10/25/24, 5:38 PM

Homework 2: Food Safety (50 Pts)

Cleaning and Exploring Data with Pandas

This Assignment

In this homework, we will investigate restaurant food safety scores for restaurants in San Francisco. The scores and violation information have been made available by the San Francisco Department of Public Health. The main goal for this assignment is to walk through the process of Data Cleaning and EDA.

As we clean and explore these data, you will gain practice with:

- Reading simple csv files and using Pandas
- · Working with data at different levels of granularity
- Identifying the type of data collected, missing values, anomalies, etc.
- · Exploring characteristics and distributions of individual variables

```
import numpy as np
import pandas as pd

import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
plt.style.use('fivethirtyeight')

import zipfile
from pathlib import Path
import os # Used to interact with the file system
```

Importing and Verifying Data

There are several tables in the data folder. Let's attempt to load bus.csv, ins2vio.csv, ins.csv, and vio.csv into pandas dataframes with the following names: bus, ins2vio, ins, and vio respectively.

Note: Because of character encoding issues one of the files (bus) will require an additional argument encoding='ISO-8859-1' when calling pd.read_csv.

```
In []: # path to directory containing data
dsDir = Path('data')

bus = pd.read_csv(dsDir/'bus.csv', encoding='ISO-8859-1')
ins2vio = pd.read_csv(dsDir/'ins2vio.csv')
ins = pd.read_csv(dsDir/'ins.csv')
vio = pd.read_csv(dsDir/'vio.csv')
```

10/25/24, 5:38 PM

Now that you've read in the files, let's try some pd.DataFrame methods (docs). Use the DataFrame.head method to show the top few lines of the bus, ins, and vio dataframes. To show multiple return outputs in one single cell, you can use display(). Currently, running the cell below will display the first few lines of the bus dataframe.

In []: bus.head()

		- 1	- 1
- ()	117		- 1 -
·	uч		- 1 -

	business id column	name	address	city	state	postal_code	latitude
0	1000	HEUNG YUEN RESTAURANT	3279 22nd St	San Francisco	CA	94110	37.755282
1	100010	ILLY CAFFE SF_PIER 39	PIER 39 K-106-B	San Francisco	CA	94133	-9999.000000
2	100017	AMICI'S EAST COAST PIZZERIA	475 06th St	San Francisco	CA	94103	-9999.000000
3	100026	LOCAL CATERING	1566 CARROLL AVE	San Francisco	CA	94124	-9999.000000
4	100030	OUI OUI! MACARON	2200 JERROLD AVE STE C	San Francisco	CA	94124	-9999.000000

The DataFrame.describe method can also be handy for computing summaries of numeric columns of our dataframes. Try it out with each of our 4 dataframes. Below, we have used the method to give a summary of the bus dataframe.

In []: bus.describe()

1111	-		- 1	
UU	L	L	J.	1

	business id column	latitude	longitude	phone_number
count	6253.000000	6253.000000	6253.000000	6.253000e+03
mean	60448.948984	-5575.337966	-5645.817699	4.701819e+09
std	36480.132445	4983.390142	4903.993683	6.667508e+09
min	19.000000	-9999.000000	-9999.000000	-9.999000e+03
25%	18399.000000	-9999.000000	-9999.000000	-9.999000e+03
50%	75685.000000	-9999.000000	-9999.000000	-9.999000e+03
75%	90886.000000	37.776494	-122.421553	1.415533e+10
max	102705.000000	37.824494	0.000000	1.415988e+10

Now, we perform some sanity checks for you to verify that the data was loaded with the correct structure. Run the following cells to load some basic utilities (you do not

need to change these at all):

First, we check the basic structure of the data frames you created:

