Numerikus módszerek 1.

Bevezető

Krebsz Anna

ELTE IK

Elérhetőségek

Dr. Krebsz Anna docens, ELTE IK Numerikus Analízis tanszék

e-mail: krebsz@inf.elte.hu

honlap: http://numanal.inf.elte.hu/~ krebsz

szoba: 2-302.

Technikai információk

Tárgy: Numerikus módszerek 1. előadás

Prog. inf. BSc

Kód: IP-08abcNM1E (IK)

Félév: 2017/2018 ősz

Helyszín: Déli tömb, 0-823. Kitaibel terem és

0-821. Bolyai terem

Időpont: Szerdán 8:10 - 9:50-ig és

14:10 - 15:50-ig 10 perc szünettel

Miről szól ez a tárgy?

A numerikus analízis célja olyan módszerek kidolgozása és elemzése, amelyek matematikai illetve műszaki, természettudományos problémák pontos vagy közelítő számítógépes megoldását célozzák meg. Az első két félévben a lineáris algebra és az analízis numerikus módszereit tárgyaljuk.

Alkalmazások...

Tematika

- 1. félév.
 - Gépi számábrázolás. Hibaszámítás.
 - Lineáris egyenletrendszerek megoldása (direkt / iteratív).
 (Gauss-elimináció, LU-felbontás, LDU-felbontás, Cholesky-felbontás,
 QR-felbontás Gram-Schmidt-ortogonalizációval és
 Householder-transzformációval, mátrixnormák, Banach-féle fixponttétel,
 Jacobi-iteráció, Gauss-Seidel-iteráció, Richardson-iteráció)
 - Nemlineáris egyenletek megoldása. (intervallumfelezés, fixpont iterációk, Newton-módszer, szelőmódszer, húrmódszer)
 - Polinomok gyökeinek becslése. Horner-algoritmus a polinom és deriváltjainak helyettesítései értékeinek számítására.

2 II. félév

- Sajátértékfeladatok megoldása (csak A szakirányon)
- Interpoláció, approximáció
- Numerikus integrálás

Irodalom, segédanyagok

Könyvek, jegyzetek (Numerikus analízis, Numerikus módszerek)

- Gergó Lajos
- Stoyan Gisbert
- Móricz Ferenc
- Linalg: Csörgő István

Elektronikus segédanyagok:

- Előadás diasorai a Neptun Meet Street-jén.
- Példatár: Krebsz–Bozsik
- A Numerikus Analízis Tanszék, illetve oktatóinak honlapján: http://numanal.inf.elte.hu/~{hegedus,krebsz,laszlo,soveg}

Az előadás terve

Példák kézzel és Matlab-ban. (A legtöbb gépteremben legálisan hozzáférhető, lehet vele ismerkedni. Az A szakirányon a következő félévben kötelező.)

Előadás diasorok. (Elérhetőek lesznek a Neptun Meet Street-jén. Definíciók, tételek, bizonyítások, példák. Néha krétás kiegészítés a táblán.)

Követelmények

- Gyakorlati jegy
 - két évfolyam zh-ból és
 - beadható HF-ból,
 - részletek a gyakorlaton.
- Vizsga.
 - "beugró": 15 pontból legalább 8-at kell elérni (20 perc), a kérdések és válaszok elérhetőek a honlapon.
 - "szóbeli vizsga": egy tétel részletes kidolgozása.
 A három részkérdésből két egyszerű és egy csilaggal jelölt. Az elégségeshez az egyszerű részek közül az egyik (lényegében) hiánytalan kidolgozása, megértése szükséges. A csillaggal jelölt kérdést csak jó és jeles jegyért kérjük. A *-os rész nem választható az elégséges teljesítéséhez.
 - Az írásbel és szóbeli együtt adja a vizsga jegyét.

Kérdések?

Kérdések?

A matematikai modellezés (kör) folyamata és a hibaforrások megjelenése

- A valóság egy részét vizsgálva igyekszünk a jelenséget fizikai, kémiai, stb. törvények alapjén matematikailag leírni, egy lehetséges matematikai modellt megalkotni. Ez általában az adott tudományterületen dolgozó szakember feladata a rendelkezésre álló törvények, elvek felhasználásával. A valóságot csak közelíteni tudja, ezzel megjelenik a modellhiba.
- A modell pontos megoldása gyakran nem állítható elő véges lépésben, közelítő módszerekre van szükségünk. Elkészül a program, a végtelen eljárást végessel helyettesítjük, az itt meg jelenő hibát képlethibának nevezzük.

A matematikai modellezés (kör) folyamata és a hibaforrások megjelenése

- A modell bemenő paraméterei általában mérési adatok, melyek pontatlanok, itt megjelenik a mérési (vagy öröklött) hiba.
- A közelítő módszer bemenő adatait véges aritmetikában ábrázoljuk, ezzel megjelenik az input hiba.
- A véges aritmetikában történő számolás során kerekítés, túlilletve alulcsordulás léphet fel. Ezek a műveleti (kerekítési) hibák.
- A megvalósított közelítő módszert teszteljük és összehasonlítjuk a várt eredménnyel. Ha a kapott eredmény rossz, akkor elölről kezdjük az egyes lépések finomításával.

A rezgő húr problémája

Húzzunk ki egy egységnyi hosszú rugalmas fémszálat és rögzítsük a végpontjait. Feszítsük meg, t=0 időpontban engedjük el és hagyjuk rezegni.

Feladat: a rugalmas szál rezgésének meghatározása, vagyis az u(x,t) elmozdulás meghatározása az x pontban és t>0 időpontban.

A rezgő húr problémája

Fizikai feltételek:

- **1** A szál tömegeloszlása homogén $(\varrho(x) \equiv \varrho)$.
- **2** A szál tökéletesen rugalmas, azaz a szálban feszítő erő (T(x)) érintő irányú.
- 3 A nehézségi erő szálra gyakorolt hatását elhanyagoljuk.
- **4** A szálra ható kitérítő erő (F(x)) függőleges irányú és nem túl nagy.

• Az erők vízszintes komponesei kiegyenlítik egymást:

$$T(x)\cos(\alpha(x)) = T(x + \Delta x)\cos(\alpha(x + \Delta x)) = V(\text{állandó})$$

Ha V nem állandó, akkor elmozdul a szál (a 4. feltétel nem teljesül).

• Az x és $x+\Delta x$ pontokban ébredő feszítő erők függőleges komponenseinek különbsége az $x+\frac{\Delta x}{2}$ pontban ható kitérítő erőt egyenlíti ki:

$$F\left(x + \frac{\Delta x}{2}\right) = T(x + \Delta x)\sin(\alpha(x + \Delta x)) - T(x)\sin(\alpha(x)) \approx$$

$$\approx \underbrace{(\Delta x \cdot \varrho)}_{\text{t\"{o}meg}} \underbrace{\frac{\partial^2 u}{\partial t^2}(x, t)}_{\text{gyorsul\'{a}s}} = m \cdot a$$

A kapott egyenletet osszuk le V-vel:

$$\frac{T(x + \Delta x)\sin(\alpha(x + \Delta x))}{T(x + \Delta x)\cos(\alpha(x + \Delta x))} - \frac{T(x)\sin(\alpha(x))}{T(x)\cos(\alpha(x))} \approx \frac{(\Delta x \cdot \varrho)}{V} \frac{\partial^2 u}{\partial t^2}(x, t)$$

$$\tan(\alpha(x + \Delta x)) - \tan(\alpha(x)) \approx \frac{(\Delta x \cdot \varrho)}{V} \frac{\partial^2 u}{\partial t^2}(x, t)$$

$$\frac{\partial u}{\partial x}(x + \Delta x, t) - \frac{\partial u}{\partial x}(x, t) \approx \frac{(\Delta x \cdot \varrho)}{V} \frac{\partial^2 u}{\partial t^2}(x, t)$$

Leosztunk Δx -szel

$$\frac{\frac{\partial u}{\partial x}(x + \Delta x, t) - \frac{\partial u}{\partial x}(x, t)}{\Delta x} \approx \frac{\varrho}{V} \frac{\partial^2 u}{\partial t^2}(x, t).$$

 $\Delta x \rightarrow 0$ esetén a

$$\frac{\partial^2 u}{\partial x^2}(x,t) = \frac{\varrho}{V} \cdot \frac{\partial^2 u}{\partial t^2}(x,t)$$

hiperbolikus differenciálegyeletet kapjuk.

Kiegészítjük a kezdeti feltételekkel és peremfeltételekkel:

$$u(0,t)=0$$

$$u(1,t)=1$$

$$u(x,0)=s(x): \quad ext{a szál alakja kezdetben}$$

$$\frac{\partial u}{\partial t}(x,t_0)=v(x)$$
: az elengedés pillanatában a kezdősebesség.

További egyszerűsítéseket teszünk, csak az időtől független speciális esettel foglalkozunk a továbbiakban.

Stacionárius eset:

$$t_0$$
: egy adott időpillanat, $U(x):=u(x,t_0)$ $A(x):=rac{arrho}{V}\cdotrac{\partial^2 u}{\partial t^2}(x,t_0)$ a de. jobboldala

Ekkor a következő elliptikus de-t kapjuk:

$$\frac{\partial^2 U}{\partial x^2}(x) = A(x)$$

$$U(0) = U(1) = 0.$$

A de. numerikus megoldása véges differencia módszerrel:

Elkészítjük a [0;1] intervallum N részre történő egyenletes felosztását:

$$h = \frac{1}{N}, \quad x_i = ih \ (i = 0, \dots, N)$$

$$x_0 \quad x_1 \quad x_2 \qquad x_{N-1} x_N$$

Ezekben a diszkrét pontokban felhasználjuk a jobboldali függvény értékét $A_i := A(x_i)$ és a megoldást is ezekben a pontokban keressük $u_i := U(x_i)$.

Tegyük fel, hogy a pontos megoldás $U \in D^3(0;1)$ és alkalmazzuk a Taylor-formulát:

$$U(x + h) = U(x) + U'(x)h + \frac{1}{2}U''(x)h^2 + \frac{1}{3!}U'''(\xi_1)h^3$$

$$U(x - h) = U(x) - U'(x)h + \frac{1}{2}U''(x)h^2 - \frac{1}{3!}U'''(\xi_2)h^3$$

Összeadva és átrendezve

$$U(x+h) + U(x-h) = 2U(x) + U''(x)h^2 + \frac{1}{3!}h^3(U'''(\xi_1) - U'''(\xi_2))$$

$$\frac{U(x+h)-2U(x)+U(x-h)}{h^2}=U''(x)+\frac{h}{6}(U'''(\xi_1)-U'''(\xi_2))$$

Ezzel megkaptuk az $U''(x) = \frac{\partial^2 U}{\partial x^2}(x)$ operátor 3 pontos közelítő sémáját:

$$\frac{U(x+h)-2U(x)+U(x-h)}{h^2}\approx U''(x).$$

Ahogy láttuk a fenti képletben a közelítés hibája h-val arányos.

A diszkretizált pontokat behelyettesítve a következő LER-t kapjuk:

$$\frac{U(x_{i+1})-2U(x_i)+U(x_{i-1})}{h^2}=A(x_i) \quad (i=1,\ldots,N-1)$$

$$U(x_0)=U(x_N)=0.$$

A bevezetett jelölésekkel:

$$u_{i+1} - 2u_i + u_{i-1} = h^2 A_i$$
 $(i = 1, ..., N-1)$
 $u_0 = u_N = 0.$

Mátrix alakban

$$\begin{bmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \dots & 0 \\ \ddots & \ddots & \ddots & & \vdots \\ 0 & \dots & 0 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_{N-1} \end{bmatrix} = -h^2 \cdot \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ \vdots \\ A_{N-1} \end{bmatrix}$$

 $(N-1) \times (N-1)$ méretű LER (lineáris egyenletrendszer). Megoldása a gyors Gauss-eliminációval (progonka módszerrel) történik, lásd a félév során.

Numerikus módszerek 1.

1. előadás: Gépi számábrázolás, Hibaszámítás

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 "Furcsa" jelenségek...

2 Gépi számok: a lebegőpontos számok egy modellje

3 A hibaszámítás elemei

Tartalomjegyzék

1 "Furcsa" jelenségek...

Q Gépi számok: a lebegőpontos számok egy modellje

3 A hibaszámítás elemei

Mennyi $sin(\pi)$ értéke?

1.224646799147353e-016

Mennyi
$$\sum_{k=1}^{+\infty} \frac{1}{k}$$
 értéke?

Mennyi az *n*-edik részletösszeg, valamely nagy *n*-re? $\left(\sum_{k=1}^{n} \frac{1}{k}\right)$

Összegezhetünk oda vagy vissza ...

$$n = 100000000$$
-re

18.997896413852555

18.997896413853447

Mennyi $\sqrt{2017} - \sqrt{2016}$ értéke? Más alakban is számolható:

$$\sqrt{2017} - \sqrt{2016} = (\sqrt{2017} - \sqrt{2016}) \cdot \frac{\sqrt{2017} + \sqrt{2016}}{\sqrt{2017} + \sqrt{2016}} =
= \frac{2017 - 2016}{\sqrt{2017} + \sqrt{2016}} = \frac{1}{\sqrt{2017} + \sqrt{2016}}.$$

Próbáljuk ki mindkét számolási módot!

0.011134504483941 0.016926965158418

4. furcsa jelenség Matlab-ban

A Matlab-ban

$$a = 1e - 20 (= 10^{-20}), b = 1.$$

Mennyi lesz a + b értéke?

1

Igaz-e az asszociativatás a Matlab-ban?

$$(a+b)-b, \ a+(b-b)=?$$

Próbáljuk ki!

1

1.00000000000000e-020

A Matlab-ban mennyi $\cosh(20) - \sinh(20)$ és $\exp(-20)$ értéke?

$$\cosh(20) - \sinh(20) = \frac{\exp(20) + \exp(-20)}{2} - \frac{\exp(20) - \exp(-20)}{2} = \exp(-20)$$

Próbáljuk ki a kétféle számítási módot!

Mennyi a

$$T_n := \int_0^1 f_n(x) = \int_0^1 \frac{x^n}{x+10} dx$$

határozott integrál értéke? Analitikusan nehéz megadni az értékét. (A geometriai szemléltetésből látszik, hogy mindig pozitív és nullához tart az integrál értéke.)

$$T_n := \int_0^1 \frac{x^n}{x+10} dx = \int_0^1 \frac{(x+10-10)x^{n-1}}{x+10} dx =$$

$$= \int_0^1 x^{n-1} dx - 10 \cdot \int_0^1 \frac{x^{n-1}}{x+10} dx = \frac{1}{n} - 10 \cdot T_{n-1}$$

$$T_0 = \int_0^1 \frac{1}{x+10} \, dx = \left[\ln(x+10) \right]_0^1 = \ln(11) - \ln(10) = \ln(1.1)$$

Tehát a rekuzió:

$$T_0 := \ln(1.1), \quad T_n := \frac{1}{n} - 10 \cdot T_{n-1} \ (n = 1, 2...).$$

Számoljuk a kapott rekurzió alapján a T_{20} . tagot Matlab-bal!

Rendezzük át a rekurziót csökkenően:

$$10T_{n-1} = \frac{1}{n} - T_n \quad \Leftrightarrow$$

$$T_{n-1} = \frac{1}{10} \cdot \left(\frac{1}{n} - T_n\right)$$

Indítsuk a rekurziót egy M>>n értékből,

$$T_M := 0, \quad T_{n-1} = \frac{1}{10} \cdot \left(\frac{1}{n} - T_n\right) \quad (n = M, \dots, m+1).$$

Számoljuk a második rekurzió alapján is a \mathcal{T}_{20} . tagot! A két algoritmus közül melyik stabil?

Algoritmus stabilitása

Definíció:

A *numerikus algoritmus* aritmetikai és logikai műveletek véges sorozata.

Definíció:

A numerikus algoritmus stabil, ha létezik olyan C>0 konstans, hogy a kétféle B_1,B_2 bemenő adatból kapott K_1,K_2 kimenő adatokra

$$||K_1 - K_2|| \le C \cdot ||B_1 - B_2||.$$

Példa

A Fibonacci sorozat rekurziója instabil. Lásd gyakorlaton.

Tartalomjegyzék

1 "Furcsa" jelenségek...

2 Gépi számok: a lebegőpontos számok egy modellje

A hibaszámítás elemei

Motiváció

- Gyakorlati és tudományos számításokban sokszor szükségünk van valós számok kezelésére.
- A számítógépeken csak egy véges halmaz elemei közül választhatunk.
- Ráadásul ezek több nagyságrenddel eltérhetnek.

Lebegőpontos számok egy modellje

Lebegőpontos számok, normalizált alak: 324 \rightarrow +0.324 \cdot 10³. Kettes számrendszerben: 101000100 \rightarrow +0.101000100 \cdot 2⁹. Általában: $\pm 0.\underbrace{1 - \dots }_{t \text{ jegy}} \cdot 2^k$ $(k^- \le k \le k^+).$

Definíció: Normalizált lebegőpontos szám

Legyen
$$m=\sum\limits_{i=1}^t m_i\cdot 2^{-i}$$
, ahol $t\in\mathbb{N},\ m_1=1,m_i\in\{\,0,1\,\}.$

Ekkor az $a=\pm m\cdot 2^k$ ($k\in\mathbb{Z}$) alakú számot *normalizált lebegőpontos számnak* nevezzük.

m: a szám *mantisszája*, hossza *t*

k: a szám karakterisztikája, $k^- \le k \le k^+$

Lebegőpontos számok egy modellje

Jelölés:
$$a = \pm [m_1 \dots m_t | k] = \pm 0.m_1 \dots m_t \cdot 2^k$$
.

Jelölés: $M=M(t,k^-,k^+)$ a gépi számok halmaza, adott $k^-,k^+\in\mathbb{Z}$ és $t\in\mathbb{N}$ esetén. (Általában $k^-<0$ és $k^+>0$.)

Definíció: Gépi számok halmaza

$$M(t, k^{-}, k^{+}) =$$

$$= \left\{ a = \pm 2^{k} \cdot \sum_{i=1}^{t} m_{i} \cdot 2^{-i} : \begin{array}{c} k^{-} \leq k \leq k^{+}, \\ m_{i} \in \{0, 1\}, m_{1} = 1 \end{array} \right\} \bigcup \{0\}$$

Gyakorlatban még hozzávesszük: $\infty, -\infty$, NaN,...

Gépi számok tulajdonságai, nevezetes értékei

- 1 $\frac{1}{2} \le m < 1$
- 2 *M* szimmetrikus a 0-ra.
- 3 *M* legkisebb pozitív eleme:

$$\varepsilon_0 = [100...0|k^-] = \frac{1}{2} \cdot 2^{k^-} = 2^{k^- - 1}$$

4 M-ben az 1 után következő gépi szám és 1 különbsége:

$$\varepsilon_1 = [100...01|1] - [100...00|1] = 2^{-t} \cdot 2^1 = 2^{1-t}$$

6 *M* legnagyobb eleme:

$$M_{\infty} = [111...11|k^{+}] = 1.00...00 \cdot 2^{k^{+}} - 0.00...01 \cdot 2^{k^{+}} =$$

= $(1 - 2^{-t}) \cdot 2^{k^{+}}$

6 M elemeinek száma (számossága):

$$|M| = 2 \cdot 2^{t-1} \cdot (k^+ - k^- + 1) + 1$$

Példa gépi számhalmazra

Példa

$$M(3,-1,2)$$
 gépi számainak alakja: ± 0.1 __ $\cdot 2^k$, $(-1 \le k \le 2)$

Elemei
$$k = 0$$
 esetén: 0.100, 0.101, 0.110, 0.111, azaz $\frac{1}{2}$, $\frac{5}{8}$, $\frac{6}{8}$, $\frac{7}{8}$.

Valamint k=-1 esetén ezek fele, k=1 esetén ezek kétszerese, k=2 esetén ezek négyszerese. (Továbbá negatív előjellel...)

$$\varepsilon_0 = [100|-1] = 0.100 \cdot 2^{-1} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25$$

$$\varepsilon_1 = [101|1] - 1 = 0.101 \cdot 2^1 - 1 = \frac{1}{8} \cdot 2 = \frac{1}{4} = 0.25$$

$$M_{\infty} = [111|2] = 0.111 \cdot 2^2 = \frac{7}{8} \cdot 4 = \frac{7}{2} = 3.5$$

$$|M| = 2 \cdot 2^2 \cdot 4 + 1 = 33$$

Példa gépi számhalmazra

float $\sim M(23, -128, 127)$, double $\sim M(52, -1024, 1023)$ bitek, nevezetes értékek?

Valós számok ábrázolása

Hogyan feleltetünk meg egy \mathbb{R} -beli számnak egy gépi számot? Jelöljük \mathbb{R}_M -mel az ábrázolható számok tartományát, azaz $\mathbb{R}_M:=\{x\in\mathbb{R}:\ |x|\leq M_\infty\}.$

Definíció: Input függvény

Az $fl: \mathbb{R}_M \to M$ függvényt input függvénynek nevezzük, ha

$$fl(x) = \begin{cases} 0 & \text{ha } |x| < \varepsilon_0, \\ \tilde{x} & \text{ha } \varepsilon_0 \le |x| \le M_\infty, \end{cases}$$

ahol \tilde{x} az x-hez legközelebbi gépi szám (a kerekítés szabályai szerint).

Valós számok ábrázolása

Tehát már az is egyfajta hibát okoz számításkor, hogy valós számokat számítógépre viszünk...de mekkorát?

Tétel: Input hiba

Minden $x \in \mathbb{R}_M$ esetén

$$|x - fl(x)| \le \begin{cases} \varepsilon_0 & \text{ha } |x| < \varepsilon_0, \\ \frac{1}{2}|x| \cdot \varepsilon_1 & \text{ha } \varepsilon_0 \le |x| \le M_\infty, \end{cases}$$

Következmény: Input hiba

Ha $\varepsilon_0 \leq |x| \leq M_{\infty}$, akkor

$$\frac{|x - f(x)|}{|x|} \le \frac{1}{2} \cdot \varepsilon_1 = 2^{-t}.$$

A hiba tehát lényegében ε_1 -től, azaz t-től függ.

Mennyi a hiba, ha $|x| > M_{\infty}$?

Bizonyítás:

- **1** Ha $|x| < \varepsilon_0$, akkor f(x) = 0, így $|x f(x)| = |x| < \varepsilon_0$.
- **2** Ha $|x| \ge \varepsilon_0$ és $x \in M$, akkor f(x) = x, így |x f(x)| = 0.
- **3** A meggondolandó eset, amikor $|x| \ge \varepsilon_0$ és $x \notin M$.

Elegendő csak pozitív x-ekkel foglalkoznunk a 0-ra való szimmetria miatt. Keressük meg azt a két szomszédos gépi számot:

x' < x < x'' és $x', x'' \in M$, amelyek közrefogják x-et.

Legyen $x' = [1_ ... _|k]$ alakú. Mennyi x' és x'' távolsága?

Ha x-ben az utolsó helyiértékhez 1-et adunk, akkor x''-t kapjuk. Tehát $x'' - x' = 2^{-t} \cdot 2^k = 2^{k-t}$.

Valós számok ábrázolása

Ha x az intervallum első felében van, akkor fl(x)=x', ha a második felében, akkor fl(x)=x''. Ezért x és fl(x) eltérése legfeljebb az intervallum fele, azaz $\frac{1}{2} \cdot 2^k \cdot 2^{-t}$. Vagyis

$$|x-f|(x)|\leq \frac{1}{2}\cdot 2^k\cdot 2^{-t}.$$

Viszont x abszolút értékére, fenti alakját figyelembe véve $0.1 \cdot 2^k = \frac{1}{2} \cdot 2^k \le |x|$ is teljesül, ezért a becslést így folytathatjuk:

$$|x - f(x)| \le |x| \cdot 2^{-t} = \frac{1}{2} \cdot |x| \cdot 2^{1-t} = \frac{1}{2} \cdot |x| \cdot \varepsilon_1.$$

Tartalomjegyzék

1 "Furcsa" jelenségek...

Q Gépi számok: a lebegőpontos számok egy modellje

3 A hibaszámítás elemei

Hibák mérőszámai

Definíció: Hibák jellemzése

Legyen A egy pontos érték, a pedig egy közelítő értéke. Ekkor:

$$\Delta a := A - a$$
 a közelítő érték (pontos) hibája,

$$|\Delta a| := |A - a|$$
 a közelítő érték abszolút hibája,

$$\Delta_a \geq |\Delta a|$$
 az a egy abszolút hibakorlátja,

$$\delta a := \frac{\Delta a}{A} pprox \frac{\Delta a}{a}$$
 az a relatív hibája,

$$\delta_a \ge |\delta a|$$
 az a egy relatív hibakorlátja.

Példa

Vizsgáljuk meg a 3.14 számot mint a π két tizedesjegyre kerekített értékét!

Tétel: az alapműveletek hibakorlátai

$$\begin{split} \Delta_{a\pm b} &= \Delta_a + \Delta_b \\ \Delta_{a\cdot b} &= |b| \cdot \Delta_a + |a| \cdot \Delta_b \\ \Delta_{a/b} &= \frac{|b| \cdot \Delta_a + |a| \cdot \Delta_b}{b^2} \end{split} \qquad \begin{aligned} \delta_{a\pm b} &= \frac{|a| \cdot \delta_a + |b| \cdot \delta_b}{|a \pm b|} \\ \delta_{a\cdot b} &= \delta_a + \delta_b \end{aligned}$$

Megjegyzés: a kapott korlátok két esetben lehetnek nagyságrendileg nagyobbak, mint a kiindulási értékek hibái:

- $oldsymbol{0}$ $\delta_{a\pm b}$ esetén, amikor közeli számokat vonunk ki egymásból.
- $\mathbf{2} \ \Delta_{a/b}$ esetén, amikor kicsi számmal osztunk.

Ezeket az eseteket az algoritmusok implementálásakor el kell kerülni.

Hibák terjedése

Biz.: az összeadást és kivonást azonos előjelű számok között értjük. Az $a\pm b$ hibája

$$\Delta(a\pm b)=(A\pm B)-(a\pm b)=(A-a)\pm(B-b)=\Delta a\pm \Delta b$$

$$|\Delta(a\pm b)|=|\Delta a\pm \Delta b|\leq |\Delta a|+|\Delta b|\leq \Delta_a+\Delta_b=\Delta_{a\pm b}.$$

Biz.: az összeadás, kivonás hibakorlátai

Nézzük a relatív hibát

$$\frac{\Delta(a \pm b)}{a \pm b} = \frac{\Delta a \pm \Delta b}{a \pm b} = \frac{a \cdot \delta a \pm b \cdot \delta b}{a \pm b}$$

$$\frac{|\Delta(a \pm b)|}{|a \pm b|} = \frac{|a \cdot \delta a \pm b \cdot \delta b|}{|a \pm b|} \le \frac{|a| \cdot |\delta a| + |b| \cdot |\delta b|}{|a \pm b|} \le \frac{|a| \cdot \delta_a + |b| \cdot \delta_b}{|a \pm b|} = \delta_{a \pm b}$$

A szorzás hibája

$$\begin{split} \Delta(a \cdot b) &= A \cdot B - a \cdot b = A \cdot B - A \cdot b + A \cdot b - a \cdot b = \\ &= A(B-b) + b(A-a) = A \cdot \Delta b + b \cdot \Delta a = \\ &= (a + \Delta a) \cdot \Delta b + b \cdot \Delta a \approx a \cdot \Delta b + b \cdot \Delta a \\ &\quad (\Delta a \cdot \Delta b \text{ elhanyagolhat\'o}) \end{split}$$

$$|\Delta(a \cdot b)| \leq |a| \cdot |\Delta b| + |b| \cdot |\Delta a| \leq |a| \cdot \Delta_b + |b| \cdot \Delta_a = \Delta_{a \cdot b}$$

A relatív hiba

$$\delta(a \cdot b) = \frac{\Delta(a \cdot b)}{a \cdot b} \approx \frac{a \cdot \Delta b + b \cdot \Delta a}{a \cdot b} = \frac{\Delta b}{b} + \frac{\Delta a}{a} = \delta b + \delta a$$
$$|\delta(a \cdot b)| \le |\delta a| + |\delta b| \le \delta_a + \delta_b = \delta_{a \cdot b}$$

Az osztás hibája

$$\begin{split} \Delta\left(\frac{a}{b}\right) &= \frac{A}{B} - \frac{a}{b} = \frac{A \cdot b - a \cdot B}{Bb} = \\ &= \frac{A \cdot b - a \cdot b + a \cdot b - a \cdot B}{Bb} = \frac{b \cdot (A - a) - a \cdot (B - b)}{Bb} = \\ &= \frac{b \cdot \Delta a - a \cdot \Delta b}{(b + \Delta b) \cdot b} \approx \frac{b \cdot \Delta a - a \cdot \Delta b}{b^2} \\ &(\Delta b \cdot b \text{ elhanyagolható}) \end{split}$$

$$\left|\Delta\left(\frac{a}{b}\right)\right| \leq \frac{|b|\cdot|\Delta a| + |a|\cdot|\Delta b|}{b^2} \leq \frac{|b|\cdot\Delta_a + |a|\cdot\Delta_b}{b^2} = \Delta_{a/b}$$

Biz.: az osztás hibája

Az osztás relatív hibája

$$\delta\left(\frac{a}{b}\right) = \frac{\Delta\left(\frac{a}{b}\right)}{\frac{a}{b}} \approx \frac{b \cdot \Delta a - a \cdot \Delta b}{b^2} \cdot \frac{b}{a} =$$

$$= \frac{b \cdot \Delta a - a \cdot \Delta b}{b \cdot a} = \frac{\Delta a}{a} - \frac{\Delta b}{b} =$$

$$= \delta a - \delta b = \delta\left(\frac{a}{b}\right)$$

$$\left|\delta\left(\frac{a}{b}\right)\right| \le \left|\delta a\right| + \left|\delta b\right| \le \delta_a + \delta_b = \delta_{a/b}$$

1. Tétel: a függvényérték hibája

Ha $f \in C^1(k_{\Delta_a}(a))$ és $k_{\Delta_a}(a) = [a - \Delta_a; a + \Delta_a]$, akkor

$$\Delta_{f(a)} = M_1 \cdot \Delta_a$$

ahol $M_1 = \max\{ |f'(\xi)| : \xi \in k_{\Delta_a}(a) \}.$

Biz.: a Lagrange-féle középértéktétel felhasználásával.

$$\Delta f(a) = f(A) - f(a) = f'(\xi) \cdot (A - a) = f'(\xi) \cdot \Delta a,$$

valamely $\xi \in k_{\Delta_a}(a)$ értékre. Vizsgáljuk az abszolút hibát.

Jó felső becslést adva nyerjük az abszolút hibakorlátot:

$$|\Delta f(a)| = |f'(\xi)| \cdot |\Delta a| \le M_1 \cdot \Delta_a = \Delta_{f(a)},$$

2. Tétel: a függvényérték hibája

Ha
$$f \in C^2(k_{\Delta_a}(a))$$
 és $k_{\Delta_a}(a) = [a - \Delta_a; a + \Delta_a]$, akkor

$$\Delta_{f(a)} = |f'(a)| \Delta_a + \frac{M_2}{2} \cdot \Delta_a^2,$$

ahol $M_2 = \max\{ |f''(\xi)| : \xi \in k_{\Delta_a}(a) \}.$

Biz.: a Taylor-formula felhasználásával.

$$\Delta f(a) = f(A) - f(a) = f'(a) \cdot (A - a) + \frac{f''(\xi)}{2} \cdot (A - a)^2,$$

valamely $\xi \in k_{\Delta_a}(a)$ értékre. Vizsgáljuk az abszolút hibát.

Jó felső becslést adva nyerjük az abszolút hibakorlátot:

$$|\Delta f(a)| = |f'(a)| \cdot |\Delta a| + \frac{|f''(\xi)|}{2} \cdot |\Delta a|^2 \le$$

$$\le |f'(a)| \cdot \Delta_a + \frac{M_2}{2} \cdot \Delta_a^2 = \Delta_{f(a)},$$

Következmény: függvényérték relatív hibája

Ha
$$\Delta_a$$
 kicsi, akkor $\delta_{f(a)} = \frac{|a||f'(a)|}{|f(a)|} \cdot \delta_a$.

Definíció: Az f függvény a-beli kondíciószáma

A $c(f, a) = \frac{|a||f'(a)|}{|f(a)|}$ mennyiséget az f függvény a-beli kondíciószámának nevezzük.

Hibák terjedése

Biz.: Ha Δ_a kicsi, akkor a 2. tételben szereplő eredményben a Δ_a^2 -es tagot elhanyagolhatjuk, így felhasználva, hogy $\Delta_a = |a| \cdot \delta_a$

$$|\delta f(a)| \approx \frac{|f'(a)| \cdot \Delta_a}{|f(a)|} = \frac{|a| \delta_a \cdot |f'(a)|}{|f(a)|} = \frac{|a| |f'(a)|}{|f(a)|} \cdot \delta_a.$$

П

Numerikus módszerek 1.

2. előadás: Lineáris egyenletrendszerek megoldása, Gauss-elimináció

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 Lineáris egyenletrendszerek alkalmazása
- 2 Lineáris egyenletrendszerek
- 3 A Gauss-elimináció algoritmusa
- 4 Műveletigény

Tartalomjegyzék

- 1 Lineáris egyenletrendszerek alkalmazása
- 2 Lineáris egyenletrendszerek
- 3 A Gauss-elimináció algoritmusa
- 4 Műveletigény

Általános iskolában:

Matematikai versenyfeladat 3. osztály

A MATEK szó minden betűje egy-egy számjegyet jelöl. A számjegyekre igazak a következő állítások:

$$M + A + T + E + K = 25$$

$$M + A = 11$$

$$A + T = 10$$

$$T + E = 12$$

$$E + K = 10$$

Melyik betű melyik számjegyet jelöli, ha az öt betű öt különböző számjegyet jelöl?

• Gazdasági számítások:

Tegyük fel, hogy egy üzem kétféle végterméket állít elő négyféle alkatrész felhasználásával. Jelölje A_1 , A_2 a végtermékeket, az A_3 , A_4 a félkész termékeket és A_5 , A_6 az alapanyagokat. Az egyes alapanyagok és félkész termékek egymásba és a végtermékbe való beépülését a **közvetlen ráfordítás mátrix** (K) adja meg. A mátrix k_{ij} eleme azt mutatja, hogy az i. termékből közvetlenül (nem más terméken keresztül) mennyi épül be a j. termékbe.

A **teljes ráfordítások mátrixában** (T) a t_{ij} elem azt mutatja, hogy egy darab A_i termék összesen hány darab A_i elemet tartalmaz. Ennek meghatározása a $T = (I - K)^{-1}$ képletből történik. A kétféle mátrix alkalmazása: x alapanyagból $y = (I - K) \cdot x$ végtermék lesz és y végtermékhez $x = T \cdot y = (I - K)^{-1} \cdot x$ alapanyag kell.

3-5. Példa

- Mérnöki feladatok numerikus megoldása (lásd a bevezető példát)
- Interpolációs spline-ok megadása (lásd 2. félév)
- Approximációs feladatok megoldása (lásd 2. félév)

 Hálózatok stacionárius modellezése: villamos hálózatok, áramkörök, víz- és gázellátó csőrendszerek irányított gráffal történő leírása után. Az él iránya megfelel a várt áramlási iránynak. Minden élhez tartozik egy szám, az ott szállított áram (víz stb.) mennyiségét adja. Egyes csomópontokhoz is tartozhat áram, ezek a külső pontok. Ilyen áram a ponton keresztül be ill. kifolyó áram, amely ugyancsak ismeretlen lehet.

A gráf minden csomópontjában felírjuk az első Kirchhoff-féle törvényt, amely szerint - figyelembe véve az élek irányát - a csomópontban találkozó élek áramainak összege nulla. Ez az anyag-megmaradási törvény egy lineáris reláció, és a minden csomóponthoz tartozó relációk összessége adja a lineáris egyenletrendszert.

Tartalomjegyzék

- 1 Lineáris egyenletrendszerek alkalmazása
- 2 Lineáris egyenletrendszerek
- 3 A Gauss-elimináció algoritmusa
- 4 Műveletigény

Lineáris egyenletrendszerek

Lineáris egyenletrendszer (LER)

Hagyományos alak:

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots \vdots $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$

n egyenlet, n ismeretlen

Lineáris egyenletrendszerek

Mátrix alak:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix},$$

vagyis

$$Ax = b$$
 $A \in \mathbb{R}^{n \times n}, b, x \in \mathbb{R}^{n}.$

Feladat:

A és b adottak, keressük x-et.

Lineáris egyenletrendszerek

Tétel: emlékeztető lin. alg.-ból

- Egyértelműen létezik megoldás \iff A oszlopai lineárisan függetlenek \iff rang $(A) = n \iff$ det $(A) \neq 0 \iff$ A invertálható $(x = A^{-1}b)$.

Megj.:

- Ha A speciális alakú (pl. diagonális vagy háromszög alakú), akkor egyszerűen megkapható a megoldás.
- Cramer-szabályt max. 3 × 3-as mátrixokra alkalmazunk.

Lineáris egyenletrendszerek megoldási módszerei

- Direkt módszerek, felbontások (véges lépésszám, "pontos" megoldás)
 - Gauss-elimináció, progonka módszer
 - LU-felbontás, LDU, LL^{\top} , Cholesky
 - QR-felbontás (Gram-Schmidt ort., Householder trf.)
 - ILU-felbontás
- Iterációs módszerek (vektor sorozat, mely a megoldáshoz "tart")
 - mátrixnormák, Banach-féle fixponttétel
 - Jacobi-iteráció
 - Gauss–Seidel-iteráció
 - Richardson-iteráció
 - ILU-algoritmus
- Variációs módszerek (egy "célfüggvény" minimalizálása által)
 - Gradiens-módszer
 - Konjugált gradiens-módszer

Tartalomjegyzék

- 1 Lineáris egyenletrendszerek alkalmazása
- 2 Lineáris egyenletrendszerek
- 3 A Gauss-elimináció algoritmusa
- 4 Műveletigény

Gauss-elimináció: előkészületek

Legyen $a_{in+1} := b_i$, azaz [A|b] a tárolási forma. GE := Gauss-elimináció.

$$A^{(0)} := \left[egin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} & a_{1n+1} = b_1 \ a_{21} & a_{22} & \cdots & a_{2n} & a_{2n+1} = b_2 \ dots & \ddots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} & a_{nn+1} = b_n \end{array}
ight]$$

Célunk: A LER-t egyszerűbb alakra hozni:

- 1 balról jobbra: a főátló alatt kinullázzuk az elemeket, "előre", GE
- 2 jobbról balra: a főátló fölött nullázunk, "vissza", visszahelyettesítés

Gauss-elimináció: 1. lépés

Az 1. egyenletet változatlanul hagyjuk.

Ha $a_{11}^{(0)} \neq 0$, akkor az *i*-edik egyenletből (i = 2, 3, ..., n) kivonjuk az 1. egyenlet $\left(\frac{a_{i1}^{(0)}}{a_{11}^{(0)}}\right)$ -szeresét: hogy $a_{i1}^{(0)}$ kinullázódjon. (\rightsquigarrow elimináció, kiküszöbölés)

$$A^{(1)} = \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & a_{13}^{(0)} & \cdots & a_{1n}^{(0)} & a_{1n+1}^{(0)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} & \cdots & a_{2n}^{(1)} & a_{2n+1}^{(1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{n2}^{(1)} & a_{n3}^{(1)} & \cdots & a_{nn}^{(1)} & a_{nn+1}^{(1)} \end{bmatrix},$$

ahol

$$a_{ij}^{(1)} = a_{ij}^{(0)} - \frac{a_{i1}^{(0)}}{a_{ij}^{(0)}} \cdot a_{1j}^{(0)}$$
 $(i = 2, ..., n; j = 2, ..., n, n + 1).$

Az 1. és 2. egyenletet változatlanul hagyjuk.

Ha $a_{22}^{(1)} \neq 0$, akkor az *i*-edik egyenletből (i = 3, 4, ..., n) kivonjuk a 2. egyenlet $\left(\frac{a_{i2}^{(1)}}{a_{i2}^{(1)}}\right)$ -szeresét: hogy $a_{i2}^{(1)}$ kinullázódjon.

$$A^{(2)} = \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & a_{13}^{(0)} & \cdots & a_{1n}^{(0)} & a_{1n+1}^{(0)} \\ 0 & a_{22}^{(1)} & a_{23}^{(2)} & \cdots & a_{2n}^{(1)} & a_{2n+1}^{(1)} \\ 0 & 0 & a_{33}^{(2)} & \cdots & a_{3n}^{(2)} & a_{3n+1}^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & a_{n3}^{(2)} & \cdots & a_{nn}^{(2)} & a_{nn+1}^{(2)} \end{bmatrix},$$

ahol

$$a_{ij}^{(2)} = a_{ij}^{(1)} - \frac{a_{i2}^{(1)}}{a_{22}^{(1)}} \cdot a_{2j}^{(1)}$$
 $(i = 3, ..., n; j = 3, ..., n, n + 1).$

Gauss-elimináció: k. lépés

Az 1., 2., ..., k. egyenleteket változatlanul hagyjuk.

Ha
$$a_{kk}^{(k-1)} \neq 0$$
, akkor az *i*-edik egyenletből $(i = k+1, \ldots, n)$ kivonjuk a *k*-adik egyenlet $\left(\frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}\right)$ -szeresét: hogy $a_{ik}^{(k-1)}$

kinullázódjon. Ezt a lépést láttuk, amikor a 2. lépésben az 1. lépés eredményét felhasználtuk. Ha 2 helyére k-t írunk, akkor megkapjuk az általános képleteket.

Tétel: A Gauss-elimináció általános lépése

Ha $a_{k,k}^{(k-1)} \neq 0$, akkor a k. lépés képletei

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} \cdot a_{kj}^{(k-1)}$$
 $i = k+1, \ldots, n;$ $j = k+1, \ldots, n, n+1.$

Így n-1 lépés után felső háromszögmátrix alakú LER-t kapunk:

$$A^{(n-1)} = \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & \cdots & a_{1n-1}^{(0)} & a_{1n}^{(0)} & a_{1n+1}^{(0)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n-1}^{(1)} & a_{2n}^{(1)} & a_{2n+1}^{(1)} \\ \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1n-1}^{(n-2)} & a_{n-1n}^{(n-2)} & a_{n-1n+1}^{(n-2)} \\ 0 & 0 & \cdots & 0 & a_{nn}^{(n-1)} & a_{nn+1}^{(n-1)} \end{bmatrix}.$$

Ezután visszafelé haladva: az aktuális egyenletet osztjuk a főátlóbeli elemmel, majd a főátló fölött kinullázzuk az elemeket, az eddigiekel analóg "sorműveletek" alkalmazásával.

Végül [I|x] alakot nyerünk. $(I \in \mathbb{R}^{n \times n}$ egységmátrix.)

Gauss-elimináció: visszahelyettesítés

Az algoritmus második része ("jobbról-balra"), a felső háromszög alakú LER megoldása képlettel is kifejezhető. Figyeljük meg, hogy a felső-háromszögmátrixú alaknál soronként azonos felső indexek vannak.

A visszahelyettesítés

$$x_n = \frac{a_{nn+1}^{(n-1)}}{a_{nn}^{(i-1)}},$$

$$x_i = \frac{1}{a_{ii}^{(i-1)}} \left(a_{in+1}^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} \cdot x_j \right) \qquad (i = n-1, \dots, 1).$$

Példa: LER megoldása GE-val

Oldjuk meg a következő lineáris egyenletrendszert Gauss-elimináció alkalmazásával!

$$\begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \cdot x = \begin{bmatrix} -1 \\ 3 \\ -3 \end{bmatrix}$$

Az elimináció: Kézi számolásnál függőleges vonalat húzunk a jobboldali vektor elé, számítógéppel ezt programozással oldjuk meg.

