Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec

2º Semestre de 2006/2007

11^a Aula Prática

1. (Exercício IV.25 de [1]) Usando o método de primitivação por partes, calcule uma primitiva de cada uma das funções:

a)
$$xe^x$$
,

$$d) x \sin x$$

a)
$$xe^x$$
, b) $x \operatorname{arctg} x$, c) arcsin d) $x \sin x$, e) $x^3 e^{x^2}$, f) $\log^3 x$, g) $x^n \log x$, $n \in \mathbb{N}$, h) $\frac{x^7}{(1-x^4)^2}$.

2. Usando o método de primitivação por partes, calcule uma primitiva de cada uma das funções:

a)
$$e^{x}(e^{x} + x)$$
,

c)
$$x^3e^{-x^2}$$
.

$$d$$
) $\arctan x$,

f)
$$x(1+x^2)\arctan x$$
,

$$g) \frac{x^5}{\sqrt{1+x^3}},$$

b) $e^x \operatorname{sen} x$, c) $x^3 e^{-x^2}$, e) $\sqrt{x} \log x$ f) $x(1+x^2) \arctan x$, h) $\log \left(\frac{1}{x}+1\right)$, i) $x^2 \log^2 x$,

j)
$$\log^2 x$$
,

k) $\frac{1}{x^3}\cos\frac{1}{x}$, l) $\cos 2x \log(\operatorname{tg} x)$,

m)
$$3x\sqrt{1-x^2}\arcsin x$$
,

n) $\frac{\log x}{(1+x)^2}$,

o) $\operatorname{ch} x \cos x$,

p)
$$3^x \cos x$$
,

q) $\cos(\log x)$,

r) $\frac{x^2}{(1+x^2)^2}$.

3. a) Usando o método de primitivação por partes, mostre que, para $k \in \mathbb{N}$, k > 1, tem-se:

$$P\left(\frac{x^2}{(1+x^2)^k}\right) = \frac{1}{2(1-k)} \left(\frac{x}{(1+x^2)^{k-1}} - P\left(\frac{1}{(1+x^2)^{k-1}}\right)\right).$$

b) Justifique que, para $k \in \mathbb{N}, k > 1$,

$$P\left(\frac{1}{(1+x^2)^k}\right) = -\frac{1}{2(1-k)}\frac{x}{(1+x^2)^{k-1}} + \left(1 + \frac{1}{2(1-k)}\right)P\left(\frac{1}{(1+x^2)^{k-1}}\right).$$

(Sugestão: $\frac{1}{(1+x^2)^k} = \frac{1}{(1+x^2)^{k-1}} - \frac{x^2}{(1+x^2)^k}$).

c) Utilize a alinea anterior para calcular

$$P\left(\frac{1}{(1+x^2)^2}\right), \qquad P\left(\frac{1}{(1+x^2)^3}\right).$$

4. Determine uma primitiva de cada uma das seguintes funções, utilizando substituições apropriadas:

a)
$$\frac{e^{4x}}{e^{2x}+1}$$
,

a)
$$\frac{e^{4x}}{e^{2x}+1}$$
, b) $\frac{1}{\sqrt[3]{x}(1+\sqrt[3]{x^4})}$, c) $\frac{\sqrt{x-1}}{x}$, d) $\frac{\sqrt{x}-1}{\sqrt[3]{x}+1}$, e) $\frac{e^{2x}}{(e^{2x}-1)(1+e^x)}$, f) $\frac{1}{(2-x)\sqrt{1-x}}$, g) $\frac{1-\operatorname{tg} x}{1+\operatorname{tg} x}$, h) $\frac{\log x}{x(\log x-1)^2}$, i) $\frac{1}{x+\sqrt[3]{x^2}}$,

c)
$$\frac{\sqrt{x-1}}{x}$$
,

d)
$$\frac{\sqrt{x}-1}{\sqrt[3]{x}+1}$$

e)
$$\frac{e^{2x}}{(e^{2x}-1)(1+e^x)}$$

f)
$$\frac{1}{(2-x)\sqrt{1-x}}$$
,

$$g) \frac{1 - \lg x}{1 + \lg x}$$

$$h) \frac{\log x}{x(\log x - 1)^2},$$

i)
$$\frac{1}{x + \sqrt[3]{x^2}}$$

5. (Exercícios 5.21, 5.23, 5.24, 5.26, 5.28, 5.31 de [2]) Determine uma primitiva de cada uma das seguintes funções, utilizando substituições apropriadas:

a)
$$\frac{1+\sqrt{x}}{x(4-\sqrt{x})},$$

b)
$$\frac{1}{x\sqrt[4]{1+x}}$$
,

c)
$$\frac{1}{1+e^{2x}}$$

a)
$$\frac{1+\sqrt{x}}{x(4-\sqrt{x})}$$
, b) $\frac{1}{x\sqrt[4]{1+x}}$, c) $\frac{1}{1+e^{2x}}$, d) $\frac{e^{3x}}{(1+e^{2x})(e^x-1)^2}$, e) $\frac{2\log x-1}{x\log x(\log x-1)^2}$, f) $\frac{1}{\sin^2 x \cos x}$.

