Examen - Mardi 10 janvier 2023.

dur'ee: 2h00.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits.

La qualité de la rédaction sera prise en compte dans la notation.

Le barème est donné à titre indicatif.

Dans tout le sujet $(\Omega, \mathcal{F}, \mathbf{P})$ désigne un espace de probabilité.

Exercice 1. Vrai ou Faux? Justifier vos réponses.

- 1. Si f est la densité d'une mesure de probabilité alors $0 \le f \le 1$.
- 2. Une variable aléatoire réelle est soit discrète, soit sa loi admet une densité.
- 3. Si F est une fonction de répartition alors F admet une limite à gauche en tout point.

Correction. Seules les réponses justifiées obtenaient des points

- 1. FAUX : par exemple la fonction $x \to 2x1_{[0,1](x)}$ est une densité.
- 2. FAUX : par exemple la variable ayant pour loi m = 1/2δ₀+1/2g où δ₀ est la mesure de Dirac en 0 et g est la loi d'une gaussienne centrée réduite n'est ni discrète (car son seul atome est 0 et m({0}) = 1/2) ni à densité (car m({0}) > 0). Pour avoir la totalité des points il fallait donner un contre-exemple et justifier que la probabilité considérée n'était ni discrète ni continue.
- 3. VRAI : c'est une démonstration du cours!

Exercice 2. Soit $n \geq 2$ un entier et A_1, \dots, A_n des évènements de \mathcal{F} .

- 1. Rappeler la définition de l'indépendance pour une famille d'évènements.
- 2. On veut montrer par un contre-exemple que l'égalité

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdots P(A_n)$$

n'implique pas l'indépendance des $(A_i)_{i=1,\dots,n}$. On considère donc le contre-exemple suivant :

- (a) Proposer un espace de probabilités pour modéliser deux lancers successifs et indépendants d'un dé à 6 faces. Décrire mathématiquement les évènements
 - A = "le second jet vaut 1, 2 ou 3";
 - B = "le second jet vaut 3,4 ou 5";
 - C = "la somme des deux jets vaut 9".
- (b) Montrer que

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

mais que A, B, C ne sont pas indépendants.

3. On suppose maintenant que la famille A_1, \dots, A_n satisfait la propriété suivante : pour toute famille $(B_i)_{i=1,\dots,n}$ définie par

$$B_i = A_i \text{ ou } A_i^c, \quad 1 \le i \le n,$$

on a

$$P(\bigcap_{i=1,\dots,n} B_i) = \prod_{i=1,\dots,n} P(B_i).$$

En déduire que les évènements A_1, \dots, A_n sont indépendants.

Correction.

- 1. C'est du cours! Dans le cas général il faut bien préciser "Pour toute sous-famille finie..."
- 2. (a) On peut prendre $\Omega = \{1, \cdots, 6\}^2$, $\mathcal{F} = \mathcal{P}(\Omega)$ et P la probabilité uniforme définie par $P(A) = |A|/|\Omega|$ où $|\Omega| = 36$. On a alors

 $A = \{(\omega_1, \omega_2) \text{ tels que } \omega_2 \in \{1, 2, 3\}\};$

 $B = \{(\omega_1, \omega_2) \text{ tels que } \omega_2 \in \{3, 4, 5\}\};$

 $C = \{(\omega_1, \omega_2) \text{ tels que } \omega_1 + \omega_2 = 9\}.$

Il fallait bien écrire ces événements comme des ensembles mathématiques afin de pouvoir les dénombrer proprement à la question suivante.

(b) On vérifie que $A \cap B \cap C = \{(6,3)\}$ est de cardinal 1 donc

$$P(A \cap B \cap C) = 1/36.$$

Par ailleurs |A| = |B| = 18 donc P(A) = P(B) = 1/2; tandis que $C = \{(3,6), (4,5), (5,4), (6,3)\}$ donc P(C) = 1/9. On a donc bien $P(A \cap B \cap C) = P(A)P(B)P(C)$. Par contre $A \cap B = \{(\omega_1, 3), \omega_1 = 1, \dots, 6\}$ donc $P(A \cap B) = 1/6 \neq P(A)P(B) = 1/4$

