Stowers Institute for Medical Research R/Bioconductor Discussion Group

Earl F. Glynn Scientific Programmer 17 July 2007

- Color Basics in R
- Color Spaces
- Color Gradients / Color Ramps
- Color Blindness
- •Why Don't Screen Colors Match Printout?
- Colors Tips

Color Basics: Palette

> barplot(rep(1,8), yaxt="n", col=1:8)

> palette()

```
[1] "black" "red" "green3" "blue" "cyan"
```

[6] "magenta" "yellow" "gray"

Color Basics: Palette

Integer color numbers represent offsets into the palette table

Color Basics: Palette

```
RGB Hex Constants
> palette(rainbow(10)) # Redefine palette
            > palette()
 [1] "red" 🖊
             "#FF9900" "#CCFF00" "#33FF00" "#00FF66"
 [6] "cyan" "#0066FF" "#3300FF" "#CC00FF" "#FF0099"
> # colors are "recycled" if necessary
> barplot(rep(1,20),col=1:20, yaxt="n")
> palette("default")
                               Bitmap
> palette()
[1] "black" "red"
                      "green3"
    "blue"
           "cyan"
[6] "magenta" "yellow" "gray"
                                             Recycled Colors
```

Color Basics: Palette

```
> 0:8 / 8
[1] 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
> palette(gray(0:8 / 8))
                                          RGB Hex Constants
> palette()
[1] "black" "#202020" "gray25" "#606060" "#808080"
[6] "#9F9F9F" "gray75" "#DFDFDF" "white"
> # colors are "recycled" if necessary
> barplot(rep(1,20),col=1:20, yaxt="n")
>
> palette("default")
> palette()
[1] "black" "red"
                        "green3"
    "blue"
             "cyan"
                                                     Recycled Colors
[6] "magenta" "yellow" "gray"
```

Color Basics: Color Names

```
> colors() # or colours()
  [1] "white"
                              "aliceblue"
                                                     "antiquewhite"
  [4] "antiquewhite1"
                              "antiquewhite2"
                                                     "antiquewhite3"
[655] "yellow3"
                              "yellow4"
                                                     "yellowgreen"
> colors()[grep("red", colors())]
 [1] "darkred"
                       "indianred"
                                          "indianred1"
                       "indianred3"
                                          "indianred4"
 [4] "indianred2"
 [7] "mediumvioletred" "orangered"
                                          "orangered1"
                                          "orangered4"
[10] "orangered2"
                       "orangered3"
[13] "palevioletred"
                       "palevioletred1"
                                          "palevioletred2"
[16] "palevioletred3"
                       "palevioletred4"
                                          "red"
[19] "red1"
                       "red2"
                                          "red3"
[22] "red4"
                       "violetred"
                                          "violetred1"
[25] "violetred2"
                                          "violetred4"
                       "violetred3"
```

Color Basics: Color Names

Color Basics: Color Names

1	white	#FFFFFF	255	255 255	51	chartreuse4	#458800	69	139	
2		#FOF8FF		248 255	52	chocolate	#D2691E	_	105	3
3		#FAEBD7	1707010	235 215	53	chocolate1	#FF7F24		127	3
4	antiquewhite1	#FFEFDB	- 1000	239 219	54	chocolate2	#EE7621	238	118	3
5	antiquewhite2	#EEDFCC	F-11124-7750	223 204	56	chocolate3	#CD661D	205	102	2
6	antiquewhite3	#CDC080	205 1	192 176	56	chocolate4	#884513	139	69	1
7		#888378		131 120		coral	#FF7F50		127	8
8	aquamarine	#7FFFD4	127 2	255 212	58	coral1	#FF7256	255	114	8
9	aquamarine1	#7FFF04	127 2	255 212	59	coral2	#EE6A50	238		8
10	aquamarine2	#76EEC6	118 2	238 198	60	coral3	#CD5845	205	91	6
11	aquamarine3	#66CDAA	102 2	205 170	61	coral4	#8B3E2F	139	62	4
12	aquamarine4	#458874	69 1	139 116	62	cornflowerblue	#6495ED	100	149	23
13	azure	#FOFFFF	240 2	255 255	63	cornsik	#FFF8DC	255	248	22
14	azure1	#F0FFFF	240 2	255 255	64	cornsik1	#FFF8DC	255	248	22
15	azure2	#E0EEEE	224 2	238 238	65	cornsik2	#EEE8CD	238	232	20
16	azure3	#C1CDCD	193 2	205 205	66	cornsik3	#CDC8B1	205	200	17
17	azure4	#838B8B	131 1	139 139	67	cornsik4	#8B8878	139	136	12
18	beige	#FSFSDC	245 2	245 220	68	cyan	#00FFFF	0	255	25
19	bisque	#FFE4C4	255 2	228 196	69	cyan1	#00FFFF	0	255	25
20	bisque1	#FFE4C4	255 2	228 196	70	cyan2	#00EEEE	0	238	23
21	bisque2	#EED587	238 2	213 183	71	cyan3	#00CDCD	0	205	20
22	bisque3	#CDB79E	205 1	183 158	72	cyan4	#008B8B	0	139	13
23	bisque4	#8B7D6B	139 1	125 107	73	darkblue	#00008B	0	0	13
24	black	#000000	0	0 0	74	darkcyan	#008B8B	0	139	13
25	blanchedalmond	#FFEBCD	255 2	235 205	75	darkgoldenrod	#B8860B	184	134	1
26	blue	#0000FF	0	0 255	76	darkgoldenrod1	#FFB90F	255	185	1
27	blue1	#0000FF	0	0 255	77	darkgoldenrod2	#EEADOE	238	173	1
28	blue2	#0000EE	0	0 238	78	darkgoldenrod3	#CD950C	205	149	1
	blue3	#0000CD	0	0 205	79	darkgoldenrod4	#886508	139	101	1 1

