ISS - Signály a systémy

LukasN

January 15, 2022

Contents

1	Matematický úvod								
2	Spektrální analýza								
	-		ní pojmy	6					
		2.1.1	Normovaná frekvence	6					
		2.1.2	Korelace	7					
		2.1.3	Konvoluce	8					
		2.1.4	Posuny v čase	8					
		2.1.5	Energie a výkon	9					
			2.1.5.1 Periodické signály	9					
		2.1.6	Kardinální sinus	10					
		2.1.7	Eulerův integrál	11					
		2.1.8	Jednotkový skok	11					
		2.1.9	Diracův impulz	11					
	2.2		ální analýza spojitých signálů	12					
		2.2.1	Fourierova řada (Fourier series)	12					
			2.2.1.1 Reálná Fourierova řada	13					
			2.2.1.2 Komplexní Fourierova řada	13					
		2.2.2	Fourierova transformace	15					
		2.2.3	Laplaceova transformace	16					
			2.2.3.1 Popis systému pomocí Laplaceovy transformace	16					
	2.3	Spektr	ální analýza diskrétních signálů	18					
		2.3.1	Diskrétní Fourieorava řada (DFŘ)	18					
		2.3.2	Discrete Fourier transform (DFT)	18					
			2.3.2.1 Analýza spojitého signálu pomocí DFT	19					
			2.3.2.2 Algoritmická implementace	20					
		2.3.3	Discrete time Fourier transform (DTFT)	20					
	2.4	Souhrn		21					
3	C.v.a.t	á max		23					
3	Syst 3.1	•	stémy (linear and time invariant)	23					
	3.1	3.1.1	Popis systému pomocí diferenciálních rovnic	24					
		3.1.1	Vzorkování	24					
		3.1.2		24 25					
		3.1.3	Rekonstrukce navzorkovaného signálu	25 26					
		3.1.4	Diskrétní signály	20					
4		cové fil	· ·	28					
	4 1	7_trans	sformace	30					

5	Náh	Náhodné signály					
	5.1	Momenty	33				
	5.2	Vlastnosti	34				
	5.3	Střední hustota výkonu (PSD = power spectral density)	34				
	5 4	Kvantování	35				

Chapter 1

Matematický úvod

- Dělení signálů:
 - Spojitý čas funkce
 - Diskrétní čas posloupnosti
- Derivace
 - Analyticky výpočet derivace (případně interpolace)
 - Numericky mezi 2 body (diskrétní hodnoty)

$$\frac{dx(t)}{dt} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

- Integrace
 - Numericky prokládání funkce obdélníky

$$\int_{t_1}^{t_2} f(t)dt = \sum_{n=1}^{N} f(t_1 + n\Delta)\Delta$$
$$\Delta = \frac{t_2 - t_1}{N}$$

- Goniometrické funkce
 - Cosinus

$$f(t) = A\cos(2\pi \frac{1}{T}t + \varphi) = A\cos(2\pi ft + \varphi) = A\cos(\omega t + \varphi)$$

- * A ... amplituda
- * T perioda [s]
- $* \omega \dots$ úhlová / kruhová frekvence / rychlost [rad / s]
- * φ ... fázový posun [rad] (záporné posun cos do +)
- * Numericky

$$f(t) = A\cos(\omega n + \varphi)$$

- \cdot $\frac{1}{N}$... normovaná frekvence
- $\omega = rac{2\pi}{N}$... normovaná úhlová frekvence [rad] (bez /sec)
- * Určení posunu:

$$f(t) = A\cos(2\pi f t + \varphi) = A\cos(2\pi f (t + \frac{\varphi}{2\pi f}))$$

- . Střed bude posunut doleva o: $rac{arphi}{2\pi f}$
- Komplexní čísla
 - -r=|z| ... modul, vzdálenost od středu
 - $\varphi = arctan(\frac{b}{a})$... úhel, argument

$$j = \sqrt{-1}$$

- Složkový tvar: z = a + bj
- Goniometrický tvar: $z = r(cos(\varphi) + jsin(\varphi))$
 - * $r = |z| = \sqrt{a^2 + b^2}$
 - * $\varphi = arctan(\frac{b}{a})$
- Exponenciální tvar: $z=re^{j\varphi}$
 - * Násobení: $z_1 \cdot z_2 = r_1 r_2 e^{j(\varphi_1 + \varphi_2)}$
 - * Dělení: $\frac{r_1}{r_2} = \frac{r_1}{r_2} e^{j(\varphi_1 \varphi_2)}$
 - * Př: $e^{j\frac{\pi}{2}}=j$ rotace o 90 stupňů
- Komplexně sdružená čísla (konjugace):
 - * Komplexně sdružené číslo k $z=re^{j\varphi}$ je $z^*=re^{-j\varphi}$
 - * $z + z^* = 2a = 2r \cdot cos(\varphi)$
 - · 'a' = reálná složka
 - $* \ z \cdot z^* = r^2$
- Jednotková kružnice: |z|=1
 - * $z + z^* = 2cos(\varphi)$
 - Odtud:

$$cos(\varphi) = \frac{z+z^*}{2} = \frac{e^{jx} + e^{-jx}}{2}$$

- Komplexní exponenciála
 - * V komplexní ploše kruh
 - * Reálná složka ku 't' cosinus
 - * Imaginární složka ku 't' sinus
 - * Komplexní složka ku 't' spirála

$$x(t) = Ce^{j(2\pi \frac{t}{T} + \varphi)} = Ce^{j(\omega t + \varphi)} = Ce^{j\omega t}e^{j\varphi}$$

- * C ... poloměr, modul
- * ω ... úhlová frekvence v ose 't'
- * φ ... posun v ose 't' (záporné posun do +)
- * $x(t)=Ce^{-j\omega t}$ spirála se bude točit v opačném směru (pokud φ bude kladné, posune se ve kladném směru opačně než předtím)
- * Komplexní číslo $Ce^{j\varphi}$ udává start (t=0)
- * Cosinus na základě komplexních exponenciál:

$$C\cos(\omega t + \varphi) = \frac{Ce^{j\varphi}e^{j\omega t} + Ce^{-j\varphi}e^{-j\omega t}}{2}$$

- · Představuje sečtení 2 komplexně sdružených exponenciál
- Výsledek bude v reálné rovině

* Suma všech hodnot komplexní exponenciály v 1 periodě je roven 0

$$\int_0^{T_1} C_1 e^{j\varphi} e^{j\omega t} dt = \int_0^{T_1} C_1(\cos(\omega t + \varphi) + j\sin(\omega t + \varphi)) dt = 0$$

