Seminar: Deep Learning

Deep Belief Networks

Dimitri Thomas Ghouse

LMU München

February 2017

Content

Motivation & Outline

2 SBN & RBN

Oeep Belief Network

Motivation

Unsupersived Learning:

- only use inputs (e.g. pixel) for learning
- learning without labeled data
- most data exists in unlabeled form
- extract useful features of data

Generative (probabilistic) Model

- generative approach: try to model data distribution p(x)
- Use learnt weights of unsupervised model as initialization for a discriminative neural net

Figure: Deep Belief Network: Structure

Figure: Deep Belief Network: Generative process

Outline $\mathbf{h^3} \in \{0,1\}$ W^3 $\mathbf{h^2} \in \{0, 1\}$ W^2 $\mathbf{h^1} \in \{0,1\}$ W^1 $\mathbf{v} \in \{0,1\}$

Figure: Deep Belief Network: Learning

Outline $\mathbf{h^3} \in \{0,1\}$ W^3 $\mathbf{h^2} \in \{0, 1\}$ \mathbf{W}^2 $\mathbf{h^1} \in \{0,1\}$ W^1 $\mathbf{v} \in \{0,1\}$

Figure: Deep Belief Network: Hierarchical features

Figure: Deep Belief Network: Generate Pixels

Figure: Deep Belief Network: Structure

Figure: Deep Belief Network: Structure

Sigmoid Belief Network

- Causal model (Directed Acyclical Graph)
- Binary stochastic neuron

$$\qquad \qquad \rho\left(\textit{v}_{\textit{i}}=1|\textbf{h}^{1}\right)=\frac{1}{1+exp\left(-b_{\textit{i}}-\sum_{\textit{j}}W_{\textit{ij}}^{1}h_{\textit{j}}^{1}\right)}$$

- $\mathbf{v}_i = \mathbf{1} \{ p(v_i = 1 | \mathbf{h^1}) > U[0, 1] \}$
- $p(\mathbf{v}|\mathbf{h}^1) = \prod_i p\left(v_i|\mathbf{h}^1\right)$
- Easy to generate a sample (top-down)

Figure: Sigmoid Belief Net

Figure: Sigmoid Belief Net

SBN - Explaining Away Problem

Joint distribution:

$$p(h_1, h_2, v) = p(h_1)p(h_2)p(v|h_1, h_2)$$

Independence properties:

$$p(h_1, h_2) = \sum_{v} p(h_1)p(h_2)p(v|h_1, h_2)$$
$$= p(h_1)p(h_2)$$

Conditionally dependent: (explaining away)

$$p(h_1, h_2|v) = \frac{p(h_1, h_2, v)}{p(v)}$$

$$= \frac{p(h_1)p(h_2)p(v|h_1, h_2)}{p(v)}$$

Sigmoid Belief Network

Inference Problem:

- Posterior distribution for hidden given data hard to compute
- ullet $p\left(\mathbf{h^1}|\mathbf{v}
 ight)
 ightarrow ext{explaining away}$
- $p(\mathbf{h}^1|\mathbf{v})$ is not factorial

h³ h² h¹ v

Learning Problem:

- Adjust w_{ij} so SBN generates more likely training data \mathbf{v}
- Maximizing log p(v) difficult

Figure: Sigmoid Belief Net: Learning

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j \qquad p(\mathbf{v}, \mathbf{h}; \theta) = \frac{1}{Z(\theta)} e^{-E(\mathbf{v}, h; \theta)} \qquad Z(\theta) = \sum_{\mathbf{v}} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h}; \theta)}$$

S	h ₁	h ₂	v ₁	v ₂	-E(v,h)	$e^{-E(v,h)}$	p(v,h)	p(v)	
1			0	0					
2			0	0					
3			0	0					
4			0	0					
5			1	0					
6			1	0					
7			1	0					
8			1	0					h
9			0	1					
:			:	:					
15			1	1					\mathbf{v}
16			1	1					

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j \qquad \rho(\mathbf{v}, \mathbf{h}; \theta) = \frac{1}{Z(\theta)} e^{-E(\mathbf{v}, h; \theta)} \qquad Z(\theta) = \sum_{\mathbf{v}} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h}; \theta)}$$

$$p(\mathbf{v}, \mathbf{h}; \theta) = \frac{1}{Z(\theta)} e^{-E(\mathbf{v}, \mathbf{h}; \theta)} \qquad Z(\theta) = \sum_{\mathbf{v}} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h}; \theta)}$$

S	h ₁	h ₂	v ₁	v ₂	-E(v,h)	$e^{-E(v,h)}$	p(v,h)	<i>p</i> (<i>v</i>)	
1	0	0	0	0					
2	1	0	0	0					
3	0	1	0	0					
4	1	1	0	0					
5	0	0	1	0					
6	1	0	1	0					
7	0	1	1	0					
8	1	1	1	0					() h
9	0	0	0	1					
:	:	:	:	:					
15	0	1	1	1					$r \bigcirc r$
16	1	1	1	1					

