

ISO/IEC17025 Accredited Lab.

Report No: FCC0912081-01 File reference No: 2010-01-08

Applicant: Guangzhou Sunday Electronics Co., Ltd.

Product: Wireless Keyboard with Touchpad

Model No: S-KW425TG

Brand Name: **SUNDAY**

Test Standards: FCC Part 15 Subpart C, Paragraph 15.249

It is herewith confirmed and found to comply with the Test result:

requirements set up by ANSI C63.4&FCC Part 15 Subpart C, 15.249 regulations for the evaluation

Paragraph

electromagnetic compatibility

Approved By

Jack Chung

Jack Chung

Manager

Dated: Dec 08, 2009

Results appearing herein relate only to the sample tested The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TECHNOLOGY CONSULTING CO LTD

East 5/Block 4, Anhua Industrial Zone, No.8, Tairan Rd. CheGongMiao, FuTian District, Shenzhen, CHINA.

> Tel (755) 83448688 Fax (755) 83442996

Report No: 0912081-01 Page 2 of 37

Date: 2010-01-08

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 899988

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 899988.

IC- Registration No.: IC5205A-01

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration IC No.: 5205A-01.

Date: 2010-01-08

Test Report Conclusion Content

1.0	General Details	4
1.1	Test Lab Details	4
1.2	Applicant Details	4
1.3	Description of EUT	4
1.4	Submitted Sample	4
1.5	Test Duration.	4
1.6	Test Uncertainty	5
1.7	Test By	5
2.0	List of Measurement Equipment.	5
3.0	Technical Details	6
3.1	Summary of Test Results	6
3.2	Test Standards	6
4.0	EUT Modification	6
5.0	Power Line Conducted Emission Test.	7
5.1	Schematics of the Test.	7
5.2	Test Method and Test Procedure.	7
5.3	Configuration of the EUT	7
5.4	EUT Operating Condition.	8
5.5	Conducted Emission Limit.	8
5.6	Test Result.	9
6.0	Radiated Emission test.	9
6.1	Test Method and Test Procedure.	9
6.2	Configuration of the EUT	9
6.3	EUT Operation Condition.	10
6.4	Radiated Emission Limit.	11
6.5	Test Result.	24
7.0	Band Edge	24
7.1	Test Method and Test Procedure.	24
7.2	Radiated Test Setup.	24
7.3	Configuration of the EUT	24
7.4	EUT Operating Condition.	24
7.5	Band Edge Limit.	24
7.6	Band Edge Test Result.	25
8.0	Antenna Requirement.	27
9.0	20dB bandwidth measurement	28
10.0	FCC ID Label.	31
11.0	Photo of Test Setup and EUT View	32

Date: 2010-01-08

Page 4 of 37

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TECHNOLOGY CONSULTING CO LTD

Address: 5/F,Block 4, Anhua Industrial Zone.,No.8 TaiRan Rd.CheGongMiao,FuTian District,

Shenzhen, CHINA.

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 899988

For 3m & 10 m OATS

Site Listed with Industry Canada of Ottawa, Canada

Registration Number: IC: 5205A-01

For 3m & 10 m OATS

1.2 Applicant Details

Applicant: Guangzhou Sunday Electronics Co., Ltd. Address: Guangzhou Sunday Electronics Co., Ltd.

Telephone: NO.236-238, Minsheng Road, Lanhe Town, Panyu District, Guangzhou, China

Fax: 020-8492 8933/8492 8938

1.3 Description of EUT

Product: Wireless Keyboard with Touchpad

Manufacturer: Guangzhou Sunday Electronics Co., Ltd.

Brand Name: SUNDAY
Model Number: S-KW425TG

Additional Model Name N/A
Additional Trade Name N/A

Rating: DC3.0V, 2 pcs AAA batteries

Modulation Type: GFSK

Operation Frequency 2404-2480MHz

Antenna Designation Printed antenna, which is built-in, designed as an indispensable part of the EUT.

