

Le cours de Biostatistiques

Xavier Nogues, André Garenne, Xavier Bouteiller, Virgil Fievet

▶ To cite this version:

Xavier Nogues, André Garenne, Xavier Bouteiller, Virgil Fievet. Le cours de Biostatistiques. Dunod, 2018, 978-2-10-076976-6. hal-01939213

HAL Id: hal-01939213 https://inria.hal.science/hal-01939213

Submitted on 30 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BIOSTATISTIQUE

Tout le catalogue sur www.dunod.com

DUNOD

ÉDITEUR DE SAVOIRS

Xavier Noguès, André Garenne, Xavier Bouteiller, Virgil Fiévet

TOUT EN FICHES

LICENCE 3/MASTER/ÉCOLES D'INGÉNIEURS

LE COURS DE

BIOSTATISTIQUE

110 FICHES DE COURS 120 SCHÉMAS 50 QCM

Illustration de couverture : © Sonja Calovini / fotolia.com

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

DANGER

11, rue Paul Bert, 92240 Malakoff www.dunod.com

ISBN 978-2-10-076976-6

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

Table des matières

Avant-pro	pos	IX	
Comment utiliser cet ouvrage ?			
Remerciements			
Chapitr	e 1 Méthodologie de la recherche et vocabulaire de base		
Fiche 1	Le déroulement d'une recherche	2	
Fiche 2	Trois approches complémentaires : approche observationnelle,		
	expérimentation et simulation	6	
Fiche 3	Le statut des variables dans la recherche et le contrôle des facteurs	8	
Fiche 4	Les types d'hypothèses au cours d'une recherche	10	
Fiche 5	Qu'est-ce qu'une interaction statistique ?	12	
Fiche 6	Généralisation du concept d'interaction statistique	14	
Fiche 7	Les approches expérimentale et quasi-expérimentale	16	
Fiche 8	Comment choisir une variable dépendante ?	18	
Fiche 9	La conception d'un plan expérimental	22	
Fiche 10	Comment neutraliser l'effet des facteurs secondaires ?	26	
Fiche 11	Quel plan expérimental faut-il mettre en œuvre ?	28	
Fiche 12	Comment constituer un échantillon représentatif?	32	
Fiche 13	Pourquoi les biologistes doivent-ils faire des statistiques ?	34	
Focus	Biologistes, devenez célèbres grâce aux statistiques!	36	
QCM		39	
Chapitr	e 2 Comprendre les statistiques		
Fiche 14	Paramètres de positions	42	
Fiche 15	Indices de dispersion d'une population	44	
Fiche 16	Indices de dispersion d'une population estimés à partir d'un échantillon	48	
Fiche 17	Logique de raisonnement des statistiques inférentielles et notion de p-value	50	
Fiche 18	Les méthodes de rééchantillonnage	52	
Fiche 19	Comprendre le test de comparaisons de moyennes « t de Student »	54	
Fiche 20	L'utilisation des tables pour le test t de Student	58	
Fiche 21	Hypothèses fortes, hypothèses faibles, tests uni- et bilatéraux	60	
Fiche 22	Comprendre la notion d'appariement et de mesures répétées	64	
Fiche 23	Le théorème central limite et les principales lois de probabilité	66	
Fiche 24	Les risques d'erreurs de première et deuxième espèce	70	
Fiche 25	L'intervalle de fluctuation et intervalle de confiance	72	
Fiche 26	Puissance d'un test et taille minimale d'échantillons	74	
Fiche 27	Comprendre la formule de l'analyse de variance à un facteur	76	
Fiche 28	Comprendre la covariance et la corrélation	80	
Fiche 29	Régression linéaire, coefficient de détermination et analyse de la variance	84	
Fiche 30	Les tests non paramétriques	88	
Fiche 31	Principe des tests non paramétriques « par rangs »	90	
Fiche 32	Le principe du test du χ^2	92	
Fiche 33	Les analyses multivariées : comprendre l'analyse en composantes principales	96	
Focus	Comment faire un tour de magie avec les statistiques :		
	le théorème central limite	100	
QCM		103	

