Měření odporů

1 Úkol měření

- 1. a) Měření malých odporů Ohmovou metodou. Sestavte měřicí obvod dle obr. 1. Vhodnou metodikou měření vylučte vliv termoelektrických napětí. Z naměřených hodnot napětí a proudu vypočtěte velikost neznámého odporu $R_{\rm X}$ a stanovte rozšířenou nejistotu měření (pro $k_{\rm R}=2$).
 - b) Měření malých odporů sériovou srovnávací metodou. Zapojte měřicí obvod dle obr. 2. Změřte napětí na etalonu $R_{\rm N}$ a napětí na měřeném odporu $R_{\rm X}$. Vhodnou metodikou měření vylučte vliv termoelektrických napětí. Vypočtěte velikost neznámého odporu $R_{\rm X}$ a odvoď te vztah pro nejistotu měření.
 - c) Měření středních odporů převodníkem $R \to U$. Sestavte převodník odpor-napětí s OZ $(U_R = 10 \text{ V}, R_{N1} = 10 \text{ k}\Omega)$ dle obr. 3. Odvoď te přenos převodníku a ověřte jeho funkci. Jako odpor R_X použijte odporovou dekádu. Zdůvodněte, do jaké hodnoty odporu může uvedený převodník měřit.

2 Schéma zapojení

Obrázek 1: Měření malého odporu Ohmovou metodou

Obrázek 2: Měření malého odporu sériovou metodou

Obrázek 3: Převodník R → U

3 Seznam použitých přístrojů

- 1. Laboratorní zdroj Agilent Proud < 0,2 % z hodnoty + 10 mA
- 2. Digitální voltmetr HP 34401A \pm 0,0050 % údaje \pm 0,0035 % rozsahu

4 Teoretický úvod

Při měření malých odporů se uplatňuje i přechodový odpor mezi zdrojem proudu a měřeným odporem. Pro eliminaci tohoto jevu se používá tzv. *čtyřsvorková* metoda. Pro vyloučení jevu termoelektrických jevů, jejich velikost je závislá na směru proudu, měříme oba směry. Následně výsledný odpor vypočítáme jako aritmetický průměr naměřených hodnot. $R_{\rm X} = \frac{\left(R_{\rm X_1} + R_{\rm X_2}\right)}{2}$. Pro měření ohmovou metodou použijeme vzorec $R_{\rm X} = \frac{U}{I}$ a pro měření srovnávací metodou využijeme vzorec $R_{\rm X} = \frac{U_{\rm R_X}}{U_{\rm R_N}} \cdot R_{\rm N}$.

5 Naměřené hodnoty

Naměřené hodnoty jsou níže v tabulkách:

Sériová srovnávací metoda			
$U_{R_N}\left(V\right)$	$U_{R_X}(V)$	$R_{\rm X}~({\rm m}\Omega)$	
0,876	10,082	11,509	
0,896	10,251	11,441	
$R_{\rm X}$ = 11,475 m Ω			

Ohmova metoda			
I(A)	U(V)	$R\left(\mathbf{m}\Omega\right)$	
1	11,3	11,3	
-1	11,7	11,7	
$R_{\rm X}$ = 11, 5 m Ω			

(a) Odpor vypočtený srovnávací metodou

(b) Odpor vypočtený Ohmovou metodou

Měření převodníkem U → I			
$U_{\text{out}}\left(\mathbf{V}\right)$	$U_{\rm in}\left(\mathbf{V}\right)$	$R_{\mathbf{X}}(\mathbf{k}\Omega)$	
5	-5,99	11,980	
$R_{\rm X}$ = 11,980 k Ω			

(c) Odpor změřený převodníkem U → I

6 Zpracování naměřených hodnot

$$u_{\rm U_{1,2}} = \frac{\frac{\delta_1}{100} \cdot X + \frac{\delta_2}{100} \cdot M}{\sqrt{3}} = \frac{\frac{0,005}{100} \cdot 10,082 + \frac{0,0035}{100} \cdot 100}{\sqrt{3}} = 2,3 \ \mu\text{V}$$
 (1)

$$u_{\rm I_{1,2}} = \frac{\frac{\delta_1}{100} \cdot X + \frac{\delta_2}{100} \cdot M}{\sqrt{3}} = \frac{\frac{0.2}{100} \cdot 1 + 10 \cdot 10^{-3}}{\sqrt{3}} = 6,9 \text{ mA}$$
 (2)

$$u_{\text{Rx}_{1}} = \sqrt{\left(\frac{\partial R_{\text{x}}}{\partial I} \cdot u_{\text{I}_{1,2}}\right)^{2} + \left(\frac{\partial R_{\text{x}}}{\partial U} \cdot u_{\text{U}_{1,2}}\right)^{2}} = \sqrt{\left(-\frac{U}{I} \cdot u_{\text{I}_{1,2}}\right)^{2} + \left(\frac{1}{I} \cdot u_{\text{U}_{1,2}}\right)^{2}} = 7, 8 \cdot 10^{-5} \,\Omega \qquad (3)$$

Můžeme předpokládat, že nejistoty měření budou velice podobné pro oba směry proudu. Výsledná nejistota tedy vyjde

$$u_{\rm R_X} = \frac{u_{\rm R_{\rm X_1}}}{\sqrt{2}} \tag{4}$$

Výsledná nejistota s koeficientem rozšíření poté bude

$$U_{R_X} = k_r \cdot \frac{7.8 \cdot 10^{-5}}{\sqrt{2}} = 1.1 \cdot 10^{-4} \,\Omega \tag{5}$$

7 Závěrečné vyhodnocení

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze