Package 'Autoplotprotein'

October 12, 2022

Title Development of Visualization Tools for Protein Sequence

Type Package

Version 1.1
Date 2017-06-02
Author Xiaoyu Zhang
Maintainer Yao Geng <gengyao0103521@qq.com></gengyao0103521@qq.com>
Description The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed.
License GPL-3
Depends XML, plyr, plotrix, seqinr, ade4
NeedsCompilation no
Repository CRAN
Date/Publication 2017-07-06 10:00:07 UTC
R topics documented:
Autoplotprotein-package
Autoplotprotein
conservation
data
domain_data
length_data 11
plotdomain
plotmutagensis
plotsite
site_data
Index 23

Autoplotprotein-package

Development of Visualization Tools for Protein Sequence

Description

The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed.

Details

The DESCRIPTION file:

Package: Autoplotprotein

Type: Package

Title: Development of Visualization Tools for Protein Sequence

Version: 1.1

Date: 2017-06-02 Author: Xiaoyu Zhang

Maintainer: Yao Geng <gengyao0103521@qq.com>

Description: The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional

License: GPL-3

Depends: XML, plyr, plotrix, seqinr, ade4

Index of help topics:

Autoplotprotein Two - dimensional structure of protein

Autoplotprotein-package

Development of Visualization Tools for Protein

Sequence

conservation conservation

data Save the information domain_data downloading protein length

plotting domain
plotmutagensis
plotsite

plotting domain
plotting mutagensis
plotsite

plotting site

site_data downloading protein site

Author(s)

Xiaoyu Zhang

Maintainer: Yao Geng <gengyao0103521@qq.com>

Autoplotprotein 3

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

codehelp

Autoplotprotein

Two - dimensional structure of protein

Description

Draw a visualized structure of the protein

Usage

```
Autoplotprotein()
```

Details

The tool ennable visualization of amino acid changes at the protein level, The scale of a protein domain and the position of a functional motif/site will be precisely defined

Value

Visualization of protein structure

Author(s)

Xiaoyu Zhang

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

codehelp

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function ()
{
    library("ade4")
```

4 Autoplotprotein

```
library("seqinr")
library("plotrix")
protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F)
domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F)
length = read.table("Length.txt", sep = "\t", stringsAsFactors = F)
site = read.table("Site.txt", sep = "\t", stringsAsFactors = F)
muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F)
option = read.table("Option.txt", sep = "\t", stringsAsFactors = F)
zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F)
size <- c(10.5, 7.27)
high <- c(1, -1)
sizen = size[1]
highn = high[1]
if (option[2, 2] == "no") {
    sizen = size[2]
    highn = high[2]
}
path = protein[1]
pdf(as.character(path), height = sizen[1], width = 11)
layout(matrix(c(1, 2), nrow = 1), widths = c(1, 3))
par(oma = c(3, 0, 2, 0), mar = c(4, 0, 2, 0) + 0.4)
nameOfYourQuery = option[2, 1]
additionalOptions = option[2, 2]
showReferenceSequence = option[2, 3]
showConservationScore = option[2, 4]
showGridlinesAtTicks = option[2, 5]
conservation = option[2, 6]
zoomIn = zoomin[2, 1]
zoomStart = zoomin[2, 2]
zoomEnd = zoomin[2, 3]
tickSize = as.numeric(zoomin[2, 4])
plot((-30:-15), rep(-1, 16), col = "white", type = "l", ann = FALSE,
    bty = "n", xaxt = "n", yaxt = "n", xlim = c(-160, -15),
    ylim = c(highn[1], -5.5))
if (additionalOptions == "yes") {
    if (conservation == "yes") {
        lines((-30:-15), rep(0, 16), col = "purple3")
        lines((-30:-15), rep(-0.5, 16), col = "purple3")
        lines((-30:-15), rep(-1, 16), col = "purple3")
        text(-100, -0.5, "Conservation", col = "purple3",
            cex = 0.9, font = 2)
        text(-45, -1, "1", col = "purple3", cex = 0.9)
        text(-45, -0.5, "0.5", col = "purple3", cex = 0.9)
        text(-45, 0, "0", col = "purple3", cex = 0.9)
    }
if (additionalOptions == "yes") {
    if (showReferenceSequence == "yes") {
        text(-100, -4.9, "Reference", col = "black", cex = 0.9,
            font = 2)
    }
if (additionalOptions == "yes") {
```

Autoplotprotein 5

