# Fourth Order Modified Laguerre's Method

## Thomas R. Cameron

Mathematics and Computer Science Department, Davidson College

#### Abstract

We present a novel modification of Laguerre's method that results in a method for the concurrent approximation of all roots of a univariate polynomial. Our method has strong virtues including fourth-order convergence that can be observed in practice and belonging to the class of embarrassingly parallel algorithms. A Fortran 90 implementation of our algorithm is available online and comparisons with several other software are provided.

## The Algorithm

Let  $p(\lambda) = a_0 + a_1 \lambda + \cdots + a_m \lambda^m$  be a polynomial with  $a_0 a_m \neq 0$  and denote by  $(z_1, \ldots, z_m)$  the current approximations to the roots of  $p(\lambda)$ . The *j*th approximation is updated via

$$\hat{z}_j = z_j - \frac{m}{G_j \pm \sqrt{(m-1)(mH_j - G_j^2)}},\tag{1}$$

where

$$G_{j} = \frac{p'(z_{j})}{p(z_{j})} - \sum_{\substack{i=1\\i\neq j}}^{m} \frac{1}{(z_{j} - z_{i})} \text{ and } H_{j} = -\left(\frac{p'(z_{j})}{p(z_{j})}\right)' - \sum_{\substack{i=1\\i\neq j}}^{m} \frac{1}{(z_{j} - z_{i})^{2}}.$$
 (2)

On each iteration,  $z_j$  is updated for  $j=1,\ldots,m$ , unless it was accepted on a previous iteration.

**Initial Estimates.** In essence, we select complex numbers along circles of suitable radii. What constitutes suitable radii is formalized in [3] and can be computed via the upper envelope of the convex hull of the set  $\{(i, \log |a_i|), i = 0, 1, ..., m\}$ . We compute the convex hull via Andrew's Monotone Chain algorithm [1].

**Backward Error.** The backward error of an approximate root  $\xi$  is given by

$$\eta(\xi) = \frac{|p(\xi)|}{\alpha(\xi)},\tag{3}$$

where  $\alpha(\xi) = \sum_{i=0}^{m} |e_i| |\xi|^i$  and  $e_i$  represent tolerances against which perturbations are measured. We accept a root approximation  $\xi$  if  $\eta(\xi) < \mu$ , where  $\mu$  is machine precision.

Condition. The condition of a nonzero approximate root  $\xi$  is given by

$$\kappa(\xi) = \frac{\alpha(\xi)}{|\xi||p'(\xi)|}.$$
(4)

If the root approximation  $\xi$  is accepted, then we also return its condition.

## Numerical Experiments

Comparisons between FPML, Polzeros [3], and the singleshift version of AMVW [2].