* Diskrétní komplexní exponenciála

$$x(n) = Ce^{j(2\pi \frac{n}{N} + \varphi)}$$

Chapter 2

Spektrální analýza

Základní pojmy

Normovaná frekvence

- Je normovaná vzorkovací frekvencí
- Vzorky signálu navzorkují vzorkovací frekvencí
- ullet Naměřená frekvence signálu se označí normovaná frekvence (naměřen signál: $cos(2\pi f_{norm}t)$)
- Pomocí vzorkovací a normované frekvence lze pak zjistit reálná (původního signálu)

$$f_{norm} = \frac{f_{real}}{F_{sample}}[Hz]$$

- Podle normované frekvence lze určit, zda jsou naměřená data validní (čím blíže 0, tím více odpovídají realitě):
 - -=0 ... stejnosměrný/konstantní signál
 - $-\,=rac{1}{2}\,\ldots\,$ nejrychlejší možný cosinus (1 vzorek nahoru, další dolů)
 - $->rac{1}{2}$... nevalidní data
- Normované frekvence 0.1, 0.5, 0.9:

Korelace

• Koeficient korelace (c):

$$c = \sum_{n=0}^{N-1} x[n]a[n]$$

- x ... neznámý signál
- a ... známý / analyzační signál
- Pokud je Koeficient korelace:
 - Velký kladný podobnost = korelace
 - Velký záporný podobnost, ale signály jsou opačně
 - Malý (až nulový) signály nejsou podobné

- DC složka nemá na výsledek vliv
- Ekvivalentní k násobení matic / vektorů
 - Řádková matice známých signálů * sloupcový neznámý signál
- Korelace je základní princip Fourierovy řady a transformace
 - Korelace (násobení) neznámého signálu s polem cosínů a sínů
 - Korelace (násobení) neznámého signálu s polem komplexních exponenciál (komplexní Fourierova řada)

Konvoluce

• Konvoluce / konvoluční suma

$$y[n] = a[n] * b[n] = \sum_{k=-\infty}^{\infty} a[k]b[n-k]$$

- -a[n],b[n] ... vstupní signály (např. neznámý signál a konstanty filtru)
- -y[n] ... výstup
- Je komutativní
- Konvoluce může reprezentovat filtry
 - Konvoluce s jednotkovým impulsem (1, 0, ...) vytvoří následující diferenční rovnici:

$$y[n] = b_n x[0] + \dots + b_1 x[n-1] + b_0 x[n]$$

- => výstup filtru se zjistí vynásobením impulzní odezvy filtru (masky filtru) a vstupního signálu a sečtením výsledků
- Pro každý nový výsledek se maska posouvá, tak aby byla blíž novějším hodnotám => proto n-k
- Pro spojitý čas (konvoluční integrál):

$$y[t] = a[t] * b[t] = \int_{-\infty}^{\infty} a[\tau]b[t - \tau]d\tau$$

• Ruční výpočet

Posuny v čase

- \bullet Posun v čase $y[t] = x[t-\tau]$... nulový bod = τ
 - $-\tau$... posun doprava = zpoždění
- Otočení časové osy y[t] = x[-t] (kladná osa 'x' bude záporná)

- Posun s otočením y[t] = x[-t+1]
 - Určit nulový bod a podle znaménka u 't' otočit časovou osu
- Zrychlení (kontrakce) času y[t] = x[nt] (n > 0) (více period signálu na daném úseku)
- Zpomalení (dilatace) času y[t] = x[nt] (n < 0)

Energie a výkon

- Okamžitý výkon: $p(t) = x^2(t)$
 - Pokud je signál x v komplexních číslech: $p(t) = |x(t)|^2$
 - * Nebo pomocí komplexně sdruženého čísla: $p(t) = x(t)x^*(t) = r^2$
 - Například: $P = I^2R$
 - => I záporná složka přispívá k výkonu
- ullet Energie v určitém čase: $E=\int_{t_1}^{t_2}p(t)dt$
 - Kde signál 'p(t)' je okamžitý výkon
- ullet Střední výkon: $P_{str}=rac{E}{t_2-t_1}$
- ullet Efektivní hodnota: $e_{ef}=\sqrt{P_{str}}$
 - Signál nahradím konstantním, tak aby jeho střední výkon byl roven původnímu střednímu výkonu
 - Pokud signál není nikde záporný, je ekvivalentní s průměrnou hodnotou signálu

Periodické signály

- Základní perioda ... nejkratší perioda, po které se signál opakuje
 - Základní frekvence
- Výkony a energie stačí počítat na 1 periodě (lze vzít jakýkoliv interval o velikosti 1 periody)
- Střední výkon cosinus
 - Počáteční fázi můžeme ignorovat

$$P_{str} = \frac{1}{T} \int_{T} C^2 \cos^2(\omega x) dt$$

Lze použít goniometrický vzorec

$$P_{str} = \frac{C^2}{T} \int_T \frac{1 + \cos(2\omega x)}{2} dt$$

$$P_{str} = \frac{C^2}{2T} \int_T 1 + \cos(2\omega x) dt$$

Určitý integrál

* Z cos na 1 periodě = 0 (záporné a kladné oblasti jsou stejné)

$$P_{str} = \frac{C^2}{2T}(T+0)$$

$$P_{str} = \frac{C^2}{2}$$

- Efektivní výkon cosinus: $P_{ef}=\frac{C}{\sqrt{2}}$
- Střední výkon komplexní exponenciály
 - Absolutní hodnota (vzdálenost od osy x) bude všude 1
 - Energie bude integrál z 1 = T
 - $-P_{str} = \frac{T}{T} = 1$

Kardinální sinus

$$sinc(x) = \frac{\sin x}{x} \wedge sinc(0) = 1$$

- Lze pomocí něj převzorkovat signál
 - Signál potřebuji aproximovat na více vzorků
 - Nahradím každý známý bod kardinálním sinem
 - Všechny kardinální siny sečtu v bodech, které potřebuj zjistit
- ullet v Matlabu a numpy má místo 'x': πx

Eulerův integrál

$$\int_{-b}^{b} e^{jkt} dt = 2bsinc(kb)$$

- Jde použít ke zrychlení výpočtů koeficientů FR
- Odvození
 - Vypočtení určitého integrálu:

$$\int_{-b}^{b} e^{jkt} dt = \frac{e^{jkb}}{jk} - \frac{e^{-jkb}}{jk} = \frac{2}{2} \frac{e^{jkb} - e^{-jkb}}{jk}$$

– Dále se použije vzorec:

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j}$$

- * $\cos x$ lze vyjádřit jako součet 2 komplexně sdružených exponenciál (sečtou se tak, aby daly je reálnou složku)
- * => 2 komplexní exponenciály lze sečíst tak, aby vytvořily $\sin x$ v imaginární složce => musím vydělit 'i', abych přešel do reálné

$$\frac{2}{k} \frac{e^{jkb} - e^{-jkb}}{2j} = \frac{2}{k} \sin kb = \frac{2b}{kb} \sin kb = 2b \cdot sinc(kb)$$

Jednotkový skok

- x > 0 => y = 1
- x < 0 => y = 0
- Jeho derivace je pořád 0, jen v x=0 má je jeho derivace impulz do ∞ s šířkou 0 a obsahem 1 => Diracův impulz $(\delta(t))$

