Pattern Recognition Project 2

least squares regression and nearest neighbor classification

Task 2.1: Least Squares Method for Polynomial Regression

Problem Statement:

- Use method of least squares to fit polynomial model to the data
- Plot the results for $d \in \{1, 5, 10\}$
- Use the resulting model to predict missing weight values

Method:

Estimation of weights using: $\mathbf{w} = (\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{X}\mathbf{y}$

Problem faced:

Difficulty in finding inverse of matrices with large values for d=5 and 10.

Solution:

To resolve we used standardization of matrix values for numerical stability

Results for order 1:

Height	168.0	172.0	167.0
Weight	62.51	68.98	60.89

Results for order 5:

Height	168.0	172.0	167.0
Weight	56.53	68.76	54.58

Results for order 10:

Height	168.0	172.0	167.0
Weight	36.57	62.46	31.30

Task 2.2: Conditional Expectation for Missing Value Prediction

Problem Statement:

- To fit a Bivariate Gaussian to model the joint density of x(height) and y(weight).
- Use the resulting model to predict missing weight values

Approach

PDF:
$$P(x_1, x_2) = \frac{1}{2\pi\sigma_1 \sigma_2 \sqrt{1-\rho^2}} \exp\left[-\frac{z}{2(1-\rho^2)}\right],$$

Where:

$$z \equiv \frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2 \rho (x_1 - \mu_1) (x_2 - \mu_2)}{\sigma_1 \sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}$$

$$\rho \equiv \operatorname{cor}(x_1, x_2) = \frac{V_{12}}{\sigma_1 \, \sigma_2}$$

The conditional expectation of X given Y

satisfies:
$$\mathbf{E}[X \mid Y] = \mathbf{E}[X] + \rho \frac{\sigma_X}{\sigma_Y} (Y - \mathbf{E}[Y]).$$

The conditional distribution of X given Y is normal with mean $E[X \mid Y]$ and variance $\sigma 2x^{\wedge}$

Thus the Conditional PDF:

$$f_{X,Y}(x,y)=ce^{-q(x,y)},$$

Where:

$$c = \frac{1}{2\pi\sqrt{1-\rho^2}\,\sigma_X\sigma_Y}.$$

$$(x, y) = \frac{\frac{x^2}{\sigma_X^2} - 2\rho \frac{xy}{\sigma_X \sigma_Y} + \frac{y^2}{\sigma_Y^2}}{2(1 - \rho^2)}.$$

Missing Values

Weights	Heights	
62.50	168.0	
68.98	172.0	
60.89	167.0	

Exercise 3: Bayesian Regression

Preprocessing Data:

- **Problem:** Fit a 5th order Polynomial using Bayesian Regression.
- Given Data:

$$H = [h_1, h_2,, h_n]$$

Preprocessing for a 5th order Polynomial:

$$X = [h'_1, h'_2, ..., h'_n], \text{ where } h'_i = [1, h_i, h_i^2, ..., h_i^5]^T$$

• Standardization for numerical stability

$$x = \frac{x - \mu_X}{\sigma_X}$$

Fitting Weights:

Preprocessed Input:

$$X = [h'_1, h'_2,, h'_n], \text{ where } h'_i = [1, h_i, h_i^2, ..., h_i^5]^T$$

Given Weights:
$$W = [w_0, w_1,, w_5]$$

MAP Update:

$$W_{MAP} = (XX^T + \frac{\sigma^2}{\sigma_0^2}I)^{-1}Xy$$

MLE Update:

$$W_{MLE} = (XX^T)^{-1}Xy$$

MAP vs MLE

Mean Squared Error Loss:

MLE: 62.4830

• MAP: 69.8029

Exercise 4: Boolean functions and the Boolean Fourier Transform

Problem Statement:

- Use least squares to approximate rules of a cellular automata by the multiplication of an vector with an matrix
- Two variants of matrices:
 - Usage of the matrix X specifying the rule (with entries in {-1, 1})
 - Usage of a feature matrix based on X

Simple Model fitting

Problem: find w* that minimizes:

$$E[w] = ||Xw - y||^2$$

Solution from lecture:

$$w^* = (X^T X)^{-1} X^T y$$

Results:

$$\begin{aligned} w_{110}^* &= (0.25, -0.25, -0.25)^T \\ \hat{y}_{110} &= (0.25, -0.25, -0.25, -0.75, 0.75, 0.25, 0.25, -0.25)^T \\ w_{126}^* &= (0.00, 0.00, 0.00)^T \\ \hat{y}_{126} &= (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)^T \end{aligned}$$

