Московский государственный технический университет Имени Н.Э. Баумана

С.А. Васюков, О.И. Мисеюк ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ СИНУСОИДАЛЬНОГО ТОКА (РЕЗОНАНС НАПРЯЖЕНИЙ)

Методические указания к выполнению лабораторной работы

Москва
ИЗДАТЕЛЬСТВО
МГТУ им. Н.Э. Баумана
2017

УДК 621.3

Рецензент

Васюков С.А., Мисеюк О.И.

Исследование линейных электрических цепей синусоидального тока (резонанс напряжений): методические указания к выполнению лабораторной работы по курсам «Электротехника», «Электротехника и электроника» С.А.Васюков, О.И.Мисеюк — М.: Изд — во МГТУ им. Н.Э.Баумана, 2018 — 27,[2] с.: ил.

В методических указаниях изложены основные теоретические сведения по цепям синусоидального тока, даны определения резонанса напряжений и токов. Приведены нормированные частотные характеристики последовательного колебательного контура. Представлены задание, порядок выполнения и методические указания к проведению работы, а также контрольные вопросы.

Для студентов 2 — 4 курсов МГТУ им. Н.Э.Баумана, обучающихся по программам бакалавриата и специалитета и изучающих дисциплины «Электротехника», «Электротехника и электроника» на кафедре «Электротехника и промышленная электроника»

© Издательство МГТУ им.Н.Э.Баумана, 2018

ОГЛАВЛЕНИЕ

1.1. Последовательный колебательный контур
1.2. Частотные характеристики последовательного колебательного контура
2. ЗАДАНИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
2.1. Изучите описание лабораторного стенда (методические указания «Стенд и приборы для исследования электрических цепей»)
приборы для исследования электрических цепей»)
2.2. Исследование линейной электрической цепи при последовательном соединении катушки индуктивности L и конденсатора C (резонанс напряжений)
соединении катушки индуктивности L и конденсатора C (резонанс напряжений)
, ,
2.2.1. Измерьте активное сопротивление катулнек инпуктивности
2.2.1. Hismophic artificion comportibilitie Ratymer inigyrindioeth
2.2.2. Соберите схему на наборном поле
2.2.3. Активация виртуальных измерительных приборов14
2.2.4. Измерение резонансных частот при различных параметрах элементов схемы
14
2.2.5. Частотные характеристики резонансного контура10
ТРЕБОВАНИЯ К ОТЧЕТУ
КОНТРОЛЬНЫЕ ВОПРОСЫ
ЛИТЕРАТУРА

ПРЕДИСЛОВИЕ

Современное высшее техническое образование, ориентированное на формирование профессиональных компетенций, уделяет большое внимание подготовке специалистов, владеющих как теоретическими знаниями, так и современными методами исследования. Особо выделяется способность проводить исследования физических процессов и свойств объектов с выбором технических средств, методов измерений, обработки и представления результатов. А эта способность во многом формируется в результате выполнения лабораторных практикумов.

При выполнении лабораторных работ по электротехнике преследуются две основные цели. Первая цель – закрепление на практике основных положений курса. Вторая цель – научить студента навыкам работы с электроизмерительными приборами. Цепи синусоидального тока нашли широкое применение как в промышленности, так и в повседневной жизни. Их расчет, особенно с применением комплексного метода, является составной частью подготовки современного инженера. Резонансные явления в синусоидального встречаются проектировании цепях тока при фильтров, корректирующих устройств автоматики, электронных генераторов и.т.п. Именно поэтому лабораторная работа по изучению цепей синусоидального тока является одной из базовых работ курса электротехники.

Цель лабораторной работы — изучение основных свойств, законов и режимов работы линейных электрических цепей синусоидального тока. Экспериментальное определение значений параметров элементов, входящих в исследуемую цепь, изучение их влияния на режим ее работы; экспериментальное исследование режима резонанса напряжений.

1. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Резонанс представляет собой такой режим пассивной электрической цепи, содержащей индуктивности и емкости, при котором ток и напряжение цепи совпадают по фазе. При резонансе реактивное сопротивление и реактивная проводимость цепи равны нулю; соответственно равна нулю реактивная мощность на выводах цепи.

