CSE4203: Computer Graphics Chapter – 3 Raster Images

Outline

- Raster and Raster Images
- Display Devices
- Pixel Values
- RGB Color
- Alpha Compositing

Credit

CS4620: Introduction to Computer Graphics

Cornell University

Instructor: Steve Marschner

http://www.cs.cornell.edu/courses/cs46

20/2019fa/

Raster (1/1)

 Most computer graphics images are presented on raster display.

- i.e. television
- has rectangular array of small light-emitting pixels
 - individually set to different colors to create desired image.

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/ Image source: https://commons.wikimedia.org/wiki/File:Bresenham_line.png

Storing Images (1/2)

Raster Image:

 used to store and process images, as rasters are common in devices

- simply a 2D array
- stores the pixel value for each pixel
- usually a color stored as three numbers (r, g, b)

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/ Image source: https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/what-is-raster-data.htm

Storing Images (2/2)

- Vector Image:
 - storing descriptions of shapes
 - areas of color bounded by lines or curves
 - no reference to any pixel grid.

 Need to store instructions for displaying the image rather than the pixels needed to display it.

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/ Image source: https://signalizenj.wordpress.com/2015/01/29/vector-vs-raster/

Storing Images (2/2)

Vector Image:

Q: Advantage/ Disadvantage?

Display Devices (1/1)

- Transmissive Displays:
 - require a light source to illuminate them
 - backlight behind the array
 - i.e. in a projector, a lamp emits light projected onto the screen after passing through the array.
- Emissive Display:
 - it is its own light source.

Emissive Displays (1/2)

- Emissive Displays:
 - Example: light-emitting diode (LED)
 - Each pixel is composed of one or more LEDs (semiconductor devices)
 - emit light with intensity ↔ electrical current passing through them

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/

Emissive Displays (2/2)

Sub-pixel:

- Pixels divided into three independently controlled subpixels (R, G, B)
 - each with own LED (different materials)
 - emit light of different colors

Transmissive Displays (1/3)

- Transmissive Displays:
 - Example: light crystal display (LCD)
- Molecular structure of liquid crystal rotates the polarization of light that passes through it
- LCDs also have sub-pixels.

Transmissive Displays (2/3)

Degree of rotation ↔ applied voltage

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/

Transmissive Displays (3/3)

youtu.be/k7xGQKpQAWw?t=77

Pixel Values (1/1)

- Coordinate system for raster screen:
 - Convention:

RGB Color (1/1)

black =
$$(0, 0, 0)$$
, red = $(1, 0, 0)$, green = $(0, 1, 0)$,
blue = $(0, 0, 1)$, yellow = $(1, 1, 0)$, magenta = $(1, 0, 1)$,
cyan = $(0, 1, 1)$, white = $(1, 1, 1)$

Image Source: https://www.geeksforgeeks.org/computer-graphics-the-rgb-color-model/

Alpha Compositing (1/3)

- Partially overwriting the contents of a pixel.
 - Where we have a background and want to insert a foreground image over it.
 - Transparent
 - Opaque (not transparent)
 - Partially Transparent

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/ Image source: http://www.graphicalweb.org/2005/papers/abstractsvgopen/index.html

Alpha Compositing (2/3)

foreground and background must be blended.

$$c = \alpha c_f + (1 - \alpha)c_b$$

• α = Fraction of the pixel covered by the foreground layer

Alpha Compositing (3/3)

- Alpha Mask:
 - The α values for all the pixels is stored in a separate gray scale image.

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/

Practice Question 1

• Given that, $C_f = 1.0$, $C_b = 0.5$ and C = 0.8, where, C_{f_s} , C_b and C are the foreground, background and composite intensities respectively. Determine the alpha(α) value to perform alpha compositing.

Additional Reading

- 3.1.2: Hardcopy Devices.
- 3.2.1: Pixel formats with typical applications.
- 3.2.2: Monitor Intensities and Gamma.
- Frequently Asked Questions

Thank You