ·	16
1.	linear-iteration.py	16
2.	newton.py · · · · · · · · · · · · · · · · · · ·	19
3.	linear-ols.py · · · · · · · · · · · · · · · · · · ·	21

一、 实验题目

考虑数值求解如下的优化问题

$$\min_{u(x) \in C_0^1([0,1])} \quad \int_0^1 \left\{ \frac{1}{2} \left[u'(x) \right]^2 + \frac{\alpha}{4} u^4(x) - f(x) u(x) \right\} dx \tag{1}$$

令 h = 1/n, $x_i = ih$, i = 0, \dots , n. 记 $f_i = f(x_i)$, u_i 为 $u(x_i)$ 的数值逼近, 则 $u_0 = u_n = 0$. 对 (1) 式采用如下的数值积分格式

$$\min_{u_1, \dots, u_{n-1}} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{u_i - u_{i-1}}{h} \right)^2 h + \sum_{i=1}^{n-1} \left(\frac{\alpha}{4} u_i^4 - f_i u_i \right) h \tag{2}$$

分别记 $\mathbf{u}_h = (u_1, \dots, u_{n-1})^{\mathrm{T}}, \mathbf{f}_h = (f_1, \dots, f_{n-1})^{\mathrm{T}}.$

- 1. 当 $\alpha = 0$ 时,推导 u_1, \dots, u_{n-1} 满足的线性方程组 $\boldsymbol{A}_h \boldsymbol{u}_h = \boldsymbol{f}_h$.
- 2. 当 $f(x) = \pi^2 \sin(\pi x)$, n = 10, 20, 40, 80, 160 时, 分别利用 Jacobi 和 Gauss-Seidel 迭代法求解 $\mathbf{A}_h \mathbf{u}_h = \mathbf{f}_h$ (迭代法的终止准则 $\varepsilon = 10^{-10}$), 并比较 \mathbf{u}_h 与精确解 $u_e(x) = \sin(\pi x)$ 之间的误差 $e_h = ||\mathbf{u}_h \mathbf{u}_e||_2$, 记录在一张表中.
- 3. 假设 (2) 式中的 \mathbf{u}_h 对 (1) 式中的 u(x) 的逼近误差满足 $e_h = \Theta(h^\beta)$,基于上表中的数据试利用最小二乘法找到 β .
- 4. 对 n = 10, 20, 40, 80, 160, 分别记录 Jacobi 和 Gauss-Seidel 迭代法收敛所需要的迭代 次数在同一张表中, 从中能得到什么结论?
- 5. 当 $\alpha = 1$ 时,推导 u_1, \dots, u_{n-1} 满足的非线性方程组.
- 6. 当 $f(x) = \pi^2 \sin(\pi x) + \sin^3(\pi x)$, n = 10, 20, 40, 80, 160 时, 利用 Newton 迭代法求解上一小题中的非线性方程组 (迭代法的终止准则 $\varepsilon = 10^{-8}$), 并比较 \mathbf{u}_h 与精确解 $u_e(x) = \sin(\pi x)$ 之间的误差 $e_h = ||\mathbf{u}_h \mathbf{u}_e||_2$, 记录在一张表中, 并利用最小二乘法找出该情形下算法的收敛阶.

二、 实验结果

1.

当 $\alpha = 0$ 时, \mathbf{u}_h 满足的线性方程组为

$$\frac{1}{h^2} \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_{n-1} \end{pmatrix}$$
(3)

2.

利用 Jacobi 迭代法解得 \mathbf{u}_h . 取 $x=0.1,0.2,\cdots,0.9$ 处的数值解 $u_h(x)$, 如表 1 所示. 当 n=10,160 时, 作得 $u_h(x)$ 的图象, 如图 1 所示.

x	$u_{0.1}(x)$	$u_{0.05}(x)$	$u_{0.025}(x)$	$u_{0.0125}(x)$	$u_{0.00625}(x)$	$u_e(x)$
0.1	0.31157115	0.30965317	0.30917588	0.30905667	0.30902676	0.30901699
0.2	0.59264354	0.58899533	0.58808747	0.58786072	0.58780383	0.58778525
0.3	0.81570386	0.81068252	0.80943297	0.80912086	0.80904257	0.80901699
0.4	0.95891739	0.95301446	0.95154552	0.95117862	0.95108658	0.95105652
0.5	1.00826542	1.00205870	1.00051417	1.00012839	1.00003161	1.00000000
0.6	0.95891739	0.95301446	0.95154552	0.95117862	0.95108658	0.95105652
0.7	0.81570386	0.81068252	0.80943297	0.80912086	0.80904257	0.80901699
0.8	0.59264354	0.58899533	0.58808747	0.58786072	0.58780383	0.58778525
0.9	0.31157115	0.30965317	0.30917588	0.30905667	0.30902676	0.30901699

表 1: Jacobi 迭代法求得数值解

图 1: Jacobi 迭代法求得数值解

利用 Gauss-Seidel 迭代法解得 u_h . 取 $x=0.1,0.2,\cdots,0.9$ 处的数值解 $u_h(x)$, 如表 2 所示. 当 n=10,160 时,作得 $u_h(x)$ 的图象,如图 2 所示.

x	$u_{0.1}(x)$	$u_{0.05}(x)$	$u_{0.025}(x)$	$u_{0.0125}(x)$	$u_{0.00625}(x)$	$u_e(x)$
0.1	0.31157115	0.30965317	0.30917589	0.30905669	0.30902684	0.30901699
0.2	0.59264354	0.58899533	0.58808748	0.58786076	0.58780398	0.58778525
0.3	0.81570386	0.81068252	0.80943298	0.80912092	0.80904278	0.80901699
0.4	0.95891739	0.95301446	0.95154553	0.95117868	0.95108682	0.95105652
0.5	1.00826542	1.00205870	1.00051418	1.00012846	1.00003187	1.00000000
0.6	0.95891739	0.95301446	0.95154553	0.95117869	0.95108683	0.95105652
0.7	0.81570386	0.81068252	0.80943298	0.80912092	0.80904278	0.80901699
0.8	0.59264354	0.58899533	0.58808748	0.58786076	0.58780399	0.58778525
0.9	0.31157115	0.30965317	0.30917589	0.30905669	0.30902684	0.30901699

表 2: Gauss-Seidel 迭代法求得数值解

图 2: Gauss-Seidel 迭代法求得数值解

分别求得两种方法的误差 $e_h = ||\boldsymbol{u}_h - \boldsymbol{u}_e||_2$, 如表 3 所示.

