

TRIGONOMETRIE

K Orientation d'un plan – le cercle trigonométrique – abscisses curvilignes :– égalité de deux polynômes :

A. Orientation d'un plan:

a. Activité:

- On considère le plan (P) ; O est un point de (P) et (C) est un cercle de centre O et de rayon r.
- On prend le point I de (C) tel que la demi droite [O,I) est horizontale et dirigée vers la droite .
- On construit un point M de (C) à partir de M on a de sens pour arriver à I, un sens est celui de la rotation des aiguilles du montre l'autre sens est le contraire de la rotation des aiguilles du montre.
- On choisit comme sens positif le sens contraire de la rotation des aiguilles du montre, on le note par +.
- On choisit comme sens négatif le sens de la rotation des aiguilles du montre, on le note par -.

b. Vocabulaire:

- On dit que le cercle est muni d'un origine I.
- On dit que le cercle est orienté positif ou direct qui est le sens contraire de la rotation des aiguilles du montre.
- Si tous les cercles du plan sont orientés d'une orientation positive on dit que le plan est orienté positif (ou direct)

a. Définition :

Tout cercle (C) du plan (P) possède :

- son rayon est r = 1
- muni d'un origine I.
- orienté positif. ce cercle (C) est appelé cercle trigonométrique.

b. remarque :

est rapporté a un repère orthonormé (O, OI, OJ)

et O est le centre du cercle (C) et le point J est placé dans le sens positif. on dit que le cercle trigonométrique (C)

lié au repère orthonormé $(O,\overrightarrow{OI},\overrightarrow{OJ}) = (0,\overrightarrow{i},\overrightarrow{j})$

(avec $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$).

Pour toutes les paragraphes qui nous reste : le cercle (C) est le cercle trigonométrique d'origine I et son centre est le point O.

C. Abscisses curvilignes :

a. Activité:

- On a : le périmètre du cercle trigonométrique (C) est $p = 2r\pi = 2 \times 1 \times \pi = 2\pi$.
- M est un point de (C) tel que l'arc géométrique $\mid IM \mid$ sa longueur est α (avec $0 \le \alpha \le 2\pi$).

TRIGONOMETRIE

- Si on roule autour du cercle un fil de longueur $\alpha+2\pi$ la première extrémité en I .
 - 1. la position de la deuxième extrémité sur le cercle est en M
 - 2. Même point M pour les fils de longueur $\alpha + 4\pi$ et $\alpha + 6\pi$...
 - un fil de longueur $\alpha+2\pi$ on le coupe en deux morceaux un de longueur α l'autre 2π . pour le fil de longueur α à partir de I dans le sens positif $2^{ième}$ extrémité sera en M et à partir de M on place la $1^{ère}$ extrémité du deuxième fil on cherche en allant dans le sens négatif la position du deuxième extrémité du fil sera aussi en M dans ce cas on écrit $\alpha-2\pi$ de même pour $\alpha-4\pi$ et $\alpha-6\pi$ on obtient le même point M .

b. Vocabulaire:

Les nombres $\alpha-6\pi$ et $\alpha-4\pi$ et $\alpha-2\pi$ et α et $\alpha+4\pi$ et $\alpha+6\pi$... on les notes par $\alpha+2k\pi$; $k\in\mathbb{Z}$ ces nombres sont appelés abscisses curvilignes du point M on les note $M_{\left(\alpha+2k\pi\right)}$ ou simplement par $M_{\left(\alpha\right)}$.

c. Définition :

 $\mathbf{M}_{(\alpha+2k\pi)}$ est un point de (C) il existe un et un seul abscisse curviligne de M qui appartienne à $\left[-\pi,\pi\right]$ (c.à.d. $-\pi < \alpha + 2k\pi \le \pi$) cet abscisse est appelé abscisse curviligne principal de M

- d. Remarque:
- Si M est situé sur le demi cercle « supérieure »
- la mesure principale appartienne à $[0,\pi]$.
- \checkmark Si non la mesure principale appartienne à $\left]-\pi,0
 ight]$.
- Les abscisses curvilignes de I sont $0+2k\pi=2k\pi$ donc d'où l'abscisse curviligne principale de I est 0 (zéro).

