DIPLOMATURA EN CIÈNCIA DE DATOS, APRENDIZAJE AUTOMÁTICO Y SUS APLICACIONES. COHORTE 2022 VIRTUAL

M08 – VÍCTIMAS DE INCIDENTES VIALES

Presentación final - Aprendizaje Automático

Mentora: Isabel Mejía

Grupo formado por:

* Giovine – Spitale - Venchiarutti

Aprendizaje Supervisado

Predecir la Gravedad de la Víctima: Heridos o Muertos por accidentes

Balanceo de los datos

Personas Heridas: Gravedad_victima 210131 dtype: int64

Personas Fallecidas: Gravedad_victima 1724

dtype: int64

- Notamos una gran diferencia entre víctimas heridas y muertas, los que podría afectar nuestra predicción
- Utilizamos la función RandomOverSampler, agrega registros de forma aleatoria para dejar una muestra simétrica

Selección de variables

<class 'pandas.core.frame.DataFrame'> Int64Index: 211855 entries, 0 to 232869 Data columns (total 10 columns): Column Non-Null Count Dtvpe Clase incidente 211855 non-null object Sexo object 211855 non-null Edad 211855 non-null float64 Condicion 211855 non-null object Mes object 211855 non-null Dia 211855 non-null object Num dia 211855 non-null float64 Año 211855 non-null int64 211855 non-null object Comuna Barrio 211855 non-null object dtypes: float64(2), int64(1), object(7) memory usage: 25.8+ MB

Preparación de los datos

- Eliminación de los registros nulos restantes, cerca del 9% del data set.
- Separación y codificación con GetDummies de la variable Gravedad_victima para usarla de dato objetivo.
- Codificación de las variables categóricas con LabelEncoder
- Estandarizar los datos con StandardScaler, lo que es bastante usual para modelos de aprendizaje supervisado

Separación de los datos

- Dividimos con la función Train_Test_Split el data set balanceado en tres partes
- Entrenamiento y Testeo para nuestro análisis predictivo aplicando diversos modelos
- Validación para determinar la efectividad del modelo elegido

Planteos de Modelos de Predicción

Super Vector Machine

• Ajuste con Kernel función **sigmoide**

Accuracy	test	sigmoid: 54	.41%		
30		precision		f1-score	support
	0	0.54	0.54	0.54	37544
	1	0.55	0.55	0.55	38103
accur	acy			0.54	75647
macro	avg	0.54	0.54	0.54	75647
weighted	avg	0.54	0.54	0.54	75647

• Ajuste con Kernel función **rbf**

Accuracy	test	rbf: 84.41% precision	recall	f1-score	support
	0	0.80	0.91	0.85	37544
	1	0.90	0.77	0.83	38103
accur	acy			0.84	75647
macro	avg	0.85	0.84	0.84	75647
weighted	avg	0.85	0.84	0.84	75647

Ajuste con Kernel función poly

Accuracy trai Accuracy test				
	precision	recall	f1-score	support
0	0.65	0.83	0.73	37544
1	0.77	0.57	0.65	38103
accuracy			0.70	75647
macro avg	0.71	0.70	0.69	75647
weighted avg	0.71	0.70	0.69	75647

Decision Tree

 Ajuste de Hiper parámetros con la función GridSearchCV pero superando los 20 Depth llegando a 50/100 llega a responder muy bien a los datos de entrenamiento/validación(overfitting)

		precision	recall	f1-score	support
	0	0.89	0.99	0.94	37544
	1	0.99	0.88	0.93	38103
accura	су			0.93	75647
macro a	vg	0.94	0.94	0.93	75647
weighted a	vg	0.94	0.93	0.93	75647

 Probamos realizar validación cruzada con la separación del data frame en 5 instancias aleatorias para saber si podíamos mejorar el % de precisión, pero sacamos un valor similar al anterior

DecisionTreeClassifier Precisión test fold 0:	10 To	
Precisión test fold 1:	93.64	
Precisión test fold 2:	91.62	
Precisión test fold 3:	94.08	
Precisión test fold 4:	93.40	
Avg. accuracy = 93.468	01770679394	

Planteos de Modelos de Predicción

Random Forrest

Aplicamos el modelo con 50 estimadores y teníamos un nivel de predicción muy alta pero luego con 20 también obtuvimos el mismo nivel de predicción.

	precision	recall	f1-score	support
0	0.98	1.00	0.99	37544
1	1.00	0.98	0.99	38103
accuracy			0.99	75647
macro avg	0.99	0.99	0.99	75647
weighted avg	0.99	0.99	0.99	75647

• Análisis de la relevancia de Variables que forman el data set de testeo

Edad	0.199862
Barrio	0.135774
Clase_incidente	0.118392
Num_dia	0.118385
Condicion	0.097566
Mes	0.089111
Comuna	0.083472
Año	0.071357
Dia	0.064641
Sexo	0.021440
dtype: float64	

Boosting

- Realizamos la separación del data frame en 5 instancias aleatorias de datos y probamos dos modelos de Booting
- Porcentaje promedio de precisión con modelo **XGBC**

