Die Elemente der V. Hauptgruppe

Die Elemente der V. Hauptgruppe (N, P, As, Sb, Bi) haben die Valenzelektronenkonfiguration n s²p³.

Der Metallcharakter nimmt innerhalb der Gruppe nach unten hin zu: Stickstoff ist ein typisches Nichtmetall, Bismut ein typisches Metall. Die Elemente Phosphor, Arsen und Antimon kommen in metallischen und nichtmetallischen Modifikationen vor (*Allotropie*).

Die Stabilität der höchsten Oxidationsstufe +5 nimmt von oben nach unten ab. Bi_2O_5 ist im Gegensatz zu P_4O_{10} ein starkes Oxidationsmittel. H_3PO_3 ist im Gegensatz zu $Bi(OH)_3$ ein starkes Reduktionsmittel.

Die dreiwertigen Oxide E₂O₃ von N, P und As reagieren in wässriger Lösung sauer, Sb(OH)₃ ist amphoter und Bi(OH)₃ basisch.

Schlüsse auf das chemische Verhalten können aus der Valenzelektronenkonfiguration gezogen werden:

- Durch Aufnahme von drei Elektronen entstehen edelgaskonfigurierte Anionen E³⁻. Sie liegen in salzartigen Verbindungen wie Li₃N, Mg₃N₂ oder Ca₃P₂ vor.
- Die zur Hälfte besetzten p-Orbitale der Valenzschale können drei andere Atome bzw. Atomgruppen kovalent binden (NH₃, PH₃, AsCl₃).
 Je nach der Elektronegativität des Partners ist die Oxidationsstufe des Zentralatoms dann –3 (NH₃) oder +3 (PCl₃).

• Von den "Kationen" E⁺ (E = N, P, As), die isoelektronisch mit den Atomen der Elemente der 4. HG sind, leiten sich die *tetraedrischen Spezies* EH₄⁺ und ER₄⁺ ab. Wie bei den binären Wasserstoffverbindungen der Kohlenstoffgruppe sinkt die Stabilität der Kationen EH₄⁺ mit steigender Ordnungszahl stark ab.

Die Verfügbarkeit leerer d-Orbitale bei Phosphor und den höheren Homologen hat folgende Konsequenzen:

- In Kombination mit stark elektronegativen Partnern kann die Promotionsenergie zum Valenzzustand (*n* sp³d)⁵ aufgebracht werden. Damit eröffnet sich die Möglichkeit zur *Oktettaufweitung und zur Bildung von fünf kovalenten Bindungen* (PCl₅, AsF₅, SbCl₅).
- d_{π} - p_{π} -Wechselwirkungen stabilisieren das mit sp³-Hybridisierung beschreibbare σ -Bindungssystem, z.B. in der Phosphorsäure.

Das Elemente Stickstoff

Die Bindungsenergie der N-N-Dreifachbindung beträgt 946 kJ/mol. Stickstoff ist gegenüber O₂ thermodynamisch stabil und kinetisch inert.

Das Element Phosphor

Verbrennung von Phosphor an der Luft

https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=71

Umsetzung von rotem Phosphor mit Brom

 $\underline{https://www.cci.ethz.ch/mainpic.html?picnum=-1\&control=0\&language=0\&ismovie=1\&expnum=73}$

Kupferabscheidung auf weissem Phosphor

 $\underline{https://www.cci.ethz.ch/mainpic.html?picnum=-1\&control=0\&language=0\&ismovie=1\&expnum=118}$

Name	Summen- formel	OxZahl des Stickstoffs	Valenzstrich- formel
			 H
Ammoniak	NH ₃	-3	:N——Н Н
Hydrazin	N_2H_4	-2	H N—N
Diimin	N_2H_2	-1	H—N=N—H
Stickstoff	N_2	0	i. N≡N
Distickstoffmonoxid (Lachgas)	N ₂ O	+1	⊕NNO
Stickstoffmonoxid	NO	+2	• N=0
Salpetrige Säure	HNO ₂	+3	H—Ö—N=Ö
Stickstoffdioxid	NO_2	+4	.N .N ⊖
Salpetersäure	HNO ₃	+5	H—0—N

Ammoniak

Haber-Bosch-Verfahren:

$$N_2 + 3 H_2$$
 Fe / 400°C $2 NH_3$

$$\Delta H^{\circ} = -92.3 \text{ kJ / mol}$$

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$
 $pK_B = 4.75$

$$2 \text{ NH}_3$$
 \longrightarrow $\text{NH}_4^+ + \text{NH}_2^- [\text{NH}_4^+][\text{NH}_2^-] = 10^{-29}$

$$Ni^{2+} + 6 NH_3 \longrightarrow [Ni(NH_3)_6]^{2+}$$

Stickstoffhalogenide

$$NH_3 + 3 X_2$$
 \longrightarrow $NX_3 + 3 HX (X = F, CI, Br, I)$

$$NF_3 + 2 H_2O$$
 \longrightarrow $HNO_2 + 3 HF$

$$NCl_3 + 3 H_2O \longrightarrow NH_3 + 3 HOCI$$

Ox: -1 +3 Ox: +1 -3
$$\downarrow$$
 CI \downarrow CI

Stickstoffwasserstoffsäure

Stickstoffoxide

$$N_2 + O_2 \longrightarrow 2 \text{ NO} \qquad \Delta H^\circ = +180.6 \text{ kJ / mol}$$

