IRRADIANCE PREDICTION OVER TIME SERIES FOR THE USE OF PHOTOVOLTAIC ENERGY

Mónica Yolanda Moreno Revelo

momorenor@unal.edu.co

Doctorado en ingeniería-linea automática Universidad Nacional de Colombia

September 19 2024

Contents

- 1 Motivation
- 2 Problem Statement
- 3 State of the art
- 4 Methods
 - Dataset
 - predictors
 - Measurements

- 5 Experiments
 - Preprocess
 - Tests
- 6 Results
 - Tests set
 - Final discussion
- 7 Future work
- 8 Bibliography

Motivation

- The use of fossil fuel-based energy worldwide is around 80%. [1]
- Approximately 52% of the Colombian territory is not electrically interconnected. [2].
- Call 933 Minciencias.
- Increase the accuracy of prediction.

Problem Statement

Given $m \in N$, $I_k \in R^N$ where N is the amount of samples in the time serie, the relationship between I_k and its past values I_{k-1} , I_{k-2} ..., I_{k-m} can be described by

$$I_k = \phi_1 f(I_k - 1) + \phi_2 g(I_k - 2) + ... + \phi_m f(I_k - m)$$
 (1)

There are several ways to calculate the coefficients ϕ and the functions involving irradiance values [3], [4].

Problem Statement

Based on the previous description, the following problems can be identified:

- Non-stationarity due to climate variability prevents models from capturing the complex relation among the data [3], [4].
- 2 Most methods are focused on specific locations and cannot be generalized to other locations [5].
- The non-linearity of time series makes it difficult to represent complex dependencies over time, including long-term progressions and seasonal patterns [6].
- Data augmentation due to missing data can lead to problems related to the failure to extract intrinsic properties and task dependence[7],[4].

Classification according to the prediction method

DATASETS

The following datasets are used to make experiments

Dataset	Variable	Max Value	Min Value
Solcast	Global Solar irradiance (w/m^2)	1134	0
Ideam	Global solar irradiance (w/m^2)	1103	0
Fronius	Global solar irradiance (w/m^2)	1773.5	0
Jenna	Temperature (°C)	37.3	-22.6

Table: Datasets Information

Solcast

Solcast operates a global cloud tracking and prediction system that uses near real-time satellite imagery from 11 weather satellites and weather data from 7 numerical weather prediction (NWP) models [8].

Geographic Coverage	Temporal Coverage		
Global (except for the ocean and polar region)	Since January 2007		
Udenar is used in the research	January 2014-April 2024 is used in the research		
Time Recording	Variables		
5 minutes	Global Solar Irradiance (w/m^2) Precipitation (mm/h)		
60 minutes is used in the research	Temperature (°C), etc		

Table: Solcast Information

Ideam

IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales) plays a crucial role in monitoring and prediction weather patterns in order to manage water resources, and conducting environmental assessments in Colombia [9].

Udenar 52045080				
Temporal Coverage	Time recording	Variables		
Since 01/01/16 until 31/07/21	One hour	Irradiation (whr/m²)		
Since 01/11/16 until 18/04/24	π	Precipitation (mm) Temperature (°C) Min temperature (°C) Max temperature (°C) Humididty (%)		

Table: Ideam Information

Fronius

Fronius is an Austrian company that specializes in solar energy, welding, and battery charging technology. This technology is currently being used at Udenar to measure data on the energy produced in the area [10].

Geographic Coverage	Temporal Coverage		
Udenar	January 2023-June 2023		
Time Recording	Variables		
5 minutes	Voltage (V)		
60 minutes is used in the research	PV production (Kw.hr/day), etc		

Table: Fronius Information

Jenna

Jena Climate is weather time series dataset recorded at the Weather Station of the Max Planck Institute for Biogeochemistry in Jena, Germany [11].

Geographic Coverage	Temporal Coverage		
Jenna, Germany	January 2009-December 2016		
Time Recording	Variables		
10 minutes	14 (temperature, <i>pressure</i> ,		
60 minutes is used in the research	humidity, etc)		

Table: Jenna Information

predictorS

As a preliminar analysis the following predictors are used:

- Long Short Term Memory (LSTM)
- Gated Recurrent Unit (GRU)
- Extreme Gradient Boosting (XGB)

The previous methods are used in a time-based cross-validation scheme to evaluate them across all samples.