- ✓ Les abscisses curvilignes de J sont $\frac{\pi}{2}$ + 2k π donc d'où l'abscisse curviligne principale de J est $\frac{\pi}{2}$
- ✓ Les abscisses curvilignes de I'sont π + 2k π donc d'où l'abscisse curviligne principale de I'est π
 - Les abscisses curvilignes de J sont $\frac{-\pi}{2}$ + 2k π donc d'où l'abscisse curviligne principale de J est $\frac{-\pi}{2J}$

e. Exercice:

Donner les abscisses curvilignes des points de la figure.

- Angle orienté de deux demi-droites de deux vecteurs non nuls :
 - A. Radian grade:
 - a. Définition :

A et B deux points du cercle trigonométrique (C) d'origine I et son centre est le point O . La longueur de l'arc géométrique $\Big[AB\Big]$ est 1 .

- \bullet l'angle de sommet O et qui intercepte l'arc $\left \lceil AB \right \rceil$ on dit que sa mesure est :
 - 1 radian on note 1 rad. On a: $180^{\circ} = \pi$ rad et $90^{\circ} = \frac{\pi}{2}$ rad

TRIGONOMETRIE

b. Remarque:

- Il existe une autre unité de mesure des angles , on l'appelle grade on la note par gr tel que $180^\circ = \pi$ rad = 200gr et $90^\circ = \frac{\pi}{2}$ rad = 100 gr .
- Si un angle sa mesure est x et y et z respectivement en degré et radian et grade alors $\frac{x}{180^{\circ}} = \frac{y}{\pi} = \frac{z}{200}$

c. Exercice :

- 1. Exprimer en radian et en grade la mesure suivante : 60°.
- 2. Exprimer en radian et en degré la mesure suivante : 150 gr.

- **B.** Mesure d'un angle orienté de deux demi-droites :
- a. Définition :

Soit [OA) et [OB) deux demi droites du plan (P) tel que : $A \neq 0$ et $B \neq O$. Le couple ([OA),[OB)) est appelé l'angle orienté du demi-droites on le note (OA,OB).

b. Remarque:

Le couple (OB), OA) détermine un autre angle orienté , on le note OB, OA qui différent de l'angle OA, OB.

c. Angles déterminer par deux demi droites :

On considère dans le plan (P) deux points A et B puis le cercle trigonométrique (C) de centre O . tel que : $A \neq 0$ et $B \neq O$.

Les deux demi-droites [OA) et [OB) coupent (C) respectivement en $A'_{(\alpha)}$ et $B'_{(\beta)}$ tel que leurs abscisses curvilignes sont α et β on a :

Les mesures de l'angle orienté $\left(OA,OB\right)$ sont les nombres réels β - α +2 $k\pi$; $k \in \mathbb{Z}$ on note : $\left(\overline{OA,OB}\right) \equiv \beta - \alpha \left[2\pi\right]$ ou encore $\left(\overline{OA,OB}\right) = \beta - \alpha + 2k\pi$; $k \in \mathbb{Z}$.

On lit : mesures de l'angle orienté (OA,OB) congrue à $\beta-\alpha$ modulo 2π .

• La mesure qui vérifie $(\beta-\alpha+2k\pi)\in]-\pi,\pi]$ s'appelle la mesure principale de l'angle orienté (OA,OB).

TRIGONOMETRIE

page 🗐

d. Exemple:

On donne la mesure principale de $(\overline{OA}, \overline{OB}) \equiv \frac{15\pi}{4} [2\pi]$.

