Operations on Relations (I)

刘铎

liuduo@bjtu.edu.cn

- ●假设 $A \setminus B$ 是两个集合, $a \in A$, $b \in B$, $R \setminus S$ 为 A 到 B 的两个关系,
- 于是 R 和 S 都是 $A \times B$ 的子集。
- 于是集合的运算也可以应用于 R 和 S 。

- $R \subseteq S$ 的交 (intersection) 关系 $R \cap S$ 定义为: $(a,b) \in R \cap S$ 当且仅当 $(a,b) \in R$ 且 $(a,b) \in S$;
- R 与 S 的并(union)关系 $R \cup S$ 定义为: $(a,b) \in R \cup S \text{ 当且仅当 } (a,b) \in R \text{ 或 } (a,b) \in S;$
- R 的补(complement)关系 R 定义为; \overline{aRb} 当且仅当 aRb

- {张,白,宋,方}×{离散数学,数据结构,计算机网络}=
 {(张,高散数学), (张,数据结构), (张,计算机网络)
 (白,离散数学), (白,数据结构), (白,计算机网络),
 (宋,离散数学), (宋,数据结构), (宋,计算机网络),
 (方,离散数学), (方,数据结构), (方,计算机网络)
- R = { (张, 数据结构), (张, 离散数学),(白, 数据结构), (方, 计算机网络)}
- R = { (张,计算机网络), (白,离散数学), (白,计算机网络), (宋,离散数学), (宋,数据结构), (宋,计算机网络), (方,离散数学), (方,数据结构), }

● 例:

- \bullet $A = \{ 1, 2, 3, 4 \}$
- $R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$
- $S = \{ (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (4, 4) \}$
- $R \cap S = \{ (1, 2), (2, 1) \}$
- $R \cup S = \{ (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (3, 2), (3, 4), (4, 4) \}$

- 假设 $A \setminus B$ 是两个集合, $R \to A$ 到 B 的关系,则 R 的逆(inverse)关系 定义为 $R^{-1}=\{(b,a)|b\in B,a\in A,(a,b)\in R\}\subseteq B\times A$ 。
- 简言之,*R* 的逆关系是由将 *R* 中每个有序对的元素顺序交换构成的。
- 例:
 - $\bullet A = \{1, 2, 3, 4\}$
 - $ullet R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$
 - $\bullet R^{-1} = \{ (1, 1), (2,1), (4, 1), (1, 2), (2, 3), (4, 3) \}$

- 例
 - R = { (张, 数据结构), (张, 离散数学),(白, 数据结构), (方, 计算机网络)}

• $R^{-1} = \{ (数据结构, 张), (离散数学, 张), (数据结构, 白), (计算机网络, 方) \}$

$$\bullet$$
 $A = \{1, 2, 3, 4\}$

•
$$R = \{ (1,1), (1,2), (1,4), (2,1), (3,2), (3,4) \}$$

•
$$S = \{ (1,2), (1,3), (2,1), (2,2), (2,4), (4,4) \}$$

R	1	2	3	4
1	1	1	0	1
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0

$$\bullet$$
 $A = \{1, 2, 3, 4\}$

•
$$R = \{ (1,1), (1,2), (1,4), (2,1), (3,2), (3,4) \}$$

•
$$S = \{ (1,2), (1,3), (2,1), (2,2), (2,4), (4,4) \}$$

S	1	2	3	4
1	0	1	1	0
2	1	1	0	1
3	0	0	0	0
4	0	0	0	1

•
$$A = \{1,2,3,4\}$$

•
$$R = \{ (1,1), (1,2), (1,4), (2,1), (3,2), (3,4) \}$$

•
$$\overline{R} = \{ (1,3), (2,2), (2,3), (2,4), (3,1), (3,3), (4,1), (4,2), (4,3), (4,4) \}$$

R	1	2	3	4
1	1	1	0	1
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0

R	1	2	3	4
1	0	0	1	0
2	0	1	1	1
3	1	0	1	0
4	1	1	1	1

•
$$A = \{1,2,3,4\}$$

•
$$R = \{ (1,1), (1,2), (1,4), (2,1), (3,2), (3,4) \}$$

•
$$\overline{R} = \{ (1,3), (2,2), (2,3), (2,4), (3,1), (3,3), (4,1), (4,2), (4,3), (4,4) \}$$

R	1	2	3	4
1	1	1	0	1
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0

R	1	2	3	4
1	0	0	1	0
2	0	1	1	1
3	1	0	1	0
4	1	1	1	1

R	1	2	3	4
1	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
2	$\sqrt{}$			
3		$\sqrt{}$		$\sqrt{}$
4				

\overline{R}	1	2	3	4
1			$\sqrt{}$	
2		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
3				
4				

•
$$A = \{1, 2, 3, 4\}$$

•
$$R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$$

•
$$R^{-1} = \{ (1, 1), (2, 1), (4, 1), (1, 2), (2, 3), (4, 3) \}$$

R	1	2	3	4
1	1	1	0	1
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0

R-1	1	2	3	4
1	1	1	0	0
2	1	0	1	0
3	0	0	0	0
4	1	0	1	0

•
$$A = \{1, 2, 3, 4\}$$

•
$$R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$$

•
$$R^{-1} = \{ (1, 1), (2, 1), (4, 1), (1, 2), (2, 3), (4, 3) \}$$

R	1	2	3	4
1	1	1	0	1
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0

R-1	1	2	3	4
1	1	1	0	0
2	1	0	1	0
3	0	0	0	0
4	1	0	1	0

•
$$A = \{1, 2, 3, 4\}$$

•
$$R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$$

•
$$R^{-1} = \{ (1, 1), (2, 1), (4, 1), (1, 2), (2, 3), (4, 3) \}$$

R	1	2	3	4
1	1	1	0	1
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0

R -1	1	2	3	4
1	1	1	0	0
2	1	0	1	0
3	0	0	0	0
4	1	0	1	0

•
$$R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$$

•
$$S = \{ (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (4, 4) \}$$

•
$$R \cap S = \{ (1, 2), (2, 1) \}$$

1	7	7	0	7
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0
S	1	2	3	4
1	0	1	1	0
2	1	1	0	1
3	0	0	0	0
4	0	0	0	1

