CLAIMS

1. A bisaryl derivative of the formula I,

wherein (R,R) is selected from (H,H), O, (H,CH₃), (H,OH) and (H,CN); and wherein

A is a group of formula II, III, IV or V:

wherein

n is 0, 1, or 2;

 R_1 is H, (C_1-C_6) alkyl;

V is CH or N;

W is CR₂' or N if n is 1 and W is CR₂' if n is 2;

and V and W are not both N;

R₂ and R₂' are independently H, (C₁-C₄)alkyl or -CH₂OH;

 R_3 is (C_1-C_{15}) alkyl, which may optionally be branched or unbranched and optionally may contain a double or triple bond at one or more positions, or R_3 is $-(CH_2)_q-O-(C_1-C_4)$ alkyl, $-(CH_2)_q-(C_3-C_8)$ cycloalkyl, $-(CH_2)_q-C_8$ tetrahydrofuranyl, $-(CH_2)_q-C_8$ thiophenyl, $-(CH_2)_q-C_8$ thiophenyl thiop

- $(CH_2)_q$ -phenyl, - $(CH_2)_q$ -S-phenyl, or - $(CH_2)_q$ -O-phenyl, wherein phenyl may be optionally substituted with (C_1-C_6) alkyl, (C_1-C_4) alkoxy, halogen, amino, or dimethylamino, wherein q is an integer of 1-10;

or R₃ is -(CH₂)_x-C(O)-NR₅-R₆ wherein

 R_5 is H or (C_1-C_4) alkyl,

 R_6 is -(CH₂)_p-O-(C₁-C₄)alkyl, -(CH₂)_p-(C₃-C₈)cycloalkyl, -(CH₂)_p-tetrahydrofuranyl, -(CH₂)_p-thiophenyl, -(CH₂)_p-1,4-benzodioxol-6-yl, - (CH₂)_p-phenyl, -(CH₂)_p-S-phenyl, or -(CH₂)_p-O-phenyl, wherein phenyl may be optionally substituted with (C₁-C₆)alkyl, (C₁-C₄) alkoxy, halogen, amino, or dimethylamino,

wherein x and p are integers, and x is ≥ 1 and p > 1 and x + p = 3 - 8; or R₃ is -(CH₂)_y-C(O)-NR₅-(C₁-C₁₂)alkyl, wherein the alkyl moiety may optionally be branched or unbranched and optionally may contain a double or triple bond at one or more positions, R₅ is as previously defined, y is an integer of 1-12 and the maximal chain length of R₃ is 15 atoms;

 R_4 is $(C_2-C_6)n$ -alkyl or $(C_2-C_6)n$ -alkoxy; and Ar is of the formula VI or VII:

wherein

- (i) X, Y, Z are independently H, OH, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, provided that at least one of X, Y and Z is not H; or
- (ii) two of X, Y and Z are H, the other being -CHO, $-CH_2-NR_7-CH_2-R_8$ or $-CH_2-NR_7-CO-R_8$, wherein R_7 is H, $(C_1-C_6)n$ -alkyl or $-(CH_2)_m-O-(C_1-C_4)$ alkyl; R_8 is (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkoxy- (C_1-C_4) alkyl, amino or (C_1-C_4) alkyl-NH-; and m being 2-6; and
- (iii) T is -CH₂-NR₉R₁₀, wherein R₉ is (C₁-C₆)n-alkyl and R₁₀ is (C₂-C₅)acyl, (C₁-C₄)alkoxycarbonyl or (C₁-C₄)alkyl-NH-CO-.
- 2. The bisaryl derivative of claim 1, wherein (R,R) is (H,H).

- 3. The bisaryl derivative of claim 2, wherein A is a group of formula II.
- 4. The bisaryl derivative of claim 3, wherein n is 0, 1, or 2; R_1 is (C_1-C_4) alkyl; V is CH; W is CR2'; R₂ and R₂' are independently H, (C₁-C₄)alkyl or -CH₂OH; and R₃ is (C₁-C₁₅) alkyl, which may optionally be branched or unbranched and optionally may contain a double or triple bond at one or more positions, or R_3 is $-(CH_2)_q$ -O- $(C_1$ -C₄)alkyl, $-(CH_2)_q$ - $(C_3$ -C₈)cycloalkyl, $-(CH_2)_q$ -phenyl, -(CH₂)_q-S-phenyl, or -(CH₂)_q-O-phenyl, wherein phenyl may be optionally substituted with (C₁-C₆)alkyl, (C₁-C₄) alkoxy, halogen, amino, or dimethylamino, wherein q is an integer of 1-10; or R_3 is $-(CH_2)_x-C(O)-NR_5-R_6$, wherein R_5 is H or (C_1-C_4) alkyl, R_6 is $-(CH_2)_p$ -O- $-(C_1$ -C₄)alkyl, $-(CH_2)_p$ -(C₃-C₈)cycloalkyl, $-(CH_2)_p$ -phenyl, -(CH₂)_p-S-phenyl, or -(CH₂)_p-O-phenyl, wherein phenyl may be optionally substituted with (C₁-C₆)alkyl, (C₁-C₄) alkoxy, halogen, amino, or dimethylamino, wherein x and p are integers, and x is ≥ 1 and p > 1 and x + p = 3 - 8; or R₃ is -(CH₂)_v-C(O)-NR₅-(C₁-C₁₂)alkyl, wherein the alkyl moiety may optionally be branched or unbranched and optionally may contain a double or triple bond at one or more positions, R₅ is as previously defined, y is an integer of 1-12 and the maximal chain length of R₃ is 15 atoms.
- 5. The bisaryl derivative of claim 4, wherein n is 1; R₁ is methyl; and R₂ and R₂' are independently H or methyl; and Ar is of the formula VI.

