

G4. MAGNITUDES ATÓMICAS Y MOLECULARES

Calcular el número de moles de átomos y el número de átomos presentes en:

- a) 46,0 g de sodio → 2 mg/
- **b)** 80,0 g de calcio → ২_{ma1}

- c) 1,00 Kg de aluminio d) 1,00 mg de hierro.

 37,94 mg/

 Calcular el número de moles de moléculas y el número de moléculas presentes en: 2)
 - a) 1,00 mg de SO_3^{-16}

- Se dispone de un cilindro de plata de base circular de radio 7,00 cm y una altura de 3,00 cm. La densidad de la plata es 10,5 g/cm³.
 - a) Calcular la masa de plata en el cilindro.
 - b) Calcular el número de átomos de plata contenidos en el cilindro.
 - c) Calcular el número de moles de plata.

- El ibuprofeno es un antiinflamatorio de fórmula $C_{13}H_{18}O_2$ que se comercializa, por ejemplo, en 4) comprimidos que contienen 400 mg de esta sustancia. Si una persona ingiere dos de estos comprimidos en un día:
 - a) Determinar la masa de ibuprofeno ingerida. $\rightarrow 8 \% \sim q = 0.18 \%$
 - ilas de ibuprofeno ingeridos. $m_0/=0.09$ 206a 308.75 $m_0/=0.09$ $m_0/=0.09$ b) Determinar el número de moles y el número de moléculas de ibuprofeno ingeridos. ()
- Completar los espacios en blanco de la siguiente tabla. 5)

Fórmula de la sustancia	Masa (g)	moles de la molécula	Número de Moléculas	moles de átomos de Hidrógeno	Número átomos de Hidrógeno
HI	75,0				
NH₃					5,4×10 ²⁴
C₂H ₆			3,0×10 ²⁴		
CHCl₃		1,50			
H ₂ SO ₄				5.00	

- La masa de 4,20 moles de una sustancia es de 500 g y su densidad a 20,0 °C es de 1,63 g/cm³. 6)
 - a) Calcular el volumen molar de dicha sustancia.
 - b) Calcular la masa de una molécula expresada en u y en gramos.
 - c) Calcular la masa expresada en gramos de 3,0×10¹⁰ moléculas de dicha sustancia.
- Un envase de dentífrico cuyo contenido total es 105 g contiene entre sus componentes un 0,220 % en 7) masa de NaF (fluoruro de sodio).
 - a) Determinar la masa de NaF contenida en el envase.

- b) Determinar el número total de aniones fluoruro y de cationes sodio presentes en el envase.
- 8) El tetracloruro de carbono (CCl₄) es un líquido que se utiliza industrialmente como refrigerante, plaguicida y fungicida entre otras aplicaciones. A 20 °C, 3,0 mol de CCl₄ ocupan 500 mL.
 - a) Calcular la densidad del CCl₄ a 20 °C.
 - b) Calcular la masa de cloro presente en 100 mL de la sustancia.
 - c) Calcular la masa de NCl₃ que contiene el mismo número de átomos de cloro que los 500 ml de CCl₄.
- 9) Se desea identificar la composición de un compuesto incógnita de fórmula XZ_3 . De este compuesto se sabe que la masa de 7.34×10^{25} moléculas es de 4150 g y que 4,25 moles de átomos de X tienen una masa de 131,8 g.
 - a) Identificar a través de la Tabla Periódica a los elementos X y Z con sus símbolos y escribir la fórmula del compuesto incógnita.
- **10)** Completar los espacios en blanco de la siguiente tabla.

Nombre y fórmula de la sustancia	Masa Molecular (u)	Masa Molecular	Masa Molar (g/mol)
Ácido Sulfúrico, H₂SO ₄			
Ozono, O₃			
Tetracloruro de Carbono CCl ₄			
Dióxido de Carbono, CO ₂			
Sulfuro de Carbono, H₂S			

- 11) Calcular cuál de los siguientes sistemas presenta un menor número de átomos totales:
 - i) 1,00 kg de aluminio
- ii) 7,50 mol de hierro
- iii) 1,81×10²⁵ moléculas de O₃

- iv) 342 mg de sacarosa (C₁₂H₂₂O₁₁)
- 12) Se tiene una cantidad de sulfato de potasio (K_2SO_4) de masa desconocida pero que se sabe contiene $3,13\times10^{24}$ átomos de oxígeno.
 - a) Determinar la masa de sulfato de potasio.
 - **b)** El número de iones potasio presentes en la muestra.
- 13) Una porción de gas hidrógeno (H₂) ocupa un volumen de 50 l en condiciones normales de presión y temperatura (CNPT).
 - a) Determinar la masa de H₂.
 - **b)** Determinar el volumen que ocupará el H₂ si las condiciones de almacenamiento se modifican a 35 °C y 720 mmHg.
- 14) Se dispone de 4.88 g de un gas desconocido, cuya identidad se sospecha que corresponde a uno de los siguientes compuestos: SO₂ o SO₃. Para verificar su identidad se introduce el gas en un recipiente de 1 l y se observa que a 27 °C ejerce una presión de 1,5 atm.