```
if (showConservationScore == "yes") {
        text(-100, 0.5, "Score", col = "purple3", cex = 0.9,
            font = 2)
    }
}
text(-100, -2.95, nameOfYourQuery, col = "blue", cex = 0.9,
Protein = function(start = 1, end, height = -0.3, color = "green",
    face = "stereoscopic") {
    x = 0
    kong1 = (round(log(start, 10)) + 1) * start/50
    kong2 = (round(log(end, 10)) + 1) * end/50
    if (round(log(end, 10)) + 1 \le 5) {
        kong2 = (round(log(end, 10)) + 1) * end/50
    }
    else {
        kong2 = 5 * end/50
    }
    h1 = -2.8
    h2 = -3.1
    boxplot((1:as.numeric(end)), rep(h1, as.numeric(end)),
        xlab = "Amino Acid Position", ylab = "", xlim = c(0,
            as.numeric(end)), ylim = c(highn[1], -5.5), axes = FALSE)
    if (face == "stereoscopic") {
        cylindrect(start, h1, end, h2, col = color, gradient = "y")
    }
    else {
        rect(start, h1, end, h2, col = color)
    text(0, h1 - height/2, start, adj = 1)
    text(end - 17, h1 - height/2, end, adj = 0)
ZoomIn = function(start = 1, end, height = -0.3, color = "green",
    face = "stereoscopic", zoomstart, zoomend) {
    x = 0
    kong1 = (round(log(start, 10)) + 1) * start/50
    kong2 = (round(log(end, 10)) + 1) * end/50
    if (round(log(end, 10)) + 1 \le 5) {
        kong2 = (round(log(end, 10)) + 1) * end/50
    }
    else {
        kong2 = 5 * end/50
    h1 = -2.8
    h2 = -3.1
    boxplot((as.numeric(zoomstart):as.numeric(zoomend)),
        rep(h1, as.numeric(zoomend)), xlab = "Amino Acid Position",
        ylab = "", xlim = c(as.numeric(zoomstart), as.numeric(zoomend)),
        ylim = c(highn[1], -5.5), axes = FALSE)
    if (face == "stereoscopic") {
        cylindrect(start, h1, end, h2, col = color, gradient = "y")
    else {
```

6 conservation

```
rect(start, h1, end, h2, col = color)
      }
      text(start, h1 + height/2, start, adj = 1)
      text(end, h1 + height/2, end, adj = 0)
  if (zoomIn == "yes") {
      ZoomIn(start = as.numeric(length[1]), end = as.numeric(length[2]),
          height = as.numeric(protein[4]), color = as.character(protein[5]),
          face = protein[6], zoomstart = zoomin[2, 2], zoomend = zoomin[2,
  }
  else {
      Protein(start = as.numeric(length[1]), end = as.numeric(length[2]),
          height = as.numeric(protein[4]), color = as.character(protein[5]),
          face = protein[6])
  legend("topleft", legend = c("mutation", "Protein Domain"),
      pch = c(19, 15), col = c("lightseagreen", "deeppink"),
      box.col = "white", bg = "white", pt.cex = 1.5, text.width = 1)
  ticks = seq(0, as.numeric(length[2]), by = tickSize)
  axis(side = 1, at = ticks, las = 3)
  if (additionalOptions == "yes") {
      if (showGridlinesAtTicks == "yes") {
          len = array(rep(1:as.numeric(length[2])))
          for (i in 1:length(len)) {
              abline(v = ticks[i], lty = 3, lwd = 0.5, col = "lightgray")
          }
      }
 }
}
```

conservation

conservation

Description

Draw a conservative curve, calculate the conservative score

Usage

conservation()

Details

The tool ennable visualization of amino acid changes at the protein level, The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available includeting conservation, conservation score

Value

The returned value is a conservative score

conservation 7

Author(s)

Xiaoyu Zhang

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

help

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function ()
    protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F)
    domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F)
    length = read.table("Length.txt", sep = "\t", stringsAsFactors = F)
    site = read.table("Site.txt", sep = "\t", stringsAsFactors = F)
    muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F)
    option = read.table("Option.txt", sep = "\t", stringsAsFactors = F)
    zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F)
    nameOfYourQuery = option[2, 1]
    additionalOptions = option[2, 2]
    showReferenceSequence = option[2, 3]
    showConservationScore = option[2, 4]
    showGridlinesAtTicks = option[2, 5]
    conservation = option[2, 6]
    zoomIn = zoomin[2, 1]
    zoomStart = zoomin[2, 2]
    zoomEnd = zoomin[2, 3]
    tickSize = as.numeric(zoomin[2, 4])
    referenceSequencePositionInFile = option[2, 7]
    option = read.table("Option.txt", sep = "\t", stringsAsFactors = F)
    a <- read.fasta(file = "alignmentFile.fasta")</pre>
    seq <- list()</pre>
    for (i in 1:length(a)) {
        seq[[i]] <- a[[i]][1:length(a[[i]])]</pre>
    numberOfSeq <- length(seq)</pre>
    mat <- matrix(0, nrow = length(a), ncol = length(a[[1]]))</pre>
    for (i in 1:length(seq)) {
        mat[i, ] <- seq[[i]]</pre>
    df <- as.data.frame(mat)</pre>
    tdf \leftarrow t(df)
    referenceSequencePositionInFile = option[2, 7]
```

