Ordinal Dependent Variables

Week 18

Winnie Xia

What are ordinal dependent variables?

Ordered logit and probit regression

Ordered logit and probit in R

```
library(foreign)
dat <- read.dta("https://stats.idre.ucla.edu/stat/data/ologit.dta")
head(dat)</pre>
```

```
##
           apply pared public
      very likely
## 1
                         0 3.26
## 2 somewhat likely
                         0 3.21
         unlikelv
## 3
                   1 3.94
## 4 somewhat likely
                   0 0 2.81
## 5 somewhat likely
                   0 0 2.53
         unlikely
## 6
                         1 2.59
```

Ordered logit and probit in R

Below we use the polr function from the MASS package to estimate an ordered logistic regression model.

Ordered logit and probit in R

##				
##	=======================================	:========	========	========
##		Model 1	Model 2	Model 3
##				
##	pared	1.05 ***	0.60 ***	0.36 ***
##		(0.27)	(0.16)	(0.09)
##	public	-0.06	0.01	0.02
##		(0.30)	(0.17)	(0.10)
##	gpa	0.62 *	0.36 *	0.19 *
##		(0.26)	(0.16)	(0.09)
##	unlikely somewhat likely	2.20 **	1.30 **	
##		(0.78)	(0.47)	
##	somewhat likely very likely	4.30 ***	2.50 ***	
##		(0.80)	(0.48)	
##	(Intercept)			0.91 ***
##				(0.25)
##				
##	AIC	727.02	727.50	798.34
##	BIC	746.98	747.45	818.29
##	Log Likelihood	-358.51	-358.75	-394.17
	Deviance	717.02	717.50	168.08
##	Num. obs.	400	400	400

6/10

Interpretation

summary(m1)

```
## Call:
## polr(formula = apply ~ pared + public + gpa, data = dat, Hess = TRUE,
##
      method = "logistic")
##
## Coefficients:
         Value Std. Error t value
##
## pared 1.04769 0.2658 3.9418
## public -0.05879 0.2979 -0.1974
## gpa
      0.61594 0.2606 2.3632
##
  Intercepts:
##
                             Value Std. Error t value
## unlikely|somewhat likely 2.2039 0.7795 2.8272
  somewhat likely|very likely 4.2994 0.8043 5.3453
##
## Residual Deviance: 717.0249
## AIC: 727.0249
```

Interpretation

We often interpret models by employing prediction based on scenarios.

The Parallel Regression Assumption

• Assessing the parallel regression assumption