Заметки курса «Электричество и магнетизм»

Автор: Хоружий Кирилл

От: 11 октября 2020 г.

Содержание

1	Закон Кулона и теорема Гаусса	1
2	Потенциал электрического поля. 2.1 Дифференциальная форма записи	2 2 3
3	Проводники	3
	3.1 Основная задача электростатики	3
4	Диэлектрики	3
	4.1 Teopema Γaycca	4
	4.2 Граничные условия на границе двух диэлектриков	4
	4.3 Поле системы зарядов в однородном диэлектрике	
5	Энергия электрического поля	5
6	Виды диэлектриков	5
7	Теория постоянных токов	6
8	Магнитное поле в намагничивающихся средах	7
	8.1 Уравнения максвелла для магнитного поля в веществе	7
	8.2 Различные вещества	8
	8.3 Граничные условия	8
9	Электромагнитная индукция	8

1 Закон Кулона и теорема Гаусса

Здесь попробуем индуктивно построить содержательную теорию, **начнём с двух эксперементальных** фактов, положенных в основу теории. Закона Кулона (сгсэ)

$$\boldsymbol{F} = \frac{q_1 q_2}{r^2} \frac{\boldsymbol{r}}{r},\tag{1.1}$$

и, введя вектор напряженности электростатического поля ${m E}={m F}/q,$ принцип суперпозиции:

$$E = \sum E_i. \tag{1.2}$$

Дипольный момент

Простейшим примером системы зарядов является диполь $q_1+q_2=0$, для которого введём ${m p}=q{m l}$:

$$\boldsymbol{E} = \frac{q}{r_1^2} \frac{\boldsymbol{r}_1}{r_1} - \frac{q}{r_1^2} \frac{\boldsymbol{r}_2}{r_2} \quad \overset{l \ll r_2, r_1}{\Longrightarrow} \quad \boldsymbol{E} = \frac{3(\boldsymbol{p} \cdot \boldsymbol{n})\boldsymbol{n}}{r^3} - \frac{\boldsymbol{p}}{r^3}$$

Для заряженной нити верно, что

$$E = 2\frac{\varkappa}{r}.$$

Теперь дойдём до двух теорем (кусочки уравнений Максвелла), описывающих электростатическое поле.

Thr 1.1 (теорема Гаусса). Для потока E через замкнутую поверхность S верно, что

$$\oint_{S} E_n \, dS = \boxed{\oint_{S} (\mathbf{E} \, d\mathbf{S}) = 4\pi q_{\text{BH}}.}$$
(1.3)

 \triangle .

- I. Доказательство (из закона Кулона) для сферы вокруг точечного заряда очевидно.
- II. Рассмотрим произвольную поверхность Ω , содержащую заряд, и телесный угол в онной:

$$E_n dS = E \cos \alpha dS = E dS'$$

То есть поток через наклонную площадку равен потоку через тот же телесный угол через некоторую вспомогательную сферу. Так как $s_1/s_2=r_1^2/r_2^2$ и $E_1/E_2=r_2^2/r_1^2$, получается интегрировать по Ω то же самое, что и интегрировать по выбранной хорошей сфере.

- III. Рассмотрим теперь некоторую Ω , не содержащую заряд. Посмотрим на телесный угол от q. По модулю потоки через них одинаковые, а знаки противоположны, следовательно вклада в поток через Ω нет.
- IV. Для сложного распределения зарядов, по принципу суперпозиции верно, что

$$E = \sum_{i} E_{i} \quad \Rightarrow \quad \oint_{S} E_{n} dS = \sum_{i} \oint_{S} E_{i} dS.$$

2 Потенциал электрического поля.

Thr 2.1 (Теорема о циркуляции). Для заряда, при квазистатическом перемещении, верно, что

$$A_{\text{\tiny SAM KH}} = \boxed{\oint_{(L)} (\boldsymbol{E} \cdot d\boldsymbol{l}) = 0}$$
 (2.1)

$$ot \mathbf{E} = 0 \tag{2.2}$$

 \triangle .

- I. Рассмотрим поле точечного заряда Q и перемещение с r до $r+dl_r+(dl-dl_r)$. Тогда $dA=(E\cdot dl)=\frac{Q}{r^2}dl_r$, то есть $A\equiv A(r_1,r_2)$.
- II. Для поля в принципе вышесказанное верно по принципу суперпозиции.

Def 2.2. *Разностью потенциалов* $\varphi_1 - \varphi_2$ между точками r_1 и r_2 называется $A = \int_{r_1}^{r_2} E dl$, при перемещении единичного положительного заряда. Потенциал определен с точностью до произвольной аддитивной постоянной.

