VE311 Electronic Circuit Homework 2

Due: June 4th

Note:

- 1) Please use A4 size paper or page.
- 2) Please clearly state out your final result for each question.
- 3) Please attach the screenshot of Pspice simulation result if necessary.

Question 1. Diode Circuit Exercise 1 (ideal model)

Find the values of I and V in the circuits shown below.

Question 2. Diode Circuit Exercise 2 (exponential model)

In the following problem, D_1 has 10 times the junction area of D_2 . What value of V results? To obtain a value for V of 60 mV, what current I_2 is needed.

$$I_{D_{1}} = I_{S_{1}} \cdot \left(e^{\frac{qV_{1}}{kT}} - I\right)$$

$$I_{D_{2}} = I_{S_{2}} \cdot \left(e^{\frac{qV_{1}}{kT}} - I\right)$$

$$\Rightarrow \frac{I_{P_{1}}}{I_{D_{2}}} = I_{0} \frac{e^{\frac{qV_{1}}{kT}} - I}{e^{\frac{qV_{1}}{kT}} - I}$$

$$\approx I_{0} e^{\frac{q}{kT}} \cdot \left(V_{1} - V_{2}\right)$$

$$\Rightarrow I_{D_{1}} \Rightarrow V_{1} + V = V_{2}$$

$$\Rightarrow I_{D_{2}} \Rightarrow V_{1} + V = V_{2}$$

$$\Rightarrow I_{D_{1}} \Rightarrow I_{D_{2}} \Rightarrow I_{D_{2}} \Rightarrow I_{D_{1}} \Rightarrow I_{D_{2}} \Rightarrow I_{$$

2) If we want
$$V = bomV$$

then $\frac{I_{D_2}}{10-I_{D_3}} = \frac{1}{10} e^{box(0^3/a.02b)} (= \frac{I_{D_3}}{I_{D_1}})$
 $\Rightarrow I_{D_3} = 5.013 \text{ mA}$
 $\Rightarrow I_{D_1} = 10 - I_{D_2} = 4.987 \text{ mA}$

Question 3. Voltage Regulator

A voltage regulator consisting of two diodes in series fed with a constant-current source is used as a replacement for a single carbon-zinc cell (battery) of nominal voltage 1.5 V. The regulator load current varies from 2 mA to 7 mA. Constant-current supplies of 5 mA, 10 mA, and 15 mA are available. Which would you choose, and why? What change in output voltage would result when the load current varies over its full range?

Question 4. Half-Wave Rectifier

Design a half-wave rectifier circuit, such as below, which can convert a sinusoidal voltage input, $V_{\rm s} = 5 \sin(2\pi 100 \cdot {\rm time})$, to an almost constant voltage output.

- 1) Assuming $V_{on} = 0.9 \text{ V}$ and $R = 100\Omega$, calculate C which makes the ripple voltage (V_r) is smaller than 0.1 V. Estimate V_{dc} , I_{dc} , θ_c , ΔT , I_{peak} , I_{surge} and PIV of the designed half-wave rectifier.
- 2) Plot $V_{\rm s}$ and $V_{\rm out}$ versus time on the sample graph.

Question 5. Full-Wave Bridge Rectifier

Design a full-wave bridge rectifier circuit, such as below, which can convert a sinusoidal voltage input, $V_s = 5\sin(2\pi 100 \cdot time)$, to an almost constant voltage output.

- 1) Assuming $V_{on} = 0.9 \text{ V}$ and $R = 100\Omega$, calculate C which makes the ripple voltage (V_r) smaller than 0.1 V. Estimate V_{dc} , I_{dc} , θ_c , ΔT , I_{peak} , I_{surge} and PIV of the designed full-wave bridge rectifier.
- 2) Plot V_s (using "voltage differential marker" function) and V_{out} versus time on the sample graph.

