دالة اللوغاريتم

الثانية سلك بكالوريا علوم تحريبية

<u>I- دالة اللوغاريتم النيبيري</u>

<u>1- تذكير</u> - نعلم أن كل دالة متصلة على مجال I تقبل دوال أصلية على I

$$x o rac{x^{r+1}}{r+1} + k$$
 هي $]0;+\infty[$ هي $x o x^r$ تقبل دوال أصلية على $]0;+\infty[$ هي $x o x^r$ عدد حقيقي ثابت $x o x^r$

*- في الحالة التي تكون r=-1 نحصل على الدالة $x \to \frac{1}{x}$ المتصلة على $]0;+\infty[$ ومنه تقبل دوال أصلية وبالتالي الدالة $x \to \frac{1}{x}$ تقبل دالة أصلية وحيدة تنعدم في $x \to \frac{1}{x}$

<u>2- تعریف</u>

الدالة الأصلية لدالة $x o rac{1}{x}$ على $x o 0; +\infty$ التي تنعدم في النقطة 1 تسمى دالة اللوغاريتم النيبيري ويرمز لها بالرمز ln أو Log

$$\begin{cases} x > 0 \\ f'(x) = \frac{1}{x} \Leftrightarrow f(x) = \ln(x) \\ f(1) = 0 \end{cases}$$

<u>3- خاصيات</u>

<u>أ- خاصىات</u>

$$\forall x \in \left]0;+\infty\right[$$
 و $\ln'(x)=rac{1}{x}$ و $\ln'(x)=\frac{1}{x}$ و $\ln'(x)=\frac{1}{x}$

$$]0;+\infty[$$
 الدالة $]0;+\infty$ الدالة التابية قطعا الدالة التابية الدالة التابية الدالة التابية الت

<u>نتائج</u>

لکل عددین حقیقیین موجبین قطعا x و y

$$\ln x = \ln y \iff x = y$$

$$\ln x > \ln y \Leftrightarrow x > y$$

ملاحظة

$$\ln x = 0 \Leftrightarrow x = 1$$

$$\ln x > 0 \Leftrightarrow x > 1$$

$$\ln x \prec 0 \Leftrightarrow 0 \prec x \prec 1$$

$$g:x o \ln\left(x^2-3x\right)$$
 $f:x o \ln\left(x-1\right)+\ln\left(4-x\right)$ تمرين 1- حدد مجموعة تعريف الدالتين

$$\ln\left(x^2-3\right)=\ln\left(2x\right)$$
 حل في \mathbb{R} المعادلتين $=0$ المعادلتين $=0$ -2

$$\ln\left(x^2-2x\right) \le \ln\left(x\right)$$
 -3 المتراجحتين $\ln\left(x^2-x-2\right) < 0$ المتراجحتين 3

<u>ب- خاصية أساسية</u>

 $F(x) = \ln(ax)$ ب $]0;+\infty[$ ب رادة عددية معرفة على $[0;+\infty[$ ب رادة عددية معرفة على $[0;+\infty[$ ب رادة عددين حقيقيين موجبين قطعا

$$]0;+\infty[$$
 على $]0;+\infty[$ على $]0;+\infty[$ على $]0;+\infty[$ على $]0;+\infty[$ على $]0;+\infty[$ على $]0;+\infty[$

$$\ln(ab) = \ln a + \ln b$$
 ثم استنتج $\forall x \in]0; +\infty[$ $F(x) = \ln(ax) = \ln a + \ln x$ بین أن -2

الحواب

$$u(x) = ax$$
 حيث $F(x) = \ln o u(x)$ الدينا $F(x) = \ln o u(x)$ حيث $F(x) = \ln o u(x)$ الدينا $F(x) = u'(x) \times (\ln v)'(u(x)) = a \cdot \frac{1}{ax} = \frac{1}{x}$ $= \frac{1}{x}$

 $\ln(ab) = \ln a + \ln b$ نحصل على x = b

<u>خاصية أساسية</u>

$$\forall (a;b) \in (]0;+\infty[)^2$$
 $\ln(ab) = \ln a + \ln b$

ج- خاصیات

$$\forall x \in \left]0; +\infty\right[\qquad \ln\frac{1}{x} = -\ln x$$

$$\forall \left(x; y\right) \in \left]0; +\infty\right[^{2} \qquad \ln\frac{x}{y} = \ln x - \ln y$$

$$\forall \left(x_{1}; x_{2}; \dots; x_{n}\right) \in \left]0; +\infty\right[^{n} \qquad \ln\left(x_{1} \times x_{2} \times \dots \times x_{n}\right) = \ln x_{1} + \ln x_{2} + \dots + \ln x_{n}$$

$$\forall x \in \left]0; +\infty\right[\qquad \forall r \in \mathbb{Q}^{*} \qquad \ln x^{r} = r \ln x$$