В частности, для точечного заряда, при $\varphi_{\infty}=0$, верно

$$\varphi(r) = \int_{r}^{\infty} \frac{Q(r)}{r^2} dr = \frac{Q}{r}.$$

A для двух зарядов, +q, -q

$$\varphi = -\frac{q}{r_1} + \frac{q}{r_2} = q \frac{(r_1 - r_2)}{r_1 r_2} \quad \stackrel{r \gg l}{\Rightarrow} \quad \varphi = \frac{1}{r^2} \frac{(\boldsymbol{p} \cdot \boldsymbol{r})}{r}$$

2.1 Дифференциальная форма записи

Вектор напряженности электростатического поля

$$E = -\operatorname{grad}\varphi. \tag{2.3}$$

Действительно,

$$d\varphi = -(\boldsymbol{E} \cdot d\boldsymbol{l}) = \frac{\partial \varphi}{\partial x^i} dx_i = d\boldsymbol{l} \cdot \nabla \varphi,$$
 где $\nabla \varphi \equiv \operatorname{grad} \varphi.$

А теперь рассмотрим некоторый элементарный параллелепипед. Тогда поток через левую грань это $-E_x\,dy\,dz$, а через правую это $\left(E_x+\frac{\partial E_x}{\partial x}dx\right)\,dy\,dz$. Тогда суммарный поток через мааленький параллелепипед равен $dV\,\partial E/\partial x$, а теорема Гаусса примет вид

$$\left(\frac{\partial E}{\partial x} + \frac{\partial E}{\partial y} + \frac{\partial E}{\partial z}\right) dV = 4\pi\rho \, dV \quad \Rightarrow \quad \left[\operatorname{div} \mathbf{E} = 4\pi\rho\right]. \tag{2.4}$$

2.2 Граничные условия на заряженной поверхности

По теореме Гаусса верно, что

$$E_{2n_2} \Delta S + E_{1n_1} \Delta S = 4\pi\sigma \Delta S,$$

$$E_{2n} - E_{1n} = 4\pi\sigma$$

По теореме циркуляции верно, что

$$E_{2l} \not\Delta l - E_{1l} \not\Delta l = 0$$

 $E_{2l} - E_{1l} = 0.$

3 Проводники

Def 3.1 (пусть так). *Проводник* – костяк частиц, окруженных *свободными* электронами, которые в пределах тела могут перемещаться на какие угодно расстояния.

В частности, для проводников, верно, что
$$E_n = 4\pi\sigma \qquad (3.1)$$

$$E_{\tau} = 0 \qquad (3.2)$$

Собственно, объёмных зарядов в проводнике нет, поверхностные есть и компенсируют внешнее поле. Аналогично работает решетка Фарадея, электростатическое поле не проникает в проводники.

3.1 Основная задача электростатики

Вместо поиска E достаточно найти φ , воспользовавшись (2.3) и (2.4), получим

$$\operatorname{div}\operatorname{grad}\varphi\equiv\delta\varphi=\left\{ \begin{array}{ll} -4\pi\rho & \text{ур. Пуассона}\\ 0 & \text{ур. Лапласа} \end{array} \right.$$

Как может быть поставлена задача? Заданы граничные значение, найти распределения зарядов. Заданы заряды, найти распределения. Что-то задано, что-то не задано. Во всех трёх случаях решение уравнения Лапласа единственно.

Метод изображений

Если существует некоторая эквипотенциальная поверхность разделяющая пространство на два полупространства, то можем считать что эта поверхность является проводящей.

4 Диэлектрики

Def 4.1. Диэлектрики – непроводники электричества. В них возбуждаются индукционные заряды, привязанные к кастету частиц, – поляризационные, или связанные заряды.

Альтернативный вариант, — наличие дипольного момента у молекул. При наличии электрического поля дипольные моменты ориентируются, диэлектрик попользуется.

Def 4.2. Вектор поляризации — дипольный момент единицы объема диэлектрика, возникающий при его поляризации.

Рассмотрим скошенный параллелепипед. На основаниях параллелепипеда возникнут поляризационные заряды с поверхностной плотностью $\sigma_{\text{пол}}$. Взяв его площадь за S, найдём дипольный момент равный $\sigma_{\text{пол}}SI$. Тогда вектор поляризации будет

$$P = \frac{\sigma_{\text{пол}} S}{V} l, \tag{4.1}$$

что верно и для анизотропных кристаллов где E
mid P.

Пусть n – единичный вектор внешней нормали к основанию параллелепипеда, тогда $V = S(l \cdot n)$.

