MA 1101: Mathematics I

Satvik Saha, 19MS154 August 22, 2019

Solution 1.

Let R be a relation on \mathbb{R}^2 such that

$$(x_1, x_2) R(y_1, y_2)$$
 if $x_1 = y_1$.

(i) For an arbitrary $(x,y) \in \mathbb{R}^2$, (x,y) R(x,y), since x=x. Therefore, R is reflexive.

For $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$, we can write $x_1 = y_1 \Rightarrow y_1 = x_1$. Thus, we have $(y_1, y_2) R(x_1, x_2)$. Therefore, R is symmetric.

For $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$ and $(y_1, y_2) R(z_1, z_2)$, we can write $x_1 = y_1$ and $y_1 = z_1$, from which we have $x_1 = z_1 \Rightarrow (x_1, x_2) R(z_1, z_2)$. Therefore, R is transitive.

Hence, R is an equivalence relation.

(ii) For $(x_1, x_2) \in \mathbb{R}^2$, we have

$$[(x_1, x_2)] = \{(y_1, y_2) \in \mathbb{R}^2 : (x_1, x_2) R(y_1, y_2)\}$$
$$= \{(y_1, y_2) \in \mathbb{R}^2 : x_1 = y_1\}$$

$$[(x_1, x_2)] = \{(x_1, y) : y \in \mathbb{R}\}\$$

Therefore, the quotient set of R is given by

$$\mathbb{R}/R = \{L_x : x \in \mathbb{R}\},\$$

where $L_x = \{(x, y) : y \in \mathbb{R}\}$. Clearly, each equivalence class $L_x \in \mathbb{R}/R$ is a vertical line in the Cartesian plane, passing through (x, 0).

Solution 2.

Let R be a relation on \mathbb{R}^2 such that

$$(x_1, x_2) R(y_1, y_2)$$
 if $x_1^2 + x_2^2 = y_1^2 + y_2^2$