Wydział:	Dzień:Poniedziałek 14-17	Zespół:	
Fizyki	Data: 20.03.2017	8	
Imiona i nazwiska:	Ocena z przygotowania: Ocena ze sprawozdania:		Ocena końcowa:
Marta Pogorzelska			
Paulina Marikin			
Prowadzący:		Podpis:	

Ćwiczenie 30: Odbicie światła od powierzchni dielektryka

1 Cel badań

Celem doświadczenia było zweryfikowanie poprawności prawa Snella i prawa Malusa oraz wyznaczenie kata granicznego, kata Brusnela i wspówłczynnika załamania badanego dielektryka.

2 Wstęp teoretyczny

2.1 Prawo Snella

Fala elektromagnetyczna na granicy ośrodków ulega dwóm zjawiską: załamaniu i odbiciu, gdzie fala załamana jest częścią fali, która zmieniła ośrodek, zaś fala odbita częścią pozostałą w pierwotnym ośrodku. Kąty pod jakimi rozchodza się te fale (mierzone do normalnej - osi prostopadłej do płaszczyzny odbicia) są ze sobą powiązane przez prawo Snella:

$$n_1 \sin \alpha = n_2 \sin \beta \tag{1}$$

Kąt jest kątem odbicia równym kątowi padania, β to kąt załamania, zaś n_1 i n_2 to współczynniki załamania definiowane $n=\frac{c}{v}$, gdzie v - prędkość fali elektromagnetycznej w danym ośrodku. Po przekształceniu

$$n_2 = n_1 \frac{\sin \alpha}{\sin \beta} \tag{2}$$

można na podstawie prawa Snella wyznaczyć eksperymentalnie współczynnik załamania danego ośrodka.

2.2 Kat Brewstera

2.3 Kąt graniczny

Jeżeli w pierwotnym ośrodku światło poruszało się szybciej to dla dużych kątów padania dochodzi do sytuacji w której kąt załamania przekroczył by $\frac{\pi}{2}$. W takiej sytuacji zjawisko załamania nie występuje i cała fala jest odbita. Kąt padania dla którego kąt załamania wynosi dokładnie $\frac{\pi}{2}$ jest nazywany kątem granicznym. Co więcej, ponieważ sin $\frac{\pi}{2}=1$ dla kąta granicznego zachodzi rówonść:

$$n_1 = \frac{n_2}{\sin \alpha_{qr}} \tag{3}$$

2.4 Prawo Malusa

3 Opis układu i metody pomiarowej

• • •

4 Wyniki i analiza pomiarów

4.1 Prawo Snella i kąt Brewstera

	α	β	$u(\alpha)$	$\mathrm{u}(eta)$	$\sin \alpha$	$\sin \beta$	$u(\sin \alpha)$	$u(\sin \beta)$
0	10.0	6.0	1.118	1.118	0.174	0.105	0.019	0.019
1	20.0	13.0	1.118	1.118	0.342	0.225	0.018	0.019
2	30.0	19.5	1.118	1.118	0.500	0.334	0.017	0.018
3	40.0	25.0	1.118	1.118	0.643	0.423	0.015	0.018
4	50.0	31.0	1.118	1.118	0.766	0.515	0.013	0.017
5	60.0	35.0	1.118	1.118	0.866	0.574	0.010	0.016
6	70.0	38.5	1.118	1.118	0.9397	0.6225	0.0067	0.0153
7	80.0	40.0	1.118	1.118	0.9848	0.6428	0.0034	0.0149

4.2 Prawo Malusa

u(I)	z	I	$\mathrm{u}(\theta[^\circ])$	$\theta[^{\circ}]$	
$0.025[\mathrm{mA}]$	1[mA]	$0.900[\mathrm{mA}]$	1.118	0.0	0
$0.025[\mathrm{mA}]$	1[mA]	$0.820[\mathrm{mA}]$	1.118	15.0	1
$0.025[\mathrm{mA}]$	1[mA]	$0.620[\mathrm{mA}]$	1.118	30.0	2
$0.025[\mathrm{mA}]$	1[mA]	$0.400[\mathrm{mA}]$	1.118	45.0	3
$0.0075[\mathrm{mA}]$	0.3[mA]	$0.1800[\mathrm{mA}]$	1.118	60.0	4
$2.5[\mu\mathrm{A}]$	$100[\mu\mathrm{A}]$	$43.0[\mu\mathrm{A}]$	1.118	75.0	5
$0.075[\mu\mathrm{A}]$	$3[\mu A]$	$1.4[\mu\mathrm{A}]$	1.118034	90.0	6

5 Analiza niepewności

6 Wnioski

...