Alphabetical except first color, which is white

Print seven page table to compare screen colors with printed colors. http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.pdf

Color Basics: Hex Constants

14

15

E F Hex "FF" = $15*16^1 + 15*16^0 = 255$ Hex "00" to "FF" can be interpreted as 0.0 to 1.0.

Numbers represented in "base 16" are called "hexadecimal". Hex "FF" is largest value represented by one byte (8 bits).

Color Basics

In R Color can be represented by

- index into palette
- color name
- hex constant (24-bit "True Color": 256³ colors = 16,777,216 colors)

Color Basics

In R many objects can take on different colors:

- points
- lines
- axes
- text
- legends
- background

Color Basics: Points

```
> palette()
[1] "black"
           "red"
                  "green3"
                           "blue"
                                    "cyan"
[6] "magenta" "yellow" "gray"
> x < - -2:2
               Five (x,y) points to plot
> y < - x^{\lambda}2
# Equivalent point colors
> plot(x,y, col=1:5,
        pch=CIRCLE<-16, cex=2)</pre>
                                                     -1
> plot(x,y,
        col=c("black", "red", "green3", "blue", "cyan"),
        pch=CIRCLE, cex=2)
> plot(x,y,
        col=c("#000000", "#FF0000", "green3", 4, 5),
        pch=CIRCLE, cex=2)
                                           Color name
                                                         Palette Index
                             Hex #rrqqbb
```

Color Basics: Points

```
n <- 20
plot(1:n, pch=CIRCLE<-16, cex=1:n, col=rainbow(n))</pre>
```


Color Basics: Points

> plot(log2(somite\$Signal.1L), log2(somite\$Signal.1R))

How to associate color with p-values at each point?

Color Basics: Points

Color Basics: Points and Lines

library(scatterplot3d)
?scatterplot3d
Example 6

Red-Green-Blue 3D Plot of colors()

Color Basics: Axes and Text

```
BOTTOM <- 1
LEFT
       <- 2
       <- 3
TOP
RIGHT <- 4
par(col.lab="orange", col.main="gray")
plot(0:10,0:10, col=0:10, pch=CIRCLE<-16,
    main="Chart Title", axes=FALSE,
    xlab="X axis",ylab="Y axis")
# Margin Text
mtext("Bottom", BOTTOM, col="red")
mtext("Left",
                       col="green")
               LEFT,
                       col="blue")
mtext("Top",
               TOP,
                       col="magenta")
mtext("Right", RIGHT,
axis(BOTTOM, col="red",
  col.axis="red")  # 2, ... 10 in red
AXIS LABEL HORIZONTAL <- 1
axis(LEFT, col="green", col.axis="green",
  at=2*0:5, labels=paste(20*0:5),
  las=AXIS_LABEL_HORIZONTAL)
axis(TOP, col="blue", col.axis="blue")
axis(RIGHT, col="magenta", col.axis="magenta")
```

```
Chart Title
                                                      10
                          . Т<u>ор</u>
100
 80
 60
 40
 20
  0
                            Bottom
                2
                                             8
                                                      10
                            X axis
```

Color Basics: Legends

```
Time <- 0:120
Period1 <- cos(2*pi*Time/120)
Period2 <- cos(2*pi*Time/90)</pre>
Period3 <- cos(2*pi*Time/150)</pre>
COLORS
          <- c("red", "green", "blue")
LINE.TYPES <- c("solid", "dotted", "dashed")
Periods <- data.frame(</pre>
                        Period1=Period1,
                         Period2=Period2,
                         Period3=Period3)
matplot(Periods, type = "l",
        xlab="Time[min]",ylab="Expression",
        col = COLORS, lty = LINE.TYPES)
legend("bottomleft",
       c("120 min period", " 90 min period",
         "150 min period"),
       col = COLORS, lty = LINE.TYPES)
```


Color Basics: Background

R's default background color is "transparent."

