[집러님을 이용한 한국수화언어 통역 시스템 설계 및 구현

팀이름: 수화사이드 5반 김주연 이경섭 이수민

필요성

35만

80%

327명

500명

정보취득 의사소통에 문제

사회적 격차를 초래

기존 연구 동향

미국(영어) (-) 한국어 - 언어 구성의 차이가 수화에서도 똑같이 적용된다.

한국수화언어에도 자연수화언어. 문법수화언어. 지문자 등으로 연구가 나뉘어 한국수화언어 통역 연구가 필요하다.

수화언어의 특징

구성	설명
수향	손바닥의 방향
수형	손과 손가락의 모양
수동	손과 팔인 움직임
수위	손의 위치
비수지 신호	눈썹 움직임. 시선의 방향. 입의 모양과 혀의 움직임. 얼굴 기울기와 방향. 얼굴 표정. 어깨 움직임. 발의 움직임

수화 언어 인식법

- 1) 영상 검출
- 2) 데이터 글러브를 이용한 수화언어 인식
- 3) 케넥트를 이용한 수화언어 인식
- 4) 립모션을 이용한 수화언어 인식
- 5) 딥러닝을 이용한 수화언어 인식

1) 영상 검출 - 이병환

RGB

HSI

2) 데이터 글러브를 이용한 수화언어 인식

3) 키넥트를 이용한 수화언어 인식

3차원 인지

스켈레탈 매핑 skeletal mapping

4) 립모션을 이용한 수화언어 인식

한계점

얼굴 표정과 같은 비지수 요소를 포함하지 못함

5) 딥러닝을 인용한 수화언어 인식

CNN 기법인 GoogLeNet 모델을 사용하여 실시간 미국수어(ASL) 지문자 인식을 수행하였는데. Top-5 Accuracy 0.9163 의 성능

한국 수화 언어 통역 시스템

한국수화언어 특징 추출 모듈

YOLO + SqueezeNet

한국수화언어 통역 모듈

CNN 모델 중 DenseNet

딥러닝 모델

YOLO(You Only Look Once)

<그림 2-12> YOLO 모델 아키텍처[20]

<표 2-2> tiny-volo 모델 네트워크 파라미터

No	Layer	Filters	Size	Input	Output	BFLOPS
0	conv	16	3 x 3 / 1	416 x 416 x 3	416 x 416 x 16	0.150
1	max		2 x 2 / 2	416 x 416 x 16	208 x 208 x 16	0.003
2	conv	32	3 x 3 / 1	208 x 208 x 16	208 x 208 x 32	0.399
3	max		2 x 2 / 2	208 x 208 x 32	104 x 104 x 32	0.001
4	conv	64	3 x 3 / 1	104 x 104 x 32	104 x 104 x 64	0.399
5	max		2 x 2 / 2	104 x 104 x 64	52 x 52 x 64	0.001
6	conv	128	3 x 3 / 1	52 x 52 x 64	52 x 52 x 128	0.399
7	max		2 x 2 / 2/	52 x 52 x 128	26 x 26 x 128	0.000
8	conv	256	3 x 3 / 1	26 x 26 x 128	26 x 26 x 256	0.399
9	max		2 x 2 / 2	26 x 26 x 256	13 x 13 x 256	0.000
10	conv	512	3 x 3 / 1	13 x 13 x 256	13 x 13 x 512	0.399
11	max		2 x 2 / 1	13 x 13 x 512	13 x 13 x 512	0.000
12	conv	1024	3 x 3 / 1	13 x 13 x 512	13 x 13 x1024	1.595
13	conv	1024	3 x 3 / 1	13 x 13 x1024	13 x 13 x1024	3.190
14	conv	30	1 x 1 / 1	13 x 13 x1024	13 x 13 x 30	0.010
15	detection					

Tiny-YOLO

1) YOLO 모델 중 가장 작은 <u>연산량</u>을 자랑하는 모델이다.

2) GPU 사용시 244FPS의 <u>빠른 성능</u>을 자랑한다.

3) 증강/혼합현실용 HMD와 같은 <u>웨어러블 디바이스에 적용</u>에 보다 용이하다.

딥러닝을 이용한 객체 인식

SqeezeNet

딥러닝을 이용한 객체 인식

Dense Net

홀로렌즈

홀로렌즈

결론

한계점: 한 화자의 수화언어만 통역이 가능

손 모양의 수형을 65가지로 코드화하여 사용한다. 이는 손 모양의 수형에 따라 수형코드로 검출할 수 있으나 동일한 수형에 있어 회전과 같은 시퀀스 정보를 포함할 수 없는 제한점.

향후 연구 구현 과제

PC 환경 및 증강/혼합현실 HMD와 같은 웨어러블 디바이스뿐만 아니라 휴대폰과 같 은 범용적인 모바일 디바이스 환경에서 활용할 수 있다. 마지막으로 한국수화언어 대화 가이드 시스템으로 확장할 수 있다.

Reference

신기철, 이승훈, 권재영, 장현국, 이희연. (2019). 영상인식과 립모션을 활용한 한국수어 번역. 한국HCI학회 학술대회, (), 645-649.

정동화, 송준영, 이영훈, 이현승, 강소희, 임완수. (2019). 신경망과 TFLITE를 이용한 한국수어 번역 알고리즘 구현. 한국통신학회 학술대회논문집. (), 499-501.

'김송희, 신다솜, 윤정민, 이용규, 장성찬, 어수웅, 노병희, 곽진. (2016). 키넥트를 이용한 수화 번역 시스템. 한국통신학회 학술대회논문집, (), 1077-1078.

구민재. "딥러닝을 이용한 한국수화언어 통역 시스템 설계 및 구현." 국내석사학위논문 한국방송통신대학교 대학원. 2019. 서울

강소희, 김용경, 김유신, 배승용, 박지현, 이정환, 정동화, 입완수. (2018), 신경망을 이용한 한국수어 번역 알고리즘 구현. 대한전자공학회 학술대회, (), 765-768.

Kim, Kwang-Baek , Song. Doo-Heon , Woo, Young-Woon(2010).Real Time Recognition of Finger Language Using Color Information and Fuzzy Clustering Algorithm.학술저널().

19-22(4쪽)

이동형 . 강만모 . 김영기 . 이수동.(2009).Sign Language recognition Using Sequential Ram-based Cumulative Neural Networks.학술저널 (),205-211(7쪽)

정택위(Teak-Wei Chong) , 김범준(Beom-Joon Kim).(2020).딥러닝 방식의 웨어러블 센서를 사용한 미국식 수화 인식 시스템.학술저널().291-297(7쪽)

SEUNG-KANG LEE. 지도교수:Ho-Joon Kim(2014).수정된 FMM 신경망을 이용한 수화 인식 기법.한동대학교 대학원. vi, 44 p.

'김호준(Ho-Joon-KIM).(2012).수화 패턴 인식을 위한 2단계 신경망 모델. 한동대학교 전산전자공학부.319-327(8쪽)

배효철.지도교수: 윤경로.(2020).심층 신경망을 이용한 한국 수어 단어 인식.학위논문(박사)-- 건국대학교 대학원 : 컴퓨터·정보통신공학과. vi. 1~99 p.