表 3: α = 0 时的逼近误差

	1.	e_h		
n	h	Jacobi	Gauss-Seidel	
10	0.1	$8.26541503{\times}10^{-3}$	$8.26541608 \times 10^{-3}$	
20	0.05	$2.05869875{\times}10^{-3}$	$2.05870278{\times}10^{-3}$	
40	0.025	$5.14168202{\times}10^{-4}$	$5.14184336{\times}10^{-4}$	
80	0.0125	$1.28390848{\times}10^{-4}$	$1.28455701{\times}10^{-4}$	
160	0.00625	$3.16095753{\times}10^{-5}$	$3.18689490{\times}10^{-5}$	

	$\log h$ -	$\log e_h$		
n		Jacobi	Gauss-Seidel	
10	-2.30258509	-4.79567533	-4.79567521	
20	-2.99573227	-6.18568117	-6.18567921	
40	-3.68887945	-7.57296010	-7.57292873	
80	-4.38202663	-8.96043144	-8.95992645	
160	-5.07517382	-10.36205047	-10.35387841	

可见, 随区间剖分点数 n 增大, 误差 e_h 逐渐减小而趋于 0.

3.

假设 $e_h = \Theta(h^\beta)$, 则 $\log e_h \approx \beta_0 + \beta \log h$. 利用最小二乘法拟合, 得到曲线如图 3 所示.

图 3: $\alpha = 1$ 时的误差拟合

使用 Jacobi 迭代法时, 数值算法的收敛阶为

$$\beta = 2.00642821 \approx 2 \tag{4}$$

使用 Gauss-Seidel 迭代法时, 数值算法的收敛阶为

$$\beta = 2.00399771 \approx 2 \tag{5}$$

4.

Jacobi 和 Gauss-Seidel 迭代法满足精度时的迭代次数如表 4 所示. 其图象如图 4 所示.

n	Jacobi	Gauss-Seidel
10	399	207
20	1504	780
40	5586	2905
80	20562	10731
160	75070	39333
160	75070	39333

表 4: 求解线性方程组所需迭代次数

图 4: 求解线性方程组所需迭代次数

得出如下结论:

- 随 A_h 的维数增大, Jacobi 和 Gauss-Seidel 方法所需的迭代次数呈非线性增长, 且增长速率加快, 具有 $\Omega(n)$ 复杂度. 可见, 求解线性方程组的迭代方法存在效率瓶颈, 不一定优于直接解法.
- 在此问题中, 当 n 相同时, Gauss-Seidel 方法的收敛速度总是比 Jacobi 方法快接近一倍, 效率相对较高. 可见, 在迭代计算过程中及时更新 u_h 分量是改善收敛的有效措施.
- 计算发现, 当 n 趋于无穷时, Jacobi 迭代矩阵的谱半径和 Gauss-Seidel 迭代矩阵的 ∞ -范数单调趋于 1, 这与迭代次数的增长存在一定相关性. 可见, 线性方程组的迭代 收敛取决于迭代矩阵的性质.

• 相较求解非线性方程组的 Newton 迭代法, 求解 (3) 式线性方程组的 Jacobi 和 Gauss-Seidel 方法收敛所需的迭代次数较多, 收敛速度较慢.

5.

当 $\alpha = 1$ 时, \mathbf{u}_h 满足的非线性方程组为

$$\begin{pmatrix}
-u_0 + 2u_1 - u_2 + h^2 u_1^3 - h^2 f_1 \\
-u_1 + 2u_2 - u_3 + h^2 u_2^3 - h^2 f_2 \\
\vdots \\
-u_{n-2} + 2u_{n-1} - u_n + h^2 u_{n-1}^3 - h^2 f_{n-1}
\end{pmatrix} = \mathbf{0}$$
(6)

6.

利用 Newton 迭代法解得 u_h . 取 $x = 0.1, 0.2, \dots, 0.9$ 处的数值解 $u_h(x)$, 如表 5 所示. 当 n = 10, 160 时,作得 $u_h(x)$ 的图象,如图 5 所示.

x	$u_{0.1}(x)$	$u_{0.05}(x)$	$u_{0.025}(x)$	$u_{0.0125}(x)$	$u_{0.00625}(x)$	$u_e(x)$
0.1	0.31114144	0.30954651	0.30914928	0.30905006	0.30902526	0.30901699
0.2	0.59179026	0.58878402	0.58803479	0.58784763	0.58780085	0.58778525
0.3	0.81446879	0.81037743	0.80935695	0.80910197	0.80903824	0.80901699
0.4	0.95740831	0.95264236	0.95145284	0.95115559	0.95108128	0.95105652
0.5	1.00665583	1.00166208	1.00041540	1.00010384	1.00002596	1.00000000
0.6	0.95740831	0.95264236	0.95145284	0.95115559	0.95108128	0.95105652
0.7	0.81446879	0.81037743	0.80935695	0.80910197	0.80903824	0.80901699
0.8	0.59179026	0.58878402	0.58803479	0.58784763	0.58780085	0.58778525
0.9	0.31114144	0.30954651	0.30914928	0.30905006	0.30902526	0.30901699

表 5: Newton 迭代法求得数值解

图 5: Newton 迭代法求得数值解

求得误差 $e_h = ||\mathbf{u}_h - \mathbf{u}_e||_2$, 如表 6 所示.

