# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/005449

International filing date: 17 March 2005 (17.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-274718

Filing date: 22 September 2004 (22.09.2004)

Date of receipt at the International Bureau: 12 May 2005 (12.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



# 日本国特許庁 JAPAN PATENT OFFICE

17. 3. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 9月22日

出 願 番 号 Application Number:

特願2004-274718

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

番亏
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

JP2004-274718

出 願 人
Applicant(s):

富士写真フイルム株式会社

a -0



2005年 4月21日

特許庁長官 Commissioner, Japan Patent Office )· "



【書類名】 特許願 【整理番号】 A41705J 【提出日】 平成16年

【提出日】平成16年 9月22日【あて先】特許庁長官 殿【国際特許分類】G02F 1/1335

【発明者】

【住所又は居所】 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社内 【氏名】 上平 茂生

【発明者】

【住所又は居所】 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社内 【氏名】 松海 法隆

【発明者】

【住所又は居所】 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社内 【氏名】 永井 道夫

【発明者】

【住所又は居所】 神奈川県足柄上郡開成町宮台798番地 富士写真フイルム株式 会社内

【氏名】 大川 敦裕

【特許出願人】

【識別番号】 000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】 110000109

【氏名又は名称】 特許業務法人特許事務所サイクス

【代表者】今村 正純【電話番号】03-3538-5680【連絡先】担当は釜田淳爾

【先の出願に基づく優先権主張】

【出願番号】 特願2004-79389 【出願日】 平成16年3月19日

【手数料の表示】

【予納台帳番号】 170347 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0205141

## 【書類名】特許請求の範囲

## 【請求項1】

シクロプロピルカルボニル基を有する円盤状化合物を少なくとも一種含有する光学異方性 材料。

## 【請求項2】

前記シクロプロピルカルボニル基を有する円盤状化合物が、下記一般式(I)で表される 化合物である請求項1に記載の光学異方性材料。

#### 【化1】

一般式(I)

$$D = \left(O \xrightarrow{\stackrel{\bullet}{\parallel}} R^{4} \xrightarrow{R^{3}} R^{3}\right)_{n1}$$

(一般式(I)中、Dは円盤状コアを表し、n1は3~20の整数を表す。 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^5$ はそれぞれ、水素原子又は置換基を表し、互いに結合して環を形成していてもよい。)

#### 【請求項3】

前記一般式(I)で表される化合物が、下記一般式(II)で表される化合物である請求項2に記載の光学異方性材料。

#### 【化2】

#### 一般式(II)

$$D \xrightarrow{Q} R^{5} (R^{6})_{m}$$

(一般式 (II) 中、Dは円盤状コアを表し、n1は3~20の整数を表す。 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^5$ はそれぞれ、水素原子又は置換基を表し、互いに結合して環を形成していてもよい。mは1~5の整数を表す。 $R^6$ は置換基を表し、複数の $R^6$ が存在するとき、それぞれ同じでも異なっていてもよく、互いに結合して環を形成していてもよい。)

#### 【請求項4】

前記R<sup>6</sup>が、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のアリール基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアルコキシカルボニルオキシ基又は置換もしくは無置換のアリールオキシカルボニルオキシ基である請求項3に記載の光学異方性材料。

#### 【請求項5】

前記  $R^1$ 、  $R^2$ 、  $R^3$  及び  $R^5$  がそれぞれ、水素原子、置換もしくは無置換のアルキル基、シアノ基、アルコキシカルボニル基又はハロゲン原子である請求項  $2\sim 4$  のいずれか 1 項に記載の光学異方性材料。

#### 【請求項6】

前記シクロプロピルカルボニル基を有する円盤状化合物が、円盤状液晶である請求項1~5のいずれか1項に記載の光学異方性材料。

## 【請求項7】

前記シクロプロピルカルボニル基を有する円盤状化合物が、下記一般式(III)で表される重合性基を有する円盤状化合物であり、且つ、前記円盤状化合物の円盤面が配向している状態で前記重合性基が重合し、該重合により前記配向が固定されている請求項6に記載の光学異方性材料。

## 【化3】

一般式 (III)

$$D = \begin{pmatrix} O & R^5 \\ O & R^1 & R^3 \\ R^2 & R^2 \end{pmatrix} n1$$

(一般式(III)中、Dは円盤状コアを表し、 $n1は3\sim20$ の整数を表す。 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^5$ は、それぞれ、水素原子又は置換基を表し、互いに結合して環を形成していてもよい。Lは、酸素原子、硫黄原子、カルボニル基、置換もしくは無置換のアルキレン基又は置換もしくは無置換のアリーレン基及びそれらの組み合わせから選ばれる2価の連結基を表し、Qは重合性基を表す。)

#### 【請求項8】

前記Qが、エポキシ基又はエチレン性不飽和基である請求項7に記載の光学異方性材料。

#### 【請求項9】

前記円盤状コアが、トリフェニレンである請求項1~8のいずれか1項に記載の光学異方性材料。

#### 【請求項10】

前記シクロプロピルカルボニル基を有する円盤状化合物の配向が、円盤状ネマティック相を形成している請求項1~9のいずれか1項に記載の光学異方性材料。

#### 【請求項11】

請求項1~10のいずれか1項に記載の光学異方性材料を有する液晶表示装置。

## 【請求項12】

下記一般式(IV)で表されるトリフェニレン化合物。

#### 【化4】

一般式 (IV)

$$D = \left( O \xrightarrow{\begin{array}{c} Q \\ \end{array}} \overset{R^5}{\underset{R^1}{\underset{R^2}{\longrightarrow}}} R^4 \\ \end{array} \right)_{n1}$$

(一般式 (IV) 中、Dはトリフェニレン基を表し、n1は3~6の整数を表し、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^5$ は、それぞれ、水素原子、炭素原子数が1~20の置換もしくは無置換のアルキル基、炭素原子数が3~20の置換もしくは無置換のアルケニル基、炭素原子数が1~20の置換もしくは無置換のアルコキシ基、炭素原子数が3~20の置換もしくは無置換のアルケニルオキシ基、炭素原子数が6~20の置換もしくは無置換のアリール基又は炭素原子数が6~20の置換もしくは無置換のアリールオキシ基、炭素原子数が1~20の置換もしくは無置換のアルコキシカルボニル基を表す。)

#### 【請求項13】

前記  $R^4$ が、炭素原子数が  $3\sim 2$  0 の置換もしくは無置換のアルキル基、炭素原子数が  $3\sim 2$  0 の置換もしくは無置換のアルコキシ基、炭素原子数が  $6\sim 2$  0 の置換もしくは無置換のアリール基又は炭素原子数が  $6\sim 2$  0 の置換もしくは無置換のアリールオキシ基を表し、且つ、前記 R 4 が置換基を有する場合、該置換基の末端に重合性基を有する請求項 R 2 に記載のトリフェニレン化合物。

## 【請求項14】

前記  $R^4$ が、炭素原子数が  $6\sim 2$ 0 の置換もしくは無置換のアリール基を表し、且つ、前記 R4 が置換基を有する場合、該置換基の末端に重合性基を有する請求項 12 に記載のトリフェニレン化合物。

## 【請求項15】

前記重合性基がエポキシ基又はエチレン性不飽和基である請求項13又は14に記載のト

リフェニレン化合物。

#### 【書類名】明細書

【発明の名称】光学異方性材料、液晶表示装置及びトリフェニレン化合物

#### 【技術分野】

## [0001]

本発明は、シクロプロピルエステルを有する化合物を利用した光学異方性材料に関する。また、本発明は、光学異方性層等の作製に有用である新規なトリフェニレン化合物に関する。

#### 【背景技術】

#### [00002]

光学異方性層は、円盤状液晶性分子(ディスコティック液晶性分子)を配向させ、その配向状態を固定することにより形成する。円盤状液晶性分子は、一般に大きな複屈折率を有する。そして、円盤状液晶性分子には、多様な配向形態がある。円盤状液晶性分子を用いることで、従来の延伸複屈折フイルムでは得ることができない光学的性質を有する光学補償シートを製造することが可能になる。非特許文献1には、負の複屈折を有するトリフェニレン系円盤状液晶性分子が開示されている(非特許文献1)。この液晶性分子を光学補償シートに利用するためには、光学異方性層を構成する分子全体を均一に配向させることが望ましい。しかし、従来の円盤状液晶性分子は、モノドメイン配向させることが望ましい。配が生じる。そのため、従来の円盤状液晶性分子では、光学補償シートに利用できる程度の光学的性質が得られない場合が多かった。光学的性質は、円盤状液晶性分子の化学構造に依存している。そこで、必要とする光学的性質を得るため、多くの種類の円盤状液晶性分子が研究、開発されている。例えば、特許文献1では、透明支持体上に円盤状液晶性分子を含む光学異方性層を有する光学補償シートを使用することが提案されている(特許文献1)。

#### [0003]

特許文献2及び特許文献3の各公報には、光学補償シートの光学異方性層の形成に適し た円盤状液晶性分子として、2, 3, 6, 7, 10, 11-へキサ 4-(6-アクリロ イルオキシヘキシルオキシ) ベンゾイルオキシ トリフェニレンが開示されている (特許 文献 2 、 3 )。ところで、光学補償シートのレターデーション値( $\Delta$  n d)は、補償しよ うとする液晶セルの光学的性質に応じて決定する。レターデーション値(Δηd)は、光 学異方性層の屈折率異方性 (Δ n) と光学異方性層の厚さ (d) との積である。光学異方 性層の屈折率異方性(Δn)が大きければ、層の厚さ(d)が薄くても液晶セルを補償で きる。しかし、特許文献4及び特許文献5の各公報に記載の円盤状液晶性化合物では、充 分に大きな屈折率異方性 (Δn) を有する光学異方性層を形成することは、非常に困難で あった(特許文献4、5)。また、特許文献6には大きな屈折率異方性を有する円盤状液 晶が開示されているが、波長分散特性が悪化しており、即ち波長分散性が大きくなり、性 能改良は不十分であった(特許文献6)。一般に波長分散特性と屈折率異方性はトレード オフの関係にあり、屈折率異方性を大きくすると波長分散特性は悪化する。この波長分散 特性の悪化は、光学補償シートの性能の一つであるカラー表示での色味変化を悪化させる ため、好ましくない。そのため、屈折率異方性を大きくすると波長分散特性は悪化すると いうトレードオフから脱却する技術の開発が望まれていた。

#### [0004]

また、円盤状液晶相は、円盤状分子の中心コアが分子間力で柱状に積み重なった柱状相(columnar phase)と、円盤状分子が乱雑に凝集した円盤状ネマティック相(ND相)と、カイラル円盤状ネマティック相とに大別できることが知られている。しかし、W.H.de jeu 著のPhysical properties of liquid crystalline materials (1980 by Gordon and Breach, Science Publishers) に記載されている様に、柱状ネマティック相はしばしば見出されるが、円盤状ネマティック相は稀にしか見出されていない。また、これまでトリフェニレン化合物においては、2, 3, 6, 7, 1

0及び11位に置換ベンゾイルオキシ基やシンナモイルオキシ基等で置換した化合物でしか、円盤状ネマティック相は見出されていない。

[0005]

【非特許文献1】Molecular Crystals and Liquid Crystals、84巻、193頁(1982年)

【特許文献1】特開平8-50206号公報

【特許文献2】特開平7-306317号公報

【特許文献3】特開平9-104866号公報

【特許文献4】特開平7-306317号公報

【特許文献5】特開平9-104866号公報

【特許文献6】特開2001-166147号公報

#### 【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は、波長分散特性及び屈折率異方性の双方に優れた光学異方性材料を提供することを課題とする。また、本発明は、液晶表示装置の表示画像の色味変化の軽減及び視野角特性の改善に寄与する光学異方性材料を提供することを課題とする。また、本発明は、表示画像の色味変化が少なく、且つ視野角特性が改善された液晶表示装置を提供することを課題とする。また、本発明は、液晶表示装置の光学補償等に利用される光学異方性層等の作製に有用なトリフェニレン化合物を提供することを課題とする。

# 【課題を解決するための手段】

[0007]

上記課題を解決するための手段は、以下のとおりである。

- (1) シクロプロピルカルボニル基を有する円盤状化合物を含有する光学異方性材料。
- (2) 前記シクロプロピルカルボニル基を有する円盤状化合物が、下記一般式(I)で表される化合物である上記(1)に記載の光学異方性材料。

[0008]

【化1】

一般式(I)

$$D = \begin{pmatrix} O & R^5 \\ O & R^4 \\ R^1 & R^3 \end{pmatrix} n1$$

(一般式(I)中、Dは円盤状コアを表し、n1は3~20の整数を表す。 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^5$ は、それぞれ、水素原子又は置換基を表し、互いに結合して環を形成していてもよい。)

[0009]

(3) 前記一般式(I) で表される化合物が下記一般式(II) で表される化合物である上記(2) に記載の光学異方性材料。

[0010]

【化2】

一般式(II)

$$D = \left( O \xrightarrow{R^5} R^5 \right)_{m} \left( R^8 \right)_{m}$$

(-般式 (II) 中、Dは円盤状コアを表し、n1は3~20の整数を表す。R1、R2、R3R0 R5 は、それぞれ、水素原子又は置換基を表し、互いに結合して環を形成していても



