#### **Addition Rule**

If A and B are finite sets that are **disjoint** (i.e.  $A \cap B = \emptyset$ ), then  $A \cup B$  is finite and  $|A \cup B| = |A| + |B|$ .

**Lemma 3.9** Let Y be a finite set.

- (i) If X is finite, then  $X \cup Y$  is finite.
- (ii) If  $X \subseteq Y$ , then |Y X| = |Y| |X|.

**Theorem 3.10** Suppose  $A_1, A_2, ...$  are finite sets.

Then  $A_1 \cup A_2 \cup \cdots \cup A_n$  is finite for any  $n \geq 2$ .

**Theorem 3.11** (Inclusion/Exclusion Rule for 2 and 3 sets)

Let A, B and C be finite sets. Then

$$\begin{split} |A \cup B| &= |A| + |B| - |A \cap B| \quad \text{and} \\ |A \cup B \cup C| &= |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|. \end{split}$$

### Multiplication Rule

Consider the 2-tuple (x, y). Suppose there are m possible values for x and, for each choice of x, there are n possible choices for y. Then there are mn possible choices for (x, y).

**Example** For 
$$A = \{a, b, c, d\}$$
 and  $B = \{0, 1\}$ ,  $|A \times B| =$ 

### Theorem 3.12

Suppose  $A_1, A_2, \ldots$  are finite sets.

Then  $|A_1 \times A_2 \times \cdots \times A_n| = |A_1||A_2| \cdots |A_n|$  for any  $n \geq 2$ .

**Theorem 3.13** Let  $x \in \mathbb{R}$ ,  $x \neq 1$ . Then

$$1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$$
 for any  $n \in \mathbb{Z}^+$ .

# Corollary 3.14

Suppose  $\Gamma$  is an alphabet and  $|\Gamma| = s$ . If  $\ell \in \mathbb{Z}^+$ , then there are  $\frac{s^{\ell}-1}{s-1}$  strings over  $\Gamma$  with length smaller than  $\ell$ .

**Definition** For  $n \in \mathbb{N}$ , define n factorial as

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n((n-1)!) & \text{if } n \ge 1 \end{cases}$$

**Definition** Let  $n \in \mathbb{Z}^+$  and  $S = \{x_1, \dots, x_n\}$ . A bijection  $f : \{1, \dots, n\} \to \{1, \dots, n\}$  is called a **permutation**, and the string  $x_{f(1)}x_{f(2)}\cdots x_{f(n)}$  is also called a **permutation** of S.

Similarly, the bijection  $\emptyset : \emptyset \to \emptyset$  is called a permutation, and the empty string is a permutation of  $\emptyset$ .

Example  $S = \{A, E, T, R\}$ 



## Theorem 3.15

Let S be a set with n elements,  $n \in \mathbb{N}$ . Then there are n! permutations of S.

**Definition** Let  $r, n \in \mathbb{N}$ , and let S be a set of n elements.

A subset of r elements is called an r-combination of S.

 $\binom{n}{r}$  (read "n choose r") denotes the number of r-combinations of S.

### Definition

Let  $r, n \in \mathbb{Z}^+$ ,  $r \leq n$ , and let  $f : \{1, \ldots, n\} \to \{1, \ldots, n\}$ be a permutation. If  $S = \{x_1, \ldots, x_n\}$ , then  $x_{f(1)}x_{f(2)}\cdots x_{f(r)}$ is an r-permutation of S.

 $^{n}P_{r}$  denotes the number of r-permutations of S.