目 录

1	重要常数	1
	.1 知识讲解	1
2	常用不等式	2
	2.1 知识讲解	2
3	数列极限定义	4
	3.1 知识讲解	4
	3.2 例题分析	4
4	Cauchy 收敛原理	9
	4.1 知识讲解	9
	1.2 例题分析	9
5	央逼定理	12
	5.1 知识讲解	12
	5.2 例题分析	12
6	Abel 变换	18
	5.1 知识讲解	18
	5.2 例题分析	18
7	拉链定理	20
	7.1 知识讲解	20
	7.2 例题分析	20
8	级数收敛的必要条件	21
	3.1 知识讲解	21
	3.2 例题分析	21
9	单调有界定理	22
	0.1 知识讲解	22
	0.2 例题分析	22
10	上下极限	27
	0.1 知识讲解	27
	0.2 例题分析	27

日 录 - 2/65 -

11	Toeplitz 定理																										32
	11.1 知识讲解	翟.															 										32
	11.2 例题分析	斤.															 										32
12	Wallis 公式																										35
	12.1 知识讲解	翟.															 										35
	12.2 例题分析	斤.																					•				35
13	13 Stirling 公式										36																
	13.1 知识讲解	翟.															 										36
	13.2 例题分析	斤.			•						•		•			•		•				•	•				36
14	压缩映射原理	1																									39
	14.1 知识讲解	翟.															 										39
	14.2 例题分析	斤.			•						•		•			•		•				•	•				39
15	Stolz 定理																										41
	15.1 知识讲解	翟.															 										41
	15.2 例题分析	斤.			•						•		•			•		•				•	•				41
16	Heine 定理																										46
	16.1 知识讲解	牟.															 										46
	16.2 例题分析	斤.		•	•			•			•	•	•		•	•		•	•			•	•	•			46
17	无穷乘积																										49
	17.1 例题分析	斤.															 										49
18	幂级数																										50
	18.1 例题分析	斤.		•	•			•	•		•	•	•		•	•	 	•	•		•	•	•	•			50
19	微分中值定理	1																									52
	19.1 知识讲解	牟.														•	 										52
	19.2 例题分析	斤.																					•				52
20	Taylor 公式																										54
	20.1 知识讲解	翟.															 										54
	20.2 例题分析	斤.																									54
21	定积分定义																										57
	21.1 知识讲解	牟.			•			•								•	 		•								57
	21.2 例题分析	斤.															 						•				57

录 目 -3/65 -22 积分第一中值定理 **59** 59 59 23 Euler-Maclaurin 求和公式 **63** 63 63 24 多重积分定义 64 64

第1章 重要常数

1.1 知识讲解

命题 1.1. 自然对数

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

命题 1.2. 欧拉常数

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right)$$

命题 1.3. Basel 问题

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

命题 1.4. Catalan 常数

$$G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2}$$

第2章 常用不等式

2.1 知识讲解

命题 2.1. Jordan 不等式

$$\frac{2}{\pi}x \le \sin x \le x, 0 \le x \le \frac{\pi}{2}$$

左边等号成立当且仅当 $x = \frac{\pi}{2}$, 右边等号成立当且仅当 x = 0.

命题 2.2. Wallis 不等式

$$\frac{1}{\sqrt{\pi \left(n + \frac{1}{2}\right)}} < \frac{(2n-1)!!}{(2n)!!} < \frac{1}{\sqrt{\pi n}}, n \in \mathbb{N}_{+}$$

命题 2.3. 算术平均值-几何平均值不等式

设 a_1, a_2, \cdots, a_n 是 n 个非负实数,则

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdots a_n}$$

且等号成立当且仅当 $a_1 = a_2 = \cdots = a_n$.

命题 2.4. 三角不等式

对于任意实数 a 和 b, 都有

$$||a| - |b|| \le |a + b| \le |a| + |b|$$

左边等号成立当且仅当 $ab \leq 0$,右边等号成立当且仅当 $ab \geq 0$ 或

$$||a| - |b|| \le |a - b| \le |a| + |b|$$

左边等号成立当且仅当 $ab \ge 0$, 右边等号成立当且仅当 $ab \le 0$.

命题 2.5. Cauchy 不等式

对任意实数 a_1, a_2, \cdots, a_n 和 b_1, b_2, \cdots, b_n , 都有

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

等号成立当且仅当 $b_i = 0$ ($i = 1, 2, \dots, n$) 或存在常数 k, 使得 $a_i = kb_i$.

命题 2.6

$$e^x \ge x + 1, x \in \mathbb{R}$$

等号成立当且仅当 x = 0.

命题 2.7

$$\sin x \le x \le \tan x, 0 \le x < \frac{\pi}{2}$$

两边等号成立均当且仅当 x=0.

命题 2.8

$$\frac{x}{1+x} \le \ln(1+x) \le x, x > -1$$

两边等号成立均当且仅当 x=0.

命题 2.9

$$\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}, n \in \mathbb{N}_+.$$

命题 2.10

$$\left(\frac{n+1}{e}\right)^n < n! < e\left(\frac{n+1}{e}\right)^{n+1}, n \in \mathbb{N}_+.$$

第3章 数列极限定义

3.1 知识讲解

定义 3.1. 数列极限定义

设 $\{x_n\}$ 是一个给定的数列, 如果存在常数 a, 对于任意给定的正数 $\varepsilon > 0$, 总存在正整数 N, 使得当 n > N 时, 不等式

$$|x_n - a| < \varepsilon$$

都成立, 则称数列 $\{x_n\}$ 收敛于 a (或者称 a 是数列 $\{x_n\}$ 的极限), 记为

$$\lim_{n\to\infty} x_n = a$$

或

$$x_n \to a (n \to \infty)$$

如果不存在这样的常数 a,则称数列 $\{x_n\}$ 发散.

 $\stackrel{ ext{$\widehat{\bareleft}}}{ ext{$\widehat{\bareleft}}}$ 注意 学会灵活使用 $\varepsilon-N$ 语言是学习数列极限的基本功.

3.2 例题分析

练习 3.1 若 $\lim_{n\to\infty} \frac{x_n-a}{x_n+a} = 0$. 证明: $\lim_{n\to\infty} x_n = a$.

证明 依题意知, $a \neq 0$. 对 $\forall \varepsilon \in \left(0, \frac{1}{2}\right)$, $\exists N \in \mathbb{N}_+, \forall n > N$, 成立

$$\left|\frac{x_n - a}{x_n + a}\right| < \varepsilon$$

则

$$|x_n - a| < \varepsilon |x_n + a| = \varepsilon |(x_n - a) + 2a| \le \varepsilon (|x_n - a| + 2|a|)$$

 $|x_n - a| < \frac{2|a|\varepsilon}{1 - \varepsilon} < 4|a|\varepsilon$

即

$$\lim_{n\to\infty} x_n = a.$$

▲ 练习 3.2 (武汉大学) 证明: $\lim_{n\to\infty} \sin n$ 不存在.

证明 反设 $\lim_{n\to\infty} \sin n$ 存在, 设为 a. 则

$$\lim_{n \to \infty} \sin(n+2) = a$$

故

$$\lim_{n\to\infty} \left[\sin(n+2) - \sin n\right] = 2\lim_{n\to\infty} \sin 1 \cos(n+1) = 0$$

即

$$\lim_{n \to \infty} \cos(n+1) = \lim_{n \to \infty} \cos n = 0$$

于是

$$\lim_{n \to \infty} \sin 2n = 2 \lim_{n \to \infty} (\sin n \cos n) = 0$$

即

$$a = \lim_{n \to \infty} \sin n = 0$$

所以

$$\lim_{n \to \infty} (\sin^2 n + \cos^2 n) = \lim_{n \to \infty} \sin^2 n + \lim_{n \to \infty} \cos^2 n = 0$$

这与

$$\lim_{n \to \infty} (\sin^2 n + \cos^2 n) = \lim_{n \to \infty} 1 = 1$$

矛盾. 故 $\lim_{n\to\infty} \sin n$ 不存在.

注意 本题还会在后文的题目中出现, 以其他方法解之.

▲ 练习 3.3 (Cauchy 命题) 证明: 若 $\lim_{n\to\infty} a_n = a$ (a 可以是有限数,+∞, -∞), 则

$$\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a.$$

证明 a 为有限数时. 由

$$\lim_{n\to\infty} a_n = a$$

知, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+, \forall n > N$,成立

$$|a_n - a| < \varepsilon$$

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - a \right| = \frac{|(a_1 - a) + (a_2 - a) + \dots + (a_n - a)|}{n}$$

$$\leq \frac{|a_1 - a| + \dots + |a_N - a|}{n} + \frac{|a_{N+1} - a| + \dots + |a_n - a|}{n}$$

$$< \frac{M}{n} + \frac{n - N}{n} \varepsilon$$

$$< \frac{M}{n} + \varepsilon$$

其中, $M=|a_1-a|+\cdots+|a_N-a|$ 是一个确定的常数. 令 $N_1=\max\left\{N,\left[\frac{M}{\varepsilon}\right]\right\}$, 则 $n>N_1$ 时成立不等式

$$\left|\frac{a_1 + a_2 + \dots + a_n}{n} - a\right| < 2\varepsilon$$

即

$$\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a.$$

a 为 $+\infty$, $-\infty$ 的情况类似.

全 注意 Cauchy 命题的证明方法十分有特色, 是极限理论中的基本方法之一, 基本思想是分

段估计.

练习 3.4 证明: 若 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 则

$$\lim_{n\to\infty}\frac{a_1b_n+a_2b_{n-1}+\cdots+a_nb_1}{n}=ab.$$

故

$$\frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = \frac{(a+\alpha_1)(b+\beta_n) + \dots + (a+\alpha_n)(b+\beta_1)}{n}$$
$$= ab + a\frac{\beta_1 + \dots + \beta_n}{n} + b\frac{\alpha_1 + \dots + \alpha_n}{n} + \frac{\alpha_1\beta_n + \dots + \alpha_n\beta_1}{n}$$

由 Cauchy 命题知, 第二项和第三项都趋于 0, 下证第四项也趋于 0.

事实上, 由 $\alpha_n \to 0 (n \to \infty)$ 知, α_n 有界, 即存在 M > 0, 使得 $|a_n| \le M$.

故

$$0 < \left| \frac{\alpha_1 \beta_n + \dots + \alpha_n \beta_1}{n} \right| \le M \frac{|\beta_1| + \dots + |\beta_n|}{n} \to 0 (n \to \infty)$$

从而

$$\lim_{n\to\infty}\frac{a_1b_n+a_2b_{n-1}+\cdots+a_nb_1}{n}=ab.$$

- Ŷ 注意 本题也可应用 Cauchy 命题的证明方法证之, 即分段估计.
- 练习 3.5 已知 $\lim_{n\to\infty} a_n = a$. 证明: $\lim_{n\to\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k a_k = a$.

证明 由

$$\lim_{n\to\infty} a_n = a$$

知, 对 $\forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall k > N$, 成立

$$|a_k - a| < \varepsilon$$

因为

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} C_{n}^{k}$$

所以

$$\left| \frac{1}{2^n} \sum_{k=0}^n C_n^k a_k - a \right| = \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k (a_k - a) \right| \le \frac{1}{2^n} \sum_{k=0}^n C_n^k |a_k - a|$$

分两部分进行估计

$$\frac{1}{2^n} \sum_{k=0}^n C_n^k |a_k - a| = \frac{1}{2^n} \sum_{k=0}^N C_n^k |a_k - a| + \frac{1}{2^n} \sum_{k=N+1}^n C_n^k |a_k - a|$$

第一部分: 由于 $\{a_n\}$ 收敛, 故存在 M>0, 使得 $|a_k-a|< M$ 对每个 k 成立.

$$C^k < n^k$$

知

又

$$\frac{1}{2^n} \sum_{k=0}^{N} C_n^k |a_k - a| < \frac{M(1 + n + \dots + n^N)}{2^n} = \frac{M(n^{N+1} - 1)}{2^n} < \frac{Mn^{N+1}}{2^n} \to 0 \ (n \to \infty)$$

故存在 $N_1 \in \mathbb{N}_+$, 当 $n > \max\{N, N_1\}$ 时, 成立

$$\frac{1}{2^n} \sum_{k=0}^N C_n^k |a_k - a| < \varepsilon$$

第二部分:

$$\frac{1}{2^n} \sum_{k=N+1}^n C_n^k |a_k - a| < \frac{\varepsilon}{2^n} \sum_{k=N+1}^n C_n^k < \varepsilon$$

综上所述, 当 $n > \max\{N, N_1\}$ 时, 成立

$$\left| \frac{1}{2^n} \sum_{k=0}^n C_n^k a_k - a \right| < 2\varepsilon$$

即

$$\lim_{n\to\infty}\frac{1}{2^n}\sum_{k=0}^nC_n^ka_k=a.$$

Ŷ 注意 后文将给出应用 Toeplitz 定理的解法.

▲ 练习 3.6 设函数 f 在 [a,b] 上连续,非负且严格单调递增,由积分中值定理, $\forall k \in \mathbb{N}_+$, $\exists x_k \in (a,b)$, s.t.

$$f^{k}(x_{k}) = \frac{1}{b-a} \int_{a}^{b} f^{k}(t) dt$$

证明: $\lim_{k\to+\infty} x_k = b$.

证明 对 $\forall 0 < \varepsilon < \frac{b-a}{2}, b-\varepsilon, b-2\varepsilon \in [a,b]$. 由 f 严格单调递增知

$$f(b-2\varepsilon) < f(b-\varepsilon)$$

再由 f 非负且严格单调递增, 不妨设 $f(x) > 0, x \in [a,b]$.

故

$$\frac{f(b-\varepsilon)}{f(b-2\varepsilon)} > 1$$

从而

$$\lim_{k \to +\infty} \frac{f^k(b-\varepsilon)}{f^k(b-2\varepsilon)} = \lim_{k \to +\infty} \left[\frac{f(b-\varepsilon)}{f(b-2\varepsilon)} \right]^k = +\infty$$

即 $\exists N \in \mathbb{N}_+$, 当 k > N 时, 有

$$\frac{f^k(b-\varepsilon)}{f^k(b-2\varepsilon)} > \frac{b-a}{\varepsilon}$$

即

$$\varepsilon f^k(b-\varepsilon) > (b-a)f^k(b-2\varepsilon)$$

由于

$$f(x) > 0, x \in [a, b]$$

所以

$$\int_a^b f^k(t) \mathrm{d}t > \int_b^{b-\varepsilon} f^k(t) \mathrm{d}t > f^k(b-\varepsilon) \int_b^{b-\varepsilon} \mathrm{d}t = \varepsilon f^k(b-\varepsilon) > (b-a) f^k(b-2\varepsilon)$$

即

$$f^{k}(x_{k}) = \frac{1}{b-a} \int_{a}^{b} f^{k}(t) dt > f^{k}(b-2\varepsilon)$$

因此

$$b \ge x_k > b - 2\varepsilon$$

$$|x_k - b| < 2\varepsilon$$

即

$$\lim_{k\to +\infty} x_k = b.$$

注意 本题与第六届全国大学生数学竞赛数学类预赛的第二题基本是一样的,后文还将介绍应用上下极限的解法.

