Criterio de parada cerca de la cima de una caminata aleatoria

José Ángel Islas Anguiano

FCFM Universidad Autonoma de Sinaloa

23 de Octubre de 2017

Índice

- Problemas de parada óptima
- Problema: Criterio de parada cerca de la cima de una caminata aleatoria
 - Planteamiento
 - Antecedentes
 - Resultados
 - Nuevos resultados

Regla de parada

Definición

Una regla de parada con respecto a una secuencia de variables aleatorias $X_1, X_2, ...$ es una variable aleatoria τ con valores en (1,2,...) y la propiedad de que para cada t en (1,2,...), la ocurrencia o no ocurrencia del evento $\tau=t$ depende solo de los valores $X_1, X_2, ..., X_t$.

Definición. Problemas de parada óptima

Los problemas de parada óptima están definidos por dos objetos:

• (i) una secuencia de variables aleatorias, $X_1, X_2, ...$, cuya distribution conjunta se conoce

Definición. Problemas de parada óptima

Los problemas de parada óptima están definidos por dos objetos:

- (i) una secuencia de variables aleatorias, $X_1, X_2, ...$, cuya distribution conjunta se conoce
- (ii) una secuenca de funciones de recompensa de valores reales,

$$y_0, y_1(x_1), y_2(x_1, x_2), ..., y_{\infty}(x_1, x_2, ...)$$

Definición. Problemas de parada óptima

Los problemas de parada óptima están definidos por dos objetos:

- (i) una secuencia de variables aleatorias, $X_1, X_2, ...$, cuya distribution conjunta se conoce
- (ii) una secuenca de funciones de recompensa de valores reales,

$$y_0, y_1(x_1), y_2(x_1, x_2), ..., y_{\infty}(x_1, x_2, ...)$$

• (iii) De (i) y (ii), si nos detenemos en el tiempo k y si $X_1=x_1, X_2=x_2,..., X_k=x_k$, entonces recibimos la recompensa $Y_k=y_k(x_1,x_2,...,x_k)$

Definición. Problemas de parada óptima

Los problemas de parada óptima están definidos por dos objetos:

- (i) una secuencia de variables aleatorias, $X_1, X_2, ...$, cuya distribution conjunta se conoce
- (ii) una secuenca de funciones de recompensa de valores reales,

$$y_0, y_1(x_1), y_2(x_1, x_2), ..., y_{\infty}(x_1, x_2, ...)$$

• (iii) De (i) y (ii), si nos detenemos en el tiempo k y si $X_1=x_1, X_2=x_2,..., X_k=x_k$, entonces recibimos la recompensa $Y_k=y_k(x_1,x_2,...,x_k)$

Cuando pararse o continuar observando las variables aleatorias para maximizar el valor esperado de la recomensa o minimizar el costo esperado?, Esto es $E[Y_{\tau}]$

Problemas de horizonte finito

Horizonte finito

Es necesario parar despues de observar $X_1, X_2, ..., X_N$

Problemas de horizonte finito

Horizonte finito

Es necesario parar despues de observar $X_1, X_2, ..., X_N$

Inducción para atrás (Backward Induction)

Se utiliza Inducción para atrás para resolver este tipo de problemas.

Planteamiento del problema

Caminata aleatoria

ullet (i) Sean $X_1, X_2, ..., X_N$ iid Bernoulli(p) , esto es

$$X_i = \begin{cases} 1, & \text{con probabilidad } p \\ -1, & \text{con probabilidad } 1 - p. \end{cases}$$

Planteamiento del problema

Caminata aleatoria

ullet (i) Sean $X_1, X_2, ..., X_N$ iid Bernoulli(p) , esto es

$$X_i = \begin{cases} 1, & \text{con probabilidad } p \\ -1, & \text{con probabilidad } 1-p. \end{cases}$$

 (ii) Considere $S_0:=0,$ $S_n:=X_1+X_2+\ldots+X_n$ para $n\leq N$ y

Planteamiento del problema

Caminata aleatoria

ullet (i) Sean $X_1, X_2, ..., X_N$ iid Bernoulli(p) , esto es

$$X_i = \begin{cases} 1, & \text{con probabilidad } p \\ -1, & \text{con probabilidad } 1-p. \end{cases}$$

- (ii) Considere $S_0:=0,$ $S_n:=X_1+X_2+\ldots+X_n$ para $n\leq N$ y
- (iii) $M_N := \max(S_0, S_1, ... S_N)$

Problema

Suponga que se desea maximizar la probabilidad de "deterse en la cima" de la caminata aleatoria, esto es, $P(S_{\tau}=M_N)$. Cuál es la regla de parada óptima τ ?

