Mathematical Formulations for Synthetic Data Generation with Controlled Leakage

1. Feature Generation (X)

We generate the feature matrix $X \in \mathbb{R}^{n \times d}$ by sampling n observations from a multivariate normal distribution:

$$\boldsymbol{x}_i \sim \mathcal{N}\left(\boldsymbol{\mu}_x, \boldsymbol{\Sigma}_x\right), \quad i = 1, \dots, n$$

- $\mu_x \in \mathbb{R}^d$: Mean vector of the features.
- $\Sigma_x \in \mathbb{R}^{d \times d}$: Covariance matrix of the features.

2. Ground Truth Concepts (c_i)

We construct the ground truth concepts $c_i \in \{0,1\}^k$ as follows:

2.1. Constructing Matrix A

Matrix $\mathbf{A} \in \mathbb{R}^{k \times d}$ is designed to project the first b features into the concept space:

$$\mathbf{A} = \begin{bmatrix} \mathbf{R}_A \mid \mathbf{0}_{k \times (d-b)} \end{bmatrix}$$

• $\mathbf{R}_A \in \mathbb{R}^{k \times b}$: Random projection matrix with entries:

$$(\mathbf{R}_A)_{jp} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1), \quad j = 1, \dots, k; \quad p = 1, \dots, b$$

• $\mathbf{0}_{k\times(d-b)}$: Zero matrix to exclude the remaining features.

2.2. Computing Success Probabilities π_i

We compute the logits for the ground truth concepts:

$$\eta_i = \mathbf{A} x_i + \epsilon_c$$

• $\epsilon_c \sim \mathcal{N}(\mathbf{0}, \Sigma_c)$: Noise vector with covariance $\Sigma_c \in \mathbb{R}^{k \times k}$.

The success probabilities are then obtained via the sigmoid function:

$$\boldsymbol{\pi}_i = \sigma\left(\boldsymbol{\eta}_i\right)$$

• Sigmoid function $\sigma(z)$:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

2.3. Sampling Ground Truth Concepts c_i

Each concept c_{ij} is sampled from a Bernoulli distribution:

$$c_{ij} \sim \text{Bernoulli}(\pi_{ij}), \quad j = 1, \dots, k$$

3. Leakage Term (l_i)

We construct the leakage term $\boldsymbol{l}_i \in \mathbb{R}^k$ as follows:

3.1. Constructing Matrix B

Matrix $\mathbf{B} \in \mathbb{R}^{k \times d}$ projects selected features into the concept space:

$$\mathbf{B} = [\mathbf{0}_{k \times b} \mid \mathbf{R}_B \mid \mathbf{0}_{k \times l}]$$

- $\mathbf{0}_{k \times b}$: Zero matrix to exclude the first b features.
- $\mathbf{R}_B \in \mathbb{R}^{k \times (d-b-l)}$: Random projection matrix with entries:

$$(\mathbf{R}_B)_{jq} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1), \quad j = 1, \dots, k; \quad q = 1, \dots, d - b - l$$

• $\mathbf{0}_{k \times l}$: Zero matrix to exclude the last l features.

3.2. Computing Leakage Term l_i

$$l_i = \mathbf{B} x_i$$

4. Estimated Concepts (\hat{c}_i)

We compute the estimated concepts $\hat{c}_i \in [0,1]^k$ as:

$$\hat{\boldsymbol{c}}_i = \sigma \left(\mathbf{A} \boldsymbol{x}_i + \boldsymbol{l}_i + \boldsymbol{\epsilon}_{\hat{c}} \right)$$

- $\epsilon_{\hat{c}} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Sigma}_{\hat{c}}\right)$: Noise vector with covariance $\mathbf{\Sigma}_{\hat{c}} \in \mathbb{R}^{k \times k}$.
- σ : Sigmoid function as defined earlier.

5. Target Labels (y_i)

We generate the target labels $y_i \in \{1, ..., J\}$ as follows:

5.1. Defining Function f

If no custom function f is provided, we define $f: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^J$ using a simple Multi-Layer Perceptron (MLP):

• Inputs: Concatenate c_i and l_i :

$$oldsymbol{u}_i = egin{bmatrix} oldsymbol{c}_i \ oldsymbol{l}_i \end{bmatrix} \in \mathbb{R}^{2k}$$

• First Layer:

$$\boldsymbol{h}_i = \phi\left(\mathbf{W}_1 \boldsymbol{u}_i + \boldsymbol{b}_1\right) \in \mathbb{R}^h$$

- $-\mathbf{W}_1 \in \mathbb{R}^{h \times 2k}$: Weight matrix with entries $\sim \mathcal{N}(0,1)$.
- $\boldsymbol{b}_1 \in \mathbb{R}^h$: Bias vector initialized to zeros.
- $-\phi(z)$: ReLU activation function:

$$\phi(z) = \max(0, z)$$

• Output Layer:

$$o_i = \mathbf{W}_2 h_i + b_2 \in \mathbb{R}^J$$

- $-\mathbf{W}_2 \in \mathbb{R}^{J \times h}$: Weight matrix with entries $\sim \mathcal{N}(0,1)$.
- $\mathbf{b}_2 \in \mathbb{R}^J$: Bias vector initialized to zeros.

5.2. Computing Target Probabilities p_i

We compute the logits for the target probabilities:

$$z_i = f(c_i, l_i) + \epsilon_y$$

• $\boldsymbol{\epsilon}_{y} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{y}\right)$: Noise vector with covariance $\boldsymbol{\Sigma}_{y} \in \mathbb{R}^{J \times J}$.

We then apply the softmax function to obtain the probabilities:

$$p_i = \operatorname{softmax}(z_i)$$

• Softmax function:

softmax
$$(\boldsymbol{z}_i)_j = \frac{\exp(z_{ij})}{\sum_{k=1}^{J} \exp(z_{ik})}, \quad j = 1, \dots, J$$

5.3. Sampling Target Labels y_i

We sample y_i from a categorical distribution based on p_i :

$$y_i \sim \text{Categorical}(\boldsymbol{p}_i)$$

This results in $y_i \in \{1, 2, \dots, J\}$.

6. Constraints

To ensure the random projections and leakage control function properly, the following constraints must be satisfied:

$$k < b < d - k - l$$

- k: Number of concepts.
- b: Number of features used in ground truth concepts.
- d: Total number of features.
- *l*: Number of features excluded from leakage.

7. Summary of Variables and Parameters

- n: Number of observations.
- d: Dimensionality of features.
- k: Number of concepts.
- J: Number of target classes.
- b: Number of features used in the ground truth concepts.
- *l*: Number of features excluded from leakage.
- $\mu_x \in \mathbb{R}^d$: Mean vector of features.
- $\Sigma_x \in \mathbb{R}^{d \times d}$: Covariance matrix of features.
- $\Sigma_c \in \mathbb{R}^{k \times k}$: Covariance matrix of noise in ground truth concepts.
- $\Sigma_{\hat{c}} \in \mathbb{R}^{k \times k}$: Covariance matrix of noise in estimated concepts.
- $\Sigma_u \in \mathbb{R}^{J \times J}$: Covariance matrix of noise in target logits.
- f: Function mapping concepts and leakage to target logits.