RSS

For a linear regression model $y = X\beta + \epsilon$, the aim is to minimize the error i.e. $\epsilon' \epsilon = (y - X\beta)'(y - X\beta) = S(\beta)$.

Theorem 1

The minimum of $(y - X\beta)'(y - X\beta)$ is attained at $\widehat{\beta} = (X'X)^{-}X'y$.

We have

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}} + \mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}} + \mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}) + (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{X}'\mathbf{X}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}),$$

since

$$X'(\mathbf{y} - X\widehat{\boldsymbol{\beta}}) = X'(\mathbf{y} - X(X'X)^{-}X'\mathbf{y}) = 0.$$

It follows that

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \ge (\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}).$$

This completes the proof.

RSS

The residual sum of squares is defined to be $(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})$.

Theorem 2

Let
$$Rank(X) = r$$
. Then $\mathbb{E}\{(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})\} = (n - r)\sigma^2$.

We have

$$\mathbb{E}\{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'\} = \mathbf{D}(\mathbf{y}) = \sigma^2 \mathbf{I}.$$

Thus,

$$\mathbb{E}(\mathbf{y}\mathbf{y}') = \mathbb{E}(\mathbf{y})\boldsymbol{\beta}'\mathbf{X}' + \mathbf{X}\boldsymbol{\beta}\mathbb{E}(\mathbf{y}') - \mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}' + \sigma^{2}\mathbf{I}$$
$$= \mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}' + \sigma^{2}\mathbf{I}. \tag{1}$$

We shall use the notation

$$P = I - X(X'X)^{-}X'$$

throughout this and the next chapter. Observe that P is a symmetric, idempotent matrix and PX=0. These properties will be useful.

Now

$$\begin{split} \mathbb{E}\{(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})\} &= \mathbb{E}\{(\mathbf{y} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y})'(\mathbf{y} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y})\}\\ &= \mathbb{E}\{\mathbf{y}'\mathbf{P}\mathbf{y}\} = \mathbb{E}\{\mathsf{trace}(\mathbf{y}'\mathbf{P}\mathbf{y})\}\\ &= \mathbb{E}\{\mathsf{trace}(\mathbf{P}\mathbf{y}'\mathbf{y})\} = \mathsf{trace}[\mathbf{P}\mathbb{E}\{\mathbf{y}\mathbf{y}'\}]\\ &= \sigma^2\mathsf{trace}(\mathbf{P}), \end{split}$$

by (1) and the fact that PX = 0.

Finally,

trace(P) =
$$n - \text{trace}[X(X'X)^{-}X']$$

= $n - \text{trace}[(X'X)^{-}X'X]$
= $n - \text{Rank}[(X'X)^{-}X'X]$,

since $(X'X)^-X'X$ is idempotent. However,

$$\mathsf{Rank}[(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}] = \mathsf{Rank}[(\mathbf{X}'\mathbf{X})] = \mathsf{Rank}[\mathbf{X}] = r,$$

and the proof is complete.

One-way ANOVA model

Consider the model

$$y_{ij} = \alpha_i + \epsilon_{ij}, i = 1, \ldots, k, j = 1, \ldots, n_i,$$

where ϵ_{ii} are independent with mean 0 and variance σ^2 .

- Find $\widehat{\alpha} = (X'X)^{-1}X'y$.
- ▶ Find RSS using the formula $RSS = y'y \hat{\alpha}'X'y$.

Restricted Estimator

Consider the usual regression model $\mathbb{E}(\mathbf{y}) = X\boldsymbol{\beta}$, $D(\mathbf{y}) = \sigma^2 I$. Suppose we have a priori linear restrictions $L\boldsymbol{\beta} = z$ on the parameters. We assume that $\mathcal{R}(L) \subset \mathcal{R}(X)$ and that the equation $L\boldsymbol{\beta} = z$ is consistent.

Theorem 3

The minimum of $(y - X\beta)'(y - X\beta)$ subject to $L\beta = z$ is attained at $\beta = \widehat{\beta} = \widehat{\beta} - (X'X)^-L'\{L(X'X)^-L'\}^-(L\widehat{\beta} - z)$, where $\widehat{\beta} = (X'X)^-X'y$.

