Problem on equilateral triangle

Created by Mr. Francis Hung on 20230428. Last updated: 2023-04-28

In $\triangle ABC$, D is the mid-point of AC. $\angle BAC = 30^{\circ}$, $\angle BDC = 45^{\circ}$. Find $\angle CBD$.

Draw a circle $\odot(D, DA)$, cutting AB at E. Join CE. B

$$DA = DE = DC$$
 (radii)
 $\angle ABD = \angle BDC - \angle BAD$ (ext. \angle of \triangle)
 $= 45^{\circ} - 30^{\circ} = 15^{\circ}$
 $\angle AED = \angle DAE = 30^{\circ}$ (base \angle s isos. \triangle)

In $\triangle ADE$,

$$\angle CDE = 30^{\circ} + 30^{\circ} = 60^{\circ}$$
 (ext. \angle of Δ)

In $\triangle CDE$,

$$\angle DCE = \angle DEC$$
 (base \angle s isos. \triangle)
= $\frac{180^{\circ} - 60^{\circ}}{2}$ (\angle sum of \triangle)
= 60°

 $\therefore \Delta CDE$ is an equilateral triangle

$$CE = CD = DE$$
 (property of equialteral triangle)

$$\angle BDE = 60^{\circ} - 45^{\circ} = 15^{\circ} = \angle ABD$$

$$\therefore BE = DE$$
 (sides opp. equal angles)

$$\therefore CE = DE = BE$$

$$\angle CEA = 60^{\circ} + 30^{\circ} = 90^{\circ}$$

 $\therefore \triangle CDE$ is an right-angled isosceles triangle

$$\angle CBE = \angle BCE = 45^{\circ}$$
 (base \angle s, isos. Δ , \angle sum of Δ)

$$\angle CBD = \angle CBE - \angle DBE$$

$$= 45^{\circ} - 15^{\circ}$$

$$= 30^{\circ}$$

