

Manual

HIMax®

X-DO 12 02

Digital Output Module

All of the HIMA products mentioned in this manual are trademark protected. This also applies for other manufacturers and their products which are mentioned unless stated otherwise.

HIQuad®, HIQuad®X, HIMax®, HIMatrix®, SILworX®, XMR®, HICore® and FlexSILon® are registered trademarks of HIMA Paul Hildebrandt GmbH.

All of the technical specifications and information in this manual were prepared with great care and effective control measures were employed for their compilation. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

All the current manuals can be obtained upon request by sending an e-mail to: documentation@hima.com.

© Copyright 2019, HIMA Paul Hildebrandt GmbH All rights reserved.

Contact

HIMA Paul Hildebrandt GmbH P.O. Box 1261 68777 Brühl

Phone: +49 6202 709-0 Fax: +49 6202 709-107 E-mail: info@hima.com

Document designation	Description
HI 801 098 D, Rev. 10.00 (1907)	German original document
HI 801 099 E, Rev. 10.00.00 (1923)	English translation of the German original document

X-DO 12 02 Introduction

Ta	h	le	of	Co	nte	nts

1	Introduction	5
1.1	Structure and Use of This Manual	5
1.2	Target Audience	5
1.3	Writing Conventions	6
1.3.1	Safety Notices	6
1.3.2	Operating Tips	7
1.4	Safety Lifecycle Services	8
2	Safety	9
2.1	Intended Use	9
2.1.1 2.1.2	Environmental Requirements ESD Protective Measures	9 9
2.2	Residual Risk	9
2.3	Safety Precautions	9
2.4	Emergency Information	9
3	Product Description	10
3.1	Safety Function	10
3.1.1	Response in the Event of a Fault	10
3.2	Scope of Delivery	10
3.3	X-DO 12 02 Certification	10
3.4	Type Label	11
3.5	Structure	12
3.5.1	Block Diagram	13
3.5.2 3.5.3	Indicators Module Status Indicators	14 16
3.5.4	System Bus Indicators	17
3.5.5	I/O Indicators	17
3.6	Product Data	18
3.7	Connector Boards	20
3.7.1	Mechanical Coding of Connector Boards	20
3.7.2 3.7.3	Coding of X-CB 012 Connector Boards Connector Boards with Screw Terminals	21 22
3.7.3 3.7.4	Terminal Assignment for Connector Boards with Screw Terminals	23
3.7.5	Connector Boards with Cable Plug	24
3.7.6	Pin Assignment for Connector Boards with Cable Plug	25
3.8	System Cable X-CA 008	26
3.8.1	Cable Plug Coding	27
4	Start-Up	28
4.1	Mounting	28
4.1.1	Wiring Unused Outputs	28
4.2	Mounting and Removing the Module	29
4.2.1 4.2.2	Mounting a Connector Board Mounting and Removing a Module	29 31
4.3	Short-Circuit Monitoring	33

HI 801 099 E Rev. 10.00.00 Page 3 of 54

Table of Contents	X-DO 12 02

4.3.1	Recommended Values for Short-Circuit Monitoring	33
4.4	Configuring the Module in SILworX	34
4.4.1	The Module Tab	35
4.4.2	The I/O Submodule DO 12_02 Tab	36
4.4.3	The I/O Submodule DO 12_02: Channels Tab	37
4.4.4 4.4.5	Description of Submodule Status [DWORD] Description of Diagnostic Status [DWORD]	38 39
4.5	Connection Variants	40
4.5.1	Wiring Actuators	40
4.5.2	Redundant Wiring of Actuators via Two Modules	41
4.5.3	Connecting to Actuators via Field Termination Assembly	42
5	Operation	43
5.1	Handling	43
5.2	Diagnostics	43
6	Maintenance	44
6.1	Maintenance Measures	44
6.1.1	Proof Test	44
6.1.2	Loading of Enhanced Operating System Versions	44
7	Decommissioning	45
8	Transport	46
9	Disposal	47
	Appendix	49
	Glossary	49
Index of	Figures	50
Index of	•	51
Index	52	

Page 4 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Introduction

1 Introduction

This manual describes the technical characteristics of the module and its use. It provides information on how to install, start up and configure the module in SILworX.

1.1 Structure and Use of This Manual

The content of this manual is part of the hardware description of the HIMax programmable electronic system.

This manual contains the following main chapters:

- Introduction
- Safety
- Product description
- Start-up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

Additionally, the following documents must be taken into account:

Document	Content	Document no.
HIMax system manual	Hardware description of the HIMax system	HI 801 001 E
HIMax safety manual	Safety functions of the HIMax system	HI 801 003 E
HIMax maintenance manual	Description of significant operational and maintenance actions.	HI 801 171 E
Communication manual	Description of safeethernet communication and of the available protocols.	HI 801 101 E
Automation security manual	Description of automation security aspects in conjunction with HIMA systems.	HI 801 373 E
SILworX first steps manual	Introduction to SILworX	HI 801 103 E
SILworX online help (OLH)	Instructions on how to use SILworX	

Table 1: Additional Applicable Manuals

The current manuals can be obtained upon request by sending an e-mail to: documentation@hima.com. For registered HIMA customers, the product documentation is available at https://www.hima.com/en/downloads/.

1.2 Target Audience

This document is aimed at the planners, design engineers and programmers of automation systems as well as the persons authorized to start up, operate and maintain the devices and systems concerned. Specialized knowledge of safety-related automation systems is required.

HI 801 099 E Rev. 10.00.00 Page 5 of 54

Introduction X-DO 12 02

1.3 Writing Conventions

To ensure improved readability and comprehensibility, the following writing conventions are used in this document:

Bold To highlight important parts.

Names of buttons, menu functions and tabs that can be clicked and used

in the programming tool.

Italics Parameters and system variables, references.

Courier Literal user inputs.

RUN Operating states are designated by capitals.

Chapter 1.2.3 Cross-references are hyperlinks even if they are not specially marked.

In the electronic document (PDF): When the mouse pointer hovers over a hyperlink, it changes its shape. Click the hyperlink to jump to the

corresponding position.

Safety notices and operating tips are specially marked.

1.3.1 Safety Notices

Safety notices must be strictly observed to ensure the lowest possible risk.

The safety notices are represented as described below.

- Signal word: warning, caution, notice.
- Type and source of risk.
- Consequences arising from non-observance.
- Risk prevention.

The signal words have the following meanings:

- Warning indicates hazardous situations which, if not avoided, could result in death or serious injury.
- Caution indicates hazardous situation which, if not avoided, could result in minor or moderate injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

SIGNAL WORD

Type and source of risk!

