

Improving Semantic Segmentation through Task Adaptation for UAV Hyperspectral Agricultural Imagery

Mazharul Hossain, CS Ph.D. Student

Dr. Aaron L Robinson, Assoc Professor, EECE Dr. Lan Wang, Professor, CS Dr. Chrysanthe Preza, Professor and Chair, EECE

Date: April 14, 2025

Introduction

Why Crop Mapping Matters:

 Identifies crops, estimates yields, helps monitor plant health, and improves resource efficiency

• Traditional methods are slow and costly

 What if AI could do it faster and more accurately?

Solution?

- Better accuracy: Deep learning
- Faster: Remote sensing using hyperspectral imaging

37°54'30"N

37°54'32"N

37°54'28"N

37°54'34"N

The Role of Semantic Segmentation

- Definition: Classifies each pixel in an image to differentiate objects using a deep learning (DL) algorithm
- Applications: Used in agriculture, medical imaging, autonomous vehicles, and industrial quality inspection.
- Existing models
 - Deep convolutional neural networks: U-Net, FastFCN, DeepLab
 - Transformer-based models: Segmenter, ViT (VisionTransformer).

Hyperspectral Semantic Segmentation

- Why Hyperspectral Over RGB?
 - More spectral data = better differentiation of crops and weeds.
 - Near-Infrared (NIR): additional information a plant emits
- Existing AI models struggle with hyperspectral images
 - High-dimensional data
 - Limited annotated datasets
 - Deep classifiers overfit
 - Segmentation models struggles even more
- Our Solution: HSI-ResNetV2-ViT-Unet (HRViTUNet)
 - Task Adaptation: adapt pre-trained RGB segmentation models to hyperspectral data and agricultural domain
 - Attention module: reduce number of feature channels to improve efficiency

Related Work

 nnU-Net¹ (no new Unet) introduced an adaptive framework for vanilla U-Net

 TransUNet² replaced the bottleneck layer with ViTs, demonstrating promising results in medical imaging

 HSI-TransUNet³ modified TransUNet with attention module

Our Proposed Solution

 Task Adaptation: Used pre-trained RGB models to improve hyperspectral segmentation and kept modification to a minimum

- Updated the input layer to handle different input modalities (HS imagery) $\frac{channel_{out}}{channel_{out}} = 3*2^{\log_2 channel_{in}}$ $\frac{channel_{out}}{channel_{out}} = 3*2^{\log_2(200)}$
- Updated the final input layer to handle increased number of classes $channel_{in} = 2^{\log_2(channel_{out}*3)}$ $channel_{in} = 2^{\log_2(30*3)}$

Our Proposed Solution (2)

 ML Model Used: Adapted a U-Net-like network with a spectral attention mechanism

Our Proposed Solution (3)

- Key Enhancement 1: Updated Pre-Activation Bottleneck block of ResNetV2
 - Better transmission of meaningful spectral features

Our Proposed Solution (4)

 Key Enhancement 2: New Adaptive Channel Attention Mechanism⁴ to extract meaningful spectral features

• We used an adaptive reduction ratio compared to a fixed 16 adaptive reduction ratio = $2 * log_2(C_{out})$

- Key Enhancement 3: alternating skip connections in Vision Transformer (ViT)
 - Avoids vanishing gradient
 - Improves backward gradient flow, efficiency, and performance

How It Works

- Step 1: Use ResNetV2 and ViT trained on large RGB image dataset
 - Pre-trained on ImageNet-21k dataset and fine-tuned on ImageNet dataset
- Step 2: Modify the input of the model to accept hyperspectral images
- Step 3: Modify the output of the model for new classes
- Step 4: Use channel attention to emphasize key spectral details
- **Step 5:** Fine-tune the whole model

Training Process Overview

- Loss Function
 - Dice + Cross-Entropy +
 Weighted Cross-Entropy
 - Combines pixel-level accuracy with overlap quality
- Optimizer & Learning Rate:
 AdamW (initial LR=0.000_1)
 - Reduced based on training down to 0.000_001