Next we'll check that the statistics match what we expect. The following are hard-coded statistical summaries of the correct data.

```
In [ ]: bus_summary = pd.DataFrame(**{'columns': ['business id column', 'latitude
         'data': {'business id column': {'50%': 75685.0, 'max': 102705.0, 'min':
          'latitude': {'50%': -9999.0, 'max': 37.824494, 'min': -9999.0},
          'longitude': {'50%': -9999.0,
           'max': 0.0,
           'min': -9999.0}},
         'index': ['min', '50%', 'max']})
        ins summary = pd.DataFrame(**{'columns': ['score'],
         'data': {'score': {'50%': 76.0, 'max': 100.0, 'min': -1.0}},
         'index': ['min', '50%', 'max']})
        vio_summary = pd.DataFrame(**{'columns': ['vid'],
         'data': {'vid': {'50%': 103135.0, 'max': 103177.0, 'min': 103102.0}},
         'index': ['min', '50%', 'max']})
        from IPython.display import display
        print('What we expect from your Businesses dataframe:')
        display(bus_summary)
        print('What we expect from your Inspections dataframe:')
        display(ins_summary)
        print('What we expect from your Violations dataframe:')
        display(vio_summary)
```

What we expect from your Businesses dataframe:

	business id column	latitude	longitude
min	19.0	-9999.000000	-9999.0
50%	75685.0	-9999.000000	-9999.0
max	102705.0	37.824494	0.0

What we expect from your Inspections dataframe:

The code below defines a testing function that we'll use to verify that your data has the same statistics as what we expect. Run these cells to define the function. The df_allclose function has this name because we are verifying that all of the statistics for your dataframe are close to the expected values. Why not df_allequal? It's a bad idea in almost all cases to compare two floating point values like 37.780435, as rounding error can cause spurious failures.

```
In [ ]: """Run this cell to load this utility comparison function that we will us
        tests below
        Do not modify the function in any way.
        def df_allclose(actual, desired, columns=None, rtol=5e-2):
            """Compare selected columns of two dataframes on a few summary statis
            Compute the min, median and max of the two dataframes on the given co
            that they match numerically to the given relative tolerance.
            If they don't match, an AssertionError is raised (by `numpy.testing`)
            # summary statistics to compare on
            stats = ['min', '50%', 'max']
            # For the desired values, we can provide a full DF with the same stru
            # the actual data, or pre-computed summary statistics.
            # We assume a pre-computed summary was provided if columns is None. I
            # `desired` *must* have the same structure as the actual's summary
            if columns is None:
                des = desired
                columns = desired.columns
            else:
                des = desired[columns].describe().loc[stats]
            # Extract summary stats from actual DF
            act = actual[columns].describe().loc[stats]
            return np.allclose(act, des, rtol)
```

Question 1a: Identifying Issues with the Data

Use the **head** command on your three files again. This time, describe at least one potential problem with the data you see. Consider issues with missing values and bad data.

Some of the data in bus.csv has the same longtitute and latitute of -9999.000000, which is unlikely prossible. There are incorrect phone number in the bus.csv file also

[]: ir	ns	head()					
:[]:		iid	da	ate	score		type
0)	100010_20190329	03/29/2019 12:00:00 /	MΑ	-1	New C	onstruction
1	ı	100010_20190403	04/03/2019 12:00:00 /	MΑ	100	Routine - U	nscheduled
2	2	100017_20190417	04/17/2019 12:00:00 /	AΜ	-1	New	Ownership
3	3	100017_20190816	08/16/2019 12:00:00 /	AΜ	91	Routine - U	nscheduled
4	ŀ	100017_20190826	08/26/2019 12:00:00 /	MA	-1	Reinspectio	n/Followup
[]: v:	io	.head()					
:[]:			desc	ript	ion ris	sk_category	vid
0)	Consumer advisory	not provided for raw or	unc	de M	oderate Risk	103128
1	ı	Cor	ntaminated or adulterate	ed fo	ood	High Risk	103108
2	2	Discharge fror	m employee nose mouth	or	eye M	oderate Risk	103117
3	3		Employee eating or s	mok	king M	oderate Risk	103118
					tion 1.4	oderate Risk	100100
4	ŀ		Food in poor co	ndi	tion ivi	oderate Risk	103123

Out[]:		business id column	name	address	city	state	postal_code	latitude
	0	1000	HEUNG YUEN RESTAURANT	3279 22nd St	San Francisco	CA	94110	37.755282
	1	100010	ILLY CAFFE SF_PIER 39	PIER 39 K-106-B	San Francisco	CA	94133	-9999.000000
	2	100017	AMICI'S EAST COAST PIZZERIA	475 06th St	San Francisco	CA	94103	-9999.000000
	3	100026	LOCAL CATERING	1566 CARROLL AVE	San Francisco	CA	94124	-9999.000000
	4	100030	OUI OUI! MACARON	2200 JERROLD AVE STE C	San Francisco	CA	94124	-9999.000000

We will explore each file in turn, including determining its granularity and primary keys and exploring many of the variables individually. Let's begin with the businesses file, which has been read into the bus dataframe.

