EA075 Processadores de Propósito Geral: Microcontrolador ATmega328P

Faculdade de Engenharia Elétrica e de Computação (FEEC) Universidade Estadual de Campinas (UNICAMP)

Prof. Rafael Ferrari

Microcontrolador ATmega328P

- Microcontrolador de 8 bits.
- Baseado em um processador AVR RISC (Reduced Instruction Set Computing).
- Arquitetura Harvard (memórias de programa e dados independentes).
- 32kB de memória flash para armazenamento de programas.
- 2kB de memória RAM estática para armazenamento de dados.
- 1kB EEPROM para armazenamento não-volátil.
- 23 linhas de entrada/saída de propósito geral (GPIO).
- 32 registradores de propósito geral.
- 3 temporizadores/contadores.
- USART (Universal Synchronous/Asynchronous Receiver Transmitter).
- Porta serial I²C (*Inter-Integrated Circuit*), também chamada de TWI (*Two Wire Interface*).
- Porta serial SPI (Serial Peripheral Interface).
- 6 canais de 10 bits para conversão A/D.

ATmega328P: Arquitetura

Microcontrolador ATmega328P

- Cada periférico é controlado e configurado através de um conjunto de registradores específicos.
- Cada registrador é mapeado em uma posição da memória de dados, ou seja, sua manipulação se dá através de operações de escrita e leitura em memória.
- Cada linha das portas B, C e D (GPIOS) pode ser configurados como entrada ou saída de maneira independente.
- A memória flash de programa pode ser programada através da conexão serial SPI ou por meio de um *boot loader* (Arduino).

CPU AVR

Microcontrolador ATmega328P

Arduino Uno

GPIO

- As portas de entrada e saída de propósito geral (*General-Purpose Input/Output -* GPIO) são provavelmente os componentes dos microcontroladores mais empregados em sistemas embarcados.
- GPIOs são linhas digitais conectadas aos pinos externos do microcontrolador usadas no controle e acionamento de dispositivos (LEDs, botões, motores, etc).
- Cada GPIO pode ser configurada independentemente como um pino de entrada ou de saída.
- Via *software*, pode-se escrever um nível 0 ou um nível 1 em uma GPIO de saída ou pode-se ler valores digitais em uma GPIO de entrada.

GPIO – Saída

Enable = 1	Output = Input
Enable = 0	Output = Alta impedância

GPIO - Saída

- Dois registradores (flip-flops tipo D):
 - ➤ Data Direction Register (DDR)
 - > Registrador de dados
- O registrador DDR habilita a conexão entre o registrador de dados e o pino do microcontrolador.
- O registrador de dados armazena o nível lógico de saída.
- Procedimento para escrever no pino de saída n da porta x:
 - 1. Escrever um nivel lógico "1" em DDRx_Bitn
 - 2. Escrever um nível lógico "1" ou "0" em Portx_Bitn

GPIO – Entrada

GPIO – Entrada

- Acrescenta-se ao circuito um registrador (flip-flop tipo D), denominado Pin, com sua entrada de dados conectada ao pino do microcontrolador.
- Se o conteúdo do registrador DDR é "0", o registrador de saída é desconectado do pino e um dispositivo de entrada pode ser conectado com segurança ao pino do microcontrolador. Ou seja, o pino se transforma em uma entrada.
- A cada pulso do relógio, o nível lógico no pino é amostrado e armazenado no registrador Pin e seu conteúdo pode ser lido pelo processador.
- Procedimento para leitura do pino *n* da porta x:
 - 1. Escrever um nível lógico "0" em DDR*x*_Bit*n*.
 - 2. Ler o conteúdo da linha Pinx_Bit*n* (conteúdo do registrador Pin).

12

GPIO

- O microcontrolador Atmega328P possui 23 linhas GPIO, divididas entre três portas:
 - ➤ Porta B: 8 linhas
 - > Porta C: 7 linhas
 - > Porta D: 8 linhas
- Cada porta possui três registradores:
 - ➤ DDRx: define a direção da porta ("0" entrada, "1" saída).
 - > PORTx: armazena o dado de saída.
 - ➤ PIN*x*: armazena o dado de entrada amostrado.

(OBS: x = B, C ou D)

• Os registradores são mapeados em memória e podem ser acessados através de operações de leitura e escrita em memória.

GPIO – Porta B

PORTB - THE PORT B DATA REGISTER

Bit	7	6	5	4	3	2	1	0
0x25	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTBO
Read/Write	R/W							
Default	0	0	0	0	0	0	0	0

• PORTB7-0: GPIO data value stored in bit n.

DDRB-THE PORT B DATA DIRECTION REGISTER

Endereços dos registradores

Bit	7	6	5	4	3	2	1	0
0x24	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRBO
Read/Write	R/W							
Default	0	0	0	0	0	0	0	0

DDRB7-0: selects the direction of pin n. If DDRBn is written '1', then PORTBn is configured
as an output pin. If DDRBn is written '0', then PORTBn is configured as an input pin.

