Online Retail Analytics

Lets see few values of the Online Retail data:

```
Description Quantity
##
    InvoiceNo StockCode
## 1
       536365 85123A WHITE HANGING HEART T-LIGHT HOLDER
## 2
       536365
                71053
                                      WHITE METAL LANTERN
                                                               6
     536365 84406B
                           CREAM CUPID HEARTS COAT HANGER
                                                               8
## 3
     536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE
                                                               6
## 4
## 5
       536365 84029E
                           RED WOOLLY HOTTIE WHITE HEART.
                                                               6
## 6
       536365
                22752
                            SET 7 BABUSHKA NESTING BOXES
       InvoiceDate UnitPrice CustomerID
                                            Country
## 1 12/1/2010 8:26 2.55 17850 United Kingdom
                       3.39 17850 United Kingdom
2.75 17850 United Kingdom
## 2 12/1/2010 8:26
## 3 12/1/2010 8:26
                       2.75
## 4 12/1/2010 8:26
                       3.39
                               17850 United Kingdom
                              17850 United Kingdom
## 5 12/1/2010 8:26
                       3.39
                       7.65 17850 United Kingdom
## 6 12/1/2010 8:26
```

DATA EXPLORATION:

```
#Descrptive statistics
summary(Online_data)
```

##	InvoiceNo	StockCode	Description	Quantity
##	Length:541909	Length:541909	Length:541909	Min. :-80995.00
##	Class :character	Class :character	Class :character	1st Qu.: 1.00
##	Mode :character	Mode :character	Mode :character	Median: 3.00
##				Mean : 9.55
##				3rd Qu.: 10.00
##				Max. : 80995.00
##				
##	InvoiceDate	UnitPrice	CustomerID	Country
##	Length:541909	Min. :-11062.06	Min. :12346	Length:541909
##	Class :character	1st Qu.: 1.25	1st Qu.:13953	Class :character
##	Mode :character	Median: 2.08	Median :15152	Mode :character
##		Mean : 4.61	Mean :15288	
##		3rd Qu.: 4.13	3rd Qu.:16791	
##		Max. : 38970.00	Max. :18287	
##			NA's :135080	

ASSIGNMENT QUESTIONS

1. Show the breakdown of the number of transactions by countries i.e. how many transactions are in the dataset for each country (consider all records including cancelled transactions). Show this in total number and also in percentage. Show only countries accounting for more than 1% of the total transactions.

#Total number of transactions by each country accounting more than 1% of total transactions

##			Country	$n_Transactions$	percentage
##	1	United	Kingdom	495478	91.4319563
##	2		Germany	9495	1.7521392
##	3		France	8557	1.5790474
##	4		EIRE	8196	1.5124311
##	5		Spain	2533	0.4674217
##	6	Neth	erlands	2371	0.4375273
##	7		Belgium	2069	0.3817984
##	8	Swit	zerland	2002	0.3694347
##	9	P	ortugal	1519	0.2803054
##	10	Au	ıstralia	1259	0.2323268
##	11		Norway	1086	0.2004027
##	12		Italy	803	0.1481799
##	13	Channel	${\tt Islands}$	758	0.1398759
##	14		Finland	695	0.1282503
##	15		Cyprus	622	0.1147794

2. Create a new variable 'Transaction Value' that is the product of the existing 'Quantity' and 'Unit Price' variables. Add this variable to the data frame

Added New variable 'TransactionValue' to the end of the dataset (Highlighted by a red color line)

let's see the top rows of the dataset after the variable is added

Quantity	Description	StockCode	InvoiceNo		##
6	WHITE HANGING HEART T-LIGHT HOLDER	85123A	536365	1	##
6	WHITE METAL LANTERN	71053	536365	2	##
8	CREAM CUPID HEARTS COAT HANGER	84406B	536365	3	##
6	KNITTED UNION FLAG HOT WATER BOTTLE	84029G	536365	4	##

3

##	5	536365	84	1029E	RED WOOLI	Y HOTTIE	WHITE HE	CART. 6
##	6	536365	2	22752	SET 7 E	BABUSHKA	NESTING E	OXES 2
##		Invoice	eDate	${\tt UnitPrice}$	CustomerI	ID	Country	TransactionValue
##	1	12/1/2010	8:26	2.55	1785	0 United	Kingdom	15.30
##	2	12/1/2010	8:26	3.39	1785	0 United	Kingdom	20.34
##	3	12/1/2010	8:26	2.75	1785	0 United	Kingdom	22.00
##	4	12/1/2010	8:26	3.39	1785	0 United	Kingdom	20.34
##	5	12/1/2010	8:26	3.39	1785	0 United	Kingdom	20.34
##	6	12/1/2010	8:26	7.65	1785	0 United	Kingdom	15.30

3. Using the newly created variable, Transaction Value, show the breakdown of transaction values by countries i.e. how much money in total has been spent each country. Show this in total sum of transaction values. Show only countries with total transaction exceeding 130,000 British Pound.

