End Term (Even) Semester Examination May-June 2025

23990+6 Roll no.....

Name of the Program and semester: B. Tech IV

Name of the Course: Design and Analysis of Algorithms

Course Code: TCS 409

Duration: 3-hour Maximum Marks: 100

Note:

- (i) All the questions are compulsory.
- (ii) Answer any two sub questions from a, b and c in each main question.
- (iii) Total marks for each question are 20 (twenty).
- (iv) Each sub-question carries 10 marks.

Q1	(20 marks)				
(a)	Solve the following Recurrence relation:				
• • •	(A) $T(n) = 36T(n/6) + n^2$				
	(B) $T(n) = \sqrt{2}T(n/2) + \log n$				
(b)	Write the code to solve Tower of Hanoi and find its complexity using recurrence relation.				
(c)====	Write a program to implement Binary scarch recursively. How is binary search				
	different from linear search? Discuss the best- and worst-case time complexities for				
	both algorithms.				
	*				
Q2	(20 marks)	1			
(a)	Consider an empty max heap, insert the following keys in the given order:	-			
	19, 22, 5, 17, 86, 13, 44, 53, 80	CO2			
	Show each step clearly and circle the final max heap.	<u>'</u>			
(b)	Apply Kruskal's algorithm on the following graph, show each step clearly.				
	0 7 1 5 5 5 4 9 6 5 11 6	CO5			
(c)	Write a program to implement DFS using adjacency list?	CO3			
,	<pre>void dfs(int src, vector<vector<int>> adj){</vector<int></pre>	,			
	//your code here				
		1			
	Is topological sort same as DFS? Support your answer with a suitable example.				

End Term (Even) Semester Examination May-June 2025

Q3			(20 marks)			
(a)	What do you understand by in-place sorting, stable sorting, external sorting, and online sorting? Explain with proper example of at least one algorithm in each of the above-mentioned sorting type.					
(b)	Give the difference between fractional knapsack and 0/1 knapsack. Solve the given instance using fractional and 0/1 knapsack both for capacity = 6.					
	Item	Weight	Value			
	1	3	9		1	
	2	2	6	-		
	3	1	5			
	4	5	14	•		
	5	4	4			
(c) _.	Write an algorithm for insertion sort. Explain its working with an example. Why is insertion sort a better choice than quick sort for an almost sorted array?					
Q4			(20 marks)			
(a)	What is Rabin Karp Algorithm? Explain its working with an example. How is Rabin					
	Karp Algorithm different from naïve string-matching algorithm?					
(b)	How will you find a cycle in a graph using disjoint set data structure? Explain with a help of a suitable example and write the algorithm for the same. Explain Bellman Ford algorithm with code. Differentiate between Bellman Ford and					
(c)						
(0)	Djikstra.	Vicin code. Directendes		CO5		
Q5	Dj.moci u.		(20 marks)	 		
(a)	Explain P, NP, NP-hard and NP-Complete with proper examples. Using a diagram					
(-/	show the relation among these classes.					
(b)	Define Hashing. Consider a hash table using hash function h(x) = x mod 11 , insert					
	the following keys in order (36, 55, 90, 69, 101, 19, 22, 60). Draw the resulting hash				4	
	table for:					
	(i) Linear probing					
	(ii) Quadratic probing					
:	(iii) Chaining	45 (5°).		_		
(c)	Complete the following function for calculating minimum no. of operation for matrix					
	chain multiplication using dynamic programming.					
	int matrixChainMultiplication(int *p, int i, int j);				* *	
	p is the array having information about dimensions of matrices, i = 1 and j = n-1					
1.	where n is the number of matr	ices.				