Lien entre les dérivations ∂ et δ

Colas Bardavid

20 octobre 2008

La motivation de départ de ce texte est d'étudier le lien entre les deux dérivations ∂ et δ de k(X), définies par :

- a) ∂ : $\partial X^n = nX^{n-1}$;
- b) δ : $\delta P = X \partial P$.

On peut néanmoins se placer dans un cadre plus général, ce qu'on fera, en considérant un corps différentiel (k,∂) de caractéristique nulle contenant un élément x tel que $\partial x=1$. On peut alors vérifier que l'opérateur δ défini par $\delta f=x\partial f$ est une dérivation.

En effet, on a $\delta(f+g)=x\partial f+x\partial g=\delta f+\delta g$. Par ailleurs, $\delta(fg)=x(f\partial g+g\partial f)=f\delta g+g\delta f$. On remarque même que pour tout élément g non-nul de g, l'opérateur g0 est une dérivation.

L'avantage de la dérivation δ sur ∂ est que : $\delta x^n = nx^{n-1}\delta x = nx^n$.

1 Premier lien entre $t^m \partial^m$ et δ

Proposition 1
$$\forall m \geq 1, \quad x^m \partial^m = \delta(\delta - 1) \cdots (\delta - m + 1)$$

Pour démontrer cette proposition, on a besoin du lemme suivant :

Lemme 2
$$\forall n \geq 0, \quad x^n \partial^n x \partial = x^{n+1} \partial^{n+1} + n x^n \partial^n$$

Démonstration: On démontre ce lemme par récurrence.

Pour n = 0, c'est évident.

Supposons que la propriété est vraie pour n. Alors,

$$\begin{array}{rcl} x^{n+1}\partial^{n+1}x\partial & = & xx^n\partial^n\partial x\partial \\ & = & x(x^n\partial^n)(x\partial+1)\partial \\ & = & x(x^n\partial^nx\partial)\partial+x^{n+1}\partial^{n+1} \\ & = & x(x^{n+1}\partial^{n+1}+nx^n\partial^n)\partial+x^{n+1}\partial^{n+1} \\ & = & x^{n+2}\partial^{n+2}+(n+1)x^{n+1}\partial^{n+1} \end{array}$$

Démonstration : (de la proposition)

Cette proposition se démontre aussi par récurrence.

Pour m=1, c'est évident.

Supposons la propriété vraie pour m. Alors,

$$\begin{array}{lll} x^{m+1}\delta^{m+1} & = & x^m\delta^mz\delta-mx^m\delta^m & \text{d'après le lemme 2} \\ & = & \delta(\delta-1)\cdots(\delta-m+1)\delta-m\delta(\delta-1)\cdots(\delta-m+1) \\ & = & \delta(\delta-1)\cdots(\delta-m+1)(\delta-m) \end{array}$$

2 Expression de δ^n en fonction des $x^i\partial^i$

A priori, on ne se sait pas grand chose de cette expression δ^n . Cependant, grâce à la proposition 1, on sait qu'on peut écrire :

$$\delta^n = x^n \partial^n + \sum_{i=1}^{n-1} a_i(n) x^i \partial^i.$$

On va trouver des relations de récurrence que vérifient les suites a_i et les résoudre.

2.1 Les relations de récurrence entres les $a_i(n)$

2.1.1 Un calcul

Ces relations se déduisent du calcul suivant :

$$\begin{split} \delta^{n+1} &= \left(x^n \partial^n + \sum_{i=1}^{n-1} a_i(n) x^i \partial^i \right) x \partial \\ &= x^n \partial^n x \partial + \sum_{i=1}^{n-1} a_i(n) x^i \partial^i x \partial \\ &= x^{n+1} \partial^{n+1} + n x^n \partial^n + \\ &= \sum_{i=1}^{n-1} a_i(n) x^{i+1} \partial^{i+1} + \sum_{i=1}^{n-1} i a_i(n) x^i \partial^i \qquad \text{d'après le lemme 2} \\ &= x^{n+1} \partial^{n+1} + (n+a_{n-1}(n)) x^n \partial^n + \sum_{i=2}^{n-1} (a_{i-1}(n) + i a_i(n)) x^i \partial^i + a_1(n) x \partial. \end{split}$$

