PM2013

The Advanced Process Modeling Forum

5 - 6 June 2013, New York

gCCS – whole-chain CCS system modelling

Enabling technology to accelerate commercialisation and manage technology risk

Alfredo Ramos - Head of CCS & Power Business

Overview

- CCS System Modelling Tool-kit project
 - Motivation
 - Aim
- gCCS overview
 - Model libraries
 - Physical properties
 - Interfaces

Summary

Motivation for systems modelling for CCS

Energy Technologies Institute (ETI)

- Public-private partnership between global industries and the UK Government set up with the objectives of
- energy technologies institute
- ensuring clean, secure and affordable energy supplies are available to power everyday living and business
- reducing greenhouse gas emissions to tackle the effects of climate change

The ETI is not a grant-giving body, but makes targeted investments in key technologies that will help the UK meet its' legally binding 2050 targets

CCS challenges

Each stakeholder has different issues & challenges

An ETI-member survery revealed ...

System-wide modelling seen as a key technology for addressing these questions and investigating whole-chain or partial-chain interaction

... by providing accurate quantification for decision support

Challenges – single site

How much? How long permitted? What is policy?

Rich amine storage – how much, when,

where? Temperature?

Energy integration (energy penalty vs

operability vs CAPEX)

Performance of different capture technologies – amine vs caustic vs?

By-pass economics

Start-up sequence – economic optimisation

Many questions

Phase considerations? Hydrate formation

HP v LP development economics

Trip scenarios – economic effects and trade-offs

Performance optimisation

Pre-injection heating vs line pressurisation?

Minimum & maximum rates

Safety

formation?

System-wide modelling key enabling technology for CCS: benefits

- Explore complex decision space rapidly based on high-fidelity, technically realistic models
 - resolve own technical and economic issues
 - take into account upstream & downstream behaviour
- Manage interaction and trade-offs
- Evaluate technology existing and next-generation
 - judge relative merits of emerging technologies
 - support consistent, future-proof choices
- Integrating platform for
 - working with other stakeholders in chain
 - collaborative R&D, working with academia
- Manage complexity and risk at a multi-scale, network-wide level

CCS system modelling tool-kit project

System-wide modelling: Key enabling technology for CCS

CCS System Modelling Tool-kit Project

- Energy Technologies Institute (ETI)
 £3m project
- E.ON, EDF, Rolls-Royce,Petrofac/CO2DeepStore, PSE, E4tech

→ Create a commercially available product

- built on PSE's gPROMS platform
- High-fidelity system-wide CCS modelling
- Toolbox and ecosystem

Environment – custom & system-wide modelling

Environment – custom & system-wide modelling

Powerful custom modelling

Model libraries

Model libraries

- Power generation
- Solvent-based CO₂ capture
- Compression & Liquefaction
- Transportation
- Injection in sub-sea storage
- Physical properties
 - Tailored to each sub-system in the CCS chain
- Interfaces to 3rd party modelling packages
- Detailed documentation of all tool-kit components

Timelines

Testing & validation on case studies + productisation

APM2013

Tool-kit components / functionality

Model libraries
Physical properties
Interfaces

Model libraries – Overview

- Power generation
 - Conventional (coal-fired, CCGT) and non-conventional (oxy-fuel, IGCC)
- Solvent-based CO₂ capture
 - both chemical and physical processes
- Compression & Liquefaction
 - multi-stage, multi-section compressors, surge control valves, drives, etc.
- Transportation
 - on- and off-shore pipelines
- Injection in sub-sea storage
 - distribution headers, well connections, reservoir, etc.

