A Quest for Knowledge*

Christoph Carnehl[†]

Johannes Schneider[‡]

June 2021

Abstract

Is more novel research always desirable? We develop a model in which knowledge shapes society's policies and guides the search for discoveries. Researchers select a question to study and how intensely to study it. The novelty of the question determines both the value and the difficulty of discovering its answer. We show that the benefits of discoveries are nonmonotone in novelty. Because of a dynamic externality, it can be optimal to incentivize research on more distant questions than myopically optimal to improve the evolution of knowledge. One reason is that the probability of a discovery and the novelty of a question are endogenously linked. They can be complements or substitutes depending on existing knowledge. We also analyze cost reductions and research awards as instruments to incentivize research. We find that while a benefit-maximizing funder's optimal funding mix depends on her budget, distant discoveries can only be incentivized through awards.

^{*}We are grateful to Arjada Bardhi, Antonio Cabrales, Steven Callander, Marco Celentani, Rahul Deb, Philipp Denter, Florian Ederer, Alex Frug, William Fuchs, Ryan Hill, Toomas Hinosaar, Nenad Kos, Jorge Lemus, Igor Letina, David Lindequist, Gerard Llobet, Ignacio Ortuño, Marco Ottaviani, Nicola Pavoni, Harry Pei, Konrad Stahl, Carolyn Stein, Armin Schmutzler, Carlo Schwarz, Adrien Vigier, Ludo Visschers, Ralph Winkler, and audiences at the VSET seminar, the University of Bern, Bocconi University, Pompeu Fabra University, THEMA (Cergy-Pontoise University), UC3M, the Economics of Science Workshop at Bocconi University, and the MaCCI Annual Meeting 2020 for helpful comments.

Johannes Schneider gratefully acknowledges financial support from Agencia Estatal de Investigación (grant PID2019-111095RB-I00), Ministerio Economía y Competitividad (grant ECO2017-87769-P), and Comunidad de Madrid (grant MAD-ECON-POL-CM H2019/HUM-5891).

Bocconi University, Department of Economics and IGIER; e-mail: christoph.wolf@unibocconi.it

[‡]Carlos III de Madrid; e-mail: jschneid@econ.uc3m.es

[Evolution] comes through asking the right questions, because the answer pre-exists. . . . You don't invent the answer. You reveal the answer.

Jonas Salk, inventor of the polio vaccine

1 Introduction

In a letter to Franklin D. Roosevelt, Vannevar Bush (1945) pleads with the president to preserve freedom of inquiry by federally funding basic research—the "pacemaker of technological progress." That letter paved the way for the creation of the National Science Foundation (NSF) in 1950. The NSF today, like the vast majority of governments and scientific institutions, cherishes scientific freedom and allows academic researchers to select research projects independently.¹

With scientific freedom comes the responsibility for "asking the right questions" that Jonas Salk refers to in the opening paragraph. However, what are the right questions? Biologist and Nobel laureate Peter Medawar (1967) famously notes that "research is surely the art of the soluble. . . . Good scientists study the most important problems they think they can solve." Finding the most important yet soluble question is nontrivial. One reason is that both importance and solubility depend on the current state of knowledge (see, for example, Iaria, Schwarz, and Waldinger, 2018).

In this paper, we develop a microfounded model of knowledge creation through research. Our model captures (i) the role of existing knowledge in determining the benefits and cost of research, (ii) the spillovers a discovery creates on conjectures about similar questions, and (iii) the researcher's freedom to choose what question to study and how intensely to study it. We show that the choice of a more novel research question does not always come at the cost of a reduced probability of discovery: depending on existing knowledge, novelty can substitute or complement the probability of discovery. We characterize the researcher's choices and address classical questions of science funding: Should we incentivize researchers to study questions far beyond the current knowledge frontier? Do such moonshots improve the evolution of knowledge? When and how should a budget-constrained funder incentivize innovative research?

We represent society by a single decision maker who faces a set of problems. In her response to these problems, she uses the public good of knowledge. Knowledge is the set of questions to which the answer has already been discovered. Because answers to similar questions are correlated, knowledge also provides the decision maker with conjectures regarding questions to which the answer is undiscovered. The precision of a conjecture depends on the question's location relative to existing knowledge.³ We conceptualize the correlation by assuming that answers to questions follow the realization of a Brownian path. Figure 1 depicts that idea. Questions are on the horizontal axis, and the gray line represents the answers to all questions. Dots (•) represent existing knowledge. Because of the assumption of a Brownian path, all conjectures follow a normal distribution. The mean

¹See, for example, OHCR (1966), Art 15 or, more recently, Bonn Declaration (2020).

²Following, for example, Jacob Marschak's "Knowledge is useful if it helps to make the best decisions" (Marschak, 1974). See, for example, Hjort et al. (2021) for evidence that knowledge creation indeed improves decision making.

³An example of such spillovers is the COVID-19 vaccine development by Moderna, which "took all of one weekend." The speed was a direct consequence of researchers' discovery of how to replicate the spikes of another coronavirus, as found in research on MERS. Details are discussed, for instance, in This American Life (2020).

Figure 1: Existing knowledge and conjectures.

and the variance depend on existing knowledge. The solid black lines in Figure 1 represent the mean; the dashed lines provide the band of the 95 percent prediction interval.⁴

As a first step, we characterize the benefits of a discovery. To gain intuition, consider the left panel of Figure 1. Only the answer to question x_r is known. Assume that researchers discover the answer to question x_l . We now move to the right panel. Decision making improves in three ways. First, the decision maker has precise knowledge about the answer to x_l . Second, her conjectures about all questions to the left of x_r improve. Third, her conjectures improve the most in the newly created area of questions $[x_l, x_r]$ in which the decision maker now has two pieces of knowledge that help her form conjectures.

The benefit of discovering the answer to x_l depends on the question's distance from x_r . The effect of an increase in the distance between x_l and x_r is similar to the effect of output expansion by a monopolist. Consider first a discovery close to existing knowledge which implies a narrow area $[x_l, x_r]$. There are only a few questions in the area, but the conjectures about them are precise; that is, the variance of the conjectures is low. As the distance of x_l from x_r increases, more questions lie inside the area—a marginal gain. At the same time, the conjectures become less precise—an inframarginal loss. The benefit of a discovery is maximized at an intermediate distance.

If both x_l and x_r are known initially, discoveries advance knowledge beyond the frontier if the discoveries concern questions $x \notin [x_l, x_r]$. Advancing beyond the frontier works in the manner described in the paragraph above. Alternatively, discoveries deepen knowledge if they concern questions $x \in [x_l, x_r]$. Depending on the distance between x_l and x_r , advancing knowledge or deepening knowledge may be optimal. If x_l and x_r are close, knowledge is dense: the conjecture about any question in $[x_l, x_r]$ is already precise. In this case, a substantive advancement of knowledge beyond the frontier provides larger benefits than deepening knowledge does. If x_l and x_r are far apart, knowledge is sparse: conjectures about questions in $[x_l, x_r]$ are imprecise. Obtaining an answer to a question $x \in [x_l, x_r]$ divides this single area of imprecise conjectures into two areas with precise conjectures. In this case, deepening knowledge provides larger benefits than advancing knowledge beyond the frontier does.

⁴The 95 percent prediction intervals depend on existing knowledge and describe the following relation: for each question, with a probability of 95 percent, the answer lies between the respective dashed lines given existing knowledge.

Overall, the largest benefit comes from deepening knowledge between distant, yet not too distant, pieces of knowledge. Advancing knowledge beyond the frontier beats deepening knowledge in an existing area only if all available areas are short.

In a second step, we conceptualize the research process as the search for an answer. We assume that it requires effort to search for the answer to a question and that the cost of effort is increasing and convex. We provide a solution to the search problem, which yields an expression for the cost of research on a particular question in terms of novelty (the distance from the question to existing knowledge) and output (the probability that search results in discovery). That expression provides a link between the novelty of the question and the risk of failed search. The link originates in the initial conjecture, which depends on the novelty of the question. The more precise that conjecture, the higher the output for any given level of effort.

In a third step, we combine the benefits and cost of research to characterize (i) the researcher's choice of question and (ii) how much effort the researcher invests in studying that question. We show that novelty and output are related nontrivially and that their relation depends on the structure of existing knowledge. In particular, novelty and output can be substitutes or complements. If the question lies in a short area, novelty and output are complements. In this case, the more novel the question, the higher the probability that the researcher will discover the answer. The benefits of discovery increase in novelty, yet the cost remains low. If the question lies within a larger area, novelty and output are substitutes for small levels of novelty but complements for intermediate levels. In this case, at the boundaries of the area, x_l and x_r , the marginal cost of output increases fast in novelty, causing the researcher to reduce output. However, moving away from one end of the area means moving toward the other end. While moving away from one end reduces the precision of conjectures, moving toward the other attenuates that reduction. As novelty increases, the attenuation becomes stronger, which mitigates the marginal-cost effect. Eventually, the marginal-benefit increase dominates: novelty and output become complements. As the area size increases further, the region in which novelty complements output shrinks. The third possibility is that the researcher advances knowledge beyond the frontier. In this case, novelty and output are substitutes throughout.

In general, output is higher when the researcher deepens knowledge than when she advances beyond the frontier. The highest output is expected in areas of intermediate length. In such areas, the researcher deepens knowledge and pursues the question at the midpoint of the area.

In a fourth step, we use the insights from the previous steps to show under what circumstances moonshot discoveries—extremely novel discoveries (far from existing knowledge)—are desirable. Moonshot discoveries are suboptimal in the short run. They create knowledge that is too disconnected from existing knowledge and therefore provide little immediate benefit. However, moonshots provide guidance for future researchers that aim to deepen knowledge in between the moonshot and previously existing knowledge. As a result of the moonshot, future researchers increase their output, and knowledge created over time becomes more valuable than otherwise. If society is patient and the cost of research is intermediate, the positive dynamic externality of moonshots on future researchers dominates the implied myopic loss, making it beneficial to incentivize moonshots.

In a fifth step, we introduce a budget-constrained funder with two funding instruments. The funder can reduce the researcher's cost ex ante and reward her for a novel discovery ex post. We characterize the set of implementable novelty-output pairs that the funder can implement. We show that output and novelty can be substitutes or complements from the funder's perspective. In particular, an increase in novelty comes with an increase in

induced output if cost reductions are expensive. Thus, for a funder who maximizes the myopic benefit of a discovery, it may be optimal to incentivize excessive novelty even if only to increase output. However, if cost reductions are cheap, increases in novelty come at the cost of a reduction in output. The same funder might incentivize excessive closeness to existing knowledge to keep the risk of failure low.

To summarize, we make three contributions. First, we offer a framework that endogenously links typical measures of research (novelty and output) to typical premises about the research process (selection from a large pool of questions, conjectures determined by existing knowledge, and the need for costly effort to obtain a discovery). We obtain this link by conceptualizing the discovery process of a Brownian path as a search for realized values guided by conjectures that build on known realizations. Second, we shed light on the nontrivial relation between novelty of research and expected research output. We show that whether the two are complements or substitutes crucially depends on the structure of existing knowledge. To do so, we characterize the researcher's optimal policy as a function of existing knowledge. Third, we provide new insights into two classical questions in the science of science funding: (i) Should society incentivize research far beyond the frontier even if the immediate benefits of such a discovery are low? Yes, if the cost of research is intermediate and society is patient. (ii) Which mode of funding provides larger expected benefits: ex ante cost reductions or ex post rewards? It depends. A funder that aims to maximize the benefits of research may strictly prefer to combine both modes. A funder that aims at incentivizing research far beyond the frontier has to offer ex post rewards.

1.1 Related Literature

Ample empirical literature in the science of science has documented the importance of novelty and output for progress in science. Fortunato et al. (2018) provide an extensive summary of it. The importance of (accessible) pre-existing knowledge for research purposes is documented, for example, in Iaria, Schwarz, and Waldinger (2018).⁵ We aim to complement the (quasi-)experimental approach in these papers by providing a simple yet flexible formal model and base it on few parameters to make it identifiable and testable.

Several existing theoretical models in the science of science consider particular aspects of the scientific process we have in mind.⁶ Aghion, Dewatripont, and Stein (2008) consider a setting in which progress has a predefined step-by-step sequential structure. To advance to the next question, a particular prior question has to be answered. We offer greater flexibility in that we posit that any question can—in principle—be addressed at any time. However, the benefits from a discovery and the effort needed for the discovery depend on previous work.⁷ Bramoullé and Saint-Paul (2010) model the decision of a researcher to deepen knowledge in a given area or to advance the knowledge frontier. The main driver in their model is the assumption that as an area gets increasingly crowded, the reputation a researcher gains from new developments in that area declines.⁸ We offer a

⁵Our notion of knowledge is orthogonal to that in the literature on epistemic game theory. Brandenburger (1992) provides an overview of that literature. Unlike there, knowledge in our model is always fully transparent and there is no strategic interaction. However, it is possible to embed it in strategic settings to address alternative questions.

⁶There is a literature orthogonal to ours that views science as establishing links in a network between known answers (for example, Rzhetsky et al., 2015). Our model is complementary, as we consider research as the search for answers where the links in the network are known.

⁷To (ab)use Newton's metaphor: Any researcher can build a ladder to see farther, but the effort required depends on the existing giants' shoulders. Related ideas appear in Scotchmer (1991), Aghion et al. (2001), Bessen and Maskin (2009), and Bryan and Lemus (2017).

⁸Similar to Bramoullé and Saint-Paul (2010), we model innovation as a public good. That differentiates

decision-based microfoundation that provides a measure of uncertainty, in line with Frankel and Kamenica (2019). It reaches a similar conclusion: as the opportunities in the area become increasingly narrow, the informational content of an additional finding decreases, and hence its value does too. However, unlike in Bramoullé and Saint-Paul (2010), the researcher in our model has more discretion, as she chooses not only the area but also the degree of novelty and the level of research intensity, which directly determines the probability of success. Both choices are continuous, and shrinking the research area may be beneficial if it leads to better conjectures by closing the gap between existing pieces of knowledge. While our basic model is static, a simple dynamic extension could reproduce the core elements of either Bramoullé and Saint-Paul (2010) or Aghion, Dewatripont, and Stein (2008).

The closest paper to ours in the theoretical literature on innovation is Prendergast (2019), which is complementary to ours. Prendergast, like us, studies a model of innovation in which the correlation between questions is determined by a Brownian motion. He focuses on an agency problem in a single exogenously given research area. While we abstract from agency concerns, the results in our microfounded model come from the researcher's choice among several distinct research areas including the possibility of expanding knowledge beyond the frontier. In addition, we provide an endogenous relation between the cost of research, the chosen research question, and the probability of finding an answer that is based on the researcher's decision of how much effort to invest in the search for an answer. While neither our model nor his nests the other, a special case of our model corresponds to a special case of his. We discuss the relationship in Section 8.

Technically, we build on the literature that studies Gaussian search models, following Callander (2011a). Within that literature, Callander and Clark (2017) is the closest. We discuss the relation in Section 8. Most other models assume that the payoffs are determined by a specific target of the stochastic process's realization (for example, Callander, 2011a) or the weighted sum of all realizations (for example, Bardhi, 2019). Garfagnini and Strulovici (2016) have a notion of frontiers and gaps similar to ours. ¹⁰ However, they are interested in finding the maximum value of the process. We differ in that we posit that the value of a discovery is determined by the reduction in the variance of conjectures. Moreover, our notion of cost is different. In the aforementioned literature, cost is either exogenous or depends only on the choice of question. We introduce an effort component. The more the researcher invests, the higher her chance of finding the answer but the more costly her research. That effort component has important consequences. It is never optimal to

us from most models of R&D competition. Yet, similarly to, for example, Letina (2016), Letina, Schmutzler, and Seibel (2020), and Hopenhayn and Squintani (2021), we assume that progress corresponds to successful search in an ocean of possibilities. Unlike in those approaches, in our setting, benefit and cost depend on the question's relation to existing knowledge.

⁹Other recent theoretical work studies frictions in the scientific process that we abstract from. Bobtcheff, Bolte, and Mariotti (2017), Akerlof and Michaillat (2018), and Andrews and Kasy (2019) study inefficiencies due to the publication process, career concerns, or homophily. Hill and Stein (2019, 2020) provide empirical counterparts. Frankel and Kasy (2021) provide a normative justification. Similar to us, Liang and Mu (2020) look at (a sequence of) myopic researchers aiming to discover the truth. Unlike us, they focus on the choice of the learning technology and show that depending on the complementarities between technologies, researchers may persistently select an inefficient technology.

¹⁰Jovanovic and Rob (1990), too, study the choice between expanding and deepening research. In Jovanovic and Rob (1990), expanding implies an i.i.d. draw at a fixed cost while deepening is costless. In our model, by contrast, all questions are connected and cost depends on both existing knowledge and the degree of novelty. Moreover, see Callander and Hummel (2014), Callander, Lambert, and Matouschek (2018), Callander and Matouschek (2019), and Bardhi and Bobkova (2021) for applications different from ours in a related framework. Some of the results in Section 6 are reminiscent of Callander (2011b) in a different context.

sample the entire real line for answers, and search fails with some positive probability. Moreover, the effort choice nontrivially interacts with the question choice.

1.2 Roadmap

To emphasize the role of each model ingredient, we chose a step-by-step approach. With each additional model feature, we analyze the respective consequences. In Section 2 we provide the basic model of knowledge and decision making. In Section 3 we derive the benefits of a discovery to society. In Section 4 we introduce the cost of searching for an answer to the model. We then derive the cost-of-research function and the notion of research output. In Section 5 we introduce a researcher and characterize her optimal decision. In Section 6 we analyze an extension of the model in which a long-lived decision maker faces a series of short-lived researchers. Section 7 considers a setting in which the researcher's incentives are influenced by the decisions of a funding institution. In Section 8 we relate our findings to the two closest papers in the literature. Section 9 summarizes and provides an outlook on other applications.

2 A Model of Knowledge

We set up a model of knowledge with the following desired properties:

- (i.) Knowing the answer to a question informs conjectures about other questions.
- (ii.) The distance between questions determines the impact that answering one question has on the conjecture about the other question.
- (iii.) The set of available questions is unbounded.
- (iv.) Knowledge informs decision making.

We first set up a formal model of knowledge and then introduce society as a decision maker that applies knowledge in its decision-making process.

Questions and answers. We represent the universe of questions by the real line, \mathbb{R} . A specific *question* is an element $x \in \mathbb{R}$. Each question x has precisely one *answer*, $y(x) \in \mathbb{R}$. A question-answer pair (x, y(x)) is thus a point in the two-dimensional Euclidean space.¹¹

The answer y(x) to question x is determined by the realization of a random variable, $Y(x): \mathbb{R} \to \mathbb{R}$. We provide more structure for Y(x) below.

Truth and knowledge. Truth is the collection of all question-answer pairs. It is the graph of the realization of the random variable Y(x), over its domain \mathbb{R} . Knowledge is the finite collection of known question-answer pairs. We denote it by $\mathcal{F}_k = \{(x_i, y(x_i))\}_{i=1}^k$. For notational convenience, we assume that \mathcal{F}_k is ordered such that $x_i < x_{i+1}$. We refer to x_1 and x_k as the frontier of current knowledge.

The key assumption of our model of knowledge concerns the truth-generating process Y(x). We assume that Y(x) follows a standard Brownian motion defined over the entire real line. This assumption captures the notion that the answer to question x is likely

¹¹Our assumption implies that the relation between two questions can be obtained in a single dimension. While projecting all available questions across all disciplines onto a line might imply a sizable loss, that loss is smaller if we think of our universe of questions as being within one specific and mature discipline.

 $^{^{12}}$ As in Callander (2011a), the realized truth Y is a random draw from the space of all possible paths \mathcal{Y} generated by a standard Brownian motion going through some initial knowledge point $(x_0, y(x_0))$. While the process has been fully realized at the beginning of time, knowledge is the filtration known to the observer \mathcal{F}_k . We choose a standard Brownian path with 0 drift and variance of 1 for convenience only. Our model extends naturally to other Gaussian processes. The x dimension should not be confused with a

Figure 2: Distributions of answers for different distances to knowledge when $\mathcal{F}_1 = (0, 42)$. Given that the only question to which the answer is known is x = 0, we can determine knowledge about questions of distances 1, 4, and 16 from x = 0. All answers have the same mean (42), but the variance and thus the precision of the conjecture differ. For x = 0, the answer is known and $G_0(y|\mathcal{F}_1)$ is a step function. Questions with longer distances have larger variances. The left panel depicts the respective distribution functions; the right panel depicts the densities.

to be similar to the answer to a close-by question x'. As the distance between x and x' increases, a correlation remains. Yet the uncertainty increases in the distance.¹³

Knowledge \mathcal{F}_k implicitly determines a partition of the real line consisting of k+1 elements

$$\mathcal{X}_k := \{(-\infty, x_1), [x_1, x_2), \cdots, [x_{k-1}, x_k), [x_k, \infty)\}.$$

In what follows, we make frequent use of the interval length X_i of an element of the partition that a particular question $x \in [x_i, x_{i+1})$ is part of.

We introduce the following terminology. We refer to each element of the partition \mathcal{X}_k as an area. We call $(-\infty, x_1)$ area 0, $[x_1, x_2)$ area 1, and so on until area k, which is $[x_k, \infty)$. The length of area $i \in \{1, ..., k-1\}$ is $X_i := x_{i+1} - x_i$, and $X_0 = X_k = \infty$.

Conjectures. A conjecture is the cumulative distribution function $G_x(y|\mathcal{F}_k)$ of the answer y(x) to question x given knowledge \mathcal{F}_k . Conjectures about questions to which the answer is known are trivial; if $(x_i, y(x_i)) \in \mathcal{F}_k$, then $G_{x_i}(y|\mathcal{F}_k) = \mathbf{1}_{y \geq y(x_i)}$, a right-continuous step function jumping to 1 at $y = y(x_i)$. The conjecture for a yet-to-be-discovered y(x), $G_x(y|\mathcal{F}_k)$, is also well defined. Because Y(x) is determined by a Brownian motion, $G_x(y|\mathcal{F}_k)$ is a cumulative distribution function of a normal distribution with mean $\mu_x(Y|\mathcal{F}_k)$ and variance $\sigma_x^2(Y|\mathcal{F}_k)$. Both μ_x and σ_x^2 follow immediately from the properties of the Brownian motion. We differentiate between questions inside the knowledge frontier $(x \in [x_1, x_k])$ and outside that frontier $(x \notin [x_1, x_k])$.

Property 1 (Expected Value). Given knowledge \mathcal{F}_k , the conjecture $G_x(y|\mathcal{F}_k)$ has the following mean:

$$\mu_x(Y|\mathcal{F}_k) = \begin{cases} y(x_1) & \text{if } x < x_1 \\ y(x_i) + \frac{x - x_i}{X_i} (y(x_{i+1}) - y(x_i)) & \text{if } x \in [x_i, x_{i+1}), i \in \{1, ..., k-1\} \\ y(x_k) & \text{if } x \ge x_k. \end{cases}$$

sequential structure of finding answers. Any question-answer pair $(x, y(x)) \notin \mathcal{F}_k$ is discoverable.

¹³We use the Euclidean distance on the x dimension, |x-x'|, throughout when we refer to distance.

Property 2 (Variance). Given knowledge \mathcal{F}_k , the conjecture $G_x(y|\mathcal{F}_k)$ has the following variance:

$$\sigma_x^2(Y|\mathcal{F}_k) = \begin{cases} x_1 - x & \text{if } x < x_1\\ \frac{(x_{i+1} - x)(x - x_i)}{X_i} & \text{if } x \in [x_i, x_{i+1}), i \in \{1, ..., k - 1\}\\ x - x_k & \text{if } x \ge x_k. \end{cases}$$

Figure 2 illustrates the distributions for different distances from existing knowledge assuming that knowledge is $\mathcal{F}_1 = (0, 42)$. In Appendix C, we provide a graphical example that highlights the ingredients of our model of knowledge and how adding additional question-answer pairs to knowledge influences conjectures.

2.1 Society and Decision Making

We represent society by a single decision maker. That decision maker observes knowledge \mathcal{F}_k and takes a continuum of actions—one for each question $x \in \mathbb{R}$. For each question she can either take a *proactive* action $a(x) \in \mathbb{R}$ or select an outside option $a(x) = \emptyset$ —for example, the act of doing nothing. The decision maker's choice is thus represented by a function $a: \mathbb{R} \to \mathbb{R} \cup \emptyset$.

The expected payoff of selecting the outside option $a(x) = \emptyset$ is finite, safe (that is, independent of y(x)), and question-invariant. We normalize it to 0. The choice of \emptyset reflects the idea that for a subject on which very little is known, it is not wise (in expectations) to take proactive actions.¹⁴ The payoff of addressing a question x proactively is represented by a monotone transformation of the quadratic loss around the true answer to question x, y(x).

The decision maker's payoff on a particular question x from action a(x) is

$$u(a(x);x) = \begin{cases} 1 - \frac{(a(x) - y(x))^2}{q} & \text{if } a(x) \in \mathbb{R} \\ 0 & \text{if } a(x) = \emptyset, \end{cases}$$

for a given q. The scaling parameter q measures the error tolerance of the decision maker: if the proactive choice a(x) is less than \sqrt{q} away from the optimal choice—the true answer y(x)—the decision maker prefers the proactive choice over the outside option.

To keep the analysis focused, we abstract from any prioritization the decision maker might have among different x's; that is, we assume the decision maker values all questions equally. If a(x) is such that u(a(x);x) is (locally) integrable, then total payoffs to the decision maker are given by

$$\int_{-\infty}^{\infty} u(a(x); x) dx.$$

Technically, it is the outside option \varnothing and the finiteness of knowledge that ensure a bounded payoff at the optimum.¹⁵ Thus, the outside option guarantees that knowledge

¹⁴What we have in mind as outside options are longstanding policies to which the expected payoff is finite. The question the decision maker asks for each question is whether she should revise her policies given the existing knowledge. Take the discussion about how to respond to climate change: Since the Kyoto Protocol, decision makers have reevaluated policies on several issues (for example, transportation, energy, protection of nature). For each issue, they use current knowledge and decide whether to continue with business as usual or to change policy.

