Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

2014/15

Folha 3: Séries Numéricas

- 1. Determine o termo geral da sucessão das somas parciais, S_n , e a soma S (se possível) de cada uma das seguintes séries:
 - (a) $\sum_{n=1}^{+\infty} 2^n$;
 - (b) $\sum_{n=1}^{+\infty} 2n;$
 - (c) $\sum_{n=1}^{+\infty} 3^{-2n+3}$;
 - (d) $\sum_{n=2}^{+\infty} \frac{2}{n^2 1}$;
 - (e) $\sum_{n=1}^{+\infty} \left(\frac{1}{n+2} \frac{1}{n} \right);$
 - (f) $\sum_{n=1}^{+\infty} \frac{2n+1}{n^2(n+1)^2}.$
- 2. Calcule, se possível, a soma da série $\sum_{n=1}^{+\infty} \left[\left(\frac{1}{2} \right)^{2n-1} + b_n \right]$, sabendo que a sucessão das somas parciais associadas à série $\sum_{n=1}^{+\infty} b_n$ é dada por $S_n = \sqrt[n]{\frac{e}{n^n}}$, $n \in \mathbb{N}$.
- 3. Seja $\sum_{n=1}^{+\infty} a_n$ uma série numérica, convergente e de soma igual a S. Calcule a soma da série $\sum_{n=1}^{+\infty} \left[3a_n + \frac{2}{3^n} \right]$.
- 4. Determine, se existir, a soma da série $\sum_{n=1}^{+\infty} u_n$, onde

$$u_n = \begin{cases} 1 + 2(n-1) & \text{se } n < 4 \\ \left(\frac{2}{3}\right)^n & \text{se } n \ge 4 \end{cases}.$$

- 5. Considere a série $\sum_{n=1}^{+\infty} \frac{5^n}{(a+1)^n}$ (onde a é um parâmetro real, com $a \neq -1$).
 - (a) Determine os valores de a para os quais a série dada é convergente.
 - (b) Para um dos valores encontrados na alínea anterior, determine a soma da série.

6. Indique, justificando, se as seguintes afirmações são verdadeiras ou falsas:

(a) Seja
$$\sum_{n=1}^{+\infty} a_n$$
 uma série de números reais.

i. Se
$$\lim_{n\to\infty} a_n = 0$$
, então a série converge

i. Se
$$\lim_{n\to\infty} a_n = 0$$
, então a série converge.
ii. Se a série converge, então $\lim_{n\to\infty} a_n = 0$.

iii. Se
$$\lim_{n\to\infty} a_n = \frac{1}{2}$$
, então a série diverge.

(b) A série
$$\sum_{n=1}^{+\infty} a_n$$
 converge se e só se:

i.
$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k = 0;$$

ii.
$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k < 1;$$

iii.
$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k = S \in \mathbb{R}$$
.

7. Estude a natureza das séries seguintes:

(a)
$$\sum_{n=1}^{+\infty} \frac{n}{\sqrt{3n^2 - 2}}$$

(b)
$$\sum_{n=1}^{+\infty} (1+2n)^{\frac{1}{n}}$$

(c)
$$\sum_{n=1}^{+\infty} \operatorname{sen}\left(\frac{n^2\pi}{2}\right)$$

(d)
$$\sum_{n=2}^{+\infty} \frac{1}{\ln n}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n}$$

(f)
$$\sum_{n=1}^{+\infty} \frac{n+1}{\sqrt{2n^5+n^3}}$$

(g)
$$\sum_{n=1}^{+\infty} \frac{\sqrt[3]{n}}{(n+1)\sqrt{n}}$$

(h)
$$\sum_{n=1}^{+\infty} \frac{1}{[(-1)^n + 5]^n}$$

(i)
$$\sum_{n=1}^{+\infty} \left(\frac{2n+1}{3n+1} \right)^{\frac{n}{2}}$$

$$(j) \sum_{n=1}^{+\infty} \left(\frac{n}{n+1}\right)^{n^2}$$

(k)
$$\sum_{n=1}^{+\infty} \left(\frac{2n}{n+1}\right)^{n^3}$$

(l)
$$\sum_{n=1}^{+\infty} \frac{b^n}{n}$$
 (0 < b < 1)

$$(m) \sum_{n=1}^{+\infty} \frac{n!}{d^n} \quad (d>0)$$

(n)
$$\sum_{n=1}^{+\infty} \left(\frac{\ln n}{n}\right)^n$$

(o)
$$\sum_{n=1}^{+\infty} \frac{\pi^n n!}{n^n}$$

(p)
$$\sum_{n=1}^{+\infty} \frac{(n!)^2}{(2n)!}$$

(q)
$$\sum_{n=1}^{+\infty} \left(\frac{1}{8^n} + \frac{1}{n(n+1)} \right)$$

(r)
$$\sum_{n=1}^{+\infty} \frac{\operatorname{sen}\left(\frac{\pi}{50}\right)}{2^n}$$

