

KubeCon

CloudNativeCon

THE LINUX FOUNDATION

S OPEN SOURCE SUMMIT

China 2024

Boundaryless Computing: Optimizing LLM Performance, Cost, and Efficiency in Multi-cloud Architecture

Who we are?

Kai Zhang (wsxiaozhang@gmail.com) Senior Staff Engineer, Alibaba Cloud Intelligence

Jian Zhu (jiazhu@redhat.com) Senior Software Engineer, RedHat

— China 2024

- ➤ Challenges and solution of running LLM cross clouds/regions
- ➤ Accelerates LLM from the data perspective Fluid
- ➤ Manages multiple clusters in the K8s way OCM
- ➤ Demo Deploy and scale LLM inference service crossing clouds quickly and easily
- ➤ Future works

Challenges to infrastructure brought by LLM

- The emergence of AIGC/LLM has led to a significant increase in GPU resource consumption, especially during the pre-training phase of foundation models.
- Microsoft has hundreds of thousands of GPUs deployed in more than 60 data centers in Azure cloud for serving ChatGPT

Model	Parameters	GPU counts	Training days
Llama	7B	80 * A100	42
GPT3	175B	1K * A100	30
Llama 3.1	405B	16K * H100	54

- GPU resources in a single data center or cloud region cannot meet LLM workloads resource requirements
- Distributing, synchronizing, and managing model consistency and data security across multiple geographies is a challenge of efficiency and complexity

Challenges to infrastructure brought by LLM

- The large model causes the inference service to start very slowly, which seriously affects the elasticity and user experience
- Regional inference services, repeatedly pulling models from remote storage, rapidly driving up bandwidth costs

Optimization of LLM efficiency in multi-clouds and multi-regions

Optimize GPU resources scheduling

Schedule GPU resources cross multiple Kubernetes clusters and dynamically adjust AI tasks distribution

Optimize data/model access performance

Automatic optimization of large model file loading process, accelerate LLM inference service

Optimize the ease of use of multigeographic model services

startup and elastic scaling

Cross-geographic models and data management and access acceleration, simplify the user experience

Solution architecture: OCM + Fluid

Fluid - Accelerates LLM from the data perspective

What is Fluid

nina 2024 -

Defines the standard API for Kubernetes to access and manage data.

https://fluid-cloudnative.github.io/

Dataset Abstraction

Dataset Acceleration Dataset Process

Data usage perspective of Fluid

Fluid: Data and Task Orchestrator in K8s/

- **Standardized:** K8s Native APIs for data access and distributed cache management.
- Extensible: Runtime plugins for different distributed cache and storage backends.
- Elasticity: Scale out and in the distributed cache on demand.
- Performance: Accelerate data access via elastic distributed cache
- Automation: Operation for Data like. prefetching processing, migration and cache scaling
- Orchestration: Data and task co-aware scheduling

Out-of-the-Box Distributed Cache

Fluid user's scenarios

China 2024

1. Accelerate Al distributed training and optimize scalability

2. Accelerate LLM inference service loading models

3. Hybrid cloud/multi-cloud data scheduling to accelerate access and optimize bandwidth costs

Accelerate Al training by more than 30% and reduce the cold start delay of large model reasoning by 85%

Fluid DataProcess

hina 2024

Dataset centric processing pipeline

predefine d
DataLoad
DataMigrate

OCM - Manages multiple clusters in the K8s way

What is OCM

China 2024

https://open-cluster-management.io

- An open-source CNCF Sandbox project
- Multi-cluster, multi-cloud Kubernetes orchestration, vendor neutral APIs
- Hub, spoke architecture with a centralized view of your entire fleet
- Modular and extensible
- Integration point for making Kubernetes capabilities multi-cluster aware

OCM Architecture

Registration

- Managed cluster lifecycle manager
- Initial double opt-in handshake

ManifestWork

Deliver resources to one managed cluster

Placement

- Provide groupings of managed clusters based on cluster labels or claims
- Extensible scheduling (CPU, GPU, etc) by the AddOnplacementScore

ManifestWorkReplicaSet

Deliver resources to managed clusters selected by placements

Add-ons

- Policy Framework
- Application lifecycle
- Cluster Proxy
- Managed serviceaccount
- Fluid

Integrate fluid into OCM

Demo:

Deploy and scale LLM inference service crossing clouds quickly and easily

China 202

apiVersion: cluster.open-cluster-management.io/v1alpha1kind: AddOnPlacementScore metadata:

name: resource-usage-score namespace: cluster1

status:

scores:

- name: cpuAvailable

value: -70

- name: memAvailable

value: -96

- name: gpuAvailable

value: -100

- name: tpuAvailable

value: -100

Results Comparison

- 1. When starting the vLLM application, using fluid to preload model from S3 takes only 50% time of loading with s3fs directly
- 2. When scaling the application, vLLM loads the fluid cached model locally, getting 5 times faster than the cold starting

	dataload(s)	model loading(s)	server ready(s) (including model loading time)	sum(s)
s3fs	n/a	132.6	147	147
fluid dataprocess	50	2.1	23.8	50+23.8=73.8
auto scale	n/a	2.1	14.5	14.5

Future Works

- China 2024

- GPU cost priority scheduling in multi-region and multi-cluster Skypilot
- Multi-cluster training task scheduling based on priority queue— <u>Kueue</u>, <u>Kube-queue</u>
- Unified traffic control and load balancing for LLM inference services across clusters Service mesh, LLM Gateway
- Assign dynamic tuning/rescheduling of inference service instances across clusters

China 2024

Thank you!

Question?