Data Science at Scale: Scaling Up by Scaling Down and Out (to Disk)

Prashant Pandey

ppandey@berkeley.edu

Berkeley Lab/UC Berkeley

Sequence Read Archive (SRA) database growth

SRA contains a lot of *diversity information*Goal: perform *sequence searches* on the database

Scalability is the bottleneck for data science

Data science applications only looking at a *small portion* of data

Scalable data systems → Scalable data science

My goal as a researcher is to build *scalable data systems* to *accelerate* and *scale data science* applications

Shrink it

Goal: make data smaller to fit in RAM

Techniques:

- Compact & succinct data structures
- Filters, e.g.,
 Bloom,
 quotient, etc.

Shrink it

Goal: make data smaller to fit in RAM

Techniques:

- Compact & succinct data structures
- Filters, e.g., Bloom, quotient, etc.

Organize it

Goal: organize data in a disk-friendly way

Techniques:

- B-tree
- B^{ε} -tree
- LSM-tree

Shrink it

Goal: make data smaller to fit in RAM

Techniques:

- Compact & succinct data structures
- Filters, e.g., Bloom, quotient, etc.

Organize it

Goal: organize data in a disk-friendly way

Techniques:

- B-tree
- B^{ε} -tree
- LSM-tree

Distribute it

Goal: partition and distribute data on multiple nodes

Techniques:

- Distributed hash table
- Distributed key-value store

Data structures & Algorithms

(Counting)
Quotient Filter
SIGMOD '17,
arXiv '17

Buffered Count-Min Sketch ESA '18

Order Min Hash ISMB '19

Data structures & Algorithms

In this talk

In this talk

Dictionary data structure

A dictionary maintains a set S from universe U.

membership(a): \checkmark

membership(b):

membership(c): \checkmark

membership(d):

A dictionary supports membership queries on *S*.

Filter data structure

A filter is an *approximate* dictionary.

membership(a): \checkmark membership(b): \checkmark membership(c): \checkmark membership(d): \checkmark false positive

A filter supports *approximate* membership queries on *S*.

A filter guarantees a false-positive rate ε

False-positive rate enables filters to be compact

space
$$\geq n \log(1/\epsilon)$$

space
$$= \Omega(n \log |U|)$$

Filter

False-positive rate enables filters to be compact

 $\varepsilon = 2\%$, Bloom filter requires ≈ 8 bits/item

19

Bloom filter: a bit array + k hash functions

Bloom filter: a bit array + k hash functions (here k = 2)

Bloom filter: a bit array + k hash functions (here k=2)

Bloom filter: a bit array + k hash functions (here k=2)

Bloom filter are ubiquitous (> 4300 citations)

Bloom filter have suboptimal asymptotics

	Bloom filter	Optimal
Space	$pprox 1.44 \ n \log(1/\epsilon)$	$pprox n \; \log(1/\epsilon) + \Omega(n)$
CPU cost	$\Omega(1/\epsilon)$	O(1)
Data locality	$\Omega(1/\epsilon)$ probes	O(1) probes

Application often work around Bloom filter limitations

Limitations	Workarounds	
No deletes	Rebuild	
No resizes	Guess N, and rebuild if wrong	
No filter merging or enumeration	???	
No values associated with keys	Combine with another data structure	

Bloom filter limitations increase system complexity, waste space, and slow down application performance

Quotienting is an alternative to Bloom filters [Knuth. Searching and Sorting Vol. 3, '97]

- Store fingerprints compactly in a hash table.
 - \circ Take a fingerprint h(x) for each element x.

