## TTIC 31230 Fundamentals of Deep Learning Problems For Fundamental Equations.

Assume that probability distributions P(y) are discrete with  $\sum_{y} P(y) = 1$ .

**Problem 1:** The problem of population density estimation is defined by the following equation.

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ H(\operatorname{Pop}, P_{\Phi}) = E_{y \sim \operatorname{Pop}} - \log \ P_{\Phi}(y)$$

This equation is used for language modeling — estimating the probability distribution over the population of English sentences that appear, say, in the New York Times.

(a) Show the following.

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ H(\operatorname{Pop}, P_{\Phi}) = \underset{\Phi}{\operatorname{argmin}} \ KL(\operatorname{Pop}, P_{\Phi})$$

(b) Explain why we can measure  $H(\text{Pop}, P_{\Phi})$  but cannot measure  $KL(\text{Pop}, P_{\Phi})$ .

**Problem 2:** Consider the objective

$$P^* = \underset{P}{\operatorname{argmin}} \ H(P, Q) \tag{1}$$

Define  $y^*$  by

$$y^* = \underset{y}{\operatorname{argmax}} Q(y)$$

Let  $\delta_y$  be the distribution such that  $\delta_y(y) = 1$  and  $\delta_y(y') = 0$  for  $y' \neq y$ . Show that  $\delta_{y^*}$  minimizes (1).

Next consider

$$P^* = \underset{P}{\operatorname{argmin}} \ KL(P, Q) \tag{2}$$

Show that Q is the minimizer of (2).

Next consider a subset S of the possible values and let  $Q_S$  be the restriction of Q to the set S.

$$Q_S(y) = \frac{1}{Q(S)} \begin{cases} Q(y) & \text{for } y \in S \\ 0 & \text{otherwise} \end{cases}$$

Show that that  $KL(Q_S, Q) = -\ln Q(S)$ , which will be quite small if S covers much of the mass. Show that, in contrast,  $KL(Q, Q_S)$  is infinite unless  $Q_S = Q$ .

When we optimize a model  $P_{\Phi}$  under the objective  $KL(P_{\Phi}, Q)$  we can get that  $P_{\Phi}$  covers only one high probability region (a mode) of Q (a problem called mode collapse) while optimizing  $P_{\Phi}$  under the objective  $KL(Q, P_{\Phi})$  we will tend to get that  $P_{\Phi}$  covers all of Q. The two directions are very different even though both are minimized at P = Q.

**Problem 3.** Prove the data processing inequality that for any function f with z = f(y) we have  $H(z) \le H(y)$ .

**Problem 4:** Consider a joint distribution P(x, y) on discrete random variables x and y. We define the marginal distributions P(x) and P(y) as follows.

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

Let Q(x,y) be defined to be the product of marginals.

$$Q(x,y) = P(x)P(y).$$

We define mutual information by

$$I(x,y) = KL(P,Q)$$

which I will write as

$$I(x,y) = KL(P(x,y), Q(x,y))$$

We define conditional entropy H(y|x) by

$$H(y|x) = E_{x,y} - \log P(y|x).$$

(a) Show

$$I(x,y) = H(y) - H(y|x) = H(x) - H(x|y)$$

- (b) Explain why (a) implies  $H(x) \ge H(x|y)$ .
- (c) By stating (b) conditioned on z we have

$$H(x|z) \ge H(x|y,z).$$

Use this to show that the data process inequality applies to mutual information, i.e., that for z = f(y) we have  $I(x, z) \leq I(x, y)$ .

**Problem 5:** (a) For three distributions P, Q and G show the following equality.

$$KL(P,Q) = \left(E_{y \sim P} \log \frac{G(y)}{Q(y)}\right) + KL(P,G)$$

(b) Show that this implies

$$KL(P,Q) = \sup_{G} E_{y \sim P} \log \frac{G(y)}{Q(y)}$$

(c) Now define

$$G(y) = \frac{1}{Z} Q(y)e^{s(y)}$$

$$Z = \sum_{y} Q(y)e^{s(y)}$$

Show that a distribution G(y) which does not assign zero to any point can be represented by a score s(y) and that under this change of variables we have

$$KL(P,Q) = \sup_{s} E_{y \sim P} s(y) - \log E_{y \sim Q} e^{s(y)}$$

This is the Donsker-Varadhan variational representation of KL-divergence. This can be used in cases where we can sample from P and Q but cannot compute P(y) or Q(y). Instead we can use a model score  $s_{\Phi}(y)$  where  $s_{\Phi}(y)$  can be computed.