Package 'bikm1'

October 12, 2022

Type Package		
itle Co-Clustering Adjusted Rand Index and Bikm1 Procedure for		
Contingency and Binary Data-Sets Version 1.1.0		
Maintainer Valerie Robert <valerie.robert.math@gmail.com></valerie.robert.math@gmail.com>		
Description Co-clustering of the rows and columns of a contingency or binary matrix, or double binary matrices and model selection for the number of row and column clusters. Three models are considered: the Poisson latent block model for contingency matrix, the binary latent block model for binary matrix and a new model we develop: the multiple latent block model for double binary matrices. A new procedure named bikm1 is implemented to investigate more efficiently the grid of numbers of clusters. Then, the studied model selection criteria are the integrated completed likelihood (ICL) and the Bayesian integrated likelihood (BIC). Finally, the co-clustering adjusted Rand index (CARI) to measure agreement between co-clustering partitions is implemented. Robert Valerie, Vasseur Yann, Brault Vincent (2021) <doi:10.1007 s00357-020-09379-w="">.</doi:10.1007>		
Imports gtools, stats, graphics, grDevices, methods, parallel, ade4, pracma, ggplot2, reshape2, grid, lpSolve		
License GPL-2		
Encoding UTF-8		
RoxygenNote 7.1.1		
NeedsCompilation no		
Author Valerie Robert [aut, cre]		
Repository CRAN		
Date/Publication 2021-07-16 07:30:20 UTC		
R topics documented:		
bikm1-package ARI BIKM1_LBM_Binary BIKM1_LBM_Binary-class BIKM1_LBM_Poisson		

2 bikm1-package

Index		44
	summary,BIKM1_MLBM_Binary-method	42
	summary,BIKM1_LBM_Poisson-method	
	summary,BIKM1_LBM_Binary-method	
	show,BIKM1_MLBM_Binary-method	
	show,BIKM1_LBM_Poisson-method	
	show,BIKM1_LBM_Binary-method	
	print,BIKM1_MLBM_Binary-method	38
	print,BIKM1_LBM_Poisson-method	37
	print,BIKM1_LBM_Binary-method	36
	PoissonBloc VisuResum	36
	PoissonBlocVisu	
	PoissonBlocRnd	
	PoissonBlocICL	
	PoissonBlocBIC	
	plot,BIKM1_MLBM_Binary-method	
	plot,BIKM1 LBM Poisson-method	
	plot,BIKM1_LBM_Binary-method	
	NCE_simple	
	NCE_LBM	
	MI_simple	
	ENMI	
	CE_simple	
	CE_MLBM	
	CE_LBM	
	CARI	
	BinBlocVisu_MLBM	
	BinBlocVisu_LBM	
	BinBlocVisuResum_MLBM	
	BinBlocVisuResum_LBM	
	BinBlocRnd_MLBM	
	BinBlocRnd_LBM	
	BinBlocICL_MLBM	
	BinBlocICL_LBM	
	BIKM1_MLBM_Binary-class	13
	BIKM1_MLBM_Binary	11
	BIKM1_LBM_Poisson-class	10

bikm1-package 3

Description

This package is designed to co-cluster a contingency (resp. binary) matrix, or double binary matrices in blocks respectively under the (normalized or not) Poisson (resp binary) Latent Block Model and the Multiple Latent Block Model. It enables to automatically select the number of row and column clusters and to compare partition estimations with reference partitions.

Features

Package for the segmentation of the rows and columns inducing a co-clustering and automatically select the number of row and column clusters.

Model 1

BIKM1_LBM_Poisson. This fitting procedure produces a BIKM1_LBM_Poisson object.

Model 2

BIKM1_LBM_Binary . This fitting procedure produces a BIKM1_LBM_Binary object.

Model 3

BIKM1_MLBM_Binary . This fitting procedure produces a BIKM1_MLBM_Binary object.

Technical remarks

Display of the result with plot, BIKM1_LBM_Poisson-method and

with show,BIKM1_LBM_Poisson-method, with summary,BIKM1_LBM_Poisson-method and with print,BIKM1_LBM_Poisson-method.

Display of the result with plot, BIKM1_LBM_Binary-method and

with show,BIKM1_LBM_Binary-method, with summary,BIKM1_LBM_Binary-method and with print,BIKM1_LBM_Binary-method

Display of the result with plot, BIKM1_MLBM_Binary-method and

with show,BIKM1_MLBM_Binary-method, with summary,BIKM1_MLBM_Binary-method and with print,BIKM1_MLBM_Binary-method.

Author(s)

Valerie Robert <valerie.robert.math@gmail.com>

References

Keribin, Celeux and Robert, The Latent Block Model: a useful model for high dimensional data. https://hal.inria.fr/hal-01658589/document

Govaert and Nadif. Co-clustering, Wyley (2013).

Keribin, Brault and Celeux. Estimation and Selection for the Latent Block Model on Categorical Data, Statistics and Computing (2014).

Robert. Classification croisee pour l'analyse de bases de donnees de grandes dimensions de pharmacovigilance. Thesis, Paris Saclay (2017).

4 ARI

Robert, Vasseur and Brault. Comparing high dimensional partitions with the Co-clustering Adjusted Rand Index, Journal of Classification, 38(1), 158-186 (2021).

ARI

ARI function for agreement between two partitions

Description

Produce a measure of agreement between two partitions. A value of 1 means a perfect match.

Usage

```
ARI(v, vprime)
```

Arguments

v numeric vector specifying the class of observations.
vprime numeric vector specifying another partitions of observations.