¹⁵The decision maker's problem is straightforwardly solved pointwise resulting in a sufficiently well-behaved per-question payoff $u(\cdot)$ to ensure integrability. An alternative assumption to facing all questions

Figure 3: The value of knowing \mathcal{F}_1 . The left panel depicts the same situation as the left panel in Figure 1. Only the answer to question 0 is known. The right panel depicts the the value of knowledge $v(\mathcal{F}_1)$. It is proportional to the shaded part.^a The variance $\sigma_x^2(Y|\mathcal{F}_k) = |x|$ is the Euclidean distance from 0. The expected payoff from taking an action equal to the mean of the conjecture, $a = \mu_x = 42$, is the vertical distance between the action and the dashed line. For $|x| \le q$, $a = \mu_x = 42$ is preferred to $a = \emptyset$.

The shaded part is proportional as we have to multiply it with the normalizing factor 1/q. This holds throughout this section.

contributes in a quantifiable way to the decision maker's total payoff. 16

The Benefits of Discovery 3

Discovery occurs whenever an answer is found and the new question-answer pair is added to existing knowledge \mathcal{F}_k . In this section, we formulate a measure of the benefits of discovery for the decision maker.

The Value of Knowledge 3.1

Knowledge informs decision making. For each question x, the decision maker uses the conjecture $G_x(y|\mathcal{F}_k)$ to decide on a(x). Suppose the decision maker addresses a question x proactively, such that $a(x) \neq \emptyset$. Her expected payoff for that question is

$$Eu(a \neq \varnothing; x | \mathcal{F}_k) = \int 1 - \frac{(a - y(x))^2}{q} dG_x(y | \mathcal{F}_k).$$

Because of the quadratic loss, the optimal action in that case corresponds to the mean of the distribution, $\mu_x(Y|\mathcal{F}_k)$ with payoff

$$Eu(\mu_x(Y|\mathcal{F}_k); x|\mathcal{F}_k) = \int 1 - \frac{(\mu_x(Y|\mathcal{F}_k) - y(x))^2}{q} dG_x(y|\mathcal{F}_k)$$
$$= 1 - \frac{\sigma_x^2(Y|\mathcal{F}_k)}{q}.$$

is that the decision maker faces a single question at random. However, in the case of a uniform distribution—which would resemble equal weighting of questions—we need to restrict attention to draws from a large subset, $[x, \overline{x}]$, of the set of all questions \mathbb{R} . If the subset from which the questions are drawn is large enough, the two assumptions are equivalent when the decision maker acts optimally. Other weighting functions on questions are straightforward to incorporate; yet, they come at a significant cost of clarity in the analysis.

 16 While representing the universe of questions in a *circle* or a *bounded interval* would ensure that payoffs are bounded absent an outside option, it would violate the desired property of knowledge (iii.).

Figure 4: The benefits of discovery.

LEFT PANEL: BENEFIT OF A KNOWLEDGE-EXPANDING DISCOVERY. Benefits of discovering the answer to question -2q when initial knowledge was $\mathcal{F}_1 = (0, y(0))$. Outside the frontier—where $x \notin [-2q, 0]$ —the variance is $\sigma_x^2(Y|\mathcal{F}_k) = d(x)$. Inside, it is smaller with $\sigma_x^2(Y|\mathcal{F}_k) = d(x)(X - d(x))/X$, where X = 2q is the length of the interval [-2q, 0]. The value of \mathcal{F}_2 is proportional to the entire shaded part. The net benefit of discovering the answer to question x = -2q is proportional to the dark-shaded part.

RIGHT PANEL: BENEFIT OF KNOWLEDGE-DEEPENING DISCOVERY. Value of knowledge and the benefit of discovery when the research deepens knowledge by discovering the answer to question x = -q. The total value of \mathcal{F}_4 is proportional to the entire shaded part. The net benefit of discovering the answer to question x = -q is proportional to the dark-shaded part (relative to pre-existing knowledge \mathcal{F}_3).

Addressing the question proactively is therefore optimal only if $\sigma_x^2(Y|\mathcal{F}_k) \leq q$ —that is, only if the decision maker's conjecture is sufficiently precise. Otherwise, the decision maker prefers the outside option, $a(x) = \emptyset$, with payoff 0.

The decision maker's optimal policy is thus

$$a^*(x) = \begin{cases} \mu_x(Y|\mathcal{F}_k), & \text{if } \sigma_x^2(Y|\mathcal{F}_k) \le q \\ \varnothing, & \text{if } \sigma_x^2(Y|\mathcal{F}_k) > q \end{cases}.$$

This implies a total expected payoff of

$$v(\mathcal{F}_k) := \int_{-\infty}^{\infty} Eu(a^*(x); x | \mathcal{F}_k) dx = \int_{-\infty}^{\infty} \max \left\{ \frac{q - \sigma_x^2(Y | \mathcal{F}_k)}{q}, 0 \right\} dx.$$

We refer to $v(\mathcal{F}_k)$ as the value of knowing \mathcal{F}_k ; that is, $v(\mathcal{F}_k)$ is the decision maker's gain from following the optimal policy given knowledge \mathcal{F}_k compared with refraining from any proactive choices—that is, $\forall x \in \mathbb{R} \ a(x) = \emptyset$.

The right panel of Figure 3 provides a graphical representation of $v(\mathcal{F}_1)$. The left panel of Figure 4 represents $v(\mathcal{F}_2)$, the right panel of Figure 4 represents $v(\mathcal{F}_4)$.

3.2 The Benefits of Discovery

The benefits of a discovery come in the form of enhanced value of knowledge. Formally, adding (x, y(x)) to \mathcal{F}_k provides the benefit

$$V(x; \mathcal{F}_k) := v(\mathcal{F}_k \cup (x, y(x))) - v(\mathcal{F}_k).$$

The value of the discovery depends on the question being answered, x, and on existing knowledge \mathcal{F}_k . We distinguish two scenarios: expanding knowledge beyond the frontier and deepening knowledge in an area. Discovery y(x) expands knowledge if $x \notin [x_1, x_k]$. A discovery y(x) deepens knowledge in area i if $x \in [x_i, x_{i+1}]$.

We first state the benefit-of-discovery function. Three corollaries to that statement characterize its properties. The two main factors determining this benefit are the distance $from\ knowledge$, which we formally define below, and the $research\ area$. Area length X is a sufficient statistic for the research area.

Definition 1 (Distance). The distance of question x from knowledge \mathcal{F}_k is the minimal Euclidean distance to a question to which the answer is known:

$$d(x) := \min_{\xi \in \{x_1, x_2, \dots x_k\}} |x - \xi|$$

Definition 2 (Variance). The variance of a question with distance d in an area of length X is

$$\sigma^2(d;X) := d(X - d)/X.$$

Note that $\sigma^2(d;X) = \sigma_x(Y|\mathcal{F}_k)$ whenever d(x) = d and x is in an area of length X. This allows us to simplify notation and to focus on the variables d and X exclusively rather than keeping track of the exact question x and its research area. We abuse notation by stating the benefit of discovery as V(d;X).

Proposition 1. Consider discovery (x, y(x)) in an area of length $X \leq \infty$ with distance d = d(x). The benefit of the discovery is

$$\begin{split} V(d;X) &= \frac{1}{6q} \Big(2X\sigma^2(d;X) + \mathbf{1}_{d>4q} \sqrt{d} (d-4q)^{3/2} \\ &\quad + \mathbf{1}_{X-d>4q} \sqrt{X-d} \ (X-d-4q)^{3/2} \cdot \\ &\quad - \mathbf{1}_{X>4q} \sqrt{X} (X-4q)^{3/2} \Big) \end{split}$$

Expanding knowledge beyond the frontier has a benefit of $V(d; \infty) := \lim_{X \to \infty} V(d; X)$.

Proposition 1 states that expanding knowledge is equivalent to the limiting case of deepening knowledge.

The terms in V(d;X) without an indicator function measure the direct reduction in the variance due to a discovery and hence the effect on decision making conditional on a proactive action $a \neq \emptyset$. The terms with an indicator function, 1, become active whenever the corresponding area contains questions with too imprecise conjectures (see, for example, the right panel of Figure 5). Such conjectures induce the decision maker to select the outside option \emptyset rather than making a proactive decision to limit losses to 0. The indicator-function terms that enter positively correspond to choices in the newly created areas. The indicator-function term that enters negatively corresponds to choices in an old area that gets replaced. Therefore, the presence of the outside option protects the decision maker from risky proactive actions when there is high uncertainty about the question's optimal answer.

Figure 4 illustrates the benefits of discovery for expanding knowledge (left panel) and deepening knowledge (right panel). The right panel of Figure 6 on page 15 illustrates the functions for different area lengths X. To gain intuition, it is useful to discuss expanding knowledge and deepening knowledge separately.

Expanding knowledge. Our first corollary states the closed form of $V(d; \infty)$.

Figure 5: Benefit-maximizing (left) and too large (right) distance of x given \mathcal{F}_1 . Given that the value of doing nothing is q=1, the benefit-maximizing distance when expanding knowledge is d=3q. The left panel depicts the benefit-maximizing choice, given \mathcal{F}_1 , when expanding to the negative domain and d=3q and thus x=-3; the right panel shows the effect of a choice that is too far away (x=-5, d=5q). The gain in knowledge $V(d;\infty)$ is proportional to the dark-shaded part. It is larger in the left panel than in the right panel.

Corollary 1.
$$V(d; \infty) = \frac{1}{6q} \left(6qd - d^2 + \mathbf{1}_{d>4q} \sqrt{d} (d - 4q)^{3/2} \right)$$

We focus on discovering the answer to $x < x_1$, which occurs when the decision maker moves from Figure 3 to the left panel of Figure 4. The case of $x > x_k$ is analogous.

The benefit of expanding knowledge comes from the new area $[x, x_1)$ it creates. The discovery of y(x) pushes the knowledge frontier to the left and creates new research area $[x, x_1)$. The benefit of the discovery is the value of that new area (the dark-shaded part in Figure 4, left panel).¹⁷

The value of adding an area depends on (i) the amount of questions in that area and (ii) the degree of improvement in decision making relative to the outside option $a = \emptyset$. The benefit-maximizing question resolves a classic marginal-inframarginal trade-off similar to that in a monopoly-pricing decision: Increasing the area length of the newly created area has two opposing effects on the value of discovery. The marginal gain is the increase in the amount of questions that the conjecture improves. However, it comes at a cost because it decreases the precision of conjectures about all inframarginal questions in the area.

Figure 4 and Figure 5 illustrate the benefits of discovery from creating too short (left panel of Figure 4), ideal (left panel of Figure 5), and too large (right panel of Figure 5) areas. The largest benefits come at an intermediate level at which all conjectures have a variance strictly smaller than q, as the next corollary shows. The inframarginal losses outweigh the marginal gains at that point. The decision maker refrains from using the outside option for all questions inside the new area. We define the benefit-maximizing distance in area X as

$$d^0(X) := \max_d V(d; X).$$

¹⁷More precisely, the conjectures about questions to the left of the old frontier are replaced by conjectures inside the new research area, and conjectures to the left of the new frontier also become more precise. However, as can be seen in the left panel of Figure 4, the variance reduction to the left of the frontier is always the same. Hence the benefits are the same as if only the new area was added.

Corollary 2. The benefit of expanding knowledge is single peaked in d. The benefit-maximizing distance $d^0(\infty) = 3q$. The maximum benefit of expanding knowledge is $V^{\infty} := V(3q; \infty) = \frac{3}{2}q.^{18}$

Deepening knowledge is the process of discovering answer y(x) to question x in area i with two bounds, x_i and x_{i+1} . The answers $y(x_i)$ and $y(x_{i+1})$ are known. We illustrate the process in the ight panel of Figure 4. The difference from expanding knowledge is that instead of creating a new area, deepening knowledge replaces the old area, $[x_i, x_{i+1})$, with two new areas, $[x_i, x)$ and $[x, x_{i+1})$.

The benefit of a discovery depends on the combination of improved decision making in either of the areas. We know from Corollary 2 that the largest benefits in a single area come from an area of length 3q. Thus, if the old area, i, had length $X_i = 6q$, a discovery at the midpoint would provide the largest benefits. However, if $X_i \neq 6q$, at least one of the two areas would have a length different from 3q.

If $X_i \neq 6q$, two forces are at play. First, there is a benefit to replacing the old area with two symmetric new areas such that each is half the length of the old area. The intuition echoes that of expanding knowledge: the inframarginal loss increases when an area becomes too large. Thus, choosing two areas with the same length reduces the inframarginal losses compared with the case of one large and one small area. Inspection of the right panel of Figure 4 provides graphical intuition.

Second, benefits decline if area length is larger than 3q, as conjectures inside the area become increasingly imprecise. Maintaining symmetry implies that newly created areas are larger than 3q if $X_i > 6q$ and thus too large to maximize the benefit.

If initial area length X_i was small, the first force would dominate. It would be better to divide the area evenly even if each new area was less than 3q long. However, if X_i was large, the trade-off would be resolved in favor of creating one high-value area at the cost of having imprecise conjectures in the other—larger—area. A cutoff $\tilde{X}^0 \in [6q, 8q]$ exists such that it is benefit maximizing to create two symmetric areas if and only if $X_i < \tilde{X}^0$.

For what initial area length X_i does transforming the area into two new ones provide the largest benefit? As explained above, two areas of length 3q provide the largest value. However, we have to take into account that the two new areas replace an old area. The larger the area that gets replaced, the less its initial value. On the other hand, the larger the old area (beyond 6q), the lower the value of the two new areas. The initial area length that provides the largest benefit when the area is replaced is $\check{X}^0 \approx 6.2q$. That is, it is more than 6q.

Expanding versus deepening knowledge. On the one hand, creating new areas means no knowledge needs to be replaced, as all old areas remain. On the other hand, deepening knowledge means creating two areas with relatively precise conjectures. If an area is small, deepening knowledge provides only a small benefit. Conjectures are already precise. If an area is large, conjectures are imprecise and deepening knowledge is more beneficial. Overall, there is a cutoff $\hat{X}^0 \approx 4.3q$ such that deepening knowledge in X_i is more beneficial than expanding knowledge if and only if $X_i > \hat{X}^0$.

¹⁸The results of this and the next corollary follow directly from an analysis of $V(\cdot;\cdot)$ derived in Proposition 1. However, deriving them is not entirely straightforward, so we do so in the appendix.

Figure 6: The benefit of discovery.

LEFT PANEL: BENEFIT OF DISCOVERY AS A FUNCTION OF AREA LENGTH X. The graph plots the benefit of discovery $V(d^0(X);X)$ for areas of length $X<\infty$ (dashed line). The solid line is the maximum benefit of discovery when expanding knowledge V^∞ . Deepening beats expanding knowledge if $X>\widehat{X}^0\approx 4.3q$. $V(d^0(X);X)$ is maximal at $\check{X}^0\approx 6.2q$; $d^0(X)< X/2$ if $X>\widetilde{X}^0$. RIGHT PANEL: BENEFIT OF DISCOVERY GIVEN X AS A FUNCTION OF DISTANCE d. The graph depicts expanding knowledge (solid line) and deepening knowledge (dashed and dotted lines) for area lengths $X\in\{3q,6q,10q,\infty\}$.

Note: Plots for deepening knowledge end at the maximum distance in each area, d = X/2.

Our next corollary and the associated figure (Figure 6) summarize the discussion.

Corollary 3. There are three cutoff area lengths, $4q < \hat{X}^0 < 6q < \check{X}^0 < \tilde{X}^0 < 8q$, such that the following propositions hold:

- The benefit of expanding knowledge by 3q dominates the benefit of deepening knowledge in area i if and only if $X_i < \hat{X}^0$.
- The maximum benefit of deepening knowledge in area i is increasing in area length if $X_i < \check{X}^0$; it is decreasing if $X_i > \check{X}^0$.
- The distance $d^0(X_i)$ of the benefit-maximizing discovery is increasing in X_i for $X_i < \widetilde{X}^0$ and decreasing for $X_i > \widetilde{X}^0$. If $X_i < \widetilde{X}^0$, $d^0(X_i) = X_i/2$. Otherwise $d^0(X_i) \in (3q, \min\{X_i/2, 4q\}]$. As $X \to \infty$, $d^0(X) \to d^0(\infty)$ and $V(d; X) \to V(d; \infty)$ uniformly.

4 The Cost of Research

In this section, we introduce the cost of research. The cost implies that an endogenous measure of the productivity of research exists. We conceptualize research as the search for an answer. That is, we model research as sampling a set of candidate answers to question x with the goal of discovering the actual answer, y(x).

Formally, we assume that the sampling decision consists of selecting an interval $[a,b] \in \mathbb{R}$. If the true answer lies inside the chosen interval, such that $y(x) \in [a,b]$, research succeeds and a discovery is made. If $y(x) \notin [a,b]$, research fails and no discovery is made. Thus, the choice of the research interval entails an ex ante probability of successful research. Restricting the sampling decision to a single interval [a,b] comes without loss for our purposes, as conjectures $G_x(y|\mathcal{F}_k)$ follow a normal distribution.

We now characterize the cost of research in terms of three variables of interest: the

Figure 7: Cost of research and interference. The dotted vertical lines represent the 95 percent prediction intervals for the answers to questions x = -0.2 and x' = 0.2, assuming the answer to questions 0 and -0.4 are known. Both x and x' have distance d = 0.2 to existing knowledge. However, the 95 percent prediction interval at question x is shorter because the variance is smaller because researching x = -0.2 deepens knowledge. Research on question x = 0.2 expands knowledge, which implies a larger variance.

research area, the novelty of the question, and the expected output. The area length, X, and the novelty, d(x), of a research question are familiar concepts from Section 3. Output describes the expected probability that search leads to discovery. We denote that probability by ρ .

We begin by defining a prediction interval.

Definition 3 (Prediction Interval). The prediction interval $\alpha(x, \rho)$ is the shortest interval $[a, b] \subseteq \mathbb{R}$ such that the answer to question x is in the interval [a, b] with probability ρ .

Next, we describe the prediction interval $\alpha(x,\rho)$ based on the conjecture $G_x(y|\mathcal{F}_k)$.

Proposition 2. Suppose $\alpha(x, \rho)$ is the prediction interval for probability ρ and question x when answer y(x) is normally distributed with mean μ and standard deviation σ . Then, any prediction interval has the following two features:

- 1. The interval is centered around μ .
- 2. The length of the prediction interval is $2^{3/2}erf^{-1}(\rho)\sigma$, where erf^{-1} is the inverse of the Gaussian error function.

The properties of the prediction interval can be seen in the figures depicting the Brownian path. The dashed lines depict the $\rho=95$ percent–prediction interval (as, for example, in Figure 7). Figure 7 indicates that the prediction interval depends on the location of the question. Two questions with the same distance from existing knowledge (that is, distance from question x=0) have different 95 percent prediction intervals depending on whether research deepens knowledge or expands it. That difference translates into different costs.

Proposition 2 implies that if the cost function is homogeneous of any degree in interval length (b-a), we can represent it with an alternative cost function proportional to $c(\rho, d, X)$ that is multiplicatively separable in (d, X) and ρ without having to keep track of the exact location of the search interval [a, b], which proves to be convenient.

It also implies that, fixing ρ , the changes in the cost with respect to novelty d and area length X vary in their effect on $\sigma(d;X)$ only. Similarly, holding distance and area length

Figure 8: Cost of research as a function of distance from knowledge (left) and probability of discovery (right). As area length X decreases, cost diminishes for a given (d, ρ) . The cost is linear in d when expanding knowledge but strictly concave when deepening knowledge. The cost function is convex in ρ . The left panel plots $\sigma^2(d; X)$ for different X's; the right panel depicts $\tilde{c}(\rho)$. In the left panel, plots for area length X < 10q end at the maximum possible distance (d = X/2).

constant, changes in ρ translate into cost changes according to a function of $erf^{-1}(\rho)$ —a convex increasing function.

Proposition 2 intuitively links the cost of research effort to the probability of a discovery. Because the inverse error function is increasing and convex, the cost of finding an answer with probability ρ is increasing and convex in ρ . Discovering an answer with certainty implies an infinitely large interval; short of certainty, there is always a chance that the answer is outside the sampled interval.

Importantly, Proposition 2 also links output and novelty: for a given level of effort, the probability of success depends on the precision of the conjecture about a question. Research on a more novel question inside the same research area with the same level of effort entails a higher risk.

For concreteness, we assume that cost is proportional to $(a-b)^2$ for the remainder of this paper. The quadratic formulation is for convenience only. What matters for our results qualitatively is that the cost is (i) homogeneous, (ii) increasing, and (iii) convex in the sampling interval (a-b). Under the quadratic assumption, the cost function is characterized by a simple corollary to Proposition 2. To abbreviate notation, let $\tilde{c}(\rho) := (erf^{-1}(\rho))^2$.

Corollary 4. For knowledge \mathcal{F}_k , probability ρ , and question x, the minimal cost of obtaining an answer to question x with probability ρ is proportional to

$$c(\rho, d; X) = \tilde{c}(\rho)\sigma^2(d; X).$$

Given Corollary 4, cost is increasing in d and X and concave in d; the concavity decreases in X with the limiting case in which cost is linear in d as $X \to \infty$ (see left panel of Figure 8).

5 The Researcher's Choices

In this section, we introduce a researcher into our model. We combine the ingredients from the previous sections to characterize her optimal choice.

5.1 The Researcher's Objective

Consider a researcher that can search for a discovery. Her expected payoff is composed of the benefits of discovery (that is, the function from Section 3) and her cost of research (that is, the cost function from Section 4). She is unconstrained in her choice of the research question and her effort, but if she fails to obtain an answer, the benefit of her research is zero.¹⁹

Using our results from Section 3 and Section 4, the researcher's choices of question x and research interval [a, b] imply distance d, area of length X, and expected probability of discovery ρ . Together with exogenous cost parameter $\eta \geq 0$, these three variables are sufficient to describe the researcher's payoff:

$$u_R(d, \rho; X) := \rho V(d; X) - \eta c(\rho, d; X)$$

From the previous discussion, it follows that the researcher resolves a tension between the cost and benefits of research. Short distances allow her to find answers with a high probability at a relatively low cost. However, such answers provide little benefit to society. By increasing the distance, the researcher increases the benefit, but at the same time either the cost increases or she has to accept a lower probability of discovery. This trade-off is at the heart of many discussions of research funding.²⁰

We abstract from any motivations other than the researcher's desire to increase the value of knowledge. That is, we implicitly assume that the market for research is frictionless and rewards researchers only for their relative contributions to the value of knowledge. We make this assumption to provide a clean analysis of the researcher's trade-offs.

In the following, we characterize the researcher's optimal choice and elaborate on the resolution of the novelty-output trade-off.

5.2 The Researcher's Decision

The researcher solves

$$\max_{X \in \{X_0, ..., X_k\}} \quad \max_{\substack{d \in [0, X/2], \\ \rho \in [0, 1]}} \rho V(d; X) - \eta c(\rho, d; X).$$

If there is no cost $(\eta = 0)$, we can apply Proposition 1 to derive the optimum. For any X, the researcher selects $\rho = 1$. For $X < \widetilde{X}^0$ she selects d = X/2; and for $\widetilde{X}^0 < X < \infty$ she selects $d \in (3q, X/2)$. If $X = \infty$, the researcher chooses d = 3q. She prefers to expand knowledge if and only if $X_i \leq \widehat{X}^0$ for any area $X_i < \infty$ defined by \mathcal{F}_k .

However, for $\eta > 0$ the researcher's decision about effort is nontrivial and linked with her decision about the research question. Choosing a question with small distance allows

¹⁹A rationale for discarding nonfindings is moral hazard concerns: science is complex, and it is impossible to distinguish the absence of a finding from the absence of proper search. Our model can easily account for the possibility of publishing nonfindings; unsurprisingly, these increase the value of knowledge as well. The difficulty of publishing the absence of evidence, however, has long been recognized in the literature. See, for example, Sterling (1959). In principle, it is relatively straightforward to compute updated answer distributions based on null results in our setting. Including this in our researcher model, however, is beyond the scope of this paper.

²⁰See, for example, the emphasis on high-risk/high-reward research by the European Research Council (https://ec.europa.eu/research/participants/data/ref/h2020/call_ptef/ef/h2020-call-ef-erc-stg-cog-2015_en.pdf) and the National Institutes of Health (https://commonfund.nih.gov/highrisk).

for a high probability of discovery at a low cost. Her initial conjecture about the answer is already precise. Nevertheless, her payoff is low, as such a discovery provides little benefit.

By increasing the distance, the researcher increases the benefit of discovery but also increases the cost, ceteris paribus. The effect on the optimal probability of discovery is ambiguous: depending on which effect dominates, the distance and the probability of discovery are substitutes or complements.

Definition 4. Let $\rho^*(d; X)$ be the probability of success ρ that maximizes the researcher's payoff given d and X. Output ρ and novelty d are complements (substitutes) if $\rho^*(d; X)$ is strictly increasing (decreasing) in d.

It turns out that how output and novelty behave jointly depends crucially on both the length of the research area and the level of novelty. If novelty is too high, the benefit of discovery is declining in novelty (see Proposition 1). In this case, novelty and output are substitutes. Reducing novelty increases the marginal benefit and reduces the marginal cost of increasing output.

Optimal choice within a research area. First, we consider how the researcher's choice of distance and probability of discovery interact within an area of length X. The following proposition summarizes the behavior of d and ρ .

Proposition 3. Suppose $\eta > 0$.

- 1. When the researcher expands knowledge,
 - i.) distance d and probability of discovery ρ are substitutes, and
 - ii.) the optimal choice of $d^{\infty} \in (2q, 3q)$.
- 2. When the researcher deepens knowledge in an area of length X,
 - i.) d and ρ are
 - a.) independent if $X \leq 4q$,
 - b.) complements if $X \in (4q, (4+\sqrt{6})q)$,
 - c.) substitutes for $d \in (0, \hat{d}(X))^{21}$ and complements for $d \in (\hat{d}(X), \frac{X}{2})$ if $X \in ((4 + \sqrt{6})q, 8q)$, and
 - d.) substitutes if X > 8q.
 - ii.) the researcher's optimal choice of d is at d's maximum value $d = \frac{X}{2}$ if $X \leq \widetilde{X}$ and at the interior value $d < \frac{X}{2}$ if $X > \widetilde{X}$.

