L'usage da la calculatrice et du mobile est interdit.

Exercice 1: (9.5 pts)

Soit la matrice :

$$A_{\alpha} = \begin{pmatrix} 6 & 2 & \alpha^2 - 7\alpha \\ 2 & 3 & \alpha - 7 \\ 0 & 0 & \alpha \end{pmatrix} \in M_3(\mathbb{R}).$$

- 1- Discuter, suivant le paramètre α , la diagonalisation de A_{α} .
- **2-** On pose : $\alpha = 2$.
 - \mathbf{a} / Vérifier que A_2 est diagonalisable.
 - **b**/ Trouver une matrice P telle que $P^{-1}.A_2.P$ soit diagonale.
 - **c**/ En déduire la matrice A_2^n où $n \in \mathbb{N}^*$.
- $\mathbf{d}/$ Exprimer, en utilisant le théorème de Cayley Hamilton, A_2^n comme polynôme de degré inférieur ou égal à 2 en A_2 , pour tout $n \in \mathbb{N}^*$ et $n \geq 3$.
- \mathbf{e} / Montrer que calculer A_2^n revient à résoudre un système linéaire carré que l'on déterminera. (Il n'est pas demandé de résoudre le système obtenu).

Exercice 2:(6.5 pts)

Soit, dans R, le système linéaire suivant

$$\begin{cases} x + \alpha y + \alpha^2 z = 1 \\ x + \alpha y + \alpha \beta z = \alpha \\ \beta x + \alpha^2 y + \alpha^2 \beta z = \alpha^2 \beta \end{cases}$$
 $(S_{\alpha,\beta})$

où α et β sont des paramètres réels.

- **1-** Calculer le déterminant de la matrice du système $(S_{\alpha,\beta})$.
- **2-** Pour quelles valeurs de α et β le système $(S_{\alpha,\beta})$ est de Cramer. Dans ce cas, résoudre $(S_{\alpha,\beta}).$
 - **3-** Résoudre $(S_{\alpha,\beta})$ dans le cas où il n'est pas de Cramer.

Exercice 3: (4 pts)

Soit une matrice $M \in M_3(\mathbb{R})$ de polynôme caractéristique :

$$P_M(X) = -X^3 + X^2 - X + 1.$$

- **1-** Déterminer : Tr(M), det(M), rg(M).
- **2-** Dire pourquoi M est inversible, puis donner l'expression de M^{-1} en fonction de M.
- **3-** Est ce que M est diagonalisable?. Justifier.
- **4-** Est ce que M est diagonalisable si on considère $M \in M_3(\mathbb{C})$?. Justifier.

Bon Courage