Parameter estimation for Hidden Markov Models Bayesian inference

Introduction to parameter estimation for HMMs

- ▶ Particle filters provide a very good approximation of $p_{\theta}(x_n|y_{0:n})$
 - in this case path degeneracy does not matter
 - ► Is this useful?
 - yes, we can track the unknown ship in the sea
 - **b**ut only when θ is known
- \triangleright So how do we estimate θ ?
 - this problem is known as parameter inference for HMMs
 - or model calibration, system identification
 - very crucial in practice
 - ightharpoonup you cannot do filtering/prediction/smoothing without θ
 - often ad-hoc calibration methods are used

Introduction to parameter estimation

- We are interested in **principled** inferential methods or procedures
 - Bayesian
 - Maximum likelihood
- ▶ Inference can be performed either
 - on-line
 - batch (or offline)
- We need to use PFs within algorithms that are meant to perform inference for θ .

Introduction to parameter estimation

- Some algorithms
 - Likelihood methods
 - optimisation based
 - gradient based
 - expectation maximisation
 - Bayesian methods
 - **naive approach**: augment state $x_{0:n}$ with θ and do filtering
 - Pseudo marginal MCMC methods: Particle MCMC, Particle Gibbs
 - nested SMC approach: SMC²

Bayesian inference for HMMs

 θ is a random variable, with well chosen prior density $p(\theta)$

ightharpoonup Posterior using Bayes rule directly for heta

$$p(\theta|y_{0:n}) \propto p_{\theta}(y_{0:n}) p(\theta)$$
.

▶ Posterior when augmenting with $x_{0:n}$

$$p(x_{0:n},\theta|y_{0:n}) \propto p(\theta)\eta_{\theta}(x_0) \prod_{k=1}^{n} f_{\theta}(x_k|x_{k-1}) \prod_{k=0}^{n} g_{\theta}(y_k|x_k)$$

Bayesian inference for HMMs

- Off-line:
 - ▶ we are given a batch of data-points y_{0:T}
 - ► Task: compute/sample from $p(x_{0:T}, \theta | y_{0:T})$
 - particle MCMC (PMCMC) algorithms
- Sequential case:
 - compute $\{p(x_{0:n}, \theta | y_{0:n})\}_{n=0,...,T}$ sequentially
 - \blacktriangleright use state augmentation: state is $(x_{0:n}, \theta)$
 - many techniques: from naive to state of the art SMC²
 - challenge: without adding bias methods not on-line

Sequential Bayesian estimation

- Introducing the extended state (X_n, θ_n) with initial density $p(\theta_0) \mu_{\theta_0}(x_0)$
- ► The transition "density" is

$$f_{\theta_n}(x_n|x_{n-1})\delta_{\theta_{n-1}}(\theta_n)$$

i.e.
$$\theta_n = \theta_{n-1}$$
.

- Applying a standard SMC algorithm to the Markov process $\{X_n, \theta_n\}_{n>0}$:
 - parameter space would only be explored at the initialization of the algorithm.
 - ▶ successive resampling steps, after a certain time n, the approximation $\hat{p}(d\theta_n|y_{0:n})$ will only contain a single unique value for θ .
 - implicitly requires having to approximate $p_{\theta^{(i)}}(y_{0:n})$ for all the particles $\{\theta^{(i)}\}$ approximating $p(\theta|y_{0:n})$, hence we expect estimates whose variance will increase at least linearly with n;

Sequential Bayesian estimation

- Pragmatic solutions:
 - use artificial dynamics (Liu and West 2001, Hurzeler and Kunsch 2001),
 - simple example

$$\theta_n = \theta_{n-1} + \epsilon_n$$

with ϵ_n being zero mean noise with small variance

- can tune variance from the particles
- also can use fixed lag approximations (Kitagawa 96, Kitagawa & Sato 01, Polson et al 08)
 - ▶ do not resample paths before n L

$$\left(\bar{\theta}_n^i, \ \bar{X}_{n-L+1:n}^i\right) = \left(\theta_n^{a_n(i)}, \ X_{n-L+1:n}^{a_n(i)}\right),$$

fixed lag L is a tuning variable

use MCMC steps

Sequential Bayesian estimation

Resample Move: use an MCMC kernel with invariant density $p(x_{0:n}, \theta | y_{0:n})$, i.e.

