Lecture 6b: Logit Probit

Chris Conlon

Sunday 5th October, 2025

NYU Stern

Binary Choice: Overview

Many problems we are interested in look at discrete rather than continuous outcomes:

- ▶ Entering a Market/Opening a Store
- ▶ Working or a not
- Being married or not
- ► Exporting to another country or not
- Going to college or not
- ▶ Smoking or not
- etc.

Simplest Example: Flipping a Coin

Suppose we flip a coin which is yields heads (Y=1) and tails (Y=0). We want to estimate the probability p of heads:

$$Y_i = \begin{cases} 1 \text{ with probability } p \\ 0 \text{ with probability } 1-p \end{cases}$$

We see some data Y_1,\dots,Y_N which are (i.i.d.)

We know that $Y_i \sim Bernoulli(p)$.

Simplest Example: Flipping a Coin

We can write the likelihood of ${\cal N}$ Bernoulli trials as a Binomial:

$$\begin{split} \Pr(Y_1 = y_1, Y_2 = y_2, \dots, Y_N = y_N) &= f(y_1, y_2, \dots, y_N | p) \\ &= \prod_{i=1}^N p^{y_i} (1-p)^{1-y_i} \\ &= p^{\sum_{i=1}^N y_i} (1-p)^{N-\sum_i i=1^N y_i} \end{split}$$

And then take logs to get the log likelihood:

$$\ln f(y_1,y_2,\dots,y_N|p) = \left(\sum_{i=1}^N y_i\right) \ln p + \left(N - \sum_{i=1}^N y_i\right) (1-p)$$

Simplest Example: Flipping a Coin

Differentiate the log-likelihood to find the maximum:

$$\begin{split} \ln f(y_1,y_2,\ldots,y_N|p) &= \left(\sum_{i=1}^N y_i\right) \ln p + \left(N - \sum_{i=1}^N y_i\right) \ln (1-p) \\ &\to 0 = \frac{1}{\hat{p}} \left(\sum_{i=1}^N y_i\right) + \frac{-1}{1-\hat{p}} \left(N - \sum_{i=1}^N y_i\right) \\ &\frac{\hat{p}}{1-\hat{p}} = \frac{\sum_{i=1}^N y_i}{N - \sum_{i=1}^N y_i} = \frac{\overline{Y}}{1-\overline{Y}} \\ &\hat{p}^{MLE} = \overline{Y} \end{split}$$

That was a lot of work to get the obvious answer: fraction of heads.

More Complicated Example: Adding Covariates

We probably are interested in more complicated cases where p is not the same for all observations but rather p(X) depends on some covariates. Here is an example from the Boston HMDA Dataset:

- ▶ 2380 observations from 1990 in the greater Boston area.
- ▶ Data on: individual Characteristics, Property Characteristics, Loan Denial/Acceptance (1/0).
- ▶ Mortgage Application process circa 1990-1991:
 - Go to bank
 - Fill out an application (personal+financial info)
 - Meet with loan officer
 - Loan officer makes decision
 - Legally in race blind way (discrimination is illegal but rampant)
 - Wants to maximize profits (ie: loan to people who don't end up defeaulting!)

Loan Officer's Decision

Financial Variables:

- ightharpoonup P/I ratio
- ▶ housing expense to income ratio
- ▶ loan-to-value ratio
- personal credit history (FICO score, etc.)
- ► Probably some nonlinearity:
 - $\bullet~$ Very high LTV>80% or >95% is a bad sign (strategic defaults?)
 - Credit Score Thresholds

Loan Officer's Decision

$$\operatorname{Goal} \Pr(Deny = 1|black, X)$$

- ▶ Lots of potential omitted variables which are correlated with race
 - Wealth, type of employment
 - family status
 - credit history
 - zip code of property
- ▶ Many redlining cases hinge on whether or not black applicants were treated in a discriminatory way.

