

Performance of Distributed and Parallel Systems

Julian Kunkel

Learning Objectives

- Describing relevant performance factors
- Listing peak performance of relevant components
- Assessing/Judging observed application performance

Outline

- 1 Overview
- 2 Hardware
- 3 Assessing Performance
- 4 Summary

Goals

Overview

- In the context of this lecture, we assume the goal of a system is data processing
- Goal (user perspective): Minimal time to solution
 - ▶ For Big Data: Workflow from data ingestion, programming, results analysis
 - ► For Science: Workflow until scientific insight/paper
 - Programmer/User productivity is important
- Goal (system perspective): cheap total cost of ownership
 - Simple deployment and easy management
 - Cheap hardware
 - Good utilisation of (hardware) resources means less hardware
- ⇒ In this lecture, we focus on processing a workflow
- Other "performance" alike aspects:
 - Productivity of users (user-friendliness)

 Overview
 Hardware
 Assessing Performance
 Summary

 0 ● 0
 0000000000
 00
 00

Processing Steps

- Preparing input data
 - Big Data: Ingesting data into our big data environment
 - ▶ HPC: Preparing data for being read on a supercomputer
- Processing a workflow consisting of multiple steps/queries
 - ▶ It is a relevant factor for the productivity in data science
 - Low runtime is crucial for repeated analysis and interactive exploration
 - Multiple steps/different tools can be involved in a complex workflow
 We consider only the execution of one job with any tool
- 3 Post-processing of output with (external) tools to produce insight
 - ▶ Typical strategy of scientists: HPC/Big Data workflow data transfer local analysis
 - ▶ Best: return a final product from the workflow
 - ► For exploratory/novel research, the result is unknown, and may require a long period of manual analysis

Performance Factors Influencing Processing Time

- Startup phase
 - ▶ Distribution of necessary files/scripts
 - Allocating resources/containers
 - Starting the scripts and loading dependencies
 - ▶ Usually fixed costs (in the order of seconds to spawn MR/TEZ job, also for HPC jobs!)
- **Job execution**: computing the product
 - ▶ Costs for computation and necessary communication and I/O depending on
 - Job complexity
 - Software architecture of the big data solution
 - Hardware performance and cluster architecture
- Cleanup phase
 - ► Teardown compute environment, free resources
 - Usually fixed costs (in the order of seconds)

Outline

- 1 Overview
- 2 Hardware
 - Big Data Clusters
 - HPC Clusters
 - Software
- 3 Assessing Performance
- 4 Summary

 Overview
 Hardware
 Assessing Performance
 Summary

 000
 0 ● 000
 0000000000
 00

Big Data Cluster Characteristics

- Usually commodity components
- Cheap (on-board) interconnect, node-local storage
- Communication (bisection) bandwidth between different racks is low

Figure: Architecture of a typical big data cluster

 Overview
 Hardware
 Assessing Performance
 Summary

 000
 00 ●00
 0000000000
 00

HPC Cluster Characteristics

University of Reading

- High-end components
- Extra fast interconnect, global/shared storage with dedicated servers

Network provides high (near-full) bisection bandwidth. Various topologies are possible.

Figure: Architecture of a typical HPC cluster (here fat-tree network topology)

 Overview
 Hardware
 Assessing Performance
 Summary

 000
 000
 0000000000
 00

Hardware Performance

Computation

- \blacksquare CPU performance (frequency \times cores \times sockets)
 - \blacktriangleright E.g.: 2.5 GHz \times 12 cores \times 2 sockets = 60 Gcycles/s
 - ► The number of cycles per operation depend on the instruction stream
- Memory (throughput × channels)
 - \blacktriangleright E.g.: 25.6 GB/s per DDR4 DIMM \times 3

Communication via the network

- Throughput, e.g., 125 MiB/s with Gigabit Ethernet
- Latency, e.g., 0.1 ms with Gigabit Ethernet

Input/output devices

- HDD mechanical parts (head, rotation) lead to expensive seek
- ⇒ Access data consecutively and not randomly
- ⇒ Performance depends on the I/O granularity
 - ► E.g.: 150 MiB/s with 10 MiB blocks

