Part 2

Data Science in Practice

About me

Nima Aghaeepour's Lab, Stanford University Postdoc

Artificial Intelligence, Machine Learning, and Multiomics Integration for Translational Medicine

Join us!

Andreas Hotho's Lab, University of Wuerzburg PhD

Data Mining and Information Retrieval Group

Becker Lab

Knowledge-centric Al

- Knowledge extraction
- Knowledge integration
- Impactful applications

Applications: Biomedical systems, behavioral analysis, intrusion detection, environmental modeling, etc.

Multiomics integration for profiling

- Pregnancy
- Aging
- Rare diseases
- Cardiovascular systems
- Nutrition

Part 2: Goal

• Learn to complete a "simple" data science project

- (Very) preliminary structure
 - Basics (fitting prediction models)
 - Data preprocessing, exploration, and statistics
 - Practical aspects
 - Interpretability, fairness, etc.
 - Advanced prediction models (e.g., neural networks) and outlook

Part 2: "Simple" Data Science Project

Science Immunology

An immune clock of human pregnancy

Immune function is altered during pregnancy to protect the fetus from an immunological attack without disrupting protection against infection.

Mass cytometry to **examine** the precise **timing of these pregnancy-induced changes** in immune function and regulation.

By **defining this immunological chronology** during normal term pregnancy, they can now begin to determine which alterations associate with pregnancy-related pathologies.

Part 2: "Simple" Data Science Project

Part 2: Time plan

	Content	Project
15.11.2023	Lecture 1: Terms and Basic Machine Learning Models	Homework: Setup Jupyter and Tutorial
20.11.2023	Tutorial 1: Basics and fit our first model, scaling	Get to know the data and fit a first model
23.11.2023	Lecture 2: Model evaluation and hyper-parameter tuning	
27.11.2023	Tutorial 2: Evaluation strategies (including leave one group out), overfitting, hyper-parameter tuning, scaling	Report first model (1 slide); Design evaluation strategy, compare models, visualize results
29.11.2023	Lecture 3: Preprocessing and data analysis	
04.12.2023	Tutorial 3: T-SNE, Clustering	Report model comparison and results (1 slide); T-SNE plots and Clustering
06.12.2023	Lecture 4: Univariate analysis, feature importance, fairness	
11.12.2023	Tutorial 4: Univariate analysis	Report data analysis visualizations (1 slide); Visualize univariate and feature importance analysis, in-depth analysis, play
13.12.2023	Lecture 5: Advanced models, Outlook	
18.12.2023	Tutorial 5: Knowledge integration and neural networks	Show off results and visualizations (1 slide); Visualize univariate and feature importance analysis

Organizational

- Slides
 - Provided after lecture
- Exercises / Tutorials
 - Small groups working on problem sets
 - Solutions will be provided after tutorial
 - Feedback?
- Project
 - · Starts after first tutorial
 - One slide of results every week
 - Optional
- Questions, Feedback
 - Personally
 - E-Mail: martin.becker@uni-rostock.de
 - bjarne.hiller@uni-rostock.de
 - Anonymous: https://moored.co/b/TLyNyULoqB

Outline

- Basic terms
- Machine Learning

Basic Terms

Data - Information - Knowledge

"Data is not information, information is not knowledge, knowledge is not wisdom." [C. Stoll]

 Data Raw data (measurements, "facts")

• Information Significant, summarized data for a specific purpose

Knowledge
 Knowledge that people are aware of

Be aware:
 Many contradictory definitions exist

DIKW Pyramid

History of Data Science

Search History

- Knowledge Discovery in Databases
 Data-Mining
 Big Data
- Data Science
 Maschinelles Lernen

Google Trends from Jan 1st 2004 to April 28th 2022

Search History

- Big Data
 Data Science
 Maschinelles Lernen
- Künstliche Intelligenz
 Deep Learning

Google Trends from Jan 1st 2004 to April 28th 2022

Knowledge Discovery in Databases (KDD)

Fayyad et al.* define KDD in 1996 as

The nontrivial process of identifying **valid**, **novel**, potentially **useful**, and ultimately **understandable** patterns in data.

