1- Load the "breast-cancer-wisconsin.data.csv" from canvas into R and perform the EDA analysis by:

setwd("/Users/jiayinhuang/SIT-homework/CS/cs513-homework")
data <- read.csv("breast-cancer-wisconsin.csv", na.strings = "?")
View(data)</pre>

I. Summarizing each column (e.g. min, max, mean)

?summary summary(data)

Sample F1 F2 F3 F4

Min.: 61634 Min.: 1.000 Min.: 1.000 Min.: 1.000 Min.: 1.000 1st Qu.: 870688 1st Qu.: 2.000 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 1.000 Median: 1.000 Median

Mean : 1071704 Mean : 4.418 Mean : 3.134 Mean : 3.207 Mean : 2.807 3rd Qu.: 1238298 3rd Qu.: 6.000 3rd Qu.: 5.000 3rd Qu.: 5.000 3rd Qu.: 4.000 Max. :13454352 Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000

F5 F6 F7 F8 F9

Min.: 1.000 Min.: 1.000 Min.: 1.000 Min.: 1.000 Min.: 1.000

1st Qu.: 2.000 1st Qu.: 1.000 1st Qu.: 2.000 1st Qu.: 1.000 1st Qu.: 1.000

Median: 2.000 Median: 1.000 Median: 3.000 Median: 1.000 Median: 1.000

Mean: 3.216 Mean: 3.545 Mean: 3.438 Mean: 2.867 Mean: 1.589

3rd Qu.: 4.000 3rd Qu.: 6.000 3rd Qu.: 5.000 3rd Qu.: 4.000 3rd Qu.: 1.000

Max.: 10.000 Max.: 10.000 Max.: 10.000 Max.: 10.000 Max.: 10.000

NA's :16

Class
Min. :2.00
1st Qu.:2.00
Median :2.00
Mean :2.69
3rd Qu.:4.00

Max. :4.00

II. Identifying missing values
 sum(is.na(data))
 missingDataF6 = data[which(is.na(data\$F6)),]
 View(missingDataF6)

III. Replacing the missing values with the "mean" of the column.

Calculate the mean of the "F6" column

mean_F6 <- mean(data\$F6, na.rm = TRUE)

Replace missing values with the mean of the "F6" column data\$F6 <- replace(data\$F6, is.na(data\$F6), mean_F6)

View(data)

IV. Displaying the frequency table of "Class" vs. F6 # Create a frequency table for "Class" and "F6" freq <- table(class=data\$Class, F6=data\$F6) View(freq)

hw2.		freq × data ×	
		ilter	
^	class	F6 ÷	Freq [‡]
1	2	1	387
2	4	1	15
3	2	2	21
4	4	2	9
5	2	3	14
6	4	3	14
7	2	3.54465592972182	14
8	4	3.54465592972182	2
9	2	4	6
10	4	4	13
11	2	5	10
12	4	5	20
13	2	6	0
14	4	6	4
15	2	7	1
16	4	7	7
17	2	8	2
18	4	8	19
19	2	9	0
20	4	9	9

V. Displaying the scatter plot of F1 to F6, one pair at a time ?pairs

```
pairs(data[c(2,3)], main = "F1 & F2") pairs(data[c(2,4)], main = "F1 & F3") pairs(data[c(2,5)], main = "F1 & F4") pairs(data[c(2,6)], main = "F1 & F5") pairs(data[c(2,6)], main = "F1 & F6") pairs(data[c(2,7)], main = "F1 & F6") pairs(data[c(3,4)], main = "F2 & F3") pairs(data[c(3,5)], main = "F2 & F4") pairs(data[c(3,6)], main = "F2 & F5") pairs(data[c(3,7)], main = "F2 & F6") pairs(data[c(4,5)], main = "F3 & F4") pairs(data[c(4,6)], main = "F3 & F6") pairs(data[c(5,6)], main = "F4 & F5") pairs(data[c(5,6)], main = "F4 & F6") pairs(data[c(5,7)], main = "F4 & F6") pairs(data[c(6,7)], main = "F5 & F6")
```


Scatter Plots of F1 to F6

VI. Show histogram box plot for columns F7 to F9

Create a histogram for each column

hist(data\$F7, main = "Histogram of F7", xlab = "F7 Values")

hist(data\$F8, main = "Histogram of F8", xlab = "F8 Values")

hist(data\$F9, main = "Histogram of F9", xlab = "F9 Values")

Create a box plot of columns F7 to F9

boxplot(data[, 8:10], main = "Box Plot of F7 to F9", xlab = "Column", ylab = "Value")

2- Delete all the objects from your R- environment. Reload the "breast-cancer-wisconsin.data.csv" from canvas into R. Remove any row with a missing value in any of the columns.

Delete all objects from R environment

rm(list = ls())

Load the dataset

data <- read.csv("breast-cancer-wisconsin.csv", na.strings = "?")</pre>

View(data)

Replace missing values "?" with NA

data[data == "?"] <- NA

Remove any rows with missing values

data <- na.omit(data)

View(data)