## [0011]

- (4) 前記R<sup>6</sup>が、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のアリール基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアシルオキシ基、置換もしくは無置換のアルコキシカルボニルオキシ基又は置換もしくは無置換のアリールオキシカルボニルオキシ基である上記(3)に記載の光学異方性材料。
- (5) 前記  $R^1$ 、  $R^2$ 、  $R^3$ 及び  $R^5$ が、それぞれ、水素原子、置換もしくは無置換のアルキル基、シアノ基、アルコキシカルボニル基又はハロゲン原子である上記(2)~(4)のいずれかに記載の光学異方性材料。
- (6) 前記シクロプロピルカルボニル基を有する円盤状化合物が、円盤状液晶である上記(1)~(5) のいずれかに記載の光学異方性材料。

#### [0012]

(7) 前記シクロプロピルカルボニル基を有する円盤状化合物が下記一般式(III) で表される重合性基を有する円盤状化合物であり、且つ、前記円盤状化合物の円盤面が配向している状態で前記重合性基が重合し、該重合により前記配向が固定されている上記(6)に記載の光学異方性材料。

## [0013]

【化3】

一般式 (III)

$$D = \left( O \xrightarrow{\begin{array}{c} Q \\ \\ \end{array}} \begin{array}{c} R^5 \\ \\ R^1 \\ \end{array} \right)_{R^1} L - Q$$

(一般式(III)中、Dは円盤状コアを表し、 $n1は3\sim20$ の整数を表す。 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^5$ は、それぞれ、水素原子又は置換基を表し、互いに結合して環を形成していてもよい。Lは、酸素原子、硫黄原子、カルボニル基、置換もしくは無置換のアルキレン基又は置換もしくは無置換のアリーレン基、或いは、それらの組み合わせから選ばれる 2 価の連結基を表し、Qは重合性基を表す。)

(8) 前記Qが、エポキシ基又はエチレン性不飽和基である上記(7) に記載の光学異方性材料。

#### [0014]

(9) 前記円盤状コアがトリフェニレンである上記(1)  $\sim$  (8) のいずれかに記載の光学異方性材料。

#### [0015]

 $(1\ 0)$  前記シクロプロピルカルボニル基を有する円盤状化合物の配向が円盤状ネマティック相を形成している上記  $(1)\sim (9)$  のいずれかに記載の光学異方性材料。

(11)上記(1)~(10)のいずれかに記載の光学異方性材料を有する液晶表示装置

## [0016]

(12) 下記一般式 (IV) で表されるトリフェニレン化合物。

[0017]

【化4】

一般式 (IV)

$$D = \left( O \xrightarrow{R^5} R^4 \right)_{n1}$$

(一般式 (IV) 中、Dはトリフェニレンを表し、n1は3~6の整数を表し、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^5$ は、それぞれ、水素原子、炭素原子数が $1\sim2$ 0の置換もしくは無置換のアルキル基、炭素原子数が $3\sim2$ 0の置換もしくは無置換のアルケニル基、炭素原子数が $1\sim2$ 0の置換もしくは無置換のアルコキシ基、炭素原子数が $3\sim2$ 0の置換もしくは無置換のアルオキシ基、炭素原子数が $6\sim2$ 0の置換もしくは無置換のアリール基又は炭素原子数が $6\sim2$ 0の置換もしくは無置換のアリールオキシ基、炭素原子数が $1\sim2$ 0の置換もしくは無置換のアルコキシカルボニル基を表す。)

#### [0018]

(13) 前記  $R^4$ が、炭素原子数が  $3\sim 20$  の置換もしくは無置換のアルキル基、炭素原子数が  $3\sim 20$  の置換もしくは無置換のアルコキシ基、炭素原子数が  $6\sim 20$  の置換もしくは無置換のアリール基又は炭素原子数が  $6\sim 20$  の置換もしくは無置換のアリールオキシ基を表し、且つ、前記  $R^4$  が置換基を有する場合、該置換基の末端に重合性基を有する上記(12)に記載のトリフェニレン化合物。

(14) 前記  $R^4$ が、炭素原子数が  $6\sim 20$  の置換もしくは無置換のアリール基を表し、且つ、前記 R4 が置換基を有する場合、該置換基の末端に重合性基を有する上記(12)に記載のトリフェニレン化合物。

(15) 前記重合性基がエポキシ基又はエチレン性不飽和基である上記(13)又は(14) に記載のトリフェニレン化合物。

#### 【発明の効果】

#### $[0\ 0\ 1\ 9\ ]$

本発明によれば、光学異方性層の作製に有用な光学異方性材料を提供することができる。前記シクロプロピルカルボニル部を分子内に有する化合物、好ましくは一般式(I)で定義する円盤状化合物は、単独で又は他の添加剤の存在下で液晶性を示し、その配向によって、波長分散特性が小さく且つ屈折率異方性が大きい光学異方性層を形成することができる。従って、本発明の化合物を利用することにより、液晶表示装置に用いた場合に、表示画像の色味変化が少なく、且つ視野角の拡大に寄与する位相差板等の光学異方性材料を提供することができる。また、前記一般式(I)で定義する円盤状化合物を利用することにより、薄層であっても所望のレターデーションを示す光学異方性層を形成することができるので、液晶表示装置の薄型化にも寄与する。前記一般式(IV)で表される新規なトリフェニレン化合物を用いた場合、以上の効果がさらに顕著である。

## 【発明を実施するための最良の形態】

#### [0020]

以下において、本発明の内容について詳細に説明する。尚、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。

#### [0021]

(シクロプロピルカルボニル基を有する円盤状化合物)

本発明で採用するシクロプロピルカルボニル基を有する円盤状化合物は、好ましくは、 下記一般式(I)で表される化合物である。

[0022]

5/

## 【化5】

## 一般式(I)

$$D = \begin{pmatrix} O & R^5 \\ R^1 & R^3 \end{pmatrix} n1$$
 (I)

## [0023]

一般式(I)において、Dは円盤状コアである。円盤状コアは、該円盤状化合物の中心に位置し、その円盤面を構成する。円盤状コアは、円盤状液晶性分子の分子構造において、よく知られている概念である。円盤状液晶(Discotic Liquid Crystal)は、様々な文献(C. Destrade et al., Mol. Crysr. Liq. Cryst., vol. 71, page 111 (1981);日本化学会編、季刊化学総説、No. 22、液晶の化学、第5章、第10章第2節 (1994) ; B. Kohne et al., Ang ew. Chem. Soc. Chem. Comm., page 1794 (1985); J. Zhang et al., J. Am. Chem. Soc., vol. 1 16, page 2655 (1994)等に記載されている。

## [0024]

以下に、円盤状コアの例を示す。各化合物中のYは下記一般式 (VI) を意味する。下記一般式 (VI) 中の $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^5$ は、前記一般式 (I) のものと同義であり、好ましい範囲も同義である。

## [0025]

## 【化6】

## 一般式 (VI)

# 【0026】 【化7】

(Z5)



(Z6)

[0027]

## 【化8】



(Z8)

(Z9)

(Z10)

(Z11)

(Z12)

(Z16)

(Z13)

(Z14)

(Z15)

[0028]

円盤状コア(D)は、トリフェニレン(Z4)であることが特に好ましい。

円盤状コア (D) は、Y (前記一般式 (VI)) 以外の置換基を有していてもよい。円盤 状コアが有していてもよい置換基の例は、ハロゲン原子(フッ素原子、塩素原子、臭素原 子、ヨウ素原子)、シアノ基、ヒドロキシル基、アミノ基、カルバモイル基、スルファモ イル基、メルカプト基、ウレイド基、アルキル基、置換アルキル基、アルケニル基、置換 アルケニル基、アルキニル基、置換アルキニル基、アリール基、置換アリール基、複素環 基、アルコキシ基、置換アルコキシ基、アリールオキシ基、置換アリールオキシ基、アシ ル基、アシルオキシ基、アルコキシカルボニル基、置換アルコキシカルボニル基、アリー ルオキシカルボニル基、置換アリールオキシカルボニル基、置換アミノ基、アミド基、イ ミド基、アルコキシカルボニルアミノ基、置換アルコキシカルボニルアミノ基、アリール オキシカルボニルアミノ基、置換アリールオキシカルボニルアミノ基、置換カルバモイル 基、スルホンアミド基、置換スルファモイル基、アルキルチオ基、置換アルキルチオ基、 アリールチオ基、置換アリールチオ基、アルキルスルホニル基、置換アルキルスルホニル 基、アリールスルホニル基、置換アリールスルホニル基、アルキルスルフィニル基、置換 アルキルスルフィニル基、アリールスルフィニル基、置換アリールスルフィニル基、置換 ウレイド基、リン酸アミド基、置換シリル基、アルコキシカルボニルオキシ基、置換アル コキシカルボニルオキシ基、アリールオキシカルボニルオキシ基ならびに置換アリールオ キシカルボニルオキシ基を含む。

[0029]



#### [0030]

アルケニル基は、環状構造又は分岐構造を有していてもよい。アルケニル基の炭素原子数は2~30であることが好ましい。置換アルケニル基のアルケニル部分は、アルケニル基と同義であり、好ましい範囲も同義である。置換アルケニル基の置換基の例は、置換アルキル基の置換基の例と同様である。アルキニル基は、環状構造又は分岐構造を有していてもよい。アルキニル基の炭素原子数は2~30であることが好ましい。置換アルキニル基のアルキニル部分は、アルキニル基と同様である。置換アルキニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。

#### [0031]

アリール基の炭素原子数は、6~30であることが好ましい。置換アリール基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリール基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。

#### [0032]

複素環基は、5員又は6員の複素環を有することが好ましい。複素環に、他の複素環、 脂肪族環又は芳香族環が縮合していてもよい。複素環の複素原子は、窒素原子、酸素原子 又は硫黄原子であることが好ましい。複素環基は置換基を有していてもよい。複素環基の 置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。

#### [0033]

アルコキシ基及び置換アルコキシ基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルコキシ基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。アリールオキシ基及び置換アリールオキシ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシ基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。

#### [0034]

アシル基はホルミル又は-CO-Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。

アシルオキシ基はホルミルオキシ又は-O-CO-Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。

## [0035]

アルコキシカルボニル基及び置換アルコキシカルボニル基のアルキル部分は、アルキル基と同様である。置換アルコキシカルボニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。

アリールオキシカルボニル基及び置換アリールオキシカルボニル基のアリール部分は、 アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシカルボニル基 の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。

#### [0036]

置換アミノ基は、-NH-R又は-N(-R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。

アミド基は、-NH-CO-Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。



#### [0037]

アルコキシカルボニルアミノ基及び置換アルコキシカルボニルアミノ基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルコキシカルボニルアミノ基の置換基の例は、置換アルキル基の置換基の例と同様である。

アリールオキシカルボニルアミノ基及び置換アリールオキシカルボニルアミノ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシカルボニルアミノ基の置換基の例は、円盤状コアの置換基の例と同様である。

#### [0038]

置換カルバモイル基は、-CO-NH-R又は-CO-N(-R) $_2$ で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。

スルホンアミド基は、 $-NH-SO_2-R$ で表され、Rはアルキル基、置換アルキル基、 、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は 置換アリール基である。置換スルファモイル基は、 $-SO_2-NH-R$ 又は $-SO_2-N$ (-R) $_2$ で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルキニル基、置換アルキニル基、置換アルキニル基、でカケニル基である。

#### [0039]

アルキルチオ基及び置換アルキルチオ基のアルキル部分は、アルキル基と同様である。 置換アルキルチオ基の置換基の例は、置換アルキル基の置換基の例と同様である。

アリールチオ基及び置換アリールチオ基のアリール部分は、アリール基と同義であり、 好ましい範囲も同義である。置換アリールチオ基の置換基の例は、円盤状コアの置換基の 例と同義であり、好ましい範囲も同義である。

アルキルスルホニル基及び置換アルキルスルホニル基のアルキル部分は、アルキル基と 同義であり、好ましい範囲も同義である。置換アルキルスルホニル基の置換基の例は、置 換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。

#### [0040]

アリールスルホニル基及び置換アリールスルホニル基のアリール部分は、アリール基と 同義であり、好ましい範囲も同義である。置換アリールスルホニル基の置換基の例は、円 盤状コアの置換基の例と同義であり、好ましい範囲も同義である。

アルキルスルフィニル基及び置換アルキルスルフィニル基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルキルスルフィニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。

アルキルスルフィニル基及び置換アルキルスルフィニル基のアリール部分は、アリール 基と同義であり、好ましい範囲も同義である。置換アルキルスルフィニル基の置換基の例 は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。

#### [0041]

置換ウレイド基は、-NH-CO-NH-R又は-NH-CO-N (-R)  $_2$ で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。

リン酸アミド基は、-NH-O-P (=O) (-OH) -O-R又は-NH-O-P (=O) (-O-R)  $_2$ で表され、 $_R$ はアルキル基、置換アルキル基、アルケニル基、置換アルキニル基、でルケニル基、置換アルキニル基、アリール基又は置換アリール基である

置換シリル基は、 $-SiH_2-R$ 、-SiH(-R) $_2$ 又は-Si(-R) $_3$ で表され、 Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、 関換アルキニル基、アリール基又は置換アリール基である。

#### [0042]

9/

アルコキシカルボニルオキシ基及び置換アルコキシカルボニルオキシ基のアルキル部分は、アルキル基と同様である。置換アルコキシカルボニルオキシ基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。

アリールオキシカルボニルオキシ基及び置換アリールオキシカルボニルオキシ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシカルボニルオキシ基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。

