HEALPix IDL Facilities Overview

Revision: Version 2.00; August 31, 2005

Prepared by: Eric Hivon, Anthony J. Banday, Benjamin

D. Wandelt, Frode K. Hansen and Krzysztof

M. Górski

Abstract: This document is an overview of the **HEALPix**

IDL facilities.

Contents

Using the HEALPix IDL facilities
Changes between release 1.2 and 2.0
alm2fits
ang2vec
cartcursor
cartview
change_polcconv
cl2fits
convert_oldhpx2cmbfast
euler_matrix_new
fits2alm
fits2cl
gaussbeam
getdisc_ring
getsize_fits
gnomcursor
gnomview
healpixwindow
index2lm
init_healpix and !healpix system variable
Im2index
median_filter
mollcursor
mollview
npix2nside
nside2npix
nside2ntemplates
orthcursor
orthview
pix2xxx, ang2xxx, vec2xxx, nest2ring,ring2nest
query_disc
guery polygon

query_triangle
read_fits_cut4
read_fits_map
read_fits_s
read_tqu
remove_dipole
reorder
rotate_coord
same_shape_pixels_nest, same_shape_pixels_ring
template_pixel_nest, template_pixel_ring
ud_grade
vec2ang
write_fits_cut4
write_fits_map
write_fits_sb
write_tqu

Using the HEALPix IDL facilities

The current version of the **HEALPix** package provides an IDL startup file which defines various environment variables for your convenience, and adds the **HEALPix** IDL directory tree to your IDL_PATH. In order to utilise this feature, the user should invoke IDL using the commands hidl or hidlde which are aliases defined in the **HEALPix** profile created during the installation process for the package.

Changes between release 1.2 and 2.0

Some new routines have been introduced since version 1.2, as listed below. Most of the routines that already existed now have extended capabilities. Those of them with improved or extended user interface are listed below. They all remain backward compatible (ie, they can be used with codes written around version 1.1 and 1.2 without any edition).

- New routines in version 2.0 include
 - median_filter
 - nside2templates, same_shape_pixels_ring, same_shape_pixels_nest, template_pixel_ring, template_pixel_nest

- loaddata_healpix: replaces loaddata to avoid conflict with other libraries
- **–** ...
- Routines with extended/improved user interface or new functionalities include
 - fits2c1: addition of /RSHOW, /SHOW keywords to plot power spectra while they are read; possibility to read power spectra from a file containing a_{lm} coefficients.
 - gnomview, mollview, orthview, cartview faster FITS file reading (by up to a factor 6); can deal with WMAP polarized maps FITS format; extension of the OUTLINE keyword to plot set of points; addition of the HBOUND keyword to overplot pixel boundaries; ...
 - read_tqu, read_fits_cut4, read_fits_map: addition of output keywords NSIDE, ORDERING, COORDSYS
 - reorder: simpler interface to ordering conversion with addition of /N2R and /R2N keywords
 - write_tqu, write_fits_cut4, write_fits_sb: faster FITS file writing (by a factor 10 or more);

– ...

alm2fits 5

ALM2FITS

Location in HEALPix directory tree: src/idl/fits/alm2fits.pro

This IDL routine provides a means to write spherical harmonic coefficients (and optional errors) and their index label to a FITS file. Each signal is written to a separate binary table extension. The routine also writes header information if required. The facility is primarily designed to allow the user to write a FITS files containing constraints for a constrained realisation performed by the **HEALPix** facility **synfast**.

FORMAT

IDL> ALM2FITS, index, alm_array, fitsfile, [HDR = , XHDR =]

QUALIFIERS

index Long array containing the index for the correspond-

ing array of alm coefficients (and erralm if required).

The index i is related to l, m by the relation

 $i = \ell^2 + \ell + m + 1$

alm_array Real array of alm coefficients written to the file. This

has dimension (nl,nalm,nsig) - corresponding to

nl = number of l,m indices

nalm = 2 for real and imaginary parts of alm coefficients or 4 for above plus corresponding error values nsig = number of signals to be written (1 for any of T

E B or 3 if ALL to be written). Each signal is stored

in a separate extension.

fitsfile String containing the name of the file to be written.

KEYWORDS

HDR = String array containing the primary header for the

FITS file.

XHDR = String array containing the extension header. If ALL

signals are required, then each extension table is

given this header.

NOTE: optional header strings should NOT include the header keywords explicitly written by this routine.

DESCRIPTION alm2fits writes the input alm coefficients (and associated errors if required) into a FITS file. Each signal type is written as a separate binary table extension. Optional headers conforming to the FITS convention can also be written to the output file. All required FITS header keywords are automatically generated by the routine and should NOT be duplicated in the optional header inputs. The keywords EXTNAME and TTYPE* are now also automatically generated.

RELATED ROUTINES

This section lists the routines related to alm2fits.

idl	version 5.0 or more is necessary to run cl2fits.
fits2alm	provides the complimentary routine to read in alm coefficients from a FITS file.
lm2index	converts the alm order and degree (ℓ, m) into the index $i = \ell^2 + \ell + m + 1$ required by alm2fits.
alteralm	utilises the output file generated by alm2fits.
synfast	utilises the output file generated by alm2fits.

EXAMPLE:

index, alm, 'alm.fits', HDR = hdr, XHDR = xhdr alm2fits,

> alm2fits writes the coefficients stored in the variable alm to the output FITS file alm.fits with optional headers passed by the string variables hdr and xhdr.

ang2vec 7

ANG2VEC

Location in HEALPix directory tree: src/idl/toolkit/ang2vec.pro

This IDL facility convert the position angles of points on the sphere into their 3D position vectors.

FORMAT IDL> ANG2VEC, Theta, Phi, Vector [, AS-TRO=]

QUALIFIERS

Theta input: scalar or vector,

colatitude in radians measured southward from north

pole (in $[0,\pi]$).

If ASTRO is set, Theta is the latitude in degrees mea-

sured northward from the equator (in [-90, 90]).

Phi input: scalar or vector of same size as Theta,

longitude in radians measured eastward (in $[0, 2\pi]$). If ASTRO is set, it is the longitude in degree measured eastward (in $[0, 2\pi]$).

If ASTRO is set, it is the longitude in degree mea-

sured eastward (in [0,360]).

Vector output: array,

three dimensional cartesian position vector (x, y, z) normalised to unity. The north pole is (0, 0, 1). The coordinates are ordered as follows $x(0), \dots, x(n - 1)$

1), $y(0), \ldots, y(n-1), z(0), \ldots, z(n-1)$

KEYWORDS

ASTRO =

if set Theta and Phi are the latitude and longitude in degrees instead of the colatitude and longitude in radians.

DESCRIPTION

ang2vec performs the geometrical transform from the position angles of points (θ, ϕ) into their position vectors (x, y, z): $x = \sin\theta\cos\phi$, $y = \sin\theta\sin\phi$, $z = \cos\theta$

RELATED ROUTINES

This section lists the routines related to ang2vec.

idl version 5.0 or more is necessary to run ang2vec.

pix2xxx, ... conversion between vector or angles and pixel index

vec2ang conversion from position vectors to angles

EXAMPLE:

lat = -45; latitude in degrees
long = 120; longitude in degrees
ang2vec, lat, lon, /astro, vec

will return in vec the 3D cartesian position vector of the point of latitude -45 deg and longitude 120 deg

cartcursor 9

CARTCURSOR

Location in HEALPix directory tree: src/idl/visu/cartcursor.pro

This IDL facility provides a point-and-click interface for finding the astronomical location, value and pixel index of the pixels nearest to the pointed position on a cartesian projection of a **HEALPix** map.

FORMAT IDL> CARTCURSOR, [cursor_type=, file_out=]

QUALIFIERS

see mollcursor

DESCRIPTION

cartcursor should be called immediately after cartview. It gives the longitude, latitude, map value and pixel number corresponding to the cursor position in the window containing the map generated by orthview. For more detail, see mollcursor

RELATED ROUTINES

This section lists the routines related to **cartcursor**.

see mollcursor

EXAMPLE:

cartcursor

After cartview has read in a map and generated its cartesian projection, cartcursor is run to determine the position and flux of bright synchrotron sources, for example.

CARTVIEW

Location in HEALPix directory tree: src/idl/visu/cartview.pro

This IDL facility provides a means to visualise a cartesian projection (where the longitude and latitude are treated as the cartesian abscissa and ordinate) of HEALPix and COBE Quad-Cube maps in an IDL environment. It also offers the possibility to generate gif and postscript images of the projected map.

FORMAT

IDL> CARTVIEW, File, [Select,] [COLT=, UNITS=, XPOS=, YPOS= 1

QUALIFIERS

For a full list of qualifiers see mollview

KEYWORDS

For a full list of keywords see mollview

DESCRIPTION cartview reads in a **HEALPix** sky map in FITS format and generates a cartesian projection of it, that can be visualized on the screen or exported in a GIF, PNG or Postscript file. cartview allows the selection of the coordinate system, point of projection, map size, color table, color bar inclusion, linear or log scaling, histogram equalised color scaling, maximum and minimum range for the plot, plot-title etc. It also allows the representation of the polarization field.

RELATED ROUTINES

This section lists the routines related to **cartview**.

see mollview

EXAMPLE:

cartview 11

```
map = findgen(48)
triangle = create_struct('coord','G','ra',[0,80,0],'dec',[40,45,65])
cartview, map,/online,res=45,graticule=[45,30],rot=[10,20,30],pysize=250,$
    title='Cartesian cylindrical (full sky)',subtitle='cartview', $
    outline=triangle
```

makes a cartesian cylindrical projection of map (see Figure 1a on page 52) after an arbitrary rotation, with a graticule grid (with a 45^o step in longitude and 30^o in latitude) and an arbitrary triangular outline

CHANGE_POLCCONV

Location in HEALPix directory tree: src/idl/fits/change_polcconv.pro

This IDL facility changes the coordinate convention in FITS file containing a polarised sky map. The main effect is to change the sign of the U Stokes parameter, and add/update the POLCCONV FITS header with either COSMO or IAU value.

FORMAT IDL> CHANGE_POLCCONV , File_In, File_Out [, /I2C, /C2I, /C2C, /I2I]

QUALIFIERS

File_In name of a FITS file to be read

File_Out name of a FITS file to be written, after modification

of the polarisation coordinate convention, if applica-

ble

KEYWORDS

/I2C changes from IAU to COSMO coordinate convention

-if POLCCONV is not found or found with value 'IAU', it is added/replaced with value 'COSMO', and the sign of the U stokes parameter map is changed -if POLCCONV already has value 'COSMO', File_In

is copied unchanged into File_Out

/C2I changes from COSMO to IAU coordinate convention

-if POLCCONV is not found or found with value 'COSMO', it is added/replaced with value 'IAU', and the sign of the U stokes parameter map is changed -if POLCCONV already has value 'IAU', File In is

copied unchanged into File_Out

/C2C does NOT change coordinate system

-if POLCCONV is found with value 'IAU', program

will issue error message and no file is written

-in all other case POLCCONV is set/added with

value 'COSMO', but data is NOT changed

change_polcconv 13

> /I2I does NOT change coordinate system

> > -if POLCCONV is found with value 'COSMO', program will issue error message and no file is written -in all other case POLCCONV is set/added with

value 'IAU', but data is NOT changed

 $\overline{\mathbf{DESCRIPTION}}$ This routine will change the sign of the U Stokes parameters (and related quantities, such as the TU and QU cross-correlations) and update the 'POLCCONV' FITS keyword where applicable. The recognised format are:

- standard Healpix full sky polarised format
- cut sky Healpix polarised format
- WMAP 2nd year polarised format

RELATED ROUTINES

This section lists the routines related to **change_polcconv**.

idl	version	5.0	or	more	is	necessary	to	run
-----	---------	-----	----	------	----	-----------	----	-----

change_polcconv

write_fits_cut4 This **HEALPix** IDL facility can be used to write a

(polarised or unpolarised) cut sky map into a FITS

file.

read_fits_cut4 This **HEALPix** IDL facility can be used to read a

(polarised or unpolarised) cut sky map from a FITS

file.

write_tqu This **HEALPix** IDL facility can be used to write

> a polarised full sky map (with either the standard Healpix format or the WMAP 2nd year format) into

a FITS file

read_tqu This **HEALPix** IDL facility can be used to read a

polarised cut sky map from a FITS file

EXAMPLE:

change_polcconv, 'map_cosmo.fits', 'map_iau.fits',/c2i

Modify the file 'map_cosmo.fits', which was using the 'COSMO' convention for polarisation coordinate convention into 'map_iau.fits' which uses the 'IAU' convention

CL2FITS

Location in HEALPix directory tree: src/idl/fits/cl2fits.pro

This IDL facility provides a means to write into a FITS file as an ascii table extension the power spectrum coefficients passed to the routine. Adds additional headers if required. The facility is primarily intended to allow the user to write a theoretical power spectrum into a FITS file in the correct format to be ingested by the **HEALPix** simulation facility **synfast**.

FORMAT

IDL> CL2FITS, cl_array, fitsfile, [HDR = , /HELP, XHDR = , CMBFAST =, UNITS=]

QUALIFIERS

cl_array real or double array of Cl coefficients to be written

to file. This has dimension either (lmax+1,6) given in the sequence T E B TxE TxB ExB or (lmax+1,4) given in the sequence T E B TxE or (lmax+1) for T alone. The convention for the power spectrum is that it is not normalised by the Harrison-Zeldovich (flat)

spectrum.

fitsfile String containing the name of the file to be written.

KEYWORDS

HDR = String array containing the (non-trivial) primary

header for the FITS file.

/HELP If set, a help message is printed out, no file is written

XHDR = String array containing the (non-trivial) extension

header for the FITS file.

CMBFAST = if set, the routine will add the keyword 'POLNORM

= CMBFAST' in the FITS header, meaning that the polarization power spectra have the same convention as CMBFAST (and Healpix 1.2). If this keyword is not present in the input FITS file, synfast will issue a warning when simulating a polarization map from that power spectrum, but no attempt to renormalize

HEALPix 2.00

cl2fits 15

the power spectra will be made. To actually perform the renormalization, see convert_oldhpx2cmbfast

UNITS =

String scalar containing units of power spectrum (eg, uK^2, Kelvin**2, ...), to be put in keywords 'TU-NIT*' of the extension header. If provided, will override the values present in XHDR (if any).

