+

Otimização de Plano Alimentar

ENG1467 – Otimização – Trabalho Final

Is ~ Deduc Moutines a Mathematic

João Pedro Martinez e Matheus Nogueira

Table of contents

Introdução O1

Objetivo O2

Dados 03

O4 Modelagem do Problema

O5 Resultados Obtidos

O6 Referências

Introdução

O problema

Qual é a melhor maneira de organizar um plano alimentar semanal e diário?

Motivação

Uma dieta bem regulada e diversa é essencial não somente para alcançar objetivos específicos como para garantir saúde e bem estar.

Desafios

Como garantir que a dieta cumpre todas as restrições calóricas e de macronutrientes enquanto também garante diversidade ao longo da semana?

A importância de uma dieta diversificada

ORIGINAL RESEARCH article From Nov. 01 April 2022 Sex: National Epidemiol. 2002 Aug;31 (4):847-54. doi: 10.1093/ije/31.847. A prospective study of variety of healthy foods and mortality in women **Carin & Michael Research (april 2004) **Carin &	
Affiliations + expand PMID: 12177033 DOI: 10.1093/ije/31.4.847 Abstract Background: To assess the overall influence of diet on health and the habitual diet of the study participants has to be captured as ror nutrients. The simplest way to describe dietary preference is beneficial to health from foods considered to promote disease, 4 of their regular consumption of these foods. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer. MEDICINE RESEARCHARTICLE Dietary Diversity, Diet Cost, and Incides Dietary Diversity, Diet Cost, and Incides Type 2 Diabetes in the United Kingdor Prospective Cohort Study Annalijin L Conklin ¹² , Pablo Monsivais ¹ , Kay-Tee Khaw ² , Nicholas J. Warehing Control of the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.	
Abstract Background: To assess the overall influence of diet on health an or nutrients. The simplest way to describe dietary preferences is beneficial to health from foods considered to promote disease. 4 of their regular consumption of these foods. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer. Dietary Diversity, Diet Cost, and Incide Type 2 Diabetes in the United Kingdor Prospective Cohort Study As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer. Annaliji I. Conklin ¹² , Pablo Monsivais ³ , Kay-Tee Khaw ³ , Nicholas J. Wareh	
Screening Cohort in Sweden to investigate the influence of varie on all cause and cause-specific mortality. Results: Women who followed a healthy diet defined as consum vegetables, whole grain breads, cereals, fish, and low fat dairy remortality than women who consumed few of these foods (3710 poulls). Results: Women who followed a healthy diet defined as consum vegetables, whole grain breads, cereals, fish, and low fat dairy remortality than women who consumed few of these foods (3710 poulls). Results: Women who followed a healthy diet defined as consum vegetables, whole grain breads, cereals, fish, and low fat dairy remortality than women who consumed few of these foods (3710 poulls). Results: Women who followed a healthy diet defined as consum vegetables, whole grain breads, cereals, fish, and low fat dairy remortality than women who consumed few of these foods (3710 poulls). Results: Women who followed a healthy diet defined as consum vegetables, whole grain breads, cereals, fish, and low fat dairy removed few of these foods (3710 poulls). Results: Women who followed a healthy diet defined as consum vegetables, whole grain breads, cereals, fish, and low fat dairy removed few of these foods (3710 poulls). Results: Women who followed a healthy diet defined as consum vegetables, whole grain breads, cereals, fish, and low fat dairy removed few of these foods (3710 poulls). Results: Women who followed a healthy diet defined as consum vegetables, whole grain breads, cereals, fish, and low fat dairy removed few of these foods (3710 poulls). Results: Women who followed a healthy diet defined as consum problems from the father of the fa	n: A m ¹ , Nita Medicine, n, 2 WORLD ted States of
A healthy gastrointestinal microbiome is dependent on dietary diversity Mark L. Heiman 1-* and Erank L. Greenway? Abstract	ted as critical th T2D is not

second, to estimate the monetary cost associated with dietary diversity.

