Investigate learning based end2end localisation methods in Colonoscopic Surgery

Supervisor: Jinjing Xu

Team: (TU-Dresden: CMS Team Project)

Prerana Chandratre

Anjali Sharma

Zhifan Yu

Jingjun Huang

NATIONAL CENTER
FOR TUMOR DISEASES
PARTNER SITE DRESDEN
UNIVERSITY CANCER CENTER UCC

Supported by:

German Cancer Research Center University Hospital Carl Gustav Carus Dresden Carl Gustav Carus Faculty of Medicine, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Introduction

End-to-End Localization in Colonoscopic Surgery

General Localization Pipeline:

Image Retrieval

Pose Estimation

Existing Approaches:

Existing approaches vary in how the general retrieval-localization pipeline is implemented.

IR

1. Hierarchical Localization

Interpretable

X Fails in low texture

Robust to low-texture and specularities

3. Relative Pose Regression (Reloc3r)

🔽 No PnP needed

Motivation

Our Focus

 Image Retrieval for localization with Pose Regression

Exploring alternativePose Estimation

Addressing

Challenges

- Deformable envs
- Fluid
- Low Texture
- Repetitive
- Occlusion

Task 1: Investigation on Image Retrieval

IR and Dataset Overview

IR overview

In short: IR helps to find a rough area for camera localization

Dataset Introduction

Train data

- Simcol3d
 - o Simulated data
 - o 37,000 frames

- C3VD
 - Based on real models
 - 10,015 frames

- Test data Colon10k
 - Real colon data with expert labels
 - > 10126 fr<mark>ames</mark>√

https://www.sciencedirect.com/science/article/pii/S1361841521001468 https://arxiv.org/pdf/2204.14240

IR Architecture and implementation details

IR results and analysis

	Test on: Conlon10k	
	mAP	RANK-5
ViT + GeM	54.02%	99.36%
ViT + NetV	12.01%	33.10%
ResNet + Netv	7.34%	44.05%
ResNet + GeM	29.35%	72.20%

$$mAP = rac{1}{|Q|} \sum_{Q \in Q} AP_Q$$

$$ext{Rank-5} = rac{\sum_{q \in Q} ext{is_correct}(q, 5)}{|Q|}$$

|Q|: The total number of queries in the evaluation query set.

ResNet + NetV Evaluation

- Strictness of Evaluation
 - Define expert's manual annotation as same physical area
- Limitations of ResNet backbone
 - Focus on local features

Query image

Top-10 Result Examples for ResNet+ NetV

ViT + GeM: A Deep Dive into Success and Challenges

Query

210

TOP-10 retrieval and similarity results

Ground truth (206-215)

Conclusion & Success: Top-5 are all above 84% similarity, and it is capable to deal with minor ambient light and position variance.

Unsolved issues: mAP score is not perfect; real dataset with ground truth is precious.

Validate IR in Localization Pipeline IR (NetVLAD) + Reloc3r

IR: NetVlad (baseline) + Reloc3r

Evaluation Data:

• SimCol3D Data: Synthetic Colon III

Metrics:

- Absolute Translation Error(ATE)
- Relative Pose Error (RPE)

IR Method	ATE	RPE
NetVLAD (baseline)	8.015 m	15.34°
ViT+GeM (Ours)	6.0092 m	11.76°

Translation Accuracy (ATE)

- ATE dropped by ~25% when using ViT+GeM instead of NetVLAD.
- Model predicts the camera location more precisely with ViT+GeM.

Rotation Accuracy (RPE)

- RPE dropped by ~23%, from 15.34° to 11.76°.
- Indicates better angular alignment between predicted and ground-truth poses using ViT+GeM.

Localization Method — Investigating SACReg

In short: SCR have the issue, while SACReg enhance the cross scene generalization.

SACReg Architecture and 3D Points Embedding

SACReg results and analysis

- Finetuning:
 - \circ n = 28,824(image pairs)
 - coordinate shifted uniformly
 - ~38cm/134°

- Overfitting:
 - o n=16
 - Good prediction
 - ~2cm/30°

Visualization with normalized scene coordinate

Conclusion

- We contributed an Image Retrieval model enhances localization accuracy, when combined with a pose regression-based foundation model.
- We investigated the feasibility of using Scene Coordinate Regression—another category of pose estimation which enhanced explainability—for localization.

THANK YOU

References

Datasets:

- 1. https://durrlab.github.io/C3VD/
- 2. https://rdr.ucl.ac.uk/articles/dataset/Simcol3D 3D Reconstruction during Colonoscopy Challenge Dataset /24077763
- 3. https://www.synapse.org/Synapse:syn26707219

Models:

- 1. REVAUD, Jerome, et al. **Sacreg: Scene-agnostic coordinate regression** for visual localization. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2024. S. 688-698.
- 2. DONG, Siyan, et al. **Reloc3r: Large-scale training of relative camera pose regression** for generalizable, fast, and accurate visual localization. In: *Proceedings of the Computer Vision and Pattern Recognition Conference*. 2025. S. 16739-16752.
- 3. SARLIN, Paul-Edouard, et al. From coarse to fine: Robust hierarchical localization at large scale. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. S. 12716-12725.
- 4. RUIZ, Lina, et al. COLON: The largest COlonoscopy LONg sequence public database. *arXiv preprint arXiv:2403.00663*, 2024.

