Задача: TOW

Вежа

ВОІ 2025, День 1. Обмеження на використання пам'яті: 256 МВ.

2025.04.26

Існує багато легенд про Пізанську вежу в Торуні. Стіна вежі є колом із $N \geq 3$ рівновіддаленими дверима (тобто, двері— це вершини правильного N-кутника). Двері пронумеровані від 0 до N-1, але у випадковому порядку. Більше деталей у розділі про оцінювання.

Одна з менш відомих легенд розповідає, що кожен новий мешканець вежі мав пройти певне випробування. Його мета — перерахувати двері, починаючи з деяких дверей і рухаючись по колу (за або проти годинникової стрілки), відвідуючи кожні двері рівно один раз.

Це потрібно зробити, не бачачи самої вежі. Натомість мешканець може ставити питання такого типу: «Дано троє різних дверей x,y,z, між якими з них відстань найменша: $\{x,y\}, \{y,z\}$ чи $\{z,x\}$?». Відповіддю буде список усіх пар (із наведених трьох), що мають найменшу евклідову відстань — довжину найкоротшого відрізка між дверима.

Ваше завдання — написати програму, яка за мінімальну кількість запитів визначить порядок дверей.

Формат взаємодії

Це інтерактивна задача. Ваша програма має взаємодіяти з інтерактором через стандартний потік входу та виходу.

На початку програма зчитує два числа t та k ($1 \le t \le 100$, $1 \le k \le 12000$), що означають кількість тестів та максимальну дозволену середню кількість запитів відповідно.

Для кожного тесту програма спочатку читає число $n\ (3 \le n \le 500)$ — кількість дверей у вежі. Далі програма може робити запити у такому форматі:

• Рядок у вигляді

? x y z

де x, y, z — різні цілі числа $(0 \le x, y, z \le n - 1)$. Цей рядок задає одне питання щодо дверей x, y і z.

• У відповідь інтерактор повертає:

```
\begin{array}{ccc}
r \\
a_1 & b_1 \\
\dots \\
a_r & b_r
\end{array}
```

де r $(1 \le r \le 3)$ — кількість пар дверей з найменшою відстанню між ними. Кожна пара представлена числами $a_i, b_i \ (a_i, b_i \in \{x, y, z\}, \ i \ a_i < b_i)$.

Коли ви визначили порядок дверей, виведіть:

```
! x_0 x_1 \dots x_{n-1}
```

де $x_0, x_1, \ldots, x_{n-1}$ — порядок дверей. Можна починати з будь-яких дверей та йти в будь-якому напрямку. (Зверніть увагу що існує 2n правильних відповідей в залежності від початкових дверей і напрямку руху. Будь-яка з них буде зарахована.)

Не забудьте очищати буфер виводу після кожного запиту або відповіді, використовуючи $\operatorname{cout.flush}()$ (або $\operatorname{flush}(\operatorname{stdout})$ якщо використовуєте $\operatorname{printf})$ в $\operatorname{C}++$ або $\operatorname{sys.stdout.flush}()$ в $\operatorname{Python.}$ Інакше ваше рішення може отримати Time Limit $\operatorname{Exceeded.}$

Після відповіді перейдіть до наступного набору або завершіть програму якщо всі набори були оброблені.

Ваша програма не може відкривати ніякі файли чи використовувати будь-які інші ресурси. Можна використовувати стандартний потік помилок (standart error stream) для дебагу, але враховуйте, що запис на цей потік вимагає часу.

Інтерактор не є адаптивним: порядок дверей для кожного тесту фіксований і не змінюється.

Приклад взаємодії

Припустимо, що ϵ один тест з n=6, а порядок дверей: 5,3,0,2,1,4. Взаємодія може виглядати так:

1/2 Вежа

Інтерактор	Ваша програма	Коментар
1 100		t = 1, k = 100.
6		Інтерактор надає кількість дверей.
	? 0 1 2	Запит на найближчу пару серед 0, 1, 2.
2		Найближчі — $\{0,2\}$ і $\{1,2\}$.
0 2		
1 2		
	? 4 1 3	Наступний запит.
1		Найближча пара $-\{1,4\}$.
1 4		
	? 0 5 1	Ще один запит.
3		Всі пари однаково близькі.
0.5		
0 1		
1 5		
	! 4 5 3 0 2 1	Ваша програма виводить правильний порядок дверей.

Пояснення до прикладу: На малюнках зображено порядок дверей та трикутники, відповідно до трьох запитів. У першому — видно, що $\{0,2\}$ і $\{1,2\}$ найкоротші. У другому — $\{1,4\}$ найкоротша. У третьому — всі однаково близькі.

Правильні відповіді також: 0, 2, 1, 4, 5, 3 або 5, 4, 1, 2, 0, 3 (та інші варіанти).

Оцінювання

Оцінювання розбите на підзадачі. Для кожної підзадачі ϵ один тест, що містить рівно t=100 наборів вхідних даних.

Обчислюється середня кількість запитів k^* на набір (кількість запитів поділена на кількість наборів данних). Якщо $k^* > k$ — отримаєте 0 балів за підзадачу. Інакше — повний бал (крім останньої підзадачі). Для останньої підзадачі бали обчислюються так:

$$\left\lceil 56 \cdot \min\left(1, \frac{12000 - k^*}{7800}\right) \right\rceil$$

що означає, що ваш бал збільшується лінійно з 0 до 56 коли k^* зменшується з 12000 до 4200.

Зверніть увагу, що якщо відповідь на хоча б один набір неправильна то ви отримаєте 0 балів за всю підзадачу незалежно від кількості запитів.

Додаткові обмеження по підзадачам наведені нижче.

Підзадача	Обмеження	Бали
1	$k = 8000, 3 \le n \le 9$	6
2	$k = 4500, 40 \le n \le 50$	7
3	$k = 3000, 90 \le n \le 100$	9
4	$k=4500, n=400, $ існує правильна відповідь $x_0,\dots,x_{n-1},$ де $x_i=i$ для $200\leq i\leq i$	22
	399	
5	k = 12000, n = 500	до 56

Кожен тест генерується випадково: n вибирається рівномірно (кожне n однаково ймовірне) в межах обмежень на підзадачі, порядок дверей — теж випадково рівномірно (кожен порядок однаково ймовірний) в межах обмежень на підзадачі.