LSTM

LSTM is a improved version of recurrent neural network (RNN) since the network can remember both short term and long term values [12].An LSTM unit is composed of cells, each with an input gate, output gate, and forget gate.

Figure: LSTM General architecture. Taken from [13])

ration Problem Statement State of the art Methods Experiments Results Future work Bibliography References

GRU

GRU is another type of RNN designed to address problems related to vanishing and exploding gradients. Unlike LSTM, GRU is simpler to apply and compute [4].

Figure: GRU General architecture. Taken from [4]

XGB

An XGBoost method is an ensemble of several models that work together to fit the residuals of each preceding model. Therefore, XGBoost can easily learn interactions among features [14].

Architectures

Based on the research carried out by [16], the next architectures are evaluated over the datasets.

	/ \\			
LSTM and GRU				
Inputs	None (ghi or temperature)			
Outputs	1(ghi or temperature)			
Number of layers	3 (input, hidden with 20 neurons, output)			
Epochs	30			
Learning algorithm	Adam (learning rate=0.07)			
	XGB			
Inputs	None (ghi or temperature)			
Outputs	1(ghi or temperature)			
Booster	gbtree			
n estimators	100			
max depth	4			

Table: Architectures used

MEASUREMENTS: Auto Correlation

Auto correlation measures the similarity between observations of a time series at different time lags. This measurement is used to determine whether the series are independent and to establish the number of samples required for certain tests in the experimental section.

$$k(t, t - k) = \frac{Cov(X_t, X_{t-k})}{\sqrt{Var(X_t)Var(X_{t-k})}}$$
(2)

where Cov(.) represents the covariance and var(.) the variance.

MEASUREMENTS: Accuracy measurements

The next measurements are used to evaluate the accuracy of the predictors.

Measurement	Abrev	Fórmula	Rango
Mean Bias Error [5]	MBE	$\frac{1}{N}\sum_{i=1}^{N}\left(p_{m}-p_{p}\right)$	$[\infty,\infty]$
Root Mean Square Error [17]	RMSE	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}\left(p_{m}-p_{p}\right)^{2}}$	$[0,\infty]$
Determination coefficient [7]	R ²	$1 - rac{\sum_{i=1}^{N} (p_m - p_p)^2}{\sum_{i=1}^{N} (p_m - \bar{p}_m)^2}$	[0, 1]

Table: Measurements used

EXPERIMENTS

To apply the previously described prediction methods, first a preprocessing step is carried out, followed by four sets of tests.

Figure: Methodology of experiments

Pre process

- Time adjustment is applied to Solcast data to align it with the Colombian time zone.
- Dropout night data is done since there is no irradiance at this time.
- Since Fronius and Ideam record PV production and irradiation respectively, there is a need to calculate irradiance first.
- Clear sky irradiance is also calculated to make future experiments.

ion Problem Statement State of the art Methods Experiments Results Future work Bibliography References

Pre process

Figure: Measured and theoretical GHI from Solcast

Figure: Measured temperature from Jenna

Figure: Parameters after the pre process

ion Problem Statement State of the art Methods Experiments Results Future work Bibliography References

Pre process

Figure: Measured GHI from Solcast and Ideam

Figure: Measured GHI from Solcast and Fronius

Figure: Parameters after the pre-process

Firstly, a **Normalization** between 0 and 1 is applied to all datasets and subsequently four sets of tests are carried out.

Test set 1				
Objective	To select the best predictor among those compared			
predictor	LSTM, GRU, XGB			
Input samples	One			
Output samples	One			
Dataset	Solcast			
Tests done	Three (1A, 1B, 1C)			

Table: Test set 1 description

Since XGB was the best predictor, the next test sets are developed with this one.

Test set 2			
To select the data organization to feed the predictors			
XGB			
Thirteen/Seven/One hundred thirty			
One/One/Thirteen			
Solcast			
Three (2A, 2B, 2C)			

Table: Test set 2 description

Since using thirteen samples to predict the next one proved to be the most effective technique for feeding the predictors; the subsequent tests are conducted using this methodology.

Test set 3			
To evaluate the method on different datasets			
XGB			
Thirteen			
One			
Ideam, Fronius, Jenna			
Three (3A, 3B, 3C)			

Table: Test set 3 description

Finally, hour predictions are made using a different model.

