Classification Errors

- Training errors (apparent errors)
 - Errors committed on the training set
- Test errors
 - Errors committed on the test set
- Generalization error
 - Expected error of a model over random selection of records from same distribution

Example Data Set

Two class problem:

- +: 5400 instances
 - 5000 instances generated from a Gaussian centered at (10,10)
 - 400 noisy instances added
- o: 5400 instances
 - Generated from a uniform distribution

10 % of the data used for training and 90% of the data used for testing

Increasing number of nodes in Decision Trees

Decision Tree with 4 nodes

Decision Tree with 50 nodes

Which tree is better?

Model Overfitting

•As the model becomes more and more complex, test error can start increasing even though training error may be decreasing

Underfitting: when model is too simple, both training and test errors are large Overfitting: when model is too complex, training error is small but test error is large

Model Overfitting

Using twice the number of data instances

 Increasing the size of training data reduces the difference between training and test error for a fixed model size.

Model Overfitting

Using twice the number of data instances

 Increasing the size of training data reduces the difference between training and test error for a fixed model size.

Reasons for Model Overfitting

- Limited Training Size
- High Model Complexity
 - Multiple Comparison Procedure

Effect of Multiple Comparison Procedure

- Many algorithms employ the following greedy strategy:
 - Initial model: M
 - Alternative model: $M' = M \cup \gamma$, where γ is a component to be added to the model (e.g., a test condition of a decision tree)
 - Keep M' if improvement, $\Delta(M,M') > \alpha$
- Often times, γ is chosen from a set of alternative components, $\Gamma = {\gamma_1, \gamma_2, ..., \gamma_k}$
- If many alternatives are available, one may inadvertently add irrelevant components to the model, resulting in model overfitting

Effect of Multiple Comparison - Example

Use additional 100 noisy variables generated from a uniform distribution along with X and Y as attributes.

Use 30% of the data for training and 70% of the data for testing

Notes on Overfitting

- Overfitting results in decision trees that are <u>more complex</u> than necessary
- Training error does not provide a good estimate of how well the tree will perform on previously unseen records
- Need ways for estimating generalization error

Model Selection

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
 - Using Validation/Cross-Validation
 - Incorporating Model Complexity
 - Estimating Statistical Bounds

Using Validation Set

- Divide training data into two parts:
 - Training set:
 - use for model building
 - Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set
- Drawback:
 - Less data available for training

Incorporating Model Complexity

- Rationale: Occam's Razor
 - Given two models with similar training error, one should prefer the simpler model over the more complex model
 - A complex model has a greater chance of being fitted accidentally
 - Therefore, one should include model complexity when evaluating a model

Gen. Error(Model) = Train. Error(Model, Train. Data) + α x Complexity(Model)

Estimating the Complexity of Decision Trees

• Error Estimate of decision tree T with k leaf nodes:

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

- err(T): error rate on all training records
- Ω : trade-off hyper-parameter (similar to lpha)
 - Relative cost of adding a leaf node
- k: number of leaf nodes
- N_{train}: total number of training records

Estimating the Complexity of Decision Trees: Example

Decision Tree, T_L

Decision Tree, T_R

$$e_{gen}(T_L) = 4/24 + 1*7/24 = 11/24 = 0.458$$

$$e_{gen}(T_R) = 6/24 + 1*4/24 = 10/24 = 0.417$$

Minimum Description Length (MDL)

- Cost(Model, Data) = Cost(Data | Model) + α x Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data | Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.