Synthesis Algorithms

Rayna Dimitrova University of Leicester

Midlands Graduate School 2019

Acknowledgement: Many slides courtesy of Bernd Finkbeiner.

Synthesis from LTL specifications

LTL Realizability

Given φ , does there exist a strategy f that satisfies φ ?

Approach: Construct a game between environment (providing input), and system (choosing output). Check if system has a winning strategy.

Attempt: Let $\mathcal{A}_{\varphi}=(\Sigma,Q,Q_0,\delta,F)$ be an NBA for φ

- System chooses output value $o \in \Sigma_O$
- ▶ Environment chooses output value $i \in \Sigma_I$
- Round: system and environment set their variables
- ightharpoonup Play: infinite word in Σ^{ω}
- lacktriangle System wins if infinite play accepted by ${\cal A}_{arphi}$

Problem: In a nondeterministic automaton, an accepted word can also have rejecting runs. Mismatch between nondeterminism and strategic choice: the system can lose just because the wrong run was chosen.

Why are nondeterministc automata not suitable?

Nondeterministic automata have perfect foresight.

Strategies have no foresight.

Example:
$$(FG(i \land Xo)) \lor (GF(\neg i \land X \neg o))$$

- System has winning strategy (copy input to output).
- The system cannot choose between the two disjuncts.

Deterministic Büchi automata (DBA)

A NBA \mathcal{A} is a **DBA** iff

$$|Q_0| \leq 1$$
 and $|\delta(q,\sigma)| \leq 1$ for all $q \in Q$ and $\sigma \in \Sigma$

A DBA A is **complete** iff

$$|Q_0|=1 \quad \text{ and } \quad |\delta(q,\sigma)|=1 \quad \text{ for all } q\in Q \text{ and } \sigma\in \Sigma$$

Complete DBAs have a unique run for every input word.

Not every LTL formula can be translated into an equivalent DBA.

Acceptance conditions: Parity

A parity condition is a coloring function $\alpha:Q\to\mathbb{N}.$

An infinite sequence $q_0q_1q_2\ldots\in Q^\omega$ is max-parity-accepted iff the highest color k that appears infinitely often is **even**.

Acceptance conditions: Parity

A parity condition is a coloring function $\alpha: Q \to \mathbb{N}$.

An infinite sequence $q_0q_1q_2\ldots\in Q^\omega$ is max-parity-accepted iff the highest color k that appears infinitely often is **even**.

DBA:

Acceptance conditions: Parity

A parity condition is a coloring function $\alpha: Q \to \mathbb{N}$.

An infinite sequence $q_0q_1q_2\ldots\in Q^\omega$ is max-parity-accepted iff the highest color k that appears infinitely often is **even**.

DPA:

Deterministic parity automata (DPA)

Theorem [McNaughton 1966]

For each NBA there is an equivalent deterministic ω -automaton.

Theorem [Piterman'07]

For every NBA $\mathcal N$ with n states there exists a DPA $\mathcal D$ with $2n^n n!$ states and 2n colors such that $\mathcal L_\omega(\mathcal D)=\mathcal L_\omega(\mathcal N)$.

The exponential blow-up is unavoidable.

From deterministic ω -automata to games

A game arena $\mathcal{A} = (V, V_0, V_1, E)$ consists of

- a finite set of states V,
- ▶ a subset $V_0 \subseteq V$ of states owned by Player 0 (circles),
- ▶ a subset $V_1 = V \setminus V_0$ of states owned by Player 1 (boxes),
- ▶ an edge relation $E \subseteq V \times V$, such that every $v \in V$ has at least one outgoing edge $(v, v') \in E$. E represents the possible moves.

Player 0 = system, Player 1 = environment

Plays and strategies in a graph game

A **play** is an infinite path through A.

A strategy for player i is a function $f_i:V^*\cdot V_i\to V$ such that $(v,v')\in E$ whenever $f(\pi\cdot v)=v'.$

A play $\pi=v_0,v_1,\ldots$ conforms to strategy f_i of player i if $v_{n+1}=f_i(v_0,\ldots,v_n)$ whenever $v_n\in V_i$.

Strategy for Player 0

Winning conditions

- ▶ A parity game $\mathcal{G} = (\mathcal{A}, \alpha)$ consists of an arena \mathcal{A} and a coloring function $\alpha: V \to \mathbb{N}$. Player 0 wins play π if the highest color that is seen infinitely often is even, otherwise Player 1 wins.
- ▶ A Büchi game $\mathcal{G} = (\mathcal{A}, F)$ consists of an arena \mathcal{A} and a set $F \subseteq V$. Player 0 wins a play π if π visits F infinitely often, otherwise Player 1 wins.
- ▶ A reachability game $\mathcal{G} = (\mathcal{A}, R)$ consists of a game arena \mathcal{A} and a set of states $R \subseteq V$. Player 0 wins a play π if π visits R at least once, otherwise Player 1 wins.

Winning regions

A strategy f_i is **winning** for player i from some state v if all plays that conform to f_i and that start in v are won by Player i.

