UnB - IE - Departamento de Estatística

1. Informações Gerais

- ✓ Disciplina: Tópicos em Estatística 2 EST0077.
- ✓ Tópico: Reconhecimento de Padrões.
- ✓ Professor: George von Borries.
- ✓ Local: Dep. Estatística Lab 3 / Horário: Terças e Quintas 18h às 19h50.
- ✓ Horário de atendimento: Sextas, 15 as 17h, EST Sala do Professor.
 - O aluno deve solicitar atendimento até o dia anterior.
- ✓ Contato: gborries@unb.br (Favor colocar no título do e-mail: TOPICOS2).
- ✓ Pré-requisitos:

Noções de Regressão Linear (EST0038) e Análise Multivariada 1 (EST0040). Conhecimento básico de leitura e manipulação de dados (preferencialmente em R)

A disciplina Tópicos em Estatística 2 exige ainda que o aluno tenha concluído as disciplinas Análise de Regressão Linear, Técnicas em Amostragem, Delineamento e Análise de Experimentos 1.

✓ Ambiente de aprendizagem: http://www.aprender3.unb.br

2. Objetivos e Informações Adicionais

A classificação de dados constitui a base do reconhecimento de padrões (em engenharia), aprendizado de máquinas (em computação), e do aprendizado estatístico (em ciência de dados).

Este curso tem o objetivo discutir alguns tópicos em discriminantes e classificação de dados, apresentar bibliografia na áreas de estudo, investigar recursos computacionais e aplicações. Alguns tópicos sobre estimação de densidades e agrupamento de dados também poderão ser abordados no curso.

2.1 Referências e Recursos Computacionais

O curso abordará tópicos variados abordados em diversos livros sobre reconhecimento de padrões, aprendizado de máquinas e aprendizado estatístico. Artigos e referências adicionais serão indicados durante o curso.

Os exemplos serão apresentados, na sua maioria, em linguagem de programação R que se encontra disponível para download em www.r-project.org ou para uso na nuvem em https://rstudio.cloud. Eventualmente poderão ser apresentados exemplos em SAS. Veja https://www.sas.com/pt_br/software/on-demand-for-academics.html para mais detalhes do uso do SAS na nuvem.

2.2 Ambiente de Aprendizagem

O curso possui uma página no moodle, http://www.aprender3.unb.br. Nesta plataforma serão disponibilizadas informações gerais sobre o curso, material complementar, exercícios, notas de provas e nota final. O curso também terá uma área no MS-Teams para atendimento de dúvidas. Os alunos matrículados no curso serão inscritos nestes ambientes pelo professor.

2.3 Atividades e Avaliação

A avaliação será baseada em atividades para entrega, sendo cada atividade com nota no intervalo [0, 100]. Não haverá reposição de atividades não entregues dentro do prazo estabelecido. As atividades poderão ter pesos diferentes, que serão indicados oportunamente.

2.4 Menção Final

As menções seguem os critérios definidos pela Universidade de Brasília conforme a seguinte escala:

$$SS = [90, 100], MS = [70, 90), MM = [50, 70), MI = [30, 50), II = (0, 30), SR = 0.$$

Importante: Alunos com mais de 25% de faltas terão conceito final SR, independentemente das notas obtidas em qualquer outra atividade do curso.

3. Bibliografia

- [1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
- [2] DA MOTTA SINGER, P. A. M. J. EstatÃstica e Cià ancia de Dados. 2022.
- [3] EFRON, B., AND HASTIE, T. Computer Age Statistical Inference: Algorithms, Evidence and Data Science. Cambridge, 2016.
- [4] FIEGUTH, P. An Introduction to Pattern Recognition and Machine Learning. 2022.
- [5] Gam, G., Ma, C., and Wu, J. Data clustering: theory, algorithms and applications. SIAM, 2007.
- [6] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. The Elements of Statistical Learning (Data Mining, Inference and Prediction). Springer, 2009. Segunda Edição, décima segunda impressão (2017).
- [7] IZENMAN, A. J. Modern multivariate statistical techniques (regression, classification, and manifold learning). Springer, 2008.
- [8] James, G., Witten, D., Hastie, T., and Tibshirani, R. An Introduction to Statistical Learning (with Applications in R). Springer, 2021. Segunda Edição.
- [9] Kneusel, R. T. Math for Deep Learning (What You Need to Know to Understand Neural Networks). 2022.
- [10] Murphy, K. P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
- [11] Murphy, K. P. Probabilistic Machine Learning: An Introduction (draft). MIT Press, 2022.
- [12] Negri, R. G. Reconhecimento de Padrões (Um estudo dirigido). 2021.

- [13] Theodoridis, S., and Koutroumbas, K. Pattern Recognition. Academic Press, 2009. Quarta Edição.
- [14] Webb, A. R., and Copsey, K. D. Statistical Pattern Recognition. Wiley, 2011. Terceira Edição.