Contents

1	L^p Spaces Associated with a Von Neumann Alge-	
	bra	2
	1.1 Independence of the choice of φ_0	30

Chapter 1

L^p Spaces Associated with a Von Neumann Algebra

In this chapter, we present Haagerup's theory of L^p spaces associated with a von Neumann algebra.

Let M be a von Newmann algebra and let φ_0 be a normal faithful semifinite weight on M.

We denote by N the crossed product $R(M, \sigma^{\varphi_0})$ of M by the modular automorphism group σ^{φ_0} associated with φ_0 . Recall [18, Section 3; 8, Section 5] that if M is given on a Hilbert space H, then N is the Von Neumann algebra on the Hilbert space $L^2(\mathbb{R}, H)$ generated by the operators $\pi(x), x \in M$, and $\lambda(s), s \in \mathbb{R}$, defined by

$$(\pi(x)\xi)(t) = \sigma_{-t}^{\varphi_0}(x)\xi(t), \xi \in L^2(\mathbb{R}, H), t \in \mathbb{R}, \tag{1}$$

$$(\lambda(s)\xi)(t) = \xi(t-s), \xi \in L^2(\mathbb{R}, H), t \in \mathbb{R}.$$
 (2)

We identify M with its image $\pi(M)$ in N (recall that π normal faithful representation of M).

We denote by θ the dual action of \mathbb{R} in N. The θ_s , $s \in \mathbb{R}$, are automorphisms of N characterized by

$$\theta_s x = x, x \in M \tag{3}$$

$$\theta_s \lambda(t) = e^{-ist} \lambda(t), t \in \mathbb{R}.$$
 (4)

By (3), M is contained in the set of fixed points under θ . Actually

$$M = \{ y \in N | \forall s \in \mathbb{R} : \theta_s y = y \} \tag{5}$$

(see e.g. [5, Lemma 3.6]).

The θ_s , $s \in \mathbb{R}$, naturally extend to automorphisms, still denoted θ_s , of \hat{N}_+ , the extended positive part of N [7, Section 1]. Recall [8, Lemma 5.2] that the formula

$$Tx = \int_{\mathbb{R}} \theta_s(x) ds, x \in N_+, \tag{6}$$

defines a normal faithful semifinite operator valued weight T from N to M in the following sense: for each $x \in N_+$, Tx is the element of \hat{N}_+ characterized by

$$\langle Tx, \chi \rangle = \int_{\mathbb{R}} \langle \theta_s(x), \chi \rangle ds$$
 (7)

for all $x \in N_*^+$. Note that

$$\forall s \in \mathbb{R} : \theta_s \circ T = T. \tag{8}$$

In view of (5), this formula implies that the values of T are actually in \hat{M}_{+} .

For each normal weight φ on M, we put

$$\tilde{\varphi} = \hat{\varphi} \circ T \tag{9}$$

where $\hat{\varphi}$ denotes the extension of φ to a normal weight on \hat{M}_+ as described in [7, Proposition 1.10]. Then $\tilde{\varphi}$ is a normal weight on N [7,Proposition 2.3]; $\tilde{\varphi}$ is called the dual weight of φ (see [6, Introduction + Section 1)]. Note that (8) and (9) imply

$$\forall s \in \mathbb{R} : \tilde{\varphi} \circ \theta_s = \tilde{\varphi}. \tag{10}$$

If φ and ψ are normal faithful semifinite weights, then so are $\tilde{\varphi}$ and $\tilde{\psi}$, and we have [7, Theorem 4.7]:

$$\forall t \in \mathbb{R} \forall x \in M : \sigma_t^{\tilde{\varphi}}(x) = \sigma_t^{\varphi}(x), \tag{11}$$

$$\forall t \in \mathbb{R} : (D\tilde{\varphi} : D\tilde{\psi})_t = (D\varphi : D\psi)_t. \tag{12}$$

Lemma 1. 1) The mapping

$$\varphi\mapsto \tilde{\varphi}$$

is a bijection of the set of all normal semifinite weights on M onto the set of normal semifinite weights ψ on N satisfying

$$\forall s \in \mathbb{R} : \psi \circ \theta_s = \psi. \tag{13}$$

2) For all normal weights φ and ψ on M and all $x \in M$, we have

1.
$$(\varphi + \psi)^{\sim} = \tilde{\varphi} + \tilde{\psi}$$
,

2.
$$(x \cdot \varphi \cdot x^*)^{\sim} = x \cdot \tilde{\varphi} \cdot x^*$$

3. supp $\tilde{\varphi} = \operatorname{supp} \varphi$.

Proof. That $\tilde{\varphi}$ is semifinite if φ is follows from the proof of [7, Proposition 2.3]. That $\varphi \mapsto \tilde{\varphi}$ is injective follows from the formula

$$\varphi(\dot{T}x) = \tilde{\varphi}(x), x \in m_T,$$

and the fact that $\dot{T}(m_T)$ is σ -weakly dense in M [7, Proposition 2.5].

Now let us prove 2). First observe that $(\varphi + \psi)^{\wedge} = \hat{\varphi} + \hat{\psi}$ since $\hat{\varphi} + \hat{\psi} : \hat{M} \to [0, \infty]$ obviously satisfies the properties that characterize $(\varphi + \psi)^{\wedge}$ ([7, Proposition 1.10]); (a) follows trivially. Similarly, $(x \cdot \varphi \cdot x^*)^{\wedge} = x \cdot \hat{\varphi} \cdot x^*$, whence (b).

To prove (c), put $p_0 = 1 - \operatorname{supp} \varphi$. Then Mp_0 is the σ -weak closure in M of $N_{\varphi} = \{x \in M | \varphi(x^*x) = 0\}$. Similarly, the σ -weak closure in N of $N_{\tilde{\varphi}} = \{y \in N | \tilde{\varphi}(y^*y) = 0\}$ is Nq_0 where $q_0 = 1 - \operatorname{supp} \tilde{\varphi}$. Now

$$n_T N_{\varphi} \subset N_{\tilde{\varphi}}$$

since

$$\forall y \in n_T \forall x \in N_\varphi : \tilde{\varphi}(x^*y^*yx) = \varphi(T(x^*y^*yx))$$
$$= \varphi(x^*T(y^*y)x) \le ||T(y^*y)|| \varphi(x^*x) = 0.$$

As n_T is σ -weakly dense in N, it follows that

$$N_{\varphi} \subset \overline{N_{\tilde{\varphi}}}^{\sigma-w}$$

whence

$$p_0 \leq q_0$$
.

Note that we must have $q_0 \in M$ since $\tilde{\varphi}$, and hence supp $\tilde{\varphi}$, is θ -invariant. Thus to conclude that $p_0 = q_0$ we need only show that $\varphi(q_0) = 0$. This follows from

$$\forall x \in m_T : \varphi(q_0 \dot{T}(x)q_0) = \varphi(\dot{T}(q_0 x q_0)) = \tilde{\varphi}(q_0 x q_0) = 0$$

and the fact that $\dot{T}(m_T)$ is σ -weakly dense in M [7, Proposition 2.5].

We now return to 1). Let ψ be a normal semifinite weight on N satisfying (13). First suppose that ψ is also faithful. Then by [5, (proof of) Theorem 3.7), it follows that $\psi = \tilde{\varphi}$ for some normal faithful semifinite φ on M.

In the general case, put $q_0 = 1 - \operatorname{supp} \psi$. Then by (13) and (5), we have $q_0 \in M$. Now take any normal semifinite weight χ_0 on M such that $\operatorname{supp} \chi_0 = q_0$. Then $\widetilde{\chi}_0$ is a normal faithful semifinite θ -invariant weight on N with $\operatorname{supp} \widetilde{\chi}_0 = q_0$. Hence $\widetilde{\chi}_0 + \psi$ is faithful and thus, as above,

$$\widetilde{\chi}_0 + \psi = \widetilde{\varphi}$$

for some normal faithful semifinite weight φ on M. Finally, using (b), we find that

$$\psi = (1 - q_0) \cdot (\tilde{\chi}_0 + \psi) \cdot (1 - q_0)$$

= $(1 - q_0) \cdot \tilde{\varphi} \cdot (1 - q_0)$
= $((1 - q_0) \cdot \varphi \cdot (1 - q_0))^{\sim}$.

Denote by τ the normal faithful semifinite trace on N characterized by

$$\forall t \in \mathbb{R} : (D\tilde{\varphi}_0 : D\tau)_t = \lambda(t) \tag{14}$$

(for the existence, see [8, Lemma 5.2]); τ satisfies

$$\forall s \in \mathbb{R} : \tau \circ \theta_s = e^{-s}\tau. \tag{15}$$

With each $h \in \hat{N}_+$ we associate the normal weight $\tau(h \cdot)$ on N as in [8, remarks preceding Proposition 1.11]. When h is simply a positive self-adjoint operator affiliated with N (see [7, Example 1.2]), this definition agrees with that given in [14, Section 4].

We recall some facts about the mapping $h \mapsto \tau(h \cdot)$ (see [7, Theorem 1.12 (and its proof) and Preposition 1.11, (4)]):

Lemma 2. 1) The mapping

$$h \mapsto \tau(h \cdot)$$

is a bijection of \hat{N}_+ onto the set of normal weights on N. In particular, it is a bijection of the positive self-adjoint operators affiliated with N onto the normal semifinite weights on N.