Whenever the researcher expands knowledge, an increase in distance increases the marginal cost of the probability of success more than it increases the marginal benefit. Thus, any increase in novelty comes at the cost of a reduction in output. The optimal distance is intermediate: a too short distance provides only small benefits. However, the value-maximizing distance is 3q and the researcher will never select a question farther than 3q beyond the frontier. As research comes with risk of failure and comes at a cost, the optimal distance is shorter than the benefit-maximizing distance.

Whenever the researcher deepens knowledge, the effect that distance has on the optimal choice of ρ changes, in contrast to the case of expanding knowledge. The variance of the conjecture is concave in distance if $X < \infty$ because the researcher uses information from two answered questions to form a conjecture. Thus, the negative effect of moving farther from one question in the set of existing knowledge is mitigated by moving closer to another question in the set. Increasing distance from existing knowledge is therefore less costly in

 $^{^{21}\}hat{d}$ is defined in the proof of the proposition.

terms of probability of discovery than increasing it when expanding knowledge. Distance and probability of discovery can become complements.

Observe that for any choice of distance, the optimal choice of probability solves

$$\eta \tilde{c}(\rho) = \frac{V(d;X)}{\sigma^2(d;X)}.$$

Thus, the probability of discovery depends on the ratio of the benefit of a discovery (the marginal benefit of increasing ρ) and on the variance of the question considered (to which the marginal cost of increasing ρ is proportional). Therefore, the probability adjusts to distance depending on how this ratio changes. If the relative increase in the benefit is larger than the relative increase in the variance, the researcher will increase the probability and vice versa.

For short research areas—areas for which all questions inside the area are proactively addressed by the decision maker—the benefit of discovery is proportional to the variance of the question (see Proposition 1): the probability of discovery is independent of the choice of distance. However, assume now that prior to the researcher's discovery, the area is larger. The decision maker's losses were limited by her choice of the outside option for some questions. An increase in the discovery's distance now leads to a larger increase in the benefit than in the variance; d and ρ become complements.

Once the research area becomes even larger, the benefit of an increase in the distance shrinks for small distances compared with before. The benefit from reducing the length of the larger of the two resulting areas is smaller for small initial distances. Distance and probability become substitutes again. However, for larger distances in the same research area, this effect disappears; distance and probability of discovery become complements again.

Finally, as the area grows more, the set of distances for which d and ρ are complements shrinks. Eventually, distance and probability become substitutes throughout, as in the case of expanding knowledge.

The researcher chooses the largest possible distance if the area is not too large. If distance and probability are complements, she chooses the maximum distance and the largest probability of discovery in this interval. Intuitively, in such research areas, there is no trade-off between novelty and output: any increase in novelty is accompanied by an increase in output. However, for large research areas and for the case of expanding knowledge, a trade-off arises; novelty and output become substitutes.

Optimal choice among intervals. We now characterize the researcher's choice of research area X. We take the optimal choice inside each area as given. Let d(X) and $\rho(X)$ be the researcher's choices conditional on an area of length X, and let $U_R(X)$ be the associated payoff. The respective objects for expanding research are d^{∞} , ρ^{∞} , and U_R^{∞} . The following proposition summarizes the findings. Figure 9 illustrates the proposition.

Proposition 4. Suppose $\eta > 0$. There is a set of cutoff values $2q < \hat{X} < \dot{X} < \check{X} < \check{X} < 8q$ such that the following claims hold:

- 1. The researcher expands knowledge if and only if all available research areas are shorter than \widehat{X} .
- 2. The optimal choices of distance d(X) and probability of discovery $\rho(X)$ are nonmonotone in X. Probability $\rho(X)$ has a maximum at \dot{X} ; distance d(X) has a maximum at \tilde{X} .

Figure 9: Outcomes of the researcher's choices in areas of different length. The graphs indicate the researcher's choices conditional on area length X. We compare them with optimal choices when expanding knowledge (the horizontal line in each graph). On the horizontal axis we indicate the cutoffs $\hat{X}, \check{X}, \dot{X}$, and \check{X} from Proposition 4.

The solid lines plot the optimal choice conditional on X being the best available area. For small areas $(X < \hat{X})$, the researcher prefers to expand knowledge. For areas of length $X > \hat{X}$, she prefers deepening knowledge to expanding knowledge. If the area has length $X < \tilde{X}$, the researcher selects the largest distance possible in area X—that is, d = X/2. If $X > \tilde{X}$, it is optimal to select distance d < X/2 closer to one of the end points of the area. For small areas $(X < \dot{X})$, $\rho(X)$ increases in X. For large areas $(X > \dot{X})$, $\rho(X)$ decreases in X (apart from a discontinuous jump at \tilde{X}). The researcher's payoff increases in area length for $X < \tilde{X}$ and decreases for $X > \tilde{X}$. The order of the cutoffs is independent of the value of the cost parameter η .

3. The researcher's payoffs $U_R(X)$ are single peaked with a maximum at \check{X} .

Proposition 4 shows that the pattern in the choice of distance is qualitatively the same as in Corollary 3. However, the cost adds another dimension to the problem: the optimal probability depends on area length. Consider a short area X. The scope for improvement of the decision maker's policies is small, as conjectures are already precise. Thus, investing in discovery has a small expected payoff. The researcher does not invest much in the search for an answer despite the small cost, as the probability of discovery is small. Now consider a large area. The benefit of deepening research is greater than in the case of the small area. However, because the conjectures are imprecise, the cost is larger too. The researcher does not invest much in discovery, as the probability of discovery is small. In an area of intermediate length, the benefit of discovery is relatively high, yet conjectures are relatively precise and limit the cost. The return on investment is largest, as the probability of discovery is highest.

Moreover, the researcher only trades off d(X) against $\rho(X)$ if X is of intermediate length. If X is small, an increase in X increases the benefit of research. Cost is small, and the researcher has an incentive to increase d(X) and $\rho(X)$. As X becomes larger, the marginal increase in the benefit of research declines yet the marginal cost of research increases for both d(X) and $\rho(X)$. Eventually the researcher faces a trade-off: should she lower $\rho(X)$ to maintain d(X) = X/2? It turns out that she should. While the researcher wants to remain at a boundary in her choice of d(X), she mitigates the increased cost by lowering $\rho(X)$. As X increases further, she eventually also lowers d(X). After a discrete jump upward of $\rho(X)$ at \tilde{X} following the jump downward of d(X) from the midpoint X/2 to an interior point, d and ρ comove again; both decline in X.

The researcher's most preferred area length, \dot{X} , is in a region in which a trade-off between $\rho(X)$ and d(X) exists. While the researcher would prefer a larger research area to increase the benefit of research, she would prefer a smaller research area to reduce the cost of finding an answer. Thus, d(X) is increasing and $\rho(X)$ decreasing at the point at

which $U_R(X)$ is maximal.

Note that we have thus far only characterized the researcher's decision conditional on area length X and compared the resulting payoffs of the researcher. An explicit analytical characterization of the researcher's choice depends on the available research areas; the choice is determined by existing knowledge \mathcal{F}_k . Given our characterization, computing the optimal area is straightforward.²²

6 Application: Incentivizing Moonshots

In this section, we apply the findings from Section 5 to a setting in which a long-lived decision maker (for example, society) faces a sequence of short-lived researchers.

Thus far, our focus has been on the static problem of a researcher who has access to some exogenous existing knowledge and decides how to advance it. In reality, existing knowledge is created by decisions of previous generations of researchers. By creating additional knowledge, a discovery today entails spillovers for future researchers. A long-lived decision maker may therefore want to incentivize researchers to aim for what we call a moonshot—expanding knowledge farther beyond the frontier than statically optimal.

Recall the following insights from our previous analysis:

- (i) Too distant discoveries provide lower benefits than those of intermediate distance (Proposition 1 and Corollaries 2 and 3).
- (ii) Benefits and cost depend on existing knowledge (Propositions 1 to 4).
- (iii) The probability that the researcher will discover an answer is smaller if the chosen question is close or distant. It is larger if the chosen question is of intermediate distance (Propositions 3 and 4).

While (i) implies that incentivizing a moonshot is statically suboptimal, (ii) and (iii) together imply that current researchers can impose a dynamic externality on future researchers. In this section, we show that while such spillovers never offset the short-run losses if the researcher's cost is too high or too low, incentivizing moonshots is beneficial for intermediate cost levels.

Setup. Time is discrete and indexed by t = 1, 2, ... Initial knowledge at the beginning of t = 1 is $\mathcal{F}_1 = \{(0, y(0))\}$. In each period, there is a single, short-lived researcher. Moreover, there is one long-lived decision maker who discounts the future by $\delta \in (0, 1]$. Within period t, the researcher is born and observes \mathcal{F}_t . Then she decides upon question x and research interval [a, b]. If $y(x) \in [a, b]$, knowledge updates to $\mathcal{F}_{t+1} = \mathcal{F}_t \cup (x, y(x))$; otherwise, $\mathcal{F}_{t+1} = \mathcal{F}_t$. At the end of the period, the decision maker decides on her actions $a(x) \in \mathbb{R} \cup \emptyset$ for each x conditional on \mathcal{F}_{t+1} only. Then the next period, t+1, begins.

We define a moonshot as an advancement beyond the frontier farther than the myopic optimum of Corollary 2.

Definition 5 (Moonshot). Given \mathcal{F}_k , a question $x \in \mathbb{R}$ is a moonshot if

- 1. $x \notin [x_1, x_k]$ and
- 2. d(x) > 3q.

To keep the focus on the main trade-off, we make two simplifying assumptions.

Assumption 1. All generations of researchers starting from t = 2 have the same cost type η . Moreover, researchers condition their strategy not on calendar time t, but on

 $^{^{22}}$ A computer program to numerically calculate all choices, given \mathcal{F}_k , is available from the authors.

Figure 10: Evolution of knowledge from t=1 to t=3 for different initial \hat{x} 's. We assume $\mathcal{F}_1 = \{(0, y(0))\}$ (\blacksquare). The dots show what questions have a known answer at each point in time t, assuming that discovery has been successful in all periods through t. Apart from the initial discovery (\bullet), all question choices (\circ) are optimal choices for identical researchers with cost parameter $\eta = 1$. The left panel depicts an initial choice of $\hat{x} = 3q$; the right panel, a choice of $\hat{x} = 6q$.

knowledge \mathcal{F}_t . We focus on symmetric pure strategies; that is, all researchers select the same strategy given the same knowledge.

Assumption 2. In t = 1, the decision maker fully controls the researcher's decision $(\hat{x}, \hat{\rho})$ at no cost.

The assumptions ensure our argument is clear, yet neither is realistic. We provide a discussion and interpretation at the end of the section, where we show how to embed the assumptions in a more realistic setting. Here we briefly describe their role in the analysis. Assumption 1 implies that the continuation game is as simple as possible. If, in any period t, a researcher fails to discover an answer, science reaches a dead end. All future generations will replicate the decision made in t and therefore will also fail to discover an answer. Assumption 2 removes both the cost and the risk of incentivizing a moonshot. Consequently, the decision maker always selects $\hat{\rho} = 1$. The assumption allows us to focus on the *implications* of the moonshot. Our results do not rely on $\hat{\rho} = 1$ or on the absence of cost to the decision maker. We address the cost side of research funding in Section 7.

No-Cost Benchmark. As a benchmark, assume $\eta=0$ for every researcher. In that case, researchers always search along the entire real line for an answer, and they discover an answer with certainty. In addition, every researcher finds it optimal to expand the frontier and select a question with distance d=3q. Recall from Corollary 3 that for areas of length $X<\hat{X}^0$, further expansion is optimal. Furthermore, $\hat{X}^0>3q$. Thus there are no spillovers between periods. Output is maximized with $\rho=1$, and areas of length 3q are benefit maximizing for all area lengths (see Corollary 2). Thus the myopic sequence is dynamically optimal too. The following statement is therefore a corollary to Proposition 1.

Corollary 5. If research is costless, incentivizing a moonshot is not beneficial. Moreover, the static optimum is also dynamically optimal for any δ .

Including Cost. If the cost is positive for all researchers $(\eta > 0)$, for two reasons the preferences of the decision maker and the researchers are no longer aligned. First, the cost of research enters the researcher's payoff function directly but enters the payoff function of the decision maker only through the researcher's decision.²³ Second, findings in period t = 1 influence the cost to future generations of researchers in periods t > 1 through the implied conjectures. While researchers do not take this effect into account, the long-lived decision maker internalizes that dynamic externality.

²³If the decision maker were to internalize the researchers' cost as well, it is straightforward to generate an analogous result. Indeed, moonshots would become even more beneficial.

Analysis. We now demonstrate why incentivizing moonshots can be beneficial to the decision maker. Figure 10 sketches the evolution of knowledge for two different initial discoveries.

Because of Assumption 2, the decision maker chooses \hat{x} . Her ex ante payoff is

$$\sum_{t=1}^{\infty} \delta^{t-1} \mathbb{E} \left[v(\mathcal{F}_{t+1}) \right],$$

where $\rho_1 = 1$ and $\rho_{t>2}$ is the researcher's choice of ρ in period t.

The myopic benchmark for $\delta = 0$ is given by Corollary 2 and implies $\hat{x} = 3q$. However, if $\delta > 0$, selecting $\hat{x} > 3q$ has two effects on the expected payoff.

One effect comes from the cost function of future researchers that aim to deepen knowledge between \hat{x} and 0. Suppose $|\hat{x}|$ is large enough to make the t=2 researcher pursue a question in $[0,\hat{x}]$ with a distance d_2 from \mathcal{F}_2 . That researcher's cost is determined by the variance $\sigma(d_2;|\hat{x}|)$, which also depends on the choice of $|\hat{x}|$. A properly chosen moonshot $\hat{x} > 3q$ reduces the cost to future generations of researchers of connecting the initial body of knowledge with the moonshot. This induces higher productivity during the later periods.

A second effect comes from persistently shaping knowledge. After τ periods of making discoveries, knowledge is sufficiently dense that all researchers from $t=\tau+1$ onward act to expand knowledge with d^{∞} . However, the knowledge created during these τ periods is different with and without the initial moonshot \hat{x} . Figure 10 illustrates two scenarios with persistently different knowledge. A properly chosen moonshot $\hat{x}>3q$ induces a more valuable landscape of knowledge for the decision maker as choices of distance are improved because of the cost reduction.

Overall, an optimal moonshot can increase future output and future novelty. The next proposition shows that these benefits may outweigh the short-run cost of a too distant discovery for a sufficiently patient decision maker provided that the cost of research is in an intermediate range.

Proposition 5. There is a non-empty range of cost parameters $(\underline{\eta}, \overline{\eta})$ such that the decision maker strictly prefers a moonshot in t = 1 for any $\eta \in (\underline{\eta}, \overline{\eta})$ provided δ is larger than the critical discount factor $\underline{\delta}(\eta) < 1$.

Proposition 5 states that moonshots are optimal if the decision maker is patient enough and cost is not extreme. Figure 11 provides an illustration. If the cost is very low, the reasoning of the no-cost benchmark above applies. A moonshot has little benefit because cost does not distort the researchers' decisions much while the loss in benefit of a suboptimal choice in the first period remains. If, instead, the cost is very high, it is optimal for future generations to limit search to small intervals. The probability of a discovery is low, and it is unlikely that future generations will eventually succeed in closing the gap after a moonshot. In both cases, the decision maker's optimal choice is the myopically optimal $\hat{x} = 3q$.

For intermediate cost, moonshots are beneficial. The positive externality imposed on future researchers is large, and research is generally productive. Future generations benefit from the cost advantage and produce more valuable knowledge at a higher rate.

The length of the *optimal moonshot* depends on the cost parameter. If the cost is low and the decision maker is patient, it might take several future generations to close the gap created by the optimal moonshot. The less patient the decision maker and the more costly the research, the shorter the time required to close the gap. The effect of the discount factor is as expected. The reason for the cost effect is that if cost is high,

Figure 11: Moonshot of d=6q versus the myopic optimum d=3q for different parameters. The left panel plots the difference between the first-period net present value of a 6q moonshot and that of the myopic optimum d=3q for different η 's. The discount factor is $\delta=0.9$. The moonshot is strictly preferred for the interval $[\eta, \overline{\eta}] \approx (0.01, 2.13)$.

The right panel plots the difference between the first-period net present value of a 6q moonshot and that of the myopic optimum d=3q for different δ 's. The cost parameter is $\eta=1$. The moonshot is strictly preferred for $\delta > \underline{\delta} \approx 0.6$.

the chance that a researcher fails to obtain an answer increases. As a result, the *effective* discount factor decreases. The decision maker prefers moonshots that entail less future risk. Figure 12 shows the ex ante value of different moonshots to the decision maker for two cost scenarios.

Discussion. The stylized model above illustrates a friction caused by the different time preferences of the short-lived researchers and the long-lived decision maker (see Rzhetsky et al., 2015, for empirical evidence). However, the analysis relies on Assumption 1 and Assumption 2, neither of which is very realistic. We provide a short discussion of how the analysis and our findings change once we relax these assumptions.

Assumption 1 eliminates any heterogeneity among researchers. In particular, it implies that there is no uncertainty about the behavior of future researchers. The result is that if one researcher fails to make a discovery, all future researchers will follow in her footsteps and fail too. Research reaches a dead end.

There are several ways to relax this assumption. The simplest is to allow researchers to use asymmetric strategies. Whenever the optimal choice of the researcher is not the midpoint of a research area, there is a payoff-equivalent alternative to the researcher's choice. Allowing researchers to choose between such alternatives can prevent research from reaching a dead end after one failed attempt. However, if search fails on both alternatives, the same situation as that under Assumption 1 arises: research reaches a dead end.

One option to guarantee the eventual progress of science is to assume that the researcher's cost parameter η is a random variable representing differences in talent, opportunity cost, research environment, and more. If, for example, the lower bound of the support of η is zero, dead ends are almost surely escaped in finite time: every new discovery changes existing knowledge \mathcal{F}_k and thus the existing conjectures. Hence, making η a random variable allows low-cost types to remove a knowledge block other types face. If research reaches a dead end and many cost types fail to discover answers, science slows down. However, a single discovery can mitigate or reverse that slowdown. It changes the questions the types optimally pursue and may lead to discoveries by high-cost types again.

In principle, such a model can create science cycles: over time, regular types reach a dead end. If, however, a rare genius arrives that makes a new discovery, the regular types

Figure 12: Optimal moonshots. The figure plots first-period net present value against the initial choice of moonshot. In the left panel, $\eta=1$ and the optimal moonshot \hat{x}^* is between 5q and 6q. After the initial moonshot, the researcher in t=2 bridges the gap: She deepens knowledge by selecting $x=\hat{x}^*/2$. In the right panel, $\eta=0.1$ and the optimal moonshot is between 8q and 9q. After the initial moonshot, it takes two researchers to bridge that gap. In both figures, $\delta=0.9$.

change focus and are now able to discover answers again.²⁴

A third way to relax the assumption is to allow researchers to observe previous failures too. However, changing the model in that respect entails also changing the results from Proposition 4 and Proposition 3. We leave that for future research.

Assumption 2 implies that the decision maker can, at no cost, incentivize a particular finding. One interpretation of that assumption is that the decision maker can award a prestigious prize or a powerful position if the researcher finds answer $y(\hat{x})$. If the benefit to the researcher is large, she will pursue question \hat{x} and find an answer with high probability. In principle, the decision maker may be budget constrained and awarding prizes may become more costly the farther away \hat{x} is. Here we abstract from this by implicitly assuming that incentives for researchers can be provided at no cost.²⁵

However, there is a second part in the assumption not captured in this interpretation. Assumption 2 assumes that any initial choice comes with the same probability ($\hat{\rho} = 1$). We know from Proposition 4 and Proposition 3 that this is not the case and that these differences are important. However, as we show in Section 7, the difference in ρ for different levels of novelty when the incentive provision is modeled explicitly is sensitive to the funding parameters. We thus chose to deliberately ignore these differences for the sake of clarity. However, it is straightforward to numerically verify that Proposition 5 holds even when endogenizing $\hat{\rho}$ —for example, by explicitly modeling a large prize.

7 Application: Science Funding

In this section, we derive the combinations of distance from knowledge d (novelty) and probability of discovery ρ (output) a budget-constrained funding institution can implement.

²⁴In such an enhanced model, a full algebraic characterization of all potential paths is difficult. However, Proposition 4 offers a complete characterization of any potential stage. Matlab code to simulate potential paths (including the simplified ones that led to the graphs in this section) is available from the authors.

²⁵Many prestigious prizes, such as the John Bates Clark Medal in economics and the Fields Medal in mathematics, come with negligible direct monetary benefits but provide large reputation gains. See Kosfeld and Neckermann (2011) for an experimental study on prizes without monetary rewards.

We assume that the institution has two instruments: ex ante reductions in the researcher's cost (for example, grants) and ex post rewards to the researcher (for example, prizes for seminal contributions).²⁶

We assume that the funder respects scientific freedom and spends her budget on some combination of cost reductions and rewards.²⁷ In principle, we are agnostic about the funder's objective. As we saw in Section 6, even if we assume the funder wants to maximize the value of the knowledge created, her objective depends on the time horizon and expected cost type of future researchers. Instead of choosing an objective, we characterize the feasible set that the funder can implement. We complement the feasible set with the concrete example of a funder that maximizes the short-run benefits of research.

Setup. Knowledge consists of the single question-answer pair $\mathcal{F}_0 = (x_0, y(x_0))$. The researcher's cost parameter is η^0 . The funder has a fixed budget K to invest in a funding scheme using two technologies: ex ante cost reductions, h, and ex post rewards, ζ . The funder's budget constraint is

$$K = \zeta + \kappa h$$
,

with parameter κ capturing the ratio of the marginal costs of the instruments. A cost reduction of h implies that the researcher faces the new cost parameter $\eta \equiv \eta^0 - h$. We assume $\kappa > K/\eta^0$. Receiving an expost reward gives the researcher additional utility of ζ . We assume rewards come for seminal contributions; that is, the more difficult the problem and novel the discovery, the larger the chance of receiving a reward. We proxy the expost relation by the function $f(\sigma_{\mathcal{F}_k}): \mathbb{R} \to [0,1]$, which determines the probability of receiving a reward. To keep the analysis simple, we assume the piecewise linear relationship

$$f(\sigma) = \begin{cases} \frac{\sigma^2}{s} & \text{if } \sigma^2 < s \\ 1 & \text{otherwise,} \end{cases}$$

for some $s \ge 4q$. The parameter s determines the level of difficulty that guarantees the reward.²⁸ The researcher's problem becomes

$$\max_{d,\rho} \rho \Big(V(d; \infty) + \frac{\sigma^2(d; \infty)}{s} \zeta \Big) - \eta \tilde{c}(\rho) \sigma^2(d; \infty).$$

The Feasible Set. We characterize the feasible set of choices (d, ρ) that a funder can induce with a given budget. Computing the set provides a useful tool to analyze the optimal funding scheme given a particular preference relation over (d, ρ) bundles. As in a standard consumer problem, the feasible set can be readily applied; it is the analog of a budget set. We provide an example below. Define $\tilde{c}_{\rho}(\rho) := \partial \tilde{c}/\partial \rho(\rho)$.

 $^{^{26}}$ A large literature debates different forms of science funding. For recent contributions, see Price (2019) and Azoulay and Li (2020) and references therein.

²⁷For example, the NIH awards the majority of grants via investigator-initiated competitions without a specific research topic suggested. For an empirical investigation of the effects of the alternative, "Request for Applications" grants, on researchers' choices, see Myers (2020). Azoulay, Graff Zivin, and Manso (2011) show empirically that long-term grants guaranteeing freedom of research have a strong impact on researchers' choices.

 $^{^{28}}$ We make three assumptions here: First, we assume a particular functional form on $f(\sigma^2)$. We select the linear form to derive a closed form characterization. The crucial assumption however is that f is a bounded function, which is true whenever f is a probability. In the supplementary appendix Appendix E we show that our results are robust to other functional forms. Second, we assume that the parameter s is 'large enough' to avoid case distinctions and offer concise proofs below. Numerically, we can verify that results are not affected by this assumption. Third, implicitly we assume that the funder's budget constraint has to hold ex-post as the researcher's choice of ρ does not affect it.

Figure 13: Feasible sets for different reward standards. The shaded part shows the implementable (ρ, d) combinations for a funder with budget K = 6. All points on a solid line require the same amount of funding. In both panels, the reward technology s = 50, and the baseline cost factor is $\eta^0 = 1$. The status-quo parameter has value q = 1. In the left panel, the relative cost $\kappa = 7$; in the right panel, $\kappa = 14$.

Definition 6. The research-possibility frontier $d(\rho; K)$ describes the largest distance a funder with budget K can implement for a given level of ρ . If $d(\rho; K)$ is increasing (decreasing) in ρ , then d and ρ are complements (substitutes) from the funder's perspective.

Before characterizing the feasible set, we make an observation following directly from Corollary 2.

Corollary 6. If $\zeta = 0$, the researcher's optimal choice satisfies d < 3q.

The benefit of a discovery is maximized for d=3q. Cost reductions reduce the frictions that keep the researcher from targeting d=3q but never incentivize her to go beyond that point. Because $\kappa > K/\eta^0$ by assumption, the inequality in the corollary is strict.

Proposition 6. For any budget K, there is an $s(K) < \infty$ such that whenever s > s(K), all funding schemes imply novelty d < s. Moreover,

if $\mathbf{s} > \mathbf{s}(\mathbf{K})$. The set of implementable (d, ρ) combinations for a given cost ratio κ and budget K is described by the research-possibility frontier $d(\rho; K)$ defined over $[\underline{\rho}, \overline{\rho}]$, where $\underline{\rho}$ and $\overline{\rho}$ are the endogenous upper and lower bounds of ρ . These bounds are determined by the extreme funding schemes $(\zeta = 0, \eta = \eta^0 - K/\kappa)$ and $(\zeta = K, \eta = \eta^0)$. The research-possibility frontier is

$$d(\rho; K) = 6q(K + s - \kappa \eta^0) \frac{\rho \tilde{c}_{\rho}(\rho) - \tilde{c}(\rho)}{2s\rho \tilde{c}_{\rho}(\rho) - s\tilde{c}(\rho) - \kappa \rho}.$$
 (1)

Depending on parameters, output and novelty can be both substitutes and complements from the funder's perspective.

if $\mathbf{s} < \mathbf{s}(\mathbf{K})$. Whenever the researcher's choice given (ζ, η) is such that $d \neq s$, then (1) describes the relation between $d(\rho)$. Moreover, there is a $\xi > 0$ such that $d \neq s$ for $\zeta < \xi$.²⁹

We illustrate the feasible set for two levels of the cost parameter in Figure 13. In both cases s > s(K) which implies that equation (1) applies throughout. Moreover, $s > \kappa \eta^0$

²⁹If d=s, then ρ is the unique solution to $\frac{V(s;\infty)+\zeta}{\eta s}=c_{\rho}(\rho)$.

which implies that the factor $6q(K+s-\kappa\eta^0)$ is positive and thus the slope of the last term determines whether d and ρ are substitutes or complements. In the left panel, novelty and output are complements for the funder whenever $\rho > \tilde{\rho} \approx 49$ percent. A funder with monotone preferences in (d,ρ) would select the northeast corner, which maximizes both d and ρ . The highest implementable level $\bar{\rho} \approx 82$ percent. In the right panel, the relative price of cost reductions is double the price on the left. That implies that the funder can only implement more risky strategies, the highest implementable probability of success $\bar{\rho} \approx 51$ percent. Moreover, ρ and d are substitutes over the entire budget set. A funder with monotone preferences therefore has to resolve a trade-off between incentivizing greater output ρ and incentivizing greater novelty d.

