Метод частной булевой производной синтеза тестов

Булевой производной функции f(x) = f(x1, x2,..., xn) по xi называется функция df(x) / dxi = f(x1, x2,..., xn)

$$x_{i,...}$$
, $x_{i,...}$, $x_$

Булева производная может быть также вычислена и по следующей формуле:

$$df(x) / dxi = f(x1, x2,..., 0,..., xn) Å f(x1, x2,..., 1,..., xn).$$

Булева производная определяет значения логических переменных x1,..., xn (кроме xi), при которых изменение состояния xi приводит к изменению значения функции f(x).

Тест для неисправности
$$xi = 0$$
 ($xi = 1$) определяют значения логических переменных, при которых $xi \times df(x) / dxi = 1$ (` $xi \times df(x) / dxi = 1$).

Сказанное можно распространить и на внутренние переменные. Тест для неисправностей z = 0 (z = 1) внутренней линии схемы определяют значения логических переменных, при которых

$$z \times df(x) / dz = 1$$
 ($\mathbf{Z} \times df(x) / dz = 1$).

Таким образом, входное воздействие для проверки неисправности в точке z определяется следующим образом.

- 1. Составляем функцию f(x), в которой в качестве переменной присутствует z.
- 2. Определяем частную булеву производную df(x) / dz, приводим полученное выражение к дизъюнктивной форме (ДФ).
- 3. Выбираем один из термов (например, t), полученной в п. 2 ДФ.
- 4. Неисправность z = 0 проверяется на воздействии, при котором значения переменных x1,..., xn обеспечивают условие $z \times t = 1$.
- 5. Неисправность z = 1 проверяется на воздействии, при котором значения переменных x1,..., xn обеспечивают условие $z \times t = 1$.