Mini-Project 2

Paper Results

Fig. 1. Estimation error trajectories (red) and corresponding $\pm 2\sigma$ bounds (black dashed). (a) and (b) correspond to a reduced-order KF estimating x_{ro} using settings from Table II, where $x_{ro_i} \triangleq e_i^{\dagger}x_{ro}$. (c) illustrates the time evolution of $\gamma(k) = e_i^{\dagger} \left[\mathbf{U}_{x_{th},inc}(k) - \mathbf{U}_{x_{th},ned}(k) \right] e_i \left[\mathrm{black} \right]$ and the value of its limit q_r (blue dotted), where $C = 4.2241493 \times 10^{-5}$. (d)–(f) correspond to the clock errors of the receiver and transmitter 1, which were reconstructed through (5), and their corresponding $\pm 2\sigma$ bounds, which were computed using (7) and (9).

Fig. 3. Estimation error trajectories (red) and corresponding $\pm 2\sigma$ bounds (black) for EKF-based radio SLAM with settings from Table III.

Fig. 2. Simulated environment consisting of M = 5 RF transmitters (Tx) (orange) and one UAV-mounted receiver traversing a circular orbit (black).

Replicated Results

System $\Sigma_{\rm III} \colon$ Reduced-Order System (Kalman Filter)

System Σ : UAV-Mounted Receiver with Five RF Transmitters (EKF)

