Übung 7 - Gruppe 142

Visual Computing - Grafikpipeline & Eingabemodalitäten & VR+AR

Aufgabe 1: Allgemeine Fragen

- a) In der Augmented Reality soll die Wahrnehmung des Nutzers verbessert und vergrößert werden. So werden hier zusätzliche Informationen bereitgestellt, wie die Geschwindigkeit in einem Head-up Display oder anstehende Termine am Rand des Sichtfeldes.
 - In der Virtual Reality ist die virtuelle Welt das Ziel des Nutzers. Er möchte damit interagieren, und wenn möglich sollte er nicht bemerken sich in einer virtuellen Welt zu befinden.
- b) In der Computer Vision geht es darum, gegenstände in Bilder zu erkennen, in der Computergrafik möchte man gegenstände erzeugen. Im Endeffekt kann vision als umgekehrte Grafik betrachtet werden.
- c) 3D Objekte werden am Computer durch Polygon Netze mit Material, Beleuchtung in verschiedenen Szenen dargestellt.

Aufgabe 1: Allgemeine Fragen

- Flat Shading: Aufteilung in Primitive. Die orientierung normale des Primitives ergibt dann die Helligkeit.
 - Gouraud Shading: Aufteilung in Primitive. Helligkeit wird über die Eckpunkte Normale berechnet und diese Werte entlang der Kanten des Primitives linear interpoliert.
 - Phong Shading: Wie Gouraud Shading, nur wird die Helligkeit auch auf den Flächen der Primitive interpoliert.
- e) Hüllkörper umfassen Primitive, um Schnitt- oder Kollisionstests mit anderen Primitiven zu vereinfachen. Um dies zu gewährleisten, sollten Hüllkörper so einfach wie möglich aufgebaut sein, also Kugeln oder Bounding Boxes. Im 3-dimensionalen werden dann Kugeln oder Würfel verwendet.

Aufgabe 2: Geometrieverarbeitung

a) Zuerst wird das Sichtvolumen mithilfe der Model-Transformation an das Koordinatensystem angepasst. Danach werden die Texturen mit dem Painter's-Algorithmus gezeichnet. Dieser zeichnet die am weitesten entfernten Objekte zuerst. Da in unserem Beispiel alle Objekte nur einen z-Wert haben, kann ein Objekt nach dem anderen gezeichnet werden. -> Himmel -> Gras -> Sonne -> Haus -> Auto

Aufgabe 2: Geometrieverarbeitung

b) Eine geeignete Zerlegung der Dreiecke zur späteren Anwendung des Painter's Algorithmus ist in der Abbildung zu sehen. Die Zahlen geben grob die Tiefe des entsprechenden Punktes an.

Figure: Mögliche Zerlegung der Dreiecke in Polygone

Aufgabe 3: Bäume Quadtree

Aufgabe 3: Bäume Quadtree

Aufgabe 3: Bäume BSP

Aufgabe 3: Bäume BSP

Aufgabe 3: Bäume k-d

Aufgabe 3: Bäume

k-d

Aufgabe 4: Rasterisierung

Die Anwendung des Bresenham-Algorithmusliefert die Werte

i	Fehler	\mathbf{x}_{i}	\mathbf{y}_i	neuer_Fehler	
0	3.5	2	2	3.5	-
1	3.5 - 4 = -0.5	3	3	-0.5 + 7 = 6.5	
2	6.5 - 4 = 2.5	4	3	2.5	[م] [م]
3	2.5 - 4 = -1.5	5	4	-1.5 + 7 = 5.5	$. \vec{x}_{Start} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \text{ und } \vec{x}_{Ziel} = \begin{bmatrix} 9 \\ 6 \end{bmatrix}.$
4	5.5 - 4 = 1.5	6	4	1.5	[2]
5	1.5 - 4 = -2.5	7	5	-2.5 + 7 = 4.5	
6	4.5 - 4 = 0.5	8	5	0.5	
7	0.5 - 4 = -3.5	9	6	-3.5 + 7 = 3.5	
Mit $dx = x_{end} - x_{start}$, $dy = y_{end} - y_{start}$ folgt für $1 \le i \le x_{end}$ gilt					

Mit
$$dx = x_{end} - x_{start}$$
, $dy = y_{end} - y_{start}$ folgt für $1 \le i \le x_{end}$ gilt

$$\begin{aligned} & \text{Mit } dx = x_{end} - x_{start}, \, dy = y_{end} - y_{start} \, \text{folgt für } 1 \leq i \leq x_{end} \, \text{gilt} \\ & Fehler_i = neuer_Fehler_{i-1} - dy, \, neuer_Fehler_i = \begin{cases} Fehler_i + dx & \text{wenn } Fehler_i < 0 \\ Fehler_i & \text{, sonst} \end{cases}, \\ & x_j = x_{j-1} \, \text{und } y_i = \begin{cases} y_{j-1} + 1 & \text{, wenn } Fehler_i < 0 \\ y_{j-1} & \text{, sonst} \end{cases}. \end{aligned}$$

$$x_i = x_{i-1}$$
 and $y_i = \begin{cases} y_{i-1} & \text{, sonst} \\ y_{i-1} & \text{, sonst} \end{cases}$

Sowie für i = 0 gelten die Startwerte, sowie Fehler₀ = $0.5 \cdot dx$.

Aufgabe 4: Rasterisierung

Damit folgt für die Grafik

