Electrical Network Analysis and Design Assignment 2

David Lynch - 758863, Daniel Landgraf - 695683, Zixiang Ren

Tuesday 2:15pm - EDS 8

1. (a)

(b)

$$\begin{split} Z_{eq1} &= \left(\frac{1}{Z_{R_1}} + \frac{1}{Z_{C_1}}\right)^{-1} \\ &= \left(\frac{1}{R_1} + \frac{1}{\frac{1}{sC_1}}\right)^{-1} \\ &= \left(\frac{1}{1.25 \times 10^6} + s \cdot 4 \times 10^{-12}\right)^{-1} \Omega \\ &= \left(\frac{1 + 1.25 \times 10^6 \cdot (s \cdot 4 \times 10^{-12})}{1.25 \times 10^6}\right)^{-1} \Omega \\ &= \frac{1.25 \times 10^6}{1 + 1.25 \times 10^6 \cdot (s \cdot 4 \times 10^{-12})} \Omega \\ &= \frac{2.5 \times 10^{11}}{s + 2 \times 10^5} \Omega \end{split}$$

(c)

$$\begin{split} Z_{eq2} &= \left(\frac{1}{Z_{R_2}} + \frac{1}{Z_{C_2}}\right)^{-1} \\ &= \left(\frac{1}{R_2} + \frac{1}{\frac{1}{sC_2}}\right)^{-1} \\ &= \left(\frac{1}{5 \times 10^6} + s \cdot 16 \times 10^{-12}\right)^{-1} \Omega \\ &= \left(\frac{1 + 5 \times 10^6 \cdot (s \cdot 16 \times 10^{-12})}{5 \times 10^6}\right)^{-1} \Omega \\ &= \frac{5 \times 10^6}{1 + 5 \times 10^6 \cdot (s \cdot 16 \times 10^{-12})} \Omega \\ &= \frac{6.25 \times 10^{10}}{s + 1.25 \times 10^4} A \end{split}$$

(d) Using voltage division:

$$\begin{split} V_o(s) &= V_{in}(s) \cdot \frac{Z_{eq2}}{Z_{eq1} + Z_{eq2}} \\ &= \frac{10}{s} \cdot \frac{\frac{6.25 \times 10^{10}}{s + 1.25 \times 10^4}}{\frac{6.25 \times 10^{10}}{s + 1.25 \times 10^4}} \cdot \frac{2.5 \times 10^{11}}{s + 2 \times 10^5} V \\ &= \frac{10}{s} \cdot \frac{\frac{6.25 \times 10^{10}}{s + 1.25 \times 10^4} + \frac{2.5 \times 10^{10}}{s + 1.25 \times 10^4}}{\frac{(6.25 \times 10^{10})(s + 2 \times 10^5) + (2.5 \times 10^{11})(s + 1.25 \times 10^4)}{(s + 1.25 \times 10^4) \cdot (s + 2 \times 10^5)}} V \\ &= \frac{10}{s} \cdot \frac{6.25 \times 10^{10}}{s + 1.25 \times 10^4} \cdot \frac{(s + 1.25 \times 10^4) \cdot (s + 2 \times 10^5)}{(6.25 \times 10^{10})(s + 2 \times 10^5) + (2.5 \times 10^{11})(s + 1.25 \times 10^4)}} V \\ &= \frac{6.25 \times 10^{11} \cdot (s + 1.25 \times 10^4) \cdot (s + 2 \times 10^5)}{3.125 \times 10^{11} \cdot s \cdot (s + 1.25 \times 10^4) \cdot (s + 5 \times 10^4)} V \\ &= \frac{2 \cdot (s + 2 \times 10^5)}{s \cdot (s + 5 \times 10^4)} V \\ &= \frac{2s + 4 \times 10^5}{s^2 + 5 \times 10^4 \cdot s} V \end{split}$$

Using Partial fractions to continue.

$$\frac{2s + 4 \times 10^5}{s^2 + 5 \times 10^4 \cdot s} = \frac{A}{s} + \frac{B}{50000}$$

$$A(s + 50000) + Bs = 2(s + 200000)$$

$$(s = 0) : 50000A = 400000$$

$$\implies A = 8$$

$$(s = -50000) : -50000B = 300000$$

$$B = -6$$

$$\implies V_o(s) = \frac{8}{s} - \frac{6}{s + 50000} V$$

Using inverse Laplace transform to find $v_o(t)$.

