The Sidelnikov-Shestakov's Attack applied to the Chor-Rivest Cryptosystem

Sylvain Colin & Gaspard Férey

 $March\ 4,\ 2014$

Contents

1	Introduction	1
	1.1 Our Work	1
2	Preliminaries2.1 A cryptosystem based on Reed-Solomon codes	1 1
3	Attack of Sidelnikov-Shestakov	2
4	Application to the Chor-Rivest Cryptosystem	2
	Application to the Chor-Rivest Cryptosystem4.1 The Chor-Rivest Cryptosystem	2
	4.2 A First Attack using Reed-Solomon codes	3
	4.2.1 Problem	1
	4.2.2 Further	5
5	Conclusions	5

${\bf Abstract}$ In this article, we discuss about the Sidelnikov-Shestakov Attack on cryptosystems based on

In this article, we discuss about the Sidelnikov-Shestakov Attack on cryptosystems based on Reed-Solomon codes. Then we describe how this algorithm can be used to attack the Chor-Rivest Cryptosystem.

1 Introduction

Preliminaries

ntro

1.1 Our Work

.

2

2.1

A cryptosystem based on Reed-Solomon codes

We study here the public-key cryptosystem introduced by Sidelnikov and Shestakov [1] applied to the generalized Reed-Solomon codes. Let \mathbb{F}_q be a finite field with $q = p^h$ elements and $\mathbb{F} = \mathbb{F}_q \cup \{\infty\}$, where ∞ has usual properties ($1/\infty = 0$, etc). We call \mathfrak{A} the following matrix:

$$\mathfrak{A}(\alpha_{1}, \ldots, \alpha_{n}, z_{1}, \ldots, z_{n}) := \begin{pmatrix} z_{1}\alpha_{1}^{0} & z_{2}\alpha_{2}^{0} & \cdots & z_{n}\alpha_{n}^{0} \\ z_{1}\alpha_{1}^{1} & z_{2}\alpha_{2}^{1} & \cdots & z_{n}\alpha_{n}^{1} \\ & & \ddots & \\ z_{1}\alpha_{1}^{k-1} & z_{2}\alpha_{2}^{k-1} & \cdots & z_{n}\alpha_{n}^{k-1} \end{pmatrix} \in \mathcal{M}_{\mathbb{F}_{q}}(k, n)$$

where $\alpha_i \in \mathbb{F}$ and $z_i \in \mathbb{F}_q \setminus \{0\}$ for all $i \in \{1,...,n\}$. Note that, if $\alpha_i = \infty$, we replace the i^{th} column by the vector $z_i(0,...,0,1)^T$, so that all the coefficients of the matrix are finite.

In the considered cryptosystem, the secret key consists of

- The set $\{\alpha_1, ..., \alpha_n\}$;
- The set $\{z_1, ..., z_n\}$;
- A random nonsingular $k \times k$ -matrix H over \mathbb{F}_q .

The public key is

- The representation of the field \mathbb{F}_q , that is the polynomial used to define \mathbb{F}_q over \mathbb{F}_p ;
- The two integers k and n such that $0 < k < n \le q$.
- $M := H \cdot \mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n).$

Thus, a message to transmit will be a vector a of $(\mathbb{F}_q)^n$ with no more than $\lceil \frac{k-1}{2} \rceil$ non-zero coordinates. The transmitted message is then M.a. So, since a GRS code can be decoded when there are at most $\lceil \frac{k-1}{2} \rceil$ non-zero coordinates, the original message can be recovered by decoding the received message with a decoding algorithm for a GRS code and then multiplying the result by H^{-1} on the left. However, the original message can not be easily recovered when not knowing the GRS code used in the secret key.

2.2 Equivalence between Reed-Solomon codes

Sidelnikov and Shestakov show [1] that for all $a \in \mathbb{F}_q \setminus \{0\}$ and $b \in \mathbb{F}_q$, there exists $H_1, H_2, H_3 \in \mathcal{M}_{F_q}(k, k)$ invertible such that

$$H_1\mathfrak{A}(a \cdot \alpha_1 + b, \dots, a \cdot \alpha_n + b, c_1 z_1, \dots, c_n z_n) = \mathfrak{A}(\alpha_1, \dots, \alpha_n, z_1, \dots, z_n)$$

$$H_2\mathfrak{A}\left(\frac{1}{\alpha_1}, \dots, \frac{1}{\alpha_n}, d_1 z_1, \dots, d_n z_n\right) = \mathfrak{A}(\alpha_1, \dots, \alpha_n, z_1, \dots, z_n)$$

$$H_3\mathfrak{A}(\alpha_1, \dots, \alpha_n, a \cdot z_1, \dots, a \cdot z_n) = \mathfrak{A}(\alpha_1, \dots, \alpha_n, z_1, \dots, z_n)$$

