### Thresholding Bandits with Augmented UCB

Subhojyoti Mukherjee CS15S300

Guide: Dr. Balaraman Ravindran Co-Guide: Dr. Nandan Sudarsanam

**IIT Madras** 

August 15, 2017

### Overview

- Stochastic Multi-Armed Bandit Problem
- **Problem Definition**
- Contribution
- **Previous Works**
- **AugUCB**
- Theoretical Analysis
- **Experiments**
- Conclusion



 The thresholding bandit problem falls under the broad area of stochastic multi-armed bandit problem.

- The thresholding bandit problem falls under the broad area of stochastic multi-armed bandit problem.
- A finite set of actions or arms belonging to set A such that |A| = K.

- The thresholding bandit problem falls under the broad area of stochastic multi-armed bandit problem.
- A finite set of actions or arms belonging to set A such that |A| = K.
- The rewards for each of the arms are identical and independent random variables drawn from distribution specific to the arm.

- The thresholding bandit problem falls under the broad area of stochastic multi-armed bandit problem.
- A finite set of actions or arms belonging to set A such that |A| = K.
- The rewards for each of the arms are identical and independent random variables drawn from distribution specific to the arm.
- The learner does not know the mean  $r_i$ ,  $\forall i \in A$  of the distribution or the variance  $\sigma_i^2$ .

 The distributions for each of the arms are fixed throughout the time horizon denoted by T.

- The distributions for each of the arms are fixed throughout the time horizon denoted by T.
- The estimated reward  $\hat{r}_i = \frac{1}{n_i} \sum_{z=1}^{n_i} X_{i,z}$ .

- The distributions for each of the arms are fixed throughout the time horizon denoted by T.
- The estimated reward  $\hat{r}_i = \frac{1}{n_i} \sum_{z=1}^{n_i} X_{i,z}$ .
- The more we pull arm *i* the closer  $\hat{r}_i$  gets to  $r_i$ .

- The distributions for each of the arms are fixed throughout the time horizon denoted by T.
- The estimated reward  $\hat{r}_i = \frac{1}{n_i} \sum_{z=1}^{n_i} X_{i,z}$ .
- The more we pull arm *i* the closer  $\hat{r}_i$  gets to  $r_i$ .
- Due to the uncertainty in  $\hat{r}_i$  we have to carefully conduct exploration.

• **Primary aim:** Identify all the arms whose mean of the reward distribution  $(r_i)$  is above a particular threshold  $\tau$  given as input.

- **Primary aim:** Identify all the arms whose mean of the reward distribution  $(r_i)$  is above a particular threshold  $\tau$  given as input.
- Condition: This has to be achieved within T timesteps of exploration and this is termed as a fixed-budget problem.

• We define the set  $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$ 

- We define the set  $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}$ .
- $S_{\tau}^{c}$  denote the complement of  $S_{\tau}$ , i.e.,  $S_{\tau}^{c} = \{i \in \mathcal{A} : r_{i} < \tau\}$ .

- We define the set  $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$
- $S_{\tau}^{c}$  denote the complement of  $S_{\tau}$ , i.e.,  $S_{\tau}^{c} = \{i \in \mathcal{A} : r_{i} < \tau\}$ .
- Let  $\hat{S}_{\tau}$  denote the recommendation of a learning algorithm after T time units of exploration, while  $\hat{S}_{\tau}^{c}$  denotes its complement.

- We define the set  $S_{\tau} = \{i \in A : r_i \geq \tau\}.$
- $S_{\tau}^{c}$  denote the complement of  $S_{\tau}$ , i.e.,  $S_{\tau}^{c} = \{i \in A : r_{i} < \tau\}$ .
- Let  $\hat{S}_{\tau}$  denote the recommendation of a learning algorithm after T time units of exploration, while  $\hat{S}_{\tau}^{c}$  denotes its complement.
- The goal of the learning agent is to minimize the expected loss:

$$\mathbb{E}[\mathcal{L}(T)] = \mathbb{P}\big(\underbrace{\{S_{\tau} \cap \hat{S}^{\textit{c}}_{\tau} \neq \emptyset\}}_{\text{Rejected good arms}} \cup \underbrace{\{\hat{S}_{\tau} \cap S^{\textit{c}}_{\tau} \neq \emptyset\}}_{\text{Accepted bad arms}}\big)$$

## Challenges in the TBP Settings

 Closer the true mean of reward distribution of the arms' to the threshold ⇒ harder the problem.

