Projektplan DAT290

Larmsystem, grupp 11

Titus Blosse, Viktor Frideen, Nazif Kadiroglu, Markus Moen, Lukas Schiavone, Fredrik Österström

10 september 2020

Innehåll

1	Syfte	1
2	Mål	1
3	Bakgrund 3.1 Begrepp	1 1 1 1
4	Systemöversikt	2
5	Resursplan	2
6	Milstolpar	4
7	Aktiviteter	4
8	Tidsplan	5
9	Mötesplan	6
10	Kommunikationsplan	6
11	Kvalitetsplan	6

1 Syfte

75.250 inbrott anmäldes i Sverige år 2019. En minskning med 14% från året innan [1]. Larmsystemet minskar risken för ett inbrott och möjliggör ytterligare minskning i Sverige.

2 Mål

Målsättningen är att i den slutgiltiga produkten kunna erbjuda ett flertal larm-komponenter som kan anslutas till en larmcentral och konfigureras för att passa kundens specifika sitution. Systemet ska vara väldokumenterat och fackmanna-mässigt utfört med goda förutsättningar för expansion.

Grunden i systemet kommer vara en centralenhet till vilken användaren kan ansluta olika periferienheter. Huvudsakligen kommer två periferienheter att utvecklas, ett dörrlarm samt ett rörelselarm. I mån av tid kommer systemet också utökas med bredare funktionallitet. Ett testläge för systemet, möjlighet att konfigurera rörelselarmets funktionallitet, och ett inbyggt skydd mot så kallade replay attacker"kommer prioriteras.

3 Bakgrund

Beståndsdelarna i larmsystemet är en centralenhet och periferienheter. Tillsammans skapar komponenterna möjligheten att till exempel, larma på/av, koppla fler enheter eller konfiguration av befintliga enheter. Koppling sker via instruktioner. En instruktion kan skickas både manuellt eller automatiskt via en av komponenterna.

3.1 Begrepp

CAN: Controller Area Network

MD407: Mikrodator av typen MD407

3.2 Referenser

3.3 Tekniska förutsättningar

Hårdvaran för att driva larmsystemet är färdigutvecklad och dokumenterad. Tre mikro-datorer av typen MD407 driver tillsammans periferienheterna och centralenheten. För kommunikation mellan datorerna via CAN-bussen finns ett kodexempel. Periferienheterna använder sig av sensorer för att upptäcka och initiera ett alarm som skickas till centralenheten. Till varje periferienhet kopplas en sensor av typen dörr-, vibrations- eller avståndssensor. Detta möjliggör 3 över 2 olika kombinationer av sensorer med periferienheterna.

4 Systemöversikt

Figur 1: Blocksschema över larmsystemet

Centralenheten kommunicerar med periferienheterna genom en Controller Area Network-buss. Periferienheterna undersöker ändringar hos deras sensorer och vid funnen ändring rapporteras detta till centralenheten för larm. Inrapporteringen sker via ett meddelande på bussen som skapar ett avbrott hos centralenheten och aktiverar larmdonet.

Centralenheten måste kunna identifiera vilken periferienhet som skickat meddelandet och förstå varför det skickades. Identifikationen sker via kommunikation med en extern dator för att ge användaren en tydlig bild om var larmet uppstod.

5 Resursplan

E-mailadresser till gruppens medlemmar finns i följande lista, men för intern kommunikation används både Discord och Messenger. Gruppmöten kommer i första hand a ske igenom Zoom.

Ansvarsområden finns angivna Ansvar i följande lista syftar inte till att en ansvarig skall göra allt inom sitt ansvarsområde, utan till att den ansvarige ska se till att det sköts ordentligt utav hela gruppen.

Titus Blosse, administrativt dokumentansvarig: Ansvarar för att mötesprotokoll förs och att de olika rapporterna som ska skrivas under projektets gång såväl påbörjas som skickas in i tid.

