

Silicon Carbide Power Devices and Integrated Circuits

Jean-Marie Lauenstein, Megan Casey, Isaak Samsel, and Ken LaBel - NASA/GSFC Yuan Chen and Stanley Ikpe – NASA LaRC Ted Wilcox, Anthony Phan, Hak Kim, and Alyson Topper, AS&D, Inc.

Acknowledgment:

This work was sponsored by:
NASA Office of Safety & Mission Assurance
in collaboration with:
NASA Space Technology Mission Directorate

Abbreviations & Acronyms

Acronym	Definition		
BOK	Body of Knowledge		
BV_{DSS}	Drain-Source Breakdown Voltage		
COR	Contracting Officer Representative		
COTS	Commercial Off The Shelf		
ESA	European Space Agency		
ETW	Electronics Technology Workshop		
FY	Fiscal Year		
GCR	Galactic Cosmic Ray		
I_D	Drain Current		
I _{DSS}	Drain-Source Leakage Current		
I_{G}	Gate Current		
IC	Integrated Circuit		
ICSCRM	International Conference on SiC and Related Materials		
JAXA	Japan Aerospace Exploration Agency		
JFET	Junction Field Effect Transistor		
LBNL	Lawrence Berkeley National Laboratory cyclotron facility		

Acronym	Definition		
MOSFET	Metal Oxide Semiconductor Field Effect Transistor		
NESC	NASA Engineering & Safety Center		
RADECS	Radiation and its Effects on Components and Systems		
RHA	Radiation Hardness Assurance		
Si	Silicon		
SiC	Silicon Carbide		
SMD	Science Mission Directorate		
SME	Subject Matter Expert		
SOA	State Of the Art		
STMD	Space Technology Mission Directorate		
SWAP	Size, Weight, And Power		
TAMU	Texas A&M University cyclotron facility		
TID	Total Ionizing Dose		
VDMOS	Vertical Double-diffused MOSFET		
V_{DS}	Drain-Source Voltage		
V_{GS}	Gate-Source Voltage		
V_{TH}	Gate Threshold Voltage		

Outline

- SiC Task & Technology Focus
- Task Roadmap & Partners
- Recent Results
- Future Plans

Solar Electric Propulsion mass savings by using 300 V solar arrays instead of 120 V arrays: 2.7 tons!!

(Mercer, AIAA 2011-7252)

One-Ton Weight by Rei-Artur. Re-use granted under Creative Commons Share Alike 3.0 Unported license

SiC Power Technology

- Prior work by NEPP, NASA STMD GCD, and others has shown that serendipitously SEE-hard commercial SiC power devices are rare or non-existent
- Current NEPP SiC focus areas:
 - SEE hardening efforts
 - Reliability assessments
 - Body of Knowledge (BOK) document
 - Test guidelines

TID hardness came for "free"; SEE hardness will not!

SiC parts evaluated with support from NEPP:

Device Type	# COTS Parts/ # Manufacturers
Diode	5/4
MOSFET	10/4
JFET	4/2
BJT	1/1

Motivational Factors

Images courtesy of NASA

Orion

SmallSats

Solar Electric Propulsion

Commercial Space

- Game-changing NASA approaches are demanding higherperformance power electronics
 - SEE rad-hardened high-current MOSFETs > 250 V do not exist
- SWAP benefits for existing technologies
 - SiC power devices are flying now (Orion, MMS)

Conclusions: We must understand the risk of damaged parts

We must form industry/government/academic
partnerships to expand SEE hardening efforts

Goals of Collaborative SiC Efforts

- Understand heavy-ion induced degradation and failure
 - Both catastrophic and non-catastrophic effects
 - In a level of detail that enables:
 - Device hardening
 - On-orbit susceptibility/rate prediction
 - Test method guidelines
- Develop SEE-hardened power devices
 - Design, fabrication, and test validation

1200V MOSFET biased at 500V: increasing permanent drain leakage current with ion fluence

Same part type at 100V: permanent degraded gate leakage current with ion fluence (as measured post-irradiation)

Understanding the Parameter Space

Degradation of both drain and gate currents during irradiation with xenon while biased at 0 V_{GS} and 300 V_{DS} is very linear with ion fluence. The degradation rate during irradiation increases with increasing case temperature.

