ME-504: Course Project

Consider the case of a cantilever beam subjected to point load at random locations(Fig 1). The structure is divided into NxN grid elements as shown in Figure 2. The beam of different topologies can be created by randomly generating the holes at the various grid points.

Fig 1: Cantilever Beam

Variant 1: Consider a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the positions, sizes, and quantities of the holes in a random manner. 1) Use CNN to predict the tip displacement of the beam and compare its performance with ANN. 2) Now, explore the use of any unsupervised technique to reduce the data requirement.

Variant 2: Consider a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the positions, sizes, and quantities of the holes in a random manner. Use DeepOnet to predict the displacement field and compare its performance with ANN.

Variant 3: Consider a configuration with three point load of known magnitude at fixed locations on top of the beam. Generate the random topologies of the beam by altering the positions of the holes in a random manner. Use CNN to predict the stress hotspot.

Variant 4: Consider a configuration with three point load of known magnitude at fixed locations on top of the beam. Generate the random topologies of the beam by altering the positions of the holes in a random manner. 1) Use CNN to predict the maximum displacement of the beam. 2) Now, explore the use of active learning to improve the accuracy of CNN's prediction.

Variant 5: Consider a configuration with three point load of known magnitude at fixed locations on top of the beam. Generate the random topologies of the beam by altering the positions of the holes in a random manner. Use CNN to predict the displacement field and compare its performance with UNet.

Variant 6: Consider three fixed forces of the known magnitude. Generate the random topologies of the beam by altering the positions, sizes, and quantities of the holes in a random manner. 1) Train a CNN network to predict the displacement of the beam. 2) Now allow any one force to vary in magnitude and location and predict the displacement of the beam. Carry out the same thing for the maximum stress in the beam.

Variant 7: Consider three fixed forces of the known magnitude. Generate the random topologies of the beam by altering the positions, sizes, and quantities of the holes in a random manner. 1) Train a CNN network to predict the displacement of the beam. 2) Now

allow any two forces to vary in magnitude and location and predict the displacement of the beam. Carry out the same thing for the maximum stress in the beam.

Variant 8: Consider three fixed forces of the known magnitude. Generate the random topologies of the beam by altering the positions, sizes, and quantities of the holes in a random manner. 1) Train a CNN network to predict the displacement of the beam. 2) Now allow the three forces to vary in magnitude and location and predict the displacement of the beam. Carry out the same thing for the maximum stress in the beam.

Variant 9: Consider a beam configuration with two rectangular holes with a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the position and size of the holes in a random manner. Generate the displacement field for these random configurations and use this to predict the size and position of holes.

Variant 10: Consider a beam configuration with two rectangular holes with a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the position and size of the holes in a random manner. Generate the stress field for these random configurations and use this to predict the size and position of holes.

Variant 11: Consider a beam configuration with three rectangular holes with a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the position and size of the holes in a random manner. Generate the displacement field for these random configurations and use this to predict the size and position of holes.

Variant 12: Consider a beam configuration with three rectangular holes with a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the position and size of the holes in a random manner. Generate the stress field for these random configurations and use this to predict the size and position of holes.

Variant 13: Consider a beam configuration with two circular holes with a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the position and size of the holes in a random manner. Generate the displacement field for these random configurations and use this to predict the size and position of holes.

Variant 14: Consider a beam configuration with two circular holes with a single point load of

known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the position and size of the holes in a random manner. Generate the stress field for these random configurations and use this to predict the size and position of holes.

Variant 15: Consider a beam configuration with three circular holes with a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the position and size of the holes in a random manner. Generate the displacement field for these random configurations and use this to predict the size and position of holes.

Variant 16: Consider a beam configuration with three circular holes with a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the position and size of the holes in a random manner. Generate the stress field for these random configurations and use this to predict the size and position of holes.

