Suites.

1 Définitions

1.1 Généralités

Définition 1.1. Une suite (réelle) est une fonction de \mathbb{N} dans \mathbb{R} . Soit u cette suite. On note u_n (plutôt que u(n) l'image de l'entier n par u.

On écrit : "la suite u", ou "la suite $(u_n)_{n\in\mathbb{N}}$ ", ou "la suite $(u_n)_n$ ", ou "la suite (u_n) ". L'écriture "la suite u_n " choque certains puristes (pas moi!

Définition 1.2. La suite u est définie de façon explicite s'il existe une fonction f telle que pour tout entier n

$$u_n = f(n)$$

La suite u est définie par une relation de récurrence d'ordre 1 (on parle de suite récurrente d'ordre 1) si le terme u_n est défini à l'aide du terme qui le précède. Autrement dit, il existe une fonction f telle que

$$u_n = f(u_{n-1})$$

Une telle suite n'est connue que lorgu'on a donné le terme initial u_0 .

On peut généraliser à une suite récurrente d'ordre k: On donne les k premiers termes, puis une relation de type

$$u_n = f(u_{n-1}, \cdots, u_{n-k})$$

1.2 Croissance

Définition 1.3. 1. Une suite u est dite croissante $si \ \forall n \in \mathbb{N}, u_{n+1} \ge u_n$. On note $u \uparrow$

- 2. Une suite u est dite strictement croissante $si \ \forall n \in \mathbb{N}, u_{n+1} > u_n$. On note $u \uparrow \uparrow$
- 3. Une suite u est dite **décroissante** $si n \in \mathbb{N}, u_{n+1} \leq u_n$. On note $u \downarrow$
- 4. Une suite u est dite strictement décroissante $si \forall n \in \mathbb{N}, u_{n+1} < u_n$. On note $u \downarrow \downarrow$
- 5. Une suite u est dite stationnaire si elle est croissante et décroissante, c'est à dire $\forall n \in \mathbb{N}, u_{n+1} = u_n$.

La croissance, la décroissance, etc peuvent n'avoir lieu qu'à partir d'un certain rang. Par exemple, on dira que la suite u est croissante à partir d'un certain rang s'il existe un entier n_0 tel que : $\forall n \geq n_0, u_{n+1} \geq u_n$

1.3 Majoration, minoration

Définition 1.4. 1. Une suite u est majorée s'il existe un réel M tel que $\forall n \in \mathbb{N}, u_n \leq M$.

- 2. Une suite u est minorée s'il existe un réel N tel que $\forall n \in \mathbb{N}, u_n \geq N$.
- 3. Une suite u est bornée si elle est majorée et minorée.
- 4. Une suite u est majorée en valeur absolue s'il existe un réel M tel que $\forall n \in \mathbb{N}, |u_n| \leq M$. Alors, on a $0 \leq |u_n| \leq M$ et

$$\forall n \in \mathbb{N}, -M \le u_n \le M$$

Autrement dit, une suite majorée en valeur absolue est bornée.

Définition 1.5. Soient deux suite u et v. On suppose que

$$\forall n \in \mathbb{N}, u_n \leq v_n$$

On dit alors que la suite v majore la suite u, et que la suite u minore la suite v. On note $u \leq v$.

2 Limites.

Soit u une suite.

Définition 2.1. 1. On dit que u tend vers 0 (quand n tend vers l'infini) si

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, (n > n_0 \Longrightarrow |u_n| < \varepsilon)$$

2. On dit que u tend vers l (quand n tend vers l'infini) si la suite $(u_n-l)_n$ tend vers 0, à savoir :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, (n \ge n_0 \Longrightarrow |u_n - l| \le \varepsilon)$$

3. On dit que u tend vers $+\infty$ si

$$\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, (n \ge n_0 \Longrightarrow u_n \ge A)$$

4. On dit que u tend vers $-\infty$ si

$$\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, (n \ge n_0 \Longrightarrow u_n \le A)$$

5. On dit que u a une limite finie (quand n tend vers l'infini) s'il existe un réel l tel que la suite u tende vers l.

Définition 2.2. Une suite u est dite convergente si elle a une limite finie. Sinon, elle est dite divergente.

