Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods

- Linear Classifier
- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

What Is Bayesian Classification?

- A statistical classifier
 - Perform probabilistic prediction (i.e., predict class membership probabilities)
- Foundation—Based on Bayes' Theorem
- Performance

 whow, bonnown man classifier
 - A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental
 - Each training example can incrementally increase/decrease the probability that a hypothesis is correct—prior knowledge can be combined with observed data
- Theoretical Standard
 - Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem: Basics

Total probability Theorem:

$$p(B) = \sum_{i} p(B|A_i)p(A_i)$$

Bayes' Theorem:

test data
$$p(H|X) = \frac{p(X|H)P(H)}{p(X)} \propto p(X|H) P(H)$$

posteriori probability

likelihood

prior probability

What we should choose

What we just see

What we knew previously

X: a data sample ("evidence")

Prediction can be done based on Bayes' Theorem:

H: X belongs to class C

Classification is to derive the maximum posteriori

Naïve Bayes Classifier: Making a Naïve Assumption

- ☐ Practical difficulty of Naïve Bayes inference: It requires initial knowledge of many probabilities, which may not be available or involving significant computational cost
- A Naïve Special Case
 - Make an additional assumption to simplify the model, but achieve comparable performance.

พืชา ไม่มี ค. เกี่ยวจังว / สัมพันธ์ เก็บ สูละศา การคำนวนเโด๊งายattributes are conditionally independent (i.e., no dependence relation between attributes)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

Only need to count the class distribution w.r.t. features

Naïve Bayes Classifier: Categorical vs. Continuous Valued Features

□ If feature x_k is categorical, $p(x_k = v_k | C_i)$ is the # of tuples in C_i with $x_k = v_k$, divided by $|C_{i,D}|$ (# of tuples of C_i in D)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

 $\hfill\Box$ If feature x_k is continuous-valued, $p(x_k=v_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$p(x_k = v_k | C_i) = N(x_k | \mu_{C_i}, \sigma_{C_i}) = \frac{1}{\sqrt{2\pi}\sigma_{C_i}} e^{-\frac{(x - \mu_{C_i})^2}{2\sigma^2}}$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <=30, Income = medium,
Student = yes, Credit_rating = Fair)</pre>

income	student	credit_rating	buys_computer
high	no	fair	no
high	no	excellent	no
high	no	fair	yes
medium	no	fair	yes
low	yes	fair	yes
low	yes	excellent	no
low	yes	excellent	yes
medium	no	fair	no
low	yes	fair	yes
medium	yes	fair	yes
medium	yes	excellent	yes
medium	no	excellent	yes
high	yes	fair	yes
medium	no	excellent	no
	high high high medium low low medium low medium medium medium	high no high no high no medium no low yes low yes medium no low yes medium no low yes medium yes medium yes medium yes medium no high yes	high no fair high no excellent high no fair medium no fair low yes fair low yes excellent low yes excellent medium no fair low yes excellent medium no fair medium yes fair medium yes fair medium yes excellent medium yes fair medium yes excellent high yes fair

training

Naïve Bayes Classifier: An Example

```
P(C_i): P(buys\_computer = "yes") = 9/14 = 0.643
       P(buys computer = "no") = 5/14 = 0.357
```

Compute $P(X|C_i)$ for each class

```
P(age = "<=30" | buys computer = "yes") = 2/9 = 0.222
P(age = "<= 30" | buys\_computer = "no") = 3/5 = 0.6
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
```

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4

			ı	
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes ·
>40	medium	no	fair	yes -
>40	low	yes ⁷	fair	yes -
>40	low	yes/	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes .
>40	medium	yes∤	fair	yes -
<=30	medium	yes	excellent	yes ′
3140	medium	no	excellent	yes ′
3140	high	yes	fair	yes -
>40	medium	no	excellent	no

```
X = (age <= 30, income = medium, student = yes, credit_rating = fair)
```

```
P(X|C_i): P(X|buys\_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
         P(X|buys computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019
                                                                                     0.044x B-643
```

 $P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$ P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007

Therefore, X belongs to class ("buys_computer = yes")

B.019x 035 7