## [0043]

一般式(I)において、n1は3~20の整数であって、3~15の整数であることが好ましく、3~12の整数であることがより好ましく、3~10の整数であることがさらに好ましく、4~8の整数であることがさらにまた好ましく、6であることが最も好ましい。

#### [0044]

一般式(I)において、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^5$ は水素原子又は置換基を表し、これらの例は円盤状コアの置換基の例と同様なものが挙げられる。また、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^5$ のいずれか二つが結合して環を形成していてもよく、例えば、脂肪族又は芳香族環があげられる。好ましくは、 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^5$ は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、シアノ基、置換もしくは無置換のアルコキシカルボニル基又はハロゲン原子である。より好ましくは、 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^5$ は水素原子である。また、 $R^4$ は置換された芳香族環の基であるのが好ましく、その例には以下の基が含まれる。

【0045】 【化9】

$$R^4 = -$$
R

R: $-0C_nH_{2n+}1$  $-0(CH_2)_n0CO-CH=CH_2$ nは 1 ~ 1 0 の整数、 好ましくは 1 ~ 4 の整数である。

 $\begin{array}{l} R : -0C_nH_{2n+}1 \\ -0 (CH_2)_n0C0-CH=CH2 \\ -0C00 (C_H2)_n0C0-CH=CH_2 \end{array}$ 

nは1~10の整数、 好ましくは1~4の整数である。

## [0046]

カルボニルオキシ基に対し、 $R^2$ 及び $R^3$ 、 $R^4$ 及び $R^5$ は、シス・トランスの位置関係が存在する。シスとはシクロプロパン環面に対してカルボニルオキシ基と同方向に置換基が存在する状態であり、トランスとはシクロプロパン環面に対してカルボニルオキシ基と逆方向に置換基が存在する状態である。この位置関係は指定のない限り特には制限しない。

## [0047]

一般式(I)において、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 及び $R^5$ の置換基の組み合わせにより、エナンチオマー及びジアステレオマー立体異性体が存在するが、これらは指定のない限り特には制限しない。

## [0048]

一般式(I)で表される円盤状化合物は、下記一般式(II)で表されることが好ましい

[0049]

## 【化10】

一般式(II)

$$D \xrightarrow{Q} R^{5} (R^{6})_{m}$$

$$R^{1} R^{2}$$

$$n1$$

$$(II)$$

## [0050]

一般式(II)において、Dは円盤状コアである。n1は3~20の整数である。 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^5$ は水素原子又は置換基を表し、互いに結合して環を形成していてもよい。mは1~5の整数を表す。 $R^6$ は置換基を表し、複数の $R^6$ が存在する時、それぞれ同じでも異なっていてもよく、互いに結合して環を形成していてもよい。

## [0051]

上記D、n1、R1、R2、R3及びR5は、一般式(I)で定義したD、n1、R1、R2、R3及びR5と同様であり、好ましい範囲も同義である。

## [0052]

一般式(II)において、 $R^6$ は置換基を表し、これらの例は円盤状コアの置換基の例と同様なものが挙げられる。好ましい $R^6$ の例は、Nロゲン原子、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のアリール基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールオキシカルボニルオキシ基又は置換もしくは無置換のアシルオキシ基である。さらに好ましくは、少なくとも1つの $R^6$ が置換アルキル基、置換アルコキシカルボニルオキシ基、置換アルコキシカルボニルオキシ基、置換アリール基、置換アリールオキシカルボニルオキシ基、置換アリールオキシカルボニルオキシ基、置換アリールオキシカルボニルオキシ基、置換アリールオキシカルボニルオキシ基であり、置換基の末端に重合性基を有する。

#### [0053]

-般式 (II) において、 $R^6$ の置換位置は指定のない限り特に制限しない。好ましくは少なくとも1つの $R^6$ がパラ位に存在する。

一般式 (II) において、カルボニルオキシ基に対して、 $R^5$ には、シス・トランスの位置関係が存在する。この位置関係は指定のない限り特には制限しない。好ましくはシスである。

#### [0054]

本発明の円盤状化合物、例えば、一般式(I)で表される円盤状化合物は、重合性基を有することができる。重合性基を有する円盤状化合物(重合性円盤状化合物)は、重合反応により円盤状化合物の円盤面が配向している状態を固定することができる。

一般式(I)で表される化合物が重合性基を有する場合、 $R^4$ は置換アルキル基、置換アルコキシ基、置換アリール基又は置換アリールオキシ基であって、各置換基の末端に重合性基を有することが好ましい。

重合性円盤状化合物は、さらに、下記一般式(III)で表されることが好ましい。

#### [0055]

【化11】

一般式 (III)

$$D = \left( O \xrightarrow{R^5} L - Q \right)_{n}$$

[0056]

一般式(III)において、Dは円盤状コアである。n1は3~20の整数を表す。 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^5$ は、それぞれ、水素原子又は置換基をあらわし、互いに結合して環を形成していてもよい。

D、n 1、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>及びR<sup>5</sup>は、一般式(I)で定義したD、n 1、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup> 及びR<sup>5</sup>と同様であり、好ましい範囲も同義である。

## [0057]

一般式 (III) において、Lは酸素原子、硫黄原子、カルボニル基、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、及びそれらの組み合わせから選ばれる2価の連結基である。

アルキレン基は、環状構造又は分岐構造を有していてもよい。アルキレン基の炭素原子数は1~30であることが好ましい。

置換アルキレン基のアルキレン部分は、アルキレン基と同様である。置換アルキレン基の置換基の例は、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基及び置換アルキニル基が除外される以外は、一般式(I)で説明した円盤状コアの置換基の例と同様である。

アリーレン基の炭素原子数は、 $1 \sim 30$  であることが好ましい。アリーレン基は、フェニレン又はナフチレンであることが好ましく、フェニレンであることがさらに好ましく、p-フェニレンであることが最も好ましい。

置換アリーレン基のアリーレン部分は、アリーレン基と同様である。置換アリーレン基の置換基の例は、一般式(I)で説明した円盤状コアの置換基の例と同様である。

一般式(III)において、Qは重合性基である。重合性基は、エポキシ基又はエチレン性不飽和基であることがさらに好ましく、エチレン性不飽和基(例、ビニル、1-プロペニル、イソプロペニル)であることが最も好ましい。

## [0058]

本発明の円盤状化合物として、特に、好ましい円盤状化合物は、下記一般式 (IV) で表されるトリフェニレン化合物である。

[0059]

【化12】

一般式 (IV)

$$D = \left( O \xrightarrow{\begin{array}{c} Q \\ \\ \end{array}} \begin{array}{c} R^5 \\ R^1 \\ R^2 \end{array} \right) n1$$

一般式 (IV) において、D1はトリフェニレンを表し、n1は3~6の整数を表し、R $^1$ 、R $^2$ 、R $^3$ 、R $^4$ 及びR $^5$ は、それぞれ、水素原子、炭素原子数が $1\sim20$ の置換もしくは無置換のアルキル基、炭素原子数が3~20の置換もしくは無置換のアルケニル基、炭素原子数が1~20の置換もしくは無置換のアルコキシ基、炭素原子数が3~20の置換もしくは無置換のアリール基又は炭素原子数が6~20の置換もしくは無置換のアリールオキシ基、炭素原子数が1~20の置換もしくは無置換のアルコキシカルボニル基である。各基の定義及び例は、一般式 (I) と同様であり、好ましい範囲も同義である。

## [0060]

一般式 (IV) において、 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^5$ は、それぞれ、水素原子、メチル基、エチル基、メチルオキシ基、エチルオキシ基、シアノ基、ハロゲン原子又は置換もしくは無置換のアルコキシカルボニル基であるのが好ましい。

一般式 (IV) において、好ましくは $R^4$ が、炭素原子数が $6\sim20$ の置換もしくは無置換のアリール基である。一般式 (IV) において、好ましくは $R^4$ が、カルボニルオキシ基に対して、トランスである。

[0061]

一般式(IV)で表されるトリフェニレン化合物は、重合性基を有することができる。重合性基を有するトリフェニレン化合物(重合性トリフェニレン化合物)は、重合反応によりトリフェニレンからなる円盤面が配向している状態を固定することができる。

一般式 (IV) で表されるトリフェニレン化合物が重合性基を有する場合、 $R^4$ は炭素原子数が  $2\sim2$  0の置換アルキル基、炭素原子数が  $2\sim2$  0の置換アルコキシ基、炭素原子数が  $6\sim2$  0の置換アリール基又は炭素原子数が  $6\sim2$  0の置換アリールオキシ基であって、置換基の末端に重合性基を有することが好ましい。

#### [0062]

上記一般式(IV)には、不斉炭素原子が存在するため、ジアステレオマーやエナンチオマーが存在するが、本発明においてはこれらを区別せず、すべて含まれるものとする。つまり、構造の記述方法により立体異性体を区別しないこととする。

## [0063]

以下に、一般式(I)で表される円盤状化合物の例を示す。なお、それぞれの例示化合物を表すとき、該例示化合物の横に記載されている数値(x)をもって、例示化合物(x)と示す。

# [0064]

#### 【化13】

$$H_{3}CO \longrightarrow OCH_{3}$$

$$C_{4}H_{9}O \longrightarrow OC_{4}H_{9}$$

$$C_{4}H_{$$

[0065]





$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array}$$



 $R = -(CH_2)_3O^{\frac{O}{10}}$ (46) (36) --(CH<sub>2</sub>)<sub>6</sub>---CO -(CH<sub>2</sub>)<sub>4</sub>O (37) (47) -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>O -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>O (38)O-(CH<sub>2</sub>)<sub>4</sub>O (48) -(CH<sub>2</sub>)<sub>3</sub>O(CH<sub>2</sub>)<sub>3</sub>O (39) O-(CH<sub>2</sub>)<sub>3</sub>O-8 (49) O-(CH<sub>2</sub>)<sub>2</sub>O (40) 0-(CH<sub>2</sub>)<sub>6</sub>0-7 (50) PO-(CH2)3091 (41) (CH<sub>2</sub>)<sub>2</sub>O O-(CH<sub>2</sub>)<sub>4</sub>O (42)(51) (CH<sub>2</sub>)<sub>3</sub>O -(CH<sub>2</sub>)<sub>3</sub>O-7 (43) (52) (44) -(CH<sub>2</sub>)<sub>6</sub>O-√8 (45) -(CH<sub>2</sub>)<sub>4</sub>---//



[0070]

本発明で開示する円盤状化合物は、単独もしくは他の液晶と混合することより液晶性を示してもよい。本発明の化合物を他の円盤状液晶性化合物と混合して用いる場合、本発明に従う円盤状化合物の液晶性分子全体に対する割合は、 $1\sim100$ 質量%が好ましく、 $10\sim98$ 質量%がさらに好ましく、 $10\sim98$ 質量%が最も好ましい。

## [0071]

# [光学異方性層]

一般式(I)で表される円盤状化合物を配向させた光学異方性材料は、位相差板(又は光学補償シート)の光学異方性層として用いることができる。光学異方性層は、円盤状化合物の配向に基づく光学異方性を示す。

光学異方性層は、本発明の円盤状化合物とともに、その配向を制御するのに寄与する材料、配向状態を固定するのに寄与する材料等、他の材料を含有する組成物から形成してもよい。本発明に従う円盤状化合物は一度液晶相形成温度まで加熱し、次にその配向状態を維持したまま冷却することによりその液晶状態における配向形態を損なうことなく固定化することができる。また、本発明に従う円盤状化合物は、重合開始剤を添加した組成物を液晶相形成温度まで加熱した後、重合させ冷却することによっても固定化することができる。本発明で配向状態が固定化された状態とは、その配向が保持された状態が最も典型的、且つ好ましい態様ではあるが、それだけには限定されず、具体的には、通常0 $\mathbb{C}$ ~50 $\mathbb{C}$ 、より過酷な条件下では $-30\mathbb{C}$ ~70 $\mathbb{C}$ の温度範囲において、該層に流動性がなく、且つ外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を指すものである。

なお、配向状態が最終的に固定化された際に、液晶組成物はもはや液晶性を示す必要はない。例えば、液晶化合物として重合性化合物を用いた場合、結果的に熱、光等での反応により重合又は架橋反応が進行し、高分子量化して、液晶性を失ってもよい。

#### [0072]

## [位相差板]

前記円盤状化合物を用いて、円盤状化合物から形成された光学異方性層を有する位相差板を作製することができる。すなわち、本発明に従う円盤状化合物が、光学異方性層の原料に用いることができる。例えば、重合性基を有する本発明の化合物を用いて光学異方性層を作製する場合は、作製の過程で、該化合物が単独で又は他の化合物と重合し、最終的には本発明の化合物を重合単位とする高分子を含有する光学異方性層が作製されるが、かかる光学異方性層も本発明の範囲に含まれる。

#### [0073]

位相差板の一態様は、透明支持体と、本発明に従う円盤状化合物から形成された光学異方性層とを有する。ここで、光学異方性層は、本発明の円盤状化合物と、必要に応じて他の添加剤とを含有する組成物を配向膜上に塗布した後、上記のように液晶状態の配向状態で固定化することで作製することができる。なお、配向膜上で液晶性分子を配向状態に固定した後は、他の支持体上に転写可能である。配向状態で固定化された液晶化合物は、配向膜がなくても配向状態を維持することができる。従って、位相差板は、配向膜を有していなくてもよい。前記光学異方性層の厚さは、 $0.1\sim20\mu$ mであることが好ましく、 $0.2\sim15\mu$ mであることがさらに好ましく、 $0.5\sim10\mu$ mであることが最も好ましい。

