Logistic Regression Algorithm

```
In [1]:
              #Aim: Logistic Regression Algorithm
 In [2]:
              #Aim : Understanding Logistic Regression Algorithm
 In [3]:
              # Name: Pragati Pramod Bindod
              # Roll no. : 15
              # Section : A
 In [5]:
              import pandas as pd
              import matplotlib.pyplot as plt
              import numpy as np
              import seaborn as sns
              from sklearn.model_selection import train_test_split
              import warnings
              warnings.filterwarnings('ignore')
 In [6]:
              import os
           M
 In [ ]:
              os.chdir('C:\\Users\\DELL')
 In [8]:
              df=pd.read_csv("framingham.csv")
 In [9]:
              df.head()
In [10]:
    Out[10]:
                             education currentSmoker cigsPerDay
                                                                 BPMeds prevalentStroke
                  male
                        age
                                                                                        prevaler
               0
                     1
                         39
                                   4.0
                                                   0
                                                            0.0
                                                                     0.0
                                                                                      0
               1
                     0
                         46
                                   2.0
                                                   0
                                                            0.0
                                                                     0.0
                                                                                      0
               2
                     1
                         48
                                                            20.0
                                                                     0.0
                                                                                      0
                                   1.0
                                                   1
               3
                     0
                         61
                                   3.0
                                                   1
                                                            30.0
                                                                     0.0
                                                                                      0
                     n
                         46
                                   3.0
                                                            23.0
                                                                     0.0
                                                                                      0
              df.tail()
In [11]:
    Out[11]:
                     male
                          age
                               education currentSmoker cigsPerDay BPMeds prevalentStroke prev
               4233
                                                     1
                        1
                            50
                                      1.0
                                                               1.0
                                                                        0.0
                                                                                         0
               4234
                                                     1
                        1
                            51
                                      3.0
                                                              43.0
                                                                        0.0
                                                                                         0
               4235
                        0
                            48
                                      2.0
                                                     1
                                                              20.0
                                                                       NaN
                                                                                         0
               4236
                                                               15.0
                                                                        0.0
                                                                                         0
                        0
                            44
                                      1.0
                                                      1
                4237
                                                               0.0
                                                                                         0
                        n
                            52
                                      2.0
                                                     0
                                                                        0.0
```

In [12]: ► df.describe()

Out[12]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds
count	4238.000000	4238.000000	4133.000000	4238.000000	4209.000000	4185.000000
mean	0.429212	49.584946	1.978950	0.494101	9.003089	0.029630
std	0.495022	8.572160	1.019791	0.500024	11.920094	0.169584
min	0.000000	32.000000	1.000000	0.000000	0.000000	0.000000
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000
4						•

In [13]: ► df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	4238 non-null	int64
1	age	4238 non-null	int64
2	education	4133 non-null	float64
3	currentSmoker	4238 non-null	int64
4	cigsPerDay	4209 non-null	float64
5	BPMeds	4185 non-null	float64
6	prevalentStroke	4238 non-null	int64
7	prevalentHyp	4238 non-null	int64
8	diabetes	4238 non-null	int64
9	totChol	4188 non-null	float64
10	sysBP	4238 non-null	float64
11	diaBP	4238 non-null	float64
12	BMI	4219 non-null	float64
13	heartRate	4237 non-null	float64
14	glucose	3850 non-null	float64
15	TenYearCHD	4238 non-null	int64
d+\(n	oc. float64(0) ;	n+64(7)	

dtypes: float64(9), int64(7)