3. Soit $I \subset \{1, \dots, n\}$. On note que

$$\bigcap_{i \in I} A_i = \bigcup_{\substack{(B_i)_{i=1,\dots,n} \ t.q. \\ B_i = A_i \text{ pour tout } i \in I}}^{disj.} \bigcap_{i=1,\dots,n} B_i$$

et on déduit :

$$P(\bigcap_{i \in I} A_i) = \sum_{\substack{(B_i)_{i=1,\dots,n} \ B_i = A_i \text{ pour tout } i \in I}} P(\bigcap_{i=1,\dots,n} B_i)$$

$$= \sum_{\substack{(B_i)_{i=1,\dots,n} \ E_i = A_i \text{ pour tout } i \in I}} \prod_{i=1,\dots,n} P(B_i)$$

$$= \prod_{i \in I} P(A_i) \sum_{\substack{(B_i)_{i=1,\dots,n} \ E_i = A_i \text{ pour tout } i \in I}} \prod_{i \notin I} P(B_i)$$

On conclut en notant que

$$\sum_{\substack{(B_i)_{i=1,\cdots,n} \ t.q. \\ B_i=A_i \text{ pour tout } i \in I}} \prod_{i \notin I} \mathsf{P}(B_i) = 1$$

puisque

$$\Omega = \bigcup_{\substack{(B_i)_{i=1,\dots,n} \ t.q. \\ B_i = A_i \text{ pour tout } i \in I}}^{disj.} \bigcap_{i \notin I} B_i$$

Il s'agissait finalement d'une question difficile que l'on peut considérer hors-barème.

Exercice 3. On considère trois variables aléatoires X_1, X_2 et X_3 indépendantes et de même loi Unif([0,1]).

- 1. Montrer que $P(X_1 = X_2) = 0$ et en déduire que p.s. on peut classer X_1, X_2 et X_3 c'est-à-dire définir les variables aléatoires Y_1, Y_2 et Y_3 telles que $\{X_1, X_2, X_3\} = \{Y_1, Y_2, Y_3\}$ et $Y_1 < Y_2 < Y_3$. On appelle statistique d'ordre le triplet (Y_1, Y_2, Y_3) .
- 2. En particulier $Y_3 = \max(X_1, X_2, X_3)$. Donner la fonction de répartition de Y_3 et en déduire qu'elle admet une densité que l'on déterminera. Calculer l'espérance de Y_3 .
- 3. On définit $X'_i = 1 X_i$ pour i = 1, 2, 3. Montrer que X'_1, X'_2, X'_3 sont indépendantes et de loi Unif([0,1]).
- 4. On définit $Y_3' = \max(X_1', X_2', X_3')$. Donner la relation entre Y_3' et Y_1 et en déduire la loi de Y_1 et son espérance.
- 5. Donner, sans calculer, l'espérance de Y_2 .
- 6. Pour $x \in]0,1[$, on définit

$$N_x = \operatorname{Card}\{i = 1, 2, 3 \text{ tel que } X_i \leq x\}.$$

Caractériser la loi de N_x .

- 7. En remarquant que $\{Y_2 \leq x\} = \{N_x \geq 2\}$, calculer la fonction de répartition de Y_2 . En déduire sa densité et retrouver, cette fois par le calcul, son espérance.
- 8. Soit $n \geq 3$ un entier. On généralise ce que l'on vient de faire pour trois variables à n variables aléatoires X_1, \dots, X_n indépendantes et de même loi Unif([0,1]). On définit de façon analogue la statistique d'ordre Y_1, \dots, Y_n . Pour tout $i \in \{1, \dots, n\}$, adapter la méthode proposée aux deux questions précédentes pour donner la fonction de répartition de Y_i .

Correction.

- 1. Comme X_1 et X_2 sont à densité, $-X_2$ est également à densité et la variable $X_1 X_2$ également donc $P(X_1 = X_2) = P(X_1 X_2 = 0) = 0$. On déduit que $P(\exists i \neq j \text{ tel que } X_i = X_j) \leq \sum_{i \neq j} P(X_i \neq X_j) = 0$ (ce dernier point était aussi horsbarème). Nos trois variables X_1, X_2 et X_3 étant p.s. deux à deux distinctes on peut donc les classer et définir la statistique d'ordre.
- 2. La variable Y_3 est à valeurs dans [0,1] donc pour tout u < 0, $F_{Y_3}(u) = 0$ tandis que pour $u \ge 1$, $F_{Y_3}(u) = 1$. Pour $u \in [0,1[$,

$$F_{Y_3}(u) = P(X_1 \le u, X_2 \le u, X_3 \le u) \stackrel{i.i.d.}{=} P(X \le u)^3 = u^3.$$