PINB - THE PORT B INPUT PINS ADDRESS

Bit	7	6	5	4	3	2	1	0
0x23	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINBO
Read/Write	R	R	R	R	R	R	R	R
Default	-	-	-	-	-	-	-	-

PINB7-0: logic value present on external pin n.

GPIO

- Para alterar o conteúdo dos registradores DDR*x* e PORT*x* é necessário realizar uma operação de escrita de um byte completo, mesmo que se deseje alterar apenas um dos bits.
- A fim de evitar a modificação indesejada dos bits do registrador que não devem ser alterados, o seguinte procedimento deve ser adotado:
 - > Leitura e armazenamento do conteúdo do registrador em uma variável temporária.
 - > Modificação do conteúdo de acordo com os novos valores que os bits devem assumir.
 - > Escrita da variável modificada no registrador.

GPIO – Programando em C

• Usando ponteiros:

```
// criar o ponteiro e atribuir o endereço do registrador
unsigned char *portB DDR;
portB DDR = (unsigned char*) 0x24;
// Leitura do conteúdo armazenado no registrador DDRB
unsigned char dado;
dado = (*portB DDR);
// Escrita
*portB DDR = 0xFF; // todos os bits são de saída
// Alterando somente o bit 5
#define BIT5 MASK 0x20 // 0010 0000
// atribuir nível baixo ao bit 5
*portB DDR = (*portB DDR) & (~BIT5 MASK);
// atribuir nível alto ao bit 5
*portB DDR = (*portB DDR) | BIT5 MASK;
```

GPIO – Programando em C

Usando variáveis predefinidas:

```
// Leitura do conteúdo armazenado no registrador DDRB
dado = DDRB; // DDRB corresponde a um ponteiro para 0x24
// Escrita
DDRB = 0xFF; // todos os bits são de saída
// Alterando somente o bit 5
# define BIT5 MASK 0x20 // 0010 0000
// atribuir nível baixo ao bit 5
DDRB = DDRB & (\simBIT5 MASK);
// atribuir nível alto ao bit 5
DDRB = DDRB | BIT5 MASK;
```

• Na IDE do Arduino, as variáveis predefinidas geralmente seguem a nomenclatura adotada no datasheet (DDRB, PORTB, PINB, etc).

GPIO – Programando em C

• Usando funções predefinidas da IDE (biblioteca Wiring):

```
int output pin = 13;
int input pin = 12;
int val;
void setup() {
  pinMode(output pin, OUTPUT);
 pinMode(input pin, INPUT);
void loop() {
// Escrita: atribui nível alto ao pino 13 do Arduino
digitalWrite (output pin, HIGH);
// Leitura do pino 12 do Arduino
val = digitalRead(input pin);
```

• Note que nesse caso nos referimos diretamente aos pinos da placa de desenvolvimento Arduíno e não aos registradores do ATmega328P.

GPIO – Características Elétricas

Operating Temperature	-55°C to +125°C
Storage Temperature	-65°C to +150°C
Voltage on any Pin except RESET with respect to Ground	-0.5V to V _{CC} +0.5V
Voltage on RESET with respect to Ground	-0.5V to +13.0V
Maximum Operating Voltage	6.0V
DC Current per I/O Pin	40.0mA
DC Current V _{CC} and GND Pins	200.0mA

GPIO – Características Elétricas

Operating Temperature	-55°C to +125°C
Storage Temperature	-65°C to +150°C
Voltage on any Pin except RESET with respect to Ground	-0.5V to V _{CC} +0.5V
Voltage on RESET with respect to Ground	-0.5V to +13.0V
Maximum Operating Voltage	6.0V
DC Current per I/O Pin	40.0mA
DC Current V _{CC} and GND Pins	200.0mA

Interrupções

- Considere que o microcontrolador deve ascender um LED quando um botão é pressionado.
- O instante em que o botão é pressionado é absolutamente imprevisível da perspectiva do microprocessador / programa em execução.
- Há duas abordagens para se tratar um evento de natureza assíncrona:
 - Varredura
 - Interrupção

Interrupções

- **Primeira opção:** varredura (*polling*) durante a execução do programa, ocorrem chamadas para uma rotina que verifica se a chave foi pressionada.
 - > Fácil implementação.
 - > Desperdício de ciclos de execução do processador.
- Alternativa: o processador suporta interrupções um sinal de interrupção indica para o processador quando uma solicitação de atendimento foi feita por um dispositivo externo (periférico).
 - ➤ Neste caso, o processador suspende o programa em execução e desvia para a rotina de serviço de interrupção (*interrupt service routine*, ISR).

