3° Quiz - 5 - λεπτά

□ Δύο φορτία +Q είναι τοποθετημένα στις κορυφές ενός ισόπλευρου τριγώνου πλευράς α. Το έργο που απαιτείται για να κινηθεί ένα 3° φορτίο +q από την 3η κορυφή του τριγώνου στο μέσο της ευθείας που ενώνει τα φορτία +Q είναι:

(A) 0 (B)
$$\frac{1}{4\pi\varepsilon_0} \frac{Qq}{a}$$
 (Г) $\frac{1}{4\pi\varepsilon_0} \frac{Qq}{a^2}$ (Δ) $\frac{1}{4\pi\varepsilon_0} \frac{2Qq}{a}$ (Ε) $\frac{1}{4\pi\varepsilon_0} \frac{\sqrt{2}Qq}{a}$

Το έργο που απαιτείται για την μετακίνηση του φορτίου +q είναι: $W_{\varepsilon\xi}=q\Delta V=q(V_f-V_i)$

Αλλά
$$V_i = \frac{1}{4\pi\varepsilon_0} \frac{Q}{a} + \frac{1}{4\pi\varepsilon_0} \frac{Q}{a} \Rightarrow V_i = \frac{1}{4\pi\varepsilon_0} \frac{2Q}{a}$$

Παρόμοια, το δυναμικό στο τελικό σημείο, θα είναι: $V_f = \frac{1}{4\pi\varepsilon_0} \frac{Q}{a/2} + \frac{1}{4\pi\varepsilon_0} \frac{Q}{a/2}$

$$\Rightarrow V_f = \frac{1}{4\pi\varepsilon_0} \frac{2Q}{a/2} \Rightarrow V_f = \frac{1}{4\pi\varepsilon_0} \frac{4Q}{a}$$

Επομένως:
$$W_{\varepsilon\xi}=q\,\frac{1}{4\pi\varepsilon_0}\Big(\frac{4Q}{a}-\frac{2Q}{a}\Big) \Rightarrow W_{\varepsilon\xi}=\frac{2qQ}{4\pi\varepsilon_0 a}$$
 Απάντηση: Δ