

09/724857

FIGURE 1
SCHEMATIC OF A GENE

FIGURE 2

5	-4242	GCATGCACTG	CCACAAGTAG	TGAACTCATG	GTTTACCTC	CTCAAGTAGA
	-4192	AAACCTTTG	AGTGAATTG	AAGATTTATT	CTCCCAAGAA	GGACCCATTG
	-4142	GGCTTCCTCC	TCTTAGGGGG	ATAGAACATC	AAATTGACTT	TATACCGGGG
	-4092	GCAAGCCTAC	CAAATAGGCC	TCCTTATAGA	ACCAACCCCG	AGGAAACAAA
	-4042	GGAGATAGAA	TCACAAGTTC	AAGACTTGTT	GGAGAAGGGT	TGGGTTCAAA
	-3992	AGAGCCTAAG	CCCTTGTGCT	GTACCTGTCT	TGTTGGTGCC	AAAAAAAGAT
	-3942	GGAAAATGGC	GTATGTGTTG	TGATTGTTAGA	GCAATCAACA	ACATCACCAT
	-3892	CAAGTATAGG	CATCCAATCC	CAAGGCTTGA	CGATATGCTT	GATGAATTGC
10	-3842	ATGGGTCAAC	TCTATTCTCC	AAAATTGACC	TTAAAAGTGG	ATATCACCAA
	-3792	ATTCGAATCA	AGGAGGGTGA	TGAGTGGAAA	ACCGCTTTA	AGACCAAATT
	-3742	TGGATTATAT	GAGTGGTTGG	TGATGCCCTT	TGGTCTTA	AACGCTCCAA
	-3692	GTACATTCA	GAGGCTTATG	AATCACACCT	TGAGGGATTG	TATAGGTAAA
	-3642	TATGTAGTAG	TTTATTGTA	TGATATCTTA	GTATATAGTA	AAACCCTAGA
15	-3592	AGACCACATCA	AGTCACCTTA	GGGAAGTTCT	TCTAGTTCTT	AGGAAAATA
	-3542	GTCTTTTGC	CAATAGGGAT	AAAGTGTACCT	TTTGTGTTAGA	TAGCGTAGTC
	-3492	TTTTTAGGCT	TTATAGTAAA	CCAAAAGGGG	GTGCATGTAG	ATCCCAGAGAA
	-3442	AATCAAAGCC	ATCCGCGAGT	GGCCAACCTCC	ACAAAATGTA	AGTGATGTGA
	-3392	GAAGTTTCA	TGGGTTAGCT	AGCTTCTATA	GAAGGTTGT	TCCCAATT
20	-3342	TCTAGCCTAG	CTTCTCCCTT	GAATGAACCTT	GTAAAAAAAG	ATGTTGCATT
	-3292	TTGTTGGAAT	GAAAAGCATG	AGCAAGCCTT	TCAAAGGCTA	AAAGCTCACT
	-3242	CACCAATGCA	CCCATCCTAT	CTCTTCCAAA	TTTTTCCAAA	CTTTTGGAGA
	-3192	TAGAGTGTGA	TGCATCGGGA	GTAGGCATAG	TGCGGTTTG	TTGCAAGGTG
	-3142	GACACCCCTT	GCTTATTGTA	GTGAAAAACT	CCATGGTGCC	ACCCCTCACTA
25	-3092	CCCCACCTAT	GACAAAGACT	CTATGCTCTT	GTGCGACCC	AAAGACTTGG
	-3042	GGAACACTAC	CTTGTGCCCC	AAAGAATTG	GnTATCCATA	GTGATCACGA
	-2992	GTCTTTAAAA	TATTTAAAGG	GCCAACACAA	GCTCAATAAG	AGACATGCTA
	-2942	AATGGATGGA	ATTCTTGAA	CAATTTCTT	ATGTCATCAA	ATACAAGAAA
	-2892	GGGAGCACCA	ATATAGTGGC	CGATGCTCTT	TCTAGACGGC	ACACTCTCTT
30	-2842	TCACAAACTA	GGTGCCCCAA	TTCTTGGATT	TGACCACATA	AGAGAGCTTT
	-2792	ATCAAGAAGA	TCAAGAACTC	TCATCCATCT	ATGCCAATG	TCTACATAGA
	-2742	GCACAAGGAG	GTTACTATGT	GTCCGAGGGG	TATCTTTTAA	AAGAAGGAAA
	-2692	ACTTTGCATT	CCCCAAGGAA	CACATAGAAA	ACTCTTGTG	AAAGAATCAC
	-2642	ATGAAGGGGG	ACTCATGGC	CATTGGGAG	TTGATAAAAC	TCTAGACTTT
35	-2592	TAAAAGCAA	ATTTGTTGG	CCACACATGA	GGAAAGATGT	CCACGACATT
	-2542	GTCTAGAGTA	TCTCATGTTT	AAAAGCAG	TCTAGAACAA	TGCCGCTGG
	-2492	CTCTACACCC	CTTTCGGAT	TGCAAAGCTC	CTTGTGAAGA	CATTAGCATG
	-2442	GATTCATTT	TAGGACTTCC	TAGGACTGCA	AGAGGCCATG	ACTCTATCTT
	-2392	TGTGGTAGTG	GACCGTTTTA	GCAAAATGTC	TCACCTTATT	CCATGCCACA
40	-2342	AGTAGAGTA	TGCTCAAAAT	ATTCTAAAC	TCTCTTTAG	AGAAGTGGT
	-2292	AGACTCCATG	GTCTCCCTAG	AAAGTATAGT	TCCGATAGAG	ATCACCTTAA
	-2242	ATATATAATT	ATACACTTGT	TTTTTTCTC	TTTTTTATT	TATCAAGTAA
	-2192	AAAGTATTG	TTCTAGATTA	TTATGAGTAT	ATACTTACTT	TCTGTATTTC
	-2142	ATTTCTTTCT	ATTTTTATG	ACGATGAAAT	TTCTTATTAT	ATCCAGACTT
45	-2092	TTCATATATA	TTTTTATTTC	TTTCCATCT	AGATGCTCTG	TACTTTCTT
	-2042	CAGTTGAAAT	TTCCACTCTC	CAACAAACAA	TCATTCAAGT	TTTGATAAC
	-1992	ACTGTGACGT	TAACCAAGTTA	AAATAAGAAA	ATCATGTAAT	ATAAATTATT
	-1942	TCAGTAGATA	TTTTAGAATT	ACAAATACGA	AAATAATTA	AATTAAAAAA
	-1892	ATTATTAAC	AATGAATT	TTTGGAAATT	AATATAAAAC	TTAGACTTGT
50	-1842	GGTTTCTTC	TTCAGTCAAA	ACCTTTCT	ATTGTGTTGGC	GTGTGCGTGA
	-1792	ACATCGAATT	TGGGTGCTTT	ATGCCGCTT	ATCTTCATCT	GCACCTTCAA
	-1742	ATTAATAATT	TAATTCCGGA	AAATAATAAA	CCCACACACT	GTTTTATGCA
	-1692	TATATTAAGA	AAATAAAAG	AGAACTATT	AAAGAATAT	AAAATAATAA
	-1642	ATGTAACAA	TGATGTCACT	AAAGAAGAAA	AAAATTAACA	AGAATTGTAA
55	-1592	TATATTTCTT	TATGAAATGT	TTTGTGCATT	ACCGAGAGAG	GTGCAACATG
	-1542	ATACACGCAA	GCATCTAACT	AGTTTGGTAA	TCCTTTCA	ACATCGnTAA
	-1492	GCACATCACA	CTAAAATTAC	TTTAAATAGA	AAATTAGAT	TCAATTGGAT
	-1442	GACATTAATT	TATAACTC	TATCCAAAT	TATAACTATA	AATAAAAAGT
	-1392	TATTTTTAGA	AAATAAGTAA	TGAAAATTAA	ATTCTAAAT	TTATAACACT
60	-1342	TTTATGCTGT	GTGTTGTTCG	AAGCATAGAA	AAATAAAAAG	TTATTGTTGG