NOTE: optional header strings should NOT include the header keywords explicitly written by this routine.

DESCRIPTION

cl2fits writes the input power spectrum coefficients into a FITS file containing an ascii table extension. Optional headers conforming to the FITS convention can also be written to the output file. All required FITS header keywords (like SIMPLE, BITPIX, ...) are automatically generated by the routine and should NOT be duplicated in the optional header inputs (they would be ignored anyway). The one/four/six column(s) are automatically named TEMPERATURE, GRAD, CURL, G-T, C-T and C-G respectively. If the power spectrum is provided in a double precision array, the output format will automatically feature more decimal places. The current implementation is much faster than the one available in Healpix 1.10 thanks to replacing an internal loop by vector operations.

RELATED ROUTINES

This section lists the routines related to **cl2fits**.

idl version 5.0 or more is necessary to run cl2fits.

fits2cl provides the complimentary routine to read in a

power spectrum from a FITS file.

convert_oldhpx2cmbfast convert an existing power spectrum FITS file from

the polarization convention used in Healpix 1.1 to the

one used in Healpix 1.2 (and CMBFAST).

fits2alm, alm2fits routines to read and write a_{lm} coefficients

synfast utilises the output file generated by cl2fits.

EXAMPLE:

cl2fits, pwrsp, 'spectrum.fits', HDR = hdr, XHDR = xhdr

cl2fits writes the power spectrum stored in the variable pwrsp to the output FITS file spectrum.fits with optional headers passed by the string variables hdr and xhdr.

CONVERT_OLDHPX2CMBFAST

Location in HEALPix directory tree: src/idl/fits/convert_oldhpx2cmbfast.pro

This IDL facility provides a means to change the normalization of polarization power spectra in a FITS file from Healpix 1.1 convention to Healpix 1.2 (which is the same as CMBFAST).

FORMAT

CONVERT_OLDHPX2CMBFAST, IDL> file_in, [file_out, NO_RENORM=]

QUALIFIERS

file_in String containing the name of the FITS file with the

power spectra to be read.

file_out (OPTIONAL) String containing the name of the

file to be written after renormalization. If absent,

file_in will be used for output

KEYWORDS

NO_RENORM =

if set, the renormalization is not done. but the keyword POLNORM = CMBFAST is added to the FITS header (useful if the FITS file is already in CMB-FAST format).

DESCRIPTION convert_oldhpx2cmbfast does the conversion from the polarization normalisation used in **HEALPix** 1.1 to the one used in **HEALPix** 1.2 (see the Healpix primer document). A keyword POLNORM = CMBFAST is added to the header to keep track of which files have been renormalized. If this keyword is not present in the input FITS file, synfast will issue a warning when simulating a polarization map from that power spectrum, but no attempt to renormalize the power spectra will be made.

RELATED ROUTINES

This section lists the routines related to **convert_oldhpx2cmbfast**.

idl	version 5.0 or more is necessary to run convert_oldhpx2cmbfast.
cl2fits	provides the a routine to write a power spectrum to a FITS file.
fits2cl	provides the complimentary routine to read in a power spectrum from a FITS file.
synfast	utilises the output file generated by convert_oldhpx2cmbfast.

EXAMPLE:

convert_oldhpx2cmbfast, 'cl_flat.fits'

convert_oldhpx2cmbfast will renormalize the polarization power spectra read from 'cl_flat.fits', and write them in the same file.

euler_matrix_new 19

EULER_MATRIX_NEW

Location in HEALPix directory tree: src/idl/misc/euler_matrix_new.pro

This IDL facility provides a means to generate a 3D rotation Euler matrix parametrized by three angles and three axes of rotation.

FORMAT IDL> matrix = EULER_MATRIX_NEW(a1, a2, a3 [, X=, Y=, ZYX=, DEG=])

QUALIFIERS

matrix	a 3x3 array containing the Euler matrix
a1	input, float scalar, angle of the first rotation, expressed in radians, unless DEG (see below) is set
a2	angle of the second rotation, same units as a1
a3	angle of the third rotation, same units as a1

KEYWORDS

DEG=	if set, the angles are in degrees instead of radians						
X=	if set, uses the classical mechanics convention (ZXZ): rotation a1 around original Z axis,						
	rotation a2 around intermediate X axis, rotation a3 around final Z axis						
	(see Goldstein for more details).						
	(default: this convention is used)						
Y=	if set, uses the quantum mechanics convention (ZYZ):						
	rotation a1 around original Z axis,						
	rotation a2 around intermediate Y axis,						
	rotation a3 around final Z axis.						
ZYX=	if set, uses the aeronautics convention (ZYX): rotation a1 around original Z axis,						
	rotation a2 around intermediate Y axis,						
	rotation a3 around final X axis.						

DESCRIPTION

euler_matrix_new allows the generation of a rotation Euler matrix. The user can choose the three Euler angles, and the three axes of rotation.

If vec is an N×3 array containing N 3D vectors, vecr = vec # euler_matrix_new(a1,a2,a3,/Y) will be the rotated vectors

This routine supersedes euler_matrix, which had inconsistent angle definitions. The relation between the two routines is as follows:

euler_matrix_new(a,b,c,/X) = euler_matrix(-a,-b,-c,/X) = Transpose(euler_matrix(c, b, a,/X)) euler_matrix_new(a,b,c,/Y) = euler_matrix(-a, b,-c,/Y)

 $euler_matrix_new(a,b,c,/Z) = euler_matrix(-a,b,-c,/Z)$

RELATED ROUTINES

This section lists the routines related to **euler_matrix_new**.

idl version 5.0 or more is necessary to run eu-

ler_matrix_new.

= Transpose(euler_matrix(c,-b, a,/Y))

rotate_coord apply a rotation to a set of position vectors and polar-

ization Stokes parameters.

fits2alm 21

FITS2ALM

Location in HEALPix directory tree: src/idl/fits/fits2alm.pro

This IDL routine provides a means to read from a FITS file binary table extension(s) containing spherical harmonic coefficients $a_{\ell m}$ (and optional errors) and their index. Reads header information if required. The facility is intended to enable the user to read the output from the **HEALPix** facilities **anafast** and **synfast**.

FORMAT

IDL> FITS2ALM, index, alm_array, fitsfile,
[signal, HDR = , XHDR =]

QUALIFIERS

index Long array containing the index for the correspond-

ing array of $a_{\ell m}$ coefficients (and errors if required).

The index i is related to (l,m) by the relation

 $i = \ell^2 + \ell + m + 1$.

This has dimension nl (see below).

alm_array Real or double array of alm coefficients read from the

file. This has dimension (nl,nalm,nsig) – correspond-

ing to

nl = number of (l, m) indices

nalm = 2 for real and imaginary parts of alm coefficients or 4 for above plus corresponding error values nsig = number of signals to be written (1 for any of T E B or 3 if ALL to be written). Each signal is stored

in a separate extension.

fitsfile String containing the name of the file to be read.

signal String defining the signal coefficients to read Valid

options: 'T', 'E', 'B' or 'ALL'

(default: ')T'.

KEYWORDS

HDR = String array containing the primary header for the

FITS file.

XHDR =

String array containing the extension header(s). If ALL signals are required, then the three extension headers are returned appended into one string array.

DESCRIPTION fits2alm reads binary table extension(s) which contain the $a_{\ell m}$ coefficients (and associated errors if present) from a FITS file. FITS headers can also optionally be read from the input file.

RELATED ROUTINES

This section lists the routines related to **fits2alm**.

idl	version 5.0 or more is necessary to run cl2fits.
alm2fits	provides the complimentary routine to write alm coefficients into a FITS file.
index2lm	converts the index $i = \ell^2 + \ell + m + 1$ returned by fits2alminto ℓ and m
fits2cl	routine to read/compute $C(l)$ power spectra from a file containing $C(l)$ or a_{lm} coefficients
alteralm	provides $a_{\ell m}$ coefficients file to be read by fits2alm.
anafast	provides $a_{\ell m}$ coefficients file to be read by fits2alm.
synfast	provides $a_{\ell m}$ coefficients file to be read by fits2alm.

EXAMPLE:

index, alm, 'alm.fits', HDR = hdr, XHDR = xhdr fits2alm,

> fits2alm reads from the input FITS file alm.fits the $a_{\ell m}$ coefficients into the variable alm with optional headers passed by the string variables hdr and xhdr. Upon return index will contain the value of $\ell^2 + \ell + m + 1$ for each $a_{\ell m}$ found in the file.

fits2cl 23

FITS2CL

Location in HEALPix directory tree: src/idl/fits/fits2cl.pro

This IDL facility provides a means to read from a FITS file an ascii or binary table extension containing power spectrum (C(l)) or spherical harmonics (a_{lm}) coefficients, and returns the corresponding power spectrum $(C(l) = \sum_m a_{lm} a_{lm}^*/(2l+1))$. Reads primary and extension headers if required. The facility is intended to enable the user to read the output from the **HEALPix** facility **anafast**.

FORMAT

IDL> FITS2CL, cl_array, fitsfile, [HDR = ,/HELP, MULTIPOLES=, /RSHOW, /SHOW, /SILENT=, XHDR =]

QUALIFIERS

cl_array real array of C_ℓ coefficients read or computed from

the file. The output dimension depends on the contents of the file. This has dimension either (lmax+1,6) given in the sequence T E B TxE TxB ExB **or** (lmax+1,4) for T E B TxE **or** (lmax+1) for T alone. The convention for the power spectrum is that it is not normalised by the Harrison-Zeldovich (flat)

spectrum.

fitsfile String containing the name of the FITS file to be read.

The file contains either C(l) power spectra or a_{lm} co-

efficients. In either cases, C(l) is returned.

KEYWORDS

HDR = String array containing on output the primary header

read from the FITS file.

/HELP If set, produces an extended help message (using the

doc_library IDL command).

MULTIPOLES = vector containing on output the multipoles ℓ for

which the power spectra are provided. They are ei-

ther

- read from the file (1st column in the Planck format),

- or generated by the routine (assuming that all mul-

tipoles from 0 to lmax included are provided).

/RSHOW If set, the raw power spectra C(l) read from the file

are plotted

/SHOW If set, the rescaled power spectra $l(l+1)C(l)/2\pi$ are

plotted

/SILENT If set, no message is issued during normal execution

XHDR =String array containing on output the extension

header read from the FITS file.

DESCRIPTION fits2cl reads the power spectrum coefficients from a FITS file containing an ascii table extension. Descriptive headers conforming to the FITS convention can also be read from the input file.

RELATED ROUTINES

This section lists the routines related to **fits2cl**.

idl version 5.0 or more is necessary to run fits2cl.

cl2fits provides the complimentary routine to write a power

spectrum to a FITS file.

fits2alm, alm2fits routines to read and write a_{lm} coefficients

> provides the output file to be read by fits2cl. anafast

EXAMPLE:

fits2cl, pwrsp, 'spectrum.fits', HDR = hdr, XHDR = xhdr

fits2cl reads a power spectrum from the input FITS file spectrum.fits into the variable pwrsp, with optional headers passed by the string variables hdr and xhdr.

gaussbeam 25

GAUSSBEAM

Location in HEALPix directory tree: src/idl/misc/gaussbeam.pro

This IDL facility provides the window function in ℓ space for a gaussian axisymmetric beam of given FWHM.

FORMAT IDL> beam=GAUSSBEAM (Fwhm, Lmax [, Dim])

QUALIFIERS

Fwhm Full Width Half Maximum of the gaussian beam, in

arcmin (scalar real)

Lmax the window function is computed for the multipoles

 ℓ in $\{0,...,Lmax\}$

Dim scalar integer, optional.

If absent or set to 0 or 1, the output has size (Lmax+1)

and is the temperature beam;

if set to $2 \le Dim \le 4$, the output has size

(Lmax+1,Dim) and contains in that order:

the TEMPERATURE beam,

the GRAD/ELECTRIC polarization beam the CURL/MAGNETIC polarization beam

the TEMPERATURE*GRAD beam

DESCRIPTION

gaussbeam computes the ℓ space window function of a gaussian beam of FWHM Fwhm. For a sky of underlying power spectrum $C(\ell)$ observed with beam of given FWHM, the measured power spectrum will be $C(\ell)_{\rm meas} = C(\ell)B(\ell)^2$ where $B(\ell)$ is given by gaussbeam(Fwhm,Lmax). The polarization beam is also provided (when Dim > 1) assuming a perfectly co-polarized beam (eg, Challinor et al 2000, astro-ph/0008228)

RELATED ROUTINES

This section lists the routines related to gaussbeam.

idl version 5.0 or more is necessary to run gaussbeam

healpixwindow computes the ℓ space window function associated

with a **HEALPix** pixel size

synfast f90 code to generate CMB maps of given power spec-

trum convolved with a gaussian beam

smoothing f90 code to smooth existing **HEALPix** maps with a

gaussian beam

anafast f90 code to compute the power spectrum of a

HEALPix sky map

EXAMPLE:

beam = gaussbeam(5.,1200)

beam contains the window function in $\{0,...,1200\}$ of a gaussian beam of fwhm 5 arcmin

getdisc_ring 27

GETDISC_RING

Location in HEALPix directory tree: src/idl/toolkit/getdisc_ring.pro

This routine is obsolete. Use query_disc instead.

GETSIZE_FITS

Location in HEALPix directory tree: src/idl/fits/getsize_fits.pro

This IDL function reads the number of maps and/or the pixel ordering of a FITS file containing a **HEALPix** map.

FORMAT

IDL> var = GETSIZE_FITS (File, [Nmaps =,
Nside =, Mlpol =, Ordering =, Obs_Npix =,
Type =, Header =])

QUALIFIERS

File name of a FITS file containing the **HEALPix** map(s).

var contains on output the number of pixels stored in a map FITS file. Each pixel is counted only once (even if several information is stored on each of them, see nmaps). Depending on the data storage format, result may

be:

- equal or smaller to the number Npix of Healpix pixels available over

the sky for the given resolution (Npix = 12*nside*nside)

– equal or larger to the number of non blank pixels (obs_npix)

Nmaps= contains on output the number of maps in the file

Nside= contains on output the **HEALPix** resolution parameter N_{side}

Mlpol= contains on output the maximum multipole used to generate the map

Ordering= contains on output the pixel ordering scheme: either 'RING' or

'NESTED'

Obs_Npix= contains on output the number of non blanck pixels. It is set to -1 if it

can not be determined from header

Type= Healpix/FITS file type

<0: file not found, or not valid

0: image only fits file, deprecated Healpix format (var = $12N_{\text{side}}^2$)

1 : ascii table, generally used for C(l) storage

2: binary table: with implicit pixel indexing (full sky) (var = $12N_{\text{side}}^2$)

3: binary table: with explicit pixel indexing (generally cut sky) (var

 $\leq 12N_{\rm side}^2$

999: unable to determine the type

Header= contains on output the FITS extension header

getsize_fits 29

DESCRIPTION

getsize_fits gets the number of pixels in a FITS file. If the file follows the **HEALPix** standard, the routine can also get the resolution parameter Nside, the ordering scheme, ..., and can determine the type of data set contained in the file.