Question 1b: Examining the Business Data File

From its name alone, we expect the bus.csv file to contain information about the restaurants. Let's investigate the granularity of this dataset.

In []: bus.head()

Out[]:		business id column	name	address	city	state	postal_code	latitude
	0	1000	HEUNG YUEN RESTAURANT	3279 22nd St	San Francisco	CA	94110	37.755282
	1	100010	ILLY CAFFE SF_PIER 39	PIER 39 K-106-B	San Francisco	CA	94133	-9999.000000
	2	100017	AMICI'S EAST COAST PIZZERIA	475 06th St	San Francisco	CA	94103	-9999.000000
	3	100026	LOCAL CATERING	1566 CARROLL AVE	San Francisco	СА	94124	-9999.000000
	4	100030	OUI OUI! MACARON	2200 JERROLD AVE STE C	San Francisco	CA	94124	-9999.000000

The bus dataframe contains a column called business id column which probably corresponds to a unique business id. However, we will first rename that column to bid for simplicity.

```
In [ ]: bus = bus.rename(columns={"business id column": "bid"})
```

Examining the entries in bus, is the bid unique for each record (i.e. each row of data)? Your code should compute the answer, i.e. don't just hard code True or False.

Hint: use value_counts() or unique() to determine if the bid series has any duplicates.

```
In []: is_bid_unique = len(bus["bid"].unique()) == len(bus["bid"])
is_bid_unique
```

Out[]: True

Question 1c

We will now work with some important fields in bus . In the two cells below create the following **two numpy arrays**:

1. Assign top_names to the top 5 most frequently used business names, from most frequent to least frequent.

2. Assign top_addresses to the top 5 addresses where businesses are located, from most popular to least popular.

Hint: you may find value_counts() helpful.

Step 1

Question 1d

Based on the above exploration, answer each of the following questions about bus by assigning your answers to the corresponding variables

- 1. What does each record represent?
- 2. What is the minimal primary key?

2: Cleaning the Business Data Postal Codes

The business data contains postal code information that we can use to aggregate the ratings over regions of the city. Let's examine and clean the postal code field. The

postal code (sometimes also called a ZIP code) partitions the city into regions:

Question 2a

How many restaurants are in each ZIP code?

In the cell below, create a **series** where the index is the postal code and the value is the number of records with that postal code in descending order of count. You may

need to use groupby(), size(), or value_counts(). Do you notice any odd/invalid zip codes?

```
In []: zip_counts = bus["postal_code"].value_counts()
    print(zip_counts.to_string())
# print(bus['postal_code'].dtype)
```

postal code	
94103	562
94110	555
94102	456
94107	408
94133	398
94109	382
94111	259
94122	255
94105	249
94118	231
94115	230
94108	229
94124	218
94114	200
-9999	194
94112	192
94117	189
94123	177
94121	157
94104	142
94132	132
94116	97
94158	
	90
94134	82
94127	67
94131	49
94130	8
	0
94143	5
94301	2 2 2
94188	2
94101	2
CA	2
	2
94013	2
941102019	1
941	1
95112	1
94105-2907	1
94102-5917	1
94124-1917	1
94621	1
95122	1
95132	1
95109	1
95133	1
95117	1
94901	1
	1
94105-1420	
94544	1
64110	1
94122-1909	1
00000	1
	1
94080	
Ca	1
94602	
0.4400	1
94129	1 1
	1
94014	1 1
94014 94117–3504	1 1 1
94014	1 1

92672	1
95105	1
941033148	1
94123-3106	1

Question 2b

Answer the question about the postal_code column in the bus dataframe.