2.1.2 Relations de récurrence

On en déduit les relations :

$$a_n(n+1) = n + a_{n-1}(n) \qquad n \ge 2$$
 (1)

$$a_i(n+1) = a_{i-1}(n) + ia_i(n) \qquad n-1 \ge i \ge 2$$
 (2)

$$a_1(n+1) = a_1(n). (3)$$

Par ailleurs, le fait que $\delta = x\partial$ nous donne

$$a_1(1) = 1.$$
 (4)

Enfin, si on prend la convention

$$a_n(n) = 1 \qquad n \ge 1 \tag{5}$$

les équations (1) et (2) peuvent être exprimées par

$$a_i(n+1) = a_{i-1}(n) + ia_i(n) \quad n \ge i \ge 2.$$
 (6)

2.2 Calcul de $a_1(n)$

On déduit immédiatement de (3) et (4) que

Proposition 3 $\forall n \geq 1, \quad a_1(n) = 1$

2.3 Calcul de $a_2(n)$

Connaissant maintenant $a_1(n)$, l'équation récurrente pour $a_2(n)$ s'écrit alors $a_2(n+1)=1+2a_2(n)$, c'est-à-dire $(a_2(n+1)+1)=2\,(a_2(n)+1)$. Ainsi, la suite $a_2(n)+1$ est une suite géométrique de raison 2, dont le terme général est :

$$a_2(n) + 1 = 2^{n-2}(a_2(2) + 1)$$
 $n \ge 2$.

Si on résume :

Proposition 4 $\forall n \geq 2, \quad a_2(n) = 2^{n-1} - 1$

2.4 Calcul de $a_3(n)$

En injectant la valeur $a_2(n) = 2^{n-1} - 1$, l'équation récurrente pour $a_3(n)$ s'écrit donc

$$a_3(n+1) = (2^{n-1} - 1) + 3a_3(n)$$
 $n \ge 3$,

c'est-à-dire:

$$\frac{a_3(n+1)}{3^{n+1}} = \frac{1}{6} \left(\frac{2}{3}\right)^n - \frac{1}{3} \left(\frac{1}{3}\right)^n + \frac{a_3(n)}{3^n} \qquad n \ge 3$$

On voit alors que $a_3(n)$ sera de la forme $a_3(n)=A3^n+B2^n+C$, pour $n\geq 3$. Plus précisément, après calcul, on trouve :

Proposition 5 $\forall n \geq 3, \quad a_3(n) = \frac{1}{6}3^n - \frac{1}{2}2^n + \frac{1}{2}$

2.5 Forme des $a_i(n)$

Par extension, on pourrait montrer par induction que les $a_i(n)$ sont de la forme

$$a_i(n) = \sum_{j=1}^i C_j(i)j^n \qquad n \ge i.$$
 (7)

2.6 Relation de récurrence pour les $C_i(i)$

2.6.1 Un calcul

On a, si $n \ge i \ge 2$, $a_i(n+1) = a_{i-1}(n) + ia_i(n)$, ce qu'on peut réécrire

$$\frac{a_i(n+1)}{i^{n+1}} = \frac{a_{i-1}(n)}{i^{n+1}} + \frac{a_i(n)}{i^n}.$$

3

Notons alors $v_n:=\frac{a_i(n)}{i^n}$ et injectons (7) pour obtenir

$$v_{n+1} - v_n = \frac{\sum_{j=1}^{i-1} C_j (i-1) j^n}{i^{n+1}}$$
$$= \sum_{j=1}^{i-1} \frac{C_j (i-1)}{i} \left(\frac{j}{i}\right)^n$$

