CASE 5: YANGARRA RESOUCE LIMITED

Ziqian Zhong #1000915744 Chenhao Zheng #1000888836 Yue Shu (Blair)#1000277942

- > Problem Statement
- > Assumptions
- > Model Development
- > Base Solution
- > Sensitivity Analysis
- > Conclusion

Outline

Problem Statement

- ➤ Yangarra was an oil and gas company with properties throughout Alberta. In this case, it was involved in construction of the 9-20 well.
- ➤ Jim Evashkevich, president and CEO of Yangarra was going to make a choice of whether Yangarra should continue to invest in the project or not, which yields different consequences.
- > Yangarra gets revenue in both scenarios, but on different terms.
- > The objective was to select the plan with a higher return.

Assumptions

- The initial oil production has a uniform distribution between from 50 400 barrels.
- The decline rate of oil production has a linear relationship within each time interval.
- ➤ The monthly oil price also distributes uniformly, ranging from 70 80 barrels.
- Yangarra pays 2 times the cost of completion and tie-in if not investing. Other cases would be analysed in the sensitivity analysis.
- ➤ If Yangarra chooses not to invest, the company would **not receive any cash** inflow until the project breakevens.
- > Oil production is the same throughout each month.

Model Development - Basic Principles

- Since there were only two choices here and there were some conditional constraints, **SIMUL8** was chosen by us to model this case.
- As mentioned in the assumptions, we use uniform distributions to generate a random number between 50 to 400 barrels/day as initial oil production for each itertaion and a random number between from 70 to 80 dollar/barrel for each month
- There are 240 arrivals representing the 240 months (20 years) project life span

Model Development - Graphical Prensentation

- This is how our model looks like in SIMUL8.
- \triangleright 240 is the count for months.
- Detailed Visual Logics is in Activity 1

Model Development - Visual Logic

This is the visual logic we used to calculate the total gross revenue and net income in NPV.

```
—- Activity 1 Action Logic
                      --- SET initial = initialflow
                       -- SET disrate = 1.1
                      ⊟-- IF timecount < 18</p>
                         --- SET barrel = initial*[[0-[0.01667*timecount]]+1]
                           SET gasprice = price
Visual
                        □-- IF timecount <= 12
                           --- SET year1 = year1+[[barrel*gasprice]*30]
Logic for
                           --- SET barrelcount = barrelcount+[barrel*30]
Crown
                           ☐-- IF barrelcount < 60000
Royalties
                              -- SET new1 = new1+[[[barrel*gasprice]*30]*0.95]
                              -- SET new1 = new1+[[[barrel*gasprice]*30]*0.725]
                        -- ELSE
                            --- SET year2 = year2+[[[barrel*gasprice]*30]/disrate]
                           --- SET barrelcount = barrelcount+[barrel*30]
                           i-- IF barrelcount < 60000
                              -- SET new2 = new2+[[[[barrel*gasprice]*30]*0.95]/disrate]
                           FI-- ELSE
                              -- SET new2 = new2+[[[[barrel*gasprice]*30]*0.725]/disrate]

⊕-- ELSE IF timecount < 36
</p>
                     FI-- ELSE IF timecount < 120
                     -- ELSE
                      --- SET timecount = timecount+1
```

Base Solution

> The Net Income and Total Revenue of the whole project:

Net Income	16283230.9	17757132	19231033.07
Total Revenue	21205397.3	23227498.8	25249600.34

Option 1 - Invest

To invest:

➤ Total Return = <u>31.875% of Net Income</u> + <u>15% *</u> <u>68.125%*Total Revenue - investment cost</u>

Column1	¥	5%	*	50%	9	95%	v
Total return		73572	06.38	8033645	.85		8710085.326
ROI	8	3.5	77289	3.90619	366		4.235098326

The scenario with a cost of around 2 million.

Option 2 - Not to invest

Not to Invest:

- Since the project breaks even during the first year, we can calculate Yangarra's earning by deducing the amount to breakeven from the total revenue of the project
- > Total Return = (Total Revenue -\$2,056,643)*15%- \$655,555*2

Column1	5%	50%	95%
Total return	1561203.14	1864518.37	2167833.601

Base Solution

➤ Clearly Yangarra needs to continue investing for more profit if they have enough cash flow.

➤ Invest

Column1		5%	-	50%	Ψ,	95%	*
Total return	- 4	7357206	5.38	8033645	.85		8710085.326
ROI		3.41141	597	3.725069	87		4.03872376

➤ Not invest

Column1	5%	50%	95%	101145000000
Total return	1546203.14	1849518.37		2152833.601

Sensitivity Analysis

- ➤ In this section, our sensitivity analysis will basically focus on 2 aspects:
 - Change the floating discount rate to see what influence will apply on the model.
 - Study the risk of Harvest's completion method. According to the case description, there would be approximately one in 10 completions having cost overruns up to 1 million.

Sensitivity Analysis- Floating Discount Rate

Discount Rate between 5% and 15%

> revenue

Net Income

Sensitivity Analysis - Change the Investment Amount

> The scenario with a cost of around 3 million.

> To invest

Column1	¥	5%	¥	50%	¥	95%	-
Total return		4800	321	4866646.	.99		4932472.564
ROI		1.570	519	1.59215	42		1.613689451

Not to invest

Column1	5%	50%	95%	
Total return	1629898	1659586.05		1689274.449

Conclusion

- Under the current GORR rate, Yangarra should always consider to keep investing, as this option is much more profitable in 95% cases.
- The expected return is \$8,033,645.85 when the expected completion cost is \$2,056,643.
- ➤ No matter how much penalty Yangarra pays (the least being 2 times the completion cost, as we have assumed), the option of not investing is never as profitable as the option of keep investing.