Test set 4			
Objective	To evaluate an hourly model methodology		
predictor	XGB		
Input Samples	Thirteen		
Output Samples	One		
Dataset	Solcast, Jenna		
Tests done	Two (4A, 4B)		

Table: Test set 4 description

on Problem Statement State of the art Methods Experiments Results Future work Bibliography References

RESULTS: Test set 1

Single Input Single Output - Solcast dataset						<
predictor	Training			Testing		
predictor	MBE	RMSE	R2	MBE	RMSE	R2
	(w/m²)	(w/m^2)		(w/m^2)	(w/m^2)	//
LSTM	21.17	179.62	0.55	23.21	186.53	0.55
GRU	23.08	182.52	0.54	24.75	189.53	0.53
XGB	0	174.52	0.57	2.51	183.11	0.56

Table: Set tests 1 results

RESULTS: Test set 1

Figure: Measured GHI vs predicted GHI using XGB

RESULTS:Test set 2

The number of samples used in the first and third tests is determined based on the recommendation given by [9], while the number of samples in the second test is determined by applying correlation measurements, obtaining the following results.

Figure: Solcast autocorrelation

ion Problem Statement State of the art Methods Experiments Results Future work Bibliography References

RESULTS: Test set 2

XGB - Solcast dataset							
Input Samples/	Training			Testing			
Output Samples	MBE	RMSE	R2	MBE	RMSE	R2	
	(w/m^2)	(w/m^2)		(w/m^2)	(w/m^2)		
13/1	0.02	130.46	0.76	2.73	140.38	0.74	
7/1	0.04	138.31	0.73	-1.48	147.97	0.72	
130/13	0	151.31	0.68	3.77	168.64	0.63	

Table: Set tests 2 results

ion Problem Statement State of the art Methods Experiments Results Future work Bibliography References

RESULTS: Test set 2

บทพิเ**ติมเกะ** Measured GHI vs predicted GHI using 13 samples to predict the next one NACIONAL

RESULTS: Test set 3

Multiple Input Single Output-XGB								
Dataset		Fraining		Testing				
Dalasel	MBE	RMSE	R2	MBE	RMSE	R2		
	(w/m^2)	(w/m^2)	454	(w/m^2)	(w/m^2)	112		
Ideam	0	128.49	0.78	-2.38	139.66	0.72		
Fronius	0	100.72	0.84	-2.23	151.87	0.59		
Jenna	0	1.37	0.98	0.031	1.48	0.97		

Table: Set tests 3 results

RESULTS: Test set 3

Figure: Measured GHI vs predicted GHI on IDEAM

ion Problem Statement State of the art Methods Experiments Results Future work Bibliography References

RESULTS: Test set 4

Multiple Input Single Output-XGB-Model per hour							
Dataset	Training			Testing			
Dalasei	MBE	RMSE	R2	MBE	RMSE	R2	
Solcast (w/m²)	-0.03	78.63	0.73	1.81	121.69	0.4	
Jenna (°c)	0	1.73	0.95	0.22	2.56	0.86	

Table: Set tests 4 results

RESULTS: Test set 4

Figure: Measured Temperature vs predicted Temperature on Jenna

Final discussion Solcast

-	Tests summary - Solcast - XGB								
Test	Training			Testing					
set	MBE (w/m2)	RMSE (w/m2)	R2	MBE (w/m2)	RMSE (w/m2)	R2			
1C	0	174.52	0.57	2.51	183.11	0.56			
2A	0.02	130.46	0.76	2.73	140.38	0.74			
4A	-0.03	78.63	0.73	1.81	121.69	0.4			

Table: Solcast Results Summary

ion Problem Statement State of the art Methods Experiments Results Future work Bibliography References

Final discussion Solcast

UNIVERSIDAD Figure: Measured GHI vrs predicted GHI with different methods NACIONAL
DE COLOMBIA

Final discussion Jenna

	To	ests sumi	mary - J	enna - XG	В		
Test		Training		Testing			
set	MBE (w/m2)	RMSE (w/m2)	R2	MBE (w/m2)	RMSE (w/m2)	R2	
3C	0	1.37	0.98	0.03	1.48	0.97	
4B	0	1.73	0.955	0.22	2.56	0.86	
[18]	-	0.80	-	(STITE	0.87	1	

Table: Jenna Results Summary

tion Problem Statement State of the art Methods Experiments Results Future work Bibliography References

Final discussion Jenna

UNIFIGURE Measured Temperature vrs predicted Temperature with different methods NACIONAL
DE COLOMBIA

Final discussion

The most important results are the following:

- As shown in set tests 2, using several samples to predict the next one significantly improves the results if compared to using only one previous sample.
- According to set tests 4 it is concluded that it is better to use a different model for each hour instead of using only one model to predict the GHI the next thirteen hours. Moreover, predicting all the values (multiple output) in a day decreases the accuracy of the prediction as seen in test 2C.
- Comparing Test 2A and Test 2B, it is concluded that if a window approach with a different analysis is carried out, it improves the accuracy.