E-mail: titus.blosse@gmail.com

Viktor Frideen, planeringsansvarig: Ansvarar för att informera gruppen om hur arbete med projektet och dess delmål fortgår och även för att uppmärksamma gruppen om de hamnar efter planeringen.

E-mail: viktor.frideen@outlook.com

Nazif Kadiroglu, teknik dokumentansvarig: Ansvarar för att all kod i projektet är väl dokumenterad.

E-mail: nazif.kadiroglu1@gmail.com

Markus Moen, testansvarig: Ansvarar för att tester på både hårdvara och mjukvara testas och dokumenteras väl.

E-mail: markus.offersten@gmail.com

Lukas Schiavone, kodansvarig: Ansvarar för att gruppen följer den kodstandard de har satt.

E-mail: luksch1121@gmail.com

Fredrik Österström, gruppledare och resursansvarig: Ansvarar för att kommunikation med kursens lärare, gruppmöten, hårdvarans tillgänglighet och att de verktyg gruppen har valt för kommunikation och versionhantering används väl.

E-mail: fredrik.osterstrom@hotmail.com

Hårdvaran för detta projekt finns tillgänglig i rum 4209 i EDIT-huset på Chalmers campus. Detta rum, och med det hårdvaran, kan bokas via doodle. Länkar till bokningssystemet finna tillgängliga på kurshemsidan. Hårdvaran som finns tillgänglig är:

- 3x MD407 kort
- 1x Avståndsmätare (ultraljud), HC-SR04
- 1x Vibrationssensor, Flying-FishSW-18010P
- 1x Keypad
- 1x 7-segmentsdisplay
- 2x 4-polig RJ-11 kabel (används för CAN-bussen)
- 1x RJ-11 förgrening
- 2x Tiopolig flatkabel
- 3x USB-kabel
- 1x Kopplingsplatta

Programspråket C kommer att användas för att skriva mjukvaran för detta projekt. Den IDE (Integrated Design Environment) som kommer användas är CodeLite då den kan simulera MD407 korten och då gruppmedlemmarna har erfarenthet med denna IDE. GitHub används för versionshantering.

Mycket av arbetet kan ske på distans då endast test på hårdvaran kräver att gruppmedlemmar är på plats i Chalmers. För arbete på distans kan gruppen kommunicera via Discord, som stödjer både röst- och textbaserad kommunikation.

6 Milstolpar

Nr	Beskrivning	Datum
1	Projektplan klar	2020-09-11
2	Dörrlarm klart	2020-09-18
3	Rörelselarm klart	2020-09-25
4	Centralenhet delvis avklarad	2020-10-02
5	Första utkast slutrapport	2020-10-02
6	Centralenhet och periferienheter sammankopplade	2020-10-09
7	Opposition avklarad	2020-10-09
8	Andra utkast slutrapport	2020-10-16
9	Slutrapport avklarad	2020-10-30

Tabell 1: Milstolpar för projektet

För att underlätta projektet har arbetet delats in i nio olika milstolpar.

7 Aktiviteter

Gruppmedlemmarna förväntas spendera 200h vardera med ett totalt antal mantimmar motsvarande 1200h. Tiden som varje medlem i gruppen förväntas lägga ner innefattar all tid som spenderas under projektets gång.

Nr	Beskrivning	Tidsåtgång
1	Föreläsningar (4h/vecka, 8 veckor, 6 personer)	192h
2	Projektmöten (2h/vecka, 8 veckor, 6 personer)	96h
3	Skrivande av protocoll, kallelser etc	20h
4	Framtagning av LaTeX-mallar	18h
5	Arbeta med projektplan	120h
6	Dokumentations läsning	50h
7	Rapportutkast	110h
8	Renskrivande av Rapportutkast 1	15h
9	Rapportutkast 2	70h
10	Renskrivning av rapportutkast 2	10h
11	${ m Oppositions rapport}$	30h
12	Slutföring av projektrapport	100h
13	Programmering av periferienhet, dörr	30h
14	Programmering av periferienhet, rörelse	30h
15	Programmering av centralenhet	50h
16	Tester och testrapport	100h
17	Granskning av kod	50h
18	Teknisk dokumentation	50
19	${ m F\"{o}rbered/genom} { m f\"{o}r\ demonstration}$	35h

