Geospatial Data

WORKING WITH GEOSPATIAL DATA IN PYTHON

Instructors

Joris Van den Bossche & Dani Arribas-Bel

What is Geospatial Data?

Geospatial data are data with location information

What is Geospatial Data?

Geospatial data are data with location information

How we record the real world

Raster versus vector data

Raster

Vector

Vector features

"Discrete" representations that turn the world into:

Point(2, 10)

Vector features

"Discrete" representations that turn the world into:

Point(2, 10)

LineString([(1, 2), (1, 5), ...])

Vector features

"Discrete" representations that turn the world into:

Point(2, 10)

LineString([(1, 2), (1, 5), ...])

Polygon([(13, 1), (14, 4), ...])

Feature consisting of multiple geometries: eg MultiPolygon

Vector attribute data

Vector features can have information associated that describe them: attributes

Tabular vector data:

	name	capital	population	geometry
0	Afghanistan	Kabul	34124811.0	POLYGON ((61.21081709172574 35.65007233330923,
1	Angola	Luanda	29310273.0	(POLYGON ((23.90415368011818 -11.7222815894063
2	Albania	Tirana	3047987.0	POLYGON ((21.0200403174764 40.84272695572588,
		***		***
174	South Africa	Cape Town	54841552.0	POLYGON ((19.89576785653443 -24.76779021576059
175	Zambia	Lusaka	15972000.0	POLYGON ((23.21504845550606 -17.52311614346598
176	Zimbabwe	Harare	13805084.0	POLYGON ((29.43218834810904 -22.09131275806759

Let's practice!

WORKING WITH GEOSPATIAL DATA IN PYTHON

Introduction to GeoPandas

WORKING WITH GEOSPATIAL DATA IN PYTHON

Joris Van den Bossche

Open source software developer and teacher, GeoPandas maintainer

Spatial specific data formats

```
restaurants = pd.read_csv("datasets/paris_restaurants.csv")
restaurants.head()
```

```
type x y

Restaurant européen 259641.6 6251867.4

Restaurant traditionnel français 259572.3 6252030.2

Restaurant traditionnel français 259657.2 6252143.8

Restaurant indien, pakistanais et Moyen Orient 259684.4 6252203.6

Restaurant traditionnel français 259597.9 6252230.0
```

In the rest of the course:

- spatial file formats (Shapefiles, GeoJSON, GeoPackage, ...)
- GeoPandas: pandas dataframes with support for spatial data

Importing geospatial data with GeoPandas

```
import geopandas
```

```
countries = geopandas.read_file("countries.geojson")
```

countries.head()

```
continent
                                                                  geometry
                                   gdp
         name
   Afghanistan
                        Asia
                               64080.0
                                        POLYGON ((61.21 35.65, 62.23 35...
                                        MULTIPOLYGON (((23.90 -11.72, 2...
       Angola
                      Africa
                              189000.0
      Albania
                                        POLYGON ((21.02 40.84, 21.00 40...
                      Europe 33900.0
                                        MULTIPOLYGON (((-66.96 -54.90, ...
    Argentina South America
                              879400.0
                                        POLYGON ((43.58 41.09, 44.97 41...
5
      Armenia
                               26300.0
                        Asia
```


Quickly visualizing spatial data with GeoPandas

countries.plot()

The GeoDataFrame

countries.head()

```
name continent gdp geometry

O Afghanistan Asia 64080.0 POLYGON ((61.21 35.65, 62.23 35...

1 Angola Africa 189000.0 MULTIPOLYGON ((23.90 -11.72, 2...

2 Albania Europe 33900.0 POLYGON ((21.02 40.84, 21.00 40...
```

type(countries)

geopandas.geodataframe.GeoDataFrame

The GeoDataFrame

```
countries.head()
```

```
name continent gdp geometry

O Afghanistan Asia 64080.0 POLYGON ((61.21 35.65, 62.23 35...

1 Angola Africa 189000.0 MULTIPOLYGON ((23.90 -11.72, 2...

2 Albania Europe 33900.0 POLYGON ((21.02 40.84, 21.00 40...
```

A GeoDataFrame represents a tabular, geospatial vector dataset:

- a 'geometry' column: that holds the geometry information
- other columns: attributes describe each of the geometries

The 'geometry' attribute

countries.geometry

```
0 POLYGON ((61.21 35.65, 62.23 35...

1 MULTIPOLYGON (((23.90 -11.72, 2...
...

175 POLYGON ((23.22 -17.52, 22.56 -...
176 POLYGON ((29.43 -22.09, 28.79 -...
Name: geometry, Length: 176, dtype: object
```

type(countries.geometry)

geopandas.geoseries.GeoSeries

Spatial aware DataFrame

countries.geometry.area

```
0 63.593500

1 103.599439

2 3.185163

...

174 112.718524

175 62.789498

176 32.280371

Length: 177, dtype: float64
```


Summary

A GeoDataFrame is like a pandas DataFrame:

- all features of normal pandas DataFrames still work but supercharged with spatial functionality:
- plot() method
- geometry attribute (GeoSeries)
- spatial-specific attributes and methods (e.g. area)

Let's practice!

WORKING WITH GEOSPATIAL DATA IN PYTHON

Exploring and visualizing spatial data and its attributes

WORKING WITH GEOSPATIAL DATA IN PYTHON

Joris Van den Bossche

Open source software developer and teacher, GeoPandas maintainer

Filtering data

```
countries.head()
```

```
name continent gdp geometry
O Afghanistan Asia 64080.0 POLYGON ((61.21 35.65, 62.23 35...
1 Angola Africa 189000.0 MULTIPOLYGON (((23.90 -11.72, 2...
...
```

```
countries['continent'] == 'Africa'
```

```
0 False
1 True
...
175 True
176 True
Name: continent, Length: 177, dtype: bool
```


Filtering data

```
countries_africa = countries[countries['continent'] == 'Africa']
```

countries_africa.plot()

Visualizing spatial data

countries.plot()

Adjusting the color: uniform color

countries.plot(color="red")

Adjusting the color: based on attribute values

countries.plot(column='gdp_per_cap')

Multi-layered plot

```
fig, ax = plt.subplots(figsize=(12, 6))
countries.plot(ax=ax)
cities.plot(ax=ax, color='red', markersize=10)
ax.set_axis_off()
```


Let's practice!

WORKING WITH GEOSPATIAL DATA IN PYTHON

