In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
data = pd.read_excel(r'C:\Users\LENOVO\Desktop\Monty Datascien\Rawdata.xlsx')
```

In [3]:

data

Out[3]:

	Name	Domain	Age	Location	Salary	Exp
0	Mike	Datascience#\$	34 years	Mumbai	5^00#0	2+
1	Teddy^	Testing	45' yr	Bangalore	10%%000	<3
2	Uma#r	Dataanalyst^^#	NaN	NaN	1\$5%000	4> yrs
3	Jane	Ana^^lytics	NaN	Hyderbad	2000^0	NaN
4	Uttam*	Statistics	67-yr	NaN	30000-	5+ year
5	Kim	NLP	55yr	Delhi	6000^\$0	10+

Cleaning the Dataset

In [4]:

```
data['Name'] = data['Name'].str.replace(r'\W','')
data['Domain'] = data['Domain'].str.replace(r'\W','')
data['Location'] = data['Location'].str.replace(r'\W','')
```

```
In [5]:
```

data

Out[5]:

```
Name
              Domain
                                 Location
                           Age
                                               Salary
                                                          Exp
0
    Mike
          Datascience 34 years
                                              5^00#0
                                                           2+
                                   Mumbai
   Teddy
               Testing
                          45' yr
                                Bangalore
                                            10%%000
                                                           <3
2
   Umar
          Dataanalyst
                           NaN
                                      NaN
                                            1$5%000
                                                        4> yrs
3
    Jane
             Analytics
                           NaN
                                 Hyderbad
                                              2000^0
                                                         NaN
  Uttam
             Statistics
                          67-yr
4
                                      NaN
                                              30000-
                                                      5+ year
                 NLP
     Kim
                           55yr
                                     Delhi
                                             6000^$0
                                                          10+
5
```

In [10]:

```
data['Age'] = data['Age'].str.replace(r'\W','') # Using regular expression
data['Age'] = data['Age'].str.extract('(\d+)')
```

In [7]:

```
data['Salary'] = data['Salary'].str.replace(r'\W','')
```

In [8]:

```
data['Exp'] = data['Exp'].str.extract('(\d+)')
```

In [11]:

data

Out[11]:

	Name	Domain	Age	Location	Salary	Exp
0	Mike	Datascience	34	Mumbai	5000	2
1	Teddy	Testing	45	Bangalore	10000	3
2	Umar	Dataanalyst	NaN	NaN	15000	4
3	Jane	Analytics	NaN	Hyderbad	20000	NaN
4	Uttam	Statistics	67	NaN	30000	5
5	Kim	NLP	55	Delhi	60000	10

Filling the Missing Values

```
In [12]:
```

```
data['Age'] = data['Age'].fillna(np.mean(pd.to_numeric(data['Age'])))  # with the help of mean
data['Exp'] = data['Exp'].fillna(np.mean(pd.to_numeric(data['Exp'])))
```

```
In [13]:
```

```
data
```

Out[13]:

	Name	Domain	Age	Location	Salary	Exp
0	Mike	Datascience	34	Mumbai	5000	2
1	Teddy	Testing	45	Bangalore	10000	3
2	Umar	Dataanalyst	50.25	NaN	15000	4
3	Jane	Analytics	50.25	Hyderbad	20000	4.8
4	Uttam	Statistics	67	NaN	30000	5
5	Kim	NLP	55	Delhi	60000	10

In [14]:

```
data['Location'] = data['Location'].fillna(data['Location'].mode()[0])
```

In [15]:

```
New_data = data
```

In [16]:

New_data

Out[16]:

	Name	Domain	Age	Location	Salary	Exp
0	Mike	Datascience	34	Mumbai	5000	2
1	Teddy	Testing	45	Bangalore	10000	3
2	Umar	Dataanalyst	50.25	Bangalore	15000	4
3	Jane	Analytics	50.25	Hyderbad	20000	4.8
4	Uttam	Statistics	67	Bangalore	30000	5
5	Kim	NLP	55	Delhi	60000	10

Updating Datatype

In [17]:

```
New_data.Name = New_data.Name.astype('category')
New_data.Domain = New_data.Domain.astype('category')
New_data.Location = New_data.Location.astype('category')
```

In [18]:

```
New_data['Salary'] = New_data['Salary'].astype(int)
New_data['Age'] = New_data['Age'].astype(int)
New_data['Exp'] = New_data['Exp'].astype(int)
```

```
In [19]:
```

```
New_data
```

Out[19]:

	Name	Domain	Age	Location	Salary	Exp
0	Mike	Datascience	34	Mumbai	5000	2
1	Teddy	Testing	45	Bangalore	10000	3
2	Umar	Dataanalyst	50	Bangalore	15000	4
3	Jane	Analytics	50	Hyderbad	20000	4
4	Uttam	Statistics	67	Bangalore	30000	5
5	Kim	NLP	55	Delhi	60000	10

In [20]:

```
New_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 6 columns):
 #
     Column
              Non-Null Count Dtype
               -----
 0
     Name
               6 non-null
                               category
 1
     Domain
               6 non-null
                               category
 2
     Age
               6 non-null
                               int32
 3
     Location 6 non-null
                               category
 4
     Salary
               6 non-null
                               int32
 5
     Exp
               6 non-null
                               int32
dtypes: category(3), int32(3)
memory usage: 862.0 bytes
```

Saving the cleaned Data

```
In [21]:
```

```
New_data.to_csv('New_data.csv')
```

```
In [22]:
```

```
import os
os.getcwd()
```

Out[22]:

'C:\\Users\\LENOVO'

Visualization

```
In [23]:
```

```
plt.rcParams['figure.figsize'] = 10,6
```

In [24]:

vis1 = sns.distplot(New_data['Salary'])

In [25]:

vis3 = plt.hist(New_data['Salary'])

In [26]:

vis3 = sns.distplot(New_data['Exp'])

In [28]:

vis4 = plt.hist(New_data['Exp'])

In [29]:

```
vis5 = sns.lmplot(data = New_data, x = "Exp", y='Salary')
```


Splitting data

In [30]:

```
X = New_data.drop('Salary',axis=1)
```

In [31]:

```
y = New_data['Salary']
```

In [32]:

Χ

Out[32]:

	Name	Domain	Age	Location	Ехр
0	Mike	Datascience	34	Mumbai	2
1	Teddy	Testing	45	Bangalore	3
2	Umar	Dataanalyst	50	Bangalore	4
3	Jane	Analytics	50	Hyderbad	4
4	Uttam	Statistics	67	Bangalore	5
5	Kim	NLP	55	Delhi	10

```
In [33]:
```

У

Out[33]:

- 0 5000
- 1 10000
- 2 15000
- 3 20000
- 4 30000
- 5 60000

Name: Salary, dtype: int32

In [34]:

```
imputation = pd.get_dummies(New_data)
imputation
```

Out[34]:

	Age	Salary	Exp	Name_Jane	Name_Kim	Name_Mike	Name_Teddy	Name_Umar	Name_Uttam	Do
0	34	5000	2	0	0	1	0	0	0	
1	45	10000	3	0	0	0	1	0	0	
2	50	15000	4	0	0	0	0	1	0	
3	50	20000	4	1	0	0	0	0	0	
4	67	30000	5	0	0	0	0	0	1	
5	55	60000	10	0	1	0	0	0	0	
4										•

In []: