7.1 Замкнутые системы булевых функций

Пусть R — произвольное множество булевых функций. Замыканием множества R называется множество всех функций, которые можно реализовать формулами в базисе R. Замыкание множества R будем обозначать через [R]. Множество булевых функций R называется (функционально) замкнутым множеством, если оно совпадает со своим замыканием, т. е. R = [R].

Рассмотрим пять важнейших замкнутых множеств в P_2 . Часто рассматриваемые ниже замкнутые множества называются также замкнутыми классами

1. Будем говорить, что функция $f(x_1, \dots, x_n)$ сохраняет нуль, если

$$f(0,\ldots,0) = 0.$$

Множество, состоящее из всех булевых функций сохраняющих нуль, обозначается через T_0 . Легко видеть, что функции $0, x, x \& y, x \lor y$ и $x \otimes y$ принадлежат T_0 , а функции $1, \bar{x}, x \sim y, x \mid y, x \downarrow y$ и $x \to y$ не принадлежат T_0 .

Так как тождественная функция сохраняет нуль, и для любых сохраняющих нуль функций f_0, f_1, \ldots, f_k справедливо равенство

$$f(0,\ldots,0) = f_0(f_1(0,\ldots,0),\ldots,f_k(0,\ldots,0)) = f_0(0,\ldots,0) = 0.$$

т. е. реализуемая формулой $f_0(f_1,\ldots,f_k)$ функция f также сохраняет нуль, то легко видеть, что множество T_0 замкнуто. Любой булев вектор длины 2^n с первой нулевой компонентой будет вектором значений функции из T_0 . Поэтому, в T_0 содержится ровно 2^{2^n-1} функций из $P_2(n)$. Множество $T_0 \cap P_2(n)$ будем обозначать через $T_0(n)$.

2. Будем говорить, что функция $f(x_1, ..., x_n)$ сохраняет единицу, если

$$f(1,...,1) = 1.$$

Множество, состоящее из всех булевых функций сохраняющих единицу, обозначается через T_1 .

Легко видеть, что функции 1, x, x & y, $x \lor y$, $x \sim y$ и $x \to y$ принадлежат T_1 , а функции 0, \bar{x} , $x \otimes y$, $x \mid y$ и $x \downarrow y$ не принадлежат T_1 . Доказательство замкнутости множества T_1 аналогично доказательству замкнутости множества T_0 . Также легко видеть, что в T_1 содержится ровно 2^{2^n-1} функций из $P_2(n)$. Множество $T_1 \cap P_2(n)$ будем обозначать через $T_1(n)$.

3. Будем говорить, что булева функция $f(x_1, ..., x_n)$ является двойственной к функции $g(x_1, ..., x_n)$, если

$$f(x_1,\ldots,x_n)=\bar{g}(\bar{x}_1,\ldots,\bar{x}_n)$$

Функцию двойственную к функции f будем обозначать через f^* . Легко видеть, что $(f^*)^* = f$ для любой булевой функции f. Из законов двойственности следует, что $(x\&y)^* = x\lor y$ и $(x\lor y)^* = x\&y$. Функция f называется самодвойственной, если $f = f^*$. Множество, состоящее из всех самодвойственных булевых функций, обозначается через S. Самодвойственными являются функции $x, \bar{x}, x_1 \cap x_2 \cap x_3$. Среди булевых функций, существенно зависящих ровно от двух переменных, нет ни одной самодвойственной функции.

Докажем замкнутость множества самодвойственных функций. Пусть f_0, f_1, \ldots, f_k — произвольные самодвойственные функции. Рассмотрим новую функцию $f = f_0(f_1, \ldots, f_k)$. Так как добавление фиктивной переменной оставляет самодвойственную функцию самодвойственной, то без ограничения общности будем полагать, что все функции f_i зависят от одних и тех же переменных x_1, \ldots, x_n . Тогда

$$f(\bar{x}_1, \dots, \bar{x}_n) = f_0(f_1(\bar{x}_1, \dots, \bar{x}_n), \dots, f_k(\bar{x}_1, \dots, \bar{x}_n)) =$$

$$= f_0(\bar{f}_1(x_1, \dots, x_n), \dots, \bar{f}_k(x_1, \dots, x_n)) =$$

$$= \bar{f}_0(f_1(x_1, \dots, x_n), \dots, f_k(x_1, \dots, x_n)) = \bar{f}(x_1, \dots, x_n).$$

Следовательно, функция f — самодвойственная. Таким образом, множество S замкнуто.

Так как каждая самодвойственная функция на противоположных наборах принимает противоположные значения, то для определения любой самодвойственной функции достаточно задать ее значения только на половине из 2^n наборов. Следовательно, в S содержится ровно 2^{2^n-1} функций из $P_2(n)$. Далее множество самодвойственных функций, зависящих от n переменных, будем обозначать через S(n).

4. Функция $f(x_1, ..., x_n)$ называется линейной, если степень ее многочлена Жегалкина не превосходит единицу, т. е.

$$f(x_1,\ldots,x_n)=\alpha_1x_1\otimes\cdots\otimes\alpha_nx_n\otimes\alpha_0,$$

где α_i — булевы постоянные. Множество, состоящее из всех линейных булевых функций, обозначается через L. Очевидно, что среди функций из $P_2(2)$ линейными являются только $0,\ 1,\ x,\ \bar x,\ y,\ \bar y,\ x\otimes y$ и $x\sim y$. Непосредственно из определения линейной функции следует замкнутость множества L.

Так как каждая булева функция однозначно определяется коэффициентами своего многочлена Жегалкина, а укаждой линейной функции все коэффициенты при одночленах степени два и выше равны нулю, то легко видеть, что в L содержится ровно 2^{n+1} функций из $P_2(n)$. Далее множество $L \cap P_2(n)$ будем обозначать через L(n).

5. Функция $f(x_1, ..., x_n)$ называется монотонной, если

$$f(\alpha_1,\ldots,\alpha_n) \le f(\beta_1,\ldots,\beta_n)$$

для любых наборов $\mathbf{a}=(\alpha_1,\dots,\alpha_n)$ и $\mathbf{b}=(\beta_1,\dots,\beta_n)$ таких, что $\mathbf{a}\preceq\mathbf{b}$. Множество, состоящее из всех монотонных булевых функций, обозначается через M. В $P_2(2)$ монотонными являются функции $0,\ 1,\ x,\ y,\ x\&y$ и $x\vee y$. Докажем замкнутость множества монотонных функций. Пусть f_0,\dots,f_k — произвольные монотонные функции. Очевидно, что добавление фиктивной переменной оставляет монотонную функцию монотонной. Поэтому без ограничения общности будем полагать, что все функции f_i зависят от одних и тех же переменных x_1,\dots,x_n . Пусть \mathbf{a},\mathbf{b} — такие наборы из \mathbb{B}^n , что $\mathbf{a}\preceq\mathbf{b}$. Рассмотрим новую функцию $f=f_0(f_1,\dots,f_k)$. Так как $f_i(\mathbf{a})\leq f_i(\mathbf{b})$, то $(f_1(\mathbf{a}),\dots,f_k(\mathbf{a}))\preceq (f_1(\mathbf{b}),\dots,f_k(\mathbf{b}))$, и поэтому

$$f(\mathbf{a}) = f_0(f_1(\mathbf{a}), \dots, f_k(\mathbf{a})) \le f_0(f_1(\mathbf{b}), \dots, f_k(\mathbf{b})) = f(\mathbf{b}).$$

Следовательно, функция f — монотонная. Таким образом, множество M замкнуто.

Обозначим множество монотонных функций n переменных через M(n). В отличие от множеств $T_0(n), T_1(n), S(n)$ и L(n), мощности которых легко были найдены выше, точное число монотонных функций в $P_2(n)$ при больших n неизвестно. Лишь сравнительно недавно A. Д. Коршуновым была найдена асимптотически точная формула для |M(n)|. Эта формула выглядит достаточно громоздко, и поэтомуздесь не приводится. Вместо этого для |M(n)| ниже устанавливаются более грубые, но в тоже время значительно более простые неравенства.