MÉTODO SEGUIDO PARA LA RESOLUCIÓN DE LA TAREA 5

Para resolver el problema propuesto, he dividido el código del programa en 5 partes, que detallaré a continuación:

1. GENERACIÓN DE NODOS Y BARRAS.

Para obtener las coordenadas de la viga a estudiar, se ha usado la función pedida en anteriores entregas, *VigaVertical_X*, a la cual damos los parámetros de altura, ancho y número de cuadrados y nos genera las coordenadas de los nodos x e y, y la matriz de barras. Estos datos deben ser optimizados, eliminando las barras y nodos repetidos. Para ello se usa la función *ElementosRepetidos*, que contiene el código empleado en la entrega 4, donde se pide eliminar las barras repetidas de una estructura. A esta función le pasamos las matrices nodos y barras y nos las devuelve sin barras ni nodos repetidos. Por último, se representan los datos mediante la función *Representa2D* obteniendo la figura de la estructura sin deformar.

2. DATOS

En esta parte del código, se genera el vector de fuerzas, por un lado Fx que es nulo en nuestro caso; y por otro Fy que es nulo salvo en la posición 9 donde toma el valor de -500N. También se declara la constante elástica de todas las barras: k=10^6. En un bucle que recorre todas las barras, obtenemos su longitud y el ángulo de cada una. También se declara la matriz fijos, que contiene valores lógicos false en los nodos no fijos, y true en los fijos. Por cada nodo hay dos valores, pues tiene en cuenta los dos grados de libertad de cada nodo.

3. COMIENZO DEL ENSAMBLAJE

En primer lugar tendremos un bucle que recorre todas las barras. En él se calcula la matriz de rigidez elemental Ke, formada por 4 submatrices de giro, con sus convenientes signos. Transformamos la notación local a global mediante el uso de ii, y vamos sumando las matrices elementales Ke a la matriz de rigidez global K, en la posición adecuada.

Seguidamente, se procede a corregir el valor de la rigidez de las barras que están unidas a los nodos fijos. Para elegir el valor de la constante elástica, se analiza la matriz de rigidez global y se elige su máximo Kmax. Tomamos entonces el valor Kinf=1000*Kmax, que será el valor que demos a las barras fijas, ya que es muy alto comparado con las demás barras y hace que la respuesta a la deformación se ajuste más a la realidad. Para saber que barras tienen nodos fijos, usamos un bucle que compara los nodos con la matriz "fijos".

Para concluir el ensamblaje, se utiliza un bucle que recorre los nodos, y que ensambla el vector de fuerzas elemental fe en el vector de fuerzas global f. Se utiliza el cambio de notación local a global mediante ii, al igual que en la matriz de rigidez.

4. RESOLUCIÓN DEL PROBLEMA

Se obtiene el vector desplazamientos invirtiendo la matriz K y multiplicándola por f, mediante el comando de Matlab \. Este vector hay que separarlo en desplazamientos en x, dx; y desplazamientos en y, dy. Para ello se utiliza un bucle que recorre los nodos y que pasa de la notación global de q a la notación local de dx y dy. Tras esto, se procede a amplificar los desplazamientos con la constante AMP=1000 obteniendo dxamp y dyamp, y se representan con la función *Representa2D*.

5. SALIDA DE DATOS

Se pide en el enunciado que salgan por pantalla los desplazamientos obtenidos con el formato:

Nodo 1 : dX = +3.811 mm dY = -17.321 mm Nodo 2 : dX = +3.945 mm dY = -19.234 mm

Para ello se genera un archivo salida.txt mediante el comando fopen, en el que se escribe mediante un bucle y la función fprintf las variables dxamp, dyamp y la i del bucle, con el formato pedido. Los desplazamientos están en milímetros debido a la constante de amplificación empleada.