浙江工业大学 05/06(二) 高等数学 A 考试试卷 A

学院:	班级:			姓名:			学号:			
任课教师:										_
题 号	_	_	Ξ	四	五	六	七	八	总 分	
得 分										
一、填空题(1.设 <i>z</i> = _.	$y \ln(x +$	- y) 则	dz =				o			
2. 设 $z=$	f(xy, x)	$^2+y^2$)	, <i>y</i> = j	(x)	$f,m{j}$ 可微	数,则 <i>a</i>	$\frac{dz}{dx} = $			<u></u> °
3.函数 <i>u</i>	=2xy	-z ² 在点	ā (1, -	1,1) 处	沿方向	$\vec{l} = (1,1,$	 0) 的方	向导数	€	<u> </u>
4.改变积	分次序	$\int_{1}^{e} dx \int$	$\int_{0}^{\ln x} f(x)$	(y)dy =				•		
5.设 <i>f(x</i>	,y)在 <i>I</i>	$D: x^2 +$	$y^2 \le 4$	上具有语	连续二阶	·偏导数	, L是	D的正I	句边界 ,	
则 $\oint_L [f_x(x)]$	(x,y)-y	dx +	$f_y(x, y)$	$(x^3]a$	ly =			o		
6 .若把函数	f(x)	$=\sqrt{2-1}$	x ² 展开	为 x 的	幂级数 ,	则此幂约	及数的收	放針名	R=	o
二、选择题((每小!!	54分)	•							
1、设函数		_		$x^2 + y^2$ $x^2 + y^2 =$	≠0 ,贝 =0	削函数在	点(0,	0)处	()
(A)连 (C)偏	续且偏	导数存在	王;	(B) 不道	E续且偏	导数不	存在;		
2、曲线	xyz = x – y –	z = 0	点(2	, 1 , 1)	处的一	个切向	量与 <i>oz</i>	轴正向原	成锐角,	则此
切向量与oy	轴正向的	的夹角为	J ()						
(A) $\frac{\boldsymbol{p}}{4}$;	(B	$)\frac{3p}{4}$;		$(C)^{\frac{1}{2}}$	$\frac{9}{3}$;	(I	(2p)	0	
3、下列级	数中条	件收敛的	为是 ()	,绝对4	火敛的 是	∄() 。		
(A)	$\sum_{n=1}^{\infty} \left(-1\right)$	$\binom{n}{n} \sqrt{\frac{n}{n+1}}$	- ;		(B)	$\sum_{n=1}^{\infty} \left(-1\right)$	$\int_{-n}^{n} \ln \frac{n+1}{n}$	$\frac{-1}{2}$;		
(0)	$\sum_{n=1}^{\infty} \left(-1\right)$	$\binom{n}{n^3+1}$	- ;		(D)	$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$	$\frac{(-1)^n}{+(-1)'}$, °		

三、试解下列各题(每小题7分):

- 1. 隐函数 z = z(x,y) 由方程 $xyz = e^z$ 确定 , 求 : $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x^2}$
- 2、求圆柱面 $x^2 + y^2 = 1$ 被平面x + y + z = 0 截得椭圆的长半轴的长度。

四、试解下列各题(每小题7):

- 1. 计算二次积分 $\int_{1}^{4} dy \int_{\sqrt{y}}^{2} \frac{\ln x}{x^{2} 1} dx$
- 2. 求 $\iint_{\Omega} (x^2 + y^2) dv$, 其中 Ω 是由曲面 $4z^2 = 25(x^2 + y^2)$ 及平面 z = 5 所围成的

闭区域。

- 3 . 求: $\iint_{\Sigma}xz^2dydz+(x^2y-z^3)dzdx+(2xy+y^2z)dxdy$,其中 Σ 为上半球体 $x^2+y^2\leq a^2$, $0\leq z\leq \sqrt{a^2-x^2-y^2}$ 的表面外侧。
- 五、(8分)求幂级数 $\sum_{n=0}^{\infty} \frac{n^2+1}{3^n n!} x^n$ 的收敛区间及和函数。

六、(8分)设f(x)是周期为2p的周期函数,它在[-p,p)上的表达式为f(x)=x,

- 1.将 f(x)展开成傅里叶级数
- 2. 若设该傅里叶级数的和函数为 S(x) ,则求 $S(3\mathbf{p})$, $S(\frac{7}{2}\mathbf{p})$ 的值。

七、(8分)设 $y = f(x) \ge 0$ ($a \le x \le b$)是xOy平面上一条单调光滑曲线,将此曲线绕x 轴旋转一周得旋转曲面 Σ 。

- 1 . 试证:曲面 Σ 的面积计算公式 $S=2{m p}\int_L yds$,其中 L 为曲线 y=f(x) $(a\le x\le b)$, (即可以用关于弧长的曲线积分计算此类曲面 Σ 的面积) 。
- 2.利用此公式计算曲线 $y=\sqrt{a^2-x^2}$ $(0 \le x \le a)$ 绕 x 轴旋转一周得旋转曲面 Σ 的面积。

八、(5 分)设 u=u(x,y) , v=v(x,y) 具有二阶连续偏导数且使曲线积分 $\int_{L_1}udx+vdy$ 与 $\int_{L_2}vdx-udy$ 都与路径无关,证明:函数 u=u(x,y) , v=v(x,y) 分别满足方程

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \cancel{D} \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$