Like all healthy ecosystems, richness of microbiota species characterizes the GI microbiome in healthy individuals. Conversely, a loss in species diversity is a common finding in several disease

Objetivo

Minimização de custos

Dado um conjunto de alimentos disponíveis e um conjunto de restrições relacionadas à quantidades de referência de macronutrientes e calorias, qual é a organização do plano alimentar semanal e diário que minimiza o preço da compra semanal, garantindo diversidade de alimentos?

Informações necessárias para modelar oproblema

Produtos

Uma lista de produtos alimentícios disponíveis em qualquer supermercado.

Preço

O preço de cada produto que pode ser incluído na dieta

Tabela Nutricional

Os valores nutricionais associados a cada produto, tais como valor energético, quantiadde de carboidrato, proteína e gorduras.

Valores de Referência

Referências de quantidades adequadas de cada macronutriente a ser consumida diariamente e meta calórica

Dados do cliente

Informações relevantes do cliente, como peso, altura, sexo e idade, além de dados sobre a rotina de exercício físico

Nosso Dataset

Nome	Unidade Mercado	QUM [g]	Quantidade TN[g]	Kcal TN	Proteina TN [g]	Carboid rato TN [g]	Gordur a TN [g]	Preço QUM [R\$]
Arroz	1 saco	1000	50	171	3.7	39	0	5.69
Feijão	1 pacote	1000	60	140	13	20	1	8.49
Frango	1 pacote	1000	100	104	22	0	1.5	19.99
Vagem	1 bandeja	300	60	15	1.1	3.2	0	14.99
:	:	:	:	:	:	:	:	:
Batata	granel	1000	30	30	0	14	0	9.93

QUM = Quantidade Unidade Mercado; TN = Tabela Nutricional

Função Objetivo

Minimizar o custo semanal da dieta

Variável de decisão

Quantidade, em gramas, de cada produto a ser consumido em cada dia da semana

Restrições

Quantidades mínimas e máximas de calorias e macronutrientes

Notação Utilizada

- Índice para dias da semana: i = 1, ... 7
- $LBw_p^{ ext{ Lower bound semanal de cada}}$ produto [g]

- p Índice para produtos: p = 1, ... P
- $UBw_p^{ ext{ Upper bound semanal de cada}}$ produto [g]

X Vetor de variáveis de decisão

- LBd_p Lower bound diário de cada produto [g]
- Vetor de custos por grama de cada produto [R\$/g]
- $\mathit{UBd}_p^{\,\,\,\,}$ Upper bound diário de cada produto [g]

Notação Utilizada

 $prot_p$ Proteínas em gramas do produto p

 $carb_p$ Carboidratos em gramas do produto p

 $gord_p$ Gorduras em gramas do produto p

 QTN_p Quantidade em gramas do produto p na TN

 $oldsymbol{x_{p_i}}$ Quantidade em gramas do produto p consumida no dia i

$$Sprot_{i} = \sum_{p} \frac{prot_{p}}{QTN_{p}} * x_{p_{i}} \ \forall i$$

Quantidade em gramas consumida de proteína no dia i

$$Scarb_{i} = \sum_{p} \frac{carb_{p}}{QTN_{p}} * x_{p_{i}} \forall i$$

Quantidade em gramas consumida de carboidrato no dia i

$$Sgord_{i} = \sum_{p} \frac{gord_{i}}{QTN_{p}} * x_{p_{i}} \forall i$$

Quantidade em gramas consumida de gordura no dia i

Função objetivo

+

Sendo $x=[x_{p1_1},...x_{p1_7},...,x_{pn_1},...x_{pn_7}]$ o vetor de quantidade a ser comida de cada produto a cada dia

Sendo $\mathbf{c} = [c_{p1}, \dots c_{p1}, \dots c_{pn}, \dots c_{pn}]$ o vetor de preços ou custos por grama de cada produto

$$Z = \min_{x} c^{T} x$$

Restrição 1: quantidade semanal dos

produtos

Observação: os lower bound e upper bounds foram definidos da seguinte forma:

 $LBw_p \le \sum_{i=1} x_{p_i} \le UBw_p \quad \forall p$

 $UBw_n = qtd \ máxima \ razoável \ de \ compra \ semanal$ $LBw_n = qtd$ mínima razoável para haver diversidade Semana mais restrita que a soma dos dias

$$UBw_p < \sum_i UBd_{p_i} \ \forall p$$

Restrição 2: quantidade diária dos produtos

 $LBd_p \le x_{p_i} \le UBd_p \quad \forall i \ \forall p$

Observação: o *LBd* de cada produto é 0, para que o solver possa optar por não consumir aquele produto no dia.

$$LBd_p = 0 \ \forall p$$

Restrição 3: metas para cada macronutriente

 $\begin{aligned} Sprot_i &= REF_{prot} * peso \ \forall i \\ Sgord_i &= REF_{gord} * peso \ \forall i \\ Scarb_i &= REF_{carb} * peso \ \forall i \end{aligned}$

Observação: valores de referência de grama de macro por kg retirados de [4,5]

Restrição 4: quantidade diária dos produtos

 $Mkcal_i = 4Sprot_i + 4Scarb_i + 9Sgord_i \forall i$

Observação: $Mkcal_i$ calculada a partir de formula de Harries Benedict [1] Constantes multiplicativas retiradas de [3]

Problema completo v1

$$Z = \min_{x} c^{T} x$$

s.a:

$$LBw_p \le \sum_{i=1}^{7} x_{p_i} \le UBw_p \quad \forall p$$

$$LBd_p \leq x_{p_i} \leq UBd_p \quad \forall i \; \forall p$$

$$Sprot_i = REF_{prot} * peso \ \forall i$$

 $Sgord_i = REF_{gord} * peso \ \forall i$

$$Mkcal_i = 4Sprot_i + 4Scarb_i + 9Sgord_i \ \forall i$$

Alocação Ótima de Alimentos

Problema: alocação sempre igual com todos os alimentos

Nome	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6	Dia 7
Arroz	133.5594	133.5594	133.5594	133.5594	133.5594	133.5594	133.5594
Batata Inglesa	47.61905	47.61905	47.61905	47.61905	47.61905	47.61905	47.61905
Batata Doce	19.04762	19.04762	19.04762	19.04762	19.04762	19.04762	19.04762
Batata Baroa	14.28571	14.28571	14.28571	14.28571	14.28571	14.28571	14.28571
Macarrao	107.1429	107.1429	107.1429	107.1429	107.1429	107.1429	107.1429
Mandioca	28.57143	28.57143	28.57143	28.57143	28.57143	28.57143	28.57143
:	:	:	:	:	:	:	:
Farofa	19.04762	19.04762	19.04762	19.04762	19.04762	19.04762	19.04762

Minimizar o custo semanal da dieta

Variável de decisão

Quantidade, em gramas, de cada produto a ser consumido em cada dia da semana

Restrições

Quantidades mínimas e máximas de calorias e macronutrientes **considerando 2 dias característicos.**

Em cada dia característico selecionamos quais alimentos podem ou não ser consumidos para garantir diversidade ao longo da semana e coerência ao logo do dia

Dias característicos

Dia A

Batata Doce Rosada	Frango Congelado Seara	Brocolis Congelados Taeq	Queijo Mussarela Sadia
Macarrao Adria Espaguete 8	Carne Moida Patinho Swift	Quiabo Qualita	Presunto Seara
Tapioca da Terrinha	Ovos Caipira Qualita	Abobora Moranga	Requeijao
Aveia em flocos regulares quaker	Azeite de Oliva Andorinha	Pepino	Banana

Dia B

Arroz Tipo 1 Qualita	Granola Qualita	File de Tilapia Frescatto	Vagem Macarrao Qualita
Batata Inglesa	Pao Frances	Cubos de Salmao	Tomate
Mandioca Pre Cozida Swift	Pao de Forma Integral	Cenoura Qualita	Abobrinha Italiana
Farofa de Mandioca Yoki	Atum Solido Gomes da Costa Natural	Couve Manteiga Qualita	logurte
Feijao Preto Qualita	Sardinha Gomes da Costa	Jilo	

Dias característicos - Implementação - +

Como "escolher" os produtos de cada dia característico?

