# CS109/Stat121/AC209/E-109 Data Science Bias and Regression

Hanspeter Pfister, Joe Blitzstein, and Verena Kaynig



# This Week

- HWI due tonight at I 1:59 pm (Eastern Time)
- HW2 posted soon

# Census: Everybody's moving into their parents' basements

A 😝 🗪 0

By Brad Plumer June 20, 2012 Follow @bradplumer

Ever since the financial crisis hit,

Americans have found it harder and
harder to live on their own. According
to a <u>new report</u> (pdf) from the Census
Bureau, the number of "shared
households" increased by a whopping
2.25 million between 2007 and 2010:

In spring 2007, there were 19.7 million shared households. By spring 2010, the number of



Daniel Sherrett, 28, prepares dinner with his mother as part of his deal to live at home. Parents and children are sharing homes for longer than expected. (Michael Temchine/The Washington Post)

shared households had increased by 11.4 percent, while all households increased by only 1.3 percent.

This number does not include co-habitating or married couples. Rather, it's specifically a measure of the growing fraction of Americans who are either living with roommates or shacking up with relatives. And the bulk of the increase came from kids who are living at home with their parents: "Between 2007 and 2010, the number of adult children who resided in their parents'

#### **Most Read Business**

Here is everything we know about whether gentrification pushes poor people out



2 Honey isn't as healthy as we think



3 These are the hardest places for minimum wage workers to live



4 Why Americans dress so casually



5 Is your adviser truly protecting your retirement?



#### The Most Popular All Over

The Atlantic
The Rise of Victimhood Culture



# It's Official: The Boomerang Kids Won't Leave

By ADAM DAVIDSON JUNE 20, 2014



Census Data from the Current Population Survey (CPS)

"It is important to note that the CPS counts students living in dormitories as living in their parents' home."

Census Bureau, <a href="http://www.census.gov/prod/2013pubs/p20-570.pdf">http://www.census.gov/prod/2013pubs/p20-570.pdf</a>

publication bias: replication issues p-values: need p< 0.05 to publish

# Some Forms of Bias

- selection bias
- publication bias (file drawer problem)
- non-response bias
- length bias

systemic differences between those who respond and don't respond to a survey.

#### 1936 Presidential Election, Landon vs. FDR



#### 531 electoral votes of the Electoral College

266 electoral votes needed to win





**Nominee** 

Franklin D. Roosevelt

Alf Landon

**Party** 

1932 ←

**Democratic** 

Republican

Home state

**New York** 

Kansas

**Running mate** 

John N. Garner

Frank Knox

#### 1936 Presidential Election, Landon vs. FDR

Literary Digest predicted Landon would win with 370 electoral votes, based on sample size of 2.4 million.



source: <a href="https://en.wikipedia.org/wiki/United\_States\_presidential\_election">https://en.wikipedia.org/wiki/United\_States\_presidential\_election</a>, 1936

#### 1936 Presidential Election, Landon vs. FDR

Literary Digest got responses from 2.3 million out of 10 million people surveyed.

To collect their sample, they used 3 readily available lists:

readers of their magazine

car registration list

phone directory

1936, most people don't own cars, mostly rich ppl.

huge non-response bias selection bias: literary digest readers are disproportionally conservative.



#### Wald and the Bullet Holes

On airplanes, where to put on armor?



#### What about the unobserved planes? Missing data!

Planes survived with this damage!

Reinforce areas not hit - they didn't survive hits to those areas

- this is unobserved data.



## What about the unobserved planes? Missing data!



## Longevity Study from Lombard (1835)

| Profession      | Average Longevity |
|-----------------|-------------------|
| chocolate maker | 73.6              |
| professors      | 66.6              |
| clocksmiths     | 55.3              |
| locksmiths      | 47.2              |
| students        | 20.2              |

Student is a transient profession: ends when you're young (but you don't die) but this applies to other jobs: retirement differentials? turnover?
Sources: Lombard (1835), Wainer (1999), Stigler (2002)

#### Class Size Paradox

Why do so many schools boast small average class size but then so many students end up in huge classes?

