Tutoría 11: Transformada de Fourier y Sistemas LTI

Ejercicio 1. Considere la señal:

$$x(t) = \begin{cases} 0 & |t| > 1\\ \frac{t+1}{2} & -1 \le t \le 1 \end{cases}$$

- a. Encuentre una expresión cerrada para $X(j\omega)$.
- b. Compruebe que la parte real de su respuesta en el punto a. corresponde a la transformada de Fourier de la parte par de x(t).
- c. Determine la transformada de Fourier de la parte impar de x(t).

Respuestas:

a.
$$X(j\omega) = \operatorname{sa}(\omega) + j \left[\frac{\cos(\omega)}{\omega} - \frac{\operatorname{sa}(\omega)}{\omega} \right]$$

b.
$$x_e(t) \hookrightarrow \operatorname{sa}(\omega)$$

$$c. \ x_o(t) \leadsto j \left[\frac{\cos(\omega)}{\omega} - \frac{\sin(\omega)}{\omega} \right]$$

Ejercicio 2. Considere la siguiente relación entre dominios temporal-frecuencial:

$$e^{-|t|} \circ - \frac{2}{1+\omega^2}$$

- a. Use las propiedades adecuadas para encontrar la transformada de $te^{-|t|}$.
- b. Usando la propiedad de dualidad y su resultado del punto a. encuentre la transformada de:

$$\frac{4t}{(1+t^2)^2}$$

Respuestas:

a.
$$te^{-|t|} \circ - \frac{-j4\omega}{(1+\omega^2)^2}$$

b.
$$\frac{4t}{(1+t^2)^2} \circ -j2\pi\omega e^{-|\omega|}$$

Ejercicio 3. La señal $x_a(t)$ es generada por la salida de un micrófono utilizado para detectar sonidos de motosierras y disparos en el bosque. Dicha señal posee una composición espectral definida entre los rangos de frecuencias: 1 - 5kHz y 10 - 20kHz. Cada nodo de medición debe digitalizar la señal $x_a(t)$ con la ayuda de un ADC para luego ser transmitida a un nodo central en un formato binario. Además, la resolución del ADC es de 32 bits. ¿Cuál es el mínimo valor de frecuencia de muestreo F_s con la que debe ser programado el ADC para que la señal discreta $x(n/F_s)$ pueda ser utilizada posteriormente para reconstruir la información original de la señal $x_a(t)$?

Respuesta:

 $F_s = 40 \, \text{kHz}$

Ejercicio 4. Determine si el sistema $y(t) = x^2(t)$ es lineal o no lineal e invariante o variante en el tiempo.

Respuesta:

• El sistema es NO lineal e invariante en el tiempo.

Ejercicio 5. El espectro en magnitud completo para una señal h(t) está dado por la figura 1. Superponga sobre ella la respuesta en magnitud de una señal dada por $h(t)\cos(3\pi t)$.

Figura 1: Espectro de magnitud del ejercicio 5.

Respuesta:

Ejercicio 6. Dado el pulso rectangular $r(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2})$, donde u(t) es el escalón unitario, grafique entonces la función x(t) dada por la convolución:

$$x(t) = u(t) * r\left(\frac{t}{\tau}\right)$$

Además, indique todas las magnitudes que dependen del valor $\tau.$ Respuesta:

Ejercicio 7. Sean las funciones:

$$f_1(t) = u(t) - u(t-1)$$

$$f_2(t) = A[u(t) - u(t-2)]$$

Grafique ambas señales y el resultado de su convolución $f_1(t) * f_2(t)$ en el dominio del tiempo. Asuma que A > 0. Respuesta:

Ejercicio 8. Dadas las funciones de la figura 2, indique con qué función debe ser convolucionada $f_1(t)$ para que sean generadas cada una de las funciones de la figura 3. Respuestas:

- $f_1(t) * f_2(t) \rightarrow Figura superior izquierda$
- $f_1(t) * f_3(t) \rightarrow$ Figura inferior derecha
- $f_1(t) * f_4(t) \rightarrow Figura inferior izquierda$
- $f_1(t) * f_5(t) \rightarrow$ Figura superior derecha

Las respuestas están dadas según las imágenes de la Figura 3.

Ejercicio 9. Considere un sistema LTI causal con respuesta en frecuencia:

$$H(j\omega) = \frac{1}{j\omega + 3}$$

Para una entrada particular x(t) se observa que este sistema produca la salida:

$$y(t) = [e^{-3t} - e^{-4t}]u(t)$$

Determine x(t).

Figura 2: Funciones a convolucionar del ejercicio 8.

Figura 3: Resultados de convoluciones entre funciones del ejercicio 8.

Respuesta:

$$x(t) = e^{-4t}u(t)$$

Ejercicio 10. Considere un sistema LTI causal con respuesta en frecuencia:

$$H(j\omega) = \frac{a - j\omega}{a + j\omega}$$

Donde a > 0. Determine:

- a. La respuesta de magnitud y fase de $H(j\omega)$.
- b. La respuesta al impulso del sistema.
- c. La salida del sistema si la entrada es $x(t) = \cos\left(\frac{t}{\sqrt{3}}\right) + \cos(t) + \cos(\sqrt{3}t)$. Considere a = 1.

Respuesta:

$$y(t) = \cos\left(\frac{t}{\sqrt{3}} - \frac{\pi}{3}\right) + \cos\left(t - \frac{\pi}{2}\right) + \cos\left(\sqrt{3}t - \frac{2\pi}{3}\right)$$