

kpar = k0 \* sin(slitangle\_offset)

kx and ky are projected from kpar

each kpar has their own azimuthal position

so we can choose arbitrary azimuth as our center

kx = kpar \* cos(azimuth – offset)
ky = kpar\*sin(azimuth – offset)

knorm = k0\*cos(slitangle\_offset)



Tilt and sample cone,

still use the previous momentum component

kpar = k0 \* sin(slitangle\_offset)
knorm = k0\*cos(slitangle\_offset)

this momentum are with respect to sample plate, in their respective azimuthal position

so to get the component of them in sample plane, we rotate their unit axis vector

X\_sample =
R\_cone \* R\_azimuth \*X(sample\_plate)

I assume that the original cut which contains Gamma point is the y.axis to follow our convention



Tilt and sample cone,

so we use the program called

kSpaceConversionFromPolar\_v2

## with input:

- data
- cone\_angle
- cone\_angle\_azimuthposition
- lattice constant
- #kx
- #ky

We don't need to worry about tilt because it is recorded in the data inside data.info.theta