Porcentaje promedio de precisión con modelo XGBRFC

```
XGBRFC

Avg. accuracy = 70.46628356318439
```

Testeo de los Mejores Modelos de Predicción

Decision Tree

- Se definieron los dos mejores modelos por el % de precisión alcanzado usando el data set de test, con 42027 registros.
- En ambos casos se bajó la cantidad de niveles en árboles de decisión a 20 depth

Random Forrest

 Revisando la cantidad de registros, podemos ver que este modelo logra un 93% de predicción
 El % alcanzado de predicción es de 100%. En casos de Muertos la predicción es completa y tenemos un pequeño margen de error para detectar los Heridos.

	precision	recall	f1-score	support
0	0.90	0.97	0.93	21110
1	0.96	0.89	0.93	20917
accuracy			0.93	42027
macro avg	0.93	0.93	0.93	42027
weighted avg	0.93	0.93	0.93	42027

	precision	recall	f1-score	support
0	0.99	1.00	0.99	21110
1	1.00	0.99	0.99	20917
accuracy			0.99	42027
macro avg	0.99	0.99	0.99	42027
weighted avg	0.99	0.99	0.99	42027

Aprendizaje No Supervisado

Análisis de correlación de todas las variables y selección

Escalado del dataset

- Útil para al menos PCA, KNN, K-Means que usa distancia L2 o Eucleadiana, DB-Scan y GMM en muchos casos
- Usando las coordenadas no hace falta aplicar alguna normalización

Vemos que existe correlación bastante positiva entre:

- Radicado y Año (0.68)
- Clase_incidente=Atropello y Condicion=Peatón (0.8)
- Barrio=Altavista Sector Central y Comuna=70 Corregimiento de Altavista (0.85)
- Barrio=Cabecera San Antonio de Prado y Comuna=80 Corregimiento de San Antonio de Prado (0.85)

Mezcla de Gaussianas con Latitud y Longitud en subpoblación de personas heridas

K-Means sin Gravedad de víctima

Método del Codo -> K=4

- Choque está representado por el cluster 3.
- Incendio está representado por el cluster 0 y tiene mayoría en sexo
 Masculino seguido de sexo Femenino.

El **cluster 0:** se corresponde con el sexo Masculino y Sin Inf, para las clases de incidente Incendio, Volcamiento, Ocupante y Otro, para todos los meses salvo Mayo en Sin Inf para Volcamiento y Incendio.

El **cluster 1** se representa por Atropello para todos los sexos y meses.

El **cluster 2** se representa por sexo Femenino para todas las clases de incidentes menos Atropello, y para Sin Inf en Volcamiento, Caida_Ocupante y Choque.

El **cluster 3** se forma en Choque para los sexos Femenino y Sin Inf en todos los meses salvo septiembre en el caso de Sin Inf.

DB-Scan con Latitud y Longitud

- Epsilon 0.2
- Mínimo de Vecinos 10

Cantidad de clusters estimados: 25 Cantidad de puntos con ruido estimados: 265 Coeficiente de Silhouette: -0.324

Si bien el **Coeficiente de Silueta** es más cercano al 0 que al -1, es negativo, por lo cual concluimos, observando además el gráfico que se ha asignado de forma incorrecta ejemplos a los clusters.

Embedding PCA

• <u>n=4 componentes</u>

Primeras 3 CPs por Clase de incidente

Clara separación de un grupo que en el gráfico de la CP1 y CP2 se ve con **Choque**.

Clase de Incidente CP1 y CP2

las víctimas de **Choque** bastante diferenciadas del resto del tipo de incidentes, siendo **Atropello** la más disímil a esta. El resto bastante agrupadas.

Incendio bastante cercana a **Volcamiento**. Ituímos que puede deberse a ser una consecuencia del **Volcamiento**.

Condicion CP1 y CP3

Separación de **Motociclista** con el resto.

K-Means con PCA

Método del Codo -> K=4

El **cluster 0** parte superior izquierda de CP1 y CP2 y no se mezcla con el resto de los clusters. En visualizaciones de PCA inciales, representa en el caso de Clase_incidente a la mitad de **Choque** y en Sexo al **Masculino**.

El **cluster 1** está bastante mezclado con el cluster 3 y muy alejado del resto.

El **cluster 2** bastante separado del resto de clusters hacia la derecha. En visualizaciones de PCA en 2D anteriores, concluimos que representa a la mitad de Choque y los sexos Femenino y Sin Inf.

El **cluster 3** se define mayormente en la parte inferior de las componentes, por lo tanto **no** abarca a Choque ni al sexo Femenino.

Mezcla de Gaussianas con PCA

N = 4

Comparando los gráficos de las gaussianas con N = 3 y N = 4, concluimos que el parámetro de más adecuado es N = 4.

Podemos concluir que los modelos que mejor se adaptaron a nuestro dataset de los solicitados fueron Mezcla de Gaussians y K-Means.

<u>Trabajo completo de AS</u> <u>Trabajo completo de ANS</u> Muchas Gracias.

Carina Gustavo Candela.