## [0074]

# [光学異方性層の添加剤]

光学異方性層の形成にあたり円盤状化合物に加えることのできる添加剤の例としては、 空気界面配向制御剤、ハジキ防止剤、重合開始剤、重合性モノマー等が挙げられる。

## [0075]

## [空気界面配向制御剤]

液晶化合物は、空気界面においては空気界面のプレチルト角で配向する。このプレチルト角は、nx屈折率方向と空気界面がなすプレチルト角とny屈折率方向と空気界面がなすプレチルト角とnz屈折率方向と空気界面がなすプレチルト角の3種類がある。このプレチルト角は、化合物の種類によりその程度が異なるために、目的に応じて、空気界面のプレチルト角を任意に制御する必要がある。

このプレチルト角の制御には、例えば、電場や磁場のような外場を用いることや添加剤を用いることができるが、添加剤を用いることが好ましい。

このような添加剤としては、炭素原子数が  $6\sim4$ 0の置換又は無置換脂肪族基もしくは炭素原子数が  $6\sim4$ 0の置換又は無置換脂肪族置換オリゴシロキサノキシ基を、分子内に 1本以上有する化合物が好ましく、分子内に 2本以上有する化合物がさらに好ましい。例えば、空気界面配向制御剤としては、特開 2002-20363号公報に記載の疎水性排除体積効果化合物を用いることができる。

#### [0076]

空気界面側の配向制御用添加剤の添加量としては、円盤状化合物に対して、0.01 質量% $\sim 20$  質量%が好ましく、0.01 質量% $\sim 10$  質量%がおらに好ましく、0.1 質量% $\sim 5$  質量%が最も好ましい。

#### [0077]

## [ハジキ防止剤]

円盤状化合物に添加し、該組成物の塗布時のハジキを防止するための材料としては、一般に高分子化合物を好適に用いることができる。使用するポリマーとしては、円盤状化合物の傾斜角変化や配向を著しく阻害しない限り、特に制限はない。

ポリマーの例としては、特開平8-95030号公報に記載があり、特に好ましい具体的ポリマー例としてはセルロースエステル類を挙げることができる。セルロースエステルの例としては、セルロースアセテート、セルロースアセテートプロピオネート、ヒドロキシプロピルセルロース及びセルロースアセテートブチレートを挙げることができる。円盤状化合物の配向を阻害しないように、ハジキ防止目的で使用されるポリマーの添加量は、円盤状化合物に対して一般に $0.1\sim10$ 質量%の範囲にあり、 $0.1\sim8$ 質量%の範囲にあることがさらに好ましい。

## [0078]

# [重合開始剤]

本発明では、液晶性化合物はモノドメイン配向、つまり実質的に均一に配向している状 態で固定されていることが好ましく、そのため重合性の円盤状化合物を用いている場合に は重合反応により円盤状化合物を固定することが好ましい。重合反応には、熱重合開始剤 を用いる熱重合反応と光重合開始剤を用いる光重合反応と電子線照射による重合反応が含 まれるが、熱により支持体等が変形、変質するのを防ぐためにも、光重合反応と電子線照 射による重合反応が好ましい。光重合開始剤の例には、αーカルボニル化合物(米国特許 2367661号、同2367670号の各明細書記載)、アシロインエーテル (米国特 許2448828号明細書記載)、αー炭化水素置換芳香族アシロイン化合物(米国特許 2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同29 51758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニ ルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジン及びフェ ナジン化合物(特開昭60-105667号公報、米国特許4239850号明細書記載 )及びオキサジアゾール化合物 (米国特許4212970号明細書記載)等が挙げられる 。光重合開始剤の使用量は、塗布液の固形分の0.01~20質量%であることが好まし く、0.5~5質量%であることがさらに好ましい。円盤状化合物の重合のための光照射 は、紫外線を用いることが好ましい。照射エネルギーは、10mJ~50J/cm2であ ることが好ましく、 $50 \,\mathrm{m\,J} \sim 800 \,\mathrm{m\,J} / \mathrm{c\,m}\,2$ であることがさらに好ましい。光重合 反応を促進するため、加熱条件下で光照射を実施してもよい。また、雰囲気の酸素濃度は 重合度に関与するため、空気中で所望の重合度に達しない場合には、窒素置換等の方法に より酸素濃度を低下させることが好ましい。好ましい酸素濃度としては、10%以下が好 ましく、7%以下がさらに好ましく、3%以下が最も好ましい。

#### [0079]

## [重合性モノマー]

光学異方性層を形成するために用いられる液晶組成物には、重合性のモノマーを添加してもよい。液晶性化合物とともに使用する重合性モノマーとしては、液晶性化合物と相溶性を有し、液晶性化合物の傾斜角変化や配向阻害を著しく引き起こさない限り、特に限定はない。これらの中では重合活性なエチレン性不飽和基、例えばビニル基、ビニルオキシ

基、アクリロイル基及びメタクリロイル基などを有する化合物が好ましく用いられる。上記重合性モノマーの添加量は、液晶性化合物に対して一般に $0.5\sim50$ 質量%の範囲にあり、 $1\sim30$ 質量%の範囲にあることが好ましい。また反応性官能基数が2以上のモノマーを用いると、配向膜と光学異方性層間の密着性を高める効果が期待できるため、特に好ましい。

#### [0080]

#### [塗布溶剤]

液晶組成物の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド (例、N, N-ジメチルホルムアミド)、スルホキシド (例、ジメチルスルホキシド)、ヘテロ環化合物 (例、ピリジン)、炭化水素 (例、トルエン、ヘキサン)、アルキルハライド (例、クロロホルム、ジクロロメタン)、エステル (例、酢酸メチル、酢酸ブチル)、ケトン (例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エーテル (例、テトラヒドロフラン、1, 2 - ジメトキシエタン)が含まれる。アルキルハライド、エステル及びケトンが好ましい。2種類以上の有機溶媒を併用してもよい。

#### [0081]

#### [塗布方式]

光学異方性層は、上記溶媒を用いて液晶組成物の塗布液を調製し配向膜上に塗布し、円盤状化合物を配向処理することで形成する。塗布液の塗布は、公知の方法(例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。

#### [0082]

## [配向膜]

配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、 $\omega$ ートリコサン酸、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。

配向膜上に設けられる光学異方性層の円盤状化合物に所望の配向を付与できるのであれば、配向膜としてはどのような層でもよいが、本発明においては、ラビング処理もしくは、光照射により形成される配向膜が好ましい。特にポリマーのラビング処理により形成する配向膜が特に好ましい。ラビング処理は、一般にはポリマー層の表面を、紙や布で一定方向に数回擦ることにより実施することができるが、特に本発明では液晶便覧(丸善(株))に記載されている方法により行うことが好ましい。配向膜の厚さは、 $0.01\sim10$   $\mu$  mであることが好ましく、 $0.05\sim3$   $\mu$  mであることがさらに好ましい。

なお、配向膜を用いて棒状液晶性化合物を配向させてから、その配向状態のまま棒状液晶性化合物を固定して光学異方性層を形成し、光学異方性層のみをポリマーフイルム(又は透明支持体)上に転写しても良い。配向状態の固定された棒状液晶性化合物は、配向膜がなくても配向状態を維持することができる。そのため、位相差板では、配向膜は(位相差板の製造において必須であるが)必須ではない。

円盤状化合物を配向させるためには、配向膜の表面エネルギーを調節するポリマー(通常の配向用ポリマー)を用いる。具体的なポリマーの種類については液晶セル又は光学補償シートについて種々の文献に記載がある。いずれの配向膜においても、円盤状化合物と透明支持体の密着性を改善する目的で、重合性基を有することが好ましい。重合性基は、側鎖に重合性基を有する繰り返し単位を導入するか、あるいは、環状基の置換基として導入することができる。界面で液晶性化合物と化学結合を形成する配向膜を用いることが好ましく、かかる配向膜としては特開平 9-1 5 2 5 0 9 号公報に記載されている。

#### [0083]

#### [配向膜のラビング密度]

配向膜のラビング密度と配向膜界面での円盤状化合物のプレチルト角との間には、ラビ

出証特2005-3036684

ング密度を高くするとプレチルト角は小さくなり、ラビング密度を低くするとプレチルト角は大きくなる関係があるので、配向膜のラビング密度を変えることで、プレチルト角の調整をすることができる。配向膜のラビング密度を変える方法としては、「液晶便覧」液晶便覧編集委員会編(丸善(株)、2000年)に記載されている方法を用いることができる。ラビング密度(L)は式(A)で定量化されている。

## [0084]

式 (A)  $L = N 1 \{1 + (2 \pi r n / 6 0 v)\}$ 

式(A)中、Nはラビング回数、1はラビングローラーの接触長、rはローラーの半径、nはローラーの回転数 (rpm)、vはステージ移動速度(秒速)である。ラビング密度を高くするためには、ラビング回数を増やす、ラビングローラーの接触長を長く、ローラーの半径を大きく、ローラーの回転数を大きく、ステージ移動速度を遅くすればよく、一方、ラビング密度を低くするためには、この逆にすればよい。

#### [0085]

#### 「透明支持体】

位相差板は、支持体を有していてもよく、該支持体は、透明支持体であるのが好ましい。前記支持体は、主に光学的等方性で、光透過率が80%以上であれば、特に材料の制限はないが、ポリマーフイルムが好ましい。ポリマーの具体例として、セルロースエステル類(例、セルロースジアセテート、セルローストリアセテート)、ノルボルネン系ポリマー、ポリ(メタ)アクリレートエステル類のフイルムなどを挙げることができ、多くの市販のポリマーを好適に用いることが可能である。このうち、光学性能の観点からセルロースエステル類が好ましく、セルロースの低級脂肪酸エステルがさらに好ましい。低級脂肪酸とは、炭素原子数が6以下脂肪酸で、炭素原子数は、2、3、4であることが好ましい。具体的には、セルロースアセテート、セルロースプロピオネート又はセルロースブチレートがあげられる。この中でも、セルロースアフピオネートで好ましい。セルロースアセテートプロピオネートやセルロースアセテートが特に好ましい。セルロースアセテートプロピオネートやセルロースアセテートが特に好ましい。セルロースアセテートがあげられる。また、従来知られているポリカーボネートやポリスルホンのような複屈折の発現しやすいポリマーであっても国際公開WO00/26705号公報パンフレットに記載の分子を修飾することで該発現性を低下させたものを用いることもできる。

#### [0086]

以下、透明支持体として好ましく使用されるセルロースエステルについて詳述する。セルロースエステルとしては、酢化度が $55.0\sim62.5\%$ であるセルロースアセテートを使用することが好ましい。特に酢化度が $57.0\sim62.0\%$ であることが好ましい。酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D-817-91(セルロースアセテート等の試験法)におけるアセチル化度の測定及び計算に従う。セルロースエステルの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。また、本発明に使用するセルロースエステルは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、 $1.0\sim1.7$ であることが好ましく、 $1.3\sim1.65$ であることがさらに好ましく、 $1.4\sim1.6$ であることが最も好ましい。

0051 $\sim$ 0052に記載の合成例3の方法を参照して合成することができる。

# [0087]

透明支持体として用いるポリマーフイルム、特にセルロースアセテートフイルムは、レターデーション値を調整するために、少なくとも二つの芳香族環を有する芳香族化合物をレターデーション上昇剤として使用することも可能である。このようなレターデーション上昇剤を使用する場合、レターデーション上昇剤は、セルロースアセテート100質量部に対して、0.01~20質量部の範囲で使用する。レターデーション上昇剤は、セルロースアセテート100質量部に対して、0.05~15質量部の範囲で使用することが好ましく、0.1~10質量部の範囲で使用することがさらに好ましい。2種類以上の芳香族化合物を併用してもよい。芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性へテロ環を含む。

## [0088]

芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。芳香族性へテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子及び硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリミジン環、ピラジン環及び1,3,5ートリアジン環が含まれる。芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピリジン環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピリジン環、パンゼン環及び1,3,5ートリアジン環がさらに好ましい。芳香族化合物は、少なくとも一つの1,3,5ートリアジン環を有することが特に好ましい。

## [0089]

芳香族化合物が有する芳香族環の数は、 $2\sim2$ 0であることが好ましく、 $2\sim1$ 2であることがより好ましく、 $2\sim8$ であることがさらに好ましく、 $2\sim6$ であることが最も好ましい。二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合及び(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a) $\sim$ (c)のいずれでもよい。このようなレターデーション上昇剤については国際公開WO01/88574号公報パンフレット、国際公開WO00/2619号公報パンフレット、特開2000-111914号公報、同2000-275434号公報、特願2002-70009号明細書等に記載されている

## [0090]

セルロースアセテートフイルムは、調製されたセルロースアセテート溶液(ドープ)から、ソルベントキャスト法により製造することが好ましい。ドープには、前記のレターデーション上昇剤を添加してもよい。ドープは、ドラム又はバンド上に流延し、溶媒を蒸発させてフイルムを形成する。流延前のドープは、固形分量が18~35%となるように濃度を調整することが好ましい。ドラム又はバンドの表面は、鏡面状態に仕上げておくことが好ましい。ソルベントキャスト法における流延及び乾燥方法については、米国特許2336310号、同2367603号、同2492977号、同2492978号、同2607704号、同2739069号、同2739070号、英国告許640731号、同736892号の各明細書、特公昭45-4554号、同49-5614号、特開昭60-176834号、同60-203430号、同62-115035号の各公報に記載がある。ドープは、表面温度が10℃以下のドラム又はバンド上に流延することが好ましい。流延してから2秒以上風に当てて乾燥することが好ましい。得られたフイルムをドラム又はバンドから剥ぎ取り、さらに100~160℃まで逐次温度を変えた高温風で乾燥して残留溶剤を蒸発させることもできる。以上の方法は、特公平5-