- $R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$
- $S = \{ (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (4, 4) \}$
- $R \cap S = \{ (1, 2), (2, 1) \}$

R	1	2	3	4
1	V	V		$\sqrt{}$
2	V			
3		$\sqrt{}$		$\sqrt{}$
4				

S	1	2	3	4
1		$\sqrt{}$	$\sqrt{}$	
2	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
3				
4				$\sqrt{}$

- $R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$
- $S = \{ (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (4, 4) \}$
- $R \cap S = \{ (1, 2), (2, 1) \}$

1	1	1	0	1
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0
S	1	2	3	4
1	0	1	3 1	4 0
	1 0 1			_
1		1	1	0

- $R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$
- $S = \{ (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (4, 4) \}$
- $R \cap S = \{ (1, 2), (2, 1) \}$

- $R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$
- $S = \{ (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (4, 4) \}$
- $R \cup S = \{ (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (2, 1), (2, 2), (2, 4), (2, 1), (2, 2), (2, 4), (2, 1), (2, 2), (2, 4), (2, 2), (2, 4), (2, 2), (2, 4), (2, 2), (2, 4), (2, 2), (2, 4),$ (3, 2), (3, 4), (4, 4)

	U			
3	0	1	0	1
4	0	0	0	0
S	1	2	3	4
1	0	1	1	0
2	1	1	0	1
3	0	0	0	0
4	0	0	0	1

•
$$R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$$

•
$$S = \{ (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (4, 4) \}$$

•
$$R \cup S = \{ (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (3, 2), (3, 4), (4, 4) \}$$

R	1	2	3	4
1	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
2	$\sqrt{}$			
3		$\sqrt{}$		
4				

S	1	2	3	4
1			$\sqrt{}$	
2	$\sqrt{}$			$\sqrt{}$
3				
4				

•
$$R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$$

•
$$S = \{ (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (4, 4) \}$$

•
$$R \cup S = \{ (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (3, 2), (3, 4), (4, 4) \}$$

R	1	2	3	4
1	1	1	0	1
2	1	0	0	0
3	0	1	0	1
4	0	0	0	0

S	1	2	3	4
1	0	1	1	0
2	1	1	0	1
3	0	0	0	0
4	0	0	0	1

- $R = \{ (1, 1), (1, 2), (1, 4), (2, 1), (3, 2), (3, 4) \}$
- $S = \{ (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (4, 4) \}$
- $R \cup S = \{ (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (2, 1), (2, 2), (2, 4), (2, 1), (2, 2), (2, 4), (2, 1), (2, 2), (2, 4), (2, 2), (2, 4), (2, 2), (2, 4), (2, 2), (2, 4), (2, 2), (2, 4),$ (3, 2), (3, 4), (4, 4)

• 假设 $A \setminus B \setminus C$ 是集合, $R \setminus A \cap B$ 的关系, $S \setminus B \cap B$ 的关系,则 $S \cdot R$ 表示 $A \cap B \cap C$ 的一个关系

$$S \circ R = \{(a, c) \mid$$

 $a \in A, c \in C$, 存在 $b \in B$ 使得 $(a, b) \in R$ 且 $(b, c) \in S$ }, 称为 R 和 S 的复合(composition)关系或合成关系。

 $R=\{(张, 数据结构), (张, 离散数学),$ (白, 数据结构), (方, 计算机网络)},

 $S=\{(数据结构, 逸夫楼), (数据结构, 一教), (离散数学, 一教), (计算机网络, 四教)\}$

- $R=\{(1,1),(1,2),(1,4),(2,1),(3,2),(3,4)\}$
- $S=\{(1,2),(1,3),(2,1),(2,2),(2,4),(4,4)\}$
- $\bullet R \circ S = ?$
- $R \circ S = \{ (1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4) \}$
- \bullet $S \circ R = ?$
- $S \circ R = \{ (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (3, 4) \}$

• 假设 $A \setminus B \setminus C$ 为有限集合, $R \to A$ 到 B 的关系, $S \to B$ 到 C 的关系,则有

$$\mathbf{M}_{S \circ R} = \mathbf{M}_{R} \odot \mathbf{M}_{S}$$

$$\mathbf{M_{R}} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{M_{S}} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{M_{R}} \odot \mathbf{M_{S}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$^{\circ R} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

	关系矩阵形式	关系图形式
\overline{R}	$\mathbf{M}_{\overline{R}} = \overline{\mathbf{M}}_{R}$	图的"补"
$R\cap S$	$\mathbf{M}_{R\cap S} = \mathbf{M}_R \wedge \mathbf{M}_S$	图的"交"
$R \cup S$	$\mathbf{M}_{R \cup S} = \mathbf{M}_{R} \vee \mathbf{M}_{S}$	图的"并"
R^{-1}	$\mathbf{M}_{R^{-1}} = (\mathbf{M}_{R})^{\mathrm{T}}$	每条边做"反向"
$S \circ R$	$\mathbf{M}_{S \circ R} = \mathbf{M}_R \mathbf{O} \mathbf{M}_S$	

End