Algebra a diskrétna matematika

doc. RNDr. Jana Šiagiová, PhD.

Prehľad z 11. prednášky

Dihedrálna, symetrická grupa, izmorfizmus grúp

Algebraické štruktúry s jednou binárnou operáciou

Nech M je neprázdna množina a nech platí

- (1) * je binárna operácia na M
- (2) * je asocitívna na M
- (3) $\exists e \in M \ \forall x \in M : \ x * e = e * x = x$
- **(4)** $\forall x \in M \ \exists x^{-1} \in M : \ x * x^{-1} = x^{-1} * x = e$

Potom dvojicu (M,*) nazývame **grupa**.

Ak sú na M splné iba vlastnosti (1), (2), (3), jedná sa o **monoid**.

Ak na M platí len (1),(2), hovoríme, že (M,*) je **pologrupa**.

Ak na M požadujeme iba platnosť (1), štruktúra (M,*) je **grupoid**.

Rád prvku a grupy (M,*) je najmenšie kladné celé číslo n také, že

$$a^n = e,$$

$$(a * a * a \dots a * a = e)$$

_

Označuje sa |a|.

Ak také n neexistuje, hovoríme, že a má **nekonečný rád**.

Príklad 1: Určte rády daných prvkov v zodpovedajúcich grupách.

- a) všetkých prvkov v $(\mathbb{Z}_6,+)$
- b) prvku 4 v $(\mathbb{Z}, +)$
- c) komplexnej jednotky $\,i$ v $\,(\mathbb{C}-\{(0,0)\},\cdot)\,$

Odpoveď: a) rád 0 je 1 (jedná sa o neutrálny prvok), rády prvkov 1, 2, 3, 4, 5 sú 6, 3, 2, 3, 6 v zodpovedajúcom poradí; b) ∞ , c) 4

Množina **generátorov** grupy je taká podmnožina grupy, že každý prvok grupy sa dá vyjadriť ako "súčin" mocnín týchto generátorov.

Prezentácia grupy pomocou generátorov: (generátory relácie)

Cyklická grupa je grupa, ktorá je generovaná jedným prvkom g, t. j. je to množina všetkých mocnín prvku g.

Zapisuje sa $\langle g|g^n=e\rangle$, skrátene $\langle g\rangle$.

Grupa z príkladu 7 je cyklická grupa (\mathbb{Z}_2 , +) a grupa z príkladu 8 je (\mathbb{Z}_3 , +).

<u>Príklad 2</u>: Nájdite generátory grúp $(\mathbb{Z}_5, +), (\mathbb{Z}_6, +), (\mathbb{Z}_5 - \{0\}, \odot).$

Odpoved':

$$\overline{(\mathbb{Z}_5,+)} = \langle 1 \rangle = \langle 2 \rangle = \langle 3 \rangle = \langle 4 \rangle$$

$$(\mathbb{Z}_6,+)=\langle 1\rangle=\langle 5\rangle$$

$$(\mathbb{Z}_5 - \{0\}, \odot) = \langle 2 \rangle = \langle 3 \rangle$$

Dihedrálna grupa

Grupa symetrií pravidelného n-uholníka sa nazýva dihedrálna grupa.

Označuje sa D_n

Jej rád je $|D_n| = 2n \ (n \text{ osových symetrií a } n \text{ otočení})$

Neutrálny prvok e je identita.

Prezentácia: $D_n = \langle r, s | r^n = e, s^2 = e, rs = sr^{-1} \rangle$

r – rotácia o $~360^{\circ}/n$

s – symetria podľa pevnej osi symetrie

Priamy súčin grúp

Priamy súčin dvoch grúp (S,*) a (T,\circ) je definovaný ako operácia • na $S \times T$, kde $\forall s_1, s_2 \in S, t_1, t_2 \in T : (s_1, t_1) • (s_2, t_2) = (s_1 * s_2, t_1 \circ t_2)$

Dá sa ukázať, že operácia ullet je asociatívna.

Neutrálny prvok v $(S \times T, \bullet)$ je (e_1, e_2) , kde e_1 je neutrálny prvok v S a e_2 je neutrálny prvok v T.

Inverzný prvok k prvku (s,t) je prvok (s^{-1},t^{-1}) , pričom s^{-1} je inverzný k $s \vee (S,*)$ a t^{-1} je inverzný k $t \vee (T,\circ)$.

