1. Consider the alphabet $\Sigma = \{0, 1\}$ and the languages

 $A_1 = \{ w \mid w \text{ contains an odd number of 1s} \},$ $A_2 = \{ w \mid w \text{ contains exactly one 0} \},$

- (a) ($_$ /1 **pt**) Create a DFA recognizing A_1 .
- (b) ($_$ /1 pt) Create a DFA recognizing A_2 .
- (c) ($_$ /3 pts) Create a NFA recognizing $(A_1 \circ A_2)^*$.

2. Consider the alphabet $\Sigma = \{0, 1\}$ and the NFA, N, given below.

- (a) ($_$ /1 pt) Describe the language recognized by N.
- (b) (__ /4 pts) Convert N into a DFA using the state set $\mathcal{P}(Q)$, where Q is the state set of N.