Value

```
a list including the arguments:ari: value of the index.nv: contingency table which the index is based on.
```

References

Hubert and Arabie. Comparing partitions. Journal of classification (1985).

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
mv=ARI(res@model_max$v, data$xrow)
mv$ari
mv$nv
mw=ARI(res@model_max$w, data$xcol)
```

BIKM1_LBM_Binary

BIKM1_LBM_Binary fitting procedure

Description

Produce a blockwise estimation of a contingency matrix of observations.

Usage

```
BIKM1_LBM_Binary(x,Gmax,Hmax,a=4,b=1,
Gstart=2,Hstart=2,init_choice='smallvBayes',userparam=NULL,
ntry=50,criterion_choice='ICL', mc.cores=1,verbose=TRUE)
```

Arguments

x	binary matrix of observations.	
Gmax	a positive integer less than number of rows.	
Нтах	a positive integer less than number of columns. The bikm1 procedure stops while the numbers of rows is higher than Gmax or the number of columns is higher than Hmax.	
a	hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4.	
b	hyperparameter used in the VBayes algorithm for prior on the Bernoulli parameter. By default, $b=1$.	
Gstart	a positive integer to initialize the procedure with number of row clusters. By default, Gstart=2.	
Hstart	a positive integer to initialize the procedure with number of column clusters. By default, Hstart=2.	
init_choice	a character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "smallVBayes" or "user". By default, init_choice="smallVBayes".	
userparam	in the case where init_choice is "user", a list containing partitions z and w . By default userparam=NULL.	
ntry	a positive integer corresponding to the number of times which is launched the small VBayes or random initialization strategy. By default ntry=100.	
criterion_choice		
	a character string corresponding to the chosen criterion used for model selection, which can be "ICL" as for now. By default, criterion_choice="ICL".	
mc.cores	a positive integer corresponding to the available number of cores for parallel computing. By default, mc.cores=1.	
verbose	logical. To display each step and the result. By default verbose=TRUE.	

Value

```
a BIKM1_LBM_Binary object including
```

model_max: the selected model by the procedure with free energy W, theta, conditional probabilities (s_ig, r_jh), iter, empty_cluster, and the selected partitions z and w.

criterion_choice: the chosen criterion

init_choice: the chosen init choice

criterion tab: the matrix containing the criterion values for each selected number of row and column

W_tab: the matrix containing the free energy values for each selected number of row and column

criterion_max: the maximum of the criterion values

gopt: the selected number of rows

hopt: the selected number of columns

References

Govaert and Nadif. Co-clustering, Wyley (2013).

Keribin, Brault and Celeux. Estimation and Selection for the Latent Block Model on Categorical Data, Statistics and Computing (2014).

Robert. Classification crois\'ee pour l'analyse de bases de donn\'ees de grandes dimensions de pharmacovigilance. Paris Saclay (2017).

```
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$pi_g=1/h *matrix(1,h,1)
theta$pha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,2,Gstart=3,Hstart=2,
init_choice='user',userparam=list(z=data$xrow,v=data$xcol))
```

```
BIKM1_LBM_Binary-class
```

Class "BIKM1_LBM_Binary"

Description

Class of object returned by the BIKM1_LBM_Binary function.

Slots

- model_max: The selected model by the procedure with free energy W, theta, conditional probabilities (s_ig, r_jh), iter, empty_cluster, and the selected partitions z and v.
- criterion_choice: A character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC".
- init_choice: A character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" or "smallVBayes".
- criterion_tab: The matrix corresponding to the values of the chosen criterion for pairs of numbers of clusters visited by the BIKM1_LBM_Binary function. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
- W_tab: The matrix corresponding to the values of the free energy (minimizer of the loglikelihood in the algorithm) for pairs of numbers of clusters visited by the procedure. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
- criterion_max: Numeric indicating the maximum of the criterion values, calculated on the pairs of numbers of clusters visited by the BIKM1_LBM_Binary function.
- gopt: An integer value indicating the number of row clusters selected by the BIKM1_LBM_Binary function.
- hopt: An integer value indicating the number of column clusters selected by the BIKM1_LBM_Binary function.

```
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,3,a=4,init_choice='smallVBayes')
```

BIKM1_LBM_Poisson

BIKM1_LBM_Poisson fitting procedure

Description

Produce a blockwise estimation of a contingency matrix of observations.

Usage

