Game playing

Kenapa mempelajari games?

- Kriteria menang atau kalah jelas
- Dapat mempelajari permasalahan
- Alasan histori
- Menyenangkan
- Biasanya mempunyai search space yang besar (misalnya game catur mempunyai 35¹⁰⁰ nodes dalam search tree dan 10⁴⁰ legal states)

Seberapa hebat computer game player?

- Catur:

- Deep Blue mengalahkan Gary Kasparov pada tahun 1997
- Gary Kasparav vs. Deep Junior (Feb 2003): seri

- Checkers:

• Chinook adalah juara dunia

- **Go**:

Computer player adalah sangat tangguh

- Bridge:

• computer players mempunyai "Expert-level"

Garry Kasparov and Deep Blue. © 1997,

GM Gabriel Schwartzman's Chess Camera, courtesy IBM.

Ratings of human and computer chess champions

January/February 2003

Ciri umum pada game

- 2 pemain
- Kesempatan pemain bergantian
- Zero-sum: kerugian seorang pemain adalah keuntungan pemain lain
- Perfect information: pemain mengetahui semua informasi state dari game
- Tidak mengandung probabilistik (seperti dadu)
- Contoh: Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
- Game tidak termasuk Bridge, Solitaire, Backgammon, dan semisalnya

Bagaimana bermain game?

• Cara bermain game:

- Pertimbangkan semua kemungkinan jalan
- Berikan nilai pada semua kemungkinan jalan
- Jalankan pada kemungkinan yang mempunyai nilai terbaik
- Tunggu giliran pihak lawan jalan
- Ulangi cara diatas

• Key problems:

- Representasikan "board" atau "state"
- Buatlah next board yang legal
- Lakukan evaluasi pada posisi

Evaluation function

- Evaluation function atau static evaluator digunakan untuk mengevaluasi nilai posisi yang baik
- Zero-sum assumption membolehkan untuk menggunakan single evaluation function untuk mendeskripsikan nilai posisi
 - $-\mathbf{f(n)} >> \mathbf{0}$: posisi n baik untuk saya dan jelek untuk lawan
 - $-\mathbf{f(n)} << \mathbf{0}$: posisi n jelek untuk saya dan baik untuk lawan
 - f(n) near 0: posisi n adalah posisi netral/seri
 - f(n) = +infinity: saya menang
 - f(n) = -infinity: lawan menang

Contoh evaluation function

- Tic-Tac-Toe
 - f(n) = [# of 3-lengths open for me] [# of 3-lengths open for you]
 - dimana 3-length adalah complete row, column, atau diagonal yang terisi
- Alan Turing's function untuk catur
 - $\mathbf{f(n)} = \mathbf{w(n)/b(n)}$ dimana $\mathbf{w(n)} = \mathbf{jumlah}$ point value bidak putih and $\mathbf{b(n)} = \mathbf{jumlah}$ point value dari bidak hitam
- Deep Blue (yang mengalahkan Gary Kasparov tahun 1997) mempunyai lebih dari 8000 features untuk evaluation function

Game tree

Minimax

• John von Neumann pada tahun 1944 menguraikan sebuah algoritma search pada game, dikenal dengan nama Minimax, yang memaksimalkan posisi pemain dan meminimalkan posisi lawan

Contoh: Game Nim

- Diawali serangkaian batang
- Setiap pemain harus memecah serangkaian batang menjadi
 2 kumpulan dimana jumlah batang di tiap kumpulan tidak boleh sama dan tidak boleh kosong

Asumsi

• MIN bermain dulu

- Evaluation function:
 - $-0 \rightarrow MIN menang$
 - $-1 \rightarrow MAX$ menang

Alpha-beta pruning

- Merupakan improvisasi dari Minimax
- Basic idea

"If you have an idea that is surely bad, don't take the time to see how truly awful it is." (Pat Winston)

- Tidak perlu menghitung nilai pada node ini.
- Nilai pada node tersebut tidak akan berpengaruh pada root-nya.

Alpha-beta Pruning

Referensi

- Notes by Charles R. Dyer, University of Wisconsin-Madison.
- Game Playing, Graham Kendall.
- Modul Ajar Kecerdasan Buatan, Entin Martiana, Tessy Badriyah, Riyanto Sigit, Politeknik Elektronika Negeri Surabaya, 2005.
- Artificial Intelligence (Teori dan Aplikasinya), Sri Kusumadewi, cetakan pertama, Penerbit Graha Ilmu, 2003.