TEMA2

CONTRASTE DE SIGNOS PARA LA MEDIANA

TAMBIÉN PUEDE APLICARSE PARA LA MEDIANA DE LA DIFERENCIA DE DOS MUESTRAS APAREADAS

Objetion: contractor
$$H_3: m = m_0$$
, $m \in \mathbb{R}$

Superdiamons: F continuo y estucidamente aueciente \Rightarrow Hb. $\theta = 0.5$, $\theta = P(X 7, m_0)$

Si the escription carbaia esperior que la mithad de las valoures de la minertra esten por enorma de mo y la otra mithad par debajo \equiv mithad de las signos de Xi - mo Frienan prestricas.

Estadestico de contraste: 5 = # (i.Xi.7 mo) = # signos positivos

Como $F \in Obs.$ contunua: $S \sim B(n, 0) = 0$ to cienta $S \sim B(n, 0.5)$

La no depende de F.

 $p-valax = 2 min / P(5 > 50bs), P(5 < 50bs)/ \longrightarrow Recharacros Ho si <math>p-valox < K$.

Distribución osintática

CONTRASTE DE RANGOS ASIGNADOS DE WILCOXON

Cojetus: contrastor)
$$H_0: m = m_0$$

 $H_1: m \neq m_0$, $m_0 \in \mathbb{R}$

Superduemos: F absolutamente contunua y simetuica respecto a su mediana.

Tenduamos en cuenta los sugnos y las magnitudes $Ai = |Xi - m_0| \Rightarrow Deficienos$, T^+ : suma largos de Ai positivos. T^- : suma largos de Ai respetivos

Si the escienta cabula espera que
$$T^+$$
 y T^- frexa similares.
Estadastica de contraste: $T^+ = \sum_{i=1}^{n} R(i) \cdot 2i$ $R(i) = j \Rightarrow i = R'(j)$ $T^+ = \sum_{j=1}^{n} j \cdot 2n - 2j$ indices sin adenates $1 + 2i \cdot 2n - 2j$ indices and enables $1 + 2i \cdot 2n - 2j$ indices $1 + 2i \cdot 2$

Como F es contunus: no hay que puecupase par los empates. si to cienta $T^+ \sim B = \sum_{j=1}^{n} j \cdot B_j : B_j \sim Be(0.5)$ la variable B es discueto can valore en $\{0,1,...,\frac{n\cdot m+i}{2}\}$ y $P(B=t) = \frac{f_{ov}}{pos} = \frac{n(t)}{2^n}$ no depende de F. \leftarrow n(t): Famou avoira $0 \neq 1$ a B.... B to B.... B to B.... B B is a continuous en B in B

Distudución osintatica

$$\text{Como } T^+ \sim \sum_{j=1}^{n} j \cdot \beta_j \Rightarrow \frac{T^+ - E(T^+)}{\sqrt{Var(T^+)}} = \frac{T^+ - \Omega \cdot (n+1)}{4} = \mathbb{Z} \sim M(0,1) \Rightarrow k_x = Var(T^+) \underbrace{2_x + E(T^+) + 0.5}_{\text{conscalar for continuisbel}}$$

CONTRASTE DE DESPLAZAMIENTO DE MEDIANAS - MANN-WHITNEY

Paua dos muestros independientes
$$X_1, ..., X_m$$
; $X_N F_X$

Objetivo: contrautor
$$\begin{cases} H_0: m_X = m_Y \\ H_1: m_X \neq m_Y \end{cases}$$

Superdremos que las distribuciones de $X \in Y$ son la mismo soluro por un deplatamiento de su mediara. Si tho es ciento: las m+n observaciones puesens de la mismo distribución \Rightarrow si las ordenamos y venos sus ragos, la suma T_X de los rapos de datos X seus simila a T_Y

Estadistica de contraste

1)
$$T_{x} = \sum_{j=1}^{m+n} j \cdot T_{j}$$
 $T_{j} = \begin{cases} 1 & \text{si doto an range } j \text{ where de } X \\ 0 & \text{st no} \end{cases}$

