electro optical industries inc.

A PROGRAM
FOR
BLACKBODY RADIATION
CALCULATIONS

Planck's Law Programs for the Hewlett Packard model 65 programmable calculator

prepared by Ray Chandos

electro optical industries, inc.

Post Office Box 3770

Santa Barbara, California 93105

Pignet's Law Programs
for the
Baylett Packard model 61
programmable calculator

entered a well up to receiping

ont accussion to trace on the second

INTRODUCTION

This booklet includes 4 programs for the Hewlett Packard Model 65 programmable calculator. These programs transfer the calculation capability of 31 scales of the Electro Optical Industries Inc. blackbody radiation sliderule to the Model 65 but with 5 significant figure accuracy.

A copy of the manual for the blackbody sliderule is included since it defines all terms and equations and provides useful examples of the use of the equations.

ACHTOLIGISTISS

This soldier is a content of the con

Andread of to increase of to oppose.

And the states of the oppose of the control of the states of t

PROGRAM TITLE: BLACKBODY RADIATION SLIDERULE

PROGRAM DESCRIPTION, EQUATIONS, VARIABLES:

Planck's expression for hemispherical blackbody flux density radiated in the wavelength interval λ to λ +d λ is

$$H_{\lambda} = \frac{c_1}{\lambda^5} \cdot \frac{1}{e^{c_2/\lambda T} - 1}$$
 [W/cm² - \mu m]

where T = blackbody temperature (°K)

$$c_1 = 37415 \text{ W}-\mu^4/\text{cm}^2$$

 $c_2 = 14388 \mu - \text{°K}$.

The corresponding expression for photon output is

$$Q_{\lambda} = \frac{c_1'}{\lambda^4} \cdot \frac{1}{e^{c_2/\lambda T} - 1}$$
 [photons/sec-cm²-\mu m]

where
$$c_1' = 188365 \times 10^{18} \ \mu \text{m}^3/\text{sec-cm}^2$$
.

This program computes

$$H_{\lambda}, Q_{\lambda}, \int_{0}^{\lambda} H_{\lambda} d\lambda, \int_{0}^{\lambda} Q_{\lambda} d\lambda, \int_{\lambda}^{\infty} H_{\lambda} d\lambda,$$

$$\int\limits_{\lambda}^{\infty} Q_{\lambda} d\lambda \text{ given } \lambda \text{ and } T, H_{0-\infty} \equiv \int\limits_{0}^{\infty} H_{\lambda} d\lambda,$$

$$Q_{0-\infty} \equiv \int_{0}^{\infty} Q_{\lambda} d\lambda$$
 given T, as well as

 $T = t_c + 273.15 = 5/9 (t_f - 32) + 273.15$ given either t_c (Celsius temperature) or t_f (Fahrenheit temperature).

In addition, the program computes RMS Johnson noise

$$V_n = \sqrt{4R k T \Delta f}$$
 [V]

across resistance R (Ω) at temperature T (°K) in bandwidth Δ f (Hz), given R, T and Δ f, as well as photon energy at the maximum of H $_\lambda$

$$E_{\lambda m} = 4.96511 \text{ kT}$$
 [ev]

given T, where $k = 8.6171 \times 10^{-5} \text{ ev/}^{\circ}\text{K}$.

SAMPLE PROBLEMS:

1. For a blackbody at 1500°K, find $H_{0-\infty}$, $Q_{0-\infty}$ and $E_{\lambda m}$.

Solution:
$$H_{0-\infty} = 2.8704 \times 10^{1}$$
 W/cm² $Q_{0-\infty} = 5.1314 \times 10^{20}$ photons/sec-cm² $E_{\lambda m} = 6.4177 \times 10^{-1}$ ev

$$2. \ \text{Find} \int_{\text{H}_{\lambda}}^{10 \mu \text{m}} \mathrm{d}\lambda \ \text{and} \int_{\text{H}_{\lambda}}^{\text{H}_{\lambda}} \mathrm{d}\lambda \ \text{for a 1000°K blackbody}.$$

Solution:
$$\int_{2\mu m}^{10\mu m} H_{\lambda} d\lambda = \int_{0}^{10\mu m} H_{\lambda} d\lambda - \int_{0}^{2\mu m} H_{\lambda} d\lambda$$

$$=5.1829 - .37830 = 4.805$$
 W/cm²

$$\int_{25\,\mu\text{m}}^{30\,\mu\text{m}} H_{\lambda} \,d\lambda = \int_{25\,\mu\text{m}}^{\infty} H_{\lambda} \,d\lambda - \int_{30\,\mu\text{m}}^{\infty} H_{\lambda} \,d\lambda$$

