Proportions, Differences of Means, and Sample Variance Numerical Statistics Fall, 2021

Jake Underland

2021-10-14

Contents

The Sampling Distribution of Proportions
Bernoulli Distribution
Binomial Distribution
Proportions
Sampling Distribution of the Differences of Means Infinite Population (Sampling With Replacement)
The Sample Variance

The Sampling Distribution of Proportions

Bernoulli Distribution

Let $(X_1, X_2, \dots, X_n) \stackrel{iid}{\sim} Ber(p)$ drawn from an infinite (\approx with replacement) population.

$$\begin{cases} P(X_i = 1) = p \\ P(X_i = 0) = 1 - p \end{cases} \quad (i = 1, 2, \dots, n)$$

The probabilities can be combined into one as

$$P(X_i = x_i) = p^{x_i} (1 - p)^{1 - x_i}$$
 for $(x_i = 0, 1)$

So, the joint probability can be expressed as:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$$

$$= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$= p^{x_1+x_2+\dots+x_n} (1-p)^{n-x_1-x_2-\dots-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

Expectation and Variance:

$$E(X) = \sum_{x=0}^{1} P(X = x)x$$

$$= 1 \times p + 0 \times (1 - p)$$

$$= p$$

$$Var(X) = \sum_{x=0}^{1} P(X = x)x^{2} - E(X)^{2}$$

$$= p - p^{2}$$

$$= p(1 - p)$$

Binomial Distribution

Let
$$(X_1, X_2, \dots, X_n) \stackrel{iid}{\sim} Ber(p)$$
. Then, $Y = X_1 + X_2 + \dots + X_n \sim Bin(n, p)$.

$$P(Y = x) = \binom{n}{x} p^x (1-p)^{n-x} \text{ for } x = 0, 1, \dots, n$$

Binomial Theorem:

$$(a+b)^n = \sum_{i=1}^n \binom{n}{x} a^x b^{n-x}$$

where the right hand side represents the probability of a particular value of x, or a particular combination of number of successes and number of failures.

Expectation and Variance:

$$E(Y) = E(\sum_{i=0}^{n} X_i) \text{ where } X_i \stackrel{iid}{\sim} Ber(p)$$

$$= \sum_{i=0}^{n} E(X_i)$$

$$= \sum_{i=0}^{n} p$$

$$= np$$

$$Var(Y) = Var(\sum_{i=0}^{n} X_i) \text{ where } X_i \stackrel{iid}{\sim} Ber(p)$$

$$= \sum_{i=0}^{n} Var(X_i) \dots Independene$$

$$= np(1-p)$$

Proportions

Suppose $(X_1, X_2, \dots, X_n) \stackrel{iid}{\sim} Ber(p)$. Then, the sample mean

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

is an unbiased estimator of the parameter p:

$$E(\bar{X}) = E(\frac{1}{n} \sum_{i=1}^{n} X_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} E(X_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} p$$

$$= p \square$$

The variance of the sample mean \bar{X} is:

$$Var(\bar{X}) = Var(\frac{1}{n} \sum_{i=1}^{n} X_i)$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) \dots Independence$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} p(1-p)$$

$$= \frac{p(1-p)}{n} \square$$

Sampling Distribution of the Differences of Means

 Π_1 : A population with mean μ_1 and standard deviation σ_1

 Π_2 : A population with mean μ_2 and standard deviation σ_2

We examine the following cases where the populations are infinite (sampling is with replacement) or populations are finite (sampling is without replacement).

Infinite Population (Sampling With Replacement)

A sample of size n_1 drawn from Π_1 and n_2 drawn from Π_2 . Then,

$$\bar{X}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$$

$$\bar{Y}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$$

Where

$$E(X_1) = \mu_1$$
$$E(Y_2) = \mu_2$$

and

$$Var(X_1) = \frac{\sigma_1^2}{n_1}$$
$$Var(Y_2) = \frac{\sigma_2^2}{n_2}$$

Then, the expectation of $\bar{X}_1 - \bar{Y}_2$ is

$$\mu_{\bar{X}_1 - \bar{Y}_2} = E(\bar{X}_1 - \bar{Y}_2) = E(\bar{X}_1) - E(\bar{Y}_2) = \mu_1 - \mu_2$$

