Time complexity classes, P and NP

Textbook: Chapter 7.2, 7.3

The class P

- ▶ Recall: TIME(f(n)) is the set of all *languages* decidable in O(f(n)) deterministic time
- We find it interesting to study the differences between polynomial and nonpolynomial time classes: Therefore we create the set of all languages decidable in polynomial deterministic time

Def: P. The set of all language decidable in deterministic polynomial time is called P, and is defined as below.

$$P = \bigcup_{k} \mathtt{TIME}(n^k)$$

Verifiers

- ▶ What if a TM got some arbitrary extra "proof" or "certificate" that helped it out? Equivalently, given an answer to a question, can we prove that it is true faster than we could find the solution?
- For instance, if we are trying to prove a number isn't prime, a certificate could be a list of its factors: The "verification" algorithm would take time proportional to the number of factors (very fast)!

Def: A **verifier** for a language A is an algorithm V where

 $A = \{w : V \text{ accepts } \langle w, c \rangle \text{ for some "certificate" } c\}$

Measuring Verifiers

We measure the time of a verifier only in terms of |w| (not |c|: This is given "magically"), so a **polynomial time verifier** runs in polynomial time with respect to |w|.

► A verifier takes in some candidate solution and accepts iff it is indeed a true solution

Note: An nTM can nondeterministically "guess" the certificate then simulate a verifier TM given it. Therefore, nTMs can simulate n deterministic verifier steps in O(n) nondeterministic time.

The class NP

Just like we used TIME to define P, we can use NTIME to define the set of all languages decidable in nondeterministic polynomial time

Def: NP. The set of all languages decidable by a nondeterministic TM in polynomial time is called NP and is defined as follows.

$$NP = \bigcup_{k} \mathtt{NTIME}(n^k)$$

► **Equivalently**, *NP* is the set of all problems that can be verified in deterministic polynomial time

Does P = NP?

- ightharpoonup Does P = NP?
- Can all problems whose solutions can be checked in polynomial time be solved in polynomial time?

Nobody knows! But we think $P \neq NP$

- ▶ No-one has proven it or disproven it yet
- Alternatively, it could be a statement that is true but has no proof

FIGURE **7.26**One of these two possibilities is correct

Properties of P and NP

- ► The best known algorithm for simulating an nTM on a dTM is $O(2^n)$
- ► So NP can be no harder than exponential time

$$NP \subseteq EXPTIME = \bigcup_{k} TIME(2^{n^k})$$

NP may be a smaller deterministic time complexity class!

- ▶ All reasonable models of computation are polynomial-time simulatable by each other, so *P* and *NP* are consistent across them
- ► This seems to be a fundamental complexity barrier between deterministic and nondeterministic computation

Polynomial-time mapping reducibility

- We want to be able to do reductions on time complexity classes
- However, we can't just use any TM! What if it took exponential time?

Def: A function $f: \Sigma^* \to \Sigma^*$ is **polynomial-time computable** if some polynomial-time TM exists that takes in some w and halts with just f(w) on its tape.

▶ Now we can do language reductions while staying in P!

Def: Language A is **polynomial-time mapping reducible** to language B, written $A \leq_P B$, if a polynomial-time computable function f exists such that, for every w,

$$w \in A \iff f(w) \in B$$

NP-completeness

- Recall: A machine is Turing-complete if it can solve any problem solvable by a Turing machine
- ▶ Similarly, a problem is NP-complete if a polynomial-time solution to it would solve any problem $\in NP$ in polynomial time
- NP-completeness was discovered in the early 70's by Cook and Levin

Def: A language *B* is *NP*-complete if

- 1. $B \in NP$, and
- 2. $A \in NP \implies A$ is polynomial-time reducible to B

If this is true, we say $B \in NPC$ or NP - C.

"A being in NP is sufficient for A to be polynomial-time reducible to B"

Satisfiability / SAT

- ▶ One of the first problems ever found ∈ NPC is SAT
- ▶ A **Boolean formula** is an expression involving Boolean variables (T/F) and operations $(EG \neg, \land, \lor)$
 - $\blacktriangleright \mathsf{Ex} : \ \phi = (\neg x \land y) \lor (x \land \neg z)$
- ➤ A Boolean formula is **satisfiable** iff there exists some set of variable values for which it evaluates to true

Def: The **satisfiability problem** *SAT* is the language

$$\mathit{SAT} = \{\langle \phi \rangle : \phi \text{ is a satisfiable Boolean formula}\}$$

- ▶ Clearly, we can decide $\phi \in SAT$ in time $2^{|\phi|}$ by brute force
- ▶ Also clearly, if we had some series of variable values $x_1, x_2, ..., x_i$ we could check it in polynomial (namely, linear) time ($SAT \in NP$)

Cook-Levin theorem (SAT is NP-complete)

- ► We know Boolean systems can simulate given TMs: This is what all computers are
- ightharpoonup Given an input w to TM M, we can construct a Boolean expression that is true iff M accepts w
- ➤ All problems in NP are solvable by an NTM in polynomial time (by definition)
- ► Therefore, we can encode any NTM and input into an instance of SAT
- ▶ If SAT can be decided in deterministic polynomial time, we can determine **any NTM** in polynomial time! Therefore, $SAT \in P$ iff P = NP

Thm: Cook-Leven theorem. $SAT \in P$ iff P = NP.