Chapitre	e 3 Notions de base pour utiliser R en statistiques	
Fiche 34	Les fondamentaux du logiciel R	106
Fiche 35	Création et manipulation de variables	108
Fiche 36	Les variables à deux dimensions	112
Fiche 37	Principe d'utilisation des bibliothèques (packages)	115
Fiche 38	Manipulation des données	116
Fiche 39	Fonctions graphiques de base	120
Fiche 40	Comment tracer des courbes avec R?	122
Fiche 41	Les graphiques statistiques avec R	124
Fiche 42	Les tests statistiques avec R	127
Fiche 43	L'écriture de scripts	130
Fiche 44	L'utilisation des boucles	133
Fiche 45	Créer ses propres fonctions	135
Focus	Utilisons R pour fabriquer nos propres tests statistiques	137
QCM		139
Chapitre	e 4 Choisir le test approprié	
Fiche 46		
Fiche 46	Clé : étude de l'effet de facteurs sur une seule variable dépendante quantitative	142
Fiche 47	Clé : questions posées sur un échantillon unique	144
Fiche 48	Clé : étude de l'effet d'un facteur unique sur une	
	seule variable dépendante exprimée en rangs	145
Fiche 49	Clé : étude de l'effet d'un facteur unique sur une seule variable dépendante qualitative	146
Fiche 50	Clé : étude des relations entre quelques variables	
	observées ou dépendantes	148
Fiche 51	Clé : plusieurs variables observées, analyses multivariées	149
Fiche 52	La distribution des données suit-elle une loi normale ?	150
Fiche 53	Vérification de normalité en ANOVA et régression	154
Fiche 54	Transformations mathématiques de variables sans perte d'information	156
Fiche 55	Transformations en rangs	158
Fiche 56	Transformation en classes ou en modalités	160
Fiche 57	Normalisation : centrage et réduction	162
Focus	« Normale » ou « pas normale » ?	164
Focus	Test « paramétrique » ou « non paramétrique » ?	167
QCM		169
Chapitre	e 5 Les tests paramétriques pour analyses univariées	
Fiche 58	Comment comparer une moyenne observée	
Tierie 30	à une moyenne théorique ?	172
Fiche 59	Le test <i>t</i> de Student pour échantillons indépendants et la correction de Welch	174
Fiche 60	Le test <i>t</i> de Student pour échantillons appariés	178
Fiche 61	L'analyse de variance à un facteur pour échantillons	
Fi-l- 63	indépendants et le test de Tukey	180
Fiche 62	Les tests de comparaisons multiples	184
Fiche 63	La procédure de comparaisons planifiées et les corrections de Bonferroni et de Sidak	186
Fiche 64	L'analyse de variance à 1 facteur en mesures répétées	190
Fiche 65	La condition de sphéricité en ANOVA en mesures répétées	192
Fiche 66	L'ANOVA pour plans factoriels équilibrés	194

