\mathbb{A}^1 -INVARIANCE FOR UNSTABLE K_2

S. SINCHUK, A. STAVROVA, AND A. LAVRENOV

1. AIM OF THE PAPER

The aim of this text is to prove that the non-stable K_2 -functors K_2^G , where G is a simply connected Chevalley group of suitable type, satisfy \mathbb{A}^1 -invariance on regular rings R containing a field k, that is,

$$\Box (1.1) K_2^G(R[t]) = K_2^G(R).$$

As a corollary, we should easily deduce that

$$K_2^G(R) = KV_2^G(R),$$

where $KV_2^G(R)$ is the Karoubi–Villamayor K-functor associated to G. This functor originates from [Jar83]. The above equality by e.g. [AHW15, Corollary 4.3.3] implies that $\pi_1^{\mathbb{A}^1}(G)(R) = K_2^G(R)$, i.e. we obtain an explicit presentation for the \mathbb{A}^1 -fundamental group of G in the sense of Morel–Voevodsky.

"Suitable type" here means that we consider only the cases where we know the centrality of K_2 , or at least the Quillen-Suslin lgp. Some intermediate steps can be proved in larger generality.

Essentially, we need to prove that $K_2^G(k[x_1,\ldots,x_n])=K_2^G(k)$. (Then (1.1) follows by standard geometric methods.) There are two models: Tulenbaev's proof for the SL_n case [Tul83] and Stavrova's proof for K_1^G [Sta14]. Tulenbaev [Tul83] uses stabilization of the K_2 -functor, and the good properties of the limit=algebraic K-theory. In [Sta14] stabilization is not used. However, the key steps of both proofs are the same: the case of R=k (hidden somewhere around [Tul83, p. 140], or, respectively, [Sta14, Theorem 3.1]); Quillen-Suslin lgp; \mathbb{P}^1 -gluing (see [Tul83, Theorem 5.1] or [Sta14, Theorem 1.1]).

1.1. The case R=k. We consider the case of $K_2^G(k[t])$ vs. $K_2^G(k)$. (As in the \mathbb{A}^1 -invariance of K_1^G , this case should be used to deduce that $K_2^G(k[t_1,\ldots,t_n])=K_2^G(k)$.)

In Tulenbaev's framework, it follows from stabilization. However, the equality $K_2^G(k[t]) = K_2^G(k)$ is sort of known for all groups. Namely, in [Wen14, Theorem 5.1]: let k be an infinite field and let G be a connected reductive group over k. Then the inclusion $k \hookrightarrow k[t]$ induces an isomorphism

$$H_{\bullet}(G(k), \mathbb{Z}) \xrightarrow{\cong} H_{\bullet}(G(k[t]), \mathbb{Z}),$$

if the order of the fundamental group of G is invertible in k. Once we know that the homology H_2 coincides with K_2^G (on both sides), this gives the result. It would be nice to check Wendt's proof; maybe, discuss it in a seminar?

Is it necessary to know the centrality in order to show that K_2^G coincides with H_2 ? If yes, then we probably know it for $K_2^G(k)$ even for isotropic groups [Deo78], but only for the

²⁰¹⁰ Mathematics Subject Classification. 19C09, 19C20, 14L15, 20G35.

Key words and phrases. Chevalley group, non-stable K_2 -functor, Steinberg group.

good Chevalley groups for $K_2^G(k[t])$. We should try to understand what is proved in [VW12, Proposition 5.3 using only the universality of the Steinberg group. This may be useful. The paper is unpublished, so again everything should be double-checked if you want to refer to it.

1.2. Plan of the proof.

(1) (done, see Theorem 1). Let R be a local ring. Show that

$$\operatorname{St}^{G}(R[t^{\pm 1}]) = i_{+}(\operatorname{St}^{G}(R[t]))i_{-}(\operatorname{St}^{G}(R[t^{-1}]))i_{+}(\operatorname{St}^{G}(R[t]))$$

Here i_{\pm} denote the natural homomorphisms into $\mathrm{St}^{\mathrm{G}}(R[t^{\pm 1}])$.

