Supervised Learning Multilayer preceptron Backpropagation

Natthariya Laopracha

Computer Science of Mahasarakham University

Multilayer perceptron

- 1. The input layer is connected to the hidden layers.
- 2. The output layer is connected to the output layer by means of interconnection weights.
- 3. The architecture of back propagation resembles a multi-layered feed forward network.
- 4. The increasing the number of hidden layers results in the computational complexity of the network. As a result, the time taken for convergence and to minimize the error may be very high.

Multilayer perceptron Backpropation for classification

Multilayer perceptron Backpropation for classification

Multilayer perceptron Backpropation Computation

Multilayer perceptron Backpropation Training Algorithm

- ➤ Initialization of weights- some small random values are assigned.
- Feed forward- each input unit (X) receives an input signal and transmits this signal to each of the hidden units Z_1, Z_2, \ldots, Z_n . Each hidden unit then calculates the activation function and sends its signal Z_i to each output unit. The output unit calculates the activation function to form the response of the given input pattern.
- **Back propagation of errors-** each output unit compares activation Y_k with its target value T_K to determine the associated error for that unit. Based on the error, the factor $\delta_K(k=1,\ldots,m)$ is computed and is used to distribute the error at output unit Y_k back to all units in the previous layer. Similarly, the factor $\delta_j(j=1,\ldots,p)$ is compared for each hidden unit Z_i
- Updation of the weights and biases.

Multilayer perceptron Backpropation Training Algorithm

1. Initialization of weights

2. Forward

$$H_1 = x_1 * x_1 + x_2 * W_2 + b_1$$

$$= 0.05 * 0.15 + 0.10 * 0.20 + 0.35 = 0.3775$$

$$f(H_1) = \frac{1}{1 + \bar{\rho}^{H_1}} = \frac{1}{1 + e^{-0.3775}} = 0.59326992$$

$$H_2 = x_1 * W_3 + x_9 * W_4 + b$$

= 0.05 × 0.25 + 0.10 × 0.30 + 0.35
= 0.3925
 $f(H_2) = 0.596884$

$$y_{1} = f(H_{1}) * w_{5} + f(H_{2}) * w_{6} + b 2$$

$$= 0.5932 \times 0.40 + 0.596484 \times 0.45 + 0.60 = 1.10590$$

$$f(y_{1}) = \frac{1}{1 + \overline{e}^{y_{1}}} = \frac{1}{1 + \overline{e}^{y_{1} + y_{5} + 0}} = 0.731365$$

$$= 1.214914$$

$$f(y_1) = \frac{1}{1+e^{y_2}} = \frac{1}{1+e^{-2.214914}} = 0.971917$$

Total error

$$E_{total} = \frac{1}{2} \left(\sum target - output \right)^{2}$$

$$= E_{1} + E_{2}$$

$$= \frac{1}{2} (0.01 - 0.75136507)^{2} + \frac{1}{2} (0.99 - 0.772)^{2}$$

$$= 0.274811083 + 0.0235 = 0.298371109$$

$$E_{1} = \frac{1}{2} (T_{1} - f(y_{1}))^{2}$$

$$E_{2} = \frac{1}{2} (T_{2} - f(y_{2}))^{2}$$

$$= 0.274811083 + 0.0235 = 0.298371109$$

Chain rule

$$Z = f(y)$$

$$Y = f(x)$$

$$dz = dz + dx$$

$$dy$$

Gradient

• Approximate model parameters Θ such that the prediction error E becomes minimized at optimal values Θ^*

• Algorithm:

- 1. Set the initial value of the model parameters Θ
- 2. Update the model parameters Θ w.r.t. the gradient $\partial E/\partial \Theta$ (slope) at the current point
- 3. Repeat step 2 until the model parameters Θ converge (the gradient is close to zero)

Consider w5 compute at w5

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial f(y_1)} * \frac{\partial f(y_1)}{\partial y_1} * \frac{\partial y_1}{\partial w_5}$$

$$E_{total} = \frac{1}{2} (T_1 - f(y_1))^2 + \frac{1}{2} (T_2 - f(y_2))^2$$

$$\frac{\partial E_{total}}{\partial f(y_1)} = 2 * \frac{1}{2} (T_1 - f(y_1))^{2-1} * -1 + 0$$

$$\frac{\partial E_{total}}{\partial f(y_1)} = -(T_1 - f(y_1)) = -(0.01 - 0.75136507) = 0.74136507$$

Consider w5 compute at w5 (cont.)

