

SDS 385: Stat Models for Big Data

Lecture 5: Proximal methods

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Proximal methods

You want to minimize functions of the form

$$f(x) = \underbrace{g(x)}_{convex, differentiable} + \underbrace{h(x)}_{convex, nonsmooth}$$

• If h was differentiable, we would use

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

• Here we would use:

$$\begin{aligned} x_{k+1} &= \arg\min_{\mathbf{z}} \frac{1}{2\alpha} & \underbrace{\|x_t - \alpha \nabla f(x_t)\|^2}_{\text{Stay close to the gradient}} & + \underbrace{h(\mathbf{z})}_{\text{minimize h}} \end{aligned}$$

1

Proximal mapping

• Define:

$$\operatorname{prox}_{\alpha}(x) = \arg\min_{z} \frac{1}{2\alpha} \|x - z\|^2 + h(z)$$

- Proximal GD:
 - Choose initial $x^{(0)}$
 - Repeat, for k = 1, 2, 3

$$x_{k+1} = \mathsf{prox}_{\alpha_k}(x_k - \alpha_k \nabla g(x_k))$$

But, we just turned one minimization into another. And both has h
which is the troublesome part.

Example: Lasso

$$f(\beta) = \frac{1}{2} ||y - X\beta||^2 + \lambda ||\beta||_1$$

• The proximal map is:

$$\begin{aligned} \operatorname{prox}_{\alpha}(\beta) &= \arg\min_{Z} \left(\frac{1}{2\alpha} \|\beta - z\|^2 + \lambda \|\beta\|_1 \right) \\ &= S_{\lambda\alpha}(\beta) \\ [\operatorname{prox}_{\alpha}(\beta)]_i &= \begin{cases} \beta_i - \lambda \alpha & \text{if } \beta_i > \lambda \alpha \\ 0 & \text{if } |\beta_i| \leq \lambda \alpha \\ \beta_i + \lambda \alpha & \text{if } \beta_i < -\lambda \alpha \end{cases} \end{aligned}$$

Lasso

• In this case, the gradient is

$$\nabla g(\beta) = -X^{T}(y - X\beta)$$

• So the update step for Lasso becomes:

$$\beta_{k+1} = S_{\lambda\alpha} \left(\beta_k + \alpha X^T (y - X\beta) \right)$$

• This is the Iterative Soft Thresholding Algorithm.

Example: matrix completion

Given a matrix $Y \in \mathbb{R}^{m \times n}$ and observed entries $(i, j) \in \Omega$, you want to fill missing entries by solving:

$$\min_{B \in \mathbb{R}^{m \times n}} \frac{1}{2} \sum_{ij \in \Omega} (Y_{ij} - B_{ij})^2 + \lambda ||B||_*$$

• $||B||_*$ is the nuclear norm of B, defined as:

$$||B||_* = \sum_{i=1}^k \sigma_i(B),$$

where k is the rank of B and $\sigma_1(B) \ge \sigma_2(B) \dots$ are the singular values.

• Nuclear norm is a convex approximation of rank, think how you cannot easily minimize ℓ_0 norm, aka the number of nonzero entries, an instead minimize the ℓ_1 norm to induce sparsity in regression problems.

5

Proximal gradient

•

$$[P_{\Omega}(B)]_{ij}=B_{ij}1((ij)\in\Omega)$$

• So the optimization can also be written as:

$$\min \frac{1}{2} \|P_{\Omega}(Y) - P_{\Omega}(B)\|_F^2 + \lambda \|B\|_*$$

- Gradient of smooth first part: $-(P_{\Omega}(Y) P_{\Omega}(B))$
- Prox function:

$$\operatorname{prox}_{\alpha}(B) = \arg\min_{Z \in \mathbb{R}^{m \times n}} \frac{1}{2\alpha} \|B - Z\|_F^2 + \lambda \|Z\|_*$$

Proximal GD

- We will show that $prox_{\alpha}(B) = S_{\alpha}(B)$, where
- $S_{\alpha}(B)$ is $U\Sigma_{\alpha}V^{T}$, where $B=U\Sigma V^{T}$ and

$$\Sigma_{\alpha}(i,i) = \max(\Sigma_{ii} - \lambda, 0)$$

- First, it is known that the subdifferential of the nuclear norm is given by: $\partial \|Z\|_* = \{UV^T + W : \|W\| \le 1, U^TW = 0, WV = 0\}$
- Now we will show that $0 \in S_{\alpha\lambda}(B) B + \lambda \alpha \partial ||S_{\alpha\lambda}(B)||_*$

Proximal GD

- Take U_0 , V_0 as the singular vectors corresponding to $\sigma_i > \lambda \alpha$.
- Take the remaining singular vectors as U_\perp, V_\perp and the corresponding singular value matrix as Σ_\perp
- $S_t(B) B = -tU_0V_0^T U_{\perp}\Sigma_{\perp}V_{\perp}^T$
- $S_t(B) B + t(U_0V_0^T + W) = tW U_{\perp}\Sigma_{\perp}V_{\perp}^T$
- Taking $W = U_{\perp} \Sigma_{\perp} V_{\perp}^{T} / t$, we see that
 - $U^T W = 0$
 - *WV* = 0
 - $||W|| \le 1$

Proximal GD

- $B_{k+1} = S_{\lambda\alpha}(B + t(P_{\Omega}(Y) P_{\Omega}(B)))$
- This is called the Soft Impute algorithm.
 - Cai et al, "A Singular Value Thresholding Algorithm for Matrix Completion", 2010.
 - Mazumdar et al 2011, Spectral regularization algorithms for learning large incomplete matrices

Acknowledgment

Ryan Tibshirani's optimization lectures. Cai et al, "A Singular Value Thresholding Algorithm for Matrix Completion", 2010. Geoff Gordon's optimization lectures.