$$\left(X_{0:n}^{(i)}, \theta_n^{(i)}\right) \sim K_n\left(\cdot, \cdot | \overline{X}_{0:n}^i, \overline{\theta}_n^i\right)$$

where by construction K_n satisfies

$$p(x'_{0:n},\theta'|y_{0:n}) = \int p(x_{0:n},\theta|y_{0:n}) K_n(x'_{0:n},\theta'|x_{0:n},\theta) d(x_{0:n},\theta).$$

In practice set $X_{0:n-L}^{(i)}=\overline{X}_{0:n-L}^{i}$ for some integer $L\geq 1$ and only sample $\theta_n^{(i)}$ and possibly $X_{n-L+1:n}^{(i)}$

Resample Move

some cases we can use Gibbs step to update the parameter values

$$K_n(x'_{0:n}, \theta' | x_{0:n}, \theta) = \delta_{x_{0:n}}(x'_{0:n}) p(\theta' | x_{0:n}, y_{0:n}),$$

where

$$p(\theta|y_{0:n},x_{0:n}) = p(\theta|s_n(x_{0:n},y_{0:n}))$$

with $s_n(x_{0:n}, y_{0:n})$ fixed dimension sufficient statistic.

- With some variation this has appeared many times: Andrieu et al 1999, Fearnhead 2002, Storvik 2002, Johannes and Polson 2007.
- ▶ Elegant, but not robust: it relies on SMC approximations of $p(s_n(x_{0:n}, y_{0:n})|y_{0:n})$, and for fixed N, error increases with n.
 - path degeneracy is an issue even if not easy to spot sometimes!
- ightharpoonup Challenging for high dimensions (> 5-10)

A sequential algorithm for infering θ

At time n = 0, For all $i \in \{1, ..., N\}$:

- Sample $\theta_0^i \sim p(\cdot)$, $X_0^i \sim q_{\theta_0^i}(x_0|y_0)$.
- Compute the weights $w_0\left(X_0^i|\theta_0^i\right)$ and set $W_0^i\propto w_0\left(X_0^i|\theta_0^i\right)$
- Resample $\left\{W_0^i, X_0^i, \theta_0^i\right\}$ to obtain N equally-weighted particles $\left\{\frac{1}{N}, \overline{X}_0^i, \overline{\theta}_0^i\right\}$.
- lacksquare Evolve parameter $heta_1^i \sim p(\cdot|s_0(\overline{X}_0^i,y_0),\overline{\theta}_n^i)$

At time $n \ge 1$, For all $i \in \{1, ..., N\}$:

- ► Sample $X_n^i \sim q_{\theta_n^i}(x_n|y_n, \overline{X}_{n-1}^i)$ and set $X_{0:n}^i \leftarrow \left(\overline{X}_{0:n-1}^i, X_n^i\right)$.
- ► Compute the weights $\omega_n \left(X_{n-1:n}^i | \theta_n^i \right)$ and set $W_n^i \propto \omega_n \left(X_{n-1:n}^i | \theta_n^i \right)$.
- Update sufficient statistics $S_n^i = s_n(\overline{S}_{n-1}^i, X_{0:n}^i, y_n)$
- Resample $\{W_n^i, X_{0:n}^i, S_n^i, \theta_n^i\}$ to obtain N new equally-weighted particles $\{\frac{1}{N}, \overline{X}_{0:n}^i, \overline{S}_n^i, \overline{\theta}_n^i\}$.
- ► Evolve parameter $\theta_{n+1}^i \sim p(\cdot | \overline{S}_n^i, \overline{\theta}_n^i, y_{0:n})$

Numerical example

► We will use again

$$X_n = \rho X_{n-1} + \tau W_n, \ Y_n = X_n + \sigma V_n \tag{1}$$

where W_n , $V_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$.

