KKM-Type Theorems and Their Applications*

Yuchong Pan[†]
July 29, 2022

1 Two Problems

First, we consider two seemingly unrelated problems.

1.1 A Colorful Gallai's Theorem

Definition 1. Let \mathcal{F} be a finite family of compact intervals in \mathbb{R} . Define the *matching number* of \mathcal{F} , denoted by $\nu(\mathcal{F})$, to be the maximum number of pairwise disjoint intervals in \mathcal{F} . Define the *covering number* of \mathcal{F} , denoted by $\tau(\mathcal{F})$, to be the minimum number of points needed to intersect all intervals in \mathcal{F} . A *matching* is a set of pairwise disjoint intervals.

Figure 1 gives two examples.

Figure 1: Two examples of the matching number and the covering number of a finite family of compact intervals in \mathbb{R} , where red vertical lines denote a minimum set of points that intersect all intervals in \mathcal{F} , and blue intervals denote a maximum set of pairwise disjoint intervals.

Theorem 2 (Gallai, 1960). If \mathcal{F} is a finite family of compact intervals in \mathbb{R} , then $\tau(\mathcal{F}) = \nu(\mathcal{F})$.

It is trivial to see that $\tau(\mathcal{F}) \geq \nu(\mathcal{F})$, as any set of k pairwise disjoint intervals requires k points to intersect all the intervals in the set. We reformulate Gallai's theorem as follows:

Theorem 3 (Gallai, 1960). Let \mathcal{F} be a finite family of compact intervals in \mathbb{R} . If $\tau(\mathcal{F}) > k$, then there exists a matching in \mathcal{F} of size k + 1.

^{*}Lecturer: Shira Zerbib, Iowa State University, zerbib@iastate.edu.

[†]MIT, yuchong@mit.edu.

We consider the following colorful version of Gallai's theorem:

Problem 4. Let $\mathcal{F}_1, \ldots, \mathcal{F}_{k+1}$ be k+1 families of intervals in \mathbb{R} such that $\tau(\mathcal{F}_i) > k$ for all $i \in [k+1]$. Can one find a rainbow matching, where a rainbow matching is a matching \mathcal{M} such that $|\mathcal{M} \cap \mathcal{F}_i| = 1$ for all $i \in [k+1]$?

Figure 2 gives an example of the colorful version of Gallai's theorem.

Figure 2: An example of the colorful Gallai's theorem, where each family is denoted by a distinct color, the covering number of each family is greater than 2, and a rainbow matching is circled.

1.2 Fair Division of a Cake

Consider a cake identified by [0,1] and n players. Given any partition of the cake, each player gives a list of pieces they prefer in that partition. We say that a player is *hungry* if they prefer a piece of positive length in any partition. Figure 3 gives a partition of the cake with an empty piece.

Figure 3: A partition of the cake, where the second piece is an empty piece.

We say that a preference list is *closed* if the following holds: if the player refers piece i in a converging sequence of partitions, then they prefer piece i also in the limiting partition. See Figure 4 for an illustration.

Moreover, we say that a division (i.e., a partition) is *envy-free* if each player has a distinct piece in their preference list.

Theorem 5 (Su, 1980). If every player is hungry, and if the preference list of each player is closed, then an envy-free division exists.

Figure 4: Illustrating the concept of a closed preference list, where the three partitions indicate a converging sequence of partitions. If the first player prefers the first piece in every partition in this sequence, then they must prefer the first piece in the limiting partition.