МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ КАФЕДРА ПРИКЛАДНОЙ МЕХАНИКИ

Лабораторная работа №1

Оценка состояния сердечно-сосудистой системы методом пульсовой волны

Выполнил: студент группы Б01-008 Ксения Юрко

Оглавление

1. Введение	3
1.1. Цели:	
1.2. Задачи:	
2. Теория	
2.1. Термины и определения	
2.2. Физическая система	
2.3. Экспериментальная установка	
3. Программа и методика измерений	
3.1. Методика калибровки	7
3.2. Методика измерений	
3.3. Программа эксперимента	
4. Обработка данных	
4.1. Сглаживаение графиков	
4.2. Методика обработки данных	
5. Код программы	
5.1. Скрипт измерения давления	
5.2. Скрипт обработки данных	
5.3. Скрипт построения графиков	
6. Эксперимент	17
6.1. Калибровка	17
6.2. Графики давления	
6.3. Графики пульса	
7. Результаты	
8. Итоги лабораторной работы	

1. Введение

1.1. Цели:

При помощи компьютера, аналого-цифрового преобразователя и датчика давления, измерить артериальное давление и вычислить пульс, в состоянии покоя и после физической нагрузки. Сравнить результаты

1.2. Задачи:

- Собрать экспериментальную установку для измерения артериального давления, состоящую из компьютера, датчика давления, аналого-цифрового преобразователя и манометра.
- Написать три программы: 1) Программа калибровки датчика давления; 2) Программа для записи измерений (в барах) датчика давления; 3) Программа для построения графика зависимости артериального давления от времени, графика пульсовой волны, вычисления пульса.
- Откалибровать датчик давления.
- Измерить артериальное давлене в состоянии покоя и после физической нагрузки
- Проанализировать полученные данные и вычислить пульс
- Сделать вывод

2. Теория

2.1. Термины и определения

• Аналого-цифровой преобразователь — электронное устройство, преобразующее входной аналоговый сигнал (напряжение) в дискретный код.

Рисунок 1: Схема подключения АПЦ.

- Артериальное давление (АД) давление, которое оказывает кровь на стенки артерий. Оно неравномерно и колеблется в зависимости от фазы работы сердца.
- Систолическое давление это сила, с которой насыщенная кислородом кровь выталкивается из сердца и расходится по телу.
- Диастолическое это давление крови на стенки сосудов в момент, когда сердце наполняется и отдыхает между ударами.
- Пульс ритмическое движение стенок артерий, вызываемое деятельностью сердца
- Тонометр это медицинский аппарат, предназначенный для измерения артериального давления.

Рисунок 2: Устройство тонометра.

2.2. Физическая система

В данной лабораторной работе исследуемой физической системой является кровеносная система студента и медицинский тонометр. Сигналом, характеризующим состояние данной физической системы, является давление.

Для автоматизированных измерений датчик давления соединен с манжетой и монометром. Датчик преобразует давление воздуха в манжете в напряжение, которое подаётся на вход АЦП.

Скрипт, производящий автоматизированный измеренеия, непрерыно записывает цифровые эквиваленты напряжения на входе АЦП в течение всего эксперимента и собирает результат каждой оцифровки в массив. По окончанию эксперимента полученные данные сохраняются в файл для последующей обработки.

Для перевода отсчётов АЦП в миллиметры ртутного столаба проводится калибровка экспериментальной установки. Для калибровки требуются две точки соответствия мм. рт. ст. показаниям АЦП.

В ходе обработки данных эксперимента отсчёты АЦП переводятся в мм. рт. ст., а номера измерений в секунды. По графикам зависимости далвения воздуха в манжете от времени оценивается артериальное давление и пульс испытуемого студента в момент проведения эксперимента.

2.3. Экспериментальная установка

В экспериментальной установке используются: манжета, нагнетательная груша, датчик давления, манометр, 8-битный аналого-цифровой преобразователь (АЦП), программа, персональный компьютер (ПК).

