Question 43.

Transverse intersction. Let M, N be two smooth surfaces in \mathbb{R}^3 . We say that M and N intersect transversally if $T_pM \neq T_pN$ for all $p \in M \cap N$.

- (a) Prove that if M, N intersect transversally, then $M \cap N$ is a smooth curve in \mathbb{R}^3 .
- (b) Show by example that the conclusion of (a) fails without the assumption of transverse intersection.

Proof.

(a):

Suppose that M and N intersect transversally. We will show that $M \cap N$ is a smooth 1-manifold in \mathbb{R}^3 . Let $p \in M \cap N$. Then there is some relatively open neighborhood U of M and V of N that is the zero set of some smooth functions $f, g : \mathbb{R}^3 \to \mathbb{R}$, that is, U = Z(f) and V = Z(g). Let $\Phi : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $\Phi = (f, g)$. We claim that there exists a chart containing p by showing that $U \cap V$ is the zero set of Φ , and $J\Phi(q)$ is surjective for all $q \in U \cap V$. We first start by verifying that $U \cap V$ is relatively open to $M \cap N$. This is quick, as we know that U and V are relatively open to M and N respectively, for each point in $U \cap V$, we can choose two open balls with radii r_1, r_2 that stays within M and N respectively. We then take the lesser of the radii as our radius.

Moving on, we see that Φ is smooth, and $Z(\Phi) = U \cap V$. It remains to show that $J\Phi(q)$ has rank 2 for all $q \in U \cap V$. The Jacobian of Φ is a 2×3 matrix given by

$$J\Phi(q) = \left(\frac{\nabla f(q)}{\nabla g(q)}\right).$$

It necessarily has rank at most 2 and at least 1 (because $\nabla f, \nabla g \neq 0$). Suppose for contradiction that rank $J\Phi(q)=1$. Then $\nabla f(q)=c\nabla g(q)$ for some non-zero constant c. We know that the tangent space T_qM is given by the set of tagged vectors orthogonal to $\nabla f(q)$. Likewise, T_qN consists of tagged vectors orthogonal to $\nabla g(q)$. But notice that for $v\in T_qM$, we have $\nabla f(q)\cdot v=0$ but also $c\nabla f(q)\cdot v=\nabla g(q)\cdot v=0$. If we additionally apply the same argument to $u\in T_qN$, we can see that $T_qM=T_qN$ which is a contradiction. Thus $J\Phi(q)$ must have rank 2. From here, it follows that $\Phi^{-1}(\{0\})=U\cap V$ is a smooth manifold with dimension 1, so we can conclude that $M\cap N$ is a smooth curve.

(b):

Let M be the xy-plane, and let N be the graph of $f(x,y) = x^2 + y^2$. Then $M \cap N$ is simply the origin, which is not a smooth curve.

 \Box

Question 44

Suppose that M is a smooth manifold, and let \mathcal{A} be an open cover of M by pairwise consistently oriented charts. Let \mathcal{A}^+ be the collection of all charts on M which are positively oriented with \mathcal{A} ; likewise, let \mathcal{A}^- be the collection of all charts on M which are negatively oriented with \mathcal{A} .

Now suppose that \mathcal{B} is some other open cover of M by charts, such that any two (overlapping) charts in \mathcal{B} are consistently oriented. Prove that if M is connected, then either \mathcal{B} is completely contained in \mathcal{A}^+ , or else it is completely contained in \mathcal{A}^- .

Proof. First, we will prove a form of transitivity for manifold charts.

Lemma. From a manifold M, take two charts (U, φ) , (V, ψ) that are consistently oriented with each other. Then (U, φ) is positively oriented with \mathcal{A} if (V, ψ) is positively oriented with \mathcal{A} .

Suppose that (U, φ) is positively oriented with \mathcal{A} . Consider the chart $(U \cap V, \varphi|_{U \cap V})$ that is consistently oriented with some chart (W, γ) in \mathcal{A} . We will show that (V, ψ) is consistently oriented with (W, γ) . Notice that

$$\psi \circ \gamma^{-1} = (\psi \circ \varphi^{-1}) \circ (\varphi \circ \gamma^{-1})$$

SC

$$J(\psi \circ \gamma^{-1}) = J(\psi \circ \varphi^{-1}) \cdot J(\varphi \circ \gamma^{-1})$$
 and det $J(\psi \circ \gamma^{-1}) > 0$

as needed.

Next, we prove the main result. Let \mathcal{B} be an open cover of M by charts. Pick a chart (U, φ) in \mathcal{B} , and say for convenience that it is contained in \mathcal{A}^+ . If the chart picked was in \mathcal{A}^- the argument is analogous. We claim that all other charts are also contained in \mathcal{A}^+ . Let $(V, \psi) \in \mathcal{B}$. Take any two points $p \in U$ and $q \in V$. Since M is connected, we can find a continuous function $\gamma : [0, 1] \to M$ such that $\gamma(0) = p$ and $\gamma(1) = q$. Consider $C = \gamma[0, 1]$. Since it is compact, we can find a finite number of charts $\{(U_n, \varphi_n)\}_{n \leq N}$ that cover C, such that the open cover includes (U, φ) and (V, ψ) . As well, we can always find a sequence of m charts $(U_{n_k})_{1 \leq k \leq m}$ such that

$$U \cap U_{n_1} \neq \varnothing, U_{n_1} \cap U_{n_2} \neq \varnothing, \dots, U_{n_m} \cap V \neq \varnothing.$$

Suppose if not. Then consider \mathcal{C} , the collection of charts in the finite subcover that can be reached from U using a chain of charts. Let $\overline{\mathcal{C}}$ be the complement; the collection of charts that cannot be reached from V. Then the charts of \mathcal{C} and \mathcal{D} are pairwise disjoint from one another, and $V \in \overline{\mathcal{C}}$. We have that $\mathcal{C} \cup \overline{\mathcal{C}}$ cover $\gamma[0,1]$, but $\bigcup_{C_i \in \mathcal{C}} C_i$ is disjoint from $\bigcup_{D_i \in \overline{\mathcal{C}}} D_i$, which contradicts the fact that $\gamma[0,1]$ is connected, so such a sequence of charts does indeed exist. Since (U,φ) and (U_{n_1},φ_{n_1}) are consistently oriented with each other and (U,φ) is positively oriented with \mathcal{A} , by the lemma, (U_{n_1},φ_{n_1}) is positively oriented with \mathcal{A} . We can apply this argument inductively to conclude that V is also positively oriented with \mathcal{A} and thus $V \in \mathcal{A}^+$.

Therefore, if a single chart in \mathcal{B} is contained in \mathcal{A}^+ , then in fact every chart in \mathcal{B} is contained in \mathcal{A}^+ . The same applies for the case where there is a chart that is contained in \mathcal{A}^- .

L