ALGEBRA 2

ANELLI

- $f: A \to B$ allora $\operatorname{Im} f \cong \frac{A}{\operatorname{Ker} f}$
- $I\subseteq A$ ideale, $B\subseteq A$ sottoanello allora vale $\frac{I+B}{I}\cong \frac{B}{I\cap B}$
- $I, J \subseteq A$ ideali e $I \subseteq J$. Allora vale $\frac{A}{J} \cong \frac{A}{J}$ Si ha inoltre la corrispondenza tra gli ideali di $\frac{A}{I}$ e gli ideali $J \subseteq A$ tali che $I \subseteq J$. In questa corrispondenza i primi ed i massimali si corrispondono
- $IJ \subseteq I \cap J$. Se vale I+J=1 allora $IJ=I \cap J$
- È FALSO che $I \cap (J + K) = (I \cap J) + (I \cap K)$. FALSO
- $I \subseteq \sqrt{I}$
- (A dominio) a primo $\implies a$ irriducibile
- (A UFD) a irriducibile $\implies a$ primo
- Se $H \subseteq A \times B$ è ideale allora $H = I \times J$ con $I \subseteq A$, $J \subseteq B$ ideali
- $A \cong A_1 \times A_2 \Leftrightarrow \exists e \in A, e \neq 0, 1 \quad e^2 = e$
- $\mathcal{D}(A) = \bigcup_{a \notin A^*} (0:a) = \bigcup_{a \notin A^*} \sqrt{(0:a)}$ e $\sqrt{\mathcal{D}(A)} = \mathcal{D}(A)$, anche se non è necessariamente un ideale
- $\{E_{\lambda}\}_{{\lambda}\in\Lambda}$ sottoinsiemi di A. Allora $\cup_{{\lambda}\in\Lambda}\sqrt{E_{\lambda}}=\sqrt{\cup_{{\lambda}\in\Lambda}E_{\lambda}}$
- Sia A dominio con un numero infinito di elementi e $\mid A^* \mid < \infty$ allora A possiede infiniti ideali massimali
- I massimale $\implies I$ primo $\implies I$ primario. Inoltre A dominio $\Leftrightarrow (0)$ ideale primo
- Sono equivalenti:
 - A ha un unico ideale massimale
 - ∃ \mathfrak{m} ⊆ A ideale massimale t.c. $\forall a \in A \setminus \mathfrak{m} \implies a \notin A^*$
 - \exists m ⊆ A ideale massimale t.c. ogni elemento della forma 1 + m è invertibile
- $a \in \mathcal{J}(A) \Leftrightarrow \forall b \in A \quad 1 ab \in A^*$
- $\sqrt{I} = \bigcap_{I \subseteq P \text{ primi } P}$
- (Lemma di Scansamento) P_1, \dots, P_n ideali primi. Sia $I \subseteq A$ ideale t.c. $I \subseteq \cup_{i=1}^n P_i$. Allora $\exists j$ t.c. $I \subseteq P_j$
- I_1, \ldots, I_n ideali e P ideale primo. $\bigcap_{i=1}^n I_i \subseteq P \implies \exists j \text{ t.c. } I_j \subset P$. Inoltre se $P = \bigcap_i I_i$ allora $\exists j \text{ t.c. } I_i = P$
- (Teorema cinese) Siano $I_1, \ldots, I_n \subseteq A$ ideali tali che $I_i + I_j = 1$. Allora $\forall a_1, \ldots, a_n \in A \exists a \in A \text{ t.c. } a \equiv a_i(I_i)$
- A anello c.u. Allora si ha che
 - $-f \in A[x]$ è un'unità $\Leftrightarrow f = \sum_{i=0}^n a_i x^i$ con $a_i \in A$ tali che $a_0 \in A^*$ e $a_i \in \mathcal{N}(A) \quad \forall i \geq 1$
 - $f \in A[x]$ è nilpotente $\Leftrightarrow \forall i \quad a_i \in \mathcal{N}(A)$

– $f \in A[x]$ è divisore di zero $\Leftrightarrow \exists c \in A, c \neq 0$ t.c. cf = 0

Si ha inoltre per gli anelli di polinomi che

- $I \text{ primo} \Leftrightarrow I[x] \text{ primo}$
- I primario $\Leftrightarrow I[x]$ primario

NON è vero che tutti gli ideali di A[x] sono del tipo I[x], come ad esempio (x)

- Gli ideali primi di $\mathbb{Z}[x]$ sono dei seguenti tipi:
 - -(0)
 - $-(p)[x] \operatorname{con} p \in \mathbb{P}$
 - -(f(x)) con f irriducibile
 - (p, f(x)) con $p \in \mathbb{P}$ e f irriducibile modulo p (Questi sono anche massimali)
- $u \in A^*$, $a \in \mathcal{N}(A)$, allora $u + a \in A^*$ (Somma di un nilpotente e di un invertibile)
- \bullet *I* primo \Longrightarrow *I* irriducibile
- In A[x] si ha $\mathcal{N}(A[x]) = \mathcal{J}(A[x])$ (Mentre in generale vale solo che $\mathcal{N}(A) \subseteq \mathcal{J}(A)$)
- Sia $\phi:A\to B$ omomorfismo di anelli. Allora
 - $-\phi(\mathcal{N}(A))\subseteq\mathcal{N}(B)$
 - Se ϕ è surgettivo allora $\phi(\mathcal{J}(A)) \subseteq \mathcal{J}(B)$
 - A semilocale (con un numero finito di ideali massimali) $\implies \phi(\mathcal{J}(A)) = \mathcal{J}(B)$
- $A \text{ PID} \implies \mathcal{J}(A) = \mathcal{N}(A)$
- A t.c. ogni ideale è primo $\implies A$ è un campo
- A t.c. ogni ideale primo è principale $\implies A$ è un anello ad ideali principali
- \sqrt{I} massimale $\implies I$ primario.
- I primario, $J \not\subseteq \sqrt{I} \implies \sqrt{I:J^i} = \sqrt{I} \forall i$
- $I = \sqrt{I}$ e $h \notin I \implies I : h$ è radicale
- (**Teorema della base di Hilbert**) Se A è un anello Nötheriano, allora A[x] è Nötheriano