Подставив V в предыдущую формулу, получим, что

$$\sigma_{\text{пол}} = (\boldsymbol{P} \cdot \boldsymbol{n}) = P_n \tag{4.2}$$

Или, более общо,

$$m{P} = rac{1}{\Delta V} \sum_{\Delta V} m{p}_i$$

В случае неоднородной поляризации верно, что поляризационные заряды могут появиться и на поверхности. Выделим V, ограниченный S, смещённый заряд равен $-P_n dS$, тогда через S поступает

$$q_{\text{пол}} = -\oint P_n \, dS = -\oint \left(\mathbf{P} \times d\mathbf{S} \right). \tag{4.3}$$

Стоит заметить, что в теорему о циркуляции не входят заряды, соотвественно для диэлектриков верно, что

$$\oint_{(L)} E_l \, dl = 0.$$

Далее чаще всего мы будем сталкиваться с линейной поляризацией, когда

$$P = \alpha E$$
, \Rightarrow $D = E(1 + 4\pi\alpha) = \varepsilon E$

где α — поляризуемость диэлектрика, а ε — диэлектрическая проницаемость.

4.1 Теорема Гаусса

Запишем теорему Гаусса для электрического поля в диэлектрике. Знаем, что $m{E} = m{E}_{ ext{non}} + m{E}_{ ext{cg}}$.

$$\oint E_n dS = 4\pi (q + q_{\text{пол}}) \qquad \Rightarrow \qquad \oint \underbrace{(E_n + 4\pi P_n)}_{D_n} dS = 4\pi q. \qquad \Rightarrow \qquad \boxed{\oint D_n dS = 4\pi q_{\text{cB}}} \tag{4.4}$$

где $D = E + 4\pi P$. – вектор электрической индукции, или электрического смещения. Поток вектора D определяется только свободными зарядами.

Можно посмотреть на это в дифференциальной форме:

$$\operatorname{div} \boldsymbol{D} = 4\pi \rho,$$

$$\operatorname{div} \boldsymbol{E} = 4\pi \left(\rho - \operatorname{div} \boldsymbol{P} \right),$$

$$\operatorname{div} \boldsymbol{E} = 4\pi (\rho + \rho_{\text{HOJ}}) \quad \Rightarrow \quad \rho_{\text{HOJ}} = -\operatorname{div} \boldsymbol{P}.$$

4.2 Граничные условия на границе двух диэлектриков

Повторя рассуждения для проводников, найдём, что

$$D_{1n} = D_{2n},$$

а в случае линейных диэлектриков верно

$$\varepsilon_1 E_{1n} = \varepsilon_2 E_{2n}.$$

Или

$$E_{2n} - E_{1n} = 4\pi\sigma_{\text{пол}}.$$

Аналогично, из теоремы о циркуляции получим, что

$$E_{1\tau} - E_{2\tau} = 0.$$

Плоский конденсатор

То есть на грани пластинки $\sigma_{\text{пол}} = \sigma \left(1 - \frac{1}{\epsilon} \right)$.

4.3 Поле системы зарядов в однородном диэлектрике

Для точечного заряда в однородном диэлектрике, по теореме Гаусса

$$D \cdot 4\pi r^2 = 4\pi$$

$$D = \varepsilon E$$

$$\Rightarrow \qquad E = \frac{q}{\varepsilon r^2}.$$

То ест в общем случае, по принципу суперпозиции, в диэлектрике

$$\boldsymbol{E} = \frac{1}{\varepsilon} \boldsymbol{E}_0.$$

5 Энергия электрического поля

Рассмотрим систему из двух зарядов q_1 и q_2 . Тогда энергия взаимодействия

$$W = q_1 \varphi_{21} = q_2 \varphi_{12} = \frac{1}{2} (q_1 \varphi_{21} + q_2 \varphi_{12}).$$

Или, в общем случае

$$W = \frac{1}{2} \sum_{i,i} W_{ij} = \frac{1}{2} \left(q_i \varphi_i^j \right) = \frac{1}{2} \sum_{i,j} q_i \varphi_i,$$

где под φ_i имеется ввиду потенциал q_i заряда. В случае непрерывно заряженного тела

$$W = \frac{1}{2} \int \varphi \rho \, dV.$$

Например, для конденсатора

$$W = \frac{1}{2}\varphi_1 \int_{(1)} dq + \frac{1}{2}\varphi_2 \int_{(2)} dq = \frac{1}{2}q(\varphi_2 - \varphi_1) = \frac{1}{2}qU = \frac{cU^2}{2} = \frac{q^2}{2c}.$$