RELATED ROUTINES

This section lists the routines related to **getsize_fits**.

idl version 5.0 or more is necessary to run getsize_fits

read_fits_map This **HEALPix** IDL facility can be used to read in

maps written by getsize_fits.

sxaddpar This IDL routine (included in **HEALPix** package)

can be used to update or add FITS keywords to

Header

reorder This **HEALPix** IDL routine can be used to reorder

a map from NESTED scheme to RING scheme and

vice-versa.

write_fits_sb routine to write multi-column binary FITS table

EXAMPLE:

npix = getsize_fits(!healpix.directory+'/test/map.fits', nside=nside, \$
 mlpol=lmax, type=filetype)

print, npix, nside, lmax, filetype

should produce something like

196608 128 256 2

meaning that the map contained in that file has 196608 pixels, the resolution parameter is nside=128, the maximum multipole was 256, and this a full sky map (type 2).

GNOMCURSOR

Location in HEALPix directory tree: src/idl/visu/gnomcursor.pro

This IDL facility provides a point-and-click interface for finding the astronomical location, value and pixel index of the pixels nearest to the pointed position on a gnomonic projection of a **HEALPix** map.

FORMAT IDL> GNOMCURSOR, [cursor_type=, file_out=]

QUALIFIERS

see mollcursor

DESCRIPTION

gnomcursor should be called immediately after gnomview. It gives the longitude, latitude, map value and pixel number corresponding to the cursor position in the window containing the map generated by gnomview. For more detail, see mollcursor

RELATED ROUTINES

This section lists the routines related to **gnomcursor**.

see mollcursor

EXAMPLE:

gnomcursor

After gnomview has read in a map and generated its gnomonic projection, gnomcursor is run to determine the position and flux of bright synchrotron sources, for example.

gnomview 31

GNOMVIEW

Location in HEALPix directory tree: src/idl/visu/gnomview.pro

This IDL facility provides a means to visualise a Gnomonic projection (radial projection onto a tangent plane) of **HEALPix** and COBE Quad-Cube maps in an IDL environment. It also offers the possibility to generate gif and postscript images of the projected map.

FORMAT

IDL> GNOMVIEW, File, [Select,] [COLT=, UNITS=, XPOS=, YPOS=]

QUALIFIERS

For a full list of qualifiers see mollview

KEYWORDS

For a full list of keywords see mollview

DESCRIPTION

gnomview reads in a **HEALPix** sky map in FITS format and generates a Gnomonic projection of it, that can be visualized on the screen or exported in a GIF, PNG, Postscript or FITS file. gnomview allows the selection of the coordinate system, point of projection, map size, color table, color bar inclusion, linear or log scaling, histogram equalised color scaling, maximum and minimum range for the plot, plot-title *etc*. It also allows the representation of the polarization field.

RELATED ROUTINES

This section lists the routines related to **gnomview**.

see mollview

EXAMPLES: #1

```
gnomview, 'planck100GHZ-LFI.fits', rot=[160,-30], reso_arcmin=2., $
    pxsize = 500., $
    title='Simulated Planck LFI Sky Map at 100GHz', $
    min=-100,max=100
```

gnomview reads in the map 'planck100GHZ-LFI.fits' and generates an output image of the size of 500×500 screen pixels, with a resolution of 2 arcmin/screen pixel at the center. The temperature scale has been set to lie between \pm 100, and the units will show as μ K. The title 'Simulated Planck LFI Sky Map at 100GHz' has been appended to the image. The map is centered at (l=160, b=-30)

EXAMPLES: #2

```
map = findgen(48)
triangle = create_struct('coord','G','ra',[0,80,0],'dec',[40,45,65])
gnomview, map,/online,res=25,graticule=[45,30],rot=[10,20,30],$
title='Gnomic projection',subtitle='gnomview', $
outline=triangle
```

makes a gnomic projection of map (see Figure 1b on page 52) after an arbitrary rotation, with a graticule grid (with a 45° step in longitude and 30° in latitude) and an arbitrary triangular outline

healpixwindow 33

HEALPIXWINDOW

Location in HEALPix directory tree: src/idl/misc/healpixwindow.pro

This IDL facility provides the window function in ℓ associated with the Healpix pixel of resolution Nside.

FORMAT IDL> wpix=HEALPIXWINDOW (Nside [, Dim, Directory])

QUALIFIERS

Nside resolution parameter

Wpix the pixel window function, computed for the multi-

poles ℓ in $\{0,...,4$ Nside $\}$

Dim scalar integer, optional.

If absent or set to 0 or 1, the output has size (4 Nside+1) and is the temperature window function; if set to $2 \le \text{Dim} \le 4$, the output has size (4

Nside+1,Dim) and contains in that order: the TEMPERATURE window function, the GRAD/ELECTRIC polarization one the CURL/MAGNETIC polarization one

the TEMPERATURE*GRAD one.

Directory directory in which the precomputed pixel window file

is looked for.

(default: \$)HEALPIX/data/

DESCRIPTION

healpixwindow computes the ℓ space window function due to the finite size of the **HEALPix** pixels. The typical size of a pixel (square root of its uniform surface area) is $\sqrt{(3/\pi)3600/N_{\rm side}}$ arcmin. If a unpixelised sky has a power spectrum $C(\ell)$, the same sky pixelised with a resolution parameter Nside will have the power spectrum $C(\ell)_{\rm pix} = C(\ell)W(\ell)^2$ where $W(\ell)$ is given by healpixwindow (Nside). The polarized pixel window function is also provided (when Dim > 1). This routine reads some FITS files located in the subdirectory data/ of the **HEALPix** distribution, unless the keyword Directory is set otherwise.

RELATED ROUTINES

This section lists the routines related to **healpixwindow**.

idl	version 5.0	or more	is necessary	to run	healpixwin-

dow

gaussbeam computes the ℓ space window function associated

with a gaussian beam

synfast f90 code to generate CMB maps of given power spec-

trum at a given resolution (=pixel size)

anafast f90 code to compute the power spectrum of a

HEALPix sky map

EXAMPLE:

wpix = healpixwindow(256)

wpix contains the window function in $\{0,...,1024\}$ of the **HEALPix** pixel with resolution parameter 256 (pixel size of 13.7 arcmin)

index2lm 35

INDEX2LM

Location in HEALPix directory tree: src/idl/misc/index2lm.pro

This IDL routine provides a means to convert the $a_{\ell m}$ index i= $\ell^2 + \ell + m + 1$ (as returned by eg the fits2alm routine) into ℓ and m.

FORMAT

IDL> INDEX2LM, index, l, m

QUALIFIERS

Long array containing on INPUT the index index

 $i = \ell^2 + \ell + m + 1$.

Long array containing on OUTPUT the order ℓ . It 1

has the same size as index.

Long array containing on OUTPUT the degree m. It m

has the same size as index.

DESCRIPTION index2lm converts $i = \ell^2 + \ell + m + 1$ into (ℓ, m) . Note that the index *i* is only defined for $0 \le |m| \le \ell$.

RELATED ROUTINES

This section lists the routines related to **index2lm**.

idl version 5.0 or more is necessary to run cl2fits.

fits2alm reads a FITS file containing $a_{\ell m}$ values.

routine complementary to index2lm: converts (ℓ, m) lm2index

into $i = \ell^2 + \ell + m + 1$.

EXAMPLE:

index21m, index, 1, m

> will return in 1 and m the order ℓ and degree m such that index $= \ell^2 + ell + m + 1$

INIT_HEALPIX

Location in HEALPix directory tree: src/idl/misc/init_healpix.pro

This IDL facility creates an IDL system variable (!HEALPIX) containing various **HEALPix** related quantities

FORMAT

IDL> INIT_HEALPIX [,VERBOSE=]

KEYWORDS

VERBOSE =

if set, turn on the verbose mode, giving a short description of the variables just created.

DESCRIPTION init_healpix defines the IDL system variable and structure !HEALPIX containing several quantities and character string necessary to **HEALPix**, eg: allowed resolution parameters Nside, full path to package directory, package version...

RELATED ROUTINES

This section lists the routines related to **init_healpix**.

idl

version 5.0 or more is necessary to run init_healpix.

!HEALPIX

IDL system variable defined by init_healpix

EXAMPLE:

init_healpix ,/verbose

init_healpix will create the system variable !Healpix, and give a short description of the tags available.

lm2index 37

LM2INDEX

Location in HEALPix directory tree: src/idl/misc/lm2index.pro

This IDL routine provides a means to convert the $a_{\ell m}$ degree and order (ℓ, m) into the index $i = \ell^2 + \ell + m + 1$ (in order to be fed to alm2fits routine for instance)

FORMAT

IDL> LM2INDEX, l, m, index

QUALIFIERS

1 Long array containing on INPUT the order ℓ . m Long array containing on INPUT the degree m.

index Long array containing on OUTPUT the index

 $i = \ell^2 + \ell + m + 1$.

DESCRIPTION Im2index converts (ℓ, m) into $i = \ell^2 + \ell + m + 1$. Note that by definition $0 \le |m| \le \ell$ (the routine does not check for this).

RELATED ROUTINES

This section lists the routines related to **lm2index**.

idl version 5.0 or more is necessary to run cl2fits.

reads a FITS file containing $a_{\ell m}$ values. fits2alm

routine complementary to lm2index: converts $i = \ell^2$ index2lm

 $+\ell+m+1$ into (ℓ,m) .

EXAMPLE:

lm2index, 1, m, index

will return in index in value $\ell^2 + \ell + m + 1$

MEDIAN_FILTER

Location in HEALPix directory tree: src/idl/toolkit/median_filter.pro

This IDL facility allows the median filtering of a Healpix map.

FORMAT

IDL> MEDIAN_FILTER (InputMap, Radius, MedianMap [,ORDERING=, /RING, /NESTED, /FILL_HOLES, /DEGREES, /ARCMIN])

QUALIFIERS

InputMap (IN) either an IDL array containing a full sky Healpix

map to filter ('online' usage), or the name of an external FITS file containing a full sky or cut sky map

Radius (IN) radius of the disk on which the median is com-

puted. It is in Radians, unless /DEGREES or /ARCMIN

are set

MedianMap (OUT) either an IDL variable containing on output

the filtered map, or the name of an external FITS file to contain the map. Should be of same type of InputMap. Flagged pixels (ie, having the value !healpix.bad_value) are left unchanged, unless

/FILL_HOLES is set.

KEYWORDS

/ARCMIN If set, Radius is in arcmin rather than radians

/DEG If set, Radius is in degrees rather than radians

/FILL_HOLES If set, flagged pixels are replaced with the median of

the valid pixels found within a distance Radius. If

there are any.

/NESTED Same as ORDERING='NESTED'

ORDERING= Healpix map ordering, should be either 'RING' or

'NESTED'. Only applies to 'online' usage.

median_filter 39

> /RING Same as ORDERING='RING'

DESCRIPTION median_filter allows the median filtering of a Healpix map. Each pixel of the output map is the median value of the input map pixels found within a disc of given radius centered on that pixel. Flagged pixels can be either left unchanged or 'filled in' with that same scheme.

> If the map is polarized, each of the three Stokes components is filtered separately.

> The input and output can either be arrays or FITS files, but they to be both arrays or both FITS files.

RELATED ROUTINES

This section lists the routines related to **median filter**.

idl version 5.0 or more is necessary to run median_filter

EXAMPLE:

```
median_filter
               ('map.fits', 10., /arcmin, 'med.fits')
```

Writes in 'med.fits' the median filtered map of 'map.fits' using a disc radius of 10 arcmin

EXAMPLE:

```
randomn(seed, nside2npix(256))
map =
median_filter
               (map, 0.5, /deg, med)
```

Returns in med the median filtered map of map using a disc radius of 0.5 degrees

MOLLCURSOR

Location in HEALPix directory tree: src/idl/visu/mollcursor.pro

This IDL facility provides a point-and-click interface for finding the astronomical location, value and pixel index of the pixels nearest to the pointed position on a Mollweide projection of a **HEALPix** map.

FORMAT IDL> MOLLCURSOR, [cursor_type=, file_out=]

QUALIFIERS

cursor_type= cursor type to be used

(default: 34)

file_out= file containing on output the list of point selected with

the cursor.

If set to 1, the file will take its default name: 'cur-

sor_catalog.txt'.

If set to a non-empty character string, the file name

will be that string

DESCRIPTION mollcursor should be run immediately following mollview. It gives the longitude, latitude, map value and pixel number corresponding to the cursor position in the window containing the map generated by mollview. Mouse buttons are used to select the function:

> left button = display the information relative to the current cursor position,

middle button = print out this information in the IDL command

right button = quit mollcursor

RELATED ROUTINES

This section lists the routines related to **mollcursor**.

idl

version 5.0 or more is necessary to run mollcursor

mollcursor 41

ghostview	ghostview or a similar facility is required to view the
	Postscript image generated by mollcursor.
XV	xv or a similar facility is required to view the GIF/PNG image generated by mollcursor(a browser can also be used).
synfast	This HEALPix facility will generate the FITS format sky map to be input to mollcursor.
cartview	IDL facility to generate a Cartesian projection of a HEALPix map.
cartcursor	interactive cursor to be used with cartview
gnomview	IDL facility to generate a gnomonic projection of a HEALPix map.
gnomcursor	interactive cursor to be used with gnomview
mollview	IDL facility to generate a Mollweide projection of a HEALPix map.
mollcursor	interactive cursor to be used with mollview
orthview	IDL facility to generate an orthographic projection of a HEALPix map.
orthcursor	interactive cursor to be used with orthview

EXAMPLE:

mollcursor

After mollview reads in a map and generates its mollweide projection, mollcursor is run to know the position and flux of bright synchrotron sources, for example.