- Only source of false positives:
 - Two distinct elements x and y, where h(x) = h(y)
 - \circ If x is stored and y isn't, query(y) gives a false positives

$$\Pr[x \text{ and } y \text{ collide}] = \frac{1}{2^p}$$

Resolving collisions in the QF [Bender '12, Pandey '17]

 QF uses two metadata bits to resolve collisions and identify home bucket

1		1			
t(u)	t(v)	t(w)	t(x)	t(y)	

• The metadata bits group tags by their home bucket

Resolving collisions in the QF [Bender '12, Pandey '17]

 QF uses two metadata bits to resolve collisions and identify home bucket

 The metadata bits group tags by their home bucket

Resolving collisions in the QF [Bender '12, Pandey '17]

 QF uses two metadata bits to resolve collisions and identify home bucket

• The metadata bits group tags by their home bucket

The metadata bits enable us to identify the slots holding the contents of each bucket.

Quotienting enables many features in the QF

- Good cache locality
- Efficient scaling out-of-RAM
- Deletions
- Enumerability/Mergeability
- Resizing
- Maintains count estimates
- Uses variable-sized encoding for counts [Counting quotient filter]
 - Asymptotically optimal space: $O(\sum |C(x)|)$

Quotient filters use less space than Bloom filters for all practical configurations

	Quotient filter	Bloom filter	Optimal
Space	$lpha nn \log(1/\epsilon) + 2.125n$	$pprox 1.44 \ n \log(1/\epsilon)$	$lpha n \ \log(1/\epsilon) + \Omega(n)$
CPU cost	O(1) expected	$\Omega(1/\epsilon)$	O(1)
Data locality	1 probe + scan	$\Omega(1/\epsilon)$ probes	O(1) probes

The quotient filter has theoretical advantages over the Bloom filter

Quotient filters use less space than Bloom filters for all practical configurations

Bloom filter: $\sim 1.44 \log(1/\varepsilon)$ bits/element.

Quotient filter: $\sim 2.125 + log(1/\epsilon)$ bits/element.

Quotient filters perform better (or similar) to other non-counting filters

- Insert performance is similar to the state-of-the-art non-counting filters
- Query performance is significantly fast at low load-factors and slightly slower at higher load-factors

Quotient filter's impact in computer science

Computational biology

- 1. Squeakr
- 2. deBGR
- 3. Mantis
- 4. SPAdes assembler
- 5. Khmer software
- 6. MQF
- 7. VariantStore

Databases/Systems

- 1. Counting on GPUs
- 2. Concurrent filters
- 3. Anomaly detection
- 4. BetrFS file system

Industry

- 1. VMware
- 2. Nutanix
- 3. Apocrypha
- 4. Hyrise
- 5. A data security startup

Theoretically well-founded data structures can have a big impact on multiple subfields across academia and industry

Learned "Shrink it". Now "Organize it"

Open problem in stream processing

- A high-speed stream of key-value pairs arriving over time
- Goal: report every key as soon as it appears *T* times without missing any
- Firehose benchmark (Sandia National Lab) simulates the stream https://firehose.sandia.gov/

Why should we care about this problem

Defense systems for cyber security monitor high-speed streams for malicious traffic

Catch all malicious events

Malicious traffic forms a small portion of the stream

→ Small reporting threshold

Automated systems take defensive actions for every reported event

→ Minimize false positives

• Stream of elements arrive over time

- Stream of elements arrive over time
- An **event** occurs at time t if S_t occurs exactly T times in $(s_1, s_2, ..., s_t)$

- Stream of elements arrive over time
- An **event** occurs at time t if S_t occurs exactly T times in $(s_1, s_2, ..., s_t)$

- Stream of elements arrive over time
- An event occurs at time t if S_t occurs exactly T times in $(s_1, s_2, ..., s_t)$
- In **timely event-detection problem (TED)**, we want to report all events shortly after they occur.

Features we need in the solution

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

Features we need in the solution

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

Features we need in the solution

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

Malicious traffic forms a small portion of the stream

Very small reporting thresholds

One-pass streaming has errors

- Heavy hitter problem: report items whose frequency $\geq \varphi N$
- Exact one-pass solution solution requires $\Omega(N)$ space

One-pass streaming has errors

- Approximate solution: report all items with count ≥ φN, none
 with < (φ-ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.
 16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]
- Approximate solutions requires: $\Omega(1/\varepsilon)$

Real time with false-positives!