Tabell 2: Aktivitetslista för projektet

Projektet har delats upp i aktiviteter. Anledningen till detta är för att gruppen ska ha koll på vad som ska genomföras under projektets gång. Noterbart är att aktiviteterna har givits en uppskattad tidsåtgång i tabell 2. Tidsåtgången kan variera under projektets gång och kan avvika från den upskattade tidsåtgången.

Tabell 2 ovan tyder på att gruppen sammanlagt kommer lägga ungefär 1200 timmar på projektet. Dessa timmar sorteras in på 19 aktivitetr och 4 kategorier. Första kategorin, som innefattar nummer 1-4, berör det administrativa. Andra kategorin, det vill säga nummer 5-12, berör rapoort delen av projektet. Denna del kommer tillmestadels handla om att skriva om projektet, renskrivning och oppositionsrapport. Tredje kategorin, där nummer 13-19 ingår, kommer att handla om det praktiska arbetet. Här berörs allt från programmering av periferienheter till tester och demonstrationer.

8 Tidsplan

Figur 2: Gantt-schema

Aktiviteter som inte visas i 2 sker kontinuerligt under projektets gång. De olika aktiviteterna och deras tidåtgång har lagts upp i ett gantt-schema. De första två veckorna är lågintensiva där gruppen får en överbklick på hur projektet skall se ut och även arbeta på projektplaneringen. Efter dessa veckor blir det högintensivt där gruppen sätter igång med det praktiska och även arbetar på projektrapporten. Utöver detta ska även opositionsrapporten skrivas. Sista 2 veckorna går åt till att färdigställa rapporten och förbereda inför demonstration. Det redovisade gantt-schemat ger gruppen en överblick på ungefär när deadlinen

Vad	När	Till	Hur
Kallelser	2 dagar innan möte	Alla	Anslag i canvas
Mötesprotokoll	2 dagar efter möte	Alla	Anslag i canvas
Projektplan	2020-09-13	Lärarteam	PP inlämning (LaTeX)

Projektrapport	2017-10-22	Lärarteam	PP inlämning (LaTeX)

Tabell 4: Aktivitetslista för projektet

på de olika rapporterna är samt hur många dagar gruppen har på sig på de angivna aktiviteterna.

9 Mötesplan

Mötestillfällen där alla gruppmedlemmar inklusive mentor medverkar.

Datum	tid	Lokal
02/09-20	13:00-15:00	ED4209
09/09-20	15:00-17:00	Zoom
16/09-20	13:00-15:00	Zoom
23/09-20	13:00-15:00	Zoom
30/09-20	13:00-15:00	Zoom
07/10-20	13:00-15:00	Zoom
14/10-20	13:00-15:00	Zoom
21/10-20	13:00-15:00	Zoom

Tabell 3: Tabell över mötestillfällen

10 Kommunikationsplan

11 Kvalitetsplan

För att verifiera att systemet och dess delsystem fungerar behöver tester utföras. Tester av mjukvaran kan primärt göras i simulator, men innan den kan markeras som klar måste den även testas i hårdvaran. Vid test av de olika komponenterna skall följande mall fyllas i:

Komponent Den del av systemet ska testas.

Testsyfte Vilken funktionalitet som testas.

Utförande Hur testet ska utföras och vilka specifika fall som testas.

Resultat Resultatet av testet.

Analys Vad testresultatet innebär; om komponenten fungerar som planerat, behöver testas ytterligare eller om vidare utveckling krävs.

Referenser

 $[1]\,$ B. rådet, "Anmälda brott," 2019.