

Laboratory for Data Science

Alma Stira, 658699 Antonia Giovinazzi, 667576

Sommario

1.	Introduzione
2.	Datawarehouse
	2.1 Costruire un datawarehouse
	2.2 Popolare un datawarehouse
3.	Costruire un processo ETL
	Costruire un Data Cube
5.	Query MDX
6.	Creare un dashboard

1. Introduzione

La prima parte del lavoro per il nostro progetto è relativa alla costruzione di un datawarehouse a partire dal file "computer_sales.csv", che contiene una panoramica completa delle vendite di computer registrate tra marzo 2013 e aprile 2018. Il file è composto da 3.412.325 righe e da 25 colonne [tabella1], in cui sono riportati non solo dettagli delle transazioni di vendita, ma anche le specifiche tecniche delle configurazioni di CPU, GPU e RAM per ciascun dispositivo venduto, il che permette di avere una visione chiara delle caratteristiche dei prodotti acquistati.

Inoltre, il file correlato, "geography.xml", arricchisce il dataset aggiungendo informazioni geografiche sulle località associate a ciascuna vendita.

Colonna	Tipo di valore
Time code	INT 64
Geo_id	
Ram_sales_currency	
Cpu sales currency	
Gpu_sales_currency	
Ram size	
Ram clock	Float64
Cpu_n_cores	
Gpu_memory	
Sales_currency	
Currency Ram_vendor_name	
Cpu_vendor_name	
Gpu_vendor_name	
Ram_brand	
Cpu_brand	
Gpu_brand	
Ram_name	
Cpu_name	Object
Gpu_name	
Ram_type	
Cpu_series	
Cpu_socket	
Gpu_processor	
Gpu_processor_manufacturer	
Gpu_memory_type	

Tabella 1: Tipologia dei dati

2. Datawarehouse

2.1 Costruire un datawarehouse

Al fine di creare un nuovo datawarehouse ci siamo concentrate sul capire il significato e i valori associati alle colonne che caratterizzavano il nostro

dataset. L'approccio principale utilizzato per questo compito è stato quello di controllare il set di dati tramite l'utilizzo di *python* e in particolar modo della libreria csv. Durante la parte di comprensione dei dati non sono stati trovati outliers né valori mancanti, tuttavia si è fatta attenzione sui valori 'geizhals_unknown' e 'pricespy_unknown' che erano rispettivamente presenti nelle colonne 'cpu_vendor_name', 'gpu_vendor_name', 'ram_vendor_name'. Così distribuiti:

geizhals_unknown	2.043.095
pricespy_unknown	321.750

geizhals_unknown	1.016.568
pricespy_unknown	78.993

geizhals_unknown	98.457
pricespy_unknown	89.090

Tabella 2 : Valori univoci di unkonown per Ram

Tabella 3: Valori univoci di unknown per Cpu

Tabella 2: Valori univoci di unknown di Gpu

Analizzando il significato dei due valori:

- geizhals_unknown: probabilmente fa riferimento a dati provenienti al sito di comparazione prezzi Geizhals, dove il nome del venditore potrebbe non essere stato disponibile o non riconosciuto al momento della registrazione
- pricespy_unknown: fa riferimento al sito PriceSpy, e indica che l'informazione relativa al venditore non era disponibile o non è stata identificata

di conseguenza dato che nessuno dei due fa effettivamente riferimento ai nomi dei venditori ma a siti di rivenditori si è deciso, per mantenere una coerenza dei dati, di eliminare qualsiasi riga avesse uno dei due valori. A questo punto il nostro dataset si è dimezzato a 1.032.928 record.