-1292 GAATGAAAAG TGAAGAAAAT CATGTAATAA AAACAAAATG ACACGACAAT
 -1242 CAAAAAAAAGA GTTTTCATGC AAAACTTTT TCAAAATTAA CACTTTATG
 -1192 ATGTGTTTGT TTCAAGTGT AGAAAACGA AAAGTTATTA TTGTAATGA
 -1142 AAAGCGAAGA AAATCACGTA ATAAAAACAA AGCAAGATGG CACGACAATC
 5 -1092 AAAAAAAAGT TTCTACACAA AACTTTATTC AAAATTACA ACACTTTAT
 -1042 GTTGTGTTT GTTCCGAGG TATAGAAAAA CAAAGAATTA GTGTTGGTAA
 -992 TGAAAAGTGA AGAAAACCAT GTAATGAAAA CAAATGGCA CGACAATCAA
 -942 AAAAAAGTTT CACGCAAAAT TTTCTCAAA ATTTATAACA TTTTCATGTT
 -892 GTGTTGTTT CAAAGCCTAG AAAAACGAAG AGTTACTATT GGTAATGAAA
 10 -842 AGCGAAGAAA ACCACATAAT AAAAACAAA TGGCACGACA ATCAAGAAAA
 -792 AGTTTCACA CAAAACTTT TTCAAAATT ACTATGTTA TTTCGAAATT
 -742 TAGAAAAACG AAGAGTTATT ATTAGTAATG AAAAGCGAAG AAAACTACGT
 -692 AATAAAAAC AAAATGGCAC GACAATAAA AAAGTTTCA CGCAAAATT
 15 -642 TCTTGGTGCG CAGAAAAGTTA TATATATTAA TTAATTAAATT TTCACTTACT
 -592 TTTTCCCTT TTTATTAAAGTTAATTA TTATTATTTT CATTAAAAT
 -542 ATAAATATTA TTTAAATATA AAAATATAA CCTTAATCAA ACAAAAGCCT
 -492 TAATCTAAA TTTACAACAC TTTAACCTT AAAATTAAC TTAAAAGGAA
 -442 AATGATAGTG TGACAACAA AAAAGTTGTA TACAACCCCTG TCATAGGTT
 -392 AGAAAATAAT ATATATAATA AAGAGTAAAT TTGTAATTAA ATGATATAAA
 20 -342 AAAGTATTAA AATAATAATA TTTAGAGTAG TAATATGGTT GTATAAAAAA
 -292 ATGTGGTTGT CCATATATCA TTATTCACTT TAAATATCA TGACAAATAT
 -242 TTTCACCGAA AGATGGAAAG AACGAAAAGA GCGTTGGATA ATGAAAAAT
 -192 ACAAGCAATC TCCCTCCAGT ACTTGCATA ACATTTGTA TTAGTGTGAA
 -142 GTTTTTATC ATATATATTT AGAATATAGG AAAATTTAG AATCACGTGG
 25 -92 ATAGCTATAT AATAGTAATA TTTAAATTAA TAATGTTAGTT GATTTATTT
 -42 GTCAACTGGT ATACATAAT ATGTGTTGAT AGTGGGTGAC TTGTGGCTTA
 9 AAGAAATGTC CAGAGGCTGA CAACAACCT GCACAGACTA GCGTAAAC
 57 **ATG** AAG TCC AAT TTT GCT ATT TTC GTA GTC TTT TCT CTT CTT CTT
 1 M K S N F A I F V V F S L L L
 30 102 CTG GTACCTCTTCATCTCTACAAAAACTCTGTTGCTCTTCACCTCTGTTGTA
 16 L
 160 ATTTGTTTACACTTTGAAAATTGAAGCTGATATATATGTAACAAACCTTCAGTTT
 219 GTCTGCACTGAAACTGATAGAAAATACGTTTGTTGATATATAG GTT GGC
 17 V G
 35 274 AGT TGC AGC TGC GCA AGA AAA GAC ATG AGA GGG TAT TGG AAG GAT
 19 S C S C A R K D M R G Y W K D
 319 ATG ATG AAG GAG CAA CCT ATG CCA GAA GCA ATC AAA GAC CTT ATT
 34 M M K E Q P M P E A I K D L I
 GAG GAT TCA GAA GAA GTG TCA GAA GCA GGG AAG GGT CGT TTT GTT
 40 49 E D S E E V S E A G K G R F V
 AGG GAC TTC GAT GTA AAG CCT AAT GTC ATA TTA TAT CAC ACA CAT
 64 R D F D V K P N V I L Y H T H
 GTT GTG CCC ATG AAG CAG AGG CAG AAG AAT AAA GAT TGA
 79 V V P M K Q R Q K N K D •
 45
 493 AGACTATGTGATTGGCAGTTTCAGACTTATTTGGCACCAAATTATGATGCTTGTGCTG
 555 TTTCAAAATTGTACTCAAACCTTGACCCCTTGACAGCATCTGCTCTTTGGTCTTGCT
 617 GAATTTGTCACAGTTACTGTACGAATAGTTCTCTTCATAATAAGCAACTTTCCCTCT
 679 C

FIGURE 3

101001 CAAAACAAAAGCAAATGCCGGTTTCTTATTATTATTCGAACTTAGAC
5 100151 CTTTTGTAACGTTCTTAATTTTTCTTGTAAAGAACCCATTAT
100201 ATCTTAGCTAAATATTACCTCATTTGTTATGAGCTAACCCACCCAA
100251 AAATATTGAGTTGCTTCGGATTTAAGCCAAGCAAGTATTAGAT
100301 ATATTAAGGAAAATGAATGAAAGGACAAAAAAATAAACGACAATATT
100351 TGAATACTGATATTATCTCCATTCTCAAATATTTTGATTATTGTGAC
10 100401 AATATTTGGTGTTCACATCTTGAGGACATGAAATGATA
100451 ACATATATATGAACGAGTATAATACATTCTCGTTCAAAATAAT
100501 GTCAATTATGCTAACATTATTAAGATTATCCTTATAAGATTTC
100551 AGTGTTATTACCATGGTACTGTAAGTCGGATGCTATATATATA
100601 TATATATATATATCAAATGACACTGAAGAATTGAACTAAAA
15 100651 CTAAAAACGAAAATAAGAATTTCACAAATCAAAATTATATA
100701 AAAATATAGATAAAATGTTAATATAGTACAACCTCTATTCAAACAGAG
100751 AATAAAATCTCTATAGACAGTGAATATCCATTATAACCGAGCAATAGT
100801 TGTAATGTTGCACTGACAAAAGAGAATTGTAATATTGTGATGATTGAG
100851 AAATCTAAGTGACTTGAATTAAAAGGCTAACAGTACATGTA
20 100901 GAAGTTGACTATAGCTATATATTACTACAAATTGATCATTCAGAAAG
100951 ACATTTAAATTAAAGATATGCATGCATGACTTGATTGAACCCACTCGCTT
101001 GCTTCGTGCCATTGACAAGATGTTACTTTAAATGCAAGTAAATTATG
101051 GATATACCTCTGTATTTTGAGTAAATTTACGAAAATTGTTT
101101 TTTTCAAAATCAAATGATATTAAATTAAATTCAATATAGAATTAA
25 101151 AATTAAATTAATTGAAAGATTATGCTGCAGATTAGATTACCATTG
101201 GTGAAATCATGTTAGGTTAAATAAAATGATGTTAGTTAGGAAAAAA
101251 AAAAATTCTTAAATCTTATGTAAGAAATGTTAAACTCAATTATAAAA
101301 TATGAAGCAGTATTATAAGATGTTAACTAATGAAATAATTGTTT
101351 GGATGAAATTCTTGCAATGTTCTAAAAAATAATATGAAAAAATT
30 101401 AACATTCAATTGATGTTATAAGAAAATATGAGTTGTTAGATAA
101451 ATAATACCTAAATTAAAGAATTGTAAGATTACTGCACTTCAAATATG
101501 TTATTTTCTTTATTAAATCAGCAACATTCTAAATGATTAT
101551 TTTCTTAAAAATTGAAAAAATTGAAATTAGCAAATATGTTAAATTAAA
101601 ACGAATTAAAGAAAAACTTGTAAAGATATGATATGCTTATAAAA
101651 ACTTGGTGGCGTACCTACTAAATATGATCACATTAGAGATTGTATCCTT
101701 TAGCATATAGTATGAGTATGATATCTATATTATTATTAAAGAGC
101751 ATATTCAATAATATAGTATTATGTTAATTACAATAACGTTCAATTG
101801 TTATGTTAGTTTAGAAAATTGCTGTCATATCAATGTGAGAAA
101851 GCGACTCCACATGTGAGATGTTGCTGAGAAAGCTTCTGCACTGGTC
40 101901 GGAACTACTTCATGGACTAGAATGCAATCCATCTATTCAAAGAAAAGCAG
101951 TTGTCCATGCATGCCTCGTTTCACATTGGAAGCAGCGCAACAATGT
102001 CTTACATAATATGCATCGATCACTCTGCAACCAATTCAAGTACATAG
102051 ACCATGACATCAAAACATTATCACACCGAGAAGAAAGAACGTCAATT
102101 GGTAACCTAATGGCGTTATGCCTGCGGTGAATTCTCTAAAGAGTTCTCC
45 102151 AAATTTTATTGATTCTCTGTTTAACCTTTCGCCAAAGAATCATACT
102201 ATAGATTTGACACCATTCAACTTATCAAATACAAGTGAATAAAATAATT
102251 CAAGCTTGAAGGAATTAAATCATGATCTAAACCTAAACGACAATTCTT
102301 CACAAGTGAGAATCACTAATTGACTACCCCTGGTCGATATACATCATT
102351 GTTGTAAATCTGAAAATTGGTTGGATTGATCTGATATGTCATTCAATT
50 102401 AAAACTTGTATTATTTTTAGAATTTCAGCGCAAACAGATAAATCATC
102451 ATCTATTAGAAAATTTCATTGCAACCAATTAAATCAGGGAAAAGGT
102501 GAAATCACATCTTACACTCTTTATTAAATTAAACGCCATAATATA
102551 ACAAAATTCAAAATACCACTTATGAGAAGCACTAAGATCACCTTTCTT
102601 TATGACTTTCTTCTAAAGCTAAGCTGGTAGTCATGACTCATGATTATCC
55 102651 TTTCTTAATGGAAATTGTGGAAGCGGTTCAATCTTAGACAAAAT
102701 TCCATGGCCACTAAAGTTAGCAAAGTTAAAGTTAAAAAATG
102751 AGTGACTTGGCCATATGCCATTGAGATCATAACAAGAGAAATAA
102801 TAGTTTATTGAAGTTAGATCATAATCACAAATACATCATTGCTTCA
102851 ACATTTCCATGGATTGAGAGGATCAACTTCAACTAATGGGGGTC