8 conservation

```
referenceSeq <- tdf[which(tdf[, as.numeric(referenceSequencePositionInFile)] !=</pre>
        "-"), ]
    referenceSeq <- as.data.frame(referenceSeq)</pre>
    write.table(referenceSeq, file = "alignment_table", sep = "\t",
        quote = F, row.names = F, col.names = F)
    counter <- rep(0, nrow(referenceSeq))</pre>
    a <- read.table("alignment_table", sep = "\t")</pre>
    a <- data.frame(lapply(a, as.character), stringsAsFactors = FALSE)</pre>
    for (i in 1:nrow(a)) {
        a[i, "consensus"] <- paste(as.character(a[i, ]), collapse = "")</pre>
    countBases <- function(string) {</pre>
        table(strsplit(string, "")[[1]])
    c <- as.character(a[, "consensus"])</pre>
    tab <- list()</pre>
    for (i in 1:length(c)) {
        tab[[i]] <- countBases(c[i])</pre>
    score <- rep(0, nrow(a))</pre>
    for (i in 1:length(tab)) {
        for (j in 1:length(tab[[i]])) {
         if ((names(tab[[i]][j])) == a[i, ][as.numeric(referenceSequencePositionInFile)])
                 score[i] <- tab[[i]][j]</pre>
        }
    scorePlot <- -(((score/numberOfSeq)))</pre>
    a <- read.fasta(file = "alignmentFile.fasta")</pre>
    seqForPlot <- a[[as.numeric(referenceSequencePositionInFile)]][</pre>
which(a[[as.numeric(referenceSequencePositionInFile)]] !=
        "-")]
    if (additionalOptions == "yes") {
        if (conservation == "yes") {
            lines(scorePlot, col = "purple3")
        }
    }
    if (additionalOptions == "yes") {
        if (showReferenceSequence == "yes") {
            rect(0, -4.75, length(scorePlot), -5.05, col = "white",
                 border = NA)
            for (i in 1:length(seqForPlot)) {
                 text(i, -4.9, toupper(seqForPlot[i]), font = 2,
                   cex = 1)
            }
        }
    if (additionalOptions == "yes") {
        if (showConservationScore == "yes") {
            rect(0, 0.3, length(scorePlot), 0.7, col = "white",
                 border = NA)
            for (i in 1:length(seqForPlot)) {
                 text(i, 0.5, toupper(abs(round(scorePlot[i],
                   1))), font = 2, cex = 0.8, srt = 90, col = "purple3")
```

data 9

```
}
}
}
```

data

Save the information

Description

Keep all the information of the painted protein in a file

Usage

```
data()
```

Details

Save information, including protein mutation point information, domain information, option information, enlargement information, protein information, length information and site information

Value

Data of various kinds of information

Author(s)

Xiaoyu Zhang

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

codehelp

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function ()
{
    library("ade4")
    library("seqinr")
    library("plotrix")
```

10 domain_data

