#### Roteiro

- □ Introdução
  - Otimização
- Algoritmos Genéticos
  - Representação
  - Seleção
  - Operadores Genéticos
- □ Aplicação
  - Caixeiro Viajante

## Introdução

- Algoritmos Genéticos (AGs), são métodos de otimização inspirados em evolução
  - J. Holland (1975), D. Goldberg (1989)

- Teoria da Evolução
  - Indivíduos mais adaptados sobrevivem e transmitem suas características para as gerações seguintes
  - Charles Darwin (Origem das Espécies, 1859)

## Otimização - Definição

- Espaço de Busca
  - Possíveis soluções de um problema
- Função Objetivo
  - Avalia cada solução com uma nota
- □ Tarefa:
  - Encontrar a solução que corresponda ao ponto de máximo (ou mínimo) da função objetivo

## Otimização - Exemplo

- Achar ponto máximo da função
  - $f(x) = xsen(10\pi x) + 1$ ,  $-1 \le x \le 2$



## Otimização - Dificuldades

 Alguns problemas podem ter espaços de busca muito grandes

- Muitos algoritmos não são capazes de localizar ótimo global na presença de múltiplos ótimos locais
  - Ex.: Hill Climbing

- Geração de um conjunto inicial de soluções que são iterativamente melhoradas
  - População de indivíduos (cromossomos)

- Busca de soluções seguem um processo evolutivo
  - Seleção dos mais aptos +
     Transmissão de características

- □ Passo 1: Geração de uma população inicial com indivíduos escolhidos aleatoriamente
- Passo 2: Avaliação dos indivíduos
  - Cálculo da função de *fitness* (usando a função objetivo)
- □ Passo 3: Seleção de indívíduos mais aptos
- Passo 4: Geração de uma nova população a partir dos indivíduos selecionados e ir para Passo 2
  - Operadores de busca (crossover e mutação)

```
Seja S(t) a população de cromossomos na geração t.
t \leftarrow 0
inicializar S(t)
avaliar S(t)
enquanto o critério de parada não for satisfeito faça
        t \leftarrow t+1
        selecionar S(t) a partir de S(t-1)
        aplicar crossover sobre S(t)
        aplicar mutação sobre S(t)
        avaliar S(t)
fim enquanto
```

- AGs são algoritmos de busca Meta-Heurística
  - I.e., algoritmo de alto nível customizável a uma ampla quantidade de problemas

- Pontos importantes a definir:
  - Representação dos invivíduos
  - Estratégia de seleção
  - Operadores de busca

## Representação de Indivíduos

- Um cromossomo representa (codifica) um conjunto de parâmetros da função objetivo
  - E.g., na função  $f(x) = xsen(10\pi x) + 1$ , um cromossomo codifica um valor do parâmetro x
- A representação de uma solução do espaço de busca é dependente do problema de otimização
  - Porém, alguns esquemas de representação podem ser reaproveitados

## Representação Binária

- □ Cromossomo representado por uma cadeia de bits (0 ou 1)
  - Cada sequência de bits é mapeada para uma solução do espaço de busca

 Representação tradicional, fácil de manipular através de operadores de busca

## Representação Binária - Exemplo

- Codificação de  $-1 \le x \le 2$  com 22 bits
  - 222 valores possíveis (tamanho do espaço)
  - S<sub>1</sub> = 10001011101101101000111 na base 10 seria igual a 2288967
  - Mapeado para intervalo [-1; 2] representaria a solução:
    - $x_1 = \min + (\max \min)*b_{10}/(2^{22}-1) = -1 + (2+1)*228896/(2^{22}-1) = 0,637197$

## Representação Real

- Para otimização de parâmetros contínuos a representação binária não é adequada
  - Muitos bits para obter boa precisão numérica

- Parâmetros numéricos podem ser codificados diretamente nos cromossomos
  - $Ex.: S_1 = 0,637197$

# Seleção

- AGs selecionam indivíduos aptos de uma população para gerar novos indivíduos
  - Cromossomos filhos (novas soluções)
- Em geral, indivíduos pais são selecionados com uma probabilidade proporcional a seus valores de fitness
  - fitness

    Probabilidade de seleção  $p_i = \frac{T_i}{\sum_{i=1}^{N} f_i}$

## Seleção – Roda da Roleta

| Ind. | Aptidão | Aptidão<br>Acumulada |
|------|---------|----------------------|
| i    | fi      | Σ(fi)                |
| 1    | 2,0     | 2,0                  |
| 2    | 1,6     | 3,6                  |
| 3    | 1,4     | 5,0                  |
| 4    | 0,7     | 5,7                  |
| 5    | 0.3     | 6,0                  |

- 1. Ordenar aptidões da população
- 2. Calcular aptidões acumuladas
- 3. Gerar número aleatório entre
- [0; Última aptidão acumulada]
- 4. Indivíduo selecionado é o primeiro com aptidão acumulada maior que o número aleatório gerado

Exemplo: gerar número aleatório entre [0; 6]. Se 4.2 for o número gerado selecione indivíduo 2

## Seleção – Roda da Roleta

- Observação importante:
  - Não funciona para valores negativos da função de objetivo
  - Nesse caso, deve-se usar uma função de aptidão para valores positivos ou realizar *Seleção por Tornejo*

## Seleção por Torneio

- Passo 1: Escolher inicialmente com a mesma probabilidade *n* indivíduos
- Passo 2: Selecionar o cromossomo com maior aptidão dentre os *n* escolhidos
- Passo 3: Repetir passos 1 e 2 até preencher população desejada