第4章 Cauchy 收敛原理

4.1 知识讲解

定义 4.1. 基本数列

如果数列 $\{x_n\}$ 具有以下特性: 对于任意给定的 $\varepsilon > 0$, 存在正整数 N, 使得当 n,m > N 时, 成立

$$|x_n - x_m| < \varepsilon$$

则称数列 $\{x_n\}$ 是一个基本数列.

定理 4.1. Cauchy 收敛原理

数列 $\{x_n\}$ 收敛的充分必要条件是: $\{x_n\}$ 是基本数列.

Ŷ 注意 Cauchy 收敛原理是数列极限的本质刻画.

4.2 例题分析

▲ 练习 4.1 (武汉大学) 证明: $\lim_{n\to\infty} \sin n$ 不存在.

证明 对于每个区间 $\left[2k\pi + \frac{\pi}{4}, 2k\pi + \frac{3}{4\pi}\right]$, 由于其长度大于 1, 因此在每个区间中都存在一个正整数, 记为 n_{k_1} , 且 $\sin n_{k_1} \geq \frac{\sqrt{2}}{2}$. 类似地, 可以在每个区间 $\left[(2k+1)\pi, (2k+2)\pi\right]$ 中选出 n_{k_2} , 且 $\sin n_{k_2} \leq 0$. 故 $\sin n_{k_1} - \sin n_{k_2} > \frac{1}{2}$. 由于 n_{k_1}, n_{k_2} 可任意大, 因此 $\left\{\sin n\right\}$ 不可能是基本数列, 根据 Cauchy 收敛原理知 $\lim_{n\to\infty} \sin n$ 不存在.

练习 **4.2** 设数列 $\{b_n\}$ 有界, 令 $a_n = \frac{b_1}{1 \cdot 2} + \frac{b_2}{2 \cdot 3} + \cdots + \frac{b_n}{n(n+1)}, n \in \mathbb{N}_+$. 证明: 数列 $\{a_n\}$ 收敛.

证明 依题意, 存在 M > 0, 使得 $|b_n| \le M$ 对每个正整数 n 成立. 对任意正整数 p

$$|a_{n+p} - a_n| \le M \left(\frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)} + \dots + \frac{1}{(n+p)(n+p+1)} \right)$$

$$= M \left[\left(\frac{1}{n+1} - \frac{1}{n+2} \right) + \dots + \left(\frac{1}{n+p} - \frac{1}{n+p+1} \right) \right]$$

$$= M \left[\frac{1}{n+1} - \frac{1}{n+p+1} \right]$$

$$< \frac{M}{n+1}$$

故对任意给定的 $\varepsilon > 0$, 取 $N = \left[\frac{M}{\varepsilon}\right]$, 可使对任意正整数 n > N 和任意正整数 p, 成立

$$|a_{n+p} - a_n| < \varepsilon$$

即 $\{a_n\}$ 是基本数列, 根据 Cauchy 收敛原理知数列 $\{a_n\}$ 收敛.

△ 练习 **4.3** 设 $a_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}, n \in \mathbb{N}_+$. 证明: $\{a_n\}$ 发散.

证明 由

$$a_{2n} - a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge \frac{n}{2n} = \frac{1}{2}$$

知对 $\varepsilon = \frac{1}{2}$ 和任意正整数 N, 在 n,m > N 时, 只要取 m = 2n, 不等式 $|a_m - a_n| < \frac{1}{2}$ 就不可能成立. 故数列 $\{a_n\}$ 不是基本数列, 因此发散.

练习 4.4 设 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$, 并且存在常数 K, 使得 $\forall n \in \mathbb{N}_+$, 有

$$|y_1| + |y_2| + \dots + |y_n| \le K$$

令

$$z_n = x_1 y_n + x_2 y_{n-1} + \dots + x_n y_1, n \in \mathbb{N}_+$$

证明: $\lim_{n\to\infty} z_n = 0$.

证明 因为 $\lim_{n\to\infty} x_n = 0$, 所以 $\{x_n\}$ 有界, 即存在 M>0, 使得 $|x_n| < M$ 对任意正整数 n 成立. 且对任意给定的 $\varepsilon>0$, 存在正整数 N_1 , 当 $n>N_1$ 时, $|x_n|<\varepsilon$.

设 $S_n = \sum_{k=1}^n |y_k|$, 则 $\{S_n\}$ 单调递增且有上界 K, 由单调有界准则知 $\{S_n\}$ 收敛. 故由 Cauchy 收敛原理知, 存在正整数 N_2 , 当 $n > N_2$ 时, 对于任意正整数 p, 有

$$|y_{n+1}| + \cdots + |y_{n+p}| = |S_{n+p} - S_n| < \varepsilon$$

取 $N = \max\{N_1, N_2\}$, 则当 n > 2N(n - N > N) 时

$$|z_n| = |x_1 y_n + \dots + x_n y_1|$$

$$\leq |x_1 y_n| + \dots + |x_N y_{n-N+1}| + |x_{N+1} y_{n-N}| + \dots + |x_n y_1|$$

$$< M(|y_n| + \dots + |y_{n-N+1}|) + \varepsilon(|y_{n-N}| + \dots + |y_1|)$$

$$< M\varepsilon + K\varepsilon$$

$$= (M + K)\varepsilon$$

即

$$\lim_{n\to\infty}z_n=0.$$

為 练习 4.5 设 $\lim_{n\to\infty} (x_1+x_2+\cdots+x_n)$ 收敛, 且 $x_n>0,\{x_n\}$ 单调递减. 求极限 $\lim_{n\to\infty} nx_n$.

解 由于 $\lim_{n\to\infty}(x_1+x_2+\cdots+x_n)$ 收敛, 故由 Cauchy 收敛原理知对 $\forall \varepsilon>0, \exists N'\in\mathbb{N}_+, \forall m>n>N',$ 成立

$$0 < x_{n+1} + x_{n+2} + \dots + x_m < \varepsilon$$

令
$$N=2N'+1$$
, 则 $n>N$ 时, 有 $\left[\frac{n}{2}\right]>N'+1$, 故
$$0<\frac{n}{2}x_n< x_{\left[\frac{n}{2}\right]}+x_{\left[\frac{n}{2}\right]+1}+\cdots+x_n<\varepsilon$$

即

$$0 < nx_n < 2\varepsilon$$

故

$$\lim_{n\to\infty}nx_n=0.$$

练习 **4.6** 设 u_0, u_1, \cdots 为满足 $u_n = \sum_{k=1}^{\infty} u_{n+k}^2 (n = 0, 1, 2, \cdots,)$ 的实数列, 且 $\sum_{n=1}^{\infty} u_n$ 收敛. 证明: $\forall k \in \mathbb{N}_+, \ \ \, f \ \ \, u_k = 0.$

证明 因为

$$u_n - u_{n+1} = u_{n+1}^2 \ge 0$$

故 $\{u_n\}$ 单调递减. 由 Cauchy 收敛原理知, $\exists N \in \mathbb{N}_+, \forall n > N$, 成立

$$\sum_{k=n+1}^{\infty} u_k \le 1$$

故当 n > N 时,成立

$$u_{n+1} \le u_n = \sum_{k=1}^{\infty} u_{n+k}^2$$

$$\le u_{n+1} \sum_{k=n+1}^{\infty} u_k$$

$$\le u_{n+1}$$

因此对任意 $k\in\mathbb{N}_+, k\geq N+1$,有 $u_k=C(C$ 为固定常数),又因 $\sum_{n=1}^\infty u_n$ 收敛,故 C=0. 由此根据 $u_n=\sum_{k=1}^\infty u_{n+k}^2$ 可依次推出

$$u_N = 0, u_{N-1} = 0, \cdots, u_1 = 0$$

即 $\forall k \in \mathbb{N}_+$, 有 $u_k = 0$.

第5章 夹逼定理

5.1 知识讲解

定理 5.1. 夹逼定理

若三个数列 $\{x_n\},\{y_n\},\{z_n\}$ 从某项开始成立

$$x_n \le y_n \le z_n, n > N_0$$

且

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = a$$

则

$$\lim_{n\to\infty} y_n = a.$$

5.2 例题分析

△ 练习 5.1 设 p(n) 表示能整除 n 的素数的个数. 证明: $\lim_{n\to\infty} \frac{p(n)}{n} = 0$.

证明 设 p_1, p_2, \dots, p_k 为能整除 n 的素数 (共有 k 个), 则 $p_i \ge 2$. 故

$$2^k \le p_1 p_2 \cdots p_k \le n, k = p(n)$$

于是

$$1 \le k \le \log_2 n$$

$$\frac{1}{n} \le \frac{k}{n} = \frac{p(n)}{n} \le \frac{\log_2 n}{n}$$

又

$$\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{\log_2 n}{n} = 0$$

故由夹逼定理知

$$\lim_{n\to\infty}\frac{p(n)}{n}=0.$$

△ 练习 5.2 求 $\lim_{n\to\infty} \frac{1!+2!+\cdots+n!}{n!}$.

解 因为

$$1 = \frac{n!}{n!} < \frac{1! + 2! + \dots + n!}{n!} < \frac{(n-2)(n-2)! + (n-1)! + n!}{n!} < \frac{2(n-1)! + n!}{n!} = 1 + \frac{2}{n} \to 1 \ (n \to \infty)$$

故由夹逼定理知

$$\lim_{n\to\infty}\frac{1!+2!+\cdots+n!}{n!}=1.$$

△ 练习 5.3 (第八届全国大学生数学竞赛数学类决赛第五题) 设 n > 1 为正整数, 令

$$S_n = \left(\frac{1}{n}\right)^n + \left(\frac{2}{n}\right)^n + \dots + \left(\frac{n-1}{n}\right)^n$$

- 1. 证明: 数列 $\{S_n\}$ 单调增加且有界, 从而极限 $\lim_{n \to \infty} S_n$ 存在;
- 2. 求极限 $\lim_{n\to\infty} S_n$.

证明 1. 由均值不等式

$$\left(\frac{k}{n}\right)^n = \left(\frac{k}{n}\right)^n \cdot 1 < \left(\frac{n\frac{k}{n}+1}{n+1}\right)^{n+1} = \left(\frac{k+1}{n+1}\right)^{n+1}$$

故

$$S_{n+1} = \left(\frac{1}{n+1}\right)^{n+1} + \left(\frac{2}{n+1}\right)^{n+1} + \dots + \left(\frac{n}{n+1}\right)^{n+1}$$

$$> \left(\frac{1}{n+1}\right)^{n+1} + \left(\frac{1}{n}\right)^{n} + \dots + \left(\frac{n-1}{n}\right)^{n}$$

$$> S_n$$

即 $\{S_n\}$ 单调增加.

又

$$\frac{1}{n}S_n < \int_0^1 x^n \mathrm{d}x = \frac{1}{n+1}$$

即

$$S_n < \frac{n}{n+1} < 1$$

故 $\{S_n\}$ 有上界. 所以极限 $\lim_{n\to\infty} S_n$ 存在.

解 2. 易知当 $x \neq 0$ 时, $e^x > 1 + x$.

则

$$\left(1 - \frac{k}{n}\right)^n < e^{n\left(-\frac{k}{n}\right)} = e^{-k}$$

故

$$S_n = \sum_{k=1}^{n-1} \left(\frac{n-k}{n} \right)^n < \sum_{k=1}^{n-1} e^{-k} < \sum_{k=1}^{\infty} e^{-k} = \frac{1}{e-1}$$

因此

$$\lim_{n\to\infty} S_n \le \frac{1}{e-1}$$

另一方面,对任意正整数n > m,有

$$S_n > \sum_{k=1}^m \left(1 - \frac{k}{n}\right)^n$$

$$\lim_{n \to \infty} S_n \ge \sum_{k=1}^m e^{-k} = \frac{e^{-1} - e^{-m-1}}{1 - e^{-1}}$$

今 m → ∞. 则

$$\lim_{n\to\infty} S_n \ge \frac{1}{e-1}$$

综上所述

$$\lim_{n\to\infty} S_n = \frac{1}{e-1}$$

$$x_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n - 1} - \frac{1}{2n}$$

$$= \left(1 + \frac{1}{2} + \dots + \frac{1}{2n}\right) - 2\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right)$$

$$= \left(1 + \frac{1}{2} + \dots + \frac{1}{2n}\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$$

$$= \frac{1}{n + 1} + \frac{1}{n + 2} + \dots + \frac{1}{2n}$$

由不等式

$$\frac{1}{n+1} < \ln\left(1+\frac{1}{n}\right) < \frac{1}{n}, n \in \mathbb{N}_+$$

故

$$\ln\left(1+\frac{1}{n+1}\right)+\cdots+\ln\left(1+\frac{1}{2n}\right) < x_n < \ln\left(1+\frac{1}{n}\right)+\cdots+\ln\left(1+\frac{1}{2n-1}\right)$$

即

$$\ln\left(\frac{2n+1}{n+1}\right) < x_n < \ln 2$$

令 $n \to \infty$, 由夹逼定理知

$$\lim_{n\to\infty} x_n = \ln 2.$$

- ightharpoonup 注意 本题中 x_n 的恒等变换称为 Catalan 恒等式.
- ▲ 练习 5.5 求极限 $\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}$

解 由不等式

$$\left(\frac{n+1}{e}\right)^n < n! < e\left(\frac{n+1}{e}\right)^{n+1}$$

故

$$\frac{en}{(n+1)\sqrt[n]{n+1}} < \frac{n}{\sqrt[n]{n!}} < \frac{en}{n+1}$$

两边令取极限,则由夹逼定理知

$$\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}=e.$$

注意 本题还有许多其他解法, 后文将再提到.

练习 5.6 求极限 $\lim_{n\to\infty} \sum_{i=1}^{n^2} \frac{n}{n^2 + i^2}$.

解设

$$S_n = \sum_{i=1}^{n^2} \frac{n}{n^2 + i^2} = \frac{1}{n} \sum_{i=1}^{n^2} \frac{1}{1 + \left(\frac{i}{n}\right)^2}$$

由

$$\int_{\frac{i}{n}}^{\frac{i+1}{n}} \frac{\mathrm{d}x}{1+x^2} < \frac{1}{n} \frac{1}{1+\left(\frac{i}{n}\right)^2} < \int_{\frac{i-1}{n}}^{\frac{i}{n}} \frac{\mathrm{d}x}{1+x^2}$$

故

$$\int_{\frac{1}{n}}^{\frac{n^2+1}{n}} \frac{\mathrm{d}x}{1+x^2} < S_n < \int_0^n \frac{\mathrm{d}x}{1+x^2}$$

又

$$\lim_{n \to \infty} \int_{\frac{1}{n}}^{\frac{n^2 + 1}{n}} \frac{dx}{1 + x^2} = \lim_{n \to \infty} \arctan x \Big|_{\frac{1}{n}}^{\frac{n^2 + 1}{n}} = \frac{\pi}{2}$$

$$\lim_{n \to \infty} \int_0^n \frac{\mathrm{d}x}{1 + x^2} = \lim_{n \to \infty} \arctan x \Big|_0^n = \frac{\pi}{2}$$

故

$$\lim_{n \to \infty} \sum_{i=1}^{n^2} \frac{n}{n^2 + i^2} = \frac{\pi}{2}.$$

- ▲ 练习 5.7 (2019 北京大学) 讨论数列

$$a_n = \sqrt[n]{1 + \sqrt[n]{2 + \sqrt[n]{3 + \dots + \sqrt[n]{n}}}}$$

的敛散性.

