Tutorial Modelling Software-based Systems

. . .

Tutorial 1 : Specifying a problem using the Eevent-B modelling language Dominique Méry \$24\$ octobre 2025

Exercice 1 ex1-tut1.zip

Express the following states machine using an Event B machines and check properties on the resulting models.

Exercice 2 ex2-tut1.zip

Express the following states machine using an Event B machines and check properties on the resulting models.

Exercice 3 (ex3-simple-tut.zip)

Soient trois ensembles A, B et C qui sont des parties de U.

— Ecrire un modèle Event-B qui utilise deux variables v et w deux sous-ensembles de A et B

- Ajouter une fonction partielle de A dans B.
- Définir un événement ⊖ l qui enlève un élément de A qui est élément de C.
- Définir un événement ⊖2 qui enlève un élément de AB qui est élément de C.
- Définir un événement ⊖3 qui crée un lien entre un élément de v et un élément de w à condition que v et w ne contiennet plus d'éléments de C.

Exercice 4 ex4-tut1.zip

We consider a finite sequence of integers v_1, \ldots, v_n where n is the length of the sequence and is supposed to be fixed. Write an Event B specification modelling the computation of the value of the summation of the sequence v. You should define cerafully v, n and the summation of a finite sequence of integers.

Exercice 5 ex51-tut1.zip and ex52-tut1.zip

Express the following property in Event B:

- (ex51-tut1.zip) We assume to have p resources which may be shared by n processes. If a process uses a given resource, the resource can not be used by another process. A process can use severall resources.
- (ex52-tut1.zip) We assume to have p resources which may be shared by nmcs processes. If a process uses a given resource, the resource can not be used by another process. A process can use possibly more than one ressoyrce.

Exercice 6 ex6-tut1.zip

A Petri net is a uple R=(S,T,F,K,M,W)

- S is a finite set of places.
- T is a finite set of transitions.
- $-S \cap T = \emptyset$
- F is the flow relation : $F \subseteq S \times T \cup T \times S$
- K is expressing the capacity of each place:

$$K \in S \rightarrow Nat \cup \{\omega\}$$

- M is reprenting the initial marking of each place :
 - $M \in S \rightarrow Nat \cup \{\omega\}$ and satisfies the following condition $\forall s \in S : M(s) \leq K(s)$.
- W is the weight of each edge:

$$W \in F o Nat \cup \{\omega\}$$

THe state of a Petri net R is defined by a set of markings:

- a marking M for R is a function from S to Nat $\cup \{\omega\}$:
 - $M \in S \rightarrow Nat \cup \{\omega\}$ and it satisfies the condition $\forall s \in S : M(s) \leq K(s)$.
- a transition t of T is ready to fire for a marking M of R, if
 - 1. $\forall s \in \{s' \in S \mid (s',t) \in F\}$:

$$M(s) \geq W(s,t)$$
.

2. $\forall s \in \{ s' \in S \mid (t,s') \in F \}$:

$$M(s) < K(s) - W(s,t)$$
.

$$-t \in T : Pre(t) = \{s' \in S : (s', t) \in F\} \text{ and } Post(t) = \{s' \in S : (t, s') \in F\}$$

The simulation of a Petri net is defined by a relation linking three elements : a marking M, a marking M' and a transition t as follows :

— the new marking M' is defined as follows from M:

$$M'(s) = \begin{cases} M(s) - W(s,T), \text{ si } s \in PRE(T) - POST(T) \\ M(s) + W(T,S), \text{ si } s \in POST(T) - PRE(T) \\ M(s) - W(s,T) + W(T,S), \text{ si } s \in PRE(T) \cap POST(T) \\ M(s), \text{ sinon} \end{cases}$$

We consider the following Petri net:

Question 6.1 Translate this Petri net in Event B.

Question 6.2 Express safety properties that you can discover from the diagram.

Exercice 7 (*ex7-tut1.zip*)

Nous considérons le modèle suivant.

```
MACHINE M1
VARIABLES
INVARIANTS
EVENTS
EVENT INITIALISATION
 BEGIN
 act1: x := -10
 END
 EVENT evt1
  WHEN
 grd1: x \ge -1
 THEN
 act1:x:=x{+}1
 END
 EVENT evt2
 WHEN
 grd1: x \leq -1
 grd2: x \geq -44
 THEN
 act1: x := x-1
 END
END
```

On considère plusieurs cas pour l'invariant.

Question 7.1 (*M1*)

 $inv1: x \in \mathbb{Z}$ $inv3: x \le -1$

Est-ce que toutes les conditions de vérification sont prouvées par le prouveur de l'application Rodin? Expliquez clairement pourquoi elles sont prouvées ou non.

Question 7.2 (M2)

 $\begin{array}{l} inv1: x \in \mathbb{Z} \\ inv3: x \leq -3 \end{array}$

Est-ce que toutes les conditions de vérification sont prouvées par le prouveur de l'application Rodin? Expliquez clairement pourquoi elles sont prouvées ou non.

Question 7.3 (*M3*)

```
\begin{array}{l} inv1: x \in \mathbb{Z} \\ inv4: -45 \leq x \wedge x \leq -10 \end{array}
```

Est-ce que toutes les conditions de vérification sont prouvées par le prouveur de l'application Rodin? Expliquez clairement pourquoi elles sont prouvées ou non.

Question 7.4 (*M4*)

```
\begin{array}{l} inv1: x \in \mathbb{Z} \\ inv3: x \leq -3 \\ inv4: -45 \leq x \wedge x \leq -10 \\ inv2: x \leq -1 \end{array}
```

Est-ce que toutes les conditions de vérification sont prouvées par le prouveur de l'application Rodin ? Expliquez clairement pourquoi elles sont prouvées ou non.

Exercice 8 ex8-tut1.zip

A semaphore s is a shared variable accessible by two operations : P(s) and V(s). Informally, we can describe the effect of these two operations as follows :

- P(s) is testing if the value of s is greater than 0 and is not equal to 0. If the value of s is 0, the process which is executing P(s) is inserted in a queue.
- V(s) is increasing the value of s by one, if the queue is non empty. If the queue is non empty, the first waiting process of the queue is awaken and becomes a lively process.

Using the Event B modelling features, describe a system using the primitives.

Exercice 9 ex9-tut1.zip

We assume that two $n \times n$ matrices of boolean values are given : A and B. Write an Event B specification modelling the multiplication of the two matrices.

Exercice 10 (ex10-1-tut1.zip and ex10-2-tut1.zip)

A system is used to sum two numbers x0 and y0 by adding one unit to a variable z. It includes an incx2z event which decreases the value of x by one and increases the value of z by one, and an incy2z event which decreases y by one and increases z by one. The overall process stops when the two variables x and y are zero.

Write a model in Event-B for the syste.

Exercice 11 (*ex11-tut1*)

A system allows the sum of two numbers x0 and y0 to be calculated by adding one unit to a variable z. It comprises an event incx2z that decreases the value of x by one unit and increases the value of z by one unit, and an event incy2z that decreases y by one unit and increases z by one unit. The overall process stops when both variables x and y are zero.

Write an Event-B model that models this system.