```
protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F)
  domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F)
  length = read.table("Length.txt", sep = "\t", stringsAsFactors = F)
  site = read.table("Site.txt", sep = "\t", stringsAsFactors = F)
 muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F)
 option = read.table("Option.txt", sep = "\t", stringsAsFactors = F)
 zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F)
 c <- merge(muta, domain, all = T, sort = FALSE)</pre>
 c <- merge(c, option, all = T, sort = FALSE)</pre>
 c <- merge(c, zoomin, all = T, sort = FALSE)</pre>
 c <- merge(c, protein, all = T, sort = FALSE)</pre>
 c <- merge(c, length, all = T, sort = FALSE)</pre>
  c <- merge(c, site, all = T, sort = FALSE)</pre>
  write.table(c, file = "data.txt", sep = "\t", quote = FALSE,
      row.names = F, col.names = F)
}
```

domain_data

downloading protein length

Description

Load the start and end positions of the domain

Usage

```
domain_data()
```

Details

The tool ennable visualization of amino acid changes at the protein level, The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available include domains

Value

The start and end positions of the domain

Author(s)

Xiaoyu Zhang

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

codehelp

length_data 11

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function ()
{
    library(XML)
    library(plyr)
    protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F)
    name = protein[2]
    url_p = "http://www.uniprot.org/uniprot/"
    url_s = "#showFeatures"
    url_w = paste(url_p, name, url_s, sep = "")
    url = url_w
    doc <- htmlParse(url)</pre>
    position_d = xpathSApply (doc, "//table[@id= 'domainsAnno_section']
  /tr/td/ a[@class = 'position tooltipped']",
        xmlValue)
  name_d = xpathSApply (doc, "//table[@id= 'domainsAnno_section']/tr/td/span[@property='text']",
        xmlValue)
    s_d = c()
    for (i in 1:length(position_d)) {
        s_d[i] <- gsub(pattern = "//D", replacement = "x", position_d[i])</pre>
    s_d <- strsplit(s_d, "xxx")</pre>
    d1_d \leftarrow laply(s_d, function(x) x[1])
    d2_d \leftarrow laply(s_d, function(x) x[2])
    r1_d = d1_d
    r2_d = d2_d
    r3_d = name_d
    dfrm_d = data.frame(r1_d, r2_d, r3_d)
    write.table(dfrm_d, file = "Domain.txt", sep = "/t", quote = FALSE,
        row.names = F, col.names = F)
  }
```

length_data

downloading protein length

Description

Download the length of the protein, including the starting and ending positions

Usage

```
length_data()
```

12 length_data

Details

Download the length of the protein, including the starting and ending positions

Value

The length of the protein

Author(s)

Xiaoyu Zhang

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

codehelp

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function ()
    library(XML)
    library(plyr)
    protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F)
    name = protein[2]
    url_p = "http://www.uniprot.org/uniprot/"
    url_s = "#showFeatures"
    url_w = paste(url_p, name, url_s, sep = "")
    url = url_w
    doc <- htmlParse(url)</pre>
    position_l = xpathSApply (doc, "//table[@id= 'peptides_section']
  /tr/td/ a[@class = 'position tooltipped']",
        xmlValue)
    s_1 <- c()
    for (i in 1:length(position_l)) {
        s_l[i] <- gsub(pattern = "//D", replacement = "x", position_l[i])</pre>
    s_l <- strsplit(s_l, "xxx")</pre>
    d2_1 \leftarrow laply(s_1, function(x) x[2])
    r1_l <- 0
    r2_1 \leftarrow d2_1
    dfrm_l <- data.frame(r1_l, r2_l)</pre>
    write.table(dfrm_1, file = "Length.txt", sep = "/t", quote = FALSE,
        row.names = F, col.names = F)
  }
```

plotdomain 13

plotdomain

ploting domain

Description

Draw the domain of the protein

Usage

```
plotdomain()
```

Details

The tool ennable visualization of amino acid changes at the protein level, The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available include domains

Value

The starting position, end position and name of the protein domain

Author(s)

Xiaoyu Zhang

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

codehelp

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function ()
{
    protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F)
    domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F)
    length = read.table("Length.txt", sep = "\t", stringsAsFactors = F)
    site = read.table("Site.txt", sep = "\t", stringsAsFactors = F)
    muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F)
    option = read.table("Option.txt", sep = "\t", stringsAsFactors = F)
    zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F)
```