 $= 4.4418 \times 10^{-2} - 2.6698 \times 10^{-2}$

 $=1.7720 \times 10^{-2} \text{ W/cm}^2$

3. Calculate V_n across a 10 M Ω resistor at 600°C in a 1.5 Hz band.

Solution: $V_n = 8.5044 \times 10^{-7} V_{RMS}$

4. For a 2000°K blackbody, calculate $\int\limits_{5\mu m}^{30\mu m} Q_{\lambda} d\lambda \ .$

Solution: (refer to diagram)

$$\int\limits_{5\mu m}^{30\mu m}Q_{\lambda}d\lambda=\int\limits_{0}^{\infty}Q_{\lambda}d\lambda \ - \quad \text{total shaded area}$$

$$= Q_{0-\infty} + \left(\int_{0}^{5\mu m} Q_{\lambda} d\lambda - \int_{30\mu m}^{\infty} Q_{\lambda} d\lambda \right)$$

=
$$1.2163 \times 10^{21} - 8.9964 \times 10^{20} - 1.3419 \times 10^{19}$$

= 3.033×10^{20} photons/sec-cm²

REFERENCES:

H.W. Makowski, "A Sliderule for Radiation Calculations," REVIEW OF SCIENTIFIC INSTRUMENTS, 20, 876 (1949)

M. Pivovonsky and M.R. Nagel, TABLES OF BLACKBODY RADIATION FUNCTIONS, Macmillan Co., N.Y. (1961)

SAMPLE PROBLEM 1 SOLUTION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA /UNITS
1.	Enter program card I			
2.	Compute H _O -∞			
	Input T	1500°K	В	
	Read answer			2.8704 x 10 ¹
				W/cm ²
3.	Enter program card III.			
4.	Compute Q _O -∞			
	Input T	1500 °K	В	
	Read answer			5.1314x10 ²⁰
				photons / sec-cm ²
5.	Compute E _{\(\lambda\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}			
	Input T	1500 °K	C	
	Read answer			6.4177 x 10 ⁻¹
				ev

SAMPLE PROBLEM 2 SOLUTION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA /UNITS
1.	Enter program card II]
2.	Compute first integral]
	Input λ_1 and	2 μm]
	T.	1000 °K	A]] .37830 W/cm ²
	Save answer		STO 4	
	Input λ_2 and	10 μm		
	T	1000 °K	A	5.1829 W/cm ²
	Subtract first answer		RCL 04	
ECL TOTAL CAT ASSAULT TO	Read answer			4.8046 W/cm ²
3.	Compute second integral			
	Input λ_1 and	25 μm		
	Т	1000 °K	A	-4.4418x10 ⁻² W/cm ²
	Save answer		STO 4] Wyem
	Input λ_2 and	30 μm		
	T	1000 °K	A	-2.6698 x10 ⁻² W/cm ²
	Subtract first answer		RCL 4	
	Read answer			1.7720 x 10 ⁻² W/cm ²
	La			
				1
				1
				1

SAMPLE PROBLEM 3 SOLUTION

SAMPLE PROBLEM 3 SOLUTION									
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS					
I.	Enter program card I								
2.	Convert t _C to T	600 °C	D	873.15 °K					
3.	Input R	10 ⁷ Ω							
4.	Input Δf , compute V_n , read answer	1.5	С	8.5044 x 10 ⁻⁷ V _{RMS}					
			in the same						
]					
			0.1						
				i					
		7.		1					
				1					
				1					
				1					
]					
				1					
		1		- 1					

SAMPLE PROBLEM 4 SOLUTION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	K	EYS	OUTPUT DATA/UNITS
1.	Enter program card IV				
	Compute last 2 integrals				
	Input λ_1 and	5 μm	1		
	T	2000 °K	A		8.9964x1020
	Save answer		STO	04] photons/ sec-cm ²
	Input λ_2 and	30 μm	1]
	T	2000 °K	Α]-1.3419 x1019
					photons/ sec-cm ²
	Subtract first answer		RCL	04]
			_		9.1305 x10 ²⁰
	Save answer		STO	04] photons/ sec-cm ²
2.	Enter program card III				1
	Compute first integral				
	Input T	2000 °K	В		1.2163x10 ²¹
	Add first answer		RCL	04] photons/ sec-cm ²
	Read final answer		+		3.0327x10 ²⁰
] photons/ sec-cm ²
					1
					i
					1
					1
					1
					i

HEWLETT-PACKARD'S HP65 PROGRAMMABLE POCKET-SIZED CALCULATOR

ELECTRO OPTICAL INDUSTRIES'

