Álgebra Linear I Subespaços Vetoriais

Prof. Jairo

Definição

Em muitos casos é conveniente obtermos espaços vetoriais a partir de outros (ou seja, herdando suas operações). Esses espaços "derivados" de outros são chamados de subespaços vetoriais. Mais precisamente,

Definição

Seja V um espaço vetorial. Dizemos que um subconjunto $W\subset V$ de V é um subespaço vetorial (ou simplesmente um subespaço) de V quando a restrição das operações de V a W tornam W um espaço vetorial.

Exemplo (Subespaços triviais)

Seja V um espaço vetorial. São subespaços de V:

Exemplo (Subespaços triviais)

Seja V um espaço vetorial. São subespaços de V:

• o conjunto $\{0\}$ formado apenas pelo vetor nulo de V;

Exemplo (Subespaços triviais)

Seja V um espaço vetorial. São subespaços de V:

- o conjunto $\{0\}$ formado apenas pelo vetor nulo de V;
- O próprio V.

Definição

Exemplo (Subespaços triviais)

Seja V um espaço vetorial. São subespaços de V:

- o conjunto $\{\mathbf{0}\}$ formado apenas pelo vetor nulo de V;
- O próprio V.

Exemplo

Dado $n \in \mathbb{N}$, seja $P_n \subset \mathcal{F}(\mathbb{R}; \mathbb{R})$ o conjunto formado pelos polinômios de grau menor ou igual a n. A restrição a P_n das operações de $\mathcal{F}(\mathbb{R}; \mathbb{R})$, tornam P_n um espaço vetorial (verifique). Logo, P_n é um subespaço de $\mathcal{F}(\mathbb{R}; \mathbb{R})$.

Exemplo (Subespaços triviais)

Seja V um espaço vetorial. São subespaços de V:

- o conjunto $\{0\}$ formado apenas pelo vetor nulo de V;
- O próprio V.

Exemplo

Dado $n \in \mathbb{N}$, seja $P_n \subset \mathcal{F}(\mathbb{R}; \mathbb{R})$ o conjunto formado pelos polinômios de grau menor ou igual a n. A restrição a P_n das operações de $\mathcal{F}(\mathbb{R}; \mathbb{R})$, tornam P_n um espaço vetorial (verifique). Logo, P_n é um subespaço de $\mathcal{F}(\mathbb{R}; \mathbb{R})$.

Exemplo

Seja $W = \{(x, y, z) \in \mathbb{R}^3; \ y = 0\} \subset \mathbb{R}^3$. A restrição das operações do espaço vetorial \mathbb{R}^3 a W fazem de W um espaço vetorial (verifique).

i. que a restrição das operações de V a W estão bem definidas (ou seja, dados $u, v \in W$, o vetor u + v é **único** e **pertence** a W; dados $u \in W$ e $\alpha \in \mathbb{R}$, o vetor αu é **único** e **pertence** a W).

- i. que a restrição das operações de V a W estão bem definidas (ou seja, dados $u, v \in W$, o vetor u + v é **único** e **pertence** a W; dados $u \in W$ e $\alpha \in \mathbb{R}$, o vetor αu é **único** e **pertence** a W).
 - Ora, a unicidade desses vetores é garantida para elementos de V e, como $W \subset V$, então continua válida para elementos de W.

i. que a restrição das operações de V a W estão bem definidas (ou seja, dados $u, v \in W$, o vetor u + v é **único** e **pertence** a W; dados $u \in W$ e $\alpha \in \mathbb{R}$, o vetor αu é **único** e **pertence** a W).

Ora, a unicidade desses vetores é garantida para elementos de V e, como $W \subset V$, então continua válida para elementos de W.

Assim, precisamos mostrar apenas que a soma de vetores de W e a multiplicação de escalares por vetores de W ainda são vetores de W.

- i. que a restrição das operações de V a W estão bem definidas (ou seja, dados $u, v \in W$, o vetor u + v é **único** e **pertence** a W; dados $u \in W$ e $\alpha \in \mathbb{R}$, o vetor αu é **único** e **pertence** a W).
 - Ora, a unicidade desses vetores é garantida para elementos de V e, como $W\subset V$, então continua válida para elementos de W.
 - Assim, precisamos mostrar apenas que a soma de vetores de W e a multiplicação de escalares por vetores de W ainda são vetores de W.
- ii. As operações continuam satisfazendo os axiomas de espaço vetorial.

