Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Claims 1 to 39 (canceled).

40. (currently amended) Compounds of formula I

$$R_3$$
 R_4
 R_5
 R_1
 R_5
 R_1
 R_5
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5
 R_1
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5

in which the substituents have the meanings that are explained below:

 R_1 and R_2 are the same or different and mean:

- a) hydrogen, F, Cl, Br, I, CN, NC, OH, SH, NO₂, SO₃H, PO₃H, NH₂, CF₃, OSO₂(CH₂)_nCF₃, in which n is equal to 0, 1 or 2, -OSO₂-aryl, -OSO₂-vinyl or -OSO₂-ethinyl;
- b) a C₁-C₆, optionally branched, optionally substituted alkyl, alkoxy, arylalkyl, arylalkoxy, cycloalkyl or cycloalkoxy group;
- c) an amino group, which optionally is substituted by one or two identical or different C₁-C₆, optionally branched, optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, arylalkyl, arylalkylcarbonyl, or arylalkoxycarbonyl groups or by a

Amendment and Response

Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

group that is selected from an optionally substituted pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, or homopiperazine radical;

Attorney Docket: SAN1003US

- d) a -COOH, -COOalkyl, -COOarylalkyl, -CO-amino group, which optionally is substituted as indicated under c), a COHalkyl group, or a COHarylalkyl group;
- e) a -(CH₂)_nX (in which X is Br, Cl, F or I), -(CH₂)_nOH, -(CH₂)_nCHO, -(CH₂)_nCOOH, -(CH₂)_nCN, -(CH₂)_nNC, -(CH₂)_nCOalkyl, or -(CH₂)_nCOaryl group, in which n is 1-4;
- f) a -(CH₂)_nvinyl, -(CH₂)_nethinyl, or -(CH₂)_ncycloalkyl group in which n is 0, 1 or 2, wherein cycloalkyl is an aliphatic ring with 3 to 7 C atoms;
- g) a C₃-C₆-substituted alkenyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl); or
- h) a C₃-C₆-substituted alkinyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl);

 R_3 has the same meaning as R_1 ,

R₄ and R₅ are either

- a) both hydrogen, or
- b) one of R_4 and R_5 is hydrogen, an alkyl, alkenyl, alkinyl, arylalkyl, arylalkenyl, or arylalkinyl group, and the other of R_4 and R_5 is
- i) OR_6 , in which R_6 means hydrogen, a C_1 - C_{10} , optionally branched or substituted alkyl group or cycloalkyl group, a C_3 - C_{10} substituted silyl group, or a C_2 - C_{10} alpha-alkoxyalkyl group;

 G_1 is $-(CH_2)_*$, in which x is 1 or 2; G_1 is $-CH_2$.; G_2 is $-(CH_2)_*$, in which y is 0 to 2; G_2 is $-(CH_2)_*$;

Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

 G_3 is $(CH_2)_z$, in which z is 0 to 3, provided that the sum of x+y+z is at least 2 and at most 4; G_3 is $-CH_2$; and

W is:

N-Phenyl, optionally substituted with Fl, Br, Cl, C_1 - C_4 alkyl, CO_2 -alkyl, CN, $CONH_2$, or alkoxy; N-thien-2 or 3-yl; N-fur-2 or 3-yl; or an N-1,3,5-triazinyl, wherein the triazine radical can then be substituted with Cl, OR_6 or NR_7R_7 , in which R_6 has the meaning indicated above and the two substituents R_7 are the same or different and are hydrogen, a C_1 - C_4 , optionally branched, alkyl group or cycloalkyl group, or substituents R_7 together are -(CH_2)_n-, in which n is 3 to 5.

- 41. (previously presented) The compound according to claim 40, wherein W is N-1,3,5-triazinyl, wherein the triazine radical can then be substituted with Cl, OR_6 or NR_7R_7 , in which R_6 has the meaning indicated above and the two substituents R_7 are the same or different and are hydrogen, a C_1 - C_4 , optionally branched, alkyl group or cycloalkyl group, or substituents R_7 together are -(CH_2)_n-, in which n is 3 to 5.
- 42. (previously presented) The compound according to claim 40, wherein R₃ is OH or OCH₃.
- 43. (previously presented) The compound according to claim 40, wherein R₃ is OCH₃.
- 44. (previously presented) The compound according to claim 40, wherein R_4 is OH and R_5 is H.

Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

45. (previously presented) The compound according to claim 40, wherein R_3 is OCH₃, R_4 is OH, R_5 is H, and W is N-1,3,5-triazinyl, wherein the triazine radical can then be substituted with Cl, OR₆ or NR₇R₇, in which R₆ has the meaning indicated above and the two substituents R₇ are the same or different and are hydrogen, a C₁-C₄, optionally branched, alkyl group or cycloalkyl group, or substituents R₇ together are -(CH₂)_n-, in which n is 3 to 5.

- 46. (previously presented) The compound according to claim 40, in which substituent R_6 is a triethylsilyl, trimethylsilyl, t-butyldimethylsilyl or dimethylphenylsilyl.
- 47. (previously presented) The compound according to claim 40, in which substituent R_6 is tetrahydropyranyl, tetrahydrofuranyl, methoxymethyl, ethoxymethyl, 2-methoxypropyl, ethoxyethyl, phenoxymethyl or 1-phenoxyethyl.
- 48. (previously presented) The compound according to claim 40, in which R_5 has a meaning other than hydrogen, and R_4 is OH.
 - 49. (canceled).
- 50. (currently amended) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound according to claim 40 of formula I or a pharmaceutically acceptable salt thereof, the compound of formula I having the following formula:

Serial No.: 09/980,025

$$R_3$$
 G_1
 G_2
 R_1
 G_2
 G_3
 G_3
 G_4
 G_4
 G_5
 G_5
 G_7
 G_7

in which the substituents have the meanings that are explained below:

R₁ and R₂ are the same or different and mean:

a) hydrogen, F, Cl, Br, I, CN, NC, OH, SH, NO₂, SO₃H, PO₃H, NH₂, CF₃, OSO₂(CH₂)_nCF₃, in which n is equal to 0, 1 or 2, -OSO₂-aryl, -OSO₂-vinyl or -OSO₂-ethinyl;

b) a C₁-C₆, optionally branched, optionally substituted alkyl, alkoxy, arylalkyl, arylalkoxy, cycloalkyl or cycloalkoxy group;

c) an amino group, which optionally is substituted by one or two identical or different C₁-C₆, optionally branched, optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, arylalkyl, arylalkylcarbonyl, or arylalkoxycarbonyl groups or by a group that is selected from an optionally substituted pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, or homopiperazine radical;

d) a -COOH, -COOalkyl, -COOarylalkyl, -CO-amino group, which optionally is substituted as indicated under c), a COHalkyl group, or a COHarylalkyl group;

e) a -(CH₂)_nX (in which X is Br, Cl, F or I), -(CH₂)_nOH, -(CH₂)_nCHO,

Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

 $-(CH_2)_nCOOH$, $-(CH_2)_nCN$, $-(CH_2)_nNC$, $-(CH_2)_nCOalkyl$, or $-(CH_2)_nCOaryl$ group, in which n is 1-4;

f) a -(CH₂)_nvinyl, -(CH₂)_nethinyl, or -(CH₂)_ncycloalkyl group in which n is 0, 1 or 2, wherein cycloalkyl is an aliphatic ring with 3 to 7 C atoms;

g) a C₃-C₆-substituted alkenyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl); or

h) a C₃-C₆-substituted alkinyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl);

 R_3 has the same meaning as R_1 ,

R₄ and R₅ are either

a) both hydrogen, or

b) one of R_4 and R_5 is hydrogen, an alkyl, alkenyl, alkinyl, arylalkyl, arylalkenyl, or arylalkinyl group, and the other of R_4 and R_5 is

i) OR₆, in which R₆ means hydrogen, a C₁-C₁₀, optionally branched or substituted alkyl group or cycloalkyl group, a C₃-C₁₀ substituted silyl group, or a C₂-C₁₀ alpha-alkoxyalkyl group;

 G_1 is -CH₂-;

 G_2 is -CH₂-;