Consequences arising from non-observance.

Risk prevention.

NOTICE

Type and source of damage! Damage prevention.

Page 6 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Introduction

1.3.2 Operating Tips Additional information is structured as presented in the following example: The text giving additional information is located here. Useful tips and tricks appear as follows:

TIP

The tip text is located here.

HI 801 099 E Rev. 10.00.00 Page 7 of 54

Introduction X-DO 12 02

1.4 Safety Lifecycle Services

HIMA provides support throughout all the phases of the plant's safety lifecycle, from planning and engineering through commissioning to maintenance of safety and security.

HIMA's technical support experts are available for providing information and answering questions about our products, functional safety and automation security.

To achieve the qualification required by the safety standards, HIMA offers product or customerspecific seminars at HIMA's training center or on site at the customer's premises. The current seminar program for functional safety, automation security and HIMA products can be found on HIMA's website.

Safety Lifecycle Services:

Onsite+ / On-Site In close cooperation with the customer, HIMA performs changes or extensions on site.

Startup+ / Preventive HIMA is responsible for planning and executing preventive

maintenance measures. Maintenance actions are carried out in accordance with the manufacturer's specifications and are

documented for the customer.

Lifecycle+ / Lifecycle Management

As part of its lifecycle management processes, HIMA analyzes the current status of all installed systems and develops specific recommendations for maintenance, upgrading and migration.

Hotline+ / 24 h
Hotline

Maintenance

HIMA's safety engineers are available by telephone around the clock

to help solve problems.

Standby+ / 24 h Call-Out Service

Faults that cannot be resolved over the phone are processed by HIMA's specialists within the time frame specified in the contract.

Logistics+/ 24 h Spare Parts Service

HIMA maintains an inventory of necessary spare parts and

guarantees quick, long-term availability.

Contact details:

Safety Lifecycle Services https://www.hima.com/en/about-hima/contacts-worldwide/

Technical Support

https://www.hima.com/en/products-services/support/

Seminar Program https://www.hima.com/en/products-services/seminars//

Page 8 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Safety

2 Safety

All safety information, notes and instructions specified in this document must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

The product is operated with SELV or PELV. No imminent risk results from the product itself. Use in the Ex zone is only permitted if additional measures are taken.

2.1 Intended Use

HIMax components are designed for assembling safety-related controller systems.

When using the components in the HIMax system, comply with the following general requirements.

2.1.1 Environmental Requirements

All the environmental requirements specified in this manual must be observed when operating the HIMax system. The environmental requirements are listed in the product data.

2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace components.

NOTICE

Damage to the HIMax system due to electrostatic discharge!

- When performing the work, make sure that the workspace is free of static, and wear a grounding strap.
- If not used, ensure that the components are protected from electrostatic discharge, e.g., by storing them in their packaging.

2.2 Residual Risk

No imminent risk results from a HIMA system itself.

Residual risk may result from:

- Faults related to engineering.
- Faults in the user program.
- Faults related to the wiring.

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

2.4 Emergency Information

A HIMA system is a part of the safety equipment of an overall system. If the controller fails, the system enters the safe state.

In case of emergency, no action that may prevent the HIMA system from operating safely is permitted.

HI 801 099 E Rev. 10.00.00 Page 9 of 54

3 Product Description

The X-DO 12 02 digital output module is intended for use in the programmable electronic system (PES) HIMax.

The module is equipped with 12 digital outputs that are operated with an external power supply. Each output can be loaded up to a nominal current of 2 A in accordance with IEC 61131-2; ensure that the total permissible current of the external voltage supply does not exceed 12 A.

The outputs are suitable for connecting to ohmic, inductive and capacitive loads as well as lamps.

The module is interference-free. In particular with respect to EMC, electrical safety, communication to the X-SB and X-CPU modules, and the user program.

The module can be inserted into any of the base plate slots except for the slots reserved for system bus modules. Refer to the system manual (HI 801 001 E) for further details.

The module has been certified by the TÜV for safety-related applications up to SIL 3 (IEC 61508, IEC 61511, IEC 62061 and EN 50156) as well as Cat. 4 and PL e (EN ISO 13849-1).

3.1 Safety Function

The module ensures its safety function using three safety switches connected in series for each channel. Each output is thus two-fault-tolerant with respect to the safety switch. Each safety switch of a channel can be individually switched off via the system bus (I/O bus) or via the second independent shutdown option (watchdog).

The safe state of an output is the de-energized state. Redundant processor systems monitor the values expected for the outputs. Outputs that do not correspond to the expected values are de-energized. One of the two read-back branches that were monitored for their expected values can be tested.

The safety function is performed in accordance with SIL 3.

3.1.1 Response in the Event of a Fault

If the safety-related processor system detects a module fault, the module adopts the safe state and all the outputs are de-energized in accordance with the 'de-energize to trip principle'. If a channel fault occurs, only the affected output is switched off.

If the system buses fail, the outputs are de-energized.

The module activates the Error LED on the front plate.

3.2 Scope of Delivery

To operate, the module must be installed on a matching connector board. If a field termination assembly (FTA) is used, a system cable is required to connect the connector board to the FTA. Connector boards, system cables and FTAs are not included within the scope of delivery.

The connector boards are described in Chapter 3.7, the system cables are described in Chapter 3.8. The FTAs are described in separate manuals.

3.3 X-DO 12 02 Certification

Refer to the HIMax safety manual (HI 801 003 E) for more information on the standards used to test and certify the module and the HIMax system.

The certificates and the EU type test certificate are available on the HIMA website.

Page 10 of 54 HI 801 099 E Rev. 10.00.00

3.4 Type Label

The type label specifies the following important details:

- Product name
- Mark of conformity
- Bar code (2D or 1D code)
- Part number (Part-No.)
- Hardware revision index (HW-Rev.)
- Operating system revision index (OS-Rev.)
- Supply voltage (Power)
- Ex specifications (if applicable)
- Production year (Prod-Year:)

Figure 1: Sample Type Label

HI 801 099 E Rev. 10.00.00 Page 11 of 54

3.5 Structure

The module is equipped with 12 digital outputs. The output are operated with 24 V external power, while the module is supplied with power via the base plate. The external and internal power supplies are galvanically separated from one another.

The module is equipped with short-circuit monitoring (SC). If the short-circuit monitoring is configured in SILworX, see Chapter 4.2.2, the channels are automatically checked for short-circuits. The switching threshold for short-circuit monitoring is preset and cannot be modified.

