

Treniranje modela

Treniranje modela

• Kako među svim hiperravnima-kandidatima $f(x) = \theta^T x = 0$ pronaći onu sa najvećom marginom?

• Šta znamo:

- Hiperravni su predstavljene jednačinom $f(x) = \theta^T x = 0$
- Uslov: linearna separabilnost za svako $(x^{(i)}, y^{(i)})$ mora da važi $y^{(i)} \cdot f(x^{(i)}) > 0$
- Ima beskonačno mnogo heta koji bi ovo zadovoljili
- Od svih takvih jednačina, mi želimo da nađemo θ tako da $\theta^T x = 0$ bude ravan sa maskimalnom marginom?

Naš cilj:

- 1. Izraziti marginu kao funkciju parametara θ
- 2. Naći θ za koje ta funkcija dostiže maksimum

Uvešćemo par "tehnikalija" koje će nam olakšati analizu

1. Klase smo obeležili sa y = +1 i y = -1

 Kako ćemo obeležiti klase je svejedno, ovo biramo zato što nam je zgodno za analizu

2. Uvešćemo ograničenje $\left|\theta^T x^{(n)}\right| = 1$

- Sa $x^{(n)}$ smo obeležili vektore potpore
- Za sve tačke skupa podataka važi $\left|\theta^T x^{(i)}\right| > 0$
- A mi ćemo, pored toga, specijalno za vektore potpore $x^{(n)}$, insistirati i da je $|\theta^T x^{(n)}| = 1$

2. Uvešćemo ograničenje $|\theta^T x^{(n)}| = 1$

(Kako za istu hiperravan ne bismo imali beskonačno mnogo reprezentacija)

- Jednačina hiperravni je $\theta^T x = 0$. Ako pomnožimo θ bilo kojim skalarom, ovo je identična hiperravan!
- Npr. prave $2 \cdot x_1 x_2 1 = 0$ i $6 \cdot x_1 3 \cdot x_2 3 = 0$ su identične, a opisane različitim parametrima: $\theta^{(1)} = [2, -1, -1]$ i $\theta^{(2)} = [6, -3, -3]$
- Biranjem $\left|\theta^T x^{(n)}\right| = 1$ nismo izgubili na opštosti: i dalje možemo predstaviti svaku hiperravan

2. Uvešćemo ograničenje $|\theta^T x^{(n)}| = 1$

- 3. Izvućićemo θ_0 iz vektora i tretirati ga posebno (u odnosu na ostale parametre)
- Umesto dosadašnjeg obeležavanja $\theta = [\theta_0, \theta_1, \dots, \theta_D]$, usvojićemo sledeće obeležavanje: $\theta = [\theta_1, \dots, \theta_D]$, a θ_0 ćemo označiti sa b
- Iz x ćemo izbaciti $x_0 = 1$
- Hiperravan je: $f(x) = \theta^T x + b = 0$
- Ponovo nismo izgubili na opštosti, samo biramo malo drugačiju reprezentaciju parametara

- Širina margine je rastojanje vektora potpore $x^{(n)}$ i hiperravni
- Dogovorili smo se da ćemo odabrati θ tako da važi $\left|\theta^Tx^{(n)}+b\right|=1$
- Znamo da su podaci linearno separabilni: $y^{(i)} \cdot f(x^{(i)}) > 0$
- Dakle, za vektore potpore $\left(x^{(n)},y^{(n)}\right)$ važi $y^{(n)}\left(\theta^Tx^{(n)}+b\right)=1$

Ako bismo vektor

$$\vec{\chi}^{(n+)} - \vec{\chi}^{(n-)}$$

projektovali na jedinični vektor normalan na razdvajajuću hiperavan, dužina projekcije bi bila jednaka margini

- 1. Pokazaćemo da je vektor θ normalan na hiperravan
- 2. Projektovaćemo $\vec{x}^{(n+)} \vec{x}^{(n-)}$ na $\frac{\vec{\theta}}{\|\theta\|}$ (normalizujemo θ tako da bude jedinični vektor)