Novelty and output can become complements because an increase in ρ has two effects: (i) it increases the marginal benefit of distance, $V_d(d,X) + \frac{\zeta}{s} \sigma_d^2(d,X)$, by increasing the probability that the researcher will find an answer, and (ii) it increases the marginal cost of distance, $(\eta^0 - h)\tilde{c}(\rho)\sigma_d^2(d,X)$. The uncertainty of the conjecture about questions, $\sigma^2(d,X)$, is increasing in distance. Moreover, for any distance, the interval that has to be covered to find an answer with probability ρ is increasing in this probability. As the right panel of Figure 13 demonstrates a one-unit increase in ζ may increase the weight placed on the marginal-benefit effect relatively more than the resulting increase in η (by reducing κh) increases the marginal-cost effect. As a result, d and ρ become complements.

Incentivizing Researchers. An immediate consequence of Corollary 6 is that if the funder wants to incentivize a moonshot as in Section 6, cost reductions alone cannot achieve that goal. However, even if the funder aims at maximizing the myopic value, the funder may need to combine the two policy instruments, as the next proposition shows. We say that the funder induces excessive novelty if she implements a degree of novelty larger than the benefit-maximizing d = 3q from Corollary 2.

Proposition 7. Suppose the funder aims at maximizing the myopic expected benefit from research, $\rho V(d; \infty)$. The optimal funding scheme can be a combination of the two instruments $(\zeta > 0, h > 0)$ or can focus only on one of the two $(\zeta = 0, h > 0)$ or $\zeta > 0, h = 0$. Moreover, the following statements are true:

- 1. If—from the funder's perspective—output and novelty are substitutes throughout, optimal funding cannot induce excessive novelty.
- 2. Otherwise, optimal funding may induce excessive novelty. If output and novelty are complements for funding schemes that induce d < s, moderate excessive novelty $d \in (3q, s)$ can be optimal.

Figure 14 illustrates Proposition 7. It highlights the fundamental difference between the case in which cost reductions and rewards are substitutes and the case in which they are complements. In the left panel, the two are substitutes. Here, the funder trades off novelty and output and settles optimally for a funding mix in the interior of what can be achieved both in terms of novelty and output. The optimal funding scheme is a mix of both instruments. In the right panel, the funder chooses to combine the two instruments as well, yet she aims to maximize output. Here, novelty and output are complements for high output levels. As we have seen in Section 3, the benefits are nonmonotone in novelty.

The funder's optimal solution includes excessive novelty: the novelty induced is larger than the value-maximizing level d = 3q. The reason for excessive novelty is that it comes with higher output. The researcher's desire to win the award induces her to work harder on finding a solution, meaning output increases. However, the funder does not want to go to the extreme d = s as that would imply a reduction in output.

Figure 14: Funding schemes that maximize immediate benefits. The dashed elliptical curves depict all points that deliver the same expected value $\rho V(d;\infty)$. The solid line is the funder's budget line. In both panels, K=3, s=6, q=1, and $\eta^0=1$. In the left panel, the relative price of cost reductions is $\kappa=7$; on the right, that price is $\kappa=14$. The funder's optimal choice (\bullet) in both cases consists of a mix of ex-ante cost reductions and ex-post rewards, $(\zeta,h)>0$. The circle (\circ) depicts the outcome if the funder invest exclusively into rewards, $\zeta=K,h=0$; the square (\square) the outcome if the funder invests exclusively into cost reductions, $\zeta=0,h=K/\kappa$.

The optimal funding scheme combines ex ante cost reductions and ex post rewards. If the funder were to concentrate on awards alone, she would induce novelty d=s. In response the researcher takes too much risk in her effort to win the award. Output —and thus the expected benefits—decline.

8 Relation to Existing Models

In this section, we relate our model and our findings to the two closest papers in the literature, Callander and Clark (2017) and Prendergast (2019).

Callander and Clark (2017) consider judicial decision making. Judges are interested in learning the realization of the entire path of a Brownian motion. As in our model, a decision maker (a lower court in their framework) adjusts decisions to the unknown state of the world. The decision maker's knowledge is the realized value of a Brownian path for certain cases (the analog to questions in our model), which a higher court reveals. Aside from the application, the main differences between our model and that in Callander and Clark (2017) are the following. First, we assume that the researcher selects, in addition to the research question, her intensity of research effort. We model the discovery of the realization as a costly and risky search. The effort that a researcher invests in the search affects both the cost of research and the probability of finding an answer. Second, the decision maker's and therefore the researcher's objective is to learn the exact realization of the Brownian path, in contrast to learning whether it lies above or below a threshold. Unlike in their model, the value of a discovery in our framework does not lie in how the expectations relate to the threshold but in how they relate to other known points: as the conjectures become more precise and finding an answer becomes easier, the benefits of research shrink too. Third, in Callander and Clark (2017), it is eventually optimal to stop searching. In our model, research never stops. Although the benefit of asking a specific question decreases when similar questions have a known answer, there is always a question worth researching.

Prendergast (2019) considers a model of creative innovation with a different focus.

He studies contracts that directly condition on an agent's choice. Prendergast's assumed benefit-of-discovery function is a special case of ours in which the area length of the best available area is larger than \hat{X} (so that expanding knowledge is not beneficial) but smaller than \hat{X} (so that selecting the midpoint is always optimal). The novelty-dependent probability-of-success function he assumes in an extension matches the properties that we derive for our endogenous probability of success. Thus, we can construct a special case of our model in which predictions coincide with a special case of his model.

Our focus is on the microfoundation of the functions, while his is on agency concerns in a reduced-form model. In its modeling approach, our model of knowledge differs from his along at least two crucial dimensions. First, we assume that it is possible to expand research beyond the frontier, and we show that it can be optimal. Prendergast (2019) instead assumes that research always takes place between two existing findings. Second, our decision maker has an outside option that limits her expected losses if conjectures are too imprecise. Existence of an outside option implies that there are bounds on the benefit of novelty. Once newly created areas become too large, conjectures in that area become too imprecise, which reduces the value of the area.³⁰ Therefore, and unlike Prendergast (2019), we obtain nonmonotonicity in the value of novelty.

Finally, Prendergast (2019) assumes an exogenous cost that maps the likelihood of obtaining a solution onto the cost of research. In an extension, he assumes that this mapping depends exogenously on the distance from knowledge. We assume that cost is exogenous at a lower level: the effort that the researcher invests in the search for an answer is costly and takes a quadratic functional form. Starting from that assumption, we derive an *endogenous* mapping from the probability of successful discovery, ρ , the distance of the research question from existing knowledge, d, and the size of the area the question lies in, X, to the cost of research.

9 Final Remarks

We developed a tractable model of knowledge and research. The starting points of our model are that (i) the pool of available research questions is large, (ii) questions in close proximity to existing knowledge are easier to answer than questions that are far from existing knowledge, and (iii) society applies knowledge when selecting policies. We conceptualized research as the choice of a research question and the subsequent costly search for an answer.

Our model endogenously links novelty and research output and highlights the importance of existing knowledge for research and knowledge accumulation. Novelty and output can be substitutes or complements depending on the research area and the location of the question therein. If research expands the frontier, greater novelty always entails greater risk and thus lower output.

We show that the most valuable and productive research lies in research areas of intermediate length. Discoveries that connect distant—yet not too distant—pieces of knowledge substantially improve society's decisions, and the researcher benefits from relatively precise conjectures in the search for an answer.

We applied our baseline model to two classical questions in the economics of science funding. First, we showed that it may be optimal for society to incentivize moonshots—highly

³⁰That result also formalizes the argument in Price (2020) that focusing on providing incentives that maximize novelty can backfire, as knowledge may end up consisting of disconnected islands. In our model, research that is too far from the current body of knowledge has little positive spillover on society's conjectures about unanswered questions.

novel discoveries with limited immediate benefits. While suboptimal in the short run, moonshots provide guidance for future discoveries. By incentivizing moonshots, the funder allows the evolution of knowledge to benefit from a dynamic externality: the effect of discoveries on future generations of researchers. Properly chosen moonshots increase both the research productivity and the value of knowledge generated in future periods.

Our results are in line with recent empirical work—for example, Rzhetsky et al. (2015)—that analyzes the impact of scientific findings on future scientific developments. That work suggests that scientists choose a dynamically suboptimal strategy when selecting their research questions. Rzhetsky et al. (2015) identifies researcher myopia as one of the drivers of that finding. While our model is consistent with this sentiment, we also raise a note of caution. Whether incentivizing moonshots is beneficial depends crucially on the current state of knowledge. Moonshots should be chosen carefully, as too much novelty can hurt the evolution of knowledge.

Second, we studied how a budget-constrained funding institution can affect a researcher's choices. In particular, we focused on two funding instruments: ex ante reductions of the cost of research and ex post rewards for novel discoveries. We characterized the implementable set of novelty-output combinations that a budget-constrained funder can incentivize and showed that the optimal funding mix may consist of both instruments. If output and novelty are complements from the funder's perspective, the funder may incentivize excessive novelty via rewards to increase output. If they are substitutes, the funder trades off novelty and output.

We began our paper by emphasizing the role of scientific freedom. Preserving that freedom remains a challenging task for science-funding institutions when society designs a funding architecture (see, for example, Bourguignon, 2019). The NSF emphasizes that it aims at funding high-risk/high-reward research to advance the knowledge frontier. Our findings in Sections 6 and 7 illustrate two particular trade-offs that funding institutions face in that context. Several known frictions absent in our model hinder efficient funding in reality. These range from publication bias (Andrews and Kasy, 2019), to the emphasis on priority (Bobtcheff, Bolte, and Mariotti, 2017; Hill and Stein, 2019, 2020), to career concerns (Akerlof and Michaillat, 2018; Heckman and Moktan, 2020). While the question of optimal market design is beyond the scope of this paper, our framework is flexible enough to incorporate these frictions in a straightforward manner. It may thus be a stepping stone toward developing structural models of science funding that focus on these issues. Such models could be useful for evaluating funding schemes and could provide meaningful counterfactuals to inform decision makers about the optimal provision of research incentives.

Appendix

A Notation and Properties of \tilde{c}

Notation: We use argument subscripts to denote the partial derivatives with respect to the argument. We omit function arguments whenever it is convenient and does not cost clarity. We use the notation $\frac{\mathrm{d}f(x,y)}{\mathrm{dx}}$ to indicate the total derivative $(f_x + f_y y_x)$.

Properties of \tilde{c} . Some proofs rely on the properties of the inverse error function or more specifically on the representation $\tilde{c}(\rho) = (erf^{-1}(\rho))^2$. The function $\tilde{c}(\rho)$ is convex and increasing on [0,1) with $\tilde{c}(0) = 0$ and $\lim_{\rho \to 1} \tilde{c}(\rho) = \infty$.³¹ The derivative

$$\tilde{c}_{\rho}(\rho) = \sqrt{\pi} erf^{-1}(\rho)e^{\tilde{c}(\rho)}$$

is increasing and convex with the same limits.

We make use of the fact that, for $\rho \in (0,1)$, $\tilde{c}(\rho)$ has a convex and increasing elasticity bounded below by 2 and unbounded above. Its derivative $\tilde{c}_{\rho}(\rho)$ has an increasing elasticity bounded below by 1 and unbounded above. We want to emphasize that these properties are not special to our quadratic cost assumption. To the contrary, $erf^{-1}(x)^k$ for any $k \geq 2$ admits similar properties with only the lower bounds changing. Formally, the following properties are invoked in the proofs:

$$\begin{split} \rho \frac{\tilde{c}_{\rho}(\rho)}{\tilde{c}(\rho)} &\in (2, \infty) \text{ and increasing,} \\ \rho \frac{\tilde{c}_{\rho\rho}(\rho)}{\tilde{c}_{\rho}(\rho)} &\in (1, \infty) \text{ and increasing,} \\ \rho \tilde{c}_{\rho}(\rho) - \tilde{c}(\rho) &\in (0, \infty) \text{ and increasing,} \\ \tilde{c}_{\rho}^{-1}(x) &= erf\left(\sqrt{\frac{W(2x^2/\pi)}{2}}\right). \end{split}$$

with $W(\cdot)$ the principal branch of the Lambert W function. We prove the properties that do not directly follow from the definition of the inverse of the error function in the supplementary Appendix D.

B Proofs

At various points we make use of inequality relations the proof of which we relegate to supplementary Appendix D. In each of these cases, proving the inequalities is done via straightforward algebra that produces little additional insight.

B.1 Proof of Proposition 1

Proof. The value of knowing \mathcal{F}_k is

$$\int_{-\infty}^{\infty} \max \left\{ \frac{q - \sigma_x^2(y|\mathcal{F}_k)}{q}, 0 \right\} dx.$$

No matter which point of knowledge (x, y(x)) is added to \mathcal{F}_k , the value of knowledge outside the frontier is identical for both \mathcal{F}_k and $\mathcal{F}_k \cup (x, y(x))$. Area lengths $X_1 = X_k = \infty$ do not depend on \mathcal{F}_k and neither does the variance for a question $x < x_1$ or $x > x_k$ with a given distance d to \mathcal{F}_k . The conjectures about all questions outside $[x_1, x_k]$ deliver a total value of

$$2\int_0^q \frac{q-x}{q} \mathrm{d}x = q,$$

³¹Due to this limit and the researcher's ability to choose $\rho = 1$, we augment the support of the cost function to include $\rho = 1$ with $\tilde{c}(1) = \infty$. However, the optimal ρ is always strictly interior unless the cost parameter η is chosen to be zero in which case we assume that $\eta \tilde{c}(\rho = 1) = 0$.

which is independent of \mathcal{F}_k .

Moreover, if the answer to a question \hat{x} , deepens knowledge, that is, $\hat{x} \in [x_i, x_{i+1}]$ with $(x_i, y(x_i)), (x_{i+1}, y(x_{i+1})) \in \mathcal{F}_k$, it only affects questions in the area $[x_i, x_{i+1}]$, i.e., $G(x|\mathcal{F}_k) = G(x|\mathcal{F}_k \cup (\hat{x}, y(\hat{x})) \ \forall \ x \notin (x_i, x_{i+1})$.

To simplify notation, let us consider the points in terms of distance to the lower bound of the area with X, $d \equiv x - x_i$.

The value of a given area $[x_i, x_{i+1}]$ is (with abuse of notation)

$$v(X) = \int_0^X \max\left\{\frac{q - \frac{d(X-d)}{X}}{q}, 0\right\} dd.$$

Note that whenever $X \leq 4q$, $\frac{d(X-d)}{X} \leq q$. Hence, we can directly compute the value of any area with length $X \leq 4q$ as

$$v(X) = X - \frac{X^2}{6q}.$$

Whenever X > 4q, value is only generated on a subset of points in the area. As the variance is a symmetric quadratic function with X/2 as midpoint, there is a symmetric area centered around X/2 which has a variance exceeding q. The points with variance equal to q are given by $\overline{d}_{1,2} = \frac{X}{2} \pm \frac{1}{2} \sqrt{X} \sqrt{X - 4q}$. On all such points the decision makers losses are limited to 0. Hence, the value of an area with X > 4q is (due to symmetry)

$$v(X) = 2 \int_0^{\overline{d}_1} \frac{q - \frac{d(X - d)}{X}}{q} dd$$

= $X - \frac{X^2}{6q} + \frac{X - 4q}{6q} \sqrt{X} \sqrt{X - 4q}$.

If knowledge expands beyond the frontier, a new area is created and no area is replaced. The value created is thus

$$V(d; \infty) = v(d) = d - \frac{d^2}{6q} + \begin{cases} 0, & \text{if } d \le 4q \\ \frac{d - 4q}{6q} \sqrt{d} \sqrt{d - 4q}, & \text{if } d > 4q. \end{cases}$$

If a knowledge point is added inside an area with length X with distance d to the closest existing knowledge, it generates two new areas with length d and X-d that replace the old area with length X. The total value of the two intervals new is

$$v(d) + v(X - d) = d - \frac{d^2}{6q} + \begin{cases} 0, & \text{if } d \le 4q \\ \frac{d - 4q}{6q} \sqrt{d} \sqrt{d - 4q}, & \text{if } d > 4q \end{cases}$$
$$+ X - d - \frac{(X - d)^2}{6q}) + \begin{cases} 0, & \text{if } X - d \le 4q \\ \frac{X - d - 4q}{6q} \sqrt{X - d} \sqrt{X - d - 4q}, & \text{if } X - d > 4q \end{cases}$$

The benefit of discovery is then V(d;X) = v(d) + v(X-d) - v(X). Noticing that $\sigma^2(d;X) = d(X-d)/X$ and replacing accordingly results in the expression from the proposition follow. Taking the limit of $X \to \infty$ corresponds to the value of expanding research beyond the frontier.

B.2 Proof of Corollary 2

Proof. The first-order condition for $d \leq 4q$ is

$$\frac{\partial V(d; \infty | d \le 4q)}{\partial d} = 1 - \frac{d}{3q} = 0.$$

Moreover, the benefit is decreasing in d for d > 4q which can be seen from the derivative with respect to d which is

$$\frac{\partial V(d;\infty|d>4q)}{\partial d}=-\frac{d}{3q}+1+\sqrt{\frac{d-4q}{d}}\frac{d-q}{3q}<0.$$

The inequality holds by Lemma 23 in Appendix D.

B.3 Proof of Corollary 3

We prove Corollary 3 via a series of lemmata.

• Lemmata 1 and 2 shows that the distance that maximizes deepening knowledge is $d^0(X) = X/2$ for small X and $d^0(X) < X/2$ for large X.

- Lemma 3 shows that $d^0(X) < X/2$ implies decreasing benefits in X.
- Lemma 4 shows that once $d^0(X) < X/2$ for some X it is true for all X' > X and thus establishes \widetilde{X} .
- Lemma 5 shows our convergence and $d^0(X > 6q) > 3q$.
- Lemmata 6 and 7 establishes single peakedness and determine \check{X}^0 and \hat{X}^0 .
- Lemma 8 determines the order of the cutoffs.

Throughout, we refer to the distance d that maximizes V(d;X) as $d^0(X)$. Recall that $d \leq X/2$.

Proof.

Lemma 1. $d^0(X) = X/2$ if $X \le 6q$.

Proof.

1. Assume $X \leq 4q$.

The benefits of discovery are

$$V(d; X | X \le 4q) = \frac{1}{3q}(Xd - d^2)$$

which is increasing in d for $d \in [0, X/2]$ and hence maximized at d = X/2. Moreover, $V(X/2; X|X \le 4q) = X^2/(12q)$ which is increasing in X.

- **2. Assume** $X \in (4q, 6q]$.
 - (i) $d \ge X 4q$ implies (since $d \le 3q$)

$$V(d; X|d \ge X - 4q, X \in (4q, 6q])) = \frac{1}{6q} \left(2dX - 2d^2 - \sqrt{X}(X - 4q)^{3/2} \right)$$

which is the same as in the first case up to constant $-\sqrt{X}(X-4q)^{3/2}$. Thus, the optimal d conditional on $d \ge X - 4q$ is d = X/2.

(ii) For $d \leq X - 4q$ the benefit becomes

$$V(d; X|d \le X - 4q, X \in (4q, 6q])) = \frac{1}{6q} \left(2dX - 2d^2 + \sqrt{X - d}(X - d - 4q)^{3/2} - \sqrt{X}(X - 4q)^{3/2} \right),$$

with derivative

$$V_d = \frac{1}{3q} \left(X - 2d - (X - d - q) \sqrt{\frac{X - d - 4q}{X - d}} \right)$$

which is positive for $d \leq X - 4q, X \in (4q, 6q]$ by Lemma 24 from Appendix D. Hence, $V_d(d; X | d \leq X - 4q, X \in [4q, 6q]) > 0$ for all d and X in the considered domain. Thus, d = X - 4q maximizes $V(d; X | d \leq X - 4q, X \in (4q, 6q])$ and hence d = X/2 maximizes $V(d; X | X \in (4q, 6q])$.

Lemma 2. If X > 8q then $d^{0}(X) \neq X/2$. If $d^{0}(X) \neq X/2$, then $d^{0}(X) \leq 4q$.

Proof. Take $\overline{d} = 4q < X/2$. That implies

$$V(\overline{d}; X|X > 8q) = \frac{1}{6q} \left(8Xq - 32q^2 - \sqrt{X}(X - 4q)^{3/2} + \sqrt{(X - 4q)}(X - 8q)^{3/2} \right).$$

By comparison

$$V(X/2; X|X > 8q) = \frac{1}{6q} \left(\frac{X^2}{2} - \sqrt{X}(X - 4q)^{3/2} + \frac{1}{2} \sqrt{X}(X - 8q)^{3/2} \right)$$

The difference of the two is thus

$$\begin{split} V(\overline{d};X|\cdot) - V(X/2;X|\cdot) \\ &= \frac{1}{6q} \Big(\sqrt{X - 4q} (X - 8q)^{3/2} - \frac{\sqrt{X}}{2} (X - 8q)^{3/2} - \frac{(X - 8q)^2}{2} \Big) \\ &= \frac{1}{6q} \frac{(X - 8q)^{3/2}}{2} \Big(2\sqrt{X - 4q} - \sqrt{X} - \sqrt{(X - 8q)} \Big), \end{split}$$

which is positive if

$$4(X - 4q) > 2X - 8q \Leftrightarrow X > 4q$$

and holds by assumption.

To establish the second part of the lemma, note that d > 4q can only occur for X > 8q. We will show that $V_d(d;X) < 0$ for all d > 4q when X > 8q. Towards this, observe that

$$V_{ddX}(d;X) = -\frac{24q^3}{(X-d)^{\frac{5}{2}}(X-d-4q)^{\frac{3}{2}}} < 0.$$

Thus, the $V_{dd}(d;X)$ is lowest for $X \to \infty$ which is

$$V_{dd}(d;X)|_{\lim_{X\to\infty}} = 2\frac{d^2 - d^{\frac{3}{2}}\sqrt{d-4q} - 2q(d+q)}{d^{\frac{3}{2}}\sqrt{d-4q}} > 0.$$

Thus, $V_d(d; X)$ is highest for $d = \frac{X}{2}$ which is

$$V_d(d;X)|_{d=X/2} = 0.$$

Hence, V(d;X) is decreasing in d for X>8q and d>4q. The optimal distance cannot be larger than 4q.

Lemma 3.
$$d^0(X) < X/2 \Rightarrow \frac{dV(d^0(X);X)}{dX} < 0$$
.

Proof. By the envelope theorem,

$$\frac{dV(d^{0}(X);X)}{dX} = V_{X}(d^{0}(X);X).$$

This derivative is negative for $X \geq 4q$ and for all $d \in [0, X - 4q]$ by Lemma 25 in Appendix D. If $X \geq 8q$, that claim is sufficient. By Lemma 1 we know that $X \geq 6q$ whenever $d^0(X) \neq X/2$. In 2.(i) in the proof of Lemma 25, page S.7, we show that $V_d > 0$ for $d \in [X - 4q, X/2)$ if $X \leq 8q$. Hence, if $d^0(X) \neq X/2$, then $d^0(X) \leq X - 4q$ and the inequality proved in Lemma 25 proves Lemma 3.

Lemma 4.
$$d^0(X) < X/2$$
 for some $X \in [6q, 8q) \Rightarrow d^0(X) < X/2$ for all $X' > X$.

Proof. It suffices to consider X' < 8q by Lemma 2. We prove the claim by showing that $V(d_c^0(X); X)$ for any interior critical point $d_c^0(X) < X/2$ cuts V(X/2; X) from below at any potential intersection. Thus, there is at most one switch from $d^0(X) = X/2$ to $d^0(X) < X/2$ and no switch back. Continuity then implies the statement.

V(d;X) is a continuously differentiable function in X and d. Thus, any interior (local) optimum $d_c^0(X)$ is continuous as well and so are $V(d_c^0(X);X)$ and V(X/2;X). We now show that if $V(d_c^0(X);X) = V(X/2;X)$ for some local optimum $d_c^0(X) < X/2$ and $X \in [6q,8q]$, then $\mathrm{d}V(d_c^0(X);X)/\mathrm{d}X > \mathrm{d}V(X/2;X)/\mathrm{d}X$. Note that $\mathrm{d}V(d_c^0(X),X)/\mathrm{d}X < 0$ by Lemma 3. The first intersection therefore can occur only in a region when V(X/2,X) is decreasing and must be such that $\mathrm{d}V(X/2,X)/\mathrm{d}X < \mathrm{d}V(d_c^0(X),X)/\mathrm{d}X$. We prove that this is the only potential intersection in Lemma 26 in Appendix D where we show that $\mathrm{d}^2V(X/2,X)/(\mathrm{d}X)^2 < 0$ and $\mathrm{d}^2V(d_c^0(X),X)/(\mathrm{d}X)^2 > 0$.

Lemma 5. $V(d^0(X);X)$ is continuous in X. As $X \to \infty$, it converges uniformly to V(d;X) and $d^0(X) \to d^0(\infty)$. For any X > 6q we have $d^0(X) > 3q$ and $V(d^0(X),X) > V(3q,\infty)$.