<u>البرهان</u>

$$\ln\left(x \times \frac{1}{x}\right) = \ln 1 \iff \ln x + \ln \frac{1}{x} = 0 \iff \ln \frac{1}{x} = -\ln x$$

$$\ln x^r = \ln \underbrace{\left(x \times x \times \dots \times x\right)}_{r \quad facteurs} = \underbrace{\ln x + \ln x + \dots + \ln x}_{r \quad termes} = r \ln x$$
 فان $r \in \mathbb{N}^*$

$$\ln x^r = \ln x^{-n} = \ln \frac{1}{x^n} = -\ln x^n = -n \ln x = r \ln x$$
 ومنه $r = -n$ ومنه $r \in \mathbb{Z}_+^*$

$$y = x^{\frac{p}{q}} \Leftrightarrow x^p = y^q$$
 نعلم أن $q \in \mathbb{N}^*$ $p \in \mathbb{Z}^*$ / $\frac{p}{q} = r$ إذا كان

$$\ln x^{\frac{p}{q}} = \frac{p}{q} \ln x$$
 و منه $\ln x = \frac{p}{q} \ln x$ و منه $\ln x = \frac{p}{q} \ln x$ و منه $\ln x = \frac{p}{q} \ln x$ و منه $\ln x = \frac{p}{q} \ln x$

$$\ln x = r \ln x$$
 أي $\forall x \in]0;+\infty[$ $\ln \sqrt{x} = \frac{1}{2} \ln x$

تمرين هل الدالتان f و g متساويتين في الحالتين التاليتين

$$f(x) = \ln(x-1)^2$$
 $g(x) = 2\ln|x-1|$ (a
 $f(x) = \ln x (x-1)$ $g(x) = \ln x + \ln(x-1)$ (b
 $\ln \sqrt{\sqrt{2}+1} + \ln \sqrt{\sqrt{2}-1}$ أحسب (1)

$$\ln 2 \simeq 0.7$$
 $\ln 3 \simeq 1.1$ أحسب قيمة مقربة ل $\ln \frac{2}{9}$ و $\ln \sqrt{6}$ ادا علمت أن (2

4<u>- دراسة دالة In</u>

$$[0;+\infty]$$
 دالة $[0;+\infty]$ دالة ا

$$\lim_{x \to \infty} \ln x = +\infty$$
 (نقبل) میرهنة (b

$$\lim_{x\to 0^+} \ln x = -\infty$$

$$\lim_{x \to 0^+} \ln x = \lim_{t \to +\infty} \ln \frac{1}{t} = \lim_{t \to +\infty} -\ln t = -\infty$$

$$x = \frac{1}{t}$$
 نضع

c) <u>العددe</u>

لدينا الدالة In تزايدية قطعا على $]0;+\infty[$ ومتصلة و $\ln(0;+\infty[$ و منه المعادلة $\ln x=1$ تقبل حلا $\ln x=1$ ويرمز له بالحرف e وحيدا في $[0;+\infty[$ ويرمز له بالحرف e الحرف العرب أعدى العرب أعدى العرب أعدى العرب العرب العرب أعدى العرب الع

 $e \simeq 2,71828$ هي عددا جذريا و قيمته المقربة هي e نقبل أن

d) <u>جدول تغيرات الدالة ln</u>

In فان محور الاراتيب مقارب للمنحنى الممثل الدالة $\lim_{x \to 0^+} \ln x = -\infty$ بما أن

e) <u>الفروع اللانهائية</u>

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

اذن المنحنى الممثل لدالة ln يقبل فرعا شلجميا في اتجاه محور الأفاصيل

- ا مقعر ln اذن منحنى الدالة $\forall x \in \left]0; +\infty\right[$
- (\ln) "(x) = $-\frac{1}{x^2}$ راسة التقعر
 - g) التمثيل المبياني

منحنى الدالة ln

h) <u>نهايات هامة أخرى</u>

$$n \in \mathbb{N}^*$$
 $\lim_{x \to 0^+} x^n \ln x = 0$ $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$ $\lim_{x \to 0} \frac{\ln (1+x)}{x} = 1$ $\lim_{x \to 1} \frac{\ln x}{x-1} = 1$ $\lim_{x \to 0^+} x \ln x = 0$

$$\lim_{x \to 0^{-}} x \ln\left(x^{2} - x\right)$$
 $\lim_{x \to +\infty} x \ln\left(\frac{x - 2}{x}\right)$ $\lim_{x \to +\infty} x - \ln x$ مرین

<u> – مشتقة الدالة اللوغاريتمية</u>

أ- ميرهنة

$$\forall x \in I$$
 $\left(\ln\left|u\left(x\right)\right|\right)' = \frac{u'(x)}{u(x)}$

I لا تنعدم على و منه ${f u}$ إما موجبة قطعا على ${f I}$ أو سالبة قطعا على ${f I}$

$$\forall x \in I$$
 $f'(x) = u'(x)\ln u(x) = \frac{u'(x)}{u(x)}$ ومنه $f(x) = \ln u(x)$ فان I موجبة قطعا على U اذا كانت U موجبة

