5 - dars (Report)

Machine Learning project qilish uchun asosiy ketma ketliklar

- Muammo aniqlash \rightarrow
- Ma'lumot yig'ish →
- Ma'lumotni tahlil qilish va tozalash →
- Ma'lumotlarni tayyorlash →
- Model tanlash →
- Modelni oʻqitish →
- Modelni baholash →
- Optimallashtirish \rightarrow
- Modelni joylashtirish →
- Kuzatish va yaxshilash.

1. Muammo aniqlash (Define the Problem)

- ML loyihasining magsadini aniqlash:
 - Nima qilishni xohlayabman?
 - Misol: Sotuvlarni bashorat qilish, tasvirlarni aniqlash, matnni tasniflash va boshqalar.
 - o Natija qanday koʻrinishi kerak?
 - Regression, klassifikatsiya yoki klasterlash vazifalari.

2. Ma'lumotlarni yig'ish (Data Collection)

- Tahlil qilish va modellashtirish uchun ma'lumotlarni yig'ish:
 - Ma'lumotni yig'ish usullari:
 - API orgali.
 - CSV, Excel yoki ma'lumotlar bazasi (SQL).
 - Ochiq ma'lumotlar platformalari (Kaggle, UCI, va boshqalar).
 - Ma'lumotlar hajmi va sifati haqida oʻylash.

3. Ma'lumotlarni tahlil qilish va tozalash (Exploratory Data Analysis and Cleaning)

- Ma'lumotlarni tahlil qilish (EDA):
 - Missing (yoʻq) ma'lumotlarni aniqlang.
 - Outlier (me'yordan chetga chiqqan qiymatlar) ni tekshiring.
 - Ma'lumotlarning taqsimotini ko'rib chiqing.
- Tozalash:
 - Yoʻq ma'lumotlarni toʻldiring yoki olib tashlash.
 - Notoʻgʻri qiymatlarni tuzatish.

4. Ma'lumotlarni tayyorlash (Data Preprocessing)

- Ma'lumotlarni kodlash:
 - Kategorik ma'lumotlarni One-Hot Encoding yoki Label Encoding bilan raqamlarga aylantiring.
- Normalizatsiya yoki Standartizatsiya:
 - Ma'lumotlarni bir xil miqyosga keltiring.
- Ma'lumotlarni bo'lish:
 - Ma'lumotlarni o'qitish va test uchun ajrating.
 - Masalan: 80% trening, 20% test uchun.

Kod misoli:

python Copy code X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)

5. Model tanlash (Model Selection)

- Modelni tanlash:
 - o Regression uchun: Linear Regression, Decision Tree, Random Forest.
 - Klassifikatsiya uchun: Logistic Regression, SVM, Random Forest, Neural Networks.
 - Klasterlash uchun: K-Means, DBSCAN.
- Modelni sinovdan o'tkazish:
 - Har xil modellarni sinab koʻring va eng yaxshi ishlaydiganini tanlasg.

6. Modelni oʻqitish (Model Training)

- Tanlangan modelni ma'lumotlar bo'yicha o'qiting.
- Giperparametrlarni sozlang.

Kod misoli:

python

Copy code

from sklearn.ensemble import RandomForestClassifier

```
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)
```

7. Modelni baholash (Model Evaluation)

- Oʻqitilgan modelni test ma'lumotlarida baholang:
 - o Regression uchun: MSE, RMSE, R2-score.
 - Klassifikatsiya uchun: Accuracy, Precision, Recall, F1-score, ROC-AUC.

Kod misoli:

python

Copy code

from sklearn.metrics import accuracy score

```
y_pred = model.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
```

8. Giperparametrlarni sozlash (Hyperparameter Tuning)

- Modelni optimallashtirish uchun giperparametrlarni sozlang:
 - GridSearchCV yoki RandomizedSearchCV yordamida.

9. Modelni joylashtirish (Model Deployment)

- Modelni real dunyo uchun foydalanishga tayyorlang:
 - Flask yoki FastAPI yordamida API yaratish.
 - Modelni Docker yoki cloud platformalariga yuklash (AWS, Azure, Google Cloud).

10. Modelni kuzatish va yaxshilash (Monitoring and Updating)

- Model ishlashini kuzatib boring:
 - Doimiy yangi ma'lumotlarni qo'shib o'rgating.

Model eskirganligini tekshiring va yangilang.

Kod misoli:

python

Copy code

from sklearn.model_selection import GridSearchCV

```
param_grid = {'n_estimators': [100, 200], 'max_depth': [10, 20]}
grid = GridSearchCV(RandomForestClassifier(), param_grid, cv=3)
grid.fit(X_train, y_train)
```

Data Preprocessing: Missing - values

- 1. Drop
- 2. Mean
- 3. Median
- 4. Mode
- 5. Fixed

Usul	Qacnon Isniatiladi?	Mos keladigan ma'lumot turi
Drop	Yo'q qiymatlar kam bo'lsa	Har qanday
IIIVIean	Yo'q qiymatlarni o'rtacha qiymat bilan to'ldirish kerak bo'lsa	Raqamli (Numerical)
Median	Me'yordan chetga chiqqan qiymatlar mavjud bo'lsa	Raqamli (Numerical)
Mode	Kategorik ma'lumotlarni to'ldirish kerak bo'lsa	Kategorik (Categorical)
Fixed	Aniq belgilangan qiymat bilan almashtirish kerak bo'lsa	Har qanday

Inner Conditionals (inner if)

- Ichki conditionals
- Uzunroq muammoi tartibli va qisqaroq shaklda bajarishga yordam beradi

Inner conditional — bu ichma-ich joylashgan (nested) if shartlarini ishlatish orqali murakkab muammolarni tartibli va qisqaroq shaklda hal qilish usuli. Bu dasturda biror shart bajarilganda, uning ichida boshqa shartlarni tekshirishga imkon beradi.

2. Talabaning bahosini tekshirish

Vazifa: Talabaning bahosi (0-100 oraligʻida) aniqlanadi. Bahoga qarab uning darajasini koʻrsatish:

90 va undan yuqori: "A'lo"

• 75-89: "Yaxshi"

• 60-74: "Qoniqarli"

• 59 va undan past: "Yomon"