ממן 11

יונתן אוחיון

2017 באוקטובר 29

1 שאלה 1

1.1 סעיף א

,נניח שa רציונלי ונגיע לסתירה. ראשית, מכיוון שמתקיים $\mathbb{Q} \subset \mathbb{Q}$, גם k וk רציונליים. כעת

(*)
$$a = k + l\sqrt{2} \xrightarrow[() - k]{} a - k = l\sqrt{2}$$

מכיוון ש $a,k\in\mathbb{Q}\land a-k=a+(-k)$ ופעולת החיבור מעל הרציונליים הינה פעולה סגורה, מתקיים מכיוון ש $a,k\in\mathbb{Q}\land a-k=a+(-k)$ נוכל להניח שהצגה זו גם $a-k=rac{lpha}{eta}$ כך: $a-k\in\mathbb{Q}$ נוכל להניח שהצגה זו מספר זה (כלומר, הגורם המשותף היחידי בין a ו β הוא β). לכן לפי (*) מתקיים

$$\frac{\alpha}{\beta} = l\sqrt{2} \xrightarrow[]{} \frac{\alpha^2}{\beta^2} = 2l^2 \xrightarrow[]{} \alpha^2 = 2l^2\beta^2$$

מכיוון ש $2 \mid 2l^2\beta^2$ מתקיים אי־זוגי מתקיים של אי־זוגי ומכיוון מתקיים 2 אי־זוגי מתקיים מכיוון מכיוון מ $\alpha^2 \mid 2l^2\beta^2$ מתקיים מכיוון ב $m\in\mathbb{N}$ כל מלומר מיים 2 $\mid \alpha$

$$4m^2 = 2l^2\beta^2 \xrightarrow{\frac{\Omega}{2}} l^2\beta^2 = 2m^2 \xrightarrow{\frac{\Omega}{l^2}} \beta^2 = 2 \cdot \frac{m^2}{l^2}$$

לכן β ומכיוון שריבוע של מספר אי־זוגי הינו מספר אי־זוגי, מתקיים גם β והגענו לסתירה לכן β ומכיוון שריבוע של מספר אי־רציונלי כנדרש. $\alpha=k+l\sqrt{2}$ הינו α ו β ו β הינו מספר אי־רציונלי כנדרש.

1 שאלה 1 (המשך)

1.1 סעיף ב

נוכיח את הטענה באינדוקציה עבור $n\in\mathbb{N}$ מקרה הבסיס הוא נוכיח את נוכיח את גווי עבור אוור מור מור אווי עבור אווי מ

$$a = (1 + \sqrt{2})^1 = 1 + \sqrt{2}$$

מספר זה הינו מהצורה $a=k+l\sqrt{2}$ (עבור k=l=1 ולפי סעיף א של השאלה אנו יודעים שזהו מספר זה הינו מהצורה נניח נכונות עבור n=k+1 ונוכיח עבור n=k

$$a = (1 + \sqrt{2})^{k+1}$$

= $(1 + \sqrt{2}) \cdot (1 + \sqrt{2})^k$
= $(1 + \sqrt{2})^k + \sqrt{2}(1 + \sqrt{2})^k$

לפי הנחת האינדוקציה $(1+\sqrt{2})^k$ הינו מספר אי רציונלי, אך לפי שאלה 1.61 נוכל לראות שמכפלת מספרים אי רציונליים אינה בהכרח מספר אי רציונלי בעצמה ולכן $\sqrt{2}(1+\sqrt{2})^k$ אינו בהכרח אי רציונלי. לפיכך, נוכל לחלק את הביטוי לשני מקרים:

$$\sqrt{2}(1+\sqrt{2})^k \in \mathbb{Q}$$
 – מקרה מקרה 1.1.1

לפי הנחת האינדוקציה $(1+\sqrt{2})^k$ מספר אי רציונלי. לפי שאלה 1.61 נוכל לראות שסכום מספר אי רציונלי ומספר רציונלי הינו מספר אי רציונלי בעצמו ולכן $a
ot\in \mathbb{Q}$ כנדרש.

$$\sqrt{2}(1+\sqrt{2})^k
ot\in\mathbb{Q}$$
 – מקרה ב 1.1.2

2 שאלה 2

טענת עזר 2.0

,1.42.2 אפית, נוכיח טענת עזר אשר אומרת שעבור כל $x,n\in\mathbb{R}$ מתקיים אשר אומרת עזר אשר אומרת ראשית, נוכיח לכל $\frac{x}{n}\leq x$ מתקיים $\frac{1}{n}\leq 1$ נכפיל את שני האגפים בx ונקבל ונקבל x כנדרש.