Proof. Continuity follows because $V(d^0(X);X) = \max_d V(d;X)$ with V(d;X) continuous in both $d \in [0,X/2]$ and X. Now take any sequence of increasing X_n with $\lim_{n\to\infty} X_n = \infty$. For any $\delta(d)$, $\exists n$ such that $V_n(d;X_n) - V(d;\infty) < \delta(d)$ as can be seen from the formulation in the proof of Proposition 1. Hence, $V(d;X_n)$ converges uniformly to $V(d;\infty)$. By uniform convergence the maximizer $d^0(X_n)$ of $V(d;X_n)$ converges too. To see convergence from above, observe that $V(3q;X) > V(3q;\infty)$ for any $6q < X < \infty$.

Finally, from Corollary 2 and the proof of Proposition 1 we know that $V(d; \infty)$ describes the value of an area of length d. That value is increasing for d < 3q and decreasing for d > 3q. Now suppose X > 6q and $d^0(X) < 3q$. Then by increasing d both areas created become closer to 3q and are thus increasing in value. A contradiction to $d^0(X)$ being the maximizer.

Lemma 6. $V(d^0(X);X)$ is single peaked with an interior peak at $\check{X}^0 \approx 6.204q$ with $d^0(\check{X}^0) \approx 3.102q$.

Proof. Lemma 6 follows from continuity of V(X/2; X) (by Lemma 5) and Lemmata 1 to 4. The peak can be computed. It is the (real) solution to

$$\frac{X}{X-q} = 2\frac{\sqrt{X-4q}}{\sqrt{X}}. (2)$$

Defining $m := \frac{X}{q}$ and the above reduces to

$$\frac{m}{m-1} = 2\sqrt{\frac{(m-4)}{m}}.$$

For m > 4, the LHS decreases and the RHS increases in m. The solution is:

$$m = \frac{2}{3} \left(4 + (19 - 3\sqrt{2})^{(1/3)} + (19 + 3\sqrt{2})^{(1/3)} \right) \approx 6.204.$$

Lemma 7. Expanding knowledge trumps deepening knowledge if and only if $X < \hat{X}^0 \approx 4.338q$.

Proof. $V(3q;X) > V(3q;\infty)$ for $X \ge 6q$ by direct comparison at X = 6q and Lemmata 3, 5 and 6. For $X \in [0,6q]$ we need to consider only $d^0(X) = X/2$ by Lemma 1. We compare

$$V(X/2;X) = \frac{X^2}{12q} - \frac{\sqrt{X}(X-4q)^{3/2}}{6q}$$

with $V(3q;\infty)=\frac{3q}{2}$. Defining $\ell:=\frac{X}{q}$, the two intersect at

$$\left(\frac{\ell^2}{12} - \frac{\sqrt{\ell}}{6}(\ell - 4)^{(3/2)} - 3/2\right) = 0$$

which has one solution such that $\ell \leq 6$ at $\ell \approx 4.338$.

Lemma 8. $4q < \widehat{X}^0 < 6q < \widecheck{X}^0 < \widetilde{X}^0 < 8q$.

Proof. The first two inequalities follow from Lemma 7, the third from Lemma 6. Existence of \tilde{X}^0 and the fourth inequality follow from Lemma 4. Lemma 2 implies the last inequality.

B.4 Proof of Proposition 2

Proof. The normal distribution is symmetric around the mean with a density decreasing in both directions starting from the mean. It follows directly that the smallest interval that contains the realization with a particular likelihood is centered around the mean.

Take an interval $[z_l, z_r]$ of length $Z < \infty$ that is symmetric around the mean μ and let it be such that it contains a total mass of $\rho < 1$ in the interval. Then, a probability mass of $(1 - \rho)/2$ lies to the left of the interval by symmetry of the normal distribution. Moreover, the left bound z_l of the interval has (by symmetry of the interval around the mean μ) a distance $\mu - Z/2$ from the mean. From the properties of the normal distribution,

$$\Phi(z_l) = 1/2 \left(1 + erf\left(\frac{z_l - \mu}{\sigma\sqrt{2}}\right) \right) = 1/2 \left(1 + erf\left(\frac{-Z/2}{\sigma\sqrt{2}}\right) \right).$$

Solving using symmetry of erf yields

$$1/2\left(1 - erf\left(\frac{Z}{\sigma 2^{3/2}}\right)\right) = \frac{1 - \rho}{2}$$

or equivalently

$$erf\left(\frac{Z}{\sigma 2^{3/2}}\right) = \rho$$

 $\Leftrightarrow Z = 2^{3/2} erf^{-1}(\rho)\sigma.$

B.5 Proof of Proposition 3

The proof contains several steps and we break it into parts. Part 0 provides preliminary observations used in the following steps. Part 1 proves the results for expanding knowledge. Part 2 proves the results for deepening knowledge.

Throughout, we make use of the first-order necessary conditions for an interior solution which we show are sufficient to characterize the researcher's optimal choice when we use them:

$$\eta \tilde{c}_{\rho}(\rho) = \frac{V(d;X)}{\sigma^2(d;X)},$$
(FOC^{\rho})

$$\rho V_d(d;X) = \eta \tilde{c}(\rho) \sigma_d^2(d;X). \tag{FOC}^d$$

Proof.

Part 0: Preliminaries. We begin by showing that an interior choice of (d, ρ) is optimal and that the relation of d and ρ depends on the ratio of the benefit of discoveries and the variance of the conjecture.

Lemma 9. There is a non-trivial optimal choice with $\infty > d > 0, 1 > \rho > 0$ on any interval with positive length, $X \in \mathbb{R}^+ \cup \infty$. Solving the first-order condition is a necessary for optimality of $\rho(X)$.

Proof. The researcher can always guarantee a non-negative payoff by choosing either d=0 or $\rho=0$. Hence, her value is bounded from below, $U_R(X)\equiv \max_{d,\rho}u_R(d,\rho;X)\geq 0$. Next, note that $u_R(\rho=0,d>\varepsilon;X)=0$ for some small $\varepsilon>0$ and that $\frac{\partial u_R(\rho=0,d>\varepsilon;X)}{\partial \rho}=V(\varepsilon,X)>0$ by Proposition 1. Therefore, on any interval X there is a maximum with $d>0, \rho>0$.

Moreover, by Corollary 3 the value of knowledge is bounded $V(d,X) \leq M < \infty$ and $\lim_{\rho \to 1} \tilde{c}(\rho) = \infty$. Therefore, the optimal $\rho < 1$. Finally, $V(d,\infty)$ is decreasing in d for d large enough while the cost $\eta \tilde{c}(\rho) \sigma^2(d,\infty)$ is increasing in d. Hence, the optimal distance is bounded $d < D < \infty$.

It follows from Lemma 9 and continuous differentiability of the objective that a necessary condition for the optimal $\rho(X)$ is that it solves (FOC $^{\rho}$). Note that for the distance, d(X), this result is not immediate as for deepening intervals the distance has an exogenous upper bound at X/2.

To determine whether d and ρ are substitutes, we make use of the previous lemma; in particular, of the first-order necessary condition for an optimal $\rho(X)$. The left-hand side of the first order condition (FOC $^{\rho}$) is increasing in ρ for any ρ and independent of d. Thus, we only need to derive under which conditions the right-hand side of this equation is increasing or decreasing. When the right-hand side is increasing (decresing) in d, ρ and d are complements (substitutes).

Part 1. Expanding knowledge.

Step 1. Proof of Item 1 i.).

When expanding knowledge, the ratio of benefit of discovery and variance of the conjecture is

$$\frac{V(d;X)}{\sigma^2(d;X)} = \frac{1}{6q} \left(6q - d + \mathbf{1}_{d>4q} \frac{(d-4q)^{3/2}}{\sqrt{d}} \right)$$

which has derivative

$$\frac{1}{6q} \left(-1 + \mathbf{1}_{d>4q} \frac{(d+2q)\sqrt{d-4q}}{d^{3/2}} \right) < 0.$$

Thus, output and novelty are substitutes in the expanding area.

Step 2. Proof of Item 1 ii.).

Next, we characterize the optimal choice when expanding knowledge.

Lemma 10. When expanding knowledge, the optimal choice is characterized by the first-order conditions (FOCs). The FOCs are sufficient and the optimal $d^{\infty} \in (2q, 3q)$. The researcher's value is strictly positive $U_R(X = \infty) > 0$.

Proof. We proceed in three steps. First, we show that the distance is at most 3q. Second, we show that the first-order conditions are sufficient when expanding knowledge. Third, we characterize the optimal choice of the researcher.

Step 2.1. $d \leq 3q$. Fix any $\rho \geq 0$. Since $\sigma^2(d;\infty)$ is increasing in d, it is immediate that the researcher's utility is non-increasing in d if $V(d;\infty)$ is decreasing in d. Combining this observation with Corollary 2, it is sufficient to restrict attention to $d \leq 3q$.

Step 2.2. FOCs sufficient. By Lemma 9, the researcher's optimal choice is interior and, hence, characterized by the first-order conditions. To see the sufficiency of the first-order conditions, note that the first principal minor of Hessian is $\rho V_{dd} - \eta c \sigma_{dd}^2 = -\rho \frac{1}{3q} < 0$ as $\sigma_{dd}^2 = 0$ and that the second principal minor is given by the determinant of the Hessian at the critical point:

$$-\rho V_{dd}(d;\infty)\eta \tilde{c}_{\rho\rho}(\rho)\sigma^{2}(d;\infty) - (V_{d} - \eta \tilde{c}_{\rho}(\rho)\sigma_{d}^{2}(d;\infty))^{2}$$

$$= \rho \frac{1}{3q}\eta \tilde{c}_{\rho\rho}(\rho)d - \left(-\frac{d}{3q} + 1 - \eta \tilde{c}_{\rho}(\rho)\right)^{2}$$

$$= \rho \frac{\tilde{c}_{\rho\rho}(\rho)}{\tilde{c}_{\rho}(\rho)} \frac{V(d;\infty)}{3q} - \left(-\frac{d}{3q} + 1 - \frac{V(d;\infty)}{\sigma^{2}(d;\infty)}\right)^{2}.$$
(3)

The first equality follows from $V_{dd} = -\frac{1}{3q}$ and $\sigma^2(d; \infty) = d$. The second equality follows from combining $\sigma^2(d; \infty) = d$ with the first-order condition (FOC^{\rho}) from above

via $\eta \sigma^2(d;\infty) = \frac{V(d;\infty)}{\tilde{c}_{\rho}(\rho)}$ and replacing accordingly.

Substituting for $V(d; \infty) = d - d^2/(6q)$ (as we restrict attention $d \leq 3q$ because of Step 2.1.) yields the following condition for a positive second principal minor:

$$0 < \rho \frac{\tilde{c}_{\rho\rho}(\rho)}{\tilde{c}_{\rho}(\rho)} \frac{V(d;\infty)}{3q} - \left(-\frac{d}{3q} + 1 - \frac{V(d;\infty)}{\sigma^2(d;\infty)}\right)^2$$

$$\Leftrightarrow \rho \frac{\tilde{c}_{\rho\rho}(\rho)}{\tilde{c}_{\rho}(\rho)} > \left(-\frac{d}{3q} + 1 - \frac{\frac{-d^2}{6q} + d}{d}\right)^2 \frac{3q}{-\frac{d^2}{6q} + d}$$

$$\Leftrightarrow \rho \frac{\tilde{c}_{\rho\rho}(\rho)}{\tilde{c}_{\rho}(\rho)} > \frac{d}{2(6q - d)}.$$

The inequality in the last line holds because the properties of $\tilde{c}(\rho)$ imply $LHS \geq 1$ while $RHS \leq \frac{1}{2}$ for $d \leq 3q$.

Step 2.3. Characterization. Substituting the expressions for $V(d; \infty)$ and $\sigma^2(d; \infty)$ for expanding knowledge into the first-order condition (FOC^d) yields

$$\rho\left(1 - \frac{d}{3q}\right) = \eta \tilde{c}(\rho). \tag{4}$$

Replacing η via equation (FOC^{ρ}) and solving for d we obtain

$$d^{\infty} = 3q \left(1 - \frac{\tilde{c}(\rho)}{2\tilde{c}_{\rho}(\rho)\rho - \tilde{c}(\rho)} \right) \in (2q, 3q)$$

where the bounds follow from the properties of \tilde{c} .

Part 2. Proof for deepening knowledge.

Step 1. Proof of Item 2 i.). 32 We prove the result for the different regions separately. In particular, we distinguish between different area lengths X and different distances d.

Step 1.1. X < 4q. Consider deepening knowledge when X < 4q. In this case,

$$\frac{V(d;X)}{\sigma^2(d;X)} = \frac{2X}{6q}.$$

Thus, output and novelty are independent in short research areas.

Step 1.2. $X \in (4q, 8q)$.

Step 1.2.(i). d < 4q, and X - d > 4q. In this case,

$$\frac{V(d;X)}{\sigma^2(d;X)} = \frac{1}{6q} \left(2X - \frac{\sqrt{X}(X - 4q)^{3/2}}{\sigma^2(d;X)} + \frac{\sqrt{X - d}(X - d - 4q)^{3/2}}{\sigma^2(d;X)} \right)$$

with derivative

$$\frac{1}{6q} \frac{\sigma_d^2(d;X)}{\sigma^4(d;X)} \left(\sqrt{X} (X - 4q)^{3/2} - \sqrt{X - d} (X - d - 4q)^{3/2} - 2\sigma^2(d;X) \frac{(X - d - q)\sqrt{X - d} - 4q}{\sqrt{X - d}} \right).$$

³²A Mathematica file verifying the computations is available from the authors.

Note that evaluated at the limit $d \to 0$ and d = X - 4q, this derivative is

$$\begin{split} \left. \frac{\partial}{\partial d} \left(\frac{V(d;X)}{\sigma^2(d;X)} \right) \right|_{\lim_{d \to 0}} &= -\frac{X^2 - 8qX + 10q^2}{6qX^{3/2}\sqrt{X - 4q}} \\ \left. \frac{\partial}{\partial d} \left(\frac{V(d;X)}{\sigma^2(d;X)} \right) \right|_{d=X-4q} &= X^{3/2} \frac{X - 8q}{96q^3\sqrt{X - 4q}} > 0. \end{split}$$

Thus, for $d \to X - 4q$, output and novelty are always complements. However, for $\lim_{d\to 0}$, the derivative is positive (negative) if $X < (>)(4+\sqrt{6})q$.

It remains to show that the derivative has one root for $X \in [(4+\sqrt{6})q, 8q]$ and no root for $X < (4+\sqrt{6})q$ for the result to follow.

To see that this is indeed the case, solve for the root of the derivative of the ratio to obtain

$$\hat{d}_{\pm} = \frac{2}{X - 6q} \left((X^2 - 6qX + 6q^2) \pm (X - 2q) \sqrt{\frac{18q^2 - 8qX + X^2}{2}} \right). \tag{5}$$

Note first that $\hat{d}_+ > \frac{X}{2}$. Thus, the only feasible root is \hat{d}_- . However, $\hat{d}_- \in [0, X - 4q]$ only for $X > (4 + \sqrt{6})q$.

Step 1.2.(ii). d < 4q and X - d < 4q. In this case,

$$\frac{V(d;X)}{\sigma^{2}(d;X)} = \frac{1}{6q} \left(2X - \frac{\sqrt{X}(X - 4q)^{3/2}}{\sigma^{2}(d;X)} \right)$$

with derivative

$$\sigma_d^2(d;X) \frac{\sqrt{X}(X-4q)^{3/2}}{\sigma^4(d;X)} > 0.$$

Thus, output and novelty are complements.

Summary Step 1.2. For $X \in (4q, 8q)$ output and novelty are substitutes for small d when $X > (4 + \sqrt{6})q$ and complements for large d. They are complements throughout when $X < (4 + \sqrt{6})q$.

Step 1.3. X > 8q

Step 1.3.(i). d < 4q. This case is analogous to the case of Step 1.2.(i) because for all X > 8q and for all d < X/2, X - d > 4q. However, the root from Equation (5) $\hat{d}_{-} > 4q$. Thus, output and novelty are substitutes.

<u>Step 1.3.(ii).</u> d > 4q. Note that in this case, $V_d(d; X) < 0$. Thus, the ratio is decreasing for all d > 4q when X > 8q as the variance is always increasing in d.

Step 2. Proof of Item 2 ii.).

The following lemma which we also prove in steps implies the result.

Lemma 11. The researcher's optimal choice of distance is on the midpoint of the area, $d = \frac{X}{2}$, for $X \leq \widetilde{X}$ and interior, $d < \frac{X}{2}$. At \widetilde{X} , payoff $U_R(X)$ is decreasing. Further, $\lim_{X \to \infty} d(X) = d^{\infty}$ from above. Any optimal distance satisfies $d \leq 4q$.

 $[\]frac{X \to \infty}{33}$ Note that whenever X - d < 4q, d > 4q and a simple relabeling of d and X - d brings us back to the discussed case.

Proof. Define $d^b := X/2$ which we refer to as the boundary solution, and d^i as the solution d to (FOC^d) assuming d < X/2 (if that exists) which we refer to as the interior solution.

Step 2.1. d^b always a candidate solution. Note first that the choice d^b always constitutes a local maximum as the marginal cost of distance is zero at this point, $\frac{\partial \sigma^2(d,X)}{\partial d} = 1 - \frac{2d}{X}$. Moreover, we see in the proof of Corollary 3 that also the marginal benefit is zero at d = X/2. Finally, for any choice of d, there is a unique ρ that solves (FOC $^\rho$) because (FOC $^\rho$) given d, has a continuous, strictly increasing, left-hand side that starts at $\tilde{c}_\rho(0) = 0$, has limit $\lim_{\rho \to 1} \tilde{c}_\rho(\rho) = \infty$ and has a constant right-hand side. Hence, the boundary solution with d^b is always a candidate solution.

Step 2.2. d(X) = X/2 if $X \le 4q$. Recall the first-order conditions (FOC^{ρ}) and (FOC^d). Assuming an interior solution d^i , replacing η via (FOC^{ρ}) in (FOC^d) we obtain for (FOC^d)

$$\frac{\frac{V_d(d,X)}{\sigma_d^2(d,X)}}{\frac{V(d,X)}{\sigma^2(d,X)}} = \frac{\frac{\tilde{c}(\rho)}{\rho}}{\tilde{c}_{\rho}(\rho)}.$$

It follows from the properties of $\tilde{c}(\rho)$ that the $RHS \in [0,1/2]$ and decreasing. Thus, if the LHS > 1/2 for all ρ , it is beneficial to increase d if possible and the boundary choice d^b is optimal. For $X \leq 4q$

$$\frac{\frac{V_d}{\sigma_d^2}}{\frac{V}{\sigma^2}} = \frac{\frac{2(X-2d)}{\frac{X-2d}{X}}}{\frac{2(dX-d^2)}{\frac{d(X-d)}{X}}} = 1.$$

Hence, for small areas, the boundary choice is indeed optimal.

Step 2.3. d(X) < X/2 if X > 8q. Note first that the variance of the question on the boundary is always larger than for any interior question as $\sigma^2 = \frac{d(X-d)}{X}$ is increasing in d. Hence, if the benefit of research V is larger for an interior question than for the boundary question, the researcher can obtain a higher payoff by choosing an interior question with the same ρ as for the boundary question: the cost are lower, the success probability is the same, and the benefit upon success are higher. The benefit of finding an answer on the boundary of an area with X > 8q is always smaller than for some interior distance by Lemma 2 from the proof of Corollary 3. Hence, an interior choice is optimal for X > 8q. Step 2.4. We prove the following (sub-)lemma.

Lemma 12. If d^i is optimal it must be that $d^i < 4q$ and that $X - d^i > 4q$.

Proof. For $X \in (4q, 8q)$ and X - d < 4q,

$$\frac{\frac{V_d(d,X)}{\sigma_d^2(d,X)}}{\frac{V(d,X)}{\sigma^2(d,X)}} = \frac{2d(X-d)}{-2d^2 + 2dX - \sqrt{X}(X-4q)^{3/2}}$$

which is decreasing in d with limit

$$\lim_{d \to X/2} \frac{2d(X-d)}{-2d^2 + 2dX - \sqrt{X}(X-4q)^{3/2}} = \frac{X^2/2}{X^2/2 - \sqrt{X}(X-4q)^{3/2}}$$

which, in turn, is increasing in X and 1 for X = 4q. Hence, any interior solution must be such that X - d > 4q by the same logic as in Step 1.2. For X - d < 4q, the first-order condition with respect to d is always positive. For any area with X > 8q, $X - d^i > 4q$.

That $d^i < 4q$ follows from the benefit of a discovery being decreasing in d whenever d > 4q (see Corollary 3).

Summary Step 2.1-2.4. We know that (i) in areas with X < 4q, the researcher's distance choice on the deepening area will be d^b , (ii) in areas with X > 8q the researcher's distance choice will be d^i , (iii) in areas with $X \in [4q, 8q]$ the researcher's distance choice may d^i or d^b , but (iv) if the solution is d^i , it has to satisfy X - d > 4q and d < 4q.³⁴

Step 2.5. Single crossing of the payoffs. Next, we show that the payoffs, $U_R(d^b; X)$ and $(U_R(d^i; X))$ cross only once assuming $\rho(d, X)$ is chosen optimally. We use three observations to show this.

- 1. First, at area length X for which $U_R(d^b; X) = U_R(d^i; X)$, the payoff at the boundary solution must be decreasing faster than the payoff at the interior solution.
- 2. Second, on the interval [4q, 8q] the payoff of the boundary solution, $U_R(b^d; X)$ has a strictly lower second derivative with respect to X for all X than that of the interior solution $U_R(d^i; X)$. Hence, the two values can cross at most once on this interval.
- 3. Third, $U_R(d^b; X) \leq U_R(d^i; X)$ if $X \geq 8q$.

The first observation follows because the first switch is from the boundary solution to the interior solution by continuous differentiability of all terms and the observation from above that d(X) = X/2 for X < 4q. The third observation is shown in Step 2.3 above.

The second observation follows from totally differentiating U_R for the two types of local maxima. Using envelope conditions, we obtain that the payoff is concave in the boundary solution and convex in the interior solution which implies the second observation. Define $\varphi(X) := \max_{\rho} u(d = X/2, \rho, X)$ for the boundary; we show in Lemma 27 in Appendix D that $\varphi(X)$ is concave. In Lemma 28 in Appendix D we show that $U_R(X) = \max_{\rho,d} u(d, \rho, X)$ is convex in X provided that the maximizer d(X) < X/2. The result follows.

Step 2.6. Asymptotics. It remains to show the asymptotics. As $X \to \infty$, V(d,X) converges to $V(d,\infty)$ and $\sigma^2(d,X)$ to $\sigma^2(d,\infty)$ and the researcher's optimization on the deepening interval converges to the optimization on the expanding interval which has a unique and interior maximum at $(d^{\infty}, \rho^{\infty})$. In particular, if such an interior optimum exists, the envelope condition implies that

$$\frac{\mathrm{d}U_R(d^i(X);X)}{\mathrm{d}X} = \rho V_X(d^i,X) - \eta \tilde{c}(\rho)\sigma_X^2(d^i,X) < 0$$

as $V_X(d,X) < 0$ according to Corollary 3 for X > 4q and X - d > 4q and $\sigma_X^2(d,X) > 0$. Hence, the payoff of any optimal interior choice is decreasing in X.

B.6 Proof of Proposition 4

We prove the statements in Proposition 4 in reverse order. Some parts rely on the lemmata from the proof of Propositions 1 and 3.

Proof.

 $^{^{34} {\}rm From~Lemmata}$ 2, 4 and 5 any interior choice that maximizes V (ignoring cost) satisfies X-d>4q and d<4q .

Step 1: Proof of Item 3. We use a series of lemmata to show that a local maximum, \check{X} , exists (Lemmata 13 and 14) and that it is global (Lemma 15).

Lemma 13. Fix d = X/2 and assume that an interior optimum exists. Then $U_R(X|d = X/2)$ is maximal only if the total differential $\frac{dV(d=X/2;X)}{dX} \geq 0$.

Proof. Under the assumption that d = X/2, $U_R(X)$ is defined and continuously differentiable for all $X \in [0, \infty)$ despite the indicator functions.³⁵ Because X = 0 implies $U_R(X = 0) = 0$, because $U_R(X)$ declines for X large enough and because Lemma 9 holds, there is an interior X at which $U_R(X)$ is maximized.

Then, because $U_R(X)$ is maximal for some interior X and differentiable, it needs to satisfy

$$\frac{\partial U_R}{\partial X} = 0.$$

By assumption, we have $d(\check{X}) = X/2$ and the first order condition with respect to ρ holds. Thus,

$$\rho \frac{\mathrm{d}V(d=X/2;X)}{\mathrm{d}X} = \frac{\eta}{4}\tilde{c}(\rho).$$

The right-hand side is non-negative, which implies the desired result.³⁶

Lemma 14. The value of the deepening boundary solution $U_R(d \equiv \frac{X}{2}; X)$ peaks in X at $\check{X} \in (4q, \check{X}^0]$.

Proof. Note that $U_R'(d=X/2;X)>0$ for $X\in[0,4q]$. This follows because in this case $U_R(d=X/2,X)=\rho\frac{X^2}{12q}-\eta\tilde{c}(\rho)\frac{X}{4}$ and, hence, $U_R'(d\equiv X/2,X)=\rho\frac{X}{6q}-\eta\tilde{c}(\rho)\frac{1}{4}$. Using optimality of ρ via the (FOC $^{\rho}$),

$$\frac{X}{3g} = \eta \tilde{c}_{\rho}(\rho) \Rightarrow \frac{X}{6g} = \frac{\eta \tilde{c}_{\rho}(\rho)}{2}$$

which yields

$$U_R'(X) = \rho \frac{\eta \tilde{c}_{\rho}(\rho)}{2} - \eta \tilde{c}(\rho) \frac{1}{4}$$
$$= \frac{\tilde{c}_{\rho}(\rho)}{4} \rho \eta \left(2 - \frac{\tilde{c}(\rho)}{\rho \tilde{c}_{\rho}(\rho)} \right) > 0$$

where the inequality follows again from the properties of $\tilde{c}(\rho)$.