解由

$$\sqrt[n]{n-k} \ge 1, k = 1, 2, \cdots, n-1$$

第5章 夹逼定理 - 16/65-

知

$$a_{n} = \sqrt[n]{1 + \sqrt[n]{2 + \sqrt[n]{3 + \dots + \sqrt[n]{n}}}}$$

$$\geq \sqrt[n]{1 + \sqrt[n]{2 + \sqrt[n]{3 + \dots + \sqrt[n]{n - 2 + \sqrt[n]{n - 1 + 1}}}}}$$

$$\geq \sqrt[n]{1 + \sqrt[n]{2 + \sqrt[n]{3 + \dots + \sqrt[n]{n - 2 + 1}}}}$$

$$\geq \sqrt[n]{1 + \sqrt[n]{2 + \sqrt[n]{3 + \dots + \sqrt[n]{n - 2 + 1}}}}$$

$$\geq \cdots$$

$$\geq \sqrt[n]{2}$$

由

$$\lim_{n\to\infty} \sqrt[n]{n+1} = 1$$

知,n 充分大时

$$\sqrt[n]{4} < \sqrt[n]{5} < \cdots < \sqrt[n]{n+1} < 2$$

故

$$a_{n} = \sqrt[n]{1 + \sqrt[n]{2 + \sqrt[n]{3 + \dots + \sqrt[n]{n}}}}$$

$$\leq \sqrt[n]{1 + \sqrt[n]{2 + \sqrt[n]{3 + \dots + \sqrt[n]{n - 2 + \sqrt[n]{n - 1 + 2}}}}$$

$$\leq \sqrt[n]{1 + \sqrt[n]{2 + \sqrt[n]{3 + \dots + \sqrt[n]{n - 2 + 2}}}$$

$$\leq \sqrt[n]{1 + \sqrt[n]{2 + \sqrt[n]{3 + \dots + \sqrt[n]{n - 2 + 2}}}$$

$$\leq \cdots$$

$$\leq \sqrt[n]{3}$$

因此由夹逼定理知

$$\lim_{n\to\infty} a_n = 1$$

▲ 练习 5.8 求极限 $\lim_{n\to\infty} \sin \sqrt{n^2+1}\pi$.

解

$$0 < \left| \sin \sqrt{n^2 + 1} \pi \right| = \left| \sin \sqrt{n^2 + 1} \pi - \sin n \pi \right|$$

$$= \left| 2 \sin \frac{\sqrt{n^2 + 1} - n}{2} \pi \cos \frac{\sqrt{n^2 + 1} + n}{2} \pi \right|$$

$$\le 2 \left| \sin \frac{\sqrt{n^2 + 1} - n}{2} \pi \right|$$

$$\le (\sqrt{n^2 + 1} - n) \pi$$

$$= \frac{\pi}{\sqrt{n^2 + 1} + n} \to 0 (n \to \infty)$$

故由夹逼定理知

$$\lim_{n\to\infty}\sin\sqrt{n^2+1}\pi=0.$$

🕏 注意 本题还可以应用 Taylor 公式, 将在后文提到.

第6章 Abel 变换

6.1 知识讲解

命题 6.1. Abel 变换

设 $\{a_n\},\{b_n\}$ 是两数列, 记 $B_k = \sum_{i=1}^k b_i (k=1,2,\cdots)$, 则

$$\sum_{k=1}^{p} a_k b_k = a_p B_p - \sum_{k=1}^{p-1} (a_{k+1} - a_k) B_k.$$

6.2 例题分析

▲ 练习 6.1 设 $S_n = a + 3a^2 + \cdots + (2n-1)a^n$, 求 $\{S_n\}$ 的极限.

解 由 Abel 变换知

$$S_n = \sum_{k=1}^n (2k-1)a^n = (2n-1)\sum_{k=1}^n a^k - 2\sum_{k=1}^{n-1} \sum_{i=1}^k a^i = \frac{a}{1-a} + \frac{2a^2(1-a^{n-1})}{(1-a)^2} - \frac{(2n-1)a^{n+1}}{1-a}$$

$$\lim_{n \to \infty} S_n = \frac{a}{1 - a} + \frac{2a^2}{(1 - a)^2} = \frac{a(1 + a)}{(1 - a)^2}.$$

注意 本题也可应用幂级数解之.

练习 6.2 设 $\lim_{n\to\infty} (a_1 + a_2 + \cdots + a_n)$ 存在. 证明:

$$\lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{n}=0.$$

证明 设 $S_n = a_1 + a_2 + \cdots + a_n$. 由 Abel 变换及 Cauchy 命题知

$$\lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n} = \lim_{n \to \infty} S_n - \lim_{n \to \infty} \frac{n-1}{n} \frac{1}{n-1} \sum_{k=1}^{n-1} S_k = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = 0.$$

🕏 注意 本题也可应用级数理论和 Stolz 定理解之.

练习 6.3 设 $A_n = \sum_{i=1}^n a_k$, 当 $n \to \infty$ 时有极限, $\{p_n\}$ 为单调递增的正数数列, 且 $p_n \to +\infty$ $(n \to \infty)$. 证明:

$$\lim_{n\to\infty}\frac{p_1a_1+p_2a_2+\cdots+p_na_n}{p_n}=0.$$

证明 设 $\lim_{n\to\infty} A_n = A$. 由 Abel 变换及 Stolz 定理知

$$\lim_{n \to \infty} \frac{p_1 a_1 + p_2 a_2 + \dots + p_n a_n}{p_n} = \lim_{n \to \infty} \frac{p_n A_n - \sum_{k=1}^{n-1} (p_{k+1} - p_k) A_k}{p_n}$$

$$= \lim_{n \to \infty} A_n - \lim_{n \to \infty} \frac{\sum_{k=1}^{n-1} (p_{k+1} - p_k) A_k}{p_n}$$

$$= A - \lim_{n \to \infty} \frac{(p_n - p_{n-1}) A_{n-1}}{p_n - p_{n-1}}$$

$$= A - A$$

$$= 0.$$

第7章 拉链定理

7.1 知识讲解

定理 7.1. 拉链定理

设
$$\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = a$$
, 则

$$\lim_{n\to\infty}x_n=a.$$

7.2 例题分析

练习 7.1 设 $\lim_{n\to\infty} (x_n - x_{n-2}) = 0$. 证明: $\lim_{n\to\infty} \frac{x_n - x_{n-1}}{n} = 0$.

证明 由

$$\lim_{n \to \infty} (x_n - x_{n-2}) = 0$$

知

$$\lim_{n \to \infty} (x_{2n+2} - x_{2n}) = \lim_{n \to \infty} (x_{2n+1} - x_{2n-1}) = 0$$

设 $y_n = \frac{x_n - x_{n-1}}{n}$. 由 Stolz 定理知

$$\lim_{n \to \infty} y_{2n} = \lim_{n \to \infty} \frac{x_{2n} - x_{2n-1}}{2n}$$

$$= \lim_{n \to \infty} \frac{(x_{2n+2} - x_{2n+1}) - (x_{2n} - x_{2n-1})}{2(n+1) - 2n}$$

$$= \frac{1}{2} \lim_{n \to \infty} (x_{2n+2} - x_{2n}) - \frac{1}{2} \lim_{n \to \infty} (x_{2n+1} - x_{2n-1})$$

$$= 0$$

同理可证

$$\lim_{n\to\infty} y_{2n+1} = 0$$

故

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{n}=0.$$

第8章 级数收敛的必要条件

8.1 知识讲解

定理 8.1. 级数收敛的必要条件

设级数
$$\sum_{n=1}^{\infty} x_n$$
 收敛, 则

$$\lim_{n\to\infty} x_n = 0.$$

 \Diamond

8.2 例题分析

△ 练习 8.1 求极限 $\lim_{n\to\infty} \frac{2^n!}{n^n}$.

解 设
$$x_n = \frac{2^n!}{n^n}$$
, 则

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{2}{\left(1 + \frac{1}{n}\right)^n} = \frac{2}{e} < 1$$

故

$$\sum_{n=1}^{\infty} \frac{2^n!}{n^n} \psi \, \mathfrak{L}$$

从而

$$\lim_{n\to\infty}\frac{2^n!}{n^n}=0.$$

△ 练习 8.2 设 $\lim_{n\to\infty} (a_1 + a_2 + \cdots + a_n)$ 存在. 证明:

$$\lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{n}=0.$$

证明 由于 $\lim_{n\to\infty} (a_1+a_2+\cdots+a_n)$ 存在, 即级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 故

$$\lim_{n\to\infty} a_n = 0$$

由 Stolz 定理

$$\lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{n}=\lim_{n\to\infty}a_n=0.$$

第9章 单调有界定理

9.1 知识讲解

定理 9.1. 单调有界定理

单调递增且有上界的数列必收敛;单调递减且有下界的数列必收敛.

c

9.2 例题分析

练习 9.1 (北京大学) 设 $a_1 = \sqrt{2}, a_2 = \sqrt{2}^{\sqrt{2}}, a_{n+1} = \sqrt{2}^{a_n}$ $(n = 1, 2, 3, \cdots)$ 证明: $\lim_{n \to \infty} a_n$ 存在, 并求其值.

证明 显然 $\{a_n\}$ 单调递增. 当 n=1 时, $a_1=\sqrt{2}<2$.

假设 $n = k (k \in \mathbb{N}_+)$ 时, $a_k < 2$. 则 n = k + 1 时, $a_{k+1} = \sqrt{2}^{a_n} < \sqrt{2}^2 = 2$. 故由数学归纳法知, 对于每个正整数 n, 都有 $a_n < 2$. 由单调有界定理知, $\lim_{n \to \infty} a_n$ 存在, 设为 $A(A \le 2)$. 在递推关系两边取极限, 得

$$A = \sqrt{2}^A$$

故

$$A = 2$$

即

$$\lim_{n\to\infty}a_n=2.$$

- $\hat{\mathbf{z}}$ 注意 有读者可能会疑惑上界 2 是怎么来的, 其实是先求 $\{a_n\}$ 极限, 再反过来猜测其上界为 2. 这是一种好用的方法.
- **练习 9.2** 设 $\{x_n\}$ 为正数列, 且满足 $x_{n+1} + \frac{1}{x_n} < 2, n \in \mathbb{N}_+$. 证明 $\{x_n\}$ 收敛, 并求其极限.

解 由均值不等式

$$2\sqrt{\frac{x_{n+1}}{x_n}} \le x_{n+1} + \frac{1}{x_n} < 2$$

即

$$x_{n+1} < x_n$$

故 $\{x_n\}$ 严格单调递减, 又 $x_n > 0$, 故由单调有界定理知 $\lim_{n \to \infty} x_n$ 存在, 设为 A(A > 0).

$$x_{n+1} + \frac{1}{x_n} < 2$$

两边取极限得

$$A + \frac{1}{A} \le 2$$

又

$$A + \frac{1}{A} \ge 2$$

故

$$A + \frac{1}{A} = 2$$

即

$$\lim_{n\to\infty} x_n = A = 2.$$

為 练习 9.3 设 $a > 0, x_1 = \sqrt{a}, x_{n+1} = \sqrt{x_n + a}, n \in \mathbb{N}_+.$ 求 $\lim_{n \to \infty} x_n$.

解 由于

$$x_{n+1} - x_n = \sqrt{x_n + a} - \sqrt{x_{n-1} + a} = \frac{x_n - x_{n-1}}{\sqrt{x_n + a} + \sqrt{x_{n-1} + a}}$$

所以 $x_{n+1}-x_n$ 与 x_n-x_{n-1} 同号 · · · 与 x_2-x_1 同号,又 $x_2-x_1=\sqrt{a+\sqrt{a}}-\sqrt{a}>0$,故 $x_{n+1}-x_n>0$,即数列 $\{x_n\}$ 单调递增.

又

$$x_n = \sqrt{a + \sqrt{a + \sqrt{a + \sqrt{a} + \sqrt{a}}}} < \sqrt{a + \sqrt{a + \sqrt{a + \sqrt{a + \sqrt{1 + 4a}}}}} = \frac{1 + \sqrt{1 + 4a}}{2} = \frac{1 + \sqrt{1 + 4a}}{2}$$

即 $\{x_n\}$ 有上界, 故 $\lim_{n\to\infty} x_n$ 存在, 设为 A(A>0). 令 $x_{n+1}=\sqrt{x_n+a}$ 两边 $n\to\infty$, 得

$$\lim_{n\to\infty} x_n = A = \frac{1+\sqrt{1+4a}}{2}.$$

- **全** 注意 有读者可能会奇怪证明 $\{x_n\}$ 有上界时为什么要那么放缩,其实在这类无限循环连根式的问题中,经常就是找一个数,使其在无限的根号下值永远不改变,且又能达到放缩目的,这个数一般是可以解出来的,例如在本题中,由方程 $\sqrt{a+x}=x$ 可解出 $x=\frac{1+\sqrt{1+4a}}{2}$,又 $\frac{1+\sqrt{1+4a}}{2}$ > \sqrt{a} ,故能达到放缩目的,可如此放缩.另外,也可以应用数学归纳法证明 $\{x_n\}$ 有上界
- 练习 9.4 (Ramanujan 恒等式的推广) 求 $f(x) = \sqrt{1 + x} \sqrt{1 + (x+1)} \sqrt{1 + \dots + (x+n-1)} \sqrt{1 + (x+n)} \sqrt{1 + \dots + (x+n-1)} \sqrt{1 + \dots$

解 设 $f_n(x) = \sqrt{1 + x\sqrt{1 + (x+1)\sqrt{1 + \dots + (x+n-1)\sqrt{1 + (x+n)}}}}$, 则显然 $f_n(x)$ 关于 n 是递增的.

又

$$x + 1 = \sqrt{1 + x(x+2)} = \dots = \sqrt{1 + x\sqrt{1 + (x+1)\sqrt{1 + \dots + (x+n-1)(x+n+1)}}} > f_n(x)$$

故由单调有界准则知 $f(x) = \lim_{n \to \infty} f_n(x)$ 存在, 且 $f(x) \le x + 1$.

设
$$g_n(x) = \sqrt{1 + x\sqrt{1 + x\sqrt{1 + x\sqrt{1 + x}}}}$$
 (有 n 重根号, 且 $x > 0$), 则显然 $g_n(x)$ 关

于 n 是递增的.

且

$$[g_n(x)]^2 - xg_{n-1}(x) - 1 = 0$$

由

$$g_n(x) < \sqrt{1 + x\sqrt{1 + x\sqrt{1 + x\sqrt{1 + x\sqrt{1 + (\frac{x + \sqrt{x^2 + 4}}{2})^2} - 1}}} = \frac{x + \sqrt{x^2 + 4}}{2}$$

知 g(x) 有上界. 故 $\lim_{n\to\infty}g_n(x)$ 存在, 设为 g(x)(g(x)恒正). 令 $[g_n(x)]^2-xg_{n-1}(x)-1=0$ 两

边
$$n \to \infty$$
, 则 $g(x) = \frac{x + \sqrt{x^2 + 4}}{2}$.

$$x + 1 \ge f(x) > g(x) > x$$

设
$$h(x) = x + 1 - f(x) \in [0, 1)$$
.

