3.1 Explorarea Datelor

1. Analiza echilibrului de clase

Se poate remarca că există un echilibru între setul de date utilizat pentru antrenare și cel folosit pentru testare, deoarece pentru fiecare dintre cele patru etichete ("Badminton_Clear", "Badminton_Smash", "Squash_ForehandBoast" și "Squash_BackandBoast"), numărul de înregistrări din ambele seturi este egal, cu excepția situației în care este vorba despre "Badminton_Smash", unde numerele sunt aproape identice.

Observăm din cele două diagrame de bare de mai sus că există un dezechilibru evident între numărul de exemple din fiecare clasă, sugerând astfel avantajele standardizării datelor.

2. Vizualizarea seriilor de timp

2.1. Câte un exemplu de serie pentru fiecare tip de acțiune (RacketSports)

• Accelerometru

Giroscop

Bazându-ne pe seriile de timp pentru RacketSports, se poate observa o strânsă legătură între valorile celor trei axe de coordonate. Există mai multe zone în care curbele sunt aproape identice, ceea ce sugerează redundanța datelor, aceste zone având un impact nesemnificativ asupra predicției.

2.2. Câte un exemplu de serie pentru fiecare categorie de aritmie din seturile de date MIT-BIH / PTB

Timp

Exemplu de serie pentru MITBIH

Exemplu de serie pentru PTBDB

Cu privire la graficele care prezintă media și deviația standard pentru aritmii, se pot desprinde următoarele concluzii:

- În cazul în care media crește până la valoarea 1.0, iar deviația standard scade până la 0.0, putem presupune că seriile de date au fost completate cu zero-uri (padding) pentru a avea aceeași lungime cu celelalte serii.
- Atunci când valorile medii și de deviație standard sunt similare, putem deduce că datele sunt concentrate în jurul valorii medii, ceea ce indică o dispersie nesemnificativă. Această situație poate fi un dezavantaj pentru algoritmul de clasificare, deoarece nu va fi clar care este clasa cea mai adecvată.
- În zonele în care valorile medii și de deviație standard diferă semnificativ, datele din seturile de intrare sunt dispersate. Aceste zone pot favoriza acuratețea predicțiilor.

2.4. Distribuția valorilor per fiecare axă de accelerometru și giroscop în parte / per acțiune

Accelerație, axa X

Accelerație, axa Y

Badminton_Shash

Badminton_Clear

Squash_ForehandBoast

Squash_BackhandBoast

activity

Badminton_Smash

Badminton_Clear

Squash_ForehandBoast

Squash_BackhandBoast

Accelerație, axa Z

• Giroscop, axa X

activity
Badminton_Smash
Badminton_Clear
Squash_ForehandBoast
Squash_BackhandBoast

• Giroscop, axa Y

• Giroscop, axa Z

Graficele de mai sus evidențiază o corelație între datele din fiecare clasă, ceea ce poate afecta acuratețea algoritmului. De asemenea, vârfurile graficelor celor patru clase se apropie, sugerând că valorile sunt în general în același interval, ceea ce indică faptul că standardizarea datelor poate nu este necesară.

3.2. Extragere manuală a atributelor și utilizarea algoritmilor clasici de Învățare Automată

1. Evaluarea algoritmilor direct pe datele de intrare

RandomForest PTBDB			BDB
Parametrii	Clasa	0	1
	Metrica		
	Precision	0.818182	0.897365
n_estimators=50	Recall	0.733813	0.934521
max_depth=5	F1-score	0.773704	0.915566
max_samples=0.5	mean accuracy		929727
	std accuracy	0.013609658	
	Precision	0.789677	0.896067
n_estimators=50	Recall	0.733813	0.921521
max_depth=5	F1-score	0.760721	0.908616
max_samples=0.7	mean accuracy	0.867	060412
	std accuracy	0.014	720602
	Precision	0.783069	0.887703
n_estimators=50	Recall	0.709832	0.92104
max_depth=5	F1-score	0.744654	0.904064
max_samples=0.9	mean accuracy	0.871	524229
	std accuracy	0.005	835677
	Precision	0.921836	0.95677
n_estimators=50	Recall	0.890887	0.969668
max_depth=10	F1-score	0.906098	0.963176
max_samples=0.5	mean accuracy	0.91721455	
	std accuracy	0.013	475087
	Precision	0.92689	0.959125
n_estimators=50	Recall	0.896882	0.971594
max_depth=10	F1-score	0.911639	0.965319
max_samples=0.7	mean accuracy	0.920649797	
	std accuracy	0.008813956	
	Precision	0.911765	0.957041
n_estimators=50	Recall	0.892086	0.965335
max_depth=10	F1-score	0.901818	0.96117
max_samples=0.9	mean accuracy	0.928	205219
	std accuracy	0.008905277	
	Precision	0.959339	0.962806
n_estimators=50	Recall	0.905276	0.984593
max_depth=20	F1-score	0.931524	0.973578
max_samples=0.5	mean accuracy	0.927	863934
	std accuracy	0.012	457435
	Precision	0.973111	0.965258
n_estimators=50	Recall	0.911271	0.989889
max_depth=20	F1-score	0.941176	0.977419
max_samples=0.7	mean accuracy	0.932	32952
	std accuracy	0.013223845	
	Precision	0.970812	0.967499
n_estimators=50	Recall	0.917266	0.988926
max_depth=20	F1-score	0.94328	0.978095
max_samples=0.9	mean accuracy		637519
<u> </u>	std accuracy		16619

