For Questions 1-3, consider the following scenario: In the example from Lesson 4.1 of flipping a coin 100 times, suppose instead that you observe 47 heads and 53 tails. • Report the value of \hat{p} , the MLE (Maximum Likelihood Estimate) of the probability of obtaining heads. Enter answer here point 2. Coin flip: Using the central limit theorem as an approximation, and following the example of Lesson 4.1, construct a 95% confidence interval for p, the probability of obtaining heads. • Report the lower end of this interval and round your answer to two decimal places. Enter answer here point 3. Coin flip: • Report the upper end of this interval and round your answer to two decimal places. Enter answer here point 4.

point

on 4	linood function for parameter $ heta$ with data ${f y}$ is based on which of the following?
	$P(heta \mid \mathbf{y})$
	$P(\mathbf{y}\mid heta)$
	P(heta)
	$P(\mathbf{y})$
	None of the above.
1	
point	
5.	
	rom Lesson 4.4 that if $X_1,\ldots,X_n \overset{ ext{iid}}{\sim} \operatorname{Exponential}(\lambda)$ (iid means independent and identically
	ted), then the MLE for λ is $1/ar x$ where $ar x$ is the sample mean. Suppose we observe the following $X_1=2.0,\ X_2=2.5,\ X_3=4.1,\ X_4=1.8,\ X_5=4.0.$
uata. A	$A_1 = 2.0, A_2 = 2.0, A_3 = 4.1, A_4 = 1.0, A_5 = 4.0.$
Calculat	e the MLE for λ . Round your answer to two decimal places.
Ente	er answer here
1	
point	
6.	out that the sample mean $ar{x}$ is involved in the MLE calculation for several models. In fact, if the
	e independent and identically distributed from a Bernoulli(p), Poisson(λ), or Normal(μ , σ^2), the
	MLE for p , λ , and μ respectively.
_	
	e we observe $n=4$ data points from a normal distribution with unknown mean μ . The data $\{-1.2,0.5,0.8,-0.3\}.$
ale x —	-1.2, 0.0, 0.0, -0.0.
What is	the MLE for μ ? Round your answer to two decimal places.
Ente	er answer here
-	
I, M	d Yousuf Ali, understand that submitting work that isn't my own may result in permanent failure o
	course or deactivation of my Coursera account.
Lea	rn more about Coursera's Honor Code
	Cultimatik Quita
	Submit Quiz

 \leftarrow