- O lower bound diário de cada produto sempre é zero.
- O upper bound diário será diferente dependendo do dia e do produto:

Zeramos o upper bound dos produtos que não estão alocados no dia

Pseudo Código:

$$Dias\ A = [1,3,5,7], Dias\ B = [2,4,6]$$

Se i in Dias A

Se p not in dia A, então $UB_{p_i} = 0$

Se i in Dias B

Se p not in dia B, então $UB_{p_i}=0$

Problema completo v2

Considerando 2 dias característicos

$$Z = \min_{x} c^{T} x$$

s.a:

$$LBw_p \le \sum_{i=1}^{7} x_{p_i} \le UBw_p \quad \forall p$$

$$LBd_p \le x_{p_i} \le UBd_p \quad \forall i \ \forall p$$

$$0.9*REF_{prot}*peso \leq Sprot_i \leq 1.1*REF_{prot}*peso \ \forall i$$
 $0.9*REF_{gord}*peso \leq Sgord_i \leq 1.1*REF_{gord}*peso \ \forall i$ $0.9*REF_{carb}*peso \leq Scarb_i \leq 1.1*REF_{carb}*peso \ \forall i$

$$0.9*Mkcal_i \leq 4Sprot_i + 4Scarb_i + 9Sgord_i \leq 1.1*Mkcal_i \forall i$$

Com n=35, há um total de 616 restrições e 245 variáveis

+

Indivíduo de Teste 1

1	Idade	Altura	Peso	Sexo	Atividade Física	Prot g/kg	Carb g/kg	Gord g/kg
	23	165	80	Masc	4	2	4	1

Resultado Otimização:

Custo Mínimo	Metodo	Tempo
280.153	GLPK	0.010115
280.153	PI	0.775958

Resultados Auxiliares

Gramas Diárias							
Dia 1	1283.217						
Dia 2	1491.85						
Dia 3	1283.217						
Dia 4	1491.85						
Dia 5	1283.217						
Dia 6	1491.85						
Dia 7	1283.217						

	Gramas de macronutrientes diárias												
Macros Dia 1 Dia 2 Dia 3 Dia 4 Dia 5 Dia 6													
Prot	144	144	144	144	144	144							
Carb	334.57	334.80	334.57	334.80	334.57	334.80							
Gord	72	72	72	72	72	72							

	g/kg de macronutrientes diárias											
Macros	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6						
Prot	1.8	1.8	1.8	1.8	1.8	1.8						
Carb	4.18	4.18	4.18	4.18	4.18	4.18						
Gord	0.9	0.9	0.9	0.9	0.9	0.9						

%macronutrientes por kcal diárias												
Macros Dia 1 Dia 2 Dia 3 Dia 4 Dia 5 Dia												
Prot	0.22	0.22	0.22	0.22	0.22	0.22						
Carb	0.52	0.52	0.52	0.52	0.52	0.52						
Gord	0.25	0.25	0.25	0.25	0.25	0.25						