Fiche 67	L'ANOVA vue comme un modèle linéaire	198
Fiche 68	L'ANOVA pour plans hiérarchisés	200
Fiche 69	L'ANOVA pour plans mixtes (modèle III)	202
Fiche 70	L'ANOVA à plusieurs facteurs pour plans déséquilibrés	206
Fiche 71	La régression linéaire simple	210
Fiche 72	La régression linéaire multiple (RLM)	212
Fiche 73	Comment gérer de nombreux facteurs en RLM : les régressions par pas	216
Fiche 74	La régression par les moindres carrés partiels	221
Fiche 75	L'ANCOVA	224
Fiche 76	Comment comparer deux variances : le test de Snedecor	226
Fiche 77	Les tests d'hétérogénéité de variances	228
Focus	Faut-il ajouter un « s » à « statistique » ?	231
QCM		233
Chapitre	e 6 Les tests non paramétriques pour analyses univariées	
Fiche 78	Le test <i>U</i> de Mann-Whitney	236
Fiche 79	Le test de Kruskal-Wallis	240
Fiche 80	Le test T de Wilcoxon	242
Fiche 81	Le test de Friedman	244
Fiche 82	Quels tests <i>post hoc</i> utiliser après un test sur les rangs	246
Fiche 83	Le test du χ^2 sur table de contingence	248
Fiche 84	Le calcul de probabilité exacte (CPE) de Fisher	250
Fiche 85	Comment comparer une proportion observée	230
TICHE 65	à une proportion théorique	252
Fiche 86	Comment comparer plusieurs proportions indépendantes	254
Fiche 87	Comment comparer deux proportions en échantillons appariés : le test de McNemar	258
Fiche 88	Comment comparer plus de deux proportions en échantillons appariés : le test Q de Cochran	260
Fiche 89	Comment comparer deux distributions empiriques : le test de Kolmogorov-Smirnov	262
Fiche 90	Comment comparer une distribution empirique à une distribution théorique	264
Fiche 91	Les tests d'asymétrie et d'aplatissement	268
Focus	Les tests statistiques à l'épreuve des tests statistiques : crash test	270
QCM		273
Chapitre	e 7 Les analyses multivariées	
-	-	270
Fiche 92	Le coefficient de corrélation de Pearson et le coefficient de détermination	276
Fiche 93	Les corrélations de rangs	278
Fiche 94	Les coefficients de corrélations partielles	282
Fiche 95	Comparaison de deux coefficients de corrélations de Pearson	284
Fiche 96	Analyse de variance multivariée (MANOVA)	286
Fiche 97	L'algorithme des k-moyens	288
Fiche 98	Le positionnement multidimensionnel non métrique	292
Fiche 99	La classification ascendante hiérarchique (CAH)	296
	L'analyse en composantes principales (ACP) : la préparation des données	300
	L'ACP : choix du nombre d'axes à conserver	304
	L'ACP : interprétation de l'espace factoriel	306
	L'ACP : l'analyse des individus	308
Fiche 104	L'ACP : variables supplémentaires	310

L'ACP : individus supplémentaires	312
L'analyse factorielle des correspondances (AFC)	314
L'analyse des correspondances multiples (ACM)	318
Les variables supplémentaires en ACM	322
La CAH couplée à une analyse factorielle	324
L'analyse factorielle discriminante (AFD)	328
L'ACP, les « véritables » analyses factorielles et les pistes pour la biologie	333 335
	337
	347
	357
	L'analyse factorielle des correspondances (AFC) L'analyse des correspondances multiples (ACM) Les variables supplémentaires en ACM La CAH couplée à une analyse factorielle L'analyse factorielle discriminante (AFD)

Avant-propos

Un grand nombre de personnes aiment remplir des grilles de mots croisés ou de sudokus, nous pensons que le même plaisir peut être pris en apprenant les statistiques.

1. À qui cet ouvrage s'adresse-t-il?

En premier lieu, cet ouvrage s'adresse aux étudiants en **licence de biologie**, des filières **de la santé à l'écologie**, mais le programme traité est également assez proche de celui dispensé en **sciences humaines**. Il s'adresse également aux étudiants de **master** dans ces disciplines, même si la couverture de l'ensemble des programmes aurait conduit à la rédaction d'un traité plutôt que d'un manuel. L'étudiant en biologie classique (biochimie, neurosciences, physiologie animale et végétale, biologie cellulaire, génétique...) y retrouvera la quasi-totalité de son programme. L'épidémiologiste ou l'écologue devront approfondir les analyses multivariées pour lesquelles cet ouvrage ne propose qu'une sensibilisation. Nous espérons que cet ouvrage apportera des solutions aux **chercheurs** (**doctorants et statutaires**), tout en les incitant et les aidant à réactualiser leurs connaissances. Enfin, nous serions pleinement satisfaits si cet ouvrage pouvait aussi apporter, un réel plaisir aux **autodidactes** qui souhaitent se former à la pratique des statistiques.

2. Pourquoi un manuel supplémentaire en biostatistiques ?

Sans hésitations, nous répondons :

- parce que la pratique des statistiques par les biologistes a fortement évolué,
- parce que notre pratique de l'enseignement des biostatistiques nous incite à rénover et à repenser la didactique de cette discipline lorsque la formation s'adresse à des biologistes.

