

MINISTERUL EDUCAȚIEI ȘI CERCETĂRII AL REPUBLICII MOLDOVA Universitatea Tehnică a Moldovei

RAPORT

Lucrare de laborator nr. 7 la cursul "Rețele de calculatoare"

A efectuat: St. gr. CR-221FR Serba Cristina

A verificat: conf.univ. Victor Moraru

Objective:

Adresarea IP și structurarea rețelelor cu măști

Mersul lucrării:

1. Calcul adresă de rețea și adresă de broadcast:

Set1:

IP/Masca	Adresa rețea	Adresa broadcast
192.168.5.14/24 - 255.255.255.0	192.168.5.0	192.168.5.255
192.168.5.14/25 - 255.255.255.128	192.168.5.0	192.168.5.127
10.10.10.0/8 - 255.0.0.0	10.0.0.0	10.255.255.255
172.16.4.254/22 - 255.255.252.0	172.16.4.0	172.16.7.255

Set2:

IP/Masca	Adresa rețea	Adresa broadcast
8.8.8.8/8 - 255.0.0.0	8.0.0.0	8.255.255.255
125.10.10.10/20 - 255.255.240.0	125.10.0.0	125.10.15.255
192.168.54.0/24 - 255.255.255.0	192.168.54.0	192.168.54.255
20.20.20.20/10 - 255.192.0.0	20.0.0.0	20.63.255.255

2. Utilitate mască de rețea

Conectivitatea dintre PC1 și PC2 nu funcționează:

3. Număr de stații în rețea

Câte adrese asignabile se găsesc în rețeaua 10.10.0.0/16?

 $-2^{16}-2=0xFFFF-2=0xFFFD$ (65533)

Câte adrese asignabile se găsesc în rețeaua 15.16.192.0/20?

- $2^{12} - 2 = 0xFFF - 2 = 0xFFD (4093)$

Câte adrese asignabile se găsesc în rețeaua 1.2.3.4/30?

 $- 2^2 - 2 = 4 - 2 = 2$

Care este masca de rețea a celei mai mici rețele care să cuprindă 25 de adrese asignabile?

Avem nevoie de 5 biţi pentru host, deoarece 2ⁿ ≥ 27 (inclusiv adresele neasignabile) ⇒ n = 5
 Deci 32 – 5 = 27, care va fi masca de reţea, sau sub altă formă 255.255.255.224 care conţine în total 30 adrese asignabile

Care este masca de rețea a celei mai mici rețele care să cuprindă 62 de adrese asignabile?

Avem nevoie de 6 biţi pentru host, deoarece 2ⁿ ≥ 62 (inclusiv adresele neasignabile) ⇒ n = 6
 Deci 32 – 6 = 26, care va fi masca de reţea, sau sub altă formă 255.255.255. 192 care conţine în total 62 adrese asignabile

Care este masca de rețea a celei mai mici rețele care să cuprindă 127 de adrese asignabile?

- Avem nevoie de 8 biţi pentru host, deoarece 2ⁿ ≥ 127 (inclusiv adresele neasignabile) ⇒ n = 8
 Deci 32 8 = 24, care va fi masca de reţea, sau sub altă formă 255.255.255. 0 care conţine în total 254 adrese asignabile
- 4. Întrebări de subnetare

Câte adrese asignabile (care pot fi asociate unei stații) se găsesc într-o rețea cu masca /23?

- 32-23=9 biti pentru host. Total adrese asignabile $2^9-2=512-2=510$

Câți biți sunt necesari pentru partea de subrețea dacă dorim să creăm 7 subrețele cu cât mai multe stații?

 $- 2^n \ge 7 \Rightarrow n = 3$

Câți biți sunt necesari pentru partea de stație dacă dorim să creăm cât mai multe rețele cu 7 stații?

Avem nevoie de cel puţin 7 + 2 = 9 adrese per reţea, deci 2ⁿ ≥ 9 ⇒ n = 4

Pornim de la o rețea /22. Care va fi masca noilor subrețele dacă dorim să creăm 6 subrețele cu cât mai multe stații?

- $2^n \ge 6 \Rightarrow n = 3$ biţi pentru subreţele, deci 22 + 3 = 25

Pornim de la o rețea /22. Care va fi masca noilor subrețele dacă dorim să creăm cât mai multe subrețele cu 27 de stații?