On en déduit que Y_3 admet pour densité la fonction

$$u \in \mathbb{R} \mapsto f_{Y_3}(u) = 3u^2 1_{[0,1]}(u).$$

Enfin

$$E(Y_3) = \int u f_{Y_3}(u) \ du = \int_0^1 3u^3 \ du = 3/4.$$

3. Pour tout $i = 1, 2, 3, X'_i$ est l'image par la fonction $x \to 1 - x$ de X_i . Comme les $(X_i)_{i=1,2,3}$ sont i.i.d. on en déduit que les $(X'_i)_{i=1,2,3}$ le sont aussi (moitié des points). De plus pour toute fonction h continue bornée

$$E(h(X_1')) = \int h(1-x)1_{[0,1]}(x)dx \stackrel{u=1-x}{=} \int h(u)1_{[0,1]}(u)du.$$

On en déduit que X'_1 suit également une uniforme (autre moitié des points).

4. On a $Y_3' = 1 - Y_1$ et on en déduit que $3/4 = E(Y_3') = 1 - E(Y_1)$ donc $E(Y_1) = 1/4$. Par ailleurs pour toute h continue bornée

$$E(h(Y_1)) = E(h(1 - Y_3')) = \int_{[0,1]} h(1 - x) 3x^2 dx \stackrel{u=1-x}{=} \int_{[0,1]} h(u) 3(1 - u)^2 du$$

et on déduit que Y_1 admet pour densité $u \to 3(1-u)^2 1_{[0,1]}(u)$.

- 5. On note que $X_1 + X_2 + X_3 = Y_1 + Y_2 + Y_3$ donc $E(X_1) + E(X_2) + E(X_3) = E(Y_1) + E(Y_2) + E(Y_3)$. Comme $E(X_i) = 1/2$ (i = 1, 2, 3), on en déduit que $E(Y_2) = 1/2$.
- 6. La variable N_x est discrète et à valeurs dans $\{0,1,2,3\}$. De plus pour tout $k \in \{0,1,2,3\}$

$$P(N_x = k) = P(\exists J \subset \{1, 2, 3\} \text{ tel que } |J| = k \text{ et } X_i \le u \text{ ssi } i \in J)$$

$$= \sum_{\substack{J \subset \{1, 2, 3\} \text{ tel que } |J| = k}} P(X_i \le x \text{ ssi } i \in J)$$

$$\stackrel{indep.}{=} \sum_{\substack{J \subset \{1, 2, 3\} \text{ tel que } |J| = k}} F(x)^k (1 - F(x))^{3-k}$$

$$= \binom{3}{k} F(x)^k (1 - F(x))^{3-k}$$

On en déduit que N_x suit une Bin(3, F(x)).

7. On obtient donc que pour tout $x \in \mathbb{R}$

$$F_{Y_2}(x) = P(N_x \ge 2) = \begin{cases} 0 \text{ si } x \le 0\\ 3x^2(1-x) + x^3 = 3x^2 - 2x^3 \text{ si } 0 \le x \le 1\\ 1 \text{ si } x \ge 1 \end{cases}$$

On en déduit que pour tout $x \in \mathbb{R}$,

$$f_{Y_2}(x) = 6(x - x^2)1_{[0,1]}(x)$$

et donc

$$E(Y_2) = \int_0^1 6(x^2 - x^3) dx = 6(1/3 - 1/4) = 1/2.$$

8. On obtient avec la même méthode N_x est à valeurs dans $\{0, \dots, n\}$ et pour tout k dans cet ensemble

$$P(N_x = k) = P(\exists J \subset \{1, \dots, n\} \text{ tel que } |J| = k \text{ et } X_i \le u \text{ ssi } i \in J)$$

$$= \sum_{J \subset \{1, \dots, n\} \text{ tel que } |J| = k} P(X_i \le x \text{ ssi } i \in J)$$

$$= \sum_{J \subset \{1, \dots, n\} \text{ tel que } |J| = k} F(x)^k (1 - F(x))^{n-k}$$

$$= \binom{n}{k} F(x)^k (1 - F(x))^{n-k}.$$

On en déduit que pour tout $x \in \mathbb{R}$

$$F_{Y_i}(x) = P(N_x \ge i) = \sum_{k=i}^n \binom{n}{k} F(x)^k (1 - F(x))^{n-k}$$

$$= \begin{cases} 0 & \text{si } x \le 0, \\ \sum_{k=i}^n \binom{n}{k} x^k (1 - x)^{n-k} & \text{si } 0 \le x \le 1, \\ 1 & \text{si } x \ge 1. \end{cases}$$