- 2) For all $h, k \in \hat{N}_+$ and all $x \in N$, we have
- 1. $\tau((h + k) \cdot) = \tau(h \cdot) + \tau(k \cdot),$
- 2. $\tau((x \cdot h \cdot x^*)\cdot) = x \cdot \tau(h\cdot) \cdot x^*$
- 3. supp $\tau(h\cdot) = \text{supp } h$.

Here, $h \dot{+} k$ and $x \cdot h \cdot x^*$ denote the operations in \hat{N}_+ introduced in [7, Definition 1.3]. If h and k are positive self-adjoint operators such that $D(h^{\frac{1}{2}}) \cap D(k^{\frac{1}{2}})$ is dense, then $h \dot{+} k$ is the simply the form sum of h and k [2, Corollary 4.13]. If h is a positive self-adjoint operator and x a bounded operator such that $D(h^{\frac{1}{2}}x^*)$ is dense, then $x \cdot h \cdot x^* = \left| h^{\frac{1}{2}}x^* \right|^2$.

Definition 3. For each normal weight φ on M we define h_{φ} as the unique element of \hat{N}_{+} given by

$$\tilde{\varphi} = \tau(h_{\varphi}\cdot). \tag{16}$$

Proposition 4. 1) The mapping

$$\varphi \mapsto h_{\varphi}$$

is a bijection of the set of all normal semifinite weights on M onto the set of all positive self-adjoint operators h affiliated with N satisfying

$$\forall s \in \mathbb{R} : \theta_s h = e^{-s} h. \tag{17}$$

- (2) For all normal weights φ and ψ on M and all $x \in M$, we have
 - 1. $h_{\varphi+\psi} + h_{\varphi} \dot{+} h_{\psi}$,
 - 2. $h_{x \cdot \varphi \cdot x^*} = x \cdot h_{\varphi} \cdot x^*$
 - 3. supp $h_{\varphi} = \text{supp } \varphi$.

Proof. This proposition is an immediate consequence of Lemma 1 and 2. We just need to prove that a positive self-adjoint operator h affiliated with N satisfies (17) if and only if the corresponding weight $\tau(h\cdot)$ is θ -invariant. This follows easily from (15). Indeed, for all $s \in \mathbb{R}$ we have

$$\tau(e^s\theta_s(h)\cdot) = e^s(\tau \circ \theta_s)(h\theta_{-s}(\cdot)) = \tau(h\theta_{-s}(\cdot)) = \tau(h\cdot) \circ \theta_{-s},$$

whence

$$e^s\theta_s(h) = h \Leftrightarrow \tau(e^s\theta_s(h)\cdot) = \tau(h\cdot) \Leftrightarrow \tau(h\cdot) = \tau(h\cdot) \circ \theta_{-s}.$$

The equivalence of (17) and

$$\forall s \in \mathbb{R} : \tau(h \cdot) = \tau(h \cdot) \circ \theta_s$$

follows. \Box

The next lemma is essential. It will permit us apply results on τ -measurable operators.

As usual, $\chi_{]\gamma,\infty[}$ denotes the characteristic function for the interval $]\gamma,\infty[$.

Lemma 5. Let φ be a normal semifinite weight on M. Then for all $\gamma \in \mathbb{R}_+$, we have

$$\tau(\chi_{]\gamma,\infty[}(h_{\varphi})) = \frac{1}{\gamma}\varphi(1).$$

Proof. First let us prove the formula in the case $\gamma = 1$.

Let $s \in \mathbb{R}$. Then since θ_s is an automorphism and $\theta_s h_{\varphi} = e^{-s} h_{\varphi}$ we have

$$\theta_s(h_{\varphi}^{-1}\chi_{]1,\infty[}(h_{\varphi})) = e^s h_{\varphi}^{-1}\chi_{]1,\infty[}(e^{-s}h_{\varphi}).$$

Now let $h_{\varphi} = \int \lambda de_{\lambda}$ be the spectral decomposition of h_{φ} . Then for any vector functional $\omega_{\xi,\xi}$, where ξ is a unit vector, we have

$$\langle \int_{\mathbb{R}} \theta_{s}(h_{\varphi}^{-1}\chi_{]1,\infty[}(h_{\varphi})) ds, \omega_{\xi,\xi} \rangle = \int_{\mathbb{R}} \langle e^{s}h_{\varphi}^{-1}\chi_{]1,\infty[}(e^{-s}h_{\varphi}), \omega_{\xi,\xi} \rangle ds$$

$$= \int_{\mathbb{R}} \int_{]0,\infty[} e^{s}\lambda^{-1}\chi_{]1,\infty[}(e^{-s}\lambda) d(e_{\lambda}\xi|\xi) ds$$

$$= \int_{]0,\infty[} \lambda^{-1} \left(\int_{]-\infty,\log\lambda[} e^{s} ds \right) d(e_{\lambda}\xi|\xi)$$

$$= \int_{]0,\infty[} \lambda^{-1}\lambda d(e_{\lambda}\xi|\xi)$$

$$= \|(\sup h_{\varphi})\xi\|^{2}$$

So that

$$\int_{\mathbb{D}} \theta_s(h_{\varphi}^{-1}\chi_{]1,\infty[}(h_{\varphi})) ds = \operatorname{supp} h_{\varphi} = \operatorname{supp} \varphi.$$

Finally, since $\tilde{\varphi} = \tau(h_{\varphi})$ we have

$$\tau(\chi_{]1,\infty[}(h_{\varphi})) = \tau(h_{\varphi}^{\frac{1}{2}}(h_{\varphi}^{-1}\chi_{]1,\infty[}(h_{\varphi}))h_{\varphi}^{\frac{1}{2}})$$

$$= \tilde{\varphi}(h_{\varphi}^{-1}\chi_{]1,\infty[}(h_{\varphi}))$$

$$= \varphi\left(\int \theta_{s}(h_{\varphi}^{-1}\chi_{]1,\infty[}(h_{\varphi}))\mathrm{d}s\right) = \varphi(\mathrm{supp}\,\varphi) = \varphi(1).$$

This completes the proof in the case $\gamma = 1$. In the general case, write $\gamma = e^s$, $s \in \mathbb{R}$. Then by (15)

$$\tau(\chi_{]e^s,\infty[}(h_{\varphi})) = \tau(\chi_{]1,\infty[}(e^{-s}h_{\varphi}))$$

$$= \tau(\theta_s(\chi_{]1,\infty[}(h_{\varphi})))$$

$$= e^{-s}\tau(\chi_{]1,\infty[}(h_{\varphi})) = e^{-s}\varphi(1).$$

By Chapter I, Proposition ??, we have

Corollary 6. Let φ be a normal semifinite weight on M. Then h_{φ} is τ -measurable if and only if $\varphi \in M_*$.

We denote by \tilde{N} the set of all τ -measurable closed densely defined operators affiliated with N. Recall (Chapter I) that \tilde{N} is a topological *-algebra with respect to strong sum and product. Sums and products of elements in \tilde{N} will always be understood to be in the strong sense although we do not emphasize it in the notation.

We denote by \tilde{N}_+ the subset of all positive self-adjoint elements of \tilde{N} .

Note that the θ_s , $s \in \mathbb{R}$, extend to continuous *-automorphisms, still denoted θ_s , of \tilde{N} . We have

$$\forall s \in \mathbb{R} \forall \epsilon, \delta \in \mathbb{R}_+ : \theta_s(N(\epsilon, \delta)) = N(\epsilon, e^{-s}\delta)$$
 (18)

Since for all $a \in \tilde{N}_+$

$$\tau(\chi_{]\epsilon,\infty[}(\theta_s a)) = \tau(\theta_s(\chi_{]\epsilon,\infty[}(a))) = e^{-s}\tau(\chi_{]\epsilon,\infty[}(a))$$

(for the definition and properties of the 0-neighbourhoods $N(\epsilon, \delta)$, we refer to Chapter I).

Theorem 7. 1) The mapping

$$\varphi \mapsto h_{\varphi}$$

extends to a linear bijection, still denoted $\varphi \mapsto h_{\varphi}$, of M_* onto the subspace

$$\{h \in \tilde{N} | \forall s \in \mathbb{R} : \theta_s h = e^{-s} h\}$$
(19)

of N.

2) For all $\varphi \in M_*$ and $x, y \in M$, we have

$$h_{x \cdot \varphi \cdot y^*} = x h_{\varphi} y^* \tag{20}$$

and

$$h_{\varphi^*} = h_{\varphi}^*. \tag{21}$$

3) If $\varphi = u|\varphi|$ is the polar decomposition of φ , then $h = uh_{|\varphi|}$ $(h_{\varphi} = uh_{|\varphi|})$ is the polar decomposition of h_{φ} . In particular,

$$|h_{\varphi}| = h_{|\varphi|}. (22)$$

The proof will be based on Corollary 6, Proposition 4, and the following lemma.

Lemma 8. 1) Let h and k be positive self-adjoint operators such that $D(h^{\frac{1}{2}}) \cap D(k^{\frac{1}{2}})$ is dense. Then

$$h + k \subset h \dot{+} k$$
.

If h + k is essentially self-adjoint, then its unique self-adjoint extension is precisely $h \dot{+} k$.

