4 Continuous Functions and Homeomorphisms

4.1 Definition of Continuous

A function $f: \mathbb{R} \to \mathbb{R}$ is **continuous** if for every $x_0 \in \mathbb{R}$ and every $\varepsilon > 0$, there exists $a\delta > 0$ such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \varepsilon$

4.2 Open Set Definition of Continuity

Let X and Y be topological spaces. A function $f: X \to Y$ is **continuous** if $f^{-1}(V)$ is open in X for every open set V in Y.

We call this the **open set definition of continuity**. Paraphrased, it states that f is continuous if the preimage of every open set is open.

4.3 Theorem that a function is continuous if and only if the preimage of the basis elements is open

Let X and Y be topological spaces and \mathcal{B} be a basis for the topology on Y. Then $f: X \to Y$ is continuous if and only if $f^{-1}(B)$ is open in X for every $B \in \mathcal{B}$.

Proof: Suppose $f: X \to Y$ is continuous. Then $f^{-1}(V)$ is open in X for every V open in Y. Since every basis element B is open in Y, it follows that $f^{-1}(B)$ is open in X for all $B \in \mathcal{B}$.

Now, suppose $f^{-1}(B)$ is open in X for every $B \in \mathcal{B}$. We show that f is continuous. Let V be an open set in Y. Then V is a union of basis elements, say $V = \bigcup B_{\alpha}$. Thus,

$$f^{-1}(V) = f^{-1}(\cup B_{\alpha}) = \cup f^{-1}(B_{\alpha})$$

By assumption, each set $f^{-1}(B_{\alpha})$ is open in X; therefore so is their union. Thus, $f^{-1}(V)$ is open in X, and it follows that the preimage of every open set in Y is open in X. Hence, f is continuous.

4.4 Theorem that every polynomial is continuous

Let \mathbb{R} have the standard topology. Then every polynomial function $p: \mathbb{R} \to \mathbb{R}$, with $p(x) = a_n x^n + \ldots + a_1 x + a_0$, is continuous.

4.5 Theorem that says the closure of a subset maps to part of the closure of the superset

Let $f: X \to Y$ be continuous and assume that $A \subset X$. If $x \in Cl(A)$, then $f(x) \in Cl(f(A))$.

Proof: Suppose that $f: X \to Y$ is continuous, $x \in X$, and $A \subset X$. We prove that if $f(x) \notin \operatorname{Cl}(f(A))$, then $x \notin \operatorname{Cl}(A)$. Thus suppose that $f(x) \notin \operatorname{Cl}(f(A))$. By Theorem 2.5 there exists an open set U containing f(x), but not intersecting f(A). It follows that $f^{-1}(U)$ is an open set containing x that does not intersect A. Thus $x \notin \operatorname{CI}(A)$, and the result follows.

4.6 Translation of $\varepsilon - \delta$

Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if, for every $x \in X$ and every open set U containing f(x), there exists a neighborhood V of x such that $f(V) \subset U$.

 $\forall x \in X$ and every open set U containing $f(x), \exists$ neighborhood V of x, such that $f(V) \subset U$

4.7 Theorem that a function is continuous if and only if every element has a neighborhood containing f(x), there exists a neighbor V of x such that $f(V) \subset U$

A function $f: X \to Y$ is continuous in the open set definition of continuity if and only if for every $x \in X$ and every open set U containing f(x), there exists a neighborhood V of x such that $f(V) \subset U$

Proof: First, suppose that the open set definition holds for functions $f: X \to Y$. Let $x \in X$ and an open set $U \subset Y$ containing f(x) be given. Set $V = f^{-1}(U)$. It follows that $x \in V$ and that V is open in X since f is continuous by the open set definition. Clearly $f(V) \subset U$, and therefore we have shown the desired result.