# Challenges in the TBP Settings

- Closer the true mean of reward distribution of the arms' to the threshold ⇒ harder the problem.
- Lesser the budget ⇒ harder the problem.

# Challenges in the TBP Settings

- Closer the true mean of reward distribution of the arms' to the threshold ⇒ harder the problem.
- Lesser the budget ⇒ harder the problem.
- Higher the variance of reward distribution of the arms' ⇒ harder the problem.

# **Applications**

 Selecting the best channels (out of several existing channels) for mobile communications in a very short duration whose qualities are above an acceptable threshold (see Audibert and Bubeck (2010)).

## **Applications**

- Selecting the best channels (out of several existing channels) for mobile communications in a very short duration whose qualities are above an acceptable threshold (see Audibert and Bubeck (2010)).
- Selecting a small set of best workers (out of a very large pool of workers) whose productivity is above a threshold.

# **Applications**

- Selecting the best channels (out of several existing channels) for mobile communications in a very short duration whose qualities are above an acceptable threshold (see Audibert and Bubeck (2010)).
- Selecting a small set of best workers (out of a very large pool of workers) whose productivity is above a threshold.
- In anomaly detection and classification (see Locatelli et al. (2016)).

 We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.

- We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.

- We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.

- We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.

- We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.
- We also define a new problem complexity which uses empirical variance estimates along with arm's mean for giving the theoretical bound.

## The Upper Confidence Bound (UCB) Approach

• Since there is an initial uncertainty in the estimated mean  $(\hat{r}_i)$  introduce a confidence interval term  $c_i$ .

## The Upper Confidence Bound (UCB) Approach

- Since there is an initial uncertainty in the estimated mean  $(\hat{r}_i)$  introduce a confidence interval term  $c_i$ .
- $c_i$  represents the uncertainty about  $\hat{r}_i$ . Higher the  $c_i$ , higher is the uncertainty.
- c<sub>i</sub> ensures that the arm i is properly explored and is gradually reduced with time as one pulls the arm i more.

## The Upper Confidence Bound (UCB) Approach

- Since there is an initial uncertainty in the estimated mean  $(\hat{r}_i)$  introduce a confidence interval term  $c_i$ .
- $c_i$  represents the uncertainty about  $\hat{r}_i$ . Higher the  $c_i$ , higher is the uncertainty.
- c<sub>i</sub> ensures that the arm i is properly explored and is gradually reduced with time as one pulls the arm i more.
- At every timestep pull arm  $j \in \arg\max_{i \in A} \{\hat{r}_i + c_i\}$  and this will ensure that proper exploration is done.

## The UCB Approach





# Approach of UCB-Improved (UCB-Imp)



## Intuition of UCB-Improved (UCB-Imp)

$$\begin{aligned} & \text{Arm Elimination: } \hat{r_i} + c_m < \hat{r}_{max} - c_m \\ & c_m \middle \uparrow \hat{r}^* & \underbrace{\frac{\Delta_i}{2} \underbrace{\downarrow}}_{\Delta_i} & \underbrace{\uparrow}_{\Delta_i} = r^* - r_i \end{aligned}$$

## **APT Approach**

 The Anytime Parameter Free (APT) [Locatelli et al. (2016)] algorithm was proposed for TBP setting in ICML 2016.

## **APT Approach**

- The Anytime Parameter Free (APT) [Locatelli et al. (2016)] algorithm was proposed for TBP setting in ICML 2016.
- This algorithm uses only mean estimation to find the  $S_{\tau}$ .

# **APT Approach**

- The Anytime Parameter Free (APT) [Locatelli et al. (2016)] algorithm was proposed for TBP setting in ICML 2016.
- This algorithm uses only mean estimation to find the  $S_{\tau}$ .
- Theoretically they proved this algorithm to be almost optimal when only mean estimation is used as a metric of comparison.

# **APT Approach**

- The Anytime Parameter Free (APT) [Locatelli et al. (2016)] algorithm was proposed for TBP setting in ICML 2016.
- This algorithm uses only mean estimation to find the  $S_{\tau}$ .
- Theoretically they proved this algorithm to be almost optimal when only mean estimation is used as a metric of comparison.
- Empirically it outperformed other state-of-the-art algorithms which were modified to perform in the TBP setting.