Diracův impulz

- Označení: $\delta(t)$
- \bullet Má vzorkovací schopnost: $\int_{-\infty}^{\infty} x(t) \delta(t) dt = x(0)$
 - Výsledkem je jen 1 vzorek daného signálu v x = 0
 - Diracův impulz lze posouvat: $\int_{-\infty}^{\infty} x(t) \delta(t-\tau) dt = x(\tau)$
- Jeho Fourierova transformace:

- Navzorkuje jednotlivé komplexní exponenciály

$$X(j\omega) = \int_{-\infty}^{\infty} \delta(t - \tau)e^{-j\omega t}dt = e^{-j\omega\tau}$$

- $-|X(j\omega)|=1$
- $arg(X(j\omega)) = -\omega \tau$

Spektrální analýza spojitých signálů

• Záporná část frekvenční domény bude symetrická s kladnou a argument bude převrácený

$$|X(-j\omega)| = |X(j\omega)|$$

$$arg(X(-j\omega)) = -arg(X(j\omega))$$

- Koeficienty budou komplexně sdružené

$$X(-j\omega) = X^*(j\omega)$$

Fourierova řada (Fourier series)

- Nahrazuje **periodický** signál nekonečnou řadou sin a cos, nebo komplexních exponenciál
 - Amplitudy sin a cos, popřípadě komplexních exponenciál v daných frekvencích určují jak moc se dané frekvence vyskytovaly v původním signálu => spektrální analýza (zjištění spektra frekvencí)
 - Lze vybrat jakýkoliv interval zkoumaného signálu o velikosti 1 periody (nemusí být zarovnáno na násobek period)
- Založena na korelaci daného signálu s nekonečnou řadou známých signálů
 - Reálná Fourierova řada nahrazení nekonečnou řadou cosínů a sínů (viz. IMA2)
 - * Místo sínů lze přidat fázi ke cosínům
 - Komplexní Fourierova řada nahrazení nekonečnou řadou komplexních exponenciál

Reálná Fourierova řada

• Pomocí cosínů a fáze

$$x(t) = C_0 + C_1 cos(1 \cdot \omega_1 t + \varphi_1) + C_2 cos(2 \cdot \omega_1 t + \varphi_2) + \dots + C_k cos(k \cdot \omega_1 t + \varphi_k)$$
$$x(t) = c_0 + \sum_{k=1}^{\infty} C_k cos(k \cdot \omega_1 t + \varphi_k)$$

• Pomocí cosínů a sínů

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t))$$

• Harmonický vztažené consinusovky = cosinusovky, které mají násobky frekvence 1. cosinusovky

Komplexní Fourierova řada

• Každý cosinus z reálné FŘ lze zapsat pomocí 2 komplexně sdružených exponenciál

$$x(t) = c_0 + c_1 e^{j\omega_1 t} + c_{-1} e^{-j\omega_1 t} + c_2 e^{j2\omega_1 t} + c_{-2} e^{-j2\omega_1 t} + \dots + c_k e^{jk\omega_1 t} + c_{-k} e^{-jk\omega_1 t}$$

• Syntéza signálu

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_1 t}$$

- Každé c_k je komplexní číslo amplituda + fázový posun
- Výpočet koeficientů (analyzační vzorec)
 - Lze je zjistit pomocí korelace mezi zkoumaným signálem x(t) a komplexními exponenciálami s příslušnými frekvencemi
 - * => jak moc se daná frekvence objevuje v signálu
 - Použít komplexně sdruženou exponenciálu (-j)

$$c_k = \frac{1}{T_1} \int_{T_1} x(t) e^{-jk\omega_1 t} dt$$

- Význam koeficientů
 - $k\omega_1$... frekvence
 - $|c_n| \dots \mathsf{modul}$
 - * Jak moc se dané frekvence vyskytují v původním signálu
 - $* |c_0|$ udává střední hodnotu signálu (DC složka)
 - $-arg(c_n)$... argument (fáze)
 - * Jak moc jsou dané frekvence posunuté
 - $-c_k$ a c_{-k} musí být komplexně sdružené (stejné moduly a opačné argumenty)
 - Koeficienty tvoří 3D graf / dva 2D grafy (pro každou frekvenci udávají modul a argument)
- Syntéza záporného signálu
 - K argumentům všech koeficientů přičtu / odečtu: π

- => znegují se znaménka u koeficientů (jsou to komplexní čísla)
- Pro báze (komplexní exponenciály) platí:
 - Všechny báze jsou ortogonální
 - * Jejich součin musí být roven 0:

$$\int_{T_1} e^{jk\omega_1 t} e^{-jl\omega_1 t} dt = 0$$

* Protože k a l jsou celá čísla, $e^{j(k-l)\omega_1t}$ je komplexní exponenciála na celém násobku 1 periody => její integrace bude 0

$$\int_{T_1} e^{j(k-l)\omega_1 t} = 0$$

– Všechny báze jsou normované (absolutní hodnota = 1)

$$\int_{T_1} |e^{jk\omega_1 t}|^2 dt$$

- * Absolutní hodnota komplexní exponenciály je 1 a po vypočtení integrálu z 1 => $\|b_k\| = T_1$
- st Proto se při výpočtu koeficientů dělí T_1
- Fourierova řada čtvercového periodického signálu
 - Použitím Eulerova integrálu lze určit koeficienty FŘ následovně:

$$\int_{-b}^{b} e^{jkt} dt = 2bsinc(kb)$$
$$c_k = \frac{D\tau}{T} sinc(k\omega \frac{\tau}{2})$$

• Fourierova řada posunutého signálu

– Koeficienty c_k se pouze vynásobí komplexními koeficienty:

$$c_k = \frac{1}{T_1} \int_{T_1} x(t-\tau) e^{-jk\omega_1 t} dt = \frac{1}{T_1} \int_{T_1} x(r) e^{-jk\omega_1(r+\tau)} dr = \frac{e^{-jk\omega\tau}}{T_1} \int_{T_1} x(r) e^{-jk\omega_1 r} dr$$

$$c_{new_k} = e^{-jk\omega\tau} \cdot c_k$$

- Modul (abs) zůstane stejný (modul exponenciály je 1)
- K argumentu (posunu) se přičte: $-k\omega au$
 - * Nové argumenty budou mít lineární závislost s konstantou $-\omega au$
 - * Budou klesat, pokud je signál zpožděný

Fourierova transformace

- Umí analyzovat i neperiodické signály
- Oproti Fourierovy řadě nepoužívá diskrétní kruhové frekvence, ale spojité
 - => místo koeficientů, zde bude spektrální funkce
 - Vstupní signály u FŘ i FT mohou být spojité rozdíl je v koeficientech
- Transformace z časové domény do frekvenční domény (zjištění koeficientů):
 - Koeficienty = komplexní kmitočtová charakteristika

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

• Transformace z frekvenční domény do časové domény (zpětná FT):

