Word2vec Word Sense Disambiguation with Clustering

Gerome Yoo

Department of Statistics, Sunkyunkwan University

2019

INDEX

- 1. Introduction
- 2. Literature Review
- 3. Proposal
- 4. Simulation Study
- 5. Conclusion
- 6. Appendix
- 7. Reference

WORD EMBEDDING

Word Embedding

Collective name for a set of language modeling and feature learning techniques in natural language processing (NLP) where words or phrases from the vocabulary are mapped to vectors of real numbers.

- "Word Embedding" from Wikipedia
- \Rightarrow Simply, way of mapping vectors to words.

INTRODUCTION

Word Embedding

- "Sparse representation" and "Dense Representation" are two categories of word embedding.
- ► The concept of word embedding itself only allow only one vector representation for one letter representation.
- Polysemy is problem of one word with multiple word senses.

SPARSE REPRESENTATION

$$cat \Rightarrow \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \quad dog \Rightarrow \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}, \quad kitty \Rightarrow \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix}$$

One-hot encoding vector

- ► Most simple way to convert word into a vector
 - (1) Score the Words. Then,
 - (2) Element of vector which stands for word becomes 1.
 - (3) Element elsewhere become Zero.
- ► If there are N-word, vector will be N-dimensional with only one element with value of 1.

SPARSE REPRESENTATION

$$cat \Rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad dog \Rightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad kitty \Rightarrow \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Drawback of One-hot encoding vector

- ► There is no difference between relationship of "cat and dog" and "cat and kitty"
- ► There supposed to be relation between "cat and kitty" but there is not, since "Orthogonal".
- ▶ It can be concluded that. this embedding can not reflect relationship between words.

DENSE REPRESENTATIONS

Dense Representation

$$cat \Rightarrow \begin{bmatrix} 0.7 \\ -0.3 \\ -0.5 \\ 0.42 \\ 0.73 \end{bmatrix}, \quad dog \Rightarrow \begin{bmatrix} 0.65 \\ 0.4 \\ 0.5 \\ 0.3 \\ 0.71 \end{bmatrix}, \quad kitty \Rightarrow \begin{bmatrix} 0.7 \\ -0.34 \\ -0.45 \\ 0.4 \\ 0.34 \end{bmatrix}$$

- ► Represent the word in projection of N-dimension, where N is decided arbitrarily.
- ► "Cat and Kitty", in sparse, there are no relation. In dense, the distance between vectors will be very close.
- What exact attributes a dimension means can not be known.

WORD2VEC

Figure 1: Undercomplete Autoencoder

- Word embedding can learn compressed information in lower dimension.
- ► One-hot encoding vector is used in input layer make possible to specify a column of the hidden layer as the word embedding.

WORD2VEC

Result of Word2Vec embedding

Figure 2: Word2Vec embeddings

► Korean word2vec

WORD2VEC

word2vec - 2 Models

Figure 3: CBOW

Figure 4: Skip-Gram

WORD2VEC - SKIP GRAM

Skip-Gram

- ► CBOW puts target word at output layer and context words at input.
- ▶ Different from CBOW, target word set at the input layer and context words at output.
- ► Intuitively, SG sets target word to learn the context words.
- ► SG model generally shows better results at training the word embedding than CBOW.

What is Word Sense?

- ▶ Word Sense is one of the meaning of a word.
- When obtaining information, word meaning need to be decided.
- ► Deciding the meaning of the word is called

Word Sense Disambiguation.

Example

- ► It is common practice in nuclear power plants to...
- ▶ ...plants to promote growth and increase yields.

MSSG model structure

Figure 5: Architecture of MSSG model

Capturing Multiple senses

► Creating Sense Vector

$$V_{sense}(C_t) = \frac{1}{2 \times R_t} \sum_{g \in G} V_g(C)$$

- ► *C* : the target word
- ► *t* : the position of target word in sentence
- $ightharpoonup R_t$: size of window
- $ightharpoonup C_t: \{W_{t-R_t}, ..., W_{t-1}, W_{t+1}, ..., W_{t+R_t}\}$
- \blacktriangleright W_i : *i*-th word in a sentence

Modified Version for Sliding Window

► Creating Sense Vector

$$V_{sense}(C_t) = \frac{1}{\text{Cardinality}(C_t)} \sum_{c \in c_t} V_g(c)$$

- ► Context should not be arbitrarily truncated to match window size.
- ► Original equation does not reflect this property.