TABLE 11.1 Variables Included in Regression Models of Mortgage Decisions				
Variable	Definition	Sample Average		
Financial Variables				
P/I ratio	Ratio of total monthly debt payments to total monthly income	0.331		
housing expense-to- income ratio	Ratio of monthly housing expenses to total monthly income	0.255		
loan-to-value ratio	Ratio of size of loan to assessed value of property	0.738		
consumer credit score	1 if no "slow" payments or delinquencies 2 if one or two slow payments or delinquencies 3 if more than two slow payments 4 if insufficient credit history for determination 5 if delinquent credit history with payments 60 days overdue 6 if delinquent credit history with payments 90 days overdue	2.1		
mortgage credit score	if no late mortgage payments if no mortgage payment history if no or two late mortgage payments if more than two late mortgage payments	1.7		
public bad credit record 1 if any public record of credit problems (bankruptcy, charge-collection actions) 0 otherwise		0.074		
Additional Applicant Characteristics				
denied mortgage insurance	$\boldsymbol{1}$ if applicant applied for mortgage insurance and was denied, $\boldsymbol{0}$ otherwise	0.020		
self-employed	1 if self-employed, 0 otherwise	0.116		
single	1 if applicant reported being single, 0 otherwise	0.393		
high school diploma	1 if applicant graduated from high school, 0 otherwise	0.984		
unemployment rate	1989 Massachusetts unemployment rate in the applicant's industry	3.8		
condominium	1 if unit is a condominium, 0 otherwise	0.288		
black	1 if applicant is black, 0 if white	0.142		
deny	1 if mortgage application denied, 0 otherwise	0.120		

Linear Probability Model

First thing we might try is OLS

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- \blacktriangleright What does β_1 mean when Y is binary? Is $\beta_1 = \frac{\Delta Y}{\Delta X}$?
- \blacktriangleright What does the line $\beta_0+\beta_1 X$ when Y is binary?
- ▶ What does the predicted value \hat{Y} mean when Y is binary? Does $\hat{Y}=0.26$ mean that someone gets approved or denied for a loan?

Linear Probability Model

OLS is called the linear probability model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

because:

$$\begin{split} \mathbb{E}[Y|X] &= \mathbf{1} \cdot \Pr(Y=1|X) + \mathbf{0} \cdot \Pr(Y=0|X) \\ \Pr(Y=1|X) &= \beta_0 + \beta_1 X_i + \varepsilon_i \end{split}$$

The predicted value is a probability and

$$\beta_1 = \frac{\Pr(Y=1|X=x+\Delta x) - \Pr(Y=1|X=x)}{\Delta x}$$

So β_1 represents the average change in probability that Y=1 for a unit change in X.

That didn't look great

- lacktriangleright Is the marginal effect eta_1 actually constant or does it depend on X?
- $lackbox{ }$ Sometimes we predict $\hat{Y}>1$ or $\hat{Y}<0.$ What does that even mean? Is it still a probability?
- \blacktriangleright Fit in the middle seems not so great what does $\hat{Y}=0.5$ mean?

$$\widehat{deny}_i = -.091 + .559 \cdot \text{P/I ratio} \\ (0.32)(.098) \\ (.025)$$

Marginal Effects:

- ▶ Increasing P/I from $0.3 \rightarrow 0.4$ increases probabilty of denial by 5.59 percentage points. (True at all level of P/I).
- lacktriangle At all P/I levels blacks are 17.7 percentage points more likely to be denied.
- ▶ But still some omitted factors.
- lacktriangle True effects are likely to be nonlinear can we add polynomials in P/I? Dummies for different levels?

Moving Away from LPM

Problem with the LPM/OLS is that it requires that marginal effects are constant or that probability can be written as linear function of parameters.

$$\Pr(Y=1|X)=\beta_0+\beta_1X+\varepsilon$$

Some desirable properties:

- ightharpoonup Can we restrict our predictions to [0,1]?
- lacktriangle Can we preserve monotonicity so that $\Pr(Y=1|X)$ is increasing in X for $eta_1>0$?
- ▶ Some other properties (continuity, etc.)
- ightharpoonup Want a function $F(z):(-\infty,\infty)\to [0,1].$
- ▶ What function will work?

