

Metrology and Sensing

Lecture 3-2: Sensors

2020-11-17

Herbert Gross

Winter term 2020 www.iap.uni-jena.de

Content

- Different sensor types
- CCD

Photographic Film

- Chemical detector
- Photons change silver salt atom
- Size of grains defines spatial resolution
- MTF depends on spectrum
- Typical: 50% contrast at 100 Lp/mm
- Contrast for limiting frequency 1000 Lp/mm

Photo Layer

- Photolayer darkeningLinearity in medium range of brightness
- Description of sensitivity with the optical density D

$$\gamma = \frac{\Delta D}{\Delta Log(H)}$$

Solarization at higher density

Photo Diode

 Photoconductive sensors: inner and outer photo effect photon extracts electron out of the binding photo current measured

$$\Phi_{ph} = \frac{J}{e \cdot \eta(\lambda)}$$

- Important:
 - materials
 - gain
 - geometry

Semiconductor Materials

Institute of
Applied Physics
Friedrich-Schiller-Universität Jena

- Photon excites an electron from the valence into the conduction band
- Electrons in the conduction band move
- Density of state regulates the current dependent on temperature
- Indirect semiconductors need an additional k-vector for momentum conservation

Density of states

CCD Sensor

Solid state array of sensitive pixels, silicon based

Types:

CCD charge coupled device (semiconductor)

CMOS complementary metal oxide semiconductor (on chip processing,

higher dark current)

CID charge injection device (overlapping pixels)

 Typical size: pixel length 1.2 - 20 μm

CCD Sensors

- Spectral properties: sensitive in VIS and NIR
- Degrading effects:
 - 1. diffusion of electrons, blooming
 - 2. dead zones, reduced efficiency
 - 3. noise of reading process
 - 4. dark current
 - 5. quantum efficiency, 80%
 - 6. time delay, hysteresis

Spectral Sensitivity of a CCD Sensor

- Typical sensor of a SLR photo camera: Canon 5D
- RGB sensitivity curves at daylight

Ref: D. Gängler

Color Sensor

Bayer mask of color sensor

Possible algorithms in signal processing:

Non-adaptive	Adaptive		
Nearest neighbor replication	Edge scaling interpolation		
Bilinear interpolation	Interpolation with color correction		
Cubic convolution	Variable number gradient method		
Smooth hue transition	Pattern recognition		
Smooth logarithmic hue transition	Pattern matching interpolation		

G1	R2	G3	R4	G5
	G7		G9	B10
G11	R12	G13	R14	G15
	G17		G19	B20
G21	R22	G23	R24	G25

Ref: E. Derndinger

Detection of Color

- Wavelength sensitive detection with CCD:
 - array structures with different spectral sensitivity
 - reduced spatial resolution
- Alternatives:
 - depth resolved layers
 - time multiplexing
 - spatial separation by filter

Bayer Color Filt	er Arrav
-------------------------	----------

R	G	R	G	R	G
G	В	G	В	G	В
R	G	R	G	R	G
G	В	G	В	G	В

Sony Color Filter Array

Hitachi Color Filter Array

С	W	С	W	С	W
G	O	G	G	G	G
С	W	С	W	С	W
G	G	G	G	G	G

Sensor Formats

Digital sensor formats

	Sensor (mm)				
Туре	Aspect Ratio	Dia. tube (mm)	Diagonal	Width	Height
1/3.6"	4:3	7.056	5.000	4.000	3.000
1/3.2"	4:3	7.938	5.680	4.536	3.416
1/3"	4:3	8.467	6.000	4.800	3.600
1/2.7"	4:3	9.407	6.721	5.371	4.035
1/2.5"	4:3	10.160	7.182	5.760	4.290
1/2.3"	4:3	11.044	7.70	6.16	4.62
1/2"	4:3	12.700	8.000	6.400	4.800
1/1.8"	4:3	14.111	8.933	7.176	5.319
1/1.7"	4:3	14.941	9.500	7.600	5.700
2/3"	4:3	16.933	11.000	8.800	6.600
1"	4:3	25.400	16.000	12.800	9.600
4/3"	4:3	33.867	22.500	18.000	13.500
Cine 35mm	4:3		31.15	24.9	18.7
1.8" APS-C	3:2	45.720	28.400	23.700	15.700
35 mm film	3:2	n/a	43.300	36.000	24.000

Ref: D. Gängler

CCD Sensor

- Architecture:
 - 3 different types of carrier transport
 - 1. full frame
 - 2. interline
 - 3. frame transfer

CCD-Sensors

Typical dimensions

S	ize	Diagonal	Pixel size		Pixel number	
[m	nm]	[mm]	[µm]			
12.8	9.6	16	16.7	20	768	480
8.8	6.6	11	11.4	13.8	768	480
6.4	4.8	8	8.33	10	768	480
4.8	3.6	6	6.25	7.5	768	480
3.2	2.4	4	4.17	5	768	480

 Optical effect of arrays: dead zone and change of acceptance angle

active detector areas

active detector areas

CCD-Sensors

 Spatial transfer function: depends on shape and direction of illumination

Noise behavior

CMOS Sensor Element

Setup of internal elements

Ref: D. Gängler

Detector

Layout of a modern CCD camera