MODEL 17 RADIATION SLIDERULE

TITLE BLACKBODY RADIATION SLIDERULE I

SWITCH TO W/PRGM. PRESS f PRGM TO CLEAR MEMORY

KEY ENTRY	CODE SHOWN	KEY ENTRY	CODE	KEY ENTRY	CODE SHOWN	REGISTERS
LBL	23	В	12	LBL	23	R ₁
A	11	A	41	70 D	14	
gx * y	35 07	X	71	2	02	
+	41	+	41	7	07	R ₂
<u></u>	41	X	71	3	03	
gR ♦	35 09	40 1	01	•	83	
X	71	7	07	1	01	R ₃
1	01	6	06	5	05	
4	04	3	03	+	61	
10 3	03	7	07	DSP	21	R ₄
8	08	EEX	43	•	83	
8	08	7	07	80 3	03	
gx +y	35 07	÷	81	RTN	24	R ₅
÷	81	DSP	21	LBL	23	
f ⁻¹	32	4	04	Е	15	
LN	07	50 RTN	24	3	03	R ₆
1	01	LBL	23 ^	2	02	
_	51	C	13	-	51	
X	71	X	71	5	05	R ₇
20 X	71	X	71	X	71 '	
X	71	f	31	9	09	
X	71	\sqrt{x}	09	90 ÷	81	R ₈
X	71	1	01	D	14	
3	03	3	03	RTN	24	
7	07	4	04			R ₉
4	04	60 5	05			
1	01	6	06			
5	05	9	09			LABELS
gx → y	35 07	EEX	43			Α Η λ
30 ÷	81	6	06			B H ₀ -∞
DSP	21	÷	81			$\begin{bmatrix} C & V_n \\ D & t_c + T \end{bmatrix}$
4	04	DSP	21	100		$\int_{\Gamma} \frac{t_{\mathbf{c}} + T}{t_{\mathbf{f}} + T}$
RTN	24	4	04			E
LBL	23	RTN	24			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA /UNITS
1.	Enter program			
2.	To calculate H _{\(\lambda\)}			
	input wavelength λ and	λ (μm)	+	
	blackbody temperature T	T(°K)	A	
	read H_{λ}			Нλ
				(W/cm ² - μm
3.	To calculate H _{0-∞}			
	input blackbody temperature T	T(°K)	В	
	read H _{0-∞}] H _{0-∞}
				(W/cm ²)
4.	To calculate V _n]
	input temperature T	T(°K)	†	
	input resistance R	R(Ω)	4	
	input bandwidth Δf	Δf (Hz)	С	
	read V _n			$V_n(V)$
5.	To calculate T input either			
	Celsius temperature t _C or	t _c (°C)	D	
	Fahrenheit temperature tf	tf (°F)	E	Ì
	read T			T(°K)
	NOTES			
1.	Memory register R ₁ -R ₉ are unaffected			
	by these programs, and thus may be used to store			
	intermediate results.			

TITLE BLACKBODY RADIATION SLIDERULE II

KEY	CODE	KEY	CODE SHOWN	KEY ENTRY	CODE SHOWN	REGISTERS
0	00	X	71	X	71	R_1 $c_2/\lambda T$
STO 3	33 03	X	71	70 ÷	81	
STO 8	33 08	X	71	STO	33	
+	61	4	04	+	61	R ₂ T
STO 2	33 02	8	08	3	03	
X	71	40 ÷	81	EEX	43	
1	01	GTO	22	6	06	R ₃ Σ
4	04	2	02	X	71	
3	03	LBL	23	RCL 3	34 03	
0 8	08	1	01	gx>y	35 24	R ₄
8	08	g	35	GTO	22.	
gx 🕏 y	35 07	DSZ.	83	80 1	01	
÷	81	RCL 8	34 08	LBL	23	R ₅
STO 1	33 01	RCL 1	34 01	2	02	
	83	X	71	CHS	42	
8	08	50 🛉	41	RCL 2	34 02] R ₆
gx ≤ y	35 22	A	41	4	41	
GTO	22	†	41	X	71	
1	01	3	03	A	41	R ₇
20 RCL 1	34 01	-	51	X	71	
A	41	X	71	X	71	90.00
X	71	6	06	90 1	01	R ₈
1	01	+.	61	1	01	
0	00	X	71	4	04	
5	05	6	06	5	05	R ₉
÷	81	60 –	51	4	04	
-	51	gR↑	35 09	EEX	43	
X	71	f-1	32	8	08	LABELS (H) d\(\lambda\)
6	06	LN	07	÷	81	$A = \int H_{\lambda} d\lambda$
30 –	51	X	71	DSP	21] B
X	71	RCL 8	34 08	4	04] c
1	0.1	1	41	100 R/S	84] D
6	06	X	71			E
+	61	1	41			

