Solution Section 1.2 – Gaussian Elimination

Exercise

When elimination is applied to the matrix $A = \begin{bmatrix} 3 & 1 & 0 \\ 6 & 9 & 2 \\ 0 & 1 & 5 \end{bmatrix}$

- a) What are the first and second pivots?
- b) What is the multiplier l_{21} in the first step (l_{21} times row 1 is subtracted from row 2)?
- c) What entry in the 2, 2 position (instead of 9) would force an exchange of rows 2 and 3?
- d) What is the multiplier $l_{31} = 0$, subtracting 0 times row 1 from row 3?

Solution

a) The first pivot is 3 and when 2 times row 1 is subtracted from row 2, the second pivot is

$$\begin{bmatrix} 3 & 1 & 0 \\ 6 & 9 & 2 \\ 0 & 1 & 5 \end{bmatrix}$$
 subtract 2 times row.1
$$\begin{bmatrix} 3 & 1 & 0 \\ 0 & 7 & 2 \\ 0 & 1 & 5 \end{bmatrix}$$

- b) The multiplier l_{21} in the first step is $\frac{6}{3} = 2$.
- c) If we reduce the entry 9 to 2, that drop of 7 in the a_{22} position would force a row exchange.

$$\begin{bmatrix} 3 & 1 & 0 \\ 6 & 9 & 2 \\ 0 & 1 & 5 \end{bmatrix} \quad \begin{array}{c} \text{subtract 7 times row.1} \\ \text{from row.2} \\ \end{array} \quad \begin{bmatrix} 3 & 1 & 0 \\ -15 & \boxed{2} & 2 \\ 0 & 1 & 5 \end{bmatrix}$$

d) The multiplier l_{31} is already zero because $a_{31} = 0$ and no needs row elimination.

Exercise

Use elimination to reach upper triangular matrices U. Solve by back substitution or explain why this impossible. What are the pivots (never zero)? Exchange equations when necessary. The only difference is the -x in equation (3).

8

$$\begin{cases} x + y + z = 7 \\ x + y - z = 5 \\ x - y + z = 3 \end{cases} \begin{cases} x + y + z = 7 \\ x + y - z = 5 \\ -x - y + z = 3 \end{cases}$$

Solution

For the *first* system:

$$x + y + z = 7$$
 subtract eqn.1 $x + y + z = 7$
 $x + y - z = 5$ from eqn.2 $0y - 2z = -2$
 $x - y + z = 3$ from eqn.3 $-2y - 0z = -4$
 $x + y + z = 7$ $1x + y + z = 7$
 $x + y - z = 5$ Exchange eqn.2 $-2y - 0z = -4$
 $x - y + z = 3$ and eqn.3 $-2z = -2$

The solutions are: z = 1 y = 2 x = 4 and the pivots are 1, -2, -2.

For the *second* system:

$$x + y + z = 7$$
 Subtract eqn.1 $x + y + z = 7$
 $x + y - z = 5$ from eqn.2 $0y - 2z = -2$
 $-x - y + z = 3$ Add eqn.1 $0y + 2z = 10$
 $x + y + z = 7$ $0y - 2z = -2$ Add eqn.2 $0y - 2z = -2$
 $0y + 2z = 10$ to eqn.3 $0z = 8$

The three planes don't meet. But if we change '3' in the last equation to '-5'

$$x + y + z = 7$$
 Subtract eqn.1 $x + y + z = 7$
 $x + y - z = 5$ from eqn.2 $0y - 2z = -2$
 $-x - y + z = -5$ Add eqn.1 $0y + 2z = 2$
 $x + y + z = 7$ $x + y = 6$
 $0y - 2z = -2$ There are unique infinite many solutions!
 $0y + 2z = 10$ $z = 1$

The three planes now meet along a whole line.

Exercise

For which numbers a does the elimination break down (1) permanently (2) temporarily

$$ax + 3y = -3$$
$$4x + 6y = 6$$

Solve for x and y after fixing the second breakdown by a row change.

The matrix form is:
$$\begin{pmatrix} a & 3 \\ 4 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$$

If a = 0, the elimination brakes down temporarily.

$$\begin{pmatrix} 4 & 6 \\ 0 & \boxed{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$$

The system is in upper triangular form and entry row 2 column 2 is not equal to zero, therefore the system has a solution.

If $a \neq 0$,

$$\begin{pmatrix} a & 3 \\ 0 & 6 - \frac{12}{a} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 6 + \frac{12}{a} \end{pmatrix}$$

$$6 - \frac{12}{a} = 0$$

$$\frac{12}{a} = 6$$

$$a = \frac{12}{6} = 2$$

If a = 2,

$$\begin{pmatrix} 2 & 3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 12 \end{pmatrix}$$
, the system will fail and has no solution.

If $a \neq 2$;

$$\begin{pmatrix} a & 3 \\ 0 & 6 - \frac{12}{a} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 6 + \frac{12}{a} \end{pmatrix}$$
, the system has a unique solution.

Find the pivots and the solution for these four equations:

$$2x + y = 0$$

$$x + 2y + z = 0$$

$$y + 2z + t = 0$$

$$z + 2t = 5$$

Solution

$$\begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 5 \end{pmatrix} R_2 - \frac{1}{2}R_1$$

$$\begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 1.5 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 5 \end{pmatrix} R_3 - \frac{2}{3}R_2$$

$$\begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & \frac{3}{2} & 1 & 0 & 0 \\ 0 & 0 & \frac{4}{3} & 1 & 0 \\ 0 & 0 & 1 & 2 & 5 \end{pmatrix} R_4 - \frac{3}{4}R_3$$

$$\begin{pmatrix}
2 & 1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & 1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & 1 & 0 \\
0 & 0 & 0 & \frac{5}{4} & 5
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & 1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & 1 & 0 \\
0 & 0 & 0 & \frac{5}{4} & 5
\end{pmatrix}$$

$$2x = -y \Rightarrow |x = -2\frac{1}{2} = -1|$$

$$2y + z = 0 \Rightarrow y = -z\frac{2}{3} = -(-3)\frac{2}{3} \Rightarrow |y = 2|$$

$$\frac{4}{3}z + t = 0 \Rightarrow \frac{4}{3}z = -t \Rightarrow |z = -4\frac{3}{4} = -3|$$

$$\frac{5}{4}t = 5 \Rightarrow |t = 4|$$

The pivots are diagonal entries and the solution is: (-1, 2, -3, 4)

Look for a matrix that has row sums 4 and 8, and column sums 2 and s.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \begin{array}{c} a+b=4 & a+c=2 \\ c+d=8 & b+d=s \end{array}$$

The four equations are solvable only if s =____. Then find two different matrices that have the correct row and column sums.

Solution

$$2 + s = 12$$

$$s = 10$$

Exercise

Three planes can fail to have an intersection point, even if no planes are parallel. The system is singular if row 3 of A is a _____ of the first two rows. Find a third equation that can't be solved together with x + y + z = 0 and x - 2y - z = 1

Solution

The system is singular if row 3 of A is a *linear combination* of the first two rows.

There are many possible of a third equation that can't be solved together with x + y + z = 0 and x - 2y - z = 1.

3 times 1st equation
$$3x+3y+3z$$

minus 2nd $-x+2y+z$
 $2x+5y+4z=1$

$$x - y + 5z = -6$$

Use the Gauss-Jordan method to solve the system

$$3x + 3y - z = 10$$

$$x + 3y + 2z = 5$$

Solution

$$\begin{bmatrix} 1 & -1 & 5 & | & -6 \\ 0 & 6 & -16 & | & 28 \\ 0 & 4 & -3 & | & 11 \end{bmatrix} \xrightarrow{\frac{1}{6}R_2} 0 \quad 1 \quad -\frac{8}{3} \quad \frac{14}{3}$$

$$0 \quad 1 \quad -\frac{8}{3} \quad \frac{14}{3}$$

$$\begin{bmatrix} 1 & 0 & \frac{7}{3} & -\frac{4}{3} \\ 0 & 1 & -\frac{8}{3} & \frac{14}{3} \\ 0 & 0 & \frac{23}{3} & -\frac{23}{3} \end{bmatrix} \xrightarrow{\frac{3}{23}} R_3$$

$$0 \quad 0 \quad 1 \quad -1$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Solution: (1, 2, -1)

Use the Gauss-Jordan method to solve the system

$$\begin{cases} 2x - y + 4z = -3\\ x - 2y - 10z = -6\\ 3x + 4z = 7 \end{cases}$$

Solution

$$\begin{bmatrix} 2 & -1 & 4 & | & -3 \\ 1 & -2 & -10 & | & -6 \\ 3 & 0 & 4 & | & 7 \end{bmatrix} \stackrel{\frac{1}{2}R_1}{}$$

1
$$-\frac{1}{2}$$
 2 $-\frac{3}{2}$

$$\begin{bmatrix} 1 & -\frac{1}{2} & 2 & | -\frac{3}{2} \\ 1 & -2 & -10 & | -6 \\ 3 & 0 & 4 & 7 \end{bmatrix} \quad \begin{array}{c} R_2 - R_1 \\ R_3 - 3R_1 \end{array}$$

$$\begin{bmatrix} 1 & -\frac{1}{2} & 2 & | -\frac{3}{2} \\ 0 & -\frac{3}{2} & -12 & | -\frac{9}{2} \\ 0 & \frac{3}{2} & -2 & | \frac{23}{2} \end{bmatrix} \quad -\frac{2}{3}R_2$$

$$\begin{bmatrix} 1 & -\frac{1}{2} & 2 & | -\frac{3}{2} \\ 0 & 1 & 8 & 3 \\ 0 & \frac{3}{2} & -2 & | \frac{23}{2} \end{bmatrix} R_1 + \frac{1}{2}R_2$$

$$\begin{bmatrix} 1 & 0 & 6 & 0 \\ 0 & 1 & 8 & 3 \\ 0 & 0 & -14 & 7 \end{bmatrix} \quad -\frac{1}{14} R_3$$

$$0 0 1 -\frac{1}{2}$$

$$\begin{bmatrix} 1 & 0 & 6 & 0 \\ 0 & 1 & 8 & 3 \\ 0 & 0 & 1 & | -\frac{1}{2} \end{bmatrix} \xrightarrow{R_1 - 6R_3} \xrightarrow{R_2 - 8R_3}$$

