결측치 확인: isnull, isna

확인 필요한 상황

- **데이터 품질 검증**: 데이터를 처음 불러온 후, 각 변수에 결측치가 얼마나 포함되어 있는지 확인하여 데이터의 완전성을 평가할 때.
- 결축치 처리 전략 수립: 결축치의 개수와 비율을 파악하여, 해당 변수를 제거할지, 특정 값으로 채울지(대체), 아니면 결축치를 예측하는 모델을 만들지 등의 처리 방법을 결정하기 전 단계.
- 데이터 시각화: seaborn의 heatmap과 결합하여 데이터셋 전체의 결측치 분포 패턴을 시각적으로 확인 할 때.

예제 데이터프레임 생성

• Numpy의 np.nan과 Python 내장 None은 모두 Pandas에서 결측치로 인식된다.

1. isnull() / isna()

- 데이터프레임 또는 시리즈의 각 원소가 결측치인지 아닌지를 검사하여, 결측치이면 True, 아니면 False 를 담은 불리언(Boolean) 객체를 반환
- 메서드 자체만으로는 결측치의 위치만 알 수 있으며, 개수를 파악하려면 sum()을, 비율을 파악하려면 mean()을 함께 사용해야함

```
# isnull()을 사용하여 결측치 위치 확인
print("--- isnull() result ---")
print(df.isnull())
'''
--- isnull() result ---
        A   B   C   D
0 False False False True
1 False True False True
2 True True False True
3 False False False True
'''
# isna()는isnull()과 동일한 결과를 반환합니다.
# print(df.isna())
```

2. isnull().sum()

- 각 열에 있는 결측치의 총 개수를 계산
- sum() 함수는 기본적으로 열(axis=0) 단위로 합계를 계산
 - o 행(axis=1) 단위로 결측치 개수를 세려면 axis=1 인자를 추가 필요

```
# 각 열의 결측치 개수 확인
print("--- Missing values per column ---")
print(df.isnull().sum())
--- Missing values per column ---
   1
Α
    2
R
С
    a
    4
D
dtype: int64
# 전체 데이터프레임의 총 결측치 개수 확인
print("\n--- Total missing values in DataFrame ---")
print(df.isnull().sum().sum())
--- Total missing values in DataFrame ---
1.1.1
```

3. 결측치 비율 확인

• 전체 데이터 대비 결측치가 차지하는 비율을 확인하여, 결측의 심각성을 판단

```
# 각 열의 결측치 비율 확인

print("--- Missing value ratio per column ---")

print(df.isnull().mean() * 100)

'''

--- Missing value ratio per column ---
A 25.0
B 50.0
C 0.0
D 100.0
dtype: float64
```

• 결과 해석

- D 열은 100% 결측치이므로, 분석에 사용할 수 없어 제거 대상이 될 가능성이 높습니다.
- B 열은 50%의 높은 결측 비율을 가지므로, 단순한 평균값 대체보다는 더 정교한 처리 방법이 필요할 수 있습니다.

4. 결측치 시각화

- 결측치의 분포 패턴을 시각적으로 파악
- 주의사항: seaborn 라이브러리가 필요합니다. (pip install seaborn)

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(8, 5))
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.title('Missing Value Heatmap')
plt.show()
```


• 결과 해석: 히트맵에서 노란색(또는 지정된 색상)으로 표시된 부분이 결측치를 의미합니다. 이를 통해 특정 행이나 열에 결측치가 집중되어 있는지, 또는 무작위로 분포하는지 등의 패턴을 한눈에 파악할 수 있습니다.

장단점 및 대안

메서드	장점	단점	대안/보완
isnull()/ isna()	직관적이고 사용 하기 쉬움. Pandas의 기본 기능으로 추가 라이브러리 불필 요.	그 자체만으로는 요 약 정보를 주지 못하 고, sum()이나 mean()과 결합해야 함.	notnull() / notna(): isnull()/isna() 와 정반대로, 결측치가 아닌 유효한 값의 위치를 True로 반환함. 유효한 데이터의 개수를 셀 때 df.notnull().sum()과 같 이 사용할 수 있음.
isnull().sum()	각 열의 결측치 개수를 빠르고 간결하게 요약해 줌.	결측치의 위치나 패 턴에 대한 정보는 제 공하지 않음.	df.info(): Non-Null Count를 통해 결 측치 개수를 간접적으로 확인할 수 있으 며, 데이터 타입 정보까지 함께 제공함.

메서드	장점	단점	대안/보완
시각화 (Heatmap)	결측치 분포의 전체적인 패턴과 집중도를 시각적 으로 파악하는 데 매우 효과적.	데이터가 매우 클 경 우(행/열이 많을 경 우) 히트맵이 잘 보이 지 않거나 렌더링이 느려질 수 있음.	missingno 라이브러리 (pip install missingno): 결측치 시각화에 특화된 라이 브러리로, msno.matrix(), msno.bar() 등 더 다양하고 상세한 시각화 기능을 제 공함.