Alocação Ótima de Alimentos

24.28571

Azeite

Granola

0

40

	4		-	3 /					11000		
Nome	Dias A	Dias B	Nome	Dias A	Dias B	Nome	Dias A	Dias B	Nome	Dias A	Dias B
Arroz	0	66.66667	Pao Frances	0	50	Cenoura	0	53.33333	Queijo	40	0
Batata Inglesa	0	100	Pao Forma	0	33.33333	Brocolis	37.5	0	Presunto Seara	40	0
Batata Doce	143.514	0	Frango	210.6526	0	Couve	0	53.33333	Requeijao	42.2652	20.87517
Macarrao	187.5	0	Carne Moida	75	0	Quiabo	40	0	logurte	0	133.3333
Mandioca	0	100	Atum Solido	0	40	Jilo	0	53.33333	Banana	75	0
Tapioca	50	0	Sardinha	0	41.66667	Vagem	0	53.33333	-	-	-
Farofa	0	33.33333	Tilapia	0	106.6667	Abobora	40	0	-	-	-
eijao Preto	0	265.0225	Salmao	0	106.6667	Tomate	0	53.33333	-	-	-
Aveia	168.75	0	Ovos	68.75	0	Pepino	40	0	-	_	-

Abobrinha

0

34.28571

53.33333

+

Indivíduo de Teste 2

Idade	Altura	Peso	Sexo	Atividade Física	Prot g/kg	Carb g/kg	Gord g/kg	
44	190	110	Masc	8	2	4	1	

Resultado Otimização:

Custo Mínimo	Metodo	Tempo
401.0125	GLPK	0.007647
401.0125	PI	0.722326

Resultados Auxiliares

Gramas Diárias							
Dia 1	2070.179						
Dia 2	1939.365						
Dia 3	2070.179						
Dia 4	1939.365						
Dia 5	2070.179						
Dia 6	1939.365						
Dia 7	2070.179						

	Gramas de macronutrientes diárias									
Macros	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6				
Prot	225.96	203.12	225.96	203.12	225.96	203.124				
Carb	484	484	484	484	484	484				
Gord	108.64	118.79	108.64	118.79	108.64	118.79				

	g/kg de macronutrientes diárias											
Macros	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6						
Prot	2.05	1.84	2.05	1.84	2.05	1.84						
Carb	4.4	4.4	4.4	4.4	4.4	4.4						
Gord	0.98	1.07	0.98	1.07	0.98	1.07						

%macronutrientes por kcal												
Macros	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6						
Prot	0.21	0.24	0.21	0.24	0.21	0.24						
Carb	0.51	0.51	0.51	0.51	0.51	0.51						
Gord	0.28	0.26	0.28	0.26	0.28	0.26						

Alocação Ótima de Alimentos - Teste 2

Farofa

Feijao Preto

Aveia

Granola

0

0

168.75

0

50.95052

333.3333

0

266.6667

Tilapia

Salmao

Ovos

Azeite

0

0

188.5714

34.28571

		agac									+
Nome	Dias A	Dias B	Nome	Dias A	Dias B	Nome	Dias A	Dias B	Nome	Dias A	Dias B
Arroz	0	66.66667	Pao Frances	0	50	Cenoura	0	53.33333	Queijo	68.57143	0
Batata Inglesa	0	100	Pao Forma	0	33.33333	Brocolis	37.5	0	Presunto Seara	40	0
Batata Doce	300	0	Frango	375	0	Couve	0	53.33333	Requeijao	51.42857	31.42857
Macarrao	187.5	0	Carne Moida	165.4473	0	Quiabo	40	0	logurte	0	133.3333
Mandioca	0	100	Atum Solido	0	40	Jilo	0	53.33333	Banana	145.6243	0
Tapioca	187.5	0	Sardinha	0	64.12844	Vagem	0	53.33333	-	-	-

106.6667

106.6667

115.2381

20.95238

Abobora

Tomate

Pepino

Abobrinha

0

53.33333

0

53.33333

40

0

40

0

+

Indivíduo de Teste 3

Idade	Altura	Peso	Sexo	Atividade Física	Prot g/kg	Carb g/kg	Gord g/kg
32	166	85	Fem	2	1.8	3.35	1.1

Resultado Otimização:

Custo Mínimo	Metodo	Tempo
293.6081	GLPK	0.014488
293.6081	PI	0.79119

Resultados Auxiliares

Gramas Diárias							
Dia 1	1214.183						
Dia 2	1544.184						
Dia 3	1214.183						
Dia 4	1544.184						
Dia 5	1214.183						
Dia 6	1544.184						
Dia 7	1214.183						

