2011-2012 学年第二学期《线性代数》课内考试卷(A卷)

授课班号_____ 年级专业_机电学院_ 学号_____ 姓名_____

题号	 	三	四	五	总分	审核
题分						
得分						

得分	评阅人	│ │ 一、 填空(

一、填空(共30分,每空格5分)

- 1、设A是5阶矩阵,且 $\left|A^{-1}\right|=-3$, $\left|B\right|=2$,则 $\left|\left|B\right|A\right|=$ _____
- 2、设 A 是 4×3 矩阵,且 A 的秩 R(A) = 2 且 $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$,则 R(AB) =______
- 3、若向量组 $\alpha_1 = (1, t+1, 0), \alpha_2 = (-1, 2, 0)$ 线性相关,则 t= _____。
- 4、设A是n阶正交矩阵, |A|=-1, 则 $(A^*)^T=$
- 5、设 4 元非齐次线性方程组 Ax = b 的两个解为 $\xi_1, \xi_2, (\xi_1 \neq \xi_2)$, A 的秩为 3,则

Ax = b 的通解 $\xi =$

6、设和设于对角阵,则
$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 7 & 1 \end{pmatrix}, \quad \emptyset$$

$$\begin{pmatrix} -1 & & \\ & 5 & \\ & & \alpha \end{pmatrix} \qquad \alpha = \underline{\qquad \qquad }$$

得分	评阅人		

二、计算题(共 30 分,每小题 6 分)

1、计算行列式

2、设方阵 A 满足方程 $A^2 + 3A - 12E = 0$, 证明 A 为可逆矩阵, 并求 A 的逆矩阵

3、已知矩阵方程
$$\begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
 $X = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 2 & 1 \end{bmatrix}$, 求矩阵 X .

及特征向量所对应的特征值

5、求向量组 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (0,2,5)^T$, $\alpha_3 = (2,4,7)^T$ 的秩, 并求一个最大无关组.

得分	评阅人

_____**三、求解题**(共 32 分,每小题 8 分)

1、若三阶矩阵 A 的伴随矩阵为 A^* ,已知 $|A| = \frac{1}{3}$,求 $|(3A)^{-1} - 2A^*|$

2、设3元齐次线性方程组

$$\begin{cases} ax_1 + x_2 + x_3 = 0 \\ x_1 + ax_2 + x_3 = 0, \\ x_1 + x_2 + ax_3 = 0 \end{cases}$$

- (1) 确定当 a 为何值时, 方程组有非零解;
- (2) 当方程组有非零解时,求出它的基础解系和全部解.

3、用初等变换法求矩阵
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{bmatrix}$$
的逆矩阵

4、设
$$A = \begin{bmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{bmatrix}$$
,求可逆矩阵 P ,使得 $P^{-1}AP$ 为对角矩阵,并且给出 $P^{-1}AP$

得分	评阅人

四、证明题(共8分)

设 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 为一向量组, $\alpha_1\neq 0$,每个 $\alpha_i(i=2,3,\cdots,s)$ 都不能由 $\alpha_1,\alpha_2,\cdots,\alpha_{i-1}$ 线性表示,证明 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关。