第_四__周周记

周一		
完成内容	1.完成计算机英语-期末考试	
	2.与研究生学姐见面交流,确定了下一步任务:继续阅读论文,运行论文	
	代码,了解其功能,从中学习运用到自己的项目中	
内容描述		
未解决问		
题		

周二	
完成内容	阅读论文 A Discriminative Graph-Based Parser for the Abstract Meaning
	Representation
内容描述	重点阅读第 3 节 Concept Identification , 了解 AMR 中的概念识别
未解决问	
题	

	周三	
完成内容	1.完成软件安全技术-期末考试	
	2. 乘车回家	
内容描述		
未解决问		
题		

	周四
完成内容	乘车回家
内容描述	
未解决问	
题	

周五		
完成内容	阅读论文 Abstract Meaning Representation Parsing using LSTM Recurrent	
	Neural Networks (2017)	
内容描述	重点阅读学习第 2,3,4 节了解英文 AMR 解析器,后期运行环境配置参考第	
	5 节 Experimental Setup	
未解决问		
题		

周末		
完成内容	安装双系统(Ubuntu 17.01),配置运行环境	
内容描述		
未解决问		
题		

	工程汇总
完成任务	1. 阅读论文 A Discriminative Graph-Based Parser for the Abstract Meaning
	Representation
	2. 阅读论文 Abstract Meaning Representation Parsing using LSTM Recurrent
	Neural Networks (2017)
	3. 安装 Ubuntu 系统,配置运行环境
任务描述	
代码量	
未解决问	
题	

论文汇总		
论文列表	[1] A Discriminative Graph-Based Parser for the Abstract Meaning	
	Representation	
	[2] Abstract Meaning Representation Parsing using LSTM Recurrent Neural	
	Networks	
论文摘要	[1] Abstract Meaning Representation (AMR) is a semantic formalism for which	
	a growing set of annotated examples is available. We introduce the first approach	
	to parse sentences into this representation, providing a strong baseline for future	
	improvement. The method is based on a novel algorithm for finding a maximum	
	spanning, connected subgraph, embedded within a Lagrangian relaxation of an	
	optimization problem that imposes linguistically inspired constraints. Our	
	approach is described in the general framework of structured prediction,	
	allowing future incorporation of additional features and constraints, and may	
	extend to other formalisms as well. Our open-source system, JAMR, is available	
	at: http://github.com/jflanigan/jamr	
	[2] We present a system which parses sentences into Abstract Meaning	
	Representations, improving state-of-the-art results for this task by more than 5%.	
	AMR graphs represent semantic content using linguistic properties such as	
	semantic roles, coreference, negation, and more. The AMR parser does not rely	
	on a syntactic preparse, or heavily engineered features, and uses five recurrent	
	neural networks as the key architectural components for inferring AMR graphs	
未解决问		
题		

		下周任务
工作	1.	完成 Linux 系统安装,根据 GitHub 上所说完成环境配置
	2.	阅读论文 CU-NLP at SemEval-2016 Task 8: AMR Parsing using LSTM-
		based Recurrent Neural Networks(2016年),与 Abstract Meaning
		Representation Parsing using LSTM Recurrent Neural Networks (2017)
		年)后续论文联系比较
	3.	阅读论文 Abstract Meaning Representation for Sembanking

	4. 阅读论文 Smatch: an Evaluation Metric for Semantic Feature Structures, 了解是 Smatch 评分
	5. 阅读代码,了解代码功能
论文	1. CU-NLP at SemEval-2016 Task 8: AMR Parsing using LSTM-based
	Recurrent Neural Networks
	2. Abstract Meaning Representation for Sembanking
	3. Smatch: an Evaluation Metric for Semantic Feature Structures
其他	
汇总	

日期:2018/1/22 - 2018/1/28