The outputs are protected against high currents. If a short-circuit occurs, the current at each output is limited to 6 A.

If a current higher than 2.5 A flows through an output for 50 ms, the affected output is switched off for 10 s. If the overcurrent is still present after the outputs has automatically been switched on again, the output is switched off for another 10 s. This process is repeated as long as the overcurrent is present. To avoid the cyclic switch-on after an overcurrent, the user program must be configured accordingly.

The 1oo2 processor system within the I/O module controls and monitors the I/O level. The data and states of the I/O module are provided to the processor modules via the redundant system bus. The system bus has a redundant structure for reasons of availability. Redundancy is only ensured if both system bus modules are inserted in the base plates and configured in SILworX.

The module is equipped with LEDs to indicate the status of the digital outputs, see Chapter 3.5.2.

Page 12 of 54 HI 801 099 E Rev. 10.00.00

3.5.1 Block Diagram

The following block diagram illustrates the structure of the module:

Figure 2: Block Diagram

HI 801 099 E Rev. 10.00.00 Page 13 of 54

3.5.2 Indicators

The following figure shows the front view of the module with the LEDs:

Figure 3: Indicators

Page 14 of 54 HI 801 099 E Rev. 10.00.00

The LEDs indicate the operating state of the output module.

The LEDs on the module are divided into three groups:

- Module status indicators (Run, Error, Stop, Init)
- System bus indicators (A, B)
- I/O indicators (DO 1...12, Field)

After connecting the supply voltage, an LED test is performed and all the LEDs are lit for at least 2 s. The color of two-color LEDs changes once during the test.

Definition of blinking frequencies

The following table defines the blinking frequencies:

Definition	Blinking frequencies
Blinking1	Long (600 ms) on, long (600 ms) off.
Blinking2	Short (200 ms) on, short (200 ms) off, short (200 ms) on, long (600 ms) off.
Blinking-x	Ethernet communication: Blinking synchronously with data transmission.

Table 2: Blinking Frequencies of the LEDs

Some LEDs can report warnings (On) and faults or errors (Blinking1), see the following tables. The indication of errors or faults has priority over the indication of warnings. Warnings cannot be reported if errors or faults are being signaled.

HI 801 099 E Rev. 10.00.00 Page 15 of 54

3.5.3 Module Status Indicators

These LEDs are located on the upper part of the front plate.

LED	Color	Status	Description
Run	Green	On	Module in the RUN state, normal operation.
		Blinking1	Module state STOP / LOADING OS
		Off	Module not in the RUN state, observe the other status LEDs.
Error	Red	On	System warning, for example: No license for additional functions (e.g., communication protocols), test mode. Temperature warning
		Blinking1	System error, for example: Internal module faults detected by self-tests, e.g., hardware or voltage supply faults. Fault while loading the operating system.
		Off	No faults detected
Stop	Yellow	On	Module state STOP / VALID CONFIGURATION
		Blinking1	The module is in one of the following states: STOP / INVALID CONFIGURATION STOP / LOADING OS
		Off	Module not in the STOP state, observe the other status LEDs.
Init	Yellow	On	Module state: INIT
		Blinking1	The module is in one of the following states: LOCKED STOP / LOADING OS
		Off	Module is in none of the states described, observe the other status LEDs.

Table 3: Module Status Indicators

Page 16 of 54 HI 801 099 E Rev. 10.00.00

3.5.4 System Bus Indicators

The system bus indicator LEDs are labeled Sys Bus.

LED	Color	Status	Description
A Green		On	Physical and logical connection to the system bus module in slot 1.
		Blinking1	No physical connection to the system bus module in slot 1.
	Yellow	Blinking1	The physical connection to the system bus module in slot 1 has been established. No connection to a (redundant) processor module running in system operation.
В	Green	On	Physical and logical connection to the system bus module in slot 2.
		Blinking1	No physical connection to the system bus module in slot 2.
	Yellow	Blinking1	The physical connection to the system bus module in slot 2 has been established. No connection to a (redundant) processor module running in system operation.
A+B	Off	Off	Neither physical nor logical connection to the system bus modules in slot 1 and slot 2.

Table 4: System Bus Indicators

3.5.5 I/O Indicators

The LEDs of the I/O indicators are labeled Channel.

LED	Color	Status	Description
DO 1DO 12	Yellow	On	High level present.
		Blinking2	Channel fault.
		Off	Low level present.
Field	Red	Blinking2 Field fault on at least one channel, e.g., short-cir over-current, etc.	
		Off	No faults at the field level.

Table 5: I/O Indicators

HI 801 099 E Rev. 10.00.00 Page 17 of 54

3.6 Product Data

General	
Supply voltage	24 VDC, -15+20 %, rp ≤ 5 %
	SELV, PELV
Current consumption	Min. 0.5 A (idle)
Continuous load through external power supply	Max. 12 A at 24 V
Galvanic separation	Yes, between supply voltage and outputs (ext. power supply)
Module cycle time	2 ms
Protection class	Protection class III in accordance with IEC/EN 61131-2
Ambient temperature	0+60 °C
Transport and storage temperature	-40+85 °C
Humidity	Max. 95 % relative humidity, non-condensing
Pollution	Pollution degree II in accordance with IEC/EN 60664-1
Altitude	< 2000 m
Degree of protection	IP20
Dimensions (H x W x D)	310 x 29.2 x 230 mm
Weight	Approx. 1.1 kg

Table 6: Product Data

Figure 4: Views

Page 18 of 54 HI 801 099 E Rev. 10.00.00

Digital Outputs	
Number of outputs (number of channels)	12, not galvanically separated
External supply voltage	24 VDC, -15+20 %, rp ≤ 5 % SELV, PELV
Output voltage	External supply voltage minus internal voltage drop
Voltage drop (with high level)	1.3 V at 2 A output current
Nominal rated current (with high level)	2 A, range 0.012.4 A
Total permissible current for the module	12 A
Leakage current (with low level)	< 500 μΑ
Overcurrent interruption	I > 2.5 A
Current limiting in the event of a short-circuit	6 A, for each channel
Behavior in the event of overcurrent and short-circuit	The affected output is switched off and cyclically switched on again, see Chapter 3.5.
Ohmic load	To nominal rated current 2 A
Inductive load	Max. 10 H
Lamp load (24 V lamps)	max. 20 W
Capacitive load	max. 100 μF
SC threshold	2.5 A (range 2.52.6 A)
Overload protection of the outputs, transient	33 V
Level of the outputs	
With low level	max. 1 V with L+ = 24 V (min. load 200 kOhm)
With low level	min. 22.2 V with L+ = 24 V (max. load 32 Ohm)
Switching time of the channels (with ohmic load)	200 μs
Test pulse (with ohmic load)	typ. 200 µs

Table 7: Specifications for the Digital Outputs

HI 801 099 E Rev. 10.00.00 Page 19 of 54

3.7 Connector Boards

A connector board connects the module to the field level. Module and connector board together form a functional unit. Insert the connector board into the appropriate slot prior to mounting the module.