Приведем схему экспериментальной установки для измерения и регистрации артериального давления (рис. 3).

Рисунок 3: Схема экспериментальной установки

Основным измерительным элементом в данной работе является датчик давления 4 (рис. 4)

Рисунок 4: Схема экспериментальной установки

Конструкция датчика давления представляет собой электронную схему, содержащую операционный усилитель, выполненный по биполярной технологии, и тонкопленочный

резистор, изготовленные на одном кристалле. Датчики обеспечивают температурную компенсацию в диапазоне от –40 до +125 °C. Схема выдает пропорциональный давлению «Р» аналоговый сигнал. Корпус из износостойкого термопластика защищает внутреннюю часть прибора от влияния высокой влажности и агрессивной среды. В конструкции прибора использованы МЭМС технологии (Microelectromechanical Systems – микроэлектромеханические системы). Давление в магистрали тонометра преобразуется в электрический сигнал датчиком давления. Сигнал датчика преобразуется 8-разрядным АЦП в цифровую форму и подаётся в ПК.

Рисунок 5: Общий вид экспериментальной установки

3. Программа и методика измерений

3.1. Методика калибровки

- 1) Надеть манжету цилиндр, плотно затянуть.
- 2) Нагнетательной грушей создать в манжете постоянное давление.
- 3) Сфотографировать показания манометра.
- 4) Запустить скрипт сбора данных для калибровки (пп. 5.1).
- 5) Выполнить действия из п. 2-4 для второго значения давления.

3.2. Методика измерений

- 1) Надеть манжету на руку, плотно затянуть.
- 2) Нагнетательной грушей создать в манжете давление больше 160 мм. рт. ст.
- 3) Запустить скрипт для измерения давления (пп. 5.1) и начать медленно стравлять воздух из манжеты в течение 20 секунд, наблюдая за показаниями манометра.
- 4) Сделать 20 приседаний
- 5) Выполнить действия из п. 1-4 для давления после физической нагрузки.

3.3. Программа эксперимента

- давление для калибровки:
 - ∘ 1000 имерений при давлении 160 мм. рт. ст.;
 - ∘ 1000 измерений при давлении 40 мм. рт. ст.;
- давление в манжете в течение 20 секунд в состоянии покоя;
- давления в манжете в течение 20 секунд после 20 приседаний.

4. Обработка данных

4.1. Сглаживаение графиков

При обработке данных, для сглаживания графика испльзуется скользящая средняя - функция, значение которой в каждой точке равно некоторому среднему значению исходной функции за предыдущий период.

Простое скользящее среднее численно равно среднему арифметическому значений исходной функции за установленный период и вычисляется по формуле:

$$SMA_{t} = \frac{1}{n} \sum_{i=0}^{n-1} p_{t-i}$$
 (1)

Скользящая средняя эквивалентна свертке массива с вектором, длина которого N, со всеми элементами, равными 1/N, поэтому будем использовать функцию np.convolve (a, v, mode = 'valid'), которая возвращает дискретную линейную свертку двух одномерных последовательностей.

Реализация Numpy для функции convolve включает начальный переходный процесс, поэтому нужно удалить первые N-1 точек.

4.2. Методика обработки данных

- 1) Открыть скрипт для обработки данных (пп. 5.2).
- 2) Ввести с клавиатуры названия 4-х файлов с данными: измерение давления для первой точки калибровки, измерение давления для второй точки калибровки, измерение давления в состоянии покоя, измерение давления после физической нагрузки, в переменные LFN HC, LFN LC, LFN MR, LFN MF соответственно.
- 3) Ввести с клавиатуры данные: значения давлений при калибровке в мм. рт. ст. в переменные high и low большее и меньшее значение давления соответственно.
- 4) Запустить программу.
- 5) Из полученных графиков определить количество пульсовых волн, систолическое и диастолическое давления в состоянии покоя и после физической нагрузки. Полученные данные записать в соответствующие переменные в программе:
 - SP1 систолическое давление в состоянии покоя
 - DP1 диастолическое давление в состоянии покоя
 - SP2 систолическое давление после физической нагрузки
 - DP2 диастолическое давление после физической нагрузки
 - num1 количество пульсовых волн в состоянии покоя
 - num2 количество пульсовых волн после физической нагрузки
 - tSP1 координата времени систолического давления в состоянии покоя
 - tDP1 координата времени диастолического давления в состоянии покоя

