University of Washington Department of Electrical Engineering

EE 235 Lab 5 Background: Time Domain to Frequency Domain

Matlab Concepts/Functions to Review	New Matlab Concepts/Functions
Generating a signal in the time domain	Using fft and fftshift functions
Creating time samples vector	• Using abs , find and min functions
Playing sound signal	Creating string variables
Using the pause function	String concatenation
Plotting basics and subplots	
Using the zeros function	
• For loops	
Vector extraction and concatenation	
Writing functions	

BACKGROUND SECTION

1) Matlab Review

Concepts/Functions	Sample Code
Creating Matlab variables	x = 1; % Scalar y1 = [2; 4; 6]; % Column vector y2 = [1 3 5]; % Row vector z = [3 6 9; 1 1 1]; % 2 x 3 Matrix
Extract elements in a vector/matrix	a = y1(1); % Extract one element b = y1(1:2); % Extract multiple elements b1 = y1(3:end); % Extract until end of vector b2 = y1(:); % Extract all elements c = z(1,2); % Extract one element d = z(2,1:2); % Extract multiple elements e = z(2,:); % Extract all elements in 2 nd row
Changing elements or storing values in a vector/matrix	y1(1) = 3; % Change one element y1(1:2) = -1; % Change multiple elements z(1,2) = 0; % Change one element z(2, 1:2) = 2; % Change multiple elements
Dimensions of a vector or matrix	length(y1) % Num elements in vector size(y1) % Dimensions (rows, columns) size(z, 1) % Num of rows size(z, 2) % Num of columns
Vector concatenation	

	z = [x, y]; % horizontal: x & y must have the same # rows $z = [x; y];$ % vertical: x & y must have the same # columns
Generating a signal in time domain	% Generate time samples $t = 0.1/Fs.5$ % $0 \le t \le 5$ with $Fs = 2$ % Generate actual signal $x = \cos(pi^*t)$; % $x(t) = \cos(\pi t)$
Creating a vector that lasts <i>t</i> seconds	x = zeros(1, 3*Fs + 1); % zeros vector that lasts 3 sec
Relationship between index and time: $i = t \times F_S + 1$	<pre>% Extracting t = 5 and storing in y index = 5 * Fs + 1; y = x(index); % Accessing t = 5 and changing value to 1 index = 5 * Fs + 1; x(index) = 1; % Extracting 0 ≤ t ≤ 5 and storing in y start_index = 0 * Fs + 1; end_index = 5 * Fs + 1; y = x(start_index:end_index);</pre>
Opening a new figure window	figure;
Using a 2×1 subplot and plotting on 1 st figure	subplot(2, 1, 1); plot();
Plotting a signal x vs. t	plot(t, x);
Changing axes limits	xlim([0 10]); ylim([-5 5]);
Labeling axis and adding plot title	xlabel('Time'); ylabel('x(t)'); title('Signal x(t)');
Loading and play sound file	load file.mat; % Contains variables y and Fs sound(y, Fs);
Display to COMMAND window	x = x + 1 % Display output of calculation A % Display contents of matrix A

for loops	for i = 1:5 % Code end
Function Header Examples	function y = myexample(x) function [y1, y2] = myexample(x) function [y1, y2] = myexample(x1, x2)
Example Function with Header	<pre>% ADDME Add two values together. % USAGE: C = ADDME(A,B) adds A and B together % AUTHOR: [FILL IN NAME HERE] function c = addme(a, b) % Add a and b together and store in c c = a + b end</pre>

2) Function fft: Converting Signal from Time Domain to Frequency Domain

- We will use a function called **fft**, where **fft** stands for Fast Fourier Transform. The FFT is an efficient implementation of a discrete Fourier transform, which is a discretized version of the Fourier Transforms that we are learning about in class. Similar to how time domain signals can only be defined at discrete samples, the **fft** can only compute samples of the signal in the frequency domain as well. You will learn about the FFT in more detail in EE 341.
- <u>Usage of fft</u>: Suppose we have a signal $\mathbf{x}(\mathbf{t})$ that is sampled at some sampling rate Fs. Also, suppose we want to generate $\mathbf{N} = 1024$ samples in the frequency domain. To convert \mathbf{x} to the frequency domain, we would call **fft** as such:

$$N = 1024;$$

 $X_{fft} = fft(x, N);$

- The period between the frequency samples is given by: $\frac{2\pi F_S}{N}$
- The **fft** computes samples over the range: $0 \le w < 2\pi F_s$. Note that the upper bound is only less than and not less than or equal to, which means the last frequency sample actually occurs at $2\pi F_s \frac{2\pi F_s}{N}$

3) Function fftshift: Centering Frequency Domain at w = 0

- The **fft** actually starts computing samples in the frequency domain starting at w = 0. To center our frequency samples around w = 0, we need to use a function called **fftshift**.
- We can convert x to the frequency domain and make sure the signal is centered at w = 0 with: N = 1024;

$$X_{\text{fft}} = \text{fftshift}(\text{fft}(x, N));$$

- The period between the frequency samples is still given by: $\frac{2\pi F_S}{N}$
- After the **fftshift**, the range of frequency samples is now: $-\pi F_S \le w < \pi F_S$
- We can define the frequency samples vector, given the sampling rate **Fs** and the number of frequency samples **N**:

```
w_{period} = 2*pi*Fs/N;

w = (-N/2:(N/2)-1)*w_{period};
```

4) Summary of Element Extraction

- Review So far:
 - o To extract the first three elements: y = x(1:3);o To extract all the elements starting from the 3^{rd} element: y = x(3:end);o To extract all columns from 1^{st} row of matrix: y = A(1,:)
- New Scenario: Suppose we want to extract the third, fourth, and sixth elements a vector
 - Instead of using the colon operator, you would list out the elements in a vector: $y = x([3 \ 4 \ 6]);$
 - Alternatively, you could define the list of elements in a vector and then extract: index_x = [3 4 6];
 y = x(index_x);

5) Other New Functions in Matlab

- Function abs: Used to compute the magnitude of a complex number
 - Usage: Suppose we want to compute the magnitude of a variable X X_abs = abs(X)
- <u>Function find</u>: In the last lab, we used this function to find the maximum of a vector. In this lab, we will use the function find to locate indices of a vector where the values of a vector cross a certain threshold. Consider the following row vector X:

$$X = [1 \ 3 \ 4 \ 2 \ 1 \ 3]$$

- o Suppose we want indices in X where X > 2
- o Then, we would use the **find function** as such:

$$index_X = find(X > 2)$$

- o In this example, index $_X = [2 \ 3 \ 6]$, which are the indices in X where X > 2
- Function min: Used to find the minimum value and corresponding index location in a vector
 - Usage: Find minimum and location of minimum in vector x [min_x, index_min_x] = min(x);

- Like other programming languages, a string in Matlab is a vector of characters
- In Matlab, string values are enclosed in single quotes
- To create a string, we use the same format <name> = <initial_value>:

• We can concatenate two strings together using square brackets:

Alternatively:

$$str1 = 'Any';$$

```
str2 = 'characters';
str = [str1, str2];
```

• To convert a number to a string, use the function **num2str** as such:

```
x = 1;

str = ['x is', num2str(x)]; % Value of str is "x is 1"
```