Optimal Transport

Axel Böhm

September 7, 2021

Monge Problem

2 Kantorovich formulation

The Monge Problem (1781)

Figure: How to best move piles of sand to fill up holes of the same total volume?

- X, Y are metric spaces
- B is a Borel σ-Algebra (open sets, countable union, . . .)
- ullet μ is a probability measure

Given a cost $c: X \times Y \rightarrow \mathbb{R}_+$ find a transport map $T: X \rightarrow Y$ minimizing

$$M(\mu,\nu) = \inf_{T} \int_{X} c(x,Tx) d\mu(x)$$

s.t. the mass remains the same:

$$\mu(T^{-1}(B)) = \nu(B) \quad \forall B \in \mathcal{B}.$$

Drawbacks of Monge formulation

Example

$$X=(x_1,\ldots,x_m)$$
 and $Y=(y_1,\ldots,y_n)$ and $\mu=\frac{1}{m}(\delta_{x_1}+\cdots+\delta_{x_m})$ and $\nu=\frac{1}{n}(\delta_{y_1}+\cdots+\delta_{y_m})$

 $\frac{\text{If } m=n}{\mathbb{R}^{m\times n}} \text{ is just a (square) matrix and}$ $T \text{ is a permutation } \sigma$

$$M(\mu, \nu) = \min_{T} \frac{1}{n} \sum_{i} c(x_{i}, T(x_{i}))$$

$$= \min_{\sigma} \frac{1}{n} \sum_{i} c(x_{i}, y_{\sigma(i)})$$

$$= \min_{\sigma} \frac{1}{n} \sum_{i} C_{i,\sigma(i)}$$

 $\frac{\text{If } m \neq n}{\delta_{x_1} \text{ and } \nu} = \frac{1}{2} (\delta_{y_1} + \delta_{y_2}) \Rightarrow$ No T exists.

Nonuniqueness of solutions

Image courtesy: Mathias Liero.

Kantorovich's relaxation (1940s)

Before: Transport map, $\forall x$ move all amount to some y. Now: Transport plan, $\forall (x, y)$ how much to move from x to y.

Find
$$\gamma \in \P(X \times Y)$$

$$K(\mu, \mu) = \inf_{\gamma} \int_{X \times Y} c(x, y) \, d\gamma(x, y)$$

$$s.t. \gamma(A \times Y) = \mu(A)$$

$$\gamma(X \times B) = \nu(B)$$

for all $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y)$. Note: constraints say that μ and ν are the marginals of γ , i.e. $\gamma \in \Pi(\mu, \nu)$.

Kantorovich's relaxation

Allows for many more settings.

Figure

Example (as before)

$$X=(x_1,\ldots,x_m)$$
 and $Y=(y_1,\ldots,y_n)$ and $\mu=\frac{1}{m}(\delta_{x_1}+\cdots+\delta_{x_m})$ and $\nu=\frac{1}{n}(\delta_{y_1}+\cdots+\delta_{y_m})$

The problem reduces to

$$\min_{\gamma} \sum_{i,j} C_{i,j} \gamma_{i,j},$$

where again $C_{i,j}$ is the cost of moving mass from x_i to y_j Then the space of probability measures on $X \times Y$ is just the set of matrices $[\gamma_{i,j}]_{i=1,\dots,m,j=1,\dots,n}$ such that

$$\sum_{i=1}^{m} \gamma_{i,j} = \frac{1}{n} \quad \text{and} \quad \sum_{i=1}^{n} \gamma_{i,j} = \frac{1}{m}$$

called bistochastic matrices.

Doubly stochastic matrices and the Birkhoff polytope

If m = n, then

$$\sum_{i=1}^{m} \gamma_{i,j} = \frac{1}{n} = \sum_{j=1}^{n} \gamma_{i,j}$$

which called **bistochastic matrices** (scaled by $1_{\overline{n}}$).

The set of all such matrices is called the **Birkhoff polytope**.

Doubly stochastic matrices and the Birkhoff polytope

If m = n, then

$$\sum_{i=1}^{m} \gamma_{i,j} = \frac{1}{n} = \sum_{j=1}^{n} \gamma_{i,j}$$

which called bistochastic matrices (scaled by $1_{\overline{n})}$.

The set of all such matrices is called the Birkhoff polytope.

Vertices of the Birkhoff polytope

Are given by the permutation matrices.

Doubly stochastic matrices and the Birkhoff polytope

If m = n, then

$$\sum_{i=1}^{m} \gamma_{i,j} = \frac{1}{n} = \sum_{j=1}^{n} \gamma_{i,j}$$

which called bistochastic matrices (scaled by $1_{\overline{n}}$).

The set of all such matrices is called the **Birkhoff polytope**.

Vertices of the Birkhoff polytope

Are given by the permutation matrices.

By linearity

$$\begin{aligned} & \min_{\gamma \in \Pi} \sum_{i,j} C_{i,j} \gamma_{i,j} \\ & = \frac{1}{n} \min_{\gamma \in Perm} \sum_{i,j} C_{i,j} \gamma_{i,j} & = \frac{1}{n} \min_{\sigma} \sum_{i,j} C_{i,\sigma(i)} \end{aligned}$$

Example (with non-uniform distribution)

Now
$$\mu = p = (p_1, \dots, p_m)$$
 and $\nu = q = (q_1, \dots, q_n)$

$$K(\mu, \nu) = \min_{\gamma} \sum_{i} C_{i,j} \gamma_{i,j}$$

$$s.t. \begin{cases} \sum_{i} \gamma_{i,j} = q_{j} \\ \sum_{j} \gamma_{i,j} = p_{i} \\ \gamma_{i,j} > 0 \end{cases}$$