Generic positivity of the Beilinson–Bloch height (joint with Shouwu Zhang)

Ziyang Gao

University of California, Los Angeles

Fort Collins, Colorado, SRI 2025

Motivation: Weil height

A. Weil (1928) defined height to measure the "size" of algebraic points.

- \bigcirc On \bigcirc : $h(a/b) = \log \max\{|a|, |b|\}$, for $a, b \in \mathbb{Z}$ and $\gcd(a, b) = 1$.
- On $\mathbb{P}^n(\mathbb{Q})$: $h([x_0:\dots:x_n]) = \log \max\{|x_0|,\dots,|x_n|\}$, for $x_i \in \mathbb{Z}$ and $\gcd(x_0,\dots,x_n) = 1$.
- Arbitrary number field K: For $[x_0 : \cdots : x_n]$ ∈ $\mathbb{P}^n(K)$,

$$h([x_0:\cdots:x_n]) = \frac{1}{[K:\mathbb{Q}]} \sum_{v \in M_K} \log \max\{\|x_0\|_v,\ldots,\|x_n\|_v\}.$$

 \leadsto (logarithmic) Weil height on $\mathbb{P}^n(\overline{\mathbb{Q}})$.

Motivation: Weil height

Two important properties \rightarrow \downarrow

Positivity

 $h(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{P}^n(\overline{\mathbb{Q}})$.

Northcott Property (1949)

For all B and $d \ge 1$,

$$\{\mathbf{x} \in \mathbb{P}^n(\overline{\mathbb{Q}}) : h(\mathbf{x}) \le B, [\mathbb{Q}(\mathbf{x}) : \mathbb{Q}] \le d\}$$

is finite.

2/24

Motivation: (naive) Height Machine

X projective variety defined over a number field K_0 .

- > X can be embedded into $\mathbb{P}^N \leadsto$ naive height h_{Weil} on $X(\overline{\mathbb{Q}})$
- ➤ Different embeddings → well-defined up to a bounded function.

Two important properties →

↓

Bounded from below

There exists C such that $h_{\mathrm{Weil}}(x) \geq C$ for all $x \in X(\overline{\mathbb{Q}})$.

Northcott Property

For all B and $d \ge 1$,

 $\{x\in X(\overline{\mathbb{Q}}):h(x)\leq B, [K_0(x):K_0]\leq d\}$

is finite.

Motivation: Dominant height function

- ightharpoonup X quasi-projective variety defined over $\overline{\mathbb{Q}}$;
- $\rightarrow h: X(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}.$

Definition

h is called a dominant height if it has a lower bound and satisfies the Northcott property.

Two famous examples:

Example

Néron-Tate height on abelian variety A, with lower bound 0. --- Mordell-Weil theorem, formulation of Birch and Swinnerton-Dyer Conjecture, etc.

Example (On the moduli space M_g of smooth projective curves of genus g)

 $h_{\mathrm{Fal}}: \mathbb{M}_g(\overline{\mathbb{Q}}) \to \mathbb{R}$, sending each curve C to the Faltings height of its Jacobian. \longrightarrow Mordell Conjecture.

Motivation: Dominant height function

- ightharpoonup X quasi-projective variety defined over $\overline{\mathbb{Q}}$;
- $\rightarrow h: X(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}.$

Definition

h is called a dominant height if it has a lower bound and satisfies the Northcott property.

Two famous examples:

Example

Néron-Tate height on abelian variety A, with lower bound 0. -- Mordell-Weil theorem, formulation of Birch and Swinnerton-Dyer Conjecture, etc.

Example (On the moduli space M_g of smooth projective curves of genus g)

 $h_{\operatorname{Fal}}: \mathbb{M}_g(\overline{\mathbb{Q}}) \to \mathbb{R}$, sending each curve C to the Faltings height of its Jacobian. \longrightarrow Mordell Conjecture.

Motivation: Beilinson-Bloch height and conjecture

Aim (from 1980s):

- Extend height from points to higher cycles which are homologically trivial (Beilinson–Bloch height).
- > Positivity of BB height.
- Finiteness of the rank of Chow group.
- Generalization of BSD.