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{+j\omega t} d\omega$$

- $X(j\omega)$ 'j' je zde kvůli souvislosti s Laplaceovou transformací (koeficienty budou na imaginární ose)
- Odvození:
 - Nelze použít analýzu pomocí Fourierovy řady
 - * Neperiodický impulz je ekvivalentní periodickému signálu s nekonečnou periodou
 - * Při roztahování periody se zmenšují koeficienty FŘ a smršťují se periody frekvenční domény $(\omega = \frac{2\pi}{T})$
 - * => pro nekonečnou periodu jsou koeficienty a kruhové frekvence rovny 0
 - * => použiji nekonečně malý diferenciál: $d\omega$

$$d\omega = \frac{2\pi}{T}$$

- Integrál nemůže být přes periodu => musí být od $-\infty$ do $+\infty$
- Místo $\frac{1}{T}$ se použije $\frac{d\omega}{2\pi}$

$$dC = \frac{d\omega}{2\pi} \int_{-\infty}^{\infty} x(t)r^{-j\omega t}dt$$

* Kde ω je libovolná kruhová frekvence

$$\frac{2\pi dC}{d\omega} = \int_{-\infty}^{\infty} x(t)r^{-j\omega t}dt$$

 $-rac{2\pi dC}{d\omega}$... spektrální funkce (přírůstek daného koeficientu při přírůstku kruhové frekvence)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)r^{-k\omega t}dt$$

- Převod FŘ do FT
 - Diskrétní koeficienty FŘ nahradím Diracovými impulzy vynásobenými 2π

$$c_k \cdot 2\pi$$

Laplaceova transformace

• Transformace z časové domény do frekvenční domény (zjištění koeficientů):

$$H(s) = \int_{-\infty}^{\infty} x(t)e^{st}dt$$

- Kde $s = a + j\omega$
- Bude tvořit 4D graf / dva 3D grafy pro danou frekvenci a daný čas určí modul a argument
 - * => je možné popsat útlum v čase
 - * Pro daný bod v čase ($s=j\omega$) vytvoří frekvenční charakteristiku Fourierovy transformace (řez imaginární plochou)

Popis systému pomocí Laplaceovy transformace

- Systém je zapsaný pomocí diferenciálních rovnic
- Převodní pravidla
 - 0. derivace signálu:

$$ax(t) = aX(s)$$

- k. derivace signálu:

$$ax^{(k)}(t) = aX(s)s^k$$

• Popis systému

$$\sum_{n=0}^{Q} b_n X(s) s^n = \sum_{n=0}^{P} a_n Y(t) s^n$$

$$X(s)\sum_{n=0}^{Q}b_{n}s^{n} = Y(s)\sum_{n=0}^{P}a_{n}s^{n}$$

• Přenosová funkce (výstup ku vstupu)

$$H(s) = \frac{Y(s)}{X(s)}$$

$$H(s) = \frac{\sum_{n=0}^{Q} b_n s^n}{\sum_{n=0}^{P} a_n s^n}$$

• Faktorizace přenosové funkce

$$H(s) = \frac{K_1 \cdot (s - n_1)(s - n_2)...(s - n_Q)}{K_2 \cdot (s - p_1)(s - p_2)...(s - n_P)}$$

- Kořeny čitatele = nulové body (jdou do nuly)
- Kořeny jmenovatele = poly (jdou do nekonečna)
- Zjištění frekvenční charakteristiky z nulových bodů a pólů
 - Vektory od nulových bodů po bod 's' označím $ec{n_i} = (s-n_i)$
 - Vektory od pólů po bod 's' označím $ec{p_i} = (s-p_i)$
 - Pak pro spektrální funkce v daném bodě 's' platí:
 - * Kde $|\vec{n_i}|$ je délka vektoru
 - * Kde $\lessdot \vec{n_i}$ je úhel vektoru

$$|H(j\omega)| = K \cdot \frac{|\vec{n_1}| \cdot |\vec{n_2}| \cdot \dots}{|\vec{p_1}| \cdot |\vec{p_2}| \cdot \dots}$$

$$arg(H(j\omega)) = K(\langle \vec{n_1} + \langle \vec{n_2} + \dots - \langle \vec{p_1} - \langle \vec{p_2} - \dots \rangle)$$

- st Body $j\omega$ jsou na imaginární ose
- Systém bude stabilní, pokud všechny poly budou na levé straně (reálná složka bude záporná)
 - Jen pro systémy se spojitým časem
- Příklad pro RC filtr
 - X ... vstupní napětí
 - Y ... výstupní napětí
 - In = out + R * current

$$X(s) = Y(s) + RCY(s)s$$
$$H(s) = \frac{1}{1 + RCs}$$

- Získání kořenů

$$H(s) = \frac{1}{RC(\frac{1}{RC} + s)}$$

$$H(s) = \frac{1}{RC(s - (-\frac{1}{RC}))}$$

- Určení frekvenční charakteristiky ručně pro 3 body na imaginární ose (pomocí délky a úhlu vektorů)
 - * Pro bod v $\omega = 0$:

$$|H(s)| = \frac{1}{RC} \frac{1}{\frac{1}{RC}} = 1$$

$$arg(H(s)) = 0$$

* Pro bod v $\omega = \frac{1}{RC}$:

$$|H(s)| = \frac{1}{RC} \frac{1}{\sqrt{2} \frac{1}{RC}} = \frac{1}{\sqrt{2}} = 0.7$$

 $arg(H(s)) = \frac{\pi}{4}$

 ω bude na imaginární ose $(s=a+j\omega)$

* Pro bod v $\omega = \infty$:

$$|H(s)| = \frac{1}{RC} \frac{1}{\infty} = 0$$
$$arg(H(s)) = \frac{\pi}{2}$$

- => Doplní propust

Spektrální analýza diskrétních signálů

- Vzorkování <=> periodizace
 - Vzorkovaný signál => periodické spektrum (s periodou vzorkovací frekvence)
 - Periodický signál => navzorkované spektrum (diskrétní koeficienty na násobcích základní frekvence
 FŘ)
- Pokud má vstupní signál N vzorků, výstupní spektrum bude mít opět N vzorků (+ periodicita symetrie)
- Střed spektra (N/2) musí být komplexně sdružený sám se sebou => nemá imaginární složku

Diskrétní Fourieorava řada (DFŘ)

- Spektrum bude tvořeno diskrétními koeficienty (N vzorky), které se budou opakovat po 2π
 - Normované frekvence $\in \langle 0, 1 \rangle$ []
 - Normované kruhové frekvence $\in (0, 2\pi)$ [rad]
 - Reálné frekvence $\in \langle 0, F_S \rangle$ [Hz]
 - Reálné krhové frekvence $\in \langle 0, 2\pi F_S \rangle$ [rad/s]
- Vzorkuje DTFT na násobcích základní kruhové frekvence $(\frac{2\pi}{N})$

$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]e^{-j\frac{2\pi}{N}kn}$$

• Inverzní DFŘ

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{+j\frac{2\pi}{N}kn}$$

Discrete Fourier transform (DFT)