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & \frac{1}{2} \end{bmatrix}$$

Solution: $(3, 7, -\frac{1}{2})$

Use the Gauss-Jordan method to solve the system

$$\begin{cases} 4x + 3y - 5z = -29 \\ 3x - 7y - z = -19 \\ 2x + 5y + 2z = -10 \end{cases}$$

Solution

$$\begin{bmatrix} 4 & 3 & -5 & | & -29 \\ 3 & -7 & -1 & | & -19 \\ 2 & 5 & 2 & | & -10 \end{bmatrix} \xrightarrow{\frac{1}{4}} R_1$$

$$1 \quad \frac{3}{4} \quad -\frac{5}{4} \quad -\frac{29}{4}$$

$$\begin{bmatrix} 1 & \frac{3}{4} & -\frac{5}{4} & -\frac{29}{4} \\ 3 & -7 & -1 & -19 \\ 2 & 5 & 2 & -10 \end{bmatrix} R_2 - 3R_1 \\ R_3 - 2R_1$$

$$\begin{bmatrix} 1 & \frac{3}{4} & -\frac{5}{4} & \frac{29}{4} \\ 3 & -7 & -1 & -19 \\ 2 & 5 & 2 & -10 \end{bmatrix} R_2 - 3R_1 \\ R_3 - 2R_1 \end{bmatrix} R_2 - 3R_1 \\ -3 & -\frac{9}{4} & \frac{15}{4} & \frac{87}{4} \\ \hline 0 & -\frac{37}{4} & \frac{11}{4} & \frac{11}{4} \end{bmatrix} \qquad \frac{-2 & -\frac{3}{2} & \frac{5}{2} & \frac{29}{2}}{0} \frac{9}{2}$$

$$\begin{bmatrix} 1 & \frac{3}{4} & -\frac{5}{4} & | & -\frac{29}{4} \\ 0 & -\frac{37}{4} & \frac{11}{4} & | & \frac{11}{4} \\ 0 & \frac{7}{2} & \frac{9}{2} & | & \frac{9}{2} \end{bmatrix} -\frac{4}{37}R_2 \qquad 0 \quad 1 \quad -\frac{11}{37} \quad -\frac{11}{37}$$

$$0 \quad 1 \quad -\frac{11}{37} \quad -\frac{11}{37}$$

$$\begin{bmatrix} 1 & \frac{3}{4} & -\frac{5}{4} & -\frac{29}{4} \\ 0 & 1 & -\frac{11}{37} & -\frac{11}{37} \\ 0 & \frac{7}{2} & \frac{9}{2} & \frac{9}{2} \end{bmatrix} R_{1} - \frac{3}{4}R_{2}$$

$$\begin{bmatrix} 1 & \frac{3}{4} & -\frac{5}{4} & | & -\frac{29}{4} \\ 0 & 1 & -\frac{11}{37} & | & -\frac{11}{37} \\ 0 & \frac{7}{2} & \frac{9}{2} & \frac{9}{2} \end{bmatrix} R_1 - \frac{3}{4}R_2 \qquad \qquad \begin{bmatrix} 1 & \frac{3}{4} & -\frac{5}{4} & -\frac{29}{4} \\ 0 & -\frac{3}{4} & \frac{33}{148} & \frac{33}{148} \\ 1 & 0 & -\frac{38}{37} & -\frac{260}{37} \end{bmatrix} \qquad \qquad \begin{bmatrix} 0 & \frac{7}{2} & \frac{9}{2} & \frac{9}{2} \\ 0 & -\frac{7}{2} & \frac{77}{72} & \frac{77}{72} \\ 0 & 0 & \frac{401}{72} & \frac{401}{72} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -\frac{38}{37} & -\frac{260}{37} \\ 0 & 1 & -\frac{11}{37} & -\frac{11}{37} \\ 0 & 0 & \frac{401}{72} & \frac{401}{72} \end{bmatrix} \frac{72}{401} R_3$$

$$\begin{bmatrix} 1 & 0 & -\frac{38}{37} | -\frac{260}{37} \\ 0 & 1 & -\frac{11}{37} | -\frac{11}{37} \\ 0 & 0 & 1 | 1 \end{bmatrix} R_1 + \frac{38}{37} R_3$$

$$R_2 + \frac{11}{37} R_3$$

$$\begin{bmatrix} 1 & 0 & -\frac{38}{37} \begin{vmatrix} -\frac{260}{37} \\ 0 & 1 & -\frac{11}{37} \\ 0 & 0 & 1 \end{vmatrix} \begin{bmatrix} R_1 + \frac{38}{37}R_3 \\ R_2 + \frac{11}{37}R_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\frac{38}{37} & -\frac{260}{37} \\ 0 & 0 & \frac{38}{37} & \frac{38}{37} \\ 1 & 0 & 0 & -6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{11}{37} & -\frac{11}{37} \\ 0 & 0 & \frac{11}{37} & \frac{11}{37} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | -6 \\ 0 & 1 & 0 & | 0 \\ 0 & 0 & 1 & | 1 \end{bmatrix}$$

Solution: (-6, 0, 1)

Use the Gauss-Jordan method to solve the system

$$\begin{cases} x + 2y - 3z = -15 \\ 2x - 3y + 4z = 18 \\ -3x + y + z = 1 \end{cases}$$

Solution

$$\begin{bmatrix} 1 & 2 & -3 & -15 \\ 2 & -3 & 4 & 18 \\ -3 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -3 & | & -15 \\ 2 & -3 & 4 & | & 18 \\ -3 & 1 & 1 & | & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \xrightarrow{R_3 + 3R_1} \xrightarrow{\begin{array}{c} -2 & -4 & 6 & 30 \\ \hline 2 & -3 & 4 & 18 \\ \hline 0 & -7 & 10 & 48 \end{array} \xrightarrow{\begin{array}{c} -3 & 1 & 1 & 1 \\ \hline 0 & 7 & -8 & -44 \end{array}}$$

$$\begin{bmatrix} 1 & 2 & -3 & -15 \\ 0 & -7 & 10 & 48 \\ 0 & 7 & -8 & -44 \end{bmatrix} - \frac{1}{7} R_2$$

$$\begin{bmatrix} 1 & 2 & -3 & | & -15 \\ 0 & 1 & -\frac{10}{7} & | & -\frac{48}{7} \\ 0 & 7 & -8 & | & -44 \end{bmatrix} R_1 - 2R_2 \qquad \qquad \begin{array}{c} 1 & 2 & -3 & -15 \\ 0 & -2 & \frac{20}{7} & \frac{96}{7} \\ 1 & 0 & -\frac{1}{7} & -\frac{9}{7} \end{array} \qquad \begin{array}{c} 0 & -7 & 10 & 48 \\ 0 & 7 & -8 & -44 \\ \hline 0 & 0 & 2 & 4 \end{array}$$

$$\begin{bmatrix} 1 & 0 & -\frac{1}{7} & -\frac{9}{7} \\ 0 & 1 & -\frac{10}{7} & -\frac{48}{7} \\ 0 & 0 & 2 & 4 \end{bmatrix} \frac{1}{2} R_3$$

$$\begin{bmatrix} 1 & 0 & -\frac{1}{7} & -\frac{9}{7} \\ 0 & 1 & -\frac{10}{7} & -\frac{48}{7} \\ 0 & 0 & 1 & 2 \end{bmatrix} \quad \begin{array}{c} R_1 + \frac{1}{7}R_3 \\ R_2 + \frac{10}{7}R_3 \\ \end{array} \qquad \begin{array}{c} 1 & 0 & -\frac{1}{7} & -\frac{9}{7} \\ \frac{0}{7} & \frac{2}{7} \\ \frac{0}{7} & \frac{1}{7} & \frac{2}{7} \\ \frac{0}{7} & \frac{1}{7} & \frac{2}{7} \\ \end{array} \qquad \begin{array}{c} 0 & 0 & \frac{10}{7} & \frac{20}{7} \\ \frac{20}{7} & \frac{20}{7} \\ 0 & 1 & 0 & -4 \\ \end{array}$$

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Solution: (-1, -4, 2)

Use the Gauss-Jordan method to solve the system $\begin{cases} x + 2y + 3z = 10 \\ 4x + 5y + 6z = 11 \\ 7x + 8y + 9z = 12 \end{cases}$

