LaPIS Diagnostic Test Workbook - Mathematics

Name : Navaneeshkumar P

Class: 7

Section : C

School : AKV Public School

Login ID : AKV176

Navaneeshkumar P's Performance Report

Score: 15/40 Percentage: 37.5%

Navaneeshkumar P's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Too ob ow's Fo	adhaali ta Ctudant		
	Teacher's Feedback to Student				
_					
	Class Teacher S	Signature	Prince	pal Signature	

Basic arithmetic

Topics to be Improved	
Types of angles	Identification of types of angles

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $_{---}^{\circ}$.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$\underline{\textit{Question: 3}}$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved		
Area	Area of rectangle	

......

Hi, here in this video you will learn Area

Question: 4

Find which of the shaded portion in the given shape represent it's area.

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 5

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____.

The area of garden = $\underline{\qquad}$ x $\underline{\qquad}$ = $\underline{\qquad}$ cm^2

Question: 6

Shade the possible dimension of the door whose area is 500 m^2

1	ns	2114	or.
А	ns	wŧ	27.

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25m \times 25m$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

,	Topics to be Improved	
Chance of probability	Basis of probability	
Hi, here in this video you	will learn Basics of probability	
Question: 7		
Identify the sure events and im	possible events	
(i) The sun rises in the west.		
(ii) Water is colourless.		
(iii) Clock rotates in clock wis	e direction.	
(iv) Ball is square in shape.		
Events that cannot occur are called Here, The sun rises in the west event. Clock rotates in clock wise direction: 8	ction is (greater / smaller) than probability of (0/ 1/ any number).	
Probability of impossible event	$= \underline{\hspace{1cm}} (0/1/ \text{ any number}).$ vent $\underline{\hspace{1cm}} Probability of impossible event.$	
Question: 9		
Raju has pencil, an eraser, a sc probability of getting a pen from	ale, sharpener, colour pencil and protractor in his m his box.	box. What is the
$\underline{Answer:}$		
Things Raju have Does Raju have pen in his box, Then probability of getting pen	(Yes/ No).	

Geometry

Topics to be Improved		
Transversal angle made by transversal	Basics of Transversal angle	
Types of triangle	Basics of types of triangle (sides)	
Related angles	Basic of angles	
Angle sum property of triangle	Angle sum property of triangle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Faces vertex and edges	Idenfication of faces, edges and vertices	

Hi, here in this video you will learn Basics of Transversal angle

Question: 10

In given diagram, \angle 1 and \angle 7 are ______ (alternate / corresponding) angles.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 11

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

......

Question: 12

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of ∠a is and its value is Corresponding angle of ∠a is and its value is	
Hi, here in this video you will learn Types of triangle	
	- Table
Question: 13	
Polygon with three sides is called as	
Answer:	
A polygon is a simple (open / closed) curve made up of only line segments. Polygon with three sides is called Draw a diagram of polygon with three sides :	
Question: 14	
Identify the types of triangles. 4 cm 3 cm 3 cm	
5 cm $4 cm$ $3 cm$	
Answer:	
Triangle has sides.	
• Triangle with all sides are equal is called triangle.	
• Triangle with two sides of equal length is called triangle.	
• Triangle with three sides of different length is called triangle.	
Question: 15	
A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. the possible length of third side of park can be	
Answer:	
The shape of the park is	
The shapes has sides and this shape has sides of equal lengths.	gth.

Given: length of sides of park is
The possible length of third side is
•

Hi, here in this video you will learn Related Angles

Question: 16

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $_$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a $_$ angle .

Answer:

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a _____ (straight / perpendicular) line. The measure of the angle formed is ____ °and it is called ____ angles.

Question: 17

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

= 30° + ____ + ____
= ____

Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 18

Find the complementary angles in the given diagram.

.....

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ _____, and its complement angle is _____.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

.....