	Precision	0.802083	0.898273
n_estimators=100 Recall		0.738609	0.926818
max_depth=5	F1-score	0.769039	0.912322
max_samples=0.5	mean accuracy	0.869119909	
	std accuracy	0.0113	331915
	Precision	0.805263	0.896792
n_estimators=100	Recall	0.733813	0.928743
max_depth=5	F1-score	0.76788	0.912488
max_samples=0.7	mean accuracy	0.873	589621
	std accuracy	0.014	698363
	Precision	0.8	0.896552
n_estimators=100	Recall	0.733813	0.926336
max_depth=5	F1-score	0.765478	0.911201
max_samples=0.9	mean accuracy	0.870	839891
	std accuracy	0.014	665948
	Precision	0.93	0.957366
n_estimators=100	Recall	0.892086	0.973038
max_depth=10	F1-score	0.910649	0.965138
max_samples=0.5	mean accuracy	0.914	809051
	std accuracy	0.010	024363
	Precision	0.915025	0.956646
n_estimators=100	Recall	0.890887	0.966779
max_depth=10	F1-score	0.902795	0.961686
max_samples=0.7	.7 mean accuracy 0.925		804436
	std accuracy	0.014	35556
	Precision	0.926108	0.960934
n_estimators=100	Recall	0.901679	0.971112
max_depth=10	F1-score		0.965996
max_samples=0.9	mean accuracy	0.922366831	
	std accuracy		247527
	Precision	0.967908	0.962477
n_estimators=100	Recall	0.904077	0.987963
max_depth=20	F1-score	0.934904	0.975053
max_samples=0.5	mean accuracy		894272
	std accuracy		807478
	Precision	0.973485	0.970269
n_estimators=100	Recall	0.92446	0.989889
max_depth=20	F1-score	0.948339	0.979981
max_samples=0.7	mean accuracy		138158
	std accuracy		878504
	Precision	0.968514	0.969296
n_estimators=100	Recall	0.922062	0.987963
max_depth=20	F1-score	0.944717	0.978541
max_samples=0.9	mean accuracy		827212
	std accuracy	0.0092	267089

	Precision	0.800261	0.89697	
n_estimators=200	stimators=200 Recall		0.926336	
max_depth=5	F1-score	0.76625	0.911416	
max_samples=0.5	mean accuracy	0.866027715		
	std accuracy	0.013	548644	
	Precision	0.797176	0.900094	
n_estimators=200	Recall	0.744604	0.923929	
max_depth=5	F1-score	0.769994	0.911856	
max_samples=0.7	mean accuracy	0.873	587263	
	std accuracy	0.0098	875143	
	Precision	0.800525	0.895765	
n_estimators=200	Recall	0.731415	0.926818	
max_depth=5	F1-score	0.764411	0.911027	
max_samples=0.9	mean accuracy	0.872	556336	
	std accuracy	0.013	808403	
	Precision	0.917386	0.957143	
n_estimators=200	Recall	0.892086	0.967742	
max_depth=10	F1-score	0.904559	0.962413	
max_samples=0.5	mean accuracy	0.922	711653	
	std accuracy	0.0129	962026	
	Precision	0.921569	0.960859	
n_estimators=200	Recall	0.901679	0.969186	
max_depth=10	F1-score	0.911515	0.965005	
max_samples=0.7	0.7 mean accuracy 0.9233		398938	
	std accuracy 0.01		0693839	
	Precision	0.922983	0.962255	
n_estimators=200	Recall	0.905276	0.969668	
max_depth=10	F1-score	0.914044	0.965947	
max_samples=0.9	mean accuracy	0.929236147		
	std accuracy	0.0120	057355	
	Precision	0.965693	0.96516	
n_estimators=200	Recall	0.911271	0.987	
max_depth=20	F1-score	0.937693	0.975958	
max_samples=0.5	mean accuracy	0.931	297413	
	std accuracy	0.0080	037153	
	Precision	0.972046	0.967514	
n_estimators=200	Recall	0.917266	0.989408	
max_depth=20	F1-score	0.943862	0.978338	
max_samples=0.7	mean accuracy		452642	
	std accuracy	0.0143	350315	
	Precision	0.974716	0.970283	
n_estimators=200	Recall	0.92446	0.990371	
max_depth=20	F1-score	0.948923	0.980224	
max_samples=0.9	mean accuracy		667368	
	std accuracy	0.0123	377781	

