Logistic Regression

Step 1: Function Set

We want to find $P_{w,b}(C_1|x)$

If
$$P_{w,b}(C_1|x) \ge 0.5$$
, output C_1

Otherwise, output C₂

$$P_{w,b}(C_1|x) = \sigma(z)$$

$$z = w \cdot x + b$$

$$\sigma(z) = \frac{1}{1 + exp(-z)}$$

Function set:

$$f_{w,b}(x) = P_{w,b}(C_1|x)$$

Including all different w and b

Step 1: Function Set

Step 2: Goodness of a Function

Training
$$x^1$$
 x^2 x^3 x^N
Data C_1 C_2 C_1

Assume the data is generated based on $f_{w.b}(x) = P_{w.b}(C_1|x)$

Given a set of w and b, what is its probability of generating the data?

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3) \right) \cdots f_{w,b}(x^N)$$

The most likely w^* and b^* is the one with the largest L(w,b).

$$w^*, b^* = arg \max_{w, b} L(w, b)$$

 \hat{y}^n : 1 for class 1, 0 for class 2

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots$$

$$w^*, b^* = arg \max_{w,b} L(w,b) = w^*, b^* = arg \min_{w,b} -lnL(w,b)$$

$$-lnL(w,b)$$

$$= -lnf_{w,b}(x^1) \longrightarrow -\left[1 \ln f(x^1) + \frac{1}{2} \ln \left(1 - f(x^1)\right)\right]$$

$$-lnf_{w,b}(x^2) \longrightarrow -\left[1 \ln f(x^2) + \frac{1}{2} \ln \left(1 - f(x^2)\right)\right]$$

$$-ln\left(1 - f_{w,b}(x^3)\right) \longrightarrow -\left[\frac{1}{2} \ln f(x^3) + \frac{1}{2} \ln \left(1 - f(x^3)\right)\right]$$

Step 2: Goodness of a Function

Likelihood
$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots f_{w,b}(x^N)$$

$$-lnL(w,b) \stackrel{\text{$\widehat{\phi}$}}{=} \left(ln f_{w,b}(x^1) + ln f_{w,b}(x^2) + ln \left(1 - f_{w,b}(x^3)\right) \cdots\right)$$

$$\stackrel{\hat{y}^n}{=} 1 \text{ for class } 1, 0 \text{ for class } 2$$

$$= \sum_{n} - \left[\frac{\hat{y}^n ln f_{w,b}(x^n) + (1 - \hat{y}^n) ln \left(1 - f_{w,b}(x^n)\right)}{(1 - f_{w,b}(x^n))} \right]$$
Cross entropy between two Bernoulli distribution

Distribution p:
$$p(x=1) = \hat{y}^n$$

$$p(x=0) = 1 - \hat{y}^n$$
 entropy
$$q(x=1) = f(x^n)$$

$$q(x=0) = 1 - f(x^n)$$

$$q(x=0) = 1 - f(x^n)$$

Step 1: $f_{w,b}(x) = \sigma \left(\sum w_i x_i + b \right)$

Logistic Regression

Output: between 0 and 1

Training data: (x^n, \hat{y}^n)

Step 2:

Cross entropy:

regression?

 \hat{y}^n : 1 for class 1, 0 for class 2 $L(f) = \sum_{n} C(f(x^n), \hat{y}^n)$

 \hat{y}^n : a real number

 $L(f) = \frac{1}{2} \sum_{n} (f(x^n) - \hat{y}^n)^2$

1种用约定气法试过 ~

放好 (发正本最小, 承艺.无好得)

Linear Regression

 $f_{w,b}(x) = \sum w_i x_i + b$

Training data: (x^n, \hat{y}^n)

Output: any value

 $C(f(x^n), \hat{y}^n) = -[\hat{y}^n ln f(x^n) + (1 - \hat{y}^n) ln (1 - f(x^n))]$ Question: Why don't we simply use square error as linear

