Расчетно-графическая работа по дифференциальным уравнениям

Описание работы

Расчетно-графические работы выполняются студентами индивидуально и заключаются в выполнении заданий, оформлении отчета и его защите (порядок см. ниже).

Требования

К выполнению заданий – в работе должны быть:

- 1) поставлены требуемые задачи;
- 2) представлены в логической последовательности основные этапы исследования или решения;
- 3) указаны используемые теоретические положения и метолы:
- 4) получены точные численные результаты и построены требуемые графические изображения.

K содержанию от отчет выполняется в электронном виде (текстовый документ или презентация; для презентации в MS Power Point используется шаблон Университета ИТМО: ИСУ \rightarrow полезные ссылки \rightarrow корпоративная стилистика \rightarrow презентации (внизу страницы)). должен содержать:

- 1) титульный лист/слайд (название дисциплины, учебный год, название РГР, ФИ исполнителей, номер потока, ФИ преподавателя, дата, место выполнения);
- 2) условия всех заданий (условие каждого задания перед его решением);
- 3) основные этапы решения каждой задачи, *пронумерованные согласно пунктам плана*, их теоретическое обоснование, численные результаты;
- 4) графики или рисунки, иллюстрирующие решение каждой задачи (выполненные в математическом редакторе Desmos: https://www.desmos.com/, Geogebra: https://www.geogebra.org/ или других); 5) выводы.

К оформлению отчета:

- 1) Страницы и слайды следует пронумеровать (на титульной странице/слайде номер не ставится).
- 2) Текст представляется полностью в цифровом виде. Не допускается вставка фото или сканов текста, а также скриншотов электронного текста.
- 3) Все формулы набираются в редакторе формул. Не допускается набор формул текстом (например, $f(x)=3*x^2$), а также вставка фото или сканов формул, однако допускается вставка скриншотов электронных формул (если ни один редактор формул не доступен). Про редакторы формул: а. в MS Office есть встроенный редактор формул;
- b. в MS Office также есть скачиваемая надстройка MathТуре для набора формул;
- с. Google-документы и Open Office имеют встроенные редакторы формул;
- d. в LaTeX встроен набор формул;
- е. можно воспользоваться бесплатным сервисом набора формул https://editor.codecogs.com/ и скачать формулу в виде изображения;
- f. или воспользоваться математическим пакетом (MathCAD, Wolfram Mathematica и др.) или сайтом Wolfram Alpha и сделать оттуда скриншоты формул.

Защита работ

Защита работы представляет собой проверку преподавателем (ментором) и её оценивание по следующим критериям. Работы, присланные позже назначенного срока, оцениваются со штрафом (от 0 до 4 баллов).

Критерии	min	max
	баллы	баллы
Все задания решены полностью, правильно и оптимально.	0	10
Даны необходимые и полные обоснования применяемых методов, ход решения	0	5
сопровождается подробными комментариями и графиками.		
Отчёт аккуратно оформлен и грамотно свёрстан.	0	5
Итого:	0	20

Задание 1.

Найти положения равновесия системы, определить их характер и начертить фазовые траектории соответствующих линеаризованных

169. (4-01)
$$\begin{cases} \dot{x} = x \arctan(1 - y^2), \\ \dot{y} = \ln \frac{y}{x}. \end{cases}$$

170. (4-02)
$$\begin{cases} \dot{x} = e^{x+y} - x^2, \\ \dot{y} = \arcsin(x - x^3). \end{cases}$$

170. (4-02)
$$\begin{cases} \dot{x} = e^{x+y} - x^2, \\ \dot{y} = \arcsin(x - x^3). \end{cases}$$
171. (4-03)
$$\begin{cases} \dot{x} = \ln(x+y), \\ \dot{y} = \sqrt{2x^2 + 2y - 5} - 1. \end{cases}$$
172. (4-04)
$$\begin{cases} \dot{x} = -y \ln(2y^2 - 1), \\ \dot{y} = x - y - 2y^2. \end{cases}$$
173. (3-11)
$$\begin{cases} \dot{x} = \arctan(y - x + 1), \\ \dot{y} = \sinh(x - y - x^2). \end{cases}$$
174. (3-12)
$$\begin{cases} \dot{x} = e^{x-y-1} - 1, \\ \dot{y} = \ln(x^2 + y). \end{cases}$$
175. (3-13)
$$\begin{cases} \dot{x} = \arctan(2y + y - y^2), \\ \dot{y} = 1 - e^{y^2 - x}. \end{cases}$$
176. (3-14)
$$\begin{cases} \dot{x} = \arcsin(xy), \\ \dot{y} = e^{x+2y-3} - 1. \end{cases}$$
177. (6-21)
$$\begin{cases} \dot{x} = 4x - x^2 + y, \end{cases}$$