La pratique des biostatistiques évolue

En quarante ans, la pratique des statistiques a subi une révolution dans les laboratoires de biologie. Durant les années 1980, les tests de Student étaient effectués à la calculatrice et étaient employés comme tests de comparaisons multiples. Des analyses de variances étaient réalisées grâce à des ordinateurs, mais les données devaient être saisies à nouveaux en cas d'erreur. Au début des années 2000 les ordinateurs commencent à envahir les laboratoires, les experts de revues formulent des critiques sur les méthodes statistiques, et les logiciels de statistiques se développent.

Aujourd'hui, l'informatique a mis une très grande variété de méthodes statistiques à disposition de tous. La compétence du biologiste a donc dû évoluer. Il devient inutile de savoir calculer une statistique pour la comparer aux valeurs des tables. En revanche, il est nécessaire de connaître un grand nombre de procédures et de pouvoir justifier ses choix au moment de la présentation de résultats. Il faut également savoir se servir d'un logiciel de statistiques et interpréter correctement les résultats.

C'est vers l'acquisition de ces compétences que cet ouvrage est orienté.

Pédagogie et didactique des statistiques enseignées à des biologistes

Nos étudiants ne se sont pas engagés dans des études de biologie parce qu'ils espéraient y faire des statistiques. De plus, ils sont habitués à raisonner à partir de situations concrètes plus que sur des abstractions mathématiques. Pour ces deux raisons, nous expliquons ici les statistiques en nous basant sur des exemples concrets issus de la biologie et par une approche la plus intuitive possible.

Le langage. Pour la majorité des biologistes, les statistiques sont une activité intermittante. Les unités d'enseignement de statistiques sont souvent espacées de plusieurs mois, et le chercheur ne se plonge dans les statistiques qu'au moment du traitement de ses résultats. Dans cette perspective, nous avons tenté de respecter le langage des biologistes plus que celui des mathématiciens : nous avons considéré ici, que le lecteur doit faire le moins d'efforts possibles pour s'adapter à un langage qui n'est pas le sien, lorsqu'il ouvre son manuel après plusieurs semaines passées en cours de biologie, à la paillasse ou sur le terrain.

Pédagogie active. Sur le plan pédagogique, de nombreux enseignants sont à la recherche d'une approche permettant de faciliter l'enseignement des statistiques aux biologistes. Dans cet ouvrage, nous avons opté pour une pédagogie active sur plusieurs plans, sachant qu'un des grands principes de cette approche réside dans le fait que l'apprenant doit être acteur dans la construction de son savoir. Nous inspirant de l'« approche problème », chaque fiche s'ouvre sur une mise en situation. C'est également dans cette perspective que nous conduisons le lecteur à reconstruire les formules de plusieurs statistiques plutôt que de les lui expliquer. Nous l'incitons, par ailleurs, à mettre en application l'usage des tests au fur et à mesure avec le logiciel R.

Mini-apprentissage. Nous avons été séduits par les potentialités qu'offraient le format de la collection « Tout le cours en fiches ». Ce concept présente au moins deux atouts. Le premier est qu'il permet une forme de « mini-apprentissage », situé entre le micro-apprentissage (qui est une méthode d'apprentissage par séquences très courtes, de quelques secondes à trois minutes) et l'apprentissage plus approfondi. L'apprentissage d'une fiche de cet ouvrage nécessite quelques minutes de concentration. Lors de la lecture d'une entité d'un ouvrage classique, le plus souvent un chapitre, il est très difficile de reprendre là où l'on s'est arrêté. Ce format proposant de ne traiter qu'un seul concept par fiche permet l'acquisition d'entités cohérentes en une seule séance de lecture.

Pédagogie différentiable. Enfin, le format des fiches se prête à une certaine différenciation pédagogique, puisque le lecteur peut personnaliser sa lecture de l'ouvrage en fonction de ses motivations, de son rythme et de son style cognitif. Un apprenant classique pourra lire les fiches dans l'ordre et avec la logique qui lui est proposée. Un autre, plus impatient ou plus original, pourra lire l'ouvrage dans l'ordre qu'il souhaite, n'abordant certaines fiches de début d'ouvrage que lorsqu'il en ressent le besoin. Ainsi, les connaissances fondamentales (rébarbatives pour certains), pourront n'être abordées qu'au moment où elles apparaissent comme un besoin et perdront, par la même occasion, leur côté ennuyeux.