(s)
$$\sum_{n=1}^{+\infty} \frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}$$

(t)
$$\sum_{n=1}^{+\infty} \frac{1}{n! + n - 1}$$

(u)
$$\sum_{n=1}^{+\infty} \frac{n^n + 1}{2^n - 1}$$

(v)
$$\sum_{n=1}^{+\infty} \frac{(n+1)^n \cos(n\alpha)}{n^{2n}}$$
, com $\alpha \in \mathbb{R}$

(w)
$$\sum_{n=1}^{+\infty} \frac{-\arctan n}{n^2 + 1}$$

8. Estude a natureza das séries seguintes:

(a)
$$\frac{1}{2} + \frac{3}{4+1} + \frac{5}{9+1} + \frac{7}{16+1} + \dots$$

(b)
$$\frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \frac{1}{4 \cdot 2^4} + \dots$$

9. Sejam
$$\sum_{n=1}^{+\infty} a_n$$
 e $\sum_{n=1}^{+\infty} b_n$ duas séries de termos não negativos, tais que $\lim_{n\to\infty} \sqrt[n]{b_n} = \frac{1}{3}$

e
$$a_n = b_n + \frac{1}{3}, \forall n \in \mathbb{N}$$
. Indique, justificando, a natureza da série $\sum_{n=1}^{+\infty} (a_n + b_n)$.

10. Verifique se as séries seguintes são convergentes e, em caso afirmativo, indique se são absolutamente ou simplesmente convergentes:

3

(a)
$$\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{1}{2n-1}$$

(b)
$$\sum_{n=2}^{+\infty} (-1)^n \frac{1}{\ln n}$$

(c)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{1}{2^{n-1}}$$

(d)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{1}{e^n + 1}$$

(e)
$$\sum_{n=1}^{+\infty} (-1)^n \left(\frac{n}{n+1}\right)^2$$

(f)
$$\sum_{n=1}^{+\infty} (-1)^n \left(\frac{n}{n+1}\right)^{n^2}$$

(g)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{(n+1)(n+2)}$$

(h)
$$\sum_{n=1}^{+\infty} (-1)^{n+1} \ln \left(1 + \frac{1}{n}\right)$$

11. Sabendo que as sucessões $(a_n)_n$ e $(b_n)_n$ são tais que

$$\sum_{n=1}^{8} a_n = 15, \quad a_n = \left(\frac{3}{2}\right)^n, \text{ para } n \ge 9 \quad \text{e} \quad b_n > a_n, \text{ para } n > 20,$$

estude a natureza das séries numéricas $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$.

12. Considere as séries
$$\sum_{n=1}^{+\infty} (-1)^n \frac{n!}{n^n} e \sum_{n=1}^{+\infty} \frac{\sqrt[3]{n}}{n^2 + 1}.$$

- (a) Estude a natureza de cada uma das séries.
- (b) Indique o limite do termo geral das séries.

(c) Sendo
$$\sum_{n=1}^{+\infty} \left[(-1)^n \frac{n!}{n^n} + b_n \right] = \sum_{n=1}^{+\infty} \frac{\sqrt[3]{n}}{n^2 + 1}$$
, indique a natureza da a série $\sum_{n=1}^{+\infty} b_n$. Justifique.

- 13. Uma bola de borracha cai de uma altura de 10 metros. Sempre que bate no chão, a bola sobe 2/3 da última distância descida. Qual é a distância total percorrida pela bola (até ficar em repouso)?
- 14. (Exame de Recurso, julho de 2010) Seja (a_n) uma sucessão de números reais tal que $a_1 \neq 0$ e $a_{n+1} = \frac{n}{2n+1} a_n$, para todo $n \in \mathbb{N}$. Indique, justificando, a natureza da série $\sum_{n=1}^{+\infty} a_n$.

15. (1.º teste, março de 2011) Calcule a soma da série
$$\sum_{n=1}^{+\infty} \frac{3^n+n^2}{3^n\,n^2} \text{ sabendo que } \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

16. Estude a natureza (divergência, convergência simples ou convergência absoluta) das seguintes séries numéricas:

4

(a)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{1}{\sqrt{n+2}}$$
 (Exame de Recurso, julho de 2011);

(b)
$$\sum_{n=1}^{+\infty} \frac{n+1}{n^3+3n^2+4}$$
 (1.º teste, março de 2011);

(c)
$$\sum_{n=1}^{+\infty} \frac{(-2)^n}{(n+1)!}$$
 (1.\(\frac{o}{2}\) teste, março de 2011).