Si on décide de noter $A_j = \frac{C_j(i-1)}{i}$ et comme $v_i = \frac{1}{i^i}$, on en déduit donc :

$$v_{n} = \sum_{k=i}^{n-1} (v_{k+1} - v_{k}) + \frac{1}{i^{i}}$$

$$= \sum_{k=i}^{n-1} \sum_{j=1}^{i-1} A_{j} \left(\frac{j}{i}\right)^{k} + \frac{1}{i^{i}}$$

$$= \sum_{j=1}^{i-1} A_{j} \sum_{k=i}^{n-1} \left(\frac{j}{i}\right)^{k} + \frac{1}{i^{i}}$$

$$= \sum_{j=1}^{i-1} A_{j} \left(\frac{j}{i}\right)^{i} \sum_{k=0}^{n-i-1} \left(\frac{j}{i}\right)^{k} + \frac{1}{i^{i}}$$

$$= \sum_{j=1}^{i-1} A_{j} \left(\frac{j}{i}\right)^{i} \frac{\left(\frac{j}{i}\right)^{n-i} - 1}{\frac{j}{i} - 1} + \frac{1}{i^{i}}$$

$$= \sum_{j=1}^{i-1} \frac{A_{j} \left(\frac{j}{i}\right)^{n}}{\frac{j}{i} - 1} + \sum_{j=1}^{i-1} \frac{A_{j} \left(\frac{j}{i}\right)^{j}}{1 - \frac{j}{i}} + \frac{1}{i^{i}}$$

Et, finalement:

$$a_{i}(n) = i^{n}v_{n}$$

$$= \sum_{j=1}^{i-1} \frac{C_{j}(i-1)}{(-1)(i-j)} j^{n} + \left(\sum_{j=1}^{i-1} \frac{C_{j}(i-1)\left(\frac{j}{i}\right)^{i}}{(i-j)} + \frac{1}{i^{i}}\right) i^{n}$$

$$= \sum_{j=1}^{i} C_{j}(i) j^{n}$$

2.6.2 Relations de récurrence entre les $C_i(i)$

On en déduit donc les relations :

$$C_j(i) = \frac{-1}{i-j}C_j(i-1)$$
 $j \le i-1 \text{ et } i \ge 2$ (8)

$$C_{i}(i) = \sum_{i=1}^{i-1} \frac{C_{j}(i-1)\left(\frac{j}{i}\right)^{i}}{(i-j)} + \frac{1}{i^{i}} \qquad i \ge 2$$
(9)

2.7 Calcul de $C_j(i)$ en fonction de $C_i(i)$

À partir de l'équation (8), on calcule facilement :

Proposition 6
$$C_{j}(i) = \frac{(-1)^{i-j}}{(i-j)!} C_{j}(j)$$
 $i \geq j \geq 1$

Démonstration : On procède par récurrence sur $i \geq j$.

Pour i = j, l'équation est triviale.

Supposons qu'elle soit vraie pour $i-1 \ge j$. Alors, grâce à l'équation (8), on a

$$C_{j}(i) = \frac{-1}{i-j}C_{j}(i-1)$$

$$= \frac{-1}{i-j}\frac{(-1)^{i-1-j}}{(i-j-1)!}C_{j}(j)$$

$$= \frac{(-1)^{i-j}}{(i-j)!}C_{j}(j)$$

2.8 Expérimentation numérique pour les $C_i(i)$

On peut reporter cette nouvelle expression, pour obtenir une relation de récurrence plus simple pour les $C_i(i)$. On obtient :

$$C_{i}(i) = \sum_{j=1}^{i-1} \frac{C_{j}(i-1) \left(\frac{j}{i}\right)^{i}}{(i-j)} + \frac{1}{i^{i}}$$

$$= \sum_{j=1}^{i-1} \frac{\frac{(-1)^{i-j-1}}{(i-j-1)!} C_{j}(j) \left(\frac{j}{i}\right)^{i}}{(i-j)} + \frac{1}{i^{i}}$$

$$= \sum_{j=1}^{i-1} \frac{(-1)^{i-j-1}}{(i-j)!} \left(\frac{j}{i}\right)^{i} C_{j}(j) + \frac{1}{i^{i}}$$

À partir de là, on est un peu dans l'embarras pour résoudre cette nouvelle suite récurrente. On fait alors quelques expérimentations numériques, pour voir, et on trouve :

$$C_1(1) = 1$$
, $C_2(2) = \frac{1}{2!}$, $C_3(3) = \frac{1}{3!}$ et $C_4(4) = \frac{1}{4!}$.

