## Mininet Network Emulation

Dhaval Bagal

November 2021

# Contents

| 1 | Stat | tic routing                         | ó        |
|---|------|-------------------------------------|----------|
|   | 1.1  | Network topology                    | <u>,</u> |
|   | 1.2  | Routing tables                      | į        |
|   |      | 1.2.1 Router R1                     | į        |
|   |      | 1.2.2 Router R2                     | ;        |
|   |      | 1.2.3 Router R3                     | ;        |
|   |      | 1.2.4 Router R4                     | ;        |
|   |      | 1.2.5 Static routing                | ;        |
|   | 1.3  | Traceroute output                   | ;        |
|   |      | 1.3.1 H1 to H2                      | ;        |
|   |      | 1.3.2 H2 to H1                      | 7        |
| 2 | BIR  | RD inter-domain routing             | )        |
|   | 2.1  | Routing tables                      | )        |
|   |      | 2.1.1 Router R1                     | )        |
|   |      | 2.1.2 Router R2                     | )        |
|   |      | 2.1.3 Router R3                     | )        |
|   |      | 2.1.4 Router R4                     | )        |
|   | 2.2  | Tracing routes                      | )        |
|   | 2.3  | Getting a link down                 | )        |
|   | 2.4  | Tracing routes after a link is down | )        |
| 3 | Net  | twork performance                   | l        |
|   | 3.1  | Manipulating router buffer sizes    | L        |
|   |      | 3.1.1 Buffer size = $10\text{Kb}$   |          |
|   |      | 3.1.2 Buffer size = $5Mb$           |          |
|   |      | 3.1.3 Buffer size = $25\text{Mb}$   | )        |
|   | 3.2  | Analysis                            | 3        |

4 CONTENTS

## Chapter 1

# Static routing

## 1.1 Network topology



Figure 1.1: Topology

## 1.2 Routing tables

## 1.2.1 Router R1

| Destination | Gateway  | Genmask   | Flags | Metric | Ref | Use Iface |
|-------------|----------|-----------|-------|--------|-----|-----------|
| 0.0.0.0     | 63.0.0.2 | 0.0.0.0   | UG    | 0      | 0   | 0 r1-eth1 |
| 62.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r1-eth0 |
| 63.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r1-eth1 |
| 66.0.0.0    | 67.0.0.2 | 255.0.0.0 | UG    | 0      | 0   | 0 r1-eth2 |
| 67.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r1-eth2 |

#### 1.2.2 Router R2

| Destination | Gateway  | Genmask   | Flags | Metric | Ref | Use Iface |
|-------------|----------|-----------|-------|--------|-----|-----------|
| 0.0.0.0     | 64.0.0.2 | 0.0.0.0   | UG    | 0      | 0   | 0 r2-eth1 |
| 62.0.0.0    | 63.0.0.1 | 255.0.0.0 | UG    | 0      | 0   | 0 r2-eth0 |
| 63.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r2-eth0 |
| 64.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r2-eth1 |
| 67.0.0.0    | 63.0.0.1 | 255.0.0.0 | UG    | 0      | 0   | 0 r2-eth0 |

#### 1.2.3 Router R3

| Destination | Gateway  | Genmask   | Flags | Metric | Ref | Use Iface |
|-------------|----------|-----------|-------|--------|-----|-----------|
| 0.0.0.0     | 66.0.0.2 | 0.0.0.0   | UG    | 0      | 0   | 0 r3-eth1 |
| 62.0.0.0    | 67.0.0.1 | 255.0.0.0 | UG    | 0      | 0   | 0 r3-eth0 |
| 63.0.0.0    | 67.0.0.1 | 255.0.0.0 | UG    | 0      | 0   | 0 r3-eth0 |
| 66.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r3-eth1 |
| 67.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r3-eth0 |

#### 1.2.4 Router R4

| Destination | Gateway  | Genmask   | Flags | Metric | Ref | Use Iface |
|-------------|----------|-----------|-------|--------|-----|-----------|
| 0.0.0.0     | 64.0.0.1 | 0.0.0.0   | UG    | 0      | 0   | 0 r4-eth1 |
| 64.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r4-eth1 |
| 65.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r4-eth0 |
| 66.0.0.0    | 0.0.0.0  | 255.0.0.0 | U     | 0      | 0   | 0 r4-eth2 |
| 67.0.0.0    | 66.0.0.1 | 255.0.0.0 | UG    | 0      | 0   | 0 r4-eth2 |

