The Neural Ideal Point Model

Germain Gauthier (Bocconi)

Hugo Subtil (University of Zürich)

Philine Widmer Subtil (PSE)

EPSA

June 2025

Introduction Model and Estimation Simulations Application 1 Application 2 Conclusion Reference

Measuring Ideology in the Era of Unstructured Data

 Ideal point models position individuals on ideological dimensions based on observed choices.

- Traditionally applied to structured data:
 - Voting records in parliaments (Poole and Rosenthal, 1985)
 - Courts (Martin and Quinn, 2002), surveys (Bafumi and Herron, 2010), etc.
- New opportunities arise with **unstructured data**:
 - Manifestos (Slapin and Proksch, 2008), speeches (Lauderdale and Herzog, 2016))
 - Images, audio, video \rightarrow still largely unexplored.
- But unstructured data presents key challenges:
 - Large number of observations (large n) and high dimensionality (large p)
 - **Multimodal** inputs (text + image + audio)
 - Existing methods are often intractable for large scale data or not designed for embeddings.
 - → We propose a deep learning framework to estimate ideal points from unstructured, multimodal data.

Introduction Model and Estimation Simulations Application 1 Application 2 Conclusion Reference

The Neural Ideal Point Model

Model

- Ideal points are drawn from a prior and manifest into response variables.
- Covariates can affect ideal points.
- Ideal points can affect outcomes.
- Allows for multiple modalities.

• Estimation

- Approximate via deep learning the posterior distribution of ideal points conditional on an observed dataset and a researcher prior.
- Generic, fast, and scalable.
- Can process and learn embeddings.

Simulations & Common Datasets

- Good finite sample performance in simulations.
- Near-identical estimates than other methods on common datasets.
- Successfully applied to learn ideal points of US politicians from speeches.
- Flexible framework to derive ideal points from any embeddings including video.

Table of Contents

Introduction

Model and Estimation

Model and Estimation Simulations Application 1 Application 2 Conclusion Reference

A Flexible Model of Latent Ideology

Notations:

Introduction

- Z is a vector of ideal points.
- W_m is a vector of **response variables** for each modality m.
- Y is a vector of **auxiliary outcomes**.
- P_Z is a **prior distribution** (modeled as a Generalized Linear Model).
- X^p, X^c, and X^s are covariates that influence the latent, response, or outcome variables.
- We assume that

$$Z \sim P_Z | X^p$$
 and $W_m = G_m(Z, X^c)$ and $Y = F(Z, X^s)$.

• This is a fairly general formulation, as P_Z , G_1 ,..., G_m , and F are left unspecified (we will parametrize them later for estimation).

Estimation Framework

For response variables $\{w_m\} \in \{1, ..., M\}$, outcome y, ideal points z and covariates x^p , x^c , and x^s , we have:

$$P(w_1,...,w_m,y \mid x^p,x^c,x^s) = \int_{\mathcal{Z}} P(z \mid x^p) P(y \mid z,x^s) \prod_{m=1}^M P(w_m \mid z,x^c) dz.$$

- → **Problem:** The marginal likelihood is *intractable*.
- → **Solution:** Approximate $P(w_1, ..., w_m \mid x^p, x^c)$ as a Wasserstein autoencoder (Tolstikhin et al., 2017):
 - The encoder, decoders, and predictor are neural networks.
 - Encoder $Q(w_1, ..., w_m, x^p) \approx P(z \mid w_1, ..., w_m, x^p)$
 - Decoders $G_m(z, x^c) \approx P(w_m \mid z, x^c)$
 - Predictor $F(z, x^s) \approx P(y \mid z, x^s)$
 - We nudge $Q(w_1, ..., w_m, x^p)$ to remain close to the prior distribution.

Introduction

 $TotalLoss = ReconstructionLoss(\mathbf{w}, \hat{\mathbf{w}}) + \lambda \widehat{\mathrm{MMD}}_k^{\ 2}(\hat{\mathbf{z}}, \tilde{\mathbf{z}})$

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 7/23

Introduction

$$TotalLoss = \sum_{m=1}^{M} RecLoss(\mathbf{w}_{m}, \hat{\mathbf{w}}_{m}) + \lambda_{0} \widehat{MMD}_{k}^{2}(\hat{\mathbf{z}}, \hat{\mathbf{z}}) + \lambda_{1} PredLoss(\mathbf{y}, \hat{\mathbf{y}})$$

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 8/23

Table of Contents

36 11 15 2

Simulations

Introduction

Application

Application

Conclusio

Model and Estimation Simulations Application 1 Application 2 Conclusion References

NIPM Recovers Ideal Points Across Modalities

Introduction

Introduction Model and Estimation Simulations Application 1 Application 2 Conclusion References

Monte Carlo Simulations: Main Takeaways

- 1. NIPM recovers true ideal points across modalities.
- 2. NIPM accurately estimates covariate effects on ideal points.
 See Figure
- 3. NIPM accurately estimates effects of ideal points on outcomes.
- 4. NIPM is fast and scalable, outperforming MCMC-based approaches. See Figure
- 5. Confidence intervals computed using dropout, subsampling, bootstrap. See Table

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 11/23

Table of Contents

Introduction

Model and Estimation

Cimanlation

Application 1

Application

Conclusion

Introduction Model and Estimation Simulations Application 1 Application 2 Conclusion References

Our model recovers trends in congressional polarization

Evolution of Party Ideology in US Senate (Votes)

Introduction Model and Estimation Simulations Application 1 Application 2 Conclusion References

Our model recovers trends in congressional polarization

Evolution of Party Ideology in US Senate (Speeches)

Computed using Doc2Vec phrase embeddings.