102901 TTATTCATCCATTGCTCTAGCCAATTAAGCAGTTAGGTATTTGTGA
 102951 CTCTAGTAGTTGCCAAATCAATCTTAATATTCAACATGTTGAATTCTA
 103001 ATTACGTATAGATAAAATGACTAGATAACACGGCTTGGTTTATCAGG
 103051 AAAGTTTCCAATCATATATGAATGTAGAATAGTGTCTTCATTAAT
 5 103101 TATTAATTAGCATCTCACCATCTGAGACTGGGAGCATGTGACAAGTTGAC
 103151 ATGTGTATTAAGAGAACCTTGAGAAAAACACTTTATGATACTCCCACATCT
 103201 GAGACTGGGATGAGTACCATTTATAAAAATATGAGTAGTGAAAAAAATAT
 103251 TCAAAAAAAATTCTAACATGTCTTAAACATTAAACCTTATAATT
 103301 AACAAACATCTCCAATATGCGTTATGAAAACCTTTATAAAACTTTTAT
 10 103351 AACATGCTTTGAAAATTTTATAAAATCTGTTAGAAACAAAGTGAT
 103401 ACTTTGAAAATAGACAAATGAAGTGCTATTTTAAATTGATATCATA
 103451 AGTCTTAACTGTGGTTGTTGAATTTTATTTATATACTTGTCAAATAA
 103501 AACTAAATAAAATTAAATTATTTATAATCATGAAGATAATATTATC
 103551 ATAAAAGATAAAATATAAAATCAACAAATTATTTATTTGTTAATAAAATAC
 15 103601 TTTGAGCTCTTCTCATAAAGACTTTCCAGCTTCATCTAGAAAATCACA
 103651 TAAATTAAAAGATAAAATAACCGAATAAACATAGTTCACATTCTAACTCTT
 103701 AGTCTTAGATTGTTTAATTTCAAAGGTTAGGTATTGTATATGTTT
 103751 TTTTATTGGGTTGCTAGATTTGATCCAAGAAGAAATGACGGGTTGTTAGT
 103801 ATAGATGGTTGTTGAGTTTTCCCCTGGTTACTCGTTGGTT
 20 103851 TGTCCCCAGAATTGTTCTTGACTCGCTGGTTATGTCCTACAAAGTCC
 103901 ACGACCATTGCCGGCTCTTGTATTCACTTGAATTCTAAATTCGATTG
 103951 ATGAAAAAAAATGTATCTCTAAAGTCATAGTACCAAAATAACTAT
 104001 ATCATTACTACATAAAATAGTCTGGTTTCAAAAGTATTCGTTGATA
 104051 TATGTTAAGAGTTCGAAATAGACACATAGATAATGTTGAAATGGGACC
 25 104101 TCTCACATAATTATCTCCTTCTCTCATTTCTCACCTCTCAAGTTTC
 104151 CAATCCCACCTAACCGTAAGGTAATTATTCTTAACCTAACGTAATTGTTAAC
 104201 AAATCTTAACTAGCTACAAATGTGTTACAGTCTAAATAAAACCTA
 104251 CTTTAATTCAAAGGTATAAACCTCTAAATTGATACTTACTTAGTATC
 104301 GATCGGTCTAGTTAGGGTTGGACACACACCATCATGGGACGAAATT
 30 104351 AGTCATTCTACGGTGTCCAAGACACAAATCTGGACTCGATGTGGATATG
 104401 ACACCTCATTATAACTTTAACCTACAAAAACTAACTATTAGGAGGAAG
 104451 AATCGGAATCTGCATATCAATCACAAATAGACTATAGTAACTTAGATT
 104501 GATCTAAATCAATGGGCTCTCAACTAATAAGTAGGCCACTACCAATAAT
 104551 GAAATCATAAGACATTATTAAATTCAATGTTCTAAAATACTTTGGT
 35 104601 TATGTGTCGGTAGAGCTAATGTGACACACAATGAAAGTTGACCCGTT
 104651 CACTTGTCCACTTTATGATCTTTCTTTAGGTTAAATCCAACTTTA
 104701 TAATCTCATTTGTTATCAAACAAACTTTGGCCTGTCTTTCTATAAT
 104751 TTAAAGTAACTCTCACGGAGAAAAGCCAACATTCTTCTTGTGTTTATC
 104801 TTTTAAAGAAAATGAATTCAAGGGGACCCCAAATTAAAGGAAAACCA
 40 104851 AAACCTCTTCTATGTATTACTTGAAGTTCTATGTAATCAACAA
 104901 TCCTAACAGTAGAGAATAAAAACATCGTTGGGAGGTTTATTTAGC
 104951 ATATGAGAAATAGTTCTAAAATTGTTTACACAAAATTAGATTCTTT
 105001 CCTCTGTCAATGGAGCTATATCACTTGTCAATTGCTTAACCCCTTGC
 105051 GAAGATTGTTATGAAACAGTTAATGGAATTCTAGTTGCAATGTCA
 45 105101 TTAAATATGTTGTCCTATACCTTATTGAACTTATAATCTTGTAT
 105151 AGAATTATCTACTTTAGTATTTCATTAACATAATCTATAGAATTCTT
 105201 CTTTGTCTATACAAATTAAACAGTAATATATTCTTAATACATATTAAAA
 105251 ATGGTGGTGTGCTATCTGAGCTGAATAGTTGATTGCTCCAGAGAAGAA
 105301 TAGACAAAAATCCTTACTTAAGAGGCCACCACTCTGAAAATTAGACAA
 50 105351 GAAAATTAAACAAAATTAGGTTACACATATTATCATTATATATGCA
 105401 CAACACAAAGTTGACCTGCAATGTACTATTGAATAAAATAAAATGC
 105451 AAGAAGAGAGGGAAATTACTGTTACCAAGAAAACAATCCTCTAAAC
 105501 AGGTCTCTATATATATAACCTTAAACACCTAAAGAATTACACAGATCAA
 105551 GAAAATTAAACAAAAGTTAAAGCAGAC **ATG** AAG CAA CAG CAA
 55 1 M K Q Q Q
 105599 CGT TAC TTG GTC GTC TTC ATC GTC CTT TTA AGC TTT CTT
 6 R Y L V V F I V L L S F L
 105638 CTG GTAAAGCTTCTCTTAATTATTAACCCCTAATTAAAGATCTCATATA
 19 L
 60 105691 TCTGAATGTTGTATATATTGTTGGTATAG TTT GTG AAT CTG AGT
 20 F V N L S

