Question	Answer	Marks	Guidance
2	Differentiate to obtain $2x + ax^{-2}$ or equivalent	В1	
	Equate first derivative to zero, substitute $x = -3$ and attempt value of a	M1	Must be an attempt at differentiation.
	Obtain $a = 54$	A1	
	Obtain $b = 27$	A1	

Question	Answer	Marks	Guidance
5(a)	Attempt correct process for solving 3-term quadratic equation in \sqrt{x}	M1	Accept $8y^2 - 6y - 9 \rightarrow (2y - 3)(4y + 3)$, if $y = \sqrt{x}$ specified.
	Obtain at least $2\sqrt{x} - 3 = 0$ or equivalent		Ignore $4\sqrt{x} + 3 = 0$. SC B1 for $\sqrt{x} = \frac{3}{2}$ with no method shown for
			solving the 3-term quadratic.
	Conclude $x = \frac{9}{4}$ ignore $\frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
	Alternative Method for Q5(a)		
	$3\sqrt{x} = 4x - \frac{9}{2} \rightarrow 16x^2 - 45x + \frac{81}{4}$ o.e and attempt correct process to solve	М1	
	Obtain $x = \frac{9}{4}$ or $\frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
	$x = \frac{9}{4} \text{ ignore } \frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
		3	

rublished

Question	Answer	Marks	Guidance
5(b)	Integrate to obtain form $k_1 x^2 + k_2 x^{\frac{3}{2}} + k_3 x$ where $k_1 k_2 k_3 \neq 0$	М1	
	Obtain correct $2x^2 - 2x^{\frac{3}{2}} + x$ or equivalent	A1	Allow unsimplified.
	Substitute $x = 4$ and $y = 11$ to attempt value of c	M1	Dependent on at least 2 correct terms involving x.
	Obtain $y = 2x^2 - 2x^{\frac{3}{2}} + x - 9$	A1	Must be simplified. Allow 'f(x) = '. Allow y missing if y appears previously.
		4	

Question	Answer	Marks	Guidance
7(a)	Differentiate to obtain form $k_1(2x+1)^{\frac{4}{3}}$	M1	
	Obtain correct $-8(2x+1)^{-\frac{4}{3}}$ or unsimplified equivalent	A1	
	Attempt equation of tangent at $\left(\frac{7}{2}, 6\right)$ with numerical gradient	М1	Gradient must come from a differentiated expression.
	Obtain $y = -\frac{1}{2}x + \frac{31}{4}$ or equivalent of requested form	A1	
		4	

Question	Answer	Marks	Guidance
7(b)	Integrate to obtain form $k_2(2x+1)^{\frac{2}{3}}$	М1	
	Obtain correct $9(2x+1)^{\frac{2}{3}}$ or unsimplified equivalent	A1	
	Use correct limits correctly to find area	M1	Substitute correct limits into an integrated expression. 36 – 9 minimum working required.
	Obtain 27	A1	SC B1 if M1 A1 M0 scored.
		4	

LODUIDITED

Question	Answer	Marks	Guidance
9(a)	Differentiate to obtain $5+12x-9x^2$	В1	
	Attempt to find two critical values by solving quadratic equation or inequality	М1	
	Obtain values $-\frac{1}{3}$ and $\frac{5}{3}$	A1	SC B1 if no method for solving the quadratic.
	Conclude $x < -\frac{1}{3}, x > \frac{5}{3}$	A1FT	SC B1 if no method for solving the quadratic.
		4	

Question	Answer	Marks	Guidance
9(b)	Equate first derivative to 9 and simplify to 3 term quadratic	*M1	
	Obtain $x = \frac{2}{3}$	A1	SC B1 for solving $5 + 12x - 9x^2 = 9$ without simplifying to a 3-term quadratic.
	Use x-value and corresponding y-value to determine value of k	DM1	
	Obtain $k = \frac{28}{9}$	A1	SC B1 for $k = \frac{28}{9}$ from solving $5 + 12x - 9x^2 = 9$ without simplifying to a 3-term quadratic.
		4	

Question	Answer	Marks	Guidance
3(a)	$[f(2+h)=] 2(2+h)^2 -3$	B1	SOI
	$\frac{\left(2(2+h)^2 - 3\right) - 5}{(2+h) - 2} \left[= \frac{2h^2 + 8h}{h} \right]$	M1	$\frac{\left\{their\left(2(2+h)^2-3\right)\right\}-their5}{(2+h)-2}$ can be implied by the simplified expression or the correct answer. Their 5 must come from $2(2)^2-3$.
	2h+8 or 2(h+4)	A1	
		3	
3(b)	$h \rightarrow 0$, or chord [AB] \rightarrow tangent [at A]	В1	Either of these statements or any sight of $h = 0$.
	8	B1FT	Could come from anywhere except wrong working. Either correct or FT their linear expression from (a).
		2	

LOBEISHED

Question	Answer	Marks	Guidance
10(a)	-18	B1	SOI
	$\frac{1}{18}$	M1	Use of $m_1m_2 = -1$ from $f'(x)$ with $x = 1$.
	$\frac{y\left[-0\right]}{x-1} = \frac{1}{18}$	A1	OE ISW