Hi, here in this video you will learn Angle sum property

Question: 19

Sum of the angles of triangle is ______.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 20

Which of the following triangle satisfy the angle sum property.

.....

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _		
In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$	_ =	
In $\triangle PQR$, Sum of the angles = =	. =	
In $\triangle KLM$, Sum of the angles = =	_ =	
In $\triangle XYZ$, Sum of the angles = =	_ =	
Therefore, the triangles that satisfy the angle sum property are =		

Question: 21

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is
Let's consider the angles of triangle be $8x$, and
We know sum of the angles of a triangle is
Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$
The angles of the triangle are

Hi, here in this video you will learn Pythagoras property

Question: 22	
In a right angled triangle, square of the	= sum of the squares of the
oge	

Answer:

Pythagoras theorem is only applicable for	triangle.	
Longest side of the triangle is	_ (hypotenuse/ legs) and other two sides are called	ed
(hypotenuse/ legs).		
Pythagoras theorem states that		

<u>Question: 23</u>

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the $\underline{\hspace{1cm}}$ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/legs) of the triangle.

By Pythagoras theorem,
$$(\underline{\hspace{1cm}})^2 = (\underline{\hspace{1cm}})^2 + (\underline{\hspace{1cm}})^2$$

= $+$

Therefore, hypotenuse of the triangle is ______.

Question: 24

Find the length of the rectangle, if breadth is $3~\mathrm{cm}$ and diagonal is $5~\mathrm{cm}$.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

 $= __ + ___$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Criteria of congruence

Question: 25

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if they are
(identical/non-identical) in shapes and size.
Example: Square and Rectangle are (congruent/not congruent).
Question: 26
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under (SSS/ASA/SAS) criteria .
Answer:
Two triangle are (congruent/not congruent) if they are identical in shapes and size Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal/

- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria $\underline{\hspace{1cm}}$ (2/ 3/ 5) angles and $\underline{\hspace{1cm}}$ (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

not equal) to the three corresponding sides of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 27

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:
The given two triangles satisfy criteria of congruence.
By SAS congruence criteria, MN = , and $\angle N$ =
The side MN=8 cm in ΔLNM is equal to the side in ΔPRQ
The common included angle in \triangle LNM and $\triangle PRQ$ are
The side PR is equal to the side in $____ \Delta LNM$. Therefore, length of side $PR = ____$
Therefore, length of side $I = \underline{}$
Hi, here in this video you will learn Basics of 3D model
Question: 28
A point at which two or more lines segments meet is called(Vertex/ edges/ faces).
Answer:
has two end point (line/line segment/ray).
Ais a point where two or more line segments meet(Vertex/ edges/ faces).
Mark the vertices in the diagram,
Question: 29
Mark and find the number of vertices, edges and faces in a cube.
Answer:
Mark the vertex, edges and faces in a cube.

Count the number	of vertex, edges and faces in a cube.
Cube have	vertices, edges and faces.
Question: 30	

How many vertices, edges and faces does dices have?

$\underline{Answer:}$			
The shape of d	ice is		
Dices have	vertices,	$_{}$ edges and $_{}$	faces.

Number system

Topics to be Improved		
Operations on rational numbers	Division of rational numbers, Subtraction of rational numbers	
Introduction to rational numbers	Basics of rational numbers	
Exponents	Solving exponents	
Decimals	Multiplication and division of decimals	
Fractions	Division of fraction, Multiplication of fractions	
Integers	Basics of integers	

Hi, here in this video you will learn **Operation on rational numbers**

Question: 31

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

......

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 32

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of 0.6 =

when any fraction is divided by a fraction, we multiply the dividend by the $___$ (same/reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 33

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

 $\underline{Answer:}$

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Basics of rational numbers

Question: 34

The numbers in the diagram represents______.

