$f\in C_O^-(\mathbb{R}^n)\quad \text{the expression}\quad \Delta f\quad \text{is understood in the sense of distributions. Moreover, the space}\quad C_C^\infty(\mathbb{R}^n)\quad \text{(of all infinitely differentiable functions with compact support) is a core of \bar{A} (cf. d).}$

<u>Proof.</u> A is dispersive. In fact, let $f \in D(A)$. If $f^+ = 0$, then $\phi := 0 \in dN^+(f)$. So assume that $f^+ \neq 0$. Then there exists $x \in \mathbb{R}^n$ such that $f(x) = \|f\|_{\infty} = \sup\{f(y) : y \in \mathbb{R}^n\}$. Thus $\delta_x \in dN^+(f)$. Since f has a maximum in x it follows that $\langle Af, \delta_x \rangle = (\Delta f)(x) = \operatorname{tr}(\partial^2 f/\partial x_i \partial x_i)(x) \leq 0$. Moreover,

(1.3) (Id - Δ) is an isomorphism from $S(\mathbb{R}^n)$ onto $S(\mathbb{R}^n)$.

In fact, the Fourier transform $f \to \hat{f}$ is a bijection from $S(\mathbb{R}^n)$ onto $S(\mathbb{R}^n)$.

But $[(Id - \Delta)f]$ = Mf where $(Mg)(y) = (1 + \sum_{i=1}^{n} y_i^2)g(y)$ $(g \in S(\mathbb{R}^n))$. It follows from (1.3) that (Id - A)D(A) is dense in E . So the claim follows from Cor.1.3.

d) Let $E=L^p(\mathbb{R}^n)$ $(1\leq p<\omega)$ and A be given by $Af=\Delta f$ with domain $D(A)=\{f\in L^p(\mathbb{R}^n):\Delta f\in L^p(\mathbb{R}^n)\}$ where for $f\in L^p(\mathbb{R}^n)$ the expression Δf is understood in the sense of distributions. Then A is the generator of a positive contraction semigroup. Moreover, the space $C_C^\infty(\mathbb{R}^n)$ is a core of A .

<u>Proof.</u> It is easy to see that A is closed. Let A_O denote the restriction of A to $S:=S(\mathbb{R}^n)$. Then $A_O f = \Delta f$ in the classical sense for all $f \in S$. One can show in an analogous way as in b) that A_O is dispersive. Moreover, it follows from (1.3) that (Id $-A_O D(A_O)$ is dense. Hence by Cor. 1.3 the closure \overline{A}_O of A_O is the generator of a positive contraction semigroup. By construction one has $\overline{A}_O \subseteq A$. We prove that $\overline{A}_O = A$. For that it is enough to show that

(1.4) (Id - A) is injective.

In fact, since the restriction (Id - \bar{A}_O) of (Id - A) is bijective from D(\bar{A}_O) onto E it follows from (1.4) that D(\bar{A}_O) = D(A). So let us show (1.4). Assume that there is f \in E such that f - Af = 0 . Let $\phi \in C_C^\infty(\mathbb{R}^n)$. Then

(1.5)
$$\langle \phi - \Delta \phi, f \rangle = 0$$
.

Since $C_c^{\infty}(\mathbb{R}^n)$ is dense in S for the topology of S, it follows from (1.3) that $(\mathrm{Id}-\Delta)C_C^{\infty}(\mathbb{R}^n)$ is dense in S. Hence (1.5) implies