Introduction Model and Estimation Simulations Application 1 Application 2 Conclusion

Our model interprets partisan language

Ideal Point Estimates of Partisan Phrases in the 114th U.S. Senate

Computed using Doc2Vec phrase embeddings.

Table of Contents

Introduction

Model and Estimation

Simulation

Application

Application 2

Conclusion

Gauthier, Subtil, Widmer (2025)

Political Advertisers on Social Media

Introduction

Distribution of the Median Ideal Point for Political Advertisers

Computed using X-CLIP video embeddings.

ection Model and Estimation Simulations Application 1 Application 2 Conclusion Reference

Ideal Points of Political Advertisers, US 2024 Election (Weighted by Money)

Model and Estimation Simulations Application 1 Application 2 Conclusion References

What kind of content is ideological?

Introduction

Examples of the most ideologically extreme video descriptions.

Video Description	Ideal Point
A Native American woman is dragged away by police at an oil pipeline protest.	0.4574
A Native elder watches bulldozers destroy sacred burial sites.	0.4279
A migrant caravan marches to the U.S. border, waving foreign flags.	0.3740
A farmer warns that government overreach is hurting small businesses.	0.2536
A crowd of people wearing red hats and caps.	0.1105
A worker on strike holds a sign for higher wages.	-0.2769
A woman gives birth in a car after her hospital closes.	-0.2818
A graduate rips up a student debt statement on stage.	-0.3760
A drag queen reads a storybook to children in a library.	-0.4603
A trans woman, bruised and scared, after being attacked.	-0.4637

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 19/23

Table of Contents

Introduction

Model and Estimation

Cimarilation

Application

Application

Conclusion

Gauthier, Subtil, Widmer (2025)

Introduction Model and Estimation Simulations Application 1 Application 2 Conclusion References

Concluding Remarks

We are preparing an open-source Python package IdealPointNN to support future applications

•••

and we look forward to your feedback.

Thanks for listening!

The Neural Ideal Point Model

Germain Gauthier (Bocconi)

Hugo Subtil (University of Zürich)

Philine Widmer Subtil (PSE)

EPSA

June 2025

References I

- Bafumi, J. and Herron, M. C. (2010). Leapfrog representation and extremism: A study of american voters and their members in congress. American Political Science Review, 104(3):519–542.
- Lauderdale, B. E. and Herzog, A. (2016). Measuring political positions from legislative speech. *Political Analysis*, 24(3):374–394.
- Martin, A. D. and Quinn, K. M. (2002). Dynamic ideal point estimation via markov chain monte carlo for the us supreme court, 1953–1999. *Political analysis*, 10(2):134–153.
- Poole, K. T. and Rosenthal, H. (1985). A spatial model for legislative roll call analysis. American journal of political science, pages 357–384.
- Slapin, J. B. and Proksch, S.-O. (2008). A scaling model for estimating time-series party positions from texts. American Journal of Political Science, 52(3):705–722.
- Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2017). Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558.

Appendix — W-NOMINATE vs. NIPM (102nd Congress)

Correlation between W-NOMINATE Estimates and NIPM (102nd Congress)

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 1/9

Appendix — W-NOMINATE vs. NIPM (44th–118th Congress)

Correlation between W-NOMINATE Estimates and NIPM (44th-118th Congress)

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 2/9

Appendix — Evolution of Party Ideology in US House (Votes)

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 3/9

Appendix — Evolution of Party Ideology in US House (Speeches)

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 4/9

Appendix — Number of Political Ads Over Time

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 5/9

Appendix — Ideal Points Weighted by Money

Distribution of the Median Ideal Point for Political Advertisers (Weighted by Money)

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 6/9

Appendix: Covariate and Outcome Models

Figure 3. NIPM recovers causal effects well. 500 replications. Vertical green line shows true parameter.

▶ Go back to summary

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 7/9

Appendix: Scalability and Speed

Speed and Scalability for Different Dataset Sizes

Appendix: Uncertainty Estimation

Approach	Mean Std. Error	Coverage (%)	Time
Nonparametric Bootstrap	0.20	90.1	3h
Parametric Bootstrap	0.06	83	3h
Subsampling (5%)	0.06	84.3	30min
MC Dropout (10%)	0.24	93.5	2min
MC Dropout (20%)	0.32	98.4	2min
MC Dropout (30%)	0.36	88.6	2min

Table 1. 95% CI coverage across 1000 simulated politicians. MC Dropout: 500 passes. Bootstrap/subsampling: 200 samples.

▶ Go back to summary

Gauthier, Subtil, Widmer (2025) The Neural Ideal Point Model 9/9