- (2) (**done**, see Theorem 3). Show that $K_2^G(k[t]) = K_2^G(k)$. (3) (**done**). Consequently, $\operatorname{St}^G(k[t]) \to \operatorname{St}^G(k[t^{\pm 1}])$ is injective and $\operatorname{St}^G(k[t]) \cap \operatorname{St}^G(k[t^{-1}]) =$ $\operatorname{St}^{G}(k)$ inside $\operatorname{St}^{G}(k[t^{\pm 1}])$. Also, $K_{2}^{G}(k) = K_{2}^{G}(k[t^{\pm 1}])$.

The first claim uses (2). The second claim follows from (2) and (1).

- (4) (**done** for split ACDE, see Theorem 2). Prove Quillen-Suslin lgp for K_2^G .
- (5) (Zariski gluing) for any commutative ring A and any non-nilpotent $f, g \in A$ such that A = fA + gA, the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A_f) \times K_2^G(A_g) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A_{fg})$$

is exact. The proof is usually almost the same as for (4).

(Remark. It seems that we need this property only for A = R[t] and f, g nonconstant polynomials.)

(6) (S-lemma) Let A be a commutative ring, S a multiplicative subset of A. If

$$K_2^G(A[X_1,\ldots,X_n]) = K_2^G(A)$$

for some $n \geq 1$, then $K_2^G(A_S[X_1, \ldots, X_n]) = K_2^G(A_S)$ as well.

This should be easy; see [Abe83, Lemma 3.6].

- (7) (Nisnevich gluing) Assume that B is a subring of a commutative ring A, and let $h \in B$ be a non-nilpotent element. Denote by $F_h:A\to A_h$ the localization homomorphism.
 - (i) If Ah + B = A, i.e. the natural map $B \to A/Ah$ is surjective, then for any $x \in \operatorname{St}^{G}(A_{h})$ there exist $y \in \operatorname{St}^{G}(A)$ and $z \in \operatorname{St}^{G}(B_{h})$ such that $x = F_{h}(y)z$.
 - (ii) If moreover $Ah \cap B = Bh$, i.e. $B/Bh \to A/Ah$ is an isomorphism, and h is not a zero divisor in A, then the sequence of pointed sets

$$K_2^G(B) \xrightarrow{g \mapsto (F_h(g),g)} K_2^G(B_h) \times K_2^G(A) \xrightarrow{(g_1,g_2) \mapsto g_1F_h(g_2)^{-1}} K_2^G(A_h)$$

is exact.

This should use something from the proof of (4) or (5); see [Sta14, Lemma 3.4].

(8) (\mathbb{P}^1 -gluing) Let A be any commutative ring. Show that the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A[t]) \times K_2^G(A[t^{-1}]) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A[t,t^{-1}])$$

is exact.

This should use (1)–(4).

- (a) Prove Lemma 6.1 for CDE. In Tulenbaev's paper this lemma invokes "another presentation". I am pretty confident that this result can be demonstrated for $\Phi = D_{\ell}, E_{\ell}$ using the same "amalgamation" technique as in the proof of lgp.
- (b) (done) Prove Corollary 6.3.

3

- (c) Prove Proposition 6.2. This is hard. Have no idea how this can be proved at the moment.
- (d) Prove \mathbb{P}^1 -glueing using all the above facts.
- (9) (Main corollary of \mathbb{P}^1 -gluing) Let A be any commutative ring, and let $f \in A[t]$ be a monic polynomial. Show that $K_2^G(A[t]) \to K_2^G(A[t]_f)$ is injective. The proof uses (5) and (8).
- (10) Prove that $K_2^G(k(t)) = K_2^G(k)$. This may be a bit tricky; I will think if we can get rid of it. I don't think Tulenbaev uses it. Unsure whether this is true (?). This is true for SK_1 but in view of Milnor's theorem can not hold for K_1 and K_2 .
 - (11) Prove that

$$K_2^G(k[t_1,\ldots,t_n]) = K_2^G(k).$$

If we strictly follow the pattern of K_1^G , this uses (9), (2), and (10). There may be other ways.