2) Let h be a positive self-adjoint operator and x a bounded operator such that $D(h^{\frac{1}{2}}x^*)$ is dense. Then

$$xhx^* \subset x \cdot h \cdot x^*$$
.

If xhx^* is essentially self-adjoint, then its unique self-adjoint extension is precisely $x \cdot h \cdot x^*$.

Proof. 1) Recall that by definition h + k is the unique positive self-adjoint operator characterized by $D((h+k)^{\frac{1}{2}}) = D(h^{\frac{1}{2}}) \cap D(k^{\frac{1}{2}})$ and

$$\forall \xi \in D(h^{\frac{1}{2}}) \cap D(k^{\frac{1}{2}}) : \left\| (h \dot{+} k)^{\frac{1}{2}} \xi \right\|^2 = \left\| h^{\frac{1}{2}} \xi \right\|^2 + \left\| k^{\frac{1}{2}} \xi \right\|^2. \tag{23}$$

By polarization, it follows that

$$\forall \xi \in D(h^{\frac{1}{2}}) \cap D(k^{\frac{1}{2}}) : ((h \dot{+} k)^{\frac{1}{2}} \xi | (h \dot{+} k)^{\frac{1}{2}} \eta) = (h^{\frac{1}{2}} \xi | h^{\frac{1}{2}} \eta) + (k^{\frac{1}{2}} \xi | k^{\frac{1}{2}} \eta).$$

Now let $\xi \in D(h+k) = D(h) \cap D(k)$ and $\eta \in D(h\dot{+}k)$. Then also $\xi \in D(h^{\frac{1}{2}}) \cap D(k^{\frac{1}{2}})$ and $\eta \in D((h\dot{+}k)^{\frac{1}{2}}) = D(h^{\frac{1}{2}}) \cap D(k^{\frac{1}{2}})$ so that

$$((h+k)\xi|\eta) = (h\xi|\eta) + (k\xi|\eta)$$

$$= (h^{\frac{1}{2}}\xi|h^{\frac{1}{2}}\eta) + (k^{\frac{1}{2}}\xi|k^{\frac{1}{2}}\xi)$$

$$= ((h\dot{+}k)^{\frac{1}{2}}\xi|(h\dot{+}k)^{\frac{1}{2}}\eta)$$

$$= (\xi|(h\dot{+}k)\eta).$$

It follows that

$$h + k \subset (h \dot{+} k)^* = (h \dot{+} k).$$

Hence h + k is preclosed and $[h + k] \subset h + k$. If [h + k] is self-adjoint, we must have [h + k] = h + k.

2) Recall that $x \cdot h \cdot x^* = \left| h^{\frac{1}{2}} x^* \right|^2$. Now let $\xi \in D(xhx^*) = D(hx^*)$ and $\eta \in D(x \cdot h \cdot x^*)$. Then also $\xi \in D(h^{\frac{1}{2}}x^*)$ and $\eta \in D((x \cdot h \cdot x^*)^{\frac{1}{2}}) = D(h^{\frac{1}{2}}x^*)$ so that

$$(xhx^*\xi|\eta) = (hx^*\xi|x^*\eta) = (h^{\frac{1}{2}}x^*\xi|h^{\frac{1}{2}}x^*\eta) = (\xi|(x\cdot h\cdot x^*)\eta).$$

It follows that

$$xhx^* \subset (x \cdot h \cdot x^*)^* = x \cdot h \cdot x^*.$$

Hence xhx^* is preclosed and $[xhx^*] \subset x \cdot h \cdot x^*$. If $[xhx^*]$ is self-adjoint, we must have $[xhx^*] = x \cdot h \cdot x^*$.

Proof of Theorem 7. Let $\varphi, \psi \in M_*^+$. Then h_{φ} and h_{ψ} are positive self-adjoint and τ -measurable so that their strong sum exists and is again a positive self-adjoint τ -measurable operator. By Lemma 8, this sum then coincides with $h_{\varphi} \dot{+} h_{\psi}$. Then Proposition 4 yields

$$h_{\varphi+\psi} = h_{\varphi} + h_{\psi},$$

where the sum at the right hand side is now the sum in N. Similarly for all $\varphi \in M_*^+$ and $x \in M$ we get

$$h_{x \cdot \varphi \cdot \xi^*} = x h_{\varphi} x^*. \tag{24}$$

Now the additive and homogeneous mapping $\varphi \mapsto h_{\varphi}$ of M_*^+ onto $\{h \in \tilde{N}_+ | \forall s \in \mathbb{R} : \theta_s h = e^{-s}h\}$ extends by linearity to a linear mapping $\varphi \mapsto h_{\varphi}$ of M_* onto the subspace of \tilde{N} spanned by $\{h \in \tilde{N}_+ | \forall s \in \mathbb{R} : \theta_s h = e^{-s}h\}$, i.e. onto the subspace (19) (evidently, (19) is stable under $h \mapsto h^*$ and $h \mapsto |h|$ and hence spanned by its positive elements).

By linearity, we must have (21) for all $\varphi \in M_*$. Also by linearity, (24) holds for all $\varphi \in M_*$ and $x \in M$; by polarization the equation (20) follows for all $\varphi \in M_*$ and $x, y \in M$.

In particular, if $\varphi \in u|\varphi|$ is the polar decomposition of φ , we have

$$h_{\varphi} = h_{u|\varphi|} = uh_{|\varphi|}.$$

That this relation is the polar decomposition of h_{φ} follows from the fact that the initial projection for the partial isometry u is $\operatorname{supp} |\varphi| = \operatorname{supp} h_{|\varphi|}$.

Finally, $\varphi \mapsto h_{\varphi}$ is injective: if $h_{\varphi} = 0$, then $h_{|\varphi|} = |h_{\varphi}| = 0$, whence $|\varphi| = 0$ and $\varphi = 0$.

Motivated by Theorem 7, we now give the following definition:

Definition 9. For each $p \in [1, \infty]$, we let

$$L^{p}(M) = \{ a \in \tilde{N} | \forall s \in \mathbb{R} : \theta_{s} a = e^{-\frac{s}{p}} a \}.$$

Note that the $L^p(M)$ are linear subspaces of \tilde{N} and that they are linearly spanned by their positive part $L^p(M)_+ = L^p(M) \cap \tilde{N}_+$.

By Theorem 7, we know that $L^1(M) \cong M_*$. And:

Proposition 10. We have $L^{\infty}(M) = M$.

Proof. In view of (5), we just need to show that every $a \in L^{\infty}(M)$ is bounded. Let $a \in L^{\infty}(M)$. Then for all $s \in \mathbb{R}$ and all $\lambda \in \mathbb{R}_+$ we have

$$\tau(\chi_{]\lambda,\infty[}(|a|)) = \tau(\chi_{]\lambda,\infty[}(\theta_s|a|))$$

= $\tau(\theta_s(\chi_{]\lambda,\infty[}(|a|))) = e^{-s}\tau(\chi_{]\lambda,\infty[}(|a|)).$

Hence for all $\lambda \in \mathbb{R}_+$ we must have

$$\tau(\chi_{]\lambda,\infty[}(|a|)) = 0 \text{ or } \tau(\chi_{]\lambda,\infty[}(|a|)) = \infty.$$

Since a is τ -measurable, we have $\tau(\chi_{]\lambda,\infty[}(|a|)) < \infty$ for some λ . Hence $\tau(\chi_{]\lambda,\infty[}(|a|)) = 0$ and thus $\chi_{]\lambda,\infty[}(|a|) = 0$ since τ is faithful. This means that a is bounded.

Remark 11. We have seen that all elements of $L^{\infty}(M)$ are bounded. In contrast to this, all non-zero elements of $L^p(M)$, where $p < \infty$, are unbounded. To see this, let $a \in L^p(M)$ and suppose that $a \neq 0$. Then for some $\lambda \in \mathbb{R}_+$ we have $\chi_{]\lambda,\infty[}(|a|) \neq 0$ and hence $\tau(\chi_{]\lambda,\infty[}(|a|)) \neq 0$. Then for all $\mu \in \mathbb{R}_+$ we have

$$\tau(\chi_{\mid \mu, \infty \mid}(\mid a \mid)) \neq 0$$

since for all $s \in \mathbb{R}$

$$\tau(\chi_{]e^{\frac{s}{p}}\lambda,\infty[}(|a|)) = \tau(\chi_{]\lambda,\infty[}(e^{-\frac{s}{p}}|a|))$$

$$= \tau(\chi_{]\lambda,\infty[}(\theta_s|a|))$$

$$= \tau(\theta_s\chi_{]\lambda,\infty[}(|a|))$$

$$= e^{-s}\tau(\chi_{]\lambda,\infty[}(|a|)) \neq 0.$$

It follows that |a| must be unbounded.

Proposition 12. Let a be a closed densely defined operator affiliated with N with polar decomposition a = u|a|. Let $p \in [1, \infty[$. Then

$$a \in L^p(M)$$

if and only if

$$u \in M$$
 and $|a|^p \in L^1(M)$.

