CSC 339 – Theory of Computation Fall 2023

6. The Pumping Lemma

Outline

- Non-regular languages
- The pigeonhole principle
- The pumping lemma

• $L_0 = \{a^k b^k : k \le 0\} = \{\varepsilon\}$ is a regular language

• $L_1 = \{a^k b^k : k \le 1\} = \{\varepsilon, ab\}$ is regular

• $L_2 = \{a^kb^k : k \le 2\} = \{\varepsilon, ab, aabb\}$ is regular

• $L_3 = \{a^k b^k : k \le 3\}$ is regular

• $\forall n \ge 0, L_n = \{a^k b^k : k \le n\}$ is regular

- However for any $n \ge 0$, $L_n = \{a^n b^n : n \ge 0\}$ L_n is not a regular language.
- We need an infinite number of states to build this automaton!

Proof

• We need mathematical proof that there is no FA that accepts $L = \{a^nb^n : n \ge 0\}$

The Pigeonhole Principle

• If we have n holes and m pigeons (m>n) then there is a hole with at least two pigeons.

The Pigeonhole Principle (PP)

• If we have n holes and m pigeons (m>n) then there is a hole with at least two pigeons.

PP and Finite Automata

• If an automaton with n states accepts a string with length m ($m \ge n$), there should be at least one repeating state for every accepting path.

$$s = aaba$$

PP and Finite Automata

• If an automaton with n states accepts a string with length m ($m \ge n$), there should be at least one repeating state for every accepting path.

$$s = aaba$$

PP and Finite Automata

• If an automaton with n states accepts a string with length m ($m \ge n$), there should be at least one repeating state for every accepting path.

Any string of the form *aab*a* should be accepted!

Consider the walk of a "long" string: *aaaab* (length at least 4)

A state is repeated in the walk of aaaab

The pumping lemma

```
For every infinite regular language L there exists a pumping length k > 0 such that for any string s in L with length |s| \ge k we can write s = xyz with |xy| \le k and |y| \ge 1 such that xy^iz in L for every i \ge 0.
```

Proof

- If L is regular then there exists a DFA M which accepts L. Set *k* to be the number of states of M.
- L is infinite, there exists a string *s* with a length greater than *k*.
- The number of states of M is k.
- The string is of length at least k, there is a part in the path that is repeated.

Proof

- Split s into 3 parts x, y, z with y being the first repeated part.
- Since we have k states the first repetition should take place ($|y| \ge 1$) in at most k transitions ($|xy| \le k$).
- Since the path under y is a loop we can follow it as many times as we want (maybe none).
- Thus xy^iz for any $i \ge 0$ should lead us to the same accepting state as xyz.

• Given is an infinite language L.

- Given is an infinite language L
- If L is regular

- Given L an infinite language
- If L is regular
- Then the Pumping lemma holds:
 - There exists a pumping length k such that
 - for all strings s (|s| ≥ k) in L
 - there is a splitting of s in x, y, and z ($|xy| \le k$ and $|y| \ge 1$) such that for all i, xy^iz is in L.

- Given is an infinite language L
- If L is regular the pumping lemma holds.
- The negation of the pumping lemma:
 - -For all pumping lengths k
 - there exist a string $s(|s| \ge k)$ in L such that
 - -for every possible splitting of s in x, y, and z ($|xy| \le k$ and $|y| \ge 1$) there is an i for which xy^iz is not in L.

- Given is an infinite language L
- Assume L is regular (pumping lemma holds)
- Prove the negation of the pumping lemma:
 - -Fix an *arbitrary* pumping length k.
 - Specify a string $s(|s| \ge k)$ in L.
 - Show that *for every possible splitting* of s in x, y, and z ($|xy| \le k$ and $|y| \ge 1$)
 - there is an i for which xy^iz is not in L.
- Contradiction! L is then not regular.

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

Assume that L is regular. The pumping lemma holds!

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

Fix an arbitrary pumping length k for L.

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

The string $s = a^k b^k$ should be in the language.

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

 $|s| \ge k$: |s| = 2k is greater than k

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

Consider all possible splittings of a^kb^k in the form xyz with:

- $|xy| \le k$ and
- $|y| \ge 1$

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

Consider all possible splittings of a^kb^k in the form xyz with:

- $|xy| \le k$ and
- $|y| \ge 1$

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

Consider all possible splittings of a^kb^k in the form xyz with:

- $|xy| \le k$ and
- $|y| \ge 1$

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

Consider all possible splittings of $a^k b^k$ in the form xyz with $(|xy| \le k \text{ and } |y| \ge l)$

• $y = a^m$, for $1 \le m \le k$

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

Consider all possible splittings of $a^k b^k$ in the form xyz with $(|xy| \le k \text{ and } |y| \ge l)$

- $y = a^m$, for $1 \le m \le k$
- for i = 2, $xy^2z = a^{k+m}b^k$ is not in L!

• $L = \{a^n b^n : n \ge 0\}$ is not regular.

Proof:

Consider all possible splittings of $a^k b^k$ in the form xyz with $(|xy| \le k \text{ and } |y| \ge l)$

• xy^2z is not in L!

CONTRADICTION!

How to use the pumping lemma

- The pumping lemma mentions that if L is a regular language then it can be pumped.
- The contrapositive is true: If L cannot be pumped then it shouldn't be regular!

How not to use the pumping lemma

- The pumping lemma mentions that if L is a regular language then it can be pumped.
- The converse is not true: If a language can be pumped this doesn't mean that it is regular!

Summary

- Every language of finite size has to be regular
 - We can easily construct an NFA that accepts every string in the language.
- Therefore, every non-regular language has to be of infinite size.

Summary

To prove that an infinite language L is not regular:

- 1. Assume the opposite: L is regular.
- 2. The pumping lemma should hold for L.
- 3. Use the pumping lemma to obtain a contradiction.
- 4. Therefore, L is not regular.