

Discrete Mathematics

Jidong Yuan yuanjd@bjtu.edu.cn SD 404

Algebraic Structure

- Outline:
- Introduction to Algebraic Structure
- Semigroup and Monoid
- Group and Subgroup
- Abel group and Cyclic group
- Ring and Field
- Lattice
- Boolean algebra

Review

- Algebraic system <A, °>
 - ✓ 3 properties
 - Closure
 - Commutativity
 - Associativity
 - √ 3 constants
 - Identity
 - Zero
 - ■Inverse

- ✓ 2 special algebraic systems
 - ■Semigroup
 - Monoid
- √ 2 relations
 - □ Homomorphism
 - □ Isomorphism

Group

Definition:

•An algebraic system $\langle G, * \rangle$ is said to be a **group** if the following conditions are satisfied.

- 1) * is a closed operation.
- 2) * is an associative operation.
- 3) There is an identity in *G*.
- 4) Every element in G has inverse in G.

Example:

- **<Z**, +> is a group.
- <**Z**⁺, +> is not a group.

Example 1

- Determine whether <R, ·> is a group. What about <R {0}, ·>? Prove your conclusion.
- 1. <u>Closure</u>: We know that, product of two nonzero real numbers is again a nonzero real number.

$$ab \in \mathbf{R} - \{0\} \text{ for } \forall a, b \in \mathbf{R} - \{0\}.$$

2. Associativity: We know that multiplication of real numbers is associative.

$$(ab)c = a(bc)$$
 for $\forall a, b, c \in \mathbb{R} - \{0\}$.

- 3. <u>Identity</u>: We have $1 \in \mathbf{R} \{0\}$ and $1 \cdot a = a \cdot 1 = a$ for $\forall a \in \mathbf{R} \{0\}$.
- 4. Inverse: To $\forall a \in \mathbf{R} \{0\}$, we have $1/a \in \mathbf{R} \{0\}$ such that a(1/a) = 1 i.e., Each element in $\mathbf{R} \{0\}$ has an inverse.

Exercise 1

• Let a * b = ab/2. Show that $\langle \mathbf{R}^+, * \rangle$ is a group.

Finite Group

• Finite Group: Let $\langle G, * \rangle$ be a group, if G is a finite set then $\langle G, * \rangle$ is called a finite group.

•Order of a group: The number of elements in a group is called order of the group, denoted by |G|.

•Infinite Group: Let $\langle G, * \rangle$ be a group, if G is a infinite set then $\langle G, * \rangle$ is called a infinite group.

Exercise 2

Let $G=\{0, 1\}$, * be an operation defined on G as follows. Show that $\langle G, * \rangle$ is a group.

*	0	1
0	0	1
1	1	0

•In a group with 2 elements, each element is its own inverse.

- •In a group $\langle G, * \rangle$ the following properties hold
- 1. Zero doesn't exist.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold

$$a*b=a*c \implies b=c$$
 (left cancellation law)
 $a*c=b*c \implies a=b$ (Right cancellation law)

4.
$$(a^{-1})^{-1}=a$$

 $(a*b)^{-1} = b^{-1}*a^{-1}$

5. a * x = b has a unique solution in G. y * a = b has a unique solution in G.

Zero doesn't exist in groups.

Proof:

Assume θ is the zero in group $\langle G, * \rangle$.

 $\forall a \in G, \theta * a = a * \theta = \theta.$

 θ doesn't have an inverse, which contradicts the fact that $\langle G, * \rangle$ is a group.

• Inverse of each element in a group is unique.

Proof:

Assume a has two inverses a_1 and a_2 .

Cancellation laws hold in a group.

$$a*b=a*c \rightarrow b=c$$
 (left cancellation law)
 $a*c=b*c \rightarrow a=b$ (Right cancellation law)

• $\forall a, b \in G \text{ in a group } < G, *>,$ $(a^{-1})^{-1} = a$ $(a * b)^{-1} = b^{-1} * a^{-1}.$

• Let $\langle G, * \rangle$ be a group, and let a and b be elements of G. Then

a * x = b has a unique solution in G.

y * a = b has a unique solution in G.

