Machine Learning for Engineering and Science Applications

Linear Regression

Least Squares

Gradient Descent

Regression example

Our example was as follows

Table 1 Coefficient of thermal expansion versus temperature for steel.

Temperature,	Coefficient of	
T	thermal expansion, α	
°F	in/in°F	
80	6.470×10^{-6}	
60	6.360×10 ⁻⁶	
40	6.240×10 ⁻⁶	
20/	6.120×10 ⁻⁶	
0	6.000×10 ⁻⁶	
-20	5.860×10 ⁻⁶	
-40	5.720×10 ⁻⁶	
-60	5.580×10 ⁻⁶	
-80	5.430×10 ⁻⁶	
-100	5.280×10 ⁻⁶	
-120	5.090×10 ⁻⁶	
-140	4.910×10 ⁻⁶	
-160	4.720×10 ⁻⁶	
-180	4.520×10 ⁻⁶	
-200	4.300×10 ⁻⁶	
-220	4.080×10^{-6}	
-240	3.830×10 ⁻⁶	
-260	3.580×10 ⁻⁶	
-280	3.330×10 ⁻⁶	
-300	3.070×10 ⁻⁶	
-320	2.760×10 ⁻⁶	
-340	2 450×10 ⁻⁶	
L	y (Ground Tru)	1

We will discuss how to come up with these in the coming video(s)

The general univariate linear regression problem

Input (x)	Output (y)
$x^{(1)}$	y ⁽¹⁾
$\chi^{(2)}$	$y^{(2)}$
	5
$\chi^{(m)}$	$y^{(m)}$

We start with the case where there is a single input and a single output

 $(x^{(i)}, y^{(i)}) : i^{th}$ "example" of (input,output) set

m: Number of examples or data points

The general univariate linear regression problem

Input (x)	Output (y)	Model (ŷ)
	Grisen Data	1.6
$x^{(1)}$	y. ⁽¹⁾	$\widehat{y}^{(1)}$
$x^{(2)}$	y ⁽²⁾	ŷ(2) 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
		Onanti 14
$\chi^{(m)}$	$y^{(m)}$	$\hat{y}^{(m)}$

We now introduce our first model hypothesis – Linear Model

$$\hat{y} = h(x) = \hat{w_0} + \hat{w_1}x \leftarrow \text{Form}$$

There are infinite w_0, w_1 possibilities. Which do we choose?

For this, we define a cost function $J = \frac{1}{2m} \sum_{i=1}^{\infty} (y^{(i)} - \hat{y}^{(i)})^2$

Optimal w is the one that minimizes the above cost function

Called the least squares fit. The cost function is called least mean square (LMS)

Finding the linear regression coefficients

Using gradient descent

We have
$$m$$
 data points $(x^{(i)}, y^{(i)})$ $i = 1, 2, ..., m$

Guess
$$\mathbf{w} = [w_0, w_1]$$

For any given guess of w, we have the corresponding output

$$\hat{y}^{(i)} = w_0 + w_1 x^{(i)}$$

Calculate
$$J = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} - w_0 - w_1 x^{(i)})^2$$

Improve w by using

$$\mathbf{w} = \mathbf{w} - \alpha \nabla_{\mathbf{w}} J$$

Stop when	the	stopping	criterion	is	met
-----------	-----	----------	-----------	----	-----

The final set of $w = [w_0, w_1]$ obtained are the regression coeffs.

Input (x)	Output (y)	Model (ŷ)
x ⁽¹⁾	$y^{(1)}$	$\hat{y}^{(1)}$
$x^{(2)}$	$y^{(2)}$	$\hat{\hat{y}}^{(2)}$
$x^{(m)}$	$y^{(m)}$	$\widehat{y}^{(m)}$

Steps of the linear regression procedure

- 1. Decide on α , ϵ and stopping criterion
- Make an initial guess for the weight vector $w = w^{(0)}$

3. Calculate
$$w^{(k+1)} = w^{(k)} - \frac{\alpha}{2m} \sum_{i} (y^{(i)} - \hat{y}^{(i)}) x^{(i)}$$

- Calculate stopping criterion
 - 1. If condition satisfied, stop
 - 2. If not satisfied, go to Step 3

Let us now see a code to implement this