```
BIKM1_LBM_Poisson(x,Hmax,Lmax,a=4,alpha=1,beta=0.01,
Hstart=2,Lstart=2,normalization=FALSE,init_choice='smallvBayes',
userparam=NULL,ntry=50,criterion_choice='ICL', mc.cores=1,verbose=TRUE)
```

Arguments

Х	contingency matrix of observations.	
Hmax	a positive integer less than number of rows.	
Lmax	a positive integer less than number of columns. The bikm1 procedure stops while the numbers of rows is higher than Hmax or the number of columns is higher than Lmax.	
a	hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4.	
alpha	hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, alpha=1.	
beta	hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, beta=0.01.	
Hstart	a positive integer to initialize the procedure with number of row clusters. By default, Hstart=2.	
Lstart	a positive integer to initialize the procedure with number of column clusters. By default, Lstart=2.	
normalization	logical. To use the normalized Poisson modelling in the Latent Block Model. By default normalization=FALSE.	
init_choice	character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" (higher time computation) or "smallVBayes" or "user". By default, init_choice="smallVBayes"	
userparam	In the case where init_choice is "user", a list containing partitions v and w.	
ntry	a positive integer corresponding to the number of times which is launched the small VBayes or random initialization strategy. By default ntry=50.	
criterion_choice		
	Character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC". By default, criterion_choice="ICL".	
mc.cores	a positive integer corresponding to the available number of cores for parallel computing. By default, mc.cores=1.	
verbose	logical. To display each step and the result. By default verbose=TRUE.	

Value

a BIKM1_LBM_Poisson object including

model_max: the selected model by the procedure with free energy W, theta, conditional probabilities (r_jh, t_kl) , iter, empty_cluster, and the selected partitions v and w.

criterion_choice: the chosen criterion

init_choice: the chosen init choice

criterion tab: matrix containing the criterion values for each selected number of row and column

W_tab: matrix containing the free energy values for each selected number of row and column

criterion_max: maximum of the criterion values

hopt: the selected number of rows

lopt: the selected number of columns

References

Keribin, Celeux and Robert, The Latent Block Model: a useful model for high dimensional data. https://hal.inria.fr/hal-01658589/document

Govaert and Nadif. Co-clustering, Wyley (2013).

Keribin, Brault and Celeux. Estimation and Selection for the Latent Block Model on Categorical Data, Statistics and Computing (2014).

Robert. Classification crois\'ee pour l'analyse de bases de donn\'ees de grandes dimensions de pharmacovigilance. Paris Saclay (2017).

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,2,Hstart=3,Lstart=2,
init_choice='user',userparam=list(v=data$xrow,w=data$xcol))
```

Description

Class of object returned by the BIKM1_LBM_Poisson function.

Slots

- model_max: The selected model by the procedure with free energy W, theta, conditional probabilities (r_jh, t_kl), iter, empty_cluster, and the selected partitions v and w.
- criterion_choice: A character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC".
- init_choice: A character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" or "smallVBayes".
- criterion_tab: The matrix corresponding to the values of the chosen criterion for pairs of numbers of clusters visited by the BIKM1_LBM_Poisson function. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
- W_tab: The matrix corresponding to the values of the free energy (minimizer of the loglikelihood in the algorithm) for pairs of numbers of clusters visited by the procedure. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
- criterion_max: Numeric indicating the maximum of the criterion values, calculated on the pairs of numbers of clusters visited by the BIKM1_LBM_Poisson function.
- lopt: An Integer value indicating the number of row clusters selected by the BIKM1_LBM_Poisson function.
- hopt: An integer value indicating the number of column clusters selected by the BIKM1_LBM_Poisson function.

```
require(bikm1)
set.seed(42)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(floor(runif(h*l)*20+1),ncol=l)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='smallVBayes')
```

BIKM1_MLBM_Binary

BIKM1_MLBM_Binary fitting procedure

Description

Produce a blockwise estimation of double matrices of observations.

Usage

```
BIKM1_MLBM_Binary(x,y,Gmax,Hmax,Lmax,a=4,b=1,
Gstart=2,Hstart=2,Lstart=2,init_choice='smallVBayes',userparam=NULL,
ntry=50,criterion_choice='ICL', mc.cores=1,verbose=TRUE)
```

Arguments

mc.cores

verbose

Х	matrix of observations (1rst matrix).
У	matrix of observations (2nd matrix).
Gmax	a positive integer less than number of rows.
Hmax	a positive integer less than number of columns of the 1st matrix.
Lmax	a positive integer less than number of columns of the 2nd matrix. The bikm1 procedure stops while the numbers of rows is higher than Gmax or the number of columns is higher than Hmax or the numbers of columns(2nd matrix) is higher than Lmax.
a	hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4.
b	hyperparameter used in the VBayes algorithm for prior on the Bernoulli parameter. By default, b=1.
Gstart	a positive integer to initialize the procedure with number of row clusters. By default, Gstart=2.
Hstart	a positive integer to initialize the procedure with number of column clusters. By default, Hstart=2.
Lstart	a positive integer to initialize the procedure with number of column clusters. By default, Lstart=2.
init_choice	character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "smallVBayes" or "user". By default, init_choice="smallVBayes".
userparam	In the case where init_choice is "user", a list containing partitions z,v and w.
ntry	a positive integer corresponding to the number of times which is launched the small VBayes initialization strategy. By default ntry=100.
criterion_choic	ce
	Character string corresponding to the chosen criterion used for model selection,

which can be "ICL" as for now. By default, criterion_choice="ICL".

logical. To display each step and the result. By default verbose=TRUE.

computing. By default, mc.cores=1.

a positive integer corresponding to the available number of cores for parallel

Value

```
a BIKM1_MLBM_Binary object including

model_max: the selected model by the procedure including free energy W, theta, conditional probabilities (s_ig, r_jh,t_kl), iter, empty_cluster, and the selected partitions z,v and w.

criterion_choice: the chosen criterion

init_choice: the chosen init_choice

criterion_tab: matrix containing the criterion values for each selected number of row and column

W_tab: matrix containing the free energy values for each selected number of row and column

criterion_max: maximum of the criterion values

gopt: the selected number of rows

hopt: the selected number of columns (1rst matrix)

lopt: the selected number of columns (2nd matrix)
```

References

Govaert and Nadif. Co-clustering, Wyley (2013).

Keribin, Brault and Celeux. Estimation and Selection for the Latent Block Model on Categorical Data, Statistics and Computing (2014).

Robert. Classification crois\'ee pour l'analyse de bases de donn\'ees de grandes dimensions de pharmacovigilance. Paris Saclay (2017).

```
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
1=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
thetatau_l=1/l *matrix(1,1,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=1)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,2,2,Gstart=3,Hstart=2,Lstart=2,init_choice='user',
userparam=list(z=data$xrow,v=data$xcolx,w=data$xcoly))
```

```
BIKM1_MLBM_Binary-class

Class "BIKM1_MLBM_Binary"
```

Description

Class of object returned by the BIKM1_MLBM_Binary function.

