

Lecture 02 – Convolutional Neural Networks

Prof. João Fernando Mari

joaofmari.github.io joaof.mari@ufv.br

Agenda

- Classification pipelines
- Multi-layer Perceptron (MLP)
- Convolutional Neural Networks (CNNs)
- Convolutional layer
- Pooling layer
- Activation function
- Fully connected layer
- Output layer softmax
- Loss function
- Optimizers
- Architectures
- Development and libraries
- Image datasets

Classification pipelines

Yann LeCun's Deep Learning Course at CDS - SPRING 2021

Multi-layer Perceptron (MLP)

Learn TensorFlow and deep learning, without a Ph.D.

Convolutional Neural Networks (CNNs)

CONVOLUTIONAL LAYER

Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.

Convolutional layer \mathcal{C}^l

x[:,:,0] * w0[:,:,0]			https://cs231n.github.io/convolutional-networks,
	x[:,:,1] * w0[:,:,1]	b0 1 x[:,:,2] * w0[:,:,2]	
x[:,:,0] * w1[:,:,0]			

b1

0

w0[:,	:,0]
-1 1	1
1 1	2
0 -2	1
w0[:,	:,1]
-1 1	-1
-1 1	2
-1 -1	1
w0[:,	
-1 -1	1
1 -2	2
2 -1	2
w1[:,	
	2
-1 -2	1
-1 -2 1 1	2 2
-1 -2 1 1 -2 2	2 2
-1 -2 1 1 -2 2 w1[:,	1 2 2 :,1]
-1 -2 1 1 -2 2 w1[:,	1 2 2 :,1]
-1 -2 1 1 -2 2 w1[:,	1 2 2 :,1] -2 0
-1 -2 1 1 -2 2 w1[:, -2 -2 1 0 -2 w1[:,	1 2 2 :,1] -2 0
-1 -2 1 1 -2 2 w1[:, -2 -2 -2 1 0 -2 w1[:,	1 2 2 :,1] -2 0 0

https://cs231n.github.io/convolutional-networks/

				ت	l
x[:,	.,2] * '	w1[:,:,:	2]
-2	-21	-1	3	-17	

b1

	x[:,				
	12	26	18	25	2:
	-5				
Ì					

					0	
	x[:,	.,2] * '	w1[:,:,	2
J	-2	-21	-1	3	-17	
	3					
Ì						

b1

x[:,	:,0] * \	w0[:,:,
12	26	18	25	21
-5	28	19	4	24
-5	11	15	17	24
4	16	20	26	14
1	16	5	5	20

x[:,:,0] * w1[:,:,0]

					b0 1	
>	κ[:,	:,2] * ']0w	:,:,:	2]
Ŀ	-17	0	14	-2	-8	
	-3	-5	32	11	-10	
	9	-7	22	12	-14	
г						

	Universidade Federal de Viçosa
	https://cs231n.github.io/convolutional-networks/
b0	
-8 -10 -14 -13 -5	

b1

a			1)
	w0	[:,:	,0]
	-1	1	1
	1	1	2
	0	-2	1
	w0	[:,:	,1]
	-1	1	-1
	-1	1	2
	-1	-1	1
	w0	[:,:	,2]
	-1	-1	1
	1	-2	2
	2	-1	2
-	w1	[:,:	,0]
	-1	-2	1
	1	1	2
	-2	2	2
	w1	[:,:	,1]
	-2	-2	-2
	-2	1	0
	0	-2	0
	w1	[:,:	,2]
	0	-2	0

2 -1 -1

x[:,:,0] * w1[:,:,0]

				b0 1	
x[:,	:,2] * _']0w	:,:,2	
-17	0	14	-2	-8	
-3	-5	32	11	-10	
9	-7	22	12	-14	
9	2	17	14	-13	
4	-1	15	9	-5	

https://cs231n.github.io/convolutional-networks/

x[:,	:,0	* \	w1[:,:,	וט
-9	14	6	7	18	
7	20	20	22	17	
3	17	2	22	28	
-15	26	27	1	35	
11	15	22	36	35	

x[:,	:,1] * ı	w1[:,:,
-13	-11	-21	-17	-9
-20	-30	-7	-27	-5
-26	-15	-34	-28	-28
-38	-34	-49	-31	-21
-15	-17	-6	-19	-1

