

COMP90014

Algorithms for Bioinformatics

Week 10B: Unsupervised Learning - Clustering II

Machine learning: clustering

- 1. Clustering approaches
- 2. Density-based clustering
 - 3. Divisive clustering

Clustering approaches

Exclusive

Data points belong to only one cluster

Overlapping

Data points may belong to many clusters

Hierarchical

- Assign points to "nested" clusters
- Get all possible clusters for given metric

Partitional

- Split points into "flat" independent clusters
- How many?

Ingredients for clustering

- 1. similarity metric
 - e.g. Euclidean distance
- 2. a function to evaluate the quality of the clusters
- 3. clustering algorithm
- clustering is subjective e.g. how many clusters?
 - fixed *k* clusters
 - find the best *k* to optimize a function

1. Centroid-based (k-means, k-medoids)

Notion of clusters: Voronoi tessellation/diagram

2. Connectivity-based (hierarchical)

Notion of clusters: cut dendrogram at some depth

3. Density-based (DBSCAN, OPTICS)

Notion of clusters: connected regions of high density

4. Distribution-based (Mixture Models)

5. Network-based

Notion of clusters: graph connectivity

Notion of clusters: distributions on features

When k-means fails

Machine learning: clustering

- 1. Clustering approaches
- 2. Density-based clustering
 - 3. Divisive clustering

Concepts

- clusters are dense regions in the data space, separated by regions of lower object density
- for any point in a cluster, the local point density around that point has to exceed some threshold (ε)
- the set of points from one cluster is spatially connected

Density-based clustering

- $ilde{}$ When k-means fails (K=4)
- DBSCAN:
 - discover clusters of arbitrary shape
 - handle noise and outliers

DBSCAN

- first density-based clustering algorithm
- one the most widely used/cited clustering algorithms

Intuition:

- a cluster is a region of high density
- noise points lie in regions of low density

We need to:

- define neighbourhood of a data point
- define high density

Definitions

ε-neighbourhood: objects within a

radius ϵ of an

object.

 ε : input parameter.

High-density: ε-neighbourhood of an object contains at least

minpts of objects.

minpts: input parameter.

 ϵ -neighbourhood of p and q: Density of p is "high" (minpts = 4); Density of q is "low" (minpts = 4)

 $N_{\varepsilon}(p): \{q \mid d(p,q) < \varepsilon\}$

Definitions

Given ε and minpts, categorize the objects into three exclusive categories.

Core point: It has more than minpts objects within ε .

Border point: It has fewer than minpts within ε , but is in the neighbourhood of a core

point.

Noise/outlier point: Any point that is not a core point nor a border point.

Direct density reachability

An object p is **directly density-reachable** from object q if:

- q is a core object and
- p is in its ε -neighborhood
- is p directly density-reachable from q?
- is q directly density-reachable from p?
- Density-reachability is an asymmetric relationship

Density reachability

A point *p* is *density-reachable* from a point *q* if:

- There is a chain of points $p_1, p_2, ..., p_k$, with $p_1 = q$ and $p_k = p$, such that p_{i+1} is directly density-reachable for all 1 < i < k-1
- Asymmetric

Density connectivity

A point p is **density-connected** to a point q if:

- there is a point v, such that both p and q are density-reachable from v
- Symmetric

Cluster definition

Given a data set D of points, parameter ε and minpts:

a cluster C is a subset of D satisfying two criteria.

Maximality:

Connectivity:

- $\forall p, q \in C$, p and q are density-connected
- clusters will contain both core and border points
- noise/outliers:
 - points in D not belonging to any cluster

DBSCAN algorithm

```
Procedure Dbscan(X, \varepsilon, minpts):
          foreach unvisited point x \in X do
                 mark x as visited
                 N \leftarrow \text{GetNeighbours}(x, \varepsilon)
                 if |N| < \text{minpts then}
                       mark x as noise
                 else
                       C \leftarrow \{x\}
                       foreach point x' \in N do
                              N \leftarrow N \setminus x'
                              if x' is not visited then
                                     mark x' as visited
                                    N' \leftarrow \text{GetNeighbours}(x', \varepsilon)
13
                                    if |N'| > \text{minpts then}
                                           N \leftarrow N \cup N'
                              if x' is not yet member of any
16
                                cluster then
                                     C \leftarrow C \cup \{x'\}
17
```

- Input parameters:
 - X points, ε and minpts
- the algorithm proceeds by arbitrarily picking (scanning) up points in the dataset until all points have been visited
- if p is a core point (at least minpts points within a radius of ε) collect all density-reachable points from p and assign to a new cluster
- assign p to noise otherwise
- don't change p's cluster assignment

Complexity and strength of DBSCAN

- time complexity:
 - $O(n^2)$ if done naïvely
 - $O(n \times \log n)$ with a spatial index
 - only works in relatively low dimensions
- \Rightarrow space complexity: O(n)
- can handle arbitrary shapes
- can handle clusters of different sizes
- resistant to noise

DBSCAN vs. k-means

Weaknesses of DBSCAN

Goal:

- varying densities
- high dimensional data
- overlapping clusters

Different ε configurations:

 \bullet setting ϵ and minpts can be tricky

Determining ε

Figure 2 Points sorted by distance to the 3rd nearest neighbor

k-distance: calculate distance of kth nearest neighbor for each point k = minpts - 1

- plot in ascending / descending order
- noise points have their kth nearest neighbour at higher distances

Machine learning: clustering

- 1. Clustering approaches
- 2. Density-based clustering
 - 3. Divisive clustering

Hierarchical clustering

What are the next clusters to merge?

Single linkage:
$$D_{k,g} = \min(D_{k,i}, D_{k,j})$$

Complete linkage: $D_{k,g} = \max(D_{k,i}, D_{k,j})$
Average linkage: $D_{k,g} = \frac{D_{k,i} + D_{k,j}}{2}$

Agglomerative clustering (bottom-up)

- each data point starts as a single cluster
- join clusters into bigger clusters till we reach one single cluster with all points

Divisive clustering (top-down)

- start with one big cluster
- at each step, split into smaller clusters
- stop at desired number of clusters
- e.g. when points are in single clusters

Divisive hierarchical clustering

- Any partitional algorithm that generates a fixed number of clusters can be used to implement divisive hierarchical clustering
 - e.g. k-means, with k=2
 - keep partitioning clusters iteratively

Challenge: use *k*-means to implement divisive hierarchical clustering on a set of points *X*.

You can use assume the function kmeans() is available (you don't need to implement it yourself).

Hint: start by dividing *X* into two clusters, then recursively run kmeans() on the output until each cluster has only 1 item.

Thank you!

Today: Unsupervised Learning - Clustering II

Next time: Supervised Learning