CSE 4553 Machine Learning

Lecture 1: Introduction to Machine Learning

Winter 2022

Hasan Mahmud | hasan@iut-dhaka.edu

Contents

- Introduction
- What is Machine Learning?
- Types of machine learning
- Machine Learning applications

Introduction

"Data is abundant and cheap but knowledge is scarce and expensive."

- Machine = computer, computer program
- Learning = improving performance on a given task, based on experience / examples

What is machine learning?

- Arthur Samuel (1959). Machine Learning:
 - Field of study that gives computers the ability to learn without being explicitly programmed.
- Tom Mitchell (1998). Well-posed Learning Problem:
 - A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

What is machine learning?...

- Improving some measure of performance P when executing some task T through some type of training experience E
- E.g. 1
 - So if you want your program to predict, for example, traffic patterns at a busy intersection (task T), you can run it through a machine learning algorithm with data about past traffic patterns (experience E) and, if it has successfully "learned", it will then do better at predicting future traffic patterns (performance measure P).
- E.g. 2
 - Task T: Assign label of fraud or not fraud to credit card transaction
 - Performance measure P: Accuracy of fraud classifier with higher penalty when fraud is labeled as not fraud
 - Training experience E: Historical credit card transactions labeled as fraud or not

Types of learning

- Supervised (inductive) learning
 - Training data includes desired outputs
- Unsupervised learning
 - Training data does not include desired outputs
- Semi-supervised learning
 - Training data includes a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised learning

Some examples for supervised algorithms include Linear Regression, Decision Trees, Random Forest, k-nearest neighbours, SVM, Neural Network etc.

Supervised learning...

• Given a set of data points $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ associated to a set of outcomes, $\{y^{(1)}, y^{(2)}, ..., y^{(m)}\}$ we want to build a classifier that learns how to predict y from x.

- Training
- Testing
- Hypothesis
- Loss function
- Cost estimation

• We want estimate the prediction function h, by minimizing prediction error, $\sum (y^{(i)} - h(x^{(i)}))^2$

Unsupervised Learning

• The goal of unsupervised learning is to find hidden patterns in unlabeled data, $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$

Semi supervised learning

Reinforcement Learning

Reinforcement learning...

- Basic elements of a reinforcement learning problem:
 - Agent: the decision maker (e.g. game player, robot). It has sensors to observe the environment (e.g. robot camera).
 - Environment (e.g. board, maze). At any time t, the environment is in a certain state s_t that is one of a set of possible states S (e.g. board state, robot position). Often, there is an initial state and a goal state.
 - A set \mathcal{A} of possible actions a_t (e.g. legal chess movements, possible robot steps). The state changes after an action: $s_{t+1} = \delta(s_t, a_t)$. The solution requires a sequence of actions.
 - Reward $r_t = r(s_t, a_t) \in \mathbb{R}$: the feedback we receive, usually at the end of the game. It helps to learn the policy.
 - Policy π : $\mathcal{S} \to \mathcal{A}$: a control strategy for choosing actions that achieve a goal.

Steps developing a machine learning application

References

• Chapter 2: Introduction to Machine learning by Ethem Alpydin.