## $12a_{1034} \ (K12a_{1034})$



Ideals for irreducible components<sup>2</sup> of  $X_{par}$ 

$$I_1^u = \langle u^{60} + u^{59} + \dots - u^2 + 1 \rangle$$

\* 1 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 60 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{60} + u^{59} + \dots - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} + 3u^{6} + u^{4} - 2u^{2} + 1 \\ -u^{8} - 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{20} + 9u^{18} + \dots - 3u^{2} + 1 \\ u^{22} + 10u^{20} + \dots - 10u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} - 5u^{10} - 7u^{8} + 2u^{4} - 3u^{2} + 1 \\ u^{12} + 6u^{10} + 12u^{8} + 8u^{6} + u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{31} - 14u^{29} + \dots + 20u^{5} - 8u^{3} \\ u^{31} + 15u^{29} + \dots - 8u^{5} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{54} + 25u^{52} + \dots - 2u^{2} + 1 \\ u^{56} + 26u^{54} + \dots + 2u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-4u^{58} 4u^{57} + \cdots + 4u + 2$

## (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing         |
|-----------------------|----------------------------------------|
| $c_1$                 | $u^{60} - 15u^{59} + \dots - 16u + 1$  |
| $c_2, c_6, c_7$       | $u^{60} + u^{59} + \dots + 2u + 1$     |
| <i>c</i> <sub>3</sub> | $u^{60} - u^{59} + \dots + 12u + 5$    |
| <i>C</i> <sub>4</sub> | $u^{60} - u^{59} + \dots - 976u + 457$ |
| $c_5, c_{10}, c_{11}$ | $u^{60} + u^{59} + \dots - u^2 + 1$    |
| $c_8, c_9, c_{12}$    | $u^{60} + 7u^{59} + \dots + 176u + 17$ |

