

A Cool Fix (If currents are Equal)

Make DC resistances equal at both inputs

(NOTE: Take care if there are inductors or capacitors about!)

Compensating for Equal Bias Currents

$$V_{OUT} = -\frac{R}{2}I_B(+) - V_{IN} - \frac{R}{2}I_B(+) + RI_B(-) = -V_{IN} + R(I_B(-) - I_B(+))$$

Equal Bias Currents and Gain

$$V_{OUT} = -2R \cdot I_B(+) - \frac{6RV_{IN}}{3R} - \frac{6R \cdot 2R \cdot I_B(+)}{3R} + 6R \cdot I_B(-)$$

= $-2V_{IN} - 6R \cdot I_B(+) + 6R \cdot I_B(-) = -2V_{IN} + 6R(I_B(-) - I_B(+))$

Equal Bias Currents

Equal source impedances compensate

R is the Thevenin Equivalent source resistance of the associated network

Is equivalent to

Noninverting

What is the required Value of R_x?

Need 1k // 9k + $R_x = 100k\Omega$

 $R_x = 100k\Omega - 0.9k\Omega = 99.1k\Omega$

Exercise: Show that this works! [Use Ib(+) = Ib(-) = 150nA]

