CONTROLE N°1 D'ANALYSE II - DURÉE = 4H

Exercice 1 7pts = 1.5 + 1.5 + (0.5 + 1 + 0.5) + 2(Les questions (1), (2),(3) et (4) sont indépendantes) Calculer :

(1)
$$I = \int_0^1 2x \sqrt{\frac{1-x^2}{1+x^2}} dx$$
. On pourra poser : $u = x^2$.

(2)
$$J = \int \sqrt[3]{e^x - 1} dx$$
. On pourra poser : $u = \sqrt[3]{e^x - 1}$.

(3) (a) Factoriser
$$X^4 - X^2 + 1$$
 dans $\mathbb{R}[X]$.

(b) En déduire la valeur de
$$K = \int_0^{\frac{\sqrt{3}}{2}} \frac{u^2}{u^4 - u^2 + 1} du$$
,

(c) Calculer alors
$$K' = \int_0^{\frac{\pi}{3}} \frac{\sin(x)\sin(2x)}{\sin^4(x) + \cos^4(x) + 1} dx$$
.

(4) Calculer
$$L = \lim_{n \to +\infty} \frac{1}{n^4} \prod_{k=1}^{2n} (n^2 + k^2)^{\frac{1}{n}}$$
.

Exercice 2:7pts = 1.5 + 1.5 + 1.5 + 1 + 1.5

On considère, pour tout $n \in \mathbb{N}$, les intégrales :

$$I_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)x}{\sin x} dx;$$

$$J_n = \int_0^{\frac{\pi}{2}} \frac{\sin 2nx}{\sin x} dx$$

$$K_n = \int_0^{\frac{\pi}{4}} \frac{\cos(4n+1)x}{\cos x} dx.$$

- (1) Montrer que $(I_n)_{n\geq 0}$ est une suite constante et calculer la valeur de I_n , $\forall n\in\mathbb{N}$.
- (2) Calculer $\lim_{n\to+\infty} K_n$. (On pourra effectuer d'abord une IPP, puis passer à la limite).
- (3) Evaluer $I_n J_n$ en fonction de K_n . En déduire $\lim_{n \to +\infty} J_n$.
- (4) Etablir une relation de recurrence entre J_n et $J_{n-1}, \forall n \in \mathbb{N}^*$.
- (5) En déduire l'expression de $J_n, \forall n \in \mathbb{N}$, puis $\lim_{n \to +\infty} (1 \frac{1}{3} + \frac{1}{5} \dots + \frac{(-1)^{n-1}}{2n-1})$.

Exercise 3: 7 pts =
$$(0.5 + 1 + 1.5) + (1.5 + 1 + 0.5) + 1$$

On considère la fonction f définie par $f(x) = \int_x^{2x} \frac{t^2}{t^2 + \sin^2 t} dt, \forall x \neq 0 \text{ et } f(0) = 0.$

- (1) (a) Montrer que f est impaire.
 - (b) Montrer que f est continue sur \mathbb{R} .
- (2) (a) Montrer que $\int_{x}^{2x} \frac{t^2}{t^2 + 1} dt \le f(x) \le x, \forall x \ge 0.$
 - (b) En déduire que la courbe $\mathcal C$ de f admet une asymptote Δ dont on donnera une équation cartésienne. Préciser la position de $\mathcal C$ par rapport à Δ .
- (3) (a) Justifier la dérivabilité de f sur \mathbb{R} . Calculer $f'(x), \forall x \in \mathbb{R}^*$, puis calculer f'(0).
 - (b) Etudier le sens de variation de f sur \mathbb{R}_+ .
 - (c) En déduire le tableau de variation de f.
- (4) Construire la courbe de f dans un repère cartésien du plan.

Exercice 4:4 pts = 1 + 1 + 2(Les questions (1), (2) et (3) sont indépendantes)

Existence, puis calcul de chacune des intégrales suivantes :

(1)
$$A = \int_{1}^{+\infty} \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}} dx$$

(2)
$$B = \int_{-2}^{1} \frac{d\mathbf{x}}{\sqrt[3]{x^3 - 3x + 2}}$$
. Remarquer que : $x^3 - 3x + 2 = (x - 1)^3 (...)$

(3)
$$C(a) = \int_0^{+\infty} \frac{(t^2 + a^2)dt}{(t+a)^2(1+t^2)}$$
.
On discutera suivant les valeurs du réel positif ou nul a .

for - y