Neural networks

Autoencoder - definition

UNSUPERVISED LEARNING

Topics: unsupervised learning

- Unsupervised learning: only use the inputs $\mathbf{x}^{(t)}$ for learning
 - ▶ automatically extract meaningful features for your data
 - leverage the availability of unlabeled data
 - > add a data-dependent regularizer to trainings

- We will see 3 neural networks for unsupervised learning
 - restricted Boltzmann machines
 - autoencoders
 - sparse coding model

Topics: autoencoder, encoder, decoder, tied weights

 Feed-forward neural network trained to reproduce its input at the output layer

Neural networks

Autoencoder - loss function

Topics: autoencoder, encoder, decoder, tied weights

 Feed-forward neural network trained to reproduce its input at the output layer

Topics: loss function

For binary inputs:

$$f(\mathbf{x}) \equiv \widehat{\mathbf{x}}$$

$$l(f(\mathbf{x})) = -\sum_{k} (x_k \log(\widehat{x}_k) + (1 - x_k) \log(1 - \widehat{x}_k))$$

- cross-entropy (more precisely: sum of Bernoulli cross-entropies)
- For real-valued inputs:

$$l(f(\mathbf{x})) = \frac{1}{2} \sum_{k} (\widehat{x}_k - x_k)^2$$

- sum of squared differences (squared euclidean distance)
- we use a linear activation function at the output

Topics: loss function gradient

• For both cases, the gradient $\nabla_{\widehat{\mathbf{a}}(\mathbf{x}^{(t)})} l(f(\mathbf{x}^{(t)}))$ has a very simple form:

$$f(\mathbf{x}) \equiv \widehat{\mathbf{x}}$$

$$\nabla_{\widehat{\mathbf{a}}(\mathbf{x}^{(t)})} l(f(\mathbf{x}^{(t)})) = \widehat{\mathbf{x}}^{(t)} - \mathbf{x}^{(t)}$$

- Parameter gradients are obtained by backpropagating the gradient $\nabla_{\widehat{\mathbf{a}}(\mathbf{x}^{(t)})} l(f(\mathbf{x}^{(t)}))$ like in a regular network
 - ▶ important: when using tied weights $(\mathbf{W}^* = \mathbf{W}^\top)$, $\nabla_{\mathbf{W}} l(f(\mathbf{x}^{(t)}))$ is the sum of two gradients!
 - this is because ${f W}$ is present in the encoder ${f and}$ in the decoder

Topics: adaptation to the type of input

 Recipe to adapt an autoencoder to a new type of input

$$f(\mathbf{x}) \equiv \widehat{\mathbf{x}}$$

- right choose a joint distribution $p(\mathbf{x}|\boldsymbol{\mu})$ over the inputs
 - μ is the vector of parameters of that distribution
- lacktriangle choose the relationship between $m{\mu}$ and the hidden layer $\mathbf{h}(\mathbf{x})$
- use $l(f(\mathbf{x})) = -\log p(\mathbf{x}|\boldsymbol{\mu})$ as the loss function
- Example: we get the sum of squared distance by
 - the choosing a Gaussian distribution with mean μ and identity covariance for $p(\mathbf{x}|\mu) = \frac{1}{(2\pi)^{D/2}} \exp(-\frac{1}{2}\sum_k (x_k \mu_k)^2)$
 - rightharpoonup choosing $\mu = \mathbf{c} + \mathbf{W}^* \mathbf{h}(\mathbf{x})$

Neural networks

Autoencoder - example

Topics: autoencoder, encoder, decoder, tied weights

 Feed-forward neural network trained to reproduce its input at the output layer

EXAMPLE OF DATA SET: MNIST

3	8	حا	9	6	4	5	3	8	4	5	J	3	8	4	8
				9											
1	3	6	.8	0	7	1	6	8	9	0	3	8	3	>	7
8	4	4	1	à	٩	(٥	C	Q	5	0	1	ļ
7	2	7	3	١	4	0	5	0	6	8	7	6	8	9	9
4	0	6	1	9	2	L	3	9	4	4	كو	6	6)	7
2	8	6	9	7	0	9		ی	2	જી	3	6	4	9	5
8	6	ક	7	8	8	6	9	1	7	6	0	9	6	7	0

FILTERS (AUTOENCODER)

(Larochelle et al., JMLR2009)

