

Principio de Inducción

- 1. Demuestre, usando el principio de inducción, las siguientes igualdades:
 - i) $1+3+5+\cdots+(2n-1)=n^2$.
 - ii) $1+5+9+\cdots+(4n-3)=n(2n-1)$.
 - iii) $1^2 + 4^2 + 7^2 + \dots + (3n-2)^2 = \frac{1}{2}n(6n^2 3n 1).$
- 2. Demuestre, usando el principio de inducción, las siguientes desigualdades:
 - i) $3^n > 2^n, \forall n \in \mathbb{N}$.
 - ii) $(1+x)^n \ge 1 + n \cdot x$, $\forall n \in \mathbb{N} \ y \ \forall x \in \mathbb{R} \ \text{con} \ x \ge 1$.
 - iii) $n! > 3^n$, para todo $n \in \mathbb{N}$ con $n \ge 7$.
- 3. Demuestre por inducción las siguientes proposiciones:
 - i) 6n-1 es divisible por 5, para todo $n \in \mathbb{N}$.
 - ii) $n(n^2+5)$ es divisible por 6, para todo $n \in \mathbb{N}$. (*Hint:* n(n+1) es un número par)
 - iii) $7^n 2^n$ es divisible por 5, para todo $n \in \mathbb{N}$.
 - iv) $7^{2n}+16n-1$ es un múltiplo de 64, para todo $n\in\mathbb{N}.$
 - v) $2^n + (-1)^{n+1}$ es divisible por 3, para todo $n \in \mathbb{N}$.
- 4. Sea la sucesión recursiva $(a_n)_{n\in\mathbb{N}}$ definida por:

$$a_1 = 1 a_n = \frac{1}{3 - a_{n-1}}.$$

- i) Demuestre que $(a_n)^2 3a \cdot n + 1 \ge 0$ para todo $n \in \mathbb{N}$.
- ii) Demuestre que $0 < a_n \le 1$ para todo $n \in \mathbb{N}$.

5. Sea la sucesión recursiva $(a_n)_{n\in\mathbb{N}}$ definida por:

$$a_1 = 2$$

$$a_{n+1} = \frac{12}{1 + a_n}.$$

- i) Demuestre que $a_{2n-1} < a_{2n+1}$ para todo $n \in \mathbb{N}$.
- ii) Demuestre que $a_{2n} > 3$ para todo $n \in \mathbb{N}$.