

Dive into Eigen Decomposition

1 / 深入特征值分解

无处不在的特征值分解

生命之殇,并非求其上,却得其中;而是求其下,必得其下。

The greater danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieving our mark.

—— 米开朗琪罗 (Michelangelo) | 文艺复兴三杰之一 | 1475 ~ 1564

- ◀ numpy.meshgrid() 产生网格化数据
- ◀ numpy.prod() 指定轴的元素乘积
- ◀ numpy.linalg.inv() 矩阵求逆
- numpy.linalg.eig() 特征值分解
- ◀ numpy.diag() 以一维数组的形式返回方阵的对角线元素,或将一维数组转换成对角阵
- ✓ seaborn.heatmap() 绘制热图

14.1 方阵开方

本章是上一章的延续,本章继续探讨特征值分解及其应用。这一节介绍利用特征值分解完成方阵开方。

如果方阵 A 可以写作:

$$A = BB \tag{1}$$

 $B \in A$ 的平方根。利用特征值分解,可以求得 A 的平方根。

首先对矩阵 A 特征值分解:

$$\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1} \tag{2}$$

令:

$$\mathbf{B} = V \Lambda^{\frac{1}{2}} V^{-1} \tag{3}$$

 B^2 可以写成:

$$\boldsymbol{B}^{2} = \left(\boldsymbol{V}\boldsymbol{\Lambda}^{\frac{1}{2}}\boldsymbol{V}^{-1}\right)^{2} = \boldsymbol{V}\boldsymbol{\Lambda}^{\frac{1}{2}}\boldsymbol{V}^{-1}\boldsymbol{V}\boldsymbol{\Lambda}^{\frac{1}{2}}\boldsymbol{V}^{-1} = \boldsymbol{V}\boldsymbol{\Lambda}\boldsymbol{V}^{-1} = \boldsymbol{A}$$
(4)

即:

$$A^{\frac{1}{2}} = V A^{\frac{1}{2}} V^{-1} \tag{5}$$

类似地, 方阵 A 的立方根可以写成:

$$A^{\frac{1}{3}} = VA^{\frac{1}{3}}V^{-1} \tag{6}$$

继续推广, 可以得到:

$$\mathbf{A}^p = \mathbf{V} \mathbf{\Lambda}^p \mathbf{V}^{-1} \tag{7}$$

其中, p 为任意实数。

举个例子

给定如下方阵 A, 求解如下矩阵的平方根:

$$A = \begin{bmatrix} 1.25 & -0.75 \\ -0.75 & 1.25 \end{bmatrix} \tag{8}$$

对 A 进行特征值分解得到:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$A = \begin{bmatrix} 1.25 & -0.75 \\ -0.75 & 1.25 \end{bmatrix} = VAV^{-1} = \begin{bmatrix} \sqrt{3}/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} \sqrt{3}/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & \sqrt{3}/2 \end{bmatrix}$$
(9)

矩阵 B 为:

$$\mathbf{B} = \mathbf{V} \mathbf{A}^{\frac{1}{2}} \mathbf{V}^{-1} = \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2}/2 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} \\
= \begin{bmatrix} 1 & 1/2 \\ -1 & 1/2 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} = \begin{bmatrix} 3\sqrt{2}/4 & -\sqrt{2}/4 \\ -\sqrt{2}/4 & 3\sqrt{2}/4 \end{bmatrix} \tag{10}$$

Bk4 Ch14 01.py 求解上述例子中 A 的平方根。

14.2 矩阵指数:幂级数的推广

给定一个标量 a, 指数 e^a 可以用幂级数展开表达:

$$e^{a} = \exp(a) = 1 + a + \frac{1}{2!}a^{2} + \frac{1}{3!}a^{3} + \cdots$$
 (11)

⇒对于(11)这个式子感到生疏的读者,可以回顾《数学要素》第17章有关泰勒展开内容。

类似地,对于方阵 A,可以定义**矩阵指数** (matrix exponential) e^A 为一个收敛幂级数:

$$e^{A} = \exp(A) = I + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \cdots$$
 (12)

