8.

a.
$$1 = \int_{-\infty}^{\infty} 1/\pi b * 1/(1 + (((x-a_i)/b)^2))$$

$$= 1/\pi b \int_{-\infty}^{\infty} 1/(1 + (((x-a_i)/b)^2))$$

$$Let ((x-a_i)/b)^2 = y^2$$

$$= 1/\pi b \int_{-\infty}^{\infty} 1/(1 + y^2)$$

$$= 1/\pi b * tan^{-1}(y) | -\infty to \infty$$

$$= 1/\pi b * (\pi/2 + \pi/2)$$

$$1 = 1/\pi * \pi$$
b.
$$1/\pi b * 1/(1 + (((x-a_1)/b)^2) = 1/\pi b * 1/(1 + (((x-a_2)/b)^2))$$

$$1/(1 + (((x-a_1)/b)^2) = 1/(1 + (((x-a_2)/b)^2))$$

$$Given \ x = a_1 + a_2/2, \ Let \ k = x - a_1/b \Rightarrow x - a_2/b = -k$$

$$1/(1 + (k)^2) = 1/(1 + (-k)^2)$$

$$1/(1 + k^2) = 1/(1 + k^2)$$

C.

d. $P(\omega_1|x)$ and $P(\omega_2|x)$ converge on 0.5 as x approaches $^{\pm\infty}$ meaning that the further feature x gets from $^{\mu}$ the less likely we will be to distinguish $^{\omega_1}$ from $^{\omega_2}$.

a. There are two types of error in this problem:
$$^{\omega_1}$$
chosen with $x < \theta$ and $^{\omega_2}$ chosen with $x > \theta$. Let region $E_1 = (-\infty, \theta)$ and $E_2 = (\theta, -\infty)$

$$\begin{split} &P(error) = P(\omega_1|x) \ in \ E_1 + P(\omega_2|x) \ in \ E_2 \\ &= p(x|\omega_1) P(\omega_1) \ in \ E_1 + p(x|\omega_2) P(\omega_2) \ in \ E_2 \\ &= \int\limits_{-\infty}^{\theta} P(\omega_1) p(x|\omega_1) dx + \int\limits_{\theta}^{\infty} P(\omega_2) p(x|\omega_2) dx \\ &= P(\omega_1) \int\limits_{-\infty}^{\theta} p(x|\omega_1) dx + P(\omega_2) \int\limits_{\theta}^{\infty} p(x|\omega_2) dx \end{split}$$

b.
$$P(error) = P(\omega_1) \int_{-\infty}^{\theta} p(x|\omega_1) dx + P(\omega_2) \int_{\theta}^{\infty} p(x|\omega_2) dx$$

$$\begin{array}{l} 1\!=\!P(\omega_1)p(\theta\!\mid\!\omega_1)d\theta+1\!-\!P(\omega_2)p(\theta\!\mid\!\omega_2)\\ 0\!=\!P(\omega_1)p(\theta\!\mid\!\omega_1)d\theta-P(\omega_2)p(\theta\!\mid\!\omega_2)\\ P(\omega_2)p(\theta\!\mid\!\omega_2)\!=\!P(\omega_1)p(\theta\!\mid\!\omega_1)d\theta \end{array}$$

- c. No, the equation in part B only states that θ must lie where $p(\omega_1|x)$ and $p(\omega_2|x)$ meet. Knowing the curves for $p(\omega_1|x)$ and $p(\omega_2|x)$ would fully define θ
- d. Since the rule states only to select $^{\omega}$ lif $x>\theta$ any curve similar to:

14.

a.
$$g(x) = p(x|\omega_i)P(\omega_i) - \frac{\lambda_s - \lambda_r}{\lambda_s} \sum_{j=1}^{c} p(x|\omega_j)P(\omega_j)$$

$$g(x) = P(\omega_i|x) - \frac{\lambda_s - \lambda_r}{\lambda_s} \sum_{j=1}^{c} P(\omega_j|x)$$

$$g(x) = P(\omega_i|x) - (1 - \frac{\lambda_r}{\lambda_s}) \sum_{j=1}^{c} P(\omega_j|x)$$

$$P(\omega_i|x) - (1 - \frac{\lambda_r}{\lambda_s}) \sum_{j=1}^{c} P(\omega_j|x) > 0 \Rightarrow select \ \omega_i, reject \ otherwise$$

c. As the risk of selecting the reject option increases relative to the risk of making a substitution error, the number of values of x for which we would choose to reject decreases. Eventually (where $\lambda_F/\lambda_s > 0.5$), it becomes sub-optimal to reject any samples.

