Big-O Complexity Cheat Sheet: AS/CR Primer

Common Big-O Complexities (AS Table)

Big-O	Growth Rate	Example Pattern
O(1)	Constant	Accessing arr[i], hash map lookup
$O(\log n)$	Logarithmic	Binary search, tree traversal
O(n)	Linear	Single loop over array
$O(n \log n)$	Linearithmic	Merge sort, heap sort
$O(n^2)$	Quadratic	Nested loops, naive matrix mult
$O(2^n)$	Exponential	Recursive subset generation
O(n!)	Factorial	Permutations, TSP brute-force

AS Tip: Find loops and recursion — they're your signal. **CR Tip:** Use scaling intuition: "what happens if I double n?"

How to Analyze Time Complexity (AS Steps)

- 1. Identify all loops and recursive calls.
- 2. Estimate how many times each will run.
- 3. Multiply nested operations.
- 4. Keep the most dominant term (drop constants).

Example:

for (int i = 0; i < n; i++) //
$$O(n)$$

for (int j = 0; j < n; j++) // $O(n)$
doSomething(); // $O(1)$
Total: $O(n \times n) = O(n^2)$

CR Memory Hooks

- O(1): Pick a card from the top instant.
- O(n): Flip through every page in a book.
- $O(\log n)$: Keep splitting a phone book in half.
- $O(n \log n)$: Sort a big deck by repeatedly merging halves.
- $O(n^2)$: Everyone shakes hands with everyone else.
- $O(2^n)$: Try every outfit combination from your wardrobe.

Lower Bounds (Proven Limits)

Some operations are provably impossible to improve beyond a certain point.

Task	Best Possible	Why
Searching in unsorted array	O(n)	Must check all elements
Searching in sorted array	$O(\log n)$	Binary search is optimal
Comparison sorting	$O(n \log n)$	Proven lower bound
Hash lookup (avg case)	O(1)	But worst-case $O(n)$
Matrix multiplication	$O(n^{2.3729})$	No $O(n \log n)$ known
Subset sum / TSP / SAT	$O(2^n)$	NP-complete; exponential only

CR Visualization: Scaling Impact

Assume an algorithm takes 1ms at n = 100.

Complexity	Time at $n = 10,000$	
O(1)	1ms	
$O(\log n)$	$2 \mathrm{ms}$	
O(n)	$100x \rightarrow 100ms$	
$O(n \log n)$	$132 \mathrm{ms}$	
$O(n^2)$	$10,000x \rightarrow 10,000ms = 10s$	
$O(2^n)$	unimaginable	

Tips for Choosing Algorithms

- Use O(1) or $O(\log n)$ if data is indexed or sorted.
- Aim for O(n) if you must read all items.
- Accept $O(n \log n)$ for sorting or divide-and-conquer.
- Avoid $O(n^2)$ + unless $n \le 1000$.
- Avoid $O(2^n)$ + unless $n \leq 20$ or you're pruning search.

Final Rule of Thumb

If your algorithm is:

- O(1) or $O(\log n)$: scales beautifully
- O(n) or $O(n \log n)$: usually safe
- $O(n^2)$ or worse: danger zone beyond 10,000 items

Part 1 — Practice Problems

Estimate the **worst-case time complexity** in Big-O for each function below. Assume input size is n.

```
1. Single loop
void func1(int n) {
    for (int i = 0; i < n; ++i) {
        std::cout << i;
}
  2. Nested loop
void func2(int n) {
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < n; ++j)
            std::cout << i << j;
}
  3. Logarithmic growth
void func3(int n) {
    while (n > 1) {
        n = n / 2;
}
  4. Recursive Fibonacci (naive)
int fib(int n)  {
    if (n \le 1) return n;
    return fib (n-1) + fib (n-2);
}
  5. Merge sort-like pattern
void mergeSort(int arr[], int n) {
    if (n \ll 1) return;
    int mid = n / 2;
    mergeSort(arr, mid);
    mergeSort(arr + mid, n - mid);
    // merge step (assume linear time)
}
  6. Two separate loops
void func6(int n) {
    for (int i = 0; i < n; ++i)
        std::cout << i;
    for (int j = 0; j < n; ++j)
        std :: cout \ll j;
}
```

Part 2 — Answer Key and Explanations

1.	${\bf Single\ loop\}$	O(n)

The loop runs exactly n times. Each step is O(1).

2. Nested loop $-\overline{O(n^2)}$

Inner loop runs n times per outer loop. Total steps: $n \times n$.

3. Logarithmic growth — $O(\log n)$

Each iteration halves n. Number of steps is log base 2 of n.

4. Recursive Fibonacci — $O(2^n)$

Two recursive calls per level, forms an exponential tree.

5. Merge sort — $O(n \log n)$

Divide: $\log n$ levels; Merge: O(n) per level. Total: $n \log n$.

6. Two separate loops $-\boxed{O(n)}$

First loop is O(n), second is O(n). Add them \rightarrow still O(n).