Universidad Politécnica de Cartagena

Escuela Técnica Superior de Ingeniería de Telecomunicación PRÁCTICAS DE MODELADO Y SIMULACIÓN

BOLETÍN DE ENTREGA Práctica 3: Simulador de colas G/G/k

INTEGRANTES DEL GRUPO:

NOMBRE Y APELLIDOS	CORREO ELECTRÓNICO
Diego Ismael Antolinos García	diego.antolinos@edu.upct.es
Andrés Ruz Nieto	andres.ruz@edu.upct.es

Información y metodología de evaluación:

- 1. Esta práctica tiene un peso total del 10% en la evaluación de la asignatura
- 2. El boletín debe rellenarse y convertirse a **formato PDF** para su envío a través de aula virtual, en las fechas dispuestas en el calendario
- 3. La evaluación se basará en las **respuestas del boletín** y también se contempla la posibilidad de realizar **entrevistas online** individuales para verificar la autoría de las mismas.

1. Implementación de las funciones GMLC y aleatorio

COMPLETE LOS SIGUIENTES CÓDIGOS

```
function [Z, muestra] = aleatorio(Z, tipo, param1, param2)
      Z = GCLM(Z);
          m = 2^31;
          u = Z/m;
          switch tipo
              case 0 % -> VA uniforme [0,1]
                  muestra = u;
              case 1 % -> VA uniforme [param1, param2]
                  muestra = param1 + u*(param2-param1);
              case 2 % -> VA exponencial lambda = param1
                  muestra = -log(u)/param1
              case 3 % -> Devuelve siempre param1 (VA "degenerada")
                  muestra = param1;
              case 4 % -> VA Bernoulli (devuelve 1 con probabilidad dada
      por param1, sino 0)
                  if u <= param1</pre>
                      muestra = 1;
                  else
                      muestra = 0;
                  end
end
[1 pto]
function nuevoZ = GCLM(Z)
% Usando Z como muestra previa del generador, crea la nueva muestra.
% El GCLM debe usar los parámetros de referencia de Kobayashi
      m = uint64(2^31);
      a = uint64(314159269);
      c = 453806245;
      nuevoZ = double(mod((a*Z+c),m));
end
```

a. Indique el valor del GCL tras 10000 iteraciones partiendo de Z=1 [0.5 pto]

```
for i=1:10000
   Z=GCLM(Z)
end
```

1.3562e+09

b. Establezca Z=1 e indique el valor de las 10 primeras muestras de un generador de tipo Bernoulli [0.5 pto]

```
for i=1:10
  [Z, muestra] = aleatorio(Z, 4, 0.47, 0);
end
```

Como valor de p hemos escogido 0.47

Obtenemos los siguientes valores: 1 0 1 1 1 0 0 0 1 1

2. Implementación del simulador

COPIE EL CÓDIGO COMPLETO DE SU SIMULADOR EN TEXTO (NO SE ADMITEN IMÁGENES) AL FINAL DEL DOCUMENTO

a) Indique el tiempo medio de respuesta obtenido para la configuración M/M/4 con λ =10 tareas/s y μ =2.6 tareas/s con 1 millón de pasos de simulación. [1 pto]

También hemos realizado la simulación con Fishman-Moore y nos da el siguiente resultado:

Valide el resultado usando: [1 pto]

$$I = \frac{\lambda}{\mu}$$

$$\rho = \frac{I}{k}$$

$$p_0 = \left[\frac{I^k}{k!(1-\rho)} + \sum_{n=0}^{k-1} \frac{I^n}{n!}\right]^{-1}$$

$$T = \frac{1}{\mu} + \frac{I^k}{\mu k k! (1-\rho)^2} p_0$$

$$I = 50/13$$

$$\rho = 25/26$$

$$\rho 0 = 507/131207$$

$$T = 2.674742963$$

b) Calcule T para la configuración M/D/1, es decir, con llegadas Poissonianas de tasa λ y tiempo de servicio constante (recuerde que μ =1/s), dada por λ =3 tareas/s y s=0.25 s/tarea. [0.5 pto]

También hemos realizado la simulación con Fishman-Moore y nos da el siguiente resultado:

Valide el resultado usando: [1 pto]

$$\mu = \frac{1}{S}$$

$$\rho = \frac{\lambda}{\mu}$$

$$T = \frac{1}{\mu} + \frac{\rho}{2\mu(1-\rho)}$$

$$\mu = 4$$

$$\rho = \frac{3}{4}$$

$$T = 0.625$$

c) Calcule T para G/G/3, con X~Bernoulli(p=0.25), S~Bernoulli(p=0.4) [1 pto]

También hemos realizado la simulación con Fishman-Moore y nos da el siguiente resultado:

d) Si ha realizado el ejercicio opcional indique el valor de N obtenido mediante simulación [2 pto]

