Comparaison et combinaisons de méthode de sélection d'attributs (pour l'analyse du transcriptome)

Antoine Cornuéjols¹

J-P. Comet³, M. Dutreix², Ch. Froidevaux¹
J. Mary¹, G. Mercier²

```
<sup>1</sup>LRI (Orsay) - <sup>2</sup> Institut Curie (Orsay) - <sup>3</sup> LAMI (Evry)

antoine@lri.fr, http://www.lri.fr/~antoine
```


- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

- 1- Illustration
- 2- Le problème de la sélection d'attributs
- 3- L'approche classique
- 4- Combiner des méthodes
- 5- Comparaison
- 6- Combinaison
- **7-** Conclusion

Illustration : un pb d'analyse du transcriptome

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Projet INRS, Bioingéniérie 2001
- **[2001-2004]**

Étude de l'effet des très faibles radiations

Etude des radiations

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

 Danger indiscutable dans certains cas. En particulier pour les fortes doses d'irradiation.

- Quel impact des faibles doses ?
- Biologiquement aucun détecté
- Y a-t-il des effets au niveau des gènes ?

Protocole expérimental

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- S. Cerevisiae en croissance exponentielle (séquencée complètement et eucaryote avec peu de gènes).
- Six cultures (Irradiées I) exposées pendant 20 heures entre 15 et 30 mGy/h
- Douze cultures non exposées (Non Irradiées NI)
- Mesure effectuées sur puce Corning où l'hybridation a été faite avec double marquage fluorescent (Cy3 pour les cADN contrôles et Cy5 pour les cADN étudiés).

Questions des biologistes

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- L'irradiation à de faibles doses est-elle détectable ?
- Nombre de gènes impliqués dans la réponse à une irradiation à faible dose ?
- Groupes de gènes impliqués dans la réponse à l'irradiation et de quelle manière ?

- Est-il possible de deviner le traitement subi par une levure en regardant l'expression de son génome ?
- Peut-on généraliser cette approche à d'autres types de traitements (pollutions, cancer, ...)

« Précarité » des données

· Illustration

 Le pb de la sélection d'attributs

- Méthode standarc

- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Extrêmement peu de données / dimension

(12 - (non irradiées) & 6 + (irradiées) vs. 6135 gènes)

- Données imparfaites
 - Bruit expérimental
 - Irradiation
 - Puces à ADN
 - Prétraitement et normalisation
- Pas idéales :
 - Déséquilibre des classes + et -
 - Absence d'indépendance conditionnelle entre les gènes

Le problème de la sélection d'attributs

· Illustration

Le pb de la sélection d'attributs

Méihode standa

- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

a1	a2	a3	XOR
0	0	0	-
0	0	1	+
0	1	0	+
0	1	1	-
1	0	0	-
1	0	1	+
1	1	0	+

- A priori plus simple que celui de la classification (apprentissage de la relation de dépendance)
- E.g. Supposons 3 attributs binaires et fonction booléennes

$$2^{2^3} = 2^8 = 256$$

fonctions possibles

Mais seulement: 10 tris possibles sur les attributs (e.g. (a1,a2,a3))

Le problème de la sélection d'attributs (2)

· Illustration

 Le pb de ia sélection d'attributs
 Méthode standard

- Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

Pourtant il manque une théorie fournissant des garanties sur la qualité des classements (analogue à théorie statistique de l'apprentissage)

- Pas d'équivalent du risque empirique
- Tâche non supervisée

La sélection d'attributs en pratique

- Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Recours à des méthodes raisonnables

- Hypothèse d'indépendance des attributs (linéarité)
 - On peut les évaluer indépendamment
- Spectre large de régularités détectables
- Sélection
 - Chaque attribut passe un test
- Estimation
 - On ordonne les attributs en fonction d'un *critère de performance*
 - → Quel seuil (choisi globalement)?
 - **►** Quelle confiance ?

La sélection d'attributs en pratique

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Sélection d'attributs
 - Approche directe
 - Approche « wrapper »
 - Approche par filtrage
- Réduction de dimensionnalité
 - Groupement de gènes *a priori* (réseaux de régularisation)
- **Exemples de méthodes d'estimation d'attributs par filtrage**
 - SAM
 - ANOVA
 - RELIEF
 - **...**

Critères de performance

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Hypothèse de distribution paramétrique $\mathcal{N}(\mu, \sigma)$
 - Comparaison à hypothèse nulle locale : ANOVA
 - Idem (mais différent) : SAM

- Méthodes non paramétriques
 - Critère heuristique : RELIEF

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- [Kira & Rendell,92], [Kononenko,94]
 - Les attributs les plus pertinents sont ceux qui varient plus lorsque l'exemple (lame) considéré change de classe que lorsqu'il ne change pas
 - Complexité faible
 - Grande résistance au bruit

