Applications of Euclidean Neural Networks for the Understanding and Design of Atomistic Systems

Slides: https://tinyurl.com/2025-aims-tess

Tess Smidt

Applications of Euclidean Neural Networks for the Understanding and Design of Atomistic Systems

Slides: https://tinyurl.com/2025-aims-tess

- 1. Properties of Euclidean neural networks (E(3)NNs)
- 3. Applications
 - a. Interatomic potentials
 - b. Generative models
- 4. Tensor Products

Tess Smidt

Neural networks are specially designed for different data types.

Assumptions about the data type are built into how the network operates.

Neural networks are specially designed for different data types. Assumptions about the data type are built into how the network operates.

Features are independent, fixed length, and ordered. Weights are position sensitive.

Wx

The same features can be found anywhere in an image. Filters operate on patches of image to create new pixel features (Locality).

Want to "pay attention" on the impact of every token on every other token modulated by "positional" embeddings.

3D data ⇒ Euclidean NN

Data in 3D Euclidean space. Freedom to choose coordinate system.
Data transforms predictably under change of coordinate system (*equivariance*).

Neural networks are specially designed for different data types. Assumptions about the data type are built into how the network operates.

Arrays ⇒ Dense NN

Images ⇒ Conv. NN

3D data ⇒ Euclidean NN

Features are independent, fixed length, and ordered. Weights are position sensitive.

Wx

The same features can be found anywhere in an image. Filters operate on patches of image to create new pixel features (Locality).

Want to "pay attention" on the impact of every token on every other token modulated by "positional" embeddings. Data in 3D Euclidean space. Freedom to choose coordinate system. Data transforms predictably under change of coordinate system (*equivariance*).

No symmetry!

Translation symmetry

Permutation symmetry*

Euclidean symmetry

We use them to describe where things are in 3D space, ...

We use them to describe where things are in 3D space, ...

articulate properties that depend on direction, ...

3x3x3x3 tensor elasticity

...

14

We use them to describe where things are in 3D space, ...

articulate properties that depend on direction, ...

3 vector
forces
displacements

3x3 matrix
moment of inertia
stress
strain

3x3x3 tensor
Levi-Civita tensor

3x3x3x3 tensor elasticity

and define tensor fields that vary over space.

scalar field energy pressure

vector field velocity

matrix and tensor fields strain fields

...

Coordinate systems are useful for describing physical systems but *fundamentally arbitrary*.

Coordinate systems are useful for describing physical systems but *fundamentally arbitrary*.

(1) and (2) use different coordinate systems to describe the same physical system.

Traditional machine learning see (1) and (2) as completely different!

Coordinate systems are useful for describing physical systems but *fundamentally arbitrary*.

(1) and (2) use different coordinate systems to describe the same physical system.

Traditional machine learning see (1) and (2) as completely different!

Can we use coordinates with ML without being biased or thrown off by them?

A neural network "equivariant" to E(3) sees (1) and (2) as the same system described differently even without training.

A neural network "equivariant" to E(3) sees (1) and (2) as the same system described differently even without training.

Equivariance:

If the coordinate system changes, the output changes accordingly.

$$f: X \to Y, f(D_X(g)x) = D_Y(g)f(x)$$

E(3) "equivariance" applies to any type of 3D geometric data meshes, voxels, points, etc at any length scale. from the atomic to the cosmic

Consequence of equivariance!

All data acted on by O(3) can be broken up into simpler "data types" (irreps) defined by...

angular frequency (positive int)rate of change under rotation

parity even or odd does not or does flip sign under inversion

Consequence of equivariance!

All data acted on by O(3) can be broken up into simpler "data types" (irreps) defined by...

angular frequency (positive int)
rate of change under rotation

parity even or odd does not or does flip sign under inversion

Some examples include...

Irreps faithfully encode the "data types" of atomic systems.

From structure and forces to atomic orbitals, Hamiltonians, and vibrational modes...

Irreps faithfully encode the "data types" of atomic systems.

We can "change basis" from multi-index data types to irreps ("decompose to irreps").

