ADVANCED TOPICS IN OR

Lecture Notes 2 Stochastic Order Relations

Zhao Xiaobo
Department of IE
Tsinghua University
Beijing 100084, China
Tel. 010-62784898
Email. xbzhao@tsinghua.edu.cn

 $\{X(t), t \ge 0\}$: a birth and death process

Proposition 9.2.3: $\{X(t), t \ge 0\}$ stochastically increasing in X(0).

$$E[f(X(t_1), ..., X(t_n)) \mid X(t_1) = i]$$
: is increasing in i for all $t_1, ..., t_n$ and increasing functions f .

Proof: $\{X_1(t), t \ge 0\}$: birth and death process, $X_1(0) = i + 1$ $\{X_2(t), t \ge 0\}$: birth and death process, $X_2(0) = i$

Either $X_1(t)$ is always larger than $X_2(t)$ or else they are equal at some time.

Let T be the first time they become equal

$$T = \begin{cases} \infty & \text{if } X_1(t) > X_2(t) \text{ for all } t \\ 1\text{st } t & X_1(t) = X_2(t) \text{ otherwise} \end{cases}$$

If $T < \infty$, their continuation after T has the same probability structure. We define a third process

$$X_3(t) = \begin{cases} X_1(t) & \text{if } t < T \\ X_2(t) & \text{if } t \ge T \end{cases}$$

 $\{X_3(t)\}$: a birth and death process, with $X_3(0) = i + 1$

Since

$$X_1(t) > X_2(t)$$
 for $t < T$

$$X_3(t) \ge X_2(t)$$
 for all t

Birth and Death Processes

Proposition 9.2.4: $P\{X(t) \ge j \mid X(0) = 0\}$ increases in t for all j.

Proof: For s < t

$$P\{X(t) \ge j | X(0) = 0\}$$

$$\left(X\left(t\right)\geq J|X\left(0\right)=0\right)$$

$$= \sum_{i} P\{X(t) \ge j | X(0) = 0, X(t-s) = i\} P\{X(t-s) = i | X(0) = 0\}$$

$$= \sum_{i} P\{X(t) \ge j | X(t-s) = i\} P_{0i}(t-s)$$

$$= \sum P\{X(s) \ge j | X(0) = i\} P_{0i}(t-s)$$

$$\geq \sum P\{X(s)\geq j | X(0)=0\} P_{0i}(t-s)$$

$$= P\{X(s) \ge j | X(0) = 0\} \sum_{i} P_{0i}(t-s) = P\{X(s) \ge j | X(0) = 0\}$$

Remark: A nice qualitative property about the transition probabilities of a birth and death process

It is often quite difficult to determine explicitly the values $P_{0j}(t)$ for fixed t, it is a simple matter to obtain the limiting probabilities P_i .

From Proposition 9.2.4, we have

$$P\left\{X\left(t\right) \ge j \left|X\left(0\right) = 0\right\} \le \lim_{t \to \infty} P\left\{X\left(t\right) \ge j \left|X\left(0\right) = 0\right\} = \sum_{i=1}^{\infty} P_{i}$$

 \implies implies that X(t) is stochastically smaller than the random variable having the limiting distribution. Supply a bound on the distribution of X(t).

 P_{ii}^n transition probability of finite-state irreducible MC

Result: For a finite-state ergodic MC, there must exist N, $\varepsilon > 0$, such that

$$P_{ij}^{N} > \varepsilon$$
 for all i, j

Consider two independent MCs

$$\{X_n, n \ge 0\}$$
 with $P\{X_0 = i\} = 1$
 $\{X_n', n \ge 0\}$ with $P\{X_0' = j\} = \pi_j$, stationary probabilities

$$\pi_j = \sum_{i=1}^M \pi_i P_{ij} \qquad \sum_{i=1}^M \pi_j = 1$$

T: the first time both processes are in the same state

$$T = \min\left\{n: X_n = X_n'\right\}$$

$$T > mN \Longrightarrow X_N \neq X_N^{'}, X_{2N} \neq X_{2N}^{'}, \cdots, X_{mN} \neq X_{mN}^{'}$$

$$\implies P\{T > mN\} \le P(A_1)P(A_2|A_1)\cdots P(A_m|A_1,\cdots,A_{m-1})$$

where A_i is the event that $X_{iN} \neq X_{iN}$

The probability that the two chains will both be in state j a time N in the future is at least ε^2 .

Thus, they will be in the same state is at least $M\varepsilon^2$.

