필답형 실기 정보처리기사

[필기] <mark>3</mark>과목 데이터베이스 구축

[필기] **4**과목 프로그래밍 언어 활용

[개정 전] 필기 OS / DB / NET

[실기] **02.** 데이터 입출력 구현

[실기] 08. SQL 응용

11. 응용 SW 기초 기술 활용

dumok. net

NCS

필답형 실기 정보처리기사

11. 응용 SW 기초 기술 활용

2020년 1회	2020년 2회	2020년 3회	2020년 4 · 5회
• HRN우선순위 공식 (계산식)	• 안드로이드 (Android)	•스키마 정의	•① 준비 ② 실행 ③ 대기
• 트랜잭션ADID : 원자성, 독립성	• UNIX 명령문 chmod 751 a.txt	• 관계대수 ÷	• 삽입이상, 삭제 이상,갱신이상
• 프로토콜3요소 : 구문,의미,타이밍	• ROLLBACK문 개념 (약술형)	• OSPF	• 즉시 갱신
• OSI 7 LAYER : 물리 계층	• IPSec 아이피섹 (IP Sesurity)	• ICMP	• IPv6
			• UNIX
4문제/20문제	4문제 /20문제	4문제 /20문제	5 문제 /20문제

DUMOK.NET

필답형 실기 정보처리기사

11. 응용 SW 기초 기술 활용

1. 운영체제 기초 활용하기 Level 3

Level 3 2. 데이터베이스 기초 활용하기

Level 3 3. 네트워크 기초 활용하기

dumok. net

NCS

실기 정보처리기사

2020년 1회 운영체제

☑ 운영체제의 비선점 프로세스 스케줄링 기법 중 하나인 HRN(Highest Response-ratio Next)은 어떤 작업이 서비스를 받을 시간과 그 작업이 서비스를 기다린 시간으로 결정 되는 우선순위에 따라 CPU를 할당하는 기법이다. HRN의 우선순위를 결정하는 계산 식을 쓰시오.

득점	배점
	5

답:

3

형 실기 정보처리기사

2020년 2회 운영체제

[6] 리눅스 커널을 기반으로 동작하며 자바와 코틀린 언어로 개발된 핸드폰이나 소형기기 에 사용되는 오픈소스 플랫폼인 모바일 운영체제는 무엇인지 쓰시오.

득점	배점		
	5		

• 답 :

※ 기출 복원 문제는 스스로 직접 풀이하신 후, 기출해설 강의를 통해 확인하세요.

dumok. net

NCS

실기 정보처리기사

2020년 2회 운영체제

☑ 리눅스 서버에 a.txt라는 파일이 있다. 다음 〈조건〉에 알맞는 명령문을 쓰시오.

득점	배점
	5

〈조건〉

- 사용자에게는 읽기, 쓰기, 실행의 세 개의 권한을 모두 부여한다.
- 그룹에게는 읽기, 실행 두 개의 권한을 부여한다.
- 그룹 외 사용자에게는 실행 권한을 부여한다.
- 한 줄로 명령문이 작성되어야 하며, 아라비안 숫자를 사용하여 8진수로 권한을 부여한다.

답:

※ 기출 복원 문제는 스스로 직접 풀이하신 후, 기출해설 강의를 통해 확인하세요.

실기 정보처리기사

2020년4 · 5회 운영체제

집 다음 프로세스 상태 전이도의 빈 칸 ①∼③에 알맞은 프로세스 상태를 각각 쓰시오.

득점	배점
	5

- ·답(1):
- · 답(2):
- 답(3):

※ 기출 복원 문제는 스스로 직접 풀이하신 후, 기출해설 강의를 통해 확인하세요.

dumok. net

응용 SW 기초 기술 활용 🔪 운영체제 기초 활용하기 🔪 가상 메모리 관리

╱ "보충 자료" 참고하세요!

2020년 4회 ▲형 : 4과목 프로그래밍 언어 활용

가상기억장치 : 페이징

2019년 2회/2017년 1회 기사(운영체제)

71. 4개의 페이지를 수용할 수 있는 주기억장치가 있으며, 초기에 는 모두 비어 있다고 가정한다. 다음의 순서로 페이지 참조가 발생할 때, FIFO 페이지 교체 알고리즘을 사용할 경우 페이 지 결함의 발생 횟수는?

