비전공자를 위한 머신러닝

4주차: 머신러닝 실무체험

Elice

목차

- 1. 머신러닝 업무 익히기
- 2. 타겟마케팅을 위한 머신러닝 업무

1. 머신러닝 업무 익히기

머신러닝 업무 리뷰

<데이터 과학의 목표 >

Decision Making

Monetization

머신러닝 업무 리뷰

< 머신러닝의 목표 >

Prediction & Pattern Analysis

머신러닝 업무 프로세스

Define the Problem

머신러닝 프로젝트를 시작할 때 해결해야 하는 비즈니스 문제를 명확하게 먼저 정의

< 문제정의/문제파악을 위한 세부 프로세스 >

비즈니스 문제 파악 머신러닝 문제로 전환 머신러닝 도입 가능성/필요성 검토

효과검증 설계

Define the Problem

비즈니스 문제를 파악한 후에 이를 해결하기 위한 데이터 과학과 머신러닝 문제로 전환

Types of Machine Learning

Supervised Learning

Unsupervised Learning

Develop Predictive Model based on Input & Output Data

Group and Interpret Data based on only Input Data

Types of Machine Learning

Supervised Learning

Unsupervised Learning

Supervised Learning

Classification

분류 범주를 예측

Regression

회귀 숫자를 예측

Unsupervised Learning

Clustering

유사한 그룹끼리 군집화

현실의 문제를 머신러닝 문제로

Business Problem	Target/Output	ML Problem
고객이 서비스를 이탈할 것인가	범주 : 이탈여부	Classification
내년도 서비스 예상 매출액은 얼마인가	숫자: 매출액	Regression
사용자 정보와 구매이력 기반 고객 세분화	_	Clustering

기타 머신러닝 문제

Recommender System **Anomaly Detection**

Network Analysis

Dimensionality Reduction

Profiling

Time series Forecasting

효과검증 설계 예시

머신러닝 도입에 따른 효과 검증 프레임워크

효과검증 설계 예시

머신러닝 도입에 따른 효과 검증 프레임워크

머신러닝 업무 프로세스

Build Model & Evaluation

머신러닝 문제로 전환하고 데이터 준비를 마친 이후에는 적절한 머신러닝 모델 & 알고리즘을 선택하여 모델을 구축하고 평가

< 모델 구축 & 평가를 위한 세부 프로세스 >

모델 & 알고리즘 선택

실무적 제약사항 고려한 모델 적합

하이퍼파라미터 설정

모델 학습

모델 평가

모델 & 알고리즘 선택

ML Model	Algorithm	Result
Classification	Logistic Regression Decision Tree Support Vector Machine	범주 예측
Regression	Linear Regression Ridge Regression Lasso Regression	숫자 예측
Clustering	K-means DBscan	군집

오차(Loss/Cost/Error)를 통해 모델의 성능 평가

Acroynm	Full Name	Description
MAE	Mean Absolute Error	$\frac{1}{n}\sum y-\hat{y} $
MSE	Mean Square Error	$\frac{1}{n}\sum (y-\hat{y})^2$
RMSE	Root Mean Square Error	$\sqrt{\frac{\sum (y-\hat{y})^2}{n}}$
MAPE	Mean Percentage Error	$\frac{100\%}{n} \sum \left \frac{y - \hat{y}}{y} \right $

Classification은 실제 범주(class)와 예측한 범주(class)의

정확도(Accuracy)를 통해 모델의 성능 평가

Name	Description	Etc.
Accuracy	옳게 분류한 정확도	$rac{correct\ prediction}{total\ data\ points} imes 100\%$
Confusion Matrix	분류 결과를 2x2의 표로 정리한 혼동행렬	Confusion matrix, Feature Engineering, without normalization 50 50 50 50 50 50 50 50 50 5
F-measure	precision과 recall의 조화평균 *precision: 예측한 범주에서 실제 True 범주 비율 *recall: 실제 범주에서 옳게 True라고 예측한 범주 비율	$F = \frac{precision \times recall}{precision + recall}$
AUC	TPR과 FPR을 각각 x축과 y축으로 했을 때의 생성되는 ROC curve 아래의 면적 *TPR: True Positive Rate 옳게 예측한 비율 *FPR: True라고 잘못 예측한 비율	D.B. D.B. D.B. D.B. D.B. D.B. D.B. D.B.

경우에 따라서는 모델 도입을 통해 기대되는 손익이 더 중요할 수 있음

Expected Value =
$$P(x_1) \times V_1 + P(x_2) \times V_2 + \cdots$$

기대손익(Expected Value)은 어떤 이벤트가 발생할 확률P(x)과 그로 인해 발생하는 손익V을 계산하여 평가

혼동행렬과 비용편익 분석을 통한 모델평가

프로모션 제공에 대한 기대손익 예시

분류 예측 결과에 따라 프로모션을 제공했을 때 기대되는 손익

 $Expected\ Value = (0.43 \times 9,760) + (0.19 \times 10.000) + (0.06 \times -230) + (0.32 \times 0) = 6,083$

머신러닝 관점에서 **정확도**가 높고 비즈니스 관점에서 **기대손익**이 좋은 모델을 최종 선택

2. 타겟 마케팅을 위한 머신러닝 업무

[실습] 누구에게 프로모션을 제공해야 할까?

CREDIT

코스 매니저 손현곤

> 강사 오승우

콘텐츠제작에 기여하신분 오승우

영상 제작에 기여하신 분 박수광

검수와 자문에 도움주신 분 신현철

/* elice */

문의및연락처

academy.elice.io contact@elice.io facebook.com/elice.io medium.com/elice