17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラム又はバンドの表面温度においてドープがゲル化することが必要である。

## [0091]

ドープは、原料フレークをハロゲン化炭化水素類(ジクロロメタン等)、アルコール類(メタノール、エタノール、ブタノール等)、エステル類(蟻酸メチル、酢酸メチル等)、エーテル類(ジオキサン、ジオキソラン、ジエチルエーテル等)等の溶剤にて溶解する。セルロースアシレートを溶解するための溶剤としては、ジクロロメタンが代表的である。しかし、地球環境や作業環境の観点では、溶剤はジクロロメタン等のハロゲン化炭化水素を実質的に含まないことが好ましい。「実質的に含まない」とは、有機溶剤中のハロゲン化炭化水素の割合が5質量%未満(好ましくは2質量%未満)であることを意味する。ジクロロメタン等のハロゲン化炭化水素を実質的に含まないセルロースアシレートフイルム及びその製造法については発明協会公開技報(公技番号2001-1745、2001年3月15日発行、以下公開技報2001-1745号と略す)に記載されている。

### [0092]

調製したセルロースアセテート溶液(ドープ)を用いて、ドープを2層以上流延するこ とによりフイルム化することもできる。ドープは、ドラム又はバンド上に流延し、溶媒を 蒸発させてフイルムを形成する。流延前のドープは、固形分量が10~40%となるよう に濃度を調整することが好ましい。ドラム又はバンドの表面は、鏡面状態に仕上げておく ことが好ましい。複数のセルロースアセテート溶液を流延する場合、支持体の進行方向に 間隔をおいて設けた複数の流延口からセルロースアセテートを含む溶液をそれぞれ流延さ せて、それらを積層させながらフイルムを作製してもよい。例えば、特開昭61-158 414号、特開平1-122419号、及び特開平11-198285号の各公報に記載 の方法を用いることができる。また、2つの流延口からセルロースアセテート溶液を流延 することによりフイルム化してもよい。例えば、特公昭60-27562号、特開昭61 -94724号、特開昭61-947245号、特開昭61-104813号、特開昭6 1-158413号、及び特開平6-134933号の各公報に記載の方法を用いること ができる。また、特開昭56-162617号公報に記載の、高粘度セルロースアセテー ト溶液の流れを低粘度のセルロースアセテート溶液で包み込み、高粘度及び低粘度のセル ロースアセテート溶液を同時に押出すセルロースアセテートフイルムの流延方法を用いて もよい。

## [0093]

セルロースアセテートフイルムは、さらに延伸処理によりレターデーション値を調整することができる。延伸倍率は、 $0\sim1~0~0$ %の範囲にあることが好ましい。本発明のセルロースアセテートフイルムを延伸する場合には、テンター延伸が好ましく使用され、遅相軸を高精度に制御するために、左右のテンタークリップ速度、離脱タイミング等の差をできる限り小さくすることが好ましい。

#### [0094]

セルロースエステルフイルムには、機械的物性を改良するため、又は乾燥速度を向上するために、可塑剤を添加することができる。可塑剤としては、リン酸エステル又はカルボン酸エステルが用いられる。リン酸エステルの例には、トリフェニルホスフェート(TPP)及びトリクレジルホスフェート(TCP)が含まれる。カルボン酸エステルとしては、フタル酸エステル及びクエン酸エステルが代表的である。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)及びジー2ーエチルへキシルフタレート(DEHP)が含まれる。クエン酸エステルの例には、ローアセチルクエン酸トリエチル(OACTE)及びローアセチルクエン酸、トリブチル(OACTB)が含まれる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DPP、DEHP

)が好ましく用いられる。DEP及びDPPが特に好ましい。可塑剤の添加量は、セルロースエステルの量の $0.1\sim25$ 質量%であることが好ましく、 $1\sim20$ 質量%であることが最も好ましい。

## [0095]

セルロースエステルフイルムには、劣化防止剤(例、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン類)や紫外線防止剤を添加してもよい。劣化防止剤については、特開平3-199201号、同5-1907073号、同5-194789号、同5-271471号、同6-107854号の各公報に記載がある。劣化防止剤の添加量は、調製する溶液(ドープ)の $0.01\sim1$ 質量%であることが好ましく、 $0.01\sim0.2$ 質量%であることがさらに好ましい。添加量が0.01質量%を越えると、満であると、劣化防止剤の効果がほとんど認められない。添加量が1質量%を越えると、フイルム表面への劣化防止剤のブリードアウト(滲み出し)が認められる場合がある。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)を挙げることができる。紫外線防止剤については、特開平7-11056号公報に記載がある。

## [0096]

セルロースアセテートフイルムは、表面処理を施すことが好ましい。具体的方法としては、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理又は紫外線照射処理が挙げられる。また、特開平7-333433号公報に記載のように、下塗り層を設けることも好ましく利用される。フイルムの平面性を保持する観点から、これら処理においてセルロースアセテートフイルムの温度をTg(ガラス転移温度)以下、具体的には150 C以下とすることが好ましい。

## [0097]

セルロースアセテートフイルムの表面処理は、配向膜などとの接着性の観点から、酸処理又はアルカリ処理、すなわちセルロースアセテートに対するケン化処理を実施することが特に好ましい。

以下、アルカリ鹸化処理を例に、具体的に説明する。

アルカリ鹸化処理は、フイルム表面をアルカリ溶液に浸漬した後、酸性溶液で中和し、水洗して乾燥するサイクルで行われることが好ましい。アルカリ溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられる。水酸化イオンの規定濃度は、 $0.1 \sim 3.0 \text{N}$ の範囲にあることが好ましく、 $0.5 \sim 2.0 \text{N}$ の範囲にあることがさらに好ましい。アルカリ溶液温度は、室温 $\sim 90 \text{C}$ の範囲にあることが好ましく、 $40 \sim 70 \text{C}$ の範囲にあることがさらに好ましい。

#### [0098]

また、セルロースアセテートフイルムの表面エネルギーは、55mN/m以上であることが好ましく、 $60\sim75mN/m$ の範囲にあることがさらに好ましい。

セルロースアセテートフイルムの厚さは、通常  $5\sim500~\mu$  mの範囲が好ましく、  $20\sim250~\mu$  mの範囲が好ましく、  $30\sim180~\mu$  mの範囲が特に好ましい。

## [0099]

位相差板は、偏光膜と組み合わせて楕円偏光板の用途に供することができる。さらに、 透過型、反射型、及び半透過型液晶表示装置に、偏光膜と組み合わせて適用することにより、視野角の拡大に寄与する。以下に、位相差板を利用した楕円偏光板及び液晶表示装置 について説明する。

#### [0100]

# [楕円偏光板]

位相差板と偏光膜を積層することによって楕円偏光板を作製することができる。位相差板を利用することにより、液晶表示装置の視野角を拡大し得る楕円偏光板を提供することができる。前記偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。偏光膜の偏光軸は、フィルムの延伸方向に垂直な方向に相当

する。

## [0101]

偏光膜は、位相差板の光学異方性層側に積層する。偏光膜の光学補償シートを積層した側と反対側の面に透明保護膜を形成することが好ましい。透明保護膜は、光透過率が80%以上であるのが好ましい。透明保護膜としては、一般にセルロースエステルフイルム、好ましくはトリアセチルセルロースフイルムが用いられる。セルロースエステルフイルムは、ソルベントキャスト法により形成することが好ましい。透明保護膜の厚さは、 $20\sim500~\mu$  mであることがおらに好ましい。

## [0102]

#### [液晶表示装置]

本発明の円盤状化合物を用いた位相差板の利用により、視野角が拡大された液晶表示装置を提供することができる。液晶表示装置は、通常、液晶セル、偏光素子及び位相差板(光学補償シート)を有する。前記偏光素子は、一般に偏光膜と保護膜からなり、偏光膜と保護膜については、上記楕円偏光で説明したものを用いることができる。TNモードの液晶セル用位相差板(光学補償シート)は、特開平6-214116号公報、米国特許5583679号、同5646703号、ドイツ特許公報3911620A1号の各明細書に記載がある。また、IPSモード又はFLCモードの液晶セル用光学補償シートは、特開平10-54982号公報に記載がある。さらに、OCBモード又はHANモードの液晶セル用光学補償シートは、米国特許5805253号明細書及び国際公開WO96/37804号公報に記載がある。さらにまた、STNモードの液晶セル用光学補償シートは、特開平9-26572号公報に記載がある。そして、VAモードの液晶セル用光学補償シートは、特別平9-26572号公報に記載がある。

#### [0103]

本発明において、前記記載の公報を参考にして各種のモードの液晶セル用位相差板(光学補償シート)を作製することができる。位相差板は、TN(Twisted Nematic)、IPS(In-Pl ane Switching)、FLC(Ferroelectric Liquid Crystal)、OCB(Optically Compensatory Be nd)、STN(Super Twisted Nematic)、VA(Vertically Aligned)及びHAN(Hybrid Aligned Nematic) モードのような様々な表示モードの液晶表示装置に用いることができる。位相差板は、TN(Twisted Nematic)、OCB(Optically Compensatory Bend)モードの液晶表示装置の光学補償に特に効果がある。

## 【実施例】

#### [0104]

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。

#### [0105]

一般式 (I) で表される円盤状化合物は、下記合成例に従って合成することができる。 「合成例 1]

例示化合物 (1) を、下記のルートにより合成した。なお、相転移温度は、偏光顕微鏡 観察による測定値である(以下、合成例 2 以降も同様である。)。

#### [0106]

## 【化19】

## [0107]

窒素雰囲気下、4-プロモフェノール(32.3g、187mmo1)、アクリル酸t-ブチル(34m1、234mmo1)のトリエチルアミン(200m1)溶液に、酢酸パラジウム(0.42g、1.87mmo1)、トリ(o-トリル)フォスフィン(2.28g、7.49mmo1)を加え、90℃にて4時間撹拌した。放冷後、酢酸エチル及び希塩酸水を加えて分液し、有機相を希塩酸水、飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し残渣をシリカゲルカラムクロマトグラフィーにより、酢酸エチル及びヘキサン混合溶媒を溶離液として用いて精製した。35.0g(収率85%)の(A-1)を得た。

## [0108]

窒素雰囲気下、(A-1) (22.0g、0.1mol)、ジメチル硫酸(18.9g、0.15mol)のジメチルアセトアミド300ml溶液に、炭酸カリウム(27.6g、0.2mol)を加え、100℃にて5時間撹拌した。放冷後、酢酸エチル及び飽和食塩水を加えて分液し、有機相を希塩酸水及び飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し残渣をシリカゲルカラムクロマトグラフィーにより、酢酸エチル及びヘキサン混合溶媒を溶離液として用いて精製した。21.8g(収率93%)の(A-2)を得た。

## [0109]

水素化ナトリウム(1.2g、50mmo1)、トリメチルスルホニウムヨージド(11.0g、50mmo1)にジメチルスルフォキシド(70ml)を窒素雰囲気下滴下した。水素が発生しなくなるのを確認し、さらに30分間撹拌した。(A-2)(9.0g、38.4mmo1)のジメチルスルフォキシド10ml溶液を添加し、50℃にて3時間撹拌した。放冷後、酢酸エチル及び飽和食塩水を加えて分液し、有機相を希塩酸水及び飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、8.6gの粗生成物(A-3)を得た(粗収率90%)。

## [0110]

(A-3) (7.4 g、30 mm o 1) のアセトン70 m 1 溶液に塩酸水 (36%) 30 m 1 を添加し、1 時間還流させた。放冷後、酢酸エチル及び飽和食塩水を加えて分液し、有機相を飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、酢酸エチルとヘキサン混合溶媒から晶析して、5.1 gの (A-4) を得た(収率88%)。

## [0111]

窒素雰囲気下、(A-4) (1.3g、5 mm o 1) のテトラヒドロフラン 2 0 ml 溶液に、氷冷下にてメタンスルホニルクロライド (0.39 m l g、5 mm o 1) を添加し、エチルジイソプロピルアミン (0.87 m l、5 mm o 1)をゆっくり滴下した。滴下後室温まで昇温させ 3 0 分撹拌させた。薄層クロマトグラフィ(TLC)にて反応を確認後、氷冷し、2,3,6,7,10,11-ヘキサヒドロキシトリフェニレンの1水和物(0.17g、0.5 mm o 1) のテトラヒドロフラン 2 0 m l 溶液を添加し、さらにエチルジイソプロピルアミン (0.7 m l、4 mm o 1)をゆっくり滴下した。滴下終了後、N,Nージメチルアミノピリジンを触媒量加え、そのまま室温まで昇温し 3 時間撹拌した。メタノール(150 m l)を流し込んだ後、ろ過し、固形分を酢酸エチル及びヘキサン混合溶媒から晶析させ、0.5g(収率73%)の例示化合物(1)を得た。

