Multi-sites Calibration Tracking for FY-3A/MERSI Solar bands

Sun Ling, Hu Xiu-qing, Guo Mao-hua NSMC, CMA

2011-3-23 Daejeon

Outlines

- Method and Primary Result for FY-3A/MERSI
- TOA Radiation Estimation Test with Terra/MODIS
- FY-3A/MERSI Re-calibration Performance Analysis

Method and Primary Results for MERSI

Multi-sites with stable surface properties:

Gobi and desert targets: Dunhuang, Libya1, Libya4 and Arabia2,

ocean site: Lanai (MOBY). +75 +60 +45 +30 +15 -15 Dunhuang (40.138° N, 94.32° E) Libya1 (24.42° N, 13.35° E) 0° + 30° + 60° + 90° + 120° + 150° + 1 Lanai (20.49° N. 157. Libya4 (28.55° N, 23.39° E) Arab2 (20.13° N, 50.96° E)

TOA reflectance calculation

RTM: 6SV

AOD@550nm:

MODIS monthly aerosol product

Aqua deep blue for land, Terra for ocean

Ozone amount:

climatological monthly mean from TOMS

Water vapor amount:

climatological monthly mean from NCEP

Surface directional reflectance:

MODIS BRDF products for land sites

MOBY measurements for ocean site

Calibration coefficient calculation

Data within certain days from 5 sites are used to get the calibration slope:

$$ARef_i=Ref_i (d0/d)2cos(SoIZ)$$

= $Slope_i (DN_i-DC_i)$

Calibration coefficient trend fitting

Based on the calibration slope series, a linear model is used to describe the varying trend with DSL:

DSL is the day number since launch (May 27, 2008)

Annual decay rate

AnnualDecayRate; =a; *365/b; *100.

- Multi-sites with different brightness to cover the sensor dynamic range;
- Multi-sites and multi-days to decrease the random error.

The calibration coefficients present a linear trend with DSL.

Annual periodicity exists especially in the short-wave and the water vapor channels.

Apparent Reflectance = Scale * (DN_EarthView - DN_SpaceView) (%)

Scale = d + c * Days = d*(1 + RatePerDay/100 * Days) (%/DN)

Band	b (%/DN)	a (%/DN/Days)	Sigma	2Sigma/M (%)	Degrading rate per day (%)	Degrading rate per year (%)	Degrading rate(%)
Band1 (470nm)	0.031023	4.47E-06	4.41E-04	2.6694	0.0144	5.2561	13.6514
Band2 (550nm)	0.028936	2.14E-06	3.05E-04	2.0388	0.007383	2.6947	6.9988
Band3 (650nm)	0.024411	-2.19E-07	2.24E-04	1.8415	-0.000899	-0.3282	-0.8524
Band4 (865nm)	0.028568	-3.83E-07	2.79E-04	1.9638	-0.001341	-0.4895	-1.2714
Band8 (412nm)	0.021734	8.61E-06	5.61E-04	4.3801	0.039623	14.4623	37.5623
Band9 (443nm)	0.02372	4.78E-06	4.44E-04	3.4290	0.020132	7.3481	19.0849
Band10 (490nm)	0.02451	2.87E-06	3.19E-04	2.4686	0.011699	4.2702	11.0908
Band11 (520nm)	0.01987	1.91E-06	2.29E-04	2.2112	0.009608	3.5070	9.1087
Band12 (565nm)	0.022484	1.16E-06	2.03E-04	1.7599	0.005177	1.8896	4.9079
Band13 (650nm)	0.022257	-5.91E-08	2.22E-04	1.9964	-0.000266	-0.0970	-0.2519
Band14 (685nm)	0.021673	-2.39E-08	1.98E-04	1.8287	-0.00011	-0.0402	-0.1045
Band15 (765nm)	0.027623	6.73E-07	2.69E-04	1.9260	0.002435	0.8887	2.3081
Band16 (865nm)	0.021147	5.12E-08	1.45E-04	1.3659	0.000242	0.0884	0.2296
Band17 (905nm)	0.024272	2.36E-06	7.78E-04	6.1333	0.009707	3.5431	9.2025
Band18 (940nm)	0.026224	7.25E-06	2.93E-03	19.7859	0.027642	10.0894	26.2048
Band19 (980nm)	0.023307	2.48E-06	7.74E-04	6.3302	0.01064	3.8836	10.0867
Band20 (1030nm)	0.025347	2.99E-06	2.91E-04	2.1729	0.011789	4.3028	11.1756

^{*} Days = Day Count since FY-3A Launched @ 2008-05-27

Degrading rate: Count from launch to 2010-12-31

- The short-wave channels have large degradation, especially channel 8 with the annual decay rate up to 14%.
- In the red and near-infrared bands (600 ~ 900nm), e.g. channel 3,4,13,14,15 and 16, the calibration coefficients almost have no change with the annual decay rate below 1%.

