Sprawozdanie z Projektu Pierwszego Laboratorium Przetwarzania Równoległego

Piotr Tylczyński

L7 / 141331 Środa, 11:45 $\verb|piotr.tylczynski@student.put.poznan.pl|\\$

${\bf Z}$ uzanna ${\bf R}$ ękawek

L7 / 141304 Środa, 11:45 zuzanna.rekawek@student.put.poznan.pl

> $Oddane:\ 29.04.2021$ Deadline: 29.04.2021

> > Wersja 1

Contents

1	Motywacja	2
2	Specyfikacja platformy uruchomieniowej	2
3	Zastosowane Algorytmy	2
	3.1 Opis teoretyczny	2
	3.1.1 Algorytm Sekwencyjny	2
	3.2 Realizacja praktyczna	2

1 Motywacja

Celem niniejszego projketu jest stworzenie efektywnego programu wyszukującego liczby pierwsze w zadanym przedziale. W tym celu wykorzystamy porogramowanie równoległe. Pozwoli to na efektywniejsze wykorzystanie zasobów komputerowych jakimi dysponujemy. W wyniku otrzymamy program mogący wykorzystywać do 100% mocy obliczeniowej procesora komputera, na którym zostanie uruchomiony. Pozwoli to nam na znaczącą redukcję czasu wykonania programu względem standardowej wersji sekwencyjnej programu.

W rozwiązaniu sotsujemy algorytm Sita Erastotenesa (SE), oraz pełnego przeglądu wszystkich możliwych dzielników (PPD) danej liczby. Oba algorytmy mają olbzymi potencjał zrównoleglenia, jednak szczególną uwagę poświęcimy zagadnieniu zrównoleglania i badania jego efektów dla Sita Erastotenesa.

2 Specyfikacja platformy uruchomieniowej

Procesor Intel Core i5-9300H

Procesorów Fizycznych 4 Procesorów Logicznych 8 Pamięć Cache 8 MB Intel® Smart Cache

System Operacyjny Windows 10 Pro 20H2

IDE Visual Studio 2019

Oprogramowanie Testujące 5t4iori

3 Zastosowane Algorytmy

- 3.1 Opis teoretyczny
- 3.1.1 Algorytm Sekwencyjny
- 3.2 Realizacja praktyczna