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial f(y_1)} * \frac{\partial f(y_1)}{\partial y_1} * \frac{\partial y_1}{\partial w_5}$$

$$\frac{\partial f(y_1)}{\partial y_1} = f(y_1)(1 - f(y_1)) = 0.75136507(1 - 0.75136507) = 0.186815602$$

$$\frac{\partial y_1}{\partial w_5} = 1 * f(H_1) * w_5^{1-1} + 0 + 0 = f(H_1) = 0.59326992$$

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial f(y_1)} * \frac{\partial f(y_1)}{\partial y_1} * \frac{\partial y_1}{\partial w_5} = 0.74136507 * 0.186815602 * 0.59326992 = 0.082167041$$

Consider w5 compute at w5 (cont.)

Update w5

$$W_5 = W_5 - n * \frac{\partial E_{total}}{\partial w_5}$$
 Where n is learning rate =0.5 =0.4-0.5*0.82167041

Consider w6 compute at w6

$$\frac{\partial E_{total}}{\partial w_6} = \frac{\partial E_{total}}{\partial f(y_1)} * \frac{\partial f(y_1)}{\partial y_1} * \frac{\partial y_1}{\partial w_6}$$

$$E_{total} = \frac{1}{2} (T_1 - f(y_1))^2 + \frac{1}{2} (T_2 - f(y_2))^2$$

$$\frac{\partial E_{total}}{\partial f(y_1)} = 2 * \frac{1}{2} (T_1 - f(y_1))^{2-1} * -1 + 0$$

$$\frac{\partial E_{total}}{\partial f(y_1)} = -(T_1 - f(y_1)) = -(0.01 - 0.75136507) = 0.74136507$$

Consider w6 compute at w6 (cont.)

$$\frac{\partial E_{total}}{\partial w_{6}} = \frac{\partial E_{total}}{\partial f(y_{1})} * \frac{\partial f(y_{1})}{\partial y_{1}} * \frac{\partial y_{1}}{\partial w_{6}}$$

$$\frac{\partial f(y_1)}{\partial y_1} = f(y_1)(1 - f(y_1)) = 0.75136507(1 - 0.75136507) = 0.186815602$$

$$\frac{\partial y_1}{\partial w_6} = 1 * f(H_2) * w_6^{1-1} + 0 + 0 = f(H_2) = 0.596684$$

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial f(y_1)} * \frac{\partial f(y_1)}{\partial y_1} * \frac{\partial y_1}{\partial w_5} = 0.74136507*0.186815602*0.596884 = 0.082668$$

Consider w6 compute at w6 (cont.)

Update w6

$$W_6 = W_6 - n * \frac{\partial E_{total}}{\partial w_6}$$
 Where *n* is learning rate =0.5 = 0.45-0.5*0.82668 = 0.408666

Consider w7 compute at w7

$$\frac{\partial E_{total}}{\partial w_7} = \frac{\partial E_{total}}{\partial f(y_2)} * \frac{\partial f(y_2)}{\partial y_2} * \frac{\partial y_2}{\partial w_7}$$

$$E_{total} = \frac{1}{2} (T_1 - f(y_1))^2 + \frac{1}{2} (T_2 - f(y_2))^2$$

$$\frac{\partial E_{total}}{\partial f(y_2)} = 2 * \frac{1}{2} (T_2 - f(y_2))^{2-1} * -1 + 0$$

$$\frac{\partial E_{total}}{\partial f(y_2)} = -(T_2 - f(y_2)) = -(0.99 - 0.772927) = -0.21707$$

Consider w7 compute at w7 (cont.)

$$\frac{\partial E_{total}}{\partial w_7} = \frac{\partial E_{total}}{\partial f(y_2)} * \frac{\partial f(y_2)}{\partial y_2} * \frac{\partial y_2}{\partial w_7}$$

$$\frac{\partial f(y_2)}{\partial y_2} = f(y_2) (1 - f(y_2)) = 0.772927 (1 - 0.772927) = 0.175511$$

$$\frac{\partial y_2}{\partial w_7} = 1 * f(H_1) * w_7^{1-1} + 0 + 0 = f(H_1) = 0.59327$$

$$\frac{\partial E_{total}}{\partial w_7} = \frac{\partial E_{total}}{\partial f(y_2)} * \frac{\partial f(y_2)}{\partial y_2} * \frac{\partial y_2}{\partial w_7} = -0.21707*0.175511*0.59327 = -0.0226$$

Consider w7 compute at w7 (cont.)

