Classification

SLM003 06/08/2018

References:

ISL04 James G., Witten D., Hastie T., Tibshirani R. (2013) **Classification**. In: An Introduction to Statistical Learning. Springer Texts in Statistics, vol 103. Springer, New York, NY. doi: https://doi.org/10.1007/978-1-4614-7138-7_4 (https://doi.org/10.1007/978-1-4614-7138-7_4

ESL04 Hastie T., Tibshirani R., Friedman J. (2009) **Linear Methods for Classification**. In: *The Elements of Statistical Learning* (2nd ed.). Springer Series in Statistics. Springer, New York, NY. doi: https://doi.org/10.1007/978-0-387-84858-7_4)

Outline

- 1. Logistic regression
- 2. Discriminant analysis
 - A. Linear discriminant analysis (LDA)
 - B. Quadratic discriminant analysis (QDA)

Objectives

- Understand the principles behind the methods
- Develop intuition of the mathematical formulation

What is "classification"?

- **Supervised learning**: use inputs to predict output
- Classification predicts *qualitative* (a.k.a. *categorical*, *discrete*) outputs
- Input: predictors (a.k.a. features, independent variables, X) -- quantitative and/or qualitative
- Output: **response** (a.k.a. target, dependent variable, y)
 - which may be referred to as different response levels, targets, classes, categories

Logistic regression

Goal: Describe predictor-response relationship in the *training data* using the **logistic model**. Make prediction using this model.

The logistic function (a.k.a. sigmoid curve) is defined as:

$$p(X) = \frac{\exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}{1 + \exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}$$
(4.6)

p(X): predicted response | X_i : predictors | β_i : parameters of the model

How to fit the model, i.e. how to determine the appropriate β_i ?

Fitting a logistic model using "maximum likelihood" (k=2)

For a single training data point:

if
$$y_i=1$$
, model plausibility at $x_i=p(x_i)$

if $y_i=0$, model plausibility at $x_i=1-p(x_i)$ n.b. the closer $p(x_i)$ is to 0, i.e. y_i , the better

For all training data, Model plausibility, i.e. "Likelikhood":

$$1 = \prod_{i:y_i=1} p(x_i) \prod_{i\prime:y_{i\prime}=0} (1 - p(x_{i\prime}))$$

Model is best-fitted when β maximises 1.

Discriminant analysis

Goal: Assign data to the most probable class based on **distribution statistics** derived from *training data* and/or prior knowledge

Bayes' Theorem

$$P(x) \cdot P(y = k_1 | x) = P(y = k_1) \cdot P(x | y = k_1)$$
 $P(y = k_1 | x) = \frac{P(y = k_1) \cdot P(x | y = k_1)}{P(y = k_0) \cdot P(x | y = k_0) + P(y = k_1) \cdot P(x | y = k_1)}$
 $P(y = k_i | x) = \frac{P(y = k_i) \cdot P(x | y = k_i)}{\sum_{l=0}^{K} P(y = l) \cdot P(x | y = k_l)}$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$
 $P(x) \cdot P(x | y = k_1) \cdot P(x | y = k_1)$

Classification using discriminant analysis

For classification, we do not need to know the posterior $P(y=k_i|x)$, we need only to know which class k_i has the highest posterior, i.e. $\argmax_{k_i} P(y=k_i|x)$

Based on assumptions about the density function $P(x|y=k_l)$, we can define a discriminant function $\delta(x)$, such that:

$$rgmax \delta_k(x) = rgmax P(y=k|x)$$

Assume Gaussian (a.k.a. normal) density function,

• With **common** predictor covariance Σ shared by all classes, we can derive a linear discriminant (LDA):

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$
 (4.19)

• With class-specific predictor covariance Σ_k , we get a quadratic discriminant (QDA):

$$\delta_k(x) = -\frac{1}{2}x^T \Sigma_k^{-1} x + x^T \Sigma_k^{-1} \mu_k - \frac{1}{2}\mu_k^T \Sigma^{-1} \mu_k + \log \pi_k - \frac{1}{2}\log |\Sigma_k|$$
 (4.23)

Errors are not born equal: Thresholding binary classification

As discussed so far, we threshold the predicted probability (both for logistic regression and for discriminant analysis) at 0.5, without distinguishing between different types of errors.

	Pos	Neg	Sensitivity, $Recall = \frac{True pos}{D}$
Predict pos	True pos	False pos	Pos False pos _ True neg
		$({ m Type~I~error})$	Specificity = $1 - \frac{1 \text{ arse pos}}{\text{Neg}} = \frac{11 \text{ de Res}}{\text{Neg}}$
Predict neg	$\operatorname{False} \operatorname{neg}$	$\operatorname{True} \operatorname{neg}$	True pos
	(Type II error)		$Precision = \frac{Predict pos}{Predict pos}$
			$Accuracy = \frac{True}{True}$
			$ ext{Accuracy} = rac{ ext{Total}}{ ext{Total}}$

Further reading: <u>Wikipedia:Confusion_matrix</u> (<u>https://en.wikipedia.org/wiki/Confusion_matrix</u>)