The **winning region** W_i for player i is the set of states from which Player i has a winning strategy.

A game is **determined** if $V = W_0 \cup W_1$.

Solving a game means to determine the winning region and the wining strategies.

Winning strategy for Player 0

Attractor construction

$$Attr_{i}^{o}(R) = R$$

$$Attr_{i}^{n+1}(R) = Attr_{i}^{n}(R) \cup CPre_{i}(Attr_{i}^{n}(R))$$

$$Attr_{i}(R) = \bigcup_{n \in \mathbb{N}} Attr_{i}^{n}(R)$$

where

$$CPre_{i}(R) = \{ v \in V_{i} \mid \exists v' \in V. (v, v') \in E \land v' \in R \}$$

$$\cup \{ v \in V_{1-i} \mid \forall v' \in V. (v, v') \in E \Rightarrow v' \in R \}$$

Winning regions of a reachability game

Winning region of Player o: $W_o(\mathcal{G}) = Attr_o(R)$

Winning region of Player 1: $W_1(\mathcal{G}) = V \setminus Attr_o(R)$

Winning strategy of Player o (Attractor Strategy)

The winning strategy for Player o always moves to $Attr_o^n(R)$ for the smallest possible n.

Winning strategy of Player 1 (Safety Strategy)

The winning strategy for Player 1 always avoids $Attr_o(R)$.

Exercise

Consider the game arena given below and the winning condition defined as follows: Player 0 wins a play π if π visits the state v_4 at least once and π never leaves the set of nodes $\{v_1, v_2, v_3, v_4, v_5, v_6\}$. Describe how you can compute the winning region for Player 0.

Büchi games

Büchi game: Player o wins a play π if π visits F infinitely often, otherwise Player 1 wins.

Büchi games

Büchi game: Player o wins a play π if π visits F infinitely often, otherwise Player 1 wins.

Recurrence construction

```
Recur^{o}(F) = F
W_{1}^{n}(F) = V \setminus Attr_{o}(Recur^{n}(F))
Recur^{n+1}(F) = Recur^{n}(F) \setminus CPre_{1}(W_{1}^{n}(F))
Recur(F) = \bigcap_{n \in \mathbb{N}} Recur^{n}(F)
```

Winning regions of a Büchi game

Winning region of Player o: $W_o(\mathcal{G}) = Attr_o(Recur(F))$

Winning region of Player 1: $W_1(\mathcal{G}) = V \setminus Attr_o(Recur(F))$

Winning strategy of Player o (Büchi Strategy)

The winning strategy for Player o always moves to $Attr_o^n(Recur(F))$ for the smallest possible n.

Winning strategy of Player 1 (co-Büchi Strategy)

The winning strategy for Player 1 moves from a state in W_1^n to W_1^{n-1} whenever possible, and stays in W_1^n otherwise.

Parity games

Parity game: Player o wins a play π if the highest color that is seen infinitely often is even.

Parity games

Parity game: Player o wins a play π if the highest color that is seen infinitely often is even.

arena

- 1. $c := \text{highest color in } \mathcal{G}$
- 2. if c=0 or $V=\emptyset$ then return (V, \emptyset)
- 3. set i to $c \mod 2$
- 4. set W_{1-i} to \emptyset
- repeat
- 5.1 $\mathcal{G}' := \mathcal{G} \setminus Attr_i(\alpha^{-1}(c), \mathcal{G})$
 - 5.2 $(W'_0, W'_1) := McNaughton(\mathcal{G}')$
 - 5.3 if $(W'_{1-i} = \emptyset)$ then 5.3.1 $W_i := V \setminus W_{1-i}$
 - 5.3.2 return (W_0, W_1)
 - 5.4 $W_{1-i} := W_{1-i} \cup Attr_{(1-i)}(W'_{1-i}, \mathcal{G})$
 - 5.5 $\mathcal{G} := \mathcal{G} \setminus Attr_{(1-i)}(W'_{1-i}, \mathcal{G})$

- 1. $c := \text{highest color in } \mathcal{G}$
- 2. <u>if</u> c = 0 or $V = \emptyset$ <u>then return</u> (V, \emptyset)
- 3. set i to $c \mod 2$
- 4. set W_{1-i} to \emptyset
- 5. repeat

5.1
$$\mathcal{G}' := \mathcal{G} \setminus Attr_i(\alpha^{-1}(c), \mathcal{G})$$

5.2
$$(W'_0, W'_1) := McNaughton(\mathcal{G}')$$

5.3 if
$$(W'_{1-i} = \emptyset)$$
 then

5.3.1
$$W_i := V \setminus W_{1-i}$$

5.3.2 return (W_0, W_1)

