Задания

Задача 1:

Работа программы:

1

e test1.	R× 🖭	Untitled1*	× 🖭 .R	history ×	df ×	villa2
⟨□□⟩ ② Filter						
^	N [‡]	Price ‡	Dist [‡]	house	area [‡]	Eco [‡]
1	1	200	mn 2: num range 0 - 3		22.0	1
2	2	60.0	18.0	170	6.0	0
3	3	14.0	90.0	60	11.0	1
4	4	38.0	18.0	65	6.0	1
5	5	85.0	25.0	320	20.0	0
6	6	85.0	19.0	210	20.0	0
7	7	28.0	30.0	60	5.0	1
8	8	83.0	45.0	228	20.0	0
0	0	900	25.0	200	20.0	4

2

Optimal number of clusters


```
> typeof(df$N)
[1] "integer"
> typeof(df$Price)
[1] "double"
> typeof(df$Dist)
[1] "double"
> typeof(df$house)
[1] "integer"
> typeof(df$area)
[1] "double"
> typeof(df$Eco)
[1] "integer"
```


within cluster sum of squares by cluster: [1] 178276.625 7290.455 88833.000 25542.885 (between_SS / total_SS = 80.4 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size" "iter" "ifault"

Cluster plot

Kruskal-Wallis rank sum test

data: df\$N by cl\$cluster
Kruskal-Wallis chi-squared = 8.3039, df = 3, p-value = 0.04013

Kruskal-Wallis rank sum test

data: df\$Price by cl\$cluster
Kruskal-wallis chi-squared = 37.7, df = 3, p-value = 3.271e-08

Kruskal-Wallis rank sum test

data: df\$Dist by cl\$cluster Kruskal-Wallis chi-squared = 24.436, df = 3, p-value = 2.026e-05

```
data: df$house by cl$cluster
Kruskal-Wallis chi-squared = 45.094, df = 3, p-value = 8.835e-10
          Kruskal-Wallis rank sum test
data: df$area by cl$cluster
Kruskal-Wallis chi-squared = 22.816, df = 3, p-value = 4.412e-05
          Kruskal-Wallis rank sum test
data: df$Eco by cl$cluster
Kruskal-Wallis chi-squared = 6.0757, df = 3, p-value = 0.108
Гипотезу о различии распределения по кластерам отвергаем, тк p-value близко к 0
    Листинг:
#install.packages(c("factoextra"))
library(readr)
library(factoextra)
df <- read_delim("villa2.csv", ";", escape_double = FALSE, locale =</pre>
locale(decimal mark = ","), trim ws = TRUE)
View(df)
plot(df)
df <- read.csv(file = "villa2.csv", sep = ";")</pre>
st <- as.vector(df$area);n <- gsub(",", ".", st);n <- as.numeric(n);df$area <- n st <- as.vector(df$Price);n <- gsub(",", ".", st);n <- as.numeric(n);df$Price <- n st <- as.vector(df$Dist);n <- gsub(",", ".", st);n <- as.numeric(n);df$Dist <- n
dim(df)
str(df)
typeof(df$N)
typeof(df$Price)
typeof(df$Dist)
typeof(df$house)
typeof(df$area)
typeof(df$Eco)
df <- na.omit(df)</pre>
fviz_nbclust(df, kmeans, method = "wss") + labs(subtitle = "Elbow method") + geom_vli
ne(xintercept = 4, linetype = 2)
fviz_nbclust(df, kmeans, method = "silhouette")
fviz_cluster(kmeans(df, 4), data = df, ellipse.type = 'convex')
kruskal.test(df$N ~ cl$cluster)
kruskal.test(df$Price ~ cl$cluster)
kruskal.test(df$Dist ~ cl$cluster)
kruskal.test(df$house ~ cl$cluster)
```

Kruskal-Wallis rank sum test

kruskal.test(df\$area ~ cl\$cluster)
kruskal.test(df\$Eco ~ cl\$cluster)