- 1. Zrýchlenie telesa sa mení s časom: $\vec{a} = (a_0 \alpha t^2)\vec{i} g\vec{j}$. Určte polohu telesa, ak v čase $t=0s: \vec{r}=\vec{0}, \ \vec{v}=\vec{0}$
- 2. Častica má zrýchlenie $a=a_0\sin\omega t$. V čase t=0s jej poloha je x=x₀, a rýchlosť v=v₀. Určte polohu častice v čase t.
- 3. Častica sa pohybuje po priamke spomalene so zrýchlením $a=-\alpha\sqrt{\nu}$, kde α je kladná konštanta. Jej počiatočná rýchlosť bola v_0 . Určte priebeh jej rýchlosti ako funkciu času. Urcte čas t_0 , za ktorý sa častica zastaví.
- **4.** Chlapci hádžu kamene na skalnú vyvýšeninu s výškou h. Počiatočná rýchlosť kameňa má veľkosť $v_0 = 42$ m/s a elevačný uhol je $\theta = 60^\circ$. Kameň dopadne na vyvýšeninu po $t_{dop} = 5$ s letu. Určte:
 - a) výšku h.
 - b) veľkosť rýchlosti dopadu.
 - výšku vrcholu trajektórie nad zemským povrchom H.

- 5. Lietadlo zostupuje pod uhlom 30° rýchlosťou o veľkosti 290 km/h. Pilot uvoľní radarovú návnadu, ktorá dopadne na zem vo vodorovnej vzdialenosti 700 m od miesta uvoľnenia.
 - a) V akej výške pilot návnadu uvoľnil?
 - **b**) Ako dlho trval jej pád?
 - c) Určte uhol dopadu návnady vzhľadom na horizontálny smer.
- **6.** Pri sopečnej erupcii sú z krátera vymršťované veľké balvany. Na obr. je znázornený rez japonskou sopkou Fuji. Zanedbajte odpor vzduchu a vypočítajte:
 - a) Určte dolet kameňa, ak bol vrhnutý pod uhlom 35⁰, a
 jeho počiatočná rýchlosť je v₀=255,5m/s.
 - **b**) Aká je ich doba letu?

700 m