Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 - Curso 2005

EXAMEN JULIO

Ejercicio 1 (25 puntos)

- 1. (5 puntos) Probar que para todo $n \in \mathbb{N}$, $3n^3 11n + 48$ es divisible por n + 3.
- 2. (6 puntos) Mostrar que para todo a, b y c enteros no nulos, mcd(a, b) = mcd(bc a, b).
- 3. (6 puntos) Probar que para todo entero natural $n \ge 2$, se cumple: $mcd(3n^3 11n, n + 3) = mcd(48, n + 3)$.
- 4. (8 puntos) Determinar los divisores positivos de 48 y deducir cuáles son los enteros naturales n tales que $\frac{3n^3-11n}{n+3}$ es un entero natural.

Ejercicio 2 (25 puntos)

Sea U_{12} el conjunto de las clases de congruencia [n] mód. 12, donde n es natural tal que $1 \le n \le 11$ y mcd(n, 12) = 1.

- 1. (8 puntos) Probar que U_{12} es un grupo con la operación producto de clases de congruencia módulo 12.
- 2. (7 puntos) Escribir la tabla de operación de U_{12} .
- 3. (10 puntos) Sea $G = \{e, a, b, c\}$ un grupo con neutro e tal que $x^2 = e$ para todo $x \in G$. Probar que G es isomorfo a U_{12} .

Ejercicio 3 (20 puntos)

Sea G un grupo abeliano con n elementos y m un entero primo con n.

- 1. (10 puntos) Demostrar que la aplicación $f: G \to G$ definida por $f(g) = g^m$ es un isomorfismo.
- 2. (10 puntos) Demostrar que, para todo $a \in G$, la ecuación $x^m = a$ tiene una solución en G. (en otras palabras todo elemento tiene raíz m-ésima)

Ejercicio 4 (30 puntos)

Sea A el anillo conmutativo de todas las funciones $f: \mathbb{R} \mapsto \mathbb{R}$ con las operaciones suma f+g y producto fg usuales de funciones reales.

Sean
$$N_1 = \{ f \in G : f(1) = 0 \}, \ N_2 = \{ f \in G : f(1) = 0, \ f(2) = 0 \}.$$

- 1. (5 puntos) Probar que N_1 y N_2 son ideales de A.
- 2. (10 puntos) Probar que A/N_1 es un anillo isomorfo al cuerpo de los reales.
- 3. (8 puntos) ξ Es N_1 un ideal maximal de G? Justificar la respuesta.
- 4. (7 puntos) Probar que N_2 es un ideal maximal de N_1 pero no es ideal maximal de A.