Key part of operation that replaces multiplication in equivariant models Outer product that decomposes to irreps = "tensor product decomposition"

E(3)NNs have been used to build data-efficient and scalable models of physical processes.

The first successful use case of E(3)NNs was (and continues to be) interatomic potentials. Trained on "first-principles" calculations (e.g. DFT)

The first successful use case of E(3)NNs was (and continues to be) interatomic potentials. Trained on "first-principles" calculations (e.g. DFT)

The first successful use case of E(3)NNs was (and continues to be) interatomic potentials. *Trained on "first-principles" calculations (e.g. DFT)*

Equiformer(V2) – We can adapt techniques in computer vision and NLP to atomistic domain and achieve scalable accuracy. A top performer on OC20, OC22, ODAC,...

Yi-Lun Liao

Open Catalysis 2020 Dataset (examples)

Predict energy, forces of given configurations and relaxed structures.

Graph attention built from tensor products of irrep features

EquiformerV2 ICLR 2024 (arXiv:2306.12059)

Equiformer:

Equivariant graph attention transformer ICLR 2023 (arXiv:2206.11990)

Input 3D Graph

Embedding

Layer Norm

Equivariant

Graph Attention

Layer Norm

Feed Forward

Network

Feed Forward Network

> Output Head

 $\times N$

First equivariant transformer to be state-of-art on multiple atomistic benchmarks (QM9,

Abhishek Das Brandon Wood

TMLR 2024, https://arxiv.org/abs/2403.09549

We can "augment" training of interatomic potentials by denoising non-equilibrium structures.

Potential energy surface

Yi-Lun Liao

Abhishek Das

Muhammed Shuaib

TMLR 2024, https://arxiv.org/abs/2403.09549

We can "augment" training of interatomic potentials by denoising non-equilibrium structures.

Yi-Lun Liao

Abhishek Das

Muhammed Shuaib

TMLR 2024, https://arxiv.org/abs/2403.09549

We can "augment" training of interatomic potentials by denoising non-equilibrium structures.

Yi-Lun Liao

Abhishek Das

Muhammed Shuaib

TMLR 2024, https://arxiv.org/abs/2403.09549

We can "augment" training of interatomic potentials by denoising non-equilibrium structures.

Epochs	EquiformerV2				EquiformerV2 + DeNS			
	forces	energy	Number of parameters	training time (GPU-hours)	forces	energy	Number of parameters	training time (GPU-hours)
12	20.46	285	83M	1398	19.09	269	89M	1501
20	19.78	280	83M	2330	18.58	260	89M	2501
30	19.42	278	83M	3495	18.02	251	89M	3752
	eSCN				eSCN + DeNS			
20	20.61	290	52M	1802	19.14	268	52M	1829

Force MAE in meV/Å Energy MAE in meV

Yi-Lun Liao

Abhishek Das

Muhammed Shuaib

Symphony: (ICLR 2024, arXiv:2311.16199)

Symphony generates molecules one atom at a time...

Ameya Daigavane

Song Kim

Mario Geiger

Symphony: (ICLR 2024, arXiv:2311.16199)

Symphony generates molecules one atom at a time...

and breaks each generation step into several predictions.

Ameya Daigavane

Song Kim

Mario Geiger

Symphony: (ICLR 2024, arXiv:2311.16199)

Symphony generates molecules one atom at a time...

and breaks each generation step into several predictions.

Positions sampled from spherical harmonics distributions... a natural datatype for ENNs.

Ameya Daigavane

Song Kim

Mario Geiger

Symphony: (ICLR 2024, arXiv:2311.16199)

Symphony generates molecules one atom at a time...

and breaks each generation step into several predictions.

Positions sampled from spherical harmonics distributions... a natural datatype for ENNs.

Ameya Daigavane

Song Kim

Mario Geiger

ENNs learn lossless, physical, coarsened representations of large atomic systems. Ophiuchus: Hierarchical Coarse-Graining of Proteins (ICLR GEM Workshop 2024, arXiv:2310.02508)

ENNs learn lossless, physical, coarsened representations of large atomic systems. Ophiuchus: Hierarchical Coarse-Graining of Proteins (ICLR GEM Workshop 2024, arXiv:2310.02508)

ENNs learn lossless, physical, coarsened representations of large atomic systems. Ophiuchus: Hierarchical Coarse-Graining of Proteins (ICLR GEM Workshop 2024, arXiv:2310.02508)

Latent interpolation (z) between protein conformations are <u>physical</u>.