### **APT Algorithm**

#### Algorithm 1 APT

**Input:** Time horizon T, threshold  $\tau$ , tolerance factor  $\epsilon \geq 0$  Pull each arm once

for 
$$t = K + 1, ..., T$$
 do

Pull arm  $j \in \arg\min_{i \in A} \left\{ (|\hat{r}_i - \tau| + \epsilon) \sqrt{n_i} \right\}$  and observe the reward for arm j.

end for

**Output:**  $\hat{S}_{\tau} = \{i : \hat{r}_i \geq \tau\}.$ 

#### Intuition of APT



### AugUCB algorithm



# AugUCB algorithm (Intuition, Arm pulling)

- Like UCB-Imp, AugUCB also divides the time budget *T* into rounds.
- At every timestep we pull arm j s.t.  $j \in \arg\min_{i \in B_m} \left\{ |\hat{r}_i \tau| 2s_i \right\}$  (like APT).



# AugUCB algorithm (Intuition, Arm Elimination)

- We eliminate an arm when we are sure that  $\hat{r}_i$  is close to  $r_i$  with high probability and hence identify it as good or bad arm.
- It's risky to eliminate an arm when  $\hat{r}_i$  is inside *Margin*.
- Confidence interval s<sub>i</sub> will make sure arm i is not eliminated while inside Margin with a high probability.



# AugUCB algorithm (Intuition, Arm Elimination)

- Now we see that  $\hat{r}_i$  has moved close to its true estimate  $r_i$ .
- We eliminate i and re-allocate the remaining budget to pull arms close to the threshold



# AugUCB parameter initialization



#### Parameter initialization



# AugUCB arm pull



ullet We pull the arm that minimizes  $j\in rg \min_{i\in B_m}\left\{|\hat{r}_i- au|-2s_i
ight\}$ 



- ullet We pull the arm that minimizes  $j\in rg\min_{i\in B_m}\left\{|\hat{ au}_i- au|-2s_i
  ight\}$
- We define the confidence interval  $s_i = \sqrt{\frac{\rho \psi_m(\hat{v}_i+1)\log(T\epsilon_m)}{4n_i}}$ .

- ullet We pull the arm that minimizes  $j\in rg\min_{i\in B_m}\left\{|\hat{ au}_i- au|-2s_i
  ight\}$
- We define the confidence interval  $s_i = \sqrt{rac{
  ho\psi_m(\hat{v}_i+1)\log(T\epsilon_m)}{4n_i}}$ .
- $s_i$  decreases with more  $n_i$  and  $\psi_m$  and  $\rho$  ensures that it decreases at a correct rate.

- ullet We pull the arm that minimizes  $j\in rg\min_{i\in B_m}\left\{|\hat{ au}_i- au|-2s_i
  ight\}$
- We define the confidence interval  $s_i = \sqrt{rac{
  ho\psi_m(\hat{v}_i+1)\log(T\epsilon_m)}{4n_i}}$ .
- $s_i$  decreases with more  $n_i$  and  $\psi_m$  and  $\rho$  ensures that it decreases at a correct rate.
- Note that  $\hat{v}_i$  estimated variance in  $s_i$  makes the algorithm pull the arm which shows more variance.

# AugUCB arm elimination



#### Arm elimination

• Arm elimination condition is checked at every timestep.

#### Arm elimination

- Arm elimination condition is checked at every timestep.
- It identifies the arm whose estimates lies close to their true mean and thus help in identifying the good or bad arms.

#### Arm elimination

- Arm elimination condition is checked at every timestep.
- It identifies the arm whose estimates lies close to their true mean and thus help in identifying the good or bad arms.
- It eliminates the arms which have been identified as good or bad arms (with a high probability) and re-allocates the remaining budget for surviving arms.



• Increase the allocated pulls  $\ell_m$  for each surviving arms.

- Increase the allocated pulls  $\ell_m$  for each surviving arms.
- Proportionally reduce the exploration factor  $\psi_m$  for next round.

- Increase the allocated pulls  $\ell_m$  for each surviving arms.
- Proportionally reduce the exploration factor  $\psi_m$  for next round.
- Recalculate the length of next round on the number of surviving arms.

• We define  $\Delta_i = |r_i - \tau|$  as in Locatelli et al. (2016).

- We define  $\Delta_i = |r_i \tau|$  as in Locatelli et al. (2016).
- We define  $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$  and  $H_2 = \min_{i \in \mathcal{A}} \frac{i}{\Delta_{(i)}^2}$  where  $\Delta_{(i)}$  is an increasing ordering of  $\Delta_i$ .

