

Maths

Algebra

Expand and simplify binomials

Expand and simplify binomials

Series

Part A
$$(x+1)^4$$

Expand and simplify $(x+1)^4$. (Give your answer in descending powers of x.)

The following symbols may be useful: x

Part B
$$(z+2a)^3$$

Expand and simplify $(z+2a)^3$. (Give your answer in descending powers of z.)

The following symbols may be useful: a, z

Part C
$$(a-b)^5$$

Expand and simplify $(a - b)^5$. (Give your answer in descending powers of a.)

The following symbols may be useful: a, b

Created for isaacphysics.org by Julia Riley.

Maths

Algebra

Series Fin

Find coefficients 2

Find coefficients 2

Without expanding the binomials, find:

Part A Coefficient of x^4y^6

The coefficient of x^4y^6 in the expansion of $(x^2+3y^2)^5$.

Part B Coefficient of x^{20}

The coefficient of x^{20} in the expansion of $(x^2 + 3x)^{12}$.

Part C The coefficient of ab^7

The coefficient of ab^7 in the expansion of $(a+\frac{1}{4}b)^8$.

Part D Constant term

The constant term in the expansion of $(\frac{x^2}{2} - \frac{8}{x})^9$.

Created for isaacphysics.org by Julia Riley.

Maths

Algebra

Group and expand

Group and expand

Expand $(1-2x+3x^2)^7$ in ascending powers of x as far as x^3 .

Series

The following symbols may be useful: \boldsymbol{x}

Created for isaacphysics.org by Julia Riley.

<u>Gameboard</u>

Maths

Binomial: All Rational n 4i

Binomial: All Rational n 4i

Part A Expansion 1

Find the first three terms of in the expansion of $(9-16x)^{\frac{3}{2}}$ in ascending powers of x.

The following symbols may be useful: \times

Part B Expansion 1: Validity

Find the set of values for which the expansion in Part A is valid.

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- () x < a
- $x \le a$
- () x > a
- $x \ge a$
- a < x < b
- $a \le x \le b$
- x < a or x > b
- $x \le a \text{ or } x \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Part C Expansion 2

Expand $(1+3x)^{-\frac{5}{3}}$ in ascending powers of x, up to and including the term x^3 .

The following symbols may be useful: x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>Pure Maths Practice: Binomial - All Rational n</u>

<u>Gameboard</u>

Maths

Binomial: All Rational n 2i

Binomial: All Rational n 2i

Part A Expansion

Expand $(1-4x)^{\frac{1}{4}}$ in ascending powers of x, up to and including the term in x^3 .

The following symbols may be useful: x

Part B Values of a and b

The term of lowest degree in the expansion of

$$(1+ax){(1+bx^2)}^7-{(1-4x)}^{rac{1}{4}}$$

in ascending powers of x is the term x^3 . Find the values of the constants a and b.

What is the value of a?

The following symbols may be useful: a

What is the value of b?

The following symbols may be useful: b

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

Pure Maths Practice: Binomial - All Rational n

Maths

Algebra

Series Maclaurin Series - Binomial

Maclaurin Series - Binomial

Part A Expand $(1+r)^{1/3}$ and find $1.1^{1/3}$ and $9^{1/3}$

Expand $(1+r)^{1/3}$ up to the term in r^3 .

The following symbols may be useful: r

Hence find, without using a calculator, $(1.1)^{1/3}$ to 3 decimal places.

Now find $9^{1/3}$ without using a calculator to 2 decimal places.

Part B Electric field on the axis of a charged sheet

The electric field E on the axis of a uniformly charged circular sheet at a distance z from the centre of the sheet is given by

$$E = rac{\sigma}{2\epsilon_0} \left[1 - rac{z}{\sqrt{z^2 + a^2}}
ight]$$

where σ is the charge per unit area on the sheet and a is the radius of the sheet. Show that in the limit when $z\gg a$ the field on the axis is such that $E\approx A/z^2$ and find A.

The following symbols may be useful: A, a, epsilon_0, sigma, z

Created for isaacphysics.org by Julia Riley

Home Gameboard Maths Algebra Series Maclaurin Series - Cos & Sin 1

Maclaurin Series - Cos & Sin 1

Part A Find the cosine of the angle $0.2\,\mathrm{rad}$

Find, using a Maclaurin expansion, the cosine of the angle $0.2 \, \mathrm{rad}$, correct to 3 decimal places.