Moreover, $U_R(X)$ is strictly concave on [4q, 8q] as V(d = X/2, X) is concave on this interval (see the proof of Corollary 3) and $\sigma_{XX}^2(d = X/2, X) = 0$ implying³⁷

$$U_R''(X) = \rho \frac{\mathrm{dd}V(d = X/2; X)}{\mathrm{d}X\mathrm{d}X} < 0.$$

³⁵Note that the terms appearing in the indicator functions are of the form $\sqrt{a(a-4q)^{3/2}}$. Taking the limit of their derivative from above to 4q yields zero such that the left and right derivative coincide at the point at which the indicator functions become active.

³⁶The RHS is only 0 if $\eta = 0$, $\rho(X) = 1$ and $U_R(X) = V(X)$.

³⁷Note that we totally differentiate the value twice and all $\rho'(X)$ and $\rho''(X)$ terms drop out by optimality of ρ by applying the first-order condition directly and total differentiation of the first-order condition.

For $X > \check{X}^0$, $\frac{\mathrm{d}V(d=X/2;X)}{\mathrm{d}X} < 0$ by the definition of \check{X}^0 implying that for $X > \check{X}^0$ the researcher's value is decreasing. By Lemma 13, it follows that the value-maximizing area length $\check{X} \in (4q,\check{X}^0]$.

Lemma 15. The researcher's payoff $U_R(X)$ is single-peaked in X with the maximum attained at \check{X} .

Proof. The result follows from 3 observations: First, $\tilde{X} > \check{X} > 4q$ by Lemmata 11 and 14. Second, $V_X(d;X) < 0$ if X > 4q and d < X/2 by Lemma 3. Third, by the envelope theorem, if d(X) < X/2 it holds that $\partial U_R(X)/\partial X = \rho(X)V_X(d(X);X) - \eta \tilde{c}(\rho(X))\sigma_X(d(X);X) < \rho(X)V_X(d(X);X)$. Thus, the payoff of the interior solution cuts the payoff of the boundary solution from below at an area where both payoffs are decreasing. The single peak is at \check{X} .

Step 2. Proof of Item 2.

Step 2.1 Maximum of d(X) at \widetilde{X} . By Lemma 11, d(X) is increasing for $X < \widetilde{X}$. By Lemma 12, we know that any interior solution d^i is such that $d^i < 4q < X - d^i$ and thus strictly smaller than X/2. Thus, d(X) decreases when it switches from the boundary to interior solution. Thus, $d(\widetilde{X})$ is a maximum.

Step 2.2 Maximum of $\rho(X)$ at \dot{X} . We guess (and verify in step 4. below) that a maximum of $\rho(X)$ exists in the range $[\hat{X}, \tilde{X}]$, that is the region in which it is optimal to deepen knowledge and to select the mid point d = X/2.

Lemma 16. Suppose d = X/2 is optimal for a range $[\underline{X}, \overline{X}]$ such that d(X) = X/2. Then the optimal $\rho(X)$ is single-peaked in that range. It is highest at $\dot{X} = \frac{8\cos(\frac{\pi}{18})}{\sqrt{3}}$

Proof. By Lemma 13, we know that $\frac{\mathrm{d}V(d=X/2;X)}{\mathrm{d}X} \geq 0$ and by Lemma 14 $\overline{X} > \hat{X}^0$. Moreover, recall $\sigma^2(d=X/2;X) = X/4$. The first-order condition with respect to ρ becomes

$$\frac{V(X/2;X)}{X} = \frac{\eta}{4}\tilde{c}_{\rho}(\rho),$$

With

$$\frac{V(X/2;X)}{X} = \frac{X}{12q} - \mathbf{1}_{X>4q} \frac{(X-4q)^{3/2}}{\sqrt{X}6q}.$$

The latter is continuous and concave. Since $\tilde{c}(\rho)$ is an increasing, twice continuously differentiable and convex function, ρ increases in X if and only if V(X/2;X)/X increases in X. By concavity of V(X/2;X)/X that implies single peakedness.

Thus,
$$\dot{X}$$
 is independent of η and given by $\dot{X} = \frac{8\cos(\frac{\pi}{18})}{\sqrt{3}} \approx 4.548q$.

Step 3. Proof of Item 1. The following lemma proves the item.

Lemma 17. \widehat{X} exists, $\lim_{X \searrow \widehat{X}} \rho(X) > \rho^{\infty}$, and \widehat{X} decreases in η .

Proof. As $X \to 0$, $d(X) \to 0$ and thus $U_R(X) \to 0$. By Lemma 10, $U_R(\infty) > 0$. Thus, by continuity of $U_R(X)$, $\exists \hat{X} > 0$ such that expanding research dominates deepening research for all $X < \hat{X}$. Cost are increasing in X and by Corollary 3, $V(d; X \in (\hat{X}^0, \infty)) > V(d; \infty)$ which implies $U_R(X \in (\hat{X}^0, \infty)) > U_R(\infty)$. By Lemma 15 and again continuity of $U_R(X)$, that payoff is maximal at X. Thus, we obtain that X exists and X exists an exist X exists and X exists an exist X exists an exist X exists an exist X exists X exists

We now show that $\lim_{X\searrow \widehat{X}} \rho(X) > \rho^{\infty}$ holds if $\widehat{X} < 6q$, then we show \widehat{X} decreases in η which together with the observation that $\widehat{X}^0 < 6q$ is sufficient to prove the lemma.

At \widehat{X} we have

$$U_R(\widehat{X}) = U_R(\infty)$$

$$\rho(\widehat{X})V(\widehat{X}/2;\widehat{X}) - \eta \widetilde{c}(\rho(\widehat{X}))\frac{\widehat{X}}{4} = \rho^{\infty}V(d^{\infty};\infty) - \eta \widetilde{c}(\rho^{\infty})d^{\infty}.$$
(6)

where the fact that $d(\hat{X}) = \hat{X}/2$ follows from Lemmata 11, 14 and 15. Moreover, the following has to hold by optimality

$$V(d^{\infty}; \infty) = \eta \tilde{c}_{\rho}(\rho^{\infty}) d^{\infty}$$
 (FOC ρ^{∞})

$$V(\widehat{X}/2; \widehat{X}/2) = \eta \widetilde{c}_{\rho}(\rho(\widehat{X})) \frac{\widehat{X}}{4}$$
 (FOC $\rho^{\widehat{X}}$)

Claim 1: $\rho^{\infty} < \rho(\hat{X})$ if $\hat{X} < 6q$. Using (FOC ρ^{∞}) and (FOC $\rho^{\hat{X}}$) we obtain that by the properties of the error function $\rho(\hat{X}) > \rho^{\infty}$ if and only if

$$4\frac{V(\widehat{X}/2;\widehat{X}/2)}{X} > \frac{V(d^{\infty};\infty)}{d^{\infty}}.$$

Case 1: $\hat{X} > 4q$. Substituting for the $V(\cdot)$'s the above becomes³⁸

$$\frac{\widehat{X}}{3q} - \frac{2}{3q} \frac{(\widehat{X} - 4q)^{3/2}}{\sqrt{\widehat{X}}} > 1 - \frac{d^{\infty}}{6q}$$

$$\Leftrightarrow d^{\infty} + 2\widehat{X} - 4 \underbrace{\frac{(\widehat{X} - 4q)^{3/2}}{\sqrt{\widehat{X}}}}_{<(\widehat{X} - 4q)} > 6q$$

A sufficient condition for the above to hold is thus that

$$d^{\infty} - 2\hat{X} + 10q > 0$$

Using that $d^{\infty} > 2q$ by Lemma 10 we obtain that a sufficient condition for $\rho(\hat{X}) > \rho^{\infty}$ is that $\hat{X} < 6q$.

Case 2: $\hat{X} \in (2q, 4q]$. Performing the same steps only assuming that $\hat{X} \in [2q, 4q]$ we

$$\frac{\hat{X}}{3q} > 1 - \frac{d^{\infty}}{6q}$$
$$\Leftrightarrow 2\hat{X} > 6q - d^{\infty} > 4q$$

which implies the desired result.

Case 3: $\widehat{X} < 2q$ We show that case 3 never occurs, that is $\widehat{X} > 2q$. To do so we compare $U_R(d=2q;\infty)$ with $U_R(d=1q;X=2q)$ and show that the former is always larger. Hence, $X=2q<\widehat{X}$ for any η .

³⁸Since $\widehat{X} \leq \widecheck{X} \leq 8q$ that case is irrelevant.

For X = d = 2q we have that

$$\frac{X}{3q} = 1 - \frac{d}{6q},$$

and thus $\rho(X=2q)=\rho(d;\infty)=\rho$ (cf. case 2). Moreover, we have that

$$V(1q; 2q) = q/3$$
 $V(2q; \infty) = 4/3q,$

and (FOC ρ^X) implies

$$4V(1q;2q)/2q = 2/3 = \eta \tilde{c}_{\rho}(\rho)$$

Since $\tilde{c}_{\rho}(\rho) > \tilde{c}(\rho)/\rho$ for any $\rho > 0$ that implies $\eta \tilde{c}(\rho)/\rho < 2/3$. Now take

$$\begin{split} U_R(d=2q;\infty) - U_R(X=2q) \\ \rho \frac{4q}{3} - \eta \tilde{c}(\rho) - \rho \frac{q}{3} + \eta \tilde{c}(\rho) \frac{q}{2} \\ q\left(\rho - \frac{3}{2}\eta \tilde{c}(\rho)\right), \end{split}$$

which is positive whenever $\eta \tilde{c}(\rho)/\rho < 2/3$ which we know has to hold. Thus, $U_R(d=2q;\infty) > U_R(X=2q)$ and therefore $\hat{X} < 2q$.

Claim 2: If $\rho^{\infty} < \rho(\widehat{X})$ then \widehat{X} decreases in η .

Using (FOC ρ^{∞}) and (FOC $\rho^{\widehat{X}}$) to replace the $V(\cdot)$'s in equation (6) and dividing by η we obtain

$$d^{\infty}\left(\rho^{\infty}\tilde{c}_{\rho}(\rho^{\infty}) - \tilde{c}(\rho^{\infty})\right) = \widetilde{X}/4\left(\rho(\widehat{X})\tilde{c}_{\rho}(\rho(\widehat{X})) - \tilde{c}(\rho(\widehat{X}))\right)$$

from which we get

$$\widehat{X}/4 = d^{\infty} \frac{(\rho^{\infty} \widetilde{c}_{\rho}(\rho^{\infty}) - \widetilde{c}(\rho^{\infty}))}{\left(\rho(\widehat{X})\widetilde{c}_{\rho}(\rho(\widehat{X})) - \widetilde{c}(\rho(\widehat{X}))\right)}.$$

Now we use the envelope theorem to calculate

$$\frac{\partial U_R(\widehat{X}) - U_R(\infty))}{\partial \eta} = \tilde{c}(\rho(\widehat{X})) \frac{\widehat{X}}{4} - \tilde{c}(\rho^{\infty}) d^{\infty}.$$

Replacing for \hat{X} implies that the RHS is positive if and only if

$$(\tilde{c}(\rho^{\infty})) - \tilde{c}(\rho(\widehat{X})) \frac{\rho^{\infty} \tilde{c}_{\rho}(\rho^{\infty}) - \tilde{c}(\rho^{\infty})}{\rho(\widehat{X})\tilde{c}_{\rho}(\rho(\widehat{X})) - \tilde{c}(\rho(\widehat{X}))} > 0.$$

Using that $\rho \tilde{c}_{\rho}(\rho) > \tilde{c}(\rho)$ by the properties of the inverse error function and factoring out the denominator of the first term, the above holds if and only if

$$\begin{split} \tilde{c}(\rho^{\infty})\rho^{\infty}\tilde{c}_{\rho}(\rho(\hat{X})) - \tilde{c}(\rho(\hat{X})\rho^{\infty}\tilde{c}_{\rho}(\rho^{\infty}) > 0 \\ \frac{\rho(\hat{X})\tilde{c}_{\rho}(\rho(\hat{X}))}{\tilde{c}(\rho(\hat{X}))} > \frac{\rho^{\infty}\tilde{c}_{\rho}(\rho^{\infty})}{\tilde{c}(\rho^{\infty})} \end{split}$$

which holds if and only if $\rho(\widehat{X}) > \rho^{\infty}$ by the properties of the error function. Thus, \widehat{X} decreases if $\rho(\widehat{X}) > \rho^{\infty}$.

Conclusion: Since $\widehat{X}^0 \in [2q, 6q], \ \rho^{\infty} < \rho(\widehat{X})$ implying that \widehat{X} is decreasing in η .

Step 4. $\hat{X} < \dot{X} < \check{X} < \check{X}$.

Step 4.1: X > X. By the envelope theorem we need for X = X

$$\frac{\partial U_R(\check{X})}{\partial X} = \rho \frac{\mathrm{d}V(d = \check{X}/2; \check{X})}{\mathrm{d}X} - \frac{\eta}{4}\tilde{c}(\rho) = 0. \tag{7}$$

The FOC for ρ implies

$$\frac{V}{\widecheck{X}} = \frac{\eta}{4} \widetilde{c}_{\rho}(\rho)$$

Now assume for a contradiction that $\rho(\check{X})$ is increasing, then $V(\cdot)/\check{X}$ must be increasing which holds if and only if

$$\frac{\mathrm{d}V(d=\check{X}/2;\check{X})}{\mathrm{d}X}\check{X}>V(d=\check{X}/2;\check{X}).$$

But then we obtain the following contradiction to $U_R(\check{X})$ being maximal

$$\frac{\mathrm{d}V(d=\check{X}/2;\check{X})}{\mathrm{d}X} > \frac{V(d=\check{X}/2;\check{X})}{\check{X}} = \frac{\eta}{4}\tilde{c}_{\rho}(\rho) > \frac{\eta}{4}\frac{\tilde{c}(\rho)}{\rho}.$$

The first inequality follows because $V(d = \check{X}/2; \check{X})/\check{X}$ must be increasing, the equality follows by equation (7). The last inequality is a consequence of the properties of the inverse error function. By Lemma 16, $\rho(X)$ is single peaked in the relevant range which proves the claim.

Step 4.2: Ordering. By Lemma 17 we know that $\hat{X} < \hat{X}^0$. Thus, because $\hat{X}^0 < \dot{X} \Rightarrow$ $\widehat{\hat{X}} < \dot{X}$. Moreover, $\widetilde{X} > \widecheck{X}$ by Lemma 11 which concludes the proof.

Proof of Proposition 5

Proof. To prove the claim, we show that selecting a moonshot of length 6q is preferred to selecting the myopically optimal interval 3q for some $(\eta, \overline{\eta})$ and $\delta(\eta) < 1$.

We first list the respective data. We restrict attention to η -levels such that d(6q) = 3q. These levels exist by continuity of the cost term and the fact that $\tilde{X}^0 > 6q$ by Lemma 8.

MOONSHOT:

- Value created in the first period: $V(6q; \infty) = \frac{2}{\sqrt{3}}q$
- Value created in the second period (if successful): $V(3q;6q) = \left(3 \frac{2}{\sqrt{3}}\right)q$ Probability of discovery in the second period: Solution to researcher's first-order
- condition

$$\frac{4V(3q;6q)}{6q\eta} = \tilde{c}_{\rho}(\rho(6q))$$

which implies

$$\rho(6q) = erf\left(\frac{\sqrt{W\left(2\frac{\left(\frac{4V(3q;6q)}{6q\eta}\right)^2}{\pi}\right)}}{\sqrt{2}}\right) = erf\left(\sqrt{\frac{W\left(\frac{8\left(3-2/\sqrt{3}\right)}{9\eta^2\pi}\right)}{2}\right)}$$

where $W(\cdot)$ is the Lambert W function.

• Continuation payoff: Conditional on discovery in t = 2, the per-period continuation payoff from t = 3 onwards is $\rho^{\infty}V(d^{\infty}; \infty)$. The node (discovery in t = 2) is reached with probability $\rho(6q)$. The t = 1 net present value of the decision maker's continuation payoff at t = 3 is thus

$$\frac{\delta^2 \rho(6q)\rho^{\infty}}{1 - \delta \rho^{\infty}} V(d^{\infty}; \infty).$$

МУОРІС ОРТІМИМ:

- Value created in the first period: $V(3q; \infty) = \frac{3}{2}q$
- Value created in the second period (if successful): $V(d^{\infty}; \infty) = d^{\infty} (d^{\infty})^2/6q$
- Probability of discovery in the second period: Given d^{∞} it is the solution to

$$\frac{V(d^{\infty}; \infty)}{nd^{\infty}} = \tilde{c}_{\rho}(\rho^{\infty})$$

which implies

$$\rho^{\infty} = erf\left(\sqrt{\frac{W\left(\frac{2\left(\frac{6q-d^{\infty}}{6q\eta}\right)^{2}}{\pi}\right)}{2}}\right)$$

where $W(\cdot)$ is the Lambert-W (or product log) function.

• Distance chosen by the researcher in period 2: Solution to

$$d^{\infty} = 3q - \eta \frac{\tilde{c}(\rho^{\infty})}{\rho^{\infty}}$$

• Continuation payoff: Conditional on discovery in t=2, the continuation payoff from t=3 onwards is $\rho^{\infty}V(d^{\infty};\infty)$. The node (discovery in t=2) is reached with probability ρ^{∞} . The t=1 net present value of the decision maker's continuation payoff at t=3 is thus

$$\frac{(\delta \rho^{\infty})^2}{1 - \delta \rho^{\infty}} V(d^{\infty}; \infty).$$

The values follow directly from Proposition 1, the first-order conditions are discussed in the proof of Proposition 3.

The moonshot has two benefits: $\rho(6q) > \rho^{\infty}$, that is, discovery is more likely in period t=2 (by construction and Proposition 4) and $V(3q;6q) > V(d^{\infty};\infty)$, that is, conditional on a discovery that discovery is more valuable (by Proposition 1). It comes at the cost in the first period as $V(6q;\infty) < V(3q;\infty)$, that is, the first period discovery is suboptimal (by Corollary 2).

We prove a stronger version of moonshot optimality by ignoring the persistent effect of $\rho(6q) > \rho^{\infty}$. We treat the t=1 net present value of continuation payoffs at t=3 as identical, thereby underestimating the value of the moonshot because:

$$\frac{\delta^2 \rho(6q) \rho^{\infty}}{1 - \delta \rho^{\infty}} V(d^{\infty}; \infty) > \frac{\delta^2 (\rho^{\infty})^2}{1 - \delta \rho^{\infty}} V(d^{\infty}; \infty).$$

The losses of a moonshot in t = 1 are

$$\left(3/2 - \frac{2}{\sqrt{3}}\right)q. \tag{8}$$

To compute the gains, consider the beginning of period t=2 in both scenarios. The expected payoff from that period is

• for Moonshot: $\rho(6q)V(3q;6q)$,

• for Myopic Optimum: $\rho^{\infty}V(3q;\infty)$.

Total gains in t = 1 net present value are thus

$$\delta\left(\rho(6q)V(3q;6q) - \rho^{\infty}V(3q;\infty)\right) = \delta\left(\rho(6q)\left(3 - \frac{2}{\sqrt{3}}\right)q - \rho^{\infty}d^{\infty}\left(1 - \frac{(d^{\infty})}{6q}\right)\right). \tag{9}$$

By continuity in η and δ it suffices to show that for $\delta=1$ and some $\eta>0$ we have that (8)<(9). (Numerically) solving for d^{∞} , ρ^{∞} , $\rho(6q)$ using, e.g., $\eta=1$ verifies that this is the case.³⁹ In Lemma 29 in supplementary Appendix D, we show that d^{∞} is linear in q which implies that ρ^{∞} is constant in q. Linearity of distance and invariance of probability in the moonshot case can directly be observed. Thus restricting attention to, e.g., q=1 is without loss.

B.8 Proof of Proposition 6

Proof.

Part 1. Existence of s(K) and ξ .

Step 1. $d \le s$, interior $d \le 4q$, and continuity. First notice that $\zeta f(\sigma^2)$ is constant if $d \ge s$. Because s > 3q by assumption it follows from Lemma 10 that the optimal novelty $d^* \le s$. Moreover, by Corollary 6 $d \le 3q$ if $\zeta = 0$. The researcher's problem is

$$U_R(d,\rho) = \rho \left(V(3q;\infty) + \frac{\sigma^2(3q;\infty)}{s} \right) - \eta c(\rho(3q;s)\sigma^2(3q;\infty))$$

We can re-write the researcher's problem substituting from the budget constraint as

$$\max_{d,\rho} \rho \Big(V(d;\infty) + \frac{\sigma^2(d;\infty)}{s} \zeta \Big) - \left(\eta - \frac{K - \zeta}{\kappa} \right) \tilde{c}(\rho) \sigma^2(d;\infty)$$

which is continuous in ζ for any (d, ρ) . Thus its maximum is continuous too.

Note that by Lemma 24, $V_d < 0, V_{dd} > 0$ for d > 4q. Thus, if an interior solution exists, it must be such that $d \le 4q$. Suppose otherwise and that an interior solution with $d \in (4q, s)$ exists with corresponding ρ . Then, the researcher can increase her payoff by marginally increasing d and keeping ρ constant. By the first-order condition with respect to d, $V_d + \zeta/s - \eta \tilde{c}(\rho)/\rho = 0$. Therefore, a marginal increase of d increases the payoff as $V_{dd} > 0$ implies that $V_d(d + \varepsilon) > V_d(d)$ while all other terms remain the same. Thus, any interior $d \le 4q$.

Step 2. Existence of ξ . Again because $s \geq 3q$ and Lemma 10, for $\zeta = 0$ it holds that

$$U_R(d^{\infty}, \rho(d^{\infty})) > U_R(s, \rho(s)),$$

with d^{∞} the arg max in d. Because both terms are continuous in ζ , the inequality has to hold in a positive neighborhood of $\zeta = 0$.

Define ξ to be $\min_{\zeta \leq K} \{ \zeta : U_R(d^{\infty}, \rho(d^{\infty})) = U_R(s, \rho(s)) \}$ if it exists or $\xi := K$ otherwise. Then, by definition of ξ and continuity, for $\zeta \in [0, \xi)$, d < s.

Step 3. Existence of s(K). As $s \to \infty$ the researcher's payoff assuming d = s goes to q. To see this fix ζ, η and consider the researcher's problem assuming d = s and let $s \to \infty$. By construction $f(\sigma^2) = 1$ and by Proposition $1 \lim_{s \to \infty} V(s; \infty) \to q$. Because $\sigma^2 \to \infty$ the optimal $\rho(s) \to 0$ and so does U_R . By Lemma 10 the researcher's payoff assuming $f(\cdot) \equiv 0$ is positive for any $\eta < \infty$ with some $d^\infty \leq 3q$. Thus, for $\zeta > 0$ and $f(\cdot) > 0$, the payoff for the distance defined in Lemma 10 is strictly larger than for d = s. Continuity implies that there is an $\overline{s} > 0$ such that for any $s > \overline{s}$, $d^\infty \leq 4q$ is optimal by step 1.

Note that the cutoff s depends on K. Fist observe that for any K, $s(K) \leq \overline{s}$. However, observe that for K = 0, d < 3q by Lemma 10 and by continuity s(K) = 0 in a positive neighborhood of K = 0.

Part 2. Proof of relationship (1). We make use of the Marginal Rate of Substitution (MRS) between ζ and η for the probability ρ and the distance d. The MRS describes the slope of the iso- ρ curve and the iso-d curve, respectively, in the (η, ζ) -space.

Step 0. Defining the MRS. The MRS for ρ is

$$MRS^{\rho}_{\zeta\eta} := -rac{rac{\partial
ho}{\partial \eta}}{rac{\partial
ho}{\partial \zeta}},$$

and $MRS_{\zeta\eta}^d$ analogously.

Lemma 30 in supplementary Appendix D derives

$$MRS_{\zeta\eta}^{\rho} = s \left(2\tilde{c}_{\rho}(\rho) - \tilde{c}(\rho)/\rho \right), \tag{10}$$

and

$$MRS_{\zeta\eta}^{d} = \tilde{c}_{\rho} \frac{\tilde{c}/\rho - \tilde{c}_{\rho} + \frac{\tilde{c}}{\tilde{c}_{\rho}} \tilde{c}_{\rho\rho}}{\tilde{c}/\rho - \tilde{c}_{\rho} + \rho \tilde{c}_{\rho\rho}}.$$
(11)

Step 1. Deriving the Research Possibility Frontier. Note that because rewards do not increase beyond s and s > 3q, the researcher is never selecting a distance d > s.

Assuming d < s can use the two first order conditions of the researcher and solve for ζ and η . We obtain

$$\eta = \frac{d}{6q} \frac{\rho}{\rho \tilde{c}_{\rho} - \tilde{c}}
\zeta = \left(\frac{d}{3q} - 1 + \frac{d}{6q} \frac{\tilde{c}}{\rho \tilde{c}_{\rho} - \tilde{c}}\right) s.$$
(12)

Replacing in $MRS_{\zeta\eta}^{\rho}$ and $MRS_{\zeta\eta}^{d}$ we observe that any (ρ,d) can be implemented through at most one (η,ζ) -combination because each iso- ρ curve crosses each iso-d curve at most once: both slopes (the respective MRS) are positive and $MRS_{\zeta\eta}^{\rho} > MRS_{\zeta\eta}^{d}$ if s > 0.1 by the properties of $\tilde{c}(\rho)$.

Plugging $h = \eta^0 - \eta$ as well as conditions (12) into the budget line, $K = \zeta + \kappa h$, and solving for d yields the interior solution

$$d(\rho) = 6q(K + s - \kappa \eta^0) \frac{\rho \tilde{c}_{\rho}(\rho) - \tilde{c}(\rho)}{2s\rho \tilde{c}_{\rho}(\rho) - s\tilde{c}(\rho) - \kappa \rho}.$$
 (13)

The minimum then constitutes the research possibility frontier.

Step 2. Deriving the bounds ρ , $\overline{\rho}$.

Step 2.1. Assuming s > s(K).

Recall from the proof of Proposition 3 that

$$d^{\infty} = 3q \left(1 - \frac{\tilde{c}(\rho)}{2\tilde{c}_{\rho}(\rho)\rho - \tilde{c}(\rho)} \right).$$

Replacing d in its first order condition (FOC d) (equation (4) on page 41) yields

$$\underline{\eta}(\rho) = \frac{\rho}{(2\rho\tilde{c}_{\rho}(\rho) - \tilde{c}(\rho))}$$

which describes the largest cost parameter $\underline{\eta}(\rho)$ (assuming $\zeta = 0$) that implies a probability ρ selected by the researcher. The parameter η is decreasing in ρ .