Neural networks

Autoencoder - linear autoencoder

Topics: autoencoder, encoder, decoder, tied weights

 Feed-forward neural network trained to reproduce its input at the output layer

Topics: optimality of a linear autoencoder

- To do the proof, we need the following theorem:
 - lacktriangle let ${f A}$ be any matrix, with singular value decomposition ${f A}={f U}\;\Sigma\;{f V}^{ op}$
 - Σ is a diagonal matrix
 - U, V are orthonormal matrices (columns/rows are orthonormal vectors)
 - let $\mathbf{U}_{\cdot,\leq k}$ $\Sigma_{\leq k,\leq k}$ $\mathbf{V}_{\cdot,\leq k}^{\top}$ be the decomposition where we keep only the k largest singular values
 - \blacktriangleright then, the matrix ${\bf B}$ of rank k that is closest to ${\bf A}$:

$$\mathbf{B}^* = \underset{\mathbf{B} \text{ s.t. } \operatorname{rank}(\mathbf{B}) = k}{\operatorname{arg \, min}} ||\mathbf{A} - \mathbf{B}||_F$$

is
$$\mathbf{B}^* = \mathbf{U}_{\cdot, \leq k} \; \Sigma_{\leq k, \leq k} \; \mathbf{V}_{\cdot, \leq k}^{\top}$$

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2$$

4

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2$$
 based on linear encoder

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$
 based on linear encoder

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$
 based on linear encoder

linear encoder

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\theta} \sum_{t} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\theta} \sum_{t} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

 $\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$ based on (could be any encoder)

$$\underset{\mathbf{W}^*,\mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^*\mathbf{h}(\mathbf{X})||_F^2$$

linear encoder

Sketch of proof

Sketch of proof

 $\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$ based on matrix of all hidden layers

linear encoder

(could be any encoder)

$$\underset{\mathbf{W}^*,\mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^*\mathbf{h}(\mathbf{X})||_F^2 = \left(\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot,\leq k} \ \Sigma_{\leq k,\leq k}, \ \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot,\leq k}^\top\right)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{ op}$ and k is the hidden layer size

Sketch of proof

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$
based on matrix of all hidden layers (could be any encoder)

$$\underset{\mathbf{W}^*,\mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^*\mathbf{h}(\mathbf{X})||_F^2 = (\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot,\leq k} \; \Sigma_{\leq k,\leq k}, \; \; \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot,\leq k}^\top)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{\top}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

Sketch of proof

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\underset{\mathbf{W}^*, \mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2 = \left(\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot, \leq k} \; \Sigma_{\leq k, \leq k}, \; \; \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot, \leq k}^\top \right)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{\top}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

$$\mathbf{h}(\mathbf{X}) = \mathbf{V}_{\cdot, \leq k}^{\top}$$

Sketch of proof

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_{i}^{(t)} - \widehat{x}_{i}^{(t)})^{2} \geq \min_{\mathbf{W}^{*}, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^{*} \mathbf{h}(\mathbf{X})||_{F}^{2}$$

$$\max_{\mathbf{W}^{*}, \mathbf{h}(\mathbf{X})} ||\mathbf{X} - \mathbf{W}^{*} \mathbf{h}(\mathbf{X})||_{F}^{2}$$

$$\underset{\mathbf{W}^*,\mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^*\mathbf{h}(\mathbf{X})||_F^2 = \left(\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot,\leq k} \; \Sigma_{\leq k,\leq k}, \; \; \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot,\leq k}^\top\right)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{\top}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

$$egin{array}{lll} \mathbf{h}(\mathbf{X}) &=& \mathbf{V}_{\cdot,\leq k}^{ op} \ &=& \mathbf{V}_{\cdot,\leq k}^{ op} \, (\mathbf{X}^{ op} \, \mathbf{X})^{-1} \, (\mathbf{X}^{ op} \, \mathbf{X}) \end{array}$$

multiplying by identity

Sketch of proof

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$= \max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$= \max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$= \max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$= \max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})$$

$$\underset{\mathbf{W}^*, \mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2 = (\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot, \leq k} \ \Sigma_{\leq k, \leq k}, \ \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot, \leq k}^\top)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{\top}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

$$\mathbf{h}(\mathbf{X}) = \mathbf{V}_{\cdot, \leq k}^{\top}$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} (\mathbf{X}^{\top} \mathbf{X})$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top})^{-1} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X})$$
multiplying by identity
$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top})^{-1} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X})$$
replace with SVD

