Ep. 5: Open Sets and Closed Sets

LetsSolveMathProblems: Navigating Metric Space Topology

Problem 1. Given a metric space X and $A \subseteq X$, we define the topological boundary of A to be $\partial A = \overline{A} - \operatorname{int} A$, i.e., ∂A is the set of points in \overline{A} but not in $\operatorname{int} A$.

- (a) Consider the half-open interval $A = [0,1) \subseteq \mathbb{R}$ (where, as almost always, it is implicit that \mathbb{R} has the Euclidean metric). Find ∂A and $\partial(\partial A)$.
- (b) For $A = \mathbb{Q} \cap (0,1) \subseteq \mathbb{R}$, compute ∂A and $\partial (\partial A)$. This should convince you that the topological boundary can behave pretty unintuitively¹.
- (c) If \mathbb{R} is given the discrete metric in part (a), does the answer change? (Hint: Show that every subset of a discrete metric space is both open and closed.)
- **Problem 2.** (a) Let X be a metric space. Show that any finite union of closed sets in X is closed in X, and show that any arbitrary intersection of closed sets in X is closed in X.
 - Note: Probably the quickest solution is to use what are called De Morgan's Laws, which you are encouraged to look up. Be aware that the notation \overline{A} , which denoted topological closure in the episode, is sometimes used to denote the set complement A^c , as well.
 - (b) Show that an infinite intersection of open sets need not be open, and show that an infinite union of closed sets need not be closed.
- **Problem 3.** Let a_1, a_2, a_3, \ldots be a sequence in a metric space X and $a \in X$. Here is a "topological definition" of $\lim_{n\to\infty} a_n = a$: For every open set $U \subseteq X$ such that $a \in U$, there exists a positive integer N such that $a_n \in U$ for all $n \geq N$. Prove that this topological definition is the same as the definition of sequential convergence given in Episode 3.
- **Problem 4.** (a) Show that the set of irrational numbers $\mathbb{R} \mathbb{Q}$ is dense in \mathbb{R} .
 - (b) Let $A = \mathbb{R} \mathbb{Q} \subseteq \mathbb{R}$. Find \overline{A} and int(A).

Problem 5. Let X be a metric space. Let $U \subseteq X$ be open in X.

- (a) Suppose $A \subseteq U$ is closed in U. (Note that the metric space structures on A and U are inherited from X.) Show that A need not be open in X. Similarly, show that A need not be closed in X.
- (b) If $B \subseteq U$ is open in U, show that B is open in X.

Problem 6. Let $A \subseteq X$, where X is a metric space.

¹Fascinatingly enough, it turns out $\partial(\partial(\partial A))$ does always equal $\partial(\partial A)$, a fact you can try to prove. I believe I first learned this fact from the real analysis text of [Pugh] (see references in the description of the first episode), which also contains many other interesting topological facts.

- (a) Explain why \overline{A} is the smallest closed set containing A. That is, if B is a closed set in X such that $A \subseteq B$, then $\overline{A} \subseteq B$.
- (b) Similarly, show that int(A) is the largest open set contained in A.
- (c) Show that A is closed if and only if $\overline{A} = A$. Moreover, show that A is open if and only if $\operatorname{int}(A) = A$.

Problem 7. Let $A \subseteq X$, where X is a metric space.

- (a) Show that $x \in X$ is a limit point of A if and only if there exists a sequence a_1, a_2, a_3, \ldots with pairwise distinct² elements in A converging to x.
- (b) Show that $x \in X$ is a limit point of A if and only if there exists a sequence a_1, a_2, a_3, \ldots of elements in $A \{x\}$ satisfying $d(x, a_n) < \frac{1}{n}$. Recall that in the episode, we roughly used this fact in showing that \overline{A} is closed.

Problem 8. If $A \subseteq \mathbb{R}$ is uncountable, is it possible for A to not have any limit points in \mathbb{R} ?

²That is, $a_n \neq a_m$ whenever $n \neq m$.