Proof. Recall that $a \in \tilde{N}$ if and only if $|a| \in \tilde{N}$. Furthermore, $|a| \in \tilde{N}$ if and only if $|a|^p \in \tilde{N}$ since $\tau(\chi_{]\lambda,\infty[}(|a|)) = \tau(\chi_{]\lambda^p,\infty[}(|a|^p))$ for all $\lambda \in \mathbb{R}_+$. For all such a and all $s \in \mathbb{R}$ we have

$$\theta_s a = e^{-\frac{s}{p}} a \Leftrightarrow \theta_s u = u \text{ and } \theta_s |a|^p = e^{-s} |a|^p.$$

The result follows by Definition 9 and Proposition 10.

A similar result holds for the right polar decomposition.

Definition 13. We define a linear functional tr on $L^1(M)$ by

$$\operatorname{tr}(h_{\varphi}) = \varphi(1), \varphi \in M_*.$$

Note that

$$\operatorname{tr}(|h_{\varphi}|) = \operatorname{tr}(h_{|\varphi|}) = |\varphi|(1) = ||\varphi|| \tag{25}$$

for all $\varphi \in M_*$. This implies that

$$|\operatorname{tr}(a)| \le \operatorname{tr}(|a|) \tag{26}$$

for all $a \in L^1(M)$ and that the mapping $a \mapsto \operatorname{tr}(|a|)$ is a norm on $L^1(M)$.

Definition 14. Let $p \in [1, \infty[$. Then we define $\|\cdot\|_p$ on $L^p(M)$ by

$$||a||_p = \operatorname{tr}(|a|^p)^{\frac{1}{p}}, a \in L^p(M).$$

For $p = \infty$, we put

$$||a||_{\infty} = ||a||, a \in L^{\infty}(M).$$

We shall see that for all p, $\|\cdot\|_p$ is a norm on $L^p(M)$. By (26), we have

Proposition 15. The mapping

$$\varphi \mapsto h_{\varphi}: M_* \to L^1(M)$$

is an isometry of M_* onto $L^1(M)$.

Lemma 16. Let $p \in [1, \infty[$ and $\epsilon, \delta \in \mathbb{R}_+$. Then

$$N(\epsilon, \delta) \cap L^p(M) = \{ a \in L^p(M) | ||a||_p \le \epsilon \delta^{\frac{1}{p}} \}.$$

Proof. Let $a \in L^p(M)$. Then $|a|^p \in L^1(M)_+$ and hence $|a|^p = h_{\varphi}$ for some $\varphi \in M_*^+$. Now

$$\begin{split} \tau(\chi_{]\epsilon,\infty[}(|a|)) = & \tau(\chi_{]\epsilon^p,\infty[}(|a|^p)) \\ = & \frac{1}{\epsilon^p} \varphi(1) \\ = & \frac{1}{\epsilon^p} \||a|^p\|_1 = \frac{1}{\epsilon^p} \|a\|_p^p \end{split}$$

Using this we get

$$\begin{aligned} a &\in N(\epsilon, \delta) \Leftrightarrow |a| \in N(\epsilon, \delta) \\ &\Leftrightarrow \tau(\chi_{]\epsilon, \infty[}(|a|)) \leq \delta \\ &\Leftrightarrow \frac{1}{\epsilon^p} \|a\|_p^p \leq \delta \\ &\Leftrightarrow \|a\|_p \leq \epsilon \delta^{\frac{1}{p}}. \end{aligned}$$

Corollary 17. On $L^1(M)$ the norm topology is exactly the topology induced from \tilde{N} .

We denote by \mathbb{C}_+ the closed half-plane $\{a \in \mathbb{C} | \operatorname{Re} a \geq 0\}$ and by \mathbb{C}_+° the corresponding open half-plane.

Lemma 18. Let $h \in \tilde{N}_+$. Then the mapping

$$\alpha \mapsto h^{\alpha} : \mathbb{C}_{+}^{\circ} \to \tilde{N}$$

is differentiable.

Proof. First note that all h^{α} , $\alpha \in \mathbb{C}_{+}^{\circ}$, are actually τ -measurable since h is τ -measurable.

1) Suppose that h is bounded, i.e. $h \in N_+$. Then the mapping

$$\alpha \mapsto h^{\alpha} : \mathbb{C}_{+}^{\circ} \to N$$

is differentiable with respect to the norm topology on N and

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}h^{\alpha} = h^{\alpha}\log h\tag{27}$$

(note that the expression at the right hand side is defined for any positive $h \in N$ since the function $\lambda \mapsto \lambda^{\alpha} \log \lambda$ is continuous on the closed half-plane \mathbb{C}_+). This follows from spectral theory using the fact that for all $\alpha_0 \in \mathbb{C}_+^{\circ}$ we have

$$\frac{1}{\alpha - \alpha_0} (\lambda^{\alpha} - \lambda^{\alpha_0}) - \lambda^{\alpha_0} \log \lambda = \frac{1}{\alpha - \alpha_0} (e^{\alpha \log \lambda} - e^{\alpha_0 \log \lambda}) - \log \lambda e^{\alpha_0 \log \lambda}$$

$$\to 0 \text{ as } \alpha \to \alpha_0 \text{ uniformly in } \lambda \in]0, ||h||].$$

2) Now let h be any element of \tilde{N}_+ . We claim that $\alpha \mapsto h^{\alpha}$: $\mathbb{C}_+^{\circ} \to \tilde{N}$ is differentiable with respect to the topology on \tilde{N} and that (27) still holds (as above, $h^{\alpha} \log h$ is a well-defined positive self-adjoint operator and, by spectral theory, it is τ -measurable). Now let $\epsilon, \delta \in \mathbb{R}_+$. Take $\lambda \in \mathbb{R}_+$ such that $\tau(\chi_{]\lambda,\infty[}(h)) \leq \delta$. Put $p = \chi_{[0,\lambda]}(h)$. Then hp is bounded and by the first part of the proof

$$\left\| \left(\frac{1}{\alpha - \alpha_0} (h^{\alpha} - h^{\alpha_0}) - h^{\alpha_0} \log h \right) p \right\|$$

$$= \left\| \frac{1}{\alpha - \alpha_0} ((hp)^{\alpha} - (hp)^{\alpha_0}) - (hp)^{\alpha_0} \log(hp) \right\| \le \epsilon$$

Origin article here is $(hp)^{\alpha} \log(hp)$ for all $\alpha \in \mathbb{C}_{+}^{\circ}$ sufficiently close to α_{0} . Thus

$$\frac{1}{\alpha - \alpha_0} (h^{\alpha} - h^{\alpha_0}) - h^{\alpha_0} \log h \in N(\epsilon, \delta)$$

for α sufficiently close to α_0 . This proves the lemma.

We denote by S the closed complex strip $\{\alpha \in \mathbb{C} | 0 \leq \operatorname{Re} \alpha \leq 1\}$ and by S° the corresponding open strip.

Lemma 19. Let $h, k \in L^1(M)_+$. Then for $\alpha \in S^{\circ}$ we have

$$h^{\alpha}k^{1-\alpha} \in L^1(M),$$

and the mapping

$$\alpha \mapsto h^{\alpha} k^{1-\alpha} : S^{\circ} \to L^1(M)$$
 (28)

is analytic.

Proof. That $h^{\alpha}k^{1-\alpha}\in L^1(M)$ follows from Definition 9 since

$$\forall s \in \mathbb{R} : \theta_s(h^{\alpha}k^{1-\alpha}) = (\theta_sh)^{\alpha}(\theta_sk)^{1-\alpha}$$
$$= e^{-\alpha s}h^{\alpha}e^{-(1-\alpha)s}k^{1-\alpha} = e^{-s}h^{\alpha}k^{1-\alpha}.$$

Origin article here is $e^{-s}h^{\alpha}h^{1-\alpha}$ we want to prove that the mapping (28) is differentiable. In view of Corollary 17 we may as

well prove that (28) is differentiable as a mapping into \tilde{N} . Now by the preceding lemma, the functions $f, g: S^{\circ} \mapsto \tilde{N}$ defined by $f(\alpha) = h^{\alpha}$ and $g(\alpha) = k^{1-\alpha}$. are differentiable. It follows that for all $\alpha_0 \in S^{\circ}$ we have

$$\frac{1}{\alpha - \alpha_0} (f(\alpha)g(\alpha) - f(\alpha_0)g(\alpha_0))$$

$$= \frac{1}{\alpha - \alpha_0} f(\alpha)(g(\alpha) - g(\alpha_0)) + \frac{1}{\alpha - \alpha_0} (f(\alpha) - f(\alpha_0))g(\alpha_0)$$

$$\rightarrow f(\alpha_0)g'(\alpha_0) + f'(\alpha_0)g(\alpha_0) \text{ as } \alpha \rightarrow \alpha_0$$

so that also $f \cdot g : S^{\circ} \to \tilde{N}$ is differentiable. \square

Lemma 20. Let $t \in \mathbb{R}$ and put

$$\tilde{N}_{\frac{1}{2}+it} = \{ a \in \tilde{N} | \forall s \in \mathbb{R} : \theta_s a = e^{-(\frac{1}{2}+it)} a \}.$$
 (29)

Let $a, b \in \tilde{N}_{\frac{1}{2}+it}$. Then $b^*a, ab^* \in L^1(M)$ and

$$\operatorname{tr}(b^*a) = \operatorname{tr}(ab^*). \tag{30}$$

Proof. That $b^*a, ab^* \in L^1(M)$ follows from Definition 9 and (29). To prove (30), suppose first that a = b. Then by Definition 13 and Lemma 5

$$\operatorname{tr}(a^*a) = \tau(\chi_{]1,\infty[}(a^*a)) = \tau(\chi_{]1,\infty[}(aa^*)) = \operatorname{tr}(aa^*).$$

In the general case, note that $a+ib \in \tilde{N}_{\frac{1}{2}+it}$ and

$$b^*a = \frac{1}{4} \sum_{k=0}^{3} i^k (a + i^k b)^* (a + i^k b)$$

$$ab^* = \frac{1}{4} \sum_{k=0}^{3} i^k (a + i^k b)(a + i^k b)^*$$

The result follows since tr is linear.

