Monetary Policy & Anchored Expectations

Laura Gáti

Boston College

October 1, 2019

MOTIVATION

A quote or a plot, something about how policy-makers worry about anchored inflation expectations

ANCHORING - A CONCERN FOR MONETARY POLICY?

• What is anchoring?

• (Why) do we want expectations to be anchored?

THIS PAPER.

Defines anchoring from the lens of a learning model

Embeds anchoring in a New Keynesian (NK) model with econometric learning

3 Goal: Derive optimal monetary policy, and contrast it with rational expectations (RE)

 Today: some initial simulations with different specifications for monetary policy

In words

Expectations anchored if unresponsive to short-run fluctuations

② Blessing or curse for monetary policy?

Related Literature

Optimal monetary policy in New Keynesian models
 Clarida, Gali & Gertler (1999), Woodford (2003)

Econometric learning
 Evans & Honkapohja (2001), Preston (2005), Graham (2011)

Anchoring
 Carvalho et al (2019), Svensson (2015), Hooper et al (2019)

ROADMAP

- 1 Intuition: what is anchoring and why should it matter?
- 2 A FORMAL NOTION OF ANCHORING
- 3 NK MODEL WITH ANCHORING
- 4 SIMULATIONS

NEW KEYNESIAN PHILLIPS CURVE

$$\pi_t = \beta \hat{\mathbb{E}}_t \pi_{t+1} + \kappa \mathbf{x}_t$$

- $\pi_t = \text{inflation}$
- $x_t = \text{output gap}$
- $\hat{\mathbb{E}}_t$ = expectation-operator (not necessarily rational)

Suppose a negative demand shock:

$$\pi_t = \beta \hat{\mathbb{E}}_t \pi_{t+1} + \kappa \mathbf{x}_t$$

If expectations do not move:

$$\pi_{t} = \beta \hat{\mathbb{E}}_{t} \pi_{t+1} + \kappa \mathbf{x}_{t} \downarrow$$

If seeing π_t , expectations adjust:

$$\pi_{t} = \beta \hat{\mathbb{E}}_{t} \pi_{t+1} + \kappa \mathbf{x}_{t}$$

$$\downarrow \downarrow \qquad \downarrow$$

Keeping expectations stable may be desirable

ightarrow Anchoring as a notion of stable expectations

ROADMAP

- 1 Intuition: What is anchoring and why should it matter?
- 2 A FORMAL NOTION OF ANCHORING
- 3 NK MODEL WITH ANCHORING
- 4 SIMULATIONS

Anchoring definition

Suppose firms

observe everything up to time t

do not observe future variables

 $\bullet~$ KEY: are unsure about the long-run mean of inflation, $\bar{\pi}$

Anchoring definition II

Firms construct one-period-ahead inflation forecasts as CHECK

$$\hat{\mathbb{E}}_t \pi_{t+1} = \bar{\pi}_{t-1} + bs_t \tag{1}$$

 $\bar{\pi} = \text{drift in inflation (= long-run mean, "target")}$

 $\hat{\mathbb{E}} = \text{subjective}$ expectation operator (not rational expectations, $\mathbb{E})$

b = matrix of constants

s = shocks

ANCHORING DEFINITION III

And update their estimate of the inflation drift as (Carvalho et al, 2019) CHECK

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t \underbrace{\left(\pi_t - (\bar{\pi}_{t-1} + bs_t)\right)}^{\text{short-run forecast error}}$$
(2)

$$k_t = \mathbb{I} \times \frac{1}{k_{t-1}+1} + (1-\mathbb{I}) \times \bar{g}$$
 (3)

$$\bar{g} = constant$$

 $k = gain \rightarrow sensitivity to short-run forecast errors$

Anchoring: when k decreases over time.