-1 |-11| 0

1						12	-1	6	7	4
_ `						13	-9	-4	3	-5
x[:,:,2] * w0[:,:,2]	w0[] * '	:,2	x[:,		-6	-2	-10	15	-7
-17 0 14 -2 -8	-2	14	0	-17		15	-2	3	8	-15
-3 -5 32 11 -10	11	32	-5	-3		19	3	13	2	-12
9 -7 22 12 -14	12	22	-7	9	•					
9 2 17 14 -13	14	17	2	9						
4 -1 15 9 -5	9	15	-1	4						
							_			
b1					1]	:,:,	w1[] * 1	,:,1	x[:,
b1 0					1]		_		_	x[:, -13
0	4	1 * .	. 1	v.F.	1]	-9	_	-21	_	-13
x[:,:,2] * w1[:,:,2] \(\sum_{\text{v}} \)	_	_				-9 -5	-17 -27	-21	-11 -30	-13 -20
x[:,:,2] * w1[:,:,2] \sum_{-2} -2 -21 -1 3 -17	3	-1	-21	-2		-9 -5 -28	-17 -27 -28	-21 -7	-11 -30 -15	-13 -20 -26
x[:,:,2] * w1[:,:,2] \sum_{-2} -2 -21 -1 3 -17 \\ 3 -33 -25 -7 -18	3 -7	-1 -25	-21 -33	-2 3		-9 -5 -28 -21	-17 -27 -28	-21 -7 -34 -49	-11 -30 -15	-13 -20 -26 -38
x[:,:,2] * w1[:,:,2] \sum_{-2} \ -2 \ -21 \ -1 \ 3 \ -17 \ 3 \ -3 \ -5 \ -28 \ -4 \ -16	3 -7 -4	-1 -25 -28	-21 -33 -5	-2 3 -3		-9 -5 -28 -21	-17 -27 -28 -31	-21 -7 -34 -49	-11 -30 -15 -34	-13 -20 -26 -38
x[:,:,2] * w1[:,:,2] \sum_{-2} -2 -21 -1 3 -17 \\ 3 -33 -25 -7 -18 \\ -3 -5 -28 -4 -16 \\ -7 -12 -5 -15 -10	3 -7 -4 -15	-1 -25 -28 -5	-21 -33 -5 -12	-2 3 -3 -7		-9 -5 -28 -21	-17 -27 -28 -31	-21 -7 -34 -49	-11 -30 -15 -34	-13 -20 -26 -38
x[:,:,2] * w1[:,:,2] \sum_{-2} \ -2 \ -21 \ -1 \ 3 \ -17 \ 3 \ -3 \ -5 \ -28 \ -4 \ -16	3 -7 -4 -15	-1 -25 -28 -5	-21 -33 -5 -12	-2 3 -3 -7		-9 -5 -28 -21	-17 -27 -28 -31	-21 -7 -34 -49	-11 -30 -15 -34	-13 -20 -26 -38

b0

				UIII	iversiu	aue re	uerarc	ie viçu	Sa				
<u>http:</u>	s://c	cs23	31n.	gitł	nub.	io/cc	nvo	luti	ona	l-ne	two	orks	2
	v[:,:,0]							y[:,	:,0]			
	0	34	39	23	35								
	-12	27	48	7	28								
\sum	-2	20	28	48	5	(f)						
	-1	27	41	39	17								
	-6	15	34	18	35	D-							
						Re	LU						
							1						

https://cs231n.github.io/convolutional-networks/

y[:,:,1]

0

0

y[:,:,0]

POOLING LAYER

Pooling layer

Pooling layer

Pooling layer

Pooling layer

ACTIVATION FUNCTION

Activation function

FULLY CONNECTED LAYER

Fully connected layer

OUTPUT LAYER - SOFTMAX

Output layer - softmax

Softmax function for M classes:

$$- softmax(x_i) = \frac{e^{x_i}}{\sum_{j=0}^{M-1} e^{x_j}}$$

Example:

- $\mathbf{x} = [-0.8 \ 2.0 \ 6.0 \ -2.7 \ 0.8]$
 - $\sum_{j=0}^{M-1} x_j = 5.3$
 - Sum != 1.0. It cannot be interpreted as probabilities.

$$-\sum_{j=0}^{M-1} e^{x_j} = 0.4493 + 7.3891 + 403.4288 + 0.0672 + 2.2255 = 413.5599$$

- $softmax(x_i) = [0.0011 \ 0.0179 \ 0.9755 \ 0.0002 \ 0.0054]$
 - $\sum_{i=0}^{M-1} softmax(x_i) = 1.0$
 - The probability of the sample belonging to each class.