Basi di Gröbner

IDEALI MONOMIALI

Un ideale monomiale in $K[x_1, \ldots, x_n]$ è un ideale generato dai monomi

- (Criterio di appartenenza) Sia I un ideale monomiale e $f \in K[x_1, \dots, x_n]$, $f = \sum_{\beta} c_{\beta} x^{\beta}$ con $c_{\beta} \in K$. Allora $f \in K \Leftrightarrow \forall \beta x^{\beta} \in I$
- (**Lemma di Dickson**) Ogni ideale monomiale è finitamente generato. (La frontiera minimale di un ideale monomiale è unica, e viene detta Escalièr)
- (Operazioni con ideali monomiali) Siano $I_1=(m_1,\ldots,m_k)$ e $I_2=(n_1,\ldots,n_s)$ con m_i,n_j monomi. Allora si ha
 - $-I_1+I_2=(m_1,\ldots,m_k,n_1,\ldots,n_s)$
 - $I_1 \cap I_2 = (\text{MCD}_{i,j}(m_i, n_j))$
 - $I_1 \cdot I_2 = (m_i \cdot n_j)_{i,j}$

- (Iatto) $(I, m \cdot n) = (I, m) \cap (I, n)$ se MCD (m, n) = 1 come monomi
- I primo $\Leftrightarrow I = (x_{i_1}, \dots, x_{i_k})$ (ed è massimale solo se le variabili compaiono tutte, ma DEVE essere monomiale)
- $I = \sqrt{I}$ (ovvero I è radicale) $\Leftrightarrow \sqrt{m_i} = m_i \forall i$
- I è primario $\Leftrightarrow I=(x_{i_1}^{\alpha_1},\ldots,x_{i_k}^{\alpha_k},m_1,\ldots,m_s)$ dove $m_1,\ldots,m_s\in K[x_{i_1},\ldots,x_{i_k}]$
- I è irriducibile $\Leftrightarrow I = (x_{i_1}^{\alpha_1}, \dots, x_{i_k}^{\alpha_k})$
- $I \cdot J = I \cap J \Leftrightarrow \forall i, j \quad MCD(m_i, n_j) = 1$
- $I: J = \cap_i (I:n_i) e I: (n_i) = (\frac{m_j}{\text{MCD}(n_i, m_i)})_j$
- Notare che usando la terza relazione del punto precedente possiamo spezzare ogni ideale monomiale in ideali primari e utilizzando $\sqrt{I\cap J}=\sqrt{I}\cap\sqrt{J}$ si possono calcolare anche gli ideali primi associati. Inoltre con la decomposizione in primari si calcolano bene i divisori di zero, i nilpotenti, etc.

ORDINAMENTI MONOMIALI COMUNI

- LEX $x_1 > x_2 > \ldots > x_n$. Dico che $\alpha \ge \beta \Leftrightarrow \text{In } \alpha \beta \text{ la prima coordinata} \ne 0$ è positiva
- DEGLEX Sia $|\alpha| := \sum_i \alpha_i$. Allora $\alpha \ge \beta \Leftrightarrow \text{si ha } |\alpha| \ge |\beta|$ oppure $|\alpha| = |\beta|$ e vale $\alpha \ge \beta$ con LEX
- DEGREVLEX $\alpha \ge \beta \Leftrightarrow |\alpha| > |\beta|$ oppure si ha $|\alpha| = |\beta|$ e in $\alpha \beta$ l'ultima coordinata $\ne 0$ è negativa

BASI DI GRÖBNER E ALGORITMO DI DIVISIONE

- (Algoritmo di Divisione) Siano $f_1, \ldots, f_k, f \in K[x_1, \ldots, x_n]$ allora $\exists a_1, \ldots, x_k, r \in K[x_1, \ldots, x_n]$ tali che $f = \sum_i a_i f_i + r$ e deg $(a_i f_i) \leq \deg(f)$. Inoltre se $r = \sum_{\alpha} r_{\alpha} x^{\alpha}$ si ha che se $r_{\alpha} \neq 0$ allora $x^{\alpha} \in (\operatorname{lt}(f_1), \ldots, \operatorname{lt}(f_k))$
 - Notiamo che posso fare dei passaggi "a mano" prima di partire con l'algoritmo di divisione e lui funzionerà comunque. La cosa importante è ricordarsi di soddisfare la condizione deg $(a_if_i) \leq \deg(f)$ ad ogni passaggio.
- (Base di Gröbner) Un insieme di polinomi g_1, \ldots, g_k generatori di un ideale I i cui leading term generano lt (I) si dicono base di Gröbner. Sono equivalenti inoltre:
 - $\forall f \quad \exists ! r \text{ resto della divisione di } f \text{ per } \{g_1, \dots, g_k\}$
 - $\forall f \in I = (g_1, \dots, g_k)$ si ha r = 0 dall'algoritmo di divisione
 - $\forall i, j \quad S(g_i, g_j)$ ha resto r = 0 nell'algoritmo di divisione

