Chapter 2: Linear Classifiers

Latreche Sara

Contents

1	Classification	2
2	Learning Algorithm	3
3	Linear Classifiers	3
4	Learning Linear Classifier Algorithm	5
5	Evaluating a Learning Algorithm	7

1 Classification

Concept

A binary classifier is a mapping:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

It assigns a label to an input vector $x \in \mathbb{R}^d$, typically derived from real-world data (images, sounds, etc.). We assume preprocessing has already been done, and work directly in feature space.

We denote a classifier by h, so the process is:

$$x \xrightarrow{h} y$$

In supervised learning, we are given a dataset:

$$D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}\$$

where $y^{(i)} \in \{-1, +1\}.$

The goal is to find a hypothesis h that generalizes well. Given a training set D_n and a classifier h, we can define the training error of h to be:

$$E_n(h) = \frac{1}{n} \sum_{i=1}^n \begin{cases} 1 & \text{if } h(x^{(i)}) \neq y^{(i)} \\ 0 & \text{otherwise} \end{cases}$$

For now, we will try to find a classifier with small training error (later, with some added criteria) and hope it generalizes well to new data, and has a small test error:

$$E(h) = \frac{1}{n_0} \sum_{i=n+1}^{n+n_0} \begin{cases} 1 & \text{if } h(x^{(i)}) \neq y^{(i)} \\ 0 & \text{otherwise} \end{cases}$$

2 Learning Algorithm

A **hypothesis class** \mathcal{H} is a set (finite or infinite) of possible classifiers, each of which represents a mapping:

$$h: \mathbb{R}^d \to \{-1, +1\}.$$

A learning algorithm is a procedure that takes a training dataset D_n as input and returns a hypothesis $h \in \mathcal{H}$:

$$D_n \xrightarrow{\text{learning algorithm}(\mathcal{H})} h.$$

The choice of hypothesis class \mathcal{H} can significantly impact the test error of the resulting classifier h. One common approach to improve generalization is to restrict the size or "expressiveness" of \mathcal{H} , thus avoiding overly complex models that might overfit the training data.

3 Linear Classifiers

We start with the hypothesis class of **linear classifiers**. These classifiers are relatively easy to understand, mathematically simple, powerful on their own, and form the basis of many more sophisticated methods.

A linear classifier in d dimensions is defined by a vector of parameters $\theta \in \mathbb{R}^d$ and a scalar $\theta_0 \in \mathbb{R}$. Thus, the hypothesis class \mathcal{H} of linear classifiers in d dimensions is the set of all vectors in \mathbb{R}^{d+1} . We assume that θ is a $d \times 1$ column vector.

Toolbox: Linear Classifier Decision Rule

Given particular values for θ and θ_0 , the classifier is defined by:

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0) = \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0, \\ -1 & \text{otherwise.} \end{cases}$$

This hyperplane splits the space into positive and negative half-spaces.

Note on dimensions: Since both x and θ are $d \times 1$ column vectors, the product $\theta^{\top}x$ is 1×1 , which mathematically corresponds to a scalar.

We can think of θ and θ_0 as specifying a **hyperplane** in \mathbb{R}^d . This hyperplane divides the space into two half-spaces:

- The **positive half-space** contains all points x such that $\theta^{\top}x + \theta_0 > 0$. Points in this space are classified as +1.
- The **negative half-space** contains all points where $\theta^{\top}x + \theta_0 \leq 0$, classified as -1.

The vector θ is **normal** (perpendicular) to the hyperplane and points toward the positive half-space.

Toolbox: Example: Classification

Consider the linear classifier defined by:

$$\theta = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}, \quad \theta_0 = 3.$$

We classify the points:

$$x^{(1)} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad x^{(2)} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}.$$

Calculate:

$$h(x^{(1)}; \theta, \theta_0) = \operatorname{sign} \left(\begin{bmatrix} -1 & 1.5 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} + 3 \right)$$
$$= \operatorname{sign}(-3 + 3 + 3)$$
$$= \operatorname{sign}(3) = +1,$$

$$h(x^{(2)}; \theta, \theta_0) = \operatorname{sign}\left(\begin{bmatrix} -1 & 1.5 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} + 3\right)$$
$$= \operatorname{sign}(-4 - 1.5 + 3)$$
$$= \operatorname{sign}(-2.5) = -1.$$

Thus, $x^{(1)}$ is classified as positive and $x^{(2)}$ as negative.

linear_classifier_example.png

Toolbox: Study Questions

- 1. What is the green vector normal to the hyperplane? Specify it as a column vector.
- 2. What change would you have to make to θ and θ_0 to keep the separating hyperplane in the same place, but classify all points labeled + in the diagram as negative, and all points labeled as positive?

4 Learning Linear Classifier Algorithm

Given a dataset and the hypothesis class of linear classifiers, our objective is to find the linear classifier with the smallest possible training error.

This is a well-formed optimization problem. However, it is not computationally easy! To build intuition, we will begin by exploring a very simple (and arguably naive) learning algorithm. It is often helpful to consider the "stupidest possible" solution before trying to get clever.

