CNS Tumours and Raised intracranial pressure (ICP)

CNS tumours Objectives

Classification of CNS tumours

Morphology of common tumours of the CNS

Pathogenesis

- Majority unknown
- Genetic alterations

Astrocytoma - inactivation of P53

Associated with syndromes (rare)

Neufibromatosis - Ependymoma Tuberous sclerosis Von-Hippel Lindau syndrome

- Immunosupression CNS lymphoma
- Chemicals
- Viruses
- Radiation

CNS tumours - Unique features

- Anatomic site
- Limited ability for resection
- Tumour spread through subarachnoid space
- Subtle histologic distinction between benign and malignant lesions

Classification according to the location

Supratentorial tumours
 Common in adults

Infratentorial tumours
 Common in children

Tumours of the CNS

Primary tumours

Metastatic tumours

Tumours of Neuroepithelial tissue

Others - Peripheral nerves,
meninges, Haemopoietic tissue

Germ cells

CNS tumour classification

• Glial tissue (65%)

- Astrocytoma

- Oligodendroglioma

- Ependymoma

Choroid plexus

- Papilloma

- Carcinoma

• Primitive neuroectodermal (Embryonal) - Medulloblastoma

Meningoendothelial (arachnoid) cells

- Meningioma

Nerve sheath cells

Schwannoma,
 Neurofibroma

Lymphoreticular cells

Lymphoma

Tumours of Neuroepithelial origin

- Glial tissue (commonest)
 - Astrocytoma
 - Oligodendroglioma
 - Ependymoma

- Choroid plexus
 - Papilloma
 - Carcinoma
- Primitive neuroectodermal (embryonal)
 - Medulloblastoma

Astrocytoma

- Commonest primary brain tumour in adults (80%)
- Usually involves cerebral hemispheres (supratentorial)
- Signs and symptoms Seizures, headaches, and focal neurologic deficits
- Not defined as benign/malignant as all tumours are infiltrative
- Resection is difficult
- Recurrence common
- Metastasis outside the brain unlikely
- Occasionally spread through the sub arachnoid space

Astrocytoma

- Subtyping is according to cellularity, cellular atypia, mitoses and necrosis
- Diffuse astrocytoma Well differentiated tumour
- Anaplastic astrocytoma Increased cellularity, cellular atypia, increased mitoses
- Glioblastoma multiforme Poorly differentiated astrocytes, marked nuclear atypia and mitoses, microvascular proliferation, necrosis

Astrocytoma

- Macroscopy
 - Poorly defined grey color tumour
 - Expands and infiltrates brain
 - No destruction of brain tissue
 - Cut surface Firm / soft and gelatinous
 - Gritty if calcification is present
 - Cystic changes may be seen

Astrocytoma - Macroscopy

Note: - Poor demarcatiton

- Expands and infiltrates brain
- Cystic changes

Astrocytoma - Macroscopy

Note: Single large cyst filled with gelatinous material

Astrocytoma - Microscopy

Astrocytoma - Microscopy

May be difficult to differentiate from the normal brain tissue

Glioblastoma

- Usually >50 yrs
- Primary / secondary (arise from an astrocytoma)

Macroscopy

- Poorly demarcated tumours
- Grey-yellow colour
- Necrosis and haemorrhages

Microscopy

- Cellular atypia
- Necrosis
- Mitoses
- Endothelial cells proliferation

Glioblastoma - Macroscopy

Glioblastoma - Microscopy

Note: Tumour necrosis

Glioblastoma - Microscopy

Note: Cellular atypia

Oligodendroglioma

- Well differentiated, diffusely infiltrating tumours
- Usually in adults
- Slowly growing tumours
 - May present with long history of neurological symptoms

- Mostly in the cerebral hemispheres
- Predilection for white matter

Oligodendroglioma

- Macroscopy
 - Fairly circumscribed, gelatinous tumours
 - Cystic changes
 - Focal hemorrhage
 - Calcification

Oligodendroglioma - Microscopy

Note: - Uniform small cells

- Round uniform nuclei and
- Clear cytoplasm with distinct cell borders

Ependymoma

- Arises from the ependymal lining of the cerebral ventricles
 / central canal of spinal cord
- In children 4th ventricle is a common site
 In adults spinal cord is the most common location
 - Associated with neurofibromatosis type 2
- High grade variant seeds through the CSF
- Posterior fossa tumours
 - Hydrocephalus secondary to progressive obstruction of the fourth ventricle

Ependymoma - Macroscopy

Note:

- Tumour rising from the floor of the fourth ventricle
- Well demarcated , grey-red colour tumour
- Solid/ papillary mass
- Haemorrhagic and necrotic areas

Ependymoma - Microscopy

Uniform tumour cells arranged around blood vessels "Perivascular pseudorosettes"

Choroid plexus papilloma

- Benign tumour
- Common in children
- Usually presents with hydrocephalus due to obstruction of the ventricular system by tumour or to overproduction of CSF
- Arise from the epithelium of the choroid plexus of the cerebral ventricles
- Macroscopy: Circumscribed cauliflower like mass attached to the ventricular wall

Choroid plexus papilloma - Macroscopy

Note:
Involvement of the
left lateral ventricle

Choroid plexus papilloma - Microscopy

Note: - Delicate papillary structures lined by a ingle layer of uniform cuboidal to columnar cells

- Basally located round to oval uniform nuclei

Medulloblastoma

- Poorly differentiated tumour
- Predominantly in children
- Exclusively in the cerebellum (usually midline)
- Rapidly growing
- Extensive local infiltration with meningeal infiltration → CSF seeding

Medulloblastoma

- Macroscopy
 - Ooften well circumscribed, grey and friable
 - Some show haemorrhages
 - may extends to the cerebellar folia
 - may involve the leptomeninges