Резонанс напряжений наблюдается в электрической цепи с последовательным соединением участков, содержащих индуктивности и емкости. При резонансе напряжений индуктивное сопротивление одной части цепи компенсируется емкостным сопротивлением другой ее части, последовательно соединенной с первой. В результате реактивное сопротивление и реактивная мощность на выводах цепи равны нулю.

В свою очередь **резонанс токов** наблюдается в электрической цепи с параллельным соединением участков, содержащих индуктивности и емкости. При резонансе токов индуктивная проводимость одной части цепи компенсируется емкостной проводимостью другой ее части, параллельно соединенной с первой. В результате реактивная проводимость и реактивная мощность на выводах цепи равны нулю.

Частоты, при которых наблюдается явление резонанса, называются резонансными частотами.

1.1. Последовательный колебательный контур

Резонанс напряжений. Резонансная цепь с последовательным соединением r, L и C, рис. 1, является простейшей цепью для изучения явления резонанса напряжений.

Рис. 1. Последовательный колебательный контур.

Комплексное сопротивление такой цепи зависит от частоты:

$$Z = r + j \left(\omega L - \frac{1}{\omega C} \right). \tag{1}$$

Резонанс напряжений наступает при частоте ω_0 когда

$$\omega_0 L = \frac{1}{\omega_0 C} \Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}.$$
 (2)

Резистивное сопротивление контура при резонансе $\,Z_0=r\,.\,$

Определим реактивные сопротивления на индуктивности и емкости при резонансе:

$$X_{L_0} = \omega_0 L = \frac{1}{\sqrt{LC}} L = \sqrt{\frac{L}{C}} , \ X_{C_0} = \frac{1}{\omega_0 C} = \frac{\sqrt{LC}}{C} = \sqrt{\frac{L}{C}} .$$

Видно, что сопротивления $X_{L_0} = X_{C_0} = \sqrt{\frac{L}{C}} = \rho$ — характеристическое (волновое) сопротивление контура.

Резонансные свойства контура характеризуются добротностью \mathcal{Q} .

Величина, обратная добротности, $d = \frac{1}{Q}$ называется затуханием.

Добротность последовательного колебательного контура:

$$Q = \frac{\omega_0 L}{r} = \frac{1}{r \omega_0 C} = \frac{\rho}{r} \tag{3}$$

1.2. Частотные характеристики последовательного колебательного контура

Условимся называть относительной расстройкой частоты по отношению к резонансной частоте контура величину

$$\delta = \frac{\omega - \omega_0}{\omega_0} = \frac{\omega}{\omega_0} - 1. \tag{4}$$

Сопротивление контура согласно (1) и с учетом (3)

$$Z = r \left[1 + j \frac{\omega_0 L}{r} \left(\frac{\omega}{\omega_0} - \frac{1}{\omega \omega_0 LC} \right) \right] = r \left[1 + j Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \right],$$

откуда, используя (4), $\frac{\omega}{\omega_0} = \delta + 1$ или $\frac{\omega_0}{\omega} = \frac{1}{\delta + 1}$, получаем:

$$Z = r \left[1 + jQ \left(\delta + 1 - \frac{1}{\delta + 1} \right) \right] = r \left(1 + jQ\delta \frac{\delta + 2}{\delta + 1} \right) = ze^{j\varphi}. \tag{5}$$

Следовательно, полное сопротивление и фазовый угол цепи

$$z = r\sqrt{1 + Q^2 \delta^2 \left(\frac{\delta + 2}{\delta + 1}\right)^2}; \varphi = arctgQ\delta \frac{\delta + 2}{\delta + 1}.$$
 (6)

Ток в цепи

$$\dot{I} = \frac{\dot{E}}{Z} = \frac{\dot{E}}{r\left(1 + jQ\delta\frac{\delta + 2}{\delta + 1}\right)}.$$
 (7)

На рис. 2 приведены зависимости от частоты сопротивления и сдвига фаз между напряжением и током. Кривые даны в относительных значениях: по оси абсцисс

отложена относительная расстройка частоты δ , а по оси ординат — отношение полного сопротивления z к активному сопротивлению r, рис. 2 a, и угол φ , рис. 2 δ .

