

L3 - SUPERF'ICIES E COORDENADAS CIL'INDRICAS E ESF'ERICAS

Geometria Analítica e Vetores (Universidade Estadual de Campinas)

$3^{\underline{a}}$ Lista de Exercícios, MA 141

SUPERFÍCIES E COORDENADAS CILÍNDRICAS E ESFÉRICAS

1. Reduzir cada uma das equações de forma a identificar a quádrica que ela representa e esboce o gráfico.

a) $4x^2 - 2y^2 + z^2 = 1$;

b) $3x^2 + 4y^2 + z^2 - 12x - 8y - 2z + 16 = 0$. d) $4x^2 - 8x - 9y^2 + 6y - 36z + 3 = 0$.

c) $x^2 + y + z^2 = 0$;

- 2. a) Obtenha a equação do lugar geométrico dos pontos que eqüidistam do plano $\pi: x=2$ e do ponto P = (-2, 0, 0). Que conjunto é este?
- b) Obtenha a equação do lugar geométrico dos pontos que equidistam das retas r: y = z = 0 e l: x =y - 1 = 0. Que conjunto é este?
- c) Determine a equação do lugar geométrico dos pontos P = (x, y, z) tais que a soma das distâncias de Paos dois pontos (2,0,0) e (-2,0,0) é igual a 6. Que lugar geométrico é este?
- **3**. Dados a esfera S de centro C = (h, k, p) e raio $r \in P = (x_1, y_1, z_1)$ um ponto da esfera. Mostre que: $\pi \cap \mathcal{S} = \{P\}$, onde π é o plano que é normal ao vetor \vec{CP} e passa por P. Tal plano é chamado de plano tangente à esfera por P.
 - **4**. Dada a esfera $S: x^2 + y^2 + z^2 4x 2y 11 = 0$.
- a) Encontre o seu centro e seu raio.
- b) Encontre a equação do plano tangente à esfera e que passa pelo ponto $P=(2,1,4)\in S$.
- 5. Dadas as equações da curva diretriz e um vetor paralelo às retas geratrizes determine a equação da superfície cilíndrica.

a) $y^2 = 4x$, z = 0 e V = (1, -1, 1)c) $x^2 + z^2 = 1$, y = 0 e V = (4, 1, 0)

b)
$$x^2 - y^2 = 1$$
, $z = 0$ e $V = (0, 2, -1)$

b)
$$x^2 - y^2 = 1$$
, $z = 0$ e $V = (0, 2, -1)$
d) $4x^2 + z^2 + 4z = 0$, $y = 0$ e $V = (4, 1, 0)$.

6. Mostre que cada uma das equações representa uma superfície cilíndrica e determine a equação da curva diretriz e um vetor paralelo às retas geratrizes.

a) $x^2 + y^2 + 2Z^2 + 2xz - 2yz = 1$;

b)
$$17x^2 + 2y^2 + z^2 - 8xy - 6xz - 2 = 0.$$

7. Determine a equação da superfície de revolução gerada pela rotação da curva dada em torno do eixo especificado.

a) $9x^2 + 4y^2 = 36$ e z = 0 em torno do eixo y;

- **b)** yz = 1 e x = 0 em torno do eixo z.
- 8. Mostre que cada uma das equações representa uma superfície de revolução e determine o seu eixo de revolução e a equação da curva geratriz.

a) $x^2 + y^2 - z^3 = 0$;

b)
$$y^6 - x^2 - z^2 = 0$$
.

9. Encontre uma equação em coordenadas cilíndricas da superfície cuja equação em coordenadas cartesianas é dada:

a) $x^2 + y^2 + 4z^2 = 16$;

b)
$$x^2 - y^2 = 3z^2$$
.

10. Encontre uma equação em coordenadas cilíndricas da superfície cuja equação em coordenadas cartesianas é dada:

a) $x^2 + y^2 + z^2 = 9z$;

b)
$$x^2 + y^2 = 9$$
.

11. Encontre uma equação em coordenadas cartesianas da superfície cuja equação em coordenadas cilíndricas é dada:

a) $r = 3\cos\theta$;

b)
$$z^2 \sin \theta = r^3$$
.

12. Encontre uma equação em coordenadas cartesianas da superfície cuja equação em coordenadas esféricas é dada:

a) $r = 2 \tan \theta$;

b)
$$r = 9 \sec \phi$$
.

CIRCUNFERÊNCIA E ROTAÇÃO NO PLANO

- 13. Seja ℓ a curva com equações paramétricas $x = a(1+t^2)/(1-t^2), y = 2bt/(1-t^2)$. Determine ℓ .
- 14. A elipse ℓ tem focos $F_1(1,2)$ e $F_2(2,4)$ e vértices $A_1(0,0)$ e $A_2(3,6)$. Dê as equações paramétricas
- 15. A hipérbole ℓ tem focos F_1 e F_2 e vértices A_1 e A_2 . Encontrar equações paramétricas de ℓ se
- a) $F_1(2,0)$, $F_2(8,0)$, $A_1(3,0)$, $A_2(7,0)$; b) $F_1(0,0)$, $F_2(4,8)$, $A_1(1,2)$, $A_2(3,6)$.
- 16. Considere o plano com o sistema cartesiano canônico xy e faça uma rotação de um ângulo θ obtendo um novo sistema \overline{x} \overline{y} . Seja P um ponto do plano.