Proposition 21. Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Let $a \in L^p(M)$ and $b \in L^q(M)$. Then $ab, ba \in L^1(M)$ and

$$\operatorname{tr}(ab) = \operatorname{tr}(ba).$$

Proof. If p = 1 we have $a = h_{\varphi}$ for some $\varphi \in M_*$ and the result follows by Theorem 7:

$$\operatorname{tr}(h_{\varphi}b) = \operatorname{tr}(h_{\varphi \cdot b}) = (\varphi \cdot b)(1) = (b \cdot \varphi)(1) = \operatorname{tr}(h_{b \cdot \varphi}) = \operatorname{tr}(bh_{\varphi})$$

Now suppose that $p,q\in]1,\infty[$. As usual, we easily see that ab and ba are in $L^1(M)$. By linearity, we may assume that $a\in L^p(M)_+$ and $b\in L^q(M)_+$. Now $a^p,b^q\in L^1(M)_+$ and by Lemma 19 the functions F and G on S° defined by $F(\alpha)=\operatorname{tr}\left(a^{p\alpha}b^{q(1-\alpha)}\right)$ and $G(\alpha)=\operatorname{tr}\left(b^{q(1-\alpha)}a^{p\alpha}\right)$ are analytic. For all $t\in \mathbb{R}$, we have $a^{p(\frac{1}{2}+it)}\in \tilde{N}_{\frac{1}{2}+it}$ and $b^{q(\frac{1}{2}+it)}\in \tilde{N}_{\frac{1}{2}+it}$ so that by Lemma 20

$$F(\frac{1}{2} + it) = \operatorname{tr}\left(a^{p(\frac{1}{2} + it)}b^{q(\frac{1}{2} - it)}\right) = \operatorname{tr}\left(a^{p(\frac{1}{2} + it)}(b^{q(\frac{1}{2} - it)})^*\right)$$
$$= \operatorname{tr}\left((b^{q(\frac{1}{2} - it)})^*a^{p(\frac{1}{2} + it)}\right) = \operatorname{tr}\left(b^{q(\frac{1}{2} - it)}a^{p(\frac{1}{2} + it)}\right) = G(\frac{1}{2} + it)$$

We conclude that F = G. In particular,

$$\operatorname{tr}(ab) = F(\frac{1}{p}) = G(\frac{1}{p}) = \operatorname{tr}(ba).$$

The proof of the next lemma is based on the 3 lines theorem for analytic functions (see e.g. [23, p.93]). The 3 lines theorem also holds for analytic functions F with values in a Banach space (to see this, apply it to the scalar-valued functions $\alpha \mapsto v(F(\alpha))$, where v is in the dual of the given Banach space).

Lemma 22. Let $h, k \in L^1(M)_+$ and suppose that $||h||_1 = ||k||_1 = 1$. Then for all $\alpha \in S^{\circ}$, we have

$$\left\| h^{\alpha} k^{1-\alpha} \right\|_1 \le 1$$

Proof. Write $s = \operatorname{Re} \alpha$, $t = \operatorname{Im} \alpha$. Then $h^s \in L^{\frac{1}{s}}(M)$ with $||h^s||_{\frac{1}{s}} = 1 = s^{-s} \cdot s^s$, whence by Lemma 16

$$h^s \in N(s^{-s}, s).$$

Similarly,

$$k^{1-s} \in N((1-s)^{-(1-s)}, 1-s).$$

It follows that

$$h^{s}k^{1-s} \in N(s^{-s}, s) \cdot N((1-s)^{-(1-s)}, 1-s)$$
$$\subset N(s^{-s}(1-s)^{-(1-s)}, s+(1-s))$$

whence also

$$h^{\alpha}k^{1-\alpha} = h^{it}h^{s}k^{1-s}k^{-it} \in N(s^{-s}(1-s)^{-(1-s)}, 1)$$

Again by Lemma 16,

$$||h^{\alpha}k^{1-\alpha}||_{1} \leq s^{-s}(1-s)^{-(1-s)}$$

Since $s \mapsto s^{-s}(1-s)^{-(1-s)}$ is bounded, the function $\alpha \mapsto h^{\alpha}k^{1-\alpha}$: $S^{\circ} \to L^{1}(M)$ is bounded. It is analytic by Lemma 19. Hence we can apply the 3 lines theorem on each closed strip $\{a \in \mathbb{C} | \epsilon \leq \text{Re } \alpha \leq 1 - \epsilon\}$ and we obtain

$$\sup_{t \le \operatorname{Re} \alpha \le 1 - \epsilon} \left\| h^{\alpha} k^{1 - \alpha} \right\|_{1} \le \epsilon^{-\epsilon} (1 - \epsilon)^{-(1 - \epsilon)}.$$

Hence for fixed $a \in S^{\circ}$, the inequality

$$\|h^{\alpha}k^{1-\alpha}\|_{1} \le \epsilon^{-\epsilon}(1-\epsilon)^{-(1-\epsilon)}$$

holds for all $\epsilon \in \mathbb{R}_+$ such that $\epsilon \leq \operatorname{Re} \alpha \leq 1 - \epsilon$. Since

$$e^{-\epsilon}(1-\epsilon)^{-(1-\epsilon)} = e^{-\epsilon\log\epsilon}e^{-(1-\epsilon)\log(1-\epsilon)} \to 1 \text{ as } \epsilon \to 0,$$

it follows that

$$\left\|h^{\alpha}k^{1-\alpha}\right\|_{1} \le 1$$

This proves the lemma.

Theorem 23 (Hölder's inequality). Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Let $a \in L^p(M)$ and $b \in L^q(M)$. Then

$$||ab||_1 \le ||a||_p ||b||_q.$$

Proof. If p = 1, we have $a = h_{\varphi}$ for some $\varphi \in M_*$ and

$$\|h_{\varphi}b\|_{1} = \|h_{\varphi \cdot b}\|_{1} = \|\varphi \cdot b\| \le \|\varphi\| \|b\|_{\infty} = \|h_{\varphi}\|_{1} \cdot \|b\|_{\infty}$$

for all $b \in L^{\infty}(M) = M$. The case q = 1 is quite similar to this.

Now assume $p, q \in]1, \infty[$, and $||a||_p = 1$, $||b||_q = 1$. Let a = u|a| be the (usual) polar decomposition of a and $b = |b^*|v$ the right polar decomposition of b. Then $|a|^p, |b^*|^q \in L^1(M)$ with $||a|^p|| = ||b^*|_p^q||_1 = 1$ and Lemma 22 applies:

$$\begin{split} \|ab\|_1 = & \|u|a||b^*|v\|_1 \leq \||a||b^*|\|_1 \\ = & \left\||a|^{\frac{p}{p}}|b^*|^{\frac{q}{q}}\right\|_1 \leq 1. \end{split}$$

Proposition 24. Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Let $a \in L^p(M)$. Then

$$||a||_p = \sup\{|\operatorname{tr}(ab)||b \in L^q(M), ||b||_q \le 1\}.$$

Proof. If p = 1 or $p = \infty$ this is well-known (since $\operatorname{tr}(ch_{\varphi}) = \operatorname{tr}(h_{\varphi}c) = \varphi(c)$ for all $\varphi \in M_*$ and $c \in M$). Suppose that $1 . We may assume that <math>\|a\|_p = 1$. Then putting $b = |a|^{\frac{p}{q}}u^*$, where a = u|a| is the polar decomposition of a, we have $b \in L^q(M)$ with $\|b\|_q = \||a|^{\frac{p}{q}}u^*\|_q = \operatorname{tr}(|a|^p)^{\frac{1}{q}} = 1$ and

$$\operatorname{tr}(ab) = \operatorname{tr}\left(u|a||a|^{\frac{p}{q}}u^*\right) = \operatorname{tr}(|a|^p) = 1.$$

Hence

$$||a||_p = 1 \le \sup\{|\operatorname{tr}(ab)||b \in L^q(M), ||b||_q \le 1\}.$$

The converse inequality follows from Hölder's inequality (together with (26)).

Corollary 25. $\|\cdot\|_p$ is a norm on $L^p(M)$.

Proof. The inequality

$$||a+b||_p \le ||a||_p + ||b||_p$$

follows immediately from Proposition 24.

Proposition 26. On $L^p(M)$, the norm topology is exactly the topology induced from \tilde{N} .

Proof. Now that we know that $\|\cdot\|_p$ is a norm, this is a corollary of Lemma 16.

Corollary 27. $(L^p(M), \|\cdot\|_p)$ is a Banach space.

