CMPT-413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

$$S \rightarrow NP VP 1$$

 $VP \rightarrow VNP 0.9$
 $VP \rightarrow VP PP 0.1$
 $PP \rightarrow PNP 1$
 $NP \rightarrow NP PP 0.25$
 $NP \rightarrow Calvin 0.25$
 $NP \rightarrow monsters 0.25$
 $NP \rightarrow school 0.25$
 $V \rightarrow imagined 1$
 $P \rightarrow in 1$

 $P(input) = \sum_{tree} P(tree \mid input)$ P(Calvin imagined monsters in school) = ?Notice that $P(VP \rightarrow V NP) + P(VP \rightarrow VP PP) = 1.0$

P(*Calvin imagined monsters in school*) =?

```
(S (NP Calvin)
(VP (V imagined)
(NP (NP monsters)
(PP (P in)
(NP school)))))

P(tree_1) = P(S \rightarrow NP \ VP) \times P(NP \rightarrow Calvin) \times P(VP \rightarrow V \ NP) \times P(V \rightarrow imagined) \times P(NP \rightarrow NP \ PP) \times P(NP \rightarrow monsters) \times P(PP \rightarrow P \ NP) \times P(P \rightarrow in) \times P(NP \rightarrow school)
= 1 \times 0.25 \times 0.9 \times 1 \times 0.25 \times 0.25 \times 1 \times 1 \times 0.25 = .003515625
```

```
(S (NP Calvin)

(VP (VP (V imagined)

(NP monsters))

(PP (P in)

(NP school))))

P(tree_2) = P(S \rightarrow NP \ VP) \times P(NP \rightarrow Calvin) \times P(VP \rightarrow VP \ PP) \times P(VP \rightarrow V \ NP) \times P(VP \rightarrow VP) \times P(NP \rightarrow Imagined) \times P(NP \rightarrow
```

```
P(Calvin\ imagined\ monsters\ in\ school) = P(tree_1) + P(tree_2)
= .003515625 + .00140625
= .004921875
arg\ max \\ tree P(tree\ |\ input)
(S (NP Calvin)
(VP (V imagined)
(NP (NP monsters)
(NP (NP monsters))
(PP (P in)
(NP school))))
(NP school))))
```

PCFG

- Central condition: $\sum_{\alpha} P(A \to \alpha) = 1$
- Called a *proper* PCFG if this condition holds
- Note that this means $P(A \to \alpha) = P(\alpha \mid A) = \frac{f(A,\alpha)}{f(A)}$
- $P(T \mid I) = \prod_{i} P(RHS_i \mid LHS_i)$

PCFG

What is the PCFG that can be extracted from this single tree:

```
(S (NP (Det the) (NP man))
(VP (VP (V played)
(NP (Det a) (NP game)))
(PP (P with)
(NP (Det the) (NP dog)))))
```

• How many different rhs α exist for $A \to \alpha$ where A can be S, NP, VP, PP, Det, N, V, P

PCFG

```
S \rightarrow NP \ VP \ c = 1 \ p = 1/1 = 1.0

NP \rightarrow Det \ NP \ c = 3 \ p = 3/6 = 0.5

NP \rightarrow man \ c = 1 \ p = 1/6 = 0.1667

NP \rightarrow game \ c = 1 \ p = 1/6 = 0.1667

NP \rightarrow dog \ c = 1 \ p = 1/6 = 0.1667

VP \rightarrow VP \ PP \ c = 1 \ p = 1/2 = 0.5

VP \rightarrow VNP \ c = 1 \ p = 1/2 = 0.5

VP \rightarrow PNP \ c = 1 \ p = 1/1 = 1.0

Det \rightarrow the \ c = 1 \ p = 1/2 = 0.5

VP \rightarrow played \ c = 1 \ p = 1/1 = 1.0

VP \rightarrow with \ c = 1 \ p = 1/1 = 1.0
```

- We can do this with multiple trees. Simply count occurrences of CFG rules over all the trees.
- A repository of such trees labelled by a human is called a TreeBank.

