

Basic Forces acting on aircraft

A Section of the Sect

Basic Forces acting on aircraft

The Lift and Drag are Aerodynamic forces:

- they are created by the motion of the wing (aircraft velocity)
- within a fluid (air)

In cruise flight:

- The lift balances the weight
- The thrust (engine) balances the drag
- The flight variables are constant (velocity, altitude, ...)
- We are in steady conditions

Flying Vehicles

Balloon

Missile

Helicopter

Rocket

Flying Vehicles

Fokker Dr.I Triplane

Dornier Wal Seaplane

Northrop B2 Flying Wing

Saab 37 Viggen Canard

Aircraft: moveables and components

Movement of the Centre of Gravity

$$\vec{F} = m \cdot \frac{d\vec{V}_G}{dt}$$

Modification of the velocity module (acceleration / deceleration)

$$F = m \cdot \frac{dV}{dt}$$

Modification of the velocity orientation (trajectory curvature modification)

$$\vec{M}_G = [I_G] \cdot \frac{d\vec{\Omega}}{dt}$$

Modification of the Body orientation (Body rotation around the CG)

 $\frac{\text{remark}}{\text{its orientation is linked to the Body rotation}} : \overrightarrow{\Omega} \text{ is a pseudo-vector} \\ \text{(right hand rule)}$

Movement of / around the Centre of Gravity

The 1st Newton Law says that:

• a Force applied to the CG modifies the velocity vector of the body

The 2nd Newton Law says that:

• a Moment applied to the CG modifies the orientation of the body

Try to see it also in the opposite way:

If I want to modify the velocity vector (trajectory control),

→ I shall modify the Forces acting on the CG

If I want to modify the body orientation (aircraft control),

→ I shall modify the Moments acting on the CG

Inertia Matrix : $[I_G]$

Assuming a plane of symmetry (x_b, z_b) , the coefficients I_{xy} / I_{yz} vanish:

$$[I_G] = \begin{bmatrix} I_{xx} & 0 & -I_{xz} \\ 0 & I_{yy} & 0 \\ -I_{xz} & 0 & I_{zz} \end{bmatrix} = \begin{bmatrix} A & 0 & -E \\ 0 & B & 0 \\ -E & 0 & C \end{bmatrix}$$

Inertia Matrix : $[I_G]$

The presence of the fin and engines produces a misalignment of the principal x-axis of inertia with the x_b axis; this is responsible of the $E = I_{xz}$ product of Inertia

This term is generally small (compared to the main inertia): we will neglect it for the rest of the course

$$A = I_{xx} = \sum m \cdot (y^2 + z^2)$$

$$B = I_{yy} = \sum_{i} m \cdot (x^2 + z^2)$$

$$C = I_{zz} = \sum m \cdot (x^2 + y^2)$$

$$D = I_{xy} = \sum m \cdot xy = 0$$

$$E = I_{xz} = \sum m \cdot xz$$

$$F = I_{yz} = \sum_{i} m \cdot yz = 0$$

Flight mechanics reference systems

Fairchild A-10 Thunderbolt

*

Earth reference system $Ox_0y_0z_0$

Earth reference system $Ox_0y_0z_0$

- The Earth is assumed flat and still (no rotation about itself) (*)
- z_0 is vertical, parallel to the gravity vector, positive downwards
- Ox_0y_0 is the Sea Level Earth horizontal plane
- R₀ is assumed to be an Inertial Referential : we do not take into account the additional inertial forces (centrifugal and Coriolis forces)
- We define the altitude h as $h = -z_0$
- We define the vertical speed : $V_z = \dot{h} = V \cdot \sin \gamma$

(*): these assumptions are completely OK for flight mechanics purposes where the times and distances stay small. For performance purposes, it becomes sometimes difficult to neglect the additional inertial forces ...

Body reference system $Gx_by_bz_b$

- Gx_b is the fuselage horizontal reference, pointed forwards
- Gx_bz_b is the aircraft plane of symmetry
- q measures the pitch or the rotation of R_b around y_b

Body reference system $Gx_by_bz_b$

- Gy_b is perpendicular w.r.t. the aircraft plane of symmetry
- Gy_b is pointed towards the right of the pilot
- r measures the yaw or the rotation of R_b around z_b

Body reference system $Gx_by_bz_b$

- Gz_b is pointed downwards
- p measures the roll or the rotation of R_b around x_b

Aircraft Elementary Rotation: (p,q,r)

The elementary rotations (p,q,r) define the aircraft rotation with respect to the Earth reference system R_0 .

