Week 10

Let A and B be $n \times n$ matrices over a field \mathbb{F} . Which is the best way to show that similarity of matrices is a reflexive relation?

Answers

- ① Let $A \in M_{n,n}(\mathbb{F})$. Then $A = I_n^{-1}AI_n$, where I_n denotes the identity matrix. Hence A is similar to itself, and thus similarity of matrices is reflexive.
- ② If A is similar to itself, then there exists an $S \in GL_n(\mathbb{F})$ such that $A = S^{-1}AS$. Therefore, similarity is reflexive.
- 3 Let $A \in M_{n,n}(\mathbb{F})$. Since A = A, reflexivity holds.
- ④ Let $A, B \in M_{n,n}(\mathbb{F})$ such that A is similar to B. Then $\exists S \in GL_n(\mathbb{F})$ such that $S^{-1}AS = B \Rightarrow (S^{-1})^{-1}B(S^{-1}) = A$ and $S^{-1} \in GL_n(\mathbb{F})$. Hence B is similar to A and reflexivity holds.