Allan

The catch? There's an abstraction vs. implementation gap.

Biggest pain point? Equivariant "multiplication" == tensor product decomposition

The most general way to interact equivariant objects (like vectors) is the outer product.

Not a scalar or vector.

Does not have a single angular frequency.

Can be decomposed into "irreps".

The most general way to interact equivariant objects (like vectors) is the outer product.

Most general tensor product does $\underline{not\ scale\ favorably}$. It preserves dimension.

$$\mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^{N \times M}$$

Most general tensor product does <u>not scale favorably</u>. It preserves dimension.

$$\mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^{N \times M}$$

10
$$\otimes$$
 3e 3 x 7 = 21 dof, 3 paths

Most general tensor product does *not scale favorably*. It preserves dimension.

$$\mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^{N \times M}$$

$$10 \otimes 3e$$

 $3 \times 7 = 21 \text{ dof}, 3 \text{ paths}$

10
$$\otimes$$
 3e
 (10 \oplus 1e) \otimes (3e \oplus 3o)

 3 x 7 = 21 dof, 3 paths
 6 x 14 = 84 dof, 12 paths

Most general tensor product does <u>not scale favorably</u>. It preserves dimension.

$$\mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^{N \times M}$$

10
$$\otimes$$
 3e 3 x 7 = 21 dof, 3 paths

$$(10 \oplus 1e) \otimes (3e \oplus 3o)$$

6 x 14 = 84 dof, 12 paths

Most general tensor product does <u>not scale favorably</u>. It preserves dimension.

$$\mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^{N \times M}$$

10
$$\otimes$$
 3e 3 x 7 = 21 dof, 3 paths

$$(10 \oplus 1e) \otimes (3e \oplus 3o)$$

6 x 14 = 84 dof, 12 paths

$$1o \otimes 3e$$
 $(1o \oplus 1e) \otimes (3e \oplus 3o)$
 $(1o \oplus 1e + 2o) \otimes (3e \oplus 3o + 4e)$
 $3 \times 7 = 21 \text{ dof}, 3 \text{ paths}$
 $6 \times 14 = 84 \text{ dof}, 12 \text{ paths}$
 $11 \times 23 = 253 \text{ dof}, 33 \text{ paths}$

In order to maintain equivariance, we can only throw out entire "paths" (path == set of 3 lines connecting irrep 1 in, irrep 2 in and irrep out).

How to scale? How to prune?

Most general tensor product does <u>not scale favorably</u>. It preserves dimension.

$$\mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^{N \times M}$$

In order to maintain equivariance, <u>we can only throw out entire "paths"</u> (path == set of 3 lines connecting irrep 1 in, irrep 2 in and irrep out).

How to scale? How to prune?

YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt

https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Diagram of "General" /
Clebsch-Gordan Tensor
Product (CGTP)
without visualizing sparsity.

YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt

https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Ameya Daigavane

YuQing

Xie

Diagram of "General" /
Clebsch-Gordan Tensor
Product (CGTP)
without visualizing sparsity.

Spoiler: Any proposed "faster TP" can be emulated with a CGTP with specific dropped paths or path summing.

YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Gaunt Tensor Product (GTP)

Luo, Chen, Krishnapriyan https://openreview.net/forum?id=mhyQXJ6JsK ICLR 2024 Spotlight

Figure 2. Schematic of GTP. We interpret input irreps as scalar SH coefficients to create spherical signals. We then take pointwise products of the two signals to create a new signal which we decompose back into scalar SH coefficients.

Matrix Tensor Product (MTP)

Unke, Maennel In e3x: https://arxiv.org/abs/2401.07595

Figure 3. Schematic of the process in taking a matrix tensor product. We embed input irreps into a tensor product rep. We then interact using matrix multiplication before decomposing the resulting tensor product rep back into a direct sum of irreps.

YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Gaunt Tensor Product (GTP)

Luo, Chen, Krishnapriyan https://openreview.net/forum?id=mhyQXJ6JsK ICLR 2024 Spotlight

Figure 2. Schematic of GTP. We interpret input irreps as scalar SH coefficients to create spherical signals. We then take pointwise products of the two signals to create a new signal which we decompose back into scalar SH coefficients.

GTP lacks antisymmetric interactions (e.g., cannot represent cross products), which makes it unable to classify chiral structures.

Matrix Tensor Product (MTP)

Unke, Maennel In <u>e3x</u>: https://arxiv.org/abs/2401.07595

Figure 3. Schematic of the process in taking a matrix tensor product. We embed input irreps into a tensor product rep. We then interact using matrix multiplication before decomposing the resulting tensor product rep back into a direct sum of irreps.

YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Gaunt Tensor Product (GTP)

Luo, Chen, Krishnapriyan https://openreview.net/forum?id=mhyQXJ6JsK ICLR 2024 Spotlight

Figure 2. Schematic of GTP. We interpret input irreps as scalar SH coefficients to create spherical signals. We then take pointwise products of the two signals to create a new signal which we decompose back into scalar SH coefficients.

GTP lacks antisymmetric interactions (e.g., cannot represent cross products), which makes it unable to classify chiral structures.

Matrix Tensor Product (MTP)

Unke, Maennel In <u>e3x</u>: https://arxiv.org/abs/2401.07595

Figure 3. Schematic of the process in taking a matrix tensor product. We embed input irreps into a tensor product rep. We then interact using matrix multiplication before decomposing the resulting tensor product rep back into a direct sum of irreps.

MTP can represent antisymmetric interactions but merges same-type outputs, limiting expressive granularity. The Price of Freedom: Exploring Tradeoffs in Equivariant Tensor Product Operations YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt

YuQing

Ameya

Xie

Mit

Kotak

https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Figure 4. Top: Analysis of tensor products compute scaling on a RTX A5500 GPU: Total GFLOPs (Left), Total walltime (Middle), and Average throughput in GFLOPs/s (Right). Bottom: Analysis of tensor products compute scaling per path on RTX A5500 GPU: (Left) Total Walltime / Expressivity, (Right) Total GFLOPs / Expressivity. Batch refers to the number of tensor products performed in parallel.

YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt

https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Figure 4. Top: Analysis of tensor products compute scaling on a RTX A5500 GPU: Total GFLOPs (Left), Total walltime (Middle), and Average throughput in GFLOPs/s (Right). Bottom: Analysis of tensor products compute scaling per path on RTX A5500 GPU: (Left) Total Walltime / Expressivity, (Right) Total GFLOPs / Expressivity. Batch refers to the number of tensor products performed in parallel.

YuQing Xie

YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt

https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Tensor Product Operation	Expressivity	Runtime	Runtime / Expressivity
CGTP (Naive)	$\mathcal{O}(L^3)$	$\mathcal{O}(L^6)$	$\mathcal{O}(L^3)$
CGTP (Sparse)	$\mathcal{O}(L^3)$	$\mathcal{O}(L^5)$	$\mathcal{O}(L^2)$
GTP (Fourier)	$\mathcal{O}(L)$	$\mathcal{O}(L^3)$	$\mathcal{O}(L^2)$
GTP (Grid)	$\mathcal{O}(L)$	$\mathcal{O}(L^3)$	$\mathcal{O}(L^2)$
GTP (S2FFT)	$\mathcal{O}(L)$	$\mathcal{O}(L^2 \log^2 L)$	$\mathcal{O}(L\log^2 L)$
MTP (Naive)	$\mathcal{O}(L)$	$\mathcal{O}(L^4)$	$\mathcal{O}(L^3)$
MTP (Sparse)	$\mathcal{O}(L)$	$\mathcal{O}(L^3)$	$\mathcal{O}(L^2)$

Asymptotic runtime normalized by expressivity is similar for all methods.