One-pass streaming has errors

- Approximate solution: report all items with count ≥ φN, none
 with < (φ-ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.
 16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]
- Approximate solutions requires: $\Omega(1/\varepsilon)$

Real time with false-positives!

One-pass solution has:

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

• Malicious traffic forms a small portion of the stream

Very small reporting thresholds

Two-pass streaming isn't real-time

- A second pass over the stream can get rid of errors
- Store the stream on SSD and access it later

Two-pass solution has:

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

• Malicious traffic forms a small portion of the stream

Very small reporting thresholds

If data is stored: why not access it?

Why wait for second pass?

Idea: combine Streaming and EM

Use an efficient external-memory counting data structure to scale Misra-Gries algorithm to SSDs

External memory model [Aggarwal+Vitter '08]

• How computations work:

- Data is transferred in blocks between RAM and disk.
- The number of block transfers dominate the running time.

• Goal: Minimize number of block transfers

 \circ Performance bounds are parameterized by block size B, memory size M, data size N.

Cascade filter: write-optimized quotient filter [Bender et al. '12, Pandey et al. '17]

- The Cascade filter efficiently scales out-of-RAM
- It accelerates insertions at some cost to queries

Cascade filter operations

Insert	Query
$O\left(\frac{1}{B}\log \frac{N}{M}\right)$	$O\left(\log rac{N}{M} ight)$

Cascade filter operations

Insert	Query
$O\left(\frac{1}{B}\log\frac{N}{M}\right)$	$O\left(\log rac{N}{M} ight)$

Cascade filter operations

Cascade filter doesn't have real-time reporting

But every insert is also a query in real-time reporting!

	IIISCI	Query	
	$O\left(\frac{1}{B}\log\frac{N}{M}\right)$	$O\left(\log rac{N}{M} ight)$	
< 1 I/O per observation		> 1 I/O sobservat	per ion

Cascade filter doesn't have real-time reporting

But every insert is also a query in real-time reporting!

IIISCIT	Query
$O\left(\frac{1}{B}\log\frac{N}{M}\right)$	$O\left(\log rac{N}{M} ight)$

Traditional cascade filter doesn't solve the problem!

observation

observation

Idea: reporting with bounded delay

We define the time stretch of a report to be

Time stretch =
$$1 + \alpha = 1 + \frac{\text{Delay}}{\text{Lifetime}}$$

Idea: reporting with bounded delay

We define the time stretch of a report to be

Time stretch =
$$1 + \alpha = 1 + \frac{\text{Delay}}{}$$

Main idea: the longer the lifetime of an item, the more leeway we have in reporting it

1st occurrence

Tth occurrence

Reporting time

Leveled External-Memory Reporting Table (LERT) [Pandey '20]

• Given a stream of size N and $\varphi N > \Omega(N/M)$ the amortized cost of solving real-time event detection is

$$O\left(\left(rac{1}{B} + rac{1}{(\phi - 1/M)N}
ight)\lograc{N}{M}
ight)$$

• For a **constant** α , can support arbitrarily small thresholds φ with amortized cost

$$O\left(\frac{1}{B}\log\frac{N}{M}\right)$$

Takeaway: Online reporting comes at the cost of throughput but almost online reporting is essentially free!

Leveled External-Memory Reporting Table (LERT) [Pandey '20]

• Given a stream of size N and $\varphi N > \Omega(N/M)$ the amortized cost of solving real-time event detection is

Can achieve timely reporting at effectively the optimal insert cost; no query cost

with amortized cost

$$O\left(\frac{1}{B}\log\frac{N}{M}\right)$$

Takeaway: Online reporting comes at the cost of throughput but almost online reporting is essentially free!

Evaluation

- Empirical timeliness
- High-throughput ingestion

Evaluation: empirical time stretch

Average time stretch is 43% smaller than theoretical upper bound.

Evaluation: scalability

The insertion throughput increases as we add more threads.