RandomForest PTBDB pe bază de Grid Search cu Cross Validation

Accuracy: 0.9704568876674682

Best parameters: max_depth=20 max_samples=0.9 n_estimators=200

Clasa Metrica	0	1
Precision	0.973418	0.969354
Recall	0.922062	0.989889
F1-score	0.947044	0.979514
Support	834	2077
mean	209.2106	519.984689
std	416.5262	1038.010207

GradientBoosted Trees PTBDB pe bază de Grid Search cu Cross Validation

Accuracy: 0.9807626245276537

Best parameters: learning_rate=0.1 max_depth=5 n_estimators=1000

Clasa Metrica	0	1
Precision	0.98	0.98
Recall	0.96	0.99
F1-score	0.97	0.99
mean accuracy	0.98	
std accuracy	0.00357242	

SVM PTBDB pe bază de Grid Search cu Cross Validation

Accuracy: 0.9587770525592579

Best parameters: C = 10 kernel=rbf

Clasa Metrica	0	1
Precision	0.93	0.97
Recall	0.93	0.97
F1-score	0.93	0.97
mean accuracy	0.951980187	
std accuracy	0.003697583	

Analizând metricile obținute anterior, se poate constata că hiperparametrii au o importanță crucială, însă cel mai important este echilibrul între performanță și eficiență. Există situații în care este mai avantajos să utilizăm hiperparametrii care conduc la un efort computational mai mic, fără a afecta în mod semnificativ calitatea predicțiilor algoritmului.

2. Evaluarea algoritmilor pe atributele statistice extrase

SVM ATRIBUTE PTBDB pe bază de Grid Search cu Cross Validation

Accuracy: 0.8474750944692545

Best parameters: C = 10 kernel=rbf

Clasa Metrica	0	1
Precision	0.81	0.86
Recall	0.62	0.94
F1-score	0.7	0.9
mean accuracy	0.851473576	
std accuracy	0.005927256	

Matrice de corelație pentru dataframe-ul format din atributele extrase din ptbdb_train:

0 1 2 3 ... 12 13 14 187

- 0 1.000000 0.731707 0.726746 NaN ... 0.946862 -0.893571 -0.758214 0.113723
- 1 0.731707 1.000000 0.981616 NaN ... 0.852746 -0.734397 -0.758698 0.248879
- 2 0.726746 0.981616 1.000000 NaN ... 0.826718 -0.779682 -0.799376 0.259635
- 3 NaN NaN NaN NaN NaN NaN NaN NaN
- 4 NaN NaN NaN NaN NaN NaN NaN
- 5 NaN NaN NaN NaN NaN NaN NaN
- 6 0.815583 0.389672 0.401617 NaN ... 0.694819 -0.681796 -0.515256 0.015326
- 7 0.375407 0.347239 0.398489 NaN ... 0.336642 -0.414574 -0.398883 0.082552
- 8 0.673331 0.919582 0.960038 NaN ... 0.756770 -0.744926 -0.761920 0.243985
- 9 NaN NaN NaN NaN NaN NaN NaN NaN
- 10 0.161986 -0.388958 -0.429006 NaN ... -0.029356 0.087205 0.224215 -0.309546
- 0 0.658105 0.233019 0.301004 NaN ... 0.479998 -0.691544 -0.547908 0.014588
- 11 0.168943 -0.220188 -0.230975 NaN ... 0.055412 0.008998 0.136738 0.229781
- 12 0.946862 0.852746 0.826718 NaN ... 1.000000 -0.806882 -0.689852 0.186023
- 13 -0.893571 -0.734397 -0.779682 NaN ... -0.806882 1.000000 0.949687 -0.147827
- 14 -0.758214 -0.758698 -0.799376 NaN ... -0.689852 0.949687 1.000000 -0.155834
- 187 0.113723 0.248879 0.259635 NaN ... 0.186023 -0.147827 -0.155834 1.000000

[17 rows x 17 columns]

În cazul matricei de mai sus, putem observa că valorile de pe diagonala principală (unde se află același atribut comparat cu sine însuși) sunt egale cu 1, ceea ce este normal. De asemenea, există celule unde valorile sunt NaN (not a number), ceea ce indică faptul că nu există date pentru acele perechi de atribute.

Dacă ne uităm la celelalte valori din matrice, putem observa că unele dintre ele sunt foarte apropiate de 1 sau -1, indicând o corelație puternică între acele perechi de atribute. În general, putem spune că perechile de atribute cu valori ridicate și semnificative în matricea de corelație sunt cele mai predictive.

Asemănător se întâmplă și pentru matricea de corelație pentru dataframe-ul format din atributele extrase din ptbdb test.