#### [0112]

1 H NMR(400MHz、CDC13)  $\delta$  1. 30-1. 45(6 H、m)、1. 70-1. 80(6 H、m)、2.05-2.15(6 H、m)、2.65-2.80(6 H、m)、3.80(18 H、s)、6.81(12 H、d、J=8.0 Hz)、7.01(12 H、d、J=8.0 Hz)、7.06(12 H、d、J=8.0 Hz)、8.22(6 H、s);マススペクトル(M+Na)/(POSI)=1392。;相転移温度:Cry 100℃ Col 170℃ ND 235℃ Iso

## [0113]

## [合成例2]

例示化合物 (2) を、合成例 1 のジメチル硫酸をブロモブタンに変更した以外は、合成例 1 と同様の方法にて、収率 4 3 % (5 S t e p s) で合成した。

#### $[0\ 1\ 1\ 4]$

1 H NMR (400MHz, CDC13)

 $\delta$  0. 99 (6 H、t, J=7. 2 Hz)、1. 3 0-1. 65 (3 0、m)、1. 7 0-1. 95 (18 H、m)、2. 05-2. 15 (6 H、m)、2. 65-2. 80 (6 H、m)、3. 94 (12 H、t, J=6. 4 Hz)、6. 80 (12 H、d、J=8. 0 Hz)、7. 01 (12 H、d、J=8. 0 Hz)、7. 04 (12 H、d、J=8. 0 Hz)、8. 22 (6 H、s);マススペクトル(M+Na)/(POSI)=1632。;相転移温度:Cry 75℃ Col 100℃ ND 197-210℃ Is o

#### [0115]

#### 「合成例3]

例示化合物(3)を、下記のルートにより合成した。

#### [0116]

## 【化20】

## [0117]

パラヒドロキシケイヒ酸(200g、1.22mo1)のエチルアルコール1.5 L溶液に濃硫酸 20m1 加え、6 時間還流した。放冷後、減圧下でエチルアルコール 1 Lを留去し、酢酸エチル及び飽和食塩水を加えて分液し、有機相を重曹水にて中和した。有機相を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、226gの (B-1)を得た(収率 97%)。

## [0118]

(B-1) (57.6g、0.3 mo1) の塩化メチレン600 ml溶液にメトキシエトキシメチルクロライド (MEMC1) (51.4 ml) を加え、ジエチルイソプロピルアミン (78.4 ml、0.45 mmol)を、反応系の温度を30  $\mathbb C$ 以下に保ちながらゆっくり滴下した。そのまま3時間攪拌した後、飽和食塩水を加えて分液し、有機相を希塩酸水、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、77.4 gの (B-2) を得た (収率92%)。

[0119]

水素化ナトリウム (9.2 g、228 mm o 1)、トリメチルスルホニウムヨージド(50.2 g、228 mo 1) にジメチルスルフォキシド(160 m1)を窒素雰囲気下滴下した。水素が発生しなくなるのを確認し、さらに30分間撹拌した。(B-2)(49.2 g、175.6 mm o 1)のジメチルスルフォキシド600 m1溶液を添加し、50℃にて3時間撹拌した。放冷後、酢酸エチル及び飽和食塩水を加えて分液し、有機相を希塩酸水、飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、33.6 gの粗生成物(B-3)を得た(粗収率65%)。

[0120]

(B-3) (20.4g、69.3mmol)のエタノール200ml溶媒にピリジニウムp-トルエンスルホン酸(17.4g、69.3mmol)を添加し、還流した。6時間攪拌した後、放冷後、酢酸エチル及び飽和食塩水を加えて分液し、有機相を希塩酸水し、飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し残渣をシリカゲルカラムクロマトグラフィーにより、酢酸エチル及びヘキサン混合溶媒を溶離液として用いて精製した。13.0g(収率91%)の(B-4)を得た。

## [0121]

窒素雰囲気下、(B-4)  $(12.4g,60 \, mmo1)$  のN, N' -ジメチルアセトアミド150 m l 溶液に、ブロモエタノール( $11.2g,90 \, mmo1$ )、炭酸カリウム( $12.4g,90 \, mmo1$ )を加え、内温 $110 \, C$ にて5時間攪拌した。放冷後、酢酸エチル及び飽和食塩水を加えて分液し、有機相を希塩酸水し飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し残渣をシリカゲルカラムクロマトグラフィーにより、酢酸エチル及びヘキサン混合溶媒を溶離液として用いて精製した。14.0g (収率93%) の (B-5) を得た。

# [0122]

(B-5) (14.0g、55.5mmol)のテトラヒドロフラン100ml溶液に、水酸化リチウム1水和物(4.2g、100mmol)を水100mlに溶解させた水溶液を添加し、還流下6時間攪拌した。放冷後、酢酸エチル及び飽和食塩水を加えて分液し、有機相を希塩酸水、飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し残渣をシリカゲルカラムクロマトグラフィーにより、酢酸エチル及びヘキサン混合溶媒を溶離液として用いて精製した。11.7g(収率95%)の(B-6)を得た。

## [0123]

(B-6) (7.4g、33.2mmo1) のテトラヒドロフラン100ml溶液に、アクリル酸クロライド (3.24ml,40mmo1)、ジメチルアニリン (5.06ml,40mmo1)、ニトロベンゼン (0.3m1) を加え、内温60℃にて3時間攪拌した。放冷後、酢酸エチル及び飽和食塩水を加えて分液し、有機相を希塩酸水、飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し残渣にN,N'ージメチルアセトアミド (100ml)、トリエチルアミン (5.6ml,40mmo1) を加えて内温60℃にて2時間攪拌した。放冷後、酢酸エチル及び飽和食塩水を加えて分液し、有機相を希塩酸水及び飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、酢酸エチルとヘキサン混合溶媒から晶斥し、7.2g(収率78%)の (B-7) を得た。

#### [0124]

窒素雰囲気下、(B-7) (4. 1g、14. 8 mm o 1) のテトラヒドロフラン100ml溶液に、氷冷下にてメタンスルホニルクロライド (1. 15 m l g、14. 8 mm o 1) を添加し、ジエチルイソプロピルアミン (2. 58 m l、14. 8 mm o 1)をゆっくり滴下した。滴下後室温まで昇温させ30分撹拌させた。TLCにて反応を確認後、氷冷し、2,3,6,7,10,11-ヘキサヒドロキシトリフェニレンの1水和物 (0.63 g、1. 85 mm o 1) のテトラヒドロフラン50 m l 溶液を添加し、さらにジエチルイソプロピルアミン (2. 13 m l、12. 25 mm o 1)をゆっくり滴下した。滴下

終了後、N,N-ジメチルアミノピリジンを触媒量加え、そのまま室温まで昇温し3時間 撹拌した。酢酸エチル及び飽和食塩水を加えて分液し、有機相を希塩酸水、飽和食塩水で 洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し残渣をシリカゲル カラムクロマトグラフィーにより、ジクロロメタン及びメタノール混合溶媒を溶離液とし て用いて精製した。氷冷したメタノールから晶斥し、2.8g(収率82%)の例示化合 物(3)を得た。

## [0125]

1 H NMR (400MHz、CDC13)  $\delta$ 1. 30-1. 45(6 H、m)、1. 70-1. 85(6 H、m)、2. 05-2. 20(6 H、m)、2. 65-2. 80(6 H、m)、4. 19(1 2 H、t、J=6. 4 Hz)、4. 52(1 2 H、t、J=6. 4 Hz)、5. 87(6 H、d, J=10. 4 Hz)、6. 17(6 H、d, d, J=10. 4 Hz、17. 2 Hz)、6. 46(6 H、d, J=17. 2 Hz)、6. 83(12 H、d, J=8. 0 Hz)、7. 03(6 H、d、J=8. 0 Hz)、7. 06(6 H、d、J=8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、90°C ND 0 ND 0

# [0126]

## [合成例4及び5]

例示化合物 (4) 及び (5) は、それぞれ、合成例 3 のブロモエタノールをブロモプロパノール、ブロモブタノールに変更した以外は、合成例 3 と同様の方法にて行い、例示化合物 (4) 収率 3 3 % (8 S t e p s)、例示化合物 (5) 収率 2 4 % (8 S t e p s) を得た。

### [0127]

## 例示化合物(4)

1 H NMR (400MHz、CDC13)  $\delta$ 1. 30-1. 45 (6 H、m)、1. 70-1. 85 (6 H、m)、2. 05-2. 20 (18 H、m)、2. 65-2. 80 (6 H、m)、4. 04 (12 H、t、J=7. 2 Hz)、4. 37 (12 H、t、J=6. 4 Hz)、5. 84 (6 H、d, J=10. 4 Hz)、6. 13 (6 H、d, d, J=10. 4 Hz、17. 2 Hz)、6. 42 (6 H、d, J=17. 2 Hz)、6. 81 (12 H、d, J=17. 17. 17. 17. 17. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.

## [0128]

## 例示化合物(5)

1 H NMR (400MHz、CDC13)  $\delta$ 1. 30-1. 45(6 H、m)、1. 70-1. 85(6 H、m)、2. 05-2. 20(3 0 H、m)、2. 65-2. 80(6 H、m)、3. 98(1 2 H、t、J=6. 8 Hz)、4. 25(1 2 H、t、J=6. 4 Hz)、5. 83(6 H、d, J=10. 4 Hz)、6. 13(6 H、d, d, J=10. 4 Hz、17. 2 Hz)、6. 42(6 H、d, J=17. 2 Hz)、6. 81(12 H、d, J=8. 0 Hz)、7. 02(6 H、d、J=8. 0 Hz)、7. 06(6 H、d、J=8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、8. 0 Hz)、7. 0 C ND 0 ND 0 Ts o

# [0129]

#### 「合成例 6]

例示化合物(17)を、下記のルートにて合成した。

## [0130]

# 【化21】

#### [0131]

合成例 3 の方法にて合成した(B-4)(2 0. 6 g、0. 1 m o 1)のテトラヒドロフラン 2 0 0 m 1 溶液に水酸化リチウム 1 水和物(2 1 g、0. 5 m o 1)の 2 0 0 m 1 水溶液を加え、還流下 5 時間攪拌した。放冷後、酢酸エチル及び希塩酸水を加えて中和したものを分液し、有機相を飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、酢酸エチル及びヘキサン混合溶媒から晶斥して、1 4. 8 g(収率 8 3 %)の(C-1)を得た。

## [0132]

(C-1) (7.3 g、41 mm o 1) のテトラヒドロフラン100 m 1 溶液にアクリル酸クロライド (7.1 m 1、87 mm o 1)を加え、0  $\mathbb{C}$ にて、ジエチルイソプロピルアミン (15.2 m 1、87 mm o 1)をゆっくり滴下した。滴下終了後、1 時間攪拌した後、ピリジン (10 m 1)、水 (10 m 1)を加え室温にて1時間攪拌した。酢酸エチル及び希塩酸水を加えて分液し、有機相を飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、酢酸エチル及びヘキサン混合溶媒から晶斥して、7.0 g (収率74%)の (C-2)を得た。

## [0133]

窒素雰囲気下、(C-2)(2.32g、 $10\,\mathrm{mm\,o\,1}$ )のテトラヒドロフラン40 $\mathrm{ml\,inm\,inm\,o\,n}$  溶液に、氷冷下にてメタンスルホニルクロライド( $0.77\,\mathrm{mg}$ 、 $10\,\mathrm{mm\,o\,1}$ )を添加し、ジエチルイソプロピルアミン( $1.74\,\mathrm{m\,l}$ 、 $10\,\mathrm{mm\,o\,l}$ )をゆっくり滴下した。滴下後室温まで昇温させ30分撹拌させた。TLCにて反応を確認後、氷冷し、2,3,6,7,10,11-へキサヒドロキシトリフェニレンの<math>1水和物( $0.43\,\mathrm{g}$ 、 $1.25\,\mathrm{mm\,o\,l}$ )のテトラヒドロフラン $40\,\mathrm{m\,l\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o\,inm\,o$ 

### [0134]

1H NMR (400MHz、CDC13) δ1. 35-1. 50 (6H、m)、1. 7 出証特2005-3036684 0-1. 90 (6 H、m)、2. 10-2. 20 (6 H、m)、2. 70-2. 85 (6 H、m)、6. 02 (6 H、d, J=10. 4 Hz)、6. 33 (6 H、d, d, J=10. 4 Hz、17. 2 Hz)、6. 6 1 (6 H、d, J=17. 2 Hz)、7. 00-7. 20 (24 H、m)、8. 21 (6 H、s);マススペクトル (M+Na) / (POSI) =1632。;相転移温度:Cry 95 Col <math>114 ND 160 ND

# [0135]

#### 「合成例7]

例示化合物(18)を、下記のルートにて合成した。

[0136]

【化22】

### [0137]

2,3,6,7,10,11-へキサヒドロキシトリフェニレンの1水和物(1.7g、5.0 mm o l)をテトラヒドロフラン200 m l 溶液に溶解し、シクロプロピルカルボニルクロリド(4.5 m l、50.0 mm o l)を添加した。そのものに氷冷下にて、ピリジン(15 m l)をゆっくりと滴下した。滴下後、室温にて2時間撹拌し、反応液をメタノール(500 m l)に流し込んだ。固形分をろ過にて取り出し、酢酸エチル及びヘキサン混合溶媒から晶析し、3.3g(収率90%)の例示化合物(18)を得た。