 G_3 is -CH₂-; and

W is:

N-Phenyl, optionally substituted with Fl, Br, Cl, C_1 - C_4 alkyl, CO_2 -alkyl, CN, $CONH_2$, or alkoxy; N-thien-2 or 3-yl; N-fur-2 or 3-yl; or an N-1,3,5-triazinyl, wherein the triazine radical can then be substituted with Cl, OR_6 or NR_7R_7 , in

Applicants: Ulrich Jordis et al. Serial No.: 09/980,025

Serial No.: 09/980,023

which R_6 has the meaning indicated above and the two substituents R_7 are the same or different and are hydrogen, a C_1 - C_4 , optionally branched, alkyl group or cycloalkyl group, or substituents R_7 together are - $(CH_2)_n$ -, in which n is 3 to 5.

51. (currently amended) A method of preparing a pharmaceutical composition comprising:

providing a therapeutically effective amount of a compound according to elaim 40 of formula I or a pharmaceutically acceptable salt thereof; and

combining a pharmaceutically acceptable excipient with the therapeutically effective amount of the compound according to claim 40 of formula I or a pharmaceutically acceptable salt thereof, the compound of formula I having the following formula:

$$R_3$$
 G_1
 G_2
 R_1
 G_2
 G_3
 G_2
 G_3
 G_2
 G_3
 G_2
 G_3
 G_4
 G_4
 G_5
 G_7
 G_8
 G_8

in which the substituents have the meanings that are explained below:

R₁ and R₂ are the same or different and mean:

a) hydrogen, F, Cl, Br, I, CN, NC, OH, SH, NO₂, SO₃H, PO₃H, NH₂, CF₃, OSO₂(CH₂)_nCF₃, in which n is equal to 0, 1 or 2, -OSO₂-aryl, -OSO₂-vinyl or -OSO₂-ethinyl;

Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

b) a C₁-C₆, optionally branched, optionally substituted alkyl, alkoxy, arylalkyl, arylalkoxy, cycloalkyl or cycloalkoxy group;

c) an amino group, which optionally is substituted by one or two identical or different C₁-C₆, optionally branched, optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, arylalkyl, arylalkylcarbonyl, or arylalkoxycarbonyl groups or by a group that is selected from an optionally substituted pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, or homopiperazine radical;

d) a -COOH, -COOalkyl, -COOarylalkyl, -CO-amino group, which optionally is substituted as indicated under c), a COHalkyl group, or a COHarylalkyl group;

e) a -(CH₂)_nX (in which X is Br, Cl, F or I), -(CH₂)_nOH, -(CH₂)_nCHO, -(CH₂)_nCOOH, -(CH₂)_nCN, -(CH₂)_nNC, -(CH₂)_nCOalkyl, or -(CH₂)_nCOaryl group, in which n is 1-4;

f) a - $(CH_2)_n$ vinyl, - $(CH_2)_n$ ethinyl, or - $(CH_2)_n$ cycloalkyl group in which n is 0, 1 or 2, wherein cycloalkyl is an aliphatic ring with 3 to 7 C atoms;

g) a C₃-C₆-substituted alkenyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl); or

h) a C₃-C₆-substituted alkinyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl);

 R_3 has the same meaning as R_1 ,

R₄ and R₅ are either

a) both hydrogen, or

b) one of R_4 and R_5 is hydrogen, an alkyl, alkenyl, alkinyl, arylalkyl, arylalkenyl, or arylalkinyl group, and the other of R_4 and R_5 is

Applicants: Ulrich Jordis et al. Serial No.: 09/980,025

i) OR₆, in which R₆ means hydrogen, a C₁-C₁₀, optionally branched or substituted alkyl group or cycloalkyl group, a C₃-C₁₀ substituted silyl group, or a C₂-C₁₀ alpha-alkoxyalkyl group;

 G_1 is -CH₂-;

 G_2 is -CH₂-;

G₃ is -CH₂-; and

W is:

N-Phenyl, optionally substituted with Fl, Br, Cl, C_1 - C_4 alkyl, CO_2 -alkyl, CN, $CONH_2$, or alkoxy; N-thien-2 or 3-yl; N-fur-2 or 3-yl; or an N-1,3,5-triazinyl, wherein the triazine radical can then be substituted with Cl, OR_6 or NR_7R_7 , in which R_6 has the meaning indicated above and the two substituents R_7 are the same or different and are hydrogen, a C_1 - C_4 , optionally branched, alkyl group or cycloalkyl group, or substituents R_7 together are -(CH_2)_n-, in which n is 3 to 5.