On conjecture donc qu'on a $C_i(i)=\frac{1}{i!}$. Pour le démontrer, il suffit de faire une récurrence, mais on doit savoir avant que

$$\sum_{j=1}^{i-1} \frac{(-1)^{i-j-1}}{j!(i-j)!} \left(\frac{j}{i}\right)^i + \frac{1}{i^i} = \frac{1}{i!} \qquad i \ge 2,$$
 (10)

ce qui n'est pas gagné et qui nous amène à faire de nouveaux calculs.

2.9 Calcul d'une somme binomiale

2.9.1 Exposition du nouveau problème

Pour démontrer l'égalité qui nous intéresse, on doit savoir calculer

$$\sum_{j=0}^{i} \binom{i}{j} j^{i} (-1)^{j}.$$

On introduit, plus généralement, les sommes

$$X(i,p) = \sum_{j=0}^{i} {i \choose j} j^{p} (-1)^{j}.$$

Notre but est ainsi de calculer X(i, i) pour tout i.

2.9.2 Premières identités

On peut déjà écrire les identités suivantes (on prend la convention $0^0 = 1$):

$$X(i,0) = 0$$
 $i \ge 1$ car c'est le développement de $(1-1)^i$ (11)

$$X(0,p) = 1 (12)$$

$$X(1,p) = -1 \quad p \ge 1 \tag{13}$$

2.9.3 Relation de récurrence entre les X(i, j)

Si i et p sont plus grands que 1, on peut faire le calcul :

$$X(i,p) = \sum_{j=0}^{i} {i \choose j} j^{p} (-1)^{j} = \sum_{j=1}^{i} {i \choose j} j^{p} (-1)^{j}$$
$$= \sum_{j=1}^{i} j {i \choose j} j^{p-1} (-1)^{j}$$

Or, $j\binom{i}{j} = i\binom{i-1}{j-1}$ si $j \geq 1$. Ainsi,

$$X(i,p) = \sum_{j=1}^{i} i {i-1 \choose j-1} j^{p-1} (-1)^{j}$$

Or, si $j \leq i - 1$, on a

$$\binom{i-1}{j-1} = \binom{i}{j} - \binom{i-1}{j}.$$

On peut donc écrire :

$$\begin{split} X(i,p) &= \sum_{j=1}^{i-1} i \left(\binom{i}{j} - \binom{i-1}{j} \right) j^{p-1} (-1)^j + (-1)^i i^p \\ &= i \left(\sum_{j=1}^{i-1} \binom{i}{j} j^{p-1} (-1)^j + (-1)^i i^{p-1} \right) - i \sum_{j=1}^{i-1} \binom{i-1}{j} j^{p-1} (-1)^j \\ &= i \sum_{j=0}^{i} \binom{i}{j} j^{p-1} (-1)^j - i \sum_{j=0}^{i-1} \binom{i-1}{j} j^{p-1} (-1)^j \\ &= i X(i,p-1) - i X(i-1,p-1). \end{split}$$

Si on résume, notre relation de récurrence est :

$$X(i,p) = iX(i,p-1) - iX(i-1,p-1)$$
 $i > 1 \text{ et } p > 2$ (14)

2.9.4 Nullité des X(i, p) si p < n

Grâce à (14), on montre :

Lemme 7
$$\forall i \geq 1, \quad \forall 0 \leq p < i, \qquad X(i,p) = 0$$

Démonstration : On fait une double récurrence. D'abord, on procède par récurrence sur i. Lorsque i = 1, c'est l'identité (11).

