Computer Graphics

Scan-Conversion: Ellipse

Md. Biplob Hosen

Assistant Professor, IIT-JU

Email: biplob.hosen@juniv.edu

Contents

- Scan-Converting an Ellipse
- Ellipse Drawing Algorithm
 - ✓ Midpoint Algorithm
- Scan-Converting:
 - ✓ Arcs
 - ✓ Sectors
 - ✓ Rectangle

Scan Converting a Ellipse

• The ellipse is also a symmetric figure like a circle but is four-way symmetry rather than eight-way.

- There are two methods of defining an Ellipse:
 - Polynomial Method
 - Trigonometric Method

Polynomial Method

 The ellipse has a major and minor axis. If a and b are major and minor axis respectively. The centre of ellipse is (h, k). The value of x will be incremented from h to a and value of y will be calculated using the following formula:

$$y = b \sqrt{1 - \frac{(x - h)^2}{a^2}} + k$$

Drawback of Polynomial Method:

- It requires squaring of values. So floating point calculation is required.
- Routines developed for such calculations are very complex and slow.

Trignometric Method

- The following equation defines an ellipse trigonometrically:
 - $x = a \cos\theta + h$ and $y = b \sin\theta + k$. where (x, y) = the current coordinates.
 - a = length of major axis.
 - b = length of minor axis.
 - θ = current angle.
 - (h, k) = ellipse center.
- In this method, the value of θ is varied from 0 to $\pi/2$ radians. The remaining points are found by symmetry.

Drawback:

- This is an inefficient method.
- It is not an interactive method for generating ellipse.
- The table is required to see the trigonometric value.
- Memory is required to store the value of θ .

Midpoint Algorithm

- Implicit equation is: $F(x,y) = b^2x^2 + a^2y^2 a^2b^2 = 0$
- We have only 4-way symmetry
- There exists two regions:
 - In **Region 1** dx > dy
 - Increase x at each step
 - y may decrease
 - In **Region 2** dx < dy
 - Decrease y at each step
 - x may increase

Pseudo Code

```
x=0, y=b;
fx=0, fy=a^2b
p=b^2-a^2b+1/4(a^2)
while (fx<fy) {
 setPixel (x, y);
 X++;
 fx=fx+b^2;
 if(p<0)
         p=p+fx+b^2;
 else{
         V--;
        fy=fy-a^2;
         p=p+fx-fy+b^2;
setPixel(x,y);
```

```
p=b^2(x+0.5)^2+a^2(y-1)^2-a^2b^2
while (y>0) {
 y--;
 fy=fy-a<sup>2</sup>;
 if(p>=0)
         p=p-fy+a<sup>2</sup>;
 else{
         X++;
         fx=fx+b^2;
         p=p+fx-fy+a^2;
setPixel(x,y);
```

Example

• Draw an ellipse with a=8, b=6 using Midpoint Ellipse Algorithm.

• Solution:

• Region 1: initial (0,6)

i	X _i	y i	p _i	p _{i+1}	X _{i+1}	y _{i+1}	F _{x+1}	F _{y+1}
0	0	6	-332	-260	1	6	36	768
1	1	6	-260	-152	2	6	72	384
2	2	6	-152	-8	3	6	108	384
3	3	6	-8	172	4	6	144	384
4	4	6	172	68	5	5	180	320
5	5	5	68	64	6	4	216	256
6	6	4	64	160	7	3	252	192
7	7	3						

Continue...

• Region 2: initial (7,3)

i	X _i	y _i	p _i	p _{i+1}	X _{i+1}	y _{i+1}	f _x	f _y
8	7	3	23	201	8	2	288	128
9	8	2	201	201	8	1	288	64
10	8	1	201	265	8	0	288	0
11	8	0						

Exercise

- Generate all points of an ellipse with a=6, b=8 using Midpoint Ellipse Algorithm.
- Generate all points of an ellipse with a=14, b=10 using Midpoint Ellipse Algorithm center at (15, 10).

Scan-Converting ARCS

- An Arc can be generated using either the polynomial or the trigonometric method.
- When the trigonometric method is used, the starting value is set to θ_1 and the ending value is set to θ_2 .
- The rest of the steps are similar to those used when scan-converting a circle, except that symmetry is not used.

Scan-Converting Sectors

- A sector is scan-converted by using any of the methods of scan-converting an arc, and then scan-converting two lines from the center of the arc to the endpoints of the arc.
- For example, assume that a sector whose center is at point (h,k) is to be scan-converted.
- First scan-convert an arc from θ_1 to θ_2 .
- Next, a line to be scan-converted from (h, k) to (r $\cos\theta_1$ +h, r $\sin\theta_1$ +k).
- A second line to be scan-converted from (h, k) to (r $\cos\theta_2$ +h, r $\sin\theta_2$ +k).

Scan-Converting a Rectangle

- A rectangle whose sides are parallel to the co-ordinates axes may be constructed if the locations of two vertices are known. The remaining corner points are then derived.
- Once the vertices are known, the four sets of coordinates are sent to line routine and the rectangle is scan-converted.
- In the case of the rectangle shown, lines would be drawn as follows:
 - Line: (x_1, y_1) to (x_1, y_2)
 - Line: (x_1, y_2) to (x_2, y_2)
 - Line: (x_2, y_2) to (x_2, y_1)
 - Line: (x_{2}, y_{1}) to (x_{1}, y_{1})

Thank You!