Fourier analysis and it's applications

Aman kumar

Project Supervisor:

Dr. Saurabh Shrivastava, Associate Professor, Department of Mathematics, IISER Bhopal

12 November 2021

Table of Contents

- Introduction
- 2 Continuous function with diverging fourier series
- Weyl's equidistribution criteria
- Fast Fourier Transform

Definition

• Given an integrable function $f:[0,L]\to\mathbb{C}$, we define the **Fourier** series of f as

$$\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{\frac{2\pi i n x}{L}}$$

where

$$\hat{f}(n) := \frac{1}{L} \int_0^L f(x) e^{-2\pi i n x/L} dx = a_n$$

denotes the **n-th Fourier coefficient** of f for $n \in \mathbb{N}$.

• The N^{th} partial sum of the Fourier series of f, for N a positive integer is given by

$$S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}(n)e^{2\pi i n x/L}.$$

3/29

¹E.M. Stein and R. Shakarchi: Fourier Analysis: An Introduction

Theorem

Let f be an integrable function on the circle with $f \sim \sum_{n=-\infty}^{\infty} a_n e^{in\theta}$. Then we have:

(i) Mean-square convergence of the Fourier series

$$rac{1}{2\pi}\int_0^{2\pi}|f(heta)-S_N(f)(heta)|^2\,d heta o 0\quad ext{ as }N o\infty$$

(ii) Parseval's identity

$$\sum_{n=-\infty}^{\infty} |a_n|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(\theta)|^2 d\theta = ||f||^2.$$

Table of Contents

- Introduction
- 2 Continuous function with diverging fourier series
- Weyl's equidistribution criteria
- Fast Fourier Transform

Theorem

Let f be an integrable function on the circle. Suppose f is differentiable at θ_0 . Then $\lim_{N\to\infty} S_N(f)(\theta_0) = f(\theta_0)$.

Construction of a continuous function with diverging Fourier series

- Theorem fails, if the differentiability assumption is replaced by the weaker assumption of continuity.
- Construction is based on "Breaking of symmetry" in the partial sum.
- When we break the symmetry, that is, when we split the Fourier series $\sum_{n=-\infty}^{\infty} a_n e^{in\theta}$ into the two pieces

$$\sum_{n>0} a_n e^{in\theta} \quad \text{and} \quad \sum_{n<0} a_n e^{in\theta}.$$

Consider Sawtooth function after re-scaling

$$f(\theta) = \begin{cases} -i(\pi + \theta) & \text{if } -\pi < \theta < 0 \\ i(\pi - \theta) & \text{if } 0 < \theta < \pi \end{cases}$$

•

- The fourier series of sawtooth function is given by $f(\theta) \sim \sum_{n \neq 0} \frac{e^{in\theta}}{n}$.
- Consider the series

$$\sum_{n=-\infty}^{-1} \frac{e^{in\theta}}{n}.$$

• **Note:** above is not fourier series of Riemann integrable function.

ullet For each ${\it N} \geq 1$ we define the following two functions on $[-\pi,\pi]$,

$$f_N(\theta) = \sum_{1 \leq |n| \leq N} rac{e^{in heta}}{n} \quad ext{ and } \quad ilde{f}_N(heta) = \sum_{-N \leq n \leq -1} rac{e^{in heta}}{n}.$$

Lemma

- ② $f_N(\theta)$ is uniformly bounded in N and θ .

• Now, we define the following two function by **shifting frequency of** f_N **and** \tilde{f}_N **by** 2N **units**, we define

$$P_N(\theta) = e^{i(2N)\theta} f_N(\theta)$$
 and $\tilde{P}_N(\theta) = e^{i(2N)\theta} \tilde{f}_N(\theta)$.

- Now the coefficients of P_N are non-vanishing for $N \le n \le 3N$, $n \ne 2N$.
- Whereas coefficients of \tilde{P}_N are non-vanishing for only when N < n < 2N 1.
- $\left| \tilde{P}_N(\theta) \right| = \left| \tilde{f}_N(\theta) \right| \Rightarrow \left| \tilde{P}_N(0) \right|$ is badly behaved.

