Objetivos

Nesse trabalho serão abordados os aspectos práticos de algoritmo de geometria computacional. Especificamente, avaliaremos as implementações dos algoritmos para computação da envoltória convexa de um conjunto de pontos no plano.

O objetivo principal é que os alunos presenciem as dificuldades inerentes da implementação dos algoritmos vistos em sala de aula. Os alunos deverão tomar decisões e/ou investigar quanto a melhor representação dos dados, e estruturas mais adequadas para a implementação dos algoritmos.

Como objetivo secundário, os alunos deverão ter contato com bibliotecas para construção de gráficos. Assim, será possível também visualizar o funcionamento dos algoritmos passo-apasso. Esse aspecto tem o objetivo pedagógico de fixar o funcionamento dos algoritmos.

Tarefas

Os alunos deverão implementar a Varredura de Graham, o Algoritmo de embrulho para presente (marcha de Jarvis), e o Algoritmo Incremental para computação da envoltória convexa.

Os algoritmos deverão ser implementados em Python 3. As soluções deverão ser implementadas em Jupyter Notebooks, acompanhadas de suas descrições (explicações dos algoritmos e detalhes da implementação).

A visualização dos algoritmos deverá ser construída com o auxílio da biblioteca Holoviews. Deverão ser criadas animações dinâmicas dos algoritmos, ao estilo das criadas nesse exemplo

https://nbviewer.jupyter.org/github/Gordon90s/holoviews_visualization_project/blob/master/Mathematical%20Visualization%20-%20Report.ipynb?

Os widgets criados deverão permitir gerar os pontos pela distribuição normal com parâmetros definidos pelo usuário. Eles deverão ter mecanismos para o usuário executar o algoritmo passo a passo, podendo, dessa forma, visualizar a execução do algoritmo. Por fim, eles deverão ter uma opção para executar todo o algoritmo. Nesse caso, as atualizações dos passos deverão ter um atraso (sleep) com tempo definido pelo usuário (padrão 0,5 segundos).

O uso de bibliotecas adicionais deve ser discutido com o professor.

O que entregar?

Deve ser entregue o notebook com a implementação, e qualquer arquivo que dê suporte a execução dos exemplos. O mesmo notebook deve ser colocado em um repositório no GitHub. O link para o repositório também deverá ser enviado na entrega.

Política de Plágio

Os alunos podem, e devem, discutir soluções sempre que necessário. Dito isso, há uma diferença bem grande entre implementação de soluções similares e cópia integral de ideias. Trabalhos copiados na íntegra ou em partes de outros alunos e/ou da internet serão prontamente anulados. Caso hajam dois trabalhos copiados por alunos diferentes, ambos serão anulados.

Datas

Entrega Moodle: 18/10/2019

Links de interesse

- https://nbviewer.jupyter.org/github/Gordon90s/holoviews_visualization_project/blob/master/Mathematical%20Visualization%20-%20Report.ipynb?
- http://holoviews.org
- https://nbviewer.jupyter.org/github/if1015-datascience-ufpe/slides/blob/master/aula10-datavis-parte02.ipynb