```
In [1]:  # William Barker
# DSC630
# Week 4

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

```
In [2]: df = pd.read_csv('als_data.csv')
     df.head()
```

Out[2]:		ID	Age_mean	Albumin_max	Albumin_median	Albumin_min	Albumin_range	ALSFRS_slope	ALSFRS_Total
	0	1	65	57.0	40.5	38.0	0.066202	-0.965608	
	1	2	48	45.0	41.0	39.0	0.010453	-0.921717	
	2	3	38	50.0	47.0	45.0	0.008929	-0.914787	
	3	4	63	47.0	44.0	41.0	0.012111	-0.598361	
	4	5	63	47.0	45.5	42.0	0.008292	-0.444039	

5 rows × 101 columns

```
In [3]: # Remove irrelevant columns
    relevant_columns = ['Age_mean', 'Albumin_range', 'ALSFRS_slope', 'ALSFRS_Total_range', 'Ci
    df = df[relevant_columns]
    df
```

Out[3]:		Age_mean	Albumin_range	ALSFRS_slope	ALSFRS_Total_range	Creatinine_range
	0	65	0.066202	-0.965608	0.021164	0.030801
	1	48	0.010453	-0.921717	0.028725	0.030801
	2	38	0.008929	-0.914787	0.025000	0.031571
	3	63	0.012111	-0.598361	0.014963	0.044090
	4	63	0.008292	-0.444039	0.020374	0.058640
	•••					
	2218	33	0.008772	-0.239501	0.009107	0.046526
	2219	61	0.009074	-0.388711	0.025408	0.056261
	2220	47	0.012111	-0.108631	0.010949	0.048654
	2221	37	0.017857	-0.855880	0.023214	0.063143
	2222	48	0.018476	-2.050562	0.059908	0.059363

2223 rows × 5 columns

```
In [4]:
    from sklearn.preprocessing import StandardScaler
    # Initialize the scaler
    scaler = StandardScaler()
```

```
In [5]:
        pip install threadpoolctl==3.1.0
        Requirement already satisfied: threadpoolctl == 3.1.0 in ./opt/anaconda3/lib/python3.9/site-
        packages (3.1.0)
        Note: you may need to restart the kernel to use updated packages.
In [6]:
         from sklearn.cluster import KMeans
         from sklearn.metrics import silhouette score
         import matplotlib.pyplot as plt
         # Initialize lists to store silhouette scores and number of clusters
         silhouette scores = []
         num clusters = []
         # Try different numbers of clusters
         for k in range (2, 11):
             # Fit K-means clustering model
             kmeans = KMeans(n clusters=k, random state=42)
             labels = kmeans.fit predict(scaled data)
             # Calculate silhouette score
             score = silhouette score(scaled data, labels)
             # Append scores and number of clusters
             silhouette scores.append(score)
             num clusters.append(k)
         # Create plot
         plt.plot(num clusters, silhouette scores, marker='o')
         plt.xlabel('Number of Clusters')
         plt.ylabel('Silhouette Score')
         plt.title('K-means Clustering: Silhouette Score vs Number of Clusters')
         plt.show()
        /Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/ kmeans.py:
        870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Se
        t the value of `n init` explicitly to suppress the warning
          warnings.warn(
        /Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/ kmeans.py:
        870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Se
        t the value of `n init` explicitly to suppress the warning
          warnings.warn(
        /Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/ kmeans.py:
        870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Se
        t the value of `n init` explicitly to suppress the warning
          warnings.warn(
        /Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/ kmeans.py:
        870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Se
        t the value of `n init` explicitly to suppress the warning
          warnings.warn(
        /Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/ kmeans.py:
        870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Se
        t the value of `n init` explicitly to suppress the warning
          warnings.warn(
        /Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/ kmeans.py:
        870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Se
        t the value of `n init` explicitly to suppress the warning
          warnings.warn(
        /Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/ kmeans.py:
```

870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Se

Scale the data

scaled data = scaler.fit transform(df)

```
t the value of `n init` explicitly to suppress the warning
  warnings.warn(
/Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/ kmeans.py:
870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Se
t the value of `n init` explicitly to suppress the warning
  warnings.warn(
/Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/ kmeans.py:
870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Se
t the value of `n init` explicitly to suppress the warning
  warnings.warn(
    K-means Clustering: Silhouette Score vs Number of Clusters
  0.32
  0.30
  0.28
Silhouette Score
  0.26
  0.24
  0.22
  0.20
  0.18
  0.16
                                                  10
                       Number of Clusters
```

```
In [10]: # Set the optimal number of clusters
# two had the highest silhouette score so we are gonna go with two
optimal_num_clusters = 2

# Fit K-means clustering model with optimal number of clusters
kmeans = KMeans(n_clusters=optimal_num_clusters, random_state=42)
labels = kmeans.fit_predict(scaled_data)
```

/Users/cameronbarker/opt/anaconda3/lib/python3.9/site-packages/sklearn/cluster/_kmeans.py: 870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Se t the value of `n_init` explicitly to suppress the warning warnings.warn(

```
In [11]: from sklearn.decomposition import PCA

# Initialize PCA model with 2 components
pca = PCA(n_components=2)

# Perform PCA transformation on the scaled data
pca_transformed = pca.fit_transform(scaled_data)
```

```
import seaborn as sns

# Create DataFrame for plotting
pca_df = pd.DataFrame({'PC1': pca_transformed[:, 0], 'PC2': pca_transformed[:, 1], 'Cluste

# Create scatterplot with cluster coloring
sns.scatterplot(data=pca_df, x='PC1', y='PC2', hue='Cluster', palette='Set1')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('PCA Transformed Data: Cluster Analysis')
plt.show()
```


PC1

In []:

Summary

Our silhouette score visualization made it easy for us to decide how many clusters to in

Because our number of clusters was so small, we can easily identify outliers, which in a

represented in our blue cluster.