Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear AD2 - Primeiro Semestre de 2015 Professores: Márcia Fampa & Mauro Rincon

Nome -Assinatura -

1.(2.0) Considere o seguinte sistema:

$$\begin{cases} z - 3w = b \\ x + 3y - 2z + 8w = -9 \\ x + 3y - z + 5w = -7 \end{cases}$$

- 1. Determine, pelo Método de Gauss-Jordan o valor de $b \in I\!\!R$, para que o sistema tenha solução?
- 2. Determine, pelo Método de Gauss-Jordan o valor de $b \in \mathbb{R}$, para que o sistema **não** tenha solução?
- 2.(2.0) Considere a matriz A dada por:

$$A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & -2 & 1 \\ 1 & -1 & 0 & -2 \\ 3 & 0 & 0 & -2 \end{pmatrix} \qquad e \qquad b = (0, 0, 3, 5)^t$$

- (a) Determine, o determinante da matriz A.
- (b) Determine, se existir, a solução do sistema linear Ax=b.

- 3.(2.0) Responda Verdadeiro ou Falso, justificando:
 - (a) Se $A^2 = -2A^4$, então $(I_n + A^2)(I_n 2A^2) = I_n$;
 - (b) Se $A = P^t DP$, onde D é uma matriz diagonal, então $A^t = A$;
 - (c) Se D é uma matriz diagonal, então DA = AD, para toda matriz $[A]_{n \times n}$;
 - (d) Se $B = AA^t$, então $B = B^t$.
 - (e) Se B e A são tais que $A=A^t$ e $B=B^t$, então C=AB, é tal que $C^t=C$.
- 4.(2.0) Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ uma transformação linear,
tal que T(1,0,0)=(1,0), T(1,1,0)=(2,3) e T(1,1,1)=(4,7).
 - (a) Determine uma expressão geral para a transformação linear.
 - (b) Determine o conjunto de vetores $u \in \mathbb{R}^3$ tal que T(u) = (-2, 0)
 - (c) Determine uma base e a dimensão da Im(T).
 - (d) Determine uma base e a dimensão da N(T) = Ker(T).
- 5.(2.0) Determinar os autovalores e os autovetores da seguinte transformação linear:

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \qquad T(x,y,z) = (3x-y-3z,2y-3z,-z)$$