Homework 12

Sean Eva

October 2021

1. Number of hydrogen in sun: $\frac{1.989*10^{30}}{1.674*10^{-27}} = 1.188*10^{57}$. Energy released $13*1.188*10^{57} = 1.544*10^{58} \text{eV} = \frac{1.544*10^{58}}{1.602*10^{12}} = 9.640*10^{45} \text{erg}$ $10^{45} erg.$

Solar luminosity: $3.826 * 10^{33} \frac{\text{erg}}{\text{s}}$. Then, $\frac{9.640 * 10^{45}}{3.826 * 10^{33}} = 2.520 * 10^{12} \text{s} =$ $\frac{2.520*10^{12}}{60*60*24*365.25} = 7.985*10^4 \text{ years.}$

This is much less than the age of the Earth. This means that the Sun's energy is not entirely chemical, especially in this scenario. This energy would only sustain the sun for a fraction of the amount of time that it has been alive.

- 2. (a) $\Delta m = (12.00000 + 12.00000) (23.98504) = 0.01496.$ $E = mc^2 = \frac{0.01496*(1.67*10^{-27})*(3*10^8)^2}{1.6*10^{-13}} = 14.053 \text{ MeV}$ Since the initial mass is greater than the final mass, the reaction is exothermic.
 - (b) $\Delta m = (12.00000 + 12.000000) (15.99491 + 2(4.002603)) = -0.000116$ $E = mc^2 = \frac{-0.000116 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = -0.109 \text{ MeV}$ Since the initial mass is less than the final mass, the reaction is endothermic.
 - (c) $\Delta m = (18.99840 + 1.007825) (15.99491 + 4.002603) = 0.008712$ $E = mc^2 = \frac{0.008712*(1.67*10^{-27})*(3*10^8)^2}{1.6*10^{-13}} = 8.184 \text{ MeV}$ Since the initial mass is greater than the final mass, the reaction is exothermic.
- 3. (a) 27||v|
 - (b) 27||2||He
 - (c) γ
- 4. Total number of Copper 63 atoms: $\frac{3.2}{62.92960*(1.6605402*10^{-24})} = 3.062*10^{22}$

$$\Delta m = ((29(1.00783) + 34(1.00867)) - 62.92960) *3.062*10^{22} = 1.813*10^{22}$$

$$E = mc^2 = \frac{(1.813*10^{22})*(1.67*10^{-27})*(3*10^8)^2}{1.6*10^{-13}} = 1.703*10^{25} \text{ MeV}$$

5. $\frac{10.0*3.27}{2*(2.014102)(1.661*10^{-27})} = 4.887*10^{27} \text{ MeV} = 4.887*10^{27}*1.602*10^{-13} =$

- 6. $E=mc^2=\frac{(42.958770-41.958630-1.00866)*(1.67*10^{-27})*(3*10^8)^2}{1.6*10^{-13}}=-8.003475$ MeV. The amount of energy required to remove a neutron from Ca43 is around $8.003475~\mathrm{MeV}.$
- 7. $E = mc^2 = \frac{(9.012182 + 4.002603 12.00000 1.008665) * (1.67 * 10^{-27}) * (3 * 10^8)^2}{1.6 * 10^{-13}} = 5.748975 \text{ MeV}$
- 8. (a) $E = mc^2 = \frac{(1(1.00727647) + 1(1.008665) 2.014102) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(1.00727647) + (1.008665) 2.014102 * (1.67*10^{-27}) * (1.67*10^{-27$ $1.728~\mathrm{MeV}$ or $0.864~\mathrm{MeV/nucleon}.$
 - (b) $E=mc^2=\frac{(2(1.00727647)+2(1.008665)-4.002603)*(1.67*10^{-27})*(3*10^8)^2}{1.6*10^{-13}}=27.505~{\rm MeV}~{\rm or}~6.876~{\rm MeV/nucleon}$
 - (c) $E=mc^2=\frac{(26(1.00727647)+30(1.008665)-55.934939)*(1.67*10^{-27})*(3*10^8)^2}{1.6*10^{-13}}=483.026~{\rm MeV}$ or 8.625 MeV/nucleon
 - (d) $E = mc^2 = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} = \frac{(92(1.00727647) + 146(1.008665) 238.050786) * (1.67*10^{-27}) *$ 1769.538 MeV or 7.435 MeV/nucleon.
- 9. Part 1: $E = mc^2 = \frac{(2(1.007825) 2.014102 0.0005486) * (1.67*10^{-27}) * (3*10^8)^2}{1.6*10^{-13}} =$ $0.939~\mathrm{MeV}$

 - 0.939 MeV Part 2: $E = mc^2 = \frac{(2(0.0005486) 0)*(1.67*10^{-27})*(3*10^8)^2}{1.6*10^{-13}} = 1.031 \text{ MeV}$ Part 3: $E = mc^2 = \frac{(2.014102 + 1.007825 3.016029)*(1.67*10^{-27})*(3*10^8)^2}{1.6*10^{-13}} = 5.540 \text{ MeV}$ Part 4: $E = mc^2 = \frac{(2(3.016029) 4.002603 2(1.007825))*(1.67*10^{-27})*(3*10^8)^2}{1.6*10^{-13}} = 12.068 \text{ MeV}$
 - Total: 0.939 + 1.031 + 5.540 + 12.968 = 20.478 MeV