The four characteristics are explained as follows:

Valid The found patterns also apply for new data

Novel The system/user did not know that this pattern existed

Useful The result can be used to solve a given task

Understandable The user should know how/why it works (however, this

is a subjective measure)

Fayyad et al. state that

Data mining is a particular step [in KDD] – application of specific algorithms for extracting patterns (models) from data.

Data Mining

Aggarwal* defines Data Mining in 2015 as

Data Mining is the study of collecting, cleaning, processing, analyzing, and gaining useful insights from data. [...] "Data mining" is a broad umbrella term that is used to describe these different aspects of data processing.

(A standardized Data Mining process will be discussed later)

^{*} Aggarwal, Data Mining: The Textbook, Springer, 2015

Big Data

De Mauro et al.* define Big Data in 2016 as
 Big Data is the Information asset characterized by such a
 High Volume, Velocity and Variety to require specific
 Technology and Analytical Methods for its transformation
 into Value.

 Big Data Analytics is similar to Data Mining, but especially focuses on large data volumes where "classical methods" can not be used efficiently

Data Science

Cao* defines Data Science in 2017 as

From the disciplinary perspective, data science is the new interdisciplinary field that synthesizes and builds on statistics, informatics, computing, communication, management, and sociology to study data and its environments (including domains and other contextual aspects, such as organizational and social aspects) in order to transform data to insights and decisions by following a data-to-knowledge-to-wisdom thinking and methodology.

but also gives another (more simple) definition: Data Science is the science of data.

Relationship of Data Science and Data Mining

Data science, also known as **data-driven science**, is an interdisciplinary field of **scientific** methods, processes, algorithms and systems to extract knowledge or insights from **data** in various forms, either structured or unstructured, similar to **data mining**.

https://en.wikipedia.org/wiki/Data_science

[Dhar; 2013]

",... At a high level, data science is a set of fundamental principles that support and guide the principled extraction of information and knowledge from data. Possibly the most closely related concept to data science is data mining - the actual extraction of knowledge from data via technologies that incorporate these principles. ..."

[Provost & Fawcett; 2013]

Data Science Process

Data Engineers

Data Analysts

Machine Learning Engineers

Data Scientists

The Data Science Process

- The process must be related to the task and the user
- The developer needs knowledge about databases, data analysis methods and the application area
- The process is **interactive** and **iterative**
 - No full automation
 - Results have to be evaluated before making a decision
 - Some steps might be repeated depending on the results
- One well know process definition is the open standard process model CRISP-DM

The CRISP-DM Model

Main phases (top-level processes)

- Business
 Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Modeling
- 5. Evaluation
- 6. Deployment

Cross Industry Standard Process for Data Mining

Business Understanding, Data Understanding

- Understanding the given application
- Defining the goal(s) of the Data Mining project
 - What should be achieved?
- Acquiring data from source(s)
- Clarifying data management
 - File System or DBS?
- Selecting relevant data

Preprocessing

- Integrating data from different sources
- Checking consistency
- Cleaning

- Discretizing numerical features
- Generating derived features

Modeling: Methods

Association Rules

Other tasks:

Subgroup Discovery, Outlier Detection, Segmentation, ...

Evaluation

- Presenting the found patterns (often through appropriate visualizations)
- Evaluating patterns by the user
 - Predictive power of patterns and/or models
 - Pattern known or surprising?
 - Patterns and/or models applicable to many cases?
- If negative evaluation, then renewed data science with
 - Different parameters, different methods, different data
- If positive evaluation, then
 - Integration of the found knowledge into the knowledge base
 - Use of the new knowledge for future Data Science processes

Deployment: Creation of a Business Application

- Planning the use of the Data Mining application
 - Creation of a plan for the introduction of the application
- Planning of monitoring and maintenance
 - When should models no longer be used?
 - Do business objectives change over time?
- Preparation of the final report
 - Who is the target group for the presentation?
- Review of the project
 - Summary of the most important Knowledge and experience
 - Integration of the project results into the strategy of the entire company

