Manufacturing Processes (TA201A)

Mid Semester Examination

Student Name		_ Roll No Sect	tion No
Dat	te: 20 th September 2017	Maximum durati	on: 120 minutes
Que	estion 1: State whether the following	statements are true or false.	(40 marks)
1.	Steel mold casting comes under the	category of expendable mold	casting.
			True or False
2.	Grains are usually of larger size using	g steel mold compared to sand	d casting.
			True or False
3.	Thermoplastics can be heat treated so	everal times without any chan	ge in molecular
	structure.		True or False
4.	Riser in sand casting should possess	high volume to area ratio con	npared to other parts
	of the mold.		True or False
5.	Ni and its alloy typically melt at rela	tively low-temperature, and a	re used for making
	aircraft components.		True or False
6.	Chromium if added in large amount	prevent steel from corrosion.	True or False
7.	The tendency for the formation of gl	ass is high when the cooling r	rate of liquid melt is
	rapid.	Tr	ue or False
8.	Titanium alloys with high stiffness a	nd strength to weight ratio are	e used in making
	body implants.	Tru	e or False
9.	In cement concrete, steel rods provide	le the compressive strength to	the concrete.
			True or False
10.	Temperature at which liquid transform	rms to two distinct solids is ca	lled eutectic
	temperature.		True or False

Student Name	_ Roll No S	ection No	
Date: 20 th September 2017	TA201A Mid	Sem Exam	
11. Defects such as mold shift and core shift occur mainly in sand casting because of			
misalignment.		True or False	
12. Bakelite is formed by the reaction of	f phenol and formaldehyde.	True or False	
13. Glasses do not have a definite melting point but show anisotropic properties.			
		True or False	
14. In fibre reinforced polymer, epoxy n	natrix resist cracks and frac	ture. True or False	
15. High carbon steel is used to making	machinery cutting tools.	True or False	
16. Stainless steel is an alloy of iron, car	rbon and manganese.	True or False	
17. Ceramics possess metallic bonding.		True or False	
18. Natural rubber and teflon are examp	les of elastomers.	True or False	
19. The chemical formula of clay is Al ₂ 0	O ₃ .SiO ₂ .2H ₂ O.	True or False	
20. α-ferrite phase possesses bcc structu	re and exists at room tempe	erature.	
		True or False	

Date: 20th September 2017 TA201A Mid Sem Exam

Question 2: Figure 1 shows a tapered downsprue with the metal heads of H_1 in the pouring basin and the total metal head of H_2 . If the cross-sectional areas of the downsprue at levels x and y are A_1 and A_2 , respectively, determine the flow velocity of molten metal at both the levels, assuming molten metal is poured under gravity and the diameter of pouring basin is far greater than the diameter of downsprue. The losses due to friction can be neglected. Also, derive a relationship between heads H_1 and H_2 and cross-sectional areas A_1 and A_2 of the downsprue. (5+5 marks)

If the velocity at level x is given as 5 m/s and the cross-sectional area at x and y are 20 cm² and 10 cm², respectively, calculate the velocity at level y. (5 marks)

Figure 1. Tapered Down sprue

From Bernoulli's Theorem,

$$h + \frac{p}{\rho g} + \frac{v^2}{2g} = constant$$
 (Assuming friction is absent)

Pressure term remains constant everywhere.

$$\frac{v_y^2}{2g} = \frac{v_x^2}{2g} + H_2 - H_1 = \frac{v_z^2}{2g} + H_2$$

Now value v_z is close to 0 as diameter of pouring basin is far greater than that of downsprue.

$$\frac{v_y^2}{2g} = \frac{v_x^2}{2g} + H_2 - H_1 = H_2$$

$$\Rightarrow v_y = \sqrt{2gH_2}$$

$$\Rightarrow v_x = \sqrt{2gH_1}$$
Now $A_1v_1 = A_2v_2$, therefore
$$\Rightarrow \frac{A_1}{A_2} = \sqrt{\frac{H_2}{H_1}}$$

Now $v_x = 5 \text{ m/s}$; $A_1 = 20 \text{ cm}^2$; $A_2 = 10 \text{ cm}^2$

Therefore,
$$v_y = \frac{A_1 V_x}{A_2} = \frac{20 \times 5}{10} = 10 \text{ m/s}$$

Student Name Roll No Section No	
---------------------------------	--

Date: 20th September 2017 TA201A Mid Sem Exam

Question 3. (1) State three differences between the amorphous and crystalline materials.

(5 marks)

S.No.	Crystalline Materials	Amorphous Materials
1	Materials in which atoms are	Non-crystalline solids lack a systematic and
	situated in a periodic array over a	periodic arrangement of atoms over relatively
	large atomic distance	large atomic distances.
2	They have a definite melting	Do not have a sharp melting point
	point	
3	They exhibit anisotropic	They exhibit isotropic properties
	properties	
4	Crystalline solids can be cleaved	Amorphous solid undergo irregular breakage
	along definite planes	

(2) Write the eutectoid reaction and draw the eutectoid steel microstructure (pearlite).

(10 marks)

Eutectoid reaction

$$\gamma \to Fe_3C(s) + \alpha(s)$$

Pearlite Steel

Student Name	Roll No	Section No
Date: 20 th September 2017	TA201	A Mid Sem Exam

Question 5. (1) In casting, state three possible reasons for the occurrence of cold-shut defect. (5 marks)

- 1. Low fluidity of molten metal
- 2. Pouring temperature is too low
- 3. Pouring is done too slow.
- 4. Cross-section of the mold is too thin

(2) Why the casting produced by using steel mold possesses a microstructure with smaller grain size compared to the casting made by sand mold? (5 marks)

Casting produced using steel mold possesses a microstructure with fine grain size because of the high cooling rate of the cast. Thus the cooling time is insufficient to cause noticeable grain growth. In the case of sand mold casting, thermal conductivity of sand mold is low which enables slow cooling of the cast. This allows sufficient time for the large grain formation in the sand mold casting.

Student Name	Roll No	Section No
--------------	---------	------------

Date: 20th September 2017

TA201A Mid Sem Exam

Question 4: In a sand-casting experiment performed using pure Ag, it took around 155 sec for a cube-shaped casting (with the edge of 50 mm) for the complete solidification.

- a) Determine the value of the mold constant (C_m) in Chvorinov's rule. (5 marks)
- b) If the same type of mold material is used, calculate the total solidification time for a cylindrical casting in which the radius r = 15 mm and length h = 50 mm. (10 marks)

a) Area of a cube =
$$6 \times (50)^{\frac{1}{2}} = 15000 \text{ mm}^{\frac{1}{2}}$$

Volume of a cube = $50 \times 50 \times 50 = 125,000 \text{ mm}^{3}$
 $(V/A) = 125000 / 15000 = 3.333 \text{ mm}$
 $Cm = Trs / (V/A)^{2} = \frac{155}{(8.333)^{2}} = 2.232 \text{ s/mm}^{2}$

b) Cylindrical casting with
$$V = 15mm$$
, $h = 50mm$
Area = $2\pi I^2 + 2\pi I h = 2\pi \times 15 \times 15 + 2\pi \times 15 \times 50$
 $= 6!26mm^2$

Volume =
$$\pi r h = \pi \times 15 \times 15 \times 50 = 35343 \text{ mm}^3$$

 $V/A = 35343/6126 = 5.77$
 $T_2 = 2.232 \times (5.77)^2 = 74.35 = 1.24 \text{ min}$