Real sequences (Part 3) 2023-2024

Outline

- Subsequences
- Bolzano-Weierstrass property
- Cauchy Sequences
- Limit superior and Limit inferior

<u>Definition</u> (Subsequence).

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence, regarded as a function

 $\mathbf{u}: \mathbb{N} \to \mathbb{R}$. A subsequence $(\mathbf{u}_{\varphi(n)})_{n \in \mathbb{N}}$ of $(\mathbf{u}_n)_{n \in \mathbb{N}}$ is a composite

function $uo\varphi : \mathbb{N} \to \mathbb{R}$ where $\varphi : \mathbb{N} \to \mathbb{N}$ is any strictly increasing function.

Observe:

• A useful inequality: The definition implies a simple inequality that is use-ful in proofs: $\varphi(n) \ge n$ for all n. A formal proof might induction.

Example

If
$$U_n = (-1)^n$$
 then $U_{2n} = (-1)^{2n} = 1$

is a subsequence of $(U_n)_{n \in \mathbb{N}}$

Theorem

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence and L a number.

- (a) If $(u_n)_{n\in\mathbb{N}}$ converges to L, then every subsequence $(u_{\varphi(n)})_{n\in\mathbb{N}}$ converges to L, too.
- (b) If $(u_n)_{n\in\mathbb{N}}$ diverges to $\pm\infty$, then every subsequence $(u_{\varphi(n)})_{n\in\mathbb{N}}$ diverges to $\pm\infty$, too.
- (c) If $(u_n)_{n\in\mathbb{N}}$ has subsequences converging to different limits, then $(u_n)_{n\in\mathbb{N}}$ diverges.

Proposition

The two subsequences $(u_{2n})_{n\in\mathbb{N}}$ and $(u_{2n+1})_{n\in\mathbb{N}}$ converge to the same limit ℓ if and only if the sequence $(u_n)_{n\in\mathbb{N}}$ converges to the limit ℓ .

Bolzano-Weierstrass property

Theorem.

Every bounded sequence of real numbers $(u_n)_{n\in\mathbb{N}}$ has a convergent subsequence.

Bolzano-Weierstrass property

Proof.

Suppose U_n is a bounded sequence in \mathbb{R} . $\exists M$ such that

$$-M \le U_n \le M, n = 1, 2, \dots$$
. Select $U_{n0} = U_1$.

- Bisect I := [-M, M] into [-M, o] and [o, M].
- At least one of these (either [-M, o] or [o, M]) must contain U_n for infinitely many indices n.
- Call it I_1 and select n1 > no with $U_{n1} \in I_0$.
- Continue in this way to get a subsequence U_{nk} such that $I_0 \supset I_1 \supset I_2 \supset I_3 \cdots$
- $I_k = [a_k, b_k]$ with $|I_k| = 2^{-k}M$.
- Choose $n_0 < n_1 < n_2 < \cdots$ with $U_{nk} \in I_k$.
- Since $a_k \le a_{k+1} \le M$ (monotone and bounded), $a_k \to x$.
- Since $U_{nk} \in I_k$ and $|I_k| = 2^{-k}M$,

we have $|U_{nk} - x| < |U_{nk} - a_k| + |a_k - x| \le 2^{-k-1}M + |a_k - x| \to 0$ as

Definition

A real sequence (U_n) called a Cauchy sequence if $\forall \varepsilon, \exists N \in \mathbb{N}, \forall n \in \mathbb{N},$

$$n > N$$
 and $m > N \Rightarrow |U_n - U_m| < \varepsilon$.

Proposition.

Any convergent sequence is a Cauchy sequence.

Proof.

Assume $U_n \to \alpha$. Let $\varepsilon > 0$ be given.

•
$$\exists N \in \mathbb{N} \text{ s.t. } n > N \Rightarrow |U_n - \alpha| < \frac{\varepsilon}{2}.$$

• n, m
$$\geq$$
 N \Rightarrow $|U_n - U_m| \leq |\alpha - U_n| + |\alpha - U_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Lemma. (Boundedness of Cauchy sequence)

If U_n is a Cauchy sequence, U_n is bounded.

Theorem. (Completeness)

Any Cauchy sequence in \mathbb{R} converges to an element in [a, b].

Proof

Corollary

Let $(u_n)_{n\in\mathbb{N}}$ and $(\alpha_n)_{n\in\mathbb{N}}$ two reals sequences with $\lim_{n\to+\infty}\alpha_n=0$. If there exists $N\in\mathbb{N}$ such that for all

$$n, p \in \mathbb{N}$$
 with $n \ge N : |U_{n+p} - U_n| \le \alpha_n$

Then $(u_n)_{n\in\mathbb{N}}$ is a cauchy sequence.

Proof

Example

Show using the cauchy criterion that the sequence:

$$u_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$$
 is convergent.