e)
$$\frac{2\log x - 1}{x\log x(\log x - 1)^2},$$

f)
$$\frac{1}{\sin^2 x \cos x}$$

6. Determine, usando a substituição indicada, uma primitiva de cada uma das funções seguintes:

a)
$$\sec x$$
, $t = \sin x$,

b)
$$\frac{1}{x^2\sqrt{x^2-1}}$$
, $x = \sec t$,

c)
$$\sqrt{1-x^2}$$
, $x = \sin t$

d)
$$\frac{1}{1 + \sin x + \cos x}$$
, $\tan \frac{x}{2} = t$,

e)
$$\frac{\sqrt{1-x^2}}{x^4}$$
, $x = \cos t$

f)
$$\frac{e^{x/2}}{\sqrt{1-e^x}}$$
, $t = \sqrt{1-e^x}$

g)
$$\frac{\sin x}{1 - \sin x}$$
, $\operatorname{tg} \frac{x}{2} = t$

c)
$$\sqrt{1-x^2}$$
, $x = \sec t$
d) $\frac{1}{1+\sec x + \cos x}$, $\tan \frac{x}{2}$
e) $\frac{\sqrt{1-x^2}}{x^4}$, $x = \cos t$,
f) $\frac{e^{x/2}}{\sqrt{1-e^x}}$, $t = \sqrt{1-e^x}$,
g) $\frac{\sec x}{1-\sec x}$, $\tan \frac{x}{2} = t$,
h) $\frac{1}{\sqrt{x(1-x)}}$, $x = \sec^2 t$,

i)
$$\frac{3 \operatorname{sen} x + 3}{\operatorname{cos} x + \operatorname{sen} 2x}$$
, $t = \operatorname{sen} x$, j) $\operatorname{sec}^3 x$, $t = \operatorname{sen} x$,

j)
$$\sec^3 x$$
, $t = \sin x$,

$$k) \frac{1}{\sqrt{x^2 + 1}}, \ x = \operatorname{tg} t$$

k)
$$\frac{1}{\sqrt{x^2 + 1}}$$
, $x = \lg t$, l) $\frac{\cos x}{1 + \sin x - \cos^2 x}$, $t = \sin x$,

m)
$$\frac{1}{x\sqrt{1-x^2}}$$
, $t = \sqrt{1-x^2}$, n) $\frac{1}{\sqrt{1+e^x}}$, $t = \sqrt{1+e^x}$,

n)
$$\frac{1}{\sqrt{1+e^x}}$$
, $t = \sqrt{1+e^x}$,

o)
$$\sqrt{4+x^2}$$
, $x = 2 \lg t$,

p)
$$\frac{x(x-1)}{\sqrt{x^2-1}}$$
, $x = \sec t$.

7. (Exercício 5.21 de [2]) Determine, ou justifique que não existem, funções que verifiquem as seguintes condições:

a)
$$f'(x) = \frac{\arctan x}{1+x^2}$$
, $\lim_{x \to +\infty} f(x) = 0$.

b)
$$g'(x) = \frac{1+\sqrt{x}}{x(4-\sqrt{x})}, \ x > 16, \lim_{x \to +\infty} g(x) = 1.$$

8. (Exercício 5.24 de [2]) Determine, ou justifique que não existem, funções que verifiquem as seguintes condições:

a)
$$f''(x) = (1 + \sin x)\cos x$$
, $f'(0) = 0$, $f(0) = 3$.

b)
$$g'(x) = \frac{1}{1 + e^{2x}}$$
, $\lim_{x \to +\infty} g(x) = 1$.

9. Determine, utilizando métodos de primitivação adequados, uma primitiva de cada uma das seguintes funções:

a)
$$|x|$$
,

b)
$$x \arcsin \frac{1}{x}$$
,

c)
$$\operatorname{sen}(\log x + 1)$$
,

d)
$$\sin^2 x \cos^2 x$$
,

e)
$$\sqrt{x} \arctan \sqrt{x}$$
,

$$f) \frac{1 + \log^2 x}{x \left(1 + \log x\right)},$$

g)
$$\frac{e^{-x}}{e^{2x} - 2e^x + 2}$$
,

$$h) \frac{1+x}{1+\sqrt{x}},$$

i)
$$\cos^3 x$$
,

j)
$$\cos^4 x$$
,

$$k) x \log \frac{1-x}{1+x},$$

1)
$$\frac{1}{(x+1)(x+2)(x+3)}$$
,

$$m) \frac{\log(\log x)}{x \log x},$$

n)
$$\log(x + \sqrt{x})$$
,

o)
$$\frac{1}{x^3}e^{\frac{1}{x}}$$
,

$$p) \cos x \log(1 + \sin^2 x),$$

$$q) \frac{\log(\log x)}{x},$$

r)
$$x \operatorname{arctg}^2 x$$
,

s)
$$\frac{\log(1+x)}{\sqrt{1+x}},$$

t)
$$\frac{1}{\sin x}$$
,

$$u) \frac{x \cos x}{\sin^2 x},$$

$$v) \frac{\sin x}{1 + 3\cos^2 x},$$

w)
$$\log(\cos x) \operatorname{tg} x$$
,

x)
$$\frac{1}{(x+1)\sqrt{x+2}}$$
,

y)
$$(\operatorname{arcsen} x)^2$$
,

z)
$$\frac{1}{\cos x(1-\sin x)}$$
.

10. Determine uma função $\varphi: \mathbb{R} \to \mathbb{R}$ que verifique as condições seguintes:

$$\varphi''(x) = \frac{e^x}{(e^x + 1)^2}, \quad \lim_{x \to -\infty} \varphi'(x) = -1, \quad \lim_{x \to +\infty} \varphi(x) = \frac{\pi}{2}.$$

Outros exercícios (resolvidos): 5.22, 5.25, 5.32 de [2]

- [1] J. Campos Ferreira. Introdução à Análise Matemática, Fundação Calouste Gulbenkian, $8^{\rm a}$ ed., 2005.
 - [2] Exercícios de Análise Matemática I e II, IST Press, 2003.