Исправление ошибок написания

Spelling correction

Использованы картинки А. Байтина (Яндекс. Группа опечаток и машинного перевода)

Задачи исправления ошибок написания

- Обнаружение ошибки
- Исправление ошибки
 - Автокоррекция
 - Предложение подсказки
 - Списки подсказок

<u>Сделать стартовой</u> <u>Войти в почту</u>

Яндекс: 15% запросов содержат ошибки

Запрос: ОВТОМОЙИ МОСКВЫ

[автомойки москвы]

Типичные ошибки Поиск@Mail.ru:

- набор запроса в неправильной раскладке клавиатуры (например «zyltrc» вместо «яндекс»);
- недописанные запросы (например, «vko» или «знакомс»);
- ввод адреса сайта в поисковую строку вместо адреса (поисковую строку с адресной путают в каждом десятом запросе);
- самая распространенная опечатка: «однокласники» (с одной буквой «с»); ее совершают в 3-5% случаев, но из-за высокой частоты данного запроса она лидирует;
- а самая частая опечатка: «агенство» (без буквы «т»); это слово вводится с ошибкой примерно в 30% случаев.

Источники ошибок в запросах

Случайные клавиатурные ошибки

приклбчение вместо приключение

- Систематические когнитивные ошибки
 - Фонетические ошибки

игипет вместо египет

- Слитно-раздельное написание
 фото ателье вместо фотоателье
- Заимствованные слова фитнесс вместо фитнес
- Названия фирм, брендов и т.п.
 лачетти вместо лацетти
- **Марки** товаров *Нокиа і 850 w* вместо *Нокиа і850w*

Типы ошибок

Искажения в отдельных словах

- исчезновение буквы (афавит вместо алфавит)
- вставка лишней буквы (верач вместо врач)
- замена буквы (барабае вместо барабан)
- перестановка соседних букв (притнер вместо принтер)

Искажения в последовательности слов

- вставка пробела (Вели_кий Новгород вместо Великий Новгород)
- пропуск пробела (КрасныйОктябрь вместо Красный Октябрь)

Искажение смысла запроса

контекстные ошибки (вокруг меха вместо вокруг смеха)

Латинский алфавит вместо русского

транслитерация (varezhka вместо варежка)

Искаженная кодировка

использование неправильной раскладки клавиатуры (bnfkbz вместо италия)

Типы ошибок написания

- Переход в несуществующее слово
 - Предприятие -> преприятие

- Переход в существующее слово:
 - Вокруг смеха -> вокруг меха

Данные для исправления ошибок

- 1. Правильных слов больше
 - Частотность опечатки обычно на порядок меньше частоты правильного слова
- 2. Ошибки повторяются
 - Повторяемость клавиатурных и фонетических ошибок очень высокая
- 3. Ошибки зависят от контекста
 - Корректность употребления слова зависит от контекста
- Запросы
 - Информация о частотности слов
 - Информация о сочетаемости слов
 - Информация о переформулировках слов

Переформулировки запросов

• Вот как исправляют запросы сами пользователи:

райфаззен -> райффайзен

ретеил -> ритейл

колбассоф -> колбасофф

крбина -> корбина

тинидозол -> тинид<mark>а</mark>зол

скаэкспресс -> скайэкспресс

 Выбираем такие пары из пользовательских сессий и складываем их в словарь замен.

Несловарные ошибки

• Распознавание:

- Любое слово, которое не найдено в словаре, это ошибка
- Чем больше словарь, тем лучше

• Исправление:

- Порождение кандидатов: реальных слов, которые похожи на ошибку
- Выбор наилучшего слова:
 - Сходство
 - По написанию наикратчайшее редакционное расстояние (=расстояние Левенштейна)
 - По звучанию
 - Вероятность по методу зашумленного канала (noisy channel)

Ошибочное использование существующего слова

- Для каждого слова порождается множество кандидатов:
 - С похожим произношением
 - С похожим написанием
 - Текущее слово w включается в множество
- Выбор лучшего кандидата
 - Подход зашумленного канала
 - Использование контекста
 - Flying <u>form</u> Heathrow to LAX → Flying <u>from</u>
 Heathrow to LAX

Интуиция: зашумленный канал (noisy channel)

