

ETHICAL HACKING LAB SERIES

Lab 16: Evading IDS

Material in this Lab Aligns to the Following Certification Domains/Objectives

Certified Ethical Hacking (CEH) Domain

16: Evading IDS, Firewalls and Honeypots

Document Version: 2018-11-05

Copyright © 2016 Network Development Group, Inc. www.netdevgroup.com

NETLAB Academy Edition, NETLAB Professional Edition, and NETLAB+ are registered trademarks of Network Development Group, Inc.

VMware is a registered trademark of VMware, Inc. Cisco, IOS, Cisco IOS, Networking Academy, CCNA, and CCNP are registered trademarks of Cisco Systems, Inc. EMC² is a registered trademark of EMC Corporation.

Contents

Intro	oduction	3
	ective	
_	Topology	
	Settings	
	Initialize Network Monitoring Applications	
	Test IDS Results with Regular Nmap Scan	
	Test IDS Results with Low MTU Scan	
	Test IDS Results with Decoy Scan	
	Test IDS Results with Spoofed MAC Scan	

Introduction

Different methods can be employed to attempt to thwart IDS detection. This lab explores the different methods that can be employed to hide from IDS systems.

Objective

In this lab, you will be conducting ethical hacking practices using various tools. You will be performing the following tasks:

- 1. Initialize Network Monitoring Applications
- 2. Test IDS Results with Regular Nmap Scan
- 3. Test IDS Results with Low MTU Scan
- 4. Test IDS Results with Decoy Scan
- 5. Test IDS Results with Spoofed MAC Scan

Pod Topology

Lab Settings

The information in the table below will be needed in order to complete the lab. The task sections below provide details on the use of this information.

Virtual Machine	IP Address	Account (if needed)	Password (if needed)
Kali Linux	192.168.9.2	root	toor
pfSense	192.168.0.254 192.168.68.254 192.168.9.1	admin	pfsense
OWASP Broken Web App	192.168.68.12	root	owaspbwa
OpenSUSE	192.168.0.2	osboxes	osboxes.org
Security Onion	192.168.0.100	ndg	password123

1 Initialize Network Monitoring Applications

- 1. Navigate to the *topology* page and click on the **Security Onion** VM icon.
- 2. At the login prompt, enter ndg as the username. Press Enter.
- 3. Enter password123 as the password. Click Login.
- 4. Once logged in, double-click on the **Squert** icon to launch the application via web browser.

- 5. Once *Chromium* appears, notice the warning message. Click on the **Advanced** link for more options.
- 6. Click on the Proceed to localhost (unsafe) link.

7. On the *Squert* login page, enter ndg as the *username* and password123 as the *password*. Click **submit**.

8. Navigate back to the **Desktop** and double-click on the **Snorby** icon.

9. Log in to Snorby using the email ndg@ndg.com and password password123.

10. Navigate back to the **Desktop** and double-click on the **Sguil** icon.

11. In the *Sguil* login window, enter ndg as the *username* and password123 as the *password*. Click **OK** to login.

12. Check the box for **ndg-virtual-machine-eth0** and click the **Start SGUIL** button.

2 Test IDS Results with Regular Nmap Scan

- 1. Navigate to the **Topology** page and click on the **Kali** icon.
- 2. Click anywhere within the *Kali* console window and press **Enter** to display the login prompt.
- 3. Enter root as the username. Click Next.
- 4. Enter toor as the password. Click Sign In.
- 5. Open the *Terminal* by clicking on the **Terminal** icon located on the left panel.

6. Initiate a fragmented packet scan using the *Nmap* application. Using the *Terminal*, type the command below followed by pressing the **Enter** key.

```
nmap -f 192.168.0.2
```

- 7. Once the scan successfully finishes, navigate back to the **Security Onion** VM.
- 8. Change focus to the **Chromium** browser and click the **squert** tab.

9. Click the **refresh** icon located in the top pane.

Notice a signature identified that the potential scan was detected by the system.

- 10. Click the **Snorby** tab.
- 11. Press the **F5** key to refresh the page. If that does not help refresh the dashboard, then click on the **More Options** icon and click on **Force Cache Update**. Wait until the forced update completes.

12. Notice the *Medium Severity* populates, click on its respective boxed icon.

13. On the *Medium Severity Events* page, notice that the *Nmap* scan was detected.

14. Change focus to the Sguil window.

15. Click on the **Date/Time** column to organize the events in a descending order.

16. Notice that no results are given at this time with the *Sguil* application.

3 Test IDS Results with Low MTU Scan

- 1. Navigate back to the Kali VM.
- 2. Using the *Terminal*, enter the command below to initiate another *Nmap* scan but this time with a low *MTU* rate in attempt to be stealthier.

```
nmap --mtu 8 192.168.0.2
```

```
root@Kali2:~# nmap --mtu 8 192.168.0.2

Starting Nmap 6.49BETA5 ( https://nmap.org ) at 2015-12-30 15:04 CST
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled.
Try using --system-dns or specify valid servers with --dns-servers
Nmap scan report for 192.168.0.2
Host is up (0.00085s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
80/tcp open http
5801/tcp open vnc-http-1
Nmap done: 1 IP address (1 host up) scanned in 0.13 seconds
```

- 3. Once the scan finishes, navigate back to the **Security Onion** VM.
- 4. Change focus to the **Chromium** browser with the **Snorby** tab opened.
- 5. Click the **Dashboard** menu item.

