Lógica Matemática

- Estudaremos algumas propriedades dos operadores lógicos que são semelhantes a algumas propriedades dos operadores aritméticos.
- X Também estudaremos outras propriedades dos operadores lógicos que são importantes para a definição de implicações e equivalências lógicas, assim como para a transformação e simplificação das expressões lógicas.

PROPRIEDADES DA LÓGICA

- Começaremos estudando propriedades fundamentais:
 - Idempotente;
 - o Comutativa;
 - Associativa;
 - o Identidade;
 - o Nulidade.

algumas

X Vamos usar um operador fictício, denotado como ⊙, e um elemento neutro N, e outro absorvente A, para ilustrar a ideia em cada caso:

o Idempotente: $p \odot p \Leftrightarrow p$

 \circ Comutativa: $p \odot q \Leftrightarrow q \odot p$

• Associativa: $(p \odot q) \odot r \Leftrightarrow p \odot (q \odot r)$

o Identidade: $p \odot N \Leftrightarrow p$

o Nulidade: $p \odot A \Leftrightarrow A$

X Onde, p e q são proposições.

PROPRIEDADES DA ARITMÉTICA

Podemos usar a aritmética para ilustrar algumas dessas propriedades nos operadores lógicos:

Idempotente: 0

Comutativa: 0

Soma: p + q = q + p

Multiplicação: $p \times q = q \times p$

Associativa: 0

Soma: (p+q) + r = p + (q+r)

Identidade:

Soma:

p + 0 = p

Multiplicação: $(p \times q) \times r = p \times (q \times r)$

Onde, 0 é elemento neutro para a soma.

Nulidade 0

0

Multiplicação: $p \times 1 = p$

Onde, 1 é elemento neutro para a multiplicação.

Multiplicação: $p \times 0 = 0$

Onde, 0 é elemento absorvente para a multiplicação.

PROPRIEDADE IDEMPOTENTE

- X Os operadores de conjunção ∧ e disjunção ∨ possuem a propriedade idempotente, conforme mostrado mediante as tabelas-verdade:
 - i) $p \land p \Leftrightarrow p$

p	$p \wedge p$	$(p \land p) \longleftrightarrow p$
V	V	V
F	F	V
1	2	

p	$p \lor p$	$(p \lor p) \longleftrightarrow p$
V	V	V
F	F	V
1	1	

- Em ambos casos, as equivalências são verificadas dado que as bicondicionais correspondentes são tautologias. Observe que as colunas de cada lado da bicondicional são idênticas.
- X Por outro lado, pode ser verificado que os operadores condicional → e bicondicional ↔ não possuem a propriedade idempotente.

PROPRIEDADE COMUTATIVA

X Os operadores de conjunção ∧ e disjunção ∨ possuem a propriedade comutativa, conforme mostrado mediante as tabelas-verdade:

i)
$$p \land q \Leftrightarrow q \land p$$

_ii)) p	Vq	\iff	q	$\vee p$

p	q	$p \wedge q$	$q \wedge p$
V	V	V	V
V	F	F	F
F	V	F	F
F	F	F	F

q	$p \lor q$	$q \lor p$
V	V	V
F	V	V
V	V	V
F	F	F
	V F V	V V F V V V

- Em ambos casos, as equivalências são verificadas dado que as bicondicionais correspondentes são tautologias. Observe que as colunas de cada lado da bicondicional são idênticas.
- X O operador condicional → não goza da propriedade comutativa.
- ✗ Já o operador bicondicional
 → sim goza da propriedade comutativa.

PROPRIEDADE ASSOCIATIVA

X O operador de conjunção ∧ goza da propriedade associativa, conforme mostrado na tabela-verdade.

i)
$$(p \land q) \land r \Leftrightarrow p \land (q \land r)$$

p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	F	F	F
V	F	F	F	F	F	F
F	V	V	F	F	V	F
F	V	F	F	F	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F

- Observa-se que a equivalência é verificada dado que as colunas de cada lado da bicondicional correspondente são idênticas.
- X Portanto, a bicondicional correspondente é tautológica.