Dvojica $(S \times T, \bullet)$ tvorí grupu.

<u>Príklad 3</u>: Priamy súčin grúp $(\mathbb{Z}_2, +)$ a $(\mathbb{Z}_2, +)$ je množina

 $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$

s operáciou súčtu modulo 2 v oboch súradniciach.

Napr. $(0,1) \oplus (1,0) = (1,1), (1,1) \oplus (1,0) = (0,1), (1,0) \oplus (1,1) = (0,1)$ atd'.

<u>Príklad 4</u>: Priamy súčin grúp $(\mathbb{Z}_2, +)$ a $(\mathbb{Z}_3, +)$ je množina

 $\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$

s operáciou \oplus , ktorá vykoná súčet modulo 2 v prvej súradnici a súčet modulo 3 v druhej súradnici.

Napr. $(1,2) \oplus (0,2) = (1,1), (1,1) \oplus (1,2) = (0,0).$

Izomorfizmus grúp

Nech $(M_1, *)$ a (M_2, \circ) sú dve grupy. Ak existuje bijekcia φ medzi M_1 a M_2 taká, že $\forall x, y \in M_1$ platí

$$\varphi(x*y) = \varphi(x) \circ \varphi(y),$$

potom grupy $(M_1,*)$ a (M_2,\circ) sú **izomorfné**, píšeme $M_1\cong M_2$.

Zobrazenie φ sa nazýva **izomorfizmus**.

Neformálne: Dve grupy sú izomorfné, ak majú "takú istú štruktúru".

Izomorfné grupy majú rovnaký rád a rovnaký počet prvkov určitého rádu.

Tvrdenie 1: Všetky grupy s jedným prvkom sú izomorfné.

Tvrdenie 2: Existuje konečne veľa grúp daného konečného rádu (až na izomorfizmus).

<u>Príklad 5</u>: Grupy (\mathbb{Z}_4 , +) a $\mathbb{Z}_2 \times \mathbb{Z}_2$ nie sú izomorfné, pretože grupa (\mathbb{Z}_4 , +) má dva prvky rádu 4 a také sa v $\mathbb{Z}_2 \times \mathbb{Z}_2$ nenachádzajú. Všetky jej prvky majú rád 2.

<u>Príklad 6</u>: Rozhodnite, či sú niektoré z grúp \mathbb{Z}_6, D_3 a $\mathbb{Z}_2 \times \mathbb{Z}_3$ izomorfné.

Odpoveď: Overením rádov prvkov zistíme, že D_3 nemôže byť izomorfná ani

s \mathbb{Z}_6 ani s $\mathbb{Z}_2 \times \mathbb{Z}_3$.

V grupách \mathbb{Z}_6 a $\mathbb{Z}_2 \times \mathbb{Z}_3$ má rovnaký počet prvkov zhodné rády. Príslušný izomorfizmus je $\varphi(0) = (0,0), \varphi(1) = (1,1), \varphi(2) = (0,2), \varphi(3) = (1,0), \varphi(4) = (0,1), \varphi(5) = (1,2).$

<u>Príklad 7</u>: Sú grupy $(\mathbb{Z}_4, +)$ a $(\mathbb{Z}_5 - \{0\}, \cdot)$ izomorfné?

Odpoveď: Áno

Symetrická grupa

Skladanie permutácií vykonávame zľava doprava.

Príklad 8: Zložte dané permutácie

$$(12)(34) \circ (13)(24) = (14)(23)$$

$$(13)(24) \circ (12)(34) = (14)(23)$$

$$(134)(258) \circ (2456)(78) = (135784)(26)$$

$$(2456)(78) \circ (134)(258) = (134872)(56)$$

Vo všeobecnosti je skladanie permutácií nekomutatívne, ale máme výnimky.