페이지 참조 순서 : 1, 2, 3, 1, 2, 4, 5, 1

ㅇ 답 :

2020년 4회 🛧형 : 4과목 프로그래밍 언어 활용

가상기억장치 : 페이징

2019년 2회/2017년 1회 기사(운영체제)

71. 4개의 페이지를 수용할 수 있는 주기억장치가 있으며, 초기에는 모두 비어 있다고 가 정한다. 다음의 순서로 페이지 참조가 발생할 때, FIFO 페이지 교체 알고리즘을 사용 할 경우 페이지 결함의 발생 횟수는?

<페이지 참조 순서>	1	2	3	1	2	4	5	_1_
페이지프레임 1								
페이지프레임 2								
페이지프레임 3								
페이지프레임 4								

0 답:

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용 🔪 운영체제 기초 활용하기 🔪 가상 메모리 관리

2020년 4회 🛧형 : 4과목 프로그래밍 언어 활용

가상기억장치:페이징

2019년 2회/2017년 1회 기사(운영체제)

71. 4개의 페이지를 수용할 수 있는 주기억장치가 있으며, 초기에는 모두 비어 있다고 가 정한다. 다음의 순서로 페이지 참조가 발생할 때, FIFO 페이지 교체 알고리즘을 사용 할 경우 페이지 결함의 발생 횟수는?

<페이지 참조 순서>	1	2	3	1	2	4	5	1_
페이지프레임 1	1	1	1	1	1	1	5	5
페이지프레임 2		2	2	2	2	2	2	1
페이지프레임 3			3	3	3	3	3	3
페이지프레임 4						4	4	4
	PF 1	PF 2	PF 3			PF 4	PF 5	PF 6

ㅇ 답 : 6회

2020년 3회 ▲형 : 4과목 프로그래밍 언어 활용

프로세스 스케줄링

66. HRN 방식으로 스케줄링 <u>할</u> 경우, 입력된 작업이 다음과 같을 때 처리되는 작업 순서를 나열하시오.

작업	대기시간	서비스(실행)시간
Α	5	20
В	40	20
С	15	45
D	20	2

ㅇ답:

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용 🄀 운영체제 기초 활용하기 🄀 프로세스 스케줄링

🥟 🏉 "보충 자료" 참고하세요!

2020년 3회 ▲형 : 4과목 프로그래밍 언어 활용

프로세스 스케줄링

66. HRN 방식으로 스케줄링 <u>할 경우, 입</u>력된 작업이 다음과 같을 때 처리되는 작업 순서를 나열하시오.

작업	대기시간	서비스(실행)시간
Α	5	20
В	40	20
С	15	45
D	20	2

ㅇ 답 :

→ HRN 우선순위

- HRN 우선순위계산식 = (대기시간+서비스시간)/서비스시간
- 우선순위를 계산하여 그 수치가 가장 높은 것부터 낮은 순으로 우선순위가 부여된다.

2020년 3회 ▲형 : 4과목 프로그래밍 언어 활용

프로세스 스케줄링

66. HRN 방식으로 스케줄링 <u>할 경우, 입</u>력된 작업이 다음과 같을 때 처리되는 작업 순서를 나열하시오.

작업	대기시간	서비스(실행)시간
Α	5	20
В	40	20
С	15	45
D	20	2

 \circ 답: D \rightarrow B \rightarrow C \rightarrow A

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용 🔪 운영체제 기초 활용하기 🔪 프로세스 스케줄링

• 동기화 기법(Synchronization)-

세마포어 (Semaphore)

- Dijkstra가 제안한 상호 배제 알고리즘
- 각 프로세스가 임계 구역에 대해 각각의 프로세스들이 접근하기 위하여 사용되는 P와 V 연 산을 통해 프로세스 사이의 동기를 유지하고 상호 배제의 원리를 보장함

모니터 (Monitor)

- •특정 공유 자원이나 한 그룹의 공유 자원들을 할당하는 데 필요한 데이터 및 프로시저를 포함 하는 병행성 구조
- 한 순간에 한 프로세스만이 모니터에 진입 가능
- 모니터 외부의 프로세스는 모니터 내부의 데이터 접근 불가

식사하는 철학자들 문제

• 다음 Bash 쉘 스크립트의 결과를 쓰시오.

```
n=0
while((\{n\} < 5)); do
  echo "${n}"
  ((n = \$\{n\} + 1))
done
ㅇ 답:
```

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용 🔀 운영체제 기초 활용하기 🧩 운영체제의 종류 및 Shell Script 🔪 🖊 "보충 자료" 참고하세요!