 $\int H_{\lambda} d\lambda$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA /UNITS
1.	Enter program]
2.	Input wavelength λ and	λ(μm) [1]
	blackbody temperature T	T(°K)		
3.	Compute $\int H_{\lambda} d\lambda$. If positive,		Α [$\int H_{\lambda} d\lambda$
	answer is $\int_0^{\lambda} H_{\lambda} d\lambda$. If negative,			(W/cm ²)
	answer is $-\int_{\lambda}^{\infty} H_{\lambda} d\lambda$.	[
	NOTES			
1.	This program automatically chooses which integral to			
	compute so as to provide in all cases]
	a 5-significant-figure answer.			
2.	Since memory registers R ₄ - R ₇ are not affected by this			
	program, they may be used to store intermediate results.			
-				
]
]
]
		1		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA /UNITS	
1.	Enter program			7	
2.	To calculate Q _{\(\lambda\)}			1	
	input wavelength λ and	λ(μm)	+		
	blackbody temperature T	T(°K)	A		
	read Q $_{\lambda}$			$\Box Q_{\lambda}$	
] (photons/ sec-cm ² -μm	
3.	To calculate Q _{0-∞}				
	input blackbody temperature T	T(°K)	В	<u>ו</u>	
	read Q _{o - ∞}] Q _{0-∞}	
				(photons/ sec-cm ²)	
4.	To calculate E $_{\lambda m}$				
	input blackbody temperature T	T(°K)	C		
	read E $_{\lambda \ m}$			E _{λm} (ev)	
5.	To calculate T input either				
Marine.	Celsius temperature t _C ' or	t _c (°C)	D		
	Fahrenheit temperature t _f	tf (°F)	E		
	read T			T(°K)	
	NOTES				
1.	Memory registers R ₁ -R ₉ are				
	unaffected by these programs, and	B			
	thus may be used to store intermediate results.				

TITLE BLACKBODY RADIATION SLIDERULE IV

KEY	CODE SHOWN	KEY	CODE SHOWN	KEY	CODE		REGISTERS
0	00	2	02	÷	81	R ₁	$c_2/\lambda T$
STO 3	33 03	4 .	04	70 STO	33		
STO 8	33 08		51	+	61		
+	61	X	71	3	03	R ₂	Т
STO 2	33 02	X	71	EEX	43		
X	71	40 4	04	6	06		
1	01	8	08	X	71	R ₃	Σ
4	04	<u>•</u>	81	RCL 3	34 03		
3	03	GTO	22	gx>y	35 24		
0 8	08	2	02	GTO	22	R ₄	
8	08	LBL	23	1	01		
gx⁴ y	35 07	1	01	80 CHS	42		
÷ .	81	g	35	LBL	23	R ₅	
STO 1	33 01	DSZ	83	2	02		
	83	RCL 8	34 08	RCL 2	34 02		
8	08	50 RCL 1	34 01	4	41	R ₆	
7	07	-X	71	•	41		
gx≼y	35 22	A	41	X	71		
GTO	22	A	41	X	71	R ₇	
20 1	01	1	01	X	71		
RCL 1	34 01		51	6	06		
*	41	A	41	90 3	03	R ₈	n
A	41	X	71	2	02		
A	41	1	01	4	04		
X	71	+	61	2	02	R ₉	used
9	09	60 gx ‡ y	35 07	EEX	43		
0	00	f-1	32	6	06		
÷	81	LN	07	X	71		LABELS ∫ Qλdλ
1	01	X	71	DSP	21		
30 –	51	RCL 8	34 08	4	04		
X	71	A	41	R/S	84	_ C -	
8	08	A	41	100 gNOP	35 01	D -	
+ .	61	X	71			E -	
X	71	X	71			-	

 $\int Q_{\lambda} d\lambda$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	1	(EYS	OUTPUT DATA /UNITS
1.	Enter program				
2.	Input wavelength λ and	λ(μm)	1		
	blackbody temperature T	T(°K)]
3.	Compute $\int Q_{\lambda} d\lambda$. If positive,		A		JOAda
	answer is $\int_0^\lambda Q_\lambda^{} d\lambda$. If negative,				photons/ sec-cm ²)
	answer is $\int_0^\lambda Q_\lambda^{} d\lambda$. If negative, answer is $-\int_\lambda^\infty Q_\lambda^{} d\lambda$.				
]
	NOTES				
I.	This program automatically chooses which integral				
	to compute, so as to provide in all cases a 5-significant-				
	figure answer.][
2.	Since memory registers R ₄ - R ₇ are not affected by this				
	program, they may be used to store intermediate results.				
][

NOTES:

NOTES:

CRYOGENIC VACUUM BLACKBODIES

THERMOELECTRIC DIFFERENTIAL BLACKBODIES

COLLIMATORS
1 inch to 12 inches

SPECTRUM ANALYZER 1Hz to 50kHz

PREAMPLIFIER low impedance

SPECTRORADIOMETERS

8

electro optical industries, inc. \square p.o. box 3770 \square santa barbara, california 93105