实验 4 语义分析和中间代码生成器-赋值表达式

语义分析器分两部分,第一部分为赋值表达式(必做),第二部分为数组、布尔表达式和控制语句(选做)。

要求

参考课本 6.4.3 和 7.3, 实现递归下降翻译器。

注意

数据结构:

四元式:数组

跳转语句的四元式的第4个域需回填,请考虑如何存储每个四元式。

翻译模式

赋值语句的翻译

说明:

设文法符号为 X, 其属性如下:

- X.place: 存放 X 值的变量的名字;
- X.inArray: 指向符号表中相应数组名字表项的指针,若不使用符号表,则 X.inArray 即为数组的名字。 在实验 4 中,因不处理数组,则 X.inArray 为存放 X 值的变量的名字。
- 函数 emit(): 将生成的四元式语句发送到输出文件中;
- 函数 newtemp(): 生成一个临时变量的名字,如 t1。

测试:

```
输入: a=6/b+5*c-d;
输出:
0: /, 6, b, t1
1: *, 5, c, t2
2: +, t1, t2, t3
3: -, t3, d, t4
4: =, t4, -, a
```

文法	语义动作
stmts→stmt	
rest0	
$rest0 \rightarrow stmt$	
$rest0_1$	

$rest0 \rightarrow \mathbf{E}$	
$stmt \rightarrow loc = expr;$	{ emit('=,' expr.place ', -,' loc.place);
	}
$stmt \rightarrow if(bool)$ $stmt_1$ else $stmt_2$	
$stmt \rightarrow \mathbf{while}(bool) stmt_1$	
loc→id resta	{resta.inArray=id.place} {loc.place=resta.place;
restu	}
resta → [elist]	
$resta \rightarrow \mathcal{E}$	{resta.place=resta.inArray; }
	,
$elist \rightarrow expr$	
rest1	

$rest1 \rightarrow E$	
rest1 \rightarrow \epsilon	
$bool \rightarrow equality$	
4	
equality \rightarrow rel	
oquation . Tot	
rest4	
IESUT	
most 1 \ \ \ mol most 1	
$rest4 \rightarrow == rel \ rest4_1$	
$rest4 \rightarrow != rel \ rest4_1$	
$rest4 \rightarrow \mathbf{E}$	
$rel \rightarrow expr$	
rop_expr	
τορ_εκρι	
$rop_expr \longrightarrow $	
rop_expr - vexpr	
ron over \ Z=over	
$rop_expr \longrightarrow <=expr$	
$rop_expr \longrightarrow >expr$	
$rop_expr \longrightarrow >=expr$	
$rop_expr \longrightarrow >=expr$ $rop_expr \longrightarrow \mathbf{E}$	

expr → term	{rest5.in=term.place}
rest5	{expr.place=rest5.place}
rest5→ +term	{rest5 ₁ .in=newtemp();
	emit('+,' rest5.in ',' term.place ',' rest5 ₁ .in)}
rest5 ₁	{rest5.place =rest5 ₁ .place}
rest5→ -term	{rest5 ₁ .in=newtemp();
rests → •term	emit('-,' rest5.in ',' term.place ',' rest5 ₁ .in)}
west 5	
rest5 ₁	{rest5.place =rest5 ₁ .place}
rest5→ E	{rest5.place = rest5.in}
rests — C	(rests.place – rests.m)
term→ unary	{rest6.in = unary.place}
rest6	{term.place = rest6.place}
rest6 → *unary	{rest6 ₁ .in=newtemp();
	emit('*,' rest6.in ',' unary.place ',' rest61.in)}
rest6 ₁	{rest6.place = rest6 ₁ .place}
rest6→ /unary	{rest6 ₁ .in=newtemp();
, and y	emit('/,' rest6.in ',' unary.place ',' rest61.in)}
rest6 ₁	{rest6.place = rest6 ₁ .place}
rest6→ E	{rest6.place = rest6.in}
unary→ factor	{unary.place = factor.place}
factor→ (expr)	{unary.place = expr.place}
factor→loc	{ factor.place = loc.place
	}
<i>factor</i> → num	{factor.place = num.value}