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j \qquad p(\mathbf{v}, \mathbf{h}; \theta) = \frac{1}{Z(\theta)} e^{-E(\mathbf{v}, \mathbf{h}; \theta)} \qquad Z(\theta) = \sum_{\mathbf{v}} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h}; \theta)}$$

$$p(\mathbf{v}, \mathbf{h}; \theta) = \frac{1}{Z(\theta)} e^{-E(\mathbf{v}, \mathbf{h}; \theta)} \qquad Z(\theta) = \sum_{\mathbf{v}} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h}; \theta)}$$

S	h ₁	h ₂	v ₁	V ₂	-E(v,h)	$e^{-E(v,h)}$	p(v,h)	$p(v) = \sum p(v,h)$
								h
1	0	0	0	0	0	1,000		
2	1	0	0	0	0	1,000		
3	0	1	0	0	0	1,000		
4	1	1	0	0	0	1,000		
5	0	0	1	0	0	1,000		
6	1	0	1	0	1	2,718		
7	0	1	1	0	1	2,718		
8	1	1	1	0	2	7,389		
9	0	0	0	1	0	1,000		
:	:	:	:	:	i:	÷		
15	0	1	1	1	2	7,389		
16	1	1	1	1	4	54,598		
						102,028		

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j$$
 $p(\mathbf{v}, \mathbf{h}; \theta)$

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j \qquad p(\mathbf{v}, \mathbf{h}; \theta) = \frac{1}{Z(\theta)} e^{-E(\mathbf{v}, \mathbf{h}; \theta)} \qquad Z(\theta) = \sum_{\mathbf{v}} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h}; \theta)}$$

S	h	<i>h</i>	1.	.,	-E(v,h)	$e^{-E(v,h)}$	n(v, h)	$p(y) = \sum p(y, b)$
ا ا	h_1	h ₂	<i>V</i> ₁	V ₂	-E(v,n)	6	p(v,h)	$p(v) = \sum_{h} p(v, h)$
1	0	0	0	0	0	1,000	0,010	0,04
2	1	0	0	0	0	1,000	0,010	
3	0	1	0	0	0	1,000	0,010	
4	1	1	0	0	0	1,000	0,010	
5	0	0	1	0	0	1,000	0,010	0,14
6	1	0	1	0	1	2,718	0,027	
7	0	1	1	0	1	2,718	0,027	
8	1	1	1	0	2	7,389	0,072	
9	0	0	0	1	0	1,000	0,010	0,14
:	:	:		:	÷	:	:	:
15	0	1	1	1	2	7,389	0,072	0,68
16	1	1	1	1	4	54,598	0,535	
						102,028	$\sum 1$	

Restricted Boltzmann Machine

Goal: Model a probability distribution over a set of random variables

Energy-based models

- Captures dependencies between random variables through an energy-function
- $\mathbf{v} \in \{1,0\}^m$ $\mathbf{h} \in \{1,0\}^n$
- RBM has in total $(\mathbf{v}, \mathbf{h}) \in \{1, 0\}^{m+n}$ possible states
- Every state has a associated scalar value
- State with a lower energy is more likely

Figure: RBM: 3 hidden and 4 visible layers

Energy function :

$$E(\mathbf{v}, \mathbf{h}; W, b, c) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j - \sum_{j=1}^{m} b_j v_j - \sum_{i=1}^{n} c_i h_i$$

RBM - Probability Distribution

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\sum_{i=1}^{n} \sum_{i=1}^{m} w_{ij} h_i v_j - \sum_{i=1}^{m} b_j v_j - \sum_{i=1}^{n} c_i h_i \qquad \theta = (W, b, c)$$

Get a probability distribution for every possible configuration of (\mathbf{v}, \mathbf{h})

$$p(v,h;\theta) = \frac{1}{Z(\theta)} e^{-E(v,h;\theta)} \qquad Z(\theta) = \sum_{v} \sum_{h} e^{-E(v,h;\theta)}$$

RBM - Properties

Conditional Distribution

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i=1}^{n} p(h_i|\mathbf{v}) \quad p(\mathbf{v}|\mathbf{h}) = \prod_{j=1}^{m} p(v_j|\mathbf{h})$$

 \Rightarrow Sampling all h_i given v at once possible

RBMs as a (stochastic) neural network

$$p(h_i = 1 | \mathbf{v}) = \sigma \left(\sum_{j=1}^m w_{ij} v_j + c_i \right)$$

$$h_i = \mathbf{1}\{p(h_i = 1|\mathbf{v}) > U[0,1]\}$$

$$p(v_j = 1|\mathbf{h}) = \sigma\left(\sum_{i=1}^n w_{ij}h_i + b_j\right)$$

Figure: RBM: 3 hidden and 4 visible layers

RBM - Log-Likelihood

Goal: Adjust weights & bias terms so that p(v) equals more to the data distribution

