REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR

FORM TO THE ABOVE ADDRESS.	ollection of information in trudes not display a currently valid Owic	control number. FLEASE DO NOT RETURN TOOK		
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE		3. DATES COVERED (From - To)		
August 2012 Briefing Charts		August 2012- October 2012		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER		
	uorinated Polyhedral Oligomeric Silsesquioxane (F-	In-House		
POSS) Macromers: Precursors for Low Surface 1	Energy Materials and Devices			
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)		5d. PROJECT NUMBER		
Sean M. Ramirez, Yvonne Diaz, Timot	hy S. Haddad, Joseph M. Mabry	5e. TASK NUMBER		
		5f. WORK UNIT NUMBER		
		Q0AD		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NO.		
Air Force Research Laboratory (AFMC		KEI OKI NO.		
AFRL/RQRP	,			
10 E. Saturn Blvd.				
Edwards AFB CA 93524-7680				
	ANAME(C) AND ADDRECC(EC)	40 CDONCOD/MONITODIC ACDONVANCO		
9. SPONSORING / MONITORING AGENCY		10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Research Laboratory (AFMC	~)			
AFRL/RQR		44 ODONOOD/MONITODIO DEDODE		
5 Pollux Drive		11. SPONSOR/MONITOR'S REPORT		
Edwards AFB CA 93524-7048		NUMBER(S)		
		AFRL-RQ-ED-VG-2012-276		
12. DISTRIBUTION / AVAILABILITY STAT	EMENT			
Distribution A: Approved for Public Release				
**				

13. SUPPLEMENTARY NOTES

Briefing Charts for the Fluoropolymer 2012, Las Vegas, Nevada in 14-17 October 2012.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Joseph Mabry
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NO
Unclassified	Unclassified	Unclassified	SAR	29	(include area code) 661-525-5857

Synthesis and Free Radical Polymerization of Fluorinated Polyhedral Oligomeric Silsesquioxane (F-POSS) Macromers: Precursors for Low Surface Energy Materials and Devices

Sean M. Ramirez,¹ Yvonne Diaz,² Timothy S. Haddad,¹ and Joseph M. Mabry²

¹ERC Inc., Air Force Research Laboratory, Edwards AFB, CA 93524-7680 U.S.A.

Phone: (661) 275-5769, sean.ramirez.ctr@edwards.af.mil

²Air Force Research Laboratory, Edwards AFB, CA 93524-7680 U.S.A.

Distribution A: Approved for public release; distribution unlimited

FLUOROPOLYMER 2012

Polyhedral Oligomeric Silsesquioxane POSS (RSiO_{1.5})_n

- Organic-inorganic framework
- Well-defined, 3-D nanostructure
- Can carry functional groups
- Thermally and chemically robust
- Used in thermoset and thermoplastic polymers, temperature nanocomposites, coatings, surface modifiers, and many other applications

Introduction to F-POSS

(1,1,2,2-tetrahydroperfluorodecyl) $_8$ Si $_8$ O $_{12}$ Polyhedral Oligomeric Silsesquioxane (POSS), or fluorodecyl POSS

- hybrid organic-inorganic structure
- well-defined polyhedral architecture
- long-chain fluoroalkyl substituents on periphery of cage

Due to its unique structure, fluorodecyl POSS has one of the lowest surface energies of any crystalline solid currently known

fluorodecyl POSS
 polytetrafluoroethylene
 CF₃ monolayer
 9.3 mN/m
 18-20 mN/m
 6.7 mN/m

Low surface energy and other unique properties of fluorodecyl POSS has enabled the development of various types of tunable non-wetting polymeric surfaces

Superhydrophobic/oleophilic dip-coated fabric Tuteja *et al*, Science, **2007**, 318, 1618

Superamphiphobic dip-coated fabric Choi *et al*, Adv Mater, **2009**, 21, 2190

Superamphiphobic electrospun surfaces Tuteja *et al*, PNAS, **2008**, 105, 18200

POSS Incorporation in Polymers

Cross-linker

Pendant Polymer

Bead Copolymer

Functional F-POSS (Open-Caged)

- Close-caged structures are accessible and have proven versatile in polymer composites
 - Limitations
 - Solubility, mechanical robustness (surface abrasion), no sites for functionality
- Open-caged structures would allow for functionalization of F-POSS
 - Open door for use a building block material for low surface energy materials
- Applications
 - Mechanical robust superhydrophobic/oleophobic/omniphobic surfaces
 - Via covalently attached F-POSS to substrate (surface, nanoparticle, polymer matrix)
 - Effects on polymer composite properties
 - Wetting, phase behavior, solubility, etc....

- Open cages lead to functional POSS structures
- Reactions are simple
- High yields typically reported

Incompletely Condensed Silsesquioxane

 Incompletely condensed silsesquioxane synthesis yields a disilanol capable of functionalization with dichlorosilanes.

29 Si NMR in C_6F_6 of disilanol F-POSS

X-Ray Crystal Structure of Disilanol

- Crystal structure is dimeric via intra- and intermolecular hydrogen bonding between silanols.
- M_r =,monoclinic, space group P2(1)/c , a=11.84(10) Å, b=57.11(6) Å, c=19.06(2) Å, α = 90.00°, β =92.21(10)°, γ =90.00°, V= 12878(2) Å³

Edge Capping Reactions

 $R = CH_2CH_2(CF_2)_7CF_3$ $R_1 =$ alkyl or aromatic $R_2 =$ alkyl or aromatic

- Edge capping reactions typically have 40-90% yield
- Main side product is starting material (recycled)
- Disilanol can revert back to closed cage during reaction

F-POSS Structures Synthesized

Contact Angle Measurements

- Non-wetting surfaces can be developed by a combination of three parameters
 - Chemical functionality (high fluorine content)
 - Roughness (micro- and nanoscale)
 - Surface Geometry (re-entrant curvature)
- What type of influence will functional groups have on F-POSS surface properties?
- Solvent impact?

Contact Angle Measurements

- Non-wetting surfaces can be developed by a combination of three parameters
 - Chemical functionality (high fluorine content)
 - Roughness (micro- and nanoscale)
 - Surface Geometry (re-entrant curvature)
- What type of influence will functional groups have on F-POSS surface properties?
- Solvent impact?

Static contact angles of Si wafer surfaces coated with compounds **disilanol** (a) and (b), **dioctyl** (c) and (d), and **diphenyl** (e) and (f). Image of hexadecane droplet (10 µL) rolling off surface coated with compound **diphenyl** (g).

Dynamic Contact Angle Measurements

Functional Group on F-POSS	wai	ter	hexadecane		
	(θ_{adv})	$(\theta_{\rm rec})$	(θ_{adv})	$(\theta_{\rm rec})$	
F-POSS*	$124 \pm 0.5^{\circ}$	$109.6 \pm 0.7^{\circ}$	$79.1 \pm 0.4^{\circ}$	$65.1 \pm 0.5^{\circ}$	
Si-(OH) ₂	$116.8 \pm 0.4^{\circ}$	111 ± 0.6°	$77.4 \pm 0.4^{\circ}$	$74.4 \pm 0.8^{\circ}$	
Si-(CH ₃)(CH=CH ₂)	$116.2 \pm 0.4^{\circ}$	$100.6 \pm 0.8^{\circ}$	$78.4 \pm 0.3^{\circ}$	$70.6 \pm 2.3^{\circ}$	
Si((CH ₃)((CH ₂) ₃ OC(O)CCH=CH ₂)	$118.2 \pm 1.0^{\circ}$	$90.6 \pm 1.0^{\circ}$	$76.8 \pm 0.3^{\circ}$	$64.8 \pm 1.0^{\circ}$	
Si-(CH ₃)((CH ₂) ₃ OC(O)C(CH ₃)=CH ₂)	$117.1 \pm 0.6^{\circ}$	93.8 ± 1.5°	$78.1 \pm 0.4^{\circ}$	$63.0 \pm 1.2^{\circ}$	
Si-(CH ₃)((CH ₂) ₂₂ CH ₃)	117.9 ± 0.4°	96.9 ± 1.9°	$78.0 \pm 0.4^{\circ}$	$16.2 \pm 5.5^{\circ}$	
$Si-(C_6H_5)_2$	$116.2 \pm 0.4^{\circ}$	$110.5 \pm 0.5^{\circ}$	$76.0 \pm 0.8^{\circ}$	$73.2 \pm 0.4^{\circ}$	
Si-((CH ₂) ₇ CH ₃) ₂	$117.9 \pm 0.5^{\circ}$	95.5 ± 0.4°	69.1 ± 1.2°	23.1 ± 1.2°	

Samples (10 mg/mL) were spin casted on oxygen-plasma cleaned Si wafers at 900 rpm for 30 seconds. Contact angle measurements were run in triplicate. Surface roughness < 5nm (AFM and Optical Profilometry).

Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization

Initiation

Initiator
$$\xrightarrow{k_d}$$
 21.

$$P_n$$
 + $S=C-S-R$ $P_n-S-C=S+R$ Z $P_n-S-C=S+R$

Propogation

Termination

2 Radicals → Dead polymer

Chain Transfer Agent

RAFT Polymerization

- Controlled polymerization
- Allows for block copolymers
- •Tune molecular weight

RAFT polymerization of MMA in C₆F₆

$$\begin{array}{c|c}
S & CN \\
\hline
AIBN, 65^{\circ}C \\
\hline
C_6F_6
\end{array}$$
NC

- Testing RAFT in fluorinated solvent
- RAFT polymerization proceeds in C₆F₆
- Best control in first 10 hours

RAFT copolymerization of P(F-POSS-MA)-co-PMMA

$$\begin{array}{c} S \downarrow S \downarrow CN \\ \\ AlBN, 65^{\circ}C \\ \\ C_{6}F_{6} \end{array}$$

RAFT polymerizations are performed in fluorinated solvent following methods developed for MMA.

RAFT copolymerization of P(F-POSS-MA)-co-PMMA

F-POSS	M _n		Conv	water		hexadecane		
wt %	(g/mol)	PDI	%.	(θ_{adv})	$(\theta_{ m rec})$	$(\theta_{\sf adv})$	(θ_{rec})	
F-POSS-MMA				117.1 ± 0.6°	93.8 ± 1.5°	$78.1 \pm 0.4^{\circ}$	63.0 ± 1.2°	
0	45,000	1.05	80	77.8 ± 1.3°	57.8 ± 2.5°	wetted	wetted	
1	53,700	1.08	72	109.2 ± 2.4°	61.5 ± 1.9°	67.8° ± 1.4	wetted	
5	22,900	1.01	30	117.8 ±1.6°	95.7 ± 5.9°	76.7 ± 1.1°	68.8 ± 1.9°	
10	26,600	1.01	29	118.2 ± 1.4°	101.1 ±2.5°	77.2 ± 0.4°	69.5 ± 2.1°	
25	36,600	1.03	41	120.8 ± 97.0°	97.0 ± 2.4°	82.9 ± 0.4°	$74.6 \pm 2.0^{\circ}$	

SEC-MALS conditions: 25°C, flow rate (1 mL/min), solvent (Asahiklin-225), concentration measured with RI detector. Contact angle conditions: polymer solutions (20 mg/mL) were spun cast on SiO₂ wafers at 900 rpm with a 30 second dwell time.

RAFT copolymerization of P(F-POSS-MA)co-PMMA

10% F-POSS	M _n		Conv
Time (hr)	(g/mol)	PDI	%.
1*	4100	2.2	8
2	4,700	1.2	16
4	11,300	1.04	28
8	26,600	1.03	51

Determining impact of F-POSS on polymerization conditions

- No homopolymerization possible
- Cannot polymerize well above 50 wt % F-POSS-MMA loading
- Controlled at beginning of RAFT polymerization
- *NMR M_n value

AFM of P(F-POSS-MA)-co-PMMA

AFM images of spun cast films of copolymers on SiO₂. Corner images are pictures of static contact angle measurements with hexadecane drops. a) 1 wt.% F-POSS copolymer b) 25 wt. % F-POSS copolymer. Z scale 0 – 15 nm

AFM: Chris Sahagan

Copolymerization Summary

- Copolymerizations produced F-POSS based copolymers.
- Polymerization have trouble at higher F-POSS monomer feed ratios and are more controlled at lower conversion with RAFT initiator.
- However, we really want the homopolymer!

Is it crowded in here?

Extend the Chain

Long Chain Monomer Synthesis

+
$$(CH_3)SiHCl_2$$

Karsted cat.

[Pt]

Toluene

$$\begin{array}{c} & & & \\ & &$$

Polymerization

No Polymer
$$\begin{array}{c|c} & & & & \\ & & & \\ \hline \\ & & & \\ & & & \\ & & \\ & & & \\$$

- Still no sign of free radical homopolymerization
- Copolymerizations will be attempted next

Norbornene Synthesis

$$\begin{array}{c} R_{f} \text{ OH HO} R_{f} \\ Si \text{ OSI OSI OF R}_{f} \\ CI \end{array}$$

- Coupling reaction works well
 - Work-up is a bit tricky due to similar solubilities of disilanol, T8 side product, and product
 - Room for further improvement

²⁹Si NMR

NMR: CDCl₃/C₆F₆

ROMP

$$[Ru] = CI Ph$$

$$P(Cy)_3$$

Grubb's 2nd generation catalyst (seems to be soluble in hexafluorobenzene

Polymerization

- Performed on 200 mg scale
- 50:1 monomer:cat
- Reaction of 30 minutes NMR run
- Initial signs point to polymerization success
- Further polymerizations will be persued

Summary

- Structures were demonstrated to be reactive towards a variety of dichlorosilanes
- Solubility of F-POSS compounds were shown to be influenced by chemical functionality
- Functionality was shown to be influential on contact angle measurements
- ROMP chemistry works well
- Currently working on other monomers and polymers for F-POSS
- F-POSS compounds have a near limitless potential in producing a variety of new hydrophobic, oleophobic, or ominiphobic polymer composites.
 - Reaction mechanisms, polymer composites, block copolymers, etc....

Acknowlegdements

The Polymer Working Group at Edwards Air Force Base:

Dr. Joseph Mabry

Mr. Pat Ruth

Ms. Vandana Vij

Dr. Greg Yandek

Dr. Josiah Reams

Ms. Yvonne Diaz

Mr. Raymond Compos*

Mr. Brian Moore

Mr. Kevin Lamison

Dr. Tim Haddad

Dr. Andy Guenthner

Ms. Dana Pinson

Cpt. Rebecca Stone*

We thank Peter Müller at the Massachusetts Institute of Technology (MIT) and the American Crystallography Association (ACA) summer course for their assistance with small molecule X-ray crystal structure determination and refinement.

Financial Support:

Air Force Office of Scientific Research Air Force Research Laboratory, Propulsion Directorate