WP90350 List 4, WA-LS195

4-Bit Parallel/Serial-In/Parallel-Out Shift Register

The LS195 is a bipolar, NPN, sealed-junction, silicon integrated circuit. It is manufactured in low-power Schottky technology and is available in a wire-bonded, 16-pin plastic DIP or surface mount package. This device is a universal shift register allowing serial, parallel, serial-to-parallel, or parallel-to-serial data transfers at very high speeds.

Truth Table

Inputs								Outputs					
Clear	Shift/ Load	Clock	Serial		Parallel								
			J	K	A	В	C	D	QA	Qв	Qc	Qр	Q̄D
L	Х	х	Х	х	Х	х	х	х	L	L	L	L	Н
Н	L	1 1	X	х	a	ь	С	d	a	ь	c	d	d
H	н	L	X	х	x	X	x	x	QA0	QB0	Qc ₀	QD0	QD0
Ħ	Н	1 1	L	н	x	X	x	x	QA0	QA0	QBn	QCn	Q Cn
H	н	1	L	L	x	x	x	X	L	QAn	QBn	QCn	QCn
H	Н	ĺſ	Н	н	x	x	x	x	H	QAn	Qвл	QCn	Q Cn
H	н] †]	H	Н	x	x	x	x	Q An	QAn	QBn	QCn	Q Cn

H = High level (steady state)

L = Low level (steady state)

X = Irrelevant (any input, including transitions)

t = Transition from low to high level

a, b, c, d = The level of steady-state at inputs A, B, C, or D, respectively

QA0, QB0, QC0, QD0 = The level of QA, QB, QC, or QD, respectively,

before the indicated steady-state input conditions were established

QAn, QBn, QCn = The level of QA, QB, or QC, respectively, before the most recent transition of the clock

WA-LS195, WP90350 List 4

Logic Diagram

Electrical Characteristics

 $VCC = 5.0 \pm 0.5 \text{ V}, \text{ TA} = -55 \text{ to } +125^{\circ}\text{C} \text{ (WA-LS)}$ $VCC = 5.0 \pm 0.25 \text{ V}, \text{ TA} = 0 \text{ to } 70^{\circ}\text{C} \text{ (WP)}$

		WA-LS		WP		
Parameter	Symbol	Min	Max	Min	Max	Units
Output Voltage, VCC = 4.5 V (WA-LS), VCC = 4.75 V (WP) Low, IOL = 4.0 mA IOL = 8.0 mA High, IOH = -0.4 mA	VOL VOL VOH	- - 2.5	0.4 0.5 —	- - 2.7	0,4 0.5 —	V V V
Input Voltage, VCC = 4.5 V (WA-LS), VCC = 4.75 V (WP) Low High Clamp, IIN = -18.0 mA	VIL VIH VIK	_ 2.0 _	0.7 7.5 -1.5	 2.0 _	0.8 5.5 -1.5	V V V
Input Current, VCC = 5.5 V (WA-LS), VCC = 5.25 V (WP) Low, VIL = 0.4 V High, VIH = 2.7 V @ VI max, VI = 7.0 V (WA-LS), VI = 5.5 V (WP)	IIL IIH II		-0.4 20.0 0.1	-	-0.4 20.0 0.1	mA μA mA
Output Current, VCC = 5.5 V (WA-LS), VCC = 5.25 V (WP) Short-Circuit	Ios	-20.0	-100.0	-20.0	-100.0	mA
Supply Current, VCC = 5.5 V (WA-LS), VCC = 5.25 V (WP)	Icc		21.0	_	21.0	mA

Timing Characteristics

VCC = 5.0 V, TA = 25°C, CL = 15 pF

	WA	-LS	W			
Parameter	Symbol	Min	Max	Min	Max	Units
Propagation Delay						1
Clear-to-Output						
High-to-Low	tPHL	_	30.0	_	30.0	ns
Clock-to-Output			ĺ			1
Low-to-High	tPLH	_	22.0	_	22.0	ns
High-to-Low	tPHL	_	26.0	_	26.0	ns
Operating Conditions						
Width of Clock Pulse	tw	16.0		16.0		ns
Width of Clear Pulse	l tw	12.0	_	12.0		ns
Setup Time						
Shift/Load, Low	tosl	25.0	_	25.0	_	ns
High	tdsh	25.0	_	25.0	_	ns
Data-to-Clock, Low	tosl	15.0		15.0	_	ns
High	tdsh	15.0	-	15.0	_	ns
Clear Inactive State, Low	tDSL	25.0		25,0	_	ns
High	tosh	25.0		25.0	_	ns
Hold Time						
Data-to-Clock, Low	tDHL	0	_	0	_	ns
High	t DHH	0	_	0	_	ns
Shift/Load, Low	tDHL	0		0	_	ns
High	tohh	0	- 1	0	_	ns
Release Time						
Shift/Load	trel	- i	10.0		10.0	ns
Maximum Clock Frequency	fmax	30.0	-	30.0	-	MHz

Maximum Ratings*

- * Maximum ratings are defined as the limiting conditions that the user can apply to the device under all variations of circuit and environmental conditions. If any rating is exceeded, permanent damage to the device may result.
- ** Bonding or soldering of the external leads of this device can be performed safely at temperatures up to 300°C.

WA-LS195, WP90350 List 4

82

Timing Diagrams

Figure 1. Clock and Output Waveforms

Figure 2. Shift/Load, Set-Up, Hold Time, Parallel Data, and Serial Data Waveforms

82

D

WP90350 List 4, WA-LS195

CONDITIONS: SHIFT / LOAD = L A = B = C = D = H

Figure 3. Clear, Clock, and Output Waveforms

Figure 4. Shift/Load, Clock, and Output Waveforms

Packaging Information

- * See End-Lead Configuration for Lead Dimensions (Refer to Detail A, B, C, D)
- ** See Center-Lead Configuration for Lead Dimensions (Refer to Detail E, F, G)

Postmolded Plastic DIP Dimensions†

No. Leads	A Max	B Max	C Max	D Max	E BSC	F Max	Notes	Lead Configuration		
14	.320 (8.13)	.795 (20.19)	.255 (6.48)	.140 (3.56)	.300 (7.62)	.400 (10.16)	1,2,3,4	ĀĒ	B G	
16	.320 (8.13)	.795 (20.19)	.265 (6.73)	.140 (3.56)	.300 (7.62)	.400 (10.16)	1,2,3,4	B D F	Ē Ē	
20	.320 (8.13)	1.040 (26.42)	.255 (6.48)	.140 (3.56)	.300 (7.62)	.400 (10.16)	1,2,3,4	Ā D F	B E G	

† Dimensions are in inches and (millimeters).

Notes:

- 1. Meets JEDEC standards.
- 2. Index mark may be semicircular notch located in index area.
- 3. Index mark may be circular dimple located in index area.
- Actual dimensions may vary depending on location of assembly, but all meet limits shown in table.

Packaging Information

Postmolded Plastic DIP Lead Configurations

End Leads

Detail A: Full-Lead/Square Shoulder

Detail B: Full-Lead/Tapered Offset

Detail C: Half-Lead/Square Shoulder

Detail D: Half-Lead/Tapered

Center Leads

Detail E: Square Shoulder

Detail F: Taper

Detail G: Taper

Notes: Lead configurations vary depending on location of assembly. Dimensions are in inches and (millimeters).

viii