Future work

As further research the next tasks are proposed:

- To evaluate other methods such as: Gaussian process, hybrid methods, transformers.
- To find a relationship between Solcast and Ideam Data to take advantage of the two kind of data.

References I

- [1] Noor Bariah Mohamad, An-Chow Lai, and Boon-Han Lim. "A case study in the tropical region to evaluate univariate imputation methods for solar irradiance data with different weather types". In: Sustainable Energy Technologies and Assessments 50 (2022), p. 101764.
- [2] Gabriel Narvaez et al. "The impact of climate change on photovoltaic power potential in Southwestern Colombia". In: Heliyon 8.10 (2022).
- [3] Jwaone Gaboitaolelwe et al. "Machine learning based solar photovoltaic power forecasting: a review and comparison". In: IEEE Access 11 (2023), pp. 40820–40845.
- [4] Abbas Mohammed Assaf et al. "A review on neural network based models for short term solar irradiance forecasting". In: Applied Sciences 13.14 (2023), p. 8332.

References II

- [5] Laith Abualigah et al. "Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: A survey of advanced machine learning and deep learning techniques". In: **Energies** 15.2 (2022), p. 578.
- [6] Meenu Ajith and Manel Martínez-Ramón. "Deep learning algorithms for very short term solar irradiance forecasting: A survey". In: Renewable and Sustainable Energy Reviews 182 (2023), p. 113362.
- [7] Qingsong Wen et al. "Time series data augmentation for deep learning: A survey". In: arXiv preprint arXiv:2002.12478 (2020).
- [8] Abdulrahman Almarshoud et al. "Validation of satellite-derived solar irradiance datasets: a case study in Saudi Arabia". In: Future Sustainability 2.2 (2024), pp. 1–7.

References III

- [9] Laura S Hoyos-Gómez, Jose F Ruiz-Muñoz, and Belizza J Ruiz-Mendoza. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data". In: Applied Energy 307 (2022), p. 118192.
- [10] Gentiana Alija, Armend Ymeri, and Nexhmi Krasniqi. "Study aspects for the solar-photovoltaic system with installation Capacity of 60.3 kwp". In: (2021).
- [11] K Venkatachalam et al. "DWFH: An improved data-driven deep weather forecasting hybrid model using Transductive Long Short Term Memory (T-LSTM)". In: Expert systems with applications 213 (2023), p. 119270.
- [12] Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019". In: Applied September 1990 (2020), p. 106181.

References IV

- [13] Pratima Kumari and Durga Toshniwal. "Deep learning models for solar irradiance forecasting: A comprehensive review". In: **Journal of Cleaner Production** 318 (2021), p. 128566.
- [14] Hanjin Zhang et al. "A novel hybrid transformer-based framework for solar irradiance forecasting under incomplete data scenarios". In: IEEE Transactions on Industrial Informatics (2024).
- [15] Rui Guo et al. "Degradation state recognition of piston pump based on ICEEMDAN and XGBoost". In: **Applied Sciences** 10 (Sept. 2020), p. 6593. DOI: 10.3390/app10186593.
- [16] Garazi Etxegarai et al. "An analysis of different deep learning neural networks for intra-hour solar irradiation forecasting to compute solar photovoltaic generators' energy production". In: Energy for Sustainable Development 68 (2022), pp. 1–17.

ion Problem Statement State of the art Methods Experiments Results Future work Bibliography References

References V

- [17] Bryan Lim and Stefan Zohren. "Time-series forecasting with deep learning: a survey". In: Philosophical Transactions of the Royal Society A 379.2194 (2021), p. 20200209.
- [18] Hemant Yadav and Amit Thakkar. "NOA-LSTM: An efficient LSTM cell architecture for time series forecasting". In: Expert Systems with Applications 238 (2024), p. 122333.