Simple example: each student takes one course; suppose there is one course with 100 students, fifty courses with 2 students.

Dean calculates: (100+50\*2)/51 = 3.92

Students calculate: (100\*100+100\*2)/200 = 51 much higher

"About 10 percent of the 1.6 million inmates in America's prisons are serving life sentences; another 11 percent are serving over 20 years."

source: <a href="http://www.nytimes.com/2012/02/26/health/dealing-with-dementia-among-aging-criminals.html?">http://www.nytimes.com/2012/02/26/health/dealing-with-dementia-among-aging-criminals.html?</a>
<a href="mailto:pagewanted=all">pagewanted=all</a>

# Length-Biasing Paradox

How would you measure the average prison sentence?



# Bias of an Estimator

The bias of an estimator is how far off it is on average:

$$\begin{aligned} & \text{true value} \\ & \text{bias}(\hat{\theta}) = E(\hat{\theta}) - \theta \\ & \text{avg estimator} \end{aligned}$$

So why not just subtract off the bias? You don't know the true value ...

# Bias-Variance Tradeoff

one form:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + bias^2(\hat{\theta})$$

often a little bit of bias can make it possible to have much lower MSE

more bias, more precession

**Text** 



http://scott.fortmann-roe.com/docs/BiasVariance.html

# Unbiased Estimation: Poisson Example

 $X \sim \operatorname{Pois}(\lambda)$  counting

Goal: estimate  $e^{-2\lambda}$ 

 $(-1)^X$  is the best (and only) unbiased estimator of  $e^{-2\lambda}$ 

#### sensible?

ridiculous: Pois is restricted to (+) value, but (-1)^x can achieve negative values

# Fisher Weighting

How should we combine independent, unbiased estimators for a parameter into one estimator?

$$\hat{\theta} = \sum_{i=1}^{k} w_i \hat{\theta}_i$$

The weights should sum to one, but how should they be chosen?

more weight on estimators that are reliable: measure by variance

more reliable: less variance

$$w_i \propto \frac{1}{\operatorname{Var}(\hat{\theta}_i)}$$

(Inversely proportional to variance; why not SD?)

# Nate Silver Weighting Method

- Exponential decay based on recency of poll
- Sample size of poll
- Pollster rating

http://fivethirtyeight.com/features/how-the-fivethirtyeight-senate-forecast-model-works/

Nate Silver good at thinking of where data come from, how reliable are polls, and how to combine the data.

—> combine by weighting: ie weigh recent polls more heavily: uses an exp decay bigger sample: weigh that poll more weigh by bias of polls: pollster rating

ie, how do they find ppl (selection bias - phone, online, etc.) do they lean in a political direction? used previous election cycles data where available.

# Multiple Testing, Bonferroni Just by chance: many variables -> significant correlations among at least some of them

(ie at p< 0.05, you get significance randomly for 5% of coefficients, more coefficients, more significant ones.

How should we handle p-values

Issue with larger datasets

when testing multiple hypotheses?

For example, what if we are looking at diet (with 10 kinds of food) and disease (with 10 diseases)?

significance level: alpha = 0.05 divide by # of hypotheses

A simple, conservative approach is Bonferroni: divide significance level by number of hypotheses being tested.

$$FWER = Pr\left\{\bigcup_{I_o} \left(p_i \leq \frac{\alpha}{m}\right)\right\} \leq \sum_{I_o} \left\{Pr\left(p_i \leq \frac{\alpha}{m}\right)\right\} \leq m_0 \frac{\alpha}{m} \leq m \frac{\alpha}{m} = \alpha$$
 family-wise

error rate: multiple hypotheses form a family

https://en.wikipedia.org/wiki/Bonferroni\_correction



plot from Freedman, data from Pearson-Lee

# Regression Toward the Mean (RTTM)

Examples are everywhere...

Test scores

Sports
Inherited characteristics, e.g., heights
Traffic accidents at various sites

ie, child of tall father more likely to be taller than average, but is also likely to be closer to average -> regression towards mean

intuition: everything combination of luck and skill: luck fluctuates and averages out (assuming luck is mean 0)-> regress towards mean (skill advantage determines deviation from mean).