- See Section 7 in Kantas et. al. 2015 (Fig. 5)
- $ightharpoonup N = 10^4$ and 50 independent runs

Numerical example: sequential learning variance

Figure: Particle method with MCMC, $\theta = (\rho, \sigma^2)$;

Particle learning of θ with MCMC steps

- Pros:
 - elegant, no bias introduced
 - ▶ in some models can work reasonably in practice especially with informative priors and short *n*
- Cons:
 - method suffers from path degeneracy and often this is not easy to detect without running multiple runs
 - for reasonable results requires very high N
 - \triangleright exploration in θ reduces with n
 - ► Monte Carlo variance increases with *n*
 - $ightharpoonup \mathbb{V}ar\hat{p}_{\theta_{0:n}}(y_{0:n})$ empirically seems be superlinear with n
- ► State of the art is SMC²:
 - ▶ Use PMCMC targetting $p(x_{0:n}\theta|y_{0:n})$ for the dynamics of θ_n

Bayesian Inference & MCMC: a brief reminder

- \triangleright Parameter θ is a random variable and Y is some dataset
- ▶ Bayes rule: posterior likelihood × prior

$$p(\theta|Y) \propto p(Y|\theta)p(\theta)$$

Markov chain Monte Carlo (MCMC): Obtain samples of θ using and appropriate ergodic Markov chain $\{\theta(k)\}_{k\geq 0}$ with stationary distribution $p(\theta|Y)$

MCMC with Metropolis Hastings

Sample $\theta(0) \sim p(\cdot)$. At iteration $k \geq 1$

- ▶ Sample proposal $\theta' \sim q(\cdot|\theta(k-1))$
- Compute acceptance ratio

$$\alpha(\theta, \theta') = 1 \wedge \frac{p(Y|\theta')p(\theta')q(\theta(k-1)|\theta')}{p(Y|\theta(k-1))p(\theta(k-1))q(\theta'|\theta(k-1))}$$

▶ With probability $\alpha(\theta, \theta')$ accept proposal setting $\theta(k) = \theta'$, otherwise reject sample and set $\theta(k) = \theta(k-1)$

Bayesian inference for HMMs

- ▶ Off-line case: given a batch of data $y_{0:T}$
 - likelihood is $p_{\theta}(y_{0:T})$
 - ► Choose a suitable prior density $p(\theta)$ for θ
- ▶ Approximate $p(\theta|y_{0:T})$ which is given by

$$p(\theta|y_{0:T}) \propto p_{\theta}(y_{0:T}) p(\theta).$$
 (2)

Naive Metropolis Hastings for HMMs

Sample $\theta^0 \sim p(\cdot)$. At iteration k > 0

- ▶ Sample proposal $\theta' \sim q(\cdot|\theta)$, where $\theta = \theta(k-1)$.
- Compute acceptance ratio

$$\alpha(\theta, \theta') = 1 \wedge \frac{p_{\theta'}(y_{0:T}) p(\theta') q(\theta|\theta')}{p_{\theta}(y_{0:T}) p(\theta) q(\theta'|\theta)}$$

with probability $\alpha(\theta, \theta')$ accept proposal setting $\theta(k) = \theta'$, otherwise reject sample and set $\theta(k) = \theta(k-1)$.

Metropolis Hastings for HMMs

- ▶ Hard to implement directly as $p_{\theta'}(y_{0:T})$ is intractable
- Could use Monte Carlo approximations
 - **b** but hard to justify as a sampler targetting directly $p(\theta|y_{0:n})$
- Consider instead the joint posterior density

$$p(x_{0:T},\theta|y_{0:T}) \propto p_{\theta}(x_{0:T},y_{0:T}) p(\theta)$$

Could use

$$p_{\theta}\left(x_{0:T}, y_{0:T}\right) = \eta_{\theta}\left(x_{0}\right) \prod_{k=1}^{T} f_{\theta}\left(x_{k} | x_{k-1}\right) \prod_{k=0}^{T} g_{\theta}\left(y_{k} | x_{k}\right)$$
 to design sampler

- but mixing could deteriote rapidly with T
- difficult to find a proposal to break conditional dependencies.