Sliding window

Figure 6: Basic Concepts of sliding window from word2vec tutorial by Chris McCormick

Standard K-means

- ▶ Find $\mu_1, \dots \mu_k$ for centroids of K-clusters by minimizing
- ► Minimizer

$$E = \frac{1}{N} \sum_{i=1}^{N} ||x_i - \mu_{k(i)}||^2$$

- \triangleright N: total number of vectors
- ► Index of the closest cluster centroid to *x*

$$k(x) = \underset{k \in \{1, \dots, k\}}{\operatorname{argmin}} ||x - \mu_{k(x)}||$$

k-means with cosine similarity

- ► Normalize each vectors to have unit length.
- ▶ Maximize

$$L = \sum_{i=1}^{N} x_i^T \mu_{k(i)}$$

- $\{\mu_1, \dots \mu_k\}$: a set of unit-length centroid vectors
- ► Index of the closest cluster centroid to *x*

$$k(x) = \underset{k}{\operatorname{argmax}} x^{T} \mu_{k(x)}$$

Weighting Context

- ► The vector of a term is weighted by frequency according to appearance frequency among the whole corpus at Skip-Gram.
- "...power plant near the forest"1 tree context and 1 power context
- ► "...plant habitat near nuclear facility" 1 tree context and 2 power context
- ► Though, second context is tree-wise, it will be disambiguated as power

Weighting Context

- ► Weighting Context can be breakthrough.
- ► Sense vector mainly focus on the single specific term.
- Building sense vector for a specific term in a document should be different from building global vector for a term in the corpus.
- ► Assumption that more related word should appears closer in sentences.

Weighting Context

► Ordinary

Figure 7: Ordinary Weighting

► Proposal

Figure 8: Proposed Weighting

► Precise Expression

$$weight_j = d + 1 - |j|$$

where $j = -R_t, -R_t + 1, \dots, -1, 1, \dots, R_t - 1, R_t$

► Various combinations of weighting method can be applied other than this.

Weighting Context

► Equation Update to

$$\frac{1}{\sum_{j} weight_{j}} \sum_{j} weight_{j} \times V_{g}(W_{t-j})$$
where $C_{t} = \{W_{t-R_{t}}, ..., W_{t-1}, W_{t+1}, ..., W_{t+R_{t}}\}$
and $j = -R_{t}, -R_{t} + 1, \cdots, -1, 1, \cdots, R_{t} - 1, R_{t}.$

Clustering

Other than K-means, hierarchical clustering will be compared.

Distance

- ▶ A and B are two vectors of elements where A_i and B_i are each components of vector A and B.
- ► Euclidean Distance

$$d(A, B) = ||A - B||_2 = \sqrt{\sum_i (A_i - B_i)^2}$$

► Cosine Distance

$$d(A, B) = \frac{A \cdot B}{||A|| \, ||B||} = \frac{\sum_{i} A_{i} B_{i}}{\sqrt{\sum_{i} A_{i}^{2}} \sqrt{\sum_{i} B_{i}^{2}}}$$

Linkage

► Single Linkage

$$min\{d(a,b): a \in A, b \in B\}$$

► Average Linkage

$$\frac{1}{|A|\cdot|B|}\sum_{a\in A}\sum_{b\in B}d(a,b)$$

► Complete Linkage

$$max\{d(a,b): a \in A, b \in B\}$$

SIMULATION

Simulation Study

Detect Word Sense in word 'plant'

Data Introduction

- ▶ 884 Abstracts from Journal of Statistical Software(JSS). 4 abstracts containing tree-wise 'plant'
- ▶ 10 abstracts from power-wise papers containing 'plant'.
- ▶ 10 abstracts from tree-wise papers containing 'plant'.

SIMULATION

Corpus

- ► Word plant Occurrence: 70
- ► Stemming by Porter Stemmer.

Skip-Gram Training Parameter

- ▶ Dimension : $100 \sim 500$ by 50
- ► Window: 5
- \blacktriangleright Min count of word: 1, 2, 3
- ► No StopWords Deletion
- ▶ 500 Iteration

SIMULATION

CORPUS AFTER PREPROCESS

	Corpus			Vocabulary		
Minword	Total	Retain	Ratio	Total	Retain	Ratio
Min 1	118816	118816	100%	6803	6803	100%
Min 2	118816	115762	97%	6803	3749	55%
Min 3	118816	113784	95%	6803	2760	40%
Min 5	118816	110835	93%	6803	1900	27%

Table 1: Corpus Vocabulary comparison with Minword

- Minword means that condition of minimum word frequency required to be remained in the model.
- ► Set to 2, 45% of the vocabularies is gone though the total word frequency decreased by 3%.
- ► Abstracts use lots of unique words so proper consideration of this property is needed at analyzing the results.