Distribución osintátrica

$$\frac{2}{\sqrt{V(T_{x})}} = \frac{T_{x} - \underline{m \cdot (m+n+1)}}{\sqrt{\frac{m \cdot n \cdot (m+n+1)}{12}}} N(0,4)$$

2 Mann - Whitney:
$$U = \sum_{i=1}^{m} \sum_{j=1}^{n} U_{ij}$$
; $U_{ij} = I\{X_{i} \neq Y_{j}\} \longrightarrow \text{para-codo} X$, availtou Y's tiene par debajo

$$\frac{1}{2} \Rightarrow Tx = U + \frac{m \cdot (m+3)}{2}$$

CONTRASTE PARA MÁS DE DOS MUESTRAS INDEPENDIENTES - KRUSKAL WALLIS

Para K muertus independientes
$$\begin{array}{c} X_{11}, \ldots, X_{1n_1} \sim X_1 \\ X_{21}, \ldots, X_{2n_2} \sim X_2 \\ \vdots \\ X_{K1}, \ldots, X_{Kn_K} \sim X_K \end{array}$$

Objetivo: contrauta $H_0: M_1 = M_2 = \cdots = M_K$

Superdremos que las distubuciones de $X_1,...,X_K$ son la musma saluo por un deplatamiento de su mediana.

Si the escienta less no observaciones forman una muentra de una misma distribución \Rightarrow si osignamos ragios a codo muentra, la media de ragios de codo una de la K muentras debevía de esta cerca de la media de tados los ragios $\frac{1.(n+4)}{n} = \frac{1}{n+4}$. \Rightarrow 5 i Rj es la suma de ragios en Xj $\Rightarrow \frac{R}{N}$ debevía estar cerca de $\frac{1}{n+4}$.

$$\frac{n\cdot(\underline{n+1})}{2}/\underline{n} = \underbrace{n+1}_{2} . \Rightarrow \text{ s.i. } R_{j} \text{ es la suma de ranges en } X_{j} \Rightarrow \overline{R_{j}} \text{ debeuā estar cerca de } \underbrace{(\underline{n+1})}_{2} .$$
 Estadastica de Kruskal - Wallis $Q = \frac{\sum\limits_{j=1}^{K} n_{j} \cdot \left(\overline{R_{j}} - \frac{\underline{n+1}}{2}\right)^{2}}{\underbrace{n\cdot(\underline{n+1})}_{1/2}} \rightarrow \text{Distribution de securita}$

Distribución osintátrica

$$\mathbb{Q} \sim \chi^2_{\kappa-1}$$
 coardo mún nj $\longrightarrow +\infty$

Compandiones multiples

Chardo se rechano. Ho decimas que hay al menos una mediana diferente al resto \Rightarrow realizamas campousables 20.2; hay $\binom{K}{2}$ campousables y cantustomas. Ho, x_j : $m_i = m_j$ \longrightarrow Utilizauemas el contuste de Caraer-Iman

CONTRASTE PARA MÁS DE DOS MUESTRAS RELACIONADAS - FRIEDMAN

Para K poblociones (o tratamientas) relocionadas, originitarios los diservociones en 6 blaques de tal minera que se observan vaulables. Xij darde i=1,..., b representa el blaque y j = 1,..., K el tratamiento. ⇒ tenemos dectaves aleataves Xis,..., Xix que superierros independientes; tenemos n=b. K observaciones.

Objetivo: controvata Ho: $m_1 = m_2 = \cdots = m_K$ efecto Klage i efecto Klage i efecto Klage i $m_1 = m_2 = \cdots = m_K$ of $m_2 = m_3 = m_4 = m_2 = \cdots = m_K$

Si the es crienta par u appearaciones torman no unantro de las unque que proposer distripração es cendramos nábas en

codo blaque; Rij es rango de Xij dentro del blaque i y Rj =
$$\sum_{i=1}^{L}$$
 Rij denota la suma de rangos deloido al tual. j.