PROPRIEDADE ASSOCIATIVA

X O operador de disjunção ∨ goza da propriedade associativa, conforme mostrado na tabela-verdade:

ii)
$$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$$

p	q	r	$p \lor q$	$(p \lor q) \lor r$	$q \lor r$	$p \lor (q \lor r)$
V	V	V	V	V	V	V
V	V	F	V	V	V	V
V	F	V	V	V	V	V
V	F	F	V	V	F	V
F	V	V	V	V	V	V
F	V	F	V	V	V	V
F	F	V	F	V	V	V
F	F	F	F	F	F	F

- Observa-se que a equivalência é verificada dado que as colunas de cada lado da bicondicional correspondente são idênticas.
- X Portanto, a bicondicional correspondente é tautológica.

PROPRIEDADE ASSOCIATIVA

- Por outro lado, pode ser verificado que o operador condicional → não goza da propriedade associativa.
- X Também, pode ser verificado que o operador bicondicional ↔ sim goza da propriedade associativa.

PROPRIEDADE DE IDENTIDADE

- $m{x}$ Os operadores de conjunção Λ e disjunção V gozam da propriedade de identidade, sempre que se considerem como elementos neutros t e c, respectivamente, onde t representa uma tautologia e c uma contradição.
- Em ambos casos, as equivalências são verificadas dado que as bicondicionais correspondentes são tautologias. Observe que as colunas de cada lado da bicondicional são idênticas.

i)
$$p \wedge t \Leftrightarrow p$$

p	t	$p \wedge t$	$(p \wedge t) \leftrightarrow p$
V	V	V	V
F	V	F	V
1			TRAIN FOR BUILDING

ii)	$p \lor$	_	→	v
1117	ν	_	_	L
/	L ·			L

p	С	$p \lor c$	$(p \lor c) \longleftrightarrow p$
V	F	V	V
F	F	F	V
1		1	

PROPRIEDADE DE NULIDADE

- Sos operadores de conjunção \land e disjunção \lor gozam da propriedade de nulidade, sempre que se considerem como elementos absorventes c e t, respectivamente, onde c uma contradição e t representa uma tautologia.
- Em ambos casos, as equivalências são verificadas dado que as bicondicionais correspondentes são tautologias. Observe que as colunas de cada lado da bicondicional são idênticas.

i)
$$p \wedge c \Leftrightarrow c$$

p	С	$p \wedge c$	$(p \land c) \leftrightarrow c$
V	F	F	V
F	F	F	V
	1	1	

ii)
$$p \lor t \Leftrightarrow t$$

p	t	$p \lor t$	$(p \lor t) \longleftrightarrow t$
V	V	V	V
F	V	V	V
	1	1	

PROPRIEDADES DISTRIBUTIVAS

 \mathbf{x} Sejam p, q e r proposições simples quaisquer, as propriedades distributivas são as seguintes:

i)
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

ii)
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

- Essas regras estabelecem o seguinte:
- o i) A conjunção é distributiva em relação à disjunção.
- o ii) A disjunção é distributiva em relação à conjunção.

PROPRIEDADES DISTRIBUTIVAS - EXEMPLOS

X Considerando a primeira equivalência:

i)
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

x Temos que a proposição:

"Carlos estuda e Jorge ouve música ou lê" seria equivalente à seguinte proposição:

"Carlos estuda **e** Jorge ouve música" **ou** "Carlos estuda **e** Jorge lê"

Considerando a segunda equivalência:

ii)
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

X Temos que a proposição:

"Chove **ou** faz vento **e** frio"

seria equivalente à seguinte proposição:

"Chove **ou** faz vento " **e** "Chove **ou** faz frio"

PROPRIEDADES DISTRIBUTIVAS

- Mostra-se a equivalência da primeira regra distributiva usando tabelas-verdade:
 - i) $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

p	q	r	$q \vee r$	$p \wedge (q \vee r)$	$p \wedge q$	p∧r	$(p \wedge q) \vee (p \wedge r)$
V	V	V	V	V	V	V	V
V	V	F	V	V	V	F	V
V	F	V	V	V	F	V	V
V	F	F	F	F	F	F	F
F	V	V	V	F	F	F	F
F	V	F	V	F	F	F	F
F	F	V	V	F	F	F	F
F	F	F	F	F	F	F	F

X Na tabela-verdade, observe que as proposições de cada lado da equivalência possuem colunas idênticas, portanto elas são equivalentes.

