Иерархия памяти и эффективное программирование CUDA

Лекция 2

Запуск двух ядер на разных GPU

```
__global__ void add_kernel(int *c, const int *a, const int *b) //ядро 1
    int i = threadIdx.x;
    c[i] = a[i] + b[i];
__global__ void sub_kernel(int *c, const int *a, const int *b) //ядро 2
    int i = threadIdx.x;
   c[i] = a[i] - b[i];
}
int main()
  // определяем количество GPU
   // если GPU >= 2, то создаем стримы для двух разных GPU
    if (cudaSetDevice(0) != cudaSuccess) fprintf(stderr, "cudaSetDevice %d failed!", 0);
    cudaStream_t stream_gpu0;
    cudaStreamCreate(&stream gpu0);
    if (cudaSetDevice(1) != cudaSuccess) fprintf(stderr, "cudaSetDevice %d failed!", 1);
    cudaStream t stream gpu1;
    cudaStreamCreate(&stream_gpu1);
    // запуск ядер
    add kernel<<<1, arraySize, 0, stream gpu0>>>(dev0 c, dev0 a, dev0 b);
    sub kernel<<<1, arraySize, 0, stream gpu1>>>(dev1 c, dev1 a, dev1 b);
    return 0;
```

Типы памяти в CUDA

Тип памяти	Доступ	Уровень выделения	Скорость работы
Регистры	R/W	Per-thread	Высокая(on-chip)
Локальная	R/W	Per-thread	Низкая (DRAM)
Shared	R/W	Per-block	Высокая(on-chip)
Глобальная	R/W	Per-grid	Низкая (DRAM)
Constant	R/O	Per-grid	Высокая (L1 cache)
Texture	R/O	Per-grid	Высокая (L1 cache)

Пример многоядерных систем: архитектура G80 (2006 г)

Массив из потоковых мультипроцессоров

Streaming Multprocessor

Скорость доступа GTX-280

Тип памяти	Объем, Кб	Латентность, такты
Разделяемая память	16	40
Текстурный кеш L1	5	260
Текстурный кеш L2	256	370
Константный кеш L1	2	8
Константный кеш L2	8	81
Константный кеш L3	32	220
Кэш инструкций L1	4	-
Кэш инструкций L2	8	_
Кэш инструкций L3	32	-
Глобальная память	1024	450

Типы памяти в CUDA

- Самая быстрая shared (on-chip) и регистры
- Самая медленная глобальная (DRAM)
- Для ряда случаев можно использовать кэшируемую константную и текстурную память
- Доступ к памяти в CUDA идет отдельно для каждой половины warp'a (half-warp)

Работа с локальной памятью

- В архитектуре CUDA имеется аппаратное ограничение на количество используемых регистров одним потоков 63(CUDA < 3.0) и 255 (CUDA 3.5).
- Локальная память это область в глобальной памяти, выделенная компилятором для хранения локальных значений потоков.
- Локальная память используется для хранения локальных данных потоков в случае нехватки регистров или объявления локальных массивов внутри ядра без ключевого слова __shared .

Работа с константной памятью в CUDA

```
cudaError t cudaMemcpyToSymbol(const char * symbol, const void *src,
               size_t count, size_t offset, enum cudaMemcpyKind kind);
cudaError t cudaMemcpyFromSymbol(void * dst, const char * symbol,
               size t count, size t offset, enum cudaMemcpyKind kind);
cudaError_t cudaMemcpyToSymbolAsync(const char * symbol, const void *src,
               size t count, size t offset, enum cudaMemcpyKind kind,
               cudaStream t stream);
cudaError t cudaMemcpyFromSymbolAsync(void * dst, const char * symbol,
               size t count, size t offset, enum cudaMemcpyKind kind,
               cudaStream t stream);
Пример:
 constant float constData[256]; // константная память GPU
 float
                    hostData[256]; // данные в памяти CPU
       // скопировать данные из памяти CPU в константную память GPU
 cudaMemcpyToSymbol(constData, hostData, sizeof( data), 0,
 cudaMemcpvHostToDevice);
```

Работа с глобальной памятью в CUDA без выравнивания

```
cudaError t cudaMalloc
                           ( void ** devPtr, size t size );
cudaError_t cudaFree ( void * devPtr );
Доступ СРU к памяти:
cudaError t cudaMemcpy(void * dst, const void * src, size t size,
                                cudaMemcpyKind kind);
                        enum
cudaError t cudaMemcpyAsync(void * dst, const void * src, size t size,
                        enum
                                cudaMemcpyKind kind, cudaStream t stream);
cudaError t cudaMemcpy2D(void * dst, size t dpitch, const void * src,
                        size t spitch, size t width, size t height,
                        enum cudaMemcpyKind kind, cudaStream t stream);
cudaError_t cudaMemcpy2DAsync(void * dst, size_t dpitch, const void * src,
                        size_t spitch, size_t width, size_t height,
                        enum cudaMemcpyKind kind, cudaStream t stream);
```