由于

$$f(x) = \sqrt{1 + x\sqrt{1 + (x+1)\sqrt{1 + \dots + (x+n-1)\sqrt{1 + (x+n)\sqrt{1 + \dots}}}}}$$

因此

$$f^2(x) = 1 + x f(x+1)$$

$$(x+1-h(x))f(x) = 1 + x(x+2-h(x+1))$$

$$(x+1)f(x) - h(x)f(x) = (x+1)^2 - xh(x+1) \le (x+1)f(x) = (x+1)(x+1-h(x))$$

$$\frac{h(x)}{x} \le \frac{h(x+1)}{x+1}$$

故

$$0 \le \frac{h(x)}{x} \le \frac{h(x+1)}{x+1} \le \frac{h(x+2)}{x+2} \le \dots \le \frac{h(x+n)}{x+n} < \frac{1}{x+n} \to 0 \ (n \to \infty)$$

即

$$h(x) = 0$$

所以

$$f(x) = x + 1.$$

证明 设

$$S_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3 - \frac{1}{2^{n-1}} < 3$$

又 $\{S_n\}$ 单调递增, 故 $\lim_{n\to\infty} S_n$ 存在, 设为 S.

因为m < n时

$$\left(1 + \frac{1}{n}\right)^n = 1 + \frac{1}{1!} + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{n!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\cdots\left(1 - \frac{n-1}{n}\right)$$

$$> 1 + \frac{1}{1!} + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{m!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\cdots\left(1 - \frac{m-1}{n}\right)$$

<math> <math>

$$e \ge 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{m!} = S_m$$

再令 $m \to \infty$, 则

$$e \ge S$$

又

$$\left(1 + \frac{1}{n}\right)^n = 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right)$$

$$< 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}$$

$$= S_n$$

<math> <math>

$$e \leq S$$

综上所述

$$e = S = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

為 练习 9.6 证明: 极限 $\lim_{n\to\infty} \sqrt{1+\sqrt{2+\cdots+\sqrt{n}}}$ 存在.

证明 (法一) 设 $x_n = \sqrt{1 + \sqrt{2 + \cdots + \sqrt{n}}}$, 显然 $\{x_n\}$ 单调递增. 又由练习 11.4 知

$$x_{n} = \sqrt{1 + \sqrt{2 + \dots + \sqrt{n}}}$$

$$= \sqrt{2}\sqrt{\frac{1}{2} + \sqrt{\frac{2}{2^{2}} + \sqrt{\frac{3}{2^{3}} + \dots + \sqrt{\frac{n}{2^{n}}}}}}$$

$$< \sqrt{2}\sqrt{\frac{1}{2} + \sqrt{\frac{1}{2} + \dots + \sqrt{\frac{1}{2}}} (n \stackrel{\text{med}}{=} \stackrel{\text{H}}{=})}$$

$$< \frac{\sqrt{2}(1 + \sqrt{3})}{2}$$

故 $\{x_n\}$ 有上界, $\lim_{n\to\infty} x_n$ 存在, 即极限 $\lim_{n\to\infty} \sqrt{1+\sqrt{2+\cdots+\sqrt{n}}}$ 存在. (法二) $n\geq 3$ 时, 对于每个整数 $k\leq n-2$, 易知

$$\sqrt{n-k} < 2\sqrt{n-k-1}$$

又

$$\sqrt{n-1+\sqrt{n}} < \sqrt{n-1+2\sqrt{n-1}+1} = \sqrt{n-1}+1$$

故

$$x_{n} < \sqrt{1 + \sqrt{2 + \dots + \sqrt{n - 3} + \sqrt{n - 2} + \sqrt{n - 1} + 1}}$$

$$< \sqrt{1 + \sqrt{2 + \dots + \sqrt{n - 3} + \sqrt{n - 2} + 2\sqrt{n - 2} + 1}}$$

$$= \sqrt{1 + \sqrt{2 + \dots + \sqrt{n - 3} + \sqrt{n - 2} + 1}}$$

$$< \dots$$

$$< 2$$

其余同法一.

练习 9.7 (2018 考研数学一) 已知正项数列 $\{x_n\}$ 满足 $x_ne^{x_{n+1}}=e^{x_n}-1$. 证明 $\{x_n\}$ 收敛, 并求其极限.

$$f'(x) = xe^x \ge 0$$

故 f(x) 在 $[0,+\infty)$ 上单调递增, $f(x) \geq f(0) = 0$, 且等号成立当且仅当 x = 0. 从而

$$x_n e^{x_{n+1}} = e^{x_n} - 1 > x_n e^{x_n}$$

即

$$x_{n+1} < x_n$$

故 $\{x_n\}$ 严格单调递减, 又 $\{x_n\}$ 有下界 0, 所以 $\{x_n\}$ 收敛, 设其极限为 A.

$$x_n e^{x_{n+1}} = e^{x_n} - 1$$

两边令 $n \to \infty$,得

$$Ae^A = e^A - 1$$

即
$$f(A) = 0$$
, 故 $A = 0$, 即 $\lim_{n \to \infty} x_n = 0$.

第10章 上下极限

10.1 知识讲解

定义 10.1. 极限点

数列的极限点是数列收敛子列的极限. 这里约定:若存在正 (负) 无穷大量的子列,则将 $+\infty(-\infty)$ 作为其极限点. ξ 是数列 $\{x_n\}$ 的极限点等价于对于任意给定的 $\varepsilon>0$,存在 $\{x_n\}$ 的无穷多个项属于 ξ 的 ε 邻域.

定理 10.1

任何数列必有极限点.

 \Diamond

定义 10.2. 上极限和下极限

数列的上极限是数列的最大极限点,数列的下极限是数列的最小极限点. 这里在比较大小时将 $+\infty, -\infty$ 作为数来对待. 由定义可以知道上极限和下极限都是唯一的. 上极限记为 $\overline{\lim_{n\to\infty}} x_n$,下极限记为 $\overline{\lim_{n\to\infty}} x_n$,下极限记为 $\lim_{n\to\infty} x_n$,下极限记为 $\lim_{n\to\infty} x_n$

定理 10.2

任何数列必有上极限和下极限.

 \sim

定理 10.3

数列收敛的充分必要条件是数列的上极限和下极限均为有限数且相等. 此时, 数列只有一个极限点, 且该有限数就是数列的极限.

定理 10.4

数列为正无穷大量 (负无穷大量) 的充分必要条件是数列的上极限和下极限均为 $+\infty(-\infty)$.

注意 由于数列上下极限所具有的必然存在性,其用途十分广泛,功能十分强大.

10.2 例题分析

练习 10.1 设函数 f 在 [a,b] 上连续, 非负且严格单调递增, 由积分中值定理, $\forall k \in \mathbb{N}_+$, $\exists | x_k \in (a,b)$, s.t.

$$f^{k}(x_{k}) = \frac{1}{b-a} \int_{a}^{b} f^{k}(t) dt$$

证明: $\lim_{k\to+\infty} x_k = b$.

证明 对于任意给定的 $0 \le \varepsilon \le b$, 有

$$f^{k}(x_{k}) = \frac{1}{b-a} \int_{a}^{b} f^{k}(t) dt \ge \frac{1}{b-a} \int_{b-\varepsilon}^{b} f^{k}(t) dt \ge \frac{1}{b-a} \int_{b-\varepsilon}^{b} f^{k}(b-\varepsilon) dt = \frac{\varepsilon}{b-a} f^{k}(b-\varepsilon)$$

即

$$f(x_k) > \sqrt[k]{\frac{\varepsilon}{b-a}} f(b-\varepsilon)$$

故

$$\underline{\lim_{k \to \infty}} f(x_k) \ge \underline{\lim_{k \to \infty}} \sqrt[k]{\frac{\varepsilon}{b - a}} f(b - \varepsilon) = f(b - \varepsilon)$$

由 f 的连续性及单调性知

$$\underline{\lim}_{k \to \infty} x_k \ge b - \varepsilon$$

由 ε 的任意性知

$$\underline{\lim}_{k \to \infty} x_k \ge b$$

又

$$b \ge \overline{\lim}_{k \to \infty} x_k \ge \underline{\lim}_{k \to \infty} x_k \ge b$$

故

$$\overline{\lim}_{k \to \infty} x_k = \underline{\lim}_{k \to \infty} x_k = b$$

即

$$\lim_{k \to +\infty} x_k = b$$

练习 10.2 (第一届全国大学生数学竞赛数学类决赛) 设 f(x) 在 (-1,1) 内有定义, 在 x=0 处可导, 且 f(0)=0. 证明: $\lim_{n\to\infty}\sum_{k=1}^n f\left(\frac{k}{n^2}\right)=\frac{f'(0)}{2}$.

证明 由

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x}$$

知, 对 $\forall \varepsilon > 0, \exists \delta > 0,$ 当 $x \in (-\delta, \delta)$ 时, 成立

$$f'(0) - \varepsilon < \frac{f(x)}{r} < f'(0) + \varepsilon$$

当
$$n > \left[\frac{1}{\delta}\right] + 1$$
 时

$$\frac{k}{n^2}\left(f'(0)-\varepsilon\right) < f\left(\frac{k}{n^2}\right) < \frac{k}{n^2}\left(f'(0)+\varepsilon\right), k=1,2,\cdots,n$$

故

$$\sum_{k=1}^{n} \frac{k}{n^2} \left(f'(0) - \varepsilon \right) < \sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) < \sum_{k=1}^{n} \frac{k}{n^2} \left(f'(0) + \varepsilon \right)$$

从而

$$\frac{f'(0)-\varepsilon}{2} \leq \varliminf_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) \leq \varlimsup_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) \leq \frac{f'(0)+\varepsilon}{2}$$

由 ε 的任意性知

$$\underline{\lim_{n \to \infty}} \sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) = \overline{\lim_{n \to \infty}} \sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) = \frac{f'(0)}{2}$$

故

$$\lim_{n\to\infty}\sum_{k=1}^n f\left(\frac{k}{n^2}\right) = \frac{f'(0)}{2}.$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} \ln\left(1 + \frac{k}{n^2}\right) = \lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) = \frac{f'(0)}{2} = \frac{1}{2}$$

故

$$\lim_{n\to\infty} \left(1+\frac{1}{n^2}\right) \left(1+\frac{2}{n^2}\right) \cdots \left(1+\frac{n}{n^2}\right) = \lim_{n\to\infty} e^{\sum_{k=1}^n \ln\left(1+\frac{k}{n^2}\right)} = \sqrt{e}.$$

本题也可以应用夹逼定理.

练习 10.3 设数列 $\{b_n\}$ 由 $b_1 = 1$ 和 $b_{n+1} = 1 + \frac{1}{b_n}$ 生成. 求极限 $\lim_{n \to \infty} b_n$.

解 由于 $b_1 = 1 \in [\frac{3}{2}, 2]$, 故由数学归纳法易知 $\frac{3}{2} \le b_n \le 2$ 对所有的正整数 n 成立. 所以

$$\frac{3}{2} \le A = \lim_{n \to \infty} b_n \le B = \overline{\lim}_{n \to \infty} b_n \le 2$$

在递推公式两边取上极限和下极限,则

$$A = 1 + \underline{\lim}_{n \to \infty} \left(\frac{1}{b_n} \right) = 1 + \frac{1}{\underline{\lim}_{n \to \infty} b_n} = 1 + \frac{1}{B}$$

$$B = 1 + \underline{\lim}_{n \to \infty} \left(\frac{1}{b_n} \right) = 1 + \frac{1}{\underline{\lim}_{n \to \infty} b_n} = 1 + \frac{1}{A}$$

故

$$(A - B)\left(1 - \frac{1}{AB}\right) = 0$$

又

$$\frac{3}{2} \le A \le B$$

故

$$A = B$$

所以 $\{b_n\}$ 收敛, 设极限为 $l \in [\frac{3}{2}, 2]$. 在递推公式两边取极限, 可解得 $l = \frac{1+\sqrt{5}}{2}$, 即 $\lim_{n\to\infty} b_n = \frac{1+\sqrt{5}}{2}$.

 $\stackrel{\diamondsuit}{\sim}$ 注意 本题用到了结论: 若 $\varliminf x_n > 0$, 则

$$\frac{\lim_{n \to \infty} \left(\frac{1}{x_n}\right) = \frac{1}{\overline{\lim_{n \to \infty}} x_n}$$

$$\overline{\lim_{n \to \infty} \left(\frac{1}{x_n}\right) = \frac{1}{\underline{\lim_{n \to \infty}} x_n}$$

练习 **10.4** 若 $\lim_{n\to\infty} (a_n - \lambda a_{n-1}) = l(|\lambda| < 1)$. 求证: $\lim_{n\to\infty} a_n = \frac{l}{1-\lambda}$.

证明 设 $b_n = a_n - \lambda a_{n-1}$. 由于 $\{b_n\}$ 收敛, 因此 $\{b_n\}$ 有界. 取 M > 0, 使得 $|a_1| < M$, $|b_n| < (1-\lambda)M$. 又

$$|a_n| = |b_n + \lambda a_{n-1}| \le |b_n| + |\lambda a_{n-1}|$$

由数学归纳法易知

$$|a_n| < M, n = 1, 2, \cdots$$

设 $\overline{\lim}_{n\to\infty} a_n = A$, $\underline{\lim}_{n\to\infty} a_n = B$, A, B 都是有限数. 在 $b_n = a_n - \lambda a_{n-1}$ 两边取上极限得

$$l = A - \lambda A$$

取下极限得

$$l = B - \lambda B$$

故

$$A = B = \frac{l}{1 - \lambda}$$

即

$$\lim_{n\to\infty} a_n = \frac{l}{1-\lambda}.$$

 $\stackrel{ extstyle extstyle$

$$\overline{\lim}_{n \to \infty} (a_n - \lambda a_{n-1}) = \overline{\lim}_{n \to \infty} a_n - \lambda \overline{\lim}_{n \to \infty} a_{n-1} = A - \lambda A$$

$$\lim_{n \to \infty} (a_n - \lambda a_{n-1}) = \lim_{n \to \infty} a_n - \lambda \lim_{n \to \infty} a_{n-1} = B - \lambda B$$

 $\underline{\lim}_{n\to\infty}(a_n-\lambda a_{n-1})=\underline{\lim}_{n\to\infty}a_n-\lambda\,\underline{\lim}_{n\to\infty}a_{n-1}=B-\lambda B$

否则若 $A = +\infty$ 或其他情形, 那么将不能这么写开来. 这一点在应用上下极限的方法时都要注意. 另外, 证明有界的过程也体现出了 $|\lambda| < 1$ 的作用.

练习 10.5 (华东师范大学) 设 $a > 0, b > 0, a_1 = a, a_2 = b, a_{n+2} = 2 + \frac{1}{a_{n+1}^2} + \frac{1}{a_n^2} (n = 1, 2, \cdots).$ 求证: 数列 $\{a_n\}$ 收敛.

证明 显然, 当 n>2 时, $a_n>2$. 设 $\overline{\lim_{n\to\infty}}\,a_n=A$, $\underline{\lim_{n\to\infty}}\,a_n=B$, 则 $A\geq B>2$, 且由递推关系知 A,B 均为有限数.

在递推关系两边取上下极限得

$$A = 2 + \frac{2}{B^2}$$

$$B = 2 + \frac{2}{4^2}$$

由此解得

A = B

故数列 $\{a_n\}$ 收敛.

