El arte de la analitica

José Ignacio Treviño Luz Eunice Ángeles

Acerca del curso

Durante esta semana Tec experimentarás con el proceso de análisis de datos que permite resolver preguntas acerca de ellos.

En esta experiencia aprenderás a:

- 1. Realizar el tratamiento de datos y análisis rápido de un conjunto de datos reales.
- 2. Obtener información relevante a partir de los datos y presentarla ante el grupo.

Acerca de los instructores

Ing. Luz Eunice Angeles

- Maestría en Admin. Tecnologías de Información
- Correo electrónico: luzeunice@tec.mx
- Mensajería instantánea (Remind): https://www.remind.com/join/

Ing. José Ignacio Treviño

- Maestría en Investigación de Operaciones
- Correo electrónico: josei.trevino@tec.mx
- Mensajería instantánea (Remind): https://www.remind.com/join/

Contenido del curso

O1 Introducción
Unix y Git

O2 Herramientas
Entorno de desarrollo
en la nube

O3 Pandas
Librerías para manejo de datos

O4 Estadísticas

Análisis descriptivo

O5 Gráficos
Visualización de datos

Regresión lineal

Analítica predictiva

02

Herramientas

desarrollo en la nube

Google Colaboratory

Es una herramienta que permite ejecutar código de Python en servidores de Google.

Es como Jupyter Notebook que corre en la nube.

<u>Te damos la bienvenida a Colaboratory - Colaboratory (google.com)</u>

Github

Es un sitio para alojar proyectos utilizando el sistema de control de versiones Git.

<u>GitHub</u>

Conectar Colab con Github

Para poder conectarnos a Github desde Colab, requerimos tres datos:

- Nombre de usuario
- Nombre del repositorio
- Token de acceso

Notebook de teoría y actividad

Liga a la libreta de teoría

Liga a la actividad

 Descargar desde Canvas los notebooks y el archivo "credenciales.json"

04

Estadísticas

Medidas de tendencia central

Media

Es el promedio aritmético

Mediana

Valor central de datos ordenados. 2do cuartil / percentil 50

Moda

Valor más frecuente

Medidas de dispersión

Varianza

Promedio de variación con respecto a la media

Rango

Diferencia entre el valor máximo y el mínimo

Rango intercuartil

Diferencia entre el 3er y 1er cuartil

Coeficiente de correlación

Es un valor que indica la fuerza y dirección de la relación lineal que hay entre dos variables.

Varía desde -1 hasta 1.

Estadísticas de datos con Python

Para obtener las estadísticas generales de un Data Frame usamos

df.describe()

Para obtener el promedio de una columna usamos:

- df['col'].mean()
- Otras estadísticas que podemos usar son: sum(), std(), var(), min(), max(), median().

Los coeficientes de correlación se obtienen con:

df.corr()

La moda la podemos obtener contando los diferentes valores de una columna:

df['col'].value_counts()

Notebook de teoría y actividad

<u>Liga a la libreta de teoría</u>

Liga a la actividad

05 Gráficos

Gráficos para variables numéricas

Histograma

Es una estimación de la densidad de una variable numérica.

Gráfico de caja

Utiliza los cuartiles para describir una variable numérica.

Gráficos para variables numéricas

Calls per hour of day - Tours 6/1/15 - 5/30/17

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Sunday

Call hour

Call hour

DispersiónMuestra la relación de dos variables
numéricas

Mapa de calor Representación gráfica de una tabla de dos variables

Gráficos para variables cualitativas

Gráfico de barras

Para contar las categorías de una variable cualitativa

Gráfico de barras con estimador

Agrupar una variable numérica por las diferentes categorías de una variable cualitativa

Visualización de datos con Python

Usaremos la librería Seaborn: import seaborn as sns

La estructura general del código para generar un gráfico es la siguiente:

o sns.<tipo de gráfico>(data = <df>, x = <col x>, y = <col y>,
hue=<col color>, style = <col estilo>, size = <col tamaño>, ...)

Los tipos de gráfico que podemos hacer son:

- histplot para histogramas
- boxplot para gráficos de caja
- scatterplot para gráficos de dispersión
- heatmap para mapas de calor
- countplot para gráficos de barra de una variable.
- barplot para gráficos de barra con dos variables (1 cualitativa y 1 numérica)

Notebook de teoría y actividad

Liga a la libreta de teoría

Liga a la actividad

Gracias!

Terminamos la Semana Tec

Recomendaciones para finalizar

- La fecha límite para subir actividades es el 16 de septiembre a las 23:59.
- La evidencia es un trabajo en equipo, pero se tiene que subir **individualmente** a eLumen.
- Favor de contestar la coevaluación y la ECOA.

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**.

Please keep this slide for attribution