Movimento Retilíneo Uniforme (MRU)

Teoria

O deslocamento Δx de um corpo que se move em linha reta é definido como a variação da sua posição, conforme as coordenadas do eixo que representa a direção do deslocamento:

$$\Delta x = x_2 - x_1$$

A velocidade média com que um corpo se desloca é a razão entre o deslocamento $(x_2 - x_1)$ e o intervalo de tempo $(t_2 - t_1)$ durante o qual o deslocamento ocorre:

$$v_m = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \tag{1}$$

Quanto menor for o intervalo de tempo Δt durante o qual observamos o movimento do corpo, mais nos aproximamos de determinar a **velocidade instantânea**, ou simplesmente velocidade:

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \frac{dx}{dt}$$
 (2)

Como podemos ver, a velocidade instantânea é a derivada da função posição com relação ao tempo, no instante t considerado. Assim, se traçarmos um gráfico de x em função de t, a inclinação em cada ponto deve corresponder idealmente à velocidade instantânea.

Para o caso de um **movimento retilíneo uniforme**, não há aceleração, e por isso esperase que a velocidade instantânea não varie, e que seja igual à velocidade média calculada entre quaisquer dois instantes no percurso. Assim, de (1), obtemos, para um deslocamento entre as posições x_0 e x:

$$x = x_0 + v\Delta t$$

Se considerarmos $t_0 = 0$ e t o instante final do movimento:

$$x = x_0 + vt$$

que corresponde à equação horária do movimento retilíneo uniforme.

Equipamento

Para realizar um experimento objetivando a análise do movimento descrito por um corpo, devemos ser capazes de medir diretamente ao menos duas grandezas: o tempo e a posição. A partir delas, podemos obter indiretamente grandezas como velocidade e aceleração.

Um equipamento muito difundido para o estudo didático do movimento retilíneo, desenvolvido na década de 60 [1], é o chamado "trilho de ar", projetado de forma a tentar eliminar ao máximo a influência de forças dissipativas como o atrito. Isto é feito proporcionando-se uma camada de ar ("colchão de ar") por sobre a qual um objeto, chamado de "carrinho", flutua e pode deslizar livremente.

O trilho de ar é constituído por um tubo de alumínio oco, cuja seção tem um perímetro externo triangular, através do qual, por intermédio de uma mangueira conectada a uma máquina sopradora, é gerado um fluxo de ar. O trilho possui pequenos orifícios por onde continuamente escapa o ar, e este efeito é capaz de levitar o "carrinho" posicionado acima do trilho, eliminando quase todo o atrito, e permitindo a ele deslizar livremente. O carrinho é por vezes chamado de "cavaleiro".

O registro do movimento do carrinho é realizado por dispositivos auxiliares. Este registro pode se dar por meio de um faiscador acoplado ao carrinho, emitindo centelhas a uma frequência bem definida, que marcam uma fita de papel termossensível grudada à região do percurso do carrinho, ou por meio de sensores que marcam o instante em que ele passa por determinada posição. Neste último caso, os sensores podem ser fotoelétricos, registrando a passagem com um cronômetro digital, com o auxílio de um anteparo acoplado ao carrinho. É possível utilizar o trilho de ar, graças à amenização do atrito, para estudar o movimento retilíneo uniforme de corpos, no qual deve estar ausente qualquer aceleração na direção do movimento.

Referências

[1] Neher, H. V. and Leighton, R. B. (1963) Linear Air Trough. American Journal of Physics, 31 (4). pp. 255-262.

Universidade Federal Rural do Semi-Árido

CAMPUS ANGICOS BACHARELADO EM CIÊNCIA E TECNOLOGIA

Laboratório de Mecânica Clássica - Roteiro de Atividades

Integrantes:	
1	4
2	
3	
Movimento Retilíneo Uniforme (MR Experimento	U)
Marque com um ✓ em cada () correspondente	ao item já realizado.
1. Para este experimento, usaremos o trilho de sensores conforme a figura abaixo:	

Chamaremos o sensor mais próximo ao eletroímã de sensor $0 \ (k=0)$. Este sensor, pelo qual o carrinho passará primeiro, acionará o cronômetro (START). Os demais sensores serão numerados k=1, k=2, k=3 e k=4.