- We define  $\Delta_i = |r_i \tau|$  as in Locatelli et al. (2016).
- We define  $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$  and  $H_2 = \min_{i \in \mathcal{A}} \frac{i}{\Delta_{(i)}^2}$  where  $\Delta_{(i)}$  is an increasing ordering of  $\Delta_i$ .
- From Audibert and Bubeck (2010) the relationship between H<sub>1</sub> and H<sub>2</sub> can be derived as,

$$H_2 \leq H_1 \leq \log(2K)H_2$$

- We define  $\Delta_i = |r_i \tau|$  as in Locatelli et al. (2016).
- We define  $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$  and  $H_2 = \min_{i \in A} \frac{i}{\Delta_{i,i}^2}$  as in Audibert and Bubeck (2010).
- $\bullet \ H_{\sigma,1} = \sum_{i=1}^K \frac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Lambda^2}.$
- $H_{\sigma,2} = \max_{i \in \mathcal{A}} \frac{i}{\tilde{\Delta}_{i,n}^{2}}$  where  $\tilde{\Delta}_{i}^{2} = \frac{\Delta_{i}^{2}}{\sigma_{i} + \sqrt{\sigma_{i}^{2} + (16/3)\Delta_{i}}}$ .
- From Audibert and Bubeck (2010) we can show  $H_2 < H_1 < \log(2K)H_2$  and  $H_{\sigma,2} < H_{\sigma,1} < \log(2K)H_{\sigma,2}$ .

30 / 39

• For a variance aware algorithm we define  $H_{\sigma,1}$  (as in Gabillon et al. (2011)) that incorporates reward variances into its expression as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

• For a variance aware algorithm we define  $H_{\sigma,1}$  (as in Gabillon et al. (2011)) that incorporates reward variances into its expression as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

• Finally, analogous to  $H_2$ , we introduce  $H_{\sigma,2}$ , such that  $H_{\sigma,2} = \max_{i \in \mathcal{A}} \frac{i}{\tilde{\Delta}_{(i)}^2}$ , where  $\tilde{\Delta}_i^2 = \frac{\Delta_i^2}{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}$ ,  $(\tilde{\Delta}_{(i)})$  is an increasing ordering of  $(\tilde{\Delta}_i)$ .

• For a variance aware algorithm we define  $H_{\sigma,1}$  (as in Gabillon et al. (2011)) that incorporates reward variances into its expression as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

- Finally, analogous to  $H_2$ , we introduce  $H_{\sigma,2}$ , such that  $H_{\sigma,2} = \max_{i \in \mathcal{A}} \frac{i}{\tilde{\Delta}_{(i)}^2}$ , where  $\tilde{\Delta}_i^2 = \frac{\Delta_i^2}{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}$ ,  $(\tilde{\Delta}_{(i)})$  is an increasing ordering of  $(\tilde{\Delta}_i)$ .
- From Audibert and Bubeck (2010), we can show that

$$H_{\sigma,2} \leq H_{\sigma,1} \leq \log(2K)H_{\sigma,2}$$
.



• For a variance aware algorithm we define  $H_{\sigma,1}$  (as in Gabillon et al. (2011)) that incorporates reward variances into its expression as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

- Finally, analogous to  $H_2$ , we introduce  $H_{\sigma,2}$ , such that  $H_{\sigma,2}=\max_{i\in\mathcal{A}}rac{i}{ ilde{\Delta}_{i,0}^2}$  , where  $ilde{\Delta}_i^2=rac{\Delta_i^2}{\sigma_i+\sqrt{\sigma_i^2+(16/3)\Delta_i}}$ ,  $( ilde{\Delta}_{(i)})$  is an increasing ordering of  $(\tilde{\Delta}_i)$ .
- From Audibert and Bubeck (2010), we can show that

$$H_{\sigma,2} \leq H_{\sigma,1} \leq \log(2K)H_{\sigma,2}$$
.

• Note that  $H_1$ ,  $H_2$  and  $H_{\sigma,1}$ ,  $H_{\sigma,2}$  are not directly comparable to each other except in a special case when variances and gaps  $(\Delta_i)$  are very low we can say that  $H_{\sigma,1} < H_1$ .