Рис. 2. Частотные зависимости сопротивления (a) и угла (δ).

Полное сопротивление цепи минимально при резонансе напряжений; при этом ток в цепи достигает своего максимального значения I_0 .

На рис. З изображены резонансные кривые тока в относительных значениях: по оси абсцисс, как и на предыдущих графиках, отложены значения δ , по оси ординат – отношения токов к максимальному току при резонансе:

$$\frac{I}{I_0} = \frac{E}{z} : \frac{E}{r} = \frac{r}{z} = \frac{1}{\sqrt{1 + Q^2 \delta^2 \left(\frac{\delta + 2}{\delta + 1}\right)^2}}.$$
(8)

Q = 1 $\frac{1}{\sqrt{2}}$ Q = 100 δ_1 0 $\frac{1}{Q} = d$

Рис. 3. Резонансные кривые тока в относительных единицах.

Чем выше добротность цепи Q, тем острее резонансные кривые. Таким образом, величина Q характеризует остроту резонансной кривой («остроту настройки»).

Полосу частот вблизи резонанса, на границах которой ток снижается до $1/\sqrt{2}=0,707$ максимального (резонансного) значения I_0 , принято называть полосой пропускания резонансного контура. При токе $I=I_0/\sqrt{2}$ мощность, расходуемая в сопротивлении r, равна:

$$r\left(\frac{I_0}{\sqrt{2}}\right)^2 = \frac{1}{2}rI_0^2,$$

т.е. составляет половину мощности, расходуемой при резонансе. Поэтому полосу пропускания характеризуют как полосу, границы которой соответствуют половине максимальной мощности. На границах полосы пропускания резонансного контура активное и реактивное сопротивления равны r=|x|. Фазовый сдвиг между напряжением на выводах цепи и током составляет 45°; на нижней границе комплексное сопротивление цепи имеет емкостный характер (ток опережает напряжение) и $\varphi = -45^\circ$; на верхней границе комплексное сопротивление цепи имеет индуктивный характер (ток отстает от напряжения) и $\varphi = 45^\circ$.

На основании (8) условие для границы полосы пропускания записывается в следующем виде:

$$\sqrt{1+Q^2\delta^2\left(\frac{\delta+2}{\delta+1}\right)^2} = \sqrt{2} \implies Q\delta\frac{\delta+2}{\delta+1} = \mp 1 \implies \delta_{1,2} = -1\mp\frac{1}{2Q} + \sqrt{1+\frac{1}{4Q^2}}$$
 (9)

(знак минус перед корнем, получающийся в результате решения квадратного уравнения, опускается, как не имеющий смысла). Индексы 1 и 2 и соответственно знаки минус и плюс в выражении (9) относятся к границам ниже и выше резонанса.

По определению полоса пропускания $\Delta \omega$ резонансного контура находится из условия

$$\delta_2 - \delta_1 = \frac{1}{Q} \Rightarrow \frac{\omega_2 - \omega_1}{\omega_0} = \frac{1}{Q} = d \Rightarrow \Delta\omega = \omega_2 - \omega_1 = \frac{\omega_0}{Q}.$$
 (10)

В условиях, близких к резонансу, напряжения на индуктивности и емкости могут быть весьма велики, что необходимо учитывать во избежание повреждения изоляции.

На рис. 4 показана векторная диаграмма тока и напряжений при резонансе. Напряжения на реактивных элементах при резонансе определяются из выражения

$$\dot{U}_{L0} = -\dot{U}_{C0} = \frac{\dot{U}}{r} j\omega_0 L = j\dot{U}Q.$$
 (11)

Последняя формула показывает, что добротность рассматриваемой цепи определяется как кратность перенапряжения на L и C при резонансной частоте.

Рис. 4. Векторная диаграмма при резонансе напряжений.

При Q> 1 эти напряжения превышают напряжение U, приложенное к резонансному контуру. Однако значения, получаемые на основании (11), не являются максимальными: максимум напряжения U_L располагается несколько выше (правее), а максимум U_C - ниже (левее) резонансной частоты, рис. 5.

Рис. 5. Частотные зависимости напряжений на индуктивности и емкости в относительных единицах.

2. ЗАДАНИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 2.1. Изучите описание лабораторного стенда (методические указания «Стенд и приборы для исследования электрических цепей»)
- **2.2.** Исследование линейной электрической цепи при последовательном соединении катушки индуктивности L и конденсатора C (резонанс напряжений)

В лабораторной работе используются следующие мини блоки:

- катушка индуктивности 33 мГн (номинальный ток 50 мА);
- катушка индуктивности 100 мГн (номинальный ток 50 мА);
- конденсатор 0,47 мкФ (номинальное напряжение 63 В);
- конденсатор 1,0 мкФ (номинальное напряжение 63 В);
- резисторы 100 Ом, 220 Ом, 330 Ом (номинальная мощность 2 Вт).

2.2.1. Измерьте активное сопротивление катушек индуктивности

Для проведения измерений включите общее питание стенда и компьютера, тумблер питания однофазного источника и питание блока мультиметров. Выберите любой из четырех мультиметров. Подсоедините к выбранному мультиметру измерительные провода (красный ко входу $V\Omega$, черный – ко входу COM). Установите переключатель мультиметра в положение Ω (предел измерения 200). Смонтируйте мини блоки 33 мГн и 100 мГн на наборном поле в соответствии с рис. 6.

Рис. 6. Измерение активного сопротивления катушек индуктивности.

Подсоедините измерительные провода в любой полярности к точкам 0 и 2, измеренное значение активного сопротивление катушки индуктивности занесите в графу R_{K1} таблицы 1. Проделайте те же измерения с мини блоком 100 мГн (точки 3 и 4) и занесите результат в графу R_{K2} таблицы 1.

Таблица 1

Мини блок	L_{K1} , м Γ н	R_{K1} , Ом
33 мГн	33	
Мини блок	L_{K2} , м Γ н	R_{K2} , Om
100 мГн	100	

Примечание: сопротивление R_{K1} должно быть около 60 Ом, а R_{K2} - около 190 Ом.

2.2.2. Соберите схему на наборном поле

Электрическая схема цепи приведена на рис. 7.

Рис. 7. Электрическая схема.

Она содержит генератор синусоидального напряжения \dot{U} (точка \bigcirc), балластный резистор R_6 (он необходим для устойчивой работы виртуальных приборов), резистор R_1 , мини блок катушки индуктивности L_K , R_K и конденсатор C. Мини блоки выбираются по номеру стенда, таблица 2.

Таблица 2

№ стенда	R_1 , Om	L_K , м Γ н	C , мк Φ
1 или 11	220	33	0,47
2 или 12	330	33	0,47
3 или 13	220	33	1,0
4 или 14	330	33	1,0
5 или 15	220	100	0,47

6 или 16	330	100	0,47
7 или 17	220	100	1,0
8 или 18	330	100	1,0
9 или 19	220	33	0,47
10 или 20	330	100	0,47

В схему включен виртуальный вольтметр V0, измеряющий выходное напряжение генератора, виртуальный вольтметр V1, измеряющий напряжение на конденсаторе и виртуальный амперметр A1, измеряющий ток в цепи. Параллельно резистору R_1 включен ключ K, при замкнутом ключе резистор R_1 исключается их схемы.

Для монтажа исследуемой схемы на наборном поле, рекомендуется на первом этапе смонтировать только мини блоки, а затем подключить генератор и измерительные приборы, рис. 8.

Рис. 8. Монтажная схема.

Клеммы + (красного цвета) вольтметров V0, V1 и амперметра A1 подключены к точкам \bigcirc , \bigcirc и \bigcirc соответственно. Клеммы – (синего цвета) вольтметров V0, V1 и амперметра A1 подключены к любым вводам земляной шины.

2.2.3. Активация виртуальных измерительных приборов

Активируйте левой кнопкой мыши иконку «ВП ТОЭ» на рабочем столе компьютера. В открывшейся вкладке **Приборы I**, рис. 9 а, установите приборы V0, V1, А1 для измерения действующего значения. Нажмите указателем мыши на вкладку Меню, и в раскрывшемся списке, рис. 9 б, последовательно активируйте **Приборы II**, **Осциллограф** и **Аналоговый прибор**, рис. 10.