1. What Python data type is used to represent a ZIP code?

Note: ZIP codes and postal codes are the same thing.

Please write your answers in the variables below:

Question 2c

In question 2a we noticed a large number of potentially invalid ZIP codes (e.g., "Ca"). These are likely due to data entry errors. To get a better understanding of the potential errors in the zip codes we will:

- 1. Import a list of valid San Francisco ZIP codes by using <code>pd.read_json</code> to load the file <code>data/sf_zipcodes.json</code> and extract a <code>series</code> of type <code>str</code> containing the valid ZIP codes. <code>Hint: set dtype when invoking read_json</code>.
- 2. Construct a DataFrame containing only the businesses which DO NOT have valid ZIP codes. You will probably want to use the Series.isin function.

Step 1

```
In []: #gpt is used to learn read_json()
  valid_zips = pd.read_json('data/sf_zipcodes.json', dtype=str)
  valid_zips.head(10)
# print(valid_zips.dtypes)
```

Out[]:		zip_codes
		0	94102
		1	94103
		2	94104
		3	94105
		4	94107
		5	94108
		6	94109
		7	94110
		8	94111
		9	94112

Step 2

Out[]:

bid name address state postal_code latitude Lamas Private San 100126 CA -9999.0 22 Peruvian -9999 Location Francisco Food Truck **COMPASS** 1 MARKET San 100417 -9999.0 68 CA 94105-1420 ONE, LLC ST. FL Francisco 1518 San CA -9999.0 96 100660 **TEAPENTER** 94122-1909 **IRVING ST** Francisco 200 LE CAFE DU San 109 100781 **FILLMORE** CA 94117-3504 -9999.0 **SOLEIL** Francisco ST 1 Warriors Deli North Way Level San 144 101084 CA 94518 -9999.0 200 300 North Francisco East HOTEL 45 ROSE San 6173 99369 CA 94102-5917 -9999.0 **BIRON** ST Francisco Mashallah Off The San 6174 99376 Halal Food CA -9999 -9999.0 Grid Francisco truck Ind **FAITH** 560 San 6199 99536 SANDWICH **MISSION** 94105-2907 -9999.0 CA Francisco #2 ST 660 East San -9999.0 6204 99681 Twister CA 95112 Gish Rd Francisco 1312 CHESTNUT San 6241 99819 **CHESTNUT** CA 94123-3106 -9999.0 **DINER** Francisco ST

230 rows × 9 columns

Question 2d

In the previous question, many of the businesses had a common invalid postal code that was likely used to encode a MISSING postal code. Do they all share a potentially "interesting address"?

In the following cell, construct a **series** that counts the number of businesses at each **address** that have this single likely MISSING postal code value. Order the series in descending order by count.

After examining the output, please answer the following question (2e) by filling in the appropriate variable. If we were to drop businesses with MISSING postal code values would a particular class of business be affected? If you are unsure try to search the web for the most common addresses.

Question 2e

Examine the <code>invalid_zip_bus</code> dataframe we computed above and look at the businesses that DO NOT have the special MISSING ZIP code value. Some of the invalid postal codes are just the full 9 digit code rather than the first 5 digits. Create a new column named <code>postal5</code> in the original <code>bus</code> dataframe which contains only the first 5 digits of the <code>postal_code</code> column. Finally, for any of the <code>postal5</code> ZIP code entries that were not a valid San Fransisco ZIP Code (according to <code>valid_zips</code>) set the entry to <code>None</code>.

Out[]:

	bid	name	postal_code	postal5
22	100126	Lamas Peruvian Food Truck	-9999	None
68	100417	COMPASS ONE, LLC	94105-1420	94105
96	100660	TEAPENTER	94122-1909	94122
109	100781	LE CAFE DU SOLEIL	94117-3504	94117
144	101084	Deli North 200	94518	None
•••	•••		•••	
6173	99369	HOTEL BIRON	94102-5917	94102
6174	99376	Mashallah Halal Food truck Ind	-9999	None
6199	99536	FAITH SANDWICH #2	94105-2907	94105
6204	99681	Twister	95112	None
6241	99819	CHESTNUT DINER	94123-3106	94123

230 rows × 4 columns

3: Investigate the Inspection Data

Let's now turn to the inspection DataFrame. Earlier, we found that ins has 4 columns named iid, score, date and type. In this section, we determine the granularity of ins and investigate the kinds of information provided for the inspections.

