${\tt C:/Users/torsten/GitHub/colore/ontologies/multidim_space_codi/codi.clif}$

1.
$$\forall x \left[\left[\operatorname{Max}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\neg \left(\operatorname{PP}(x, y) \right) \right] \right) \right] \right]$$

2.
$$\forall x \left[\left[\text{Min}(x) \leftrightarrow \left(\text{S}(x) \land \neg \left(\text{ZEX}(x) \right) \land \forall y \left[\neg \left(\text{PP}(y, x) \right) \right] \right) \right] \right]$$

3.
$$\forall x \ \forall y \ \left[\left[\operatorname{PP}(x,y) \leftrightarrow \left(\operatorname{P}(x,y) \land \neg \left(=(x,y) \right) \right) \right] \right]$$

4.
$$\forall x \ \forall y \ \left[\left[P(x,y) \leftrightarrow \left(Cont(x,y) \land EqDim(x,y) \right) \right] \right]$$

5.
$$\forall x \ \forall y \ \left[\left[\operatorname{EqDim}(x, y) \leftrightarrow \left(\operatorname{leq}(x, y) \land \operatorname{leq}(y, x) \right) \right] \right]$$

6.
$$\forall x \ \forall y \ \left[\left[\operatorname{leq}(x, y) \to S(x) \right] \right]$$

7.
$$\forall x \ \forall y \ \left[\left[\operatorname{leq}(x, y) \to S(y) \right] \right]$$

8.
$$\forall x \left[\left[ZEX(x) \to S(x) \right] \right]$$

9.
$$\forall x \left[\left[S(x) \to leq(x, x) \right] \right]$$

10.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{leq}(x,y) \wedge \operatorname{leq}(y,z) \right) \to \operatorname{leq}(x,z) \right] \right]$$

11.
$$\forall x \, \forall y \, \left[\left[\left(\operatorname{ZEX}(x) \wedge \operatorname{ZEX}(y) \right) \to =(x,y) \right] \right]$$

12.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{ZEX}(x) \land \operatorname{S}(y) \right) \to \operatorname{leq}(x, y) \right] \right]$$

13.
$$\forall x \ \forall y \ \left[\left[\text{Cont}(x,y) \to \text{leq}(x,y) \right] \right]$$

14.
$$\exists x \ [MinDim(x)]$$

15.
$$\forall x \left[\left[\operatorname{MaxDim}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\left[\left[\operatorname{S}(y) \rightarrow \operatorname{leq}(y, x) \right] \right] \right) \right] \right]$$

16.
$$\forall x \left[\left[\operatorname{MinDim}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\left[\left(\operatorname{S}(y) \land \neg \left(\operatorname{ZEX}(y) \right) \right) \rightarrow \operatorname{leq}(x, y) \right] \right] \right) \right] \right]$$

17.
$$\forall x \left[\left[\left(S(x) \land \neg \left(ZEX(x) \right) \right) \leftrightarrow Cont(x, x) \right] \right]$$

18.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{Cont}(x, y) \wedge \operatorname{Cont}(y, x) \right) \to = (x, y) \right] \right]$$

19.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{Cont}(x,y) \wedge \operatorname{Cont}(y,z) \right) \to \operatorname{Cont}(x,z) \right] \right]$$

20.
$$\forall x \ \forall y \ \left[\left[\operatorname{ZEX}(x) \to \left(\operatorname{S}(x) \land \neg \left(\operatorname{Cont}(y, x) \right) \land \neg \left(\operatorname{Cont}(x, y) \right) \right) \right] \right]$$

21.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{ZEX}(x) \land \operatorname{ZEX}(y) \right) \to = (x, y) \right] \right]$$

22.
$$\forall x \ \forall y \ \left[\operatorname{SC}(x,y) \leftrightarrow \left(\exists z \ \left[\left(\operatorname{Cont}(z,x) \wedge \operatorname{Cont}(z,y) \right) \right] \wedge \forall z \ \left[\left[\left(\operatorname{Cont}(z,x) \wedge \operatorname{Cont}(z,y) \right) \rightarrow \left(\operatorname{leq}(z,x) \wedge \operatorname{Cont}(z,y) \right) \right] \right] \right]$$

23.
$$\forall x \ \forall y \ \left[\operatorname{Inc}(x,y) \leftrightarrow \left(\exists z \ \left[\left(\operatorname{leq}(z,x) \land \neg \left(\operatorname{EqDim}(z,x) \right) \land \operatorname{Cont}(z,x) \land \operatorname{P}(z,y) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,y) \land \neg \left(\operatorname{EqDim}(z,y) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,y) \land$$

24.
$$\forall x \ \forall y \ \left[\left[\operatorname{PO}(x,y) \leftrightarrow \exists z \ \left[\left(\operatorname{P}(z,x) \wedge \operatorname{P}(z,y) \right) \right] \right] \right]$$

25.
$$\forall x \ \forall y \ \left[\left[\mathrm{C}(x,y) \leftrightarrow \exists z \ \left[\left(\mathrm{Cont}(z,x) \land \mathrm{Cont}(z,y) \right) \right] \right] \right]$$