Likelihood-Approach:

$$log \mathcal{L}(\theta|v) = log p(v;\theta) = log \sum_{h} p(v,h;\theta) = log \frac{1}{Z(\theta)} \sum_{h} e^{-E(v,h;\theta)}$$
$$= log \sum_{h} e^{-E(v,h;\theta)} - log \sum_{v} \sum_{h} e^{-E(v,h;\theta)}$$

$$\frac{\partial log \mathcal{L}(\theta|v)}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \left(log \sum_{h} e^{-E(v,h)} \right) - \frac{\partial}{\partial w_{ij}} \left(log \sum_{v} \sum_{h} e^{-E(v,h)} \right)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$-\sum_{h} p(h|v) \quad \frac{\partial E(v,h)}{\partial w_{ij}} + \sum_{v} \sum_{h} p(v,h) \quad \frac{\partial E(v,h)}{\partial w_{ij}}$$

RBM - Gradient of Log-Likelihood

$$\frac{\partial E(\mathbf{v}, \mathbf{h}; \theta)}{\partial w_{ij}} = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j - \sum_{j=1}^{m} b_j v_j - \sum_{i=1}^{n} c_i h_i$$
$$= -h_i v_i$$

$$\begin{array}{lll} \frac{\partial log \mathcal{L}(\boldsymbol{\theta}|\mathbf{v})}{\partial w_{ij}} & = & -\sum\limits_{h_i \in \{0,1\}} p(\boldsymbol{h}|\mathbf{v}) \, \frac{\partial E(\boldsymbol{v},\boldsymbol{h};\boldsymbol{\theta})}{\partial w_{ij}} & + & \sum\limits_{\boldsymbol{v}} \sum\limits_{\boldsymbol{h}} p(\boldsymbol{v},\boldsymbol{h}) \, \frac{\partial E(\boldsymbol{v},\boldsymbol{h};\boldsymbol{\theta})}{\partial w_{ij}} \\ & = & p\left(h_i = 1|\mathbf{v}\right) v_j & - & \sum\limits_{\boldsymbol{v}} p\left(\boldsymbol{v}\right) p\left(h_i = 1|\mathbf{v}\right) v_j \\ & & \uparrow \\ & & Problem \end{array}$$

$$p(h_i = 1 | \mathbf{v}) = \sigma \left(\sum_{j=1}^m w_{ij} v_j + c_i \right)$$

RBM - Contrastive Divergence

Figure: Contrastive Divergence (CD)

Contrastive divergence:

- 1: For a given training example $\mathbf{v} \equiv \mathbf{v}^1$
 - lacktriangle Start at \mathbf{v}^1 . Generate a \mathbf{v}^k sample using k steps of Block-Gibbs sampling
 - $\textbf{ 0} \textbf{ Update parameters: } w_{ij} \leftarrow w_{ij} + p\left(h_i = 1|\textbf{v}^{\textbf{1}}\right)v_j^1 p\left(h_i = 1|\textbf{v}^{\textbf{k}}\right)v_j^k$
- 2: Repeat until stopping criteria

RBM: Negative - Positive - Phase

Figure: Positive and Negative Phase of Learning

$$\frac{\partial log \mathcal{L}(\theta|v)}{\partial w_{ij}} = -\sum_{h} p(h|v) \frac{\partial E(v,h;\theta)}{\partial w_{ij}} + \sum_{v} \sum_{h} p(v,h) \frac{\partial E(v,h;\theta)}{\partial w_{ij}}$$

$$= \mathbb{E}_{p(h|v)} [h_{i}v_{j}] - \mathbb{E}_{p(v,h)} [h_{i}v_{j}]$$

$$= \mathbb{E}_{P_{Data}} [h_{i}v_{j}] - \mathbb{E}_{P_{Model}} [h_{i}v_{j}]$$

Deep Belief Network

Figure: Deep Belief Network

$$p\left(\mathbf{v},\mathbf{h}^{1},\mathbf{h}^{2},\mathbf{h}^{3};\theta\right) = \underbrace{\frac{p\left(\mathbf{v}|\mathbf{h}^{1};W^{1}\right)p\left(\mathbf{h}^{1}|\mathbf{h}^{2};W^{2}\right)}{SBN}}_{QBM} \underbrace{\frac{p\left(\mathbf{h}^{2},\mathbf{h}^{3};W^{3}\right)}{RBM}}$$

Why does this kind of learning work?

RBM and DBN with identical weights $W^1 = W^{1^T}$ have the same joint distribution.

DBN:
$$p\left(\mathbf{v}, \mathbf{h}^{1}; W^{1}, W^{1^{T}}\right) = \sum_{\mathbf{h}^{2}} p\left(\mathbf{v}, \mathbf{h}^{1}, \mathbf{h}^{2}; W^{1}, W^{1^{T}}\right)$$

RBM: $p\left(\mathbf{v}, \mathbf{h}^1; W^1\right)$

$$ho(\mathbf{v}) = \sum_{\mathbf{h}}
ho(\mathbf{h}^1)
ho(\mathbf{v}|\mathbf{h}^1)$$

Idea: leave $p(\mathbf{v}|\mathbf{h}^1)$ fixed and try to improve $p(h^1)$ via the second RBM (learning a better model of $p(h^1; W^2)$)

Example: MNIST - Deep Belief Network

Figure: "A fast learning algorithm for deep belief nets" (Hinton et al., 2006)

Thank you for your attention!