Let's start by looking again at the first 5 rows of ins to see what we're working with.

In []: ins.head(5)

type	score	date	iid	
New Construction	-1	03/29/2019 12:00:00 AM	100010_20190329	0
Routine - Unscheduled	100	04/03/2019 12:00:00 AM	100010_20190403	1
New Ownership	-1	04/17/2019 12:00:00 AM	100017_20190417	2
Routine - Unscheduled	91	08/16/2019 12:00:00 AM	100017_20190816	3
Reinspection/Followup	-1	08/26/2019 12:00:00 AM	100017_20190826	4

Question 3a

The column iid probably corresponds to an inspection id. Is it a primary key? Write an expression (line of code) that evaluates to True or False based on whether all the values are unique.

Juli II ue

Out[]:

Question 3b

The column iid appears to be the composition of two numbers and the first number looks like a business id.

Part 1.: Create a new column called bid in the ins dataframe containing just the business id. You will want to use ins['iid'].str operations to do this. Also be sure to convert the type of this column to int

Part 2.: Then compute how many values in this new column are invalid business ids (i.e. do not appear in the bus['bid'] column). Consider using the pd.Series.isin function.

No python for loops or list comprehensions required!

Part 1

```
In []: #gpt is used to learn str.split()
  ins['bid'] = ins['iid'].str.split('_').str[0].astype(int)
  ins
```

Out[]:		iid	date	score	type	bid
	0	100010_20190329	03/29/2019 12:00:00 AM	-1	New Construction	100010
	1	100010_20190403	04/03/2019 12:00:00 AM	100	Routine - Unscheduled	100010
	2	100017_20190417	04/17/2019 12:00:00 AM	-1	New Ownership	100017
	3	100017_20190816	08/16/2019 12:00:00 AM	91	Routine - Unscheduled	100017
	4	100017_20190826	08/26/2019 12:00:00 AM	-1	Reinspection/Followup	100017
	•••		•••			
	26658	999_20180924	09/24/2018 12:00:00 AM	-1	Routine - Scheduled	999
	26659	999_20181102	11/02/2018 12:00:00 AM	-1	Reinspection/Followup	999
	26660	999_20190909	09/09/2019 12:00:00 AM	80	Routine - Unscheduled	999
	26661	99_20171207	12/07/2017 12:00:00 AM	82	Routine - Unscheduled	99
	26662	99_20180808	08/08/2018 12:00:00 AM	84	Routine - Unscheduled	99

26663 rows × 5 columns

Part 2

```
In []: valid_bid = ins[ins['bid'].isin(bus['bid']) == False]
  valid_bid
  invalid_bid_count = len(valid_bid)
  invalid_bid_count
```

Out[]: 0

Question 3c

What if we are interested in a time component of the inspection data? We need to examine the date column of each inspection.

Part 1: What is the type of the individual ins['date'] entries? You may want to grab the very first entry and use the type function in python.

Part 2: Use pd.to_datetime to create a new ins['timestamp'] column containing of pd.Timestamp objects. These will allow us to do more date manipulation.

Part 3: What are the earliest and latest dates in our inspection data? *Hint: you can use min and max on dates of the correct type*.

Part 4: We probably want to examine the inspections by year. Create an additional ins ['year'] column containing just the year of the inspection. Consider using pd.Series.dt.year to do this.

No python for loops or list comprehensions required!