172. (4-04)
$$\begin{cases} \dot{x} = -y \ln(2y^2 - 1) \\ \dot{y} = x - y - 2y^2. \end{cases}$$

173. (3-11)
$$\begin{cases} \dot{x} = \arctan(y - x + 1), \\ \dot{y} = \sinh(x - y - x^2). \end{cases}$$

174. (3-12)
$$\begin{cases} \dot{x} = e^{x-y-1} - 1, \\ \dot{y} = \ln(x^2 + y). \end{cases}$$

175. (3-13)
$$\begin{cases} \dot{x} = \arctan(2 + y - y^2) \\ \dot{y} = 1 - e^{y^2 - x}. \end{cases}$$

176. (3-14)
$$\begin{cases} \dot{x} = \arcsin(xy), \\ \dot{y} = e^{x+2y-3} - 1. \end{cases}$$

177. (6-21)
$$\begin{cases} \dot{x} = 4x - x^2 + y, \\ \dot{y} = \ln(1 + 2x + x^2 + 5y). \end{cases}$$

178. (6-22)
$$\begin{cases} \dot{x} = \text{th}(2x - y - xy), \\ \dot{y} = 5x - 4y - xy. \end{cases}$$

179. (6-23)
$$\begin{cases} \dot{x} = \sinh(5x + x^2 - 3y), \\ \dot{y} = 3x + x^2 - y. \end{cases}$$

$$\begin{aligned}
y &= e^{x+3y} - 1. \\
\dot{x} &= 4x - x^2 + y, \\
\dot{y} &= \ln(1 + 2x + x^2 + 5y).
\end{aligned}$$
178. (6-22)
$$\begin{cases}
\dot{x} &= \text{th}(2x - y - xy), \\
\dot{y} &= 5x - 4y - xy.
\end{cases}$$
179. (6-23)
$$\begin{cases}
\dot{x} &= \text{sh}(5x + x^2 - 3y), \\
\dot{y} &= 3x + x^2 - y.
\end{cases}$$
180. (6-24)
$$\begin{cases}
\dot{x} &= 3 - \sqrt{4 + x^2 + y}, \\
\dot{y} &= \ln(x^2 - 3).
\end{cases}$$

181. (4-31)
$$\begin{cases} \dot{x} = x^2 - \frac{2}{y^2} + 1, \\ \dot{y} = \sinh(x - y). \end{cases}$$

181. (4-31)
$$\begin{cases} \dot{x} = x^2 - \frac{2}{y^2} + 1, \\ \dot{y} = \sinh(x - y). \end{cases}$$
182. (4-32)
$$\begin{cases} \dot{x} = e^{2y} + e^y - 2, \\ \dot{y} = \frac{2}{3}(x^2 - x) + 3y - 4xy. \end{cases}$$

195. (3-63)
$$\begin{cases} \dot{x} = e^{\sinh y} - 1, \\ \dot{y} = -3y + 4\ln\frac{x^2 + 1}{2}. \end{cases}$$
196. (3-64)
$$\begin{cases} \dot{x} = \sinh(2xy - 4y - 8), \\ \dot{y} = \arcsin(4y^2 - x^2). \end{cases}$$

196. (3-64)
$$\begin{cases} \dot{x} = \sinh(2xy - 4y - 8), \\ \dot{y} = \arcsin(4y^2 - x^2). \end{cases}$$

183. (4-33)
$$\begin{cases} \dot{x} = \arctan(x+y), \\ \dot{y} = x^2 - \frac{y^2}{4} - \frac{1}{4y^2} - \frac{1}{2}. \end{cases}$$

184. (4-34)
$$\begin{cases} \dot{x} = 6x + 2(y^2 - y) - 4xy, \\ \dot{y} = e^{2x} + 2e^x - 3. \end{cases}$$

