## **EKUIVALENSI NFA-DFA**

- Ada apa dengan NFA? konsep yang sulit diimplementasikan. Komputer sepenuhnya deterministic.
- Kenapa dipelajari ? Lebih dekat ke sistem nyata
- Contoh: permainan catur, banyak alternatif pada suatu posisi tertentu -> nondeterministic

## Algoritma:

- 1. Buat semua state yang merupakan subset dari state semula. jumlah state menjadi  $\mathbf{2}^{\mathbf{Q}}$
- 2. Telusuri transisi state–state yang baru terbentuk, dari diagram transisi.
- 3. Tentukan state awal :  $\{q_0\}$
- 4. Tentukan state akhir adalah state yang elemennya mengandung state akhir.
- 5. Reduksi state yang tak tercapai oleh state awal.
- 6. Rename state2 yang tersisa.

# Contoh Ubahlah NFA berikut menjadi DFA

 $M \!\!=\!\! \{\{q_0,\!q_1\},\,\{0,\!1\},\,\delta,\,q_0,\!\{q_1\}\} \text{ dengan tabel transisi}$ 

| δ     | 0             | 1             |
|-------|---------------|---------------|
| $q_0$ | $\{q_0,q_1\}$ | $\{q_1\}$     |
| $q_1$ | {}            | $\{q_0,q_1\}$ |



- 1. State yang akan dibentuk :  $\{\}$ ,  $\{q_0\}$   $\{q_1\}$ ,  $\{q_0,q_1\}$
- 2. Telusuri state
- 3. State awal : {q0}
- 4. State akhir yang mengandung  $q_1$ , yaitu  $\{q_1\},\{q_0,q_1\}$

| δ             | 0             | 1             |
|---------------|---------------|---------------|
| {}            | {}            | {}            |
| $\{q_{0}\}$   | $\{q_0,q_1\}$ | $\{q_1\}$     |
| $\{q_1\}$     | {}            | $\{q_0,q_1\}$ |
| $\{q_0,q_1\}$ | $\{q_0,q_1\}$ | $\{q_0,q_1\}$ |



# Contoh: Ubahlah NFA berikut menjadi DFA

 $M \hspace{-0.05cm}=\hspace{-0.05cm} \{ \{q_0,\hspace{-0.05cm}q_1,\hspace{-0.05cm}q_2\},\, \{p,\hspace{-0.05cm}r\},\, \delta,\, q_0,\hspace{-0.05cm}\{q_1\}\} \; dengan \; tabel \; transisi$ 

| δ                | p             | r         |
|------------------|---------------|-----------|
| $q_0$            | $\{q_1,q_2\}$ | {}        |
| $q_1$            | {}            | $\{q_2\}$ |
| $\overline{q_2}$ | $\{q_1\}$     | $\{q_1\}$ |



1. State yang akan dibentuk : { }, {q\_0} {q\_1},{q\_2}, {q\_0,q\_1}, {q\_0,q\_2}, {q\_1,q\_2}, {q\_0,q\_1,q\_2}

# 2. Telusuri state:

| δ                  | p                 | r                 |
|--------------------|-------------------|-------------------|
| {} q4              | {}                | {}                |
| $\{q_0\}$          | $\{q_1,q_2\}$     | {}                |
| $\{q_1\}$          | {}                | $\{q_2\}$         |
| $\{q_2\}$          | $\{q_1\}$         | $\{q_1\}$         |
| $\{q_0,q_1\}$      | $\{q_1,q_2\}$     | {q <sub>2</sub> } |
| $\{q_0,q_2\}$      | $\{q_1,q_2\}$     | $\{q_1\}$         |
| $\{q_1,q_2\}\ q_3$ | {q <sub>1</sub> } | $\{q_1,q_2\}$     |
| $\{q_0,q_1,q_2\}$  | $\{q_1,q_2\}$     | $\{q_1,q_2\}$     |

- 3. State awal :  $\{q_0\}$
- 4. State akhir yang mengandung  $q_1$ , yaitu  $\{q_1\},\{q_1,q_2\}$
- 5. Reduksi  $\{q_0,q_1\}\{q_0,q_2\}\{q_0,q_1,q_2\}$  sehingga FSA menjadi



Buat DFA yang mengenali bahasa  $L=\{x/x \text{ string } 0,1 \text{ yg berakhiran dengan } 00\}$   $L=\{00,1010100,100,11100,0100,...\}$ 

#### DFA:

| δ                 | 0                 | 1         |
|-------------------|-------------------|-----------|
| {}                | {}                | {}        |
| $\{q_0\}$         | $\{q_0,q_1\}$     | $\{q_0\}$ |
| $\{q_1\}$         | $\{q_2\}$         | {}        |
| $\{q_2\}$         | {}                | {}        |
| $\{q_0,q_1\}$     | $\{q_0,q_1,q_2\}$ | $\{q_0\}$ |
| $\{q_0,q_2\}$     | $\{q_0,q_1\}$     | $\{q_0\}$ |
| $\{q_1,q_2\}$     | $\{q_2\}$         | {}        |
| $\{q_0,q_1,q_2\}$ | $\{q_0,q_1,q_2\}$ | $\{q_0\}$ |

| δ                 | 0                 | 1         |
|-------------------|-------------------|-----------|
| {}                | {}                | {}        |
| $\{q_0\}$         | $\{q_0,q_1\}$     | $\{q_0\}$ |
| $\{q_2\}$         | {}                | {}        |
| $\{q_0,q_1\}$     | $\{q_0,q_1,q_2\}$ | $\{q_0\}$ |
| $\{q_0,q_1,q_2\}$ | $\{q_0,q_1,q_2\}$ | $\{q_0\}$ |

| δ     | 0     | 1     |
|-------|-------|-------|
| $q_0$ | $q_1$ | $q_0$ |
| $q_1$ | $q_2$ | $q_0$ |
| $q_2$ | $q_2$ | $q_0$ |

# Ekspresi Reguler

- Bahasa regular dapat dinyatakan sebagai ekspresi regular dengan menggunakan 3 operator : concate, alternate, dan closure.
- Dua buah ekspresi regular adalah ekuivalen jika keduanya menyatakan bahasa yang

#### Contoh ekspresi reguler

- (0|1)\*: himpunan seluruh string yang dapat dibentuk dari simbol '0' atau '1'
- (0|1)\*00(0|1)\*: himpunan string biner yang mengandung paling sedikit satu substring '00'
- (0|1)\*00: himpunan string biner yang diakhiri dengan '00'

### Bahasa Reguler:

Apabila r adalah ER, maka L(r) adalah bahasa reguler yang dibentuk menggunakan ekspressi reguler r.

#### Contoh

$$L_1 = \{a^n ba^m \mid n \ge 1, m \ge 1\} \iff er_1 = a^+ b a^+$$
  
 $L_2 = \{a^n ba^m \mid n \ge 0, m \ge 0\} \iff er_2 = a^* b a^*$ 

Perhatikan bahwa kita tidak bisa membuat ekspresi regular dari bahasa

 $L_3=\{a^n\,ba^n\ \big|\ n\geq 1\}\ atau\ L_4=\{a^n\,ba^n\ \big|\ n\geq 0\},\ karena\ keduanya\ tidak\ dihasilkan\ dari\ grammar\ regular.$ 

Tentukan bahasa reguler yang dibentuk oleh r=(aa)\* Jawab

$$\begin{array}{lll} L(r) & = & L(\;(aa)^*\;) \\ & = & \{\; \epsilon, \, aa, \, aaaa, \, aaaaaa, \, ... \;\} \\ & = & \{\; a^{2n} \mid n \geq 0 \;\} \end{array}$$

menyatakan himpunan string a dengan jumlah genap

Tentukan bahasa reguler yang dibentuk oleh r=(aa)\*(bb)\*b Jawab

$$\begin{array}{lll} L(r) & = & L(\;(aa)^*\,(bb)^*b\;) \\ & = & \{\;a^{2n}\;b^{2m+1}\;|\;n,m\geq 0\;\} \end{array}$$

### Tentukan ekspresi reguler pembentuk bahasa pada $\Sigma = \{0,1\}$ , yaitu

$$L(r) = \{ w \in \Sigma^* \mid w \text{ memiliki substring '00' } \}$$

Jawab

$$r = (0|1)*00(0|1)*$$

#### Tentukan ekspresi reguler pembentuk bahasa pada $\Sigma = \{a,b\}$ , yaitu

$$L(r) = \{ ab^n w \mid n \ge 3, w \in \{a, b\}^+ \}$$

#### Jawab

$$r = abbb(a|b)(a|b)*$$

#### Latihan:

- 1. Carilah seluruh string pada L((a|b)\*b(a|ab)\*) dengan panjang string kurang dari 4.
- 2. Tentukan ekspresi reguler pembentuk bahasa pada  $\Sigma = \{a,b,c\}$ , yaitu
  - a.  $L(r) = \{ w \in \Sigma^* \mid w \text{ memiliki tepat sebuah simbol 'a' } \}$
  - b.  $L(r) = \{ w \in \Sigma^* | w \text{ mengandung tepat 3 buah simbol 'a'} \}$
  - c. L(r) = {  $w \in \Sigma^* \, | \, w \,$  mengandung kemunculan masing masing simbol minimal satu kali}
- 3. Tentukan ekspresi reguler pembentuk bahasa pada  $\Sigma = \{0,1\}$ , yaitu
  - a.  $L(r) = \{ w \in \Sigma^* \mid w \text{ diakhiri dengan string } 01 \}$
  - b.  $L(r) = \{ w \in \Sigma^* \mid w \text{ tidak diakhiri dengan string } 01 \}$
  - c.  $L(r) = \{ w \in \Sigma^* \mid w \text{ mengandung simbol '0' sebanyak genap } \}$
  - d.  $L(r) = \{ w \in \Sigma^* \mid \text{kemunculan string '00' pada w sebanyak kelipatan 3 } \}$
- 4. Tentukan ekspresi reguler pembentuk bahasa pada  $\Sigma = \{a,b\}$ , yaitu  $L(r) = \{w \in \Sigma^* \mid |w| \text{ mod } 3 = 0 \}$

#### Kesamaan 2 ekspresi regular:

```
(a b)* a = a (b a)*

Bukti:

(a b)* a = (\epsilon | (ab) | (abab) | ...) a = (\epsilon | (aba) | (ababa) | ...) = (a | (aba) | (ababa) | ...) = a (\epsilon | (ba) | (baba) | ...) = a (b a)*
```

Latihan 2. Buktikan kesamaan ekspresi regular berikut :

- (a\*|b)\* = (a|b)\*
   (a|b\*)\* = (a|b)\*
   (a\*b)\* a\* = a\* (b a\*)\*
   (a a\*)(ε|a) = a\*

# . BHS $\rightarrow$ ER $\rightarrow$ NFA $\rightarrow$ DFA