20

卷之三

FIGURE 4

1 AAGCTTACAAATGCCCCAAAGATGAAACCACGTTATTATTAGTAAATCCTGAAAAGG
 61 TTAACGCTTCTGTTCTCGAATTCTAAACCATCTGAAATATCTAGTGGTTAAAATGGAG
 5 121 ACTTGAGGATATAGTCTCTGAACCAGCTGTCAAGGCTGAGTTAGATAACATTACTGAAT
 181 TTCTACGGGAGCGGTTGAAATCACTTCGCCCTTTAAGAAGAAGCCTACACCGGGCACC
 241 TTCTTACGCAATTGAAATTAGTCTGCCAGGCTGAGTGTGGATCGAAGGTCTTTTC
 301 GATACCGAGGAATCTGACTTGCAGGAATAATTCTAATCACACCACCCAAACCCCTGA
 361 ATACACTTCAGGACCTCTGAAACCAACTCGTTCGGCTAAATCACAAGAATCTCCCAC
 10 421 TCATTCCGATTTAGCAATTAAATATGATATCGGTCTGGAGGCGATAAGGAAATTCT
 481 ACAAAAAGAGTTATGAATGAGGAAAATAAGGAAAAGAGAGAACTATTTTTAGGTACCC
 541 TGAAAGAGAACGGAGAAAATTAGAAAAAAACTACTCTCATCTGTACACTGTTCAAA
 601 GAATATCCnnnnnAATGGTTAGATAATATAAGAAAAGGATAAGTATGATTAAACTGAAAC
 661 CACGTCGGCAGAACAAAGTGAATTCCCCCTTAGAGGAAGTTCGTTCTTAAATATAG
 15 721 AAAACAAAGAAGTAGTCGCCTCCCTTTAAATGATCTCAGAAAAGAGAAGTAAGTA
 781 TAAAAGATATTCAAAATCTACACAGTCAACTAAATTTACTAATCAAATGCTTTCAAT
 841 TAGCAAATAAAAACAAAAGAAAAAGmGAAAATTGAAGAAAATCGTTAATAAAACCAT
 901 TTAAATTCTCAGAAGAAGAGATAAAACAGTTAAAATTGGTCAAACCTTGATTCTTAT
 961 ACGATGAAGTAAAACAAAAGTTATCTATCTCGGTAAATAAAAGAAAACGAAATCTAATA
 20 1021 ATGATATGCCAAAAGGACAAATCCAATCAAGAAGTTAGACGAAATCGAAAAGAGAT
 1081 TAAAACAAACTCTGAACGACACAATAATGTGATAGAAGAAACTAAAACAGACTCAT
 1141 GTTCAGAGTCTCCGATCGTATTGAAAAAAATAAACGTAATAATCAGAGATTCCAGTA
 1201 AGCGAAATTTCACACTCGCCCCACCTTCGATATCATCGAGATGGCGATGGACACCTCA
 1261 GCATTGATGGAATGGACTTGAGTGATATGATGGATGACAGATGATGAATATAGAAAAC
 1321 TCACGAAATAACAATGGCGCTACAGCATATAGAGTAAAACATACCGAGGAACAAACAT
 1381 AAAATTAAATTATCTGGATTACGGGACTTAAAGGCTGGGATAATTACCTCAT
 1441 GCCAGAACAAAAGAATTATGTTCTAAGCTGTGTTAAAGAGATACGAAAGGAAATACC
 1501 ACTAATGGTGGAAACATTGGTAGCAATAATTCTAACTTTATAGGAGATCCAAGAT
 1561 TTTTGAAAGAAAGAACATCTTATTACTTCATAATCTAAGATGTCACCTTAGGTGACTT
 30 1621 TAGATGGTATTTCAGAAAATTTTTAGCTATGGTTTAAACAGGGAAGATTGTAGAGAAC
 1681 TTTCTGGAAAGAACGGTTATAGCTGGATTACCGGATATCTTGTGAAAAGGTAAAAGA
 1741 AAATTTCACAAAAGGAATGCCAAACACCAATTAAAGATGTAACCTACGGGAAATAAG
 1801 TTCAGTTGAAAGAACATCTTATTACTTCATAATCTAAGATGTCACCTTAGGTGACTT
 1861 AAAAGAGTGAAGGTCAGGGCATCAAGGAATTAGGGGAATTGGTACTCAATACGGTTA
 1921 TGAACGAAATACCCCTCCATAAAAAATAAAAGAAAATACGAAAAGAACAGGGAG
 1981 AAACAAGCGCTAAACAAGCGCTAACACAGCACGTAACCTACGGGAACTTGTGAA
 2041 TTAGAAAACCATGAAAGTCTAATGATAAGCCACTATAGCTGTATAATGTGGACGCA
 2101 TAGGACACATGAAGCGAGACTGTAGACTAAAAGAAAATTAGTAATTGACCATAAGTG
 2161 ATGAATTAAAAGAACAAATGGAAAATTCTGATAATTCTCCAGAAGAGGAAGAAC
 40 2221 GAAGAATCAATAGGAGATTCTGATTAGAAGTATTGGACATGAGGATAACAATTGTAATT
 2281 GTGCTATAAAAATAATACGATAAGTAGTGAATTAAAATTGCGTTAGATTGATTGATA
 2341 AAATTAAATAATCCGGAGAAAAGACCAAGCCTTATAGACATGAAAAGGCTACTCGTTG
 2401 AAAAGATGAACCCAGTTCATCTCACAAAACCTGAATTATAGGATATGATTAAAG
 2461 AAATATTGAGAAAAGCGAAAACATCACATAAGAAATAACCTAGCGATCTTAAATAGTG
 45 2521 AAATAAATAAATTAAAAGCCGAAATCGAATCTATAAAAGCTGAGCTACAAGAATTAAAAG
 2581 ATAAAATTATACATGAGGAATCCATCTCTGCCAGCAGAAAATTCAACAAGAAGAGGAAG
 2641 CTAGTAGACCTTCATCAAAGAAATAACATACAAAAGACAAAAGTGGCATGTTAAAG
 2701 CCCTAGAATTGTTGTTGACCGTTCTGACGTTCAAGAGATGAGTCCTTACCTAA
 2761 CACAATAAAAACGTTACTCTTAAATATCAAAGGAGAGCTACAAATATCAATGAATGAAT
 50 2821 GACATTAATATTTCTTAAAGTGAATGAGTTGTTCTATAATATCTGAC
 2881 TGACTGACATTTCATTTCTGAAATGAGGAGTTTATTACGTTAACACCATATAT
 2941 ATATTTTATCTCAAAGTCACGAAATTATAAAAAGAATCAATTAAAAAAATTATTCT
 3001 TTGAGAAAAAAATTAAAATGAAACTCCTCCACACCATATTACCATATTATAAA
 3061 TATAAAAACCTCTCACAAATGTCATTCTGAAATTCTTATGTTGAGAGGATTAATCTC
 55 3121 TAAAGAAAAAGGTTGAGAAAGGTGCAACAA **ATG TCT CCA TTC TGT AGA**
 1 M S P F C R
 3172 AAC TTT TCA ATG GCA TGG GTG CTT ATG GCA TTT GTG TTG TTT
 7 N F S M A W V L M A F V L F
 3214 GCA AAC AGT GCT ATG CCC ACA AAT GGA TCC ACT GTT GGG GTA

