Running GEANT4 Functions on a GPU Discussion of Results

Stuart Douglas – dougls2 Rob Gorrie – gorrierw Matthew Pagnan – pagnanmm Victor Reginato – reginavp

McMaster University

April 8, 2016

Overview

- 1 Introduction
 - Brief Project Overview
 - Explanation of Terms
 - Scope
 - Purpose
- 2 Features
 - All projects can run in CPU or GPU environment
 - Able to build GEANT4 with GPU on or off
- 3 Particle Simulations on GPU
 - Entire G4ParticleHPVector Object on GPU
 - Intensive Functions on GPU
 - Performance
 - Accuracy
 - Testing
 - Implementation 2
 - Performance

Brief Project Overview

Take an existing particle simulation toolkit - GEANT4 - and have some functions run on a GPU device to improve performance.

Definition: GEANT4

GEANT4 is

What is GEANT4

- Geant4 is a toolkit that is meant to simulate the passage of particles through matter.
- It has been developed over the years through collaborative effort of many different institutions and individuals.
- Geant4 has many different applications, including applications in high energy physics, space and radiation, medical.

What is GP-GPU

- General purpose graphic processing unit computing is a re-purposing of graphics hardware
- Allows GPUs to perform computations that would typically be computed on the CPU
- If problems are suitable to mass parallelization

Brief Project Overview Explanation of Terms Scope Purpose

Scope

Brief Project Overviev Explanation of Terms Scope Purpose

Purpose

All projects can run in CPU or GPU environment

Able to build GEANT4 with GPU on or off

Why G4ParticleHPVector

Two Implementations

- Run everything on the GPU
- Only select functions run on GPU

Completely on GPU

- The vector is stored exclusively on the GPU
- Do not have to maintain a copy of the vector on the CPU
- + Do not have to maintain the hashed vector
- + Reduces how much is being copied to the GPU
- All functions are run on the GPU

Intensive Functions on GPU

Performance Results

Performance Discussion

Accuracy

Testing

Implementation 2

- + Only functions that run faster on the GPU are implemented
- + Not forced to run functions that run slowly on GPU
- Will have to maintain two copies of the vector
- More copying the vector to and from the GPU

Performance Summary

- Most functions slower on GPU until ~10,000 entries
- Most commonly-used functions significantly slower on GPU
 - Lots of data accesses
- Many problems in vector class not well-suited to parallelism

Performance Results - Times

Multiplies each point in vector by factor

Performance Discussion

Accuracy

Testing

Summary of Results

Recommendations