WEEK 11 DYNAMIC PROGRAMMING ALGORITHM

2024-03-28

0/I KNAPSACK PROBLEM

$$P = 2, W = 3$$

$$P = 5, W = 4$$

$$P = 6, W = 5$$

- We have a bag with capacity of 8 kg.
- There are 4 objects with different weights and profits.
- 0-1 means that you can either choose or not choose the object, not cut in a half.
- We want to carry objects so that the total weight does not exceed the bag capacity, and the total profit is maximized.

SAME OPTIMIZATION PROBLEM, WITH DIFFERENT APPROACH

- It is still the problem about decision to choose or not to choose the items, in order to optimize some objective.
- Greedy algorithm only cover just a few of these problem. Many of the rest can be solved by "dynamic programming algorithm".
- How can we guarantee the optimality of the solution in any optimization problem?

BRUTE FORCE

- There are 4 steps of choosing / not choosing an object
- Each choice is independent from others
- Trying all possible ways takes $2^{O(n)}$
- Very inefficient

RECURSIVE BACKTRACKING

Ask friend to find an optimal solution for each subproblem

- Recursive algorithm:
 - Break down the big problem into some smaller parts that friends can help.
 - Let friends solve the same problem, but with the smaller input.
- Survey all the possible subproblem
 - Use a bird to guide to all possible subproblems
- In the textbook, it is called "bird and friend" algorithm

HOW MANY LOOPS DONE BY BIRDS AND FRIENDS?

- Unwinding the recursion, we can see the entire tree of all possible choices.
- Same size as the brute force
- In fact, it is just a rearrangement of the brute force

REDUCING REDUNDANCY

They are the exact same task

- Independent of birds' choice, works done by friends are the same, no matter what the bird choice is.
- We can reduce the redundancy of the friends work by taking a note.

DYNAMIC PROGRAMMING ALGORITHM

- Rearrangement of the work done in the brute force algorithm so that the each of the common sub-instance is optimized just once and is recorded for the future use.
- Next time the bird explores the same subinstance again, the next friend can reuse the optimal solution solved by the first friend.

RECURSION FROM TOP TO BOTTOM

Solve it just once, then copy

- The recursion call for solving the smaller problems from top to bottom.
- The recursion really get the optimal solution from the lowest level first (base case with sub-instance size = 1).
- Then the upper level takes these optimal solutions as a part of the longer solution.

GET THE SOLUTION FROM BOTTOM TO TOP

Optimal solution for the last object

BEST OF THE LAST 2 OBJECTS

Optimal solution for the last 2 objects

BEST OF THE LAST 2 OBJECTS

Optimal solution for the last 2 objects

BEST OF THE LAST 3 OBJECTS

Optimal solution for the last 3 objects

BEST OF THE LAST 3 OBJECTS

Optimal solution for the last 3 objects

BEST OF ALL 4 OBJECTS

Optimal solution for all 4 objects

TURN UPSIDE DOWN

First item will be the first one to take note

Explore choices for the last item first

- Friends start taking note for the optimal solution on the last item first.
- It is ok, but it is better to start with the first item.
- Turning it upside down
 - Let the bird explores choices on the last item
 - Recursion on the smaller sub-instance, which is the first n-1 items.
 - The first item will be the first one to take note
 - So it makes more sense to start working with the first item

OVERALL DYNAMIC PROGRAMMING

- Take note among choices of the first object
- Proceed to the sub-instance with one more object. Compare between
 - The previous optimal solution with one less object
 - Some other smaller optimal solution combined to the current choice
 - Take the better choice, record the profit to the table.

FIBONACCI

f(n-1) and f(n-2) are recorded in the table already. No need to recalculate

- Recursion vs dynamic programming
- Recursive Fibonacci takes a long time since f(n-1) and f(n-2) needs to be recalculate every time.
- If we just "take note" of what has been calculate, we can just go back and take it.

0/I KNAPSACK PROBLEM WITH DYNAMIC PROGRAMMING

- Bird: explore every choices of choosing the last item.
- Friend: find optimal choice that maximize profit for the first n-l items.
- **Dynamic programming**: First friend takes note for the optimal solution size n-1 so that other friend can use this information as well.
- Starts from the smallest *n* first.

WHAT TO TAKE NOTE

- Values in the table are the optimal profits of the smaller problems
- Smaller problem
 - Smaller bag size
 - Fewer number of objects
- Notetaking must be a 2D table storing optimal profit for all possible bag size and subset of the objects.

