

Lecture Pattern Analysis

Part 23: Recap: Max Flow and Min Cut

Christian Riess

IT Security Infrastructures Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg July 2. 2021

Overview

- Max flow is a combinatorial standard problem, solved in polynomial time
- Given: graph with positive edge weights, source node, sink node
- Task: Interpret edge weights as tube diameters, and determine the maximum possible throughput ("flow") of water from source s to sink t per time unit:

- The minimum cut task seeks the smallest sum of edges to disconnect s and t.
- Max flow and min cut are identical: a min cut is easily found, e.g., by selecting the red edges until there is no s-t path left

Ford Fulkerson in a Nutshell (1/2)

- Max flow algorithm by Ford and Fulkerson is probably most well-known:
 - 1. Greedily search shortest path
 - 2. Max out the flow capacity along that path, reduce edge weights
 - 3. Introduce backward edges to undo greedy dead ends, goto 1) if s-t path left

Ford Fulkerson in a Nutshell (1/2)

 The third shortest path uses a back link, and completes the max flow algorithm:

Shortest path: 11

Path flow: 1

- The total flow is 1 + 2 + 1 = 4, with pipe usage as shown on slide 1
- The minimum cut includes the edge D o t and any one of the edges (s o A, A o C, C o t)
- Hence, the four sets of edges for equivalent minimum cuts are
 - $(C \rightarrow t, D \rightarrow t)$,
 - $(A \rightarrow C, D \rightarrow t)$, and
 - $(s \rightarrow A, A \rightarrow D, D \rightarrow t)$, where $A \rightarrow D$ is a "backward edge" that does not count