如果 A 可以特征值分解得到如下等式, 计算 (12) 则容易很多:

$$A = V \Lambda V^{-1} \tag{13}$$

其中,

$$\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_D \end{bmatrix}$$
(14)

利用特征值分解, A^k 可以写作:

$$A^{k} = V A^{k} V^{-1} \tag{15}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

其中, k 为非负整数。

将(15)代入(12),得到:

$$e^{A} = \exp(A) = VV^{-1} + V\Lambda V^{-1} + \frac{1}{2!}V\Lambda^{2}V^{-1} + \frac{1}{3!}V\Lambda^{3}V^{-1} + \cdots$$

$$= V(I + \Lambda + \Lambda^{2} + \Lambda^{3} + \cdots)V^{-1}$$
(16)

特别地,对角方阵 1 矩阵指数为:

$$e^{A} = \exp(A) = I + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \cdots$$
 (17)

容易计算对角阵 /1 矩阵指数 e⁻¹:

$$e^{A} = \exp(A) = I + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \cdots$$

$$= \begin{bmatrix} 1 & & \\ & 1 & \\ & \ddots & \\ & & 1 \end{bmatrix} + \begin{bmatrix} \lambda_{1} & & \\ & \lambda_{2} & \\ & & \lambda_{D} \end{bmatrix} + \frac{1}{2!}\begin{bmatrix} \lambda_{1}^{2} & & \\ & \lambda_{2}^{2} & \\ & & \ddots \\ & & \lambda_{D}^{2} \end{bmatrix} + \cdots$$

$$= \lim_{n \to \infty} \begin{bmatrix} \sum_{k=1}^{n} \frac{1}{k!} \lambda_{1}^{k} & & \\ & \sum_{k=1}^{n} \frac{1}{k!} \lambda_{2}^{k} & & \\ & & \ddots & \\ & & & \sum_{k=1}^{n} \frac{1}{k!} \lambda_{D}^{k} \end{bmatrix}$$

$$= \begin{bmatrix} e^{\lambda_{1}} & & \\ & e^{\lambda_{2}} & & \\ & & \ddots & \\ & & & e^{\lambda_{D}} \end{bmatrix}$$

$$(18)$$

将(17)代入(16),得到:

$$\mathbf{e}^{A} = \mathbf{V} \,\mathbf{e}^{A} \,\mathbf{V}^{-1} \tag{19}$$

将(18)代入(19),得到:

$$\mathbf{e}^{A} = \mathbf{V} \begin{bmatrix} \mathbf{e}^{\lambda_{1}} & & & & \\ & \mathbf{e}^{\lambda_{2}} & & & \\ & & \ddots & & \\ & & & \mathbf{e}^{\lambda_{D}} \end{bmatrix} \mathbf{V}^{-1}$$
 (20)

可以用 scipy.linalg.expm() 计算矩阵指数。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

14.3 斐波那契数列: 求通项式

本系列丛书《数学要素》第 14 章介绍过斐波那契数列 (Fibonacci number), 本节介绍如何使用特征值分解推导得到斐波那契数列通项式。

斐波那契数列可以通过如下递归 (recursion) 方法获得:

$$\begin{cases} F_0 = 0 \\ F_1 = F_2 = 1 \\ F_n = F_{n-1} + F_{n-2}, \quad n > 2 \end{cases}$$
 (21)

包括第0项, 斐波那契数列的前11项为:

$$0,1,1,2,3,5,8,13,21,34,55$$
 (22)

构造列向量

将斐波那契数列连续每两项写成列向量形式:

$$\boldsymbol{x}_{0} = \begin{bmatrix} F_{0} \\ F_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \boldsymbol{x}_{1} = \begin{bmatrix} F_{1} \\ F_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \boldsymbol{x}_{2} = \begin{bmatrix} F_{2} \\ F_{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \boldsymbol{x}_{3} = \begin{bmatrix} F_{3} \\ F_{4} \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \boldsymbol{x}_{4} = \begin{bmatrix} F_{4} \\ F_{5} \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \dots$$
 (23)