Moving Away from LPM

Problem with the LPM/OLS is that it requires that marginal effects are constant or that probability can be written as linear function of parameters.

$$\Pr(Y=1|X)=\beta_0+\beta_1X+\varepsilon$$

Some desirable properties:

- \blacktriangleright Can we restrict our predictions to [0,1]?
- lacktriangle Can we preserve monotonicity so that $\Pr(Y=1|X)$ is increasing in X for $eta_1>0$?
- Some other properties (continuity, etc.)
- $\blacktriangleright \ \ \text{Want a function} \ F(z): (-\infty, \infty) \to [0, 1].$
- ▶ What function will work?

Choosing a transformation

$$\Pr(Y=1|X) = F(\beta_0 + \beta_1 X)$$

- $lackbox{ One } F(\cdot)$ that works is $\Phi(z)$ the normal CDF. This is the probit model.
 - Actually any CDF would work but the normal is convenient.
- $lackbox{ One } F(\cdot)$ that works is $rac{e^z}{1+e^z}=rac{1}{1+e^{-z}}$ the logistic function . This is the logit model.
- ▶ Both of these give 'S'-shaped curves.
- lacktriangledown The LPM is $F(\cdot)$ is the identity function (which doesn't satisfy my [0,1] property).
- ightharpoonup This $F(\cdot)$ is often called a link function. Why?

Why use the normal CDF?

Has some nice properties:

- ▶ Gives us more of the 'S' shape
- $\qquad \qquad \mathbf{\Pr}(Y=1|X) \text{ is increasing in } X \text{ if } \beta_1>0.$
- $\blacktriangleright \ \operatorname{Pr}(Y=1|X) \in [0,1] \text{ for all } X$
- ▶ Easy to use you can look up or use computer for normal CDF.
- ▶ Relatively straightforward interpretation
 - $Z = \beta_0 + \beta_1 X$ is the z-value.
 - ullet β_1 is the change in the z-value for a change in X_1 .

Why use the logistic CDF?

Has some nice properties:

- ▶ Gives us more of the 'S' shape
- $ightharpoonup \Pr(Y=1|X)$ is increasing in X if $\beta_1>0$.
- $ightharpoonup \Pr(Y=1|X) \in [0,1] \text{ for all } X$
- ▶ Easy to compute: $\frac{1}{1+e^{-z}} = \frac{e^z}{1+e^z}$ has analytic derivatives too.
- ▶ Log odds interpretation
 - $\log(\frac{p}{1-p}) = \beta_0 + \beta_1 X$
 - β_1 tells us how log odds ratio responds to X.
 - $\frac{p}{1-p} \in (-\infty,\infty)$ which fixes the [0,1] problem in the other direction.
 - more common in other fields (epidemiology, biostats, etc.).
- lacktriangle Also has the property that F(z)=1-F(-z).
- ▶ Similar to probit but different scale of coefficients
- ► Logit/Logistic are sometimes used interchangeably but sometimes mean different things depending on the literature.

A quick comparison

- $\blacktriangleright\,$ LPM prediction departs greatly from CDF long before [0,1] limits.
- lackbox We get probabilities that are too extreme even for $X\hat{eta}$ "in bounds".
- lacksquare Some (MHE) argue that though \hat{Y} is flawed, constant marginal effects are still OK.
- ▶ Logit and Probit are highly similar