MM4

```
NÚMERO MEDIO DE CLIENTES EN EL SISTEMA
26.3369
```

26.3369/10=2.63369 cercano al valor de T

MD1

NÚMERO MEDIO DE CLIENTES EN EL SISTEMA 1.8762

1.8762/3=0.6254

Valide el resultado usando: [0.5 ptos]

$$N = \lambda T$$
 (LEY DE LITTLE)

```
%% ESQUELETO DE SIMULACION (EL SIMULADOR HA SIDO MODIFICADO PARA PODER ELEGIR
LA FORMA EN LA QUE SE QUIEREN OBTENER LOS Z)
listaEV = [];
                      % Lista vacia al comienzo
t simulacion = 0.0;
                      % Reloj de simulación
                           % Numero de iteraciones del simulador
pasos = 10000000;
% ACCIONES DE INCIO: p.ej. definir estado, generar primeros eventos
% Se proporciona ejemplo del
% Caso cola de trabajos
% TIPOS DE EVENTOS, CADA UNO UN NUMERO DIFERENTE
SALE = 0;
LLEGA = 1;
MUESTREO = 2;
% ESTADO
N = 0;
fifoTiempos = [];
% PARAMETROS DE SIMULACION
%1 -> Fishman-Moore
%2 -> Kobayashi
%3 -> Coveyou-McPherson
%4 -> glibc
%5 -> MMIX
generadorZ = 2;
Z = 1;
PARAMETROS PARA M/M/4 | lambda = 10 | mu = 2.6
% k = 4; % Numero de recursos
% tipoX = 2;
% param1X = 10;
% param2X = 0;
% tipoS = 2;
% param1S = 2.6;
% param2S = 0;
PARAMETROS PARA M/D/1 | lambda = 3 | mu = 1 | s = 0.25
k = 1;
tipoX = 2;
param1X = 3;
param2X = 0;
tipoS = 3;
param1S = 0.25;
param2S = 0;
%PARAMETROS PARA G/G/3 \mid X\sim Bernoulli(p = 0.25) \mid S\sim Bernoulli(p = 0.4)
% k = 3;
% tipoX = 4;
% param1X = 0.25;
% param2X = 0;
```

```
% tipoS = 4;
% param1S = 0.4;
% param2S = 0;
% VARIABLES PARA EL CALCULO DE LOS PROMEDIOS DE INTERES
summuestrasT = 0;
muestrasT = 0;
summuestrasN = 0;
muestrasN = 0;
% PRIMEROS EVENTOS
[Z,taux] = aleatorio(Z,tipoX,param1X,param2X,generadorZ);
listaEV = encolarEvento(listaEV, taux, LLEGA,0);
[Z,taux] = aleatorio(Z,tipoX,param1X,param2X,generadorZ);
listaEV = encolarEvento(listaEV, taux, MUESTREO,0);
for i=1:pasos
    [listaEV, tiempo, tipo, tllegadatarea] = sgteEvento(listaEV);
    % Actualizamos el tiempo
    t simulacion = tiempo;
    switch tipo
        case LLEGA
            N = N+1;
            [Z,taux] = aleatorio(Z,tipoX,param1X,param2X,generadorZ);
            listaEV = encolarEvento(listaEV, t simulacion + taux, LLEGA,0);
            if N<=k
                [Z,taux] = aleatorio(Z,tipoS,param1S,param2S,generadorZ); %
Tiempo en el recurso
                listaEV = encolarEvento(listaEV, t simulacion + taux, SALE,
t simulacion);
            else
                fifoTiempos = pushFIFO(fifoTiempos,t simulacion);
            end
        case SALE
            N = N-1;
            if N>=k % Otro trabajo pasa a ocupar el "procesador"
                [fifoTiempos, tllegadacola] = popFIFO(fifoTiempos); %
Recuperamos el primer tiempo en cola
                [Z,taux] = aleatorio(Z,tipoS,param1S,param2S,generadorZ); %
Tiempo en el recurso
                listaEV = encolarEvento(listaEV, t simulacion + taux, SALE,
tllegadacola);
            end
            summuestrasT = summuestrasT + (t simulacion - tllegadatarea);
            muestrasT = muestrasT + 1;
            case MUESTREO
                muestrasN=muestrasN+1;
                summuestrasN=summuestrasN+N;
                [Z,taux] = aleatorio(Z,tipoX,param1X,param2X,generadorZ);
                listaEV = encolarEvento(listaEV, t simulacion + taux,
MUESTREO, tllegadatarea);
    end
end
```

```
% Mostramos los promedios calculador
display('FIN DE LA SIMULACION');
[i, summuestrasT, muestrasT]
display('TIEMPO MEDIO');
disp(summuestrasT / muestrasT);
display('NÚMERO MEDIO DE CLIENTES EN EL SISTEMA');
disp(summuestrasN/muestrasN);
```