- © Epochs: 500 (batch size: 32)
 - Early stopping (Dice)
- Data augmentation: PyTorch transforms (Flip, Rotate)
- Regularization: Dropout,
 Weight decay
- Hardware: 48GB NVIDIA RTX 6000 Ada Gen

Input Image batch \rightarrow Model \rightarrow Loss \rightarrow Optimizer \rightarrow Updated Weights (20s/epoch)

- HSI UAV crop dataset: collected from: Hebei Province, China
 - Collected using: Pika-L HS imager
 - Image size: 96*96*200 and Class: 30

Dataset	Training	Validation	Test
UAV-HIS-Crop Dataset	363	33	37

Qualitative Performance Evaluation

The visualization shows a comparison of semantic segmentation between our model and TransUNets, where all models are trained and fine-tuned on the UAV-HIS-Crop Dataset.

Performance comparison of HRViTUNet using segmentation metrics

Model	Dice (mean, median)	Jaccard (mean, median)	Params (M)	Tflops (Tera)
HRViTUNet (Our)	$0.749 \pm 0.119, 0.749$	$0.737 \pm 0.123, 0.732$	57.70	2.19
TransUNet (RGB)	$0.779 \pm 0.097, 0.794$	$0.771 \pm 0.099, 0.785$	105.16	111.58
TransUNet (HSI)	$0.766 \pm 0.097, 0.760$	$0.757 \pm 0.099, 0.753$	105.78	111.65
HSI-TransUNet	$0.643 \pm 0.133, 0.648$	$0.631 \pm 0.137, 0.633$	99.33	1.18

Performance comparison of HRViTUNet using classification metrics

Model	Precision	Recall	F1-score	Accuracy
HRViTUNet (Our)	$\boldsymbol{0.334 \pm 0.166}$	0.552 ± 0.201	$\boldsymbol{0.277 \pm 0.159}$	$\boldsymbol{0.766 \pm 0.121}$
TransUNet (RGB)	0.315 ± 0.171	0.409 ± 0.238	0.226 ± 0.168	0.606 ± 0.248
TransUNet (HSI)	0.315 ± 0.154	0.470 ± 0.231	0.242 ± 0.155	0.668 ± 0.232
HSI-TransUNet	0.258 ± 0.141	0.554 ± 0.216	0.205 ± 0.140	0.746 ± 0.185

Summary

- We applied Task Adaptation to a pre-trained RGB model to improve crop mapping efficiency and accuracy with hyperspectral data
 - Attention module
 - Custom **loss** function
- Comparison with other models
 - Comparable in segmentation performance
 - Better in classification performance
 - Much lower computational cost
- With advancements like these, AI can revolutionize how we manage agriculture, making farming smarter and more efficient

Real-World Impact and Next Steps

- Farmers & Remote Sensing Experts for more effective decision-making
 - More accurate crop mapping
 - Crop monitoring
 - Enhanced analysis of land use
- Al Researchers: New applications for hyperspectral image processing
- **Dual-Use Potential:** Can aid in segmenting and classifying anomalies into objects of interest, enhancing surveillance and situational awareness

Next Steps:

- Test on other hyperspectral datasets.
- Use Unmixing to move task adaptation to the next step and reduce training even further
- Optimizing model efficiency for real-time applications

References

- 1. Isensee, Fabian, et al. "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." Nature Methods 18.2 (2021): 203-211.
- 2. Chen, Jieneng, et al. "Transunet: Transformers make strong encoders for medical image segmentation." arXiv preprint arXiv:2102.04306 (2021).
- 3. Niu, Bowen, et al. "HSI-TransUNet: A transformer based semantic segmentation model for crop mapping from UAV hyperspectral imagery." Computers and Electronics in Agriculture 201 (2022): 107297.
- 4. Hu, Jie, et al. "Squeeze-and-excitation networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

