1、实验名称及目的

视觉 SLAM 实验: 在 windows 平台下首先运行 VisionCapAPIDemo.py 文件加载 Config. json 传感器。然后在虚拟机中运行 server_ue4.py 程序进行 SLAM 控制。

2、实验原理

首先通过运行 Client 文件夹下的 VisionCapAPIDemo.py 文件加载传感器设置。然后可以运行 Server 文件夹下的 server_ue4.py 文件,通过遍历各个目标点坐标进行对偏角、速度的实时控制,达到相应的路径规划控制。

3、实验效果

本实验首先通过运行 Client 文件夹下的 VisionCapAPIDemo.py 文件加载传感器设置。 然后在虚拟机下运行 Server 文件夹下的 server_ue4.py 文件,即可以进行 SLAM 控制。

4、文件目录

文件夹/文件名称	说明
Client	实验运行客户端文件夹
Server	实验运行服务端文件夹

5、运行环境

序号	软件要求	硬件要求	
	长日安 本	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台高级版		
3	Visual Studio Code		
4	装有 ros 的 Ubunt 虚拟机		

①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

在 windows 下以管理员身份运行 Client 文件夹下的 VisionCapAPIDemo.bat, 将会启动 1个 QGC 地面站, 1个 CopterSim 软件且其软件下侧日志栏必须打印出 GPS 3D fixed & EK F initialization finished 字样代表初始化完成,并且有 1个 RflySim3D 软件有 1架无人机。并且启动一个已安装了 ros 的 Ubunt 虚拟机。如下图所示:

Step 2:

在虚拟机终端中输入 ifconfig 命令,查找该虚拟机的 IP 地址,修改 Client 文件夹下 Vis ionCapAPIDemo.py 代码,vis.RemotSendIP='192.168.198.131',改成 Ubuntu 系统的 IP。

Step 3:

用 VScode 打开到本实验路径文件夹,运行 Client 文件下的 VisionCapAPIDemo.py 文件。如下图所示:

Step 4:

拷贝整个文件夹到 ubuntu 系统,修改 Server 文件夹下的 server_ue4.py 中的代码 vis.RemotS endIP 变量改成 Ubuntu 系统的 IP。

Step 5:

打开一个终端输入 roscore 命令启动 roscore, 重启一个在 Server 文件夹路径的终端下, 运行命令 python3 server_ue4.py。将看到无人机自动避障移动。

7、参考资料

[1]. 无

8、常见问题

Q1: 无

A1: 无