 Overview
 Hardware
 Assessing Performance
 Summary

 000
 0000
 000000000
 00

Hardware-Aware Strategies for Software Solutions

- Java is suboptimal: 1.2x 2x of cycles needed than in C¹
- Utilise different hardware components concurrently
 - ▶ Pipeline computation, I/O, and communication
 - ► At best hide two of them ⇒ 3x speedup vs sequential
 - ► Avoid barriers (waiting for the slowest component)
- Balance and distribute workload among all available servers
 - ▶ Linear scalability is vital (and not the programming language)
 - ▶ Add 10x servers, achieve 10x performance (or process 10x data)
- Allow monitoring of components to see their utilisation
- Avoid I/O, if possible (keep data in memory)
- Avoid communication, if possible

Examples for exploiting locality in SQL/data-flow languages

- Foreach, filter are node-local operations
- Sort, group, join need communication

Overview

Outline

University of Reading

- 3 Assessing Performance
 - Approach
 - Errors Causing Recomputation
 - Assessing Performance
 - Assessing Compute and Storage Workflow

 Overview
 Hardware
 Assessing Performance
 Summary

 000
 00000
 000000000
 00

Basic Approach

Ouestion

Is the observed performance acceptable?

Basic Approach

Start with a simple model

- Measure time for the execution of your workload
- 2 Quantify the workload with some metrics
 - ▶ E.g., amount of tuples or data processed, computational operations needed
 - ▶ E.g., you may use the statistics output for each Hadoop job
- $\mathbf{3}$ Compute w_t , the workload you process per time
- 4 Compare w_t with your expectations of the system

Refine the model as needed, e.g., include details about intermediate steps

Errors Increase Processing Time [11]

- \blacksquare Error probability E < 1 increases the processing time
- A rerun of a job may fail again
- Processing time with errors: $P' = (E + E^2 + ...) \times P' = P/(1 E)$

- With 50% chance of errors, twice the processing time
- With 90% chance, 10x

Outline

- 1 Overview
- 2 Hardware
- 3 Assessing Performance
- 4 Summary

 Overview
 Hardware
 Assessing Performance
 Summary

 000
 0000
 0000 €0000
 00

Groupwork: Assessing Performance

Task: Aggregating 10Mi integers with 1 thread

■ Vendor-reported performance from [14] indicates improvements

Performance of aggregating 10 million int pairs (secs)

Figure: Source: Reference [14]

- These are the advancements when using Spark for the computation
- Can we trust in such numbers? Are these numbers good?
- Discuss these numbers with your neighbour (Time: 3 minutes)

 Overview
 Hardware
 Assessing Performance
 Summary

 000
 00000
 00000 ●0000
 00

Assessing Performance of In-Memory Computing

Measured performance numbers and theoretic considerations

- Spark [14]: 160 MB/s, 500 cycles per operation²
 - ▶ Invoking external programming languages is even more expensive!
- Python (raw): 0.44s = 727 MB/s, 123 cycles per operation
- Numpy: 0.014s = 22.8 GB/s, 4 cycles per operation (memory BW limit)
- One line to measure the performance in Python using Numpy:

Hence, the big data solution is 125x slower in this example as anticipated!

 Overview
 Hardware
 Assessing Performance
 Summary

 000
 00000
 00000●000
 00

Groupwork: Comparing Pig and Hive Big Data Solutions

Benchmark by IBM [16], similar to Apache Benchmark

- Tests several operations, data set increases 10x in size
 - ► Set 1: 772 KB; 2: 6.4 MB; 3: 63 MB; 4: 628 MB; 5: 6.2 GB; 6: 62 GB
- Five data/compute nodes, configured to run eight reduce and 11 map tasks

	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
Arithmetic	32	36	49	83	423	3900
Filter 10%	32	34	44	66	295	2640
Filter 90%	33	32	37	53	197	1657
Group	49	53	69	105	497	4394
Join	49	50	78	150	1045	10258

	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
Arithmetic	32	37.	72.	300	2633	27821
Filter 10%	32	53.	59	209	1672	18222
Filter 90%	31.	32.	36	69	331	3320
Group	48	47.	46	53	141	1233
Join	48	56.	10-	517	4388	-
Distinct	48	53.	72.	109	-	-

Figure: Pig and Hive time. Source: B. Jakobus (modified), "Table 2: Averaged performance" [16]