Sketch of proof

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_{i}^{(t)} - \widehat{x}_{i}^{(t)})^{2} \geq \min_{\mathbf{W}^{*}, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^{*} \mathbf{h}(\mathbf{X})||_{F}^{2}$$

$$\max_{\mathbf{W}^{*}, \mathbf{h}(\mathbf{X})} ||\mathbf{X} - \mathbf{W}^{*} \mathbf{h}(\mathbf{X})||_{F}^{2}$$

$$\underset{\mathbf{W}^*,\mathbf{h}(\mathbf{X})}{\arg\min} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^*\mathbf{h}(\mathbf{X})||_F^2 = \left(\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot,\leq k} \; \Sigma_{\leq k,\leq k}, \; \; \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot,\leq k}^\top\right)$$
based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^\top$

Let's show h(X) is a linear encoder:

$$\mathbf{h}(\mathbf{X}) = \mathbf{V}_{\cdot, \leq k}^{\top}$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} (\mathbf{X}^{\top} \mathbf{X})$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top})^{-1} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X})$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top})^{-1} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X})$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{V} \Sigma^{\top} \Sigma \mathbf{V}^{\top})^{-1} \mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$\longrightarrow \mathbf{U}^{\top} \mathbf{U} = \mathbf{I} \text{ (orthonormal)}$$

and k is the hidden layer size

Sketch of proof

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$
 based on matrix of all hidden layers linear encoder (could be any encoder)

$$\underset{\mathbf{W}^*, \mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2 = \left(\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot, \leq k} \; \Sigma_{\leq k, \leq k}, \; \; \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot, \leq k}^\top \right)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{\top}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

Sketch of proof

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$
 based on matrix of all hidden layers (could be any encoder)

$$\underset{\mathbf{W}^*,\mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^*\mathbf{h}(\mathbf{X})||_F^2 = (\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot,\leq k} \Sigma_{\leq k,\leq k}, \ \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot,\leq k}^\top)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{\top}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

$$\mathbf{h}(\mathbf{X}) = \mathbf{V}_{\cdot, \leq k}^{\top}$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} (\mathbf{X}^{\top} \mathbf{X}) \qquad \qquad \text{multiplying by identity}$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top})^{-1} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}) \qquad \qquad \text{replace with SVD}$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} (\mathbf{V} \Sigma^{\top} \Sigma \mathbf{V}^{\top})^{-1} \mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X} \qquad \qquad \qquad \mathbf{U}^{\top} \mathbf{U} = \mathbf{I} \text{ (orthonormal)}$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} \mathbf{V} (\Sigma^{\top} \Sigma)^{-1} \mathbf{V}^{\top} \mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X} \qquad \qquad \qquad \mathbf{V}(\Sigma^{\top} \Sigma)^{-1} \mathbf{V}^{\top} \mathbf{V} \Sigma^{\top} \Sigma \mathbf{V}^{\top} = \mathbf{I}$$

$$= \mathbf{V}_{\cdot, \leq k}^{\top} \mathbf{V} (\Sigma^{\top} \Sigma)^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X} \qquad \qquad \qquad \mathbf{V}^{\top} \mathbf{V} = \mathbf{I} \text{ (orthonormal)}$$

Sketch of proof

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\underset{\mathbf{W}^*,\mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^*\mathbf{h}(\mathbf{X})||_F^2 = \left(\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot,\leq k} \; \Sigma_{\leq k,\leq k}, \; \; \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot,\leq k}^\top\right)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{\top}$ and k is the hidden layer size

Let's show h(X) is a linear encoder:

$$\mathbf{h}(\mathbf{X}) = \mathbf{V}_{\cdot,\leq k}^{\top}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} (\mathbf{X}^{\top} \mathbf{X}) \qquad \qquad \text{multiplying by identity}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top})^{-1} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}) \qquad \qquad \text{replace with SVD}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} (\mathbf{V} \Sigma^{\top} \Sigma \mathbf{V}^{\top})^{-1} \mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X} \qquad \qquad \qquad \mathbf{U}^{\top} \mathbf{U} = \mathbf{I} \text{ (orthonormal)}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} \mathbf{V} (\Sigma^{\top} \Sigma)^{-1} \mathbf{V}^{\top} \mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X} \qquad \qquad \qquad \mathbf{V}(\Sigma^{\top} \Sigma)^{-1} \mathbf{V}^{\top} \mathbf{V} \Sigma^{\top} \Sigma \mathbf{V}^{\top} = \mathbf{I}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} \mathbf{V} (\Sigma^{\top} \Sigma)^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X} \qquad \qquad \qquad \mathbf{V}^{\top} \mathbf{V} = \mathbf{I} \text{ (orthonormal)}$$