$$\Delta H^{\circ} = +180.6 \text{ kJ / mol}$$

$$4 \text{ NH}_3 + 5 \text{ O}_2 \qquad \xrightarrow{\text{[Pt]}} \qquad 4 \text{ NO} + 6 \text{ H}_2\text{O} \qquad \Delta \text{H}^\circ = -906.1 \text{ kJ / mol}$$

$$\Delta H^{\circ} = -906.1 \text{ kJ} / \text{mol}$$

$$2 \text{ NO} + \text{O}_2$$
 \longrightarrow 2 NO_2

$$\Delta H^{\circ} = -56.9 \text{ kJ} / \text{mol}$$

$$NO + NO_2$$
 $\stackrel{< -10^{\circ}C}{\longrightarrow} N_2O_3$

$$\Delta H^{\circ} = -39.7 \text{ kJ/mol}$$

$$2 \text{ NO}_2$$
 $\stackrel{< -20^{\circ}\text{C}}{=}$ N_2O_4

$$\rightarrow$$
 N₂O₄ Δ H° = -57.0 kJ / mol

$$2 \text{ HNO}_3 \qquad \xrightarrow{P_4O_{10}} \qquad N_2O_5 + H_2O$$

Herstellung von NO

 $\underline{https://www.cci.ethz.ch/mainpic.html?picnum=-1\&control=0\&language=0\&ismovie=1\&expnum=53}$

Gleichgewicht $NO_2 - N_2O_4$

 $\underline{https://www.cci.ethz.ch/mainpic.html?picnum=-1\&control=0\&language=0\&ismovie=1\&expnum=61\\$

Salpetersäure

$$4 \text{ NH}_3 + 5 \text{ O}_2$$
 $\xrightarrow{\text{[Pt/Rh]}}$ $4 \text{ NO} + 6 \text{ H}_2\text{O}$

$$4 \text{ NO} + 2 \text{ O}_2$$
 \longrightarrow 4 NO_2

$$4 \text{ NO}_2 + 2 \text{ H}_2\text{O} + \text{O}_2 \longrightarrow 4 \text{ HNO}_3$$

$$NH_3 + 2 O_2$$
 \rightarrow $HNO_3 + H_2O$ $\Delta H^\circ = -412 \text{ kJ/mol}$

80% der Salpeterproduktion werden zu Düngemitteln verarbeitet.

Achtung: Ammoniumnitrat ist auch ein Sprengstoff!

$$NH_4NO_3$$
 \longrightarrow $N_2O + 2 H_2O$

Herstellung und Reaktivität von weissem Phosphor

$$2 \text{ Ca}_{3}(PO_{4})_{2} + 10 \text{ C} + 6 \text{ SiO}_{2} \xrightarrow{1400^{\circ}\text{C}} 6 \text{ CaSiO}_{3} + 10 \text{ CO} + P_{4}$$

$$\Delta H^{\circ} = +3084 \text{ kJ/mol}$$

$$P_{4} + 5 \text{ O}_{2} \longrightarrow P_{4}O_{10} \qquad \Delta H^{\circ} = -2986 \text{ kJ/mol}$$

$$P_{4} + 6 \text{ Cl}_{2} \longrightarrow 4 \text{ PCl}_{3}$$

$$P_{4} + 6 \text{ OH}^{-} + 3 \text{ H}_{2}O \longrightarrow PH_{3} + 3 \text{ H}_{2}PO_{2}^{-}$$

Phosphoroxide und Phosphorsäuren

$$P_4 + 3 O_2 \longrightarrow P_4 O_6$$

 $\Delta H^{\circ} = -1640 \text{ kJ/mol}$

$$P_4 + 5 O_2 \longrightarrow P_4 O_{10}$$

 $\Delta H^{\circ} = -2986 \text{ kJ/mol}$

$$P_4O_6 + 6 H_2O \longrightarrow 4 H_3PO_3$$

$$P_4O_{10} + 6 H_2O \longrightarrow 4 H_3PO_4$$

Phosphorsäuren und Phosphate

Phosphorige Säure (pyramidal)

Phosphonsäure (tetraedrisch)

Phosphorsäure

Phosphatdüngemittel

$$Ca_3(PO_4)_2 + 3 H_2SO_4 \longrightarrow 3 CaSO_4 + 2 H_3PO_4$$

$$Ca_3(PO_4)_2 + 2 H_2SO_4 \longrightarrow 2 CaSO_4 + Ca(H_2PO_4)_2$$

"Superphosphat"

$$Ca_3(PO_4)_2 + 4 H_3PO_4 \longrightarrow 3 Ca(H_2PO_4)_2$$

"Doppelsuperphosphat"

Phosphororganische Verbindungen

Phosphonsäureester

$$O_2N$$
 O_2N
 OC_2H_2

Phosphorsäureester

Parathion

(Insektizid, Pflanzenschutzmittel)

Sarin

(chemischer Kampfstoff) "Nervengas"