Known results

- Conjecturally defined.
 Unconditional in some cases
 (Gross–Schoen, Künnemann,
 S. Zhang).
- > Some sporadic families.
- > ???
- > ???

Motivation: Gross-Schoen and Ceresa cycles

Example (BB height is known to be unconditionally defined)

- ightharpoonup C smooth projective curve of genus $g \ge 2$;
- $\triangleright \xi \in \operatorname{Pic}^1(C)$ such that $(2g-2)\xi = \omega_C$.

From these data, we obtain homologically trivial 1-cycles:

- \bigcirc (Gross–Schoen) $\triangle_{GS}(C) \in Ch_1(C^3)$ the modified diagonal;
- \bigcirc (Ceresa) $Ce(C) := i_{\xi}(C) [-1]^* i_{\xi}(C) \in Ch_1(J)$, with J = Jac(C).

modified diagonal

$$\Delta_{123}$$
 $-\Delta_{12}$ $-\Delta_{23}$ $-\Delta_{13}$ $+\Delta_{1}$ $+\Delta_{2}$ $+\Delta_{3}$.

Goal of the project

Propose a systematic way to study the positivity of the Beilinson–Bloch height $\langle \bullet, \bullet \rangle_{BB}$.

> Starting point: Use $\langle \bullet, \bullet \rangle_{BB}$ to define a function on a suitable parametrizing space.

Setup for our main result

Two functions on \mathbb{M}_g :

$$h_{\mathrm{GS}} : \mathbb{M}_g(\overline{\mathbb{Q}}) \to \mathbb{R}, \qquad [C] \mapsto \langle \Delta_{\mathrm{GS}}(C), \Delta_{\mathrm{GS}}(C) \rangle_{\mathrm{BB}}$$

 $h_{\mathrm{Ce}} : \mathbb{M}_g(\overline{\mathbb{Q}}) \to \mathbb{R}, \qquad [C] \mapsto \langle \mathrm{Ce}(C), \mathrm{Ce}(C) \rangle_{\mathrm{BB}}$

Facts: > Both vanish on the hyperelliptic locus;

 $\rightarrow h_{\rm GS} = 6h_{\rm Ce}$

Question (in different grades)

Assume $g \ge 3$.

- $^{\circ}$ (i) Is h_{GS} a dominant height (lower bound + Northcott property) on a Zariski open dense subset U of \mathbb{M}_g defined over \mathbb{Q} ? \longrightarrow generic positivity
- (ii) Can we determine U?
- \bigcirc (iii) Is the lower bound ≥ 0 ?

Our main result

Theorem (G'-S.Zhang, 2024)

Assume $g \geq 3$. Let \mathbb{M}_g^{amp} be the maximal $\overline{\mathbb{Q}}$ -Zariski open subset of \mathbb{M}_g on which h_{GS} is a dominant height.

Then $\mathbb{M}_g^{\mathrm{amp}}$ is non-empty and is defined over \mathbb{Q} . \checkmark for (i)

Moreover, $\mathbb{M}_q^{\text{amp}}$ can be "constructed". \checkmark partially for (ii)

Still, we need to express $\mathbb{M}_g^{\rm amp}$ more explicitly and need to show that the lower bound is ≥ 0 . But already, we have

Corollary (Generic positivity)

For any number field K, there are at most finitely many C/K lying in $\mathbb{M}_g^{amp}(\overline{\mathbb{Q}})$ such that $h_{GS}([C]) \leq 0$.

Key steps of our proof

Steps:

- $ightharpoonup h_{\mathrm{GS}}$ defined by an a.l.b. $\overline{\mathscr{L}}$
- \succ volume identity for $vol(\widetilde{\mathscr{L}})$

Tools:

- Adelic line bundle (Yuan–Zhang 2021).
- ➤ Morse Inequality (Demailly 1991).

Bridged via:

- Abel–Jacobi periods (Griffiths 1960s)
- archimedean local heights (Hain 1990s)
- > Algebraicity of Betti strata
- > Non-vanishing of Betti form
- Mixed Ax-Schanuel (Chiu/Gao-Klingler 2021).
- O-minimality for period map (Bakker, Brunebarbe, Klingler, Tsimerman 2018–2020...).