Slots

- model_max: The selected model by the procedure with free energy W, theta, conditional probabilities (s_ig, r_jh, t_kl), iter, empty_cluster, and the selected partitions z, v and w.
- criterion_choice: A character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC".
- init_choice: A character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" or "smallVBayes".
- criterion_tab: The matrix corresponding to the values of the chosen criterion for pairs of numbers of clusters visited by the BIKM1_MLBM_Binary function. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
- W_tab: The matrix corresponding to the values of the free energy (minimizer of the loglikelihood in the algorithm) for pairs of numbers of clusters visited by the procedure. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
- criterion_max: Numeric indicating the maximum of the criterion values, calculated on the pairs of numbers of clusters visited by the BIKM1_MLBM_Binary function.
- gopt: An integer value indicating the number of row clusters selected by the BIKM1_MLBM_Binary function.
- hopt: An integer value indicating the number of column clusters for the first matrix selected by the BIKM1_MLBM_Binary function.
- lopt: An integer value indicating the number of row clusters for the second matrix selected by the BIKM1_MLBM_Binary function.

```
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,1,1)
```

14 BinBlocICL_LBM

```
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,4,init_choice='smallVBayes')
```

BinBlocICL_LBM

BinBlocICL_LBM function for computation of the ICL criterion in the Binary LBM

Description

Produce a value of the ICL criterion in the Binary LBM.

Usage

```
BinBlocICL_LBM(a,b,x,z1,v1)
```

Arguments

а	an hyperparameter for priors on the mixing proportions. By default, a=4.
b	an hyperparameter for prior on the Bernoulli parameter. By default, $b=1$.
x	contingency matrix of observations.
z1	a numeric vector specifying the class of rows.
v1	a numeric vector specifying the class of columns.

Value

a value of the ICL criterion.

```
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocICL_LBM(a=4,b=1,data$x, data$xrow,data$xcol)
```

BinBlocICL_MLBM 15

BinBlocICL_MLBM BinBlocICL_MLBM function for computation of the ICL criterion the MLBM	n in
--	------

Description

Produce a plot object representing the resumed co-clustered data-sets.

Usage

```
BinBlocICL_MLBM(a,b,x,y,z1,v1,w1)
```

Arguments

a	an hyperparameter for priors on the mixing proportions. By default, a=4.
b	an hyperparameter for prior on the Bernoulli parameter. By default, b=1.
x	binary matrix of observations (1rst matrix).
у	binary matrix of observations (2nd matrix).
z1	a numeric vector specifying the class of rows.
v1	a numeric vector specifying the class of columns (1rst matrix).
w1	a numeric vector specifying the class of columns (2nd matrix).

Value

a value of the ICL criterion.

```
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=2
h=2
1=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta\frac{h=1}{h} * matrix(1,h,1)
thetatau_l=1/1 *matrix(1,1,1)
theta$alpha_gh=matrix(runif(4),ncol=h)
theta$beta_gl=matrix(runif(4),ncol=1)
data = BinBlocRnd\_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,2,2,2,4,init_choice='smallVBayes')
BinBlocICL_MLBM(a=4,b=1,data$x,data$y, data$xrow,data$xcolx,data$xcoly)
```

16 BinBlocRnd_LBM

BinBlocRnd_LBM

BinBlocRnd_LBM function for binary data matrix simulation

Description

Produce a data matrix generated under the Binary Latent Block Model.

Usage

```
BinBlocRnd_LBM(n,J,theta)
```

Arguments

a positive integer specifying the number of expected rows.
 a positive integer specifying the number of expected columns.

theta a list specifying the model parameters:

pi_g: a vector specifying the row mixing proportions.

rho_h: a vector specifying the matrix column mixing proportions. alpha_gh: a matrix specifying the distribution parameter of the matrix.

Value

a list including the arguments:

x: simulated data matrix.

xrow: numeric vector specifying row partition.

xcol: numeric vector specifying column partition.

```
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
```

BinBlocRnd_MLBM 17

DiaDlas Dad MIDM	Div Dl D. J. MI DM f di f li J l J. data dati
BinBlocRnd_MLBM	BinBlocRnd_MLBM function for binary double data matrix simulation

Description

Produce two simulated data matrices generated under the Binary Multiple Latent Block Model.

Usage

```
BinBlocRnd_MLBM(n,J,K,theta)
```

Arguments

n	a positive integer specifying the number of expected rows.
J	a positive integer specifying the number of expected columns of the first matrix.
K	a positive integer specifying the number of expected columns of the second matrix.
theta	a list specifying the model parameters:
	pi_g: a vector specifying the row mixing proportions.
	rho_h: a vector specifying the first matrix column mixing proportions.
	tau_1: a vector specifying the second matrix column mixing proportions.
	alpha_gh: a matrix specifying the distribution parameter of the first matrix.
	beta_gl: a matrix specifying the distribution parameter of the second matrix.

Value

```
a list including the arguments:
x: simulated first data matrix. y: simulated second data matrix.
xrow: numeric vector specifying row partition.
xcolx: numeric vector specifying first matrix column partition.
xcoly: numeric vector specifying second matrix column partition.
```

```
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
```

```
theta$tau_l=1/1 *matrix(1,1,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
```

BinBlocVisuResum_LBM BinBlocVisuResum_LBM function for visualization of binary matrix data-sets

Description

Produce a plot object representing the resumed co-clustered data-sets.