Proof. From the definition of $L^p(M)$ it follows that it is a closed subspace of the complete topological vector space \tilde{N} . Hence it is complete for the uniform structure induced from \tilde{N} . By Lemma 16, this is simply the uniform structure coming from the norm. Hence $L^p(M)$ is a complete normed space.

Corollary 28. $(L^2(M), \|\cdot\|_2)$ is a Hilbert space with the inner product

$$(a|b)_{L^2(M)} = \operatorname{tr}(b^*a) \quad (=\operatorname{tr}(ab^*)), a, b \in L^2(M).$$

Proof. That $(a,b) \mapsto (a|b)_{L^2(M)}$ is an inner product defining the norm $\|\cdot\|_2$ is easily verified. By Corollary 27, $L^2(M)$ is complete.

Remark 29. Let $t \in \mathbb{R}$. Define $\tilde{N}_{\frac{1}{n}+it}$ as in Lemma 20. Then

$$(a,b) \mapsto \operatorname{tr}(b^*a)$$

is an inner product on $\tilde{N}_{\frac{1}{2}+it}$ and

$$a \mapsto \operatorname{tr}(a^*a)^{\frac{1}{2}}$$

is a norm which we shall denote by $\|\cdot\|_2$ (as in the case t=0 where $\tilde{N}_{\frac{1}{2}}=L^2(M)$). Note that

$$|\operatorname{tr}(b^*a)| \le ||a||_2 ||b||_2$$

and

$$||a + b||_2^2 + ||a - b||_2^2 = 2||a||_2^2 + 2||b||_2^2$$

for all $a, b \in \tilde{N}_{\frac{1}{2}+it}$.

Remark 30. Let $p \in [1, \infty[$. Then we have a natural identification

$$L^{p}(M \oplus M) \cong L^{p}(M) \times L^{p}(M) \tag{31}$$

such that

$$\forall (a,b) \in L^p(M) \times L^p(M) \cong L^p(M \oplus M) : \|(a,b)\|_p = (\|a\|_p^p + \|b\|_p^p)^{\frac{1}{p}}.$$
(32)

To see this, write $M^{(2)} = M \oplus M$ and define the normal faithful semifinite weight $\varphi_0^{(2)}$ on $M^{(2)}$ by $\varphi_0^{(2)} = \varphi_0 \oplus \varphi_0$, i.e.

$$\varphi_0^{(2)} \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \varphi_0(x) + \varphi_0(y), x, y \in M_+.$$

Let us denote by $N^{(2)}$, $\tau^{(2)}$ etc. the objects associated with $(M^{(2)}, \varphi_0^{(2)})$ analogous to N, τ etc. associated with (M, φ_0) . Then one easily verifies that $N^{(2)} \cong N \oplus N$, $\tau^{(2)} \cong \tau \oplus \tau$, $(M^{(2)})_* \cong M_* \oplus M_*$, $h_{\varphi \oplus \psi}^{(2)} \cong h_{\varphi} \oplus h_{\psi}$, $\theta_s^{(2)} \cong \theta_s \oplus \theta_s$, $\tilde{N}^{(2)} \cong \tilde{N} \oplus \tilde{N}$, and finally (31). Furthermore, $\operatorname{tr}^{(2)} \cong \operatorname{tr} \oplus \operatorname{tr}$ so that

$$||(a,b)||_p^p = \operatorname{tr}^{(2)} \left(\left| \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right|^p \right) = \operatorname{tr}^{(2)} \left(\begin{vmatrix} a \end{vmatrix}^p & 0 \\ 0 & |b|^p \right)$$
$$= \operatorname{tr}(|a|^p) + \operatorname{tr}(|b|^p) = ||a||_p^p + ||b||_p^p$$

for all $a, b \in L^p(M)$. This proves (32).

Proposition 31 (Clarkson's inequality). Let $p \in [2, \infty[$. Then for all $a, b \in L^p(M)$ we have

$$||a+b||_p^p + ||a-b||_p^p \le 2^{p-1} (||a||_p^p + ||b||_p^p).$$

Proof. Using Remark 30 we may reformulate the inequality to be proved as

$$\|(a+b, a-b)\|_{p} \le 2^{\frac{1}{q}} \|(a,b)\|_{p} \tag{33}$$

where we have put $\frac{1}{q} = 1 - \frac{1}{p}$.

Let $(a,b) \in L^p(M \oplus M)$ and $(c,d) \in L^q(M \oplus M)$ such that

$$\|(a,b)\|_p = 1 \text{ and } \|(c,d)\|_q = 1.$$
 (34)

Let

$$a = uh^{\frac{1}{p}}, b = vk^{\frac{1}{p}}$$

be the polar decompositions of a and b, and

$$c = f^{\frac{1}{q}}w, d = g^{\frac{1}{q}}z$$

the right polar decompositions of c and d. Then $h,k,f,g\in L^1(M)_+$ and

$$||(h,k)||_1 = 1, ||(f,g)||_1 = 1.$$

For each $a \in S^{\circ}$, put

$$F(\alpha) = \operatorname{tr}((uh^{\alpha} + vk^{\alpha})f^{1-\alpha}w + (uh^{\alpha} - vk^{\alpha})g^{1-\alpha}z).$$

Then

$$F(\frac{1}{p}) = \operatorname{tr}((a+b)c + (a-b)d).$$

For all $a \in S^{\circ}$, we have

$$F(\alpha) = \operatorname{tr}^{(2)} \left(\begin{pmatrix} u & 0 \\ 0 & -v \end{pmatrix} \begin{pmatrix} h^{\alpha} & 0 \\ 0 & k^{\alpha} \end{pmatrix} \begin{pmatrix} f^{1-\alpha} & 0 \\ 0 & g^{1-\alpha} \end{pmatrix} \begin{pmatrix} w & 0 \\ 0 & z \end{pmatrix} \right) + \operatorname{tr}^{(2)} \left(\begin{pmatrix} v & 0 \\ 0 & u \end{pmatrix} \begin{pmatrix} k^{\alpha} & 0 \\ 0 & h^{\alpha} \end{pmatrix} \begin{pmatrix} f^{1-\alpha} & 0 \\ 0 & g^{1-\alpha} \end{pmatrix} \begin{pmatrix} w & 0 \\ 0 & z \end{pmatrix} \right)$$

By Lemma 19 and 22 applied to $(h,k) \in L^1(M \oplus M)$ and $(f,g) \in L^1(M \oplus M)$ we conclude that F is analytic and

$$\forall \alpha \in S^{\circ} : |F(\alpha)| \le 2. \tag{35}$$

we claim that

$$\forall t \in \mathbb{R} : \left| F(\frac{1}{2} + it) \right| \le \sqrt{2}. \tag{36}$$

For the proof we apply first the Cauchy-Schwarz inequality in

 $\tilde{N}^{(2)}_{\frac{1}{2}+it}$, next the parallelogram law in $\tilde{N}_{\frac{1}{2}+it}$ (cf. Remark 29):

$$\begin{split} & \left| F(\frac{1}{2} + it) \right|^2 \\ = & \left| \operatorname{tr}^{(2)} \left(\begin{pmatrix} u h^{\frac{1}{2} + it} + v k^{\frac{1}{2} + it} & 0 \\ 0 & u h^{\frac{1}{2} + it} - v k^{\frac{1}{2} + it} \end{pmatrix} \begin{pmatrix} f^{\frac{1}{2} - it} w & 0 \\ 0 & g^{\frac{1}{2} - it} z \end{pmatrix} \right) \right|^2 \\ \leq & \left\| \begin{pmatrix} u h^{\frac{1}{2} + it} + v k^{\frac{1}{2} + it} & 0 \\ 0 & u h^{\frac{1}{2} + it} - v k^{\frac{1}{2} + it} \end{pmatrix} \right\|_2^2 \left\| \begin{pmatrix} f^{\frac{1}{2} - it} w & 0 \\ 0 & g^{\frac{1}{2} - it} z \end{pmatrix}^* \right\|_2^2 \\ = & \left(\left\| u h^{\frac{1}{2} + it} + v k^{\frac{1}{2} + it} \right\|_2^2 + \left\| u h^{\frac{1}{2} + it} - v k^{\frac{1}{2} + it} \right\|_2^2 \right) \left(\left\| f^{\frac{1}{2} - it} w \right\|_2^2 + \left\| g^{\frac{1}{2} - it} z \right\|_2^2 \right) \\ = & \left(2 \left\| u h^{\frac{1}{2} + it} \right\|_2^2 + 2 \left\| v k^{\frac{1}{2} + it} \right\|_2^2 \right) \left(\left\| f^{\frac{1}{2}} \right\|_2^2 + \left\| g^{\frac{1}{2}} \right\|_2^2 \right) = 2 \left(\left\| h^{\frac{1}{2}} \right\|_2^2 + \left\| k^{\frac{1}{2}} \right\|_2^2 \right) = 2 \end{split}$$

Finally, by the 3 lines theorem applied to each strip $\{\alpha \in \mathbb{C} | \epsilon \le \text{Re } \alpha \le \frac{1}{2} \}$ where $0 < \epsilon < \frac{1}{p}$, 35 and 36 give

$$|\operatorname{tr}((a+b)c + (a-b)d)| = \left| F(\frac{1}{p}) \right|$$

$$\leq 2^{(\frac{1}{2} - \frac{1}{p})/(\frac{1}{2} - \epsilon)} \cdot (\sqrt{2})^{((\frac{1}{p}) - \epsilon)/(\frac{1}{2} - \epsilon)}$$

$$\to 2^{1 - \frac{2}{p}} \cdot 2^{\frac{1}{p}} = 2^{\frac{1}{q}} \text{ as } \epsilon \to \infty.$$

Hence

$$\left| \operatorname{tr}^{(2)} \left(\begin{pmatrix} a+b & 0 \\ 0 & a-b \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} \right) \right| \le 2^{\frac{1}{q}}$$

for all $(a,b) \in L^p(M \oplus M)$ and $(c,d) \in L^q(M \oplus M)$ satisfying (34). By Proposition 24 applied to $L^p(M \oplus M)$ this implies that

$$\|(a+b,a-b)\|_p \le 2^{\frac{1}{q}}$$

for all $(a,b) \in L^p(M \oplus M)$ with $||(a,b)||_p = 1$. (33) follows. \square

By Clarkson's inequality, the Banach space $L^p(M)$, where $2 \leq p < \infty$, is uniformly convex. Hence it is reflexive (see e.g. [22, p. 127, Theorem 2]).