Solution

$$\begin{bmatrix} 1 & 2 & 3 & 10 \\ 0 & -3 & -6 & -29 \\ 0 & -6 & -12 & -58 \end{bmatrix} \quad \frac{1}{3} R_2$$

$$\begin{bmatrix} 1 & 2 & 3 & | & 10 \\ 0 & 1 & 2 & | & \frac{29}{3} \\ 0 & -6 & -12 & | & -58 \end{bmatrix} \quad R_3 + 6R_2 \qquad \qquad \begin{array}{c} 0 & -6 & -12 & -58 \\ 0 & 6 & 12 & 58 \\ \hline 0 & 0 & 0 & 0 \end{array}$$

$$\begin{bmatrix} 1 & 2 & 3 & 10 \\ 0 & 1 & 2 & \frac{29}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

let z be the variable

From Row
$$1 \Rightarrow y + 2z = \frac{29}{3}$$

$$y = \frac{29}{3} - 2z$$

From Row $1 \Rightarrow x + 2y + 3z = 10$

$$x = 10 - 2y - 3z$$

$$x = 10 - 2\left(\frac{29}{3} - 2z\right) - 3z$$

$$x = 10 - \frac{58}{3} + 4z - 3z$$

$$x = z - \frac{28}{3}$$

Solution: $\left(z - \frac{28}{3}, \frac{29}{3} - 2z, z\right)$

Use the Gauss-Jordan method to solve the system $\begin{cases} 2x + y + 2z = 6 \\ 2x + 2y = 6 \end{cases}$ 2x - y + 6z = 2

Solution

$$\begin{bmatrix} 2 & 1 & 2 & | & 4 \\ 2 & 2 & 0 & | & 5 \\ 2 & -1 & 6 & | & 2 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} 1 \qquad 1 \qquad \frac{1}{2} \qquad 1 \qquad 2$$

$$\begin{bmatrix} 1 & \frac{1}{2} & 1 & | & 2 \\ 2 & 2 & 0 & | & 5 \\ 2 & -1 & 6 & | & 2 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \xrightarrow{\frac{-2}{2} - 1} \xrightarrow{\frac{-2}{0} - 2} \xrightarrow{\frac{2}{0} -2} \xrightarrow{\frac{2}{0}$$

$$\begin{bmatrix}
1 & 0 & 2 & \frac{3}{2} \\
0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

From Row 3: 0 = 0 is a true statement. Let z be the variable.

From Row 2: y - 2z = 1

$$y = 1 + 2z$$

From Row 1: $x + 2z = \frac{3}{2}$

$$x = -2z + \frac{3}{2}$$

$$\therefore Solution: \left(-2z+\frac{3}{2}, \ 2z+1, \ z\right)$$

Use the Gauss-Jordan method to solve the system

$$\begin{cases} x_1 + x_2 + 2x_3 = 8 \\ -x_1 - 2x_2 + 3x_3 = 1 \\ 3x_1 - 7x_2 + 4x_3 = 10 \end{cases}$$

Solution

$$\begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ 0 & -10 & -2 & -14 \end{bmatrix} -R_2$$

$$\begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & -10 & -2 & -14 \end{bmatrix} \begin{matrix} R_1 - R_2 \\ R_3 + 10R_2 \end{matrix} \qquad \begin{array}{c} 1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ \hline 1 & 0 & 7 & 17 \end{array} \qquad \begin{array}{c} 0 & -10 & -2 & -14 \\ 0 & 10 & -50 & -90 \\ \hline 0 & 0 & -52 & -104 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 7 & | & 17 \\ 0 & 1 & -5 & | & -9 \\ 0 & 0 & -52 & | & -104 \end{bmatrix} - \frac{1}{52} R_3$$

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

∴ Solution: (3, 1, 2)

Use augmented elimination to solve linear system

$$2x - 5y + 3z = 1$$
$$x - 2y - 2z = 8$$

Solution

$$\begin{bmatrix} 1 & -2 & -2 & 8 \\ 2 & -5 & 3 & 1 \end{bmatrix} \quad R_2 - 2R_1$$

$$\begin{bmatrix} 1 & -2 & -2 & 8 \\ 0 & -1 & 7 & -15 \end{bmatrix} -R_2$$

$$\begin{bmatrix} 1 & -2 & -2 & 8 \\ 0 & 1 & -7 & 15 \end{bmatrix} \quad \begin{matrix} R_1 + 2R_2 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & -16 & 38 \\ 0 & 1 & -7 & 15 \end{bmatrix} \rightarrow x - 16z = 38$$
$$\rightarrow y - 7z = 15$$

$$\begin{cases} x = 16z + 38 \\ y = 7z + 15 \end{cases}$$

∴ Solution: (16z + 38, 7z + 15, z)

Exercise

Use augmented elimination to solve linear system

$$\begin{cases} x+y+z=2\\ 2x+y-z=5\\ x-y+z=-2 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -1 & -3 & 1 \\ 0 & -2 & 0 & -4 \end{bmatrix}$$
 (2)
 (1)
 $-2y = -4$

$$(2) \rightarrow x + y + z = 2$$

$$x = 2 - 2 + 1$$

$$= 1$$

 $\therefore Solution: (1, 2, -1)$

Exercise

Use augmented elimination to solve linear system $\begin{cases} 2x + y + z = 9 \\ -x - y + z = 1 \\ 3x - y + z = 9 \end{cases}$

Solution

$$\begin{bmatrix} 2 & 1 & 1 & | & 9 \\ -1 & -1 & 1 & | & 1 \\ 3 & -1 & 1 & | & 9 \end{bmatrix} \xrightarrow{2R_2 + R_1} \xrightarrow{2R_3 - 3R_1} \xrightarrow{-2 - 2} \xrightarrow{2 -$$

$$\begin{bmatrix} 2 & 1 & 1 & 9 \\ 0 & -1 & 3 & 11 \\ 0 & -5 & -1 & -9 \end{bmatrix} \quad \begin{array}{c} 0 & -5 & -1 & -9 \\ 0 & 5 & -15 & -55 \\ \hline 0 & 0 & -16 & -64 \\ \end{array}$$

$$\begin{bmatrix} 2 & 1 & 1 & 9 \\ 0 & -1 & 3 & 11 \\ 0 & 0 & -16 & -64 \end{bmatrix}$$
 (2)
(1)
 $-16z = -64$

$$z = 4$$

$$(1) \rightarrow -y + 3z = 11$$
$$y = 12 - 11$$
$$= 1$$

$$(2) \rightarrow 2x + y + z = 9$$
$$2x = 9 - 1 - 4$$
$$x = 2$$

 $\therefore Solution: (2, 1, 4)$

Exercise

Use augmented elimination to solve linear system $\begin{cases} 3y - z = -1 \\ x + 5y - z = -4 \\ -3x + 6y + 2z = 11 \end{cases}$

$$\begin{bmatrix} 1 & 5 & -1 & | & -4 \\ 0 & 3 & -1 & | & -1 \\ -3 & 6 & 2 & | & 11 \end{bmatrix} \quad R_3 + 3R_1$$

$$\begin{bmatrix} 1 & 5 & -1 & | & -4 \\ 0 & 3 & -1 & | & -1 \\ 0 & 21 & -1 & | & -1 \end{bmatrix} \quad R_3 - 7R_2$$

$$\begin{bmatrix} 1 & 5 & -1 & | & -4 \\ 0 & 3 & -1 & | & -1 \\ 0 & 0 & 6 & | & 6 \end{bmatrix} \xrightarrow{\Rightarrow x + 5y - z = -4} (2)$$
$$\xrightarrow{\Rightarrow 3y - z = -1} (1)$$
$$\xrightarrow{\Rightarrow 6z = 6}$$

$$z = 1$$

$$(1) \rightarrow 3y = -1 + 1$$

$$\underline{y = 0}$$

$$(2) \rightarrow x = -4 + 1$$
$$\underline{x = -3}$$

$$\therefore Solution: (-3, 0, 1)$$

Use augmented elimination to solve linear system

$$\begin{bmatrix} 1 & 3 & 4 & 14 \\ 0 & -9 & -6 & -18 \\ 0 & -10 & -11 & -33 \end{bmatrix} \quad 9R_3 - 10R_2$$

$$\begin{array}{cccccc}
0 & -90 & -99 & -297 \\
0 & 90 & 60 & 180 \\
\hline
0 & 0 & -39 & -117
\end{array}$$

$$\begin{bmatrix} 1 & 3 & 4 & 14 \\ 0 & -9 & -6 & -18 \\ 0 & 0 & -39 & -117 \end{bmatrix} \quad \begin{array}{c} x + 3y + 4z = 14 & (3) \\ -9y - 6z = -18 & (2) \\ -39z = -117 & (1) \end{array}$$

$$(1) \rightarrow z = \frac{117}{39}$$
$$= 3$$

$$(2) \rightarrow 9y = 18 - 6(3)$$

$$9y = 0$$

$$y = 0$$

$$(3) \rightarrow x = 14 - 12$$

$$x = 2$$

$$\therefore Solution: (2, 0, 3)$$

Use augmented elimination to solve linear system $\begin{cases} x + 4y - z = 20 \\ 3x + 2y + z = 8 \\ 2x - 3y + 2z = -16 \end{cases}$

$$\begin{cases} x + 4y - z = 20\\ 3x + 2y + z = 8\\ 2x - 3y + 2z = -16 \end{cases}$$

$$\begin{bmatrix} 1 & 4 & -1 & 20 \\ 0 & -10 & 4 & -52 \\ 0 & -11 & 4 & -56 \end{bmatrix} & 0 & -110 & 40 & -560 \\ 0 & 110 & -44 & 572 \\ \hline 0 & 0 & -4 & 12 \\ \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & -1 & 20 \\ 0 & -10 & 4 & -52 \\ 0 & 0 & -4 & 12 \end{bmatrix} \xrightarrow{x+4y-z=20} (3)$$

$$-10y+4z=-52 (2)$$

$$-4z=12 (1)$$

$$(1) \rightarrow \underline{z = -3}$$

$$(2) \rightarrow -10y = -52 + 12$$
$$-10y = -40$$
$$y = 4$$

$$(3) \rightarrow x = 20 - 16 - 3$$
$$x = 1$$

$$\therefore Solution: (1, 4, -3)$$

Use augmented elimination to solve linear system $\begin{cases}
2y - z = 7 \\
x + 2y + z = 17 \\
2x - 3y + 2z = -1
\end{cases}$