Now assume that for every $x \in X$ and every open set U containing f(x), there exists a neighborhood V of x such that $f(V) \subset U$. We show that $f^{-1}(W)$ is open in X for every open set W in Y. Thus let W be an arbitrary open set in Y. To show that $f^{-1}(W)$ is open in X, choose an arbitrary $x \in f^{-1}(W)$. It follows that $f(x) \in W$, and therefore there exists a neighborhood V_x of x in X such that $f(V_x) \subset W$, equivalently, such that $V_x \subset f^{-1}(W)$. Thus, for an arbitrary $x \in f^{-1}(W)$ there exists an open set V_x such that $x \in V_x \subset f^{-1}(W)$. Theorem 1.4 implies that $f^{-1}(W)$ is open in X.

4.8 Theorem that converges points will converge given a function

Assume that $f: X \to Y$ is continuous. If a sequence $(x_1, x_2, ...)$ in X converges to a point x, then the sequence $(f(x_1), f(x_2), ...)$ in Y converges to f(x).

Proof: Let U be an arbitrary neighborhood of f(x) in Y. Since f is continuous, $f^{-1}(U)$ is open in X. Furthermore, $f(x) \in U$ implies that $x \in f^{-1}(U)$. The sequence (x_1, x_2, \ldots) converges to x; thus, there exists $N \in Z_+$ such that $x_n \in f^{-1}(U)$ for all $n \geq N$. It follows

that $f(x_n) \in U$ for all $n \geq N$, and therefore the sequence $(f(x_1), f(x_2), \ldots)$ converges to f(x)

4.9 Theorem that we can map closed sets between each other

Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set $C \subset Y$.

My Proof: Let C be a closed set in Y. Notice, Y - C is open in Y and so $f^{-1}(Y - C)$ must also be open in X.

We claim that $f^{-1}(Y - C) = f^{-1}(Y) - f^{-1}(C)$ and is open.

We define $f^{-1}(Y-C)=\{x\in X|f(x)\in Y-C\}$. This implies that $f(x)\in Y$ and $f(x)\not\in C$. We also define $f^{-1}(Y)=\{x\in X|f(x)\in Y\}$ and $f^{-1}(C)=\{x\in X|f(x)\in C\}$ Thus, $f^{-1}(Y)-f^{-1}(C)$ implies $f(x)\in Y$ and $f(x)\not\in C$. Notice, this is our definition of $f^{-1}(Y-C)$. Thus, $f^{-1}(Y-C)\subseteq f^{-1}(Y)-f^{-1}(C)$

Going the other direction, we have the definition of $f^{-1}(Y) - f^{-1}(C)$ from our implication of $f^{-1}(Y - C)$

Thus, $f^{-1}(Y) - f^{-1}(C) \subseteq f^{-1}(Y - C)$

Therefore, $f^{-1}(Y - C) = f^{-1}(Y) - f^{-1}(C)$ (Thank you for recognizing this needed to be proved.)

Since, $f^{-1}(Y)$ is defined to be $\{x \in X | f(x) \in Y\}$ we know that $f^{-1}(Y) \subseteq X$. But since all of X is mapped in the preimage we also have $X \subseteq f^{-1}(Y)$. Thus, $f^{-1}(X) = Y$ (You mean $f^{-1}(Y) = X$)

Taking X - C will result in an open set as $X - C = X \cap C^{\complement}$ and since C^{\complement} is open and the intersection of open sets are open.

Observe.

$$f^{-1}(Y-C) = f^{-1}(Y) - f^{-1}(C) = X - f^{-1}(C)$$

Thus, $f^{-1}(C)$ must be closed by our previous result.

Suppose, $f^{-1}(C)$ is closed. We then know that $X - f^{-1}(C)$ must be open. Notice, that $X = f^{-1}(Y)$. Observe.

$$X - f^{-1}(C) = f^{-1}(Y) - f^{-1}(C) = f^{-1}(Y - C)$$

As, Y - C is open and f^{-1} is defined with an arbitrary open set U as $f^{-1}(U) = \{x \in X | f(x) = U\}$, we then have that f^{-1} maps open sets to open sets. Thus, f must be continuous. 5/5

4.10 Theorem that function composition works for continuity

Let $f: X \to Y$ and $g: Y \to Z$ be continuous. Then the composition function, $g \circ f: X \to Z$, is continuous.