• The uncertainty (2σ /mean) for the trend analysis is nearly below 4% except for water vapor channels (17, 18 and 19).

TOA Radiation Estimation Test with Terra/MODIS

Among the 4 land sites,

 The performance is good for Libya1 and Libya4, relatively good for Arabia2, poor for Dunhuang.

Linear fit:

CH1(645nm): Y=0.91*X+15.20 R^2=0.97 RMS=3.96 RMSRE=2.05% MARE=1.65% N=226 CH2(858nm): Y=0.92*X+10.35 R^2=0.97 RMS=2.88 RMSRE=1.93% MARE=1.53% N=226 CH3(469nm): Y=0.93*X+7.66 R^2=0.89 RMS=4.40 RMSRE=3.60% MARE=2.68% N=226 CH4(555nm): Y=0.90*X+13.39 R^2=0.95 RMS=3.42 RMSRE=2.30% MARE=1.86% N=226 CH5(1.24um):Y=0.88*X+4.69 R^2=0.98 RMS=1.43 RMSRE=1.82% MARE=1.43% N=226 CH6(1.64um) Y=0.93*X+1.74 R^2=0.99 RMS=0.64 RMSRE=1.49% MARE=1.14% N=226 CH7(2.13um):Y=0.98*X+0.72 R^2=0.97 RMS=0.33 RMSRE=2.05% MARE=1.60% N=226

- •Relatively good linear fitting result.
- •Short wave channel(CH3,4,1) has more abnormal points.
- •CH5,6 is underestimated.

•The calibration precision (Mean+-Std) is within 5% except for CH5.

CH1(645nm): Y=0.93*X+6.90 R^2=0.97 RMS=4.20 RMSRE=2.38% MARE=1.87% N=240 CH2(858nm): Y=0.94*X+4.07 R^2=0.97 RMS=3.05 RMSRE=2.23% MARE=1.74% N=240 CH3(469nm): Y=0.93*X+7.96 R^2=0.94 RMS=3.74 RMSRE=2.98% MARE=2.23% N=240 CH4(555nm): Y=0.92*X+9.02 R^2=0.96 RMS=3.76 RMSRE=2.44% MARE=1.90% N=240 CH5(1.24um):Y=0.93*X-0.56 R^2=0.98 RMS=1.50 RMSRE=2.03% MARE=1.55% N=240 CH6(1.64um) Y=0.95*X+0.47 R^2=0.99 RMS=0.70 RMSRE=1.88% MARE=1.28% N=240 CH7(2.13um):Y=0.99*X+0.42 R^2=0.97 RMS=0.39 RMSRE=2.77% MARE=2.00% N=240

Similarly result as Libya1.

Radiance Percentage Difference Histgram

Radiance Percentage Difference Histgram

Radiance Percentage Difference Histgram

(MODIS^{mod}-MODIS^{mea})/MODIS^{mea}*100

0.05

•RMS of Dif(%) is 3.20~4.00% except for CH5.

•The calibration precision is almost within 5% except for CH5.

Linear fit:

CH1(645nm): Y=0.77*X+32.89 R^2=0.84 RMS=5.63 RMSRE=3.36% MARE=2.67% N=278 CH2(858nm): Y=0.78*X+24.50 R^2=0.85 RMS=4.34 RMSRE=3.36% MARE=2.68% N=278 CH3(469nm): Y=0.86*X+17.05 R^2=0.86 RMS=5.02 RMSRE=3.94% MARE=2.93% N=278 CH4(555nm): Y=0.79*X+26.49 R^2=0.89 RMS=4.20 RMSRE=2.91% MARE=2.24% N=278 CH5(1.24um):Y=0.81*X+7.89 R^2=0.91 RMS=1.84 RMSRE=2.74% MARE=2.17% N=278 CH6(1.64um) Y=0.84*X+4.75 R^2=0.93 RMS=0.92 RMSRE=2.47% MARE=1.91% N=278 CH7(2.13um):Y=0.82*X+2.57 R^2=0.87 RMS=0.47 RMSRE=3.54% MARE=2.68% N=278

- •Not as good as Libya.
- •Short wave channel(CH3,4,1,2) has more abnormal points.
- •CH5,6 is underestimated.

- •The calibration precision (Mean+-Std) is within 5% in CH3(470nm).
- •The mean calibration percentage error is -4~2% except for CH5.