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Une lame L est vue comme un point dans un espace à p = 6157 dimensions
 - > On cherche ses *k* plus proches voisins dans la même classe et on note *H* (nearest Hit) leur *barycentre*.
 - > On calcule ses k plus proches voisins dans l'autre classe et on note M (nearest Miss) leur *barycentre*.

$$\operatorname{poid}(\operatorname{spen}(E)) = \frac{1}{m} \sum_{L=1}^{m} \left\{ \left[\exp \mathsf{r}_{\operatorname{gene}}(L) - \exp \mathsf{r}_{\operatorname{gene}}(M) \right] - \left[\exp \mathsf{r}_{\operatorname{gene}}(L) - \exp \mathsf{r}_{\operatorname{gene}}(H) \right] \right\}$$

- où $\exp_{q \in n}(X)$ est la projection selon gène du point x, et m est le nombre total de lames.
- Le poids calculé pour chaque gène gène est ainsi une approximation de la différence de deux probabilités comme suit :

Poids $(g\grave{e}ne)$ = P $(g\grave{e}ne$ a une valeur différente / k plus proches voisins dans une classe différente) - P $(g\grave{e}ne$ a une valeur différente / k plus proches voisins dans la même classe)

- \rightarrow Algorithme polynomial: $\Theta(pm^2)$
- \rightarrow Rôle de k: prise en compte du bruit

Sélection des attributs

- · Illustration
- Le pb de la sélection d'attributs
- Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

Y a-t-il vraiment de l'information dans les données ?

Quels gènes retenir ?

Avec quelle confiance ?

Hypothèse nulle globale

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Nombre de gènes dont le poids dépasse la valeur repérée en abscisse

rouge : Avec les classes réelles ;

bleu : Courbe moyenne obtenue avec des classes aléatoires

Nombre de gènes dont le poids dépasse la valeur repérée en abscisse

rouge : Avec les classes réelles ;

bleu : Courbe moyenne obtenue avec des classes aléatoires

Précision ou rappel : choix d'un seuil

Il faut choisir entre :

- Une liste contenant presque tous les gènes impliqués mais comportant des faux-positifs
- Une liste de gènes impliquées de manière quasi-certaine dans la réponse à l'Irradiation (quitte à ne pas avoir tous les gènes impliqués)

Problème du seuil

- Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Combinaison de méthodes ?

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Peut-on faire mieux avec deux méthodes ?

■ Est-ce mieux de prendre l'intersection de leurs sélections ?

Doit-on avoir plus de confiance dans la valeur du résultat ainsi obtenu ?

Pour les 500 meilleurs gènes de chaque technique (poids 0.2) :

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des
- · Comparaison
- · Combinaison
- · Conclusion

ANOVA
409
SAM

Pour les 35 meilleurs (poids 0.5):

Intersections (2)

Est-ce que ces intersections sont significatives?

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des
- · Comparaison
- · Combinaison
- · Conclusion

Problème :

Étant donné 2 méthodes sélectionnant au hasard chacune n gènes parmi N gènes, quelle est la probabilité que ces deux paquets de n gènes aient une intersection de cardinal supérieur ou égal à k?

= = > loi hypergéométrique H(n, N-n, k)

avec N = 6157:

> n = 500: P (taille intersection ≥ 257) = 10^{-169}

> n = 35: P (taille intersection ≥ 8) = 10^{-12}

Le biologiste est satisfait!

Répartition des meilleurs gènes

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

function of 91 induced genes/171	number of ORFs	% in this list	% total ORFS	(61:5 8)ep
unknown	38	41,8	50,4	0,8
oxidative stress response	4	4,4	0,3	14,3
oxidative phosphorylation	9	9,9	0,3	30,5
transport	4	4,4	2,2	2,0
gluconeogenesis	1	1,1	0,1	16,9
protein processing & synthesis	3	3,3	2,0	1,6
ATP synthesis	7	7,7	0,4	20,6
glucose repression	1	1,1	0,2	4,8
respiration	2	2,2	0,1	22,0
	number of ODEs	% in this list	% total ORFS	sur-rep
function of 80 repressed genes/171	number of ORFS	/0 III tili3 II3t	70 total Olti O	
function of 80 repressed genes/171 unknown	45	56,3	50,4	1,1
unknown	45	56,3	50,4	1,1
unknown stress response (putative)	45 1	56,3 1,3	50,4 0,2	1,1 7,0
unknown stress response (putative) glycerol metabolism	45 1 2	56,3 1,3 2,5	50,4 0,2 0,1	1,1 7,0 30,8
unknown stress response (putative) glycerol metabolism protein processing & synthesis	45 1 2 3	56,3 1,3 2,5 3,8	50,4 0,2 0,1 2,0	1,1 7,0 30,8 1,9