- (12) Final result: let R be a regular ring containing a field k. Then $K_2^G(R[t]) = K_2^G(R)$. This uses (4), (11) and (7).
 - 2. Steinberg groups of Chevalley groups: preliminaries

Definition, functoriality, "congruence subgroups" $\operatorname{St}^{\operatorname{G}}(\Phi,R,I)$ versus $\ker(\operatorname{St}^{\operatorname{G}}(\Phi,R) \to \operatorname{St}^{\operatorname{G}}(\Phi,R/I))$.

- 2.1. **Tulenbaev's map.** The following property of linear Steinberg groups was discovered for the first time by Tulenbaev (see [Tul83, Lemma 2.3]).
- Definition 2.1. Let R be arbitrary commutative ring and let $a \in R$ be any nonnilpotent element. We say that the Steinberg group functor St^G satisfies if there exists a map T which completes the canonical solid arrows in the diagram below to a commutative diagram.

$$\operatorname{St}^{\operatorname{G}}(R[t], tR[t]) \xrightarrow{\lambda_{a}} \operatorname{St}^{\operatorname{G}}(n, R \ltimes tR_{a}[t], tR_{a}[t])$$

$$\operatorname{St}^{\operatorname{G}}(n, R_{a}[t], tR_{a}[t])$$

3. Decomposition theorems for $\mathrm{St}^{\mathrm{G}}(A[t^{\pm 1}])$ and $\mathrm{St}^{\mathrm{G}}(A((t)))$.

Lemma 3.1.
$$(R, m)GR \ge 2i_+ : \operatorname{St}^{\operatorname{G}}(R[t]) \to \operatorname{St}^{\operatorname{G}}(R[t^{\pm 1}])i_- : \operatorname{St}^{\operatorname{G}}(R[t^{-1}] \to \operatorname{St}^{\operatorname{G}}(R[t^{\pm 1}])i_- : \operatorname{St}^{\operatorname{G}}(R[t^$$

$$i_{+}\left(\operatorname{St}^{\operatorname{G}}(m \cdot R[t])^{\operatorname{St}^{\operatorname{G}}(R[t])}\right)i_{-}\left(\operatorname{St}^{\operatorname{G}}(R[t^{-1}]) = i_{-}\left(\operatorname{St}^{\operatorname{G}}(R[t^{-1}])i_{+}\left(\operatorname{St}^{\operatorname{G}}(m \cdot R[t])^{\operatorname{St}^{\operatorname{G}}(R[t])}\right)\right)$$

$$\operatorname{St}^{\operatorname{G}}(R[t^{\pm 1}])$$

This is proved exactly as [Sta14, Lemma 5.12].

Theorem 1.
$$RGR \ge 2i_+ : \operatorname{St}^{G}(R[t]) \to \operatorname{St}^{G}(R[t^{\pm 1}])i_- : \operatorname{St}^{G}(R[t^{-1}] \to \operatorname{St}^{G}(R[t^{\pm 1}])$$

 $\operatorname{St}^{G}(R[t^{\pm 1}]) = i_+(\operatorname{St}^{G}(R[t]))i_-(\operatorname{St}^{G}(R[t^{-1}]))i_+(\operatorname{St}^{G}(R[t])).$

This is proved exactly as [Sta14, Theorem 5.1].

4. Quillen-Suslin Lgp, Zariski gluing, Nisnevich gluing, S-lemma

Theorem 2.
$$\operatorname{St}^{\operatorname{G}} g \in \operatorname{St}^{\operatorname{G}}(R[t], tR[t])\operatorname{St}^{\operatorname{G}}(R_M[t], tR_M[t])M \leq R$$

In the case $\Phi = C_{\ell}$, $\ell \geq 3$ the assertion of the theorem is the main result of [Lav15]. For a simply laced Φ of rank ≥ 3 this can be proved by the same token as [Sin16, Theorem 2] if one uses a stronger variant of Tulenbaev's lemma proved in the appendices below (see Corollary A.5).

