Hoja nº 8

Polinomios

1. Hallar el cociente c(x) y el resto r(x) que resultan de dividir $f(x) = 3x^5 + 2x^3 + x + 1$ entre el polinomio $g(x) = 3x^2 + 1$. Primero en $\mathbb{Q}[x]$ y luego en $\mathbb{Z}_5[x]$.

2. Sean $f(x) g(x) \in \mathbb{Q}[x]$. Probar que f(x) y g(x) son coprimos si y sólo si f(x) + g(x) y $f(x) \cdot g(x)$ son coprimos.

3. Calcular el máximo común divisor d(x) de los polinomios

$$f(x) = x^5 - 5x^3 + 4x$$
 y $g(x) = x^3 - 2x^2 - 5x + 6$.

Encontrar dos polinomios r(x) y s(x) tales que $f(x) \cdot r(x) + g(x) \cdot s(x) = d(x)$.

4. Encontrar polinomios f(x) y g(x) en $\mathbb{Q}[x]$ tales que: $f(x)(x^2+2x-2)+g(x)(x^2+x-1)=1$.

5. Hallar un polinomio $f(x) \in \mathbb{Q}[x]$ tal que $x^2 + 1$ divida a f(x) y $x^3 + 1$ divida a f(x) - 1, siendo el grado de f(x) el mínimo posible.

6. Hallar los ceros racionales del polinomio $f(x) = 20x^3 - 56x^2 + 33x + 9$.

7. Hallar todos los ceros de $f(x) = x^4 + 7x^3 + 9x^2 - 27x - 54$, con sus multiplicidades. Razonar y comprobar las conclusiones que eso sugiere para el máximo común divisor de f(x) y su derivada f'(x).

8. Sean $\alpha_1 = \sqrt{2} + \sqrt{3}$, $\alpha_2 = 2 + \sqrt[3]{3}$ y $\alpha_3 = \sqrt[3]{2} + \sqrt{3}$. Calcular polinomios $f_1(x), f_3(x), f_3(x) \in \mathbb{Z}[x]$ tales que $f_i(\alpha_i) = 0$, i = 1, 2, 3.

9. Sea K un cuerpo.

a) Demostrar que existen infinitos polinomios irreducibles en $\mathbb{K}[x]$.

b) Deducir que si \mathbb{K} es un cuerpo con un número finito de elementos (por ejemplo $\mathbb{K} = \mathbb{Z}/p\mathbb{Z}$ para p primo) habrá en $\mathbb{K}[x]$ polinomios irreducibles de grado arbitrariamente grande.

10. Sea $n \in \mathbb{N}$. Demostrar que existen infinitos polinomios irreducibles de grado n en $\mathbb{Q}[x]$.

11. Descomponer $f(x) = x^5 - x^4 + 2x^3 - 2$ en factores irreducibles en $\mathbb{Q}[x]$.

12. Sea \mathbb{K} un cuerpo.

a) Demostrar que un polinomio $f(x) \in \mathbb{K}[x]$ es irreducible si y solamente si para cualquier $a \in \mathbb{K}$ el polinomio g(x) = f(x+a) es irreducible.

b) Aplicar el resultado anterior con a=1 para demostrar que el polinomio ciclotómico

$$\frac{x^{p}-1}{x-1} = x^{p-1} + x^{p-2} + \dots + 1 \in \mathbb{Q}[x],$$

donde p es un número primo, es irreducible.

c) ¿Es reducible en $\mathbb{Q}[x]$ el polinomio $f(x) = x^4 - 2x^3 + 2x - 33$? Justificar la respuesta.

13. a) Determinar los polinomios mónicos irreducibles en $\mathbb{Z}_2[x]$ de grados 1, 2, 3 y 4.

b) Demostrar que el polinomio $f(x) = x^4 + 3x^3 + 5x^2 + 7x + 1$ es irreducible en $\mathbb{Q}[x]$

14. Descomponer el polinomio $f(x) = x^4 + 3x^2 + 4$ en sus factores irreducibles en $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$ y en $\mathbb{Z}_p[x]$, para p = 2, 3, 5 y 7.