Dove per divisione si intende un risultato che soddisfi le ipotesi dell'algoritmo di divisione

- (Base di Gröbner ridotta) Una BdG $G = \{g_1, \dots, g_k\}$ si dice ridotta se è minimale per inclusione e inoltre
 - $\operatorname{lc}(g_i) = 1 \quad \forall i$
 - $(\deg(g_1), \ldots, \deg(g_k))$ sono un'escalièr per $\deg(I)$
 - $\forall g_i \quad g_i = \sum_{\alpha} c_{\alpha} x^{\alpha}$ allora $x^{\alpha} \notin \text{lt} (G \setminus \{g_i\})$

Teorema: La base ridotta è unica. Per ridurre una BdG basta prendere ciascun elemento g ed effettuare la divisione per $G\setminus\{g\}$

• (S-polinomio) Dati $f, g \in K[x_1, ..., x_n]$ e supponiamo $f = c_{\alpha}x^{\alpha} + f_1$ e $g = d_{\beta}x^{\beta} + g_1$ con deg $f = \alpha$, deg $g = \beta$. Allora dico S-polinomio tra f, g il polinomio definito da $\gamma = (\gamma_1, ..., \gamma_n)$ con $\gamma_i = \max(\alpha_i, \beta_i)$

$$S(f,g) = \frac{x^{\gamma}}{c_{\alpha}x^{\alpha}}f - \frac{x^{\gamma}}{d_{\beta}x^{\beta}}g$$

APPLICAZIONI E COMPUTAZIONI

- (Eliminazione di LEX) $I \subseteq K[x_1,\ldots,x_n]$ allora $I_k = I \cap K[x_{k+1},\ldots,x_n]$ è il k-esimo ideale di eliminazione. Vale il teorema: Se G è una BdG rispetto a LEX con $x_1 \ge \ldots \ge x_n$ allora $\forall k=1,\ldots,n-1$ si ha che $G_k = G \cap K[x_{k+1},\ldots,x_n]$ è BdG di I_k
- (Cose calcolabili) Dati $I,J\subseteq K[x_1,\ldots,x_n]$ e note le loro due BdG si ha
 - (Intersezione) $I \cap J = (tI, (1-t)J) \cap K[x_1, \dots, x_n]$ dove quindi bisognerà usare l'ordinamento LEX con t come variabile più pesante per poter usare eliminazione
 - (Colon) Se BdG $(J) = \{h_1, \ldots, h_r\}$ allora $I : J = \cap_{i=1}^r (I : h_i)$. Se ora ho $f \in K[x_1, \ldots, x_n]$ e voglio calcolare $I : (f) = \{g \mid gf \in I\}$ allora ho che $I : (f) = \frac{1}{f} \cdot (I \cap (f))$, ovvero se BdG $(I \cap (f)) = \{g_1, \ldots, g_k f\}$ allora ho BdG $(I : (f)) = \{g_1, \ldots, g_k\}$
 - (Ker di morfismi) Sia $\Phi: K[x_1,\ldots,x_n] \to K[y_1,\ldots,y_n]$ tale che $f_i(Y):=\Phi(x_i)$. Allora si ha Ker $\Phi=(x_1-f_1(Y),\ldots,x_n-f_n(Y))\cap K[x_1,\ldots,x_n]$ ovvero bisogna calcolare l'ideale di eliminazione senza le Y
 - (Appartenenza al radicale) $f \in \sqrt{I} \Leftrightarrow 1 \in (I, 1-tf)$ e NON serve K algebricamente chiuso
- (Sistemi di equazioni polinomiali) Cerchiamo le soluzioni comuni di $f_1 = 0, ..., f_n = 0$ in K^n . Valgono:
 - (Esistenza di soluzioni) Se K è algebricamente chiuso, il sistema non ha soluzioni se e solo se $1 \in I = (f_1, \dots, f_n)$, che si vede subito se c'è o meno con una BdG
 - (Teorema di Estensione) $I=(f_1,\ldots,f_k)$ e supponiamo K algebricamente chiuso. $I_1=I\cap K[x_2,\ldots,x_n]$ e $\beta\in\mathcal{V}(I_1)$. $f_i=c_i(x_2,\ldots,x_n)\cdot x_1^{n_1}+\ldots\in K[x_2,\ldots,x_n][x_1]$. Se $\beta\notin\mathcal{V}(c_1,\ldots,c_k)$ allora $\exists a\in K$ t.c. $(a,\beta)\in\mathcal{V}(I)$. Ovvero se i termini davanti alle potenze più alte di x_1 non si annullano tutti su β allora posso estendere β ad una radice di I.
 - (Conseguenza di Estensione) Se la BdG è del tipo $\{x_1^{N_1}+\ldots,x_2^{N_2}+\ldots,\ldots,x_k^{N_k}+\ldots\}$ (deve essere di questa forma in tutte le variabili) allora la varietà è finita.
 - (**Soluzioni finite**) K algebricamente chiuso. $I \subseteq A$. Allora sono fatti equivalenti:
 - * $|\mathcal{V}(I)| < \infty$ ($\mathcal{V}(I)$ è costituita da un numero finito di punti)
 - * $\forall i = 1, \dots, n \quad \exists m_i \text{ t.c. } x_i^{m_i} \in \text{lt } (I)$
 - * $G = \{g_1, \dots, g_r\}$ BdG di I allora $\forall i = 1, \dots, n \quad \exists h_i \in \mathbb{N} \quad \exists g_r \in G \text{ t.c. lt } (g_r) \mid x_i^{h_i} \in \mathbb{N}$
 - * dim $_{K}\frac{A}{I}<\infty$
 - * dim I = 0 (come dimensione di Krull)