1. lépés:

2. sor
$$\underbrace{-\frac{\left(-\frac{4}{2}\right)}{2}}_{+2} * 1.$$
 sor

3. sor
$$-\underbrace{\begin{pmatrix} 6\\2 \end{pmatrix}}_{+3} * 1.$$
 sor

$$\begin{bmatrix} 2 & 0 & 3 & -1 \\ -4 & 5 & -2 & 3 \\ 6 & -5 & 4 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 & -1 \\ 0 & 5 & 4 & 1 \\ 0 & -5 & -5 & 0 \end{bmatrix} \rightarrow$$

2. lépés:

3. sor
$$\underbrace{-\frac{-5}{5}}$$
 * 2. sor

$$\begin{bmatrix} 2 & 0 & 3 & -1 \\ 0 & 5 & 4 & 1 \\ 0 & -5 & -5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 & -1 \\ 0 & 5 & 4 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \rightarrow$$

A visszahelyettesítés:

- 3. sor /(-1)
- 2. sor -4 * új 3. sor.
- 1. sor -3 * új 3. sor.

$$\left[\begin{array}{cc|cc|c} 2 & 0 & 3 & -1 \\ 0 & 5 & 4 & 1 \\ 0 & 0 & -1 & 1 \end{array}\right] \rightarrow \left[\begin{array}{cc|cc|c} 2 & 0 & 0 & 2 \\ 0 & 5 & 0 & 5 \\ 0 & 0 & 1 & -1 \end{array}\right]$$

- 2. sor /5
- 1. sor /2.

$$\left[\begin{array}{c|cc|c} 2 & 0 & 0 & 2 \\ 0 & 5 & 0 & 5 \\ 0 & 0 & 1 & -1 \end{array}\right] \rightarrow \left[\begin{array}{c|cc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right]$$

Tehát a lineáris egyenletrendszer megoldása az $\mathbf{x} = [1, 1, -1]^T$ vektor.

Gauss-elimináció: alkalmazások

- LER megoldása (láttuk példán is)
- Determináns meghatározása: mivel a GE lépései determináns tartók, ezért

$$\det(A) = \det(\Delta \mathsf{alak}) = \prod_{k=1}^n a_{kk}^{(k-1)}$$

Vigyázzunk : ha sort vagy oszlopot cserélünk, a determináns értéke változik.

 Több jobb oldallal (b) megoldás: lehet egyszerre, így a mátrixon csak egyszer eliminálunk.

$$[A|b_1|b_2|b_3] o \mathsf{GE} o \mathsf{visszahely} o [I|x_1|x_2|x_3]$$

Gauss-elimináció: alkalmazások

 Mátrix inverzének meghatározása az A · X = I mátrixegyenlet megoldását jelenti.

$$Ax_1 = e_1$$

 $A \cdot [x_1| \dots |x_n] = [e_1| \dots |e_n] \Leftrightarrow \dots$
 $Ax_n = e_n$

Visszavezettük az előző pontra. A GE-t kiterjesztett mátrixon hajtjuk végre

$$[A | I] \rightarrow GE \rightarrow visszahely \rightarrow [I | A^{-1}],$$

visszahelyettesítés után jobb oldalon kapjuk az inverz mátrixot. Sor csere esetén az inverz nem változik, oszlopcsere esetén változik (lásd gyak.).

Példa: mátrix determinánsának és inverzének számítása GE-val

Mi az előző példa mátrixának determinánsa és inverze?

$$\det(A) = \det(\Delta \mathsf{alak}) = \begin{vmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{vmatrix} = 2 \cdot 5 \cdot (-1) = -10$$

Gauss-elimináció: inverzre példa

Az elimináció:

1. lépés:

2. sor
$$\underbrace{-\left(\frac{-4}{2}\right)}_{+2} * 1.$$
 sor

3. sor
$$-\underbrace{\left(\frac{6}{2}\right)}_{3} * 1.$$
 sor

$$\begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ -4 & 5 & -2 & 0 & 1 & 0 \\ 6 & -5 & 4 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 5 & 4 & 2 & 1 & 0 \\ 0 & -5 & -5 & -3 & 0 & 1 \end{bmatrix} \rightarrow$$

2. lépés:

3. sor
$$-\left(\frac{-5}{5}\right)$$
 * 2. sor

$$\begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 5 & 4 & 2 & 1 & 0 \\ 0 & -5 & -5 & -3 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 5 & 4 & 2 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 \end{bmatrix} \rightarrow$$

A visszahelyettesítés:

- 3. sor /(-1)
- 2. sor -4 * új 3. sor.
- 1. sor -3 * új 3. sor.

$$\begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 5 & 4 & 2 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 & -2 & 3 & 3 \\ 0 & 5 & 0 & -2 & 5 & 4 \\ 0 & 0 & 1 & 1 & -1 & -1 \end{bmatrix}$$

1. sor /2.

$$\begin{bmatrix} 2 & 0 & 0 & | & -2 & 3 & 3 \\ 0 & 5 & 0 & | & -2 & 5 & 4 \\ 0 & 0 & 1 & | & 1 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -1 & \frac{3}{2} & \frac{3}{2} \\ 0 & 1 & 0 & | & -\frac{2}{5} & 1 & \frac{4}{5} \\ 0 & 0 & 1 & | & 1 & -1 & -1 \end{bmatrix} = [I|A^{-1}]$$

Az inverz a jobb oldalon álló mátrix.

Gauss-elimináció: megjegyzések

Megoldható-e egyáltalán a LER? Vizsgáljuk? Majd GE közben kiderül.

Megoldható, de mégsem tudjuk a GE-t végigcsinálni?

Előfordulhat... --> sort cserélünk --> nem változik a megoldás. Ha oszlopot cserélünk, akkor a megoldás komponensei a cserének megfelelően változnak.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Biztos és stabil megoldás a főelemkiválasztás.

Főelemkiválasztás

Definíció: részleges főelemkiválasztás

A k-adik lépésben válasszunk egy olyan m indexet, melyre $\left|a_{mk}^{(k-1)}\right|$ maximális $(m \in \{k, k+1, \ldots, n\})$, majd cseréljük ki a k-adik és m-edik sort.

Definíció: teljes főelemkiválasztás

A k-adik lépésben válasszunk egy olyan (m_1, m_2) indexpárt, melyre $\left|a_{m_1m_2}^{(k-1)}\right|$ maximális $(m_1, m_2 \in \{k, k+1, \ldots, n\})$, majd cseréljük ki a k-adik és m_1 -edik sort, valamint a k-adik és m_2 -edik oszlopot.

Tétel:

A GE elvégezhető sor és oszlopcsere nélkül

$$\Leftrightarrow a_{kk}^{(k-1)} \neq 0 \ (k = 1, 2, ..., n-1).$$

Biz.: trivi a rekurzióból.

Definíció: főminorok

Az A főminorai a

$$D_k = \det \left(\left[egin{array}{ccc} a_{11} & \dots & a_{1k} \ dots & & dots \ a_{k1} & \dots & a_{kk} \end{array}
ight]
ight), \quad (k=1,2,\dots,n)$$

determinánsok. Ezek az A bal felső $k \times k$ -s részmátrixaimak determinánsai.

Tétel:

$$D_k \neq 0 \ (k = 1, 2, ..., n-1) \Leftrightarrow a_{kk}^{k-1} \neq 0 \ (k = 1, 2, ..., n-1).$$

Biz.: A GE átalakításai determináns tartók, ezért

$$D_k = a_{11} \cdot a_{22}^{(1)} \cdot \ldots \cdot a_{kk}^{(k-1)} = D_{k-1} \cdot a_{kk}^{(k-1)},$$

amiből az állítás adódik. A $D_n \neq 0$ illetve az $a_{nn}^{(n-1)} \neq 0$ feltétel nem szükséges a GE-hoz, csak a LER megoldhatóságához.

Megj.:

- Numerikus szempontból jobb, ha alkalmazunk főelemkiválasztást. Ezzel a GE-s hányadosaink pontosabbak lesznek.
- Determináns számításakor a cserékkel vigyázni kell!

Tartalomjegyzék

- 1 Lineáris egyenletrendszerek alkalmazása
- 2 Lineáris egyenletrendszerek
- 3 A Gauss-elimináció algoritmusa
- 4 Műveletigény

A Gauss-elimináció műveletigénye

Tétel: A Gauss-elimináció műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: Rögzített k-ra: a k. lépés képletéből számolva

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} \cdot a_{kj}^{(k-1)}$$
 $i = k+1, \ldots, n;$ $j = k+1, \ldots, n, n+1.$

$$(n-k)$$
 osztás, $(n-k)(n-k+1)$ szorzás és $(n-k)(n-k+1)$ összeadás kell.

Összesen
$$(n-k)(2(n-k)+3)$$
 művelet. $(n-k=:s)$

A Gauss-elimináció műveletigénye

$$\sum_{k=1}^{n-1} (n-k)(2(n-k)+3) = \sum_{s=1}^{n-1} s(2s+3) = 2\sum_{s=1}^{n-1} s^2 + 3\sum_{k=1}^{n-1} s =$$

$$= 2\frac{(n-1)n(2n-1)}{6} + 3\frac{(n-1)n}{2} = \frac{2}{3}n^3 + \mathcal{O}(n^2). \quad \Box$$

Definíció: $\mathcal{O}(n^2)$ függvény

Az f(n) függvényt $\mathcal{O}(n^2)$ -es nagyságrendűnek nevezzük, ha $\frac{f(n)}{n^2}$ korlátos minden $n \in \mathbb{N}$ -re.

A visszahelyettesítés műveletigénye

A felső háromszögmátrixú LER megoldásának műveletigénye.

Tétel: A visszahelyettesítés műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.:

$$x_n = \frac{a_{nn+1}^{(n-1)}}{a_{nn}^{(n-1)}}, \quad x_i = \frac{1}{a_{ii}^{(i-1)}} \left(a_{in+1}^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} \cdot x_j \right) \quad (i = n-1, \dots, 1).$$

Rögzített i. sorra 1 db osztás, (n-i) szorzás és (n-i) összeadás.

Összesen: 2(n-i)+1 művelet (n-i=:s).

$$1 + \sum_{s=1}^{n-1} (2s+1) = 1 + 2 \cdot \frac{n(n-1)}{2} + (n-1) = n^2 + \mathcal{O}(n). \quad \Box$$

Példák Matlab-ban

- **1** A Gauss-elimináció működése "kisebb" $(n \approx 7)$ LER-ekre
- 2 A beépített megoldó rutin persze sokkal gyorsabb
- **3** Egyre nagyobb méretű ($n=10,20,30,\ldots,200$) mátrixokra a GE futási idejének viselkedése tényleg n^3 -szerű

Numerikus módszerek 1.

3. előadás: Mátrixok LU-felbontása

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 6 Műveletigény

Tartalomjegyzék

- 1 Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 5 Műveletigény

Mi történik, ha az alábbi $L \in \mathbb{R}^{3 \times 3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3 \times 3}$ mátrixot balról?

```
\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

Mi történik, ha az alábbi $L \in \mathbb{R}^{3 \times 3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3 \times 3}$ mátrixot balról?

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

Mi történik, ha az alábbi $L \in \mathbb{R}^{3 \times 3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3 \times 3}$ mátrixot balról?

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

Az 1. sor kétszeresét hozzáadjuk a 2. sorhoz.

Mi történik, ha az alábbi $L \in \mathbb{R}^{3\times3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3\times3}$ mátrixot balról?

$$\begin{bmatrix}
 1 & 0 & 0 \\
 2 & 1 & 0 \\
 -3 & 0 & 1
 \end{bmatrix}$$

Mi történik, ha az alábbi $L \in \mathbb{R}^{3\times3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3\times3}$ mátrixot balról?

$$\begin{bmatrix}
 1 & 0 & 0 \\
 2 & 1 & 0 \\
 -3 & 0 & 1
 \end{bmatrix}$$

Az 1. sor kétszeresét hozzáadjuk a 2. sorhoz, valamint az 1. sor háromszorosát levonjuk a 3. sorból.

Mi történik, ha az alábbi $L \in \mathbb{R}^{3\times3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3\times3}$ mátrixot balról?

$$\begin{bmatrix}
 1 & 0 & 0 \\
 2 & 1 & 0 \\
 -3 & 0 & 1
 \end{bmatrix}$$

Az 1. sor kétszeresét hozzáadjuk a 2. sorhoz, valamint az 1. sor háromszorosát levonjuk a 3. sorból. (\sim GE 1. lépése volt)

A Gauss-elimináció lépései mátrixszorzással

Írjuk fel a GE k-adik lépését ugyanilyen módszerrel! ($A \in \mathbb{R}^{n \times n}$)

A Gauss-elimináció lépései mátrixszorzással

Írjuk fel a GE k-adik lépését ugyanilyen módszerrel! ($A \in \mathbb{R}^{n imes n}$)

(A zérus elemek nincsenek feltüntetve L_k -ban.)

A Gauss-elimináció lépései mátrixszorzással

Írjuk fel a GE k-adik lépését ugyanilyen módszerrel! ($A \in \mathbb{R}^{n \times n}$)

(A zérus elemek nincsenek feltüntetve L_k -ban.)

A Gauss-elimináció lépései mátrixszorzással

Írjuk fel a GE k-adik lépését ugyanilyen módszerrel! ($A \in \mathbb{R}^{n \times n}$)

(A zérus elemek nincsenek feltüntetve L_k -ban.)

Tehát ha
$$l_{ik}=rac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} \quad (k=1,\ldots,n-1; \quad i=k+1,\ldots,n),$$
akkor $L_k\cdot A^{(k-1)}=A^{(k)}$, vagyis megkaptuk a GE k -adik lépését.

Példa: GE az L_k mátrixokkal

Írjuk fel a Gauss-elimináció lépéseit mátrixszorzások segítségével a következő mátrix esetén (ua. mint az előző előadáson)!

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

Példa: GE az L_k mátrixokkal

Írjuk fel a Gauss-elimináció lépéseit mátrixszorzások segítségével a következő mátrix esetén (ua. mint az előző előadáson)!

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

Megoldás: 1. lépés

$$A^{(1)} = L_1 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix}$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

Tehát $A^{(2)} = L_2 \cdot L_1 \cdot A =: U$, a kapott felsőháromszög alakot U-val jelöljük.

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

Tehát $A^{(2)} = L_2 \cdot L_1 \cdot A =: U$, a kapott felsőháromszög alakot U-val jelöljük.

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Ezzel megkaptuk az A mátrix LU-felbontását. Ennek az elméletét tárgyaljuk a következőkben.

Tartalomjegyzék

- Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 5 Műveletigény

Elnevezések, jelölések

Definíció: alsó háromszögmátrix

Az $L \in \mathbb{R}^{n \times n}$ mátrixot alsó háromszögmátrixnak nevezzük, ha i < j esetén $l_{ij} = 0$. (A főátló felett csupa nulla.)