Usage

```
BinBlocVisuResum_LBM(x,z,v)
```

Arguments

x binary matrix of observations.

z a numeric vector specifying the class of rows.

v a numeric vector specifying the class of columns.

Value

```
a plot object.
```

```
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisuResum_LBM(data$x,data$xrow,data$xcol)
```

 ${\tt BinBlocVisuResum_MLBM} \ \ {\it BinBlocVisuResum_MLBM} \ function \ for \ visualization \ of \ double \ matrix \\ datasets$

Description

Produce a plot object representing the resumed co-clustered data-sets.

Usage

```
\\ BinBlocVisuResum\_MLBM(x,y,z,v,w)
```

Arguments

X	binary matrix of observations.
у	binary second matrix of observations.
z	a numeric vector specifying the class of rows.
v	a numeric vector specifying the class of columns (1rst matrix).
W	a numeric vector specifying the class of columns (2nd matrix).

Value

a plot object.

```
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
1=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
thetatau_l=1/l *matrix(1,1,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=1)
data=BinBlocRnd_MLBM(n,J,K,theta)
BinBlocVisuResum_MLBM(data$x,data$y, data$xrow,data$xcolx,data$xcoly)
```

20 BinBlocVisu_MLBM

BinBlocVisu_LBM

BinBlocVisu_LBM function for visualization of binary matrix datasets

Description

Produce a plot object representing the co-clustered data-sets.

Usage

```
BinBlocVisu_LBM(x,z,v)
```

Arguments

x data matrix of observations.

z a numeric vector specifying the class of rows.

v a numeric vector specifying the class of columns.

Value

a plot object

Examples

```
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisu_LBM(data$x,data$xrow,data$xcol)
```

BinBlocVisu_MLBM

BinBlocVisu_MLBM function for visualization of double matrix datasets

Description

Produce a plot object representing the co-clustered data-sets.

CARI 21

Usage

```
BinBlocVisu_MLBM(x,y,z,v,w)
```

Arguments

Χ	first data matrix of observations.
У	second data matrix of observations.
z	a numeric vector specifying the class of rows.
V	a numeric vector specifying the class of columns (1rst matrix).
W	a numeric vector specifying the class of columns (2nd matrix).

Value

```
a plot object
```

Examples

```
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
1=2
theta=list()
thetapi_g=1/g *matrix(1,g,1)
thetarho_h=1/h *matrix(1,h,1)
thetatau_l=1/l *matrix(1,1,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=1)
data=BinBlocRnd_MLBM(n,J,K,theta)
BinBlocVisu_MLBM(data$x,data$y, data$xrow,data$xcolx,data$xcoly)
```

CARI

CARI function for agreement between co-clustering partitions

Description

Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.

Usage

```
CARI(v,w,vprime,wprime)
```

CE_LBM

Arguments

v numeric vector specifying the class of rows.

w numeric vector specifying the class of columns.

vprime numeric vector specifying another partition of rows.

wprime numeric vector specifying another partition of columns.

Value

```
a list including the arguments: cari: value of the index (between 0 and 1). A value of 1 corresponds to a perfect match. nvw: contingency table which the index is based on.
```

References

Robert, Vasseur and Brault. Comparing high dimensional partitions with the Co-clustering Adjusted Rand Index, Journal of classification 38 (1), 158-186 (2021).

Examples

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
me=CARI(res@model_max$v,res@model_max$w, data$xrow,data$xcol)
me$cari
me$nvw
```

CE_LBM

CE_LBM function for agreement between co-clustering partitions

Description

Produce a measure of agreement between two pairs of partitions for co-clustering using CE_simple on columns and rows of a matrix. A value of 1 means a perfect match.

Usage

```
CE_LBM(v,w,vprime,wprime)
```

CE_MLBM 23

Arguments

V	numeric vector specifying the class of rows.
W	numeric vector specifying the class of columns.
vprime	numeric vector specifying another partition of rows.
wprime	numeric vector specifying another partition of columns.

Value

ce_vw: the value of the index (between 0 and 1). A value of 0 corresponds to a perfect match.

Examples

```
require(bikm1)
set.seed(42)
v=floor(runif(4)*2)
vprime=floor(runif(4)*2)
w=floor(runif(4)*3)
wprime=floor(runif(4)*3)
error=CE_LBM(v,w,vprime,wprime)
```

CE_MLBM function for agreement between co-clustering partitions in the MBLM

Description

Produce a measure of agreement between two triplets of partitions for co-clustering. A value of 1 means a perfect match.

Usage

```
CE_MLBM(z,v,w,zprime,vprime,wprime)
```

Arguments

Z	numeric vector specifying the class of rows.
V	numeric vector specifying the class of column partitions for the first matrix.
W	numeric vector specifying the class of column partitions for the second matrix.
zprime	numeric vector specifying another partitions of rows.
vprime	numeric vector specifying another partition of columns for the first matrix.
wprime	numeric vector specifying another partition of columns for the second matrix.

CE_simple

Value

the value of the index (between 0 and 1). A value of 0 corresponds to a perfect match.

Examples

```
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=2
h=2
1=2
theta=list()
thetapi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
thetatau_l=1/l *matrix(1,1,1)
theta$alpha_gh=matrix(runif(4),ncol=h)
theta$beta_gl=matrix(runif(4),ncol=1)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,2,2,2,4,init_choice='smallVBayes')
error=CE_MLBM(res@model_max$z,res@model_max$v,res@model_max$w,data$xrow,data$xcolx,data$xcoly)
```

CE_simple

CE_simple function for agreement between clustering partitions

Description

Produce a measure of agreement between two partitions for clustering. A value of 1 means a perfect match.

Usage

