CÁLCULO DIFERENCIAL

Juan Diego Barrado Daganzo e Iker Muñox Martínez $2^{\underline{0}}$ de Carrera

16 de septiembre de 2021

TEORÍA DE LA MEDIDA

Vamos a introducir un elemento fundamental en esta asignatura, y muy útil para las posteriores, que no es otra cosa que la capacidad de definir qué es una medida y cómo podemos medir las cosas según un criterio general.

CONCEPTO DE MÉTRICA Y ESPACIOS NORMADOS

En esta sección, se definen los elementos básicos para el estudio de medidas, distancias y se estudian las características de las estructuras que se generan a partir de dichas definiciones, con sus consecuentes resultados para otras áreas como la geometría.

Definición (distancia)

Sea $E \neq \emptyset$ un conjunto, decimos que $d: E \times E \to \mathbb{R}$ es una **métrica o distancia** siempre que se satisfaga las siguientes propiedades¹

- Positiva: $d(x,y) > 0 : \forall x,y \in E$
- No degenerada: $d(x,y) > 0 \Leftrightarrow x = y$
- Simetría: $d(x,y) = d(y,x) : \forall x,y \in E$
- Designal dad triangular: $d(x,y) \le d(x,z) + d(z,y) : \forall x,y,z \in E$

Al par (E,d) lo denotamos como **espacio métrico**.

Ejemplos:

- Un ejemplo sencillo de comprobar es considerar \mathbb{R} con la métrica d(x,y)=|x-y| tradicional.
- \blacksquare Otro ejemplo es, dado $E \neq \emptyset$ definimos la métrica discreta como:

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Luego con la definición dada de distancia y un conjunto cualquiera E tenemos que estos forman una peculiar definición de espacio métrico.

■ Por último, definimos como Espacio Euclídeo Usual al conjunto:

$$\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R} = \{(x_1, \cdots, x_n) : x_i \in \mathbb{R}\}\$$

que junto con la suma y el producto por escalares usual, lo cual lo dota de estructura de espacio vectorial.

 $[\]overline{\ }^1$ Nótese que no está permitido valores que tiendan a infinito (comprendidos en $\bar{\mathbb{R}})$

Definición (Espacios normados)

Sea E un espacio vectorial real, se dice que $||\cdot||: E \to \mathbb{R}$ es una **norma** si se cumplen las siguientes propiedades:

• Positiva: $||x|| \ge 0 : \forall x \in E$

• No degenerada: $||x|| = 0 \Leftrightarrow x = 0$

■ Homogénea: $||\lambda x|| = |\lambda| \cdot ||x|| : \forall \lambda \in \mathbb{R} \land \forall x \in E$

 $\blacksquare \ Designal dad \ triangular: ||x+y|| \leq ||x|| + ||y||$

Al par $(E, ||\cdot||)$ se le denota como **espacio normado**.

Ejemplos:

 \blacksquare Considerando \mathbb{R}^n denominamos como la clásica norma euclídea a:

$$||x|| = ||x||_2 = \sqrt{x_1^2 + \dots + x_n^2} : \forall x \in \mathbb{R}^n$$

La demostración es trivial salvo el último apartado, que no se puede demostrar hasta más adelante puesto que se necesita de la *Desigualdad de Cauchy-Schwarz*.

Proposición (Métrica asociada a una norma)

Si consideramos $(E, ||\cdot||)$ un espacio normado, podemos definir **la métrica asociada a dicha** norma como:

$$d_{||.||}(x,y) = ||x - y|| : \forall x, y \in E$$

Cuya definición, por ser en base a una norma ya dada, hace fácilmente verificable las condiciones de métrica.

Definición

De este modo, se define la **métrica o distancia euclídea** en \mathbb{R}^n como la métrica asociada a la norma euclídea:

$$d(x,y) = d_2(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Ejemplos:

■ Definimos el conjunto de las funciones continuas $E = \{f : [0,1] \to \mathbb{R} : f \text{ continua}\} = \mathbb{C}[0,1]$ y la función:

$$d(f,g) = \sup\{|f(x) - g(x)| : \forall x \in [0,1]\}$$

Lo primero de todo, comprobamos que está bien definida: como son funciones continuas la diferencia es continua y, por ser el valor absoluto una función continua, la composición con él también es continua. Consecuentemente, al tratarse de una función continua y acotada en [0,1] el máximo se alcanza, así que, de hecho, no solo el supremo es un número finito, sino que es máximo de la función en ese intervalo.

Para ver que se trata de una norma, comprobamos la última propiedad (las anteriores son triviales):

$$d(f,g) = |f(x) - g(x)| = |f(x) - h(x) + h(x) - g(x)| \le |f(x) - h(x)| + |h(x) - g(x)| \le d(f,h) + d(h,g)$$

Junto al ejemplo anterior, podemos definir:

$$||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}$$

y entonces el par $(E, || ||_{\infty})$ es un espacio normado. Para comprobar que esto es una norma, se puede tratar dicha norma como $||f||_{\infty} = d(f, 0)$ para demostrar sus propiedades.

