Лабораторная работа 5

Борис Шапошников Виктор Шарепо Рамазан Рахматуллин

Обратная связь: bshaposhnikov01@gmail.com

Формулировка задачи

Для трех распределений $X \sim N(a,\sigma), X \sim U(a-\delta/2,a+\delta/2)$ и распределения Лапласа или двойного показательного — $L(a,u)=a+Exp_{\lambda}-Exp_{\lambda}, \lambda=\frac{1}{u}$ (суммируемые показательные распределения независимы). Сравнить следующие оценки параметра a — математического ожидания и медианы всех распределений, \bar{X}_n — выборочного среднего, med_n — выборочной медианы и $\frac{x_{(1)}+x_{(n)}}{2}$ — полусуммы минимума и максимума вариационного ряда. Все оценки не смещены. Сравнивать оценки нужно с точки зрения квадратичного риска (т. е. для несмещенных оценок одномерного параметра — дисперсии оценки). При n=100 — объем выборки, m=100 — количество выборок, построить 100 оценок каждого вида и сравнить их выборочные среднеквадратичные отклонения, повторить при n=10000, m=100. Сравнить с теоретическими среднеквадратичными отклонениями. Результат — 6 таблиц и вывод о том какая из оценок с точки зрения квадратичного риска является наилучшей.

	$X \sim N(a, \sigma)$	L(a, u)	$X \sim U(a - \delta/2, a + \delta/2)$
\bar{X}_n	$\frac{\sigma^2}{n}$	$\frac{2u^2}{n}$	$\frac{\delta^2}{12n}$
med_n	$\frac{\pi\sigma^2}{2n}$	$\frac{u^2}{n}$	$\frac{\delta^2}{4n}$
$\frac{x_{(1)} + x_{(n)}}{2}$	$\frac{c_1 \sigma^2}{\ln n}$	c_2u^2	$\frac{\delta^2}{2n^2}$

$$c_1 \approx 0.4$$

$$c_2 \approx 0.9$$

Параметры распределений

ullet Нормальное распределение $X \sim N(a,\sigma)$

$$a = 0$$

$$\sigma = 1$$

ullet Равномерное распределение $X \sim U(a-\delta/2,a+\delta/2)$

$$a = 0$$

$$\delta = 1$$

• Распределение Лапласа $X \sim L(a,u) = a + Exp_{\lambda} - Exp_{\lambda}, \lambda = \frac{1}{u}$

$$a = 0$$

$$u = 1$$

Код и таблицы

- n = 100, m = 100
 - Нормальное распределение

```
clc;
clear;
pkg load statistics;
```

```
6 c1 = 0.4;
_{7} c2 = 0.9;
9 n = 100;
_{10} m = 100;
_{11} a = 0;
12 sigma = 1;
x = normrnd(a, sigma, n, m);
16 Davg = sigma ^ 2 / n;
Dmed = pi * sigma ^ 2 / (2 * n);
Dminmax = c1 * sigma ^ 2 / log(n);
20 Tsigma_avg = sqrt(Davg);
21 Tsigma_med = sqrt(Dmed);
Tsigma_minmax = sqrt(Dminmax);
printf("Theoretical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax
     : %f\n", Tsigma_avg, Tsigma_med, Tsigma_minmax);
_{26} Eavg = mean(x);
27 Emed = median(x);
Eminmax = (\min(x) + \max(x)) ./ 2;
30 sigma_avg = std(Eavg);
sigma_med = std(Emed);
sigma_minmax = std(Eminmax);
printf("Practical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax:
     %f\n", sigma_avg, sigma_med, sigma_minmax);
```

$X \sim N(a, \sigma), n = 100, m = 100$	\bar{X}_n	med_n	$\frac{x_{(1)} + x_{(n)}}{2}$
σ — теоретическое	0.100000	0.125331	0.294718
σ — практическое	0.117486	0.121579	0.299006

– Равномерное распределение

```
clc;
clear;
pkg load statistics;
```

```
6 c1 = 0.4;
_{7} c2 = 0.9;
9 n = 100;
_{10} m = 100;
a = 0;
12 delta = 1;
x = unifrnd(a - delta / 2, a + delta / 2, n, m);
Davg = delta ^2 / (12 * n);
Dmed = delta ^2 / (4 * n);
18 Dminmax = delta ^ 2 / (2 * n ^ 2);
20 Tsigma_avg = sqrt(Davg);
21 Tsigma_med = sqrt(Dmed);
Tsigma_minmax = sqrt(Dminmax);
printf("Theoretical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax
     : %f\n", Tsigma_avg, Tsigma_med, Tsigma_minmax);
_{26} Eavg = mean(x);
27 Emed = median(x);
Eminmax = (\min(x) + \max(x)) ./ 2;
30 sigma_avg = std(Eavg);
sigma_med = std(Emed);
sigma_minmax = std(Eminmax);
printf("Practical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax:
     %f\n", sigma_avg, sigma_med, sigma_minmax);
```

$X \sim U(a - \delta/2, a + \delta/2), n = 100, m = 100$	$ar{X}_n$	med_n	$\frac{x_{(1)} + x_{(n)}}{2}$
σ — теоретическое	0.028868	0.050000	0.007071
σ — практическое	0.029562	0.047793	0.006985