- 6. Click on the **Medium Severity** box icon.
- 7. Notice that Snorby caught the recent Nmap scan.

If results are not being displayed, wait for 1-2 minutes and then refresh the page once more.

- 8. Click on the **Squert** tab.
- 9. Click the **refresh** icon located in the top pane.
- 10. Notice that *Squert* caught the recent *Nmap* scan.
- 11. Change focus to the **Sguil** application window.
- 12. Notice that Squil was unable to capture any events from the Nmap scan.

4 Test IDS Results with Decoy Scan

- 1. Navigate back to the Kali VM.
- 2. Using the *Terminal*, enter the command below to initiate another *Nmap* scan but this time with a decoy type scan to hide the source *IP* address from the *IDS*.

```
nmap -D 192.168.9.20 192.168.9.30 192.168.9.40 192.168.0.2
```

```
root@Kali2:~# nmap -D 192.168.9.20 192.168.9.30 192.168.9.40 192.168.0.2

Starting Nmap 6.49BETA5 ( https://nmap.org ) at 2015-12-30 15:18 CST
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled.
Try using --system-dns or specify valid servers with --dns-servers
Nmap scan report for 192.168.0.2
Host is up (0.00090s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
80/tcp open http
5801/tcp open vnc-http-1
Nmap done: 3 IP addresses (1 host up) scanned in 0.51 seconds
```

- 3. Once the scan finishes, navigate back to the **Security Onion** VM.
- 4. Change focus to the **Chromium** browser with the **squert** tab opened.
- 5. Click the **refresh** icon located in the top pane.
- 6. Notice that *Squert* caught the same recent *Nmap* scan. Click on the **QUEUE** event with **ET SCAN Potential VNC Scan 5X00-5X20** as its *Signature*.

QUEUE	SC	DC	ACTIVITY	LAST EVENT	SIGNATURE	ID	PROTO	% TOTAL
3	2	1		21:17:03	ET SCAN Potential VNC Scan 5800-5820	2002910	6	11.111%
4	2	1	100	21:17:03	ET SCAN Potential VNC Scan 5900-5920	2002911	6	14.815%
4	2	1	100	21:17:03	ET POLICY Suspicious inbound to Oracle SQL port 1521	2010936	6	14.815%
4	2	1	100	21:17:03	ET POLICY Suspicious inbound to mySQL port 3306	2010937	6	14.815%
3	2	1		21:17:03	ET POLICY Suspicious inbound to PostgreSQL port 5432	2010939	6	11.111%
7 7	1	1	0.00	21:13:53	[OSSEC] Received 0 packets in designated time interval (defined in ossec.conf). Please check interface, cabling, and tap/span!	111112	0	25.926%
2	1	1		21:03:18	ET POLICY Suspicious inbound to MSSQL port 1433	2010935	6	7.407%

7. Notice that the scan successfully created a decoy *IP* address along with the real *IP* address of the *Kali* VM.

- 8. Click on the Snorby tab.
- 9. Click the Dashboard menu item.

- 10. Click on the **Medium Severity** box icon.
- 11. Notice that Snorby caught the recent Nmap scan with different source IPs.
- 12. Change focus to the **Sguil** application window.
- 13. Notice that *Sguil* was able to identify intrusion but only displays the decoy *IP* address.

5 Test IDS Results with Spoofed MAC Scan

- 1. Navigate back to the **Kali** VM.
- 2. Using the *Terminal*, enter the command below to initiate another *Nmap* scan but this time with a spoofed *MAC* address.

```
nmap -sT -PN -spoof-mac 0 192.168.0.2
```

```
root@Kali2:~# nmap -sT -PN -spoof-mac 0 192.168.0.2

Starting Nmap 6.49BETA5 ( https://nmap.org ) at 2015-12-30 15:35 CST
Spoofing MAC address 7E:98:AE:C8:62:E6 (No registered vendor)
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled.
   Try using --system-dns or specify valid servers with --dns-servers
Nmap scan report for 192.168.0.2
Host is up (0.0022s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
80/tcp open http
5801/tcp open vnc-http-1
Nmap done: 1 IP address (1 host up) scanned in 0.14 seconds
```


- 3. Once the scan finishes, navigate back to the **Security Onion** VM.
- 4. Compare scan results with Snorby, Squert, and Sguil.
- 5. Close the **Security Onion** and **Kali** PC viewers.