Solution of Constant Coefficients ODE

Department of Mathematics IIT Guwahati

RA/RKS/MGPP/KVK

Homogeneous linear equations with constant coefficients

Aim: To find a basis for Ker(L). That is, to find a set of fundamental solution to the homogeneous equation L(y) = 0, where

$$L(y) := a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y$$

and $a_n \neq 0$, a_{n-1}, \ldots, a_0 are real constants.

For $y = e^{rx}$, we find

$$L(e^{rx}) = a_n r^n e^{rx} + a_{n-1} r^{n-1} e^{rx} + \dots + a_0 e^{rx}$$

= $e^{rx} (a_n r^n + a_{n-1} r^{n-1} + \dots + a_0) = e^{rx} P(r),$

where $P(r) = a_n r^n + a_{n-1} r^{n-1} + \cdots + a_0$.

Thus $L(e^{rx}) = 0$ provided r is a root of the auxiliary equation

$$P(r) = a_n r^n + a_{n-1} r^{n-1} + \dots + a_0 = 0.$$

Case I (Distinct real roots): Let r_1, \ldots, r_n be real and distinct roots of P(r) = 0. The n solutions are given by

$$y_1(x) = e^{r_1x}, y_2(x) = e^{r_2x}, \dots, y_n(x) = e^{r_nx}.$$

We need to show

$$c_1 e^{r_1 x} + \cdots + c_n e^{r_n x} = 0 \Longrightarrow c_1 = c_2 = \cdots = c_n = 0.$$

P(r) can be factored as

$$P(r) = a_n(r-r_1)(r-r_2)\cdots(r-r_n).$$

Writing the operator *L* as

$$L = P(D) = a_n(D - r_1) \cdots (D - r_n).$$

Now, construct the polynomial $P_k(r)$ by deleting the factor $(r - r_k)$ from P(r). Then

$$L_k := P_k(D) = a_n(D-r_1)\cdots(D-r_{k-1})(D-r_{k+1})\cdots(D-r_n).$$

By linearity

$$L_k(\sum_{i=1}^n c_i e^{r_i x}) = L_k(0) \Rightarrow c_1 L_k(e^{r_1 x}) + \cdots + c_n L_k(e^{r_n x}) = 0.$$

Since $L_k = P_k(D)$, we find that $L_k(e^{rx}) = e^{rx}P_k(r)$ for all r. Thus

$$\sum_{i=1}^n c_i e^{r_i \times} P_k(r_i) = 0 \Longrightarrow c_k e^{r_k \times} P_k(r_k) = 0,$$

as $P_k(r_i) = 0$ for $i \neq k$. Since r_k is not a root of $P_k(r)$, then $P_k(r_k) \neq 0$. This yields $c_k = 0$. As k is arbitrary, we have

$$c_1=c_2=\cdots=c_n=0.$$

Theorem: If P(r) = 0 has n distinct roots r_1, r_2, \ldots, r_n . Then the general solution of L(y) = 0 is

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x} + \cdots + C_n e^{r_n x},$$

where C_1, C_2, \ldots, C_n are arbitrary constants.

Example: Consider y'' - 3y' + 2y = 0. The auxiliary equation $P(r) = r^2 - 3r + 2 = 0$ has two roots $r_1 = 1$, $r_2 = 2$. The general solution is $y(x) = C_1 e^x + C_2 e^{2x}$..

Case II (Repeated roots): If r_1 is a root of multiplicity m. Then

$$P(r) = (r - r_1)^m \tilde{P}(r),$$

where $\tilde{P}(r)=a_n(r-r_{m+1})\cdots(r-r_n)$ and $\tilde{P}(r_1)\neq 0$. Now

$$L(e^{rx}) = e^{rx}(r - r_1)^m \tilde{P}(r)$$

Setting $r=r_1$, we see that e^{r_1x} is a solution. To find other solutions, we note that $\frac{\partial^k}{\partial r^k}L(e^{rx})=\frac{\partial^k}{\partial r^k}[e^{rx}(r-r_1)^m\tilde{P}(r)]$. Now,

$$\frac{\partial^k}{\partial r^k} L(e^{rx})|_{r=r_1} = 0 \quad \text{if } k \le m-1.$$

$$\implies L\left[\frac{\partial^k}{\partial r^k}(e^{rx})|_{r=r_1}\right]=0.$$

Thus,

$$\frac{\partial^k}{\partial r^k}(e^{rx})|_{r=r_1}=x^ke^{r_1x}$$

will be a solution to L(y) = 0 for k = 0, 1, ..., m - 1. So, m distinct solutions are

$$e^{r_1x}$$
, xe^{r_1x} , \cdots , $x^{m-1}e^{r_1x}$.