$$= \mathbf{I}_{\leq k,\cdot} (\Sigma^{\top} \Sigma)^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X} \qquad \qquad \qquad \qquad \mathbf{idem}$$

matrix where columns are
$$\mathbf{x}^{(t)}$$

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\widehat{\mathbf{X}} - \mathbf{W}^* \underline{\mathbf{h}}(\mathbf{X})||_F^2$$

$$= \max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\widehat{\mathbf{X}} - \mathbf{W}^* \underline{\mathbf{h}}(\mathbf{X})||_F^2$$

$$= \max_{t} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\widehat{\mathbf{X}} - \mathbf{W}^* \underline{\mathbf{h}}(\mathbf{X})||_F^2$$

$$= \max_{t} ||\widehat{\mathbf{h}}(\mathbf{X})||_F^2$$

$$= \min_{t} ||\widehat{\mathbf{h}}(\mathbf{X})||_F^2$$

$$\underset{\mathbf{W}^*}{\arg\min} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2 = (\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot, \leq k} \; \Sigma_{\leq k, \leq k}, \; \; \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot, \leq k}^\top)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{\top}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

$$\mathbf{h}(\mathbf{X}) = \mathbf{V}_{\cdot,\leq k}^{\top}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} (\mathbf{X}^{\top} \mathbf{X})$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top})^{-1} (\mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X})$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} (\mathbf{V} \Sigma^{\top} \Sigma \mathbf{V}^{\top})^{-1} \mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} (\mathbf{V} \Sigma^{\top} \Sigma \mathbf{V}^{\top})^{-1} \mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} \mathbf{V} (\Sigma^{\top} \Sigma)^{-1} \mathbf{V}^{\top} \mathbf{V} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} \mathbf{V} (\Sigma^{\top} \Sigma)^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$= \mathbf{V}_{\cdot,\leq k}^{\top} \mathbf{V} (\Sigma^{\top} \Sigma)^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$= \mathbf{I}_{\leq k,\cdot} (\Sigma^{\top} \Sigma)^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$= \mathbf{I}_{\leq k,\cdot} (\Sigma^{\top} \Sigma)^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$= \mathbf{I}_{\leq k,\cdot} \Sigma^{-1} (\Sigma^{\top})^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$= \mathbf{I}_{\leq k,\cdot} \Sigma^{-1} (\Sigma^{\top})^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$= \mathbf{I}_{\leq k,\cdot} \Sigma^{-1} (\Sigma^{\top})^{-1} \Sigma^{\top} \mathbf{U}^{\top} \mathbf{X}$$

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$
based on matrix of all hidde

matrix of all hidden layers (could be any encoder)

$$\underset{\mathbf{W}^*}{\arg\min} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2 = (\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot, \leq k} \ \Sigma_{\leq k, \leq k}, \ \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot, \leq k}^\top)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{\top}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

linear encoder

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$
based on matrix of all hidden linear encoder (could be any encoder)

matrix of all hidden layers (could be any encoder)

$$\underset{\mathbf{W}^*, \mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2 = \left(\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot, \leq k} \; \Sigma_{\leq k, \leq k}, \; \; \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot, \leq k}^\top \right)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{ op}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

$$\min_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \geq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\mathbf{W}^*, \mathbf{h}(\mathbf{X})} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\theta} \sum_{t} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

$$\max_{\theta} \sum_{t} \frac{1}{2} \sum_{i} (x_i^{(t)} - \widehat{x}_i^{(t)})^2 \leq \min_{\theta} \sum_{t} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2$$

matrix of all hidden layers (could be any encoder)

$$\underset{\mathbf{W}^*, \mathbf{h}(\mathbf{X})}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{X} - \mathbf{W}^* \mathbf{h}(\mathbf{X})||_F^2 = \left(\mathbf{W}^* \leftarrow \mathbf{U}_{\cdot, \leq k} \; \Sigma_{\leq k, \leq k}, \; \; \mathbf{h}(\mathbf{X}) \leftarrow \mathbf{V}_{\cdot, \leq k}^\top \right)$$

based on previous theorem, where $\mathbf{X} = \mathbf{U} \; \Sigma \; \mathbf{V}^{ op}$ and k is the hidden layer size

