

Modelos de Computación (2018/19) 3º Grado en Ingeniería Informática, Doble Grado de Ingeniería Informática y Matemáticas 14 de Enero de 2019

Normas para la realización del examen:

- Duración: 2.5 horas
- El ejercicio 5 es voluntario y sirve para subir un punto adicional en la parte de teoría.
- Las preguntas tipo test restan cuando se contestan erróneamente.

□ Ejercicio 1 Preguntas tipo test

[2.5 puntos]

- 1. Si el complementario de un lenguaje es finito, entonces el lenguaje es regular.
- 2. Si un lenguaje L es regular, entonces el lenguaje L^{-1} es también regular.
- 3. Si $\mathbf{rr} = \mathbf{r}$ y ϵ está en el lenguaje de \mathbf{r} , entonces $\mathbf{r}^* = \mathbf{r}$.
- 4. Si un AFD tiene n estados y acepta una palabra de longitud n, entonces el lenguaje aceptado es infinito.
- 5. Si un autómata finito no tiene una pareja de estados indistiguibles, entonces es siempre minimal.
- 6. Una palabra generada por una gramática independiente del contexto tiene siempre una única derivación por la izquierda.
- 7. Para aplicar el algoritmo para pasar una gramática a forma normal del Greibach es necesario que la gramática ya esté en forma normal de Chomsky.
- 8. Si en una gramática independiente del contexto las únicas posibles derivaciones de A son $A \to ACD$ y $A \to aD$, entonces si se aplica la función $ELIMINA_2$ del algoritmo de Greibach, tenemos que añadir una nueva variable y B_A , resultando en una gramática en la que la única derivación de A es $A \to aDB_A$.
- 9. Si una gramática está en forma normal de Greibach, entonces una palabra de longitud n se deriva siempre en n+1 pasos.
- 10. Si al aplicar el algoritmo de Early, tenemos que $REGISTROS[j] = \emptyset$ después de aplicar el paso de avance para este valor de j, entonces la palabra no es generada por la gramática.

Construir un autómata finito determinista minimal que acepte el conjunto de palabras sobre el alfabeto $\{0,1\}$ tales que la diferencia entre el número de 0's y el número de 1's es múltiplo de 3. Construir una expresión regular para ese mismo lenguaje usando cualquiera de los procedimientos vistos en clase.

Sea la gramática independiente del contexto:

$$S \to aSb \mid bY \mid Ya$$
$$Y \to bY \mid aY \mid a \mid b$$

Determina usando el algoritmo de Early si las siguientes palabras son generadas aabb, abbb.

↓ Ejercicio 4 ▷ [2.5 puntos]

Determinar si los siguientes lenguajes son regulares y/o independientes del contexto. Justifica las respuestas.

- 1. El lenguaje complementario del generado por la gramática del ejercicio anterior.
- 2. El lenguaje sobre el alfabeto $\{0,1,2,3\}$ de las palabras en las que el número de 0's es igual al número de 1's y el número de 2's es igual al número de 3's.
- 3. Palabras sobre el alfabeto $\{0,1\}$ que comienzan y terminan con el mismo símbolo.
- 4. Palabras $u \in \{0,1\}^*$, tales que si $|u| \le 100$, entonces u es un palíndromo y si $|u| \ge 50$, entonces no contiene la subcadena 0110.

[1 punto]

Si L es un lenguaje, entonces se define NOPREFIJO(L) como el lenguaje de palabras $u \in L$ tales que ningún prefijo propio de u está en L y NOEXTENSION(L) como la clase de palabras $u \in L$ tales que u no es un prefijo propio de cualquier otra palabra de L. Demostrar que la clase de lenguajes independientes del contexto no es cerrada por las transformaciones NOPREFIJO y NOEXTENSION.

Modelos de Computación (2018/19) 3º Grado en Ingeniería Informática, Doble Grado de Ingeniería Informática y Matemáticas 14 de Enero de 2019

[5 puntos]

Si $L \subseteq A^*$, define la relación \equiv en A^* como sigue: si $u,v \in A^*$, entonces $u \equiv v$ si y solo si para toda $z \in A^*$, tenemos que $(uz \in L \Leftrightarrow vz \in L)$.

- 1. Calcular las clases de equivalencia del lenguaje sobre $\{0,1\}$ del conjunto de palabras con el mismo número de 0's que de 1's.
- 2. Calcular las clases de equivalencia del lenguaje de las palabras que terminan en 011.
- 3. Demostrar que L es aceptado por un autómata finito determinístico si y solo si el número de clases de equivalencia es finito.

⊲ Ejercicio 7 ▷ Prácticas

[5 puntos]

Encontrar autómatas con pila que acepten los siguientes lenguajes sobre el alfabeto $\{0,1\}$:

- 1. $L_1 = \{0^n 1^n : n \text{ es primo }\}.$
- 2. $L_2 = \{xy : |x| = |y|, x \neq y\}.$
- 3. L_3 conjunto de palabras de longitud par en las que los dos símbolos centrales son iguales.

Hacerlos deterministas cuando sea posible.