	21	A	N	S	A	M	P	T	N	G	S	T	V	G	V	
	3256	AAA	AAC	ATG	TTG	GGT	GGT	AAA	TTG	ATG	CTA	AAC	GTT	TTA	TGT	
	35	K	N	M	L	G	G	K	L	M	L	N	V	L	C	
5	3298	CCC	CAT	ATT	GAT	AAG	CAA	CAC	ATT	ATC	CCG	AAT	GGT	GGT	TCA	
	49	P	H	I	D	K	Q	H	I	I	P	N	G	G	S	
	3340	TTT	GAG	TGG	AAG	TAC	AAT	GGT	GGT	GCT	CCA	CCA	ATA	GGA	CAA	
	63	F	E	W	K	Y	N	G	G	A	P	P	I	G	Q	
10	3382	TCA	CCA	TTC	ATG	TGT	TTC	TTT	CGG	TGG	AAT	AAT	GTT	CAT	CAC	
	77	S	P	F	M	C	F	F	R	W	N	N	V	H	H	
	3424	TCC	CTT	GAT	CTG	TGT	TCA	CCA	AGC	AAG	TAT	ACT	GGT	TGT	GAA	
	91	S	L	D	L	C	S	P	S	K	Y	T	G	C	E	
	3466	AAT	GCC	ATT	TGG	GAA	ATC	AAA	GAA	AAG	CAA	TTT	TGT	AGG	TAC	
	105	N	A	I	W	E	I	K	E	K	Q	F	C	R	Y	
15	3508	AGA	GGT	GGA	CCT	ATT	AAT	TAT	TTT	TGC	TAT	GAC	TGG	GAT	GAT	
	119	R	G	G	P	I	N	Y	F	C	Y	D	W	D	D	
	3550	TAG	TTATATAGATTATT	CATGTT	CATCTCA	ATAAAAAA	ATGACT	TTAGAGT	GATT	CTT						
	3609	AGTTG	CTTAAC	ATTCTT	ACATATT	CCCTA	ACTATT	CCGTCA	CTAC	ACCCCGT	TA	CTAT	ATAT			
	3669	TTATTT	AAAATTAGT	ATCTGT	CACAGT	TTTATT	TTTAA	TTTAAAGGT	TTATG	TTGATT	AGAAG					
	3729	AGAGATA	AAATATGT	AGACGGT	CACCA	ACCTTAA	TTTGAA	ACTATG	TAAGA	ACTATATTG	TA					
20	3789	CCAAGA	ATATATGTT	AAACTC	CATTCA	TTAAAGA	ACTATAT	CTCCATT	TATG	ATTATG	CA					
	3849	AATG	CAATTAG	TTTTTT	TTTCATTG	AAAGAATT	CAAAAGAA	AGTTAT	CATTAA	AAAAGT	AT					
	3909	CATTA	AAATCACTT	ATATGTT	TTCTTA	ATATCCTT	ATTGTTA	ATAGA	ATAA	TTTTTT						
	3969	ATC	CTTAA	TTAATTAGG	TTTACT	ACTTTTT	CATATCTT	CATTATTT	GAA	ATATT	TT					
	4029	TAAA	TTTATCA	ATTGTA	ACACCCC	CAGAAA	AAATAC	ATGTA	ACTATC	ACTTTTTT	TA					
25	4089	TATT	ACAATTTT	ATGACTT	ATAGAA	ATACAA	ATATTAA	AAATATA	AGGTT	CAAAACT	ACA					
	4149	TCCT	AAAGT	CTTTCAGAC	CCCTCTG	ACACATGT	TATCAT	CTGCTCGT	TATATGT	GATA	CAAGTC					
	4209	ATCG	CAGTT	CACAAGA	ATAACAAG	AAAACCA	AGGGTA	AGCTA	ATG	AAAAAA	AAATTCC	ATAA				
	4269	CAT	ATT	TAATT	CATG	CAAAAAGA	ACCAGT	CAAAGT	AAATC	ATTATAA	ACATT	TTCTTAA				
	4329	TATTG	TTATATAA	AAATT	CAATATCA	TTTCAT	CATT	CATATAG	ACCACAC	ATGGAT	CTA					
	4389	TTTC	CAAT	CACAA	ATCATTG	GGATTTC	ATTTA	ATCCT	ACTTCG	TCTCC	AGAAG	ACTC	T			
	4449	AAGT	ATG	CCCCCT	TACCA	AGAGACT	AAAC	CTTA	AAAGAGA	AAATG	ATCA	AGGTA	AGTT	CAA		
	4509	ACAT	CCAATA	ACGAGT	GCCTAC	AGTGG	ACCA	ATGT	GTATG	AACT	CC	TTATC	AGCT	TT		
	4569	CACCAC	CTG	ATATCTT	ATTCT	ATATG	ACG	TAGATC	AGT	GAA	ACT	AGAGG	AT	CTCCG	T	
	4629	TAA	ACAT	ATG	TTTT	TACT	TTA	ATGT	CAT	CAA	ACAA	ACT	CAC	ATT	CCAA	ATG
	4689	TATG	ACAT	CAATT	CAT	ACA	TTT	CAT	ATT	TAT	ATA	ACAT	ATC	ATT	GAAT	CACA
	4749	TAAC	ATT	AAAATT	CATAC	CA	CCATT	CAAGA	ACT	TTT	CCAAC	ATC	AAAGC	AA	ATTT	ACTT
	4809	TC	AAACT	ATC	AAA	ATATA	TTT	ATT	TTA	ATAA	AGCT					

