Modulo 2

Límites y continuidad

En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos de continuidad, derivabilidad e integración que se verán más adelante. Comenzaremos con una idea intuitiva del estudio del comportamiento de una función alrededor de un punto o cuando los valores de *x* crecen indefinidamente.

Comportamiento de una función alrededor de un punto:

Si la función f está definida para valores de la variable x cercanos a x_0 , queremos estudiar el comportamiento de los valores de f(x) cuando x se aproxima a x_0 .

Definición

Si f está definida en un intervalo abierto alrededor del punto x_0 , aunque no lo esté en x_0 , diremos que f(x) tiene límite L, cuando x tiende a x_0 , si el valor de f(x) se hace arbitrariamente próximo al valor de L cuando x se aproxima a x_0 , y lo escribiremos así:

$$\lim_{x \to x_0} f(x) = L$$

Ejemplos:

1) Dada $f(x) = \frac{x^2 - 1}{x - 1}$ queremos saber cómo se comporta f(x) alrededor del punto x = 1:

La función se define en todos los números reales excepto en x=1. Podemos simplificar la fórmula, factorizando el numerador, para valores distintos de 1.

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1$$
, para $x \ne 1$

La gráfica de f(x) es la recta y=x+1 menos un punto, el (1,2)

En la gráfica aparece un "agujero" en este punto. Podemos de todos modos hacer el valor de f(x) tan cercano a 2 como queramos, eligiendo x suficientemente cercano a 1.

Decimos que f(x) está arbitrariamente cercano a 2 cuando x se aproxima a 1, o simplemente f(x) se aproxima a 2 cuando x se acerca a 1, y escribimos:

$$\lim_{x\to 1} f(x) = 2$$

Notar que para el valor $x = x_0$ la función puede no estar definida o puede no tomar el valor L. En este caso f no está definida en x = 1, sin embargo el límite cuando x se acerca a 1 es 2, ya que el valor del límite es el valor de la función para valores próximos a 1 y no necesariamente en 1.

2) Sea
$$f(x) = \begin{cases} x & x < x \\ 1 & x \ge 1 \end{cases}$$

Esta es una función definida a trozos.

Acá notamos que tenemos que analizar separadamente el valor de la función cuando x se aproxima a 1 por valores mayores a él, y cuando x se aproxima a 1 por valores menores a él.

Sin embargo vemos que en ambos casos el valor de la función se acerca a 1 , por lo tanto decimos que :

$$\lim_{x\to 1} f(x) = 1$$

$$f(x) = \begin{cases} x & x < 1 \\ x - 1 & x \ge 1 \end{cases}$$

Esta es una función definida a trozos, su gráfica presenta un "salto" en x=1.

Vemos que f(x) puede aproximarse tanto como queramos al valor 0 cuando x se aproxima a 1 por valores mayores a 1, pero cuando x se aproxima a 1 por valores menores que 1 la función se acerca a 1, luego no es cierto que cuando x se acerca a 1, los valores de f(x) se acercan a **un número L** y por lo tanto, este es un ejemplo donde diremos que **no existe** $\lim_{x \to \infty} f(x)$.

Sin embargo, como dijimos, f(x) puede aproximarse tanto como queramos al valor 0 cuando x se aproxima a 1 por valores mayores a 1, de modo que diremos que "el límite de f(x), *cuando x tiende a 1 por la derecha* es 0", lo que escribiremos $\lim_{x\to 1^+} f(x) = 0$ y análogamente, "el límite de f(x), *cuando x tiende a 1 por la izquierda es 1*", lo que escribiremos $\lim_{x\to 1^-} f(x) = 1$. A estos límites los llamaremos l**ímites laterales.**

Definición

1. Si f está definida a la izquierda de x_0 , aunque no lo esté en x_0 , diremos que el límite de f(x), cuando x tiende a x_0 por la izquierda es L, si f(x) se hace arbitrariamente próximo al valor de L cuando x se aproxima a x_0 por la izquierda, y lo escribiremos así:

$$\lim_{x \to x_0^-} f(x) = L$$

2. Si f está definida a la derecha de x_0 , aunque no lo esté en x_0 , diremos que el límite de f(x), cuando x tiende a x_0 por la derecha es L, si f(x) se hace arbitrariamente próximo al valor de L cuando x se aproxima a x_0 por la izquierda, y lo escribiremos así:

$$\lim_{x \to x_0^+} f(x) = L$$

Observaciones importantes:

La expresión $\lim_{x \to x_0} f(x) = L$ es equivalente a decir $\lim_{x \to x_0^+} f(x) = L$ y $\lim_{x \to x_0^-} f(x) = L$

Es decir que el límite existe siempre que los límites laterales existan y coincidan

Otras formas de observar la misma situación son las siguientes:

- si $\lim_{x \to x_0^+} f(x) = L_1$ y $\lim_{x \to x_0^-} f(x) = L_2$ $con L_1 \neq L_2$ $\Rightarrow \lim_{x \to x_0} f(x)$ no existe si no existe $\lim_{x \to x_0^+} f(x)$ o no existe $\lim_{x \to x_0^-} f(x)$ $\Rightarrow \lim_{x \to x_0} f(x)$ no existe

Es decir que si los límites laterales existen pero no coinciden o alguno de los límites laterales no existe entonces el límite no existe.

