

A Decade of Nanoelectronics – Journey from classical bulk CMOS to metal-gate FinFETs

Prof. Jakub Kedzierski

Indian Institute of Technology Bombay

March 3, 2012

Figure 1: Schematic drawing of FinFET

The first FinFET structure from UC Berkeley (IEDM 1999)

- Born in Poland, if you don't understand my accent: STOP ME
- Co-invented the FinFET device while at UC Berkeley

FinFET FDSOI

- Graduated from UC Berkeley (2001)
- Worked at IBM's Watson Research Center on advanced CMOS devices (2001-2005)

3D electronics

Graphene

- Joined MIT Lincoln Laboratory (2005)
 - My group works in 3D electronics, graphene, low power electronics, and microfluidics

Microfluidics

 Currently on leave from MIT, working as a visiting professor at the Indian Institute of Technology Bombay

A Decade of Nanoelectronics – Journey from classical bulk CMOS to metal-gate FinFETs

Prof. Jakub Kedzierski

Indian Institute of Technology Bombay

March 3, 2012

Silicon Past

- CMOS technology progress over last 30 years
 - This talk will cover scaling in the nanoelectronics era (last decade), but scaling has of course been going on since the late 60's

Anatomy of a Transistor

Top View

Side View

Anatomy of a Transistor

Flashback - 2001

- Enhanced 130 nm technology device from Intel
 - Scaled gate length (less than half of node value)
 - Poly-silicon gate
 - Thin SiO₂ gate dielectric 1.5 nm

Flashback - 2001

Road-block: Gate oxide tunneling current, the quantum nature of matter lets electrons penetrate the gate oxide

- Scaling to gate oxide the next node by 30% proved impossible
 - Gate oxide leakage jumps from ~1 Amp to ~1000 Amps between
 1.5 nm and 1.0 nm thick SiO₂ dielectrics

Flashback - 2001

Road-block: Gate oxide tunneling current, the quantum nature of matter lets electrons penetrate the gate oxide

- Ideal Solution Replace the leaky silicon dioxide with a high-k dielectric and eliminate poly-Si depletion in the gate by using a metal gate
- Reality Not so easy Thousands of papers were published on high-k metal gate, and the solution is not ideal

A Decade of Nanoelectronics

32 nm 22 nm 130 nm 90 nm 65 nm 45 nm 2001 *2003 2005 2007 2009 2011* 60nm 45nm Si_{1-x}Ge_x Si_{1-x}Ge_x Compression Introduction of ntroduction of Introduction of INTEL Improved High-k, MG High-k, MG **Traditional** Strained Si Strained S Improved the FinFE

- The challenge posed by the end of silicon dioxide scaling led to many innovations in the last decade
 - Strained silicon (2003), High-k/Metal Gate (2007), FinFET (2011)

Introduction of Strained Si

130 nm **2001**

90 nm **2003**

65 nm **2005** 45 nm **2007** 32 nm **2009** 22 nm **2011**

Traditional Bulk CMOS

ntroduction of Strained Si

Improved Strained Si ntroduction of High-k, MG

Improved High-k, MG Introduction of the FinFET

- High-k/Metal Gate proved so difficult that the industry had to look elsewhere to find a performance boost
- Strained Silicon was introduce by Intel in 2003 in the 90 nm node

INTEL

Strain Engineering (I)

- Straining silicon changes mobility and can improve device performance
- Uniaxial Longitudinal stress is very effective in enhancing performance
 - Compressive PMOS
 - Tensile NMOS

Stress / MPa

Low stress piezoresistance coefficients for 3 directions of stress: longitudinal, transverse, and perpendicular to plane of the MOSFET (z is quantized direction).

Wafer	(001)				(110)
Channel	$\langle 110 \rangle$		$\langle 100 \rangle$		$\langle 110 \rangle$
Type	NMOS	PMOS	NMOS	PMOS	PMOS
π_{\parallel}	-35.5	71.7	-38.55	9.1	27.3
π_{\perp} (in)	-14.5	-33.8	-18.7	-6.19	-5.1
π_{\perp} (out)	27.0	-20.0	-	_	-25.8

S. Thompson et al. (various)

Strain Engineering (II)

Preferred Stress Directions PFET

nMOSFET

pMOSFET

- Different strain configurations required for NMOS and PMOS
- NMOS strain strategy
 - Devices are strained with properly stressed liner films (strain perpendicular to gate) and spacers (strain parallel to gate)
- PMOS strain strategy
 - Devices are strained with an embedded SiGe epitaxial layer in the source/drain that compresses the channel (perpendicular to gate) and spacers (strain parallel to gate)

S. Thompson et al., IEEE TED, VOL. 51, NO. 11. NOVEMBER 2004

Strain Engineering (III)

- Technology Nodes from 90nm to 45nm have been optimizing the strain effect increasing device performance
- PMOS benefits more from strain than NMOS
 - 65nm node 1.4x NMOS, 2.1x PMOS (mobility gain vs unstrained)
- As a consequence PMOS currents are catching up to NMOS

S. Tyagi – IEDM 2005 pg. 245

Introduction of High-k / Metal-Gate

- Strain is great, but it doesn't do anything to solve the original problem of gate oxide leakage
- To solve gate oxide leakage issues high-k and metal gate were introduced in the 45 nm node by Intel

INTEL 45nm logic technology TEMs

- The PMOS 45nm device with high-k, metal gate in cross section
- Gate-last process was used for fabrication, with two different metals (for NMOS and PMOS) over a Hf_(x)Si_(1-x)O₂ dielectric

- My interpretation of the high-k / metal gate process
- Transistor fabrication up to gate definition and etch
 - At this point gate is poly-Si on high-k Hf_(x)Si_(1-x)O₂ dielectric
 - Poly-Si gate is used because it can stand up to SD anneals

ALD deposition of high-k gate dielectric
Polysilicon deposition and gate patterning

S/D extensions, spacer, Si Recess & SiGe deposition
S/D Formation, Ni Salicidation, ILD0 Deposition

Poly Opening Polish, Poly Removal
PMOS workfunction metal deposition

Metal gate patterning, NMOS WF metal deposition

Metal gate fill and polish, ESL deposition

- Spacer formation
- Source drain formation including strain SiGe (PMOS)
- Ni Silicidation and initial interlayer dielectric deposition

ALD deposition of high-k gate dielectric

Polysilicon deposition and gate patterning

S/D extensions, spacer, Si Recess & SiGe deposition

S/D Formation, Ni Salicidation, ILD0 Deposition

Poly Opening Polish, Poly Removal

PMOS workfunction metal deposition

Metal gate patterning, NMOS WF metal deposition

Metal gate fill and polish, ESL deposition

- CMP for poly open
 - Exposes the top of poly to etch for removal

ALD deposition of high-k gate dielectric

Polysilicon deposition and gate patterning

S/D extensions, spacer, Si Recess & SiGe deposition

S/D Formation, Ni Salicidation, ILD0 Deposition

Poly Opening Polish

Poly Removal

PMOS workfunction metal deposition

Metal gate patterning, NMOS WF metal deposition

Metal gate fill and polish, ESL deposition

Poly removal

ALD deposition of high-k gate dielectric
Polysilicon deposition and gate patterning
S/D extensions, spacer, Si Recess & SiGe deposition
S/D Formation, Ni Salicidation, ILD0 Deposition
Poly Opening Polish, Poly Removal
PMOS workfunction metal deposition
Metal gate patterning, NMOS WF metal deposition
Metal gate fill and polish, ESL deposition

- PMOS workfunction deposition
 - Undisclosed metal, likely a complex alloy, perhaps TaN with impurities to modify the workfunction

ALD deposition of high-k gate dielectric

Polysilicon deposition and gate patterning

S/D extensions, spacer, Si Recess & SiGe deposition

S/D Formation, Ni Salicidation, ILD0 Deposition

Poly Opening Polish, Poly Removal

PMOS workfunction metal deposition

Metal gate patterning, NMOS WF metal deposition

Metal gate fill and polish, ESL deposition

- Similar process is used for NMOS
- Common metal fill is used to fill in the gate, potentially TiN or W
- Final CMP removes metal from undesired locations
- Secondary interlayer dielectric is deposited

STI, Wells, and VT Implants

ALD deposition of high-k gate dielectric

Polysilicon deposition and gate patterning

S/D extensions, spacer, Si Recess & SiGe deposition

S/D Formation, Ni Salicidation, ILD0 Deposition

Poly Opening Polish, Poly Removal

PMOS workfunction metal deposition

Metal gate patterning, NMOS WF metal deposition

Metal gate fill and polish, ESL deposition

Finished 45 nm node high-k, metal gate PMOS device

- Oxide scaling of SiO₂ has stopped at 90nm node due to the exponentially increasing gate leakage current
- Bulk transistor scaling is impossible without scaling the gate oxide thickness
- High-k, metal gate reduces effective oxide thickness and the gate leakage at the same time
 - 0.7x reduction in T_{ox}
 - 70x reduction in gate leakage (NMOS 1V)

K. Mistry et al., 2007 IEDM p. 247

Comparison of 65nm vs 45nm

- Metal gate high-k has reduced the electrical oxide thickness from 2.0 nm (65nm node) to 1.4 nm (45nm node)
- But NMOS currents have not increased in proportion
 - Mobility is reduced by the high-k

K. Mistry et al., 2007 IEDM p. 247

- V₁ roll-off characteristics for 45nm
 - 45nm short channel effects are worse than 65nm
- 45nm and 65nm technology gate length is almost identical
 - ~45 nm in the SRAM cell

NMOS V, roll-off 65nm vs 45nm

What Happened to Gate Scaling?

 $65mn node - L_q = 45nm$

45mn node – $L_g = 45$ nm

- 45nm node devices with high-k metal gate scale the same as
 65nm node devices without high-k metal gate
- What happened to scaling!
- Wasn't the whole point of high-k metal gate to enable scaling?

What Happened to Gate Scaling?