图 1 所示为列向量连续变化过程,能够看到它们逐渐收敛到一条直线上。这条直线通过原点,斜率就是**黄金分割** (golden ratio):

$$\varphi = \frac{\sqrt{5} + 1}{2} \approx 1.61803 \tag{24}$$

图 1. 斐波那契数列列向量连续变化过程

连续列向量间关系

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

数列的第 k+1 项 \mathbf{x}_{k+1} 和第 k 项 \mathbf{x}_k 之间的关系可以写成如下矩阵运算:

$$\boldsymbol{x}_{k+1} = \begin{bmatrix} F_{k+1} \\ F_{k+2} \end{bmatrix} = A\boldsymbol{x}_k = A \begin{bmatrix} F_k \\ F_{k+1} \end{bmatrix}$$
 (25)

其中

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \tag{26}$$

观察上式A,发现A对应的几何操作是"剪切+置换"的合成。

有了(25), x_k 可以写成:

$$\mathbf{x}_{k} = A\mathbf{x}_{k-1}$$

$$= A^{2}\mathbf{x}_{k-2}$$

$$= A^{3}\mathbf{x}_{k-3}$$

$$\dots$$

$$= A^{k}\mathbf{x}_{0}$$
(27)

特征值分解

对 A 进行特征值分解:

$$A = V \Lambda V^{-1} \tag{28}$$

其中,

$$\Lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{bmatrix}, \quad V^{-1} = \frac{1}{\lambda_2 - \lambda_1} \begin{bmatrix} \lambda_2 & -1 \\ -\lambda_1 & 1 \end{bmatrix}$$
(29)

A 的特征方程为:

$$\lambda^2 - \lambda - 1 = 0 \tag{30}$$

求解(30), 可以得到两个特征值:

$$\lambda_1 = \frac{1 - \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 + \sqrt{5}}{2}$$
 (31)

 x_k 可以写成:

$$\boldsymbol{x}_k = \boldsymbol{V} \boldsymbol{\Lambda}^k \boldsymbol{V}^{-1} \boldsymbol{x}_0 \tag{32}$$

将 (29) 代入 (32), 得到:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\boldsymbol{x}_{k} = \frac{1}{\lambda_{2} - \lambda_{1}} \begin{bmatrix} 1 & 1 \\ \lambda_{1} & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1}^{k} & \\ & \lambda_{2}^{k} \end{bmatrix} \begin{bmatrix} \lambda_{2} & -1 \\ -\lambda_{1} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \frac{1}{\lambda_{2} - \lambda_{1}} \begin{bmatrix} \lambda_{2}^{k} - \lambda_{1}^{k} \\ \lambda_{2}^{k+1} - \lambda_{1}^{k+1} \end{bmatrix}$$
(33)

即.

$$\begin{bmatrix} F_k \\ F_{k+1} \end{bmatrix} = \frac{1}{\lambda_2 - \lambda_1} \begin{bmatrix} \lambda_2^k - \lambda_1^k \\ \lambda_2^{k+1} - \lambda_1^{k+1} \end{bmatrix}$$
(34)

确定通项式

因此 F_k 可以写成:

$$F_k = \frac{\lambda_2^k - \lambda_1^k}{\lambda_2 - \lambda_1} \tag{35}$$

将 (31) 代入 (35) 得到 F_k解析式:

$$F_{k} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k} - \left(\frac{1-\sqrt{5}}{2}\right)^{k}}{\sqrt{5}}$$
 (36)

至此,我们通过特征值分解得到斐波那契数列通项式解析式。

14.4 马尔科夫过程的平稳状态

本系列丛书在《数学要素》鸡兔同笼三部曲中虚构了"'鸡兔互变"的故事。本节回顾这个故 事,并介绍如何用特征值分解求解其平稳状态。

图 2 描述鸡兔互变的比例,每晚有 30%的小鸡变成小兔,其他小鸡不变;同时,每晚有 20% 小兔变成小鸡,其余小兔不变。这个转化的过程叫做**马尔科夫过程** (Markov process)。