• 다음 Bash 쉘 스크립트의 결과를 쓰시오.

```
n=0
while((\{n\} < 5)); do
  echo "${n}"
  ((n = \{n\} + 1))
done
```

0 답:

쉘 스크립트

- 쉘(Shell) : 커널과 유저를 이어주는 명령어 해석기 (종류) BASH Shell, Bourne Shell, C Shell, Korn shell
- BASH Shell(배시 쉘) : 리눅스의 표준 셀
- 반복문: for, while, until
- 조건문 : if...elif...else..fi
- 선택문: case

• 다음 Bash 쉘 스크립트의 결과를 쓰시오.

```
n=0
while((\{n\} < 5)); do
  echo "${n}"
  ((n = \{n\} + 1))
done
```

ㅇ 답:

0

1

2

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

NCS 필답형 실기 정보처리기사

[필기] 3과목 데이터베이스 구축

[필기] 4과목 프로그래밍 언어 활용

[개정 전] 필기 OS / DB / NET

[실기] 02. 데이터 입출력 구현

[실기] 08. SQL 응용

11. 응용 SW 기초 기술 활

필답형 실기 정보처리기사

11. 응용 SW 기초 기술 활용

2020년 1회	2020년 2회	2020년 3회	2020년 4 · 5회
• HRN우선순위 공식 (계산식)	• 안드로이드 (Android)	•스키마 정의	•① 준비 ② 실행 ③ 대기
• 트랜잭션ADID : 원자성, 독립성	• UNIX 명령문 chmod 751 a.txt	• 관계대수 ÷	• 삽입이상, 삭제 이상,갱신이상
• 프로토콜3요소 : 구문,의미,타이밍	• ROLLBACK문 개념 (약술형)	• OSPF	• 즉시 갱신
• OSI 7 LAYER : 물리 계층	• IPSec 아이피섹 (IP Sesurity)	• ICMP	• IPv6
			• UNIX
4 문제 /20문제	4문제 /20문제	4문제 /20문제	5문제/20문제

dumok. net

NCS

필답형 실기 정보처리기사

11. 응용 SW 기초 기술 활용

1. 운영체제 기초 활용하기

Level 3

2. 데이터베이스 기초 활용하기 Level 3

3. 네트워크 기초 활용하기 Level 3

OUNOK.NET

2

형실기 정보처리기사

2020년 1회 데이터베이스

圓 트랜잭션(Transaction)은 데이터베이스 내에서 한꺼번에 모두 수행되어야 할 연산들 의 집합으로 하나의 작업 처리를 위한 논리적 작업 단위를 말한다. 다음은 트랜잭션의 주요 특성 4가지이다. 빈 칸 ①~②에 알맞은 용어를 쓰시오.

득점	배점
	5

주요 특성	설명
(①)	트랜잭션의 가장 기본적인 특성으로 트랜잭션 내의 연산은 반드시 모두 수행되어야 하며 그렇지 못한 경우 모두 수행되지 않아야 함
일관성	트랜잭션이 정상적으로 완료된 후 언제나 일관성 있는 데이터베이스 상태가 되어야 하며, 결과에 모순이 생겨서는 안 됨
(2)	하나의 트랜잭션이 수행 중에는 다른 트랜잭션이 접근할 수 없고 각각의 트랜잭션은 독립적이어야 함
영속성	지속성이라고도 하며, 트랜잭션이 성공적으로 완료된 후 결과는 지속적으로 유지되어야 함

답(1):

• 답 (2) :

※ 기출 복원 문제는 스스로 직접 풀이하신 후, 기출해설 강의를 통해 확인하세요.

dumok. net

NCS

실기 정보처리기사

2020년 2회 데이터베이스

☑ 다음은 데이터베이스 설계의 순서이다. 빈 칸 ()에 부합하는 용어를 보기에서 골라 순서대로 쓰시오.

득점	배점
	5

〈보기〉

논리적 설계, 개념적 설계, 물리적 설계

 $) \rightarrow ($ $) \rightarrow ($ 요구사항 분석 → () → 구현

답:

※ 기출 복원 문제는 스스로 직접 풀이하신 후, 기출해설 강의를 통해 확인하세요.

