Lekcija 7

7 Sprežna stabla

Definicija 1. Neka je dat povezan graf G = (V, E) sa $n \ge 2$ čvorova. Svaki delimični povezani graf, grafa G, koji ima n-1 grana, naziva se sprežnim stablom

Da se potsetimo: Neka je $B = (b_{ij})$ proizvoljna kvadratna matrica reda $n \times n$. Neka je B(i|j) kvadratna matrica koja se dobija na osnovu matrice B izostavljanjem elemenata i-te vrste i j-te kolone. Broj det B(i|j) naziva se kofaktor matrice B.

Teorema 1. Neka je G povezan graf sa $n \geq 2$ čvorova, m grana, čija je matrica susedstva A, D dijagonalna matrica stepena čvorova i L = D - A Laplasova matrica. Svi kofaktori matrice L, $\det L(i,j)$, su medjusobno jednaki i odredjuju ukupan broj sprežnih stabala u grafu G.

PRIMER 1. Naću ukupan broj sprežnih stabala i sama sprežna stabla u grafu $G(V,E),\ V=\{1,2,3,4\},\ E=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{3,4\}\}.$

 $\underline{\text{Re}}\underline{\text{senje}}$ Graf G je prikazan na sledećoj slici

Matrice A, D i L su, redom, definisane sa

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \quad L = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

Uočimo, na primer, matricu

$$L(1 \mid 1) = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix} \quad \text{te je} \quad \det L(1 \mid 1) = \begin{vmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{vmatrix} = 8.$$

To znači da ima ukupno 8 stabala. To su sledeća stabla

Pitanje: Koliko ima, i koja su, neizomorfna stabla u prethodnom primeru.

Neka su $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} > \mu_n = 0$ Laplasove sopstvene vrednosti grafa G, tj. sopstvene vrednosti matrice L. Tada je ukupan broj sprežnih stabala grafa G jednak

$$t(n) = \frac{1}{n} \prod_{i=1}^{n-1} \mu_i$$
.

Domaći zadatak:

• Naći ukupan broj sprežnih stabala za grafove prikazane na sledećoj slici

• Naći ukupan broj sprežnih stabala u grafovima C_3 , C_4 i C_n , gde je C_n ciklus od n čvorova.

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad L = D - A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix},$$

$$L(1,1) = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \quad \det L(1,1) = 3, \quad \mu I - L = \begin{bmatrix} \mu - 2 & 1 & 1 \\ 1 & \mu - 2 & 1 \\ 1 & 1 & \mu - 2 \end{bmatrix}$$

$$\det(\mu I - L) = \mu(\mu - 3)^2$$
, $\mu_1 = \mu_2 = 3$, $\mu_3 = 0$

$$t(n) = \frac{1}{n} \prod_{i=1}^{n-1} \mu_i \quad \Rightarrow \quad t(3) = \frac{1}{3} \cdot 3 \cdot 3 = 3.$$

Proizvoljna dva sprežna stabla formiranan na osnovu grafa G=(V,E), $|V|=n\geq 2$, mogu se transformisati jedan u drugi sukcesivnim formiranjem takozvanog monotonog niza sprežnih stabala.

Neka su T i T' dva sprežna stabla, formirana na osnovu datog povezanog grafa G. Želja nam je da sprežno stablo T transformišemo u sprežno stablo T'. U tom cilju formira se niz sprežnih stabala

$$T = T_1, T_2, \dots, T_p = T', \quad 1 \le p \le n - 1.$$

na osnovu sledećih kriterijuma:

- 1. Stabla T_k i T_{k+1} , $k=1,2,\ldots,n-1$, medjusobno se razlikuju samo po jednoj grani.
- 2. Stablo T_{k+1} , za svako k = 1, 2, ..., n-1, ima za jednu više zajedničku granu sa stablom T', u odnosu na stablo T_k .

Ovako formirani niz sprežnih stabala, za dati povezani graf G, na osnovu koga se sprežno stablo T transformiše u sprežno stablo T', naziva se monotonim nizom stabla.

