STAT 345/445 Lecture 10

Families of Discrete Distributions – Sections 3.1 and 3.2

- Families of Discrete Distributions
 - Discrete Uniform Distribution
 - Binomial and Bernoulli Distributions
 - Hypergeometric Distributions
 - Poisson distributions
 - Negative Binomial and Geometric distributions

Families of Discrete Distributions

We will learn about some of the most commonly used discrete distributions, including their

- f(x) (usually F(x) is not available in closed form)
 - Notation for pmf that emphasizes the parameters:

$$f(x \mid \theta)$$

- parameter space Θ and support $\mathcal{X} = \{x : f(x) > 0\}$
- \bullet E(X), Var(X), M(t)
- special features and connections between distributions

See tables p. 621-627 in the Textbook

2/31

Discrete Uniform Distributions

Setting:

- Have N possible outcomes
- Each outcome is equally likely

Determine the pmf, cdf, mean and variance ...

3/31

Useful sums

Finite sums of powers

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

• Binomial formula: For all $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$

$$\sum_{i=0}^{n} \binom{n}{i} x^{i} y^{n-i} = (x+y)^{n}$$

• Geometric series: For -1 < r < 1

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$

STAT 345/445 Theoretical Statistics I Lecture 10 4/31

Discrete Uniform Distributions - summary

Probability mass function

$$f(x \mid N) = \frac{1}{N}$$
 for $x \in \{1, 2, 3, ..., N\}$

• Parameter space: $N \in \{1, 2, 3, ...\}$

Mean and Variance

$$E(X) = \frac{N+1}{2}$$
 $Var(X) = \frac{N^2-1}{12}$

Moment generating function

$$M_X(t) = \sum_{x=1}^N e^{tx} \frac{1}{N}$$

No simplification available.

Bernoulli Distributions - Bernoulli(p)

• Two possible outcomes:

success:
$$X = 1$$
 failure: $X = 0$

- Think: Games (win or lose), coin toss, etc
- Probability of success: p = P(X = 1)
- pmf:

$$f(x) = \begin{cases} 1 - p & \text{if } x = 0 \\ p & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases} = p^{x} (1 - p)^{1 - x} \quad \text{for } x = 0, 1$$

Parameter space: $p \in [0, 1]$, support: $\mathcal{X} = \{0, 1\}$

6/31

Bernoulli Distributions - Bernoulli(p)

cdf:

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

mean and variance:

$$E(X) = \sum_{x} xf(x) = 0 * (1 - p) + 1 * p = p$$

$$Var(X) = \sum_{x} x^{2}f(x) - (E(X))^{2} = 0^{2} * (1 - p) + 1^{2} * p - p^{2}$$

$$= p - p^{2} = p(1 - p)$$

mgf:

$$M(t) = \sum_{x} e^{tx} f(x) = e^{t*0} (1 - p) + e^{t*1} p = 1 - p + pe^{t}$$

7/31

Binomial distributions

- Bernoulli trial: *n* independent Bernoulli random variables
 - X_i = outcome of trial i (0 or 1), i = 1, 2, ..., n
 - Same probability of success (p) for all i

8/31

• Y = total number of successes in n trials

of success
$$(p)$$
 for all i

Support for Y :

successes in n trials

 $Y = X_1 + X_2 + \cdots + X_n$

- What is f(y) = P(Y = y)?
 - We haven't yet covered distributions of functions of more than one random variable (Chapter 4) but we can approach this differently ...

Binomial distributions

- What is P(Y = y)?
 - Y = y means we had y successes and n y failures
 - By independence, the probability of any one such outcome is

multiply prob
$$p^{y}(1-p)^{n-y}$$

- Number of ways we could get y successes in n trials: $\binom{n}{y}$
- These are disjoint events so we add up the probabilities and get

$$f(y) = \binom{n}{y} p^{y} (1-p)^{n-y}$$
 for $y = 0, 1, ..., n$

Lecture 10

9/31

- Are we sure that this f(v) is a part?
 - Parameter space? Support?

Mean, Variance and mgf for the Binomial Distribution

• Finding E(X) and $E(X^2)$ directly involves evaluating the sums

$$E(\chi) = \sum_{y=0}^{n} y \frac{n!}{y!(n-y)!} p^{y} (1-p)^{n-y}$$

$$E(\chi^{2}) = \text{and } \sum_{y=0}^{n} y^{2} \frac{n!}{y!(n-y)!} p^{y} (1-p)^{n-y}$$

not impossible but a bit tedious. The mgf route is a bit easier in this case...

