Дисперсионный анализ.

- **1** (2 балла) Пусть X_1, \ldots, X_n и Y_1, \ldots, Y_n две независимые выборки с функциями распределения F_X и F_Y соответственно, причем $F_X(x) = F_Y(x-\theta)$. Будет ли оценка $\widehat{\theta} = med\{X_i Y_i, 1 \le i \le n\}$ состоятельной оценкой параметра θ ?
- **2** (2 балла) Пусть X_1, \ldots, X_n и Y_1, \ldots, Y_m две выборки. Проверить гипотезу об однородности (совпадении распределений) этих выборок.
- 3 (2 балла) В исследовании оценивается эффективность поведенческой терапии для лечения анорексии. Для 50 пациентов известен вес до начала терапии и по её окончании. Проверить, была ли терапия эффективной, с помощью статистической процедуры, контролирующей FWER на уровне 0.05.
- 4 (3 балла) Выданы выборки X_1, \ldots, X_n и Y_1, \ldots, Y_m . Определив, являются ли они парными или независимыми, нормальными или произвольными, проверить гипотезу об отсутствии эффекта с помощью статистической процедуры, контролирующей FDR на уровне 0.1.
- 5 (3 балла) Пусть X_1, \ldots, X_n и Y_1, \ldots, Y_n две независимые выборки из распределения Стьюдента t_{10} . Рассмотрим критерий Стьюдента $\{|T| > u_{1-\alpha/2}\}$, где $u_{1-\alpha/2} (1-\alpha/2)$ квантиль из распределения t_{2n-2} . Можно ли пользоваться критерием Стьюдента для проверки гипотезы об однородности данных выборок? С помощью моделирования определить, как ведёт себя реальный уровень значимости данного критерия при $n \ge 10$.