Attention : une suite tendant vers l'infini est considérée comme divergente. Les deux façons de diverger sont donc

- 1. tendance vers $\pm \infty$
- 2. absence de limite, finie ou infinie.

Comment exprimer que la suite u ne tend pas vers le réel l? comme ceci

$$\exists \varepsilon_0 > 0, \forall n \in \mathbb{N}, \exists p \geq n, |u_p - l| > \varepsilon_0$$

3 Sous suites, ou suites extraites.

Définition 3.1. Soit u une suite, et φ une application strictement croissante de \mathbb{N} dans \mathbb{N} . Alors, la suite v définie par

$$v_n = u_{\varphi(n)}$$

est dite extraite de u ou sous suite de u.

Si une sous suite de u admet une limite (finie ou infinie), cette limite s'appelle une valeur d'adhérence de la suite u.

Les exemples les plus classiques sont

$$v_n = u_{2n}$$
, et $w_n = u_{2n+1}$

Théorème 3.1. 1. Si une suite a une limite, toute sous suite a la même limite.

- 2. Si une suite a une sous suite de limite infinie, elle diverge.
- 3. Si une suite a deux valeurs d'adhérence distinctes (c'est à dire qu'elle arment deux sous suite de limite différente), elle diverge.

Exemple : La suite $u_n = (-1)^n$ diverge. En effet, la sous suite $u_{2n} = 1$ tend vers 1, et la sous suite $u_{2n+1} = -1$ tend vers -1.

La convergence d'une sous suite ne dit rien, a priori, sur la convergence de la suite. Toutefois, on a le résultat :

Théorème 3.2. Soit u une suite, $v_n = u_{2n}$ et $w_n = u_{2n+1}$. Si v et w tendent vers la même limite l (finie ou non), alors u tend vers l.

4 Algèbre.

Théorème 4.1. Soient u et v deux suite ayant des limites finies respectives l et m. Alors

- 1. $\lim(u+v) = \lim u + \lim v$
- 2. $\lim(uv) = \lim u \lim v$
- 3. $Si \lim v \neq 0$, $\lim(u/v) = \lim u/\lim v$

Théorème 4.2. Soit u une suite.

- 1. Si u tend vers $\pm \infty$, 1/u tend vers 0^{\pm}
- 2. Si u tend vers 0^{\pm} , 1/u tend vers $\pm \infty$

5 Lien avec la continuité

Théorème 5.1. Soit u une suite de limité finie l, et f est une fonction continue en l. alors

$$\lim_{n} f(u_n) = f(\lim_{n} u_n) = f(l)$$

6 Contagion: les gendarmes.

Théorème 6.1. Soient u, v, w trois suites.

- 1. On suppose $w \le u \le v$. Si v et w tendent vers une limite l (finie ou non), alors u tend vers l.
- 2. Si $u \leq v$, et si u tend vers $+\infty$, alors vu tend vers $-\infty$.
- 3. $si |u| \le v$, et si v tend vers 0, alors u tend vers 0.

7 Critères de convergence.

Théorème 7.1. 1. Une suite croissante et majorée converge.

- 2. Une suite croissante et non majorée tend vers $+\infty$
- 3. Une suite décroissante et minorée converge.

4. Une suite décroissante et non minorée tend vers $-\infty$

Commentaire : une suite monotone a donc toujours une limite, finie ou non. Si la suite est croissante, soit elle a une limite finie, soit elle tend vers $+\infty$.

Définition 7.1. suites adjacentes. Deux suite u et v sont dites adjacentes, si

- 1. l'une croit.
- 2. l'autre décroit
- 3. La différence v u tend vers 0

Théorème 7.2. Soient u et v deux suite adjacentes. On suppose que u croit et que v décroit. Alors

- 1. $\forall n \in \mathbb{N}, u_0 \le u_n \le v_n \le v_0$
- 2. Je dirais même plus : $\forall n, p \in \mathbb{N}, u_n \leq v_p$
- 3. Les deux suite u et v convergent.
- 4. Je dirais même plus : elles convergent vers la même limite.