Inoltre vale che una K-base di $\frac{A}{I}$ è $\{x^{\alpha}$ t.c. $x^{\alpha} \notin \operatorname{lt}(I)\}$, e anche dim $K \frac{A}{I} = |\mathcal{V}(I)|$ Osservazione: Il nullstellensatz serve solo per la freccia che $|\mathcal{V}(I)| < \infty$ implica una delle altre. Per le freccie inverse non serve.

Ideali e Varietà

Siano $I, J, H \subseteq K[x_1, \dots, x_n]$ ideali e V varietà affine. Allora vale

- $I \subseteq J \implies \mathcal{V}(J) \subseteq \mathcal{V}(I)$
- $I \subseteq \mathcal{I}(\mathcal{V}(I))$
- $\mathcal{V}(\mathcal{I}(V)) = V$
- $\mathcal{V}(I) \subseteq \mathcal{V}(J) \implies \mathcal{I}(\mathcal{V}(J)) \subseteq \mathcal{I}(\mathcal{V}(I))$
- $\mathcal{V}(I+J) = \mathcal{V}(I) \cap \mathcal{V}(J)$
- $\mathcal{V}(I \cdot J) = \mathcal{V}(I) \cup \mathcal{V}(J) = \mathcal{V}(I \cap J)$
- $\mathcal{V}(I) = \mathcal{V}(\sqrt{I})$

• $\mathcal{V}(I,JH) = \mathcal{V}(I,J) \cup \mathcal{V}(I,H)$

Valgono inoltre i seguenti fatti:

- V è irriducibile $\implies \exists pprimo \text{ t.c. } V = \mathcal{V}(p)$ (il viceversa è vero se K è algebricamente chiuso)
- Ogni varietà affine si decompone come unione di un numero finito di varietà irriducibili. Tale decomposizione si può minimizzare nel modo seguente: se compaiono due varietà irriducibili una contenuta dentro l'altra si toglie dall'unione la più piccola. La decomposizione minimalizzata è unica a meno dell'ordine con cui compaiono i fattori irriducibili
- $V = \{\alpha\}$ con $\alpha = (\alpha_1, \dots, \alpha_n)$ allora $\mathcal{I}(V) = (x_1 \alpha_1, \dots, x_n \alpha_n)$ è un ideale massimale. (Se K è algebricamente chiuso allora I è massimale se e solo se è di quella forma)
- (Nullstellensatz) K algebricamente chiuso. Allora $I \subseteq K[x_1, \dots, x_n]$ e si ha:
 - (Forma debole) $V(I) = \emptyset \Leftrightarrow 1 \in I$
 - (Forma forte) $\mathcal{I}(\mathcal{V}(I)) = \sqrt{I}$
- (Normalizzazione di Nöther) K infinito. Se f è un polinomio in $K[x_1, \ldots, x_n]$ t.c. $f \notin I_1 = K[x_2, \ldots, x_n]$ (ovvero x_1 compare) allora $\exists \phi$ cambio lineare di coordinate tale che $\phi(f) = c \cdot x_1^N + \overline{f}$ con deg $x_1, \overline{f} < N$ e $c \neq 0$ costante.
- K algebricamente chiuso. Se I è radicale allora $I = \bigcap_{i=1}^k P_i$ con P_i primi. (Basta decomporre la varietà)

RISULTANTE

• (Definizione di Risultante) Sia R un dominio d'integrità, $f,g \in R[x]$ e $f = \sum_{i=0}^{n} a_i x^i$, $g = \sum_{i=0}^{m} b_i x^i$. Definiamo allora la matrice di Sylvester come

$$\operatorname{Sylv}(f,g) = \begin{bmatrix} a_0 & a_1 & \dots & \dots & a_n & 0 & \dots & \dots & 0 \\ 0 & a_0 & a_1 & \dots & \dots & a_n & 0 & \dots & \dots & 0 \\ \vdots & & \ddots & & & \ddots & & & \vdots \\ 0 & \dots & 0 & a_0 & a_1 & \dots & \dots & a_n & \dots & 0 \\ \hline b_0 & b_1 & \dots & b_m & 0 & \dots & \dots & \dots & 0 \\ 0 & b_0 & b_1 & \dots & b_m & 0 & \dots & \dots & \dots & 0 \\ 0 & 0 & b_0 & b_1 & \dots & b_m & 0 & \dots & \dots & 0 \\ \vdots & & & \ddots & & & & \ddots & & \vdots \\ 0 & \dots & \dots & 0 & b_0 & b_1 & \dots & b_m & 0 \end{bmatrix}$$

