Proabilistic/Bayesian Models for Deep Learning

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

April 12, 2018

Neural Networks

A simple neural network with one intermediate (also called "hidden") layer and a single output

- Each intermediate layer computes a nonlinear transformation of its previous layer's nodes
- In traditional neural nets, h is a Linear transform (e.g., $\mathbf{W}^{(1)}x$ in the above picture) followed by a nonlinearlity (e.g., sigmoid, ReLU, tanh, etc)
- Neural nets are awesome but brittle in many ways
 - Lots of parameters, difficult to train, need lots of data to train
 - Do not provide uncertainty estimates

What We Want...

Neural networks with additional benefits of probabilistic/Bayesian modeling

- Basically, nonlinear models with estimates of uncertainty in the model/its predictions
- Note: We already have seen something that accomplishes this Gaussian Processes
- Probabilistic/Bayesian neural nets are another alternative to this

Neural Networks as Probabilistic Models

A probabilistic model for neural network for supervised learning

```
y_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}), \beta^{-1}) (for real-valued responses)

y_n \sim \mathsf{Bernoulli}(\sigma(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}))) (for binary responses)

y_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W})) (for general types of responses modeled by exp-family)

where \mathsf{NN}(\mathbf{x}_n; \mathbf{W}) is a neural network with features \mathbf{x}_n as inputs and parameters \mathbf{W}
```

- This enables learning probabilistic nonlinear input-to-output mappings
- We can perform point estimation or fully Bayesian inference for such probabilistic neural networks

Left: Standard NN or NN with point estimation, Right: Bayesian Neural Network

[&]quot;Weight Uncertainty in Neural Networks" (Blundell et al, 2015)

Learning Bayesian Neural Networks

- ullet Even if the prior $p(\mathbf{W})$ on NN weights is Gaussian, the model is not conjugate
- MCMC methods can be used to learn the posterior $p(\mathbf{W}|\mathcal{D})$ but can be slow
 - However, methods such as SGLD[†] allow efficient MCMC inference for such models (recall that SGLD only requires gradient expressions of the log-joint probability log $p(\mathcal{D}, \mathbf{W})$ of the model)
- Variational inference is another popular alternative to MCMC for such models
 - But ELBO is intractable (due to non-conjugacy); has to be approximated via Monte-Carlo/BBVI
- Note: Hybrid architectures also possible (only last layer modeled in a fully Bayesian way)

^{† &}quot;Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks" (Li et al, 2016)

Constructing Generative Models using Neural Nets

- Probabilistic view enables neural net based latent variable models ("deep generative models")
- Useful for unsupervised learning. Nonlinear latent variable to data mapping f modeled by NN

• Example: A probabilistic neural network for latent variable modeling (e.g., PPCA)

```
\mathbf{x}_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W}), \sigma^2 \mathbf{I}_D) (for real-valued features)
\mathbf{x}_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W})) (for general types of features modeled by exp-family)
```

where $NN(z_n; \mathbf{W})$ is a neural network with latent variables z_n as inputs and and parameters \mathbf{W}

- \bullet The NN enables learning a nonlinear latent variable to data mapping f
- If z_n has a Gaussian prior, such models are called "Deep Latent Gaussian Models" (DLGM)

Inference for Deep Latent Gaussian Models

• Assume θ to be the global parameters of the model (params defining p(z), p(x|z), etc.)

- The usual approach for inference in such models (as in most Bayesian models) is iterative, e.g.,
- Initialize θ . Then iterate until converence
 - For n = 1, ..., N
 - Infer $p(\mathbf{z}_n|\mathbf{x}_n)$ using MCMC. If doing VB, update variational parameters ϕ_n of $q(\mathbf{z}_n|\phi_n)$
 - ullet Infer heta (its full posterior using MCMC or VB, or a point estimate)
- ullet This iterative approach can be slow for large N
- Also, inferring z for new data point(s) x would require using the same iterative procedure

Variational Auto-encoder (VAE)

• Esseentially a DLGM, i.e., the z to x mapping p(x|z) is defined by a neural net. Proposed almost simultaneously by Kingma & Welling (2013), and Rezende et al (2014)

- VAE uses VB for inference but has a fast, non-iterative way of computing z_n for a data point x_n
- Key idea: For each point x_n , instead of learning a separate $q(z_n|\phi_n)$ with local params ϕ_n , assume

$$q(\mathbf{z}_n|\phi_n)=q(\mathbf{z}_n|\mathsf{NN}(\mathbf{x}_n;\phi))$$

so, basically, each ϕ_n is computed by a neural net with global parameters ϕ and input x_n

- Once ϕ is learned, we can get $q(z_*|x_*) = q(z_*|\phi_*)$ for any x_* by just using $\phi_* = \text{NN}(x_*; \phi)$
- p(x|z) is known as decoder and q(z|x) is known as encoder

Standard Auto-encoder vs Variational Auto-encoder

• A standard auto-encoder learns to (nonlinearly) compress and uncompress an input

- Model is trained to minimize the reconstruction error (difference b/w x and \hat{x})
- ullet However, it can't "generate" a "realistic" input from a random $oldsymbol{z}$ (the model isn't $\underline{\text{trained}}$ for that)
- VAE allows this by assuming a distribution (e.g., Gaussian) over z and learning to generate x from random z's drawn from that distribution (so the model is $\underline{\text{trained}}$ to do this!)

