# Evaluation of small dataset training with GSCD & SpecAugment

Student: 陳憲億、胡祐嘉

Advisor: Chingwei Yeh and Tay-Jyi Lin

## Outline

#### Action item:設計實驗證明 SpecAugment 方法是有成效的

- 實驗目的:使用 SpecAugment 對小型數據做增量,並使用 Hello edge 證明此方法有效
- 實驗方法 (流程):
  - 1. 將 GSCD 12 種關鍵字中的 "yes" 語料從 4000 筆開始下降至 250 筆 (將現有的語料隨機刪除至需求筆數),並依序將 GSCD 放入 Hello edge 中做訓練,訓練結束後,使用原始的 GSCD 做測試,最後由產生出來的混淆矩陣來計算每次 yes 的辨識率,藉以找出語料數量為多少時,將不足以訓練出理想值
  - 2. 找到正確率嚴重下降的點後,使用 SpecAugment 將不足的語料增量到與原始語料相似數量 (≈ 4000),統計 yes 辨識率變化

#### 實驗參數:

(Hello edge)

- 1. 使用 10 種關鍵字並分為 12 類 (silence, unknow, yes, no, up, down, left, right, on, off, stop, go)
- 2. 使用 dnn 模型,大小為 144 x 144 x 144
- 3. learning rate: 0.0005, 0.0001, 0.00002
- 4. training step: 10000, 10000, 10000

(SpecAugment)

時間扭曲參數 = 13, 頻率遮罩參數 = 5, 時間遮罩參數 = 17, 頻率遮罩數量 = 1, 時間遮罩數量 = 1

- 減量物理意義:yes 語料減量後,因波型與 left 相近,因此多數被錯誤判斷為 left
- 增量物理意義:yes 語料經 SpecAugment 增量後,可得到與原先波形有一定差異的樣本,藉以得到數據多樣性使神經網路建構 更完整
- 實驗猜想:當訓練語料不足時,辨識率產生嚴重下降,此時使用 SpecAugment 將語料做增量,辨識率可以有效上升
- 實驗結果: 假設只擁有 250 筆語料,正確率為 48% 左右,將其增量至 5000+250 筆,正確率上升為 68% 左右,推論正確率沒有像原先 85% 這麼好,是因為時間扭曲參數太大,過度扭曲變形造成訓練成效沒有很好
- 結論:目前實驗數據並不理想,需再改變實驗參數,或是再增加訓練語料進行訓練

## 實驗進行流程

1

輸入指令: (spec) D:\Work\_Space\KeyWordSpotting-for-MCU-master>python train.py --model\_architecture dnn --model\_size\_info 144 144 144 --

dct\_coefficient\_count 10 --window\_size\_ms 40 --window\_stride\_ms 40 --learning\_rate 0.0005,0.0001,0.00002 --how\_many\_training\_steps 10000,10000,10000 --summaries dir work/DNN/DNN1/retrain logs --train dir work/DNN/DNN1/training --data url="" --

data\_dir="./speech\_dataset/"

使用複製的GSCD語料、保留原始資料做測試



執行完成,訓練數據以 checkpoint 的方式保存

2) 輸入指令:

(spec) D:\Work\_Space\KeyWordSpotting-for-MCU-master>python test.py --model\_architecture dnn --model\_size\_info 144 144 144 -- dct\_coefficient\_count 10 --window\_size\_ms 40 --window\_stride\_ms 40 --checkpoint="./work/DNN/DNN1/training/best/dnn 8454.ckpt-30000"

--data url=""



執行完成,產生 Training、Test 的混淆矩陣

3

GSCD語料處置: D:\Work\_Space\KeyWordSpotting-for-MCU-master\speech\_dataset (遞減組,用於訓練的語料)

D:\Work\_Space\Google\_speech\_dataset (保持不變組,用於測試的語料)

## 調整 SpecAugment 參數

除6,並取4捨5人(參數須為整數)



