



# Reporte #3

Entrenamiento y evaluación de clasificación

Nombre: Armando Alexis Sepúlveda Cruz

**Grupo**: <u>003</u>

**Matricula:** <u>1565746</u>

Unidad de aprendizaje: Aprendizaje Automático

Profesor: JOSE ANASTACIO HERNANDEZ SALDAÑA

| 1. Objetivos                             | 2 |
|------------------------------------------|---|
| 2. Descripción de datos                  | 2 |
| 3. Modelos de clasificación              | 3 |
| 3.1 Clasificación KNN                    | 3 |
| 3.2 Clasificación de regresión logística | 4 |
| 3.3 Clasificación SVN                    | 6 |
| 3.4 Clasificación Decision Tree          | 7 |
| 4. Evaluación                            | 9 |

## 1. Objetivos

Selecciona entre los diversos modelos de regresión (k-vecinos más cercanos, árbol de decisión, máquina de vectores de soporte, regresión logística, etc.) para desarrollar un modelo utilizando un conjunto de datos de tu elección. Emplea validación cruzada con un criterio de tu preferencia (precisión, exactitud, recall, F1, ROC) para seleccionar el mejor modelo de acuerdo a tu criterio.

## 2. Descripción de datos

Este documento presenta un análisis de diferentes modelos de regresión aplicados a datos bursátiles provenientes de la plataforma Investing, con el objetivo de examinar las relaciones y patrones entre diferentes activos financieros, commodities y acciones tecnológicas.

| Sector                | Grupo              | Activos                                                              |
|-----------------------|--------------------|----------------------------------------------------------------------|
| Activos financieros   | Índices bursátiles | S&P 500, Nasdaq 100                                                  |
|                       | Criptomonedas      | Bitcoin, Ethereum                                                    |
| Commodities           | Energía            | Natural Gas, Crude Oil                                               |
|                       | Metales            | Copper, Gold, Silver,<br>Platinum                                    |
| Acciones tecnológicas | FAANG+             | Apple, Google, Amazon,<br>Netflix, Meta, Nvidia,<br>Microsoft, Tesla |
| Otros                 | Otros              | Berkshire Hathaway                                                   |

# 3. Modelos de clasificación

#### 3.1 Clasificación KNN



| Métrica   | Valor  |
|-----------|--------|
| Accuracy  | 0.9223 |
| Precision | 0.9231 |
| Recall    | 0.9223 |
| F1        | 0.9222 |
| ROC AUC   | 0.9851 |

# 3.2 Clasificación de regresión logística





| Métrica                 | Valor  | Desviación estándar |
|-------------------------|--------|---------------------|
| test_accuracy           | 0.8977 | 0.0169              |
| test_precision_weighted | 0.8915 | 0.0162              |
| test_recall_weighted    | 0.8977 | 0.0169              |
| test_f1_weighted        | 0.8924 | 0.0159              |

#### 3.3 Clasificación SVN



| Métrica   | Valor  |
|-----------|--------|
| Accuracy  | 0.9062 |
| Precision | 0.9116 |
| Recall    | 0.9062 |
| F1        | 0.9059 |
| ROC AUC   | 0.9929 |

## 3.4 Clasificación Decision Tree





| Métrica   | Valor  |
|-----------|--------|
| Accuracy  | 0.9062 |
| Precision | 0.9116 |
| Recall    | 0.9062 |
| F1        | 0.9059 |
| ROC AUC   | 0.9929 |

#### 4. Evaluación

| Métrica   | Valor  |
|-----------|--------|
| Accuracy  | 0.9223 |
| Precision | 0.9231 |
| Recall    | 0.9223 |
| F1        | 0.9222 |
| ROC AUC   | 0.9851 |

Dado que el objetivo principal es medir la capacidad general del modelo para predecir correctamente el año al que pertenece el precio de las acciones, y asumiendo que las clases (años) están equilibradas, la métrica de **precisión (accuracy)** es la más adecuada para este problema. La precisión mide la proporción de predicciones correctas en total, lo que proporciona una medida general del rendimiento del modelo.