Máquinas de Turing

Universidade Federal de Campina Grande – UFCG

Centro de Engenharia Elétrica e Informática – CEEI

Departamento de Sistemas e Computação – DSC

Professor: Andrey Brito Período: 2023.2

Prova – Autômatos de pilha

- L_1 é o conjunto das palavras no formato 0^n1^{2n} com $n \ge 0$
- L₂ é o conjunto das palavras que têm a mesma quantidade de símbolos 0 e 1

Prova – Gramáticas livre-de-contexto

- L_1 é o conjunto das palavras no formato $0^n1^n2^*$ com $n \ge 0$
- L₂ é o conjunto das palavras que têm uma quantidade ímpar de símbolos

Prova – LLCs e LRs

- A interseção de uma linguagem livre-de-contexto com uma linguagem regular sempre gera uma linguagem regular?
 - Sempre gera uma linguagem livre de contexto?

Prova - Ambiguidade

- O que é?
- Um exemplo

Prova - Gramáticas

Todas as regras são da forma $A \rightarrow xB$, onde:

$$A \in V$$
 $B \in (V \cup \lambda)^*$
 $x \in (\Sigma \cup \lambda)$

• Mostre que uma gramática cujas regras precisam obedecer às condições acima não gera somente linguagens regulares.

Máquinas de Turing

Alan Turing (23/6/1912-7/6/1954)

- Considerado o pai da "ciência da computação"
 - Computabilidade: o que pode ser resolvido por algoritmos
 - Propôs a máquina de Turing como uma abstração para uma máquinas capaz de executar computações
 - Propôs a MT Universal que poderia simular qualquer outra (um computador ou interpetador)
- Outros fatos da vida de Alan Turing
 - Propôs o teste de Turing (reverso do CAPTCHA)
 - Na segunda guerra propôs técnicas para quebrar a criptografia alemã

Máquina de Turing

- Memória ilimitada
- Inicialmente a fita contém apenas a palavra de entrada e o resto é "branco"
- Se a máquina precisa armazenar informação ela pode escrever essa informação na fita

Máquina de Turing

- Para ler a informação que está na fita, a máquina pode mover o cabeçote para trás
- A máquina continua computando até que possa produzir uma saída
- Já que ela pode chegar no último símbolo da entrada e depois voltar, precisa de outra forma de terminação...
 - As saídas aceitação e rejeição são obtidas quando a máquina entra nos estados projetados para tal
 - Se ela n\u00e3o vai para um desses estados, ela pode entrar em loop (como assim?)

Diferenças entre o AF e a MT

- A máquina de Turing pode tanto ler quanto escrever na fita
- O cabeçote pode se mover tanto para a frente quanto para trás
- Os estados especiais de aceitação e rejeição tem efeito imediato
- A máquina de Turing pode não parar, ou parar sem ver toda a entrada

Exemplo

- Máquina de Turing para reconhecer 0*10*
- Como seria uma descrição de "alto nível" (como um pseudocódigo)?
- Como seria a descrição de "baixo nível"?
 - Um diagrama de estado com transições diferentes:
 - $x \rightarrow y$, E: leu x, escreveu y por cima e moveu o cabeçote para a esquerda
 - $x \rightarrow z$, D: leu x, escreveu z por cima e moveu o cabeçote para a direita
 - x → E : leu x, não modificou a fita e moveu o cabeçote para a esquerda
 - x,y → D: leu x ou y, não modificou a fita e moveu o cabeçote para a direita

Exemplos

- Uma máquina (Σ = {0, 1}) para reconhecer...
 - L = $0.\Sigma^*.0 \cup 1.\Sigma^*.1$
 - $L = \Sigma^*.101$

Note que para todos os casos até agora, poderíamos construir uma máquina que não precisa mover o cabeçote para a esquerda.

x → y, E: leu x, escreveu y por cima e moveu o cabeçote para a esquerda

 $x \rightarrow z$, D: leu x, escreveu z por cima e moveu o cabeçote para a direita

x → E : leu x, não modificou a fita e moveu o cabeçote para a esquerda

x,y D: leu x ou y, não modificou a fita e moveu o cabeçote para a direita

Máquina de Turing

- Reconhecer palavras no formato 0*10*
- Tipos de transições
 - x → y, L: leu x, escreveu y por cima e moveu o cabeçote para a esquerda

 - x

 L: leu x, não modificou a fita e moveu o cabeçote para a esquerda
 - x,y → R: leu x ou y, não modificou a fita e moveu o cabeçote para a direita

- $\langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$
 - Q: conjunto de estados
 - Σ: alfabeto de entrada (não contendo um símbolo especial B – "branco")
 - Γ : alfabeto da fita onde B $\in \Gamma$ e Σ \subset
 - δ : Q x $\Gamma \rightarrow$ Q x Γ x {L,R}
 - $q_0 \in Q$ é o estado inicial
 - q_A ∈ Q é o estado de aceitação
 - $q_R \in Q$ é o estado de rejeição

Linguagens mais complexas: w#w

- Uma máquina de Turing para reconhecer a linguagem L = { w#w | w ∈ {0,1}* }
- Como você faria se você mesmo tivesse que resolver esse problema?
 - A cadeia está escrita no chão (ou uma fita esticada no chão)
 - Você tem uma caneta
 - A cadeia é muito longa