POLITECHNIKA WROCŁAWSKA

Laboratorium

Inteligencja Obliczeniowa i jej Zastosowania

Algorytmy ewolucyjne i hybrydowe

Authors: Rafał Pieniążek Jakub Pomykała $\begin{array}{c} \textit{Supervisor:} \\ \text{dr hab. inż. Olgierd UNOLD,} \\ \text{prof. PWr} \end{array}$

23 maja 2018

Spis treści

1	Wstęp	3
2	Zastosowany algorytm optymalizacji 2.1 Zastosowane narzędzia implementacji 2.1.1 Język R 2.1.2 Pakiet GA 2.1.3 Pakiet globalOpts	3 3 3 3
3	Własne operatory krzyżowania i mutacji 3.1 Funkcja wielomodalna - Funkcja Shuberta 3.1.1 Wzór analityczny 3.1.2 Wykres w ustalonym przedziale zmiennych 3.1.3 Ekstremum globalne 3.2 Zmiana funkcji mutowania 3.3 Zmiana funkcji krzyżowania	4 4 4 4 6 7
4	4.2.1 Zmiana parametru krzyżowania	9 10 10 11 12 13 14 14 15 16
	4.4.1 Zmiana parametru krzyżowania	18 18 19 20 21
5	HGA	2 2
6	Wnioski	23
7	Literatura	23

Spis rysunków

1	Wzór analityczny funkcji Schuberta	4
2	Wykres funkcji Schuberta	4
3	Minimum globalne dla funkcji Schuberta	4
4	Minimum globalne dla funkcji Schuberta	5
5	Porównanie domyślnej funkcji mutowania z własną	6
6	Porównanie domyślnej funkcji mutowania z własną - znalezione ekstrema	7
7	Porównanie domyślnej funkcji krzyżowania z własną	8
8	Porównanie domyślnej funkcji krzyżowania z własną - znalezione ekstrema	8
9	Porównanie wyników podczas zmiany parametru krzyżowania	10
10	Porównanie wyników podczas zmiany parametru liczby pokoleń	11
11	Porównanie wyników podczas zmiany parametru rozmiaru populacji	12
12	Porównanie wyników podczas jednoczesnej zmiany parametrów	13
13	Porównanie wyników podczas zmiany parametru krzyżowania	14
14	Porównanie wyników podczas zmiany parametru liczby pokoleń	15
15	Porównanie wyników podczas zmiany parametru rozmiaru populacji	16
16	Porównanie wyników podczas jednoczesnej zmiany parametrów	17
17	Porównanie wyników podczas jednoczesnej zmiany parametrów	17
18	Porównanie wyników podczas zmiany parametru krzyżowania	18
19	Porównanie wyników podczas zmiany parametru liczby pokoleń	19
20	Porównanie wyników podczas zmiany parametru rozmiaru populacji	20
21	Porównanie wyników podczas jednoczesnej zmiany parametrów	21
22	Porównanie wyników podczas jednoczesnej zmiany parametrów	21

1 Wstęp

Celem laboratorium było przeprowadzenie optymalizacji globalnej dla wybranych funkcji z pakietu globalOptTests.

2 Zastosowany algorytm optymalizacji

W laboratorium zastosowano algorytmy genetyczne będące klasą algorytmów ewolucyjnych. Algorytmy ewolucyjne stanowią kierunek sztucznej inteligencji, która wykorzystuje i symuluje ewolucję biologiczną. Wszystkie algorytmy tej klasy symulują podstawowe zachowania w teorii ewolucji biologicznej - procesy selekcji, mutacji i reprodukcji. Zachowanie jednostek zależy od środowiska. Zbiór jednostek nazywa się populacją. Taka populacja ewoluuje zgodnie z regułami selekcji zgodnie z funkcją celu przypisaną do środowiska. Propagowane do kolejnych pokoleń są tylko najbardziej dopasowane osobniki.