HMDA: Results

OLS	Probit	Logit
-0.174***	-2.96***	-5.56***
(0.026)	(0.205)	(0.406)
0.081***	0.367***	0.657***
(0.017)	(0.097)	(0.177)
0.471***	2.58***	5.03***
(0.087)	(0.546)	(1.03)
-0.069	-0.328	-0.405
(0.096)	(0.652)	(1.24)
0.028**	0.193**	0.428***
(0.012)	(0.081)	(0.158)
0.189***	0.779***	1.48***
(0.033)	(0.175)	(0.309)
0.031***	0.153***	0.286***
(0.004)	(0.021)	(0.040)
0.019*	0.134*	0.258*
(0.011)	(0.074)	(0.141)
0.200***	0.712***	1.25***
(0.023)	(0.118)	(0.205)
0.701***	2.54***	4.53***
(0.041)	(0.284)	(0.554)
0.51868	0.26407	0.26586
2,380	2,380	2,380
	-0.174*** (0.026) 0.081*** (0.017) 0.471*** (0.087) -0.069 (0.096) (0.012) 0.189*** (0.012) 0.031*** (0.004) 0.019* (0.011) 0.200*** (0.023) 0.701*** (0.041)	-0.174*** -2.96*** (0.026) (0.205) 0.081*** 0.367*** (0.017) (0.097) 0.471*** 2.58*** (0.087) (0.546) -0.069 -0.328 (0.096) (0.652) 0.028** 0.193** (0.012) (0.081) 0.189*** 0.779*** (0.033) (0.175) 0.031*** 0.153*** (0.004) (0.021) 0.019* 0.134* (0.011) (0.074) 0.200*** 0.712*** (0.023) (0.118) 0.701*** 2.54*** (0.041) (0.284) 0.51868 0.26407

- We cannot compare parameter estimates across specifications
- \blacktriangleright Rule of thumb: $\beta_{logit} \approx 1.81 \cdot \beta_{probit}$
- \blacktriangleright For LPM these are constant β_k , for logit/probit they depend on $X_i\beta.$

Index Models

We sometimes call these single index models or threshold crossing models

$$Z_i = X_i \beta$$

- $lackbox{ }$ We start with a potentially large number of regressors in X_i but $X_i eta = Z_i$ is a scalar
- $lackbox{ We can just calculate } F(Z_i)$ for Logit or Probit (or some other CDF).
- $\blacktriangleright \ Z_i$ is the index. if $Z_i = X_i \beta$ we say it is a linear index model.

Marginal effects

$$\frac{\partial \mathbb{E}[Y_i|X_i]}{\partial X_{ik}} = f(Z_i)\beta_k$$

- ▶ The whole point was that we wanted marginal effects not to be constant
- ▶ So where do we evaluate?
 - Software often plugs in mean or median values for each component
 - \bullet Alternatively we can integrate over X and compute:

$$\mathbb{E}_{X_i}[f(Z_i)\beta_k]$$

ullet The right thing to do is probably to plot the response surface (either probability) or change in probability over all X.

Latent Variables/ Limited Dependent Variables

An alternative way to think about this problem is that there is a continuously distributed Y^* that we as the econometrician don't observe.

$$Y_i = \begin{cases} 1 \text{ if } Y^* > 0 \\ 0 \text{ if } Y^* \leq 0 \end{cases}$$

- lacktriangle Instead we only see whether Y^* exceeds some threshold (in this case 0).
- lackbox We can think about Y^* as a latent variable.
- ▶ Sometimes you will see this description in the literature, everything else is the same!

What does software do?

▶ One temptation might be nonlinear least squares:

$$\hat{\beta}^{NLLS} = \arg\min_{\beta} \sum_{i=1}^{N} (Y_i - \Phi(X_i\beta))^2$$

- ► Turns out this isn't what people do.
- ▶ We can't always directly estimate using the log-odds

$$\log\left(\frac{p}{1-p}\right) = \beta X_i + \varepsilon_i$$

lacktriangle The problem is that p or $p(X_i)$ isn't really observed.

► Can construct an MLE:

$$\begin{split} \hat{\beta}^{MLE} &= \arg\max_{\beta} \prod_{i=1}^N F(Z_i)^{y_i} (1 - F(Z_i))^{1 - y_i} \\ Z_i &= \beta_0 + \beta_1 X_i \end{split}$$

- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- ▶ Logit: $F(Z_i)=\frac{1}{1+e^{-z}}$ and its derivative (density) $f(Z_i)=\frac{e^{-z}}{(1+e^{-z})^2}$ a more convenient property is that $\frac{f(z)}{F(z)}=1-F(z)$ this is called the hazard rate.