Convergence in MC

Coupling

$$P(A_k | A_1, \dots, A_{k-1}) \leq 1 - M\varepsilon^2$$

$$\Rightarrow P\{T > mN\} \leq (1 - M\varepsilon^2)^m = (1 - \alpha)^m$$

Define a third MC by

$$\overline{X}_{n} = \begin{cases} X'_{n} & \text{if } n \leq T \\ X_{n} & \text{if } n \geq T \end{cases}$$

$$\{\bar{X}_n, n \ge 0\}$$
 with transition probabilities P_{ij}

$$P\{\overline{X}_n = j\} =$$

$$P\left\{\overline{X}_n = j \middle| T \le n\right\} P\left\{T \le n\right\} + P\left\{\overline{X}_n = j \middle| T > n\right\} P\left\{T > n\right\}$$

Convergence in MC

$$= P\left\{\overline{X}_n = j \middle| T \le n\right\} P\left\{T \le n\right\} + P\left\{\overline{X}_n = j, T > n\right\}$$

Similarly

Coupling

$$P_{ij}^{n} = P\{X_{n} = j\} = P\{X_{n} = j | T \le n\} P\{T \le n\} + P\{X_{n} = j, T > n\}$$

Hence

$$P_{ij}^{n} - P\{\bar{X}_{n} = j\} = P\{X_{n} = j, T > n\} - P\{\bar{X}_{n} = j, T > n\}$$

implying that
$$|P_{ij}^n - P\{\overline{X}_n = j\}| \le P\{T > n\} \le (1-\alpha)^{n/N-1}$$

Since $P\{\bar{X}_n=j\}=\pi_j$

$$|P_{ij}^n - \pi_j| \leq \frac{\beta^n}{1 - \alpha}$$

where $\beta = (1-\alpha)^{1/N}$

X has a larger hazard rate function than Y, if

$$\lambda_X(t) \ge \lambda_Y(t)$$
 for all $t \ge 0$

Since

$$P\left\{X > t + s \mid X > t\right\} = \exp\left\{-\int_{t}^{t+s} \lambda(x) dy\right\}$$

$$P\{X > t + s | X > t\} \le P\{Y > t + s | Y > t\}$$

or $X_t \leq_{st} Y_t$ for all $t \geq 0$

where X_t and Y_t are the remaining lives of a t-unit-old item having the same distributions as X and Y

Useful in comparing counting processes

A delayed renewal process

G: first renewal, $\sim \lambda_G(t)$

F: other interarrivals, $\sim \lambda_F(t)$

Let

$$\max \left\{ \max_{0 \le s \le t} \lambda_F(s), \max_{0 \le s \le t} \lambda_G(s) \right\} \le \mu(t)$$

The delayed renewal process can be generated by a random sampling from a nonhomogeneous Poisson process with $\mu(t)$

 S_1, S_2, \cdots Times at which events occur, $\{N(t), t \ge 0\}, \sim \mu(t)$

Define a counting process. Let

$$I_i = \begin{cases} 1 & \text{if an event occurs at time } S_i \\ 0 & \text{otherwise} \end{cases}$$

Given
$$S_1, S_2, \dots$$
 take $P\{I_1 = 1\} = \frac{\lambda_G(S_1)}{\mu(S_1)}$

and for i > 1,

$$P\left\{I_{i}=1\big|I_{1},\cdots,I_{i-1}\right\} = \begin{cases} \frac{\lambda_{G}\left(S_{i}\right)}{\mu\left(S_{i}\right)} & \text{if } I_{1}=\cdots=I_{i-1}=0\\ \frac{\lambda_{F}\left(S_{i}-S_{j}\right)}{\mu\left(S_{i}\right)} & \text{if } j=\max\left\{k:k< i,I_{k}=1\right\} \end{cases}$$

$$\frac{i - S_j}{S_i} \quad \text{if } j = \max \left\{ k : k < i, I_k = 1 \right\}$$

A(t): the age of the counting process at time t

$$A(S_1) = S_1$$

 $A(S_2) = S_2 \text{ if } I_1 = 0;$ $A(S_2) = S_2 - S_1 \text{ if } I_1 = 1$

Then
$$P\left\{I_{i}=1\big|I_{1},\cdots,I_{i-1}\right\} = \begin{cases} \frac{\lambda_{G}\left(S_{i}\right)}{\mu\left(S_{i}\right)} & \text{if } A\left(S_{i}\right) = S_{i} \\ \frac{\lambda_{F}\left(S_{i} - S_{j}\right)}{\mu\left(S_{i}\right)} & \text{if } A\left(S_{i}\right) < S_{i} \end{cases}$$

We claim that the counting process defined by the I_i , $i \ge 1$, constitutes the desired delayed renewal process.

See the analysis below.