List of countries with total transaction exceeding 130,000 British Pounds # See the Top values of the Output

##		Country	${\tt Total_Sum_of_Transactions}$
##	1	Australia	137077.3
##	2	EIRE	263276.8
##	3	France	197403.9
##	4	Germany	221698.2
##	5	Netherlands	284661.5
##	6	United Kingdom	8187806.4

4. Conversion of categorical variable 'Invoice Date' into POSIXIt Object

See the Data after Conversion with new columns (Highlighted by a red color line)

#Lets see the few values of the dataset with new columns (New_Invoice_Date, Invoice_Day_Week, New_Invoice_Hour, New_Invoice_Month)

##		InvoiceNo	StockCode				Descri	otion	Quantit	у
##	1	536365	85123A	WHITE	HANGING H	HEART T	-LIGHT H	OLDER		6
##	2	536365	71053			WHITE N	METAL LA	NTERN		6
##	3	536365	84406B	CR	REAM CUPII	HEARTS	S COAT H	ANGER		8
##	4	536365	84029G	KNITTED	UNION FI	LAG HOT	WATER BO	OTTLE		6
##	5	536365	84029E	RE	ED WOOLLY	HOTTIE	WHITE H	EART.		6
##	6	536365	22752		SET 7 BAH	BUSHKA 1	NESTING H	BOXES		2
##		Invoice	eDate Unit	Price Cu	stomerID		${\tt Country}$	Trans	sactionV	alue
##	1	12/1/2010	8:26	2.55	17850	${\tt United}$	${\tt Kingdom}$		1	5.30
##	2	12/1/2010	8:26	3.39	17850	${\tt United}$	Kingdom		2	20.34
##	3	12/1/2010	8:26	2.75	17850	${\tt United}$	Kingdom		2	22.00
##	4	12/1/2010	8:26	3.39	17850	${\tt United}$	Kingdom		2	20.34
##	5	12/1/2010	8:26	3.39	17850	${\tt United}$	Kingdom		2	20.34
##	6	12/1/2010	8:26	7.65	17850	${\tt United}$	${\tt Kingdom}$		1	5.30
##		New_Invoi	ce_Date In	voice_Da	y_Week Ne	ew_Invo	ice_Hour	New_:	${ t Invoice}_{ t }$	Month
##	1	2010	0-12-01	Wed	lnesday		8			12
##	2	2010	0-12-01	Wed	lnesday		8			12
##	3	2010	0-12-01	Wed	lnesday		8			12
##	4	2010	0-12-01	Wed	lnesday		8			12
##	5	2010	0-12-01	Wed	lnesday		8			12
##	6	2010	0-12-01	Wed	lnesday		8			12

A) Show the percentage of transactions (by numbers) by days of the week

```
Invoice_Day_Week Percent_of_Trans_Num_by_week
##
## 1
               Friday
                                            15.16731
## 2
               Monday
                                            17.55110
## 3
               Sunday
                                            11.87930
             Thursday
                                            19.16503
## 4
              Tuesday
                                            18.78692
## 5
## 6
            Wednesday
                                            17.45035
```

B) Show the percentage of transactions (by transaction volume) by days of the week

##		Invoice_Day_Week	Percent_of_Trans_Vol_by_week
##	1	Friday	15.804787
##	2	Monday	16.297194
##	3	Sunday	8.265282
##	4	Thursday	21.671867
##	5	Tuesday	20.170636
##	6	Wednesday	17.790232

C) Show the percentage of transactions (by transaction volume) by month of the year

##		New_Invoice_Month	Percent_of_Trans_by_month
##	1	1	5.744919
##	2	2	5.109515
##	3	3	7.009487
##	4	4	5.059703
##	5	5	7.420519
##	6	6	7.090080
##	7	7	6.989308
##	8	8	7.003469
##	9	9	10.460751
##	10	10	10.984123
##	11	11	14.995836
##	12	12	12.132290

D) What was the date with the highest number of transactions from Australia?

```
## InvoiceDate Australia_highest_no_transactions
## 1 6/15/2011 13:37 139
```

E) The company needs to shut down the website for two consecutive hours for maintenance. What would be the hour of the day to start this so that the distribution is at minimum for the customers? The responsible IT team is available from 7:00 to 20:00 every day.