52. (new) Compounds of formula I

$$R_3$$
 R_2
 R_1
 R_4
 R_5
 R_1
 R_5
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_2
 R_3
 R_4
 R_5

in which the substituents have the meanings that are explained below:

Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

 R_1 and R_2 are the same or different and mean:

- a) hydrogen, F, Cl, Br, I, CN, NC, OH, SH, NO₂, SO₃H, PO₃H, NH₂, CF₃, OSO₂(CH₂)_nCF₃, in which n is equal to 0, 1 or 2, -OSO₂-aryl, -OSO₂-vinyl or -OSO₂-ethinyl;
- b) a C₁-C₆, optionally branched, optionally substituted alkyl, alkoxy, arylalkyl, arylalkoxy, cycloalkyl or cycloalkoxy group;
- c) an amino group, which optionally is substituted by one or two identical or different C_1 - C_6 , optionally branched, optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, arylalkyl, arylalkylcarbonyl, or arylalkoxycarbonyl groups or by a group that is selected from an optionally substituted pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, or homopiperazine radical;
- d) a -COOH, -COOalkyl, -COOarylalkyl, -CO-amino group, which optionally is substituted as indicated under c), a COHalkyl group, or a COHarylalkyl group;
- e) a -(CH₂)_nX (in which X is Br, Cl, F or I), -(CH₂)_nOH, -(CH₂)_nCHO, -(CH₂)_nCOOH, -(CH₂)_nCN, -(CH₂)_nNC, -(CH₂)_nCOalkyl, or -(CH₂)_nCOaryl group, in which n is 1-4;
- f) a -(CH₂)_nvinyl, -(CH₂)_nethinyl, or -(CH₂)_ncycloalkyl group in which n is 0, 1 or 2, wherein cycloalkyl is an aliphatic ring with 3 to 7 C atoms;
- g) a C₃-C₆-substituted alkenyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl); or
- h) a C₃-C₆-substituted alkinyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl);

 R_3 has the same meaning as R_1 ,

R₄ and R₅ are either

Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

a) both hydrogen, or

- b) one of R_4 and R_5 is hydrogen, an alkyl, alkenyl, alkinyl, arylalkyl, arylalkenyl, or arylalkinyl group, and the other of R_4 and R_5 is
- i) OR_6 , in which R_6 means hydrogen, a C_1 - C_{10} , optionally branched or substituted alkyl group or cycloalkyl group, a C_3 - C_{10} substituted silyl group, or a C_2 - C_{10} alpha-alkoxyalkyl group;

 G_1 is -(CH₂)_x-, in which x is 1 or 2;

 G_2 is -(CH₂)_y-, in which y is 0 to 2;

 G_3 is -(CH₂)_z-, in which z is 0 to 3, provided that the sum of x+y+z is at least 2 and at most 4; and

W is N-1,3,5-triazinyl, wherein the triazine radical can then be substituted with Cl, OR_6 or NR_7R_7 , in which R_6 has the meaning indicated above and the two substituents R_7 are the same or different and are hydrogen, a C_1 - C_4 , optionally branched, alkyl group or cycloalkyl group, or substituents R_7 together are -(CH_2)_n-, in which n is 3 to 5.

- 53. (new) The compound according to claim 52, wherein R_3 is OH or OCH₃.
 - 54. (new) The compound according to claim 52, wherein R₃ is OCH₃.
- 55. (new) The compound according to claim 52, wherein R_4 is OH and R_5 is H.
- 56. (new) The compound according to claim 52, wherein R_3 is OCH₃, R_4 is OH, and R_5 is H.