- a) ¿Esta información es suficiente para determinar la identidad del gas? En caso afirmativo, identificar de que gas se trata.
- 15) Determinar la fórmula molecular de una sustancia cuyo análisis elemental determinó que su fórmula mínima es C₂H₄O y que tiene una masa molecular de 88 g/mol.
- 16) Se analiza químicamente una muestra de 5 g de un compuesto orgánico cuya masa molar es 148 g/mol, y se determina que la muestra está compuesta por 2,7 g de C, 2,4 g de O y 0,45 g de H.
 - a) Calcular la fórmula mínima y la fórmula molecular del compuesto orgánico.
- 17) Determinar la fórmula mínima y molecular de un compuesto gaseoso sabiendo que 1 l del gas medidos a 25 °C y 760 mmHg de presión tienen una masa de 3,90 g y que su análisis químico mostró que su composición es 24,74 % de C; 2,06 % de H y 73,20 % de Cl.
- 18) En un recipiente cerrado de 10 l se tiene una mezcla de los gases dióxido de cloro (ClO₂) y monóxido de dicloro (Cl₂O) de composición exacta desconocida. La masa de gas dentro del recipiente es de 64 g y la presión medida a 25 °C es de 2,1 atm.
 - a) ¿Esta información es suficiente para determinar la composición de la mezcla? En caso afirmativo, determinar el porcentaje de dióxido de cloro y monóxido de dicloro.

Respuestas:

- **1) a)** 2,00 mol, 1,20×10²⁴ átomos **b)** 2,00 mol, 1,20×10²⁴ átomos **c)** 37,0 mol, 2,23×10²⁵ átomos **d)** 1,79×10⁻⁵ mol, 1,08×10¹⁹ átomos
- 2) a) $1,25 \times 10^{-5}$ mol, $7,53 \times 10^{18}$ átomos b) 10,2 mol, $6,14 \times 10^{24}$ átomos c) $3,02 \times 10^{-3}$ mol, $2,23 \times 10^{21}$ átomos
- **a)** 48,5 g **b)** 2,70×10²³ átomos **c)** 0,449 mol
- **4) a)** 0.800 g **b)** $3.88 \times 10^{-3} \text{ mol y } 2.34 \times 10^{21} \text{ moléculas de } C_{13}H_{18}O_2$

5)

Fórmula de la sustancia	Masa (g)	moles de la molécula	Numero de Moléculas	moles de átomos de Hidrógeno	Número átomos de Hidrógeno
н	75,0	0,586	3,53×10 ²³	0,586	3,53×10 ²³
NH ₃	51,0	3,00	1,8×10 ²⁴	9,00	5,42×10 ²⁴
C ₂ H ₆	150	5,00	3,0×10 ²⁴	30,0	1,8×10 ²⁵
CHCl ₃	179	1,50	9.0×10 ²³	1,50	9.0×10 ²³
H ₂ SO ₄	245	2,50	1,5×10 ²⁴	5,00	3,0×10 ²⁴

- 6) a) $73.0 \text{ cm}^3/\text{mol}$ b) $119 \text{ u o } 1.98 \times 10^{-22} \text{ g}$ c) $5.95 \times 10^{-12} \text{ g}$
- 7) a) 0,231 g de NaF b) 3,31.10 21 moles de Na⁺ y 3,31.10 21 moles de F⁻
- **8) a)** 0, 924 g/cm³ **b)** 85,2 g **c)** 482 g
- 9) a) $X \rightarrow F \acute{o} s foro (P) y Z \rightarrow H \acute{o} d f \acute{o} e no (H) F \acute{o} r mula: PH₃$

10)

Nombre y fórmula de la sustancia	Masa Molecular (u)	Masa Molecular (g)	Masa Molar (g/mol)
Ácido Sulfúrico, H₂SO ₄	98,0	1,63×10 ⁻²²	98,0
Ozono, O₃	48,0	7,97×10 ⁻²³	48,0
Tetracloruro de Carbono CCl ₄	152,0	2,52×10 ⁻²²	152,0
Dióxido de Carbono, CO ₂	44,0	7,31×10 ⁻²³	44,0
Sulfuro de Carbono, H₂S	34,0	5,65×10 ⁻²³	34,0

- 11) iv) posee menos átomos totales (2,72×10⁻²² átomos)
- **12)** a) 226 g b) 1,57×10²⁴ iones K⁺
- **13)** a) 4,5 g b) 59,5 l

- 14) a) Si, la información es suficiente. El gas SO₃
- 15) a) Fórmula C₄H₈O₂
- **16) a)** Fórmula mínima: C₃H₆O₂ y Fórmula molecular: C₆H₁₂O₄
- 17) a) Fórmula mínima: CHCl y Fórmula molecular: C₂H₂Cl₂
- 18) a) Si, la información es suficiente. La mezcla es 35,9% ClO₂ y 64,1% Cl₂O