Assignment 1

Exercise 1.

Cloud service model	Control	Flexibility	Use cases	
Infrastructure as a	This model provides	The most flexible.	Suitable for unique,	
Service (IaaS)	high control over	Users can set up,	custom applications	
	infrastructure	control and manage	and infrastructure,	
	components	everything above the	situations requiring	
	(storage, virtual	hypervisor.	complete resource	
	machine,		management and	
	networking). User		legacy app	
	can manage		migrations.	
	applications and			
	operating system.			
Platform as a	This model provides	The flexibility is	Perfect for	
Service (PaaS)	control over	moderate.	developers that want	
	applications. The	Developers can	to quickly build and	
	cloud provider is	concentrate on code	deploy applications,	
	responsible for the	and application logic	focus on the app	
	underlying	without worrying	rather than the	
	infrastructure	about management	infrastructure.	
	(middleware, OS,	or infrastructure		
	runtime).	setup.		
Software as a	This model provides	The least flexible.	Suitable for ready-	
Service (SaaS)	no control over	End customers	to-use applications	
	platform or	engage directly with	(email, productivity	
	infrastructure. Users	the software, with	tools).	
	can only modify	minimal		
	application	customization.		
	configuration			
	settings.			

GCP examples:

- IaaS: Cloud Storage, Google Compute Engine, Virtual Private Cloud.
- PaaS: Google Clous Functions, Cloud Run, Google App Engine.
- SaaS: Google Cloud Identity, Google Analytics, Google Workplace.

Exercise 2.

- Compute Engine
 - Purpose: Provides scalable virtual machines (VMs) using Google's infrastructure. It enables users to execute a wide range of applications with complete flexibility over configurations, including operating systems, networking and storage.

 Business use case: A corporation can utilize Compute Engine to host a website or applications. An e-commerce business can use VMs to scale its web service during peak traffic periods.

• Google Kubernetes Engine (GKE)

- Purpose: It streamlines the deployment, scaling and maintenance of containerized applications. Kubernetes is particularly beneficial for microservice architecture.
- Business use case: It allows a software development company to launch and manage its microservices applications. This would ease upgrades, scalability and load balancing for numerous services, increasing deployment efficiency.

App Engine

- Purpose: Allows developers to create and deploy applications without having to manage the underlying infrastructure. It automatically scales applications based on traffic demand.
- Business use case: It is suitable for startups and small enterprises that require the rapid deployment of web applications. A SaaS firm can develop a web application for user management and use App Engine for automated server scalability and management.

Cloud Storage

- Purpose: It is a highly scalable object storage solution that stores unstructured data including movies, photos and backups. It offers various storage classes based on access frequency and cost requirements.
- Business use case: It enables a media organization to store and serve video files to millions of users. By choosing the right storage class, the organization can save costs for frequently accessed films versus archival content.

BigQuery

- Purpose: It is a fully managed, serverless data warehouse intended for largescale data processing. It enables the querying of big databases with SQL without the requirement for infrastructure administration.
- Business use case: A marketing organization can utilize BigQuery to evaluate customer behavior data across many channels (e.g., mobile, social media, online) in real time, generating insights that might help improve customer engagement strategies.

Exercise 3.

Created VM Instance:

VM instances										
Ţ Filter Ente	er property name or value							Ø III		
Status	Name ↑	Zone	Recommendations	In use by	Internal IP	External IP	Connect			
	vm-instance-assignment1	asia-northeast1-a			10.146.0.2 (nic0)	35.200.52.164 ☑ (nic0)	SSH ▼			

Installed Apache on VM via SSH:

Stopping VM through the console:

Deleting VM through the console:

Exercise 5.

Creating new Bucket:

Uploading various files to the Bucket:

Adding permission for public access:

Grant access to "assignment1-buckettt" Grant principals access to this resource and add roles to specify what actions the principals can take. Optionally, add conditions to grant access to principals only when a specific criteria is met. Learn more about IAM conditions ☑ Resource assignment1-buckettt Add principals Principals are users, groups, domains, or service accounts. Learn more about principals in IAM 🗹 New principals * allUsers 🔞 0 Assign roles Roles are composed of sets of permissions and determine what the principal can do with this resource. Learn more Role * IAM condition (optional) È Storage Object Viewer + ADD IAM CONDITION Grants access to view objects and their metadata, excluding ACLs. Can also list the objects in a bucket. + ADD ANOTHER ROLE Активация SAVE CANCEL

Д assignment1-buckettt

After setting permission for public access, any object is accessible with any browser via their Public URL.

Deleting 'allUsers' from access for certain object to make it private again.

After changing the access to private, file is no longer accessible from the browser (unless user is logged in account that has correct permission).

Exercise 6.

Writing and executing queries in BigQuery using "Google Trends" public dataset:

