

v.3.9.83 - 08.04.2022

Оглавление

Оглавление

1 Исходные данные				
		Материалы, используемые при разработке функциональной части АС		
		Особенности объекта управления		
	1.3	Системы управления, взаимосвязанные с разрабатываемой АС	5	
	1.4	Описание информационной модели объекта	6	
2	Цел	и АС и автоматизируемые функции	7	
3	Хар	актеристика функциональной структуры	8	
	3.1	Перечень подсистем АС	9	
	3.1.1	Подсистема "Saymon-server"	10	
	3.1.2	Подсистема "СУБД"	11	
	3.1.3	Подсистема "Saymon-agent"	12	
	3.1.4	Подсистема "Клиент"	13	
	3.2	Требования к временному регламенту и характеристикам	14	
4	Тип	овые решения	15	

Глава 1: Исходные данные

1 Исходные данные

Центральный Пульт - это платформа для визуализации и мониторинга работы сети, оборудования, приложений и служб.

1.1 Материалы, используемые при разработке функциональной части AC

При разработке функциональной части проекта были использованы следующие материалы:

- концепция АС "Центральный Пульт",
- техническое задание по разработке пилотного проекта АС "Центральный Пульт",
- бизнес-требования от потенциальных пользователей,
- данные, полученные в результате опроса лиц, ответственных за разработку системы,
- схема функциональной структуры.

Глава 1: Исходные данные

1.2 Особенности объекта управления

При разработке АС "Центральный Пульт" учитывался ряд особенностей, которые повлияли на проектные решения. К этим особенностям относится увеличение числа партнёров из различных сфер деятельности, что влечёт за собой регулярное усовершенствование функционала, интеграцию с локальными и вспомогательными АС партнёров, введение в эксплуатацию новых способов сбора данных.

В связи с этим закладываемые в АС "Центральный Пульт" проектные решения должны обладать достаточной степенью гибкости и масштабируемости.

1.3 Системы управления, взаимосвязанные с разрабатываемой АС

Система состоит из следующих логических подсистем:

- Server централизованный сервер, на котором хранится и анализируется информация, полученная от агентов, а затем отдаётся клиенту. Также здесь содержится информация об учётных записях пользователей.
- СУБД (MongoDB, OpenTSDB) совокупность программных средств, предназначенных для создания, использования и управления базами данных.
- Agent множество агентов системы, установленных на узлах инфраструктуры и собирающих информацию по ним. Полученные данные периодически отправляются в кэши затем анализируются сервером.
- Клиент тонкий web-клиент системы и клиенты для мобильных операционных систем Android и iOS.

Глава 1: Исходные данные

1.4 Описание информационной модели объекта

Информационное обеспечение АС "Центральный Пульт" включает в себя внутримашинное и внемашинное информационное обеспечение.

В состав внемашинного информационного обеспечения входит система документации.

В состав внутримашинного информационного обеспечения входят:

- центральное хранилище данных,
- центр обработки запросов клиента,
- набор NodeJS-приложений,
- сетевое журналируемое хранилище данных Redis,
- система управления базами данных MongoDB,
- база данных временных рядов OpenTSDB.

Глава 2: Цели АС и автоматизируемые функции

2 Цели АС и автоматизируемые функции

Цели создания платформы:

- упростить сбор и анализ информации;
- ускорить процесс обработки данных и сделать его автоматизированным;
- визуализировать полученные и обработанные данные;
- обеспечить беспрерывное хранение информации;
- автоматически уведомлять пользователей о состояниях объектов удобным для них способом;
- автоматически исправлять аварийные ситуации;
- управлять объектами мониторинга.

Платформа "Центральный Пульт" обеспечивает реализацию следующих функций:

- представление практически любого объекта окружающего мира в качестве объекта мониторинга;
- смена состояния объекта в соответствии с заданными условиями;
- автоматическое выполнение предопределённых действий;
- хранение оригинальных значений показателей за промежутки времени;
- обеспечение анализа в табличной и графической формах;
- представление объектов, согласно их географическому месторасположению;
- использование гибкого механизма оповещений;
- группировка объектов по заданным общим критериям;
- преобразование данных в компактный вид и их экспорт;
- прикрепление документации и отображение свойств объектов;
- управление административными настройками из web-интерфейса.

Глава 3: Характеристика функциональной структуры

3 Характеристика функциональной структуры

Программное обеспечение платформы "Центральный Пульт" имеет открытые APIинтерфейсы, которые обеспечивают информационную совместимость системы и возможность интеграции с другими автоматизированными системами.

Глава 3: Характеристика функциональной структуры

3.1 Перечень подсистем АС

Система состоит из следующих логических подсистем:

1. Saymon-server

Подсистема обеспечивает выполнение следующих функций:

- получение уведомлений об ошибках передачи данных;
- настройка и контроль доступа к объектам системы;
- контроль целостности данных;
- управление работой других подсистем;
- реагирование на возникновение аварийных ситуаций;
- преобразование данных в требуемый системой формат.

2. СУБД (MongoDB, OpenTSDB).

Подсистема обеспечивает выполнение следующих функций:

- хранение данных;
- загрузка полученных данных в систему;
- резервное копирование;
- восстановление базы данных после сбоев;
- журналирование переданной и полученной информации от сервера к клиенту и наоборот.