$$2x - 3y + 2z = -1$$

Solution

$$\begin{bmatrix} 1 & 2 & 1 & | & 17 \\ 0 & 2 & -1 & | & 7 \\ 2 & -3 & 2 & | & -1 \end{bmatrix} R_3 - 2R_1$$

$$\begin{bmatrix} 2 & -3 & 2 & -1 \\ -2 & -4 & -2 & -34 \\ \hline 0 & -7 & 0 & -35 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & 17 \\ 0 & 2 & -1 & 7 \\ 0 & -7 & 0 & -35 \end{bmatrix} \begin{array}{c} x + 2y + z = 17 & (3) \\ 2y - z = 7 & (2) \\ -7y = -35 & (1) \end{array}$$

$$\begin{vmatrix} 0 & 2 & -1 & 7 & 2y - z = 7 & (2) \end{vmatrix}$$

$$\begin{bmatrix} 0 & -7 & 0 & -35 \end{bmatrix} \quad -7y = -35 \quad (1)$$

$$(1) \rightarrow \underline{y=5}$$

$$(2) \rightarrow z = 10 - 7$$
$$= 3|$$

$$(3) \rightarrow x = 17 - 10 - 3$$
$$= 4$$

$$\therefore Solution: (4, 5, 3)$$

Exercise

Use augmented elimination to solve linear system $\begin{cases}
-2x + 6y + 7z = 3 \\
-4x + 5y + 3z = 7 \\
-6x + 3y + 5z = -4
\end{cases}$

$$\begin{cases}
-2x + 6y + 7z = 3 \\
-4x + 5y + 3z = 7 \\
-6x + 3y + 5z = -4
\end{cases}$$

$$\begin{bmatrix} -2 & 6 & 7 & 3 \\ -4 & 5 & 3 & 7 \\ -6 & 3 & 5 & -4 \end{bmatrix} R_2 - 2R_1 \qquad \frac{4 & -12 & -14 & -6}{0 & -7 & -11 & 1} \qquad \frac{6 & -18 & -21 & -9}{0 & -15 & -16 & -13}$$

$$\begin{bmatrix} -2 & 6 & 7 & 3 \\ 0 & -7 & -11 & 1 \\ 0 & -15 & -16 & -13 \end{bmatrix} \begin{array}{c} 0 & -105 & -112 & -91 \\ 0 & 105 & 165 & -15 \\ \hline 0 & 0 & 53 & -106 \\ \end{array}$$

$$\begin{bmatrix} -2 & 6 & 7 & 3 \\ 0 & -7 & -11 & 1 \\ 0 & 0 & 53 & -106 \end{bmatrix} \begin{array}{c} -2x + 6y + 7z = 3 & (3) \\ -7y - 11z = 1 & (2) \\ 53z = -106 & (1) \end{array}$$

$$(1) \rightarrow \underline{z = -2}$$

$$(2) \rightarrow -7y = 1 - 22$$
$$-7y = -21$$

$$y=3$$

$$(3) \to -2x = 3 - 18 + 14$$
$$-2x = -1$$

$$x = \frac{1}{2}$$

$$\therefore$$
 Solution: $\left(\frac{1}{2}, 3, -2\right)$

Use augmented elimination to solve linear system

$$\begin{bmatrix} 2 & -1 & 1 & 1 \\ 3 & -3 & 4 & 5 \\ 4 & -2 & 3 & 4 \end{bmatrix} \xrightarrow{2R_2 - 3R_1} \xrightarrow{R_3 - 2R_1} \xrightarrow{6 & -6 & 8 & 10} \xrightarrow{4 & -2 & 3 & 4} \xrightarrow{-4 & 2 & -2 & -2} \xrightarrow{0 & 0 & 1 & 2}$$

$$\begin{bmatrix} 2 & -1 & 1 & 1 \\ 0 & -3 & 5 & 7 \\ 0 & 0 & 1 & 2 \end{bmatrix} \quad \begin{array}{c} 2x - y + z = 1 & (2) \\ -3y + 5z = 7 & (1) \\ \underline{z = 2} \end{bmatrix}$$

$$(1) \rightarrow -3y = 7 - 10$$
$$-3y = -3$$
$$y = 1$$

$$(3) \rightarrow 2x = 1 + 1 - 2$$
$$x = 0$$

$$\therefore Solution: (0, 1, 2)$$

Use augmented elimination to solve linear system $\begin{cases}
3x - 4y + 4z = \\
x - y - 2z = 2
\end{cases}$ 2x - 3y + 6z =

Solution

$$\begin{bmatrix} 1 & -1 & -2 & 2 \\ 3 & -4 & 4 & 7 \\ 2 & -3 & 6 & 5 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \xrightarrow{R_3 - 2R_1} \xrightarrow{R_3 - 2R_2} \xrightarrow{R_3 - 2R_3} \xrightarrow{$$

$$\begin{bmatrix} 1 & -1 & -2 & 2 \\ 0 & -1 & 10 & 1 \\ 0 & -1 & 10 & 1 \end{bmatrix} \xrightarrow{R_3 = R_2} \xrightarrow{x-y-2z=2} (2)$$

$$(1) \rightarrow \underline{y = 10z - 1}$$

(2)
$$\rightarrow x = 2 + 10z - 1 + 2z$$

= $12z + 1$

∴ Solution:
$$(12z+1, 10z-1, z)$$

Exercise

Use augmented elimination to solve linear system $\begin{cases} x - 2y - z = 2 \\ 2x - y + z = 4 \\ -x + y + z = 4 \end{cases}$

Solution

$$\begin{bmatrix} 1 & -2 & -1 & 2 \\ 0 & 3 & 3 & 0 \\ 0 & -1 & 0 & 6 \end{bmatrix} \begin{array}{c} x - 2y - z = 2 & (3) \\ 3y + 3z = 0 & (2) \\ -y = 6 & (1) \end{array}$$

$$(1) \rightarrow y = -6$$

$$(2) \rightarrow z = -y$$
$$= 6$$

$$(3) \rightarrow x = 2 - 12 + 6$$
$$= -4$$

 $\therefore Solution: (-4, -6, 6)$

Use augmented elimination to solve linear system

Solution

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & 2 & 1 \\ -1 & 0 & 1 & 0 \end{bmatrix} \quad R_3 + R_1 \qquad \begin{array}{c} -1 & 0 & 1 & 0 \\ \frac{1}{0} & 1 & 1 & 3 \\ \hline 0 & 1 & 2 & 3 \end{array}$$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & 2 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \quad R_3 + R_2 \qquad \qquad \begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & -1 & 2 & 1 \\ \hline 0 & 0 & 4 & 4 \end{array}$$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 4 & 4 \end{bmatrix} \quad \begin{array}{c} x+y+z=3 & (3) \\ -y+2z=1 & (2) \\ 4z=4 & (1) \end{array}$$

$$(1) \rightarrow \underline{z=1}$$

$$(2) \rightarrow -y = 1 - 2$$

$$y = 1$$

$$(3) \rightarrow x = 3 - 1 - 1$$
$$= 1$$

 $\therefore Solution: (1, 1, 1)$

Exercise

Use augmented elimination to solve linear system $\begin{cases} 3x + y + 3z = 14 \\ 7x + 5y + 8z = 37 \\ x + 3y + 2z = 9 \end{cases}$

$$\begin{bmatrix} 1 & 3 & 2 & 9 \\ 0 & -8 & -3 & -13 \\ 0 & -16 & -6 & -26 \end{bmatrix} \quad \begin{matrix} 0 & -16 & -6 & -26 \\ 0 & 16 & 6 & 26 \\ \hline 0 & 0 & 0 & 0 \end{matrix}$$

(1)
$$\rightarrow -8y = 3z - 13$$

 $y = -\frac{3}{8}z + \frac{13}{8}$

$$(3) \to x = 9 - 3\left(\frac{13}{8} - \frac{3}{8}z\right) - 2z$$
$$= 9 - \frac{39}{8} + \frac{9}{8}z - 2z$$
$$= \frac{33}{8} - \frac{7}{8}z$$

∴ Solution:
$$\left(\frac{33}{8} - \frac{7}{8}z, \frac{13}{8} - \frac{3}{8}z, z\right)$$