Al fine di creare le basi del nostro datawarehouse si è proceduto alla creazione delle colonne: 'year', 'month', 'quarter',' dayofweek', 'day', estrapolate dalla colonna 'time_code', mentre le colonne 'cpu_sales_usd', 'gpu_sales_usd', 'ram_sales_usd' create moltiplicando le rispettive colonne 'cpu_sales_currency', 'gpu_sales_currency' e 'ram_sales_currency' con un tasso di cambio.

```
def create_time_columns(time_code):
     date_obj = datetime.datetime.strptime(time_code, "%Y%m%d")
     year = date obj.year
     month = date_obj.month
     day = date_obj.day # numerico
     week = date_obj.isocalendar()[1]
     quarter = (nonth - 1) // 3 + 1
     day_of_week = date_obj.strftime("%A") # Giorno della settimana in nome
          'year': year,
'month': month,
          'day': day,
          'week': week,
'quarter': f"Q(quarter)",
          'day of week': day of week
def convert_to_usd(amount, currency):
    exchange_rate = 1.1 # imposture it tassa
     if currency == 'USD':
          return float(amount)
          return float(amount) * exchange_rate
file_path = r'C:\Users\User\LDS\filtered_computer_sales.csv'
output_file_path = r'C:\Users\User\LDS\c_s_time.csv
with open(file_path, mode='r', newline='', encoding='utf-8') as file:
    csv_reader = csv.DictReader(file)
     N Salva i fieldnames originali (colonne esistenti)
    fieldnames = csv_reader.fieldnames + ['year', 'month', 'day', 'week', 'quarter', 'day_of_week', 'ram_sales_usd', 'cpu_sales_usd', 'gpu_sales_usd', 'total_sales_usd']
     for row in csy reader:
               time_columns = create_time_columns(row['time_code'])
          W Conversione delle vendite in USD
          ram_sales_usd = convert_to_usd(row['ram_sales_currency'], row['currency'])
          cpu_sales_usd = convert_to_usd(row['cpu_sales_currency'], row['currency'])
gpu_sales_usd = convert_to_usd(row['gpu_sales_currency'], row['currency'])
total_sales_usd = convert_to_usd(row['sales_currency'], row['currency'])
          # si agg tutte le înformazioni alla riqa
          new_row = row.copy()
          new_row.update(time_columns)
         new_row['ram_sales_usd'] = ram_sales_usd
new_row['ram_sales_usd'] = cpu_sales_usd
new_row['gpu_sales_usd'] = gpu_sales_usd
new_row['total_sales_usd'] = total_sales_usd
          W si gga La nuova riaa modificata al nuovi dati
          new_sales_data.append(new_row)
with open(output_file_path, mode='w', newline='', encoding='utf-8') as output_file:
    writer = csv.DictWriter(output_file, fieldnames=fieldn
     writer.writeheader()
     writer.writerows(new_sales_data)
print("Datl processati e salvati con successo in 'c s time.csv'!")
```

Figura 1: Codice creazione nuove colonne

Successivamente ci siamo dedicate all'unione del nostro attuale csv con le informazioni geografiche, il che è stato possibile grazie alla colonna 'geo_id' già presente nel nostro file 'computer_sales.csv', di conseguenza abbiamo ottenuto come risultato finale un file csv composto da 1.032.928 record e 38 colonne, che combina i dati di vendita con le informazioni geografiche per ogni record.

I passaggi successivi riguardano la creazione di diversi dizionari per tenere traccia delle combinazioni uniche che stanno ad indicare gli id delle nostre future tabelle. Infine abbiamo utilizzato questi dati per creare una "fact table" destinata ad essere utilizzata in un database relazionale, che raccoglie informazioni dettagliate sulla vendita di componenti hardware (Cpu, Ram, Gpu) associandole a dimensioni come geografia, tempo e i diversi componenti.