Linear fit:

CH1(645nm): Y=0.85*X+11.43 R^2=0.71 RMS=11.35 RMSRE=12.80% MARE=8.60% N=137 CH2(858nm): Y=0.87*X+6.43 R^2=0.71 RMS=7.45 RMSRE=12.53% MARE=8.30% N=137 CH3(469nm): Y=0.82*X+16.57 R^2=0.64 RMS=14.08 RMSRE=12.65% MARE=8.44% N=137 CH4(555nm): Y=0.82*X+15.64 R^2=0.67 RMS=12.88 RMSRE=13.35% MARE=8.90% N=137 CH5(1.24um):Y=0.86*X+2.33 R^2=0.76 RMS=3.24 RMSRE=11.79% MARE=7.93% N=137 CH6(1.64um) Y=0.94*X+0.99 R^2=0.85 RMS=1.59 RMSRE=11.37% MARE=7.68% N=137 CH7(2.13um):Y=0.97*X+0.67 R^2=0.86 RMS=0.60 RMSRE=13.13% MARE=8.02% N=137

- Poorest result.
- •Channels have more abnormal points, especially in CH1~5.

•The mean calibration percentage error is $-1.4\sim1\%$ for CH1,2,3,4,6; $\sim-5\%$ for CH5, $\sim10\%$ for CH7.

Libya1&Libya4&Arabia2&Dunhuang

Linear fit:

CH1: Y=0.96*X+2.08 R^2=0.98 RMS=5.52 RMSRE=3.66% MARE=2.70% N=850 CH2: Y=0.96*X+1.00 R^2=0.99 RMS=4.08 RMSRE=3.64% MARE=2.63% N=850 CH3: Y=0.94*X+6.48 R^2=0.93 RMS=4.85 RMSRE=4.08% MARE=2.92% N=850 CH4: Y=0.94*X+5.55 R^2=0.97 RMS=4.67 RMSRE=3.57% MARE=2.60% N=850 CH5: Y=0.93*X- 0.15 R^2=0.99 RMS=1.77 RMSRE=3.10% MARE=2.23% N=850 CH6: Y=0.96*X+0.25 R^2=0.99 RMS=0.80 RMSRE=2.32% MARE=1.73% N=850 CH7: Y=1.00*X+0.25 R^2=0.99 RMS=0.42 RMSRE=3.20% MARE=2.41% N=850

- •Good linear relationship.
- •Short wave channels (CH3,4,1)are more noisy.

- •The calibration precision (Mean+-Std) is almost within 6% except for CH5.
- •The mean calibration percentage error is ~8% for CH5.

MERSI Re-calibration Performance Analysis

- Test with Dunhuang calibration
 experiment @ 2010-8
- Difference Analysiswith Model Estimation
- Double Difference Analysis with MODIS

Test with Dunhuang calibration experiment @ 2010-8

- •Calibration coefficients during annual field campaign at Dunhuang in Aug. 2010 were estimated using the formula from multi-sites tracking analysis.
- •The percent difference between estimated coefficients and vicarious calibration with insitu data are below 5%(exept for CH18).

Difference Analysis with Model Estimation

CH01: Y=0.867225*X+10.925230 R^2=0.94 N=1566 CH02: Y=0.903934*X+8.684667 R^2=0.97 CH03: Y=0.936878*X+4.430178 R^2=0.98 CH04: Y=0.950942*X+2.582312 R^2=0.99 CH08: Y=0.933389*X+4.963085 R^2=0.82 CH09: Y=0.906054*X+7.824815 R^2=0.91 CH10: Y=0.871630*X+10.132691 R^2=0.95

CH11: Y=0.901565*X+8.515229 R^2=0.96 CH12: Y=0.921335*X+8.345866 R^2=0.98 CH13: Y=0.945468*X+3.029687 R^2=0.98 CH14: Y=0.953996*X+0.013269 R^2=0.98 CH15: Y=0.943419*X+-0.580752 R^2=0.98 CH16: Y=0.951738*X+1.697367 R^2=0.99 CH17: Y=0.966486*X+2.369436 R^2=0.96 CH18: Y=0.705127*X+12.725681 R^2=0.70 CH19: Y=0.990320*X+0.181439 R^2=0.97 CH20: Y=0.991121*X+-0.191652 R^2=0.99

Double Difference Analysis with MODIS

4 sites;2008-7~2009-12 N=382

Conclusion

- The multi-sites radiometric calibration tracking method could provide the re-calibration coefficients for MERSI.
- This current method is not good for water absorption channels. Near real-time humidity profiles may be helpful to improve.
- Primary re-calibration performance shows that the RMS percentage difference with MODIS is 5.6, 3.5, 3.4 and 3.4% for MERSI bands at 470, 550, 650 and 865 nm by double differencing, but MERSI is systematically larger at 470nm.

Thank you!