1. Vektor $\vec{\theta}$ je normalan na hiperravan

- Uzmimo bilo koje dve tačke x' i x'' na hiperravni.
- One moraju da zadovoljavaju jednačinu hiperravni $\theta^T x + b = 0$, dakle: sledi $\theta^T x' + b = 0$ i $\theta^T x'' + b = 0$. Ako oduzmemo ovde dve jednačine: $\theta^T (x'' x') = 0$
- Pošto su $\vec{\theta}$ i $\vec{x}'' \vec{x}'$ ne-nula vektori, to znači da mora da su ortogonalni
- Dakle, pošto je $\vec{\theta}$ ortogonalan na bilo koji vektor na hiperravni, mora da je ortogonalan na hiperravan

2. Projektujemo $\vec{x}^{(n+)} - \vec{x}^{(n-)}$ na $\frac{\vec{\theta}}{\|\theta\|}$

$$\hat{\theta} = \theta / \|\theta\|, \|\theta\| = \sqrt{\theta_1^2 + \theta_2^2 + \dots + \theta_D^2}$$

- Projekcija se dobija skalarnim proizvodom tih vektora
 - Projekcija je $\hat{\theta}^T (x^{(n+)} x^{(n-)})$, ali ovaj broj može biti pozitivan ili negativan
 - Zbog toga nam za razdaljinu treba apsolutna vrednost

$$distance = |\hat{\theta}^T (x^{(n+)} - x^{(n-)})| = \frac{1}{\|\theta\|} |\theta^T x^{(n+)} - \theta^T x^{(n-)}|$$

Margina izražena preko heta

$$distance = \frac{1}{\|\theta\|} \left| \theta^T x^{(n+)} - \theta^T x^{(n-)} \right|$$

- Tačka $x^{(n+)}$:
 - Njena labela je $y^{(n+)} = +1$
 - Postavili smo uslov da za vektore potpore važi: $y^{(n+)} \left(\theta^T x^{(n+)} + b\right) = 1 \Rightarrow \theta^T x^{(n+)} = 1 b$
- Tačka $x^{(n-)}$:
 - Njena labela je $y^{(n-)} = -1$
 - Postavili smo uslov da za vektore potpore važi: $y^{(n-)} \Big(\theta^T x^{(n-)} + b \Big) = 1 \Rightarrow \theta^T x^{(n-)} = -1 b$
- Dakle: $distance = \frac{1}{\|\theta\|} |1 b (-1 b)| = \frac{2}{\|\theta\|}$

Margina izražena prekoheta

- Uspeli smo da izrazimo marginu kao funkciju heta
- Želimo da odaberemo θ tako da margina bude maksimalna, dakle, naš optimizacioni problem je:

$$\max_{\theta} \frac{2}{\|\theta\|}$$

- Možemo izbaciti konstantu 2
- Umesto maksimizacije $\frac{1}{\|\theta\|}$ možemo minimizovati $\|\theta\|$
- Ovo je ekvivalentno minimizaciji $\frac{1}{2} ||\theta||^2 = \frac{1}{2} \theta^T \theta$
 - (ovo nam je matematički pogodnije jer je $\|\theta\| = \sqrt{\theta_1^2 + \theta_2^2 + \dots + \theta_D^2}$)
- Naš optimizacioni problem postaje:

$$\min_{\theta} \frac{1}{2} \theta^T \theta$$

Pod kojim uslovom?

• Ranije smo uveli uslov da za vektore potpore važi $\left|\theta^Tx^{(n)}+b\right|=1$

• Vektori potpore su tačke najbliže razdvajajućoj hiperravni pa je za njih vrednost $\left|\theta^Tx^{(n)}+b\right|$ najmanja u celom skupu podataka

• Dakle uslov možemo zapisati kao $\min_{i=1,2,\dots,N} \left| \theta^T x^{(i)} + b \right| = 1$

Pod kojim uslovom?