Interrupções

• O mecanismo de interrupção passa a fazer parte do ciclo de instrução do processador.

Interrupções: ATmega328p

- Cada periférico presente no microcontrolador pode gerar uma ou mais interrupções internas.
- Há também interrupções associadas a eventos externos.
- Interrupções mascaráveis: cada interrupção possui um bit de habilitação que precisa ser ativado juntamente com o *Global Interrupt Enable* bit no registrador de status para que interrupções ocorram.
- Interrupções fixas: cada interrupção é mapeada para um endereço fixo de memória.
- As interrupções são desabilitadas automaticamente quando uma ISR está sendo executada. Entretanto, é possível habilitálas manualmente dentro da ISR e assim permitir que interrupções sejam atendidas durante a execução da ISR.

Interrupções: ATmega328P

		Interrupt	ISR C	
Pri.	Address	Source	Function Name	Description
1	0x0000	RESET		System reset (power-on)
2	0x0002	INT0	INTO_vect	External Interrupt Request 0
3	0x0004	INT1	INT1_vect	External Interrupt Request 1
4	0x0006	PCINT0	PCINTO_vect	Pin Change Interrupt Request 0
5	0x0008	PCINT1	PCINT1_vect	Pin Change Interrupt Request 1
6	0x000A	PCINT2	PCINT2_vect	Pin Change Interrupt Request 2
7	0x000C	WDT	WDT_vect	Watchdog Time-out Interrupt
8	0x000E	TIMER2 COMPA	TIMER2_COMPA_vect	Timer/Counter2 Compare Match A
9	0x0010	TIMER2 COMPB	TIMER2_COMPB_vect	Timer/Counter2 Compare Match B
10	0x0012	TIMER2 OVF	TIMER2_OVF_vect	Timer/Counter2 Overflow
11	0x0014	TIMER1 CAPT	TIMER1_CAPT_vect	Timer/Counter1 Capture Event
12	0x0016	TIMER1 COMPA	TIMER1_COMPA_vect	Timer/Counter1 Compare Match A
13	0x0018	TIMER1 COMPB	TIMER1_COMPB_vect	Timer/Counter1 Compare Match B
14	0x001A	TIMER1 OVF	TIMER1_OVF_vect	Timer/Counter1 Overflow
15	0x001C	TIMERO COMPA	TIMERO_COMPA_vect	Timer/Counter0 Compare Match A
16	0x001E	TIMERO COMPB	TIMERO_COMPB_vect	Timer/Counter0 Compare Match B
17	0x0020	TIMER0 OVF	TIMERO_OVF_vect	Timer/Counter0 Overflow
18	0x0022	SPI, STC	SPI_STC_vect	SPI Serial Transfer Complete
19	0x0024	USART, RX	USART_RX_vect	USART Receive Complete
20	0x0026	USART, UDRE	USART_UDRE_vect	USART Data Register Empty
21	0x0028	USART, TX	USART_TX_vect	USART Transmit Complete
22	0x002A	ADC	ADC_vect	ADC Conversion Complete
23	0x002C	EE READY	EE_READY_vect	EEPROM Ready
24	0x002E	ANALOG COMP	ANALOG_COMP_vect	Analog Comparator
25	0x0030	TWI	TWI_vect	2-wire Serial Interface
26	0x0032	SPM READY	SPM_READY_vect	Store Program Memory Ready

A prioridade da interrupção é determinada por sua posição na tabela: quanto menor o endereço maior é a prioridade.

A rotina de interrupção em C deve ser definida na forma:

ISR (INT0_vect) {}

- São interrupções geradas por dispositivos externos ao microcontrolador.
- Há dois tipos:
 - Interrupções geradas nos pinos INT0 e INT1: permitem um número maior de configurações e têm maior prioridade. Podem ser ativadas nas bordas de subida, descida, em ambas ou por nível lógico baixo do sinal de interrupção. São configuradas através dos registradores EICRA e EIMSK. Quando disparadas, ativam flags no registrador EIFR.
 - *Pin Change Interrupts*: têm menor prioridade que as anteriores e podem ser ativadas quando há uma mudança de nível em um dos 23 pinos PCINT. São configuradas por meio dos registradores PCMSK0, PCMSK1, PCMSK2 e PCICR. Flags no registrador PCIFR indicam quando essas interrupções são ativadas.

- EICRA External Interrupt Control Register A
 - Define como INT0 e INT1 são ativadas (borda(s) ou nível)

Bit	7	6	5	4	3	2	1	0	_
(0x69)	-	-	-	-	ISC11	ISC10	ISC01	ISC00	EICRA
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

Table 13-1.Interrupt 1 Sense Control

ISC11	ISC10	Description
0	0	The low level of INT1 generates an interrupt request.
0	1	Any logical change on INT1 generates an interrupt request.
1	0	The falling edge of INT1 generates an interrupt request.
1	1	The rising edge of INT1 generates an interrupt request.

