Université Paris Cité – Grands Moulins

L2 Math et Math Info – Analyse 3 Contrôle 3 Version A Durée : 1 heure

30 novembre 2023

Les documents et appareils électroniques sont interdits.

Tout argument devra être justifié par une référence précise au cours ou une démonstration.

Le barème est donné à titre indicatif et est susceptible de changer.

Ne tournez pas la page avant d'avoir été autorisée à le faire

Exercice 1. (5 points)

Pour tout $n \in \mathbb{N}^*$ soit f_n la fonction définie sur \mathbb{R} par : pour tout $x \in \mathbb{R}$,

$$f_n(x) = n^2 \left(1 - \cos \frac{x}{n} \right).$$

- 1. Démontrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R} vers une fonction f que l'on précisera.
- 2. Soit $n \in \mathbb{N}^*$. Justifier la dérivabilité de f_n sur \mathbb{R} et déterminer sa dérivée $g_n = f'_n$.
- 3. Montrer que la suite de fonctions (g_n) converge simplement sur \mathbb{R} vers la fonction $g: x \mapsto x$.
- 4. La suite de fonctions (g_n) converge-t-elle uniformément vers g sur \mathbb{R} ? On pourra considérer la suite (x_n) définie par : pour tout $n \in \mathbb{N}^*$, $x_n = 2\pi n$.
- 5. A-t-on f' = g?

Exercice 2. (6 points)

Étudier la nature des séries suivantes.

$$1. \sum_{n\geqslant 1} \left(n e^{\frac{1}{n}} - n \right)$$

$$2. \sum_{n} \left(\frac{n}{n+1}\right)^{n^2}$$

3.
$$\sum_{n>1} \frac{n^{2023}}{n!}$$

Exercice 3. (5 points)

Montrer que les séries suivantes sont convergentes et calculer leur somme :

1.
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)}$$

2.
$$\sum_{n=0}^{+\infty} \frac{(\sin x)^n}{3^n}$$
, où x est un nombre réel fixé.

Exercice 4. (4 points)

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

- 1. Donner la définition de « la suite (u_n) est de Cauchy ».
- $2.\,$ Dire si les affirmations suivantes sont vraies ou fausses, en justifiant la réponse :
 - (a) Si la suite u est de Cauchy, alors $(u_{n+1} u_n)$ converge vers 0.
 - (b) Si $(u_{n+1} u_n)$ converge vers 0, alors la suite u est de Cauchy.

Université Paris Cité – Grands Moulins

L2 Math et Math Info – Analyse 3 Contrôle 3 Version B Durée : 1 heure

30 novembre 2023

Les documents et appareils électroniques sont interdits.

Tout argument devra être justifié par une référence précise au cours ou une démonstration.

Le barème est donné à titre indicatif et est susceptible de changer.

Ne tournez pas la page avant d'avoir été autorisée à le faire

Exercice 1. (5 points)

Pour tout $n \in \mathbb{N}^*$ soit f_n la fonction définie sur \mathbb{R} par : pour tout $x \in \mathbb{R}$,

$$f_n(x) = n \sin \frac{x^2}{n}.$$

- 1. Démontrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R} vers une fonction f que l'on précisera.
- 2. Soit $n \in \mathbb{N}^*$. Justifier la dérivabilité de f_n sur \mathbb{R} et déterminer sa dérivée $g_n = f'_n$.
- 3. Montrer que la suite de fonctions (g_n) converge simplement sur \mathbb{R} vers la fonction $g: x \mapsto 2x$.
- 4. La suite de fonctions (g_n) converge-t-elle uniformément vers g sur \mathbb{R} ? On pourra considérer la suite (x_n) définie par : pour tout $n \in \mathbb{N}^*$, $x_n = \sqrt{\pi n}$.
- 5. A-t-on f' = g?

Exercice 2. (6 points)

Étudier la nature des séries suivantes :

1.
$$\sum_{n>1} \left(n - n\cos\frac{1}{n}\right)$$

$$2. \sum_{n} \left(\frac{n}{n+2}\right)^{n^2}$$

3.
$$\sum_{n} \frac{n^{2024}}{n!}$$

Exercice 3. (5 points)

Montrer que les séries suivantes sont convergentes et calculer leur somme :

1.
$$\sum_{n=2}^{+\infty} \frac{1}{(n-1)n(n+1)}$$

2.
$$\sum_{n=0}^{+\infty} \frac{(\cos x)^n}{5^n}$$
, où x est un nombre réel fixé.

Exercice 4. (4 points)

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

- 1. Donner la définition de « la suite (u_n) est de Cauchy ».
- $2.\,$ Dire si les affirmations suivantes sont vraies ou fausses, en justifiant la réponse :
 - (a) Si la suite u est de Cauchy, alors $(u_{n+1} u_n)$ converge vers 0.
 - (b) Si $(u_{n+1} u_n)$ converge vers 0, alors la suite u est de Cauchy.