memory usage: 529.9 KB

```
In [14]:
                df.isna().sum()
    Out[14]: male
                                          0
                                          0
                age
                education
                                       105
                currentSmoker
                                         0
                                        29
                cigsPerDay
                BPMeds
                                        53
                prevalentStroke
                                         0
                prevalentHyp
                                         0
                diabetes
                                         0
                totChol
                                        50
                sysBP
                                         0
                diaBP
                                         0
                BMI
                                        19
                heartRate
                                         1
                glucose
                                       388
                TenYearCHD
                                          0
                dtype: int64
                df
In [15]:
    Out[15]:
                       male
                             age
                                  education currentSmoker cigsPerDay BPMeds prevalentStroke
                    0
                          1
                              39
                                         4.0
                                                          0
                                                                              0.0
                    1
                          0
                              46
                                         2.0
                                                          0
                                                                     0.0
                                                                              0.0
                                                                                                 0
                    2
                                                                                                 0
                          1
                              48
                                         1.0
                                                          1
                                                                    20.0
                                                                              0.0
                    3
                          0
                              61
                                         3.0
                                                          1
                                                                    30.0
                                                                              0.0
                                                                                                 0
                                         3.0
                                                                    23.0
                    4
                          0
                              46
                                                          1
                                                                              0.0
                                                                                                 0
                          ...
                               ...
                                          ...
                                                          ...
                                                                      ...
                                                                               ...
                 4233
                              50
                                                          1
                                                                     1.0
                                                                              0.0
                                                                                                 0
                          1
                                         1.0
                 4234
                          1
                              51
                                         3.0
                                                          1
                                                                    43.0
                                                                              0.0
                                                                                                 0
                 4235
                              48
                                         2.0
                                                          1
                                                                    20.0
                                                                                                 0
                          0
                                                                             NaN
                 4236
                                         1.0
                                                                    15.0
                                                                              0.0
                                                                                                 0
                          0
                              44
                                                          1
                                                                     0.0
                                                                                                 0
                 4237
                          0
                              52
                                         2.0
                                                          0
                                                                              0.0
                4238 rows × 16 columns
```

Missing Value Tretment

```
In [17]:  M df['glucose'].fillna(value = df['glucose'].mean(),inplace=True)

In [18]:  M df['education'].fillna(value = df['education'].mean(),inplace=True)

In [19]:  M df['heartRate'].fillna(value = df['heartRate'].mean(),inplace=True)

In [20]:  M df['BMI'].fillna(value = df['BMI'].mean(),inplace=True)
```

```
df['cigsPerDay'].fillna(value = df['cigsPerDay'].mean(),inplace=True)
In [21]:
              df['totChol'].fillna(value = df['totChol'].mean(),inplace=True)
In [22]:
              df['BPMeds'].fillna(value = df['BPMeds'].mean(),inplace=True)
In [23]:
              df.isna().sum()
In [24]:
    Out[24]: male
                                    0
                                    0
              age
              education
                                    0
              currentSmoker
                                    0
              cigsPerDay
                                    0
              BPMeds
                                    0
              prevalentStroke
                                    0
              prevalentHyp
                                    0
                                    0
              diabetes
              totChol
                                    0
               sysBP
                                    0
              diaBP
                                    0
              BMT
                                    0
              heartRate
                                    0
              glucose
                                    0
              TenYearCHD
                                    0
              dtype: int64
              #Splitting the dependent and independent variables.
In [25]:
              x = df.drop("TenYearCHD",axis=1)
              y = df['TenYearCHD']
In [26]:
    Out[26]:
                     male
                           age
                                education currentSmoker cigsPerDay
                                                                   BPMeds prevalentStroke prev
                  0
                            39
                                                     0
                                                                    0.00000
                                                                                         0
                        1
                                      4.0
                                                                0.0
                  1
                        0
                            46
                                      2.0
                                                     0
                                                                0.0
                                                                    0.00000
                                                                                         0
                  2
                        1
                            48
                                      1.0
                                                      1
                                                              20.0
                                                                    0.00000
                                                                                         0
                  3
                        0
                            61
                                      3.0
                                                      1
                                                              30.0
                                                                    0.00000
                                                                                         0
                  4
                        0
                            46
                                      3.0
                                                              23.0
                                                                    0.00000
                                                                                         0
                                                      1
                                      ...
                                                                ...
               4233
                            50
                                                      1
                                                                    0.00000
                        1
                                      1.0
                                                                1.0
                                                                                         0
               4234
                        1
                            51
                                      3.0
                                                      1
                                                              43.0
                                                                    0.00000
                                                                                         0
               4235
                        0
                            48
                                      2.0
                                                      1
                                                              20.0
                                                                    0.02963
                                                                                         0
               4236
                        0
                            44
                                      1.0
                                                      1
                                                               15.0
                                                                    0.00000
                                                                                         0
               4237
                            52
                                      2.0
                                                     0
                                                               0.0
                                                                    0.00000
                                                                                         0
                        0
              4238 rows × 15 columns
```

Train Test Split

```
In [28]:
           x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,rand
In [29]:
         Ŋ y_train
   Out[29]: 3252
                   0
            3946
                   0
           1261
                   0
           2536
                   0
           4089
                   0
                  . .
           3444
                   0
           466
           3092
                   0
           3772
           860
           Name: TenYearCHD, Length: 3390, dtype: int64
        Logistic Regression Algorithm
In [30]:
         model = LogisticRegression().fit(x_train,y_train)
           model.score(x_train, y_train)
   Out[30]: 0.8498525073746312
In [ ]:
```