Estatística descritiva

Covariância e Correlação Linear

Fabio Cop (fabiocopf@gmail.com) Instituto do Mar - UNIFESP Última atualização em 06 de janeiro de 2022

Conteúdo da aula

- 1. Medindo a intensidade de associações lineares
- 2. Soma dos Quadrados e Variância Amostral
- 3. Soma dos Produtos Cruzados e Covariância
- 4. O coeficiente de Correlação Linear de Pearson (r)
- 5. Associações Lineares e Causalidade
- 6. Os comandos em R

1. Medindo a intensidade de associações lineares

Soma dos Quadrados de Y

$$SQ_Y = \sum_{i=1}^n (y_i - ar{y})^2 = \sum_{i=1}^n (y_i - ar{y})(y_i - ar{y})^2$$

Variância amostral de Y

$$s_Y^2 = rac{\sum_{i=1}^n (y_i - ar{y})^2}{n-1}$$

Soma dos Quadrados de X

$$SQ_X = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n (x_i - \overline{x})(x_i - \overline{x})$$

Variância amostral de X

$$s_X^2 = rac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

Soma dos produtos cruzados de Y e X

$$SQ_{YX} = \sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x}).$$

Covariância amostral entre Y e X

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1}$$

Se

$$(y_i-\overline{y})>0$$
; $(x_i-\overline{x})<0$

OU

$$(y_i-ar{y})<0$$
; $(x_i-ar{x})>0$

temos

$$s_{YX}=rac{\sum_{i=1}^n(y_i-ar{y})(x_i-ar{x})}{n-1}<0$$

A covariância pode ser **NEGATIVA**

Se

$$(y_i-\overline{y})>0$$
; $(x_i-\overline{x})>0$

OU

$$(y_i-ar{y})<0$$
; $(x_i-ar{x})<0$

temos

$$s_{YX}=rac{\sum_{i=1}^n(y_i-ar{y})(x_i-ar{x})}{n-1}>0$$

A covariância pode ser **POSITIVA**

Se

$$(y_i - \overline{y}) pprox 0$$
; $(x_i - \overline{x}) pprox 0$

ou

$$(y_i - ar{y}) pprox 0$$
; $(x_i - ar{x}) pprox 0$

Temos

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1} pprox 0$$

A covariância pode ser **NULA**

	Y			$\frac{1}{(x_i-\overline{x})}$	$\frac{1}{(y_i-ar{y})(x_i-ar{x})}$
			(0)	(0)	
1	45.26	5.46	-4.88	-0.95	4.63
2	49.04	6.56	-1.10	0.15	-0.16
3	51.54	5.84	1.40	-0.57	-0.79
4	56.46	7.81	6.32	1.40	8.84
5	48.40	6.38	-1.74	-0.03	0.05
\sum	50.14	6.41	0.00	0.00	12.57

$$s_{YX} = rac{\sum_{i=1}^{n}(y_i - ar{y})(x_i - ar{x})}{n-1} \ s_{YX} = rac{12.57}{5-1} = 3.14$$

Cenários possíeis

O coeficiente de correlação de Pearson

Um pouco de história

Na década de 1890, Karl Pearson foi apresentado a Francis Galton pelo zoólogo Walter Weldon. Juntos fundaram a revista Biometrika. com o objetivo de desenvolver teoria em estatística. Galton (primo de Charles Darwin) e Pearson trabalharam juntos em vários problemas relacionados à teoria da evolução, genética, biometria e estatística. Galton trouxe as primeiras ideias sobre a medida de associação entre duas variáveis quantitativas no contexto da hereditariedade e propôs o coeficiente de correlação linear para medir esta associação. Suas idéias foram estendidas por Karl Pearson e Udny Yule para um contexto estatístico mais geral. Pearson trouxe ainda muitas outras contribuições á estatística como o coeficiente de χ^2 e a ideia de graus de liberdade. O termo distribuição normal para variáveis com dustribuição Gaussiana também surgiu como fruto e seu trabalho (veja em: Karl Pearson).

4. O coeficiente de correlação linear de Pearson

Covariância amostral entre Y e X

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1}$$

Variância amostral de Y

$$s_Y^2 = rac{\sum_{i=1}^n (y_i - ar{y})^2}{n-1}$$

Variância amostral de X

$$s_X^2=rac{\sum_{i=1}^n(x_i-\overline{x})^2}{n-1}$$

O coeficiente de correlação linear de Pearson r

$$r = rac{s_{YX}}{\sqrt{s_Y^2} imes \sqrt{s_X^2}}$$

O r de Pearson é a covariância **padronizada** pelos desvios padrões de Y e X

4. O coeficiente de correlação linear de Pearson

A covariância não tem limites negativos ou positivos. A escala depende das magnitudes de Y e de X.

O r de Pearson varia entre -1 e +1.

4. O coeficiente de correlação linear de Pearson

$$r = rac{\sum_{i=1}^{n}(y_i - \overline{y})(x_i - \overline{x})}{\sqrt{\sum_{i=1}^{n}(y_i - \overline{y})^2}\sqrt{\sum_{i=1}^{n}(x_i - \overline{x})^2}}$$

- r=-1 (Associção linear perfeitamente **negativa**)
- r=0 (Associção linear inexistente)
- r=1 (Associção linear perfeitamente **positiva**)

FIM

class: h1_small

4. Teste de hipóteses sobre o r de Pearson

O r mede associações lineares

Correlação **não implica** causalidade