Вопрос: где локализована энергия? Ответ: в зарядах или в поле. В частности, для конденсатора

$$W = \frac{1}{2}cU^2 = \frac{1}{2}\frac{\varepsilon SE^2d^2}{4\pi d} = \underbrace{\frac{\varepsilon E^2}{8\pi}}_{W}V,$$

где $\mathcal{W}_{\ni} = \varepsilon E^2/8\pi - oбъемная$ плотность электрической энергии. В общем же случае

$$W_{\mathfrak{S}} = \int \mathcal{W}_{\mathfrak{S}} \, dV. \tag{5.1}$$

6 Виды диэлектриков

Посмотрим на энергию внутри вакуума и диэлектрика, $E^2/8\pi$ и $E^2/\epsilon 8\pi$. Энергия электрического поля определяется через работу внешних сил, которую необходимо затратить, чтобы это поле создать. Собственно, во втором случае есть ещё добавки. рассмотрим диэлектрик с упругими диполями, то есть пусть

$$F = \varkappa l$$
.

Пусть диполь попал во внешнее поле, тогда

$$Eq \cdot \frac{l}{2} = \varkappa l \cdot \frac{l}{2} = \frac{1}{2}Ep.$$

Тогда вся энергия, чтобы создать в этой среде поле

$$W = \frac{E^2}{8\pi} + \frac{EP}{2} = \frac{E^2}{8\pi} + \frac{1}{2}E^2\alpha = \frac{E^2}{8\pi} + \frac{E^2}{8\pi}(\varepsilon - 1) = \frac{\varepsilon E^2}{8\pi}.$$

А если работать с диэлектриками с собственным дипольным моментом? Тогда ещё появиться некоторое тепло, которое необходимо отдать термостату, увеличивая упорядоченность системы. Постараемся обобщить, для этого вспомним, что

Def 6.1. Свободная энергия — функция состояния, приращение которой в обратимом изотермическом процессе равно совершаемой работе внешних сил.

Так вот, то что мы называем энергией электрического поля (в диэлектриках), на самом деле это объёмная плотность свободной энергии $\Psi = U - TS$.

7 Теория постоянных токов

Def 7.1. Сила тока – заряд, протекший через сечений проводника в единицу времени,

$$I = \frac{dq}{dt}. (7.1)$$

Плотность тока – ток, протекающий через единичное сечение.

$$j = neu. (7.2)$$

Law 7.2 (закон Ома). Для класса линейных проводников верно, что при наличии разности потенциалов U

$$I = \frac{U}{R} \quad \Leftrightarrow \quad \mathbf{j} = \lambda \mathbf{E},\tag{7.3}$$

где $\lambda = 1/\rho$, обратное удельное сопротивление.

В СГСЭ, кстати, dim ρ = c, а в СИ 1 ед. СГСЭ ρ = $9 \cdot 10^9$ Ом.

Условие стационарности

Пусть в некоторый узел втекает I_1, \dots, I_n , тогда

$$\oint_{(S)} j_n \, dS = -\dot{Q}.$$

Это «закон сохранения заряда», или уравнение непрерывности. В частности, в стационарном случае

$$\oint j_n \, dS = 0 \, .$$
(7.4)

Получается (??), что поле зарядов, которые участвуют в протекании постоянных токов можно описывает с помощью электростатических формул, то есть применять теорему Гаусса и теорему о циркуляции.

По теореме Гаусса и условия стационарности,

$$0 = \oint j_n \, dS = \lambda \oint E_n \, dS = \lambda 4\pi q,$$

то есть для проводников с постоянным током всё ещё верно, что внутреннего заряда в проводниках нет, а есть только поверхностный.

Невозможна стационарная ситуация с постоянных током только на потенциальных силах. Для участка цепи, в котором действуют сторонние силы, можно записать

$$j = \lambda \left(E + E^{\text{стор}} \right). \tag{7.5}$$

Def 7.3. $\partial \mathcal{A}C$ – электро-движущая сила, работа совершаемая сторонними силами при перемещении единичного заряда по рассматриваемому участку,

$$\mathcal{E} = \int_{(I)} E_l^{\text{crop}} \, dl. \tag{7.6}$$

Правила Кирхгофа

Рассмотрим узел, в который втекает I_1, \ldots, I_n . Из условия стационарности получим (I). Рассмотрев замкнутый участок цепи, получим (II) правило Кирхгофа. Действительно, $j_l = \lambda \left(E_l + E_l^{\rm crop} \right)$, или

I.
$$\sum I_i = 0$$
.
II. $(\sum)I_iR_i = (\sum)\mathcal{E}_i$

$$\oint rac{I\,dl}{\lambda S} = \oint \left(E_l + E_l^{ ext{ctop}}
ight)\,dl,$$
 где $\oint rac{I\,dl}{\lambda S} = IR.$

Но для каждого участка $I_iR_i=\Delta\varphi_i+\mathcal{E}_i$. Это с учётом направления тока.