Interprétation biologique

-			
	lust	not	OB

Le pb de la sélection d'attributs

· Méthode standard

· Combiner des

- · Comparaison
- · Combinaison
- · Conclusion

Cytochrome bc1

Cyt1 QCR7 QCR10

Cytochrome oxidase

COX5A COX6 COX4 COX 13 COX12 COX7 COX8 COX20

ATP synthase

ATP3
ATP5
ATP16
ATP15
ATP17
ATP17
ATP18
ATP19
ATP20
TIM11

Comparaison de méthodes de sélection

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

Comparaison de méthodes de sélection (2)

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Causes possibles de l'intersection :
 - Information dans les données que les deux méthodes parviennent à détecter
 - Corrélation *a priori* des méthodes

- Exemple
 - 278 gènes dans (RELIEF ∩ ANOVA)₅₀₀
 - 40 attendus par simple chance (loi hypergéométrique)
 - **238**?
 - Information?
 - Corrélation *a priori* ?

Mesure de la corrélation a priori

Nouvelle hypothèse nulle

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- Pour toutes les permutations de 6 + & 12 sur les données
- Calculer : $(RELIEF \cap ANOVA)_{500}$
- Faire la moyenne

Intersection due à la corrélation a priori des méthodes

Comment l'interpréter ?

■ Si (RELIEF \cap ANOVA)₅₀₀ =

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

- **0** :?
- **40** :?
- **278**:?
- **500**:?

Ici: 170

Mesure de corrélation

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

Combinaison de méthodes

Peut-on tirer de l'information de la combinaison de deux méthodes ?

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

On dispose de la **loi empirique** de

$$k = (RELIEF \cap ANOVA)_n$$

en fonction de *n* (intersection des « top_n »)

→ Peut-on la comparer à une **courbe théorique** paramétrée et trouver les paramètres maximisant la vraisemblance ?

Combinaison de méthodes

- On suppose deux méthodes M_1 et M_2 d'évaluation d'attributs telles que :
- Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

- On considère $(M_1 \cap M_2)_n = k$
- M_1 retourne p_1 attributs pertinents dans n
- M_2 retourne p_2 attributs pertinents dans n
- On suppose p vrais attributs pertinents sur d attributs en tout
- On calcule la loi :

$$k = \text{fct}(d, n, p, p_1, p_2)$$

 On retient (p, p₁, p₂) maximisant la vraisemblance par rapport à courbe observée

Formules

$n \leq n_1 \leq n_2 \leq p$

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

$$p(\cap = k | d, p, n_1 = n_2 = n, k_C) = \frac{\binom{n}{k} \binom{p-n}{n-k}}{\binom{p}{n}} / \sum_{j=k_C}^n \frac{\binom{n}{j} \binom{p-n}{n-j}}{\binom{p}{n}}$$

 $n_1 \leq n \leq n_2 \leq p$

$$p(\cap = k | d, p, n_1 = n_2 = n, k_C) = \frac{\binom{d-n}{n-k} \binom{n}{k} \binom{p}{n}}{\binom{d}{n}^2} / \sum_{j=k_C}^n \frac{\binom{d-n}{n-j} \binom{n}{j} \binom{p}{n}}{\binom{d}{n}^2}$$

 $n_1 \leq n_2 \leq n$

$$p(\cap = k | d, p, n_1 = n_2 = n, k_C) = \sum_{l=n_1}^{\min(p,n)} \frac{\binom{p}{l} \binom{d-p}{n-l}}{\binom{d}{n}} \frac{\sum_{i=0}^{l} \binom{l}{i} \binom{n-l}{k-i} \sum_{l_2=n_2}^{\min(p,n)} \binom{p-l}{l_2-i} \binom{d-n-(p-l)}{n-l_2-k+i}}{\binom{d}{n}} / (\ldots)$$

Conclusion

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

On peut tirer de l'information de l'utilisation de plusieurs méthodes

Pas de travaux connus dans ce domaine

Propositions

- Méthode de mesure de corrélation a priori des méthodes
- Méthode de maximum de vraisemblance pour suggérer le nombre d'attributs pertinents à partir de deux méthodes

- Les données reflètent-elles la présence de l'irradiation?
- Le pb de la sélection d'attributs
- Méthode standerd mbien de gènes sont-ils impliqués ? Plus de 100
- Combiner des méthodes
- · Comparaison
- · Combinaison Y a-t-il des groupes de gènes impliqués et lesquels?
- · Conclusion

Oui: ATP synthesis, oxidative phosphorylation et oxidative stress response

■ Est-il possible de déterminer si une levure est irradiée en regardant son transcriptome ?