表 6: $\alpha = 1$ 时的逼近误差

n	h	e_h	$\log h$	$\log e_h$
10	0.1	$6.65582771{\times}10^{-3}$	-2.30258509	-5.01226246
20	0.05	$1.66207605{\times}10^{-3}$	-2.99573227	-6.39968782
40	0.025	$4.15398609{\times}10^{-4}$	-3.68887945	-7.78627200
80	0.0125	$1.03842083{\times}10^{-4}$	-4.38202663	-9.17263924
160	0.00625	$2.59600471{\times}10^{-5}$	-5.07517382	-10.55895185

可见,随区间剖分点数 n 增大,误差 e_h 逐渐减小而趋于 0.

假设 $e_h = \Theta(h^\beta)$, 则 $\log e_h \approx \beta_0 + \beta \log h$. 利用最小二乘法拟合, 得到曲线如图 6 所示.

图 6: $\alpha = 1$ 时的误差拟合

求得收敛阶为

$$\beta = 2.00048858 \approx 2 \tag{7}$$

三、 解题过程

1. $\alpha = 0$

1) 线性方程组

记目标函数为

$$F(\mathbf{u}_h) = h \left[\sum_{i=1}^{n} \frac{1}{2} \left(\frac{u_i - u_{i-1}}{h} \right)^2 - \sum_{i=1}^{n-1} f_i u_i \right]$$
 (8)

其梯度为

$$\nabla F(\mathbf{u}_h) = \frac{1}{h} \begin{pmatrix} -u_0 + 2u_1 - u_2 - h^2 f_1 \\ -u_1 + 2u_2 - u_3 - h^2 f_2 \\ \vdots \\ -u_{n-2} + 2u_{n-1} - u_n - h^2 f_{n-1} \end{pmatrix}$$
(9)

Hessian 矩阵为

$$\nabla^2 F(\boldsymbol{u}_h) = \frac{1}{h} \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix}$$
 (10)

计算得其 m 阶主子式为 (m+1)/h, 故 $\nabla^2 F(\mathbf{u}_h) > 0$. $\nabla F(\mathbf{u}_h) = \mathbf{0}$ 处为极小值点, 满足

$$\begin{cases}
-u_0 + 2u_1 - u_2 = h^2 f_1 \\
-u_1 + 2u_2 - u_3 = h^2 f_2 \\
\vdots \\
-u_{n-2} + 2u_{n-1} - u_n = h^2 f_{n-1}
\end{cases}$$
(11)

写为矩阵形式 $A_h u_h = f_h$, 如 (3) 式所示.

2) Jacobi 迭代法

令 $A_h = D + L + U$, 其中 D 为对角矩阵, L 为下三角矩阵, U 为上三角矩阵, 即

$$\mathbf{D} = \frac{1}{h^2} \begin{pmatrix} 2 & & \\ & 2 & \\ & & \ddots & \\ & & & 2 \end{pmatrix}, \quad \mathbf{L} = \mathbf{U}^{\mathrm{T}} = \frac{1}{h^2} \begin{pmatrix} -1 & & \\ & \ddots & \\ & & -1 \end{pmatrix}$$
(12)

由 $A_h u_h = f_h$, 得 $D u_h = -(L + U)u_h + f_h$, 进而有 Jacobi 迭代公式

$$\boldsymbol{u}_{h}^{(k+1)} = -\boldsymbol{D}^{-1}(\boldsymbol{L} + \boldsymbol{U})\boldsymbol{u}_{h}^{(k)} + \boldsymbol{D}^{-1}\boldsymbol{f}_{h}$$
(13)

代入(12)式化简得

$$\begin{cases}
 u_1^{(k+1)} = \frac{u_2^{(k)} + h^2 f_1}{2} \\
 u_2^{(k+1)} = \frac{u_1^{(k)} + u_3^{(k)} + h^2 f_2}{2} \\
 \vdots \\
 u_{n-1}^{(k+1)} = \frac{u_{n-2}^{(k)} + h^2 f_{n-1}}{2}
\end{cases}$$
(14)

下证 Jacobi 迭代的收敛性. 迭代矩阵的特征值 λ 满足

$$|\mathbf{I} + \lambda \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})| = \begin{vmatrix} \lambda & -\frac{1}{2} \\ -\frac{1}{2} & \lambda & \ddots \\ & \ddots & \ddots & -\frac{1}{2} \\ & & -\frac{1}{2} & \lambda \end{vmatrix} = \frac{\alpha^{n} - \beta^{n}}{\alpha - \beta} = 0$$
 (15)

其中 α , β 为 $4x^2 - 4\lambda x + 1 = 0$ 的两根. 若 $\lambda = \pm 1$, 则

$$\frac{\alpha^n - \beta^n}{\alpha - \beta} = \frac{n}{(\pm 2)^{n-1}} \neq 0 \tag{16}$$

故 $\lambda \neq 1$. 此时应有 $\alpha^n = \beta^n$ 且 $\alpha \neq \beta$, 可知 α , β 必为复根. 于是 $|\lambda| < 1$. 事实上,

$$\rho(-\boldsymbol{D}^{-1}(\boldsymbol{L}+\boldsymbol{U})) = \max|\lambda| = \cos\left(\frac{\pi}{n}\right) < 1$$
(17)

因而 Jacobi 迭代收敛.

每次迭代均按 (14) 式计算. 当 $||\Delta \boldsymbol{u}_h^{(k)}||_{\infty} < \varepsilon$ 时, 满足精度, 终止迭代. 算法描述如下

算法 1 Jacobi 迭代法求解 (3) 式线性方程组

输入: 初始点 $\boldsymbol{u}_{h}^{(0)}$, 精度控制值 ε .