Theorem: If P(r) = 0 has the real root r_1 occurring m times and the remaining roots $r_{m+1}, r_{m+2}, \ldots, r_n$ are distinct, then the general solution of L(y) = 0 is

$$y(x) = (C_1 + C_2x + C_3x^2 + \dots + C_mx^{m-1})e^{r_1x} + C_{m+1}e^{r_{m+1}x} + \dots + C_ne^{r_nx},$$

where C_1, C_2, \ldots, C_n are arbitrary constants.

Example: Consider $y^{(4)} - 8y'' + 16y = 0$. In this case, $r_1 = r_2 = 2$ and $r_3 = r_4 = -2$. The general solution is

$$y = (C_1 + C_2 x)e^{2x} + (C_3 + C_4 x)e^{-2x}.$$

Case III (Complex roots): If $\alpha + i\beta$ is a non-repeated complex root of P(r) = 0 so is its complex conjugate. Then, both

$$e^{(\alpha+i\beta)x}$$
 and $e^{(\alpha-i\beta)x}$

are solution to L(y) = 0. Then, the corresponding part of the general solution is of the form

$$e^{\alpha x}(C_1\cos(\beta x)+C_2\sin(\beta x)).$$

Theorem: If P(r) = 0 has non-repeated complex roots $\alpha + i\beta$ and $\alpha - i\beta$, the corresponding part of the general solution is

$$e^{\alpha x}(C_1\cos(\beta x)+C_2\sin(\beta x))$$
.

If $\alpha + i\beta$ and $\alpha - i\beta$ are each repeated roots of multiplicity m, then the corresponding part of the general solution is

$$e^{\alpha x} \left[(C_1 + C_2 x + C_3 x^2 + \dots + C_m x^{m-1}) \cos(\beta x) + (C_{m+1} + C_{m+2} x + \dots + C_{2m} x^{m-1}) \sin(\beta x) \right],$$

where C_1, C_2, \ldots, C_{2m} are arbitrary constants.

Example: Consider
$$y^{(4)} - 2y''' + 2y'' - 2y' + y = 0$$
. Here, $r_1 = r_2 = 1$, $r_3 = i$ and $r_4 = -i$. The general solution is $y = (C_1 + C_2x)e^x + (C_3\cos x + C_4\sin x)$.

Particular solution of constant coefficients ODE

Method of undetermined coefficients: A simple procedure for finding a particular solution (y_p) to a non-homogeneous equation L(y) = g, when L is a linear differential operator with constant coefficients and when g(x) is of special type:

That is, when g(x) is either

- a polynomial in x,
- an exponential function $e^{\alpha x}$,
- trigonometric functions $sin(\beta x), cos(\beta x)$

or finite sums and products of these functions.

Case I. For finding y_p to the equation $L(y) = p_n(x)$, where $p_n(x)$ is a polynomial of degree n. Try a solution of the form

$$y_p(x) = A_n x^n + \cdots + A_1 x + A_0$$

and match the coefficients of $L(y_p)$ with those of $p_n(x)$:

$$L(y_p)=p_n(x).$$

Remark: This procedure yields n + 1 linear equations in n + 1 unknowns A_0, \ldots, A_n .

Example: Find y_p to L(y)(x) := y'' + 3y' + 2y = 3x + 1.

Try the form $y_p(x) = Ax + B$ and attempt to match up $L(y_p)$ with 3x + 1. Since

$$L(y_p)=2Ax+(3A+2B),$$

equating

$$2Ax + (3A + 2B) = 3x + 1 \Longrightarrow A = 3/2 \text{ and } B = -7/4.$$

Thus,
$$y_p(x) = \frac{3}{2}x - \frac{7}{4}$$
.

