

[機器與深度學習基礎知識初探] DNN

黄志勝

義隆電子人工智慧研發部

國立陽明交通大學AI學院合聘助理教授

Outline

- 1.類神經網路(Neural Network, NN)
- 2. 感知機(Perception)
- 3. Multi-layer perception (MLP)
- 4. How NN work?

類神經網路

基本上神經網路是基於感知機(Perceptron)神經網路開始,主要是希望用數學

模型去模擬神經細胞的運作模式。

權重(w_i): Dendrite

Input(x_i) and output (y) node: Synapse

Node: Cell body

Output: Axon

NN for classification problem

x2

Perception

Perception can learn the nonlinear representation by activation function.

Perception

Output

$$y = f(w_{10} + w_{11}x_{1+}w_{12}x_2 + \dots + w_{1d}x_d) = f(\mathbf{W}^T \mathbf{x})$$

$$X_1$$
 W_1 activation X_2 W_2 W_0 W_0

Classification:
$$f = \begin{cases} 1 & \mathbf{W}^T \mathbf{x} \ge 0 \\ 0 & O.W. \end{cases}$$

Regression: $f(\mathbf{W}^T \mathbf{x})$

$$\boldsymbol{W} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}, \, \boldsymbol{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

神經元與回歸

神經元

Inputs

Output

Perception with linear output is the linear regression.

NN: backpropagation

Regression: OLSE (ordinary least squares estimator).

回歸

$$f(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

$$y = \sigma(f(x)) = \frac{1}{1 + e^{-f(x)}} = \frac{1}{1 + e^{-\beta^T x}}$$

- Exclusive OR (XOR Boolean function)
- It's impossible to find a single straight line to separate two classes.

Truth Table for the XOR problem				
x1	x2	AND	Class	
0	0	0	В	
0	1	1	A	
1	0	1	A	
1	1	0	В	

OR
$$h_1(x) = x_1 + x_2 - 0.5 = 0$$

$$h_2(x) = x_1 + x_2 - 1.5 = 0$$

OR
$$h_1(x) = x_1 + x_2 - 0.5 = 0$$

AND
$$h_2(x) = x_1 + x_2 - 1.5 = 0$$

OR
$$h_1(x) = x_1 + x_2 - 0.5 = 0$$

AND
$$h_2(x) = x_1 + x_2 - 1.5 = 0$$

Truth Table for XOR problem					
x1	x2	$h_1(x)$	$h_2(x)$	Class	
0	0	0(-)	0(-)	В	
0	1	1(+)	0(-)	A	
1	0	1(+)	0(-)	A	
1	1	1(+)	1(+)	В	

Two Layer Perception

類神經網路

但神經訊息傳遞不會像只有一層Single layer perceptron運作,神經網路應該是多個細胞部段將訊息傳遞下去運作的模式,這就是Multilayer perception (MLP),也就是一般認知的類神經網路。

Activation

· 如果沒有activation function會有什麼影響

$$X_2 = W_1 X_1$$

 $X_3 = W_2 X_2$
 $X_4 = W_3 X_3$
 $Y = W_4 X_4$

$$Y = W_4 W_3 W_2 W_1 X_1$$
 $Y = W X_1$
 $W = W_4 W_3 W_2 W_1 X_1$
結果就只是一層的神經網路而已。

Activation

· 如果沒有activation function會有什麼影響

Activation Function

- Sigmoid Tanh •
- ReLU(Rectified Linear Unit)系列:
- ReLU
- Leaky ReLU
- ReLU6
- PReLU
- RReLU
- ELU (Exponential Linear Unit)
- SELU (Scaled Exponential Linear Units)

Activation function

Sigmoid近似法

$$y = approxSigmoid(x) = \begin{cases} 0.5 * \left(\frac{x}{2} \frac{1}{1 + \frac{x}{2}}\right) + 1 & if \ 0 \le x < 3.4 \\ 0.5 * (0.9444 + 0.0459 * (\frac{x}{2} - 1.7) + 1) & if \ 3.4 \le x \le 5.8 \\ 0.9997 & x \ge 5.8 \end{cases}$$

Black: sigmoid

Red: approximate sigmoid

```
def fast_sigmoid2(x):
    x = 0.5 * x
    flag_neg=0
    if x<0:
        x=-x
        flag_neg=1

if x < 1.7:
    z = (1.5 * x / (1 + x))
    elif x < 2.9:
    z = (0.9444 + 0.0459 * (x - 1.7))
    else:
    z = 0.9997
    if flag_neg==1:
        z=-z
    return 0.5 * (z + 1.)</pre>
```