A probit trick

Let
$$q_i = 2y_i - 1$$

$$F(q_i \cdot Z_i) = \begin{cases} F(Z_i) & \text{when } y_i = 1 \\ F(-Z_i) = 1 - F(Z_i) & \text{when } y_i = 0 \end{cases}$$

So that

$$\ell(y_1,\dots,y_n|\beta) = \sum_{i=1}^N \ln F(q_i \cdot Z_i)$$

$$\begin{split} \ell(y_1,\dots,y_n|\beta) &= \sum_{i=1}^N y_i \ln F(Z_i) + (1-y_i) \ln (1-F(Z_i)) \\ \frac{\partial l}{\partial \beta} &= \sum_{i=1}^N \frac{y_i}{F(Z_i)} \frac{dF}{d\beta}(Z_i) - \frac{1-y_i}{1-F(Z_i)} \frac{dF}{d\beta}(Z_i) \\ &= \sum_{i=1}^N \frac{y_i \cdot f(Z_i)}{F(Z_i)} \frac{dZ_i}{d\beta} - \sum_{i=1}^N \frac{(1-y_i) \cdot f(Z_i)}{1-F(Z_i)} \frac{dZ_i}{d\beta} \\ &= \sum_{i=1}^N \left[\frac{y_i \cdot f(Z_i)}{F(Z_i)} X_i - \frac{(1-y_i) \cdot f(Z_i)}{1-F(Z_i)} X_i \right] \end{split}$$

FOC of Log-Likelihood (Logit)

This is the score of the log-likelihood:

$$\frac{\partial l}{\partial \beta} = \nabla_{\beta} \cdot \ell(\mathbf{y}; \beta) = \sum_{i=1}^{N} \left[y_i \frac{f(Z_i)}{F(Z_i)} - (1 - y_i) \frac{f(Z_i)}{1 - F(Z_i)} \right] \cdot X_i$$

It is technically also a moment condition. It is easy for the logit

$$\begin{split} \nabla_{\beta} \cdot \ell(\mathbf{y}; \beta) &= \sum_{i=1}^{N} \left[y_i (1 - F(Z_i)) - (1 - y_i) F(Z_i) \right] \cdot X_i \\ &= \sum_{i=1}^{N} \underbrace{\left[y_i - F(Z_i) \right]}_{\varepsilon_i} \cdot X_i \end{split}$$

This comes from the hazard rate.

FOC of Log-Likelihood (Probit)

This is the score of the log-likelihood:

$$\begin{split} \frac{\partial l}{\partial \beta} &= \nabla_{\beta} \cdot \ell(\mathbf{y}; \beta) = \sum_{i=1}^{N} \left[y_i \frac{f(Z_i)}{F(Z_i)} - (1 - y_i) \frac{f(Z_i)}{1 - F(Z_i)} \right] \cdot X_i \\ &= \sum_{y_i = 1} \frac{\phi(Z_i)}{\Phi(Z_i)} X_i + \sum_{y_i = 0} \frac{-\phi(Z_i)}{1 - \Phi(Z_i)} X_i \end{split}$$

Using the $q_i=2y_i-1$ trick

$$\nabla_{\beta} \cdot \ell(\mathbf{y}; \beta) = \sum_{i=1}^{N} \underbrace{\frac{q_i \phi(q_i Z_i)}{\Phi(Z_i)}}_{\lambda_i} X_i$$

The Hessian Matrix

We could also take second derivatives to get the Hessian matrix:

$$\begin{split} \frac{\partial l^2}{\partial \beta \partial \beta'} &= -\sum_{i=1}^N y_i \frac{f(Z_i) f(Z_i) - f'(Z_i) F(Z_i)}{F(Z_i)^2} X_i X_i' \\ &+ \sum_{i=1}^N (1-y_i) \frac{f(Z_i) f(Z_i) - f'(Z_i) (1-F(Z_i))}{(1-F(Z_i))^2} X_i X_i' \end{split}$$

This is a $K \times K$ matrix where K is the dimension of X or β .