```
\mathcal{L} := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 (i < j) \}, 
 \mathcal{L}_1 := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 (i < j), I_{ii} = 1 \}.
```

Definíció: alsó háromszögmátrix

Az $L \in \mathbb{R}^{n \times n}$ mátrixot alsó háromszögmátrixnak nevezzük, ha i < j esetén $l_{ij} = 0$. (A főátló felett csupa nulla.)

$$\mathcal{L} := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 \ (i < j) \},$$

$$\mathcal{L}_1 := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 \ (i < j), \ I_{ii} = 1 \}.$$

Definíció: felső háromszögmátrix

Az $U \in \mathbb{R}^{n \times n}$ mátrixot felső háromszögmátrixnak nevezzük, ha i > j esetén $u_{ij} = 0$. (A főátló alatt csupa nulla.)

$$\begin{split} \mathcal{U} &:= \{ \ U \in \mathbb{R}^{n \times n} \ : \ u_{ij} = 0 \ (i > j) \, \}, \\ \mathcal{U}_1 &:= \{ \ U \in \mathbb{R}^{n \times n} \ : \ u_{ij} = 0 \ (i > j), \ \ u_{ii} = 1 \, \}. \end{split}$$

Háromszögmátrixok halmazának zártsága

Állítás: háromszögmátrixról

- **1** Ha $L', L'' \in \mathcal{L}$, akkor $L' \cdot L'' \in \mathcal{L}$.
- **2** Ha $U', U'' \in \mathcal{U}$, akkor $U' \cdot U'' \in \mathcal{U}$.
- 3 Ha $L', L'' \in \mathcal{L}_1$, akkor $L' \cdot L'' \in \mathcal{L}_1$.
- 4 Ha $U', U'' \in \mathcal{U}_1$, akkor $U' \cdot U'' \in \mathcal{U}_1$.
- **6** Ha $L \in \mathcal{L}$ és $\exists L^{-1}$, akkor $L^{-1} \in \mathcal{L}$.
- **6** Ha $U \in \mathcal{U}$ és $\exists U^{-1}$, akkor $U^{-1} \in \mathcal{U}$.
- **7** Ha $L \in \mathcal{L}_1$, akkor $\exists L^{-1}$ és $L^{-1} \in \mathcal{L}_1$.
- 8 Ha $U \in \mathcal{U}_1$, akkor $\exists U^{-1}$ és $U^{-1} \in \mathcal{U}_1$.

Háromszögmátrixok halmazának zártsága

Állítás: háromszögmátrixról

- **1** Ha $L', L'' \in \mathcal{L}$, akkor $L' \cdot L'' \in \mathcal{L}$.
- **2** Ha $U', U'' \in \mathcal{U}$, akkor $U' \cdot U'' \in \mathcal{U}$.
- 3 Ha $L', L'' \in \mathcal{L}_1$, akkor $L' \cdot L'' \in \mathcal{L}_1$.
- 4 Ha $U', U'' \in \mathcal{U}_1$, akkor $U' \cdot U'' \in \mathcal{U}_1$.
- **6** Ha $L \in \mathcal{L}$ és $\exists L^{-1}$, akkor $L^{-1} \in \mathcal{L}$.
- **6** Ha $U \in \mathcal{U}$ és $\exists U^{-1}$, akkor $U^{-1} \in \mathcal{U}$.
- 7 Ha $L \in \mathcal{L}_1$, akkor $\exists L^{-1}$ és $L^{-1} \in \mathcal{L}_1$.
- **8** Ha $U \in \mathcal{U}_1$, akkor $\exists U^{-1}$ és $U^{-1} \in \mathcal{U}_1$.

Biz.: házi feladat (beadható).

Definíció: *L*_k

 $L_k := I - \ell_k e_k^{\top} \in \mathbb{R}^{n \times n}$, ahol $\ell_k \in \mathbb{R}^n$, $(\ell_k)_i = 0$ $(i \le k)$ és $e_k \in \mathbb{R}^n$ a k-adik egységvektor.

Definíció: L_k

 $L_k := I - \ell_k e_k^{\top} \in \mathbb{R}^{n \times n}$, ahol $\ell_k \in \mathbb{R}^n$, $(\ell_k)_i = 0$ $(i \le k)$ és $e_k \in \mathbb{R}^n$ a k-adik egységvektor.

Állítás: *L_k* inverze

$$L_k^{-1} = I + \ell_k e_k^{\top}.$$

Definíció: L

 $L_k := I - \ell_k e_k^{\top} \in \mathbb{R}^{n \times n}$, ahol $\ell_k \in \mathbb{R}^n$, $(\ell_k)_i = 0$ $(i \le k)$ és $e_k \in \mathbb{R}^n$ a k-adik egységvektor.

Állítás: L_k inverze

$$L_k^{-1} = I + \ell_k e_k^{\top}.$$

Biz.:

$$L_k \cdot L_k^{-1} = (I - \ell_k e_k^\top)(I + \ell_k e_k^\top) = I \underbrace{-\ell_k e_k^\top + \ell_k e_k^\top}_{0} - \ell_k \underbrace{e_k^\top \ell_k}_{0} e_k^\top = I. \quad \Box$$

Definíció: L_k

 $L_k := I - \ell_k e_k^{\top} \in \mathbb{R}^{n \times n}$, ahol $\ell_k \in \mathbb{R}^n$, $(\ell_k)_i = 0$ $(i \le k)$ és $e_k \in \mathbb{R}^n$ a k-adik egységvektor.

Állítás: Lk inverze

$$L_k^{-1} = I + \ell_k e_k^{\top}.$$

Biz.:

$$L_k \cdot L_k^{-1} = (I - \ell_k e_k^\top)(I + \ell_k e_k^\top) = I \underbrace{-\ell_k e_k^\top + \ell_k e_k^\top}_{0} - \ell_k \underbrace{e_k^\top \ell_k}_{0} e_k^\top = I. \quad \Box$$

Szemléletesen?

Az L_k mátrixokról

Hogyan szorzunk össze két ilyen mátrixot?

Az L_k mátrixokról

Hogyan szorzunk össze két ilyen mátrixot?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 7 & 3 & 1 \end{pmatrix}$$

Hogyan szorzunk össze két ilyen mátrixot?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

A bal oldali sorrendben "szépen" szorzódik. Általában is.

Állítás: L_k mátrixok szorzata

$$L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_{n-1} e_{n-1}^\top.$$

Állítás: Lk mátrixok szorzata

$$L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_{n-1} e_{n-1}^\top.$$

Szemléletesen?

Állítás: Lk mátrixok szorzata

$$L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_{n-1} e_{n-1}^\top.$$

Szemléletesen?

Biz.: Indukcióval.

Állítás: Lk mátrixok szorzata

$$L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_{n-1} e_{n-1}^\top.$$

Szemléletesen?

Biz.: Indukcióval.

$$egin{aligned} L_1^{-1} \cdot L_2^{-1} &= (I + \ell_1 e_1^ op)(I + \ell_2 e_2^ op) = \ &= I + \ell_1 e_1^ op + \ell_2 e_2^ op + \ell_1 \underbrace{(e_1^ op \ell_2)}_0 e_2^ op = \ &= I + \ell_1 e_1^ op + \ell_2 e_2^ op \end{aligned}$$

Az L_k mátrixokról

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_k e_k^\top.$$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_k e_k^\top.$$

•
$$L_1^{-1} \cdot L_2^{-1} \cdot \cdot \cdot L_k^{-1} \cdot L_{k+1}^{-1} =$$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_k e_k^\top.$$

•
$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} \cdot L_{k+1}^{-1} =$$

$$= (I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top})(I + \ell_{k+1} e_{k+1}^{\top}) =$$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top}.$$

•
$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} \cdot L_{k+1}^{-1} =$$

$$= (I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top})(I + \ell_{k+1} e_{k+1}^{\top}) =$$

$$= I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top} + \ell_{k+1} e_{k+1}^{\top} +$$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top}.$$

kiesnek

•
$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} \cdot L_{k+1}^{-1} =$$

$$= (I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top})(I + \ell_{k+1} e_{k+1}^{\top}) =$$

$$= I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top} + \ell_{k+1} e_{k+1}^{\top} +$$

$$+ \ell_1 e_1^{\top} \ell_{k+1} e_{k+1}^{\top} + \dots + \ell_k e_k^{\top} \ell_{k+1} e_{k+1}^{\top} =$$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top}.$$

•
$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} \cdot L_{k+1}^{-1} =$$

$$= (I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top})(I + \ell_{k+1} e_{k+1}^{\top}) =$$

$$= I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top} + \ell_{k+1} e_{k+1}^{\top} +$$

$$+ \underbrace{\ell_1 e_1^{\top} \ell_{k+1} e_{k+1}^{\top} + \dots + \ell_k e_k^{\top} \ell_{k+1} e_{k+1}^{\top}}_{\text{kiesnek}} =$$

 $= I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top} + \ell_{k+1} e_{k+1}^{\top} = \checkmark.$

4□ > 4□ > 4□ > 4□ > □ 900

Tartalomjegyzék

- Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 6 Műveletigény

LU-felbontás

Definíció: LU-felbontás

Az A mátrix LU-felbontásának nevezzük az $L \cdot U$ szorzatot, ha

$$A = LU$$
, $L \in \mathcal{L}_1$, $U \in \mathcal{U}$.

LU-felbontás Gauss-eliminációval

A Gauss-eliminációt felírhatjuk alsó háromszögmátrixok segítségével:

$$L_{n-1}\cdots L_2\cdot L_1\cdot A=U,$$

LU-felbontás Gauss-eliminációval

A Gauss-eliminációt felírhatjuk alsó háromszögmátrixok segítségével:

$$L_{n-1}\cdots L_2\cdot L_1\cdot A=U,$$

majd az inverzekkel egyesével átszorozva:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1}}_{L} \cdot U = LU.$$

LU-felbontás Gauss-eliminációval

A Gauss-eliminációt felírhatjuk alsó háromszögmátrixok segítségével:

$$L_{n-1}\cdots L_2\cdot L_1\cdot A=U$$
,

majd az inverzekkel egyesével átszorozva:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1}}_{L} \cdot U = LU.$$

A fenti szorzat is alsó háromszögmátrix. Láttuk az előző tételből, hogy az L mátrix elemeit egy egységmátrixból kapjuk úgy, hogy minden oszlopba ez egyesek alá beletesszük a neki megfelelő ℓ_k vektor nem nulla elemeit (ezek a GE-s hányadosok). Tehát ennek előállításához nem kell több művelet, mint amit a GE-val végzünk.

Példa: LU-felbontás GE-val

Készítsük el a példamátrixunk LU-felbontását

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

- (a) részletezve az L_k mátrixokat, a számítás menetét,
- (b) majd "tömör" írásmóddal!

Megoldás: (a) 1. lépés

$$A^{(1)} = L_1 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix}$$

Megoldás: (a) 1. lépés

$$A^{(1)} = L_1 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix}$$

 L_1^{-1} -et úgy kapjuk, hogy L_1 1. oszlopában az átló alatti elemeket (-1)-szeresére változtatjuk. Megfigyelhetjük, hogy ezek a tényleges GE-s hányadosok. Láttuk, hogy L meghatározáshoz csak ℓ_1 -re van szükségünk.

$$L_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

 L_2^{-1} -et úgy kapjuk, hogy L_2 2. oszlopában az átló alatti elemeket (-1)-szeresére változtatjuk. Megfigyelhetjük, hogy ez a tényleges GE-s hányados. Láttuk, hogy L meghatározáshoz csak ℓ_2 -re van szükségünk.

$$L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Tehát $A^{(2)} = L_2 \cdot L_1 \cdot A =: U$

Tehát
$$A^{(2)} = L_2 \cdot L_1 \cdot A =: U$$

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Tehát
$$A^{(2)} = L_2 \cdot L_1 \cdot A =: U$$

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Tehát $L=L_1^{-1}\cdot L_2^{-1}$. Az L_k mátixok szorzatára felírt tétel alapján ehhez nem kell mátrixot szoroznunk, csak az ℓ_k vektorokból kell összeraknunk L-et.

Tehát
$$A^{(2)} = L_2 \cdot L_1 \cdot A =: U$$

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Tehát $L=L_1^{-1}\cdot L_2^{-1}$. Az L_k mátixok szorzatára felírt tétel alapján ehhez nem kell mátrixot szoroznunk, csak az ℓ_k vektorokból kell összeraknunk L-et.

$$L = L_1^{-1} \cdot L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix}$$

A kapott eredményt szorzással is ellenőrizhetjük.

(b) Tömör írásmódban: 1. lépés

A GE-s hányadosokat minden lépésben az eliminált pozíciókon tudjuk tárolni (éppen ennyi nulla van az oszlopban). Könnyen meg jegyezhető ezek képzése: az eliminálandó mátrix rész 1. oszlopában az első elemmel leosztjuk az alatta levőket. Ezzel minden a helyére került. Vonalakkal jelezzük, hogy itt már tárolásról is szó van. A jobb alsó 2×2 -es mátrix részen elvégezzük az eliminációt.

(b) Tömör írásmódban: 1. lépés

A GE-s hányadosokat minden lépésben az eliminált pozíciókon tudjuk tárolni (éppen ennyi nulla van az oszlopban). Könnyen meg jegyezhető ezek képzése: az eliminálandó mátrix rész 1. oszlopában az első elemmel leosztjuk az alatta levőket. Ezzel minden a helyére került. Vonalakkal jelezzük, hogy itt már tárolásról is szó van. A jobb alsó 2×2 -es mátrix részen elvégezzük az eliminációt.

$$\begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 \\ \frac{-4}{2} & 5 & 4 \\ \frac{6}{2} & -5 & -5 \end{bmatrix} \rightarrow$$

2. lépés:

Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

2. lépés:

Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

$$\begin{bmatrix}
2 & 0 & 3 \\
-2 & 5 & 4 \\
3 & -5 & -5
\end{bmatrix}
\rightarrow
\begin{bmatrix}
2 & 0 & 3 \\
-2 & 5 & 4 \\
3 & \frac{-5}{5} & -1
\end{bmatrix}$$

2. lépés:

Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

$$\begin{bmatrix} 2 & 0 & 3 \\ \hline -2 & 5 & 4 \\ 3 & -5 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 \\ \hline -2 & 5 & 4 \\ \hline 3 & \hline -5 & -1 \end{bmatrix}$$

Olvassuk ki a keresett mátrixokat!

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} = L \cdot U$$

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ $(k=1,\ldots,n-1)$), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

•
$$u_{kk} = a_{kk}^{(k-1)}$$
 és $D_k = a_{11} \cdot a_{22}^{(1)} \cdots a_{kk}^{(k-1)}$

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

- $u_{kk} = a_{kk}^{(k-1)}$ és $D_k = a_{11} \cdot a_{22}^{(1)} \cdots a_{kk}^{(k-1)}$
- Ha van A-nak LU-felbontása, ahol U átlójában nem nullák állnak, akkor $u_{kk}=a_{kk}^{(k-1)}\neq 0$.

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

- $u_{kk} = a_{kk}^{(k-1)}$ és $D_k = a_{11} \cdot a_{22}^{(1)} \cdots a_{kk}^{(k-1)}$
- Ha van A-nak LU-felbontása, ahol U átlójában nem nullák állnak, akkor $u_{kk}=a_{kk}^{(k-1)}\neq 0$.
- $a_{nn}^{(n-1)} \neq 0 \Leftrightarrow \det(A) = D_n \neq 0.$

Tétel: *LU*-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

- $u_{kk} = a_{kk}^{(k-1)}$ és $D_k = a_{11} \cdot a_{22}^{(1)} \cdots a_{kk}^{(k-1)}$
- Ha van A-nak LU-felbontása, ahol U átlójában nem nullák állnak, akkor $u_{kk}=a_{kk}^{(k-1)}\neq 0$.
- $a_{nn}^{(n-1)} \neq 0 \Leftrightarrow \det(A) = D_n \neq 0.$
- Ha a GE végrehajtható, de $a_{nn}^{(n-1)} = 0$, akkor létezik LU-felbontás, de $\det(A) = \det(L) \cdot \det(U) = \det(U) = 0$ -ból $u_{nn} = 0$. Ebben az esetben a LER vagy nem oldható meg vagy nem egyértelműen.

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

• Ha $D_k \neq 0$ $(k=1,\ldots,n-1)$, akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ $(k=1,\ldots,n-1)$.

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

- Ha $D_k \neq 0$ (k = 1, ..., n 1), akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ (k = 1, ..., n 1).
- Ha $det(A) \neq 0$, akkor a felbontás egyértelmű.

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

- Ha $D_k \neq 0$ (k = 1, ..., n 1), akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ (k = 1, ..., n 1).
- Ha $det(A) \neq 0$, akkor a felbontás egyértelmű.

Biz.: létezés: az LU-felbontás létezése a GE-nál tanult tételünkből következik. $D_k \neq 0 \Leftrightarrow a_{kk}^{(k-1)} \neq 0$ a megadott indexekre, ezért a GE végrehajtható és az L, U mátrixok előállíthatóak.

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

- Ha $D_k \neq 0$ (k = 1, ..., n 1), akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ (k = 1, ..., n 1).
- Ha $det(A) \neq 0$, akkor a felbontás egyértelmű.

Biz.: létezés: az LU-felbontás létezése a GE-nál tanult tételünkből következik. $D_k \neq 0 \Leftrightarrow a_{kk}^{(k-1)} \neq 0$ a megadott indexekre, ezért a GE végrehajtható és az L, U mátrixok előállíthatóak.

Egyértelműség: indirekt tegyük fel, hogy az *A* invertálható mátrix *LU*-felbontása nem egyértelmű, azaz legalább két különböző felbontás létezik:

$$A=L_1\cdot U_1=L_2\cdot U_2.$$

LU-felbontás egyértelműsége

$$A=L_1\cdot U_1=L_2\cdot U_2.$$

Az egyenlőséget U_2^{-1} -zel jobbról, majd L_1^{-1} -zel balról szorozva kapjuk, hogy

$$U_1 \cdot U_2^{-1} = L_1^{-1} \cdot L_2.$$

A szóban forgó inverzek léteznek, hiszen $\det(A) = \det(L_i) \cdot \det(U_i) = \det(U_i) \neq 0$, i = 1, 2-re.

Az egyenlőség bal oldalán egy felső háromszögmátrix, jobb oldalán pedig egy 1 főátlójú alsó háromszögmátrix áll. Ez csak úgy lehet, ha az egységmátrixról van szó. Tehát

$$U_1 \cdot U_2^{-1} = I \implies U_1 = U_2,$$

 $L_1^{-1} \cdot L_2 = I \implies L_1 = L_2.$

Ellentmondásra jutottunk, vagyis az LU-felbontás egyértelmű.

L és U megadása GE-val

Az eddigieket összefoglalva felírhatjuk az A = LU felbontást:

$$L \in \mathcal{L}_1 ext{ és } l_{ij} = rac{a_{ij}^{(j-1)}}{a_{jj}^{(j-1)}} \ (i > j), \qquad U \in \mathcal{U} ext{ és } u_{ij} = a_{ij}^{(i-1)} \ (i \leq j).$$

Miért jó az *LU*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett

- $oldsymbol{1}$ oldjuk meg az Ly=b alsó háromszögű,
- 2 majd az Ux = y felső háromszögű LER-t.

Miért jó az *LU*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- **1** oldjuk meg az Ly = b alsó háromszögű, $(n^2 + \mathcal{O}(n))$ **2** majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- lacktriangledown oldjuk meg az Ly=b alsó háromszögű, $(n^2+\mathcal{O}(n))$
- 2 majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Összehasonlításul: egy mátrix-vektor szorzás műveletigénye: $n\cdot(2n-1)=2n^2+\mathcal{O}(n)$.

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- lacktriangledown oldjuk meg az Ly=b alsó háromszögű, $(n^2+\mathcal{O}(n))$
- **2** majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Összehasonlításul: egy mátrix-vektor szorzás műveletigénye: $n \cdot (2n-1) = 2n^2 + \mathcal{O}(n)$.

Persze valamikor elő kell állítani az LU-felbontást. $(\frac{2}{3}n^3 + \mathcal{O}(n^2))$ Előnyös, ha sokszor ugyanaz A: az ILU-algoritmusnál illetve az inverz iterációnál látjuk majd alkalmazását.

Tartalomjegyzék

- Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 5 Műveletigény

Az *LU*-felbontás "közvetlen" kiszámítása

- Nem ismerjük L-t és U-t: ismeretlenek a mátrixokban.
- Viszont szorzatukat ismerjük: LU = A.
- A egyes elemeit a mátrixszorzás alapján felírva egyenleteket kapunk L és U elemeire.
- Jó sorrendben felírva az egyenleteket, mindig megkapjuk egy-egy új ismeretlen értékét.
- A GE-nál láttuk, hogy U 1. sora azonos A 1. sorával (a GE az 1.sort nem változtatja).
- L 1. oszlopát úgy kapjuk, hogy A 1. oszlopát leosztjuk a₁₁-gyel.

Jó sorrendek

$$\begin{pmatrix} 1. & 1. & 1. & 1. \\ 2. & 3. & 3. & 3. \\ 4. & 4. & 5. & 5. \\ 6. & 6. & 6. & 7. \end{pmatrix} \qquad \begin{pmatrix} 1. & 3. & 5. & 7. \\ 2. & 3. & 5. & 7. \\ 2. & 4. & 5. & 7. \\ 2. & 4. & 6. & 7. \end{pmatrix} \qquad \begin{pmatrix} 1. & 1. & 1. & 1. \\ 2. & 3. & 3. & 3. \\ 2. & 4. & 5. & 5. \\ 2. & 4. & 6. & 7. \end{pmatrix}$$

sorfolytonosan

oszlopfolytonosan

parkettaszerűen

Példa: LU-felbontás közvetlenül

- (a) Készítsük el a példamátrixunk *LU*-felbontását közvetlenül a mátrixszorzás alapján.
- (b) Nézzünk egy újabb példát is. (Vigyázat, $det(B_2) = 0$.)

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$I_{21}\cdot 2=-4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \qquad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$l_{21} = -2$$

$$u_{22} = 5$$

$$u_{23} = -2 - (-2) \cdot 3 = 4$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$I_{31} \cdot 2 = 6$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$l_{21} \cdot 2 = -4$$

$$l_{21} \cdot 0 + 1 \cdot u_{22} = 5$$

$$l_{21} \cdot 3 + 1 \cdot u_{23} = -2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \qquad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$l_{21} = -2$$

$$u_{22} = 5$$

$$u_{23} = -2 - (-2) \cdot 3 = 4$$

$$I_{31} \cdot 2 = 6$$

$$I_{31} \cdot 0 + I_{32} \cdot u_{22} = -5$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$l_{21} \cdot 2 = -4$$

$$l_{21} \cdot 0 + 1 \cdot u_{22} = 5$$

$$l_{21} \cdot 3 + 1 \cdot u_{23} = -2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{array}{c} l_{21} = -2 \\ u_{22} = 5 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{array}$$

$$l_{21} = -2$$

$$u_{22} = 5$$

$$u_{23} = -2 - (-2) \cdot 3 = 4$$

$$l_{31} \cdot 2 = 6$$

$$l_{31} \cdot 0 + l_{32} \cdot u_{22} = -5$$

$$l_{31} \cdot 3 + l_{32} \cdot u_{23} + 1 \cdot u_{33} = 4$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} I_{21} \cdot 2 &= -4 \\ I_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ I_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$I_{31} \cdot 2 = 6$$
 $I_{31} = 3$
 $I_{31} \cdot 0 + I_{32} \cdot u_{22} = -5$ $I_{32} = \frac{-5}{5} = -1$
 $I_{31} \cdot 3 + I_{32} \cdot u_{23} + 1 \cdot u_{33} = 4$ $u_{33} = 4 - 3 \cdot 3 - (-1) \cdot 4 = -1$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$I_{21}\cdot 2=-4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad l_{21}.$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad l_{21} \cdot 2 = -4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{matrix} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{matrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{array}{l} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{array}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 4 - (-2) \cdot (-2) = 0 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$I_{31}\cdot 2=6$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{array}{l} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{array}$$

$$l_{31} \cdot 2 = 6$$
$$l_{31} \cdot (-2) + l_{32} \cdot u_{22} = -5$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 4 - (-2) \cdot (-2) = 0 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$l_{31}\cdot 2=6$$
 $l_{31}\cdot (-2)+l_{32}\cdot u_{22}=-5$ \leadsto ellentmondásos egyenlet

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{array}{l} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{array}$$

A 3. sor számítása:

$$l_{31}\cdot 2=6$$
 $l_{31}\cdot (-2)+l_{32}\cdot u_{22}=-5$ $ightsquigarrow$ ellentmondásos egyenlet

Mivel $D_2 = \det(B_2) = 0$, így $u_{22} = 0$ lesz. Az LU-felbontás nem készíthető el. GE-t alkalmazva $a_{22}^{(1)} = 0$ lenne, emiatt sort kéne cserélni.

Tétel: az *LU*-felbontás "közvetlen" kiszámítása

Az L és U mátrixok elemei a következő képletekkel számolhatók:

$$i \leq j$$
 (felső) $u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} \cdot u_{kj},$ $i > j$ (alsó) $l_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} \cdot u_{kj} \right).$

Ha jó sorrendben számolunk, mindig ismert az egész jobb oldal.

Biz.: Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat *i*-edik sorának *j*-edik elemét feltéve, hogy $A = L \cdot U$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Biz.: Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat *i*-edik sorának *j*-edik elemét feltéve, hogy $A = L \cdot U$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Ha $i \leq j$, azaz egy főátló feletti (vagy főátlóbeli) elemről van szó, akkor $k>i \Rightarrow l_{ik}=0$, valamint $l_{ii}=1$, és így

$$a_{ij} = \sum_{k=1}^{n} l_{ik} \cdot u_{kj} = \sum_{k=1}^{i} l_{ik} \cdot u_{kj} = u_{ij} + \sum_{k=1}^{i-1} l_{ik} \cdot u_{kj}.$$

Biz.: Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat *i*-edik sorának *j*-edik elemét feltéve, hogy $A = L \cdot U$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Ha $i \leq j$, azaz egy főátló feletti (vagy főátlóbeli) elemről van szó, akkor $k>i \Rightarrow l_{ik}=0$, valamint $l_{ii}=1$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{i} I_{ik} \cdot u_{kj} = u_{ij} + \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj}.$$

Ebből uji kifejezhető

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj}.$$

Biz. folyt. Ha i>j, azaz egy főátló alatti elemről van szó, akkor $k>j\Rightarrow u_{kj}=0$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{j} I_{ik} \cdot u_{kj} = I_{ij} \cdot u_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj}.$$

Biz. folyt. Ha i>j, azaz egy főátló alatti elemről van szó, akkor $k>j\Rightarrow u_{kj}=0$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{j} I_{ik} \cdot u_{kj} = I_{ij} \cdot u_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj}.$$

Ha $u_{jj} \neq 0$ (találkoztunk már ezzel a feltétellel), akkor l_{ij} kifejezhető

$$I_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj} \right).$$

Biz. folyt. Ha i>j, azaz egy főátló alatti elemről van szó, akkor $k>j\Rightarrow u_{kj}=0$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{j} I_{ik} \cdot u_{kj} = I_{ij} \cdot u_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj}.$$

Ha $u_{jj} \neq 0$ (találkoztunk már ezzel a feltétellel), akkor l_{ij} kifejezhető

$$I_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj} \right).$$

Figyeljük meg, hogy ha valamely "jó sorrendben" (lásd az előadás diasorát) megyünk végig az (i,j) indexekkel A elemein, akkor az l_{ij} illetve u_{ij} értékét megadó egyenlőségek jobb oldalán minden mennyiség ismert.

Tartalomjegyzék

- Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 6 Műveletigény

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: A GE-ból trivi, mert vele az *LU*-felbontás is előállítható.

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: A GE-ból trivi, mert vele az LU-felbontás is előállítható.

A képletekből: Rögzített j-re:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj},$$

 u_{ij} -hez (i-1) szorzás és (i-1) összeadás kell. Összesen 2(i-1) művelet.

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: A GE-ból trivi, mert vele az LU-felbontás is előállítható.

A képletekből: Rögzített j-re:

$$u_{ij}=a_{ij}-\sum_{k=1}^{i-1}I_{ik}\cdot u_{kj},$$

 u_{ij} -hez (i-1) szorzás és (i-1) összeadás kell. Összesen 2(i-1) művelet. Rögzített i-re:

$$I_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj} \right),\,$$

 I_{ij} -hez 1 osztás, (j-1) szorzás és (j-1) összeadás kell. Összesen 2j-1 művelet.

$$\sum_{j=1}^{n} \sum_{i=1}^{j} 2(i-1) + \sum_{i=2}^{n} \sum_{j=1}^{i-1} (2j-1) =$$

$$\sum_{j=1}^{n} 2 \cdot \frac{(j-1)j}{2} + \sum_{i=2}^{n} \left(2 \cdot \frac{(i-1)i}{2} - (i-1) \right) =$$

$$\sum_{j=1}^{n} j^{2} - \sum_{j=1}^{n} j + \sum_{i=2}^{n} (i-1)^{2} = \sum_{j=1}^{n} j^{2} - \sum_{j=1}^{n} j + \sum_{i=1}^{n-1} s^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} + \frac{(n-1)n(2n-1)}{6} = \frac{2}{3}n^{3} + \mathcal{O}(n^{2}). \quad \Box$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: lásd GE visszahelyettesítés.

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: lásd GE visszahelyettesítés.

Tétel: Az Ly = b megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: lásd GE visszahelyettesítés.

Tétel: Az Ly = b megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: Rögzített i. sorra (i-1) szorzás és (i-1) összeadás. Összesen: 2(i-1) művelet.

$$\sum_{i=2}^{n} 2(i-1) = \sum_{s=1}^{n-1} 2s = 2 \cdot \frac{n(n-1)}{2} = n^2 + \mathcal{O}(n). \quad \Box$$

Példák Matlab-ban

- **1** Az LU-felbontás működése "kisebb" ($n \approx 7$) mátrixokra,
- **2** valamint "nagyobb" mátrixokra $(n \approx 50)$ színkóddal.
- 3 LER megoldása *LU*-felbontás segítségével.
- 4 Sok LER ($m \approx 10,100$) megoldása futási idejének összevetése nagyobb mátrixok ($n \approx 50,100,200$) esetén: GE-val valamint az LU-felbontás kihasználásával.

Numerikus módszerek 1.

4. előadás: Megmaradási tételek, progonka módszer, *LDU*-felbontás, Cholesky-felbontás

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 Megmaradási tételek
- 2 Rövidített GE (progonka módszer)
- 3 LDU-felbontás
- 4 Cholesky-felbontás

Tartalomjegyzék

- 1 Megmaradási tételek
- 2 Rövidített GE (progonka módszer)
- 3 LDU-felbontás
- 4 Cholesky-felbontás

Pozitív definit mátrixokról

Definíció: szimmetrikus mátrixok

Az A mátrix szimmetrikus, ha $A = A^{\top}$.

Definíció: pozitív definit mátrixok

Az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix *pozitív definit*, ha

- 2 minden főminorára $D_k = \det(A_k) > 0$; vagy
- 3 minden sajátértéke pozitív.

Állítás: pozitív definit mátrixok ekvivalens jellemzése

Az előző 1. 2. 3. feltételek ekvivalensek.

Biz.: nélkül.

Mátrixok tulajdonságai

Definíció:

Az A mátrix szigorúan diagonálisan domináns a soraira, ha $|a_{ii}| > \sum_{i=1,i\neq i} |a_{ij}|$ $(i=1,\ldots,n)$.

Definíció:

Az A mátrix szigorúan diagonálisan domináns az oszlopaira, ha $|a_{ii}| > \sum_{j=1, j \neq i} |a_{ji}|$ (i = 1, ..., n).

Példa:

A következő mátrix szigorúan diagonálisan domináns a soraira és oszlopaira is.

$$\begin{bmatrix}
 4 & 1 & -2 \\
 -2 & 5 & 1 \\
 0 & -3 & 4
 \end{bmatrix}$$

Mátrixok tulajdonságai

Definíció:

Az A mátrix **fél sávszélessége** $s \in \mathbb{N}$, ha

$$\forall i, j : |i - j| > s : a_{ij} = 0 \text{ és}$$

 $\exists k, l : |k - l| = s : a_{kl} \neq 0.$

Példa:

A következő mátrix szimmetrikus, pozitív definit és fél sávszélessége 1.

$$\begin{bmatrix} 4 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

Mátrixok tulajdonságai

Definíció:

Az A mátrix **profilja** sorokra a (k_1, \ldots, k_n) , oszlopokra az (l_1, \ldots, l_n) szám n-sek, melyekre

$$\forall j = 1, ..., k_i : a_{ij} = 0 \text{ és } a_{i,k_i+1} \neq 0,$$

 $\forall i = 1, ..., l_j : a_{ij} = 0 \text{ és } a_{l_i+1,j} \neq 0.$

Soronként és oszloponként az első nem nulla elemig a nullák száma.

Példa:

A mátrix profilja sorokra (0,0,2,1), oszlopokra (0,1,1,2).

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 2 & 4 & 1 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$

Schur-komplementer

Készítsük el az Ax = b LER k. sor utáni particionálását (k < n, $k \in \mathbb{N}$) és tegyük fel, hogy $A_{11} \in \mathbb{R}^{k \times k}$ invertálható.

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Particionált alakban a LER:

$$A_{11}x_1 + A_{12}x_2 = b_1$$

$$A_{21}x_1 + A_{22}x_2 = b_2$$

Végezzünk el egy blokkos GE-s lépést:

2. egyenlet $-(A_{21} \cdot A_{11}^{-1})$ 1. egyenlet

$$\underbrace{\left(A_{21}-A_{21}A_{11}^{-1}A_{11}\right)}_{1}x_{1}+\left(A_{22}-A_{21}A_{11}^{-1}A_{12}\right)x_{2}=b_{2}-A_{21}A_{11}^{-1}b_{1}$$

A GE blokkos lépése után a 2. sor alakja:

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1.$$

Particionálva a LER:

$$\left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline
0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{array} \right] \cdot \left[\begin{array}{c} x_1 \\ \hline
x_2 \end{array} \right] = \left[\begin{array}{c} b_1 \\ \hline
b_2 - A_{21}A_{11}^{-1}b_1 \end{array} \right]$$

- Most már csak az $(n-k) \times (n-k)$ -s jobb alsó mátrix részen kell folytatnunk a GE-t.
- k=1 esetén $A_{11}=(a_{11})$. Feltéve, hogy $a_{11}\neq 0$, akkor a fenti lépés a (blokk nélküli) 1. GE-s lépést írja le.

Definíció: Schur-komplementer

Tegyük fel, hogy $A_{11} \in \mathbb{R}^{k \times k}$ invertálható mátrix. Az A mátrix A_{11} -re vonatkozó Schur-komplementere az

$$[A|A_{11}] := A_{22} - A_{21}A_{11}^{-1}A_{12}$$

$$(n-k) \times (n-k)$$
-s mátrix.

A Schur komplementer azt mutatja, hogy az A_{11} -gyel végzett GE után mely mátrixon kell folytatni az eliminációt. Az új fogalom segítségével könnyebben fogalmazhatjuk meg, hogy a GE mely tulajdonságokat örökíti tovább.

Tétel: megmaradási tételek a GE-ra

A GE során a következő tulajdonságok öröklődnek A-ról a Schur-komplementerre:

- 2 A szimmetrikus $\Rightarrow [A|A_{11}]$ szimmetrikus
- 3 A pozitív definit \Rightarrow [A|A₁₁] pozitív definit
- **4** A szig. diag. dom. \Rightarrow [A|A₁₁] szig. diag. dom.
- **6** $[A|A_{11}]$ fél sávszélessége $\leq A$ fél sávszélessége
- 6 A GE során a profilnál a soronkénti és oszloponkénti nullák az első nem nulla elemig megmaradnak.

Gondoljuk végig az LU-felbontás L, U mátrixára a megfelelő tulajdonságokat.

Biz.: 1.) Determináns:

Mivel a GE determináns tartó, így $\det(A) = \det(A^{(1)}) \neq 0$.

$$A^{(1)} = \begin{bmatrix} A_{11} & A_{12} \\ \hline 0 & [A|A_{11}] \end{bmatrix}$$

$$0 \neq \det(A^{(1)}) = \underbrace{\det(A_{11})}_{\neq 0} \cdot \det([A|A_{11}]) \quad \Leftrightarrow \quad \det([A|A_{11}]) \neq 0$$

2.) Szimmetria:

Ha A szimmetrikus, akkor A_{11} és A_{22} is az, továbbá $A_{21}^{\top}=A_{12}$.

$$\begin{aligned} \left[A|A_{11}\right]^{\top} &= (A_{22} - A_{21}A_{11}^{-1}A_{12})^{\top} = A_{22}^{\top} - A_{12}^{\top}(A_{11}^{-1})^{\top}A_{21}^{\top} = \\ &= A_{22}^{\top} - A_{12}^{\top}(A_{11}^{\top})^{-1}A_{21}^{\top} = A_{22} - A_{21}A_{11}^{-1}A_{12} = [A|A_{11}] \end{aligned}$$

Biz.: 3.) Pozitív definitség:

Tudjuk, hogy $\langle Ax, x \rangle > 0$ minden $x \neq 0$ vektorra.

Be kell látnunk, hogy $\langle [A|A_{11}]x_2, x_2 \rangle > 0$ minden $x_2 \neq 0$ vektorra.

Vegyük észre, hogy $x \in \mathbb{R}^n$ és $x_2 \in \mathbb{R}^{n-k}$.

$$Ax = \left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{array}\right] \cdot \left[\begin{array}{c} x_1 \\ \hline x_2 \end{array}\right] = \left[\begin{array}{c|c} A_{11}x_1 + A_{12}x_2 \\ \hline A_{21}x_1 + A_{22}x_2 \end{array}\right]$$

Legyen $x_2 \in \mathbb{R}^{n-k}$ tetszőleges, válasszuk meg $x_1 \in \mathbb{R}^k$ vektort úgy, hogy Ax első k komponense 0 legyen:

$$A_{11}x_1 + A_{12}x_2 = 0 \quad \Rightarrow \quad x_1 := -A_{11}^{-1}A_{12}x_2.$$

$$x_1 := -A_{11}^{-1}A_{12}x_2$$

Helyettesítsük be a skaláris szorzatba:

$$0 < \langle Ax, x \rangle = \underbrace{\langle A_{11}x_1 + A_{12}x_2}_{0}, x_1 \rangle + \langle A_{21}x_1 + A_{22}x_2, x_2 \rangle =$$

$$= \langle A_{21}(-A_{11}^{-1}A_{12}x_2) + A_{22}x_2, x_2 \rangle =$$

$$= \langle (-A_{21}A_{11}^{-1}A_{12} + A_{22})x_2, x_2 \rangle =$$

$$= \langle (A_{22} - A_{21}A_{11}^{-1}A_{12})x_2, x_2 \rangle = \langle [A|A_{11}]x_2, x_2 \rangle$$

Biz.: 4.) Szigorúan diagonálisan domináns a soraira k=1 esetén:

A GE az első sort nem változtatja, ezen a szig. diag. dom. megmarad. Be kellene látnunk, hogy i = 2, ..., n-re

$$\left|a_{ii}^{(1)}\right| > \sum_{j=2, j\neq i}^{n} \left|a_{ij}^{(1)}\right|.$$

A GE képleteit behelyettesítve

$$\left|a_{ii} - \frac{a_{i1}}{a_{11}}a_{1i}\right| > \sum_{i=2}^{n} \left|a_{ij} - \frac{a_{i1}}{a_{11}}a_{1j}\right|.$$

Szorozzuk be mindkét oldalt $|a_{11}| \neq 0$ -val

$$|a_{ii}a_{11}-a_{i1}a_{1i}|>\sum_{i=2}^{n}|a_{ij}a_{11}-a_{i1}a_{1j}| \ (i=2,\ldots,n).$$

A kapott egyenlőtlenség bal oldalát lefelé, jobb oldalát felfelé becsüljük

$$|a_{ii}a_{11}|-|a_{i1}a_{1i}|>\sum_{i=2,i\neq i}^{n}(|a_{ij}a_{11}|+|a_{i1}a_{1j}|) \quad (i=2,\ldots,n).$$

A továbbiakban ezt fogjuk belátni. Az 1. sort a GE helyben hagyja, ezért itt továbbra is igaz, hogy $|a_{11}|>\sum_{j=2}^n|a_{1j}|$ Szorozzuk $|a_{i1}|\neq 0$ -val és vegyük külön az i. tagot:

$$|a_{11}a_{i1}| > |a_{1i}a_{i1}| + \sum_{j=2, j\neq i}^{n} |a_{1j}a_{i1}|.$$

Írjuk fel a szigorúan diagonálisan dominanciát az $i=2,\ldots,n$ -re $|a_{ii}|>\sum_{j=1,j\neq i}^n|a_{ij}|=|a_{i1}|+\sum_{j=2,j\neq i}^n|a_{ij}|.$ Szorozzuk $|a_{11}|$ -gyel mindkét oldalt:

$$|a_{ii}a_{11}| > |a_{i1}a_{11}| + \sum_{i=2}^{n} |a_{ij}a_{11}|.$$

Becsüljük |a_{ii} a₁₁|-t alulról

$$|a_{ii}a_{11}| > |a_{1i}a_{i1}| + \sum_{i=2, i\neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Átrendezve a bizonyítandó állítást kapjuk

$$|a_{ii}a_{11}| - |a_{1i}a_{i1}| > \sum_{j=2, j \neq i}^{n} (|a_{1j}a_{i1}| + |a_{ij}a_{11}|).$$

Nézzük meg, hogy korábban mivel szoroztunk:

- Ha $a_{i1} = 0$, akkor ezen a soron nem változtat a GE, tehát a diag. dominancia nem változik.
- $a_{11} \neq 0$, mivel ez feltétele a GE-nak.

Az oszlopokra vonatkozó bizonyítás analóg módon elvégezhető.

Tartalomjegyzék

- 1 Megmaradási tételek
- 2 Rövidített GE (progonka módszer)
- 3 LDU-felbontás
- 4 Cholesky-felbontás

A gyakorlatban megszokott, hogy tridiagonális (háromátlós) LER-t kell megoldanunk. Az év eleji példában is láttuk, de köbös spline-ok meghatározása esetén is ilyen alakú LER-t kapunk. A speciális alakot felhasználva hatékonyabb alakot algoritmust készítünk.

- Tárolás: n^2 helyett 3n 2 elem.
- Műveletigény: $\frac{2}{3}n^3 + \mathcal{O}(n^2)$ helyett $8n + \mathcal{O}(1)$.

Mivel a GE a sávszélességet megtartja, tridiagonális esetben a három átlón kívül mindig nulla lesz. A GE végén kapott U mátrix is csak két átlót tartalmaz, ezért a visszahelyettesítés i. egyenlete

$$a_{ii}^{(i-1)}x_i + a_{ii+1}^{(i-1)}x_{i+1} = a_{in+1}^{(i-1)}.$$

Ebből x_i -t kifejezve, új jelölésrendszerrel $x_i = f_i x_{i+1} + g_i$ (i = 1, ..., n) alakú.

Jelölések: $A = \text{tridiag}(\beta_{i-1}, \alpha_i, \gamma_i),$

$$A = \begin{bmatrix} \alpha_1 & \gamma_1 & 0 & \cdots & 0 \\ \beta_1 & \alpha_2 & \gamma_2 & & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \beta_{n-2} & \alpha_{n-1} & \gamma_{n-1} \\ 0 & & 0 & \beta_{n-1} & \alpha_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}.$$

A LER 1. egyenlete:

$$\alpha_1 x_1 + \gamma_1 x_2 = b_1 \rightarrow \alpha_1 x_1 = -\gamma_1 x_2 + b_1 \rightarrow x_1 = -\frac{\gamma_1}{\alpha_1} x_2 + \frac{b_1}{\alpha_1}$$

Az $x_1 = f_1 x_2 + g_1$ alakot keresve $f_1 = -\frac{\gamma_1}{\alpha_1}$ és $g_1 = \frac{b_1}{\alpha_1}$.

Tegyük fel, hogy f_1,\ldots,f_{i-1} és g_1,\ldots,g_{i-1} , továbbá az $x_k=f_kx_{k+1}+g_k$ $(k=1,\ldots,i-1)$ rekurzió ismert. Az $x_i=f_ix_{i+1}+g_i$ rekurzió képleteit szeretnénk meghatározni. Írjuk fel az i. egyenletet és helyettesítsük be x_{i-1} helyére a rekurziót:

$$\beta_{i-1}x_{i-1} + \alpha_{i}x_{i} + \gamma_{i}x_{i+1} = b_{i}$$

$$\beta_{i-1}(f_{i-1}x_{i} + g_{i-1}) + \alpha_{i}x_{i} + \gamma_{i}x_{i+1} = b_{i}$$

$$(\beta_{i-1}f_{i-1} + \alpha_{i})x_{i} + \gamma_{i}x_{i+1} = b_{i} - \beta_{i-1}g_{i-1}$$

$$(\alpha_{i} + \beta_{i-1}f_{i-1})x_{i} = -\gamma_{i}x_{i+1} + (b_{i} - \beta_{i-1}g_{i-1})$$

$$x_{i} = -\frac{\gamma_{i}}{\alpha_{i} + \beta_{i-1}f_{i-1}}x_{i+1} + \frac{b_{i} - \beta_{i-1}g_{i-1}}{\alpha_{i} + \beta_{i-1}f_{i-1}}.$$
Innen $f_{i} = -\frac{\gamma_{i}}{\alpha_{i} + \beta_{i}}$ és $g_{i} = \frac{b_{i} - \beta_{i-1}g_{i-1}}{\alpha_{i} + \beta_{i}}$.

Írjuk fel az n. egyenletet és helyettesítsük be x_{n-1} helyére a rekurziót:

$$\beta_{n-1}x_{n-1} + \alpha_n x_n = b_n$$

$$\beta_{n-1}(f_{n-1}x_n + g_{n-1}) + \alpha_n x_n = b_n$$

$$(\beta_{n-1}f_{n-1} + \alpha_n)x_n = b_n - \beta_{n-1}g_{n-1}$$

$$x_n = \frac{b_n - \beta_{n-1}g_{n-1}}{\alpha_n + \beta_{n-1}f_{n-1}} =: g_n$$

Algoritmus: progonka módszer

1. lépés:
$$f_1 := -\frac{\gamma_1}{\alpha_1}, \quad g_1 := \frac{b_1}{\alpha_1}$$

$$i = 2, \dots, n-1: \quad f_i := -\frac{\gamma_i}{\alpha_i + \beta_{i-1}f_{i-1}}$$

$$g_i := \frac{b_i - \beta_{i-1}g_{i-1}}{\alpha_i + \beta_{i-1}f_{i-1}}$$

$$g_n := \frac{b_i - \beta_{n-1}g_{n-1}}{\alpha_n + \beta_{n-1}f_{n-1}}$$

2. lépés:
$$x_n := g_n$$

 $i = n - 1, n - 2, ..., 1 : x_i = f_i x_{i+1} + g_i$

Megj.: 3 művelettel több, de könnyebben megjegyezhető az algoritmus, ha f_n értékét is meghatározzuk. Ekkor $x_{n+1} := 0$ -val indítjuk a 2. lépést.

Műveletigény:

1. lépés (előre):

 $f_1, g_1 : 2$ művelet.

A ciklus i. lépésében: a közös nevezőben 2 db, f_i -ben 1 db, g_i -ben 3 db, tehát $i=2,\ldots,n-1$ -re összesen 6(n-2) db.

 g_n -ben 5 db művelet.

2. lépés (vissza):

 $i = n - 1, n - 2, \dots, 1$ -re 2(n - 1) db művelet.

Összesen:

$$2 + 6(n-2) + 5 + 2(n-1) = 8n - 7 = 8n + O(1)$$
 művelet.

Tartalomjegyzék

- 1 Megmaradási tételek
- 2 Rövidített GE (progonka módszer)
- 3 LDU-felbontás
- 4 Cholesky-felbontás

Definíció: I DU-felbontás

Az $A \in \mathbb{R}^{n \times n}$ mátrix LDU-felbontásának nevezzük az $A = L \cdot D \cdot U$ szorzatot, ha $L \in \mathcal{L}_1$ alsó háromszögmátrix, D diagonális mátrix és $U \in \mathcal{U}_1$ felső háromszögmátrix.

Előállítás LU-felbontásból:

Az $A=L\cdot \widetilde{U}$ felbontásban $L\in \mathcal{L}_1$ jó, $D=\operatorname{diag}\left(\widetilde{u}_{11},\ldots,\widetilde{u}_{nn}\right)$. A keresett $U\in \mathcal{U}_1$ mátrixot úgy kapjuk, hogy $U=D^{-1}\widetilde{U}$, azaz minden i-re \widetilde{U} i. sorát \widetilde{u}_{ii} -vel osztjuk. Ekkor

$$A = L\widetilde{U} = LD \cdot \underbrace{(D^{-1}\widetilde{U})}_{U} = LDU.$$

Példa: LDU-felbontás LU-felbontásból

Készítsük el példamátrixunk LDU-felbontását az LU-felbontás segítségével.

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

Korábban láttuk, hogy

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} = L \cdot \widetilde{U}.$$

Legyen $D:=\operatorname{diag}(2,5,-1),\ U:=D^{-1}\widetilde{U}.$ Tehát A=LDU, ahol

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 1 & \frac{4}{5} \\ 0 & 0 & 1 \end{bmatrix}.$$

Balról D^{-1} -zel úgy szorzunk, hogy D megfelelő átlóbeli elemeivel osztjuk a megfelelő sorokat.

Az LDU-felbontás "közvetlen" kiszámítása

Tétel: az *LDU*-felbontás "közvetlen" kiszámítása

Az L, D és U mátrixok elemeit jó sorrendben (lásd LU-felbontás) számolva a jobboldalon mindig ismert értékek lesznek:

$$i < j ext{ (felső)}$$
 $u_{ij} = \frac{1}{d_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} I_{ik} \cdot d_{kk} \cdot u_{kj} \right),$ $i = j ext{ (diag)}$ $d_{ii} = a_{ii} - \sum_{k=1}^{i-1} I_{ik} \cdot d_{kk} \cdot u_{ki},$ $i > j ext{ (alsó)}$ $I_{ij} = \frac{1}{d_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot d_{kk} \cdot u_{kj} \right).$

A képleteket az A = LU felbontás "közvetlen" képleteiből kapjuk:

$$\widetilde{u}_{ii} \mapsto d_{ii}, \quad \widetilde{u}_{kj} \mapsto d_{kk}u_{kj}.$$

Tétel: Szimmetrikus mátrix *LDU*-felbontása

Ha A szimmetrikus mátrix, akkor az LDU-felbontásában $U = L^{\top}$.

Biz.: az A = LDU felbontás bal oldalát szorozzuk L^{-1} -zel, jobb oldalát $(L^{-1})^{\top}$ -tal:

$$L^{-1}A(L^{-1})^{\top} = L^{-1} \cdot (LDU) \cdot (L^{-1})^{\top} = DU(L^{-1})^{\top}.$$

A bal oldali mátrixról tudjuk, hogy szimmetrikus, a jobboldali felső háromszögmátrix. Ebből következik, hogy a jobboldali mátrix diagonális mátrix. $U(L^{-1})^{\top} \in \mathcal{U}_1$, így $U(L^{-1})^{\top} = I$.

$$U(L^{-1})^{\top} = I \quad \Leftrightarrow \quad U(L^{\top})^{-1} = I \quad \Leftrightarrow \quad U = L^{\top}$$

Következmény:

- Szimmetrikus mátrix esetén az LDU-felbontás megtartja a szimmetriát. A teljes mátrix helyett elég pl. az alsó háromszög részét tárolni. Az A = LDU felbontás valójában LDL^{\top} -felbontás lesz, ahol szintén elég L, D-t tárolni. Ezzel a tárolás- és műveletigény kb. a felére csökken $(\frac{1}{3}n^3 + \mathcal{O}(n^2))$.
- Szimmetrikus mátrix esetén az LDL^{\top} -felbontás GE-val közvetlenül is elkészíthető.

Példa: LDU-felbontás LU-felbontásból

Készítsük el szimmetrikus példamátrixunk LDL^{\top} -felbontását a GE segítségével.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 8 & 6 \\ 1 & 6 & 6 \end{bmatrix}$$

A GE-s hányadosokat minden lépésben az eliminált pozíciókon tudjuk tárolni: az eliminálandó mátrix rész 1. oszlopában az első elemmel leosztjuk az alatta levőket. Vonalakkal jelezzük, hogy itt már tárolásról is szó van. A jobb alsó 2×2 -es mátrix részen elvégezzük az eliminációt.

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 8 & 6 \\ 1 & 6 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ \hline 2 & 4 & 4 \\ 1 & 4 & 5 \end{bmatrix} \rightarrow$$

Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

$$\begin{bmatrix}
1 & & \\
2 & 4 & 4 \\
1 & 4 & 5
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & & \\
2 & 4 & \\
1 & 1 & 1
\end{bmatrix}$$

Példa

Készen vagyunk, csak le kell olvasnunk a felbontást: $A = LDL^{\top}$, ahol

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad L^{\top} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Az *LDL*[⊤]-felbontás "közvetlen" kiszámítása

Tétel: az *LDL*[⊤]-felbontás "közvetlen" kiszámítása

Az L és U mátrixok elemei a következő képletekkel számolhatók:

$$i = j ext{ (diag)}$$
 $d_{ii} = a_{ii} - \sum_{k=1}^{i-1} l_{ik} \cdot d_{kk} \cdot l_{ik},$ $i > j ext{ (alsó)}$ $l_{ij} = \frac{1}{d_{ij}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} \cdot d_{kk} \cdot l_{jk} \right).$

Ha jó sorrendben számolunk, mindig ismert az egész jobb oldal.

Tartalomjegyzék

- 1 Megmaradási tételek
- 2 Rövidített GE (progonka módszer)
- 3 LDU-felbontás
- 4 Cholesky-felbontás

Cholesky-felbontás

Definíció: Cholesky-felbontás, avagy LL^{\top} -felbontás

Az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix Cholesky-felbontásának nevezzük az $L \cdot L^{\top}$ szorzatot, ha $A = LL^{\top}$, ahol $L \in \mathbb{R}^{n \times n}$ alsó háromszögmátrix és $I_{ii} > 0$ $(i = 1, \ldots, n)$.

Tétel: Cholesky-felbontás ∃!

Ha A szimmetrikus és pozitív definit mátrix, akkor egyértelműen létezik Cholesky-felbontása.

Cholesky-felbontás egyértelműség bizonyítása

Biz.: Egyértelműség: Tegyük fel indirekt, hogy létezik legalább két különböző felbontás.

$$A = L_1 L_1^{\top} = L_2 L_2^{\top},$$

ahol $L_1, L_2 \in \mathcal{L}$, melyek diagonális elemei pozitívak. Legyen $D_1 = \text{diag}((L_1)_{ii})$ és $D_2 = \text{diag}((L_2)_{ii})$.

$$\underbrace{\left(L_1D_1^{-1}\right)}_{\in\mathcal{L}_1}\cdot\underbrace{\left(D_1L_1^\top\right)}_{\in\mathcal{U}}=\underbrace{\left(L_2D_2^{-1}\right)}_{\in\mathcal{L}_1}\cdot\underbrace{\left(D_2L_2^\top\right)}_{\in\mathcal{U}}$$

A két oldalon egy-egy LU-felbontást látunk. Mivel az LU-felbontás egyértelmű (a főminorok nem nullák): $D_1L_1^{\top} = D_2L_2^{\top}$.

A főátlókban lévő elemek egyeznek, ezért $(L_1)_{ii}^2=(L_2)_{ii}^2 \ \forall \ i$ -re. A diagonális elemek pozitivitása miatt

$$\forall i: (L_1)_{ii} = (L_2)_{ii} \Rightarrow L_1 = L_2 \Rightarrow D_1 = D_2.$$

Ezzel ellentmondásra jutottunk.

Cholesky-felbontás létezés bizonyítása

Létezés: Mivel A szimmetrikus és pozitív definit, ezért $D_k = \det(A_k) > 0 \ (k=1,\ldots,n)$. A főminorok pozitivitásából következik, hogy $\exists \ ! \ A = \widetilde{L}\widetilde{U} \ \ LU$ -felbontás és $\widetilde{u}_{ii} > 0 \ \forall \ \ i$ -re. Legyen $D = \operatorname{diag}\left(\sqrt{\widetilde{u}_{11}},\ldots,\sqrt{\widetilde{u}_{nn}}\right)$, így

$$A = \underbrace{(\widetilde{L}D)}_{B} \cdot \underbrace{(D^{-1}\widetilde{U})}_{C} = B \cdot C.$$

 $B, C \in \mathcal{L}$, átlójuk egyaránt a \widetilde{u}_{ii} elemekből áll. Be kell még látnunk, hogy $C^{\top} = B$.

A szimmetria miatt $A = A^{\top}$, azaz $BC = C^{T}B^{\top}$. Bal oldalról szorozzunk B^{-1} -zel, jobbról $(B^{\top})^{-1}$ -zel:

$$B^{-1}(BC)(B^{\top})^{-1} = B^{-1}(C^{T}B^{\top})(B^{\top})^{-1}$$

 $\mathcal{U}_{1} \in C(B^{\top})^{-1} = B^{-1}C^{\top} \in \mathcal{L}_{1}$
 $B^{-1}C^{\top} = I \iff C^{\top} = B$

Miért jó az LL^{\top} -felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható,
- A szimmetrikus és
- rendelkezésünkre áll az $A = LL^{\top}$ felbontás.

Ekkor
$$Ax = L \cdot \underbrace{L^{\top} \cdot x}_{y} = b$$
 helyett $(\frac{1}{3}n^{3} + \mathcal{O}(n^{2}))$

- lacktriangle oldjuk meg az Ly = b alsó háromszögű, $(n^2 + \mathcal{O}(n))$
- **2** majd az $L^T x = y$ felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Persze valamikor elő kell állítani az LL^{\top} -felbontást, de csak L-et kell tárolni hozzá. $(\frac{1}{3}n^3 + \mathcal{O}(n^2))$

Előnyös, ha sokszor ugyanaz A.

Cholesky-felbontás előállítása

- 1. előállítási módszer: LU-felbontásból LDU-n keresztül.
 - Legyen az A mátrix LU-felbontása: $A = \widetilde{L}\widetilde{U}$.
 - Ha A poz. def., akkor \widetilde{U} főátlóbeli elemei mind pozitívak. (!) (Látjuk, hogy elkészíthető-e a Cholesky-felbontás.)
 - Legyen $D := \operatorname{diag}(\widetilde{u}_{1,1}, \dots, \widetilde{u}_{n,n})$, valamint $U = D^{-1}\widetilde{U}$.
 - Kiderül, hogy szimmetrikus A esetén $U = \widetilde{L}^{\top}$. $(A = \widetilde{L}D\widetilde{L}^{\top})$
 - $\sqrt{D} := \operatorname{diag}\left(\sqrt{\widetilde{u}_{1,1}}, \dots, \sqrt{\widetilde{u}_{n,n}}\right)$ jelöléssel most $A = \underbrace{\widetilde{L} \cdot \sqrt{D}}_{L} \cdot \underbrace{\sqrt{D} \cdot \widetilde{L}^{\top}}_{L^{\top}} = L \cdot L^{\top}.$

Megj.: Nem szükséges az LDL^{\top} -felbontást előállítani, \widetilde{U} elemeit felhasználva egyből az utolsó pontra térhetünk.

Cholesky-felbontás előállítása

- 2. előállítási módszer: "mechanikusan" a GE-n keresztül.
 - Az a_{11} helyére $\sqrt{a_{11}}$ -et írunk.
 - Végigosztjuk az 1. oszlopot $\sqrt{a_{11}}$ -gyel.
 - Eliminálunk a maradék $(n-1) \times (n-1)$ -es mátrixban.
 - Megyünk tovább...
 - A végén csak az alsó háromszögmátrixot olvassuk ki.

Cholesky-felbontás előállítása

3. előállítási módszer: mátrixszorzás alapján.

Tétel: az LL^{\top} -felbontás "közvetlen" kiszámítása

Az L mátrix elemei az A alsóháromszögbeli elemeiből a következő képletekkel számolhatók:

$$i=j$$
 (átló)
$$l_{jj}=\sqrt{a_{jj}-\sum_{k=1}^{j-1}l_{jk}^2},$$
 $i>j$ (alsó)
$$l_{ij}=rac{1}{l_{jj}}\left(a_{ij}-\sum_{k=1}^{j-1}l_{ik}\cdot l_{jk}
ight).$$

Ha jó sorrendben számolunk, mindig ismert az egész jobb oldal.

Az LU-felbontás "közvetlen" kiszámítása

Biz.: Az LU-felbontáshoz hasonlóan. Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat i-edik sorának j-edik elemét feltéve, hogy $A = L \cdot L^{\top}$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Ha i=j, azaz egy főátlóbeli elemről van szó, akkor $k>j\Rightarrow l_{j,k}=0$, valamint $(L^{\top})_{kj}=l_{jk}$, és így

$$a_{jj} = \sum_{k=1}^{n} I_{jk} \cdot (L^{\top})_{kj} = \sum_{k=1}^{j} I_{jk}^{2} = I_{jj}^{2} + \sum_{k=1}^{j-1} I_{jk}^{2}.$$

Ebből I_{ii} kifejezhető

$$I_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} I_{jk}^2}.$$

Az *LU*-felbontás "közvetlen" kiszámítása

Biz. folyt. Ha i > j, azaz egy főátló alatti elemről van szó, akkor

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot (L^{\top})_{kj} = \sum_{k=1}^{j} I_{ik} \cdot I_{jk} = I_{ij} \cdot I_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot I_{jk}.$$

Ha $\mathit{I}_{jj} \neq 0$ (találkoztunk már ezzel a feltétellel), akkor I_{ij} kifejezhető

$$I_{ij} = rac{1}{I_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot I_{jk}
ight).$$

Figyeljük meg, hogy ha valamely "jó sorrendben" (lásd LU-felbontásnál a sorrendek) megyünk végig az (i,j) indexekkel A alsóháromszögbeli elemein, akkor az I_{ij} illetve I_{jj} értékét megadó egyenlőségek jobb oldalán minden mennyiség ismert.

A Cholesky-felbontás műveletigénye

Tétel: A Cholesky-felbontás előállításának műveletigénye

A szorzások és osztások száma

$$\frac{1}{3}n^3+\mathcal{O}(n^2),$$

valamint *n* darab négyzetgyökvonás is szükséges.

Biz.: A képletekből:

$$I_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} I_{jk}^2}, \quad I_{ij} = \frac{1}{I_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot I_{jk} \right).$$

Rögzített j-re: l_{ii} -hez 2(j-1) szorzás és összeadás kell.

Rögzített i, j-re: l_{ij} -hez 1 osztás, (j-1) szorzás és (j-1) összeadás kell. Összesen 2j-1 művelet.

A Cholesky-felbontás műveletigénye

$$\sum_{j=1}^{n} 2(j-1) + \sum_{i=2}^{n} \sum_{j=1}^{i-1} (2j-1) =$$

$$\sum_{s=1}^{n-1} 2s + \sum_{i=2}^{n} \left(2 \cdot \frac{(i-1)i}{2} - (i-1) \right) =$$

$$\sum_{s=1}^{n-1} 2s + \sum_{i=2}^{n} (i-1)^2 = \sum_{s=1}^{n-1} 2s + \sum_{t=1}^{n-1} t^2$$

$$= 2 \cdot \frac{(n-1)n}{2} + \frac{(n-1)n(2n-1)}{6} = \frac{1}{3}n^3 + \mathcal{O}(n^2). \quad \Box$$

Cholesky-felbontás

Példa

Készítsük el a következő (szimmetrikus, pozitív definit) mátrix Cholesky-felbontását

- (a) az LU-felbontás alapján,
- (b) "mechanikusan".

$$A = \begin{pmatrix} 4 & 2 & 4 \\ 2 & 10 & 5 \\ 4 & 5 & 6 \end{pmatrix}.$$

LU-felbontásból: A mátrixon elvégezzük a GE lépéseit:

1. lépés:

$$\begin{bmatrix} 4 & 2 & 4 \\ 2 & 10 & 5 \\ 4 & 5 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 2 & 4 \\ \frac{1}{2} & 9 & 3 \\ 1 & 3 & 2 \end{bmatrix} \rightarrow$$

2. lépés:

$$\begin{bmatrix}
4 & 2 & 4 \\
\frac{1}{2} & 9 & 3 \\
1 & 3 & 2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
4 & 2 & 4 \\
\frac{1}{2} & 9 & 3 \\
1 & \frac{1}{3} & 1
\end{bmatrix}$$

Készen vagyunk az eliminációval, csak le kell olvasnunk $\widetilde{L}, \widetilde{U}$ -ot.

$$A = \widetilde{L} \cdot \widetilde{U} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 1 & \frac{1}{3} & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 2 & 4 \\ 0 & 9 & 3 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 4 \\ 2 & 10 & 5 \\ 4 & 5 & 6 \end{bmatrix}.$$

$$D = diag(\sqrt{4}, \sqrt{9}, \sqrt{1}) = diag(2, 3, 1).$$

$$L = \widetilde{L} \cdot D = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 1 & \frac{1}{3} & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

A diagonális mátrix-szal jobbról szorzás az \widetilde{L} megfelelő oszlopait szorozza az átlóbeli elemekkel.

"Mechanikusan" közvetlenül a GE-ból: Az a_{11} helyére $\sqrt{a_{11}}$ -et írunk. Végigosztjuk az 1. oszlopot $\sqrt{a_{11}}$ -gyel. A jobb alsó 2×2 -es mátrix részen elvégezzük az 1. sor segítségével az eliminációt.

$$\begin{bmatrix} 4 & 2 & 4 \\ 2 & 10 & 5 \\ 4 & 5 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ \hline 1 & 9 & 3 \\ 2 & 3 & 2 \end{bmatrix} \rightarrow$$

Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

$$\begin{bmatrix} 2 & & \\ \hline 1 & 9 & 3 \\ 2 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & & \\ \hline 1 & 3 & \\ 2 & \hline 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & & \\ \hline 1 & 3 & \\ 2 & \hline 1 & \sqrt{1} \end{bmatrix}$$

Az utolsó átlóbeli elemből ne felejtsünk el gyököt vonni.

Példa (b)

Készen vagyunk, ellenőrizhetjük a Cholesky-felbontást:

$$A = L \cdot L^{\top} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 4 \\ 2 & 10 & 5 \\ 4 & 5 & 6 \end{bmatrix}.$$

Példák Matlab-ban

1 Példák pozitív definit mátrixokra,

Numerikus módszerek 1.

5. előadás: *QR*-felbontás: Gram–Schmidt ortogonalizáció, Householder-transzformációk és alkalmazásaik

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- 3 Gram–Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazásai
- 6 Műveletigény

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 6 Householder-transzformációk alkalmazásai
- 6 Műveletigény

Ortogonális mátrixokról

Definíció: ortogonális mátrix

Egy $Q \in \mathbb{R}^{n \times n}$ mátrix *ortogonális*, ha az inverze a transzponáltja, azaz

$$Q^{\top}Q = I.$$

Megj.: Ekkor $QQ^{\top} = I$ is teljesül. $(Q^{-1} = Q^{\top})$

Definíció: skaláris szorzat

Az $x, y \in \mathbb{R}^n$ vektorok *skaláris szorzata*

$$\langle x, y \rangle := y^{\top} x = \sum_{k=1}^{n} x_k \cdot y_k.$$

Ortogonális mátrixokról

Definíció: ortonormált rendszer

A $q_1, \ldots, q_n \in \mathbb{R}^n$ vektorok *ortonormált rendszert* alkotnak, ha

$$\langle q_i,q_j
angle = \left\{egin{array}{ll} 0 & ext{ha } i
eq j, \ 1 & ext{ha } i = j. \end{array}
ight.$$

Állítás: ortogonális mátrixok oszlopvektorairól

A $Q \in \mathbb{R}^{n \times n}$ ortogonális mátrix oszlopai, mint vektorok ortonormált rendszert alkotnak.

Biz.: Gondoljunk bele: $Q^{\top}Q = I$.

Ortogonális rendszerek

Definíció: ortogonális rendszer

A $q_1,\ldots,q_n\in\mathbb{R}^n$ vektorok *ortogonális rendszert* alkotnak, ha

$$\langle q_i, q_j \rangle = 0 \qquad (i \neq j).$$

Állítás: ortogonális rendszerekből álló mátrixokról

Ha a $q_1,\ldots,q_n\in\mathbb{R}^n$ vektorok ortogonális rendszert alkotnak, akkor a $Q:=(q_1,\ldots,q_n)\in\mathbb{R}^{n\times n}$ mátrix esetén a $Q^\top Q$ szorzatmátrix diagonális. $(QQ^\top$ általában nem.)

Biz.: Gondoljunk bele: $Q^TQ = D$ diagonális mátrix.

Elnevezések:

- $\langle q_i, q_i \rangle = \delta_{ij}$ (Kronecker-féle delta).
- $q_i \perp q_j \Leftrightarrow \langle q_i, q_j \rangle = 0$ $(i \neq j)$: az oszlopok merőlegesek, avagy ortogonálisak egymásra
- $\langle q_i,q_i\rangle=1$: minden oszlopvektor hossza 1, avagy *normált* $\|q_i\|_2:=\sqrt{\langle q_i,q_i\rangle}$: "hossz", avagy "kettes norma"

Példa: ortogonális mátrixok

Az alábbi mátrixok ortogonálisak:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

Ortogonális mátrixok szorzata

Állítás: ortogonális mátrixok szorzata

Ha $Q_1, Q_2 \in \mathbb{R}^{n \times n}$ ortogonális mátrixok, akkor a szorzatuk, $Q_1 Q_2$ is ortogonális.

Biz.: Tudjuk, hogy $Q_1^\top Q_1 = I$ és $Q_2^\top Q_2 = I$.

Kell, hogy Q_1Q_2 is ortogonális.

Vizsgáljuk:

$$(Q_1Q_2)^{\top}(Q_1Q_2) = Q_2^{\top}\underbrace{Q_1^{\top}Q_1}_{I}Q_2 = Q_2^{\top}Q_2 = I.$$

Tartalomjegyzék

- Ortogonális mátrixokról
- QR-felbontás
- 3 Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazásai
- 6 Műveletigény

Definíció: QR-felbontás

Az $A \in \mathbb{R}^{n \times n}$ mátrix QR-felbontásának nevezzük a $Q \cdot R$ szorzatot, ha A = QR, ahol $Q \in \mathbb{R}^{n \times n}$ ortogonális mátrix, $R \in \mathcal{U}$ pedig felső háromszögmátrix.

Tétel: QR-felbontás létezése és egyértelműsége

Ha det $A \neq 0$, (vagyis az A oszlopvektorai lineárisan függetlenek), akkor A-nak létezik QR-felbontása.

Ha még feltesszük, hogy $r_{ii} > 0 \ \forall i$ -re, akkor egyértelmű is.

Biz.: Létezés: A bizonyítást a Gram–Schmidt-féle ortogonalizációs eljárás adja: az A mátrix oszlopaiból – amelyek a feltétel értelmében lineárisan függetlenek – előállítjuk a Q oszlopait és R ismeretlen elemeit.

QR-felbontás létezés bizonyítás

Tekintsük a $Q \cdot R = A$ mátrixszorzást, ahol A-t és Q-t az oszlopaival adtuk meg:

$$\begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & \dots & r_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & r_{nn} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}.$$

Tekintsük először A első oszlopát, a_1 -et. A mátrixszorzásból

$$r_{11} \cdot q_1 = a_1, \Rightarrow q_1 = \frac{1}{r_{11}} \cdot a_1.$$

Mivel q_1 -től azt várjuk el, hogy normált legyen, ezért $r_{11} := \|a_1\|_2$.

QR-felbontás létezés bizonyítás

Tegyük fel, hogy A első k-1 oszlopát már felhasználtuk, és így előállítottuk Q első k-1 oszlopát, melyek normáltak és egymásra ortogonálisak, valamint R első k-1 oszlopának elemeit is ismerjük.

Tekintsük most a_k -t. A mátrixszorzásból felírhatjuk a_k -t, majd kifejezhetjük q_k -t:

$$a_k = \sum_{j=1}^k r_{jk} \cdot q_j \implies q_k = \frac{1}{r_{kk}} \left(a_k - \sum_{j=1}^{k-1} r_{jk} \cdot q_j \right)$$

Az r_{jk} értékek meghatározásához szorozzuk be skalárisan mindkét oldalt q_i -vel rögzített i értékre $(i=1,2,\ldots,k-1)$ és használjuk ki, hogy $\langle q_i,q_j\rangle=\delta_{ij}$, valamint q_k -tól is azt várjuk, hogy merőleges legyen az összes eddigi q_i vektorra:

QR-felbontás létezés bizonyítás

$$egin{aligned} q_k &= rac{1}{r_{kk}} \left(a_k - \sum_{j=1}^{k-1} r_{jk} \cdot q_j
ight) & | \cdot q_i
angle & (i = 1, \dots, k-1) \ & 0 &= \langle q_k, q_i
angle = rac{1}{r_{kk}} \left(\langle a_k, q_i
angle - \sum_{j=1}^{k-1} r_{jk} \underbrace{\langle q_j, q_i
angle}_{\delta_{ij}}
ight) = \ & = rac{1}{r_{kk}} \left(\langle a_k, q_i
angle - r_{ik}
ight) & \Rightarrow r_{ik} = \langle a_k, q_i
angle \,. \end{aligned}$$

Továbbá q_k -tól még azt várjuk el, hogy normált legyen, ezért

$$r_{kk} = \left\| a_k - \sum_{j=1}^{k-1} r_{jk} \cdot q_j \right\|_2.$$

QR-felbontás egyértelműség bizonyítás

Így megkaptuk az R mátrix k-adik oszlopának ismeretlen értékeit, az előállított q_k ortogonális az eddigi q_i -kre, valamint normált. \square

Biz.: Egyértelműség: Tegyük fel indirekt, hogy legalább két különböző *QR*-felbontásunk van

$$A=Q_1R_1=Q_2R_2,$$

melyekre a R_1 és R_2 diagonális elemi pozitívak.

A-t szorozzuk balról $Q_2^{-1}=Q_2^ op$ -tal és jobbról R_1^{-1} -zel

$$\underbrace{\left(Q_2^\top Q_1\right)}_{\text{ortogonális}} = \underbrace{\left(R_2 R_1^{-1}\right)}_{\in \mathcal{U}}.$$

Legyen $R:=R_2R_1^{-1}$, mivel $Q:=Q_2^{\top}Q_1$ ortogonális mátrix (R=Q),

$$Q^{\top}Q = I = R^{\top}R.$$

QR-felbontás egyértelműség bizonyítás

Az $R^{\top}R = I$ szorzatot felírva:

$$\begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & r_{nn} \end{bmatrix}$$

$$\begin{bmatrix} r_{11} & 0 & \dots & & \\ r_{12} & r_{22} & 0 & & \\ \vdots & & \ddots & \vdots \\ r_{1n} & 0 & \dots & r_{nn} \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & \dots & \\ 0 & 1 & 0 & \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

$$r_{11}\cdot r_{11}=1$$
, amiből $r_{11}>0$ miatt $r_{11}=1$. $j
eq 1$ -re
$$r_{11}\cdot r_{1j}=0 \quad \Rightarrow \quad r_{1j}=0.$$

R második sorára: $r_{22} \cdot r_{22} = 1$, amiből $r_{22} > 0$ miatt $r_{22} = 1$.

A szorzat mátrix (2, j)-edik elemére $j \neq 2$ -re

$$r_{22} \cdot r_{2j} = 0 \quad \Rightarrow \quad r_{2j} = 0.$$

A többi sorra ehhez hasonlóan ellenőrizhetjük, hogy

$$R = I \Leftrightarrow R_1 = R_2, Q_1 = Q_2.$$

Ezzel ellentmondásra jutottunk.

Megj.: Két különböző QR-felbontás esetén létezik olyan $D := \operatorname{diag}(\pm 1, \dots, \pm 1)$ mátrix, melyre $A = \widetilde{Q \cdot D} \cdot \widetilde{D \cdot R} = \widetilde{Q} \cdot \widetilde{R}$.

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = QR felbontás.

Ekkor
$$Ax = Q \cdot \underbrace{R \cdot x}_{Y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

1 a
$$Qy = b$$
 LER megoldása: $y = Q^{T}b$, $(2n^{2} + \mathcal{O}(n))$

2 az
$$Rx = y$$
 LER-t oldjuk meg. $(n^2 + \mathcal{O}(n))$

Együtt is írható: oldjuk meg az $Rx = Q^{T}b$ LER-t.

Persze valamikor elő kell állítani a QR-felbontást. $(2n^3 + \mathcal{O}(n^2))$ Előnyös, ha sokszor ugyanaz A, lásd QR-algoritmus (Num. mód. 2A). Így numerikusan stabilabb a LER megoldása.

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- 3 Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazásai
- 6 Műveletigény

Gram-Schmidt-féle ortogonalizáció

Feladat: adott $a_1, \ldots, a_n \in \mathbb{R}^n$ lineárisan független vektorrendszer, készítsünk belőlük egy $q_1, \ldots, q_n \in \mathbb{R}^n$ ortonormált vektorrendszert úgy, hogy q_k csak a_1, \ldots, a_k -tól függ $(k = 1, 2, \ldots, n)$.

Másképp, mátrixszorzás alakban: QR = A, avagy

$$\begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ & r_{22} & \dots & r_{2n} \\ & & \ddots & \vdots \\ & & & r_{nn} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

Adott: A, keressük: Q, R.

Levezetés: lásd a QR-felbontás létezés bizonyítását (illetve Linalg).

Gram-Schmidt-féle ortogonalizáció

Definíció: Gram-Schmidt-féle ortogonalizáció

Adott az $a_1, \ldots, a_n \in \mathbb{R}^n$ lineárisan független vektorrendszer.

- 2 $q_1 := \frac{1}{r_{11}} a_1$ ("lenormáljuk").

A k-adik lépésben (k = 2, ..., n):

- $4 s_k := a_k \sum_{i=1}^{k-1} r_{jk} \cdot q_j,$
- **5** $r_{kk} := \|s_k\|_2$ (s_k segédvektor hossza),
- $\mathbf{6} \ q_k := \frac{1}{r_{kk}} s_k \quad \text{(,,lenormáljuk'')}.$

Az így nyert $q_1, \ldots, q_n \in \mathbb{R}^n$ vektorrendszer ortonormált.

Gram-Schmidt-féle ortogonalizáció

Definíció: Gram–Schmidt-ortogonalizáció (normálás nélkül)

Adott az $a_1, \ldots, a_n \in \mathbb{R}^n$ lineárisan független vektorrendszer.

- **2** $\widetilde{r_{11}} := 1$

A k-adik lépésben (k = 2, ..., n):

$$\widehat{r_{jk}} := \frac{\langle a_k, \widetilde{q}_j \rangle}{\langle \widetilde{q}_j, \widetilde{q}_j \rangle} \quad (j = 1, \dots, k-1),$$

$$\mathbf{4} \ \widetilde{q_k} := a_k - \sum_{i=1}^{k-1} \widetilde{r_{jk}} \cdot \widetilde{q}_j,$$

 $\mathbf{5} \ \widetilde{r_{kk}} := 1 \quad \text{(nem normálunk)},$

Az így nyert $\widetilde{q_1}, \ldots, \widetilde{q_n} \in \mathbb{R}^n$ vektorrendszer ortogonális.

Megj.: Levezetése teljesen hasonló. Kézi számolásra alkalmasabb. Ne felejtsünk el normálni. . .

Gram-Schmidt-féle ortogonalizáció

Normálás utólag:

- $A = \widetilde{Q}\widetilde{R}$,
- $ullet \ D := \widetilde{Q}^{ op}\widetilde{Q}$, azaz $D = \operatorname{diag}\left(\left\langle q_1, q_1
 ight
 angle, \ldots \left\langle q_n, q_n
 ight
 angle
 ight)$,
- $A = \underbrace{\widetilde{Q} \cdot \sqrt{D}^{-1}}_{Q} \cdot \underbrace{\sqrt{D} \cdot \widetilde{R}}_{R} = Q \cdot R,$

azaz Q oszlopait, mint vektorokat leosztjuk azok hosszával (normáljuk őket), \widetilde{R} sorait pedig szorozzuk ugyanezekkel az értékekkel.

• Közvetlenül a $\sqrt{D}=\operatorname{diag}\left(\|q_1\|_2,\ldots,\|q_n\|_2\right)$ alakkal is dolgozhatunk.

Gram-Schmidt-féle ortogonalizáció

Tétel: A Gram-Schmidt-ortogonalizáció műveletigénye

A szorzások és osztások száma

$$2n^3 + \mathcal{O}(n^2)$$
,

valamint n darab négyzetgyökvonás is szükséges.

Biz.: A k-adik lépésben:

skaláris szorzatok
$$(r_{jk})$$
 $(k-1)(2n-1)$ ortogonális vektor (s_k) $(k-1)n+(k-1)n=(k-1)2n$ hossz (r_{kk}) $2n-1$ osztás (q_k) n

Összesen:

$$(k-1)(4n-1)+3n-1=4kn-4n-k+1+3n-1=4kn-n-k$$

Gram-Schmidt-féle ortogonalizáció

$$\sum_{k=1}^{n} (4kn - n - k) = 4n \sum_{k=1}^{n} k - n^2 - \sum_{k=1}^{n} k =$$

$$= 4n \cdot \frac{n(n+1)}{2} - n^2 - \frac{n(n+1)}{2} = 2n^3 + \mathcal{O}(n^2).$$

Példa: QR, Gram-Schmidt

Készítsük el a következő mátrix *QR*-felbontását Gram–Schmidt-ortogonalizációval.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

Gram-Schmidt ortogonalizációval normálással:

$$A = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{q_1} & \mathbf{q_2} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{r_{11}} & \mathbf{r_{12}} \\ \mathbf{0} & \mathbf{r_{22}} \end{bmatrix} = Q \cdot R.$$

1. lépés: $a_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ -ből meghatározzuk r_{11}, q_1 -et:

$$r_{11} = \|a_1\|_2 = \sqrt{1^2 + 2^2} = \sqrt{5}$$

$$q_1 = \frac{1}{r_{11}} a_1 = \frac{1}{\sqrt{5}} a_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}$$

2. lépés:

$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{bmatrix} = Q \cdot R$$

$$a_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
-ből meghatározzuk r_{12}, r_{22}, q_2 -t:

$$r_{12} = \langle a_2, q_1 \rangle = \left\langle \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\rangle = \frac{1}{\sqrt{5}} (2 \cdot 1 + 1 \cdot 2) = \frac{4}{\sqrt{5}}$$

$$s_{2} = a_{2} - r_{12}q_{1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} - \frac{4}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} =$$

$$= \frac{1}{5} \begin{bmatrix} 10 - 4 \\ 5 - 8 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 6 \\ -3 \end{bmatrix} = \frac{3}{5} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$r_{22} = \|s_2\|_2 = \left\|\frac{3}{5} \begin{bmatrix} 2\\-1 \end{bmatrix}\right\|_2 = \frac{3}{5} \cdot \sqrt{2^2 + (-1)^2} = \frac{3}{5} \cdot \sqrt{5} = \frac{3}{\sqrt{5}}$$
$$q_2 = \frac{1}{r_{22}} s_2 = \frac{3}{5} \cdot \frac{\sqrt{5}}{3} \begin{bmatrix} 2\\-1 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\-1 \end{bmatrix}$$

Tehát a Q és R mátrixok a következők:

$$Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}, R = \begin{bmatrix} \sqrt{5} & \frac{4}{\sqrt{5}} \\ 0 & \frac{3}{\sqrt{5}} \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 5 & 4 \\ 0 & 3 \end{bmatrix}$$

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- 3 Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazásai
- 6 Műveletigény

Rövid kitérő: vektorok "hossza"

Definíció: vektorok "hossza"

Az \mathbb{R}^n -beli v vektorok hagyományos értelemben vett hosszát, avagy "kettes normáját" jelölje $\|.\|_2$.

A következőképpen számolható:

$$\|v\|_2 := \sqrt{\langle v, v \rangle} = \sqrt{v^\top v} = \left(\sum_{k=1}^n v_i^2\right)^{\frac{1}{2}}$$

Definíció: Householder-mátrix

A $H = H(v) \in \mathbb{R}^{n \times n}$ mátrixot Householder-mátrixnak nevezzük, ha

$$H(v) = I - 2vv^{\top},$$

ahol $v \in \mathbb{R}^n$ és $||v||_2 = 1$.

Meg jegyzés:

- A H(v) transzformációs mátrixot nem kell előállítani, enélkül alkalmazzuk vektorokra, ez a Householder-transzformáció:
- $x \in \mathbb{R}^n$ -re $H(v)x = (I 2vv^\top)x = x 2v\underbrace{(v^\top x)}_{\in \mathbb{R}^n}$.
- $y \in \mathbb{R}^n$ -re $y^\top H(v) = y^\top (I 2vv^\top) = y^\top 2\underbrace{(y^\top v)}_{\in \mathbb{R}} v^\top$.
- Mindkét esetben 4n művelet kell a mátrixszal való szorzás $2n^2 + \mathcal{O}(n)$ -es műveletigénye helyett.

Állítás: Householder-mátrixok tulajdonságai

- $\mathbf{1} H^{\top} = H$ (szimmetrikus),
- 2 $H^2 = I$, azaz $H^{-1} = H$ (ortogonális),
- $4 \forall y \bot v : \quad H(v) \cdot y = y.$

Biz.: Használjuk ki, hogy $v^{\top}v = 1$ és $v^{\top}y = 0$.

- $(I 2vv^{\top})^{\top} = I^{\top} 2(v^{\top})^{\top}v^{\top} = I 2vv^{\top},$
- $(I 2vv^{\top})(I 2vv^{\top}) = I 2vv^{\top} 2vv^{\top} + 4v \underbrace{v^{\top}v} v^{\top} = I,$
- $(I 2vv^{\top})v = v 2v \underline{v}^{\top} \underline{v} = v 2v = -v,$
- **4** $(I 2vv^{\top})y = y 2vv^{\top}y = y$.

Megjegyzés:

- H(v) tükröző mátrix, a v-re merőleges (azaz v normálvektorú) n-1 dimenziós altérre (0-n átmenő egyenesre, síkra stb.) tükröz.
- Legyen $v \in \mathbb{R}^n$ és $\|v\|_2 = 1$, tetszőleges $x \in \mathbb{R}^n$ vektort bontsunk v-re merőleges és v-vel párhuzamos komponensekre: x = a + b, ahol $a \perp v$ és b||v. Ekkor az előző tétel utolsó két állítása alapján

$$H(v)x = H(v)a + H(v)b = a - b.$$

• Mivel H(v) ortogonális mátrix, $||H(v)x||_2 = ||x||_2$, vagyis a transzformáció a vektor hosszát nem változtatja meg.

Tétel: tetszőleges tükrözés Householder-mátrixszal

Legyen $a, b \in \mathbb{R}^n$, $a \neq b$ és $||a||_2 = ||b||_2 \neq 0$. Ekkor a

$$v = \pm \frac{a - b}{\|a - b\|_2}$$
 választással $H(v) \cdot a = b$.

Biz.: Ismerve, hogy $H(v) = I - 2vv^{\top}$, számoljuk végig a $H(v) \cdot a$ szorzatot. Közben használjuk ki, hogy $\|a\|_2 = \|b\|_2$, azaz $a^{\top}a = b^{\top}b$, valamint a skaláris szorzás kommutatív, azaz $a^{\top}b = b^{\top}a$.

$$\left(I - 2\frac{(a-b)(a-b)^{\top}}{\|a-b\|_{2}^{2}}\right) \cdot a = a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{(a-b)^{\top}(a-b)} =
= a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{a^{\top}a-a^{\top}b-b^{\top}a+b^{\top}b} = a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{2(a^{\top}a-b^{\top}a)} =
= a - (a-b) = b.$$

Tehát valóban, két különböző, de azonos hosszúságú vektor átvihető egymásba egy Householder-transzformáció által.

Megjegyzés: Egyébként $H(v) \cdot b = a$ is teljesül.

Példa: Householder-féle tükrözés

Határozzuk meg azt a Householder-féle transzformációt, amely az azonos hosszúságú a,b vektorhoz előállítja azt a v vektort, melyre $H(v) \cdot a = b$. Ellenőrzésképpen végezzük is el a transzformációt.

$$a = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

$$a-b = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$||a - b||_2 = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{6}$$

Tehát
$$v = \frac{a-b}{\|a-b\|_2} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$$
 jó választás.

Ellenőrizzük végezzük el a transzformációt *a*-n:

$$H(v) \cdot a = a - 2v \underbrace{(v^{\top}a)}_{} = a - 2(v^{\top}a)v.$$

Példa

$$H(v) \cdot a = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - 2 \cdot \frac{1}{\sqrt{6}} \underbrace{\begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}} \cdot \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - \frac{6}{6} \cdot \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = b \quad \checkmark$$

Példa: Householder-féle tükrözés

Határozzuk meg azt a Householder-féle transzformációt, amely a következő a vektort $b=k\cdot e_1$ alakúra hozza. Ellenőrzésképpen végezzük is el a transzformációt.

$$a = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

A jó előjel választás σ -nak -1, mert a első eleme pozitív.

$$\sigma = -\|a\|_2 = -\sqrt{2^2 + (-2)^2 + 1^2} = -3$$

Ezzel az előjel választással stabilabb lesz az osztásunk v előállításban.

$$a - \sigma e_1 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - (-3) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}$$

Látjuk, hogy valójában egyetlen műveletet kellett elvégeznünk a vektor első elemén. Ezzel a σ előjelválasztással elérjük, hogy $\|a-\sigma e_1\|_2 \geq \|a\|_2$.

$$\|a - \sigma e_1\|_2 = \sqrt{5^2 + (-2)^2 + 1^2} = \sqrt{30}$$

$$v = \frac{a - \sigma e_1}{\|a - \sigma e_1\|_2} = \frac{1}{\sqrt{30}} \begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix}$$
 jó választás.

Ellenőrizzük végezzük el a transzformációt a-n:

$$H(v) \cdot a = a - 2v \underbrace{(v^{\top}a)}_{\in \mathbb{R}} = a - 2(v^{\top}a)v.$$

$$H(v) \cdot a = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - 2 \cdot \frac{1}{\sqrt{30}} \underbrace{\begin{bmatrix} 5 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}}_{15} \cdot \frac{1}{\sqrt{30}} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} = \sigma \cdot e_1 \quad \checkmark$$

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazásai
- 6 Műveletigény

Módszer:

- Legyen adott az $A \in \mathbb{R}^{n \times n}$ invertálható mátrix, első oszlopát jelölje a_1 .
- ullet Egy lépésben egy oszlopot kinullázunk a főátló alatt. (\sim GE)
- Így n-1 lépésben felső háromszög alakot nyerünk.

Definíció: előjel függvény

$$\operatorname{sgn}: \mathbb{R} \to \mathbb{R}, \qquad \operatorname{sgn}(x) = \left\{ egin{array}{ll} 1 & \operatorname{ha} x > 0 \\ 0 & \operatorname{ha} x = 0 \\ -1 & \operatorname{ha} x < 0 \end{array} \right.$$

Megjegyzés: most, a Householder-transzformációknál nem engedhetjük meg a 0 értéket, helyette akár +1-et, akár -1-et választhatunk.

1. lépés:

$$a_1\Rightarrow\sigma_1\cdot e_1$$
, ahol $\sigma_1:=- ext{sgn}\left(a_{11}
ight)\cdot\left\|a_1
ight\|_2$ (tehát $\left|\sigma_1
ight|=\left\|a_1
ight\|_2$),

$$v_1 := \frac{a_1 - \sigma_1 e_1}{\|a_1 - \sigma_1 e_1\|_2}, \qquad H_1 := H(v_1).$$

Ekkor

$$H_1 \cdot A = H(v_1) \cdot A = \begin{pmatrix} \sigma_1 & * & \dots & * \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}.$$

Megjegyzés: σ_1 megválasztásáról...így stabilabb.

2. lépés:

$$b_1\Rightarrow\sigma_2\cdot e_1$$
, ahol $\sigma_2:=-\mathsf{sgn}\left(b_{11}
ight)\cdot\left\|b_1\right\|_2$ (tehát $\left|\sigma_2\right|=\left\|b_1\right\|_2$),

$$\widetilde{v_2} := \frac{b_1 - \sigma_2 e_1}{\|b_1 - \sigma_2 e_1\|_2} \in \mathbb{R}^{n-1}$$

Ekkor

$$H(\widetilde{v_2}) \cdot B = egin{pmatrix} \sigma_2 & * & \dots & * \ 0 & & & \ dots & & C \ 0 & & & \end{pmatrix} \in \mathbb{R}^{(n-1) imes (n-1)}$$

2. lépés (teljes méretben $(n \times n)$ felírva):

$$v_2:=egin{pmatrix} 0 \ \widetilde{v_2} \end{pmatrix}, \quad H_2:=H(v_2)=egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & & & \ dots & & H(\widetilde{v_2}) \ 0 & & & \end{pmatrix}.$$

Ekkor

$$H_2 \cdot H_1 \cdot A = \begin{pmatrix} \sigma_1 & * & * & \dots & * \\ 0 & \sigma_2 & * & \dots & * \\ 0 & 0 & & & \\ \vdots & \vdots & & C \\ 0 & 0 & & & \end{pmatrix}.$$

Általában, k. lépés:

kinullázzuk az elemeket a főátló alatt a k. oszlopban.

Az ezt megvalósító transzformáció:

$$v_k := \begin{pmatrix} 0_{(1.)} \\ \vdots \\ 0_{(k-1).} \\ \widetilde{v_k} \end{pmatrix} \in \mathbb{R}^n, \quad H_k := H(v_k) = \begin{pmatrix} I_{k-1} & 0 \\ 0 & H(\widetilde{v_k}) \end{pmatrix}.$$