LOSS FUNCTION

Cross-entropy loss

Cross-entropy for more than 2 classes (M>2):

$$- L(\mathbf{y}, \widehat{\mathbf{y}}) = -\sum_{j=0}^{M-1} \mathbf{y}_j \cdot \log(\widehat{\mathbf{y}}_j)$$

Cross-entropy for 2 classes (M=2):

$$-L(\mathbf{y},\widehat{\mathbf{y}}) = -(\mathbf{y} \cdot \log(\widehat{\mathbf{y}}) + (1-\mathbf{y})\log(1-\widehat{\mathbf{y}}))$$

Cross-entropy for M>2

- 5 classes, **correct** classification, with 72% probability:
 - $y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$
 - $-\hat{y} = [0.20 \ 0.0 \ 0.05 \ 0.72 \ 0.03]$
 - $L(\mathbf{y}, \widehat{\mathbf{y}}) = -(0 \times \log 0.2 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.72 + 0 \times \log 0.03)$
 - $L(\mathbf{y}, \widehat{\mathbf{y}}) = -(\log 0.72) = 0.14267$

Cross-entropy for M>2

- 5 classes, correct classification, with 72% probability:
 - $y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$ $\hat{y} = [0.20 \quad 0.0 \quad 0.05 \quad 0.72 \quad 0.03]$ $L(y, \hat{y}) = -(0 \times \log 0.2 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.72 + 0 \times \log 0.03)$ $L(y, \hat{y}) = -(\log 0.72) = 0.14267$
- 5 classes, correct classification, with 52% probability:
 - $y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$ $\hat{y} = [0.30 \quad 0.0 \quad 0.05 \quad 0.52 \quad 0.13]$ $L(y, \hat{y}) = -(0 \times \log 0.3 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.52 + 0 \times \log 0.13)$ $L(y, \hat{y}) = -(\log 0.52) = 0.284$

Cross-entropy for M>2

5 classes, correct classification, with 72% probability:

$$- y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$$

$$- \hat{y} = [0.20 \quad 0.0 \quad 0.05 \quad 0.72 \quad 0.03]$$

$$- L(y, \hat{y}) = -(0 \times \log 0.2 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.72 + 0 \times \log 0.03)$$

$$- L(y, \hat{y}) = -(\log 0.72) = 0.14267$$

• 5 classes, **correct** classification, with 52% probability:

$$- y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$$

$$- \hat{y} = [0.30 \quad 0.0 \quad 0.05 \quad 0.52 \quad 0.13]$$

$$- L(y, \hat{y}) = -(0 \times \log 0.3 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.52 + 0 \times \log 0.13)$$

$$- L(y, \hat{y}) = -(\log 0.52) = 0.284$$

• 5 classes, **incorrect** classification:

$$- \mathbf{y} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$- \hat{\mathbf{y}} = \begin{bmatrix} 0.60 & 0.0 & 0.07 & 0.30 & 0.03 \end{bmatrix}$$

$$- L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.6 + 0 \times \log 0.0 + 0 \times \log 0.07 + 1 \times \log 0.3 + 0 \times \log 0.03)$$

$$- L(\mathbf{y}, \hat{\mathbf{y}}) = -(\log 0.3) = 0.5229$$

Cross-entropy for M=2

2 classes, correct classification:

$$- y = [0]$$

$$- \hat{y} = [0.20]$$

$$- L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1 - 0) \times \log(1 - 0.2))$$

$$- L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1) \times \log(0.8)) = -(\log(0.8)) = 0.09691$$

Cross-entropy for M=2

- 2 classes, correct classification:
 - y = [0]
 - $\hat{y} = [0.20]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1 0) \times \log(1 0.2))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1) \times \log(0.8)) = -(\log(0.8)) = 0.09691$

- 2 classes, correct classification:
 - y = [1]
 - $-\hat{y} = [0.92]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (1 1) \times \log(1 0.92))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (0) \times \log(0.08)) = -(\log(0.92)) = 0.03621$

Cross-entropy for M=2

- 2 classes, correct classification:
 - y = [0]
 - $\hat{y} = [0.20]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1 0) \times \log(1 0.2))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1) \times \log(0.8)) = -(\log(0.8)) = 0.09691$

- 2 classes, correct classification:
 - y = [1]
 - $-\hat{y} = [0.92]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (1 1) \times \log(1 0.92))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (0) \times \log(0.08)) = -(\log(0.92)) = 0.03621$

- 2 classes, incorrect classification:
 - y = [0]
 - $\hat{y} = [0.65]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.65 + (1 0) \times \log(1 0.65))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.65 + (1) \times \log(0.35)) = -(\log(0.35)) = 0.45593$

OPTIMIZERS

- Gradient descent (GD):
 - $W_{t+1} = W_t \eta \sum_{j=1}^N \nabla L(W; x_j)$
 - N is the size of the training set

Donges. Gradient Descent in Machine Learning: A Basic Introduction. https://builtin.com/data-science/gradient-descent

- Stochastic gradient descent (SGD):
 - $W_{t+1} = W_t \eta \sum_{j=1}^{B} \nabla L(W; x_j^B)$
 - B is the size of the mini-batch.