### [0138]

 $1\,H$  NMR  $(4\,0\,0\,M\,H\,z$ 、CDC13)  $\delta\,1$ .  $0\,0\,-\,1$ .  $1\,0$   $(1\,2\,H$ 、m)、1.  $2\,0\,-\,1$ .  $3\,0$   $(1\,2\,H$ 、m)、1.  $9\,0\,-\,2$ .  $0\,0$   $(6\,H$ 、m)、8.  $1\,4$   $(6\,H$ 、s); マススペクトル  $(M+N\,a)$  /  $(POS\,I)=7\,5\,5$ 。;融点: $3\,0\,0\,$ ℃以上

#### [0139]

「実施例1~3]

### (液晶セルの作製)

ガラス間距離  $25 \mu$  m、水平配向膜付セル(KSRP-25:E. H. C. 社製)に、本発明の例示化合物(1)、(2)又は(8)を等方性液体状態にて注入した。均一に注入した後、円盤状ネマティック相状態になるまでセルの温度を降温し、Iso点温度(円盤状ネマティック相から等方性液体に転移する温度)より 10 C低い温度にて熟成することで水平配向状態として液晶セルを作製した。なお、ここでいう「水平配向」とは、液晶層の水平面(例えば、液晶層が支持体上に形成されている場合は支持体の表面)に対して液晶分子の長軸方向(例えば、円盤状液晶分子の場合、コアの円盤面)が平行であることをいう。

#### [0140]

# [比較例1及び2]

(液晶セルの作製)

実施例  $1\sim3$  で採用した例示化合物の代わりに下記比較液晶化合物(1)又は(2)を用いた以外、実施例  $1\sim3$  と同様の操作にて液晶セルを作製した。

### [0141]

# 【化23】

### 比較液晶化合物(1)

# 【0142】 【化24】

#### 比較液晶化合物(2)

# [0143]

# (波長分散値の測定)

### [0144]

# (Δnの測定)

実施例  $1\sim3$  ならびに比較例 1 及び 2 で得られた液晶セルの  $\Delta$  n を、KOBRA 2 1 ADH (王子計測機器 (株) 製)を用いて、5 4 5 n mの波長を使用して観察角度を変えてレターデーション値を測定し、屈折率精円体モデルと仮想して、Designing Concepts of the Discotic Negative Compensation Films SID98 DIGESTに記載されている手法で算出した。結果を第 1 表に示す。

# [0145]

# 【表1】

|       |             |       | Δn      |
|-------|-------------|-------|---------|
|       | 液晶化合物       | 波長分散値 | (545nm) |
| 実施例1  | 例示化合物(1)    | 1. 13 | 0. 112  |
| 実施例 2 | 例示化合物 (2)   | 1. 13 | 0. 097  |
| 実施例3  | 例示化合物(8)    | 1. 14 | 0. 108  |
| 比較例1  | 比較液晶化合物(1)  | 1. 25 | 0.088   |
| 比較例2  | 比較液晶化合物 (2) | 1. 31 | 0. 105  |

# [0146]

上記第1表に示した結果から、比較液晶化合物(1)と比較液晶化合物(2)を比べると、比較液晶化合物(2)では $\Delta$ nが大きくなっているものの波長分散値も大きくなっており、従来の化合物では、 $\Delta$ nと波長分散値はトレードオフの関係であることが認められた。これに対し、実施例1~3で用いた本発明の化合物は、 $\Delta$ nが大きく、かつ波長分散値が小さく、上記トレードオフの関係から脱却していることがわかる。

# [0147]

# [実施例4]

(透明支持体の作製)

下記の成分をミキシングタンクに投入し、加熱攪拌して、セルロースアセテート溶液( 以下、ドープと呼ぶことがある)を調製した。

#### セルロースアセテート溶液組成

| 酢化度60.9%のセルロースアセテート | 100質量部         |
|---------------------|----------------|
| トリフェニルホスフェート        | 6.5質量部         |
| ビフェニルジフェニルホスフェート    | 5.2質量部         |
| 下記のレターデーション上昇剤(1)   | 0.1質量部         |
| 下記のレターデーション上昇剤 (2)  | 0.2質量部         |
|                     | 3 1 0. 2 5 質量部 |
| メタノール               | 5 4. 7 5 質量部   |
| 1ーブタノール             | 10.95質量部       |
|                     |                |

# 【0148】 【化25】

レターデーション上昇剤(1)

【0149】 【化26】

レターデーション上昇剤(2)

[0150]

得られたドープを流延口から0 $\mathbb{C}$ に冷却したドラム上に流延した。溶媒含有率70質量%の状態で剥ぎ取り、フイルムの幅方向の両端をピンテンターで固定し、溶媒含有率が $3\sim5$ 質量%の領域で、幅方向(機械方向に垂直な方向)の延伸率が3%となる間隔を保ちつつ乾燥した。その後、熱処理装置のロール間を搬送することにより、さらに乾燥し、 $120\mathbb{C}$ を越える領域で機械方向の延伸率が実質0%、(剥ぎ取り時に機械方向に4%延伸

することを考慮して)幅方向の延伸率と機械方向の延伸率との比が 0.75 となるように 調整して、厚さ  $100\mu$  mのセルロースアセテートフイルムを作製した。作製したフイルムのレターデーション値を波長 632.8nmで測定したところ、厚み方向のレターデーション値が 40nm、面内のレターデーション値が 4nmであった。作製したセルロースアセテートフイルムを透明支持体として用いた。

# [0151]

(第1下塗り層の形成)

上記透明支持体の上に、下記の組成の塗布液を28ml/m²塗布し、乾燥して、第1下塗り層を形成した。

# 第1下塗り層塗布液組成

| ゼラチン      | 5. 4 4 質量部 |
|-----------|------------|
| ホルムアルデヒド  | 1.38質量部    |
| サリチル酸     | 1. 62質量部   |
| アセトン      | 3 9 1 質量部  |
| メタノール     | 158質量部     |
| メチレンクロライド | 4 0 6 質量部  |
| 水         | 12質量部      |
|           |            |

### [0152]

(第2下塗り層の形成)

第1下塗り層の上に、下記の組成の塗布液を7m1/m2塗布し、乾燥して、第2下塗り層を形成した。

# [0153]

#### 第2下塗り層塗布液組成

| クエン酸モノエチルエステル<br>アセトン<br>メタノール | 1 | 0.<br>20<br>87 | 7 質量部<br>1 質量部<br>0 質量部<br>7 質量部<br>5 質量部 |
|--------------------------------|---|----------------|-------------------------------------------|
| 7,0                            |   |                |                                           |

# 【0154】 【化27】

アニオン性ポリマー

# [0155]

(バック層の形成)

透明支持体の反対側の面に、下記の組成の塗布液を25m1/m²塗布し、乾燥して、バック層を形成した。

酢化度55%のセルロースジアセテート
 シリカ系マット剤(平均粒子サイズ:1μm)
 アセトン
 メタノール
 6.56質量部
 679質量部
 104質量部

#### [0156]

#### (配向膜の形成)

下記変性ポリビニルアルコールとグルタルアルデヒド(変性ポリビニルアルコールの5質量%)とを、メタノール/水の混合溶媒(容積比=20/80)に溶解して、5質量%の溶液を調製した。

# [0157]

【化28】

### [0158]

この溶液を、第2下塗り層の上に塗布し、100 Cの温風で120 秒間乾燥した後、ラビング処理を行い配向膜を形成した。得られた配向膜の膜厚は $0.5 \mu$  mであった。配向膜のラビング方向は、透明支持体の流延方向と平行であった。

#### [0159]

# (光学異方性層の形成)

前記で作製した配向膜のラビング処理面上に、下記の組成を有する光学異方性層塗布液を、#4のワイヤーバーを用いて塗布した。

# 光学異方性層塗布液

本発明の液晶化合物 (例示化合物 (4))

100質量部

エチレンオキサイド変性トリメチロールプロパントリアクリレート

(V#360、大阪有機化学(株)製)

9.9質量部

光重合開始剤

(イルガキュア907、日本チバガイギー(株)製)3. 3質量部

増感剤

(カヤキュアーDETX、日本化薬(株)製)

1. 1質量部

メチルエチルケトン 250質量部

### [0160]

上記の光学異方性層を塗布したフイルムを、恒温槽中にて配向させ、 $200\,\mathrm{m}\,\mathrm{J/c}\,\mathrm{m}$  2の紫外線を照射して光学異方性層の配向状態を固定した。室温まで放冷して、光学補償シートを作製した。形成した光学異方性層の厚さは $1.82\,\mu\,\mathrm{m}$ であった。

#### [0161]

# [実施例5]

### (光学異方性層の形成)

前記実施例 4 と同様な方法で作製した配向膜のラビング処理面上に、実施例 4 で用いた例示化合物(4)の代わりに例示化合物(3)を用い、他は実施例 4 と同様に行った。得られた光学異方性層の厚さは 1 . 8 0  $\mu$  mであった。

#### [0162]

# [実施例6]

# (光学異方性層の形成)

前記実施例 4 と同様な方法で作製した配向膜のラビング処理面上に、実施例 4 で用いた例示化合物(4)の代わりに例示化合物(5)を用い、他は実施例 4 と同様に行った。得られた光学異方性層の厚さは 1 . 8 4  $\mu$  mであった。

### [0163]

#### 「比較例3]

実施例4で作製した配向膜に、下記の組成の光学異方性層塗布液を、#4のワイヤーバーを用いて塗布した。

# [0164]

### 光学異方性層塗布液

|                                             | 100質量部<br>クリレート |
|---------------------------------------------|-----------------|
| (V#360、大阪有機化学(株)製)                          | 9.9質量部          |
| 光重合開始剤<br>(イルガキュア907、日本チバガイギー(株)製)          | 3.3質量部          |
| 増感剤(カヤキュアーDETX、日本化薬(株)製)<br>セルロースアセテートブチレート | 1. 1 質量部        |
| (CAB551-0.2、イーストマンケミカル社製)                   | 2.2質量部          |
| セルロースアセテートブチレート<br>(CAB531-1、イーストマンケミカル社製)  | 0.55質量部         |
| メチルエチルケトン                                   | 2 5 0 質量部       |

# [0165]

# 【化29】

### 比較円盤状液晶性化合物(Y)

#### [0166]

上記の光学異方性層を塗布したフィルムを配向させ、 $200\,\mathrm{m}\,\mathrm{J/c}\,\mathrm{m}^2$ の紫外線を照射して光学異方性層の配向状態を固定した。室温まで放冷して、光学補償シートを作製した。形成した光学異方性層の厚さは  $1.90\,\mu\,\mathrm{m}$ であった。

# [0167]

#### [比較例4]

比較例3の比較円盤状液晶性化合物(Y)の代わりに下記比較円盤状液晶性化合物(Z)を用いた以外、比較例3と同様の操作にて光学補償シートを作製した。形成した光学異方性層の厚さは1.88 $\mu$ mであった。

#### [0168]

### 【化30】

円盤状液晶性化合物(Z)

# [0169]

# (液晶表示装置の作製)

ITO透明電極が設けられたガラス基板の上に、ポリイミド配向膜を設け、ラビング処理を行った。 $5~\mu$  mのスペーサーを介して、二枚の基板を配向膜面が向き合い、且つ配向膜のラビング方向が直交するように配置した。二枚の基板の間隙に、棒状液晶分子(ZL4792、メルク社製)を注入し、棒状液晶層を形成した。棒状液晶分子の $\Delta$ nは0.0969であった。以上のようにして作製したTN液晶セルの両側に、上記で作製した位相差板を二枚配置し、光学異方性層が液晶セルの基板と対面するように貼り付けた。さらにそれらの外側に、偏光板二枚を貼り付けて液晶表示装置を作製した。位相差板の配向膜のラビング方向と、それに隣接する液晶セルの配向膜のラビング方向とは、反平行になるように配置した。また、偏光板の吸収軸と、液晶セルのラビング方向とは平行になるように配置した。

それぞれ作製した液晶表示装置の液晶セルに電圧を印加し、白表示  $2\ V$ 、黒表示  $5\ V$  における白表示と黒表示との透過率をコントラスト比として、上下左右でコントラスト比  $1\ 0$ 、かつ階調反転のない領域を視野角として測定した。また、白表示時と黒表示時における色味の角度依存性を目視にて行った。その結果を第 2 表に示す。

# [0170]

# 【表2】

| 位相差板                                              | Δn                                        | 膜厚<br>(μm)                           | 波長分散 上                        | 視野角<br>下 左右                                         | 色味変化                                      |
|---------------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------|-----------------------------------------------------|-------------------------------------------|
| 実施例 4<br>実施例 5<br>実施例 6<br>比較例 3<br>比較例 4<br>認できる | 0. 11<br>0. 12<br>0. 10<br>0. 07<br>0. 09 | 1.82<br>1.80<br>1.84<br>1.90<br>1.88 | 1. 15 9<br>1. 16 9<br>1. 24 9 | 5° 147°<br>5° 147°<br>4° 147°<br>2° 145°<br>2° 145° | 確認できず<br>確認できず<br>確認できず<br>確認できる<br>明らかに確 |

### [0171]

実施例  $4\sim6$  で用いた本発明の化合物を採用したものは、波長分散が比較例 3 で用いた 従来から知られている円盤状液晶性化合物(Y)と比べて、小さくなっていることがわかる。さらに、波長分散が小さくなったにもかかわらず、 $\Delta$ nの値は、従来の円盤状液晶性 化合物(Y)より大きいため、膜厚を従来と同様の範囲とすることができている。加えて、液晶化合物(Z)は特開 2 0 0 1-1 6 6 1 4 7 号公報に記載のケイ皮酸誘導体を側鎖

