Machine Learning and Data Mining

Introduction

Prof. Alexander Ihler CS 273a Fall 2012

Artificial Intelligence (AI)

- CS271
- Building "intelligent systems"
- Lots of parts to intelligent behavior

Darpa GC (Stanley)

RoboCup

Chess (Deep Blue v. Kasparov)

Machine learning (ML)

- One (important) part of AI
- Making predictions (or decisions)
- Getting better with experience (data)
- Problems whose solutions are "hard to describe"

- Supervised learning
 - "Labeled" training data
 - Every example has a desired target value (a "best answer")
 - Reward prediction being close to target
 - Classification: a discrete-valued prediction
 - Regression: a continuous-valued prediction

- Supervised learning
- Unsupervised learning
 - No known target values
 - No targets = nothing to predict?
 - Reward "patterns" or "explaining features"
 - Often, data mining

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
 - Similar to supervised
 - some data have unknown target values
- Ex: medical data
 - Lots of patient data, few known outcomes

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
- Reinforcement learning
- "Indirect" feedback on quality
 - No answers, just "better" or "worse"
 - Feedback may be delayed

Logistics

- Course webpage for assignments, info, comments
- EEE for homework, &c
 - Emails: will send a test email tomorrow make sure you get it
- No required textbook
 - Highly recommended: Murphy, "Machine Learning...", 2012.
 - Also
 - Duda, Hart & Stork, "Pattern classification"
 - Hastie, Tibshirani & Friedman, "Elements of Statistical Learning"
- But
 - I'll try to cover everything needed in lectures and notes
 - All textbooks mainly for reference purposes

Logistics

- Grading (approximate)
 - 20% homework (~5-6, drop lowest)
 - 15% project (Kaggle HHC)
 - 5% reading quizzes
 - 25% midterm, 35% final
 - Due 5pm listed day, EEE or my office
 - No late homework (solutions posted)
 - Turn in what you have

Collaboration

- Study groups, discussion, assistance encouraged
 - Whiteboards, etc.
- Do your homework yourself
 - Don't exchange solutions or HW code

How does machine learning work?

- "Meta-programming"
 - Predict apply rules to examples
 - Score get feedback on performance

Supervised learning

Notation

- Features
- Targets
- Predictions \hat{y}

Regression; Scatter plots

- Suggests a relationship between x and y
- Prediction: new x, what is y?

Nearest neighbor regression

• Find training datum $x^{(i)}$ closest to $x^{(new)}$ Predict $y^{(i)}$

Nearest neighbor regression

"Predictor": Given new features: Find nearest example

Return its value

- Defines a function f(x) implicitly
- "Form" is piecewise constant

Linear regression

"Predictor":

Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r

- Define form of function f(x) explicitly
- Find a good f(x) within that family

Regression vs. Classification

Regression

Features x Real-valued target y

Predict continuous function $\hat{y}(x)$

Classification

Discrete class c

(usually 0/1 or +1/-1)

Predict discrete function ŷ(x)

Classification

Classification

How does machine learning work?

- "Meta-programming"
 - Predict apply rules to examples
 - Score get feedback on performance

Misclassification rate: fraction of training data whose prediction is wrong (Might also care about *type* of mistake...)

Measuring error 40 $\hat{y}(x) = \theta_0 + \theta_1 x$

• What makes a good predictor?

$$\hat{y}(x) = \theta_0 + \theta_1 x$$

What makes a good predictor?

$$\hat{y}(x) = \theta_0 + \theta_1 x$$

• What makes a good predictor?

Sum of squared error

How can we quantify the error?

SSE,
$$J(\underline{\theta}) = \frac{1}{2} \sum_{j} (y^{(j)} - \hat{y}(x^{(j)}))^2$$
$$= \frac{1}{2} \sum_{j} (y - \underline{\theta} \cdot \underline{x}^T)^2$$

- Could choose something else, of course...
 - Computationally convenient (more later)
 - Measures the variance of the residuals
 - Corresponds to Gaussian model of "noise"

$$\mathcal{N}(y ; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y - \mu)^2\right\}$$

- <u>x</u> is a new feature vector whose class label is unknown
- Search training data for the closest feature vector to x
 - Suppose the closest one is $\underline{x}^{(j)}$
- Classify <u>x</u> with the same label as <u>x</u>^(j), i.e.
 - Assign <u>x</u> the predicted label <u>y</u>^(j)
- Interpretation as memorization
- How are "closest x" vectors determined?
 - typically use minimum Euclidean distance

$$d(x, x') = \sqrt{\sum_{i} (x_i - x_i')^2}$$

- Side note: this produces a "Voronoi tesselation"
 - each point "claims" a cell surrounding it
 - cell boundaries are polygons

More Data Points

More Complex Decision Boundary

Summary

- What is ML; types of ML
 - Supervised Learning
- Definitions
- Cost functions
- K-nearest neighbor models
 - Classification (vote)
 - Regression (average or weighted avg)
- Piecewise linear decision boundary
 - How to calculate
- Test data and overfitting
 - Model "complexity" for knn
 - Validation data for test error rates