Измените вкладку **Активное сопротивление R** (**Приборы II**) на **Угол сдвига** фаз. Измените номер входа **Аналогового прибора** с **1** на **7**. Виртуальные приборы готовы для измерения напряжений, тока и угла сдвига фаз между входным напряжением и током.

2.2.4. Измерение резонансных частот при различных параметрах элементов схемы

Установите мини блоки схемы и положение ключа K в соответствии со строкой 1 таблины 3.

Пояснения по заполнению таблицы 3.

В графу **Конфигурация цепи** внесите значение R_1 в соответствии с номером стенда (таблица 2).

В столбец R_K внесите значения сопротивления мини блоков индуктивностей 33 и 100 мГн, измеренные ранее (таблица 1).

Рис. 9. Активация виртуальных приборов.

Рис. 10. Набор виртуальных приборов.

Значение 0 в графе R_1 соответствует замкнутому положению ключа K (смотри обозначения на рис. 7). Значение R_1 - разомкнутому положению ключа.

При заполнении столбцов **Вычислено** (теоретически) для каждой строки использовать расчетные соотношения:

- общее активное сопротивление цепи $R = 100 + R_1 + R_K$;
- резонансная частота $f_0 = \frac{1}{2\pi\sqrt{L_K C}}$, где значения L_K брать в Генри, а C в

Фарадах;

- емкостное сопротивление рассчитывать по выражению $x_C = \frac{1}{\omega_0 C}$,

где $\omega_0 = 2\pi f_0$;

- ток при резонансе I_0 вычислить как $I_0 = \frac{V_0}{R} = \frac{8}{R}$;
- добротность Q вычислить как $Q = \frac{x_C}{R}$.

Кнопкой Форма (рис. 8), установить синусоидальную форму сигнала генератора. Вращая ручку регулировки амплитуды, установить напряжение генератора $V_0 = 8\,\mathrm{B}\,$ и

занести в столбец V_0 . Напряжение контролировать по виртуальному вольтметру V0. При проведении измерений поддерживать это напряжение неизменным.

Изменяя частоту генератора, добиться резонанса. Резонанс достигается при минимальном сдвиге фаз (показания виртуального фазометра) и максимальном токе (показания виртуального амперметра A1). Используя показания приборов, заполнить строку 1 таблицы 3.

Заменяя мини блоки цепи, как указано в строках 2-8, провести измерения для каждой строки.

По результатам измерений для каждой строки вычислить емкостное сопротивление $x_C = \frac{V_1}{A_1}$ и добротность $Q = \frac{V_1}{V_0}$.

Сделать выводы о влиянии параметров схемы на резонансную частоту, резонансный ток и добротность. При расхождении теоретических расчетов и экспериментальных данных, необходимо объяснить возникшее расхождение.

2.2.5. Частотные характеристики резонансного контура

- 2.2.5.1. Переведите ключ K в замкнутое положение ($R_1 = 0$) .
- 2.2.5.2. Установите мини блоки схемы (рис. 8) в соответствии с номером Вашего стенда (таблица 2).
 - 2.2.5.3. Заполните первую строку таблицы 4 (кроме значений $\Delta_1,\ \Delta_2,\Delta\!f$).
- 2.2.5.4. Изменяя частоту генератора, добиться резонанса (по минимальному абсолютному значению угла сдвига фаз). Занести в таблицу 4 резонансную частоту f_0 , резонансный ток I_0 , угол сдвига фаз φ и напряжение на конденсаторе V_1 .
- 2.2.5.5. Изменяя частоту в меньшую сторону, добейтесь уменьшения тока до уровня $\frac{I_0}{\sqrt{2}}$. Запишите полученную частоту f_1 , ток, угол сдвига фаз и напряжение на конденсаторе в столбец f_1 .
- 2.2.5.6. Изменяя частоту в большую от f_0 сторону, добейтесь значение тока $\frac{I_0}{\sqrt{2}}$. Запишите полученную частоту f_2 , ток, угол и напряжение на конденсаторе в столбец f_2 .
- 2.2.5.7. Вычислите шаг Δ_1 изменения частоты для частот меньших резонансной частоты f_0 , и шаг Δ_2 для частот больших резонансной частоты. Занесите вычисленные значения в первую строку таблицы 4.