Las siguientes propiedades nos permiten calcular límites muy fácilmente:

1) • Si
$$f(x)=k$$
 k, constante, $\Rightarrow \lim_{x \to x_0} f(x) = k$

2) • Si
$$f(x)=x$$
 $\Rightarrow \lim_{x \to x_0} f(x) = x_0$

3) • Si
$$\lim_{x \to x_0} f(x) = L$$
 , $\lim_{x \to x_0} g(x) = M$ (Ly M son números reales), entonces:

a)
$$\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = L + M$$

b)
$$\lim_{x \to x_0} [f(x).g(x)] = \lim_{x \to x_0} f(x).\lim_{x \to x_0} g(x) = L.M$$

c)
$$\lim_{x \to x_0} kf(x) = k \lim_{x \to x_0} f(x) = kL$$

d) Si
$$\lim_{x \to x_0} g(x) \neq 0$$
 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{L}{M}$

4) • Si
$$\lim_{x \to x_0} f(x) = L$$
 , $\lim_{x \to L} g(x) = M$ \Rightarrow $\lim_{x \to x_0} g(f(x)) = M$

5) • Si m y n son números enteros
$$\Rightarrow \lim_{x \to x_0} [f(x)]^{\frac{m}{n}} = L^{\frac{m}{n}}$$
 cuando $L^{\frac{m}{n}}$ es un número real

Ejemplo:

Queremos calcular el
$$\lim_{x\to 1} \frac{x^3 + 4x^2 - 3}{x^2 + 4}$$

Usaremos las propiedades anteriores para analizar los límites del numerador y denominador. Notemos que:

$$\lim_{x \to 1} x^3 = \lim_{x \to 1} x \lim_{x \to 1} x \lim_{x \to 1} x = 1$$
 usando la propiedad 2, y la propiedad 3b

$$\lim_{x\to 1} 4x^2 = 4\lim_{x\to 1} x \lim_{x\to 1} x = 4$$
 usando la propiedad 3c, la 2 y la 3b

$$\lim_{x \to 1} -3 = -3$$
 usando la propiedad 1

Por lo tanto usando la propiedad 3a,
$$\lim_{x\to 1} x^3 + 4x^2 - 3 = 1 + 4 - 3 = 2$$

Del mismo modo usando las propiedades adecuadas, analicemos el límite del denominador:

$$\lim_{x \to 1} x^2 + 4 = \lim_{x \to 1} x \lim_{x \to 1} x + \lim_{x \to 1} 4 = 1 + 4 = 5$$

Por lo tanto, usando la propiedad 3d,
$$\lim_{x \to 1} \frac{x^3 + 4x^2 - 3}{x^2 + 4} = \frac{\lim_{x \to 1} x^3 + 4x^2 - 3}{\lim_{x \to 1} x^2 + 4} = \frac{2}{5}$$

Es importante señalar que el límite del denominador es distinto de 0, y que todos los límites que fuimos calculando parcialmente son números reales.

Actividades:

1) Calcular los siguientes límites:

a)
$$\lim_{x \to -1} x + x^3 + 4x^5$$

a)
$$\lim_{x \to -1} x + x^3 + 4x^5$$

b) $\lim_{x \to 2} (x^2 - 1)(x^2 + 3x + 2)$

c)
$$\lim_{x \to 1} \frac{1+x^3}{1+x^2}$$

d)
$$\lim_{x \to 3} \frac{1}{\sqrt[3]{1-x^2}}$$

e)
$$\lim_{x\to 2} \frac{x^2 - 7x + 10}{x - 2}$$

2) Calcular, utilizando los límites laterales, los límites de las funciones que se presentan, tendiendo al punto donde la función cambia:

a)
$$f(x) = \begin{cases} x^2 & x \ge 1 \\ x^3 - 2x + 2 & x < 1 \end{cases}$$
 b)
$$f(x) = \frac{|x|}{x}$$

b)
$$f(x) = \frac{|x|}{x}$$

A continuación se presentan nuevas estrategias para calcular límites:

Teorema del encaje:

Sean f, g y h tres funciones definidas en un intervalo abierto (a,b) que contiene al punto c, tales que :

$$h(x) \le f(x) \le g(x) \quad \forall x, x \in (a,b), excepto posiblemente en c$$

Luego si
$$\lim_{x \to c} h(x) = L$$
 y $\lim_{x \to c} g(x) = L$ \Rightarrow $\lim_{x \to c} f(x) = L$

Funciones acotadas

Definición: Se dice que una función f está <u>acotada</u> en un intervalo I si existen constantes m y M tales que $m \le f(x) \le M$, $\forall x \in I$ (m es la <u>cota inferior</u> y M la <u>cota superior</u>)

Ejemplos:

Las funciones sen x, cos x, 3 + sen x, $cos \left(\frac{5}{3x}\right)$, $sen \frac{5}{x}$, 9 + cos 6x están acotadas.