Oui et il suffit de ne regarder qu'un petit nombre de gènes

Tâche de classification

Plusieurs techniques ont été utilisées

- · Illustration
- → Vote « d' experts »
- Le pb de la sélection d'attributs
- → Technique du maximum de vraisemblance
- · Méthode standard

K plus proches voisins

- · Combiner des méthodes
- · Comparaison Essai de classification en aveugle sur six nouvelles lames :
- · Combinaison
- · Conclusion

		Avec sélect	ion d'un seul	Avec le	s gènes	Avec le	es gènes
		gène ((1575)	sélectionnés	s par ANOVA	sélectionné	<mark>s par REL</mark>
Traitement	Dose	Sain	Irradié	Sain	Irradié	Sain	Irradié
Irradiation	0.003 mGy/	h 0,95	0,04	0,53	0,47	1	0
Irradiation	0.007 mGy/	h 0,35	0,65	0,46	0,54	0,01	0,9
Irradiation	0.1 mGy/h	0,02	0,97	0,5	0,5	0	1
Irradiation	1.1 mGy/h	0,15	0,84	0,47	0,53	0	1
Formaldehyd	0.07 mM	1	0	0,65	0,35	1	0
aucun	0	0,82	0,17	0,55	0,44	1	0

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Conclusion

- Publication des résultats biologiques obtenus
- Le pb de la sélection d'atimibuts Étude sur d'autres données (Cancer de la vessie avec Curie,
- · Méthode standard
- · Combiner Lesaris)
- · Comparaison
- Mise au point d'une méthode de classification avec peu de
- · Conclusion gènes
 - Étude du critère de RELIEF
 - Quelles propriétés ?
 - Exploitation de multiples méthodes de sélection d'attributs

Normalisation des données

- La normalisation a été réalisée par LOWESS (LOcally WEighted Scatterplot Smoothing), Julie PEYRE & Anestis ANTONIADIS (IMAG)
- · Le pb de la
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison $A = \frac{1}{2} \log_2(R * G)$
- · Conclusion

$$M = \log_2(\frac{R}{G})$$

Où R et G sont les niveaux d'intensité de Rouge et de Vert.

Normalisation par lowess.

Les sources de problèmes

- Présence de bruit dans les données à deux niveaux :
- · Illustration
- Le pb de la sélection d'attributs

 Imprécision de la mesure : bruit classique supposé gaussien, bruit qui est très élevé pour certains gènes (cf doubles mesures)
- · Méthode standard
- · Combiner des méthodes Présence de valeurs aberrantes dues
- · Comparaison à un problème lors de l'hybridation
- · Combinaison
- · Conclusion

- Nombreux attributs : 6157 gènes
- Très faible nombre d'instances: 12 cultures non-traitées, 6 irradiées
- Classes déséquilibrées (elles ne contiennent pas le même nombre d'éléments)
- Absence d'indépendance conditionnelle probabiliste entre les gènes

■ Méthode directe de discrimination : illusoire

- Illustration Trop de « solutions »
- Le pb de la sélection Aucune garantie sur chacune d'elles
- · Méthode standard
- · con Prefetraitement:
- · Comparaison
- · Combinai Sélection d'attributs
- · Conclusion
- Approche directe
- Approche « wrapper »
- Approche par filtrage

Réduction de dimensionnalité

• Groupement de gènes *a priori* (réseaux de régularisation)

- · Illustration
- Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

 Trop peu de garantie sur chaque corrélation détectée (attribut)

- Comparaison à hypothèse nulle globale
- Interprétation / confirmation par les biologistes

Utilisation d'ANOVA

Deux classes (Irradiée / Non Irradiée)

- Le por de la $\mathcal{N}(\mu_1,\sigma)$ et $\mathcal{N}(\mu_2,\sigma)$ sélection · Illustration d'attributs
- · Métede s Comparaison
- · Combiner des Variance intra-classe
- · Comparaison Variance inter-classes
- · Conclusion Hypothèse nulle $\mathcal{H}_0: \mu_1 = \mu_2$
 - Rejet si

significativement trop grand par rapport aux quantiles de la foi $\mathcal{F}(k-1,n-k)$

- · Illustration
- · Le pode lon peut aussi calculer la *p-value* pour chaque gène et
- · Méthode sordonner les gènes
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- · Conclusion

probabilité que le test rejette l'hypothèse \mathcal{H}_0 à tort

$$p(t) = \min\{F_0(t), 1 - F_0(t)\}$$

Pour chaque gène :

- · Le pb de la sélection d'attributs
- · Méthode standard
- · Combiner des méthodes
- · Comparaison
- · Combinaison
- Gènes potentiellement significatifs: gènes dont le score d(g) est supérieur au score moyen du gène obtenu après permutations des classes, de plus d'un certain seuil A
 - Calcul du nombre de gènes faussement significatifs : nombre moyen de gènes faussement significatifs pour chaque permutation
 - Taux de fausse découverte (FDR)

$$d(i) = \frac{x_I(i) - x_{NI}(i)}{s(i) + s_0}$$

déviation standard Constante > 0