Given the past, the probability intensity

$$P$$
{event in $(t, t+h)$ |history up to t }

=
$$P$$
{an event in $(t, t+h)$, and is counted | history up to t }

$$= (\mu(t)h + o(h))P$$
{it is counted | history up to t }

$$\left[\mu(t)h + o(h)\right] \frac{\lambda_G(t)}{\mu(t)} = \lambda_G(t)h + o(h) \quad \text{if } A(t) = t$$

$$= \begin{cases} \left[\mu(t)h + o(h)\right] \frac{\lambda_G(t)}{\mu(t)} = \lambda_G(t)h + o(h) & \text{if } A(t) = t \\ \left[\mu(t)h + o(h)\right] \frac{\lambda_F(A(t))}{\mu(t)} = \lambda_F(A(t))h + o(h) & \text{if } A(t) < t \end{cases}$$

The probability of an event at any time t depends only on the age at that time and is equal to $\lambda_G(t)$ if the age is t and to $\lambda_F(A(t))$ otherwise.

Theorem (Blackwell's Theorem)

Let $\{N^*(t), t \ge 0\}$ denote a renewal process $\sim F$. Then

$$m(t+a)-m(t) \rightarrow \frac{a}{\mu}$$
 as $t \rightarrow \infty$

where $m(t) = E[N^*(t)]$

Proof: Assumption: $\lambda_F(t)$ is bounded away from 0 and ∞ .

There is $0 < \lambda_1 < \lambda_2 < \infty$ such that

$$\lambda_1 < \lambda_F(t) < \lambda_2$$
 for all t

The same assumption for $\lambda_G(t)$.

$$S_1, S_2, \cdots$$
 A Poisson process with λ_2

$$I_1^*, I_2^*, \cdots$$
 Generated according to G and $\mu(t) = \lambda_2$

$$\implies \{N_0(t), t \ge 0\}$$
 A delayed renewal process

$$I_1, I_2, \cdots$$
 Generated according to $G = F$ and $\mu(t) = \lambda_2$

$$\implies \{N(t), t \ge 0\}$$
 A renewal process

Let
$$N = \min\{i : I_i = I_i^* = 1\}$$

It follows that

$$P\{I_{i} = I_{i}^{*} = 1 | I_{1}, \dots, I_{i-1}, I_{1}^{*}, \dots, I_{i-1}^{*}\} \geq \left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{2}$$

Define a third sequence by

$$\overline{I}_{i} = \begin{cases} I_{i}^{*} & \text{for } i \leq N \\ I_{i} & \text{for } i \geq N \end{cases}$$

Letting N(t, t + a) = N(t + a) - N(t), and similarly for \bar{N}

$$\longrightarrow E[\bar{N}(t,t+a)] =$$

$$E\left[\bar{N}(t,t+a)|S_N \le t\right]P\left\{S_N \le t\right\} + E\left[\bar{N}(t,t+a)|S_N > t\right]P\left\{S_N > t\right\}$$

$$= E\left[N(t,t+a)|S_N \le t\right]P\left\{S_N \le t\right\} + E\left[\bar{N}(t,t+a)|S_N > t\right]P\left\{S_N > t\right\}$$

$$= E\left[N(t,t+a)\right] + \left(E\left[\bar{N}(t,t+a)|S_N > t\right] - E\left[N(t,t+a)|S_N > t\right]\right)P\left\{S_N > t\right\}$$

We take
$$G = F_e$$
 $F_e(t) = \int_0^t \overline{F}(y) dy / \mu$

(By Theorem 3.5.2)
$$E[\bar{N}(t,t+a)] = \frac{a}{u}$$

Also, it easily follows that

$$E[N(t,t+a)|S_N > t] \le \lambda_2 a$$

$$E[\bar{N}(t,t+a)|S_N>t] \le \lambda_2 a$$

$$P\{S_N > t\} \to 0$$
 as $t \to \infty$

$$E[\bar{N}(t,t+a)] - E[N(t,t+a)] \to 0$$
 as $t \to \infty$

$$E[N(t,t+a)] \to \frac{a}{\mu}$$

Monontonicity results

 $\{N(t), t \ge 0\}$: counting process

Lemma 9.3.1: $\{N(t), t \ge 0\} \sim F$ decreasing failure rate.

 $\{N_y(t), t \ge 0\}$ a delayed renewal process with initial H_y and F. $(N(T_1), \dots, N(T_n)) \ge_{st} (N_y(T_1), \dots, N_y(T_n))$

Proof: $N^* = \{N^*(t), t \le y\}$: the first y time units of a renewal process, $\sim F$.

 N_v the continuation of N^* from time y onward.

