Project 1 Data and Analysis

Correct detections out of 1000 for various attacks of "lena256.bmp"

Attack	JPG 90	JPG 60	JPG 5	Hist. eq.	$\gamma = 0.1$	γ = 5	Wiener	Median	Resample to ½ size
$\sigma = 1$	1000	1000	759	1000	1000	1000	1000	998	1000
$\sigma = 2$	1000	1000	943	1000	1000	1000	1000	1000	1000
$\sigma = 5$	1000	1000	1000	1000	1000	1000	1000	1000	1000
σ = 10	1000	1000	1000	1000	1000	1000	1000	1000	1000

Correct detections out of 1000 for various attacks of "lena512.jpg"

Attack	JPG 90	JPG 60	JPG 5	Hist. eq.	$\gamma = 0.1$	γ = 5	Wiener	Median	Resample to ½ size
$\sigma = 1$	1000	1000	1000	1000	1000	1000	1000	1000	1000
$\sigma = 2$	1000	1000	1000	1000	1000	1000	1000	1000	1000
$\sigma = 5$	1000	1000	1000	1000	1000	1000	1000	1000	1000
$\sigma = 10$	1000	1000	1000	1000	1000	1000	1000	1000	1000

Error Probability Calculations

*The Pr(Error) shows as "0" for certain variance and attacks. This value is approximated by using:

$$Pr(Error) = \frac{Q(\hat{p}0/\sigma 0) + Q(\hat{p}1/\sigma 1)}{2}$$
 with the approximation of $Q(x) \approx \frac{e^{-x/2}}{\sqrt{2\pi}x}$ for large values of x.

Cases	$\hat{\rho}_0$	$\hat{\rho}_1$	σ_0	σ_1	Pr(Error)
lena256, $\sigma = .5$ 5% quality JPEG	-0.0065	0.0067	0.0027	0.0027	0.0068
lena256, $\sigma = 5$ γ correction = 10	-1.9492	1.9482	0.0120	0.0125	Approx: 1.90*10 ⁻³⁷
lena256, $\sigma = 1$ Median Filtering (10x10)	-0.0015	0.0016	0.0015	0.0015	0.1539
lena512, σ = 5, 60% Quality JPEG	-5.8271	5.8193	0.1289	0.1313	Approx: 1.74*10 ⁻¹²
lena512, σ = 10, Histogram Equalization	-101.4870	101.3942	0.6902	0.6993	Approx: 6.10*10 ⁻³⁵

Images encoded with a bit of "0" are represented by blue Images encoded with a bit of '1' are represented by red

It can be observed that an increase in the value of σ for a set of watermarked images will group the values of the correlation coefficients further from the mean (or 0). Also the more aggressive attacks (decreasing the JPEG quality to 5% and applying a median filtering around a 10x10 area) will lead to a wider range of values for each set compared to the range of values as a whole. For example, the first graph shows that both the red and blue sets span about half of the overall range of values. This leads to a higher probability for error in the bit extraction.