- Výpočet stejný jak DFŘ
 - Vstupní signál nemusí být periodický
- Spektrum od N/2 je komplexně sdružené
 - Signál s 1 harmonickou frekvencí (např. sin), bude mít 2 koeficienty $X[k] = \frac{A}{2}; X[n-k] = \frac{A}{2}$
- Určení spektra

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

- Maticově
 - * Řádkově komplexní exponenciály * sloupcově zkoumaný signál
- Inverzní DFT

$$x[k] = \frac{1}{N} \sum_{k=0}^{N-1} X[n] e^{+j\frac{2\pi}{N}kn}$$

- -x[n] ... vstupní signál
- -X[k] ... výstupní spektrum
- $-\ k\ ...\ indexy\ frekvencí\ (0\ ...\ N\ /\ 2\)$
 - * Přepočet na reálnou frekvenci: $f_{real} = rac{k}{N} f_{sample}$
- $-\frac{k}{N}$... normovaná frekvence
- Vztah konvoluce signálu a násobení spektra
 - Potřeba použít kruhovou konvoluci (DFT omezeno na (0, N-1))

$$X_1[k] \cdot X_2[k] \Leftrightarrow x[k] = x_1[k] \circledast x_2[k]$$

- Posunutý signál o au, bude mít koeficienty spektra vynásobené: $e^{-j\omega au}$

Analýza spojitého signálu pomocí DFT

- Pro analýzu spojitého periodického signálu:
 - Navzorkuji vstupní signál
 - Podle FŘ (T = perioda 1 vzorku):

$$c_k = \frac{1}{T_1} \int_{T_1} x(t) e^{-jk\omega_1 t} dt$$

* Odstranění integrálu (potřeba násobit šířkou vzorku)

$$c_k = \frac{1}{NT} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{NT}knT} T$$

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

* Koeficienty FŘ pomocí DFT

$$c_k = \frac{1}{N}X[k]$$

- Problémy:
 - * Určí jen koeficienty: $0 o \frac{N}{2}$
 - * Musí být splněný vzorkovací teorém
 - * Neznáme periodu! v praxi se odhadne => nepřesnost koeficientů
- Pro analýzu spojitého neperiodického signálu:
 - FT:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

- Diskretizace:

$$X(jk\frac{2\pi}{NT}) = T\sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}n}$$

- Problémy:
 - * Určí jen koeficienty: $0 o rac{F_S}{2}$
 - * Musí být splněný vzorkovací teorém
 - * Jen N vzorků spektra

Algoritmická implementace

- Paměťová složitost:
 - První koeficient je reálný
 - Prostřední je reálný
 - 2. půlka je komplexně sdružená
 - 1. půlka jsou komplexní koeficienty (2)
 - $-1 + 1 + 2(\frac{N}{2} 1) = N$
- Akcelerováno pomocí FFT
 - Počty vzorků mohou být pouze mocniny 2
 - DFT $O(N^2)$
 - FFT $O(N \log_2 N)$
- V praxi se signál dělí ná rámce
 - Rámce se překrývají
 - Pro každý se vypočítá FFT (pouze moduly pro koeficienty $0 o rac{N}{2}$)
 - Transformace pro lepší vizualizaci (např. log)
 - Spektrogram
 - * x ... čas (jednotlivé rámce)
 - * y ... frekvence (do $\frac{F_s}{2}$)
 - * Stupně šedí ... velikost modulu v daném rámci

Discrete time Fourier transform (DTFT)

- FT s diskrétním časem
- Nelze počítat algoritmem
 - Musela by se vypočítat jen pro diskrétní hodnoty => DTF
- Vlastnosti
 - Diskrétní vstup, spojitý výstup
 - Je periodická po 2π

$$\tilde{X}(e^{j\omega+k2\pi}) = \tilde{X}(e^{j\omega})$$

- Spektrum je od N/2 komplexně sdružené

- * Kvůli tomu, že je periodická a symetrická
- DTFT vs DFT
 - DTFT není limitována na N vzorků (je od $-\infty \to \infty$)
 - DTFT zjistí argumenty a moduly pro libovolné normované kruhové frekvence (DFT jen pro diskrétní hodnoty)
 - DFT je navzorkovaná verze DTFT (hodnoty budou stejné)
 - Výpočty jsou podobné, jen u DFT se rovnou dosadí za příslušné kruhové frekvence
- Z komplexních exponenciál se stanou jen Diracovy impulzy s mocností původního signálu v daných bodech (násobí se Diracovými impulzy)
 - => integral z diskrétních hodnot lze nahradit sumou

$$\tilde{X}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\frac{\omega}{F_s}n}$$

- Vlnovka spektrální funkce bude periodická
- Lze psát: $\frac{\omega}{F_c}=\omega=$ normovaná kruhová frekvence

$$\tilde{X}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

- Stačí jen dosadit vzorky vstupního signálu a příslušný index vzorku ('n')
- Vyjde pak funkce v závislosti na ω
- Oproti DFT není potřeba počítat sumy pro každý koeficient
- ullet $ilde{X}(e^{j\omega})$ protože koeficienty budou na jednotkové kružnici v komplexní ploše
- Inverzní DTFT

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{X}(e^{j\omega}) e^{+j\omega n} d\omega$$

Souhrn

	Spojité signály	Diskrétní signály
Periodické signály	FŘ	DFŘ = DFT
- koeficienty	$c_k = \frac{1}{T_1} \int_0^{T_1} x(t) e^{-jk\omega_1 t} dt$	$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]e^{-j\frac{2\pi}{N}kn}$
- syntéza	$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_1 t}$	$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{+j\frac{2\pi}{N}kn}$
Neperiodické signály	FT	DTFT
- koeficienty	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$	$\tilde{X}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
- syntéza	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{+j\omega t} d\omega$	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{X}(e^{j\omega}) e^{+j\omega n} d\omega$

TODO - konec poslední přednášky - souhrn filtrů - vypadl steam

Chapter 3

Systémy

• Časová invariance (neměnnost) - systém reaguje stejně, i když je vstup časově posunutý

$$x(t) => y(t)$$

$$x(t-\tau) => y(t-\tau)$$

• Linearita

$$x_1(t) => y_1(t)$$

$$x_2(t) => y_2(t)$$

$$ax_1(t) + bx_2(t) => ay_1(t) + by_2(t)$$

- Kauzalita budoucnost neovlivní minulost
 - Aktuální výstupy mohou být ovlivněné jen minulými vstupy a výstupy a aktuálním vstupem
- Stabilita bounded input => bounded output

LTI systémy (linear and time invariant)

- Systémy s časovou invariancí a linearitou
- Daný systém lze dekomponovat na elementární funkce, upravit jednotlivé funkce a pak je sečíst
- Lineární systém nemůže měnit frekvence (jen amplitudu a fázi)
- Impulzní odezva
 - Pokud znám impulzní odezvu můžu podle ní určit reakci na jakýkoliv signál
 - * Kvůli linearitě
 - * Každý bod vstupního signálu vynásobím s celou impulzní odezvou a výsledky v jednotlivých časech sečtu
 - * => konvoluce
 - * Pro spojité signály spojitou konvoluci s impulzní odezvou na Diracův impulz
- Frekvenční charakteristika
 - Fourieorava transformace impulzní charakteristiky