Работа с глобальной памятью в CUDA с выравниванием

```
cudaError t cudaMallocPitch ( void ** devPtr, size t * pitch, size t width,
                               size t height );
 Доступ к элементам матрицы:
 T *item = (T*)((char*)baseAddress + row * pitch) + col;
Пример:
float * devPtr;
                         // pointer device memory
                         // allocate device memory
cudaMalloc ( (void **) &devPtr, 256*sizeof ( float );
                         // copy data from host to device memory
cudaMemcpy ( devPtr, hostPtr, 256*sizeof ( float ), cudaMemcpyHostToDevice );
                 // process data
                          // copy results from device to host
cudaMemcpy ( hostPtr, devPtr, 256*sizeof( float ), cudaMemcpyDeviceToHost );
                          // free device memory
cudaFree ( devPtr );
                                                                          10
```

Пример: транспонирование двух матриц

Дана матрица А размером NxN N кратна 16 Матрица расположена в глобальной памяти Организуем нити в 2D-грид из блоков 16x16

CUDA Grid

Программная модель CUDA

```
__global__ void transpose1(float* inData, float* outData, int n)
{
    unsigned int xIndex = blockDim.x*blockIdx.x + threadIdx.x;
    unsigned int yIndex = blockDim.y*blockIdx.y + threadIdx.y;
    unsigned int inIndex = xIndex + n*yIndex;
    unsigned int outIndex = yIndex + n*xIndex;
    outData[outIndex] = inData[inIndex];
}
```

Пример: перемножение двух матриц

Даны матрицы A и B размером NxN N кратна 16 Матрица расположена в глобальной памяти По одной нити на каждый элемент произведения Организуем нити в 2D-грид из блоков 16х16

$$c_{i,j} = \sum_{k=0}^{N-1} a_{i,k} \cdot b_{k,j}.$$

Пример: перемножение двух матриц. Использование глобальной памяти

```
global void kernel ( const float * a, const float * b, int n, float * c )
 int bx = blockIdx.x; // индексы блока
 int by = blockIdx.y; //
 int tx = threadIdx.x; // индексы нити внутри блока
 int ty = threadIdx.y; //
 float sum = 0.0f;
 // смещение для а[i][0]
 int ia = n * BLOCK SIZE * by + n * ty;
 // смещение для b[0][i]
 int ib = BLOCK SIZE * bx + tx;
 // смещение для результата
 int ic= n * BLOCK SIZE * by+ BLOCK SIZE * bx;
 // перемножаем и суммируем
 for( int k = 0; k < n; k++)
  sum+= a [ia+ k] * b [ib+ k*n];
 c [ic+ n * ty+ tx] = sum; // запоминаем результат
```

CUDA Grid

Оптимизация работы с памятью в CUDA

- Использование выравнивания
- Максимальное использование sharedпамяти
- Объединение нескольких запросов к глобальной памяти в один (coalescing)
- Использование специальных паттернов доступа к памяти, гарантирующих эффективный доступ
 - Паттерны работают независимо в пределах каждого half-warp'a

Использование выравнивания

```
struct vec3
  float x, y, z;
};
struct align (16) vec3
 float x, y, z;
};
```

- Размер равен 12 байт
- Элементы массива не будут выровнены в памяти

- Размер равен 16 байт
- Элементы массива всегда будут выровнены в памяти

Объединение запросов к глобальной памяти

- GPU умеет объединять ряд запросов к глобальной памяти в один блок (транзакцию)
- Независимо происходит для каждого half-warp'a
- Длина блока должна быть 32/64/128 байт
- Блок должен быть выровнен по своему размеру

Объединение (coalescing) для GPU c CC 1.0/1.1

- Нити обращаются к
 - 32-битовым словам, давая 64-байтовый блок
 - 64-битовым словам, давая 128-байтовый блок
- Все 16 слов лежат в пределах блока
- k-ая нить half-warp'a обращается к k-му слову блока

Объединение (coalescing) для GPU c CC 1.0/1.1

Объединение (coalescing) для GPU c CC 1.0/1.1

Not Coalescing

Доступ к структурам

```
struct A align (16)
   float a:
   float b;
   uint c;
};
A array [1024];
A a = array [threadIdx.x];
float a [1024];
float b [1024];
uint c [1024];
float fa = a [threadIdx.x];
float fb = b [threadIdx.x];
uint uc = c [threadIdx.x];
```