Step 3: Find the best function

$$\frac{\left(1 - f_{w,b}(x^n)\right)x_i^n}{\frac{\partial w_i}{\partial w_i}} = \sum_{n} -\left[\hat{y}^n \frac{\ln f_{w,b}(x^n)}{\frac{\partial w_i}{\partial w_i}} + (1 - \hat{y}^n)\frac{\ln \left(1 - f_{w,b}(x^n)\right)}{\frac{\partial w_i}{\partial w_i}}\right]$$

$$\frac{\partial \ln f_{w,b}(x)}{\partial w_i} = \frac{\partial \ln f_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i} \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial \ln \sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \frac{\partial \sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \sigma(z) \left(1 - \sigma(z)\right)^{\frac{1}{2}} \frac{\partial \sigma(z)}{\partial z}$$

$$f_{w,b}(x) = \sigma(z)$$

= 1/1 + exp(-z) $z = w \cdot x + b = \sum_{i} w_i x_i + b$

Step 3: Find the best function

Step 3. Find the best function
$$\frac{\left(1 - f_{w,b}(x^n)\right)x_i^n}{\left(1 - f_{w,b}(x^n)\right)} = \frac{\left(1 - f_{w,b}(x^n)\right)x_i^n}{\left(1 - f_{w,b}(x^n)\right)} + \left(1 - \hat{y}^n\right) \frac{\ln\left(1 - f_{w,b}(x^n)\right)}{\left(1 - f_{w,b}(x^n)\right)} = \frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\left(1 - f_{w,b}(x)\right)} \frac{\partial z}{\partial x} \qquad \frac{\partial z}{\partial x} = x_i$$

$$\frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial w_i} = \frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial z} \frac{\partial z}{\partial w_i} \qquad \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial \ln\left(1 - \sigma(z)\right)}{\partial z} = -\frac{1}{1 - \sigma(z)} \frac{\partial \sigma(z)}{\partial z} = -\frac{1}{1 - \sigma(z)} \sigma(z) \left(1 - \sigma(z)\right)$$

$$f_{w,b}(x) = \sigma(z)$$

$$= 1/1 + exp(-z)$$

$$z = w \cdot x + b = \sum_{i} w_i x_i + b$$

Step 3: Find the best function

Step 3: Find the pest function
$$\frac{\left(1 - f_{w,b}(x^n)\right)x_i^n}{\left(1 - f_{w,b}(x^n)\right)x_i^n} f_{w,b}(x^n)x_i^n$$

$$-\ln L(w,b) = \sum_{n} -\left[\hat{y}^n \frac{\ln f_{w,b}(x^n)}{\partial w_i} + (1 - \hat{y}^n) \frac{\ln \left(1 - f_{w,b}(x^n)\right)}{\partial w_i}\right]$$

$$= \sum_{n} -\left[\hat{y}^n \left(1 - f_{w,b}(x^n)\right)x_i^n - (1 - \hat{y}^n) f_{w,b}(x^n)x_i^n\right]$$

$$= \sum -[\hat{y}^n - \hat{y}^n f_{w,b}(x^n) - f_{w,b}(x^n) + \hat{y}^n f_{w,b}(x^n)] \underline{x_i^n}$$

$$= \sum -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n \leftarrow \sharp \mathcal{B}$$

Larger difference, larger update

$$w_i \leftarrow w_i - \eta \sum_{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Step 1:

Step 2:

Step 3:

 $f_{w,b}(x) = \sigma \left(\sum_{i} w_i x_i + b \right)$

Logistic regression: $w_i \leftarrow w_i - \eta \sum_{i=1}^{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$

Output: between 0 and 1

Logistic Regression

Training data: (x^n, \hat{y}^n)

 \hat{y}^n : 1 for class 1, 0 for class 2

 $L(f) = \sum_{n} C(f(x^n), \hat{y}^n)$

Logistic regression:
$$w_i \leftarrow w_i - \eta \sum_n - \left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Linear regression: $w_i \leftarrow w_i - \eta \sum_n - \left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$

$$\hat{y}^n : a r$$

$$L(f) =$$

$$\hat{y}^n$$
: a real number
$$L(f) = \frac{1}{2} \sum_{n} (f(x^n))^n - f_{w,b}(x^n)$$

Output: any value Training data:
$$(x^n, \hat{y}^n)$$
 \hat{y}^n : a real number
$$L(f) = \frac{1}{2} \sum_{n=0}^{\infty} (f(x^n) - \hat{y}^n)^2$$