3. Comment utiliser ce manuel?

L'étudiant en licence de biologie devrait trouver dans cet ouvrage la totalité du programme élaboré par les équipes pédagogiques. La structure « en fiches » lui fournira un soutien à l'enseignement qu'il reçoit, par une approche probablement différente et complémentaire, ce qui constitue un des intérêts de cet ouvrage. L'étudiant en master et le chercheur seront probablement plus intéressés par les clés de choix et les différentes solutions proposées pour résoudre leurs problèmes et exploiteront les chapitres 1 et 2 pour vérifier les formalisations qu'ils en font.

Niveaux de difficulté

En plus des outils très pratiques proposés par la collection, le lecteur trouvera une classification des niveaux des différentes fiches ou paragraphes afin de l'aider à calibrer son attention :

- le niveau « débutant », concerne les parties faciles normalement acquises en licence ;
- le niveau « amateur », concerne des concepts demandant plus de concentration, soit parce que leur acquisition est plus difficile, soit parce que leur maîtrise est incontournable;
- le niveau « expert », concerne des méthodes acquises généralement en master. Ces méthodes ne sont pas forcément plus difficiles que celles qui ont été apprises en licence, mais demandent souvent un minimum de connaissances en statistiques. Elles peuvent d'ailleurs présenter un côté ludique qui devrait inciter les étudiants de licence à aller plus loin.

Jeux de données. Les jeux de données sont disponibles sur le site www.dunod.com (sur la page de présentation de l'ouvrage) afin de permettre au lecteur de mettre en pratique ses connaissances au fur et à mesure de la lecture de l'ouvrage. Comme nous l'avons expliqué, notre motivation en écrivant cet ouvrage est avant tout de faciliter l'apprentissage des statistiques. Nous n'avons donc pas hésité à simplifier ou à modifier des jeux de données existants, voire même à créer ces jeux de données de toutes pièces. Nous comptons donc sur le lecteur pour les considérer dans cet unique objectif, et surtout, ne pas citer ces travaux virtuels dans le cadre d'un mémoire!

En résumé, à travers cet ouvrage nous souhaitons aider les étudiant à passer leur examen avec succès, mais également leur fournir les compétences qui leurs seront utiles lorsqu'ils intègreront des équipes de recherches. Nous espérons qu'il aidera les chercheurs en biologie dans le traitement leurs données et qu'il donnera à tous, l'envie de se former aux biostatistiques avec plaisir et curiosité.

Pas de marque Débutant Amateur

Les trois niveaux de pratique.

Comment utiliser

110 fiches de cours

cet ouvrage?

Les corrigés commentés

Remerciements

Nous tenons à remercier chaleureusement nos collègues qui ont accepté de participer au comité de lecture, pour leurs relectures parfois très minutieuses, leur aide, leurs conseils et leurs encouragements. Il a été très enrichissant d'avoir leur avis, tant sur la structure de l'ouvrage que pour la diversité des approches et au sujet de la pédagogie des biostatistiques. Bien sûr, ces personnes qui nous ont apporté leur aide ne sont pas responsables des erreurs qui pourraient persister dans cet ouvrage, ni des avis, choix et arbitrages que nous avons dû faire tout au long de la rédaction.

Nous sommes donc très heureux de pouvoir remercier :

- Leslie Regad, maître de conférences à l'université Paris Diderot,
- Franck Brignolas, professeur à l'université d'Orléans,
- Lionel Denis, professeur à l'université de Lille,
- Léo Gerville-Réache, maître de conférences à l'université de Bordeaux,
- Gilles Hunault, maître de conférences à l'université d'Angers,
- Laurent Pezard, professeur à l'université de Provence.

Enfin, nous remercions Laëtitia Hérin et Vanessa Beunèche des éditions Dunod, avec qui nous avons eu grand plaisir à travailler, et nos familles pour leur patience pendant ces huit mois de rédaction.