- COTS SiC power devices show similar behavior across part types and manufacturers
 - One part or device type does not stand out from another in terms of SEE hardness

Recent efforts:

- What test data do we need to predict on-orbit degradation?
 - What parameters are most important to the degradation mechanisms?
- How does degradation impact overall device reliability?
 - High-temperature reverse bias test
 - High-temperature gate bias test

Understanding the Parameter Space: Angular Dependence

SiC Schottky Diode

• Diode: Strong angle effect

- At given VR, no degradation at 45°
- Matching vertical component of electric field has no impact
 - Cosine law not followed

MOSFET: May follow cosine law when gate-leakage dominated

- For I_G = I_D degradation signature,
 path through gate likely dominates
 angle effect
- For drain-source current degradation dominant device, expect behavior similar to diode response

NEPP Collaborations

Vehicle	Agency(ies)/Industry	Description
SBIR	CFDRC, CoolCAD, DOE, Frequency Management Inc., GE, Semicoa, Vanderbilt Univ., Wolfspeed, NASA GRC, GSFC LaRC, JPL	Identification of SEE failure mechanisms, Development of radiation-hardened devices (SBIR subtopic managed by NEPP SiC Lead)
STMD ESI	Rensselaer Polytechnic Inst., Vanderbilt Univ., GE, Wolfspeed, NASA GRC, GSFC	SEE failure mechanisms through modeling (NEPP SiC lead serving as Research Collaborator)
NEPP WBG Working Group	High Reliability Virtual Electronics Center (HiREV) - AFRL DMEA; NRL; NASA JPL, JSC, GRC, GSFC	Coordinated efforts in radiation and reliability work on both GaN and SiC wide bandgap technology devices.
NEPP BOK	NASA GRC, GSFC	Body of knowledge for silicon carbide power electronics (knowledge and gap analysis)
JEDEC JC13 Gov't Liaison Committee	JC13.1, JC13.7, G12 communities, AFRL, DLA	JC-13.1/JC-13.7/G-12 SiC Tech Insertion Subcommittee meetings to develop test standards and address reliability concerns

 Informal relationships to share data, subject matter expertise, track industry developments

SiC Roadmap

SiC Body of Knowledge (BOK) document (knowledge and gap analysis)

BOK

COTS/Engineering

- Wolfspeed Gen 1-3 MOSFETs
- JFETs (normally on & off)
- Other SiC Manufacturers
- Logic ICs

SEE Hardening Effort

- SMD SBIR Phase IIX
- STMD SBIR PI & PII
- STMD ESI
- ESA, JAXA

JEDEC SiC Subcommittee Test Standards/Reliability

FY15

FY16

FY17

(SME, track status)

FY18

Recent NEPP SiC Documents

- "Body of Knowledge for Silicon Carbide Power Electronics" released:
 - https://nepp.nasa.gov/files/27644/NEPP-BOK-2016-GRC-Boomer-SiC-TN35760.pdf

Papers and Conference Submissions:

- "Analysis of SEB Physics in SiC Power MOSFETs", Witulski, et al., submitted to the 2017 RADECS.
- "Taking SiC Power Devices to the Final Frontier—Addressing Challenges of the Space Radiation Environment," Lauenstein, invited talk, 2017 ICSCRM.
- "Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence," Javanainen, et al., IEEE Trans. Nucl. Sci., 2017.
- "Long-term reliability of a hard-switched boost power processing unit utilizing SiC power MOSFETs," Ikpe, et al., IEEE Reliability Physics Symposium, 2016.

Test reports:

In progress

Summary and Comments

- Aerospace community is benefiting from the momentum of the terrestrial SiC power device market's high-reliability needs
 - Department of Energy grants to increase energy efficiency via WBG
 - Grant to identify cosmic-ray induced failures
 - Electric vehicle industry for SWAP of power control units
 - Toyota research on neutron-induced SEB
 - Other high-power applications requiring many devices in parallel
 - Importance of reliability
- Years of NEPP and STMD GCD Program partnership have resulted in NASA funding of SiC SEE hardening efforts
 - NEPP continues to support these activities through subject matter expertise and test support as appropriate
- NEPP will continue to work with stakeholders to establish appropriate test guidelines and facilitate the path to reliable insertion of SiC power devices into space missions