They define the absolute rotation of the aircraft : $\overrightarrow{\Omega}_{ac/R_0}$

As the Body reference system R_b is « embedded » within the aircraft, the absolute rotation of R_b is the same as for the aircraft:

$$\vec{\Omega}_{R_b/R_0} = \vec{\Omega}_{ac/R_0}$$

Furthermore, we must understand that the absolute elementary rotations (p,q,r) are measured by 3 gyrometers located near the aircraft Center of Gravity, so (p,q,r) are the components of the Aircraft (absolute) rotation but projected with respect to the Body Reference system R_b:

$$\vec{\Omega}_{R_b/R_0} = \vec{\Omega}_{ac/R_0} = \begin{vmatrix} p \\ q \\ r \end{vmatrix}$$

(Annual Control of the Control of th

Momentum around the Gyb axis or pitch axis

A positive $\delta m > 0$ elevator deflection creates a negative pitch momentum $\Delta M_G < 0$ (around the aircraft Gy_b axis) $\delta m > 0$ corresponds to a downward motion of the elevator

Momentum around the Gz_b axis or yaw axis

A positive $\delta n > 0$ rudder deflection creates a negative yaw momentum $\Delta N_G < 0$ (around the aircraft Gz_b axis) $\delta n > 0$ corresponds to a rudder motion to the left

Momentum around the Gx_b axis or roll axis

A positive $\delta l > 0$ aileron deflection creates a negative roll momentum $\Delta L_G < 0$ (around the aircraft Gx_b axis) $\delta l > 0$ corresponds to a downward motion of the **right** aileron (same convention as the elevator δm)

Synthesis

Axis	Momentum (N.m)	Controls (°)	Angular velocity (rd/s)
around x _b or roll axis	L	δΙ	р
around y _b or pitch axis	M	δ m	q
around z _b or yaw axis	N	δn	r

The state of the s

Rotation Angles from R₀ to R_b

The state of the s

Rotation Angles from R₀ to R_b

We need 2 rotations for moving the axis x_0 to x_b :

- $\triangleright \psi$ = rotation within the local horizontal plane until the x-axis is merging within the vertical plane containing x_b
- $\triangleright \theta$ = rotation within the local vertical plane until the x-axis is merging with the x_b axis

And a last rotation for moving the z axis within the aircraft plane of symmetry $(x_b z_b)$:

 $\triangleright \phi$ = rotation around the Aircraft x-axis (x_b)

$$\vec{\Omega}_{b/0} = \dot{\psi} \ \vec{z}_0 + \dot{\theta} \ \vec{y}_{\psi} + \dot{\phi} \ \vec{x}_b$$

If $\phi = 0$, then the aircraft plane of symmetry $(x_b z_b)$ is vertical

Roll Angle ϕ / Bank Angle ϕ_1

 ϕ_1 : bank angle

angle between y_b axis and the horizontal plane angle between (z_0) and the a/c plane of symmetry

φ : roll angle

rotation angle around Gx_b rotation angle of the a/c plane of symmetry around the x_b axis

 $m\vec{g}$ component on y_b :

 $\sin \phi_1 = \sin \phi \cos \theta$

Differences between ϕ and ϕ_1

We consider the vertical plane containing the wings: Gy_bz₀

- $\rightarrow \phi_1$ = angle between z_0 and the a/c plane of symetry
- $\rightarrow \phi_1$ = angle between the wings Gy_b and the horizontal plane
- \triangleright The component of mg w.r.t. to $Gy_b = m\vec{g} \sin \phi_1$

We consider the plane : Gy_bz_b

- $\triangleright \phi =$ « roll » rotation angle around Gx_b
- The projection of mg w.r.t. to the plane $Gy_h z_h = m\vec{g} \cos \theta$
- The component of mg w.r.t. to $Gy_b = m\vec{g} \sin \phi \cos \theta$

 $m\vec{g}$ component on y_b : $\sin \phi_1 = \sin \phi \cos \theta$

Roll angle ϕ *and Bank angle* ϕ_1 *are the same* when the x_b axis is within the horizontal plane ($\theta=0^{\circ}$)

A service of the serv

Aerodynamic reference system $Gx_ay_az_a$

It is the air surrounding the aircraft which produces the Aerodynamic Forces & Moments acting on the Aircraft (by producing a certain pressure distribution along the different Aerodynamic surfaces)

So, it is Mandatory to know the velocity vector of the surrounding air mass flow with respect to the aircraft; we call it $\vec{V}_{ac/air}$; a little Observer sit on the Aircraft will see the air mass flow arriving at the aircraft animated with this velocity: $\vec{V}_{air/ac} = -\vec{V}_{ac/air}$

By definition, the Aerodynamic referential is defined such as:

- $ightharpoonup Gx_a = along the velocity vector <math>\vec{V}_{ac/air}$
- $ightharpoonup Gz_a$ = perpendicular to Gx_a and within the a/c plane of symmetry
- \triangleright Gy_a = for getting the final direct triedal

Some remarks ...

Remark 1: be careful, the velocity $\vec{V}_{ac/air}$ is not necessary the velocity of the aircraft with respect to the ground $\vec{V}_{ac/grd}$, if there is some wind $\vec{V}_{air/grd}$, then

$$\vec{V}_{ac/grd} = \vec{V}_{ac/air} + \vec{V}_{air/grd}$$

<u>Remark 2</u>: within the 1st Newton Law, the velocity used is the velocity of the aircraft with respect to the ground (with respect to a Galilean Referential)

$$m \cdot \frac{d\vec{V}_{ac/grd}}{dt} = \vec{F}$$

Remark 3: it is the velocity $\vec{V}_{ac/air}$ which is responsible of the aerodynamic forces/moments, so its knowledge (intensity, orientation wrt the aircraft) is essential: this is the function of the numerous anemometric probes ...