### Daniel Kahneman Quote on RTTM

regression towards mean is where word regression came into statistics

I had the most satisfying Eureka experience of my career while attempting to teach flight instructors that praise is more effective than punishment for promoting skill-learning....

[A flight instructor objected:] "On many occasions I have praised flight cadets for clean execution of some aerobatic maneuver, and in general when they try it again, they do worse. On the other hand, I have often screamed at cadets for bad execution, and in general they do better the next time. So please don't tell us that reinforcement works and punishment does not..."

This was a joyous moment, in which I understood an important truth about the world: because we tend to reward others when they do well and punish them when they do badly, and because there is regression to the mean, it is part of the human condition that we are statistically punished for rewarding others and rewarded for punishing them.

# Regression Paradox

y: child's height (standardized) x: parent's height (standardized)

Regression line: predict y = rx; think of this as a weighted average of the parent's height and the mean

Now, what about predicting the parent's height from the child's height? Use x = y/r?

Regression line is x = ry, the r stays the same!

r is correlation: same regardless of direction

## Linear Model

often called "OLS" (ordinary least squares), but that puts the focus on the procedure rather than the model.



# What's linear about it?

$$\underbrace{y}_{n \times 1} = \underbrace{X}_{n \times k} \underbrace{\beta}_{k \times 1} + \underbrace{\epsilon}_{n \times 1}$$

Linear refers to the fact that we're taking linear combinations of the predictors.

Still linear if, e.g., use both x and its square and its cube as predictors.

x^2 or x^3 data would still go in as a column -> apply \*\*linear\*\* algebra still get linear combinations and a linear regression.

want more predictors than you have data?

# Sample Quantities vs. Population Quantities

sample version (think of x and y as data vectors)

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

population version (think of x and y as r.v.s)

$$y = \beta_0 + \beta_1 x + \epsilon$$
$$E(y) = \beta_0 + \beta_1 E(x)$$
$$cov(y, x) = \beta_1 cov(x, x)$$

## visualize regression as a projection



X is data matrix column space is all vectors resulting of linear combos of columns of X (oh, duh) what combination of X gets you closest to y (minimizes size of residuals)

## or as a conditional expectation



Normal distributions (error terms i.i.d. Normal) -> E[YIXI is linear (minimizes MSE)

# Gauss-Markov Theorem

Consider a linear model

$$y = X\beta + \epsilon$$

where y is n by 1, **X** is an n by k matrix of covariates,  $\beta$  is a k by 1 vector of parameters, and the errors  $\epsilon_j$  are uncorrelated with equal variance,  $\epsilon_j \sim [0, \sigma^2]$ . The errors do not need to be assumed to be Normally distributed.

#### Then it follows that...

$$\hat{\beta} \equiv (X'X)^{-1}X'y$$

is **BLUE** (the **B**est **L**inear **U**nbiased **E**stimator).

For Normal errors, this is also the MLE.

# Residuals

$$y = X\hat{\beta} + e$$

mirrors

$$y = X\beta + \epsilon$$

#### The residual vector e is orthogonal to all the columns of X.

Never going to know the true epsilon - unobservable We know X and y, but only have B-hat estimate for coefficient (by OLS) and then solve for epsilon -> estimate of residuals

# Residual Plots

Always plot the residuals! (Plot residuals vs. fitted values, and residuals vs. each predictor variable)



Faraway, <a href="http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf">http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf</a>

# "Explained" Variance

R<sup>2</sup> = how much of variance captured by model vs total amount of variation

$$var(y) = var(X\hat{\beta}) + var(e)$$

$$R^{2} = \frac{\operatorname{var}(X\hat{\beta})}{\operatorname{var}(y)} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

R<sup>2</sup> measures goodness of fit, but it does *not* validate the model.

Adding more predictors can only increase R<sup>2</sup>.

but, there is an adjusted R squared that removes the benefit due to adding more regressors

considered a crude fix: prefer cross validation