Analysis of CVAE Implementation

Enhancing Performance through Loss Function Optimization and Architecture Tuning

A.Ghanaatian Supervisor: Prof. Caragea

November 29, 2024

Introduction

- Objective: Improve the model by implementing several key enhancements:
 - Added plotting to compare real vs. predicted values.
 - Incorporated an Energy Loss² component to minimize energy discrepancies.
 - Included MRE² in the loss function for differentiability and metric minimization.
 - Fine-tune all Parameters and Hyper-Parameters to optimize the new loss function and training phase to get a better model

Understanding Energy Components

- Energy Calculations are being used for the Energy Loss term in our loss function.
- Components involved:
 - Minetic Energy (KE)
 - 2 Potential Energy (PE)
 - Error Calculation between KE and PE

Kinetic Energy (KE)

The total kinetic energy is the sum of the kinetic energies of Carbon (C), Oxygen (O), and Sulfur (S):

$$KE = KE(C) + KE(O) + KE(S)$$

Where:

$$KE(C) = \frac{p_{Cx}^2}{2m_C} + \frac{p_{Cy}^2}{2m_C} + \frac{p_{Cz}^2}{2m_C}$$

$$KE(O) = \frac{p_{Ox}^2}{2m_O} + \frac{p_{Oy}^2}{2m_O} + \frac{p_{Oz}^2}{2m_O}$$

$$KE(S) = \frac{p_{Sx}^2}{2m_S} + \frac{p_{Sy}^2}{2m_S} + \frac{p_{Sz}^2}{2m_S}$$

Masses:

$$m_C = 21894.71361$$
 $m_O = 29164.39289$ $m_S = 58441.80487$

Potential Energy (PE)

The potential energy is calculated based on the distances between the atoms:

$$PE = \frac{4}{r_{CO}} + \frac{4}{r_{CS}} + \frac{4}{r_{OS}}$$

Where:

$$r_{CO} = \sqrt{(c_x - o_x)^2 + (c_y - o_y)^2 + (c_z - o_z)^2}$$

$$r_{CS} = \sqrt{(c_x - s_x)^2 + (c_y - s_y)^2 + (c_z - s_z)^2}$$

$$r_{OS} = \sqrt{(o_x - s_x)^2 + (o_y - s_y)^2 + (o_z - s_z)^2}$$

Energy Error Calculation

The error between kinetic and potential energy is calculated as:

$$\mathsf{Error} = \frac{|\mathit{KE} - \mathit{PE}|}{|\mathit{KE}|}$$

• This error is minimized in the Energy Loss component of our loss function.

Comprehensive Loss Function (Part 1)

The combined Loss Function can be expressed as:

$$\mathsf{Loss} = \alpha_1 \cdot \mathsf{Energy} \; \mathsf{Diff}^2 + \alpha_2 \cdot \mathsf{MRE}^2 + \alpha_3 \cdot \mathsf{MSE}$$

Where:

• Energy Difference:

Energy Diff =
$$\frac{|KE - PE|}{|KE|}$$

E is the true energy, \hat{E} is the predicted energy.

Mean Relative Error (MRE):

MRE =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{|x_i - \hat{x}_i|}{|x_i|} \times 100$$

 x_i and \hat{x}_i are the true and predicted values.

Mean Squared Error (MSE):

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{x}_i)^2$$

Comprehensive Loss Function (Part 2)

Continuing the combined Loss Function:

$$\mathsf{Loss} = \alpha_4 \cdot \mathsf{KL} + \alpha_5 \cdot \mathsf{L1} + \alpha_6 \cdot \mathsf{L2}$$

Where:

KL Divergence:

$$\mathit{KL}(\mathit{N}(\mu, \sigma^2) \parallel \mathit{N}(0, 1)) = \frac{1}{2} \sum_{i=1}^d \left(\sigma_i^2 + \mu_i^2 - 1 - \log(\sigma_i^2) \right)$$

 μ_i and σ_i^2 are the mean and variance from the encoder for dimension i.

L1 Regularization:

$$\mathsf{L}1 = \sum_j |w_j|$$

 w_i are the model parameters.

L2 Regularization:

$$L2 = \sum_{i} w_{j}^{2}$$

Loss Function Weighting Factors

- Weighting Coefficients (α) are critical for balancing the loss components.
- Fine-tuning these coefficients helps in:
 - Prioritizing certain loss terms over others.
 - Achieving better convergence and model performance.

Model Architecture Parameters

The model architecture is defined by three key factors:

- Hidden Dimension (hidden_dim)
- Oumber of Layers (layer_num)
- Latent Layer Size
- Encoder and Decoder Layers:

[hidden_dim $\times 2^i$] for $i \in [0, layer_num)$

Example Model Architecture

Given the parameters:

- Hidden Dimension (hidden_dim): 16
- Number of Layers (layer_num): 3
- Latent Layer Size: 128

The model architecture becomes:

- Input Layer: 9 vectors
- Encoder: $16 \rightarrow 32 \rightarrow 64 \rightarrow 128$
- **Decoder**: $128 \rightarrow 64 \rightarrow 32 \rightarrow 16$
- Output Layer: 9 vectors

Training Regularization

To prevent overfitting and improve generalization:

- Regularization Terms:
 - L1 Regularization:

$$L1 = \sum_{j} |w_{j}|$$

$$L2 = \sum_{j} w_{j}^{2}$$

• L2 Regularization:

$$L2 = \sum_{j} w_{j}^{2}$$

Training Hyperparameters

Key hyperparameters during training:

- Batch Size
- Learning Rate
- Number of Epochs

To enhance efficiency:

- Implemented Early Stopping with:
 - Patience Steps
 - Minimum Delta (min_delta)

Test Set Evaluation

• Test Set: 15% of the original 1 million-row dataset.

14 / 17

Test Set Prediction Plot

Prediction Columns Distribution Plots

Performance Comparison

Model Performance Metrics

Model	MRE (%)	Energy Loss	MSE
Random	85.38	$\begin{array}{c} 3.24 \times 10^{-1} \\ 4.73 \times 10^{-1} \end{array}$	0.17
Sim	82.67		0.78

Fine-Tuning Steps, Future steps

Sequential steps taken to fine-tune the model:

- Adjusted Loss Function Weights:
 - Fine-tuned the weighting coefficients $\alpha_1, \alpha_2, \dots, \alpha_6$.
- Optimized Training Hyperparameters:
 - Tweaked batch size, learning rate, and increased epochs.
 - Removed early stopping to allow full training cycles.
- **3** Refined Regularization Factors:
 - Adjusted L1, L2 regularization strengths, and Beta.
- Enhanced Early Stopping Parameters:
 - Modified patience and min_delta for better convergence.
- Explored Model Architecture:
 - Tested different configurations of layers and dimensions.