#### 1.2.5 Static routing

The ip route command is used to add static routes on a node. The syntax of the command is as follows:

```
ip route [dest-network-address] via [next-hop-ip]
  dev [src-exit-interface-name]
```

Few things to be careful about:

- 1. dest-network-address should contain the cidr decimal
- 2. next-hop-ip should NOT contain the cidr decimal
- 3. next-hop-ip and src-exit-interface-name should be on the same network

For every node in the network, static routes are added for every destination network which the node is not a part of or whose network prefix doesn't match the network prefix for any of the node's interfaces.

## 1.3 Traceroute output

#### 1.3.1 H1 to H2

```
traceroute to 65.0.0.2 (65.0.0.2), 5 hops max, 60 byte packets
1 62.0.0.1 (62.0.0.1) 0.049 ms 0.008 ms 0.006 ms
2 63.0.0.2 (63.0.0.2) 0.024 ms 0.010 ms 0.009 ms
3 64.0.0.2 (64.0.0.2) 0.025 ms 0.011 ms 0.011 ms
4 65.0.0.2 (65.0.0.2) 0.027 ms 0.015 ms 0.013 ms
```

#### 1.3.2 H2 to H1

```
traceroute to 62.0.0.2 (62.0.0.2), 5 hops max, 60 byte packets
```

- $1 \quad 65.0.0.1 \; (65.0.0.1) \quad 0.034 \; \mathrm{ms} \quad 0.006 \; \mathrm{ms} \quad 0.004 \; \mathrm{ms}$
- 2 64.0.0.1 (64.0.0.1) 0.012 ms 0.006 ms 0.006 ms 3 63.0.0.1 (63.0.0.1) 0.014 ms 0.008 ms 0.007 ms
- 4 62.0.0.2 (62.0.0.2) 0.017 ms 0.010 ms 0.009 ms

## Chapter 2

# BIRD inter-domain routing

## 2.1 Routing tables

#### 2.1.1 Router R1

| Kernel IP rout | ting table |           |       |        |     |           |
|----------------|------------|-----------|-------|--------|-----|-----------|
| Destination    | Gateway    | Genmask   | Flags | Metric | Ref | Use Iface |
| 62.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 0      | 0   | 0 r1-eth0 |
| 62.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 32     | 0   | 0 r1-eth0 |
| 63.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 0      | 0   | 0 r1-eth1 |
| 63.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 32     | 0   | 0 r1-eth1 |
| 64.0.0.0       | 63.0.0.2   | 255.0.0.0 | UG    | 32     | 0   | 0 r1-eth1 |
| 66.0.0.0       | 67.0.0.2   | 255.0.0.0 | UG    | 32     | 0   | 0 r1-eth2 |
| 67.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 0      | 0   | 0 r1-eth2 |
| 67.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 32     | 0   | 0 r1-eth2 |

#### 2.1.2 Router R2

| Kernel IP rout | ing table |           |       |        |     |           |
|----------------|-----------|-----------|-------|--------|-----|-----------|
| Destination    | Gateway   | Genmask   | Flags | Metric | Ref | Use Iface |
| 62.0.0.0       | 63.0.0.1  | 255.0.0.0 | UG    | 32     | 0   | 0 r2-eth0 |
| 63.0.0.0       | 0.0.0.0   | 255.0.0.0 | U     | 0      | 0   | 0 r2-eth0 |
| 63.0.0.0       | 0.0.0.0   | 255.0.0.0 | U     | 32     | 0   | 0 r2-eth0 |
| 64.0.0.0       | 0.0.0.0   | 255.0.0.0 | U     | 0      | 0   | 0 r2-eth1 |
| 64.0.0.0       | 0.0.0.0   | 255.0.0.0 | U     | 32     | 0   | 0 r2-eth1 |
| 65.0.0.0       | 64.0.0.2  | 255.0.0.0 | UG    | 32     | 0   | 0 r2-eth1 |
| 66.0.0.0       | 64.0.0.2  | 255.0.0.0 | UG    | 32     | 0   | 0 r2-eth1 |
| 67.0.0.0       | 63.0.0.1  | 255.0.0.0 | UG    | 32     | 0   | 0 r2-eth0 |