Theorem 32. Let $p \in [1, \infty[$ and $\frac{1}{p} + \frac{1}{q} = 1.$

1) Let $a \in L^q(M)$. Then φ_a defined by

$$\varphi_a(b) = \operatorname{tr}(ab), b \in L^p(M),$$

is a bounded linear functional on $L^p(M)$.

2) The mapping

$$a \mapsto \varphi_a$$

is an isometric isomorphism of $L^q(M)$ onto the dual Banach space of $L^p(M)$.

Proof. By Proposition 24, $a \mapsto \varphi_a$ is an isometry of $L^q(M)$ onto a subspace of the dual $L^p(M)^*$ of $L^p(M)$. Since $L^q(M)$ is complete, this subspace is closed. It follows from Proposition 24 that it is w*-dense (its orthogonal in $L^p(M)$ vanishes).

Now if $p \geq 2$, the space $L^p(M)$ is reflexive. Hence $L^p(M)^*$ is also reflexive and thus the w*-closure of the subspace $L^q(M)$ is equal to its norm closure. Hence $L^q(M) = L^p(M)^*$.

If p < 2, we have $q \ge 2$ and thus $L^p(M) \cong L^q(M)^*$ via tr. It follows that $L^p(M)^* \cong L^q(M)^{**} \cong L^q(M)$ (via tr).

Proposition 33. Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Let $a \in L^q(M)$. Then $a \ge 0$ if and only if

$$\forall b \in L^p(M)_* : \operatorname{tr}(ab) \ge 0 \tag{37}$$

Proof. If $p, q \in \{1, \infty\}$, the result is well-known. Now assume that $p, q \in]1, \infty[$. If $a \in L^q(M)_+$, then $a^{\frac{1}{2}}ba^{\frac{1}{2}} \in L^1(M) \cap \tilde{N}_+ = L^1(M)_+$ and hence

$$\operatorname{tr}(ab) = \operatorname{tr}\left(a^{\frac{1}{2}}a^{\frac{1}{2}}b\right) = \operatorname{tr}\left(a^{\frac{1}{2}}ba^{\frac{1}{2}}\right) \ge 0$$

Conversely, suppose that $a \in L^q(M)$ satisfies (37). Then $a = a^*$ since

$$\operatorname{tr}(ab) = \overline{\operatorname{tr}(ab)} = \operatorname{tr}((ab)^*) = \operatorname{tr}(ba^*) = \operatorname{tr}(a^*b)$$

for all $b \in L^p(M)_+$. Put $a_+ = (a + |a|)/2, a_- = (a - |a|)/2 \in L^q(M)_+$. Then $a = a_+ - a_-$ and $a_+a_- = 0$. Put $b = a_-^{\frac{q}{p}}$. Then $b \in L^p(M)_+$ so that $tr(ab) \ge 0$. Now

$$tr(ab) = tr(a_+b) - tr(a_-b) = -tr(a_-b) = -tr(a_-^q).$$

It follows that $\operatorname{tr}(a_{-}^{q}) = 0$ whence $a_{-} = 0$ and $a = a_{+} \in L^{q}(M)_{+}$.

For each $p \in [1, \infty]$ we define left and right actions λ_p and ρ_p on $L^p(M)$ by

$$\lambda_p(x)a = xa, a \in L^p(M), \tag{38}$$

$$\rho_p(x)a = ax, a \in L^p(M), \tag{39}$$

for all $x \in M$. That $\lambda_p(x)$ and $\rho_p(x)$ map $L^p(M)$ into itself follows immediately from Definition 9. From Lemma 16 and the fact that $xN(\epsilon, \delta) \subset N(\|x\|\epsilon, \delta)$ for all $x \in M$ and $\epsilon, \delta \in \mathbb{R}_+$, we get

$$\forall x \in M \forall a \in L^p(M) : ||xa||_p \le ||x||_{\infty} ||a||_p.$$
 (40)

Since $ax = (x^*a^*)^*$, we also have

$$\forall x \in M \forall a \in L^p(M) : \|ax\|_p \le \|x\|_\infty \|a\|_p. \tag{41}$$

Hence $\lambda_p(x)$ and $\rho_p(x)$ are bounded linear operators on $L^p(M)$.

Proposition 34. Let $p \in [1, \infty]$.

- 1) λ_p (resp. ρ_p) is a faithful representation (resp. anti-representation) of M on the Banach space $L^p(M)$.
 - 2) For all $x \in M$, we have

$$J_p \lambda_p(x) J_p = \rho_p(x^*),$$

where J_p denotes the conjugate linear isometric involution $a \mapsto a^*$ of $L^p(M)$.

3) Let z be an element of the center of M. Then

$$\lambda_p(z) = \rho_p(z).$$

Proof. 1) Suppose that $\lambda_p(x) = 0$. Then

$$\forall a \in L^p(M) \forall b \in L^q(M) : \operatorname{tr}(xab) = \operatorname{tr}((\lambda_p(x)a)b) = 0.$$

Since $L^1(M) = L^p(M) \cdot L^q(M)$, x must be 0.

2) For all $a \in L^p(M)$, we have

$$(J_p \lambda_p(x) J_p)(a) = (xa^*)^* = ax^* = \rho_p(x^*)a.$$

3) Clearly, $\lambda_{\infty}(z) = \rho_{\infty}(z)$. It follows that

$$\forall a \in L^1(M) \forall b \in L^{\infty}(M) : \operatorname{tr}(zab) = \operatorname{tr}(abz) = \operatorname{tr}(azb)$$

whence $\lambda_1(z) = \rho_1(z)$. In particular

$$\forall a \in L^1(M)_+ : za = az,$$

whence by spectral theory

$$\forall a \in L^1(M)_+ : za^{\frac{1}{p}} = a^{\frac{1}{p}}z.$$

Thus $\lambda_p(z)$ and $\rho_p(z)$ coincide on $L^p(M)_+$. Hence $\lambda_p(z) = \rho_p(z)$.

Proposition 35. For all $p \in [1, \infty]$, we have

$$\lambda_p(M) = \rho_p(M)' \text{ and } \rho_p(M) = \lambda_p(M)'$$
 (42)

(where $\rho_p(M)'$, resp. $\lambda_p(M)'$, denotes the set of bounded linear operators on $L^p(M)$ commuting with all $\rho_p(x), x \in M$, resp. all $\lambda_p(x), x \in M$).

Proof. Obviously

$$\lambda_p(M) \subset \rho_p(M)'$$
 and $\rho_p(M) \subset \lambda_p(M)'$.

To show (42) we need only prove either $\lambda_p(M) \supset \rho_p(M)'$ or $\rho_p(M) \supset \lambda_p(M)'$. Then the other one follows by Proposition 34, 2).

(i) First suppose that $p = \infty$. Let $T \in \lambda_{\infty}(M)'$. Then

$$\forall a \in L^{\infty}(M) : T(a) = T(a1) = aT(1)$$

whence $T = \rho_{\infty}(T(1)) \in \rho_{\infty}(M)$.

(ii) Next we consider the case p = 1. Let $S \in \lambda_1(M)'$. Denote by $T: L^{\infty}(M) \to L^{\infty}(M)$ the transpose of S given by

$$\operatorname{tr}(T(a)b) = \operatorname{tr}(aS(b)), a \in L^{\infty}(M), b \in L^{1}(M).$$

Now

$$\forall x \in M \forall a \in L^{\infty}(M) \forall b \in L^{1}(M) : \operatorname{tr}(T(ax)b) = \operatorname{tr}(axS(b))$$
$$= \operatorname{tr}(T(a)xb).$$

Thus $T \in \rho_{\infty}(M)'$ and hence $T = \lambda_{\infty}(y)$ for some $y \in M$. It follows that

$$\forall a \in L^{\infty}(M) \forall b \in L^{1}(M) : \operatorname{tr}(aS(b)) = \operatorname{tr}(T(a)b)$$
$$= \operatorname{tr}(yab) = \operatorname{tr}(aby),$$

whence $S = \rho_1(y) \in \rho_1(M)$.