Proof: Suppose that $f: X \to Y$ and $g: Y \to Z$ are continuous, and let U be an open set in Z. Then $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$, since g is continuous, $g^{-1}(U)$ is open in Y, and since f is continuous, $f^{-1}(g^{-1}(U))$ is open in X. Thus, $(g \circ f)^{-1}(U)$ is open in X for an arbitrary U open in Z, implying that $g \circ f$ is continuous.

4.11 The Pasting Lemma

Let X be a topological space and let A and B be closed subsets of X such that $A \cup B = X$. Assume that $f: A \to Y$ and $g: B \to Y$ are continuous and f(x) = g(x) for all x in $A \cap B$. Then $h: X \to Y$, defined by

$$h(x) = \begin{cases} f(x) \text{ if } x \in A\\ g(x) \text{ if } x \in B \end{cases}$$

is a continuous function.

Proof: Proof. By Theorem 4.8, it suffices to show that if C is closed in Y, then $h^{-1}(C)$ is closed in X. Thus suppose that C is closed in Y. Note that $h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$. since f is continuous, it follows by Theorem 4.8 that $f^{-1}(C)$ is closed in A. Theorem 3.4 then implies that $f^{-1}(C) = D \cap A$ where D is closed in X. Now, D and A are both closed in X, and $f^{-1}(C) = D \cap A$; therefore, $f^{-1}(C)$ is closed in X. Similarly, $g^{-1}(C)$ is closed in X. Thus, $h^{-1}(C)$ is the union of two closed sets in X and therefore is closed in X as well. It follows that h is continuous.

4.12 Definition of a Homeomorphism

Let X and Y be topological spaces, and let $f: X \to Y$ be a bijection with inverse $f^{-1}: Y \to X$. If both f and f^{-1} are continuous functions, then f is said to be a **homeomorphism**. If there exists a homeomorphism between X and Y, we say that X and Y are **homeomorphic** or **topologically equivalent**, and we denote this by $X \cong Y$.

4.13 Facts about Homeomorphisms

- (i) The function $id: X \to X$, defined by id(x) = x, is a homeomorphism.
- (ii) If $f: X \to Y$ is a homeomorphism, then so is $f^{-1}: Y \to X$.
- (iii) If $f: X \to Y$ and $g: Y \to Z$ are homeomorphisms, then so is $g \circ f: X \to Z$

4.15 Definition of Embedding

An **embedding** of X in Y is a function $f: X \to Y$ that maps X homeomorphically to the subspace f(X) in Y.

4.16 Definition of Arc & Simple Closed Curve

Let X be a topological space. If $f:[-1,1]\to X$ is an embedding, then the image of f is

called an **arc** in X, and if $f: S^1 \to X$ is an embedding, then the image of f is called a **simple closed curve** in X.

4.17 Theorem about Hausdorffness being a topological property

If $f: X \to Y$ is a homeomorphism and X is Hausdorff, then Y is Hausdorff.

Proof: Suppose that X is Hausdorff and $f: X \to Y$ is a homeomorphism. Let x and y be distinct points in Y. Then $f^{-1}(x)$ and $f^{-1}(y)$ are distinct points in X. Thus, there exist disjoint open sets U and V containing $f^{-1}(x)$ and $f^{-1}(y)$, respectively. It follows that f(U) and f(V) are disjoint open sets containing x and y, respectively. Therefore Y is Hausdorff. \square

Definition of Topological Property

A property of topological spaces that is preserved by homeomorphism is said to be a **topological property**.