- 2.2.5.8. Проведите необходимые измерения для остальных частот.
- 2.2.5.9. Вычислите для всех частот отношение текущего тока к резонансному I/I_0 , полное сопротивление z=8/I, отношение полного сопротивления к сопротивлению на резонансе z/z_0 и занесите полученные значения в таблицу 4.
- 2.2.5.10. Вычислите ширину полосы пропускания $\Delta f = f_2 f_1$ и занесите результат в таблицу 4.
- 2.2.5.11. **Разомкните ключ** K и проделайте измерения по пунктам 2.2.5.3 2.2.5.10, занося результаты в таблицу 5.
- 2.2.5.12. Постройте графики $\frac{I}{I_0}$, $\frac{z}{z_0}$ и φ в функции частоты по данным таблиц 4 и 5 в единой системе координат, рис. 11.
- 2.2.5.13. Постройте, рис. 12, векторную диаграмму напряжений для частот f_0 , f_1 , f_2 по данным таблицы 4. Векторная диаграмма должна отображать взаимное расположение входного напряжения \dot{U} , напряжения на балластном резисторе \dot{U}_6 , напряжения на конденсаторе \dot{U}_C и напряжения на катушке индуктивности \dot{U}_K . Вектор тока \dot{I} на рис. 11 построен без соблюдения масштаба и ориентирован горизонтально вправо. При построении используйте масштабную линейку (рис. 12).

Для облегчения построений, по данным таблицы 4 заполните таблицу 6 и вычислите напряжение на балластном резисторе.

Таблица 6

f	f_0	f_1	f_2
I, A			
U, \mathbf{B}	8	8	8
U_C , B			
$U_{\tilde{o}} = I \cdot 100, B$			
φ , град			

Пример построения векторной диаграммы показан на рис. 13:

- отложите под углом φ вектор входного напряжения \dot{U} (рис. 13 a);

- отложите вектор \dot{U}_6 по направлению тока \dot{I} , а вектор \dot{U}_C отстающим от тока на 90° , причем таким образом, чтобы концы (стрелки) векторов \dot{U} и \dot{U}_C сходились в одной точке (рис. 13 б);

- дополните систему векторов вектором $\dot{U}_{\rm K}$ так, чтобы выполнялось уравнение $\dot{U} = \dot{U}_{\rm G} + \dot{U}_{\rm K} + \dot{U}_{\rm C} \ \ ({\rm puc.} \ 13 \ {\rm B}).$

Рис. 13. Порядок построения векторной диаграммы.

После выполнения всех расчетов результаты показать преподавателю и, получив его разрешение, выключить питание стенда.

Таблица 3

No॒		Конфигура R ₁ = Ол			В	Вычислено (теоретически)				Измерено				Вычислено по экспер. данным		
	L_K , м Γ н	R_K , Om	<i>С</i> , мкФ	<i>R</i> ₁ , Ом	<i>R</i> , Ом	f_0 , Гц	<i>х_C</i> , Ом	<i>I</i> ₀ , Α	Q	V_0 , B	V ₁ , B	A ₁ , A	arphi,град	$f_0,$ Гц	<i>х_C</i> , Ом	Q
1	33		1	0												
2	33		1	R_1												
3	33		0,47	0												
4	33		0,47	R_1												
5	100		1	0												
6	100		1	R_1												
7	100		0,47	0												
8	100		0,47	R_1												

Таблица 4

Вариант № Конфигурация цепи (ключ K замкнут): $R_1 = 0$ Ом $L_K = $ м Γ н $R_K = $ Ом $C = $ м κ Ф											
					$R = R_K$	+100 =	Ом				
		$\Delta_1 = (f_0$	$-f_1$)/3=	Гц	$\Delta_2 = (f_2)$	$(-f_0)/3 =$	Гц	Δ	$f = \Gamma$	ΊЦ	
<i>f</i> ,Гц	$f_1 - 2\Delta_1$	$f_1 - \Delta_1$	f_1	$f_0 - 2\Delta_1$	$f_0 - \Delta_1$	f_0	$f_0 + \Delta_2$	$f_0 + 2\Delta_2$	f_2	$f_2 + \Delta_2$	$f_2 + 2\Delta_2$
I,A			$\frac{I_0}{\sqrt{2}} =$			$I_0 =$			$\frac{I_0}{\sqrt{2}} =$		
$\frac{I}{I_0}$						1					
φ , град											
<i>z</i> ,Ом						<i>z</i> ₀ =					
$\frac{z}{z_0}$						1					
V_1 , B											