Proposition

Let $(u_n)_{n\in\mathbb{N}}$ be a bounded sequence, and let

$$a_n = \sup \{u_k \mid k \ge n\}$$

 $b_n = \inf \{u_k \mid k \ge n\}.$

Then,

- 1. (a_n) is monotone decreasing and bounded, and (b_n) is monotone increasing and bounded. $(ie(a_n)and(b_n)are$ convergent.)
- $\lim_{n \to +\infty} b_n \leq \lim_{n \to +\infty} a_n$ Proof

Definition (Limsup/Liminf)

Let $(u_n)_{n\in\mathbb{N}}$ be a bounded sequence. We define, if the limits exist,

$$\lim_{n \to +\infty} \sup u_n = \lim_{n \to +\infty} (\sup\{ u_k \mid k \ge n \}) = \lim_{n \to +\infty} a_n$$
$$\lim_{n \to +\infty} \inf u_n = \lim_{n \to +\infty} (\inf\{ u_k \mid k \ge n \}) = \lim_{n \to +\infty} b_n$$

These are called the limit superior and limit inferior respectively.

Theorem

If $(u_n)_{n\in\mathbb{N}}$ is not bounded above, then

$$\lim_{n\to+\infty} a_n = +\infty$$

Similarly, if $(u_n)_{n\in\mathbb{N}}$ is not bounded below, then

$$\lim_{n\to+\infty} \boldsymbol{b_n} = -\infty$$

Where a_n and b_n are defined in the previous proposition.

• Remark

By the previous theorem, we see that if $(u_n)_{n\in\mathbb{N}}$ is not bounded above then

$$\lim_{n\to+\infty} \sup u_n = +\infty$$

Similarly, if $(u_n)_{n\in\mathbb{N}}$ is not bounded below, then

$$\lim_{n\to+\infty} \inf u_n = -\infty$$

Let's consider a few examples.

Example 1

Let $u_n = (-1)^n$. Calculate the lim inf and lim sup of this sequence.

Proof: Notice that $\{(-1)^k | k \ge n\} = \{-1, 1\}$. Thus, the supremum

of these sets is always 1 and the infimum is always -1. Therefore,

$$\lim_{n\to+\infty} \sup u_n = 1$$

and

$$\lim_{n\to+\infty} inf u_n = -1.$$

• Example 2

Let $\frac{u_n}{n} = \frac{1}{n}$. Calculate the lim inf and lim sup of this sequence.

Proof: We may do this directly:

$$\sup\{\frac{1}{k} \mid k \ge n\} = \frac{1}{n} \to 0 \Rightarrow \lim_{n \to +\infty} \sup u_n = 0.$$

$$\inf\{\frac{1}{k} \mid k \ge n\} = 0 \longrightarrow 0 \Longrightarrow \lim_{n \to +\infty} \inf u_n = 0.$$

Theorem

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence and $\ell\in\mathbb{R}$. The following are equivalent:

- $1 \lim_{n \to +\infty} \sup u_n = \ell.$
- 2. For any $\varepsilon > 0$, there exists $N \in \mathbb{R}$ such that $u_n < \ell + \varepsilon$ for all $n \ge N$,

and there exists a subsequence (u_{nk}) of (u_n) such that

$$\lim_{k\to+\infty}u_{nk}=\ell.$$

Proof

Theorem

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence and $\ell\in\mathbb{R}$. The following are equivalent:

- $1.\lim_{n\to+\infty}\inf u_n=\ell.$
- 2. For any $\varepsilon>0$, there exists $N \in \mathbb{R}$ such that $u_n > \ell \varepsilon$ for all $n \ge N$,

and there exists a subsequence (u_{nk}) of (u_n) such that $\lim_{k\to +\infty} u_{nk} = \ell$.

Proof

Add proof here and it will automatically be hidden

Corollary

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence. Then

$$\lim_{n\to+\infty}u_n=\ell$$
 if and only if $\lim_{n\to+\infty}\sup u_n=\lim_{n\to+\infty}\inf u_n=\ell$

Proof

Add proof here and it will automatically be hidden

Corollary

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence.

1. Suppose
$$\lim_{n\to+\infty} \sup u_n = \ell$$
 and (u_{nk}) a subsequence of (u_n)

with

$$\lim_{k\to+\infty} u_{nk} = \ell$$
'. Then $\ell' \leq \ell$

2. Suppose $\lim_{n\to+\infty}\inf u_n=\ell$ and (u_{nk}) a subsequence of (u_n)

$$\lim_{k\to+\infty} u_{nk} = \ell'$$
. Then $\ell' \geq \ell$

Theorem

Suppose $(u_n)_{n\in\mathbb{N}}$ is a sequence and such that $u_n>0$ for every $n\in\mathbb{N}$ and

$$\lim_{n \to +\infty} \sup \frac{u_{n+1}}{u_n} = \ell < 1$$
. Then $\lim_{n \to +\infty} u_n = 0$.

Proof

Theorem

Suppose $(u_n)_{n\in\mathbb{N}}$ is a sequence and such that $u_n>0$ for every $n\in\mathbb{N}$ and

$$\lim_{n \to +\infty} \inf \frac{u_{n+1}}{u_n} = \ell > 1$$
. Then $\lim_{n \to +\infty} u_n = +\infty$.

Proof

Add proof here and it will automatically be hidden

• Example

Given a real positive number α , define

$$u_n = \frac{\alpha^n}{n!}, n \in \mathbb{N}$$

$$\lim_{n \to +\infty} \sup \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{\alpha}{n+1} = 0$$

$$\Rightarrow \lim_{n \to +\infty} u_n = 0.$$