The following connector boards are available for the module:

Connector board	Description
X-CB 012 01	Connector board with screw terminals
X-CB 012 02	Redundant connector board with screw terminals
X-CB 012 03	Connector board with cable plug
X-CB 012 04	Redundant connector board with cable plug

Table 8: Available Connector Boards

3.7.1 Mechanical Coding of Connector Boards

I/O modules and connector boards are mechanically coded starting from hardware revision index (HW-Rev.) 10. Coding avoids installation of improper I/O modules thus preventing negative effects on redundant modules and the field level.

Apart from that, improper equipment has no effect on the HIMax system since only I/O modules properly configured in SILworX can enter the RUN state.

I/O modules and the corresponding connector boards have a mechanical coding in the form of wedges. The coding wedges in the female connector of the connector board match with the male connector recesses of the I/O module plug, see Figure 5.

Coded I/O modules can only be plugged in to the corresponding connector boards.

Page 20 of 54 HI 801 099 E Rev. 10.00.00

Figure 5: Coding Example

Coded I/O modules can be plugged in to uncoded connector boards. Uncoded I/O modules cannot be plugged in to coded connector boards.

3.7.2 Coding of X-CB 012 Connector Boards

The following table specifies the position of the coding wedges on the I/O module plug:

a7	a13	a20	a26	c7	c13	c20	c26
Χ			X	X	X		

Table 9: Position of Coding Wedges

HI 801 099 E Rev. 10.00.00 Page 21 of 54

3.7.3 Connector Boards with Screw Terminals

Figure 6: Connector Boards with Screw Terminals

Page 22 of 54 HI 801 099 E Rev. 10.00.00

3.7.4 Terminal Assignment for Connector Boards with Screw Terminals

Pin no.	Designation	Signal		
1	01a	DO1+		
2	01b	DO1-		
3	02a	DO2+		
4	02b	DO2-		
5	03a	DO3+		
6	03b	DO3-		
7	04a	DO4+		
8	04b	DO4-		
9	05a	DO5+		
10	05b	DO5-		
11	06a	DO6+		
12	06b	DO6-		
Pin no.	Designation	Signal		
	9	<u> </u>		
1	07a	DO7+		
1	07a	DO7+		
1 2	07a 07b	DO7+ DO7-		
1 2 3	07a 07b 08a	DO7+ DO7- DO8+		
1 2 3 4	07a 07b 08a 08b	DO7+ DO7- DO8+ DO8-		
1 2 3 4 5	07a 07b 08a 08b 09a	DO7+ DO7- DO8+ DO8- DO9+		
1 2 3 4 5 6	07a 07b 08a 08b 09a 09b	DO7+ DO7- DO8+ DO8- DO9+ DO9-		
1 2 3 4 5 6 7	07a 07b 08a 08b 09a 09b	DO7+ DO7- DO8+ DO8- DO9+ DO9- DO10+		
1 2 3 4 5 6 7	07a 07b 08a 08b 09a 09b 10a 10b	DO7+ DO7- DO8+ DO8- DO9+ DO9- DO10+ DO10-		
1 2 3 4 5 6 7 8	07a 07b 08a 08b 09a 09b 10a 10b	DO7+ DO7- DO8+ DO8- DO9- DO10+ DO10- DO11+		

Table 10: Terminal Assignment for Connector Boards with Screw Terminals

Cable plugs attached to the connector board pin headers are used to connect to the field level and to external power supplies.

The cable plugs feature the following characteristics:

Connection to the field level					
Cable plugs	2 pieces, with 12 poles				
Wire Cross-Sections	0.52.5 mm ² (single-wire)				
	0.52.5 mm ² (finely stranded)				
	0.52.5 mm ² (with wire end ferrule)				
Stripping length	7 mm				
Screwdriver	Slotted 0.6 x 3.5 mm				
Tightening torque	0.40.5 Nm				
External power supply					
Cable plugs	4-pole				
Wire Cross-Sections	0.22.5 mm ² (single-wire)				
	0.22.5 mm ² (finely stranded)				
0.252.5 mm ² (with wire end ferrule)					
Stripping length	7 mm				
Screwdriver	Slotted 0.6 x 3.5 mm				
Tightening torque 0.50.6 Nm					

Table 11: Cable Plug Characteristics

HI 801 099 E Rev. 10.00.00 Page 23 of 54

3.7.5 Connector Boards with Cable Plug

 Mono
 Redundant

 X-CB 012 03
 X-CB 12 04

- 1/O module plug
- Connection to the external power supply
- Connection to the field level (cable plug in row 1)

Figure 7: Connector Boards with Cable Plug

- Connection to the field level (cable plug in row 16)
- 5 Coding of cable plugs

Page 24 of 54 HI 801 099 E Rev. 10.00.00

3.7.6 Pin Assignment for Connector Boards with Cable Plug

HIMA provides ready-made system cables for use with these connector boards, see Chapter 3.8. The cable plug and the connector boards are coded.

Connector pin assignment!

1

The following table describes the connector pin assignment of the system cable plug.

Pin assignment							
Row	е			С	а		
ROW	Signal	Number	Signal	Number	Signal	Color	
2						YE	
4					Internal use	GN	
6					1)	BN	
8]	WH	
10	DO1+	1	DO1-	2			
12	DO2+	3	DO2- 4				
14	DO3+	5	DO3-	DO3- 6			
16	DO4+	7	DO4-	8			
18	DO5+	9	DO5- 10				
20	DO6+	11	DO6-	12			
22	DO7+	13	DO7-	14			
24	DO8+	15	DO8- 16				
26	DO9+	17	DO9-	18			
28	DO10+	19	DO10-	20			
30	DO11+	21	DO11-	22			
32	DO12+	23	DO12-	24			
32 DO12+ 23 DO12- 24							

¹⁾ The wires must be isolated individually! No other use is permitted!

Table 12: Pin Assignment for the System Cable Plug

The external power supply is connected using a detachable 4-pole cable plug. For details on the permissible wire cross-sections, see Table 11.

