

Problem

Build a prediction model to predict whether a mobile ad will be clicked

CTR (click-through rate) Usage:

- Online Advertising
- Ad performance evaluation

Business Use Case:

- Sponsored search
- Real-time bidding

Approach

- **S** Sample
- E Explore
- **M** Modify
- **M** Model
- A Assess

SEMMA - Sample

Original Data Set:

Rows – Over 40 million

Columns – 24

Response Variable – Binary categorical

Class 0	Class 1
83%	17%

Data Set should be:

large enough – Sufficiency small enough – Efficiency

Efficiency

Sufficiency

SEMMA - Sample

10 days of data for each hour => Total 240 hours of data

SEMMA - Sample

On certain days at specific times, there are:

- More Observations
- More ad clicks

Sampling Strategy: Take a 1% stratified sample from each of the 240 hours of data

Total sample size = 404299

Motivation: Preserve the proportion of total observations as well as ad clicks across different hours.

SEMMA - Explore

• Time is an important variable based on which ad clicks are varying.

SEMMA - Explore

• All independent variables are Categorical

Independent Variable	# Levels
C1	7
Banner_pos	7
site_id	2184
site_domain	2146
site_category	21
app_id	2299
app_domain	142
app_category	26
device_id	64709

Independent Variable	# Levels
device_ip	262641
device_model	4351
device_type	4
device_con_type	4
C14	2070
C15	8
C16	9
C17	413
C18	4

Independent Variable	# Levels
C19	66
C20	161
C21	60

10 variables have more than 100 levels

Handling Categorical Levels:

- 1. One hot Encoding: This will create dummy variables. Huge no. of dimensions will be created Not a good option here because no. of levels are very high
- 2. Impact Coding: Uses naïve Bayes Example: Suppose a categorical input variable has 3 levels A,B,and C.

For each level calculate the conditional probability of output=1

For level A of an input variable calculate:

 $P(y=1 \mid A) = P(A \mid y=1) * P(y=1) / P(A)$ $P(y=1 \mid A) = 1/4 * 4/6 / (2/6) = 1/2$

i/p variable	Response
A	1
A	0
В	0
В	1
В	1
С	1

i/p variable	Response
A	1
A	0
В	0
В	1
В	1
С	1

Impact Coding

Modified i/p Variable	Response
0.5	1
0.5	0
2/3	0
2/3	1
2/3	1
1	1

Modified all ten variables with more than 100 levels by using impact coding. Variables modified: site_id, site_domain, app_id, app_domain, device_id, device_ip, device_model, C14, C17, C20

Input variable:

hour: format is YYMMDDHH, 14091123 means 23:00 on Sept. 11, 2014

Created 2 new categorical variables from the hour variable:

day_of_week: categorical with 7 levels 1 is Monday,..., 7 is Sunday

hour_of_day: categorical with 24 levels 00,01,02,...,23

Motivation: Capture seasonality present in Days of a week and Time of the day.

Another Technique to deal with large no. of categorical variables is **Hashing**.

Hashing uses less memory and requires little pre-processing. It is a fast and space-efficient way of vectorizing features.

Hash Size is a critical parameter.

Large Hash size - Will handle more variables (i.e. unique values). Smaller Hash size - Risk having memory collisions and loss of data.

Example: Suppose we choose a Hash size of 4

Hashed Output

Var1	Var2
abcd	xyzw
Hash Function h ₁ (x)	Hash Function h ₂ (x)
123456 — 123456 % 4 = 0	679043 → 679043 % 4 = 3

H_0	H_1	H_2	H_3
1	0	0	1

SEMMA - Model

Binary Classification Problem

Models Used:

- a. Logistic Regression
- b. Logistic Regression with Hashing
- c. Random Forest
- d. Gradient Boosting

SEMMA - Assess

Created a 70:30 stratified split to create Training and Validation sets

Evaluation Metric: Logloss

$$logloss = -rac{1}{N}\sum_{i=1}^{N}\left(y_i\log(p_i) + (1-y_i)\log(1-p_i)
ight)$$

Model	Logloss on Validation set
Logistic	0.61
Logistic with Hashing	0.413
Random Forest	0.53
GBM	0.43
GBM + Hashing	0.410

Out of all tried models, logistic and GBM models with hashing technique gave the least logloss error

