

Agenda Introduction VXLAN - Flood and Learn • VXLAN - BGP EVPN Summary

Traditional Data Center Networking

Data Center "Fabric" Journey

IEEE 802.1Q

Classic Ethernet IEEE 802.1Q Frame Format

- Traditionally VLAN is expressed over 12 bits (802.1Q tag)
 - Limits the maximum number of segments in a Data Center to 4096 VI ANs

TPID = Tag Protocol Identifier, TCI = Tag Control Information, PCP = Priority Code Point, CFI = Canonical Format Indicator, VID = VLAN Identifier

VXLAN Overview

at tat to

- Virtual eXtensible LAN
- Standards based Encapsulation
 - RFC 7348
 - Uses UDP-Encapsulation
- Transport Independent
 - Laver-3 Transport (Underlay)

- Transport Independent
 - Layer-3 Transport (Underlay)
- VXLAN leverages the VNI field with a total address space of 24 bits
 - Support of ~16M segments
- The VXI AN Network Identifier (VNI/VNID) is part of the VXLAN Header

of total overhead Cisco VXLAN Tutorial Cisco Public Il rights reserved.

20B + 8B +8B + 14B* = 50 Bytes

Why VXLAN?

VXLAN provides a Network with Segmentation, IP Mobility, and Scale

- "Standards" based Overlay
- Leverages Layer-3 ECMP All links forwarding
- Increased Name-Space to 16M identifier
- Segmentation and Multi-Tenancy
- Integration of Physical and Virtual
- It's SDN ©

VXLAN Overview (1)

VXLAN Overview (2)

VXLAN Flood & Learn

VTEP Peer Discovery & Address Learning (1)

VTEP Peer Discovery & Address Learning (2)

VTEP Peer Discovery & Address Learning (3)

VTEP Peer Discovery & Address Learning (4)

VXLAN Flood & Learn

Cisco Public

VXLAN Packet Forwarding (1)

Centralized Gateway (FHRP)

VXLAN Routing

- Centralized Routing in a Layer-2 VXLAN Network
 - Routing between VNI (Different Subnet)
 - Bridging within VNI (Same Subnet)
- Inter-VXLAN Routing at Core/Aggregation Layer
- vPC provides MAC state synchronization and HSRP peering
 - Redundant VTEPs share Anycast VTEP IP address in the Underlay
- Bottleneck for throughput

VXLAN Benefits

- Flexible placement of any workload in any rack throughout and between data centers
- Decoupling between physical and virtual networks
- Large Layer 2 network to provide work load mobility
- Centralized Management, provisioning, and automation, from a controller
- Scale, performance, agility and stream lined operations
- Better utilization of available network paths in the underlying infrastructure

Ethernet VPN (EVPN)

EVPN MP-BGP

(RFC 7432)

MPLS

(RFC 7432)

Provider Backbone Bridges

(RFC 7623)

Overlay (NVO3)

(RFC 8365)

- Standards based Control-Plane
 - RFC 7432
 - Uses Multiprotocol BGP

- EVPN over NVO Tunnels (i.e. VXLAN) for Data
 - Provides Layer-2 and Layer-3 Overlay Service over Center Fabric Encapsulation
- simple IP Network

24

EVPN - Host and Subnet Route Distribution

- Host Route Distribution decoupled from the Underlay protocol
- Use MultiProtocol-BGP (MP-BGP) on the Leaf nodes to distribute internal Host/Subnet Routes and external reachability information
- Route-Reflectors (RR) deployed for scaling purposes

25

EVPN Control Plane - Host and Subnet Routes

- BGP EVPN NLRI*
- Host MAC (Route Type 2)
 - MAC only, Single VNI, Single Route Target
- Host MAC+IP (Route Type 2)
 - MAC and IP, Two VNI, Two Route Target, Router MAC
- Internal and External Subnet Prefixes (Route Type 5)
 - IP Subnet Prefix, Single VNI, Single Route Target

*NLRI: Network Layer Reachability Information (BGP Update Format)

Host Advertisements (L2VNI)

26

- Host MAC (Route Type 2)
 - MAC
 - MPLS Label1 (L2VNI*)
 - Route Target for MAC-VRF
- MAC attributes are Mandatory

*L2VNI: VNI for all Bridging operation ("VLAN-VNI")

Host Advertisements (L3VNI)

- Host MAC+IP (Route Type 2)
 - MAC and IP
 - MPLS Label1 (L2VNI)
 - Route Target for MAC-VRF
 - MPLS Label2 (L3VNI*)
 - Route Target for IP-VRF
 - Router MAC
- IP Attributes are Optional
- Populated through ARP/ND

*L3VNI: VNI for all Routing operation ("VRF-VNI")

Distributed IP Anycast Gateway*

VXLAN/EVPN

- Distributed Routing with IP Anycast Gateway (Integrated Route/Bridge IRB)
 - Routing between VNI (Different Subnet)
 - Bridging within VNI (Same Subnet)
- Inter-VXLAN Routing Leaf/Access Layer
 - All Leafs share gateway IP and MAC for a Subnet (No HSRP)
 - A Host will always find its Gateway directly attached anywhere it moves

*Requires EVPN Control-Plane.