Set graphic background to simplify cutting and pasting to PowerPoint! Avoids in PowerPoint: Format Picture | Colors and Lines | Fill Color

- Color Basics in R
- Color Spaces
- Color Gradients / Color Ramps
- Color Blindness
- •Why Don't Screen Colors Match Printout?
- Colors Tips

Color Space: RGB Color Model

```
> rgb(1,0,0)
[1] "#FF0000"
                                                           #rrggbb
> rgb(0,1,0)
                                            26 blue
[1] "#00FF00"
                                           54 green
                                                           #00FF00
> rgb(1,1,0)
[1] "#FFFF00"
                                          552 red
                                                           #FF0000
> rgb(255,0,0, maxColorValue=255)
[1] "#FF0000"
                                           450 magenta
                                          652 yellow
> col2rgb(c("blue", "yellow"))
       [,1] [,2]
                                           68 cyan
        0 255
red
        0 255
green
      255
blue
```


#0000FF

Color is additive in the RGB Color Model. Coordinate values not always obvious.

R G B

0 0 255

0 255

255

Red-Green-Blue Color Cube

24-bit graphics: 256 x 256 x 256 = 16,777,216 colors 256 shades of grey

Contrasting Colors?

Color Space: HSV

Hue-Saturation-Value Match perception of color better than RGB

Source: http://scien.stanford.edu/class/psych221/projects/02/sojeong/

Color Space: HSV

```
Hue-Saturation-Value
```

```
> hsv(1,1,1)
[1] "#FF0000"
> hsv(1/3,1,1)
[1] "#00FF00"
> hsv(2/3,1,1)
[1] "#0000FF"
hue \leftarrow seq(0.0, 1.0, by=1/40)
pie(rep(1,40),
    labels=formatC(hue, digits=3,
                    format="f"),
    cex=0.75,
    col=hsv(hue, 1.0, 1.0),
    radius=1.0,
    main="HSV (S=1, V=1)" )
> rqb2hsv(col2rqb("blue"))
       [,1]
h 0.6666667
s 1.0000000
                      Contrasting Colors?
v 1.0000000
```


Color Spaces

help(package=colorspace)

HSV	Create HSV Colors					
LAB	Create LAB Colors					
LUV	Create LUV Colors					
RGB	Create RGB Colors					
XYZ	Create XYZ Colors					
color-class	Class "color"					
coords	Extract the numerical coordinates of a color					
hex	Convert Colors To Hexadecimal Strings					
hex2RGB	Convert Hexadecimal Color Specifications To RGB					
	Objects					
mixcolor	Compute the convex combination of two colors					
polarLAB	Create polarLAB Colors					
polarLUV	Create polarLUV Colors					
readRGB	Read RGB Color Descriptions					
readhex	Read Hexadecimal Color Descriptions					
writehex	Write Hexadecimal Color Descriptions					

- Color Basics in R
- Color Spaces
- Color Gradients / Color Ramps
- Color Blindness
- Why Don't Screen Colors Match Printout?
- Colors Tips

Color Gradients / Color Ramps

```
par(mfrow=c(6,1), mar=c(3,1,0,1))
BOTTOM <- 1
colorstrip <- function(colors, description,</pre>
                        ShowAxis=FALSE)
  count <- length(colors)</pre>
 m <- matrix(1:count, count, 1)</pre>
  image(m, col=colors, ylab="", axes=FALSE)
  if (ShowAxis)
    axis(BOTTOM)
  mtext(description, BOTTOM, adj=0.5, line=0.5)
COLOR.COUNT <- 256
colorstrip(rainbow(COLOR.COUNT),
                                         "rainbow")
colorstrip(heat.colors(COLOR.COUNT),
                                         "heat.colors")
colorstrip(terrain.colors(COLOR.COUNT), "terrain.colors"
colorstrip(topo.colors(COLOR.COUNT),
                                         "topo.colors")
colorstrip(cm.colors(COLOR.COUNT),
           "cm.colors (cyan-magenta)")
colorstrip(gray(0:COLOR.COUNT / COLOR.COUNT), "gray")
```


Color Gradients / Color Ramps

colorRamp and colorRampPalette added in R 2.1.0

```
m <- outer(1:20,1:20,function(x,y) sin(sqrt(x*y)/3))
rgb.palette <- colorRampPalette(c("red", "orange",
    "blue"), space = "rgb")
filled.contour(m,col = rgb.palette(20))</pre>
```

```
# space="Lab" helps when colors don't form a
# natural sequence
Lab.palette <- colorRampPalette(c("red", "orange",
"blue"), space = "Lab")
filled.contour(m,col = Lab.palette(20))</pre>
```