14 plotdomain

```
Domain = function(start, end, name, height = -0.3, color = "orange",
    face = "stereoscopic", protein_width, x_y) {
    h1 = -2.8
    h2 = -3.1
    dec = 2 * nchar(name) * protein_width/100
    if (face == "stereoscopic") {
        cylindrect(start, h1, end, h2, col = color, gradient = "y")
    }
    else {
        rect(start, h1, end, h2, col = color)
    if (end - start \geq dec) {
        par(srt = 0)
        text((end + start)/2, h1 + height/2, name, cex = 0.7)
        isContain = TRUE
    }
    else {
        isContain = FALSE
    isContain
}
Domain_w = function(domain_pos, domain_name, protein_width) {
    dec = 1.4 * protein_width/100
    position2 = 1:length(domain_pos)
    position2[1] = domain_pos[1]
    if (length(domain_pos) > 1) {
        for (i in 2:length(domain_pos)) {
            if (domain_pos[i] - domain_pos[i - 1] <= dec) {</pre>
              if (domain_pos[i] != domain_pos[i - 1]) {
                position2[i] = position2[i - 1] + dec
              }
                position2[i] = position2[i - 1]
              }
            }
            else {
              position2[i] = domain_pos[i]
    return(position2)
Domain_h = function(position, position2, name, height = -0.3,
   x_y, up_down) {
   h1 = -0.1
   h2 = -0.2
   h = -0.4
    hh1 = -2.8
    if (up_down == "up") {
        if (position == position2) {
            segments(position, hh1 + height, position, hh1 +
              height + h)
        }
```

plotdomain 15

```
else {
            segments(position, hh1 + height, position, hh1 +
              height + h1)
            segments(position2, hh1 + height + h - h2, position2,
             hh1 + height + h)
            segments(position, hh1 + height + h1, position2,
             hh1 + height + h - h2)
       }
       text(position2, hh1 + height + h - 0.02, name, srt = 90,
            adj = c(0, 0.5), cex = 0.8)
   }
   else {
       if (position == position2) {
            segments(position, hh1, position, hh1 - h)
       }
       else {
            segments(position, hh1, position, hh1 - h1)
            segments(position2, hh1 - h + h2, position2,
             hh1 - h)
            segments(position, hh1 - h1, position2, hh1 -
              h + h2
       text(position2, hh1 - h + 0.02, name, srt = 270,
            adj = c(0, 0.5), cex = 0.8)
   }
if (!is.na(domain[1, 1])) {
   domainn = domain
   count = 0
    for (i in 1:nrow(domainn)) {
       isContain = Domain(start = as.numeric(domainn[i,
            1]), end = as.numeric(domainn[i, 2]), name = as.character(domainn[i,
            3]), height = as.numeric(protein[4]), color = i +
            1, face = protein[6], protein_width = as.numeric(length[2]),
            x_y = flag
       if (isContain == TRUE) {
            domain = domain[-i + count, ]
            count = count + 1
    }
   domain2 = (domain[, 1] + domain[, 2])/2
    if (length(domain2) != 0) {
       flag = TRUE
       if (flag == TRUE) {
            position3 = Domain_w(domain2, domain[, 3], as.numeric(length[2]))
       for (i in 1:nrow(domain)) {
            position1 = (as.numeric(domain[i, 1]) + as.numeric(domain[i,
              2]))/2
            Domain_h(position = position1, position2 = position3[i],
              name = as.character(domain[i, 3]), height = as.numeric(protein[4]),
              x_y = flag, up_down = "down")
       }
```

plotmutagensis plotmutagensis

```
}
}
```

plotmutagensis

ploting mutagensis

Description

Draw the mutagensis of the protein

Usage

```
plotmutagensis()
```

Details

The tool ennable visualization of amino acid changes at the protein level, The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available include mutagensis

Value

The location, height and name of the transition point

Author(s)

Xiaoyu Zhang

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

codehelp

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function ()
{
    protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F)
    domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F)
    length = read.table("Length.txt", sep = "\t", stringsAsFactors = F)
```

plotmutagensis 17