- a) Se P=(2,2) no sistema $xy\in\theta=\pi/3$, encontre as coordenadas de P no sistema $\overline{x}\ \overline{y}$.
- b) Se P=(2,2) no sistema $\overline{x}\ \overline{y}$ e $\theta=\pi/3$, encontre as coordenadas de P no sistema xy.
- c) Transforme a equação $x^2 + y^2 = 4$ para o sistema \overline{x} \overline{y} .
- d) Suponha que $0 < \theta < \pi/2$ e que $a = \tan \theta$ (a=tangente de θ). Transforme a equação y = ax para o sistema $\overline{x} \ \overline{y}$.
- 17. Considere o plano com o sistema cartesiano canônico xy e faça uma rotação de um ângulo θ , com $0 \le \theta \le \pi/2$ obtendo o novo sistema \overline{x} \overline{y} . Seja (*) a equação:
 - $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, com A, B, C, D, E, F números reais.

Ao transformar (*) para o sistema \overline{x} \overline{y} obtemos:

$$(**) \overline{A}\overline{x}^2 + \overline{B}\overline{x}\overline{y} + \overline{C}\overline{y}^2 + \overline{D}\overline{x} + \overline{E}\overline{y} + \overline{F} = 0.$$

a) Mostre que:

b) Supondo A > 0 e F < 0, conclua, a partir de **a)**, que:

A equação (*) representa uma circunferência de centro (0,0) e raio $r=\sqrt{\frac{-F}{A}}$ se e somente se para todo

$$\theta \text{ temos que } A = \overline{A}, B = \overline{B}, C = \overline{C}, D = \overline{D}, E = \overline{E} \text{ e } F = \overline{F}.$$

$$\mathbf{c)} \text{ Sejam } M = \begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix}, \overline{M} = \begin{pmatrix} \overline{A} & \frac{\overline{B}}{2} \\ \frac{\overline{B}}{2} & \overline{C} \end{pmatrix} \text{ e } R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Mostre, a partir de a), que $\overline{M} = R_{\theta}^t M R_{\theta}$ e calculando o determinante dos dois lados da igualdade conclua que $\Delta = B^2 - 4AC = \overline{B}^2 - 4\overline{A}.\overline{C}$ qualquer que seja o ângulo θ (OBS: Δ é conhecido pelo nome de discriminante da equação (*) e o item c) está dizendo que ele é invariante por rotação).

- 18. Em cada uma das equações abaixo elimine, através de uma rotação, o termo xy. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) fóco(s) e esboce o gráfico.

- a) $9x^2 4xy + 6y^2 = 30$; b) $4x^2 20xy + 25y^2 15x 6y = 0$; c) $x^2 y^2 + 2\sqrt{3}xy + 6x = 0$; d) $18x^2 + 12xy + 2y^2 + 94\frac{\sqrt{10}}{10}x 282\frac{\sqrt{10}}{10}y + 94 = 0$.

 19. Sejam \mathcal{C} a circunferência de equação $x^2 + y^2 = r^2$ e $P = (x_1, y_1)$ um ponto do plano. Mostre que:
- a) Se $P \in \mathcal{C}$ então a equação da reta tangente a circunferência por $P \in x_1x + y_1y = r^2$.

(Lembre que a reta tangente em P sempre é perpendicular ao vetor \overrightarrow{OP} , com O sendo o centro de \mathcal{C} .)

- b) Se r=1 e l é a reta de equação 3x+4y=5 então l é tangente a C. Encontre o ponto de tangência.
- c) Se P está no exterior da circunferência e $P_2=(x_2,y_2),\,P_3=(x_3,y_3)$ são os pontos de $\mathcal C$ tais que as retas l_2 que passa por P e P_2 , e l_3 que passa por P e P_3 são tangentes à circunferência, então a reta (secante) que passa por P_2 e P_3 tem equação $x_1x + y_1y = r^2$.

(Sugestão: A partir de ${\bf a}$) encontre as equações das retas l_2 e l_3 e use o fato de que P está em ambas.)

IDENTIFICAÇÃO DE CÔNICAS

- **20**. A curva ℓ consiste de todos os pontos P(x,y) cujas coordenadas satisfazem a equação:
- a) $3x^2 + 5y^2 + 4x 2y 10 = 0$; b) $x^2 + 2x + y^2 + 2y + 2 = 0$; c) $x^2 y^2 4x + 2y + 2 = 0$;
- d) $x^2 + y^2 + (1/3)xy + 6x + 8y 5 = 0$; e) $x^2 + (1/5)xy + y^2 + 2x + 2y + 2 = 0$; f) $x^2 + 5x + y 9 = 0$;
- e) $x^2 + 3y^2 + 4xy + 4y 4 = 0$; f) $x^2 2y^2 + 4xy 6 = 0$; g) $x^2 + 2y^2 4xy + y 1 = 0$.
 - 21. Identificar as cônicas e calcular os focos, diretrizes, e assíntotas (quando couber):
- a) $x^2 3y^2 2xy x y = 0$; b) $x^2 + 4y^2 + 4xy 2x 4y 1 = 0$; c) $x^2 + 3y^2 2xy + 3 = 0$; d) $8y^2 + 6xy 12x 26y + 11 = 0$; e) $x^2 2xy + y^2 10x 6y + 25 = 0$; f) $4x^2 + 4xy + y^2 6x + 3y + 2 = 0$.