Class Test 3 - Solution

T-503-AFLE: Class Test 3 - Solution

Duration: 1.5 hoursTotal Marks: 20 marks

1: Problem 2.5.6 (Piecewise Constant Dividend Yield) (2 marks)

It is now January 1, 3018. You are given:

- The current price of the stock is 1,000.
- The stock pays dividends continuously at a rate proportional to its price. The
 dividend yield changes throughout the year. In March, June, September, and
 December, the dividend yield is 3%. In other months, the dividend yield is 2%.
- The continuously compounded risk-free interest rate is 9%.

Calculate the 1-year fair forward price.

(Hint: How many shares should you buy at time 0 to end up with exactly one share in one year?)

Solution:

The forward price is

$$egin{align*} F_{0,1} &= S(0) \mathrm{e}^{rT} imes \mathrm{e}^{-\int_0^T \delta_s \, \mathrm{d}s} \ &= 1,000 \mathrm{e}^{0.09(1)} imes \underbrace{\mathrm{e}^{-0.03(4/12) - 0.02(8/12)}}_{ ext{only need this no. of shares at time 0}} \ &= 1,068.94. \end{split}$$

Remark. (i) When the dividend yield is a (continuous) function of time, say δ_t , the differential equation for the number of shares is $\frac{\mathrm{d}N(t)}{\mathrm{d}t}=\delta_tN(t)$, whose solution is $N(t)=N(0)\mathrm{e}^{\int_0^t\delta_s\,\mathrm{d}s}$

2: Problem 3.5.2. (Simple profit calculation for a floor) (2 marks)

You buy a non-dividend-paying stock at \$300 and buy an at-the-money 9-month European put option on the stock at a price of \$15.

The continuously compounded risk-free interest rate is 5%.

Calculate your 9-month profit if the 9-month stock price is \$280.

Solution. The initial investment is 300+15=315. The 9 -month payoff is $(300-280)_++280=300$, which is the floor level. The 9 -month profit is $300-315e^{0.05(0.75)}=-27.0368$.

3: Example 4.1.11 (Estimating σ) (3 marks)

You are to estimate a nondividend-paying stock's annualized volatility using its prices in the past nine months.

Month	Stock Price (\$/share)
1	80
2	64
3	80
4	64
5	80
6	100
7	80
8	64
9	80

Calculate the volatility for this stock over the period.

Solution:

Let r_i be the continuously compounded monthly returns for the $i^{
m th}$ month. Then:

Month i	$r_i = \ln\{S(ih)/S[(i-1)h]\}$			
1	$\cos =$			
2	$\ln(64/80)=\ln0.8$			
3	$\ln(80/64) = \ln 1.25$			
4	$\ln(64/80) = \ln 0.8$			
5	$\ln(80/64) = \ln 1.25$			
6	$\ln(100/80) = \ln 1.25$			
7	$\ln(80/100) = \ln 0.8$			
8	$\ln(64/80) = \ln 0.8$			
9	$\ln(80/64) = \ln 1.25$			

Note that four of the r_i 's are $\ln 1.25$ and the other four are $\ln 0.8 = -\ln 1.25$. In particular, their mean \bar{r} is zero.

The (unbiased) sample variance of the non-annualized monthly returns is

$$\hat{\sigma}_{1/12}^2 = rac{1}{n-1} \sum_{i=1}^n \left(r_i - ar{r}
ight)^2 = rac{1}{7} \sum_{i=1}^8 r_i^2 = rac{8}{7} (\ln 1.25)^2$$

and the estimated annualized volatility is

$$\hat{\sigma} = rac{\hat{\sigma}_{1/12}}{\sqrt{1/12}} = \sqrt{12} imes \sqrt{rac{8}{7} (\ln 1.25)^2} = 82.64\%. ext{ (Answer: (A))}$$

Mark Allocation:

- 1 Computing returns
- 1 Computing montly volatility
- 1 Computing annual volatility

4: Problem 4.6.6. (A market consisting only of risky securities - II) (4 marks)

In an arbitrage-free securities market, there are two non-dividend-paying stocks, A and B, both with current price \$90. There are two possible outcomes for the prices of A

and B one year from now:

Outcome	A	В
1	\$100	\$80
2	\$60	\$x

The current price of a one-year 100-strike European put option on B is \$15. Determine all possible values of x.

