高等代数第六章练习题

	填空题 数域 P 上全体 n 阶对称矩阵所构成的线性空间的维数是
	设 n 维向量空间 P^n 的两个子空间 V_1,V_2 满足 $V_1\oplus V_2=P^n$,则 $\dim V_1+\dim V_2=$
3. ½	给出子空间的和 V_1 + V_2 是直和的一个充要条件
4.	设 n 维线性空间 V 的一组基为 $arepsilon_1,arepsilon_2,\cdots,arepsilon_n$,则零元在此基下的坐标为,若 $lpha$ 在此基
	下的坐标为 X ,则 $-\alpha$ 在此基下的坐标为
5.	设线性空间 V 中由基 $lpha_1,lpha_2,\cdots,lpha_n$ 到基 eta_1,eta_2,\cdots,eta_n 的过渡矩阵为 A ,向量 $lpha$ 在基 $lpha_1,lpha_2,\cdots,lpha_n$ 下的坐标为
2	X (列向量),则 α 在基 eta_1,eta_2,\cdots,eta_n 下的坐标为
6.	若 $s \times n$ 阵 A 的秩为 r ,则线性方程组 $AX=0$ 的解空间的维数为
7. 🔻	在线性空间 $P[x]_4$ 中,向量组 $f_1 = x+1$, $f_2 = x-1$, $f_3 = x^2+1$, $f_4 = x^2-1$ 的秩为
8.]	取线性空间 V 和子空间 V_1,V_2 ,则同时包含 V_1,V_2 的 V 的最小子空间是,同时包含于 V_1,V_2 的 V 的
貞	最大子空间是
9. >	將向量组 $\alpha_1 = (1,2,1,1), \alpha_2 = (2,1,1,1)$ 扩充成 P^4 的一组基,需添加的向量为
	数域 P 上两个线性空间 V 与 W 同构的充要条件是 把同构的子空间算做一类,则 n 维线性空间的子空间共有类?
12.	已知 V_1, V_2 是线性空间 V 的两个子空间, $\dim V_1 = 3$, $\dim V_2 = 5$, $\dim (V_1 + V_2) = 6$,则 $\dim (V_1 \cap V_2) = $
13.	已知 V_1,V_2,V_3 都是一线性空间的子空间,且 $\dim V_i=d_i$, $(i=1,2,3)$, $\dim(V_1+V_2+V_3)=d$,
	则 $\dim((V_1 + V_2) \cap V_3) + \dim(V_1 \cap V_2) =$
14.	设 V_1 和 V_2 是 V 的子空间,若 V_1+V_2 是直和,则 $\dim(V_1\cap V_2)=$
15.	设 $W = \{A \mid \operatorname{tr}(A) = 0, A \in P^{n \times n}\}$,其中 $\operatorname{tr}(A)$ 表示 A 的迹,即 A 的主对角线上元素的和, W 是 $P^{n \times n}$ 的一个子空
	间,则 dimW =
16.	数域 P 上线性空间 V 中任一向量可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_k$ 线性表出,则 $\dim V$ k (大小关系).
17.	S_1 为 $P^{n \times n}$ 中全体下三角矩阵做成的数域 P 上的线性空间, S_2 为 $P^{n \times n}$ 中全体严格下三角矩阵(主对角线上元
	素都是 0 的下三角矩阵)做成的数域 P 上的线性空间,那么 $\dim S_1 =$, $\dim S_2 =$
18.	已知 $\{(a_1, a_2, \dots, a_n) \mid a_1 + a_2 + \dots + a_n - t = 0\}$ 为 P^n 的子空间,则 $t = $
19.	复数域作为实数域上的线性空间,维数是,一组基为 复数域作为复数域上的线性空间,维数等于,一组基为
20.	$x^2 + 2x + 3$ 在 $P[x]_4$ 的一组基 $x^3, x^3 + x, x^2 + 1, x + 1$ 下的坐标为

二. 计算题

1. 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$
, 记 $W = \{B \mid AB = BA, B \in P^{3\times 3}\}$, 求 W 的维数和一组基.

2. 已知
$$f_1 = 1 - x$$
, $f_2 = 1 + x^2$, $f_3 = x + 2x^2$ 与 $g_1 = x$, $g_2 = 1 - x^2$, $g_3 = 1 - x + x^2$ 是 $P[x]_3$ 中的两个向量组,

- (1) 证明 f_1, f_2, f_3 和 g_1, g_2, g_3 都是 $P[x]_3$ 的基, (2) 求由基 f_1, f_2, f_3 到基 g_1, g_2, g_3 的过渡矩阵,
- (3) 求 $f = 1 + 2x + 3x^2$ 分别在基 f_1, f_2, f_3 与基 g_1, g_2, g_3 下的坐标.