马尔科夫过程满足以下三个性质: (1) 可能输出状态有限; (2) 下一步输出的概率仅仅依赖上 一步的输出状态; (3) 概率值相对于时间为常数。

图 2. 鸡兔互变的比例

"鸡兔互变"这个例子中,第 k 天,鸡兔的比例用列向量 $\pi(k)$ 表示;其中, $\pi(k)$ 第一行元素代表小鸡的比例,第二行元素代表小兔的比例。第 k+1 天,鸡兔的比例用列向量 $\pi(k+1)$ 表示。

变化的比例写成方阵 T, T 通常叫做转移矩阵 (transition matrix)。

这样 $k \rightarrow k + 1$ 变化过程可以写成:

$$k \to k+1$$
: $T\pi(k) = \pi(k+1)$ (37)

对于鸡兔互变,T为:

$$T = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix} \tag{38}$$

求平稳状态

观察图 3,我们初步得出结论不管初始状态向量 (k=0) 如何,鸡兔比例最后都达到了一定的平衡,也就是:

$$T\pi = \pi \tag{39}$$

有了本书特征值分解相关的知识,相信大家一眼就看出来 (39) 代表的关系就是特征值分解。 对 T 进行特征值分解得到两个特征向量:

$$\mathbf{v}_1 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0.5547 \\ 0.8321 \end{bmatrix}$$
 (40)

鸡兔总比例之和为 1,且非负。因此选择 v_2 来计算 π :

这个 π 叫做**平稳状态** (steady state)。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

Bk4 Ch14 02.py 绘制图3。

图 3. 不同初始状态条件下平稳状态

看过本系列丛书《数学要素》一册的读者应该还记得图 4 这幅图,它从几何视角描述了不同初始状态向量条件下,经过连续 12 次变化,向量都收敛于同一方向。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 4. 连续 12 夜鸡兔互变比例,几何视角,图片来自《数学要素》

14.5 瑞利商

瑞利商 (Rayleigh quotient) 在很多机器学习算法中扮演重要角色,瑞利商和特征值分解有着密切关系。本节利用几何视角可视化瑞利商,让大家深入理解瑞利商这个概念。

定义

给定实数对称矩阵A,它的瑞利商定义为:

$$R(x) = \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x} \tag{42}$$

其中, $\mathbf{x} = [x_1, x_2, ..., x_D]^{\mathrm{T}}$ 。

A 注意, (42) 中x 不能为零向量0, 也就是说, $x_1, x_2, ..., x_D$ 不能同时为0。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

先给出结论,瑞利商 R(x) 的取值范围:

$$\lambda_{\min} \le R(x) \le \lambda_{\max} \tag{43}$$

其中, λ_{\min} 和 λ_{\max} 分别为矩阵 A 的最小和最大特征值。

最大值和最小值

求解 (42) 中 R(x) 的最大、最小值,等价于 R(x) 分母为定值条件下,求解分子的最大值和最小值。

令 x 为单位向量。即:

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} = \|\boldsymbol{x}\|_{2}^{2} = 1 \quad \Leftrightarrow \quad \|\boldsymbol{x}\|_{2} = 1 \tag{44}$$

A 为对称矩阵, 对其特征值分解得到:

$$A = V \Lambda V^{\mathrm{T}} \tag{45}$$

R(x) 的分子可以写成:

$$(\boldsymbol{V}^{\mathrm{T}}\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\Lambda} (\boldsymbol{V}^{\mathrm{T}}\boldsymbol{x}) = (\boldsymbol{V}^{\mathrm{T}}\boldsymbol{x})^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{D} \end{bmatrix} (\boldsymbol{V}^{\mathrm{T}}\boldsymbol{x})$$
 (46)

令

$$y = V^{\mathrm{T}} x \tag{47}$$

这样, (47) 可以写成:

$$\mathbf{y}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{D} \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{D} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{D} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{D} \end{bmatrix} = \lambda_{1} y_{1}^{2} + \lambda_{2} y_{2}^{2} + \dots + \lambda_{D} y_{D}^{2}$$

$$(48)$$

类似地, R(x) 的分母可以写成:

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} = (\boldsymbol{V}^{\mathrm{T}}\boldsymbol{x})^{\mathrm{T}}(\boldsymbol{V}^{\mathrm{T}}\boldsymbol{x}) = \boldsymbol{y}^{\mathrm{T}}\boldsymbol{y} = y_{1}^{2} + y_{2}^{2} + \dots + y_{D}^{2} = 1$$
(49)

这样,瑞利商就可以简洁地写成以y为自变量的函数R(y):

$$R(y) = \frac{\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_D y_D^2}{y_1^2 + y_2^2 + \dots + y_D^2}$$
(50)

举个例子

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

下面,我们以 2×2 矩阵为例,讲解如何求解瑞利商。给定A为:

$$A = \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} \tag{51}$$

R(x) 为:

$$R(\mathbf{x}) = \frac{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}} = \frac{1.5x_1^2 + x_1x_2 + 1.5x_2^2}{x_1^2 + x_2^2}$$
(52)

A 的两个特征值分别为 $\lambda_1 = 2$, $\lambda_2 = 1$ 。 R(x) 等价于 R(y), 根据 (50), R(y) 写成:

$$R(y) = \frac{y_1^2 + 2y_2^2}{y_1^2 + y_2^2} \tag{53}$$

推导最值

求解 R(y) 的最大、最小值,等价于 R(y) 分母为 1 条件下,分子的最大值和最小值。

简单推导 R(y) 最大值:

$$R(y) = y_1^2 + 2y_2^2 \le 2\underbrace{\left(y_1^2 + y_2^2\right)}_{1} = 2$$
 (54)

推导 R(v) 最小值:

$$R(y) = y_1^2 + 2y_2^2 \ge \underbrace{\left(y_1^2 + y_2^2\right)}_{1} = 1$$
 (55)

几何视角

下面我们用几何方法来解释瑞利商。

(52) 的分母为 1, 意味着分母代表的几何图形是个单位圆, 即,

$$x_1^2 + x_2^2 = 1 ag{56}$$

(52) 分子对应二次函数:

$$f(x_1, x_2) = 1.5x_1^2 + x_1x_2 + 1.5x_2^2$$
(57)

这个二次函数对应的等高线图如所示图 5 (a) 所示。 $f(x_1,x_2)$ 等高线和单位圆相交的交点中找到 $f(x_1,x_2)$ 取得最大值和最小值点。最大特征值 λ_1 对应的特征向量 v_1 , v_1 这个方向上做一条直线,直线和单位圆交点 (x_1,x_2) 对应的就是瑞利商的最大值点;此时,瑞利商的最大值为 λ_1 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 6(a) 所示为 $f(x_1, x_2)$ 曲面,以及单位圆在曲面上的映射得到的曲线。

从视角来看,上述问题实际上是个含约束优化问题,本书第18章将介绍如何利用拉格 朗日乘子法将含约束优化问题转化为无约束优化问题。

图 5. 平面上可视化 f(x1, x2) 和单位圆

图 6. 三维空间中可视化 ƒ(x1, x2) 和单位圆

Bk4 Ch14 03.py 绘制图5和图6。

采用单位圆作为限制条件是为了简化瑞利商对应的优化问题,而且单位圆正好是单位向量终 点的落点。实际上满足瑞利商最大值的点 (x_1, x_2) 有无数个,它们都位于特征向量 v_1 所在直线上。 我们能从图 7 中一睹瑞利商 $R(x_1, x_2)$ 曲面形状真容,以及瑞利商最大值和最小值对应的 (x_1, x_2) 坐 标值。

▲ 注意, 瑞利商 R(x1, x2) 在 (0,0) 没有定义。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 7. 三维空间中可视化瑞利商

再举两个例子

给定矩阵A:

$$A = \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$
 (58)

它的特征值分别为 $\lambda_1 = 1$, $\lambda_2 = 0$ 。 $f(x_1, x_2)$ 等高线和曲面如图 5 (b) 和图 6 (b)所示。