Question	Answer	Marks	Guidance
10(b)	$\begin{bmatrix} \mathbf{f}(x) = \end{bmatrix} \left\{ 8(2x - 3)^{\frac{4}{3}} \cdot \frac{1}{2} \cdot \frac{1}{\frac{4}{3}} \right\} \left\{ -10x^{\frac{5}{3}} \cdot \frac{1}{\frac{5}{3}} \right\} \left[+c \right]$	B1B1	B1 for each unsimplified {}. Can be implied by equivalent simplified or partly simplified versions.
	$\left[3(2x-3)^{\frac{4}{3}}-6x^{\frac{5}{3}}+c\right]$		
	$0 = 3(2(1)-3)^{\frac{4}{3}} - 6(1)^{\frac{5}{3}} + c \qquad [0 = 3 - 6 + c]$	М1	Use of $x = 1$ and $y = 0$ in <i>their</i> integrated $f'(x)$, defined as an expression with at least one correct power, which must contain $+ c$.
	$[f(x) \text{ or } y =]3(2x-3)^{\frac{4}{3}} - 6x^{\frac{5}{3}} + 3$.A1	Only condone $c = 3$ as their final answer if all coefficients have previously been simplified in a correct statement.
		4	
10(c)	$b^2 - 4ac = 128^2 - 4 \times 125 \times 192$ and stating "< 0" OR use of the quadratic formula and stating "No solutions" OR completing the square for the given quadratic and stating positive or > 0. OR sketch of the given quadratic and stating positive.	M1*	$b^2 - 4ac = -79616$ can be accepted in place of working.
	No turning points [in the original function.]	DM1	
	Decreasing because $f'(\text{any positive } x \text{value}) < 0$	A1	WWW e.g. $f'(1) = -18$.
		3	

LOBEISHED

Question	Answer	Marks	Guidance
11(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}kx^{-\frac{1}{2}} - 8x$	В1	
	$\frac{d^2 y}{dx^2} = -\frac{1}{4}kx^{-\frac{3}{2}} - 8$	B1	
		2	
11(b)	$x^{-\frac{1}{2}} - 8x = 0 \Rightarrow 1 - 8x^{\frac{3}{2}} = 0 \text{ or } x^{-1} = 64x^{2} \left[\Rightarrow x^{3} = \frac{1}{64} \text{ or } 8x^{\frac{3}{2}} = 1 \right]$ Setting their $\frac{dy}{dx}$ to zero and solving, providing their only error(s) are incorrect coefficients	M1	OE Award if working leads to $x = \frac{1}{4}$ WWW. Squaring $x^{-\frac{1}{2}} - 8x^2 = 0$ to $x^{-1} - 64x^2 = 0$ gets M0.
	$x = \frac{1}{4}$ only	A1	If $x = 0$ included, A0 and max of 3/4. SC B1 only for $x = \frac{1}{4}$ only from squaring $x^{-\frac{1}{2}} - 8x^2 = 0$ directly to $x^{-1} - 64x^2 = 0$ (SC B1 replacing the M1A1).
	$y = \frac{11}{4}$	A1	SC B1 for $y = \frac{11}{4}$ from squaring $x^{-\frac{1}{2}} - 8x^2 = 0$ to $x^{-1} - 64x^2 = 0$.
	$\frac{d^2y}{dx^2} = -\frac{1}{2}x^{-\frac{3}{2}} - 8$ which is negative, so maximum	B1 FT	WWW FT their x-value and their $\frac{d^2y}{dx^2}$. No FT if $x = 0$ is the only solution.
		4	

PUBLISHED

Question	Answer	Marks	Guidance
11(c)	When $x = 1$, attempting to find $y = k - 2$ and gradient $= \frac{1}{2}k - 8$	M1*	OE SC B1 if both correct gradients only, or both correct y-coordinates only.
	Equation of tangent is $y-k+2=\left(\frac{1}{2}k-8\right)(x-1)$	A1	OE, e.g. $y = \left(\frac{k}{2} - 8\right)x + \frac{k}{2} + 6 \text{ or } y = \frac{k}{2}x - 8x + \frac{k}{2} + 6.$
	When $x = \frac{1}{4}$, attempting to find $y = \frac{1}{2}k + 1.75$ and gradient = $k - 2$	M1*	OE
	Equation of tangent is $y - \frac{1}{2}k - 1.75 = (k - 2)(x - 0.25)$	A1	OE, e.g. $y = (k-2)x + \frac{k}{4} + \frac{9}{4}$ or $y = kx - 2x + \frac{k}{4} + \frac{9}{4}$.
	Meet at $\left(\frac{1}{2}k - 8\right)(0.6 - 1) + k - 2 = (k - 2)(0.6 - 0.25) + \frac{1}{2}k + 1.75$ Equate two tangent equations and substitute $x = 0.6$	DM1	OE, e.g. $\left(\frac{k}{2} - 8\right)0.6 + \frac{k}{2} + 6 = (k - 2)0.6 + \frac{k}{4} + \frac{9}{4}$. M0 if constants in both equations are the same.
	$\Rightarrow [-0.2k + k + 3.2 - 2 = 0.35k - 0.7 + 0.5k + 1.75]$ $\Rightarrow 0.05k = 0.15$ $k = 3$	A1	
		6	

PUBLISHED