A gyakorlatban csak az $(n-k+1) \times (n-k+1)$ -s mátrix részen dolgozunk a k. lépésben, mint a GE-nál. Az (n-1)-edik lépés után felső háromszög alakot kapunk.

A Householder-transzformáció alkalmazásai

Egyetlen LER megoldása:

$$Ax = b$$

$$H_1 \cdot A \cdot x = H_1 \cdot b$$

$$\vdots$$

$$H_{n-1} \cdot \cdot \cdot H_1 \cdot A \cdot x = \underbrace{H_{n-1} \cdot \cdot \cdot H_1 \cdot b}_{d}$$

$$R \cdot x = d \rightarrow x \text{ (visszahelyettesítés)}$$

Ugyanúgy dolgozunk, mint a GE-nál. Végrehajtjuk a transzformációt az oszlopokon:

$$[A|b]
ightarrow ext{n-1} ext{db H-trf.}
ightarrow [R|d]
ightarrow ext{visszahely.}$$

Mindig egyre kisebb méretű mátrixon dolgozunk a transzformációk során.

A Householder-transzformáció alkalmazásai

QR-felbontás készítése:

$$\underbrace{H_{n-1}\cdots H_2\cdot H_1}_{Q^{-1}=Q^{\top}}\cdot A=R$$

$$A=\underbrace{H_1\cdot H_2\cdots H_{n-1}}_{Q}\cdot R=Q\cdot R$$

Megfigyelhetjük, hogy Q előállításakor mindig a jobb oldalról végezzük a transzformációt, ekkor sorokra alkalmazzuk.

Az algoritmus: Q előállítására

$$Q_0 = I$$
 $k = 1, \dots, n-1: \quad Q_k := Q_{k-1}H_k$
 $Q := Q_{n-1}$

A Householder-transzformáció alkalmazásai

Tétel: QR-felbontás Householder-módszerrel

Invertálható mátrixok QR-felbontása elkészíthető n-1 db Householder-transzformáció segítségével.

Biz.: Láttuk. □

Összefoglalva: A k. lépésben kinullázzuk a k. oszlop főátló alatti elemeit egy H_k ortogonális transzformáció segítségével, melyet a mátrix oszlopaira alkalmazunk a jobb alsó

 $(n-k+1) \times (n-k+1)$ -s mátrix részen.

A Q mátrixot úgy kapjuk, hogy egy egységmátrixból indulva a k. lépésben a H_k transzformációt jobbról alkalmazzuk a sorokra csak a jobb alsó $(n-k+1)\times (n-k+1)$ -s mátrix részen.

n-1 lépés után megkapjuk felső háromszög alakot (R) és Q-t.

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 6 Householder-transzformációk alkalmazásai
- 6 Műveletigény

Műveletigény

Tétel: A Householder-trf. műveletigénye LER-re

A LER megoldásának műveletigénye Householder-transzformációkkal:

$$\frac{4}{3}n^3+\mathcal{O}(n^2),$$

valamint 2(n-1) darab négyzetgyökvonásra is szükség van.

Biz.:

A k-adik lépésben $(n - k + 1 =: h_k \text{ hosszú vektorokkal dolgozunk}):$

hossz
$$(\sigma)$$
 $2h_k-1$, normálvektor $(a-\sigma e_1,\|.\|_2,v)$ $1+(2h_k-1)+h_k=3h_k$, transzformáció $((h_k-1)+1$ vektorra) $h_k\cdot 4h_k$.

Összesen: $4h_k^2 + 5h_k - 1$, (n - k =: s)

$$\sum_{k=1}^{n-1} \left(4h_k^2 + 5h_k - 1 \right) = \sum_{s=2}^{n} 4s^2 + \sum_{s=2}^{n} s + (n-1) = \frac{4}{3}n^3 + \mathcal{O}(n^2).$$

A visszahelyettesítés műveletigénye $n^2 + \mathcal{O}(n)$, belefér az előző alakba.

Műveletigény

Tétel: A Householder-trf. műveletigénye *QR*-felbontásra

A *QR*-felbontás előállításának műveletigénye Householder-transzformációkkal:

$$\frac{8}{3}n^3+\mathcal{O}(n^2),$$

valamint 2(n-1) darab négyzetgyökvonásra is szükség van.

Biz.:

A k-adik lépésben ($n - k + 1 =: h_k$ hosszú vektorokkal dolgozunk):

hossz
$$(\sigma)$$
 $2h_k-1$, normálvektor $(a-\sigma e_1,\|.\|_2,v)$ $1+(2h_k-1)+h_k=3h_k$, transzformáció $((h_k-1)+h_k$ vektorra) $(2h_k-1)\cdot 4h_k$.

Összesen:
$$(8h_k^2 - 4h_k) + (5h_k - 1) = 8h_k^2 + h_k - 1$$
, $(n - k =: s)$

$$\sum_{k=1}^{n-1} \left(8h_k^2 + h_k - 1 \right) = \sum_{s=2}^{n} 8s^2 + \sum_{s=2}^{n} s - (n-1) = \frac{8}{3}n^3 + \mathcal{O}(n^2).$$

Megjegyzés: Ez kicsit több, mint a Gram–Schmidt-féle ortogonalizációnál, viszont ez a módszer numerikusan stabilabb.

Példák Matlab-ban

- **1** A Gram–Schmidt-féle ortogonalizációs eljárás működésének szemléltetése \mathbb{R}^3 -beli vektorrendszer esetén.
- 2 Példák Householder-mátrixokra ($n \approx 3, 10, 20, 50$).
- 3 Példák Householder-transzformációra.
- **4** QR-felbontás készítése Householder módszerével $(n \approx 3, 7, 50, 100)$.

Numerikus módszerek 1.

6. előadás: Vektor- és mátrixnormák

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 Vektornormák

2 Mátrixnormák

3 Természetes mátrixnormák, avagy indukált normák

4 Mátrixnormák további tulajdonságai – válogatás

Tartalomjegyzék

1 Vektornormák

2 Mátrixnormák

3 Természetes mátrixnormák, avagy indukált normák

4 Mátrixnormák további tulajdonságai – válogatás

Emlékeztető: Vektorok "hossza"

Definíció: vektorok "hossza"

Az $x \in \mathbb{R}^n$ vektor hagyományos értelemben vett hosszát, avagy "kettes normáját" jelölje $\|.\|_2$.

A következőképpen számolható:

$$\|x\|_2 := \sqrt{\langle x, x \rangle} = \sqrt{x^\top x} = \left(\sum_{k=1}^n x_i^2\right)^{\frac{1}{2}}.$$

A (vektor)norma a "hossz", "nagyság" általánosítása.

Definíció: vektornorma

Legyen $n \in \mathbb{N}$ rögzített. Az $\|.\| : \mathbb{R}^n \to \mathbb{R}$ leképezést vektornormának nevezzük, ha:

- $||x|| = 0 \iff x = 0,$
- **4** $||x + y|| \le ||x|| + ||y|| \quad (\forall x, y \in \mathbb{R}^n).$

Azaz a leképezés "pozitív", "pozitív homogén" és "szubadditív" (háromszög-egyenlőtlenség). Ezek a vektornormák *axiómái*.

Vektornormák

Állítás: skaláris szorzat által generált vektornorma

Ha adott az $\langle .,. \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ skaláris szorzat, akkor az $f(x) := \sqrt{\langle x,x \rangle}$ függvény *norma*. Jele: $\|x\|_2$.

Biz.: Nem kell.

Ez a "hagyományos hossz".

Állítás: Cauchy–Bunyakovszki–Schwarz-egyenlőtlenség (CBS)

$$|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2 \quad (x, y \in \mathbb{R}^n)$$

Biz.: Bármely $\alpha \in \mathbb{R}$ esetén $||x - \alpha y||_2^2 \ge 0$.

$$0 \le \|x - \alpha y\|_{2}^{2} = \langle x - \alpha y, x - \alpha y \rangle =$$

$$= \underbrace{\langle x, x \rangle}_{\|x\|_{2}^{2}} -2\alpha \langle x, y \rangle + \alpha^{2} \underbrace{\langle y, y \rangle}_{\|y\|_{2}^{2}} \qquad (\forall \alpha \in \mathbb{R}).$$

Diszkrimináns nempozitív: $\langle x, y \rangle^2 - ||x||_2^2 \cdot ||y||_2^2 \le 0$, így

$$\langle x, y \rangle^2 \le ||x||_2^2 \cdot ||y||_2^2$$
.

Állítás: Gyakori vektornormák $(1,2,\infty)$

A következő formulák vektornormákat **definiálnak** \mathbb{R}^n felett:

•
$$\|x\|_1 := \sum_{i=1}^n |x_i|$$
 (Manhattan-norma),

•
$$\|x\|_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$
 (Euklideszi-norma),

•
$$\|x\|_{\infty} := \max_{i=1}^{n} |x_i|$$
 (Csebisev-norma).

Biz.: Hf.

Példa: vektornormák

Számítsuk ki a következő vektorok $1, 2, \infty$ normáját:

$$x = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \qquad y = \begin{bmatrix} 4 \\ -8 \\ 1 \end{bmatrix}.$$

$$||x||_1 = 3 + 4 = 7$$
, $||x||_2 = \sqrt{3^2 + 4^2} = 5$, $||x||_\infty = \max\{3, 4\} = 4$.

$$\|y\|_1 = 4 + |-8| + 1 = 13$$
, $\|y\|_2 = \sqrt{4^2 + (-8)^2 + 1^2} = \sqrt{73}$, $\|y\|_{\infty} = \max\{4, |-8|, 1\} = 8$.

Állítás: p-normák

A következő $\mathbb{R}^n \to \mathbb{R}$ függvények is vektornormákat **definiálnak**:

$$\|x\|_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \qquad (p \in \mathbb{R}, \ 1 \le p < \infty).$$

Biz.: Nem kell. A háromszög-egyenlőtlenség a Minkovszki-egyenlőtlenség.

Megjegyzések:

- $0 \le p < 1$ esetén nem norma,
- $p_1 \leq p_2 \Longrightarrow ||x||_{p_1} \geq ||x||_{p_2}$,
- Speciális esetek: $p = 1 \rightsquigarrow \|x\|_1$, $p = 2 \rightsquigarrow \|x\|_2$,
- Sőt: $\lim_{n \to \infty} ||x||_p = ||x||_{\infty}$.

Állítás: normák közötti egyenlőtlenségek

$$\bullet \|x\|_{\infty} \leq \|x\|_1 \leq n \cdot \|x\|_{\infty},$$

•
$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} \cdot ||x||_{\infty}$$
,

•
$$||x||_2 \le ||x||_1 \le \sqrt{n} \cdot ||x||_2$$
,

• sőt ezek alapján
$$||x||_{\infty} \le ||x||_2 \le ||x||_1$$
.

Biz.: Nem kell.

(Az elsőbe könnyű belegondolni, a negyedikre láttunk példát.)

Vektornormák

Definíció: ekvivalens normák

Az $\|.\|_a$ és $\|.\|_b$ vektornormák *ekvivalensek*, ha $\exists c_1, c_2 \in \mathbb{R}^+$, hogy

$$c_1 \cdot \|x\|_b \le \|x\|_a \le c_2 \cdot \|x\|_b \qquad (\forall x \in \mathbb{R}^n).$$

Állítás: végesdimenziós normák ekvivalenciája

Tetszőleges \mathbb{R}^n -en értelmezett vektornorma ekvivalens az Euklideszi-vektornormával. (Azaz adott végesdimenziós térben minden norma ekvivalens.)

Definíció: konvergencia vektornormában

Az $(x_k)\subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^*\in \mathbb{R}^n$ melyre

$$\lim_{k\to\infty}\|x_k-x^*\|=0.$$

x* a sorozat határértéke.

Megj.: Mivel \mathbb{R}^n -en a vektornormák ekvivalensek, ezért ha egy sorozat konvergens az egyik vektornormában, akkor mindegyikben.

Ekvivalens átfogalmazások a konvergenciára:

• Az $(x_k) \subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^* \in \mathbb{R}^n$ melyre $\forall \, \varepsilon > 0 \, \exists \, N_0 \in \mathbb{N} \, \, \forall \, k \geq N_0 : \, \, \|x_k - x^*\| < \varepsilon.$

• Az
$$(x_k)\subset \mathbb{R}^n$$
 sorozat konvergens, ha létezik $x^*\in \mathbb{R}^n$ melyre

$$\forall \varepsilon > 0 \ \exists N_0 \in \mathbb{N} \ \forall k \geq N_0 : \ x_k \in K_{\varepsilon}(x^*).$$

Matlab példák *p*-normákra, egységgömbökre ($p = 1, 2, \infty, \dots$).

Tartalomjegyzék

1 Vektornormák

2 Mátrixnormák

3 Természetes mátrixnormák, avagy indukált normák

4 Mátrixnormák további tulajdonságai – válogatás

Definíció: mátrixnorma

Legyen $n \in \mathbb{N}$ rögzített. Az $\|.\| : \mathbb{R}^{n \times n} \to \mathbb{R}$ leképezést mátrixnormának nevezzük, ha:

- **2** $||A|| = 0 \iff A = 0$,
- **4** $||A + B|| \le ||A|| + ||B|| \quad (\forall A, B \in \mathbb{R}^{n \times n}),$

Ugyanaz, mint a vektornormáknál, plusz: "szubmultiplikativitás". Ezek a mátrixnormák axiómái.

Definíció: Frobenius-norma

A következő függvényt Frobenius-normának nevezzük:

$$\|.\|_F: \mathbb{R}^{n \times n} \to \mathbb{R}, \qquad \|A\|_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}.$$

Állítás: Frobenius-norma

A $\|.\|_F$ függvény valóban mátrixnorma.

Biz.: 1–4. következik a $\|.\|_2$ vektornorma tulajdonságaiból.

Az 5. belátható CBS segítségével.

Példa: egyszerű mátrixnormák

Számítsuk ki a következő mátrixok Frobenius-normáját.

$$A = \begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}.$$

$$||A||_F = \sqrt{1^2 + (-4)^2 + 2^2 + 2^2} = 5$$

 $||B||_F = \sqrt{3^2 + 2^2 + 1^2 + 5^2} = 6$

Tartalomjegyzék

1 Vektornormák

- 2 Mátrixnormák
- 3 Természetes mátrixnormák, avagy indukált normák
- 4 Mátrixnormák további tulajdonságai válogatás

Definíció: indukált norma, természetes mátrixnormák

Legyen $\|.\|_{V}: \mathbb{R}^{n} \to \mathbb{R}$ tetszőleges vektornorma. Ekkor a

$$||.||: \mathbb{R}^{n \times n} \to \mathbb{R}, \qquad ||A||:= \sup_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}}$$

függvényt a $\|.\|_v$ vektornorma által indukált mátrixnormának hívjuk. Egy mátrixnormát természetesnek nevezünk, ha van olyan vektornorma, ami indukálja.

Tétel: indukált normák

Az "indukált mátrixnormák" valóban mátrixnormák.

Biz.: Be kell látni, hogy a megadott alak teljesíti a mátrixnorma axiómáit.

- \blacksquare Az ||A|| értéke nemnegatív, hiszen vektorok normájának (nemnegatív számok) hányadosainak szuprémuma.
- **2** Ha A=0, azaz nullmátrix, akkor $\|Ax\|_v=0$ minden x vektorra, így a szuprémum értéke is 0. Valamint megfordítva, ha a szuprémum 0, akkor minden x-re Ax-nek nullvektornak kell lennie, ez csak úgy lehet, ha A nullmátrix.

3

$$\|\lambda A\| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\lambda A\mathbf{x}\|_{\mathbf{v}}}{\|\mathbf{x}\|_{\mathbf{v}}} = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{|\lambda| \cdot \|A\mathbf{x}\|_{\mathbf{v}}}{\|\mathbf{x}\|_{\mathbf{v}}} = |\lambda| \cdot \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_{\mathbf{v}}}{\|\mathbf{x}\|_{\mathbf{v}}} = |\lambda| \cdot \|A\|.$$

Biz. (folytatás):

4

$$||A + B|| = \sup_{x \neq 0} \frac{||(A + B)x||_{v}}{||x||_{v}} \le \sup_{x \neq 0} \frac{||Ax||_{v} + ||Bx||_{v}}{||x||_{v}} \le \sup_{x \neq 0} \frac{||Ax||_{v} + ||Bx||_{v}}{||x||_{v}} \le \sup_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}} + \sup_{x \neq 0} \frac{||Bx||_{v}}{||x||_{v}} = ||A|| + ||B||$$

6 $B=0 \Rightarrow ||B||=0$, valamint $A \cdot B = A \cdot 0 = 0 \Rightarrow ||AB||=0$. Az egyenlőtlenség mindkét oldalán 0 áll, tehát igaz az állítás.

Biz. (folytatás): Ha $B \neq 0$, akkor

$$\begin{split} \|A \cdot B\| &= \sup_{x \neq 0} \frac{\|ABx\|_{v}}{\|x\|_{v}} = \sup_{x \neq 0, Bx \neq 0} \frac{\|ABx\|_{v}}{\|Bx\|_{v}} \cdot \frac{\|Bx\|_{v}}{\|x\|_{v}} \leq \\ &\leq \sup_{Bx \neq 0} \frac{\|ABx\|_{v}}{\|Bx\|_{v}} \cdot \sup_{x \neq 0} \frac{\|Bx\|_{v}}{\|x\|_{v}} \leq \sup_{v \neq 0} \frac{\|Ay\|_{v}}{\|y\|_{v}} \cdot \sup_{x \neq 0} \frac{\|Bx\|_{v}}{\|x\|_{v}} = \|A\| \cdot \|B\| \,. \end{split}$$

Meggondolható, hogy a $Bx \neq 0$ feltétel nem változtatja meg a szuprémum értékét; közben bevezettük az y := Bx jelölést.

Meg jegyzések:

• Átfogalmazás:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}} = \sup_{||y||_{v} = 1} ||Ay||_{v}.$$

- A sup helyett max is írható.
- Átfogalmazás:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}} \implies \frac{||Ax||_{v}}{||x||_{v}} \leq ||A|| \implies ||Ax||_{v} \leq ||A|| \cdot ||x||_{v}.$$

Sőt: ||A|| a legkisebb ilyen felső korlát.

Definíció: illeszkedő normák

Ha egy mátrix- és egy vektornormára

$$||Ax||_{\mathbf{v}} \le ||A|| \cdot ||x||_{\mathbf{v}}$$
 $(\forall x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n})$

teljesül, akkor illeszkedőknek nevezzük őket.

Állítás: természetes mátrixnormák illeszkedéséről

A természetes mátrixnormák illeszkednek az őket indukáló vektornormákhoz.

Biz.: Láttuk az előbb. Az x = 0 eset meggondolandó.

Milyen mátrixnormákat indukálnak az elterjedt vektornormák?

Tétel: Nevezetes mátrixnormák $(1, 2, \infty)$

A $\|.\|_p$ $(p=1,2,\infty)$ vektornormák által indukált mátrixnormák:

- $\|A\|_1 = \max_{j=1}^n \sum_{i=1}^n |a_{ij}|$ (oszlopnorma),
- $||A||_{\infty} = \max_{i=1}^n \sum_{j=1}^n |a_{ij}|$ (sornorma),
- $\|A\|_2 = \left(\max_{i=1}^n \lambda_i(A^\top A)\right)^{1/2}$ (spektrálnorma).

Jel.: $\lambda_i(M)$: az M mátrix i-edik sajátértéke ($Mv = \lambda v, v \neq 0$).

Állítás: $||A||_1 = \max_{i=1}^n \sum_{j=1}^n |a_{ij}|$.

A bizonyítás "dallama":

- Az adott f(A) értékre: $||Ax||_{V} \le f(A) \cdot ||x||_{V}$.
- Van olyan x vektor, hogy $||Ax||_{V} = f(A) \cdot ||x||_{V}$.
- Ekkor az f(A) érték, tényleg a $\|.\|_v$ vektornorma által indukált mátrixnorma, ezért jelölhetjük így: $\|A\|_v$.

Bizonyítás ||.||₁ esetén:

$$||Ax||_{1} = \sum_{i=1}^{n} |(Ax)_{i}| = \sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right| \leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| \cdot |x_{j}| =$$

$$= \sum_{j=1}^{n} \left(|x_{j}| \cdot \sum_{i=1}^{n} |a_{ij}| \right) \leq \left(\max_{j=1}^{n} \sum_{i=1}^{n} |a_{ij}| \right) \cdot ||x||_{1}.$$

Legyen $x = e_k$, ahol a k-adik oszlopösszeg maximális. Ekkor

$$\|Ae_k\|_1 = \underbrace{\ldots}_{} \underbrace{\|e_k\|_1}_{}.$$

Bizonyítás $\|.\|_{\infty}$ esetén:

Állítás:
$$||A||_{\infty} = \max_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|$$
.

- A becslés ugyanolyan stílusú, mint $\|.\|_1$ esetén. Gyakorlaton.
- Válasszuk az

$$x = \begin{pmatrix} \pm 1 \\ \vdots \\ \pm 1 \end{pmatrix}$$

vektort az egyenlőséghez, megfelelően választott előjelekkel...

Bizonyítás $\|.\|_2$ esetén:

Állítás:
$$||A||_2 = \left(\max_{i=1}^n \lambda_i(A^\top A)\right)^{1/2}$$
.

- Előbb belátjuk, hogy a sajátértékek nemnegatívak.
- A becslés a diagonalizálás alapján adódik.
- Válasszuk a legnagyobb sajátértékhez tartozó sajátvektort az egyenlőséghez.

Biz. (folytatás): Először belátjuk, hogy $A^{T}A$ szimmetrikus és sajátértékei nemnegatívak (azaz $A^{T}A$ pozitív szemidefinit).

- $(A^{\top}A)^{\top} = A^{\top}(A^{\top})^{\top} = A^{\top}A$, azaz $A^{\top}A$ szimmetrikus, vagyis $A^{\top}A$ sajátértékei valósak.
- Legyen $y \neq 0$ az $A^{T}A$ mátrix λ -hoz tartozó sajátvektora, azaz

$$A^{\top}Ay = \lambda \cdot y.$$

Szorozzuk meg mindkét oldalt balról az y^{\top} vektorral:

$$y^{\top} A^{\top} A y = \lambda \cdot y^{\top} y.$$

Innen

$$\lambda = \frac{y^{\top} A^{\top} A y}{y^{\top} y} = \frac{(Ay)^{\top} (Ay)}{y^{\top} y} = \frac{\|Ay\|_2^2}{\|y\|_2^2} \ge 0.$$

Biz. (folytatás): Ezután az indukált mátrixnormák definícióját követve *Ax* normáját fogjuk vizsgálni.

Kihasználjuk, hogy $A^{\top}A$ szimmetrikus, és így (lásd lineáris algebra) létezik U ortogonális (unitér) mátrix, amire

$$A^{\top}A = U^{\top}DU \Leftrightarrow UA^{\top}AU^{\top} = D$$

úgy, hogy a diagonálisban $A^{\top}A$ sajátértékei vannak (ezek nemnegatívak). Bevezetjük az y=Ux jelölést.

$$||Ax||_{2}^{2} = (Ax)^{\top}(Ax) = x^{\top}A^{\top}Ax = x^{\top}U^{\top}DUx = (Ux)^{\top}D(Ux)$$

= $y^{\top}Dy = \sum_{i=1}^{n} \underbrace{d_{ii}}_{>0} \cdot |y_{i}|^{2} \le \max_{i=1}^{n} d_{ii} \cdot \sum_{i=1}^{n} |y_{i}|^{2} = \max_{i=1}^{n} \lambda_{i}(A^{\top}A) \cdot ||y||_{2}^{2}.$

Belátjuk, hogy $||y||_2^2 = ||x||_2^2$.

$$\|y\|_2^2 = y^\top y = (Ux)^\top (Ux) = x^\top U^\top Ux = x^\top x = \|x\|_2^2$$
, ezért $\|Ax\|_2^2 \le \ldots \le \max_{i=1}^n \lambda_i (A^\top A) \cdot \|x\|_2^2$.

 $x \neq 0$ esetén:

$$\frac{\|Ax\|_2}{\|x\|_2} \le \left(\max_{i=1}^n \lambda_i(A^\top A)\right)^{1/2}$$

Még azt kell belátni, hogy van is olyan $x \neq 0$ vektor, amire a szuprémum felvétetik.

Legyen $\lambda_m = \max \lambda_i(A^\top A)$ és $v_m \neq 0$, $\|v_m\|_2 = 1$ a hozzá tartozó sajátvektor.

$$||Av_m||_2^2 = (Av_m)^\top (Av_m) = v_m^\top \underbrace{A^\top A v_m}_{\lambda_m \cdot v_m} = \lambda_m \cdot \underbrace{v_m^\top v_m}_{=1} = \lambda_m.$$

Definíció: spektrálsugár

Egy
$$A \in \mathbb{R}^{n \times n}$$
 mátrix spektrálsugara $\varrho(A) := \max_{i=1}^{n} |\lambda_i(A)|$.

Megj.: A spektrálnormát a spektrálsugárral is meg tudjuk adni:

$$||A||_2 = \sqrt{\varrho(A^\top A)}.$$

Állítás:

Egy $A \in \mathbb{R}^{n \times n}$ szimmetrikus (önadjungált) mátrix spektrálnormája

$$||A||_2 = \varrho(A).$$

Biz.: Trivi.

Mátrixnormák további tulajdonságai

Állítás:

Ha A normális ($A^*A = AA^*$), akkor $\|A\|_2 = \varrho(A)$. (Spec.: ha A önadjungált, akkor normális.)

Biz.: Lineáris algebrából ismert, hogy normális mátixok esetén létezik U unitér hasonlósági transzformáció, mellyel A diagonális alakra hozható.

$$U^*AU = D = \operatorname{diag}(\lambda_i(A)) \Leftrightarrow A = UDU^*$$

$$A^*A = (UDU^*)^*UDU^* = UD^*U^*UDU^* = UD^*DU^*$$

$$\lambda_i(A^*A) = \lambda_i(D^*D) = |\lambda_i(A)|^2$$

$$\varrho(A^*A) = \varrho(A)^2$$

Innen $||A||_2 = \varrho(A^*A)^{1/2} = \varrho(A)$.

Mátrixnormák

Példa: $\|.\|_1$ és $\|.\|_{\infty}$ mátrixnormára

Számítsuk ki a következő mátrix $\|.\|_1$ és $\|.\|_{\infty}$ mátrixnormáját.

$$A = \begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix}$$

$$||A||_1 = \max\{1+2, |-4|+2\} = 6$$

 $||A||_{\infty} = \max\{1+|-4|, 2+2\} = 5$

Példa: ||.||₂ mátrixnorma

Számítsuk ki a következő mátrix $\|.\|_2$ mátrixnormáját.

$$A = \begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 1 & 2 \\ -4 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 20 \end{bmatrix},$$

Szerencsénkre látjuk a sajátértékeit...

$$||A||_2 = \left(\max_{i=1}^n \lambda_i(A^\top A)\right)^{1/2} = \sqrt{\max\{5, 20\}} = \sqrt{20} \approx 4.4721.$$

Tartalomjegyzék

1 Vektornormák

- 2 Mátrixnormák
- 3 Természetes mátrixnormák, avagy indukált normák
- 4 Mátrixnormák további tulajdonságai válogatás

Mátrixnormák további tulajdonságai

Állítás

A Frobenius-norma nem természetes mátrixnorma.

Biz.: Tekintsük az $I \in \mathbb{R}^{n \times n}$ egységmátrix normáját.

- Indukált mátrixnormák esetén $\|I\| = \sup_{x \neq 0} \frac{\|Ix\|_v}{\|x\|_v} = 1.$
- Másrészt $||I||_F = \sqrt{n}$.
- Tehát nincs olyan vektornorma, ami a Frobenius-normát indukálná (ha n > 1).

Mátrixnormák további tulajdonságai

Állítás: spektrálsugár és norma

$$\varrho(A) \leq ||A||$$

Biz.: Belátjuk, hogy $|\lambda| \leq \|A\|$. (Legyen λ tetszőleges sajátérték és $v \neq 0$ a hozzátartozó sajátvektor.)

$$Av = \lambda v$$

$$Avv^{\top} = \lambda vv^{\top}$$

$$||A|| \cdot ||vv^{\top}|| \ge ||Avv^{\top}|| = ||\lambda vv^{\top}|| = |\lambda| \cdot ||vv^{\top}||$$

Leosztva
$$||vv^{\top}|| \neq 0$$
-val $||A|| \geq |\lambda|$.

Mátrixnormák további tulajdonságai

Feladatok gyakorlatra

lgazoljuk a következő állításokat.

- (a) Ha Q ortogonális (unitér), akkor
 - $||Qx||_2 = ||x||_2$,
 - $||Q||_2 = 1$,
 - $\|QA\|_2 = \|AQ\|_2 = \|A\|_2$.

Mátrixnormák további tulajdonságai

Feladatok gyakorlatra

- **(b)** $||A||_F^2 = \text{tr}(A^T A)$, ahol $\text{tr}(B) := \sum_{k=1}^n b_{kk}$ a mátrix *nyoma*.
- (c) Ha Q ortogonális (unitér), akkor $||QA||_F = ||AQ||_F = ||A||_F$.
- (d) $||A||_F^2 = \sum_{i=1}^n \lambda_i (A^\top A)$.
- (e) $\|.\|_F$ és $\|.\|_2$ ekvivalens mátrixnormák.
- (f) A Frobenius-norma illeszkedik a kettes vektornormához.

Példák Matlab-ban

- **1** Indukált mátrixnorma szemléltetése \mathbb{R}^2 , p=2 esetén.
- 2 Indukált mátrixnormák közelítő számítása tetszőleges \mathbb{R}^n és p esetén ($m=100,\ldots,1000$ vektor próbájával).

Numerikus módszerek 1.

7. előadás: LER érzékenysége

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 5 Relatív maradék
- 6 Matlab példák

Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 5 Relatív maradék
- 6 Matlab példák

Mátrixok kondíciószáma

Definíció: mátrixok kondíciószáma

Adott $A \in \mathbb{R}^{n \times n}$ invertálható mátrix és $\|.\|$ mátrixnorma esetén a cond $(A) := \|A\| \cdot \|A^{-1}\|$ mennyiséget az A mátrix kondíciószámának nevezzük. (Jele néha $\kappa(A)$. [kappa])

Meg jegyzés:

- Csak invertálható mátrixokra értelmes.
- Értéke függ a norma választásától.
 (Pl. cond₁(A), cond₂(A),...)

Állítás: a kondíciószám tulajdonságai – 1. rész

- (a) Indukált mátrixnorma esetén cond $(A) \ge 1$.
- **(b)** cond $(c \cdot A) = \text{cond } (A), \quad (c \in \mathbb{R}, c \neq 0).$
- (c) Ha Q ortogonális, akkor cond $_2(Q) = 1$.

Biz.:

(a)
$$1 = ||I|| = ||A \cdot A^{-1}|| \le ||A|| \cdot ||A^{-1}|| = \text{cond } (A).$$

(b) cond
$$(cA) = ||cA|| \cdot ||(cA)^{-1}|| = ||cA|| \cdot ||\frac{1}{c}A^{-1}|| = ||c|| \cdot ||A|| \cdot \frac{1}{|c|} \cdot ||A^{-1}|| = cond(A).$$

(c)
$$\|Q\|_2 = \sup_{x \neq 0} \frac{\|Qx\|_2}{\|x\|_2} = \sup_{x \neq 0} \frac{\sqrt{x^\top Q^\top Qx}}{\sqrt{x^\top x}} = 1$$

 $\|Q^{-1}\|_2 = \|Q^\top\|_2 = 1$, $\operatorname{cond}_2(Q) = 1$

Állítás: a kondíciószám tulajdonságai – 2. rész

- (d) Ha A szimmetrikus, akkor cond $_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$.
- (e) Ha A szimm., pozitív definit, akkor cond $_2(A) = \frac{\max \lambda_i(A)}{\min \lambda_i(A)}$.
- (f) Ha A invertálható, akkor cond $(A) \ge \frac{\max|\lambda_i(A)|}{\min|\lambda_i(A)|}$.

Biz.:

- (d) Eml.: $\|A\|_2 = \sqrt{\max \lambda_i(A^\top A)}$. De $\lambda_i(A^\top A) = \lambda_i(A^2) = (\lambda_i(A))^2$, így $\|A\|_2 = \max |\lambda_i(A)|$. Az inverzre: $\|A^{-1}\|_2 = \max |\lambda_i(A^{-1})| = \frac{1}{\min |\lambda_i(A)|}$.
- (e) A pozitiv definitség miatt nem kell abszolút érték.
- (f) $||A|| \ge \varrho(A) = \max |\lambda_i(A)|, ||A^{-1}|| \ge \varrho(A^{-1}) = \frac{1}{\min |\lambda_i(A)|}.$

Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 6 Relatív maradék
- 6 Matlab példák

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a jobb oldalt, azaz a vektort *kicsit* megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, ...)

- 1 Eredeti:
 - adott A és b, kiszámíthatjuk a megoldást: x.

$$Ax = b$$

Módosult:

adott
$$A$$
 és $b+\Delta b$, kiszámíthatjuk a megoldást: $x+\Delta x$. $A(x+\Delta x)=(b+\Delta b)$

Nyilván a megoldás is kicsit más lesz...

Példa:

Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ \, x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Módosult:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot (x + \Delta x) = \begin{bmatrix} 4.11 \\ 9.7 \end{bmatrix}$$

3

A módosult LER megoldása:
$$x + \Delta x = \begin{bmatrix} 0.34 \\ 0.97 \end{bmatrix}$$

4 Mi történt?

Hogyan jellemezhető a megoldás megváltozása a jobb oldal megváltozásához képest?

• Mennyire változott a jobb oldal:

$$\delta b := \frac{\|\Delta b\|}{\|b\|} = 9.4959e - 004.$$

- Emiatt mennyire változik a megoldás: $\delta x := \frac{\|\Delta x\|}{\|x\|} = 1.1732.$
- Vizsgáljuk a kettő hányadosát: $\frac{\delta x}{\delta h} = 1235.5.$
- cond(A) = 1623

Tétel: LER érzékenysége a jobb oldal pontatlanságára

Ha A invertálható és $b \neq 0$, akkor illeszkedő normákban

$$\frac{1}{\|A\|\cdot\|A^{-1}\|}\cdot\frac{\|\Delta b\|}{\|b\|}\leq\frac{\|\Delta x\|}{\|x\|}\leq\|A\|\cdot\left\|A^{-1}\right\|\cdot\frac{\|\Delta b\|}{\|b\|},$$

azaz

$$\frac{1}{\operatorname{cond}(A)} \cdot \delta b \le \delta x \le \operatorname{cond}(A) \cdot \delta b.$$

Biz.:

- **1** $A(x + \Delta x) = (b + \Delta b)$ -ből vonjuk ki az Ax = b LER-t, így $A\Delta x = \Delta b$.
- 2 Viszont $x = A^{-1}b$ és $\Delta x = A^{-1}\Delta b$ is teljesül.

Biz. (folytatás):

3 Tehát a 4-féle alak:

$$b = Ax$$
, $x = A^{-1}b$, $\Delta b = A\Delta x$, $\Delta x = A^{-1}\Delta b$.

- 4 Bármely egyenlőségnél vehetjük a normát. (A vektornormához illeszkedő mátrixnormát használunk.)
 - (a) $||b|| = ||Ax|| \Rightarrow ||b|| \le ||A|| \cdot ||x|| \Rightarrow ||x|| \ge \frac{||b||}{||A||}$,
 - **(b)** $\|\Delta b\| = \|A\Delta x\| \Rightarrow \|\Delta b\| \le \|A\| \cdot \|\Delta x\| \Rightarrow \|\Delta x\| \ge \frac{\|\Delta b\|}{\|\Delta\|}$

 - (c) $||x|| = ||A^{-1}b|| \Rightarrow ||x|| \le ||A^{-1}|| \cdot ||b||$, (d) $||\Delta x|| = ||A^{-1}\Delta b|| \Rightarrow ||\Delta x|| \le ||A^{-1}|| \cdot ||\Delta b||$.
- **5** Az alsó becslés (b) és (c) alapján:

$$\frac{\|\Delta x\|}{\|x\|} \ge \frac{\frac{\|\Delta b\|}{\|A\|}}{\|A^{-1}\| \cdot \|b\|} = \frac{1}{\|A\| \cdot \|A^{-1}\|} \cdot \frac{\|\Delta b\|}{\|b\|}.$$

Biz. (folytatás):

6 A felső becslés (a) $||x|| \ge \frac{||b||}{||A||}$ és (d) $||\Delta x|| \le ||A^{-1}|| \cdot ||\Delta b||$ alapján:

$$\frac{\left\|\Delta x\right\|}{\left\|x\right\|} \leq \frac{\left\|A^{-1}\right\| \cdot \left\|\Delta b\right\|}{\frac{\left\|b\right\|}{\left\|A\right\|}} = \left\|A\right\| \cdot \left\|A^{-1}\right\| \cdot \frac{\left\|\Delta b\right\|}{\left\|b\right\|}.$$

Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 6 Relatív maradék
- 6 Matlab példák

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a bal oldalt, azaz a mátrixot *kicsit* megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, ...)

- 1 Eredeti:
 - adott A és b, kiszámíthatjuk a megoldást: x.

$$Ax = b$$

Módosult:

adott
$$A + \Delta A$$
 és b , kiszámíthatjuk a megoldást: $x + \Delta x$. $(A + \Delta A)(x + \Delta x) = b$

Nyilván a megoldás is kicsit más lesz...

Példa:

Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Módosult:

$$\begin{bmatrix} 4.11 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot (x + \Delta x) = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix}$$

3

A módosult LER megoldása:
$$x + \Delta x = \begin{bmatrix} 2.94 \\ -2.85 \end{bmatrix}$$

4 Mi történt?

Hogyan jellemezhető a megoldás megváltozása a jobb oldal megváltozásához képest?

- Mennyire változott a mátrix: $\delta A := \frac{\|\Delta A\|}{\|A\|} = 7.8495e 004$.
- Emiatt mennyire változik a megoldás: $\delta x := \frac{\|\Delta x\|}{\|x\|} = 3.4507.$
- Vizsgáljuk a kettő hányadosát: $\frac{\delta x}{\delta \Delta} = 4396.1.$
- cond(A) = 1623

Tétel: LER érzékenysége a mátrix pontatlanságára

Ha A invertálható, $b \neq 0$ és $\|\Delta A\| \cdot \|A^{-1}\| < 1$, akkor indukált mátrixnormában

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A\| \cdot \|A^{-1}\|}{1 - \|\Delta A\| \cdot \|A^{-1}\|} \cdot \frac{\|\Delta A\|}{\|A\|}.$$

Lemma

Ha ||M|| < 1, akkor (I + M) invertálható és indukált mátrixnormában

$$||(I+M)^{-1}|| \leq \frac{1}{1-||M||}.$$

Megj: A lemmához kell az indukált mátrixnorma.

Biz. lemma:

- Az I+M mátrix tényleg invertálható, hiszen $\varrho(M) \leq \|M\| < 1$, azaz M sajátértékeire: $|\lambda_i(M)| < 1$, vagyis az egységsugarú körön belül helyezkednek el. Meggondolható, hogy I+M sajátvektorai ugyanazok, mint M sajátvektorai, a sajátértékekre pedig $\lambda_i(I+M)=1+\lambda_i(M)$ teljesül, így I+M minden sajátértéke pozitív, következésképpen I+M invertálható.
- Vizsgáljuk most I + M inverzét, majd ennek normáját.

$$(I+M)^{-1} = I \cdot (I+M)^{-1} = (I+M-M)(I+M)^{-1} =$$

$$= I - M \cdot (I+M)^{-1},$$

$$\left\| (I+M)^{-1} \right\| \le \|I\| + \|M\| \cdot \left\| (I+M)^{-1} \right\|,$$

$$(1-\|M\|) \cdot \left\| (I+M)^{-1} \right\| \le \|I\| = 1 \implies \left\| (I+M)^{-1} \right\| \le \frac{1}{1-\|M\|}.$$

Biz. tétel: Az $(A + \Delta A)(x + \Delta x) = b$ LER-ből Ax = b-t kivonva $(A + \Delta A) \cdot \Delta x + \Delta A \cdot x = 0$, másképp

$$(A + \Delta A) \cdot \Delta x = -\Delta A \cdot x,$$
$$A \cdot (I + A^{-1} \cdot \Delta A) \cdot \Delta x = -\Delta A \cdot x.$$

Mivel feltevésünk szerint $||A^{-1} \cdot \Delta A|| \le ||A^{-1}|| \cdot ||\Delta A|| < 1$, a lemma alapján mondhatjuk, hogy $(I + A^{-1} \cdot \Delta A)$ invertálható.

$$\Delta x = -(I + A^{-1} \cdot \Delta A)^{-1} A^{-1} \Delta A \cdot x$$

Az inverz normájára adott becslésünket is felhasználva:

$$\|\Delta x\| \le \left\| (I + A^{-1} \cdot \Delta A)^{-1} \right\| \cdot \left\| A^{-1} \right\| \cdot \|\Delta A\| \cdot \|x\|$$

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{1}{1 - \|A^{-1} \cdot \Delta A\|} \cdot \left\| A^{-1} \right\| \cdot \|\Delta A\| \le \frac{\|A\| \cdot \|A^{-1}\|}{1 - \|A^{-1}\| \cdot \|\Delta A\|} \cdot \frac{\|\Delta A\|}{\|A\|}.$$

Tétel átfogalmazás:

$$egin{aligned} & rac{\|A\|\cdot\|A^{-1}\|}{1-\|\Delta A\|\cdot\|A^{-1}\|}\cdotrac{\|\Delta A\|}{\|A\|} = \ & = rac{\|A\|\cdot\|A^{-1}\|}{1-rac{\|\Delta A\|}{\|A\|}\cdot\|A\|\cdot\|A^{-1}\|}\cdotrac{\|\Delta A\|}{\|A\|} = \ & = rac{\operatorname{cond}\left(A
ight)}{1-\operatorname{cond}\left(A
ight)\cdotrac{\|\Delta A\|}{\|A\|}}\cdotrac{\|\Delta A\|}{\|A\|}. \end{aligned}$$

Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 5 Relatív maradék
- 6 Matlab példák

Megjegyzés: egyesített tétel LER érzékenységéről

Ha az

$$A \cdot x = b$$

LER esetén mind a bal oldal mátrixa, mind a jobb oldal vektora megváltozik, és az így számolt megoldásra

$$(A + \Delta A) \cdot (x + \Delta x) = b + \Delta b$$

teljesül, akkor a következő becslés igazolható:

$$\frac{\|\Delta x\|}{\|x\|} \leq \frac{\mathsf{cond}\left(A\right)}{1 - \mathsf{cond}\left(A\right) \cdot \frac{\|\Delta A\|}{\|A\|}} \cdot \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right).$$

LU-felbontás hatása a LER érzékenységére

Példa

Hogyan befolyásolja az LU-felbontás a feladat kondicionáltságát? Mutassuk meg, hogy nem javul.

Biz.:

- $Ax = b \Rightarrow LUx = b \Rightarrow Ly = b, Ux = y,$
- $A = L \cdot U \Rightarrow ||A|| \leq ||L|| \cdot ||U||$
- $A^{-1} = U^{-1} \cdot L^{-1} \quad \Rightarrow \quad ||A^{-1}|| \le ||L^{-1}|| \cdot ||U^{-1}||$
- $\operatorname{cond}(A) \leq \operatorname{cond}(L) \cdot \operatorname{cond}(U)$

Sőt előfordulhat, hogy cond (L), cond (U) >> cond (A), azaz bizonyos mátrixok esetén előfordulhat, hogy a Gauss-elimináció nagyon pontatlan eredményt ad.

QR-felbontás hatása a LER érzékenységére

Példa gyakorlatra

lgazoljuk, hogy a QR-felbontással a feladat kondicionáltsága nem változik.

Példa gyakorlatra

lgazoljuk, hogy a Cholesky-felbontással a feladat kondicionáltsága nem változik.

Ez is mutatja a *QR*- és Cholesky-felbontáson alapuló módszerek stabilitását.

Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- **6** Relatív maradék
- 6 Matlab példák

A kondíciószám, csak a LER megoldás (vagyis a feladat) érzékenységét jellemzi, a megoldó algoritmusét nem. A megoldó módszer jellemzésére a maradékvektort használjuk.

Definíció: reziduum- vagy maradékvektor

Legyen \widetilde{x} az Ax = b LER egy közelítő megoldása. Ekkor az $r := b - A\widetilde{x}$ vektort **reziduum**- vagy **maradékvektornak** nevezzük.

Látjuk, hogy a reziduum vektor könnyen számolható, alkalmazható direkt- és iterációs módszerek esetén is. Az utóbbi esetben leállási feltétel is készíthető a segítségével.

Definíció: relatív maradék

- Az $\eta := \frac{\|r\|}{\|A\| \cdot \|\widetilde{x}\|}$ ([éta]) mennyiséget **relatív maradéknak** nevezzük.
- A stabilitás inverz megfogalmazása alapján a módszer stabil, ha az \widetilde{x} közelítő megoldáshoz tartozó $(A+\Delta A)\cdot\widetilde{x}=b$ LER csak kicsit perturbált az eredetihez képest, azaz $\frac{\|\Delta A\|}{\|A\|}$ kicsi.

 η értéke a közelítő megoldás ismeretében könnyen számolható. A továbbiakban ΔA ismerete nélkül szeretnénk becsléseket adni a nem ismert $\frac{\|\Delta A\|}{\|A\|}$ mennyiségre.

Tétel: becslés a relatív maradékra

Ha A invertálható, akkor illeszkedő mátrixnormában

$$\eta \leq \frac{\|\Delta A\|}{\|A\|},$$

azaz ha η nagy, akkor $\frac{\|\Delta A\|}{\|A\|}$ is nagy.

Biz.:
$$b = (A + \Delta A) \cdot \widetilde{x} = A \cdot \widetilde{x} + \Delta A \cdot \widetilde{x}$$
, innen $b - A \cdot \widetilde{x} = r = \Delta A \cdot \widetilde{x}$, a mátrixnorma illeszkedését felhasználva

$$||r|| \leq ||\Delta A|| \cdot ||\widetilde{x}||.$$

A relatív maradékot becsülve

$$\eta = \frac{\|r\|}{\|A\| \cdot \|\widetilde{x}\|} \le \frac{\|\Delta A\| \cdot \|\widetilde{x}\|}{\|A\| \cdot \|\widetilde{x}\|} \le \frac{\|\Delta A\|}{\|A\|}$$

Tétel: relatív maradék 2-es normában

Ha A invertálható, akkor

$$\eta_2 = \frac{\|\Delta A\|_2}{\|A\|_2}.$$

Biz.: Belátjuk, hogy

$$\Delta A = \frac{r\widetilde{x}^{\top}}{\widetilde{x}^{\top}\widetilde{x}}$$

jó lesz perturbációnak, vagyis \tilde{x} egy ennyivel megváltoztatott mátrixú LER pontos megoldása. Végezzük el a behelyettesítést:

$$(A + \Delta A) \cdot \widetilde{x} = \left(A + \frac{r\widetilde{x}^{\top}}{\widetilde{x}^{\top}\widetilde{x}}\right) \cdot \widetilde{x} =$$

$$= A\widetilde{x} + \frac{r\widetilde{x}^{\top}\widetilde{x}}{\widetilde{x}^{\top}\widetilde{x}} = A\widetilde{x} + (b - A\widetilde{x}) = b.$$

Biz.: folyt. Felhasználjuk, hogy

$$\left\| r\widetilde{\mathbf{x}}^{\top} \right\|_{2} = \left\| r \right\|_{2} \cdot \left\| \widetilde{\mathbf{x}} \right\|_{2}.$$

(Beadható HF-nak kitűzött feladat.)

A relatív maradékot becsülve

$$\frac{\|\Delta A\|_{2}}{\|A\|_{2}} = \frac{\|r\widetilde{x}^{\top}\|_{2}}{\|A\|_{2}\|\widetilde{x}\|_{2}^{2}} = \frac{\|r\|_{2}\|\widetilde{x}\|_{2}}{\|A\|_{2}\|\widetilde{x}\|_{2}^{2}} = \frac{\|r\|_{2}}{\|A\|_{2}\|\widetilde{x}\|_{2}} = \eta_{2}.$$

Ha η_2 kicsi, akkor $\frac{\|\Delta A\|_2}{\|A\|_2}$ is kicsi. Ha $\eta_2 < \varepsilon_1$, akkor ebben az adott aritmetikában pontosabb megoldás nem adható.

Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 6 Relatív maradék
- 6 Matlab példák

Példák Matlab-ban

- Egy perturbált LER (jobboldala változik, mátrixa a Hilbert mátrix).
- \bigcirc cond $_2(H_n)$ változása a méret függvényében.
- $3 \operatorname{cond}_2(V_n)$ változása a méret függvényében.
- $oldsymbol{4}$ cond $_2({\sf tridiag}\,(-1,2,-1))$ változása a méret függvényében.
- **5** cond $_2(rand_n)$ változása a méret függvényében.

LER vektorának megváltozása

Példa:

Jelöljük H_5 -tel az 5×5 -ös Hilbert mátrixot.

$$H_5 = \left(\frac{1}{i+j-1}\right)_{i,j=1}^5 = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 & 1/5 \\ 1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\ 1/3 & 1/4 & 1/5 & 1/6 & 1/7 \\ 1/4 & 1/5 & 1/6 & 1/7 & 1/8 \\ 1/5 & 1/6 & 1/7 & 1/8 & 1/9 \end{bmatrix}$$

1. Példa:

Eredeti LER:

$$H_5 \cdot x = egin{bmatrix} 1/5 \\ 1/6 \\ 1/7 \\ 1/8 \\ 1/9 \end{bmatrix}
ightarrow ext{megoldás: } x = egin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Módosult LER:

$$H_5 \cdot (x + \Delta x) = egin{bmatrix} 1/5 \ 1/6 \ 1/7 \ 1/8 \ 1/9 + 1/1000 \end{bmatrix}$$

1. Példa

A módosult LER megoldása:
$$x + \Delta x = \begin{bmatrix} 0.6300 \\ -12.6000 \\ 56.7000 \\ -88.2000 \\ 45.1000 \end{bmatrix}$$

Mi történt?

- $\mathbf{0}$ $\delta b = 0.0029$: a jobboldal relatív hibája
- 2 $\delta x = 114.4469$ a megoldás relatív hibája
- 3 a két mennyiség hányadosa: $\delta x/\delta b = 3.9006e + 004$
- 4 ennek becslése a tétellel: $cond_2(H_5) = 4.7661e + 005$.

Hilbert mátrix kondíciószáma

2. Példa:

A Hilbert mátrix kondíciószámának változását vizsgáljuk:

Nem sok látszik az ábrából, mintha csak az utolsó érték lenne nagy.

Hilbert mátrix kondíciószáma

2. Példa:

Vegyük a kondíciószámok logaritmusát!

$$\operatorname{cond}_2(H_n) \approx \exp(3.1n) \approx 22^n$$

Vandermonde mátrix kondíciószáma