2.1 Popolare un datawarehouse

In questa fase riguarda la popolazione del nostro data warehouse. Per iniziare, su SQL Management Studio abbiamo creato le tabelle 'Geography', 'Ram', 'Gpu', 'Cpu', 'Time' e 'Computer_sales'. Successivamente, utilizzando Python e la libreria *pyodbc*, abbiamo stabilito una connessione al database e proceduto con il popolamento delle varie tabelle con il seguente codice:

```
# Connessione al database
server = 'tcp:lds.di.unipi.it'
username = 'Group_ID_2'
password = 'VGGIZA0H'
database = 'Group_ID_2_DB'
connectionString = 'DRIVER={ODBC Driver 17 for SQL Server};SERVER='+server+';DATABASE='+database+';UID='+username+';PWD='+password
   cnxn = pyodbc.connect(connectionString)
   cursor = cnxn.cursor()
print("Connessione effettuata!")
    # Apri il file della Geography
    with open('Geography.csv', 'r') as file:
    reader = csv.reader(file)
         next(reader)
         for row in reader:
              # Priparare i dati da inserire
             geo_id = row[0]
             country = row[1]
region = row[2]
             continent = row[3]
             currency = row[4]
              # inseriamo i dati nella tabella Geography
              cursor.execute(""
                INSERT INTO Geography (geo_id, country, region, continent, currency)
             VALUES (?, ?, ?, ?)
""", geo_id, country, region, continent, currency)
    # Commit delle operazioni di inserimento
    print("Dati inseriti correttamente nella tabella Geography!")
except pyodbc.Error as ex:
    print(f"Errore di connessione al database: {ex}")
    # Chiudi La connessione al database!!!!!!
cnxn.close()
```

Figura 2: Codice popolazione data warehouse

Completato il processo di popolazione delle tabelle, il nostro data warehouse ha assunto il seguente schema.

Figura 3: Schema data warehouse

3. Costruire un processo ETL

Per la costruzione di un flusso di lavoro ETL abbiamo utilizzato il pacchetto SSIS di Visual Studio. La task richiedeva: "identificare gli ID computer associati alle vendite più elevate di CPU, inoltre, aumentare il risultato includendo la percentuale di vendite w.r.t. alle vendite totali di tutti i computer all'interno della stessa serie di CPU".

Figura 4: Flusso dati ETL

Come mostrato in figura, il primo passo è stato connettersi al database remoto tramite una fonte OLE DB, che ci ha permesso di accedere alla tabella dei fatti "computer_sales". Utilizzando due ricerche dei nodi, abbiamo mappato i record della fact table con le tuple presenti nelle tabelle "Time", "Geography" e "Cpu".

Grazie all'operatore Multicast, abbiamo eseguito in parallelo due aggregazioni: una per calcolare le vendite totali di CPU, raggruppate per anno e regione, e l'altra per sommare le vendite di computer appartenenti alla stessa serie di CPU.

I due output, una volta ordinati, sono stati processati dall'operatore Merge Join, che ha combinato i dati aggregati, correlando le vendite più alte di CPU per regione e anno con le vendite totali di computer della stessa serie. Infine, con l'utilizzo di Derived Column, è stata creata una nuova colonna per calcolare la percentuale di vendite di ogni CPU rispetto alle vendite totali nella stessa serie. I risultati finali sono stati salvati in un file flat, che include gli ID dei computer con le vendite di CPU più alte e la percentuale di vendite calcolata.

4. Costruire un Datacube

Per questa task abbiamo utilizzato il pacchetto SSAS di Visual Studio per costruire il nostro data cube. I primi due passaggi fondamentali sono stati definire l'origine dati e la vista dati. Una volta completati questi step, siamo passati alla creazione delle dimensioni, che includono: Cpu, Ram, Gpu, Time e Geography.

In particolare, per le ultime due sono state definite le seguenti gerarchie:

Figura 5: Gerarchia Geography

Nella tabella Time, abbiamo aggiunto una nuova colonna chiamata 'cat_month', che associa i nomi dei mesi ai valori numerici della colonna 'month', garantendo una corrispondenza precisa tra mese numerico e mese categorico.

Completata la costruzione del cubo, abbiamo poi modificato le proprietà degli attributi 'ram_sales_currency', 'cpu_sales_currency' e 'gpu_sales_currency', impostando l'aggregazione su "somma" e il tipo di dato su "double", in modo da ottimizzare il calcolo delle vendite.