- $2^n \ge 29$ (inclusive cele neasignabile) \Rightarrow n = 5, deci 32 – 5 = 27 masca de subrețea

Dați exemplu de două măști de (sub)rețea pentru care adresa 78.78.159 este adresă de broadcast și două măști de (sub)rețea pentru care adresa 78.78.159 este adresă de stație

- Adresa de broadcast în rețelele:
- 1. 78.78.78.128/27

/27 ⇒ 255.255.255.224

Intervalul: $78.78.78.128 - 78.78.78.159 \Rightarrow 159$ este broadcast

2. 78.78.78.144/28

 $/28 \Rightarrow 255.255.255.240$

Interval: $78.78.78.144 - 78.78.78.159 \Rightarrow 159$ este broadcast

- Adresa de stație în rețelele:
- 1. 78.78.78.128/26

 $/26 \Rightarrow 255.255.255.192$

Interval: 78.78.78.128 – 78.78.78.191

2. 78.78.78.0/24

 $/24 \Rightarrow 255.255.255.0$

Interval: 78.78.78.1 - 78.78.78.254

- 5. Subnetare
- 17.18.19.0/24

Avem: $/24 \Rightarrow 256$ adrese totale

256 / 4 = 64 adrese per subrețea

Subrețea	Adresă rețea	Broadcast	Prima adresă IP	Ultima adresă IP
1	17.18.19.0	17.18.19.63	17.18.19.1	17.18.19.62
2	17.18.19.64	17.18.19.127	17.18.19.65	17.18.19.126
3	17.18.19.128	17.18.19.191	17.18.19.129	17.18.19.190
4	17.18.19.192	17.18.19.255	17.18.19.193	17.18.19.254

- 93.92.91.0/24

 $/24 \Rightarrow 256$ adrese

256 / 4 = 64 adrese per subrețea

Subrețea	Adresă rețea	Broadcast	Prima adresă IP	Ultima adresă IP
1	93.92.91.0	93.92.91.63	93.92.91.1	93.92.91.62
2	93.92.91.64	93.92.91.127	93.92.91.65	93.92.91.126
3	93.92.91.128	93.92.91.191	93.92.91.129	93.92.91.190
4	93.92.91.192	93.92.91.255	93.92.91.193	93.92.91.254

6. Subnetare avansată

- 17.18.16.0/22

 $/22 \Rightarrow 1024$ adrese (2¹⁰), deci avem nevoie de 6 subrețele

2ⁿ≥6⇒n=3 biţi pentru subreţele. Astfel, vom adăuga 3 biţi pentru a crea 6 subreţele. Noua mască va fi /25.

Subrețea	Adresă Rețea	Broadcast	Ultima IP Asignabilă
1	17.18.16.0	17.18.16.127	17.18.16.126
2	17.18.16.128	17.18.16.255	17.18.16.254
3	17.18.17.0	17.18.17.127	17.18.17.126
4	17.18.17.128	17.18.17.255	17.18.17.254
5	17.18.18.0	17.18.18.127	17.18.18.126
6	17.18.18.128	17.18.18.255	17.18.18.254

- 93.92.88.0/22

 $/22 \Rightarrow 1024$ adrese. Vrem 6 subrețele, deci folosim 3 biți pentru subrețele \Rightarrow masca devine /25.

Subrețea	Adresă Rețea	Broadcast	Ultima IP Asignabilă
1	93.92.88.0	93.92.88.127	93.92.88.126
2	93.92.88.128	93.92.88.255	93.92.88.254
3	93.92.89.0	93.92.89.127	93.92.89.126
4	93.92.89.128	93.92.89.255	93.92.89.254
5	93.92.90.0	93.92.90.127	93.92.90.126
6	93.92.90.128	93.92.90.255	93.92.90.254

7. VLSM

- 12.13.14.128/25

Pentru a acomoda 54 de stații, avem nevoie de o rețea cu cel puțin 2^6 adrese (deci o masca /26 pentru această subrețea, care oferă 64 de adrese, incluzând 62 de adrese asignabile).

Pentru 27 de stații, avem nevoie de o rețea cu 2^5 adrese (deci o masca /27, care oferă 32 de adrese, incluzând 30 de adrese asignabile).

Pentru 19 stații, avem nevoie de o rețea cu 2^5 adrese (deci tot o masca /27, care oferă 32 de adrese, incluzând 30 de adrese asignabile).