图 5 (c) 等高线对应的矩阵 A 为:

$$A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \tag{59}$$

它的特征值分别为 $\lambda_1 = 1$, $\lambda_2 = -1$ 。图 6 (c) 所示为 $f(x_1, x_2)$ 曲面的形状。

三维空间

以上探讨的三种情况都是以 2×2 矩阵为例。在三维空间中,D=3 这种情况,(44) 对应的是一个单位圆球体,将 $f(x_1, x_2, x_3)$ 三元函数的数值以等高线的形式映射到单位圆球体,得到图 8。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger:https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 8. 三维单位球体表面瑞利商值等高线

14.6 再谈椭圆:特征值分解

从《数学要素》一册开始,本系列丛书几次三番谈及椭圆。这是因为圆锥曲线,特别是椭圆,在机器学习中扮演重要角色。本章最后将结合线性变换和特征值分解再聊聊椭圆。

平面上,圆心位于原点半径为 1 的正圆叫做单位圆 (unit circle),解析式可以写成如下形式:

$$\boldsymbol{z}^{\mathrm{T}}\boldsymbol{z} - 1 = 0 \tag{60}$$

其中 z 为,

$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \tag{61}$$

利用 L^2 范数, (60) 可以写成:

$$||z|| = 1 \tag{62}$$

经过A 映射向量z变成x:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A\mathbf{z} \tag{63}$$

假设A可逆,也就是说A对应的几何操作可逆,z可以写成:

$$z = A^{-1}x \tag{64}$$

将 (64) 代入 (60) 得到:

$$(A^{-1}x)^{\mathrm{T}} A^{-1}x - 1 = 0$$
 (65)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

利用 L^2 范数, (65) 还可以写成:

$$\left\| \mathbf{A}^{-1} \mathbf{x} \right\| = 1 \tag{66}$$

整理上式得到如下二次型:

$$\boldsymbol{x}^{\mathrm{T}} \underbrace{\left(\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}\right)^{-1}}_{\boldsymbol{\theta}} \boldsymbol{x} - 1 = 0 \tag{67}$$

举个例子

以本章开头 (8) 给出的矩阵 A 为例,在 A 的映射下 $z \rightarrow x = Az$:

$$x = \begin{bmatrix} 1.25 & -0.75 \\ -0.75 & 1.25 \end{bmatrix} z \tag{68}$$

如图9所示,满足(60)的向量z终点落在单位圆上。经过x=Az 映射后,向量x终点落在旋转椭圆上。

图 9. 单位圆到旋转椭圆

将(8)给定A代入(67),得到图9右侧旋转椭圆解析式如下:

$$2.125x_1^2 + 3.75x_1x_2 + 2.125x_2^2 - 1 = 0 (69)$$

如果有人问我们,图9右侧旋转椭圆的半长轴、半短轴多长?椭圆长轴旋转角度多大?为了解决这些问题,我们需要借助特征值分解。

特征值分解

令 Q 为:

$$Q = (AA^{\mathrm{T}})^{-1} = \begin{bmatrix} 2.125 & 1.875 \\ 1.875 & 2.125 \end{bmatrix}$$
 (70)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

 AA^{T} 显然是个对称矩阵,对称矩阵的逆还是对称矩阵,因此 Q 是对称矩阵。对 Q 进行特征值分解得到:

$$Q = (AA^{\mathsf{T}})^{-1} = V\Lambda V^{\mathsf{T}} \tag{71}$$

强调一下,本节特征值分解的对象为 $(AA^{\mathsf{T}})^{-1}$,而不是A。

利用 (8) 给定 A 计算 Q 具体值, 并特征值分解得到:

$$\begin{bmatrix}
2.125 & 1.875 \\
1.875 & 2.125
\end{bmatrix} = \begin{bmatrix}
\sqrt{2}/2 & -\sqrt{2}/2 \\
\sqrt{2}/2 & \sqrt{2}/2
\end{bmatrix} \begin{bmatrix}
4 & 0 \\
0 & 0.25
\end{bmatrix} \begin{bmatrix}
\sqrt{2}/2 & \sqrt{2}/2 \\
-\sqrt{2}/2 & \sqrt{2}/2
\end{bmatrix} \tag{72}$$

