Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: М3110	_К работе допущен:				
Студент: Косовец Роман Евгеньевич	_Работа выполнена:				
Преподаватель: Прохорова Ульяна	_Отчет принят:				
Рабочий протокол и отчет по лабораторной работе №1.02					

Изучение скольжения тележки по наклонной плоскости

1. Цель работы:

- Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- Определение величины ускорения свободного падения g.

2. Задачи, решаемые при выполнении работы:

- 1) Измерение времени движения тележки по рельсу с фиксированным углом наклона;
- 2) Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту;
- 3) Исследование движения тележки при фиксированном угле наклона рельса;
- 4) Проверка равноускоренности движения тележки
- 5) Исследование зависимости ускорения тележки от угла наклона рельса к горизонту;
- 6) Определение ускорения свободного падения;
- **3. Объект исследования** нормальное распределения случайных величин (результат измерения заданного промежутка времени)
- 4. Метод экспериментального исследования лабораторный эксперимент
- 5. Рабочие формулы и исходные данные

$$a = g\left(\sin\alpha - \mu\right). \quad a = \frac{\sum\limits_{i=1}^{N} Z_i Y_i}{\sum\limits_{i=1}^{N} Z_i^2}; \quad \sigma_a = \sqrt{\frac{\sum\limits_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1)\sum\limits_{i=1}^{N} Z_i^2}}, \quad \Delta_a = 2\sigma_a, \quad \varepsilon_a = \frac{\Delta a}{a} \cdot 100\%. \quad \sin\alpha = \frac{(h_0 - h) - (h_0' - h')}{x' - x}$$

$$\langle a \rangle = \frac{2\left(x_2 - x_1\right)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2} \quad \Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\tt M2})^2 + (\Delta x_{\tt M1})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{\left(\langle t_2 \rangle^2 - \langle t_1 \rangle^2\right)^2}} \quad d_i = a_i - (A + B \sin\alpha_i),$$

$$B \equiv g = \frac{\sum\limits_{i=1}^{N} a_i \sin\alpha_i - \frac{1}{N} \sum\limits_{i=1}^{N} a_i \sum\limits_{i=1}^{N} \sin\alpha_i}{\sum\limits_{i=1}^{N} \sin\alpha_i}}; \quad A = \frac{1}{N} \left(\sum\limits_{i=1}^{N} a_i - B \sum\limits_{i=1}^{N} \sin\alpha_i}\right). \quad \sigma_g = \sqrt{\frac{\sum\limits_{i=1}^{N} d_i^2}{D(N-2)}}. \quad D = \sum\limits_{i=1}^{N} \sin\alpha_i^2 - \frac{1}{N} \left(\sum\limits_{i=1}^{N} \sin\alpha_i\right)^2.$$

$$\Delta g = 2\sigma_g, \quad \varepsilon_g = \frac{\Delta g}{g} \cdot 100\%.$$

6. Измерительные приборы:

<i>№</i> n/n	Наименование	Предел измерений	Цена деления	Класс точности	Δи
1	Линейка на рельсе	1,3 м	1 см/дел		5 мм
2	Линейка на угольнике	250 мм	1 мм/дел		0,5 мм
3	ПКЦ-3 в режиме секундомера	100 с	0,1 c	_	0,1 c

7. Схема установки:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов):

Таблица №3

<i>№</i>	Измеренные величины				Рассчитанные величины	
n/n	<i>x</i> ₁ , M	<i>x</i> ₂ , M	<i>t</i> ₁ , c	t ₂ , c	$x_2 - x_1$, M	$\frac{t_2^2 - t_1^2}{2}$, c^2
1	0,15	0,40	1,5	2,8	0,25	2,795
2	0,15	0,5	1,5	3,2	0,35	3,905
3	0,15	0,7	1,5	3,7	0,55	5,720
4	0,15	0,9	1,4	4,1	0,75	7,425
5	0,15	1,1	1,4	4,6	0,95	9,6

Таблица №4

$N_{\Pi \Pi}$	<i>h</i> , мм	<i>h</i> ′, мм	No	<i>t</i> ₁ , c	t_2 , c
	186	194	1	1,5	4,7
			2	1,4	4,7
1			3	1,5	4,7
			4	1,4	4,7
			5	1,5	4,7
	176	193	1	1,0	3,2
			2	1,0	3,2
3			3	1,0	3,2
			4	1,0	3,2
			5	1,0	3,2
	168	192	1	0,8	2,6
3			2	0,8	2,6
			3	0,8	2,6
			4	0,8	2,6

			5	0,8	2,7
			1	0,7	2,2
			2	0,7	2,2
4	159	192	3	0,7	2,3
			4	0,7	2,2
			5	0,7	2,3
5	149	192	1	0,6	2,0
			2	0,6	2,0
			3	0,6	2,0
			4	0,6	2,0
			5	0,6	2,0

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов):.

 $\Delta t = 0.27$

Таблица №5

$N_{\Pi \Pi}$	$\sin \alpha$	$\langle t_1 \rangle \pm \Delta t_1, c$	$\langle t_2 \rangle \pm \Delta t_2, c$	$\langle a \rangle \pm \Delta a, ^{\rm M}/_{\rm C^2}$		
1	0,0128	1,46±0,27	$4,7\pm0,27$	0,025±0,007		
2	0,0243	1±0,27	3,2±0,27	0,076±0,016		
3	0,0333	0,8±0,27	2,62±0,27	0,177±0,032		
4	0,0448	0,7±0,27	2,24±0,27	0,331±0,057		
5	0,0576	0,6±0,27	2±0,27	0,522±0,085		

10. Графики (перечень графиков, которые составляют Приложение 2):

11. Окончательные результаты:

1) Доверительный интервала для ускорения, полученный в первом задании, с относительной погрешностью:

$$\varepsilon_{\alpha} = \frac{\Delta a}{a} \cdot 100\% = 4,587\%$$

2) Значение ускорения свободного падения с абсолютной и относительной погрешностями:

$$B \equiv g = \frac{\sum_{i=1}^{N} a_{i} \sin \alpha_{i} - \frac{1}{N} \sum_{i=1}^{N} a_{i} \sum_{i=1}^{N} \sin \alpha_{i}}{\sum_{i=1}^{N} \sin \alpha_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_{i}\right)^{2}} = 11,392 \text{ M/c}^{2}$$

$$\Delta g = 2\sigma_g = 2,515$$

$$\varepsilon_g = \frac{\Delta g}{g} \cdot 100\%$$
 = 22,078%

3) Абсолютное и относительное отклонение измеренного ускорения свободного падения от его табличного значения:

$$\sigma_g = \sqrt{\frac{\sum\limits_{i=1}^{N} d_i^2}{D(N-2)}}.$$
 = 2,119

$$g = g_{\text{эксп}} - g_{\text{табл}} = 11,392 - 9,81908 = 1,573$$

12. Выводы и анализ результатов работы:

В процессе выполнения лабораторной работы были построены графики с линейной зависимостью. Кроме этого, было полученно экспериментальное значение ускорения свободного падения, которое отличается лишь на 1,573 от табличного, и это доказывает, что движение тележки по наклонной плоскости можно считать равноускоренным.

13. Дополнительные задания.

14. Выполнение дополнительных заданий.

15. Замечания преподавателя (*исправления*, *вызванные замечаниямипреподавателя*, *также помещают в этот пункт*).

Примечание:

- 1. Пункты 1-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. Для построения графиков используют только миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.