Subrețea	Adresă Rețea	Broadcast	Ultima IP Asignabilă
1	12.13.14.128	12.13.14.191	12.13.14.190
2	12.13.14.192	12.13.14.223	12.13.14.222
3	12.13.14.224	12.13.14.255	12.13.14.254

- 15.16.17.0/25

Subrețea	Adresă Rețea	Broadcast	Ultima IP Asignabilă
1	15.16.17.0	15.16.17.63	15.16.17.62
2	15.16.17.64	15.16.17.95	15.16.17.94
3	15.16.17.96	15.16.17.127	15.16.17.126

8. VLSM avansat

Realizați o distribuție a spațiului de adresă folosind VLSM în cadrul celor cinci rețele. Precizați care vor fi adresele pentru rutere. În cazul rețelelor C, D, E, alocați ruterului prima adresă din rețea.

Reţeaua A: între ruterele R1 şi R2 – 2 adrese (reţea /30).

Rețeaua B: între ruterele R1 și R3 – 2 adrese (rețea /30).

Rețeaua C: conectată la switch-ul Sw1, 45 de stații – 45 de stații necesită cel puțin o rețea /26 (64 de adrese).

Rețeaua D: conectată la switch-ul Sw2, 45 de stații – 45 de stații necesită o rețea /26 (64 de adrese).

Rețeaua E: conectată la switch-ul Sw3, 45 de stații – 45 de stații necesită o rețea /26 (64 de adrese)

Rețea	Adresă Rețea	Masca	Adresă Broadcast	Adrese Asignabile	Ruter Adresă
Α	45.67.89.0	/30	45.67.89.3	45.67.89.1, 45.67.89.2	45.67.89.1 (R1)
В	45.67.89.4	/30	45.67.89.7	45.67.89.5, 45.67.89.6	45.67.89.5 (R1)
С	45.67.89.8	/26	45.67.89.63	45.67.89.9 - 45.67.89.62	45.67.89.9 (R1)
D	45.67.89.64	/26	45.67.89.127	45.67.89.65 - 45.67.89.126	45.67.89.65 (R2)
Е	45.67.89.128	/26	45.67.89.191	45.67.89.129 - 45.67.89.190	45.67.89.129 (R3)

9. Configurare adrese IP și ruter în Packet Tracer

Configurarea interfeței fa0/0 a routerului

Configurarea interfeței fa1/0 a routerului

10. Configurare VLSM în Packet Tracer

IP-urile alese:

Rețeaua E: 17.18.19.0/25

Reteaua D: 17.18.19.128/26

Rețeaua C: 17.18.19.192/26

Ridicarea interfeței fa0/0 (rețeaua C)

Ridicrea interfeței fa6/0 (rețeaua E)

Configurarea PC1

Configurarea PC2

Configurare asemănătoare a fost făcută și pentru restul stațiilor din rețeaua respective.

Conexiunea dintre PC1 și PC2 (primul ping) și PC1 – PC5 (al doilea ping):

Concluzii:

În urma exercițiilor efectuate, am dobândit abilități esențiale în configurarea rețelelor utilizând tehnica VLSM (Variable Length Subnet Mask), ceea ce mi-a permis să împart un spațiu de adrese IP într-un mod eficient, adaptat nevoilor fiecărei subrețele. Am învățat cum să planific și să implementez subrețele de dimensiuni

variabile, în funcție de cerințele fiecărui departament sau rețea. Astfel, am alocat corect adresele IP pentru fiecare rețea, asigurându-mă că există suficient spațiu pentru toate stațiile, fără a risipi adrese.

Prin analiza tabelelor de rutare și depanarea problemelor de conectivitate, am identificat erori comune, cum ar fi configurările incorecte ale adreselor de gateway sau alocarea incorectă a adreselor IP pentru interfețele ruterului.

În plus, am aprofundat procesul de configurare a interfețelor ruterului, utilizând comanda no shutdown pentru a activa interfețele și a asigura conectivitatea între rețelele interconectate. De asemenea, am configurat gateway-urile pentru fiecare stație și am testat conexiunile între rețele, confirmând că ruterul directionează corect traficul între acestea.

Aceste exerciții m-au ajutat să înțeleg mai bine importanța unei planificări corecte a adresei IP, a implementării corecte a rutelor și a utilizării comenzii de verificare a conectivității, care sunt esențiale pentru menținerea unei rețele stabile și funcționale.