Theorem

There exists an adelic line bundle $\overline{\mathscr{L}}$ on \mathbb{M}_g such that $h_{GS} = h_{\overline{\mathscr{L}}}$.

A construction was given by Yuan. We give a new construction using:

- ➤ Polarized dynamical system on the universal Jacobian $Jac(\mathcal{C}_g/\mathbb{M}_g) \to \mathbb{M}_g$.
- ightharpoonup Deligne pairing to "push-forward" adelic line bundles on $\mathscr{C}_g \times_{\mathbb{M}_g} \mathscr{C}_g$ to \mathbb{M}_g .
- Explicit computation.
- We use our construction to prove the volume identity.

What is an adelic line bundle, and what is the motivation/idea behind?

Let (X, L) projective variety with a line bundle, defined over a number field K.

- ➤ Naive height $h_L: X(\overline{\mathbb{Q}}) \to \mathbb{R}$, well-defined up to a bounded function.
- Wish to get genuine functions. Sometimes okay, e.g. Néron-Tate height on abelian varieties.
- > In general, integral model $(\mathcal{X}, \overline{\mathcal{L}})$, with $\overline{\mathcal{L}}$ a Hermitian line bundle. But cannot recover Néron–Tate height in this way!!
- ➤ Solution: Put a $\overline{K_v}$ -metric of L on $X(\overline{K_v})$ for all $v \in M_K \leadsto$ metrized line bundle An adelic line bundle $\overline{\mathscr{L}}$ is a metrized line bundle which can be obtained as a "limit" of integral models.
- This construction can be generalized to quasi-projective varieties, "limit" of integral models of compactifications of $X \leadsto \text{generic fiber } \mathscr{D} \text{ of } \mathscr{L}$.

Example $(X = \operatorname{Spec} K)$

An adelic line bundle on Spec K is $(L, \{\|\cdot\|_V\}_V)$ with L = vector space of dim 1 and $\|\cdot\|_V$ a K_V -metric, satisfying: $\forall \ell \in L \setminus \{0\}, \|\ell\|_V = 1$ for all but finitely many V.

What is an adelic line bundle, and what is the motivation/idea behind?

Let (X, L) projective variety with a line bundle, defined over a number field K.

- ➤ Naive height $h_L: X(\overline{\mathbb{Q}}) \to \mathbb{R}$, well-defined up to a bounded function.
- Wish to get genuine functions. Sometimes okay, e.g. Néron-Tate height on abelian varieties.
- In general, integral model $(\mathcal{X}, \overline{\mathcal{L}})$, with $\overline{\mathcal{L}}$ a Hermitian line bundle. But cannot recover Néron–Tate height in this way!!
- ➤ Solution: Put a $\overline{K_v}$ -metric of L on $X(\overline{K_v})$ for all $v \in M_K \leadsto$ metrized line bundle An adelic line bundle $\overline{\mathscr{L}}$ is a metrized line bundle which can be obtained as a "limit" of integral models.
- ➤ This construction can be generalized to quasi-projective varieties, "limit" of integral models of compactifications of $X \leadsto \text{generic fiber } \widetilde{\mathscr{L}}$ of $\overline{\mathscr{L}}$.

Example $(X = \operatorname{Spec} K)$

An adelic line bundle on Spec K is $(L, \{\|\cdot\|_{V}\}_{V})$ with L = vector space of dim 1 and $\|\cdot\|_{V}$ a K_{V} -metric, satisfying: $\forall \ell \in L \setminus \{0\}, \|\ell\|_{V} = 1$ for all but finitely many V.

What is an adelic line bundle, and what is the motivation/idea behind?

Let (X, L) projective variety with a line bundle, defined over a number field K.