185. (4-41)
$$\begin{cases} \dot{x} = 2xy - 4y - 8, \\ \dot{y} = 4y^2 - x^2. \end{cases}$$

186. (4-42)
$$\begin{cases} \dot{x} = 2x + y^2 - 1, \\ \dot{y} = 6x - y^2 + 1. \end{cases}$$

187. (4-43)
$$\begin{cases} \dot{x} = x - y^2, \\ \dot{y} = x^2 + y^2 - 2. \end{cases}$$

188. (4-44)
$$\begin{cases} \dot{x} = x^2 - y, \\ \dot{y} = \ln \frac{1 - x + x^2}{3}. \end{cases}$$

189. (3-51)
$$\begin{cases} \dot{x} = \ln(x + y^2 - 1), \\ \dot{y} = \arcsin(x^2 - x - 6). \end{cases}$$

190. (3-52)
$$\begin{cases} \dot{x} = -2\arcsin(xy + x + 2) \\ \dot{y} = \frac{1}{2}\arctan(x^2 - y^2). \end{cases}$$

191. (3-53)
$$\begin{cases} \dot{x} = \arctan(y + 2 - y^2), \\ \dot{y} = \ln(1 - x^2 - y). \end{cases}$$

184. (4-34)
$$\begin{cases} \dot{y} = x^2 - \frac{y}{4} - \frac{1}{4y^2} - \frac{y}{2} \\ \dot{y} = 6x + 2(y^2 - y) - 4xy, \\ \dot{y} = e^{2x} + 2e^x - 3. \end{cases}$$
185. (4-41)
$$\begin{cases} \dot{x} = 2xy - 4y - 8, \\ \dot{y} = 4y^2 - x^2. \end{cases}$$
186. (4-42)
$$\begin{cases} \dot{x} = 2x + y^2 - 1, \\ \dot{y} = 6x - y^2 + 1. \end{cases}$$
187. (4-43)
$$\begin{cases} \dot{x} = x - y^2, \\ \dot{y} = x^2 + y^2 - 2. \end{cases}$$
188. (4-44)
$$\begin{cases} \dot{x} = x^2 - y, \\ \dot{y} = \ln \frac{1 - x + x^2}{3}. \end{cases}$$
189. (3-51)
$$\begin{cases} \dot{x} = \ln(x + y^2 - 1), \\ \dot{y} = \arcsin(x^2 - x - 6). \end{cases}$$
190. (3-52)
$$\begin{cases} \dot{x} = -2\arcsin(xy + x + 2), \\ \dot{y} = \frac{1}{2}\arctan(y + 2 - y^2), \\ \dot{y} = \ln(1 - x^2 - y). \end{cases}$$
191. (3-53)
$$\begin{cases} \dot{x} = -6\arctan(xy + y + 2), \\ \dot{y} = \frac{1}{2}\sinh(x^2 - xy - 2y^2). \end{cases}$$
192. (3-54)
$$\begin{cases} \dot{x} = -\frac{5}{\arctan(y^2 - 1)}, \\ \dot{x} = -\frac{5}{\arctan(y^2 - 1)}, \end{cases}$$

193. (3-61)
$$\begin{cases} \dot{x} = -\frac{5}{4} \arctan(y^2 - 1), \\ \dot{y} = e^{x^2 + 2xy + 3y} - 1. \end{cases}$$
194. (3-62)
$$\begin{cases} \dot{x} = 3x - 2x^2 + y - 1, \\ \dot{y} = (1 - x)\ln(1 - 4x + 2x^2). \end{cases}$$

194. (3-62)
$$\begin{cases} \dot{x} = 3x - 2x^2 + y - 1, \\ \dot{y} = (1 - x) \ln(1 - 4x + 2x^2). \end{cases}$$

Задание 2.

Найти общее решение уравнения. Сделать проверку.

1.
$$u_{xx} + 5u_{xy} + 4u_{yy} = 0$$
.

2.
$$u_{xx} - 5u_{xy} + 4u_{yy} = 0$$
.

3.
$$u_{xx} - 7u_{xy} + 12u_{yy} = 0$$
.

4.
$$u_{xx} - 4u_{xy} - 21u_{yy} = 0$$
.

5.
$$u_{xx} + 4u_{xy} - 45u_{yy} = 0$$
.