HI 801 099 E Rev. 10.00.00 Page 25 of 54

3.8 System Cable X-CA 008

System cable X-CA 008 is used to connect the X-CB 008 03/04 connector board to field termination assemblies.

General	
Cable	LIYY 24 x 1.5 mm ² +
	2 x 2 x 0.14 mm ²
Wire	Finely stranded
Average outer diameter (d)	max. 20 mm for all types of system cables
Minimum bending radius	
Fixed installation	5 x d
Flexible application	10 x d
Burning behavior	Flame retardant and self-extinguishing in accordance with IEC 60332-1-2, IEC 60332-2-2
Length	830 m
Number coding	124
Color coding	Color coding based on DIN 47100, see Table 12

Table 13: Cable Data

1 Identical cable plugs

Figure 8: X-CA 008 01 n

The system cable is available in the following standard lengths:

System cables	Description	Length
X-CA 008 01 8	Coded cable plugs on both sides.	8 m
X-CA 008 01 15		15 m
X-CA 008 01 30		30 m

Table 14: Available System Cables

Page 26 of 54 HI 801 099 E Rev. 10.00.00

3.8.1 Cable Plug Coding

The cable plugs are equipped with three coding pins. Therefore, cable plugs only match connector boards and FTAs with the corresponding recesses, see Figure 7.

HI 801 099 E Rev. 10.00.00 Page 27 of 54

Start-Up X-DO 12 02

4 Start-Up

This chapter describes how to install, configure and connect the module. For further details, refer to the HIMax system manual (HI 800 001 E).

1 The safety-related application (SIL 3 in accordance with IEC 61508) of the outputs and the connected actuators must comply with the safety requirements. For further details, refer to the HIMax safety manual (HI 801 003 E).

4.1 Mounting

Observe the following points when mounting the module:

- Only operate the module with the appropriate fan components. For further details, see the system manual (HI 801 001 E).
- Only operate the module with the suitable connector board. For further details, see Chapter 3.7.
- Connection to the field level with twisted pair wire
- The module, including its connected components, must be installed to ensure compliance with the requirements for degree of protection IP20 or higher in accordance with EN 60529:1991 + A1:2000.

The outputs may be wired redundantly using the corresponding connector boards. For further details, see Chapter 3.7 and Chapter 4.4.1.

4.1.1 Wiring Unused Outputs

Outputs that are not being used may stay open and need not be terminated. To prevent short-circuits and sparks in the field, never connect a wire to a connector board if it is open on the field level.

Page 28 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Start-Up

4.2 Mounting and Removing the Module

This chapter describes how to replace an existing module or mount a new one.

When removing the module, the connector board remains in the HIMax base plate. This saves additional wiring effort at the clamp terminals since all field terminals are connected via the connector board of the module.

4.2.1 Mounting a Connector Board

Tools and utilities:

- Screwdriver, cross PH 1 or slotted 0.8 x 4.0 mm.
- Matching connector board.

To install the connector board

- 1. Insert the connector board into the guiding rail with the groove facing upwards (see following drawing). Fit the groove into the guiding rail pin.
- 2. Place the connector board on the cable shield rail.
- Secure the captive screws to the base plate. First screw in the lower screws than the upper ones.

To remove the connector board

- 1. Release the captive screws from the base plate.
- 2. Carefully lift the lower section of the connector board from the cable shield rail.
- 3. Remove the connector board from the guiding rail.

Figure 9: Example of how to Insert the Mono Connector Board

HI 801 099 E Rev. 10.00.00 Page 29 of 54

Start-Up X-DO 12 02

Figure 10: Example of how to Secure the Mono Connector Board with Captive Screws

These instructions also apply for redundant connector boards. The number of used slots varies in accordance with the connector board type. The number of captive screws depends on the connector board type.

Page 30 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Start-Up

4.2.2 Mounting and Removing a Module

This chapter describes how to mount and remove the HIMax module. A module can be mounted and removed while the HIMax system is operating.

NOTICE

Damage to bus and power sockets due to module jamming! Failure to comply with these instructions can damage the controller.

Always insert the module in the base plate carefully.

Tools and utilities:

- Screwdriver, slotted 0.8 x 4.0 mm.
- Screwdriver, slotted 1.2 x 8.0 mm.

To insert the modules

- 1. Open the cover plate on the fan rack:
 - ☑ Move the locks to the *open* position.
 - ☑ Lift the cover plate and insert it into the fan rack.
- Insert the top of the module into the hook-in rail, see
- 3. Swivel the lower edge of the module towards the base plate and apply light pressure to snap it into place, see 2.
- 4. Tighten the screws, see 3.
- 5. Pull the cover plate out of the fan rack and close it.
- 6. Lock the cover plate.

To remove the modules

- 1. Open the cover plate on the fan rack:
 - ☑ Move the locks to the *open* position.
 - ☑ Lift the cover plate and insert it into the fan rack.
- Release the screw, see 3.
- 3. Swivel the lower edge of the module away from the base plate. Lift and apply light pressure to remove the module from the hook-in rail, see 2 and 1.
- 4. Pull the cover plate out of the fan rack and close it.
- 5. Lock the cover plate.

HI 801 099 E Rev. 10.00.00 Page 31 of 54

Start-Up X-DO 12 02

- Inserting and removing a module
- 2 Swiveling the module in and out
- 3 Securing and releasing a module

Figure 11: Mounting and Removing a Module

if the HIMax system is operating, do not open the cover plate of the fan rack for more than a few minutes (< 10 min) since this affects the forced cooling.

Page 32 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Start-Up

4.3 Short-Circuit Monitoring

The module is equipped with short-circuit monitoring that can be configured for each channel. The switching thresholds for short-circuit monitoring are preset und fixed, see the product data (Table 7).

The following points must be taken into account for short-circuit monitoring:

- Line monitoring reliably detects a short-circuit (SC) when currents exceed 2.6 A.
- If an actuator is redundantly connected to two modules, line monitoring reliably detects a short-circuit (LS) when currents exceed 5.2 A.

Short-circuit monitoring (SC) can be set up for each channel as follows:

In the I/O Submodule DO12_02 tab, adopt the setting SC Interval [μs] (≥ 40 ms) for all channels.

Default setting: 40 ms

- In the I/O Submodule DO12_21, activate Show Short-Circuit (indicated via the Field LED).
 Default setting: Activated
- In the I/O Submodule DO12_02: Channels, activate SC Active.
 Default setting: Deactivated
- In the I/O Submodule DO12_02: Channels, enter 0 μs...50 ms for Max. Test Pulse Duration [μs], see the recommended values in Table 15.

