Matriz

Lógica de Programação

Prof. Renato Corvello

renato.corvello@poa.ifrs.edu.br

O que é Matriz?

• É um vetor com mais de uma dimensão, ou seja, possui referência de linha e referência de coluna;

Igual a uma planilha;

Funciona exatamente igual ao vetor exceto por ter um índice a mais (linha e coluna);

• Continua aceitando somente um tipo de dados.

- A declaração da Matriz, também é parecido com a declaração de vetor;
 - No vetor, tínhamos a declaração de colunas dentro de uma linha;
 - Na matriz, teremos a declaração de linhas x colunas.

tabela: matriz [1..3,1..3] de inteiro

1º Dimensão é a quantidade de linhas da matriz

2º dimensão é a quantidade de colunas da matriz

tabela[1,1] <- 25

	1	2	3
1	25		
2			
3			

tabela[1,1] <- 25 tabela[3,1] <- 6

	1	2	3
1	25		
2			
3	6		

tabela[1,1] <- 25

tabela[3,1] <- 6

tabela[2,2] <- 10

	1	2	3
1	25		
2		10	
3	6		

tabela[1,1] <- 25

tabela[3,1] <- 6

tabela[2,2] <- 10

tabela[2,3] <- 99

1

2

3

tabela[1,1] <- 25

tabela[3,1] <- 6

tabela[2,2] <- 10

tabela[2,3] <- 99

1

2

3

1	25		
2		10	99
3	6		100

tabela[3,3] <- tabela[1,1]*4

tabela[1,1] <- 25

tabela[3,1] <- 6

tabela[2,2] <- 10

tabela[2,3] <- 99

1

2

3

1	25		
2	20	10	99
3	6		100

tabela[3,3] <- tabela[1,1]*4

tabela[2,1] <- tabela [2,2]+10

tabela[1,1] <- 25

tabela[3,1] <- 6

tabela[2,2] <- 10

tabela[2,3] <- 99

1

2

3

1	25		25
2	20	10	99
3	6		100

tabela[3,3] <- tabela[1,1]*4

tabela[2,1] <- tabela [2,2]+10

tabela[1,3] <- tabela[1,1]

• Diagonal Secundária

[1,3]

[2,2]

[3,1]

Diagonal Principal

[1,1]

[2,2]

[3,3]

• Para incluir dados em uma matriz de 5 x 5:

• Direto:

Ler (m[1,1])	Ler (m[3,4])
Ler (m[1,2])	Ler (m[3,5])
Ler (m[1,3])	Ler (m[4,1])
Ler (m[1,4])	Ler (m[4,2])
Ler (m[1,5])	Ler (m[4,3])
Ler (m[2,1])	Ler (m[4,4])
Ler (m[2,2])	Ler (m[4,5])
Ler (m[2,3])	Ler (m[5,1])
Ler (m[2,4])	Ler (m[5,2])
Ler (m[2,5])	Ler (m[5,3])
Ler (m[3,1])	Ler (m[5,4])
Ler (m[3,2])	Ler (m[5,5])
Ler (m[3,3])	

	1	2	3	4	5
1					
2					
3					
4					
5					

- Para incluir dados em uma matriz de 5 x 5:
- Laço por coluna:

```
para j <- 1 até 5 faça
  ler ( M [1, j ])
fimpara
para j <- 1 até 5 faça
  ler ( M [2, j ])
fimpara
para j <- 1 até 5 faça
  ler ( M [3, j ])
impara
para j <- 1 até 5 faça
  ler ( M [4, j ])
fimpara
para j <- 1 até 5 faça
  ler ( M [5, j ])
fimpara
```

	1	2	3	4	5
1					
2					
3					
4					
5					

- Para incluir dados em uma matriz de 5 x 5:
- Laço para linha e coluna:

```
para i <- 1 até 5 faça

para j <- 1 até 5 faça

ler ( M [i, j ])

fimpara

fimpara
```


- Todas as formas de leitura da matriz estão corretas.
- Repare na diferença de linhas de código que cada uma gerou.
 - Essa leitura foi para uma matriz 5x5.
 - Imagine se fosse 30x30!

 Por isso, é mais utilizada a última forma de leitura em que são utilizadas duas estruturas de repetição (para).

• Uma para percorrer a linha da matriz e a outra para percorrer a coluna.

1 2 3 4 5

4

</> Exemplo

- 1 Crie uma matriz 5x5, colocando em ordem crescente em linha e coluna os valores de 1 a 25.
- 2 Some os valores da linha 4;
- 3 Some os valores da coluna 2;
- 4 Some os valores da diagonal principal;
- 5 Some os valores da diagonal secundária;
- 6 Some todos os elementos da matriz;

Finalizando

• Retorne para o nosso encontro, e faça os exercícios de fixação propostos.

• Lembrando que somente a prática leva a perfeição.

• Dúvidas, procure o fórum de dúvidas ou mande mensagem

Até mais!!!

Prof Renato Corvello