MATH2111 Tutorial 5

T1A&T1B QUAN Xueyang T1C&T2A SHEN Yinan T2B&T2C ZHANG Fa

1 Linear Transformation

1. Definition (Linear Transformation):

A transformation (or mapping) *T* is linear if:

- (a) T(u + v) = T(u) + T(v) for all u, v in the domain of T.
- (b) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

2. Theorem 4 (Properties of Linear Transformation):

If T is a linear transformation, then

- (a) T(0) = 0
- (b) $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ for all vectors \mathbf{u}, \mathbf{v} in the domain of T and all scalars c, d
- (c) $T(c_1v_1 + \ldots + c_pv_p) = c_1T(v_1) + \ldots + c_pT(v_p)$ for all vectors v_1, \ldots, v_p in the domain of T and all scalars c_1, \ldots, c_p .

2 The Matrix of a Linear Transformation

1. Theorem:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

A is the $m \times n$ matrix whose jth column is the vector $T(e_j)$, where e_j is the j th column of the identity matrix in \mathbb{R}^n :

$$A = [T(\boldsymbol{e}_1) \cdots T(\boldsymbol{e}_n)]$$

This matrix A is called the **standard matrix** for the linear transformation T.

2. Definition (One-To-One):

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one if each \boldsymbol{b} in \mathbb{R}^m is the image of at most one \boldsymbol{x} in \mathbb{R}^n .

3. **Definition (Onto):**

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

4. Theorem:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(x) = \mathbf{0}$ has only the trivial solution.

5. Theorem:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:

- (a) T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- (b) T is one-to-one if and only if the columns of A are linearly independent.

3 Matrix Operations

1. Theorem (Property of Matrix):

Let A, B and C be matrices of the same size, and let r and s be scalars. Then

(a)
$$A + B = B + A$$

(b)
$$(A + B) + C = A + (B + C)$$

(c)
$$A + 0 = A$$

(d)
$$r(A+B) = rA + rB$$

(e)
$$(r+s)A = rA + sA$$

(f)
$$r(sA) = (rs)A$$

2. Definition (Matrix Multiplication):

If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix, then the product AB is the $m \times p$ matrix with entry

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

3. Theorem (Properties of Matrix Multiplication):

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then

- (a) A(BC) = (AB)C (associative law of multiplication)
- (b) A(B+C) = AB + AC (left distributive law)
- (c) (B + C)A = BA + CA (right distributive law)
- (d) r(AB) = (rA)B = A(rB) for any scalar r
- (e) $I_m A = A = A I_n$ (identity for matrix multiplication)

WARNINGS:

- 1. In general, $AB \neq BA$.
- 2. The cancellation laws do not hold for matrix multiplication. That is, if AB = AC, then it is not true in general that B = C.
- 3. If a product AB is the zero matrix, you cannot conclude in general that either A = 0 or B = 0.

4. Definition (Powers of a Matrix):

If A is an $n \times n$ matrix, k is a positive integer,

$$A^k = \underbrace{A \cdots A}_{k \text{ times}}, \qquad A^0 = I_n$$

5. Definition (Transpose of a Matrix):

Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^{\top} , whose columns are formed from the corresponding rows of A.

6. Theorem (Properties of Transpose of a Matrix):

Let A and B denote matrices whose sizes are appropriate for the following sums and products. Then

3

(a)
$$(A^{\top})^{\top} = A$$

(b)
$$(A + B)^{\top} = A^{\top} + B^{\top}$$

(c) For any scalar
$$r$$
, $(rA)^{\top} = rA^{\top}$

(d)
$$(AB)^{\top} = B^{\top}A^{\top}$$

4 Exercises

1. Given transformation $T(x_1, x_2, x_3) = (x_2 + 1, x_3 + 1)$.

- (1) What is T(1, 2, 1)?
- (2) Is $T(\cdot)$ a linear transformation?
- (1) Here $\chi_1 = 1$, $\chi_2 = 2$, $\chi_3 = 1$ $\therefore T(1,2,1) = (2+1,1+1) = (3,2)$
- (2) No.
 By def of linear transformation.

$$T(x_1+y_1, x_2+y_2, x_3+y_3) = (x_2+y_2+1, x_3+y_3+1)$$
 \neq
 $T(x_1, x_2, x_3) + T(y_1, y_2, y_3) = (x_2+1, x_3+1) + (y_2+1, y_3+1)$
 $= (x_2+y_2+2, x_3+y_3+2)$

T(·) is not a linear transformation.

