Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет ПИиКТ

Дисциплина: Основы профессиональной деятельности

Лабораторная работа №6 Обмен данными с ВУ по прерыванию

Вариант 3289

Выполнил: Михайлов Петр Сергеевич

Группа: Р3111

Преподаватель: Остапенко Ольга Денисовна

Содержание

Задание	3
Определение функции, вычисляемой программой	4
1. Текст исходный программы	Error! Bookmark not defined.
2. Описание программы	6
3. Расположение в БЭВМ программы, исходных данных not defined.	и результатов Error! Bookmark
4. Область представления	6
5. Область допустимых значений	6
Трассировка программы	Error! Bookmark not defined.
Заключение	9

Задание

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных BY (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на BY модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

- 1. Основная программа должна увеличивать на 3 содержимое X (ячейки памяти с адресом 031_{16}) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-1 осуществлять вывод результата вычисления функции F(X)=-3X на данное ВУ, а по нажатию кнопки готовности ВУ-3 прибавить содержимое РД данного ВУ к X, результат записать в X.
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

Определение функции, вычисляемой программой

1. Текст исходный программы / Код программы на Ассемблере

Таблица 1: Текст исходной программы.

		Таблица 1: Текст исходной программы.
		ВУ-1, Готовность ВУ-3: РДВУ-3 + Х -> Х.
Основной	цикл: X + 3 -> X.	
	ORG 0x0	; Инициализируем векторы прерываний.
V0:		; Вектор 0 – стандартный обработчик.
V1:	WORD \$INT1, 0x180	; Вектор 1 установлен на обр. INT1.
V2:		; Вектор 2 – стандартный обработчик.
V3:	WORD \$INT3, 0x180	1 1
V4:		; Вектор 4 – стандартный обработчик.
V5:	WORD \$DEFAULT, 0x180	; Вектор 5 – стандартный обработчик.
V6:	WORD \$DEFAULT, 0x180	; Вектор 6 – стандартный обработчик.
V7:	WORD \$DEFAULT, 0x180	; Вектор 7 – стандартный обработчик.
DEFAULT:	IRET	; Стандартный обработчик: просто
		; возвращает из прерывания.
	ORG 0x020	
START:	DI	; На время инициализации векторов.
		; запретим какие-либо прерывания.
	LD #0x9	; Инициализируем прерывание ВУ-1.
	OUT 0x3	; на вектор 1 (и разрешим его).
	LD #0xB	; Инициализируем прерывание ВУ-3.
	OUT 0x7	; на вектор 3 (и разрешим его).
	CLA	; Остальные прерывания ВУ будут.
	OUT 0x1	; назначены на вектор 0 .
	OUT 0x3	; (и вообще запрещены на уровне КВУ).
	OUT 0xB	;
	OUT OxE	· · · · · · · · · · · · · · · · · · ·
	OUT 0x12	· · · · · · · · · · · · · · · · · · ·
	OUT 0x16	:
	OUT Ox1A	;
	OUT 0x1E	· ····
	JUMP \$PROG	, ; Векторы назначены. Двигаемся в
	John Willou	; основной цикл
	ORG 0x030	, ochoonou quot
ADDR_X:	WORD 0x031	; Указатель на Х.
χ:	WORD ?	; Основная переменная программы.
PROG:	EI	; Разрешаем прерывания.
i Nou ·	LD ADDR_X	1 1
	PUSH	; Загрузим адрес X.
INCLP:		; И положим адрес в стек.
INOLY.	CALL \$AT_INC	; Вызываем атомарную операцию +3.
	JUMP INCLP	; Это вся суть основного цикла.