5. The case of $K_2^G(k[t])$ and some corollaries

Theorem 3. $kG = G(\Phi, -) \ge 2$

$$K_2^G(k[t]) = K_2^G(k).$$

See Korollar after Satz 1 in [Reh75].

Corollary 5.1. $GkSt^{G}(k[t]) \rightarrow St^{G}(k[t^{\pm 1}])St^{G}(k[t]) \cap St^{G}(k[t^{-1}]) = St^{G}(k)St^{G}(k[t^{\pm 1}])$

Clearly, $g \in \ker(\operatorname{St}^G(k[t]) \to \operatorname{St}^G(k[t^{\pm 1}]))$ implies $g \in K_2^G(k[t])$. Since $K_2^G(k[t]) = K_2^G(k)$, and there is a section $K_2^G(k[t^{\pm 1}]) \to K_2^G(k)$, the map is injective. Second claim: take $g \in \operatorname{St}^G(k[t]) \cap \operatorname{St}^G(k[t^{-1}])$. Then the image $\phi(g)$ belongs to $E(k) = E(k[t]) \cap E(k[t^{-1}])$, and after adjusting g by an element of $\operatorname{St}^G(k)$, we can assume that $g \in K_2^G(k[t]) \cap K_2^G(k[t^{-1}])$. Hence $g \in K_2^G(k) \subseteq \operatorname{St}^G(k)$.

Corollary 5.2. $GkK_2^G(k[t^{\pm 1}]) = K_2^G(k)$

We use Theorem 1. Take $g \in K_2^G(k[t^{\pm 1}])$, then $g = x_1 y x_2, x_i \in St^G(k[t])$, $y \in St^G(k[t^{-1}])$. Since $E(k[t]) \cap E(k[t^{-1}]) = E(k)$, we have $y \in St^G(k)K_2^G(k[t^{-1}]) = St^G(k)$ and $x_1 x_2 \in St^G(k)$. That is, $g \in K_2^G(k)$.

6.
$$\mathbb{P}^1$$
-GLUING

6.1. **Preliminaries.** Let R denote arbitrary commutative local ring with the maximal ideal m and the residue field k. Consider the following commutative diagram of groups.

Lemma 6.1. $\varphi i_2^+ \varphi = \mu^{\pm}$

Compare with [Tul83, Lemma 3.2].

Proposition 6.2. k^+

Compare with [Tul83, Proposition 4.1]. This should invoke Lemma 6.1.

Corollary 6.3. i_2^+

Follows from the above lemmata by a simple diagram chasing (cf. [Tul83, Cor. 4.2]).

Indeed, let $g \in St^G(R[t] + m[t^{-1}])$ be an element of ker (i_2^+) . By Corollary 5.1 g also lies in ker $(p^{+\varepsilon})$ and hence comes from some $\widetilde{g} \in \text{St}^G(A[t] + m[t^{-1}], m[t^{\pm 1}])$ via $\mu^{+\varepsilon}$. Since $j_2^+(\widetilde{g})$ lies in C_{\pm} by Proposition 6.2 it comes from some $\widehat{g} \in C_{+}$ via k^{+} . It remains to notice that $g = \mu^{+\varepsilon}(\tilde{g}) = i_1^+ \mu^+(\hat{g}) = i_1^+(1) = 1$, as claimed.

6.2. Main result. The following lemma is an analog of [Tul83, Proposition 4.3 (a)].

Lemma 6.4. $Rk = R/mkGSt^{G}(R[t]) \rightarrow St^{G}(R[t^{\pm 1}])$

Let I be the maximal ideal of R, l=R/I, and consider the natural maps $\rho: \operatorname{St}^G(R[t,t^{-1}]) \to \operatorname{St}^G(l[t,t^{-1}])$, $\rho_+: \operatorname{St}^G(R[t]) \to \operatorname{St}^G(l[t])$, $\rho_-: \operatorname{St}^G(R[t^{-1}]) \to \operatorname{St}^G(l[t^{-1}])$. Take $x \in \ker(\operatorname{St}^G(R[t]) \to \operatorname{St}^G(R[t^{\pm 1}])$. By the field case Corollary 5.1 one has $\rho_+(x) = 1$, hence $x \in \operatorname{St}^{\operatorname{G}}(I \cdot R[t])^{\operatorname{St}^{\operatorname{G}}(R[t])}.$??????

