Ddicesima Esercitazione

Esercizio 1. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Riempire la tabella:

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
	(1,5) $(2,4)$				
x =	(3,4)(4,5)	(1,4)			
	(4,6)				
	(1,2)(1,5)				
$\pi = (0,$	(2,3)(2,4)	(4,5)			
	(5,6)				

Esercizio 2. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 1.

Esercizio 3. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

Esercizio 4. Applicare l'algoritmo di Ford-Fulkerson per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

Esercizio 5. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Riempire la tabella:

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
	(1,3) $(2,5)$				
x =	(3,2)(4,6)	(1,2)			
	(5,7)(6,7)				
	(1,2) $(1,3)$				
$\pi = (0,$	(2,5)(3,7)	(6,7)			
	(4,3) (4,6)				

Esercizio 6. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 5.

Esercizio 7. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

Esercizio 8. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

Esercizio 9. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Riempire la tabella:

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
x =	$ \begin{array}{c c} (1,3) & (2,3) \\ (3,5) & (4,6) \\ (5,6) \end{array} $	(2,5)			
$\pi = (0,$	$ \begin{array}{c c} (1,2) & (1,3) \\ (2,5) & (4,6) \\ (5,6) \end{array} $	(2,4)			

Esercizio 10. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 9. Esercizio 11. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

Esercizio 12. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

Esercizio 13. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Riempire la tabella:

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
	(1,2) $(1,3)$				
x =	(1,4)(3,5)	(3,7)			
	(4,6)(6,7)				
	(1,4)(2,5)				
$\pi = (0,$	(3,5)(4,3)	(1,2)			
	(4,6)(5,7)				

Esercizio 14. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 13.

SOLUZIONI

Esercizio 1.

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
x = (0, 5, 4, 0, 2, 1, 0, 5, 0)	(1,5) (2,4) (3,4) (4,5) (4,6) (1,4)		SI	SI	SI
$\pi = (0, 7, 14, 14, 4, 12)$	$ \begin{array}{c} (1,2) \ (1,5) \\ (2,3) \ (2,4) \\ (5,6) \end{array} $	(4,5)	NO	NO	NO

Esercizio 2. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 1.

	passo 1	passo 2
Archi di B	(1,2) (2,4) (3,4) (4,6) (5,6)	(1,4) (2,4) (3,4) (4,6) (5,6)
Archi di U	(1,5)	(1,5)
x	(2, 0, 7, 0, 4, 1, 0, 2, 3)	(0, 2, 7, 0, 2, 1, 0, 2, 3)
costo di x	109	89
π	(0, 7, 5, 14, 9, 17)	(0, -3, -5, 4, -1, 7)
k		
(arco entrante)	(1,4)	(1,5)
$ heta_1$		
(archi concordi)	5	3
θ_2		
(archi discordi)	2	3
h		
(arco uscente)	(1,2)	(1,4)

Esercizio 3.

	pass	so 1	pass	passo 2		passo 3		so 4	passo 5	
nodo	d	p	d	p	d	p	d	p	d	p
2	8	1	8	1	8	1	8	1	8	1
3					18	2	18	2	18	2
4	7	1	7	1	7	1	7	1	7	1
5	10	1	10	1	10	1	10	1	10	1
6			17	4	17	4	13	5	13	5

Sequenza dei nodi visitati $S=\{1,\ 4,\ 2,\ 5,\ 6,\ 3\}$

Esercizio 4. Applicare l'algoritmo di Ford-Fulkerson per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 4 - 6	8	(0, 8, 0, 0, 0, 0, 0, 8, 0)	8
1 - 5 - 6	5	(0, 8, 5, 0, 0, 0, 0, 8, 5)	13
1 - 4 - 5 - 6	5	(0, 13, 5, 0, 0, 0, 5, 8, 10)	18

TAGLIO DI CAPACITÀ MINIMA

$$N_s = \{1, 2, 3, 4\}$$
 $N_t = \{5, 6\}$

Esercizio 5. Riempire la tabella:

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
x = (3, 5, 0, 11, 6, 0, 0, 0, 2, 7, -1)	(1,3) (2,5) (3,2) (4,6) (5,7) (6,7)	(1,2)	NO	SI	NO
$\pi = (0, 5, 5, -3, 11, 7, 15)$	(1,2) (1,3) (2,5) (3,7) (4,3) (4,6)	(6,7)	SI	NO	NO

Esercizio 6. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 5.

	passo 1	passo 2			
Archi di B	(1,2) (1,4) (3,7) (4,3) (4,6) (5,7)	(1,2) (1,3) (1,4) (3,7) (4,6) (5,7)			
Archi di U	(2,5)	(2,5)			
x	(3, 0, 5, 5, 0, 0, 5, 4, 3, 1, 0)	(3, 4, 1, 5, 0, 0, 5, 0, 3, 1, 0)			
costo di x	205	161			
π	(0, 5, 16, 8, 18, 18, 26)	(0, 5, 5, 8, 7, 18, 15)			
k					
(arco entrante)	(1,3)	(2,5)			
θ_1					
(archi concordi)	7	0			
θ_2		1			
(archi discordi)	4	1			
h (arco uscente)	(4,3)	(3,7)			