PROPRIEDADES DISTRIBUTIVAS

- X Mostra-se a equivalência da segunda regra distributiva usando tabelas-verdade:
 - ii) $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

p	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
V	V	V	V	V	V	V	V
V	V	F	F	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	F	F	V	F	F
F	F	V	F	F	F	V	F
F	F	F	F	F	F	F	F

X Na tabela-verdade, observe que as proposições de cada lado da equivalência possuem colunas idênticas, portanto elas são equivalentes.

PROPRIEDADES DE ABSORÇÃO

- X As regras de absorção estabelecem que certas proposições que combinam operadores ∧ e ∨ tem valor de verdade definido por apenas um único termo. Tais proposições possuem a seguinte estrutura:
 - i) $p \land (p \lor q) \Leftrightarrow p$
 - ii) $p \lor (p \land q) \Leftrightarrow p$
- Em ambos casos, o primeiro termo determina o valor de verdade de toda a proposição. Esse termo também faz parte do segundo termo.

PROPRIEDADES DE ABSORÇÃO

- Mostra-se a equivalência das propriedades de absorção usando tabelas-verdade:
 - i) $p \land (p \lor q) \Leftrightarrow p$

p	q	$p \wedge q$	<i>p</i> ∨ (<i>p</i>
V	V	V	V
V Valentino	(0-100m)		

ii) $p \lor (p \land q) \Leftrightarrow p$

p	q	$p \lor q$	$p \land (p \lor q)$
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	F

p	q	$p \wedge q$	$p \lor (p \land q)$
V	V	V	V
V	F	F	V
F	V	F	F
F	F	F	F

- ambos casos, as colunas proposições relacionadas são idênticas, portanto proposições são essas equivalentes.
- Com isso, as seguintes bicondicionais são tautológicas:

i)
$$p \land (p \lor q) \leftrightarrow p$$

ii)
$$p \lor (p \land q) \longleftrightarrow p$$

PROPRIEDADES DE DE MORGAN

X As propriedades de De Morgan relacionam os operadores \land e \lor , da seguinte maneira:

i)
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

ii)
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

- As regras referem-se as negação de uma conjunção e negação de uma disjunção, respectivamente. Essas regras estabelecem o seguinte:
- Negar que duas proposições são ao mesmo tempo verdadeiras equivale a afirmar que pelo menos uma delas é falsa.
- ii. Negar que ao menos uma de duas proposições é verdadeira equivale a afirmar que ambas são falsas.

Segundo as propriedades de De Morgan podemos afirmar que a negação permite transformar a conjunção em disjunção e a disjunção em conjunção.

PROPRIEDADES DE DE MORGAN - EXEMPLOS

Com base na primeira propriedade de DeMorgan:

i)
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

X A negação da proposição:

"É inteligente e estuda"

seria a seguinte proposição:

"Não é inteligente ou não estuda"

X Com base na segunda propriedade de DeMorgan:

ii)
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

X A negação da proposição:

"É médico **ou** professor"

seria a seguinte proposição:

"Não é médico e não é professor"

Propriedades da Conjunção e Disjunção

PROPRIEDADES DE DE MORGAN

Mostra-se a equivalência da primeira regra de De Morgan usando tabelas-verdade:

i)
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

p	q	$p \wedge q$	$\neg(p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

X Na tabela-verdade, observe que as proposições de cada lado da equivalência possuem colunas idênticas, portanto elas são equivalentes.

