SCDL1991 TRIANGULATION OF SURFACES

Aryonn Rawol

Freya Stevens

Harrison Peters

James Bang

Michael Raco

Shilin Yu

Zev Shteinman

Figure 8 – World map in a torus

Research Question

Given a fixed type of surface and number of triangles, how many different ways can a closed orientable surface be triangulated?

Figure I – triangulation^[1]

Figures 4 – Tessellation^[2] (Applications)

Figures 6 – Homeomorphism^[3]

Figure 2 and 3 – Dual graph rainbow colouring and Graph encoded manifold (gem)

Figures 5 – Modelling an evolving space-time (Application)

Figure 7 – Simplicial complexes

	v (number of vertices)								
n	3	4	5	6	7	8	9	10	11
1	0								
2		1							
3	1		5						
4		10		14					
5	8		70		42				
6		168		420		132			
7	180		2121		2310		429		
8		6088		20790		12012		1430	
9	8064		115720		174174		60060		4862
10									

Results Table

Data Trends

- -If v n is odd, there are no valid permutations
- -If v > n + 2, there are no valid permutations
- -The diagonals of the table grows exponentially with v
- -The vertical lines of the table grows super-exponentially with v

 Therefore, the maximum number in each row occur within the set of nonzero entries in that row

Surface plot of Valid Permutations

Limitations

- -If v takes high case values (v = 6), the system breaks down
- -Algorithms are not efficient enough for higher cycle number of $\boldsymbol{\mu}$
- -Over-counting issues for permutations

Therefore, it is recommended to eliminate over-counting issues by studying the system symmetries, and to reproduce codes that allows for multiple structures of μ permutations

BIBLIOGRAPHY

- [1] Torus: Triangulated by the Marching Method. https://en.wikipedia.org/wiki/Surface_triangulation#/media/File:Torustriang.svg Wikipedia, 2015.
- [2] M. Niener, B. Keinert, M. Fisher, M. Stamminger, C. Loop, and H. Sch äfer. Real-time rendering techniques withhardware tessellation. Comput. Graph. Forum, 35(1):113–137, February 2016.
- [3] Jim Fowler, Coffee Cup Donut. https://www.youtube.com/watch?v=4iHjt2Ovqag&feature=youtu.be 2013, Youtube.
- [4] Jonathan Spreer, Max Tobin, Steven Condell, and Taylor Ruber. Graph encoded manifolds. Technical report, The University of Sydney, 2020.