座標平面上で $y=(\log x)^2$ (x>0) の表す曲線を C とし, $\alpha>0$ に対し, 点 $(\alpha,(\log\alpha)^2)$ における C の接線を $L(\alpha)$ で表す.

- 1. C のグラフの概形を掛け.
- 2. C と $L(\alpha)$ との共有点の個数を $n(\alpha)$ とする. $n(\alpha)$ を求めよ.
- $3. \ 0 < \alpha < 1$ とし, C と $L(\alpha)$ および x 軸とで囲まれる領域の面積を $S(\alpha)$ とする. $S(\alpha)$ を求めよ.

[解] 関数を

$$f(x) = (\log x)^2 (x > 0)$$

とおく。

(1) 一階, 二階微分は

$$f'(x) = 2\frac{\log x}{x}$$

$$f''(x) = 2\frac{1 - \log x}{x^2}$$

$$(2)$$

$$f''(x) = 2\frac{1 - \log x}{x^2} \tag{2}$$

であるから、増減表は table 1 となる.

表 1: f(x) の増減表

x	0		1		e		∞
f'		_	0	+	+	+	
f''		+	+	+	0	_	
f	(∞)	\downarrow	0		1	\rightarrow	(∞)

従って, グラフの概形は fig. 1 となる.

図 1: f(x) の概形 x = e が変曲点となる.

...(答)

(2) $P(\alpha, f(\alpha))$ での接線 $L(\alpha)$ は,eq. (1) から

$$y = l(x)$$

$$= f'(x)(x - \alpha) + f(\alpha)$$

$$= 2\frac{\log \alpha}{\alpha}(x - \alpha) + f(\alpha)$$

であるから、 $L(\alpha)$ と C の共有点の個数は

$$l(x) = f(x)$$

$$(\log x)^2 - (\log \alpha)^2 - 2\frac{\log \alpha}{\alpha}(x - \alpha) = 0 \quad \cdots \text{ }$$

の x>0 の解の個数にひとしい. ① の左辺を g(x) と おく:

$$g(x) = (\log x)^2 - (\log \alpha)^2 - 2\frac{\log \alpha}{\alpha}(x - \alpha)$$

q(x) の一階微分は

$$g'(x) = 2\left(\frac{\log x}{x} - \frac{\log \alpha}{\alpha}\right)$$

であるから,この符号は

$$h(x) = \frac{\log x}{r}$$

の挙動による. eq. (1) より h(x) = f'(x)/2 だから,

$$h'(x) = \frac{f''(x)}{2}$$

であり、h(x) の増減表は table 2 となる.

表 2: h(x) の増減表

a	;	0		e		∞
h	′		+	0	_	
f	:	$(-\infty)$	7	1	×	(0)

従ってグラフの概形は fig. 2 となる.

図 2: h(x) の概形 x = e で最大値をとり、 α の値によって g'(x) の零点の数が変化する.

以下 α の値によって場合わけする.

0.1 $0 < \alpha < 1$ の時

g'(x)=0 となる x は $x=\alpha$ ただ一つである。 $x<\alpha$ では g'(x)<0, $\alpha< x$ では g'(x)>0 である。また,g(x) の極限値は

$$\lim_{x \to 0} g(x) = \infty$$
$$\lim_{x \to \infty} g(x) = \infty$$

である. 従って g(x) の増減表は table 3 のようになる.

表 3: g(x) の増減表

x	0		α		∞
g'		_	0	+	
g	(∞)	>	0	7	(∞)

従って、g(x) = 0 の解の数は $x = \alpha$ ただ一つ.

0.2 $\alpha = e$ の時

g'(x)=0 となる x は $x=\alpha$ ただ一つである。それ以外のとき、g'(x)<0 である。また、g(x) の極限値は

$$\lim_{x \to 0} g(x) = \infty$$
$$\lim_{x \to \infty} g(x) = -\infty$$

である. 従って g(x) の増減表は table 4 のようになる.

表 4: g(x) の増減表

\boldsymbol{x}	0		α		∞
g'		_	0	_	
g	(∞)	>	0	7	$(-\infty)$

よって、g(x) = 0 の解の数は $x = \alpha$ ただ一つ.

0.3 $1 < \alpha, \alpha \neq e$ の時

この時は $x = \alpha$ 以外にもう一つ g'(x) = 0 となる x がある. これを $x = \beta$ とする. また, g(x) の極限値は

$$\lim_{x \to 0} g(x) = \infty$$

$$\lim_{x \to \infty} g(x) = -\infty$$

である. よって g(x) の増減表は table 5 となる.

表 5: h(x) の増減表

x	0		α		β		∞
g'		_	0	+	0	_	
g	(∞)	>	0	7		>	$(-\infty)$

従って、g(x) = 0の解の数は二つである.

以上三つの場合わけにより全ての場合は尽くされた。 従って求める共有点の個数は

$$\begin{cases} 0 < \alpha \le 1, \alpha = e & \dots 1 \\ 1 < \alpha(\alpha \ne e) & \dots 2 \end{cases}$$

である. …(答)

(3) P から x 軸に下ろした垂足 $Q(\alpha,0), L(a)$ と x 軸の交点 R, また T(1,0) とおく. すると R の x 座標は

$$2\frac{\log \alpha}{\alpha}(x - \alpha) + (\log \alpha)^2 = 0$$
$$x = \alpha - \frac{\alpha}{2}\log \alpha$$

となる. 題意の領域の概形は fig. 3 のようになる.

図 3: 求める面積の概形

求める面積 $S(\alpha)$ は、図形 PQT の面積 $A(\alpha)$ から、三 角形 PQR の面積 $B(\alpha)$ を減じたものに等しい。 すなわち

$$S(\alpha) = A(\alpha) - B(\alpha) \tag{3}$$

まず、 $\triangle PQR$ について、

$$|QR| = \alpha - \frac{1}{2}\alpha \log \alpha - \alpha$$
$$= -\frac{1}{2}\alpha \log \alpha$$

および

$$|PQ| = (\log \alpha)^2$$

だから,

$$B(\alpha) = \frac{1}{2} |QR| |PQ|$$
$$= \frac{-1}{4} \alpha (\log \alpha)^{3}$$
(4)

である. 次に $A(\alpha)$ は部分積分法を繰り返し用いて

$$A(\alpha) = \int_{\alpha}^{1} (\log x)^{2} dx$$

$$= \left[x(\log x)^{2} - 2x \log x + 2x \right]_{\alpha}^{1}$$

$$= (0 - 0 + 2) - (\alpha(\log \alpha)^{2} - 2\alpha \log \alpha + 2\alpha)$$

$$= 2 - \alpha(\log \alpha)^{2} + 2\alpha \log \alpha - 2\alpha$$
(5)

だから, eqs. (4) and (5) を eq. (3) に代入して

$$S(\alpha) = 2 - \alpha(\log \alpha)^2 + 2\alpha \log \alpha - 2\alpha + \frac{1}{4}\alpha(\log \alpha)^3$$

が求める面積である. …(答)