Linear Regression

 $f_{w,b}(x) = \sum w_i x_i + b$

Output: any value ata:
$$(x^n, \hat{y}^n)$$
 number

Logistic Regression + Square Error

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

Training data: (x^n, \hat{y}^n) , \hat{y}^n : 1 for class 1, 0 for class 2 Step 2:

$$L(f) = \frac{1}{2} \sum_{n} (f_{w,b}(x^n) - \hat{y}^n)^2$$

Step 3:

$$\frac{\partial (f_{w,b}(x) - \hat{y})^2}{\partial w_i} = 2(f_{w,b}(x) - \hat{y}) \frac{\partial f_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i}$$

$$= 2(f_{w,b}(x) - \hat{y})f_{w,b}(x) (1 - f_{w,b}(x)) x_i$$

$$\partial W_i = 2(f_{w,b}(x) - \hat{y})f_{w,b}(x) (1 - f_{w,b}(x)) x$$

$$\hat{y}^n = 1$$
 If $f_{w,b}(x^n) = 1$ (close to target) $\partial L/\partial w_i = 0$

If
$$f_{w,b}(x^n) = 0$$
 (far from target) $\partial L/\partial w_i = 0$

Logistic Regression + Square Error

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

Training data: (x^n, \hat{y}^n) , \hat{y}^n : 1 for class 1, 0 for class 2 Step 2:

lata:
$$(x^n, y^n)$$
, y^n : I for class I, 0 for class 2

$$L(f) = \frac{1}{2} \sum (f_{w,b}(x^n) - \hat{y}^n)^2$$

Step 3:
$$\frac{\partial (f_{w,b}(x) - \hat{y})^2}{\partial w} = 2(f_{w,b}(x) - \hat{y}) \frac{\partial f_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i}$$

Cross Entropy v.s. Square Error

dings/papers/v9/gloro t10a/glorot10a.pdf

Discriminative v.s. Generative

directly find **w** and b

Will we obtain the same

Find μ^1 , μ^2 , Σ^{-1}

$$w^T = (\mu^1 - \mu^2)^T \Sigma^{-1}$$

$$b = -\frac{1}{2} (\mu^1)^T (\Sigma^1)^{-1} \mu^1$$
 Will we obtain the same set of w and b?
$$+\frac{1}{2} (\mu^2)^T (\Sigma^2)^{-1} \mu^2 + \ln \frac{N_1}{N_2}$$

The same model (function set), but different function is selected by the same training data.

Gaussian

Generative

160 -140 -120 -80 -80 -40 -

20

20

Discriminative

All: total, hp, att, sp att, de, sp de, speed

73% accuracy

Defense

60

120

100

140

160

79% accuracy

Example

Testing Data

朴敦 贝叶斯 How about Naïve Baye

How about Naïve Bayes?

$$P(x|C_i) = P(x_1|C_i)P(x_2|C_i)$$

Example

$$P(C_1) = \frac{1}{13} \qquad P(x_1 = 1 | C_1) = 1 \qquad P(x_2 = 1 | C_1) = 1$$

$$P(C_2) = \frac{12}{13} \qquad P(x_1 = 1 | C_2) = \frac{1}{3} \qquad P(x_2 = 1 | C_2) = \frac{1}{3}$$

- Benefit of generative model
 - With the assumption of probability distribution, less training data is needed
 - With the assumption of probability distribution, more robust to the noise
 - Priors and class-dependent probabilities can be estimated from different sources.

Multi-class Classification (3 classes as example)

 $z_1 = w^1 \cdot x + b_1$ C_1 : w^1, b_1

 C_2 : w^2 , b_2 $z_2 = w^2 \cdot x + b_2$

 C_3 : w^3, b_3 $z_3 = w^3 \cdot x + b_3$ **Probability**:

 $1 > y_i > 0$

 $\blacksquare \sum_i y_i = 1$

Multi-class Classification (3 classes as example)

If $x \in class 1$

If $x \in class 2$

If $x \in class 3$

$$\hat{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\hat{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\hat{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Input Feature		Label
x_1	X ₂	Label
0	0	Class 2
0	1	Class 1
1	0	Class 1
1	1	Class 2

• No, we can't

Cascading logistic regression models

Deep Learning!

Reference

• Bishop: Chapter 4.3