Part 1

```
In [ ]: ins_date_type = type(ins['date'][0])
  ins_date_type
```

Out[]: str

Part 2

```
In []: #gpt is used to learn pd.to_datetime()
  ins.loc[:, 'timestamp'] = pd.to_datetime(ins['date'])
  ins.head()
```

/var/folders/lj/k33gshjn037dp9kht2bj9f0r0000gn/T/ipykernel_36087/179283320
8.py:3: UserWarning: Could not infer format, so each element will be parse
d individually, falling back to `dateutil`. To ensure parsing is consisten
t and as-expected, please specify a format.
 ins.loc[:, 'timestamp'] = pd.to_datetime(ins['date'])

Out[]:	ıt[]:		date	score	type	bid	timestamp
	0	100010_20190329	03/29/2019 12:00:00 AM	-1	New Construction	100010	2019-03- 29
	1	100010_20190403	04/03/2019 12:00:00 AM	100	Routine - Unscheduled	100010	2019-04- 03
	2	100017_20190417	04/17/2019 12:00:00 AM	-1	New Ownership	100017	2019-04- 17
	3	100017_20190816	08/16/2019 12:00:00 AM	91	Routine - Unscheduled	100017	2019-08- 16
	4	100017_20190826	08/26/2019 12:00:00 AM	-1	Reinspection/Followup	100017	2019-08- 26

Part 3

```
In []: earliest_date = ins['timestamp'].min()
    latest_date = ins['timestamp'].max()

print("Earliest Date:", earliest_date)
print("Latest Date:", latest_date)
```

Earliest Date: 2016-10-04 00:00:00 Latest Date: 2019-11-28 00:00:00

Part 4

In []: ins.loc[:,'year'] = ins['timestamp'].dt.year
In []: ins.head()

Out[]:		iid	date	score	type	bid	timestamp
	0	100010_20190329	03/29/2019 12:00:00 AM	-1	New Construction	100010	2019-03- 29
	1	100010_20190403	04/03/2019 12:00:00 AM	100	Routine - Unscheduled	100010	2019-04- 03
	2	100017_20190417	04/17/2019 12:00:00 AM	-1	New Ownership	100017	2019-04- 17
	3	100017_20190816	08/16/2019 12:00:00 AM	91	Routine - Unscheduled	100017	2019-08- 16
	4	100017_20190826	08/26/2019 12:00:00 AM	-1	Reinspection/Followup	100017	2019-08- 26

Question 3d

What is the relationship between the type of inspection over the 2016 to 2019 timeframe?

Part 1

Construct the following table by

- 1. Using the pivot_table containing the number (size) of inspections for the given type and year.
- 2. Adding an extra Total column to the result using sum
- 3. Sort the results in descending order by the Total.

	year	2016	2017	2018	2019	Total
	type					
Routine - Unscheduled		966	4057	4373	4681	14077
Reinspection/Followup		445	1767	1935	2292	6439
New Ownership		99	506	528	459	1592
Complaint		91	418	512	437	1458
New Construction		102	485	218	189	994
Non-inspection site visit		51	276	253	231	811
New Ownership - Followup)	0	45	219	235	499
Structural Inspection		1	153	50	190	394
Complaint Reinspection/Follow	wup	19	68	70	70	227
Foodborne Illness Investigati	on	1	29	50	35	115
Routine - Scheduled		0	9	8	29	46
Administrative or Document Re	view	2	1	1	0	4
Multi-agency Investigation	1	0	0	1	2	3
Special Event		0	3	0	0	3
Community Health Assessme	ent	1	0	0	0	1

No python for loops or list comprehensions required!

Out[]

```
[2016, 2017, 2018, 2019]].sum(axis=1)
ins_pivot = ins_pivot.sort_values(by='Total', ascending=False)
ins_pivot
```

year	2016	2017	2018	2019	Total
type					
Routine - Unscheduled	966	4057	4373	4681	14077
Reinspection/Followup	445	1767	1935	2292	6439
New Ownership	99	506	528	459	1592
Complaint	91	418	512	437	1458
New Construction	102	485	218	189	994
Non-inspection site visit	51	276	253	231	811
New Ownership - Followup	0	45	219	235	499
Structural Inspection	1	153	50	190	394
Complaint Reinspection/Followup	19	68	70	70	227
Foodborne Illness Investigation	1	29	50	35	115
Routine - Scheduled	0	9	8	29	46
Administrative or Document Review	2	1	1	0	4
Multi-agency Investigation	0	0	1	2	3
Special Event	0	3	0	0	3
Community Health Assessment	1	0	0	0	1

Part 2

Based on the above analysis, which year appears to have had a lot of businesses in newly constructed buildings?

```
In [ ]: year_of_new_construction = 2017
```

Question 3e

Let's examine the inspection scores ins['score']

```
In [ ]: ins['score'].value_counts().head()
```

```
Out[]: score
-1 12632
100 1993
96 1681
92 1260
94 1250
```

Name: count, dtype: int64

There are a large number of inspections with the <code>'score'</code> of -1. These are probably missing values. Let's see what type of inspections have scores and which do not. Create the following dataframe using steps similar to the previous question, and assign it to to the variable <code>ins_missing_score_pivot</code>.