Color Gradients / Color Ramps

HCL (Hue, Chroma, Luminance)

```
> ?hcl
```

> barplot(rep(1, 20), col = hcl(seq(0, 360, length = 20)))

See: HCL(Hue-Chroma-Luminance)-based Color Palettes in R http://cran.r-project.org/doc/vignettes/vcd/hcl-colors.pdf

Color Gradients / Color Ramps

RColorBrewer Package

- > library(RColorBrewer)
- > display.brewer.all()

Color Gradients / Color Ramps

Representative Color for Given Wavelength

- Color Basics in R
- Color Spaces
- Color Gradients / Color Ramps
- Color Blindness
- •Why Don't Screen Colors Match Printout?
- Colors Tips

Color Blindness

Ishihara Test for Color Blindness

Normal Color Vision: 25, 29, 45, 56, 6, 8

Red-Green Color Blind: 25, spots, spots, 56, spots, spots

Source: http://www.toledo-bend.com/colorblind/Ishihara.html

About 1 in 12 have some sort of color deficiency: About ~8% of men and ~0.4% of women in the US.

Color Blindness

R dichromat Package: Color Schemes for dichromats

```
library(dichromat)
par(mfcol=c(1,2))
N <- 20
pie(rep(1,N),col=heat.colors(N))
pie(rep(1,N),col=dichromat(heat.colors(N)))</pre>
```


dichromat function collapses red-green color distinctions to approximate the effect of the two common forms of red-green color blindness, protanopia and deuteranopia.

Color Blindness

R dichromat Package: Color Schemes for dichromats

```
library(dichromat)
par(mar=c(1,2,1,1))
layout(matrix(1:6,ncol=1))
image(1:10,1,matrix(1:10, ncol=1),
     col=colorschemes$BrowntoBlue.10,
     main="Brown to Blue (10)", axes=FALSE)
image(1:100,1,matrix(1:100,ncol=1),
     col=colorRampPalette(colorschemes$BrowntoBlue.10,space="Lab")(100),
     main="Brown to Blue Ramp", axes=FALSE)
image(1:10,1,matrix(1:10, ncol=1),
     col=dichromat(colorschemes$BrowntoBlue.10),
     main="Brown to Blue (10) -- deuteranopia", axes=FALSE)
image(1:12,1,matrix(1:12, ncol=1),col=colorschemes$Categorical.12,
     main="Categorical (12)", axes=FALSE)
image(1:12,1,matrix(1:12, ncol=1),
     col=dichromat(colorschemes$Categorical.12),
     main="Categorical (12) -- deuteranopia", axes=FALSE)
image(1:12,1,matrix(1:12,ncol=1),
     col=dichromat(colorschemes$Categorical.12, "protan"),
     main="Categorical (12) -- protanopia", axes=FALSE)
```

Color Blindness

R dichromat Package: Color Schemes for dichromats

- Color Basics in R
- Color Spaces
- Color Gradients / Color Ramps
- Color Blindness
- •Why Don't Screen Colors Match Printout?
- Colors Tips

Using Color in R Why Don't Screen Colors Match Printout?

Conceptual Diagram of All Colors (2D Slice)

Using Color in R Why Don't Screen Colors Match Printout?

Each Device Has Own Gamut of Colors

Using Color in R 3D Color Gamut

From "Visualization of Expanded Printing Gamuts Using 3-Dimensional Convex Hulls" by Karl Guyler, Hallmark Cards, Kansas City

Color calibration can be used to minimize needless differences

Using Color in R Why Don't Screen Colors Match Printout?

- Different color gamuts between devices:
 How should a color be represented if it doesn't exist on a device?
- •I mperfect conversions:

CRT screens with RGB (Red-Green-Blue) additive colors must be converted to CMYK (Cyan-Magenta-Yellow-Black) subtractive colors

- Color fidelity may not be accurate
- Paper/ink differences

- Color Basics in R
- Color Spaces
- Color Gradients / Color Ramps
- Color Blindness
- •Why Don't Screen Colors Match Printout?
- Colors Tips

Using Color in R Color Tips

- Avoid unnecessary use of color.
- Use bright colors with small graphics to make them stand out.
- Be consistent in use of color.
- Don't use color as only attribute to show difference. E.g., consider color and line type.

Also see: Cool Color Commentary, http://www.public-speaking.org/public-speaking-color-article.htm

Color Tips: Palettes

Qualitative Palette:

- all same perceptual weight/importance
- typical application: bar plot

Sequential Palette

- for coding numerical information in a range
- typical application: heat map

Diverging Palette

Like Sequential Palette but with neutral value

References

Colour for Presentation Graphics

http://www.stat.auckland.ac.nz/~ihaka/colour/color-talk.pdf

Why should Engineers and Scientists be worried about color? http://www.research.ibm.com/people/l/lloydt/color/color.HTM