Tutorial 1: First in-silico microscopy image

Subhamoy Mahajan

12 Feb, 2021

1 Generate the the PSF

The point spread function PSF(l', m', n') is generted using the following command

```
Tut1$ siliscopy gen_psf --method gandy --paramfile parameters.

dat --calc all --output PSF_gandy --multiprocess
```

This reads the following variables from parameters.dat,

- beta, or NA and meu.
- dlmn
- Plmn
- fs
- lam[i]

If beta is absent in parameters.dat, it will look for NA and meu, and calculate beta using $\beta = \sin^{-1}(NA/\mu)$. The command above creates two PSF files for wavelength 670 nm and 518 nm.

- PSF_gandy_lam670_fs800.dat
- PSF_gandy_lam518_fs800.dat

2 Calculate *in-silico* monochrome image intensity

The *in-silico* monochrome image intensity I(l', m') is calculated using,

```
Tut1$ siliscopy gen_mono --file dp100.gro --paramfile parameters.dat --psf PSF_gandy --output img100
Tut1$ siliscopy gen_mono --file dp2000.gro --paramfile parameters.dat --psf PSF_gandy --output img2000
```

This uses the PSF files generated in the previous step (--psf PSF_gandy), and reads the following variables from parameters.dat,

- fs
- lam[i]
- lam_names[i]
- dlmn
- Plmn
- maxlen
- focus_cor
- opt_axis
- pbc

The command above generates image data files,

- img100_lam670_fs800.dat
- img100_lam518_fs800.dat
- img2000_lam670_fs800.dat
- img2000_lam518_fs800.dat

3 Generate monochrome *in-silico* microscopy images

Monochrome *In-silico* images can be generated using the following commands,

```
Tut1$ siliscopy plot --file img --paramfile parameters.dat --
method mono --timestep 100 --calc specific

Tut1$ siliscopy plot --file img --paramfile parameters.dat --
method mono --timestep 2000 --calc specific
```

This reads the image intensity files calculated in the previous step, and reads the following variables from ${\tt parameters.dat}$

- fs
- lam[i]
- lam_IO_[i]
- T

- dlmn
- \bullet maxlen
- scale
- dpi

The above command generates the following images:

 $\bullet \ \ img100_lam670_fs800_T1_I0.13.jpeg, \ \ img100_lam518_fs800_T1_I0.25.jpeg$

 $\bullet \ \ img2000_lam670_fs800_T1_I0.13.jpeg, \ \ img2000_lam518_fs800_T1_I0.25.jpeg$

4 Generate colored *in-silico* microsocpy image.

Coloured *In-silico* images can be generated using the following commands,

```
Tut1$ siliscopy plot --file img --paramfile parameters.dat --
method color--timestep 100 --calc specific
Tut1$ siliscopy plot --file img --paramfile parameters.dat --
method color --timestep 2000 --calc specific
```

This reads the image intensity files calculated in the previous step, and reads the following variables from ${\tt parameters.dat}$

- fs
- lam[i]
- lam_IO_[i]
- lam_hue[i]
- T
- dlmn
- maxlen
- scale
- dpi

The above command generates the following images:

• img100_fs800_T1_I_0.13_0.25.jpeg, img2000_fs800_T1_I_0.13_0.25.jpeg