MOLLVIEW

Location in HEALPix directory tree: src/idl/visu/mollview.pro

This IDL facility provides a means to visualise a full sky Moll-weide projection of **HEALPix** and COBE Quad-Cube maps in an IDL environment. It also offers the possibility to generate gif and postscript images of the projected map.

Several visualization routines have a similar interface. Their qualifiers and keywords are all listed here, and the routines to which they apply are coded in the 'routine' column as:

C: cartview, G: gnomview, M: mollview, O: orthview and all: all of them

Qualifiers should appear in the order indicated. They can take a range of values, and some of them are optional.

Keywords are optional, and can appear in any order. They take the form keyword=value and can be abbreviated to a non ambiguous form (ie, factor=10.0 can be replaced by fac = 10.0). They generally can take a range of values, but some of them (noted as /keyword below) are boolean switches: they are either present (or set to 1) or absent (or set to 0).

QUALIFIERS

name	routines	description
File	all	Required by default: name of a FITS file containing the healpix map in an extension or in the image field if Online is set: name of a variable containing the healpix map if Save is set: name of an IDL saveset file containing the healpix map stored under the variable data (default: none)
Select	all	Optional column of the BIN FITS table to be plotted, can be either – a name: value given in TTYPEi of the FITS file NOT case sensitive and can be truncated, (only letters, digits and underscore are valid) – an integer: number i of the column containing the data, starting with 1 (default: 1) (see the Examples below)

name	routines	description
CHARSIZE=	all	overall multiplicative factor applied to the size of all; characters appearing on the plot (default: 1.0)
COLT=	all	color table number, in [-40,40]. If colt< 0, the IDL color table abs(colt) is used, but the scale is reversed (ie a red to blue scale becomes a blue to red scale). Note: -0.1 can be used as negative 0.
(default: 33 (Blue-Red))		
COORD=	all	vector with 1 or 2 elements describing the coordinate system of the map; either - 'C' or 'Q': Celestial2000 = eQuatorial, - 'E': Ecliptic, - 'G': Galactic if coord = ['x','y'] the map is rotated from system 'x' to system 'y' if coord = ['y'] the map is rotated to coordinate system 'y' (with the original system assumed to be Galactic unless indicated otherwise in the input file) see also: Rot
/CROP	all	if set the GIF/PNG file only contains the map and no title, color bar, see also: Gif, Png

name	routines	description	
FACTOR=	all	multiplicative factor to be applied to the valid data the data plotted is of the form Factor*(data + Offset) This does not affect the flagged pixels Can be used together with LOG see also: : Offset, LOG (default: 1.0)	
FITS=	-G–	string containing the name of an output fits file with the rectangular map in the primary image if set to 1: output the plot in plot_gnomonic.fits if set to a file name: output the plot in that file (default: 0: no .FITS done)	
/FLIP	all	if set the longitude increases to the right, whereas by default (astronomical convention) it increases towards the left	
GAL_CUT=	-M-	(positive float) specifies the symmetric galactic cut in degrees ou side of which the monopole and/or dipole fitting is done (defaul 0: monopole and dipole fit done on the whole sky) (see also: No_dipole, No_monopole)	
GIF=	all	string containing the name of a .GIF output if set to 1: output the plot in plot_[projection].gif if set to a file name: output the plot in that file Please note that the resulting GIF image might not always look excpected. The reason for this is problems with 'backing stor in the IDL-routine TVRD. Please read the IDL documentation for more information. (default: no .GIF done) see also: Crop, Png, Ps and Preview	

name	routines	description	
GRATICULE=	all	if set, puts a graticule (ie, longitude and latitude grid) in the <i>output</i> astrophysical coordinates with delta_long = delta_lat = gdef degrees if set to a scalar $x > gmin$ then delta_long = delta_lat = x if set to [x,y] with $x,y > gmin$ then delta_long = x and delta_lat = y cartview : gdef = 45, gmin = 0 gnomview : gdef = 5, gmin = 0 mollview : gdef = 45, gmin = 10 orthview : gdef = 45, gmin = 10 Note that the graticule will rotate with the sphere is Rot is set. To outline only the equator set graticule=[360,90]. (default: 0 [no graticule]) see also: Igraticule, Rot, Coord	
/HALF_SKY	—О	if set, only shows only one half of the sky (centered on (0,0) or on the location parametrized by Rot) instead of the full sky	
HBOUND=	all	if set to a valid N_{side} , will overplot the HEALPix pixel boundaries corresponding to that N_{side} on top of the map.	
/HELP	all	if set, the routine header is printed (by doc_library) and nothing else is done	
/HIST_EQUAL	all	if set, uses a histogram equalized color mapping (useful for non gaussian data field) (default: uses linear color mapping and puts the level 0 in the middle of the color scale (ie, green for Blue-Red) unless Min and Max are not symmetric) see also: Log	
HXSIZE=	all	horizontal dimension (in cm) of the Postscript printout (default: $26 \text{ cm} \simeq 10 \text{ in}$) see also: Pxsize	
IGRATICULE=	all	if set, puts a graticule (ie, longitude and latitude grid) in the <i>input</i> astrophysical coordinates. See Graticule for conventions and details. If both Graticule and Igraticule are set, the latter will be represented with dashes. (default: 0 [no graticule]) see also: Graticule, Rot, Coord	
/LOG	all	display the log of map. This is intended for application to positive definite maps only, eg. Galactic foreground emission templates see also: Hist_Equal, Offset	
MAX=	all	Set the maximum value for the plotted signal (default: is to use the actual signal maximum).	
MIN=	all	Set the minimum value for the plotted signal (default: is to use the actual signal minimum).	

name	routines	description			
/NESTED	all	specify that the online file is ordered in the nested scheme			
/NO_DIPOLE	-МО	if set (and Gal_cut is not set) the best fit monopole *and* dipole over all valid pixels are removed; if Gal_cut is set to $b > 0$, the best monopole and dipole fit is performed on all valid pixels with galactic latitude $> b$ (in deg) and removed from all valid pixels (default: 0 (no monopole or dipole removal)) can NOT be used together with No_monopole see also: Gal_cut, No_monopole			
/NO_MONOPOLE	-MO	if set (and Gal_cut is not set) the best fit monopole over all valid pixels is removed; if Gal_cut is set to $b > 0$, the best monopole fit is performed on all valid pixels with galactic latitude $> b$ (in deg) and is removed from all valid pixels (default: 0 (no monopole removal)) can NOT be used together with No_dipole see also: Gal_cut, No_dipole			
/NOBAR	all	if set, color bar is not present			
/NOLABELS	all	if set, color bar labels (min and max) are not present, (default: labels are present)			
/NOPOSITION	-G–	if set, the astronomical location of the map central point is not indicated			
OFFSET=	all	additive factor to be applied to the valid data the data plotted is of the form Factor*(data + Offset) This does not affect the flagged pixels can be used together with LOG see also: Offset, LOG (default: 0.0)			
/ONLINE	all	if set, the argument File can be either an array containing HEALPix map, or an IDL structure describing a HEALPix minstead of an external filename (useful when the data to be puted are already available in memory) Note: in order to preserve integrity of the input data, the content of File is replicated befing possibly altered by the map making process, therefore to option will requires more memory than reading the data from rectly disc, and is not recommended to visualize data sets of scomparable to that of the computer memory.			

nama	routings	description
name	Toutilles	description
OUTLINE=	all	structure containing the description of one (or several) outline(s) to be overplot on the final map.
		For each contour, the corresponding (sub)structure should contain the following fields:
		- 'COORD' coordinate system (either, 'C', 'G', or 'E') of the contour
		- 'RA' RA/longitude coordinates of the contour vertices (array)
		'DEC' Dec/latitude coordinates of the contour vertices (array)
		- 'LINE[STYLE]' (optional) +2 : black dashes, +1 : black dots, 0 :
		black solid (default), -1 : black dots on white bg, -2 : black dashes on white bg
		- 'PSY[M]' symbol used to represent vertices (same meaning as
		standard PSYM in IDL). If ≤ 0 , the vertices are represented with
		the chosen symbols, and connected, by arcs of geodesics; if > 0 ,
		only the vertices are shown (default: 0)
		- 'SYM[SIZE]' vertice symbol size (same meaning as SYMSIZE in IDL)
		Notes: when applicable, the vertices are connected by segments of
		geodesics. To obtain a better looking outline, increase the number
		of vertices provided. The outline does not have to be closed. The procedure will NOT attempt to close the outline. see also: Coord, Graticule
DNC	a11	
PNG=	all	string containing the name of a .PNG output if set to 1 : output the plot in plot_[projection].png
		if set to a file name: output the plot in that file
		Please note that the resulting PNG image might not always look
		as excepted. The reason for this is problems with 'backing store'
		in the IDL-routine TVRD. Please read the IDL documentation for
		more information.
		(default: no .PNG done)
		see also: Crop, Gif, Ps and Preview

name	routines	description		
POLARIZATION=	all	if set to		
		0 no polarization information is plotted.		
		1 the AMPLITUDE $P = \sqrt{(U^2 + Q^2)}$ of the polarisation is plotted (as long as the input data contains polarisation information (ie, Stokes parameter Q and U for each pixel))		
		2 the ANGLE $\phi = \tan^{-1}(U/Q)/2$ of the polarisation is plotted Note: the angles are color coded with a fixed color table (independent of Colt)		
		 3 -the temperature is color coded (with a color table defined by Colt) -and the polarisation is overplot as headless VECTORS 		
		(default: 0) Note: The representation of the polarization direction (options 2 and 3 above), include the effects of the rotations and/or changes or astronomical coordinates (controlled by ROT and COORD respectively) but do not include the effects of the distortions induced by the projection from the sphere to the plan. Because the polarization usually has more power at small scales, it must generally be represented on maps of small patches of the sky to remain legible, in which case the projection-induced distortions are small.		
/PREVIEW	all	if set, there is a 'ghostview' preview of the postscript file or a 'xv' preview of the gif file see also: Gif, Png and Ps		
PS=	all	if set to 0: no postscript output if set to 1: output the plot in plot_cartesian, plot_gnomic.ps, plot_mollweide.ps or plot_orthographic respectively if set to a file name: output the plot in that file (default: 0) see also: Preview, Gif, Png		
PXSIZE=	all	set the number of horizontal screen_pixels or postscript_color_dots of the plot (useful for high definition color printer) (default: 800 (Mollview and full sky Orthview), 600 (half sky Orthview), 500 (Cartview and Gnomonic))		
PYSIZE=	CG-	set the number of vertical screen_pixels or postscript_color_dots of the plot (default: Pxsize)		

name	routines	description	
RESO_ARCMIN=	-G–	size of screen_pixels or postscript_color_dots in arcmin (default: 1.5)	
ROT=	all	vector with 1, 2 or 3 elements specifing the rotation angles in DE-GREES to apply to the map in the 'output' coordinate system (see Coord) = (lon0, [lat0, rat0]) lon0: longitude of the point to be put at the center of the plot the longitude increases Eastward, ie to the left of the plot (default: 0) lat0: latitude of the point to be put at the center of the plot (default: 0) rot0: anti clockwise rotation to apply to the sky around the center	
/SAVE	all	(lon0, lat0) before projecting (default: 0) if set, assumes that File is in IDL saveset format, the variable saved should be DATA	
SUBTITLE=	all	can not be used with /ONLINE String containing the subtitle to the plot see also: Titleplot	
TITLEPLOT=	all	String containing the title of the plot, if not set the title will be File see also: Subtitle	
UNITS=	all	String containing the units, to be put on the right hand side of the color bar, overrides the value read from the input file, if any see also: Nobar, Nolabels	
XPOS=	all	The X position on the screen of the lower left corner of the window, in device coordinate	
YPOS=	all	The Y position on the screen of the lower left corner of the window, in device coordinate	

DESCRIPTION mollview reads in a **HEALPix** sky map in FITS format and generates a Mollweide projection of it, that can be visualized on the screen or exported in a GIF or Postscript file. mollview allows the selection of the coordinate system, map size, color table, color bar inclusion, linear or log scaling, histogram equalised color scaling, maximum and minimum range for the plot, plot-title etc. It also allows the representation of the polarization field.

RELATED ROUTINES

This section lists the routines related to **mollview**.

idl	version 5.0 or more is necessary to run mollview		
ghostview	ghostview or a similar facility is required to view the Postscript image generated by mollview.		
XV	xv or a similar facility is required to view the GIF/PNG image generated by mollview(a browser can also be used).		
synfast	This HEALPix facility will generate the FITS format sky map to be input to mollview.		
cartview	IDL facility to generate a Cartesian projection of a HEALPix map.		
cartcursor	interactive cursor to be used with cartview		
gnomview	IDL facility to generate a gnomonic projection of a HEALPix map.		
gnomcursor	interactive cursor to be used with gnomview		
mollview	IDL facility to generate a Mollweide projection of a HEALPix map.		
mollcursor	interactive cursor to be used with mollview		
orthview	IDL facility to generate an orthographic projection of a HEALPix map.		
orthcursor	interactive cursor to be used with orthview		

EXAMPLES: #1

mollview, 'planck100GHZ-LFI.fits', min=-100, max=100, /graticule, \$ title='Simulated Planck LFI Sky Map at 100GHz'

mollview reads in the map 'planck100GHZ-LFI.fits' and generates an output image in which the temperature scale has been set to lie between \pm 100 (μ K), a graticule with a 45 degree step in longitude and latitude is drawn, and the title 'Simulated Planck LFI Sky Map at 100GHz' appended to the image.

EXAMPLES: #2

Figure 1: Figures produced by cartview, gnomview, mollview and orthview, see respective routine documentation for details.

makes a Mollweide projection of map (see Figure 1c on page 52) after an arbitrary rotation, with a graticule grid (with a 45° step in longitude and 30° in latitude) and an arbitrary triangular outline

npix2nside 53

NPIX2NSIDE

Location in HEALPix directory tree: src/idl/toolkit/npix2nside.pro

This IDL facility provides the HEALPix resolution parameter Nside corresponding to Npix pixels over the full sky.

FORMAT IDL> Nside=NPIX2NSIDE (Npix ſ.ER-ROR=]

QUALIFIERS

number of pixels over the full sky (scalar integer), **Npix**

should be a valid Npix $(N_{\text{pix}} = 12N_{\text{side}}^2 \text{ with } N_{\text{side}})$

power of 2 in $\{1, ..., 8192\}$)

Nside on output: resolution parameter if Npix is valid, -1

otherwise

KEYWORDS

ERROR = error flag, set to 1 on output if Npix is NOT valid, or

stays to 0 otherwise.