Variant 17: Consider a beam configuration with circular holes with a single point load of known magnitude at the top right end of the beam. Generate the random topologies of the beam by altering the number, position, and size of the holes in a random manner. 1) Use CNN to predict the displacement field. 2) Now, explore the use of ensemble and bootstrap techniques to improve the predictions.

Variant 18: Consider the duffing oscillator problem, which is governed by the ODE:

$$\ddot{x} + \gamma \dot{x} + (\beta x^3 + \omega_0^2 x) = A \cos(\omega t + \phi).$$

Fix the system constraints γ , β , ω_0 , and ω along with x(t=0) and x'(t=0). Now generate the velocity and displacement field at random timesteps on an interval of your choice. Use RNN to predict the displacement and compare the result with ANN.

FEM CODE:

So in order to run the FEM analysis, we need to provide the material properties of each cell (element). In the case of the holes, you have to provide zero on that element. The properties can be provided to the analysis code through the file:

"femcode(DL_executed)\cont_ver2\Prop.dat"

Note: This file will be different for all the iterations and must be replaced every time the code runs.

(write python code for generating this file)

• For variation of properties- Prop.dat

E6	E12	_		_
E5	E11	_		
E4	E10			
E3	E9	_		
E2	E8	_		
E1	E7	E3		

E = elastic modulus

 For the loading, you have to provide force at the nodes of the structure using the file load.dat

"femcode(DL_executed)\cont_ver2\load.dat"

Where 1681, 1641 are the node numbers on which load is acting and 5.00e5 are the magnitude of the load.

Note: you have to keep 0 line below always to keep the format the same of the file.

20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380
19	39	59	79	99	119	139	159	179	199	219	239	259	279	299	319	339	359	379
18	38	58	78	98	118	138	158	178	198	218	238	258	278	298	318	338	358	378
17	37	57	77	97	117	137	157	177	197	217	237	257	277	297	317	337	357	377
16	36	56	76	96	116	136	156	176	196	216	236	256	276	296	316	336	356	376
15	35	55	75	95	115	135	155	175	195	215	235	255	275	295	315	335	355	375
14	34	54	74	94	114	134	154	174	194	214	234	254	274	294	314	334	354	374
13	33	53	73	93	113	133	153	173	193	213	233	253	273	293	313	333	353	373
12	32	52	72	92	112	132	152	172	192	212	232	252	272	292	312	332	352	372
11	31	51	71	91	111	131	151	171	191	211	231	251	271	291	311	331	351	371
10	30	50	70	90	110	130	150	170	190	210	230	250	270	290	310	330	350	370
9	29	49	69	89	109	129	149	169	189	209	229	249	269	289	309	329	349	369
8	28	48	68	88	108	128	148	168	188	208	228	248	268	288	308	328	348	368
7	27	47	67	87	107	127	147	167	187	207	227	247	267	287	307	327	347	367
6	26	46	66	86	106	126	146	166	186	206	226	246	266	286	306	326	346	366
5	25	45	65	85	105	125	145	165	185	205	225	245	265	285	305	325	345	365
4	24	44	64	84	104	124	144	164	184	204	224	244	264	284	304	324	344	364
3	23	43	63	83	103	123	143	163	183	203	223	243	263	283	303	323	343	363
2	22	42	62	82	102	122	142	162	182	202	222	242	262	282	302	322	342	362
1	21	41	61	81	101	121	141	161	181	201	221	241	261	281	301	321	341	361

Element number for the beam

Node number for the beam

- While running the command first time run the command:
 "sudo apt-get install libomp-dev"
- Open the terminal in that folder and Run this code - "./main.e > shape"

numeric@numeric-OptiPlex-5090:~/Documents/femcode(DL)/cont_ver2\$ _/main.e > shape

Output files

You'll find these files in the same folders:

- 1. displacement "femcode(DL_executed)\cont_ver2\displacement"
- Stressnode "femcode(DL_executed)\cont_ver2\stressnode"