

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General Degree)
First Year – Semester 1 Examination – Oct. / Nov. 2014

MAA 1201 - MATHEMATICAL METHODS I

4 2 10 Fard Scients

Facility of Applied Sci Lacks

Raiscala University of Sci Lacks

Answer FOUR questions only

Time Allowed: TWO HOURS

1.

- i. Find the angle between the two vectors $\underline{A} = 2i + 2j k$ and $\underline{B} = 6i 3j + 2k$, where i, j, k denote unit vectors along the positive directions of the rectangular coordinate axes Ox, Oy, Oz, respectively.
- ii. Determine the value of β so that the two vectors $\underline{A} = 2i + \beta j + k$ and $\underline{B} = 4i 2j 2k$ are perpendicular to each other.
- Find the cross product of the two vectors $\underline{A} = 2i 6j 3k$ and $\underline{B} = 4i + 3j k$.

 Hence find (a) the area of a parallelogram, two adjacent edges of which represent these two vectors, and (b) a unit vector perpendicular to the plane determined by these two vectors.
- iv. Find the work done in moving a particle along a vector $\underline{r} = 3i + 2j 5k$ if the applied force is $\underline{F} = 2i j k$
- 2. (a) **Assuming** properties of triple scalar products and a formula for the expansion of a triple vector product of three vectors \underline{a} , \underline{b} , \underline{c} , show that
 - (i) $(\underline{A} \times \underline{B}) \cdot (\underline{C} \times \underline{D}) = (\underline{A} \cdot \underline{C})(\underline{B} \cdot \underline{D}) (\underline{A} \cdot \underline{D}) (\underline{B} \cdot \underline{D}),$
 - (ii) $(\underline{A} \times \underline{B}) \cdot (\underline{C} \times \underline{D}) + (\underline{B} \times \underline{C}) \cdot (\underline{A} \times \underline{D}) + (\underline{C} \times \underline{A}) \cdot (\underline{B} \times \underline{D}) = 0,$ for any four vectors $\underline{A}, \underline{B}, \underline{C}$ and \underline{D} .

- (b) Find the gradient of the scalar function $\phi(x, y, z) \equiv x^2 y^2 z + z^2 + xy$, and hence a unit normal to the surface $\phi(x, y, z) = 10$ at the point A (-1, 2, 2). Also find the Cartesian equations of the tangent plane and the normal line to the surface $\phi(x, y, z) = 10$ at the point (-1, 2, 2).
- 3. a) Given $\mathbf{A} = x^2 z^2 \mathbf{i} 2y^2 z^2 \mathbf{j} xy^2 z \mathbf{k}$, find div \mathbf{A} at the point P(1,-1,1).
 - b) Show that $\nabla \cdot \nabla \psi = \nabla^2 \psi$, where $\nabla = \underline{i} \frac{\partial}{\partial x} + \underline{j} \frac{\partial}{\partial y} + \underline{k} \frac{\partial}{\partial z}$ and find div grad ψ , where $\psi = 6x^3y^2z$.
 - (c) If ∇^2 denotes the Laplacian operator, show further that $\psi = \frac{1}{r}$ is a solution of Laplace's equation $\nabla^2 \psi = 0$, where $r^2 = x^2 + y^2 + z^2$..
- 4.
 i. Given $\underline{A} = yz^2 \underline{i} 3xz^2 \underline{i} 2xyz \underline{k}$, $\underline{B} = 3x \underline{i} 4z \underline{i} xy \underline{k}$, $\emptyset = xyz$, find (a) $A \times (\nabla \emptyset)$, (b) $(A \times \nabla) \emptyset$, (c) $(\nabla \times A) \times B$ and (d) $B \cdot \nabla \times A$
 - Show the vector field $\underline{F} = (y+z)\underline{i} + (z+x)\underline{i} + (x+y)\underline{k}$, is irrotational, and find a scalar field Φ such $\underline{F} = \operatorname{grad} \Phi$.

Determine whether \underline{F} is solenoidal as well.

- 5. (i) If $\varphi = e^x \sin(yz)$ and $\overline{F} = x^2y \ i + (z^2 y^2) \ j + xy \ k$, Find $\operatorname{div}(\varphi \overline{F})$, using an identity to be established.
 - (ii) Verify the identity $\operatorname{div}(\bar{F} \times \bar{G}) = \bar{G}.\operatorname{curl}\bar{F} \bar{F}.\operatorname{curl}\bar{G}$ for the two vectors $\bar{F} = e^x i + \sin(y) j + y^2 z k$ and $\bar{G} = xy i + \cos(z) j + xyz k$,
 - (iii) Establish the identity $\operatorname{curl}(\varphi \bar{F}) = (\operatorname{grad} \varphi) \times \bar{F} + \varphi \operatorname{curl} \bar{F}$. If $\varphi = xyz$ and $\bar{F} = \sin(y) i + e^x j + \tan(z) k$, find $\operatorname{curl}(\varphi \bar{F})$.