Lemma 6.5. Gk(R, m)R/m = k

$$\operatorname{St}^{\operatorname{G}}(R[t]) \cap \operatorname{St}^{\operatorname{G}}(R[t^{-1}]) = \operatorname{St}^{\operatorname{G}}(R)$$

 $\operatorname{St}^{\operatorname{G}}(R[t^{\pm 1}])$

Theorem 4. A

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A[t]) \times K_2^G(A[t^{-1}]) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A[t,t^{-1}])$$

Follows from the above lemmas.

Corollary 6.6. $Af \in A[t]K_2^G(A[t]) \to K_2^G(A[t]_f)$

A. Linear Steinberg group in rank 3

The main goal of this subsection is to show that Tulenbaev's [Tul83, Lemma 2.3] remains valid for the linear Steinberg group of rank ≥ 3 . In order to do this we will need yet another presentation for the relative linear Steinberg group (cf. [Sin16, Definitions 3.3 and 3.7]).

Definition A.1. The relative Steinberg group $St^*(n, R, I)$ is the group defined by the following two families generators and four families of relations.

- Generators:
 - (1) $X^1(u, v)$, where $u \in E(n, R) \cdot e_1$, $v \in I^n$ such that $v^t \cdot u = 0$;
 - (2) $X^2(u,v)$, where $u \in I^n$, $v \in E(n,R) \cdot e_1$ such that $v^t \cdot u = 0$.

Notice that ϕ maps both $X^1(u,v)$ and $X^2(u,v)$ to $T(u,v)=e+u\cdot v^t\in \mathrm{E}(n,R,I)$.

- Relations:
 - (1) $X^1(u,v) \cdot X^1(u,w) = X^1(u,v+w), u \in E(n,R) \cdot e_1, v,w \in I^n;$
 - (2) $X^{2}(u,v) \cdot X^{2}(w,v) = X^{2}(u+w,v), u,w \in I^{n}, v \in E(n,R) \cdot e_{1};$
 - (3) $X^{\sigma(u^2,v^2)}X^{\tau}(u^1,v^1) = X^{\tau}(T(u^2,v^2) \cdot u^1, T(v^2,u^2)^{-1} \cdot v^1), \ \sigma, \tau = 1, 2;$
 - (4) $X^1(g \cdot e_1, g^* \cdot be_2) = X^2(g \cdot be_1, g^* \cdot e_2)$ where $b \in I$ and $g^* = g^{t-1}$ denotes the contragradient matrix.

Lemma A.2. $St^*(n, R, I)St(n, R, I)$

TODO:

The next step of the proof is to is construct certain elements in St(n, R) similar to Tulenbaev's elements $X_{u,v}(a)$ see [Tul83, § 1].

Let $v \in \mathbb{R}^n$ be a column. Denote by O(v) the submodule of \mathbb{R}^n consisting of all columns w such that $w^t \cdot v = 0$. A column $w \in \mathbb{R}^n$ is called <u>v-decomposable</u> if it can be presented as a finite sum $w = \sum_{i=1}^p w^i$ such that each w^i has at least two zero entries and $v^t \cdot w^i = 0$.

Denote by D(v) the submodule of O(v) consisting of all v-decomposable columns. For a column $v \in \mathbb{R}^n$ denote by I(v) the ideal of R spanned by its entries v_1, \ldots, v_n .

Let $u, v, w \in \mathbb{R}^n$ be columns such that $w^t v = 0$. It is easy to check (cf. [Kal77, Lemma 3.2]) that

$$(uv) \cdot w = \sum_{i < j} w_{ij}$$
, where $w_{ij} = (w_i u_j - w_j u_i)(v_j e_i - v_i e_j) \in A^n$.