$$v_o(t) = \mathcal{L}^{-1}[V_o(s)]$$

$$= \mathcal{L}^{-1} \left[\frac{8}{s} - \frac{6}{s + 50000} \right] V$$

$$= (8 - 6e^{-50000t})u(t) V$$

(e) Using Ohm's Law in frequency domain:

$$V_{in}(s) = Z_{eq} \cdot I_o(s)$$

$$= (Z_{eq1} + Z_{eq2}) \cdot I_o(s)$$

$$\implies I_o(s) = \frac{V_{in}(s)}{Z_{eq1} + Z_{eq2}}$$

$$= \frac{\frac{10}{s}}{\frac{2.5 \times 10^{11}}{s + 2 \times 10^5} + \frac{6.25 \times 10^{10}}{s + 1.25 \times 10^4}} A$$

$$= \frac{\frac{10}{s}}{\frac{3.125 \times 10^{11} \cdot (s + 50000)}{(s + 12500) \cdot (s + 200000)}} A$$

$$= \frac{(s + 12500) \cdot (s + 200000)}{3.125 \times 10^{10} \cdot s \cdot (s + 50000)} A$$

After a partial fractions expansion (add working in here)

$$I_o(s) = \frac{9}{2500000 \cdot (s + 50000)} + \frac{1}{625000 \cdot s} + \frac{1}{3.125 \times 10^{10}} A$$

Using inverse Laplace transform to find $i_o(t)$.

$$i_o(t) = \mathcal{L}^{-1} [I_o(s)]$$

$$= \mathcal{L}^{-1} \left[\frac{9}{2500000 \cdot (s + 50000)} + \frac{1}{625000 \cdot s} + \frac{1}{3.125 \times 10^{10}} \right]$$

$$= 3.6 \times 10^{-6} e^{-50000t} \cdot u(t) + 1.6 \times 10^{-6} \cdot u(t) + 3.2 \times 10^{-11} \delta(t) A$$

If we assume t > 0 only then:

$$i_o(t) = (3.6 \cdot e^{-50000t} + 1.6) \,\mu A$$

2. (a) Convert circuit to its s-domain equivalent:

ADD CIRCUIT DIAGRAM BELOW

The circuit is a voltage divider:

$$\begin{split} V_o(s) &= V_i(s) * \frac{Z_R || Z_C}{Z_R || Z_C + Z_L} \\ &= \frac{5}{s} * \frac{\frac{20s}{s(2s+10)}}{\frac{20s}{s(2s+10)} + 2.5s} \\ &= \frac{5}{s} * \frac{1}{1 + 0.125(2s^2 + 10s)} \\ &= \frac{5}{s(0.25s^2 + 1.25s + 1)} \\ &= \frac{20}{s(s+4)(s+1)} \end{split}$$

Perform partial fraction expansion:

$$\frac{20}{s(s+4)(s+1)} = \frac{A}{s} + \frac{B}{s+4} + \frac{C}{s+1}$$
$$\therefore 20 = A(s+4)(s+1) + Bs(s+1) + Cs(s+4)$$

Now solve for A, B and C:

$$s = 0 \implies 20 = A(4)(1) \implies A = 5$$

$$s = -4 \implies 20 = B(-4)(-3) \implies B = \frac{5}{3}$$

$$s = -1 \implies 20 = C(-1)(3) \implies C = -\frac{20}{3}$$

And we arrive at $V_o(s)$ in partial fraction expanded form:

$$V_o(s) = \frac{5}{s} + \frac{5}{3(s+4)} - \frac{20}{3(s+1)} \text{ V}$$

(b) Perform the inverse Laplace transform:

$$v_o(t) = \mathcal{L}^{-1} [V_o(s)]$$

= $\left(5 + \frac{5}{3}e^{-4t} - \frac{20}{3}e^{-t}\right) u(t) \text{ V}$

- (c)
- 3. Q3
 - (a)
 - (b)
- 4. Q4
- 5. Q5
 - (a)
 - (b)
 - (c)
- 6. Q6