TP4 – Filtrage Analogique

Aya Habiballah Mr Alae Ammour 21 janvier 2023

Objectifs

Appliquer un filtre réel pour supprimer les composantes indésirables d'un signal.

Améliorer la qualité de filtrage en augmentant l'ordre du filtre.

Filtrage et diagramme de Bode

1:Définir le signal x(t) sur t = [0.5] avec Te = 0.0001 s.

```
%Définir le signal x(t) sur t = [0 5] avec Te = 0,0001 s|
f1 = 500;
f2 = 400;
f3 = 50;
Te = 0.0001;
t = [0:Te:5-Te];
x = sin(2*pi*f1*t)+sin(2*pi*f2*t)+sin(2*pi*f3*t);
```

2:Tracer le signal x(t) et sa transformé de Fourrier. Qu'observez-vous ?

```
subplot(2,2,3)
y = fft(x);
plot(fshift,fftshift(abs(y)));
legend("Spectre du signal x avec T =0.001");
xlabel("f");
ylabel("A");

subplot(2,2,2)
    Te2 = 0.0005;
    fe2 = 1/Te2;
    t2 = [0:Te2:5];
    x2 = sin(2*pi*f1*t2)+sin(2*pi*f2*t2)+sin(2*pi*f3*t2);
    N2 = length(t2);
    fshift2 = (-N2/2:(N2/2)-1)*(fe2/N2);

plot(t2,x2);
legend("Signal x avec T =0.0005");
    xlabel("t");
    ylabel("x(t)");

subplot(2,2,4)
    y2 = fft(x2);
    plot(fshift2,fftshift(abs(y2)));
legend("Spectre du signal x avec T =0.0005");
    xlabel("f");
    ylabel("f");
    ylabel("f");
    ylabel("A");
```

−D'apers le graphe on remarque que les figures ne sont pas précises.

H(f) = (K.j.w/wc) / (1 + j.w/wc)

1-Tracer le module de la fonction H(f) avec K=1 et wc = 50 rad/s

% avec la frequence wc=50 H = (K*1i*w/wc)./(1+1i*w/wc); semilogx(f,abs(H));

$\underline{2:} \underline{Tracer~20.log(|H(f)|)~pour~différentes~pulsations~de~coupure~wc,~qu'observez-vous~\underline{?}$

G = 20*log(abs(H)); |semilogx(f,G); <u>3:Choisissez différentes fréquences de coupure et appliquez ce filtrage dans l'espace des fréquences.</u>


```
subplot(2,2,1);

semilogx(f,abs(H),f,abs(H1),f,abs(H2),f,abs(H3));
legend("spectre du signal avec wc=50","spectre du signal avec wc1=2*pi*500",'
grid on
    xlabel("f");
    ylabel("H(jw)|");
subplot(2,2,2);
    semilogx(f,G,f,G1,f,G2,f,G3);
legend("Courbe de Gain wc=50","Courbe de Gain wc1=2*pi*500","Courbe de Gain
    grid on
    xlabel("f");
    ylabel("20*log(|H(jw)|)");
subplot(2,2,3);
semilogx(f,Ang,f,Ang1,f,Ang2,f,Ang3);
grid on
legend("Courbe de dephasage wc=50","Courbe de dephasage wc1=2*pi*500","Courbe
    xlabel("f");
ylabel("angle(H(jw))");
```

5:Observez le signal y(t) obtenu:

Dé-bruitage d'un signal sonore

- 1. <u>Proposer une méthode pour supprimer ce bruit sur le signal:</u> le filtrage
- 2.

2-Mettez-la en oeuvre. Quelle influence à le paramètre K du filtre que vous avez utilisé?

```
fc = 5000;
  K = 1;

H = K./(1+1i*(f/fc).^100);
Hpass=[H(1:floor(N/2)),flip(H(1:floor(N/2)))];

y_filtre = spectre_music(1:end-1).*Hpass;
sig_filtred= ifft(y_filtre,"symmetric");
plot(fshift(1:end-1),fftshift(abs(fft(sig_filtred))))
legend("spectre du signal aprés filtrage");
xlabel("f");
ylabel("A");
```


3-Quelles remarques pouvez-vous faire notamment sur la sonorité du signal final.

On remarque que a cause du filtre analogique le bruit diminue, aussi on sait qu'on peut pas filtrer un signal avec une transmittance complexe d'ordre 1 ainsi on peut pas éliminer un bruit avec un filtre passe bas

4:Améliorer la qualité de filtrage en augmentant l'ordre du filtre.