 $\overline{\textbf{DESCRIPTION}}$ npix2nside checks that the given Npix is valid ($N_{\text{pix}} = 12N_{\text{side}}^2$ with N_{side} a power of 2 in $\{1, \dots, 8192\}$) and then computes the corresponding resolution parameter $N_{\rm side}$.

RELATED ROUTINES

This section lists the routines related to **npix2nside**.

idl version 5.0 or more is necessary to run npix2nside.

nside2npix computes Npix corresponding to Nside

pix2xxx, ang2xxx, vec2xxx, ... conversion between vector or angles and pixel in-

dex and vice-versa

vec2pix, pix2vec nest2ring, ring2nest

conversion between vector and pixel index conversion between NESTED and RING indices

EXAMPLE:

Nside = npix2nside(49152, ERROR=error)

Nside will be 64 because 49152 is a valid pixel number (= $12*64^2$ and 64 is a power of 2), and error will be 0

EXAMPLE:

Nside = npix2nside(49151, ERROR=error)

Nside will be -1 and error: 1, because 49151 is not a valid number of **HEALPix** pixels over the full sky.

nside2npix 55

NSIDE2NPIX

Location in HEALPix directory tree: src/idl/toolkit/nside2npix.pro

This IDL facility provides the number of pixels Npix over the full sky corresponding to resolution parameter Nside.

FORMAT	IDL>	Npix=NSIDE2NPIX	(Nside	[,ER-
	ROR=])		

QUALIFIERS

Nside **HEALPix** resolution parameter (scalar integer),

should be a valid Nside (power of 2 in $\{1, ..., 8192\}$)

number of pixels, Npix = 12*Nside² if Nside is a **Npix**

valid resolution parameter or -1 otherwise

KEYWORDS

ERROR =error flag, set to 1 on output if Nside is NOT valid, or

stays to 0 otherwise.

DESCRIPTION nside2npix checks that the given Nside is valid (power of 2 in $\{1, \dots, 8192\}$) and then computes the corresponding number of pixels $N_{\rm pix} = 12N_{\rm side}^2$.

RELATED ROUTINES

This section lists the routines related to **nside2npix**.

version 5.0 or more is necessary to run nside2npix. idl

npix2nside computes Nside corresponding to Npix

pix2xxx, ang2xxx, vec2xxx, ... conversion between vector or angles and pixel in-

dex and vice-versa

vec2pix, pix2vec conversion between vector and pixel index

nest2ring, ring2nest conversion between NESTED and RING indices

EXAMPLE:

Npix = nside2npix(256, ERROR=error)

Npix will be 786432 the number of pixels over the full sky for the **HEALPix** resolution parameter 256 and error will be 0

EXAMPLE:

Npix = nside2npix(248, ERROR=error)

Npix will be -1 and error: 1, because 248 is not a valid value for a **HEALPix** resolution parameter

nside2ntemplates 57

NSIDE2NTEMPLATES

Location in HEALPix directory tree: src/idl/toolkit/nside2ntemplates.pro

This IDL facility provides the number of template pixels Ntemplates corresponding to resolution parameter Nside. Each template pixel has a different shape that *can not* be matched (by rotation or reflexion) to that of any of the other templates.

FORMAT

IDL> Ntemplates=NSIDE2NTEMPLATES
(Nside [,ERROR=])

QUALIFIERS

Nside **HEALPix** resolution parameter (scalar integer),

should be a valid Nside (power of 2 in $\{1, \dots, 8192\}$)

Ntemplates number of templates

KEYWORDS

ERROR = error flag, set to 1 on output if Nside is NOT valid, or

stays to 0 otherwise.

DESCRIPTION nside2ntemplates outputs the number of template pixels

$$N_{\text{template}} = \frac{1 + N_{\text{side}}(N_{\text{side}} + 6)}{4}.$$

If the argument N_{side} is not valid, a warning is issued and the error flag is raised.

RELATED ROUTINES

This section lists the routines related to **nside2ntemplates**.

idl version 5.0 or more is necessary to run

nside2ntemplates.

 $template_pixel_ring$

template_pixel_nest return the template pixel associated with any

HEALPix pixel

same_shape_pixels_ring

same_shape_pixels_nest return the ordered list of pixels having the same shape

as a given pixel template

EXAMPLE:

Ntemplates = nside2ntemplates(256, ERROR=error)

Ntemplates will be 16768 the number of template pixels for the **HEALPix** resolution parameter 256 and error will be 0

orthcursor 59

ORTHCURSOR

Location in HEALPix directory tree: src/idl/visu/orthcursor.pro

This IDL facility provides a point-and-click interface for finding the astronomical location, value and pixel index of the pixels nearest to the pointed position on a orthographic projection of a **HEALPix** map.

FORMAT IDL> ORTHCURSOR, [cursor_type=, file_out=]

QUALIFIERS

see mollcursor

DESCRIPTION

orthcursor should be called immediately after orthview. It gives the longitude, latitude, map value and pixel number corresponding to the cursor position in the window containing the map generated by orthview. For more detail, see mollcursor

RELATED ROUTINES

This section lists the routines related to **orthcursor**.

see mollcursor

EXAMPLE:

orthcursor

After orthview has read in a map and generated its orthographic projection, orthcursor is run to determine the position and flux of bright synchrotron sources, for example.

ORTHVIEW

Location in HEALPix directory tree: src/idl/visu/orthview.pro

This IDL facility provides a means to visualise a full sky or half sky orthographic projection (projection onto a tangent plane from a point located at infinity) of **HEALPix** and COBE Quad-Cube maps in an IDL environment. It also offers the possibility to generate gif and postscript images of the projected map.

FORMAT

IDL> ORTHVIEW, File, [Select,] [COLT=, UNITS=, XPOS=, YPOS=]

QUALIFIERS

For a full list of qualifiers see mollview

KEYWORDS

For a full list of keywords see mollview

DESCRIPTION

orthview reads in a **HEALPix** sky map in FITS format and generates an orthographic projection of it, that can be visualized on the screen or exported in a GIF, PNG, Postscript or FITS file. orthview allows the selection of the coordinate system, point of projection, map size, color table, color bar inclusion, linear or log scaling, histogram equalised color scaling, maximum and minimum range for the plot, plot-title *etc*. It also allows the representation of the polarization field.

RELATED ROUTINES

This section lists the routines related to **orthview**.

see mollview

orthview 61

EXAMPLE:

map = findgen(48)

triangle = create_struct('coord','G','ra',[0,80,0],'dec',[40,45,65])

orthview, map,/online,res=25,graticule=[45,30],rot=[10,20,30],\$

title='Orthographic projection',subtitle='orthview' \$

outline=triangle

makes an orthographic projection of map (see Figure 1d on page 52) after an arbitrary rotation, with a graticule grid (with a 45^{o} step in longitude and 30^{o} in latitude) and an arbitrary triangular outline

PIX2XXX, ANG2XXX, VEC2XXX, NEST2RING, RING2NEST

Location in HEALPix directory tree: src/idl/toolkit/

These routines provide conversion between pixel number in the **HEALPix** map and (θ, ϕ) or (x, y, z) coordinates on the sphere. Some of these routines are listed here.

QUALIFIERS				
name (dim.)	type	in/out	description	
nside	scalar integer	IN	M parameter for the HEAI Div man	
	_	111	N _{side} parameter for the HEALPix map.	
ipnest(n)	vector integer	_	pixel identification number in NESTED scheme over the range $\{0,N_{pix}-1\}$.	
ipring(n)	vector integer	_	pixel identification number in RING scheme	
			over the range $\{0, N_{pix} - 1\}$.	
theta(n)	vector double		colatitude in radians measured southward from	
1. ! ()			north pole in $\{0,\pi\}$	
phi(n)	vector double	_	longitude in radians, measured eastward in $\{0,2\pi\}$.	
vector(n,3)	array double	_	three dimensional cartesian position vector	
	•		(x,y,z). The north pole is $(0,0,1)$. An out-	
			put vector is normalised to unity. The coor-	
			dinates are ordered as follows $x(0),, x(n -$	
			1), $y(0), \ldots, y(n-1), z(0), \ldots, z(n-1)$	
vertex(n,3,4)	array double	optional	three dimensional cartesian position vector	
(,- , . /		OUT	(x,y,z). Contains the location of the four	
		001	vertices (=corners) of a pixel in the or-	
			der North, West, South, East. The coordi-	
			nates are ordered as follows $x_N(0), \dots, x_N(n-1)$	
			1), $y_N(0),,y_N(n-1)$, $z_N(0),,z_N(n-1)$	
			1), $x_W(0),,x_W(n-1), y_W(0),,y_W(n-1)$	
			1), $z_W(0), \ldots, z_W(n-1)$, and so on with South	
			and East vertices	

ROUTINES:

pix2ang_ring, nside, ipring, theta, phi

renders *theta* and *phi* coordinates of the nominal pixel center given the pixel number *ipring* and a map resolution parameter *nside*.

pix2vec_ring, nside, ipring, vector [,vertex]

renders cartesian vector coordinates of the nominal pixel center given the pixel number *ipring* and a map resolution parameter *nside*. Optionally returns the location of the 4 vertices for the pixel(s) under consideration

ang2pix_ring, nside, theta, phi, ipring

renders the pixel number *ipring* for a pixel which, given the map resolution parameter *nside*, contains the point on the sphere at angular coordinates *theta* and *phi*.

vec2pix_ring, nside, vector, ipring

renders the pixel number *ipring* for a pixel which, given the map resolution parameter *nside*, contains the point on the sphere at cartesian coordinates *vector*.

pix2ang_nest, nside, ipnest, theta, phi

renders *theta* and *phi* coordinates of the nominal pixel center given the pixel number *ipnest* and a map resolution parameter *nside*.

pix2vec_nest, nside, ipnest, vector [,vertex]

renders cartesian vector coordinates of the nominal pixel center given the pixel number *ipnest* and a map resolution parameter *nside*. Optionally returns the location of the 4 vertices for the pixel(s) under consideration

ang2pix_nest, nside, theta, phi, ipnest

renders the pixel number *ipnest* for a pixel which, given the map resolution parameter *nside*, contains the point on the sphere at angular coordinates *theta* and *phi*.

vec2pix_nest, nside, vector, ipnest

renders the pixel number *ipnest* for a pixel which, given the map resolution parameter *nside*, contains the point on the sphere at cartesian coordinates *vector*.

nest2ring, nside, ipnest, ipring

performs conversion from NESTED to RING pixel number.

ring2nest, nside, ipring, ipnest

performs conversion from RING to NESTED pixel number.

RELATED ROUTINES

This section lists the routines related to pix2xxx, ang2xxx, vec2xxx, nest2ring, ring2nest.

idl version 5.0 or more is necessary to run pix2xxx,

ang2xxx,....

npix2nside computes Nside (resolution) corresponding to Npix

(total pixel number)

nside2npix computes Npix corresponding to Nside

ang2vec, vec2ang geometrical conversion between position angles and

position vector

EXAMPLE:

pix2ang_ring, 256, [17,1000], theta, phi
print,theta,phi

returns

position of 2 pixels 17 and 1000 in the RING scheme with parameter 256.

query_disc 65

QUERY_DISC

Location in HEALPix directory tree: src/idl/toolkit/query_disc.pro

This IDL facility provides a means to find the index of all pixels within an angular distance Radius from a defined center.

FORMAT

IDL> query_disc , Nside, Vector0, Radius, Listpix, [Nlist, DEG=, NESTED=, INCLU-SIVE=]

QUALIFIERS

Nside **HEALPix** resolution parameter used to index the

pixel list (scalar integer)

Vector0 position vector of the disc center (3 elements vector)

NB: the norm of Vector0 does not have to be one, what is consider is the intersection of the sphere with

the line of direction Vector0.

Radius radius of the disc (in radians, unless DEG is set),

(scalar real)

Listpix on output: list of ordered index for the pixels found

within a radius Radius of the position defined by vector0. The RING numbering scheme is used unless the keyword NESTED is set. (=-1 if the radius is too small

and no pixel is found)

Nlist on output: number of pixels in Listpix (=0 if no pixel

is found).

KEYWORDS

DEG = if set Radius is in degrees instead of radians

NESTED = if set, the output list uses the NESTED numbering

scheme instead of the default RING

INCLUSIVE = if set, all the pixels overlapping (even partially) with

the disc are listed, otherwise only those whose center

lies within the disc are listed

DESCRIPTION

query_disc finds the pixels within the given disc in a selective way WITHOUT scanning all the sky pixels. The numbering scheme of the output list and the inclusiveness of the disc can be changed

RELATED ROUTINES

This section lists the routines related to query_disc.

idl	version 5.0 or more is necessary to run query_disc .
ang2pix, pix2ang	conversion between angles and pixel index
vec2pix, pix2vec	conversion between vector and pixel index
query_disc, query_polygon,	
query_strip, query_triangle	render the list of pixels enclosed respectively in a given disc, polygon, latitude strip and triangle

EXAMPLE:

```
query_disc , 256L, [.5,.5,0.], 10., listpix, nlist, /Deg, /Nest
```

On return listpix contains the index of the (5982) pixels within 10 degrees from the point on the sphere having the direction [.5,.5,0.]. The pixel indices correspond to the Nested scheme with resolution 256.

query_polygon 67

QUERY_POLYGON

Location in HEALPix directory tree: src/idl/toolkit/query_polygon.pro

This IDL facility provides a means to find the index of all pixels belonging to a sperical polygon defined by its vertices

FORMAT

IDL> query_polygon, Nside, Vlist, Listpix, [Nlist, NESTED=, INCLUSIVE=]

QUALIFIERS

Nside **HEALPix** resolution parameter used to index the

pixel list (scalar integer)

Vlist 3D cartesian position vector of the polygon vertices.

Array of dimension (n,3) where n is the number of

vertices

Listpix on output: list of ordered index for the pixels found

in the polygon. The RING numbering scheme is used unless the keyword NESTED is set. (=-1 if the polygon

is too small and no pixel is found)

Nlist on output: number of pixels in Listpix (=0 if no pixel

is found).

