

Machine Intelligence 2 5.2 Maximum Likelihood & Estimation Theory

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

SS 2018

Estimation theory

Estimator

An estimator $\hat{P}(X)$ is a function that maps from its sample space X (data) to a set of sample estimates W

An estimator ...

- is a function of a random variable
- is a random variable
- lacktriangle can be statistically characterized via its moments (mean, variance, ...)
 - → quality criteria: unbiasedness, efficiency

Probability distributions: an example

$$P(\{\underline{\mathbf{x}}^{(\alpha)}\};\underline{\mathbf{w}}^*)$$

set of observations: $\{\underline{\mathbf{x}}^{(\alpha)}\}, \alpha=1,\ldots,p$ from true distribution

Goal: estimate "true" values w* from observed data

estimator $\hat{\mathbf{w}}$:

$$\underline{\widehat{\mathbf{w}}} = \underline{\widehat{\mathbf{w}}}(\{\underline{\mathbf{x}}^{(\alpha)}\})$$

- \blacksquare procedure for the determination of $\underline{\mathbf{w}}^*$ given the observed data
- \mathbf{w}^* is a function of $(\{\mathbf{x}^{(\alpha)}\})$
- $\mathbf{x}^{(\alpha)}$ are random variables $\rightarrow \widehat{\mathbf{w}}$ is a random variable!

The Maximum Likelihood estimator

the likelihood function

$$\widehat{P}(\{\underline{\mathbf{x}}^{(\alpha)}\};\underline{\mathbf{w}})$$

the log-likelihood function

$$\ln \widehat{P}(\{\underline{\mathbf{x}}^{(\alpha)}\};\underline{\mathbf{w}}) = \sum_{\alpha=1}^{p} \ln \widehat{P}(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})$$

the Maximum Likelihood estimator

$$\underline{\widehat{\mathbf{w}}} = \underset{\mathbf{w}}{\operatorname{argmax}} \widehat{P} \big(\big\{ \underline{\mathbf{x}}^{(\alpha)} \big\} ; \underline{\mathbf{w}} \big)$$

Quality criteria for estimators

What are good estimators?

bias:
$$\underline{\mathbf{b}} = \underbrace{\left\langle \widehat{\underline{\mathbf{w}}} \right\rangle_{P(x^{\alpha};w)}}_{\substack{\text{expectation} \\ \text{w.r.t the } \underline{\text{true}} \\ \text{distribution}}} -\underline{\mathbf{w}}^*$$

variance:
$$\underline{\Sigma} = \left\langle (\underline{\hat{\mathbf{w}}} - \langle \underline{\hat{\mathbf{w}}} \rangle) (\underline{\hat{\mathbf{w}}} - \langle \underline{\hat{\mathbf{w}}} \rangle)^T \right\rangle_{P(x^{\alpha}; w)}$$

Optimal estimators

no bias:
$$\underline{\mathbf{b}} \stackrel{!}{=} 0 \leftarrow \stackrel{\text{only possible if true model}}{\text{within model class}}$$

minimal variance: $|\Sigma| \stackrel{!}{=} \min$

The sample mean

N observations $x^{(\alpha)}$

$$x^{(\alpha)} = A + \epsilon^{(\alpha)}$$

with $\epsilon^{(\alpha)} \sim N(0, \sigma^2)$

Examples for estimators for A:

$$\hat{A} = \frac{1}{N} \sum x^{(\alpha)}$$

unbiased

$$\tilde{A} = \frac{1}{2N} \sum x^{(\alpha)}$$

biased for $A \neq 0$

$$\tilde{A} = k$$

minimum variance but biased

The minimum variance unbiased estimator

Optimal estimators

no bias:

$$\underline{\mathbf{b}} \stackrel{!}{=} 0$$

minimal variance: $|\Sigma| \stackrel{!}{=} \min$

$$|\underline{\Sigma}| \stackrel{!}{=} \min$$

MVU: criteria have to hold for ALL possible values of w*!

MVUs do not always exist

The minimum variance unbiased estimator

given just observed sample conditionally independent observations with the 2 pdfs

$$x[0] \sim \mathcal{N}(\theta, 1)$$
 $x[1] \sim \begin{cases} \mathcal{N}(\theta, 1) & \text{if } \theta \ge 0 \\ \mathcal{N}(\theta, 2) & \text{if } \theta < 0 \end{cases}$

two estimators

$$\hat{\theta}_1 = \frac{1}{2}(x[0] + x[1]) \qquad \text{and} \qquad \hat{\theta}_2 = \frac{2}{3}x[0] + \frac{1}{3}x[1]$$

variances:

$$var(\hat{\theta}_1) = \frac{1}{4}(var(x[0]) + var(x[1])) \begin{cases} \frac{18}{36} & \text{if } \theta \ge 0 \\ \frac{27}{36} & \text{if } \theta < 0 \end{cases}$$
$$var(\hat{\theta}_2) = \frac{4}{9}var(x[0]) + \frac{1}{9}var(x[1]) \begin{cases} \frac{20}{36} & \text{if } \theta \ge 0 \\ \frac{24}{36} & \text{if } \theta < 0 \end{cases}$$

Example for the non-existence of MVUs (Kay, 1993)

MVU vs. minimal mean squared error

$$MSE(\hat{\mathbf{w}}) = E[(\hat{\mathbf{w}} - \hat{\mathbf{w}}^*)^2]$$

This however does not yield a realizable estimator because

$$MSE(\hat{w}) = E\{[(\hat{w} - E(\hat{w})) + (E(\hat{w}) - w^*)]^2\}$$

= $var(\hat{w}) + [E(\hat{w}) - w^*]^2$
= $variance + bias^2$

MSE trades bias against variance.