Popis systému pomocí diferenciálních rovnic

• Popis systému

$$b_0x(t) + b_1x'(t) + \dots + b_nx^{(n)}(t) = a_0y(t) + a_1y' + \dots + a_nx^{(n)}(t)$$
$$\sum_{n=0}^{Q} b_nx^{(n)}(t) = \sum_{n=0}^{P} a_ny^{(n)}(t)$$

• RC obvod

$$i(t) = \frac{x(t) - y(t)}{R}$$
$$i(t) = Cy'(t)$$
$$x(t) = y(t) + RCy'(t)$$

Vzorkování

- Vzorkování = vynásobení původního signálu se sekvencí Diracových impulzů
 - Výsledkem je opět sekvence Diracových impulzů se vzorkovací frekvencí a mocností (plochou) odpovídající velikostem původní funkce v jednotlivých bodech
- Spektrum sekvence Diracových impulzů
 - Spektrum sekvence obdélníkových signálů pomocí FŘ

$$c_k = \frac{D\tau}{T} sinc(k\omega \frac{\tau}{2})$$

- Pro Diracův impulz je τ (šířka) nekonečná malé a D (velikost) nekonečně velká a sinc = 1, proto:

$$c_k = \frac{1}{T}$$

- st Spektrum Diracovýh impulzů bude nekonečná řada diskrétních bodů s velikostí $rac{1}{T}$
- Převedení do spojitého spektra (FŘ => FT ... nahrazení koeficientů Dirácovými impulzy a vynásobení 2π)
 - * Spektrum Dirácových impulzů bude nekonečná sekvence Dirácových impulzů s mocností (plochou):

$$c_k = \frac{2\pi}{T}$$

- Navzorkovaný signál $x_s(t)$ získám **vynásobením** se vzorkovacím signálem
- Navzorkovné spektrum $X_s(j\omega)$ získám **konvolucí** spektra původního signálu a spektra vzorkovacího signálu
 - Spektrum sekvence Diracových impulzů je opět sekvence Diracových impulzů
 - Konvoluce spektra signálu s 1 Diracovým impulzem = původní spektrum
 - * Pokud bude posunutý, původní spektrum se také posune
 - Konvoluce spektra signálu se sekvencí Diracových impulzů
 - * Pokud jsou Dirac impulzy dostatečně daleko od sebe, bude spektrum několikrát rozkopírováno
 - * Pokud jsou moc blízko (= vzorkovací frekvence je moc malá), vznikne aliasing

- * => vzorkovací teorém
- Výsledné spektrum navzorkovaného signálu (X = spektrum původního)

$$X_s(\omega) = \frac{1}{T} \sum_{-\infty}^{\infty} X(\omega - k\omega_s)$$

- Nyquist-Shannonův vzorkovací teorém
 - ω_{max} ... maximální kruhová frekvence původního spektra
 - $-\omega_s$... vzorkovací kruhová frekvence
 - Aby byl signál korektně navzorkovaný, vzorkovací frekvence musí být dostatečně vysoká:

$$2\omega_{max} < \omega_s$$

- * Vysoká vzorkovací frekvence => vzorkovací impulzy jsou blízko sebe v časové doméně, daleko ve frekvenční doméně (=> nebudou se protínat)
- Aliasing:

Rekonstrukce navzorkovaného signálu

- Z navzorkovaného spektra (sekvence původních spekter) potřebuji získat jen jedno původní spektro
 - -=> Dolní propust od $-\frac{\omega}{2}$ do $+\frac{\omega}{2}$ s přenosem T (aby se vykrátila konstanta $\frac{1}{T}$)
 - Filtrace s dolní propustí = vynásobení 1 obdélníkem ve frekvenční doméně
- Získání rekonstrovaného signálu v časové doméně
 - Konvoluce navzorkovaného signálu (Diracovy impulzy) s impulzní odezvou rekonstrukčního filtru
 - Impulzní odezva rekonstrukčního filtru = kardinální sinus (inverzní FT z obdélníku)
 - => konvolucí s navzorkovaným signálem vznikne sekvence posunutých kardinálních sinů vynásobených příslušným vzorkem

- * Po sečtení vyjde rekonstruovaný signál
- * Kardinální sinus je vždy 0 na násobcích vzorkovací periody, jen v 0 jedna => hodnota rekonstruovaného signálu v místě vzorku je přesně hodnota vzorku (neovlivněná jinými kardinálními siny)
- V praxi se kardinální sinus zařízne
- Vstupní navzorkovaný signál:

$$x(t) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT)$$

* Diskrétně (normovaný / vydělený časem)

$$x(t) = \sum_{n = -\infty}^{\infty} x[n]\delta(t - nT)$$

- Úprava signálu před vzorkováním pro lepší rekonstrukci
 - Zvýšit vzorkovací frekvenci
 - Odfiltrovat vysoké frekvence v původním signálu
 - Anti-aliasingový filtr

Diskrétní signály

• Normovaná (kruhová) frekvence:

$$f' = \frac{f}{F_s}$$
$$\omega' = \frac{\omega}{F_s}$$

- $\omega = \frac{2\pi}{N}$
 - Ale nelze naopak (N perioda) musí být celé číslo
- Oříznutí signálu
 - V časové doméně násobení obdélníkem (okénková funkce $R_N[n]$)

*
$$y = x[n]R_N[n]$$

- Ve frekvenční doméně konvoluce se spektrem obdélníku
- Periodizace
 - $-y = x[n \mod N]$
- Kruhové posunutí (podobně jak bitová rotace)
 - Modulo s posunutím + oříznutí okénkovou funkcí
 - $y = R_N[n]x[(n-k) \bmod N]$
- Lineární konvoluce
 - Výsledek konvoluce signálů o délce N bude mít délku 2N 1

Lze použít pro násobení polynomů (koeficienty odpovídají hodnotám signálů, mocniny = indexy signálů)

$$y[n] = x_1[n] * x_2[n] = \sum_{k=0}^{n} x_1[k]x_2[n-k]$$

- Cyklická (periodická) konvoluce
 - Výsledný signál bude nekonečný a bude se periodicky opakovat po N krocích

$$y[n] = x_1[n] \tilde{*} x_2[n] = \sum_{k=0}^n x_1[k] x_2[(n-k) \text{ mod } N]$$

- Kruhová konvoluce
 - Stejné jak cyklická, jen 1 perioda
 - Souvisí s násobení spekter diskrétních signálů

$$y[n] = x_1[n] \circledast x_2[n] = R_N[n] \sum_{k=0}^n x_1[k] x_2[(n-k) \bmod N]$$