24.

$$\begin{aligned} \mathbf{a} &= \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} * e^{\left(-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)\right)} \\ &= \frac{1}{(2\pi)^{d/2} \sqrt{\sigma^2}} * e^{\left(-\frac{1}{2}*\frac{1}{\sigma^2}(x-\mu)^t(x-\mu)\right)} \\ &= \frac{1}{(2\pi)^{d/2} \sigma} * e^{\left(-\frac{1}{2}*\frac{1}{\sigma^2}\sum_{j}^{d}(x_j-\mu_j)^2\right)} \\ &= \frac{1}{(2\pi)^{d/2} \sigma} * e^{\left(-\frac{1}{2}*\sum_{j}^{d}(\frac{x_j-\mu_j}{\sigma})^2\right)} \end{aligned}$$

$$\frac{1}{\prod\limits_{i}^{d}\sqrt{2\pi}\sigma}*e^{(-\frac{1}{2}*\sum\limits_{j}^{d}(\frac{x_{j}-\mu_{j}}{\sigma})^{2})}$$

b. The contours of the constant density are basically a series of circles about (μ_1,μ_2) because the covariance matrix is $\sigma^{2*}I$.

c.
$$M = \sqrt{(x-\mu)^t \Sigma^{-1}(x-\mu)}$$

$$= \sqrt{\sum_i^d (\frac{x_i-\mu_i}{\sigma_i})}$$
 \in Becomes a euclidean distance

2.

a.
$$(x_1-\mu_1)^t \Sigma^{-1}(x_1-\mu_1) = [x-1 \ x-2]^*[1-1;-12] \ [x-1;x-2] = x^2-4x+4 \\ (x_2-\mu_2)^t \Sigma^{-1}(x_2-\mu_2) = [x-1 \ x+2]^* \ [2-1;-11]^*[x-1;x+2] = = x^2-2x+1$$

Max Likelihood

$$\begin{split} g(x) = & -\frac{1}{2}(x^2-4x+4) - ln(1) + \frac{1}{2}(x^2-2x+1) + ln(1)) < x \Rightarrow \omega_1, \omega_2 \, otherwise \\ = & -\frac{1}{2}(x^2-4x+4) + \frac{1}{2}(x^2-2x+1)^{\textstyle <} x \Rightarrow \omega_1, \omega_2 \, otherwise \end{split}$$

Bayes

$$=-\frac{1}{2}(x^2-4x+4)+ln(P(\omega_1))+\frac{1}{2}(x^2-2x+1)-ln(P(\omega_2))\\ <\!\! x\Rightarrow \omega_1,\omega_2\, otherwise$$

C.

i. Likelihood
$$E_{empirical} = E(\omega_1) + E(\omega_2) = 1/50 + 2/50 = 0.03$$

ii.
$$_{\mbox{Bayes}}E_{empirical} = E(\omega_1) + E(\omega_2) = 2 \, / \, 50 \, + \, 0 \, / \, 50 = 0.02$$

d.
$$Av\Sigma = \frac{\Sigma_1 + \Sigma_2}{2} = [1.51;11.5], |\Sigma_1| = |\Sigma_2| = 1$$

$$k(1/2) = 1/8 * (\mu_1 - \mu_2)^t A v \Sigma^{-1} * (\mu_2 - \mu_1) + \frac{1}{2} * ln(\frac{|Av\Sigma|}{\sqrt{|\Sigma_1|^*|\Sigma_2|}})$$

$$k(1/2) = 1/8 * (\mu_1 - \mu_2)^t A v \Sigma^{-1} * (\mu_2 - \mu_1) + \frac{1}{2} * ln(|Av\Sigma|)$$

$$k(1/2)\!=\!1/8*(\mu_1\!-\!\mu_2)^t A v \Sigma^{-1}*(\mu_2\!-\!\mu_1) + 0.2231$$

$$k(1/2) = 1/8 * 19.2 + 0.2231$$

$$k(1/2) = 2.6231$$

$$P(error)\!\leq\!\sqrt{P(\omega_1)P(\omega_2)}\!*\!e^{-k(1/2)}$$

$$=\sqrt{0.3*0.7}*e^{-2.6231}$$

 $=0.0333_{\Leftarrow}$ Consistent with the 2-3% empirical error obtained in part C

3.
$$p(1) = 0.2*0.4 + 0.3*0.3 + 0.6*0.3 = 0.35$$

 $p(2) = 0.1*0.4 + 0.5*0.3 + 0.2*0.3 = 0.25$
 $p(3) = 0.7*0.4 + 0.2*0.3 + 0.2*0.3 = 0.40$

$x \setminus \omega$	ω_1	ω_2	ω_3
1	$\frac{0.2*0.4}{0.35}$	$\frac{0.3*0.3}{0.35}$	$\frac{0.6*0.3}{0.35}$
2	$\frac{0.1*0.4}{0.25}$	$\frac{0.5*0.3}{0.25}$	$\frac{0.2*0.3}{0.25}$
3	$\frac{0.7*0.4}{0.4}$	$\frac{0.2*0.3}{0.4}$	$\frac{0.2*0.3}{0.4}$

Bayes:

$x \setminus a$	ω_1	ω_2	ω_3
1	0.229	0.257	0.514
2	0.16	0.6	0.24
3	0.7	0.15	0.15

Risk:

$x \setminus \alpha$	α_1	α_2	α_3	α_4
1	3.087	0.743	1.200	1.743
2	2.400	0.400	1.680	2.360
3	1.050	0.850	2.400	2.000

The Bayes decision rule leads to 3 different classes being picked at different values of x whereas the loss function is taken into account, it becomes most optimal to always chose class $^{\text{LL}_2}$. This is likely because the loss when decision $^{\text{CL}_2}$ is wrong is considerably lower than the losses for rejection and selection errors in other decisions.