EV POPULATION DATA

NAME: SHUVAM DAS

Date: 23/03/2025

Course Details: PYTHON - PDA 2025

$DATA \rightarrow$

A	В	С	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U
VIN (1-10) C	County	City	State	Postal Cod	Model Ye	Make	Model	Electric Ve	Clean Alte	Electric Ra	Base MSR	Legislativ	DOL Vehic	Vehicle	Lc Electric U	t 2020 Cens	us Tract			
5YJ3E1EBX K	(ing	Seattle	WA	98178	2019	TESLA	MODEL 3	Battery El	Clean Alte	220	0	37	4.77E+08	POINT (1: CITY OF S	5.3E+10				
5YJYGDEE: K	Citsap	Poulsbo	WA	98370	2020	TESLA	MODELY	Battery El	Clean Alte	291	0	23	1.1E+08	POINT (1: PUGET SC	5.3E+10				
KM8KRDA K	Citsap	Olalla	WA	98359	2023	HYUNDAI	IONIQ 5	Battery El	Eligibility	0	0	26	2.3E+08	POINT (1: PUGET SC	5.3E+10				
5UXTA6C0 K	Citsap	Seabeck	WA	98380	2021	BMW	X5	Plug-in Hy	Clean Alte	30	0	35	2.68E+08	POINT (1: PUGET SC	5.3E+10				
JTMAB3FVT	Thurston	Rainier	WA	98576	2023	TOYOTA	RAV4 PRIM	Plug-in Hy	Clean Alte	42	0	2	2.37E+08	POINT (1: PUGET SC	5.31E+10				
5YJSA1DN T	Thurston	Olympia	WA	98502	2012	TESLA	MODELS	Battery El	Clean Alte	265	59900	22	1.87E+08	POINT (1: PUGET SC	5.31E+10				
WBY1Z6C: K	Cing	Bellevue	WA	98004	2017	BMW	13	Battery El	Clean Alte	81	0	48	1.97E+08	POINT (1: PUGET SC	5.3E+10				
3MW5P9J(S	Snohomis	Marysville	WA	98271	2022	BMW	330E	Plug-in Hy	Not eligib	22	0	39	2.05E+08	POINT (1: PUGET SC	5.31E+10				
5YJ3E1EA6 K	(ing	Kirkland	WA	98034	2018	TESLA	MODEL 3	Battery El	Clean Alte	215	0	45	2039222	POINT (1: PUGET SC	5.3E+10				
5YJ3E1EA2 K	(ing	Redmond	WA	98052	2018	TESLA	MODEL 3	Battery El	Clean Alte	215	0	45	4.75E+08	POINT (1: PUGET SC	5.3E+10				
1N4AZ0CF K	King	Newcastle	WA	98059	2014	NISSAN	LEAF	Battery El	Clean Alte	84	0	41	1.31E+08	POINT (1: PUGET SC	5.3E+10				
5YJXCDE2: K	(ing	Seattle	WA	98125	2020	TESLA	MODEL X	Battery El	Clean Alte	289	0	46	2.41E+08	POINT (1: CITY OF S	5.3E+10				
KNDCC3LE K	King	Seattle	WA	98125	2019	KIA	NIRO	Plug-in Hy	Not eligib	26	0	46	4.75E+08	POINT (1: CITY OF S	5.3E+10				
LPSED3KA K	(ing	Seattle	WA	98125	2021	POLESTAF	PS2	Battery El	Clean Alte	233	0	46	1.83E+08	POINT (1: CITY OF S	5.3E+10				
5YJSA1H29T	Thurston	Olympia	WA	98506	2015	TESLA	MODEL S	Battery El	Clean Alte	208	0	22	2.41E+08	POINT (1: PUGET SC	5.31E+10				
WBY7Z6C5 K	(ing	Kent	WA	98031	2018	BMW	13	Battery El	Clean Alte	114	0	11	2.22E+08	POINT (1: PUGET SC	5.3E+10				
1N4AZ0CF K	Citsap	Olalla	WA	98359	2016	NISSAN	LEAF	Battery El	Clean Alte	84	0	26	2.26E+08	POINT (1: PUGET SC	5.3E+10				
1N4AZ0CF K	King	Issaquah	WA	98029	2015	NISSAN	LEAF	Battery El	Clean Alte	84	0	5	1.12E+08	POINT (1: PUGET SC	5.3E+10				
ELIVEACOC	nahamia	Edmonde	VALA	00006	2022	DAMM	VE	Diversion Lie	Class Alte	20	0	21	1 075:00	DOINT /	1 DUCTT CO	E 215:10				

