Homework 11

Math 416, Abstract linear algebra, Fall 2019 Instructor: Daesung Kim

This will not be corrected.

Textbooks: In the assignment, the two texts are abbreviated as follows:

- [FIS]: Freidberg, Insel, and Spence, Linear Algebra, 4th edition, 2002.
- [Bee]: Beezer, A First Course in Linear Algebra, Version 3.5, 2015.
- 1. Let $V = \mathbb{C}^3$ be equipped with the standard inner product and $\varphi : V \to \mathbb{C}$ be a linear transformation defined by $\varphi(x_1, x_2, x_3) = x_1 (2+i)x_2 + 4ix_3$. Find $y \in V$ such that $\varphi(x) = \langle x, y \rangle$ for all $x \in V$.
- 2. Let $V = \mathbb{R}^3$, $W = \text{Span}(\{(1, -2, 0), (1, 0, 1)\})$, and β be the standard basis for V. Compute $[T]_{\beta}$ where $T = \text{proj}_W$ is the orthogonal projection onto W. (Hint: Let

$$A = \begin{pmatrix} 1 & 1 \\ -2 & 0 \\ 0 & 1 \end{pmatrix},$$

then $W = \mathcal{R}(A)$.)

- 3. Let V be a finite dimensional inner product space over F and $T:V\to V$ normal. Prove that $\mathcal{N}(T)=\mathcal{N}(T^*)$ and $\mathcal{R}(T)=\mathcal{R}(T^*)$. (Hint: show $\mathcal{R}(T^*)=\mathcal{N}(T)^{\perp}$ and use it.)
- 4. Let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ and $f(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0$ be the characteristic polynomial of A over \mathbb{C} (that is, $a_0, a_1, \dots, a_n \in \mathbb{C}$). Use Schur's theorem to show that

$$tr(A) = (-1)^{n-1} a_{n-1}.$$

- 5. Let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ and $V = \mathbb{C}^n$.
 - (a) Show that AA^* is positive semidefinite.
 - (b) Suppose A is self-adjoint. Show that A^2 is positive semidefinite.