Dataframe with Hour and its corresponding no of transactions per day

##		New_Invoice_Hour	${\tt No_Of_Transactions}$	Percentage
##	1	7	383	0.07067607
##	2	8	8909	1.64400296
##	3	9	34332	6.33538103
##	4	10	49037	9.04893626
##	5	11	57674	10.64274629
##	6	12	78709	14.52439432
##	7	13	72259	13.33415758
##	8	14	67471	12.45061440
##	9	15	77519	14.30480025
##	10	16	54516	10.05999162
##	11	17	28509	5.26084638
##	12	18	7974	1.47146477
##	13	19	3705	0.68369413
##	14	20	871	0.16072809

It is clearly evident that the good time for maintenance shutdown would be 6.00 am and 20:00 pm. As it is mentioned in the question that responsible IT team would be available from 7.00am to 20:00 pm, the best time would be 7.00 am and 20:00 pm as the distribution would be minimum at these hours.

5. Plot the histogram of transaction values from Germany. Use the hist() function to plot.

Histogram of Transaction values from Germany

6. Which customer had the highest number of transactions? Which customer is most valuable (i.e.highest total sum of transactions)?

Assumption 1:

a) Considering the <u>Number of Transactions</u> to find most Valuable Customer (Without NA Values)

Assumption 2:

b) Considering the <u>Number of Transactions</u> to find most Valuable Customer (With NA Values)

Assumption 3:

c) Considering the <u>Total sum of Transactions</u> to find most Valuable Customer (Without NA Values)

```
## CustomerID Highest_Trans_Volume
## 1 14646 279489
```

Assumption 4:

d) Considering the <u>Total sum of Transactions</u> to find most Valuable Customer (With NA Values)

```
## CustomerID Highest_Trans_Volume_with_NAValues
## 1 NA 1447682.1
## 2 14646 279489.0
## 3 18102 256438.5
```

7. Calculate the percentage of missing values for each variable in the dataset

Percentage of missing values in the dataset

	Missing_Values_Percent <dbl></dbl>	
InvoiceNo	0.000000	
StockCode	0.0000000	
Description	0.0000000	
Quantity	0.0000000	
InvoiceDate	0.0000000	
UnitPrice	0.0000000	
CustomerID	0.2492669	
Country	0.0000000	
TransactionValue	0.0000000	
New_Invoice_Date	0.0000000	

Only CustomerID variable has the missing value with 24.92 %

8. What are the number of transactions with missing Customer ID records by countries?

No. of transactions with missing CustomerID records by countries

##	#	A tibble: 9 x 2	2
##		Country	${\tt No_of_missing_ID}$
##		<chr></chr>	<int></int>
##	1	United Kingdom	133600
##	2	EIRE	711
##	3	Hong Kong	288
##	4	Unspecified	202
##	5	Switzerland	125
##	6	France	66
##	7	Israel	47
##	8	Portugal	39
##	9	Bahrain	2

9. On average, how often the customers come back to the website for their next shopping? (i.e. what is the average number of days between consecutive shopping). Hint: 1. A close approximation is also acceptable and you may find diff() function useful

Assumption 1:

Let's see the top rows of the average days of consecutive shopping Per customer (Including Cancelled transactions)

	CustomerID <int></int>	avg <time></time>
1	12347	60.83333 days
2	12348	94.33333 days
3	12352	43.33333 days
4	12356	151.50000 days
5	12358	149.00000 days
6	12359	64.80000 days

Assumption 2:

Lets see the top rows of the average days of consecutive shopping per customer (Without Cancelled Transactions)

CustomerID <int></int>	avg <time></time>
12347	60.833333 days
12348	94.333333 days
12352	43.333333 days
12356	151.500000 days
12358	149.000000 days
12359	91.333333 days
12360	74.000000 days
12362	32.444444 days
12363	133.000000 days
12364	35.000000 days

The average days of consecutive shopping for all the customers (Without Cancelled Transactions)

een_shopping <time></time>	avg_days_bet
78.42025 days	
	KOM

10. In the retail sector, it is very important to understand the return rate of the goods purchased by customers. In this example, we can define this quantity, simply, as the ratio of the number of transactions cancelled (regardless of the transaction value) over the total number of transactions. With this definition, what is the return rate for the French customers? Consider the cancelled transactions as those where the 'Quantity' variable has a negative value.

```
# [1] "The return rate for the french customers is : 1.7412644618441"
```

11. What is the product that has generated the highest revenue for the retailer? (i.e. item with the highest total sum of 'TransactionValue').

```
## Description High_Revenue
## 1 DOTCOM POSTAGE 206245.5
```

12. How many unique customers are represented in the dataset? You can use unique() and length() functions.

```
## [1] "The number of Unique Customers in the dataset are: 4373"
```