5. Query MDX

Questa task richiedeva la creazione di una query MDX: "mostrare i primi 5 brand di CPU, RAM e GPU in base alle vendite medie mensili, suddivise per ogni regione in Europa". A causa di alcuni problemi riscontrati durante l'esecuzione, non è stato possibile ottenere un unico output. Pertanto, abbiamo suddiviso le query per questa task come segue:

```
WITH
-- Calcola le vendite medie mensili per RAM
MEMBER [Measures].[Monthly Avg Ram Sales] AS
    Avg(
        Descendants([Time].[time_Gerarchia].[Year], [Time].[time_Gerarchia].[Cat Month]), [Measures].[Ram Sales Currency]
-- Set per le regioni europee
SET [EuropeanRegions] AS
    Descendants([Geography].[geo_Gerarchia].[Continent].&[Europe], [Geography].[geo_Gerarchia].[Region])
-- Top 5 marchi RAM per ciascuna regione specifica
SET [TopRamBrandsPerRegion] AS
NONEMPTY(
        Generate(
            [EuropeanRegions],
             TopCount(
NONEMPTY(
                      [Ram].[Ram Brand].Members,
                      ([Measures].[Monthly Avg Ram Sales], [Geography].[geo_Gerarchia].CurrentMember)
                 [Measures].[Monthly Avg Ram Sales]
    )
SELECT
 -- Righe: Regioni europee con i Top 5 marchi RAM locali
NONEMPTY(
    Generate(
        [EuropeanRegions],
TopCount(
NONEMPTY(
                 CrossJoin(
                     [Ram].[Ram Brand].Members,
                      [Geography].[geo_Gerarchia].CurrentMember
                 [Measures].[Monthly Avg Ram Sales]
            ),
            [Measures].[Monthly Avg Ram Sales]
        )
) ON ROWS.
-- Colonne: Vendite medie mensili per i Top 5 marchi RAM locali
```

Figura 7: Codice Query MDX per Ram

[Measures].[Monthly Avg Ram Sales] ON COLUMNS

[Cubo_giovinazzi_stira]

		Monthly Avg Cpu Sales
All	analucia	1295324.9925
INTEL	analucia	1286456.3475
AMD	analucia	21284.748
All	aragon	71549.75
INTEL	aragon	59918.1369230769
AMD	aragon	11631.6130769231
All	asturleon	88455.49
INTEL	asturleon	80125.7876923077
AMD	asturleon	8329.70230769231
All	baden-wuttemberg	1341167.5488
INTEL	baden-wuttemberg	1305699.3832
AMD	baden-wuttemberg	40304.7336363636

Figura 10: Output Query per Cpu

		Monthly Avg Ram Sales
All	analucia	112400.4275
G.SKILL	analucia	46930.8525
CORSAIR	analucia	33460.3375
KINGSTON	analucia	17984.6379166667
CRUCIAL	analucia	4706.74
TEAM GROUP	analucia	2842.7925
All	aragon	40612.0815384615
G.SKILL	aragon	21316.8784615385
CORSAIR	aragon	10008.9407692308
KINGSTON	aragon	7898.00384615384
CRUCIAL	aragon	1312.153
MUSHKIN	aragon	943.5
All	asturleon	37721.7984615385
G.SKILL	asturleon	19861.7853846154
CORSAIR	asturleon	8857.21153846154
KINGSTON	asturleon	7426.83769230769
CRUCIAL	asturleon	1331.20416666667
MUSHKIN	asturleon	1062.16333333333

Figura 8: Output query per Ram

Figura 9: Codice Query MDX per Cpu

```
MEMBER [Measures].[Monthly Avg Gpu Sales] AS
        Descendants([Time].[time_Gerarchia].[Year], [Time].[time_Gerarchia].[Cat Month]),
[Measures].[Gpu Sales Currency]
    Descendants([Geography].[geo Gerarchia].[Continent].&[Europe], [Geography].[geo Gerarchia].[Region])
SET [TopRamBrandsPerRegion] AS
    NONEMPTY(
             [EuropeanRegions],
TopCount(
                 NONEMPTY (
                      ([Measures].[Monthly Avg Gpu Sales], [Geography].[geo_Gerarchia].CurrentMember)
                 [Measures].[Monthly Avg Gpu Sales]
SELECT
NONEMPTY(
    Generate(
        [EuropeanRegions],
TopCount(
             NONEMPTY(
                 CrossJoin(
                      [Gpu].[Gpu Brand].Members,
[Geography].[geo_Gerarchia].CurrentMember
                 [Measures].[Monthly Avg Gpu Sales]
             [Measures].[Monthly Avg Gpu Sales]
[Measures].[Monthly Avg Gpu Sales] ON COLUMNS
   [Cubo_giovinazzi_stira]
```