FIGURE 5

142000	TTATCTTATTTCCATATAATTGTTGTTTACTTTCAAAATTAAATTTT
141950	TTATATTATCTTTTACAGTTAAAATTAATAAAATGAAACTTTTC
141900	TTAAATGTGTTAAAATATAAAATCAAAAAGTTGTTATGGTACATGGC
5 141850	ACAATCTTATAAATTATTAATTGAAAACGATACTTTATATAATAAAATT
141800	ATCTTAGTTGACATTTTATTAGTGTGTTCAATCATATTGTTGCTT
141750	GATAAGCGTAAAACAAATCAAACCTAACGATACTTTATATAATAAAATT
141700	TCTTAGTTGACATTTTATTAGTGTGTTCAATCATATTGTTGCTT
141650	ATAAGCGTAAAACAAATCAAGTAAAGTTGGGACACTCAATTGTTAAAAA
10 141600	AAGTTGGGTACCTCAAAATTAATAAGGCTTGTCAAGTATTCTTACAAAAA
141550	AAATCTGGAAGAATTATGAAAGAAGGGGGGAGGGGGGAGGGGGGGG
141500	AAAGTGAAGATGAATATTCAACAAAAGAGGGTAGGCATGATGTTAAGTGAG
141450	TTAAAAAAACTATGTTAATGGAGACAATTCTGTTAACAAACCCGTTAAT
141400	TGAAAACGATAGCATTCTCTAACATGTAACAGATATTGTTTATC
15 141350	ATAACTACTCATTAAATTCTGAGTTCAATCATATAAAAGATTAGGGG
141300	GGTGTATTCAATTAAGGATTGAAATGATTGTTAAATGACAAATCC
141250	CATGTTATTCAACATGAATTGTAACACTTTTAAATCAAGTGTAA
141200	TTAGATTAGTGTGTTAAAATGTACAACCAAACCCACTGTTATTGAAAC
141150	ATTTTAAGTAGTGGATTAAAATGACTTGAGTGATTGGGTGGGATTGC
20 141100	AGAAAATTCTTAGTTAAGAATTCAAACATCCAAATCTCATGGTTCAAG
141050	TAGAATTGGGAGAATTAAATAACAAATCTCTAATTACAAAGTC
141000	CCAAATCATTAAAAACTCATTTAAATGATTCAATCTCCAG
140950	TTGAATACATCCCTGGAATTAGAGATTGCTGATTGGGACCTAAG
140900	ATTGAATTGGGATTAGTTAATCGTTACAACAAATGACATCGTAT
25 140850	TATTGTTATAGGAAACAATGTCGTTTCAGTTGACATGTATGTTAATAGA
140800	AAATTAACCTATTAAACGGGATTGCTAACCCATTAAACATGTAACAA
140750	ATGGTCAAGTCATAAAAGTTGGTATTGAAAGTCACGTAAGT
140700	TTGATATTGAAAGTCACATAAATTGATATCTTATTGTTTC
140650	GACAGACATAAGGATTACATCAATGTTTAAATAAAATTAAAGATTATTA
30 140600	TGACATTTCACATTAAATGCAATGTTTCGAAACCAAGATACTC
140550	AAAATTGACATACCTAATTCAATCTACATTGTTGACAGCAATTACGT
140500	GCCTTGACCATGGCACATACTGGCAATACATCAATTAAAGGAAAGG
140450	TAGATTGCGATACAATATAATGAAATAAGTGGAAAGGATCATTGACTAC
140400	TTGACTTGTAAACAAACACACAGTATAACTCATCGACATTACAA
35 140350	ACAACATTGTGCTAGCTTAAACTCCCTCTCCTATTCAAAAAA ATG
1	M
140305	GAT ATT CCA AAG CAA TAT CTA TCA CTA TTC ATA TTG
2	D I P K Q Y L S L F I L
140269	ATT ATC TTC ATA ACT ACA AAA TTA TCA CAA GCC GAC
40 14	I I F I T T K L S Q A D
140233	CAT AAA AAC GAC ATT CCA GTT CCC AAC GAT CCA TCA
26	H K N D I P V P N D P S
140197	TCA ACA AAT TCT GTG TTT CCT ACC TCG AAA AGA ACC
38	S T N S V F P T S K R T
45 140161	GTG GAA ATC AAT AAT GAT CTC GGT AAT CAG CTA ACG
50	V E I N N D L G N Q L T
140125	TTA CTG TAT CAT TGT AAA TCA AAA GAC GAT GAT TTA
62	L L Y H C K S K D D D L
140089	GGT AAC CGG ACT CTG CAA CCA GGT GAG TCG TGG TCT
50 74	G N R T L Q P G E S W S
140053	TTT AGT TTC GGG CGT CAA TTC TTT GGA AGG ACG TTG
86	F S F G R Q F F G R T L
140017	TAT TTT TGT AGT TTT AGT TGG CCA AAT GAA TCG CAT
98	Y F C S F S W P N E S H
55 139981	TCG TTC GAT ATA TAT AAA GAC CAT CGA GAT AGC GGC
110	S F D I Y K D H R D S G
139945	GGT GAT AAC AAG TGC GAG AGC GAC AGG TGT GTG TGG
122	G D N K C E S D R C V W
139909	AAG ATA AGA AGA AAC GGA CCT TGT AGG TTT AAC GAT
60 134	K I R R N G P C R F N D

139873	GAA	ACG	AAG	CAG	TTT	GAT	CTT	TGT	TAT	CCT	TGG	AAT
146	E	T	K	Q	F	D	L	C	Y	P	W	N
139837	AAA	TCT	TTG	TAT	TGA	CAACAATATGCTGATGTTCTGTCTTTAC						
158	K	S	L	Y	•							
5	139793	GA	CT	ATGGAG	TTTCATTGTTG	AAACAATAA	ATATAAA	ACATATAAA	ATT			
139743	TCTATT	ATTCCA	AGT	CCAACTT	TATAA	TTGATA	ATCAT	ATCAT	ATT			
139693	ATCAT	CTTAAGC	CATTCA	ATGCT	ACAAAG	GATAA	ATAC	CCCCCA	AGCT	ATT	TTA	
139643	CATT	AAAAGCTG	AAACAG	AGACACA	ATACTA	ACGATA	AAAAG	TTCGTAG	TA			
139593	TCTT	TATGCA	ACCATA	CATA	CATATA	ACACAA	AGATA	AGACAGG	TAGT	GTC		
10	139543	TAATA	ATTCTACTT	GGGTGAGGT	TATGA	ACAGCAG	CAACAG	TAGATA	ACCAT			
139493	TGT	TATCC	CATACCAC	ACACATATT	TATGAGG	CCCTCTG	CAGAT	TTTG	TAGTA	AC		
139443	CATG	GCT	CTCCCC	ACATG	C	CCCCACGAG	TTCTG	GATA	ATCCAA			

FIGURE 6

Figure 7

G564 promoter: Gain of function constructs

⊕ = Gus Activity in Suspensor

⊖ = No Gus Activity in Suspensor

▨ = Region Required for Gus Activity in the Suspensor

Figure 8

Web Signal Scan Program

Database searched: PLACE
 URL: <http://www.dna.nffrc.go.jp/hrdocs/PLACE/>

This is the sequence you submitted
 >G564 promoter (-921 to -662), 450 bases, 3D1A0BF4 checksum.
 TGAAAAGTGAAGAAAACCATGTAATGAAAACAAAATGGCACGACAATCAA
 AAAAGTTTACGCAAATTTCTCAAATTTATAACATTTCATGTT
 GTGTTTGTCTCAAAGCTAGAAAAACGAAGAGTTACTATTGGTAATGAAA
 AGCGAAGAAAACCACATAATAAAAACAAAATGGCACGACAATCAAGAAA
 AGTTTACACAAAATTTTCAAATTTACTATGTTATTCGAAATT
 TAGAAAAACGAAGAGTTATTAGTAATGAAAAGCGAAGAAAATACGT
 AATAAAAACAAAATGGCACGACAATAAAAAGTTTCACGCAAATTT
 TCTTGGTGCAGAAAGTTATATATTTAATTAAATTAAATTTCATTTACT
 TTTTCCCTTTTAAAGTTAAATTATTATTATTCATTTAAAT

Notation: H = A, C, or T
 R = A or G
 K = G or T
 W = A or T

RESULTS OF YOUR SIGNAL SCAN SEARCH REQUEST

/tmp/signalseqdone.9437: 450 base pairs
 Signal Database File:

Factor or Site Name	Loc. (Str.)	Signal Sequence	SITE #
-300ELEMENT	site 1 (+)	TGHAAARK	S000122
2SSEEDPROTBANAP	site 101 (-)	CAAACAC	S000143
ACGTABOX	site 296 (+)	TACGTA	S000130
ACGTABOX	site 296 (-)	TACGTA	S000130
AP3SV40	site 159 (-)	TGTGGWWW	S000169
CAATBOX1	site 44 (+)	CAAT	S000028
CAATBOX1	site 189 (+)	CAAT	S000028
CAATBOX1	site 323 (+)	CAAT	S000028
CAATBOX1	site 138 (-)	CAAT	S000028
CANBNNAPA	site 101 (-)	CNAACAC	S000148
CCAATBOX1	site 138 (-)	CCAAT	S000030
CEREGLUBOX2PSLE	site 55 (-)	TGAAAACACT	S000033
CEREGLUBOX2PSLE	site 201 (-)	TGAAAACACT	S000033
CEREGLUBOX2PSLE	site 333 (-)	TGAAAACACT	S000033
DOFCOREZM	site 4 (+)	AAAG	S000265
DOFCOREZM	site 53 (+)	AAAG	S000265
DOFCOREZM	site 112 (+)	AAAG	S000265
DOFCOREZM	site 149 (+)	AAAG	S000265
DOFCOREZM	site 199 (+)	AAAG	S000265
DOFCOREZM	site 282 (+)	AAAG	S000265
DOFCOREZM	site 331 (+)	AAAG	S000265
DOFCOREZM	site 364 (+)	AAAG	S000265
DOFCOREZM	site 419 (+)	AAAG	S000265
DOFCOREZM	site 216 (-)	AAAG	S000265
DOFCOREZM	site 399 (-)	AAAG	S000265
DOFCOREZM	site 408 (-)	AAAG	S000265
GT1CONSENSUS	site 120 (+)	GRWAAC	S000198
GT1CONSENSUS	site 141 (+)	GRWAAC	S000198
GT1CONSENSUS	site 196 (+)	GRWAAC	S000198
GT1CONSENSUS	site 253 (+)	GRWAAC	S000198
GT1CONSENSUS	site 69 (-)	GRWAAC	S000198
GT1CONSENSUS	site 90 (-)	GRWAAC	S000198
GT1CONSENSUS	site 347 (-)	GRWAAC	S000198
GT1CONSENSUS	site 388 (-)	GRWAAC	S000198
GT1CONSENSUS	site 436 (-)	GRWAAC	S000198

