$CSE~271 \underset{\scriptscriptstyle{Exam~2}}{-} Fall~2004$

SSN: Name:

D	Q+	Т	Q+
0	0	0	Q
1	1	1	Q'

\mathbf{S}	R	Q+	J	K
0	0	Q	0	0
0	1	0	0	1
1	0	1	1	0
1	1	X	1	1

All counter in this exam are 4-bits wide and have the following behavior.

All shift registers in this exam are 4-bits wide and have the following behavior.

clk	C_1C_0	$\mid D \mid$	Q^+
0,1,↓	XX	X	Q
\uparrow	00	X	Q
\uparrow	01	X	Q+1
\uparrow	10	X	Q-1
\uparrow	11	D	D

clk	C_1C_0	$\mid D \mid$	Q^+	comment
0,1,↓	XX	x	Q	hold
\uparrow	00	x	Q	hold
\uparrow	01	x	Q>>1	shift right
\uparrow	10	x	Q<<1	shift left
↑	11	D	D	parallel load

- 1. (1 pt.) Assuming a word size of 5 bits, interpret 10101 as a 2's complement number.
 - a) -21
- b) -11
- c) -10
- d) -5
- e) None of the above
- 2. (1 pt.) Assuming a word size of 5 bits, determine the 2's complement representation of -12.
 - a) 10100
- b) 11100
- c) 10011
- d) 10010
- e) None of the above
- 3. (1 pt.) How many OR gates are there inside a 3:8 decoder?
 - a) 1
- b) 3
- c) 8
- d) 16
- e) None of the above
- 4. (1 pt.) How many inputs do the AND gates inside a 3:8 decoder have?
- b) 3
- c) 4
- d) 8
- e) None of the above
- 5. (1 pt.) How many AND gates are there in an 8:1 mux?
 - a) 1
- b) 2
- c) 3
- d) 8
- e) None of the above

- 6. (1 pt.) How many 2:1 muxes are needed to construct a 64x1 mux?
 - a) 31
- b) 32
- c) 63
- e) None of the above

You are given the following 4:16 decoder built from 2:4 decoders. Unfortunately, the student who built it wired the select lines in a most unusual fashion. Its your job to label each output with the index which selects it. Most of the outputs have been omitted for clarity.

d) 64

- 7. (1 pt.) What is the value of the output labeled A?
 - a) y_1
- b) y_2
- c) y_4

- e) None of the above
- 8. (1 pt.) What is the value of the output labeled B?
 - a) y_1
- b) y_6
- c) y_9
- d) y_{12}

d) y_8

e) None of the above

9. (2 pt.) Which line of pseudo-code best characterizes the following piece of hardware.

- a) if (X < Y) then Z = X+3 else Z = Y+3;
- b) if (X < Y) then Z = Y+3 else Z = X+3;
- c) if (X > Y) then Z = X+3 else Z = Y+3;
- d) if (X > Y) then Z = Y+3 else Z = X+3;
- e) None of the above

For questions 10-11 you are to complete the state table for the following circuit.

- 10. (1 pt.) What does G^+ equal for (A,B)=(0,0)?
 - a) 0
- b) 1
- c) F
- d) F'

d) F'

- e) illegal
- 11. (1 pt.) What does F^+ equal for (A,B)=(1,1)?
 - a) 0
- b) 1
- c) F

- e) illegal
- 12. (2 pt.) What is the logic inside box in order to make the count sequence on Q go from 3 to 10 (inclusive of both) over and over.
 - a) $c_1 = L'$ $c_0 = 0$
 - b) $c_1 = L'$ $c_0 = 1$
 - c) $c_1 = L$ $c_0 = 0$
 - d) $c_1 = L$ $c_0 = 1$
 - e) None of the above

For questions 13-16 use the circuit and timing diagram show below. If necessary, you can assume that Q settles to 0 after a period of rapid toggling.

- 13. (1 pt.) What is the value of Q_1 at time=25nS?
 - a) 0
- b) 1
- c) Toggling rapidly
- d) Unknown
- 14. (1 pt.) What is the value of Q_1 at time=75nS?
 - a) 0
- b) 1
- c) Toggling rapidly
- d) Unknown
- 15. (1 pt.) What is the value of Q_2 at time=15nS?
 - a) 0
- b) 1
- c) Toggling rapidly
- d) Unknown
- 16. (1 pt.) What is the value of Q_2 at time=45nS?
 - a) 0
- b) 1
- c) Toggling rapidly
- d) Unknown

For problems 17-19 use the timing diagram below as the input to a counter. Determine the output sequence ${\bf Q}$ to answer the questions below.

- 17. (1 pt.) What is the value of Q at time 15?
 - a) 0000
- b) 0001
- c) 1110
- e) None of the above
- 18. (1 pt.) What is the value of Q at time 65?
 - a) 0000
- b) 0001
- c) 1110
- d) 1111

d) 1111

- e) None of the above
- 19. (1 pt.) What is the value of Q at time 85?
 - a) 0000
- b) 0001
- c) 1110
- d) 1111
- e) None of the above

For problems 20-22 use the timing diagram below as the input to a arithmetic shift register. Determine the output sequence ${\bf Q}$ to answer the questions below.

- 20. (1 pt.) What is the value of Q at time 25?
 - a) 0000
- b) 0111
- c) 1110
- d) 1111
- e) None of the above
- 21. (1 pt.) What is the value of Q at time 65?
 - a) 0000
- b) 0111
- c) 0110
- d) 1110
- e) None of the above
- 22. (1 pt.) What is the value of Q at time 85?
 - a) 0000
- b) 0111
- c) 0110
- d) 1110
- e) None of the above

For problems 23-27 use the following figure and timing diagram. You should assume that all the devices process 5-bits data values.

23.	(2 pt.)What is the value of P at time 15?				
	a) 0	b) 2	c) 3	d) 5	e) 8
24.	(2 pt.)What	is the value	of A_0 at time	e 25?	
	a) 7	b) 8	c) 11	d) 13	e) 16
25.	(2 pt.)What	is the value	of Q at time	35?	
	a) 7	b) 8	c) 11	d) 13	e) 16
26.	(2 pt.)What	is the value	of A_1 at time	e 45?	
	a) 8	b) 10	c) 13	d) 16	e) 19
27.	(2 pt.)What	is the value	of M at time	e 55?	
	a) 2	b) 8	c) 10	d) 11	e) 12