

Adapting Ratings in Memory-Based
Collaborative Filtering using Linear Regression

DAI-Labor of Technische Universität Berlin

Jérôme Kunegis kunegis@dai-labor.de

Agententechnologien in betrieblichen Anwendungen und der Telekommunikation

Agenda

Collaborative

Baseline

Filtering

Algorithm

Linear

Regression

Evaluation

- **⇔** Collaborative Filtering: Rating Prediction
- **⇒** Baseline Algorithm: Pearson Correlation
- **⇒** Linear Regression: Adapting Ratings
- **⇒** Evaluation

The Bipartite Rating Graph

Collaborative Filtering

Baseline

Algorithm

Linear

Regression

Evaluation

- **⇒** Database of user and items
- **⇒** Users rate items

⇒ Rating database as sparse bipartite graph

Rating values

-----<0

> 0

Collaborative Rating Prediction

Collaborative Filtering

Baseline

Algorithm

Linear

Regression

Evaluation

- **⇒** Predict a missing rating
- Use: Recommend new items (rank unrated items by predicted rating)

Will user *u* like item *i* ?

Weighted Mean of Ratings

Collaborative Filtering

Baseline Algorithm

Linear Regression

Evaluation

- □ Item i has been rated by many users: Take the average of all these ratings
- ⇒ Give high weight to ratings by users similar to *u*
- ⇒ Similarity measure: use the Pearson correlation between two users' ratings (note: can be negative)
- **⇒** Works also as user-based algorithm

User Rating Habits and Taste

Collaborative Filtering

Baseline

Algorithm

Linear

Regression

Evaluation

Users have different rating habits:

- Different mean rating
- **⇒** Different variance

Weighted mean assumes the same rating scale for all users, although the Pearson correlation takes into account different scales

Solution: Weighted means of ratings scaled according to each user's rating mean and variance

Scaling Ratings

Collaborative Filtering

Baseline Algorithm

Linear Regression

Evaluation

Two Users *u* and *v* have common rating vectors *U* and *V* using linear regression

- ⇒ Determine factors a and b minimizing sum of squared errors in $U (V 1) (a b)^T$
- ⇒ When U and V are negatively correlated, *a* is negative
- **⇒** Therefore, use absolute value of correlation for weight
- \Rightarrow Correlation and (a b) can be calculated in one pass

Evaluation

Collaborative Filtering

Baseline

Algorithm

Linear

Regression

Evaluation

Linear Regression adaptation can be used in variants of weighted mean algorithm:

- **⇒** User-based, item-based
- ⇒ With/out normalized ratings
- **⇒** Fill missing ratings with default parameter
- \Rightarrow Weight users by number of common ratings (1, n, n^2)

Evaluation Results

Collaborative Filtering

Baseline

Algorithm

Linear

Regression

Evaluation

Both error measures (mean average error, mean root squared error) reduced by ~0.1 points

The End

Collaborative

Filtering

Baseline

Algorithm

Linear

Regression

Evaluation

Thank you!

Questions?

Comments?

Backup

Collaborative Filtering

Baseline

Algorithm

Linear

Regression

Evaluation

- **⇒** A: Why doesn't normalization make this obsolete?
- ⇒ Q: Normalization corrects differences in rating habits (scales), whereas regression maps different tastes to each other