STAT 345/445 Theoretical Statistics I Lecture 10 10/31

Binomial Distributions – Binomial (n, p)

Probability mass function

$$f(x \mid n, p) = \binom{n}{x} p^x (1-p)^{n-x}$$
 for $x \in \{0, 1, 2, ..., n\}$

- Parameter space: $0 \le p \le 1, n \in \{1, 2, 3, ...\}$
- Special case: **Bernoulli distribution** if n = 1

Mean and Variance

$$E(X) = np$$
 $Var(X) = np(1-p)$

Moment generating function

$$M_X(t) = (pe^t + 1 - p)^n$$

STAT 345/445 Theoretical Statistics I Lecture 10 11/31

Binomial pmfs

12/31

STAT 345/445 Theoretical Statistics I Lecture 10

Hypergeometric distributions

- Sampling from a finite population, without replacement
- Have a population of N items, M of which are of the type of interest
 - Think: N balls in an urn, M of which are red
- Randomly pick K items, without replacement
 - and unordered
- Random variable of interest:

X = number of items of type 1 in the sample

13/31

Hypergeometric distribution - Example

- N = 20 balls in an urn, M = 7 are red
- Randomly pick K = 3 balls, without replacement
- Random variable of interest:

X = number of red balls in the sample

• What is f(x)?

Hypergeometric distribution - Example

- Opinion poll
 - N = 5150 CWRU undergraduate students (Fall 2018)
 - M = 2550 Engineering students
 - K = 300 students randomly selected for a survey
- X = number of engineering students selected for the survey
- Probability that X = x:

$$f(x) = \frac{\binom{2550}{x} \binom{5150 - 2550}{300 - x}}{\binom{5150}{300}} \qquad x = 0, 1, 2, \dots, 300$$

Or: $X \sim \text{HyperGeometric}(N = 5150, M = 2550, K = 300)$

Hypergeometric Distributions – $\operatorname{HyperGeo}(N, M, K)$

Probability mass function

$$f(x \mid M, N, K) = \frac{\binom{M}{x} \binom{N-M}{K-x}}{\binom{N}{K}}$$
 for $x \in \{0, 1, 2, ..., K\}$

- Parameter space: $N, M, K \in \{1, 2, 3, ...\}, M \le N, K \le N$
- Implied: $M (N K) \le x \le M$
- Showing $\sum_{x} f(x \mid M, N, K) = 1$ is not trivial

Mean and Variance

$$E(X) = \frac{KM}{N} \qquad \operatorname{Var}(X) = \frac{KM}{N} \frac{(N-M)}{N} \frac{(N-K)}{N-1}$$

mgf: no simplification available

Hypergeometric pmfs

STAT 345/445 Theoretical Statistics I Lecture 10 17/31

Hypergeometric distributions - Example

- Opinion poll
 - N = 5150 CWRU students, M = 2550 Engineering students
 - K = 300 students randomly selected for a survey
- R.v. X = number of engineering students selected for the survey
- If 300 students are randomly selected from an *infinite* population then X ~ Binomial(300, p) where p is the probability that a student is in engineering.
- Sampling from a finite population is trickier than an infinite population
- Real world survey, e.g. a random sample of US adults, usually assume that the population is infinite

Comparing Hypergeometric and Binomial

• Mean and variance of $X \sim \operatorname{HyperGeo}(N, M, K)$:

$$E(X) = \frac{KM}{N} \qquad \operatorname{Var}(X) = \frac{KM}{N} \frac{(N-M)}{N} \frac{(N-K)}{N-1}$$

• Compare to Binomial with n = K and $p = \frac{M}{N}$: $\left(1 - \frac{M}{N}\right)$

$$E(X) = \frac{KM}{N} = np$$

$$Var(X) = np(1-p)\frac{(N-K)}{N-1} \le np(1-p)$$

Same mean but smaller variance than a Binomial random variable

19/31

• Variance similar if N is big and $K \ll N$

Hypergeometric pmfs

Hypergeometric with M/N = 0.25, K = 30Binomial with n = 30, p = 0.25

STAT 345/445 Theoretical Statistics I Lecture 10 20/31

Poisson distributions

Probability mass function

$$f(x \mid \lambda) = \frac{e^{-\lambda}\lambda^{x}}{x!} \qquad x = 0, 1, 2, 3, \dots$$

• Parameter space: $\lambda > 0$

Mean and Variance

$$E(X) = \lambda$$

$$Var(X) = \lambda$$

Have show and of this

Moment generating function

$$M_X(t) = \exp\left(\lambda \left(e^t - 1\right)\right)$$

Poisson distributions

- Useful to model counts
 - E.g. radiation, calls per minute, etc.
- Recursive property: If $X \sim \text{Poisson}(\lambda)$ then

$$P(X=x) = \frac{\lambda}{x}P(X=x-1)$$

STAT 345/445 Theoretical Statistics I Lecture 10 22/31

Negative Binomial and Geometric distributions

- Binomial: n Bernoulli trials
- Geometric: Bernoulli trials until we get a success
- Negative binomial: Bernoulli trials until we get r successes

Examples:

- Randomly trying keys to open door, but don't keep track of which key has already been checked
- Randomly select fish from a catch until we have r juveniles.

