ФТиАД НИУ ВШЭ

Домашнее задание по ЕМ-алгоритму

Курс: Байесовские методы анализа данных, 2020

Рассмотрим упрощенную модель вероятностного метода главных компонент. Дана выборка $X=\{x_1,\ldots,x_N\}_{i=1}^N,$ $x_i\in\mathbb{R}^d,\,i=1,\ldots,N.$ Введем одномерные скрытые переменные $Z=\{z_1,\ldots,z_N\}_{i=1}^N,\,z_i\in\mathbb{R},\,i=1,\ldots,N$ и следующую вероятностную модель:

$$p(x|z, v, \sigma) = \mathcal{N}(x|vz, \sigma^2 I); \quad p(z) = \mathcal{N}(z|0, 1).$$

Выведите формулы Е- и М-шагов для настройки параметров $v \in \mathbb{R}^d$ и $\sigma \in \mathbb{R}$.

 Π одсказки: на Е-шаге найдите апостериорное распределение $q(z_i)=p(z_i|x_i,v,\sigma)$, используя сопряженность двух нормальных распределений. На М-шаге оптимизируйте $\sum_{i=1}^N \mathbb{E}_{q(z_i)} \log \big(p(x_i|z_i,v,\sigma) p(z_i) \big) \to \max_{v,\sigma}$. Пронесите мат. ожидания $\mathbb{E}_{q(z_i)}$ внутрь логарифма плотностей и воспользуйтесь формулами моментов нормального распределения. Также вам понадобятся формулы векторного дифференцировани $\nabla_v c^T v = c$, $\nabla_v v^T v = 2v$.