5.3.2 return
$$(W_0, W_1)$$

5.4 $W_{1-i} := W_{1-i} \cup Attr_{(1-i)}(W'_{1-i}, \mathcal{G})$

5.5
$$\mathcal{G} := \mathcal{G} \setminus Attr_{(1-i)}(W'_{1-i}, \mathcal{G})$$

- 1. $c := \text{highest color in } \mathcal{G}$
- 2. <u>if</u> c = 0 or $V = \emptyset$ <u>then return</u> (V, \emptyset)
- 3. set i to $c \mod 2$
- 4. set W_{1-i} to \emptyset
- 5. repeat

arena
$$W_{1-i}^{\prime}$$

- 5.1 $\mathcal{G}' := \mathcal{G} \setminus Attr_i(\alpha^{-1}(c), \mathcal{G})$ 5.2 $(W'_0, W'_1) := McNaughton(\mathcal{G}')$ 5.3 if $(W'_{1-i} = \emptyset)$ then
- 5.3 <u>if</u> $(W'_{1-i} = \emptyset)$ <u>then</u> 5.3.1 $W_i := V \setminus W_{1-i}$
 - 5.3.2 <u>return</u> (W_0, W_1)
- 5.4 $W_{1-i} := W_{1-i} \cup Attr_{(1-i)}(W'_{1-i}, \mathcal{G})$
- 5.5 $\mathcal{G} := \mathcal{G} \setminus Attr_{(1-i)}(\hat{W}'_{1-i}, \mathcal{G})$

- 1. $c := \text{highest color in } \mathcal{G}$
- 2. <u>if</u> c = 0 or $V = \emptyset$ <u>then return</u> (V, \emptyset)
- 3. set i to $c \mod 2$
- 4. set W_{1-i} to \emptyset
- 5. repeat

5.1
$$\mathcal{G}' := \mathcal{G} \setminus Attr_i(lpha^{-1}(c), \mathcal{G})$$

5.2
$$(W'_0, W'_1) := McNaughton(\mathcal{G}')$$

5.3 if
$$(W'_{1-i} = \emptyset)$$
 then
5.3.1 $W_i := V \setminus W_{1-i}$

5.3.2 return
$$(W_0, W_1)$$

5.4
$$W_{1-i} := W_{1-i} \cup Attr_{(1-i)}(W'_{1-i}, \mathcal{G})$$

5.5
$$\mathcal{G} := \mathcal{G} \setminus Attr_{(1-i)}(W'_{1-i}, \mathcal{G})$$

Example

Example

- 1. $c := \text{highest color in } \mathcal{G}$
- 2. if c=0 or $V=\emptyset$ then return (V, \emptyset)
- 3. set i to $c \mod 2$
- 4. set W_{1-i} to \emptyset
- repeat

5.1
$$\mathcal{G}' := \mathcal{G} \setminus Attr_i(\alpha^{-1}(c), \mathcal{G})$$

- 5.2 $(W'_0, W'_1) := McNaughton(\mathcal{G}')$ 5.3 if $(W'_{1-i} = \emptyset)$ then

 - 5.3.1 $W_i := V \setminus W_{1-i}$ 5.3.2 return (W_0, W_1)
 - 5.5 $\mathcal{G} := \mathcal{G} \setminus Attr_{(1-i)}(W'_{1-i}, \mathcal{G})$

▶
$$k = 3, c^{-1}(3) = \{s_2, s_5\}, i = 1$$

▶ $\mathcal{G}' := \mathcal{G} \setminus Attr_1(\{s_2, s_5\}, \mathcal{G}) = \{s_1, s_4, s_3\}$

- \blacktriangleright ({ s_3 }, { s_1 , s_4 }) = McNaughton(G')
- $V_0 := \emptyset \cup Attr_0(\{s_3\}, \mathcal{G}) = \{s_1, s_3, s_5\}$
 - $\triangleright \mathcal{G} := \mathcal{G} \setminus Attr_0(\{s_3\}, \mathcal{G}) = \{s_2, s_4\}$ $ightharpoonup G' := G \setminus Attr_1(\{s_2\}, G) = \{s_A\}$
 - \blacktriangleright $(\{s_A\},\emptyset) = McNaughton(\mathcal{G}')$ $V_0 = \{s_1, s_3, s_5\} \cup \{s_4\}$
- 5.4 $W_{1-i} := W_{1-i} \cup Attr_{(1-i)}(W'_{1-i}, \mathcal{G}) \triangleright \mathcal{G} := \mathcal{G} \setminus \{s_4\} = \{s_2\}$
 - $\triangleright \mathcal{G}' = \mathcal{G} \setminus Attr_1(\{s_2\}, \mathcal{G}) = \emptyset$
 - \blacktriangleright $(\emptyset, \emptyset) = McNaughton(\mathcal{G}')$ $V_1 = V \setminus \{s_1, s_3, s_4, s_5\} = \{s_2\}$
 - ightharpoonup return $(\{s_1, s_3, s_4, s_5\}, \{s_2\})$

LTL synthesis

```
LTL formula
        #states: exponential
nondeterministic
Büchi automaton
        #states: doubly exponential, #colors: exponential
 deterministic
parity automaton
        #states: doubly exponential, #colors: exponential
  parity game
        game solving: polynomial in states,
        < exponential in colors
```

LTL synthesis

LTL synthesis is 2EXPTIME-complete.