1ière méthode:

On a :
$$\frac{15\pi}{4} = \frac{16-1}{4}\pi = 2\pi - \frac{\pi}{4}$$
 on a : $-\frac{\pi}{4} \in \left] -\pi, \pi\right]$ d'où la mesure principale est $-\frac{\pi}{4}$.

2ième méthode

Puisque on a une mesure est $\frac{15\pi}{4}$ donc toutes les mesures sont de la forme $\frac{15\pi}{4} + 2k\pi$; $k \in \mathbb{Z}$

Donc la mesure principale vérifie la condition suivante : $\frac{15\pi}{4} + 2k\pi \in \left] -\pi, \pi\right]$

$$\frac{15\pi}{4} + 2k\pi \in \left] - \pi, \pi\right] \Leftrightarrow -\pi < \frac{15\pi}{4} + 2k\pi \le \pi$$

$$\Leftrightarrow -1 < \frac{15}{4} + 2k \le 1$$

$$\Leftrightarrow \frac{1}{2} \left(-1 - \frac{15}{4} \right) < k \le \frac{1}{2} \left(1 - \frac{15}{4} \right)$$

$$\Leftrightarrow -\frac{19}{8} < k \le -\frac{11}{8} \quad \left(-\frac{19}{8} \approx -2,375 - 1,375 \text{ et } -\frac{11}{8} \approx -1,375 \right)$$

Puisque $k \in \mathbb{Z}$ on obtient k = -2

e. Propriété:

le plan (P) est orienté positif, O est un point de (P).

soient OA) et OB) et OC) trois demi-droites de (P) on a :

- $\bullet \quad \left(\overline{\mathrm{OA},\mathrm{OA}}\right) \equiv 0[2\pi] .$
- $(\overline{OA}, \overline{OB}) \equiv -(\overline{OB}, \overline{OA})[2\pi]$.
- $(\overline{OA}, \overline{OB}) + (\overline{OB}, \overline{OC}) = (\overline{OA}, \overline{OC})[2\pi]$ (relation de shale)
- 2 Angle déterminer par deux vecteurs non nuls :

TRIGONOMETRIE

a. Définitions :

le plan (P) est orienté positif, O est un point de (P).

Soient u et v deux vecteurs non nuls de (P).

soient A et B deux points de (P) tel que : $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$.

- l'angle orienté des vecteurs \vec{u} et \vec{v} est l'angle orienté (OA,OB) (c.à.d. des deux demi-droites [OA) et [OB), on le note (\vec{u},\vec{v}) .
- Les mesures de l'angle orienté $\left(\overrightarrow{OA}, \overrightarrow{OB}\right)$ sont appelées les mesures de l'angle orienté $\left(\overrightarrow{u}, \overrightarrow{v}\right)$ on note $\left(\overrightarrow{u}, \overrightarrow{v}\right)$
- On a: $(\overrightarrow{u}, \overrightarrow{v}) \equiv (\overrightarrow{OA}, \overrightarrow{OB}) [2\pi]$.
- La mesure de l'angle orienté (\vec{u},\vec{v}) qui appartienne à $]-\pi,\pi]$ est appelée la mesure principale de (\vec{u},\vec{v}) .

<u>b.</u> Propriété :

le plan (P) est orienté positif.

Soient $\overrightarrow{\mathbf{u}}$ et $\overrightarrow{\mathbf{v}}$ et $\overrightarrow{\mathbf{w}}$ trois vecteurs non nuls de (\mathbf{P}) . on a :

- $(\overrightarrow{u}, \overrightarrow{u}) \equiv 0$ $[2\pi]$ (ou bien $(\overrightarrow{u}, \overrightarrow{u}) = (\overrightarrow{u}, \overrightarrow{u}) + 2k\pi$; $(k \in \mathbb{Z})$)
- $(\overrightarrow{u}, \overrightarrow{v}) \equiv -(\overrightarrow{v}, \overrightarrow{u})$ $[2\pi]$ (ou bien $(\overrightarrow{u}, \overrightarrow{v}) \equiv -(\overrightarrow{v}, \overrightarrow{u}) + 2k\pi$; $(k \in \mathbb{Z})$)