- i. que a restrição das operações de V a W estão bem definidas (ou seja, dados $u, v \in W$, o vetor u + v é **único** e **pertence** a W; dados $u \in W$ e $\alpha \in \mathbb{R}$, o vetor αu é **único** e **pertence** a W).
 - Ora, a unicidade desses vetores é garantida para elementos de V e, como $W\subset V$, então continua válida para elementos de W.
 - Assim, precisamos mostrar apenas que a soma de vetores de W e a multiplicação de escalares por vetores de W ainda são vetores de W.
- ii. As operações continuam satisfazendo os axiomas de espaço vetorial. Para isso, basta verificar que o vetor nulo de V pertence a W (por quê?)

- i. que a restrição das operações de V a W estão bem definidas (ou seja, dados $u, v \in W$, o vetor u + v é **único** e **pertence** a W; dados $u \in W$ e $\alpha \in \mathbb{R}$, o vetor αu é **único** e **pertence** a W).
 - Ora, a unicidade desses vetores é garantida para elementos de V e, como $W \subset V$, então continua válida para elementos de W.
 - Assim, precisamos mostrar apenas que a soma de vetores de W e a multiplicação de escalares por vetores de W ainda são vetores de W.
- ii. As operações continuam satisfazendo os axiomas de espaço vetorial.
 - Para isso, basta verificar que o vetor nulo de V pertence a W (por quê?)
 - Isso nos leva à seguinte proposição (cujos detalhes que faltam para a demonstração serão deixados a cargo do leitor):

Proposição (Caracterização de subespaços)

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, as seguintes condições forem satisfeitas:

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, as seguintes condições forem satisfeitas:

(1) $0 \in W$;

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, as seguintes condições forem satisfeitas:

- (1) $0 \in W$;
- (2) se $u, v \in W$, então $u + v \in W$;

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, as seguintes condições forem satisfeitas:

- (1) $0 \in W$;
- (2) se $u, v \in W$, então $u + v \in W$;
- (3) se $\lambda \in \mathbb{R}$ e $v \in W$, então $\lambda v \in W$.

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, as seguintes condições forem satisfeitas:

- (1) $0 \in W$;
- (2) se $u, v \in W$, então $u + v \in W$;
- (3) se $\lambda \in \mathbb{R}$ e $v \in W$, então $\lambda v \in W$.

Observação: Poderíamos ter escolhido a proposição acima como definição (neste caso, o que adotamos como definição seria um teorema de caracterização, ou seja, um teorema do do tipo *se e somente se*).

Às vezes pode ser útil (para tornar mais concisa a prova de que $W \subset V$ é subespaço) reunir as condições (2) e (3) da proposição anterior, em uma única condição, conforme a seguinte

Proposição

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, forem satisfeitas as seguintes condições:

Às vezes pode ser útil (para tornar mais concisa a prova de que $W \subset V$ é subespaço) reunir as condições (2) e (3) da proposição anterior, em uma única condição, conforme a seguinte

Proposição

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, forem satisfeitas as seguintes condições:

(1) $0 \in W$;

Às vezes pode ser útil (para tornar mais concisa a prova de que $W \subset V$ é subespaço) reunir as condições (2) e (3) da proposição anterior, em uma única condição, conforme a seguinte

Proposição

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, forem satisfeitas as seguintes condições:

- (1) $0 \in W$;
- (2) se $u, v \in W$ e $\alpha, \beta \in \mathbb{R}$ então $\alpha u + \beta v \in W$.

Às vezes pode ser útil (para tornar mais concisa a prova de que $W \subset V$ é subespaço) reunir as condições (2) e (3) da proposição anterior, em uma única condição, conforme a seguinte

Proposição

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, forem satisfeitas as seguintes condições:

- (1) $0 \in W$;
- (2) se $u, v \in W$ e $\alpha, \beta \in \mathbb{R}$ então $\alpha u + \beta v \in W$.

Prova.

A cargo do leitor.

Sugestão: É fácil!

Às vezes pode ser útil (para tornar mais concisa a prova de que $W \subset V$ é subespaço) reunir as condições (2) e (3) da proposição anterior, em uma única condição, conforme a seguinte

Proposição

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, forem satisfeitas as seguintes condições:

- (1) $0 \in W$;
- (2) se $u, v \in W$ e $\alpha, \beta \in \mathbb{R}$ então $\alpha u + \beta v \in W$.

Prova.

A cargo do leitor.

Sugestão: É fácil!

Observação: Nas duas proposições anteriores, a condição (1) poderia ser omitida, desde que se acrescentasse a hipótese $W \neq \emptyset$. Justifique.

Exemplo

$$W = \{(x, x) \in \mathbb{R}^2; \ x \in \mathbb{R}\}$$
 é subespaço de \mathbb{R}^2 .