5 Metric Spaces

5.1 Definition of Metric

A **metric** on a set X is a function $d: X \times X \to \mathbb{R}$ with the following properties:

- (O) d(x,y) = 0 for some $x, y \in X$; if and only if x = y
- (i) $d(x,y) \ge 0$ for all $x, y \in X$
- (ii) d(x,y) = d(y,x) for all $x, y \in X$
- (iii) $d(x,y) + d(y,z) \ge d(x,z)$ for all $x, y, z \in X$

Definition of Metric Space

We call d(x, y) the distance between x and y, and we call the pair (X, d), consisting of the set X and the metric d, a **metric space**.

Definition of Standard Metric

Given points $p = (p_1, p_2)$ and $q = (q_1, q_2)$

$$d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

We call d the **standard metric** on \mathbb{R}^2 . This metric measures the straight-line distance between points in the plane.

Definition of Taxicab Metric

Given points $p = (p_1, p_2)$ and $q = (q_1, q_2)$

$$d_M(p,q) = \max\{|p_1 - q_1|, |p_2 - q_2|\}$$

We call d the \max metric on \mathbb{R}^2 . The distance in this metric is the maximum of the differences between their coordinates.

Definition of Max Metric

Given points $p = (p_1, p_2)$ and $q = (q_1, q_2)$

$$d_M(p,q) = \max\{|p_1 - q_1|, |p_2 - q_2|\}$$

We call d the **max metric** on \mathbb{R}^2 . This metric measures the distance between two points is the maximum of the differences between their coordinates.

5.5 Definition of Metric Topology

Let (X, d) be a metric space. The topology generated by the basis of open balls $\mathcal{B} = \{B_d(x, \varepsilon) | x \in X, \varepsilon > 0\}$ is called the topology induced by d and is referred to as a **metric topology.**

5.6 Theorem about A set U is open iff for each $y \in U$ there is an open ball centered at y and contained in U

Let (X, d) be a metric space. A set $U \subset X$ is open in the topology induced by d if and only if for each $y \in U$, there is $a\delta > 0$ such that $B_d(y, \delta) \subset U$.

Properties of Metric Spaces

5.12 Theorem about Every Metric Space is Hausdorff

Proof: Let (X,d) be a metric space. Suppose x and y are distinct points in X with $d(x,y)=\varepsilon$. Consider the sets $U=B_d(x,\varepsilon/2)$ and $V=B_d(y,\varepsilon/2)$. It follows that $x\in U,y\in V$, and U and V are open sets. We claim that U and V are disjoint. Suppose $U\cap V\neq\varnothing$, and z is in the intersection. Then $d(x,z)<\varepsilon/2$ and $d(y,z)<\varepsilon/2$. Therefore, by the triangle inequality,

$$d(x,y) \le d(x,z) + d(z,y) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

that is, $d(x,y) < \varepsilon$. This contradicts $d(x,y) = \varepsilon$. Thus $U \cap V = \emptyset$. Hence, there exist disjoint open sets U and V containing x and y respectively, implying that X is Hausdorff. \square

5.13 Theorem about

Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is continuous in the open set definition if and only if for each $x \in X$ and $\varepsilon > 0$, there exists $a\delta > 0$ such that if $x' \in X$ and $d_X(x, x') < \delta$ then $d_Y(f(x), f(x')) < \varepsilon$

My Proof: (WTS: $\forall x \in X \exists \delta > 0$ such that $x' \in X$ and $d_x(x, x') < \delta$, we have $d_Y(f(x), f(x')) < \epsilon$)

Suppose f is continuous. Let $x \in X$, $\epsilon > 0$, and $\delta > 0$ such that $x' \in X$ and $d_x(x, x') < \delta$. Notice, as f is continuous, f(x), $f(x') \in Y$. Since, x is bound by ϵ , d(x, x') is bounded by δ , and f(x), $f(x') \in Y$, we must have that $d_Y(f(x), f(x') < \epsilon$.