(iii) Now let $p \in]1, \infty[$. Let $T \in \lambda_p(M)'$. We want to define a linear mapping $S: L^1(M) \to L^1(M)$ by

$$S\left(\sum_{i=1}^{n} b_i a_i\right) = \sum_{i=1}^{n} b_i T(a_i)$$

$$\tag{43}$$

for all $a_1, \ldots, a_n \in L^p(M)$ and $b_1, \ldots, b_n \in L^q(M)$. First let us show that

$$\sum_{i=1}^{n} b_i a_i = 0 \Rightarrow \sum_{i=1}^{n} b_i T(a_i) = 0$$
 (44)

=0 so that S is well-defined.

Suppose that $\sum_{i=1}^{n} b_i a_i = 0$. Put $a = (\sum_{i=1}^{n} a_i^* a_i)^{\frac{1}{2}} \in L^p(M)_+$. Then all $a_i^* a_i \leq a^2$. Hence there exist $x_1, \ldots, x_n \in M$ such that

$$a_i = x_i a$$
 and $\sum_{i=1}^n x_i^* x_i = \operatorname{supp} a$.

Then

$$\left(\sum_{i=1}^{n} b_i x_i\right) a = \sum_{i=1}^{n} b_i a_i = 0$$

and

$$\operatorname{supp}\left(\sum_{i=1}^{n} b_i x_i\right) \le \operatorname{supp} a$$

whence

$$\sum_{i=1}^{n} b_i x_i = 0.$$

It follows that

$$\sum_{i=1}^{n} b_i T(a_i) = \sum_{i=1}^{n} b_i T(x_i a) = \sum_{i=1}^{n} b_i x_i T(a) = \left(\sum_{i=1}^{n} b_i x_i\right) T(a) = 0$$

as wanted.

We have shown that $S: L^1(M) \mapsto L^1(M)$ is a well-defined linear map. It is also bounded. Indeed, any $c \in L^1(M)$ may be written as a product c = ba where $a \in L^p(M), b \in L^q(M)$, and $\|c\|_1 = \|b\|_q \|a\|_p$. Then

$$||S(c)||_1 = ||bT(a)||_1 \le ||b||_q ||T(a)||_p \le ||b||_q ||T|| ||a||_p = ||T|| ||c||_1.$$

Finally, since

$$\forall x \in M \forall b \in L^q(M) \forall a \in L^p(M) : S(xba) = xbT(a) = xS(ba)$$

we have $S \in \lambda_1(M)'$. Hence $S = \rho_1(y)$ for some $y \in M$. Now

$$bT(a) = S(ba) = bay = b\rho_p(y)a$$

for all $b \in L^q(M)$ and $a \in L^p(M)$. It follows that $T = \rho_p(y) \in \rho_p(M)$ as wanted.

We shall denote λ_2 and ρ_2 simply by λ and ρ , and J_2 by J (i.e. $Ja = a^*$ for all $a \in L^2(M)$).

Theorem 36. 1) λ (resp. ρ) is a normal faithful representation (resp. anti-representation) of M on the Hilbert space $L^2(M)$.

2) The von Neumann algebras $\lambda(M)$ and $\rho(M)$ are commutants of each other, and

$$\rho(M) = J\lambda(M)J$$

3) $(\lambda(M), L^2(M), J, L^2(M)_+)$ is a standard form of M in the sense of [4, Definition 2.1].

Proof. For all $x \in M$ and $a, b \in L^2(M)$ we have

$$(\lambda(x)a|b)_{L^{2}(M)} = \operatorname{tr}(b^{*}xa) = \operatorname{tr}((x^{*}b)^{*}a) = (a|\lambda(x^{*})b)_{L^{2}(M)}$$

so that λ is a *-representation.

Suppose that $x_i \nearrow x \in M$. Then for all $a \in L^2(M)$, we have

$$(\lambda(x_i)a|a)_{L^2(M)} = \operatorname{tr}(a^*x_ia) = \operatorname{tr}(x_iaa^*) = \langle x_i, aa^* \rangle$$

$$\nearrow \langle x, aa^* \rangle = \operatorname{tr}(xaa^*) = \operatorname{tr}(a^*xa) = (\lambda(x)x|a)_{L^2(M)}.$$

- 2) follows immediately from Proposition 35 and Proposition 34, 2).
- 3) That $L^2(M)_+$ is a self-dual cone follows from Proposition 33. Now
 - 1. $J\lambda(M)J = \rho(M) = \lambda(M)'$;
 - 2. $J\lambda(z)J = \rho(x^*) = \lambda(z^*) = \lambda(z)^*$ for all z in the center of M;
 - 3. for all $a \in L^2(M)_+$, we have $a^* = a$;
 - 4. for all $a \in L^2(M)_+$ and $x \in M$, we have $(\lambda(x)J\lambda(x)J)a = \lambda(x)\rho(x^*)a = xax^* \in L^2(M)_+$.

П

1.1 Independence of the choice of φ_0

The spaces $L^p(M)$ and their relations are independent of the choice of φ_0 (and hence canonically associated with M). This is a consequence of the following theorem and its corollary when we recall that the spaces $(L^p(M), \|\cdot\|_p)$ are defined in terms of \tilde{N} , $(\theta_s)_{s\in\mathbb{R}}$, and τ .

Let φ_0 and φ_1 be normal faithful semifinite weights on M. We view the crossed products $N_0 = R(M, \sigma^{\varphi_0})$ and $N_1 = R(M, \sigma^{\varphi_1})$ as von Neumann algebras on $L^2(\mathbb{R}, H)$. They are generated by $\pi_0(x), x \in M$, (resp. $\pi_1(x), x \in M$) and $\lambda(s), s \in \mathbb{R}$, where

$$(\pi_0(x)\xi)(t) = \sigma_{-t}^{\varphi_0}(x)\xi(t), (\pi_1(x)\xi)(t) = \sigma_{-t}^{\varphi_1}(x)\xi(t),$$

$$(\lambda(s)\xi)(t) = \xi(t-s)$$

for all $\xi \in L^2(\mathbb{R}, H), t \in \mathbb{R}$.

Denote by $s \mapsto \theta_s$ the dual action of \mathbb{R} in N_0 and N_1 . Recall [18, Section 4] that each θ_s has the form

$$\theta_s(y) = \mu_s y \mu_s^{-1} \tag{45}$$

where μ_s is the unitary on $L^2(\mathbb{R}, H)$ given by

$$(\mu_s \xi)(t) = e^{-ist} \xi(t), \xi \in L^2(\mathbb{R}, H), t \in \mathbb{R}.$$
(46)

Denote by τ_0 , resp. τ_1 , the trace on N_0 , resp. N_1 , given by (14).

Theorem 37. There exists an isomorphism

$$\kappa: N_0 \to N_1$$

such that

$$\forall s \in \mathbb{R} : \kappa \circ \theta_s \circ \kappa^{-1} = \theta_s \tag{47}$$

and

$$\tau_1 = \tau_0 \circ \kappa^{-1}. \tag{48}$$

Proof. (cf. [18,Proposition 3.5]). We define a unitary u on $L^2(\mathbb{R}, H)$ by

$$(u\xi)(t) = (D\varphi_1 : D\varphi_0)_{-t}\xi(t), \xi \in L^2(\mathbb{R}, H), t \in \mathbb{R}.$$

Now

$$\forall x \in M : u\pi_0(x)u^* = \pi_1(x) \tag{49}$$

and

$$\forall s \in \mathbb{R} : u\lambda(s)u^* = \pi_1((D\varphi_1, D\varphi_0)_s^*)\lambda(s) \tag{50}$$

since

$$(u\pi_0(x)u^*\xi)(t) = (D\varphi_1 : D\varphi_0)_{-t}\sigma_{-t}^{\varphi_0}(x)(D\varphi_1 : D\varphi_0)_{-t}^*\xi(t)$$

= $\sigma_{-t}^{\varphi_1}(x)\xi(t), t \in \mathbb{R},$

and

$$(u\lambda(s)u^{*}\xi)(t) = (D\varphi_{1}:D\varphi_{0})_{-t}(D\varphi_{1}:D\varphi_{0})_{-(t-s)}^{*}\xi(t-s)$$

$$= (D\varphi_{1}:D\varphi_{0})_{-t}((D\varphi_{1}:D\varphi_{0})_{-t}\sigma_{-t}^{\varphi_{0}}((D\varphi_{1}:D\varphi_{0})_{s}))^{*}\xi(t-s)$$

$$= (D\varphi_{1}:D\varphi_{0})_{-t}\sigma_{-t}^{\varphi_{0}}((D\varphi_{1}:D\varphi_{0})_{s}^{*})(D\varphi_{1}:D\varphi_{0})_{-t}^{*}\xi(t-s)$$

$$= (\sigma_{-t}^{\varphi_{1}}((D\varphi_{1}:D\varphi_{0})_{s}^{*})\lambda(s)\xi)(t), t \in \mathbb{R},$$

for all $x \in M, s \in \mathbb{R}$, and $\xi \in L^2(\mathbb{R}, H)$. Hence $\kappa = u(\cdot)u^*$ maps N_0 into N_1 . Similarly, $u^*(\cdot)u$ maps N_1 into N_0 . In all, we have shown that

$$\kappa: N_0 \to N_1$$

is an isomorphism of N_0 onto N_1 .