Use augmented elimination to solve linear system

$$\begin{cases} 4x - 2y + z = 7 \\ x + y + z = -2 \\ 4x + 2y + z = 3 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 & | & -2 \\ 4 & -2 & 1 & | & 7 \\ 4 & 2 & 1 & | & 3 \end{bmatrix} \begin{bmatrix} R_2 - 4R_1 & \frac{-4}{0} - 4 & -4 & | & 8 \\ R_3 - 4R_1 & \frac{-4}{0} - 6 & -3 & | & 15 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & | & -2 \\ 0 & -6 & -3 & | & 15 \\ 0 & -2 & -3 & | & 11 \end{bmatrix} \begin{bmatrix} 0 & 6 & 9 & -33 \\ 0 & -6 & -3 & | & 15 \\ 0 & 0 & 6 & -18 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & -2 \\ 0 & -6 & -3 & 15 \\ 0 & 0 & 6 & -18 \end{bmatrix} \begin{array}{c} x+y+z=-2 & (3) \\ -6y-3z=15 & (2) \\ 6z=-18 & (1) \end{array}$$

$$(1) \rightarrow \underline{z = -3}$$

$$(2) \rightarrow -6y = 15 - 9$$

$$y = -1$$

$$(3) \rightarrow x = -2 + 1 + 3$$
$$= 2$$

$$\therefore Solution: (2, -1, -3)$$

Use augmented elimination to solve linear system $\begin{cases}
2x - 2y + z = -4 \\
6x + 4y - 3z = -24 \\
x - 2y + 2z = 1
\end{cases}$

$$x - 2y + 2z = 1$$

Solution

$$\begin{bmatrix} 1 & -2 & 2 & 1 \\ 0 & 2 & -3 & -6 \\ 0 & 16 & -15 & -30 \end{bmatrix} R_3 - 8R_2 \qquad \begin{array}{c} 0 & 16 & -15 & -30 \\ 0 & -16 & 24 & 48 \\ \hline 0 & 0 & 9 & 18 \\ \end{array}$$

$$\begin{bmatrix} 1 & -2 & 2 & 1 \\ 0 & 2 & -3 & -6 \\ 0 & 0 & 9 & 18 \end{bmatrix} \quad \begin{array}{c} x - 2y + 2z = 1 & (3) \\ 2y - 3z = -6 & (2) \\ 9z = 18 & (1) \end{array}$$

$$(1) \rightarrow \underline{z=2}$$

$$(2) \rightarrow 2y = -6 + 6$$
$$\underline{y = 0}$$

$$(3) \rightarrow x = 1 - 4$$
$$= -3$$

∴ Solution:
$$(-3, 0, 2)$$

Exercise

Use augmented elimination to solve linear system $\begin{cases} 9x + 3y + z = 4 \\ 16x + 4y + z = 2 \end{cases}$

$$\begin{cases} 9x + 3y + z = 4 \\ 16x + 4y + z = 2 \\ 25x + 5y + z = 2 \end{cases}$$

$$\begin{cases} z + 9x + 3y = 4 \\ z + 16x + 4y = 2 \\ z + 25x + 5y = 2 \end{cases}$$

$$\begin{bmatrix} 1 & 9 & 3 & | & 4 \\ 0 & 7 & 1 & | & -2 \\ 0 & 0 & -2 & | & 18 \end{bmatrix} \quad \begin{array}{c} z + 9x + 3y = 4 & (3) \\ 7x + y = -2 & (2) \\ -2y = 18 & (1) \end{array}$$

$$(1) \rightarrow y = -9$$

$$(2) \rightarrow 7x = -2 + 9$$

$$= 1$$

$$(3) \rightarrow z = 4 - 9 + 27$$
$$= 22$$

$$\therefore Solution: (1, -9, 22)$$

Use augmented elimination to solve linear system $\begin{cases} 2x - y + 2z = -8 \\ x + 2y - 3z = 9 \\ 3x - y - 4z = 3 \end{cases}$

$$\begin{bmatrix} 1 & 2 & -3 & | & 9 \\ 2 & -1 & 2 & | & -8 \\ 3 & -1 & -4 & | & 3 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \xrightarrow{R_3 - 3R_1} \xrightarrow{2 -1} \xrightarrow{2 -4} \xrightarrow{2 -1} \xrightarrow{2 -8} \xrightarrow{3 -1} \xrightarrow{-4} \xrightarrow{3} \xrightarrow{-3 -6} \xrightarrow{9 -27} \xrightarrow{0 -7} \xrightarrow{5 -24}$$

$$\begin{bmatrix} 1 & 2 & -3 & | & 9 \\ 0 & -5 & 8 & | & -26 \\ 0 & -7 & 5 & | & -24 \end{bmatrix} & 5R_3 - 7R_2 & 0 & -35 & 25 & -120 \\ 0 & 35 & -56 & 182 \\ \hline 0 & 0 & -31 & 62 \\ \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 8 & -26 \\ 0 & 0 & -31 & 62 \end{bmatrix} \quad \begin{array}{c} x + 2y - 3z = 9 & (3) \\ -5y + 8z = -26 & (2) \\ -31z = 62 & (1) \end{array}$$

$$(1) \rightarrow \underline{z = -2}$$

$$(2) \rightarrow -5y = -26 + 16$$
$$-5y = 10$$
$$y = 2$$

$$(3) \rightarrow x = 9 - 4 - 6$$

$$= -1$$

$$\therefore Solution: (-1, 2, -2)$$

Use augmented elimination to solve linear system $\begin{cases} x & -3z = -5\\ 2x - y + 2z = 16\\ 7x - 3y - 5z = 19 \end{cases}$

Solution

$$\begin{bmatrix} 1 & 0 & -3 & | & -5 \\ 2 & -1 & 2 & | & 16 \\ 7 & -3 & -5 & | & 19 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \xrightarrow{Q_2 - 2R_1} \xrightarrow{Q_3 - 2R_1} \xrightarrow$$

$$\begin{bmatrix} 1 & 0 & -3 & | & -5 \\ 0 & -1 & 8 & | & 26 \\ 0 & -3 & 16 & | & 54 \end{bmatrix} \qquad \begin{array}{c} 0 & -3 & 16 & 54 \\ 0 & 3 & -24 & -78 \\ \hline 0 & 0 & -8 & -24 \end{array}$$

$$\begin{bmatrix} 1 & 0 & -3 & | & -5 \\ 0 & -1 & 8 & | & 26 \\ 0 & 0 & -8 & | & -24 \end{bmatrix} \quad \begin{array}{c} x - 3z = -5 & (3) \\ -y + 8z = 26 & (2) \\ -8z = -24 & (1) \end{array}$$

$$(1) \rightarrow z = 3$$

$$(2) \rightarrow -y = 26 - 24$$
$$y = -2$$

$$(3) \rightarrow x = -5 + 9$$
$$= 4$$

$$\therefore Solution: (4, -2, 3)$$

Exercise

Use augmented elimination to solve linear system $\begin{cases} x + 2y - z = 5 \\ 2x - y + 3z = 0 \\ 2y + z = 1 \end{cases}$

$$\begin{bmatrix} 1 & 2 & -1 & | & 5 \\ 2 & -1 & 3 & | & 0 \\ 0 & 2 & 1 & | & 1 \end{bmatrix} \quad R_2 - 2R_1 \qquad \qquad \frac{2 & -1 & 3 & 0}{-2 & -4 & 2 & -10} \\ \frac{-2 & -4 & 2 & -10}{0 & -5 & 5 & -10}$$

$$\begin{bmatrix} 1 & 2 & -1 & 5 \\ 0 & -5 & 5 & -10 \\ 0 & 2 & 1 & 1 \end{bmatrix} \begin{array}{c} 0 & 10 & 5 & 5 \\ 0 & -10 & 10 & -20 \\ \hline 0 & 0 & 15 & -15 \end{array}$$

$$\begin{bmatrix} 1 & 2 & -1 & 5 \\ 0 & -5 & 5 & -10 \\ 0 & 0 & 15 & -15 \end{bmatrix} \quad \begin{array}{c} x + 2y - z = 5 & (3) \\ -5y + 5z = -10 & (2) \\ 15z = -15 & (1) \end{array}$$

$$(1) \rightarrow z = -1$$

$$(2) \rightarrow -5y = -10 + 5$$
$$y = 1$$

$$(3) \rightarrow x = 5 - 2 - 1$$
$$= 2$$

$$\therefore Solution: (2, 1, -1)$$

Use augmented elimination to solve linear system $\begin{cases} x + y + z = 6 \\ 3x + 4y - 7z = 2x - y + 3z = 5 \end{cases}$

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 3 & 4 & -7 & | & 1 \\ 2 & -1 & 3 & | & 5 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \xrightarrow{R_3 - 2R_1} \xrightarrow{3 \quad 4 \quad -7 \quad 1} \xrightarrow{-3 \quad -3 \quad -18} \xrightarrow{-3 \quad -3 \quad -18} \xrightarrow{-2 \quad -2 \quad -2 \quad -12} \xrightarrow{0 \quad -3 \quad 1 \quad -7}$$

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -10 & -17 \\ 0 & -3 & 1 & -7 \end{bmatrix} R_3 + 3R_2 \qquad \begin{array}{c} 0 & -3 & 1 & -7 \\ 0 & 3 & -30 & -51 \\ \hline 0 & 0 & -29 & -58 \end{array}$$

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -10 & -17 \\ 0 & 0 & -29 & -58 \end{bmatrix} \quad \begin{array}{c} x+y+z=6 & (3) \\ y-10z=-17 & (2) \\ -29z=-58 & (1) \end{array}$$

$$(1) \rightarrow z = 2$$

$$(2) \rightarrow y = -17 + 20$$

$$= 3$$

$$(3) \rightarrow x = 6 - 3 - 2$$

$$= 1$$

$$\therefore Solution: (1, 3, 2)$$

Use augmented elimination to solve linear system $\begin{cases} 3x + 2y + 3z = 3 \\ 4x - 5y + 7z = 1 \\ 2x + 3y - 2z = 6 \end{cases}$

$$\begin{bmatrix} 3 & 2 & 3 & 3 \\ 0 & -23 & 9 & -9 \\ 0 & 5 & -12 & 12 \end{bmatrix} \begin{array}{c} 0 & 115 & -276 & 276 \\ 0 & -115 & 45 & -45 \\ \hline 0 & 0 & -231 & 231 \end{array}$$

$$\begin{bmatrix} 3 & 2 & 3 & 3 \\ 0 & -23 & 9 & -9 \\ 0 & 0 & -231 & 231 \end{bmatrix} \begin{array}{c} 3x + 2y + 3z = 3 & (3) \\ -23y + 9z = -9 & (2) \\ -231z = 231 & (1) \end{array}$$

$$(1) \rightarrow \underline{z = -1}$$

$$(2) \rightarrow -23y = -9 + 9$$
$$y = 0$$

$$(3) \rightarrow 3x = 3 + 3$$
$$x = 2$$

$$\therefore Solution: (2, 0, -1)$$

Use augmented elimination to solve linear system

$$\begin{cases} x - 3y + z = 2 \\ 4x - 12y + 4z = 8 \\ -2x + 6y - 2z = -4 \end{cases}$$

Solution

$$\begin{cases} x - 3y + z = 2 \\ \frac{1}{4} \times 4x - 12y + 4z = 8 \\ -\frac{1}{2} \times -2x + 6y - 2z = -4 \end{cases}$$

$$\begin{cases} x - 3y + z = 2 \\ x - 3y + z = 2 \\ x - 3y + z = 2 \end{cases}$$

Since all three equations are the same.