		Monthly Avg Gpu Sales
All	analucia	625009.0025
PNY	analucia	460501.067083333
Gigabyte	analucia	42200.9295833333
EVGA	analucia	29701.8083333333
MSI	analucia	29140.175
Aorus	analucia	27201.96625
All	aragon	94248.0130769231
Gigabyte	aragon	24024.0733333333
PNY	aragon	23082.823
Asus	aragon	18254.1063636364
MSI	aragon	17177.909
Aorus	aragon	12895.075
All	asturleon	93931.4461538462
Gigabyte	asturleon	29341.8825
Aorus	asturleon	23896.031
PNY	asturleon	22157.2566666667
Asus	asturleon	18400.0216666667
MSI	asturleon	13225.8522222222

Figura 12: Output query per Gpu

Figura 11: Codice Query MDX per Gpu

6. Creare un dashboard

L'obiettivo di questa visualizzazione è fornire un'analisi comparativa delle vendite di computer in diverse aree geografiche nel corso di tre anni consecutivi, mostrando sia la distribuzione geografica delle vendite sia il cambiamento delle vendite in valuta locale tra le varie regioni. Questo consente di identificare tendenze e cambiamenti nelle vendite in relazione al tempo e alla posizione geografica.

Un primo dato interessante è che le vendite sono significativamente più alte nel 2016 e nel 2017, mentre nel 2018 si riducono quasi della metà. In questo intervallo di tempo, l'Europa registra un numero notevole di vendite, seguita da America e Oceania. In particolare, la regione con il maggior volume di vendite nel 2016 e nel 2017 è "Prairie Provinces" nel Canada Occidentale, mentre nel 2018 la leadership passa a "Baden-Württemberg" in Germania.

Figura 13: un'analisi comparativa delle vendite di computer in diverse aree geografiche nel corso di tre anni

Region	2016	2017	2018
analucia	19.233.325,68	26.217.914,14	3.334.465,60
aragon		1.911.997,90	771.335,30
asturleon		2.115.943,55	745.472,05
atlantic provinces		419.969,13	2.398.203,27
baden-wuttemberg	20.401.792,42	25.448.744,40	10.009.486,08
bavaria	19.063.674,63	26.655.614,81	3.662.013,24
berlin	18.887.812,12	25.379.668,18	3.830.209,15
brandenburg	20.372.939,37	24.975.204,36	2.786.081,28
bremen	19.698.685,89	25.060.622,74	3.187.366,60
british columbia	21.594.376,14	27.274.299,11	8.032.713,37
brussels	5.602.561,57	4.347.275,36	1.736.841,07
castilla		2.030.857,55	850.818,96
center italy		1.477.152,78	2.618.260,04
connaught		4.562.009,14	1.141.873,88
east england	11.380.909,83	11.933.773,19	4.970.446,56
east midlands	9.034.501,25	11.210.236,19	3.483.068,78
flanders		279.355,80	1.010.543,94
galicia		1.999.740,34	737.948,52
hamburg	19.111.858,98	25.273.869,15	3.976.342,19
heart of france		1.827.845,58	787.323,15
hessen	18.775.966,76	25.699.322,42	3.598.987,84
le midi france		2.578.538,04	647.649,78
leinster		1.285.254,42	2.940.513,37
london	7.715.529,58	12.944.301,05	3.444.457,86
lower saxony	19.118.152,12	25.947.152,24	3.135.505,18
mecklenburg-vorpommern	19.429.952,02	27.065.197,80	2.756.929,90
mid-ataIntic	12.444.207,02	17.165.875,21	5.202.838,51
mid-west usa	13.527.900.42	15.091.822.44	6.085.365.96

Tabella 3: Output analisi comparativa