Part B Find the sine of the angle $0.08\,\mathrm{rad}$

Find, using a Maclaurin expansion, the sine of the angle 0.08 rad, correct to 2 significant figures.

Part C Potential energy of mass on pendulum

A pendulum consists of a point mass m suspended on a light string of length l. When the string makes an angle of ϕ to the vertical its potential energy relative to the point where $\phi=0$ is given by $mgl(1-\cos\phi)$. Show that for $\phi\ll 1$ the potential energy is given approximately by $A_0\phi^2$ and find an expression for A_0 .

The following symbols may be useful: g, 1, $\mbox{\ensuremath{\mathtt{m}}}$

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 21 - Binomial & Maclaurin Expansions

Home Ga

<u>Gameboard</u>

Maths

Algebra

Maclaurin Series - In

Maclaurin Series - In

Part A Expand $\ln(1+z)$ and hence $\ln(2+4y)$

(i) Write down the Maclaurin expansion of $\ln(1+z)$ up to the term in z^3 .

Series

The following symbols may be useful: z

(ii) By re-writing $\ln(2+4y)$ in the form $A+\ln(1+z)$, where A is a constant, find the Maclaurin expansion of $\ln(2+4y)$ up to the term in y^3 .

The following symbols may be useful: y, z

Part B Expand $\ln([1+q]/[1-q])$

Find the first 4 non-zero terms in the Maclaurin expansion of $\ln{(\frac{1+q}{1-q})}$.

The following symbols may be useful: q

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 21 - Binomial & Maclaurin Expansions

<u>Gameboard</u>

Maths

Series

Maclaurin Series - Exponentials 2

Maclaurin Series - Exponentials 2

Algebra

Expand $A\mathrm{e}^{-lpha t}$ Part A

Expand $Ae^{-\alpha t}$ up to the term in t^2 .

The following symbols may be useful: A, alpha, p, t

Expand $\mathrm{e}^p - \mathrm{e}^{-p}$ Part B

Find the first two non-zero terms in the Maclaurin expansion of $e^p - e^{-p}$.

The following symbols may be useful: A, alpha, p, t

Energy decay in oscillations Part C

A lightly damped oscillatory system has a period T. The total energy of the system at time t is given by E(t). One period later its energy $E(t+T)=E(t)\mathrm{e}^{-\gamma T}$.

(i) Find an expression for the fractional change in energy in one cycle.

The following symbols may be useful: T, e, gamma

(ii) On the assumption that $\gamma T \ll 1$ find an approximate expression for the fractional change in energy in one cycle.

The following symbols may be useful: T, e, gamma

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 21 - Binomial & Maclaurin Expansions

<u>Gameboard</u>

Maths

Algebra Series

Maclaurin Series - Cos, Sin & Tan

Maclaurin Series - Cos, Sin & Tan

Part A Expand $an \phi$

(i) Write down the first two non-zero terms in the Maclaurin expansion of $\cos\phi$.

The following symbols may be useful: alpha, phi

(ii) Using your result from (i) and the Binomial expansion find the first two non-zero terms in the series for $1/\cos\phi=(\cos\phi)^{-1}$.

The following symbols may be useful: alpha, phi

(iii) Hence, using $\tan \phi = \sin \phi / \cos \phi = \sin \phi (\cos \phi)^{-1}$, multiply the result from (ii) and the Maclaurin expansion of $\sin \phi$ to get the first two non-zero terms in the Maclaurin expansion of $\tan \phi$.

The following symbols may be useful: alpha, phi

Part B Expand $\sin(2\alpha)$

(i) Using the fact that $\sin(2\alpha)=2\sin\alpha\cos\alpha$, multiply the Maclaurin expansions of $\cos\alpha$ and $\sin\alpha$ together to find the first three non-zero terms in the Maclaurin expansion of $\sin(2\alpha)$.

The following symbols may be useful: alpha, phi

(ii) Now find the Maclaurin expansion for $\sin(2\alpha)$ directly and verify that the first three non-zero terms in the series are the same as in (i). Find the coefficient of the α^7 term.

The following symbols may be useful: alpha, phi

Created for isaacphysics.org by Julia Riley