### 2.1.3 Router R3

| Kernel IP rout | ting table |           |       |                |     |           |
|----------------|------------|-----------|-------|----------------|-----|-----------|
| Destination    | Gateway    | Genmask   | Flags | ${\tt Metric}$ | Ref | Use Iface |
| 62.0.0.0       | 67.0.0.1   | 255.0.0.0 | UG    | 32             | 0   | 0 r3-eth0 |
| 63.0.0.0       | 67.0.0.1   | 255.0.0.0 | UG    | 32             | 0   | 0 r3-eth0 |
| 64.0.0.0       | 66.0.0.2   | 255.0.0.0 | UG    | 32             | 0   | 0 r3-eth1 |
| 65.0.0.0       | 66.0.0.2   | 255.0.0.0 | UG    | 32             | 0   | 0 r3-eth1 |
| 66.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 0              | 0   | 0 r3-eth1 |
| 66.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 32             | 0   | 0 r3-eth1 |

| 67.0.0.0 | 0.0.0.0 | 255.0.0.0 | U  | 0  | 0 | 0 r3-eth0 |
|----------|---------|-----------|----|----|---|-----------|
| 67.0.0.0 | 0.0.0.0 | 255.0.0.0 | IJ | 32 | 0 | 0 r3-eth0 |

#### 2.1.4 Router R4

| Kernel IP rout | ting table |           |       |        |     |           |
|----------------|------------|-----------|-------|--------|-----|-----------|
| Destination    | Gateway    | Genmask   | Flags | Metric | Ref | Use Iface |
| 62.0.0.0       | 64.0.0.1   | 255.0.0.0 | UG    | 32     | 0   | 0 r4-eth1 |
| 63.0.0.0       | 64.0.0.1   | 255.0.0.0 | UG    | 32     | 0   | 0 r4-eth1 |
| 64.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 0      | 0   | 0 r4-eth1 |
| 64.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 32     | 0   | 0 r4-eth1 |
| 65.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 0      | 0   | 0 r4-eth0 |
| 65.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 32     | 0   | 0 r4-eth0 |
| 66.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 0      | 0   | 0 r4-eth2 |
| 66.0.0.0       | 0.0.0.0    | 255.0.0.0 | U     | 32     | 0   | 0 r4-eth2 |
| 67.0.0.0       | 66.0.0.1   | 255.0.0.0 | UG    | 32     | 0   | 0 r4-eth2 |

### 2.2 Tracing routes

```
traceroute to 65.0.0.2 (65.0.0.2), 5 hops max, 60 byte packets
1 62.0.0.1 (62.0.0.1) 0.030 ms 0.006 ms 0.005 ms
2 63.0.0.2 (63.0.0.2) 0.014 ms 0.007 ms 0.008 ms
3 64.0.0.2 (64.0.0.2) 0.015 ms 0.008 ms 0.009 ms
4 65.0.0.2 (65.0.0.2) 0.017 ms 0.011 ms 0.010 ms
```

### 2.3 Getting a link down

The command to get any link down in mininet is as follows:

```
link [node-1-name] [node-2-name] down
```

You can also get the link down using python code as follows:

info(net.configLinkStatus('node-1-name', 'node-2-name', 'down'))

## 2.4 Tracing routes after a link is down

```
traceroute to 65.0.0.2 (65.0.0.2), 5 hops max, 60 byte packets
1 62.0.0.1 (62.0.0.1) 0.026 ms 0.005 ms 0.004 ms
2 67.0.0.2 (67.0.0.2) 0.014 ms 0.008 ms 0.007 ms
3 66.0.0.2 (66.0.0.2) 0.015 ms 0.010 ms 0.008 ms
4 65.0.0.2 (65.0.0.2) 0.015 ms 0.010 ms 0.010 ms
```