```
CE_simple(v,vprime)
```

Arguments

```
v numeric vector specifying the class of rows.
vprime numeric vector specifying the class of rows.
```

Value

the value of the index.

CoNMI 25

Examples

```
require(bikm1)
set.seed(42)
v=floor(runif(4)*3)
vprime=floor(runif(4)*3)
error=CE_simple(v,vprime)
error
```

CoNMI

CoNMI function for agreement between co-clustering partitions

Description

Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.

Usage

```
CoNMI(v,w,vprime,wprime)
```

Arguments

v numeric vector specifying the class of rows.
 w numeric vector specifying the class of columns.
 vprime numeric vector specifying another partition of rows.
 wprime numeric vector specifying another partition of columns.

Value

the value of the index.

References

Robert, Vasseur and Brault. Comparing high dimensional partitions with the Co-clustering Adjusted Rand Index, Journal of Classification (2021).

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
```

26 ENMI

ENMI

ENMI function for agreement between co-clustering partitions

Description

Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.

Usage

```
ENMI(v,w,vprime,wprime)
```

Arguments

```
    v numeric vector specifying the class of rows.
    w numeric vector specifying the class of columns.
    vprime numeric vector specifying another partition of rows.
    wprime numeric vector specifying another partition of columns.
```

Value

the value of the index.

References

Robert, Vasseur and Brault. Comparing high dimensional partitions with the Co-clustering Adjusted Rand Index, Journal of Classification (2021).

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
me=ENMI(res@model_max$v,res@model_max$w, data$xrow,data$xcol)
me
```

MI_simple 27

MI_simple

MI_simple function for agreement between two partitions

Description

Produce a measure of agreement between two partitions.(between 0 and 1). A value of 1 corresponds to a perfect match.

Usage

```
MI_simple(v,vprime)
```

Arguments

v numeric vector specifying the class of observations.

vprime numeric vector specifying another partitions of observations.

Value

the value of the index.

References

Robert, Vasseur and Brault. Comparing high-dimensional partitions with the Co-clustering Adjusted Rand Index. Journal of Classification (2021).

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
mi=MI_simple(res@model_max$v, data$xrow)
mi
mw=MI_simple(res@model_max$w, data$xcol)
```

28 NCE_simple

NCE_LBM	NCE_LBM function for agreement between co-clustering partitions
	using NCE_simple

Description

Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.

Usage

```
NCE_LBM(v,w,vprime,wprime)
```

Arguments

v numeric vector specifying the class of rows.
 w numeric vector specifying the class of columns.
 vprime numeric vector specifying another partition of rows.
 wprime numeric vector specifying another partition of columns.

Value

the value of the index.

Examples

```
require(bikm1)
set.seed(42)
v=floor(runif(4)*2)
vprime=floor(runif(4)*2)
w=floor(runif(4)*3)
wprime=floor(runif(4)*3)
error=NCE_LBM(v,w,vprime,wprime)
```

NCE_simple

NCE_simple function for agreement between clustering partitions

Description

Produce a measure of agreement between two partitions for clustering. A value of 1 means a perfect match. It's the normalized version of CE_simple.

Usage

```
NCE_simple(v,vprime)
```

Arguments

```
v numeric vector specifying the class of rows.
vprime numeric vector specifying the class of rows.
```

Value

the value of the index. A value of 0 means a perfect match.

Examples

```
require(bikm1)
set.seed(42)
v=floor(runif(4)*3)
vprime=floor(runif(4)*3)
error=NCE_simple(v,vprime)
error
```

```
plot,BIKM1_LBM_Binary-method
```

Plot method for a BIKM1_LBM_Binary object

Description

Produce respectively one plot of two-dimensional segmentation of a BIKM1_LBM_Binary fit, a plot of evolution of the chosen criterion as a function of the number of row and column clusters, and a boxplot of conditional posteriors for each row and column cluster.

Usage

```
## S4 method for signature 'BIKM1_LBM_Binary'
plot(x, y, ...)
```

Arguments

```
x an object of class BIKM1_LBM_Binary.y binary matrix of observations.... in the plot method, additional parameters (ignored)
```

Value

One **plot** (initial and estimated partitions) and three **ggplot2** objects (conditional posterior in each cluster for each matrix and the graph of chosen criterion values.

Examples

```
require(bikm1)
g=5
h=3
theta=list()
thetapi_g=t(1/g*rep(1,g))
theta$rho_h=t(1/h*rep(1,h))
theta$alpha_gh=matrix(c(1-eps,eps,eps,1-eps,eps,1-eps,1-eps,1-eps,
1-eps,1-eps,eps,eps,eps,eps),ncol=h,byrow=TRUE)
n=250
J=150
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisu_LBM(data$x, data$xrow,data$xcol)
res=BIKM1_LBM_Binary(data$x,8,5,4,init_choice='smallVBayes')
BinBlocVisu_LBM(data$x,res@model_max$z,res@model_max$v)
e=CARI(data$xrow,data$xcol,res@model_max$z,res@model_max$v)
plot(res,data)
```

```
plot,BIKM1_LBM_Poisson-method
```

Plot method for a BIKM1_LBM_Poisson object

Description

Produce respectively one plot of two-dimensional segmentation of a BIKM1_LBM_Poisson fit, an evolution of the criterion as a function of the numbers of rows and columns, and a boxplot of conditional posteriors for each row and column cluster.