Let U be an open set in Y. Let $x \in f^{-1}(U)$ and define $\epsilon > 0$ such that $B(f(x), \epsilon) \subseteq U$. Define δ such that $x' \in X$ satisfies $d(x, x') < \delta$. Which implies $x' \in B(x, \delta)$. Notice, we must have $d(f(x), f(x')) < \epsilon$. From this result, we have $f(x') \in B(f(x), \epsilon) \subseteq U$. So, $x' \in B(x, \delta)$ as $x' \in f^{-1}(U)$.

Thus, $B(x, \delta) \subseteq f^{-1}(U)$.

Thus, f is continuous.

Therefore, A function $f: X \to Y$ is continuous in the open set definition if and only if for each $x \in X$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that if $x' \in X$ and $d_X(x, x') < \delta$ then $d_Y(f(x), f(x')) < \varepsilon$.

5.14 Definition of Distance between

Let (X, d) be a metric space. For sets $A, B \subset X$ define the distance between A and B by

$$d(A, B) = glb\{d(a, b)|a \in A, b \in B\}$$

The greatest lower bound in Definition 5.14 exists for every pair of sets A and B since the set of values $\{d(a,b)|a\in A,b\in B\}$ is bounded below by 0.

5.15 Theorem about Proving one topology is finer than other with metrics

THEOREM 5.15. Let d and d' be metrics on a set X, and let \mathcal{T} and T', respectively, be the topologies that they induce. Then T' is finer than \mathcal{T} if and only if for each $x \in X$ and $\varepsilon > 0$, there exists $a\delta > 0$ such that $B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$.

Proof: Proof. Suppose that T' is finer than \mathcal{T} . Then every open set in \mathcal{T} is open in \mathcal{T}' . In particular, for every $x \in X$ and $\varepsilon > 0$, $B_d(x,\varepsilon)$ is open in \mathcal{T} and hence is open in T'. since $B_d(x,\varepsilon)$ is open in T' and contains x Theorem 5.6 implies that there is a $\delta > 0$ such that $B_{d'}(x,\delta) \subset B_d(x,\varepsilon)$ as we wished to show.

Suppose now that for each $x \in X$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$. We prove that T' is finer than \mathcal{T} . Let U be an open set in \mathcal{T} . We show that

U is open in \mathcal{T}' . Let x be an arbitrary point in U. Since U is open in T, Theorem 5.6 implies that there is an $\varepsilon > 0$ such that $B_d(x,\varepsilon) \subset U$. By assumption there is a $\delta > 0$ such that $B_{d'}(x,\delta) \subset B_d(x,\varepsilon) \subset U$. It follows that for each $x \in U$ there exists $\delta > 0$ such that $B_{d'}(x,\delta) \subset U$. Theorem 5.6 implies that U is open in \mathcal{T}' , as we wished to show.

5.17 Definition of Bounded Metric

Let (X, d) be a metric space. A subset A of X is said to be bounded under d if there exists a $\mu > 0$ such that $d(x, y) \leq \mu$ for all $x, y \in A$. If X itself is bounded under d, then we say that d is a **bounded metric.**

5.18 Theorem about A topology is bounded if it is induced by a bounded metric

THEOREM 5.18. Let (X, d) be a metric space, and define $d': X \times X \to \mathbb{R}$ by $d'(x, y) = \min[d(x, y), 1]$. Then d' is a bounded metric that induces the same topology as d.

5.19 Definition of Isometry

Let (X, d_X) and (Y, d_Y) be metric spaces. A bijective function $f: X \to Y$ is called an **isometry** if $d_X(x, x') = d_Y(f(x), f(x'))$ for every pair of points x and x' in X. If $f: X \to Y$ is an isometry, then we say that the metric spaces X and Y are **isometric**.

6 Connectedness

6.1 Definition of Connected

Let X be a topological space.