	ORG 0x040					
TEMP_ADDR:	WORD ?	; Врем. ячейка для адреса аргумента.				
AT_INC:	DI	; Атомарное увел. яч. памяти на 3.				
	LD &1	; Загрузим адрес операнда.				
	ST TEMP_ADDR	; Сохраним во временную ячейку.				
	LD (TEMP_ADDR)	; Загрузим операнд.				
	NOP	; Точка отладки 1.				
	INC	; Увеличим его на 3.				
	INC	; Прерывания были				
	INC	; запрещены до этого.				
	CALL \$AAV_CHECK	; Сверим с ОДЗ полученный результат.				
	ST (TEMP_ADDR)	; Сохраним его в ячейку памяти.				
	NOP	: Точка отладки 2.				
	EI	; Снова разрешим прерывания.				
	RET	; И вернем логику управления.				
	ORG 0x050	; Обработчик вектора прерываний 1.				
INT1:	NOP	; Точка отладки 3.				
11411.	PUSH	; Сохраним состояние AC.				
	LD \$X	; Загрузим X в AC.				
	ASL	, эцгрузим A в AC. ; Арифметический сдвиг влево (X*2).				
	ADD \$X	$\therefore 2*X + X -> AC(3*X).$				
	NEG	AC(3*X) - AC(-3*X).				
	OUT 2	, AC (3·A) -> AC (-3·A). ; Итоговый результат F(X) на ВУ-1.				
	POP	; Итоговый результат Г(X) на БУ-1. ; Вернем состояние АС.				
	NOP	; Точка отладки 4.				
	IRET	; Точка отлаоки 4. ; Выйдем из текущего прерывания.				
	ORG 0x060	; Обработчик вектора прерываний 3				
INT3:	NOP	; Точка отладки 5.				
	PUSH	; Сохраним состояние АС.				
	IN 0x6	; Произведем чтение с ВУ-3.				
	ADD \$X	; Прибавим $X \kappa P J B V - 3 (P J B V - 3 + X)$.				
	ST \$X	; Сохраним в X.				
	POP	; Вернем состояние АС.				
	NOP	; Точка отладки 6.				
	IRET	; Выйдем из текущего прерывания.				
	ORG 0x070	= one on no many wyoco np oporownium				
AAV_CHECK:		; Проверим верхнюю границу ОДЗ.				
, SIILOIK.	BEQ AAV_RET	; Они равны? Да – на выход.				
	BGE RESET	; Результат больше? Сбрасываем его.				
	CMP MIN_VAL	; Проверим нижнюю границу ОДЗ.				
	BGE AAV_RET	; Результат больше? На выход.				
RESET:	LD MIN_VAL	; Иначе сбросим до минимального числа.				
AAV_RET:	RET	; Тот самый выход!				
MIN_VAL:	WORD 0xFFD5	; Нижняя граница ОДЗ.				
MAX_VAL:	WORD 0x002A	; Пижняя граница ОДЗ. ; Верхняя граница ОДЗ.				
III/A/_1.4℃·	HOND UNOUZA	, верхняя граница ОДЭ.				

2. Описание программы

Назначение основной программы: увеличение значения ячейки памяти на 3. Нажатие на кнопку «Готов» на ВУ-1 выведет в РДВУ-1 значение F(X) = -3X. Нажатие на кнопку «Готов» на ВУ-3 обновит значение ячейки памяти добавленным значением с РДВУ-3.

3. Область представления

Х – основная ячейка памяти.

Х – знаковое, 16-разрядное число.

4. Область допустимых значений

$$F(X) = -3X$$
 $-128 \le -3X \le 127$
 $-127 \le 3X \le 128$
 $-42 \le X \le 42$
 $42_{10} = 0000\ 0000\ 0010\ 1010_2 = 002A_{16}$
 $-42_{10} = 1111\ 1111\ 1101\ 0101_2 = FFD5_{16}$
Число $X \in [FFD5,002A]$

5. Расположение в памяти данных

- о Программный комплекс располагается в следующих ячейках памяти:
 - Векторы прерываний: между ячейками 000 и 00F включительно
 - Стандартный обработчик прерываний: между ячейками 010 и 01F включительно
 - Инициализация векторов прерываний: между ячейками 020 и 02E включительно
 - Основной цикл программы: между ячейками 030 и 036 включительно
 - Подпрограмма атомарного увеличения ячейки на 3: между ячейками 040 и 04D включительно
 - Обработчик прерываний вектора 1: между ячейками 050 и 059 включительно
 - Обработчик прерываний вектора 3: между ячейками 060 и 067 включительно
 - Подпрограмма проверки на вхождение ячейки в ОДЗ: между ячейками 070 и 078 включительно
- о Исходные данные должны располагаться в ячейках памяти:
 - X 031
- о Результат работы программы должен располагаться в ячейке памяти 020.
- о В программе используются следующие неизменяемые значения (константы):
 - По адресу 000 значение 0х0010
 - По адресу 001 значение 0х0180
 - По адресу 002 значение 0х0010
 - По адресу 003 значение 0х0180
 - По адресу 004 значение 0х0050
 - По адресу 005 значение 0х0180
 - По адресу 006 значение 0х0060
 - По адресу 007 значение 0х0180
 - По адресу 008 значение 0х0010
 - По адресу 009 значение 0х0180
 - По адресу 00А значение 0х0010

- По адресу 00В − значение 0x0180
- По адресу 00C значение 0x0010
- По адресу 00D значение 0x0180
- По адресу 00E значение 0x0010
- По адресу 00F значение 0x0180
- По адресу 077 значение 0xFFD5
 По адресу 078 значение 0x002A

адресам 030 и 040.

- По адресу 078 значение 0х002A
 В программе также используются вспомогательные ячейки, находящиеся по
- Первая команда располагается в ячейке по адресу 020.

Методики проверки

1. Проверка основного цикла

- 1. Загрузить комплекс программ в память Базовой ЭВМ.
- 2. Изменить значение отладочной точки 1 и отладочной точки 2 по адресам 047 и 053 на HLT.
- 3. Переключить тумблер в режим «РАБОТА», отключить потактовое исполнение, нажать кнопку «ПУСК».
- 4. Дождаться остановки работы ЭВМ.
- 5. Записать текущее значение счетчика команд (IP).
- 6. Ввести в клавишный регистр (IR) значение 0000.0000.0011.0001 (0x0031).
- 7. Нажать кнопку «ВВОД АДРЕСА».
- 8. Нажать кнопку «ЧТЕНИЕ».
- 9. Записать значение регистра данных (DR), если это сделано второй раз, то перейти к шагу 15.
- 10. Ввести в клавишный регистр (IR) ранее записанное значение счётчика команд (IP).
- 11. Нажать кнопку «ВВОД АДРЕСА».
- 12. Не меняя состояние тумблеров, нажать кнопку «ПРОДОЛЖЕНИЕ».
- 13. Дождаться остановки работы ЭВМ.
- 14. Повторить пункты 5-9 включительно.
- 15. Сравнить полученные 2 записанных значения.
 - а. Второе значение либо должно быть больше первого на 3.
 - b. Либо равняться минимальному значению согласно ОДЗ исходных данных, в случае если первое значение было больше, чем 0x27.