1.4 Submitted Sample

1 Sample

1.5 Test Duration

2009-12-08 to 2010-01-07

Page 5 of 37

Report No: 0912081-01

Date: 2010-01-08

1.6 Test Uncertainty

Conducted Emissions Uncertainty = 3.6dB Radiated Emissions Uncertainty =4.7dB

1.7 Test Engineer

The sample tested by

Print Name: Terry Tang

2.0		Test Equi	pments		
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	ROHDE&SCHWARZ	ESPI 3	100379	2009-12-05	2010-12-04
TWO Line-V-NETW	ROHDE&SCHWARZ	EZH3-Z5	100294	2009-12-05	2010-12-04
TWO Line-V-NETW	ROHDE&SCHWARZ	EZH3-Z5	100253	2009-12-05	2010-12-04
Ultra Broadband ANT	Schwarebeck	VULB9163	9163/340	2009.2.22	2010-02-21
ESDV Test Receiver	ROHDE&SCHWARZ	ESDV	100008	2009-03-30	2010-03-29
Impuls-Begrenzer	ROHDE&SCHWARZ	ESH3-Z2	100281	2009-02-18	2010-02-17
Power meter	Anritsu	ML2487A	6K00003613	2009-02-18	2010-02-17
Power sensor	Anritsu	MA2491A	32263	2009-02-8	2010-02-17
ESPI Test Receiver	ROHDE&SCHWARZ	ESI26	838786/013	2009-02-18	2010-02-17
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170265	2009-08-15	2010-08-14
Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-631	2009-07-02	2010-07-01

Page 6 of 37

Report No: 0912081-01

Date: 2010-01-08

3.0 Technical Details

3.1 Summary of test results

The EUT has	been tested acco	ording to the follo	wing specification	ns:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.207	Conducted Emission Test	N/A	Complies
FCC Part 15 Subpart C Paragraph 15.249(a) & 15.249(b) Limit	Field Strength of Fundamental	PASS	Complies
FCC Part 15, Paragraph 15.209	Radiated Emission Test	PASS	Complies
FCC Part 15 Subpart C Paragraph 15.249(d) Limit	Band Edge Test	PASS	Complies

3.2 Test Standards

FCC Part 15 Subpart C, Paragraph 15.249

4.0 EUT Modification

No modification by Shenzhen Timeway Technology Consulting Co.,Ltd

Date: 2010-01-08

5. Power Line Conducted Emission Test

5.1 Schematics of the test

EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.4-2003. The Frequency spectrum From 0.15MHz to 30MHz was investigated. The LISN used was 500hm/50uH as specified by section 5.1 of ANSI C63.4 –2003.

Block diagram of Test setup

5.3 Configuration of The EUT

The EUT was configured according to ANSI C63.4-2003. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

One channels are provided to the EUT

A. EUT

Device	Manufacturer	Model	FCC ID
Wireless	Guangzhou Sunday Electronics Co., Ltd.	S-KW425TG	XQLSD0912425
keyboard with			
Touchpad			

B. Internal Device

Device	Device Manufacturer		FCC ID/DOC
N/A			

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Page 8 of 37

Report No: 0912081-01

Date: 2010-01-08

C. Peripherals

Device	Manufacturer	Model	FCC ID/DOC	Cable
N/A				

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.4 -2003

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207

Eraguan ay (MHz)	Class A Limits (dB µ V)		Class B Limits (dB \(\mu \) V)	
Frequency(MHz)	Quasi-peak Level	Average Level	Quasi-peak Level	Average Level
$0.15 \sim 0.50$	79.0	66.0	66.0~56.0*	56.0~46.0*
$0.50 \sim 5.00$	73.0	60.0	56.0	46.0
5.00 ~ 30.00	73.0	60.0	60.0	50.0

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

5.6 Test Results

The frequency spectrum from 0.15MHz to 30MHz was investigated. All reading are quasi-peak values with a resolution bandwidth of 9kHz.