• Sea $E = \{f : (0,1] \to \mathbb{R} \text{ continua } \}$ definimos:

$$d(f,g) = \sup\{|f(x) - g(x)| : \forall x \in (0,1]\}\$$

Sin embargo, no es una métrica porque no está bien definida; por ejemplo:

$$d\left(\frac{1}{x},0\right) = \infty$$

Observación:

Sin embargo, no toda métrica tiene asociada una norma en un espacio vectorial. Para verlo, tomamos \mathbb{R}^n con la métrica discreta definida: observamos que no existe una norma que haga que el par (\mathbb{R}^n, d) sea un espacio normado puesto que en caso de existir, por ejemplo, no se verifica la 3 propiedad:

Sea
$$x \in \mathbb{R} : x \neq 0, \ \exists ||\cdot|| \Rightarrow \underbrace{d(\lambda x, 0)}_{=1} = ||\lambda x|| = |\lambda| \cdot ||x|| = |\lambda| \cdot d(x, 0) = |\lambda|$$

Y como debe ocurrir para todo lambda, es absurdo.

Definición (Norma "p")

Consideramos en \mathbb{R}^n la siguiente norma:

$$||x||_1 = |x_1| + \cdots + |x_n|$$

En general, se define la norma p (con 1) como:

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$$

Es decir, que en el caso extremo tenemos que:

$$||x||_{\infty} = \lim_{p \to \infty} ||x||_p = \max\{|x_j| : j = 1, \dots, n\}$$

Definición (Producto escalar)

Sea E un espacio vectorial, se dice que $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$ es un **producto escalar** si es una forma bilineal definida positiva, es decir, cumple las propiedades:

- Definida positiva: $\langle x, x \rangle > 0 : \forall x \in E$
- No degenerada: $\langle x, x \rangle = 0 \Leftrightarrow x = 0$
- Homogeneidad: $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle : \forall x, y \in E$
- Bilinealidad: $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle : \forall x, y, z \in E$
- $\blacksquare \ Sim\'etrica: \langle x,y\rangle = \langle y,x\rangle:, \forall x,y,\in E$

Al par $(E, \langle \cdot, \cdot \rangle)$ se le denomina espacio vectorial con producto escalar o espacio **pre-Hilbert**.

Ejemplos

1. En \mathbb{R}^n , definimos

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \cdot y_j : \forall x, y \in \mathbb{R}^n$$

2. En C[0,1], definimos

$$\langle f, g \rangle = \int_0^1 f(x) \cdot g(x) dx$$

Y es muy sencillo demostrar que ambas definiciones suponen un producto escalar en el espacio en el que están definidas.

Teorema (Desigualdad de Cauchy-Schwarz)

Sea $(E, \langle \cdot, \cdot \rangle)$ un espacio pre-Hilbert y sean $x, y \in E$ dos vectores cualesquiera. Entonces ocurre que:

$$|\langle x, y \rangle| \le \sqrt{\langle x, x \rangle \cdot \langle y, y \rangle}$$

Demostración:

- Si x = 0 o y = 0, la desigualdad es trivial.
- Tomemos en primer lugar un $\lambda \in \mathbb{R}$ arbitrario y escojamos $x, y \in E \setminus \{0\}$:

$$0 \le \langle \lambda x + y, \lambda x + y \rangle = \lambda^2 \langle x, x \rangle + 2\lambda \langle x, y \rangle + \langle y, y \rangle$$

Esta ecuación² describe una parábola que, a lo sumo, es tangente al eje X pero nunca lo llega a cruzar porque es siempre ≥ 0 . Consecuentemente, el discriminante de esta ecuación nunca será estrictamente positivo ya que esto implicaría tener dos raíces, es decir:

$$\Delta = 4\langle x,y\rangle^2 - 4\langle x,x\rangle \cdot \langle y,y\rangle \le 0 \Leftrightarrow \langle x,y\rangle^2 - \langle x,x\rangle \cdot \langle y,y\rangle \le 0 \Leftrightarrow |\langle x,y\rangle| \le \sqrt{\langle x,x\rangle \cdot \langle y,y\rangle}$$

Observación:

Cabe destacar que hay igualdad si y solo si los vectores son proporcionales, es decir:

$$|\langle x,y\rangle| = \sqrt{\langle x,x\rangle \cdot \langle y,y\rangle} \Leftrightarrow x = \alpha y : \alpha \in \mathbb{R}$$

Si son proporcionales es trivial demostrar la igualdad, pero si tenemos la igualdad, entonces ello implica que la parábola de la que hablábamos antes corta en un único punto al eje de abscisas, luego:

$$\langle \lambda \cdot x + y, \lambda \cdot x + y \rangle = 0 \Leftrightarrow \lambda^2 \langle x, x \rangle + 2\lambda \langle x, y \rangle + \langle y, y \rangle = 0 \Leftrightarrow \lambda = \frac{-2 \cdot \langle x, y \rangle}{2 \cdot \langle x, x \rangle} \Leftrightarrow x = -\lambda y$$

Proposición

Dado un espacio pre-Hilbert $(E, \langle \cdot, \cdot \rangle)$ y definimos $||x|| = \sqrt{\langle x, x \rangle}$, entonces $(E, ||\cdot||)$ es normado.

Demostración:

La única propiedad no trivial es la desigualdad triangular. Sea

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2 \cdot \langle x, y \rangle + ||y||^2$$

Aplicando la desigualdad de Cauchy-Schwarz

$$<||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2$$

²Esto es mayor o igual que 0 por la propiedad de definida positiva