6.
$$u_{xx} - 8u_{xy} + 15u_{yy} = 0$$
.

7.
$$u_{xx} + 7u_{xy} - 18u_{yy} = 0$$
.

8.
$$u_{xx} - 7u_{xy} - 8u_{yy} = 0$$
.

9.
$$u_{xx} + 4u_{xy} - 21u_{yy} = 0$$
.

10.
$$u_{xx} + 2u_{xy} + 3u_{yy} = 0$$
.

11.
$$2u_{xx} + 5u_{xy} + 3u_{yy} = 0$$
.

12.
$$4u_{xx} - 5u_{xy} + u_{yy} = 0$$
.

13.
$$u_{xx} + 7u_{xy} + 12u_{yy} = 0$$
.

14.
$$5u_{xx} - 4u_{xy} - 9u_{yy} = 0$$
.

15.
$$u_{xx} - 4u_{xy} - 45u_{yy} = 0$$
.

16.
$$3u_{xx} - 8u_{xy} - 16u_{yy} = 0$$
.

17.
$$2u_{xx} + 7u_{xy} - 4u_{yy} = 0$$
.

18.
$$u_{xx} - 7u_{xy} + 6u_{yy} = 0$$
.

19.
$$u_{xx} - 10u_{xy} + 21u_{yy} = 0$$
.

$$20. u_{xx} + 2u_{xy} - 3u_{yy} = 0.$$

21.
$$2u_{xx} + 5u_{xy} - 3u_{yy} = 0$$
.

$$22. 8u_{xx} - 10u_{xy} - 3u_{yy} = 0.$$

23.
$$3u_{xx} + 7u_{xy} + 2u_{yy} = 0$$
.

$$22.8u_{xx} - 10u_{xy} - 3u_{yy} = 0.$$

25.
$$7u_{xx} - 2u_{xy} - 5u_{yy} = 0$$
.

24.
$$5u_{xx} - 14u_{xy} + 9u_{yy} = 0$$
.
26. $16u_{xx} - 8u_{xy} - 3u_{yy} = 0$.

$$27. \, 4u_{xx} + 7u_{xy} - 2u_{yy} = 0.$$

28.
$$6u_{xx} - 7u_{xy} + u_{yy} = 0$$
.

29.
$$21u_{xx}-10u_{xy}+u_{yy}=0$$
.

30.
$$3u_{xx} + 2u_{xy} - u_{yy} = 0$$
.

Задание 3.

Решить первую смешанную задачу на отрезке.

1.
$$u_{tt} = 4u_{xx}, x \in (0, 2), t \in (0, \infty);$$

 $u|_{t=0} = x(2-x), u_{t}|_{t=0} = 0, u|_{x=0} = u|_{x=2} = 0.$

2.
$$u_{tt} = 9u_{xx}, x \in (0, 4), t \in (0, \infty);$$

 $u|_{t=0} = x(4-x), u_{t}|_{t=0} = 0, u|_{x=0} = u|_{x=4} = 0.$

3.
$$u_{tt} = 16u_{xx}, x \in (0, 5), t \in (0, \infty);$$

 $u|_{t=0} = x(5-x), u_{t|t=0} = 0, u|_{x=0} = u|_{x=5} = 0.$

4.
$$u_{tt} = 9u_{xx}, x \in (0, 3), t \in (0, \infty);$$

 $u|_{t=0} = x(3-x), u_{t}|_{t=0} = 0, u|_{x=0} = u|_{x=3} = 0.$

5.
$$u_{tt} = u_{xx}$$
, $x \in (0, 5)$, $t \in (0, \infty)$;
 $u|_{t=0} = 4x(5-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=5} = 0$.