Estadastica de Fuedman: $S = \frac{\int_{j=1}^{L} \left(R_j - b(\frac{K+1}{2})\right)^2}{b_K(K+1)} = \frac{12}{b_K(K+1)} \cdot \int_{j=1}^{L} R_j^2 - 3b(K+1) \longrightarrow Distribución describa$

Distribución osintation

$$5 \sim \chi^2_{K-1}$$
 coordo $b \longrightarrow + \infty$

Compoursiones multiples

Chando se rechana. Ho dealmas ape hay al menos una mediana diferente al resto ⇒ realizamas campousables 202; hay $\binom{K}{2}$ compositioned y contrastornes the initial mi = mj \longrightarrow Utilizauennes et contraste exocto de EHPG

CONTRASTES DE BONDAD DE AJUSTE

Outremes eather si un determinate variable alkatava $X = (X_1, ..., X_n) \times F$ eight one in detribution determinate tenema de hypotens a contrautor; $H_0: F = F_0$ (eimple) Y $H_0: F \in \{F_0: \theta \in \Theta\}$ (compreta)

A) CONTRASTE DE BONDAD DE AJUSTE - HIPÓTESIS NULA SIMPLE

A1 - FUNCIÓN DE DISTRIBUCIÓN EMPÍRICA

```
Disponemes de una muestro X = (X_1, ..., X_n) \sim F

Objetivo: contrautor Ho: F = F_0, dude F_0 totalmente especificado y absolutamente continua.

Estemador: F_n(x) = \frac{\#\{i: Xi \le x\}}{n} \longrightarrow tomo valores en\{1,...,n\}

A = \frac{n}{n} A = \frac{n}{n}
```

- Si $X_1 = x_1, \ldots, X_n = x_n \Rightarrow F_n \sim U(x_1, \ldots, x_n)$
- $n \cdot F_n(x) = \#\{\dot{c}: X\dot{c} \le x\}$, $\dot{c} = 1, ..., n \Rightarrow n \cdot F_n(x)$ cuenta el número de exitos en n eventos independientes, lugar $n \cdot F_n(x) \sim B(n,\rho)$, dande $\rho = P(X\dot{c} < x) = F(x) \rightarrow pax$ (a tanto, $E(F_n(x)) = F(x) \rightarrow V(F_n(x)) = P(x) \rightarrow P(x)$) como $F_n(x)$ es integrado y $V(F_n(x)) = P(x) \rightarrow P(x)$

A2 - CONTRASTE DE BONDAD DE AJUSTE DE KOLMOGOROV-SMIRNOV

Objectivo: continuita tho
$$F = F_0$$
 pour una circuita F_0 continuita $\Rightarrow F(x) = F_0(x) \ \forall \ x \in \mathbb{R}$

Ha: $F(x) \neq F_0(x)$ pour algorities \mathbb{R}

Estadostica de continuite de Kalmagaran-Smirnov: $\Omega_1 = \sup_{x \in \mathbb{R}} \left| F_0(x) - F_0(x) \right| = \max_{x \in \mathbb{R}} \left| \Omega_1^+ - \sum_{x \in \mathbb{R}} \left| F_0(x) - F_0(x) \right| + \sum_{x \in \mathbb{R}} \left| \Gamma_0(x) - F_0(x) \right| + \sum_{$

So the escients D_i es in contracte de distribución litre: camo F_0 escantania, $F_0(X) \sim U(0,4) \Rightarrow X_i = F_0^{-1}(U_i)$, can U_4, \ldots, U_n muestra U(0,4) y par la tanto $F_0(X) = \frac{1}{2} \cdot \frac{1}{2} \cdot$

Distubución exacta

Distubución acuntatica

Rua Dr la aproximocutu mote vocaba es:
$$\mathbb{P}(\sqrt{n} \ \Omega_n \leqslant n) \longrightarrow 1 - 2 \cdot \sum_{k=0}^{\infty} (-1)^{k-1} e^{-2k^2 \chi^2}$$
 El april 1-x $\Omega_{n,\infty}$ de la distribución se aproxima: $\mathbb{P}(\Omega_{n,\infty}) = 4.63/\sqrt{n}$

A3 - CONTRASTE DE BONDAD DE AJUSTE DE CRAMÉR-VON MISES

Objetus: continuate the F = Fo paula una cieuta Fo continua
$$\Rightarrow$$
 F(x) = Fo(x) \forall x \in IR