Toolbox: Algorithm: Random Linear Classifier

We generate k possible hypotheses by randomly sampling their parameter vectors. Then, we evaluate the training-set error for each hypothesis and return the one with the lowest error (breaking ties arbitrarily).

Input:

- D_n : A training dataset of n labeled examples in \mathbb{R}^d
- \bullet k: Number of hypotheses to try
- d: Dimensionality of feature vectors

Output:

• $(\theta^{(j^*)}, \theta_0^{(j^*)})$: The hypothesis (parameter vector and offset) with the lowest training error

Procedure:

RANDOM-LINEAR-CLASSIFIER
$$(D_n, k, d)$$
 for $j = 1$ to k do

Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ from $(\mathbb{R}^d, \mathbb{R})$

$$j^* = \arg\min_{j \in \{1, \dots, k\}} E_n(\theta^{(j)}, \theta_0^{(j)})$$
return $(\theta^{(j^*)}, \theta_0^{(j^*)})$

Toolbox: Numerical Example: Evaluating Hypotheses

Let the training data be:

$$D_3 = \left\{ \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix}, +1 \right), \left(\begin{bmatrix} -1 \\ -1 \end{bmatrix}, -1 \right), \left(\begin{bmatrix} 2 \\ 0 \end{bmatrix}, +1 \right) \right\}$$

Suppose we randomly generate k = 2 hypotheses:

$$\theta^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \theta_0^{(1)} = -1 \quad \Rightarrow \quad h^{(1)}(x) = \operatorname{sign}(\theta^{(1)} \cdot x + \theta_0^{(1)})$$

$$\theta^{(2)} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \quad \theta_0^{(2)} = 0.5 \quad \Rightarrow \quad h^{(2)}(x) = \mathrm{sign}(\theta^{(2)} \cdot x + \theta_0^{(2)})$$
 Evaluating predictions:
$$-h^{(1)}$$
:
$$\mathrm{sign}(1+2-1) = +1 \quad (\mathrm{correct})$$

$$\mathrm{sign}(-1-1-1) = -1 \quad (\mathrm{correct})$$

$$\mathrm{sign}(2+0-1) = +1 \quad (\mathrm{correct})$$

$$\Rightarrow 0 \text{ errors}$$

$$-h^{(2)}$$
:
$$\mathrm{sign}(-1+4+0.5) = +1 \quad (\mathrm{correct})$$

$$\mathrm{sign}(1-2+0.5) = -0.5 \Rightarrow -1 \quad (\mathrm{correct})$$

$$\mathrm{sign}(-2+0+0.5) = -1.5 \Rightarrow -1 \quad (\mathrm{wrong})$$

$$\Rightarrow 1 \text{ error}$$
 Therefore, $j^* = 1$ and the algorithm returns $(\theta^{(1)}, \theta_0^{(1)})$.

5 Evaluating a Learning Algorithm

How should we evaluate the performance of a classifier h? The best method is to measure **test error** on data that was **not used to train it**.

However, evaluating the performance of a **learning algorithm** (not just a single classifier) is trickier. There are many potential sources of variability in the test error of a learned hypothesis h:

- The specific training examples in D_n
- The specific testing examples in $D_{n'}$
- Randomization inside the learning algorithm itself

To account for this variability, we ideally repeat the following procedure multiple times:

- Train on a newly sampled training set
- Evaluate the resulting hypothesis h on a disjoint testing set

Doing this multiple times helps **control for poor choices of training data or randomness in the algorithm**. However, this can be **data-intensive**, which is a concern in applications where labeled data is **scarce or expensive**.

Cross-Validation

A practical workaround is **cross-validation**, which allows data reuse by partitioning the dataset.

Toolbox: Procedure: Cross-Validation

Cross-validation allows us to estimate the generalization performance of a learning algorithm by systematically rotating training and testing roles across different data chunks.

Input:

- D: Full dataset
- k: Number of folds (chunks)

Output:

• An estimate of average generalization error

Procedure:

```
CROSS-VALIDATE(D, k)
Divide D into k chunks: D_1, D_2, \ldots, D_k
for i = 1 to k do
Train hypothesis h_i on D \setminus D_i (withholding D_i)
Compute error E_i(h_i) on D_i
return \frac{1}{k} \sum_{i=1}^k E_i(h_i)
```

Important Note: Cross-validation does **not** produce or evaluate a single hypothesis h. Instead, it evaluates the performance of the **learning algorithm** by testing it across multiple train-test splits.

Study Questions

- 1. What is the green vector normal to the hyperplane? Specify it as a column vector.
- 2. What change would you have to make to θ and θ_0 to keep the separating hyperplane in the same place, but classify all points labeled + in the diagram as negative, and all points labeled as positive?

Study Question

What vector is normal to the hyperplane defined by $\theta^{\top}x + \theta_0 = 0$? **Answer:** The vector θ is normal to the hyperplane.

References

• MIT OpenCourseWare, 6.0002: Introduction to Computational Thinking and Data Science, Fall 2016, Lecture 12.