RESFRIAMENTO EVAPORATIVO

Profº. Dr. Iran José Oliveira da Silva NUPEA - ESALQ/USP, 2013

INTRODUÇÃO

- Quando a <u>água evapora</u> de uma superfície, essa superfície resfria-se porque a água requer calor para mudar do <u>estado líquido para o de vapor;</u>
- Cada <u>grama de água evaporada</u> retira <u>590 calorias</u> em forma de calor sensível;

INTRODUÇÃO

Conforme o<u>ar entra em contato com a água</u>, esse a absorve.

- A quantidade de <u>água absorvida</u> depende da quantidade de <u>água existente no ar</u>.
- Quando o<u>ar quente e insaturado</u>entra em contato com uma <u>superficie molhada</u>, parte da água é evaporada.
- O ar e resfria-se e o processo continua até que o ar esteja saturado;

INTRODUÇÃO

- O resfriamento evaporativo é um processo adiabático, ou seja, não há nenhum ganho ou perda de calor.
- A energia requerida para evaporar a água é suprida pelo ar com conseqüente umidecimento do ar insaturado e redução da temperatura de bulbo seco.

SISTEMAS DE RESFRIAMENTO:

- Pad Cooling;
- Nebulização;
- Sistema acoplado de ventilação e umidificação;
- Aspersão sobre cobertura.

PAD COOLING

- Sistema totalmente automatizado com ventilação negativa em túnel;
- Painéis evaporativos de celulose;
- Suprimento de água:
 - Tradicional
- Aspersão

Exemplo de Dimensionamento:

1. Cálculo da secção de entrada de ar:

 $A = L \times H$

Onde:

A =área do painel evaporativo, m^2 ;

L = largura do aviário, m;

H = altura média do aviário

= metade do pé direito + altura da cumeeira, m.

Exemplo:

 Considerando um aviário com dimensões de 12m x 125m, pé direito de 2,5m e altura da cumeeira de 5m, a área do painel evaporativo será de:

$$A = 12.3,75 = 45m^2$$

Cada painel terá: 22,5 m²
2 painéis de 1,8 x 13m

NEBULIZAÇÃO

- Sistema constituído de bicos nebulizadores que fragmentam a água em minúsculas gotas, distribuindo-as no ambiente;
- Baixa e alta pressão;
- Qto. > a pressão ⇒ > a quebra da gota d'água;

COMPONENTES DO SISTEMA DE NEBULIZAÇÃO

Conjunto Moto-Bomba:

é o organismo responsável para imprimir ao sistema a energia necessária à adução e distribuição de água;

COMPONENTES DO SISTEMA DE NEBULIZAÇÃO

Tubulações:

- Linha de suprimento: conduz a água da fonte de abastecimento à linha principal;
- Linha principal: normalmente situada no centro ou nos limites do galpão, liga a linha de suprimento às linhas de nebulização;
- <u>Linha de Nebulização:</u> também chamada de secundária, conduz a água da linha principal ao nebulizadores;

COMPONENTES DO SISTEMA DE NEBULIZAÇÃO

Nebulizadores:

tem a função de pulverizar o jato d'água, distribuindo-o em forma de chuva. Bicos de cerãmica, metálicos ou plástico;

Acessórios:

válvulas, filtros, registros, suportes e manômetros;

CLASSIFICAÇÃO QUANTO À PRESSÃO:

Alta Pressão (Fogging):

- 400 a 700 psi (2,7 a 4,8 Mpa)
- ♦10 a 15 microns

Baixa Pressão (Misting):

- ◆100 a 200 psi (0,6 a 1,3 Mpa)
- •30 microns
- Aspersão (Sprinklers):
 - 10 a 30 psi (0,06 a 0,1 Mpa)

Uniformidade da Nebulização

- O ângulo de pulverização deve ser de 45°;
- evitar obstáculos às gotas;
- altura do sistema;
- tamanho das gotas;
- jato homogêneo;
- pressão uniforme em todos os bicos (variação máx de 20%);
- vazão uniforme em todos os bicos (variação máx de 10%);

	Aspersão	Nebulização	Diferenca
Consumo de água/animal/mês (I)	8271,4	735,7	7535,7
Gasto p/ bombear água/animal/mês (R\$)	2,0	0,18	1,82
Gasto energia pela bomba na linha/animal/mês (R\$)	1,1	0,6	0,5
Consumo de energia vent/animal (kW/mês)	17,0	18,1	-1,1
Gasto de energia com vent/animal (R\$/mês)	2,77	2,96	-0,19
Consumo energia mensal/animal (kW/mês)/animal	36,05	22,9	13,15
Gasto com energia mensal/animal (R\$/mês)	5,9	3,8	2,1
Custo/alimentação MS(kg) (R\$)/mês/animal	166,5	165,4	1,1
Produção média de leite/animal/mês	609	591	18
Ganho com o leite (R\$/mês/animal)	274,1	266,0	8,1
Ganho/mês/animal - gasto/mês/animal (R\$)	101,7	95.8	5,9

Perrissinotto et al, 2006.