- \succ Naive height $h_L: X(\overline{\mathbb{Q}}) \to \mathbb{R}$, well-defined up to a bounded function.
- Wish to get genuine functions. Sometimes okay, e.g. Néron-Tate height on abelian varieties.
- In general, integral model $(\mathscr{X}, \overline{\mathscr{L}})$, with $\overline{\mathscr{L}}$ a Hermitian line bundle. But cannot recover Néron–Tate height in this way!!
- ➤ Solution: Put a $\overline{K_v}$ -metric of L on $X(\overline{K_v})$ for all $v \in M_K \leadsto$ metrized line bundle An adelic line bundle $\overline{\mathscr{L}}$ is a metrized line bundle which can be obtained as a "limit" of integral models.
- > This construction can be generalized to quasi-projective varieties, "limit" of integral models of compactifications of $X \leadsto \text{generic fiber } \widetilde{\mathscr{L}}$ of $\overline{\mathscr{L}}$.

Example $(X = \operatorname{Spec} K)$

An adelic line bundle on Spec K is $(L, \{\|\cdot\|_V\}_V)$ with L = vector space of dim 1 and $\|\cdot\|_V$ a K_V -metric, satisfying: $\forall \ell \in L \setminus \{0\}, \|\ell\|_V = 1$ for all but finitely many V.

Volume identity

Recall our main theorem

Theorem (G'-S.Zhang, 2024)

Assume $g \ge 3$. Then h_{GS} is a dominant height on a Zariski open dense subset \mathbb{M}_{q}^{amp} of \mathbb{M}_{q} defined over \mathbb{Q} . \checkmark for (i)

Moreover, Mamp can be "constructed".

partially for (ii)

➤ Part (i) except "defined over \mathbb{Q} " $\Leftrightarrow \widetilde{\mathscr{L}}$ is big, i.e. $\operatorname{vol}(\widetilde{\mathscr{L}}) > 0$.

A key property we prove is the following volume identity.

Theorem (GZ 2024)

$$\operatorname{vol}(\widetilde{\mathscr{L}}) = \int_{\mathbb{M}_{\mathcal{I}}(\mathbb{C})} c_1(\overline{\mathscr{L}})^{\wedge \dim \mathbb{M}_g}.$$
 "over \mathbb{Q} "

Theorem (GZ 2024)

For each subvariety
$$S$$
 of $M_{g,\mathbb{C}}$, we have

$$\operatorname{vol}(\widetilde{\mathscr{L}}_{\mathbb{C}}|_{S}) = \int_{S(\mathbb{C})} c_{1}(\overline{\mathscr{L}})^{\wedge \dim S}.$$

Volume identity

Recall our main theorem

Theorem (G'-S.Zhang, 2024)

Assume $g \ge 3$. Then h_{GS} is a dominant height on a Zariski open dense subset \mathbb{M}_g^{amp} of \mathbb{M}_g defined over \mathbb{Q} . \checkmark for (i)

Moreover, \mathbb{M}_g^{amp} can be "constructed". \checkmark partially for (ii)

ightharpoonup Part (i) except "defined over \mathbb{Q} " \Leftrightarrow $\widetilde{\mathscr{L}}$ is big, *i.e.* $\operatorname{vol}(\widetilde{\mathscr{L}}) > 0$. A key property we prove is the following volume identity.

Theorem (GZ 2024)

$$\operatorname{vol}(\widetilde{\mathscr{L}}) = \int_{\mathbb{M}_g(\mathbb{C})} c_1(\overline{\mathscr{L}})^{\wedge \dim \mathbb{M}_g}.$$
 needed if

Stronger: needed for "over 0"

Theorem (GZ 2024)

For each subvariety S of $\mathbb{M}_{g,\mathbb{C}}$, we have

$$\operatorname{vol}(\widetilde{\mathscr{L}}_{\mathbb{C}}|_{S}) = \int_{S(\mathbb{C})} c_{1}(\overline{\mathscr{L}})^{\wedge \dim S}.$$

4 □ > 4 □ > 4 □ > 4 □ >

Volume identity

Theorem (GZ 2024)

For each subvariety S of $\mathbb{M}_{g,\mathbb{C}}$, we have

$$\operatorname{vol}(\widetilde{\mathscr{L}}_{\mathbb{C}}|_{S}) = \int_{S(\mathbb{C})} c_{1}(\overline{\mathscr{L}})^{\wedge \dim S}.$$