- (i) We call X connected if there does not exist a pair of disjoint nonempty open sets whose union is X.
- (ii) We call X disconnected if X is not connected.
- (iii) If X is disconnected, then a pair of disjoint nonempty open sets whose union is X is called a **separation of** X.
- 6.2 Theorem about A topological space X is connected if and only if there are no nonempty proper subsets of X that are both open and closed in X.

My Proof: Suppose that X is not connected. Let U, V be a separation of X. That is $U \cup V = X$ and U, V are disjoint nonempty open sets. Notice, V = X - U as U and V are

disjoint. Then, we have that U is closed as it is the complement of an open set. We then have $V = X - U \neq \emptyset$. This results says that U is a proper subset. Thus, U is a nonempty, proper, closed, and open set.

Suppose U is a nonempty proper set that is closed and open. Let V = X - U. Since, U is proper we have V is nonempty and open. Notice.

$$X = U \cup (X - U) = U \cup V$$

Thus, U, V form a separation of X.

Thus, X is not connected.

Therefore, X is connected if and only if there are no nonempty proper subsets of X that are both open and closed in X.

6.4 Theorem about Showing disconnected

A set A is disconnected in X if and only if there exist open sets U and V in X such that $A \subset U \cup V, U \cap A \neq \emptyset, V \cap A \neq \emptyset$, and $U \cap V \cap A = \emptyset$.

Proof: Suppose that A is disconnected in X. Then there exist nonempty y. Then there exist nonempty sets P and Q that are open in A, disjoint, and such that $P \cup Q = A$. since P and Q are open in A there exist sets U and V that are open in X and such that $U \cap A = P$ and $V \cap A = Q$. Clearly, $A \subset U \cup V$, $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, and $U \cap V \cap A = \emptyset$.

Now suppose that U and V are open sets in X such that $A \subset U \cup V$, $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, and $U \cap V \cap A = \emptyset$. If we let $P = U \cap A$ and $Q = V \cap A$, then it follows that the pair of sets, P and Q, is a separation of A in the subspace topology, and therefore A is disconnected in X.

6.5 Definition of Separation

Let A be a subspace of a topological space X. If U and V are open sets in X such that $A \subset U \cup V, U \cap A \neq \emptyset, V \cap A \neq \emptyset$, and $U \cap V \cap A = \emptyset$, then we say that the pair of sets, U and V, is a separation of A in X.

There's a whole lot more that goes in here. I just don't have the time to be spending on this document.

6.27 Definition of Path Connected

A topological space X is **path connected** if for every $x, y \in X$ there is a path in X from x to y.A subset of a topological space X is path connected in X is path connected in the subspace topology that A inherits from X.

6.28 Theorem about If X is path connected space, than it is connected.

Proof: Proof. Let X be a path connected space. We prove that X is connected by showing that it has only one component, or equivalently that every pair of points $x, y \in X$ is contained in some connected subset of X. Thus, let x and y be arbitrary points in X. since X is path connected, there is a path in X from x to y. The image of such a path is a connected subset of X containing both x and y. Therefore every pair of points in X is contained in a connected subset of X, and it follows that X is connected.

7 Compactness 7.1

Let A be a subset of a topological space X, and let \mathcal{O} be a collection of subsets of X

7.1 Definition of Cover

The collection \mathcal{O} is said to **cover** A if A is contained in the union of the sets in \mathcal{O} .

7.2 Definition of Open Cover

If \mathcal{O} covers A, and each set in \mathcal{O} is open, then we call \mathcal{O} an open cover of A.

7.3 Definition of Subcover

If \mathcal{O} covers A, and \mathcal{O}' is a subcollection of \mathcal{O} that also covers A then \mathcal{O}' is called a **subcover** of \mathcal{O} .

7.4 Definition of Compact

A topological space X is **compact** if every open cover of X has a finite subcover.

7.5 Definition of Compact In

Let X be a topological space, and assume $A \subset X$. Then A is said to be **compact in** X if A is compact in the subspace topology inherited from X.

