Principles of Spatial Analysis

SHORT LECTURE 02, WEEK 07: INTERPOLATION AND GEOSTATISTICS

data interpolation the process of using points with known values to estimate values at other unknown points

data interpolation data's distribution will normally determine most suitable method for interpolation

spatial data interpolation

- same idea but we need to account for the importance of space
- creation of a continuous (or prediction) surface from sampled point values
- common for difficult to measure phenomena (e.g. concentrations over space)
- using regularly distributed or sampled points
- multiple approaches to derive a prediction

Gimond, M. 2020. *Geodesic geometry*. [online] https://mgimond.github.io/

deterministic methods

assign values to locations based on the surrounding measured values

deterministic: natural neighbour

- nearest neighbour interpolation by extending the data, can be spatially expressed through Thiessen polygons

deterministic: trend

- uses a global polynomial interpretation that fits a smooth surface defined by a mathematical function (the polynomial) to the input sample points
- fitting a sheet of paper over a surface

deterministic: trend

- rarely will the surface be able to pass through all the measured points
- least-squares regression fit: minimises the squared differences among the original values and result surface
- performance can be measured through root mean square error (RMSE)

deterministic: IDW

- Inverse Distance Weighting ("Tobler's Law")
- assumes near points are more alike than far points (distance decay)
- spatial autocorrelation is the underlying assumption of IDW

deterministic: IDW

- only use IDW when the set of points are dense enough to capture the extent of the local surface variation needed for analysis
- interpolated surface will always be less than the local maximum value and greater than the local minimum value
- the power setting determines how much influence to give closer points than those further away by enhancing extremes when calculating averages

IDW with different power settings

$$z_{p} = \frac{\sum_{i=1}^{n} \left(\frac{z_{i}}{d_{i}^{p}}\right)}{\sum_{i=1}^{n} \left(\frac{1}{d_{i}^{p}}\right)}$$

Gimond, M. 2020. *Geodesic geometry*. [online] https://mgimond.github.io/

geostatistical methods

based on statistical models that include autocorrelation

- considers both distance and degree of variation between known data points when estimating values in unknown areas
- most appropriate when there is spatially correlated distance or directional bias in the data
- Kriging is a complex, multistep process

- values of your input data need to be normally distributed
- values are stationary (i.e. local variations do not change in different areas in the map)
- values cannot show a trend or drift (e.g. systematic difference in rainfall)

geostatistical: semi-variogram

- Kriging requires a **semi-variogram**
- closer things are more predictable and have less variability, while distant things are less predictable and less related
- semi-variograms are used to chart how sample values will vary with distance

geostatistical: semi-variogram

- semi-variogram takes two sample points and calculates the distance between them; subsequently plots the distance versus the semi-variance (i.e. difference squared, then halved)
- often uses lags (grouped distances) with average semi-variance for each lag

Sill: The value at which the model first flattens out (no more spatial autocorrelation)

Range: The distance at which the model first flattens out

Nugget: The value at which the semi-variance intercepts the y-value

- we need to choose a mathematical model function to interpolate our data
- use the semi-variogram to identify the best fitting model, tweaking the sill,
 range and nugget parameters

- chosen mathematical model is used by the Kriging interpolator to predict responses at each location using a weighted average with nearest neighbours
- Kriging appears to give a 'smoother' surface than IDW (bull's eye effect), but more complex to run

Gimond, M. 2020. *Geodesic geometry*. [online] https://mgimond.github.io/

let's put it into practice