Bike Sharing in Mexico City

Final Project Introduction to Data Science Jesus L. Trujillo October 2014

The project

- Bike sharing system information from Mexico City 'Ecobici':
 - http://datos.labplc.mx/datasets/view/ecobici
- The program started in February of 2010 and is considered one of the most successful in the world:

http://www.economist.com/node/16591116

What do we know about bikes?

- To model this problem I followed the Kaggle competition structure:
 - Predict demand of bikes using weather data and characteristics of users
 - Data already processed but offered little insights on what else is going with bike data

Process

Bike usage data

Data
Acquisition

-Almost 1 gigabyte

Mexico City
Weather Data

3 different files:

- -User
- -Trips
- -Stations

365 different 'files':
-Web scrapping
process to gather all
of the data

Two main objectives

- Descriptive statistics:
 - Number of trips
 - Average duration and distance traveled
 - Hourly, Daily and Monthly usage etc.
- Predictive modeling:
 - Boosted Regression Model
 - Bayesian Ridge Regression
 - Support Vector Machine Regression

Descriptive statistics

- In 2012 there were 2,874,749 travels, or almost 8,000 trips a day
 - The average duration of a trip is: 14.8 minutes
 - And the average distance traveled per trip is:
 1.13 km.

Usage by Day of the Week

A more accurate description of usage by day of the week

But if time matters...

What about hourly?

What about seasons?

Scatterplot Matrix of Bike Share Trips

Predicting Bike Demand

- After transforming the data I ended up with a data frame composed of 7,320 observations and 13 predictors (X) and a target (Y):
 - The predictors are:
 - week_days, month, hour, season, Gust Speed, Humidity, WindirDegrees, Conditions, Events, Dew Point, TemperatureF, VisibilityMPH, and WindSpeed
 - The target variable is:
 - Number of trips in a given hour

The Kaggle Method

 Accuracy is evaluated using the Root Mean Squared Logarithmic Error (RMSLE).

$$\sqrt{rac{1}{n}\sum_{i=1}^{n}(\log(p_i+1)-\log(a_i+1))^2}$$

- n is the number of observations in the test set
- pi is your predicted count
- ai is the actual count
- log(x) is the natural logarithm

Boosted Regression Model

- First step in the model was to normalize the data and make sure that there were no missing values:
 - Scikit Learn really does not like NaN
- The first model specifications (default) gave a pretty mediocre prediction rate:
 - -10.4313000472
 - Actual benchmark: 0.24976
- Optimized model gives:
 - -6.34154256614

Bayessian Ridge Regression

- Did a better job predicting in variation:
 - Predicted values ranged from 0 to 987
 - Max value in my dataset is 1687
- The R squared was a bit better although I could not really improve accuracy at all:
 - rmse=6.4

Support Vector Machine Regression.

- This was the model with the highest success rate:
 - rsme= 6.29587856774
- Did better with data variation than Gradient boosting regression.

Next steps

- Add more variables to the dataset:
 - If the weekday is a holiday
 - Better temperature data
 - Pay day
- Better transformation of the categorical variables:
 - Many of the numeric values are meaningless
- Understand a bit better what is going in the blackbox
- Find clean curated data!