Model fitting using the feature Matrix

To increase the quality of our results we replace the matrix by the feature matrix, as seen on the left

where ϕ is defined as:

$$\varphi_S(x_1, x_2, x_3) = \prod_{i \in S} x_i$$

$$\Phi = \begin{bmatrix} ---- & \varphi(X_1) & ---- \\ ---- & \varphi(X_2) & ---- \\ ---- & \varphi(X_3) & ---- \\ ---- & \varphi(X_4) & ---- \\ ---- & \varphi(X_5) & ---- \\ ---- & \varphi(X_7) & ---- \\ ---- & \varphi(X_8) & ---- \end{bmatrix}$$

Final Results

$$w_{110}^* = (0.25, 0.25, -0.25, -0.25, -0.25, -0.25, -0.25, -0.75, 0.25)^T$$

$$\hat{y}_{110} = (-1, +1, +1, -1, +1, +1, +1, -1)^T$$

$$w_{126}^* = (0.50, 0.00, 0.00, -0.50, 0.00, -0.50, -0.50, 0.00)^T$$

$$\hat{y}_{126} = (-1, +1, +1, +1, +1, +1, +1, -1)^T$$

Exercise 5:

Nearest Neighbor Classifier

Problem Statement:

- Implement a function that realizes an n-nearest neighbor for n ∈ {1, 3,
 5}.
- Show the percentage accuracy.
- Show the overall runtime for n = 1 for test data.

What is a nearest neighbor classifier?

It's a method in which n closest points w.r.t a given test sample are searched in the training data and based on the majority, a class is assigned to it.

Method:

- Calculate Euclidean of the test data with all of the training data
- Find the n training points with smallest distances
- Take the majority of the labels from the neighbors

Broadcasting

- Calculation of distance involves subtracting the points and then taking the p-norm of the difference.
- How to calculate the difference between single test point and all of the training data?
 - 1. Iterate over training data using for loop and subtract the test point from each training point
 - 2. Vectorise approach using Broadcasting

Broadcasting

It is process of making two arrays of dissimilar dimensions compatible with each other for performing arithmetic operations.

Example

$$|123| + |789|$$
 \equiv $|123| + |789| = |8 1012|$ $|456|$ $|789|$ $|111315|$

Now for subtraction of test data from training samples, a single line of code can be used with the in-built broadcasting of numpy

Visualisations

Visualisations

Class -1.6 Attr 2 Attr 1 **Training Data**

Results

Accuracy

Results

Execution time

Time taken for computing the 1-nearest neighbor for the test data was 0.1654 seconds

Decision Boundary

Decision Boundary

Decision Boundary

Exercise 6: k-Dimensional Tree (k-D Tree)

k-D Trees

- <u>Def</u>: Space partitioning data-structure for organizing points in a k-dimensional space.
 - Data is split along a dimension at a predefined point (axis parallel lines)
- <u>Problem Statement</u>: 1-NN search on a 2-dimensional space.
 - Training : data2-train.dat
 - Testing : data2-test.dat

k-D Trees

• **Splitting Dimension**:

- Alternate through dimensions
- Choose the dimension of highest variance

• Point of Split (Position of splitting plane):

- The mean of the dimension values
- The median of the dimension values

Combination of the above results in 4 different trees.

k-D Tree I (Mean: Alternate)

Statistics:

Tree Depth = 10

Accuracy on Test Set: 84.38%

• Creation Time : 0.005 secs

• Testing Time : 0.007 secs

k-D Tree II (Median: Alternate)

Statistics:

Tree Depth = 8

Accuracy on Test Set: 87.5%

• Creation Time : 0.014 secs

• Testing Time : 0.005 secs

k-D Tree III (Mean: Highest Variance)

Statistics:

Tree Depth = 10

Accuracy on Test Set: 87.5%

• Creation Time : 0.012 secs

• Testing Time : 0.006 secs

k-D Tree IV (Median: Highest Variance)

Statistics:

Tree Depth = 8

Accuracy on Test Set: 88.54%

Creation Time : 0.023 secs

■ Testing Time : 0.005 secs

Performance of different k-D Trees

Sl.	k-D Tree Type	Test Acc.	Train Time	Search Time
1	Split = mean, Dim = alternate	84.37	0.005	0.007
2	Split = median, Dim = alternate	87.50	0.014	0.005
3	Split = mean, Dim = variance	87.50	0.014	0.007
4	Split = median, Dim = variance	88.54	0.025	0.005
5	Sklearn kD Tree, $leaf_size = 1$	88.54	0.0002	0.0002

- Highest Accuracy on Test Set: 88.54%
 - median based splitting with dimension of highest variance
 - Significantly faster than naive implementation (0.16s) search time
- Scikit-learn benchmarks:
 - Sklearn-significantly faster. But with equal classification accuracy

Thank You.