The state of the s

Rotation Angles from R_0 to R_a

The state of the s

Rotation Angles from R_0 to R_a

We need 2 rotations for moving the axis x_0 to x_a :

- $\triangleright \chi$ = rotation within the local horizontal plane until the x-axis is merging within the vertical plane containing x_a
- $\triangleright \gamma$ = rotation within the local vertical plane until the x-axis is merging with the x_a axis

And a last rotation for moving the z axis within the aircraft plane of symmetry $(x_b z_b)$:

 $\triangleright \mu$ = rotation around the x_a -axis

$$\vec{\Omega}_{a/0} = \dot{\chi} \; \vec{z}_0 \; + \dot{\gamma} \; \vec{y}_{\chi} + \dot{\mu} \; \vec{x}_a$$

If $\mu = 0$, then the z_a axis is within the vertical plane containing $\vec{V}_{ac/air}$

Angle of Attack Side Slip (α,β)

Rotation Angles from R_a to R_b

$$\vec{x}_a = \begin{vmatrix} \cos \alpha \cos \beta \\ \sin \beta \\ \sin \alpha \cos \beta \end{vmatrix}$$

Take care! The convention imposes that β is positive when the wind is coming from the right: the sign of β doesn't follow the positive rotation around the z_a axis

Rotation Angles from R_a to R_b

We need 2 rotations for moving from R_a to R_b :

- \triangleright β = rotation around the z_a axis until the x-axis is merging within the aircraft plane of symmetry
- \Rightarrow α = rotation within the aircraft plane of symmetry (around the y_b axis) until the x-axis is merging with the x_b axis

We need only 2 angles for getting from R_a to R_b because the z_a axis is ,by definition, within the Gx_bz_b plane (aircraft symmetry plane).

$$\vec{\Omega}_{b/a} = -\dot{\beta} \, \vec{z}_a \, + \dot{\alpha} \, \vec{y}_b$$

Remark: the rotation with respect to the z_a axis is negative whereas β is imposed positive

Some remarks ...

Remark 1:

- \triangleright β is the angle between $\vec{V}_{ac/air}$ and the aircraft plane of symmetry
- \triangleright β positive, when the flowstream is coming from the right
- ightharpoonup if $\beta = 0^{\circ}$, $\vec{V}_{ac/air}$ is within the a/c plane of symetry $(x_b z_b)$ and $y_a = y_b$

$$\sin \beta = \vec{x}_a \cdot \vec{y}_b$$

Remark 2:

- \triangleright α is an angle measured within the aircraft plane of symmetry
- \triangleright α is not the angle between x_b and $\vec{V}_{ac/air}$ but between x_b and the projection of \vec{V} within the aircraft plane of symmetry
- \triangleright α positive when the flowstream is coming from downwards
- ightharpoonup if $\alpha = 0^{\circ}$, $\vec{V}_{ac/air}$ is within the plane $(x_b y_b)$ and $z_a = z_b$

$$\sin \alpha \cos \beta = \vec{x}_a \cdot \vec{z}_b$$

$$\vec{x}_a \cdot \vec{z}_b = (\vec{x}_2 \cos \beta + \vec{y}_b \sin \beta) \cdot \vec{z}_b = \vec{x}_2 \cdot \vec{z}_b \cos \beta = \sin \alpha \cdot \cos \beta$$

Relation between $\overrightarrow{\Omega}_{a/0}$ and $\overrightarrow{\Omega}_{b/0}$

NOT in PROGRAM

By composition,

$$\overrightarrow{\Omega}_{a/0} = \overrightarrow{\Omega}_{a/b} + \overrightarrow{\Omega}_{b/0}$$

By definition, as for
$$\vec{\Omega}_{b/0} = \begin{vmatrix} p \\ q \\ r \end{vmatrix}$$
, we defines $\vec{\Omega}_{a/0} = \begin{vmatrix} p_a \\ q_a \\ r_a \end{vmatrix}$

The calculation is performed within the annex, assuming the small angles approximation,

$$p_a \approx p + r \cdot \alpha$$
 $q_a \approx q - \dot{\alpha}$ $r_a \approx \dot{\beta} + r - p \cdot \alpha$

()

Relation μ , ϕ_1 / simple case with $\beta = 0^{\circ}$

 ϕ_1 : bank angle

angle between y_b axis and the horizontal plane angle between (z_0) and the a/c plane of symmetry

μ: aero. roll angle rotation angle around Gx_a rotation angle of the Lift Force around the Velocity vector

 $m\vec{g}$ component on y_a :

 $\sin \phi_1 = \sin \phi \cos \theta = \sin \mu \cos \gamma$