に有するトリフェニレン化合物であるが、この化合物を用いた比較例4にくらべて、実施例4~6の波長分散は非常に小さく、色見変化の改良効果が大きい。

# [0172]

#### 「実施例7]

(光学補償フイルムの作製)

#### (支持体の作製)

下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。

# [0173]

(セルロースアセテート溶液組成)

酢化度60.9%のセルロースアセテート
 トリフェニルホスフェート(可塑剤)
 ビフェニルジフェニルホスフェート(可塑剤)
 メチレンクロライド(第1溶媒)
 メタノール(第2溶媒)
 染料(住化ファインケム(株)製 360FP)
 100質量部
 3.9質量部
 45質量部
 0.0009質量部

### [0174]

別のミキシングタンクに、下記のレターデーション上昇剤16質量部、メチレンクロライド80質量部及びメタノール20質量部を投入し、加熱しながら攪拌して、レターデーション上昇剤溶液を調製した。

上記組成のセルロースアセテート溶液 4 6 4 質量部にレターデーション上昇剤溶液 3 6 質量部、及びシリカ微粒子(アイロジル製 R 9 7 2) 1. 1 質量部を混合し、充分に攪拌してドープを調製した。レターデーション上昇剤の添加量は、セルロースアセテート 1 0 0 質量部に対して、5. 0 質量部であった。また、シリカ微粒子の添加量は、セルロースアセテート 1 0 0 質量部に対して、0. 1 5 質量部であった。

# [0175]

# 【化31】

#### レターデーション上昇剤

#### [0176]

得られたドープを、幅 2 mで長さ 6 5 mの長さのバンドを有する流延機を用いて流延した。バンド上での膜面温度が 4 0  $\mathbb{C}$ となってから、1 分乾燥し、剥ぎ取った後、1 4 0  $\mathbb{C}$  の乾燥風で、テンターを用いて幅方向に 2 8 %延伸した。この後、1 3 5  $\mathbb{C}$  の乾燥風で 2 0 分間乾燥し、残留溶剤量が 0 . 3 質量%の支持体(P K - 1 )を製造した。

得られた支持体(PK-1)の幅は1340mmであり、厚さは $92\mu$ mであった。KOBRA 21ADH(王子計測機器(株)製)を用いて、波長590nmにおけるレターデーション値(Re)を測定したところ、38nmであった。また、波長590nmにおけるレターデーション値(Rth)を測定したところ、175nmであった。

作製した支持体(PK-1)のバンド面側に、1.0Nの水酸化カリウム溶液(溶媒:水/イソプロピルアルコール/プロピレングリコール=69.2質量部/15質量部/15.8質量部)を $10cc/m^2$ 塗布し、約40 Cの状態で30 秒間保持した後、アルカリ液を掻き取り、純水で水洗し、エアーナイフで水滴を削除した。その後、100 Cで15 秒間乾燥した。このPK-1 の純水に対する接触角を求めたところ、42 であった。

### [0177]

### (配向膜の作製)

このPK-1上(アルカリ処理面)に、下記の組成の配向膜塗布液を#16のワイヤーバーコーターで $28m1/m^2$ 塗布した。60  $\mathbb C$ の温風で60  $\mathbb W$ 、さらに90  $\mathbb C$ の温風で150 秒乾燥し、配向膜を作製した。

#### [0178]

# (配向膜塗布液組成)

下記の変性ポリビニルアルコール10質量部水371質量部メタノール119質量部グルタルアルデヒド(架橋剤)0.5質量部クエン酸エステル(三協化学製 AS3)0.35質量部

【0179】 【化32】



### [0180]

#### (ラビング処理)

PK-1を速度 20m 分で搬送し、長手方向に対して 45 。 にラビング処理されるようにラビングロール(300m m直径)を設定し、650r pmで回転させて、PK-1 の配向膜設置表面にラビング処理を施した。ラビングロールと PK-1 の接触長さは、18m となるように設定した。

#### [0181]

#### (光学異方性層の形成)

配向膜上に、例示化合物(4)を41.01 Kg、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06 Kg、セルロースアセテートブチレート(CAB531-1、イーストマンケミカル社製)0.35 Kg、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35 Kg、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45 Kgを102 Kgのメチルエチルケトンに溶解した塗布液に、フルオロ脂肪族基含有共重合体(メガファックF780大日本インキ(株)製)を0.1 Kg加え、#3.0のワイヤーバーを470回転でフイルムの搬送方向と同じ方向に回転させて、20m/分で搬送されているPK-1の配向膜面に連続的に塗布した。

#### [0182]

室温から100 Cに連続的に加温する工程で溶媒を乾燥させ、その後130 Cの乾燥ゾーンで、約90 秒間加熱し、ディスコティック液晶化合物を配向させた。次に、80 Cの乾燥ゾーンに搬送させて、フイルムの表面温度が90 Cの状態で、紫外線照射装置(紫外線ランプ:出力160 W/cm、発光長1.6m)により、照度600 mWの紫外線を4 秒間照射し、架橋反応を進行させて、ディスコティック液晶化合物をその配向に固定した。その後、室温まで放冷し、円筒状に巻き取ってロール状の形態にした。このようにして、ロール状光学補償フイルム(KH-1)を作製した。

#### [0183]

作製したロール状光学補償フイルム(KH-1)の一部を切り取り、サンプルとして用いて、光学特性を測定した。波長546nmで測定した光学異方性層のReレターデーション値は30nmであった。また、光学異方性層中のディスコティック液晶化合物の円盤面と支持体面との角度(傾斜角)は、層の深さ方向で連続的に変化し、平均で29°であった。さらに、サンプルから光学異方性層のみを剥離し、光学異方性層の分子対称軸の平

均方向を測定したところ、光学補償フイルム(KH-1)の長手方向に対して、 $45^\circ$ であった。

更に、偏光板をクロスニコル配置とし、得られた光学補償フイルムのムラを観察したと ころ、正面、及び法線から60°まで傾けた方向から見ても、ムラは検出されなかった。

#### [0184]

### 「比較例5]

PK-1を速度 20m /分で搬送し、長手方向に対して、ラビング方向が 45 ° になるように設定したラビングロール (300m m 直径) を 650r p m で回転させて、 PK-1 の配向膜設置表面にラビング処理を施した。

### [0185]

ディスコティック液晶化合物として比較円盤状液晶性化合物 (Z) を用いたこと以外は 実施例7と同様にし、光学補償フイルム (KH-H1) を作製した。

得られたロール状光学補償フイルムの一部を切り取ってサンプルとして、光学特性を測定した。波長 5 4 6 n mで測定した光学異方性層の R e レターデーション値は 3 1 n mであった。また、光学異方性層中のディスコティック液晶化合物の円盤面と透明支持体面との角度(傾斜角)は平均で 2 9 ° であった。

また、光学異方性層をPK-1から剥離し、光学異方性層の分子対称軸の平均方向を測定したところ、光学補償フイルム(KH-H1)の長手方向に対して、45.2°であった。

# [0186]

# [実施例8]

# (偏光板の作製)

平均重合度 1700、ケン化度 99.5 m o 1%の PVA フイルム(厚み  $80\mu$  m、幅 2500 mm)を 40%の温水中で 8 倍に縦一軸延伸し、そのままヨウ素 0.2 g /1、ヨウ化カリウム 60 g /1 の水溶液中に 30%にて 5 分間浸漬し、次いでホウ酸 100 g /1、ヨウ化カリウム 30 g /1 の水溶液中に浸漬した。このときフイルム幅 1300 m、厚みは  $17\mu$  mであった。

さらにこのフイルムを水洗層にて20  $\mathbb{C}$ 、10 秒間浸漬した後、ヨウ素0.1 g /1、ヨウ化カリウム20 g /1 の水溶液中に30  $\mathbb{C}$  にて15 秒間浸漬し、このフイルムを室温にて24 時間乾燥してヨウ素系偏光子(HF-1)を得た。

# [0187]

ポリビニルアルコール系接着剤を用いて、実施例7で作製した光学補償フイルム(KH-1)を支持体(PK-1)面で偏光子(HF-1)の片側に貼り付けた。また、厚さ80 $\mu$ mのトリアセチルセルロースフイルム(TD-80U:富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光子の反対側に貼り付けた。

偏光子の長手方向と支持体(PK-1)の長手方向、更には、市販のトリアセチルセルロースフイルムの長手方向とが全て平行になるように配置した。このようにして偏光板(HB-1BR)を作製した。

#### [0188]

また、ポリビニルアルコール系接着剤を用いて、実施例 7 で作製した光学補償フイルム (KH-1) を支持体 (PK-1) 面で偏光子 (HF-1) の片側に貼り付けた。また、反射防止機能付きフイルム(富士フイルム CV-UA:富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光子の反対側に貼り付けた。

偏光子の長手方向と支持体 (PK-1) の長手方向、更には、市販のトリアセチルセルロースフイルムの長手方向とが全て平行になるように配置した。このようにして偏光板 (HB-1BF) を作製した。

### [0189]

### [比較例6]

# (偏光板の作製)

比較例5で作製したKH-H1(光学補償フイルム)を用いた以外は、実施例8と同様にして、偏光板(HB-H1R、HB-H1F)を作製した。

#### [0190]

### 「実施例9]

(ベンド配向液晶セルの作製)

ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた二枚のガラス基板をラビング方向が平行となる配置で向かい合わせ、セルギャップを  $4.5\mu$  mに設定した。セルギャップに  $\Delta$  n が 0.1396 の液晶化合物(Z L I 1 1 3 2、メルク社製)を注入し、ベンド配向液晶セルを作製した。液晶セルの大きさは 2 0 インチであった。

作製したベンド配向セルを挟むように、実施例 8 で作製した偏光板(HB-1BF)を 視認側に、偏光板(HB-1BR)をバックライト側に各々貼り付けた。楕円偏光板の光 学異方性層がセル基板に対面し、液晶セルのラビング方向とそれに対面する光学異方性層 のラビング方向とが反平行となるように配置した。

#### [0191]

液晶セルに55Hzの矩形波電圧を印加した。白表示2V、黒表示5Vのノーマリーホワイトモードとした。透過率の比(白表示/黒表示)をコントラスト比として、測定機(EZ-Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角を測定し、さらに色味の角度依存性を目視にて行った。また、正面コントラスト(CR:白表示の輝度/黒表示の輝度)を求めた。結果を表3に示す。

# [0192]

### 「比較例7]

視認側の偏光板としてHB-H1Fを、バックライト側の偏光板としてHB-H1Rを 用いること以外は実施例9と同様にしてパネルを作製し、評価を行った結果を表3に示す

# [0193]

#### 【表3】

| 視野角※ |    |              | 正面CD                                  | 色味変化                                                           |
|------|----|--------------|---------------------------------------|----------------------------------------------------------------|
| 上    | 下  | 左右           | шиот.                                 |                                                                |
| 80   | 80 | 80           | 500                                   | 確認できず                                                          |
| 80   | 78 | 80           | 495                                   | 明らかに確認できる                                                      |
|      |    | 上 下<br>80 80 | 上     下     左右       80     80     80 | 上     下     左右       80     80     500       40     80     500 |

※コントラスト比が10以上で黒側の階調反転(L1とL2との間の反転)のない範囲



【要約】

【課題】 波長分散特性及び屈折率異方性の双方に優れた光学異方性材料、かかる光学異方性層等の作製に有用である新規なトリフェニレン化合物を提供する。

【解決手段】 シクロプロピルカルボニル基を有する円盤状化合物を含有する光学異方性 材料である。また、下記一般式(IV)で表されるトリフェニレン化合物である。式中、D はトリフェニレン基を表し、n1 は 3  $\sim$  6 の整数を表し、 $R^1$   $\sim$   $R^5$  はそれぞれ、水素原子、炭素原子数が 1  $\sim$  2 0 の置換もしくは無置換のアルキル基、炭素原子数が 3  $\sim$  2 0 の置換もしくは無置換のアルケニル基、炭素原子数が 1  $\sim$  1 0 の置換もしくは無置換のアルケニルオキシ基、炭素原子数が 1  $\sim$  1 0 の置換もしくは無置換のアリールオキシ基、炭素原子数が 1  $\sim$  1 0 の置換もしくは無置換のアリールオキシュルボニル基を表す。

#### 【化1】

一般式 (IV)

$$D = \left( O \xrightarrow{\begin{array}{c} Q \\ \end{array}} \begin{array}{c} R^5 \\ R^1 \\ R^2 \end{array} \right) n1$$

【選択図】 なし

# 認定・付加情報

特許出願の番号

特願2004-274718

受付番号

5 0 4 0 1 6 0 6 2 0 6

書類名

特許願

担当官

第二担当上席

0 0 9 1

作成日

平成16年 9月28日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000005201

【住所又は居所】

神奈川県南足柄市中沼210番地

【氏名又は名称】

富士写真フイルム株式会社

【代理人】

申請人

【識別番号】

110000109

【住所又は居所】

東京都中央区京橋一丁目8番7号 京橋日殖ビル

8階

【氏名又は名称】

特許業務法人特許事務所サイクス

特願2004-274718

出願人履歴情報

識別番号

[000005201]

変更年月日
 変更理由]

更理由]住 所氏 名

1990年 8月14日 新規登録 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社