- tSP2 координата времени систолического давления после физической нагрузки
- tDP2 координата времени диастолического давления после физической нагрузки
- 6) Запустить программу второй раз для построения точек на графиках.
- 7) Написать отчет о проделанной работе.

5. Код программы

5.1. Скрипт измерения давления

```
import RPi.GPIO as GPIO
import time
import datetime
import numpy as np
leds = [21, 20, 16, 12, 7, 8, 25, 24]
dac = [26, 19, 13, 6, 5, 11, 9, 10]
comparator = 4
troykaVoltage = 17
bits = len(dac)
levels = 2 ** bits
dV = 3.3 / levels
GPIO.setmode(GPIO.BCM)
GPIO.setup(leds + dac, GPIO.OUT)
GPIO.setup(troykaVoltage, GPIO.OUT)
GPIO.setup(comparator, GPIO.IN)
def num2pins(pins, value):
      GPIO.output(pins, [int(i) for i in bin(value)[2:].zfill(bits)])
def adc2():
      timeout = 0.001
      value = 128
      delta = 128
      for i in range(8):
             num2pins(dac, value)
             time.sleep(timeout)
             direction = -1 if (GPIO.input(comparator) == 0) else 1
             num = delta * direction / 2
             value = int(value + num)
             delta = delta / 2
      return value
```

try:

```
now = datetime.datetime.now()
      DATE = now.strftime("%d.%m.%Y-%H:%M:%S")
      t = 20
      measure = []
      value = 0
      start = time.time()
      GPIO.output(troykaVoltage, 1)
      while time.time() - start <= t:</pre>
             value = adc2()
             measure.append(value)
      delta = round(t / int(len(measure)), 3)
       np.savetxt('/home/pi/Repositories/get/9-blood/FINAL/DATA{}_{}.txt'.format(DATE,
       delta), measure, fmt='%d')
      print('Done! Files already saved!')
finally:
      GPIO.cleanup()
      print('GPIO cleanup completed.')
```