输出: 迭代次数 k, 第 k 步的迭代解 $\boldsymbol{u}_{b}^{(k)}$.

1 $u_0, u_n \leftarrow 0$;

$$\mathbf{2} \ (u_1, \cdots, u_{n-1}) \leftarrow \mathbf{u}_h^{(0)};$$

3 for $k \leftarrow 1$ to M do

// M 为最大迭代次数.

//
$$m$$
 用于计算 $||\Delta \boldsymbol{u}_h^{(k)}||_{\infty}$.

4
$$m \leftarrow 0;$$

5 for $i \leftarrow 1$ to $n-1$ do
6 $v_i \leftarrow 0.5(u_{i-1} + u_{i+1} + h^2 f_i);$
7 $m \leftarrow \max\{m, |v_i - u_i|\};$
8 end
9 if $m < \varepsilon$ then
10 return $k, (v_1, \dots, v_{n-1});$
11 end
12 $(u_1, \dots, u_{n-1}) \leftarrow (v_1, \dots, v_{n-1});$

13 end

14 return NULL;

单步迭代的复杂度为 O(n). 用 Python 实现以上算法, 取 $\mathbf{u}_h^{(0)} = \mathbf{0}$, 求得数值解 $u_h(x)$ 和逼近误差 e_h , 代码见附录 A (linear-iteration.py). 运行程序, 得到结果如表 1, 表 3, 图 1 所示.

3) Gauss-Seidel 迭代法

由 $A_h u_h = f_h$, 得 $(D + L)u_h = -Uu_h + f_h$, 进而有 Gauss-Seidel 迭代公式

$$\boldsymbol{u}_{h}^{(k+1)} = -(\boldsymbol{D} + \boldsymbol{L})^{-1} \boldsymbol{U} \boldsymbol{u}_{h}^{(k)} + (\boldsymbol{D} + \boldsymbol{L})^{-1} \boldsymbol{f}_{h}$$
(18)

代入 (12) 式化简得

$$\begin{cases}
 u_1^{(k+1)} = \frac{u_2^{(k)} + h^2 f_1}{2} \\
 u_2^{(k+1)} = \frac{u_1^{(k+1)} + u_3^{(k)} + h^2 f_2}{2} \\
 \vdots \\
 u_{n-1}^{(k+1)} = \frac{u_{n-2}^{(k+1)} + h^2 f_{n-1}}{2}
\end{cases}$$
(19)

下证 Gauss-Seidel 迭代的收敛性. 迭代矩阵为

$$-(\mathbf{D} + \mathbf{L})^{-1}\mathbf{U} = \begin{pmatrix} 0 & \frac{1}{2} & & & \\ 0 & \frac{1}{4} & \frac{1}{2} & & \\ 0 & \frac{1}{8} & \frac{1}{4} & \ddots & \\ 0 & \vdots & \vdots & \ddots & \frac{1}{2} \\ 0 & \frac{1}{2^{n-1}} & \frac{1}{2^{n-2}} & \cdots & \frac{1}{4} \end{pmatrix}$$
 (20)

当 $n \ge 3$ 时, 其 ∞ -范数为 $1 - 2^{-(n-1)} < 1$, 故 Gauss-Seidel 迭代收敛.

每次迭代均按 (19) 式计算. 当 $||\Delta \boldsymbol{u}_h^{(k)}||_{\infty} < \varepsilon$ 时, 满足精度, 终止迭代. 算法描述如下

算法 2 Gauss-Seidel 迭代法求解 (3) 式线性方程组

输入: 初始点 $\boldsymbol{u}_{h}^{(0)}$, 精度控制值 ε . **输出:** 迭代次数 k, 第 k 步的迭代解 $\boldsymbol{u}_{k}^{(k)}$. 1 $u_0, u_n \leftarrow 0$; $\mathbf{2} \ (u_1, \cdots, u_{n-1}) \leftarrow \mathbf{u}_h^{(0)};$ 3 for $k \leftarrow 1$ to M do // M 为最大迭代次数. // m 用于计算 $||\Delta \boldsymbol{u}_h^{(k)}||_{\infty}$. $m \leftarrow 0$: $v_1 \leftarrow 0.5(u_2 + h^2 f_1)$; for $i \leftarrow 2$ to n-1 do $v_i \leftarrow 0.5(v_{i-1} + u_{i+1} + h^2 f_i);$ 7 $m \leftarrow \max\{m, |v_i - u_i|\};$ end if $m < \varepsilon$ then 10 return $k, (v_1, \cdots, v_{n-1});$ 11 **12** $(u_1, \dots, u_{n-1}) \leftarrow (v_1, \dots, v_{n-1});$ 14 end

单步迭代的复杂度为 O(n). 用 Python 实现以上算法, 取 $\mathbf{u}_h^{(0)} = \mathbf{0}$, 求得数值解 $u_h(x)$ 和逼近误差 e_h , 代码见附录 A (linear-iteration.py). 运行程序, 得到结果如表 2, 表 3, 图 2 所示.

