Bài Tập Lý Thuyết Điều Khiển Hệ Thống - No. 1

Câu 1 Bài toán 1 (con lắc ngược): Xét mô hình điều khiển của một con lắc ngược (sau khi được tuyến tính hóa) cho bởi một phương trình vi phân bậc hai

$$\varphi''(t) - \varphi(t) = u(t). \tag{1}$$

 \mathring{O} đây, $\varphi(t) = \theta(t) - \pi$ là độ lệch góc của con lắc so với trạng thái cân bằng thẳng đứng tại thời điểm $t \geq 0$ và u(t) là mômen lực tác dụng.

Hình 1: Con lắc ngược - Điều khiển sao cho con lắc chuyển động hướng về trục thẳng đứng

a) Chứng tổ rằng đối với phản hồi tỷ lệ thuận (proportional state feedback) $u(t) = -\alpha \varphi(t)$ với $\alpha < 1$, mệnh đề sau là đúng: Nếu các giá trị ban đầu thỏa mãn $\varphi'(0) = -\varphi(0)\sqrt{1-\alpha}$, thì $\lim_{t\to\infty} \varphi(t) = 0$. b) Cho $\alpha \in \mathbb{R}$ cố định. Xét hàm năng lượng $V(x,y) := \cos x - 1 + \frac{1}{2}(\alpha x^2 + y^2)$. Chứng minh rằng $V(\varphi(t), \varphi'(t))$ là hằng số dọc theo các nghiệm của phương trình con lắc phi tuyến với phản hồi tỷ lê thuận, được cho bởi

$$\varphi''(t) - \sin(\varphi(t)) + \alpha \varphi(t) = 0.$$
 (2)

Từ đó kết luận rằng tồn tại các điều kiện ban đầu $\varphi(0) = \varepsilon$; $\varphi'(0) = 0$ sao cho nghiệm của (2) với ε nhỏ tùy ý không thỏa mãn $\lim_{t\to\infty} \varphi(t) = 0$, $\lim_{t\to\infty} \varphi'(t) = 0$.

Câu 2 (tính ổn định của hệ thống LTI): Cho $A \in \mathbb{R}^{n,n}$. Chứng minh các khẳng định sau:

- a) $PTVP \ x'(t) = Ax(t)$ là ổn định tiệm cận khi và chỉ khi $\sigma(A) := \{\lambda \in \mathbb{C} \mid \det(\lambda I A) = 0\} \subset \mathbb{C}_{-} \ và \ \sigma(A) \cap i\mathbb{R} = \emptyset.$
- b) $PTVP \ x'(t) = Ax(t)$ là ổn định khi và chỉ khi $\sigma(A) := \{\lambda \in \mathbb{C} \mid \det(\lambda I A) = 0\} \subset \mathbb{C}_{-}$ và các giá trị riêng thuần ảo là đơn (bội 1).

Câu 3 Bài tập về biến đổi Laplace để huẩn bị cho hàm truyền trong Bài Giảng 2.

 $Bi\acute{e}n$ đổi Laplace của 1 hàm số x(t) được định nghĩa bởi

$$X(s) := L[x(t)] = \int_0^\infty x(t)e^{-st}dt ,$$

trong đó s là 1 số phức với phần thực $\Re(s) < 0$. Ta nói X(s) là biến đổi Laplace của hàm x(t). Biến đổi Laplace chuyển hàm từ miền thời gian t (time domain) sang miền tần số z (frequency domain). Chứng minh các tính chất sau của biến đổi Laplace.

- a) Nếu a, b là các hằng số thì L[ax(t) + by(t)] = aX(s) + bY(s) Tính tuyến tính.
- $b) \ L[e^{-at}] = \frac{1}{s+a}$
- c) L[x'(t)] = sX(s) x(0).
- $d) L[x(t-\tau)] = e^{-s\tau}X(s)$
- $e) L[e^{-at}x(t)] = X(s+a).$

Câu 4 Hãy áp dụng biến đổi Laplace cho hệ LTI

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t),$$
(3)

 $d\hat{e}$ xây dựng công thức hàm truyền (transfer function) G(s) sao cho Y(s) = G(s)U(s).

Câu 5 a) Nhắc lại rằng hai phương trình $\dot{x}(t) = A(t)x(t)$ và $\dot{z}(t) = -A^T(t)z(t)$ là liên hợp. Hãy tìm phương trình liên hợp của hệ LTV

$$\dot{x}(t) = A(t)x(t) + B(t)u(t). \tag{4}$$

b) Cho họ tiến hóa của phương trình $\dot{x}(t) = A(t)x(t)$ là $\{\Phi(t,s)\}_{t\geq s}$. Hãy xác định họ tiến hóa của phương trình liên hợp $\dot{z}(t) = -A^T(t)z(t)$.

Câu 6 a) Cho trước ma trận $A \in \mathbb{R}^{m,n}$. Chứng minh rằng $||A||_2 = \max\{\lambda \mid \det(\lambda I - A^T A) = 0\}$.

- b) Cho ma trận $A \in \mathbb{R}^{n,n}$ khả nghịch, $B \in \mathbb{R}^{n,m}$, $C \in \mathbb{R}^{p,n}$, $D \in \mathbb{R}^{p,m}$. Chứng minh rằng $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ khả nghịch khi và chỉ khi ma trận $M := D CA^{-1}B$ là khả nghịch.
- c) Xét TH đặc biệt p=m và $D\in\mathbb{R}^{m,m}$ là xác định âm. Chứng minh rằng ma trận $\begin{bmatrix} A & B \\ B^T & D \end{bmatrix}$ là (nửa) xác định âm khi và chỉ khi M là (nửa) xác định âm.

Câu 7 Cặp ma trận vuông $(E,A) \in (R^{n,n})^2$ được gọi là chính quy nếu $\det(sE-A) \neq 0$ với số $s \in C$ nào đó. Giả sử rằng cặp ma trận vuông (E,A) là chính quy, hãy chứng minh các khẳng định sau.

- a) Tồn tại 1 ma trận K khả nghịch sao cho KE và KA là giao hoán.
- b) Tồn tại 2 ma trận khả nghịch W, T sao cho WET = $\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}$, WAT = $\begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix}$ trong đó J có dạng Jordan, N là ma trận lũy linh.
- c) Từ đó hãy tìm công thức nghiệm tường minh của phương trình

$$E\dot{x}(t) = Ax(t) + f(t),$$

 $gi\mathring{a} s\mathring{u} r \mathring{a}ng h \mathring{a}m f(t) l \mathring{a} d\mathring{u} trơn.$