סעיף א 2.1

ראשית, נוכיח שa|>0. אם |a|+1>0 בהכרח בה"כ. לפי תכונות הערך המוחלט, |a|>0. אם |a|+1>0 בהכרח גם גם |a|+1=1>0 (שכן a|+1>0) וסיימנו. אם |a|+1>0 אזי |a|+1>0 (שכן a|+1>0) וסיימנו. וסיימנו. אם |a|+1>0

$$\begin{split} \left| \sqrt{|a|+1} - \sqrt{|b|+1} \right| &= \left| \frac{(\sqrt{|a|+1} + \sqrt{|b|+1})(\sqrt{|a|+1} - \sqrt{|b|+1})}{\sqrt{|a|+1} + \sqrt{|b|+1}} \right| \\ \sqrt{|a|+1} + \sqrt{|b|+1} \\ \rightarrow &= \left| \frac{|a| + \cancel{1} - |b| - \cancel{1}}{\sqrt{|a|+1} + \sqrt{|b|+1}} \right| \\ \text{חיסור} \rightarrow &= \left| \frac{|a| - |b|}{\sqrt{|a|+1} + \sqrt{|b|+1}} \right| \\ \rightarrow &= \frac{||a| - |b||}{\left| \sqrt{|a|+1} + \sqrt{|b|+1} \right|} \\ \rightarrow &= \frac{||a| - |b||}{\left| \sqrt{|a|+1} + \sqrt{|b|+1} \right|} \end{split}$$

כעת, לפי טענת העזר שהוכחנו מתקיים

$$\left| \sqrt{|a|+1} - \sqrt{|b|+1} \right| = \frac{\left| |a| - |b| \right|}{\left| \sqrt{|a|+1} + \sqrt{|b|+1} \right|} \le \left| |a| - |b| \right|$$

וגם

$$\frac{|a-b|}{2} \le |a-b|$$

לפי אי־שוויון המשולש מתקיים $|a|-|b|| \leq |a-b|$ ולכן גם

$$\left| \sqrt{|a|+1} - \sqrt{|b|+1} \right| \le \left| |a| - |b| \right| \le \frac{|a-b|}{2} \le |a-b| \xrightarrow{\text{support}} \left| \sqrt{|a|+1} - \sqrt{|b|+1} \right| \le \frac{|a-b|}{2}$$

כנדרש.

3

2 שאלה 2 (המשך)

2.2 סעיף ב

נחלק את הביטוי לשלושה תתי מקרים:

a = 0 – מקרה מקרה 2.2.1

לפיכך, |a|=0 מתקיים a=0 לפיכך, לפיכך

$$\left(\frac{a+|a|}{2}\right)^2 = \left(\frac{a-|a|}{2}\right)^2 = a^2 = 0$$

כנדרש.

a > 0 – מקרה ב 2.2.2

,לפיכך .|a|=a מתקיים a>0 לפיכך לפיכך.

$$\left(\frac{a+|a|}{2}\right)^2 + \left(\frac{a-|a|}{2}\right)^2 = \left(\frac{2a}{2}\right)^2 + \left(\frac{0}{2}\right)^2 = a^2 + 0 = a^2$$

כנדרש.

a < 0 – מקרה מקרה 2.2.3

.|a|=-a=m מתקיים (a=-m כך ש $m\in\mathbb{R}$ כלומר קיים (כלומר מנות הערך המוחלט, עבור לפיכך,

$$\left(\frac{a+|a|}{2}\right)^2 + \left(\frac{a-|a|}{2}\right)^2 = \left(\frac{-m+m}{2}\right)^2 + \left(\frac{-m-m}{2}\right)^2$$
$$= \left(\frac{0}{2}\right)^2 + \left(\frac{-2m}{2}\right)^2$$
$$= (-m)^2 = a^2$$

כנדרש.