SUMMARY→

The dataset provides information on Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) registered in Washington State through the Department of Licensing (DOL). It includes details such as the vehicle's VIN (first 10 characters), registration location (county, city, state, postal code), model year, make, model, and electric vehicle type (BEV or PHEV). Additional data covers Clean Alternative Fuel Vehicle (CAFV) eligibility, electric range, base MSRP (Manufacturer's Suggested Retail Price), legislative district, DOL Vehicle ID, GPS coordinates of the registered location, electric utility provider, and 2020 Census Tract for demographic analysis. This dataset is useful for understanding EV adoption, geographic distribution, and eligibility for clean energy incentives in Washington State.

OBJECTIVE >

- Data Cleaning and Preparation
- **Exploratory Data Analysis (EDA)**
- Data Visualization
- Predictive Modeling
- Insight Generation and Reporting

PYTHON CODE:

```
import numpy as np
import pandas as pd
import hashlib

df = pd.read_csv("Electric_Vehicle_Population_Data (1).csv")

df.info()
df.head()
```

DATA CLEANING

```
# DATA CLEANING

# How many missing values exist in the dataset, and in which columns?
missing_values = df.isnull().sum()
print ("In the total missing values in dataset", missing_values.sum())
print ("In the total missing values in each column", missing_values)
#How should missing or zero values in the Base MSRP and Electric Range columns be handled?
# replace zero values
#ff["Base MSRP"] = dff["Base MSRP"].replace(0, np.nan)
# replace missing values by median values
#ff["Base MSRP"] = dff["Base MSRP"].replace(0, np.nan)
# replace missing values by median values
#ff["Base MSRP"] = dff["Base MSRP"].fillna(dff["Base MSRP"].median())
# replace missing values by median values
# replace zero values
# replace z
```

DATA CLEANING output:

```
the total missing values in dataset 591

the total missing values in each column VIN (1-10) 0

County 3
```

```
City
State
                            0
Postal Code
                               3
Model Year
                               0
Make
                             0
Model
                             0
Electric Vehicle Type
Clean Alternative Fuel Vehicle (CAFV) Eligibility
Electric Range
Base MSRP
                               36
                                494
Legislative District
DOL Vehicle ID
                                0
                                10
Vehicle Location
Electric Utility
                               3
2020 Census Tract
dtype: int64
missing and zero values in base MSRP and Electric Range columns handled 0 0
duplicate records in dataset 0
maintaing uniqueness 0
                          78953a9f9d62e8cc12a944c5a3c1e08a4d3e1b55a9759e...
     1c9d2d25cd197a4ce1ae18cfa52ba501595bc080e302b5...
2
     b6c2f4f0ec2c32784fe5fa4baee0df7354efc30a099f45...
     7d99e2eebf8784a9fb6675cfea068614bf06f41f281295...
     e3ea04034fda2a426a9c141dc1fa4b903adf05fdf1f514...
235687 d56843e71102a5a4fbf0e3c553189fc66135f55de8ed6d...
235688 18bdea8b8f3ba6af1df770f743e0cc49cb4d0b165eed08...
235689 55dfe19ac9780e08e476343bca6f00a135e5d2984e82c2...
235690 b473fe66e7749a8624292b8cbdceeec21229f650d206c4...
235691 084df2ada60f054781d8acd25a187f68e244c0bfa566df...
Name: VIN (1-10), Length: 235692, dtype: object
cleaned or converted for better readability 0
                                            47.49461
     47.73689
2
     47.42602
3
     47.64509
4
     46.88897
235687 47.29238
235688 48.24159
235689 47.67858
235690 48.01497
235691 47.53010
Name: Latitude, Length: 235692, dtype: float64 0
                                                -122.23825
    -122.64681
2
    -122.54729
3
    -122.81585
4
    -122.68993
235687 -122.51134
235688 -122.37265
235689 -122.13158
235690 -122.06402
235691 -122.03439
Name: Longitude, Length: 235692, dtype: float64
```

