α) Η ευθεία AB έχει εξίσωση της μορφής (ε) : $y = \alpha x + \beta$. Το σημείο $A\left(1, -\frac{3}{4}\right)$ είναι σημείο της (ε) , άρα:

$$-\frac{3}{4} = \alpha \cdot 1 + \beta \qquad (1).$$

Το σημείο B(4,-3) είναι σημείο της (ε) , άρα:

$$-3 = \alpha \cdot 4 + \beta \qquad (2).$$

Λύνουμε το σύστημα των εξισώσεων (1) και (2):

$$\begin{cases} -\frac{3}{4} = \alpha \cdot 1 + \beta \overset{(-)}{\Leftrightarrow} \begin{cases} 3\alpha = -3 + \frac{3}{4} \Rightarrow \\ 4\alpha + \beta = -3 \end{cases} \begin{cases} \alpha = -\frac{3}{4} \\ 4 \cdot \left(-\frac{3}{4}\right) + \beta = -3 \end{cases} \Leftrightarrow \begin{cases} \alpha = -\frac{3}{4} \\ \beta = 0. \end{cases}$$

Άρα η ευθεία AB έχει εξίσωση (ε) : $y = -\frac{3}{4}x$.

β)

i. Για κάθε $x ∈ \mathbb{R}$ ισχύει και $-x ∈ \mathbb{R}$. Έχουμε:

$$f(-x) = \frac{1}{4}(-x)^3 - (-x) = -\frac{1}{4}x^3 + x = -(\frac{1}{4}x^3 - x) = -f(x).$$

ii. Στο βi) αποδείξαμε ότι f(-x)=-f(x) για κάθε $x\in\mathbb{R}$, δηλαδή ότι η f είναι περιττή. Συνεπώς η γραφική της παράσταση είναι συμμετρική ως προς την αρχή των αξόνων

(0,0):

γ) Εξαιτίας της συμμετρίας της γραφικής παράστασης της f ως προς το $\left(0,0\right)$, το σημείο $\left(-1,\frac{3}{4}\right)$ θα ανήκει στη γραφική παράσταση η οποία διέρχεται και από το $\left(0,0\right)$. Όμως τα σημεία αυτά ανήκουν και στην ευθεία AB. Άρα τα κοινά σημεία της ευθείας και της καμπύλης είναι τα $\left(1,-\frac{3}{4}\right)$, $\left(0,0\right)$ και $\left(-1,\frac{3}{4}\right)$.

Εναλλακτικά, θα λύσουμε την εξίσωση $\frac{1}{4}x^3-x=-\frac{3}{4}x$. Έχουμε ισοδύναμα:

$$\frac{1}{4}x^3 - x = -\frac{3}{4}x \Leftrightarrow$$

$$x^3 - 4x + 3x = 0 \Leftrightarrow$$

$$x^3 - x = 0 \Leftrightarrow$$

$$x(x^2 - 1) = 0 \Leftrightarrow$$

$$x = 0 \acute{\eta} x = 1 \acute{\eta} x = -1.$$

Άρα τα κοινά σημεία είναι τα $\left(1,-\frac{3}{4}\right)$, $\left(0,0\right)$ και $\left(-1,\frac{3}{4}\right)$.