- SGD with momentum:
 - $W_{t+1} = W_t \eta \sum_{j=1}^B \nabla L(W; x_j^B)$
 - *B* is the size of the mini-batch.

$$- W_{t+1} = W_t + \alpha (W_t - W_{t-1}) + (1 - \alpha) [-\eta \sum_{j=1}^B \nabla L(W; x_j^B)]$$

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

- Other optimizers:
 - AdaGrad Adaptive Gradient
 - AdaDelta Adaptive learning rate
 - RMSProp Root Mean Squared Propagation
 - Adam Adaptive moment estimation
 - **–** ...

ARCHITECTURES

Neocognitron (1979)

Kunihiko Fukushima

Fukushima, K. (1980). "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position". Biological Cybernetics. 36 (4)

LeNet-5 (1998)

Lecun, Y. et al. (1998). "Gradient-based learning applied to document recognition". Proceedings of the IEEE. 86 (11): 2278–2324.

AlexNet (2012)

Krizhevsky, Sutskever e Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NeuripIPS 2012

Inception (GoogLeNet) (2015)

Szegedy, Christian (2015). "Going deeper with convolutions". CVPR2015.

VGG (2014) and ResNet (2015)

Simonyan e Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014

He et al. Deep Residual Learning for Image Recognition. 2015.

DenseNet (2017)

Figure 10. Illustration of a DenseBlock with 5 functions H_l and a Transition Layer.

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.

- ImageNet Large Scale Visual Recognition Challenge
 - https://image-net.org/challenges/LSVRC/

https://semiengineering.com/new-vision-technologies-for-real-world-applications/

DEVELOPMENT AND LIBRARIES

Development and libraries

- Training CNNs has a high computational cost.
 - These are recommended to be trained using GPUs.
 - Google Colab provides access to GPUs (with some restrictions).

Development and libraries

- Top libraries for Deep Learning and Convolutional Neural Networks
 - PyTorch
 - https://pytorch.org/
 - Tensorflow
 - https://www.tensorflow.org/

Development and libraries

- Anaconda Distribution:
 - Python distribution with support for major libraries
 - https://www.anaconda.com/products/distribution
- Google Colab:
 - Cloud execution environment with GPUs
 - https://colab.research.google.com

IMAGE DATASETS

- MNIST
 - http://yann.lecun.com/exdb/mnist/
 - 60,000 training images
 - 10,000 testing images
 - 28 x 28 pixels
 - Gray level

Cats vs. Dogs:

- https://www.kaggle.com/c/dogs-vs-cats
- 25,000 training images
- 12,500 testing images
- 2 classes
- Various sizes
- RGB images

Sample of cats & dogs images from Kaggle Dataset

• **CIFAR10**:

- https://www.cs.toronto.edu/~kriz/cifar.html
- 50,000 training images
- 10,000 testing images
- 10 classes
- 32 x 32 pixels
- RGB

• ImageNet:

- https://www.image-net.org/
- − ~1,000,000 images
- 1,000 classes
- RGB

Bibliography

- Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.
- Moacir Ponti (ICMC-USP). Material para o minicurso Deep Learning
 - https://github.com/maponti/deeplearning intro datascience
- Learn TensorFlow and deep learning, without a Ph.D.
 - https://cloud.google.com/blog/products/gcp/learn-tensorflow-and-deep-learningwithout-a-phd
- CS231n: Convolutional Neural Networks for Visual Recognition
 - http://cs231n.github.io/
- Goodfellow, Bengio e Courville. Deep Learning. MIT Press, 2016
 - https://www.deeplearningbook.org/
- The MathWorks, Inc. What is a Convolutional Neural Network? 3 things you need to know.
 - https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html

Bibliography

- Fukushima, K. (1980). **Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position**. Biological Cybernetics. 36 (4): 193–202.
 - <u>10.1007/bf00344251</u>
- Lecun, Y. et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE. 86 (11): 2278–2324.
 - <u>10.1109/5.726791</u>
- Krizhevsky, Sutskever e Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NeuripIPS 2012.
- Szegedy, Christian (2015). Going deeper with convolutions. CVPR2015.
- Simonyan e Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition.
 2014.
- He et al. Deep Residual Learning for Image Recognition. 2015.
- Huang et al. Densely Connected Convolutional Networks. CVPR 2017.
- Rodrigues, L. F.; Naldi M. C., Mari, J. F. Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images. Computers in Biology and Medicine, 2019.
 - https://doi.org/10.1016/j.compbiomed.2019.103542

THE END