CRG 17/18 Meeting 1: Intro to Spirtes Glymour & Scheines (2000)

Discussant: Oisín Ryan

March 23, 2018

The Material

Causation, Prediction and Search (2001) by Spirtes, Glymour & Scheines. Second edition

First edition and reprint (1993, 2011) are different from second edition (2001):

- Much longer 1st chapter in 1st edition
- ▶ Different presentation of d-seperation in chapter 2 (misleading in first edition)
- New 12th chapter regarding cyclic graphs and feedback systems

For consistency lets stick to the 2nd edition

The Material

Causation, Prediction and Search (2001) by Spirtes, Glymour & Scheines. Second edition

First edition and reprint (1993, 2011) are different from second edition (2001):

- Much longer 1st chapter in 1st edition
- ▶ Different presentation of d-seperation in chapter 2 (misleading in first edition)
- New 12th chapter regarding cyclic graphs and feedback systems

For consistency lets stick to the 2nd edition

Apart from some brief parts of this presentation!

The Plan

- ▶ Week 1: Introduction and Chapter 1
- ▶ Week 2: Chapter 2
- ► Week 3: Chapter 3 (3.0 3.6)

Preface

Fundamental arguments:

- Return to a vision of statistics with the goal of making causal inferences or predicting effects of manipulations
- Arguments against inferring causes from statistics outside of experimental trials are unsound
- Experimental and observational design are subject to uniform principles

Preface

The theory:

- Two axioms relating casual structures and probability distributions
- Leads to asymptotically reliable search procedure (PC algorithm)
- ► Shows that current methods (e.g. regression model selection) are "radically suboptimal"
- Clarifies diverse topics: Simpson's paradox, experiment vs observation, errors in regression, retrospective vs prospective, variable selection

Notation

Variables:	capitalized, and in italics, e.g., X
Values of variables:	lower case, and in italics, e.g., $X = x$
Sets:	capitalized, and in boldface, e.g., V
Values of sets of variables:	lower case, and in boldface, e.g., $V = v$
Members of X that are not members of Y :	$\mathbf{X} \backslash \mathbf{Y}$
Error variables:	ε , δ , e
Independence of X and Y :	$X \perp \!\!\!\perp Y$
Independence of \mathbf{X} and \mathbf{Y} conditional on \mathbf{Z} :	$\mathbf{X} \perp \!\!\!\perp \mathbf{Y} \mathbf{Z}$
$\mathbf{X} \cup \mathbf{Y}$:	XY
Covariance of <i>X</i> and <i>Y</i> :	$COV(X,Y)$ or γ_{XY}
Correlation of <i>X</i> and <i>Y</i> :	$ ho_{XY}$
Sample correlation of <i>X</i> and <i>Y</i> :	r_{XY}
Partial Correlation of <i>X</i> and <i>Y</i> ,	
controlling for all members of set Z :	$\rho_{XY,\mathbf{Z}}$

Notation

	Variables:	capitalized, and in italics, e.g., X
	Values of variables:	lower case, and in italics, e.g., $X = x$
	Sets:	capitalized, and in boldface, e.g., V
	Values of sets of variables:	lower case, and in boldface, e.g., $V = v$
	Members of X that are not members of Y :	$\mathbf{X} \backslash \mathbf{Y}$
	Error variables:	ε, δ, e
	Independence of X and Y :	х⊥⊥у
	Independence of \mathbf{X} and \mathbf{Y} conditional on \mathbf{Z} :	$\mathbf{X} \perp \!\!\!\perp \mathbf{Y} \mathbf{Z}$
•	$\mathbf{X} \cup \mathbf{Y}$:	XY
	Covariance of <i>X</i> and <i>Y</i> :	$COV(X,Y)$ or γ_{XY}
	Correlation of <i>X</i> and <i>Y</i> :	$ ho_{XY}$
	Sample correlation of <i>X</i> and <i>Y</i> :	r_{XY}
	Partial Correlation of <i>X</i> and <i>Y</i> ,	
	Tartial Correlation of A and 1,	
	controlling for all members of set \mathbf{Z} :	$\rho_{XY.Z}$

Notation

Notation, proofs, results given for discrete variables

Generalises to continuous variables

- ▶ Probability distribution → Density function
- ightharpoonup Summations ightarrow integrals

$$\sum^{\rightarrow}$$
 - sum over values of the random variables

► For dichotomous X:

$$\sum_{X}^{\rightarrow} P(X|Y=0) = P(X=0|Y=0) + P(X=1|Y=0)$$

Many statisticians avoid explicit discussion of causality because:

- Causal claims have complexity and variety
- Claims about what did not happen, or what would have happened if some circumstance was changed

However most research is concerned with causal relationships

▶ Predict the effects of strategies/treatments

Traditionally missing a rigourous theory of causal inference from non-experimental observations

Conditioning is not intervening:

In many causal systems the probability of an event Y given an intervention to bring about an event X is different from the conditional probability of Y on X.

Three problems:

- 1. Clarifying the notion of a causal system with enough precision
- 2. Understanding possibilities and limitations for discovering such causal structures from different types of data
- 3. Characterizing probabilities predicted by a causal hypothesis given an intervention on variables

Approach

- 1. Using graphical formalism of Speed, Pearl and others
- 2. Discovery with algorithms developed from the mathematics of this graphical representation
- 3. Outline the theory of manipulation and its assumptions
 - ▶ Put these assumptions in a graphical framework

Manipulation and graphical approaches to causal inference

Counterfactual approaches - Rubin, Holland and others

- Missing data problem
- Causal hypotheses postulate a family of random variables, some of which never have their values observed
- What would have happened if everyone had received the treatment vs everyone received the control
- Specify models for treatment assignment and models for counterfactual outcomes
- Definition of causal effects in terms of hypothetical experiments

Graphical approaches - Spirtes, Glymour & Scheines, Pearl, Lauritzen

- Factorisation of joint densities with conditionals
- Connection between Directed Graphs, Markov conditions and probability densities
- Less focus on definition of causal effects probability is also vague and axiomatic
- ► Both Spirtes et al and Pearl claim Rubin framework as special cases

Directed Graphical Models reflect two fundamental causal notions

- 1. Absence of causal relation \rightarrow independence in probability
- 2. Probability is associated with control
 - lacktriangle Variation in X causes variation in Y ightarrow Y can be changed by altering X

Aim to characterize

- when alternative causal theories are indistinguishable by data
- which features are shared by all indistinguishable models