3.2. Grandeurs standard de l'équilibre de Boudouard

À température élevée, le graphite $C_{(s)}$ réduit le dioxyde de carbone $CO_{2(g)}$ selon l'équation bilan :

$$C_{(s)} + CO_{2(g)} = 2CO_{(g)}$$

L'enthalpie libre molaire pour cette équation bilan est :

$$\Delta_r G^{\circ}(T) = 1,71 \cdot 10^5 - 172 \times T$$
 avec $\Delta_r G^{\circ}(T)$ en J/mol et T en K.

- 1. Déterminer la température T_i , dite température d'inversion, pour laquelle la constante d'équilibre $K^{\circ}(T_i)$ de la réaction vaut 1.
- 2. Déterminer $K^{\circ}(T_i + 50 \text{ K})$ et $K^{\circ}(T_i 50 \text{ K})$. Que peut-on conclure de ces calculs?

1
$$\Delta rG^{\circ}(T) = \Delta rH^{\circ} - T\Delta rS^{\circ}$$
 $K^{\circ}(T_{i}) = 1 = \exp(-\frac{\Delta rG^{\circ}}{RT_{i}}) \Rightarrow \Delta rG^{\circ} = 0$
 $\Rightarrow T_{i} = \frac{\Delta rH^{\circ}}{\Delta rS^{\circ}} = 993K$

Z. Identite Thermodynamique Se transe pies de vons grand hanne est bort révile. GHFU dG:TUAP-SIT du = - PdV + TdS.

$$K^{\circ}(T_{1}+S_{0}R)=\exp\left(-\frac{\Delta_{1}H^{\circ}+(T_{1}+\Delta_{1})\Delta_{1}S^{\circ}}{R(T+\Delta_{1})}\right)$$

$$=\exp\left(-\frac{\Delta_{1}H^{\circ}}{R(T+\Delta_{1})}+\frac{\Delta_{1}S^{\circ}}{R}\right)$$

$$=2.69$$

$$K^{\circ}(T_{1}-S_{0}R)=0.33$$
Conclusion: Si T1 K1

3.3. De l'enthalpie libre à l'enthalpie et l'entropie

Le tableau ci-dessous donne à différentes températures T les enthalpies libres standards $\Delta_r G^{\circ}$ relatives aux réactions d'obtention des oxydes de cuivre(I) $\operatorname{Cu_2O_{(cr)}}$ et de cuivre(II) $\operatorname{CuO_{(cr)}}$:

(1)	$4Cu_{(cr)} +$	$O_{2(g)} =$	$2Cu_2O_{(cr)}$

(2)) 2C11/	0	$-2C_{11}O_{4}$
(2)) 2 Cu $_{(cr)}$) $+ O_{2(g)}$	$= 2 \text{CuO}_{(\text{cr})}$

$T\left(\mathbf{K}\right)$	300	800
$\Delta_r G_1^{\circ} \left(kJ \cdot mol^{-1} \right)$	-300	-230
$\Delta_r G_2^{\circ} \left(\text{kJ} \cdot \text{mol}^{-1} \right)$	-260	-170

 $\Delta_r H^{\circ}$ et $\Delta_r S^{\circ}$ sont supposées indépendantes de T.

- 1. Déterminer $\Delta_r H_i^{\circ}$ et $\Delta_r S_i^{\circ}$ pour ces deux réactions, en déduire les expressions de $\Delta_r G_i^{\circ}$.
- 2. Déterminer $\Delta_r G_3^{\circ}$ pour la réaction (3) qui permet de transformer CuO et Cu en Cu₂O.

3.5. Température de flamme

La réaction de combustion du gaz de ville s'effectue à pression constante, dans des conditions adiabatiques, et selon l'équation bilan :

$$CH_{4(g)} + 2O_{2(g)} = CO_{2(g)} + 2H_2O_{(g)}$$

On donne l'enthalpie standard à 298 K $\Delta_{\text{comb}}H^{\circ}(\text{CH}_{4(g)}) = -890, 4 \text{ kJ/mol}$ de la réaction suivante :

$$CH_{4(g)} + 2O_{2(g)} = CO_{2(g)} + 2H_2O_{(l)}$$

L'enthalpie standard de vaporisation de l'eau est $\Delta_{\text{vap}}H^{\circ} = 43,84 \text{ kJ/mol}.$

