DAM & DAW /BASES DE DATOS

UNIDAD 2

Modelado conceptual E-R

Autor: Luz María Álvarez Moreno

Fecha: 21/10/2025

Sesión 4 – El Modelo Entidad-Relación (E-R)

El modelo Entidad-Relación (E-R), creado por Peter Chen (1976), es una herramienta conceptual para **representar la estructura lógica de una base de datos** antes de implementarla.

Permite identificar qué información se debe almacenar y **cómo se relaciona** cada elemento del sistema, antes de implementarla en un lenguaje como SQL.

El **modelo E-R** es el punto de partida de cualquier diseño de base de datos, ya que permite abstraer la realidad mediante entidades, atributos y relaciones.

Una vez definido, se traduce al **modelo lógico** (tablas, claves y relaciones) y posteriormente al modelo físico implementado en un SGBD.

1. Elementos principales del modelo

El modelo se compone de tres elementos básicos: entidades, atributos y relaciones.

Elemento	Descripción	Representación	Ejemplo
Entidad	Objeto o	Rectángulo	Cliente,
	concepto del		Producto,
	mundo real que		Empleado
	tiene existencia		
	independiente.		
Atributo	Propiedad que	Óvalo	nombre, edad,
	describe una		precio
	característica		
	de la entidad.		

Relación	Asociación	Rombo	Cliente realiza
	lógica entre dos		Pedido
	o más		
	entidades.		

Cada entidad representa un objeto del mundo real.

Los atributos describen sus propiedades, mientras que las relaciones expresan cómo interactúan entre sí. En los diagramas E-R se utilizan símbolos gráficos (rectángulos, óvalos y rombos) para representar cada uno de estos elementos.

Un **Cliente** tiene **nombre**, **email** y **teléfono**, y *realiza* un **Pedido** que tiene **fecha** y **total**.

Esto se traduce en dos entidades y una relación.

2. Tipos de Entidades

Existen dos tipos de entidades principales: fuertes y débiles.

Tipo	Descripción	Ejemplo	Observaciones
Fuerte	Tiene existencia propia e	Cliente, Producto	Posee su propia clave primaria.
	independiente.		
Débil	Depende de	DetalleFactura	Su PK incluye la
	otra entidad		FK de la entidad
	para su		fuerte.
	identificación.		

Ejemplo: La entidad 'Factura' puede existir por sí misma, mientras que 'DetalleFactura' depende de 'Factura' y 'Producto'.

3. Relaciones y cardinalidades

Las relaciones representan asociaciones entre entidades. Cada relación tiene una cardinalidad que indica el número de instancias que participan en la relación.

Тіро	Significado	Ejemplo	Cardinalidad	Implementación SQL
1:1	Una entidad se relaciona con una única instancia de otra.	Persona y Pasaporte	1-1	Clave foránea única
1:N	Una entidad se asocia con varias de otra.	Cliente → Pedido]-∞	FK en el lado N
N:M	Varias entidades se asocian en ambos sentidos.	Alumno 🕶 Asignatura	∞-∞	Tabla intermedia

Ejemplo: Un cliente puede tener varios pedidos (1:N), y un pedido puede contener varios productos (N:M).

Las relaciones N:M requieren una tabla intermedia con dos claves foráneas.

Caso real: Facebook

Contexto:

Mark Zuckerberg y su equipo necesitaban un modelo que representara cómo los **usuarios interactúan**, crean publicaciones y se relacionan.

Entidades y Relaciones

Entidad	Atributos	Relaciones
Usuario	nombre, email, fecha_nacimiento, universidad	crea → Publicación, es_amigo_de → Usuario
Publicación	contenido, fecha, número_likes	pertenece a Usuario

Relación destacada:

- Usuario es_amigo_de Usuario \rightarrow autorrelación N:M
- Usuario crea Publicación → 1:N

Conclusión:

El modelo conceptual permitió escalar de una red universitaria a una plataforma global.

Definir correctamente relaciones como "amistad" fue clave para el éxito de Facebook.

4. Consejos y técnicas

Tipo de elemento	Cómo identificarlo	Ejemplo
Entidad	Busca sustantivos en el enunciado.	Cliente, Producto
Relación	Busca verbos.	"Compra", "Pertenece", "Dirige"
Atributo	Propiedades específicas.	nombre, fecha, precio

Ejemplos básicos de entidades, atributos y relaciones

Entidad	Atributos	Relación	Cardinalidad	Contexto
Cliente	id_cliente, nombre,	realiza → Pedido	1:N	Comercio electrónico
Alumno	id_alumno, nombre,	cursa → Asignatura	N:M	Universidad
Empleado	id_empleado, nombre, puesto	pertenece → Departamento	N:1	Empresa
Paciente	id_paciente, nombre, fecha_nacimiento	tiene → Cita	1:N	Clínica
Vehículo	matrícula, modelo, color	pertenece → Propietario	N:1	DGT

Actividad guiada

Objetivo: Identificar entidades, atributos y relaciones a partir de un contexto real.

Contexto:

Una biblioteca pública quiere digitalizar sus préstamos.

Necesita almacenar datos sobre los libros, los socios y los préstamos realizados.

Tareas:

- 1. Identifica las entidades principales.
- 2. Define **atributos** para cada entidad.
- 3. Determina relaciones y cardinalidades.
- 4. Dibuja un **mini diagrama E-R**.

Pista:

- Un socio puede pedir varios libros.
- Cada préstamo tiene una fecha de inicio y fin.

Solución:

Entidad	Atributos	Descripción
socio	id_socio (PK), nombre, dirección	Persona registrada que realiza préstamos.
LIBRO	id_libro (PK), título, autor	Libro disponible para préstamo.
PRÉSTAMO	id_prestamo (PK), fecha_inicio, fecha_fin	Registro de la operación de préstamo entre un socio y un libro.

Relación	Entre	Тіро	Cardinalidad
realiza	SOCIO → PRÉSTAMO	1:N	Un socio puede realizar varios préstamos.
participa	LIBRO → PRÉSTAMO	1:N o N:M	Un libro puede estar en varios préstamos (a lo largo del tiempo).
			Si un préstamo incluye varios libros, la relación se convierte en N:M con una entidad intermedia DetallePrestamo.

Modelo Entidad-Relación

Elementos visuales del diagrama:

• **Rectángulos** → Entidades (Socio, Libro, Préstamo)

• Óvalos : Atributos

• Rombo: Relación "PRÉSTAMO"

• **Líneas** : Conectan entidades con relaciones y atributos

• Cardinalidades : l:N entre Socio-Préstamo y Libro-Préstamo

Entidad	Atributos	Relación	Cardinalidad
Socio	id_socio, nombre, dirección	realiza → Préstamo	1:N
Libro	id_libro, título, autor	pertenece_a → Préstamo	N:M
Préstamo	id_prestamo, fecha_inicio, fecha_fin	conecta Libro y Socio	_