Due to DC operation, this test item not applicable

Page 9 of 37

Report No: 0912081-01

Date: 2010-01-08

6 Radiated Emission Test

- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.4 –2003. The radiated test was performed at Timeway Laboratory. This site is on file with the FCC laboratory division, Registration No.899988
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.4-2003.
- (3) The frequency spectrum from 30 MHz to 1 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz. Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

- 6.2 Configuration of The EUT

 Same as section 5.3 of this report
- 6.3 EUT Operating Condition
 Same as section 5.4 of this report.

Page 10 of 37

Report No: 0912081-01

Date: 2010-01-08

6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

A FCC Part 15 Subpart C Paragraph 15.249(a) Limit

	Fundamental Frequency	Field Stre	ength of Fundame	Field S	trength of Harmo	onics (3m)	
	(MHz)	mV/m	dBuV/m		uV/m	dBu	V/m
Ī	2400-2483.5	50	94 (Average)	114 (Peak)	500	54 (Average)	74 (Peak)

Note:

- 1. RF Field Strength $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2.Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

Frequency Range (MHz)	Distance (m)	Field strength (dB µ V/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. New batteries were installed in the equipment under test for radiated emission testing.
- 5. All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz.As to 1G-25G, the final emission level got using PK and AV detector.

Page 11 of 37 Report No: 0912081-01

Date: 2010-01-08

6.5 Test result

\mathbf{A} **Fundamental & Harmonics Radiated Emission Data**

Product:	Wireless Keyboard wit	Test Mode:	Low Channel
	Touchpad		
Test Item:	Fundamental Radiated Emission Data	Temperature:	25℃
Test Voltage:	3.0VDC	Humidity:	56%
Test Result:	Pass		

Frequency	Emission PK/AV	Horiz /	Limits PK/AV	Margin
(MHz)	(dBuV/m)	Vert	(dBuV/m)	(dB)
2404	66.8 (PK)	Н	114/94	-27.2
2404	61.5 (PK)	V	114/94	-32.5
4808		H/V	74/54	
7212		H/V	74/54	
9616		H/V	74/54	
12020		H/V	74/54	
14424		H/V	74/54	
16828		H/V	74/54	
19232		H/V	74/54	
21636		H/V	74/54	
24040		H/V	74/54	

Report No: 0912081-01 Page 12 of 37

Product:	Wireless Keyboard with	Test Mode:	Middle Channel
	Touchpad		
Test Item:	Fundamental Radiated Emission Data	Temperature:	25°C
Test Voltage:	3.0VDC	Humidity:	56%
Test Result:	Pass		

Frequency	Emission PK/AV	Horiz /	Limits PK/AV	Margin
(MHz)	(dBuV/m)	Vert	(dBuV/m)	(dB)
2442	63.8(PK)	Н	114/94	-30.2
2442	60.2(PK)	V	114/94	-33.8
4884		Н	74/54	
7326		V	74/54	
9769		H/V	74/54	
12210		H/V	74/54	
14652		H/V	74/54	
17094		H/V	74/54	
19536		H/V	74/54	
21978		H/V	74/54	
24420		H/V	74/54	

Page 13 of 37

Report No: 0912081-01

Date:	2010-	01-08
-------	-------	-------

Product:	Wireless Keyboard with	Test Mode:	High Channel
	Touchpad		
Test Item:	Fundamental Radiated Emission Data	Temperature:	25℃
Test Voltage:	3.0VDC	Humidity:	56%
Test Result:	Pass		

Frequency	Emission PK/AV	Horiz /	Limits PK/AV	Margin
(MHz)	(dBuV/m)	Vert	(dBuV/m)	(dB)
2480	64.9(PK)	Н	114/94	-29.1
2480	61.3(PK)	V	114/94	-32.7
4960		H/V	74/54	
7440		H/V	74/54	
9920		H/V	74/54	
12400		H/V	74/54	
14880		H/V	74/54	
17360		H/V	74/54	
19840		H/V	74/54	
22320		H/V	74/54	
24800		H/V	74/54	

Note:

- (1) PK= Peak, AV= Average
- (2) Emission Level = Reading Level + Probe Factor + Cable Loss.
- (3)Margin=Emission-Limits
- (4)According to section 15.35(b), the peak limit is 20dB higher than the average limit
- (5) The measured PK value less than the AV limit.