Or you can show, for C \$1 EPR,

$$T(cx_1, cx_2, cx_3) = (cx_2 + 1, cx_3 + 1) = cT(x_1, x_2, x_3) + (1-c)\cdot(1, 1)$$

 $\neq cT(x_1, x_2, x_3)$

:. T(·) is not a linear transformation.

2. (1) Find the standard matrix of the following linear transformation

$$T(x_1, x_2, x_3, x_4) = (5x_1 - x_2, 5x_2 - x_3, 5x_3 - x_4, 5x_4 - x_1).$$

(2) Find the linear transformation of the following standard matrix

$$A = \left(\begin{array}{ccc} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{array}\right)$$

(1)
$$T\vec{x} = A\vec{x}$$
 $A = (T(\vec{e}) \ T(\vec{e}) \ T(\vec{e}) \ T(\vec{e}))$
 $T(\vec{e}_1) = (5,0,0,-1)$
 $T(\vec{e}_2) = (0,-1,5,0)$
 $T(\vec{e}_3) = (0,-1,5,0)$
 $T(\vec{e}_4) = (0,0,-1,5)$
 $A = \begin{pmatrix} 5 & -1 & 0 & 0 \\ 0 & 5 & -1 & 0 \\ 0 & 0 & 5 & -1 \\ -1 & 0 & 0 & 5 \end{pmatrix}$

(2)
$$T(\vec{e}_1) = (5, 1, 1)$$
, $T(\vec{e}_2) = (1, 5, 1)$, $T(\vec{e}_3) = (1, 1, 5)$
 $T(x_1, x_2, x_3) = (5x_1 + x_2 + x_3, x_1 + 5x_2 + x_3, x_1 + x_2 + 5x_3)$

- 3. Given linear transformation $T(x_1, x_2, x_3) = (x_1 + x_2, x_2 + x_3, x_1 + x_3)$, determine whether
- (1) *T* is a one-to-one map,
- (2) T maps \mathbb{R}^3 onto \mathbb{R}^3 .
- (1) T is one to one.

Standard matrix of T is
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 - R_2 \rightarrow R_3} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \xrightarrow{R_{3+} R_2 \rightarrow R_3} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

columns of A are linearly in dependent.

Thus, by theorem, T is one to one.

(2) columns of A span \mathbb{R}^3 , thus by theorem, T maps \mathbb{R}^3 onto \mathbb{R}^3

L Rotation transformation

4. Suppose α is an angle. Given linear transformation $T(x_1, x_2) = (\cos \alpha \cdot x_1 + \sin \alpha \cdot x_2, -\sin \alpha \cdot x_1 + \cos \alpha \cdot x_2)$. Determine whether

- (1) T is a one-to-one map,
- (2) T maps \mathbb{R}^2 onto \mathbb{R}^2 .

(1) Standard atrix of T is
$$A = \begin{pmatrix} \cos \lambda & \sin \lambda \\ -\sin \lambda & \cos \lambda \end{pmatrix}$$

Case I: when cost = 0, we have kind = 1.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Tis a one-to-one map, and maps R2 onto R2

Case I: when sind = 0, we have | cos d = 1

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ or } A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Tis a one-to-one map, and maps \mathbb{R}^2 onto \mathbb{R}^2

Case II: when Sind to, cosa to

$$A = \begin{pmatrix} \cos d & \sin d \\ -\sin d & \cos d \end{pmatrix} \xrightarrow{R2 + \frac{\sin d}{\cos d} R_1 \to R_2} \begin{pmatrix} \cos d & \sin d \\ 0 & \cos d + \frac{\sin^2 d}{\cos d} \end{pmatrix}$$

$$= \begin{pmatrix} \cos \alpha & \sin \alpha \\ 0 & \frac{1}{\cos \alpha} \end{pmatrix}$$

Tis a one-to-one map, and maps R2 on to R2

In conclusion, Tis a one-to-one map, and maps R2 onto R2

5. Given
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

- (1) Compute \overrightarrow{AB} .
- (2) Compute A^2 , A^3 .
- (3) Compute $A^{\top}B$.

(1)
$$AB = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 & 0$$

$$(2) \quad A \cdot A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A^{3} = A \cdot A^{2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(3)
$$A^TB = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 7 & 8 & 9 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Remark: (1) AB just switches order of vows of B.

DA: permutation matrices.

$$3 A^3 = I_3$$