GT1CONSENSUS	site	218	(-)	GRWAAW	S000198
GT1CONSENSUS	site	401	(-)	GRWAAW	S000198
GT1CONSENSUS	site	402	(-)	GRWAAW	S000198
MAMMALENHAN	site	158	(-)	GTGGTTTK	S000121
MARTBOX	site	324	(-)	TTWTWTWT	S000067
MRE1	site	356	(-)	TGCRCNC	S000068
NTBBF1ARROLB	site	418	(-)	ACTTTA	S000273
POLASIG1	site	168	(+)	AATAAA	S000080
POLASIG1	site	301	(+)	AATAAA	S000080
POLASIG1	site	324	(+)	AATAAA	S000080
POLASIG1	site	237	(-)	AATAAA	S000080
POLASIG1	site	411	(-)	AATAAA	S000080
POLASIG3	site	268	(-)	AATAAT	S000088
POLASIG3	site	427	(-)	AATAAT	S000088
POLASIG3	site	430	(-)	AATAAT	S000088
POLASIG3	site	433	(-)	AATAAT	S000088
POLLEN1LELAT52	site	11	(+)	AGAAA	S000245
POLLEN1LELAT52	site	119	(+)	AGAAA	S000245
POLLEN1LELAT52	site	156	(+)	AGAAA	S000245
POLLEN1LELAT52	site	195	(+)	AGAAA	S000245
POLLEN1LELAT52	site	252	(+)	AGAAA	S000245
POLLEN1LELAT52	site	289	(+)	AGAAA	S000245
POLLEN1LELAT52	site	362	(+)	AGAAA	S000245
POLLEN1LELAT52	site	71	(-)	AGAAA	S000245
POLLEN1LELAT52	site	349	(-)	AGAAA	S000245
PYRIMIDINEBOXHV	site	400	(+)	TTTTTTCC	S000298
RAV1AAT	site	97	(-)	CAACA	S000314
ROOTMOTIFTAPOX1	site	374	(+)	ATATT	S000098
SEF4MOTIFGM7S	site	170	(-)	RTTTTTR	S000103
SP8BFIBSP8BIB	site	134	(+)	TACTATT	S000184
TATABOX2	site	81	(-)	TATAAAT	S000109
TATABOX3	site	375	(+)	TATTAAT	S000110
TATABOX4	site	368	(-)	TATATAA	S000111
TATABOX5	site	238	(+)	TTATTT	S000203
TATABOX5	site	412	(+)	TTATTT	S000203
TATABOX5	site	434	(+)	TTATTT	S000203

 For more information about the SignalScan Program, please contact Dr Dan S. Prestridge Tele: (612) 625-3744 Advanced Biosciences Computing Center. E-mail: danp@biosci.umn.edu 1479 Gortner Ave. University of Minnesota St. Paul, MN 55108 The TFD data is at the gopher site, gopher://genome-gopher.stanford.edu. For more information about the WebSignalScan service, please contact Meena Sakharkar, meena@biomed.nus.sg, BioInformatics centre, NUS .

Database Searched: PlantCARE
URL: <http://sphinx.rug.ac.be:8080/PlantCARE/>

Sequence submitted:

>G564 promoter (-921 to -662) 11/21/00

+ GAAAAAGTCAA GAAAACCATG TAATGAAAAC AAAATGGCAC GACAATCAA AAAAGTTTC ACGAAAATT
+ TTCTTCAAAA TTTATAACAT TTTCATGTTG TGTTTGTTC AAAGCCTAGA AAAACGAAGA GTTACTATTG
+ GTAATGAAAA GCGAAGAAAA CCACATATA AAAACAAAAT GGCAAGACAA TCAAGAAAAA GTTTCACAC
+ AAAACTTTT TCAAATTTA CTATGTTAT TTGAAATTT AGAAAACGA AGAGTTATTA TTAGTAATGA
+ AAAGCGAAGA AAACTACGTA ATAAAAAACAA ATGGCACG ACAATAAAA AAGTTTCAC GCAAATTTT
+ CTTGGTGCAG AGAAAGTTAT ATATATTAAT TAATTAATTT TCATTTACTT TTTCCCTTT TTATTTAAA
+ GTTAAATTAT TATTATTTTC ATTTAAAAA

5 - CTTTCACTT CTTTGGTAC ATTACTTTG TTTTACCGTG CTGTTAGTTT TTTCAAAAG TGCCTTTAA
10 - AAGAAAGTTT AAATATTGTA AAAGTACAAC ACAAAACAAAG TTTCGGATCT TTTGCTTCT CAATGATAAC
15 - CATTACTTT CGCTTCTTTT GGTGTATTAT TTTGTTTA CCGTGCTGTT AGTTCTTTT CAAAAGTGTG
20 - TTTGAAAAA AGTTTAAAT GATACAAATA AAGCTTAAAC TCTTTTGCT TCTCAATAAT AATCATTACT
25 - TTTCGCTTCT TTTGATGCAT TATTTTTGT TTTACCGTGC TGTTATTTT TTCAAAAGTG CGTTTAAAAA
30 - GAACCACCGG TCTTCATAATA TATATAATTA ATTAATTAAA AGTAAATGAA AAAAGGGAAA AATAAAATTT
35 - CAATTTAATA ATAATAAAAAG TAAATTTT

40 3-AF1_binding_sit

Site Name	Organism	Position	Strand	Core	Matrix	sequence
				simil.	simil	
3-AF1_binding_sit	ST	260	+	1.000	0.860	AAGAGttatt

Function:

AAGAA-motif

Site Name	Organism	Position	Strand	Core	simil.	Matrix	simil	sequence
AAGAA-motif	Avena sativa	6	+	1.000	0.903	gtgAAGAA		
AAGAA-motif	Avena sativa	151	+	1.000	0.870	gcaAAGAA		
AAGAA-motif	Avena sativa	284	+	1.000	0.870	gcaAAGAA		

Function:

ABRE

Site Name	Organism	Position	Strand	Core	simil.	Matrix	simil	sequence

ABRE	Hordeum vulgare	293	+	1.000	0.854	actACGTaat		
------	-----------------	-----	---	-------	-------	------------	--	--

Function: cis-acting element involved in the abscisic acid responsiveness

ACE

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
ACE	<i>Petroselinum crispum</i>	293	+	1.000	0.908	actACGTaat

Function: cis-acting element involved in light responsiveness

. AE-box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
AE-box	<i>Arabidopsis thaliana</i>	67	-	1.000	0.852	AGAAaatt
AE-box	<i>Arabidopsis thaliana</i>	345	-	1.000	0.852	AGAAaatt
AE-box	<i>Arabidopsis thaliana</i>	361	+	1.000	0.852	AGAAagtt

Function: part of a module for light response

AT1-motif

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
AT1-motif	<i>Solanum tuberosum</i>	409	+	1.000	0.859	ttttATTTtaaa

Function: part of a light responsive module

Box_4

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
Box_4	PC	375	+	1.000	1.000	ATTAat
Box_4	PC	379	+	1.000	1.000	ATTAat
Box_4	PC	383	-	1.000	1.000	ATTAat

Function:

Box_I

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
Box_I	PS	107	+	1.000	1.000	TTTCaaa
Box_I	PS	203	+	1.000	0.857	TTTCaca
Box_I	PS	219	+	1.000	1.000	TTTCaaa
Box_I	PS	240	+	1.000	0.857	TTTCgaa
Box_I	PS	241	-	1.000	0.857	TTTCgaa
Box_I	PS	249	-	1.000	0.857	TTTCtaa

Function:

Box_II

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
-----------	----------	----------	--------	-------------	--------------	----------