Alternative Process models

Process model by Fayyad, Piatetsky-Shapiro & Smyth

Machine Learning

Machine Learning (ML)

- "Machine learning (ML) is the study of computer algorithms that can improve automatically through experience and by the use of data. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to do so." Wikipedia
- Learn a **model** from **training** examples, apply model to make **predictions** about the future

Machine Learning (ML)

 "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." – T. Mitchell

Main Goals

Overview of "Classical" Machine Learning

CLASSICAL MACHINE LEARNING Data is not labeled Data is pre-categorized in any Way or numerical UNSUPERVISED SUPERVISED Divide Predict Identify sequences by similarity Predict a categor a number CLUSTERING CLASSIFICATION Find hidden «Split up similar clothing dependencies «Divide the socks by color» into stacks>> ASSOCIATION «Find What clothes I often wear togethern REGRESSION «Divide the ties by length» [15]+ T= DIMENSION REDUCTION (generalization) «Make the best outfits from the given clothes»

https://vas3k.com/blog/machine_learning/

Overview of Machine Learning by Scikit-Learn

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Machine Learning Tasks by Training Feedback

Supervised Machine Learning:

$$\{(x_i, y_i)\}_{i=1}^N$$

- There is one (or more) specific things to predict
- Learn model parameters from feature-label pairs
- Training examples are given that include information on that thing
- Unsupervised Machine Learning

$$\{(x_i)\}_{i=1}^N$$

- No prediction of a specific thing
- Learn useful properties about the structure of the features
- Learn model parameters using dataset without labels

Supervised Machine Learning

$$f: X \to \mathbb{N}$$
$$f: X \to \mathbb{R}$$
$$f: X \to Y$$

- Inputs $x \in X$ can be any kind of objects
 - Images, text, audio, sequence of amino acids, . . .
 - Often: Just vector of numbers
- Output discrete or a real number or complex structure
 - Classification: Output is prediction of a class (class or probability)
 - Multiclass-Classification: Choose between more than 2 classes
 - Regression: Output is a number
 - Structured Prediction: Output is "more complex"

Machine Learning Models

Learning:

- Estimate parameters w from training data $\{(x, y)\}$
- Hyper-parameters are parameters that are set by the user that determine the learning procedure (not learned)
- **Inference:** Make novel predictions: $y = f_{\mathbf{w}}(x)$

Hyperparameters

- Parameters
 - Are fitted automatically using the training data
- Hyperparameters
 - Define the structure and cost functions of the model
 - Are set (fixed) by the machine learning engineer

Parameters vs. Hyperparameters: Example

Linear Regression: General Solution

Assume we have n instances of p input variables X_1, \ldots, X_p (independent variables, regressors, predictors, features) and one output variable Y(dependent variable, response, target).

The i^{th} instance is given by a row vector $(y_i, x_{i1}, \dots, x_{ip})$. We assume for all i that y_i linearly depends on the x_{ij} values plus some error e_i :

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + e_i$$
 Parameters

This set of equations can be written in matrix / vector form as

$$\underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{i1} & \cdots & x_{ip} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix}}_{\boldsymbol{\beta}} + \underbrace{\begin{pmatrix} e_1 \\ \vdots \\ e_i \\ \vdots \\ e_n \end{pmatrix}}_{\mathbf{e}}$$

Sepal		Petal		
Length	Width	Length	Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
7.0	3.2	4.7	1.4	versicolo
6.4	3.2	4.5	1.5	versicolo
6.9	3.1	4.9	1.5	versicolo
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica
7.1	3.0	5.9	2.1	virginica

where
$$\widehat{\text{Petal.Length}} = \underbrace{1.29}_{\hat{\beta}_1} \text{Sepal.width} + \underbrace{1.2}_{\hat{\beta}_0}$$

Regularization: Lasso

Obviously, we can imagine other magnitude penalties besides the squared penalty. A different shrinkage strategy, the least absolute shrinkage and selection operator (Lasso), uses absolute values.