- 2. Posicionar o carrinho junto ao eletroímã no extremo do trilho, sem arrastá-lo pelo trilho, e ajustar a posição do sensor 0 para que distância entre o meio do sensor e o centro de massa do carrinho seja de 0, 200 m.
- 3. Adicionar peso de 40 g ao carrinho (20 g de cada lado).
- 4. Definir $x_0 = 0,200\,\mathrm{m}$ como sendo a posição do sensor 0. Com isto em mente, posicionar o sensor 1, o primeiro a registrar o tempo de percurso, na posição $x_1 = 0,300\,\mathrm{m}$. Da mesma forma, posicionar os outros 3 sensores em $x_2 = 0,400\,\mathrm{m}$, $x_3 = 0,500\,\mathrm{m}$ e $x_4 = 0,600\,\mathrm{m}$ (SÃO VALORES RELATIVOS À POSIÇÃO INICIAL $x_{c0} = 0$ DO CARRINHO, E NÃO NECESSARIAMENTE OS VALORES ABSOLUTOS INDICADOS PELA RÉGUA DO TRILHO).

Adicionar pesos de 20 g no porta-peso que está fixado à ponta do barbante. A massa do porta-peso é de 8 g. Logo, a massa total a ser considerada é de m = 28 g.
 Verificar se o barbante está devidamente fixado ao carrinho e ao porta-pesos, e passando pela roldana.
 Ligar o fluxo de ar.
 No experimento, o porta-peso e o peso que puxam o carrinho devem cair na mesa antes do carrinho passar pelo sensor 0. Verificar isto.
 Posicionar o carrinho junto ao eletroímã. Ligar o eletroímã.
 Zerar o cronômetro e ajustar a função F1. Com esta função, o cronômetro inicia a contagem com a passagem do carrinho pelo sensor 0 e registra os intervalos de tempo, desde o início da contagem, nos demais sensores.
 Preparar para realizar o experimento. Desligar o eletroímã, soltando o carrinho, e registrar nos cronômetros os intervalos de tempo. Preencher a tabela 01, na qual em

Table 1: Massa do porta-peso: $m = 28 \,\mathrm{g}$

cada uma das 3 execuções do experimento.

cada coluna devem ser anotados os tempos cronometrados para todos os sensores em

		-	-	0
k	$x_k(\mathbf{m})$	$t^{(1)}(s)$	$t^{(2)}(s)$	$t^{(3)}(s)$
0	$x_0 = 0,200$		_	_
1	$x_1 = 0,300$			
2	$x_2 = 0,400$			
3	$x_3 = 0,500$			
4	$x_4 = 0,600$			

12. Repetir o experimento, desta vez com $m=48\,\mathrm{g}$ fixados à extremidade do barbante, preenchendo a tabela seguinte.

Table 2: Massa do porta-peso: $m = 48 \,\mathrm{g}$

k	$x_k(\mathbf{m})$	$t^{(1)}(s)$	$t^{(2)}(s)$	$t^{(3)}(s)$
0	$x_0 = 0,200$	_	_	_
1	$x_1 = 0,300$			
2	$x_2 = 0,400$			
3	$x_3 = 0,500$			
4	$x_4 = 0,600$			

Análise dos dados

1. Na tabela seguinte, reproduza os dados colhidos na tabela de dados 1, obtenha o desvio-padrão da média dos tempos colhidos e expresse o resultados das medidas levando-se em conta o erro calculado.

