Length of the Shortest Word in the Intersection of Regular Languages

Thomas Ang and Jeffrey Shallit

David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1 {tang,shallit}@uwaterloo.ca

Abstract. In this note, we give a construction that provides a tight lower bound of mn-1 for the length of the shortest word in the intersection of two regular languages with state complexities m and n.

1 Introduction

Maslov observed that the state complexity of the intersection of two regular languages that have state complexities m and n has an upper bound of mn [2]. One can easily verify this result using the usual cross-product construction [1, p. 59]. This means that the shortest word in such an intersection cannot be longer than mn-1. It is natural to wonder if this bound is the best possible, over a fixed alphabet size, for every choice of m and n. Here we show that there is a matching lower bound.

First we define some notation. A deterministic finite automaton (DFA) is a quintuple $(Q, \Sigma, \delta, q_0, A)$ where Q is the finite set of states, Σ is the finite input alphabet, $\delta: Q \times \Sigma \to Q$ is the transition function, $q_0 \in Q$ is the initial state, and $A \subseteq Q$ is the set of accepting states. For a DFA M, L(M) denotes the language accepted by M. For any $x \in \Sigma^*$, |x| denotes the length of x, and $|x|_a$ for some $a \in \Sigma$ denotes the number of occurrences of a in x. We also define two maps from nonempty languages to $\mathbb N$ as follows. For a nonempty language L, let ls(L) denote the length of the shortest word in L. If L is regular, then we let sc(L) denote the state complexity of L (the minimal number of states in any DFA accepting L).

We previously stated that the upper bound on the state complexity of the intersection of two regular languages implies an upper bound the length of the shortest word in the intersection. More precisely, we have lss(L) < sc(L), which follows directly from the pumping lemma for regular languages [1, p. 55]. So all that is left is to show that the upper bound of mn-1 can actually be attained for all m and n. There is an obvious construction over a unary alphabet that works when gcd(m, n) = 1: namely, set

```
-L_1 = \{x : |x| \equiv m - 1 \pmod{m}\}, \text{ and } -L_2 = \{x : |x| \equiv n - 1 \pmod{n}\}.
```

However, this construction fails when $gcd(m,n) \neq 1$, so we provide a more general construction over a binary alphabet that works for all m and n.

2 Our result

Proposition 1. For all integers $m, n \ge 1$ there exist DFAs M_1, M_2 with m and n states, respectively, such that $L(M_1) \cap L(M_2) \ne \emptyset$, and $lss(L(M_1) \cap L(M_2)) = mn - 1$.

Proof. The proof is constructive. Without loss of generality, assume $m \leq n$, and set $\Sigma = \{0,1\}$. Let M_1 be the DFA given by $(Q_1, \Sigma, \delta_1, p_0, A_1)$, where $Q_1 = \{p_0, p_1, p_2, \dots, p_{m-1}\}$, $A_1 = p_0$, and for each $a, 0 \leq a \leq m-1$, and $c \in \{0,1\}$ we set

$$\delta_1(p_a, c) = p_{(a+c) \bmod m}. \tag{1}$$

Then

$$L(M_1) = \{x \in \Sigma^* : |x|_1 \equiv 0 \pmod{m}\}.$$

Let M_2 be the DFA $(Q_2, \Sigma, \delta_2, q_0, A_2)$, illustrated in Figure 1, where $Q_2 = \{q_0, q_1, q_2, \dots, q_{n-1}\}$, $A_2 = q_{n-1}$, and for each $a, 0 \le a \le n-1$,

$$\delta_2(q_a, c) = \begin{cases} q_{a+c}, & \text{if } 0 \le a < m-1; \\ q_{(a+1) \bmod n}, & \text{if } c = 0 \text{ and } m-1 \le a \le n-1; \\ q_0, & \text{if } c = 1 \text{ and } m-1 \le a \le n-1. \end{cases}$$

Fig. 1. The DFA M_2 .

Focusing solely on the 1's that appear in some accepting path in M_2 , we see that we can return to q_0

- (a) via a simple path with m 1's, or
- (b) (if we go through q_{n-1}), via a simple path with m-1 1's and ending in the transition $\delta(q_{n-1},0)=q_0$.

After some number of cycles through q_0 , we eventually arrive at q_{n-1} . Letting i denote the number of times a path of type (b) is chosen (including the last path that arrives at q_{n-1}) and j denote the number of times a path of type (a) is chosen, we see that the number of 1's in any accepted word must be of the form i(m-1)+jm, with $i>0,\ j\geq 0$. The number of 0's along such a path is then at least i(n-m+1)-1, with the -1 in this expression arising from the fact that the last part of the path terminates at q_{n-1} without taking an additional 0 transition back to q_0 .

Thus

$$L(M_2) \subseteq \{x \in \Sigma^* : \exists i, j \in \mathbb{N}, \text{ such that } i > 0, j \ge 0, \text{ and } |x|_1 = i(m-1) + jm, |x|_0 \ge i(n-m+1) - 1\}.$$

Furthermore, for every $i, j \in \mathbb{N}$, such that $i > 0, j \ge 0$, there exists an $x \in L(M_2)$ such that $|x|_1 = i(m-1) + jm$, and $|x|_0 = i(n-m+1) - 1$. This is obtained, for example, by cycling j times from q_0 to q_{m-1} and then back to q_0 via a transition on 1, then j-1 times from q_0 to q_{m-1} and then back to q_0 via a transition on 0, and finally one more time from q_0 to q_{m-1} .

It follows then that

$$L(M_1 \cap M_2) \subseteq \{x \in \Sigma^* : \exists i, j \in \mathbb{N}, \text{ such that } i > 0, j \ge 0, \text{ and } |x|_1 = i(m-1) + jm, |x|_0 \ge i(n-m+1) - 1$$

and $i(m-1) + jm \equiv 0 \pmod{m} \}.$

Further, for every such i and j, there exists a corresponding element in $L(M_1 \cap M_2)$. Since m-1 and m are relatively prime, the shortest such word corresponds to i=m, j=0, and satisfies $|x|_0=m(n-m+1)-1$. In particular, a shortest accepted word is $(1^{m-1}0^{n-m+1})^{m-1}1^{m-1}0^{n-m}$, which is of length mn-1.

It is natural to try to extend the construction to an arbitrary number of DFAs. However, we have found empirically that, over a two-letter alphabet, the corresponding bound mnp-1 for three DFA's does not always hold. For example, there are no DFA's of 2, 2, and 3 states for which the shortest word in the intersection is of length $2 \cdot 2 \cdot 3 - 1$.

References

- 1. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979).
- Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Navk. SSSR. 194 (1970) 1266–1268. In Russian. English translation in Soviet Math. Dokl. 11 (1970) 1373–1375.