KEYWORDS

NESTED = if set, the output list uses the NESTED numbering

scheme instead of the default RING

INCLUSIVE = if set, all the pixels overlapping (even partially) with

the polygon are listed, otherwise only those whose

center lies within the polygon are listed

DESCRIPTION

query_polygon finds the pixels within the given polygon in a selective way WITHOUT scanning all the sky pixels. The polygon should be convex, or have only one concave vertex. The edges should not intersect each other. The numbering scheme of the output list and the inclusiveness of the polygon can be changed

RELATED ROUTINES

This section lists the routines related to query_polygon.

idl	version 5.0 or more is necessary to run
	query_polygon.
ang2pix, pix2ang	conversion between angles and pixel index
vec2pix, pix2vec	conversion between vector and pixel index
query_disc, query_polygon,	
query_strip, query_triangle	render the list of pixels enclosed respectively in a given disc, polygon, latitude strip and triangle

EXAMPLE:

query_polygon , 256L, [[0,1,1,0],[0,0,1,1],[1,0,-1,0]], listpix, nlist

On return listpix contains the index of the (131191) pixels contained in the polygon with vertices of cartesian coordinates (0,0,1), (1,0,0), (1,1,-1) and (0,1,0). The pixel indices correspond to the RING scheme with resolution 256.

query_triangle 69

QUERY_TRIANGLE

Location in HEALPix directory tree: src/idl/toolkit/query_triangle.pro

This IDL facility provides a means to find the index of all pixels belonging to a sperical triangle defined by its vertices

FORMAT

IDL> query_triangle, Nside, Vector1, Vector2, Vector3, Listpix, [Nlist, NESTED=, IN-CLUSIVE=]

QUALIFIERS

Nside **HEALPix** resolution parameter used to index the

pixel list (scalar integer)

Vector 1 3D cartesian position vector of the triangle first ver-

tex

Vector 2 3D cartesian position vector of the triangle second

vertex

Vector3 3D cartesian position vector of the triangle third ver-

tex NB: the norm of Vector* does not have to be one, what is consider is the intersection of the sphere with

the line of direction Vector*.

Listpix on output: list of ordered index for the pixels found

in the triangle. The RING numbering scheme is used unless the keyword NESTED is set. (=-1 if the triangle

is too small and no pixel is found)

Nlist on output: number of pixels in Listpix (=0 if no pixel

is found).

KEYWORDS

NESTED = if set, the output list uses the NESTED numbering

scheme instead of the default RING

INCLUSIVE = if set, all the pixels overlapping (even partially) with

the triangle are listed, otherwise only those whose

center lies within the triangle are listed

DESCRIPTION query_triangle finds the pixels within the given triangle in a selective way WITHOUT scanning all the sky pixels. The numbering scheme of the output list and the inclusiveness of the triangle can be changed

RELATED ROUTINES

This section lists the routines related to query_triangle.

idl	version 5.0 or more is necessary to run query_triangle
	•
ang2pix, pix2ang	conversion between angles and pixel index
vec2pix, pix2vec	conversion between vector and pixel index
query_disc, query_polygon,	
query_strip, query_triangle	render the list of pixels enclosed respectively in a given disc, polygon, latitude strip and triangle

EXAMPLE:

256L, [1,0,0],[0,1,0],[0,0,1], listpix, nlist query_triangle ,

> On return listpix contains the index of the (98560) pixels lying in the octant (x > 0, y > 0, y > 0). The pixel indices correspond to the RING scheme with resolution 256.

read_fits_cut4 71

READ FITS CUT4

Location in HEALPix directory tree: src/idl/fits/read_fits_cut4.pro

This IDL facility reads a cut sky **HEALPix** map from a FITS file according to the **HEALPix** convention. The format used for the FITS file follows the one used for Boomerang98 and is adapted from COBE/DMR

FORMAT

IDL> READ_FITS_CUT4, File, Pixel, Signal [, N_Obs, Serror, HDR=, XHDR=, NSIDE=, ORDERING=, COORDSYS=]

QUALIFIERS

File name of a FITS file in which the map is to be written

Pixel (LONG vector),

index of observed (or valid) pixels

Signal (FLOAT vector),

value of signal in each observed pixel

N_Obs (LONG or INT vector, Optional),

number of observation per pixel

Serror (FLOAT vector, Optional),

rms of signal in pixel. For white noise, this is ∞

 $1/\sqrt{n_{-}obs}$

HDR = (optional),

String array containing the primary header.

XHDR = (optional),

String array containing the extension header.

NSIDE= (optional),

returns on output the **HEALPix** resolution parameter, as read from the FITS header. Set to -1 if not

found

ORDERING= (optional),

returns on output the pixel ordering, as read from the

FITS header. Either 'RING' or 'NESTED' or ' ' (if

not found).

COORDSYS= (optional),

returns on output the astrophysical coordinate system used, as read from FITS header (value of keywords

COORDSYS or SKYCOORD)

DESCRIPTION

RELATED ROUTINES

This section lists the routines related to read_fits_cut4.

idl version 5.0 or more is necessary to run read_fits_cut4

read_fits_map This **HEALPix** IDL facility can be used to read in

maps written by read_fits_cut4.

sxaddpar This IDL routine (included in **HEALPix** package)

can be used to update or add FITS keywords to the

header in Prim_stc and Exten_stc

read_fits_map 73

READ_FITS_MAP

Location in HEALPix directory tree: src/idl/fits/read_fits_map.pro

This IDL facility reads in a **HEALPix** map from a FITS file.

FORMAT

IDL> READ_FITS_MAP, File, T_sky, [Hdr, Exthdr, PIXEL=, SILENT=, NSIDE=, OR-DERING=, COORDSYS=]

QUALIFIERS

File name of a FITS file containing the **HEALPix** map in

an extension or in the image field

T_sky variable containing on output the **HEALPix** map

Hdr (optional),

string variable containing on output the FITS primary

header

Exthdr (optional),

string variable containing on output the FITS exten-

sion header

PIXEL= (optional),

pixel number to read from or pixel range to read (in the order of appearance in the file), starting from 0. if ≥ 0 scalar: read from pixel to the end of the file if two elements array: reads from pixel[0] to pixel[1]

(included)

if absent: read the whole file

NSIDE= (optional),

returns on output the **HEALPix** resolution parameter, as read from the FITS header. Set to -1 if not

found

ORDERING= (optional),

returns on output the pixel ordering, as read from the

FITS header. Either 'RING' or 'NESTED' or ' ' (if

not found).

COORDSYS= (optional),

returns on output the astrophysical coordinate system used, as read from FITS header (value of keywords

COORDSYS or SKYCOORD)

KEYWORDS

SILENT= if set, no message is issued during normal execution

DESCRIPTION

read_fits_map reads in a **HEALPix** sky map from a FITS file, and outputs the variable T_sky, where the optional variables Hdr and Exthdr contain respectively the primary and extension headers. According to **HEALPix** convention, the map should be is stored as a FITS file binary table extension.

RELATED ROUTINES

This section lists the routines related to **read_fits_map**.

idl version 5.0 or more is necessary to run read_fits_map

synfast This **HEALPix** facility will generate the FITS format

sky map that can be read by read_fits_map.

write_fits_map This **HEALPix** IDL facility can be used to generate

the FITS format sky maps complient with **HEALPix**

convention and readable by read_fits_map.

EXAMPLE:

read_fits_map, 'planck100GHZ-LFI.fits', map, hdr, xhdr, /silent

read_fits_map reads in the file 'planck100GHZ-LFI.fits' and outputs the **HEALPix** map in map, the primary header in hdr and the extension header in xhdr.

read_fits_s 75

READ FITS S

Location in HEALPix directory tree: src/idl/fits/read_fits_s.pro

This IDL facility reads a FITS file into an IDL structure.

FORMAT IDL> READ_FITS_S , File, Prim_stc, [Xten_stc, MERGE=, EXTENSION=]

QUALIFIERS

File name of a FITS file containing the healpix map(s) in

an extension or in the image field

Prim_stc variable containing on output an IDL structure with

the following fields:

- primary header (tag : 0, tag name : HDR)

- primary image (if any, tag : 1, tag name : IMG)

Xten_stc (optional),

variable containing on output an IDL structure with

the following fields:

- extension header (tag: 0, tag name: HDR)

- data column 1 (if any, tag: 1, tag name given by

TTYPE1 (with all spaces removed and only letters, digits and underscore)

- data column 2 (if any, tag : 2, tag name given by

TTYPE2)

•••

EXTENSION= (optional),

scalar integer containing on input the extension to be

read (0 based)

(**default:** 0)

KEYWORDS

MERGE= if set Prim stc contains:

- the concatenated primary and extension header (tag

name: HDR)

- primary image (if any, tag name : IMG)

- data column 1 ...

and Exten_stc is set to 0 (**default:** :) not set (or set to 0)

DESCRIPTION read_fits_s reads in any type of FITS file (Image, Binary table or Ascii table) and outputs the data in IDL structures

RELATED ROUTINES

This section lists the routines related to **read_fits_s**.

idl version 5.0 or more is necessary to run read_fits_s

synfast This **HEALPix** facility will generate the FITS format

sky map that can be read by read_fits_s.

write_fits_sb This **HEALPix** IDL facility can be used to generate

FITS format sky maps readable by read_fits_s.

EXAMPLE:

read_fits_s, 'dmr_skymap_90a_4yr.fits', pdata, xdata

> read_fits_s reads in the file 'dmr_skymap_90a_4yr.fits'. On output, pdata contains the primary header and xdata is a structure whose first field is the extension header, and the other fields are vectors with respective tag names PIXEL, SIGNAL, N_OBS, SERROR, ... (see help,/struc,xdata)

77 read_tqu

READ_TQU

Location in HEALPix directory tree: src/idl/fits/read_tqu.pro

This IDL facility reads a temperature+polarization Healpix map (T,Q,U) from a binary table FITS file, with optionally the error (dT,dQ,dU) and correlation (dQU, dTU, dTQ) from separate extensions

FORMAT

IDL> READ_TQU, File, TQU, [Extension=, Hdr=, Xhdr=, Help=, Nside=, Ordering=, Coordsys=]

QUALIFIERS

File name of a FITS file from which the maps are to be

read

TQU : array of Healpix maps of size $(N_{pix},3,n_{ext})$ where

> $N_{\rm pix}$ is the total number of Healpix pixels on the sky, and $n_{\text{ext}} \leq 3$ is the number of extensions read Three maps are available in each extension of the

FITS file:

-the temperature+polarization Stokes parameters

maps (T,Q,U) in extension 0

-the error maps (dT,dQ,dU) in extension 1 (if appli-

cable)

-the correlation maps (dQU, dTU, dTQ) in extension

2 (if applicable)

Extension= (optional),

extension unit from which to read the data (0 based).

If absent, all available extensions are read

Hdr= (optional),

> string variable containing on output the contents of the primary header. (If already present, FITS reserved keywords will be automatically updated).

Xhdr= (optional),

> string variable containing on output the contents of the extension header. If several extensions are read.

HEALPix 2.00

then the extension headers are returned appended into

one string array.

Nside= (optional),

> returns on output the **HEALPix** resolution parameter, as read from the FITS header. Set to -1 if not

found

Ordering= (optional),

returns on output the pixel ordering, as read from the

FITS header. Either 'RING' or 'NESTED' or ' ' (if

not found).

Coordsys= (optional),

returns on output the astrophysical coordinate system

used, as read from FITS header (value of keywords

COORDSYS or SKYCOORD)

KEYWORDS

Help if set, an extensive help is displayed and no file is

DESCRIPTION read_tqu reads out Stokes parameters (T,Q,U) maps for the whole sky into a FITS file. It is also possible to read the error per pixel for each map and the correlation between fields, as subsequent extensions of the same FITS file (see qualifiers above). Therefore the file may have up to three extensions with three maps in each. Extensions can be written together or one by one (in their physical order) using the Extension option

RELATED ROUTINES

This section lists the routines related to **read_tqu**.

idl version 5.0 or more is necessary to run read_tqu

synfast This **HEALPix** f90 facility can be used to generate

temperature+polarization maps that can be read with

read_tqu

write_tqu This **HEALPix** IDL facility can be used to write

out temperature+polarization that can be read by

read_tqu.

read_tqu 79

read_fits_s This general purpose **HEALPix** IDL facility can be

used to read into an IDL structure maps contained in

binary table FITS files.

sxpar This IDL routine (included in **HEALPix** package)

can be used to extract FITS from the header(s) HDR

or XHDR.

EXAMPLE:

read_tqu, 'map_polarization.fits', TQU, xhdr=xhdr

Reads into TQU the polarization maps contained in the FITS file 'map_polarization.fits'. The variable xhdr will contain the extension(s) header.

REMOVE_DIPOLE

Location in HEALPix directory tree: src/idl/misc/remove_dipole.pro

This IDL facility provides a means to fit and remove the dipole and monopole from a **HEALPix** map.

FORMAT

IDL> REMOVE_DIPOLE, Map [,Weight, BAD_DATA=, GAL_CUT=, COORD_IN=, COORD_OUT=, Dipole=, Monopole=, NOREMOVE=, NSIDE=, ONLY-MONOPOLE=, ORDERING=, PIXEL=, UNITS=]

QUALIFIERS

Map input and output, vector

map from which monopole and dipole are to be removed (also used for output). Assumed to be a full sky data set, unless PIXEL is set and has the same

size as map

Weight input, vector, optional

same size as map, describe weighting scheme to ap-

ply to each pixel for the fit (**default:** uniform weight)

BAD_DATA = scalar float, value given on input to bad pixels

(**default:** !healpix.bad_value $\equiv -1.6375 \ 10^{30}$).

GAL_CUT= if set to a value larger than 0, the pixels with galactic

latitude |b| < gal_cut degrees are not considered in the

fit.

NB: the cut is *really* done in Galactic coordinates. If the input coordinates are different (see Coord_In), the map is rotated into galactic before applying the cut.

COORD_IN = string, coordinate system (either 'Q' or 'C': equato-

rial, 'G': galactic or 'E': ecliptic)

(**default:** 'G' (galactic))

remove_dipole 81

> COORD_OUT = string, coordinate system (see above) in which to out-

> > put dipole vector in variable Dipole

(**default:** same as coord_in)

OUTPUT, scalar float, Dipole=

value found for the best fit dipole (done simultane-

ously with monopole)

OUTPUT, scalar float, Monopole=

value found for the best fit monopole (done simulta-

neously with dipole)

NSIDE= scalar integer, healpix resolution parameter

ORDERING= ordering scheme (either 'RING' string, or

'NESTED')

PIXEL= input, vector, gives the Healpix index of the pixels

> whose temperature is actually given in map (for cut sky maps). If present, must match Map in size. If absent, it is assumed that the map covers the whole

sky.