Update w7

$$W_7 = W_7 - n * \frac{\partial E_{total}}{\partial w_6}$$
 Where n is learning rate =0.5 =0.50-(0.5*(-0.0226)) =0.5113

solve w8 (answer is 0.5613)

Hidden layer Update weights (w1,w2,w3,w4)

consider w1
$$\partial E_{total} = \partial f(H_1) - \partial H_1$$

onsider w1
$$\partial E_{t+t+1} = \partial E_{t+t+1} = \partial f(H_t) = \partial H_t$$

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial f(H_1)} * \frac{\partial f(H_1)}{\partial H_1} * \frac{\partial H_1}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial f(H_1)} = \frac{\partial E_1}{\partial f(H_1)} + \frac{\partial E}{\partial f(H_1)}$$

$$(H_1) \quad \partial f(H_2)$$
*
$$\frac{\partial y_1}{\partial y_1}$$

 $\frac{\partial y_1}{\partial f(H_1)} = w_5 = 0.40$

$$\frac{\partial E_1}{\partial f(H_1)} = 0.138498562 * 0.40 = 0.055399425$$

$$\frac{\partial E_1}{\partial y_1} = \frac{\partial E_1}{\partial f(y_1)} * \frac{\partial f(y_1)}{\partial y_1} = 0.74136507 * 0.186815602 = 0.138498562$$

Hidden layer Update weights (w1,w2,w3,w4)

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial f(H_1)} * \frac{\partial f(H_1)}{\partial H_1} * \frac{\partial H_1}{\partial w_1}$$

$$\frac{\partial W_2}{\partial f(H_1)} = w_7 = 0.5$$

$$\frac{\partial E_{total}}{\partial f(H_1)} = \frac{\partial E_1}{\partial f(H_1)} + \frac{\partial E_2}{\partial f(H_1)}$$

$$\frac{\partial E_2}{\partial f(H_1)} = \frac{\partial E_2}{\partial y_2} * \frac{\partial y_2}{\partial f(H_1)}$$

$$\frac{\partial E_2}{\partial y_2} = \frac{\partial E_2}{\partial f(y_2)} * \frac{\partial f(y_2)}{\partial y_2} = -0.21707 * 0.175511 = -0.0381$$

Hidden layer Update weights (w1,w2,w3,w4)

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial f(H_1)} * \frac{\partial f(H_1)}{\partial H_1} * \frac{\partial H_1}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial f(H_1)} = \frac{\partial E_1}{\partial f(H_1)} + \frac{\partial E_2}{\partial f(H_1)}$$

$$\frac{\partial E_{total}}{\partial f(H_1)} = 0.055399 + (-0.0381) = 0.03635$$

$$\frac{\partial f(H_1)}{\partial H_1} = f(H_1) * (1 - f(H_1))$$

$$\frac{\partial f(H_1)}{\partial H_1} = 0.5932 * (1 - 0.5932) = 0.241300709$$

$$\frac{\partial H_1}{\partial W_1} = X_1 = 0.05$$

$$\frac{1}{1} = x_1 = 0.05$$

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial f(H_1)} * \frac{\partial f(H_1)}{\partial H_1} * \frac{\partial H_1}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial w_1} = 0.03635 * 0.241300 * 0.005 = 0.00438568$$

Hidden layer Update weights (w1,w2,w3,w4)

Update w1

$$W_1 = W_1 - n * \frac{\partial E_{total}}{\partial w_1}$$

$$W_1 = 0.15 - 0.5 * 0.00438$$

$$W_2 = 0.19956143$$

$$W_3 = 0.24975114$$

$$W_4 = 0.29950229$$