Problema

Suponga que se desea maximizar la probabilidad de "deterse en la cima" de la caminata aleatoria, esto es, $P(S_{\tau}=M_N)$. Cuál es la regla de parada óptima τ ?

Fue resuelto por Hlynka and Sheahan (1988) para el caso $p=\frac{1}{2}$. Recientemente Yam et al. (2009) dieron una solución general.

Problema

Suponga que se desea maximizar la probabilidad de "deterse en la cima" de la caminata aleatoria, esto es, $P(S_{\tau}=M_N)$. Cuál es la regla de parada óptima τ ?

Fue resuelto por Hlynka and Sheahan (1988) para el caso $p=\frac{1}{2}$. Recientemente Yam et al. (2009) dieron una solución general.

• Si $p > \frac{1}{2}$, $\tau = N$ es la única regla de párada óptima

Problema

Suponga que se desea maximizar la probabilidad de "deterse en la cima" de la caminata aleatoria, esto es, $P(S_{\tau}=M_N)$. Cuál es la regla de parada óptima τ ?

Fue resuelto por Hlynka and Sheahan (1988) para el caso $p=\frac{1}{2}$. Recientemente Yam et al. (2009) dieron una solución general.

- Si $p > \frac{1}{2}$, $\tau = N$ es la única regla de párada óptima
- ② Si $p < \frac{1}{2}$, $\tau = 0$ es la única regla de párada óptima

Problema

Suponga que se desea maximizar la probabilidad de "deterse en la cima" de la caminata aleatoria, esto es, $P(S_{\tau}=M_N)$. Cuál es la regla de parada óptima τ ?

Fue resuelto por Hlynka and Sheahan (1988) para el caso $p=\frac{1}{2}$. Recientemente Yam et al. (2009) dieron una solución general.

- Si $p > \frac{1}{2}$, $\tau = N$ es la única regla de párada óptima
- ② Si $p < \frac{1}{2}$, $\tau = 0$ es la única regla de párada óptima
- $oldsymbol{\circ}$ Si $p=rac{1}{2}$, cualquier regla au tal que $P(S_{ au}=M_{ au} ext{ o } au=N)=1$ es óptima

Criterio de parada cerca de la cima

Problema

Dado N>0, encuentre una regla de parada $\tau \leq N$ tal que maximize

$$P(M_N - S_{\tau} \le 1).$$

(Gana si se detiene en uno de los dos valores mas altos)

Definición

Diremos que estamos en el estado (n, i) si:

- Faltan n pasos hasta el final N;
- 2 La caminata esta i unidades por debajo del máximo actual.

Definición

Diremos que estamos en el estado (n, i) si:

- Faltan n pasos hasta el final N;
- ② La caminata esta i unidades por debajo del máximo actual.

Obviamente, es óptimo continuar en los estados (n, 2), (n, 3), ...

Definición

Diremos que estamos en el estado (n, i) si:

- Faltan n pasos hasta el final N;
- 2 La caminata esta i unidades por debajo del máximo actual.

Obviamente, es óptimo continuar en los estados $(n, 2), (n, 3), \ldots$

Lema (Allaart)

En el estado (n,0) con $n \ge 1$, también es óptimo continuar.

No es tan difícil – detenerse despues de el siguiente paso (ya sea para arriba o abajo) es al menos tan bueno como detenerse ahora.

Definición

Diremos que estamos en el estado (n, i) si:

- Faltan n pasos hasta el final N;
- 2 La caminata esta i unidades por debajo del máximo actual.

Obviamente, es óptimo continuar en los estados (n, 2), (n, 3), ...

Lema (Allaart)

En el estado (n,0) con $n \ge 1$, también es óptimo continuar.

No es tan difícil – detenerse despues de el siguiente paso (ya sea para arriba o abajo) es al menos tan bueno como detenerse ahora.

Conclusión

Los estados críticos son (n,1), para $n=1,2,\ldots$

Lema (Allaart)

Para cada $n \geq 1$, existe $0 < p_n \leq 1$ tal que , en el estado (n,1), es óptimo

- parar si $p \leq p_n$;
- continuar si $p \ge p_n$.

Lema (Allaart)

Para cada $n \geq 1$, existe $0 < p_n \leq 1$ tal que , en el estado (n,1), es óptimo

- parar si $p \leq p_n$;
- continuar si $p \ge p_n$.

Nota

Los p_n son calculados usando inducción para atrás.

Table: Valores críticos p_n

n	p_n	n	p_n
1	1	11	.48452
2	0.5	12	.47984
3	0.5	13	.48543
4	.46898	14	.48175
5	.48288	15	.48624
6	.47144	16	.48330
7	.48268	17	.48697
8	.47470	18	.48453
9	.48357	19	.48760
10	.47752	20	.48554

Gráfica y conjeturas

Gráfica y conjeturas

La gráfica sugiere:

- $p_n < 0.5$ para todo $n \ge 4$
- **3** $p_{2n-2} < p_{2n} < p_{2n-1} < p_{2n+1}$, para todo $n \ge 4$,

Gráfica y conjeturas

La gráfica sugiere:

- $p_n < 0.5$ para todo $n \ge 4$
- 3 $p_{2n-2} < p_{2n} < p_{2n-1} < p_{2n+1}$, para todo $n \ge 4$,

Teorema (Allaart)

Teorema (Allaart)

- $p_n < 0.5$ para todo $n \ge 4$

Teorema (Allaart)

- $p_n < 0.5$ para todo $n \ge 4$
- $p_{2n} < p_{2n-1} < p_{2n+1}$ para todo $n \ge 4$,

Teorema (Allaart)

- $\mathbf{0}$ $p_n < 0.5$ para todo $n \ge 4$
- **3** $p_{2n} < p_{2n-1} < p_{2n+1}$ para todo $n \ge 4$,

Conjecturas acerca de p_n (Allaart)

- i) $\lim_{n\to\infty} p_n = 0.5$.
- ii) $p_{2n} \leq p_{2n+2}$ para todo $n \geq 2$.

Nuevos resultados

Nuevos resultados

- 2 $p_{2n+4} \le p_{2n+1}$ para todo $n \ge 0$.

Nuevos resultados

- 2 $p_{2n+4} \le p_{2n+1}$ para todo $n \ge 0$.
- **3** $p_{2n+6} \le p_{2n+1}$ para todo $n \ge 3$.

Teorema

Gráfica de la probabilidades críticas

- 2 $p_{2n+4} \le p_{2n+1}$ para todo $n \ge 0$.

Gráfica de la probabilidades críticas

- ② $p_{2n+4} \le p_{2n+1}$ para todo $n \ge 0$.
- **3** $p_{2n+6} \le p_{2n+1}$ para todo $n \ge 3$.

Gráfica de la probabilidades críticas

- ② $p_{2n+4} \le p_{2n+1}$ para todo $n \ge 0$.
- **3** $p_{2n+6} \le p_{2n+1}$ para todo $n \ge 3$.

Proyecto

Competencia en una caminata aleatoria.

- Dos corredores de valores: A y B
- Uno gana y el otro pierde
- A tiene la preferencia
- Cual es la estrategia de cada corredor que maximiza su probabilidad de ganar?

Referencias

- ALLAART, P. C. (2010).
 - How to stop near the top in a random walk?.

 Decision Making Processes under Uncertainty and Ambiguity,
 RIMS Kokyuroku 1682, 33–40.
- HLYNKA, M. and SHEAHAN, J. N. (1988). The secretary problem for a random walk. *Stoch. Proc. Appl.* **28**, 317–325.
- YAM, S. C. P., YUNG, S. P. and ZHOU, W. (2009). Two rationales behind 'buy-and-hold or sell-at-once'. *J. Appl. Probab.* **46**, 651–668.