GRAPH ATTENTION NETWORKS

Petar Velickovic´, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio

Presented by: Tawkat

Why Graph Neural Net

 CNN can tackle problem when the underlying data representation is a grid-like structure.

 Not in the case of social networks, 3D-Mesh, biological networks

We need to represent them with graph structure

Why Graph Attn Net

 Traditional GNN assigns same weights to all nodes within a neighborhood, whereas GAT assigns weights to the nodes depending on their contributions.

GAT enables better interpretability

 GAT applies attention mechanism to all the edges, so it does not depend on the global graph structure.

Graph Attn Net

- Input node features: $h = \{h_1, h_2, ..., h_N\} \in R^F$
- Output node features: $h' = \{h'_1, h'_2, ..., h'_N\} \in R^{F'}$
- Weight Matrix: W ∈ R_{F×F}
- eij = $a(Wh_i, Wh_j)$; where a: $R^{2 \times F'}$ is attention coeff. that indicate the importance of node j's features to node i.

Graph Attn Net

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$$

$$\alpha_{ij} = \operatorname{softmax}_{j}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}.$$

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i]\right)\right)}$$

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right).$$

Graph Attn Net-Multi-Head

Experimental Results

Transductive

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
MoNet (Monti et al., 2016)	$81.7 \pm 0.5\%$	_	$78.8 \pm 0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%
GAT (ours)	$83.0 \pm 0.7\%$	$72.5 \pm 0.7\%$	$79.0 \pm 0.3\%$

Experimental Results

Inductive

Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.006
GAT (ours)	0.973 ± 0.002

Future Works

- Analysis on better interpretability.
- Graph classification instead of node classification.
- Including edge features instead of treating edges just as boolean variables