Московский государственный технический университет им. Н. Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управление»

Курс «Основы программирования»

Отчет по лабораторной работе №3 «Нахождение корней нелинейного уравнения»

Выполнил:

Студент группы ИУ5-11Б Алехин Сергей

Подпись и дата:

Проверил:

Преподаватель каф. ИУ5 Правдина Анна Дмитриевна

Подпись и дата:

Задание

1. Найти корень уравнения

$$x - cos(x) = 0$$

простой итерацией, половинным делением и методом Ньютона с погрешностью eps<0.000001 и для каждого из трех методов определить количество шагов алгоритма.

- 2. Выполнить п.1 для eps < 0.0000001.
- 3. Выполнить п.1 для уравнения

 $x - 10\cos(x) = 0$

и объяснить результаты.

Разработка алгоритма

Входные переменные:

- 1) double eps отвечает за точность измерений;
- 2) int k значение коэффициента перед cos(x);
- 3) int i переменная цикла;

Функции:

- 1) double $f \phi$ ункция x k * cos(x);
 - а. Входные переменные:
 - i. int k коэффициент перед cos(x);
 - ii. double x значение переменной x;
 - b. Возвращенное значение функции:
 - i. Значение функции x k * cos(x);
- 2) double fp функция производной f;
 - а. Входные переменные:
 - i. int k коэффициент перед cos(x);
 - ii. double x значение переменной x;
 - b. Возвращенное значение функции:
 - i. Значение производной f;
- 3) void z1 функция метода половинного деления;
 - а. Входные переменные:
 - i. int k коэффициент перед cos(x);
 - іі. double eps отвечает за точность измерений;
 - b. Локальные переменные:
 - i. double a левая граница;
 - ii. double b правая граница;
 - ііі. double c середина отрезка (a, b);
 - iv. int count количество итераций;
- 4) void z2 функция метода Ньютона;
 - а. Входные переменные:
 - i. int k коэффициент перед cos(x);
 - іі. double eps отвечает за точность измерений;
 - b. Локальные переменные:
 - i. double a начальное значение:
 - ii. int count количество итераций;
- 5) void z3 функция метода простой итерации;
 - а. Входные переменные:
 - i. int k коэффициент перед cos(x);
 - іі. double eps отвечает за точность измерений;
 - b. Локальные переменные:
 - i. double a начальное значение;
 - ii. int count количество итераций;

J

Текст программы

```
#include <iostream>
#include <cmath>
#include <iomanip>
using namespace std;
double f(int, double);
double fp(int, double);
void z1(int, double);
void z2(int, double);
void z3(int, double);
int main()
       double eps;
       int k;
       setlocale(0, "RUSSIAN");
             for (int i = 0; i < 3; i++)
             {
                     switch (i)
                     {
                            case 0: k = 1; eps = 0.000001;
                                         cout << "k = " << k << endl << "eps = " << fixed
<< setprecision(6) << eps << endl:
                                         z1(k, eps); z2(k, eps); z3(k, eps);
                            break;
                            case 1: k = 1; eps = 0.00000001;
                                         cout << "k = " << k << endl << "eps = " << fixed
<< setprecision(8) << eps << endl;
                                         z1(k, eps); z2(k, eps); z3(k, eps);
                            break;
                            case 2: k = 10; eps = 0.000001;
                                         cout << "k = " << k << endl << "eps = " << fixed
<< setprecision(6) << eps << endl;
                                         z1(k, eps); z2(k, eps); z3(k, eps);
                            break:
                    }
       return 0:
}
double f(int k, double x)
       return x - k * cos(x);
}
double fp(int k, double x)
       return 1 + k * sin(x);
}
```

```
void z1(int k, double eps)
       int count = 0;
       double a = -10, b = 10, c;
       while (abs(a - b) > eps)
             c = (a + b) / 2;
             if (f(k, a) * f(k, c) < 0) b = c;
             else a = c;
             count++;
       }
       cout << "Метод половинного деления " << fixed << setw(11) << setprecision(8)
<< c << ", итераций " << count << endl;
void z2(int k, double eps)
       int count = 0;
       double a = 5;
       while (abs(f(k, a)) > eps)
             a = a - f(k, a) / fp(k, a);
             count++;
       cout << "Метод Ньютона " << fixed << setw(23) << setprecision(8) << a << ",
итераций " << count << endl;
void z3(int k, double eps)
       int count = 0;
       double a = 5;
       while (abs(f(k, a)) > eps)
       {
             a = k * cos(a);
             count++;
       cout << "Метод простой итерации " << fixed << setw(14) << setprecision(8) <<
a << ", итераций " << count << endl;
}
```

Анализ результатов

Nº	Входные данные	Полученный результат				
1	k = 1 eps = 0.000001	Консоль отладки Microsoft Vis	sual Studio	_		<
		k=1 eps=0.000001 Метод половинного деления Метод Ньютона Метод простой итерации	0.739085,	итераций	3	^
	k = 1 eps = 0.00000001	 Консоль отладки Microsoft Vis	sual Studio	_	П	< ~ _
2		k=1 eps=0.00000001 Метод половинного деления Метод Ньютона		итераций	30	`
		Выбрать Консоль отладки Міс	crosoft Visual	_		<
3	k = 10 eps = 0.000001	k=10 eps=0.000001 Метод половинного деления Метод Ньютона Метод простой итерации	-9.678884, -9.678884, -9.678884,	итераций	4	^

Вывод: Мы изучили 3 метода нахождения корней нелинейного уравнения. При k = 10 у нас получается несколько корней, и методом простой итерации необходимо очень большое количество итераций чтобы найти значение уравнения.