Caution: You should not limit your studying for Test 3 to only the types of problems presented below. This practice test is not a comprehensive review of every type of problem that could be on the test.

1. Assume that f is continuous on [1,7] and that $\int_{1}^{5} f(x)dx = 1$;

 $\int_{2}^{3} f(x)dx = -1; \quad \int_{3}^{5} f(x)dx = 1; \text{ and } \int_{3}^{7} f(x)dx = 6. \text{ Evaluate each of the following:}$

a)
$$\int_{1}^{3} f(x)dx$$
 b) $\int_{1}^{2} f(x)dx$ c) $\int_{1}^{7} f(x)dx$ d) $\int_{7}^{5} f(x)dx$

- 2. What is the average value of $f(x) = x^3 + 2$ on [0,3].
- 3. What integral would be used to find the area of the region shown?

a)
$$\int_{-2}^{1} f(x)dx$$
b)
$$\int_{-2}^{-1} f(x)dx + \int_{-1}^{1} f(x)dx$$
c)
$$\int_{-2}^{-1} f(x)dx - \int_{-1}^{1} f(x)dx$$
d)
$$\int_{1}^{2} f(x)dx$$

e) none of the above

Evaluate each definite or indefinite integral.

$$4. \int_{-1}^{1} 2x^3 dx$$

$$5. \int \frac{e^{\frac{1}{x}}}{x^2} dx$$

$$6. \int \frac{3x-2}{x} dx$$

$$7. \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 y \sin y \, dy$$

8.
$$\int \frac{e^x}{1+e^{2x}} dx$$
 (Hint: $e^{2x} = (e^x)^2$)

$$9. \int \frac{t}{3t^2 - 7} dt$$

10.
$$\int_{0}^{\pi/4} \frac{\sec^2 x}{(\tan x + 1)^2} dx$$

11.
$$\int t^3 (2 - 5t^4)^7 dt$$

$$12. \int \sqrt[3]{8x^7} \, dx$$

13.
$$\int t^3 \ln t \, dt$$

14. If
$$\int_{0}^{x} f(t) dt = x^2 + \cos x - 1$$
, then $f(t) =$ ______.

15. If
$$F(x) = \int_{x}^{3} \left(\frac{1}{1+t^2}\right)^2 dt$$
, find $F'(x)$.