Context-Free Languages

$$\{a^n b^n : n \ge 0\} \qquad \{ww^R\}$$

Regular Languages a*b* (a+b)*

Context-Free Grammars

_

Example

A context-free grammar $G: S \rightarrow aSb$

 $S \to \lambda$

A derivation:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

A context-free grammar
$$G: S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Another derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

7

$$S \to aSb$$
$$S \to \lambda$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Describes parentheses: (((())))

Example

A context-free grammar
$$G: S \rightarrow aSa$$

$$S \rightarrow bSb$$

$$S \rightarrow \lambda$$

A derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

۵

A context-free grammar $G: S \rightarrow aSa$

 $S \rightarrow bSb$

 $S \rightarrow \lambda$

Another derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$$

$$S \to aSa$$
$$S \to bSb$$
$$S \to \lambda$$

$$L(G) = \{ww^R : w \in \{a,b\}^*\}$$

11

Example

A context-free grammar $G\colon S\to aSb$ $S\to SS$

 $S \rightarrow \lambda$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow ab$$

A context-free grammar
$$G\colon S\to aSb$$

$$S\to SS$$

$$S\to \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSb \Rightarrow abab$$

13

$$S \to aSb$$
$$S \to SS$$
$$S \to \lambda$$

$$L(G) = \{w : n_a(w) = n_b(w),$$

and $n_a(v) \ge n_b(v)$
in any prefix $v\}$

Describes matched

parentheses: ()((()))(())

Definition: Context-Free Grammars

Grammar
$$G = (V, T, S, P)$$

Variables Terminal Start symbols variable

Productions of the form:

$$A \rightarrow x$$

Variable String of variables and terminals

15

$$G = (V, T, S, P)$$

$$L(G) = \{ w \colon S \Longrightarrow w, w \in T^* \}$$

Definition: Context-Free Languages

A language L is context-free

if and only if

there is a context-free grammar Gwith L = L(G)

Derivation Order

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$

4.
$$B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$

3.
$$A \rightarrow \lambda$$
 5. $B \rightarrow \lambda$

Leftmost derivation:

$$S \Longrightarrow AB \Longrightarrow aaAB \Longrightarrow aaB \Longrightarrow aaBb \Longrightarrow aab$$

Rightmost derivation:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

$$S \rightarrow aAB$$

$$A \rightarrow bBb$$

$$B \to A \mid \lambda$$

Leftmost derivation:

$$S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB$$

 $\Rightarrow abbbbB \Rightarrow abbbb$

Rightmost derivation:

$$S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb$$

 $\Rightarrow abbBbb \Rightarrow abbbb$

. .

Derivation Trees

Partial Derivation Trees

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$S \Rightarrow AB$

Partial derivation tree

$$S \Rightarrow AB \Rightarrow aaAB$$

Partial derivation tree

Sometimes, derivation order doesn't matter

Leftmost:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Ambiguity

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$
leftmost derivation
$$E \rightarrow E + E \Rightarrow E + E * E \Rightarrow a + E * E \Rightarrow$$

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two derivation trees

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

 $\Rightarrow a + a * E \Rightarrow a + a * a$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Definition:

A context-free grammar $\,G\,$ is ambiguous

if some string $w \in L(G)$ has:

two or more derivation trees

37

In other words:

A context-free grammar $\,G\,$ is ambiguous

if some string $w \in L(G)$ has:

two or more leftmost derivations (or rightmost)

Ambiguity is bad for programming languages

· We want to remove ambiguity

43

We fix the ambiguous grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

New non-ambiguous grammar: $E \rightarrow E + T$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

The grammar
$$G: E \to E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

is non-ambiguous:

Every string $w \in L(G)$ has a unique derivation tree

47

Another Ambiguous Grammar

IF_STMT
$$\rightarrow$$
 if EXPR then STMT | if EXPR then STMT else STMT

Inherent Ambiguity

Some context free languages have only ambiguous grammars

Example:
$$L = \{a^nb^nc^m\} \cup \{a^nb^mc^m\}$$

$$S \to S_1 \mid S_2 \qquad S_1 \to S_1c \mid A \qquad S_2 \to aS_2 \mid B$$

$$A \to aAb \mid \lambda \qquad B \to bBc \mid \lambda$$

Compilers

A parser knows the grammar of the programming language

55

Parser

PROGRAM → STMT_LIST STMT_LIST → STMT; STMT_LIST | STMT; STMT → EXPR | IF_STMT | WHILE_STMT | { STMT_LIST }

EXPR → EXPR + EXPR | EXPR - EXPR | ID

IF_STMT → if (EXPR) then STMT

| if (EXPR) then STMT else STMT

WHILE_STMT → while (EXPR) do STMT

Exhaustive Search

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

Phase 1: $S \Rightarrow SS$ Find derivation of

 $S \Rightarrow aSb$ aabb

 $S \Rightarrow bSa$

 $S \Rightarrow \lambda$

All possible derivations of length 1

63

$$S \Rightarrow SS$$

aabb

$$S \Rightarrow aSb$$

S ⇒bSa

 $S \Rightarrow \lambda$

Phase 2
$$S oup SS \mid aSb \mid bSa \mid \lambda$$
 $S \Rightarrow SS \Rightarrow SSS$
 $S \Rightarrow SS \Rightarrow aSbS$ $aabb$

Phase 1 $S \Rightarrow SS \Rightarrow bSaS$
 $S \Rightarrow SS \Rightarrow SS \Rightarrow SS$
 $S \Rightarrow aSb \Rightarrow aSSb$
 $S \Rightarrow aSb \Rightarrow aaSbb$
 $S \Rightarrow aSb \Rightarrow abSab$
 $S \Rightarrow aSb \Rightarrow abSab$
 $S \Rightarrow aSb \Rightarrow abSab$

Phase 2
$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$
Phase 3
$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

Time complexity of exhaustive search

Suppose there are no productions of the form

$$A \rightarrow \lambda$$

$$A \rightarrow B$$

Number of phases for string w: 2|w|

For grammar with k rules

Time for phase 1: k

k possible derivations

69

Time for phase 2: k^2

 k^2 possible derivations

Time for phase
$$2 |w|$$
: $k^{2|w|}$
$$k^{2|w|} \text{ possible derivations}$$

There exist faster algorithms for specialized grammars

S-grammar: $A \rightarrow ax$ symbol string of variables

Pair (A,a) appears once

73

S-grammar example:

$$S \to aS$$

$$S \to bSS$$

$$S \to c$$

Each string has a unique derivation

$$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$$

For S-grammars:

In the exhaustive search parsing there is only one choice in each phase

Time for a phase: 1

Total time for parsing string w: |w|

75

For general context-free grammars:

There exists a parsing algorithm that parses a string |w| in time $|w|^3$

(we will show it in the next class)