Default setting: 0

The test pulse duration is at least 200 μ s, even with the default setting or inputs < 1000. The parameter granularity is 1 ms (1000). The values are entered in μ s.

4.3.1 Recommended Values for Short-Circuit Monitoring

Test pulse duration	SC Interval	Relationship
200 μs	40 ms	Max. 0.5 %
1 ms	200 ms	Max. 0.5 %
10 ms	2 s	Max. 0.5 %
20 ms	4 s	Max. 0.5 %
50 ms	10 s	Max. 0.5 %

Table 15: Relationship Between Test Pulse Duration and SC Interval

For actuators, a pulse-duty factor of 0.5 % between the SC interval and the test pulse duration has provided good results in practice. The value for the test pulse duration must always be lower than the value for the SC interval.

Short-circuit monitoring does not affect the *Channel OK*, *Submodule OK* and *Module OK* statuses, see Chapter 4.4.

HI 801 099 E Rev. 10.00.00 Page 33 of 54

Start-Up X-DO 12 02

4.4 Configuring the Module in SILworX

The module is configured in the Hardware Editor of the SILworX programming tool.

Observe the following points when configuring the module:

- To diagnose the module and channels, both the system parameters and the measured value can be evaluated within the user program. For further details on the system parameters, refer to the following tables.
- Activate the parameter External Power Supply over by selecting:
 - Redundant L1/L2
 - Mono L1
 - Mono L2

Use Redundant L1 + L2 to select a redundant external power supply or choose the connection to the single power supply.

• If a redundancy group is created, its configuration is defined in the tabs. The tabs specific to the redundancy group differ from those of the individual modules, see the following tables.

To evaluate the system parameters in the user program, they must be assigned to global variables. Perform this step in the Hardware Editor using the module's detail view.

The following tables present the system parameters for the module in the same order as in the SILworX Hardware Editor.

TIP

A scientific calculator such as the Windows® calculator with the corresponding view can be used to convert hexadecimal values to bit strings.

Page 34 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Start-Up

4.4.1 The **Module** Tab

The **Module** tab contains the following system parameters for the module:

System parameter	Data type	S 1)	R/W	Description		
Name			W	Module name.		
Spare Module	BOOL	Y	W	Activated: It is not considered a fault if a module of the redundancy group is missing in the base plate. Deactivated: It is considered a fault if a module of the redundancy group is missing in the base plate. Default setting: Deactivated It is only displayed in the redundancy group tab!		
Noise Blanking	BOOL	Y	W	Allow noise blanking performed by the process module (Activated/Deactivated). Default setting: Activated The processor module delays its response to transient interference until the safety time. The user program retains its last valid process value. Refer to the system manual (HI 801 001 E) for further details on noise blanking.		
System parameter	Data type	S 1)	R/W	Description		
The following statuses a				gned global variables and used in the user program.		
Module OK	BOOL	Y	R	TRUE: No faults. Mono operation: No module faults. Redundancy operation: At least one of the redundant modules has no module fault (OR logic). FALSE: Module fault. Channel fault on one channel (no external faults). The module is not plugged in. Observe the Module Status parameter!		
Module Status	DWORD	Υ	R	Status of the module.		
				Coding Description		
				0x00000001 Module fault. 2)		
				0x00000002 Temperature threshold 1 exceeded.		
				0x00000004 Temperature threshold 2 exceeded.		
				0x00000008 Incorrect temperature value.		
				0x00000010 Voltage on L1+ is defective.		
				0x00000020 Voltage on L2+ is defective.		
				0x00000040 Internal voltage is defective.		
				0x80000000 No connection to the module. 2)		
				These faults affect the Module OK status and need not be separately evaluated in the user program.		
Timestamp [µs]	DWORD	N	R	Microsecond fraction of the timestamp. Time: Testing of the digital outputs completed.		
Timestamp [s]	DWORD	N	R	Second fraction of the timestamp. Time: Testing of the digital outputs completed.		
1) The operating syster	1) The operating system handles the system parameter in a safety-related manner, yes (Y) or no (N).					

Table 16: The **Module** Tab in the Hardware Editor

HI 801 099 E Rev. 10.00.00 Page 35 of 54

Start-Up X-DO 12 02

4.4.2 The **I/O Submodule DO 12_02** Tab

The **I/O Submodule DO12_02** tab contains the following system parameters:

System parameter	Data type	S 1)	R/W	Description
Name			W	Module name.
Output Noise Blanking	BOOL	Y	W	Allow output noise blanking by the output module (Activated/Deactivated). Default setting: Deactivated (recommended!) If the channel's default and read-back values are not consistent, the channel switch-off is suppressed. Refer to the system manual (HI 801 001 E) for further details on output noise blanking.
SC Interval [µs]	UDINT	Υ	W	LS interval of the test pulses (≥ 40 m). Default setting: 40 000 = 40 ms See Chapter 4.3.
Show Short-Circuit	BOOL	Υ	W	Displayed via LED <i>Field</i> (Activated/Deactivated) Default setting: Activated
External Power Supply over	DWORD	Υ	W	It specifies the type of external power supply: Redundant: Redundant L1/L2 Mono on L1: Mono L1 Mono on L2: Mono L2 Default setting: Redundant L1/L2
System parameters	Data type	S 1)	R/W	Description
The following statuses a	nd paramete	rs can	be assi	gned global variables and used in the user program.
Diagnostic Request	DINT	N	W	To request a diagnostic value, the appropriate ID must be sent to the module using the parameter <i>Diagnostic Request</i> (for coding details, see Chapter 4.4.5).
Diagnostic Response	DINT	N	R	As soon as <i>Diagnostic Response</i> returns the ID of <i>Diagnostic Request</i> (for coding details, see Chapter 4.4.5), <i>Diagnostic Status</i> contains the diagnostic value requested.
Diagnostic Status	DWORD	N	R	Requested diagnostic value in accordance with Diagnostic Response. The IDs of Diagnostic Request and Diagnostic Response can be evaluated in the user program. Diagnostic Status only contains the requested diagnostic value when both Diagnostic Request and Diagnostic Response have the same ID.
Background Test Error	BOOL	N	R	TRUE: Background test is faulty. FALSE: Background test is not faulty.
Restart on Error	BOOL	Y	W	The Restart on Error parameter can be used to cause any I/O module that is shut down permanently due to errors or faults to once again enter the RUN state. To do so, set the Restart on Error parameter from FALSE to TRUE. The I/O module performs a complete self-test and only enters the RUN state if no faults are detected. Default setting: FALSE

Page 36 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Start-Up

System parameters	Data type	S 1)	R/W	Description		
Submodule OK	BOOL	Y	R	TRUE: No submodule fault, no channel faults. FALSE: Submodule fault, channel faults (external faults included).		
Submodule Status	DWORD	Y	R	Bit-coded submodule status. For coding details, see Chapter 4.4.4.		
The operating system handles the system parameter in a safety-related manner, yes (Y) or no (N).						