The above decomposition is called the <u>canonical</u> decomposition of $(uv) \cdot w$. In particular, this shows that the column $a \cdot w$ is always v-decomposable for $a \in I(v)$, $w \in O(v)$, i.e. $I(v) \cdot O(v) \subseteq D(v)$. It is also straightforward to check that $D(v) \subseteq D(bv)$, $b \cdot D(v) \subseteq D(v)$ for $b \in R$.

Denote by B^1 the subset of $R^n \times R^n \times R$ consisting of triples (u, v, a) such that $v^t \cdot u = 0$, $v \in D(u)$, $a \in I(u)$. Denote by B^2 the set consisting of triples (v, u, a) such that $(u, v, a) \in B^1$.

Lemma A.3.
$$n \ge 4Z^{\tau}(u, v, a)\tau = 1, 2\operatorname{St}(n, R)(u, v, a) \in B^{\tau}$$

$$\phi(Z^{\tau}(u, v, a)) = e + uav^{t} \in \operatorname{E}(n, R)(u, v, a) \in B^{\tau}$$

$$Z^{1}(u, v + w, a) = Z^{1}(u, v, a) \cdot Z^{1}(u, w, a)$$

$$Z^{2}(v + w, u, a) = Z^{2}(v, u, a) \cdot Z^{2}(w, u, a)$$

$$\tau = 1, 2b \in R(u, vb, a), (ub, v, a) \in B^{\tau}$$

$$Z^{\tau}(u,vb,a) = Z^{\tau}(u,v,ab) = Z^{\tau}(ub,v,a);$$

$${}^{g}Z^{\tau}(u,v,a) = Z^{\tau}(\phi(g) \cdot u, \phi(g)^* \cdot v, a)\tau = 1, 2g \in \operatorname{St}^{G}(n,R)$$

One constructs the elements $Z^1(u,v,a)$ in exactly the same way as Tulenbaev constructs his elements $X_{u,v}(a)$ (see definitions preceding [Tul83, Lemma 1.2]). Indeed, set

(A.1)
$$Z^{1}(v, w, a) = \prod_{k=1}^{p} X(v, a \cdot w^{k}), \quad Z^{2}(w, v, a) = \prod_{k=1}^{p} X(a \cdot w^{k}, v).$$

where X(u,v) denotes the elements defined by Tulenbaev before [Tul83, Lemma 1.1].

The correctness of this definition and all the assertions of the lemma (with the exception of the last one in the case n=4) can be proved by the same token as in [Tul83, Lemma 1.3].

For the rest of this section a denotes a nonnilpotent element of R and $\lambda_a \colon R \to R_a$ is the morphism of principal localization at a.

Lemma A.4.
$$g \in E(n, R_a)u, v \in R^n km$$

$$\lambda_a(u) = g \cdot a^k e_1 \lambda_a(v) = g^* \cdot a^k e_2 u^t \cdot v = 0$$

$$(u, v, a^m) \in B^1 \cap B^2$$

$$(u, v, a^m) \in B^1 \cap B^2$$

 $h \in Ra$

$$Z^{1}(u, b \cdot v, a^{m}) = Z^{2}(b \cdot u, v, a^{m}).$$

It is straightforward to choose u and v satisfying the first requirement of the lemma. We can even choose u, v in such a way that $u \in D(v)$ and $v \in D(u)$. Indeed, notice that $I(u) = a^{k_1}$, $I(v) = a^{k_2}$ for some natural k_1 , k_2 hence for $u' = a^{k_2} \cdot u$ and $v' = a^{k_1} \cdot v$ one has

$$u' \in I(v) \cdot O(v) \subseteq D(v) \subseteq D(v'), \quad v' \in I(u) \cdot O(u) \subseteq D(u) \subseteq D(u'),$$

as required.