$2. \quad \alpha = 1$

1) 非线性方程组

15 return NULL;

目标函数为

$$F(\mathbf{u}_h) = h \left[\sum_{i=1}^n \frac{1}{2} \left(\frac{u_i - u_{i-1}}{h} \right)^2 + \sum_{i=1}^{n-1} \left(\frac{u_i^4}{4} - f_i u_i \right) \right]$$
(21)

其梯度为

$$\nabla F(\mathbf{u}_h) = \frac{1}{h} \begin{pmatrix} -u_0 + 2u_1 - u_2 + h^2 u_1^3 - h^2 f_1 \\ -u_1 + 2u_2 - u_3 + h^2 u_2^3 - h^2 f_2 \\ \vdots \\ -u_{n-2} + 2u_{n-1} - u_n + h^2 u_{n-1}^3 - h^2 f_{n-1} \end{pmatrix}$$
(22)

Hessian 矩阵为

$$\nabla^{2}F(\mathbf{u}_{h}) = \frac{1}{h} \begin{pmatrix} 2 + 3h^{2}u_{1}^{2} & -1 \\ -1 & 2 + 3h^{2}u_{2}^{2} & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 + 3h^{2}u_{n-1}^{2} \end{pmatrix}$$

$$(23)$$

易证其 m 阶主子式不小于 (m+1)/h, 故 $\nabla^2 F(\mathbf{u}_h) > 0$. $\nabla F(\mathbf{u}_h) = \mathbf{0}$ 处为极小值点, 满足

$$\begin{cases}
-u_0 + 2u_1 - u_2 + h^2 u_1^3 - h^2 f_1 = 0 \\
-u_1 + 2u_2 - u_3 + h^2 u_2^3 - h^2 f_2 = 0 \\
\vdots \\
-u_{n-2} + 2u_{n-1} - u_n + h^2 u_{n-1}^3 - h^2 f_{n-1} = 0
\end{cases} (24)$$

记作 $g(u_h) = (g_1(u_h), \dots, g_{n-1}(u_h))^T = 0$, 如 (6) 式所示.

2) Newton 迭代法

记 $J(u_h) = (\nabla g_1(u_h), \cdots, \nabla g_{n-1}(u_h))^T$ 为 $g(u_h)$ 的 Jacobian 矩阵, 则 Newton 迭代 公式为

$$\boldsymbol{u}_{h}^{(k+1)} = \boldsymbol{u}_{h}^{(k)} - \boldsymbol{J}^{-1}(\boldsymbol{u}_{h}^{(k)})\boldsymbol{g}(\boldsymbol{u}_{h}^{(k)})$$
(25)

当 $\boldsymbol{u}_h^{(0)}$ 充分接近 \boldsymbol{u}_h 时, Newton 迭代收敛. 注意到

$$J(\mathbf{u}_h) = h \nabla^2 F(\mathbf{u}_h) = \begin{pmatrix} 2 + 3h^2 u_1^2 & -1 & & \\ -1 & 2 + 3h^2 u_1^2 & \ddots & & \\ & \ddots & \ddots & -1 & \\ & & -1 & 2 + 3h^2 u_{n-1}^2 \end{pmatrix}$$
(26)

每步迭代, 先求解 $J(\boldsymbol{u}_h^{(k)})\Delta \boldsymbol{u}_h^{(k+1)} = -\boldsymbol{g}(\boldsymbol{u}_h^{(k)})$, 再计算 $\boldsymbol{u}_h^{(k+1)} = \boldsymbol{u}_h^{(k)} + \Delta \boldsymbol{u}_h^{(k+1)}$. 当 $||\Delta \boldsymbol{u}_h^{(k)}||_{\infty}$ < ε 时, 满足精度, 终止迭代. 算法描述如下

算法 3 Newton 迭代法求解 (6) 式非线性方程组

输入: 初始点 $\boldsymbol{u}_h^{(0)}$, 精度控制值 ε .

输出: 迭代次数 k, 第 k 步的迭代解 $\boldsymbol{u}_{b}^{(k)}$.

1 $u_h \leftarrow u_h^{(0)};$

2 for $k \leftarrow 1$ to M do

// M 为最大迭代次数.

接
$$(26)$$
 式计算 $m{J}(m{u}_h);$
求解 $m{J}(m{u}_h)\Deltam{u}_h = -m{g}(m{u}_h);$
 $m{u}_h \leftarrow m{u}_h + \Deltam{u}_h;$
 $m{if} \ ||\Deltam{u}_h||_{\infty} < arepsilon \ ext{then}$
 $m{return} \ k, m{u}_h;$
 $m{end}$

9 end

10 return NULL;

// $\boldsymbol{u}_h^{(0)}$ 附近无解.

用 Python 实现以上算法, 取 $\boldsymbol{u}_h^{(0)} = \boldsymbol{0}$, 求得数值解 $u_h(x)$ 和逼近误差 e_h , 代码见附录 A (newton.py). 运行程序, 得到结果如表 5, 表 6, 图 5 所示.

3. 最小二乘法求收敛阶

设逼近误差 $e_h = C(h)h^{\beta} = \Theta(h^{\beta})$, 两边取对数得

$$\log e_h = \log C(h) + \beta \log h \tag{27}$$

设 $\log C(h) = \beta_0 + \varepsilon$, 其中 β_0 为常数, $\varepsilon = \varepsilon(h)$ 为干扰项. 记 $y = \log e_h$, $x = \log h$, 则

$$y = \beta_0 + \beta x + \varepsilon \approx \beta_0 + \beta x \tag{28}$$

根据表3或表6中数据,记

$$\boldsymbol{y} = \begin{pmatrix} \log e_{0.1} \\ \log e_{0.05} \\ \vdots \\ \log e_{0.00625} \end{pmatrix}, \boldsymbol{X} = \begin{pmatrix} 1 & \log 0.1 \\ 1 & \log 0.05 \\ \vdots & \vdots \\ 1 & \log 0.00625 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta \end{pmatrix}$$
(29)

则误差平方和为

$$\hat{Q} = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

$$= \boldsymbol{y}^{\mathrm{T}}\boldsymbol{y} - 2\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} + \boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{\beta}$$
(30)

对 β 求梯度和 Hessian 矩阵

$$\nabla_{\beta} \hat{Q} = -2\mathbf{X}^{\mathrm{T}} \mathbf{y} + 2\mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\beta}$$

$$\nabla_{\beta}^{2} \hat{Q} = 2\mathbf{X}^{\mathrm{T}} \mathbf{X} \ge 0$$
(31)

故 $\hat{Q}(\boldsymbol{\beta})$ 取最小值时必有 $\nabla_{\boldsymbol{\beta}}\hat{Q}=0$, 即 $\boldsymbol{\beta}$ 满足法方程

$$\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} \tag{32}$$

其公式解为

$$\boldsymbol{\beta} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} = \begin{pmatrix} \frac{\sum x^{2} \sum y - \sum x \sum xy}{\sum 1 \sum x^{2} - (\sum x)^{2}} \\ \frac{\sum 1 \sum xy - \sum x \sum y}{\sum 1 \sum x^{2} - (\sum x)^{2}} \end{pmatrix}$$
(33)

算法描述如下

算法 4 最小二乘法求 (2) 式数值方法收敛阶

输入: 数据点个数 N, 步长 $h_1 \sim h_N$, 逼近误差 $e_{h_1} \sim e_{h_N}$.