3. Példa:

A [0,1] intervallum egyenletes felosztású pontjaiból képzett Vandermonde mátrix kondíciószámának változását vizsgáljuk:

Nem sok látszik az ábrából, mintha csak az utolsó érték lenne nagy.

Vandermonde mátrix kondíciószáma

3. Példa:

Vegyük a kondíciószámok logaritmusát!

$$\operatorname{cond}_2(V_n) \approx \exp(1.85n) \approx (6.4)^n$$

A tridiag (-1, 2, -1) mátrix kondíciószáma

4. Példa:

A tridiag (-1, 2, -1) mátrix kondíciószámának változását vizsgáljuk:

Az ábra alapján sejthető, hogy a növekedés a méret négyzetével arányos.

A tridiag (-1, 2, -1) mátrix kondíciószáma

4. Példa:

Vegyük a kondíciószámok gyökét!

Elméletileg igazolható, hogy cond $_2(\text{tridiag}\,(-1,2,-1)) \approx \left(\frac{2(n+1)}{\pi}\right)^2$.

Véletlen mátrix kondíciószáma

5. Példa:

Véletlen mátrix kondíciószámának változását vizsgáljuk:

Az előző mátrixokhoz képest egész kicsi értékeket kaptunk.

Numerikus módszerek 1.

8. előadás: Iterációs módszerek LER megoldására, Jacobi- és

csillapított Jacobi-iteráció

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 lterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- **5** Csillapított Jacobi-iteráció
- 6 Matlab példák

Tartalomjegyzék

- 1 lterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- 6 Matlab példák

Tekintsük a következő leképezést:

$$\varphi \colon \mathbb{R}^n \to \mathbb{R}^n, \quad \varphi(x) = Bx + c,$$

ahol a $B \in \mathbb{R}^{n \times n}$ mátrixot átmenet mátrixnak nevezik és $c \in \mathbb{R}^n$,

majd ennek segítségével képezzük a következő (vektor)sorozatot, iterációt:

$$x^{(0)} \in \mathbb{R}^n$$
 (tetszőleges), $x^{(k+1)} = \varphi(x^{(k)})$ $(k = 0, 1, 2, \dots)$.

Példa

Egyszerűen számolhatók a következő sorozat elemei!

$$x^{(0)} := \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad x^{(k+1)} := \frac{1}{5} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \cdot x^{(k)} + \frac{1}{5} \begin{bmatrix} 7 \\ -1 \end{bmatrix}, \quad (k \in \mathbb{N}_0).$$

Iterációs módszerek

Kérdések: Mit tud ez a sorozat / iteráció? Konvergens? Milyen értelemben? Ha konvergens, mi a határértéke? A választ majd a fixponttétel adja meg.

Eml.:

Definíció: vektorsorozat konvergenciája, határértéke

Az $\left(x^{(k)}|k\in\mathbb{N}\right)\subset\mathbb{R}^n$ vektorsorozat *konvergens* a $\|.\|$ vektornormában, ha $\exists\,x^*\in\mathbb{R}^n$, melyre

$$\forall \, \varepsilon > 0 : \exists \, N \in \mathbb{N} : \forall \, k > N : \left\| x^{(k)} - x^* \right\| < \varepsilon.$$

Ekkor a sorozat *határértéke* x^* , azaz $\lim_{k \to \infty} x^{(k)} = x^*$.

Iterációs módszerek

Mi köze ennek lineáris egyenletrendszerekhez?

Ha folytonos φ függvény és $\lim_{k\to\infty}x^{(k)}=x^*$, akkor a folytonosságra vonatkozó átviteli elvből

$$\varphi(x^*) = \lim_{k \to \infty} \varphi(x^{(k)}) = \lim_{k \to \infty} x^{(k+1)} = x^*.$$

A korábban megadott φ -vel $x^* = B \cdot x^* + c$.

Vagyis $(I - B) \cdot x^* = c$, azaz x^* az $(I - B) \cdot x = c$ LER megoldása.

Alkalmazzuk az A = I - B, b = c, Ax = b jelölést...

Iterációs módszerek

Fordítva: Adott Ax = b LER esetén keressünk vele ekvivalens Bx + c = x egyenletet. Ebből felírhatunk egy iterációt:

$$x^{(k+1)} = Bx^{(k)} + c.$$

Hogyan írhatjuk át a megadott alakba?

Általában:

$$Ax = b,$$
 $A = P + Q,$ $(P + Q)x = b,$

átrendezve:

$$Px = -Qx + b \iff x = -P^{-1}Qx + P^{-1}b,$$

iterációs alakban írva:

$$x^{(k+1)} = \underbrace{-P^{-1}Q}_{R} \cdot x^{(k)} + \underbrace{P^{-1}b}_{c}.$$

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- 6 Matlab példák

Definíció: fixpont

Az $x^* \in \mathbb{R}^n$ pontot (vektort) a $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *fixpontjának* nevezzük, ha $x^* = \varphi(x^*)$.

Az $x = \varphi(x)$ egyenletet *fixpontegyenletnek* nevezzük.

Definíció: kontrakció

A $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *kontrakció*, ha $\exists \, q \in [0,1)$, hogy

$$\|\varphi(x)-\varphi(y)\|\leq q\cdot\|x-y\|, \qquad \forall x,y\in\mathbb{R}^n.$$

Megj.:

- kontrakció ≈ összehúzás
- q: kontrakciós együttható

Állítás

Ha ||B|| < 1, akkor a $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$, $\varphi(x) = B \cdot x + c$ leképezés kontrakció. (Az \mathbb{R}^n -en alkalmazott vektornormához illeszkedő mátrixnormát tekintve.)

Biz.:

$$\|\varphi(x) - \varphi(y)\| = \|(Bx + c) - (By + c)\| =$$

$$= \|Bx - By\| = \|B(x - y)\| \le \underbrace{\|B\|}_{:=q<1} \cdot \|x - y\|.$$

Tétel: Banach-féle fixponttétel \mathbb{R}^n -re

Ha a $\varphi\colon \mathbb{R}^n \to \mathbb{R}^n$ függvény kontrakció \mathbb{R}^n -en q kontrakciós együtthatóval, akkor

- $\mathbf{1} \exists x^* \in \mathbb{R}^n : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 a fixpont egyértelmű,
- $\forall x^{(0)} \in \mathbb{R}^n \text{ eset\'en az } x^{(k+1)} = \varphi(x^{(k)}), \ (k \in \mathbb{N}_0) \text{ sorozat konvergens \'es } \lim_{k \to \infty} x^{(k)} = x^*,$
- 4 továbbá a következő hibabecslések teljesülnek:
 - $||x^{(k)} x^*|| \le q^k \cdot ||x^{(0)} x^*||$,
 - $||x^{(k)} x^*|| \le \frac{q^k}{1 q} \cdot ||x^{(1)} x^{(0)}||$.

Biz.:

(a) A φ leképezés kontrakció voltából következik, hogy φ folytonos (sőt egyenletesen folytonos) is, ugyanis $\forall \, \varepsilon > 0$ -hoz válasszuk $\delta = \varepsilon/q$ -t. Ekkor ha $\|x-y\| < \delta$, akkor

$$\|\varphi(x) - \varphi(y)\| \le q \cdot \|x - y\| < q \cdot \frac{\varepsilon}{q} = \varepsilon.$$

(b) Belátjuk, hogy a tételben definiált $(x^{(k)})$ Cauchy-sorozat, így konvergens. Elsőként egymást követő tagok eltérését becsüljük:

$$||x^{(k+1)} - x^{(k)}|| = ||\varphi(x^{(k)}) - \varphi(x^{(k-1)})|| \le$$

$$\le q \cdot ||x^{(k)} - x^{(k-1)}|| \le$$

$$\le \dots \le q^k \cdot ||x^{(1)} - x^{(0)}||.$$

Biz. folyt.:

(c) Legyen $m \in \mathbb{N}$, $m \ge 1$, vizsgáljuk meg két m távolságra lévő tag különbségét! A háromszög-egyenlőtlenséget és a mértani sor összegképletét is felhasználva:

$$||x^{(k+m)} - x^{(k)}|| = ||(x^{(k+m)} - x^{(k+m-1)}) + \dots + (x^{(k+1)} - x^{(k)})|| \le$$

$$\le ||x^{(k+m)} - x^{(k+m-1)}|| + \dots + ||x^{(k+1)} - x^{(k)}|| \le$$

$$\le (q^{m+k-1} + \dots + q^k) \cdot ||x^{(1)} - x^{(0)}|| =$$

$$= q^k \cdot (q^{m-1} + \dots + 1) \cdot ||x^{(1)} - x^{(0)}|| <$$

$$< \frac{q^k}{1 - q} \cdot ||x^{(1)} - x^{(0)}||.$$

Mivel $k \to \infty$ esetén $(q^k) \to 0$, ezért $(x^{(k)})$ Cauchy-sorozat,

Biz. folyt.:

(d) Minden \mathbb{R}^n -beli Cauchy-sorozat konvergens, így $(x^{(k)})$ konvergens, $x^* := \lim(x^{(k)})$. φ folytonosságából az átviteli elv értelmében

$$\varphi(x^*) = \lim \varphi(x^{(k)}) = \lim x^{(k+1)} = x^*,$$

azaz x^* fixpontja φ -nek.

(e) Az egyértelműség belátásához indirekt tegyük fel, hogy létezik legalább két $x^* \neq x^{**}$ fixpont. Ekkor

$$||x^* - x^{**}|| = ||\varphi(x^*) - \varphi(x^{**})|| \le q \cdot ||x^* - x^{**}||.$$

Átrendezve
$$||x^* - x^{**}|| (1 - q) \le 0.$$

Tehát $||x^* - x^{**}|| = 0$, vagyis $x^* = x^{**}$ következik. Ellentmondás!

(f) A hibabecsléshez vizsgáljuk először a k-adik tag hibáját:

$$||x^{(k)} - x^*|| = ||\varphi(x^{(k-1)}) - \varphi(x^*)|| \le q \cdot ||x^{(k-1)} - x^*|| \le \dots \le q^k \cdot ||x^{(0)} - x^*||.$$

Valamint a korábbi képletben:

$$\left\|x^{(k+m)}-x^{(k)}\right\|<\frac{q^k}{1-q}\cdot\left\|x^{(1)}-x^{(0)}\right\|$$

 $m \to \infty$ esetén felhasználva, hogy a vektornorma folytonos függvény

$$||x^* - x^{(k)}|| \le \frac{q^k}{1-a} ||x^{(1)} - x^{(0)}||.$$

Következmény: iteráció konvergenciájának elégséges feltétele

Ha ||B|| < 1, az $x^{(k+1)} = B \cdot x^{(k)} + c$ iteráció konvergens minden kezdőértékre.

Megj.: Attól még lehet konvergens valamely kezdőértékből indítva, ha $\|B\| \ge 1$. (Nem szükséges feltétel.)

Lemma: spektrálsugár és az indukált normák kapcsolata

$$\varrho(B) = \inf \left\{ \|B\| \, : \, \|.\| \, \text{ indukált mátrixnorma} \right\},$$
azaz $\forall \, \varepsilon > 0 : \exists \, \text{indukált} \, \|.\| : \|B\| < \varrho(B) + \varepsilon.$

Biz.: Nélkül.

Tétel: iteráció konvergenciájának ekvivalens feltétele

Az $x^{(k+1)} = B \cdot x^{(k)} + c$ iteráció akkor és csak akkor konvergens minden kezdőértékre, ha

$$\varrho(B) < 1.$$

Biz.:

- ← : Az előző Lemma alapján trivi.
- \Rightarrow : Indirekt tegyük fel, hogy $\varrho(B) \geq 1$, azaz $\exists |\lambda| \geq 1$ sajátérték, és legyen $x^{(0)}$ olyan, hogy $x^{(0)} x^* (\neq 0)$ kezdeti hiba a B λ -hoz tartozó sajátvektora legyen.

Ekkor:

$$B(x^{(0)} - x^*) = \lambda(x^{(0)} - x^*)$$

$$B^2(x^{(0)} - x^*) = \lambda^2(x^{(0)} - x^*) \implies \dots$$

$$B^k(x^{(0)} - x^*) = \lambda^k(x^{(0)} - x^*) (k \in \mathbb{N})$$

$$x^{(k)} - x^* = (Bx^{(k-1)} + c) - (Bx^* + c) = B(x^{(k-1)} - x^*) =$$

$$= B^k(x^{(0)} - x^*) = \lambda^k(x^{(0)} - x^*)$$

$$\|x^{(k)} - x^*\| = |\lambda|^k \cdot \underbrace{\|x^{(0)} - x^*\|}_{\text{konst.}} \implies 0 \quad (k \to \infty)$$

Ellentmondásra jutottunk.

Megj.: Az iteráció futtatása során nem áll rendelkezésünkre kontrakciós együttható, annak kiszámítása elméleti feladat. Ehelyett ún. tapasztalati kontrakciós együtthatóval dolgozunk.

1 Láttuk a fixponttétel bizonyításában, hogy $\left\|x^{(k+1)} - x^{(k)}\right\| \leq q \cdot \left\|x^{(k)} - x^{(k-1)}\right\|$, innen

$$q^{(k)} pprox \frac{\left\| x^{(k+1)} - x^{(k)} \right\|}{\left\| x^{(k)} - x^{(k-1)} \right\|}$$

a k. lépésbeli tapasztalati kontrakciós együtthatónk.

2 Ennek ismeretében a hibabecslés alakja:

$$||x^{(k)} - x^*|| \le \frac{q^{(k)}}{1 - q^{(k)}} ||x^{(k)} - x^{(k-1)}||.$$

Tehát menet közben ellenőrizni tudjuk, hogy elegendő-e a pontosság.

- **3** Ha $|q^{(k)}| > 1$ az első néhány lépés után, akkor leállíthatjuk az iterációt divergencia miatt.
- **4** Vannak esetek, amikor a $(q^{(k)})$ sorozat nem monoton, ekkor érdemes $q^{(k)}$ helyett a $q \approx \sqrt{q^{(k)}q^{(k-1)}}$ mértani középpel dolgozni.
- A fenti segítséggel "inteligens" iterációs módszer programot írhatunk, mely a sorozat elemeiből a hibabecslést elő tudja állítani és divergencia esetén sem számol feleslegesen sokat.

Példa

Mit állíthatunk a következő iteráció konvergenciájáról?

$$x^{(k+1)} := \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot x^{(k)} + \frac{1}{7} \begin{bmatrix} 32.4 \\ \sqrt{\pi} \end{bmatrix}, \quad (k \in \mathbb{N}_0).$$

Mivel $\|B\|_1 = \frac{3}{5} = q$ a kontrakciós együttható, ezért az iteráció bármely $x^{(0)} \in \mathbb{R}^2$ kezdőértékre konvergens. Hibabecslést az 1-es vektornormában írhatnánk fel.

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- 6 Matlab példák

Speciális iterációs módszerek

Tekintsük az Ax = b lineáris egyenletrendszert, majd írjuk fel annak mátrixát

$$A = L + D + U$$

alakban, ahol L alsó háromszögmátrix, D diagonális mátrix, U pedig felső háromszögmátrix, méghozzá

- $l_{ij} = a_{ij}$ (i < j),
- $d_{ij} = a_{ij} \quad (i = j),$
- $u_{ij} = a_{ij} \quad (i > j)$.

Az elemek L, D, U mátrixokba pakolásáról van szó. A továbbiakban tegyük fel, hogy A diagonális elemei nem nullák. Ha mégis az lenne, cseréljük meg a LER-ben a sorokat, hogy teljesítse a feltételt.

Speciális iterációs módszerek

Példa:

Példa A = L + D + U felbontásra:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 7 & 8 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix}.$$

Megj.: Semmi köze az *LU*-felbontáshoz.

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- 6 Matlab példák

Átalakítás:

$$Ax = b$$

$$(L + D + U)x = b$$

$$Dx = -(L + U)x + b$$

$$x = -D^{-1}(L + U)x + D^{-1}b$$

Ezek alapján az iteráció a következő.

Definíció: Jacobi-iteráció

$$x^{(k+1)} = \underbrace{-D^{-1}(L+U)}_{B_J} \cdot x^{(k)} + \underbrace{D^{-1}b}_{c_J} = B_J \cdot x^{(k)} + c_J$$

Eml.:

$$x^{(k+1)} = -D^{-1}(L+U) \cdot x^{(k)} + D^{-1}b$$

Írjuk fel koordinátánként (komponensenként)!

Állítás: a Jacobi-iteráció komponensenkénti alakja

$$x_i^{(k+1)} = \frac{-1}{a_{ii}} \left(\sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} - b_i \right) \quad (i = 1, \dots, n)$$

Biz.: Házi feladat meggondolni. Egyszerű.

Írjuk fel az iteráció reziduum vektoros alakját!

$$x^{(k+1)} = -D^{-1}(L+U) \cdot x^{(k)} + D^{-1}b = D^{-1}\left((D-A) \cdot x^{(k)} + b\right) =$$

$$= x^{(k)} + D^{-1}\left(-Ax^{(k)} + b\right) = x^{(k)} + D^{-1}r^{(k)}$$

Vezessük be az $s^{(k)} := D^{-1}r^{(k)}$ segédvektort, ezzel egy lépésünk alakja:

$$x^{(k+1)} = x^{(k)} + s^{(k)}.$$

Az új reziduum vektor:

$$r^{(k+1)} = b - Ax^{(k+1)} = b - A(x^{(k)} + s^{(k)}) = r^{(k)} - As^{(k)}.$$

Algoritmus: Jacobi-iteráció

$$r^{(0)} := b - Ax^{(0)}$$
 $k = 1, \dots, \text{ leállásig}$
 $s^{(k)} := D^{-1}r^{(k)} \iff Ds^{(k)} = r^{(k)} \text{ LER}$
 $x^{(k+1)} := x^{(k)} + s^{(k)}$
 $r^{(k+1)} := r^{(k)} - As^{(k)}$

Megj.: Látjuk, hogy $x^{(k+1)} - x^{(k)} = s^{(k)}$, vagyis a tapasztalati kontrakciós együtthatók számításához lépésenként egy norma értéket és egy osztást kell elvégezni.

Tétel

Ha A szig. diag. dom. a soraira, akkor az Ax = b LER-re felírt Jacobi-iteráció konvergens bármely $x^{(0)}$ esetén.

Biz.: Írjuk fel a B_J mátrix elemeit: $b_{ii}=0$ és $i\neq j$ -re $b_{ij}=-\frac{a_{ij}}{a_{ii}}$.

$$\|B_J\|_{\infty} = \|-D^{-1}(L+U)\|_{\infty} = \max_{i=1}^n \sum_{j=1, j\neq i}^n \frac{|a_{ij}|}{|a_{ii}|}$$

Ha A szig. diag. dom. a soraira, akkor

$$\forall i: |a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \quad \Leftrightarrow \quad 1 > \sum_{j=1, j \neq i}^{n} \frac{|a_{ij}|}{|a_{ii}|}.$$

Tehát minden összeg egynél kisebb, így a maximumuk is, ezzel az elégséges feltétel miatt a konvergencia teljesül.

$$\|B_J\|_{\infty} = \max_{i=1}^n \sum_{i=1, i \neq j}^n \frac{|a_{ij}|}{|a_{ii}|} < 1$$

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- **5** Csillapított Jacobi-iteráció
- 6 Matlab példák

Csillapított Jacobi-iteráció

A csillapítás avagy tompítás alapötlete:

$$x_J^{(k+1)}$$
 helyett $(1-\omega) \cdot x^{(k)} + \omega \cdot x_J^{(k+1)}$

Megj.:

- alulrelaxálás (0 < ω < 1), túlrelaxálás (ω > 1)
- $\omega = 1$ az eredeti módszert adja

Csillapított Jacobi-iteráció

Induljunk a Jacobi-módszerből és a "helyben hagyásból":

$$\begin{array}{rcl} x & = & -D^{-1}(L+U) \cdot x + D^{-1}b & / \cdot \omega \\ x & = & x & / \cdot (1-\omega) \end{array}$$

A kettő súlyozott összege:

$$x = [(1-\omega)I - \omega D^{-1}(L+U)] \cdot x + \omega D^{-1}b$$

Ezek alapján az iteráció a következő.

Definíció: csillapított Jacobi-iteráció ω paraméterrel – $J(\omega)$

$$x^{(k+1)} = \underbrace{\left[(1 - \omega)I - \omega D^{-1} (L + U) \right]}_{B_{J(\omega)}} \cdot x^{(k)} + \underbrace{\omega D^{-1} b}_{c_{J(\omega)}}$$

Csillapított Jacobi-módszer

Írjuk fel koordinátánként!

Állítás: $J(\omega)$ komponensenkénti alakja

$$x_i^{(k+1)} = (1 - \omega) \cdot x_i^{(k)} + \omega \cdot x_{i,J}^{(k+1)},$$

ahol $x_{i,J}^{(k+1)}$ a hagyományos Jacobi-módszer (J=J(1)) által adott, azaz

$$x_{i,J}^{(k+1)} = \frac{-1}{a_{i,i}} \left(\sum_{j=1, j \neq i}^{n} a_{i,j} x_j^{(k)} - b_i \right).$$

Biz.: Házi feladat meggondolni. Nem nehéz.

Írjuk fel az iteráció reziduum vektoros alakját!

$$x^{(k+1)} = (1 - \omega)x^{(k)} - \omega D^{-1}(L + U) \cdot x^{(k)} + \omega D^{-1}b =$$

$$= (1 - \omega)x^{(k)} + \omega D^{-1}(D - A) \cdot x^{(k)} + b =$$

$$= (1 - \omega)x^{(k)} + \omega x^{(k)} + \omega D^{-1}(-Ax^{(k)} + b) =$$

$$= x^{(k)} + \omega D^{-1}r^{(k)}$$

Vezessük be az $s^{(k)} := \omega D^{-1} r^{(k)}$ segédvektort, ezzel egy lépésünk alakja:

$$x^{(k+1)} = x^{(k)} + s^{(k)}.$$

Az új reziduum vektor:

$$r^{(k+1)} = b - Ax^{(k+1)} = b - A(x^{(k)} + s^{(k)}) = r^{(k)} - As^{(k)}.$$

Algoritmus: csillapított Jacobi-iteráció $J(\omega)$

$$r^{(0)} := b - Ax^{(0)}$$
 $k = 1, \ldots,$ leállásig
$$s^{(k)} := \omega D^{-1} r^{(k)} \quad \Leftrightarrow \quad Ds^{(k)} = \omega r^{(k)} \text{ LER}$$

$$x^{(k+1)} := x^{(k)} + s^{(k)}$$

$$r^{(k+1)} := r^{(k)} - As^{(k)}$$

Megj.: Látjuk, hogy $x^{(k+1)} - x^{(k)} = s^{(k)}$, vagyis a tapasztalati kontrakciós együtthatók számításához lépésenként egy norma értéket és egy osztást kell elvégezni.

Csillapított Jacobi-iteráció

Tétel a csillapított Jacobi-iteráció $(J(\omega))$ konvergenciája

Ha az Ax=b LER-re a Jacobi-iteráció konvergens minden kezdőértékre, akkor $0<\omega<1$ -re a csillapított Jacobi-iteráció is az.

Biz.: $J(\omega)$ iteráció esetén az átmenet mátrix $(1-\omega)I + \omega B_J$. Először belátjuk, hogy a $B_{J(\omega)}$ mátrix μ_i sajátértékeire teljesül, hogy

$$\mu_i = (1 - \omega) + \omega \lambda_i,$$

ahol λ_i -k a B_J sajátértékei. A két mátrix sajátvektorai (v_i -k) azonosak.

$$B_{J(\omega)}v_i = ((1-\omega)I + \omega B_J)v_i = (1-\omega)v_i + \omega \lambda_i v_i =$$

$$= \underbrace{((1-\omega) + \omega \lambda_i)}_{\mu_i}v_i \quad (i = 1, \dots, n)$$

Csillapított Jacobi-iteráció

Biz. folyt: A bizonyításban a konvergenciára vonatkozó szükséges és elégséges feltételt használjuk. Belátjuk, hogy

$$\varrho(B_J) < 1 \quad \Rightarrow \quad 0 < \omega < 1 : \quad \varrho(B_{J(\omega)}) < 1.$$

 $\varrho(B_J) < 1$ -ből következik, hogy minden *i*-re $|\lambda_i| < 1$.

Felhasználjuk, hogy $0<\omega<1$ és becsüljük $\mu_i=(1-\omega)+\omega\lambda_i$ -t:

$$|\mu_i| \leq (1-\omega) + \omega |\lambda_i| < (1-\omega) + \omega = 1 \quad (i = 1, \ldots, n).$$

Ha minden *i*-re $|\mu_i|<1$ teljesül, akkor $\varrho(B_{J(\omega)})<1$, vagyis a csillapított iteráció minden kezdőértékre konvergens.

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- 6 Matlab példák

Példák Matlab-ban

- 1 Példa iterációra, konvergens vektorsorozat számítására.
- **2** Konvergens és divergens iterációk tulajdonságainak szemléltetése n=2,3 dimenzióban.
- A tapasztalati kontrakciós együtthatók szemléltetése a csillapított Jacobi iteráció esetén.

1. Példa:

A LER alakja Ax = b, ahol

$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}, \ b = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, \ x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Vizsgáljuk a csillapított Jacobi iteráció tapasztalati kontrakciós együtthatóit $\omega=1,0.8,0.6,1.2,1.8,-0.1$ esetén!

1. Példa:

1. Példa:

1. Példa:

1. Példa:

1. Példa:

q > 1, divergens sorozat

1. Példa:

q > 1, divergens sorozat

Numerikus módszerek 1.

9. előadás: Gauss-Seidel iteráció, relaxációs módszer, Richardson típusú iterációk

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 Gauss–Seidel-iteráció

- 2 Relaxált Gauss-Seidel-iteráció
- 3 A Richardson-iteráció
- 4 Matlab példák

Emlékeztető: Iterációs módszerek

Az Ax=b LER megoldása érdekében alakítsuk azt át x=Bx+c alakúra, és valamely $x^{(0)}$ kezdőpontból végezzük az

$$x^{(k+1)} = B \cdot x^{(k)} + c \qquad (k \in \mathbb{N}_0)$$

iterációt. A fixponttétel adja meg a sorozat képletét. A vektorsorozat bizonyos feltételek mellett konvergál a LER megoldásához (lásd fixponttétel, elégséges feltétel, szükséges és elégséges feltétel a konvergenciára a *B* átmenet mátrixszal).

Volt: Banach-féle fixponttétel, Jacobi-, csillapított Jacobi-iteráció.

Megjegyzés:

- 2–3 változó: felesleges ⇒ célja a megértés
- sok változó (100, 1000): használják

Tartalomjegyzék

- 1 Gauss–Seidel-iteráció
- 2 Relaxált Gauss-Seidel-iteráció
- 3 A Richardson-iteráció
- 4 Matlab példák

Átalakítás:

$$Ax = b$$

$$(L+D+U)x = b$$

$$(L+D)x = -Ux + b$$

$$x = -(L+D)^{-1}Ux + (L+D)^{-1}b$$

Ezek alapján az iteráció a következő.

Definíció: Gauss-Seidel-iteráció

$$x^{(k+1)} = \underbrace{-(L+D)^{-1}U}_{B_S} \cdot x^{(k)} + \underbrace{(L+D)^{-1}b}_{c_S} = B_S \cdot x^{(k)} + c_S$$

Eml.:

$$x^{(k+1)} = -(L+D)^{-1}U \cdot x^{(k)} + (L+D)^{-1}b$$

Írjuk fel koordinátánként! (Kiderül, hogy "helyben" számolható.)

Állítás: a Gauss-Seidel-iteráció komponensenkénti alakja

$$x_i^{(k+1)} = \frac{-1}{a_{ii}} \left(\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^n a_{ij} x_j^{(k)} - b_i \right)$$

Biz.: Alakítsunk át, majd gondoljunk bele a mátrixszorzásba.

$$(L+D)x^{(k+1)} = -Ux^{(k)} + b$$

$$Dx^{(k+1)} = -Lx^{(k+1)} - Ux^{(k)} + b$$

$$x^{(k+1)} = -D^{-1}(Lx^{(k+1)} + Ux^{(k)} - b) \quad \Box$$

Írjuk fel az iteráció reziduum vektoros alakját!

$$(L+D) \cdot x^{(k+1)} = -U \cdot x^{(k)} + b = ((L+D) - A) \cdot x^{(k)} + b =$$

$$= (L+D) \cdot x^{(k)} + (-Ax^{(k)} + b) = (L+D) \cdot x^{(k)} + r^{(k)}$$

$$\Rightarrow x^{(k+1)} = x^{(k)} + (L+D)^{-1} r^{(k)}$$

Vezessük be az $s^{(k)} := (L+D)^{-1}r^{(k)}$ segédvektort, ezzel egy lépésünk alakja:

$$x^{(k+1)} = x^{(k)} + s^{(k)}$$
.

Az új reziduum vektor:

$$r^{(k+1)} = b - Ax^{(k+1)} = b - A(x^{(k)} + s^{(k)}) = r^{(k)} - As^{(k)}.$$

Algoritmus: Gauss-Seidel-iteráció

$$r^{(0)} := b - Ax^{(0)}$$
 $k = 1, \ldots,$ leállásig $s^{(k)} := (D + L)^{-1} r^{(k)}$ helyett $(D + L) s^{(k)} = r^{(k)}$ LER mo. $x^{(k+1)} := x^{(k)} + s^{(k)}$ $r^{(k+1)} := r^{(k)} - As^{(k)}$

Gauss-Seidel-iteráció

Tétel

Ha A szig. diag. dom. a soraira, akkor az Ax = b LER-re felírt Gauss–Seidel-iterációra

$$||B_S||_{\infty} \le ||B_J||_{\infty} < 1$$

teljesül, tehát az konvergens bármely $x^{(0)}$ esetén.

Biz.: Nélkül.

Tétel

Ha A szimmetrikus és pozitív definit, akkor a Gauss–Seidel-iteráció konvergens.

Biz.: Nélkül.

Tartalomjegyzék

- 1 Gauss—Seidel-iteráció
- 2 Relaxált Gauss-Seidel-iteráció
- 3 A Richardson-iteráció
- 4 Matlab példák

Relaxált Gauss-Seidel-iteráció

Induljunk a Gauss-Seidel-iteráció következő alakjából:

$$(L+D) \cdot x = -U \cdot x + b / \cdot \omega$$

$$D \cdot x = D \cdot x / \cdot (1-\omega)$$

A kettő súlyozott összege:

$$(D + \omega L) \cdot x = [(1 - \omega)D - \omega U] \cdot x + \omega b$$
$$x = (D + \omega L)^{-1} [(1 - \omega)D - \omega U] \cdot x + (D + \omega L)^{-1} \omega b$$

Ezek alapján az iteráció a következő.

Definíció: relaxált Gauss–Seidel-iteráció ω paraméterrel – $S(\omega)$

$$x^{(k+1)} = \underbrace{(D + \omega L)^{-1} \left[(1 - \omega)D - \omega U \right]}_{B_{S(\omega)}} \cdot x^{(k)} + \underbrace{\omega (D + \omega L)^{-1} b}_{c_{S(\omega)}}$$

Relaxált Gauss–Seidel-iteráció

Írjuk fel koordinátánként! (Kiderül, hogy "helyben" számolható.)

Állítás: $S(\omega)$ komponensenkénti alakja

$$x_i^{(k+1)} = (1 - \omega) \cdot x_i^{(k)} + \omega \cdot x_{i,S}^{(k+1)},$$

ahol $x_{i,S}^{(k+1)}$ a hagyományos Seidel-módszer (S=S(1)) által adott, azaz

$$x_{i,S}^{(k+1)} = \frac{-1}{a_{ii}} \left(\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} - b_i \right).$$

Minden k. lépés az i = 1, 2, ..., n sorrendben számolandó.

Relaxált Gauss–Seidel-iteráció

Biz.: Alakítsunk át, majd gondoljunk bele a mátrixszorzásba.

$$\begin{split} (D+\omega L)x^{(k+1)} &= (1-\omega)Dx^{(k)} - \omega Ux^{(k)} + \omega b \\ Dx^{(k+1)} &= (1-\omega)Dx^{(k)} - \omega Lx^{(k+1)} - \omega Ux^{(k)} + \omega b \\ x^{(k+1)} &= (1-\omega)x^{(k)} - \omega \underbrace{D^{-1}\left(Lx^{(k+1)} + Ux^{(k)} - b\right)}_{\text{Lásd }S(1)\text{-n\'el}.} \end{split}$$

A koordinátánkénti alakja:

$$x_i^{(k+1)} = (1-\omega) \cdot x_i^{(k)} - \frac{\omega}{a_{ii}} \left(\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} - b_i \right).$$

Megj.: Vigyázat! $x^{(k+1)} = (1 - \omega) \cdot x^{(k)} + \omega \cdot x_S^{(k+1)}$ nem igaz (tehát az egész vektorra); csak komponensenként.

Relaxált Gauss-Seidel-iteráció

Írjuk fel az iteráció reziduum vektoros alakját!

$$(D + \omega L) x^{(k+1)} = ((1 - \omega)D - \omega U) \cdot x^{(k)} + \omega b =$$

$$= D x^{(k)} + \omega (\underbrace{(-D - U)}_{L-A}) \cdot x^{(k)} + \omega b =$$

$$= D x^{(k)} + \omega L x^{(k)} + \omega \underbrace{(-Ax^{(k)} + b)}_{r^{(k)}} = (D + \omega L) x^{(k)} + \omega r^{(k)}$$

$$\Rightarrow x^{(k+1)} = x^{(k)} + \omega (D + \omega L)^{-1} r^{(k)}$$

Vezessük be az $s^{(k)} := \omega(D + \omega L)^{-1} r^{(k)}$ segédvektort, ezzel egy lépésünk alakja: $x^{(k+1)} = x^{(k)} + s^{(k)}$.

Az új reziduum vektor:

$$r^{(k+1)} = b - Ax^{(k+1)} = b - A(x^{(k)} + s^{(k)}) = r^{(k)} - As^{(k)}.$$

Relaxált Gauss-Seidel-iteráció

Algoritmus: relaxált Gauss–Seidel-iteráció $S(\omega)$

$$r^{(0)}:=b-Ax^{(0)}$$
 $k=1,\ldots,$ leállásig
$$s^{(k)}:=\omega(D+\omega L)^{-1}r^{(k)} \text{ helyett}$$
 $(D+\omega L)\,s^{(k)}=\omega r^{(k)}$ LER mo.
$$x^{(k+1)}:=x^{(k)}+s^{(k)}$$
 $r^{(k+1)}:=r^{(k)}-As^{(k)}$

Tétel: a relaxált Gauss–Seidel-módszer $S(\omega)$ konvergenciájáról

Ha egy mátrixra az $S(\omega)$ módszer konvergens, akkor $0<\omega<2$.

Meg jegyzés:

- Ha $\omega \notin (0,2)$, akkor általában nem konvergál.
- A relaxált Seidel-módszert gyakran alkalmazzák...

Lemma

$$\det(B) = \prod_{i=1}^{n} \lambda_i(B)$$

Biz. lemma: Írjuk fel a B mátrix karakterisztikus polinomját, amelyről tudjuk, hogy gyökei a mátrix sajátértékei; majd rendezzük λ hatványai szerint:

$$p(\lambda) = \det(B - \lambda I) = \prod_{i=1}^{n} (\lambda_i - \lambda) = (-1)^n \cdot \lambda^n + \ldots + \prod_{i=1}^{n} \lambda_i.$$

A $\lambda=0$ értéket behelyettesítve a konstans tagot kapjuk, amire:

$$p(0) = \det(B) = \prod_{i=1}^{n} \lambda_i.$$

Biz. tétel: A konvergencia ekvivalens feltételéből, azaz a

$$\varrho(B_{S(\omega)}) < 1$$

állításból kell ω kívánt becslését előállítanunk. Egyrészt

$$\varrho(B_{S(\omega)}) < 1 \implies \left| \lambda_i(B_{S(\omega)}) \right| < 1 \implies$$

$$\Rightarrow \left| \prod_{i=1}^n \lambda_i(B_{S(\omega)}) \right| < 1 \implies \left| \det(B_{S(\omega)}) \right| < 1.$$

Az iteráció mátrixa

$$B_{S(\omega)} = (D + \omega L)^{-1} [(1 - \omega)D - \omega U].$$

Kihasználjuk, hogy háromszögmátrixok determinánsa a főátlóbeli elemek szorzata (tehát nem függ a diagonálison kívüli elemektől).

Biz. tétel folyt.:

$$\begin{split} \left| \det(B_{S(\omega)}) \right| &= \underbrace{\left| \det\left((D + \omega L)^{-1} \right) \right|}_{1/|\det(D)|} \cdot \underbrace{\left| \det\left((1 - \omega)D - \omega U \right) \right|}_{|1 - \omega|^n \cdot |\det(D)|} = \\ &= \frac{1}{|\det(D)|} \cdot |1 - \omega|^n \cdot |\det(D)| = |1 - \omega|^n < 1 \end{split}$$

Ebből pedig $|1-\omega|<1$ következik, ami ekvivalens a $0<\omega<2$ becsléssel.

Tétel: a relaxált Gauss–Seidel-módszer $S(\omega)$ konvergenciájáról

Ha az egyenletrendszer mátrixa szimmetrikus, pozitív definit és $\omega \in (0,2)$, akkor az $S(\omega)$ módszer konvergens.

Biz.: nélkül.

Tétel: $S(\omega)$ tridiagonális mátrixokra

Ha a LER mátrixa tridiagonális, akkor a Jacobi- és Gauss–Seidel-iteráció egyszerre konvergens vagy divergens

azaz
$$\varrho(B_S) = \varrho(B_J)^2$$
.

Ez azt jelenti, hogy konvergencia esetén a Gauss–Seidel-iteráció kétszer gyorsabb,

Biz.: nélkül.

Tétel: $S(\omega)$ szimmetrikus, pozitív definit és tridiagonális mátrixokra

Ha a LER mátrixa tridiagonális, szimmetrikus és pozitív definit, akkor a Jacobi-, Gauss–Seidel- és relaxált Gauss–Seidel-iteráció is konvergens. Megadható $S(\omega)$ -ra optimális paraméter

$$\omega_0 = \frac{2}{1 + \sqrt{1 - \varrho(B_J)^2}}.$$

Továbbá,

- ha $\varrho(B_J)=0$, akkor $\omega_0=1$ és $\varrho(B_S)=\varrho(B_{S(\omega_0)})=0$,
- $\varrho(B_J) \neq 0$, akkor $\varrho(B_{S(\omega_0)}) = \omega_0 1 < \varrho(B_S) = \varrho(B_J)^2$.

Biz.: nélkül.

Megj.:

- Az utóbbi két tétel blokktridiagonális mátrixokra is igaz, a megfelelő blokkiterációkra.
- Az iterációs módszer konvergencia sebessége a q kontrakciós együtthatótól függ. Minél közelebb van 0-hoz, annál gyorsabb a módszer, míg, ha 1-hez van közel, akkor nagyon lassú. A kontrakciós együtthatót $q = \|B\|$ -ként kapjuk.
- Mivel bármely normára $\inf\{\|B\|: B \text{ indukált norma}\} = \varrho(B)$, ezért a spektrálsugár határozza meg a konvergencia sebességét.

Példa

Mit állíthatunk a következő mátrixra felírt Jacobi- és Gauss–Seidel-iterációk konvergenciájáról?

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

A szimmetrikus, pozitív definit és tridiagonális, alkalmazhatók rá a tanult tételek:

- A J(1) iteráció konvergens minden kezdővektorra.
- Ha $\omega \in (0;1)$ -re, akkor $J(\omega)$ iteráció konvergens minden kezdővektorra.
- Az S(1) iteráció konvergens minden kezdővektorra.
- Az $S(\omega)$ iteráció konvergens minden kezdővektorra pontosan az $\omega \in (0;2)$ értékekre.

$$B_J = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad B_S = \frac{1}{8} \begin{bmatrix} 0 & 4 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$B_J$$
 sajátértékei: $0, \pm \frac{1}{\sqrt{2}}$, így $\varrho(B_J) = \frac{1}{\sqrt{2}}$.

$$B_S$$
 sajátértékei: $0, 0, \frac{1}{2}$, így $\varrho(B_S) = \frac{1}{2}$.

 $S(\omega)$ -ra az optimális paraméter:

$$\omega_0 = \frac{2}{1 + \sqrt{1 - \left(\frac{1}{\sqrt{2}}\right)^2}} = \frac{2}{1 + \frac{1}{\sqrt{2}}} = \frac{2\sqrt{2}}{1 + \sqrt{2}} = 4 - 2\sqrt{2} \approx 1,1716...$$

$$\varrho(B_{S(\omega_0)}) = \omega_0 - 1 = 3 - 2\sqrt{2} \approx 0,1716...$$

Nézzük meg a LER-re a csillapított Jacobi- és a relaxált Gauss–Seidel-iteráció vizsgálatát Maple-ben.

Tartalomjegyzék

- 1 Gauss-Seidel-iteráció
- 2 Relaxált Gauss-Seidel-iteráció
- 3 A Richardson-iteráció
- 4 Matlab példák

Tekintsük az Ax = b LER-t, ahol A szimmetrikus, pozitív definit mátrix és $p \in \mathbb{R}$.

$$Ax = b$$

$$p \cdot Ax = p \cdot b$$

$$0 = -pAx + pb$$

$$x = x - pAx + pb = (I - pA)x + pb$$

Ezek alapján az iteráció a következő.

Definíció: Richardson-iteráció p paraméterrel – R(p)

$$x^{(k+1)} = \underbrace{(I - pA)}_{B_{R(p)}} \cdot x^{(k)} + \underbrace{pb}_{c_{R(p)}} = B_{R(p)} \cdot x^{(k)} + c_{R(p)}$$

Írjuk fel az iteráció reziduum vektoros alakját!

$$x^{(k+1)} = x^{(k)} - pAx^{(k)} + pb = x^{(k)} + p \cdot \left(-Ax^{(k)} + b \right) =$$

$$= x^{(k)} + pr^{(k)}$$

Vezessük be az $s^{(k)} := pr^{(k)}$ segédvektort, ezzel egy lépésünk alakja:

$$x^{(k+1)} = x^{(k)} + s^{(k)}$$
.

Az új reziduum vektor:

$$r^{(k+1)} = b - Ax^{(k+1)} = b - A(x^{(k)} + s^{(k)}) = r^{(k)} - As^{(k)}.$$

Algoritmus: Richardson-iteráció

$$r^{(0)} := b - Ax^{(0)}$$
 $k = 1, \dots, \text{ leállásig}$
 $s^{(k)} := pr^{(k)}$
 $x^{(k+1)} := x^{(k)} + s^{(k)}$
 $r^{(k+1)} := r^{(k)} - As^{(k)}$

Megjegyzés: Érdemes meggondolni, hogy ha az Ax = b helyett a $D = \text{diag}(a_{11}, \ldots, a_{nn})$ diagonális mátrix-szal a $D^{-1}Ax = D^{-1}b$ LER-re alkalmazzuk az R(p) iterációt, akkor az eredeti LER-re felírt J(p) csillapított Jacobi-iterációt kapjuk.

Tétel: A Richardson-iteráció konvergenciája

Ha az $A\in\mathbb{R}^{n\times n}$ mátrix szimmetrikus, pozitív definit és sajátértékeire $m=\lambda_1\leq\cdots\leq\lambda_n=M$ teljesül, akkor R(p) (azaz az Ax=b LER-re felírt $p\in\mathbb{R}$ paraméterű Richardson-iteráció) pontosan a

$$p \in \left(0, \frac{2}{M}\right),$$

paraméter értékekre konvergens minden kezdővektor esetén. Az optimális paraméter $p_0=\frac{2}{M+m}$, a hozzá kapcsolódó kontrakciós együttható pedig:

$$\varrho(B_{R(p_0)}) := \frac{M-m}{M+m} = \|B_{R(p_0)}\|_2 = q.$$

Bizonyítás:

1 $B_{R(p)}$ sajátértékei: $\lambda_i(p) = 1 - p \cdot \lambda_i$, hiszen

$$Av = \lambda_i v \Rightarrow (I - pA)v = v - pAv = v - p\lambda_i v = (1 - p\lambda_i)v.$$

Vagyis:

$$egin{aligned} \lambda_1(p) &= 1 - p \cdot \lambda_1 = 1 - pm, \ \lambda_2(p) &= 1 - p \cdot \lambda_2, \ &dots \ \lambda_p(p) &= 1 - p \cdot \lambda_p = 1 - pM. \end{aligned}$$

2 $B_{R(p)}$ spektrálsugara rögzített p-re $\varrho(B_{R(p)}) = \max_{i=1}^{n} |1 - p \cdot \lambda_i|.$

3 Ábrázoljuk az $|1 - p \cdot \lambda_i|$ függvényeket (i = 1, 2, ..., n)! (Ezek p-től függenek.)

$$1 - p \cdot \lambda_i = 0 \iff p = \frac{1}{\lambda_i}$$

Richardson-iteráció

- **4** R(p) konvergens, ha $\varrho(B_{R(p)}) < 1$, azaz ha $p \in \left(0, \frac{2}{M}\right)$. Ezek az |1 pM| = 1 egyenlet megoldásai.
- 5 Továbbá az optimális paramétert az

$$|1 - pM| = |1 - pm|$$

egyenlet megoldása adja. (Nem a 0, hanem a másik.)

$$-1 + pM = 1 - pm$$

$$pM + pm = 2$$

$$p(M + m) = 2 \implies p_0 = \frac{2}{M + m}$$

Richardson-iteráció

$$\varrho(B_{R(p_0)}) = 1 - p_0 \cdot m = \frac{M+m}{M+m} - \frac{2m}{M+m} = \frac{M-m}{M+m}.$$

7 Mivel A szimmetrikus, így $B_{R(p)}$ is, ezért a spektrálsugara és kettes normája megegyezik. Az eredményül kapott spektrálsugár egyben kettes normabeli kontrakciós együttható:

$$q=\frac{M-m}{M+m}.$$

Richardson-iteráció példa

Példa

Adjuk meg, hogy a Richardson-iteráció mely $p \in \mathbb{R}$ paraméterek mellett konvergens a következő egyenletrendszer esetén – mely ugyanaz, mint az imént. Mi az optimális paraméter és a hozzá tartozó "átmenetmátrix" spektrálsugara?

$$Ax = b,$$
 $\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \cdot x = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$

A mátrix sajátértékei 2 és 4.

Richardson-iteráció példa

M=4, m=2, így a $p\in (0,\frac{2}{M})=(0;\frac{1}{2})$ értékekre a Richardson-iteráció konvergens bármely kezdővektor esetén. Az optimális paraméter

$$p_0 = \frac{2}{M+m} = \frac{2}{4+2} = \frac{1}{3}$$

és a hozzá tartozó átmenetmátrix spektrálsugara

$$\varrho(B_{R(p_0)}) = \frac{4-2}{4+2} = \frac{1}{3}.$$

Mivel A szimmetriája öröklődik $B_{R(p)}$ -re, így az átmenetmátrix is szimmetrikus, így

$$\left\|B_{R(p_0)}\right\|_2 = \varrho(B_{R(p_0)}) = \frac{1}{3} = q$$

a kontrakciós együttható a kettes normában.

Tartalomjegyzék

- 1 Gauss-Seidel-iteráció
- 2 Relaxált Gauss-Seidel-iteráció
- 3 A Richardson-iteráció
- 4 Matlab példák

Példák Matlab-ban

- A tapasztalati kontrakciós együtthatók szemléltetése a relaxációs módszer esetén.
- A Richardson-iteráció viselkedésének vizsgálata különböző paraméterek mellett.

1. Példa:

A LER alakja Ax = b, ahol

$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Vizsgáljuk a relaxációs módszer tapasztalati kontrakciós együtthatóit $\omega=1,0.8,0.6,1.033,-0.1,2,2.5$ esetén!

1. Példa:

1. Példa:

1. Példa:

1. Példa:

1. Példa:

q > 1, divergens iteráció

1. Példa:

q > 1, divergens iteráció

1. Példa:

q > 1, divergens iteráció

Numerikus módszerek 1.

10. előadás: Részleges *LU*-felbontás és algoritmus, kerekítési hibák hatása az iterációkra

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 Részleges *LU*-felbontás

2 ILU-algoritmus

3 Kerekítési hibák hatása az iterációkra

Emlékeztető: iterációs módszerek

Általában:

$$Ax = b,$$
 $A = P + Q,$ $(P + Q)x = b,$

átrendezve:

$$Px = -Qx + b \iff x = -P^{-1}Qx + P^{-1}b,$$

iterációs alakban írva:

$$x^{(k+1)} = \underbrace{-P^{-1}Q}_{R} \cdot x^{(k)} + \underbrace{P^{-1}b}_{c}.$$

A továbbiakban olyan P=LU felbontást és -Q mátrixot keresünk, melyre A=P-Q. Ekkor a P^{-1} -zel való számolás helyettesíthető két háromszög alakú LER megoldásával, vagyis az iteráció könnyen számolható. Ezzel egy módszercsaládot konstruálunk.

Tartalomjegyzék

1 Részleges *LU*-felbontás

2 ILU-algoritmus

3 Kerekítési hibák hatása az iterációkra

Részleges LU-felbontás

Definíció: ILU-felbontás

- Legyen J a mátrix elemek pozícióinak egy részhalmaza, mely nem tartalmazza a főátlót, azaz (i, i) ∉ J ∀ i-re.
 A J halmazt pozícióhalmaznak nevezzük.
- Az A mátrixnak a J pozícióhalmazra illeszkedő *részleges* LU-felbontásán (ILU-felbontásán) olyan LU-felbontást értünk, melyre $L \in \mathcal{L}_1$ és $U \in \mathcal{U}$ (tehát a szokásos alakúak), továbbá

$$\forall (i,j) \in J: I_{ij} = 0, u_{ij} = 0 \text{ és}$$

 $\forall (i,j) \notin J: a_{ij} = (LU)_{ij}.$

Algoritmus: ILU-felbontás GE-val

$$\widetilde{A}_1 := A$$
 $k = 1, \dots, n-1$:

(1) Szétbontás: $\widetilde{A}_k = P_k - Q_k$ alakra, ahol

$$(P_k)_{ik} = 0 \quad (i,k) \in J$$

$$(P_k)_{kj} = 0 \quad (k,j) \in J$$

$$(Q_k)_{ik} = -\widetilde{a}_{ik}^{(k)} \quad (i,k) \in J$$

$$(Q_k)_{kj} = -\widetilde{a}_{kj}^{(k)} \quad (k,j) \in J.$$

Ahogy látható, \widetilde{A}_k -nak csak k. sorában és k. oszlopában a pozícióhalmazban megadott helyeken változtatunk.

(2) Elimináció P_k -n:

$$\widetilde{A}_{k+1} = L_k P_k$$

Kérdés: az algoritmussal kapott mátrixokból hogyan állítjuk elő az *ILU*-felbontást?

Tétel: az *ILU*-felbontásról

Az *ILU*-felbontás algoritmusával kapott részmátrixokból készítsük el a következőket:

$$U:=\widetilde{A}_n,$$

$$L:=L_1^{-1}\cdot\ldots\cdot L_{n-1}^{-1}\quad ext{(\"osszepakolással)},$$
 $Q:=Q_1+Q_2+\ldots+Q_{n-1}\quad ext{(\"osszepakolással)}.$

Ekkor A = LU - Q és a részleges LU-felbontásra vonatkozó feltételek teljesülnek.

Biz.: A GE n-1. lépése után felsőháromszög alakot kapunk, tehát $U:=\widetilde{A}_n$ alakja jó és minden $(i,j)\in J, i< j$ -re $u_{ij}=0$. Alkalmazzuk az n-1. lépés (2), majd (1) részét:

$$U := \widetilde{A}_n = L_{n-1}P_{n-1} = L_{n-1}\left(\widetilde{A}_{n-1} + Q_{n-1}\right)$$

Az \widetilde{A}_n -re kapott rekurziót alkalmazzuk \widetilde{A}_{n-1} -re:

$$\widetilde{A}_{n} = L_{n-1} \left(\widetilde{A}_{n-1} + Q_{n-1} \right) = L_{n-1} \left(L_{n-2} \left[\widetilde{A}_{n-2} + Q_{n-2} \right] + Q_{n-1} \right)$$

Mivel Q_{n-1} -ben az n-2. sorban csak nullák vannak, így az n-2. GE-s lépés nem változtat rajta, tehát $L_{n-2}Q_{n-1}=Q_{n-1}$. Emiatt Q_{n-1} -et bevihetjük a belső zárójelbe.

$$\widetilde{A}_n = L_{n-1}L_{n-2}\left(\widetilde{A}_{n-2} + Q_{n-2} + Q_{n-1}\right)$$

Biz. folyt.: Folytatva tovább visszafelé a rekurziót

$$U = \widetilde{A}_n = L_{n-1}L_{n-2} \left(\widetilde{A}_{n-2} + Q_{n-2} + Q_{n-1} \right) = \dots =$$

$$= \underbrace{L_{n-1}L_{n-2}\dots L_1}_{L^{-1}} \left(A + \underbrace{Q_1 + \dots + Q_{n-2} + Q_{n-1}}_{Q} \right).$$

$$U = L^{-1}(A + Q) \quad \Leftrightarrow \quad A = LU - Q$$

A kapott mátrixok alakja megfelelő. Az algoritmus (1) lépése garantálja, hogy \forall $(i,j) \in J: I_{ij} = 0, u_{ij} = 0$, továbbá (2) lépése (GE) miatt \forall $(i,j) \notin J: a_{ij} = (LU)_{ij}$.

Tétel: szig.diag.dom. mátrix *ILU*-felbontása

Ha A szigorúan diagonálisan domináns a soraira vagy oszlopaira, akkor a mátrix *ILU*-felbontása létezik és egyértelmű.

Biz.: az *ILU*-felbontás (1) lépése a szig. diag. dom. tulajdonságot nem változtatja, mivel átlón kívüli elemet veszünk ki a mátrixból.

A (2) GE-s lépés a szig. diag. dom. tulajdonságot magtartja, lásd GE megmaradási tételek a Schur-komplementerre.

Meg jegyzés:

- A szig. diag. dom. tulajdonságból következik az összes bal felső részmátrix invertálhatósága, vagyis a főminorok egyike sem nulla.
- ② Diff. egyenletek numerikus megoldása során gyakran előforduló M-mátrix osztályra is igaz, hogy egyértelműen létezik az ILU-felbontása.
- Gyakran csak a főátlót és néhány mellékátlót hagynak ki a J pozícióhalmazból, így a tárigény előre ismert, nem kell a sávon belül feltöltődéssel foglalkozni.

4 Például egy $N^2 \times N^2$ -es mátrix esetén, ahol csak a (-N, -1, 0, 1, N) átlókban van nem nulla elem, érdemes J-ből a (-1, 0, 1) átlókat kihagyni.

Tárolás: L, U csak két-két átlót fog tartalmazni, L átlója egyesekből áll, így 3 db N^2 méretű átlót kell tárolni N^4 elem helyett.

Műveletigény: az iteráció során a két háromszögmátrixú két átlós LER $2N^2+\mathcal{O}(1)$ illetve $3N^2+\mathcal{O}(1)$ művelettel megoldható. (A GE $\frac{2}{3}N^6$ -t jelentene.) Gondoljunk arra, hogy $N\approx 10^3...$

1. Példa:

Készítsük el az

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}$$

mátrix $J = \{(1,2), (2,3)\}$ pozícióhalmazhoz illeszkedő ILU-felbontását! A pozícióhalmazt mátrixos alakban is szemléltethetjük, a kinullázandó elemeket *-gal jelöljük:

1. lépés: (1) szétbontás: olyan pozíciókat keresünk J-ben, melyek az 1. sorhoz illetve az 1. oszlophoz tartoznak: (1,2). Ezt a pozíciót kinullázzuk P_1 -ben és a (-1)-szeresét Q_1 -be tesszük.

$$A = \widetilde{A}_1 = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} - \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = P_1 - Q_1$$

(2) **Elimináció:** P_1 -en elvégezzük az 1. GE-s lépést:

$$\widetilde{A}_2 = L_1 P_1 = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & \frac{1}{2} \\ 0 & 1 & 3 \end{bmatrix}, \quad L_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{bmatrix}.$$

2. lépés: (1) **szétbontás:** olyan pozíciókat keresünk J-ben, melyek a 2. sorhoz illetve az 2. oszlophoz tartoznak: (2,3). Ezt a pozíciót kinullázzuk P_2 -ben és a (-1)-szeresét Q_2 -be tesszük.

$$\widetilde{A}_2 = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & \frac{1}{2} \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & 0 \\ 0 & 1 & 3 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix} = P_2 - Q_2$$

(2) Elimináció: P_2 -en elvégezzük a 2. GE-s lépést:

$$\widetilde{A}_3 = L_2 P_2 = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \quad L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{4} & 1 \end{bmatrix}.$$

A tétel alapján összerakjuk az *ILU*-felbontást:

$$U = \widetilde{A}_3 = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \quad Q = Q_1 + Q_2 = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Mivel az egyes lépésekben a Q_k mátrixok különböző sorait és oszlopait töltjük, így elegedő a gyakorlatban egy Q mátrixot tárolni. Az iterációnál látni fogjuk, hogy Q-ra a végrehajtáshoz nincs szükség.

Összepakolással:

$$L = L_1^{-1} L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{4} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & \frac{1}{4} & 1 \end{bmatrix}.$$

Ellenőrizhetjük, hogy A = LU - Q

$$\begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & \frac{1}{4} & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}}_{ \begin{bmatrix} 4 & 0 & 2 \\ 1 & 4 & \frac{1}{2} \\ 2 & 1 & 4 \end{bmatrix}}.$$

Teljesíti a *ILU*-felbontásra tett összes követelményt.

1. Példa tömören

Tömör írásmódban: Csak egy Q mátrixot tárolunk, ebbe pakoljuk a Q_k mátrixok nem nulla elemeit. Az GE eredményét illetve a GE-s hányadosokat, vagyis az \widetilde{A}_k, L_k mátrixokat is egyben tároljuk. Vonalakkal jelezzük, hogy itt már tárolásról is szó van.

1. lépés: (1) szétbontás:

$$A = \widetilde{A}_1 = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}, \quad P_1 = \begin{bmatrix} 4 & 0 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(2) Elimináció P_1 -en:

$$\begin{bmatrix} 4 & 0 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 2 \\ \frac{1}{4} & 4 & \frac{1}{2} \\ \frac{2}{4} & 1 & 3 \end{bmatrix}$$

1. Példa tömören

2. lépés: Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

(1) szétbontás:

$$\begin{bmatrix}
4 & 0 & 2 \\
\frac{1}{4} & 4 & \frac{1}{2} \\
\frac{1}{2} & 1 & 3
\end{bmatrix}
\rightarrow
\begin{bmatrix}
4 & 0 & 2 \\
\frac{1}{4} & 4 & 0 \\
\frac{1}{2} & 1 & 3
\end{bmatrix}
\qquad
Q = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & -\frac{1}{2} \\
0 & 0 & 0
\end{bmatrix}$$

(2) Elimináció:

$$\begin{bmatrix} 4 & 0 & 2 \\ \frac{1}{4} & 4 & 0 \\ \frac{1}{2} & 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 2 \\ \frac{1}{4} & 4 & 0 \\ \frac{1}{2} & \frac{1}{4} & 3 \end{bmatrix} = L \text{ \'es } U \text{ egy\"utt}$$

╝

2. Példa:

Készítsük el az

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}$$

mátrix $J = \{(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)\}$ pozícióhalmazhoz illeszkedő ILU-felbontását! A pozícióhalmazt mátrixos alakban is szemléltethetjük, a kinullázandó elemeket *-gal jelöljük:

A lehető legbővebb pozícióhalmazt adtuk meg.

1. lépés: (1) **szétbontás:** olyan pozíciókat keresünk J-ben, melyek az 1. sorhoz illetve az 1. oszlophoz tartoznak: (1,2),(1,3),(2,1),(3,1).

Ezeket a pozíciókat kinullázzuk P_1 -ben és a (-1)-szeresüket Q_1 -be tesszük.

$$A = \widetilde{A}_1 = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix} - \begin{bmatrix} 0 & -1 & -2 \\ -1 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix} = P_1 - Q_1$$

(2) **Elimináció:** P_1 -en elvégezzük az 1. GE-s lépést (valójában nem kell eliminálnunk a kinullázások miatt):

$$\widetilde{A}_2 = L_1 P_1 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix}, \quad L_1^{-1} = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

2. lépés: (1) **szétbontás:** olyan pozíciókat keresünk J-ben, melyek a 2. sorhoz illetve az 2. oszlophoz tartoznak: (2,3),(3,2). Ezeket a pozíciókat kinullázzuk P_2 -ben és a (-1)-szeresüket Q_2 -be tesszük.

$$\widetilde{A}_2 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} = P_2 - Q_2$$

(2) **Elimináció:** P_2 -en elvégezzük a 2. GE-s lépést (valójában nem kell eliminálnunk a kinullázások miatt):

$$\widetilde{A}_3 = L_2 P_2 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad L_2^{-1} = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

A tétel alapján összerakjuk az ILU-felbontást:

$$U = \widetilde{A}_3 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad Q = Q_1 + Q_2 = \begin{bmatrix} 0 & -1 & -2 \\ -1 & 0 & -1 \\ -2 & -1 & 0 \end{bmatrix}$$

Mivel az egyes lépésekben a Q_k mátrixok különböző sorait és oszlopait töltjük, így elegedő a gyakorlatban egy Q mátrixot tárolni. Az iterációnál látni fogjuk, hogy Q-ra a végrehajtáshoz nincs szükség.

Összepakolással:

$$L = L_1^{-1} L_2^{-1} = I.$$

Ellenőrizhetjük, hogy A = LU - Q

$$\begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} - \begin{bmatrix} 0 & -1 & -2 \\ -1 & 0 & -1 \\ -2 & -1 & 0 \end{bmatrix}.$$

Teljesíti a *ILU*-felbontásra tett összes követelményt.

2. Példa tömören

Tömör írásmódban: Csak egy Q mátrixot tárolunk, ebbe pakoljuk a Q_k mátrixok nem nulla elemeit. Az GE eredményét illetve a GE-s hányadosokat, vagyis az \widetilde{A}_k, L_k mátrixokat is egyben tároljuk. Vonalakkal jelezzük, hogy itt már tárolásról is szó van.

1. lépés: (1) szétbontás:

$$A = \widetilde{A}_1 = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}, \quad P_1 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & -1 & -2 \\ -1 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}$$

(2) **Elimináció** P_1 -en: valójában nem kell eliminálni.

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 0 \\ \hline 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$

2. Példa tömören

2. lépés: Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

(1) szétbontás:

$$\begin{bmatrix} 4 & 0 & 0 \\ \hline 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 0 \\ \hline 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \quad Q = \begin{bmatrix} 0 & -1 & -2 \\ -1 & 0 & -1 \\ -2 & -1 & 0 \end{bmatrix}$$

(2) Elimináció: valójában nem kell eliminálni.

$$\begin{bmatrix} 4 & 0 & 0 \\ \hline 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 0 \\ \hline 0 & 4 & 0 \\ \hline 0 & \hline 0 & 4 \end{bmatrix} = L \text{ \'es } U \text{ egy\"utt}$$

3. Példa:

Készítsük el az

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}$$

mátrix $J = \{(1,2), (1,3), (2,3)\}$ pozícióhalmazhoz illeszkedő *ILU*-felbontását! A pozícióhalmazt mátrixos alakban is szemléltethetjük, a kinullázandó elemeket *-gal jelöljük:

A felsőháromszögrész minden átlón kívüli elemét megjelöltük.

1. lépés: (1) **szétbontás:** olyan pozíciókat keresünk J-ben, melyek az 1. sorhoz illetve az 1. oszlophoz tartoznak: (1,2),(1,3). Ezeket a pozíciókat kinullázzuk P_1 -ben és a (-1)-szeresüket Q_1 -be tesszük.

$$A = \widetilde{A}_1 = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} - \begin{bmatrix} 0 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = P_1 - Q_1$$

(2) Elimináció: P₁-en elvégezzük az 1. GE-s lépést:

$$\widetilde{A}_2 = L_1 P_1 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix}, \quad L_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{bmatrix}.$$

2. lépés: (1) szétbontás: olyan pozíciókat keresünk J-ben, melyek a 2. sorhoz illetve az 2. oszlophoz tartoznak: (2,3). Ezt a pozíciót kinullázzuk P_2 -ben és a (-1)-szeresét Q_2 -be tesszük.

$$\widetilde{A}_2 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 1 & 4 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} = P_2 - Q_2$$

(2) **Elimináció:** P_2 -en elvégezzük a 2. GE-s lépést:

$$\widetilde{A}_3 = L_2 P_2 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{4} & 1 \end{bmatrix}.$$

A tétel alapján összerakjuk az ILU-felbontást:

$$U = \widetilde{A}_3 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad Q = Q_1 + Q_2 = \begin{bmatrix} 0 & -1 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Mivel az egyes lépésekben a Q_k mátrixok különböző sorait és oszlopait töltjük, így elegedő a gyakorlatban egy Q mátrixot tárolni. Az iterációnál látni fogjuk, hogy Q-ra a végrehajtáshoz nincs szükség.

Összepakolással:

$$L = L_1^{-1} L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{4} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & \frac{1}{4} & 1 \end{bmatrix}.$$

Ellenőrizhetjük, hogy A = LU - Q

$$\begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & \frac{1}{4} & 1 \end{bmatrix}} \cdot \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}}_{ \begin{bmatrix} 4 & 0 & 0 \\ 1 & 4 & 0 \\ 2 & 1 & 4 \end{bmatrix}}_{ \begin{bmatrix} 4 & 0 & 0 \\ 1 & 4 & 0 \\ 2 & 1 & 4 \end{bmatrix}}.$$

Teljesíti a *ILU*-felbontásra tett összes követelményt.

Tömör írásmódban: Csak egy Q mátrixot tárolunk, ebbe pakoljuk a Q_k mátrixok nem nulla elemeit. Az GE eredményét illetve a GE-s hányadosokat, vagyis az \widetilde{A}_k, L_k mátrixokat is egyben tároljuk. Vonalakkal jelezzük, hogy itt már tárolásról is szó van.

1. lépés: (1) szétbontás:

$$A = \widetilde{A}_1 = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}, \quad P_1 = \begin{bmatrix} 4 & 0 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(2) Elimináció P_1 -en:

$$\begin{bmatrix} 4 & 0 & 0 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 0 \\ \frac{1}{4} & 4 & 1 \\ \frac{1}{2} & 1 & 4 \end{bmatrix}$$

3. Példa tömören

2. lépés: Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

(1) szétbontás:

$$\begin{bmatrix}
4 & 0 & 0 \\
\hline
0 & 4 & 1 \\
0 & 1 & 4
\end{bmatrix}
\rightarrow
\begin{bmatrix}
4 & 0 & 0 \\
\hline
0 & 4 & 0 \\
0 & 1 & 4
\end{bmatrix}
\quad Q = \begin{bmatrix}
0 & -1 & -2 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{bmatrix}$$

(2) Elimináció:

$$\begin{bmatrix} 4 & 0 & 0 \\ \hline 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 0 \\ \hline 0 & 4 & 0 \\ 0 & \hline \frac{1}{4} & 4 \end{bmatrix} = L \text{ \'es } U \text{ egy\"utt}$$

Tartalomjegyzék

1 Részleges *LU*-felbontás

2 ILU-algoritmus

3 Kerekítési hibák hatása az iterációkra

Átalakítás:

$$Ax = b, \quad A = P - Q, \quad P = LU$$
$$(P - Q)x = b$$
$$Px = Qx + b$$
$$x = P^{-1}Qx + P^{-1}b$$

Ezek alapján az iteráció a következő.

Definíció: ILU-algoritmus

$$x^{(k+1)} = \underbrace{P^{-1}Q}_{B_{ILU}} \cdot x^{(k)} + \underbrace{P^{-1}b}_{c_{ILU}} = B_{ILU} \cdot x^{(k)} + c_{ILU}$$

Írjuk fel az iteráció reziduum vektoros alakját!

$$A = P - Q \Leftrightarrow Q = P - A$$

$$P \cdot x^{(k+1)} = Q \cdot x^{(k)} + b = (P - A) \cdot x^{(k)} + b =$$

$$= P \cdot x^{(k)} + (-Ax^{(k)} + b) = P \cdot x^{(k)} + r^{(k)}$$

$$\Rightarrow x^{(k+1)} = x^{(k)} + P^{-1}r^{(k)}$$

Vezessük be az $s^{(k)} := P^{-1}r^{(k)}$ segédvektort, ezzel egy lépésünk alakja:

$$x^{(k+1)} = x^{(k)} + s^{(k)}.$$

Az új reziduum vektor:

$$r^{(k+1)} = b - Ax^{(k+1)} = b - A(x^{(k)} + s^{(k)}) = r^{(k)} - As^{(k)}.$$

Algoritmus: *ILU*-algoritmus

$$r^{(0)}:=b-Ax^{(0)}$$
 $k=1,\ldots,$ leállásig
$$s^{(k)}:=P^{-1}r^{(k)} \text{ helyett}$$

$$LU\,s^{(k)}=r^{(k)} \text{ (2 db háromszögű LER mo.)}$$

$$x^{(k+1)}:=x^{(k)}+s^{(k)}$$

$$r^{(k+1)}:=r^{(k)}-As^{(k)}$$

Megjegyzés:

Az átmenetmátrix

$$B_{ILU} = P^{-1}Q = P^{-1}(P - A) = I - P^{-1}A.$$

Legyen P az A-hoz közeli, mert ekkor $||B_{ILU}||$ kicsi és így az iteráció gyors.

- 2 Ha L, U-ban csak kevés nem nulla átló van, akkor az iteráción belüli LER megoldás műveletigénye kicsi.
- **3** Láttuk, hogy az iteráció végrehajtásakor *Q*-ra nincs szükségünk.

Általánosítás az /LU-algoritmusból:

$$P(x^{(k+1)} - x^{(k)}) = r^{(k)} \Leftrightarrow P(x^{(k+1)} - x^{(k)}) + Ax^{(k)} = b.$$

Definíció: általános kétrétegű iterációs eljárás

Α

$$P(x^{(k+1)} - x^{(k)}) + Ax^{(k)} = b$$

iterációt általános kétrétegű iterációs eljárásnak nevezzük. P: a prekondicionáló mátrix.

Megjegyzés: A korábbi összes iterációs módszerünk ilyen alakú:

$$P(x^{(k+1)} - x^{(k)}) + Ax^{(k)} = b.$$

- **1** Ha P = D, akkor a J(1) iterációt kapjuk.
- **2** Ha $P = \frac{1}{\omega} D$, akkor a $J(\omega)$ iterációt kapjuk.
- **3** Ha P = D + L, akkor az S(1) iterációt kapjuk.
- **4** Ha $P = D + \omega L$, akkor az $S(\omega)$ iterációt kapjuk.
- **6** Ha $P = \frac{1}{p}I$, akkor az R(p) iterációt kapjuk.
- 6 Ha P = LU az ILU-felbontásból, akkor az ILU iterációt kapjuk.

iLU-algoritmus

Példa:

A korábbi *ILU*-felbontás példákhoz készítsük el a megfelelő *ILU*-algoritmusok átmenetmátrixát és hasonlítsuk össze az egyes iterációk gyorsaságát!

1. Példa:

$$P = \begin{bmatrix} 4 & 0 & 2 \\ 1 & 4 & \frac{1}{2} \\ 2 & 1 & 4 \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}, \quad B_{ILU} = P^{-1}Q,$$

$$\|B_{ILU}\|_{2} \approx 0.3601, \quad \|B_{ILU}\|_{\infty} \approx 0.3438$$

2. Példa: Jacobi-iteráció

$$P = 4I, \quad Q = \begin{bmatrix} 0 & -1 & -2 \\ -1 & 0 & -1 \\ -2 & -1 & 0 \end{bmatrix}, \quad B_{ILU} = P^{-1}Q = \frac{1}{4} \begin{bmatrix} 0 & -1 & -2 \\ -1 & 0 & -1 \\ -2 & -1 & 0 \end{bmatrix},$$

 $||B_{ILU}||_2 \approx 0.6830, \quad ||B_{ILU}||_{\infty} \approx 0.75$

3. Példa: Gauss-Seidel-iteráció

$$P = \begin{bmatrix} 4 & 0 & 0 \\ 1 & 4 & 0 \\ 2 & 1 & 4 \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & -1 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \quad B_{ILU} = P^{-1}Q,$$

$$\|B_{ILU}\|_{2} \approx 0.6408, \quad \|B_{ILU}\|_{\infty} \approx 0.75$$

Látjuk, hogy az 1. példabeli *ILU*-felbontást alkalmazó *ILU*-algoritmus a leggyorsabb a három közül.

Tartalomjegyzék

1 Részleges *LU*-felbontás

2 ILU-algoritmus

3 Kerekítési hibák hatása az iterációkra

Kerekítési hibák hatása az iterációkra

Tekintsük az iteráció szokásos alakját!

$$x^{(k+1)} = Bx^{(k)} + c$$

Vizsgáljuk meg, hogyan változik az iteráció, ha a k+1. lépésben kicsit $\varepsilon^{(k)}$ -val megváltoztatjuk! (Számolási pontatlanság, kerekítési hiba, . . .)

1 Eredeti:

$$x^{(k+1)} = Bx^{(k)} + c$$

Módosult:

$$y^{(k+1)} = By^{(k)} + c + \varepsilon^{(k)}$$

Nyilván a lépésenkénti $\varepsilon^{(k)}$ hiba miatt *kicsit* más lesz az iteráció . . .

Kerekítési hibák hatása az iterációkra

Tétel: a kerekítési hibák hatása az iterációkra

Tegyük fel, hogy

- iterációnk bármely kezdőértékre konvergens,
- a lépésenkénti hiba felülről korlátos, vagyis létezik $\varepsilon>0$, melyre $\left\| \varepsilon^{(k)} \right\| \leq \varepsilon$ minden k-ra.

Ekkor a $z^{(k)}$ hibasorozatra

$$\lim_{k\to\infty} \left\| z^{(k)} \right\| \le \frac{\varepsilon}{1-\|B\|}.$$

Biz.: A $z^{(k)} := x^{(k)} - y^{(k)}$ hibavektorra írjuk fel a rekurziót:

$$z^{(k+1)} = x^{(k+1)} - y^{(k+1)} = (Bx^{(k)} + c) - (By^{(k)} + c + \varepsilon^{(k)}) =$$

= $B(x^{(k)} - y^{(k)}) - \varepsilon^{(k)} = Bz^{(k)} - \varepsilon^{(k)}.$

Kerekítési hibák hatása az iterációkra

Biz. folyt.: A konvergenciából következik, hogy létezik olyan indukált mátrixnorma, melyben $\|B\| < 1$. A hozzá illeszkedő vektornormában becsüljünk:

$$\begin{aligned} \left\| z^{(k+1)} \right\| &\leq \left\| B \right\| \cdot \left\| z^{(k)} \right\| + \left\| \varepsilon^{(k)} \right\| \leq \left\| B \right\| \cdot \left\| z^{(k)} \right\| + \varepsilon \leq \\ &\leq \left\| B \right\| \left(\left\| B \right\| \cdot \left\| z^{(k-1)} \right\| + \varepsilon \right) + \varepsilon \leq \dots \leq \\ &\leq \left\| B \right\|^{k+1} \cdot \left\| z^{(0)} \right\| + \varepsilon \cdot \left(\left\| B \right\|^{k} + \dots + \left\| B \right\| + 1 \right) < \\ &< \varepsilon \left\| B \right\|^{k+1} + \varepsilon \cdot \frac{1}{1 - \left\| B \right\|}. \end{aligned}$$

Innen $k \to \infty$ határátmenettel adódik a bizonyítandó állítás.

Numerikus módszerek 1.

11. előadás: Nemlineáris egyenletek numerikus megoldása

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Problémafelvetés, megközelítési módok

Feladat

Keressük meg egy $f\in\mathbb{R}\to\mathbb{R}$ nemlineáris függvény gyökét, avagy zérushelyét. (\exists ?, 1, több?)

$$f(x^*) = 0, \qquad x^* = ?$$

Problémafelvetés, megközelítési módok

Feladat

Keressük meg egy $f \in \mathbb{R} \to \mathbb{R}$ nemlineáris függvény gyökét, avagy zérushelyét. (\exists ?, 1, több?)

$$f(x^*) = 0, \qquad x^* = ?$$

Ekvivalens módon átfogalmazható (általában): keressük meg egy $\varphi \in \mathbb{R} \to \mathbb{R}$ nemlineáris függvény fixpontját.

$$x^* = \varphi(x^*), \qquad x^* = ?$$

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Tétel: Bolzano-tétel

Ha $f \in C[a;b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a;b) : f(x^*) = 0$.

Tétel: Bolzano-tétel

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

Megjegyzés:

• $a, b \in \mathbb{R}$, a < b, [a; b] zárt intervallum,

Tétel: Bolzano-tétel

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

- $a, b \in \mathbb{R}$, a < b, [a; b] zárt intervallum,
- C[a; b]: az [a; b] (zárt) intervallumon folytonos függvények halmaza,

Tétel: Bolzano-tétel

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

- $a, b \in \mathbb{R}$, a < b, [a; b] zárt intervallum,
- C[a; b]: az [a; b] (zárt) intervallumon folytonos függvények halmaza,
- $f(a) \cdot f(b) < 0$: f(a) és f(b) különböző előjelűek

Tétel: Bolzano-tétel

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

- $a, b \in \mathbb{R}$, a < b, [a; b] zárt intervallum,
- C[a; b]: az [a; b] (zárt) intervallumon folytonos függvények halmaza,
- $f(a) \cdot f(b) < 0$: f(a) és f(b) különböző előjelűek
- van gyök az (a; b) (nyílt) intervallumban

Biz. (Bolzano-tétel): az intervallumfelezés módszerével

1 Legyen $x_0 := a, y_0 := b$.

Biz. (Bolzano-tétel): az intervallumfelezés módszerével

- **1** Legyen $x_0 := a, y_0 := b$.
- 2 lsmételjük:
 - Legyen $s_k := \frac{1}{2}(x_k + y_k)$, az intervallum fele.
 - Ha $f(x_k) \cdot f(\bar{s_k}) < 0$, akkor $x_{k+1} := x_k, y_{k+1} := s_k$.
 - Ha $f(x_k) \cdot f(s_k) > 0$, akkor $x_{k+1} := s_k, \ y_{k+1} := y_k$.

Biz. (Bolzano-tétel): az intervallumfelezés módszerével

- **1** Legyen $x_0 := a, y_0 := b$.
- 2 lsmételjük:
 - Legyen $s_k := \frac{1}{2}(x_k + y_k)$, az intervallum fele.
 - Ha $f(x_k) \cdot f(\bar{s_k}) < 0$, akkor $x_{k+1} := x_k, y_{k+1} := s_k$.
 - Ha $f(x_k) \cdot f(s_k) > 0$, akkor $x_{k+1} := s_k$, $y_{k+1} := y_k$.
- Álljunk meg, ha
 - egyenlőség teljesül, ekkor $x^* = s_k$, vagy

Biz. (Bolzano-tétel): az intervallumfelezés módszerével

- **1** Legyen $x_0 := a, y_0 := b$.
- 2 lsmételjük:
 - Legyen $s_k := \frac{1}{2}(x_k + y_k)$, az intervallum fele.
 - Ha $f(x_k) \cdot f(s_k) < 0$, akkor $x_{k+1} := x_k$, $y_{k+1} := s_k$.
 - Ha $f(x_k) \cdot f(s_k) > 0$, akkor $x_{k+1} := s_k$, $y_{k+1} := y_k$.
- Alljunk meg, ha
 - egyenlőség teljesül, ekkor $x^* = s_k$, vagy
 - elértük a kívánt pontosságot, ekkor $x^* \in (x_k, y_k)$, és

$$y_k - x_k = \frac{y_{k-1} - x_{k-1}}{2}$$

teljesül.

Megjegyzés:

• Általában nem tapasztalunk egyenlőséget.

- Általában nem tapasztalunk egyenlőséget.
- Az (x_k) és (y_k) sorozatok konvergenciájának részletes tárgyalása: Analízis...

- Általában nem tapasztalunk egyenlőséget.
- Az (x_k) és (y_k) sorozatok konvergenciájának részletes tárgyalása: Analízis...
- Hibabecslések:

$$|x_k - x^*| < \frac{b-a}{2^k}, \quad |y_k - x^*| < \frac{b-a}{2^k},$$

 $|s_k - x^*| < \frac{b-a}{2^{k+1}}.$

Példa

Közelítsük a $P(x) = x^3 + 3x - 2$ polinom egyik gyökét 0.1 pontossággal. Hány lépés szükséges?

Próbálkozhatunk a [0; 1] intervallummal...

A $P(x) = x^3 + 3x - 2$ polinom gyökét keressük intervallumfelezéssel a [0; 1] intervallumon:

A $P(x) = x^3 + 3x - 2$ polinom gyökét keressük intervallumfelezéssel a [0; 1] intervallumon:

$$P(0) = -2 < 0, \quad P(1) = 1 + 3 - 2 = 2 > 0$$

 $\Rightarrow \quad \exists \ x^* \in (0; 1) : P(x^*) = 0.$

A $P(x) = x^3 + 3x - 2$ polinom gyökét keressük intervallumfelezéssel a [0; 1] intervallumon:

$$P(0) = -2 < 0, \quad P(1) = 1 + 3 - 2 = 2 > 0$$

 $\Rightarrow \quad \exists \ x^* \in (0;1) : P(x^*) = 0.$

Hibabecslés:

$$\frac{1}{2^k} < \frac{1}{10} \quad \Leftrightarrow \quad k > 3,$$

tehát legalább 4 lépésre van szükségünk. Lassú . . .

1 Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$

- **1** Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$
- 2 valamint $f \in D(a; b)$ és f' > 0 (vagy < 0),

- **1** Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$
- 2 valamint $f \in D(a; b)$ és f' > 0 (vagy < 0),

akkor
$$\exists ! \ x^* \in (a; b) : f(x^*) = 0.$$

- **1** Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$
- 2 valamint $f \in D(a; b)$ és f' > 0 (vagy < 0),

akkor $\exists ! \ x^* \in (a; b) : f(x^*) = 0.$

Biz.: A Bolzano-tételből következik, hogy van gyök. *f* szigorúan monoton, ezért egyértelmű is.

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Emlékeztető, ötlet

Emlékeztető: Iterációs módszerek LER-ek esetén.

$$Ax = b \iff x = Bx + c$$

 $x^{(k+1)} = \varphi(x^{(k)}) = B \cdot x^{(k)} + c$

Emlékeztető: Iterációs módszerek LER-ek esetén.

$$Ax = b \iff x = Bx + c$$

 $x^{(k+1)} = \varphi(x^{(k)}) = B \cdot x^{(k)} + c$

Ötlet: Most, nemlineáris függvények zérushelyéhez:

$$f(x) = 0 \iff x = \varphi(x)$$

 $x_{k+1} = \varphi(x_k) = \dots$

Emlékeztető: fixpont, kontrakció

Emlékeztető: fixpont

Az $x^* \in \mathbb{R}^n$ pontot a $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *fixpontjának* nevezzük, ha $x^* = \varphi(x^*)$.

Emlékeztető: kontrakció

A $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ leképezés *kontrakció*, ha $\exists \ q \in [0,1)$, hogy

$$\|\varphi(x) - \varphi(y)\| \le q \cdot \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

Meg j.:

- kontrakció \approx összehúzás, q: kontrakciós együttható
- most $n=1, \|.\|=|.|$; \mathbb{R} helyett $[a;b]\subset \mathbb{R}$, így jobban használható

Kontraktív valós függvények

Definíció: kontrakció

A $\varphi:[a;b] o \mathbb{R}$ leképezés $\textit{kontrakció}\ [a;b]$ -n, ha $\exists\ q \in [0,1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Kontraktív valós függvények

Definíció: kontrakció

A $\varphi:[a;b]
ightarrow \mathbb{R}$ leképezés kontrakció~[a;b]-n, ha $\exists~q \in [0,1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Állítás

- **1** $\varphi \colon [a;b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a;b]$ és
- **2** $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b]),$

Definíció: kontrakció

A $\varphi:[a;b]
ightarrow \mathbb{R}$ leképezés kontrakció~[a;b]-n, ha $\exists~q \in [0,1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Állítás

- **1** $\varphi \colon [a;b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a;b]$ és
- **2** $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b]),$

akkor φ kontrakció [a; b]-n.

Definíció: kontrakció

A $arphi:[a;b] o\mathbb{R}$ leképezés $kontrakció\ [a;b]$ -n, ha $\exists\ q\in[0,1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Állítás

- **1** $\varphi \colon [a;b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a;b]$ és
- **2** $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b]),$

akkor φ kontrakció [a; b]-n.

Meg j.:

 C¹: egyszer folyonosan differenciálható, vagyis a deriváltja folytonos.

Definíció: kontrakció

A $\varphi: [a; b] \to \mathbb{R}$ leképezés kontrakció [a; b]-n, ha $\exists g \in [0, 1)$, hogy

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad \forall x, y \in [a; b].$$

Állítás

- **1** φ : $[a; b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a; b]$ és
- **2** $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b]),$

akkor φ kontrakció [a; b]-n.

Megj.:

- C1: egyszer folyonosan differenciálható, vagyis a deriváltja folytonos.
- A kontrakciós tulajdonság függ az intervallumtól.

Biz.: A Lagrange-féle középértéktétel segítségével.

Biz.: A Lagrange-féle középértéktétel segítségével.

$$q:=\max_{x\in[a;b]}\left|\varphi'(x)\right|<1$$

Biz.: A Lagrange-féle középértéktétel segítségével.

$$q:=\max_{x\in[a;b]}|\varphi'(x)|<1$$

$$\forall x, y \in [a; b] (x < y) : \exists \xi \in (x; y) :$$
$$|\varphi(x) - \varphi(y)| = |\varphi'(\xi)| \cdot |x - y| \le q \cdot |x - y|.$$

Tétel: Brouwer-féle fixponttétel

1 Ha φ : $[a;b] \rightarrow [a;b]$

Tétel: Brouwer-féle fixponttétel

- **1** Ha φ : $[a;b] \rightarrow [a;b]$
- 2 és $\varphi \in C[a; b]$,

Tétel: Brouwer-féle fixponttétel

- **1** Ha φ : $[a;b] \rightarrow [a;b]$
- **2** és $\varphi \in C[a; b]$,

akkor
$$\exists x^* \in [a; b] : \varphi(x^*) = x^*$$
.

Tétel: Brouwer-féle fixponttétel

- **1** Ha φ : $[a;b] \rightarrow [a;b]$
- $oldsymbol{0}$ és $\varphi \in C[a;b]$,

akkor
$$\exists x^* \in [a; b] : \varphi(x^*) = x^*$$
.

Biz.: Definiáljuk a $g(x) = x - \varphi(x)$ függvényt, majd alkalmazzuk a Bolzano-tételt.

Biz. folyt.:

1 Mivel $\varphi(a), \varphi(b) \in [a; b] \Rightarrow$

$$g(a) = a - \varphi(a) \le 0, \quad g(b) = b - \varphi(b) \ge 0$$

 $\Rightarrow \quad g(a) \cdot g(b) \le 0.$

Biz. folyt.:

1 Mivel $\varphi(a), \varphi(b) \in [a; b] \Rightarrow$

$$g(a) = a - \varphi(a) \le 0, \quad g(b) = b - \varphi(b) \ge 0$$

 $\Rightarrow \quad g(a) \cdot g(b) \le 0.$

2 Ha $g(a) \cdot g(b) = 0$, akkor g(a) = 0 vagy g(b) = 0. Ez azt jelenti, hogy első esetben a, második esetben b fixpont.

Biz. folyt.:

1 Mivel $\varphi(a), \varphi(b) \in [a; b] \Rightarrow$

$$g(a) = a - \varphi(a) \le 0, \quad g(b) = b - \varphi(b) \ge 0$$

 $\Rightarrow \quad g(a) \cdot g(b) \le 0.$

- **2** Ha $g(a) \cdot g(b) = 0$, akkor g(a) = 0 vagy g(b) = 0. Ez azt jelenti, hogy első esetben a, második esetben b fixpont.
- **3** Ha $g(a) \cdot g(b) < 0$, akkor a Bolzano-tétel miatt van g-nek gyöke (a; b)-ben, azaz

$$\exists x^* \in (a; b) : g(x^*) = x^* - \varphi(x^*) = 0 \Leftrightarrow \varphi(x^*) = x^*$$

Tétel: Banach-féle fixponttétel [a; b]-re

Ha a $\varphi\colon [a;b] \to [a;b]$ függvény kontrakció [a;b]-n q kontrakciós együtthatóval, akkor

1 $\exists ! \ x^* \in [a; b] : x^* = \varphi(x^*)$, azaz létezik fixpont,

Tétel: Banach-féle fixponttétel [a; b]-re

Ha a φ : $[a;b] \to [a;b]$ függvény kontrakció [a;b]-n q kontrakciós együtthatóval, akkor

- **1** $\exists ! x^* \in [a; b] : x^* = \varphi(x^*)$, azaz létezik fixpont,

Tétel: Banach-féle fixponttétel [a; b]-re

Ha a φ : $[a;b] \to [a;b]$ függvény kontrakció [a;b]-n q kontrakciós együtthatóval, akkor

- **1** $\exists ! x^* \in [a; b] : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 3 továbbá a következő hibabecslések teljesülnek:
 - $|x_k x^*| \le q^k \cdot |x_0 x^*| \le q^k (b a)$,
 - $|x_k x^*| \le \frac{q^k}{1 q} \cdot |x_1 x_0|$.

Tétel: Banach-féle fixponttétel [a; b]-re

Ha a φ : $[a;b] \to [a;b]$ függvény kontrakció [a;b]-n q kontrakciós együtthatóval, akkor

- 1 $\exists ! x^* \in [a; b] : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 $\forall x_0 \in [a; b]$ esetén az $x_{k+1} = \varphi(x_k), k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,
- 3 továbbá a következő hibabecslések teljesülnek:
 - $|x_k x^*| \le q^k \cdot |x_0 x^*| \le q^k (b a)$,
 - $|x_k x^*| \le \frac{q^k}{1 q} \cdot |x_1 x_0|$.

Biz.: Már volt, csak most \mathbb{R}^n helyett \mathbb{R} (n = 1), sőt [a; b].

Következmény: iteráció konvergenciájának elégséges feltétele

1 Ha φ : $[a;b] \rightarrow [a;b]$,

Következmény: iteráció konvergenciájának elégséges feltétele

- **1** Ha φ : $[a;b] \rightarrow [a;b]$,
- $\mathbf{Q} \ \varphi \in C^1[a;b]$ és

Következmény: iteráció konvergenciájának elégséges feltétele

- **1** Ha φ : $[a;b] \rightarrow [a;b]$,
- $\mathbf{Q} \ \varphi \in C^1[a;b]$ és
- $|\varphi'(x)| < 1 \quad \forall \ x \in [a; b],$

akkor az $x_{k+1} = \varphi(x_k)$ iteráció konvergens $\forall x_0 \in [a; b]$ esetén.

Következmény: iteráció konvergenciájának elégséges feltétele

- **1** Ha φ : $[a;b] \rightarrow [a;b]$,
- **2** $\varphi \in C^1[a; b]$ és
- $|\varphi'(x)| < 1 \quad \forall \ x \in [a; b],$

akkor az $x_{k+1} = \varphi(x_k)$ iteráció konvergens $\forall x_0 \in [a;b]$ esetén.

Megj.: Attól még lehet konvergens a sorozat, ha valahol $|\varphi'| \ge 1$. (Nem szükséges feltétel.)

Tétel Lokális fixponttétel

Legyen $\varphi \colon [a;b] \to \mathbb{R}$ függvény.

1 Ha $\varphi \in C^1[a;b]$ és

Tétel Lokális fixponttétel

Legyen $\varphi \colon [a;b] \to \mathbb{R}$ függvény.

- **1** Ha $\varphi \in C^1[a;b]$ és
- 2 $\exists \xi \in [a; b]$ és $\delta > 0$, melyre

$$|\varphi'(x)| \le q < 1 \quad \forall x \in [\xi - \delta; \xi + \delta] \subset [a; b].$$

Tétel Lokális fixponttétel

Legyen $\varphi \colon [a;b] \to \mathbb{R}$ függvény.

- **1** Ha $\varphi \in C^1[a;b]$ és
- 2 $\exists \xi \in [a; b]$ és $\delta > 0$, melyre

$$|\varphi'(x)| \le q < 1 \quad \forall x \in [\xi - \delta; \xi + \delta] \subset [a; b].$$

3 Ha $\exists r : 0 < r \le \delta$, melyre

$$|\varphi(\xi)-\xi|\leq (1-q)r,$$

(azaz ξ a fixpont egy elég jó közelítése,)

Tétel Lokális fixponttétel

Legyen $\varphi \colon [a;b] \to \mathbb{R}$ függvény.

- **1** Ha $\varphi \in C^1[a;b]$ és
- 2 $\exists \xi \in [a; b]$ és $\delta > 0$, melyre

$$|\varphi'(x)| \le q < 1 \quad \forall x \in [\xi - \delta; \xi + \delta] \subset [a; b].$$

3 Ha $\exists r : 0 < r \le \delta$, melyre

$$|\varphi(\xi)-\xi|\leq (1-q)r,$$

(azaz ξ a fixpont egy elég jó közelítése,) akkor φ kontrakció $[\xi - r; \xi + r]$ -n és

$$\forall x \in [\xi - r; \xi + r]: \varphi(x) \in [\xi - r; \xi + r].$$

Biz.: A tétel feltételeiből következik, hogy φ kontrakció $[\xi - \delta; \xi + \delta]$ -n.

Biz.: A tétel feltételeiből következik, hogy φ kontrakció $[\xi - \delta; \xi + \delta]$ -n.

Gondoljuk meg, hogy a kontrakciós tulajdonság a $[\xi-r;\xi+r]\subset [\xi-\delta;\xi+\delta]$ részintervallumra is teljesül a q kontrakciós együtthatóval.

Biz.: A tétel feltételeiből következik, hogy φ kontrakció $[\xi - \delta; \xi + \delta]$ -n.

Gondoljuk meg, hogy a kontrakciós tulajdonság a $[\xi-r;\xi+r]\subset [\xi-\delta;\xi+\delta]$ részintervallumra is teljesül a q kontrakciós együtthatóval.

Tetszőleges $x \in [\xi - r; \xi + r]$ esetén

$$|\varphi(x) - \xi| = |\varphi(x) - \varphi(\xi) + \varphi(\xi) - \xi| \le$$

$$\le |\varphi(x) - \varphi(\xi)| + |\varphi(\xi) - \xi| \le$$

$$\le q \cdot \underbrace{|x - \xi|}_{\leq r} + (1 - q) \cdot r = r$$

Tehát φ az $x \in [\xi - r; \xi + r]$ intervallumba beleképez.

Következmény:

Ha a lokális fixponttétel feltételei teljesülnek, akkor valójában a Banach-féle fixponttétel feltételei teljesülnek az $[\xi-r;\xi+r]$ intervallumra, így

Következmény:

Ha a lokális fixponttétel feltételei teljesülnek, akkor valójában a Banach-féle fixponttétel feltételei teljesülnek az $[\xi-r;\xi+r]$ intervallumra, így

1 $\exists ! \, x^* \in [\xi - r; \xi + r] : x^* = \varphi(x^*)$, azaz létezik fixpont,

Következmény:

Ha a lokális fixponttétel feltételei teljesülnek, akkor valójában a Banach-féle fixponttétel feltételei teljesülnek az $[\xi-r;\xi+r]$ intervallumra, így

- \blacksquare \exists ! $x^* \in [\xi r; \xi + r] : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 $\forall x_0 \in [\xi r; \xi + r]$ esetén az $x_{k+1} = \varphi(x_k), \ k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,

Következmény:

Ha a lokális fixponttétel feltételei teljesülnek, akkor valójában a Banach-féle fixponttétel feltételei teljesülnek az $[\xi-r;\xi+r]$ intervallumra, így

- 1 $\exists ! x^* \in [\xi r; \xi + r] : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 $\forall x_0 \in [\xi r; \xi + r]$ esetén az $x_{k+1} = \varphi(x_k), \ k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,
- 3 továbbá a következő hibabecslések teljesülnek:
 - $|x_k x^*| \le q^k \cdot |x_0 x^*| \le q^k (b a),$
 - $|x_k x^*| \le \frac{q^k}{1 q} \cdot |x_1 x_0|$.

Egyszerű iterációk

1. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg az x^2 billentyűt. A sokadik gombnyomás után mit tapasztalunk?

1. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg az x^2 billentyűt. A sokadik gombnyomás után mit tapasztalunk?

Valójában az $x=x^2$ egyenlet fixpontját keressük az

$$x_{k+1} = x_k^2$$

iterációval. Két fixpontja van 0 és 1, de

- $0 \le x_0 < 1$ esetén $\lim(x_k) = 0$.
- $x_0 = 1$ esetén $\lim(x_k) = 1$.

Egyszerű iterációk

2. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg a \sqrt{x} billentyűt. A sokadik gombnyomás után mit tapasztalunk?

2. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg a \sqrt{x} billentyűt. A sokadik gombnyomás után mit tapasztalunk?

Valójában az $x=\sqrt{x}$ egyenlet fixpontját keressük az

$$x_{k+1} = \sqrt{x_k}$$

iterációval. Két fixpontja van 0 és 1, de

- $x_0 = 0$ esetén $\lim(x_k) = 0$.
- $0 < x_0 \le 1$ esetén $\lim(x_k) = 1$.

Egyszerű iterációk

3. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg a $\cos(x)$ billentyűt. A sokadik gombnyomás után mit tapasztalunk?

3. Példa

A zsebszámológépünkbe írjunk be egy 0 és 1 közötti számot, majd nyomjuk meg a $\cos(x)$ billentyűt. A sokadik gombnyomás után mit tapasztalunk?

Valójában az $x=\cos(x)$ fixpontegyenlet megoldását keressük a [0,1] intervallumon az

$$x_{k+1} := \cos(x_k), \ x_0 \in [0,1]$$

iterációval. Egyértelmű-e a megoldás? Konvergens ez a sorozat? Adjunk hibabecslést! Hány lépés után kapjuk a megoldást 0.1-es pontossággal?

