

Transformer

Kun Yuan

Center for Machine Learning Research @ Peking University

Oct. 24, 2023

Traditional seq2seq model

知乎 @天雨粟

Attention

How to capture the most valuable information from a pool of candidate?

Consider a pool of candidate information D = (k1,v1),(k2,v2),...,(km,vm)

Given a query q, we can capture the most valuable information as follows

$$\operatorname{Attention}(\mathbf{q},\mathcal{D}) \stackrel{ ext{def}}{=} \sum_{i=1}^m lpha(\mathbf{q},\mathbf{k}_i) \mathbf{v}_i,$$

where weight α is to evaluate how close the query q is to key ki

$$lpha(\mathbf{q},\mathbf{k}_i) = \operatorname{softmax}(a(\mathbf{q},\mathbf{k}_i)) = rac{\exp(\mathbf{q}^ op \mathbf{k}_i/\sqrt{d})}{\sum_{j=1} \exp(\mathbf{q}^ op \mathbf{k}_j/\sqrt{d})}.$$

Attention

Seq2Seq with attention

How to get representation h?

One way is RNN

The other is Transformer!

Transformer overview

Transformer also utilizes seq2seq

Step 1: represent input information

Step 2: Encode input

Transformer Encoder 编码句子信息

Step 3: Decode and predict

Transofrmer Decoder 预测

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

 d_k 是Q,K矩阵的列数,即向量维度

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

 d_k 是Q,K矩阵的列数,即向量维度

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

 d_k 是Q,K矩阵的列数,即向量维度

• • • • • •

Encode: add and norm

LayerNorm(X + MultiHeadAttention(X))LayerNorm(X + FeedForward(X))

残差链接,解决深层训练问题

Output

Seq2Seq

Center of Machine Learning Research

< 24 >

Summary

Transformer没有时序结构,容易并行

需要引入位置的embedding

内存开销巨大

Reference

https://zhuanlan.zhihu.com/p/338817680