```
site = read.table("Site.txt", sep = "\t", stringsAsFactors = F)
muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F)
option = read.table("Option.txt", sep = "\t", stringsAsFactors = F)
zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F)
Mutagenesis = function(position, position2, color, height2,
    height, up_down, start, end, pc, cex1) {
    h1 = -0.1
    h2 = -1.4
    h = -1.6
    hh1 = -2.8
    if (up_down == "up") {
        if (position == position2) {
            segments(position, hh1 + height, position, hh1 +
              height + h)
        }
        else {
            segments(position, hh1 + height, position, hh1 +
              height + h1)
            segments(position2, hh1 + height + h - h2, position2,
              hh1 + height + h)
            segments(position, hh1 + height + h1, position2,
              hh1 + height + h - h2)
        }
    }
    x = 0
    kong1 = (round(log(start, 10)) + 1) * start/50
    kong2 = (round(log(end, 10)) + 1) * end/50
    if (round(log(end, 10)) + 1 \le 5) {
        kong2 = (round(log(end, 10)) + 1) * end/50
    }
    else {
        kong2 = 5 * end/50
    boxplot(x, xlim = c(start - kong1, end + kong2), ylim = c(1,
        -5.5), axes = FALSE, add = TRUE, border = FALSE)
    points(position2, height2, pch = pc, col = color, cex = cex1)
Change_h = function(muta_pos, muta_name, protein_h) {
    d = 0.1
    d1 = 0.26
    hh1 = -2.8
    height2 = 1:length(muta_pos)
    height2[1] = hh1 + protein_h - d1
    position_h = muta_pos
    position_h[1] = muta_pos[1]
    if (length(muta_pos) > 1) {
        for (i in 2:length(muta_pos)) {
            if (muta_pos[i] == position_h[i - 1]) {
              height2[i] = height2[i - 1] - d
            }
            else {
              height2[i] = hh1 + protein_h - d1
```

18 plotsite

```
}
      }
      height2
  Change_m = function(muta, protein_width) {
      dec = 1.4 * protein_width/100
      position3 = 1:length(muta)
      position3[1] = muta[1]
      if (length(muta) > 1) {
          for (i in 2:length(muta)) {
              if (muta[i] - muta[i - 1] \le dec) {
                if (muta[i] != muta[i - 1]) {
                  position3[i] = position3[i - 1] + dec
                }
                else {
                  position3[i] = position3[i - 1]
              }
              else {
                position3[i] = muta[i]
          }
      }
      {\tt position3}
  if (!is.na(muta[1, 1])) {
      position3 = Change_m(muta[, 1], as.numeric(length[2]))
      height2 = Change_h(muta[, 1], muta[, 2], as.numeric(protein[4]))
      for (i in 1:nrow(muta)) {
          Mutagenesis(position = as.numeric(muta[i, 1]), position2 = position3[i],
              color = as.character(muta[i, 2]), height2 = height2[i],
              height = as.numeric(protein[4]), up_down = "up",
              start = as.numeric(length[1]), end = as.numeric(length[2]),
              pc = as.numeric(protein[7]), cex1 = as.numeric(protein[8]))
     }
 }
}
```

plotsite

ploting site

Description

Draw the protein site

Usage

plotsite()

plotsite 19

Details

The tool ennable visualization of amino acid changes at the protein level, The scale of a protein domain and the position of a functional motif/site will be precisely defined. The features available include site

Value

Location of the site in the protein

Author(s)

Xiaoyu Zhang

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

codehelp

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function ()
{
   protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F)
   domain = read.table("Domain.txt", sep = "\t", stringsAsFactors = F)
   length = read.table("Length.txt", sep = "\t", stringsAsFactors = F)
    site = read.table("Site.txt", sep = "\t", stringsAsFactors = F)
   muta = read.table("Mutagenesis.txt", sep = "\t", stringsAsFactors = F)
   option = read.table("Option.txt", sep = "\t", stringsAsFactors = F)
   zoomin = read.table("ZoomIn.txt", sep = "\t", stringsAsFactors = F)
    Site = function(position, position2, name, height = -0.3,
       x_y, up_down) {
       h1 = -0.1
       h2 = -0.2
       h = -0.4
       hh1 = -2.8
       if (up_down == "up") {
            if (position == position2) {
                segments(position, hh1 + height, position, hh1 +
                  height + h)
            }
            else {
                segments(position, hh1 + height, position, hh1 +
                  height + h1)
```