Apparent Reflectance = Scale * (DN_EarthView - DN_SpaceView) (%)

Scale = d + c * Days = d*(1 + RatePerDay/100 * Days) (%/DN)

Band	d (%/DN)	c (%/DN/Days)	Sigma	2*Sigma/ M (%)	Degrading rate per day (%)	Degrading rate per year (%)	Degrading rate(%)
Band1 (470nm)	0.03102	4. 10E-06	3.76E-04	2. 2871	0.013224	4.8266	12. 5360
Band2 (550nm)	0. 028943	1. 98E-06	3.07E-04	2. 0541	0.006834	2. 4943	6. 4784
Band3 (650nm)	0. 024436	−3. 57E−07	2.09E-04	1. 7265	-0.001462	-0. 5335	-1.3855
Band4 (865nm)	0. 028536	-3. 80E-07	2.61E-04	1.8388	-0.001331	-0. 4857	-1.2614
Band8 (412nm)	0.021779	8. 63E-06	5.63E-04	4. 3683	0. 039615	14. 4596	37. 5554
Band9 (443nm)	0.023745	4. 60E-06	4. 23E-04	3. 2638	0. 019372	7. 0709	18. 3651
Band10 (490nm)	0. 024547	2. 58E-06	2.94E-04	2. 2851	0. 010496	3.8309	9. 9499
Band11 (520nm)	0.019928	1. 70E-06	2.41E-04	2. 3265	0.008551	3. 1212	8. 1066
Band12 (565nm)	0.022491	1.03E-06	1.88E-04	1.6366	0.004571	1.6685	4. 3335
Band13 (650nm)	0. 022279	-1.44E-07	2. 23E-04	2. 0114	-0.000645	-0. 2355	-0.6117
Band14 (685nm)	0. 021689	-6. 72E-08	1.89E-04	1. 7439	-0.00031	-0. 1131	-0. 2938
Band15 (765nm)	0.027703	5. 94E-07	2.49E-04	1. 7805	0.002146	0. 7831	2.0340
Band16 (865nm)	0.021174	-1.66E-08	1.38E-04	1. 3041	-0.000078	-0.0286	-0.0742
Band17 (905nm)	0.024235	2. 53E-06	6.71E-04	5. 2813	0.010433	3.8079	9.8901
Band18 (940nm)	0.026011	7. 27E-06	2.33E-03	15. 8592	0. 02795	10. 2018	26. 4966
Band19 (980nm)	0. 023308	2. 75E-06	7. 26E-04	5. 9051	0. 011805	4.3089	11. 1914
Band20 (1030nm)	0. 025393	2. 98E-06	2.84E-04	2. 1155	0.011742	4. 2857	11. 1310

^{*} Days = Day Count since FY-3A Launched @ 2008-05-27

Degrading rate: Count from launch to 2010-12-31

Libya1&Libya4&Arabia2&Dunhuang

Dif(%):

CH1 M=-2.85 S= 3.58 MaxValue=-1.06 RMS= 4.58

CH2 M=-2.69 S= 3.57 MaxValue=-0.90 RMS= 4.47

CH3 M=-0.80 S= 4.00 MaxValue=-0.80 RMS= 4.07

CH4 M=-2.26 S= 3.49 MaxValue=-2.26 RMS= 4.15

CH5 M=-7.68 S= 2.85 MaxValue=-7.68 RMS= 8.19

CH6 M=-3.60 S= 2.25 MaxValue=-3.60 RMS= 4.24

CH7 M= 2.25 S= 3.41 MaxValue= 2.25 RMS= 4.24

- •RMS of Dif(%) is 4.07~4.58% except for CH5.
- •The calibration precision (M+-S) is almost within 6% except for CH5.
- •The mean calibration percentage error is ~8% for CH5.

Libya1&Libya4&Arabia2

Dif(%):

CH1 M=-2.72 S= 2.82 MaxValue=-1.31 RMS= 3.91

CH2 M=-2.57 S= 2.74 MaxValue=-1.20 RMS= 3.75

CH3 M=-0.47 S= 3.44 MaxValue=-0.47 RMS= 3.47

CH4 M=-2.06 S= 2.79 MaxValue=-2.06 RMS= 3.47

CH5 M=-7.56 S= 2.18 MaxValue=-6.47 RMS= 7.86

CH6 M=-3.57 S= 1.88 MaxValue=-3.57 RMS= 4.03

CH7 M= 2.04 S= 2.89 MaxValue= 2.04 RMS= 3.53

- •RMS of Dif(%) is 3.47~4.03% except for CH5.
- •The calibration precision is almost within 5% except for CH5.
- •The mean calibration percentage error is ~8% for CH5.

Using Dunhuang in-situ BRDF model of Sept. 2008, the simulated radiance tends to be underestimated.

Dunhuang Insitu BRDF Model