H₂: F(x) \neq Fo(x) paula algula x \in IR

Estadistica de continuate de Crameir - van Misses: $W_1^2 = E_X(\{F_1(x) - F_0(x)\}^2 \mid x_1,...,x_n) = \int_{-\infty}^{\infty} \{F_1(x) - F_0(x)\}^2 \mid x_2,...,x_n = \int_{-\infty}^{\infty} \{F_1(x) - F_$

Distribución exocta

Complicado peus esta tabulada

Distubución ocuntatica

$$P\left(\text{In} \leqslant x\right) \longrightarrow 1 - \frac{1}{\pi} \int_{j=1}^{\infty} (-1)^{j-1} W_j(x)$$

A4 - CONTRASTE DE BONDAD DE AJUSTE DE ANDERSON-DARLING

Objetivo: continuità tho $F = F_0$ paus una cieuta F_0 continua $\Rightarrow F(x) = F_0(x) \ \forall \ x \in \mathbb{R}$ Hz: $F(x) \neq F_0(x)$ paus algai $x \in \mathbb{R}$ Estadistica de continuite de Anderson-Darling $A_1^2 = 0$ $f(x) = F_0(x) \cdot (1 - F_0(x))^2$ Distancia auditativa pardenda

Cuando Ho es ciento la variana de Fn(x) es $\frac{1}{n}$ · Fo(x) $\frac{1}{n}$ · Fo(x) · $\frac{1}{n}$ · Fo

Distublición exacta

Complicado peus esta tabulada

Distubución ocuntatica

La distribución de A_n^2 se puede aproximar mediante la va $\sum_{j=1}^n \frac{\chi_j}{j\cdot (j+1)}$, deude $\chi_j \sim \chi_j^2$, $j \ge 1$, son i.i.d.

A5 - CONTRASTE DE BONDAD DE AJUSTE DE CHI-CUADRADO DE PEARSON

Objetus: continua \Rightarrow F(x) = F₆(x) \forall x \in IR \forall H₂: F(x) \neq F₆(x) pairs algoriu x \in IR

- (1) Dividimos el rango de posebbes valdus de X en k celdos As,..., Ax tq. faman una poutvoisiu de IR
- 2) Calabaras Frecueraus especuas de cado cela $E_j = n \cdot \rho_j$, $\rho_j = P(A_j \mid ho cienta)$
- 3) Calalamas Pleavencia obserba de cada cela 0 = $\#\{i: Xi \in Aj\}$

Estadistica de contraste de Reason:
$$T = \sum_{j=1}^{K} \frac{(0j - E_j)^2}{E_j}$$
 eucres cuadrodos relativas

DUSTUDOU JOUCHUTEUA

$$T \sim \chi^2_{\kappa-1}$$
 (at merges 80% $\xi_j > 5$)

B) CONTRASTE DE BONDAD DE AJUSTE - HIPÓTESIS NULA COMPUESTA

Ogetivo: contrastor to: $F \in \{F_0 : \theta \in \Theta\}$

distubuciones N(n'45).

Obtenemos estumodor $\hat{\theta}$ de maximo veronimilitad de θ

Estadistica de contravite: $\hat{h} = \sup_{x \in \mathbb{R}} |F_n(x) - F_8(x)| \Rightarrow la distribución de <math>\hat{h}$ no convide can la distribución del estadistica de contravite en el coso de Ho simple debido a que \hat{h} depende de la fanctiva parametica convidenda \hat{h} tabular la clave F = 1 $\mathbb{I}_{V\pi^2}$: $u \in \mathbb{R}$, 4.70 de

B1- CONTRASTE DE BONDAD DE AJUSTE DE NORMALIDAD DE SHAPIRO-ERANCIA

Basado en el BB-plat: guatura que representa las cuanticies muestrales en función de las tacivas de M(0,1).