Amendment and Response Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

57. (new) The compound according to claim 52, in which substituent R₆ is

a triethylsilyl, trimethylsilyl, t-butyldimethylsilyl or dimethylphenylsilyl.

Attorney Docket: SAN1003US

- 58. (new) The compound according to claim 52, in which substituent R₆ is tetrahydropyranyl, tetrahydrofuranyl, methoxymethyl, ethoxymethyl, 2-methoxypropyl, ethoxyethyl, phenoxymethyl or 1-phenoxyethyl.
- 59. (new) The compound according to claim 52, in which R_5 has a meaning other than hydrogen, and R_4 is OH.
- 60. (new) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof, the compound of formula I having the following formula:

$$R_3$$
 R_4
 R_5
 R_1
 R_4
 R_5
 R_1
 R_5
 R_1
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_2
 R_3
 R_4
 R_5
 R_1
 R_5

in which the substituents have the meanings that are explained below:

Serial No.: 09/980,025

 R_1 and R_2 are the same or different and mean:

a) hydrogen, F, Cl, Br, I, CN, NC, OH, SH, NO₂, SO₃H, PO₃H, NH₂, CF₃, OSO₂(CH₂)_nCF₃, in which n is equal to 0, 1 or 2, -OSO₂-aryl, -OSO₂-vinyl or -OSO₂-ethinyl;

- b) a C₁-C₆, optionally branched, optionally substituted alkyl, alkoxy, arylalkyl, arylalkoxy, cycloalkyl or cycloalkoxy group;
- c) an amino group, which optionally is substituted by one or two identical or different C₁-C₆, optionally branched, optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, arylalkyl, arylalkylcarbonyl, or arylalkoxycarbonyl groups or by a group that is selected from an optionally substituted pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, or homopiperazine radical;
- d) a -COOH, -COOalkyl, -COOarylalkyl, -CO-amino group, which optionally is substituted as indicated under c), a COHalkyl group, or a COHarylalkyl group;
- e) a -(CH₂)_nX (in which X is Br, Cl, F or I), -(CH₂)_nOH, -(CH₂)_nCHO, -(CH₂)_nCOOH, -(CH₂)_nCN, -(CH₂)_nNC, -(CH₂)_nCOalkyl, or -(CH₂)_nCOaryl group, in which n is 1-4;
- f) a -(CH₂)_nvinyl, -(CH₂)_nethinyl, or -(CH₂)_ncycloalkyl group in which n is 0, 1 or 2, wherein cycloalkyl is an aliphatic ring with 3 to 7 C atoms;
- g) a C₃-C₆-substituted alkenyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl); or
- h) a C₃-C₆-substituted alkinyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl);

 R_3 has the same meaning as R_1 ,

Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

R₄ and R₅ are either

- a) both hydrogen, or
- b) one of R_4 and R_5 is hydrogen, an alkyl, alkenyl, alkinyl, arylalkyl, arylalkenyl, or arylalkinyl group, and the other of R_4 and R_5 is
- i) OR_6 , in which R_6 means hydrogen, a C_1 - C_{10} , optionally branched or substituted alkyl group or cycloalkyl group, a C_3 - C_{10} substituted silyl group, or a C_2 - C_{10} alpha-alkoxyalkyl group;

 G_1 is -(CH₂)_x-, in which x is 1 or 2;

 G_2 is $-(CH_2)_y$ -, in which y is 0 to 2;

 G_3 is -(CH₂)_z-, in which z is 0 to 3, provided that the sum of x+y+z is at least 2 and at most 4; and

W is N-1,3,5-triazinyl, wherein the triazine radical can then be substituted with Cl, OR_6 or NR_7R_7 , in which R_6 has the meaning indicated above and the two substituents R_7 are the same or different and are hydrogen, a C_1 - C_4 , optionally branched, alkyl group or cycloalkyl group, or substituents R_7 together are -(CH_2)_n-, in which n is 3 to 5.

61. (new) A method of preparing a pharmaceutical composition comprising:

providing a therapeutically effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof; and

Applicants: Ulrich Jordis et al.