Chapter 4

Číslicové filtry

- Impulsní odezva
 - Reakce filtru na jednotkový impulz (f[n] = (1, 0, 0, 0, ...))
 - Konečná (FIR = finite impulse response)
 - Nekonečná (IIR = infinite impulse response)
 - * Na 1 pulz bude reagovat do nekonečna
- Dělení
 - FIR filtry (Finite impulse response)
 - * Koeficienty FIR filtru budou rovny impulzní odezvě
 - IIR filtry (rekurzivní)
 - * Zpětná vazba
- Obecný filtr (IIR):
 - Diferenční rovnice
 - * 2. suma začíná od 1!
 - * Zpětnovazební koeficienty jsou záporné (stabilita)

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots - a_1 y[n-1] - a_2 y[n-2] - \dots$$
$$y[n] = \sum_{k=0}^{Q} b_k x[n-k] - \sum_{k=1}^{P} a_k y[n-k]$$

- Grafická reprezentace

- Stabilita (bounded input => bounded output)
 - FIR filtr bude vždy stabilní
 - U IIR filtru 1. řádu musí být zpětnovazebné koeficienty v rozsahu: $\langle -1, 1 \rangle$
- Frekvenční charakteristika
 - Udělám DFT nad impulsní odezvou
 - Potřeba oříznout na vhodný počet vzorků
 - * FIR filtr doplnit 0 (zero padding)
 - * IIR filtr oříznout nepřesnost
- Ideální zesilovač
 - Propouští jen dané frekvence
 - Argumenty ve frekvenční charakteristice budou lineárně klesat
 - * => pro větší frekvence musí být větší fázový posun, aby byl ekvivalentní pro posun s nižšími frekvencemi
 - * Posun bude konstantní a bude roven směrnici argumentů (argumenty klesají => zpoždění => signál se posune vlevo)
- Zjištění reakce na filtr (známe frekvenční charakteristiku filtru)
 - Převést frekvenční charakteristiku filtru do časové domény (IFT) a pak udělat konvoluci složité
 - Převést signál do frekvenční domény (FT) a pak signály vynásobit = vynásobit moduly a sečíst argumenty (poté převést zpět do časové domény (IFT))
 - Př:
 - * Obdélníkový impulz => spektrum je kardinální sinus
 - * Zaříznutí filtrem ve spektru => +- obdélníkový pulz ve spektru
 - * => kardinální sinus, v časovém spektru, jen posunutý o směrnici argumentu (zjemní se hrany a sníží amplituda) + signál bude nekauzální (kardinální sinus začíná před impulzem <= kvůli ideálnímu zesilovači zařízl spektrum přesně v určité hranici reálný by měl jemnější průběh a byl by kauzální)</p>
- Jednoduchý filtr (diferenční rovnice)

$$y[n] = b_0x[n] + b_1x[n-1] + \dots$$

- Grafická reprezentace (pozor, zpožďovací elementy mají 1 vstup a 1 výstup):

- Koeficienty (k = počet zpožďovacích stupňů)
 - * Průměrovací (low-pass): $b_i = \frac{1}{k}$

- Odfiltruje rychlé změny
- * Horní propust (high-pass): $b_i = (-1)^i rac{1}{k}$
 - · Pomalé změny (průměrné) se vyruší a rychlé zesílí
- Originální signál (modrý) vyfiltrovaný low pass (červený) a high pass (zelený) při:
 - * Stupeň filtru 2

* Stupeň filtru 12

– Impulzní odezva IIR filtru: y[n] = x[n] + 0.5y[n-1]

n	0	1	2	3
x[n] 1	0	0	0
y[n] 1	1/2	1/4	1/8

Z-transformace

- Diskrétní verze Laplaceovy transformace
- Definice

$$X(z) = \sum x[n]z^{-n}$$

• Platí:

$$\begin{array}{l} - \ kx[n] \rightarrow kX(z) \\ - \ kx[n-k] \rightarrow kX(z)z^{-k} \end{array}$$

• Zápis obecného IIR filtru:

$$Y(z) = \sum_{k=0}^{Q} b_k X(z) z^{-k} - \sum_{k=1}^{P} a_k Y(z) z^{-k}$$

30

- Jeho přenosová funkce

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{Q} b_k z^{-k}}{1 + \sum_{k=1}^{P} a_k z^{-k}}$$

– Jeho frekvenční charakteristika $(z=e^{j\omega})$

* Ekvivalentní k dělení DTFT z výstupu ku DTFT ze vstupu

$$H(e^{j\omega}) = \frac{\sum_{k=0}^{Q} b_k e^{-j\omega k}}{1 + \sum_{k=1}^{P} a_k e^{-j\omega k}}$$

- * Stačí počítat po π (poté bude symetrická)
- Úprava na polynomy (kladné mocniny):

$$H(z) = \frac{z^{-Q}(b_0 z^Q + b_1 z^{Q-1} + \dots + b_Q)}{z^{-P}(z^P + a_1 z^{P-1} + \dots + a_P)}$$

Nalezení kořenů:

$$H(z) = z^{P-Q} \frac{(z - n_1)(z - n_2)...(z - n_Q)}{(z - p_1)(z - p_2)...(z - p_P)}$$

$$H(z) = \frac{(z^{P-Q} - 0)(z - n_1)(z - n_2)...(z - n_Q)}{(z - p_1)(z - p_2)...(z - p_P)}$$

- Kořeny budou reprezentovat speciální body v komplexní rovině:
 - * n_i ... nulové body (funkce = 0, značení o)
 - * p_i ... poly (funkce = ∞ , značení x)
 - * Filtr bude stabilní, pokud všechny poly jsou uvnitř jednotkové kružnice

$$|p_k| < 1$$

- · Pokud chci ostřejší a přesnější filtr, musím jeho poly umístit blíže jednotkové kružnice (jmenovatel bude velmi malý) => hrozí nestabilita
- Určení frekvenční charakteristiky ($z=e^{j\omega}$)
 - * Závorky v čitateli a jmenovateli si představím jako vektory od nulových bodů a pólů po bod na jednotkové kružnici (pro hledanou frekvenci: $z=e^{j\omega}$)
 - * Modul bude roven součinu délek vektorů

$$|H(e^{j\omega})|=rac{ ext{součin délek od nulových bodů}}{ ext{součin délek od pólů}}$$

* Argument bude součet úhlů vektorů

$$arg(H(e^{j\omega})) = {
m součet}$$
 úhlů od nulových bodů $-{
m součet}$ úhlů od pólů

Chapter 5

Náhodné signály

- Každý diskrétní bod je náhodná veličina
- Množina realisací
 - $-\ n$... vzorky v čase
 - $-\omega$... index realizace
 - st Například stejný jen měřený ve více dnech => n = čas v daném dni, $\omega=$ den
 - * Nebo rozsekání dlouhého signálu na kratší