Оказывается, для любой цепи, записав уравнения Кирхгофа для всех узлов и всех независимых контуров, получим разрешимую единственным образом систему уравнений (ну или хотя бы столько, сколько можно).

8 Магнитное поле в намагничивающихся средах

8.1 Уравнения максвелла для магнитного поля в веществе

Посмотрим на рамку с током в магнитном поле. Для неё верно, что суммарная сила, действующая на рамку,

$$\boldsymbol{B} \oint \, d\boldsymbol{F} = \frac{I}{c} \oint [\, d\boldsymbol{l} \times \boldsymbol{B}] = \frac{I}{c} \left[\oint \, d\boldsymbol{l} \times \boldsymbol{B} \right] = 0.$$

Однако момент, действующий на рамку, не равен 0,

$$S=ab, \quad F=rac{I}{c}bB \quad \Rightarrow \quad M=rac{IS}{c}\sin lpha \quad \Rightarrow \quad oldsymbol{p}_m=rac{IS}{c}oldsymbol{n} \quad \Rightarrow \quad oldsymbol{M}=[oldsymbol{p}_m imes oldsymbol{B}]\,.$$

Посмотрим теперь на рамку в неоднородном магнитном поле. Рассмотрим рамку такую, что $p_m \parallel B$, тогда $I\,dl$ имеет проекцию на n, получается, что

$$F_x = (p_m)_x \frac{\partial B_x}{\partial x}.$$

Возвращая к полю, предполагается, что внутри молекул формируются *молекулярные токи*, создающие дополнительный магнитный момент, а при наличие внешнего поля происходит ориентация этих моментов. Тогда теорема о циркуляции магнитного поля в веществе запишется, как

$$\oint_{(L)} (\boldsymbol{B} \cdot d\boldsymbol{l}) = \frac{4\pi}{c} \left(I_{\text{пров}} + I_{\text{мол}} \right).$$
(8.1)

Стоит заметить, что в теории Максвелла имеется ввиду, что

$$B = \langle B_{\mu} \rangle$$
.

Характеристика, описывающая состояние намагниченного вещества в точке – магнитный дипольный момент, единице объема:

$$\mathcal{I} = \frac{1}{\Delta V} \sum_{\Delta V} (\boldsymbol{p}_m)_i$$
.

Можем записать, что

$$\oint \mathcal{I}_l \, dl = \frac{I_{\text{мол}}}{c}.$$
(8.2)

Тогда уравнение перепишется, как

$$\oint_{(L)} (\boldsymbol{B} \, d\boldsymbol{l}) = \frac{4\pi}{c} I_{\text{пров}} + 4\pi \oint_{(L)} (\boldsymbol{\mathcal{I}} \, d\boldsymbol{l}).$$
(8.3)

$$\oint_{(L)} \underbrace{(B - 4\pi \mathcal{I})}_{\mathbf{H}} d\mathbf{l} = \frac{4\pi}{c} I_{\text{пров}}, \tag{8.4}$$

здесь принимается определение $H = B - 4\pi \mathcal{I} -$ напряженность магнитного поля.

Далее нас интересует линейная намагничиваемость:

$$\mathcal{I} = \varkappa H$$

где \varkappa – магнитная восприимчивость. Тогда можем записать, что

$$H\underbrace{(1+4\pi\varkappa)}_{\mu} = B, \tag{8.5}$$

что записано в системе Гаусса. В СИ верно, что

$$oldsymbol{H} = rac{oldsymbol{B}}{\mu_0} - oldsymbol{\mathcal{I}}.$$

8.2 Различные вещества

- I. Парамагнетики, $\varkappa \in [10^{-3}, 10^{-6}]$, пример: алюминий.
- II. Диамагнетики, $\varkappa < 0$, пример: золото, серебро, см. модель Ланжевена.
- III. Ферромагнетики, $\varkappa \in [10^3, 10^6]$, пример: железо, никель.

8.3 Граничные условия

Рассмотрим границу двух веществ с μ_1 и μ_2 . Тогда

$$\boldsymbol{B}_{1n} = \boldsymbol{B}_{2n},$$

а для тангенциальной компоненты

$$H_{2\tau} - H_{1\tau} = \frac{4\pi}{c} i_N.$$

9 Электромагнитная индукция