Geometric distributions

- X = number of trials until (and including) we get the first success
- Let p be the probability of success for each trial
- What is f(x)? Let s = success, f = failure

Outcome	Χ	P(X = x)	
S	1	P	
f, s	2	(1-b) b	
f, f, s	3	(1-P)2P	
f, f, f, s	4	$(1-p)^3p$	
f, f, f, f, s	5	,	
:	:	; ,x-1	pus?
$f \times (x-1)$, s	Х	(1-b) P	•

STAT 345/445 Theoretical Statistics I Lecture 10 24/31

Useful sums

• Geometric series: For -1 < r < 1

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$

• Geometric sum: For $r \neq 1$

$$\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}$$

Geometric distributions

X = number of trials until (and including) we get the first success

Probability mass function

$$f(x \mid p) = p(1-p)^{x-1}$$
 $x = 1, 2, 3, ...$

- Parameter space: $0 \le p \le 1$
- cdf: $F(x) = 1 (1 p)^x$ for x > 1, 2, 3, ...

Mean and Variance

$$E(X) = \frac{1}{\rho} \qquad \operatorname{Var}(X) = \frac{1 - \rho}{\rho^2}$$

Moment generating function

$$M_X(t) = rac{pe^t}{1 - (1 - p)e^t}$$
 $t < -log(1 - p)$

In Lecture
$$Q$$
 we found
$$E(Y) = \frac{1-\theta}{\theta}$$

$$f(g) = \theta(1-\theta)^g \qquad g = 0, 1, 2, \dots$$

$$f(g) = \theta(1-\theta)^g$$
 $g = 0, 1, 2, ...$
 $Y : \# failures before success$
 $X = Y + 1 = (X) = E(Y) + 1 = \frac{1}{\theta} - 1 + 1 = \frac{1}{\theta}$

Geometric distribution - memoryless

Geometric distribution has a memoryless property

Theorem

If $X \sim \text{Geometric}(p)$ then

$$P(X > n + m \mid X > n) = P(X > m)$$

Bernoulli trials until we have r successes

- X = number of failures until we get r successes
- Let p be the probability of success for each trial
- What is f(x)? Let s = success, f = failure and r = 3

Outcome	X	P(X = x)
SSS	0	P ³
fsss or sfss or ssfs	1	p3 (1-p) (3)
2 f and 2 s in the first 4 trials, then s	2	$p^{3}(1-p)^{2}\binom{4}{2}$
3 f and 2 s in the first 5 trials, then s	3 —	$\sim p^3 \left(1-p\right)^3 \left(\frac{5}{2}\right)$
4 f and 2 s in the first 6 trials, then s	4	p3(1-p)4(6)
: v f and 2 a in the first v 2 triple then a	:	D3 (1-P) (x+r-1)
,	3 - 4 : x	$ \begin{array}{cccc} & p^{3} & (1-p)^{3} & \binom{5}{3} \\ & p^{3} & (1-p)^{4} & \binom{6}{4} \\ & p^{3} & (1-p)^{4} & \binom{6}{4} \end{array} $

Negative Binomial

X = number of failures before the r success

Probability mass function

$$f(x \mid r, p) = {r + x - 1 \choose x} p^r (1 - p)^x$$
 $x = 0, 1, 2, 3, ...$

• Parameter space: $0 \le p \le 1$, $r \in \mathbb{N}$

Mean and Variance

$$E(X) = \frac{r(1-p)}{p} \qquad \operatorname{Var}(X) = \frac{r(1-p)}{p^2}$$

Moment generating function

$$M_X(t) = \left(\frac{p}{1 - (1 - p)e^t}\right)^r$$
 $t < -log(1 - p)$

STAT 345/445 Theoretical Statistics I Lecture 10 29/31

Negative Binomial

- Negative Binomial is often used to model counts as an alternative to Poisson
 - Can be helpful for over-dispersed data
- Negative binomial can be written as a mixture distribution of a Poisson and a Gamma:

$$Y \mid \lambda \sim \text{Poisson}(\lambda)$$
 and $\lambda \sim \text{Gamma}(\alpha, \beta)$
 $\Rightarrow Y \sim \text{NegativeBinomial}(\cdot, \cdot)$

more later...

Negative Binomial pmfs

STAT 345/445 Theoretical Statistics I Lecture 10 31/31