Таблица 5

В	ариант №	Конфиг	урация цеп	ли (ключ K разомкнут): $R_1 =$			Oм L_K	= мГн	$R_K = O$	м <i>C</i> =	мкФ
$R = R_1 + R_K + 100 = $ Om			$\Delta_1 = (f_0 - f_1)/3 = \qquad \Gamma_{\text{II}}$			$\Delta_2 = (f_2 - f_0)/3 = \qquad \Gamma_{\text{II}}$			$\Delta f =$	Гц	
f,Гц	$f_1 - 2\Delta_1$	$f_1 - \Delta_1$	f_1	$f_0 - 2\Delta_1$	$f_0 - \Delta_1$	f_0	$f_0 + \Delta_2$	$f_0 + 2\Delta_2$	f_2	$f_2 + \Delta_2$	$f_2 + 2\Delta_2$
I,A			$\frac{I_0}{\sqrt{2}} =$			$I_0 =$			$\frac{I_0}{\sqrt{2}} =$		
$\frac{I}{I_0}$						1					
φ , град											
z, Ом						$z_0 =$					
$\frac{z}{z_0}$						1					
V_1 , B											

Рис. 11. Частотные характеристики последовательного резонансного контура.

Рис. 12. Векторные диаграммы.

ТРЕБОВАНИЯ К ОТЧЕТУ

Форма отчета или предоставляется студентам в электронном виде лектором потока, или копируется и распечатывается с сайта кафедры http://fn.bmstu.ru/learning-work-fs-7/laboratory-works-fs-7.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Почему в последовательной R-L-C цепи изменение емкости конденсатора приводит к изменению значения тока I, коэффициента мощности $\cos \varphi$, активной P и полной S мощностей?
- 2. Как добиться резонанса при последовательном соединении сопротивлений R-L-C элементов, и по каким признакам убедиться, что в цепи наступил резонанс?
- 3. В последовательной R-L-C цепи установлен режим резонанса напряжений. Сохранится ли резонанс, если:
 - а) параллельно конденсатору подключить активное сопротивление;
- б) параллельно катушке индуктивности подключить активное сопротивление;
 - в) последовательно включить активное сопротивление?
- 4. В последовательной R-L-C установлен режим резонанса напряжений. Как изменится активная мощность, если:
 - а) последовательно включить активное сопротивление, конденсатор;
- б) параллельно зажимам источника подключить активное сопротивление, конденсатор?
- 5. Как примерно изменятся графики, рис. 11, если уменьшить сопротивление R_K ?
- 6. Объясните, как качественно изменится векторная диаграмма напряжений, построенная при $C_1 = C_{\rm pes}$, если увеличить частоту питающего напряжения?
- 7. Объясните, как качественно изменится векторная диаграмма напряжений, построенная при $C_1 = C_{\rm pes}$, если увеличить емкость C_1 ?
- 8. Что такое добротность резонансного контура? Объясните, как найти добротность по экспериментальным данным и по графикам.
- 9. Как изменится добротность последовательного контура (рис. 7) при замыкании ключа K?
- 10. Объясните, почему при резонансе напряжений, ток принимает максимальное значение?

ЛИТЕРАТУРА

 $Атабеков \ \Gamma.И.$ Теоретические основы электротехники: учебник для вузов. В трех частях. Часть первая. М.: Издательство «Энергия», 1970. 592 с.

Борисов Ю.М., Липатов Д.Н., Зорин Ю.Н. Электротехника. СПб.: БХВ-Петербург, 2012. 551 с.

Касаткин А.С., Немцов М.В. Электротехника центр «Академия», 2010. 544 с.