ОПРЕДЕЛЕНИЕ КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЗУБЧАТЫХ ПЕРЕДАЧ

Исходные данные

Параметры передачи

Модуль m:=3 Число зубьев шестерни Z1:=10

Угол наклона зубьев $\beta := 0 \cdot \deg$ Число зубьев колеса Z2 := 25

Параметры исходного производящего контура режущего инструмента

Угол главного профиля $\alpha := 20 \cdot \deg$

Коэффициент высоты головки зуба ha := 1

Коэффициент радиального зазора c := 0.25

Вспомогат ельная функция инвалюты inv(t) := tan(t) - t

Индекс 1 соответсвует шестерни, 2 - колесу.

Расчетные формулы

С учетом наклона зубьев (вариативно)

Tорцевой модуль
$$mt := \frac{m}{\cos(\beta)}$$

Торцевой коэфф. высоты головки зуба $hat_{:=} ha_{:=} cos(\beta)$

Торцевой коэфф. радиального зазора $ct_{\underline{}} := c_{\underline{}} \cdot cos(\beta)$

Торцевой угол главного профиля $\alpha t := atan \left(rac{tan(lpha)}{\cos(eta)}
ight)$

Инвалюта в торцевом сечении $inv\alpha t := inv(\alpha t)$

Радиус скрупления режущего контура $\rho \, \mathrm{ft} \coloneqq \frac{\mathrm{ct_\cdot mt}}{1 - \sin(\alpha t)}$

Торцевой шаг $\operatorname{Pt}:=\operatorname{mt}\cdot\pi$

Толщина зуба исходного контура по делительной прямой

 $S0 := \frac{Pt}{2}$

Хорда дугового щага по делительной окружности шестерни

 $p1x := mt \cdot Z1 \cdot \sin\left(\frac{\pi}{Z1}\right)$

Хорда дугового щага по делительной окружности колеса

 $p2x := mt \cdot Z2 \cdot \sin\left(\frac{\pi}{Z2}\right)$

Делительные окружности $R1 := mt \cdot \frac{Z1}{2}$ $R2 := mt \cdot \frac{Z2}{2}$

Основные окружности $Rb1 := R1 \cdot cos(\alpha t)$ $Rb2 := R2 \cdot cos(\alpha t)$

Минимальное число зубьев, при котором колесо может быть нарезано без смещения

 $Zmint := \frac{2 \cdot hat}{\sin(\alpha t)^2}$

Инвалюта главного контура в торцевом сечении $inv\alpha tw(X1,X2) := inv(\alpha t) + 2 \cdot \frac{X1 + X2}{Z1 + Z2} \cdot tan(\alpha t)$

Угол зацепления, как численное решение уравнения

 $\alpha tw := \alpha t$ $\alpha tw(X1, X2) := root(inv(\alpha tw) - inv\alpha tw(X1, X2), \alpha tw)$

 $\mathsf{Rw1}(\mathsf{X}1,\mathsf{X}2) \coloneqq \mathsf{R}1 \cdot \frac{\cos(\alpha t)}{\cos(\alpha t \mathsf{w}(\mathsf{X}1,\mathsf{X}2))} \qquad \qquad \mathsf{Rw2}(\mathsf{X}1,\mathsf{X}2) \coloneqq \mathsf{R}2 \cdot \frac{\cos(\alpha t)}{\cos(\alpha t \mathsf{w}(\mathsf{X}1,\mathsf{X}2))}$

Межосевое расстояние aw(X1, X2) := Rw1(X1, X2) + Rw2(X1, X2)

Коэффициент воспринимаемого смещения
$$y(X1, X2) := \frac{aw(X1, X2) - R1 - R2}{mt}$$

Коэффициент уравнительного смещения
$$dy(X1, X2) := X1 + X2 - y(X1, X2)$$

Окружности вершин $Ra1(X1, X2) := R1 + hat \cdot mt + X1 \cdot mt - dy(X1, X2) \cdot mt$

ршин
$$Ra1(X1, X2) := R1 + hat_mt + X1 \cdot mt - dy(X1, X2) \cdot mt$$

 $Ra2(X1, X2) := R2 + hat \cdot mt + X2 \cdot mt - dy(X1, X2) \cdot mt$

Окружности впадин
$$Rfl(X1, X2) := R1 - hat \cdot mt - ct \cdot mt + X1 \cdot mt$$

$$Rf2(X1, X2) := R2 - hat \cdot mt - ct \cdot mt + X2 \cdot mt$$

Высота зуба
$$h(X1, X2) := mt \cdot (2 \cdot hat + ct - dy(X1, X2))$$

Толщина зуба по делительной окружности

Коэффициент уравнительного смещения

$$S1(X1) := \frac{Pt}{2} + 2 \cdot X1 \cdot mt \cdot tan(\alpha t)$$

$$S2(X2) := \frac{Pt}{2} + 2 \cdot X2 \cdot mt \cdot tan(\alpha t)$$

Угол зацепления шестерни
$$\alpha a1(X1,X2) := acos \left(\frac{Rb1}{Ra1(X1,X2)} \right)$$

Угол зацепления колеса
$$\alpha a2(X1,X2) := acos\left(\frac{Rb2}{Ra2(X1,X2)}\right)$$

Толщина зуба по окружности вершин

$$Sa1(X1, X2) := 2 \cdot Ra1(X1, X2) \cdot \left(\frac{S1(X1)}{2 \cdot R1} + inv\alpha t - inv(\alpha a1(X1, X2)) \right)$$

$$Sa2(X1, X2) := 2 \cdot Ra2(X1, X2) \cdot \left(\frac{S2(X2)}{2 \cdot R2} + inv\alpha t - inv(\alpha a2(X1, X2)) \right)$$