3. 取
$$P^3$$
的两组基: $\alpha_1 = (1,2,1), \alpha_2 = (0,1,-1), \alpha_3 = (3,0,2)$ 与 $\beta_1 = (6,6,5), \beta_2 = (-1,-1,-2), \beta_3 = (3,1,1)$

- (1) 求由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵.
- (2) 求 $\xi \in P^3$,使得 ξ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为 (y_1, y_2, y_3) ,而在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为 $(\frac{1}{2}y_1, \frac{1}{2}y_2, \frac{1}{2}y_3)$.
- 4. 给出 F^4 中向量组 $\alpha_1 = (1,0,-1,0)^T$, $\alpha_2 = (0,1,2,1)^T$, $\alpha_3 = (2,1,0,1)^T$ 与向量组

$$\beta_1 = (-1,1,1,1)^T$$
, $\beta_2 = (1,-1,-3,-1)^T$, $\beta_3 = (-1,1,-1,1)^T$,令子空间 $V_1 = L(\alpha_1,\alpha_2,\alpha_3)$, $V_2 = L(\beta_1,\beta_2,\beta_3)$,求

 $V_1 + V_2 与 V_1 \cap V_2$ 的维数以及各自的一组基.

5. 已知两个齐次线性方程组(I)
$$\begin{cases} x_1 + 2x_2 + x_3 = 0 \\ 2x_1 + 2x_2 + x_4 = 0 \end{cases}$$
 (II)
$$\begin{cases} -2x_1 + x_2 + 6x_3 - x_4 = 0 \\ -x_1 + 2x_2 + 5x_3 - x_4 = 0 \end{cases}$$

- (1) 分别求(I)和(II)的解空间 V_1 和 V_2 的维数和一组基, (2) 求 V_1+V_2 和 V_1 $\cap V_2$ 的维数和各自的一组基.
- 6. 求下列子空间的维数和一组基:

1)
$$L((2,-3,1),(1,4,2),(5,-2,4)) \subseteq P^3$$
; 2) $L(x-1,1-x^2,x^2-x) \subseteq P[x]$;

3)
$$L\left(\begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -3 & 3 \end{pmatrix}\right) \subseteq P^{2\times 2}.$$

三. 证明题:

1. 设
$$A \in P^{n \times n}$$
,且 $A^2 = A$. 记 $V_1 = \{X \mid X \in P^n, (A - E)X = 0\}, V_2 = \{X \mid X \in P^n, AX = 0\}$,

(1) 证明 V_1, V_2 都是 P^n 的子空间; (2) 证明 $V_1 \oplus V_2 = P^n$.

2. 设
$$A \in P^{n \times n}$$
, 且 $A^2 = E$. 记 $V_1 = \{X \mid X \in P^n, (A - E)X = 0\}, V_2 = \{X \mid X \in P^n, (A + E)X = 0\}$,

- (1) 证明 V_1, V_2 都是 P^n 的子空间; (2) 证明 $V_1 \oplus V_2 = P^n$.
- 3. 设 W_1, W_2 为向量空间V的两个子空间,证明:若 $W_1 + W_2 = W_1 \cup W_2$,则 $W_1 \subseteq W_2$ 或 $W_2 \subseteq W_1$.
- 4. 设W 是 P^n 的一个非零子空间,对W 中的任一向量 (a_1,a_2,\cdots,a_n) ,或者 $a_1=a_2=\cdots=a_n=0$,或者每一个 a_i

都不等于零,证明: $\dim W = 1$.

- 5. 设 W_1,W_2,\cdots,W_s 是数域P上线性空间V的s个维数相等的子空间,证明:在V中存在一个子空间W,使得 $V=W_1\oplus W=\cdots=W_s\oplus W.$
- 6. 设 $f(x_1, \dots, x_n) = X^T A X$ 是秩为 r 的半正定二次型,证明方程 $X^T A X = 0$ 的全部解构成实数域上一个 n-r 维的线性空间.
- 7. 设V 为数域P 上的一个n(n>1)维线性空间,如果存在一个子空间U ,使得 $V=W\oplus U$,则称U 是W 在V 中的补子空间.取W 为V 的一个非平凡子空间,证明W 在V 中的补子空间不唯一.