2.1 Zastosowane narzędzia implementacji

2.1.1 Jezyk R

R jest językiem programowania i środowiskiem programistycznym, używanym głównie do obliczeń statystycznych i wizualizacji danych, do sztucznej inteligencji a także do ekonomii i innych zagadnień wykorzystujących obliczenia numeryczne. Został stworzony przez Rossa Ihakę i Roberta Gentlemana na Uniwersytecie w Auckland w Nowej Zelandii.

2.1.2 Pakiet GA

Pakiet GA zawiera zestaw funkcji ogólnego przeznaczenia do optymalizacji z wykorzystaniem algorytmów genetycznych. Dostępnych jest kilka operatorów genetycznych, których można łączyć w celu zbadania najlepszych ustawień dla bieżącego zadania.

2.1.3 Pakiet globalOpts

Pakiet zawierający implementację funkcji przydatnych do przeprowadzania testów wydajnościowych algorytmów optymalizacji globalnej.

3 Własne operatory krzyżowania i mutacji

3.1 Funkcja wielomodalna - Funkcja Shuberta

3.1.1 Wzór analityczny

$$f(\mathbf{x}) = \left(\sum_{i=1}^{5} i \cos((i+1)x_1 + i)\right) \left(\sum_{i=1}^{5} i \cos((i+1)x_2 + i)\right)$$

Rysunek 1: Wzór analityczny funkcji Schuberta

3.1.2 Wykres w ustalonym przedziale zmiennych

Rysunek 2: Wykres funkcji Schuberta

3.1.3 Ekstremum globalne

$$f(\mathbf{x}^*) = -186.7309$$

Rysunek 3: Minimum globalne dla funkcji Schuberta

Rysunek 4: Minimum globalne dla funkcji Schuberta

3.2 Zmiana funkcji mutowania

Poniżej przedstawiono własną propozycję implementacji funkcji mutowania.

Na poniższych wykresach przedstawiono zestawienie rezultatów działania w przypadku domyślnej i własnej, zaimplementowanej funkcji mutacji. Wyniki dla funkcji domyślnej znajdują się po lewej stronie.

Rysunek 5: Porównanie domyślnej funkcji mutowania z własną

Rysunek 6: Porównanie domyślnej funkcji mutowania z własną - znalezione ekstrema

Zmiana funkcji mutującej nie wpłynęła znacząco na wyniki końcowy. Mimo, iż w początkowej fazie wynik funkcji zbiegał do ekstremum wolniej niż w przypadku funkcji domyślnej, po 100 pokoleniach wynik jest na podobnym poziomie w obu przypadkach. Finalnie jednak algorytm z własną funkcją mutującą nie znalazł ekstremum globalnego. Widoczne jest to na wykresie temperaturowym, na którym zaznaczono rozwiązanie znalezione przez algorytm.

W przypadku funkcji z własną funkcją mutowania można zauważyć spadek średniej i mediany wyników. Jest to spowodowane tym że dane zostają wyznaczane stochastycznie przez pakiet GA, a ich modyfikacja przez pomnożenie lub podzielenie przez stałą liczbę nie może poprawić ani pogorszyć wyniku w tym przypadku. Jakość znalezionych rozwiązań będzie mocno skorelowana z pierwotnie wyznaczonymi wartościami.

3.3 Zmiana funkcji krzyżowania

Poniżej przedstawiono własną propozycję implementacji funkcji krzyżowania.

```
customCrossover <- function(object, parents)
{
    parent_1 <- parents[[1]]
    parent_2 <- parents[[2]]
    wektor_1 <- c(parent_1, parent_2)
    fitness = testFunctionWrapper(parent_1, parent_2)

    tmp_parent_1 <- parents[[1]] + runif(1, -1, 1)
    tmp_parent_2 <- parents[[2]] + runif(1, 1, -1)
    tmp_wektor_1 <- c(parent_1, parent_2)
    tmp_fitness = testFunctionWrapper(parent_1, parent_2)

    if(tmp_fitness > fitness){
        return (list(children=matrix(tmp_wektor_1), fitness=tmp_fitness))
    }
    return (list(children=matrix(wektor_1), fitness=fitness))
}
```

Na poniższych wykresach przedstawiono porównanie rezultatu działania algorytmu w przypadku zmiany funkcji krzyżowania z domyślnej na własną implementację.