6.
$$u_{tt} = 16u_{xx}, x \in (0, 3), t \in (0, \infty);$$

 $u|_{t=0} = 3x(3-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=3} = 0.$

- 7. $u_{tt} = 36u_{xx}, x \in (0, 4), t \in (0, \infty);$ $u|_{t=0} = 6x(4-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=4} = 0.$
- 8. $u_{tt} = 9u_{xx}$, $x \in (0, 7)$, $t \in (0, \infty)$; $u|_{t=0} = x(7-x)$, $u_{t}|_{t=0} = 0$, $u|_{x=0} = u|_{x=7} = 0$.
- 9. $u_{tt} = u_{xx}$, $x \in (0, 1)$, $t \in (0, \infty)$; $u|_{t=0} = 5x(1-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=1} = 0$.
- 10. $u_{tt} = 64u_{xx}, x \in (0, 8), t \in (0, \infty);$ $u|_{t=0} = x(8-x), u|_{t=0} = 0, u|_{x=0} = u|_{x=8} = 0.$
- 11. $u_{tt} = 16u_{xx}$, $x \in (0, 4)$, $t \in (0, \infty)$; $u|_{t=0} = 7x(4-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=4} = 0$.
- 12. $u_{tt} = 25u_{xx}$, $x \in (0, 5)$, $t \in (0, \infty)$; $u|_{t=0} = 2x(5-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=5} = 0$.
- 13. $u_{tt} = 36u_{xx}$, $x \in (0, 6)$, $t \in (0, \infty)$; $u|_{t=0} = 3x(6-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=6} = 0$.
- 14. $u_{tt} = 49u_{xx}$, $x \in (0, 5)$, $t \in (0, \infty)$; $u|_{t=0} = 8x(5-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=5} = 0$.
- 15. $u_{tt} = 4u_{xx}, x \in (0, 4), t \in (0, \infty);$ $u|_{t=0} = 9x(4-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=4} = 0.$
- 16. $u_{tt} = 16u_{xx}, x \in (0, 6), t \in (0, \infty);$ $u|_{t=0} = 2x(6-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=6} = 0.$
- 17. $u_{tt} = 25u_{xx}$, $x \in (0, 3)$, $t \in (0, \infty)$; $u|_{t=0} = 4x(3-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=3} = 0$.
- 18. $u_{tt} = 9u_{xx}, x \in (0, 2), t \in (0, \infty);$ $u|_{t=0} = 3x(2-x), u_{t}|_{t=0} = 0, u|_{x=0} = u|_{x=2} = 0.$
- 19. $u_{tt} = 36u_{xx}$, $x \in (0, 4)$, $t \in (0, \infty)$; $u|_{t=0} = 5x(4-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=4} = 0$.
- 20. $u_{tt} = 49u_{xx}, x \in (0, 1), t \in (0, \infty);$ $u|_{t=0} = 8x(1-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=1} = 0.$
- 21. $u_{tt} = 25u_{xx}$, $x \in (0, 2)$, $t \in (0, \infty)$; $u|_{t=0} = 4x(2-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=2} = 0$.
- 22. $u_{tt} = 49u_{xx}$, $x \in (0, 3)$, $t \in (0, \infty)$; $u|_{t=0} = 7x(3-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=3} = 0$.
- 23. $u_{tt} = 9u_{xx}, x \in (0, 5), t \in (0, \infty);$ $u|_{t=0} = 3x(5-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=5} = 0.$

- 24. $u_{tt} = 4u_{xx}, x \in (0, 7), t \in (0, \infty);$ $u|_{t=0} = 2x(7-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=7} = 0.$
- 25. $u_{tt} = 81u_{xx}$, $x \in (0, 2)$, $t \in (0, \infty)$; $u|_{t=0} = 6x(2-x)$, $u_t|_{t=0} = 0$, $u|_{x=0} = u|_{x=2} = 0$.
- 26. $u_{tt} = 25u_{xx}$, $x \in (0, 6)$, $t \in (0, \infty)$; $u|_{t=0} = x(6-x)$, $u_{t|_{t=0}} = 0$, $u|_{x=0} = u|_{x=6} = 0$.
- 27. $u_{tt} = 36u_{xx}, x \in (0, 2), t \in (0, \infty);$ $u|_{t=0} = x(2-x), u_{t}|_{t=0} = 0, u|_{x=0} = u|_{x=2} = 0.$
- 28. $u_{tt} = 9u_{xx}, x \in (0, 1), t \in (0, \infty);$ $u|_{t=0} = 10x(1-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=1} = 0.$
- 29. $u_{tt} = 64u_{xx}, x \in (0, 8), t \in (0, \infty);$ $u|_{t=0} = 22x(8-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=8} = 0.$
- 30. $u_{tt} = 49u_{xx}, x \in (0, 3), t \in (0, \infty);$ $u|_{t=0} = 30x(3-x), u_t|_{t=0} = 0, u|_{x=0} = u|_{x=3} = 0.$