Noisy Channel + Правило Байеса

• Мы видим неправильно написанное слово *х*

• Найдем правильное слово \hat{w}

$$\hat{W} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$

$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)}$$

$$= \underset{w \in V}{\operatorname{argmax}} P(x \mid w)P(w)$$

История: Модель Noisy channel предложена около 1990

IBM

Mays, Eric, Fred J. Damerau and Robert L.
 Mercer. 1991. Context based spelling correction. *Information Processing and Management*, 23(5), 517–522

AT&T Bell Labs

 Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990. <u>A spelling correction</u> <u>program based on a noisy channel model</u>.
 Proceedings of COLING 1990, 205-210

Минимальное редакционное расстояние (расстояние Левенштейна)

- Измеряется в количестве минимальных редакционных операций, которые требуются для преобразования одного слова в другое:
- Операции:
 - Вставка
 - Удаление
 - Замена
 - Смена порядка расположения двух соседних букв

Paccтояние 1 от слова acress

Error	Candidate Correction		Error Letter	Type
acress	actress	t	-	deletion
acress	cress	-	а	insertion
acress	caress	ca	ac	transposition
acress	access	С	r	substitution
acress	across	0	е	substitution
acress	acres	-	S	insertion

Порождение кандидатов

- 80% ошибок находятся на расстоянии 1
- Почти все ошибки на расстоянии 2

- Также позволяется вставка пробела или дефиса
 - thisidea → this idea
 - inlaw → in-law

Из множества кандидатов нужно отобрать лучшего кандидата

Предположим, что список кандидатов создан. Вернемся к правилу Байеса

- Мы наблюдаем неправильно написанное слово
- Нужно найти правильное слово \hat{w}

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in V}{\operatorname{argmax}} P(\mathbf{w} | \mathbf{x})$$

$$= \underset{\text{wf } V}{\operatorname{argmax}} \frac{P(x|w)P(w)}{P(x)}$$

$$= \underset{w \in V}{\operatorname{argmax}} P(x|w) P(w)$$

Что такое P(w)?

Языковая статистическая модель

- Нужно собрать большой корпус.
- Пусть C(w) = # количество вхождений w

$$P(w) = \frac{C(w)}{T}$$

 Для запросов – корпусом может быть множество всех заданных пользователем запросов

Априорная вероятность униграмм

Частоты из 404,253,213 слов в современном корпусе английского языка (СОСА)

word	Frequency of word	P(w)
actress	9,321	.0000230573
cress	220	.000005442
caress	686	.0000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

Вероятность Channel model

- Вероятность ошибки, вероятность редактирования
- Kernighan, Church, Gale 1990

- Ошибочное слово $X = X_1, X_2, X_3...X_m$
- Правильное слово $W = W_1, W_2, W_3, ..., W_n$

- P(x|w) = Вероятность перехода (редактирования)
 - (удаления/вставки/замена/перестановки)

Вычисление вероятности ошибки: confusion "matrix"

```
del[x,y]: количество (xy написано как x) ins[x,y]: количество(x написано как xy) sub[x,y]: количество(y написано как x)
```

trans[x,y]: количество(ху написано как ух)

Вставка и удаление должны вычисляться как условные вероятности от предыдущего символа

Матрица количества замен Y на X

17	sub[X, Y] = Substitution of X (incorrect) for Y (correct) Y (correct)																									
X		1.				c		i.	:	,	1.	1 Y	-				_	_	_							
	a	<u>b</u>	C	<u>d</u>	e	f	g	h	1	<u>`</u> _	<u>k</u>	1	m	_n	0	p	<u>q</u>	<u> </u>	<u> </u>	<u> </u>	<u>u</u>	<u>v</u>	W	<u>X</u>	<u>y</u>	_ <u>Z</u>
a	0	0	7		342	0	0		118	0	1	0	0	3	76	0	0	i	35	9	9	0	i o	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	I	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	I	3	7	1	1	0
d	1	10	13	.0	12	0	5	5	()	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
C	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
İ	0	15	0	3	1	0	5	2	0	0	0	3	4	i	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
1	103	0	0	0	146	0	l	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	l	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
l	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	l	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
8	11	8	27	33	35	4	0	1	0	1	0	27	0	6	l	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	l	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
V	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
W	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
X	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
y	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
Z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Соседние клавиши на клавиатуре