第 11章 Toeplitz 定理

11.1 知识讲解

定理 11.1. Toeplitz 定理

设 $n, k \in \mathbb{N}_+, t_{nk} \ge 0, \sum_{k=1}^n t_{nk} = 1, \lim_{n \to \infty} t_{nk} = 0. 若 \lim_{n \to \infty} a_n = a, 则$

$$\lim_{n\to\infty}\sum_{k=1}^n t_{nk}a_k=a.$$

- (1) 若将条件 $\sum_{k=1}^{n} t_{nk} = 1$ 改为 $\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} = 1$ 且 a = 0, 则结论仍成立;
- (2) 若不要求 t_{nk} 非负, 将条件 $\sum_{k=1}^{n} t_{nk} = 1$ 改为存在 M > 0, 使得对每个正整数 n 成立 $|t_{n1}| + |t_{n2}| + \cdots + |t_{nk}| \le M$ 且 a = 0, 则结论仍成立.

全 注意 Toeplitz 定理证明不难, 只需要拟合法及分段估计, 但结论十分强大, 令 $t_{nk} = \frac{1}{n}$, 即推出 Cauchy 命题, 也可用以快速证明 Stolz 定理等.

11.2 例题分析

练习 11.1 已知 $\lim_{n\to\infty} a_n = a$. 证明: $\lim_{n\to\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k a_k = a$.

证明 设 $t_{nk} = \frac{C_n^k}{2^n}$, 则显然 $t_{nk} > 0$, $\sum_{k=1}^n t_{nk} = 1$ 由于

$$0 < t_{nk} = \frac{C_n^k}{2^n} < \frac{n^k}{2^n} \to 0 (n \to \infty)$$

故

$$\lim_{n\to\infty}t_{nk}=0$$

由 Toeplitz 定理知

$$\lim_{n\to\infty}\frac{1}{2^n}\sum_{k=0}^n C_n^k a_k = a.$$

△ 练习 11.2 由 Toeplitz 定理导出 * 型的 Stolz 公式.

证明 先叙述 Stolz 定理:

设数列 $\{a_n\}$ 是严格单调递增的无穷大量,且

$$\lim_{n\to\infty}\frac{b_n-b_{n-1}}{a_n-a_{n-1}}=l\left(l\,\text{可以是有限数}+\infty,-\infty\right)$$

则

$$\lim_{n\to\infty}\frac{b_n}{a_n}=l.$$

设 $x_n = a_n - a_{n-1}, y_n = b_n - b_{n-1}, a_0 = b_0 = 0, t_{nk} = \frac{x_k}{x_1 + x_2 + \dots + x_n},$ 则

$$x_n > 0, t_{nk} > 0, \sum_{k=1}^n t_{nk} = 1$$

且

$$\lim_{n\to\infty} t_{nk} = \lim_{n\to\infty} \frac{a_k - a_{k-1}}{a_n} = 0$$

故由 Toeplitz 定理知

$$\lim_{n \to \infty} \frac{b_n}{a_n} = \lim_{n \to \infty} \frac{y_1 + y_2 + \dots + y_n}{x_1 + x_2 + \dots + x_n}$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{x_k}{x_1 + x_2 + \dots + x_n} \cdot \frac{y_k}{x_k} \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^n t_{nk} \frac{y_k}{x_k} \right)$$

$$= \lim_{n \to \infty} \frac{y_k}{x_k}$$

$$= \lim_{n \to \infty} \frac{b_n - b_{n-1}}{a_n - a_{n-1}}$$

$$= I$$

注意 类似地, 还可以应用 Toeplitz 定理证明 $\frac{0}{0}$ 型的 Stolz 定理.

练习 11.3 设 $p_k > 0, k = 1, 2, \cdots$,且 $\lim_{n \to \infty} \frac{0}{p_1 + p_2 + \cdots + p_n} = 0, \lim_{n \to \infty} a_n = a$. 证明: $\lim_{n \to \infty} \frac{p_1 a_n + p_2 a_{n-1} + \cdots + p_n a_1}{p_1 + p_2 + \cdots + p_n} = a.$

$$\lim_{n \to \infty} \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{p_1 + p_2 + \dots + p_n} = a.$$

证明 设

$$t_{nk} = \frac{p_{n-k+1}}{p_1 + p_2 + \dots + p_n}, k, n \in \mathbb{N}_+$$

显然 $t_{nk} > 0$, 且

$$t_{n1} + t_{n2} + \cdots + t_{nn} = 1$$

又

$$0 < t_{nk} = \frac{p_{n-k+1}}{p_1 + p_2 + \dots + p_n} < \frac{p_{n-k+1}}{p_1 + p_2 + \dots + p_{n-k+1}} \to 0 (n \to \infty)$$

由夹逼定理知

$$\lim_{n\to\infty} t_{nk} = 0$$

故由 Toeplitz 定理知

$$\lim_{n \to \infty} \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{p_1 + p_2 + \dots + p_n}$$

$$= \lim_{n \to \infty} (t_{n1} a_1 + t_{n2} a_2 + \dots + t_{nn} a_n)$$

$$= \lim_{n \to \infty} a_n$$

$$= a.$$

第 12章 Wallis 公式

12.1 知识讲解

12.2 例题分析

△ 练习 12.1 求极限
$$\lim_{n\to\infty} (-1)^n \begin{pmatrix} -\frac{1}{2} \\ n \end{pmatrix} \sqrt{n}$$
.

解 由于

$$\begin{pmatrix} -\frac{1}{2} \\ n \end{pmatrix} = \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\cdots\left(-\frac{1}{2}-n+1\right)}{n!}$$
$$= \frac{(-1)(-1-2)\cdots(-1-2(n-1))}{2^n n!}$$
$$= (-1)^n \frac{(2n-1)!!}{(2n)!!}$$

故

$$\lim_{n \to \infty} (-1)^n \begin{pmatrix} -\frac{1}{2} \\ n \end{pmatrix} \sqrt{n} = (-1)^{2n} \frac{(2n-1)!!}{(2n)!!} \sqrt{n} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{\pi n}} = \frac{1}{\sqrt{\pi}}.$$

第13章 Stirling 公式

13.1 知识讲解

13.1. Stirling 公式

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{\theta_n}{12n}}, 0 < \theta_n < 1$$

$$\ln n! = \ln \sqrt{2\pi} + \left(n + \frac{1}{2}\right) \ln n - n + \frac{\theta_n}{12n}, 0 < \theta_n < 1$$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (n \to \infty)$$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} - \frac{571}{2488320n^4} + \cdots\right)$$

或
$$\ln n! = \ln \sqrt{2\pi} + \left(n + \frac{1}{2}\right) \ln n - n + \frac{B_2}{1 \cdot 2n} + \frac{B_4}{3 \cdot 4n^3} + \dots + \frac{B_{2m}}{(2m-1)(2m)n^{2m-1}} + \frac{B_{2m+2}}{(2m+1)(2m+2)n^{2m+1}} \theta_n, 其中 0 < \theta_n < 1, B_{2n} 是 Bernoulli 数.$$

注意 涉及 n! 时经常用到 Stirling 公式.

13.2 例题分析

或

 \triangle 练习 13.1 求极限 $\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}$

解 由 Stirling 公式知

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = \lim_{n \to \infty} \frac{n}{\sqrt[n]{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}}$$
$$= \lim_{n \to \infty} \frac{e}{\sqrt[2n]{2\pi n}}$$
$$= e.$$

练习 13.2 求极限
$$\lim_{n\to\infty}\frac{n!}{n^n\sqrt{n}}\left(1+\frac{1}{n}\right)^{n^2}$$
.

解

$$\lim_{n \to \infty} \frac{n!}{n^n \sqrt{n}} \left(1 + \frac{1}{n} \right)^{n^2} = \lim_{n \to \infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e} \right)^n}{n^n \sqrt{n}} \left(1 + \frac{1}{n} \right)^{n^2}$$

$$= \sqrt{2\pi} \lim_{n \to \infty} e^{-n} \left(1 + \frac{1}{n} \right)^{n^2}$$

$$= \sqrt{2\pi} \lim_{n \to \infty} e^{-n} \left(1 + \frac{1}{n} \right)^{n^2}$$

$$= \sqrt{2\pi} \lim_{n \to \infty} e^{n^2 \ln \left(1 + \frac{1}{n} \right) - n}$$

$$= \sqrt{2\pi} \lim_{n \to \infty} e^{n^2 \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^3} \right) \right) - n}$$

$$= \sqrt{2\pi e}.$$

 练习 13.3 求极限 $\lim_{n\to\infty} \left[((n+1)!)^{\frac{1}{n+1}} - (n!)^{\frac{1}{n}} \right].$

解

$$\lim_{n \to \infty} \left[((n+1)!)^{\frac{1}{n+1}} - (n!)^{\frac{1}{n}} \right]$$

$$= \lim_{n \to \infty} (n!)^{\frac{1}{n}} \left\{ \left[\frac{((n+1)!)^n}{(n!)^{n+1}} \right]^{\frac{1}{n(n+1)}} - 1 \right\}$$

$$= \lim_{n \to \infty} (n!)^{\frac{1}{n}} \left\{ \exp \left\{ \frac{\ln \left[\frac{((n+1)!)^n}{(n!)^{n+1}} \right]}{n(n+1)} \right\} - 1 \right\}$$

$$= \lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}} \ln \left[\frac{((n+1)!)^n}{(n!)^{n+1}} - 1 \right]}{n(n+1)} \left(\frac{\text{$\%$ $\%$ $\%$ $\%$ }}{n(n+1)} \right)$$

$$= \lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}} \left[\exp \left\{ n \ln(n+1)! - (n+1) \ln n! \right\} - 1 \right]}{n(n+1)}$$

$$= \lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}} \left[n \ln (n+1)! - (n+1) \ln n! \right]}{n(n+1)} \left(\frac{\text{$\%$ $\%$ $\%$ $\%$ }}{n(n+1)} \right)$$

$$= \lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}} \left[n \ln n - \ln n! \right]}{n(n+1)}$$

$$= \lim_{n \to \infty} \frac{\left[\sqrt{2\pi n} \left(\frac{n}{e} \right)^n \right]^{\frac{1}{n}} \left[n \ln n - \ln n! \right]}{n(n+1)} \left(\frac{\text{$\%$ $\%$ $\%$ $\%$ }}{n(n+1)} \right)$$

$$= \lim_{n \to \infty} \left(\sqrt{2\pi n} \right)^{\frac{1}{n}} \lim_{n \to \infty} \frac{n \ln n - \ln n!}{e(n+1)} \right)$$

$$= \frac{1}{e} \lim_{n \to \infty} \frac{(n+1) \ln(n+1) - \ln(n+1)! - n \ln n + \ln n!}{(n+2) - (n+1)}$$

$$= \frac{1}{e} \lim_{n \to \infty} (n+1) \ln(1+\frac{1}{n})$$

$$= \frac{1}{e} \lim_{n \to \infty} (n+1) \ln(1+\frac{1}{n})$$

注意 本题也可应用夹逼定理来求极限, 或先证明极限存在, 然后逆用 Stolz 定理. 一般来说, 对于指数上带未知数的极限题较难以直接处理, 经常先取对数, 然后应用等价无穷小或洛必达法则等. 又如下题

求极限
$$\lim_{n\to\infty} \frac{(1+x)^{\frac{1}{x}} - (1+2x)^{\frac{1}{2x}}}{\sin x}$$
.

解

$$\lim_{n \to \infty} \frac{(1+x)^{\frac{1}{x}} - (1+2x)^{\frac{1}{2x}}}{\sin x}$$

$$= \lim_{n \to \infty} \frac{e^{\frac{\ln(1+x)}{x}} - e^{\frac{\ln(1+2x)}{2x}}}{x}$$

$$= \lim_{n \to \infty} e^{\frac{\ln(1+2x)}{2x}} \lim_{n \to \infty} \frac{e^{\frac{\ln(1+x)}{x} - \frac{\ln(1+2x)}{2x}} - 1}{x}$$

$$= e \lim_{n \to \infty} \frac{2\ln(1+x) - \ln(1+2x)}{2x^2}$$

$$= e \lim_{n \to \infty} \frac{2(x - \frac{x^2}{2}) - (2x - \frac{4x^2}{2}) + o(x^2)}{2x^2}$$

$$= \frac{e}{2}.$$

当然,这道函数极限题还可以应用 Lagrange 中值定理直接求等.

第14章 压缩映射原理

14.1 知识讲解

定义 14.1. 压缩映射

设函数 f 在区间 [a,b] 上有定义, $f([a,b]) \subset [a,b]$,并存在一个常数 k,满足 0 < k < 1,使得对一切 $x,y \in [a,b]$ 成立不等式 $|f(x) - f(y)| \le k|x - y|$,则称 f 是 [a,b] 上的一个压缩映射,称常数 k 为压缩常数.

定理 14.1. 压缩映射原理说法一

设f是[a,b]上的一个压缩映射,则

- (1) f 在 [a,b] 中存在唯一的不动点 $\xi = f(\xi)$;
- (2) 由任何初始值 $a_0 \in [a,b]$ 和递推关系 $a_{n+1} = f(a_n), n \in \mathbb{N}_+$, 生成的数列 $\{a_n\}$ 一定收敛于 \mathcal{E} ;
- (3) 成立估计式 $|a_n \xi| \le \frac{k}{1-k} |a_n a_{n-1}|$ 和 $|a_n \xi| \le \frac{k^n}{1-k} |a_1 a_0|$. (即事后估计与先验估计)

定理 14.2. 压缩映射原理说法二

对于任一数列 $\{x_n\}$, 若存在常数 $r \in (0,1)$, 使得 $\forall n \in \mathbb{N}_+$, 恒成立

$$|x_{n+1} - x_n| \le r|x_n - x_{n-1}|$$

则数列 $\{x_n\}$ 收敛.

特别地, 若数列 $\{x_n\}$ 由递推公式 $x_{n+1}=f(x_n)$ $(n\in\mathbb{N}_+)$ 给出, 其中 f 可微, x_n 恒在区间 I 中, 且存在 $r\in(0,1)$ 使得

$$|f'(x)| < r < 1, x \in I$$

则 $\{x_n\}$ 收敛.

14.2 例题分析

 练习 14.1 (武汉大学) 设 $x_1 > 0, x_{n+1} = \frac{c(1+x_n)}{c+x_n}$ (c > 1为常数), 求极限 $\lim_{n\to\infty} x_n$.

解 设
$$f(x) = \frac{c(1+x)}{c+x}$$
 $(x > 0)$, 则 $x_{n+1} = f(x_n)$, 且
$$|f'(x)| = \left| \frac{c(c-1)}{(c+x)^2} \right| = \frac{c(c-1)}{(c+x)^2} < \frac{c(c-1)}{c^2} = 1 - \frac{1}{c} < 1$$

故由压缩映射原理知 $\{x_n\}$ 收敛, 设其极限为 A(A > 0).

在递推公式两边取极限得

$$A = \frac{c(1+A)}{c+A}$$

因此

$$\lim_{n\to\infty} x_n = A = \sqrt{c}.$$

第 15章 Stolz 定理

15.1 知识讲解

定理 15.1. $\frac{0}{0}$ 型的 Stolz 定理

设 $\{a_n\}$ 和 $\{b_n\}$ 都是无穷小量,其中 $\{a_n\}$ 严格单调减少,且

$$\lim_{n\to\infty} \frac{b_{n+1}-b_n}{a_{n+1}-a_n} = l(l \text{ 可以是有限数} + \infty, -\infty)$$

则

$$\lim_{n\to\infty}\frac{b_n}{a_n}=l.$$

定理 15.2. ^{*} 型的 Stolz 定理

设数列 {an} 是严格单调递增的无穷大量, 且

$$\lim_{n\to\infty} \frac{b_{n+1}-b_n}{a_{n+1}-a_n} = l(l 可以是有限数 + \infty, -\infty)$$

则

$$\lim_{n\to\infty}\frac{b_n}{a_n}=l.$$

Ŷ 注意 作为离散型的 L'Hospital 定理, 在许多求已知数列极限的问题中十分有用, 但要注意 其条件和结论的先后顺序, 不要颠倒, 在解题中也要注意验证其条件成立与否.