Solution:

Solution:

Replicating the one-year 100-strike European put by α units of Stock A and β units of Stock B requires

$$\begin{cases} 90\alpha + 90\beta = 15 & \text{(time-0 price)} \\ 100\alpha + 80\beta = (100 - 80)_+ = 20 & \text{(Outcome 1 payoff)} \end{cases}$$

resulting in $\alpha=1/3$ and $\beta=-1/6$. The replicating portfolio and the put option must have the same payoff at Outcome 2, so

$$(100-x)_+ = 60lpha + xeta = 20 - rac{x}{6}.$$

To solve this equation in x, we distinguish two cases:

Case 1. If
$$x < 100$$
, then equation (4.1) becomes

$$100 - x = 20 - \frac{x}{6}$$

which gives x = 96, consistent with x < 100.

Case 2. If $x \ge 100$, then equation (4.1) becomes

$$0=20-\frac{x}{6},$$

so that x = 120, consistent with $x \ge 100$.

In conclusion, the possible values of x are 96 and 120.

(a) 100	(B) 80, 20	PB(100) = 15
90	90/	
60	& (8)	· What is &d? (all value
Replecation:	£.	
Δ ⁽¹⁾ & (1)	1 8 . PB (100)	
90. 60 + 90	5. Q(1) = 15	10 + 6 10
100 . 0 + 80) (a) = 20	60 : 3
△(i) = 20	- 80 a 0.2.	0.80
90. (0.2 - 0.8	(2)) + 90· (2)	- 15
	1 90 A (2) = 15	
A Sur Continue of the	18 4 = -3	
	(2) = -6	ALCOHOLOGICAL SPACE
	$\Delta^{(i)} = \frac{1}{3}$	
		8 (B)) +
O (B)		
Sase 1: 8 2 7 100		
ase 2: 2 d 4		
- 80 + % 5		
	(8)	

5: Problem 4.6.20. (Pricing a warrant as an American call with varying strike prices) (5 marks)

The Ash Company needs to raise capital to support its rapidly growing business. One proposal is to publicly issue a certain number of warrants.

Assume that the price of the underlying asset follows a binomial tree with 1-year time steps as follows:

The warrant provides the right to purchase one share of the stock for \$9 at the first anniversary or, if not exercised, for \$10 at the second anniversary.

Assume further that:

- The stock pays no dividend.
- The risk-free interest rate is 4% per annum (CCRFR) Calculate the value of the warrant using the binomial tree.

Solution:

Solution. With u=1.221 and d=0.819, the risk-neutral probability of an move is

$$p^* = rac{\mathrm{e}^{0.04(1)} - 0.819}{1.221 - 0.819} = 0.551768$$

The warrant is essentially an American call on the stock with a strike price of \$9 at the first anniversary and \$10 at the second anniversary. The possible terminal payoffs of the warrant are $C_{uu}=(14.91-10)_+=4.91, C_{ud}=(10-10)_+=0$, and $C_{dd}=(6.70-10)_+=0$. Going from t=2 to t=1, we have

$$C_u = \max\{\mathrm{e}^{-0.04(1)}\left[p^*(4.91) + (1-p^*)(0)
ight], \underbrace{12.21 - 9}_{ ext{early exercise optimal}}\} = 3.21,$$

$$C_d = 0$$

It follows that the time-0 value of the warrant is

$$C_0 = \mathrm{e}^{-0.04(1)}\left[p^*(3.21) + (1-p^*)(0)
ight] = 1.70.$$

Remark.

- (i) The values of u and d in the second period are close to, but not exactly the same as 1.221 and 0.819, respectively, but we ignore such small discrepancies.
- (ii) We assume that exercising the warrant at time 0 is not possible.