While the Ridge objective is

Hyperparameters
$$J^{\text{Ridge}}(\beta) = J^{\text{OLS}}(\beta) + \sum_{j=1}^{p} \beta_j^2$$
,

the Lasso objective uses

$$J^{\text{Lasso}}(\boldsymbol{\beta}) = J^{\text{OLS}}(\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} |\beta_j|.$$

While the Ridge objective puts equal weight on highly correlated parameters (thus reducing the degrees of freedom by tying them together), the Lasso objective tries to reduce degrees of freedom by driving correlated parameters towards zero, retaining just one representative.

Prediction Methods

K-Nearest-Neighbor

- Define distances between data instances
- Specify a value k
- To classify a new data instance:
 - Search the k most similar instances (k-nearest-neighbors)

 Select the majority class among those neighbors (option: weight by distance

Decision Tree

Toy example: car insurance

ID	Age	car type	Risk
1	23	Family	high
2	17	Sport	high
3	43	Sport	high
4	68	Family	low
5	32	Truck	low

- Decision trees find explicit knowledge
- Decision trees are easy to interpret for most users

Construction of Decision Trees

Base algorithm:

- At the start: All (training) instances belong to the root
- Select an attribute (split strategy)
- Partition the training dataset using the split attribute
 I.e., each inner node corresponds to a subset of the data with certain properties
- Continue recursively for all partitions
- ⇒Local optimizing algorithms
- ⇒Finds not always the optimal (=smallest) tree

Conditions for terminations

- All instances belong to the same class
- There are no examples in this subset
- No more split attributes that improve the model

Classification Boundaries

SVM

- Project all instance into an n-dimensional space
- Try to find a hyperplane that
 - Separates positives and negative instance
 - Maximizes the distance to the closest instances (support vectors)
- Optimization problem
- Extensions:
 - Implicit transformation to higher dimensional space (kernels)
 - Additional error term C for instances "on the wrong side"

Optimization-based machine learning

- Many (most?) classification and regression models today are optimization-based
- Our model is trying to optimize a function
- The "skeleton" of the function is fixed
- The free parameters are **fitted** to the training data to minimize a cost function (= loss)

Linear/Logistic Regression

Neural Networks

Gradient Descent

Gradient Descent

= The vector of all partial derivatives of a function

$$\nabla_{x} f = \operatorname{grad} f = \frac{\mathrm{d}f}{\mathrm{d}x} = \begin{bmatrix} \frac{\partial f(x)}{\partial x_{1}} & \frac{\partial f(x)}{\partial x_{2}} & \cdots & \frac{\partial f(x)}{\partial x_{n}} \end{bmatrix}$$

Descent

= Finding a way towards the minimum of the function

Gradient Descent

- Gradient descent is a standard solution for (m)any optimization problem
- Very often used for fitting parameters to data
- Improve solution step-by-step, reducing the error in each step:
- Gradient gives direction of steepest ascent
- A simple way to minimize a (differentiable) function f(x):
 - 1. Compute derivative function ∇f
 - 2. Start at some (random) point y and evaluate $\nabla f(y)$
 - 3. Make a step in the reverse direction of the gradient: $y = y \alpha \nabla f(y)$
 - 4. Repeat 2-3 until converged

A. Glassner: Deep Learning – A visual approach, Fig 5-14

- Here with the error depending on 2 parameter.
- In practice the error depends on k parameters, thus would have to be visualized in k+1 dimensional space!

Convergence

- If α is small enough, we will reduce the error
- But do we end up in a global minimum?
- In general: No
 - Gradient decent finds any minimum
 - Not necessarily the global on
- For Convex Functions, low "enough" learning rate: yes

alpha?

- α is also called the **learning rate**
- α too small:
 - very slow convergence
 - Will get stuck in the tiniest local minimum
- α too large:
 - Will "overshoot"
 - Might not converge at all

Practical example

• Fit a model

Overview of Machine Learning by Scikit-Learn

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html