Usage

```
## S4 method for signature 'BIKM1_LBM_Poisson'
plot(x, y, ...)
```

Arguments

```
    x an object of class BIKM1_LBM_Poisson.
    y a list specifying
    x : contingency matrix of observations.
    ... in the plot method, additional parameters (ignored)
```

Value

Two **plots** (initial matrix and block estimation) and two **ggplot2** objects (conditional posterior in each cluster and the graph of chosen criterion values).

Examples

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='random')
plot(res,data)
```

```
plot,BIKM1_MLBM_Binary-method
```

Plot method for a BIKM1_MLBM_Binary object

Description

Produce respectively a plot of two-dimensional segmentation of a BIKM1_MLBM_Binary fit, and a boxplot of conditional posteriors for each row and column cluster.

Usage

```
## S4 method for signature 'BIKM1_MLBM_Binary' plot(x, y, ...)
```

Arguments

```
x an object of class BIKM1_MLBM_Binary.
y a list specifying:
    x: the first matrix of observations
y: the second matrix of observations.
... in the plot method, additional parameters (ignored)
```

Value

Two plot and on ggplot2 object.

```
require(bikm1)
n=200
J=120
K=120
g=3
h=2
```

32 PoissonBlocBIC

```
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4)
plot(res,data)
```

PoissonBlocBIC PoissonBlocBIC function for the computation of the BIC criterion in

the Poisson LBM

Description

Produce a value of the BIC criterion for co-clustering partitions

Usage

PoissonBlocBIC(a,alpha,beta,v1,w1,x,res,normalization)

Arguments

a	hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4.
alpha	hyperparameter used in the VB ayes algorithm for prior on the Poisson parameter. By default, alpha=1.
beta	hyperparameter used in the VB ayes algorithm for prior on the Poisson parameter. By default, beta= 0.01 .
v1	a numeric vector of row partitions
w1	a numeric vector of column partitions
x	contingency matrix of observations.
res	a BIKM1_LBM_Poisson object rho_h mixing row proportions tau_1 mixing column proportions gamma_hl Bernoulli parameters
normalization	logical. To use the normalized Poisson modelling in the Latent Block Model. By default normalization=FALSE.

Value

a value of the BIC criterion

PoissonBlocICL 33

Examples

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h*matrix(1,h,1)
theta$tau_l=1/l*matrix(1,l,1)
theta$tau_l=1/l*matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='smallVBayes')
bic=PoissonBlocBIC(v1=res@model_max$v,w1=res@model_max$w,x=data$x,res=res,normalization=TRUE)
```

PoissonBlocICL

PoissonBlocICL function for the computation of the ICL criterion in the Poisson LBM

Description

Produce a value of the ICL criterion for co-clustering partitions

Usage

PoissonBlocICL(a,alpha,beta,x,v1,w1,normalization)

Arguments

a	hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4.
alpha	hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, alpha=1.
beta	hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, beta=0.01.
x	contingency matrix of observations.
v1	a numeric vector specifying the class of rows.
w1	a numeric vector specifying the class of columns.
normalization	logical. To use the normalized Poisson modelling in the Latent Block Model. By default normalization=FALSE.

Value

a value of the ICL criterion

34 PoissonBlocRnd

Examples

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=(1/h)*matrix(1,h,1)
theta$rau_l=(1/l)*matrix(1,l,1)
theta$tau_l=(1/l)*matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
icl=PoissonBlocICL(4,1,0.01,data$x,res@model_max$v,res@model_max$w, normalization=FALSE)
```

PoissonBlocRnd

PoissonBlocRnd function for contingency data simulation

Description

Produce a simulated data matrix generated under the Poisson Latent Block Model.

Usage

```
PoissonBlocRnd(J,K,theta)
```

Arguments

J a positive integer specifying the number of expected rows.K a positive integer specifying the number of expected columns.

theta a list specifying the model parameters:

rho_h: a vector specifying the row mixing proportions. tau_l: a vector specifying the column mixing proportions. gamma_hl: a matrix specifying the distribution parameter.

Value

```
a list including the arguments:
```

x: simulated contingency data matrix.

xrow: numeric vector specifying row partition.

xcol: numeric vector specifying column partition.

PoissonBlocVisu 35

Examples

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
```

PoissonBlocVisu

PoissonBlocVisu function for visualization of contingency datasets

Description

Produce a plot object representing the co-clustered data-sets.

Usage

```
PoissonBlocVisu(x,v,w)
```

Arguments

```
    x contingency matrix of observations.
    v a numeric vector specifying the class of rows.
    w a numeric vector specifying the class of columns.
```

Value

```
a plot object
```

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
PoissonBlocVisu(data$x,data$xrow,data$xcol)
```

 ${\it PoissonBlocVisuResum \ function \ for \ visualization \ of \ contingency} \\ {\it datasets}$

Description

Produce a plot object representing the resumed co-clustered data-sets.

Usage

```
PoissonBlocVisuResum(x,v,w)
```

Arguments

```
    x contingency matrix of observations.
    v a numeric vector specifying the class of rows.
    w a numeric vector specifying the class of columns.
```

Value

a plot object.

Examples

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
PoissonBlocVisuResum(data$x,data$xrow,data$xcol)
```

```
print,BIKM1_LBM_Binary-method
```

Print method for a BIKM1_LBM_Binary object

Description

Print method for a BIKM1_LBM_Binary object

Usage

```
## S4 method for signature 'BIKM1_LBM_Binary' print(x, ...)
```

Arguments

```
x in the print method, a BIKM1_LBM_Binary object
... in the print method, additional parameters (ignored)
```

Examples

```
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,2,4,init_choice='random')
print(res)
```