Medulloblastoma - CT scan

Medulloblastoma - Macroscopy

Medulloblastoma - Microscopy

Microscopy

 Highly cellular sheets of round to oval anaplastic cells

Other tumours of the CNS

- Meninges Meningioma
- Hamopoietic tissue Lymohoma
- Germ cell tumours
- Sellar region tumours Craniopharyngioma
- Peripheral nerves Schwannoma, neurofibroma

Meningioma

- Predominantly benign tumors of adults
- Female > male
- Usually attached to the dura
- Usually solitary tumours
- Arise from the meningothelial (arachnoid) cells
- Slow growing tumours
- Clinical features due to compression

Meningioma

Site - Parasagittal sinus
 Olfactory groove
 Sphenoidal ridges
 tentorium cerebelli etc.

Spinal meningioma may cause cord compression

Meningima

 Depending on the cellular atypia, mitosis, necrosis different types are recognized

Atypical meningioma - High recurrence

Anaplastic meningioma - Highly aggressive

Meningioma - Macroscopy

Note: - Well defined, smooth, solid, lobulated tumour

- Adherent to the dura
- Compression of brain matter

Meningioma - Macroscopy

Meningioma - microscopy

Note: Uniform tumour cells with oval nuclei

CNS - Lymphoma

- Uncommon
- Multiple nodules involving the brain parenchyma
- Nodal and extranodal spread is rare
- Inmmunosupressed patients Organ transplant
 - AIDS

- EBV associated
- High grade NHL- B cell
- Poor prognosis

Lymphoma - Microscopy

Note: Sheets of atypical lymphoid cells

CNS - Lymphoma

Note: Atypical lymphocytes around a blood vessel (angiocentric)

Nerve sheath tumours

Schawannoma

- Encapsulated
- Cerebello pontine angle 8th cranial nerve acoustic neuroma

Neurofibroma

- Non-encapsulated
- Dorsal nerve roots of the spinal cord

Schawannoma - Macroscopy

Acoustic neuroma

Metastatic tumours

- Commoner than primary tumours in adults
- Commonly carcinomas metastases from
 - **Breast**
 - Lung
 - Kidney
 - Colon
 - Melanoma
 - Lymphoma
 - Sarcoma
 - Germ cell tumours

Metastatic deposits - Macroscopy

eg. Malignant melanoma

Note: Multiple, discrete nodules in the grey – white matter interphase

CNS tumours - Prognosis

- Histological type
- Tumour margins
- Site
- Size
- Age

Raised ICP

Raised ICP - Objectives

Causes of raised ICP

Effects of raised ICP

Cerebral cortex covered by pia matter

Dura matter

Outer table of skull

Diploë of skull

Inner table of skull

Skin and dense connective tissue Arachnoid matter

Falx cerebrei

Tentorium cerebrei

Posterior view

Falx cerebrei

Lateral view

Intracranial contents

Raised intracranial pressure

1) Space occupying lesions

Neoplasm

Abscess

Haemorrages

2)Oedema – Diffuse / focal

Infarction

Infections

3) Obstructive hydrocephalus

Raised intracranial pressure

Effects of raised intracranial pressure

- Narrowing of sulci
- Flattening of gyri
- Surface of the brain looks dry
- Compression of the ipsilateral lateral ventricle
- Shift of midline structures
- Internal brain herniation
 - Transtentorial hernia
 - Subfalcine hernia
 - Tonsilar hernia

Macroscopy

Note:

Narrowing of sulci

Flattening of Gyri

Brain CT scan

Note: shift of midline structures

Macroscopy

Note:

Shift of midline structures

- interventricular septum
- anterior cerebral arteries
- third ventricle

Macroscopy

Multiple brain abscesses

Herniation of brain tissue

Skull and dura

Transtentorial herniation

- Ipsilateral 3rd nerve compression
 - Fixed dilated pupils

- Ipsilateral 6th nerve compression
 - Lateral rectus palsy
- Brain stem compression and haemorrhages (duret haemorrahges)
 - Cardiorespiratory failure and death

Transtentorial herniation

- Caused by mass effect in the cerebrum which pushes the supratentorial brain through the incisura to the posterior fossa
- Occurs when the brain traverses across the tentorium at the level of the incisura
- Medial part of the ipsilateral temporal lobe is squeezed through the tentorial opening
- Midbrain is pushed against the contralateral rigid edge of the tentorium - often sufficient to produce a groove on the surface of the mid brain

Duret haemorrhages

Haemorrhages in pons and medulla during rapid herniation of brain

Transtentorial herniaton

- Kernohan notch
 - Displace and compress the midbrain against the contralateral ridge of the edge of the tentorium.
 - Formation of a groove and haemorrahe on the contralateral midbrain

Note: - Swollen left cerebral hemisphere

- Herniation of the uncus of the hippocampus through the tentorium
- Groove on the mid brain (white arrow)

Subfalcine herniation

Cingulate gyrus herniates through the free edge of the falx

Tonsilar herniation

- Brain matter herniates through the foramen magnum
- Common with infratentorial expansile lesions
- Brain stem compression and haemorrhages
 - Cardiorespiratory failure and death
- Can be dramatic if a lumbar puncture is done with an undiagnosed mass lesion

Tonsilar herniation

Note: Grooved cerebellar tonsils by compression against the foramen magnum (arrows)

Summary

- Classification of CNS tumours
- Morphology of common tumours of the CNS

- Causes of raised ICP
- Effects of raised ICP

Reading assignments

- Clinical manifestations of CNS neoplasm
- Clinical manifestations of raised ICP
- Cerebral oedema
- Hydrocephalus