Lemma

$$S_M(P_N) = \begin{cases} P_N & \text{if } M \ge 3N\\ \tilde{P}_N & \text{if } M = 2N\\ 0 & \text{if } M < N \end{cases}$$

Breaking symmetry in Lemma

- Finally, we need to find a convergent series of positive terms $\sum \alpha_k$ and a sequence of integers $\{N_k\}$ which increases rapidly enough so that:
 - $0 N_{k+1} > 3N_k$
 - $2 \alpha_k \log N_k \to \infty \text{ as } k \to \infty.$
- We choose $\alpha_k = 1/k^2$ and $N_k = 3^{2^k}$ which are easily seen to satisfy the above criteria.
- Finally, our desired function is

$$g(\theta) = \sum_{k=1}^{\infty} \alpha_k P_{N_k}(\theta).$$

• Continuity of g follows from absolute convergence of $\sum_{k=1}^{\infty} \alpha_k P_{N_k}(\theta)$, the series above converges uniformly to a continuous periodic function.

Symmetry broken in the middle interval $(N_k, 3N_k)$

• With the choice of $N'_{k}s$,one can verity that

$$|S_{2N_m}P_{N_k}(0)| = \begin{cases} 0 & k > m \\ O(1) & k < m \end{cases}$$

However, by our lemma we get

$$|S_{2N_m}(g)(0)| \ge c \alpha_m \log N_m + O(1) o \infty$$
 as $m o \infty$.

- So the partial sums of the Fourier series of g at 0 are not bounded.
- Hence we proved the divergence of the Fourier series of g at $\theta = 0$.

12/11/2021

Table of Contents

- Introduction
- 2 Continuous function with diverging fourier series
- Weyl's equidistribution criteria
- Fast Fourier Transform

Definition: Equidistribution

A sequence of numbers $\xi_1, \xi_2, \dots, \xi_n, \dots$ in [0,1) is said to be equidistributed if for every interval $(a,b) \subset [0,1)$,

$$\lim_{N\to\infty}\frac{\#\left\{1\leq n\leq N:\xi_n\in \big(a,b\big)\right\}}{N}=b-a$$

where #A denotes the cardinality of the finite set A.

Theorem

If γ is irrational, then the sequence of fractional parts $\langle \gamma \rangle, \langle 2\gamma \rangle, \langle 3\gamma \rangle, \dots$ is equidistributed in [0,1).

Lemma

If f is continuous and periodic of period 1 , and γ is irrational, then

$$\frac{1}{N}\sum_{i=1}^{N}f(n\gamma)\to\int_{0}^{1}f(x)dx\quad\text{ as }N\to\infty.$$

Proof of theorem

• Fix $(a, b) \subset [0, 1)$ Define $\chi_{(a,b)}(x)$

$$\chi_{(a,b)}(x) = \begin{cases} 1 & \text{if } x \in (a,b) \\ 0 & \text{if } x \in [0,1) \setminus (a,b) \end{cases}$$

- We may extend this function to \mathbb{R} by periodicity (period 1).
- Then, as a consequence of the definitions, we find that

$$\#\{1 \leq n \leq N : \langle n\gamma \rangle \in (a,b)\} = \sum_{n=1}^{N} \chi_{(a,b)}(n\gamma)$$

and the theorem can be reformulated as the statement that

$$\frac{1}{N} \sum_{n=1}^{N} \chi_{(a,b)}(n\gamma) \to \int_{0}^{1} \chi_{(a,b)}(x) dx, \quad \text{as } N \to \infty$$

Translation from number theory to analysis

- Choose two continuous periodic functions f_{ϵ}^+ and f_{ϵ}^- of period 1 which approximate $\chi_{(a,b)}(x)$ on [0,1) from above and below.
- In particular, $f_{\epsilon}^{-}(x) \leq \chi_{(a,b)}(x) \leq f_{\epsilon}^{+}(x)$, and

$$b-a-2\epsilon \leq \int_0^1 f_\epsilon^-(x) dx$$
 and $\int_0^1 f_\epsilon^+(x) dx \leq b-a+2\epsilon$