In fact, we can also choose two extra columns $x, y \in \mathbb{R}^n$ and a large natural p in such a way that vectors u, v, x, y additionally satisfy the following properties

$$\lambda_a(x) = g^* \cdot a^k e_3, \ \lambda_a(y) = g \cdot a^k e_3, \ y^t \cdot x = a^p \in R,$$
$$u^t \cdot x = 0, \ u^t \cdot v = 0, \ y^t \cdot v = 0,$$
$$(u, x, a^m) \in B^1, \ (y, v, a^m) \in B^2.$$

Now direct computation using Lemma A.3 shows that

$$Z^{2}(a^{m+p}b \cdot u, v, a^{m}) = Z^{2}(b \cdot (e + a^{m} \cdot ux^{t})y, (e - a^{m} \cdot xu^{t})v, a^{m}) \cdot Z^{2}(-by, v, a^{m}) =$$

$$= [Z^{1}(u, x, a^{m}), Z^{2}(b \cdot y, v, a^{m})] =$$

$$= Z^{1}(u, x, a^{m}) \cdot Z^{1}((e + a^{m}b \cdot yv^{t})u, -(e - a^{m}b \cdot vy^{t})x, a^{m}) = Z^{1}(u, a^{m+p}b \cdot v, a^{m}), \quad \Box$$

hence the third assertion of the lemma follows.

Corollary A.5. $n \geq 4T_n$

Follows from Lemma A.4 by the same token as in [Tul83, Lemma 2.3]. REFERENCES 8

References

	[Abe83]	E. Abe. "Whitehead groups of Chevalley groups over polynomial rings". Comm. Algebra
		11 , no. 12, (1983), pp. 1271–1307.
7	[AHW15]	A. Asok, M. Hoyois, and M. Wendt. Affine representability results in A ¹ -homotopy theory II: princip
_		2015. arXiv: .
7	[Deo78]	V. V. Deodhar. "On central extensions of rational points of algebraic groups". Amer. J. Math
		(1978), pp. 303–386.
	[Jar83]	J. F. Jardine. "On the homotopy groups of algebraic groups". J. Algebra 81, no. 1,
	. ,	(1983), pp. 180–201.
	[Kal77]	W. van der Kallen. "Another presentation for Steinberg groups". Indag. Math. 80, no. 4,
_	[]	(1977), pp. 304–312.
	[Lav15]	A. Lavrenov. Local-global principle for symplectic K_2 . 2015?
	[Reh75]	U. Rehmann. "Präsentationen von Chevalleygruppen über $k[t]$ ". (1975).
	[Sin16]	S. Sinchuk. "On centrality of K_2 for Chevalley groups of type E_ℓ ". J. Pure Appl. Algebra
_	[]	220 , no. 2, (2016), pp. 857–875.
	[Sta14]	A. Stavrova. "Homotopy invariance of non-stable K_1 -functors". J. K-theory 13, no. 2,
_	. ,	(2014), pp. 199–248.
	[Tul83]	M. Tulenbaev. "The Steinberg group of a polynomial ring". Math. USSR Sb. 45, (1983),
	[]	pp. 131–144.
	[VW12]	K. Völkel and M. Wendt. On \mathbb{A}^1 -fundamental groups of isotropic reductive groups. 2012.
	[· · · ·]	arXiv: .
7	[Wen14]	M. Wendt. "On homology of linear groups over $k[t]$ ". Math. Res. Lett. 21 , no. 6, (2014).
		MENT OF MATHEMATICS AND MECHANICS, St. PETERSBURG STATE UNIVERSITY, St. PE-
	TERSBURG,	
E-man address: Sinchukssy		ddress: sinchukss@gmail.com
	Departi	MENT OF MATHEMATICS AND MECHANICS, St. PETERSBURG STATE UNIVERSITY, St. PE-
	TERSBURG,	Russia
	E-mail a	ddress: anastasia.stavrova@gmail.com

 $\label{lem:matter} \mbox{Mathematisches Institut der Universität München, Theresienstr. 39, D-80333 München} \\ E-mail \ address: avlavrenov@gmail.com$