输出: 收敛阶 β .

- 1 $(a, b, c, d) \leftarrow \mathbf{0}$;
- 2 for $i \leftarrow 1$ to N do
- $\mathbf{3} \qquad (x,y) \leftarrow (\log h_i, \log e_{h_i});$
- 4 $(a,b,c,d) \leftarrow (a,b,c,d) + (x_i,y_i,x_i^2,x_iy_i);$
- 5 end
- 6 **return** $(Nd ab)/(Nc a^2)$;

时间复杂度为 O(N). 用 Python 实现以上算法, 代码见附录 A (linear-ols.py).

代入表 3 数据, 求得 $\alpha = 0$, $f(x) = \pi^2 \sin(\pi x)$ 情形下, 基于 Jacobi 迭代的数值算法的收敛阶 $\beta = 2.00642821$ 及 $\beta_0 = -0.17388792$; 基于 Gauss-Seidel 迭代的数值算法的收敛阶 $\beta = 2.00399771$ 及 $\beta_0 = -0.18111161$. 拟合得到的曲线如图 3 所示.

代入表 6 数据, 求得 $\alpha=1$, $f(x)=\pi^2\sin(\pi x)+\sin^3(\pi x)$ 情形下, 基于 Newton 迭代的数值算法的收敛阶 $\beta=2.00048858$ 及 $\beta_0=-0.40640145$. 拟合得到的曲线如图 6 所示.