Next, recall that $MRS_{\zeta\eta}^{\rho}$ describes the slope of the iso- ρ curve in the (η, ζ) -plane. As $MRS_{\zeta\eta}^{\rho}(\rho)$ is independent of η that slope is constant and each iso- ρ curve is given by

$$\zeta(\eta; \rho) = (\eta - \eta(\rho)) MRS^{\rho}_{\zeta\eta}(\rho).$$

Because $MRS^{\rho}_{\zeta\eta}(\rho)$ is increasing (and convex) in ρ and $\underline{\eta}(\rho)$ decreases in ρ , iso- ρ curves are ordered in the (η,ζ) -space. If $\rho'>\rho$ the iso- ρ curve of ρ' is steeper and than the iso- ρ curve of ρ .

Now, consider the budget line in the (η, ζ) -plane which is

$$\zeta = K - \kappa(\eta^0 - \eta)$$

which is linearly increasing with slope κ and root at $\check{\eta} = \eta^0 - K/\kappa$, the polar case $(\zeta = 0, h = K/\kappa)$. Let $\check{\rho}$ be the probability of discovery at that root. Then, by construction $\check{\eta} = \eta(\check{\rho})$.

If $MRS^{\rho}_{\zeta\eta}(\check{\rho}) > \kappa$, then the iso- ρ curve for $\check{\rho}$ is steeper than the budget line. Because iso- ρ curves are ordered and the budget line is increasing, all iso- ρ curves that cross the budget line must have $\rho < \check{\rho}$ which implies $\overline{\rho} = \check{\rho}$. The minimum implementable $\underline{\rho}$ crosses the budget line at the largest attainable $\eta = \eta^0$ and hence corresponds to the other polar case.

If instead $MRS^{\rho}_{\zeta\eta}(\check{\rho}) < \kappa$ then all iso- ρ curves that cross the budget line must have $\rho > \check{\rho}$ which implies hat $\underline{\rho} = \check{\rho}$ and the largest attainable $\overline{\rho}$ is induced by $\eta = \eta^0$ and $\zeta = K$.

Step 2.2. Assuming s < s(K).

Restricting the domain of ζ to $[0,\xi)$ and applying the arguments from Step 2.1. yields the result.

Part 3. Substitutes or Complements. We focus on the case s > s(K).⁴⁰ To show that d and ρ can be both substitutes and complements from the funder's perspective, we need to consider the slope of (13). The first term in brackets is independent of ρ but may be positive or negative depending on parameter.

 $[\]overline{^{40}}$ For the case of s < s(K) observe that for a (generic) funding schemes such that d = s, d does not vary with local changes in to the funding scheme and only ρ adjusts, the results are thus not particularly interesting.

For the second term, let $num(\rho)$ be the numerator of the last term of (13) and $den(\rho)$ its denominator. Then, that last term is increasing in ρ if and only if

$$num'(\rho)den(\rho) > num(\rho)den'(\rho)$$

or equivalently using that $num'(\rho) = \rho \tilde{c}_{\rho\rho}(\rho) > 0$, $den'(\rho) = s (2\rho \tilde{c}_{\rho\rho} + \tilde{c}_{\rho}) - \kappa$ if and only if

$$\frac{\kappa}{s} < \underbrace{\frac{\tilde{c}_{\rho}(\rho)\tilde{c}(\rho) + \rho\tilde{c}(\rho)\tilde{c}_{\rho\rho}(\rho) - \rho\left(\tilde{c}_{\rho}(\rho)\right)^{2}}{\tilde{c}_{\rho\rho}(\rho)\rho^{2} - \rho\tilde{c}_{\rho}(\rho) + \tilde{c}(\rho)}}_{=MRS_{c_{\eta}}^{d}(\rho)}.$$

Thus, $d(\rho)$ is increasing if and only if

$$(K + s - \kappa \eta^0)(sMRS_{\eta\zeta}^d(\rho) - \kappa) > 0.$$
(14)

Which, depending on parameters, may or may not hold. The figures in the main text provide examples for both cases. $\hfill\Box$

B.9 Proof of Proposition 7

Proof.

Figure 15: Funding schemes that maximize immediate benefits. In both panels we have $\kappa = 7, q = 1$. In the left panel we have in addition $K = 30, \eta^0 = 10, s = 6$, in the right panel we have $K = 3, \eta^0 = 1, s = 600$

Step 1. Substitutes. Observe first, that because $d(\rho; K)$ is decreasing because d and ρ are substitutes to the funder. It follows that it is beneficial for the funder to induce a marginally higher ρ whenever $d \in (3q, s)$. This increase in ρ decreases d marginally. Both effects increase $\rho V(d; \infty)$. What remains is to show that inducing d = s is never optimal from the funder's perspective.

Consider the (ζ, h) -combination that induces the largest \tilde{d} such that (13) applies.

Because ρ and d are substitutes by assumption and $\tilde{d} \leq s$ we have that the associated $\rho(\tilde{d}) \geq \rho(s)$. Thus, for any implementable d < s, $\rho(d < s) > \rho(s)$ because ρ and d are substitutes. It suffices to find an implementable $\tilde{d} < s$ such that $V(\tilde{d}; \infty) \geq V(s; \infty)$ to prove the claim.

Let \underline{d} be the distance induced by the funding scheme $(\zeta, \eta) = (0, K/\kappa)$. Because $\zeta = 0$, Proposition 3 implies $\underline{d} > 2q$.

Now, recall from Proposition 1 that V is symmetric around d=3q on the interval $d\in [2q,4q]$, increasing in d if d<3q and decreasing if d>3q. Because $s\geq 4q$ we have that $V(s;\infty)< V(4q;\infty)=V(2q;\infty)< V(\underline{d};\infty)$ and hence $\rho(\underline{d})V(\underline{d};\infty)\geq \rho(s)V(s;\infty)$ which proves the statement.

Step 2. Excessive Novelty. The parameters used to calculate the example leading to Figure 14, right panel provide an example of moderate excessive novelty, $d \in (3q, s)$. Using, e.g., parameters K = 30, $\eta^0 = 10$, $\kappa = 7$, q = 1, s = 6 provides an example in which it is optimal to incentives d = s and to focus exclusively on rewards. However, even if ρ and d are complements throughout, excessive novelty need not be optimal. An example is K = 3, $\eta^0 = 1$, $\kappa = 7$, q = 1, s = 600. Here it is optimal to focus entirely on cost reductions. Figure 15 provides the respective graphs.

References

Aghion, P., M. Dewatripont, and J. C. Stein (2008). "Academic freedom, private-sector focus, and the process of innovation". *The RAND Journal of Economics* 39.3, pp. 617–635.

Aghion, P., C. Harris, P. Howitt, and J. Vickers (2001). "Competition, Imitation and Growth with Step-by-Step Innovation". *Review of Economic Studies* 68.3, pp. 467–492.

Akerlof, G. A. and P. Michaillat (2018). "Persistence of false paradigms in low-power sciences". *Proceedings of the National Academy of Sciences* 115.52, pp. 13228–13233.

Andrews, I. and M. Kasy (2019). "Identification of and Correction for Publication Bias". *American Economic Review* 109.8, pp. 2766–94.

Azoulay, P., J. S. Graff Zivin, and G. Manso (2011). "Incentives and creativity: evidence from the academic life sciences". *The RAND Journal of Economics* 42.3, pp. 527–554.

Azoulay, P. and D. Li (2020). Scientific Grant Funding. Tech. rep. National Bureau of Economic Research.

Bardhi, A. (2019). "Attributes: Selective Learning and Influence". mimeo.

Bardhi, A. and N. Bobkova (2021). "Local Evidence and Diversity in Minipublics". mimeo.

Bessen, J. and E. Maskin (2009). "Sequential innovation, patents, and imitation". *RAND Journal of Economics* 40.4, pp. 611–635.

Bobtcheff, C., J. Bolte, and T. Mariotti (2017). "Researcher's Dilemma". *The Review of Economic Studies* 84.3, pp. 969–1014.

Bonn Declaration (2020). Bonn Declaration on Freedom of Scientific Research. Ministerial Conference of the European Research Area. URL: https://www.bmbf.de/files/10_2_2_Bonn_Declaration_en_final.pdf.

Bourguignon, J.-P. (2019). Conditions for Building a Successful Global Scientific World. International symposium for the CNRS 80th anniversary. URL: https://erc.europa.eu/news/conditions-building-successful-global-scientific-world.

- Bramoullé, Y. and G. Saint-Paul (2010). "Research cycles". *Journal of Economic Theory* 145.5, pp. 1890–1920.
- Brandenburger, A. (1992). "Knowledge and Equilibrium in Games". The Journal of Economic Perspectives 6.4, pp. 83–101.
- Bryan, K. A. and J. Lemus (2017). "The direction of innovation". *Journal of Economic Theory* 172, pp. 247–272.
- Bush, V. (1945). Science—The Endless frontier. Report to the President—Letter of Transmittal. Available at: URL: https://www.nsf.gov/od/lpa/nsf50/vbush1945.htm.
- Callander, S. (2011a). "Searching and learning by trial and error". *American Economic Review* 101.6, pp. 2277–2308.
- (2011b). "Searching for Good Policies". *The American Political Science Review* 105.4, pp. 643–662.
- Callander, S. and T. S. Clark (2017). "Precedent and doctrine in a complicated world". The American Political Science Review 111.1, pp. 184–203.
- Callander, S. and P. Hummel (2014). "Preemptive policy experimentation". *Econometrica* 82.4, pp. 1509–1528.
- Callander, S., N. S. Lambert, and N. Matouschek (2018). "The Power of Referential Advice". *mimeo*.
- Callander, S. and N. Matouschek (2019). "The risk of failure: Trial and error learning and long-run performance". American Economic Journal: Microeconomics 11.1, pp. 44–78.
- Dominici, D. (2008). "Some properties of the inverse error function". *Tapas in Experimental Mathematics:* ed. by T. Amdeberhan and V. H. Moll. Amer. Math. Soc., Providence, pp. 191–203.
- Fortunato, S., C. T. Bergstrom, K. Börner, J. A. Evans, D. Helbing, S. Milojević, A. M. Petersen, F. Radicchi, R. Sinatra, B. Uzzi, A. Vespignani, L. Waltman, D. Wang, and A.-L. Barabási (2018). "Science of science". *Science* 359.6379.
- Frankel, A. and E. Kamenica (2019). "Quantifying information and uncertainty". *American Economic Review* 109.10, pp. 3650–80.
- Frankel, A. and M. Kasy (2021). "Which findings should be published". *American Economic Journal: Microeconomics*, forthcoming.
- Garfagnini, U. and B. Strulovici (2016). "Social Experimentation with Interdependent and Expanding Technologies". *Review of Economic Studies* 83.4, pp. 1579–1613.
- Heckman, J. J. and S. Moktan (2020). "Publishing and Promotion in Economics: The Tyranny of the Top Five". *Journal of Economic Literature* 58.2, pp. 419–70.
- Hill, R. and C. Stein (2019). "Scooped! Estimating Rewards for Priority in Science". mimeo.
- (2020). "Race to the Bottom: Competition and Quality in Science". mimeo.
- Hjort, J., D. Moreira, G. Rao, and J. F. Santini (2021). "How Research Affects Policy: Experimental Evidence from 2,150 Brazilian Municipalities". American Economic Review 111.5, pp. 1442–80.
- Hopenhayn, H. and F. Squintani (2021). "On The Direction of Innovation". *Journal of Political Economy*, forthcoming.
- Iaria, A., C. Schwarz, and F. Waldinger (2018). "Frontier Knowledge and Scientific Production: Evidence from the Collapse of International Science". The Quarterly Journal of Economics 133.2, pp. 927–991.

- Jovanovic, B. and R. Rob (1990). "Long waves and short waves: Growth through intensive and extensive search". *Econometrica: Journal of the Econometric Society*, pp. 1391–1409.
- Kosfeld, M. and S. Neckermann (2011). "Getting More Work for Nothing? Symbolic Awards and Worker Performance". *American Economic Journal: Microeconomics* 3.3, pp. 86–99.
- Letina, I. (2016). "The road not taken: competition and the R&D portfolio". RAND Journal of Economics 47.2, pp. 433–460.
- Letina, I., A. Schmutzler, and R. Seibel (2020). "Killer acquisitions and beyond: policy effects on innovation strategies". *University of Zurich, Department of Economics, Working Paper* 358.
- Liang, A. and X. Mu (2020). "Complementary Information and Learning Traps". *The Quarterly Journal of Economics* 135.1, pp. 389–448.
- Marschak, J. (1974). "Economic Measurements for Policy and Prediction". Economic Information, Decision, and Prediction: Selected Essays: Volume III. Dordrecht: Springer Netherlands, pp. 293–322.
- Medawar, P. B. (1967). The Art of the Soluble Creativity and Originality in Science. London: Penguin Books.
- Myers, K. (2020). "The elasticity of science". American Economic Journal: Applied Economics 12.4, pp. 103–34.
- OHCR (1966). International Covenant on Economic, Social and Cultural Rights. URL: https://www.ohchr.org/EN/ProfessionalInterest/Pages/CESCR.aspx.
- Prendergast, C. (2019). "Creative Fields". mimeo.
- Price, W. (2019). "Grants". Berkeley Tech Law Journal 34.1, pp. 15–16.
- (2020). "The cost of Novelty". Columbia Law Review 120.3, pp. 769–835.
- Rzhetsky, A., J. G. Foster, I. T. Foster, and J. A. Evans (2015). "Choosing experiments to accelerate collective discovery". *Proceedings of the National Academy of Sciences* 112.47, pp. 14569–14574.
- Scotchmer, S. (1991). "Standing on the shoulders of giants: cumulative research and the patent law". *Journal of Economic Perspectives* 5.1, pp. 29–41.
- Sterling, T. D. (1959). "Publication decisions and their possible effects on inferences drawn from tests of significance—or vice versa". *Journal of the American Statistical Association* 54.285, pp. 30–34.
- This American Life (2020). Boulder v Hill-The Other Extinguisher. Podcast. URL: https://www.thisamericanlife.org/727/boulder-v-hill.

Supplementary Material

C Graphical example

Here, we present a short graphical example to highlight our model ingredients and fosters intuition. Suppose the following snapshot of the realization of the Brownian path constitutes the truth on [-2, 2].

Figure 16: The color of the truth is gray.

The next graphs depict knowledge if the answer to a single question is known, $\mathcal{F}_1 = \{(0,42)\}$, and in if two answers are known, $\mathcal{F}_2 = \{(-1.2,46.6),(0,42)\}$.

Figure 17: Conjectures and their precision under \mathcal{F}_1 (left) and \mathcal{F}_2 (right). The red dots represent known question-answer pairs. The solid lines represent the expected answer to each question x given the existing knowledge. The dashed line represents the 95-percent prediction interval—that is, the interval in which the answer to question x lies, with a probability of 95 percent, given \mathcal{F}_k .

In the situation represented in the left panel of Figure 17, under \mathcal{F}_1 , only the answer to question 0, which is 42, is known. We represent that knowledge by a dot (\bullet). Given the martingale property of a Brownian motion, the current conjecture is that the answer to all other questions is normally distributed with mean 42. We represent the mean of the conjecture by the solid lines. However, the farther a question is from 0, the less precise is the conjecture (see Figure 2). We depict the level of precision by the dashed 95-percent prediction interval. For each question x, the truth lies, with a probability of 95 percent,

between the two dashed lines given the knowledge \mathcal{F}_k .

In the right panel of Figure 17, in addition to \mathcal{F}_1 , the answer to question x = -1.2, which is 46.6, is known. The additional knowledge changes the conjectures for questions in the negative domain compared to the left panel. The conjecture about questions between -1.2 and 0 is represented by a Brownian bridge. The expectation of answers is decreasing from -1.2 to 0 and is 46.6 to the left of -1.2. Moreover, uncertainty decreases for all questions in the negative domain, and the prediction bands become narrower. The positive domain is unchanged because of the martingale property of the Brownian motion.

Now, consider moving to knowledge $\mathcal{F}_3 = \{(-1.2, 46.6), (0, 42), (1.2, 41.8)\}$ (left panel of Figure 18) and then to $\mathcal{F}_4 = \{(-1.6, 46.6), (0, 42), (0.8, 40.8), (1.2, 41.8)\}$ (right panel of Figure 18).

Figure 18: Conjectures and their precision under \mathcal{F}_3 (left) and \mathcal{F}_4 (right).

Moving from \mathcal{F}_2 to \mathcal{F}_3 , the change is similar to that from \mathcal{F}_1 to \mathcal{F}_2 , but this time in the positive domain. All conjectures in the positive domain become more precise, but the negative domain is unaffected. Further, a Brownian bridge between the known points (0,42) and (1.2,41.8) arises.

Moving from \mathcal{F}_3 to \mathcal{F}_4 , knowledge of an answer to a question that lies between two already-answered questions is added. Conjectures about answers to questions between 0 and 1.2 become more precise. Further, since 40.8 < 41.8, answers to all questions between 0 and 1.2 are expected to be lower compared to the conjecture based on knowledge \mathcal{F}_3 . Moreover, the expected answers are decreasing in x from 0 to 0.8 and increasing from 0.8 and 1.2.

D **Omitted Proofs**

Properties of $\tilde{c}(\rho)$ D.1

To simplify notation, we suppress the argument ρ and denote the inverse error function by $\iota := erf^{-1}(\rho).$

Lemma 18. The derivatives of the inverse error function satisfy

1.
$$\frac{d}{d\rho}\iota = \frac{1}{2}\sqrt{\pi}e^{\left(\iota^2\right)}$$

$$2. \frac{d^2}{d\rho^2}\iota = 2\iota\iota'^2$$

3.
$$\frac{d^3}{do^3}\iota = 2\iota'^3 (1 + 4\iota^2)$$
.

Proof. See Dominici (2008).

Lemma 19. 1. $\lim_{\rho \to 0} \rho \frac{\iota'}{\iota} = 1$ 2. $\lim_{\rho \to 1} \rho \frac{\iota'}{\iota} = \infty$

2.
$$\lim_{\rho \to 1} \rho \frac{\iota'}{\iota} = \infty$$

3.
$$\lim_{\rho \to 0} \frac{d}{d\rho} \left(\rho \frac{\iota'}{\iota} \right) = 0$$

4.
$$\lim_{\rho \to 0} \frac{d^2}{d\rho^2} \left(\rho \frac{\iota'}{\iota} \right) = \frac{\pi}{3}$$

Proof. We will make use of L'Hôpital's rule and the derivative properties from Lemma 18 in the following.

The first item follows from

$$\lim_{\rho \downarrow 0} \rho \frac{\iota'}{\iota} = \lim_{\rho \downarrow 0} \frac{\iota' + \rho \iota''}{\iota'}$$

$$= \lim_{\rho \downarrow 0} \frac{\iota' + 2\rho \iota \iota'^2}{\iota'}$$

$$= \lim_{\rho \downarrow 0} (1 + \rho \iota \iota')$$

$$= 1.$$

The second item follows from

$$\lim_{\rho \uparrow 1} \rho \frac{\iota'}{\iota} = \lim_{\rho \uparrow 1} \frac{\iota' + \rho \iota''}{\iota'}$$

$$= \lim_{\rho \uparrow 1} \frac{\iota' + 2\rho \iota \iota'^2}{\iota'}$$

$$= \lim_{\rho \uparrow 1} (1 + 2\rho \iota \iota')$$

$$= \infty$$

The third item follows from

$$\begin{split} \lim_{\rho \to 0} \frac{d}{d\rho} \left(\rho \frac{\iota'}{\iota} \right) &= \lim_{\rho \to 0} \frac{\iota'}{\iota} \left(1 - \rho \frac{\iota'}{\iota} \right) + \lim_{\rho \to 0} \rho \frac{\iota''}{\iota} \\ &= \lim_{\rho \to 0} \iota' \lim_{\rho \to 0} \frac{\iota - \rho \iota'}{\iota^2} + \lim_{\rho \to 0} 2\rho \iota'^2 = -\lim_{\rho \to 0} \frac{\sqrt{\pi}}{2} \frac{\rho \iota''}{2\iota \iota'} \\ &= -\lim_{\rho \to 0} \frac{\sqrt{\pi}}{2} \frac{\rho \iota(\iota')^2}{2\iota \iota'} = -\lim_{\rho \to 0} \frac{\sqrt{\pi}}{2} \rho \iota' = 0. \end{split}$$

The fourth item follows from⁴¹

$$\lim_{\rho \to 0} \frac{d^2}{d\rho^2} \left(\rho \frac{t'}{\iota} \right) = \lim_{\rho \to 0} 2 \frac{\iota'' \iota - \iota'^2}{\iota^2} \left(1 - \rho \frac{t'}{\iota} \right) + \lim_{\rho \to 0} 4 \rho \underbrace{\iota' \iota''}_{=2(\iota')^3 \iota}$$

$$= \lim_{\rho \to 0} 2 \frac{\iota'' \iota - \iota'^2}{\iota^2} \left(1 - \rho \frac{\iota'}{\iota} \right)$$

$$= \lim_{\rho \to 0} 2 \frac{\iota'' \iota}{\iota^2} \left(1 - \rho \frac{\iota'}{\iota} \right) - 2 \lim_{\rho \to 0} \frac{\iota'^2}{\iota^2} \left(1 - \rho \frac{\iota'}{\iota} \right)$$

$$= \lim_{\rho \to 0} 4 \iota'^2 \left(1 - \rho \frac{\iota'}{\iota} \right) - 2 \lim_{\rho \to 0} \frac{\iota'^2}{\iota^2} \left(1 - \rho \frac{\iota'}{\iota} \right)$$

$$= -2 \lim_{\rho \to 0} \left(\rho \frac{\iota'}{\iota} \right)^2 \frac{\iota - \rho \iota'}{\rho^2 \iota}$$

$$= 2 \lim_{\rho \to 0} \frac{\rho \iota''}{2\rho \iota + \rho^2 \iota'}$$

$$= 4 \lim_{\rho \to 0} \frac{\iota'^2}{2 + \rho \frac{\iota'}{\iota}}$$

$$= \frac{4}{3} \lim_{\rho \to 0} \iota'^2 = \frac{\pi}{3}.$$

Lemma 20. The following statements hold:

1. For all
$$\rho \in (0,1)$$
, $\frac{d}{d\rho} (\rho \tilde{c}_{\rho}(\rho) - \tilde{c}(\rho)) > 0$
2. For all $\rho \in (0,1)$, $\rho \tilde{c}_{\rho}(\rho) - \tilde{c}(\rho) > 0$

2. For all
$$\rho \in (0,1)$$
, $\rho \tilde{c}_{\rho}(\rho) - \tilde{c}(\rho) > 0$

3.
$$\lim_{\rho \to 0} \rho \frac{\tilde{c}_{\rho}(\rho)}{\tilde{c}(\rho)} = 2$$

3.
$$\lim_{\rho \to 0} \rho \frac{\tilde{c}_{\rho}(\rho)}{\tilde{c}(\rho)} = 2$$

4. $\lim_{\rho \to 1} \rho \frac{\tilde{c}_{\rho}(\rho)}{\tilde{c}(\rho)} = \infty$

Proof. The first statement holds because

$$\frac{d}{d\rho} \left(\rho \tilde{c}_{\rho}(\rho) - \tilde{c}(\rho) \right) = \rho \tilde{c}_{\rho\rho}(\rho) > 0.$$

by convexity of the inverse error function.

The second statement holds because of the first statement and $(\rho \tilde{c}_{\rho}(\rho) - \tilde{c}(\rho))|_{\rho=0} = 0$.

The third statement holds by observing that the elasticity is equal to $2\rho \frac{\iota'}{\iota}$ and the first statement of Lemma 19.

The fourth statement holds by the same observations and the second statement of Lemma 19.

Lemma 21. The elasticity of $\tilde{c}(\rho)$, $\rho \frac{\tilde{c}_{\rho}(\rho)}{\tilde{c}(\rho)}$, is increasing in ρ .

Proof. Recall that $\rho \frac{\tilde{c}_{\rho}(\rho)}{\tilde{c}(\rho)} = 2\rho \frac{t'}{\iota}$ and that it is therefore sufficient to prove that the inverse error function has an increasing elasticity.

To arrive at the first line let $\lambda := \iota'/\iota$ and observe that $(\rho\lambda)'' = (\lambda + \rho\lambda')' = 2\lambda' + \rho\lambda''$ and $\lambda' = 2(\iota')^2 - \lambda^2$ which implies $\lambda'' = 4\iota'\iota'' - 2\lambda\lambda'$.

Note that

$$\frac{d}{d\rho}\left(\rho\frac{\iota'}{\iota}\right) = \frac{\iota'}{\iota} + \rho\frac{\iota''\iota - \iota'^2}{\iota^2}.$$

From Lemma 19 know that

$$\begin{split} &\lim_{\rho \to 0} \frac{d}{d\rho} \left(\rho \frac{\iota'}{\iota} \right) = 0 \\ &\lim_{\rho \to 0} \frac{d^2}{d\rho^2} \left(\rho \frac{\iota'}{\iota} \right) = \frac{\pi}{3}. \end{split}$$

Thus, there exists an $\varepsilon > 0$ such that the elasticity is increasing for $\rho \in (0, \varepsilon)$. To show that it is increasing for all $\rho \in (0, 1)$ suppose –toward a contradiction– that the derivative of the elasticity crosses 0. In this case, it has to hold that

$$\frac{\iota''\iota - \iota'^2}{\iota^2} = -\frac{\iota'}{\rho\iota}.$$

Consider the second derivative of the elasticity at such a critical point

$$\begin{split} \frac{d^2}{d\rho^2} \left(\rho \frac{\iota'}{\iota} \right) |_{\frac{d}{d\rho} \left(\rho \frac{\iota'}{\iota} \right) = 0} &= 2 \frac{\iota'' \iota - \iota'^2}{\iota^2} \left(1 - \rho \frac{\iota'}{\iota} \right) + \rho \frac{\iota''' \iota - \iota'' \iota'}{\iota^2} \\ &= -2 \frac{\iota'}{\iota \rho} \left(1 - \rho \frac{\iota'}{\iota} \right) + \rho \frac{\iota''' \iota - \iota'' \iota'}{\iota^2} \\ &= 2 \frac{\iota'}{\iota \rho} \left(\rho \frac{\iota'}{\iota} - 1 \right) + 2 \rho \frac{\iota'^3}{\iota} 4 \iota^2 \\ &> 0 \end{split}$$

where the last inequality follows because the elasticity is weakly greater than one and all other terms are positive.