Teorema. Si la función f está acotada en un intervalo abierto que contiene al punto a y la función g verifica que el $\lim_{x\to a} g(x) = 0$, entonces $\lim_{x\to a} f(x).g(x) = 0$.

(Se demuestra usando el teorema del encaje. El resultado también es válido para límites laterales)

Ejemplos:

1)
$$\lim_{x\to 0} x.sen \frac{1}{x} = 0$$

2)
$$\lim_{x \to -2} (4 - x^2) . cos \left(\frac{5}{x+2} \right) = 0$$

3)
$$\lim_{x \to 3^{+}} (x-3)^{2} \cdot \cos\left(\frac{1}{\sqrt{x-3}}\right) = 0$$

<u>Observación</u>: Estos límites existen sin embargo no pueden obtenerse por la regla del límite de un producto de funciones, se obtienen aplicando el teorema precedente.

Límites de funciones trigonométricas, exponenciales y logarítmicas:

Para cualquier número real a:

$$\lim_{\phi \to a} sen\phi = sena$$

$$\lim_{\phi \to a} \cos \phi = \cos a$$

$$\lim_{x \to a} e^x = e^a$$

$$\lim_{x \to a} \ln x = \ln a$$

$$\lim_{\phi \to 0} \frac{sen\phi}{\phi} = 1$$

$$\lim_{\phi \to 0} \frac{1 - \cos \phi}{\phi} = 0$$

En el final de este módulo se da la demostración de la primera propiedad para el caso en que a=0

Actividades:

3) Teniendo en cuenta la condición que satisface la función g, calcular el límite indicado:

a)
$$\lim_{x \to 1} g(x)$$
 si $|g(x) - 2| \le 3(x-1)^2$ $\forall x \in \square$ \mathbb{R}

b)
$$\lim_{x \to 3} g(x)$$
 si $|g(x) + 4| \le 2(3-x)^4$ $\forall x \in \square$ R

c)
$$\lim_{x \to -2} g(x)$$
 si $|g(x) - 3| \le 5(x+2)^2$ $\forall x \in \square$ \mathbb{R}

4) Calcular los siguientes límites enunciando qué propiedad usa.

a)
$$\lim_{x \to 5^+} (x-5)^2 . sen \frac{1}{\sqrt{x-5}}$$

b)
$$\lim_{x\to 2} (x^2-4).\cos(\frac{1}{x-2})$$

c)
$$\lim_{x \to -6} (x^2 - 36)$$
. $sen\left(\frac{5}{6+x}\right)$

5) Calcular indicando las propiedades usadas

a)
$$\lim_{\phi \to -1} sen(\pi \phi)$$

b)
$$\lim_{\phi \to 2} (\phi^2 - 1) cos(\pi \phi)$$

c)
$$\lim_{\phi \to 0} \frac{sen(9\phi)}{sen(7\phi)}$$

d)
$$\lim_{\phi \to 0} \frac{1 - \cos\phi}{\sin\phi}$$

e)
$$\lim_{\phi \to 0} \frac{sen\phi}{3x^2 + 2x}$$

f)
$$\lim_{\phi \to 0} \frac{\phi}{\cos \phi}$$

Como hemos visto en muchos casos, el límite se evalúa por sustitución directa del valor de x_0 en la función. Sin embargo en algunas funciones esto no es posible, como vimos en el ejemplo 2 del inicio del módulo, cuando las funciones están definidas a trozos, es decir tienen una definición hasta un valor de x y otra definición a partir de ese valor, necesitamos del estudio de los límites laterales.

Aún con esta alternativa del estudio de límites laterales hay algunos límites que tampoco pueden calcularse de este modo.

Limites indeterminados:

Nos referimos con esta terminología a aquellos límites en los que al primer intento de hacer una sustitución directa aparecen indeterminaciones.

Por ejemplo : si $h(x) = \frac{\sqrt{x} - 2}{x - 9}$, y queremos calcular $\lim_{x \to 9} h(x) = \lim_{x \to 9} \frac{\sqrt{x} - 2}{x - 9}$ por sustitución directa, vemos que el denominador es cero, por lo tanto no podemos utilizar la propiedad 3b para resolverlo.