Работа с разделяемой памятью

1. Явное задание размера массива выделяемой памяти:

```
_global__ void incKernal(float * a)
     //явно задаем выделение 256*4 байтов на блок
 __shared__ float buf[256];
     // запись значения из глобальной памяти в разделяемую
buf[threadIdx.x] = a[blockIdx.x*blockDim.x + threadIdx.x];
2. Задание размера массива при запуске ядра:
 _global__ void kernal(float * a)
 __shared__ float buf[]; //размер явно не указан
     // запись значения из глобальной памяти в разделяемую
 buf[threadIdx.x] = a[blockIdx.x*blockDim.x + threadIdx.x];
// запустить ядро и задать выделяемый объем разделяемой памяти
 kernel < < dim3(n/256), dim(256), k*sizeof(float) >>> (a);
```

Пример: перемножение двух матриц. Использование разделяемой памяти

Для вычисления С'нужны А'и В'

Разложение требуемой подматрицы в сумму произведений матрицы 16x16

$$C' = A'_1 \times B'_1 + A'_2 \times B'_2 + \dots + A'_{N/16} \times B'_{N/16}.$$

Пример: умножение двух матриц. Использование разделяемой памяти

```
global void kernel(const float * a, const float * b, int n, float * c)
   int bx = blockIdx.x; // индексы блока
  int by = blockIdx.y; //
  int tx = threadIdx.x; // индексы нити внутри блока
  int ty = threadIdx.y; //
            aBegin = n * BLOCK SIZE * by;
int
int
            aEnd = aBegin + n -1;
int aStep = BLOCK SIZE;
            bBegin = bx * BLOCK SIZE;
int bStep = BLOCK SIZE*n;
           sum = 0.0f;
float
         ia = aBegin, ib = bBegin; ia <= aEnd; ia += aStep, ib += bStep )
for( int
__shared__ float as [BLOCK_SIZE];
shared float
                      bs [BLOCK SIZE][BLOCK SIZE];
as [ty][tx] = a [ia + n * ty + tx];
bs [ty][tx] = b [ib + n * ty + tx];
syncthreads (); // Убедимся, что подматрицы полностью загружены
            k = 0; k < BLOCK SIZE; k++)
for( int
sum += as [ty][k] * bs [k][tx];
syncthreads(); // Убедимся, что подматрицы никому больше не нужны
c [n * BLOCK SIZE * by + BLOCK_SIZE * bx + n * ty + tx] = sum;
```

Ускорение в 18 раз

CUDA Grid

Число чтений из глобальной памяти 2N/16

Эффективная работа с shared-памятью

- Для повышения пропускной способности вся shared-память разбита на 16 (CUDA 1.x) или 32 (CUDA 2.x/3.x) банков
- Каждый банк работает независимо от других
- Можно одновременно выполнить до 16 обращений к sharedпамяти
- Если идет несколько обращений к одному банку, то они выполняются последовательно
- Определение номера банка:
 - Номер банка = (Адрес в байтах/4)%32 для устройства версии 2.0
 - Номер банка = (Адрес в байтах/4)%16 для устройства версии 1.х

Эффективная работа с sharedпамятью

- Банки строятся из 32-битовых слов
- Подряд идущие 32-битовые слова попадают в подряд идущие банки
- Bank conflict несколько нитей из одного half-warp'a (CUDA 1.x) или из одного warp'a (CUDA 2.x/3.x) обращаются к одному и тому же банку
- Конфликта не происходит если все 16 нитей обращаются к одному слову (broadcast)

_	0	3	4	7	8	12	16	20	24	28	32	36	40	44	48	52	64
	bai 0	nk	bar 1	ık	bank 2	bank 3	bank 4	bank 5	bank 6	bank 7	bank 8	bank 9	bank 10	bank 11	bank 12	bank 13	bank 14

Бесконфликтные паттерны

доступа


```
__shared__ float buf [128]; // Объявили массив в разделяемой памяти.
// Каждая нить обращается к своему 32-битовому слову.
float v = buf [baseIndex + threadIdx.x];
```

Паттерны с конфликтами банков

Thread 0	Bank 0	Thread 0	Bank 0
Thread 1	Bank 1	Thread 1	Bank 1
Thread 2	Bank 2	Thread 2	Bank 2
Thread 3	Bank 3	Thread 3	Bank 3
Thread 4	Bank 4	Thread 4	Bank 4
Thread 5	Bank 5	Thread 5	Bank 5
Thread 6	Bank 6	Thread 6	Bank 6
Thread 7	Bank 7	Thread 7	Bank 7
Thread 8	Bank 8	Thread 8	Bank 8
Thread 9	Bank 9	Thread 9	Bank 9
Thread 10	Bank 10	Thread 10	Bank 10
Thread 11	Bank 11	Thread 11	Bank 11
Thread 12	Bank 12	Thread 12	Bank 12
Thread 13	Bank 13	Thread 13	Bank 13
Thread 14	Bank 14	Thread 14	Bank 14
Thread 15	Bank 15	Thread 15	Bank 15