Serial No.: 09/980,025

combining a pharmaceutically acceptable excipient with the therapeutically effective amount of the compound of formula I or a pharmaceutically acceptable salt thereof, the compound of formula I having the following formula:

$$R_3$$
 G_1
 G_2
 G_3
 G_2
 G_3
 G_2
 G_3
 G_2
 G_3
 G_3
 G_4
 G_4
 G_5
 G_7
 G_8
 G_8
 G_9
 G_9

in which the substituents have the meanings that are explained below:

R₁ and R₂ are the same or different and mean:

- a) hydrogen, F, Cl, Br, I, CN, NC, OH, SH, NO₂, SO₃H, PO₃H, NH₂, CF₃, OSO₂(CH₂)_nCF₃, in which n is equal to 0, 1 or 2, -OSO₂-aryl, -OSO₂-vinyl or -OSO₂-ethinyl;
- b) a C₁-C₆, optionally branched, optionally substituted alkyl, alkoxy, arylalkyl, arylalkoxy, cycloalkyl or cycloalkoxy group;
- c) an amino group, which optionally is substituted by one or two identical or different C_1 - C_6 , optionally branched, optionally substituted alkyl, alkylcarbonyl, alkoxycarbonyl, arylalkyl, arylalkylcarbonyl, or arylalkoxycarbonyl groups or by a group that is selected from an optionally substituted pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, or homopiperazine radical;
- d) a -COOH, -COOalkyl, -COOarylalkyl, -CO-amino group, which optionally is substituted as indicated under c), a COHalkyl group, or a COHarylalkyl group;

Serial No.: 09/980,025

e) a -(CH₂)_nX (in which X is Br, Cl, F or I), -(CH₂)_nOH, -(CH₂)_nCHO, -(CH₂)_nCOOH, -(CH₂)_nCN, -(CH₂)_nNC, -(CH₂)_nCOalkyl, or -(CH₂)_nCOaryl group, in which n is 1-4;

- f) a -(CH₂)_nvinyl, -(CH₂)_nethinyl, or -(CH₂)_ncycloalkyl group in which n is 0, 1 or 2, wherein cycloalkyl is an aliphatic ring with 3 to 7 C atoms;
- g) a C₃-C₆-substituted alkenyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl); or
- h) a C₃-C₆-substituted alkinyl group (optionally substituted with H, F, Br, Cl, CN, CO₂alkyl, COalkyl, COaryl);

 R_3 has the same meaning as R_1 ,

R₄ and R₅ are either

- a) both hydrogen, or
- b) one of R_4 and R_5 is hydrogen, an alkyl, alkenyl, alkinyl, arylalkyl, arylalkenyl, or arylalkinyl group, and the other of R_4 and R_5 is
- i) OR₆, in which R₆ means hydrogen, a C₁-C₁₀, optionally branched or substituted alkyl group or cycloalkyl group, a C₃-C₁₀ substituted silyl group, or a C₂-C₁₀ alpha-alkoxyalkyl group;

 G_1 is -(CH₂)_x-, in which x is 1 or 2;

 G_2 is $-(CH_2)_y$ -, in which y is 0 to 2;

 G_3 is -(CH₂)_z-, in which z is 0 to 3, provided that the sum of x+y+z is at least 2 and at most 4; and

W is N-1,3,5-triazinyl, wherein the triazine radical can then be substituted with Cl, OR_6 or NR_7R_7 , in which R_6 has the meaning indicated above and the two substituents R_7 are the same or different and are hydrogen, a C_1 - C_4 , optionally

Serial No.: 09/980,025

branched, alkyl group or cycloalkyl group, or substituents R_7 together are - $(CH_2)_n$ -, in which n is 3 to 5.

62. (new) A compound having the following structure:

$$H_3C$$

OH

 CH_3
 N
 CH_3
 CH_3
 CH_3

63. (new) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound having the following structure:

or a pharmaceutically acceptable salt thereof.

Serial No.: 09/980,025

64. (new) A method of preparing a pharmaceutical composition comprising:

providing a therapeutically effective amount of a compound having the following structure:

or a pharmaceutically acceptable salt thereof; and

combining a pharmaceutically acceptable excipient with the therapeutically effective amount of the compound or a pharmaceutically acceptable salt thereof.