15.2 例题分析

 练习 15.1 设正项数列 $\{a_n\}$ 满足 $a_n = \frac{a_{n+1}^2}{n} + a_{n+1}, n \in \mathbb{N}_+, 求极限 \lim_{n \to \infty} a_n \ln n.$

解 依题意得

$$a_n = \frac{a_{n+1}^2}{n} + a_{n+1} > a_{n+1}$$

所以 $\{a_n\}$ 严格单调递减, 又 $\{a_n\}$ 有下界 0, 故 $\{a_n\}$ 收敛.

(法一)由

即

$$a_n = \frac{a_{n+1}^2}{n} + a_{n+1}$$

$$\frac{1}{a_n} = \frac{1}{a_{n+1} \left(\frac{a_{n+1}}{n} + 1\right)} = \frac{1}{a_{n+1}} - \frac{\frac{1}{n}}{\frac{a_{n+1}}{n} + 1} = \frac{1}{a_{n+1}} - \frac{1}{a_{n+1} + n}$$

$$\frac{1}{a_{n+1}} - \frac{1}{a_n} = \frac{1}{a_{n+1} + n}$$

故由 Stolz 定理知

$$\lim_{n \to \infty} \frac{1}{a_n \ln n} = \lim_{n \to \infty} \frac{\frac{1}{a_n}}{\ln n}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{a_{n+1}} - \frac{1}{a_n}}{\ln(n+1) - \ln n}$$

$$= \lim_{n \to \infty} \frac{1}{(a_{n+1} + n)\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{1}{\frac{a_{n+1}}{n} + 1}$$

$$= 1$$

故

$$\lim_{n\to\infty} a_n \ln n = 1.$$

(法二) 设
$$\lim_{n\to\infty} a_n = A \ge 0$$
. 若 $A > 0$, 则

$$a_{n+1} - a_n = -\frac{a_{n+1}^2}{n} < -\frac{A^2}{n}$$

$$a_{n+1} = \sum_{k=1}^n (a_{k+1} - a_k) + a_1 = -A^2 \sum_{k=1}^n \frac{1}{k} + a_1$$

由于调和级数是发散的,故

$$\lim_{n\to\infty}a_n=-\infty$$

矛盾.故

$$\lim_{n\to\infty}a_n=0$$

又

$$\frac{a_n}{a_{n+1}} = \frac{a_{n+1}}{n} + 1$$

两边取极限知

$$\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=1$$

由 Stolz 定理知

$$\lim_{n \to \infty} a_n \ln n = \lim_{n \to \infty} \frac{\ln n}{\frac{1}{a_n}}$$

$$= \lim_{n \to \infty} \frac{\ln(n+1) - \ln n}{\frac{1}{a_{n+1}} - \frac{1}{a_n}}$$

$$= \lim_{n \to \infty} \frac{a_{n+1}a_n \ln(1 + \frac{1}{n})}{a_n - a_{n+1}}$$

$$= \lim_{n \to \infty} \frac{a_n}{a_{n+1}} n \ln(1 + \frac{1}{n})$$

$$= 1.$$

- 全 注意 法一巧妙地避开了求 $\{a_n\}$ 的极限, 但其变换数列的方法没那么容易想到; 法二的想法比较自然, 但需要先证 $\lim_{n\to\infty}a_n=0$.
- 為 练习 **15.2** 求极限 $\lim_{n\to\infty} \frac{n^n}{\sqrt[n]{n!}}$

解 由 Stolz 定理知

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = \lim_{n \to \infty} e^{\ln \frac{n}{\sqrt[n]{n!}}}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n-1}$$

$$= e.$$

▲ 练习 **15.3** (2019 复旦大学) 设 $a_1 = 1, a_n = a_{n-1} + \frac{1}{a_{n-1}}, n \ge 2.$

证明:
$$\lim_{n\to\infty} \frac{a_n}{\sqrt{n}} = \sqrt{2}$$

并计算:
$$\lim_{n\to\infty} \frac{\sqrt{n} \left(a_n - \sqrt{2n}\right)}{\ln n}$$
.

解 显然 $\{a_n\}$ 严格单调递增, 故要么 $\{a_n\}$ 存在有限极限, 要么 $\lim_{n\to\infty} a_n = +\infty$.

若 $\{a_n\}$ 存在有限极限a(a>0),则在递推公式两边取极限得

$$a = a + \frac{1}{a}$$

这对任何有限数 a 都不可能成立, 矛盾. 故

$$\lim_{n\to\infty}a_n=+\infty$$

则

$$\lim_{n \to \infty} \frac{a_n^2}{n} = \lim_{n \to \infty} \frac{a_n^2 - a_{n-1}^2}{n - (n-1)} = \lim_{n \to \infty} \left(2 + \frac{1}{a_{n-1}^2} \right) = 2$$

故

$$\lim_{n\to\infty}\frac{a_n}{\sqrt{n}}=\sqrt{2}.$$

从而

$$\lim_{n \to \infty} \frac{\sqrt{n} \left(a_n - \sqrt{2n} \right)}{\ln n} = \lim_{n \to \infty} \frac{\sqrt{n}}{a_n + \sqrt{2n}} \lim_{n \to \infty} \frac{a_n^2 - 2n}{\ln n}$$

$$= \frac{1}{2\sqrt{2}} \lim_{n \to \infty} \frac{(a_n^2 - 2n) - (a_{n-1}^2 - 2n + 2)}{\ln n - \ln(n - 1)}$$

$$= \frac{1}{2\sqrt{2}} \lim_{n \to \infty} \frac{2 + \frac{1}{a_{n-1}^2} - 2}{\frac{1}{n}}$$

$$= \frac{\sqrt{2}}{8}.$$

ho 注意 本题应用 Stolz 定理有一定得技巧性, 若直接对 $\lim_{n \to \infty} \frac{a_n}{\sqrt{n}}$ 应用 Stolz 定理等则很不好做. 两小题应用 Stolz 的关键都是避免根号参与运算.

练习 **15.4** 设
$$a_n > 0$$
, 且 $a_{n+1} - \frac{1}{a_{n+1}} = a_n + \frac{1}{a_n}$. 求极限 $\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{1}{a_k}$.

解 显然 $\{a_n\}$ 严格单调递增. 若 $\{a_n\}$ 有上界,则由单调有界定理知, $\lim_{n\to\infty}a_n$ 存在,设为 A(A>0).

在递推关系两边取极限,得

$$A - \frac{1}{A} = A + \frac{1}{A}$$

这对任何数 A 都不可能成立. 故 $\{a_n\}$ 无上界, $\lim_{n\to\infty} a_n = +\infty$.

由 Stolz 定理知

$$\lim_{n \to \infty} \frac{\left(\sum_{k=1}^{n} \frac{1}{a_k}\right)^2}{n} = \lim_{n \to \infty} \frac{\left(\sum_{k=1}^{n+1} \frac{1}{a_k}\right)^2 - \left(\sum_{k=1}^{n} \frac{1}{a_k}\right)^2}{(n+1) - n}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{a_{n+1}} + 2\sum_{k=1}^{n} \frac{1}{a_k}}{a_{n+1}}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{a_{n+1}} - \frac{1}{a_n}}{a_{n+1} - a_n}$$

$$= \lim_{n \to \infty} \frac{a_{n+1} - a_n}{a_{n+1} - a_n}$$

$$= 1$$

故

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\sum_{k=1}^n\frac{1}{a_k}=1.$$

第16章 Heine 定理

16.1 知识讲解

定理 16.1. Heine 定理

 $\lim_{x \to x_0} f(x) = A$ 的充分必要条件是: 对于任意满足条件 $\lim_{n \to \infty} x_n = x_0$, 且 $x_n \neq x_0$ ($n = 1, 2, 3, \cdots$) 的数列 $\{x_n\}$, 相应的函数值数列 $\{f(x_n)\}$ 成立

$$\lim_{n\to\infty}f(x_n)=A.$$

 \Diamond

推论 16.1. Heine 定理的推论

函数 f 在点 a 存在极限 $\lim_{x\to a} f(x)$ 的充分必要条件是: 对于任意满足条件 $x_n \neq a, \forall n \in \mathbb{N}_+, \lim_{n\to\infty} x_n = a$ 的数列 $\{x_n\}$,相应的函数值数列 $\{f(x_n)\}$ 收敛.

16.2 例题分析

為 练习 **16.1** 设 $x_1 > 0, x_{n+1} = \ln(1 + x_n)$. 求极限 $\lim_{n \to \infty} nx_n$.

解 显然 $x_n > 0, \forall n \in \mathbb{N}_+$. 又

$$x_{n+1} = \ln(1 + x_n) < x_n, \forall n \in \mathbb{N}_+$$

故 $\{x_n\}$ 严格单调递减, 由单调有界定理知 $\{x_n\}$ 收敛, 设其极限为 A(A>0). 在递推公式 两边取极限

$$A = \ln(1 + A)$$

得

第16章 Heine 定理

由 Stolz 定理, Heine 定理, 等价无穷小及 Taylor 公式知

$$\lim_{n \to \infty} n x_n = \lim_{n \to \infty} \frac{n}{\frac{1}{x_n}}$$

$$= \lim_{n \to \infty} \frac{(n+1) - n}{\frac{1}{x_{n+1}} - \frac{1}{x_n}}$$

$$= \lim_{n \to \infty} \frac{x_n \ln(1 + x_n)}{x_n - \ln(1 + x_n)}$$

$$= \lim_{x \to 0} \frac{x \ln(1 + x)}{x - \ln(1 + x)}$$

$$= \lim_{x \to 0} \frac{x^2}{x - \left(x - \frac{x^2}{2} + o\left(\frac{1}{x^3}\right)\right)}$$

$$= 2.$$

练习 16.2 求极限
$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\int_1^n\ln\left(1+\frac{1}{\sqrt{x}}\right)\mathrm{d}x$$
.

解 由 Heine 定理, L'Hospital 法则及等价无穷小知

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \int_{1}^{n} \ln\left(1 + \frac{1}{\sqrt{x}}\right) dx$$

$$= \lim_{t \to +\infty} \frac{\int_{1}^{t} \ln\left(1 + \frac{1}{\sqrt{x}}\right) dx}{\sqrt{t}}$$

$$= \lim_{t \to +\infty} \frac{\ln\left(1 + \frac{1}{\sqrt{t}}\right)}{\frac{1}{2\sqrt{t}}}$$

$$= \lim_{t \to +\infty} 2\sqrt{t} \frac{1}{\sqrt{t}}$$

$$= 2.$$

解 令
$$t = nx$$
, $F(x) = \int_0^x \frac{tdt}{\arctan t} - \frac{t^2}{\pi}$.
故

$$\int_{\pi}^{2\pi} \frac{x dx}{\arctan(nx)} = \frac{1}{n^2} \int_{n\pi}^{2n\pi} \frac{t dt}{\arctan t}$$

由等价无穷小, Heine 定理, Lagrange 中值定理及 L'Hospital 法则知

$$\lim_{n \to \infty} n \ln \left(\frac{1}{3\pi n^2} \int_{n\pi}^{2n\pi} \frac{t dt}{\arctan t} \right)$$

$$= \lim_{n \to \infty} n \left(\frac{1}{3\pi n^2} \int_{n\pi}^{2n\pi} \frac{t dt}{\arctan t} - 1 \right)$$

$$= \lim_{x \to +\infty} x \left(\frac{1}{3\pi x^2} \int_{x\pi}^{2x\pi} \frac{t dt}{\arctan t} - 1 \right)$$

$$= \lim_{x \to +\infty} \frac{1}{3\pi} \frac{F(2\pi x) - F(\pi x)}{2x - x}$$

$$= \lim_{x \to +\infty} \frac{1}{3\pi} (F(\pi x))' \Big|_{x = \xi} (\xi \in (\pi x, 2\pi x))$$

$$= \lim_{x \to +\infty} \frac{\pi x - 2x \arctan(\pi x)}{3 \arctan(\pi x)}$$

$$= \lim_{x \to +\infty} \frac{1}{3 \arctan(\pi x)} \lim_{x \to +\infty} \frac{\pi - 2 \arctan(\pi x)}{\frac{1}{x}}$$

$$= \frac{2}{3\pi} \lim_{x \to +\infty} \frac{-\frac{2\pi}{1 + \pi^2 x^2}}{-\frac{1}{x^2}}$$

$$= \frac{4}{3\pi^2}$$

故

$$\lim_{n\to\infty} \left(\frac{1}{3\pi} \int_{\pi}^{2\pi} \frac{x dx}{\arctan(nx)} \right)^n = \exp\left\{ \lim_{n\to\infty} n \ln\left(\frac{1}{3\pi n^2} \int_{n\pi}^{2n\pi} \frac{t dt}{\arctan t} \right) \right\} = e^{\frac{4}{3\pi^2}}.$$

 $\hat{\mathbf{y}}$ 注意 有读者可能会奇怪 F(x) 是怎么设出来的, 其实就是后面的步骤算着算着为了应用 Lagrange 中值定理而凑出来的.

第17章 无穷乘积

17.1 例题分析

解 因为 $\{a_n\}$ 为正数列, 所以 $\prod_{n=1}^{\infty} (1+a_n)$ 要么收敛要么发散到正无穷.

若
$$\prod_{n=1}^{\infty} (1+a_n)$$
 收敛, 则

$$\lim_{n\to\infty}a_n=0$$

故

$$\lim_{n \to \infty} \frac{a_n}{(1+a_1)(1+a_2)\cdots(1+a_n)} = \frac{\lim_{n \to \infty} a_n}{\prod_{n=1}^{\infty} (1+a_n)} = 0$$

若
$$\prod_{n=1}^{\infty} (1+a_n) = +\infty$$
, 则

$$0 < \frac{a_n}{(1+a_1)(1+a_2)\cdots(1+a_n)} < \frac{1}{\prod\limits_{k=1}^{n-1}(1+a_k)} \to 0 \ (n \to \infty)$$

即

$$\lim_{n \to \infty} \frac{a_n}{(1+a_1)(1+a_2)\cdots(1+a_n)} = 0.$$

第18章 幂级数

18.1 例题分析

△ 练习 18.1 求极限 $\lim_{n\to\infty}\sum_{k=1}^{n}\frac{k}{3^{k-1}}$.

解 构造幂级数 $f(x) = \sum_{n=1}^{\infty} nx^{n-1}$.

由于

$$\overline{\lim}_{n \to \infty} \sqrt[n]{|n|} = 1$$

故 $x \in (-1,1)$ 时,该级数收敛.

又

$$f(x) = \left(\sum_{n=1}^{\infty} x^n\right)' = \left(\frac{x}{1-x}\right)' = \frac{1}{(1-x)^2}, x \in (-1,1)$$

所以

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{3^{k-1}} = f\left(\frac{1}{3}\right) = \frac{9}{4}.$$

▲ 练习 18.2 求极限 $\lim_{n\to\infty}\sum_{k=1}^n \frac{1}{k^2 2^k}$.