형 실기 정보처리기사

2020년 2회 데이터베이스

☑ SQL 제어어(DCL)는 관리자가 데이터의 보안, 무결성 유지, 병행제어, 회복 등을 하 기 위해 사용하는 언어를 말한다. SQL 제어어의 종류에는 COMMIT, ROLLBACK, GRANT, REVOKE 등이 있다. 이 중 ROLLBACK 명령에 대해 간략히 설명하시오.

득점	배점
	5

답:

※ 기출 복원 문제는 스스로 직접 풀이하신 후, 기출해설 강의를 통해 확인하세요.

dumok. net

NCS

실기 정보처리기사

2020년 3회 데이터베이스

☑ 스키마(Schema)에 대해 간략히 설명하시오.

•답:

득점	배점	
	5	

형 실기 정보처리기사

2020년 3회 데이터베이스

다음에서 설명하는 관계 대수 연산의 기호를 쓰시오.

득점	배점
	5

릴레이션 A에서 릴레이션 B의 모든 조건을 만족하는 튜플을 제외한 후 프로젝션하는 연산자

•답:

※ 기출 복원 문제는 스스로 직접 풀이하신 후, 기출해설 강의를 통해 확인하세요.

dumok. net

NCS

실기 정보처리기사

2020년4 · 5회 데이터베이스

🔞 데이터베이스에서 릴레이션을 처리하는 데 여러 문제를 초래하는 이상 현상 3가지를 쓰시오.

배점 5

•답:

실기 정보처리기사

2020년4 · 5회

데이터베이스

[집] 다음은 데이터 회복 기법에 대한 설명이다. 빈 칸 () 안에 공통으로 들어갈 가장 적 합한 용어를 쓰시오.

배점

데이터 회복 기법은 트랜잭션들을 수행하는 도중 장애로 인해 손상된 데이터베이스를 손상되기 이전의 정 상적인 상태로 복구시키는 작업을 말한다.

다양한 데이터 회복 기법 중 () 회복 기법은 로그를 이용한 회복 기법으로 데이터베이스에 대한 갱신 로그를 저장함으로서 회복에 대비한다. 일반적으로 데이터베이스와 로그의 동시 손상을 대비하여 별도의 전용 디스크에 로그를 저장할 수 있다.

) 회복 기법은 트랜잭션이 실행(활동) 상태에서 변경되는 내용을 그때그때 바로 데이터베이스에 적 용하는 기법이다. 변경되는 모든 내용은 로그(Log)에 기록하여 장애 발생 시 로그(Log)의 내용을 토대로

) 회복 기법은 장애가 발생하면 로그 파일에 기록된 내용을 참조하여, 장애 발생 시점에 따라 Redo 나 Undo를 실행하여 데이터베이스를 복구한다.

답:

※ 기출 복원 문제는 스스로 직접 풀이하신 후, 기출해설 강의를 통해 확인하세요.

dumok. net

응용 SW 기초 기술 활용 >>> 데이터베이스기초 활용하기

데이터베이스 구조(스키마)

"보충 자료" 참고하세요!

👗 스키마의 구조

응용 SW 기초 기술 활용

10

는리적 독립성과 물리적 독립성 산업기사 20년 1회

- 스키마의 구조는 내부 스키마, 개념 스키마, 외부 스키마의 3단계로 구분되며 각 단계 는 상호 독립적인 의미를 갖는다. 즉, 각 단계의 구조는 상위 단계에 독립적이다. 각 단 계의 분리 영역을 논리적 독립성과 물리적 독립성으로 구분하여 지정한다.
- 데이터 독립성에는 두 가지 사상(매핑, Mapping)이 도출되는데 외부 스키마와 개념 스 키마 간의 대응 관계를 정의한 '외부/개념 사상' 과 개념 스키마와 내부 스키마 간의 대 응 관계를 정의한 '개념/내부 사상' 이다.

논리적 독립성	 외부 스키마가 변경되어도 개념 스키마가 영향을 받지 않는다는 것을 의미한다. 논리적 구조가 변경되어도 응용 프로그램에는 영향을 미치지 않는다.
물리적 독립성	 내부 스키마가 변경되어도 외부 스키마와 개념 스키마는 영향을 받지 않는다는 것을 의미한다. 저장 장치의 구조 변경이 응용 프로그램이나 개념 스키마에 영향을 미치지 않는다.