Table 3: Massa do porta-peso $m = 28 \,\mathrm{g}$

			Table 0.	Massa ao I	rapic of Massa as point pess m - 208	S 0.7 L	
دی	$\langle c \mid x_k(\mathrm{m}) \rangle$	$t^{(1)}(\mathrm{s})$	$t^{(2)}(s)$	$t^{(1)}(s) \mid t^{(2)}(s) \mid t^{(3)}(s)$	$\overline{t}_k(\mathrm{s})$	$\sigma(s)$	$\overline{t} \pm \sigma \left(\mathrm{s} \right)$
	$x_0 =$				0,000		1
	$x_1 =$				$\bar{t}_1 =$		
\sim 1	$x_2 =$				$\bar{t}_2 =$		
~	$x_3 =$				$ar{t}_3 =$		
₩	$x_4 =$				$ar{t}_4 =$		

	i	\vdash	2	8	
1	$(t_i - \overline{t})^2 (s^2)$				
k=1	$(t_i - \bar{t})$ (s)				Soma
	i	П	2	3	

					1
	$\overline{t})^2$ (s ²)				
2	$(t_i -$				
$\mathbf{k} = 2$	(s)				~
	$(t_i - \overline{t})$ (s)				Soma
	(t_i)				J ₁
	i	П	2	3	

$\left \; \left(t_i - \overline{t} ight) \left(\mathrm{s} ight) \; \right \; \left(t_i - ight.$	2	3	Soma
$(-\bar{t})^2 (s^2)$			

				ı
i	\vdash	2	3	
$(t_i - \overline{t})$ (s)				Soma
(s)				
$(t_i - \overline{t})^2$				
$\overline{t})^2$ (s ²)				

 $\mathbf{k} = 4$

k=3

$$\overline{t} = rac{1}{n} \sum_{i=1}^{n} t_i, \quad \sigma = \sqrt{\frac{\sum_{i=1}^{n} (t_i - \overline{t})^i}{n-1}}$$

2. Na tabela seguinte, reproduza os dados colhidos na tabela de dados 2, obtenha o desvio-padrão da média dos tempos colhidos e expresse o resultados das medidas levando-se em conta o erro calculado.

Table 4: Massa do porta-peso m = 48 g

	$\bar{t} \pm \sigma \left(\mathbf{s} \right)$					
)	$\sigma(s)$					
•	$ar{t}_k(\mathrm{s})$	0,000	$\bar{t}_{1} =$	$\bar{t}_2 =$	$\bar{t}_3 =$	$\overline{t}_4 =$
	$t^{(3)}(\mathrm{s})$					
	$t^{(2)}(s)$					
	$t^{(1)}(s)$					
	$k \mid x_k(\mathbf{m})$	$x_0 =$	$x_1 =$	$x_2 =$	$x_3 =$	$x_4 =$
	k	0	П	2	3	4

k=1 $i (t_i - \bar{t}) (s) (t_i - \bar{t})^2 (s^2)$ 12

3

Soma

 $i | (t_i - \bar{t}) (s) | (t_i - \bar{t})^2 (s^2)$ 1
2
3

 $i (t_i - \bar{t}) (s) (t_i - \bar{t})^2 (s^2)$ 1
2
3

Soma

Soma

k=3

k=4 $i \quad (t_i - \bar{t}) \text{ (s)} \quad (t_i - \bar{t})^2 \text{ (s}^2)$ 1 2 3Soma

3.	. Construir em papel milimetrado o gráfico $x = f(t)$ (posição versus tempo)	usando os
	dados da tabela 3, referente ao experimento com m=28 g no porta-peso (o	considere
	a média do tempo como sendo o valor mais provável da medida de	e tempo).
	Qual sua forma?	

6_home_marcos_Dropbox_ufersa_disciplinas_Laboratrio_deMecn	6_home	e_marcos	_Dropbox_ufersa	a_disciplinas_	_Laborat_	_rio_de_	_Mec_	_nio
--	--------	----------	-----------------	----------------	-----------	----------	-------	------

- 4. O gráfico mostra que as grandezas deslocamento e intervalo de tempo são _______ proporcionais. (diretamente / inversamente)
- 5. Em vista dos resultados obtidos, como você classifica o movimento do carrinho entre os sensores? Justifique.