WORD VECTOR

Vectorization Result

Figure 9: Resulted Word Vector

CLUSTERING RESULT MINWORD 1

Minword 1	k-means Clustering						
Distance	Euclidean		Cosine				
Dim	Ordinary	Proposal	Ordinary	Proposal			
100	75.71%	84.29%	78.57%	82.86%			
150	82.86%	85.71 %	80.00%	81.43%			
200	82.86%	84.29%	78.57%	81.43%			
250	82.86%	85.71 %	80.00%	82.86 %			
300	84.29%	84.29%	80.00%	82.86 %			
350	85.71%	84.29%	80.00%	82.86 %			
400	82.86%	84.29%	80.00%	82.86 %			
450	84.29%	84.29%	80.00%	82.86 %			
500	84.51%	81.43%	80.00%	82.86%			

Table 2: k-means Clustering Accuracy with Minword 1

CLUSTERING RESULT MINWORD 1

Minword 1	Euclidean Hierarchical Clustering					
Linkage	Single		Average		Complete	
Dim	Ordinary	Proposal	Ordinary	Proposal	Ordinary	Proposal
100	52.86%	52.86%	61.43%	61.43%	64.29%	65.71%
150	52.86%	52.86%	54.29%	52.86%	71.43%	74.29 %
200	54.29%	52.86%	54.29%	54.29%	62.86%	71.43%
250	54.29%	52.86%	54.29%	52.86%	61.43%	70.00 %
300	54.29%	52.86%	54.29%	54.29%	67.14%	67.14%
350	52.86%	54.29%	54.29%	54.29%	60.00%	72.86 %
400	52.86%	52.86%	54.29%	54.29%	60.00%	70.00 %
450	54.29%	54.29%	54.29%	54.29%	67.14%	71.43 %
500	52.86%	54.29%	54.29%	54.29%	72.46%	71.43%

Table 3: Euclidean Hierarchical Clustering Accuracy with Minword 1

CLUSTERING RESULT MINWORD 1

Minword 1	Cosine Hierarchical Clustering						
Linkage	Single		Average		Complete		
Dim	Ordinary	Proposal	Ordinary	Proposal	Ordinary	Proposal	
100	52.86%	52.86%	52.86%	57.14%	60.00%	61.43%	
150	51.43%	51.43%	51.43%	57.14 %	78.57%	62.86%	
200	52.86%	52.86%	51.43%	58.57 %	75.71%	87.14%	
250	51.43%	51.43%	51.43%	51.43%	81.43%	54.29%	
300	51.43%	51.43%	54.29%	51.43%	71.60%	87.14%	
350	51.43%	52.86 %	54.29%	51.43%	87.14%	71.43%	
400	51.43%	51.43%	54.29%	51.43%	80.00%	90.00%	
450	51.43%	52.86 %	54.29%	51.43%	62.86%	88.57%	
500	51.43%	52.86 %	54.29%	51.43%	51.43%	90.00%	

Table 4: Cosine Hierarchical Clustering Accuracy with Minword 1

Figure 10: Clustering Visualization with Minword 1, dim 100

Figure 11: Clustering Visualization with Minword 1, dim 100

Figure 12: Clustering Visualization with Minword 1, dim 300

Figure 13: Clustering Visualization with Minword 1, dim 300

Figure 14: Clustering Visualization with Minword 1, dim 500

Figure 15: Clustering Visualization with Minword 1, dim 500

Figure 16: minword 1 comparison

- ► hcccn = Hiearachical Clustering Cosines Normal
- ► hcccw = Hiearachical Clustering Cosines Weight
- ► kmcn = K-means Cosine Normal
- ► kmcw = K-means Cosine Weight
- ► kmen = K-means Euclidean Normal
- ► kmew = K-means Euclidean Weight

Minword 2	k-means Clustering						
Distance	Eucli	dean	Cosine				
Dim	Ordinary	Proposal	Ordinary	Proposal			
100	80.00%	71.43%	64.29%	80.00%			
150	77.14%	82.86 %	65.71%	75.71 %			
200	81.43%	84.29%	65.71%	81.43%			
250	83.33%	74.29%	81.43%	82.86 %			
300	82.86%	75.71%	70.00%	82.86 %			
350	74.29%	74.29%	78.57%	74.29%			
400	74.29%	81.43%	78.57%	74.29%			
450	84.29%	84.29%	78.57%	82.86 %			
500	84.29%	84.29%	78.57%	82.86 %			

