Niyousha Rahimi

Phone: 206-693-8582 | nrahimi@uw.edu | LinkedIn | Google Scholar | Github

EDUCATION

University of WashingtonSeattle, WAPhD in Aeronautics and Astronautics Engineering2018 - presentUniversity of WashingtonSeattle, WAM.Sc. in Mechanical Engineering2016 - 2018Sharif University of TechnologyTehran, IRANB.Sc. in Mechanical Engineering2011 - 2016

Area of Interest

- Vision-based Navigation and Control
- Stochastic planning

- Data-driven Optimal control
- Multi-agent Systems

TECHNICAL SKILLS

• Languages: Python, C#/C++, MATLAB

• Packages and Platforms: Pytorch, TensorFlow, AirSim, Unreal Engine

• Software: CVX, ROS, Simulink, Git, LaTex

EXPERIENCE

Internship at Amazon, Project Kuiper

Los Angeles, California

June-Sept 2022

Internship at NASA Jet Propulsion Laboratory (JPL)

Section 347N (Maritime and Multi-Agent Autonomy), California Institute of Technology

Jan-Mar 2022

• Robust Controller Synthesis for Vision-based Spacecraft Guidance and Control

I developing a method for Robust Controller synthesis for Vision-based Spacecraft guidance and control. The method was build around the use of a photo-realistic simulator (Unreal Engine), where a camera is deployed on a tracking spacecraft (Ego) to observe an uncontrolled vehicle (Target) in a Low Earth Orbit (LEO). Under the supervision of Amir Rahmani

Robotics, Aerospace, Information, and Networks (RAIN) Lab

University of Washington

Aug 2019 - present

• Online regulation of partially unknown (and possibly unstable) linear systems.

We proposed the Data-Guided Regulator(DGR) synthesis that regulates the underlying states of an unknown linear model through generating informative data.

Scale-independent Multi-modal Automated Real Time Systems (SMARTS) Lab

 $University\ of\ Washington$

Sept 2017 - Aug 2018

• Multi-Agent Consensus Optimization in Large-Scale Supply Networks

Multi-agent systems are characterized by (semi)-autonomous agents with decentralized decision-making capabilities. In this work, we bring the notion of multi-agent systems to clustered supply-demand networks such that each supplier acts as an independent agent. Consequently, consensus-based auction bidding methods were adapted to optimize the assignment of demands to the suppliers with known communication pathways and resource constraints.

Internship at Umbra Cuscinetti, Inc.

Everett, Washington

June 2017 - Sept 2017

• Collaborated with a team of 5 Engineers on OCSO project for Boeing. Specific tasks: Design of control logic, as well as participating in the design of the overall system mechanism

- N. Rahimi, S.Talebi, A.Deole, M.Mesbahi, S.Bandyopadhyay, A.Rahmani Robust Controller Synthesis for Vision-based Spacecraft Guidance and Control, AIAA SciTech Forum and Exposition, 2022.
- J. Becktor, W. Seto, A.Deole, S.Bandyopadhyay, N. Rahimi, S.Talebi, M.Mesbahi, A.Rahmani Robust Vision-based Multi-spacecraft Guidance Navigation Control using CNN-based Pose Estimation, IEEE Aerospace Conference, 2022.
- S.Talebi, S.Alemzadeh, N. Rahimi, M.Mesbahi, On Regularizability and its Application to Online Control of Unstable LTI Systems, IEEE Transactions on Automatic Control, 2022 December issue.
- S.Talebi, S.Alemzadeh, N. Rahimi, M.Mesbahi, Online Regulation of Unstable LTI Systems from a Single Trajectory, IEEE Conference on Decision and Control, 2020.
- N. Rahimi, J. Liu, A. Shishkarev, I. Buzytsky, A. Banerjee, Auction Bidding Methods for Multi-Agent Consensus Optimization in Supply-Demand Networks, IEEE Robotics and Automation Letters, 2018.

Honors & Awards

- Ruth C. Hertzberg Endowed Fellowship, William E. Boeing Department of Aeronautics & Astronautics Engineering, 2018
- Ranked 81st among more than 300,000 participants in nationwide university entrance exam for BS degree, 2011.

SELECTED COURSE PROJECTS

Deep Learning

Oct 2019 - Dec 2019

• DDPG for UAV Autonomous Landing on a Moving Platform: In this work, I implemented the Deep Deterministic Policy Gradients (DDPG) algorithm for UAV Autonomous Landing on a Moving Platform.

Advanced Robotics

Oct 2017 – Dec 2017

• MDP and Collision avoidance for Multi Robots: In this work I implemented the Markov Decision Processes (MDP) algorithm for two homogeneous robots in an indoor environment, the goal of which was to take two victims out of a corrupted building, autonomously, without collision to obstacles or to one another.

Selected Courses

Learning and Robotics

- Deep Learning
- State Estimation
- Advance Robotics
- Robotics Algorithms & Application

Control Systems

- Linear Systems Theory
- Multivariable Control
- Nonlinear Control
- Robust Control

Mathematics

- Real Analysis
- Convex Optimization
- Numerical Optimization
- Advanced Stochastic Process

TEACHING EXPERIENCE

University of Washington

Sept 2018 – June 2019

• Teaching Assistant: Classical Control Theory

• Teaching Assistant: Linear Systems Theory

• Teaching Assistant: Orbital and Space Flight Mechanics