You should observe that inspection scores appear only to be assigned to Routine – Unscheduled inspections.

Missing Score	False	True	Total
type			
Routine - Unscheduled	14031	46	14077
Reinspection/Followup	0	6439	6439
New Ownership	0	1592	1592
Complaint	0	1458	1458
New Construction	0	994	994
Non-inspection site visit	0	811	811
New Ownership - Followup	0	499	499
Structural Inspection	0	394	394
Complaint Reinspection/Followup	0	227	227
Foodborne Illness Investigation	0	115	115
Routine - Scheduled	0	46	46
Administrative or Document Review	0	4	4
Multi-agency Investigation	0	3	3
Special Event	0	3	3
Community Health Assessment	0	1	1

Out[]: Missing Score False True Total type Routine - Unscheduled 14031 46 14077 Reinspection/Followup 0 6439 6439 **New Ownership** 1592 1592 Complaint 1458 1458 **New Construction** 0 994 994 Non-inspection site visit 811 811 0 **New Ownership - Followup** 499 499 Structural Inspection 394 394 **Complaint Reinspection/Followup** 0 227 227 **Foodborne Illness Investigation** 115 115 **Routine - Scheduled** 0 46 46 **Administrative or Document Review Multi-agency Investigation** 0 3 3 **Special Event** 0 3 3

Community Health Assessment

Notice that inspection scores appear only to be assigned to Routine –

Unscheduled inspections. It is reasonable that for inspection types such as New

Ownership and Complaint to have no associated inspection scores, but we might be curious why there are no inspection scores for the Reinspection/Followup inspection type.

0

1

1

4: Joining Data Across Tables

In this question we will start to connect data across mulitple tables. We will be using the merge function.

Question 4a

Let's figure out which restaurants had the lowest scores. Before we proceed, let's filter out missing scores from ins so that negative scores don't influence our results.

```
In [ ]: ins = ins[ins["score"] > 0]
```

We'll start by creating a new dataframe called <code>ins_named</code>. It should be exactly the same as <code>ins</code>, except that it should have the name and address of every business, as determined by the <code>bus</code> dataframe. If a <code>business_id</code> in <code>ins</code> does not exist in <code>bus</code>, the name and address should be given as <code>NaN</code>.

Hint: Use the merge method to join the ins dataframe with the appropriate portion of the bus dataframe. See the official documentation on how to use merge.

Note: For quick reference, a pandas 'left' join keeps the keys from the left frame, so if ins is the left frame, all the keys from ins are kept and if a set of these keys don't have matches in the other frame, the columns from the other frame for these "unmatched" key rows contains NaNs.

Out[]:

	iid	date	score	type	bid	timestamp	year	M
0	100010_20190403	04/03/2019 12:00:00 AM	100	Routine - Unscheduled	100010	2019-04- 03	2019	
1	100017_20190816	08/16/2019 12:00:00 AM	91	Routine - Unscheduled	100017	2019-08- 16	2019	
2	100041_20190520	05/20/2019 12:00:00 AM	83	Routine - Unscheduled	100041	2019-05- 20	2019	
3	100055_20190425	04/25/2019 12:00:00 AM	98	Routine - Unscheduled	100055	2019-04- 25	2019	
4	100055_20190912	09/12/2019 12:00:00 AM	82	Routine - Unscheduled	100055	2019-09- 12	2019	

Question 4b

Let's look at the 20 businesses with the lowest **median** score. Order your results by the median score followed by the business id to break ties. The resulting table should look like:

Hint: You may find the as_index argument in the groupby method important. The documentation is linked here!

