

Lecture 12: Op-Amps – Part II

ELEC1111 Electrical and Telecommunications Engineering

Never Stand Still

Faculty of Engineering

School of Electrical Engineering and Telecommunications

Op-Amp Differentiator

Operational amplifiers can be combined with reactive elements in such a manner that the output voltage is the time derivative of the input voltage.

Since V₋ is grounded, the node has a potential of zero volts.

From the first ideal op-amp relation, $V_{-} = V_{+}$.

Now write KCL at node V_{-} . The current across C_1 will be denoted as $i_1(t)$.

The other two currents will be labeled as $i_2(t)$ and i_- , which is denoted as leaving the node V_- . The KCL equation is

The second ideal op-amp equation requires that the $i_- = 0$. No current enters this terminal.

The KCL equation can be simplified to $i_1(t) = i_2(t)$.

To solve for $i_1(t)$, recall that the current through a capacitor is proportional to the time derivative of the capacitor voltage.

The current $i_1(t)$ through C_1 is the capacitance times the time derivative of the potential difference.

The current through $i_2(t)$ is found using Ohm's law.

By writing KCL at node V₋ we then have

Rearranging the equation yields the solution

The graphs below show the differentiation performed by the op-amp circuit for an arbitrary input voltage signal.

Op-Amp Integrator

Operational Amplifiers can be combined with reactive elements in such a manner that the output voltage is the time integral of the input voltage.

Notice that V₊ is connected to ground, and has a potential of zero volts.

From the first ideal op-amp equation, $V_- = V_+$.

Now write KCL at node V_{-} . For convenience, the current across R_1 will be labeled as $i_1(t)$ and indicated as entering the node.

The other two currents are labeled as $i_2(t)$ and i_- , which is denoted as leaving the node V_- . The KCL equation can be written as $i_1(t) = i_2(t) + i$

The second ideal op-amp equation requires that the $i_- = 0$. No current enters this terminal.

The KCL equation can be simplified to $i_1(t) = i_2(t)$.

The current $i_1(t)$ across element R_1 is the difference in potential $V_S(t)$ - $V_- = V_S(t)$, divided by the resistance, R_1 .

Recall that the current through a capacitor is proportional to the time derivative of the voltage across the capacitor.

The current $i_2(t)$ through C_2 is the capacitance times the time derivative of the potential difference.

Since $V_{-} = 0$, the equation for $i_{2}(t)$ is simply

After substitution, KCL at node V₋ is written as

The equation is rearranged

Integrate both sides of the equation up to the present time

$$V_{out}(t) = \int_{-\infty}^{t} \frac{-V_{s}(t)}{R_{1}C_{2}} dt$$

The graphs below show the integration performed by the op-amp circuit for an arbitrary input voltage signal.

Given $V_i = \sin \omega t$, sketch V_o .

$$\frac{V_o}{V_{in}} = \frac{1+10}{1} = 11$$

Given $V_i = \sin \omega t$, sketch V_o .

$$\frac{v_0}{v_i} = -\frac{R_f}{R_1} = -\frac{10}{1} = -10$$

$$v_0 = -\frac{20}{10}v_1 - \frac{20}{5}v_2 = -2v_1 - 4v_2$$

Find the Transfer Function

$$V_{-} = V_{s}$$
 $V_{+} = V_{-}$
 $I_{+} = 0$
 $V_{R1} = I_{+}R_{1} = 0$
 $V_{1} = V_{+} + V_{R1}$
 $= V_{+}$
 $V_{OUT} = V_{1} = V_{s}$

So, Transfer Function = 1

