

Feedback Adversarial Learning:

Spatial Feedback for Improving Generative Adversarial Networks

Minyoung Huh*

Shao-Hua Sun*

Ning Zhang

Motivation

Leverage discriminator's **feedback signals** to improve samples generated by Generative Adversarial Networks (GANs)

Intuition

Is the discriminator's feedback useful for improving generated samples?

Toy Experiment

Train a GAN to generate points (x, y) that are indistinguishable from the samples drawn from the underlying true distribution.

The generated samples, the discriminator believes is fake, is improved with feedback.

High-dimensional Data

How can we effectively provide **feedback** signals to **high-dimensional data** such as images and voxels?

Adaptive Spatial Transform

Goal: allow the generator to attend and fix local regions based on the discriminator's feedback and its previous generation.

Conditional Normalization

Learn linear layers that predict **global** scalar affine parameters to modulate feature maps using external information such as class information. (e.g. Conditional batch-normalization [1], Adaptive Instance-Norm [2][3])

Adaptive Spatial Transform

Transform feature maps locally by predicting affine parameters.

A concurrent work (GauGAN [4]) translates a semantic layout to an image using a similar module: SPatially-Adaptive DEnormalization (SPADE).

Reference

- [1] Vries et al., Modulating early visual processing by language, NIPS 2017
- [2] Dumoulin et al., A Learned Representation For Artistic Style, ICLR2016
- [3] Huang et al., Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization, ICCV2017
- [4] Park et al., Semantic Image Synthesis with Spatially-Adaptive Normalization, CVPR2019
- [5] Guo et al., Long Text Generation via Adversarial Training with Leaked Information, AAAI 2018

Experiment

Image-to-image Translation

Cityscapes		Train		
Model	Cat IOU ↑	Cls IOU ↑	LPIPS ↓	LPIPS ↓
Ground Truth	76.2	0.21	0.0	0.0
Pix2Pix	0.380	0.655	0.428	0.320
Pix2Pix + Feedback (<i>t</i> =1)	0.383	0.646	0.431	0.265
Pix2Pix + Feedback (t=2)	0.417	0.687	0.428	0.254
Pix2Pix + Feedback (<i>t</i> =3)	0.418	0.692	0.429	0.254

<u>in</u>	NYU-Depth		_	<u>Val</u>		<u>Train</u>
PS↓	Model	REL↓	$\delta_1 \uparrow$	$\delta_2\uparrow$	LPIPS ↓	LPIPS ↓
0	Ground Truth	0.191	0.846	0.974	0.0	0.0
20	Pix2Pix	0.191	0.892	0.961	0.483	0.337
65 54 54	Pix2Pix + Feedback ($t = 1$) Pix2Pix + Feedback ($t = 2$) Pix2Pix + Feedback ($t = 3$)	0.178	0.706	0.906	0.473 0.469 0.473	0.281 0.275 0.284

Image Generation

Model	CelebA-FID↓
GAN	22.56
GAN w/ Feedback (t=1)	26.49
GAN w/ Feedback $(t=2)$	20.65
GAN w/ Feedback (t =3)	18.52

Voxel Generation

Model	Classification accuracy \(\)				
	Airplane	Car	Vessel		
Ground Truth	95.9%	99.6%	98.8%		
VoxelGAN	93.0%	98.1%	89.2%		
${\it VoxelGAN + Feedback} \ (t=1)$	93.0%	98.2%	91.0%		
VoxelGAN + Feedback ($t = 2$)	94.0%	98.9%	96.2%		
VoxelGAN + Feedback ($t = 3$)	95.6%	99.1 %	97.1 %		

Improvements with Feedback