Date: 2010-01-08

Please refer to the following test plots for details

Low Channel: Horizontal

Page 15 of 37

Report No: 0912081-01

Date: 2010-01-08

Low Channel: Vertical

Page 16 of 37

Report No: 0912081-01

Date: 2010-01-08

Middle Channel: Horizontal

Page 17 of 37

Report No: 0912081-01 Date: 2010-01-08 TEST REPORT

Middle Channel :: Vertical

Page 18 of 37

Report No: 0912081-01

Date: 2010-01-08

High Channel: Horizontal

Page 19 of 37

Report No: 0912081-01

Date: 2010-01-08

High Channel: Vertical

Page 20 of 37

Report No: 0912081-01

Date: 2010-01-08

18-25G High Channel

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Page 21 of 37

Report No: 0912081-01 Date: 2010-01-08

18-25G High Channel

Date: 2010-01-08

B. General Radiated Emission Data Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

Mode: Low Channel

Results: Pass

Please refer to following diagram for individual

Date: 28.DEC.2009 19:45:18

Frequency (MHz)	Level@3m (dB μ V/m)	Antenna Polarity	Limit@3m (dB \(\mu \)V/m)
		Н	

Date: 2010-01-08

Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

Mode: Low Channel

Results: Pass

Please refer to following diagram for individual

Date: 28.DEC.2009 19:44:09

Frequency (MHz) Level@3m (dB \mu V/m)		Antenna Polarity	Limit@3m (dB μ V/m)
		V	

Date: 2010-01-08

7. Band Edge

7.1 Test Method and test Procedure:

- (1) The EUT was tested according to ANSI C63.4 –2003. The radiated test was performed at Timeway Laboratory. This site is on file with the FCC laboratory division, Registration No.899988
- (2) Set Spectrum as RBW=VBW=100kHz and Peak detector used
- (3) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (4) The antenna polarization: Vertical polarization and Horizontal polarization.

7. 2 Radiated Test Setup

For the actual test configuration, please refer to the related items – Photos of Testing

7.3 Configuration of The EUT

Same as section 5.3 of this report

7.4 EUT Operating Condition

Same as section 5.4 of this report.

7.5 Band Edge Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Page 25 of 37

Report No: 0912081-01

Date: 2010-01-08

7.6 Test Result

Wirologg V	owhoord with	Too	t Modo:		LowC	'honnol	
		Tes	t Mode.		Low C	manner	
			t Voltage		DC	'3V	
	I						
			Limit			•	
	[T1]	RBW	1 MH	lz RF			
	$58.96~\mathrm{dB}\mu\mathrm{V}$	VBW					
2.	40412826 GHz	SWT	5 ms	s Ur	nit	dB μ V	′
			v ₁	[T1]	58.	.96 dBμV	F
			_		2.48412	828 6Hz	•
			√2	[T1]			
					2.33000	000 0112	
μν							
							ł
					4		11
					/1		ł
							-
marywalinh	mumment.	madaw	ne ne	MANNEM	m le	Mademaker	,
							1
1 CU-	1 1 1				Ctoo	10 01-	j
		1114/			aruh s	∠,4∠ U∏∠	
	Tou Keeping 7 24 α F PK (dBμV/m) AV(dBμV/m) Marker 1 2 μν 1 GHz	AV(dBμV/m) Marker 1 [T1] 58.96 dBμV 2.40412826 GHz	Touchpad Keeping Transmitting 24 deg. C, Pass D PK (dBμV/m) Less than 40 AV(dBμV/m) Marker 1 [T1] SB.96 dBμV 2.40412826 GHz SWT AU AU AU AU AU AU AU AU AU A	Touchpad Keeping Transmitting 24 deg. C, Pass Detector PK (dBμV/m) AV(dBμV/m) Marker 1 [T1] 58.96 dBμV 2.40412826 GHz W1 AV AV AV AV AV AV AV AV AV A	Touchpad Reeping Transmitting Test Voltage 24 deg. C,	Touchpad Keeping Transmitting Test Voltage DC	Touchpad Keeping Transmitting Test Voltage DC3V

