Contents

0.1	Goal in Course	2
0.2	Misc	2
0.3	The Completeness Axiom	2
0.4	Limits of Sequences	3
0.5	8. A Discussion about Proofs	3
	0.5.1 Example 1	3
	0.5.2 Example 2	3
0.6	10. Monotone Sequences and Cauchy Sequences	3
0.7	Heaful Sites	4

0.1 Goal in Course

To be able to learn math outside of a classroom environment with the help of only the internet (and possibly a mentor)

Test with Adarsh Test 2 with Adarsh Test 3

0.2 Misc.

Abbott Recommends to memorize all the definitions

Each definition is followed by a proof and a few examples

Good Youtube Playlists: https://www.youtube.com/watch?v=L-XLcmHwoh0&list=PL22w63XsKjqxqaF-Q7MSyeSG1W1_xaQoS

Neat Latex Tool: http://detexify.kirelabs.org/classify.html

0.3 The Completeness Axiom

Big Idea: The reals has no "gaps"

- 4.1 There exists a maximum and minimum for any nonempty subset of R
- 4.2 IOW: real numbers can upper and lower bound a set
- (a) S has an upper bound if there exists a $M \geq s$ for all $s \in S$
- (b) S has a lower bound if there exists an $M \leq s$ for all $s \in S$
- (c) S is bounded if there exists an upper and lower bound
 - 4.3 sup is least upper bound, and inf is greatest upper bound
- 4.4 Completeness Axiom: Every nonempty subset S of $\mathbb R$ that is bounded above has a least upper bound. In other words, sup S exists and it is a real number.
- 4.5 Corollary: Every nonempty subset S of $\mathbb R$ that is bounded below has a greatest lower bound inf S.
 - 4.4 & 4.5 IOW: A upper and lower bound exist.
- 4.6 Archimedean Property: If a>0 and b>0, then for some positive integer n, we have na>b.
- 4.7 Denseness of \mathbb{Q} : If $a,b \in \mathbb{R}$ and a < b, there is a rational $r \in \mathbb{Q}$ such that a < r < b.

0.4 Limits of Sequences

Definition: A function with domain $\{n \in \mathbb{Z} : n \ge m\}$ where m is 1 or 0

Notation: $(s_n)_{n=m}^{\infty}$ or $(s_n)_n \in \mathbb{N}$ and sequence noted by parantheses while set is defined by curly brackets

Defintion: values need to close to limit for all large n

Definition 7.1: For each $\epsilon>0$ there exists a number N s.t. n > N implies $|s_n-s|<\epsilon$

0.5 8. A Discussion about Proofs

0.5.1 Example 1

Prove $\lim_{n \to \infty} \frac{1}{n^2} = 0$.

- 1. n > N s.t. $|s_n s| < \epsilon$, find N.
- 2. $\left| \frac{1}{n^2} 0 \right| < \epsilon$
- 3. $\frac{1}{\epsilon} < n^2$
- 4. $\frac{1}{\sqrt{\epsilon} < n}$
- 5. Since n > N, $N = \frac{1}{\sqrt{\epsilon}}$.
- 6. This implies somehow that the proof converges.

0.5.2 Example 2

0.6 10. Monotone Sequences and Cauchy Sequences

10.1 Defintion: A monotonic or monotone sequence is one that is either increasing or decreasing

10.2 Theorem: All bounded monotone sequences converge.

10.6 Defintion: Let (s_n) be a sequence in \mathbb{R} . We define $\limsup_n = \lim_{N \to \infty} \inf\{s_n : n > N\}$ and $\lim_{N \to \infty} \inf\{s_n : n > N\}$.

Note: This definition does not restrict (s_n) to be bounded. If (s_n) is not bounded above, $\sup\{s_n:n>N\}=+\infty$ for all N and we decree $\limsup s_n=+\infty$. Likewise, if (s_n) i not bounded below, $\inf\{s_n:n>N\}=-\infty$ for ll N and we decree $\liminf s_n=-\infty$.

We say $limsups_n < limsup\{n \in \}$.

Useful Link: https://math.stackexchange.com/questions/2322902/how-to-deal-with-lim-sup-and 10.7 Theorem: (i) If $lims_n$ is defined, then $liminfs_n = lims_n = limsups_n$.

(ii) If $liminfs_n = limsups_n$, then $lims_n$ is defined and $lims_n = liminfs_n = limsups_n$.

Proof: We use the notation $u_n = \inf\{s_n : n > N\}$, $v_n = \sup\{s_n : n > N\}$, $u = \lim u_N = \lim f s_n$ and $v = \lim v_N = \lim sup s_n$. (i) Suppose $\lim s_n = +\infty$. Let M be a positive real number. Then there is a positive integer N so that n > N implies $s_n > M$. Then $u_N = \inf s_n : n > N \ge M$. It follows that m > N implies $u_m \ge M$. In other words, the sequence (u_N) satisfied the condition defining $\lim u_N = +\infty$, i.e., $\lim f s_n = +\infty$. Likewise $\lim sup s_n = +\infty$.

The case $lims_n = -\infty$ is handled in a similar manner. Now suppose $lims_n = -\infty$ is handled in a similar manner. Now suppose $lims_n = s$ where s is a real numbersber. Consider $\epsilon > 0$. There exist a positive integer N such that $|s_n - s| < \epsilon$ for n > N. Thus $s_n < s + \epsilon$ for n > N, so $v_N = sups_n : n > N \le s + \epsilon$. Also, m > N implies $v_m \le s + \epsilon$ for all $\epsilon > 0$, no matter how small, we conclude $limsups_n a \le s = lims_n$. A similar agrument shows $lims_n \le liminfs_n$. Since $liminfs_n \le limsups_n$, we infer all three numbers equal: $liminfs_n = lims_n = limsups_n$.

(ii)

10.8 Definition: (s_n) of real numbers is a Cauchy sequence if: for each $\epsilon > 0$, there exists a number N, such that m,n > N implies $|s_n - s_m| < \epsilon$.

0.7 Useful Sites

https://math.berkeley.edu/ianagol/113.F10/proofs.pdf