	Gramas de macronutrientes diárias										
Macros	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6					
Prot	137.7	137.7	137.7	137.7	137.7	137.7					
Carb	287.56	287.56	287.56	287.56	287.56	287.56					
Gord	84.15	84.15	84.15	84.15	84.15	84.15					

	g/kg de macronutrientes diárias									
Macros	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6				
Prot	1.62	1.62	1.62	1.62	1.62	1.62				
Carb	3.38	3.38	3.38	3.38	3.38	3.38				
Gord	0.99	0.99	0.99	0.99	0.99	0.99				

%macronutrientes por kcal								
Macros	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6		
Prot	0.22	0.22	0.22	0.22	0.22	0.22		
Carb	0.47	0.47	0.47	0.47	0.47	0.47		
Gord	0.31	0.31	0.31	0.31	0.31	0.31		

Alocação Ótima de Alimentos - Teste 3

		agae						+				
Nome	Dias A	Dias B	Nome	Dias A	Dias B	Nome	Dias A	Dias B	Nome	Dias A	Dias B	
Arroz	0	66.66667	Pao Frances	0	50	Cenoura	0	53.33333	Queijo	40.00002	0	
Batata Inglesa	0	100	Pao Forma	0	33.33333	Brocolis	37.5	0	Presunto Seara	40	0	
Batata Doce	75	0	Frango	163.6296	0	Couve	0	53.33333	Requeijao	42.72948	43.02736	
Macarrao	152.246	0	Carne Moida	75	0	Quiabo	40	0	logurte	0	133.3333	
Mandioca	0	100	Atum Solido	0	40	Jilo	0	53.33333	Banana	75	0	
Tapioca	50	0	Sardinha	0	52.50835	Vagem	0	53.33333	-	-	-	

0

53.33333

0

53.33333

40

0

40

0

Atocação Otima de Atimentos								reste 5			
e	Dias A	Dias B	Nome	Dias A	Dias B	Nome	Dias A	Dias B	Nome		
	_						_				

106.6667

106.6667

175.8043

25.09219

Abobora

Tomate

Pepino

Abobrinha

Farofa

Feijao Preto

Aveia

Granola

0

0

168.75

0

33.33333

106.6667

0

51.08479

Tilapia

Salmao

Ovos

Azeite

0

0

143.1468

31.18086

Referências

[1] A Biometric Study of Human Basal Metabolism

HARRIS, J. Arthur; BENEDICT, Francis G. A biometric study of human basal metabolism. **Proceedings of the National Academy of Sciences**, v. 4, n. 12, p. 370-373, 1918.

[2] The Harris-Benedict Studies of Human Basal Metabolism: History and Limitations

FRANKENFIELD, David C.; MUTH, Eric R.; ROWE, William A. The Harris-Benedict studies of human basal metabolism: history and limitations. **Journal of the American Dietetic Association**, v. 98, n. 4, p. 439-445, 1998.

[3] Is a calorie a calorie?. BUCHHOLZ, Andrea C.; SCHOELLER, Dale A. Is a calorie a calorie?. The American journal of clinical nutrition, v. 79, n. 5, p. 899S-906S, 2004.

[4] exercise & sport nutrition review: research & recommendations

KREIDER, Richard B. et al. ISSN exercise & sport nutrition review: research & recommendations. **Journal of the international society of sports nutrition**, v. 7, n. 1, p. 7, 2010.

Referências

I5]Carbohydrate availability and physical performance: physiological overview and practical recommendations.

MATA, Fernando et al. Carbohydrate availability and physical performance: physiological overview and practical recommendations. **Nutrients**, v. 11, n. 5, p. 1084, 2019.

Dados de preço e informações nutricionais retiradas dos sites:

https://www.paodeacucar.com/ https://www.swift.com.br/ https://frescatto.com/