DATA EXPLORATION

```
import numpy as np
import pandas as pd
import hashlib
df = pd.read csv("Electric Vehicle Population Data (1).csv")
# Data EXPLORATION
# What are the top 5 most common EV makes and models in the dataset
top 5 makes = df["Make"].value counts().head(5)
top_5_models = df["Model"].value_counts().head(5)
print ("\n top 5 makes ", top_5_makes)
print ("\n top 5 models ", top_5_models)
#What is the distribution of EVs by county? Which county has the most registrations?
ev_distribution_by_county = df["County"].value_counts()
most registered county = ev distribution by county.idxmax()
print ("\n distribution of EVs by county ", ev_distribution_by_county)
print ("\n county with most registrations ", most registered county)
# How has EV adoption changed over different model years?
ev_adoptation_over_model_year = df["Model Year"].value_counts()
print ("\n adoptation changed by year", ev_adoptation_over_model_year)
```

```
average_electric_range = df["Electric Range"].mean()
print ("\n average electric range ", average_electric_range)
# What percentage of EVs are eligible for Clean Alternative Fuel Vehicle (CAFV) incentives?
cafv_incentives_percentage = (df["Clean Alternative Fuel Vehicle (CAFV) Eligibility"] == "Clean Alternative Fuel Vehicle Eligible").mean() * 100
print ("\n percentage of EVs eligible for CAFV incentives ", cafv_incentives_percentage)
electric_range_by_make = df.groupby('Make')['Electric Range'].mean()
print ("\n electric range across different makes and models ", electric_range_by_make)
electric_range_by_model = df.groupby('Model')['Electric Range
print ("\n electric range across different models ", electric_range_by_model)
 What is the average Base MSRP for each EV model?
average_base_msrp_by_ev_model = df.groupby('Model')['Base MSRP'].mean()
print ("\n average Base MSRP for each EV model ", average_base_msrp_by_ev_model)
 ef check urbal rural(census):
  if census >= 20000000000:
   return "urban'
df["Urban/Rural"]= df["2020 Census Tract"].apply(check_urbal_rural)
ev_adoption_by_urban_rural = df.groupby('Urban/Rural')['Model'].count()
print ("\n regional trends in EV adoption ", ev_adoption_by_urban_rural)
df.head()
```

OTUTPUT

top 5 makes	Make
TESLA	26670
NISSAN	4056
CHEVROLET	4018
KIA	2920
BMW	2715

Name: count, dtype: int64 top 5 models Model MODEL Y 13089 9497 MODEL 3 3653 LEAF 1961 MODEL S MODEL X 1842 Name: count, dtype: int64 distribution of EVs by county County King 44464 Clark 6004 Snohomish 3442 2776 1858 518 439 429 260 207 98

Kitsap Thurston Jefferson Yakima Pierce Island Spokane Whatcom Clallam 73 44 Skagit Stevens 43 Benton 31 Klickitat Walla Walla 20 Chelan 17 Whitman 13 Grant 12 San Juan Kittitas Franklin Lewis Douglas Mason Skamania Grays Harbor Okanogan Wahkiakum Pend Oreille Asotin Pacific Lincoln Adams Name: count, dtype: int64

county with most registrations King

ć	adop	tation	changed	by	year	Model	Year
20	023	1637	0				
2(24	1231	6				
20)22	742	5				
20	21	523	3				
20	18	377	9				
20	20	310	7				
20	25	296	4				
20)19	283	3				

```
2017
         2083
2016
2015
        1125
2013
        1024
         792
341
2014
2012
          174
2011
2008
2010
2000
2002
Name: count, dtype: int64
```