## Chapter 3

# Network performance

#### Manipulating router buffer sizes 3.1

## 3.1.1 Buffer size = 10Kb

Server listening on 8000

| Server |
|--------|
|--------|

| Server                |                     |              |                                          |                                                                               |           |       |                    |
|-----------------------|---------------------|--------------|------------------------------------------|-------------------------------------------------------------------------------|-----------|-------|--------------------|
| Server                | listening on        | 8000         |                                          |                                                                               |           |       |                    |
| [ 5]<br>[ ID]<br>[ 5] | Interval 0.00-10.00 | 2 por<br>sec | t 8000 connec<br>Transfer<br>73.5 MBytes | ort 52640<br>ted to 62.0.0.2<br>Bandwidth<br>61.7 Mbits/sec<br>43.3 Mbits/sec | port 5    | 52642 |                    |
| [ 5]                  | 0.00-11.28          | sec          | 84.9 MBytes                              | Bandwidth<br>63.2 Mbits/sec<br>59.6 Mbits/sec                                 | Retr<br>O |       | sender<br>receiver |
| Client                |                     |              |                                          |                                                                               |           |       |                    |
| [ 4]<br>[ ID]         | Interval            | 2 por        | t 52642 conne<br>Transfer                | ected to 65.0.0.2<br>Bandwidth<br>71.2 Mbits/sec                              | Retr      | Cwnd  | ytes               |
| [ 4]                  | 0.00-10.00          | sec          | 84.9 MBytes                              | Bandwidth 71.2 Mbits/sec 67.2 Mbits/sec                                       | Retr<br>O |       | sender<br>receiver |
| iperf                 | Done.               |              |                                          |                                                                               |           |       |                    |
| 3.1.2<br>Server       | Buffer size         | e = 0        | 5Mb                                      |                                                                               |           |       |                    |
| Dei vei               |                     |              |                                          |                                                                               |           |       |                    |

#### Client

Connecting to host 65.0.0.2, port 8000

[ 4] local 62.0.0.2 port 52646 connected to 65.0.0.2 port 8000 [ ID] Interval Transfer Bandwidth Retr Cwnd

[ 4] 0.00-10.00 sec 93.5 MBytes 78.5 Mbits/sec 0 8.14 MBytes

[ 4] 0.00-10.00 sec 93.5 MBytes 78.5 Mbits/sec 0 sender [ 4] 0.00-10.00 sec 90.7 MBytes 76.1 Mbits/sec receiver

iperf Done.

#### 3.1.3 Buffer size = 25Mb

#### Server

\_\_\_\_\_

Server listening on 8000

\_\_\_\_\_

Accepted connection from 62.0.0.2, port 52648

[ 5] local 65.0.0.2 port 8000 connected to 62.0.0.2 port 52650

[ ID] Interval Transfer Bandwidth

[ 5] 0.00-10.00 sec 83.9 MBytes 70.4 Mbits/sec

[ 5] 10.00-11.48 sec 7.17 MBytes 40.6 Mbits/sec

[ ID] Interval Transfer Bandwidth Retr

[ 5] 0.00-11.48 sec 95.5 MBytes 69.7 Mbits/sec 0 sender [ 5] 0.00-11.48 sec 91.1 MBytes 66.6 Mbits/sec receiver

#### Client

Connecting to host 65.0.0.2, port 8000

[ 4] local 62.0.0.2 port 52650 connected to 65.0.0.2 port 8000

[ ID] Interval Transfer Bandwidth Retr Cwnd

[ 4] 0.00-10.00 sec 95.5 MBytes 80.1 Mbits/sec 0 7.09 MBytes

[ ID] Interval Transfer Bandwidth Retr

[ 4] 0.00-10.00 sec 95.5 MBytes 80.1 Mbits/sec 0 sender [ 4] 0.00-10.00 sec 91.1 MBytes 76.4 Mbits/sec receiver

iperf Done.

3.2. ANALYSIS 13

## 3.2 Analysis

Bandwidth-delay product (BDP) is given by the product of the bandwidth and the RTT.

Since we assume the bandwidth to be 100Mb and delay to be 30ms, we can calculate the BDP as follows:

$$BDP = 100Mb * 30ms = 3 Mbits$$

The throughput should be close to the bandwidth (100Mb) when the router buffer size is greater than or equal to the BDP. Similarly, when the router buffer size is less than the BDP, the throughput is reduced.

From the results obtained in section 1, we see that throughput with a buffer size of 10k is much lesser than that with buffer sizes of 5Mb and 25Mb.