- Diskrétní x spojité
 - Podle možných hodnot
 - Hod kostkou x zvuk
- Histogram počet výskytů dané veličiny v jednotlivých intervalech
- Diskrétní signály
 - Pravděpodobnostní funkce $P(X_i, n)$

$$P(x,n) = \frac{count(X_I, n)}{total(n)}$$

- Distribuční funkce F(x,n)

$$F(x,n) = \frac{count(\xi_{\omega[n]} < x)}{\Omega}$$

- Spojité signály
 - Funkci rozdělení hustoty pravděpodobnosti p(x,n) (probability density function)
 - * Určení z diskrétních hodnot
 - Histogram
 - · Jednotlivé počty výskytů v histogramu vydělím celkovým počtem (pravděpodobnost výskytu v daném intervalu)
 - · Vydělím šířkou intervalu
 - * Záleží, po jak velkých intervalech sestrojuji histogram
 - Sdružená funkce rozdělení pravděpodobnosti $p(x_1, x_2, n_1, n_2)$
 - * Dělení plochou intervalu

Momenty

- Jedno-číselné hodnoty charakterizující daný signál (odhady / očekávání)
- Střední hodnota

$$a[n] = \sum X_i P(X_i, n)$$

- Odhad z dat

$$\hat{a}[n] = \frac{1}{\Omega} \sum \xi_i[n]$$

• Rozptyl

$$D[n] = \sum (X_i - a[n])^2 P(X_i, n)$$

- Odhad z dat

$$\hat{D}[n] = \frac{1}{\Omega} \sum (\xi_i[n] - \hat{a}[n])^2$$

- Pokud je signál ustředněný (střední hodnota = 0), je ekvivalentní k výpočtu výkonu
 - * $(\xi_i[n] \hat{a}[n])^2 = \xi_i^2[n]$
- Pokud není, je výkon roven: $D + a^2$
- Korelační koeficient 2 signálů

$$R(n_1, n_2) = \sum_{X_1} X_1 X_2 P(X_1, X_2, n_1, n_2)$$

$$R(n_1, n_2) = \frac{1}{\Omega} \sum_{X_1} \xi_1[n_1] \xi_2[n_2]$$

- Různé možnosti hlavních výskytů pravděpodobností sdružené funkce rozdělení pravděpodobnosti:

- Sekvence korelačních koeficientů
 - * Zvolím 1 realizaci a počítám korelace s ostatními
 - * => závislost mezi realizacemi

Vlastnosti

- Stacionarita
 - Signál se chová stejné pro všechna 'n'
 - Ve sdružených funkcích a korelačním koeficientu bude místo $R(n_1, n_2) => R(k)$, kde $k=n_2-n_1$
- Ergodicita
 - Pouze 1 realizace
 - Výpočet korelačního koeficientu
 - * Určím si 'k' (rozestup realizací) a beru vzorky [n] a [n+k]

$$R(k) = \frac{1}{N} \sum_{N} \xi[n] \xi[n+k]$$

- * Ekvivalentní ke konvoluci se stejným, jen posunutým signálem
- * Korelační koeficient by měl být největší pro k=0 a poté pro k = perioda => lze určovat periodu
- * Auto-korelace na 1 stejném signálu
 - Pro 'k' = 0 je ekvivalentní k výpočtu výkonu (signál na 2)
- * Cross-korelace na 2 signálech (xcorr funkce)
- * Vychýlená korelace (biased)
 - · Pro všechny 'k' dělím početEM vzorků (N)
 - · Pro větší 'k' se bude blížit 0
- * Nevychýlená korelace (unbiased)
 - · Dělím $N-k = \mathsf{počet}\ \mathsf{překrytých}\ \mathsf{vzorků}$
 - · Na krajích mohou být divoké hodnoty (dělení menším číslem) => omezení intervalu 'k'

Střední hustota výkonu (PSD = power spectral density)

- U náhodných signálech nelze použít FFT, ... (neznáme základní frekvence)
- DFT ze sekvence auto-korelačních koeficientů

- Pro normované frekvence:

$$G(\frac{k}{N}) = DFT(R[n])$$

- Pro reálné frekvence

$$G(\frac{kF_s}{N}) = DFT(R[n])$$

- Přímo ze signálu

$$G(\frac{kF_s}{N}) = \frac{|DFT(\xi[n])|^2}{N}$$

- Odvození
 - Korelační koeficient bude největší, pokud jsou signály nejvíce podobné => nalezení period
 - Pokud toto převedu do spektra, zjistím jaké frekvence se v náhodném signálu vyskytly
- Welchova metoda pro zlepšení odhadu (při určování PSD přímo ze signálu)
 - Rozsekám signál na několik rámců a v každém udělám PSD
 - Výsledky poté zprůměruji
 - Přesnější, než dělat jedno velké PSD
- Bílý šum
 - PSD je plochá (konstantní) (stejně jako spektrum bílého světla)
 - Spektrum bude ploché, jen pro jednotkový impulz (diracův)
 - * => korelační koeficienty musí být 1 pro k=0 (autokorelace s totožným signálem)
 - * => korelační koeficienty musí být 0 pro ostatní 'k' (žádná korelace mezi ostatními vzorky)
 - V realitě neexistuje, kvůli setrvačnosti
 - Filtrací se "obarví"

Kvantování

- Kvantizér vstupní signál zaokrouhlí na dané hladiny
- Uniformní hladiny stejný rozestup hladin
 - Kvantovací krok
 - * L = počet hladin

$$\Delta = \frac{y_{max} - y_{min}}{L}$$

- Pravděpodobnost rozdělení chyby
 - Pro zaokrouhlovaní:
 - * Konstantní rozdělení s velikostí $\frac{1}{\Delta}$ na intervalu:

$$-\frac{\Delta}{2} \to \frac{\Delta}{2}$$

• Střední výkon chyby (pokud je střední hodnot rovna 0)

- Bude roven rozptylu

$$P_e = D = \int p(x)(x-a)^2 dx = \int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} \frac{x^2}{\Delta} dx = \dots = \frac{\Delta^3}{12}$$

- \bullet SNR = Signal to nise ration
 - Poměr výkonu signálu k výkonu šumu (výkonu chyby)

$$SNR = 10 \log_{10} \frac{P_S}{P_e} [dB]$$

- Pro cos
 - * 2 * Amplituda = počet hladin * krok hladin

$$2A = L\Delta$$

$$SNR = 10\log_{10}\frac{\frac{A^2}{2}}{\frac{\Delta}{12}} = 10\log_{10}\frac{\frac{L^2\Delta^2}{8}}{\frac{\Delta}{12}} = 10\log_{10}\frac{3}{2}L^2$$

– Pokud b = počet bitů:

$$SNR = 10\log_{10}\frac{3}{2}2^{2b} = 10\log_{10}\frac{3}{2} + 10\log_{10}2^{2b} = 1,76 + 20b\log_{10}2 = 1,76 + 6b$$

- Logaritmický výkonový spektrogram
 - Graf, kde na x je čas a na y frekvence
 - Stupně šedi udávají výkon pro daný čas a frekvenci

$$P[k] = 10\log_{10}|X[k]|^2$$