Assessing performance

- How could we model performance here?
- How would you judge the runtime here?
- Time: 2 minutes

Iulian M. Kunkel

 Overview
 Hardware
 Assessing Performance
 Summary

 000
 00000
 000000●00
 00

Assessing Compute and Storage Workflow

- Daytona GraySort: Sort at least 100 TB data in files into an output file
 - ▶ Generates 500 TB of disk I/O and 200 TB of network I/O [12]
 - ▶ Drawback: Benchmark is not very compute intense
- Data record: 10 byte key, 90 byte data
- Performance Metric: Sort rate (TBs/minute)

	Hadoop MR	Spark	Spark	
	Record	Record	1 PB	
Data Size	102.5 TB	100 TB	1000 TB	
Elapsed Time	72 mins	23 mins	234 mins	
# Nodes	2100	206	190	
# Cores	50400 physical	6592 virtualized	6080 virtualized	
Cluster disk	3150 GB/s	C10 CD /-	570 GB/s	
throughput	(est.)	618 GB/s		
Sort Benchmark	Yes	Yes	No	
Daytona Rules	res	res	No	
Network	dedicated data	virtualized (EC2)	virtualized (EC2)	
	center, 10Gbps	10Gbps network	10Gbps network	
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min	
Sort rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min	

Figure: Source: Reference [12]

Assessing Performance of In-Memory Computing

Hadoop

- 102.5 TB in 4,328 seconds [13]
- Hardware: 2100 nodes, dual 2.3Ghz 6cores, 64 GB memory, 12 HDDs
- Sort rate: 23.6 GB/s = 11 MB/s per Node \Rightarrow 1 MB/s per HDD
- Clearly this is suboptimal!

Apache Spark (on disk)

- 100 TB in 1,406 seconds [13]
- Hardware: 207 Amazon EC2, 2.5Ghz 32vCores, 244GB memory, 8 SSDs
- Sort rate: 71 GB/s = 344 MB/s per node
- Performance assessment
 - Network: 200 TB ⇒ 687 MiB/s per node Optimal: 1.15 GB/s per Node, but we cannot hide (all) communication
 - ▶ I/O: 500 TB \Rightarrow 1.7 GB/s per node = 212 MB/s per SSD
 - ► Compute: 17 M records/s per node = 0.5 M/s per core = 4700 cycles/record

Executing the Optimal Algorithm on Given Hardware

An utopic algorihm

Assume 200 nodes and random key distribution

- Read input file once: 100 TB
- 2 Pipeline reading and start immediately to scatter data (key): 100 TB
- Receiving node stores data in likely memory region: 500 GB/node Assume this can be pipelined with the receiver
- Output data to local files: 100 TB

Estimating optimal runtime

Per node: 500 GByte of data; I/O: keep 1.7 GB/s per node

- 1 Read: 294s
- **2** Scatter data: $434s \Rightarrow Reading can be hidden$
- One read/write in memory (2 sockets, 3 channels): 6s
- Write local file region: 294s

Total runtime: $434 + 294 = 728 \Rightarrow 8.2$ T/min

Overview

Summary

Overview

000

- Goal (user-perspective): Optimise the time-to-solution
- Runtime of queries/scripts is the main contributor
- Computation in big data clusters is usually over-dimensioned
- Understanding a few HW throughputs help to assess the performance
- Linear scalability of the architecture is the crucial performance factor
- Basic performance analysis
 - Estimate the workload
 - Compute the workload throughput per node
 - Compare with hardware capabilities
- Error model predicts runtime if jobs must be restarted
- GreySort with Spark utilises I/O, communication is good
- Computation even with Spark is much slower than Python
- Different big data solutions exhibit different performance behaviours

Bibliography

Overview

- 10 Wikipedia
- 11 Book: N. Marz, J. Warren. Big Data Principles and best practices of scalable real-time data systems.
- 12 https:
 //databricks.com/blog/

```
//databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
```

- 13 http://sortbenchmark.org/
- 14 https://databricks.com/blog/2015/04/24/ recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html
- 15 https://github.com/hortonworks/hive-testbench
- 16 http://www.ibm.com/developerworks/library/ba-pigvhive/pighivebenchmarking.pdf