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용 🔪 데이터베이스기초 화용하기

관계 데이터 연산

🥭 "보충 자료" 참고하세요

③ 조인(JOIN, ⋈)

- 두 테이블로부터 조건에 맞는 관련된 튜플들을 하나의 튜플로 결합하여 하나의 테이 블로 만드는 연산을 말한다.
- 조인의 종류는 동일 조인(Equi Join), 자연 조인(Natural Join), 외부 조인(Outer Join) 등 여러 가지 종류가 있다.
- 연산 기호는 '⋈'를 사용한다.

세타조인	학생⋈ _{학번≠학번} 성적
동등조인	학생⊠ _{학번=학번} 성적
자연조인	학생⋈∾성적
외부조인	(왼쪽외부조인) 학생 ⋈ +성적 (왼쪽외부조인) 학생 ⋈□+성적 (왼쪽외부조인) 학생 ⋈□+성적
	동등조인 자연조인

응용 SW 기초 기술 활용

Pass DNA 정보처리기사

- ④ 세타 조인(Theta Join) 산업기사 18년 1회, 08년 1회
- 세타 연산자(=, ≠, 〈, ≤, 〉, ≥) 중 '=' 외의 연산자를 이용해 조건 수식을 표현하여 조인 하는 연산이다.
- 동일 조인과 같이 두 테이블의 모든 속성을 합한 하나의 테이블 구조로 만들어진다(중 복이 되는 속성도 모두 표현한다).

Α	В	C
a1	b1	70
a2	b2	60
a3	b3	95

D	E
d1	73
d2	65
d3	98

에 X 테이블의 C 속성값이 Y 테이블의 E 속성값보다 큰 튜플을 조인하여라. XIM XCMEY

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용

관계 데이터 연산

"보충 자료" 참고하세요!

Α	В	С
a1	b1	70
a2	b2	60
a3	b3	95

D	E
d1	73
d2	65
d3	98

예 X 테이블의 C 속성값이 Y 테이블의 E 속성값보다 큰 튜플을 조인하여라.

XIM XCMEY

〈결과〉

Α	В	С	D	Е
a1	b1	70	d2	65
а3	b3	95	d1	73
a3	b3	95	d2	65

- ④ 디비전(DIVISION, ÷) 2020년 3회
- A. B 두 테이블에 대해 'A DIVISION B'는 B 테이블의 조건을 만족하는 튜플들을 테이블 A에서 추출하는 연산이다.
- 결과는 연산에 사용된 속성은 제외된다.
- 연산 기호는 '÷'를 이용한다.
- 표기 형식

테이블1(테이블1속성 : 테이블2속성)테이블 2

•두 릴레이션 A, B에 대해 B 릴레이션의 모든 조건을 만족하는 튜플들을 릴레이션 A에서 분리해 내어 프로젝션하는 연산

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용

관계 데이터 연산

🥭 "보충 자료" 참고하세요

학생

성명	수강과목명
강희영	데이터베이스
김정미	운영체제
강희영	자료구조
강감찬	전자계산기
이영진	데이터베이스
강감찬	컴퓨터

과목

과목명	교수명
데이터베이스	김정애
자료구조	김영진

에 '학생' 테이블의 '수강과목명'에서 '과목' 테이블의 '과목명' 속성값을 모두 가진 경우에 해당하는 '학생' 테이블의 '성명' 속성값을 추출하여라.

학생(수강과목명 ÷ 과목명) 과목

〈결과〉

성명	
강희영	

2020년 3회 ▲형 : 3과목 데이터베이스 구축

관계데이터언어 : 관계대수

52. 다음 R과 S 두 릴레이션에 대한 Division 연산의 수행 결과는?

D1	D2	D3
a	1	Α
b	1	Α
a	2	Α
С	2	В

ㅇ답:

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용

관계 데이터 연산

🥟 "보충 자료" 참고하세요

2020년 3회 🛦형 : 3과목 데이터베이스 구축

관계데이터언어 : 관계대수

52. 다음 R과 S 두 릴레이션에 대한 Division 연산의 수행 결과는?

D1	D2	D3
a	1	Α
b	1	Α
a	2	Α
С	2	В

D2	D3
1	Α

ㅇ 답:

필기 기출 변형

2020년 3회 소형 : 3과목 데이터베이스 구축

관계데이터언어 : 관계대수

52. 다음 R과 S 두 릴레이션에 대한 Division 연산의 수행 결과는?