Si $2\alpha_1\mu_1\sigma^2$ es el cuentril x de $N(\mu_1\sigma^2) \Rightarrow 2\alpha_1\mu_1\sigma^2 = \mu + \tau \cdot 2\alpha_1\sigma_1$

Si $X_1,...,X_n \sim \mathcal{N}(u,\sigma^2) \Rightarrow \text{et all -plot delte ajustanse a una vecta.}$

Estadostiva de contraute de Shapiro-Francia: Wh' es el cuadrada del coef. correlación de los juntos del se

Existe una vensión mois ellabavada, test shapias-Willk.

B2 - CONTRASTE DE BONDAD DE AJUSTE DE CHI-CUADRADO DE PEARSON

Objetus: contradata Ho:
$$F \in \mathcal{F}_{\theta}: \theta \in \Theta \subseteq \mathbb{R}^{r}$$

- 4) Calabaros el esturadar de maxuna verosunvillada $\hat{\theta}$ de los r pavametros $\theta = (\theta_1, ..., \theta_r)$
- 2) Realtanos el contratte de bandad de ajuste de χ^2 de Roman paux th: F=F8 mediante el estadústico $T = \sum_{j=1}^{K} \frac{(j-E_j)^2}{E_j}$, sustitujendo las Frecuencias especiadas Ej par las estimadas $\hat{E_j}$ a pautir de F8

DOSTUDIO JOUGUSTOS

$$T \sim \chi^2_{\kappa-r-1}$$
 (al menos 80% $\xi > 5$)

CONTRASTE DE HOMOGENEIDAD

Tenemos 6 v.a.
$$X_4 \sim F_4$$
, ..., $X_5 \sim F_5$
Objetivo: controstor to: $F_7 = F_5 = \cdots = F_6$

$$\longrightarrow \text{Disparence de 6 misserios undependientes} \left| \begin{array}{c} X_{44} \ , \dots , \ X_{4n_4} \ \times \ X_1 \\ \vdots \\ X_{54} \ , \dots , \ X_{5n_5} \ \times \ X_5 \end{array} \right. \right. , \text{ par (6 tordo } n = n_4 + \cdot \cdot \cdot + n_5 \text{ obsensional and } s$$

- 1) Dissidianos los n dostos en r closes Ag..., Ar
- 2) Cauldenamos las Precuencias observados $0ij = \# \{K : X_{jK} \in A_i \}$ $\longrightarrow \text{Si Ho & ciento} 0ij \sim \mathcal{B}(nj, \rho_i) \text{ can } \rho_i = \mathcal{L}(A_i \mid H_0 \text{ ciento}) \land \text{ as a restormation } \text{cape no soborno que } \text{F}$
- (3) Estumaros los pi s $\hat{\beta}_i = \sum_{j=1}^{n} |O(j)|_{\Omega} \Rightarrow \hat{\Xi}_{ij} = |\Omega_j| \hat{\gamma}_i$

DUSTUDOUTU OCUNTATUO

CONTRASTE DE INDEPENDENCIA

Tenemos vauiables X e Y

Objeticus: contractor to: X e Y son indep.

- Ousponemes de una muestro (X1, Y1),..., (Xn, Yn)
- 4) Dividimos los n datas en l'r closes A1,..., Ar paux X (s closes B1,..., B5 paux Y
- 2) Careidevarios las frecuencias observadas: $Oij = \#\{K: X_K \in A_i, Y_K \in B_j\}$ Si the es viewta: $Eij = n \cdot p(j = n \cdot P(X \in A_i, Y \in B_j) = n \cdot P(X \in A_i) \cdot P(Y \in B_j)$ undependients
- 3) Estumanas frecuencias especada : $\hat{E}_{ij} = n \cdot \frac{\sum_{j=1}^{n} Q_{ij}}{n} \cdot \frac{\sum_{i=1}^{n} Q_{ij}}{n} = \frac{Q_{i} \cdot Q_{ij}}{n}$

El estadistra de contracte es:
$$T = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(0ij - \widehat{E}_{ij}\right)^2}{\widehat{E}_{ij}} \longrightarrow \text{mismo que en el contracte de hamagneidad}$$
 peus fracuencias representan casos distribu

DOSTONADO JOCOLOLUSTACO

TEMA 3