This means that for any cryptosystem $M = H\mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n)$, for any birationnal transformation

$$\phi: x \mapsto \frac{ax+b}{cx+d}$$

 $M = H_{\phi}\mathfrak{A}(\phi(\alpha_1), \ldots, \phi(\alpha_n), z_1', \ldots, z_n')$ and by using the unique transformation ϕ that maps $(\alpha_1, \alpha_2, \alpha_3)$ to $(0, 1, \infty)$, we get that for any cryptosystem $M = H\mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n)$, M can be uniquely written

$$M = H'\mathfrak{A}(0, 1, \infty, \alpha'_4, \dots, \alpha'_n, z'_1, \dots, z'_n)$$

with H' nonsingular, $z'_i \neq 0$ and α_i distincts elements of $\mathbb{F}_q - \{0, 1, \infty\}$.

So, when M is given, it is impossible to compute the original matrices $\mathfrak A$ and H since many pairs of such matrices lead to the same public matrix M. However, computing an equivalent pair is sufficient since it will allow to decipher the messages as well as the original secret pair of matrices. So, the attack will consist of finding H and $\mathfrak A(0,1,\infty,\alpha_4',\ldots,\alpha_n',z_1',z_2',\ldots,z_n')$, equivalent to the original pair. We can also presume that $z_1'=1$. Indeed, if we multiply all the elements z_i' by a factor $a \in \mathbb{F}_q$ and all the elements of the matrix H by a^{-1} , the resulting matrix M will be the same.

3 Attack of Sidelnikov-Shestakov

The attack of Sidelnikov-Shestakov consists of the following steps.

First we realize that the public key can be uniquely written as in the previous section.

$$M = H'\mathfrak{A}(0, 1, \infty, \alpha'_4, \ldots, \alpha'_n, 1, z'_2, \ldots, z'_n)$$

We compute then the echelon form of M.

$$E(M) = \begin{pmatrix} 1 & 0 & \cdots & 0 & b_{1,k+1} & \cdots & b_{1,n} \\ 0 & 1 & \cdots & 0 & b_{2,k+1} & \cdots & b_{2,n} \\ & & \ddots & & \vdots & & \vdots \\ 0 & \cdots & 0 & 1 & b_{k,k+1} & \cdots & b_{k,n} \end{pmatrix} = H'' \cdot M$$

For $2 \le k \le n-2$, this attack works with a complexity of ...

4 Application to the Chor-Rivest Cryptosystem

4.1 The Chor-Rivest Cryptosystem

Secret keys consist of

- an element $t \in GF(q)$ with algebraic degree h
- a generator g of $GF(q)^*$
- an integer $d \in \mathbb{Z}_{q-1}$
- a permutation π of $\{0, ..., p-1\}$.

Public keys consist of all

$$c_i = d + \log_q(t + \alpha_{\pi(i)}) \mod q - 1$$

The message consists in a bitstring $m = [m_0...m_{p-1}]$ of length p such that $\sum_i m_i = h$. The ciphertext is

$$E(M) := \sum_{i=0}^{p-1} m_i c_i$$

To decipher this message, we compute

$$g^{E(M)-hd} = \prod_{i} \left(t + \alpha_{pi(i)} \right)^{c_i}$$

When we attack this cryptosystem, we can consider a generator $g_0 = g^u$ with u unknown and gcd(u, q - 1) = 1 we then have

$$g_0^{c_i} = \left(g^d \left(t + \alpha_{\pi(i)}\right)\right)^u = \left(A + \alpha_{\pi(i)} \cdot B\right)^u$$

We can then consider that the secret key is

- $A \in \mathbb{F}_q$.
- $B \in \mathbb{F}_q$ such that $t = A \cdot B^{-1}$ has algebraic degree h.
- 0 < u < q 1 prime with q 1.
- the permutation π of $\{0, ..., p-1\}$.

and public key consists in all the

$$d_i := (A + \alpha_{\pi(i)} \cdot B)^u \in \mathbb{F}_q$$

The ciphertext becomes

$$E'(M) := \prod_{i=0}^{p-1} d_i^{m_i} = g^{uE(M)} = B^{uh} \left(\prod_i \left(t + \alpha_{pi(i)} \right)^{c_i} \right)^u$$

Knowing u, B and h, it is easy to compute from E'(M), the following quantity

$$\prod_{i} \left(t + \alpha_{pi(i)} \right)^{c_i}$$

which allow us to retrieve all the c_i .