FILLING THE TABLE

	0	ı	2	3	4	5	6	7	8
0									
I									
2									
3									
4									

P = I, W = 2

P = 2, W = 3

P = 5, W = 4

P = 6, W = 5

FIRST ROW

	0		2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
I									
2									
3									
4									

P = I, W = 2

P = 2, W = 3

P = 5, W = 4

P = 6, W = 5

Optimal solution for 0 object with any size of the bag

	0		2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
ı	0	0	I	I	I	I	I	I	- 1
2									
3									
4									

P = I, W = 2

P = 2, W = 3

P = 5, W = 4

P = 6, W = 5

Case I: bag size < first object size

Case II: bag size ≥ first object size → Profit of the first object

 \rightarrow 0

		0		2	3	4	5	6	7	8
	0	0	0	0	0	0	0	0	0	0
P = I, W = 2	I	0	0	I	I		I	I	I	I
P = 2, W = 3	2									
P = 5, W = 4	3									
P = 6, W = 5	4									

Choice 1: not use the current object

	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
ı	0	0	İ	I	I	I	I	I	I
2									
3									
4									

P = I, W = 2

P = 5, W = 4

P = 6, W = 5

Choice 2: use the current object Must spare the empty slot for this object (w = 3)Then add the profit of the current object (p = 2)

	0	I	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
I	0	0		I		I	I	I	I
2				\	2				
3									
4									

P = I, W = 2

P = 5, W = 4

P = 6, W = 5

ANY OTHER OBJECT

- Example: weight = 3, profit = 2
- In order to put the second object, the bag must have 3 unit left.
- Refer to the optimal solution of the bag with 3 unit smaller.
- In each column j, there are 2 cases to compare
 - Optimal solution of column j in the previous row
 - Add profit of the second object to the optimal solution of the bag size j-3

IN GENERAL

- In each column j, there are 2 cases to compare
 - Optimal solution of column j in the previous row
 - Add profit of the current object (p_i) to the optimal solution of the bag size $j w_i$

$$opt_{i,j} = \max(opt_{i-1,j}, opt_{i-1,j-w_i} + p_i)$$

	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
ı	0	0	I	I	I	I	I	I	I
2									
3									
4									

$$P = 2, W = 3$$

$$P = 5$$
, $W = 4$

$$P = 6$$
, $W = 5$

	0	ı	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
I	0	0	I	I	I	I	I	I	I
2	0	0	I	2	2	3	3	3	3
3									
4									

$$P = 5$$
, $W = 4$

$$P = 6, W = 5$$

	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
I	0	0	I	I	I	I	I	I	I
2	0	0	I	2	2	3	3	3	3
3	0	0	I	2	5	5	6	7	7
4									

$$P = 5$$
, $W = 4$

	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
I	0	0	I	I	I	I	I	I	I
2	0	0	I	2	2	3	3	3	3
3	0	0	I	2	5	5	6	7	7
4	0	0	I	2	5	6	6	7	8

$$P = 2, W = 3$$

TRACE FOR THE CHOICES

P = I, W = 2

P = 2, W = 3

P = 5, W = 4

P = 6, W = 5

If the profit equals to the number on top, the object is not chosen.

X

Otherwise, step back to the left by w columns. The object is chosen.

W = 5

LOOP INVARIANT

- General: what is stored in the table is the optimal value of all smaller subproblems.
- For 0-1 knapsack problem: Value in row i column j is the optimal profit for the first i objects in the bin size j.

(STRONG) INDUCTION PROOF

- Assume that all of the rows above (until i-1) and every preceding columns (until j-1) in the same row is filled with the optimal profit.
- We have to show that

$$\max(opt_{i-1,j}, opt_{i-1,j-w_i} + p_i)$$

in the current cell is the optimal profit for i objects in the bag size j.

BASE CASE

- When using no object at all, it is clear that the profit = 0 in any bag size.
- So, the optimal profit of 0 object is 0.

	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
I									
2									
3									
4									

INDUCTIVE STEP

- There are only two choices to get the candidate of the optimal profit for bag size j:
 include object i or not include object i.
 - Case 1: Object i is included, then use $opt_{i-1,j}$
 - Since $opt_{i-1,j}$ is the optimal profit for the first i-1 objects,
 - We do not include object i in here.
 - So $opt_{i-1,j}$ is still the optimal profit for the first i objects, when not including object i.

INDUCTIVE STEP

- Case 2: Object i is not included, then use $opt_{i-1,j-w_i} + p_i$
 - We need w_i empty space for including object i inside the bag size j. The remaining space is $j w_i$.
 - In the remaining space, $opt_{i-1,j-w_i}$ is the optimal profit for the first i-1 objects for the bag size $j-w_i$.
 - After including object i, we have that $opt_{i-1,j-w_i} + p_i$ is the optimal profit for the first i objects when including object i.

INDUCTIVE STEP

- The maximum value among the two cases is the highest possible value for profit with i objects within the bag size j.
- So we found the optimal profit for i objects within the bag size j.

TIME COMPLEXITY

P = I, W = 2

(P=2) W=3

P = 5, W = 4

P = 6, W = 5

The task is filling the table size

$$(w+1)(n+1)$$

Where w is the capacity of the bag, and n is the number of objects.

Time complexity for the knapsack problem is O(wn)

For larger n, this big-O is much less than $2^{O(n)}$.

$$P = 4$$
, $W = 2$

$$P = 9, W = 7$$

$$P = 6, W = 5$$

$$P = 4$$
, $W = 3$

	0	1	2	3	4	5	6	7	8	9	10	-11	12	13
0														
I														
2														
3														
4														
5														