8 Suite récurrente d'ordre 1

On étudie la suite u donnée par u_0 et la relation

$$\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$$

On suppose que f est continue d'un certain intervalle I dans lui même.

On appelle point fixe de f tout réel c de I tel que f(c) = c.

Théorème 8.1. Si la suite u_n converge, ce ne peut être que vers un point fixe.

8.1 Cas où f est croissante.

Théorème 8.2. Si f est croissante, la suite u est monotone.

- 1. Si $u_1 \ge u_0$, elle est croissante.
- 2. Si $u_1 \leq u_0$, elle est décroissante.

Si, de plus, I est borné, la suite est bornée, donc convergente

Théorème 8.3. Théorème du saute mouton

Soit c_1 et c_2 deux points fixes successifs de f. Si on a $c_1, \leq u_0 \leq c_2$, alors, pour tout $n, c_1 \leq u_n \leq c_2$.

Autrement dit : pas de saute mouton au dessus d'un point fixe. La limite de la suite est le point fixe le plus proche compatible avec la croissance de f.

8.2 Cas où f est décroissante.

C'est plus compliqué. Posons $g = f \circ f$ Elle est croissante. Introduisons les sous suites $v_n = u_{2n}$ et $w_n = u_{2n+1}$.

On a $v_{n+1} = g(v_n)$, et $w_{n+1} = g(w_n)$, donc

Théorème 8.4. 1. Les deux suite v et w sont monotones, de monotonie opposée.

- 2. si $u_2 \ge u_0$, la suite u est croissante, et la suite v est décroissante.
- 3. si $u_2 \le u_0$, la suite u est décroissante, et la suite v est croissante.
- 4. Si u et v convergent, ce ne peut être que vers un point fixe de g.
- 5. La fonction f a au plus un point fixe. Ce point fixe est aussi un point fixe de g. Si les suites v et w tendent vers le point fixe de f, la suite u tend vers ce point fixe.

9 Comparaisons.

Définition 9.1. Soient u et v deux suites.

1. On dit que v est négligeable devant u (et on note $v_n = o(u_n)$, lu petit o de u_n), s'il existe une suite ε_n de limite 0 telle que

$$\forall n \in \mathbb{N}, v_n = \varepsilon_n u_n$$

Si la suite v ne s'annule pas, cela équivaut à

$$\lim_{n} \frac{v_n}{u_n} = 0$$

2. On dit que v est bornée devant u (et on note $v_n = O(u_n)$, lu grand O de u_n), s'il existe une suite M_n dbornée telle que

$$\forall n \in \mathbb{N}, v_n = M_n u_n$$

Si la suite v ne s'annule pas, cela équivaut à $\lim_{n} \frac{v_n}{u_n}$ bornée.

3. On dit que v et u sont équivalentes (on note $v_n \sim u_n$ s'il existe une suit ε_n de limite 0 telle que

$$\forall n \in \mathbb{N}, v_n = (1 + \varepsilon_n)u_n$$

Si la suite v ne s'annule pas, cela équivaut à

$$\lim_{n} \frac{v_n}{u_n} = 1$$

Commentaires:

- 1. Si deux suites ont la même limite, elles sont équivalentes. Mais deux suites peuvent être équivalentes sans avoir de limite.
- 2. Si une suite tend vers une limite l, elle est équivalente à cette limite, sauf si cette limite est 0 ou $\pm \infty$.
- 3. Si deux fonctions vérifient en un point a

$$\lim_{a} f/g = 1$$

alors, pour toute u suite tendant vers a, on a $f(u_n) \sim g(u_n)$.

Exemple.

On sait que $\lim_{x \to \infty} \frac{\ln(1+x)}{x} = 1$, donc $\ln(1+1/n) \sim 1/n$.

Soit $P(n)_n$ une suite polynomiale en n, avec $P(n) = a_n x^n + \cdots + a_0$, $a_n \neq 0$. Alors

$$P(n) \sim a_n x^n$$

autrement dit, la suite P est équivalente à son terme de plus haut degré.

De même une fraction rationnelle en n est équivalente au quotient de ses termes de plus haut degré.