1. Bag of visual words model: recognizing object categories

Problem: Image Classification

Given:

positive training images containing an object class, and

• negative training images that don't

Classify.

a test image as to whether it contains the object class or not

?

Weakly-supervised learning

Learn model from a set of training images containing object instances

- Know if image contains object or not
- But no segmentation of object or manual selection of features

Three stages:

- 1. Represent each training image by a vector
 - Use a bag of visual words representation
- 2. Train a classify to discriminate vectors corresponding to positive and negative training images
 - Use a Support Vector Machine (SVM) classifier
- 3. Apply the trained classifier to the test image

Representation: Bag of visual words

Visual words are 'iconic' image patches or fragments

- represent the frequency of word occurrence
- but not their position

Image

Collection of visual words

Example: Learn visual words by clustering

- Interest point features: textured neighborhoods are selected
- produces 100-1000 regions per image

Weber, Welling & Perona 2000

Example of visual words learnt by clustering faces

100-1000 images

~100 visual words

Image representation – normalized histogram

- detect interest point features
- find closest visual word to region around detected points
- record number of occurrences, but not position

Example Image collection: four object classes + background

Faces 435

Motorbikes 800

Airplanes 800

Cars (rear) 1155

Background 900

Total: 4090

The "Caltech 5"

Represent an image as a histogram of visual words

- Detect affine covariant regions
- Represent each region by a SIFT descriptor
- Build visual vocabulary by k-means clustering (K~1,000)
- Assign each region to the nearest cluster centre

Bag of words model

Visual vocabulary for affine covariant patches

Vector quantize descriptors from a set of training images using k-means

Descriptors – SIFT [Lowe'99]

distribution of the gradient over an image patch

4x4 location grid and 8 orientations (128 dimensions)

very good performance in image matching [Mikolaczyk and Schmid'03]

Vector quantize the descriptor space (SIFT)

The same visual word

Each image: assign all detections to their visual words

- gives bag of visual word representation
- normalized histogram of word frequencies
- also called 'bag of key points'

Visual words from affine covariant patches

Vector quantize SIFT descriptors to a vocabulary of iconic "visual words".

Design of descriptors makes these words invariant to:

- illumination
- affine transformations (viewpoint)

Size (granularity) of vocabulary is an important parameter

- fine grained represent model instances
- coarse grained represent object categories

Examples of visual words

More visual words

Visual synonyms and polysemy

Visual Polysemy: Single visual word occurring on different (but locally similar) parts on different object categories.

Visual Synonyms:Two different visual words representing a similar part of an object (wheel of a motorbike).

Training data: vectors are histograms, one from each training image

Train classifier, e.g. SVM

SVM Terminology

SVM classifier with kernels

N = size of training data

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_i k(\mathbf{x}_i, \mathbf{x}) + b$$
weight (may be zero) support vector

$$f(\mathbf{x})$$
 $\begin{cases} \geq 0 \text{ positive class} \\ < 0 \text{ negative class} \end{cases}$

Linear separability

linearly separable

linear kernel sufficient

not linearly separable

use non-linear kernel

Some popular kernels

• Linear: $K(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\top} \mathbf{y}$

• Polynomial: $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\top} \mathbf{y} + c)^n$

• Radial basis function: $K(\mathbf{x}, \mathbf{y}) = e^{-\gamma ||\mathbf{x} - \mathbf{y}||^2}$

• Chi-squared: $K(\mathbf{x}, \mathbf{y}) = e^{-\gamma \chi^2(\mathbf{x}, \mathbf{y})}$

where
$$\chi^2(\mathbf{x}, \mathbf{y}) = \sum_j \frac{(x_j - y_j)^2}{x_j + y_j}$$

Advantage of linear kernels – at test time

N = size of training data

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b$$

$$\begin{split} f(\mathbf{x}) &= \sum_{i}^{N} \alpha_{i} \mathbf{x}_{i}^{\top} \mathbf{x} + b \\ &= \mathbf{w}^{\top} \mathbf{x} + b \end{split} \text{ Independent of size of training data}$$

Current Paradigm for learning an object category model

Manually gathered training images Test images Visual words Learn a visual category model Evaluate classifier / detector

Example: weak supervision

Training

- 50% images
- No identification of object within image

Motorbikes

Airplanes

Frontal Faces

Testing

- 50% images
- Simple object present/absent test

Cars (Rear)

Background

Learning

- SVM classifier
- ullet Gaussian kernel using χ^2 as distance between histograms

Result

• Between 98.3 – 100% correct, depending on class

Csurka et al 2004

Zhang et al 2005

Localization according to visual word probability

sparse segmentation

- foreground word more probable
- background word more probable

Why does SVM learning work?

Learns foreground and background visual words

Bag of visual words summary

Advantages:

- largely unaffected by position and orientation of object in image
- fixed length vector irrespective of number of detections
- Very successful in classifying images according to the objects they contain
- Still requires further testing for large changes in scale and viewpoint

Disadvantages:

- No explicit use of configuration of visual word positions
- Poor at localizing objects within an image