- Why are high-k / metal gate bulk devices not as scalable as hoped?
- Body doping is hard to scale up
 - Vertical field reduces mobility this effect is often worse in High-K systems
 - Metal gate work-functions may not be all the way to band edge requiring lower body doping for same V_t
- Shallower junctions have high resistance and are difficult to integrate with all the stress engineering features
- High-k / metal gate is not really a scaling solution, it is a gate leakage solution

Factors contributing to the non-scaling of bulk transistors past the 65nm node

Gate Scaling Crisis (I)

- SRAM gate scaling has been scaling slowly for the last 3 nodes
- SRAM gate pitch and active pitch have been scaled aggressively
 - Gate-to-gate spacing is 67nm at 32nm node down from 155nm at 65nm node
- Nominal size $\sqrt{A_{SRAM}}$ /12 has scaled appropriately with technology node

Gate Scaling Crisis (II)

- Scaling has been on track, the nominal feature size $\approx \sqrt{A_{SRAM}}/12$ scaling with technology node
- But at the 32nm node the gate occupies ~50% of SRAM area, further area scaling without gate is running out of steam

Gate Scaling Crisis (III) - Solutions

Evolutionary approach

- Traditional bulk devices can always be optimized more
- Short channel effects could be controlled with body dose but this will likely lead to lower drive
- Keep scaling everything but gate length, particularly with very narrow width CMOS
- Low risk, limited benefit

Revolutionary approach

Abandon the bulk device and adopt a more scalable device architecture

Gate Scaling Crisis (IV) - Solutions

Options: FDSOI, FinFET, trigate, gate-all-around, π-gate

- In these architectures scaling length includes T_{si} which can be varied independently from the gate oxide thickness
- Multiple gates help control short-channel effects

Introduction of the FinFET

130 nm **2001**

90 nm **2003**

65 nm **2005** 45 nm **2007** 32 nm **2009** 22 nm **2011**

Traditional Bulk CMOS

Introduction of Strained Si

Improved Strained Si ntroduction of High-k, MG

Improved High-k, MG Introduction of the FinFET

- To solve the scaling crisis Intel introduced the FinFET device architecture in the 22 nm node
 - (also described as a tri-gate or 3D transistor)

INTEL

Historical Detour – FinFET, FDSOI

- IBM, Intel, and TSMC have been developing FinFET and FDSOI technology
- I will take a step back and look at some IBM FinFET development work from 2001-2003

FinFET- Fin Formation

- Start with SOI
- Etch silicon Fin
- Gate oxidation
- Gate deposition (poly-Si in this case)

A <110> directed Fin after etch

FinFET- Gate Stack

FinFET- Gate Etch, Spacer etch

- Gate etch requirement
 - Must over-etch gate from the sides of the fin without damaging corners
- Spacer etch also can't damage the fin

Top-down SEM after gate etch

FinFET- Raised Source/Drain

Top-down SEM before and after raised source/drain (RSD)

FinFET- Electrical Results

- RSD has significant impact on FinFET current
- NMOS and PMOS current ratio is impacted by the <110> fin direction
 - <110> hole mobility is higher than <100>
 - <110> electron mobility is lower than <100>

FinFET for 22 nm Node

- FinFET structures are being implemented at the 22 nm node
- All the critical device enhancements must be integrated into the FinFET for it to be competitive
- Strain Engineering
 - Liner and spacer strain is easy to implement in FinFETs, FinFETs maybe easier to strain for NMOS enhancement
 - E-SiGe processes are more challenging for FinFETs but could be implemented in RDS for PMOS
- Metal Gate, High-k
 - Not significantly different than integration into bulk devices
 - More flexibility with the workfunction

Intel's metal gate, high-k FinFET at Research stage (2006), not the final 22nm device (2011)

J. Kavalieros et.al, VLSI Symposium Tech p. 50-51, 2006

FinFET for 22 nm Node

Intel's bulk FinFET

- Not much is known about the 22 nm node yet
- It is known that the device is a bulk FinFET, with high-k / metalgate, and very likely with some stress liners
- Stay tuned to IEDM 2011 in December

INTEL – Press Releases

Into the Future

- In what direction will future technology develop?
 - Will the next decade of nanotechnolgy be as exciting as this one?
 - As usual there are many technology options competing for attention

K. Kuhn - IEDM 2010 15nm Technology Short Course

Into the Future

SILICON

- Scaled silicon wrap around gate devices
- Massive 3D integration
- Near and subthreshold electronics
- Tunneling devices

EVERYTHING ELSE

- Ge and III-V devices
- Graphene devices
- Nanotube devices
- Organic devices
- Quantum computing
- Relays? Really?!

While non-silicon technologies may establish niche markets, but my prediction is that when you retire the predominant logic technology will still be based on silicon

Summary

- I hope I gave you a clearer understanding of where CMOS technology is and where it is going
 - Silicon has a very rich past and a promising future
 - Silicon maybe the dominant technology for next century
 - So if you don't do research in silicon, at least pay attention in class
- I will be at IITB for the next year
 - Feel free to contact me anytime at:

jakub@ee.iitb.ac.in