RoLE Model User Guide

Renata Diaz, for now

4/21/2023

Table of contents

Pr	reface	5
I	Background	6
1	Process modeling in ecology and evolution	8
2	Models rolled into RoLE2.1Ecological neutral theory2.2Double-neutral ecological and population genetic drift2.3Competitive coexistence2.4Lotka-Volterra2.5Island biogeography	9 9 9 9
3	RoLE Mission 3.1 Scientific vision	10 10 10 10
II	How a RoLE model works	11
4	Components of a RoLE model 4.1 Metacommunity	13 13 13 13
5	Model inputs: Setting the stage 5.1 Parameter inputs	14 14 14
6	Initialization 6.1 The initial state of the model	15 15
7	Timestep-to-timestep 7.1 Deaths	16

	7.2 Birth and dispersal	17
8	On model completion: backwards-time population genetics	18
	Model results 9.1 Raw community state	19
10	Introduction	20
Ш	Running RoLE models	21
11	Installation 11.1 Compiled binaries 11.2 From source	
12	RoLE Shiny 12.1 Installation	$\frac{24}{24}$
13	Your first RoLE model 13.1 Model specification	25
14	Role Experiments 14.1 Role Experiments	26
15	Reproducibility 15.1 Stochasticity and non-repeatability	
16	(Not implemented) RoLE models at scale 16.1 Paralell and cluster computing	28 28
IV	Use cases	29
17	Rol E Models for In-Silico Exploration	31

18	Linking pattern to process in empirical data	32
	18.1 Many-to-one mapping	32
	18.2 Likelihood-free inference	32
	18.3 Worked example	32
19	RoLE in the Classroom	33
V	Troubleshooting	34
20	Contact	36

Preface

This is a user guide for working with the RoLE model, which includes the roleR and roleShiny R packages.

Part I Background

What is the RoLE Model? Who is involved? What are these packages?

1 Process modeling in ecology and evolution

What is process modeling? Why do we use it for eco-evo

2 Models rolled into RoLE

The RoLE model implements versions of a number of established models.

- 2.1 Ecological neutral theory
- 2.2 Double-neutral ecological and population genetic drift
- 2.3 Competitive coexistence
- 2.4 Lotka-Volterra
- 2.5 Island biogeography

3 RoLE Mission

- 3.1 Scientific vision
- 3.2 Operating principles
- 3.3 Code of Conduct

Part II How a RoLE model works

No code, high level narrative (or visuals!) of what happens in a RoLE model.

4 Components of a RoLE model

- 4.1 Metacommunity
- 4.1.1 Species, traits, phylogeny, genetics
- 4.2 Local community
- 4.2.1 Species, traits, phylogeny, genetics

5 Model inputs: Setting the stage

- 5.1 Parameter inputs
- 5.2 Pre-set configurations

6 Initialization

6.1 The initial state of the model

7 Timestep-to-timestep

What happens when the model actually runs? To really understand the model, we have to understand its steps and the logic and implications of each one.

Each model run is composed of several timesteps, and during each step events like death, birth, immigration, and speciation happen to individuals or species in the model.

These events happen randomly based on the model parameters, causing the state of the local and meta communities to change as the model is run.

7.1 Deaths

Every timestep, no matter what, an individual in the local community dies.

If we are using a neutral model (parameter neut_delta = 1), a completely random individual is always chosen for death. This is the definition of neutral evolution!

But if the model is not neutral, an individual's chance of death (or ability to survive in its environment) is based on its ability to compete with other individuals and survive in its environment.

The closer the trait of the individual is to the environmental optimum of 1, a perfect match to its environment, the more likely it is to survive.

But at the same time, the more individuals that have similar traits to it, the more the resources each needs will overlap, and this competition will make it harder to survive. (Add more on theory here).

An outcome of RoLE's individual-based model framework is that intraspecific competition is modeled, and even emphasized. Since individuals of the same species typically have similar traits, they will compete more. (could add info on what comp and env sigma do, but this info might belong in parameters section).

7.2 Birth and dispersal

Every timestep, no matter what, EITHER birth or dispersal causes a new individual to appear in the local community.

Birth is when an individual in the local community reproduces to make a single offspring.

Dispersal is when an individual is born in the metacommunity and immigrates from the metacommunity to the local community.

The chance of each is based on the dispersal_prob param, which is simply the chance of dispersal (making 1-dispersal_prob the chance of birth).

7.3 Speciation

Speciation in RoLE works by making the individual that was just birthed or immigrated a new species.

Speciation may or may not happen each timestep, with a chance equal to speciation_local.

Realistically speciation_local is an extremely small value like 0.001 to capture the rarity of speciation events over time.

When speciation happens, a new tip is added to the phylogeny for the new species.

7.4 Trait change

When birth, dispersal, or speciation happens, the new individual gets a new trait deviating from the traits of its parent.

This deviation depends on the trait_sigma parameter - the larger the trait_sigma the more child traits will deviate from parent traits. (this is also based on speciation meta and extinction meta, which could be worth explaining)

8 On model completion: backwards-time population genetics

9 Model results

What are the results of a role model?

- 9.1 Raw community state
- 9.2 Summary statistics

10 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1 + 1

[1] 2

Part III Running RoLE models

Ok, how do I actually play with RoLE?

11 Installation

- 11.1 Compiled binaries
- 11.2 From source

12 RoLE Shiny

- 12.1 Installation
- 12.2 Access
- 12.3 Using
- 12.4 Saving results

13 Your first RoLE model

- 13.1 Model specification
- 13.2 Running
- 13.3 Results and interpretation

14 RoLE Experiments

14.1 RoLE Experiments

15 Reproducibility

- 15.1 Stochasticity and non-repeatability
- 15.2 Storing model results

16 (Not implemented) RoLE models at scale

16.1 Paralell and cluster computing

Part IV Use cases

Overview of main (forseen) use cases for RoLE.

17 RoLE Models for In-Silico Exploration

Generate and test hypotheses for how different types of conditions/interventions affect model outcomes.

18 Linking pattern to process in empirical data

- 18.1 Many-to-one mapping
- 18.2 Likelihood-free inference
- 18.3 Worked example

19 RoLE in the Classroom

Tips, tricks, and sample curricula from using RoLE as a teaching tool.

Part V Troubleshooting

What to do when it doesn't run.

20 Contact

We respond to GitHub issues! Knuth, Donald E. 1984. "Literate Programming." Comput.~J.~27 (2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.