TRIGONOMETRY Chapter 16

IDENTIDADES TRIGONOMÉTRICAS

FUNDAMENTALES

SACO OLIVEROS

MOTIVATING STRATEGY

ECUACIONES E IDENTIDADES

ECUACIONES Y SISTEMAS

ECUACIONES E IDENTIDADES

$$5x-2=3(x+4)$$

$$2(x-3)=2x-6$$

IDENTIDAD TRIGONOMÉTRICA

<u>Definición</u>: IDENTIDAD TRIGONOMÉTRICA es una igualdad que contiene expresiones trigonométricas y que se verifica para todo valor admisible de la(s) variables(s).

Expresiones Trigonométricas: Son expresiones matemáticas donde las variables están afectadas por operadores trigonométricos (sen, cos, tan, cot, sec, csc).

Identidades Fundamentales : Llamadas también identidades trigonométricas básicas, son aquellas que se obtienen luego de relacionar las líneas trigonométricas en la circunferencia trigonométrica.- Se clasifican en:

IDENTIDADES TRIGONOMÉTRICAS FUNDAMENTALES

CSCX

senx

A) Identidades Recíprocas:

$$senx.cscx = 1$$

$$\cos x \cdot \sec x = 1$$

$$tanx.cotx = 1$$

$$secx = \frac{1}{\frac{1}{cosx}}$$

$$tanx = \frac{1}{\frac{1}{cotx}}$$

$$cotx = \frac{1}{\frac{1}{tanx}}$$

senx =

CSCX

 $\cos x =$

B) <u>Identidades Por División</u>:

$$tanx = \frac{senx}{cosx}$$

$$\cot x = \frac{\cos x}{\sin x}$$

C) <u>Identidades Pitagóricas</u>:

$$sen^{2}x + cos^{2}x = 1$$

$$sen^{2}x = 1 - cos^{2}x$$

$$cos^{2}x = 1 - sen^{2}x$$

$$sec^2x - tan^2x = 1$$

$$\begin{cases} \sec^2 x = 1 + \tan^2 x \\ \tan^2 x = \sec^2 x - 1 \end{cases}$$

$$csc^{2}x - cot^{2}x = 1$$

$$csc^{2}x = 1 + cot^{2}x$$

$$cot^{2}x = csc^{2}x - 1$$

Propiedades:

Si
$$\sec x + \tan x = a$$

entonces
 $\sec x - \tan x = \frac{1}{a}$

Si
$$\csc x + \cot x = b$$

entonces
 $\csc x - \cot x = \frac{1}{b}$

Simplifique: E = secx.senx + cscx.cosx - tanx

RESOLUCIÓN

$$E = \frac{1}{\cos x} \cdot \operatorname{senx} + \frac{1}{\sin x} \cdot \cos x - \tan x$$

$$E = \frac{tanx}{} + cotx$$

Recordar:

$$\frac{\text{senx}}{-\tan x} = \tan x$$

$$\frac{\cos x}{\sin x} = \cot x$$

senx.cscx = 1

Simplifique
$$E = \cot x - \frac{\csc x}{\sec x}$$

RESOLUCIÓN

Recordar:

$$\cot x = \frac{\cos x}{\sin x}$$

senx.cscx = 1

cosx . secx
= 1

Reduzca
$$P = \frac{1 + \cot x}{\csc x} - \cos x$$

RESOLUCIÓN

$$P = \frac{1 + \cot x}{\csc x} - \cos x$$

$$P = \frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x}} - \cos x$$

P =
$$\frac{\frac{\text{senx} + \cos x}{\text{senx}}}{\frac{1}{\text{senx}}} - \cos x$$

$$P = senx + cosx - cosx$$

Recordar:

$$\cot x = \frac{\cos x}{\sin x}$$

$$senx.cscx = 1$$

Si
$$\operatorname{sec} \phi - \tan \phi = \frac{3}{5}$$
, calcule

 $P = 3(sec\phi + tan\phi) + 2$

RESOLUCIÓN

Recordar:

Si $\sec x - \tan x = a$, entonces:

$$\sec x + \tan x = \frac{1}{a}$$

Dato:

$$\sec \phi - \tan \phi = \frac{3}{5}$$

Por propiedad : $\sec \phi + \tan \phi = \frac{5}{3}$

Luego: $P = 3(sec\phi + tan\phi) + 2$

$$P = 3\left(\frac{5}{3}\right) + 2$$

Si
$$csc\alpha + cot\alpha = 3$$
, calcule $E = 10 sen\alpha$

RESOLUCIÓN

Recordar:

Si $\csc \alpha + \cot \alpha = a$, entonces:

$$\csc \alpha - \cot \alpha = \frac{1}{a}$$

$$csc\alpha + cot\alpha = 3$$

Por propiedad :
$$\csc \alpha - \cot \alpha = \frac{1}{3}$$

$$2 \csc \alpha = \frac{10}{3}$$

$$sen \alpha = \frac{3}{5}$$

$$\csc\alpha = \frac{5}{3}$$

Luego:
$$E = 10 \frac{\sin \alpha}{5} = 10 \left(\frac{3}{5}\right)$$

Al copiar de la pizarra la expresión secx – tanx – 1, un estudiante cometió un error y escribió cscx – cotx – 1. Calcule la razón geométrica entre lo que estaba escrito en la pizarra y lo que copió el alumno.

RESOLUCIÓN

Recordar:

$$cosx.secx = 1$$

$$senx.cscx = 1$$

$$tanx = \frac{senx}{cosx}$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$R = \frac{\sec x - \tan x - 1}{\csc x - \cot x - 1}$$

$$R = \frac{1}{\cos x} \frac{\cos x}{\cos x} \frac{\cos x}{\cos x}$$

$$R = \frac{1}{\cos x} \frac{\cos x}{\cos x} \frac{\cos x}{\cos x}$$

$$\frac{1}{\sec nx} \frac{\cos x}{\sec nx} \frac{(1 - \sec x)}{\sec nx}$$

$$R = \frac{\cos x}{(1 - \cos x - \sec nx)}$$

$$R = \frac{\cos x}{(1 - \cos x - \sec nx)}$$

$$R = \frac{\cos x}{\sec nx}$$

COSX

Una plancha metálica tiene la forma de un rectángulo cuyos lados miden $4(1-sen\theta)$ m y $2(1+sen\theta)$ m.

Si el área de la plancha mide 2 m^2 y el costo de la plancha (en soles) está dado por S/ 200 ($3 \csc^2 \theta + 2 \sec^2 \theta$). ¿Cuánto cuesta la plancha ?

Recordar:

$$1 - \sin^2\theta = \cos^2\theta$$

$$sen^2\theta = 1 - cos^2\theta$$

$$\cos\theta \cdot \sec\theta = 1$$

$$sen\theta.csc\theta = 1$$

RESOLUCIÓN

Según datos (área de la plancha):

$$4(1 - sen\theta) . 2(1 + sen\theta) = 2$$

$$4(1 - \sin^2\theta) = 1$$
 $4 \cos^2\theta = 1$

$$\cos^2\theta = \frac{1}{4} \implies \sec^2\theta = 4$$

$$sen^2\theta = 1 - \frac{1}{4} = \frac{3}{4}$$
 $csc^2\theta = \frac{4}{3}$

Costo = S/ 200 (
$$3 \csc^2 \theta + 2 \sec^2 \theta$$
)

Costo = S/ 200 (
$$3\left(\frac{4}{3}\right)$$
 + 2 (4))

