

ساختمان داده ها

مدرس: سمانه حسینی سمنانی

دانشگاه صنعتی اصفهان- دانشکده برق و کامپیوتر

ماتریس خلوت (اسپارس)

• یک ماتریس شامل m سطر و n ستون بوده و می تواند مانند شکل زیر نمایش داده شود.


```
class SparseMatrix
{// A set of triples, < row, column, value >, where row and column are non-negative
 // integers and form a unique combination; value is also an integer.
public:
     SparseMatrix(int r, int c, int t);
    // The constructor function creates a SparseMatrix with
    // r rows, c columns, and a capacity of t nonzero terms.
    SparseMatrix Transpose();
    // Return the SparseMatrix obtained by interchanging the row and column
    // value of every triple in *this.
    SparseMatrix Add(SparseMatrix b);
    // If the dimensions of *this and b are the same, then the matrix produced by
    // adding corresponding items, namely those with identical row and column
   // values is returned; otherwise, an exception is thrown.
   SparseMatrix Multiply(SparseMatrix b);
   // If the number of columns in *this equals the number of rows in b then the
   // matrix d produced by multiplying *this and b according to the formula
   //d[i][j] = \sum (a[i]/k] \cdot b[k][j], where d[i][j] is the (i, j)th element, is returned.
   // k ranges from 0 to one less than the number of columns in *this;
   // otherwise, an exception is thrown.
```

};

< row , col , value > هر عضو : سه تایی •

	col	0 col	l col 2	col 3	3 col	4 col 5
row 0	15	0	0	22	0	-15
row I	0	11	3	0	0	0
row 2	0	0	0	-6	0	0
row 3	0	0	0	0	0	0
row 4	91	0	0	0	0	0
row 5	0	0	28	0	0	0

	row	col	value
smArray[0]	0	0	15
[1]	0	3	22
[2]	0	5	-15
[3]	1	1	11
[4]	1	2	3
[5]	2	3	-6
[6]	4	0	91
[7]	5	2	28

● سه تایی های بدست آمده بر اساس سطرها مرتب هستند و سپس عناصری که در یک سطر قرار دارند به ترتیب

شماره ستون مرتب میشوند.


```
class SparseMatrix
{
  private:
        int rows,cols,terms, capasity;
        MatrixTerm *smArr;
};
```

- Terms: number of non zero terms
- Capacity: size of smArr

ترانهاده ماتریس خلوت

	row	col	value
smArray[0]	0	0	15
[1]	0	3	22
[2]	0	5	-15
[3]	1	1	11
[4]	1	2	3
[5]	2	3	-6
[6]	4	0	91
[7]	5	2	28
	(الغت)		

	row	col	value
smArray[0]	0	0	15
[1]	0	4	91
[2]	1	1	11
[3]	2	1	3
[4]	2	5	28
[5]	3	0	22
[6]	3	2	-6
[7]	5	0	-15
	(ب)		

ترانهاده ماتریس خلوت

for (each row *i*)

store $\langle i, j, value \rangle$ of the original matrix as $\langle j, i, value \rangle$ of the transpose.

difficulty: where to put < j, i, value >

$$(0, 0, 15) ===> (0, 0, 15)$$

$$(0, 3, 22) ===> (3, 0, 22)$$

$$(0, 5, -15) ===> (5, 0, -15)$$

for (all elements in column *j*)

store < i, j, value > of the original matrix as < j, i, value > of the transpose.

• آیا به این روش ستون های داخل هر سطر از ماتریس ترانهاده نیز به صورت صعودی مرتب می شود؟

ترانهاده ماتریس خلوت

```
SparseMatrix SparseMatrix::Transpose()
     {// Return the transpose of *this.
      SparseMatrix b(cols, rows, terms); // capacity of b.smArray is terms
      if (terms > 0)
       {// nonzero matrix
        int currentB = 0;
       for (int c = 0; c < cols; c++) // transpose by columns
           for (int i = 0; i < terms; i++)
           // find and move terms in column c
10
             if(smArray[i].col == c)
               b. smArray [currentB].row = c;
13
               b. smArray [currentB].col = smArray [i].row;
               b. smArray [currentB++].value = smArray [i].value;
15
16
       \} // end of if (terms > 0)
      return b;
18
```


تحلیل تابع Transpose

```
SparseMatrix SparseMatrix::Transpose()
     {// Return the transpose of *this.
       SparseMatrix b(cols, rows, terms); // capacity of b.smArray is terms
      if (terms > 0)
       {// nonzero matrix
        int currentB = 0:
        for (int c = 0; c < \frac{cols}{c}; c++) // transpose by columns
                                                                             🕻 O (cols . terms)
           for (int i = 0; i < terms; i++) –
           // find and move terms in column c
10
             if(smArray[i].col == c)
               b. smArray [currentB].row = c;
               b. smArray [currentB].col = smArray [i].row;
14
               b. smArray [currentB++].value = smArray [i].value;
15
16
       \} // end of if (terms > 0)
17
       return b;
18
```

- O(cols.rows) هاگر از روش معمولی ترانهاده ماتریس را محاسبه می کردیم پیچیدگی چقدر می شد؟ •
- $O(cols. \frac{cols.rows}{cols}) = O(rows.cols^2)$ گو برای ماتریس غیر خلوت از این روش استفاده کنیم پیچیدگی چقدر می شود؟

سمانه حسيني سمناني

تحلیل تابع Transpose

- O(cols.rows) هند؟ وش معمولي ترانهاده ماتريس را محاسبه مي کرديم پيچيدگي چقدر مي شد؟ •
- $O(cols.cols.rows) = O(rows.cols^2)$ اگر برای ماتریس غیر خلوت از این روش استفاده کنیم پیچیدگی چقدر می شود؟
 - مشكل:
 - آرایه *columns* بار بررسی می شود
 - دنبال راهکاری با پیچیدگی O(columns + elements) هستیم.
 - راهكار:
 - تعداد عناصر در هر ستون ماتریس اولیه را مشخص کنید
 - شروع هر سطر ماتریس ترانهاده را تعیین کنید

تابع FastTranspose

	row	col	value
smArray[0]	0	0	15
[1]	0	3	22
[2]	0	5	-15
[3]	1	1	11
[4]	1	2	3
[5]	2	3	-6
[6]	4	0	91
[7]	5	2	28
	(الغ)		


```
[0][1][2][3][4][5]
rowsize = 2 1 2 2 0 1
rowstart = 1 3 4 6 8 8
```


تابع FastTranspose

	row	col	value
smArray[0]	0	0	15
[1]	0	3	22
[2]	0	5	-15
[3]	1	1	11
[4]	1	2	3
[5]	2	3	-6
[6]	4	0	91
[7]	5	2	28
	(الف)		

[0][1][2][3][4][5] rowsize = 2 1 2 2 0 1 rowstart = 1 3 4 6 8 8

	row	col	value
smArray[0]	0	0	15
[1]	0	4	91
[2]	1	1	11
[3]	2	1	3
[4]	2	5	28
[5]	3	0	22
[6]	3	2	-6
[7]	5	0	-15
	(ب)		