5.2. Скрипт обработки данных

```
import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import pathlib
import plotPressure as pp
# Enter high and low value of calibration pressure
high = 160
low = 40
# Enter results of processing
SP1 = 139
tSP1 = 5.1
DP1 = 65
tDP1 = 15.5
num1 = 14
SP2 = 175
tSP2 = 3.4
```

```
DP2 = 64
tDP2 = 14.8
num2 = 23
LFN HC = '08.07.2021-13:26:03 0.009.txt'
LFN LC = '08.07.2021-13:26:33\ 0.009.txt'
LFN MR = '08.07.2021-13:27:51 0.009.txt'
LFN_MF = '08.07.2021-13:29:18_0.009.txt'
# Load data from files
HC = np.loadtxt('/home/pi/Repositories/get/9-blood/DATA/08.07.2021-13:26:03_0.009.txt')
LC = np.loadtxt('/home/pi/Repositories/get/9-blood/DATA/08.07.2021-13:26:33 0.009.txt')
MR = np.loadtxt('/home/pi/Repositories/get/9-blood/DATA/08.07.2021-13:27:51 0.009.txt')
MF = np.loadtxt('/home/pi/Repositories/get/9-blood/DATA/08.07.2021-13:29:18 0.009.txt')
# Assigning deltas to variables
delta_HC = float(pathlib.Path(LFN_HC).stem[20:])
delta LC = float(pathlib.Path(LFN LC).stem[20:])
delta MR = float(pathlib.Path(LFN MR).stem[20:])
delta_MF = float(pathlib.Path(LFN_MF).stem[20:])
# Smoothing plots
N1 = 20
HC_Smothed = np.convolve(HC, np.ones((N1,))/N1, mode = 'valid') #массив данных для
графика давления калибровки 1
LC_Smothed = np.convolve(LC, np.ones((N1,))/N1, mode = 'valid') #массив данных для
графика давления калибровки 2
MR Smothed = np.convolve(MR, np.ones((N1,))/N1, mode = 'valid') #массив данных для
графика давления до физ.нагрузки
MR Smothed1 = MR Smothed
MF_Smothed = np.convolve(MF, np.ones((N1,))/N1, mode = 'valid') #массив данных для
графика давления после физ.нагрузки
MF Smothed1 = MF Smothed
# Graph smoothing for puls wave
N2 = 600
for i in range (N2-N1):
      MR Smothed1 = np.delete(MR Smothed1, 0)
pulsWave1 = MR_Smothed1 - np.convolve(MR, np.ones((N2,))/N2, mode = 'valid') #массив
данных для первой пульсовой волны
```

```
for i in range (N2-N1):
      MF Smothed1 = np.delete(MF Smothed1, 0)
pulsWave2 = MF_Smothed1 - np.convolve(MF, np.ones((N2,))/N2, mode = 'valid') #массив
данных для второй пульсовой волны
# Calculate mean and k
meanHC = sum(HC)/len(HC)
meanLC = sum(LC)/len(LC)
k = (high - low)/(meanHC - meanLC)
# Create timelines
timelineHC = np.linspace(0, delta_HC*len(HC_Smothed), len(HC_Smothed))
timelineLC = np.linspace(0, delta LC*len(LC Smothed), len(LC Smothed))
timelineMR = np.linspace(0, delta_MR*len(MR_Smothed), len(MR_Smothed))
timelineMF = np.linspace(0, delta_MF*len(MF_Smothed), len(MF_Smothed))
timelinePuls1 = np.linspace(0, delta MR*len(pulsWave1), len(pulsWave1))
timelinePuls2 = np.linspace(0, delta MF*len(pulsWave2), len(pulsWave2))
# Calculations of puls
puls1 = round(60 / (tDP1 - tSP1) * num1)
puls2 = round(60 / (tDP2 - tSP2) * num2)
# Create plots
pp.plotPressure(MR Smothed, timelineMR, SP1, tSP1, DP1, tDP1, k)
pp.plotPressure(MF_Smothed, timelineMF, SP2, tSP2, DP2, tDP2, k)
pp.plotCalibration(HC Smothed, timelineHC, high, k)
pp.plotCalibration(LC_Smothed, timelineLC, low, k)
pp.plotPuls(pulsWave1, timelinePuls1, puls1, k)
pp.plotPuls(pulsWave2, timelinePuls2, puls2, k)
```