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

Question: 35

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

Question: 36

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Hi, here in this video you will learn Exponents and power
Question: 37
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $
10 is raised to the power of $\underline{} = (10)^{\underline{}}$
Question: 38 Find the value of $(-2)^3$. Answer:
Question: 39 (i) Tenth power of 100 is ($(10)^{100}$ or $(100)^{10}$). (ii) k is raised to the power of 5 is ($(k)^5$ or $(5)^k$).
Answer:
Exponential form = $(Base)$ —

(ii) k is raised to the power of 5 : Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Basics of decimals

(i) Tenth power of 100: Base = $__$, Power/Exponents = $__$, exponential form = $__$.

<u>Question: 40</u>
Shade 0.4 part of the given shape.
Answer:
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out of equal parts. So, we need to shade boxes out of boxes.
<i>Question:</i> 41
Solve the following.
(i) 0.4×1.2
(ii) 0.48×1.2
Answer:
 (i) 0.4 × 1.2: Multiplication of 0.4 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.4 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is (ii) 0.48 × 1.2: Multiplication of 0.48 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is
Question: 42
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?
Answer:
One box contains chocolates. The cost of one box is Then cost of one chocolate = \div =
(i) Total digits after decimal point in decimal number =

(ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} = \underline{\hspace{1cm}}$$

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is _____.

The cost of 15 chocolates = cost of one chocolate × _____ = ___ x ___ = ____

Hi, here in this video you will learn **Operation on rational numbers**

Question: 43

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

Question: 44

Find the addition of shaded part of box A and shaded part of box B.

......

.....

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $__$

Question: 45

Find the missing values in the given figure.

Answer:

Given: $1 = \frac{7}{10} + \underline{\hspace{1cm}}$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{\hspace{1cm}}$ Therefore, result is $\underline{\hspace{1cm}}$.

Hi, here in this video you will learn Division on fractions

Question: 46

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

10	
35	

.....

.....

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 47

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

......

......

Question: 48

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn Multiplication on fractions

Question: 49

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $____$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

$Question {:}\ 50$

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Question: 51

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn Basics of integers

Question: 52

Highlight the ring that contains whole numbers.

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are $___$ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

$\underline{Question:~53}$

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

Naturals numbers

Answer:
Whole number consists of $0,1,2,3,4,$ Negative number consists of Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
<i>Question:</i> 54
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of Therefore, positive numbers are (in/not in) integers.

Comparing Quantities

Topics to be Improved					
Percentage	Basic of percentage				
Conversion of fraction into percentage	Conversion of fraction into percentage				
Equivalent ratios	Basic of proportion				

Hi, l	here	in	this	video	you	will	learn	Basics	of	percentage
-------	------	----	------	-------	-----	------	-------	--------	----	------------

Question:	<i>55</i>

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

......

.....

Question: 56

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks.

75 % can be written in fraction form

Then the mark scored by Arun = Total mark \times 75% = ____ \times ___ = ____

Question: 57

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

Answer:

There are _____ apples in a basket.

Number of rotten apples are
Fraction form of rotten apples in a basket =
Convert it into a percent= x% =
Hi, here in this video you will learn Converting fraction into percentage
Question: 58
Complete the box in the given equation.
$5\% = \frac{5}{\square}$
Answer:
Percentage are the fraction with the denominator
Therefore, 5% can be expressed as
Question: 59
Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$
(iii) $\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$
Answer:
To convert fraction into percentage, the value of (denominator / numerator)should be 100 or (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is
Question: 60
Find the percentage of shaded part of square.