• If $S_N = \frac{1}{N} \sum_{n=1}^N \chi_{(a,b)}(n\gamma)$, then we get

$$\frac{1}{N}\sum_{n=1}^{N}f_{\epsilon}^{-}(n\gamma)\leq S_{N}\leq \frac{1}{N}\sum_{n=1}^{N}f_{\epsilon}^{+}(n\gamma)$$

$$b-a-2\epsilon \leq \liminf_{N \to \infty} S_N$$
 and $\limsup_{N \to \infty} S_N \leq b-a+2\epsilon$.

• Since this is true for every $\epsilon > 0$, the limit $\lim_{N \to \infty} S_N$ exists and must equal b-a.

Weyl's criterion

A sequence of real numbers $\xi_1,\xi_2\dots$ in [0,1) is equidistributed **if and only if** for all integers $k\neq 0$ one has

$$\frac{1}{N}\sum_{n=1}^{N}e^{2\pi ik\xi_n}\to 0,\quad \text{ as }N\to\infty.$$

Table of Contents

- Introduction
- 2 Continuous function with diverging fourier series
- Weyl's equidistribution criteria
- Fast Fourier Transform

DFT

Suppose $z=(z(0),\ldots,z(N-1))\in\ell^2\left(\mathbb{Z}_N\right)$. For $m=0,1,\ldots,N-1$, define

$$\hat{z}(m) = \sum_{n=0}^{N-1} z(n)e^{-2\pi i m n/N}$$

Let

$$\hat{z}=(\hat{z}(0),\hat{z}(1),\ldots,\hat{z}(N-1))$$

Then $\hat{z} \in \ell^2(\mathbb{Z}_N)$. The map $\hat{z} : \ell^2(\mathbb{Z}_N) \to \ell^2(\mathbb{Z}_N)$, which takes z to \hat{z} , is called the discrete Fourier transform.

The DFT can be represented by a matrix, because the map taking z to \hat{z} is a linear transformation.

21/29

Aman kumar Fourier analysis and it's applications 12/11/2021

²Michael W Frazier: An introduction to wavelets through linear algebra.

DFT in matrix form

$$\hat{z} = W_N z$$

where, W_N be the matrix $[w_{mn}]_{0 \leq m,n \leq N-1}$ such that $\omega_N^{mn} = e^{2\pi i m n/N}$ and

$$W_{N} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_{N} & \omega_{N}^{2} & \omega_{N}^{3} & \cdots & \omega_{N}^{N-1} \\ 1 & \omega_{N}^{2} & \omega_{N}^{4} & \omega_{N}^{6} & \cdots & \omega_{N}^{2(N-1)} \\ 1 & \omega_{N}^{3} & \omega_{N}^{6} & \omega_{N}^{9} & \cdots & \omega_{N}^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \omega_{N}^{3(N-1)} & \cdots & \omega_{N}^{(N-1)(N-1)} \end{bmatrix}.$$

How Many Complex Multiplications Are Required?

- Each inner product requires N complex multiplications.
 - There are N inner products.
- Hence we require N^2 multiplications.
- \bullet However, the first row and first column are all 1 $\rm s,$ and should not be counted as multiplications.
 - There are 2N-1 such instances.
- Hence, the number of complex multiplications is $N^2 2N + 1$ i.e., $(N-1)^2$.

