Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчет по лабораторной работе №2

Вариант 25

Выполнил:

Туляков Е.В Р32101

Преподаватель:

Рыбаков С.Д

Цель лабораторной работы

Формулы методов

• Метод половинного деления: $x_i = \frac{a_i + b_i}{2}$

Блок-схема метода половинного деления

• Метод секущих:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$
 $i = 1, 2 \dots$

• Метод простой итерации:

$$x_{i+1} = \varphi(x_i)$$
 $\varphi(x) = x + \lambda f(x)$ $\lambda = -\frac{1}{\max_{[a,b]} |f'(x)|}$

. Метод хорд:
$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

. Метод Ньютона:
$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Выбор начального приближения $x_0 \in [a; b]$:

Метод обеспечивает быструю сходимость, если выполняется условие:

$$f(x_0) \cdot f''(x_0) > 0$$

(тот конец интервала, для которого знаки функции и второй производной совпадают)

$$x_0 = egin{cases} a_0, & ext{ если } f(a_0) \cdot f''(a_0) > 0 \ b_0, & ext{ если } f(b_0) \cdot f''(b_0) > 0 \end{cases}$$

Вычислительная реализация задачи

Заданное линейное уравнение: $f(x) = x^3 - 2.56x^2 - 1.325x + 4.395$

Точность: $\varepsilon = 0.01$

Графическое отделение корней

 x_1 - метод половинного деления (Таблица 1)

 x_2 - метод секущих (Таблица 2)

 x_3 - метод простой итерации (Таблица 3)

Таблица 1

№ шага	а	b	x	f(a)	f(b)	f(x)	a-b
0	-2.000	-1.000	-1.5	-11.195	2.160	-2.753	1
1	-1.500	-1.000	-1.25	-2.753	2.160	0.098	0.5
2	-1.500	-1.250	-1.375	-2.753	0.098	-1.223	0.25
3	-1.375	-1.250	-1.312	-1.223	0.098	-0.537	0.125
4	-1.312	-1.250	-1.281	-0.537	0.098	-0.213	0.0625
5	-1.281	-1.250	-1.265	-0.213	0.098	-0.056	0.03125
6	-1.265	-1.250	-1.257	-0.056	0.098	0.021	0.015625
7	-1.265	-1.257	-1.261	-0.056	0.021	-0.017	0.0078125

Таблица 2

№ итерации	x_{k-1}	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1} - x_k $
0	1.000	2.000	1.753	-0.408	0.247
1	2.000	1.753	0.600	2.893	1.152
2	1.753	0.600	1.610	-0.202	1.010
3	0.600	1.610	1.544	-0.074	0.066
4	1.610	1.544	1.506	0.008	0.038

Таблица 3

№ итерации	x_i	x_{i+1}	$\varphi(x_{i+1})$	$f(x_{i+1})$	$ x_{i+1} - x_i $
0	2.000	2.046	2.089	-0.468	0.046
1	2.046	2.089	2.128	-0.428	0.043
2	2.089	2.128	2.163	-0.380	0.039
3	2.128	2.163	2.193	-0.328	0.035
4	2.163	2.193	2.217	-0.276	0.03
5	2.193	2.217	2.237	-0.228	0.24
6	2.217	2.237	2.253	-0.185	0.02
7	2.237	2.253	2.265	-0.149	0.016
8	2.253	2.265	2.274	-0.120	0.012
9	2.265	2.274	2.281	-0.097	0.009

Примечание к таблице 3:

$$f'(x) = 3x^{2} - 5.12x - 1.325$$

$$f'(2) = 0.435 f'(3) = 10.315$$

$$\lambda = -\frac{1}{\max_{[a,b]} |f'(x)|} = -\frac{1}{10.315} \approx -0.097$$

$$f(x) = 0 \Rightarrow (\lambda \neq 0) \lambda f(x) = 0 \Rightarrow$$

$$\Rightarrow x = x + \lambda f(x) \Rightarrow \varphi(x) = x + \lambda f(x) \Rightarrow$$

$$\Rightarrow \varphi(x) = x + \lambda (x^{3} - 2.56x^{2} - 1.325x + 4.395) \Rightarrow$$

$$\Rightarrow \varphi(x) = -0.097x^{3} + 0.248x^{2} + 1.128x - 0.426$$

$$x = \varphi(x) x_{0} = 2 x_{1} = \varphi(x_{0}) = 2.046$$

Программная реализация задачи - листинг программы

Метод хорд:

```
public static void execute(double a, double b, double accuracy) throws TimeoutException
   double xi_1 = Integer.MAX_VALUE;
   double xi;
   double ai = a;
   double bi = b;
   double fxi;
   double fbi;
   int i = 1;
   while (true){
       fai = EquationStorage.getEquation(ai);
       fbi = EquationStorage.getEquation(bi);
       fxi = EquationStorage.getEquation(xi);
       if (fxi * fai < 0){</pre>
       }else {
       if (Math.abs(xi - xi 1) <= accuracy){</pre>
           System.out.println(Printer.getYellowText("Reason
       } else if (Math.abs(ai - bi) <= accuracy) {</pre>
            System.out.println(Printer.getYellowText("Reason for terminating the
           break;
       } else if (Math.abs(fxi) <= accuracy) {</pre>
            System.out.println(Printer.getYellowText("Reason for terminating the
terative process: |f(x_i)| \le \epsilon'');
           break;
```

```
i++;
if (i == 10000) throw new TimeoutException();
}
Printer.printResult(xi, i);
}
```