Power generation

Model libraries – Power plant

Complex flowsheet with > 10 recycles & a closed loop:

→ Component-specific initialisation procedures ensure convergence without SVS

Model libraries – Power plant

PCPP library overview: Whole PCPP

Model libraries – Power plant

Model libraries – Power plant

Combined Cycle Gas Turbine flowsheet

Model libraries – Power plant

- High fidelity model of HRSG
 - comprising multiple units
 - predictive at part-load
- High level (low fidelity) model
 - Single unit model
 - Not predictive at part-load (temperatures are inputs)

Detailed HRSG model

High level model

APM2013

Model libraries – Power plant

- Different level of fidelity for systems modelling
 - High-level Air Separation Unit

Model acts as Source of O₂ and N₂ and calculates power demand

Power generation

Model libraries – CO₂ Capture (chemical and physical absorption)

Model libraries – CO₂ Capture

AML:

- Non-equilibrium models
- Models distributed in axial direction and in the direction of the liquid and vapour films
- Energy balance and V/L equilibrium at the interface
- Phase behaviour and chemical equilibrium <u>currently</u> calculated by OLI thermodynamic package
 - to be replaced by gSAFT
- Transport properties
 - Obtained from correlations and Multiflash

Model libraries – CO₂ Capture: Modelling of ionic reactions in gas/liquid separation

APM2013

Model libraries – CO₂ Capture

$$H_2O \Leftrightarrow H(+) + OH(-)$$

 $HCO_3(-) + OH(-) \Leftrightarrow CO_3(-) + H2O$
 $CO_2 + OH(-) \Leftrightarrow HCO_3(-)$
 $CO_2 + MEXH \Leftrightarrow MEXCO_2(-) + H(+)$
 $MEXH + H2O \Leftrightarrow MEXH_2(+) + OH(-)$

Transversal and axial profiles for the reaction rate of carbamate formation

Carbamate formation, kinetically controlled reaction

Compression

Model libraries – CO₂ Compression & Liquefaction

Model libraries – CO₂ Compression & Liquefaction

 $\psi = H_p / v^2$

1D maps

- Efficiency/flow curve
- Head/Flow curve
- Uses affinity laws to extrapolate for different speeds

2D maps

- Same curves as 1D maps
- One curve for each speed
- Interpolates between the curves to determine operation for different speeds

Dimensionless maps

- Curve based on dimensionless flow (ϕ) and head (ψ)
- Contains same information as 2D maps

Model libraries – CO₂ Compression & Liquefaction

- Operational studies control: Surge avoidance
 - Increase volumetric flowrate in the compressor
 - Recycle compressed flow to the inlet through a recycle loop

Fig. 4 – Cooled recycle loop used in surge control.

Fig. 5 – Non-cooled recycle loop used in surge control.

Model libraries – CO₂ Compression & Liquefaction

Tool-kit components – Advanced features

Model libraries – CO₂ Compression & Liquefaction

Compression train - design optimisation

- Detailed CO₂ Compression library models

 +
 gPROMS mixed integer/continuous optimisation
 → full compression train design optimisation
 - Techno-economical design to minimise total cost
 CAPEX + OPEX
 - Determine
 - 1. number of compressors & coolers
 - design parameters (impeller diameters; HT areas)

that are optimal for a set of operating scenarios (different CO₂ flows and final discharge pressures)

Transmission & injection

Transmission and injection sub-system Components of the CCS chain

Transmission and Injection – Component models

Transmission & injection flowsheet

Transmission System – Example: Kingsnorth FEED Onshore Pipeline

Model libraries – CO₂ Transmission and Injection/Storage

Interface Specification Topology gPROMS language Properties

System dynamics

Simulating line-packing operation: Sudden valve closure

- Assumed constant inlet flowrate at CO2Source (275tonnes CO₂ per day)
- Gas phase injection with discharge pressure in CO2 sink
 21bara
- Total pipeline length 132.2km
- Pipeline is located offshore (in water)

Model libraries – CO₂ Transmission and Injection/Storage

System dynamics

Simulating line-packing operation: Sudden valve closure

Whole-chain simulation

Physical properties

- Different material/species within the same sub-system
 - e.g. in power plant: coal, water, flue gas
- Different materials/species in different sub-systems
 - e.g. MEA in CO₂ capture plant
- Need different thermodynamic models for different materials, e.g.
 - cubic EoS (PR 78) for flue gas in power plant
 - Corresponding States (Steam Tables) for pure water

gPROMS Properties (Multiflash®)