Table 5: k-means Clustering Accuracy with Minword 2

Minword 2	Euclidean Hierarchical Clustering					
Linkage	Sin	gle	Average		Complete	
Dim	Ordinary	Proposal	Ordinary	Proposal	Ordinary	Proposal
100	52.86%	52.86%	54.29%	54.29%	68.57%	75.71%
150	52.86%	52.86%	54.29%	52.86%	54.29%	55.71 %
200	52.86%	52.86%	54.29%	54.29%	54.29%	57.14 %
250	54.29%	52.86%	54.29%	54.29%	54.29%	81.43%
300	52.86%	52.86%	54.29%	54.29%	74.29%	78.57 %
350	52.86%	52.86%	54.29%	54.29%	67.14%	51.43%
400	52.86%	52.86%	54.29%	54.29%	62.86%	85.71%
450	52.86%	52.86%	54.29%	54.29%	54.29%	55.71 %
500	52.86%	52.86%	54.29%	54.29%	61.43%	58.57%

Table 6: Euclidean Hierarchical Clustering Accuracy with Minword 2

Minword 2	Cosine Hierarchical Clustering					
Linkage	Sin	gle	Average		Complete	
Dim	Ordinary	Proposal	Ordinary	Proposal	Ordinary	Proposal
100	51.43%	52.86%	52.86%	57.14%	65.71%	81.43%
150	52.86%	52.86%	57.14%	55.71%	57.14%	57.14%
200	52.86%	52.86%	55.71%	57.14 %	75.71%	61.43%
250	52.86%	52.86%	57.14%	54.29%	77.14%	71.43%
300	52.86%	52.86%	57.14%	51.43%	77.14%	62.86%
350	52.86%	52.86%	52.86%	51.43%	75.71%	82.86%
400	51.43%	52.86 %	52.86%	52.86%	75.71%	62.86%
450	52.86%	52.86%	54.29%	61.43%	77.14%	62.86%
500	52.86%	52.86%	54.29%	52.86%	80.00%	62.86%

Table 7: Cosine Hierarchical Clustering Accuracy with Minword 2

Figure 17: Clustering Visualization with Minword 2, dim 100

Figure 18: Clustering Visualization with Minword 2, dim 100

Figure 19: Clustering Visualization with Minword 2, dim 300

Figure 20: Clustering Visualization with Minword 2, dim 300

Figure 21: Clustering Visualization with Minword 2, dim 500

Figure 22: Clustering Visualization with Minword 2, dim 500

Figure 23: minword 2 comparison

- ► hcccn = Hiearachical Clustering Cosines Normal
- ► hcccw = Hiearachical Clustering Cosines Weight
- ► kmcn = K-means Cosine Normal
- ► kmcw = K-means Cosine Weight
- ► kmen = K-means Euclidean Normal
- ► kmew = K-means Euclidean Weight

Minword 3	k-means Clustering						
Distance	Eucli	dean	Cosine				
Dim	Ordinary	Proposal	Ordinary	Proposal			
100	77.14%	72.86%	52.86%	68.57%			
150	68.57%	84.29%	57.14%	71.43 %			
200	67.14%	75.71 %	57.14%	72.86 %			
250	68.57%	82.86%	61.43%	80.00%			
300	71.43%	81.43%	64.29%	81.43%			
350	77.14%	75.71%	71.43%	74.29 %			
400	67.14%	75.71 %	64.29%	82.86 %			
450	72.86%	81.43%	70.00%	82.86 %			
500	51.43%	75.71 %	67.14%	80.00%			

Table 8: k-means Clustering Accuracy with Minword 3

Minword 3	Euclidean Hierarchical Clustering					
Linkage	Sin	gle	Average		Complete	
Dim	Ordinary	Proposal	Ordinary	Proposal	Ordinary	Proposal
100	52.86%	52.86%	54.29%	52.86%	54.29%	54.29%
150	54.29%	52.86%	54.29%	54.29%	58.57%	62.86 %
200	52.86%	52.86%	54.29%	54.29%	54.29%	61.43%
250	52.86%	52.86%	54.29%	54.29%	62.86%	60.00%
300	52.86%	52.86%	54.29%	54.29%	60.00%	61.43%
350	52.86%	52.86%	54.29%	54.29%	55.71%	57.14 %
400	52.86%	52.86%	54.29%	54.29%	78.57%	51.43%
450	52.86%	52.86%	54.29%	54.29%	60.00%	55.71%
500	52.86%	52.86%	54.29%	54.29%	62.86%	54.29%