Ed il risultante di f e g è Ris $(f,g) = \det \text{Sylv}(f,g)$

- (Definizione alternativa) Ris $(f,g) = a_n^m b_m^n \prod_{i,j} (\alpha_i \beta_j) = a_n^m \cdot \prod_{f(\alpha_i)=0} g(\alpha_i) = (-1)^{mn} b_m^n \cdot \prod_{g(\beta_i)=0} f(\beta_j)$ dove le α_i e le β_j sono le radici rispettivamente di f e di g, con molteplicità
- (Proprietà del risultante) Valgono le seguenti proprietà:
 - Ris $(f,g) = (-1)^{mn}$ Ris (g,f)
 - Ris $(af, g) = a^n \text{Ris } (f, g) \text{ con } a \in R \text{ scalare}$
 - Ris $(f, ag) = a^m \text{Ris } (f, g) \text{ con } a \in R \text{ scalare}$
 - Ris (a, b) = 1 dove $a, b \in R$ sono scalari
 - Ris $(f,g)=0 \Leftrightarrow \exists \alpha \in \overline{R}$ t.c. $f(\alpha)=g(\alpha)=0$ (ovvero il risultante è nullo se e solo se f e g hanno una radice in comune nella chiusura algebrica del campo delle frazioni di R). Inoltre, se R è UFD allora le due precedenti sono equivalenti a $\exists h \in R[x]$ t.c. deg $h>0, h\mid f, h\mid g$
 - $f,g \in R[x]$ e deg $f=n,\deg g=m$, allora Ris(f,g)=Af+Bg con $A,B \in R[x]$ e deg $A< m,\deg B< n$

- Ris $(f, h_1 \cdot h_2)$ = Ris $(f, h_1) \cdot$ Ris (f, h_2)
- Ris $(f,hf+g)=\mathop{\mathrm{deg}}_{m}{}^{(hf+g)\cdot\mathop{\mathrm{deg}}_{g}}\cdot\mathop{\mathrm{Ris}}(f,g)$ [ATTENZIONE: della formula a fianco non sono completamente sicuro]
- In molti casi vale che Ris (f,g) $|_{\alpha}$ = Ris (f_{α},g_{α}) dove con $|_{\alpha}$ si intende la valutazione in α . Bisogna solo stare attenti che almeno uno dei coefficienti direttivi valutati sia non nullo, altrimenti cambia la dimensione della matrice di sylvester e di conseguenza anche il polinomio che definisce il risultante
- Può essere comodo sapere che, detti a_i e b_j i coefficienti di f e di g, si ha che Ris $(f,g)\in\mathbb{Z}[a_i,b_j]$
- (Trucchi utili con il risultante) Dati $f = \prod_i (x \alpha_i)$ e $g = \prod_j (x \beta_j)$, allora si possono costruire i seguenti polinomi:
 - Ris $_{y}(f(x-y),g(y))$ ha radici $\gamma_{i,j}=\alpha_{i}+\beta_{j}$
 - Ris y(f(x+y),g(y)) ha radici $\gamma_{i,j}=\alpha_i-\beta_j$
 - Ris $y(y^{\text{deg }f}f(\frac{x}{y}),g(y))$ ha radici $\gamma_{i,j}=\alpha_i\cdot\beta_j$
 - Se $g(0) \neq 0$ allora Ris y(f(xy), g(y)) ha radici $\gamma_{i,j} = \frac{\alpha_i}{\beta_i}$

Moduli

PRIMI FATTI

- (Fregatura dei Moduli) Attenzione che le seguenti cose non sono sempre vere su moduli generici:
 - Non sempre esiste una base
 - Un sistema di generatori minimale non è necessariamente una base
 - Un insieme libero massimale non è necessariamente una base
 - Due sistemi di generatori minimali non hanno necessariamente la stessa cardinalità (e nemmeno gli insiemi liberi massimali)
- (Omomorfismi di A-Moduli) Dati due A-Moduli M ed N, allora si ha che anche $\operatorname{Hom}_A(M,N)$ è un A-modulo con le operazioni di somma e di prodotto scalare effettuate in arrivo. (Notare che questa proprietà è particolarmente strana e ci tornerà utile più volte). Inoltre si può notare come dato un omomorfismo $f:M\to N$ di A-moduli si ha che $\operatorname{Ker} f=\{m\in M\mid f(m)=0\}$ ed $\operatorname{Im} f=\{f(m)\mid m\in M\}$ sono entrambi due sottomoduli rispettivamente di M e di N. Allora possiamo anche sempre definire $\operatorname{coKer} f=\frac{N}{\operatorname{Im} f}$
- (Fatti di base e definizioni di operazioni importanti) Valgono le seguenti cose:
 - Hom $_A(A,M)\cong_{\text{A-mod}}M.$ Infatti conoscere il valore di f(1) caratterizza tutto l'omomorfismo f, visto che è di A-moduli
 - $L \subseteq N \subseteq M$ allora vale $\frac{M}{N} \cong_{A\text{-mod}} \frac{\frac{M}{L}}{\frac{N}{N}}$
 - $M_1,M_2\subseteq M$ sottomoduli. $M_1+M_2:=\{m_1+m_2\mid m_1\in M_1,m_2\in M_2\}$ allora vale che $\frac{M_1+M_2}{M_2}\cong_{\text{A-mod}}\frac{M_1}{M_1\cap M_2}$
 - $(\frac{A}{I}$ -moduli) Dato $I \subseteq A$ idale ed M modulo si può definire $IM = \{\sum_i a_i m_i \mid a_i \in I, m_i \in M\}$ e si verifica che è un sottomodulo di M. Inoltre vale che $\frac{M}{IM}$ è anche un $\frac{A}{I}$ -modulo. Possiamo invece notare che M non è sempre un $\frac{A}{I}$ -modulo. Ci possiamo però riuscire se $I \subseteq (0:M) = \{a \in A \mid aM \subseteq (0)\}$.
 - (Somma diretta e prodotto) Dati $\{M_i\}_{i\in I}$ una famiglia di A-moduli si definisce