Коэффициент торцевого перекрытия

$$\epsilon\alpha(X1,X2) := \frac{\sqrt{Ra1(X1,X2)^2 - Rb1^2} + \sqrt{Ra2(X1,X2)^2 - Rb2^2} - aw(X1,X2) \cdot sin(\alpha tw(X1,X2))}{Pt \cdot cos(\alpha t)}$$

Коэффициент осевого перекрытия $\psi b := 4$

$$\varepsilon\beta(X1,X2) := \frac{\psi b \cdot \sin(\beta)}{\pi}$$

Коэффициент перекрытия общий $\quad \epsilon \gamma(X1,X2) := \epsilon \alpha(X1,X2) + \epsilon \beta(X1,X2)$

Коэффициент давления
$$\upsilon p(X1,X2) := \frac{2 \cdot (Z1 + Z2)}{Z1 \cdot Z2 \cdot \cos(\alpha t) \cdot \tan(\alpha tw(X1,X2))}$$

Коэффициенты удельного скольжения

$$\begin{split} &\lambda 1 pac \cdot \mathsf{q}(X1,X2) \coloneqq \left(1 + \frac{Z1}{Z2}\right) \cdot \frac{Z2 \cdot (\tan(\alpha a2(X1,X2)) - \tan(\alpha tw(X1,X2)))}{(Z1 + Z2) \cdot \tan(\alpha tw(X1,X2)) - Z2 \cdot \tan(\alpha a2(X1,X2))} \\ &\lambda 2 pac \cdot \mathsf{q}(X1,X2) \coloneqq \left(1 + \frac{Z1}{Z2}\right) \cdot \frac{Z1 \cdot (\tan(\alpha a1(X1,X2)) - \tan(\alpha tw(X1,X2)))}{(Z1 + Z2) \cdot \tan(\alpha tw(X1,X2)) - Z1 \cdot \tan(\alpha a1(X1,X2))} \end{split}$$

Длины линий зацепления: допулюсной, заполюсной

$$\rho L1(X1,X2) \coloneqq R1 \cdot \sin(\alpha t) - \frac{mt \cdot (ha_-X1)}{\sin(\alpha t)} \quad \rho L2(X1,X2) \coloneqq R2 \cdot \sin(\alpha t) - \frac{mt \cdot (ha_-X2)}{\sin(\alpha t)}$$

Длины активных линий зацепления: допулюсной, заполюсной

$$\rho F1(X1, X2) := aw(X1, X2) \cdot sin(\alpha tw(X1, X2)) - Ra2(X1, X2) \cdot sin(\alpha a2(X1, X2))$$

$$\rho F2(X1, X2) := aw(X1, X2) \cdot sin(\alpha tw(X1, X2)) - Ra1(X1, X2) \cdot sin(\alpha a1(X1, X2))$$

Варьируем X1
$$i := 0, 1..11$$
 $X1_i := \frac{i}{10}$

Задаем X2 := 0.5

Результаты расчета

$$X2 = 0.5$$
 $R1 = 15$ $R2 = 37.5$ $Rb1 = 14.095$ $hat_{-} = 1$ $et_{-} = 0.25$ $\frac{\alpha t}{\deg} = 20$ $\rho ft = 1.14$ $p1x = 9.271$ $p2x = 9.4$ $Zmint = 17.097$ $Zmint = 0.415$ $Zmint = -0.462$ $S2(X2) = 5.804$

$X1_i =$	$Ra1(X1_i, X2) Ra2(X1_i, X2) Rf1(X1_i, X2) = Rf2(X1_i, X2) = S1(X1_i) = S1(X1_i)$				$S1(X1_i) =$	$\operatorname{Sal}(X1_{i}, X2) = \operatorname{Sa2}(X1_{i}, X2) =$	
0	17.875	41.875	11.25	35.25	4.712	1.947	1.762
0.1	18.127	41.827	11.55	35.25	4.931	1.835	1.821
0.2	18.374	41.774	11.85	35.25	5.149	1.719	1.886
0.3	18.616	41.716	12.15	35.25	5.368	1.599	1.958
0.4	18.852	41.652	12.45	35.25	5.586	1.477	2.035
0.5	19.085	41.585	12.75	35.25	5.804	1.351	2.116
0.6	19.314	41.514	13.05	35.25	6.023	1.223	2.201
0.7	19.539	41.439	13.35	35.25	6.241	1.092	2.29
0.8	19.761	41.361	13.65	35.25	6.459	0.959	2.382
0.9	19.979	41.279	13.95	35.25	6.678	0.824	2.477
1	20.195	41.195	14.25	35.25	6.896	0.686	2.574
1.1	20.408	41.108	14.55	35.25	7.115	0.547	2.674

$$\varepsilon_{\text{ДОП}} := 1.05$$
 X11 := 1

Given
$$\varepsilon \alpha(X11, X2) = \varepsilon_{\Pi O \Pi}$$
 $X_{\varepsilon} := Find(X11) = 0.87$
 $X111 := 1$

Given
$$\frac{\text{Sal}(X111, X2)}{\text{mt}} = 0.4 \quad X_{\text{Sa}} := \text{Find}(X111) = 0.618$$

$$X1_{\varepsilon} := \begin{pmatrix} X_{\varepsilon} \\ X_{\varepsilon} \end{pmatrix} \quad Y1_{\varepsilon} := \begin{pmatrix} 5 \\ 0 \end{pmatrix} \qquad X1_{\min} := \begin{pmatrix} X_{\min}1 \\ X_{\min}1 \end{pmatrix} \qquad Y1_{\min} := \begin{pmatrix} 5 \\ 0 \end{pmatrix} \qquad X1_{sa} := \begin{pmatrix} X_{Sa} \\ X_{Sa} \end{pmatrix} \qquad \qquad Y1_{sa} := \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