Exemplo

 $W = \{(x, x) \in \mathbb{R}^2; x \in \mathbb{R}\}$ é subespaço de \mathbb{R}^2 .

Prova.

De fato, o vetor nulo ${\bf 0}=(0,0)$ de \mathbb{R}^2 pertence a W pois as duas coordenadas de ${\bf 0}$ são iguais.

Além disso, dados $u=(x,x), v=(y,y)\in W$, e $\alpha,\beta\in\mathbb{R}$, tem-se: $\alpha u=(\alpha x,\alpha x), \beta v=(\beta y,\beta y)$ e $\alpha u+\beta v=(\alpha x+\beta y,\alpha x+\beta y)$. Segue-se que $\alpha u+\beta v\in W$, pois as coordenadas do vetor $\alpha u+\beta v$ são iguais. Portanto W é subespaco de \mathbb{R}^2 .

Exemplo

$$W = \{(x, x^2) \in \mathbb{R}^2; \ x \in \mathbb{R}\}$$
 não é subespaço de \mathbb{R}^2 .

Exemplo

$$W = \{(x, x^2) \in \mathbb{R}^2; \ x \in \mathbb{R}\}$$
 não é subespaço de \mathbb{R}^2 .

Prova.

De fato, os vetores u=(1,1) e v=(2,4) pertencem a W, mas o vetor u+v=(3,5) não pertence a W.

Exemplo

$$W=\left\{\left[egin{array}{ccc} a&a&a+1\0&0&b\end{array}
ight]\in\mathbb{M}_{2 imes3}(\mathbb{R});\ a,b\in\mathbb{R}
ight\}$$
 não é subespaço de $\mathbb{M}_{2 imes3}(\mathbb{R}).$

Exemplo

$$W=\left\{\left[egin{array}{ccc} a&a&a+1\0&0&b\end{array}
ight]\in\mathbb{M}_{2 imes3}(\mathbb{R});\ a,b\in\mathbb{R}
ight\}$$
 não é subespaço de $\mathbb{M}_{2 imes3}(\mathbb{R}).$

Prova.

De fato, o vetor nulo ${f 0}=\left[egin{array}{ccc} 0&0&0\\0&0&0 \end{array}
ight]$ de $\mathbb{M}_{2 imes 3}(\mathbb{R})$ não pertence a W.

Exemplo

Seja I um intervalo de \mathbb{R} .

 $\mathcal{C}(\mathrm{I}) = \{f : \mathrm{I} \to \mathbb{R}; \ f \ \text{\'e} \ \text{uma} \ \text{função} \ \text{contínua}\} \subset \mathcal{F}(\mathrm{I}; \mathbb{R}) \ \text{\'e} \ \text{subespaço} \ \text{de} \ \mathcal{F}(\mathrm{I}; \mathbb{R}).$

Exercícios

Exemplo

Seja I um intervalo de \mathbb{R} .

 $\mathcal{C}(\mathrm{I}) = \{f : \mathrm{I} \to \mathbb{R}; \ f \ \text{\'e} \ \text{uma função contínua} \} \subset \mathcal{F}(\mathrm{I}; \mathbb{R}) \ \text{\'e}$ subespaço de $\mathcal{F}(\mathrm{I}; \mathbb{R})$.

Prova.

Com efeito, o vetor nulo de $\mathcal{F}(I;\mathbb{R})$ é a função $\mathbf{0}:I\to\mathbb{R}$, dada por $\mathbf{0}(x)=0, \quad \forall x\in I.$ Como $\mathbf{0}$ é contínua, então $\mathbf{0}\in\mathcal{C}(I)$. Por outro lado, dados $f,g\in\mathcal{C}(I)$ e $\alpha\in\mathbb{R}$, as funções

$$f+g: I \longrightarrow \mathbb{R}$$
 e $\alpha f: I \longrightarrow \mathbb{R}$
 $x \longmapsto f(x)+g(x)$ e $x \longmapsto \alpha f(x)$

são contínuas. Logo, $f+g\in \mathcal{C}(I)$ e $\alpha f\in \mathcal{C}(I)$.

Exercícios

- 1. Faça o que ficou como exercício no texto.
- 2. Prove que a interseção de subespaços vetoriais ainda é um subespaço vetorial.
- 3. Prove que a união de dois subespaços ainda é um subespaço se, e somente se, um deles está contido no outro.
- 4. Verifique se o conjunto $W \subset \mathbb{M}_{3\times 3}(\mathbb{R})$ das matrizes diagonais de ordem 3 é um subespaço de $\mathbb{M}_{3\times 3}(\mathbb{R})$.