Санкт-Петербургский Политехнический Университет Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

> ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА №7 ПО ДИСЦИПЛИНЕ "МАТЕМАТИЧЕСКАЯ СТАТИСТИКА"

Выполнил студент: Салихов С.Р. группа: 3630102/70401

Проверил: к.ф-м.н., доцент Баженов Александр Николавич

Содержание

		Стр.
1.	Постановка задачи	5
2.	Теория	5
	2.1. Метод максимального правдоподобия	5
	2.2. Хи-квадрат	5
3.	Реализация	6
4.	Результаты	7
5.	Обсуждение	7
6.	Литература	7
7.	Приложения	7

Список иллюстраций

Список таблиц

1	Вычисление χ^2_B при проверке гипотизы H_0 о нормальном законе распре-
	деления $N(x, \hat{\mu} \approx 0.16, \hat{\sigma} \approx 1.04)$

1 Постановка задачи

Сгенерировать выборку объёмом 100 элементов для нормального распределения N(x, 0, 1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x, \hat{\mu}, \hat{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ^2 . В качестве уровня значимости взять $\alpha=0.05$. Привести таблицу вычислений χ^2 .

2 Теория

2.1 Метод максимального правдоподобия

Метод максимального правдоподобия – метод оценивания неизвестного параметра путём максимимзации функции правдоподобия.

$$\stackrel{\wedge}{\theta}_{\mathrm{M}\Pi} = argmax \mathbf{L}(x_1, x_2, \dots, x_n, \theta)$$

Где ${\bf L}$ это функция правдоподобия, которая представляет собой совместную плотность вероятности независимых случайных величин X_1, x_2, \ldots, x_n и является функцией неизвестного параметра θ

$$\mathbf{L} = f(x_1, \theta) \cdot f(x_2, \theta) \cdot \cdots \cdot f(x_n, \theta)$$

Оценкой максимального правдоподобия будем называть такое значение $\hat{\theta}_{\text{МП}}$ из множества допустимых значений параметра θ , для которого функция правдоподобия принимает максимальное значение при заданных x_1, x_2, \ldots, x_n .

Тогда при оценивании математического ожидания m и дисперсии σ^2 нормального распределения $N(m,\sigma)$ получим:

$$\ln(\mathbf{L}) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - m)^2$$

2.2 Хи-квадрат

Разобьём генеральную совокупность на k неперсекающихся подмножеств $\Delta_1, \Delta_2, \dots, \Delta_k, \Delta_i = (a_i, a_{i+1}], p_i = P(X \in \Delta_i), i = 1, 2, \dots, k$ – вероятность того, что точка попала в iый промежуток

Так как генеральная совокупность это \mathbb{R} , то крайние промежутки будут бесконечными: $\Delta_1 = (-\infty, a_1], \ \Delta_k = (a_k, \infty), \ p_i = F(a_i) - F(a_{i-1})$

 n_i – частота попадания выборочных элементов в $\Delta_i,\ i$ = $1,2,\ldots,k$.

В случае справедливости гипотезы H_0 относительно частоты $\frac{n_i}{n}$ при больших n должны быть близки к p_i , значит в качестве меры имеет смысл взять:

$$Z = \sum_{i=1}^{k} \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2$$

Тогда

$$\chi_B^2 = \sum_{i=1}^k \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

Теорема К.Пирсона. Статистика критерия χ^2 асимптотически распределена по закону χ^2 с k - 1 степенями свободы.

3 Реализация

Для генерации выборки был использован Python~3.7 и модуль numpy. Для отрисовки графиков использовался модуль matplotlib. scipy.stats для обработки функций распределений.

4 Результаты

Метод максимального правдоподобия:

$$\hat{\mu} \approx 0.03, \hat{\sigma} \approx 0.95$$

Критерий согласия χ^2 :

Таблица 1: Вычисление χ_B^2 при проверке гипотизы H_0 о нормальном законе распределения ${\rm N}(x,\hat{\mu}\approx 0.16,\hat{\sigma}\approx 1.04)$

i	$Delta_i, a_{i-1}, a_i$	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	[-∞, -1.01]	14	0.1562	15.62	-1.62	0.17
2	[-1.01, -0.37]	19	0.2004	20.04	-1.04	0.05
3	[-0.37, 0.28]	23	0.2517	25.17	-2.17	0.19
4	[0.28, 0.92]	19	0.2122	21.22	-2.22	0.23
5	[0.92, 1.56]	14	0.1201	12.01	1.99	0.33
6	$[1.56, \infty]$	11	0.0594	5.94	5.06	4.32
Σ	-	100	1.0000	100.00	0.00	$5.29=\chi_B^2$

Количество промежутков k=6. Уровень значимости $\alpha=0.05.$

5 Обсуждение

По результатам работы, значение критерия согласия Пирсона: χ^2_B = 5.29. Табличное значение квартиля $\chi^2_{1-\alpha}(k-1)$ = $\chi^2_{0.95}(5)$ = 11.07.

Таким образом, $\chi_B^2 < \chi_{0.95}^2(5)$, из этого следует, что основная гипотеза H_0 (о нормальном законе распределения $N(x,\hat{\mu},\hat{\sigma})$), на уровне зависимости $\alpha=0.05$, соотносится с выборкой.

6 Литература

Модуль питру

Модуль matplotlib

Модуль scipy

Таблица значений χ^2

7 Приложения

Код лаборатрной Код отчёта