BUT, asymptotic runtime does not predict practical performance due to e.g. GPU utilization and FLOPs.

YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt

https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Tensor Product Operation	Expressivity	Runtime	Runtime / Expressivity
CGTP (Naive)	$\mathcal{O}(L^3)$	$\mathcal{O}(L^6)$	$\mathcal{O}(L^3)$
CGTP (Sparse)	$\mathcal{O}(L^3)$	$\mathcal{O}(L^5)$	$\mathcal{O}(L^2)$
GTP (Fourier)	$\mathcal{O}(L)$	$\mathcal{O}(L^3)$	$\mathcal{O}(L^2)$
GTP (Grid)	$\mathcal{O}(L)$	$\mathcal{O}(L^3)$	$\mathcal{O}(L^2)$
GTP (S2FFT)	$\mathcal{O}(L)$	$\mathcal{O}(L^2 \log^2 L)$	$\mathcal{O}(L\log^2 L)$
MTP (Naive)	$\mathcal{O}(L)$	$\mathcal{O}(L^4)$	$\mathcal{O}(L^3)$
MTP (Sparse)	$\mathcal{O}(L)$	$\mathcal{O}(L^3)$	$\mathcal{O}(L^2)$

Asymptotic runtime normalized by expressivity is similar for all methods.

BUT, asymptotic runtime does not predict practical performance due to e.g. GPU utilization and FLOPs.

CGTP has low GPU utilization but, when normalized for expressivity, is still the most efficient.

GTP performs better in wall-clock time due to higher GPU efficiency.

MTP takes care of path dropping implicitly.

The Price of Freedom: Exploring Tradeoffs in Equivariant Tensor Product Operations YuQing Xie, Ameya Daigavane, Mit Kotak, Tess Smidt

Runtime / Expressivity

 $\mathcal{O}(L^3)$

 $\mathcal{O}(L^2)$

 $\mathcal{O}(L^2)$

https://openreview.net/forum?id=EvlwwGYTLc (ICML 2025)

Runtime

 $\mathcal{O}(L^6)$

 $\mathcal{O}(L^5)$

 $\mathcal{O}(L^3)$

Expressivity

 $\mathcal{O}(L^3)$

 $\mathcal{O}(L^3)$

 $\mathcal{O}(L)$

 $\mathcal{O}(L)$

Tensor Product

CGTP (Naive)

CGTP (Sparse)

GTP (Fourier)

GTP (Grid)

CTD (CAPETY)

Operation

MTP (Sparse)	$\mathcal{O}(L)$ $\mathcal{O}(L)$	$\mathcal{O}(L^2 \log^2 L)$ $\mathcal{O}(L^4)$ $\mathcal{O}(L^3)$	$\mathcal{O}(L \log^2 L)$ $\mathcal{O}(L^3)$ $\mathcal{O}(L^2)$	CGTP has low GPU utilization but, when normalized for expressivity, is still the most efficient.
				GTP performs better in wall-clock time due to higher GPU efficiency.
				MTP takes care of path dropping implicitly.

Asymptotic runtime normalized by

practical performance due to

e.g. GPU utilization and FLOPs.

expressivity is similar for all methods.

BUT, asymptotic runtime does not predict

Code for paper: https://github.com/atomicarchitects/PriceofFreedom

Efforts on compiling strategies:

<u>cuEquivariance</u> | <u>openEquivariance</u> | "newquip"

Thanks to the group...

Thanks to the group, our collaborators, ...

Abhishek Das Brandon Wood

Muhammed Shuaibi

Mario Geiger

Thanks to the group, our collaborators, and our funding!

DOE ICDI grant DE-SC0022215

AFOSR Young Investigator Program

PHY 2019786

MIT SuperUROP

Euclidean neural networks are built with the powerful assumption that atomic systems exist in 3D Euclidean space.

Symmetry induces data types (irreps), rules of interaction (tensor products), and other emergent properties (degeneracy).

There are many ways to use these properties to build interesting "modules".

Many opportunities for design and optimization!

- Tensor product ops that balance expressivity and scalability
- Generative models
- ...

Slides: https://tinyurl.com/2025-aims-tess