- **1** Belátjuk, hogy a $\varphi(x) := \cos(x)$ függvény a [0; 1] intervallumot a [0; 1]-be képezi:
 - Mivel $\varphi'(x) = -\sin(x) < 0$, $\forall x \in [0; 1]$, ezért φ szigorúan monoton fogyó [0; 1]-en.
 - $\varphi([0;1])=[\varphi(1);\varphi(0)]=[\cos(1),1]\subset[0;1],$ tehát $\varphi:\ [0;1]\to[0;1].$

- $\textbf{9} \ \, \mathsf{Belátjuk, hogy a} \ \, \varphi(x) := \cos(x) \ \, \mathsf{függvény a} \ \, [0;1] \\ \mathsf{intervallumot a} \ \, [0;1] \mathsf{-be} \ \, \mathsf{képezi:}$
 - Mivel $\varphi'(x) = -\sin(x) < 0$, $\forall x \in [0; 1]$, ezért φ szigorúan monoton fogyó [0; 1]-en.
 - $\varphi([0;1]) = [\varphi(1); \varphi(0)] = [\cos(1), 1] \subset [0;1]$, tehát $\varphi: [0;1] \to [0;1]$.
- 2 Belátjuk, hogy a $\varphi(x)=\cos(x)$ függvény kontrakció [0; 1]-en. Tetszőleges $x,y\in[0;1]$ -re a Lagrange-középértéktételt alkalmazva $\exists\,\xi\in(0;1)$, melyre

$$|\varphi(x) - \varphi(y)| = |\varphi'(\xi)| \cdot |x - y| \le q \cdot |x - y|,$$

ahol a kontrakciós együttható $q:=\max_{\xi\in[0;1]}|-\sin(\xi)|=\sin(1)\approx 0.8415<1.$

A Banach-féle fixponttétel feltételei teljesülnek, így annak állításai felhasználhatóak, ezzel a fixpont létezését, egyértelműségét és a konvergenciát beláttuk.

- A Banach-féle fixponttétel feltételei teljesülnek, így annak állításai felhasználhatóak, ezzel a fixpont létezését, egyértelműségét és a konvergenciát beláttuk.
- 4 Hibabecslése:

$$|x_k - x^*| \le 0.8415^k \cdot \underbrace{|x_0 - x^*|}_{<1} \le 0.8415^k.$$

- A Banach-féle fixponttétel feltételei teljesülnek, így annak állításai felhasználhatóak, ezzel a fixpont létezését, egyértelműségét és a konvergenciát beláttuk.
- 4 Hibabecslése:

$$|x_k - x^*| \le 0.8415^k \cdot \underbrace{|x_0 - x^*|}_{<1} \le 0.8415^k.$$

6 A megadott pontosság eléréséhez szükséges lépésszám:

$$0.8415^k < \frac{1}{10} \quad \Leftrightarrow \quad k > \frac{-1}{\lg(0.8415)} \approx 13.34.$$

Nagyon lassú . . .

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Meg jegyzés:

• p egyértelmű, $p \ge 1$,

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Meg jegyzés:

- p egyértelmű, $p \ge 1$,
- p nem feltétlenül egész (A szelőmódszernél $p=\frac{1+\sqrt{5}}{2}$.)

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Meg jegyzés:

- p egyértelmű, $p \ge 1$,
- p nem feltétlenül egész (A szelőmódszernél $p=\frac{1+\sqrt{5}}{2}$.)
- p=1: elsőrendű vagy lineáris konvergencia (ekkor $c\leq 1$) p=2: másodrendű vagy kvadratikus konvergencia

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Meg jegyzés:

- p egyértelmű, $p \ge 1$,
- p nem feltétlenül egész (A szelőmódszernél $p=\frac{1+\sqrt{5}}{2}$.)
- p=1: elsőrendű vagy lineáris konvergencia (ekkor $c\leq 1$) p=2: másodrendű vagy kvadratikus konvergencia
- *p* > 1: szuperlineáris konvergencia

 Gyakorlatban a legalább p-edrendű konvergencia megfogalmazása:

$$\exists K \in \mathbb{R}^+ : \forall k \in \mathbb{N}_0 : |x_{k+1} - x^*| \le K \cdot |x_k - x^*|^p$$

 Gyakorlatban a legalább p-edrendű konvergencia megfogalmazása:

$$\exists K \in \mathbb{R}^+ : \forall k \in \mathbb{N}_0 : |x_{k+1} - x^*| \le K \cdot |x_k - x^*|^p$$

 A fixponttételek nem mondanak konvergencia rendet. (Csak annyit, hogy legalább elsőrendű.)

 Gyakorlatban a legalább p-edrendű konvergencia megfogalmazása:

$$\exists K \in \mathbb{R}^+ : \forall k \in \mathbb{N}_0 : |x_{k+1} - x^*| \leq K \cdot |x_k - x^*|^p$$

- A fixponttételek nem mondanak konvergencia rendet. (Csak annyit, hogy legalább elsőrendű.)
- Ha c = 0, akkor a keresett konvergencia rend nagyobb a megadottnál.

 Gyakorlatban a legalább p-edrendű konvergencia megfogalmazása:

$$\exists K \in \mathbb{R}^+ : \forall k \in \mathbb{N}_0 : |x_{k+1} - x^*| \le K \cdot |x_k - x^*|^p$$

- A fixponttételek nem mondanak konvergencia rendet. (Csak annyit, hogy legalább elsőrendű.)
- Ha c = 0, akkor a keresett konvergencia rend nagyobb a megadottnál.
- Ha $c=\infty$, akkor a keresett konvergencia rend kisebb a megadottnál.

Példa

Mennyi a konvergenciarendje a következő nullsorozatoknak?

$$\left(\frac{1}{n^2}\right); \qquad \left(\frac{1}{2^n}\right); \qquad \left(q^n\right) \; (|q|<1); \qquad \left(\frac{1}{2^{2^n}}\right);$$

Példa

Mennyi a konvergenciarendje a következő nullsorozatoknak?

$$\left(\frac{1}{n^2}\right); \qquad \left(\frac{1}{2^n}\right); \qquad \left(q^n\right) \; (|q|<1); \qquad \left(\frac{1}{2^{2^n}}\right);$$

Vizsgáljuk az egyik sorozatot, a többit gyakorlaton..

Tekintsük az $(x_k)=\left(rac{1}{2^k}
ight)$, $(k\in\mathbb{N})$ sorozatot.

Tekintsük az $(x_k) = \left(\frac{1}{2^k}\right)$, $(k \in \mathbb{N})$ sorozatot.

1 Tippeljük p = 2-re a konvergencia rendet:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = \lim_{k \to \infty} \frac{\left| \frac{1}{2^{k+1}} - 0 \right|}{\left| \frac{1}{2^k} - 0 \right|^2} = \lim_{k \to \infty} \frac{2^{2k}}{2^{k+1}} = \lim_{k \to \infty} 2^{k-1} = \infty.$$

Látjuk, hogy a határérték ∞ , vagyis kisebb p-vel kell próbálkoznunk.

Tekintsük az $(x_k) = \left(\frac{1}{2^k}\right)$, $(k \in \mathbb{N})$ sorozatot.

1 Tippeljük p = 2-re a konvergencia rendet:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = \lim_{k \to \infty} \frac{\left| \frac{1}{2^{k+1}} - 0 \right|}{\left| \frac{1}{2^k} - 0 \right|^2} = \lim_{k \to \infty} \frac{2^{2k}}{2^{k+1}} = \lim_{k \to \infty} 2^{k-1} = \infty.$$

Látjuk, hogy a határérték ∞ , vagyis kisebb p-vel kell próbálkoznunk.

2 Tippeljük p = 1-re a konvergencia rendet.

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = \lim_{k \to \infty} \frac{\left| \frac{1}{2^{k+1}} - 0 \right|}{\left| \frac{1}{2^k} - 0 \right|} = \lim_{k \to \infty} \frac{2^k}{2^{k+1}} = \lim_{k \to \infty} \frac{1}{2} = \frac{1}{2}.$$

Látjuk, hogy a határértek rendben van, a konvergencia elsőrendű.

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

<u>1.414</u>184570312500

<u>1.4142</u>45605468750

<u>1.41421</u>5087890625

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

<u>1.414</u>184570312500

<u>1.4142</u>45605468750

<u>1.41421</u>5087890625

Minden lépésben kb. egy újabb tizedesjegy pontos.

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

<u>1.414</u>184570312500

<u>1.4142</u>45605468750

<u>1.41421</u>5087890625

Minden lépésben kb. egy újabb tizedesjegy pontos.

2
$$p = 2$$
, $|x_{k+1} - x^*| \le K \cdot |x_k - x^*|^2$

1.416666666666666

1.414215686274510

1.414213562374690

Mit jelent az első- és másodrendű konvergencia számokban? $(\sqrt{2})$

<u>1.414</u>184570312500

<u>1.4142</u>45605468750

1.414215087890625

Minden lépésben kb. egy újabb tizedesjegy pontos.

2
$$p = 2$$
, $|x_{k+1} - x^*| \le K \cdot |x_k - x^*|^2$

<u>1.41</u>6666666666667

<u>1.41421</u>5686274510

1.414213562374690

Minden lépésben kb. kétszer annyi tizedesjegy pontos.

Tétel: p-edrendben konvergens iterációk

Tétel: p-edrendben konvergens iterációk

1 Legyen $\varphi \colon \mathbb{R} \to \mathbb{R}$, $\varphi \in C^p[a;b]$ és

Tétel: p-edrendben konvergens iterációk

- **1** Legyen $\varphi \colon \mathbb{R} \to \mathbb{R}$, $\varphi \in C^p[a; b]$ és
- 2 az $x_{k+1} = \varphi(x_k)$ sorozat konvergens, határértéke x^* .

Tétel: p-edrendben konvergens iterációk

- **1** Legyen $\varphi \colon \mathbb{R} \to \mathbb{R}$, $\varphi \in C^p[a; b]$ és
- 2 az $x_{k+1} = \varphi(x_k)$ sorozat konvergens, határértéke x^* .
- **3** Ha $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

Tétel: p-edrendben konvergens iterációk

- **1** Legyen $\varphi \colon \mathbb{R} \to \mathbb{R}$, $\varphi \in C^p[a; b]$ és
- 2 az $x_{k+1} = \varphi(x_k)$ sorozat konvergens, határértéke x^* .
- **3** Ha $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

akkor a konvergencia p-edrendű és hibabecslése:

$$|x_{k+1}-x^*| \leq \frac{M_p}{p!} |x_k-x^*|^p$$
,

$$\text{ahol } M_p = \max_{\xi \in [a;b]} \left| \varphi^{(p)}(\xi) \right|.$$

Biz.: Írjuk fel a φ függvény x^* körüli Taylor-polinomját a maradéktaggal.

$$\begin{split} \exists \, \xi \in (x, x^*) \ \, &(\text{vagy } (x^*, x)) : \\ \varphi(x) &= \varphi(x^*) + \varphi'(x^*)(x - x^*) + \dots + \frac{\varphi^{(p-1)}(x^*)}{(p-1)!} (x - x^*)^{p-1} + \\ &\quad + \frac{\varphi^{(p)}(\xi)}{p!} (x - x^*)^p \end{split}$$

Biz.: Írjuk fel a φ függvény x^* körüli Taylor-polinomját a maradéktaggal.

$$\begin{split} \exists \, \xi \in (x, x^*) \ \, &(\text{vagy } (x^*, x)) : \\ \varphi(x) &= \varphi(x^*) + \varphi'(x^*)(x - x^*) + \dots + \frac{\varphi^{(p-1)}(x^*)}{(p-1)!} (x - x^*)^{p-1} + \\ &\quad + \frac{\varphi^{(p)}(\xi)}{p!} (x - x^*)^p \end{split}$$

Vizsgáljuk ezt az $x=x_k$ helyen, kihasználva a deriváltak zérus voltát is. $(\exists \xi_k)$:

$$x_{k+1} = \varphi(x_k) = \underbrace{\varphi(x^*)}_{x^*} + \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p$$

Biz. folyt.: átrendezve

$$x_{k+1} - x^* = \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p.$$

Biz. folyt.: átrendezve

$$x_{k+1} - x^* = \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p.$$

$$\lim_{k\to\infty}\frac{|x_{k+1}-x^*|}{|x_k-x^*|^p}=\lim_{k\to\infty}\frac{\left|\varphi^{(p)}(\xi_k)\right|}{p!}=\frac{\left|\varphi^{(p)}(x^*)\right|}{p!}\neq 0.$$

Tehát (x_k) egy p-adrendben konvergens sorozat.

Biz. folyt.: átrendezve

$$x_{k+1} - x^* = \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p.$$

$$\lim_{k\to\infty}\frac{|x_{k+1}-x^*|}{|x_k-x^*|^p}=\lim_{k\to\infty}\frac{\left|\varphi^{(p)}(\xi_k)\right|}{p!}=\frac{\left|\varphi^{(p)}(x^*)\right|}{p!}\neq 0.$$

Tehát (x_k) egy p-adrendben konvergens sorozat.

Vegyük szemügyre a k+1-edik és a k-adik tag hibáját.

$$|x_{k+1}-x^*| = \frac{\left|\varphi^{(p)}(\xi_k)\right|}{p!} \cdot |x_k-x^*|^p \le \frac{M_p}{p!} |x_k-x^*|^p,$$

ahol
$$M_p = \max_{\xi \in [a,b]} \left| \varphi^{(p)}(\xi) \right|.$$

Következmény

1 Ha φ : $[a;b] \rightarrow [a;b]$ kontrakció,

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- $\mathbf{2} \ x^* \ \mathbf{a} \ \varphi$ fixpontja és

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és

3
$$\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$$
, de $\varphi^{(p)}(x^*) \neq 0$,

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és

3
$$\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$$
, de $\varphi^{(p)}(x^*) \neq 0$,

akkor

1 a fixpont egyértelmű,

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és
- **3** $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

- 1 a fixpont egyértelmű,
- **2** $\forall x_0 \in [a; b]$ esetén az $x_{k+1} = \varphi(x_k), k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és
- **3** $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

- 1 a fixpont egyértelmű,
- ② $\forall x_0 \in [a; b]$ esetén az $x_{k+1} = \varphi(x_k), \ k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,
- 3 és a következő hibabecslés teljesül:

$$|x_{k+1}-x^*| \leq \frac{M_p}{p!} |x_k-x^*|^p$$
.

Következmény

- **1** Ha φ : $[a; b] \rightarrow [a; b]$ kontrakció,
- **2** x^* a φ fixpontja és
- **3** $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

akkor

- 1 a fixpont egyértelmű,
- 2 $\forall x_0 \in [a; b]$ esetén az $x_{k+1} = \varphi(x_k), k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,
- 3 és a következő hibabecslés teljesül: $|x_{k+1} x^*| \le \frac{M_p}{p!} |x_k x^*|^p$.

Biz.: Ez a Banach-féle fixponttétel és a *p*-edrendben konvergens iterációk tételének összeházasításaként adódik.

Még egy példa egyszerű iterációra

Példa

Írjunk fel fixpont-iteráció(ka)t az $x^3 - x - 1 = 0$ egyenlet megoldására, bizonyítsuk a konvergenciát.

(a)
$$x = x^3 - 1$$
,

(b)
$$x = \sqrt[3]{x+1}$$
.

Még egy példa egyszerű iterációra

Példa

Írjunk fel fixpont-iteráció(ka)t az $x^3 - x - 1 = 0$ egyenlet megoldására, bizonyítsuk a konvergenciát.

(a)
$$x = x^3 - 1$$
,

(b)
$$x = \sqrt[3]{x+1}$$
.

Lásd gyakorlat...

A két sorozat közül az egyik konvergens, a másik divergens. Melyik-melyik? Milyen intervallumon konvergens? Indokoljuk.

Tartalomjegyzék

- 1 Bolzano-tétel, intervallumfelezés
- 2 Fixponttételek, egyszerű iterációk
- 3 Konvergencia rend
- 4 Matlab példák

Példák Matlab-ban

- 1 Intervallumfelezés számolása és szemléltetése.
- **2** Egyszerű iterációk és fixpontok elemzése az x = cos(x) egyenlet példáján keresztül.
- 3 Tapasztalati kontrakciós együtthatók szemléltetése.
- 4 $\sqrt{2}$ közelítése különböző iterációkkal (p=1,2,3 rendűek).
- **6** A logisztikus leképezés viselkedésének bemutatása érdekességképpen.

Tapasztalati kontrakciós együttható vizsgálata

1. Példa:

$$x_{k+1} := \cos(x_k), \ x_0 \in [0,1]$$

Tapasztalati kontrakciós együttható vizsgálata

1. Példa:

Az egymást követő tapasztalati kontrakciós együtthatók mértani közepét rajzoltuk ki. $q\approx 0.6736$

$\sqrt{2}$ közelítése különböző iterációkkal

2. Példa:

Matlab segítségével vizsgáljuk a következő sorozatokat:

1 A $\sqrt{2}$ lánctörtkifejtéséből: (p=1)

$$x_{k+1} = 1 + \frac{1}{1 + x_k}.$$

2. Példa:

Matlab segítségével vizsgáljuk a következő sorozatokat:

1 A $\sqrt{2}$ lánctörtkifejtéséből: (p=1)

$$x_{k+1} = 1 + \frac{1}{1 + x_k}.$$

2 Az $f(x) = x^2 - 2$ függvényre alkalmaztuk a Newton-módszert, analízisből ismerős lehet... (p = 2)

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{2}{x_k} \right).$$

$\sqrt{2}$ közelítése különböző iterációkkal

2. Példa:

Matlab segítségével vizsgáljuk a következő sorozatokat:

1 A $\sqrt{2}$ lánctörtkifejtéséből: (p=1)

$$x_{k+1} = 1 + \frac{1}{1 + x_k}.$$

2 Az $f(x) = x^2 - 2$ függvényre alkalmaztuk a Newton-módszert, analízisből ismerős lehet... (p = 2)

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{2}{x_k} \right).$$

3 Másodfokú Taylor-polinom közelítéssel: (p = 3)

$$x_{k+1} = x_k \cdot \frac{x_k^2 + 6}{3x_k^2 + 2}.$$

Logisztikus leképezés

Az ökológusok gyakran vizsgálnak olyan - időszakosan szaporodó - populációkat (pl. gyümölcsöskerti kártevők), amelyekben nincs átfedés az egyes generációk között. A kutatások célja ilyenkor annak megértése, hogy az n+1-edik generáció számossága (N_{n+1}) hogyan függ az előző, n-edik generáció számosságától (N_n) . Az ismert tendenciát figyelembe véve, nevezetesen, hogy az utódok száma (N_{n+1}) általában nő, ha a populáció számossága kicsi, és csökken, ha N_n értéke nagy, egy egyszerű nemlineáris differenciaegyenletet írhatunk fel:

$$N_{n+1} = kN_n - bN_n^2 = N_n(k - bN_n),$$

amelyet logisztikus differenciaegyenletnek neveznek, és amelyben k és b a populációk növekedésének, illetve csökkenésének mértékét megszabó paraméterek.

Logisztikus leképezés

$$N_{n+1} = kN_n \left(1 - \frac{bN_n}{k}\right) \Leftrightarrow \frac{bN_{n+1}}{k} = k \frac{bN_n}{k} \left(1 - \frac{bN_n}{k}\right)$$

Az $x_n = bN_n/k$ jelölést bevezetve az egyenlet a következő egyszerű alakra hozható:

$$x_{n+1} = kx_n(1-x_n),$$

amit logisztikus leképezésnek nevezünk.

$$N_{n+1} = kN_n \left(1 - \frac{bN_n}{k}\right) \Leftrightarrow \frac{bN_{n+1}}{k} = k \frac{bN_n}{k} \left(1 - \frac{bN_n}{k}\right)$$

Az $x_n = bN_n/k$ jelölést bevezetve az egyenlet a következő egyszerű alakra hozható:

$$x_{n+1} = kx_n(1-x_n),$$

amit logisztikus leképezésnek nevezünk.

A logisztikus leképezés egyik nagy előnye az, hogy 1 < k < 4 esetén a megoldás mindig a 0 < x < 1 intervallumban marad. A k < 1 esetben az összes megoldás az x = 0 ponthoz tart, azaz a populáció kihal.

Logisztikus leképezés

k értéke és a megfigyelt dinamikai viselkedés:

- 3.0000 : a fixpont instabilissá válik, megjelenik az oszcilláció
- 3.4500 : a perióduskettőződés kezdete
- 3.5700 : a 2n periódusú oszcillációk torlódási pontja, a kaotikus tartomány kezdete
- 3.6786 : az első páratlan periódusú oszcilláció megjelenése
- 3.8284 : a háromperiódusú oszcilláció megjelenése
- 4.0000 : a kaotikus tartomány vége.

Logisztikus leképezés

k értéke és a megfigyelt dinamikai viselkedés:

- 3.0000 : a fixpont instabilissá válik, megjelenik az oszcilláció
- 3.4500 : a perióduskettőződés kezdete
- 3.5700 : a 2n periódusú oszcillációk torlódási pontja, a kaotikus tartomány kezdete
- 3.6786 : az első páratlan periódusú oszcilláció megjelenése
- 3.8284 : a háromperiódusú oszcilláció megjelenése
- 4.0000 : a kaotikus tartomány vége.

Irodalom: Gáspár Vilmos: Játsszunk káoszt! (Természet Világa cikk)

Példák Matlab-ban

Példa

Vizsgáljuk meg az $x_0 \in [0,1], \ x_{k+1} = \alpha \cdot x_k (1-x_k)$ iterációk (logisztikus leképezés) viselkedését különböző $\alpha \in [0,4]$ paraméterek esetén.

Példa

Vizsgáljuk meg az $x_0 \in [0,1], \ x_{k+1} = \alpha \cdot x_k (1-x_k)$ iterációk (logisztikus leképezés) viselkedését különböző $\alpha \in [0,4]$ paraméterek esetén.

Megj.: Általában nem kontrakció. Könnyen eljuthatunk differenciaegyenletek bifurkációinak és a káoszelmélet alapjainak vizsgálatához. . .

Numerikus módszerek 1.

12. előadás: A Newton-módszer és társai

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 A Newton-módszer és konvergenciatételei

2 Húrmódszer és szelőmódszer

3 Általánosítás többváltozós esetre

Emlékeztető

Feladat

Keressük meg egy $f: \mathbb{R} \to \mathbb{R}$ nemlineáris függvény gyökét, avagy zérushelyét. (\exists ?, 1, több?)

$$f(x^*)=0, \qquad x^*=?$$

Tartalomjegyzék

1 A Newton-módszer és konvergenciatételei

2 Húrmódszer és szelőmódszer

3 Általánosítás többváltozós esetre

A Newton-módszer levezetése

Geometriai megközelítés:

$$f, x_k \rightarrow \text{\'erint\'o} \rightarrow \text{z\'erushely (y=0)} \rightarrow x_{k+1}$$

Az érintő egyenlete:

$$y - f(x_k) = f'(x_k) \cdot (x - x_k)$$

$$-f(x_k) = f'(x_k) \cdot (x_{k+1} - x_k)$$

$$-\frac{f(x_k)}{f'(x_k)} = x_{k+1} - x_k$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

A Newton-módszer levezetése

Analitikus megközelítés:

$$f$$
 gyöke $\approx x_k$ körüli Taylor-polinomának gyöke

$$0 = f(x) = f(x_k) + f'(x_k) \cdot (x - x_k) + \dots$$

Definíció: Newton-módszer

Adott $f: \mathbb{R} \to \mathbb{R}$ differenciálható függvény és $x_0 \in \mathbb{R}$ kezdőpont esetén a *Newton-módszer* alakja:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 0, 1, 2, ...).$

Newton-módszer

Példa

Írjuk fel a Newton-módszert a $\sqrt{2}$ értékének közelítésére, és számoljuk ki a közelítő sorozat első néhány elemét valamely kezdőpontból!

Megj.: babiloni módszer (\sqrt{n} számítása).

Általában másodrendben konvergens!

Newton-módszer – monoton konvergencia

Tétel: monoton konvergencia tétele

Ha $f \in C^2[a; b]$ és

- **1** $\exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- 2 f' és f'' állandó előjelű,
- 3 $x_0 \in [a; b] : f(x_0) \cdot f''(x_0) > 0$,

akkor az x_0 pontból indított Newton-módszer (által adott (x_k) sorozat) monoton konvergál x^* -hoz.

Megi.: 4 eset van:

Newton-módszer – monoton konvergencia

Biz.: Csak az f' > 0, f'' > 0 esetre (a többi hasonló) $\Rightarrow f(x_0) > 0$.

1 Taylor-formula másodfokú maradéktaggal, x_k középponttal: $\exists \xi_k \in (x, x_k)$ vagy (x_k, x) :

$$f(x) = f(x_k) + f'(x_k) \cdot (x - x_k) + \frac{f''(\xi_k)}{2} \cdot (x - x_k)^2.$$

Az x_{k+1} helyen: $\exists \xi_k \in (x_{k+1}, x_k) \text{ vagy } (x_k, x_{k+1})$

$$f(x_{k+1}) = \underbrace{f(x_k) + f'(x_k) \cdot (x_{k+1} - x_k)}_{=0 \text{ (def. alapján)}} + \underbrace{\frac{f''(\xi_k)}{2}}_{>0} \cdot \underbrace{(x_{k+1} - x_k)^2}_{>0}.$$

Tehát $f(x_k) > 0 \ (\forall k \in \mathbb{N}).$

Newton-módszer – monoton konvergencia

2 Az (x_k) sorozat monoton fogyó,

$$x_{k+1} = x_k - \underbrace{\frac{f(x_k)}{f'(x_k)}}_{>0} < x_k;$$

valamint az (x_k) sorozat alulról korlátos,

$$0 = f(x^*) < f(x_k), \ f \ \text{szig. mon. nő} \implies x^* < x_k$$

így az (x_k) sorozat konvergens, $\hat{x} := \lim_{k \to \infty} x_k$.

3 Kell: $\hat{x} = x^*$. Elég: $f(\hat{x}) = 0$. $(f \in C[a; b], f \text{ szig. mon.})$

$$f(\hat{x}) = \lim_{k \to \infty} f(x_{k+1}) = \lim_{k \to \infty} \underbrace{\frac{f''(\xi_k)}{2}}_{\text{koriátos}} \cdot \underbrace{(x_{k+1} - x_k)^2}_{\text{\to 0 (Cauchy)}} = 0. \quad \Box$$

Newton-módszer – lokális konvergencia

Tétel: lokális konvergencia tétele

Ha $f \in C^2[a;b]$ és

- **1** $\exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- 2 f' állandó előjelű,
- $m_1 = \min_{x \in [a;b]} |f'(x)| > 0,$
- **4** $M_2 = \max_{x \in [a;b]} |f''(x)| < +\infty$, innen $M = \frac{M_2}{2 \cdot m_1}$.
- **6** $x_0 \in [a;b]: |x_0-x^*| < r := \min\left\{\frac{1}{M}, |x^*-a|, |x^*-b|\right\}$, akkor az x_0 pontból indított Newton-módszer másodrendben

konvergál a gyökhöz, és az

$$|x_{k+1} - x^*| \le M \cdot |x_k - x^*|^2$$

hibabecslés érvényes.

Newton-módszer – lokális konvergencia

Röviden: Ha elég közelről indulunk, akkor gyorsan odatalálunk.

Megjegyzés:

- $|x_0 x^*| < r := \min \left\{ \frac{1}{M}, |x^* a|, |x^* b| \right\}$, azaz legyünk "elég közel", de azért mindenesetre legyünk [a; b]-n belül is.
- A monoton konvergencia feltételeinek esetén is másodrendű lesz a konvergencia, hiszen előbb-utóbb "elég közel" kerülünk a gyökhöz.

Newton-módszer – lokális konvergencia

Biz.:

1 Alkalmazzuk az f függvényre a Taylor-formulát, x_k középpponttal az x^* helyen, másodfokú maradéktaggal. $\exists \mathcal{E}_k \in (x_k, x^*)$ (vagy (x^*, x_k)):

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(\xi_k)}{2}(x^* - x_k)^2.$$

2 Mindkét oldalt $f'(x_k)$ -val osztva, majd átrendezve és a Newton-módszer képletét felismerve kapjuk, hogy

$$0 = \frac{f(x_k)}{f'(x_k)} + x^* - x_k + \frac{f''(\xi_k)}{2 \cdot f'(x_k)} (x^* - x_k)^2,$$

$$\left(x_k - \frac{f(x_k)}{f'(x_k)}\right) - x^* = x_{k+1} - x^* = \frac{f''(\xi_k)}{2 \cdot f'(x_k)} (x^* - x_k)^2,$$

$$|x_{k+1} - x^*| \le \frac{M_2}{2 \cdot m_1} \cdot |x_k - x^*|^2 = M \cdot |x_k - x^*|^2,$$

ahol M, m_1, M_2 a tételben definiált mennyiségek.

Newton-módszer – lokális konvergencia

3 Bevezetve az $\varepsilon_k := x_k - x^*$ jelölést, így is írhatjuk:

$$|\varepsilon_{k+1}| \leq M \cdot |\varepsilon_k|^2$$
.

Ezzel beláttuk, hogy ha (x_k) konvergál és határértéke x^* .

4 A Taylor-formából

$$\frac{|x_{k+1}-x^*|}{|x_k-x^*|^2}=\frac{|f''(\xi_k)|}{2|f'(x_k)|}.$$

Határértéket véve

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \lim_{k \to \infty} \frac{|f''(\xi_k)|}{2|f'(x_k)|} = \frac{|f''(x^*)|}{2|f'(x^*)|} \neq 0,$$

tehát legalább másodrendben konvergens a sorozat.

Newton-módszer – lokális konvergencia

5 Teljes indukcióval belátjuk, hogy a sorozat minden tagja a $K_r(x^*)$ környezetben marad. $|x_0-x^*| < r$ feltétel volt. Tegyük fel, hogy $|x_k-x^*|=|\varepsilon_k| < r \leq \frac{1}{M}$, ekkor

$$|\varepsilon_{k+1}| = |x_{k+1} - x^*| \le M \cdot |\varepsilon_k|^2 = \underbrace{(M|\varepsilon_k|)} \cdot |\varepsilon_k| < |\varepsilon_k| < r.$$

6 A konvergencia bizonyításához belátjuk, hogy az $|\varepsilon_k|$ hibakorlátok sorozata 0-hoz tart. Bevezetjük a $d_k := M \cdot |\varepsilon_k|$ jelölést.

$$\begin{aligned} |\varepsilon_{k+1}| &\leq M \cdot |\varepsilon_k|^2 & \Longrightarrow & M \cdot |\varepsilon_{k+1}| \leq (M \cdot |\varepsilon_k|)^2 & \Longrightarrow \\ d_{k+1} &\leq d_k^2 & \Longrightarrow & d_k \leq d_{k-1}^2 \leq d_{k-2}^{2 \cdot 2} \leq \dots \leq d_0^{2^k}, \\ M \cdot |\varepsilon_k| &\leq (M \cdot |\varepsilon_0|)^{2^k} & \Longrightarrow & |\varepsilon_k| \leq \frac{1}{M} \cdot (M \cdot |\varepsilon_0|)^{2^k}. \end{aligned}$$

Mivel $|\varepsilon_0| = |x_0 - x^*| < \frac{1}{M}$, így $M \cdot |\varepsilon_0| < 1$, ezért $|\varepsilon_k| \to 0$, ami az (x_k) sorozat konvergenciáját jelenti.

Meg jegyzés:

- Ha $f'(x_k) = 0$, akkor x_{k+1} nincs értelmezve.
- Néha a konvergencia csak elsőrendű (vagy instabillá válik).
 Például ha f'(x*) = 0, azaz x* többszörös gyök.
 A Newton-módszerrel x* közelében ⁰/₀ alakú osztást végzünk.
- Többszörös gyök esetén például alkalmazzuk a $g(x) := \frac{f(x)}{f'(x)}$ függvényre a Newton-módszert.
- Másik lehetőség: ha x* r-szeres gyök, akkor az

$$x_{k+1} := x_k - r \cdot \frac{f(x_k)}{f'(x_k)}$$

módosítást használjuk, amivel másodrendű iterációt kapunk.

 Néha akár harmadrendű is lehet (v.ö. magasabbrendű konvergencia tétel).

Megjegyzés folyt.:

- Használhattuk volna a magasabbrendű konvergencia tételt is a Newton-módszer lokális konvergencia tételének bizonyítására a $\varphi(x) := x \frac{f(x)}{f'(x)}$ megfeleltetéssel, de akkor $f \in C^3[a;b]$ -t kellett volna feltennünk.
- Hívják Newton-Raphson-, ill. Newton-Fourier-módszernek is.
- A módszer nem biztos, hogy konvergál.
- Ciklusba is kerülhet (pontos számolás esetén...).
- A gyökök "vonzásterületein" kívül kaotikus jelenségek...

Tartalomjegyzék

1 A Newton-módszer és konvergenciatételei

2 Húrmódszer és szelőmódszer

3 Általánosítás többváltozós esetre

Ismétlés: Két adott ponton átmenő egyenes egyenlete.

Az egyenes meredeksége:

$$\frac{f(a)-f(b)}{a-b}.$$

Az egyenes egyenlete:

$$y-f(a)=\frac{f(a)-f(b)}{a-b}\cdot(x-a).$$

Ennek zérushelye (y = 0):

$$x = a - \frac{f(a) \cdot (a - b)}{f(a) - f(b)}.$$

Húrmódszer

Definíció: húrmódszer

Az $f \in C[a; b]$ függvény esetén, ha $f(a) \cdot f(b) < 0$, akkor a húrmódszer alakja:

$$x_0 := a, \quad x_1 := b,$$

$$x_{k+1} = x_k - \frac{f(x_k) \cdot (x_k - x_s)}{f(x_k) - f(x_s)}$$

$$(k = 0, 1, 2, ...),$$

ahol s a legnagyobb olyan index, amelyre $f(x_k) \cdot f(x_s) < 0$.

Tétel: a húrmódszer konvergenciája

Ha $f \in C^2[a; b]$ és

1
$$f(a) \cdot f(b) < 0$$
,

2
$$M \cdot (b-a) < 1$$
,

akkor a húrmódszer elsőrendben konvergál az x^* gyökhöz és

$$|x_k - x^*| \le \frac{1}{M} \cdot (M \cdot |x_0 - x^*|)^k$$

teljesül, ahol $M = \frac{M_2}{2 \cdot m_1}$ ugyanúgy, mint korábban.

Biz.: nélkül.

Szelőmódszer

Definíció: szelőmódszer

Az $f \in C[a; b]$ függvény esetén a szelőmódszer alakja:

$$x_0, x_1 \in [a; b],$$

 $x_{k+1} = x_k - \frac{f(x_k) \cdot (x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$
 $(k = 0, 1, 2, ...).$

Tétel: a szelőmódszer konvergenciája

Ha $f \in C^2[a; b]$ és

- g f' állandó előjelű,
- **3** $x_0, x_1 \in [a; b]$:

$$\begin{vmatrix} |x_0 - x^*| \\ |x_1 - x^*| \end{vmatrix}$$
 $< r := \min \left\{ \frac{1}{M}, |x^* - a|, |x^* - b| \right\},$

akkor a szelőmódszer $p = \frac{1+\sqrt{5}}{2}$ rendben konvergál az x^* gyökhöz. (M a szokásos.)

Biz.: nélkül.

Tartalomjegyzék

1 A Newton-módszer és konvergenciatételei

2 Húrmódszer és szelőmódszer

3 Általánosítás többváltozós esetre

Többváltozós nemlineáris egyenletrendszerek

Feladat

$$F: \mathbb{R}^n \to \mathbb{R}^n$$
, $F(x) = 0$, $x = ?$, $(x \in \mathbb{R}^n)$

Legtöbb módszerünk általánosítható többváltozós esetre.

Egyszerű iteráció

$$F(x) = 0 \iff x = \Phi(x)$$

Banach-féle fixponttétel szerint...

Többváltozós Newton-módszer

Többváltozós Newton-módszer

Közelítsük F-et az elsőfokú Taylor-polinomjával.

$$F(x) \approx F(x^{(k)}) + F'(x^{(k)}) \cdot (x - x^{(k)}),$$

$$F'(x^{(k)}) = \left(\frac{\partial f_i(x^{(k)})}{\partial x_j}\right)_{i,j=1}^n \in \mathbb{R}^{n \times n}$$

Ezen közelítés zérushelye lesz $x^{(k+1)}$:

2 $x^{(k+1)} = x^{(k)} + s^{(k)}$, $s^{(k)}$ a továbblépés iránya.

Többváltozós Newton-módszer

Definíció: a többváltozós Newton-módszer képlete

$$x^{(k+1)} = x^{(k)} - (F'(x^{(k)}))^{-1} \cdot F(x^{(k)})$$

Megj.: A módszer javítható pl. úgy, hogy ne kelljen minden lépésben invertálni és deriváltat számolni → Broyden-módszer (lassabb).

Példák Matlab-ban

- **1** A $\sqrt{2}$ értékének másodrendben konvergens közelítése.
- Példák a Newton-módszer működésére: konvergencia, divergencia, ciklizálás, fraktálszerű jelenségek.

Példa:

Alkalmazzuk a következő kétváltozós függvényre a Newton-módszert!

$$F(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad F: \mathbb{R}^2 \to \mathbb{R}^2,$$

ahol $f_1(x) = x_1^2 + x_2^2 - 1$, $f_2(x) = -x_1^2 - x_2$.

Geometriailag egy fordított parabola és az origó körüli egy sugarú kör metszéspontját keressük.

Megj.:

• Bizonyos pontokban a Newton-módszer nem értelmezett, mert $det(f'(x^{(k)})) = 0$.

$$\det(F'(x)) = \begin{vmatrix} 2x_1 & 2x_2 \\ -2x_1 & -1 \end{vmatrix} = -2x_1 + 4x_1x_2 = 2x_1(2x_2 - 1) = 0$$

 $x_1 = 0$ és $x_2 = 0.5$ esetén a módszer nem értelmezett.

• Divergens például $x_0 = \begin{bmatrix} \pm 1 & 1 \end{bmatrix}^T$ -ből úgy, hogy az első koordináta sorozat konvergens (de a határérték rossz).

Numerikus módszerek 1.

13. előadás: Polinomokról: gyökök becslése, Horner-algoritmus

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 Becslés polinom gyökeire

2 Horner-algoritmus

Tartalomjegyzék

1 Becslés polinom gyökeire

2 Horner-algoritmus

Vizsgáljunk *n*-edfokú polinomokat, melyek alakja:

$$P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$
$$a_i \in \mathbb{R}, \quad a_0 \neq 0, \quad a_n \neq 0.$$

Megjegyzés:

- Akár $a_i \in \mathbb{C}$ is lehet. . .
- Ha a₀ = 0, akkor az x = 0 gyök, leoszthatunk x-szel → egyszerűbb polinomot vizsgálhatunk.
- Ha $a_n = 0$, akkor nem is n-edfokú...

Példa

Vizsgáljuk meg néhány polinom gyökeinek elhelyezkedését. Komplex gyökök is szóba jöhetnek.

Tétel: Becslés polinom gyökeinek elhelyezkedésére

A $P(x)=a_n\cdot x^n+a_{n-1}\cdot x^{n-1}+\cdots+a_1\cdot x+a_0$ polinom esetén, ha $a_0\neq 0$ és $a_n\neq 0$, akkor P bármely x_k gyökére:

$$r < |x_k| < R$$

ahol

$$R = 1 + rac{inom{n-1}{\max}|a_i|}{|a_n|}, \quad r = rac{1}{\min\limits_{i=1}^{n}|a_i|}. \ 1 + rac{\prod\limits_{i=1}^{n}|a_i|}{|a_0|}.$$

Megjegyzés: Ezzel a gyökök elhelyezkedésére egy origó középpontú nyílt körgyűrűt adtunk meg a komplex számsíkon.

Biz.:

• Megmutatjuk, hogy ha $|x| \ge R$ (x a külső körön kívül van), akkor |P(x)| > 0 (x nem gyöke P-nek). A becsléshez a kétféle háromszög-egyenlőtlenséget használjuk:

$$|P(x)| \ge |a_n x^n| - |a_{n-1} x^{n-1} + \dots a_1 x + a_0|$$

A továbbiakban lefelé akarunk becsülni, így a kivonandó összeget növelnünk kell:

$$\begin{split} \left| a_{n-1} x^{n-1} + \ldots + a_0 \right| &\leq |a_{n-1}| \cdot |x|^{n-1} + \ldots + |a_0| \leq \\ &\leq \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \left(|x|^{n-1} + \ldots + 1 \right) = \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n - 1}{|x| - 1} < \\ &< \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n}{|x| - 1}. \end{split}$$

Biz. folyt: Folytassuk |P(x)| becslését és vizsgáljuk meg, mikor pozitív.

$$|P(x)| > |a_n| \cdot |x|^n - \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n}{|x| - 1} \ge 0$$

Rendezzük át az egyenlőtlenséget, szorozzunk be |x|-1>0-val és osszunk le $|a_n|\cdot|x|^n$ -vel

$$|P(x)| > 0 \quad \Leftrightarrow \quad |a_n| \cdot |x|^n \ge \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n}{|x| - 1} \quad \Leftrightarrow$$

$$|x| - 1 \ge \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n}{|a_n| \cdot |x|^n} \quad \Leftrightarrow$$

$$|x| \ge 1 + \frac{\max_{i=0}^{n-1} |a_i|}{|a_n|} =: R.$$

Biz. folyt: Azt kaptuk, hogy ha $|x| \ge R$, akkor |P(x)| > 0, vagyis x nem gyök. Ezzel beláttuk a tétel első felét.

2 Az alsó becslést úgy nyerjük, hogy az imént belátott becslést alkalmazzuk P(x) reciprok-polinomjára.

Vezessük be az $y := \frac{1}{x}$ új változót $(x \neq 0)$:

$$P(x) = P\left(\frac{1}{y}\right) = a_n \left(\frac{1}{y}\right)^n + a_{n-1} \left(\frac{1}{y}\right)^{n-1} + \dots + a_1 \left(\frac{1}{y}\right) + a_0 =$$

$$= \left(\frac{1}{y}\right)^n \cdot \underbrace{\left(a_n + a_{n-1}y + \dots + a_1y^{n-1} + a_0y^n\right)}_{Q(y)} = x^n \cdot Q\left(\frac{1}{x}\right).$$

A Q polinomot a P reciprok-polinomjának nevezzük. Ekkor

$$P(x_k) = 0 \quad \Leftrightarrow \quad Q\left(\frac{1}{x_k}\right) = 0,$$

vagyis Q gyökei P gyökeinek reciprokai.

Biz. folyt: Alkalmazzuk a már belátott becslésünket Q-ra:

$$\frac{1}{|x_k|} < 1 + \frac{\max\limits_{i=1}^{n} |a_i|}{|a_0|} = \frac{1}{r} \quad \Rightarrow \quad |x_k| > r.$$

Megjegyzés: Akár komplex együtthatós polinomokat is megengedhetünk a tételben, a bizonyítás menetén nem változtat.

Tartalomjegyzék

1 Becslés polinom gyökeire

2 Horner-algoritmus

Polinomok és deriváltjaik helyettesítési értékeinek kiszámítására.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 = \dots$$

Átzárójelezzük:

$$P(x) = \underbrace{(a_{n}x^{n-1} + a_{n-1}x^{n-2} + \dots + a_{2}x + a_{1})}_{a_{1}^{(1)}} \cdot x + a_{0} =$$

$$= \underbrace{((a_{n}x^{n-2} + a_{n-1}x^{n-3} + \dots + a_{2})}_{a_{2}^{(1)}} \cdot x + a_{1}) \cdot x + a_{0} =$$

$$= \dots = (\dots \underbrace{(a_{n}x + a_{n-1})}_{a_{1}^{(1)}} \cdot x + \dots) \cdot x + a_{0}.$$

Megj.: Más elnevezés: Horner-módszer, Horner-elrendezés.

Definíció: Horner-algoritmus

A $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ polinom adott ξ helyen vett helyettesítési értéke számolható a következő módon:

1
$$a_n^{(1)} := a_n$$
,

2
$$a_k^{(1)} := a_k + \xi \cdot a_{k+1}^{(1)} \quad (k = n-1, \dots, 1, 0),$$

ekkor $P(\xi) = a_0^{(1)}$.

Állítás: A Horner-algoritmus műveletigénye

Egy n-edfokú polinom adott helyen felvett értéke kiszámítható n szorzás és n összeadás által, azaz $\mathcal{O}(n)$ művelettel.

Horner-algoritmus

Táblázat $P(\xi)$ kézi számolásához:

a _n	a_{n-1}	a_{n-2}	 a _k	 a_1	<i>a</i> ₀
ξ	$\xi \cdot a_n^{(1)}$	$\xi \cdot a_{n-1}^{(1)}$	 $\xi \cdot a_{k+1}^{(1)}$	 $\xi \cdot a_2^{(1)}$	$\xi \cdot a_1^{(1)}$
$a_n^{(1)}$	$a_{n-1}^{(1)}$	$a_{n-2}^{(1)}$	 $a_k^{(1)}$	 $a_1^{(1)}$	$a_0^{(1)}$

Horner-algoritmus

Példa

Számítsuk ki a $P(x) = x^5 + 6x^4 - x^3 + 3x^2 - 15x - 7$ polinom helyettesítési értékét a $\xi = 2$ helyen.

1	6	-1	3	-15	-7
2	2 · 1	2 · 8	2 · 15	2 · 33	2 · 51
1	8	15	33	51	95

Tehát P(2) = 95, amihez összesen 10 műveletet végeztünk.

Állítás: Horner-algoritmus és a derivált

A P polinom felírható a következő alakban:

$$P(x) = a_0^{(1)} + (x - \xi) \cdot \underbrace{(a_1^{(1)} + \dots + a_n^{(1)} x^{n-1})}_{P_1(x)},$$

ahol az $a_i^{(1)}$ $(i=0,\ldots,n)$ értékeket a Horner-algoritmus adja. Továbbá

$$P'(\xi) = P_1(\xi) = a_1^{(2)}.$$

Megj.: \sim Taylor-polinom ξ körül.

Horner-algoritmus

$$P(x) = a_0^{(1)} + (x - \xi) \cdot \underbrace{\left(a_1^{(1)} + \dots + a_k^{(1)} x^{k-1} + a_{k+1}^{(1)} x^k + \dots + a_n^{(1)} x^{n-1}\right)}_{P_1(x)}$$

Biz.:

- **1** P-ben x^k (k = 0, ..., n-1) együtthatója
 - külön: x^n együtthatói a két oldalon: $a_n = a_n^{(1)}$, \checkmark
 - bal oldalon definícó szerint: a_k,
 - a fenti alak szerint a jobb oldalon: $a_k^{(1)} \xi \cdot a_{k+1}^{(1)}$.
 - A Horner-algoritmus szerint: $a_k^{(1)} = a_k + \xi \cdot a_{k+1}^{(1)}$. \checkmark
- 2 P deriváltja a fenti alakból (összeg, szorzat):

$$P'(x) = 1 \cdot P_1(x) + (x - \xi) \cdot P'_1(x) \Rightarrow P'(\xi) = P_1(\xi).$$

Horner-algoritmus

Biz. folyt: $P_1(\xi)$ kiszámítása ugyanúgy, Horner-algoritmussal, P_1 együtthatói: $a_n^{(1)}, \ldots, a_1^{(1)}$.

1
$$a_n^{(2)} := a_n^{(1)}$$
,

2
$$a_k^{(2)} := a_k^{(1)} + \xi \cdot a_{k+1}^{(2)} \quad (k = n-1, \ldots, 1),$$

ekkor
$$P_1(\xi) = P'(\xi) = a_1^{(2)}$$
.

Folytatjuk a táblázatot:

an	a_{n-1}	a_{n-2}	 a_1	a ₀
ξ	$\xi \cdot a_n^{(1)}$	$\xi \cdot a_{n-1}^{(1)}$	 $\xi \cdot a_2^{(1)}$	$\xi \cdot a_1^{(1)}$
$a_n^{(1)}$	$a_{n-1}^{(1)}$	$a_{n-2}^{(1)}$	 $a_1^{(1)}$	$a_0^{(1)} = P(\xi)$
ξ	$\xi \cdot a_n^{(1)}$	$\xi \cdot a_{n-1}^{(1)}$	 $\xi \cdot a_2^{(1)}$	
a _n (2)	$a_{n-1}^{(2)}$	$a_{n-2}^{(2)}$	 $a_1^{(2)} = P_1(\xi)$	

Tovább is folytathatjuk...

$$P(x) = a_0^{(1)} + (x - \xi) \cdot P_1(x)$$

Állítás: Horner-algoritmus és a magasabbrendű deriváltak

A P polinom felírható a következő alakban:

$$P(x) = a_0^{(1)} + a_1^{(2)}(x - \xi) + a_2^{(3)}(x - \xi)^2 + \dots + a_n^{(n+1)}(x - \xi)^n,$$

ahol az $a_i^{(j+1)}$ $(j=0,\ldots,n;\ i=j,\ldots,n)$ értékeket a Horner-módszer adja. Továbbá:

$$\frac{P^{(j)}(\xi)}{j!} = P_j(\xi) = a_j^{(j+1)},$$

ahol
$$P_j(x) = a_j^{(j)} + \cdots + a_n^{(j)} x^{n-j}$$
.

Biz.: indukcióval, nem kell.

Horner-algoritmus

Megjegyzés: Ha a táblázatot addig folytatjuk, míg csak 1 elemet kapunk, akkor az átlóban találjuk a P polinom ξ körüli Taylor-polinomjának együtthatóit.

Példa

Határozzuk meg a $P(x)=x^3-x^2+x-1$ polinom $\xi=1$ körüli Taylor-polinomját a Horner-módszer segítségével!

$$P(x) = x^4 - 2x^3 + 3x^2 - x + 1 =$$

= $1 \cdot (x - 1)^4 + 2 \cdot (x - 1)^3 + 3 \cdot (x - 1)^2 + 3 \cdot (x - 1) + 2$
az 1 körüli Taylor-polinomot kaptuk.

1	-2	3	-1	1
1	1 · 1	$1 \cdot (-1)$	1 · 2	1 · 1
1	-1	2	1	2 = P(1)
1	$1 \cdot 1$	1 · 0	1 · 2	
1	0	2	3 = P'(1)	
1	1 · 1	1 · 1		•
1	1	$3=\frac{P''(1)}{2}$		
1	$1 \cdot 1$			
1	$2=\frac{P'''(1)}{3!}$			

Példák Matlab-ban

• Véletlen (valós és komplex) együtthatós magasabbfokú (n=5,10,50,100) polinomok gyökeinek és a rájuk adott korlátoknak szemléltetése.