- Distributed First-Hop Routing on Edge Device
 - All Edge Device share same Gateway IP and MAC address
 - Pervasive Gateway approach
- Gateway is always active
 - No redundancy protocol for hello or state exchange
- Distributed and smaller state
 - Only local End-Points ARP entries

Distributed IP Anycast Gateway

- Distributed First-Hop Routing on Edge Device
 - All Edge Device share same Gateway IP and MAC address
 - Pervasive Gateway approach
- Gateway is always active
 - No redundancy protocol for hello or state exchange
- Distributed and smaller state
 - Only local End-Points ARP entries

- Network Addressing and Routing Methodology
- Datagrams sent from a single Sender to the Topologically Nearest Node
- Group of potential Receivers, all identified by the same Destination Address

*L3VNI: VNI for all Routing operation ("VRF-VNI")

VXLAN Routing – Symmetric (A to C)

_												
	Туре	MAC / Length		L2VNI / RT		P / Length	L3VN	II / RT	Next-Hop	Seq.		
	2	0000.3001.			500:3001 1	192.168.10.10 ⁻	1/32 5000	,		101		
	2	0000.3002.			500:3002 1	192.168.20.10 ⁻	1/32 5000			107		
					8	Spine Spine Spine	Spine					
		SIP	DIP	VXLAN	SMAC	DMAC	SIP	DIP	Payload			
		10.200.200.101	10.200.200.107	5000	0200.0ade.de01	0200.0ade.de07	192.168.10.1	01 192.168.20.101				
			VTEP	VTEP	VTEP	VTEP	VTEP	VTEP				
			= ×	= 8	—28		SMAC	DMAC	SIP	DIP		
							2020.0000.AAAA	0000.3002.2101	192.168.10.101	192.168.20.101		
									1			
.C	DMAC	SIP	DIP									
.3001.1101	2020.000	0.AAAA 192.16	8.10.101 192.	168.20.101		Baremetal			Baremetal			
	MAC	Host A : 0000.3001.110	01			Host B 000.3001.1102		Host C MAC: 0000.3002.2101				

IP: 192.168.10.101

IP: 192.168.10.102

IP: 192.168.20.101

VXLAN Routing - Symmetric (C to A)

Ту	ре	MAC / Length			L2VNI / RT		IP / Length		L3VNI / RT		Next-Hop	Sec			
2	2	0000.3001.1101 / 48		3001, 65500:3001		192.168.10.101/32		5000, 65500:5000		10.200.200	0.101				
:	2	0000.3002.2102 / 48		/ 48	3002, 65500:3002		192.168.20.101/32		1/32	5000, 65500:5000		10.200.200	0.107		
_						(X)	Spine	Spine	Spi						
		SIP	DIP		VXLAN	SMAC		DMAC	SIP		DIP	Payloa	d		
		10.200.200.	107 10.2	200.200.101	5000	0200.0ade.d	le07	0200.0ade.de0	.de01 192.168.2		192.168.10.10				
				VTEP →	VTEP → ₩	VTEP (VTEP	VTEP VIEW	VTEF					
	DMAC	;	SIP		DIP				₹			8			
AAA	0000.3	3001.1101	192.168.2	0.101 1	92.168.10.101										
									MAC	DM	AC	SIP	DIP		
						(Baremetal)		0	0000.3002.2101		0.0000.AAAA	192.168.20.101	192.168.10.10		
		Baremetal				(Baremetal)					- Salenetal				
	Host A						Host B				Host C				
	MAC: 0000.3001.1101						MAC: 0000.3001.1102				MAC: 0000.3002.2101				

IP: 192.168.10.101

SMAC 2020.0000

IP: 192.168.10.102

IP: 192.168.20.101

Summary

- Overlays (VXLAN) for Network Virtualization
 - Layer-3 in the Underlay Defines the Topology
 - Layer-2 and Layer-3 in the Overlay Defines the Services
 - End-Points State exists in the Overlay
- VXLAN evolved as the Control-Plane evolved
 - Applicability changes over time VXLAN EVPN Multi-Site for DCI
- BGP EVPN for integrated Layer-2 and Layer-3 Services
 - Control-Plane driven
 - Optimal Routing and Bridging
 - Avoid hair pinning and reduced failure domains