解 构造幂级数 $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$, 其收敛半径为 1. 则

$$f'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n} = -\frac{\ln(1-x)}{x}$$
$$f'(1-x) = -\frac{\ln x}{1-x}$$

故

$$[f(x) + f(1-x) + \ln x \ln(1-x)]' = 0$$

从而对于 $\forall x \in (0,1)$, 有

令 $x \rightarrow 0^+$, 故

$$C = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

因此

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2 2^k} = f\left(\frac{1}{2}\right) = \frac{\pi^2}{12} - \frac{1}{2}\ln^2 2.$$

学 注意 其实本题证明了一个结论: $\text{Li}_2(x) + \text{Li}_2(1-x) = \frac{\pi^2}{6} - \ln x \ln(1-x), 0 < x < 1, \text{Li}_2(x)$ 为二重对数.

第19章 微分中值定理

19.1 知识讲解

定理 19.1. Cauchy 中值定理

设 f(x) 和 g(x) 都在闭区间 [a,b] 上连续, 在开区间 (a,b) 上可导, 且对于任意 $x\in(a,b),g'(x)\neq0$, 则至少存在一点 $\xi\in(a,b)$, 使得

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

定理 19.2. Lagrange 中值定理

在 Cauchy 中值定理中取 g(x) = x.

注意 微分中值定理在一些求数列极限和函数极限的问题中都能起到作用.

19.2 例题分析

练习 19.1 已知 $\{a_n\}$ 满足 $a_n > 0$, $\lim_{n \to \infty} \left(a_n^2 \sum_{k=1}^n a_k\right) = \frac{3}{2}$. 求极限 $\lim_{n \to \infty} a_n \sqrt[3]{n}$.

解 设 $S_n = \sum_{k=1}^n a_k$. 由于 $a_n > 0$, 故 $\{S_n\}$ 严格单调递增, 且要么 $\sum_{k=1}^\infty a_k$ 收敛, 要么 $\sum_{k=1}^\infty a_k = +\infty$. 若 $\sum_{k=1}^\infty a_k$ 收敛, 则

$$\lim_{n\to\infty} a_n = 0$$

此时

$$\lim_{n \to \infty} \left(a_n^2 \sum_{k=1}^n a_k \right) = \lim_{n \to \infty} a_n \lim_{n \to \infty} \sum_{k=1}^n a_k = 0$$

矛盾.故

$$\lim_{n\to\infty} S_n = \sum_{k=1}^{\infty} a_k = +\infty$$

又

$$\lim_{n\to\infty} \left(a_n^2 \sum_{k=1}^n a_k \right) = \frac{3}{2}$$

故

$$\lim_{n\to\infty} a_n = 0$$

由 Lagrange 中值定理知

$$S_{n+1}^{\frac{3}{2}} - S_n^{\frac{3}{2}} = \frac{3}{2} (S_{n+1} - S_n) \sqrt{\xi} = \frac{3}{2} a_{n+1} \sqrt{\xi}, \, \xi \in (S_n, S_{n+1})$$

又

$$a_{n+1}\sqrt{S_n} < a_{n+1}\sqrt{\xi} < a_{n+1}\sqrt{S_{n+1}}$$

且

$$\lim_{n \to \infty} a_{n+1} \sqrt{S_{n+1}} = \lim_{n \to \infty} \sqrt{a_n^2 \sum_{k=1}^n a_k} = \sqrt{\frac{3}{2}}$$

$$\lim_{n \to \infty} a_{n+1} \sqrt{S_n} = \sqrt{\lim_{n \to \infty} \left(a_{n+1}^2 S_{n+1} - a_{n+1}^3 \right)} = \sqrt{\lim_{n \to \infty} \left(a_{n+1}^2 S_{n+1} \right)} = \sqrt{\frac{3}{2}}$$

故由夹逼定理知

$$\lim_{n\to\infty} a_{n+1}\sqrt{\xi} = \sqrt{\frac{3}{2}}$$

即

$$\lim_{n \to \infty} S_{n+1}^{\frac{3}{2}} - S_n^{\frac{3}{2}} = \frac{3}{2} \sqrt{\frac{3}{2}}$$

所以由 Stolz 定理

$$\lim_{n \to \infty} a_n \sqrt[3]{n} = \lim_{n \to \infty} \frac{a_n \sqrt{S_n} \sqrt[3]{n}}{\sqrt{S_n}}$$

$$= \sqrt{\frac{3}{2}} \lim_{n \to \infty} \frac{\sqrt[3]{n}}{\sqrt{S_n}}$$

$$= \sqrt{\frac{3}{2}} \sqrt[3]{\lim_{n \to \infty} \frac{n}{S_n^{\frac{3}{2}}}}$$

$$= \sqrt{\frac{3}{2}} \sqrt[3]{\lim_{n \to \infty} \frac{n}{S_n^{\frac{3}{2}}}}$$

$$= \sqrt{\frac{3}{2}} \sqrt[3]{\lim_{n \to \infty} \frac{(n+1) - n}{S_{n+1}^{\frac{3}{2}} - S_n^{\frac{3}{2}}}}$$

$$= 1$$

练习 19.2 求极限 $\lim_{n\to\infty} n^2 \left(\arctan\frac{1}{n} - \arctan\frac{1}{n+1}\right)$.

解 由 Lagrange 中值定理知

$$\lim_{n\to\infty} n^2 \left(\arctan\frac{1}{n} - \arctan\frac{1}{n+1}\right) = \lim_{n\to\infty} n^2 \frac{1}{\xi^2+1} \left(\frac{1}{n} - \frac{1}{n+1}\right), \xi \in \left(\frac{1}{n+1}, \frac{1}{n}\right)$$

由夹逼定理知

$$\lim_{n\to\infty}\xi=0$$

故

$$\lim_{n \to \infty} n^2 \left(\arctan \frac{1}{n} - \arctan \frac{1}{n+1} \right) = \lim_{n \to \infty} \frac{n^2}{n(n+1)} = 1.$$

第 20 章 Taylor 公式

20.1 知识讲解

定理 20.1. 带 Peano 余项的 Taylor 公式

设 f(x) 在 x_0 处有 n 阶导数,则存在 x_0 的一个邻域,对于该邻域中的任一点 x,成立

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x)$$

其中, 余项 $r_n(x)$ 满足

$$r_n(x) = o((x - x_0)^n).$$

定理 20.2. 带 Lagrange 余项的 Taylor 公式

设 f(x) 在 [a,b] 上具有 n 阶连续导数, 且在 (a,b) 上有 n+1 阶导数. 设 $x_0 \in [a,b]$ 为一定点,则对于任意 $x \in [a,b]$,成立

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x)$$

其中, 余项 $r_n(x)$ 满足

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}, \xi \not = x \not = x_0 \not \geq i$$

20.2 例题分析

练习 20.1 求极限 $\lim_{n\to\infty} n \sin(2\pi n!e)$.

解 由 Taylor 公式知

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!} + \frac{e^{\theta}}{(n+2)!}, 0 < \theta < 1$$

所以

$$2\pi n! e = 2\pi N + \frac{2\pi}{n+1} + o\left(\frac{1}{n}\right), N \in \mathbb{N}_+$$

故

$$\lim_{n \to \infty} n \sin(2\pi n! e) = \lim_{n \to \infty} n \sin\left(2\pi N + \frac{2\pi}{n+1} + o\left(\frac{1}{n}\right)\right)$$

$$= \lim_{n \to \infty} n \sin\left(\frac{2\pi}{n+1} + o\left(\frac{1}{n}\right)\right)$$

$$= \lim_{n \to \infty} \frac{2n\pi}{n+1}$$

$$= 2\pi.$$

▲ 练习 20.2 求极限 $\lim_{n\to\infty}\cos^n\frac{x}{\sqrt{n}}$.

解 由 Taylor 公式

$$\lim_{n \to \infty} \cos^n \frac{x}{\sqrt{n}} = \lim_{n \to \infty} \left(1 - \frac{x^2}{2n} + o\left(\frac{1}{n^2}\right) \right)^n$$

$$= \lim_{n \to \infty} e^{n \ln\left(1 - \frac{x^2}{2n} + o\left(\frac{1}{n^2}\right)\right)}$$

$$= \lim_{n \to \infty} e^{n\left(-\frac{x^2}{2n} + o\left(\frac{1}{n^2}\right)\right)}$$

$$= \lim_{n \to \infty} e^{-\frac{x^2}{2} + o\left(\frac{1}{n}\right)}$$

$$= e^{-\frac{x^2}{2}}.$$

练习 20.3 求极限 $\lim_{n\to\infty}\frac{1}{\sqrt{n}}\int_1^n\ln\left(1+\frac{1}{\sqrt{x}}\right)\mathrm{d}x$.

解 <math> $t = \frac{1}{\sqrt{x}}, 则$

$$\frac{1}{\sqrt{n}} \int_{1}^{n} \ln\left(1 + \frac{1}{\sqrt{x}}\right) dx = \frac{2}{\sqrt{n}} \int_{\frac{1}{\sqrt{n}}}^{1} \frac{\ln(1+t)}{t^{3}} dt$$

由 Taylor 公式

$$\ln(1+t) = t - \frac{t^2}{2} + o(t^3) (t \to 0)$$

知

$$\int_{\frac{1}{\sqrt{n}}}^{1} \frac{\ln(1+t)}{t^3} dt = \int_{\frac{1}{\sqrt{n}}}^{1} \frac{1 - \frac{t}{2}}{t^2} dt + O(1) = \sqrt{n} - \frac{\ln n}{4} + O(1)$$

故

$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} \int_1^n \ln\left(1 + \frac{1}{\sqrt{x}}\right) \mathrm{d}x = \lim_{n\to\infty} \left(2 - \frac{\ln n}{2\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right) = 2.$$

练习 20.4 求极限 $\lim_{n\to\infty} \sin \sqrt{n^2+1}\pi$.

解 由 Taylor 公式知

$$\sqrt{n^2 + 1} = n\left(1 + \frac{1}{n^2}\right)^{\frac{1}{2}} = n\left(1 + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)$$

故

$$\lim_{n \to \infty} \sin \sqrt{n^2 + 1}\pi = \lim_{n \to \infty} \sin \left(n\pi + \frac{\pi}{2n} + o\left(\frac{1}{n}\right) \right)$$

$$= \lim_{n \to \infty} (-1)^n \sin \left(\frac{\pi}{2n} + o\left(\frac{1}{n}\right)\right)$$

$$= \lim_{n \to \infty} (-1)^n \left(\frac{\pi}{2n} + o\left(\frac{1}{n}\right)\right)$$

$$= 0.$$

第21章 定积分定义

21.1 知识讲解

定义 21.1. 定积分定义

设 f(x) 是 定义在 [a,b] 上的有界函数,在 [a,b] 上任意取分点 $\{x_i\}_{i=0}^n$,作成一种划分

$$P: a = x_0 < x_1 < x_2 < \cdots < x_n = b$$

并任意取点 $\xi_i \in [x_{i-1}, x_i]$. 记小区间 $[x_{i-1}, x_i]$ 的长度为 $\Delta x_i = x_i - x_{i-1}$, 并令 $\lambda = \max_{1 \le i \le n} (\Delta x_i)$, 若当 $\lambda \to 0$, 极限

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

存在, 且极限值既与划分 P 无关, 又与 ξ_i 的取法无关, 则称 f(x) 在 [a,b] 上 Riemann 可积. 和式

$$S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$$

称为 Riemann 和, 其极限值 I 称为 f(x) 在 [a,b] 上的定积分, 记为

$$I = \int_{a}^{b} f(x) \mathrm{d}x.$$

若 f ∈ R[a,b], 则

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f\left[a + \frac{k}{n}(b - a)\right] \frac{b - a}{n}$$

21.2 例题分析

练习 21.1 设 $x_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{2n-1} - \frac{1}{2n}, n \in \mathbb{N}_+.$ 求 $\lim_{n \to \infty} x_n$.

解 由练习 5.4 的 Catalan 恒等式及定积分定义知

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{k}{n}} = \int_0^1 \frac{\mathrm{d}x}{1 + x} = \ln 2.$$

练习 21.2 求极限
$$\lim_{n\to\infty}\sum_{i=1}^n\frac{\sin\frac{i}{n}}{n+\frac{i}{n}}$$
.

解由

$$\sum_{i=1}^{n} \frac{\sin \frac{i}{n}\pi}{n+1} < \sum_{i=1}^{n} \frac{\sin \frac{i}{n}\pi}{n+\frac{i}{n}} < \sum_{i=1}^{n} \frac{\sin \frac{i}{n}\pi}{n}$$

又

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\sin \frac{i}{n}\pi}{n} = \int_{0}^{1} \sin \pi x dx = \frac{2}{\pi}$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\sin \frac{i}{n} \pi}{n+1} = \lim_{n \to \infty} \frac{n}{n+1} \sum_{i=1}^{n} \frac{\sin \frac{i}{n} \pi}{n} = \lim_{n \to \infty} \frac{n}{n+1} \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \sin \frac{i}{n} \pi = \int_{0}^{1} \sin \pi x dx = \frac{2}{\pi}$$

故由夹逼定理知

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\sin \frac{i}{n}\pi}{n + \frac{i}{n}} = \frac{2}{\pi}.$$

练习 21.3 求极限 $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}$

解 由定积分定义

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = \lim_{n \to \infty} e^{\ln \frac{n}{\sqrt[n]{n!}}}$$

$$= \lim_{n \to \infty} e^{-\frac{1}{n} \sum_{k=1}^{n} \ln \frac{k}{n}}$$

$$= \lim_{n \to \infty} e^{-\int_{0}^{1} \ln x dx}$$

$$= e.$$

為 练习 21.4 求极限 $\lim_{n\to\infty}\sum_{i=1}^n \frac{2^{\frac{i}{n}}}{n+\frac{1}{i}}$.

解由于

$$2^{\frac{i}{n}} > \frac{2^{\frac{i}{n}}}{1 + \frac{1}{ni}} = 2^{\frac{(i-1)}{n}} \frac{2^{\frac{1}{n}}}{1 + \frac{1}{ni}} = 2^{\frac{i-1}{n}} \frac{e^{\frac{\ln 2}{n}}}{1 + \frac{1}{ni}} > 2^{\frac{i-1}{n}} \frac{1 + \frac{\ln 2}{n}}{1 + \frac{1}{ni}} > 2^{\frac{i-1}{n}}$$

故由 $y=2^x$ 连续性及单调性知 $\exists \xi_i \in \left[\frac{i-1}{n},\frac{i}{n}\right]$, 使得 $\frac{2^{\frac{i}{n}}}{1+\frac{1}{n}}=2^{\xi_i}$.

由定积分定义

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2^{\frac{i}{n}}}{n + \frac{1}{i}} = \lim_{n \to \infty} \sum_{i=1}^{n} 2^{\xi_i} \frac{1}{n} = \int_{0}^{1} 2^{x} dx = \frac{1}{\ln 2}.$$

注意 本题解法具有较大的推广价值,在很多形似定积分定义式的式子中都可以使用该方法进行处理。

第22章 积分第一中值定理

22.1 知识讲解

定理 22.1. 积分第一中值定理

设 f(x) 和 g(x) 都在 [a,b] 上可积,g(x) 在 [a,b] 上不变号,则存在 $\eta \in [m,M]$,使得

$$\int_{a}^{b} f(x)g(x)dx = \eta \int_{a}^{b} g(x)dx$$

这里M和m分别表示f(x)在[a,b]的上确界和下确界.

