Time Series Analysis & Recurrent Neural Networks

lecturer: Daniel Durstewitz

tutors: Georgia Koppe, Leonard Bereska

WS2019/2020

Exercise 7

To be uploaded before the exercise group on December 11th, 2019

Task 1. Discrete-time non-linear dynamics: fixed points, stability and bifurcations

Consider the univariate non-linear map

$$x_{t+1} = f(x_t, a, b) = a \cdot x_t + b \cdot tanh(x_t)$$

- 1. Plot the *return plot* of this map. By inspecting the plot say how many fixed points you expect the system to have and comment on their stability. Do this for the parameter values: I) $\{a, b\} = \{1, 3\}$, II) $\{a, b\} = \{0.5, -2\}$, III) $\{a, b\} = \{0.5, 3\}$ and IV) $\{a, b\} = \{1, 0\}$.
- 2. For all parameter sets specified above, plot the trajectory of the system when starting from the initial conditions $x_0 = -10$, $x_0 = -0.5$, $x_0 = 0$, $x_0 = 0.5$, $x_0 = 10$.
- 3. Confirm your intuitions by computing the fixed points (numerically) and their stability (analytically) for the parameter set III (fixed points: see equation 9.4, chapter 9.1.1. For numerical solutions you can use scipy.optimize.fsolve for python or fzero for matlab).
- 4. Plot the *bifurcation graph* as a function of $a \in [-7, 2]$ (x-axis) for b = 5 in which you display stable fixed points x^* in the range of $x^* \in [-5, 5]$ (y-axis). Solve this task by numerical simulations, i.e., for each value of a considered i) initialize the system from, e.g., 100 different initial conditions x_0 (with $x_0 \sim U(-5, 5)$), and ii) plot the value x_T (with T large enough to allow transients to settle), where $x_T \approx x^*$.

How would you interpret the bifurcation graph at a = -1.8?

Task 2. Training an RNN in PyTorch

In this exercise, you are going to train a Recurrent Neural Network with PyTorch. In order to do this, you need to download and install PyTorch first, by following the instructions on https://pytorch.org/get-started/.

Now, consider a recurrent neural network with *N* neurons:

$$x_t = \Phi \left(\mathbf{A} x_{t-1} + I_t \right)$$

$$\Phi(y) = \tanh(y)$$

where $x_t \in \mathbb{R}^{N \times 1}$ is the output of the network at time t, $\mathbf{A} \in \mathbb{R}^{N \times N}$ the weight matrix and $I_t \in \mathbb{R}^{N \times 1}$ the input at time t.

You are given the following mapping from inputs to outputs:

$$I_3 = (1, 0, 0, 0, \dots)^T \to \hat{x}_7 = (\bullet, \bullet, 1, 0, \bullet, \dots)^T$$

 $I_3 = (0, 1, 0, 0, \dots)^T \to \hat{x}_7 = (\bullet, \bullet, 0, 1, \bullet, \dots)^T$

where I_t is the input at time step t, \hat{x}_t is the requested output of the network at time step t, and the dot \bullet indicates that no specific output is requested for that unit at that time step (this means that only units 1 and 2 receive input while only units 3 and 4 have requested outputs, while all other units are

considered hidden units). The total length of the time series is T = 10.

The code in working memory RNN.py implements an RNN training procedure for this scenario in PyTorch. There, we present the network with a number M of mini-batches of size m, where the order of the trial types (either mapping I or mapping II) is randomized.

Make yourself familiar with the PyTorch framework by carefully studying the code provided and changing parameters. For N=5, examine the convergence of the error function and the performance of the network after apparent convergence (recall/test phase) for different learning rates from the range $\alpha \in [10^{-5}...1]$ (explore a couple of different values). Compare that to training in networks with N=10 units. Change the activation function to the rectified linear function (ReLU) and do a comparison.