# **Expected Loss of AugUCB**

#### Theorem

For  $K \ge 4$  and  $\rho = 1/3$ , the expected loss of the AugUCB algorithm is given by,

$$\mathbb{E}[\mathcal{L}(T)] \leq 2KT \exp\bigg(-\frac{T}{4096\log(K\log K)H_{\sigma,2}}\bigg).$$

Table: AugUCB vs. State of the art

| Algorithm | Upper Bound on Expected Loss |                                                                             | Oracle |
|-----------|------------------------------|-----------------------------------------------------------------------------|--------|
| AugUCB    | exp (                        | $\left(-\frac{T}{4096\log(K\log K)H_{\sigma,2}} + \log(2KT)\right)$         | No     |
| UCBEV     | exp (                        | $\left(-\frac{1}{512}\frac{T-2K}{H_{\sigma,1}}+\log\left(6KT\right)\right)$ | Yes    |
| APT       | exp (                        | $\left(-\frac{T}{64H_1} + 2\log((\log(T) + 1)K)\right)$                     | No     |
| UCBE      | exp (                        | $\left(-\frac{T-K}{18H_1}-2\log(\log(T)K)\right)$                           | Yes    |

# Sketch of the proof



#### Finally, experiment!!!

• We compare with APT, AugUCB, UCBE, UCBEV, UA.

### Finally, experiment!!!

- We compare with APT, AugUCB, UCBE, UCBEV, UA.
- Note that UCBE and UCBEV require access to  $H_1$  and  $H_{\sigma,1}$  as input and hence not implementable in real life.
- By access we mean that an oracle supplies them the  $H_1$  or  $H_{\sigma,1}$ . They do not have access to individual means and variances.

# Finally, experiment!!!

- We compare with APT, AugUCB, UCBE, UCBEV, UA.
- Note that UCBE and UCBEV require access to  $H_1$  and  $H_{\sigma,1}$  as input and hence not implementable in real life.
- By access we mean that an oracle supplies them the  $H_1$  or  $H_{\sigma,1}$ . They do not have access to individual means and variances.
- APT, AugUCB, UA do not require access to  $H_1$  or  $H_{\sigma,1}$ .

### **Experimental Setup**

• This setup involves Gaussian reward distributions with K=100, T=10000 and  $\tau=0.5$  with the reward means set in two groups.

# **Experimental Setup**

- This setup involves Gaussian reward distributions with K=100, T=10000 and  $\tau=0.5$  with the reward means set in two groups.
- The first 10 arms partitioned into two groups; the respective means are  $r_{1:5} = 0.45$ ,  $r_{6:10} = 0.55$ .

# **Experimental Setup**

- This setup involves Gaussian reward distributions with K=100, T=10000 and  $\tau=0.5$  with the reward means set in two groups.
- The first 10 arms partitioned into two groups; the respective means are  $r_{1:5} = 0.45$ ,  $r_{6:10} = 0.55$ .
- The means of arms i = 11 : 100 are chosen same as  $r_{11:100} = 0.4$ .
- Variances are set as  $\sigma_{1:5}^2=0.3$  and  $\sigma_{6:10}^2=0.8$ ;  $\sigma_{11:100}^2$  are independently and uniformly chosen in the interval [0.2, 0.3].

#### **Experimental Results**





(b) Expt-2: Two Group Setting (Advance)

#### **Experimental Results**



APT - AugUCB - UCBE - UCBE - UCBEV - UA - UCBEV - UCB

(d) Expt-2: Geometric Progression (Gaussian)

#### Conclusion

- We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than APT.
- This work has been accepted in the proceedings of IJCAI 2017. I thank my collaborator Dr. K.P. Naveen and both my guides for guiding me through this work. I also thank Dr. L. A. Prashanth for illuminating discussions on several areas of bandits.

#### Conclusion

- We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than APT.
- This work has been accepted in the proceedings of IJCAI 2017. I thank my collaborator Dr. K.P. Naveen and both my guides for guiding me through this work. I also thank Dr. L. A. Prashanth for illuminating discussions on several areas of bandits.
- Further studies are required to establish a lower bound on the expected loss of AugUCB.

#### Conclusion

- We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than APT.
- This work has been accepted in the proceedings of IJCAI 2017. I thank my collaborator Dr. K.P. Naveen and both my guides for guiding me through this work. I also thank Dr. L. A. Prashanth for illuminating discussions on several areas of bandits.
- Further studies are required to establish a lower bound on the expected loss of AugUCB.
- A more detailed analysis of the non-uniform arm selection and parameter selection is also required.

# Thank You