Criterio para límites indeterminados:

Si
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = L$$
 y $\lim_{x \to x_0} g(x) = 0$ \Rightarrow $\lim_{x \to x_0} f(x) = 0$

Demostración:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{f(x)}{g(x)} g(x) = \lim_{x \to x_0} \frac{f(x)}{g(x)} \cdot \lim_{x \to x_0} g(x) = L \cdot 0 = 0$$

Notemos que una expresión equivalente a este criterio es su contrarrecíproca, es decir :

Si
$$\lim_{x \to x_0} f(x) \neq 0$$
 $\Rightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)}$ no existe o $\lim_{x \to x_0} g(x) \neq 0$

En la práctica en general estamos interesados en el cálculo de límites de la forma:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$
 y observamos que
$$\lim_{x \to x_0} g(x) = 0$$

Entonces usando la contrarrecíproca del criterio decimos que

Si
$$\lim_{x \to x_0} f(x) \neq 0$$
 y $\lim_{x \to x_0} g(x) = 0$ $\Rightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)}$ no existe

$$\mathbf{Si} \quad \lim_{x \to x_0} f(x) = 0 \qquad \mathbf{y}$$

$$\lim_{x \to x_0} g(x) = 0 \implies \text{ no podemos asegurar la existencia o no de } \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

Volvamos al ejemplo:

Analicemos los límites de f y de g, en nuestro caso $f(x) = \sqrt{x} - 2$ y g(x) = x - 9

$$\lim_{x \to 9} f(x) = \lim_{x \to 9} \sqrt{x} - 2 = 1 \quad y \quad \lim_{x \to 9} g(x) = \lim_{x \to 9} x - 9 = 0$$

Por lo tanto usando la contrarrecíproca del criterio, como

$$\lim_{x \to x_0} f(x) \neq 0 \qquad \text{y} \qquad \lim_{x \to x_0} g(x) = 0 \qquad \Rightarrow \quad \lim_{x \to x_0} \frac{f(x)}{g(x)} \text{ no existe}$$

Otros ejemplos:

1) Sea
$$h(x) = \frac{x^2 + x - 6}{x + 3}$$
, calcular si es que existe, $\lim_{x \to 3} h(x)$

Como
$$\lim_{x \to -3} (x+3) = 0 \quad y \quad \lim_{x \to -3} (x^2 + x - 6) = 0 \qquad \Rightarrow \quad \lim_{x \to -3} h(x) \text{ puede existir o no.}$$

Es decir que el criterio no nos asegura la existencia del límite!!!

Usamos entonces la técnica de cancelación, factorizando o hallando las raíces de $x^2 + x - 6$. Escribimos entonces:

$$\lim_{x \to -3} h(x) = \lim_{x \to -3} \frac{x^2 + x - 6}{x + 3} = \lim_{x \to -3} \frac{(x - 2)(x + 3)}{x + 3} = \lim_{x \to -3} x - 2 = -5$$

Notar que esta cancelación podemos hacerla para $x \neq -3$, y como el límite es el estudio de la función cuando el valor de x se aproxima a -3, no importa el valor de x en -3, por lo tanto podemos no considerarlo.

2) Sea
$$h(x) = \frac{\sqrt{x+1}-1}{x}$$
; calcular si es que existe, $\lim_{x\to 0} h(x)$

Como

$$\lim_{x \to 0} x = 0 \quad y \quad \lim_{x \to -3} (\sqrt{x+1} - 1) = 0 \qquad \Rightarrow \quad \lim_{x \to 0} h(x) \quad \text{puede existir o no.}$$

Usamos la técnica de racionalización:

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \lim_{x \to 0} \frac{(\sqrt{x+1} - 1)(\sqrt{x+1} + 1)}{x(\sqrt{x+1} + 1)} = \lim_{x \to 0} \frac{x+1-1}{x(\sqrt{x+1} + 1)} = \lim_{x \to 0} \frac{1}{\sqrt{x+1} + 1} = \frac{1}{2}$$

3) Sea
$$f(x) = \frac{1}{x^2}$$
; calcular si es que existe, $\lim_{x \to 0} f(x)$

Como
$$\lim_{x \to 0} x^2 = 0 \quad y \quad \lim_{x \to 0} 1 = 1 \neq 0 \qquad \Rightarrow \quad \lim_{x \to 0} \frac{1}{x^2} \quad \text{no existe}$$

Límites infinitos:

Sea f(x) una función definida en (a,b) que contiene al punto x_0 . La expresión $\lim_{x\to x_0} f(x) = +\infty$ indica que la función crece indefinidamente y la expresión $\lim_{x\to x_0} f(x) = -\infty$ indica que la función decrece indefinidamente.

Significa que el límite no existe. Es decir que la función crece o decrece sin cota cuando x tiende a x_0 .