5.3. Скрипт построения графиков

```
import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import pathlib

def plotPressure(measure, timeline, pSP, tSP, pDP, tDP, k):
```

```
fig = plt.figure()
      ax = fig.add subplot(111)
      ax.xaxis.set major locator(ticker.MultipleLocator(5.0))
      ax.xaxis.set_minor_locator(ticker.MultipleLocator(1.0))
      ax.grid(which = 'major', color = 'black')
      ax.grid(which = 'minor', color = 'gray', linestyle = ':')
      ax.set(title = 'График зависимости P(t)', xlabel = 'Время, с', ylabel = 'Давление,
мм.рт.ст.')
      ax.plot(timeline, k*measure, label =")
      ax.scatter(tSP, pSP, color = 'red', marker='.', label = 'SP - Систолическое
давление')
      ax.scatter(tDP, pDP, color = 'red', marker='.', label = 'DP - Диастолическое
давление')
      ax.text(tSP + 0.5, pSP, 'SP = {}'.format(pSP))
      ax.text(tDP + 0.5, pDP, 'DP = {}'.format(pDP))
      ax.legend()
             fig.savefig('/home/pi/Repositories/get/9-
       blood/DATA/Smoothed_plot_measure_{}.png'.format(pSP))
def plotCalibration(measure, timeline, level, k):
      fig = plt.figure()
      ax = fig.add_subplot(111)
      ax.xaxis.set_major_locator(ticker.MultipleLocator(5.0))
      ax.xaxis.set minor locator(ticker.MultipleLocator(1.0))
      ax.grid(which = 'major', color = 'black')
      ax.grid(which = 'minor', color = 'gray', linestyle = ':')
      ax.set(title = 'График зависимости P(t) при калибровке', xlabel = 'Время, с',
ylabel = 'Давление, мм.рт.ст.')
      ax.plot(timeline, k*measure, label =")
       fig.savefig('/home/pi/Repositories/get/9-
       blood/DATA/Smoothed_plot_calibration_{}.png'.format(level))
def plotPuls(measure, timeline, puls, k):
      fig = plt.figure()
      ax = fig.add_subplot(111)
      ax.xaxis.set_major_locator(ticker.MultipleLocator(5.0))
      ax.xaxis.set minor locator(ticker.MultipleLocator(1.0))
      ax.grid(which = 'major', color = 'black')
      ax.grid(which = 'minor', color = 'gray', linestyle = ':')
```

```
ax.set(title = 'График пульсовой волны', xlabel = 'Время, c', ylabel = 'Давление, мм.рт.ст.')

ax.plot(timeline, measure, label = 'Пульс {}'.format(puls))
ax.legend()

fig.savefig('/home/pi/Repositories/get/9-blood/DATA/Puls_wave_{}'.format(puls))
```

6. Эксперимент

6.1. Калибровка

На рисунках 6 и 7 изображены показания манометра при калибровке датчика давления:

Рисунок 6: Показания манометра при измерении давления для первой точки калибровки

Рисунок 7: Показания манометра при измерении давления для первой точки калибровки

Рисунок 8: График зависимости отсчетов АЦП от времени для первой точки калибровки

Рисунок 9: График зависимости отсчетов АЦП от времени для первой точки калибровки

6.2. Графики давления

Рисунок 10: График зависимости давления в манжете от времени в состоянии покоя.

Рисунок 11: График зависимости давления в манжете от времени после физической нагрузки.

6.3. Графики пульса

Рисунок 12: График пульсовой волны в состоянии покоя.

Рисунок 13: График пульсовой волны после физической нагрузки.

7. Результаты

В ходе лабораторной работы былы получены зависимость артериального давления от времени в состоянии покоя и зависимость артериального давления от времени после физической нагрузки.

Из рисунка видно, что в состоянии покоя систолическое давление равно 139 мм.рт.ст., а диастолическое давление равно 65 мм.рт.ст. Пульс равен 81 уд/сек.

Из рисунка видно, что после физической нагрузки систолическое давление равно 175 мм.рт.ст., а диастолическое давление равно 64 мм.рт.ст. Пульс равен 121 уд/сек.

8. Итоги лабораторной работы

- 1. Мы убедились, что после физической нагрузки, пульс учащается. Это говорит о том, что наше исследование сходится с физиологией человека.
- 2. В результате выполнения лабораторной работы были получены следующие значения:
 - В состоянии покоя: пульс 81 уд/сек, систолическое давление и диастолическое давление равны 139 мм.рт.ст. и 65 мм.рт.ст. соответственно
 - После физической нагрузки: пульс 121 уд/сек, систолическое давление и диастолическое давление равны 175 мм.рт.ст. и 64 мм.рт.ст. соответствено
- 3. В ходе выполнения работы, были получены следующие практические навыки:
 - Написание программ для калибровки, измерения давления и обработки данных.
 - Усреднение данных с помощью программы.
 - Выделение высокочастотной сотставляющей.
 - Оформление отчёта.
 - Составление программы и имметодики измернеий.
 - Следование программе и методике измерений.