## Operadores Genéticos

- A etapa de seleção, gera uma população intermediária de potenciais cromossomos pais
- Na nova geração, escolhe-se aleatoriamente dois pais para aplicação de operadores genéticos (*crossover* e *mutação*)
- Produção de filhos é feita até completar o tamanho da população desejada

## Operador Crossover – Representação Binária

- Aplicado a um par de cromossomos retirados da população intermediária para gerar filhos
  - Filhos herdam características dois pais
- Crossover de um ponto

Cortar pais em uma posição aleatória e recombinar as partes geradas

```
pai<sub>1</sub> (00101010111000001111111)
pai<sub>2</sub> (00111110100100101011100)
filho<sub>1</sub> (0010101011010010101100)
filho<sub>2</sub> (0011111010100000111111)
```

# Operador Crossover – Representação Binária

- Crossover de dois pontos
  - Cortar pais em duas posições aleatórias e recombinar as partes geradas

```
pai<sub>1</sub> 010 011000 101011

pai<sub>2</sub> 001 001110 001101

filho<sub>1</sub> 010 001110 101011

filho<sub>2</sub> 001 011000001101
```

# Operador Crossover – Representação Binária

- Crossover uniforme
  - Gerar uma máscara de bits aleatórios e combinar os bits dos pais de acordo com a máscara gerada



## Operador Crossover – Representação Real

- Na representação real, crossover é obtido por meio de operações aritméticas sobre os pais
- Crossover média aritmética
  - Filho = (pai1 + pai2)/2
- Crossover média geométrica
  - Filho = raiz(p1\*p2)

## Operador Crossover – Representação Real

- Operadores de média tendem a diminuir muito a diversidade dos filhos
  - Filhos sempre vão estar no meio do intervalo dos pais
- Operador BLX-α
  - Filho = pai1 +  $\beta$ \*(pai2 pai1) onde β é um número aleatório entre [- $\alpha$ , 1+  $\alpha$ ]
  - Parâmetro  $\alpha$  controla o diversidade dos filhos

## Operador Crossover – Representação Real

- Operador BLX-α
  - $\alpha$  = 0 equivale a gerar filhos aleatoriamente no intervalo numérico entre os pais (I = pai2 pai1)
  - Se  $\alpha > 0$ , o intervalo dos possíveis filhos é estendido em  $\alpha*I$  em ambos os lados



## Operador Crossover

- □ Geralmente, crossover é aplicado somente com uma dada probabilidade (*taxa de crossover*)
  - Taxa de crossover é normalmente alta (entre 60% e 90%)
- Durante a aplicação do operador, é gerado um número aleatório r entre 0 e 1 e aplica-se o teste:
  - Se r < taxa de crossover, então operador é aplicado</p>
  - Senão, os filhos se tornam iguais aos pais para permitir que algumas boas soluções sejam preservadas

# Operador Mutação – Representação Binária

- A mutação é aplicada sobre os cromossomos filhos para aumentar a variabilidade da população
- Operador para representação binária:
  - Para cada bit realize *teste de mutação* e troque o valor do bit caso o teste seja satisfeito

```
Antes filho_1 (0010101010010010101100) Obs.: Taxa de mutação deve ser pequena (< 5%) apenas o suficiente para aumentar diversidade
```

- Operador Crossover considera características importantes presentes nos pais
  - Aplicado a uma taxa relativamente alta, mas cuidado com efeitos destrutivos
- Operador Mutação explora novas características nos indivíduos que seriam possivelmente úteis
  - Aplicado a uma taxa relativamente baixa, mas dependendo do problema e operador use taxas mais altas

- Convergência Prematura
  - Em algumas execuções, AG pode convergir para soluções iguais
    - Cromossomos com boa aptidão (mas ainda não ótimos) que geram filhos com pouca diversidade
  - Nesses casos, aconselha-se:
    - Aumento da taxa de mutação e crossover
    - Evitar a inserção de filhos duplicados

- Critérios de Parada
  - Número máximo de gerações
  - Função objetivo com valor ótimo alcançado (quando esse valor é conhecido)
  - Convergência na função objetivo (i.e., quando não ocorre melhoria significativa da função)

- População inicial
  - Não pode ser excessivamente pequena
    - Pouca representatividade do espaço de busca
  - Não pode ser excessivamente grande
    - Demora na convergência
  - Para melhorar a representatividade população inicial pode possuir indivíduos igualmente espaçados no espaço de busca

Caixeiro Viajante

## O Problema

- Dado um número de cidades, encontrar o caminho mais curto passando por todas as cidades uma única vez
  - Função Objetivo = Distância Total Percorrida



## Representação



#### Crossover

- □ Crossover baseado em posição
  - São selecionadas n cidades. Cada filho mantém a posição das cidades selecionadas de um pai



### Crossover

- □ Crossover baseado em ordem
  - São selecionadas n cidades. Cada filho herda a ordem das cidades selecionadas de um pai



## Mutação

Mutação baseada na troca de posição de uma cidade



Mutação baseada na troca da ordem de duas cidades



# Algoritmos Genéticos (revisão do algoritmo)

```
Seja S(t) a população de cromossomos na geração t.
t \leftarrow 0
inicializar S(t)
avaliar S(t)
enquanto o critério de parada não for satisfeito faça
        t \leftarrow t+1
        selecionar S(t) a partir de S(t-1)
        aplicar crossover sobre S(t)
        aplicar mutação sobre S(t)
        avaliar S(t)
fim enquanto
```

# Algoritmos Genéticos – Referência Básica da Aula

- Estefane Lacerda Introdução aos Algoritmos
   Genéticos. Em Sistemas Inteligentes Aplicações a Recursos Hídricos e Ciências Ambientais, 1999
  - http://www.dca.ufrn.br/~estefane/metaheuristicas/ index.html