Low-Rank Factorizations for Fast Inference in Structured Models

Justin Chiu* ¹ Yuntian Deng* ² Alexander Rush ¹

¹Cornell Tech

²Harvard University

October 19, 2021

Structured Models

- Explicitly model output associations
 - Directly or through latent variables
- Focus on combinatorially large latent <u>discrete structures</u>
 - Complementary to continuous, deterministic representations
- ▶ More difficult to scale than alternative representations
 - ▶ Bottlenecked by time + space complexity of marginal inference

Scaling Structured Models

- Scaling (to the point of overparameterization) is key
- ► Target tractable models
 - Admit dynamic programs for exact marginalization
- Impose a low-rank model constraint
 - Trades off model expressivity for cheaper marginalization
- Only constrain parameters used in key steps of marginalization

Marginalization in Structured Models

- Model an observation $x = (x_1, \dots, x_T)$ via latent structure z
 - Latent nodes z_i
 - ► Nodes have discrete label set [*L*]
- ▶ Perform training and evaluation via marginalization

$$p(x) = \sum_{z} p(x, z)$$

Hidden Markov models

Probabilistic context-free grammars

Hypergraphs for Marginalization

- Represent marginalization dynamic programs as hypergraphs
- Hypergraphs consist of nodes and hyperedges
 - Hyperedge consists of a head node and set of tail nodes
- Perform marginalization by traversing hypergraph
 - Aggregate marginals from tails to head via a matrix-vector product

Hyperedge representations for HMMs and PCFGs

Hypergraph Marginalization

For each hyperedge e in topological order,

- ightharpoonup Combine tail marginals α_1, α_2 into joint tail marginal β_{ν}
- ightharpoonup Apply score matrix Ψ_e and aggregate in head marginal α_u
 - Matrix-vector product
 - Multiple hyperedges may have the same head node

Algorithm 1 Hypergraph marginalization / belief propagation

$$\begin{array}{ll} \text{for } u \leftarrow v \text{ hyperedge } e \text{ topologically } \textbf{do} \\ \beta_v \leftarrow \alpha_{v_1} \alpha_{v_2}^\top &\rhd O(L^{|e|}) \\ \alpha_u \xleftarrow{+} \Psi_e \beta_v &\rhd O(L^{|e|+1}) \\ \text{return } \alpha_S^\top \mathbf{1} \end{array}$$

Our Method: Scaling with Low-Rank Factorizations

- Hypergraph marginalization bottlenecks
 - Number of hyperedges
 - Matrix-vector product
- Approach: Impose low-rank model constraint
- Improves time and space complexity of marginalization

Low-Rank Factorizations

- ► Rank *R* < *L* factorization
- ► Factor matrices $\Psi = UV^{\top}$, $U \in \mathbb{R}^{L \times R}$, $V \in \mathbb{R}^{L^{|e|} \times R}$

$$\boxed{ \qquad \qquad } \times \boxed{\beta} = \boxed{U} \times \left(\boxed{V^{\top}} \times \boxed{\beta} \right)$$

- ▶ Two matrix-vector products of cost O(LR) and $O(L^{|e|}R)$
 - ▶ Reduced from $O(L^{|e|+1})$

Low-rank Hypergraph Marginalization

Given a low-rank factorization,

Algorithm 2 Low-rank marginalization

$$\begin{array}{ll} \text{for } u \leftarrow v_1, v_2 \text{ hyperedge } e \text{ topologically } \textbf{do} \\ \beta_v \leftarrow \alpha_{v_1} \alpha_{v_2}^\top & \rhd O(L^{|e|}) \\ \gamma \leftarrow V_e^\top \beta_v & \rhd O(L^{|e|}R) \\ \alpha_u \overset{+}{\leftarrow} U_e \gamma & \rhd O(LR) \\ \text{return } \alpha_s^\top \mathbf{1} \end{array}$$

- ▶ Potentially large speedups for marginalization
 - ▶ HMM from $O(L^2)$ to O(LR)
 - ▶ PCFG from $O(L^3)$ to $O(L^2R)$

Expressivity of Rank-constrained Models

- Rank constraints limit expressivity
- Only apply to a subset of parameters
 - Transition matrix for HMMs
 - Subset of the transition matrix for PCFGs
- Is it more expressive than a smaller model?
 - An L-state HMM with rank R (< L) is more expressive than an unconstrained R-state HMM

Experiments

- ► Language modeling on PENN TREEBANK¹
- Compare size vs speed and accuracy
 - ► Size = 1k to 16k state HMM, 90 to 300 state PCFG
 - ▶ Speed = Sec/Batch
 - Accuracy = Perplexity (function of likelihood)
- Unconstrained softmax HMM, PCFG vs low-rank versions

¹Marcus, Santorini, and Marcinkiewicz, 'Building a Large Annotated Corpus of English: The Penn Treebank'.

HMM Results

HMM Speed vs Accuracy Frontier

PCFG Speed vs Accuracy Frontier

Conclusion

- Low-rank factorization sped up marginalization
 - Constrain only parameters used in bottlenecks
 - Most effective with large models
- Performance gap with neural models still large
 - Scale further with more aggressive constraints
 - Compose with different representations
- Please see the paper for more experiments and analysis!

Citations I

Marcus, Mitchell P., Beatrice Santorini, and

Mary Ann Marcinkiewicz. 'Building a Large Annotated Corpus of English: The Penn Treebank'. In: *Computational Linguistics* 19.2 (1993), pp. 313–330. URL:

https://www.aclweb.org/anthology/J93-2004.