Lignes trigonométriques du réel x :

a. Activité:

le plan est rapporté a un repère orthonormé direct .O est le centre du cercle (C) est le cercle trigonométrique d'origine I (et de centre O) lié repère au tel que $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$ et $\overrightarrow{OJ'} = -\overrightarrow{i}$ et $\overrightarrow{OJ'} = -\overrightarrow{j}$.

Remarque:

Soit le point $M_{(x)}$ un point de $\left(C\right)$ (x est une abscisse curviligne de M) (voir figure)

$$d'où\left(\overrightarrow{i,\overrightarrow{OM}}\right) = \left(\overrightarrow{\overrightarrow{OI},\overrightarrow{OM}}\right) \quad \left[2\pi\right]$$

TRIGONOMETRIE

donc $\left(\overline{i},\overline{OM}\right) \equiv x - 0$ $\left[2\pi\right] d'ou : \left(\overline{i},\overline{OM}\right) \equiv x$ $\left[2\pi\right]$ ou bien $\left(\overline{i},\overline{OM}\right) = x + 2k\pi$; $k \in \mathbb{Z}$.

on pose M(c,s) par rapport au repère orthonormé direct

- Le point C(c,0) est la projection orthogonale de M sur la droite (OI) . (sachant que $C \in [I',I]$). (avec c = OC si $c \ge 0$; c = -OC si $c \le 0$)
- Le point S(0,s) est la projection orthogonale de M sur la droite (OJ) . (sachant que $S \in [J',J]$). (avec s = OS si $s \ge 0$; s = -OS si $s \le 0$)
- Soit la droite (T) tangente au cercle (C) en I , coupe la demi-droite [OM) au point T (condition $M \neq J$ et $M \neq J'$ donc condition sur les abscisse curvilignes de M doit vérifier $x \neq \frac{\pi}{2} + k\pi$; $k \in \mathbb{Z}$)
- la droite (T) est muni du repère (I,\vec{i}) d'où le point T a pour abscisse sur l'axe (T) le réel t. (avec t = OT si $t \ge 0$; t = -OT si $t \le 0$).

b. Vocabulaire:

(x est l'abscisse curviligne du point $M \in (C)$)

- L'abscisse c de M est appelée le cosinus du réel x . on note $\cos x$ d'où $\cos x = \cos\left(\overline{i}, \overline{OM}\right) = c$.
- L'ordonnée s de M est appelée le sinus du réel x . on note $\sin x$ d'où $\sin x = \sin(\overrightarrow{i}, \overrightarrow{OM}) = s$.
- L'abscisse t de M par rapport à l'axe (droite) (T) tangente au cercle (C) en I est appelée la tangente du réel x. on note tanx d'où tanx = $\tan\left(\overline{i},\overline{OM}\right) = t$.

TRIGONOMETRIE

c. Définition :

x est une abscisse curviligne du point $\mathbf{M}_{(\mathbf{x})} \in (\mathbf{C})$ tel que (\mathbf{C}) est le cercle trigonométrique d'origine

I lié au repère orthonormé . M(c,s) par rapport au repère orthonormé direct

- Le réel c (abscisse de M) est appelé le sinus du réel x, on note $\cos x$ d'où $\cos x = \cos \left(\overrightarrow{i}, \overrightarrow{OM} \right) = c$
- Le réel s (ordonnée de M) est appelé le cosinus du réel x, on note $\sin x = s$ d'où $\sin x = \sin\left(\overrightarrow{i}, \overrightarrow{OM}\right) = s$.
- Le réel t (abscisse du point T) est appelé le cosinus du réel x, on note on note tanx d'où tanx = $tan(\overrightarrow{i},\overrightarrow{OM}) = t$. (sachant la droite (T) tangente au cercle (C) en I et du point T avec $(T) \cap [OM) = \{T\}$).

