Àlgebra Lineal, Curs 2010-11, Grup tarda Segon examen parcial. 30 de maig de 2011

 $\mathbf{1.}(4/10)$ Sea A la matriz

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & a & 0 \\ 0 & 0 & a & 0 \\ a & 1 & 0 & 0 \end{pmatrix}$$

- (1) Determina para qué valores de $a \in \mathbb{C}$ la matriz A es diagonalizable. Halla la forma de Jordan de A en función de $a \in \mathbb{C}$.
- (2) Para a = 0, halla una base de vectores propios de A.
- (3) Para a=1, halla una base de Jordan de \mathbb{C}^4 respecto de A.
- (4) Para a=0, estudia para qué valores de $p \in \mathbb{N}$ se cumple $A^p=A$. Para a=1, halla el rango de A^p , para todo $p \geq 1$, y estudia si existe algún p>1 tal que $A^p=A$.

2.(3/10) Sea A una matriz con coeficientes en \mathbb{C} , de tipo 10×10 tal que

$$A^{10}(A-1)^{10} = 0$$
, tr $A = 7$, rg $A^2 = 8$, y rg $(A-1)^5 = 4$.

- (1) Halla el polinomio mínimo, el polinomio característico, y la forma Jordan de A. ¿Se cumple $A^2=A$?
- (2) Halla el rango de $A^2(A-1)^5$. Halla el rango de $A^p(A-1)$, para todo $p \in \mathbb{N}$.
- (3) Sean $u, v, w \in \mathbb{C}^{10}$ tales que
 - (a) $A^3u = 0$, $A^2u \neq 0$,
 - (b) $(A-1)^6 v = 0$, $(A-1)^5 v \neq 0$,
 - (c) $\{(A-1)^5v, w\}$ es una base de Ker(A-1).

Halla una base de Jordan de A.

- **3.**(3/10) Sea A una matriz de tipo $n \times n$ sobre \mathbb{R} .
- (1) (a) Define vector propio y valor propio de A.
 - (b) Define el autoespacio asociado a un valor propio. Define la multiplicidad geométrica de un valor propio.
 - (c) Define el polinomio característico de A. Define la multiplicidad algebraica de un valor propio.
 - (d) Prueba que la multiplicidad geométrica es menor o igual que la multiplicidad algebraica.
- (2) Estudia la independencia lineal de vectores propios de valores propios distintos. (Enunciado y demostración.)
- (3) Enuncia y demuestra el primer criterio de diagonalizabilidad (por las multiplicidades).