附录 A Python 程序代码

1. linear-iteration.py

```
import numpy as np
    import numpy.linalg as la
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import pandas as pd
    mpl.rc('font', family='serif', size=15)
    mpl.rc('text', usetex=True)
    mpl.rc('text.latex', preamble=r'\usepackage{bm}')
    out_dir = '../assets/output/'
11
12
13
    # Jacobi iteration
14
    def jacobi(f, u0, ue=None, eps=1e-5, max_iter=100000, print_flag=False):
15
        u = np.vstack((0, u0, 0))
16
        v = np.empty(u0.shape)
17
        df = pd.DataFrame(columns=[f'||u-ue||2'] + [f'||\Delta u||\omega'])
18
        if print_flag:
19
            if ue is None: ue = np.zeros(u0.shape)
20
            df.loc[0] = [la.norm(u0 - ue, np.inf), np.nan]
21
        for k in range(max_iter):
22
            m = 0
23
            for i in range(1, u.shape[0] - 1):
24
                 v[i - 1] = (u[i - 1] + u[i + 1] + f[i - 1]) / 2
25
                 m = np.max([m, np.abs(v[i - 1, 0] - u[i, 0])])
26
            if print_flag: df.loc[k + 1] = [la.norm(v - ue, np.inf), m]
27
            for i in range(1, u.shape[0] - 1):
                 u[i] = v[i - 1]
29
            if m < eps: return (v, df) if print_flag else (v, k, la.norm(v - ue, np.inf))
30
        raise RuntimeError('Failed to converge.')
31
32
33
    # Gauss-Seidel iteration
34
    def gauss_seidel(f, u0, ue=None, eps=1e-5, max_iter=100000, print_flag=False):
35
        u = np.vstack((0, u0, 0))
36
        v = np.empty(u0.shape)
37
        df = pd.DataFrame(columns=[f'||u-ue||2'] + [f'||\Delta u||\omega'])
38
        if print_flag:
39
            if ue is None: ue = np.zeros(u0.shape)
40
            df.loc[0] = [la.norm(u0 - ue, np.inf), np.nan]
41
        for k in range(max_iter):
42
            m = 0
43
            v[0] = (u[2] + f[0]) / 2
44
```

```
for i in range(2, u.shape[0] - 1):
                v[i - 1] = (v[i - 2] + u[i + 1] + f[i - 1]) / 2
46
                m = np.max([m, np.abs(v[i - 1, 0] - u[i, 0])])
47
            if print_flag: df.loc[k + 1] = [la.norm(v - ue, np.inf), m]
            for i in range(1, u.shape[0] - 1):
                u[i] = v[i - 1]
50
            if m < eps: return (v, df) if print_flag else (v, k, la.norm(v - ue, np.inf))
        raise RuntimeError('Failed to converge.')
54
55
    \# Main
    uk_dict1, uk_dict2 = {}, {}
   for n in [10, 20, 40, 80, 160]:
        h = 1 / n
        x = np.linspace([h], [1 - h], n - 1)
        f = np.pi**2 * np.sin(np.pi * x)
        f *= h**2
64
        u0 = np.zeros((n - 1, 1))
        ue = np.sin(np.pi * x)
66
        uk_dict1[n] = jacobi(f, u0, ue, eps=1e-10)
        uk_dict2[n] = gauss_seidel(f, u0, ue, eps=1e-10)
70
    # Data CSV
71
    dict = \{'x': np.linspace(0.1, 0.9, 9)\}
72
    for n in [10, 20, 40, 80, 160]:
        h = 1 / n
        dict[f'u\{h\}'] = uk_dict1[n][0][:, 0][int(n / 10 - 1)::int(n / 10)]
75
    dict['ue'] = np.sin(np.pi * dict['x'])
    df = pd.DataFrame(dict)
    df.to_csv(out_dir + 'jacobi.csv')
78
   dict = \{'x': np.linspace(0.1, 0.9, 9)\}
    for n in [10, 20, 40, 80, 160]:
        h = 1 / n
82
        dict[f'u\{h\}'] = uk_dict2[n][0][:, 0][int(n / 10 - 1)::int(n / 10)]
    dict['ue'] = np.sin(np.pi * dict['x'])
84
    df = pd.DataFrame(dict)
    df.to_csv(out_dir + 'gauss-seidel.csv')
89
   fig, ax = plt.subplots(1, 2, figsize=(8, 4), constrained_layout=True)
   h, x = 1 / n, np.linspace(0, 1, n + 1)
```

```
ax[0].plot(x, np.vstack((0, uk_dict1[n][0], 0)), 'C1o-', mec='1.0', linewidth=1,
             \hookrightarrow label=r'$u_{' + f'{h}' + '}(x)$')
  94
           n = 160
  95
           h, x = 1 / n, np.linspace(0, 1, n + 1)
           ax[1].plot(x, np.vstack((0, uk_dict1[n][0], 0)), linewidth=1, label=r'$u_{f'}h' + f'{h}' +
             \hookrightarrow '(x)}$')
  98
            for i in [0, 1]:
  99
                      ax[i].set_xlabel(r'$x$')
100
                      ax[i].set_xlim(0.0, 1.0)
101
                      ax[i].set_ylim(0.0, 1.05)
102
                      ax[i].grid()
103
                      ax[i].legend()
104
105
            fig.savefig(out_dir + 'jacobi.pdf')
106
107
            fig, ax = plt.subplots(1, 2, figsize=(8, 4), constrained_layout=True)
108
109
110
           n = 10
           h, x = 1 / n, np.linspace(0, 1, n + 1)
111
            ax[0].plot(x, np.vstack((0, uk_dict2[n][0], 0)), 'Clo-', mec='1.0', linewidth=1,
             \hookrightarrow \  \  label=r'$u_{'} + f'\{h\}' + '\}(x)$')
113
           n = 160
           h, x = 1 / n, np.linspace(0, 1, n + 1)
115
             ax[1].plot(x, np.vstack((0, uk_dict2[n][0], 0)), linewidth=1, label=r'$u_{'} + f'_{h}' + f'_{
             \hookrightarrow '(x)}$')
117
            for i in [0, 1]:
118
                      ax[i].set_xlabel(r'$x$')
119
120
                      ax[i].set_xlim(0.0, 1.0)
                      ax[i].set_ylim(0.0, 1.05)
121
                      ax[i].grid()
122
                      ax[i].legend()
123
124
            fig.savefig(out_dir + 'gauss-seidel.pdf')
125
126
127
             # Error analysis
            df = pd.DataFrame([[n, 1 / n, uk_dict1[n][2], uk_dict2[n][2]] for n in [10, 20, 40, 80,
128
             \hookrightarrow 160]], columns=['n', 'h', 'eh1', 'eh2'])
            df['logh'] = np.log(df['h'])
129
            df['logeh1'] = np.log(df['eh1'])
130
131
            df['logeh2'] = np.log(df['eh2'])
            df.to_csv(out_dir + 'linear-itr-error.csv')
132
133
            # Convergence
```

```
df = pd.DataFrame([[n, uk_dict1[n][1], uk_dict2[n][1]] for n in [10, 20, 40, 80, 160]],
     \hookrightarrow columns=['n', 'k1', 'k2'])
    df.to_csv(out_dir + 'linear-itr-k.csv')
136
137
138
    fig, ax = plt.subplots(figsize=(8, 4), constrained_layout=True)
139
140
    ax.set_xticks(df['n'])
    ax.set_xlabel(r'$n$')
141
    ax.set_ylim(0, 90000)
142
    ax.plot(df['n'], df['k1'], 'COo-', mec='1.0', linewidth=1, label=r'$k$ of Jacobi Iter.')
    ax.plot(df['n'], df['k2'], 'C1o-', mec='1.0', linewidth=1, label=r'$k$ of Gauss-Seidel
     ax.grid()
145
    ax.legend()
146
147
    fig.savefig(out_dir + 'linear-itr-k.pdf')
```