Ideal Marginal Metropolis-Hastings sampler

The ideal MMH sampler would utilize the following proposal density:

$$q\left(\left(x_{0:T}',\theta'\right)\middle|\left(x_{0:T},\theta\right)\right) = q\left(\left.\theta'\middle|\theta\right)p\left(\left.x_{0:T}'\middle|y_{0:T},\theta'\right)\right)$$
(3)

► The acceptance probability is

$$\begin{split} & 1 \wedge \frac{p\left(\left. x_{0:T}', \theta' \right| y_{0:T}\right) q\left(\left. \left(x_{0:T}, \theta\right) \right| \left(x_{0:T}', \theta'\right)\right)}{p\left(\left. x_{0:T}, \theta\right| y_{0:T}\right) q\left(\left. \left(x_{0:T}', \theta'\right) \right| \left(x_{0:T}, \theta'\right)\right)} \\ =& 1 \wedge \frac{p\left(\left. x_{0:T}', \theta' \right| y_{0:T}\right) q\left(\left. \theta\right| \theta'\right) p\left(\left. x_{0:T} \right| y_{0:T}, \theta\right)}{p\left(\left. x_{0:T}, \theta\right| y_{0:T}\right) q\left(\left. \theta'\right| \theta\right) p\left(\left. x_{0:T}' \right| y_{0:T}, \theta'\right)} \\ =& 1 \wedge \frac{p_{\theta'}\left(\left. y_{0:T}\right) p\left(\theta'\right) q\left(\theta\right| \theta'\right)}{p_{\theta}\left(\left. y_{0:T}\right) p\left(\theta\right) q\left(\theta'\right| \theta\right)} \end{split}$$

Particle marginal Metropolis Hastings for HMMs

- Remarkably the acceptance ratio is the same as naive M-H
- ▶ Problem: We cannot sample exactly from $p(x'_{0:T}|y_{0:T}, \theta')$ and we cannot compute $p_{\theta'}(y_{0:T})$
- ▶ Use Particle Filters and particle approximations
 - particle marginal M-H (PMMH) Sampler
 - data augmentation with PF variables
 - instead of marginalising $x_{0:T}$ to get θ we will marginalise all the variables in the PF

Particle Marginal Metropolis-Hastings sampler

Consider performing standard MCMC on

$$p\left(\left.\left\{\left\{x_{n}^{i},o_{n}(i)\right\}_{i=1}^{N}\right\}_{n=1}^{T},\theta\right|y_{0:T}\right)$$

i.e. the joint density of the parameter θ and all the simulated variables in the SMC algorithm

Use proposal

$$q(\theta'|\theta)\hat{p}\left(\left\{\left\{x_{n}^{i},o_{n}(i)\right\}_{i=1}^{N}\right\}_{n=1}^{T}\middle|y_{0:T},\theta'\right)$$

- Take an approach that uses appropriate auxiliary variables.
 - $\left\{ \left\{ X_n^i, O_n(i) \right\}_{i=1}^N \right\}_{n=1}^T \text{ are included as auxiliary variables and then integrated out.}$
 - often called pseudo-marginal approach (Andrieu and Roberts 2009)

Particle Marginal Metropolis-Hastings sampler

The algorithm a valid based on unbiasedness of likelihood

$$\mathbb{E}_{N}[\hat{p}_{\theta'}\left(y_{0:T}\right)] = p_{\theta'}\left(y_{0:T}\right)$$

- This is for any N
- Satisfies detailed balance with

$$p\left(\left\{\left\{X_{n}^{i}, O_{n}(i)\right\}_{i=1}^{N}\right\}_{n=1}^{T}, \theta \mid y_{0:n}\right)$$

