Figures of DSAM experiments

Xin HUANG

2017.4.14

Fig1: Ishigami Function

Fig2a: Ishigami Function

$$f(\mathbf{x}) = \prod_{i=1}^d rac{|4x_i-2|+a_i}{1+a_i}, ext{ where}$$
 $a_i = rac{i-2}{2}, ext{ for all } i=1,\ldots,d$

Fig2b: GFunction

$$f(\mathbf{x}) = \sum_{i=1}^d (-1)^i \prod_{j=1}^i x_j$$

Fig2c: Bratley function

Fig2d : Oakley Function

$$f(\mathbf{x}) = \exp\left[\sum_{i=1}^d b_i x_i
ight] - I_d + c_0, ext{ where}$$

$$I_d = \prod_{i=1}^d \frac{\exp(b_i) - 1}{b_i}$$

Fig2f: Morris function

ID	Description	Min	Max	Default Value
1	Clay effect on C partitioning from slow pool to passive pool	0	0.7	0.00405
2	C partitioning from slow to passive pool if no clay	0	0.02	0.0135
3	Exit rate from slow pool, (years 1)	0.1	0.5	0.2
4	Exit rate from passive pool, (years 1)	0.001	0.005	0.0045
5	C partitioning from slow to soil microbial pool if no clay	0.3	0.7	0.44865
6	Combined effect of sand and clay on C partitioning from soil microbial pool	0	0.1	0.02176
7	C partitioning from soil microbial pool to slow pool if no sand or clay	0.019	0.75	0.16949
8	Sand effect on C partitioning from soil microbial to slow pool	0	1	0.67796
9	Clay effect on C partitioning from soil microbial pool	0	0.03	0.00544
10	Sand effect on C partitioning from soil microbial to passive pool	0	0.03	0.00204
11	C partitioning from soil microbial to passive pool if no sand or clay	0.0001	0.0008	0.00051
12	Temperature sensitivity of C decomposition	1	3	2
13	Lignin effect on partitioning from surface structural litter to surface microbial litter	0	0.7	0.4
14	Lignin effect on partitioning from surface structural litter to soil slow pool	0	0.8	0.7
15	Lignin effect on partitioning from soil structural litter to soil microbial pool	0	0.9	0.45
16	Lignin effect on partitioning from soil structural litter to soil slow pool	0	0.9	0.7
17	Partitioning from surface structural to surface microbial pool if no lignin in surface structural litter	0.35	2.3	0.4
18	Partitioning from soil structural to soil microbial pool if no lignin in soil structural litter	0.4	0.7	0.45
19	Labile C fraction effect on C partitioning from roots to soil metabolic litter	0	0.7	0.2
20	Labile C fraction effect on C partitioning from leaves to surface metabolic litter	0	1.0001	1

Parameter	Description	Min	Default	Max
rhminh	Threshold relative humidity for stratiform high clouds	0.65	0.8	0.85
rhminl	Threshold relative humidity for stratiform low clouds	0.8	0.8975	0.99
alfa	Maximum cloud downdraft mass flux fraction	0.05	0.1	0.6
c0_Ind	Deep convection precipitation efficiency over land	0.001	0.0059	0.01
c0_ocn	Deep convection precipitation efficiency over ocean	0.001	0.045	0.1
dmpdz	Parcel fractional mass entrainment rate	-0.002	-0.001	-0.0002
ke	Evaporation efficiency of precipitation	5E-07	0.000003	0.00001
tau	Time scale for consumption rate deep CAPE	1800	3600	28800
ai	Fall speed parameter for cloud ice	350	700	1400
as	Fall speed parameter for snow	5.86	11.72	23.44
cdnl	Lower bound on droplet number	0	0	10000000
dcs	Autoconversion size threshold for ice to snow	0.0001	0.0004	0.0005
Eii	Collection efficiency aggregation ice	0.001	0.1	1
qcvar	Inverse relative variance of sub-grid cloud water	0.5	2	5
a2l	Moist entrainment enhancement parameter	10	30	50
criqc	Maximum updraft condensate	0.5e-3	0.7e-3	1.5e-3
kevp	Evaporative efficiency	0.000001	0.000002	0.00002
rkm	Updraft lateral mixing efficiency	8	14	16
rpn	Penetrative updraft entrainment efficiency	1	10->5	10

Variables Zonal wind at 200 mbar pressure surface Zonal wind at 850 mbar pressure surface Meridional wind at 200 mbar pressure surface Meridional wind at 850 mbar pressure surface Total (convective and large-scale) precipitation rate (liq + ice) Specific Humidity at 850 mbar pressure surface Temperature at 850 mbar pressure surface Temperature at 200 mbar pressure surface Net longwave flux at top of model Net solar flux at top of model Net longwave flux at surface Net solar flux at surface Vertically-integrated high cloud Vertically-integrated low cloud Vertically-integrated mid-level cloud Vertically-integrated total cloud Surface pressure Total grid-box cloud liquid water path

Fig4: Sobol

Fig5: DSAM

Fig7: the optimal value and iterations

Fig8: Sobol'-CLM-CASA'

Fig9: DSAM: CLM-CASA'

Fig11: Optimal value and iterations

Fig12: Sobol'-SCAM

Fig13: DSAM-SCAM

Fig14: Optimization of Top5,14 sensitive parameters

Fig15: Optimal value and iterations

Additional Materials

Fig17: valid selection because of integral error

Fig18: Optimal value and iterations