Readiness Assurance Test

Choose the most appropriate response for each question.

31) Which of the following is a solution to the system of linear equations

$$x + 3y - z = 2$$

 $2x + 8y + 3z = -1$
 $-x - y + 9z = -10$

- (b) $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$
- (c) $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

32) Find a basis for the solution set of the following homogeneous system of linear equations

$$x + 2y + -z - w = 0$$
$$-2x - 4y + 3z + 5w = 0$$

- (a) $\left\{ \begin{bmatrix} -2\\1\\0\\-3\\1 \end{bmatrix}, \begin{bmatrix} -2\\0\\-3\\1 \end{bmatrix} \right\}$ (b) $\left\{ \begin{bmatrix} 1\\2\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\3 \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} 2\\-1\\3\\-1 \end{bmatrix} \right\}$

33) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span \mathbb{R}^3 and is linearly dependent
- (b) It spans \mathbb{R}^3 but it is linearly dependent
- (c) It does not span \mathbb{R}^3 and is linearly independent
- (d) It is a basis of \mathbb{R}^3 .

34) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\3 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span \mathbb{R}^3 and is linearly dependent
- (b) It does not span \mathbb{R}^3 and is linearly independent
- (c) It is a basis of \mathbb{R}^3 .
- (d) It spans \mathbb{R}^3 but it is linearly dependent

35) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\3\\-3 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span \mathbb{R}^3 and is linearly dependent
- (b) It spans \mathbb{R}^3 but it is linearly dependent
- (c) It does not span \mathbb{R}^3 and is linearly independent
- (d) It is a basis of \mathbb{R}^3 .
- 36) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \begin{bmatrix} -3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\5\\-4 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It spans \mathbb{R}^3 but it is linearly dependent
- (b) It is a basis of \mathbb{R}^3 .
- (c) It does not span \mathbb{R}^3 and is linearly independent
- (d) It does not span \mathbb{R}^3 and is linearly dependent
- 37) Suppose S is a set of \mathbb{R}^5 vectors, and you know that every vector in span S can be written *uniquely* as a linear combination of the vectors in S. What can you conclude about S?
 - (a) S has exactly 5 vectors
 - (b) S has at most 5 vectors
 - (c) S has at least 5 vectors
 - (d) S could have any number of vectors
- 38) Suppose you know that every vector in \mathbb{R}^5 can be written as a linear combination of the vectors in a set S. What can you conclude about S?
 - (a) S has exactly 5 vectors
 - (b) S has at most 5 vectors
 - (c) S has at least 5 vectors
 - (d) S could have any number of vectors
- 39) Suppose you know that every vector in \mathbb{R}^5 can be uniquely written as a linear combination of the vectors in a set S. What can you conclude about S?
 - (a) S has exactly 5 vectors
 - (b) S has at most 5 vectors
 - (c) S has at least 5 vectors
 - (d) S could have any number of vectors
- 40) What else can you conclude about S from the previous question?

- (a) S is a basis of \mathbb{R}^5 .
- (b) S does not span \mathbb{R}^5 and is linearly dependent
- (c) S does not span \mathbb{R}^5 and is linearly independent
- (d) S spans \mathbb{R}^5 but it is linearly dependent