Word2Vec

Presenters:
Akash Sanjay Mehta
Jaithrik Yadav Bollaboina
Parin Rajesh Sanghavi
Priyaranjan Behera
Sai Sri Harsha Kunapareddy

Word2Vec

- Word2vec is a group of related models that are used to produce word embeddings.
- Pioneered by Google. Two papers published by Mikolov et al. (2013)
- Shallow, two-layer neural networks, that are trained to retain linguistic contexts of words.
- Two Models:
 - Skip-Gram
 - CBOW (Continuous Bag of Words)

Atomic and Contextual Word Representation

Atomic Identity Representation:

```
Apple - 00000010000
```

Orange - 000001000000

Car - 000000001000

Contextual Representation:

I eat an apple everyday.

I eat an orange everyday.

I like driving my car to work.

Word Vectors

Use of Word Embeddings

- Dependency Parsing
- Named Entity Recognition
- Document Classification
- Sentiment Analysis
- Paraphrase Detection
- Word Clustering
- Machine Learning Translation

Word2Vec Process Flow

Two Models: CBOW and Skip-Gram

Inputs and Outputs

Method 1: continuous bag-of-word (CBOW)

Method 2: skip-gram (SG)

Structure Highlights

- Input Layer:
 - One-Hot Vector
- Hidden Layer:
 - Linear Activation Function
- Output Layer:
 - Softmax

Word2Vec Network

Neural Network Training

Word Co-occurrence

	Apple	Orange	Eat	Juice	Milk	Rice	Water
Apple	0	2	5	3	0	0	1
Orange		0	4	4	0	0	0
Eat			0	0	1	5	0
Juice				0	0	1	1
Milk					0	3	1
Rice						0	3
Water							0

Optimizations and Limitations

Optimizations to enable training:

- Hierarchical Softmax
- Negative Sampling

Limitations:

- Word Ambiguity Multiple Meanings
- Debuggability Black-box structure
- Handling Sequence

http://bit.ly/wevi-online

Demo

References

- Efficient Estimation of Word Representations in Vector Space - Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean
- Distributed Representations of Words and Phrases and their Compositionality - Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean
- Word2vec Parameter Learning Explained Xin Rong