6. Determinar os coeficientes angular e linear do gráfico x = f(t), por meio de regressão linear, usando apenas os 4 pontos referentes aos sensores 1 a 4.

$$x = At + B \longrightarrow A = \frac{\sum_{i=1}^{n} t_i x_i - \frac{1}{n} (\sum_{i=1}^{n} t_i) (\sum_{i=1}^{n} x_i)}{\sum_{i=1}^{n} t_i^2 - \frac{1}{n} (\sum_{i=1}^{n} t_i)^2}, \quad B = \frac{\sum_{i=1}^{n} x_i - A \sum_{i=1}^{n} t_i}{n}$$

t_i	x_i	t_i^2	$t_i x_i$
$t_1 =$	$x_1 =$	$t_1^2 =$	$t_1x_1 =$
$t_2 =$	$x_2 =$	$t_2^2 =$	$t_2x_2 =$
$t_3 =$	$x_3 =$	$t_3^2 =$	$t_3x_3 =$
$t_4 =$	$x_4 =$	$t_4^2 =$	$t_4x_4 =$
$\sum_{i=1}^{n} t_i = \left(\sum_{i=1}^{n} t_i\right)^2 =$	$\sum_{i=1}^{n} x_i =$	$\sum_{i=1}^{n} t_i^2 =$	$\sum_{i=1}^{n} t_i x_i =$

- 7. Qual é o significado físico do coeficiente linear do gráfico x = f(t)? Justifique.
- 8. O coeficiente linear calculado é coerente com os dados experimentais? Justifique.
- 9. Qual é o significado físico do coeficiente angular do gráfico x = f(t)? Justifique.
- 10. Escrever a equação horária do movimento do carrinho, em vista dos resultados obtidos nas questões acima, para o caso da tabela 01.
- 11. Com os dados da tabela 3, preencher as tabelas abaixo para as massas do porta-peso correspondentes, em que Δx , para o índice k correspondente, é a distância entre o sensor anterior k-1 e o sensor k, e Δt é o intervalo de tempo do percurso do carrinho entre o sensor anterior k-1 e o sensor k. Calcular a velocidade média correspondente conforme

$$v_{m,k} = \frac{\Delta x_k}{\Delta t_k} = \frac{x_k - x_{k-1}}{t_k - t_{k-1}}$$

Table 5: Massa do porta-peso: $m=28\,\mathrm{g}$

k	$x_k(m)$	$t_k(\mathbf{s})$	$\Delta x_k(\mathrm{m})$	$\Delta t_k({ m s})$	$v_{m,k}(\mathrm{m/s})$
0	$x_0 = 0,200$	$t_0 = 0,000$	_	_	_
1	$x_1 = 0,300$	$t_1 =$	$\Delta x_1 = 0,100$	$\Delta t_1 = t_1 - t_0 =$	$v_{m,1} =$
2	$x_2 = 0,400$	$t_2 =$	$\Delta x_2 = 0,100$	$\Delta t_2 = t_2 - t_1 =$	$v_{m,2}=$
3	$x_3 = 0,500$	$t_3 =$	$\Delta x_3 = 0,100$	$\Delta t_3 = t_3 - t_2 =$	$v_{m,3}$ =
4	$x_4 = 0,600$	$t_4 =$	$\Delta x_4 = 0,100$	$\Delta t_4 = t_4 - t_3 =$	$v_{m,4}=$
				Média	

7_home_marcos_Dropbox_ufersa_disciplinas_Labora___dades_trilho_ar_

12. Considerando uma tolerância de erro de 5%, o coeficiente angular calculado a partir do primeiro gráfico é coerente com os dados da tabela 5? (incluir cálculo)

13. Por que precisamos nos certificar de que o porta-pesos caísse na mesa antes do carrinho que ele estava puxando passar pelo sensor 0?

14. Usando a mesma escala, trace no mesmo gráfico x = f(t) os valores das tabelas 01 e 02. Trace as retas que melhor se ajustam aos dois conjuntos de dados. Analisando os declives das retas, que considerações podemos fazer?

6_home_marcos_Dropbox_ufersa_disciplinas_Laborat__rio_de__Mec__nic

• Média

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Desvio padrão

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

• Regressão Linear

$$y = Ax + B \longrightarrow A = \frac{\sum_{i=1}^{n} x_i y_i - \frac{1}{n} (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{\sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2}, \quad B = \frac{\sum_{i=1}^{n} y_i - A \sum_{i=1}^{n} x_i}{n}$$