Case II: The method of undetermined coefficients will also work for equations of the form

$$L(y) = ae^{\alpha x},$$

where a and α are given constants. Try y_p of the form

$$y_p(x) = Ae^{\alpha x}$$

and solve $L(y_p)(x) = ae^{\alpha x}$ for the unknown coefficients A.

Example: Find y_p to $L(y)(x) := y'' + 3y' + 2y = e^{3x}$.

Seek $y_p(x) = Ae^{3x}$. Then

$$L(y_p) = 9Ae^{3x} + 3(3Ae^{3x}) + 2(Ae^{3x}) = 20Ae^{3x}.$$

Now, $L(y_p) = e^{3x} \Longrightarrow 20Ae^{3x} = e^{3x} \Longrightarrow A = 1/20$. Thus, $y_p(x) = (1/20)e^{3x}$.

Case III: For an equation of the form

$$L(y) = a\cos\beta x + b\sin\beta x,$$

try y_p of the form

$$y_p(x) = A\cos\beta x + B\sin\beta x$$

and solve $L(y_p) = a \cos \beta x + b \sin \beta x$ for the unknowns A and B.

Example: Find y_p to $L(y) := y'' - y' - y = \sin x$. Seek $y_p(x)$ of the form $y_p(x) = A\cos x + B\sin x$. Then

$$L(y_p) = \sin x \implies A = 1/5, B = -2/5.$$

Thus, $y_p(x) = \frac{1}{5} \cos x - \frac{2}{5} \sin x$.

Example: Find y_p to $L(y) := y'' - y' - 12y = e^{4x}$.

Note that $y_h(x) = c_1 e^{4x} + c_2 e^{-3x}$. Try finding y_p with the guess $y_p(x) = Ae^{4x}$ as before. Since e^{4x} is a solution to the corresponding homogeneous equation L(y) = 0, we replace this choice of y_p by $y_p(x) = Axe^{4x}$. Since $L(xe^{4x}) \neq 0$, there exists a particular solution of the form

$$y_p(x) = Axe^{4x}$$
.

Remark: If $L(y_p) = 0$ then replace $y_p(x)$ by $xy_p(x)$. If $L(xy_p) = 0$ then replace xy_p by x^2y_p and so on. Thus, employing x^sy_p , where s is the smallest nonnegative integer such that $L(x^sy_p) \neq 0$.

Form of y_p :

•
$$g(x) = p_n(x) = a_n x^n + \dots + a_1 x + a_0,$$

 $y_p(x) = x^s P_n(x) = x^s \{A_n x^n + \dots + A_1 x + A_0\}$

•
$$g(x) = ae^{\alpha x}$$
, $y_p(x) = x^s A e^{\alpha x}$

•
$$g(x) = a \cos \beta x + b \sin \beta x$$
,
 $y_p(x) = x^s \{ A \cos \beta x + B \sin \beta x \}$

•
$$g(x) = p_n(x)e^{\alpha x}$$
, $y_p(x) = x^s P_n(x)e^{\alpha x}$

•
$$g(x) = p_n(x) \cos \beta x + q_m(x) \sin \beta x$$
,
where $q_m(x) = b_m x^m + \cdots + b_1 x + b_0$.
 $y_p(x) = x^s \{ P_N(x) \cos \beta x + Q_N(x) \sin \beta x \}$,
where $Q_N(x) = B_N x^N + \cdots + B_1 x + B_0$ and $N = \max(n, m)$

- $g(x) = ae^{\alpha x} \cos \beta x + be^{\alpha x} \sin \beta x$, $y_p(x) = x^s \{ Ae^{\alpha x} \cos \beta x + Be^{\alpha x} \sin \beta x \}$
- $g(x) = p_n(x)e^{\alpha x}\cos + q_m(x)e^{\alpha x}\sin \beta x$, $y_p(x) = x^s e^{\alpha x} \{P_N(x)\cos \beta x + Q_N(x)\sin \beta x\}$, where $N = \max(n, m)$.

Note:

- 1. The nonnegative integer s is chosen to be the smallest integer so that no term in y_p is a solution to L(y) = 0.
- 2. $P_n(x)$ must include all its terms even if $p_n(x)$ has some terms that are zero.

*** End ***