Nezgodan nam je min u uslovu, pa ćemo zameniti uslov ekvivalentnim:

$$\min_{i=1,2,\dots,N} \left| \theta^T x^{(i)} + b \right| = 1 \Leftrightarrow \left| \theta^T x^{(i)} + b \right| \geq 1, \text{ za svako } i \in \{1,\dots,N\}$$
(1)

- Da li su uslovi (1) i (2) ekvivalentni?
 - Ako je uslov (1) ispunjen, onda je svakako i uslov (2)
 - Problem: šta ako dobijemo θ takvo da važi $\left|\theta^Tx^{(i)}+b\right|>1$ za svako $i\in\{1,\dots,N\}$?
 - To se ne slaže time da mora postojati takvo $x^{(n)}$ da je $\left|\theta^T x^{(n)} + b\right| = 1$
 - Da li se ovakva situacija može desiti?
 - Recimo da postoji rešenje $\min_{\theta} \frac{1}{2} \theta^T \theta$ takvo da je $\left| \theta^T x^{(i)} + b \right| > 1$ za svako $i \in \{1, \dots, N\}$
 - Onda mi možemo naći bolje! Skaliraćemo θ i b, sve dok se ne desi da postoji $x^{(n)}$ da je $\left|\theta^Tx^{(n)}+b\right|=1$
 - Dobili smo manje θ i b dakle, bolje rešenje optimizacionog problema $\min_{\theta} \frac{1}{2} \theta^T \theta$

Pod kojim uslovom?

$$\left|\theta^T x^{(i)} + b\right| \ge 1$$
, za svako $i \in \{1, ..., N\}$

Da bismo se rešili apsolutne vrednosti:

$$\left|\theta^T x^{(i)} + b\right| = y^{(i)} \left(\theta^T x^{(i)} + b\right)$$

- Za pozitivne primere: $y^{(i)} = +1$, a $\theta^T x^{(i)} + b > 0$
- Za negativne primere: $y^{(i)} = -1$, a $\theta^T x^{(i)} + b < 0$

Dakle, imamo optimizacioni problem:

$$\min_{\theta} \frac{1}{2} \theta^T \theta$$

Sa ograničenjima:

$$y^{(i)}(\theta^T x^{(i)} + b) - 1 \ge 0$$
 za svako $i \in \{1, ..., N\}$

Kako se pronalazi minimum pod ograničenjima?

- Standardan način za rešavanje optimizacionih problema sa ograničenjima tipa jednakosti i nejednakosti je KKT (Karush-Kuhn-Tucker)
 - Generalizacija metode Lagranžovih množilaca
 - Problem pronalaženja ekstrema pod ograničenjima zamenjujemo ekvivalentnim problemom bez ograničenja

$$L(\theta, b, \alpha) = \frac{1}{2}\theta^T \theta - \sum_{i=1}^{N} \alpha_i \left[y^{(i)} \left(\theta^T x^{(i)} + b \right) - 1 \right]$$

- Optimizacioni problem $\min_{\theta,b}\max_{\alpha,\alpha\geq 0}L(\theta,b,\alpha)$ je ekvivalentan našem problemu
 - Ako su uslovi $y^{(i)}(\theta^T x^{(i)} + b) 1 \ge 0$ ispunjeni, $\max_{\alpha,\alpha \ge 0} L(\theta,b,\alpha) = \frac{1}{2}\theta^T \theta$
 - Ako je neki od uslova narušen, $\max_{\alpha,\alpha\geq 0}L(\theta,b,\alpha)=\infty$

Kako se pronalazi minimum pod ograničenjima?

$$L(\theta, b, \alpha) = \frac{1}{2}\theta^T \theta - \sum_{i=1}^{N} \alpha_i \left[y^{(i)} \left(\theta^T x^{(i)} + b \right) - 1 \right]$$

• Izjednačimo parcijalni izvod po heta i b sa 0:

•
$$\frac{\partial L(\theta,b,\alpha)}{\partial \theta} = \theta - \sum_{i=1}^{N} \alpha_i \, y^{(i)} x^{(i)} = 0 \Rightarrow \theta = \sum_{i=1}^{N} \alpha_i y^{(i)} x^{(i)}$$

•
$$\frac{\partial L(\theta,b,\alpha)}{\partial b} = \sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

• Zamenićemo dobijene izraze u $L(\theta, b, \alpha)$:

$$L(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j x^{(i)T} x^{(j)}$$

- Ispalo je da $L(\theta, b, \alpha)$ zavisi samo od α (θ i b su nestali)!
- Treba da maksimizujemo ovaj izraz po α pod uslovom $\alpha_i \geq 0$ za $i \in \{1, ..., N\}$ i $\sum_{i=1}^N \alpha_i y^{(i)} = 0$

Kako se pronalazi minimum pod ograničenjima?