使用下方參數產生的 yes 音檔頻譜圖

## 混淆矩陣(confusion matrix)

#### 混淆矩陣(confusion matrix)



Accuracy = (TP + TN) / total N

#### 計算準確率:

INFO:tensorflow:set\_size=5032 INFO:tensorflow:Confusion Matrix: Yes Accuracy =  $\frac{491}{13 + 491 + 7 + 4 + 17 + 2 + 3}$ = 91.43%



## Type I \ II Error



```
Error I (實際上錯誤卻被判斷為正確) = False Posite / 所有被判斷為 yes 的數量 (11+269+2+2+3+17+1+1+4+3+3) = 316 = (316-269) / 316 = 14.87%
```

```
Error II (實際上正確卻被判斷為錯誤) = False Negative / Total yes (18+269+8+5+86+3+3+5) = 397 = (397-269) / 397 = 32.24%
```

## 物理意義

#### 減少語料:

減少 yes 語料後,多數被判斷為 left,觀察 format 後,推論因 yes 與 left 波型相像,因此在訓練資料不足的情況下,容易被判斷為 left

#### SpecAugment 增量語料:

推論 yes 語料經 SpecAugment 增量後,可以得到與原先波形具有一定差異的樣本,從而得到具有多樣性的訓練資料來建構完整的神經網路模型,以達到判別準確率的上升

#### Left 與 yes 波形比較



## Accuracy 數據分析

|                           |    |       |                      |           |                 |                           |                          |        |         | 原始數量  |
|---------------------------|----|-------|----------------------|-----------|-----------------|---------------------------|--------------------------|--------|---------|-------|
| GSCD 遞減                   | 4  | 4000  | 2500                 | 2000      | 1500            | 1000                      | 500                      | 250    | silence | 0     |
| Training Accuracy (yes音檔) | 93 | 3.45% | 85.17%               | 89.37%    | 84.86%          | 80.65%                    | 71.64%                   | 53.99% | unknow  | 67283 |
| Error I (錯的被判斷為正確的)       | 13 | 3.77% | 6.36%                | 6.22%     | 3.48%           | 4.94%                     | 1.88%                    | 1.03%  | ves     | 00744 |
| Error II (對的被判斷為錯的)       | 6  | .55%  | 14.83%               | 10.63%    | 15.14%          | 19.35%                    | 28.36%                   | 46.01% |         | 0044  |
| Test Accuracy (yes音檔)     | 91 | 1.06% | 84.29%               | 88.64%    | 84.05%          | 80.67%                    | 72.70%                   | 47.82% | no      | 0000  |
| Error I (錯的被判斷為正確的)       | 14 | 4.55% | 7.71%                | 10.36%    | 6.70%           | 6.18%                     | 2.59%                    | 6.16%  | up      |       |
| Error II (對的被判斷為錯的)       | 18 | 3.94% | 15.71%               | 11.36%    | 15.95%          | 19.33%                    | 27.30%                   | 52.18% | down    |       |
| Spec 遞增                   |    | 250   | 500 (250+ <b>250</b> | 750 (250+ | 500) 1000 (250+ | - <b>750</b> ) 4000 (250+ | <b>3750</b> ) 5250 (250+ | 4750)  | left    | 3801  |
| Training Accuracy (yes音檔) | 53 | 3.99% | 60.70%               | 64.37%    | 67.74%          | 62.86%                    | 68.33%                   |        | right   |       |
| Error I (錯的被判斷為正確的)       | 1  | .03%  | 4.70%                | 4%        | 4.89%           | 10.13%                    | 9.20%                    |        | on      | 3845  |
| Error II (對的被判斷為錯的)       | 46 | 5.01% | 39.26%               | 35.63%    | 32.26%          | 37.14%                    | 31.67%                   |        | off     | 3745  |
| Test Accuracy (yes音檔)     | 47 | 7.82% | 59.69%               | 62.97%    | 67%             | 63.22%                    | 67.78%                   |        | stop    | 3872  |
| Error I (錯的被判斷為正確的)       | 6  | .16%  | 5.60%                | 6.02%     | 7.60%           | 11.31%                    | 14.87%                   |        | go      | 3880  |
| Error II (對的被判斷為錯的)       | 52 | 2.18% | 40.30%               | 37.02%    | 33%             | 36.78%                    | 32.24%                   |        |         |       |