Propriedades da Conjunção e Disjunção

PROPRIEDADES DE DE MORGAN

Mostra-se a equivalência da segunda regra de De Morgan usando tabelas-verdade:

ii)
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

p	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
V	V	V	F	F	F	F
V	F	V	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	V	V	V
			-			

X Na tabela-verdade, observe que as proposições de cada lado da equivalência possuem colunas idênticas, portanto elas são equivalentes.

Propriedades da Conjunção e Disjunção

PROPRIEDADES DE DE MORGAN

x Com base nas regras de De Morgan:

i)
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

ii)
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

- Mostra-se que:
- i. É possível definir a conjunção a partir da disjunção e da negação;

i)
$$(p \land q) \Leftrightarrow \neg(\neg p \lor \neg q)$$

- **X** Mostra-se que:
- i. È possível definir a disjunção a partir da conjunção e da negação.

ii)
$$(p \lor q) \Leftrightarrow \neg(\neg p \land \neg q)$$

NEGAÇÃO DA CONDICIONAL

* Anteriormente, foi mostrada que a seguinte equivalência para a condicional:

$$p \rightarrow q \iff \neg p \lor q$$

X Mostraremos uma equivalência para sua negação, usando as propriedades:

$$\neg (p \to q) \Leftrightarrow \neg (\neg p \lor q)$$

$$\Leftrightarrow \neg \neg p \land \neg q \qquad \text{(De Morgan)}$$

$$\neg (p \to q) \Leftrightarrow p \land \neg q \qquad \text{(Dupla Negação)}$$

 Mostramos a equivalência usando a tabela-verdade de cada proposição:

p	q	$p \longrightarrow q$	$\neg(p \rightarrow q)$	$\neg q$	$p \land \neg q$
V	V	V	F	F	F
V	F	F	V	V	V
F	V	V	F	F	F
F	F	V	F	V	F
HAX	AMY				

X As tabelas-verdade das duas proposições são idênticas, portanto elas são equivalentes.

NEGAÇÃO DA BICONDICIONAL

X Anteriormente, foi mostrada que a seguinte equivalência para a condicional:

$$p \leftrightarrow q \iff (p \rightarrow q) \land (q \rightarrow p)$$

X A partir da equivalência acima, e com base na equivalência da condicional, temos uma outra expressão para a bicondicional:

$$p \leftrightarrow q \iff (\neg p \lor q) \land (\neg q \lor p)$$

X Mostraremos uma equivalência para a negação da bicondicional:

$$\neg(p \leftrightarrow q) \Leftrightarrow \neg((\neg p \lor q) \land (\neg q \lor p)) \quad (\text{Negação})$$

$$\Leftrightarrow \neg(\neg p \lor q) \lor \neg(\neg q \lor p) \quad (\text{De Morgan})$$

$$\Leftrightarrow (\neg \neg p \land \neg q) \lor (\neg \neg q \land \neg p) \quad (\text{De Morgan})$$

$$\neg(p \leftrightarrow q) \Leftrightarrow (p \land \neg q) \lor (q \land \neg p) \quad (\text{Dupla Negação})$$

NEGAÇÃO DA BICONDICIONAL

- * Mostraremos a equivalência para a negação da bicondicional usando tabelas-verdade.
- **x** Considere a equivalência:

$$\neg(p \leftrightarrow q) \Leftrightarrow (p \land \neg q) \lor (q \land \neg p)$$
$$P \Leftrightarrow Q$$

p	q	$p \longleftrightarrow q$	P	$\neg q$	$p \land \neg q$	$\neg p$	$q \wedge \neg p$	Q
V	V	V	F	F	F	F	F	F
V	F	F	V	V	V	F	F	V
F	V	F	V	F	F	V	V	V
F	F	V	F	V	F	V	F	F

X As tabelas-verdade das duas proposições são idênticas, portanto elas são equivalentes.

REFERÊNCIA

<u>De Alencar Filho, Edgar</u>. Iniciação à Lógica Matemática. Capítulo 7. Editora Nobel. São Paulo. 1975. Reimpresso em 2015.