3. Saymon-agent.

Подсистема обеспечивает выполнение следующих функций:

- сбор информации на выбранном объекте мониторинга;
- анализ полученной информации;
- выполнение пользовательских скриптов;
- осуществление как пассивного, так и активного мониторинга;
- отправка обработанных данных серверу.

4. Клиент (Web, Android, IOS).

Подсистема обеспечивает выполнение следующих функций:

- настройка условий мониторинга;
- создание и выбор объектов;
- настройка объектов мониторинга;
- управление пользователями;
- кастомизация интерфейса;
- просмотр и изменение текущих состояний;
- построение графиков.

Глава 3: Характеристика функциональной структуры

3.1.1 Подсистема "Saymon-server"

Saymon-server - набор NodeJS-приложений, которые взаимодействуют между собой и со всеми остальными компонентами.

Выделяются следующие составляющие подсистемы:

- Web-сервер это HTTP-сервер, обслуживающий запросы клиента. Он отдаёт статические элементы web-интерфейса (HTML, JavaScript, CSS), а также проксирует запросы от клиента к REST-серверу. В качестве web-сервера используется NGINX.
- REST-сервер серверный компонент, обрабатывающий REST-запросы от JavaScript-компонентов на тонком клиенте. Через REST API клиент получает всю информацию об инфраструктуре, а также производит манипуляции с инфраструктурой. REST-сервер реализован в виде отдельного NodeJS-приложения.
- Сервер данных производит анализ данных, поступивших от агентов. В частности управляет логикой смены состояний у объектов и связей. Сервер данных реализован в виде отдельного NodeJS-приложения.
- Кэш в памяти (In-Memory кэш) NoSQL-хранилище данных типа "ключзначение". Хранит базу данных в оперативной памяти, благодаря чему возможен быстрый доступ к данным и их быстрая обработка. В качестве In-Memory кэша используется Redis.

Глава 3: Характеристика функциональной структуры

3.1.2 Подсистема "СУБД"

СУБД - подсистема, которая отвечает за хранение и передачу данных между участниками обмена.

СУБД платформы включает в себя два компонента:

- MongoDB система управления базами данных, классифицированная как NoSQL;
- OpenTSD база данных временных рядов (Time series).

СУБД имеет АРІ-интерфейс, который позволяет загружать данные напрямую, не дожидаясь ответа от сервера.

Глава 3: Характеристика функциональной структуры

3.1.3 Подсистема "Saymon-agent"

Saymon-agent - компонент системы, собирающий данные о наблюдаемом узле и расположенных на нём объектах, а также связях данного узла.

Данные, собранные агентом, периодически отправляются в In-Метогу кэш и затем анализируются сервером. Агент реализован в виде Java-приложения.

Подсистема позволяет осуществлять как активный, так и пассивный мониторинг.

Глава 3: Характеристика функциональной структуры

3.1.4 Подсистема "Клиент"

Клиент - основной инструмент конечного пользователя.

Подсистема "Клиент" может быть представлена двумя способами:

- Через web-клиент внутри браузера Google Chrome версии не ниже 58.0.
 - ∴ Стабильность работы клиента системы в браузерах Яндекс, Safari, Орега, FireFox не гарантируется.
- Через мобильное приложение для Android или iOS.

Глава 3: Характеристика функциональной структуры

3.2 Требования к временному регламенту и характеристикам

Требования к временному регламенту и характеристикам процесса реализации автоматизированных функций соответствует общим требованиям к автоматизированной системе, изложенным ниже.

При проектировании и разработке подсистем учитывались следующие общие требования:

- работа с программным обеспечением должна осуществляться пользователями и администраторами системы;
- доступ к функционалу должен осуществляться в соответствии с выделенными правами и уровнем доступа пользователей;
- происходящие события должны фиксироваться в системном журнале с указанием типа событий, времени его выполнения и имени учётной записи пользователя, инициировавшего его.

Теоретическая нагрузка, учитывавшаяся при проектировании программного обеспечения:

Тестируемый процесс	Показатель	Средняя величина
	Максимальная пропускная способность агента	12 300 сообщения/с
SNMP-трапы	Максимальная пропускная способность сервера	3 800 сообщения/с
	Задержка	12 мс
Запись пришедших данных	Максимальная пропускная способность	45000 события/с
	Задержка	1 мс
Уведомления о	Максимальная пропускная способность	2 150 события/с
данных датчиков на удалённый агент	Задержка	12 мс
	Пропускная способность	50 000 метрики/с
	Скорость отображения данных	83 000 метрики/с
	Среднее время отклика при записи данных	201 мс
	Среднее время отклика при отображении данных	2 мс
Исторические данные	Размер записи	6 байт
данные	Объём исторических данных за один год по одной метрике	3 Мбайт
	Объём использованной памяти агента	55 Мбайт
	Скорость отображения данных	700 запросы/с
	Среднее время отклика	2 мс

Глава 4: Типовые решения

4 Типовые решения

В процессе разработки системы были использованы следующие типовые решения:

- использование архитектуры "Клиент-Сервер-Агент" для построения системы мониторинга;
- использование архитектуры MVC (Model-View-Controller) для построения Web-приложения;
- использование JSON-формата для передачи данных между клиентом, сервером и агентом;
- использование шаблона проектирования Message Bus для обмена сообщениями между модулями сервера.

www.cpult.ru 2022