On donne également les capacités thermiques supposées indépendantes de la température :

	$CO_{2(g)}$	$O_{2(g)}$	$N_{2(g)}$	$\mathrm{H_2O_{(g)}}$	$\mathrm{H_2O}_{(l)}$
$C_P^\circ \; (\mathbf{J}{\cdot}\mathbf{K}^{-1}{\cdot}\mathrm{mol}^{-1})$	53,0	34,0	32,3	40,0	75,5

La température initiale étant $T_i = 298$ K, déterminer la température atteinte par la flamme lors d'une combustion dans l'air en conditions stœchiométriques, l'air étant un mélange de N₂ et O₂ avec $n_{\rm N_2} = 4n_{\rm O_2}$.

3.6. Synthèse industrielle de l'éthanol

L'éthanol peut être synthétisé par hydratation de l'éthylène C_2H_4 en phase gazeuse, à environ 300°C, et sous une pression de 70 bar, en présence d'acide phosphorique (catalyseur) adsorbé sur phase supportée :

$$C_2H_{4(g)} + H_2O_{(g)} = C_2H_5OH_{(g)}$$

On donne M(C) = 12,01 g /mol, M(H) = 1,008 g/mol, M(O) = 16,00 g/mol, $\rho(C_2H_5OH) = 0,785$ g/cm⁻³ ainsi que les enthalpies de formation $\Delta_f H^{\circ}$ (en kJ/mol) et les entropies molaires standards S_m° (en J/K/mol) à 25°C :

	$C_2H_5OH_{(g)}$	$H_2O_{(g)}$	$C_2H_{4(g)}$
$\Delta_f H^\circ$ (298 K)	-235,1	-241,8	52,3
$S_m^{\circ} (298 \text{ K})$	282,7	188,7	219,5

- 1. Calculer les valeurs de l'enthalpie standard, de l'entropie standard et de l'enthalpie libre standard de cette réaction à 298 K.
- 2. Quelle est l'influence d'une élévation de pression ou de température sur la position de l'équilibre? Commenter les conditions de synthèse industrielle dans l'énoncé.
- 3. La réaction industrielle est effectuée à partir d'un mélange de 200 mol d'éthylène et 200 mol d'eau à 300°C et 70 bar. Calculer l'avancement à l'équilibre $\xi_{\rm eq}$.
- 4. On ajoute 10,0 mol d'eau au mélange obtenu à l'équilibre, à P et T constantes. Calculer l'enthalpie libre de réaction $\Delta_r G$ juste après l'ajout. Dans quel sens l'équilibre se déplace-t-il à partir de cet état hors équilibre?
- 5. On définit le rendement de cette synthèse $\eta=\frac{\xi_{\rm eq}}{n_{\rm C_2H_4,0}}$. À P et T fixés, comment peut-on l'améliorer d'après la question précédente?

			• • •
(. a	oi de Hess	DrH° = OfH° (C2H5OHig,) - AtH	(Crtty cgr)
		- OfH (H20 g1) = -45,66	eJ. noT
		Drs' = 568' = -125,	5 JK mos
		Org = DrH - Tdrs = -8,2hJ-~	1
٤, ډ	Suntieur de	recution.	c
		Remore PHD = XOZHSOH XCHIN X CH	P . P
		Permo × PHO XCHyo x CH	a ~ P
		Si Q < K° ct) diplement	down be so
3.	3000 7	bec	
-	TT pour U	bon cinétique.	
	en mol	CzHxy, + H20 y, = C2H50H	y> 100
	T=0	200 200 0	400
		200- Leg 200- Zeg Zeg	

		S140- TO	0216		
	K°= enp	(- STHO-TO	<u> </u>		
	= <u>X</u> c	Hoby XV	$\frac{p^{\circ}}{\rho} = \frac{1}{2}$	(200- 3eg)	- K 70
				(200- 309)	
		N- 3eg)2 = 3e			
		1 5g = 23	,2nol /		
4.	en mol	CzHrys	+ 120 131 =	CrHSOTIG,	186
	4=0	(26, 8	176,8	23,2	
	t=teg	176,8	186,8	23, 2	
	2	= 3,58×153			
	۵	G - R7 mi	$\frac{2}{3}$ = -133	J-mot (0	()
		'			