Handout 11: Part-of-speech Tagging

Tagged Text

1. Using a tagger out of the box

```
>>> from nltk import word_tokenize, pos_tag
>>> words = word_tokenize('The cat chased him')
>>> pos_tag(words)
[('The', 'DT'), ('cat', 'NN'), ('chased', 'VBD'), ('him', 'PRP')]
```

2. Manually tagged text

```
>>> from nltk.corpus import brown
>>> brown.tagged_words()[:7]
[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ('Grand',
'JJ-TL'), ('Jury', 'NN-TL'), ('said', 'VBD'), ('Friday', 'NR')]
```

- 3. Simplified tagset
 - a. "Universal tagset"

```
>>> brown.tagged_words(tagset='universal')
[('The', 'DET'), ('Fulton', 'NOUN'), ('County', 'NOUN')
('Grand', 'ADJ'), ('Jury', 'NOUN'), ('said', 'VERB'), ...]
```

b. Complete list:

```
ADJ
              CONJ
                     and, that
                                             PUNC
     recent
                                NUM
                                       two
ADP
              DET
                     the
                                PRON
                                       it
                                             VERB
                                                    broke, should
              NOUN
ADV
      often
                     jury
                                PRT
                                                    avec
```

- 4. Exploring tags
 - a. Get tag pairs

```
>>> from nltk import bigrams, FreqDist
>>> twords = brown.tagged_words(categories='learned')
>>> tpairs = list(bigrams(t for (w,t) in twords))
```

b. Which is most frequent?

c. Which occur after AT?

```
>>> cfd = ConditionalFreqDist(tpairs)
>>> cfd['AT'].most_common(3)
[('NN', 8323), ('JJ', 3715), ('NNS', 1276)]
```

```
d. What are some examples of "IN NN" pairs?
           >>> exs = [(w1,w2) for ((w1,t1),(w2,t2)) in bigrams(twords)
                 if t1 == 'IN' and t2 == 'NN']
           >>> exs[:3]
           [('of', 'information'), ('at', 'wave'), ('by', 'coincidence')]
5. Building taggers
    a. Default tagger: always assign "NN"
           >>> t0 = DefaultTagger('NN')
           >>> t0.tag(words)
           [('The', 'NN'), ('cat', 'NN'), ('chased', 'NN'), ('him', 'NN')]
    b. Regex tagger: look at suffixes
           >>> ptns = [(r'.*ing$', 'VBG'), (r'.*ed$', 'VBD')]
           >>> t1 = RegexpTagger(ptns)
           >>> t1.tag(words)
           [('The', None), ('cat', None), ('chased', 'VBD'), ('him', None)]
    c. Backing off
           >>> t1 = RegexpTagger(ptns, backoff=t0)
           >>> t1.tag(words)
           [('The', 'NN'), ('cat', 'NN'), ('chased', 'VBD'), ('him', 'NN')]
    3
    d. Unigram tagger
           >>> model = {'the':'AT', 'him':'PPO'}
           >>> t2 = UnigramTagger(model=model, backoff=t1)
    2
           >>> t2.tag(words)
           [('The', 'NN'), ('cat', 'NN'), ('chased', 'VBD'), ('him', 'PPO')]
    e. Training: set aside some for testing
           >>> sents = brown.tagged_sents(categories='news')
           >>> n = int(.9 * len(sents))
           >>> train = sents[:n]
           >>> test = sents[n:]
    f. Train a unigram tagger
           >>> t2 = UnigramTagger(train, backoff=t1)
           >>> t2.tag(words)
           [('The', 'AT'), ('cat', 'NN'), ('chased', 'VBD'), ('him', 'PPO')]
    3
    g. Evaluation
           >>> t0.evaluate(test)
           0.1262832652247583
    2
           >>> t1.evaluate(test)
           0.15070268115219776
           >>> t2.evaluate(test)
```

0.8436160669789694

- h. Bigram, trigram taggers
- >>> t3 = BigramTagger(train, backoff=t2)
- >>> t3.evaluate(test)
- 0.85418120203329018
- 4 >>> t4 = TrigramTagger(train, backoff=t3)
- 5 >>> t4.evaluate(test)
- 6 0.852387122495764
- i. Why did the performance go down?