- ▶ LHS defined using some kind of h^0 , so invariant under Aut(ℂ).
 - \longrightarrow Used for "over \mathbb{Q} " in the main theorem.
- > In the flavor of (arithmetic) Hilbert-Samuel.
- ightharpoonup Problem: $\widetilde{\mathscr{L}}$ is not known to be nef!!!
- > Solution: Compute $\operatorname{vol}(\widehat{\mathscr{L}}_{\mathbb{C}}|_{S})$ directly, by our explicit construction of $\overline{\mathscr{L}} = \{(\mathscr{M}_{i}, \overline{\mathscr{L}}_{i})\}_{i \geq 1}$ and the fact $\operatorname{vol}(\mathscr{L}_{i,\mathbb{Q}}|_{\overline{S}}) \longrightarrow \operatorname{vol}(\widehat{\mathscr{L}}_{\mathbb{C}}|_{S})$. Use Demailly's Morse Inequality to bound $h^{0}(m\mathscr{L}_{i,\mathbb{C}}|_{\overline{S}})$ and hence handle $\operatorname{vol}(\mathscr{L}_{i,\mathbb{C}}|_{\overline{S}})$. Need our explicit construction to get fast enough convergence.

A dévissage

Theorem (G'-S.Zhang, 2024)

Assume $g \ge 3$. Then h_{GS} is a dominant height on a Zariski open dense subset \mathbb{M}_q^{amp} of \mathbb{M}_g defined over \mathbb{Q} . \checkmark for (i)

Volume Identity

For each subvariety S of $\mathbb{M}_{g,\mathbb{C}}$,

$$\operatorname{vol}(\widetilde{\mathscr{L}}_{\mathbb{C}}|_{S}) = \int_{S(\mathbb{C})} c_{1}(\overline{\mathscr{L}})^{\wedge \dim S}.$$

Theorem (GZ 2024)

$$> c_1(\overline{\mathscr{L}}) \geq 0,$$

$$> c_1(\overline{\mathcal{L}})^{\wedge \dim M_g} \not\equiv 0 \text{ if } g \geq 3,$$

$$\quad \text{``} \left\{ x \in S(\mathbb{C}) : (c_1(\overline{\mathcal{L}})|_S^{\wedge \dim S})_x = 0 \right\} \text{''}$$

It remains to prove this.

A dévissage

Theorem (G'-S.Zhang, 2024)

Assume $g \ge 3$. Then h_{GS} is a dominant height on a Zariski open dense subset \mathbb{M}_q^{amp} of \mathbb{M}_g defined over \mathbb{Q} . \checkmark for (i)

Volume Identity

For each subvariety S of $\mathbb{M}_{g,\mathbb{C}}$,

$$\operatorname{vol}(\widetilde{\mathscr{L}}_{\mathbb{C}}|_{S}) = \int_{S(\mathbb{C})} c_{1}(\overline{\mathscr{L}})^{\wedge \dim S}.$$

Theorem (GZ 2024)

- $ightharpoonup c_1(\overline{\mathcal{L}}) \geq 0,$
- $ightharpoonup c_1(\overline{\mathcal{L}})^{\wedge \dim \mathbb{M}_g} \not\equiv 0 \text{ if } g \geq 3,$
- $* \{x \in S(\mathbb{C}) : (c_1(\overline{\mathcal{L}})|_S^{\wedge \dim S})_x = 0\}"$ is Zariski closed.

It remains to prove this.

Key steps:

- \checkmark $h_{\rm GS}$ defined by an a.l.b. $\overline{\mathscr{L}}$
- \checkmark volume identity for $vol(\widetilde{\mathscr{L}})$
 - Bridged via:
- Abel–Jacobi periods (Griffiths 1960s)
- archimedean local heights (Hain 1990s)

- > Algebraicity of Betti strata
- Non-vanishing of Betti form

Some tools:

- Adelic line bundle.
- Morse Inequality.