Channel model

Kernighan, Church, Gale 1990

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[w_{i-1}, w_i]}{\operatorname{count}[w_{i-1}, x_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[w_{i-1}, x_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_i w_{i+1}]}, & \text{if transposition} \end{cases}$$

Сглаживание: Правило Лапласа (Add-1)

- Если использовать только матрицу частот ошибок, то некоторые ошибки окажутся невозможными
- Поскольку их вероятность равна 0
- Простое решение: добавить 1, где |А| это алфавит символов и нормализовать

If substitution,
$$P(x|w) = \frac{\text{sub}[x, w] + 1}{\text{count}[w] + A}$$

Channel model for acress

cct

a|#

rc

elo

esle

ac|ca

.000117

.00000144

.00000164

.00000209

.0000093

.0000321

28

	Ulla	IOUEI	iui aciess
Candidat e	Corre	x/w	P(x/w)

a

ac

e

S

Correctio Lette

ca

0

actress

cress

caress

access

across

acres

Noisy channel probability for across

.00000144

.00000164

.00000209

.0000093

.0000321

.0000342

.00000544

.00000170

.0000916

.000299

.0000318

.0000318

.00078

.0028

.019

2.8

1.0

1.0 29

INC	лбу С	Hall	nei þ	lobability	ioi acies	5
Candidate Correction		Lette	x/w	P(x/w)	P(w)	10 ⁹ * P(x v P(w)
actress	t	-	c ct	.000117	.0000231	2.7

a|#

rc

elo

ese

SSS

ac|ca

ca

C

0

cress

caress

access

across

acres

acres

a

ac

е

S

S

Noisy channel probability for acress

	J		•	,		
Candidate Correction		Error Lette r	x/w	P(x/w)	P(w)	10 ⁹ * <i>P(x w)P(</i> <i>w)</i>
actress	t	-	c ct	.000117	.0000231	2.7
cress	-	а	a #	.00000144	.00000544	.00078

ac|c

a

r|c

eo

esle

SSIS

ac

e

S

.00000164

.00000209

.0000093

.0000321

0000342

.00000170

.0000916

.000299

.0000318

0000318

.0028

.019

2.8

1.0

10

ca

0

caress

access

across

acres

acres

Учет контекста

- В итоге, наиболее вероятные исходные слова *actress* или *across*
- Учет контекста:
 - Учет условных вероятностей появления одного слова после другого

$$P(w_1...w_n) = P(w_1)P(w_2|w_1)...P(w_n|w_{n-1})$$

- Вероятности насчитываются на некотором корпусе. Нужно насчитать:
 - P(wi) вероятность униграмм
 - $P(w_n|w_{n-1})$ вероятность биграмм

Подсчет вероятностей

- Для униграмм P(w) всегда ненулевое
 - Поскольку наш словарь построен на текстовой коллекции
- Но $P(w_k|w_{k-1})$ может быть нулевым.
- Нужно сглаживание
 - Можно применить сглаживание add-1 (как раньше в методе Байеса)
- Можно применить другой вид сглаживания:

$$P_{li}(w_k|w_{k-1}) = \lambda P_{uni}(w_k) + (1-\lambda)P_{bi}(w_k|w_{k-1})$$

$$P_{bi}(w_k|w_{k-1}) = C(w_k|w_{k-1}) / C(w_{k-1})$$

Учет биграмм

- "a stellar and versatile acress whose combination of sass and glamour..."
- Частоты из корпуса современного американского английского со сглаживанием add-1
- P(actress|versatile)=.000021
- P(across|versatile) =.000021

```
P(whose|actress) = .0010
```

P(whose|across) = .000006

- P("versatile actress whose") = $.000021*.0010 = 210 \times 10^{-10}$
- P("versatile across whose") = $.000021*.000006 = 1 \times 10^{-10}$

Учет биграмм

- "a stellar and versatile acress whose combination of sass and glamour..."
- Частоты из корпуса современного американского английского со сглаживанием add-1
- P(actress|versatile)=.000021
 P(whose|actress) = .0010
- P(across|versatile) = .000021
 P(whose|across) = .000006

- P("versatile actress whose") = $.000021*.0010 = 210 \times 10^{-10}$
- P("versatile across whose") = $.000021*.000006 = 1 \times 10^{-10}$

Исправление ошибок переходов в существующие слова

Ошибочные слова

- …leaving in about fifteen *minuets* to go to her house.
- The design **an** construction of the system...
- Can they lave him my messages?
- The study was conducted mainly be John Black.