• Note: Simple generative models like PPCA or factor analysis also have this ability to generate data from random **z** but the linear map from **z** to **x** limits the type of data that can be generated well

VAE: The Encoder

ullet Role of encoder: Take x as input and generate an encoding z

Encoder

- Unlike standard autoencoders, for each x, VAE gives us a distribution q(z|x) over its encoding
- ullet Assume $q(oldsymbol{z}|oldsymbol{x})$ to be Gaussian whose mean/var are computed by a NN with global params ϕ

$$\mu_z = NN(\mathbf{x}; \phi)$$
 $\sigma_z^2 = NN(\mathbf{x}; \phi)$

• Since μ_z , σ_z are outputs of neural networks, the \boldsymbol{x} to \boldsymbol{z} mapping is nonlinear

VAE: The Decoder

• Role of decoder: Generate x given z. Defined by the likelihood model $p_{\theta}(x|z)$

- Unlike PPCA, the z to x mapping is nonlinear (modeled by a neural network)
- ullet Assume p(x|z) to be Gaussian whose mean/var are computed by a NN with global params heta

$$\mu_{\mathsf{x}} = \mathsf{NN}(\mathbf{z}; \theta) \qquad \sigma_{\mathsf{x}}^2 = \mathsf{NN}(\mathbf{z}; \theta)$$

• Thus in the VAE, both x to z (encoder) and z to x (decoder) mappings are nonlinear

Inference for VAE

ullet VAE uses variational inference (hence the name!) to learn the model parameters heta and ϕ

• Typically a prior $p(z) = \mathcal{N}(0, I_K)$ is assumed on z. The ELBO for a single x_n will be

$$\mathsf{ELBO} \ = \ \mathbb{E}_{q_\phi}[\log p(\pmb{x}_n,\pmb{z}_n|\theta) - \log q(\pmb{z}_n|\pmb{x}_n)] \qquad \text{(note: } q_\phi \text{ and } q(\pmb{z}_n|\pmb{x}_n) \text{ mean the same)}$$

 \bullet Variational inference uses the reparametrization trick † for computing ELBO derivatives

^{† &}quot;Auto-encoding Variational Bayes" (Kingma and Welling, 2013)

Some Other Architectures: Deep Exponential Families

- Standard VAE has only one layer of latent z and a neural net to transform z into x
- Many other deep architectures have multiple layers of latent variables
- Deep Exponential Family (DEF) is one such recently proposed popular model
- in DEF, latent variables in every layer, as well as observations, are from exp. family distributions

• Overall model not conjugate but BBVI (Ranganath et al, 2013) or MCMC methods can be used

Some Other Architectures: Generative Adversarial Networks

• Based on a game between a generator and a discriminator (Goodfellow et al, 2013)

- Generator (a neural net) generates realistic looking "fake" data x from random z
- Discriminator tries to detect fake data from real data
- ullet At game's equilibrium, the $p_{gen}=p_{data}$ and success rate of discriminator =50% (i.e., random)
- Originally designed mainly for synthetic data generation tasks but recent work extends GANs for many other problems such as latent variable inference, semi-supervised learning, etc.

Learning the right size of a deep neural network

- How to decide the number of layers and width of each layer?
- Nonparametric Bayesian methods can help here

- A cascaded Indian Buffet Prior can model the relationships between nodes in adjacent layers
 - The bottom-most layer is the data layer (fixed/known size)
 - Width of each intermediate layer and active connections can be inferred by the IBP prior
- Another option is to use sparsity inducing priors on the connection weights

Neural Nets vs Gaussian Processes

Both can be used learn nonlinear input to output mappings, e.g.,

$$y_n \sim \mathcal{N}(NN(\mathbf{x}_n; \mathbf{W}), \beta^{-1})$$

 $y_n \sim \mathcal{N}(f(\mathbf{x}_n), \beta^{-1})$ where $f \sim GP$

- Both have their pros and cons
- NN pros: Fast to train (e.g., using SGD methods) and also fast at test time
- NN cons: Difficult to train, also not Bayesian (but can be made Bayesian)
- GP pros: Simple formulation, especially for regression settings; natively Bayesian in formulation
- GP cons: Slow to train and also slow at test time
- Nowadays Bayesian NN and GPs are competitive in many applications

Summary

- Probabilistic modeling allows developing very flexible deep learning models
- Much of the recent progress is fuelled by advances in probabilistic modeling and inference
- State-of-the-art results on a variety of tasks such as
 - Representation Learning (latent variables used as a new learned representation of data)
 - Density Estimation (i.e., p(x))
 - Data generation (models like VAE and GAN can generate very realistic looking synthetic data)
 - Semi-supervised learning (models like VAE and GAN can be combined with supervised learning)
- Several other models such as Deep Boltzmann Machines, Neural Autoregressive Density Estimator, etc. that we didn't cover here
- An important distinction between explicit and implicit generative models
 - Models like PPCA, FA, DLGM, SBN, VAE, etc. have an explicit likelihood model for data
 - A model like GAN only defines p(x) implicitly (no "likelihood" model for data)