Subgroup

Definition:

- •Let $\langle G, * \rangle$ be a group, and let H be a subset of G such that:
- \checkmark (a) The identity *e* of <*G*, *> belongs to *H*.
- \checkmark (b) If a and b belong to H, then a * b ∈ H.
- \checkmark (c) If a ∈ H, then $a^{-1} ∈ H$.

Then $\langle H, * \rangle$ is called a **subgroup** of $\langle G, * \rangle$.

•Let $\langle G, * \rangle$ be a group. Then $\langle G, * \rangle$ and $\langle \{e\}, * \rangle$ are subgroups of G, called the **trivial subgroups** of G.

Example:

 \bullet <**Z**, +> and <**Q**, +> are subgroups of the group <**R**, +>.

Example 2

• Let $H=\{x \mid x=2n, n \in \mathbf{Z}\}$, show that $\langle H, + \rangle$ is a subgroup of $\langle \mathbf{Z}, + \rangle$.

- \checkmark (a) The identity *e* of <*G*, *> belongs to *H*.
- \checkmark (b) If a and b belong to H, then a * b ∈ H.
- \checkmark (c) If a ∈ H, then $a^{-1} ∈ H$.

• Let $\langle G, * \rangle$ be a group, and $\langle H, * \rangle$ be a subgroup of $\langle G, * \rangle$. Then the identity e of $\langle G, * \rangle$ is also the identity of $\langle H, * \rangle$.

Proof:

For $\forall a \in H$, $a \in G$.

a * e = e * a = a.

Thus, e is the identity of $\langle H, * \rangle$.

•A necessary and sufficient condition for a nonempty subset H of a group $\langle G, *\rangle$ to be a subgroup is that for $\forall a, b \in H \rightarrow a * b^{-1} \in H$.

- (1) If $\langle H, * \rangle$ is a subgroup of $\langle G, * \rangle$,
- $b \in H$, then $b^{-1} \in H$. $a \in H$, then $a * b^{-1} \in H$.
- (2) $\forall a, b \in H \Rightarrow a * b^{-1} \in H$, then $\forall a \in H \Rightarrow a * a^{-1} \in H$.
- $a \in H \subseteq G$, then $a * a^{-1} = e \in H$.
- $e \in H$, $\forall a \in H$, then $e * a^{-1} = a^{-1} \in H$.
- $\forall a, b \in H, b^{-1} \in H, \text{ then } a * (b^{-1})^{-1} \in H.$

- ✓ (a) The identity e of $\langle G, * \rangle$ belongs to H.
- \checkmark (b) If a and b belong to H, then a * b ∈ H.
- \checkmark (c) If a ∈ H, then $a^{-1} ∈ H$.

Exercise 3

•Let $\langle G, * \rangle$ be a group. $\langle H_1, * \rangle$ and $\langle H_2, * \rangle$ are two subgroups of G. Show that $\langle H_1 \cap H_2, * \rangle$ is also a subgroup of G.

A necessary and sufficient condition for a nonempty subset H of a group $\langle G, * \rangle$ to be a subgroup is that for $\forall a, b \in H \rightarrow a * b^{-1} \in H$.

Isomorphism of Groups

Example:

Two groups $\langle \mathbf{R}, + \rangle$ and $\langle \mathbf{R}^+, \cdot \rangle$. Let $f : \mathbf{R} \to \mathbf{R}^+$ be defined by $f(x) = e^x$. Show that f is an isomorphism.

- \bullet If f(a) = f(b), so that $e^a = e^b$, then a = b. Thus f is one to one.
- If $a \in \mathbb{R}^+$, then $\log a \in \mathbb{R}$ and $f(\log a) = e^{\log a} = a$, so f is onto.
- $\bullet f(a+b) = e^{a+b} = e^a \cdot e^b = f(a)f(b).$

- ✓ Define a function $f: S \rightarrow T$ with domain S.
- \checkmark Show that f is one-to-one.
- ✓ Show that f is onto.
- $\checkmark f(a * b) = f(a) \circ f(b).$