Table 9: Euclidean Hierarchical Clustering Accuracy with Minword 3

Minword 3	Cosine Hierarchical Clustering					
Linkage	Sin	gle	Average		Complete	
Dim	Ordinary	Proposal	Ordinary	Proposal	Ordinary	Proposal
100	54.29%	52.86%	54.29%	52.86%	58.57%	74.29%
150	52.86%	52.86%	55.71%	55.71%	68.57%	55.71%
200	54.29%	52.86%	55.71%	55.71%	64.29%	74.29 %
250	51.43%	52.86 %	57.14%	60.00%	64.29%	78.57 %
300	52.86%	52.86%	57.14%	51.43%	64.29%	78.57 %
350	52.86%	52.86%	57.14%	52.86%	67.14%	62.86%
400	52.86%	52.86%	57.14%	54.29%	68.57%	62.86%
450	52.86%	52.86%	57.14%	52.86%	64.29%	62.86%
500	52.86%	52.86%	54.29%	55.71 %	67.14%	80.00%

Table 10: Cosine Hierarchical Clustering Accuracy with Minword 3

Figure 24: Clustering Visualization with Minword 3, dim 100

Figure 25: Clustering Visualization with Minword 3, dim 100

Figure 26: Clustering Visualization with Minword 3, dim 300

Figure 27: Clustering Visualization with Minword 3, dim 300

Figure 28: Clustering Visualization with Minword 3, dim 500

Figure 29: Clustering Visualization with Minword 3, dim 500

Figure 30: minword 3 comparison

- ► hcccn = Hiearachical Clustering Cosines Normal
- ► hcccw = Hiearachical Clustering Cosines Weight
- ► kmcn = K-means Cosine Normal
- ► kmcw = K-means Cosine Weight
- ► kmen = K-means Euclidean Normal
- ► kmew = K-means Euclidean Weight

CONCLUSION

- ► Weighting context generally advance the performance of the clustering method.
- ► Hierarchical clustering does not give evidence to replace the k-means clustering method.
- ► In either method, using weighting method is generally make performance better than the previous model.
- ➤ Applying the weight method to other corpus that are bigger and general needs to be done for further investigation.

APPENDIX

Skip-Gram (Mikolov 2013)

▶ given a pair of words (w_t ,c), the probability that word c is observed in the context of target word w_t is

$$P(D = 1|v(w_t), v(c)) = P(\text{observing } v(c)|v(w_t))$$

$$= \frac{exp^{v(w_t)^T v(c)}}{\sum exp^{v(w_t)^T v(c)}}$$

• the probability of not observing word c in the context of target word w_t is

$$P(D = 0|v(w_t), v(c)) = P(\text{not observing } v(c)|v(w_t))$$

= 1 - P(D = 1|v(w_t), v(c))

APPENDIX

word embeddings are learned by maximizing the objective function:

$$J(\theta) = \sum_{(w_t, c_t) \in D^+} \sum_{c \in c_t} log P(D = 1 | v(w_t), v(c))$$

$$+ \sum_{(w_t, c_t) \in D^-} \sum_{c \in c_t} log P(D = 0 | v(w_t), v(c))$$

where c'_t is randomly sampled noisy context words for word w_t .

After training, weight matrix for corpus is obtained.

APPENDIX

Cosine Distance Matrix

- ► Cosine Distance of Word vectors for clustering.
- So produced the Cosine Distance Matrix using R package 'proxy'.

	X1	X2	Х3	X4	X5	
X1	0.00	0.33	0.36	0.35	0.44	
X2	0.33	0.00	0.50	0.41	0.50	
X3	0.36	0.50	0.00	0.47	0.52	
X4	0.35	0.41	0.47	0.00	0.60	
X5	0.44	0.50	0.52	0.60	0.00	
:	:	:	:	:	:	٠.

REFERENCE

- ► Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." arXiv preprint arXiv:1301.3781 (2013)
- ➤ Xin Rong. "word2vec Parameter Learning Explained." arxiv preprint arXiv:1411.2738 (2014)
- ► Neelakantan, Arvind, et al. "Efficient Non-parametric Estimation of Multiple Embeddings perWord in Vector Space." arXiv preprint arXiv:1504.06654 (2015)

REFERENCE

- ► Hornik, K., Gr"un, B. An r package for fitting topic models. *Journal of Statistical Software*, 40(13), 1-30. Retrieved from https://epub.wu.ac.at/3987/
- ► 김인영. "다의어 분석을 위한 군집화 방법." Master Thesis (2018)
- ► Thanaki, Jalaj. "파이썬 자연어 처리의 이론과 실제: 효율적인 자연어 처리를 위한 머신 러닝과 딥러닝 구현하기." 서울, 에이콘 (2018)