Indicamos entonces el comportamiento no acotado de una función cuando x se acerca a x_0 por derecha o por izquierda de la siguiente manera:

Si f crece sin cota cuando x tiende a x_0 por derecha, $\lim_{x \to x^+} f(x) = +\infty$

Si f decrece sin cota cuando x tiende a x_0 por derecha, $\lim_{x \to x_0^+} f(x) = -\infty$

Si f crece sin cota cuando x tiende a x_0 por izquierda, $\lim_{x \to x_0^-} f(x) = +\infty$

Si f decrece sin cota cuando x tiende a x_0 por izquierda, $\lim_{x \to x_0^-} f(x) = -\infty$

Asíntota vertical:

Si f(x) tiende a $+\infty$ o a $-\infty$ cuando x tiende a x_0 por la derecha o por la izquierda, se dice que la recta de ecuación $x=x_0$, es una asíntota vertical de la gráfica de f.

Ejemplo:

Calcular $\lim_{x\to 0} \frac{1}{x}$

Como
$$\lim_{x\to 0} x = 0$$
 y $\lim_{x\to 0} 1 = 1 \neq 0$ \Rightarrow $\lim_{x\to 0} \frac{1}{x}$ no existe

Notemos en el gráfico que sigue, que la función tiene un comportamiento no acotado cuando x tiende a 0.

Analizamos los límites laterales, notando que cuando x se acerca a 0 con valores positivos la función crece sin cota y cuando x se acerca a 0 con valores negativos la función decrece sin cota . Por lo tanto escribimos :

$$\lim_{x\to 0^-} \frac{1}{x} = -\infty \qquad , \qquad \lim_{x\to 0^+} \frac{1}{x} = +\infty$$

Por lo tanto la recta de ecuación x=0 es una asíntota vertical de la gráfica de f

Actividades:

6) Dada la función
$$f(x) = \begin{cases} 2x+3 & x>2\\ 2 & x=2\\ 2x^2-1 & x>2 \end{cases}$$

Calcular si es que existen los siguientes límites

a)
$$\lim_{x\to 0} f(x)$$
 b) $\lim_{x\to 2} f(x)$ c) $\lim_{x\to 4} f(x)$

7) Dada la función

$$f(x) = \begin{cases} 2x-1 & x \le 1 \\ x^2+2 & x > 1 \end{cases}$$

Calcular si es que existen los siguientes límites

- a) $\lim_{x \to -1} f(x)$ b) $\lim_{x \to 1} f(x)$ c) $\lim_{x \to 3} f(x)$

8) Calcular si es que existen los siguientes límites:

- a) $\lim_{x \to 1^{-}} \frac{x-1}{|x-1|}$
- b) $\lim_{x \to 1^+} \frac{x-1}{|x-1|}$

c) $\lim_{x \to 1} \frac{x-1}{|x-1|}$

- d) $\lim_{x \to 2^{-}} \frac{|2-x|}{x-2}$
- e) $\lim_{x \to 2^+} \frac{|2 x|}{x 2}$
- f) $\lim_{x \to 2} \frac{|2-x|}{x-2}$

- g) $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$
- h) $\lim_{x \to -1} \frac{x^2 1}{x^2 + 3x + 2}$
- i) $\lim_{x \to -1} \frac{x^3 + 1}{x^2 + 1}$
- *j*) $\lim_{h\to 0} \frac{(x+h)^2 x^2}{h}$ k) $\lim_{x\to 2} \frac{x^2 2x}{x^2 4x + 4}$
- 1) $\lim_{x \to 7} \frac{2 \sqrt{x 3}}{x^2 49}$

- m) $\lim_{x \to 8} \frac{x-8}{\sqrt[3]{x-8}}$
- $n) \lim_{h\to 0} \frac{\sqrt{x+h} \sqrt{x}}{h}$
- o) $\lim_{x \to 0} \frac{\sqrt{1+x} \sqrt{1-x}}{x}$

9) Decidir en cada caso si la función presenta una asíntota vertical en x=-1

- a) $f(x) = \frac{x^2 1}{x + 1}$
- b) $f(x) = \frac{x^2 + 1}{x + 1}$
- c) $f(x) = \frac{x^2 6x 7}{x + 1}$

Comportamiento de una función en el infinito:

Para una función f definida en el intervalo (a, $+\infty$), se dice que $\lim_{x\to\infty} f(x) = L$,

si cuando x crece, sin cota, los valores de f se acercan al valor L. Es decir que f(x) se hace tan cercano a L como se quiera, tomando un x suficientemente grande.

Del mismo modo tomando una función f definida en $(-\infty,a)$, diremos que $\lim_{x\to -\infty} f(x) = L$,

si cuando x decrece sin cota, los valores de f se acercan a L.