Let's show $\mathbf{h}(\mathbf{X})$ is a linear encoder:

this is a linear encoder

Topics: optimality of a linear autoencoder

· So an optimal pair of encoder and decoder is

$$\mathbf{h}(\mathbf{x}) = \left(\underbrace{\Sigma_{\leq k, \leq k}^{-1} (\mathbf{U}_{\cdot, \leq k})^{\top}}_{\mathbf{W}}\right) \mathbf{x} \qquad \widehat{\mathbf{x}} = \underbrace{(\mathbf{U}_{\cdot, \leq k} \Sigma_{\leq k, \leq k})}_{\mathbf{W}^{*}} \mathbf{h}(\mathbf{x})$$

- for the sum of squared difference error
- ▶ for an autoencoder with a linear decoder
- where optimality means "has the lowest training reconstruction error"
- If inputs are normalized as follows: $\mathbf{x}^{(t)} \leftarrow \frac{1}{\sqrt{T}} \left(\mathbf{x}^{(t)} \frac{1}{T} \sum_{t'=1}^{T} \mathbf{x}^{(t')} \right)$
 - ▶ encoder corresponds to Principal Component Analysis (PCA)
 - singular values and (left) vectors = the eigenvalues/vectors of covariance matrix

Neural networks

Autoencoder - undercomplete vs. overcomplete hidden layer

AUTOENCODER

Topics: autoencoder, encoder, decoder, tied weights

 Feed-forward neural network trained to reproduce its input at the output layer

UNDERCOMPLETE HIDDEN LAYER

Topics: undercomplete representation

- · Hidden layer is undercomplete if smaller than the input layer
 - hidden layer "compresses" the input
 - will compress well only for the training distribution
- Hidden units will be
 - good features for the training distribution
 - but bad for other types of input

OVERCOMPLETE HIDDEN LAYER

Topics: overcomplete representation

- · Hidden layer is overcomplete if greater than the input layer
 - no compression in hidden layer
 - each hidden unit could copy a different input component
- No guarantee that the hidden units will extract meaningful structure

Neural networks

Autoencoder - denoising autoencoder

OVERCOMPLETE HIDDEN LAYER

Topics: overcomplete representation

- · Hidden layer is overcomplete if greater than the input layer
 - no compression in hidden layer
 - each hidden unit could copy a different input component
- No guarantee that the hidden units will extract meaningful structure

Topics: denoising autoencoder

- Idea: representation should be robust to introduction of noise:
 - random assignment of subset of inputs to 0, with probability ν
 - Gaussian additive noise
- Reconstruction $\widehat{\mathbf{x}}$ computed from the corrupted input $\widetilde{\mathbf{x}}$
- Loss function compares $\widehat{\mathbf{x}}$ reconstruction with the
 - noiseless input X

Topics: denoising autoencoder

- Idea: representation should be robust to introduction of noise:
 - random assignment of subset of inputs to 0, with probability ν
 - Gaussian additive noise
- Reconstruction $\widehat{\mathbf{x}}$ computed from the corrupted input $\widetilde{\mathbf{x}}$
- Loss function compares x
 reconstruction with the
 noiseless input x

Topics: denoising autoencoder

- Idea: representation should be robust to introduction of noise:
 - random assignment of subset of inputs to 0, with probability ν
 - Gaussian additive noise
- Reconstruction $\widehat{\mathbf{x}}$ computed from the corrupted input $\widetilde{\mathbf{x}}$
- Loss function compares x
 reconstruction with the
 noiseless input x

FILTERS (DENOISING AUTOENCODER)

(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

No corrupted inputs (cross-entropy loss)

FILTERS (DENOISING AUTOENCODER)

(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

• 25% corrupted inputs

FILTERS (DENOISING AUTOENCODER)

(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

• 50% corrupted inputs

SQUARED ERROR LOSS

- Training on natural image patches, with squared-difference loss
 - ▶ PCA is not the best solution

Data

Filters

SQUARED ERROR LOSS

- Training on natural image patches, with squared-difference loss
 - Not equivalent to weight decay

Data

Filters

Neural networks

Autoencoder - contractive autoencoder

OVERCOMPLETE HIDDEN LAYER

Topics: overcomplete representation

- · Hidden layer is overcomplete if greater than the input layer
 - no compression in hidden layer
 - each hidden unit could copy a different input component
- No guarantee that the hidden units will extract meaningful structure