Esercizio 7. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	pas	so 1	pas	so 2	pass	so 3	pas	so 4	pas	so 5	pass	so 6
nodo	d	p	d	p	d	p	d	p	d	p	d	p
2	10	1	8	3	8	3	8	3	8	3	8	3
3	4	1	4	1	4	1	4	1	4	1	4	1
4	6	1	6	1	6	1	6	1	6	1	6	1
5			10	3	10	3	10	3	10	3	10	3
6					16	4	16	4	16	4	16	4
7			8	3	8	3	8	3	8	3	8	3

Esercizio 8. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	6	(0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0)	6
1 - 2 - 5 - 7	8	(8, 6, 0, 8, 0, 0, 6, 0, 0, 8, 0)	14
1 - 4 - 6 - 7	12	(8, 6, 12, 8, 0, 0, 6, 0, 12, 8, 12)	26

TAGLIO DI CAPACITÀ MINIMA

$$N_s = \{1, 2, 3, 4, 5, 6\}$$
 $N_t = \{7\}$

Esercizio 9.

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
x = (0, 10, -3, 0, 6, 6, -2, 0, 8)	$ \begin{array}{c} (1,3) (2,3) \\ (3,5) (4,6) \\ (5,6) \end{array} $	(2,5)	NO	NO	NO
$\pi = (0, 8, 5, 16, 11, 21)$	$ \begin{array}{c} (1,2) \ (1,3) \\ (2,5) \ (4,6) \\ (5,6) \end{array} $	(2,4)	SI	SI	SI

Esercizio 10. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 9.

	passo 1	passo 2		
Archi di B	(1,2) (1,3) (2,4) (3,5) (5,6)	(1,3) $(2,4)$ $(3,5)$ $(4,6)$ $(5,6)$		
Archi di U	(2,5)	(1,2) (2,5)		
x	(5, 5, 0, 2, 6, 4, 0, 0, 6)	(6, 4, 0, 3, 6, 3, 1, 0, 5)		
costo di x	177	174		
π	(0, 8, 5, 13, 11, 21)	(0, 11, 5, 16, 11, 21)		
k				
(arco entrante)	(4,6)	(2,5)		
θ_1				
(archi concordi)	1	2		
θ_2	4	F		
(archi discordi)	4	5		
h (arco uscente)	(1,2)	(2,4)		

Esercizio 11. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	pas	so 1	pass	so 2	pass	so 3	pas	so 4	pass	so 5
nodo	d	p	d	p	d	p	d	p	d	p
2	10	1	10	1	10	1	10	1	10	1
3	10	1	10	1	10	1	10	1	10	1
4			20	2	20	2	20	2	20	2
5			19	2	18	3	18	3	18	3
6							22	5	22	5

Sequenza dei nodi visitati $S = \{1, 2, 3, 5, 4, 6\}$

Esercizio 12. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 4 - 6	5	(5, 0, 0, 5, 0, 0, 5, 0, 0)	5
1 - 2 - 5 - 6	6	(11, 0, 0, 5, 6, 0, 5, 0, 6)	11
1 - 3 - 5 - 6	6	(11, 6, 0, 5, 6, 6, 5, 0, 12)	17
1 - 2 - 3 - 5 - 6	1	(12, 6, 1, 5, 6, 7, 5, 0, 13)	18

TAGLIO DI CAPACITÀ MINIMA

$$N_s = \{1, 2, 3, 4, 5\}$$
 $N_t = \{6\}$

Esercizio 13.

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
	(1,2) $(1,3)$				
x = (3, 5, 1, 0, 0, 4, 5, 0, 4, 0, -2)	(1,4)(3,5)	(3,7)	NO	SI	NO
	(4,6) (6,7)				
	(1,4) (2,5)				
$\pi = (0, 14, 17, 10, 22, 16, 25)$	(3,5)(4,3)	(1,2)	NO	SI	NO
	(4,6)(5,7)				

Esercizio 14. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 13.

	passo 1	passo 2		
Archi di B	(1,2) (1,3) (3,5) (4,3) (4,6) (5,7)	(1,2) $(1,3)$ $(1,4)$ $(3,5)$ $(4,6)$ $(5,7)$		
Archi di U	(1,4)			
x	(3, 0, 6, 0, 0, 7, 0, 3, 6, 3, 0)	(3, 3, 3, 0, 0, 7, 0, 0, 6, 3, 0)		
costo di x	188	164		
π	(0, 9, 9, 2, 14, 8, 17)	(0, 9, 9, 10, 14, 16, 17)		
k				
(arco entrante)	(1,4)	(3,7)		
θ_1				
(archi concordi)	6	5		
θ_2	9	9		
(archi discordi)	3	3		
$\begin{array}{c} h \\ (\text{arco uscente}) \end{array}$	(4,3)	(5,7)		