- Mixed Ax–Schanuel (Chiu/Gao–Klingler 2021).
 O-minimality for period map
- O-minimality for period map (Bakker, Brunebarbe, Klingler, Tsimerman 2018–2020...).

Key steps:

Main theorem reduced to prove:

- $ightharpoonup c_1(\overline{\mathscr{L}}) \geq 0,$
- $ightharpoonup c_1(\overline{\mathscr{L}})^{\wedge \dim \mathbb{M}_g} \not\equiv 0 \text{ if } g \geq 3,$
- $* \{x \in S(\mathbb{C}) : (c_1(\overline{\mathcal{L}})|_S^{\wedge \dim S})_x = 0\}"$ is Zariski closed, \forall subvariety S.

Some tools:

- Adelic line bundle.
- Morse Inequality.

Bridged by: (R. de Jong, GZ) $c_1(\overline{\mathscr{L}})$ equals the Betti form.

- Algebraicity of Betti strata
- checkable criterion for non-vanishing of Betti form
- Mixed Ax-Schanuel (Chiu/Gao-Klingler 2021).
- O-minimality for period map (Bakker, Brunebarbe, Klingler, Tsimerman 2018–2020...).

works for any family of homologically trivial cycles.

Key steps:

Main theorem reduced to prove:

- $ightharpoonup c_1(\overline{\mathscr{L}}) \geq 0,$
- $ightharpoonup c_1(\overline{\mathscr{L}})^{\wedge \dim \mathbb{M}_g} \not\equiv 0 \text{ if } g \geq 3,$
- $* \{x \in S(\mathbb{C}) : (c_1(\overline{\mathcal{L}})|_S^{\wedge \dim S})_x = 0\}"$ is Zariski closed, \forall subvariety S.

Some tools:

- Adelic line bundle.
- Morse Inequality.

Bridged by: (R. de Jong, GZ) $c_1(\overline{\mathscr{L}})$ equals the Betti form.

- Algebraicity of Betti strata
- checkable criterion for non-vanishing of Betti form

- Mixed Ax-Schanuel (Chiu/Gao-Klingler 2021).
- O-minimality for period map (Bakker, Brunebarbe, Klingler, Tsimerman 2018–2020...).

works for any family of homologically trivial cycles.

Key steps:

Main theorem reduced to prove:

- $ightharpoonup c_1(\overline{\mathscr{L}}) \geq 0,$
- $ightharpoonup c_1(\overline{\mathscr{L}})^{\wedge \dim \mathbb{M}_g} \not\equiv 0 \text{ if } g \geq 3,$
- > " $\{x \in S(\mathbb{C}) : (c_1(\overline{\mathcal{L}})|_S^{\wedge \dim S})_x = 0\}$ " is Zariski closed, ∀ subvariety S.

Some tools:

- Adelic line bundle.
- Morse Inequality.

Bridged by: (R. de Jong, GZ) $c_1(\overline{\mathscr{L}})$ equals the Betti form.

- > Algebraicity of Betti strata
- checkable criterion for non-vanishing of Betti form
- Mixed Ax–Schanuel (Chiu/Gao–Klingler 2021).
- O-minimality for period map (Bakker, Brunebarbe, Klingler, Tsimerman 2018–2020...).

works for any family of homologically trivial cycles.

General setup for studying Betti strata/form/foliation

- $\succ f: X \rightarrow S$ projective morphism over quasi-projective variety, over \mathbb{C} ,
- \triangleright Z is a family of homologically trivial cycles, of codimension n.

Example (Gross-Schoen and Ceresa)