We can achieve > 13M insertions/sec.

LERT: supports scalable and real-time reporting

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

Malicious traffic forms a small portion of the stream

Very small reporting thresholds

Future work overview

Data Science

Scalable Data Systems

Data structures & Algorithms

Future work: Data Structures & Algorithms

Goal: Overcome *decades-old* data structure *trade-offs* using modern hardware and new algorithmic paradigms

Trade-off 1: Insertion throughput degrades with load factor

Insertion throughput vs load factor of state-of-the-art filters

Many update-intensive applications (e.g., network caches, data analytics, etc.) maintain filters at high load factors

Trade-off 1: Insertion throughput degrades with load factor

Performance suffers due to high-overhead of collision resolution

Combining techniques + new hardware

Combining hashing techniques (**Robin Hood + 2-choice hashing**)
Using ultra-wide vector operations (**AVX512-BW**)

Combining techniques + new hardware

Combining hashing techniques (**Robin Hood + 2-choice hashing**)
Using ultra-wide vector operations (**AVX512-BW**)

Future work: Data Systems

Goal: Build a *population-scale* index on variation data to enable downstream apps gain *quick insights into variants*

Country-scale sequencing efforts produce huge amounts of sequencing data

- **Individuals**
 - 1000 Genomes project [https://www.internationalgenome.org/]
 - The Cancer Genome Atlas (TCGA) [https://portal.gdc.cancer.gov/]
 - Genotype-Tissue Expression (GTEx) [https://gtexportal.org/home/]

Variation data analysis can improve downstream applications

Indexing in multiple coordinates is challenging

Reference-only indexes map positions only in the reference coordinate system

$$f(p_i,p_j)
ightarrow (v_i \dots v_n), ext{ where } p_i \leq p_j$$

Pan-genome analysis involves queries based on sample coordinate systems

$$egin{cases} f_1(p_i,p_j) o (v_i \dots v_n), ext{ where } p_i \leq p_j \ dots \ f_s(p_i,p_j) o (v_i \dots v_n), ext{ where } p_i \leq p_j \end{cases}$$

Maintaining thousands of mappings *increases* computational *complexity* and *memory footprint*

Limits scalability to population-scale data

Indexing in multiple coordinates is challenging

Reference-only indexes map positions only in the reference coordinate system

$$f(p_i,p_j)
ightarrow (v_i \dots v_n), ext{ where } p_i \leq p_j$$

Pan-genome analysis involves queries based on sample coordinate systems

Existing systems don't support multiple coordinate systems. The ones that do, don't scale beyond a few thousand samples.

$$(f_s(p_i,p_j)
ightarrow (v_i \dots v_n), \,\, ext{where} \, p_i \leq p_j)$$

Maintaining thousands of mappings *increases* computational *complexity* and *memory footprint*

Limits scalability to population-scale data

An inverted index on the pan-genome graph

Node id: 0

Seq len: 1

Ref idx: 1

- Partition the variation graph based on coordinate ranges
- Store partitions on disk

Queries often require loading 1-2 partitions

- Succinct index for reference coordinate system
- Local-graph exploration to map position from reference to sample coordinate

Variation graph

Future work: Data Science for genomics

Goal: Classification of metagenomic reads and identification of novel species using graph neural networks (GNN)

Metagenomic classification pipeline

[Ye et al. 2019]

Existing techniques offer low recall

Classification tools

Classification is done based only on the read contents

Use overlap relationship between reads

- Generate overlap graph: reads→nodes & overlap →edges
- Node features → Tetra nucleotide freq of reads
- Reference-based mapping as ground truth labels

Overlap graph + graph neural network (GNN)

Can achieve high recall using graph learning

Conclusion

- Scalability of data management systems will be the biggest challenge in future
- Changing hardware give rise to new algorithmic paradigms

We need to *redesign* existing data structures to take full advantage of modern hardware and *rebuild* data systems to efficiently support *future* data science.