Propiedades:

$$1) \quad \lim_{x \to \infty} x = \infty$$

$$2) \lim_{x \to \infty} x = -\infty$$

3)
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

$$4) \lim_{x \to -\infty} \frac{1}{x} = 0$$

5) Si
$$\lim_{x \to \infty} f(x) = L$$
 , $\lim_{x \to \infty} g(x) = M$, L, M $\in \mathbb{R}$ \Rightarrow

a)
$$\lim_{x \to \infty} [f(x) + g(x)] = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x) = L + M$$

b)
$$\lim_{x \to \infty} [f(x).g(x)] = \lim_{x \to \infty} f(x).\lim_{x \to \infty} g(x) = L.M$$

c)
$$\lim_{x \to \infty} kf(x) = k \lim_{x \to \infty} f(x) = kL$$

d) Si
$$\lim_{x \to \infty} g(x) \neq 0$$
 $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \infty} f(x)}{\lim_{x \to \infty} g(x)} = \frac{L}{M}$

Las propiedades del punto 5 son válidas cuando x tiende a $-\infty$

Asíntota horizontal:

Si $\lim_{x\to\infty} f(x) = L$ y/o $\lim_{x\to\infty} f(x) = L$ diremos que la recta de ecuación y=L es una asíntota horizontal de la gráfica de f(x)

Ejemplo:

Tomemos la función usada en el ejemplo para el cálculo de una asíntota vertical. En este caso como intentaremos ver si tiene asíntota horizontal nos interesa calcular el límite cuando x tiende a $\pm \infty$

$$\lim_{x\to\infty}\frac{1}{x}$$

$$\lim_{x \to \infty} \frac{1}{x} = 0 \quad \text{y por la propiedad 4} \qquad \lim_{x \to \infty} \frac{1}{x} = 0$$

$$\lim_{x\to\infty}\frac{1}{x}=0$$

Notemos que la función toma valores cada vez más pequeños a medida que x crece.

Por lo tanto la recta de ecuación y=0 es una asíntota horizontal de la gráfica de f

Limites en el infinito de funciones racionales:

Sea f una función racional \Rightarrow

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_2 x^2 + b_1 x + b_0} =$$

$$= \lim_{x \to \infty} \frac{x^{n} (a_{n} + \frac{a_{n-1}x^{n-1}}{x^{n}} + \dots + \frac{a_{2}x^{2}}{x^{n}} + \frac{a_{1}x}{x^{n}} + \frac{a_{0}}{x^{n}})}{x^{m} (b_{m} + \frac{b_{m-1}x^{m-1}}{x^{m}} + \dots + \frac{b_{2}x^{2}}{x^{m}} + \frac{b_{1}x}{x^{m}} + \frac{b_{0}}{x^{m}})} =$$

$$= \lim_{x \to \infty} \frac{x^{n} \left(a_{n} + \frac{a_{n-1}}{x} + \dots + \frac{a_{2}}{x^{n-2}} + \frac{a_{1}}{x^{n-1}} + \frac{a_{0}}{x^{n}}\right)}{x^{m} \left(b_{m} + \frac{b_{m-1}}{x} + \dots + \frac{b_{2}}{x^{m-2}} + \frac{b_{1}}{x^{m-1}} + \frac{b_{0}}{x^{m}}\right)} =$$

Notamos que cuando x tiende a ∞ , todos los términos del numerador, salvo a_n tienden a 0 y todos los términos del denominador salvo b_m tienden a 0. Luego tenemos que

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_2 x^2 + b_1 x + b_0} = \begin{cases} \infty & \text{si } n > m \\ \frac{a_n}{b_n} & \text{si } n = m \\ 0 & \text{si } n < m \end{cases}$$

Ejemplos:

1)
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{x^2(5 + 8/x - 3/x^2)}{x^2(3 + 2/x^2)} = \lim_{x \to \infty} \frac{5 + 8/x - 3/x^2}{3 + 2/x^2} = \frac{5 + 0 - 0}{3 + 0} = \frac{5}{3}$$

2)
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^3 + 2} = \lim_{x \to \infty} \frac{x^3 (5/x + 8/x^2 - 3/x^3)}{x^3 (3 + 2/x^3)} = \lim_{x \to \infty} \frac{(5/x + 8/x^2 - 3/x^3)}{(3 + 2/x^3)} = \frac{0 + 0 - 0}{3 + 0} = 0$$

3)
$$\lim_{x \to \infty} \frac{2x^3 + 8x^2 - 3x + 7}{x^2 + 2} = \lim_{x \to \infty} \frac{x^2 (2x + 8 - 3/x + 7/x^2)}{x^2 (1 + 2/x^2)} = \lim_{x \to \infty} \frac{(2x + 8 - 3/x + 7/x^2)}{(1 + 2/x^2)} = \infty$$

Actividades:

10) Calcular los siguientes límites:

a)
$$\lim_{x \to \infty} \frac{(x+1)^2}{x^2+1}$$

b)
$$\lim_{r\to\infty}\frac{x}{r^2-1}$$

a)
$$\lim_{x \to \infty} \frac{(x+1)^2}{x^2+1}$$
 b) $\lim_{x \to \infty} \frac{x}{x^2-1}$ c) $\lim_{x \to \infty} \frac{x^2-5x+1}{3x+7}$ d) $\lim_{x \to \infty} \frac{(x+1)^2}{x^2+1}$

d)
$$\lim_{x \to \infty} \frac{(x+1)^2}{x^2+1}$$

15

11) El proceso realizado para calcular límites de funciones racionales, puede realizarse también para funciones que tienen potencias no naturales de x. Dividimos numerador y denominador por x elevado al mayor exponente del denominador y partimos de allí. Calcular:

a)
$$\lim_{x \to \infty} \frac{2\sqrt{x} + x^{-1}}{3x - 7}$$
 b) $\lim_{x \to \infty} \frac{2 + \sqrt{x}}{2 - \sqrt{x}}$ c) $\lim_{x \to \infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}}$

b)
$$\lim_{x \to \infty} \frac{2 + \sqrt{x}}{2 - \sqrt{x}}$$

c)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}}$$

12) Obtener las asíntotas de las siguientes funciones:

a)
$$f(x) = \frac{x^2}{x^2 - 4}$$

b)
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$

c)
$$f(x) = \frac{x^3 + x}{x^2 - 1}$$

13) Dibuje la gráfica de una función con dominio real que cumpla con las siguientes propiedades:

$$f(-4) = 0 f(-2) = 0 f(0) = 3 f(2) = -3 f(4) = 0$$

$$\lim_{x \to -4} f(x) = 0 \lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to 5} f(x) = 0 \lim_{x \to 2^{+}} f(x) = \infty$$

$$\lim_{x \to 2^{-}} f(x) = \infty \lim_{x \to 2^{+}} f(x) = -\infty$$

$$\lim_{x \to 4^{-}} f(x) = 0 \lim_{x \to 4^{+}} f(x) = \infty$$

$$\lim_{x \to 4^{-}} f(x) = -3 \lim_{x \to 4^{+}} f(x) = -\infty$$

14) Calcular:

a)
$$\lim_{x\to\infty} senx$$

b)
$$\lim_{x\to\infty}\cos x$$

Orden de Magnitud:

Estudiaremos a través del orden de magnitud el comportamiento en el infinito de un cociente de dos funciones y el cálculo de límites que conducen a indeterminaciones de la forma $\frac{\infty}{\infty}$.

Mostraremos cómo comparar las razones de crecimiento de funciones cuando aumenta x. Puede notarse que las funciones exponenciales , como 2^x y e^x parecen crecer con más rapidez cuando aumenta x que las funciones polinomiales y racionales, observemos el siguiente gráfico:

Esta observación nos conduciría a decir que $\lim_{x\to\infty}\frac{e^x}{x^2}=\infty$ y $\lim_{x\to\infty}\frac{x^2}{e^x}=0$,

Sean f(x) y g(x) funciones definidas y positivas para valores grandes de x,

El orden de magnitud de f es mayor que el orden de magnitud de g (f >> g) si :

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

El orden de magnitud de f es menor que el orden de magnitud de g (f << g) si :

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

El orden de magnitud de f es igual al orden de magnitud de g si :

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L > 0$$

Actividades:

15) Calcular los siguientes límites:

a)
$$\lim_{x\to\infty}\frac{x}{e^x}$$

$$\mathbf{b)} \lim_{x \to \infty} \frac{\ln^2 x}{x}$$

$$\mathbf{c)} \lim_{x \to 0^+} x \ln x$$

Continuidad en un punto:

Definición: una función f(x) se dice continua en x_0 , si se cumple que:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Por lo tanto deben satisfacerse las siguientes condiciones:

- f debe estar definida en x_0
- debe existir el $\lim_{x \to x_0} f(x)$
- el valor de dicho límite debe coincidir con el valor de la función en el punto x_0

Intuitivamente f será continua en x_0 si no presenta "saltos" o " agujeros", o dicho de otro modo, si podemos trazar su gráfica sin levantar el lápiz del papel.

Ejemplos:

Propiedades:

Sean f y g funciones continuas en x_0 :

- (f+g) es continua en x_0
- (f.g) es continua en x_0
- $\frac{f}{g}$ es continua en todo $x_0 / g(x_0) \neq 0$
- La composición de funciones continuas es una función continua: Si f es continua en x_0 y g es continua en $f(x_0) \Rightarrow g \circ f$ es continua en x_0
- $\bullet \lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x))$

Si alguna de las condiciones que debe satisfacer f para que sea continua en x_0 no se cumple , se dice que f es discontinua en x_0

Clasificación de las discontinuidades:

• f es discontinua en x_0 y $\exists \lim_{x \to x_0} f(x) \Rightarrow f$ presenta en x_0 una discontinuidad evitable

• f es discontinua en x_0 y $\neg \exists \lim_{x \to x_0} f(x) \Rightarrow f$ presenta en x_0 una discontinuidad no evitable o esencial

Las discontinuidades llamadas evitables nos dicen que es posible hacer una redefinición de f de manera que resulte continua en x_0 .

Las discontinuidades denominadas inevitables o esenciales, nos dicen que esto no es posible.