Box_II	ST	139	+	1.000	0.889	TGGTaatga
Box_II	AT	161	+	1.000	0.954	CCACataat
Function:						

CAAT-box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
CAAT-box	Hordeum vulgare	43	+	1.000	1.000	CAAT
CAAT-box	Arabidopsis thaliana	137	-	1.000	1.000	aCCAAt
CAAT-box	Hordeum vulgare	188	+	1.000	1.000	CAAT
CAAT-box	Hordeum vulgare	322	+	1.000	1.000	CAAT
CAAT-box	Arabidopsis thaliana	351	-	1.000	0.857	aCCAAg

Function: common cis-acting element in promoter and enhancer regions

ERE

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
ERE	Dianthus caryophyllus	239	+	1.000	0.875	ATTTcgaa
ERE	Dianthus caryophyllus	241	-	1.000	0.875	ATTTcgaa
ERE	Dianthus caryophyllus	413	+	1.000	0.875	ATTTt.aaa
ERE	Dianthus caryophyllus	441	+	1.000	0.875	ATTTaaaa
ERE	Dianthus caryophyllus	442	-	1.000	0.875	ATTTt.aaa

Function: ethylene-responsive element

G-box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
G-box	Zea mays	17	+	0.842	0.870	CATGta
G-box	Zea mays	38	+	1.000	0.903	CACGac
G-box	Zea mays	94	+	0.842	0.886	CATGtt
G-box	Zea mays	183	+	1.000	0.903	CACGac
G-box	Zea mays	317	+	1.000	0.903	CACGac

Function: cis-acting regulatory element involved in light responsiveness

GC-repeat

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
GC-repeat	Oryza sativa	351	-	1.000	1.000	gCACCAag
Function: ?						

HSE

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
HSE	Brassica oleracea	49	+	0.944	0.878	aAAAAagtt
HSE	Brassica oleracea	50	+	0.944	0.912	aAAAAgttt
HSE	Brassica oleracea	52	-	0.944	0.874	gAAAAActtt
HSE	Brassica oleracea	66	-	1.000	0.978	aGAAAattt
HSE	Brassica oleracea	77	-	0.833	0.868	aTAAAAtttt
HSE	Brassica oleracea	87	-	1.000	0.853	tGAAAatgl
HSE	Brassica oleracea	196	+	0.944	0.912	aAAAAgttt
HSE	Brassica oleracea	198	-	0.944	0.874	gAAAActtt
HSE	Brassica oleracea	210	+	0.944	0.874	cAAAActtt
HSE	Brassica oleracea	212	-	0.944	0.912	aAAAAgttt
HSE	Brassica oleracea	213	-	0.944	0.878	aAAAAagtt
HSE	Brassica oleracea	327	+	0.944	0.878	aAAAAagtt
HSE	Brassica oleracea	328	+	0.944	0.912	aAAAAgttt
HSE	Brassica oleracea	330	-	0.944	0.874	gAAAActtt
HSE	Brassica oleracea	344	-	1.000	0.978	aGAAAattt
HSE	Brassica oleracea	361	+	1.000	0.888	aGAAAgtta
HSE	Brassica oleracea	385	-	1.000	0.853	tGAAAatta

Function: cis-acting element involved in heat stress responsiveness

I-box

Site	Name	Organism	Position	Strand	Core	Matrix	sequence
I-box		Pisum sativum	93	-	0.857	0.883	aACATga
I-box		Pisum sativum	162	+	0.857	0.883	cACATaa
I-box		Solanum tuberosum	163	-	1.000	1.000	tATTAtgt
I-box		Pisum sativum	237	-	0.857	0.941	gAAATaa
I-box		Pisum sativum	367	-	1.000	1.000	tATATAaa
I-box		Pisum sativum	372	+	1.000	0.941	tATATAa
I-box		Pisum sativum	391	-	0.857	0.941	tAAATga
I-box		Pisum sativum	411	-	0.857	0.883	aAAATaa
I-box		Pisum sativum	423	+	0.857	0.883	tAAATta
I-box		Solanum tuberosum	424	-	1.000	0.903	aATAAAttt
I-box		Arabidopsis thaliana	426	-	1.000	0.863	aATAAAtaat
I-box		Arabidopsis thaliana	429	-	1.000	0.863	aATAAAtaat
I-box		Solanum tuberosum	431	+	1.000	0.951	tATTAttt
I-box		Pisum sativum	433	-	0.857	0.883	aAAATaa
I-box		Pisum sativum	439	-	0.857	0.941	tAAATga
Function: part of a light responsive element							

P-box

Site	Name	Organism	Position	Strand	Core	simil.	Matrix	simil.	sequence
P-box		Oryza sativa	406	+	1.000	0.857			CCTTttt
Function: gibberellin-responsive element									

Prolamin_box

Site	Name	Organism	Position	Strand	Core	simil.	Matrix	simil.	sequence
Prolamin-box	Oryza sativa		145	+	1.000	0.913			tgaAAAGc
Prolamin-box	Oryza sativa		278	+	1.000	0.913			tgaAAAGc
Function: cis-acting regulatory element associated with GCN4									

TATA-box

Site	Name	Organism	Position	Strand	Core	simil.	Matrix	simil.	sequence
TATA-box	Daucus carota		79	-	1.000	1.000			TATAaatt
TATA-box	Brassica juncea		80	-	1.000	1.000			TATAaat
TATA-box	Helianthus annuus		81	-	1.000	1.000			TATAaaa
TATA-box	Brassica oleracea		82	+	1.000	0.908			tTATAaac
TATA-box	Brassica napus		83	-	1.000	0.892			gtTATA
TATA-box	Oryza sativa		117	+	0.818	0.912			TAGAaaa
TATA-box	Oryza sativa		169	+	0.818	0.872			TAAAaac
TATA-box	Zea mays		248	+	0.909	0.879			TTTAgaaa
TATA-box	Oryza sativa		250	+	0.818	0.912			TAGAaaa
TATA-box	Oryza sativa		302	+	0.818	0.912			TAAAaaa
TATA-box	Oryza sativa		325	+	0.818	0.912			TAAAaaa
TATA-box	Daucus carota		364	-	1.000	0.863			TAAAaaa
TATA-box	Brassica juncea		365	-	1.000	0.857			TATAaactt
TATA-box	Zea mays		366	-	1.000	0.879			TATAataac

TATA-box	Oryza sativa	367	-	1.000	0.956	TATAtaa
TATA-box	Oryza sativa	368	+	1.000	0.929	TATAtat
TATA-box	Oryza sativa	369	-	1.000	0.929	TATAtat
TATA-box	Solanum tuberosum	370	-	1.000	1.000	TATAta
TATA-box	Glycine max	372	+	1.000	0.891	TATAtt
TATA-box	Oryza sativa	407	-	0.818	0.872	TAAAaag
TATA-box	Zea mays	413	-	0.909	0.879	TTTAAaat
TATA-box	Zea mays	442	+	0.909	0.879	TTTAAaat

Function: core promoter element around -30 of transcription start

• TC-rich_repeats

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
TC-rich_repeats	NT	7	-	1.000	0.952	gTTTTcttca
TC-rich_repeats	NT	68	+	1.000	1.000	aTTTTcttca
TC-rich_repeats	NT	152	-	1.000	0.909	gTTTTcttcg
TC-rich_repeats	NT	191	-	1.000	0.885	tTTTTcttga
TC-rich_repeats	NT	248	-	1.000	0.914	tTTTTctaaa
TC-rich_repeats	NT	285	-	1.000	0.909	gTTTTcttcg
TC-rich_repeats	NT	346	+	1.000	0.915	aTTTTcttgg

WUN-motif

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
WUN-motif	Brassica oleracea	18	-	1.000	0.948	tCATTacat
WUN-motif	Brassica oleracea	139	-	1.000	1.000	tCATTacca
WUN-motif	Brassica oleracea	237	+	0.857	0.948	tTATTtcga
WUN-motif	Brassica oleracea	242	-	1.000	1.000	aAATTtcga
WUN-motif	Brassica oleracea	272	-	1.000	0.948	tCATTacta
WUN-motif	Brassica oleracea	296	-	0.857	0.948	tTATTacgt

Function: wound-responsive element