## (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing              |
|-----------------------|-------------------------------------------------|
| $c_1$                 | $y^{60} + y^{59} + \dots + 126y + 1$            |
| $c_2, c_6, c_7$       | $y^{60} + 53y^{59} + \dots - 2y + 1$            |
| <i>c</i> 3            | $y^{60} - 7y^{59} + \dots + 266y + 25$          |
| $c_4$                 | $y^{60} + 29y^{59} + \dots + 6707658y + 208849$ |
| $c_5, c_{10}, c_{11}$ | $y^{60} + 57y^{59} + \dots - 2y + 1$            |
| $c_8, c_9, c_{12}$    | $y^{60} + 65y^{59} + \dots + 8430y + 289$       |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.073972 + 1.163980I | 3.44486 - 4.07290I                    | 0                   |
| u = -0.073972 - 1.163980I | 3.44486 + 4.07290I                    | 0                   |
| u = -0.687972 + 0.447740I | -1.97103 - 10.12300I                  | 1.79388 + 7.77303I  |
| u = -0.687972 - 0.447740I | -1.97103 + 10.12300I                  | 1.79388 - 7.77303I  |
| u = 0.680583 + 0.456074I  | -7.13842 + 6.32141I                   | -2.86224 - 6.81848I |
| u = 0.680583 - 0.456074I  | -7.13842 - 6.32141I                   | -2.86224 + 6.81848I |
| u = -0.634060 + 0.514914I | -2.22403 + 5.72401I                   | 1.08593 - 1.85120I  |
| u = -0.634060 - 0.514914I | -2.22403 - 5.72401I                   | 1.08593 + 1.85120I  |
| u = 0.642018 + 0.503673I  | -7.31878 - 1.92743I                   | -3.47550 + 0.73718I |
| u = 0.642018 - 0.503673I  | -7.31878 + 1.92743I                   | -3.47550 - 0.73718I |
| u = -0.664857 + 0.466839I | -5.12792 - 2.35466I                   | -0.20423 + 2.11201I |
| u = -0.664857 - 0.466839I | -5.12792 + 2.35466I                   | -0.20423 - 2.11201I |
| u = -0.651503 + 0.484423I | -5.19301 - 2.00819I                   | -0.45901 + 4.03609I |
| u = -0.651503 - 0.484423I | -5.19301 + 2.00819I                   | -0.45901 - 4.03609I |
| u = 0.042814 + 1.220540I  | -1.97107 + 1.50217I                   | 0                   |
| u = 0.042814 - 1.220540I  | -1.97107 - 1.50217I                   | 0                   |
| u = 0.624478 + 0.433571I  | 1.64938 + 2.01589I                    | 4.08259 - 3.48102I  |
| u = 0.624478 - 0.433571I  | 1.64938 - 2.01589I                    | 4.08259 + 3.48102I  |
| u = -0.181617 + 1.297260I | 2.13974 - 1.34166I                    | 0                   |
| u = -0.181617 - 1.297260I | 2.13974 + 1.34166I                    | 0                   |
| u = 0.614989 + 0.200876I  | 5.34028 + 6.50684I                    | 7.37974 - 8.13021I  |
| u = 0.614989 - 0.200876I  | 5.34028 - 6.50684I                    | 7.37974 + 8.13021I  |
| u = 0.163827 + 1.347560I  | -3.62256 + 2.89228I                   | 0                   |
| u = 0.163827 - 1.347560I  | -3.62256 - 2.89228I                   | 0                   |
| u = 0.219969 + 1.352410I  | 0.44892 + 9.53691I                    | 0                   |
| u = 0.219969 - 1.352410I  | 0.44892 - 9.53691I                    | 0                   |
| u = -0.202204 + 1.360380I | -4.85892 - 6.22848I                   | 0                   |
| u = -0.202204 - 1.360380I | -4.85892 + 6.22848I                   | 0                   |
| u = -0.574314 + 0.211859I | 0.10203 - 3.40195I                    | 2.36486 + 8.98890I  |
| u = -0.574314 - 0.211859I | 0.10203 + 3.40195I                    | 2.36486 - 8.98890I  |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.593296 + 0.091146I | 6.41878 + 1.46042I                    | 10.68628 + 0.60168I |
| u = -0.593296 - 0.091146I | 6.41878 - 1.46042I                    | 10.68628 - 0.60168I |
| u = -0.094939 + 1.403170I | -6.72408 - 0.55116I                   | 0                   |
| u = -0.094939 - 1.403170I | -6.72408 + 0.55116I                   | 0                   |
| u = 0.141219 + 1.403700I  | -3.71284 + 3.63692I                   | 0                   |
| u = 0.141219 - 1.403700I  | -3.71284 - 3.63692I                   | 0                   |
| u = 0.06449 + 1.41451I    | -2.22010 - 2.72204I                   | 0                   |
| u = 0.06449 - 1.41451I    | -2.22010 + 2.72204I                   | 0                   |
| u = 0.449146 + 0.370470I  | 1.87583 + 1.52379I                    | 1.42533 - 4.53633I  |
| u = 0.449146 - 0.370470I  | 1.87583 - 1.52379I                    | 1.42533 + 4.53633I  |
| u = 0.175087 + 0.537271I  | 3.72771 - 3.58989I                    | 1.96909 + 2.44140I  |
| u = 0.175087 - 0.537271I  | 3.72771 + 3.58989I                    | 1.96909 - 2.44140I  |
| u = 0.504340 + 0.126906I  | 1.045820 + 0.488578I                  | 7.62233 - 1.40615I  |
| u = 0.504340 - 0.126906I  | 1.045820 - 0.488578I                  | 7.62233 + 1.40615I  |
| u = 0.22963 + 1.46850I    | -4.48715 + 5.15340I                   | 0                   |
| u = 0.22963 - 1.46850I    | -4.48715 - 5.15340I                   | 0                   |
| u = -0.24885 + 1.48213I   | -8.2124 - 13.5434I                    | 0                   |
| u = -0.24885 - 1.48213I   | -8.2124 + 13.5434I                    | 0                   |
| u = -0.23681 + 1.48479I   | -11.44400 - 5.64534I                  | 0                   |
| u = -0.23681 - 1.48479I   | -11.44400 + 5.64534I                  | 0                   |
| u = 0.24451 + 1.48402I    | -13.4161 + 9.6987I                    | 0                   |
| u = 0.24451 - 1.48402I    | -13.4161 - 9.6987I                    | 0                   |
| u = -0.22774 + 1.48877I   | -11.58670 - 5.21243I                  | 0                   |
| u = -0.22774 - 1.48877I   | -11.58670 + 5.21243I                  | 0                   |
| u = 0.21994 + 1.49282I    | -13.79450 + 1.20545I                  | 0                   |
| u = 0.21994 - 1.49282I    | -13.79450 - 1.20545I                  | 0                   |
| u = -0.21419 + 1.49447I   | -8.74495 + 2.64788I                   | 0                   |
| u = -0.21419 - 1.49447I   | -8.74495 - 2.64788I                   | 0                   |
| u = -0.230735 + 0.410245I | -1.120870 + 0.745291I                 | -4.58971 - 1.41365I |
| u = -0.230735 - 0.410245I | -1.120870 - 0.745291I                 | -4.58971 + 1.41365I |

II. u-Polynomials

| Crossings             | u-Polynomials at each crossing         |
|-----------------------|----------------------------------------|
| $c_1$                 | $u^{60} - 15u^{59} + \dots - 16u + 1$  |
| $c_2, c_6, c_7$       | $u^{60} + u^{59} + \dots + 2u + 1$     |
| $c_3$                 | $u^{60} - u^{59} + \dots + 12u + 5$    |
| $c_4$                 | $u^{60} - u^{59} + \dots - 976u + 457$ |
| $c_5, c_{10}, c_{11}$ | $u^{60} + u^{59} + \dots - u^2 + 1$    |
| $c_8, c_9, c_{12}$    | $u^{60} + 7u^{59} + \dots + 176u + 17$ |

III. Riley Polynomials

| Crossings             | Riley Polynomials at each crossing              |
|-----------------------|-------------------------------------------------|
| $c_1$                 | $y^{60} + y^{59} + \dots + 126y + 1$            |
| $c_2, c_6, c_7$       | $y^{60} + 53y^{59} + \dots - 2y + 1$            |
| $c_3$                 | $y^{60} - 7y^{59} + \dots + 266y + 25$          |
| C <sub>4</sub>        | $y^{60} + 29y^{59} + \dots + 6707658y + 208849$ |
| $c_5, c_{10}, c_{11}$ | $y^{60} + 57y^{59} + \dots - 2y + 1$            |
| $c_8, c_9, c_{12}$    | $y^{60} + 65y^{59} + \dots + 8430y + 289$       |