- Справа несколько конфликтов, до 6-го порядка

Пример: умножение матрицы на транспонированную. Использование разделяемой памяти

```
__global__ void kernel (float * a, int n, float * c )
{
  int bx = blockIdx.x; // индексы блока
  int by = blockIdx.y; //
  int tx = threadIdx.x; // индексы нити внутри блока
  int ty = threadIdx.y; //
  //индекс первой подматрицы А, обрабатываемой блоком
  int aBegin = n*BLOCK_SIZE*by;
  int aEnd = aBegin+n-1;
  //индекс первой подматрицы В, обрабатываемой блоком
  int
        atBegin = n * BLOCK SIZE * bx;
  float sum = 0.0f;
  shared float as [BLOCK_SIZE][BLOCK_SIZE];
         shared float ats [BLOCK SIZE][BLOCK SIZE];
         as [ty][tx] = a [ia + n * ty + tx];
         ats [ty][tx] = a [iat + n * ty + tx];
         syncthreads (); // Убедимся, что подматрицы полностью загружены
         for( int k = 0; k < BLOCK_SIZE; k++ )</pre>
             sum += as [ty][k] * ats [tx][k];
         syncthreads(); // Убедимся, что подматрицы никому больше не нужны
    c [n * BLOCK SIZE * by + BLOCK SIZE * bx + n * ty + tx] = sum;
```

Пример: умножение матрицы на транспонированную. Использование разделяемой памяти

Единое адресное пространство

Начиная с CUDA 2.х реализовано единое адресное пространство.

Множество адресов поделено на участки

- локальной
- разделяемой
- глобальной памяти.

Существенно упрощает программирование алгоритмов с адресацией, зависящей от данных.

Влияние на производительность

• Количество вычислительных потоков.

От размера сетки блоков потоков и самого блока потоков зависит степень загруженности планировщиков графического ускорителя. Чем больше warp планирует планировщик, тем больше у него возможностей скрыть задержки, связанные с обращением в глобальную память. Кроме того, достаточно большие размеры сетки и блока обеспечат эффективное масштабирование на новых графических ускорителях без переписывания и перекомпилирования программы. Обычно рекомендуется порождать порядка 10^{5} потоков за один запуск ядра.

• Равномерность загрузки вычислительных потоков.

Неравномерность загрузки вычислительных потоков - очень частое явление, например, вычисления значений во внутренних и граничных узлах сетки явной разностной схемы обычно различаются. Однако, неравномерность загрузки потоков может привести к существенной деградации производительности. Во-первых это связанно с тем, что блок потоков завершается и освобождает мультипроцессор, когда все его потоки завершили исполнение. Во-вторых, запуск ядра завершается, когда все блоки потоков завершили исполнение.

Влияние на производительность

• Преобладание вычислений по отношению к загрузкам данных.

Для повышения производительности необходимо максимизировать количество производимых вычислений на единицу загружаемых данных из глобальной памяти. Минимизировать количество доступов в память помогает использование разделяемой памяти и кэшей, за счёт переиспользования одним и тем же или другими потоками близко расположенных данных.

• Локальность загружаемых данных.

Этот фактор напрямую следует из предыдущего. Увеличение локальности загружаемых данных на уровне warp позволяет уменьшить количество и объём транзакций в память и повысить эффективность работы кэшей. Увеличение локальности загружаемых данных на уровне блока потоков позволяет увеличить эффективность использования разделяемой памяти и работы кэшей.

Влияние на производительность

• Деление warp'ов на условных переходах.

В случае, когда разные потоки одного warp'a разбиваются по разным ветвям условного перехода, время исполнения условного перехода складывается из времён исполнения его ветвей. Следовательно, частое деление варпов по ветвям приводит к деградации производительности. Степень деградации зависит как от количества делений warp'ов, так и от размера ветвей условного перехода.

Требования к алгоритмам

- •Преобладание вычислений по отношению к загрузкам данных из памяти
- Малая доля условных переходов
- Равномерность загрузки вычислительных потоков
- Локальность данных, с которыми будут работать потоки одного блока потоков
- Достаточное количество вычислительных потоков для полной загрузки планировщиков всех имеющихся мультипроцессоров (обычно более 10^5 потоков)

Лабораторная работа № 2

- Оптимизация алгоритма умножения матриц (по вариантам).
- Оптимизация алгоритма транспонирования матриц (по вариантам).
- Сравнительный график эффективности алгоритмов: CPU, GPU, GPU с оптимизацией в зависимости от размера данных.