Supposons que le lemme soit vérifié jusqu'à l'ordre $i \geq 1$. Démontrons par récurrence sur $0 \leq p < i+1$ le lemme à l'ordre i+1. Pour p=0, il s'agit encore de (11). Supposons que l'on sache que X(i+1,j)=0 pour tous les $j \leq p$, avec p fixé et p < i. Alors, on a, d'après (14), X(i+1,p+1)=(i+1)X(i+1,p)-(i+1)X(i,p). Mais, d'après les hypothèses de récurrence faites, on a que X(i+1,p)=X(i,p)=0 et donc X(i+1,p+1)=0, ce qui achève la preuve.

2.9.5 Nouvelle relation de récurrence sur X(i, i)

Tenant compte du lemme 7 et de l'identité (14), on obtient

$$X(i,i) = -iX(i-1,i-1) i \ge 2 (15)$$

Cette relation se résout facilement en

Proposition 8
$$\forall i \geq 1$$
, $X(i,i) = (-1)^i i!$

2.10 Démonstration de l'égalité (10)

On calcule:

$$\begin{split} \sum_{j=1}^{i-1} \frac{(-1)^{i-j-1}}{j!(i-j)!} \left(\frac{j}{i}\right)^i + \frac{1}{i^i} &= \frac{1}{i^i} \left(\frac{(-1)^{i-1}}{i!} \sum_{j=1}^{i-1} \frac{i!}{j!(i-j)!} (-1)^j j^i + 1\right) \\ &= \frac{1}{i^i} \left(\frac{(-1)^{i-1}}{i!} \left(\sum_{j=0}^{i} \binom{i}{j} (-1)^j j^i - (-1)^i i^i\right) + 1\right) \\ &= \frac{1}{i^i} \left(\frac{(-1)^{i-1}}{i!} \left((-1)^{i}i! - (-1)^i i^i\right) + 1\right) \quad \text{d'après (14)} \\ &= \frac{1}{i^i} \left(-1 + \frac{i^i}{i!} + 1\right) = \frac{1}{i!} \end{split}$$

Ainsi, les expressions $C_i(i) = \frac{1}{i!}$ sont exactes et on peut dérouler tout le tapis.

2.11 Forme des $C_j(i)$

On a donc
$$C_j(i) = \frac{(-1)^{i-j}}{(i-j)!j!} = \frac{(-1)^{i-j}}{i!} {i \choose j}$$
 $i \ge j \ge 1$

2.12 Conclusion

Si on met bout à bout ce qui précède, on trouve :

Théorème 9

$$\delta^n = x^n \partial^n + \sum_{i=1}^{n-1} \left(\sum_{j=1}^i \frac{(-1)^{i-j}}{i!} \binom{i}{j} j^n \right) x^i \partial^i$$

Maintenant qu'on a obtenu cette formule, on pourrait essayer de démontrer le résultat directement mais en fait, ça a l'air beaucoup plus dur que de trouver la formule.

3 Exemples

Voici des calculs explicites faits à l'aide du théorème 3 :

$$\begin{array}{rcl} \delta & = & x\partial \\ \delta^2 & = & x^2\partial^2 + x\partial \\ \delta^3 & = & x^3\partial^3 + 3x^2\partial^2 + x\partial \\ \delta^4 & = & x^4\partial^4 + 6x^3\partial^3 + 7x^2\partial^2 + x\partial \\ \delta^5 & = & x^5\partial^5 + 10x^4\partial^4 + 25x^3\partial^3 + 15x^2\partial^2 + x\partial \\ \delta^6 & = & x^6\partial^6 + 15x^5\partial^5 + 65x^4\partial^4 + 90x^3\partial^3 + 31x^2\partial^2 + x\partial \\ \delta^7 & = & x^7\partial^7 + 21x^6\partial^6 + 140x^5\partial^5 + 350x^4\partial^4 + 301x^3\partial^3 + 63x^2\partial^2 + x\partial \end{array}$$