∴ *Solution*: is the plane x - 3y + z = 2

Exercise

Use augmented elimination to solve linear system $\begin{cases}
2x - 2y + z = -1 \\
x + 2y - z = 2 \\
6x + 4y + 3z = 5
\end{cases}$

$$\begin{cases} 2x - 2y + z = -1 \\ x + 2y - z = 2 \\ 6x + 4y + 3z = 5 \end{cases}$$

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & -2 & 1 & -1 \\ 6 & 4 & 3 & 5 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \xrightarrow{R_3 - 6R_1} \xrightarrow{2 - 2 -4} \xrightarrow{2 - 4} \xrightarrow{2 - 4} \xrightarrow{2 - 4} \xrightarrow{0 - 6 - 3 - 5} \xrightarrow{-6 - 12} \xrightarrow{0 - 8 - 9 - 7}$$

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -6 & 3 & -5 \\ 0 & -8 & 9 & -7 \end{bmatrix} & 3R_3 - 4R_2 & 0 & -24 & 27 & -21 \\ 0 & 24 & -12 & 20 \\ \hline 0 & 0 & 15 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -6 & 3 & -5 \\ 0 & 0 & 15 & -1 \end{bmatrix} \begin{array}{c} x + 2y - z = 2 & (3) \\ -6y + 3z = -5 & (2) \\ 15z = -1 & (1) \end{array}$$

$$(1) \rightarrow z = -\frac{1}{15}$$

(2)
$$\rightarrow$$
 $-6y = -5 + \frac{1}{5}$
 $-6y = -\frac{24}{5}$

$$\therefore Solution: \left(\frac{1}{3}, \frac{4}{5}, -\frac{1}{15}\right)$$

Use augmented elimination to solve linear system
$$\begin{cases} x_1 - 5x_2 + 2x_3 - 2x_4 = 4 \\ x_2 - 3x_3 - x_4 = 0 \\ 3x_1 + 2x_3 - x_4 = 6 \\ -4x_1 + x_2 + 4x_3 + 2x_4 = -3 \end{cases}$$

$$\begin{bmatrix} 1 & -5 & 2 & -2 & | & 4 \\ 0 & 1 & -3 & -1 & | & 0 \\ 3 & 0 & 2 & -1 & | & 6 \\ -4 & 1 & 4 & 2 & | & -3 \end{bmatrix} R_3 - 3R_1 \qquad \frac{3}{0} \quad \frac{2}{0} \quad \frac{-15}{0} \quad \frac{-6}{0} \quad \frac{-4}{0} \quad \frac{1}{0} \quad \frac{4}{0} \quad \frac{2}{0} \quad \frac{-8}{0} \quad \frac{-8}{0} \quad \frac{16}{0} \quad \frac{-19}{12} \quad \frac{12}{-6} \quad \frac{-6}{13}$$

$$\begin{bmatrix} 1 & -5 & 2 & -2 & | & 4 \\ 0 & 1 & -3 & -1 & | & 0 \\ 0 & 15 & -4 & 5 & | & -6 \\ 0 & -19 & 12 & -6 & | & 13 \end{bmatrix} R_3 - 15R_2 \qquad 0 \quad 15 \quad -4 \quad 5 \quad -6 \qquad 0 \quad -19 \quad 12 \quad -6 \quad 13 \quad \frac{-15}{0} \quad \frac{-15}{0} \quad \frac{45}{0} \quad \frac{15}{0} \quad \frac{-15}{0} \quad \frac{45}{0} \quad \frac{15}{0} \quad \frac{-15}{0} \quad \frac{45}{0} \quad \frac{-19}{0} \quad \frac{12}{0} \quad -6 \quad \frac{-6}{0} \quad \frac{-19}{0} \quad \frac{-57}{0} \quad -19 \quad 0 \quad \frac{-19}{0} \quad \frac{-15}{0} \quad \frac{-15}{$$

$$(1) \rightarrow x_4 = -\frac{263}{125}$$

$$(2) \to 41x_3 = -6 + \frac{1,052}{25}$$

$$=\frac{902}{25}$$

$$x_3 = \frac{22}{25}$$

$$(3) \to x_2 = \frac{66}{25} - \frac{263}{125}$$
$$= \frac{67}{125}$$

$$(4) \rightarrow x_1 = 4 + \frac{67}{25} - \frac{44}{25} - \frac{526}{125}$$
$$= 4 + \frac{23}{25} - \frac{526}{125}$$
$$= \frac{500 + 115 - 526}{125}$$
$$= \frac{89}{125}$$

∴ Solution:
$$\left(\frac{89}{125}, \frac{67}{125}, \frac{22}{25}, -\frac{263}{125}\right)$$

Use augmented elimination to solve linear system

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 5 \\ x_1 + 2x_2 - x_3 - 2x_4 = -1 \\ x_1 - 3x_2 - 3x_3 - x_4 = -1 \\ 2x_1 - x_2 + 2x_3 - x_4 = -2 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 5 \\ 1 & 2 & -1 & -2 & -1 \\ 1 & -3 & -3 & -1 & -1 \\ 2 & -1 & 2 & -1 & -2 \end{bmatrix} \quad \begin{matrix} R_2 - R_1 \\ R_3 - R_1 \\ R_4 - 2R_1 \\ \end{matrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & -2 & -1 \\ -1 & -1 & -1 & -5 \\ \hline 0 & 1 & -2 & -3 & -6 \end{bmatrix} \quad \begin{matrix} 1 & -3 & -3 & -1 & -1 \\ \hline 0 & -4 & -4 & -2 & -6 \end{matrix} \quad \begin{matrix} 2 & -1 & 2 & -1 & -2 \\ \hline 0 & -3 & 0 & -3 & -12 \end{matrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 5 \\ 0 & 1 & -2 & -3 & -6 \\ 0 & -4 & -4 & -2 & -6 \\ 0 & -3 & 0 & -3 & -12 \end{bmatrix} R_3 + 4R_2 \qquad 0 \quad -4 \quad -4 \quad -2 \quad -6 \\ R_3 + 4R_2 \qquad 0 \quad 0 \quad -12 \quad -14 \quad -30$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 5 \\ 0 & 1 & -2 & -3 & -6 \\ 0 & 0 & -12 & -14 & -30 \\ 0 & 0 & -6 & -12 & -30 \end{bmatrix} \quad -2R_4 + R_3$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 5 \\ 0 & 1 & -2 & -3 & -6 \\ 0 & 0 & -12 & -14 & -30 \\ 0 & 0 & 0 & 10 & 30 \end{bmatrix} \begin{array}{c} x_1 + x_2 + x_3 + x_4 = 5 & (4) \\ x_2 - 2x_3 - 3x_4 = -6 & (3) \\ -12x_3 - 14x_4 = -30 & (2) \\ 10x_4 = 30 & (1) \end{bmatrix}$$

$$(1) \rightarrow x_4 = 3$$

$$(2) \rightarrow -12x_3 = -30 + 42$$

$$= 12$$

$$x_3 = -1$$

$$(3) \rightarrow x_2 = -6 - 2 + 9$$
$$= 1$$

$$(4) \rightarrow x_1 = 5 - 1 + 1 - 3$$
$$= 2$$

∴ Solution:
$$(2, 1, -1, 3)$$

Use augmented elimination to solve linear system

$$2x + 8y - z + w = 0$$

$$4x + 16y - 3z - w = -10$$

$$-2x + 4y - z + 3w = -6$$

$$-6x + 2y + 5z + w = 3$$

$$\begin{bmatrix} 2 & 8 & -1 & 1 & 0 \\ 4 & 16 & -3 & -1 & -10 \\ -2 & 4 & -1 & 3 & -6 \\ -6 & 2 & 5 & 1 & 3 \end{bmatrix} \quad \begin{matrix} R_2 - 2R_1 \\ R_3 + R_1 \\ R_4 + 3R_1 \end{matrix}$$

$$\begin{bmatrix} 2 & 8 & -1 & 1 & 0 \\ 0 & 12 & -2 & 4 & -6 \\ 0 & 0 & -1 & -3 & -10 \\ 0 & 26 & 2 & 4 & 3 \end{bmatrix} \ R_4 - \frac{13}{6} R_2$$

$$\begin{bmatrix} 2 & 8 & -1 & 1 & 0 \\ 0 & 0 & -1 & -3 & -10 \\ 0 & 12 & -2 & 4 & -6 \\ 0 & 26 & 2 & 4 & 3 \end{bmatrix}$$
 Interchange R_2 and R_3

$$\begin{bmatrix} 2 & 8 & -1 & 1 & 0 \\ 0 & 12 & -2 & 4 & -6 \\ 0 & 0 & -1 & -3 & -10 \\ 0 & 0 & \frac{19}{3} & -\frac{14}{3} & 16 \end{bmatrix} R_4 + \frac{19}{3}R_3$$

$$\begin{bmatrix} 2 & 8 & -1 & 1 & 0 \\ 0 & 12 & -2 & 4 & -6 \\ 0 & 0 & -1 & -3 & -10 \\ 0 & 0 & 0 & -\frac{71}{3} & -\frac{142}{3} \end{bmatrix} \quad \begin{array}{c} 2x + 8y - z + w = 0 & (3) \\ 12y - 2z + 4w = -6 & (2) \\ -z - 3w = -10 & (1) \\ -\frac{71}{3}w = -\frac{142}{3} \rightarrow w = 2 \end{array}$$

$$(1) \rightarrow z = 10 - 3w = 4$$

$$(2) \rightarrow 12y = 2z - 4w - 6$$

$$y = -\frac{1}{2}$$

$$(3) \rightarrow 2x = -8y + z - w$$
$$2x = 4 + 4 - 2$$
$$x = 3$$

∴ Solution:
$$(3, -\frac{1}{2}, 4, 2)$$

Use augmented elimination to solve linear system
$$\begin{cases} 2x_1 + x_2 + 3x_3 = 0 \\ x_1 + 2x_2 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