d. Conséquences:

- $\frac{(\cos x)^2 + (\sin x)^2 = 1 \text{ pour tout } x \text{ de } \mathbb{R}.$
- -1 ≤ cos x ≤ 1 et -1 ≤ sin x ≤ 1 pour tout x de $\mathbb R$.
- $\cos(x+2k\pi) = \cos x$ et $\sin(x+2k\pi) = \sin x$ pour tout x de \mathbb{R} .
- $\tan x = \frac{\sin x}{\cos x} \text{ et } 1 + \tan^2 x = \frac{1}{\cos^2 x} \text{ pour tout } x \neq \frac{\pi}{2} + k\pi \text{ tel que } k \in \mathbb{Z} .$

IV. Signe de sinx et cos x et tan x :

a. Quadrant d'un cercle :

- on divise le cercle en quatre arcs de même longueur A partir de I vers J (suivant le sens positif) .
- x est une abscisse curviligne du point $M_{(x)} \in (C)$.
- le 1^{er} arc IJ (à partir de I vers J) si $M_{(x)} \in IJ$ on dit que $M_{(x)}$ est situé dans le premier quadrant .
- le 2^{ieme} arc JJ' (à partir de J vers J') si $M_{(x)} \in JJ'$ on dit que $M_{(x)}$ est situé dans le deuxième quadrant
- le $3^{\text{ième}}$ arc J'I' (à partir de J' vers I') si $M_{(x)} \in J'I'$ on dit que $M_{(x)}$ est situé dans le troisième quadrant
- le $4^{\text{ième}}$ arc I'I (à partir de J vers J') si $M_{(x)} \in I'I$ on dit que $M_{(x)}$ est situé dans le quatrième quadrant

<u>b.</u> signe des lignes trigonométriques suivant les quadrants :

est situé au $\mathbf{M}_{(\mathbf{x})}$	Quadrant n° 1	Quadrant n° 2	Quadrant n° 3	Quadrant n° 4
sin x	+	+	_	_
cos x	+	_	_	+
tan x	+	_	+	_

TRIGONOMETRIE

c. signe des lignes trigonométriques graphiquement :

1. signe de cosinus et de sinus :

2. Signe de tangente :

 \mathbb{V}_{\bullet} les lignes trigonométriques et les angles remarquables :

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin x	0	$\frac{1}{2}$	$\left[\begin{array}{c} \sqrt{2} \\ 2 \end{array}\right]$	$\frac{\sqrt{3}}{2}$	1
cos x	1	$\frac{\sqrt{3}}{2}$	$\left[\begin{array}{c} \sqrt{2} \\ 2 \end{array}\right]$	$\frac{1}{2}$	0
tanx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	X

TRIGONOMETRIE

þage

VI. Relations entre les angles :

a. Angles opposés : (x et -x)

<u>b.</u> Angles supplémentaires : $(\pi - x \text{ et } x)$

Angles opposés supplémentaires : ($\pi + x$ et x

 $\underline{\mathbf{c}}$ Angles complémentaires : $(\frac{\pi}{2} - \mathbf{x} \text{ et } \mathbf{x})$ Angles opposés complémentaires : $(\frac{\pi}{2} - \mathbf{x} \text{ et } \mathbf{x})$

d. Résumer des formules précédentes :

於	-x	$\pi - x$	$\pi + x$	$\frac{\pi}{2}$ - x	$\frac{\pi}{2} + x$
sin /	-sin x	sin x	-sin x	cos x	cos x
cos 🖊	cos x	-cos x	-cos x	sin x	-sin x
tan 🖊	– tan x	– tan x	tan x	$\frac{1}{\tan x}$	$\frac{-1}{\tan x}$