Continuidad en un intervalo:

Definición:

- una función f(x) se dice continua en (a,b), si es continua en cada punto de (a,b)
- una función f(x) se dice continua en [a,b], si es continua en de (a,b) y además se verifica que:

$$\lim_{x \to a^{+}} f(x) = f(a) \quad y \quad \lim_{x \to b^{-}} f(x) = f(b)$$

Las funciones polinómicas son continuas en todo el conjunto R

Las funciones racionales son continuas en todo su dominio, por ser división de funciones polinómicas.

Las funciones irracionales, trigonométricas, logarítmicas y exponenciales también son contínuas en todo su dominio.

Actividades:

16) Hallar el o los intervalos en los que las siguientes funciones son continuas:

a)
$$f(x) = \frac{3x^2 - x - 2}{x - 1}$$

b)
$$f(x) = \begin{cases} \frac{3x^2 - x - 2}{x - 1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$f(x) = \begin{cases} 5 - x & x \le 2 \\ 2x - 3 & x > 2 \end{cases}$$

$$d) f(x) = \sqrt{\frac{1+x}{x}}$$

17) Dada:

$$\mathbf{a)} \quad f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & x \neq 2 \\ k & x = 2 \end{cases}$$

Hallar el valor de k para que f resulte continua en ${\rm I\!R}$. Graficar

$$f(x) = \begin{cases} x+3 & x \le 2 \\ cx+6 & x > 2 \end{cases}$$

Hallar el valor de c para que f resulte continua en \mathbb{R} . Graficar

c)
$$f(x) = \begin{cases} x+3 & 1 < x < 3 \\ x^2 + bx + c & |x-2| \ge 1 \end{cases}$$

Hallar los valores de b y c para que f resulte continua en \mathbb{R} . Graficar

$$\mathbf{d}) \quad f(x) = \begin{cases} e^{\frac{1}{x}} & x \neq 0 \\ k & x = 0 \end{cases}$$

Hallar el valor de k para que f resulte continua en \mathbb{R} . Graficar

e)
$$f(x) = \begin{cases} e^{\frac{x-1}{x+1}} & x > -1 \\ 3x+k & x \le -1 \end{cases}$$

Hallar el valor de k para que f resulte continua en \mathbb{R} . Graficar

- 18) En la figura se muestra la gráfica de una función. Estudie la continuidad de la misma e indique:
 - a) ¿Cuáles de las discontinuidades son evitables?¿Cómo definiría la función para hacerla continua en ese punto?
 - b) ¿Cuáles de las discontinuidades son esenciales? ¿Por qué?

$$f(x) = \begin{cases} x^2 sen \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Demostrar que f es continua en x=0

20) Estudiar la continuidad de las siguientes funciones:

a)
$$f(x) = \begin{cases} senx & 0 \le x < \pi/2 \\ sen(x-\pi/2) & \pi/2 \le x \le \pi \end{cases}$$

b)
$$f(x) = \begin{cases} \cos x & -\pi \le x < 0 \\ sen(x + \pi/2) & 0 < x \le \pi \end{cases}$$

21) Indicar el valor de *b* para que
$$f(x) = \begin{cases} (x^2 - 81) \cdot sen\left(\frac{1}{x - 9}\right), & x \neq 9 \\ b, & x = 9 \end{cases}$$
 sea continua en $\mathbf{x} = \mathbf{9}$

Enunciar la propiedad que usa.

22) Indicar el valor de **b** para que
$$f(x) = \begin{cases} (x^2 - 36) \cdot sen\left(\frac{1}{x - 6}\right) & , x \neq 6 \\ b & , x = 6 \end{cases}$$
 sea continua en $x = 6$

Enunciar la propiedad que usa.

23) Indicar el valor de *b* para que
$$j(x) = \begin{cases} (x^2 - 16).sen(\frac{1}{x - 4}) & , x \neq 4 \\ b & , x = 4 \end{cases}$$
 sea continua en $\mathbf{x} = \mathbf{4}$ Enunciar la propiedad que usa.

<u>Apéndice</u>

Demostración de la propiedad: $\lim_{\phi \to 0} sen\phi = 0$

Demostración:

Supongamos
$$0 < \phi < \frac{\pi}{2}$$
. Vemos en el gráfico que $0 \le y \le s$

O bien $0 \le rsen\phi \le r\phi$

Como r>0 tenemos $0 \le sen\phi \le \phi$

Como
$$\lim_{\phi \to 0^+} 0 = 0$$
 y $\lim_{\phi \to 0^+} \phi = 0$

 \boldsymbol{x}

$$\lim_{\phi \to 0^+} sen\phi = 0$$

Tomando
$$-\frac{\pi}{2} < \phi < 0$$
, análogamente tenemos que
$$\lim_{\phi \to 0^-} sen\phi = 0$$

Por lo tanto
$$\lim_{\phi \to 0} sen\phi = 0$$