• 25-40% ошибок написания – реальные слова Kukich 1992

Решение проблемы ошибочных слов

- Для каждого предложения (фразы, запроса ...)
 - Порождение списка кандидатов
 - Само слово
 - Все существующие слова на небольшом редакционном расстоянии (1-2)
 - Слова, близкие по звучанию
 - Все это считается заранее
- Выбор лучшего кандидата
 - Noisy channel model

Noisy channel для исправления ошибочных словарных слов

- Дано предложение w₁,w₂,w₃,...,w_n
- Множество кандидатов для каждого слова w_i
 - Candidate(w_1) = { w_1 , w'_1 , w''_1 , w'''_1 ,...}
 - Candidate(w_2) = { w_2 , w'_2 , w''_2 , w'''_2 ,...}
 - Candidate(\mathbf{w}_n) = { \mathbf{w}_n , \mathbf{w}'_n , \mathbf{w}''_n , \mathbf{w}''_n , ...}
- Нужно выбрать последовательностьW, которая максимизирует P(W)

Noisy channel для исправления замен на реальные слова

Noisy channel для исправления замен на реальные слова

Упрощение: Одна ошибка на предложение

 Все возможные предложения с заменой одного слова

```
- w_1, w''_2, w_3, w_4 two off thew - w_1, w_2, w'_3, w_4 two of the - w'''_1, w_2, w_3, w_4 too of thew - \dots
```

 Нужно выбрать последовательностьW, которая максимизирует P(W)

Как получить вероятности

- Подсчет вероятностей по корпусу
 - Униграммы
 - Биграммы
 - И др.
- Channel model
 - То же самое, как для несловарной ошибки
 - Плюс нужна вероятность отсутствия ошибки:
 P(w|w)
 - Оценивается вероятность отсутствия ошибки в слове
 - -0.9-0.99

Пример с "thew"

X	W	x w	P(x w)	P(w)	10 ⁹ P(x w)P(w)
thew	the	ew e	0.000007	0.02	144
thew	thew		0.95	0.0000009	90
thew	thaw	e a	0.001	0.000007	0.7
thew	threw	h hr	0.000008	0.000004	0.03
thew	thwe	ew we	0.000003	0.0000004	0.0001

Исправление ошибок запросов в Яндексе

Сортировка кандидатов

Выбор оптимального исправления

- Вероятность каждого варианта исправления:
- Вероятность каждого варианта исправления:


```
P(w_1, w_2, ..., w_N) = \Pi_{i=1,N} (P(w_i | w_1 w_2 ... w_{i-1}) * \Pi_{k=1,K} (P_{ok}) где P(w_i | w_1 w_2 ... w_{i-1}) - условная вероятность слова w_i P_{ok} -  вероятность k-ой ошибки
```

- Опять условная вероятность! Слишком много вычислений...
- <u>Упрощаем:</u> используем модель **двусловных сочетаний**
- Для запроса из 3-х слов вместо

$$P(w_1) * P(w_2|w_1) * P(w_3|w_1w_2)$$

применяем:

скчать

```
коды P(w<sub>2</sub> к * P(w игре
```

stalker

А.Байтин: удачные подсказки

одеяло стебаное

-> одеяло стеганое

лодки катра

-> лодки катера

квадратный мэтр

-> квадратный метр

выборы мера

→ выборы мэра

желательная резинка -> жевательная резинка

грибница фараона -> гробница фараона

вышел с ухой из воды -> вышел сухой из воды

Было:

Стало:

гадостное настроение радостное настроение

А. Байтин: неудачные подсказки

белявский

-> милявский

олбас

-> колбас

брендмауэры

-> брандмауэры

термису

-> термину

трассологическая

-> графологическая

любочка

-> юбочка

берег у моря

-> берегу моря

вход или выход

-> входили выход

А.Байтин: статистика (2009)

- Находим ошибки в 10% запросов
- Точность исправления 75%

• Используем словарные базы:

Список двусловий 29М сочетаний

Словарь 2.7М слов

Пользовательские замены 190К замен

Индекс кликабельности 320К замен

- «Обслуживаем» службы Яндекса:
- Поиск Блоги Новости Карты Маркет Картинки
- Нагрузка кластера исправления