average electric range 46.413794234902305

percentage of EVs eligible for CAFV incentives 31.407764601682825

electric range across ACURA	different makes and models Make 0.000000	
ALFA ROMEO	33.000000	
AUDI	45.315834	
BENTLEY	21.000000	
BMW	29.419890	
BRIGHTDROP	0.00000	
CADILLAC	2.678571	
CHEVROLET	81.097063	
CHRYSLER	32.126917	
DODGE	32.000000	
FIAT	76.797170	
FISKER	1.783784	
FORD	8.324701	
GENESIS	0.000000	
GMC	0.000000	
HONDA	19.549889	
HYUNDAI	16.362060	
JAGUAR	190.894737	
JEEP	22.052117	
KIA	34.982877	
LAMBORGHINI	6.000000	
LAND ROVER	44.166667	
LEXUS	21.404762	
LINCOLN	23.800000	
LUCID	0.000000	
MAZDA	25.392523	
MERCEDES-BENZ	11.699571 12.027304	
MINI MITSUBISHI	32.674157	
MULLEN AUTOMOTIVE INC.	0.000000	
NISSAN	72.956114	
POLESTAR	30.338542	
PORSCHE	57.432184	
RIVIAN	0.00000	
SMART	61.365079	
SUBARU	0.640873	
TESLA	59.467209	
TH!NK	100.000000	
TOYOTA	28.187973	
VINFAST	0.000000	
VOLKSWAGEN	22.538828	
VOLVO	17.682214	

```
Name: Electric Range, dtype: float64
electric range across different models Model
330E
     18.44444
500
       85.689474
500E
530E
       16.080645
      40.000000
550E
         . . .
XC60
XC90
      24.193141
MX
       31.000000
        0.000000
ZEVO
        0.000000
Name: Electric Range, Length: 159, dtype: float64
average Base MSRP for each EV model Model
330E 15257.516340
500
           0.000000
500E
            0.000000
       37279.838710
530E
550E
           0.000000
            . . .
XC60
        7420.361991
XC90
        3399.909747
           0.000000
MX
ZDX
            0.000000
ZEVO
            0.00000
Name: Base MSRP, Length: 159, dtype: float64
```

regional trends in EV adoption Urban/Rural

DATA VISUALIZATION

60968

rural

urban

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv("Electric_Vehicle_Population_Data (1).csv")

# DATA VISUALIZATION
#Create a bar chart showing the top 5 EV makes and models by count
plt.figure(figsize=(5, 2))
plt.bar(top_5_makes.index, top_5_makes.values)
plt.xlabel("EV Make")
plt.ylabel("Count")
plt.title("Top 5 EV Makes by Count")
```

```
plt.xticks(rotation=45)
plt.show
sns.countplot(x="Model", data=df, order=df["Model"].value counts().head(5).index,
palette="viridis")
plt.xlabel("EV Model")
plt.ylabel("Count")
plt.title("Top 5 EV Models by Count")
plt.xticks(rotation=45)
plt.show
plt.figure(figsize=(5, 2))
ev adoptation over model year.plot(kind="line", marker="o")
plt.xlabel("Model Year")
plt.ylabel("Count")
plt.title("Trend of EV Adoption by Model Year")
plt.xticks(rotation=45)
plt.figure(figsize=(5, 2))
sns.scatterplot(x = "Electric Range", y= "Base MSRP", data=df)
plt.xlabel("Electric Range")
plt.ylabel("Base MSRP")
plt.title("Electric Range vs. Base MSRP")
plt.show
plt.figure(figsize=(5, 2))
df["Clean Alternative Fuel Vehicle (CAFV)
Eligibility"].value counts().plot(kind="pie", autopct="%1.1f%%")
plt.title("Proportion of CAFV Eligible vs. Non-Eligible EVs")
import folium
```


Proportion of CAFV Eligible vs. Non-Eligible EVs

Linear Regression

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.metrics import r2 score
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
df = pd.read csv("Electric Vehicle Population Data (1).csv")
features = ['Model Year', 'Base MSRP']
df = df.dropna(subset=['Electric Range', 'Base MSRP'])
X = df[features]
y = df['Electric Range']
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)
model = LinearRegression()
model.fit(X train, y train)
y pred = model.predict(X test)
r2 = r2 score(y test, y pred)
print(f'R2 score: {r2:.2f}')
plt.figure(figsize=(8, 5))
sns.scatterplot(x=df['Base MSRP'], y=df['Electric Range'], alpha=0.5)
plt.title('Electric Range vs. Base MSRP')
plt.xlabel('Base MSRP')
plt.ylabel('Electric Range')
plt.show()
new ev = pd.DataFrame({'Model Year': [2025], 'Base MSRP': [40000]})
predicted range = model.predict(new ev)
print(f'Predicted Electric Range for new EV: {predicted range[0]:.2f} miles')
```

- # 4.7 Can we use this model to predict the range of new EV models based on their specifications?
- # Yes, the model can be used to predict the range of new EV models by providing their specifications.