7.6 Lemma: Checks weather or not a subspace A is compact

Let X be a topological space, and assume $A \subset X$. Then A is compact in X if and only if every cover of A by sets that are open in X has a finite subcover.

Proof:

Let A be compact in X, and suppose that \mathcal{O} is a cover of A by open sets in X. Then $\mathcal{O}' = \{U \cap A | U \in \mathcal{O}\}$ is a cover of A by open sets in A. Hence, there exists a finite subcover $\{U_1 \cap A, U_2 \cap A, \dots, U_n \cap A\}$ of \mathcal{O}' . But then $\{U_1, U_2, \dots, U_n\}$ is a finite subcover of \mathcal{O} . Therefore every cover of A by open sets in X has a finite subcover.

Conversely, suppose every cover of A by sets that are open in X has a finite subcover. Let $\mathcal{O} = \{V_{\beta}\}_{\beta \in B}$ be a cover of A by open sets in A. Then, by definition of the subspace topology, for each V_{β} there vis an open set U_{β} in X such that $V_{\beta} = U_{\beta} \cap A$. It follows that the collection $\mathcal{O}' = \{U_{B}\}_{B \in R}$ is a cover of A by open sets in X. Since \mathcal{O}' has a finite subcover $\{U_{\beta_{1}}, \ldots, U_{\beta_{n}}\}$, it follows that $\{V_{\beta_{1}}, \ldots, V_{\beta_{n}}\}$ is a finite subcover of \mathcal{O} . Thus every cover of A by open sets in A has a finite subcover, and therefore A is compact.

7.7 Compactness will be preserved through continuous functions

Let $f: X \to Y$ be continuous, and let A be compact in X. Then f(A) is compact in Y. Proof:

7.8 Compact sets unioned together are compact

Let X be a topological space. If C_1, \ldots, C_n are each compact in X, then $U_{j=1}^n C_j$ is compact in X.

7.9 Intersection of Hausdorff compact sets are compact

If X is Hausdorff, and $\{C_{\alpha}\}_{{\alpha}\in A}$ is a collection of sets that are compact in X, then $\bigcap_{{\alpha}\in A} C_{\alpha}$ is compact in X.

7.10 If a subset of a compact set is closed, then that subset is also compact

Let X be a topological space and let D be compact in X. If C is closed in X, and $C \subset D$, then C is compact in X.

7.11 All compact subsets of a Hausdorff space are closed

Let X be a Hausdorff topological space and A be compact in X. Then A is closed in X.

7.12 Tube Lemma i.e. You can take a slice of a space and it'll be compact still

Let X and Y be topological spaces, and assume that Y is compact. If $x \in X$, and U is an open set in $X \times Y$ containing $\{x\} \times Y$, then there exists a neighborhood W of x in X such that $W \times Y \subset U$.

7.13 Product topology preserves compactness

THEOREM 7.10. If X and Y are compact topological spaces, then the product $X \times Y$ is compact.

7 Compactness in Metric Spaces 7.2

7.1 Closed Bounded Intervals are compact

Every closed and bounded interval [a, b] is a compact subset of \mathbb{R} with the standard topology.

7.2 Product of closed bounded intervals are compact

Let $[a_1, b_1], \ldots, [a_n, b_n]$ be closed bounded intervals in R. Then $[a_1, b_1] \times \ldots \times [a_n, b_n]$ is a compact subset of \mathbb{R}^n

7.3 The standard topology in standard metric in \mathbb{R}^n is compact iff it is closed and bounded

Let \mathbb{R}^n have the standard topology and the standard metric d. A set $A \subset \mathbb{R}^n$ is compact in \mathbb{R}^n if and only if it is closed and bounded.

7.4 In a metric space with compact subset A, if there is a sequence, then there is a subsequence that converges to a limit in A

Let (X, d) be a metric space, and assume that A is compact in X. If (x_n) is a sequence in A, then there exists a subsequence (x_{n_m}) of (x_n) that converges to a limit in A.