The variance is

$$\sigma_{\bar{X}_1 - \bar{Y}_2} = Var(\bar{X}_1 - \bar{Y}_2) = Var(\bar{X}_1) + Var(\bar{Y}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

Finite Population (Sampling Without Replacement)

A sample of size n_1 drawn from Π_1 and n_2 drawn from Π_2 . Then,

$$\bar{X}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$$

$$\bar{X}_1 = \frac{1}{n_2} \sum_{i=1}^{n_2} X_i$$

$$\bar{Y}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$$

Where

$$E(X_1) = \mu_1$$
$$E(Y_2) = \mu_2$$

and

$$Var(X_1) = \frac{\sigma_1^2}{n_1} \left(\frac{N_1 - n_1}{N_1 - 1} \right)$$
$$Var(Y_2) = \frac{\sigma_2^2}{n_2} \left(\frac{N_2 - n_2}{N_2 - 1} \right)$$

Then, the expectation of $\bar{X}_1 - \bar{Y}_2$ is

$$\mu_{\bar{X}_1 - \bar{Y}_2} = E(\bar{X}_1 - \bar{Y}_2) = E(\bar{X}_1) - E(\bar{Y}_2) = \mu_1 - \mu_2$$

The variance is

$$\sigma_{\bar{X_1} - \bar{Y_2}} = Var(\bar{X_1} - \bar{Y_2}) = Var(\bar{X_1}) + Var(\bar{Y_2}) = \frac{\sigma_1^2}{n_1} \left(\frac{N_1 - n_1}{N_1 - 1} \right) + \frac{\sigma_2^2}{n_2} \left(\frac{N_2 - n_2}{N_2 - 1} \right)$$

The Sample Variance

Suppose the following:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_{i}^{2} - 2\bar{X}X_{i} + \bar{X}^{2})$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - 2\bar{X} \underbrace{\frac{1}{n} \sum_{i=1}^{n} X_{i}}_{\bar{X}} + \frac{1}{n} \sum_{i=1}^{n} \bar{X}^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - 2\bar{X}^{2} + \bar{X}^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \bar{X}^{2}$$

Then, we have a biased estimator of variance, as can be seen below:

$$\begin{split} E(S^2) &= E(\frac{1}{n}\sum_{i=1}^n X_i^2 - \bar{X}^2) \\ &= \frac{1}{n}\sum_{i=1}^n E(X_i^2) - E\left[\frac{1}{n}\sum_{i=1}^n X_i \frac{1}{n}\sum_{j=1}^n X_j\right] \\ &= \frac{1}{n}\sum_{i=1}^n E(X_i^2) - \frac{1}{n^2}E\left[\sum_{i=1}^n \sum_{j=1}^n X_i X_j\right] \\ &= \frac{1}{n}\sum_{i=1}^n E(X_i^2) - \frac{1}{n^2}E\left[\sum_{i=1}^n \sum_{j=1}^n X_i X_j\right] \\ &= \frac{1}{n}\sum_{i=1}^n E(X_i^2) - \frac{1}{n^2}E\left[\sum_{i=1}^n X_i^2 + \sum_{i=1}^n \sum_{j\neq i}^n X_i X_j\right] \\ &= \frac{1}{n}\sum_{i=1}^n E(X_i^2) - \frac{1}{n^2}\sum_{i=1}^n E(X_i^2) + \frac{1}{n^2}\sum_{i=1}^n \sum_{j\neq i}^n E(X_i)E(X_j)\dots Independence \\ &= \frac{n-1}{n}E(X_i^2) - \frac{n-1}{n}E(X_i)^2\dots Identical \\ &= \frac{n-1}{n}[E(X_i^2) - E(X_i)^2] \\ &= \frac{n-1}{n}Var(X_i) \end{split}$$

In order to obtain an unbiased estimator of variance,

$$E(S^{2}) = \frac{n-1}{n} Var(X_{i})$$

$$\implies E(\frac{n}{n-1}S^{2}) = \frac{n}{n-1} E(S^{2}) = Var(X_{i})$$

$$\frac{n}{n-1}S^{2} = \frac{n}{n-1} \cdot \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \dots \square$$

So, the sample variance is

$$\hat{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$