– Распределение Лапласа

```
clc;
clear;
pkg load statistics;
```

```
6 c1 = 0.4;
_{7} c2 = 0.9;
9 n = 100;
_{10} m = 100;
_{11} a = 0;
u = 1;
x = a + exprnd(1 / u, n, m) - exprnd(1 / u, n, m);
Davg = 2 * u ^2 / n;
^{17} Dmed = u ^ 2 / n;
Dminmax = c2 * u ^ 2;
20 Tsigma_avg = sqrt(Davg);
21 Tsigma_med = sqrt(Dmed);
Tsigma_minmax = sqrt(Dminmax);
printf("Theoretical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax
     : %f\n", Tsigma_avg, Tsigma_med, Tsigma_minmax);
Eavg = mean(x);
27 Emed = median(x);
Eminmax = (\min(x) + \max(x)) ./ 2;
sigma_avg = std(Eavg);
31 sigma_med = std(Emed);
sigma_minmax = std(Eminmax);
printf("Practical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax:
     f^n, sigma_avg, sigma_med, sigma_minmax);
```

$X \sim L(a, u), n = 100, m = 100$	\bar{X}_n	med_n	$\frac{x_{(1)}+x_{(n)}}{2}$
σ — теоретическое	0.141421	0.100000	0.948683
σ — практическое	0.121876	0.108329	1.006396

- n = 10000, m = 100
 - Нормальное распределение

```
clc;
clear;
```

```
pkg load statistics;
6 c1 = 0.4;
_{7} c2 = 0.9;
9 n = 10000;
_{10} m = 100;
a = 0;
12 sigma = 1;
x = normrnd(a, sigma, n, m);
Davg = sigma ^ 2 / n;
_{17} Dmed = _{pi} * sigma ^ 2 / (2 * n);
Dminmax = c1 * sigma ^ 2 / log(n);
20 Tsigma_avg = sqrt(Davg);
21 Tsigma_med = sqrt(Dmed);
Tsigma_minmax = sqrt(Dminmax);
printf("Theoretical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax
     : %f\n", Tsigma_avg, Tsigma_med, Tsigma_minmax);
Eavg = mean(x);
27 Emed = median(x);
Eminmax = (\min(x) + \max(x)) ./ 2;
sigma_avg = std(Eavg);
sigma_med = std(Emed);
sigma_minmax = std(Eminmax);
printf("Practical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax:
     %f\n", sigma_avg, sigma_med, sigma_minmax);
```

$X \sim N(a, \sigma), n = 10000, m = 100$	\bar{X}_n	med_n	$\frac{x_{(1)} + x_{(n)}}{2}$
σ — теоретическое	0.010000	0.012533	0.208397
σ — практическое	0.010297	0.012542	0.207849

– Равномерное распределение

```
clc;
clear;
```

```
pkg load statistics;
6 c1 = 0.4;
_{7} c2 = 0.9;
9 n = 10000;
_{10} m = 100;
_{11} a = 0;
12 delta = 1;
x = unifrnd(a - delta / 2, a + delta / 2, n, m);
Davg = delta ^2 / (12 * n);
_{17} Dmed = delta ^ 2 / (4 * n);
Dminmax = delta ^ 2 / (2 * n ^ 2);
Tsigma_avg = sqrt(Davg);
21 Tsigma_med = sqrt(Dmed);
Tsigma_minmax = sqrt(Dminmax);
printf("Theoretical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax
     : %f\n", Tsigma_avg, Tsigma_med, Tsigma_minmax);
Eavg = mean(x);
27 Emed = median(x);
Eminmax = (\min(x) + \max(x)) ./ 2;
sigma_avg = std(Eavg);
sigma_med = std(Emed);
sigma_minmax = std(Eminmax);
printf("Practical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax:
     %f\n", sigma_avg, sigma_med, sigma_minmax);
```

$X \sim U(a - \delta/2, a + \delta/2), n = 10000, m = 100$	$ar{X}_n$	med_n	$\frac{x_{(1)} + x_{(n)}}{2}$
σ — теоретическое	0.002887	0.005000	0.000071
σ — практическое	0.002674	0.004262	0.000058

— Распределение Лапласа

```
clc;
```

```
clear;
pkg load statistics;
6 c1 = 0.4;
_{7} c2 = 0.9;
9 n = 10000;
_{10} m = 100;
_{11} a = 0;
u = 1;
x = a + exprnd(1 / u, n, m) - exprnd(1 / u, n, m);
_{16} \text{ Davg} = 2 * u ^ 2 / n;
^{17} Dmed = u ^ 2 / n;
_{18} Dminmax = c2 * u ^ 2;
20 Tsigma_avg = sqrt(Davg);
Tsigma_med = sqrt(Dmed);
Tsigma_minmax = sqrt(Dminmax);
printf("Theoretical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax
     : f^n, Tsigma_avg, Tsigma_med, Tsigma_minmax);
_{26} Eavg = mean(x);
27 Emed = median(x);
Eminmax = (\min(x) + \max(x)) ./ 2;
sigma_avg = std(Eavg);
sigma_med = std(Emed);
sigma_minmax = std(Eminmax);
printf("Practical sigma:\n\taverage: %f,\n\tmedian: %f,\n\tminmax:
     f^n, sigma_avg, sigma_med, sigma_minmax);
```

$X \sim L(a, u), n = 10000, m = 100$	\bar{X}_n	med_n	$\frac{x_{(1)} + x_{(n)}}{2}$
σ — теоретическое	0.014142	0.010000	0.948683
 σ — практическое 	0.013157	0.009899	0.848805

Вывод

В результате проведения работы практические и теоретические значения σ оказались близки (не отличаются по порядку). При увеличении п значения квадратичного риска приближаются к теоретическим для состоятельных оценок. Можно заметить что оценка MinMax не является состоятельной для распределения Лапласа. У каждого распределения своя оценка максимального правдоподобия имеет минимальную дисперсию (из-за несмещённости квадратичный риск = дисперсии).

Для
$$X \sim N(a,\sigma)$$
 — это \bar{X}_n , для $X \sim U(a-\delta/2,a+\delta/2)$ — это $\frac{x_{(1)}+x_{(n)}}{2}$ и для $X \sim L(a,u)$ — это med_n