MATH3404 Week 7

Simon Thomas

September 14, 2025

Transversality condition

From Pinch (page 41).

Problem

Minimize

$$J[x] = \int_{t_0}^{t_1} f(t, x, \dot{x}) dt$$

when $(t_0, x(t_0))$ is fixed, but $(t_1, x(t_1))$ is required to lie on a curve x = c(t).

- Euler-lagrange equation gives us an extremal $x^*(t)$ with two unknowns, so we need two conditions to find them.
- We can use the fixed endpoint to find one unknown.
- We use the transversality condition to find the other.

Transversality condition

Transversality condition:

$$f(t_1) + (\dot{c}(t_1) - \dot{x}^*(t_1)) \frac{\partial f}{\partial \dot{x}}(t_1) = 0$$

• Gives us conditions on $\dot{x}^*(t)$ (slope of extremal), such that moving the endpoint does not decrease J[x].

Simon Thomas

Field of extremals

Problem

Minimize

$$J[x] = \int_{t_0}^{t_1} f(t, x, \dot{x}) dt, \quad x(t_0) = x_0, \quad x(t_1) = x_1.$$

We find an extremal $x^*(t)$ using the Euler-Lagrange equation.

Definition

In this context, a *field of extremals* is a family of curves, containing $x^*(t)$, which give a "simple cover" of a neighbourhood of $x^*(t)$ in the t-x plane.

In other words, each point of the plane (in a region around the extremal) is hit by exactly one member of the field of extremals.

Field of extremals

For example, if we found x(t) = t (general equation x(t) = kt + l), then a field of extremals could be x(t) = t + l, or x(t) = kt, where $k, t \in \mathbb{R}$.

Figure 3.10 The field of extremals x = t + l

The slope function is defined to be $p(t, x) = \dot{x}(t)$.

Weierstrass condition

Let $x^*(t)$ be an extremal for J[x] in a field of extremals with slope function p(x,t). Let $\mathcal{C}, x=x(t)$ be any other curve joining the endpoints. Define the Weierstrass excess function to be

$$E(t,x,\dot{x},p):=f(t,x,\dot{x})-f(t,x,p)-(\dot{x}-p)\frac{\partial f(t,x,p)}{\partial p}.$$

Theorem (The Weierstrass condition)

Suppose x^* is an extremal of J[x]. If

- x^* is a member of a field of extremals with slope function p(t,x), and
- $E(t, x, \dot{x}, p) \ge 0$ for all points (t, x) "sufficiently close" to x^* , and any \dot{x} ,

then x^* is a strong local minimum for J[x].