2. Проверка прерывания ВУ-1

- 1. Загрузить комплекс программ в память Базовой ЭВМ.
- 2. Изменить значение отладочной точки 3 и отладочной точки 4 по адресам 058 и 066 на HLT.
- 3. Переключить тумблер в режим «РАБОТА», отключить потактовое исполнение, нажать кнопку «ПУСК».
- 4. Установить «Готовность ВУ-1»
- 5. Дождаться остановки работы ЭВМ.
- 6. Записать текущее значение счетчика команд (IP).
- 7. Ввести в клавишный регистр (IR) значение 0000.0000.0011.0001 (0x0031).
- 8. Нажать кнопку «ВВОД АДРЕСА».
- 9. Нажать кнопку «ЧТЕНИЕ».
- 10. Записать значение регистра данных (DR).
- 11. Ввести в клавишный регистр (IR) ранее записанное значение счётчика команд (IP).
- 12. Нажать кнопку «ВВОД АДРЕСА».
- 13. Не меняя состояние тумблеров, нажать кнопку «ПРОДОЛЖИТЬ».
- 14. Дождаться остановки работы ЭВМ.
- 15. Вычислить функцию F(X) = -3X от заданного значения X в начале программы.
- 16. Сравнить его с записанным значением РДВУ-1. Убедиться, что значения равны.

3. Проверка прерывания ВУ-3

1. Загрузить комплекс программ в память Базовой ЭВМ.

- 2. Изменить значение отладочной точки 5 и отладочной точки 6 по адресам 070 и 076 на HLT.
- 3. Переключить тумблер в режим «РАБОТА», отключить потактовое исполнение, нажать кнопку «ПУСК».
- 4. Придумать любое число и записать его в РДВУ-3.
- 5. Установить «Готовность ВУ-3».
- 6. Дождаться остановки работы ЭВМ.
- 7. Записать текущее значение счетчика команд (IP).
- 8. Ввести в клавишный регистр (IR) значение 0000.0000.0011.0001 (0x0031).
- 9. Нажать кнопку «ВВОД АДРЕСА».
- 10. Нажать кнопку «ЧТЕНИЕ».
- 11. Записать значение регистра данных (DR), если это сделано второй раз, то перейти к шагу 17.
- 12. Ввести в клавишный регистр (IR) ранее записанное значение счётчика команд (IP).
- 13. Нажать кнопку «ВВОД АДРЕСА».
- 14. Не меняя состояние тумблеров, нажать кнопку «ПРОДОЛЖЕНИЕ».
- 15. Дождаться остановки работы ЭВМ.
- 16. Повторить пункты 7–11 включительно.
- 17. Сравнить полученные 2 записанных значения: второе значение должно быть получено из суммы первого и значения из пункта 4.

4. Сводная таблица результатов проверок по соответствующим методикам

Таблица 2: Результаты проверки работы программного комплекса.

No	Основной цикл		Прерывание ВУ-1		Прерывание ВУ-3				
- 1 -	Исходное	Подсчитанное	Полученное	Исходное	Подсчитанное	Полученное	Исходное	Подсчитанное	Полученное
1	DR:	0x0003	0x0003	DR:	F(X)=-3X	F(X)=-3X	КВУ-3:	РДВУ-3 +	РДВУ-3+
1	0x0000			0xFFFF			0x0088	DR	DR
1				РДВУ-1	0x0003	0x0003	DR:	0x0089	0x0089
1							0x0001		
2	DR:	0x002A	0x002A	DR:	F(X)=-3X	F(X)=-3X	КВУ-3:	РДВУ-3 +	РДВУ-3 +
-	0x0027			0x0001			0x00FF	DR	DR
2				РДВУ-1	0x00FD	0x00FD	DR:	0x01FF	0x01FF
-							0x0100		
3	DR:	0xFFD5	0xFFD5	DR:	F(X)=-3X	F(X)=-3X	КВУ-3:	РДВУ-3 +	РДВУ-3 +
	0x0030			0x5555			0x0010	DR	DR
3				РДВУ-1	0x0001	0x0001	DR:	0x0001	0x0001
							0xFFFF		

Окончание таблицы.

Заключение

Во время выполнения данной лабораторной работы я изучил процесс прерывания программы и исследовал функционирование Базовой ЭВМ при обмене данными в режиме прерывания программы, а также научился писать методики проверки программных комплексов и следовать им.