Solution

$$\begin{cases} x_1 = -2x_2 \\ x_3 = -x_2 \end{cases}$$

$$2x_1 + x_2 + 3x_3 = 0$$

$$-4x_2 + x_2 - 3x_2 = 0 \rightarrow \underline{x_2 = 0}$$

 $\therefore Solution: (0, 0, 0)$

Exercise

Use augmented elimination to solve linear system

$$2x + 2y + 4z = 0$$

$$-y - 3z + w = 0$$

$$3x + y + z + 2w = 0$$

$$x + 3y - 2z - 2w = 0$$

Solution

$$\begin{bmatrix} 2 & 2 & 4 & 0 & 0 \\ 0 & -1 & -3 & 1 & 0 \\ 3 & 1 & 1 & 2 & 0 \\ 1 & 3 & -2 & -2 & 0 \end{bmatrix} \begin{array}{c} -R_2 \\ 2R_3 - 3R_1 \\ 2R_4 - R_1 \end{array}$$

$$\begin{bmatrix} 2 & 2 & 4 & 0 & 0 \\ 0 & 1 & 3 & -1 & 0 \\ 0 & -4 & -10 & 4 & 0 \\ 0 & 4 & -8 & -4 & 0 \end{bmatrix} \quad \begin{matrix} R_3 + 4R_2 \\ R_4 - 4R_2 \end{matrix}$$

$$\begin{bmatrix} 2 & 2 & 4 & 0 & 0 \\ 0 & 1 & 3 & -1 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & -20 & 0 & 0 \end{bmatrix} \xrightarrow{2x + 2y - 4z = 0} (1)$$

$$y + 3z - w = 0 (2)$$

$$\rightarrow \underline{z = 0}$$

$$(2) \rightarrow y = w$$

(1)
$$\rightarrow 2x = -2y$$
 $x = -w$

∴ Solution: (-w, w, 0, w)

Use augmented elimination to solve linear system

$$\begin{cases} 2x + z + w = 5 \\ y - w = -1 \end{cases}$$
$$3x - z - w = 0$$
$$4x + y + 2z + w = 9$$

Solution

$$\begin{bmatrix} 2 & 0 & 1 & 1 & 5 \\ 0 & 1 & 0 & -1 & -1 \\ 3 & 0 & -1 & -1 & 0 \\ 4 & 1 & 2 & 1 & 9 \end{bmatrix} \begin{array}{c} 2R_3 - 3R_1 \\ 2R_4 - 4R_1 \end{array}$$

$$\begin{bmatrix} 2 & 0 & 1 & 1 & 5 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & -5 & -5 & -15 \\ 0 & 2 & 0 & -2 & -2 \end{bmatrix} R_4 - 2R_2$$

$$\begin{bmatrix} 2 & 0 & 1 & 1 & 5 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & -5 & -5 & -15 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} 2x + z + w = 5 \quad (1)$$

$$y - w = -1 \quad (2)$$

$$-5z - 5w = -15 \quad (3)$$

$$\begin{bmatrix} 2 & 0 & 1 & 1 & 5 & 2x+z+w=5 & (1) \\ 0 & 1 & 0 & -1 & -1 & v-w=-1 & (2) \end{bmatrix}$$

$$\begin{vmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & -5 & -5 & -15 & -5z - 5w = -15 & (3) \end{vmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(2) \rightarrow y = 1 + w$$

$$(3) \to \underline{z = 3 - w}$$

$$(2) \rightarrow \underbrace{y = 1 + w}$$

$$(3) \rightarrow \underbrace{z = 3 - w}$$

$$(1) \rightarrow 2x = 5 - (3 - w) - w \Rightarrow \underline{x = 1}$$

Solution: (1, 1+w, 3-w, w)

Exercise

Use augmented elimination to solve linear system

$$\begin{cases} 4y + z = 20\\ 2x - 2y + z = 0\\ x + z = 5\\ x + y - z = 10 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & -1 & | & 10 \\ 2 & -2 & 1 & | & 0 \\ 1 & 0 & 1 & | & 5 \\ 0 & 4 & 1 & | & 20 \end{bmatrix} \quad \begin{matrix} R_2 - 2R_1 \\ R_3 - R_1 \end{matrix}$$

$$\begin{bmatrix} 1 & 1 & -1 & | & 10 \\ 0 & -4 & 3 & | & -20 \\ 0 & -1 & 2 & | & -5 \\ 0 & 4 & 1 & | & 20 \end{bmatrix} \xrightarrow{AR_3 - R_2} AR_4 + R_2$$

$$\begin{bmatrix} 1 & 1 & -1 & | & 10 \\ 0 & -4 & 3 & | & -20 \\ 0 & 0 & 5 & | & 0 \\ 0 & 0 & 4 & | & 0 \end{bmatrix} \xrightarrow{x + y = 10} \xrightarrow{Ay = -20} Ay = -20$$

$$\Rightarrow z = 0$$

 \therefore Solution: (5, 5, 0)

Exercise

Solve the linear system by Gauss-Jordan elimination.

$$\begin{cases} x - y + 2z - w = -1 \\ 2x + y - 2z - 2w = -2 \\ -x + 2y - 4z + w = 1 \\ 3x - 3w = -3 \end{cases}$$

$$\begin{bmatrix} 1 & 2 & 1 & 8 \\ -1 & 3 & -2 & 1 \\ 3 & 4 & -7 & 10 \end{bmatrix} \quad \begin{matrix} R_2 + R_1 \\ R_3 - 3R_1 \end{matrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & 8 \\ 0 & 5 & -1 & 9 \\ 0 & -2 & -10 & -14 \end{bmatrix} \quad 5R_3 + 2R_2$$

$$\begin{bmatrix} 1 & 2 & 1 & 8 \\ 0 & 5 & -1 & 9 \\ 0 & 0 & -52 & -52 \end{bmatrix} \begin{array}{c} x + 2y + z = 8 & (3) \\ 5y - z = 9 & (2) \\ -52z = -52 & (1) \end{array}$$

(1)
$$\Rightarrow$$
 $z=1$

(2)
$$\Rightarrow$$
 5 $y = 9 + 1 = 10 \rightarrow y = 2$

$$(3) \Rightarrow x = 8 - 4 - 1 = 3$$

$$\therefore Solution: (3, 2, 1)$$

Solve the linear system by Gauss-Jordan elimination.

$$\begin{cases} 2u - 3v + w - x + y = 0 \\ 4u - 6v + 2w - 3x - y = -5 \\ -2u + 3v - 2w + 2x - y = 3 \end{cases}$$

Solution

$$\begin{bmatrix} 2 & -3 & 1 & -1 & 1 & 0 \\ 4 & -6 & 2 & -3 & -1 & -5 \\ -2 & 3 & -2 & 2 & -1 & 3 \end{bmatrix} \begin{array}{c} R_2 - 2R_1 \\ R_3 + R_1 \end{array}$$

$$\begin{bmatrix} 2 & -3 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -3 & -5 \\ 0 & 0 & -1 & 1 & 0 & 3 \end{bmatrix} \qquad 2u - 3v + w - x + y = 0 \quad (3)$$
$$-x - 3y = -5 \quad (2)$$
$$-w + x = 3 \quad (1)$$

(2)
$$\Rightarrow x = 5 - 3y$$

(1)
$$\Rightarrow$$
 $w = x - 3 = 2 - 3y$

(3)
$$\Rightarrow 2u = 3v - 2 + 3y + 5 - 3y - y = 3v - y + 3$$

$$u = \frac{3}{2}v - \frac{1}{2}y + \frac{3}{2}$$

∴ Solution:
$$\left(\frac{3}{2}v - \frac{1}{2}y + \frac{3}{2}, v, 2 - 3y, 5 - 3y, y\right)$$