Table 17: The I/O Submodule DO 12_02 Tab in the Hardware Editor

4.4.3 The **I/O Submodule DO 12_02: Channels** Tab

The **I/O Submodule DO12_02: Channels** tab contains the following system parameters for each digital output.

Global variables can be assigned to the system parameters with -> and used in the user program. The value without -> must be directly entered.

System parameters	Data type	S 1)	R/W	Description
Channel no.			R	Channel number, preset and cannot be changed.
Channel Value [BOOL] ->	BOOL	Y	R	Binary value in accordance with the switching levels LOW (dig) and HIGH (dig). TRUE: Channel energized. FALSE: Channel de-energized.
-> Channel OK [BOOL]	BOOL	Y	R	TRUE: Fault-free channel. The channel value is valid. FALSE: Faulty channel. The channel is de-energized.
SC Active	BOOL	Υ	R	Short-circuit monitoring (Activated/Deactivated) Default setting: Deactivated
Max. Test Pulse Duration [µs]	UDINT	Y	W	Test pulse duration with short-circuit monitoring. Range of values: 050 000 µs Default setting: 0 µs
-> SC	BOOL	Υ	R	TRUE: Short-circuit. FALSE: No short-circuit
-> SC Monitoring Defective	BOOL	Υ	R	TRUE: The short-circuit monitoring is defective. FALSE: The short-circuit monitoring is OK!
Redund.	BOOL	Y	W	Requirement: The redundant module must exist. Activated: The channel redundancy for this channel is active. Deactivated: Deactivate the channel redundancy for this channel. Default setting: Deactivated
1) The operating system handles the system parameter in a safety-related manner, yes (Y) or no (N).				

Table 18: The I/O Submodule DO12_02: Channels Tab in the Hardware Editor

HI 801 099 E Rev. 10.00.00 Page 37 of 54

Start-Up X-DO 12 02

4.4.4 Description of Submodule Status [DWORD]

The following table specifies the coding of the *Submodule Status* parameter:

Coding	Description
0x0000001	Fault in hardware unit (submodule).
0x00000002	Reset of an I/O bus.
0x00000004	Fault detected while initializing the hardware.
0x00000008	Fault detected while checking the coefficients.
0x00000040	Overcurrent, module shutdown.
0x00000080	Reset of CS monitoring (Chip Select monitoring).
0x00000100	Hardware failure of short-circuit monitoring.
0x00800000	Voltage monitoring of WD1: voltage error.
0x01000000	Voltage monitoring of WD2: voltage error.
0x02000000	Voltage monitoring of L1+ HIGH voltage defective.
0x04000000	Voltage monitoring of L1+ LOW voltage defective.
0x0800000	Voltage monitoring of L2+ HIGH voltage defective.
0x10000000	Voltage monitoring of L2+ LOW voltage defective.
0x20000000	Voltage monitoring of AGND: voltage defective.
0x40000000	Voltage monitoring of VMOS: HIGH voltage defective.
0x80000000	Voltage monitoring of VMOS: LOW voltage defective.

Table 19: Coding of Submodule Status [DWORD]

Page 38 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Start-Up

4.4.5 Description of *Diagnostic Status [DWORD]*

The following table specifies the coding of the *Diagnostic Status* parameter:

ID	Description					
0	Diagnostic values are indicated consecutively.					
100	Bit-coded temperature status.					
	0 = normal.					
		nperature threshold 1 has been exceeded.				
		nperature threshold 2 has been exceeded.				
101		Ilt in temperature measurement.				
101		mperature (10 000 digits/ °C).				
200	Bit-coded voltage status.					
	0 = normal.	(04.1/) mil 4 in facility				
		+ (24 V) rail 1 is faulty. + (24 V) rail 2 is faulty.				
201						
202	Maximum value of the 24 V voltage supply (L1+ and L2+).					
	Actual value of the internal 3V3 operating voltage.					
203	Actual value of the internal core voltage.					
204207	Not used!					
300	Comparator 24 V undervoltage (BOOL).					
10011012	Status of channels 112					
	Coding	Description				
	0x0001	Fault in hardware unit.				
	0x0002	Reset of an I/O bus.				
	0x0004	Channel shutdown, overcurrent.				
	Read-back value 0 on the output with reference value 1, due to hardware fault.					
	0x0010	Short-circuit detected.				
	0x0040	x0040 Read-back value 1 at setpoint 0 due to fault.				
	0x0080	Read-back value 0 at setpoint 1 due to field fault.				
	0x0100 Hardware failure of short-circuit monitoring					

Table 20: Coding of Diagnostic Status [DWORD]

HI 801 099 E Rev. 10.00.00 Page 39 of 54

Start-Up X-DO 12 02

4.5 Connection Variants

The chapter describes the proper wiring of the module in safety-related applications. The following connection variants are permitted.

The outputs are wired via connector boards. Special connector boards are available for redundantly wiring the modules, see Chapter 3.7.

The following points must be taken into account when connecting the loads to the outputs:

- A protective circuit (free-wheeling diode) is required when connecting inductive loads.
- Unshielded, twisted pairs of cables may be connected.
- The ground wires of the outputs may not be interconnected.

4.5.1 Wiring Actuators

Connector Board

Figure 12: Wiring of the Module with Actuators

Page 40 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Start-Up

4.5.2 Redundant Wiring of Actuators via Two Modules

When actuators are redundantly wired, the general requirements for short-circuit monitoring (SC) must be observed, see Chapter 4.3.

Figure 13: Redundant Wiring of X-DO 12 02 with Actuators

NOTICE

The wiring described above is only allowed if the two channels have identical channel numbers.

HI 801 099 E Rev. 10.00.00 Page 41 of 54

Start-Up X-DO 12 02

4.5.3 Connecting to Actuators via Field Termination Assembly

Figure 14: Connection to Actuators via Field Termination Assembly

Page 42 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Operation

5 Operation

The module runs within a HIMax base plate and does not require any specific monitoring.

5.1 Handling

Direct handling of the module is not foreseen.

The module is operated from within the PADT, e.g., for forcing the outputs. For further details, refer to the SILworX documentation.

