1.	Which approach can find an optimal deterministic policy? (Select all that apply)	1 point
	Exploring Starts	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$lacksquare$ Off-policy learning with an ϵ -soft behavior policy and a deterministic target policy	
2.	When can Monte Carlo methods, as defined in the course, be applied? (Select all that apply)	1 point
	☐ When the problem is continuing and given a batch of data containing sequences of states, actions, and	
	rewards	
	☐ When the problem is continuing and there is a model that produces samples of the next state and reward	
	When the problem is episodic and given a batch of data containing sample episodes (sequences of states, actions, and rewards)	
	When the problem is episodic and there is a model that produces samples of the next state and reward	
3.	Which of the following learning settings are examples of off-policy learning? (Select all that apply)	1 point
	✓ Learning the optimal policy while continuing to explore	
	Learning from data generated by a human expert	
4.	Which of the following is a requirement <i>on the behaviour policy b</i> for using off-policy Monte Carlo policy evaluation? This is called the <i>assumption of coverage</i> .	1 point
	$lacktriangledown$ For each state s and action a , if $\pi(a\mid s)>0$ then $b(a\mid s)>0$	
	\bigcirc For each state s and action a , if $b(a\mid s)>0$ then $\pi(a\mid s)>0$	
	$igcirc$ All actions have non-zero probabilities under π	
5.	When is it possible to determine a policy that is greedy with respect to the value functions v_π,q_π for the	1 point
	policy π ? (Select all that apply)	2,50
	$lacksquare$ When state values v_π and a model are available	
	$\hfill \square$ When state values v_π are available but no model is available.	
	$lacksquare$ When action values q_π and a model are available	
	$lacksquare$ When action values q_π are available but no model is available.	
6.	Monte Carlo methods in Reinforcement Learning work by	1 point
	Hint: recall we used the term <i>sweep</i> in dynamic programming to discuss updating all the states systematically. This is not the same as visiting a state.	
	Performing sweeps through the state set	
	O Planning with a model of the environment	
	Averaging sample returns	
	O Averaging sample rewards	
7.	Suppose the state s has been visited three times, with corresponding returns 8 , 4 , and 3 . What is the current Monte Carlo estimate for the value of s ?	1 point
	O 3	
	O 15	
	○ 3.5	
8.	When does Monte Carlo prediction perform its first update?	1 point
	After the first time step	- p
	After every state is visited at least once	
	At the end of the first episode	
	-	

9.	For Monte Carlo Prediction of state-values, the number of updates at the end of an episode depends on	1 point
	Hint: look at the innermost loop of the algorithm	
	The number of possible actions in each state	
	The length of the episode	
	○ The number of states	
10.	In an ϵ -greedy policy over $\mathcal A$ actions, what is the probability of the highest valued action if there are no other actions with the same value?	1 point
	\bigcirc 1 – ϵ	
	\bigcirc ϵ	
	\bullet $1 - \epsilon + \frac{\epsilon}{A}$	

 $\bigcirc \frac{\epsilon}{A}$