Rysunek 7: Porównanie domyślnej funkcji krzyżowania z własną

Rysunek 8: Porównanie domyślnej funkcji krzyżowania z własną - znalezione ekstrema

W przypadku własnej funkcji krzyżującej algorytm nie znalazł ekstremum globalnego. Wartości średniej i mediany spadły znaczącą w stosunku do domyślnej implementacji. Mediana jest praktycznie równa zero. Algorytm prawdopodobnie znalazł minimum lokalne i nie mógł odnaleźć lepszych rozwiązań, mimo wybierania lepszej wartości fitness, ponieważ do każdego rodzica jest dodawana wartość losowa z przedziału [-1, 1]. Prawdopodobnie gdyby ten przedział był większy algorytm mógłby wylosować lepszego rodzica, który nie znajduje się w lokalnym minimum.

4 Problem komiwojażera

4.1 Opis problemu

Problem komiwojażera jest jednym z najsłynniejszych problemów informatyki i badań operacyjnych. Często nazywa się skrótem TSP, skrót nazwy angielskiej nazwy "podróżujący sprzedawca". Można go sformułować w następujący sposób: "Biorąc pod uwagę n miast wraz z odległością między każdą parą tych miast, znajdź najkrótszą trasę, która przebiega przez każde miasto dokładnie raz."

4.2 Instancja 1 - bays29

4.2.1 Zmiana parametru krzyżowania

Zwiększanie parametru krzyżowania zmniejsza wartość średniej i mediany, oznacza to, że średnie wyniki w populacji są coraz gorsze. Algorytm znalazł najlepsze rozwiązanie dla wartości parametru 0.5.

Rysunek 9: Porównanie wyników podczas zmiany parametru krzyżowania

4.2.2 Zmiana parametru liczby pokoleń

Zwiększanie parametru liczby pokoleń zwiększa wartość znajdowanego rozwiązania. Poziom wartości średniej i mediany są bliskie najlepszemu rozwiązaniu.

Rysunek 10: Porównanie wyników podczas zmiany parametru liczby pokoleń

4.2.3 Zmiana parametru rozmiaru populacji

Wraz ze wzrostem ilości osobników w pokoleniu algorytm znajduje coraz lepsze rozwiązania. Wartość średniej i mediany maleje wraz ze wzrostem rozmiaru populacji.

Rysunek 11: Porównanie wyników podczas zmiany parametru rozmiaru populacji

4.2.4 Jednoczesna zmiana krzyżowania i mutacji oraz rozmiaru populacji i liczby pokoleń

Algorytm uzyskał najlepszy wynik gdy populacja wynosiła 100, a ilość pokoleń 80. Analiza wykresu temperaturowego jednoczesnej zmiany mutowania i krzyżowania nie pozwala wysunąć jednoznacznych wniosków. Można wydzielić dwa obszary parametrów dla których algorytm znalazł lepsze rozwiązanie: krzyżowanie 0.6 i mutacja 0.4 oraz krzyżowanie 0.8 i mutacja 0.75

Rysunek 12: Porównanie wyników podczas jednoczesnej zmiany parametrów

4.3 Instancja 2 - gr17

Średnie wartości są zbliżone do najlepszego rozwiązania dla najmniejszych wartości parametru krzyżowania. Wzrost tego parametru skutkuje zmniejszeniem średniej wyników w każdej populacji.

4.3.1 Zmiana parametru krzyżowania

Rysunek 13: Porównanie wyników podczas zmiany parametru krzyżowania

4.3.2 Zmiana parametru liczby pokoleń

Wzrost parametru liczby pokoleń jest jednoznaczny ze wzrostem wartości najlepszego rozwiązania. Zmniejsza się również wartość średnia i mediana.