R

D1	D2	D3
а	1	Α
b	1	Α
a	2	Α
С	2	В

D2 D3

0 답:

D1	
а	
b	

응용 SW 기초 기술 활용

Oling X.

Pass DNA 정보처리기사

dumok. net

응용 SW 기초 기술 활용

데이터베이스 기

관계 데이터 연산

🥟 "보충 자료" 참고하세요

5) 일반 집합 연산자 산업기사 20년 3회

일반 집합 연산자에는 합집합(U), 교집합(\cap), 차집합(\rightarrow), 카티션 프로덕트(\times) 연산이 있다.

X

ĵ	성명	
	김정미	
j	김영진	
	강희영	

 성명

 이영진

 김영진

예 1 합집합(U)을 이용한 연산의 경우(XUY)

XUY

성명

김정미

김영진 강희영 이영진

119	
_	
- 11	
- //	
-	

(불이)

X 테이블의 속성값과 Y 테이블의 속성값을 합집합하여 모두 표현하되, 중복되는 속성은 한 번 만 표현한다.

NO X.

X 성명 김정미 김영진 강희영

성명 이영진 김영진

예 2 교집합(N)을 이용한 연산의 경우(XNY)

XNY

〈풀이〉

성명 김영진

X 테이블의 속성값과 Y 테이블의 속성값을 교집합하여 표현한다. 즉, X 테이블의 속성값과 Y 테이블의 속성값이 같은 속성값만 표현한다.

예 3 차집합(-)을 이용한 연산의 경우(X-Y)

X-Y

〈풀이〉

김정미 강희영 X 테이블의 속성값과 Y 테이블의 속성값을 차집합하여 표현한다. 즉, X 테이블의 속성값에서 Y 테이블의 속성값을 제외한 값을 표현한다.

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용

관계 데이터 연산

"보충 자료" 참고하세요!

X 성명 김정미 김영진 강희영

성명 이영진 김영진

예 4 카티션 프로덕트(Cartesian Product) 연산을 이용한 경우(XXY) 산업기사 18년 1회, 08년 1회

성명 성명 김정미 이영진 김영진 김영진 강희영

〈풀이〉

두 테이블의 속성값을 모두 대응시켜 모든 경우를 표현한다.

X.성명	Y,성명
김정미	이영진
김정미	김영진
김영진	이영진
김영진	김영진
강희영	이영진
강희영	김영진

이론하나 더 알기

조인 연산을 다르게 표현하면 카디션 프로덕트 연산을 실행한 후, 셀렉트 연산을 수행한 것과 같다.

성명 성명 김정미 이영진 김영진 김영진 강희영

X▷◁ ৬명=৬명Y 수행하면 (조인 연산)

성명 성명 김영진 김영진

의 결과를 얻는다.

 $X \bowtie_{dg=dg} Y$

X 성명 성명 김정미 이영진 김영진 김영진 강희영

XXY (카디션 프로덕트) 연산을 하면

C X.성명 Y.성명 김정미 이영진 김정미 김영진 김영진 이영진 김영진 김영진 강희영 이영진 강희영 김영진

의 결과를 얻는다.

이어서 (Oxage=Yalga(C))을 수행하면 JOIN한 결과와 동일하다.

 $\sigma_{x.dg=y.dg}(c)$

Pass DNA 정보처리기사

응용 SW_기소 기술

dumok. net

응용 SW 기초 기술 활용

관계 데이터 연산

"보충 자료" 참고하세요!

관계 대수

구분	연산자	기호	의미			
순수 관계 연산자	Select	σ	조건에 맞는 튜플을 구하는 수평적 연산			
	Project	π	속성 리스트로 주어진 속성만 구하는 수직적 연산			
	Join	X	공통 속성을 기준으로 두 릴레이션을 합하여 새로운 릴레이션을 만드 는 연산			
	Divisio n	÷	두 릴레이션 A, B에 대해 B 릴레이션의 모든 조건을 만족하는 튜플들 을 릴레이션 A에서 분리해 내어 프로젝션하는 연산			
	합집합	U	두 릴레이션의 튜플의 합집합을 구하는 연산			
일반 집합	교집합	\cap	두 릴레이션의 튜플의 교집합을 구하는 연산			
연산자	차집합	-	두 릴레이션의 튜플의 차집합을 구하는 연산			
	교차곱	×	두 릴레이션의 튜플들의 교차곱(순서쌍)을 구하는 연산			