- (GS) $f: \mathscr{C}_g \times_{\mathbb{M}_g} \mathscr{C}_g \times_{\mathbb{M}_g} \mathscr{C}_g \to \mathbb{M}_g$, Z is the family of Gross–Schoen cycles. n = 2.
- (Ce) $f: \operatorname{Jac}(\mathscr{C}_g/\mathbb{M}_g) \to \mathbb{M}_g$, Z is the family of Ceresa cycles. n = g 1.
 - $ightharpoonup \mathbb{V}_{\mathbb{Z}}:=Rf_*^{2n-1}\mathbb{Z}_X.$ Each fiber $\mathbb{V}_{\mathbb{Z},s}=H^{2n-1}(X_s,\mathbb{Z}).$
 - ➤ de Rham–Betti comparison $\Rightarrow V_{\mathbb{Z}}$ is a VHS (variation of Hodge structures) of weight 2n-1.
 - Polarization (by Lefschetz)

$$Q: \mathbb{V} \otimes \mathbb{V} \to \mathbb{Q}_{S}(-n)$$

with $\mathbb{V} := \mathbb{V}_{\mathbb{Z}} \otimes_{\mathbb{Z}_{\mathcal{S}}} \mathbb{Q}_{\mathcal{S}}$.

Intermediate Jacobian and normal function

Definition

The n-th relative intermediate Jacobian is

$$J^n(X/S) := F^n \mathscr{V} \setminus \mathscr{V} / \mathbb{V}_{\mathbb{Z}},$$

with $\mathscr{V} := \mathbb{V}_{\mathbb{Z}} \otimes_{\mathbb{Z}_S} \mathscr{O}_S$ the holomorphic vector bundle.

The fibers are

(*)
$$J^n(X_s) = F^n \setminus H^{2n-1}(X_s, \mathbb{C}) / H^{2n-1}(X_s, \mathbb{Z})$$
 compact complex torus $\cong H^{2n-1}(X_s, \mathbb{R}) / H^{2n-1}(X_s, \mathbb{Z})$ real torus

➤ (Griffiths 1969) AJ: $Ch^n(X_s)_{hom} \to J^n(X_s)$.

Definition (Normal function)

$$v = v_Z \colon S \to J^n(X/S), \qquad s \mapsto \mathrm{AJ}(Z_s).$$

Betti form, Betti foliation, Betti strata

Family version of (*) becomes

$$J^n(X/S) \xrightarrow{\sim} \mathbb{V}_{\mathbb{R}}/\mathbb{V}_{\mathbb{Z}}.$$

$$\nu_{\text{Betti},s} \colon T_{s}S \xrightarrow{\text{d}\nu} T_{\nu(s)}J^{n}(X/S)
\cong T_{\nu(s)} \mathbb{V}_{\mathbb{R}}/\mathbb{V}_{\mathbb{Z}}
= T_{s}S \oplus \mathbb{V}_{\mathbb{R},s} \to \mathbb{V}_{\mathbb{R},s}$$

 $\mathbb{V}_{\mathbb{R}}/\mathbb{V}_{\mathbb{Z}} \to S$ local system of real tori \downarrow Betti foliation $\mathscr{F}_{\text{Betti}}$ on $J^n(X/S)$

Definition (Betti form)

$$\beta_{\mathcal{V}}(u, v) := 2Q_{\mathcal{S}}(\nu_{\text{Betti}, \mathcal{S}}(u), \nu_{\text{Betti}, \mathcal{S}}(v))$$
 for all $s \in \mathcal{S}(\mathbb{C})$ and $u, v \in T_s S$.

> β_{ν} semi-positive (1, 1)-form (Hain 1990s, using Griffiths' transversality)

Definition (Betti strata)

For any
$$t \ge 1$$
, $S^{\text{Betti}}(t) := \{s \in S(\mathbb{C}) : \dim_s(\nu(S) \cap \mathscr{F}_{\text{Betti}}) \ge t\}$.

$$\triangleright \beta_{\nu}^{\wedge \dim S} \equiv 0 \text{ "} \Leftrightarrow "S^{\text{Betti}}(1) = S$$

Our result on Betti rank and Betti strata

Theorem (GZ 2024)

- $\gt S^{\text{Betti}}(t)$ is Zariski closed in S.
- We have a checkable criterion for $S^{\text{Betti}}(t) = S$ (equivalently a formula to compute the generic rank of $\nu_{\text{Betti},s}$). In particular, a checkable criterion for $\beta_{\nu}^{\wedge \dim S} \equiv 0$.
- O-minimality for period map to use definable Chow.
- Mixed Ax-Schanuel used twice, second time is through Geometric Zilber-Pink (an application of Ax-Schanuel; <u>Ullmo</u>, Daw-Ren, Gao, Baldi-Klingler-Ullmo, <u>Baldi-Urbanik</u>).