推论 22.1

特别地, 若加上条件: $f \in C[a,b]$, 则存在 $\xi \in [a,b]$, 使得

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx.$$

22.2 例题分析

為 练习 22.1 求极限 $\lim_{n\to\infty}\int_0^1 x^n \sqrt{x+3} dx$.

解 由积分第一中值定理知

$$\lim_{n \to \infty} \int_0^1 x^n \sqrt{x+3} dx = \lim_{n \to \infty} \sqrt{\xi+3} \int_0^1 x^n dx \, (\xi \in (0,1))$$
$$= \lim_{n \to \infty} \frac{\sqrt{\xi+3}}{\sqrt{n+1}}$$
$$= 0$$

為 练习 22.2 求极限 $\lim_{n\to\infty}\int_0^{\frac{\pi}{2}}\sin^n x dx$.

 \mathbf{R} 对 $\forall \varepsilon > 0$, 不妨 $\varepsilon < \frac{\pi}{2}$, 则

$$0 \le \int_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x = \int_0^{\frac{\pi}{2} - \varepsilon} \sin^n x \mathrm{d}x + \int_{\frac{\pi}{2} - \varepsilon}^{\frac{\pi}{2}} \sin^n x \mathrm{d}x \le \frac{\pi}{2} \sin^n (\frac{\pi}{2} - \varepsilon) + \varepsilon$$

在不等式两边分别取上下极限,综合可得

$$0 \le \underline{\lim}_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x dx \le \overline{\lim}_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x dx \le \varepsilon$$

故由 ϵ 的任意性知

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x dx = \underline{\lim}_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x dx = \overline{\lim}_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x dx = 0.$$

练习 22.3 (第九届全国大学生数学竞赛数学类预赛) 设 $f(x) = \arctan x, A$ 为常数. 若 $B = \lim_{n \to \infty} \left(\sum_{k=1}^{n} f\left(\frac{k}{n}\right) - An \right)$ 存在, 求 A, B.

解 由于
$$B = \lim_{n \to \infty} \left(\sum_{k=1}^{n} f\left(\frac{k}{n}\right) - An \right)$$
 存在, 故

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) - A \right) = 0$$

由定积分定义知

$$A = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) dx = \frac{\pi}{4} - \frac{\ln 2}{2}$$

下面证明一个适用更广的结论.

结论 若函数 f 可导, $f' \in R[a,b]$, 则

$$\lim_{n\to\infty} n \left[\sum_{i=1}^n f\left(a + \frac{b-a}{n}i\right) \frac{b-a}{n} - \int_a^b f(x) \mathrm{d}x \right] = \frac{b-a}{2} \left[f(b) - f(a) \right].$$

证明 设 $x_i = a + \frac{b-a}{n}i$, 则

$$n \left[\sum_{i=1}^{n} f\left(a + \frac{b-a}{n}i\right) \frac{b-a}{n} - \int_{a}^{b} f(x) dx \right]$$

$$= n \left[\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} (f(x_{i}) - f(x)) dx \right]$$

$$= n \left[\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f'(\xi_{i}) (x_{i} - x) dx \right] (\xi \in (x_{i-1}, x_{i}))$$

$$= n \left[\sum_{i=1}^{n} \eta_{i} \int_{x_{i-1}}^{x_{i}} (x_{i} - x) dx \right] \left(\eta_{i} \in [\min_{x_{i-1} \le x \le x_{i}} f'(x), \max_{x_{i-1} \le x \le x_{i}} f'(x)] \right)$$

$$= \frac{b-1}{2} \sum_{i=1}^{n} \eta_{i} (x_{i} - x_{i-1})$$

故

$$\lim_{n\to\infty} n \left[\sum_{i=1}^n f\left(a + \frac{b-a}{n}i\right) \frac{b-a}{n} - \int_a^b f(x) \mathrm{d}x \right] = \frac{b-a}{2} \int_a^b f'(x) \mathrm{d}x = \frac{b-1}{2} \left[f(b) - f(a) \right].$$

由以上结论即知

$$B=\frac{\pi}{8}.$$

全 注意 本题所用结论的证明的最后一步用到了 Newton-Leibniz 公式, 需要指出若一个函数可积, 且存在原函数, 则有 Newton-Leibniz 公式, 这有别于一般教科书上所讲. 另外, 本题

所用结论是一个经典的加边问题, 其有一系列的推广, 在此直接给出结论, 都是用积分第一中值定理和分部积分来证明的

$$\lim_{n \to \infty} n^2 \left(\int_a^b f(x) dx - \frac{b-a}{n} \sum_{k=1}^n f\left(a + \frac{b-a}{n}k\right) + \frac{b-a}{2n} (f(b) - f(a)) \right) = \frac{(b-a)^2}{6} (f'(b) - f'(a))$$

$$\lim_{n \to \infty} n^{s} \left(\int_{a}^{b} f(x) dx - \frac{1}{n} \sum_{k=1}^{n} f\left(a + \frac{b-a}{n}k\right) + \sum_{i=1}^{s-1} \frac{C_{i}}{i!n^{i}} (f^{(i-1)}(b) - f^{(i-1)}(a)) \right)$$

$$=\frac{(-1)^{s}B_{s}(b-a)^{s}(f^{(s-1)}(a)-f^{(s-1)}(b))}{s!}$$

其中, B_n 是 Bernoulli 数, $C_i = (-1)^i B_i (b-a)^i$,S 为正整数.

这个结论和后文的 Euler-Maclaurin 求和公式是比较直接的.

练习 **22.4** 设 $f \in C[-1,1]$, 证明: $\lim_{h \to 0^+} \int_{-1}^1 \frac{hf(x)}{h^2 + x^2} dx = \pi f(0)$.

证明 由 $f \in C[-1,1]$ 知, $f \in f[-1,1]$ 和, $f \in f[-1,1]$ 的 充分小时, 由积分第一中值定理知

$$\lim_{h \to 0^{+}} \int_{0}^{\sqrt{h}} \frac{hf(x)}{h^{2} + x^{2}} dx$$

$$= \lim_{h \to 0^{+}} f(\xi) \int_{0}^{\sqrt{h}} \frac{h}{h^{2} + x^{2}} dx \, (\xi \in (0, \sqrt{h}))$$

$$= \lim_{h \to 0^{+}} f(\xi) \left[\arctan \frac{x}{h} \right]_{0}^{\sqrt{h}}$$

$$= \frac{\pi}{2} f(0)$$

同理

$$\lim_{h \to 0^+} \int_{-\sqrt{h}}^0 \frac{hf(x)}{h^2 + x^2} dx = \frac{\pi}{2} f(0)$$

由

$$\left| \int_{\sqrt{h}}^{1} \frac{hf(x)}{h^2 + x^2} \mathrm{d}x \right| < M \left| \int_{\sqrt{h}}^{1} \frac{h}{h^2 + x^2} \mathrm{d}x \right| = M \left(\arctan \frac{1}{h} - \arctan \frac{1}{\sqrt{h}} \right)$$

又

$$\lim_{h\to 0^+}\left(\arctan\frac{1}{h}-\arctan\frac{1}{\sqrt{h}}\right)=\lim_{h\to 0^+}\arctan\frac{1}{h}-\lim_{h\to 0^+}\arctan\frac{1}{\sqrt{h}}=0$$

故

$$\lim_{h \to 0^+} \int_{\sqrt{h}}^1 \frac{hf(x)}{h^2 + x^2} dx = \lim_{h \to 0^+} \left| \int_{\sqrt{h}}^1 \frac{hf(x)}{h^2 + x^2} dx \right| = 0$$

同理

$$\lim_{h \to 0^+} \int_{-1}^{-\sqrt{h}} \frac{hf(x)}{h^2 + x^2} dx = 0$$

综上所述

$$\lim_{h \to 0^+} \int_{-1}^{1} \frac{hf(x)}{h^2 + x^2} dx = \pi f(0).$$

 $\hat{\Sigma}$ 注意 在这类积分号下求极限的题目中,常用方法之一是使用分段处理的方法,分一段其值就是所求的值,其他段则值为 0,关键在于找准分界点.本题原题为 $h = \frac{1}{n}$ 的情况,在此

进行了小小的推广.

练习 22.5 已知 $f \in C[0,1]$, 求极限 $\lim_{n \to \infty} \int_0^1 \sqrt[n]{x} f(x) dx$.

解 由于 $f \in C[0,1]$, 故 $\left(\int_0^x f(t)dt\right)' = f(x)$.

$$\int_{0}^{1} \sqrt[n]{x} f(x) dx = \int_{0}^{1} \sqrt[n]{x} d\left(\int_{0}^{x} f(t) dt\right) = \int_{0}^{1} f(x) dx + \frac{1}{n} \int_{0}^{1} \left(\int_{0}^{x} f(t) dt\right) x^{\frac{1}{n} - 1} dx$$

$$\int_{0}^{1} \sqrt[n]{x} f(x) dx = \int_{0}^{1} \sqrt[n]{x} d\left(\int_{0}^{x} f(t) dt\right) = \int_{0}^{1} f(x) dx + \frac{1}{n} \int_{0}^{1} \left(\int_{0}^{x} f(t) dt\right) x^{\frac{1}{n} - 1} dx$$

设 $f(x) < M, x \in [0,1]$, 则

$$\frac{1}{n} \int_{0}^{1} \left(\int_{0}^{x} f(t) dt \right) x^{\frac{1}{n} - 1} dx$$

$$\leq \frac{1}{n} \int_{0}^{1} \left| \int_{0}^{x} f(t) dt \right| x^{\frac{1}{n} - 1} dx$$

$$\leq \frac{1}{n} \int_{0}^{1} \int_{0}^{x} |f(t)| dt x^{\frac{1}{n} - 1} dx$$

$$< \frac{1}{n} \int_{0}^{1} M x^{\frac{1}{n}} dx$$

$$= \frac{M}{n + 1}$$

故

$$\lim_{n\to\infty} \int_0^1 \sqrt[n]{x} f(x) \mathrm{d}x = \int_0^1 f(x) \mathrm{d}x.$$

第23章 Euler-Maclaurin 求和公式

23.1 知识讲解

命题 23.1. Euler-Maclaurin 求和公式

设函数
$$f \in C^{(2m+2)}[a,b], h = \frac{b-a}{n}$$
,则
$$\int_{a}^{b} f(x) dx = \left[\frac{1}{2} f(a) + f(a+h) + f(a+2h) + \dots + f(a+(n-1)h) + \frac{1}{2} f(b) \right] h$$

$$-\sum_{k=1}^{m} \frac{B_{2k}}{(2k)!} h^{2k} \left[f^{(2k-1)}(b) - f^{(2k-1)}(a) \right] - \frac{B_{2m+2}}{(2m+2)!} h^{2m+2} f^{(2m+2)}(\xi) (b-a)$$
其中, $\xi \in [a,b], B_{2k}(k=1,2,\dots,m+1)$ 是 Bernoulli 数, $B_0 = 1, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, B_6 = \frac{1}{42}, \dots$

🔶 注意 Euler-Maclaurin 求和公式在一些加边问题中都能起到作用.

23.2 例题分析

练习 23.1 设
$$x_n = \lim_{n \to \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right)$$
. 求极限 $\lim_{n \to \infty} n \left(\frac{\pi}{4} - x_n \right)$. 解 令 $f(x) = \frac{1}{1 + x^2}$. 由 Euler-Maclaurin 求和公式知
$$\lim_{n \to \infty} n \left(\frac{\pi}{4} - x_n \right) = -\frac{f(1) - f(0)}{2} = \frac{1}{4}.$$

🕏 注意 利用 Euler-Maclaurin 求和公式, 我们可以较轻松地求出

$$\lim_{n \to \infty} n \left[n \left(\frac{\pi}{4} - x_n \right) - \frac{1}{4} \right] = \frac{1}{24}$$

$$\lim_{n \to \infty} n^4 \left\{ \frac{1}{24} - n \left[n \left(\frac{\pi}{4} - x_n \right) - \frac{1}{4} \right] \right\} = \frac{1}{2016}$$

. . .

第24章 多重积分定义

24.1 知识讲解

定义 24.1. n 重积分

设 Ω 为 \mathbb{R}^n 上的零边界闭区域, 函数 u = f(x) 在 Ω 上有界. 将 Ω 用曲面网分成 n 个 小区域 $\Delta\Omega_1, \Delta\Omega_2, \cdots, \Delta\Omega_n$ (称为 Ω 的一个划分), 记 ΔV_i 为 $\Delta\Omega_i$ 的体积, 并记所有的 小区域 $\Delta\Omega_i$ 的最大直径为 λ . 在每个 $\Delta\Omega_i$ 上任取一点 x_i , 若 λ 趋于零时, 和式

$$\sum_{i=1}^{n} f(\mathbf{x}) \Delta V_i$$

的极限存在且与区域的分法和点 x_i 的取法无关,则称 f(x) 在 Ω 上可积,并称此极限为 f(x) 在有界闭区域 Ω 上的 n 重积分,记为

$$\int_{\Omega} f dV \left(= \lim_{\lambda \to 0} \sum_{i=1}^{n} f(x) \Delta V_{i} \right)$$

f(x) 称为被积函数, Ω 称为积分区域, x 称为积分变量, dV 称为体积元素, $\int_{\Omega} f dV$ 也 称为积分值.

在 \mathbb{R}^2 中, f(x,y) 在 D 上的二重积分记为

$$\iint\limits_D f(x,y) \mathrm{d}x \mathrm{d}y$$

在 \mathbb{R}^3 中, f(x,y,z) 在 Ω 上的三重积分记为

$$\iiint_{\Omega} f(x, y, z) dx dy dz \not \supset \iiint_{\Omega} f(x, y, z) dV$$

在 \mathbb{R}^n 中, $f(x_1, x_2, \dots, x_n)$ 在 Ω 上的 n 重积分记为

$$\int_{\Omega} f(x_1, x_2, \cdots, x_n) dx_1 dx_2 \cdots dx_n \not \preceq \int_{\Omega} \int_{\Omega} f(x_1, x_2, \cdots, x_n) dx_1 dx_2 \cdots dx_n.$$

若二元函数 f(x,y) 在闭矩形 $D = [a,b] \times [c,d]$ 上可积,则

$$\iint\limits_{D} f(x,y) \mathrm{d}x \mathrm{d}y = \lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} f\left(a + \frac{b-a}{n}i, c + \frac{d-c}{n}j\right) \cdot \frac{b-a}{n} \cdot \frac{d-c}{n}.$$

类似地,可推广至n重积分.

24.2 例题分析

练习 24.1 (2010 考研数学一) 求极限 $\lim_{n\to\infty}\sum_{i=1}^n\sum_{j=1}^n\frac{n}{(n+i)(n^2+j^2)}$.

解

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2 + j^2)}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{\left(1 + \frac{i}{n}\right) \left(1 + \frac{j^2}{n^2}\right)} \cdot \frac{1}{n^2}$$

$$= \iint_{D} \frac{1}{(1+x)(1+y^2)} dxdy$$

$$= \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y^2)} dy$$

$$= \frac{1}{4}.$$