Note: Field Strength in restrict band measured in conventional manner

Page 26 of 37

Report No: 0912081-01 Date: 2010-01-08

Product:	Wireless k	Keyboard with	Tes	t Mode:		High C	hannel	
		uchpad				C		
Mode	Keeping	Transmitting	Test V	⁄oltage	DC3V			
Temperature	24	deg. C,	Humi	Humidity		56% RH		
Test Result:		Pass	D	etector		PI	Κ	
2483.5MHz	PK (dBμV/m)	Less than 40	1	Limit		74(dB _µ	ιV/m)	
	$AV(dB\mu V/m)$					54(dB _µ	ιV/m)	
Ref Lvl	Marker	$60.57~\mathrm{dB}\mu\mathrm{V}$	RBW VBW	1 MH 1 MH	łz	Att	0 dB	
97 dBμV 97	2	.47989980 GHz	SWT	5 ms	s Ur	nit	dBμV	1
90				▼ 1	[T1]	60.	$57 \mathrm{dB}\mu\mathrm{V}$	Α
				∇2	[T1]		500 6π2 52 dBμV 000 GHz	
80								
—D1 74 dE	3μ V							
1MAX 1								1MA
60								
50								
40								
menter for	www.wholey	Lolan Market	mphelin		uludrlib	whythwill	Lilly Mark	
30								
20								
10								
-3								
Start 2.4	7 GHz	13	MHz/			Stop	2.6 GHz	
Date: 26	.DEC.2009 18:	:28:11						

Note: Field Strength in restrict band measured in conventional manner

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Report No: 0912081-01 Page 27 of 37

Date: 2010-01-08

8.0 Antenna Requirement

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This product has a PCB permanent antenna, fulfill the requirement of this section.

Test Result: Pass

Page 28 of 37

Report No: 0912081-01

Product:	Wireless Keyboard with		Test Mode:			Low Channel				
26.1	Touchpad									
Mode	Keeping Transmitting		Test V				3.0V			
Temperature Test Result:		deg. C, Pass		Humio	etector			RH K		
20dB Bandwidth				D						
Ref Lvl -10 dBm	Marker ndB			RBW 100 kHz VBW 100 kHz SWT 5 ms		Hz	Hz) dB dBm	
-10									Α	
-20										
-30			1							
-40		The state of the s	ymr-w	my						
1MAX -50		bull			L W				1 M é	
	T 1				Many	[2 Vuu				
-60	NA VA					A. A	w.			
-70							May y	YL .		
-80 -80 -80								Mayor		
-90										
-100										
-110 Center 2.40			300 k				_	an 3 MHz		

Page 29 of 37

Report No: 0912081-01

Page 30 of 37

Report No: 0912081-01

Page 31 of 37

Report No: 0912081-01

Date: 2010-01-08

10.0 FCC ID Label

FCC ID: XQLSD0912425

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Mark Location:

Date: 2010-01-08

11.0 **Photo of testing**

11.1 Conducted test View--

N/A

11.2 Radiated emission test view

Date: 2010-01-08

11.3 Photo for the EUT

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 34 of 37

Report No: 0912081-01

Date: 2010-01-08

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Date: 2010-01-08

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it. or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd vill not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co.,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 36 of 37

Report No: 0912081-01 Date: 2010-01-08

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Page 37 of 37

Report No: 0912081-01

Date: 2010-01-08

-- End of the report--