

HW3 Algorithm 尼 A-win 70=0 B-win 7=0 C-Win 1 init rand generator; for (i=0; i< (0,000; i++) { while (at-least-two alive) {

Lative B, alive C-alive = true;

while (fat-least-two alive) { A_Shoots; it (Balive) B-Shoots; if (C-alive); C-Shoots; if (A-alive) Awin ++; if (B-alive) B_win ++; if (c-alive) C-wintt; 5 /x end for */ print report

● How to implement at least two_alive? bool at_least_two_alive(A_alive, B_alive, C_alive) if (Aalive VIX (! Ralive) VIX (! Calive). return false if ((!A-alive) & B_alive & O (! Calive if ((! A-alive) && (!B-alive) && (t-alive); return false return false How about? (!A-alive) & & (!Balive) & & (!Calive) reture true; Betler Solution if ((A_alive & G B_alive) or (A-alive Ub C-alive) or (Balive 68 Calive))

else return false

A-Shoots (Balive Calive) { P4 it (Calive) { if (ShootPoint > 67) { /*
quint (C killed);
Calive = false < 33 ×/ else if if (B-alive) [if (shoot Print >67) } print B-alive y /xend if */ 3 (xend if 9 3 /xend else */