大家已经清楚上式中的 V、 Λ 对应的几何操作分别是"旋转"、"缩放"。请大家注意, Λ 并不是单位圆到椭圆的缩放比例。我们还需对 Λ 再多一步处理。

几何视角:缩放 → 旋转

整理 (71) 得到 AA^{T} 对应的特征值分解:

$$AA^{T} = (V\Lambda V^{T})^{-1} = (V^{T})^{-1} \Lambda^{-1}V^{-1} = V\Lambda^{-1}V^{T}$$

$$= V\Lambda^{\frac{-1}{2}}\Lambda^{\frac{-1}{2}}V^{T} = V\Lambda^{\frac{-1}{2}}\left(V\Lambda^{\frac{-1}{2}}\right)^{T}$$
(73)

由于 Q 为对称矩阵,特征值分解得到的 V 为正交矩阵,因此存在 $V^{\mathsf{T}}V = VV^{\mathsf{T}} = I$ 。如上推导用到了这个关系。

上式告诉我们 A 相当等价于:

$$A \sim VA^{-\frac{1}{2}} \tag{74}$$

注意, $A \neq VA^{\frac{-1}{2}}$ 。这是因为, $AA^{T} = BB^{T}$,不能推导得到 A = B。本书第 5 章强调过这一点。

从几何角度来看,A 这个映射相当于被分解成"旋转 (V) + 缩放 ($\Lambda^{\frac{1}{2}}$)"。将 (74) 代入 (63),得到:

$$x = V \Lambda^{\frac{-1}{2}} z \tag{75}$$

z 先经过缩放 $(\Lambda^{\frac{1}{2}})$ 得到 y, y 经过旋转 (V) 得到 x:

$$y = \Lambda^{\frac{-1}{2}} z$$

$$x = Vy = V\Lambda^{\frac{-1}{2}} z$$
(76)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 10 所示为上述"单位圆 \rightarrow 正椭圆 \rightarrow 旋转椭圆"几何变换过程。比较图 9 和图 10,容易发现形状上旋转椭圆完全相同。但是大家如果仔细比较图 9 和图 10 上,可以发现"彩灯"位置并不相同。这个差异来自于 $AA^{T}=BB^{T}$ 不能推导得到 A=B。

图 10. 单位圆 → 正椭圆 → 旋转椭圆

椭圆长、短轴

利用 y 和 z 的关系, (60) 可以写成:

$$\mathbf{y}^{\mathrm{T}} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{y} - 1 = 0 \tag{77}$$

即:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}^T \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} - 1 = 0 \quad \Rightarrow \quad \lambda_1 y_1^2 + \lambda_2 y_2^2 = 1$$
 (78)

写成大家熟悉的椭圆形式:

$$\frac{y_1^2}{\left(1/\sqrt{\lambda_1}\right)^2} + \frac{y_2^2}{\left(1/\sqrt{\lambda_2}\right)^2} = 1\tag{79}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

如果 $\lambda_1 > \lambda_2 > 0$,上式中这个正椭圆的半长轴长度为 $\sqrt{1/\lambda_2}$,半短轴长度为 $\sqrt{1/\lambda_4}$ 。实际上,我们在本书第 5 章接触过这个结论。

代入具体值,得到:

$$\frac{y_1^2}{0.5^2} + \frac{y_2^2}{2^2} - 1 = 0 \tag{80}$$

图 11 所示为旋转椭圆的长轴、短轴位置,以及半长轴、半短轴长度。

图 11. 旋转椭圆长轴、短轴

本章主要着墨在特征值分解的应用,比如方阵开方、矩阵指数、斐波那契数列、马尔科夫过 程平衡状态等等。

本章特别值得注意的一个知识点是瑞利商,数据科学和机器学习很多算法中都离不开瑞利商。希望大家能从几何视角理解瑞利商的最值。本书还将在拉格朗日乘子法中继续探讨瑞利商。

本章最后讨论了如何用特征值分解获得旋转椭圆的半长轴、半短轴长度,以及旋转角度等位 置信息。这部分内容和《概率统计》一册中多元高斯分布关系密切。

图 12. 总结本章重要内容的四副图

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com