Fig. 1: Random Polynomials

Fig. 2: Roots of Unity

FPML

AMVW

Polzeros

|          |                                        |      |                                           | 1   | $4.3 \cdot 10^{-11}$  | $3.84 \cdot 10^{-10}$ | $1.72 \cdot 10^{-8}$  |
|----------|----------------------------------------|------|-------------------------------------------|-----|-----------------------|-----------------------|-----------------------|
|          |                                        |      |                                           | 2   | $7.32\cdot10^{-7}$    | $3.63 \cdot 10^{-6}$  | $3.07\cdot 10^{-3}$   |
|          |                                        |      |                                           | 3   | $3.65 \cdot 10^{-2}$  | $2 \cdot 10^{-2}$     | 1                     |
|          |                                        |      |                                           | 4   | $7.1 \cdot 10^{-13}$  | $1.89 \cdot 10^{-13}$ | $6.37 \cdot 10^{-13}$ |
| Poly No. | Description                            | Deg. | Roots                                     | 5   | $2 \cdot 10^{-11}$    | $1.07 \cdot 10^{-10}$ | $2.45\cdot 10^{-7}$   |
| 1        | Wilkinson polynomial                   | 10   | $1, \dots, 10$                            | 6   | $1.35 \cdot 10^{-7}$  | $2.85 \cdot 10^{-7}$  | 0.2                   |
| 2        | Wilkinson polynomial                   | 15   | $1,\ldots,15$                             | 7   | 1.90                  | 1.00                  | 1 77                  |
| 3        | Wilkinson polynomial                   | 20   | $1,\ldots,20$                             | 1   | 1.36                  | 1.36                  | 1.55                  |
| 4        | scale and shifted Wilkinson polynomial | 20   | $-2.1, -1.9, \ldots, 1.7$                 | 8   | $8.55 \cdot 10^{-15}$ | $2.21 \cdot 10^{-15}$ | $2.43 \cdot 10^{-2}$  |
| 5        | reverse Wilkinson polynomial           | 10   | $1, 1/2, \dots, 1/10$                     |     |                       |                       |                       |
| 6        | reverse Wilkinson polynomial           | 15   | $1, 1/2, \dots, 1/15$                     | 9   | 0.76                  | $2.2 \cdot 10^{-2}$   | $4.6 \cdot 10^{-2}$   |
| 7        | reverse Wilkinson polynomial           | 20   | $1, 1/2, \dots, 1/20$                     | 10  | $5.21 \cdot 10^{-12}$ | $3.72 \cdot 10^{-11}$ | $3.03 \cdot 10^{-11}$ |
| 8        | prescribed roots of varying scale      | 20   | $2^{-10}, 2^{-9}, \dots, 2^9$             | 10  |                       |                       |                       |
| 9        | prescribed roots of varying scale -3   | 20   | $2^{-10} - 3, 2^{-9} - 3, \dots, 2^9 - 3$ | 11  | $3.7 \cdot 10^{-16}$  | $2.65 \cdot 10^{-16}$ | $7.24 \cdot 10^{-16}$ |
| 10       | Chebyshev polynomial                   | 20   | $\cos(\frac{2j-1}{40}\pi)$                | 12  | $1.99 \cdot 10^{-8}$  | $3.83 \cdot 10^{-8}$  | 1                     |
| 11       | $z^{20} + z^{19} + \dots + z + 1$      | 20   | $e^{i\frac{2\pi}{21}\pi}$                 | 12  |                       | $9.99 \cdot 10$       | 1                     |
| 12       | C. Traverso                            | 24   | known                                     | 13  | $4.9 \cdot 10^{-8}$   | $3.94 \cdot 10^{-7}$  | $3.77 \cdot 10^{-7}$  |
| 13       | Mandelbrot                             | 31   | known                                     | 1.4 | 0.10                  | 0.10                  | 0.16                  |
| 14       | Mandelbrot                             | 63   | known                                     | 14  | 0.18                  | 0.18                  | 0.16                  |

Poly No.

Fig. 3: Special Polynomials

## Examples

Initial Estimates. Let

$$p(\lambda) = 1 + 3 \cdot 10^{3} \lambda + 3 \cdot 10^{6} \lambda^{2} + 1 \cdot 10^{9} \lambda^{9} + \lambda^{10}.$$

The initial estimates and exact roots of p are below.



**Convergence.** Here we test the convergence of the roots of three polynomials. The first polynomial is  $z^5 - 1$ , the second is the degree 10 Chebyshev polynomial, and the third is  $z^{10} + \cdots + z + 1$ . The error is measured as the maximum relative forward error. For each polynomial, the error after each iteration is recorded in the table below.

| Iteration | Error-1               | Error-2               | Error-3               |
|-----------|-----------------------|-----------------------|-----------------------|
| 1         | 0.55                  | 3.57                  | 0.37                  |
| 2         | 0.14                  | 2.27                  | 1.32                  |
| 3         | $1.91\cdot 10^{-4}$   | 0.22                  | $2.55\cdot10^{-2}$    |
| 4         | $3.33 \cdot 10^{-16}$ | 0.16                  | $5.93 \cdot 10^{-8}$  |
| 5         | $3.33 \cdot 10^{-16}$ | $1.49 \cdot 10^{-3}$  | $1.96 \cdot 10^{-15}$ |
| 6         | 0                     | $2.39 \cdot 10^{-13}$ | $1.96 \cdot 10^{-15}$ |
| 7         | 0                     | $1.02 \cdot 10^{-14}$ | 0                     |
| 8         | 0                     | $1.02 \cdot 10^{-14}$ | 0                     |
| 9         | 0                     | 0                     | 0                     |
| 10        | 0                     | 0                     | 0                     |
|           |                       |                       |                       |

#### Conclusion

Fortran 90 code along with installation instructions and additional experiment results and references are provided at https://github.com/trcameron/FPML.

#### References

- [1] A. M. Andrew, Another efficient algorithm for convex hulls in two dimensions, Info. Proc. Letters **9** (1979), no. 15, 216–219.
- [2] J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins, Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl. **36** (2015), no. 3, 942–973.
- [3] D. A. Bini, Numerical computation of polynomial zeros by means of Aberth's method, Numer. Algorithms **13** (1996), 179–200.