Nech $X = \{1, 2, ..., n\}$ a nech S_n je množina všetkých bijekcií (čiže permutácií) $\sigma: X \to X$. Potom platí

- zloženie dvoch bijekcií je bijekcia
- skladanie bijekcií je asociatívne

$$(\sigma \circ \tau) \circ \pi(x) = (\sigma \circ \tau)(\pi(x)) = \sigma(\tau(\pi(x))) = \sigma(\tau \circ \pi)(x) = \sigma \circ (\tau \circ \pi)(x)$$

- ullet identické zobrazenie je bijekcia na X
- \bullet inverzné zobrazenie bijekcie v S_n je tiež bijekcia v S_n

Množina S_n všetkých permutácií n objektov spolu s operáciou skladania permutácií tvorí grupu rádu n! a nazýva sa **symetrická grupa** stupňa n.

 $\mathit{Inverzn\acute{y}}\ prvok$ sa počíta nasledujúcim spôsobom

$$(a_1 a_2 a_3 a_4 \dots a_{n-1} a_n)^{-1} = (a_1 a_n a_{n-1} \dots a_4 a_3 a_2)$$
$$((a_1 a_2 a_3 \dots a_{i-1} a_i) (b_1 b_2 \dots b_i))^{-1} = (a_1 a_i a_{i-1} \dots a_3 a_2) (b_1 b_i \dots b_2)$$

<u>Príklad 9</u>: Vypíšte všetky prvky symetrickej grupy S_3 a overte komutatívnosť. Zistite, či je izomorfná s niektorou známou grupou rovnakého rádu.

Odpoved': $S_3 = \{e, (12), (13), (23), (123), (132)\}$

Komutatívnosť neplatí; napr. $(12)(123) \neq (123)(12)$.

 S_3 je izomorfná s dihedrálnou grupou $D_3 = \{e, r, r^2, s, rs, r^2s\}$, kde r je rotácia okolo stredu o 120° proti smeru hodinových ručičiek a s je osová symetria podľa zvislej osi.

Zodpovedajúci izomorfizmus $\varphi: S_3 \to D_3$ je $\varphi(e) = e, \varphi((123)) = r, \varphi((132)) = r^2,$ $\varphi((12)) = s, \varphi((23)) = rs, \varphi((13)) = r^2s$

<u>Príklad 10</u>: Aké rôzne rády majú prvky grupy S_5 ?

Odpoveď: Rád 1 má identita,

rád 2 majú prvky typu $(ij),\, i,j \in \{1,2,3,4,5\},\, i < j$

rád 2 majú tiež prvky typu $(ij)(k\ell),\,i,j,k,\ell\in\{1,2,3,4,5\},i< j,k<\ell,$

rád 3 majú prvky tvaru (ijk), $i, j, k \in \{1, 2, 3, 4, 5\}$, i < j, k

rád 4 majú prvky $(ijk\ell),\,i,j,k,\ell \in \{1,2,3,4,5\},\,i < j,k,\ell,$

rád 5 majú prvky (1 $ijk\ell$), $i, j, k, \ell \in \{2, 3, 4, 5\}$,

rád 6 majú prvky tvaru $(1i)(jk\ell), i, j, \ell \in \{2, 3, 4, 5\}, j < k, \ell$

pričom prvky i, j, k, ℓ sú vždy navzájom rôzne.

Permutácia zamieňajúca dva prvky a fixujúca všetky ostatné sa nazýva **transpozícia**.

Každú permutáciu je možné napísať vo forme súčinu transpozícií.

$$(a_1a_2a_3a_4...a_n) = (a_1a_2)(a_1a_3)(a_1a_4)...(a_1a_n)$$

Permutácia je **párna**, ak je súčinom párneho počtu transpozícií.

Permutácia je **nepárna**, ak je súčinom nepárneho počtu transpozícií.

Príklad 11: Určte paritu daných permutácií

- a) (13587)
- b) (245398)
- c) (142)(3875)

Odpoveď: a) párna permutácia, lebo (13587) = (13)(15)(18)(17)

- b) nepárna permutácia; (245398) = (24)(25)(23)(29)(28)
- c) nepárna permutácia; (142)(3875) = (14)(12)(38)(37)(35)

Množina všetkých párnych premutácií n prvkovej množiny spolu s operáciou skladania permutácií tvorí grupu, ktorá sa nazýva **alternujúca grupa** stupňa n a označuje sa A_n .

Počet prvkov A_n je $\frac{n!}{2}$.

<u>Príklad 12:</u> Vypíšte všetky prvky grupy A_3 a grupy A_4 .

Odpoved': $A_3 = \{e, (123), (132)\}$

 $A_4 = \{e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)\}$