ANCHORING DEFINITION IV

$$\mathbb{I} = \begin{cases} 1 & \text{if } \theta_t \leq \bar{\theta} \\ 0 & \text{otherwise.} \end{cases} \tag{4}$$

$$\theta_t = |\hat{\mathbb{E}}_{t-1}\pi_t - \mathbb{E}_{t-1}\pi_t|/\sigma_s \tag{5}$$

 $\bar{\theta} = \text{constant}$

 $\theta=$ difference between subjective and objective (model-consistent) expectations, scaled by noise

Anchoring \equiv when the deviation between objective and subjective expectations is small enough such that firms choose decreasing gains

Intuition

 When my expectation far from what is implied by the model, I update my estimate of the drift strongly

 When the two are close, I load less on my forecast error because it matters less

- Unanchored if: π deviates from target
 - i) strongly enough
 - ii) long enough

ROADMAP

- 1 Intuition: What is anchoring and why should it matter?
- 2 A FORMAL NOTION OF ANCHORING
- 3 NK MODEL WITH ANCHORING
- 4 SIMULATIONS

3-Equation New Keynesian Model

$$\mathbf{x}_{t} = -\sigma \mathbf{i}_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} ((1-\beta)\mathbf{x}_{T+1} - \sigma(\beta \mathbf{i}_{T+1} - \pi_{T+1}) + \sigma \mathbf{r}_{T}^{n})$$

 $\pi_{t} = \kappa \mathbf{x}_{t} + \hat{\mathbb{E}}_{t} \sum_{t=1}^{\infty} (\alpha \beta)^{t-t} (\kappa \alpha \beta \mathbf{x}_{t+1} + (\mathbf{1} - \alpha)\beta \pi_{t+1} + \mathbf{u}_{t})$

$$oldsymbol{i}_t = \psi_\pi \pi_t + \psi_\mathsf{X} \mathsf{X}_t + oldsymbol{ar{i}}_t$$

"Long-horizon forecasts" \rightarrow firms do not know beliefs of others (Preston, 2005)

(6)

(7)

(8)

Compact notation

$$z_t = \mathsf{A}_1 \mathsf{f}_{a,t} + \mathsf{A}_2 \mathsf{f}_{b,t} + \mathsf{A}_3 \mathsf{s}_t$$

$$s_t = \mathsf{Ps}_{t-1} + \epsilon_t$$

$$z_t \equiv \begin{pmatrix} \pi_t \\ x_t \\ i_t \end{pmatrix}$$
 $s_t \equiv \begin{pmatrix} \underline{r}_t^n \\ \overline{i}_t \\ i_t \end{pmatrix}$

$$\begin{pmatrix} r_t^n \\ \bar{i}_t \\ u_t \end{pmatrix}$$

(9)

(10)

$$f_{a,t} \equiv \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (lpha eta)^{\mathsf{T}-t} \mathsf{z}_{\mathsf{T}+1} \qquad \qquad f_{b,t} \equiv \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (eta)^{\mathsf{T}-t} \mathsf{z}_{\mathsf{T}+1}$$

20 / 26

ROADMAP

- 1 Intuition: What is anchoring and why should it matter?
- 2 A FORMAL NOTION OF ANCHORING
- 3 NK MODEL WITH ANCHORING
- 4 SIMULATIONS

Calibration

β	0.98
$\overline{\sigma}$	0.5
α	0.5
ψ_{π}	1.5
$\overline{\psi_{X}}$	1.5
Ī	0.145^{-1}
$\overline{\theta}$	1
ρ_{r}	0.9
ρ_{i}	0.9
$\overline{ ho_{u}}$	0.9
σ_{i}	0.1
σ_{r}	0.359
$\sigma_{\sf u}$	0.277

Carvalho et al, 2019

Role of Learning

Varying $\bar{\theta}$

VARYING TAYLOR-RULE COEFFICIENTS

A BEAMER BUTTON TEMPLATE, HOW TO GET BACK TO MAIN TEXT

$$D = \begin{bmatrix} d_{11} & \gamma_{12} & \gamma_{13} & d_{14} & \cdots \\ d_{21} & \gamma_{22} & \gamma_{23} & d_{24} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$
(13)

◆ Return