$\underline{Answer:}$					
The square shape is divided into Number of shaded part of square is	-				
Shaded part of square in fraction is					
To Convert — into percentag	ge ,	_ x 100)		
Hi, here in this video you will learn ${f I}$	Basics of j	proporti	on		
Question: 61					
If a:b and c:d are equivalent ratio, then it can	be expressed	d as	_		
$\underline{Answer:}$					
A (proportion / ratio) is used to express proportion is		(one/two)	equival	ent ratios.	
Question: 62					
Find the ratio of shaded part to unshaded par	rt of A and E	3. Are the t	wo rati	os equivalent?	
A					
		В			
Answer:					
Shaded part of A =, Unshaded part of Ratio of shaded to unshaded parts of A is Shaded part of B =, Unshaded part of B = Ratio of shaded to unshaded parts of B is Fractional form = Fraction form of A (equal/ not equal.)	Fractio	onal form =			
Question: 63					

If a : b :: c : d is proportion, sha<u>de the correct</u> expression

$$a = \frac{bc}{d}$$

$$c = \frac{ad}{b}$$

Answer:

Two equivalent ratio which are proportion, it can be written as a : b :: c : d or $___$ (in fraction) .

First and fourth term are called _____ and second and third term are called ____. In proportion, product of extreme terms is ____ (equal to/ not equal to) product of middle terms.

Therefore, $a \times d = \underline{\hspace{1cm}}$, then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$

Algebra

	Topics to be Improved
Basics of simple equation	Formating of simple equation, Solving of simple equation
Terms of an expression	Identification of terms in an expression
Monomials, binomials, trinomials and polynomials	Types of algebraic expression

Hi,	here i	in '	this	video	you	will	learn	Solving	an	${\bf equation}$	using
apj	plicat	ioi	1								

Question: 64

Box B contains t	times the	number o	of chocolates	in	Box	A
------------------	-----------	----------	---------------	----	-----	---

Answer:

Box A contains _____ chocolates.
Box B contains ____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. \text{ of chocolates in Box A})$

Question: 65

Write the equation for the following statement.

Subtracting four times of m from 4 is n

Answer:

Four times of $m = \underline{\hspace{1cm}}$

.....

Subtracting four times of m from $4 = \underline{\hspace{1cm}}$

The equation is _____

Question: 66

Compare the given two statements (<,>,=)

Sum of $2a$ and 9 Add 9 to the product of a and 2
Answer:
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$
Product of a and $2 = \underline{\hspace{1cm}}$
Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 \square Add 9 to the product of a and 2
Hi, here in this video you will learn Solving an equation
Question: 67
If $©=5$, then $5 © +5 = $
Answer:
The value of the given smiley \odot is Substituting the value in the expression = $5(__) + 5 = __ + __ = __$.
<u>Question: 68</u>
Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2) $7 \square + 3 = -4$
Answer:
The given equation is 7
Question: 69
Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{2}x$
Answer:
The given expression are The value of x is substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, ____.

Hi, here in this video you will learn Terms of an expression

Question: 70

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

_____.

Terms	Constants	Variables

.....

......

Question: 71

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are _____.

The terms in the expression 12a + b + 1 is/are _____

The terms in the expression 7m + 0 is/are _____.

Question: 72

Shade the outline of circle that contains the term of the given expression.

$6m^2$	_	7mn	+	nl	1
OHL	_	-111616	$\overline{}$	11.1	,

1	\boldsymbol{n}	eı	,,,	or	
А	.T t	รเ	$\boldsymbol{\nu}$	E1	

In algebraic expression,	(variables/	terms) are connected together	with operations
of addition.			
Here		are the terms of the given	expression

Hi, here in this video you will learn **Types of expression**

Question: 73

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression,	$_{-}$ (variables/	terms)	are connected	together	with	operations
of addition.						
The terms in the expression are	,	,	$_$, and $_$	_ •		

.....

.....

Therefore, there are ______ terms in the expression.

Question: 74

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has ______ term and it is a ___
- 2. The terms in expression 7xy + 4m are ______. Here, expression has ______ term and it is a _____
- 3. The terms in expression 7m + n + 2 are ______. Here, expression has _____ term and it is a _____

Question: 75

$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)	
Answer:	
The terms in expression $5m^2 + m + 0$ are	
Here, the expression has terms and it is called a exp	ression.