	bid		name	median score
3876	84590	Chaat Corner		54.0
4564	90622	Taqueria Lolita		57.0
4990	94351	VBowls LLC		58.0
2719	69282	New Jumbo Seafood Restaurant		60.5
222	1154	SUNFLOWER RESTAURANT		63.5
1991	39776	Duc Loi Supermarket		64.0
2734	69397	Minna SF Group LLC		64.0

	bid	nal	me	median score
3291	78328	Golden Wok		64.0
4870	93150	Chez Beesen		64.0
4911	93502	Smoky Man		64.0
5510	98995	Vallarta's Taco Bar		64.0
1457	10877	CHINA FIRST INC.		64.5
2890	71310	Golden King Vietnamese Restaurant		64.5
4352	89070	Lafayette Coffee Shop		64.5
505	2542	PETER D'S RESTAURANT		65.0
2874	71008	House of Pancakes		65.0
818	3862	IMPERIAL GARDEN SEAFOOD RESTAURA	NT	66.0
2141	61427	Nick's Foods		66.0
2954	72176	Wolfes Lunch		66.0
4367	89141	Cha Cha Cha on Mission		66.5

> Out[]: bid name median score

	bia	name	illediali scole
3876	84590	Chaat Corner	54.0
4564	90622	Taqueria Lolita	57.0
4990	94351	VBowls LLC	58.0
2719	69282	New Jumbo Seafood Restaurant	60.5
222	1154	SUNFLOWER RESTAURANT	63.5
1991	39776	Duc Loi Supermarket	64.0
2734	69397	Minna SF Group LLC	64.0
3291	78328	Golden Wok	64.0
4870	93150	Chez Beesen	64.0
4911	93502	Smoky Man	64.0
5510	98995	Vallarta's Taco Bar	64.0
1457	10877	CHINA FIRST INC.	64.5
2890	71310	Golden King Vietnamese Restaurant	64.5
4352	89070	Lafayette Coffee Shop	64.5
505	2542	PETER D'S RESTAURANT	65.0
2874	71008	House of Pancakes	65.0
818	3862	IMPERIAL GARDEN SEAFOOD RESTAURANT	66.0
2141	61427	Nick's Foods	66.0
2954	72176	Wolfes Lunch	66.0
4367	89141	Cha Cha Cha on Mission	66.5

Question 4c

Let's now examine the descriptions of violations for inspections with score > 0 and score < 65 . Construct a Series indexed by the description of the violation from the vio table with the value being the number of times that violation occured for inspections with the above score range. Sort the results in descending order of the count.

The first few entries should look like:

Unclean or unsanitary food contact surfaces High risk food holding temperature

42 Unclean or degraded floors walls or ceilings 40 Unapproved or unmaintained equipment or utensils 39

You will need to use merge twice.

```
Out[]: description
        Unclean or unsanitary food contact surfaces
        43
        High risk food holding temperature
        Unclean or degraded floors walls or ceilings
        Unapproved or unmaintained equipment or utensils
        High risk vermin infestation
        37
        Foods not protected from contamination
        Inadequate and inaccessible handwashing facilities
        Inadequate food safety knowledge or lack of certified food safety manage
        Improper thawing methods
        30
        Unclean hands or improper use of gloves
        Improper cooling methods
        25
        Unclean nonfood contact surfaces
        21
        Improper food storage
        Inadequately cleaned or sanitized food contact surfaces
        Contaminated or adulterated food
        Moderate risk vermin infestation
        Moderate risk food holding temperature
        Permit license or inspection report not posted
        Food safety certificate or food handler card not available
        Improper storage use or identification of toxic substances
        Name: count, dtype: int64
```

Question 4d

Let's figure out which restaurant had the worst scores ever (single lowest score).

In the cell below, write the name of the restaurant with the lowest inspection scores ever. You can also head to yelp.com and look up the reviews page for this restaurant. Feel free to add anything interesting you want to share.

```
In []: #gpt is used to learn the indxmin()

min_index = ins_named['score'].idxmin()
worst_restaurant = ins_named.loc[min_index, 'name']
worst_restaurant
```

Out[]: 'Lollipot'

Congratulations! You have finished Homework 2!