Choosing classification threshold based on the ROC curve

In [5]: interactive(fig_threshold, page=(0,len(thresh_list)-1))

Comparison between different classifiers (reproducing Fig 4.10, 4.11)

Summary

- Linear decision boundary:
 - Logistic Regression: model each binary decision using a logistic form of linear regression, predict the binary response probability
 - LDA: model predictor distributions of each class as *Gaussian*, then based on Bayes' Theorem, compare to see which response is more probable
 - o More stable than logistic regression when classes are well-separated
 - If Guassian assumption is valid, more stable than logistic regression when sample size is small
- Non-linear decision boundary:
 - QDA: same as LDA, but allow each class to have different predictor covariances
 - More suitable for fitting non-linear decision boundary, but risk overfitting if true boundary is linear

Scikit-Learn basics

Load example dataset

```
In [11]: from sklearn import datasets
    X, y = datasets.load_iris(return_X_y=True)
    X.shape, y.shape
Out[11]: ((150, 4), (150,))
```

sklearn estimator classes

- Regressor: neighbors.KNeighborsRegressor, linear_model.LinearRegression
- Classifier: neighbors.KNeighborsClassifier, linear_model.LogisticRegression
- Clusterer: cluster.KMeans, cluster.AgglomerativeClustering
- Transformer: decomposition.PCA, manifold.TSNE
- etc.

General usage

```
In [12]: # 0. Import estimator constructor class
         from sklearn.neighbors import KNeighborsClassifier
         # 1. Initialise an estimator instance
         estimator = KNeighborsClassifier()
         # 3. Initalise an estimator instance with specific parameters
         # Note that estimator instance has been overwritten
         estimator = KNeighborsClassifier(n neighbors=2) # Jupyter: Shift + Tab inside brackets for docstrings; supports tab-c
         ompletion
         # 4. Modify parameters of existing estimator instance
         estimator.set params(n neighbors=4)
         # 5. Jupyter: tab-completion is your friend
         # estimator.
         # 2. Fitting (Jupyter: toggle comment with Ctrl + /)
         estimator.fit(X, y) # Also display estimator parmeters by default
```

Out[12]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=4, p=2, weights='uniform')

Classifier-specific usage

0.96666666666666

Out[14]:

```
In [13]:
         from sklearn.linear model import LogisticRegression
         logreg = LogisticRegression()
In [14]: | from sklearn.model_selection import train_test_split
         # 1. Split data into train and test sets
         X train, X test, y train, y test = train test split(X, y, test size=30)
         # 2. Fit with training data
         logreg.fit(X train, y train)
         # 3. Classify test data
         logreg.predict(X test)
         # 4. Predict probability p_k(x=x_i), useful for thresholding/weighting
         logreg.predict proba(X test).shape
         np.argmax(logreg.predict proba(X test), axis=1) == logreg.predict(X test)
         np.argmax(logreg.predict proba(X test)*[1,2,1], axis=1) == logreg.predict(X test)
         # 5. Test accuracy
         logreg.predict(X test) == y test
         logreg.score(X_test, y_test)
```

Classifier attributes (model paramenters)

```
In [15]: # Store attributes are indicated by a trailing underscore
        print(logreg.classes , '\n\n', logreg.coef , '\n\n', logreg.intercept )
        # Attributes are updated upon re-training
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=30)
        logreg.fit(X train, y train)
        print('\n\n', logreg.coef , '\n\n', logreg.intercept )
        [0 1 2]
         [ 0.33231761 -1.37640461  0.43295424 -0.99460386]
         [-1.56735495 -1.41692793 2.2974056 2.26647004]]
         [ 0.25969649  0.85941538 -1.01267347]
         [ 0.58191457 -1.76581288 0.5512131 -1.36892025]
         [-1.52492997 -1.52941477 2.30289617 2.30936333]]
         [ 0.24666901  0.80446332 -1.114254 ]
```

Plotting decision boundary of a trained classifier

In [17]: **%%capture** stdout import matplotlib.pyplot as plt from util import make mesh fig, ax = plt.subplots(figsize=(8,8)) # 1. Plot train and test data with different markers ax.scatter(X train[:,0], X train[:,1], c=y train, \ s=80, cmap='plasma', edgecolors='k', label='train') ax.scatter(X test[:,0], X test[:,1], c=y test, \ s=80, cmap='plasma', edgecolors='k', marker='>', \ lw=1, label='test') ax.legend() ax.set xlabel('\$x 0\$') ax.set ylabel('\$x 1\$') # 2. Make a grid of points x mesh, (X0, X1) = make mesh(X, step size=0.01)print(x mesh.shape, x mesh[0, 0, :]) # 3. Evaluate response class at each grid point grid_eval = qda.predict(x_mesh.reshape(-1,2)).reshape(\ x mesh.shape[:2]) ax.pcolormesh(X0, X1, grid eval, cmap='plasma', alpha=0.1) ax.set xlim(X0.min(), X0.max()) ax.set ylim(X1.min(), X1.max()) # 4. Plot decision boundary ax.contour(X0, X1, grid eval, vmin=0, vmax=0.5, cmap="Greys") plt.show()