Exercise

Use augmented elimination to solve linear system
$$\begin{cases} 6x_3 + 2x_4 - 4x_5 - 8x_6 = 8 \\ 3x_3 + x_4 - 2x_5 - 4x_6 = 4 \\ 2x_1 - 3x_2 + x_3 + 4x_4 - 7x_5 + x_6 = 2 \\ 6x_1 - 9x_2 + 11x_4 - 19x_5 + 3x_6 = 1 \end{cases}$$

$$\begin{bmatrix} 2 & -3 & 1 & 4 & -7 & 1 & 2 \\ 0 & 0 & 3 & 1 & -2 & -4 & 4 \\ 0 & 0 & 6 & 2 & -4 & -8 & 8 \\ 6 & -9 & 0 & 11 & -19 & 3 & 1 \end{bmatrix} \quad R_4 - 3R_1$$

$$\begin{bmatrix} 2 & -3 & 1 & 4 & -7 & 1 & 2 \\ 0 & 0 & 3 & 1 & -2 & -4 & 4 \\ 0 & 0 & 6 & 2 & -4 & -8 & 8 \\ 0 & 0 & -3 & -1 & 2 & 0 & -5 \end{bmatrix} \quad R_3 - 2R_2$$

$$R_4 + R_2$$

$$\begin{bmatrix} 0 & 0 & 3 & 1 & -2 & -4 & 4 \\ 0 & 0 & 6 & 2 & -4 & -8 & 8 \\ 0 & 0 & -3 & -1 & 2 & 0 & -5 \end{bmatrix} \quad \begin{matrix} R_3 - 2R_2 \\ R_4 + R_2 \end{matrix}$$

$$\begin{cases} 3x_3 = 5 - x_4 + 2x_5 \\ 2x_1 = \frac{7}{4} + 3x_2 - \frac{1}{3}(5 - x_4 + 2x_5) - 4x_4 + 7x_5 \\ \frac{x_3 = \frac{5}{3} - \frac{1}{3}x_4 + \frac{2}{3}x_5}{2x_1 = \frac{1}{12} + 3x_2 - \frac{11}{3}x_4 + \frac{19}{3}x_5 \end{cases}$$

Use augmented elimination to solve linear system
$$\begin{cases} 3x_1 + 2x_2 - x_3 = -15 \\ 5x_1 + 3x_2 + 2x_3 = 0 \\ 3x_1 + x_2 + 3x_3 = 11 \\ -6x_1 - 4x_2 + 2x_3 = 30 \end{cases}$$

$$\begin{bmatrix} 3 & 2 & -1 & | & -15 \\ 5 & 3 & 2 & | & 0 \\ 3 & 1 & 3 & | & 11 \\ -6 & -4 & 2 & | & 30 \end{bmatrix} \xrightarrow{3R_2 - 5R_1} \begin{array}{c} 3R_2 - 5R_1 \\ R_3 - R_1 \\ R_4 + 2R_1 \end{array}$$

$$\begin{bmatrix} 3 & 2 & -1 & | & -15 \\ 0 & -1 & 11 & | & 75 \\ 0 & -1 & 4 & | & 26 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \quad R_3 - R_2$$

$$\begin{bmatrix} 3 & 2 & -1 & | & -15 \\ 0 & -1 & 11 & | & 75 \\ 0 & 0 & -7 & | & -49 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \qquad \begin{array}{c} 3x_1 + 2x_2 - x_3 = -15 & (3) \\ -x_2 + 11x_3 = 75 & (2) \\ -7x_3 = -49 & (1) \end{array}$$

$$(1) \rightarrow x_3 = 7$$

(2)
$$\rightarrow x_2 = 77 - 75 = 2$$

(1)
$$\rightarrow 3x_1 = -15 - 4 + 7 = 12 \implies x_1 = -4$$

 $\therefore Solution: (-4, 2, 7)$

Exercise

Use augmented elimination to solve linear system

$$\begin{cases} x_1 + 3x_2 - 2x_3 & +2x_5 = 0 \\ 2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = -1 \\ 5x_3 + 10x_4 & +15x_6 = 5 \\ 2x_1 + 6x_2 & +8x_4 + 4x_5 + 18x_6 = 6 \end{cases}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 2 & 6 & 0 & 8 & 4 & 18 & 6 \end{bmatrix} \quad R_2 - 2R_1$$

$$\begin{bmatrix} 2 & 6 & 0 & 8 & 4 & 18 & 6 \end{bmatrix} \quad R_4 - 2R_4$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & -2 & 0 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 0 & 0 & 4 & 8 & 0 & 18 & 6 \end{bmatrix} - R_2$$

$$\begin{bmatrix} 0 & 0 & -1 & -2 & 0 & -3 & -1 & -R \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 5 & 10 & 0 & 15 & 5 \end{bmatrix}$$
 $\begin{bmatrix} R_3 - 5R_3 \end{bmatrix}$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 0 & 0 & 4 & 8 & 0 & 18 & 6 \end{bmatrix} \begin{array}{c} R_3 - 5R_2 \\ R_4 - 4R_2 \end{array}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} R_2 - 3R_3$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{cases} x_1 + 3x_2 & +4x_4 + 2x_5 & = 0 \\ x_3 + 2x_4 & = 0 \\ & +x_6 = \frac{1}{3} \end{cases}$$

The general solution of the system: $x_6 = \frac{1}{3}$, $x_3 = -2x_4$, $x_1 = -3x_2 - 4x_4 - 2x_5$

Solution:
$$\left(-3x_2 - 4x_4 - 2x_5, x_2, -2x_4, x_4, x_5, \frac{1}{3}\right)$$

Exercise

Add 3 times the second row to the first of $\begin{bmatrix} 7 & 3 & -2 \\ 8 & 1 & 2 \\ 6 & 0 & -1 \end{bmatrix}$

$$\begin{bmatrix} 5 & -1 & 5 \\ 7 & 3 & -2 \\ 8 & 1 & 2 \\ 6 & 0 & -1 \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$EA = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & -1 & 5 \\ 7 & 3 & -2 \\ 8 & 1 & 2 \\ 6 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 27 & 8 & -1 \\ 7 & 3 & -2 \\ 8 & 1 & 2 \\ 6 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 5 & -1 & 5 \\ 7 & 3 & -2 \\ 8 & 1 & 2 \\ 6 & 0 & -1 \end{bmatrix} \quad \begin{matrix} R_1 + 3R_2 \\ = \begin{bmatrix} 27 & 8 & -1 \\ 7 & 3 & -2 \\ 8 & 1 & 2 \\ 6 & 0 & -1 \end{bmatrix}$$

For what value(s) of k, if any, does the system $\begin{cases} x + y - z = 1 \\ 2x + 3y + kz = 3 \text{ have } \\ x + ky + 3z = 2 \end{cases}$

- a) A unique solution?
- b) Infinitely many solutions?
- c) No solution?

Solution

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 2 & 3 & k & 3 \\ 1 & k & 3 & 2 \end{bmatrix} \xrightarrow{R_2 - 2R_1} R_3 - R_1$$

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & k+2 & 1 \\ 0 & k-1 & 4 & 1 \end{bmatrix} \xrightarrow{R_3 - (k-1)R_2} x = 1 - y + z$$

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & k+2 & 1 \\ 0 & 0 & 4 - (k-1)(k+2) & 2 - k \end{bmatrix} \xrightarrow{y = 1 - (k+2)z} y = 1 - (k-2)$$

$$\begin{cases} z = -\frac{k-2}{-(k-2)(k+3)} = \frac{1}{k+3} & (k \neq 2, -3) \\ y = 1 - \frac{k+2}{k+3} = \frac{1}{k+3} \\ \frac{x = |\frac{k+2}{k+3} + \frac{1}{k+3} = 1|}{k+3} \end{bmatrix}$$

- a) Unique solution if $k \neq 2, -3$
- **b)** Infinitely solution if k = 2
- c) No solution if k = -3

Exercise

Choose a coefficient b that makes the system singular.

$$\begin{cases} 3x + 4y = 16 \\ 4x + by = g \end{cases}$$

Then choose a right-hand side *g* that makes it solvable. Find 2 solutions in that singular case.

$$\begin{pmatrix} 3 & 4 & 16 \\ 4 & b & g \end{pmatrix}_{3R_2 - 4R_1} \rightarrow \begin{pmatrix} 3 & 4 & 16 \\ 0 & 3b - 16 & 3g - 64 \end{pmatrix}$$

So, the system is singular if

$$3b - 16 = 0 \quad \Rightarrow \quad b = \frac{16}{3}$$

&
$$3g - 64 = 0 \implies g = \frac{64}{3}$$

$$\begin{cases} 3x + 4y = 16 \\ 4x + \frac{16}{3}y = \frac{64}{3} \end{cases} \rightarrow \frac{3x + 4y = 16}{3}$$

If
$$\begin{cases} x = 0 \rightarrow y = 4 \\ x = 4 \rightarrow y = 1 \end{cases}$$

Exercise

This system us not linear, in some sense,

$$\begin{cases} 2\sin\alpha - \cos\beta + 3\tan\theta = 3\\ 4\sin\alpha + 2\cos\beta - 2\tan\theta = 10\\ 6\sin\alpha - 3\cos\beta + \tan\theta = 9 \end{cases}$$

Does the system have a solution?

Solution

$$\begin{bmatrix} 2 & -1 & 3 & 3 \\ 4 & 2 & -2 & 10 \\ 6 & -3 & 1 & 9 \end{bmatrix} \quad \begin{matrix} R_2 - 2R_1 \\ R_3 - 3R_1 \end{matrix}$$

$$\begin{bmatrix} 2 & -1 & 3 & 3 \\ 0 & 4 & -8 & 4 \\ 0 & 0 & -8 & 0 \end{bmatrix} \quad \begin{aligned} 2\sin\alpha &= 3 + \cos\beta \\ 4\cos\beta &= 4 \\ \tan\theta &= 0 \end{aligned}$$

$$\begin{cases} \sin \alpha = \frac{3}{2} + \frac{1}{2} = 2 \\ \cos \beta = 1 \\ \tan \theta = 0 \end{cases}$$

The system has *no* solution since $\sin \alpha$ cannot be equal 2. $(-1 \le \sin \alpha \le 1)$