Cramer-Rao bound for unbiased estimators

The stronger a PDF depends on its parameters, the more accurate will their estimates be.

N observations $x^{(\alpha)}$ with $\epsilon^{(\alpha)} \sim N(0, \sigma^2)$

$$x^{(\alpha)} = A + \epsilon^{(\alpha)},$$

$$x^{(\alpha)} = A + \epsilon^{(\alpha)}, \qquad \hat{A} = \frac{1}{N} \sum x^{(\alpha)}$$

Accuracy can be measured by the 'sharpness' of the likelihood function (→ 2nd derivative of the neg. log likelihood).

Cramer-Rao bound for unbiased estimators

Fisher information matrix (Hessian matrix):

$$H_{ij} = -\left\langle \frac{\partial^2 \ln P}{\partial \mathbf{w}_i \partial \mathbf{w}_j} \right\rangle_{P(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} \Big|_{\underline{\mathbf{w}}}$$

For all unbiased estimators the following holds (Cramer-Rao Bound):

$$\underline{\Sigma} - \left(\underline{\mathbf{H}}^{-1}\right)$$
 is a positive semidefinite matrix

it follows:

$$var(\hat{w}_i) \ge [H^{-1}]_{ii}$$
 for all i

Variance of an estimator > 1/ Fisher Information

This is a <u>universal</u> lower bound on the variance of estimators. The bound is tight.

Example: CRB for a scalar parameter w

The property of "positive semidefinite":

$$\sigma_{\mathbf{w}}^{2} - \left\{ -\left\langle \frac{d^{2} \ln P}{d\mathbf{w}^{2}} \right\rangle_{P(\underline{\mathbf{x}}^{(\alpha)}; \mathbf{w})} \Big|_{\underline{\mathbf{w}}^{*}} \right\}^{-1} \ge 0$$

$$\sigma_{\mathbf{w}}^2 > -\frac{1}{\left\langle \frac{d^2 \ln P}{d\mathbf{w}^2} \right\rangle_{P(\mathbf{x}^{(\alpha)};\mathbf{w})} \Big|_{\mathbf{w}^*}}$$

Comment

Fisher information: precision of the estimator / interesting measure for evaluating data representations

Good estimators

efficient estimator:

$$\underline{\mathbf{b}} = \underline{\mathbf{0}}$$
 and $\underline{\mathbf{\Sigma}} = \underline{\mathbf{H}}^{-1}$ \leftarrow variance assumes lower bound

unbiased minimum variance estimator:

$$\underline{\mathbf{b}} = \underline{\mathbf{0}}$$
 and $\left|\underline{\mathbf{\Sigma}} - \underline{\mathbf{H}}^{-1}\right| \stackrel{!}{=} \min_{\mathsf{all \ estimators}}$

Illustration: Cramer-Rao bound

Asymptotic optimality

An estimator is said to be asymptotically unbiased if for $p \to \infty$ (limit of infinite sample size):

$$E(\hat{\mathbf{w}}) \to \mathbf{w}^*$$

An estimator is said to be asymptotically efficient if for $p \to \infty$:

$$var(\hat{\mathbf{w}}) \rightarrow \mathsf{Cramer} \; \mathsf{Rao} \; \mathsf{lower} \; \mathsf{bound}$$

An estimator is said to be consistent if it converges to the true value for $p \to \infty$ and is asymptotically unbiased.

Results for the Maximum Likelihood estimator

$$P(\{\underline{\mathbf{x}}^{(\alpha)}\};\underline{\mathbf{w}})$$

normalized and two times differentiable

$$H_{ij} = -\left\langle rac{\partial^2 \ln P}{\partial \mathbf{w}_i \partial \mathbf{w}_j}
ight
angle_{P(\underline{\mathbf{x}}^{(lpha)};\mathbf{w})} \Big|_{\underline{\mathbf{w}}^*}$$
 Fisher information matrix

The Maximum Likelihood estimator is consistent and asympotically unbiased and efficient.

$$\widehat{\underline{\mathbf{w}}} \sim \mathcal{N}(\underline{\mathbf{w}}^*, \underline{\mathbf{H}}_{(\underline{\mathbf{w}}^*)}^{-1})$$

asymptotically Gaussian distributed

Summary

- An estimator is a random variable.
- ⇒ It can only be analyzed statistically
 (e.g. mean, variance, shape of distribution).
- biased & unbiased estimators
- minimum variance unbiased estimator (MVU) has smallest variance for all values of the true parameter

MVUs and the Cramer-Rao bound

- minimum variance unbiased estimators do not always exist
- Cramer Rao Bound provides a universal bound but may not be realizable

Outlook

Inclusion of prior knowledge

- MLEs: no prior knowledge regarding 'reasonable' parameter values
- Maximum a Posteriori estimates (MAP) incorporate such knowledge via Bayes Theorem (~ regularisation)

$$p(\underline{\mathbf{w}}|\underline{\mathbf{x}}) \propto p(\underline{\mathbf{x}}|\underline{\mathbf{w}})p(\underline{\mathbf{w}})$$

■ Beyond point estimates: Bayesian statistics. A complete (probabilistic) treatment should exploit the degrees of belief in a given model (set of parameters)