Метод Ньютона:

```
public static void execute(double a, double b, double accuracy) throws TimeoutException {
   double xi;
   double fxi;
   if (EquationStorage.getEquation(a)*EquationStorage.getDoubleDerivative(a) > 0){
       xi 1 = a;
   } else{
   int i = 1;
   while(true){
       fxi 1 = EquationStorage.getEquation(xi 1);
       dxi_1 = EquationStorage.getDerivative(xi_1);
       xi = xi 1 - fxi 1/dxi 1;
       fxi = EquationStorage.getEquation(xi);
       dxi = EquationStorage.getDerivative(xi);
       if (Math.abs(xi - xi 1) <= accuracy){</pre>
           System.out.println(Printer.getYellowText("Reason for terminating the
terative process: |x_i - x_{i-1}| \le \epsilon);
       } else if (Math.abs(fxi/dxi) <= accuracy) {</pre>
           System.out.println(Printer.getYellowText("Reason for terminating the
terative process: |f(x_i)/f'(x_i)| \le \epsilon'');
           break;
       } else if (Math.abs(fxi) <= accuracy) {</pre>
           System.out.println(Printer.getYellowText("Reason for terminating the
       i++;
       if (i == 10000) throw new TimeoutException();
   Printer.printResult(xi, i);
```

Метод простой итерации:

```
public static void execute(double a, double b, double accuracy) throws TimeoutException {
    EquationStorage.setLambda(a, b);
    double xi_1 = EquationStorage.maxValueOfDerivativeOnInterval(a,b)[0];
    double xi;
    int i = 1;
```

```
while (true){
    xi = EquationStorage.getPhi(xi_1);
    if (Math.abs(xi - xi_1) <= accuracy) {
        System.out.println(Printer.getYellowText("Reason for terminating the

iterative process: |x_i - x_{i-1}| <= \epsilon"));
        break;
}

xi_1 = xi;
i++;
if (i == 10000) throw new TimeoutException();
}
Printer.printResult(xi, i);</pre>
```

Метод Ньютона для решения системы нелинейных уравнений:

```
public static void execute(double x_0, double y_0, double accuracy) throws
NoSuchElementException, TimeoutException {
   double x_i = x_0;
   double y_i = y_0;
   int i = 0;
   EquationSystem equationSystem = EquationSystemStorage.getEquationSystem();
   double[][] matrix = new double[2][3];
   while(true){
       matrix[0][0] = equationSystem.getDerivativeXOfFirstEquation(x i, y i);
       matrix[0][1] = equationSystem.getDerivativeYOfFirstEquation(x_i, y_i);
       matrix[0][2] = equationSystem.getFirstEquation(x_i, y_i);
       matrix[1][0] = equationSystem.getDerivativeXOfSecondEquation(x i, y i);
       matrix[1][1] = equationSystem.getDerivativeYOfSecondEquation(x_i, y_i)
       matrix[1][2] = equationSystem.getSecondEquation(x i, y i);
       double[] results = MatrixGaussMethod.calculateSolutions(matrix);
       x_i += results[0];
       y_i += results[1];
       i++;
        if (i >= 10000) throw new TimeoutException();
   Printer.printSystemResult(x_i, y_i, i);
```

Результат работы программы

```
Choose: non-linear equation [1] or system of non-linear equations [2]
Input number of non-linear equation:
[1] x^3 - 0.2x^2 + 0.5x + 1.5 = 0
[2] e^{-x} - 1/2 * sin^{2}(x) = 0
[3] tg(0,55x + 0,1) - x^2 = 0
[4] (1 + x^2) * e^{-x} + sin(x) = 0
[5] 4 * sin(x) + 1 - x = 0
2
Input type of method:
[1] Chord method
[2] Newton's method
[3] Simple iteration method
Input accuracy:
2.5
Error!
Don't use dot as delimiter, you have to use comma
Accuracy have to be greater than 0 and less than 1
Input accuracy:
0,01
Input a (left border):
2,5
Input b (right border):
Reason for terminating the iterative process: |x_i - x_{i-1}| < \epsilon
       -----RESULT--
x = 2.778453958085955
f(x) = -9.525722401838715E-4
Number of iterations: 3
```

Вывод

Во время выполнения лабораторной работы я изучил работу метода хорд, метода секущих и метода прямых итераций. Основные особенности каждого метода расписаны в описании работы каждого их них.