Near-optimal Quantum Algorithms for Multivariate Mean Estimation

Problem setup

- **1.** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- **2.** A *d*-dimensional random variable $X: \Omega \to \mathbb{R}^d$.

Properties:

- Mean: $\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega)X(\omega) \in \mathbb{R}^d$.
- $\textbf{Covariance matrix: } \Sigma = \begin{bmatrix} \operatorname{Var}[X_1] & \operatorname{Cov}[X_1, X_2] & \cdots & \operatorname{Cov}[X_1, X_d] \\ \operatorname{Cov}[X_1, X_2] & \operatorname{Var}[X_2] & \cdots & \operatorname{Cov}[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}[X_1, X_d] & \operatorname{Cov}[X_2, X_d] & \cdots & \operatorname{Var}[X_d] \end{bmatrix}$
- Finite trace: $Tr[\Sigma] = \sum_{j=1}^{d} Var[X_j] < \infty$.

Access models

Classical access model:

- **1.** Obtain outcome $\omega \sim \mathbb{P}$.
- **2.** Evaluate function $\omega \mapsto X(\omega)$.

Quantum access model:

- 1. Distribution oracle: $|0\rangle \mapsto \sum_{\omega \in \Omega} \sqrt{\mathbb{P}(\omega)} |\omega\rangle$.
- **2.** Evaluation oracle: $|\omega\rangle|0\rangle \mapsto |\omega\rangle|X(\omega)_1\rangle \otimes \cdots \otimes |X(\omega)_d\rangle$.
- → Calls to these routines are *samples*.

Results

Goal: Construct an estimator $\widetilde{\mu}$, using n samples, s.t. $\mathbb{P}\left[\|\mu - \widetilde{\mu}\|_2 \le \varepsilon(n)\right] \ge \frac{2}{3}$.

Crucial observation: quantum speed-up only when $n \ge d$.

Quantum estimator outline

- 1. Get a crude estimate: $\overline{\mu}$ s.t. $\|\mu \overline{\mu}\|_2 \leq \sqrt{\text{Tr}[\Sigma]}$.
- **2.** *Get an idea of the spread:* Estimate quantiles a_{ℓ} s.t. $\mathbb{P}\left[\|X \overline{\mu}\|_2 \ge a_{\ell}\right] \approx \frac{1}{2^{\ell}}$, for $\ell \in \{1, \dots, 2\log(n)\}$.
- 3. Estimate truncated mean on the rings: $\mathbb{E}[X] \approx \sum_{\ell=1}^k \mathbb{E}[X^{(\ell)}]$.

Quantile estimation

Define the univariate random variable $Y = ||X - \overline{\mu}||_2$.

Observation: $a_{\ell} \approx \text{median of } \widetilde{O}(1) \text{ samples from } Y | Y \geq a_{\ell-1}.$

Rejection sampling via *amplitude amplification* requires $\widetilde{O}(1/\sqrt{\mathbb{P}\left[Y \geq a_{\ell-1}\right]}) = \widetilde{O}(\sqrt{2^{\ell}})$ samples from Y.

Truncated mean estimation on the rings

- **1.** Amplitude amplification on the R_{ℓ} ring: $\widetilde{O}(\sqrt{2^{\ell}})$ samples.
- **2.** Phase encoding techniques: $\widetilde{O}(n/\sqrt{2^{\ell}})$ calls to 1.

Directional mean oracle: $|\mathbf{u}\rangle \mapsto e^{in2^{\ell/2} \cdot \mathbf{u}^T \mathbb{E}[X^{(\ell)}]} |\mathbf{u}\rangle$.

3. Bernstein-Vazirani over the reals: $\widetilde{O}(1)$ calls to **2**.

Apply QFT⁻¹ on $\sum_{u} e^{in2^{\ell/2} \cdot \mathbf{u}^T \mathbb{E}[X^{(\ell)}]} |\mathbf{u}\rangle$ and measure.

$$\left\|\widetilde{\mu}^{(\ell)} - \mathbb{E}[X^{(\ell)}]\right\| = \widetilde{O}(\sqrt{d \cdot a_{\ell} \cdot \mathbb{E}\|X^{(\ell)}\|}/n) = \widetilde{O}(\sqrt{d \cdot \operatorname{Tr}[\Sigma]}/n)$$