20 plotsite

```
segments(position2, hh1 + height + h - h2, position2,
                hh1 + height + h)
              segments(position, hh1 + height + h1, position2,
                hh1 + height + h - h2
          text(position2, hh1 + height + h - 0.02, name, srt = 90,
              adj = c(0, 0.5), cex = 0.8)
      }
      else {
          if (position == position2) {
              segments(position, hh1, position, hh1 - h)
          }
          else {
              segments(position, hh1, position, hh1 - h1)
              segments(position2, hh1 - h + h2, position2,
                hh1 - h)
              segments(position, hh1 - h1, position2, hh1 -
                h + h2
          text(position2, hh1 - h + 0.02, name, srt = 270,
              adj = c(0, 0.5), cex = 0.8)
      }
  }
  Change_x = function(site_pos, site_name, protein_width) {
      dec = 1.4 * protein_width/100
      position2 = 1:length(site_pos)
      position2[1] = site_pos[1]
      if (length(site_pos) > 1) {
          for (i in 2:length(site_pos)) {
              if (site_pos[i] - site_pos[i - 1] \le dec) {
                if (site_pos[i] != site_pos[i - 1]) {
                  position2[i] = position2[i - 1] + dec
                }
                else {
                  position2[i] = position2[i - 1]
                }
              }
              else {
                position2[i] = site_pos[i]
          }
      }
      return(position2)
  if (!is.na(site[1, 1])) {
      position2 = Change_x(site[, 1], site[, 2], as.numeric(length[2]))
      for (i in 1:nrow(site)) {
          Site(position = as.numeric(site[i, 1]), position2 = position2[i],
              name = as.character(site[i, 2]), height = as.numeric(protein[4]),
              x_y = flag, up_down = "up")
      }
 }
}
```

site_data 21

site_data

downloading protein site

Description

Download the site of the protein, including the name

Usage

```
site_data()
```

Details

Download the site of the protein, including the distribution of the locus of the marker space

Value

The location of the marker line

Author(s)

Xiaoyu Zhang

References

https://cran.r-project.org/doc/manuals/R-exts.html

See Also

codehelp

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function ()
{
    library(XML)
    library(plyr)
    protein = read.table("Protein.txt", sep = "\t", stringsAsFactors = F)
    name = protein[2]
    url_p = "http://www.uniprot.org/uniprot/"
    url_s = "#showFeatures"
    url_w = paste(url_p, name, url_s, sep = "")
    url = url_w
    doc <- htmlParse(url)</pre>
```

22 site_data

```
position_s = xpathSApply (doc, "//table[@id= 'sitesAnno_section']
 /tr/td/ a[@class = 'position tooltipped']",
       xmlValue)
 name_s = xpathSApply (doc, "//table[@id= 'sitesAnno_section']/tr/td/span[@property='text']",
      xmlValue)
  s_s <- c()
   for (i in 1:length(position_s)) {
       s_s[i] <- gsub(pattern = "//D", replacement = "x", position_s[i])</pre>
  s_s <- strsplit(s_s, "xxx")</pre>
  d1_s \leftarrow laply(s_s, function(x) x[1])
  d2_s \leftarrow laply(s_s, function(x) x[2])
  r1_site = d1_s
  r2_site = name_s
  dfrm_site = data.frame(r1_site, r2_site)
  write.table(dfrm_site, file = "Site.txt", sep = "/t", quote = FALSE,
       row.names = F, col.names = F)
 }
```

Index

```
* Autoplotprotein
                                                   plotdomain, 13
    Autoplotprotein, 3
                                                   plotmutagensis, 16
*\ conservation
                                                   plotsite, 18
    conservation, 6
                                                   site_data, 21
* data
    data, 9
* domain data
    domain_data, 10
* file
    conservation, 6
    domain_data, 10
    length_data, 11
    plotdomain, 13
    plotmutagensis, 16
    plotsite, 18
    site_data, 21
* \ length \ data
    length_data, 11
* \ mutagens is \\
    plot mutagensis, \\ 16
* package
    Autoplotprotein-package, 2
* plot domain
    plotdomain, \\ 13
* site_data
    site_data, 21
* site
    plotsite, 18
Autoplotprotein, 3
Autoplotprotein-package, 2
conservation, 6
data, 9
domain_data, 10
help, 3, 7, 9, 10, 12, 13, 16, 19, 21
length_data, 11
```