Rysunek 14: Porównanie wyników podczas zmiany parametru liczby pokoleń

4.3.3 Zmiana parametru rozmiaru populacji

Wartość znajdowanego rozwiązania jest na stałym poziomie niezależnie od ilości osobników. Zmniejsza się jednak średnia wartość dla każdego pokolenia.

Rysunek 15: Porównanie wyników podczas zmiany parametru rozmiaru populacji

$\bf 4.3.4$ Jednoczesna zmiana krzyżowania i mutacji oraz rozmiaru populacji i liczby pokoleń

Dla tej instancji nie znaleziono korelacji między jednoczesną zmianą wartości krzyżowania i mutacji a polepszeniem uzyskiwanego wyniku.

Rysunek 16: Porównanie wyników podczas jednoczesnej zmiany parametrów

Dla jednoczesnej zmiany rozmiaru populacji i liczby iteracji najlepszy wynik uzyskano dla 100 osobników i 75 pokoleń.

Rysunek 17: Porównanie wyników podczas jednoczesnej zmiany parametrów

4.4 Instancja 3 - gr120

Średnie wartości są zbliżone do najlepszego rozwiązania dla najmniejszych wartości parametru krzyżowania. Wzrost tego parametru skutkuje zmniejszeniem średniej wyników w każdej populacji.

4.4.1 Zmiana parametru krzyżowania

Rysunek 18: Porównanie wyników podczas zmiany parametru krzyżowania

4.4.2 Zmiana parametru liczby pokoleń

Wzrost parametru liczby pokoleń jest jednoznaczny ze wzrostem wartości najlepszego rozwiązania. Zmniejsza się również wartość średnia i mediana.

Rysunek 19: Porównanie wyników podczas zmiany parametru liczby pokoleń

4.4.3 Zmiana parametru rozmiaru populacji

Wartość znajdowanego rozwiązania jest na stałym poziomie niezależnie od ilości osobników. Zmniejsza się jednak średnia wartość dla każdego pokolenia.

Rysunek 20: Porównanie wyników podczas zmiany parametru rozmiaru populacji

4.4.4 Jednoczesna zmiana krzyżowania i mutacji oraz rozmiaru populacji i liczby pokoleń

Dla tej instancji nie znaleziono korelacji między jednoczesną zmianą wartości krzyżowania i mutacji a polepszeniem uzyskiwanego wyniku.

Rysunek 21: Porównanie wyników podczas jednoczesnej zmiany parametrów

Dla jednoczesnej zmiany rozmiaru populacji i liczby iteracji najlepszy wynik uzyskano dla 150 osobników i 50 pokoleń.

Rysunek 22: Porównanie wyników podczas jednoczesnej zmiany parametrów

5 HGA

6 Wnioski

Implementacja własnych funkcji mutowania i krzyżowania jest zadaniem nietrywialnym, ale możliwym do wykonania. Jakość wyników uzyskanych przy własnych implementacjach znacząco odbiega od domyślnych funkcji.

7 Literatura

- 1. Artur Suchwałko, "Wprowadzenie do R dla programistow innych jezykow", https://cran.r-project.org/doc/contrib/R-dla-programistow-innych-jezykow.pdf, 2014-02-23
- 2. Luca Scrucca, "On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution", https://arxiv.org/pdf/1605.01931.pdf, 2016-05-09
- 3. dr inż. Julian Sienkiewicz, "Pakiet R w analizie układów złożonych", http://www.if.pw.edu.pl/~julas/CSAR/csar11.html, 2017
- 4. W. N. Venables, D. M. Smith, R Core Team, "An Introduction to R", https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf, 2018-04-23
- 5. Luca Scrucca, "Package 'GA'", ftp://cran.r-project.org/pub/R/web/packages/GA/GA. pdf, 2016-09-29
- Katharine Mullen, "Package 'globalOptTests", https://cran.r-project.org/web/packages/globalOptTests/globalOptTests.pdf, 2015-02-15
- Abdal-Rahman Hedar, "Global Optimization Test Problems", http://www-optima.amp. i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm, dostęp online: 2018-05-04