• Treba da maksimizujemo ovaj izraz:

$$L(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j x^{(i)T} x^{(j)}$$

- Optimizacija zavisi od skalarnog proizvoda parova primera
- Intuicija za skalarni proizvod:
 - Skalarni proizvod daje neku meru sličnosti: skalarni proizvod dva jedinična vektora predstavlja kosinus ugla između njih (koliko su udaljeni)
 - Ako su vektori paralelni, njihov skalarni proizvod je 1 (potpuno slični)
 - Ako su normalni, njihov skalarni proizvod je 0 (potpuno neslični)

Intuicija iza rešenja

2 dissimilar (orthogonal) vectors don't count at all

$$L(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j} x^{(i)T} x^{(j)}$$

• Za potpuno različite primere, $x^{(i)} \cdot x^{(j)} = 0 \rightarrow$ ne utiču na L

Intuicija iza rešenja

2 vectors that are similar but predict the same class are redundant

$$= \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j x^{(i)T} x^{(j)}$$

- Za potpuno slične primere, važi $x^{(i)} \cdot x^{(j)} = 1$
- Ako su im i klase iste, važi $y^{(i)}y^{(j)}=1$
- Dakle, $\alpha_i \alpha_j x^{(i)} x^{(j)} y^{(i)} y^{(j)} > 0 \text{ i } L$ se smanjuje
- Optimizacioni algoritam koji maksimizuje L će težiti da smanji α_i i α_i

Intuicija iza rešenja

Insight into inner products, graphically: 2 very very similar x_i , x_j vectors that predict difft classes tend to maximize the margin width

$$L(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j x^{(i)T} x^{(j)}$$

- Za potpuno slične primere, važi $x^{(i)} \cdot x^{(j)} = 1$
- Ako su im i klase različite, važi $y^{(i)}y^{(j)}=-1$
- Dakle, $\alpha_i \alpha_j x^{(i)} x^{(j)} y^{(i)} y^{(j)} < 0$ i L se povećava
- Optimizacioni algoritam koji maksimizuje L će težiti da poveća α_i i α_j
- Ovo su upravo "kritični" primeri za razlikovanje klasa koje tražimo

Rešenje SVM optimizacionog problema

Rešenje se dobija kvadratnim programiranjem i oblika je:

$$\theta = \sum_{i=1}^{N} \alpha_i y^{(i)} x^{(i)}$$

gde su α_i Lagranžovi množioci za koje važi $0 \leq \alpha_i$

- Primetićemo da je većina dobijenih $\alpha_i = 0!$
 - Ovo je posledica našeg uslova $\alpha_i (y^{(i)} (\theta^T x^{(i)} + b) 1) = 0$
 - Ako važi $y^{(i)}(\theta^T x^{(i)} + b) > 1$, onda mora da važi $\alpha_i = 0$
 - Ako važi $y^{(i)}(\theta^T x^{(i)} + b) = 1$ (potporni vektor), onda α_i može biti veće od 0
- Podaci $(x^{(i)}, y^{(i)})$ za koje je $\alpha_i > 0$ su potporni vektori
- Težine $\theta \in \mathbb{R}^D$ je izražen putem svega nekoliko primera $(x^{(i)}, y^{(i)})$ našeg skupa podataka umesto D-dimenzionog sistema, imamo svega nekoliko efektivnih parametara jako smo smanjili dimenzionalnost sistema!

Rešenje SVM optimizacionog problema

Hipoteza je:

$$f_{\theta,b}(x) = \sum_{i=1}^{N} \alpha_i y^{(i)} x^{(i)} \cdot x + b$$

- $\alpha_i > 0$ samo za vektore potpore
- Klasa se određuje funkcijom $sign\left(f_{\theta,b}(x)\right)$