응용 SW 기초 기술 활용

Pass DNA 정보처리기사

회원

회원번호	성명	연락처	수강과목	수강료
10010	HEATI	100 4507	POP글씨	40,000
10010	박순신	123-4567	지점토공예	40,000
20020	이감찬	234-1122	펜글씨	30,000
20000	21215	201 4201	지점토공예	40,000
20030	김길동	321–4321	기타	50,000

비정규형

제1정규화

회원

회원번호	성명	연락처	수강과목	수강료
10010	박순신	123-4567	POP글씨	40,000
10010	박순신	123-4567	지점토공예	40,000
20020	이감찬	234-1122	펜글씨	30,000
20030	김길동	321-4321	지점토공예	40,000
20030	김길동	321-4321	기타	50,000

제1정규형(1NF)

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용

정규화

<u>"보충 자료"</u> 참고하세요!

고객주문

고객번호	제품번호	제품명	주문링
A012	S-321	SD메모리	2
A012	M - 789	메모리	1
A023	K-002	키보드	1
A123	K-012	헤드셋	2
A134	M-123	마우스	4
A134	S-321	SD메모리	2
A321	K-012	헤드셋	1
A567	M-123	마우스	2
A789	M-123	마우스	3
A789	S-567	스캐너	1

문제점

부분 함수 종속

고객번호	제품번호	주문량
A012	S-321	2
A012	M-789	1
A023	K-002	1
A123	K-012	2
A134	M-123	4
A134	S-321	2
A321	K-012	1
A567	M-123	2
A789	M-123	3
A789	S-567	1

제2정규화

제품번호	제품명
S-321	SD메모리
M-789	메모리
K-002	키보드
K-012	헤드셋
M-123	마우스
S-567	스캐너

제2정규형(2NF)

학생

학번	전공
0001	컴퓨터
0002	기계
0003	토목
0004	컴퓨터
0005	기계

교수

전공	담당교수
컴퓨터	김선수
기계	박길동
토목	이찬성

제3정규형(3NF)

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

문제점

등록

회원번호	<u>수강과목</u>	강사
10010	POP글씨	최수지
10010	서예	김선수
20020	기타	이영춘
20030	네일아트	이태선
20030	POP글씨	최수지
30010	서예	박길동
30010	POP글씨	김정미

제4정규형(4NF)

후보키가 아닌 결정자 존재

회원등록

회원번호	<u>강사</u>
10010	최수지
10010	김선수
20020	이영춘
20030	이태선
20030	최수지
30010	박길동
30010	김정미

제BCNF정규화

강사

강사	수강과목
최수지	POP글씨
김선수	서예
이영춘	기타
이태선	네일아트
박길동	서예
김정미	POP글씨

BCNF 정규형

dumok. net

- 54. 데이터베이스 로그(log)를 필요로 하는 회복 기법은?
 - ① 즉각 갱신 기법
 - ② 대수적 코딩 방법
 - ③ 타임 스탬프 기법
 - ④ 폴딩 기법
- <mark> 子 로그(Log): 데이터베이스 변경에 대한 기록</mark>
- 🕞 장애 회복 기법
 - 로그(Log) 이용 기법 : 지연 갱신 기법, 즉시 갱신 기법, Check Point 기법
 - Shadow Paging 기법 : Shadow Paging(그림자 페이징) 기법

The X.

학습내용

Section 13

객체 지향 데이터베이스

DB-Engines Ranking

https://db-engines.com/en/ranking

The DB-Engines Ranking ranks database management systems according to their popularity. The ranking is updated monthly.

Read more about the method of calculating the score

ORACLE'