- SAFT for amine-containing streams in CO₂ capture
- SAFT for near-pure post-capture CO₂ streams

- Transport properties obtained from gPROMS Properties
 - models/ correlations

Physical properties for compression/transmission in CCS

Challenges

Impurities

Wide range of conditions

Limited experimental data

A <u>predictive</u> equation of state is required

- applied to mixtures of CO₂, CO, H₂O, Ar.....
- small molecules → single group each

APM2013

Physical properties for compression/transmission in CCS

Challenges II: Wide range of conditions

Compression subsystem

- Pressures
 - Inlet 0.5 to 5 bara
 - Outlet 10 to 200 bara
- Temperatures
 - Inlet 20-41 °C
 - Outlet 40-130 °C
- Transmission subsystem
 - Pressures
 - 50-200 bara
 - Temperatures
 - -5-40 °C

Why gSAFT?

Accurate prediction of phase envelope for near-pure CO₂ mixtures

Interfaces to 3rd party modelling tools

- Direct interfacing / co-simulation based on gPROMS's
 Foreign Object (FO) interface
 - Steady-state modelling and simulation packages (E.ON's PROATES)
 - Equipment design tools (Rolls-Royce's CompPerform/CompSelect)
- Model fitting
 - Incorporate reduced-order models of high-fidelity equipment models

Summary

What is gCCS?

- A system-wide gPROMS-based modelling platform for "full" CCS chains
 - Build and validate models
 - Simulate CCS systems from source to sink within a single environment
 - Optimise entire CCS chains or parts thereof
- ... with pre-installed components for
 - Conventional (coal-fired, CCGT) and non-conventional (oxy-fuel, IGCC) power generation
 - Solvent-based CO₂ capture (both chemical and physical processes)
 - Compression & Liquefaction
 - Transportation (on- and off-shore pipelines)
 - Injection in sub-sea storage
 - State-of-the-art physical properties models for the mixtures along the CCS chain
- ... considering various levels of complexity

When?

Now

- Conventional power (PC, CCGT), capture (chemical absorption), compression & transportation/injection models
- Full chain simulation demonstrated
- gCCS v1.0 alpha available for evaluation to selected
 - universities & research consortia
 - lead users among industrial partners
- Interfaces to 3rd-party models
- Soon (2-4 month timescale)
 - IGCC, oxyfuel power generation
 - Capture physical absorption
 - Integration with advanced physical properties engine (SAFT-γ Mie)
- To follow (6-9 month timescale)
 - Costing
 - Project-ready environment

With thanks to the ETI and our partners

This work was carried out as part of a £3m project commissioned and co-funded by the Energy Technologies Institute (ETI) and project participants E.ON, EDF, Rolls-Royce, Petrofac (via subsidiary CO2DeepStore), PSE and E4tech.

The project is aimed at delivering a robust, fully integrated tool-kit that can be used by CCS stakeholders across the whole CCS chain.

PSE's CCS Tech Team

- Gerardo Sanchis
 - Power plant
- Mário Calado
 - Compression Systems
 - Capture processes
- Dr Adekola Lawal
 - Capture processes
 - Transmission & injection
- Dr Javier Rodríguez
 - Capture processes
 - Physical properties (gSAFT)

- Dr Nouri Samsatli
 - Power plant
 - Product development
- Dr Javier Fuentes
 - Software development
- Alfredo Ramos
 - Technology Manager
- Mark Matzopoulos
 - Marketing & BusinessDevelopment
- Prof Costas Pantelides
 - Chief Technologist

APM2013

Please contact

Alfredo Ramos – Head Power & CCS Business Unit

a.ramos@psenterprise.com

Mark Matzopoulos – Marketing Director

m.matzopoulos@psenterprise.com

Thank you!

APN 2013

The Advanced Process Modeling Forum