 $A^*(y)$: age at time y of N^*

A Poisson process with rate $\mu = \lambda(0)$, and S_1, S_2, \dots times events occur.

Counting processes

Use the Poisson process to generate a counting process N

$$P\{I_i=1|I_1,\cdots,I_{i-1}\}=\frac{\lambda(A(S_i))}{\mu}$$

 \Longrightarrow The generated counting process is a renewal process $\sim F$

Define another counting process with \bar{I}_i and $\bar{A}(t)$

 $\overline{A}(t)$: the time at t since the last event, or $t + A^*(y)$ if no events

If
$$I_i = 0$$
, then $\overline{I}_i = 0$

If
$$I_i = 1$$
, then $\bar{I}_i = \begin{cases} 1 & \text{with probability } \lambda(\bar{A}(S_i))/\lambda(A(S_i)) \\ 0 & \text{otherwise} \end{cases}$

Note that $\lambda(\bar{A}(S_i)) \leq \lambda(A(S_i))$

Hence

$$P\{\overline{I}_{i}=1\big|\overline{I}_{1},\cdots,\overline{I}_{i-1},I_{1},\cdots,I_{i-1}\} = P\{I_{i}=1\big|I_{1},\cdots,I_{i-1}\}P\{\overline{I}_{i}=1\big|I_{i}=1\}$$

$$= \frac{\lambda(\overline{A}(S_{i}))}{\mu}$$

The generated counting process \bar{I}_i is a delayed renewal process with initial H_y , because $\bar{A}(0) = A^*(y)$

Since events of N_y can only occur at time points where events of N_y , it follows that

$$N(T) \ge N_{v}(T)$$
 for all sets T

Proposition 9.3.2: Monotonicity Properties of DFR renewal process

 $\{N(t), t \ge 0\}$: renewal process with DFR

A(t): age at time t

Y(t): excess at time t

 \implies Both A(t) and Y(t) increase stochastically in t

Proof: We need to show

$$P\{A(t+y)>a\} \ge P\{A(t)>a\}$$

A(t): age at time t of the renewal process N

A(t + y): age at time t of the renewal process N_y

Counting processes

Letting T = [t - a, t], from Lemma 9.3.1,

$$P\{N(T) \ge 1\} \ge P\{N_y(T) \ge 1\}$$

$$P\{A(t) \le a\} \ge P\{A(t+y) \le a\}$$

The proof for the excess is similar except letting T = [t, t + a]

Bounds on renewal function of DFR

Corollary 9.3.3: F is a DFR with the first two moments

$$\mu_1 = \int x dF(x)$$

$$\mu_2 = \int x^2 dF(x)$$

$$\frac{t}{\mu_1} \le m(t) \le \frac{t}{\mu_1} + \frac{\mu_2}{2\mu_1^2} - 1 \qquad \qquad \overline{F}(t) \ge \exp\left(-\frac{t}{\mu_1} - \frac{\mu_2}{2\mu_1^2} + 1\right)$$

Counting processes

Proof: Let X_1, X_2, \dots be the interarrival times

$$\sum_{i=1}^{N(t)+1} X_i = t + Y(t)$$

where Y(t) is the excess at t. By Wald's equation

$$\mu_1(m(t)+1)=t+E[Y(t)]$$

From Proposition 9.3.2, E[Y(t)] is increasing in t.

On the other hand $E[Y(0)] = \mu_1$ $\lim_{t \to \infty} E[Y(t)] = \frac{\mu_2}{2\mu_1}$

$$\implies t + \mu_1 \le \mu_1 \left(m(t) + 1 \right) \le t + \frac{\mu_2}{2\mu_1}$$

$$\frac{t}{\mu_{1}} \le m(t) \le \frac{t}{\mu_{1}} + \frac{\mu_{2}}{2\mu_{1}^{2}} - 1$$

From renewal theory $m(t) = \sum_{n} F_n(t)$

$$m(t) = \sum_{n=1}^{\infty} F_n(t)$$

$$m'(t) = \sum_{n=1}^{\infty} F_n'(t) dt = \sum_{n=1}^{\infty} P\{n \text{th renewal occurs in } (t, t + dt) + o(dt)$$
$$= P\{\text{a renewal occurs in } (t, t + dt) + o(dt)\}$$

Since
$$\lambda(t)$$
 is decreasing in $t \implies m'(t) = E[\lambda(A(t))] \ge \lambda(t)$

$$m(t) \ge \int_0^t \lambda(s) ds$$

Since
$$\overline{F}(t) = \exp\left(-\int_0^t \lambda(s) ds\right)$$

$$ightharpoonup \overline{F}(t) \ge e^{-m(t)}$$