5.2 Diagnostics

LEDs on the front side of the module indicate the module state, see Chapter 3.5.2.

The diagnostic history of the module can also be read out using SILworX. Chapter 4.4.4 and Chapter 4.4.5 describe the most important module-specific diagnostic messages.

initialization phase indicating faults such as incorrect voltage values.

These messages only indicate a module fault if they occur after the system starts operation.

HI 801 099 E Rev. 10.00.00 Page 43 of 54

Maintenance X-DO 12 02

6 Maintenance

Defective modules must be replaced with modules of the same type or with approved replacement models.

When replacing modules, observe the instructions specified in the HIMax system manual (HI 801 001 E) and HIMax safety manual (HI 801 003 E).

6.1 Maintenance Measures

The following maintenance measures must be implemented for the modules:

- Proof testing.
- Loading of enhanced operating system versions.

6.1.1 Proof Test

The proof test interval for HIMax modules must be in accordance with the interval required by the application-specific safety integrity level (SIL). For further details, refer to the safety manual (HI 801 003 E).

6.1.2 Loading of Enhanced Operating System Versions

As part of product maintenance, HIMA is continuously improving the operating systems of the modules. HIMA recommends using system downtimes to load the current operating system versions into the modules.

The current operating system versions of modules are displayed in the SILworX Control Panel. The type label specifies the delivered module version, see Chapter 3.4.

Before loading operating systems into the modules, check the system compatibilities and restrictions of the operating system versions. To this end, use the applicable release notes. Use SILworX to load the operating systems into the modules and ensure that these are in the STOP state.

Page 44 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Decommissioning

7 Decommissioning

To decommission the module, remove it from the base plate. For more details, refer to Chapter *Mounting and Removing the Module*.

HI 801 099 E Rev. 10.00.00 Page 45 of 54

Transport X-DO 12 02

8 Transport

To avoid mechanical damage, the components must be transported in packaging.

Always store the components in their original product packaging. This packaging also provides protection against electrostatic discharge (ESD). Note that the product packaging alone is not sufficient for transport.

Page 46 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Disposal

9 Disposal

Industrial customers are responsible for correctly disposing of decommissioned hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.

HI 801 099 E Rev. 10.00.00 Page 47 of 54

Disposal X-DO 12 02

Page 48 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Appendix

Appendix

Glossary

Term	Description
Al	Analog input
AO	Analog output
ARP	Address resolution protocol, network protocol for assigning the network addresses to
	hardware addresses
COM	Communication module
CRC	Cyclic redundancy check
DI	Digital input
DO	Digital output
EMC	Electromagnetic compatibility
EN	European standard
ESD	Electrostatic discharge
FB	Fieldbus
FBD	Function block diagrams
HW	Hardware
ICMP	Internet control message protocol, network protocol for status or error messages
IEC	International electrotechnical commission
Interference-free	Inputs are designed for interference-free operation and can be used in circuits with safety functions
MAC	Media access control address, hardware address of one network connection
PADT	Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX
PELV	Protective extra low voltage
PES	Programmable electronic system
R	Read, the variable is read out
R/W	Read/Write, column title for system variable type
Rack ID	Base plate identification (number)
r P	Peak value of a total AC component
SB	System bus (module)
SC/OC	Short-circuit/open-circuit
SELV	Safety extra low voltage
SFF	Safe failure fraction, portion of faults that can be safely controlled
SIL	Safety integrity level (in accordance with IEC 61508)
SILworX	Programming tool
SNTP	Simple network time protocol (RFC 1769)
SRS	System.Rack.Slot, addressing of a module
SW	Software
TMO	Timeout
W	Write, the variable receives a value, e.g., from the user program
WD	Watchdog, device for monitoring the system's correct operation Signal for fault-free process
WDT	Watchdog time

HI 801 099 E Rev. 10.00.00 Page 49 of 54

Appendix X-DO 12 02

Index of I	Figures	
Figure 1:	Sample Type Label	11
Figure 2:	Block Diagram	13
Figure 3:	Indicators	14
Figure 4:	Views	18
Figure 5:	Coding Example	21
Figure 6:	Connector Boards with Screw Terminals	22
Figure 7:	Connector Boards with Cable Plug	24
Figure 8:	X-CA 008 01 n	26
Figure 9:	Example of how to Insert the Mono Connector Board	29
Figure 10:	Example of how to Secure the Mono Connector Board with Captive Screws	30
Figure 11:	Mounting and Removing a Module	32
Figure 12:	Wiring of the Module with Actuators	40
Figure 13:	Redundant Wiring of X-DO 12 02 with Actuators	41
Figure 14:	Connection to Actuators via Field Termination Assembly	42

Page 50 of 54 HI 801 099 E Rev. 10.00.00

X-DO 12 02 Appendix

Index of	Tables	
Table 1:	Additional Applicable Manuals	5
Table 2:	Blinking Frequencies of the LEDs	15
Table 3:	Module Status Indicators	16
Table 4:	System Bus Indicators	17
Table 5:	I/O Indicators	17
Table 6:	Product Data	18
Table 7:	Specifications for the Digital Outputs	19
Table 8:	Available Connector Boards	20
Table 9:	Position of Coding Wedges	21
Table 10:	Terminal Assignment for Connector Boards with Screw Terminals	23
Table 11:	Cable Plug Characteristics	23
Table 12:	Pin Assignment for the System Cable Plug	25
Table 13:	Cable Data	26
Table 14:	Available System Cables	26
Table 15:	Relationship Between Test Pulse Duration and SC Interval	33
Table 16:	The Module Tab in the Hardware Editor	35
Table 17:	The I/O Submodule DO 12_02 Tab in the Hardware Editor	37
Table 18:	The I/O Submodule DO12_02: Channels Tab in the Hardware Editor	37
Table 19:	Coding of Submodule Status [DWORD]	38
Table 20:	Coding of Diagnostic Status [DWORD]	39

HI 801 099 E Rev. 10.00.00 Page 51 of 54

Appendix X-DO 12 02

Index

Block diagram 13	I/O indicators	17
Connection variants40		
Connector board20		17
with cable plug24	Digital outputs	19
with screw terminals22	•	
Diagnostics	Specifications	

Page 52 of 54 HI 801 099 E Rev. 10.00.00

MANUAL **X-DO 12 02**

HI 801 099 E

For further information, please contact:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Phone: +49 6202 709-0 Fax +49 6202 709-107 E-mail: info@hima.com

Learn more about HIMax online:

https://www.hima.com/en/products-services/himax/