 $\bigoplus_i M_i = \{(a_i)_{i \in I} \mid a_i \in M_i, a_i \neq 0 \text{ solo per un numero finito di indici}\}$

Inoltre si definisce

$$\prod_i M_i = \{(a_i)_{i \in I} \mid a_i \in M_i\}$$

senza la condizione di sopra.

Se l'insieme I di indici è finito allora si ha che $\bigoplus_i M_i = \prod_i M_i$. Valgono inoltre le seguenti proprietà universali per somma diretta e prodotto:

- * Dati $\{M_i\}_{i\in I}$ A-moduli, si hanno $M_i\hookrightarrow^{j_i}\oplus_i M_i$ date da $m_i\mapsto (0,\dots,0,m_i,0,\dots)$. Allora per ogni assegnamento di $\{\varphi_i\}_{i\in I}$ con $\varphi_i:M_i\to N$ omomorfismi di A-moduli, esiste unico $\tilde{\phi}:\oplus_i M_i\to N$ tale che $\varphi_i=\tilde{\phi}\circ j_i$
- * Dati $\{M_i\}_{i\in I}$ A-moduli, si hanno $\prod_i M_i \to^{\pi_i} M_i$ le proiezioni date da $m=(m_j)_{j\in I} \mapsto m_i$. Allora per ogni assegnamento di $\{\varphi_i\}_{i\in I}$ con $\varphi_i:N\to M_i$ omomorfismi di A-moduli, esiste unico $\tilde{\phi}:N\to\prod_i M_i$ tale che $\varphi_i=\pi_i\circ\tilde{\phi}$
- (Morfismi da un modulo libero) Sia M un A-modulo libero e sia $S = \{s_1, \ldots, s_k\}$ una sua base. Allora dati $n_1, \ldots, n_k \in N$ (N è un altro A-modulo) si ha che $\exists ! \Phi : M \to N$ tale che $\Phi(s_i) = n_i$, Φ morfismo di A-moduli
- (Rango di un modulo libero) Sia M un A-modulo libero con base $B = \{b_1, \ldots, b_k\}$ finita. Allora ogni altra base di M ha cardinalità k. Se M è libero con base di cardinalità k si dice che M ha rango k (rk M = k)
- Hom $_A(A^n, M) \cong M^n$.
- M è un A-modulo finitamente generato $\Leftrightarrow M \cong \frac{A^k}{\operatorname{Ker} \varphi}$ per un certo $k \in \mathbb{N}$ e per un certo φ . Se $M = \langle m_1, \dots, m_k \rangle$ si ha $\varphi : A^k \to M$ definito da $e_i \mapsto m_i$. Allora $M \cong \frac{A^k}{\operatorname{Ker} \varphi}$. Il viceversa è ovvio.
- (Hamilton-Cayley) Sia M un A-modulo finitamente generato, $I\subseteq A$ ideale. Sia $\varphi\in \operatorname{Hom}\nolimits_A(M,M)$ endomorfismo tale che $\phi(M)\subseteq IM$. Allora $\exists b_0,\dots,b_{n-1}\in I$ t.c. $\phi^n+\sum_{i=0}^{n-1}a_i\phi^i=0$ in $\operatorname{Hom}\nolimits_A(M,M)$
- (Nakayama) Come corollario di Hamilton-Cayley si ottengono le seguenti tre versioni di Nakayama:
 - Sia M un A-modulo finitamente generato, $I \subseteq A$ ideale t.c. M = IM. Allora ∃a ∈ A t.c. a ≡ 1 (mod I) e a · M = 0 (Basta applicare HC a φ = id)
 - Sia M un A-modulo finitamente generato, $\mathcal{J}(A)$ radicale di Jacobson, $I \subseteq \mathcal{J}(A)$ ideale di A tale che M = IM. Allora M = 0 (Usiamo il Nakayama precedente ed usiamo la caratterizzazione del radicale di Jacobson)
 - Sia M un A-modulo finitamente generato, N un sottomodulo, $I\subseteq \mathcal{J}(A)$ ideale di A. Se M=N+IM allora M=N (Usando il Nakayama precedente basta mostrare che $\frac{M}{N}=I(\frac{M}{N})$ così che $\frac{M}{N}=(0) \implies M=N$ e questo è piuttosto semplice)

Come corollario otteniamo che se A è un anello locale e m un suo ideale massimale, M un A-modulo finitamente generato. Allora se n_1,\ldots,n_k sono elementi di M tali che si ha che $\overline{n_1},\ldots,\overline{n_k}$ generato $\frac{M}{\mathfrak{m}M}$ allora n_1,\ldots,n_k generano M (considerare $N\hookrightarrow M \twoheadrightarrow \frac{M}{\mathfrak{m}M}$

- Sia M un A-modulo finitamente generato, $f \in \text{End }_A(M)$ surgettivo $\implies f$ è un isomorfismo.
- (Funtori f^* e g_*) Se ho $f: P \to M$ allora posso considerare $f^*: \operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(P,N)$ definito da $\phi \mapsto \phi \circ f$. Notiamo che è contravariante. Inoltre dato $g: M \to P$ si ha $g_*: \operatorname{Hom}_A(N,M) \to \operatorname{Hom}_A(N,P)$ definito da $\psi \mapsto g \circ \psi$, che è covariante.