ومنه $f(x) = \ln(-u(x))$ فان I ومنه u اذا كانت u ادا

$$\forall x \in I \qquad f'(x) = -u'(x)\ln'(-u(x)) = \frac{-u'(x)}{-u(x)} = \frac{u'(x)}{u(x)}$$

تمرين حدد مجموعة تعريف الدالة f و أحسب مشتقتها في الحالتين التاليتين $f(x) = \ln(x^2 + 2x)$ (b $f(x) = \ln|x^2 - 4|$ (a

<u>ں- تعریف</u>

_ u دالة قابلة للاشتقاق على مجال I و لا تنعدم على المجال I

الدالة $\frac{u'}{u}$ تسمى المشتقة اللوغاريتمية للدالة u على المجال

<u>ج- نتىحة</u>

u دالة قابلة للاشتقاق على مجال I و لا تنعدم على المجال I

الدوال الأصلية لدالة
$$c$$
 عدد c على c على c الدوال الأصلية لدالة c عدد ثابت c عدد ثابت

مرين $oldsymbol{1}$ أوجد دالة أصلية لدالة f على المجال I في الحالات التالية

$$\begin{cases} f(x) = \frac{x-1}{x+1} \\ I =]-1; +\infty [\end{cases} \qquad \begin{cases} f(x) = \tan(x) \\ I =]\frac{-\pi}{2}; \frac{\pi}{2} [\end{cases} \qquad \begin{cases} f(x) = \frac{x-1}{x^2 - 2x} \\ I =]2; +\infty [\end{cases}$$

 $f(x) = \frac{\sqrt{x^3 + 1}}{(x + 2)^2}$ حيث]-1;+∞[حيث f على]-1;+∞[حيث أحسب الدالة المشتقة لدالة $f(x) = \frac{\sqrt{x^3 + 1}}{(x + 2)^2}$

<u>II- دالة اللوغاريتم للأساس a</u>

<u>1- تعرىف</u>

عدد حقيقي موجب قطعا و مخالف للعدد 1 a

 Log_a الدالة $a\to \frac{\ln x}{\ln a}$ الدالة $a\to \frac{\ln x}{\ln a}$ الدالة على $a\to \frac{\ln x}{\ln a}$

$$\forall x \in]0; +\infty[$$
 $Log_a(x) = \frac{\ln x}{\ln a}$

<u>ملاحظات</u>

$$\forall x \in \left]0;+\infty\right[$$
 $\log_e\left(x\right)=rac{\ln x}{\ln e}=\ln x$ e دالة اللوغاريتم النيبيري هي دالة اللوغاريتم للأساس *

$$\forall a \in \mathbb{R}^{+*} - \{1\} \qquad \forall r \in \mathbb{Q} \qquad Log_a(a) = 1 \qquad Log_a(a^r) = r \quad -*$$

 Log_a حيث k عدد حقيقي ثابت فان الدالة $\log_a(x)=k\,\ln x$ حيث k عدد حقيقي ثابت فان الدالة $\log_a(x)=k\,\ln x$ تحقق جميع الخاصيات التي تحققها الدالة In

$$\forall (x; y) \in (]0; +\infty[)^2 \qquad \forall r \in \mathbb{Q} \qquad Log_a(xy) = Log_a(x) + Log_a(y)$$

$$Log_a\left(\frac{x}{y}\right) = Log_a(x) - Log_a(y)$$
; $Log_a(x^r) = rLog_a(x)$

3- <u>دراسة دالة اللوغاريتم للأساس a</u>

$$\forall x \in]0; +\infty[$$
 $Log_a'(x) = \frac{1}{x \ln a}$

$$\lim_{x \to +\infty} Log_a x = -\infty \qquad \qquad \lim_{x \to 0^+} Log_a x = +\infty$$

$$Log_a$$
' > 0 و منه $a > 1$ فان $a > 1$

$$\lim_{x \to +\infty} Log_a x = +\infty \qquad \lim_{x \to 0^+} Log_a x = -\infty$$

. الدالة اللوغاريتمية التي أساسـها 10 تسـمي دالة اللوغاريتم العشـري و يرمز لها بـ log

$$\forall x \in]0; +\infty[\qquad \log x = Log_{10}x = \frac{\ln x}{\ln 10}$$

ملاحظات

$$\left(M \simeq 0,434 \right)$$
 $\forall x \in \left] 0;+\infty \right[$ $\log x = M \ln x$ فاننا نحصل على $M = \frac{1}{\ln 10}$ اذا وضعنا $M = \frac{1}{\ln 10}$

$$\forall m \in \mathbb{Z} \qquad \log 10^m = m \qquad -*$$

$$\log 0,01$$
 احسب $\log 10000$ ا $\log 0,01$

$$\log(x-1) + \log(x+3) = 2$$
 \mathbb{R} حل في -2
$$\begin{cases} x+y=65 \\ \log x + \log y = 3 \end{cases}$$
 \mathbb{R}^2 حل في -3