Since $\mathcal{R}(L)\subset\mathcal{R}(X)$ and since $\mathcal{R}(X)=\mathcal{R}(X'X)$, then L=WX'X for some W. Let T=WX'. Now,

$$L(X'X)^{-}L' = WX'X(X'X)^{-}X'XW'$$

$$= WX'XW'$$

$$= TT'.$$

Since $L\beta = z$ is consistent, Lv = z for some v. Thus,

$$L(X'X)^{-}L'(L(X'X)^{-}L')^{-}z = L(X'X)^{-}L'(L(X'X)^{-}L')^{-}Lv$$

$$= TT'(TT')^{-}TXv$$

$$= TXv$$

$$= Lv = z.$$
(1)

Similarly,

$$L(X'X)^{-}L'(L(X'X)^{-}L')^{-}L\widehat{\boldsymbol{\beta}} = TT'(TT')^{-}WX'X(X'X)^{-}X'\mathbf{y}$$

$$= TT'(TT')^{-}WX'\mathbf{y}$$

$$= TT'(TT')^{-}T\mathbf{y}$$

$$= T\mathbf{y}.$$
(2)

And

$$L\widehat{\boldsymbol{\beta}} = L(X'X)^{-}X'\mathbf{y}$$

$$= WX'X(X'X)^{-}X'\mathbf{y}$$

$$= WX'\mathbf{y}$$

$$= T\mathbf{y}.$$
(3)

Using (1), (2), and (3) we see that $L\widetilde{\boldsymbol{\beta}}=z$, and therefore $\widetilde{\boldsymbol{\beta}}$ satisfies the restriction $L\boldsymbol{\beta}=z$.

Now, for any satisfying $L\beta = z$,

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\widetilde{\boldsymbol{\beta}} + \mathbf{X}(\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta}))'(\mathbf{y} - \mathbf{X}\widetilde{\boldsymbol{\beta}} + \mathbf{X}(\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta}))$$

$$= (\mathbf{y} - \mathbf{X}\widetilde{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\widetilde{\boldsymbol{\beta}})$$

$$+ (\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{X}'\mathbf{X}(\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta})$$
(4)

since it can be shown that $(\widetilde{\beta} - \beta)'X'(y - X\widetilde{\beta}) = 0$ as follows:

$$X'X\widetilde{\boldsymbol{\beta}} = X'X\widehat{\boldsymbol{\beta}} - X'X(X'X)^{-}L'(L(X'X)^{-}L')^{-}(L\widehat{\boldsymbol{\beta}} - z)$$

= $X'y - L'(L(X'X)^{-}L')^{-}(L\widehat{\boldsymbol{\beta}} - z),$

since L' = X'XW'. Hence

$$X'(\mathbf{y} - X\widetilde{\boldsymbol{\beta}}) = L'(L(X'X)^{-}L')^{-}(L\widehat{\boldsymbol{\beta}} - z).$$

Next, since $L\widetilde{\boldsymbol{\beta}} = L\boldsymbol{\beta} = \mathsf{z}$, it follows that

$$(\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta})' \mathbf{X}' (\mathbf{y} - \mathbf{X} \widetilde{\boldsymbol{\beta}}) = (\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta})' \mathbf{L}' (\mathbf{L}(\mathbf{X}'\mathbf{X})^{-} \mathbf{L}')^{-} (\mathbf{L} \widehat{\boldsymbol{\beta}} - \mathbf{z})$$

$$= 0.$$

From (4) it is clear that

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \ge (\mathbf{y} - \mathbf{X}\widetilde{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\widetilde{\boldsymbol{\beta}}).$$

This completes the proof.

Result

Theorem 4

 $Rank(L) = Rank(T) = Rank(L(X'X)^{-}L').$

Proof: Since $L(X'X)^-L' = TT'$, then $Rank(L(X'X)^-L') = Rank(TT') = Rank(T)$. Clearly, $Rank(L) = Rank(TX) \le Rank(T)$. Since Rank(X) = Rank(X'X), then X = MX'X for some M. Thus T = WX' = WX'XM'. Therefore, Rank(T) < Rank(L), and hence Rank(T) = Rank(L).

Example

Consider the model $\mathbb{E}(y_i) = \theta_i$ for i = 1, 2, 3, 4 where y_i are uncorrelated with variance σ^2 . Find $\widehat{\theta}$ and $\widehat{\theta}$ under the restriction $\theta_1 + \theta_2 + \theta_3 + \theta_4 = 0$.