Desempenho do Sistema de Resfriamento:

O desempenho do resfriamento evaporativo está diretamente relacionado à capacidade para evaporar a água até certo grau de umidade relativa do ar;

Desempenho do Sistema de Resfriamento:

$$\eta = \frac{Tbss - Tbsr}{Tbss - Tbur} x100$$

- Onde:
 - \circ η = eficiência do resfriamento evaporativo, %;
 - Tbss = Tbs antes do resfriamento, °C;
 - Tbsr = Tbs do ar resfriado, °C;
 - Tbur = Tbu do ar resfriado, °C;

Cálculo da eficiência do resfriamento evaporativo:

$$\eta = \frac{Wm - Wi}{Wf - Wi} x100$$

Onde:

Wm = razão de mistura do ar após o resfriamento, kg/kg;

 Wi = razão de mistura do ar antes do resfriamento, kg/kg;

Wf = razão de mistura do ar saturado, kg/kg;

Cálculo do número de bicos nebulizadores

$$N = \frac{E.Q_v.\rho_{ar}.\Delta W.0,01}{Q_n.\rho_{\acute{a}gua}}$$

- Onde:
 - N = número de nebulizadores;
 - E = eficiência evaporativa;
 - ρ_{ar} = densidade do ar, kg/m³;
 - ΔW = diferencial entre razão de mistura final e inicial, kg/kg;
 - Q_n = vazão dos nebulizadores, l/min;
 - Q_v= capacidade dos ventiladores, m³/min;
 - $\ \rho_{\text{água}} = \text{densidade da água, kg/l;}$

Exemplo de Dimensionamento:

- Aviário com dimensões de 12m x 125m;
- Capacidade do ventilador: Q_v = 500m³/min;
- 10 ventiladores = 5000m³/min;
- Eficiência Evaporativa = 40%;
- Capacidade do nebulizador = 5,5l/h;
- Tbs = 35° C;
- UR = 23,7%;
- Tpo = 20°C.

Exemplo de Dimensionamento:

1.Cálculo da diferença entre a razão de mistura final e inicial (ΔW):

$$Wi = 8.2g/kg = 0.0082kg/kg$$

$$Wf = 14.8g/kg = 0.0148kg/kg$$

$$\Delta W = 0.0082 - 0.0148 = 0.0066 \text{kg/kg}$$

Exemplo de Dimensionamento:

2. Cálculo do número de bicos nebulizadores:

$$N = \frac{E.Q_v.\rho_{ar}.\Delta W.0,01}{Q_n.\rho_{\acute{agua}}}$$

$$N = \frac{40.5000.1,1314.0,0066.0,01}{0,0916.1} = 163$$

т	ρ (kg/m²)	T (°C)	ρ (kg/m³)	(°C)	ρ (kg/m³)	(°C)	ρ (kg/m³)
(°C)							
0	1,2852	13	1,2233	26	1.1514	. 39	1,118
1	1,2804	14	1,2185	27	1.1581	40	1,1148
2	1,2757	15	1,2138	28	1.1547	41	1,1115
3	1,2709	16	1,2090	29	1,1514	42	1,1082
4	1,2662	17	1,2043	30	1,1481	43	1,1048
5	1,2614	18	1,1995	31	1,1448	44	1,1015
6	1,2566	19	1,1947	32	1,1414	45	1,0982
7	1,2519	20	1,1900	33	1,1381	46	1,0948
8	1,24/1	21	1,1852	34	1,1348	47	1,0918
9	1,2423	22	1,1804	35	1,1314	48	1,0882
10	1,2375	23	1,1757	36	1,1281	49	1,0849
11	1,2328	24	1,1709	37	1,1248	50	1,0815
12	1,2281	25	1,1662	38	1,1215	51	1.0782