KEYWORDS

NOREMOVE= if set, the best fit dipole and monopole are computed

but not removed (ie, Map is unchanged)

ONLYMONOPOLE= if set, fit (and remove) only the monopole

DESCRIPTION remove_dipolemakes a simultaneous least square fit of the monopole and dipole on all the valid pixels of Map (those with a value different from BAD_DATA) with a galactic latitude larger in magnitude than GAL_CUT (in degrees). The position of the pixels on the sky is reconstructed from NSIDE and ORDERING. If Map does not cover the full sky, the actual indices of the concerned pixels should be given in PIXEL

RELATED ROUTINES

This section lists the routines related to **remove_dipole**.

idl version 5.0 or more is necessary to run re-

move_dipole.

REORDER

Location in HEALPix directory tree: src/idl/toolkit/reorder.pro

This IDL facility allows the reordering of a full sky map from NESTED to RING scheme and vice-versa.

FORMAT IDL> Result = REORDER (Input_map [, In=, Out=, N2R=, R2N=])

QUALIFIERS

Result variable containing on output the reordered map

Input_map variable containing the input map

> specifies the input ordering, can be either 'RING' or In=

> > 'NESTED'

Out= specifies the output ordering, can be either 'RING' or

'NESTED'

KEYWORDS

N2R=If set, does the NESTED to RING conversion, equiv-

alent to In='NESTED' and Out='RING'

R2N=If set, does the RING to NESTED conversion, equiv-

alent to In='RING' and Out='NESTED'

DESCRIPTION reorder allows the reordering of a full sky map from NESTED to RING scheme and vice-versa

RELATED ROUTINES

This section lists the routines related to **reorder**.

idl version 5.0 or more is necessary to run reorder reorder 83

EXAMPLE:

map_nest = reorder(map_ring, in='ring', out='nest')

The RING ordered map ${\tt map_ring}$ is converted to the NESTED map ${\tt map_nest}.$

ROTATE_COORD

Location in HEALPix directory tree: src/idl/misc/rotate_coord.pro

This IDL facility provides a means to rotate a set of 3D position vectors (and their Stokes parameters Q and U) between to astrophysical coordinate systems or by an arbitrary rotation.

FORMAT	IDL:	> C	Outvec	=	ROTATE	_COORD(In-
	vec	[,	Inco=,		Outco=,	Euler_Matr	ix=,
	Stoke	es_Pa	rameter	=])		

QUALIFIERS

Invec input, array of size (n,3): set of 3D position vectors

Outvec output, array of size (n,3): rotated 3D vectors

Inco= input, character string (either 'Q' or 'C': equatorial,

'G': galactic or 'E': ecliptic) describing the input co-

ordinate system

Outco= input, character string (see above) describing the out-

put coordinate system.

Can not be used together with Euler_Matrix

Euler_Matrix= input, array of size (3,3). Euler Matrix describing the

rotation to apply to vectors. (default: unity: no ro-

tation).

Can not be used together with a change in coordi-

nates.

Stokes_Parameters= input and output, array of size (n, 2): values of the

Q and U Stokes parameters on the sphere for each of the input position vector. Q and U are defined wrt the local parallel and meridian and are therefore trans-

formed in a non trivial way in case of rotation

85 rotate_coord

DESCRIPTION rotate_coord is a generalisation of the Astro library routine skyconv. It allows a rotation of 3D position vectors between two standard astronomic coordinates system but also an arbitrary rotation described by its Euler Matrix. It can also be applied to compute the effect of a rotation on the linear polarization Stokes parameters (Q and U) expressed in local coordinates system at the location of each of the input 3D vectors.

RELATED ROUTINES

This section lists the routines related to **rotate_coord**.

idl euler_matrix_new

version 5.0 or more is necessary to run rotate_coord. constructs the Euler Matrix for a set of three angles and three axes of rotation

SAME_SHAPE_PIXELS_NEST, SAME_SHAPE_PIXELS_RING

Location in HEALPix directory tree: src/idl/toolkit/same_shape_pixels_nest.pro, src/idl/toolkit/same_shape_pixels_ring.pro

These IDL facilities provide the ordered list of all **HEALPix** pixels having the same shape as a given template, for a resolution parameter N_{side} . Depending on the template considered the number of such pixels is either 8, 16, $4N_{\text{side}}$ or $8N_{\text{side}}$.

The template pixels are all located in the Northern Hemisphere, or on the Equator. They are chosen to have their center located at

$$z = \cos(\theta) \ge 2/3,$$
 $0 < \phi \le \pi/2,$
 $2/3 > z \ge 0,$ $\phi = 0,$ or $\phi = \frac{\pi}{4N_{\text{side}}}.$

They are numbered continuously from 0, starting at the North Pole, with the index increasing in ϕ , and then increasing for decreasing z.

FORMAT

IDL> same_shape_pixels_nest, Nside, Template, List_Pixels_Nest [, Reflexion, NREPLI-CATIONS=]

FORMAT

IDL> same_shape_pixels_ring, Nside, Template, List_Pixels_Ring [, Reflexion, NREPLICATIONS=]

QUALIFIERS

Nside (IN, scalar) the **HEALPix** N_{side} parameter.

Template (IN, scalar) identification number of the template

(this number is independent of the numbering scheme

considered).

List_Pixel_Nest (OUT, vector) ordered list of NESTED scheme iden-

tification numbers for all pixels having the same

shape as the template provided

List_Pixel_Ring (OUT, vector) ordered list of RING scheme identifi-

cation numbers for all pixels having the same shape

as the template provided

Reflexion (OUT, OPTIONAL, vector) in $\{0, 3\}$ encodes the

transformation(s) to apply to each of the returned pixels to match exactly in shape and position the template provided. 0: rotation around the polar axis only, 1: rotation + East-West swap (ie, reflexion around meridian), 2: rotation + North-South swap (ie, reflexion around Equator), 3: rotation + East-West and

North-South swaps

KEYWORDS

NREPLICATIONS (OUT, OPTIONAL, scalar

(OUT, OPTIONAL, scalar) number of pixels having the same shape as the template. It is also the length of the vectors List_Pixel_Nest, List_Pixel_Ring and Reflexion. It is either 8, 16, $4N_{\text{side}}$ or $8N_{\text{side}}$.

EXAMPLE:

same_shape_pixels_ring, 256, 1234, list_pixels, reflexion, nrep=np

Returns in list_pixels the RING-scheme index of the all the pixels having the same shape as the template #1234 for $N_{\rm side} = 256$. Upon return reflexion will contain the reflexions to apply to each pixel returned to match the template, and np will contain the number of pixels having that same shape (16 in that case).

RELATED ROUTINES

This section lists the routines related to same_shape_pixels_nest, same_shape_pixels_ring.

nside2templates returns the number of template pixel shapes available

for a given N_{side} .

template_pixel_ring

template_pixel_nest return the template shape matching the pixel pro-

vided

TEMPLATE_PIXEL_NEST, TEM-PLATE_PIXEL_RING

Location in HEALPix directory tree: src/idl/toolkit/template_pixel_nest.pro, src/idl/toolkit/template_pixel_ring.pro

These IDL facilities provide the index of the template pixel associated with a given **HEALPix** pixel, for a resolution parameter N_{side} .

Any pixel can be *matched in shape* to a single of these templates by a combination of a rotation around the polar axis with reflexion(s) around a meridian and/or the equator.

The template pixels are all located in the Northern Hemisphere, or on the Equator. They are chosen to have their center located at

$$z = \cos(\theta) \ge 2/3,$$
 $0 < \phi \le \pi/2,$ $2/3 > z \ge 0,$ $\phi = 0,$ or $\phi = \frac{\pi}{4N_{\text{side}}}.$

They are numbered continuously from 0, starting at the North Pole, with the index increasing in ϕ , and then increasing for decreasing z.

FORMAT IDL> template_pixel_nest, Nside, Pixel_Nest, Template, Reflexion

FORMAT IDL> template_pixel_ring, Nside, Pixel_Ring, Template, Reflexion

QUALIFIERS

Nside (IN, scalar) the **HEALPix** N_{side} parameter.

Pixel_Nest (IN, scalar or vector) NESTED scheme pixel identification number(s) over the range $\{0,12N_{\text{side}}^2-1\}$.

Pixel_Ring (IN, scalar or vector) RING scheme pixel identification number(s) over the range $\{0,12N_{\text{side}}^2-1\}$.

Template (OUT, scalar or vector) identification number(s) of

(OUT, scalar or vector) identification number(s) of the template matching in shape the pixel(s) provided (the numbering scheme of the pixel templates is the same for both routines).

Reflexion

(OUT, scalar or vector) in {0, 3} encodes the transformation(s) to apply to each pixel provided to match exactly in shape and position its respective template.

0: rotation around the polar axis only, 1: rotation + East-West swap (ie, reflexion around meridian),

2: rotation + North-South swap (ie, reflexion around Equator), 3: rotation + East-West and North-South swaps

EXAMPLE:

template_pixel_ring, 256, 500000, template, reflexion

Returns in template the index of the template pixel (16663) whose shape matches that of the pixel #500000 for $N_{\rm side} = 256$. Upon return reflexion will contain 2, meaning that the template must be reflected around a meridian and around the equator (and then rotated around the polar axis) in order to match the pixel.

RELATED ROUTINES

This section lists the routines related to **template_pixel_nest**, **template_pixel_ring**.

nside2templates returns the number of template pixel shapes available

for a given N_{side} .

same_shape_pixels_ring

same_shape_pixels_nest return the ordered list of pixels having the same shape

as a given pixel template

UD_GRADE

Location in HEALPix directory tree: src/idl/toolkit/ud_grade.pro

This IDL facility provides a means to upgrade/degrade or reorder a Healpix full sky map contained in a FITS file or loaded in memory.

FORMAT IDL> UD_GRADE , Map_in, Map_out [, NSIDE_OUT=, ORDER_IN=, ORDER_OUT=, BAD_DATA=]

QUALIFIERS

Map_in input map: either a character string with the name of

a fits file or a memory vector (real, integer, ...) con-

taining a full sky Healpix data set.

Map_out reordered map: if map_in was a filename, map_out

should be a filename, otherwise map_out should point

to a memory array

KEYWORDS

NSIDE_OUT = output resolution parameter, can be larger or smaller

than the input one (scalar integer). (default: same as

input: map unchanged or simply reordered)

ORDER_IN = input map ordering (either 'RING' or 'NESTED')

(**default:** same as the input FITS keyword ORDER-

ING if applicable).

ORDER_IN = output map ordering (either 'RING' or 'NESTED')

(default: same as ORDER_IN).

BAD_DATA = flag value of missing pixels. (**default:**

!healpix.bad_value $\equiv -1.6375 \ 10^{30}$).

PESSIMISTIC = if set, during **degradation** each big pixel con-

taining one bad or missing small pixel is also

considered as bad,

if not set, each big pixel containing at least one good pixel is considered as good (optimistic) de-

fault = 0 (:not set)

ud_grade 91

DESCRIPTION ud_grade can upgrade/degrade a full sky HEALPix map using the hierarchical properties of **HEALPix** . It can also reorder a full sky map (from NEST to RING and vice-versa). It operates on FITS files as well as on memory variables. The degradation/upgradation is done assuming an intensive quantity (like temperature) that does not scale with surface area. In case of degradation a big pixel that contains at least one bad small pixel is considered as bad itself. When operating on FITS files, the header information from the input file that is not directly related the ordering/resolution is copied unchanged into the output file.

RELATED ROUTINES

This section lists the routines related to **ud_grade**.

idl version 5.0 or more is necessary to run ud_grade. reorder reorder a full sky Healpix map.

EXAMPLES: #1

```
'map_512.fits', 'map_256.fits', nside_out = 256
ud_grade ,
```

ud_grade reads the FITS file map_512.fits (that allegedly contains a map with NSIDE=512), and write in the FITS file map_256.fits a map degraded to resolution 256, with the same ordering.

EXAMPLES: #2

```
'map_512.fits', 'map_Nest256.fits', nside_out = 256, $
ud_grade ,
             order_out = 'NESTED'
```

ud_grade reads the FITS file map_512.fits (that allegedly contains a map with NSIDE=512), and writes in the FITS file map_Nest256.fits a map degraded to resolution 256, with NESTED ordering.

EXAMPLES: #3

mymap is IDL variable containing a **HEALPix** NESTED-ordered map with resolution nside=256. ud_grade upgrades this map to a resolution of 1024, reorder it to RING and write it in the IDL vector mymap2.

vec2ang 93

VEC2ANG

Location in HEALPix directory tree: src/idl/toolkit/vec2ang.pro

This IDL facility convert the 3D position vectors of points into their angles on the sphere.

FORMAT IDL> VEC2ANG, Vector, Theta, Phi [, AS-TRO=]

QUALIFIERS

Vector input, array,

three dimensional cartesian position vector (x,y,z) (not necessarily normalised). The north pole is (0,0,1). The coordinates are ordered as follows $x(0),\ldots,x(n-1),\ y(0),\ldots,y(n-1),\ z(0),\ldots,z(n-1)$

Theta output, vector,

vector, colatitude in radians measured southward from north pole in $[0,\pi]$ (mathematical coordinates). If ASTRO is set, Theta is the latitude in degrees measured northward from the equator, in [-90, 90] (astro-

nomical coordinates).

Phi output, vector,

longitude in radians measured eastward, in [0, 2π]

(mathematical coordinates).

If ASTRO is set, Phi is the longitude in degree measured eastward, in [0,360] (astronomical coordi-

nates).

KEYWORDS

ASTRO =

if set Theta and Phi are the latitude and longitude in degrees (astronomical coordinates) instead of the colatitude and longitude in radians (mathematical coordinates).