	Rank				Score		
Mar 2021	Feb 2021	Mar 2020	DBMS	Database Model	Mar 2021	Feb 2021	
1.	1.	1.	Oracle 🖽	Relational, Multi-model	1321.73	+5.06	-18.91
2.	2.	2.	MySQL 🖺	Relational, Multi-model 🛐	1254.83	+11.46	-4.90
3.	3.	3.	Microsoft SQL Server []	Relational, Multi-model 👔	1015.30	-7.63	-82.55
4.	4.	4.	PostgreSQL 🖽	Relational, Multi-model 📵	549.29	-1.67	+35.37
5.	5.	5.	MongoDB [Document, Multi-model 🛐	462.39	+3.44	+24.78
6.	6.	6.	IBM Db2 🖺	Relational, Multi-model 🛐	156.01	-1.60	-6.55
7.	7.	↑ 8.	Redis 🖽	Key-value, Multi-model 🛐	154.15	+1.58	+6.57
8.	8.	4 7.	Elasticsearch []	Search engine, Multi-model 📳	152.34	+1.34	+3.17
9.	9.	1 0.	SQLite 🖽	Relational	122.64	-0.53	+0.69
10.	1 11.	4 9.	Microsoft Access	Relational	118.14	+3.97	-7.00
11.	4 10.	11.	Cassandra 🖽	Wide column	113.63	-0.99	-7.32
12.	12.	1 3.	MariaDB 📳	Relational, Multi-model 👩	94.45	+0.56	+6.10
13.	13.	4 12.	Splunk	Search engine	86.93	-1.61	-1.59
14.	14.	14.	Hive	Relational	76.04	+3.72	-9.34
15.	1 16.	15.	Teradata	Relational, Multi-model	71.43	+0.53	-6.4

Junok. Nez

dumok. net

응용 SW 기초 기술 활용

데이터베이스 기초 활용하기 객체 지향 데이터베이스

₹ "보충 자료" 참고하세요!

DBMS 세대별 모델

구분	모델	DBMS	
1세대	파일시스템	- ISAM - VSAM	
2세대	계층형 (Hierachical) HDBMS	- IMS - System2000	
3세대	네트워크형 (Network) NDBMS	- IDS - TOTAL - IDMS	
4세대	관계형 (Relational) RDBMS	- Oracle - My-SQL - DB2 - SQL Server	Postgre SQL
E 1/15/1	THE COLUMN CONTRACT OF COLUMN	- Sybase 객치 - Object Store	예관계 데이터베이스 ORDBMS
5세대	객체지향 (Object Oriented) ODBMS	- UniSQL	

CIM X

3:

32

객체 지향 데이터베이스

▶ ≠ "보충 자료" 참고하세요!

객체지향 프로그래밍 언어의 개념

객체지향 기법의 개념

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

dumok. net

응용 SW 기초 기술 활용

객체 지향 데이터베이스

╱ "보충 자료" 참고하세요!

객체지향 프로그래밍 언어의 기본 구성 요소

객체 (Object)	• 데이터와 메소드로 구성된다. • 데이터(Data) : 객체가 가지고 있는 정보 로서, 속성(Attribute)이라고도 한다. • 메소드(Method) : 객체가 메시지를 받아 실행해야 할 구체적인 연산을 정의한다.
클래스 (Class)	• 하나 이상의 유사한 객체들을 묶어서 하나의 공통된 특성을 표현한 것이다.
메시지 (Message)	• 객체들 간의 상호작용을 위한 수단으로 사용되며, 메시지를 받은 객체는 메소 드를 수행한다.

객체지향 프로그래밍 언어의 주요 특징

추상화 (Abstraction)	• 객체의 불필요한 부분은 숨기고 객체의 속성 중에서 가장 중요한 것에만 중 점을 두고 모델화하는 것이다.
캡슐화 (Encapsulation)	• 데이터와 메소드를 하나로 묶는 것으로, 객체 내부에서 필요로 하는 정보를 외부로 부터 은닉시킨다.
정보은닉 (Information Hiding)	 객체 내부의 속성과 메소드를 숨기고 공개된 인터페이스를 통해서만 메시지를 주고 받을 수 있도록 하는 것을 의미한다. 예기치 못한 Side effect를 줄이기 위해서 사용한다.
상속 (Inheritance)	 이미 정의되어 있는 상위 클래스의 메소드를 비롯한 모든 속성을 하위 클래스가 물려 받는 것이다. 단일상속과 다중상속이 있다. 상속과 반대되는 개념에 구체화가 있다.
다형성 (Polymorphism)	 객체가 다양한 모양을 가지는 성질을 뜻한다. 오퍼레이션이나 속성의 이름이 하나 이상의 클래스에서 정의되고 각 클래스에서 다른 형태로 구현될 수 있는 개념 속성이나 변수가 서로 다른 클래스에 속하는 객체를 지칭할 수 있는 성질 오버로딩(중복) 과 오버라이딩(재정의)

Pass DNA 정보처리기사

응용 SW 기초 기술 활용

Thot

dumok. net

36