Chem 1141 Fall 2012 Exam 3A

Name: KEY
Please write your full name, and which exam version (3A) you have on the scantron sheet.
Multiple Choice. [3 points each.] Record your answers to the multiple choice questions on the scantron sheet.
Q1. Which element exists as a diatomic gas in its most stable form at 1 atm and 25 °C? H ₂ (g) N ₂ (g) O ₂ (g) t ₂ (g) a) helium b) carbon c) sulfur d) nitrogen e) argon
Q2. The pressure of a gas at STP is: (a) 1 atm (b) 1 Pa (c) 1 mmHg (d) 1 torr (e) 1 N Availation V x n
Q3. The law that states that the pressure of a gas is inversely proportional to volume is: a) Avogadro's b) Boyle's c) Charles' d) Gay Lussac's e) Newton's Charles: V & T
Q4. In the van der Waals equation for a gas, what does the constant b account for? a) The tendency of the molecules to stick together b) The molecules can be cooled down to form a liquid c) The temperature conversion from degrees celcius to Kelvin d) The molecules are not all diatomic e) The molecules have size
Q5. Given the following thermochemical equation: $H_2O(s) \rightarrow H_2O(l) \qquad \Delta H^o = +6.01 \text{ kJ/mol}$ calculate the value of ΔH^o for the following reaction: $2H_2O(l) \rightarrow 2H_2O(s) \qquad \Delta H^o = ???$
a) -6.01 kJ/mol b) -12.02 kJ/mol c) +6.01 kJ/mol d) +12.02 kJ/mol e) 36.1 kJ/mol
Q6. A reaction with a negative value of ΔH is said to be: a) Exogonic b) Endergonic c) Exothermic d) Endothermic
Q7. Given the thermochemical equation:
a) 2598.8 kJ b) 866 kJ c) 7796.4 kJ d) 1732.5 kJ e) 3898.2 kJ
3 mol C2H2 x -2598.8 kJ = - [3898.2 K]

Q17. [8 pts.] Given the following data:

$\Delta H_{\rm f}^{\rm o}$ / kJ mol ⁻¹	+226.6	0	-393.5	-241.8
Compound	$C_2H_2(g)$	O ₂ (g)	CO ₂ (g)	H ₂ O(g)

(i) Predict ΔH^{o} for the following reaction:

$$\Delta H^{\circ} = \sum_{n=1}^{2C_{2}H_{2}(g)} + 5O_{2}(g) \rightarrow 4CO_{2}(g) + 2H_{2}O(g)$$

$$= \sum_{n=1}^{2C_{2}H_{2}(g)} + 2K\Delta H_{p}^{*}(reactable)$$

(ii) Calculate how much heat is absorbed/released (state which!) if 12.0 g of C₂H₂(g) and 15.0 g of O₂(g) react.

Q18. [8 pts.] Give a detailed explanation of how real gases differ from ideal gases.

The particles in real gases attract one-another + occupy volume!

" — ideal gas particles do not atract/repel one another.

and the particles have no volume of their own!

Q19. [8 pts.] 5.0 g of Ar(g) and 5.0 g of Ne(g) is released into an empty 5.0-L container at a temperature of 17 °C. Calculate the partial pressures of each gas, the mole-fractions of each gas, and the total pressure inside the container.

$$X_{Ar} = \frac{N_{Ar}}{N_{TOT}} = \frac{0.125_{mol}}{0.125_{mol} + 0.248_{mol}} = 0.335$$
, $X_{Ne} = \frac{N_{Ne}}{N_{TOT}} = 0.665$

Q20. [8 pts.] A 4.51 g sample of a metal at 182 °C is dropped into a calorimeter containing 43.2 g of water at 5.1 °C. Given that the water has a specific heat of 4.184 J/g °C, and assuming that the calorimeter forms a perfectly isolated system, calculate the specific heat of the metal if the final temperature of the system is 8.4 °C.

Q21. [5 pts.] Calculate the empirical formula of a substance containing 40.1 percent carbon, 6.6 percent hydrogen, and 53.3 percent oxygen by mass.

Assure 100g sample,

Then

$$40.1gC| 1mol C = 3.34mol C$$
 $53.35mol C = 3.35mol C$
 $6.6gH| 1mol H = 6.5mol H$
 $53.360| 1mol O = 3.33mol O$
 $53.360| 1mol O = 3.33mol O$

Q22. [10 pts.] Write the molecular, full-ionic, and net-ionic equation for the reaction between aqueous sodium carbonate and aqueous magnesium nitrate.

Net-Ionic:

BONUS Question

Sketch and label the five different 3d orbitals.

Quantum Mechanics

Partial List of Solubility Rules

TABLE 4.2 Solubility Rules for Common Ionic Compounds in Water at 25°C

Soluble Compounds	Exceptions							
Halides (Cl , Br , 1)	Halides of Ag ⁺ , Hg ²⁺ , and Pb ²⁺							
Sulfates (SO ₄ ²)	Sulfates of Ag ⁴ , Ca ²⁴ , Sr ²⁴ , Ba ²⁴ , Hg ₂ ²⁴ , and Pb ²⁴							
Insoluble Compounds	Exceptions							
Carbonates (CO_3^2), phosphates (PO_4^3), chromates (CrO_4^2), and sulfides (S^2)	Compounds containing alkali metal ions and the ammonium ion							
Hydroxides (OH ⁺)	Compounds containing alkali metal ions and the Ba ² ion							

Useful Information: $pV = nRT \qquad \left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT \qquad 1 \text{ atm} = 760 \text{ mmHg} = 101325 \text{ Pa} \qquad R = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$ $M_1 V_1 = M_2 V_2 \qquad N_{\Lambda} = 6.022 \times 10^{23} \qquad q = m \cdot s. \Delta t \qquad q = C \cdot \Delta t$ $c = v\lambda \qquad E = hv \qquad c = 3.00 \times 10^8 \text{ m/s} \qquad h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ $E_n = -R_{\text{H}} \left(\frac{1}{n^2}\right) \qquad R_{\text{H}} = 2.18 \times 10^{-18} \text{ J} \qquad \lambda = \frac{h}{mu}$

Periodic Table

1																	18
- IA	10																VIIIA 2
H	2											13	14	15	16	17	He
1.01	DA											IIIA	IVA	VA	VIA	VIIA	4.00
3	4	1										5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.94	9,01											10.81	12.01	14.01	16.00	19.00	20.18
11	12	Ì										13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	CI	Ar
22.99	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB.	IIB	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63,55	65.39	69,72	72.61	74.92	7R.96	79,90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9 85	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82 TD1-	83	Po		
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi 209	(209)	(210)	Rn (222)
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	[222]
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)							
		- 6												-			1
			58	59	- 60	61	62	63	64	- 65	66	67	68	69	- 70	71	1
		*	Ca	Dr.	Nd	Pm	Sm	Ten	Cd	Th	Dν	Ho	Er	Tm	Yb	Lu	1

(145)

Np

U

Th

150.4

Pu

Am

Cm