Sigmoid (look up table)

x	sigmoid(x)
0	0.5000
0.5	0.6225
1	0.7311
1.5	0.8176
2	0.8808
2.5	0.9241
3	0.9526
3.5	0.9707
4	0.9820
4.5	0.9890
5	0.9933
5.5	0.9959
6	0.9975
6.5	0.9985
7	0.9991
7.5	0.9994
8	0.9997
8.5	0.9998
9	0.9999
9.5	0.9999
10	1.0000

Black: sigmoid Red: partial sigmoid

Activation function: ReLU系列

• ReLU(x) = max(0,x) =
$$\begin{cases} x & \text{if } x > 0 \\ 0 & O.W. \end{cases}$$

• ReLU6(x) = min(max(0,x),6) =
$$\begin{cases} 6 & \text{if } x \ge 6 \\ x & \text{if } 0 < x < 6 \\ 0 & 0.W. \end{cases}$$

• LeakyReLU(x) =
$$\max(0,x) + a * \min(0,x) = \begin{cases} x & \text{if } x > 0 \\ ax & 0.W. \end{cases}$$
 (default $a = 0.1$)

• PReLU(
$$x$$
) = max($0,x$) + $a*min(0,x)$ = $\begin{cases} x & \text{if } x \geq 0 \\ ax & O.W. \end{cases}$ (a是訓練得到, $init$ 設定: 0.25)

・ RReLU(
$$x$$
) = max(0 , x) + a * min(0 , x) =
$$\begin{cases} x & \text{if } x > 0 \\ ax & O.W. \end{cases}$$
 (a 是隨機 U ($lower = \frac{1}{8}$, $upper = \frac{1}{3}$)選取)

• ELU(x) =
$$\max(0,x) + \min(0,\alpha * (e^x - 1)) = \begin{cases} x & \text{if } x > 0 \\ \alpha * (e^x - 1) & 0. \text{ } W. \end{cases}$$

・ SELU(
$$x$$
) = scale($\max(0,x) + \min(0,\alpha*(e^x-1))$)) = scale $\begin{cases} x & \text{if } x > 0 \\ \alpha*(e^x-1) & 0.W. \end{cases}$ $\alpha=1.6732632423543772848170429916717$ scale= $1.0507009873554804934193349852946$ 實驗驗證,小數取兩位數即可, $\alpha=1.67$, scale= 1.05

SELU係數精度實驗

• Model: LeNet 加強版

• Database: Cifar-10

· 看分類正確率隨著learning epoch變化的影響

SELU係數小數位數全取

SELU(x) = scale(max(0, x) + min(0,
$$\alpha * (e^x - 1))$$
)
= scale $\begin{cases} x & \text{if } x > 0 \\ \alpha * (e^x - 1) & 0.W. \end{cases}$
x=1.6732632423543772848170429916717

 α =1.6732632423543772848170429916717 scale=1.0507009873554804934193349852946

Activation function: ReLU系列

Exp (look up table)

因為在activation (ELU)系列只有輸入是負號才會算exp,所以列出

X	$\exp(x)$	
-20	0	
-10	0.00005	
-9.5	0.00007	
-9	0.00012	
-8.5	0.00020	
-8	0.00034	
-7.5	0.00055	
-7	0.00091	
-6.5	0.00150	
-6	0.00248	
-5.5	0.00409	
-5	0.00674	
-4.5	0.01111	
-4	0.01832	
-3.5	0.03020	
-3	0.04979	
-2.5	0.08209	
-2	0.13534	
-1.5	0.22313	
-1	0.36788	
-0.5	0.60653	
0	1.00000	

Black: exp Red: partial exp

Polyhedral Regions

Polyhedral Regions

activation function = step function

The first layer of neurons divides the input d-dimensional space into polyhedral, which are formed by hyperplane intersections.

Polyhedral Regions

All vectors located within one of these polyhedral regions are mapped onto a specific vertex of the unit hypercube.

NN and Dimension Reduction

Principle Component Analysis

$$\boldsymbol{x}' = \begin{bmatrix} x_1' \\ \vdots \\ x_d' \end{bmatrix} = W^T \boldsymbol{x} = \begin{bmatrix} w_{11} & \dots & w_{1d} \\ \vdots & \ddots & \vdots \\ w_{d1} & \dots & w_{dd} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

PCA是NN的一個special case

NN and Ensemble Learning

Ensemble Learning