Lemma (FFT)

Suppose $M \in \mathbb{N}$, and N = 2M. Let $z \in \ell^2(\mathbb{Z}_N)$. Define $u, v \in \ell^2(\mathbb{Z}_M)$ by

$$u(k) = z(2k)$$
 for $k = 0, 1, ..., M-1$

and

$$v(k) = z(2k+1)$$
 for $k = 0, 1, ..., M-1$

Then for m = 0, 1, ..., M - 1

$$\hat{z}(m) = \hat{u}(m) + e^{-2\pi i m/N} \hat{v}(m) \tag{1}$$

Also, for $m=M, M+1, M+2, \ldots, N-1$, let $\ell=m-M$. Note that the corresponding values of ℓ are $\ell=0,1,\ldots,M-1$. Then

$$\hat{z}(m) = \hat{z}(\ell + M) = \hat{u}(\ell) - e^{-2\pi i \ell/N} \hat{v}(\ell).$$
 (2)

Proof

• For any m = 0, 1, ..., N - 1,

$$\hat{z}(m) = \sum_{n=0}^{N-1} z(n)e^{-2\pi i m n/N}$$

• Then for m = 0, 1, ..., M - 1

$$\hat{z}(m) = \sum_{k=0}^{M-1} z(2k)e^{-2\pi i2km/N} + \sum_{k=0}^{M-1} z(2k+1)e^{-2\pi i(2k+1)m/N}$$

$$= \sum_{k=0}^{M-1} u(k)e^{-2\pi ikm/(N/2)} + e^{-2\pi im/N} \sum_{k=0}^{M-1} v(k)e^{-2\pi ikm/(N/2)}$$

$$= \sum_{k=0}^{M-1} u(k)e^{-2\pi ikm/M} + e^{-2\pi im/N} \sum_{k=0}^{M-1} v(k)e^{-2\pi ikm/M}$$

$$= \hat{u}(m) + e^{-2\pi im/N} \hat{v}(m).$$

• For $m=M, M+1, \ldots, N-1$. By writing $m=\ell+M$ for $\ell=0,1,\ldots,M-1$, we get

$$\hat{z}(m) = \sum_{k=0}^{M-1} z(2k)e^{-2\pi i2km/N} + \sum_{k=0}^{M-1} z(2k+1)e^{-2\pi i(2k+1)m/N}$$

$$= \sum_{k=0}^{M-1} u(k)e^{-2\pi ik(\ell+M)/M} + e^{-2\pi i(\ell+M)/N} \sum_{k=0}^{M-1} v(k)e^{-2\pi ik(\ell+M)/M}$$

$$= \sum_{k=0}^{M-1} u(k)e^{-2\pi ik\ell/M} - e^{-2\pi i\ell/N} \sum_{k=0}^{M-1} v(k)e^{-2\pi ik\ell/M}$$

$$= \hat{u}(\ell) - e^{-2\pi i\ell/N} \hat{v}(\ell) = \hat{z}(\ell+m)$$

• Since the exponential $e^{-2\pi ikl/M}$ are periodic with period M, and $e^{-2\pi iM/N} = e^{-\pi i} = -1$ for N = 2M.

Complexity

•

$$\#_N \le 2\#_M + M \tag{3}$$

where, $\#_N$, for any positive integer N, to be the least number of complex multiplications required to compute the DFT of a vector of length N.

• The most favorable case is when $N = 2^n$.

If $N \neq 2^n$, then it is harmless to pad it with some extra zeros at the end until it has length $N = 2^n$.

Lemma

Suppose $N = 2^n$ for some $n \in \mathbb{N}$. Then

$$\#_N \leq \frac{1}{2} N \log_2 N.$$

Applications of FFT

IDFT

•

$$\check{w}(n) = \frac{1}{N}\hat{w}(N-n)$$

• FFT algorithm can be used to compute the IDFT quickly also, in at most $(N/2) \log_2 N$ steps if $N = 2^n$.

Convolution

0

$$z * w = (\hat{z}\hat{w})^{\tilde{}}$$

- If $z, w \in \ell^2(\mathbb{Z}_N)$, for $N = 2^n$, it takes at most $N \log_2 N$ multiplications to compute \hat{z} and \hat{w} .
- N multiplications to compute $\hat{z}\hat{w}$, and at most $(N/2)\log_2 N$ multiplications to take the IDFT of $\hat{z}\hat{w}$.
- Thus overall, $N + (3N/2) \log_2 N$ multiplications to compute z * w.

Thank you