"Kernel methods in machine learning" Homework 1 Due on January 19, 2021, 3pm

Michael Arbel, Julien Mairal, and Jean-Philippe Vert

Exercice 1. Kernels

Study whether the following kernels are positive definite:

1.
$$\mathcal{X} = \mathbb{R}_+, \quad K(x, x') = \min(x, x')$$

2.
$$\mathcal{X} = \mathbb{R}_+, \quad K(x, x') = \max(x, x')$$

3. Let \mathcal{X} be a set and $f, g: \mathcal{X} \to \mathbb{R}_+$ two non-negative functions:

$$\forall x, y \in \mathcal{X} \quad K(x, y) = \min(f(x)g(y), f(y)g(x))$$

Exercice 2. Non-expansiveness of the Gaussian kernel

Consider the Gaussian kernel $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ such that for all pair of points x, x' in \mathbb{R}^p ,

$$K(x, x') = e^{-\frac{\alpha}{2}||x - x'||^2},$$

where $\|.\|$ is the Euclidean norm on \mathbb{R}^p . Call \mathcal{H} the RKHS of K and consider its RKHS mapping $\varphi : \mathbb{R}^p \to \mathcal{H}$ such that $K(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$ for all x, x' in \mathbb{R}^p . Show that

$$\|\varphi(x) - \varphi(x')\|_{\mathcal{H}} \le \sqrt{\alpha} \|x - x'\|.$$

The mapping is called non-expansive whenever $\alpha \leq 1$.

Exercice 3. Uniqueness of the RKHS

Prove that if $K: \mathcal{X} \times \mathcal{X}$ is a positive definite function, then it is the r.k. of a unique RKHS. (Hint: consider the linear space spanned by the functions $K_x: t \mapsto K(x,t)$, and use the fact that a linear subspace \mathcal{F} of a Hilbert space \mathcal{H} is dense in \mathcal{H} if and only 0 is the only vector orthogonal to all vectors in \mathcal{F})