Sama transformacija sprežnog stabla T u T' može se opisati sledećom procedurom:

Procedura (transformacija sprežnih stabala)

- Korak 1. Neka je e' proizvoljna grana stabla T' koja ne pripada stablu T. Tada u stablu T postoji jedinstveni elementarni put koji povezuje čvorove incidentne sa granom e'. Ovaj put sadrži bar jednu granu e koja ne pripada stablu T', jer bi u protivnom u stablu T' postojao ciklus, što je nemoguće. Sada u stablu T ($T = T_1$) udaljimo granu e i pridodamo granu e'. Timo smo formirali stablo T_2 .
- Korak 2. Ako je $T_2 = T'$ postupak transformacije je završen i procedura se prekida. Ako to nije slučaj, ponavlja se korak 1 pri čemu je $T=T_2$. Kako svako stablo grafa G sadrži |E| = n - 1 grana, procedura se završava za najviše n-1 koraka.

PRIMER 2. Na sledećoj slici dat je povezan graf $G = (V, E), V = \{1, 2, 3, 4, 5\}$ i dva njegova sprežna stabla. Pomoću monotonog niza sprežnih stabala transformisati stablo T u T'.

<u>Rešenje.</u> Grana $\{1,2\}$ pripada stablu T', a ne pripada stablu $T = T_1$. U stablu T postoji elementarni put 1–5–2, koji povezuje čvorove 1 i 2. On sadrži granu $\{1,5\}$, koja ne pripada stablu T'. Na osnovu stabla $T=T_1$ formira se stablo T_2 , tako što se odstrani grana $\{1,5\}$, a doda grana $\{1,2\}$

Grana $\{2,3\}$ pripada stablu T', a ne pripada stablu T_2 . U stablu T_2 postoji elementarni put 2–5–3 koji povezuje čvorove 2 i 3. On sadrži granu $\{5,3\}$ koja ne pripada stablu T'. Na osnovu stabla T_2 formira se sprežno stablo T_3 , tako što odstranimo granu $\{5,3\}$ a dodamo granu $\{2,3\}$.

Sprežno stablo T' sadrži granu $\{3,4\}$ koja ne pripada sprežnom stablu T_3 . U stablu T_3 postoji elementarni put 3–2–5–4 koji povezuje čvorove 3 i 4. On sadrži granu $\{5,4\}$ koja ne pripada stablu T'. Na osnovu stabla T_3 formira se sprežno stablo

Pitanje: Da li je monotoni niz $T = T_1, \ldots, T_p = T'$ jedinstven? Da li se procedura uvek završava nakon konačnog broja koraka? Ako, da, koliko najviše koraka je potrebno za okončanje procedure?

Domaći zadatak

Da li grafovi prikazani na slici mogu imati par sprežnih stabala koja nemaju zajedničku granu, tj. disjunktne skupove grana?

Domaći zadatak

Da li postoji grafG=(V,E) koji sadrži dva sprežna stabla koji imaju disjunktne skupove grana

- a) ako sadrži most,
- b) ako sadrži podgraf oblika K_3 (trougao),
- c) ako je $|V| = n \ge 2$ i $|E| = m \le 2n 3$.

Odgovori

- a) ne
- b) ne
- c) ne

Ako bi sadržao dva sprežna stabla sa disjuktnim skupovima grana tada bi važilo da je

$$m > 2(n-1) = 2n-2 > 2n-3$$
.

7.1 Kodiranje i dekodiranje stabla (VAŽNO!!!)

Stablo je kompleksna struktura podataka. Za razliku od linearnih struktura kao što su polja ili linearne lančane liste, stabla su nelinearne strukture i svaki element u stablu sadrži pored podatka i informaciju o poziciji čvora kao što je informacija o čvoru prethodniku i čvorovima sledbenicima (parentchild relationship). Način na koji se ove informacije pamte se zove kodiranje. Obrnuti postupak se zove dekodiranje. Kodiranje i dekodiranje su sinonimi za serializaciju i deserijalizciju stabla.

Postoji veliki broj načina kodiranja stabla. Mi ćemo proučiti dva: dekadno kodiranje i kodiranje Prufera.

7.2 Dekadno kodiranje

Dekadno kodiranje može da se opiše sledećim koracima i pravilima:

- 1. Svakom čvoru dodeliti jedinstvenu labelu (oznaku), tako da one budu medjusobno uporedive. Najjednostavnije je da svakom čvoru dodelimo broj, nenegativan (prirodan) broj.
- 2. Kodiranje počinje i završva se u korenu stabla

- 3. Prelazak svake grane od korena kodira se jednom jedinicom
- 4. U svakoj tački račvanja krećemo ka čvoru sa manjom oznakom (brojem) ako ga nismo obišli.
- 5. Kada dodjemo do lista, vraćamo se nazad, i svaku predjenu granu kodiramo nulom.
- 6. Pri kretanju nazad u svakoj tački račvanja krećemo se ka čvoru koga nismo obišli sa manjom oznakom (brojem)
- 7. Kada se završi obilazak stabla, dobijeni broj prevodi se iz binarnog u dekadni i on predstavlja kôd.