Details: Andrieu, Doucet and Holenstein 2010 particle MCMC paper

Particle Marginal Metropolis-Hastings (PMMH) sampler

At iteration k = 0,

- ▶ Set $\theta(0) \sim p(\cdot)$.
- ▶ Run a PF targeting $p(x_{0:T}|y_{0:T},\theta(0))$, sample $X_{0:T}(0) \sim \widehat{p}(\cdot|y_{0:T},\theta(0))$, and compute estimate $\widehat{Z}_{T}(\theta(0)) = \widehat{p}_{\theta(0)}(y_{0:T})$

At iteration $k \geq 1$

- ▶ Sample a proposal $\theta' \sim q(\theta | \theta(k-1))$.
- ▶ Run a PF targeting $p(x'_{0:T}|y_{0:T},\theta')$, sample $X'_{0:T} \sim \widehat{p}(\cdot|y_{0:T},\theta')$, and compute estimate $\widehat{Z}_{T}(\theta') = \widehat{p}_{\theta'}(y_{0:T})$.
- Set $\theta(k) = \theta'$, $X_{0:T}(k) = X'_{0:T}$, and store $\widehat{Z}_T(\theta(k)) = \widehat{Z}_T(\theta')$ with probability

$$\begin{split} 1 \wedge \frac{\widehat{Z}_{\mathcal{T}}\left(\theta'\right)p(\theta')q(\theta(k-1)|\theta')}{\widehat{Z}_{\mathcal{T}}\left(\theta(k-1)\right)p(\theta(k-1))q(\theta'|\theta(k-1))}, \\ \text{otherwise set } \theta(k) = \theta(k-1), \ X_{0:\mathcal{T}}(k) = X_{0:\mathcal{T}}(k-1), \\ \widehat{Z}_{\mathcal{T}}\left(\theta(k)\right) = \widehat{Z}_{\mathcal{T}}(\theta(k-1)). \end{split}$$

Discussion on PMMH sampler

- The remarkable feature of this algorithm is that the invariant distribution of the Markov chain $\{X_{0:T}(k), \theta(k)\}$ is $p(x_{0:T}, \theta | y_{0:T})$ whatever being N.
 - SMC approximations do not introduce any bias.
 - minimal tuning required compared to usual MCMC.
- Unbiasedness of the likelihood is a key requirement
 - so cannot use adaptive resampling for PMCMC

Discussion on PMMH sampler

- Often PMCMC chains are "sticky"
 - ightharpoonup spend too long on a certain heta
 - ▶ this is due to over-estimating $p_{\theta}(y_{0:T})$ with $\hat{p}_{\theta}(y_{0:T})$
 - ▶ then we need a few samples of $q(\theta'|\theta)$ to get a high enough $\hat{p}_{\theta'}(y_{0:T})$ to move to new state θ
- ► The higher *N* the better the mixing properties of the algorithm.
 - the less sticky the chain
 - tradeoff with added computational cost should be balanced
- Under good mixing assumptions the variance of the acceptance rate of the PMMH sampler is proportional to T/N
 - N should roughly increase linearly with T, so computational cost $\mathcal{O}(T^2)$

Numerical example: PMCMC vs sequential approach

Figure: Estimated marginal posterior densities for $\theta=(\rho,\sigma^2)$ with $T=10^3$ over 50 runs (black-dotted) versus ground truth (green). Top: Particle method with MCMC, $N=7.5\times10^4$. Bottom: Particle Gibbs with 3000 iterations and N=50.

Discussion

- Online Bayesian estimation notoriously hard
 - no truly online solution available
 - current state of the art: SMC²
- Offline Bayesian inference for HMMs
 - particle MCMC
 - open challenges: long data, large dimensions, faster samplers for given models

Reading list

- ▶ Particle MCMC by Andrieu, Doucet and Holenstein
 - http://www.stats.ox.ac.uk/~doucet/andrieu_doucet_ holenstein_pmcmc_mcqmc.pdf
 - http://www.stats.ox.ac.uk/~doucet/andrieu_doucet_ holenstein_PMCMC.pdf
- Review on parameter estimation:
 - https://arxiv.org/pdf/1412.8695.pdf