Back to Gross-Schoen and Ceresa

Main theorem reduced to prove:

For our adelic line bundle $\overline{\mathscr{L}}$ on \mathbb{M}_g with $h_{\overline{\mathscr{L}}} = h_{GS}$:

- $ightharpoonup c_1(\overline{\mathcal{L}}) \geq 0,$
- $ightharpoonup c_1(\overline{\mathscr{L}})^{\wedge \dim \mathbb{M}_g} \not\equiv 0 \text{ if } g \geq 3,$
- $* \{x \in S(\mathbb{C}) : (c_1(\overline{\mathscr{L}})|_S^{\wedge \dim S})_x = 0\} " \text{ is Zariski closed, } \forall \text{ subvariety } S \subseteq \mathbb{M}_{g,\mathbb{C}}.$
 - 1

(R. de Jong, GZ) $c_1(\mathcal{L})$ equals the Betti form β_{GS} .

Corollary (particular case of GZ 2024 on Betti rank and Betti strata)

- $> \beta_{GS} \ge 0$ (Hain 1990s),
- > $\beta_{GS}^{\wedge \text{dim} Mg} \not\equiv 0$ if $g \ge 3$ (in this case independently by Hain 2024),
- > S(1) is Zariski closed, \forall subvariety $S \subseteq \mathbb{M}_{g,\mathbb{C}}$.

Back to Gross-Schoen and Ceresa

Main theorem reduced to prove:

For our adelic line bundle $\overline{\mathscr{L}}$ on \mathbb{M}_g with $h_{\overline{\mathscr{L}}} = h_{GS}$:

- $ightharpoonup c_1(\overline{\mathcal{L}}) \geq 0,$
- $\succ c_1(\overline{\mathscr{L}})^{\wedge \dim \mathbb{M}_g} \not\equiv 0 \text{ if } g \geq 3,$
- $* \{x \in S(\mathbb{C}) : (c_1(\overline{\mathcal{L}})|_S^{\wedge \dim S})_x = 0\} " is Zariski closed, \forall subvariety S \subseteq \mathbb{M}_{g,\mathbb{C}}.$
 - ⇑

(R. de Jong, GZ) $c_1(\overline{\mathscr{L}})$ equals the Betti form β_{GS} .

Corollary (particular case of GZ 2024 on Betti rank and Betti strata)

- > $\beta_{GS} \ge 0$ (Hain 1990s),
- > $\beta_{\text{GS}}^{\wedge \dim \mathbb{M}_g} \not\equiv 0$ if $g \geq 3$ (in this case independently by Hain 2024),
- > S(1) is Zariski closed, \forall subvariety $S \subseteq M_{g,\mathbb{C}}$.

Our main result

Theorem (G'-S.Zhang, 2024)

Assume $g \ge 3$. Let \mathbb{M}_g^{amp} be the maximal $\overline{\mathbb{Q}}$ -Zariski open subset of \mathbb{M}_g on which h_{GS} is a dominant height.

Then $\mathbb{M}_g^{\mathrm{amp}}$ is non-empty and is defined over \mathbb{Q} . \checkmark for (i)

Moreover, $\mathbb{M}_q^{\text{amp}}$ can be "constructed". \checkmark partially for (ii)

Corollary (Generic positivity)

For any number field K, there are at most finitely many C/K lying in $\mathbb{M}_g^{amp}(\overline{\mathbb{Q}})$ such that $h_{GS}([C]) \leq 0$.

ightharpoonup Extra result on torsion: For every non- $\mathbb Q$ point [C] in $\mathbb M_g^{\mathrm{amp}}$, the cycles $\Delta_{\mathrm{GS}}(C)$ and $\mathrm{Ce}(C)$ are not torsion in the Chow groups. This is also independently proved by Hain (2024) for a non-empty real-analytic open subset and Kerr–Tayou (2024) for a $\mathbb C$ -Zariski open dense subset.

Thanks!