Topics: contractive autoencoder

- Alternative approach to avoid uninteresting solutions
 - add an explicit term in the loss that penalizes that solution
- We wish to extract features that
 only reflect variations observed
 in the training set
 h(x)
 - we'd like to be invariant to the other variations

Topics: contractive autoencoder

New loss function:

$$\underbrace{l(f(\mathbf{x}^{(t)})) + \lambda ||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2}_{\text{autoencoder}}$$

$$\underbrace{||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2}_{\text{Jacobian of encoder}}$$

$$l(f(\mathbf{x}^{(t)})) = -\sum_{k} \left(x_k^{(t)} \log(\widehat{x}_k^{(t)}) + (1 - x_k^{(t)}) \log(1 - \widehat{x}_k^{(t)}) \right)$$

$$||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2 = \sum_j \sum_k \left(\frac{\partial h(\mathbf{x}^{(t)})_j}{\partial x_k^{(t)}}\right)^2$$

Topics: contractive autoencoder

New loss function:

$$\underbrace{l(f(\mathbf{x}^{(t)}))}_{\text{autoencoder}} + \lambda ||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2$$

$$\underbrace{||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2}_{\text{Jacobian of encoder}}$$

$$l(f(\mathbf{x}^{(t)})) = -\sum_{k} \left(x_k^{(t)} \log(\widehat{x}_k^{(t)}) + (1 - x_k^{(t)}) \log(1 - \widehat{x}_k^{(t)}) \right) \begin{cases} \text{encoder keeps} \\ \text{good information} \end{cases}$$

$$||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2 = \sum_j \sum_k \left(\frac{\partial h(\mathbf{x}^{(t)})_j}{\partial x_k^{(t)}}\right)^2$$

Topics: contractive autoencoder

New loss function:

$$\underbrace{l(f(\mathbf{x}^{(t)})) + \lambda ||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2}_{\text{autoencoder}}$$

$$\underbrace{||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2}_{\text{Jacobian of encoder}}$$

$$l(f(\mathbf{x}^{(t)})) = -\sum_k \left(x_k^{(t)} \log(\widehat{x}_k^{(t)}) + (1 - x_k^{(t)}) \log(1 - \widehat{x}_k^{(t)})\right) \begin{cases} \text{encoder keeps} \\ \text{good information} \end{cases}$$

$$||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2 = \sum_j \sum_k \left(\frac{\partial h(\mathbf{x}^{(t)})_j}{\partial x_k^{(t)}}\right)^2 \begin{cases} \text{encoder throws} \\ \text{away all information} \end{cases}$$

Topics: contractive autoencoder

New loss function:

$$\underbrace{l(f(\mathbf{x}^{(t)}))}_{\text{autoencoder}} + \lambda ||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2$$

$$\underbrace{||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2}_{\text{Jacobian of encoder}}$$

$$l(f(\mathbf{x}^{(t)})) = -\sum_k \left(x_k^{(t)} \log(\widehat{x}_k^{(t)}) + (1 - x_k^{(t)}) \log(1 - \widehat{x}_k^{(t)})\right) \begin{cases} \text{encoder keeps} \\ \text{good information} \end{cases}$$

$$||\nabla_{\mathbf{x}^{(t)}} \mathbf{h}(\mathbf{x}^{(t)})||_F^2 = \sum_j \sum_k \left(\frac{\partial h(\mathbf{x}^{(t)})_j}{\partial x_k^{(t)}}\right)^2 \begin{cases} \text{encoder throws} \\ \text{away all information} \end{cases}$$
 encoder keeps only good information

Topics: contractive autoencoder

Topics: contractive autoencoder

Topics: contractive autoencoder

Topics: contractive autoencoder

Topics: contractive autoencoder

WHICH AUTOENCODER?

Topics: denoising autoencoder, contractive autoencoder

- · Both the denoising and contractive autoencoder perform well
 - Advantage of denoising autoencoder: simpler to implement
 - requires adding one or two lines of code to regular autoencoder
 - no need to compute Jacobian of hidden layer
 - ▶ Advantage of contractive autoencoder: gradient is deterministic
 - can use second order optimizers (conjugate gradient, LBFGS, etc.)
 - might be more stable than denoising autoencoder, which uses a sampled gradient
- To learn more on contractive autoencoders:
 - Contractive Auto-Encoders: Explicit Invariance During Feature Extraction. Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot et Yoshua Bengio, 2011.