Bigram HMM Taggers

- 6. How a bigram HMM tagger works
 - a. Finite-state automaton with outputs from states
 - **b.** Transitions:

	#	NNS	RB	VB		#	NNS	RB	VB
		.75			#	∞	.1	.9	.9
NNS	.25	.17	.17	.42	NNS	.6	.8	.8	.4
RB	.50	.25	.0	.25	RB	.3	.6	∞	.6
VB	.43	.43	.14	.0	VB	.4	.4	.8	∞

c. Emissions:

	bark	cats	dogs	often			bark	cats	dogs	often	
NNS	.17	.42	.42	0	_	NNS	.8	.4	.4	∞	
RB	0	0	0	1.0		RB	∞	∞	∞	0	
VB	.71	0	.29	0		VB	.1	∞	.5	∞	

d. Cost of state-sequence + output

.1	NNS	.8	NNS	.8	RB	.3	3.2
	.4		.8		0		
.1	NNS	.4	VB	.8	RB	.3	2.1
	.4		.1		0		
.9	VB	.4	NNS	.8	RB	.3	3.0
	.5		.8		0		
.9	VB	∞	VB	.8	RB	.3	∞
	.5		.1		0		
	dogs		bark		often		

7. Training

a. For each row in transition/emission tables, count how many times each transition/emission occurs in training

b. Normalize to make it a probability distribution

c. That is:

- 8. Viterbi algorithm: finding best sequence efficiently
 - a. Configuration graph

- **b.** We construct the best path we can, working left to right
- **c.** Consider partial path x up to node N, and partial path y from N to the end:

$$c(xy) = c(x) + c(y)$$

d. Key idea: consider partial paths x_1, x_2 leading up to node N. No matter what completion y we choose (from n to the end), we have:

$$c(x_1) + c(y) < c(x_2) + c(y)$$
 if $c(x_1) < c(x_2)$

e. For each node, what is the best incoming path, and what is its score?

\mathbf{N}		\mathbf{Cands}	$\mathbf{BestPrev}$	\mathbf{Cost}
1			0	.1
2			0	.9
3	1	(.1) + .4 + .8 = 1.3	1	1.3
	2	(.9) + .5 + .4 = 1.8		
4	1	(.1) + .4 + .4 = .9	1	.9
	2	$(.9) + .5 + \infty = \infty$		
5	3	(1.3) + .8 + .8 = 2.9	4	1.8
	4	(.9) + .1 + .8 = 1.8		
6	5	(1.8) + 0 + .3 = 2.1	5	2.1

- **9.** The heart of the algorithm: scoring a node n
 - **a.** Get a list of candidate pairs (s,p) where p is a preceding node and s is the **score through** p to n
 - **b.** Pick the best, record the **best preceding** node and the score for n

- 10. The score through p to n consists of: the score of p, the cost of the emission at p, and the cost of the transition from p to n.
- 11. The overall algorithm
 - a. Input: a list of word tokens
 - **b.** Tagger also has a model available (transition and emission tables)
 - c. Build the graph: create one node for each POS of each word token.
 - **d.** A Node has a word token, a POS, a list of preceding nodes. We will compute a score and a best-previous node.
 - **e.** Pass through the list of nodes. Compute the score and best-previous for each.
 - f. Unwind: read off the tag sequence.
- **12.** Unwinding:
 - **a.** Follow the trail of best-previous nodes backwards from end node. Read off the POS of each node.
 - **b.** Our example:

$$\begin{array}{c} 6 \\ \# \end{array} \rightarrow \begin{array}{c} 5 \\ \mathrm{RB} \end{array} \rightarrow \begin{array}{c} 4 \\ \mathrm{VB} \end{array} \rightarrow \begin{array}{c} 1 \\ \mathrm{NNS} \end{array} \rightarrow \begin{array}{c} 0 \\ \# \end{array}$$

Turning it around right-ways: (dogs) NNS (bark) VB (often) RB