Mark allocation:

Risk neutral probability 1

V(2) 1

V(1) 2

PROBLEM	4.6.20			
2-PERIOD	BINOMIAL	TREE		
Equity		FX	Futures	
S(0)=	10	X(0)	F(0)	
r=	0.04	r_d		
delta=	0	r_f	=r	
u=	1.221			
d=	0.819			
T=	2			
TREE PARA	AMETERS			
h=	1			
p*=	0.55177			
1-p*	0.44823		DF=	0.96079
UNDERLYI	NG			
	Value	P(S S(0))	# Successes	# Trials
S_uu=	14.9084	0.30445	2	2
S_ud=	9.99999	0.49464	1	2
S_dd=	6.70761	0.20091	0	2
S_u=	12.21	0.55177	1	1
S_d=	8.19	0.44823	0	1
S_0=	10	1	0	0
_				
CUSTOM \	WARRANT			
K(2)=	10		K(1)=	9
Call?	TRUE	FALSE=PU	Т	
American?	TRUE	FALSE=Eur	opean	
	Value	Exercise Val.	Cont. Val.	Max(Ex; Cont)
V_uu=	4.90841	4.90841	4.90841	4.90841
V_ud=	0	0	0	0
V_dd=	0	0	0	0
 V_u=	3.21	3.21	2.6021099	3.21
 V_d=	0	0	0	0
_ V_0=	1.70173	0	1.7017268	1.7017268
- _0_	1.70173		1.7017200	1.7017200

6: Problem 5.3.2. (v1 - Calculations of miscellaneous probabilistic quantities) (4 marks)

Assume the Black-Scholes framework. You are given:

- (i) The current stock price is 100.
- (ii) The stock pays dividends continuously at a rate proportional to its price. The dividend yield is 2.5%.
- (iii) The continuously compounded expected rate of return on the stock is 6%.
- (iv) The stock's volatility is 30%.

Calculate:

- (a) The probability that a 3-year at-the-money European put option on the stock is exercised.
- (b) The expected 3-year stock price.
- (c) The expected 3-year stock price, given that the put option in (a) pays off at maturity.
- (d) The variance of the 3-year stock price.

Solution:

(a) With

$$\hat{d}_2 = rac{\ln(100/100) + \left(0.06 - 0.025 - 0.3^2/2\right)(3)}{0.3\sqrt{3}} = -0.05774,$$

the exercise probability of the put option is $N\left(-\hat{d}_2
ight)=0.52302$.

Z-table:

N(0.06) = 0.5239

(b) The expected 3-year stock price is

$$\mathbb{E}[S(3)] = S(0)e^{(\alpha-\delta)T} = 100e^{(0.06-0.025)(3)} = 111.0711.$$

(c) As $\hat{d}_1=\hat{d}_2+\sigma\sqrt{T}=-0.05774+0.3\sqrt{3}=0.46188$ and $N\left(-\hat{d}_1\right)=0.32208$, the expected 3-year stock price, given that S(3)< S(0), is

$$\mathbb{E}[S(3) \mid S(3) < S(0)] = \mathbb{E}[S(3)] imes rac{N\left(-\hat{d}_1
ight)}{N\left(-\hat{d}_2
ight)} = \underbrace{111.0711}_{ ext{from part (c)}} imes rac{0.32208}{0.52302} = 68.40.$$

Z-table:

$$N(-d1) = 1 - N(d1) = 1 - N(0.46) = 1 - 0,6772 = 0.3228$$

N(-d2) = 0.5239

Answer: 68.43624943691544

(d) Since S(3) is lognormally distributed with parameter $v^2=\sigma^2T=0.3^2(3)=0.27$, the variance of S(3) is

$$ext{Var}[S(3)] = \underbrace{(111.0711)}_{ ext{from (c)}})^2 \left(\mathrm{e}^{v^2} - 1 \right) = (111.0711)^2 \left(\mathrm{e}^{0.27} - 1 \right) = 3,823.96.$$

Remark. You can also obtain the second moment of S(3) by squaring and taking expectation of the stock price equation

$$S(T) = S(0) \exp \left[\left(lpha - \delta - rac{1}{2} \sigma^2
ight) \! T + \sigma \sqrt{T} Z
ight] \! .$$