2. newton.py

```
import numpy as np
2 import numpy.linalg as la
   import matplotlib as mpl
    import matplotlib.pyplot as plt
    import pandas as pd
6
    mpl.rc('font', family='serif', size=15)
    mpl.rc('text', usetex=True)
    mpl.rc('text.latex', preamble=r'\usepackage{bm}')
10
    out_dir = '../assets/output/'
11
12
13
14
    # Newton iteration
    def newton(g, J, u0, ue=None, eps=1e-5, max_iter=100, print_flag=False):
15
        u, gu = u0.copy(), g(u0)
16
        df = pd.DataFrame(columns=[f'||u-ue||2'] + [f'||g(u)||\omega'] + [f'||\Delta u||\omega'])
17
18
        if print_flag:
             if ue is None: ue = np.zeros(u0.shape)
19
            df.loc[0] = [la.norm(u0 - ue, np.inf), la.norm(gu, np.inf), np.nan]
20
        for k in range(max_iter):
21
            Ju = J(u)
22
            du = la.solve(Ju, -gu)
23
            u += du
24
             gu = g(u)
25
            if print_flag:
```

```
27
                 df.loc[k + 1] = [la.norm(u - ue, np.inf), la.norm(gu, np.inf), la.norm(du,
                 \hookrightarrow np.inf)]
            if la.norm(du, np.inf) < eps:</pre>
28
                 return (u, df) if print_flag else (u, k, la.norm(u - ue, np.inf))
29
        raise RuntimeError('Failed to converge.')
31
32
33
    # Main
    def g(u):
34
        g1 = np.empty((n - 1, 1))
35
        g1[0] = 2 * u[0] - u[1] + h**2 * u[0]**3 - h**2 * f[0]
36
        g1[n - 2] = -u[n - 3] + 2 * u[n - 2] + h**2 * u[n - 2]**3 - h**2 * f[n - 2]
37
        for i in range(1, n - 2):
            g1[i] = -u[i - 1] + 2 * u[i] - u[i + 1] + h**2 * u[i]**3 - h**2 * f[i]
        return g1
41
42
    def J(u):
43
        J1 = J0.copy()
45
        for i in range(0, n - 1):
            J1[i, i] += 3 * h**2 * u[i]**2
47
        return J1
48
49
    uk_dict, df_dict = {}, {}
50
51
    for n in [10, 20, 40, 80, 160]:
52
53
        h = 1 / n
        x = np.linspace([h], [1 - h], n - 1)
55
        f = np.sin(np.pi * x)
        f = np.pi**2 * f + f**3
        u0 = np.zeros((n - 1, 1))
59
        ue = np.sin(np.pi * x)
        J0 = np.zeros((n - 1, n - 1))
        J0[0, 0] = 2
63
        for i in range(1, n - 1):
            JO[i - 1, i] = -1
65
            J0[i, i - 1] = -1
            J0[i, i] = 2
67
        uk_dict[n], df_dict[n] = newton(g, J, u0, ue, eps=1e-8, print_flag=True)
71
    # Data plot
    fig, ax = plt.subplots(1, 2, figsize=(8, 4), constrained_layout=True)
72
73
```

```
n = 10
            h, x = 1 / n, np.linspace(0, 1, n + 1)
              ax[0].plot(x, np.vstack((0, uk_dict[n], 0)), 'Clo-', mec='1.0', linewidth=1, label=r'$u_{(1)} + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0) + (1.0
               \hookrightarrow f'{h}' + '}(x)$')
  77
            n = 160
              h, x = 1 / n, np.linspace(0, 1, n + 1)
               ax[1].plot(x, np.vstack((0, uk_dict[n], 0)), linewidth=1, label=r'$u_{'} + f'{h}' + '(x)}$') 
              for i in [0, 1]:
  82
                           ax[i].set_xlabel(r'$x$')
  83
                           ax[i].set_xlim(0.0, 1.0)
                           ax[i].set_ylim(0.0, 1.05)
                           ax[i].grid()
                           ax[i].legend()
              fig.savefig(out_dir + 'newton.pdf')
               # Data CSV
  92
              dict = \{'x': np.linspace(0.1, 0.9, 9)\}
              for n in [10, 20, 40, 80, 160]:
                           h = 1 / n
  94
                           dict[f'u{h}'] = uk_dict[n][:, 0][int(n / 10 - 1)::int(n / 10)]
              dict['ue'] = np.sin(np.pi * dict['x'])
              df = pd.DataFrame(dict)
              df.to_csv(out_dir + 'newton.csv')
100
               # Error analysis
              df = pd.DataFrame([[n, 1 / n, df_dict[n]['||u-ue||2'].iloc[-1]] for n in [10, 20, 40, 80,
               \hookrightarrow 160]], columns=['n', 'h', 'eh'])
              df['logh'] = np.log(df['h'])
              df['logeh'] = np.log(df['eh'])
              df.to_csv(out_dir + 'newton-error.csv')
```

3. linear-ols.py

```
import numpy as np
import numpy.linalg as la
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd

mpl.rc('font', family='serif', size=15)
mpl.rc('text', usetex=True)
mpl.rc('text.latex', preamble=r'\usepackage{bm}')
```

```
out_dir = '../assets/output/'
12
13
    # Linear OLS
   def fit(N, h, e):
        a, b, c, d = 0, 0, 0, 0
        for i in range(N):
17
            x, y = np.log(h[i]), np.log(e[i])
19
            a += x
            b += y
            c += x**2
21
22
            d += x * y
        return ((N * d - a * b), (b * c - a * d)) / (N * c - a**2)
24
25
    # Newton iteration
   df = pd.read_csv('../assets/output/newton-error.csv')
27
   c = fit(df.shape[0], df['h'].array, df['eh'].array)
30
   print(c)
  fig, ax = plt.subplots(figsize=(8, 4), constrained_layout=True)
    ax.set_xlabel(r'$\log h$')
   ax.scatter(df['logh'], df['logeh'], zorder=2, label=r'$\log e_h$', marker='o')
34
    ax.plot([-5.2, -2.2], np.polyval(c, [-5.2, -2.2]), label=r'$\beta_0 + \beta',
    \hookrightarrow zorder=1, linewidth=1, c='C1')
   ax.grid()
36
   ax.legend()
    fig.savefig(out_dir + 'newton-error.pdf')
39
    # Jacobi and Gauss-Seidel iterations
40
    df = pd.read_csv('../assets/output/linear-itr-error.csv')
   c1 = fit(df.shape[0], df['h'].array, df['eh1'].array)
43
    c2 = fit(df.shape[0], df['h'].array, df['eh2'].array)
   print(c1)
   print(c2)
47
    fig, ax = plt.subplots(2, 1, figsize=(8, 8), constrained_layout=True)
50 ax[0].set_xlabel(r'$\log h$')
51 ax[0].scatter(df['logh'], df['logh1'], zorder=2, label=r'$\log e_h$ (Jacobi Iter.)',

    marker='o')

   ax[0].plot([-5.2, -2.2], np.polyval(c1, [-5.2, -2.2]), label=r'$\beta_0 + \beta \log h$',

    zorder=1, linewidth=1, c='C1')

   ax[0].grid()
    ax[0].legend()
```