Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 62%. We keep your highest score.

Next item →

1.	Which one of the following statements is true regarding K Nearest Neighbors?	1/1 point
	K Nearest Neighbors (KNN) assumes that points which are close together are similar.	
	The distance between two data points is independent of the scale of their features.	
	For high dimensional data, the best distance measure to use for KNN is the Euclidean distance.	
	The Manhattan distance between two data points is the square root of the sum of the squares of the	
	differences between the individual feature values of the data points.	
	⊙ Correct	
	Correct. The distance between two given points is the similarity measure in the KNN model, where	
	close points are thought to be similar.	
2.	Which one of the following statements is most accurate?	1/1 point
	KNN only needs to remember the hyperplane coefficients to classify a new data sample.	
	C Linear regression needs to remember the entire training dataset in order to make a prediction for a new	
	data sample.	
	K nearest neighbors (KNN) needs to remember the entire training dataset in order to classify a new data	
	sample.	
	NNN determines which points are closest to a given data point, so it doesn't take long to actually	
	perform prediction.	
	⊙ Correct	
	Correct. KNN needs to remember all of the points. It needs to remember the entire training set, so it's	
	going to be very memory intensive.	
3.	Which one of the following statements is most accurate about K Nearest Neighbors (KNN)?	1/1 point
	KNN can be used for both classification and regression.	
	○ KNN is a regression model.	
	KNN is an unsupervised learning method.	
	KNN is a classification model.	
	⊙ Correct	
	Correct. KNN is known as a classification model, but can also be used for regression. All you have to	
	do is replace KNeighborsClassifier with KNeighborsRegressor.	
4.	(True/False) K Nearest Neighbors with large k tend to be the best classifiers.	1/1 point
	○ True	
	False	
	 Correct Correct! K Nearest Neighbors with high values of k might likely not generalize well with new data. A 	
	best practice is to use the elbow method to find a model with low k and high decrease in error.	
5.	When building a KNN classifier for a variable with 2 classes, it is advantageous to set the neighbor count k to	1/1 point
	an odd number.	
	True	
	○ False	
	 Correct Correct! An odd neighbor count works as a tie breaker. It ensures there cannot be a tie in the number 	
	of n nearest neighbors for two given classes. You can find more information on the k nearest neighbor	
	lesson,	
6.	The Euclidean distance between two points will always be shorter than or equal to the Manhattan distance.	1/1 point
	True	
	O False	
	⊘ Correct	
	Correct! From trigonometry, you should realize that Euclidian distance is shorter than the Manhattan	
	distance. You can review this on the K Nearest Neighbors lesson.	
7.	The main purpose of scaling features before fitting a k nearest neighbor model is to:	1/1 point
	Ensure that features have similar influence on the distance calculation	
	Help find the appropriate value of k	
	Ensure decision boundaries have roughly the same size for all classes	
	O Break ties in case there is the same number of neighbors of different classes next to a given observation	
	⊙ Correct	
	Correct! You can find more information in the K Nearest Neighbor lesson.	
8.	These are all pros of the k nearest neighbor algorithm EXCEPT:	1/1 point
	O It is easy to interpret	
	It is simple to implement as it does not require parameter estimation	
	It is sensitive to the curse of dimensionality	
	It adapt wells to new training data	
	O it books wells to new claiming data	
	 Correct Correct! You can find more information in the K Nearest Neighbor lesson. 	
	contest not can into more information in the K nedlest neighbor lesson.	