<u>Primer 3</u> Kodirati stablo prikazano na sledećoj slici pomoću dekadnog koda. Za koren, na primer, uzeti čvor 3.

Rešenje Čvor 3 je tačka račvanja. Može se ići u čvor 2 ili 6. Čvor 2 je sa manjom oznakom i ide se u njega. U kod D, koji je bio prazan, upisuje se jedna jedinica, tj $D=(1)_2$. Čvor 2 je sada tačka račvanja. Ide se u čvor 1, a u kod D se upisuje još jedna jedinica, tj $D = (11)_2$. Iz čvora 1 ide se u čvorove 4 i 7, jer nema drugog izbora, a u kod se upisuju još dve jedinice, tj $D = (1111)_2$. Čvor 7 je list. Vraćamo se ka korenu, tj. čvoru 3. Na tom putu se stiže u čvor 2, koji je tačka račvanja, a u kod se upisuju tri nule, tj. $D = (1111000)_2$. Iz čvora 2 se može ići u čvor 5 ili 3. Ide se u čvor 5, jer nije obidjen, i u kod se upisuje jedna jedinica, tj. $D = (11110001)_2$. Cvor 5 je tačka račvanja i može se ići u čvor 8 ili 9. Ide se u čvor 8 i u kôd se upiuje još jedna jedinica, tj. $D = (111100011)_2$. Čvor 8 je list i vraćamo se ka korenu. Stiže se u čvor 5, kodu se dodaje nula, tj. $D = (1111000110)_2$. čvor 5 je tačka račvanja i ide se u čvor 9 jer nije obidjen, a u kôd se dodaje jedna jedinica, tj. $D = (11110001101)_2$. Čvor 9 je list, pa se vraćamo ka korenu. Na putu do korena nema novih tačaka račanja, pa se u kôd upisuju još tri nule, tj. $D = (11110001101000)_2$. Iz čvora 3 ide se u čvor 6 i kôdu se dodaje jedinica, tj. $D = (111100011010001)_2$. Čvor 6 je list. Vraćmo se u koren 3. Upisujemo još jednu nulu u kôd, tj. $D = (1111000110100010)_2$. To je kraj obilaska stabla. Dobijeni kôd prevodimo u dekadni broj

$$D = (1111000110100010)_2 = 61858_{10}$$

Domaći zdatak

Analizirajući sam postupak dekadnog kodiranja i Primer 3, pokušajte da odgovorite na sledeća pitanja:

- 1. Ako je dekadni kôd dat u dekadnom brojnom sistemu, da li se može zaključiti koliko stablo ima čvorova i koliko ima listova?
- 2. Da li dekadni kôd može biti neparan broj?
- 3. Ako je dekadni kôd preveden iz dekadnog brojnog sistema u binarni, da li se može zaključiti koliko stablo ima čvorova i koliko listova? Obrazložiti odgovore.

7.2.1 Dekodiranje

Dekadni kôd ne nosi informaciju o korenu. Zbog toga se za koren bira proizvoljni čvor, koga, uobičajeno, označimo sa 1. Kôd se iz dekadnog prevodi u binarni brojni sistem. Dobijeni binarni niz se analizira s leva u desno. Svaka jedinica označava kretanje od korena i novi čvor. Svaka nula označava kretanje ka korenu za jedno mesto, po starim čvorovima. Dekodiranje se završava u novom korenu, tj. čvoru 1.

PRIMER 4. Naći satblo čiji je dekadni kôd D = 61858.

REŠENJE. Odgovarajući binarni broj za 61858 je $D=(1111000110100010)_2$. Kôd ima 8 jedinica, što znači da stablo ima 9 čvorova. Označimo ih brojevima 1 do 9.

Krećemo od čvora 1 za četiri mesta, poštujući pravilo da se uvek krećemo ka čvorovima sa manjim brojem. To je put 1–2–3–4–5. Iz čvora 5 vraćamo se za tri mesta 5–4–3–2, i stižemo u čvor 2. Iz čvora 2 idemo za dva mesta, 2–6–7, i stižemo u čvor 7. Iz čvora 7 vraćamo se za jedno mesto, 7–6. Iz čvora 6 idemo za jedno mesto unapred, u čvor 8. Iz čvora 8 vraćamo se za tri mesta ka korenu, tj. čvoru 1, 8–6–2–1. Iz čvora 1 idemo u novi čvor, 1–9, to je čvor 9. Iz čvora 9 vraćamo se u čvor 1 i to je kraj.