Description

Print method for a BIKM1_LBM_Poisson object

Usage

```
## S4 method for signature 'BIKM1_LBM_Poisson'
print(x, ...)
```

Arguments

```
x in the print method, a BIKM1_LBM_Poisson object
... in the print method, additional parameters (ignored)
```

Examples

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,2,4,init_choice='random')
print(res)
```

```
print,BIKM1_MLBM_Binary-method
```

Print method for a BIKM1_MLBM_Binary object

Description

Print method for a BIKM1_MLBM_Binary object

Usage

```
## S4 method for signature 'BIKM1_MLBM_Binary' print(x, ...)
```

Arguments

```
x in the print method, a BIKM1_MLBM_Binary object
... in the print method, additional parameters (ignored)
```

```
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
```

```
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4)
print(res)
```

```
show, BIKM1_LBM_Binary-method
```

Show method for a BIKM1_LBM_Binary object

Description

```
show method for a BIKM1_LBM_Binary object
```

Usage

```
## S4 method for signature 'BIKM1_LBM_Binary'
show(object)
```

Arguments

```
object a BIKM1_LBM_Binary object
```

Examples

```
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,4,4,4,init_choice='random')
show(res)
```

```
show, BIKM1_LBM_Poisson-method
```

Show method for a BIKM1_LBM_Poisson object

Description

```
show method for a BIKM1_LBM_Poisson object
```

Usage

```
## S4 method for signature 'BIKM1_LBM_Poisson'
show(object)
```

Arguments

```
object a BIKM1_LBM_Poisson object
```

Examples

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
show(res)
```

```
show, BIKM1_MLBM_Binary-method
```

Show method for a BIKM1_MLBM_Binary object

Description

```
show method for a BIKM1_MLBM_Binary object
```

Usage

```
## S4 method for signature 'BIKM1_MLBM_Binary'
show(object)
```

Arguments

```
object a BIKM1_MLBM_Binary object
```

```
require(bikm1)
n=200
J=120
K=120
g=3
h=2
```

```
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4)
show(res)
```

```
\verb|summary,BIKM1\_LBM\_Binary-method|\\
```

Summary method for a BIKM1_LBM_Binary object

Description

Produce a summary of informations of a BIKM1_LBM_Binary object

Usage

```
## S4 method for signature 'BIKM1_LBM_Binary'
summary(object, ...)
```

Arguments

```
object in the summary method, a BIKM1_LBM_Binary object ... in the summary method, additional parameters (ignored)
```

```
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,2,4,init_choice='random')
summary(res)
```

```
summary,BIKM1_LBM_Poisson-method

Summary method for a BIKM1_LBM_Poisson object
```

Description

Produce a summary of informations of a BIKM1_LBM_Poisson object

Usage

```
## S4 method for signature 'BIKM1_LBM_Poisson'
summary(object, ...)
```

Arguments

```
object in the summary method, a BIKM1_LBM_Poisson object in the summary method, additional parameters (ignored)
```

Examples

```
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
summary(res)
```

```
summary,BIKM1_MLBM_Binary-method

Summary method for a BIKM1_MLBM_Binary object
```

Description

Produce a summary of informations of a BIKM1_MLBM_Binary object

Usage

```
## S4 method for signature 'BIKM1_MLBM_Binary'
summary(object, ...)
```

Arguments

```
object in the summary method, a BIKM1_MLBM_Binary object ... in the summary method, additional parameters (ignored)
```

```
require(bikm1)
n=200
J=120
K=120
g=3
h=2
1=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta\frac{h=1}{h} * matrix(1,h,1)
thetatau_l=1/1 *matrix(1,1,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=1)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4)
summary(res)
```

Index

* class			
BIKM1_LBM_Binary	-class, 7		
BIKM1_LBM_Poisso			
BIKM1_MLBM_Binar	y-class, 13		
ARI, 4			
bikm1-package, 2 BIKM1_LBM_Binary, 3, 5 BIKM1_LBM_Binary-cla BIKM1_LBM_Poisson, 3, BIKM1_LBM_Poisson-cl BIKM1_MLBM_Binary, 3, BIKM1_MLBM_Binary-cl BinBlocICL_LBM, 14 BinBlocICL_LBM, 15 BinBlocRnd_LBM, 16 BinBlocRnd_LBM, 17 BinBlocVisu_LBM, 20 BinBlocVisu_MLBM, 20 BinBlocVisu_MLBM, 20 BinBlocVisu_MLBM, 20 BinBlocVisuResum_LBM	ass, 7 8, 10, 30, 37, 39 .ass, 10 11, 13, 31, 38, 40 .ass, 13		
CARI, 21 CE_LBM, 22 CE_MLBM, 23 CE_simple, 24 CoNMI, 25			
ENMI, 26			
MI_simple, 27			
NCE_LBM, 28 NCE_simple, 28			
plot,BIKM1_LBM_Binar plot,BIKM1_LBM_Poiss plot,BIKM1_MLBM_Bina PoissonBlocBIC, 32 PoissonBlocICL, 33	son-method, 30		

```
PoissonBlocRnd, 34
PoissonBlocVisu, 35
PoissonBlocVisuResum, 36
print,BIKM1_LBM_Binary-method, 36
print,BIKM1_LBM_Poisson-method, 37
print,BIKM1_LBM_Binary-method, 38
show,BIKM1_LBM_Binary-method, 39
show,BIKM1_LBM_Poisson-method, 39
show,BIKM1_LBM_Binary-method, 40
summary,BIKM1_LBM_Binary-method, 41
summary,BIKM1_LBM_Poisson-method, 42
summary,BIKM1_LBM_Binary-method, 42
```