Omomorfismi tra moduli liberi e forma normale di Smith

- Ogni elemento di Hom $_A(A^m,A^n)$ si può rappresentare in modo unico come matrice, quindi mi basta sapere dove vanno gli e_i base di A^m per sapere dove vanno tutti gli altri elementi. Inoltre una matrice sarà invertibile se e solo se il suo determinante è un elemento invertibile dell'anello (Basta usare l'aggiunta sapendo che $MM^* = (\det M)$ id)
- S,T matrici si dicono equivalenti per righe se $\exists P$ invertibile tale che PS=T, equivalenti per colonne se $\exists Q$ invertibile tale che SQ=T e si dicono equivalenti se $\exists P,Q$ tali che PSQ=T

• Se A è PID, allora si ha che ogni matrice è equivalente ad una matrice diagonale (D si dice diagonale se $D_{ij} = 0$ quando $i \neq j$).

Il trucco fondamentale è che sui blocchetti 2×2 riesco a triangolarli. Infatti, usando che A è PID si ha d = MCD(a, b) e quindi $\exists s, t \text{ t.c. } d = as + bt \text{ ovvero}$

$$\left(\begin{array}{cc} a & b \\ u & v \end{array}\right) \cdot \left[\begin{array}{cc} s & -\frac{b}{d} \\ t & \frac{a}{d} \end{array}\right] = \left(\begin{array}{cc} d & 0 \\ w & x \end{array}\right)$$

e trasponendo la relazione si riesce anche a portare in forma triangolare superiore.

Il modo generale di procedere è piuttosto semplice: con il metodo precedente si pongono a zero tutti i numeri sulla prima riga tranne il primo, a questo punto si mettono a zero tutti i numeri sulla prima colonna tranne il primo, e si procede riga-colonna fino a quando non sono nulli sia tutti i numeri sulla prima riga che sulla prima colonna (tranne ovviamente il primo). Questa cosa deve succere prima o poi. Quando accade si ricorre per induzione sulla sottomatrice $(n-1)\times (n-1)$ che si ottiene levando la prima riga e la prima colonna.

• (Forma normale di Smith) A PID. Vogliamo dare una forma canonica alle matrici che rappresentano gli omomorfismi tra moduli liberi. Una matrice diagonale D si dice in forma di Smith se $d_1 \mid d_2 \mid \dots \mid$

$$d_n \operatorname{con} D = \left(\begin{array}{ccc} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{array} \right)$$

- (Ogni matrice diagonale si può portare in forma di Smith) Infatti data $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ e detto d = MCD (a,b) = as + bt si computa $\begin{pmatrix} s & t \\ -\frac{b}{d} & \frac{a}{d} \end{pmatrix} \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} 1 & -\frac{tb}{d} \\ 1 & \frac{sa}{d} \end{pmatrix} = \begin{pmatrix} d & 0 \\ 0 & \frac{ab}{d} \end{pmatrix}$
- (Caratterizzazione tramite ideali determinanti) Se S è una matrice definiamo $\Delta_i(S)$ come l'ideale generato dai determinanti delle sottomatrici $i \times i$ di S. Se S, T $m \times n$ sono equivalenti allora $\Delta_i S = \Delta_i T \quad \forall i$. Se D_1 e D_2 sono matrici in forma di Smith allora D_1 è equivalente a D_2 se e solo se $d_i^{(1)}$ e $d_i^{(2)}$ differiscono di un invertibile (ovvero sono associati)
- (Sottomoduli di moduli liberi su PID) Se M è un A-modulo libero con A PID e $N\subseteq M$ sottomodulo, allora N è libero e inoltre vale che rk $N\le {\rm rk}\ M$
- (Teorema di struttura di moduli f.g. su PID) Ogni modulo finitamente generato su PID si scrive come somma diretta di moduli ciclici. M f.g. su PID (ovvero è quoziente di un modulo libero). $M = \langle m_1, \ldots, m_k \rangle$. Allora $A^n \to f$ $M \to 0$ con $f(e_i) = m_i$ e $f(a_1, \ldots, a_n) = \sum_i a_i m_i$ ovvero $M \cong \frac{A^n}{\operatorname{Ker } f}$ e Ker $f \subseteq A^n$ è un sottomodulo di modulo libero.