Ambiguity

Part of Speech ambiguity

```
saw \rightarrow noun
saw \rightarrow verb
```

• Structural ambiguity: Prepositional Phrases

```
I saw (the man) with the telescope
```

I saw (the man with the telescope)

Structural ambiguity: Coordination

```
a program to promote safety in ((trucks) and (minivans)) a program to promote ((safety in trucks) and (minivans)) ((a program to promote safety in trucks) and (minivans))
```

Ambiguity ← attachment choice in alternative parses

Parsing as a machine learning problem

- S = a sentence
 T = a parse tree
 A statistical parsing model defines P(T | S)
- Find best parse: $\underset{T}{\text{arg max}} P(T \mid S)$
- $P(T \mid S) = \frac{P(T,S)}{P(S)} = P(T,S)$
- Best parse: $\underset{T}{\text{arg max}} P(T, S)$
- e.g. for PCFGs: $P(T,S) = \prod_{i=1...n} P(RHS_i \mid LHS_i)$

Prepositional Phrases

- noun attach: I bought the shirt with pockets
- verb attach: I washed the shirt with soap
- As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence – the so-called Al complete problem
- First we give a precise characterization of the problem and then we try to solve it using statistical associations between words

Structure Based Ambiguity Resolution

- Right association: a constituent (NP or PP) tends to attach to another constituent immediately to its right (Kimball 1973)
- Minimal attachment: a constituent tends to attach to an existing non-terminal using the fewest additional syntactic nodes (Frazier 1978)
- These two principles make opposite predictions for prepositional phrase attachment:
 - e.g. in I [$_{VP}$ saw [$_{NP}$ the man . . . [$_{PP}$ with the telescope], RA predicts that the PP attaches to the NP, and MA predicts VP attachment

Structure Based Ambiguity Resolution

- Garden-paths look structural:

 The emergency crews hate most is domestic violence
- Neither MA or RA account for more than 55% of the cases in real text
- Psycholinguistic experiments using eyetracking show that humans resolve ambiguities as soon as possible in the left to right sequence using the words to disambiguate
- Garden-paths are caused by a combination of lexical and structural effects:
 - The flowers delivered for the patient arrived

Ambiguity Resolution: Prepositional Phrases in English

• Learning Prepositional Phrase Attachment: Annotated Data

V	n1	p	n2	Attachment
join	board	as	director	V
is	chairman	of	N.V.	N
using	crocidolite	in	filters	V
bring	attention	to	problem	V
is	asbestos	in	products	N
making	paper	for	filters	N
including	three	with	cancer	N
•	:	•	:	:

Prepositional Phrase Attachment

Method	Accuracy
Always noun attachment	59.0
Most likely for each preposition	72.2
Average Human (4 head words only)	88.2
Average Human (whole sentence)	93.2

Back-off Smoothing

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if f(v, p) + f(n1, p) + f(p, n2) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$

4. Else if f(p) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, p)}{f(p)}$$

5. Else $\hat{p}(1 \mid v, n1, p, n2) = 1.0$

Prepositional Phrase Attachment: (Collins and Brooks 1995)

- Results: 84.5% accuracy
 with the use of some limited word classes for dates, numbers, etc.
- Using complex word classes taken from WordNet (which we shall be looking at later in this course) increases accuracy to 88% (Stetina and Nagao 1998)
- We can improve on parsing performance with Probabilistic CFGs by using the insights taken from PP attachment . . .
- And generalizing to other kinds of attachment problems, like coordination or deciding which constituent is an argument of a verb

Three other studies

- Brill and Resnik, 1994:
 - use transformation based learning for PP attachment 80.8% with words; with Wordnet classes: 81.8%
- Toutanova, Manning, and Ng, 2004: use sophisticated smoothing model for PP attachment 86.18% with words & stems; with word classes: 87.54%
- Merlo, Crocker and Berthouzoz, 1997:

test on multiple PPs, generalize disambiguation of 1 PP to 2-3 PPs 14 structures possible for 3PPs assuming a single verb: all 14 are attested in the Treebank

same model as CB95; but generalized to dealing with upto 3PPs 1PP: 84.3% 2PP: 69.6% 3PP: 43.6%

Note that this is still not the real problem faced in parsing natural language