Bullet btRigidBody tudnivalók

Típusok

Egy rigidBody lehet:

- Dynamic
 - mass > 0.0f
 - minden frameben frissül a pozíciója, erő/impulzus/forgatónyomaték hatására elmozdul, forog, stb...
- Static
 - mass == 0.0 f
 - nem mozog, de ütközik
- Kinematic
 - mass == 0.0 f
 - user által mozgatható. Nem hat rá a külvilág, de ő hat külvilágra (ellökhet más dinamikus objektumokat, de ha ütközik rá nem hat impulzus).

btCollisionObject és btRigidBody

A btRigidBody a btCollisionObject-ből származik. A btCollisionObject tehát tulajdonképpen egy nem mozdítható rigidbody, azaz nem hat rá erő/impulzus/forgatónyomaték, nincs sebessége, nincs gyorsulása, és nincs tömege sem. Ugyanakkor lehet vele ütközni, van súrlódása, vissza lehet róla pattanni, stb.

Különbség a static rigidbody-hoz képest, hogy nem lehet hozzá megszorításokat csatolni. (Megszorítás -> két btRigidBody egymáshoz képesti pozíciójára tett megkötés).

Tagfüggvények

Tagfüggvény	Leírás	alapérték
applyForce(A rel_pos-ba mér egy force erőt	-
btVector3 force,		
$btVector3 \ rel_pos)$		
applyCentralForce(Tömeggközépontbeli erő hatás	-
btVector3 force)		
applyImpulse(Adott rel_pos-ba hat impulse impulzussal.	-
btVector3 impulse,		
btVector3 rel_pos)		
applyCentralImpulse(Értelemszerűen	-
btVector3 impulse,		
btVector3 rel_pos)		
applyTorque(Forgatónyomaték adás a testnek.	-
$btVector3 \ torque)$		
applyTorqueImpulse(Forgatónyomaték impulzus adás a testnek.	-
$btVector3 \ torqueImpulse)$		

setFriction(A test "súrlódási együtthatója".	0.5f
btScalar frict)	A valóságban ilyen nem létezik, csak különböző fe-	
,	lülettípusú párokra adható együttható. A bullet a	
	két test együtthatóiból (frict paraméterek) számol-	
	ja ezt az elméletben létező együtthatót.	
setRollingFriction(A test gurulásnál létrejövő súrlódásának együttha-	0.0f
btScalar frict)	tója.	
,	Akkor van hatása, ha egy valamilyen guruló test	
	(gömb, henger, stb) egy felületen gurul.	
setAnisotropicFriction(A bullet lehetőséget ad arra, hogy különböző irá-	frictMode =
btVector3 anisFrict,	nyokban/tengelyek mentén különböző legyen a súr-	0
int frictMode)	lódás. Az első paraméter az irányt/tengelyt adja	
	meg a második paraméter a súrlódás típusát: 0 -	
	ansiotropic friction kikapcsolva, 1 - anisotropic fric-	
	tion, 2 - anisiotropic rolling friction	
setSpinningFriction(Spinning friction akkor keletkezik, ha a test egy fe-	0.0f
btScalar frict)	lületen a pörög úgy, hogy a forgás tengelye a a fe-	
	lületnek az érintési pontjában vett normálisa.	
setRestitution(Coefficient of Restitution. Azt határozza meg, hogy	0.0f
btScalar rest)	az adott test, valamely másik testtel való ütközés	
	után milyen sebességgel pattanjon vissza a közele-	
	dési vektorral ellentétes irányban. Ha pld. $rest ==$	
	0, akkor "hozzátapad" a másik testhez.	
setDamping(Az adott lineáris vagy anguláris mozgás csillapítá-	$\lim_{n \to \infty} damp = 0$
btScalar lin_damp,	sa (közegellenállás). 0.0f-től 1.0f-ig állítható. Pld.	0,
$btScalar ang_damp)$	0.01f azt jelenti, hogy minden időegységben-ben a	$\mid ang_damp =$
	sebességvektorból levonódik annak 1%-a. 1.0f-ra ál-	0
	lítva a test nem mozdul.	
setLinearFactor(A factor paraméter megadja, hogy a testre ható	(1, 1, 1)
btVector3 factor)	adott (x, y, z) irányú erő esetén mekkora legyen	
	a testre ható erő az egyes irányokban. Pld., ha	
	factor = (2.0, 0, 0), akkor a testre $(2x, 0, 0)$ erő hat.	
4 A 1 To 4 /	(=> y,z irányokban fix a pozíciója).	(1 1 1)
setAngularFactor(Ld. linearFactor, csak szögekre.	(1,1,1)
btVector3 factor)	A test messes (set allatic by Minal birch or set)	- 4 : CC
setContactStiffnessAndDamping(A test merevségét állítja be. Minél kisebb a stiff-	stiffness = 10
btScalar stiffness,	ness, erő hatására annál könnyebben nyomható	$\begin{vmatrix} 1e & + & 18, \\ damping & = \end{vmatrix}$
$btScalar \ damping)$	össze a test az ütközések hatására. A damping	$\begin{vmatrix} damping = \\ 1.0f \end{vmatrix}$
	mondja meg, hogy az ütközést követő összenyomódás során, mennyi legyen a sebesség csillapítása.	1.01
	Nyilván ez hatással van a restitutionra-ra is.	
	rymvan ez natassar van a restitutionia-ia is.	

clearForces()	A meghívás pillanatában a testre ható erők (btVec-	-	
	tor 3 $m_totalForce$) és forgatónyomatékok (bt Vec-		
	tor 3 $m_totalTorque$) lenullázása.		
setMassProps(A test tömegének és tehetetlenségi nyomatékának	ld. elő	źźő
btScalar mass,	beállítása. A bullet a teljes inertia tensor helyett	mondat	
btVector3 inertia)	csak a diagonális elemeket tárolja, tehát csak egy		
	Vector3-t kell megadni mx helyett. Ha a test alak-		
	ja (btCollisionShape) és tömege adott , akkor az		
	intertia-t automatikusan ki tudja számolni, tehát		
	általában nem érdemes külön megadni, de van rá		
	lehetőség. Továbbá ezek nélkül az adatok nélkül		
	a btRigidBody-t létre sem lehet hozni, tehát eze-		
	ket már a konstruktorban be kell állítani, de utána		
	módosíthatóak.		
translate(Eltolja a testet az aktuális helyzetéből egy v vek-	-	
btVector3 v)	torral.		
	Megj.: ehhez hasonló tagfgv. a forgatáshoz nincs,		
	viszont nem lehetetlen interface-t adni arra, hogy		
	kézzel is lehessen forgatni egy btRigidBody-t, ha		
	kell.		
${ m setCenterOfMassTransform} ($	A test tömegközéppontjának világkordinátarend-	-	
btTransform xform)	szerben vett helyzetének (transzformációjának) be-		
	állítása. Egy transzformációt egy eltolás és egy for-		
	gatás határoz meg (skálázás nem!).		
setWorldTransform(Ez a btCollisionObject-ből örökölt tagfüggvény a		
btTransform x form)	transzformáció állítására.		

Ezek közül a következők vannak meg a bt
Collision Object-ben is:

setFriction(btScalar frict)	
setRollingFriction(btScalar frict)	
setAnisotropicFriction(btVector3 anisFrict, int frictMode)	
setSpinningFriction(btScalar frict)	
setRestitution(btScalar rest)	
setContactStiffnessAndDamping(btScalar stiffness, btScalar damping)	
setWorldTransform(btTransform xform)	