Ker $f\subseteq A^n$ è un sottomodulo di modulo libero. Sapendo che ogni sottomodulo di modulo libero su PID è libero abbiamo che $A^m\to^\phi A^k\to^f M\to 0$ allora $M\cong \frac{A^m}{\operatorname{Ker} f}\cong \frac{A^k}{\operatorname{Im} \phi}\cong \operatorname{coKer} \phi\cong \oplus_i \frac{A}{(d_i)}\cong \oplus_i \langle z_i\rangle \operatorname{con} d_i=\operatorname{Ann}(z_i)$

- Se $M = \langle m \rangle$ è un A-modulo ciclico allora $M \cong \frac{A}{\mathsf{Ann}\;(m)}$
- $M = \frac{A}{J}$ come A-modulo. Dato $a \in A$ si ha $(a) \cdot M \cong \frac{A}{(J \cdot (a))}$
- $A^n \cong A^m \Leftrightarrow n = m$
- $\phi: A^m \to A^n$ surgettivo e $m < n \implies A = 0$
- $M = \frac{A}{I_1} \oplus \frac{A}{I_2}$, con $I \subseteq A$ ideale. Allora valgono:
 - $IM \cong \frac{I+J_1}{J_1} \oplus \frac{I+J_2}{J_2}$
 - $\frac{M}{IM} \cong \frac{A}{I+J_1} \oplus \frac{A}{I+J_2}$
- Sia M un A-modulo finitamente generato su PID allora M si scrive come somma diretta di moduli ciclici $M=\langle m_1\rangle\oplus\ldots\oplus\langle m_k\rangle$

8

- Se ho due catene di ideali $I_n \subseteq \ldots \subseteq I_1$, $J_m \subseteq \ldots \subseteq J_1$ con $n \ge m$, e supponiamo $M = \bigoplus_{k=1}^n \frac{A}{I_k} = \bigoplus_{i=1}^m \frac{A}{I_i}$ allora $J_1 = \ldots = J_{n-m} = A$ e $I_i = J_{n-m+i}$
- Se A è un dominio ed M un A-modulo, allora chiamiamo sottomodulo di torsione $\tau(M) = \{m \in M \mid \text{Ann } (m) \neq 0\} \subseteq M$.
 - $f \in \operatorname{Hom} A(M, N) \implies f(\tau(M)) \subseteq \tau(M)$
 - Data $0 \to M \to N \to P \to 0$ esatta $\implies 0 \to \tau(M) \to \tau(N) \to \tau(P)$ è esatta ma non a destra
 - M f.g. su A PID. Allora $M \cong \tau(M) \oplus A^k$ per un qualche k
- M si dice modulo p-primario se Ann $(M) = (p^s)$
- (Riassunto di tutto) M f.g. su A PID. allora valgono:
 - $M = (\bigoplus_{i=1}^m \frac{A}{(d_i)}) \oplus A^k$ con $d_1 \mid \ldots \mid d_m$ non necessariamente distinti, unicamente determinati a meno di associati. Tali d_i si chiamo fattori invarianti di M.
 - $M\cong (\oplus_{p_i}M_{p_i})\oplus A^k$ dove gli M_{p_i} sono moduli ciclici p_i -primari di torsione. Tutti i $p_1^{s_1}\dots p_r^{s_r}$ si chiamano divisori elementari di M. Infatti se $\tau(M)=\oplus_i \frac{A}{(d_i)}$ con $d_i\in A$ PID allora se $d_i=p_{i_1}^{s_1}\cdot\dots\cdot p_{i_k}^{s_k}\implies \frac{A}{(d_i)}=\oplus_{j=1}^k\frac{A}{p_{i,j}^{s_j}}$

SUCCESSIONI ESATTE DI MODULI

- La successione $M_1 \to^f M \to^g M_2 \to 0$ è esatta \Leftrightarrow la successione $0 \to \operatorname{Hom}_A(M_2,N) \to^{g^*} \operatorname{Hom}_A(M,N) \to^{f^*} \operatorname{Hom}_A(M_1,N)$ è esatta $\forall N$ A-moduli.
- La successione $0 \to M_1 \to^f M \to^g M_2$ è esatta \Leftrightarrow la successione $\operatorname{Hom}_A(N,M_1) \to^{f_*} \operatorname{Hom}_A(N,M) \to^{g^*} \operatorname{Hom}_A(N,M_2) \to 0$ è esatta $\forall N$ A-moduli.
- (Successioni che spezzano) Data una successione esatta corta di A-moduli $0 \to M \to^{\alpha} N \to^{\beta} P \to 0$ si ha TFAE:
 - $N \cong M \oplus P$
 - ∃ $r: N \to M$ t.c. $r \circ α = id_M$
 - $\exists s: P \to N \text{ t.c. } \beta \circ s = \mathrm{id}_P$
- (Proprietà estremi-intermedio) Sia $0 \to M \to^{\alpha} N \to^{\beta} P \to 0$ una successione esatta di A-moduli. Allora valgono le seguenti:
 - $-M, P \text{ f.g} \implies N \text{ f.g}$
- (Moduli Proiettivi) *P* si dice proiettivo se vale una delle seguenti, tutte equivalenti:
 - Data $\phi: M \twoheadrightarrow N$ surgettivo si ha $\forall f: P \to N$, $\exists g: P \to M$ tale che $f = \phi \circ g$
 - $\forall g: M \twoheadrightarrow N$ surgettiva l'omomorfismo indotto $\operatorname{Hom}_A(P,M) \to^{g^*} \operatorname{Hom}_A(P,N)$ è surgettivo
 - Ogni successione esatta corta $0 \to M \to N \to P \to 0$ spezza
- (Implicazioni varie)
 - Libero ⇒ Proiettivo