Thus, any critical point must be a minimum. However, the elasticity is continuous and increasing at $\rho \in (0, \varepsilon)$. Thus, there is no interior maximum and the elasticity is increasing throughout.

Lemma 22. The elasticity of $\tilde{c}_{\rho}(\rho)$, $\rho \frac{\tilde{c}_{\rho\rho}(\rho)}{\tilde{c}_{\rho}(\rho)}$, is increasing in ρ .

Proof. The derivative of the corresponding inverse error function elasticity (which is one half the one of our cost function) is

$$\frac{d}{d\rho} \left(\rho \frac{\iota'}{\iota} \right) = \frac{\iota''}{\iota'} + \rho \frac{\iota'''\iota' - \iota''^2}{\iota'^2}$$
$$= \frac{\iota''}{\iota'} + 2\rho \iota''^2 (1 + 2\iota(2\iota - 1)).$$

Next, we will show that $1 + 2\iota(2\iota - 1) > 0$. Note that this is a convex function of ρ with a minimum at $\iota\iota\iota' = \frac{1}{4}$ which is solved by $\rho = erf\left(\sqrt{\frac{W\left(\frac{1}{2\pi}\right)}{2}}\right) \approx 0.29$ where W denotes the principal branch of the Lambert-W function. Evaluating $1 + 2\iota(2\iota - 1)$ at this minimum yields

$$1 + \left(\sqrt{2W\left(\frac{1}{2\pi}\right)} - 1\right)\sqrt{2W\left(\frac{1}{2\pi}\right)} \approx 0.75.$$

D.2 Omitted Steps in Proofs

Here, we provide the steps that we have omitted in the proofs because they involve cumbersome algebraic manipulation with little economic or mathematical insight.

Lemma 23. $\frac{\partial V(d;\infty|d>4q)}{\partial d}<0$.

Proof.

$$\frac{\partial V(d; \infty | d > 4q)}{\partial d} = -\frac{d}{3q} + 1 + \sqrt{\frac{d - 4q}{d}} \frac{d - q}{3q}$$

Letting $\tau := d/q (> 4$ by assumption) the statement is negative if

$$\frac{3-\tau}{3} + \sqrt{\frac{\tau-4}{\tau}} \frac{\tau-1}{3} < 0$$

The left-hand side is increasing in τ and converges to 0 as $\tau \to \infty$.

Lemma 24. V(d;X) > 0 if $d \in [0, X - 4q]$ and $X \in (4q, 6q]$.

Proof. We show that the derivative V_d is a convex function which is positive at its minimum on [0, X - 4q] and hence throughout on that domain.

The relevant derivatives to consider are

$$V_d = \frac{1}{3q} \left(X - 2d - (X - d - q) \sqrt{\frac{X - d - 4q}{X - d}} \right).$$

$$V_{dd} = \frac{1}{3q} \left(-2 + \frac{1}{\sqrt{X - d - 4q}(X - d)^{3/2}} \left((X - d - 4q)(X - d) + (X - d - q)2q \right) \right).$$

$$V_{ddd} = \frac{4q^2}{(X - d)^{5/2}(X - d - 4q)^{3/2}} > 0.$$

where $V_{ddd} > 0$ follows immediately from (X - d) > 0 and (X - d - 4q) > 0. It follows that, V_d is strictly convex over the relevant range. The maximal distance in this range, d = X - 4q, $V_d|_{d=X-4q} = \frac{8q-X}{3q} > 0$. Hence, the minimum of the first derivative is either at d = 0 or at some interior d such

Hence, the minimum of the first derivative is either at d=0 or at some interior d such that $V_{dd}=0$. Suppose the minimum is at d=0, then $V_d|_{d=0}=\frac{1}{3q}\left(X-(X-q)\sqrt{\frac{X-4q}{X}}\right)>0$ because $\frac{X-4q}{X}<1$.

Hence, the only remaining case is when V_d attains an interior minimum. In this case, $V_{dd} = 0$ must hold at the minimum and hence

$$\sqrt{X-d-4q}(X-d)^{3/2} = \frac{(X-d-4q)(X-d) + (X-d-q)2q}{2}$$

The first derivative can be rewritten as

$$V_d = \frac{1}{3q} \left(X - 2d - \frac{1}{\sqrt{X - d - 4q}(X - d)^{3/2}} (X - d - q)(X - d - 4q)(X - d) \right)$$

and plugging in for the minimum condition we obtain

$$V_d|_{V_{dd}=0}$$

$$\begin{split} &=\frac{1}{3q}\left(X-2d-\frac{2(X-d-q)(X-d-4q)(X-d)}{(X-d-4q)(X-d)+(X-d-q)2q}\right)\\ &=\frac{1}{3q}\frac{(X-2d)((X-d-4q)(X-d)+(X-d-q)2q)-2(X-d-q)(X-d-4q)(X-d)}{(X-d-4q)(X-d)+(X-d-q)2q} \end{split}$$

As the denominator and $\frac{1}{3q}$ are both positive, the sign of V_d at its minimum is determined by the sign of its numerator only. Note that the numerator is increasing in d because its derivative is 2(X - 6q)(X - d - q) > 0. Thus, the numerator of the derivative of V_d evaluated at the interior minimum d such that $V_{dd} = 0$ is greater than

$$-X(X^{2} - 8qX + 10q^{2}) = -X((X - 4q)^{2} - 6q^{2}) > 0.$$

Lemma 25. $V_X(d^0(X); X) < 0$ if $X \ge 4q$ and $d \in [0, X - 4q]$

Proof. Observe that for any $X \geq 4q$ and $d \leq X - 4q$

$$V_{Xd} = \frac{1}{24q} \left(8 - 3\sqrt{\frac{X - d}{X - d - 4q}} - (5(X - d) + 4q) \frac{\sqrt{X - d - 4q}}{(X - d)^{3/2}} \right).$$

Denote a := X - d, this is an increasing function in a as

$$\frac{dV_{Xd}}{da} = \frac{4q^2}{a^{5/2}(a-4q)^{3/2}} > 0.$$

Hence, the highest value of V_{Xd} is attained for $a \to \infty$ and

$$\lim_{a \to \infty} \frac{1}{24q} \left(8 - 3 \underbrace{\sqrt{\frac{a}{a - 4q}}}_{\to 1} - 5 \underbrace{\frac{a\sqrt{a - 4q}}{a^{3/2}}}_{\to 1} + 4q \underbrace{\frac{\sqrt{a - 4q}}{a^{3/2}}}_{\to 0} \right) = 0.$$

It follows that the V_{Xd} converges to zero from below implying that $V_{Xd} < 0$. Thus, $V_X(d^0(X), X) < V_X(d = 0, X)$ and we obtain

$$V_X(d, X|d \le 4q, X - d \ge 4q)$$

$$= \frac{1}{3q} \left(d + (X - d - q) \sqrt{\frac{X - d - 4q}{X - d}} - (X - q) \sqrt{\frac{X - 4q}{X}} \right)$$

$$< V(d = 0, X|d \le 4q, X - d \ge 4q)$$

$$= \frac{1}{3q} \left((X - q) \sqrt{\frac{X - 4q}{X}} - (X - q) \sqrt{\frac{X - 4q}{X}} \right) = 0.$$

as desired. \Box

Lemma 26. If $X \in [6q, 8q)$, $d^2V(X/2, X)/dX^2 < 0$ and $d^2V(d^0(X), X)/(dX)^2 > 0$.

Proof. Considering the boundary solution we obtain

$$\frac{d^2V(X/2,X)}{dX^2} = -\frac{X^2 - 2qX - 2q^2}{3qX^{3/2}\sqrt{X - 4q}} + \frac{1}{6q}$$

$$\frac{d^3V(X/2,X)}{dX^3} = \frac{4q^2}{X^{5/2}(X-4q)^{3/2}} > 0$$

implying that $\frac{d^2V(X/2,X)}{dX^2} \le \frac{d^2V(4q,8q)}{dX^2}$ with

$$\frac{d^2V(4q,8q)}{dX^2} = -\frac{64q^2 - 16q^2 - 2q^2}{3q8^{3/2}q^{3/2}2q^{1/2}} + \frac{1}{6q} = -\frac{46q^2}{96\sqrt{2}q^3} + \frac{1}{6q} = \frac{8 - 23/\sqrt{2}}{48q} < 0.$$

Next, consider the value of any interior solution and apply the envelope and implicit function theorem to obtain

$$\frac{dV(d^{0}(X), X)}{dX} = V_{X} + d'(X) \underbrace{V_{d}}_{=0 \text{ by optimality of } d} = V_{X}$$

$$\frac{d^{2}V(d^{0}(X), X)}{dX^{2}} = V_{XX} + d'(X)V_{dX} + d'(X)\underbrace{(V_{Xd} + V_{dd}d'(X))}_{=0 \text{ by IFT on FOC}} + d''(X) \underbrace{V_{d}}_{=0 \text{ by optimality}}$$

$$= V_{XX}(d^{0}(X), X) + d'(X)V_{dX}$$

$$= V_{XX}(d^{0}(X), X) \underbrace{-\frac{V_{dX}^{2}}{V_{dd}}}_{>0 \text{ as } V_{dd} < 0}.$$

Observing that

$$V_{XXd}(d, X|d \le 4q, X - d \ge 4q) = \frac{4q^2}{(X - d)^{5/2}(X - d - 4q)^3/2} > 0$$

we can compute as lower bound for

$$V_{XX}(d^{0}(X), X) = \frac{1}{24q} \left(3 \left(\sqrt{\frac{X - d}{X - d - 4q}} - \sqrt{\frac{X}{X - 4q}} \right) + 6 \left(\sqrt{\frac{X - d - 4q}{X - d}} - \sqrt{\frac{X - 4q}{X}} \right) + \left(\frac{X - 4q}{X} \right)^{3/2} - \left(\frac{X - d - 4q}{X - d} \right)^{3/2} \right)$$

$$> V_{XX}(d = 0, X) = 0$$

implying that $d^2V(d^0(X), X)/(dX^2) \geq 0$.

Lemma 27. Assume $X \in [4q, 8q]$, then $d^2U_R(d = X/2; X)/(dX)^2 < 0$.

Proof. Take the case of the boundary solution: we are analyzing a one-dimensional optimization problem with respect to ρ . Denote the objective $f(\rho; X)$ and the optimal value by $\varphi(X) = \max_{\rho} f(\rho; X)$. Then, the optimal ρ solves $f_{\rho} = 0$. We obtain

$$\varphi'(X) = \underbrace{f_{\rho}}_{=0 \text{ by optimality}} \rho'(X) + f_{X}$$

$$\varphi''(X) = \underbrace{f_{\rho}}_{=0 \text{ by optimality}} \rho''(X) + \underbrace{(f_{\rho\rho}\rho'(X) + f_{X\rho})}_{=0 \text{ by total differentiation of FOC}} \rho'(X) + f_{XX} + \rho'(X)f_{X\rho}$$

$$= f_{XX} - \frac{f_{X\rho}^{2}}{f_{\rho\rho}}$$

$$= \rho(X)V_{XX}(X/2;X) + \frac{(V_X - \frac{V}{X})^2}{V_{\frac{C'}{C'}}^{\frac{C'}{C'}}}$$

which yields as condition for the value to be concave

$$\rho(X)\frac{c''}{c'} > -\frac{(V_X - \frac{V}{X})^2}{V_{XX}V}$$

where the inequality sign changed direction as $V_X X < 0$.

Note that at the boundary solution the right-hand side simplifies to

$$\frac{X^{3/2}-2(X+2q)\sqrt{X-4q}}{X^{3/2}-2(X-4q)\sqrt{X-4q}} \quad \frac{16q^2+4qX-2X^2+X^{3/2}\sqrt{X-4q}}{8q^2+8qX-4X^2+2X^{3/2}\sqrt{X-4q}}$$

where both fractions are less than one. Finally, we know that the left-hand side is above two by the properties of the inverse error function. Hence, the optimal value at the boundary solution is strictly concave as $\sigma_{XX}^2(X/2;X) = 0$ and $V_{XX} < 0$ in the region considered by Corollary 3

Lemma 28. Let $d^i < X/2$ be a local maximum of $u_R(\rho, d, X)$. If $d^i(X)$ exists on $X \in [4q, 8q]$, then $d^2U_R(d = d^i(X); X)/(dX)^2 > 0$.

Proof. The implicit function theorem yields for d'(X) and $\rho'(X)$

$$\begin{pmatrix} d'(X) \\ \rho'(X) \end{pmatrix} = -\frac{1}{f_{dd}f_{\rho\rho} - f_{\rho d}^2} \begin{pmatrix} f_{dX}f_{\rho\rho} - f_{\rho X}f_{d\rho} \\ f_{\rho X}f_{dd} - f_{dX}f_{d\rho} \end{pmatrix}.$$

Note that $-\frac{1}{f_{dd}f_{\rho\rho}-f_{\rho d}^2} < 0$ as this is $-\frac{1}{det(\mathcal{H})}$ and the determinant of the second principal minor being positive is a necessary second order condition for a local maximum given that the first $(f_{\rho\rho})$ is negative.

Denote the objective $f(\rho, d; X)$ and the optimal value by $\varphi(X) = \max_{\rho, d} f(d, \rho; X)$. Then, the optimal (d, ρ) solves $f_{\rho} = 0$ and $f_{d} = 0$. Differentiating the value of the researcher twice with respect to X yields

$$\varphi'(X) = \underbrace{f_{\rho}}_{=0 \text{ by optimality}} \rho'(X) + \underbrace{f_{d}}_{=0 \text{ by optimality}} d'(X) + f_{X}$$

$$= \underbrace{f_{\rho}}_{=0 \text{ by optimality}} \rho''(X) + \underbrace{f_{d}}_{=0 \text{ by optimality}} d'(X)$$

$$= \underbrace{f_{\rho}}_{=0 \text{ by optimality}} \rho''(X) + \underbrace{f_{d}}_{=0 \text{ by optimality}} d'(X)$$

$$= \underbrace{f_{dX}}_{=0 \text{ by total differentiation of foc wrt } d}$$

$$+ \rho'(X) \underbrace{\left(f_{\rho X} + f_{\rho d} d'(X) + f_{\rho \rho} \rho'(X)\right)}_{=0 \text{ by total differentiation of foc wrt } \rho}$$

$$+ f_{dX} d'(X) + f_{\rho X} \rho'(X) + f_{XX}$$

$$= f_{dX} d'(X) + f_{\rho X} \rho'(X) + f_{XX}.$$

Observe first that $f_{XX} > 0$ as $f_{XX} = \rho V_{XX}(d;X) - \eta \tilde{c}(\rho) \sigma_{XX}^2(d;X)$ and $V_{XX} > 0$ by proof of Corollary 3 (in particular, Lemma 26) and $\sigma_{XX}^2(d;X) = -\frac{2d^2}{X^3}$. Next, we show $f_{dX}d'(X) + f_{\rho X}\rho'(X) > 0$ using the implicit function theorem together with the property

of the local maximum that $f_{\rho\rho}f_{dd} > f_{\rho d}^2$

$$f_{dX}d'(X) + f_{\rho X}\rho'(X) = -f_{dX}\left(\frac{f_{dX}f_{\rho\rho} - f_{\rho X}f_{d\rho}}{f_{dd}f_{\rho\rho} - f_{\rho d}^2}\right) - f_{\rho X}\left(\frac{f_{\rho X}f_{dd} - f_{dX}f_{d\rho}}{f_{dd}f_{\rho\rho} - f_{\rho d}^2}\right).$$

As we only need the sign of this expression we can ignore the positive denominator to verify

$$-f_{dX}(f_{dX}f_{\rho\rho} - f_{\rho X}f_{d\rho}) - f_{\rho X}(f_{\rho X}f_{dd} - f_{dX}f_{d\rho}) > 0$$
$$f_{dX}^{2}f_{\rho\rho} + f_{\rho X}^{2}f_{dd} - 2f_{dX}f_{\rho X}f_{d\rho} < 0$$
$$\frac{f_{dX}}{f_{\rho X}}\frac{f_{\rho\rho}}{f_{d\rho}} + \frac{f_{\rho X}}{f_{dX}}\frac{f_{dd}}{f_{\rho d}} > 2.$$

where we used the signs of the terms that follow because

$$f_{\rho\rho} = -\eta \tilde{c}_{\rho\rho}(\rho)\sigma^{2} < 0$$

$$f_{\rho X} = V_{X} - \eta \tilde{c}_{\rho}(\rho)\sigma_{X}^{2}$$

$$< V_{X} - \eta \frac{\tilde{c}(\rho)}{\rho}\sigma_{X}^{2} < 0$$

$$f_{d\rho} = V_{d} - \eta \tilde{c}_{\rho}(\rho)\sigma_{d}^{2}$$

$$< V_{d} - \eta \frac{\tilde{c}(\rho)}{\rho}\sigma_{d}^{2} = 0$$

$$f_{dX} = \rho V_{dX} - \eta \tilde{c}(\rho)\sigma_{dX}^{2} < 0$$

which in turn follow from the first-order conditions and Corollary 3.

Because $f_{\rho\rho}f_{dd} - f_{\rho d}^2 > 0$, we can replace $\frac{f_{\rho\rho}}{f_{d\rho}}$ with $\frac{f_{d\rho}}{f_{dd}}$ as $\frac{f_{\rho\rho}}{f_{d\rho}} > \frac{f_{d\rho}}{f_{dd}}$ yielding

$$2 < \frac{f_{dX}}{f_{\rho X}} \frac{f_{d\rho}}{f_{dd}} + \frac{f_{\rho X}}{f_{dX}} \frac{f_{dd}}{f_{\rho d}}$$

which is true as the right-hand side can be written as $g(a) = a + \frac{1}{a}$ with $a = \frac{f_{dX}}{f_{\rho X}} \frac{f_{d\rho}}{f_{dd}} > 0$. Note that g(a) is a strictly convex function for a > 0 and minimized at a = 1 with g(a = 1) = 2.

Lemma 29. d^{∞} is linear in q and ρ^{∞} is constant in q.

Proof. The lemma follows because $\sigma^2(mq; \infty) = mq$ and thus (by Proposition 1) the functions $f(m,q) := V(mq; \infty)/\sigma^2(mq; \infty)$ and $g(m,q) := V_d(mq; \infty)$ are homogeneous of degree 0 in q.

It is then immediate from (FOC^d) and (FOC^{ρ}) that d^{∞} is homogeneous of degree 1 in q and ρ^{∞} is homogeneous of degree 0. Noticing that $d^{\infty}(q=0)=0$ implies the result. \square

Lemma 30.
$$MRS_{\zeta\eta}^{\rho} = s(2\tilde{c}_{\rho}(\rho) - \tilde{c}(\rho)/\rho)$$
 and $MRS_{\zeta\eta}^{d} = \tilde{c}_{\rho} \frac{\tilde{c}/\rho - \tilde{c}_{\rho} + \frac{\tilde{c}}{\tilde{c}_{\rho}}\tilde{c}_{\rho\rho}}{\tilde{c}/\rho - \tilde{c}_{\rho} + \rho\tilde{c}_{\rho\rho}}$.

Proof. For any (η, ζ) the system of first-order conditions for a non-boundary choice is given by

$$V_d(d, \infty) + \zeta \sigma_d^2(d, \infty)/s = \eta \tilde{c}(\rho)/\rho$$
$$\frac{V(d, \infty) + \zeta \sigma_d^2(d, \infty)/s}{d} = \eta \tilde{c}_\rho(\rho)$$

For an interior optimal choice of (d, ρ) , we obtain using $\sigma^2(d, X) = d$, $\sigma^2_d(d, X) = 1$ and $\sigma^2_{dd}(d, X) = 0$

$$\begin{pmatrix}
\frac{\mathrm{d}d}{\mathrm{d}\eta} \\
\frac{\mathrm{d}\rho}{\mathrm{d}\zeta} \\
\frac{d\rho}{\mathrm{d}\zeta} \\
\frac{d\rho}{\mathrm{d}\zeta}
\end{pmatrix} = -\frac{1}{\det(\mathcal{H})}$$

$$\begin{pmatrix}
d(\tilde{c}_{\rho}(V_d + \zeta/s - \eta\tilde{c}_{\rho}) + \eta\tilde{c}\tilde{c}_{\rho\rho}) \\
-d(V_d + \zeta/s - \eta\tilde{c}_{\rho} + \rho\eta\tilde{c}_{\rho\rho}) \\
-\rho\sigma^2\tilde{c}_{\rho}V_{dd} + \tilde{c}(V_d + \zeta/s - \eta\tilde{c}_{\rho}) \\
-\rho/s(V_d + \zeta/s - \eta\tilde{c}_{\rho} - dV_{dd})
\end{pmatrix}$$

where $det(\mathcal{H})$ is the determinant of the Hessian matrix of the objective function which is given by

$$-\eta \sigma^2 \tilde{c}_{\rho\rho} \rho V_{dd} - (V_d + \zeta/s - \eta \tilde{c}_\rho)^2 > 0.$$

Note that the determinant of the Hessian matrix for a local maximum is positive as the Hessian is negative semidefinite and the first principal minor $-\eta \tilde{c}_{\rho\rho}\sigma^2 < 0$ by convexity of the inverse error function.⁴²

It follows that the sign of the derivatives are determined only by the negative of the sign of the respective terms in the matrix. Using the first-order conditions to rewrite these equations yields

$$\frac{\mathrm{d}d}{\mathrm{d}\eta} = -\frac{d\eta}{\det(\mathcal{H})} \left(\tilde{c}_{\rho} \left(\frac{\tilde{c}}{\rho} - \tilde{c}_{\rho} \right) + \tilde{c}\tilde{c}_{\rho\rho} \right) < 0$$

$$\frac{\mathrm{d}d}{\mathrm{d}\zeta} = \frac{d\eta}{\det(\mathcal{H})} \left(\frac{\tilde{c}}{\rho} - \tilde{c}_{\rho} + \rho\tilde{c}_{\rho\rho} \right) > 0$$

where the inequalities hold due to the properties of the inverse error function.

$$\frac{\mathrm{d}\rho}{\mathrm{d}\eta} = -\frac{\rho\eta}{\det(\mathcal{H})}$$
$$(2\tilde{c}_{\rho} - \tilde{c}/\rho) (\tilde{c}_{\rho} - \tilde{c}/\rho) < 0$$

where we have used that $\sigma^2 V_{dd} = -\frac{d}{3q}$ and from the first-order conditions we know that $\frac{d}{3q} = 2\eta(\tilde{c}_{\rho} - \tilde{c}/\rho)$. The properties of \tilde{c} imply that $\tilde{c}_{\rho} > \tilde{c}/\rho$. Finally,

$$\frac{\mathrm{d}\rho}{\mathrm{d}\zeta} = \frac{\rho\eta/s}{\det(\mathcal{H})} \left(\tilde{c}_{\rho} - \tilde{c}/\rho\right) > 0$$

where the analogous reasoning as for the previous inequality applies. To conclude, we have:

$$\eta^2 (\tilde{c}_\rho - \tilde{c}/\rho) 2(\rho \tilde{c}_{\rho\rho} - \tilde{c}_\rho + \tilde{c}/\rho) > 0$$

where the inequality follows from the properties of \tilde{c} .

⁴²In our case, one can actually show that this has to hold given that $d < \infty$. Plugging in from the first-order conditions yields

$$\frac{dd}{d\eta} < 0 \quad \frac{dd}{d\zeta} > 0$$

$$\frac{d\rho}{d\eta} < 0 \quad \frac{d\rho}{d\zeta} > 0.$$

We obtain for the marginal rate of substitution between ζ and η on the expanding interval

$$-\frac{\frac{\mathrm{d}\rho}{\mathrm{d}\eta}}{\frac{\mathrm{d}\rho}{\mathrm{d}\zeta}} = MRS_{\zeta\eta}^{\rho} = s(2\tilde{c}_{\rho} - \tilde{c}/\rho)$$

where we used the simplifications from above.

Similarly, we obtain

$$-\frac{\frac{\mathrm{d}d}{\mathrm{d}\eta}}{\frac{\mathrm{d}d}{\mathrm{d}\zeta}} = MRS_{\zeta\eta}^d = \tilde{c}_\rho \frac{\tilde{c}/\rho - \tilde{c}_\rho + \frac{\tilde{c}}{\tilde{c}_\rho} \tilde{c}_{\rho\rho}}{\tilde{c}/\rho - \tilde{c}_\rho + \rho \tilde{c}_{\rho\rho}}.$$

E Different Rewarding Technology

In this section, we briefly discuss a variant of the model from Section 7. The model is identical to that in Section 7 apart from the functional form $f(\sigma^2)$. Instead of assuming a linear relationship, we assume

$$f(\sigma^2) = 1 - e^{-s\sigma^2}.$$

Changing the reward technology in this way has two implications. First, rewards are not guaranteed no matter how difficult to answer the question is. Second, the likelihood to receive an ex-post reward is now strictly concave in the variance, which implies a decreasing return to novelty in the reward function.

Using this specification, we lose the closed-form expression of the research possibility frontier from Proposition 6; however, the findings we discuss around Proposition 7 remain largely unchanged as Figure 19 illustrates: d and ρ can be substitutes (left panel) or complements (right panel) from the funder's perspective; if they are complements, it may be optimal to induce excessive novelty to increase output (right panel); if they are substitutes, excessive novelty is never optimal (left panel). A combination of the two funding schemes may be optimal to maximize the expected benefits to society (both panels).

Figure 19: Funding schemes that maximize immediate benefits. The dashed elliptical curves depict all points that deliver the same expected value $\rho V(d;\infty)$. The solid line is the funder's budget line. In both panels, $K=30, \kappa=70, q=1$, and $\eta^0=1$. In the left panel, the return parameter s=6; in the right panel, that parameter is s=.6. The funder's optimal choice (\bullet) in both cases consists of a mix of ex-ante cost reductions and ex-post rewards, $(\zeta,h)>0$. The circle (\circ) depicts the outcome if the funder invests exclusively into rewards, $\zeta=K,h=0$; the square (\square) the outcome if the funder invests exclusively into cost reductions, $\zeta=0,h=K/\kappa$.