Backup slides

Implementation:

2 Meta-bits per slot.

$$h(x) \longrightarrow h_{\theta}(x) \mid\mid h_{I}(x)$$

Implementation:

2 Meta-bits per slot.

$$h(x) \longrightarrow h_{\theta}(x) \mid\mid h_{I}(x)$$

Implementation:

2 Meta-bits per slot.

$$h(x) \longrightarrow h_{\theta}(x) \mid\mid h_{I}(x)$$

h(a)

Abstract Representation

Implementation:

2 Meta-bits per slot.

$$h(x) \longrightarrow h_{\theta}(x) \mid\mid h_{I}(x)$$

Abstract Representation

 $h(\mathbf{d})$

h(a)

Implementation:

2 Meta-bits per slot.

$$h(x) \longrightarrow h_{\theta}(x) \mid\mid h_{I}(x)$$

 $h(\mathbf{a})$

Abstract Representation

 $h(\mathbf{d})$

Implementation:

2 Meta-bits per slot.

$$h(x) \longrightarrow h_{\theta}(x) \mid\mid h_{I}(x)$$

Abstract Representation

Quotient filters can also be exact

- Quotient filters store h(x) exactly
- To store x exactly, use an invertible hash function

• For *n* elements and *p*-bit hash function:

Space usage: $\sim p - \log_2 n$ bits/element

Cascade filter: write-optimized quotient filter [Bender et al. '12, Pandey et al. '17]

- The Cascade filter efficiently scales out-of-RAM
- It accelerates insertions at some cost to queries

Items are initially inserted in the RAM level

A query operation requires a lookup in each non-empty level

Divide each level into $1+1/\alpha$, equal-sized bins.

When a bin is full, items move to the adjacent bin

When a bin is full, items move to the adjacent bin

Last bin flushed to first bin of the next level

Last bin **flushed** to first bin of the next level

Last bin **flushed** to first bin of the next level

Time-stretch LERT I/O complexity

$$O\left(\left(rac{lpha+1}{lpha}
ight)rac{1}{B}\lograc{N}{M}
ight)$$
Optimal insert cost for Write-optimized data structure

Time-stretch LERT I/O complexity

Trade-off 2: "One-size-fits-all" approach leaves performance on table

	LIGRA	ASPEN
add_edge	O((E + V))/B)	$O(\log V + c^2 \log(deg(u))/B)$
get_neighbors	O(deg(u)/B)	$O(\log V + deg(u)/B + deg(u)/c)$

Neighbor access requires at least *two cache misses*For dynamic, all operations have a *log factor*

Trade-off 2: "One-size-fits-all" approach leaves performance on table

Neighbor access requires at least *two cache misses*For dynamic, all operations have a *log factor*

Real world graphs are often skewed

High variance in the degree distribution

- Dynamic partitioning of vertices based on the degree
- Separate structures for each partition to minimize cache misses

Dynamic partitioning + hierarchical structure

High variance in the degree distribution

- Dynamic partitioning of vertices based on the degree
- Separate structures for each partition to minimize cache misses

Dynamic partitioning + hierarchical structure

High variance in the degree distribution

Terrace:
Fast updates

107

108

109

109

100

Terrace Insert LJ

Terrace Insert LJ

Aspen Insert LJ

Aspen Insert Orkut

100

101

101

102

103

104

105

106

107

Batch Size

- Dynamic partitioning of vertices based on the degree
- Separate structures for each partition to minimize cache misses

BC

BFS

TC

SSSP

Scalable data systems → Scalable data science

Massive data

Data systems

Data Science

Biology
AstroPhysics
Chemistry
Cyber monitoring
Internet of Things
Environmental science

Machine Learning
Raw sequence search
Graph analytics
Cyber monitoring
Weather predictions
Personalized medicine

•

•

My goal as a researcher is to build *scalable data systems* to *accelerate* and *scale data science* applications

Our contribution

Combine streaming and EM algorithms to solve real-time event detection problem