The Hessian Matrix (Logit)

For the logit this is even easier (use the simplified logit score):

$$\begin{split} \frac{\partial l^2}{\partial \beta \partial \beta'} &= -\sum_{i=1}^N f(Z_i) X_i X_i' \\ &= -\sum_{i=1}^N F(Z_i) (1 - F(Z_i)) X_i X_i' \end{split}$$

This is negative semi definite

The Hessian Matrix (Probit)

Recall

$$\nabla_{\beta} \cdot \ell(\mathbf{y}; \beta) = \sum_{i=1}^{N} \underbrace{\frac{q_i \phi(q_i Z_i)}{\Phi(Z_i)}}_{\lambda_i} X_i$$

Take another derivative and recall $\phi'(z_i) = -z_i \phi(z_i)$

$$\begin{split} \nabla_{\beta}^2 \cdot \ell(\mathbf{y}; \beta) &= \sum_{i=1}^N \frac{q_i \phi'(q_i Z_i) \Phi(z_i) - q_i \phi(z_i)^2}{\Phi(z_i)^2} X_i X_i' \\ &= -\lambda_i (z_i + \lambda_i) \cdot X_i X_i' \end{split}$$

Hard to show but this is negative definite too.

Inference

- ▶ If we have the Hessian Matrix, inference is straightforward.
- igwedge $f H_{\it f}(\hateta^{MLE})$ tells us about the curvature of the log-likelihood around the maximum.
 - Function is flat \rightarrow not very precise estimates of parameters
 - Function is steep \rightarrow precise estimates of parameters
- lacktriangle Construct Fisher Information $I(\hat{\beta}^{MLE}) = -\mathbb{E}[\mathbf{H}_f(\hat{\beta}^{MLE})]$ where expectation is over the data.
 - $\begin{array}{l} \bullet \ \ \text{Logit does not depend on} \ y_i \ \text{so} \ \mathbb{E}[\mathbf{H}_f(\hat{\beta}^{MLE})] = \mathbf{H}_f(\hat{\beta}^{MLE}). \\ \bullet \ \ \text{Probit does depend on} \ y_i \ \text{so} \ \mathbb{E}[\mathbf{H}_f(\hat{\beta}^{MLE})] \neq \mathbf{H}_f(\hat{\beta}^{MLE}). \end{array}$
- lackbox Inverse Fisher information $-\mathbb{E}[\mathbf{H}_f(\hat{eta}^{MLE})]^{-1}$ is an estimate of the variance covariance matrix for $\hat{\beta}$.
- $\blacktriangleright \sqrt{\text{diag}[\mathbb{E}[-\mathbf{H}_f(\hat{\beta}^{MLE})]^{-1}]}$ is an estimate for $SE(\hat{\beta})$.

Goodness of Fit #1: Pseudo ${\cal R}^2$

How well does the model fit the data?

- ightharpoonup No \mathbb{R}^2 measure (why not?).
- ▶ Well we have likelihood units so average likelihood tells us something but is hard to interpret.
- $\rho = 1 \frac{\ell(\hat{\beta}^{MLE})}{\ell(\beta_0)} \text{ where } \ell(\beta_0) \text{ is the likelihood of a model with just a constant (unconditional probability of success)}.$
 - If we don't do any better than unconditional mean then $\rho = 0$.
 - Won't ever get all of the way to $\rho=1$.

Goodness of Fit #2: Confusion Matrix

- ▶ Machine learning likes to think about this problem more like classification then regression.
- ▶ A caution: these are regression models not classification models.
- \blacktriangleright Predict either $\hat{y}_i=1$ or $\hat{y}_i=0$ for each observation.
- $\qquad \qquad \text{Predict } \hat{y}_i = 1 \text{ if } \Pr(y_i = 1 | X_i = x) \geq 0.5 \text{ or } F(X_i \hat{\beta}) > 0.5.$
- $\blacktriangleright \ \ \text{Imagine for cells Prediction: } \{Success, Failure\} \text{, Outcome } \{Success, Failure\} \}$
- ▶ Can construct this using the R package caret and command caret.

Actual Values

		Positive (1)	Negative (0)
d Values	Positive (1)	TP	FP
Predicted	Negative (0)	FN	TN

ROC Curve/ AOC

- ▶ At each predicted probability calculate both True Positive Rate and False Positive Rate.
- ► AOC is area under the curve

Thanks!