Dobijena slika nije lepa, a dobijeno stablo ne liči baš na satblo iz Primera 3. Medjutim, ako ovo stablo prikažemo na sledeći način

vidimo da se dobijeno stablo razlikuje od onog iz Primera 3 samo u oznakama.

7.3 Kôd Prufera

Nalaženje Pruferovog kôda stabla može se opisati sledećim koracima.

- 1. U početku je kod prazan
- 2. U stablu se pronalazi list (čvor stepena 1) sa najmanjom oznakom. Oznaka (broj) njegovog suseda se upisuje u kod (tj. radi se konkatenacija nadovezivanje), a sam list se odstranjuje iz stabla
- 3. Proverava se da li novodobijeno stablo ima samo dva čvora. Ako je tako, kodiranje je završeno. Ako nije, prelazi se na korak 2

Primera 5. Kodirati stablo iz primera 3 kodom Prufera.

REŠENJE List sa najmanjom oznakom u stablu je čvor 6. U kod upisujemo oznaku njegovog suseda, 3, a lis odstranimo iz stabla. Tako je P=[3], a novodobijeno stablo je

U novom stablu list sa najmanjom oznakom je čvor 3. Njegov sused je čvor 2. Kôdu dodajemo broj 2, a list 3 odstranimo iz stabla. Tako je P = [3, 2] a

novodobijeno stablo je

U novom stablu list sa najmanjom oznakom je čvor 7. Njegov sused je čvor 4. U kôd upisujemo 4, a list 7 odstranimo iz stabla. Tako je P=[3,2,4] a novodobijeno stablo

U ovom stablu list sa najmanjom oznakom je čvor 4. Njegov sused je čvor 1. U kôd upisujemo 1, a list 4 odstranimo iz stabla. Tako je sada P=[3,2,4,1] a novodobijeno stablo je

U ovom stablu je list sa najmanjom oznakom čvor 1. Njegov sused je čv
r 2. U kôd upisujemo 2, a list 1 odstranimo iz stabla. Sada je P = [3, 2, 4, 1, 2] a

novodobijeno stablo je

Sada je list sa najmanjom oznakom čvor 2. Njegov sused je čvor 5. U kôd upisujemo broj 5, a list 2 odstranimo iz stabla. Novi kôd je P=[3,2,4,1,2,5] a novodobijeno stablo je

List sa najmanjom oznakom je sada čvor 8. Njegov sused je čvor 5. U kôd upisujemo broj 5, a list 8 odstranimo iz stabla. Sda je P = [3, 2, 4, 1, 2, 5, 5]. Novo stablo ima samo dva čvora i kodiranje je završeno.

Zapažanja:

- 1. Kôd je za dva kraći od broja čvorova u stablu
- 2. Oznake listova (čvorova stepena 1) 6, 7, 8 i 9, nisu prisutne u kodu
- 3. Oznake čvorova čiji je stepen2 su po jednom prisutne u kodu. (čvorovi $1,\!3,\!4)$
- 4. Oznake čvorova stepena 3, su po dva puta prisutne u kodu. (čvorovi 2 i 5)

Važi generalno:

- 1. Ako stablo ima n čvorova, kod Prufera je dužine n-2
- 2. Ako je neki čvor u stablu stepena p, njegova oznaka se u kodu pojavljuje p-1 puta.

ZAKLJUČAK: Na osnovu koda Prufera znamo kompletnu strukturu stabla.

Primer 6. Naći karakteristike stabla koji je kodiran kodom Prufera

$$P = [1, 6, 3, 7, 6, 12, 6, 11, 7, 12].$$

<u>Rešenje</u>. Kôd je dužine 10, pa stablo ima 12 cčvorova. Stablo ima 6 listova, i to su čvorovi sa oznakama 2, 4, 5, 8, 9 i 10. Stablo ima tri čvora stepena 2, i to su čvorovi 1, 3 i 11. Stablo ima dva čvora stepena 3, i to su čvorovi 7 i 12. Stablo ima jedan čvor stepena 4, i to je čvor 6.