DESCRIPTION vec2ang performs the geometrical transform from the 3D position vectors (x, y, z) of points into their angles (θ, ϕ) on the sphere: x = $\sin\theta\cos\phi$, $y = \sin\theta\sin\phi$, $z = \cos\theta$

RELATED ROUTINES

This section lists the routines related to vec2ang.

idl version 5.0 or more is necessary to run vec2ang. pix2xxx, ... conversion between vector or angles and pixel index ang2vec conversion from angles to position vectors

EXAMPLE:

write_fits_cut4

WRITE_FITS_CUT4

Location in HEALPix directory tree: src/idl/fits/write_fits_cut4.pro

This IDL facility writes out a cut sky **HEALPix** map into a FITS file according to the **HEALPix** convention. The format used for the FITS file follows the one used for Boomerang98 and is adapted from COBE/DMR. This routine can be used to store polarized maps, where the information relative to the Stokes parameters I, Q and U are placed in extension 0, 1 and 2 respectively by successive invocation of the routine

FORMAT

IDL> WRITE_FITS_CUT4 , File, Pixel, Signal [, N_Obs, Serror, COORDSYS=, EXTENSION=, HDR=, /NESTED, NSIDE=, ORDERING=, /POLARISATION, /RING, UNITS=, XHDR=]

QUALIFIERS

File name of a FITS file in which the map is to be written

Pixel (LONG vector),

index of observed (or valid) pixels

Signal (FLOAT vector, same size as Pixel),

value of signal in each observed pixel

N_Obs (LONG or INT vector, Optional, same size as Pixel),

number of observation per pixel.

If absent, the field N_OBS will take a value of 1 in the output file. If set to a scalar constant, N_OBS will take

this value in the output file

Serror (FLOAT vector, Optional, same size as Pixel)

rms of signal in pixel, for white noise, this is ∞

 $1/\sqrt{n_{-}obs}$

If absent, the field SERROR will take a value of 0.0 in the output file. If set to a scalar constant, SERROR will

take this value in the output file

KEYWORDS

COORDSYS= (optional),

> if set to either 'C', 'E' or 'G', specifies that the Healpix coordinate system is respectively Celestial=equatorial, Ecliptic or Galactic. vant keyword is then added/updated in the extension header, but the map is NOT rotated)

EXTENSION= (optional),

> (0 based) extension number in which to write data. default=0. If set to 0 (or not set) a new file is written from scratch. If set to a value larger than 1, the corresponding extension is added or updated, as long as all previous extensions already exist. All extensions of the same file should use the same ORDERING,

NSIDE and COORDSYS.

HDR= (optional),

String array containing the information to be put in

the primary header.

/NESTED if set, specifies that the map is in the NESTED order-

ing scheme

see also: Ordering and Ring

NSIDE= (optional),

> scalar integer, **HEALPix** resolution parameter of the data set. The resolution parameter should be made available to the FITS file, either thru this qualifier, or

via the header (see XHDR).

ORDERING= (optional),

> if set to either 'ring' or 'nested' (case un-sensitive), specifies that the map is respectively in RING or

NESTED ordering scheme see also: Nested and Ring

The ordering information should be made available to the FITS file, either thru a combination of Ordering/Ring/Nested, or via the header (see XHDR).

/POLARISATION specifies that file will contain the I, Q and U polari-

sation Stokes parameter in extensions 0, 1 and 2 re-

HEALPix 2.00

spectively

/RING if set, specifies that the map is in the RING ordering

scheme

write_fits_cut4

UNITS= (optional),

string describing the physical units of the data set

(only applies to Signal and Serror)

XHDR= (optional),

String array containing the information to be put in

the extension header.

DESCRIPTION

RELATED ROUTINES

This section lists the routines related to write_fits_cut4.

idl version 5.0 or more is necessary to run write_fits_cut4

read_fits_map This **HEALPix** IDL facility can be used to read in

maps written by write_fits_cut4.

sxaddpar This IDL routine (included in **HEALPix** package)

can be used to update or add FITS keywords to the

header in Prim_stc and Exten_stc

EXAMPLE:

write_fits_cut4, 'map_cut.fits', pixel, temperature, /ring, nside=32, /pol,

writes in 'map_cut.fits' a FITS file containing the temperature measured in a set of **HEALPix** pixel.

EXAMPLE:

```
write_fits_cut4, 'tqu_cut.fits', pixel, temperature, n_t, s_t, /ring, nside=32, /pol, write_fits_cut4, 'tqu_cut.fits', pixel, qstokes, n_q, s_q, /ring, nside=32, /pol, ext=1 write_fits_cut4, 'tqu_cut.fits', pixel, ustokes, n_u, s_u, /ring, nside=32, /pol, ext=2
```

writes in 'tqu_cut.fits' a FITS file with three extensions, each of them containing information on the observed pixel, the measured signal, the number of observations and noise per pixel, for the three Stokes parameters I, Q and U respectively. The **HEALPix** ring ordered scheme and the resolution $N_{\rm side} = 32$ is assumed.

WRITE FITS MAP

Location in HEALPix directory tree: src/idl/fits/write_fits_map.pro

This IDL facility writes out a **HEALPix** map into a FITS file according to the **HEALPix** convention

FORMAT

IDL> WRITE_FITS_MAP , File, T_sky, [Header, Coordsys=, Nested=, Ring=, Ordering=, Units=]

QUALIFIERS

File name of a FITS file in which the map is to be written

T_sky variable containing the **HEALPix** map

Header (optional),

string variable containing on input the information to be added to the extension header. (If already present, FITS reserved keywords will be automatically up-

dated).

Coordsys= (optional),

if set to either 'C', 'E' or 'G', specifies that the Healpix coordinate system is respectively Celestial=equatorial, Ecliptic or Galactic. (The relevant keyword is then added/updated in the extension

header, but the map is NOT rotated)

Ordering= (optional),

if set to either 'ring' or 'nested' (case un-sensitive), specifies that the map is respectively in RING or

NESTED ordering scheme see also: Nested and Ring

Units= (optional),

string describing the physical units of the data set

KEYWORDS

99 write_fits_map

> Nested if set, specifies that the map is in the NESTED order-

> > ing scheme

see also: Ordering and Ring

if set, specifies that the map is in the RING ordering Ring

scheme

see also: Ordering and Nested

DESCRIPTION write_fits_map writes out the full sky HEALPix map T_sky into the FITS file File. Extra information about the map can be given in Header according to the FITS header conventions. Coordinate systems can also be specified by Coordsys. Specifying the ordering scheme is compulsary and can be done either in Header or by setting Ordering or Nested or Ring to the correct value. If Ordering or Nested or Ring is set, its value overrides what is given in Header.

RELATED ROUTINES

This section lists the routines related to write_fits_map.

idl version 5.0 or more is necessary to run write_fits_map

read_fits_map This **HEALPix** IDL facility can be used to read in

maps written by write_fits_map.

sxaddpar This IDL routine (included in **HEALPix** package)

can be used to update or add FITS keywords to

Header

reorder This **HEALPix** IDL routine can be used to reorder

a map from NESTED scheme to RING scheme and

vice-versa.

write_fits_sb routine to write multi-column binary FITS table

EXAMPLE:

write_fits_map, 'file.fits', map, coordsys='G', ordering='ring'

> write_fits_map writes out the RING ordered map map in Galactic coordinates into the file file.fits.

WRITE_FITS_SB

Location in HEALPix directory tree: src/idl/fits/write_fits_sb.pro

This IDL facility writes out a **HEALPix** map into a FITS file according to the **HEALPix** convention. It can also write an arbitray data set into a FITS binary table

FORMAT

IDL> WRITE_FITS_SB , File, Prim_Stc Xten_stc, Coordsys=, /Nested, /Ring, Ordering=, /Partial, Nside=, Extension=, /Nothealpix]

QUALIFIERS

File name of a FITS file in which the map is to be written

Prim_stc IDL structure containing the following fields:

> - primary header - primary image

Set it to 0 to get an empty primary unit

Xten_stc (optional),

IDL structure containing the following fields:

- extension header - data column 1

- data column 2

NB: because of some astron routines limitation, avoid using the single letters 'T' or 'F' as tagnames in the structures Prim_stc and Xten_stc.

KEYWORDS

Coordsys= (optional),

> if set to either 'C', 'E' or 'G', specifies that the Healpix coordinate system is respectively Celestial=equatorial, Ecliptic or Galactic. vant keyword is then added/updated in the extension

header, but the map is NOT rotated)

write_fits_sb

Ordering= (optional),

if set to either 'ring' or 'nested' (case un-sensitive), specifies that the map is respectively in RING or

NESTED ordering scheme see also: Nested and Ring

Nside= (optional),

scalar integer, **HEALPix** resolution parameter of the data set. Must be used when the data set does not

cover the whole sky

Extension= (optional),

scalar integer, extension in which to write the data (0

based). (**default:** 0)

/Nested (optional),

if set, specifies that the map is in the NESTED order-

ing scheme

see also: Ordering and Ring

/Ring (optional),

if set, specifies that the map is in the RING ordering

scheme

see also: Ordering and Nested

/Partial (optional),

if set, the data set does not cover the whole sky. In that case the information on the actual map resolution should be given by the qualifier Nside (see above), or included in the FITS header enclosed in the Xten_stc.

/Nothealpix (optional),

if set, the data set can be arbitrary, and the restriction on the number of pixels do not apply. The keywords Ordering, Nside, Nested, Ring and Partial are

ignored.

DESCRIPTION

write_fits_sb writes out the information contained in Prim_stc and Exten_stc in the primary unit and extension of the FITS file File respectively. Coordinate systems can also be specified by Coordsys. Specifying the ordering scheme is compulsary for **HEALPix** data sets and can be done either in Header or by setting Ordering or Nested or Ring to the correct value. If Ordering or Nested or Ring is set, its value overrides what is given in Header.

The data is assumed to represent a full sky data set with the number of data points npix = 12*Nside*Nside unless

Partial is set OR the input fits header contains OBJECT = 'PAR-

TIAL' AND

the Nside qualifier is given a valid value OR the FITS header contains a NSIDE

If Nothealpix is set, the restrictions on Nside a void.

RELATED ROUTINES

This section lists the routines related to write_fits_sb.

idl	version 5.0 or more is necessary to run write_fits_sb
read_fits_map	This HEALPix IDL facility can be used to read in maps written by write_fits_sb.
read_fits_s	This HEALPix IDL facility can be used to read into an IDL structure maps written by write_fits_sb.
sxaddpar	This IDL routine (included in HEALPix package) can be used to update or add FITS keywords to the header in Prim_stc and Exten_stc
write_tqu	This HEALPix IDL facility based on write_fits_sbis designed to write temperature+polarization (T,Q,U) maps

EXAMPLE:

write_fits_sb

The structure map_FN is defined to contain a fictitious Flux+number map, where one field is a float and the other an integer. write_fits_sbwrites out the contents of map_FN into the extension of the FITS file 'map_fluxnumber.fits'.

WRITE_TQU

Location in HEALPix directory tree: src/idl/fits/write_tqu.pro

This IDL facility writes a temperature+polarization Healpix map (T,Q,U) into a binary table FITS file, with optionally the error (dT,dQ,dU) and correlation (dQU, dTU, dTQ) in separate extensions

FORMAT

IDL> WRITE_TQU , File, TQU, [Coordsys=, Nested=, Ring=, Ordering=, Extension=, Hdr=, Xhdr=, Units=, Help=]

QUALIFIERS

File name of a FITS file in which the maps are to be writ-

ten

TQU : array of Healpix maps of size $(N_{pix},3,n_{ext})$ where N_{pix} is the total number of Healpix pixels on the sky,

and $n_{\text{ext}} < 3$.

Three maps are written in each extension of the FITS

file:

-the temperature+polarization Stokes parameters

maps (T,Q,U) in extension 0

-the error maps (dT,dQ,dU) (if $n_{\text{ext}} \geq 2$) in exten-

sion 1

-the correlation maps (dQU, dTU, dTQ) (if n_ext =

3) in extension 2

it is also possible to write 3 maps directly in a given extension (provided the preceding extension, if any, is already filled in) by setting Extension to the extension number in which to write (0 based) and if

 $n_{\text{ext}} + \text{Extension} < 3$

Coordsys=

(optional),

if set to either 'C', 'E' or 'G', specifies that the Healpix coordinate system is respectively Celestial=equatorial, Ecliptic or Galactic. (The relevant keyword is then added/updated in the extension

header, but the map is NOT rotated)

write_tqu 105

Extension= (optional),

extension unit a which to put the data (0 based). The physical interpretation of the maps is determined by

the extension in which they are written

see also: TQU

Hdr= (optional),

string variable containing on input the information to be added to the primary header. (If already present, FITS reserved keywords will be automatically up-

dated).

Ordering= (optional),

if set to either 'ring' or 'nested' (case un-sensitive), specifies that the map is respectively in RING or

NESTED ordering scheme see also: Nested and Ring

Units= (optional),

string describing the physical units of the data set

Xhdr= (optional),

string variable containing on input the information to be added to the extension headerx. (If already present, FITS reserved keywords will be automatically updated). It will be repeated in each extension, except for TTYPE* and EXTNAME which are generated by the routine and depend on the extension

KEYWORDS

Help if set, an extensive help is displayed and no file is

written

Nested if set, specifies that the map is in the NESTED order-

ing scheme

see also: Ordering and Ring

Ring if set, specifies that the map is in the RING ordering

scheme

see also: Ordering and Nested

DESCRIPTION

write_tqu writes out Stokes parameters (T,Q,U) maps for the whole sky into a FITS file. It is also possible to write the error per pixel for each map and the correlation between fields, as subsequent extensions of the same FITS file (see qualifiers above). Therefore the file may have up to three extensions with three maps in each. Extensions can be written together or one by one (in their physical order) using the Extension option

RELATED ROUTINES

This section lists the routines related to **write_tqu**.

idl	version 5.0 or more is necessary to run write_tqu
read_tqu	This HEALPix IDL facility can be used to read in maps written by write_tqu.
read_fits_s	This HEALPix IDL facility can be used to read into an IDL structure maps written by write_tqu.
sxaddpar	This IDL routine (included in HEALPix package) can be used to update or add FITS keywords to the header(s) HDR or XHDR

EXAMPLE:

```
npix = nside2npix(64)
t = randomn(seed,npix)
q = randomn(seed,npix)
u = randomn(seed,npix)
TQU = [[t],[q],[u]]
write_tqu, 'map_polarization.fits', TQU, coord='G', /ring
```

The array TQU is defined to contain a fictitious polarisation map, with the 3 Stokes parameters T, Q and U. The map is assumed to be in Galactic coordinates, with a RING ordering of the pixels. write_tqu writes out the contents of TQU into the extension of the FITS file 'map_polarization.fits'.