4.2 A First Attack using Reed-Solomon codes

We have for all j

$$g^{c_j} = g^d \cdot (t + \alpha_{\pi(j)}) = A + \alpha_{\pi(j)} \cdot B$$

where $\alpha_{\pi(j)} \in GF(p)$ and A and B are elements of $GF(p^h) \subset GF(p)[X]$ and can be seen as polynomials of the variable X with coefficients in GF(p). Then if we consider another generator g_0 of GF(q), we have $g_0 = g^u$ and

$$g_0^{c_j} = (A(X) + \alpha_{\pi(j)} \cdot B(X))^u \mod \mu(X)$$

where μ is the polynomial of degree h defining the field GF(q).

As an attempt to guess g, we can choose a random generator g_0 and compute the quantities

$$g_0^{c_j} = \sum_{i=0}^{h-1} P_i(\alpha_{\pi(j)}) X^i$$

where P_i is a polynomial with coefficients in GF(p). P_i depends on A(X), B(X), u and obviously on i. However, P_i does not depend on j.

Besides, we have

- deg $P_i \leq u$ since the coefficients of $(A(X) + \alpha_{\pi(j)} \cdot B(X))^u$ seen in GF(p)[X] are polynomials of degree smaller than u in $\alpha_{\pi(j)}$. When we compute the remain in the division of this polynomial by $\mu(X)$, these coefficients remain polynomials of degree smaller than u in $\alpha_{\pi(j)}$.
- deg $P_i < p$ since $\alpha_{\pi(j)}^p = \alpha_{\pi(j)}$.

We now consider the matrix

$$\mathfrak{A} := \left(\alpha_{\pi(j)}^i\right)_{0 \le i, j \le p-1} \in \mathcal{M}_{\mathbb{F}_p}(p, p)$$

We call

- $P_i[j] \in GF(p)$ the j-th coefficient of the polynomial P_i .
- $H = (P_i[j])_{i,j} \in \mathcal{M}_{\mathbb{F}_p}(h,p)$
- $M = (P_i(\alpha_{\pi(j)}))_{i,j} \in \mathcal{M}_{\mathbb{F}_p}(h,p).$

$$H \cdot \mathfrak{A} = M$$

We suppose now that we try to guess the private generator g but only find a generator g_0 such that $g_0 = g^u$ with u < h.

We can compute the elements $g_0^{c_j} \in GF(q)$, the coefficients $P_i(\alpha_{\pi(j)}) \in GF(p)$ and eventually the matrix M.

Since deg $P_i \leq u$, we know that only the u first columns of the matrix H are non zero. Therefore we consider now the matrix H' build from the u first columns of H (the other columns being equal to 0) and \mathfrak{A}' the u first rows of \mathfrak{A} . We get

$$H' \cdot \mathfrak{A}' = M$$

We suppose now that the first u rows of M are linearly independent. This allow us to consider only the first u lines of the matrices H' and M (H'' and M'') which gives us

$$H'' \cdot \mathfrak{A}' = M''$$

with

 π .

- $H'' \in \mathcal{M}_{\mathbb{F}_p}(u, u)$
- $\mathfrak{A}' \in \mathcal{M}_{\mathbb{F}_p}(u,p)$
- $M'' \in \mathcal{M}_{\mathbb{F}_p}(u,p)$

We use then the attack described in the first section to compute \mathfrak{A}' which yields the permutation

4.2.1 Problem

It seems quite unlikely that $g_0 = g^u$ with a small u. Indeed, there are $\phi(p^h - 1)$ generators which is comparable to p^h and the order of h is only (in the suggested parameters) around 24.

This could be solved if we had a way to rapidly check whether one generator is a small power of another.

4.2.2 Further...

If u is a small multiple of p, the previous arguments still apply since then u = pu' with u' < h and we get

$$g_0^{c_j} = \left(\left(A(X) + \alpha_{\pi(i)} B(X) \right)^p \right)^{u'} = \left(A^p(X) + \alpha_{\pi(i)}^p B^p(X) \right)^{u'} = \left(A'(X) + \alpha_{\pi(i)} B'(X) \right)^{u'}$$

This only changes the polynomials A and B but still allow to compute the permutation $\pi(i)$ on these conditions.

We actually also have this conclusion if u is a small multiple of p^r for all $0 \le r < h$. In fact a condition for the previous to work is that when u is written in base p, the sum of its digits does not exceed h.

Remains to see how many different u this methods allows to check... Is it reasonable to try this method with several value for g_0 until we find g? I guess not...

Besides, as explained in Sidelnikov and Shestakov's article, if the previous reasoning excludes a set of candidates u_i , it also excludes $p \cdot u_i$ and even $p^r \cdot u_i$ for all $0 \le r < h$. Actually, this doesn't excludes any more candidate since the writing of $p \cdot u_i$ and u^i modulo $p^h - 1$ in base p are just rotated.

5 Conclusions

References

hes92

[1] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based on generalized reed-solomon codes. *Discrete Math. Appl.*, 2(4).