7.3.1 Dekodiranje koda Prufera

Za proizvoljan vektor $N=[a_1,a_2,\ldots,a_n]$ označimo njegovo "skraćivanje" za prvu komponentu sa $N^*=[a_2,a_3,\ldots,a_n]$. Neka je $P[v_1,v_2,\ldots,v_{n-2}]$ kôd Prufera i $N=[1,2,\ldots,n]$ vektor oznaka čvorova stabla. Dekodiranje se može opisati sledećim koracima:

- 1. U vektoru N nalazimo najmanji broj v koji nije prisutan u P. Čvorove sa oznakom v i v_1 spojimo granom.
- 2. Iz N odstranimo broj v, N := N v, a iz koda P prvu komponentu, v_1 ; $P^* = P v_1 = [v_2, v_3, \dots, v_{n-2}], P := P^*$.
- 3. Ako je |N| = 2, spajamo dva preostala čvora sa odgovarajućim oznakama i to je kraj. U protivnom prelazimo na korak 1.

PRIMER 7. Naći stablo čiji je kôd Prufera P = [2, 5, 3, 2, 5, 8, 8].

<u>Rešenje.</u> Kôd Prufera je dužine 7, te stablo ima 9 čvorova. Uočimo vektor N = [1, 2, 3, 4, 5, 6, 7, 8, 9]. Broj 1 nije prisutan u kodu P. čvorove sa oznakom 1 i 2 spojimo, broj 1 izbacujemo iz N, a broj 2 iz P. sada je

$$N = [2, 3, 4, 5, 6, 7, 8, 9]$$
 i $P = [5, 3, 2, 5, 8, 8]$.

Broj 4 je najmanji broj iz N koji se ne pojavljuje u P. Čvorove sa oznakama 4 i 5 spojimo. Boj 4 izbacimo iz N a broj 5 iz P. Sada je

$$N = [2, 3, 5, 6, 7, 8, 9]$$
 i $P = [3, 2, 5, 8, 8]$.

Broj 6 je najmanji broj iz N koji se ne pojavljuje u P. Čvorove sa oznakama 6 i 3 spojimo granom. Broj 6 izbacujemo iz N a broj 3 iz P. Sada je

$$N = [2, 3, 5, 7, 8, 9]$$
 i $P = [2, 5, 8, 8]$.

Broj 3 je najmanji broj iz N koji se ne pojavljuje u P. Čvorove 3 i 2 spojimo granom. Broj 3 izbacimo iz N a broj 2 iz P, sada je

$$N = [2, 5, 7, 8, 9]$$
 i $P = [5, 8, 8]$.

Broj 2 je namanji broj iz N koji se ne pojavljije u P. Čvorove 2 i 5 spojimo granom. Broj 2 izbacimo iz N a broj 5 iz P. Sada je

$$N = [5, 7, 8, 9]$$
 i $P = [8, 8]$.

Broj 5 je najmanji broj iz N koji se ne pojavljuje u P. Čvorove 5 i 8 spojimo granom. Broj 5 izbacimo iz N a broj 8 iz P. Sada je

$$N = [7, 8, 9]$$
 i $P = [8]$.

Broj 7 je najmanji broj iz N koji se ne pojavljuje u P. Spojimo čvorove 7 i 8 granom. Broj 7 izbacujemo iz N, a 8 iz P. Sada je

$$N = [8, 9], \qquad |N| = 2,$$

a P je prazno. Kako je |N|=2, spojimo čvorove sa oznakama 8 i 9. Dekodiranje je završeno. Odgovarajuće stablo je prikazano na slici

Komentari

Pitanja

- 1. Da li je kôd Prufera jedinstven?
- 2. Da li je dekodirani kôd jedinstven?

Vratimo se na Primer 3.

$$D = (1111000110100010)_2 = 61858_{10}$$

Posmatramao isto stablo ali je koren $5\,$

$$\overline{D} = (1111...)_2, \rightarrow 7$$

$$\overline{D} = (1111000\ldots)_2, \rightarrow 2$$

$$\overline{D} = (111100011\ldots)_2, \rightarrow 6$$

$$\overline{D} = (1111 \dots)_2, \to 7
\overline{D} = (1111000 \dots)_2, \to 2
\overline{D} = (111100011 \dots)_2, \to 6
\overline{D} = (111100011000 \dots)_2, \to 5
\overline{D}$$

$$\overline{D} = (1111000110001010)_2 = ?$$

$$\overline{D} \neq D$$
.

Dekodiranje:

 $\bullet\,$ pomoću koda $D = (111100110100010)_2$

Izomorfizam je definisan sa

- Pomoću koda $\overline{D} = (1111000110001010)_2$

Izomorfizam je definisan sa