Table 13-2. Interrupt 0 Sense Control

ISC01	ISC00	Description
0	0	The low level of INT0 generates an interrupt request.
0	1	Any logical change on INT0 generates an interrupt request.
1	0	The falling edge of INT0 generates an interrupt request.
1	1	The rising edge of INT0 generates an interrupt request.

- EIMSK External Interrupt Mask Register
 - Habilita INT0 e INT1.

EIMSK – External Interrupt Mask Register

Bit	7	6	5	4	3	2	1	0	
0x1D (0x3D)	-	-	-	-	-	-	INT1	INT0	EIMSK
Read/Write	R	R	R	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- INTO External Interrupt Request 0 Enable: quando em nível alto, habilita a geração de interrupções a partir do pino INTO (É necessário que a interrupção global também esteja ativa).
- INT1 External Interrupt Request 1 Enable: quando em nível alto, habilita a geração de interrupções a partir do pino INT1 (É necessário que a interrupção global também esteja ativa).

- EIFR External Interrupt Flag Register
 - Sinaliza quando INT0 e INT1 foram disparadas.

EIFR – External Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	_
0x1C (0x3C)	-	-	-	-	-	-	INTF1	INTF0	EIFR
Read/Write	R	R	R	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- **INTF0 External Interrupt Flag 0:** quando ocorre a condição de ativação de INT0, de acordo com as configurações em EICRA, esse bit assume nível alto.
- INTF1 External Interrupt Flag 1: quando ocorre a condição de ativação de INT1, de acordo com as configurações em EICRA, esse bit assume nível alto.

- PCICR Pin Change Interrupt Control Register
 - Habilita as interrupções PCI0, 1 e 2.

Bit	7	6	5	4	3	2	1	0	_
(0x68)	-	-	-	-	-	PCIE2	PCIE1	PCIE0	PCICR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- PCIEO Pin Change Interrupt Enable 0: habilita interrupções geradas pelos pinos PCINT 0 a 7.
- PCIE1 Pin Change Interrupt Enable 1: habilita interrupções geradas pelos pinos PCINT 8 a 14.
- PCIEO Pin Change Interrupt Enable 2: habilita interrupções geradas pelos pinos PCINT 16 a 23.

PCMSK0 - Pin Change Mask Register 0

Bit	7	6	5	4	3	2	1	0	
(0x6B)	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	PCMSK0
Read/Write	R/W	l							
Initial Value	0	0	0	0	0	0	0	0	

Bit 7:0 – PCINT[7:0]: Pin Change Enable Mask 7...0

Each PCINT[7:0] bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT[7:0] is set and the PCIE0 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT[7:0] is cleared, pin change interrupt on the corresponding I/O pin is disabled.

PCMSK1 - Pin Change Mask Register 1

E	3it _	7	6	5	4	3	2	1	0	_
(0x6C)	ı	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	PCMSK1
F	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
I	nitial Value	0	0	0	0	0	0	0	0	

Bit 7 – Reserved

This bit is an unused bit in the ATmega48A/PA/88A/PA/168A/PA/328/P, and will always read as zero.

Bit 6:0 – PCINT[14:8]: Pin Change Enable Mask 14...8

Each PCINT[14:8]-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT[14:8] is set and the PCIE1 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT[14:8] is cleared, pin change interrupt on the corresponding I/O pin is disabled.

PCMSK2 - Pin Change Mask Register 2

Bit	7	6	5	4	3	2	1	0	_
(0x6D)	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	PCMSK2
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

Bit 7:0 – PCINT[23:16]: Pin Change Enable Mask 23...16

Each PCINT[23:16]-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT[23:16] is set and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT[23:16] is cleared, pin change interrupt on the corresponding I/O pin is disabled.

- PCIFR Pin Change Interrupt Flag Register
 - Sinaliza quando PCI0, PCI1 e PCI2 foram disparadas.

Bit	7	6	5	4	3	2	1	0	_
0x1B (0x3B)	-	-	-	-	-	PCIF2	PCIF1	PCIF0	PCIFR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- PCIF0 Pin Change Interrupt Flag 0: quando ocorre uma mudança de nível lógico em qualquer um dos pinos PCINT[7:0] dispara uma interrupção, PCIF0=1.
- PCIF1 Pin Change Interrupt Flag 1: quando ocorre uma mudança de nível lógico em qualquer um dos pinos PCINT[14:8] dispara uma interrupção, PCIF1=1.
- PCIF2 Pin Change Interrupt Flag 2: quando ocorre uma mudança de nível lógico em qualquer um dos pinos PCINT[23:16] dispara uma interrupção, PCIF2=1.

Referências

- Datasheet do processador ATmega328P
- David Russell, Introduction to Embedded Systems using ANSI C and the Arduino Development Environment.