Rough Sets

My GA implementation aims to Assembling a perfect personal computer that meets various varying requirements of a family such as gaming, regular usage, programming etc

Following is a Rough Set Implementation of the same. My data set Comprised of the following Values (Rows) and Features (Columns)

S No.	Features	Value (Benefit)	Weight (Cost)	Qi (Generation Importance)	Si (Feature Importance)
1	Type(Laptop) (Portability)	500	300	5	2
2	Type(Desktop)	300	280	3	1
3	Processor Brand (Top brands: Intel, AMD etc	700	600	5	3
4	Processor Brand (Intermediate brands: MediaTek)	650	400	5	3
5	Processor Brand (Lower Brands :RISE Technology)	400	300	5	3
6	Processor Technology (i- series)	900	500	7	8
7	Processor Technology (Core series)	700	400	5	8
8	Processor Technology (core -series)	650	350	3	8
9	Processor Technology (Pentium series)	300	300	3	3
10	RAM Type (DDR3)	390	350	4	3
11	RAM Type (DDR4)	450	380	6	3
12	RAM Capacity (<1 GB)	100	100	2	6
13	RAM Type (1-8 GB)	180	160	4	6
14	RAM Type (>8 GB)	500	250	5	6
15	Cabinet Type(Fancy Gaming)	100	300	3	1
16	Cabinet Type(Regular)	120	200	3	1
17	GPU(Inbuilt)	50	20	2	4
18	GPU Dedicated (<1 GB)	200	100	4	4
19	GPU Dedicated (>1 GB)	400	250	5	4
20	Hard Drive (SSD)	800	400	7	7
21	Hard Drive (Magnetic)	500	200	5	7
22	Hard Drive Capacity(<500 GB)	300	200	4	4
23	Hard Drive Capacity(>500GB)	600	350	6	4

And now to apply the Redux, we perform Discretisation, using MD Heuristic to distinguish between a Yes/No.

Feature No.	Value (Benefit)	Weight (Cost)	Qi (Generation Imporatnce)	Si (Feature Importance)	Decision	
1	500	300	5	2	1	
2	300	280	3	1	0	
3	700	600	5	3	1	
4	650	400	5	3	0	
5	400	300	5	3	0	
6	900	500	7	8	1	
7	700	400	5	8	0	
8	650	350	3	8	0	
9	300	300	3	3	0	
10	390	350	4	3	0	
11	450	380	6	3	1	
12	100	100	2	6	0	
13	180	160	4	6	1	
14	500	250	5	6	0	
15	100	300	3	1	1	
16	120	200	3	1	0	
17	50	20	2	4	1	
18	200	100	4	4	0	
19	400	250	5	4	0	
20	800	400	7	7	1	
21	500	200	5	7	0	
22	300	200	4	4	0	
23	600	350	6	4	1	

Thus, the above table is transformed into the Discretisation table, having huge dimensions. I have filled parts of it as below, and now, we can start with applying the MD Heuristic.

U	F1												
	75	110	190	250	345	350	475	450	625	675	750		
X12 - x17	1	0	0	0	0	0	0	0	0	0	0		
X16 - x15	0	1	0	0	0	0	0	0	0	0	0		
X18 - x13	0	0	1	0	0	0	0	0	0	0	0		
X2- x11	0	0	0	0	1	1	0	0	0	0	0		
X9- x1	0	0	0	0	1	1	1	1	0	0	0		
X10 - x13	0	0	1	1	1	1	0	0	0	0	0		
X12 - x15	0	0	0	0	0	0	0	0	0	0	0		

After this step, we will be having our feature values as ranges, on which we can apply the concepts of

- 1. Rough Membership
- 2. Indiscernibility
- 3. Attribute Dependency
- 4. Significance of Attributes

Thus, this completes our Rough Set Implementation.