- 6. The bisaryl derivative of claim 5, wherein R₃ is -CH₂-C(O)-NH-(CH₂)_p-phenyl, wherein p is 2-4 and phenyl may be optionally substituted; and Ar is of the formula VI, wherein X, Y and Z are all methoxy, or X and Z are methoxy and Y is OH, or X and Y are both H, and Z is -CH₂-NR₇-CO-R₈.
- 7. The bisaryl derivative of claim 5, wherein R₃ is (C₁-C₁₅)alkyl, which may optionally be branched or unbranched and optionally may contain a double or triple bond at one or more positions, or R₃ is -(CH₂)_q-O-(C₁-C₄)alkyl, -(CH₂)_q-(C₃-C₈)cycloalkyl, -(CH₂)_q-phenyl, -(CH₂)_q-S-phenyl, or -(CH₂)_q-O-phenyl, wherein phenyl may be optionally substituted with (C₁-C₆)alkyl, (C₁-C₄)alkoxy, halogen, amino, or dimethylamino; and Ar is of the formula VI, wherein X, Y and Z are all methoxy, or X and Z are methoxy and Y is OH, or X and Y are both H, and Z is -CH₂-NR₇-CO-R₈.
- 8. The bisaryl derivative of claim 7, wherein R₂ is methyl and R₂' is H or R₂ and R₂' are both methyl; R₃ is an unbranched (C₇-C₁₀) *n*-alkyl, optionally containing one or two double bonds, or R₃ is selected from -(CH₂)_r-CH(CH₃)₂, -(CH₂)_r-phenyl and -(CH₂)_t-S-phenyl, r being 5-8 and t being 4-7; and Ar is of the formula VI, wherein X, Y and Z are all methoxy, or X and Z are methoxy and Y is OH, or X and Y are both H, and Z is -CH₂-NR₇-CO-R₈, wherein R₇ is *n*-butyl or -(CH₂)₂-O-CH₃ and R₈ is -CH₃, -NHCH₃ or -OCH₃.
- 9. The bisaryl derivative of claim 8, wherein R₃ is *n*-octyl and Ar is of the formula VI, wherein X and Y are both H, and Z is -CH₂-NR₇-CO-R₈, wherein R₇ is *n*-butyl or -(CH₂)₂-O-CH₃ and R₈ is -CH₃, -NHCH₃ or -OCH₃.
- 10. The bisaryl derivative of claim 4, wherein n is 1, R₁ is *n*-butyl, R₂ and R₂' are independently H or methyl and R₃ is -CH₂-CO-NH-(C₄-C₁₀)alkyl, wherein the alkyl moiety is branched or unbranched, or -CH₂-CO-NH-R₆, wherein R₆ is -(CH₂)_p-cyclohexyl or -(CH₂)_p-phenyl, the phenyl being optionally substituted with (C₁-C₆)alkyl or halogen and p being 2-4.

- 11. The bisaryl derivative of claim 2, wherein A is a group of the formula III.
- 12. The bisaryl derivative of claim 11, wherein n is 0 or 1, R_1 is H or methyl, V is CH, W is CH, R_2 is H or methyl, R_3 is $(C_4-C_{10})n$ -alkyl or $-CH_2-C(O)-NH-(C_4-C_{10})n$ -alkyl, and Ar is of the formula VI, wherein X, Y and Z are methoxy.
- 13. The bisaryl derivative of claim 2, wherein A is a group of formula IV.
- 14. The bisaryl derivative of claim 13, wherein Ar is of the formula VI, wherein two of X, Y and Z are H, the other being -CH₂-NR₇-CO-R₈, wherein R₇ is (C₁-C₆)*n*-alkyl and R₈ is (C₁-C₄)alkyl or (C₁-C₄)alkyl-NH-.
- 15. The bisaryl derivative of claim 14, wherein R₃ is -CH₂-CO-NH-R₆, wherein R₆ is -(CH₂)_p-phenyl, the phenyl being optionally substituted with halogen and p being 2-4.
- 16. The bisaryl derivative of claim 2, wherein A is a group of the formula V.
- 17. The bisaryl derivative of claim 16, wherein Ar is of the formula VII.
- 18. The bisaryl derivative of claim 17, wherein R_3 is -CH₂-CO-NH-(C_1 - C_4)n-alkyl or -CH₂-CO-NH-(C_1 - C_3)cycloalkyl, p being 2-4.
- 19. A pharmaceutical composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier.
- 20. A method of treating infertility comprising administering to a mammal a compound according to claim 1.
- 21. A method of preventing conception comprising administering to a mammal a compound according to claim 1.