CS 310

"To iterate is human, to recurse divine."

- L. Peter Deutsch

1

Dynamic programming

- There is an ordering on the subproblems, and
- A recurrence relation that shows how to solve a subproblem given the answers to "smaller" subproblems that appear earlier in the ordering.
- In dynamic programming the **DAG** is implicit. Its nodes are the subproblems we define, and its edges are the dependencies between the subproblems.

An example

Undirected graph G(V, E) where the vertices are connected in a **chain** as shown below.

The vertices represent chemicals and the edges between them represent interactions between pair of chemicals. Each of the chemicals have a price (price_i) in rupees. You have to pack a subset of chemicals in one box such that the total price is maximized. Chemicals that interact with each other cannot be placed together in the box.

You are given a chain of five chemicals in the following order: c1, c2, c3, c4, c5. Their prices are

1, 8, 2, 1, 7 respectively.

Basis: f(0)=0, f(1)=price₁

Recurrence: $f(n) = max(price_n+f(n-2), f(n-1))$

Chemicals	c1	c2	сЗ	c4	c5
Price	1	8	2	1	7

$$f(0) = 0$$
, $f(1) = 1$

$$f(2) = \max(8+f(0), f(1)) = \max(8+0, 1) = 8$$

$$f(3) =$$

$$f(4) =$$

$$f(5) =$$

Basis: f(0)=0, $f(1)=price_1$

Recurrence: $f(n) = max(price_n+f(n-2), f(n-1))$

Chemicals	c1	c2	с3	c4	c5
Price	1	8	2	1	7

$$f(0) = 0$$
, $f(1) = 1$

$$f(2) = \max(8+f(0), f(1)) = \max(8+0, 1) = 8$$

$$f(3) = max (2+f(1), f(2)) = max (2+1, 8) = 8$$

$$f(4) = max (1+f(2), f(3)) = max (1+8, 8) = 9$$

$$f(5) = max (7+f(3), f(4)) = max (7+8, 9) = 15$$

Basis:
$$f(0)=0$$
, $f(1)=price_1$
Recurrence: $f(n) = max(price_n+f(n-2), f(n-1))$

Chemicals	c1	c2	сЗ	c4	c5
Price	1	8	2	1	7

$$f(0) = 0$$
, $f(1) = 1$
 $f(2) = \max (8+f(0), f(1)) = \max (8+0, 1) = 8$
 $f(3) = \max (2+f(1), f(2)) = \max (2+1, 8) = 8$
 $f(4) = \max (1+f(2), f(3)) = \max (1+8, 8) = 9$
 $f(5) = \max (7+f(3), f(4)) = \max (7+8, 9) = 15$

Memoized version - chemical chain

```
/* initialization */
for j=1 to n
  Memo[j] = -1
Memo[0] = 1
Memo[1] = price[1]
chain(n) {
 if (Memo[n] < 0)
  Memo[n] = max(price[n]+chain(n-2), chain(n-1));
   return Memo[n];
```

How do we find the set of chemicals?

```
Basis: f(0)=0, f(1)=price_1
Recurrence: f(n) = max(price_n+f(n-2), f(n-1))
```

How do we find the set of chemicals?

```
Basis: f(0) = 0, f(1) = price,
Recurrence: f(n) = max(price_n+f(n-2), f(n-1))
FindSolution(n) {
  if (n<=0) return null
  if (price[n]+Memo[n-2] > Memo[n-1]) {
     /* Store n in a set*/
     FindSolution(n-2);
                                     Complexity of
                                     FindSolution()?
  else
     FindSolution(n-1);
```

How do we find the set of chemicals?

```
Basis: f(0) = 0, f(1) = price,
Recurrence: f(n) = max(price_n+f(n-2), f(n-1))
FindSolution(n) {
  if (n<=0) return null
  if (price[n]+Memo[n-2] > Memo[n-1]) {
     /* Store n in a set*/
     FindSolution(n-2);
                                   Complexity of
                                   FindSolution(): O(n)
  else
     FindSolution(n-1);
```

Dynamic Programming

Optimization problems must have the following two key ingredients in order for dynamic programming to apply.

optimal substructure

- a problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to subproblems.

overlapping subproblems

- When a recursive algorithm revisits the same problem repeatedly, we say that the optimization problem has overlapping subproblems.
 - Typically, the total number of distinct subproblems is a polynomial in the input size.

Example of overlapping subproblems

Three Steps to Dynamic Programming

- 1. Formulate the answer as a recurrence relation or recursive algorithm.
- 2. Space of subproblems must be "small", typically bounded by a polynomial (i.e., show that the number of different arguments to your recursive function isn't large, so that we can benefit from storing the results).
- 3. Specify an order of evaluation for the recurrence so you always have what you need.

Weighted interval scheduling

Weighted interval scheduling problem.

- Job j starts at s_j , finishes at f_j , and has weight or value v_j .
- Two jobs compatible if they don't overlap.
- · Goal: find maximum weight subset of mutually compatible jobs.

Earliest Finish Time First

Weighted interval scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$.

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex.
$$p(8) = [], p(7) = [], p(2) = [].$$

Weighted interval scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$.

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex.
$$p(8) = 5, p(7) = 3, p(2) = 0.$$

Weighted Interval Scheduling

Indices are names of intervals.

And v_i are weights of intervals.

Weighted Interval Scheduling

Index

Weighted Interval Scheduling

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), \ OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le ... \le f[n].
Compute p[1], p[2], ..., p[n].
Compute-Opt(j)
if j = 0
   return 0.
else
   return max(v[j] + Compute-Opt(p[j]), Compute-Opt(j-1)).
```


Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant subproblems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted interval scheduling: memoization

Memoization. Cache results of each subproblem; lookup as needed.

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le ... \le f[n].
Compute p[1], p[2], ..., p[n].
for j = 1 to n
   M[j] \leftarrow empty.
M[0] \leftarrow 0.
M-Compute-Opt(j)
if M[j] is empty
   M[j] \leftarrow \max(v[j] + M-Compute-Opt(p[j]), M-Compute-Opt(j-1)).
return M[j].
```

Running time?

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le ... \le f[n].
Compute p[1], p[2], ..., p[n].
for j = 1 to n
   M[j] \leftarrow empty.
M[0] \leftarrow 0.
M-Compute-Opt(j)
if M[j] is empty
   M[j] \leftarrow max(v[j] + M-Compute-Opt(p[j]), M-Compute-Opt(j-1)).
return M[j].
```

Running time?

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le ... \le f[n].
Compute p[1], p[2], ..., p[n].
for j = 1 to n
   M[j] \leftarrow empty.
M[0] \leftarrow 0.
M-Compute-Opt(j)
if M[i] is empty
   M[j] \leftarrow max(v[j] + M-Compute-Opt(p[j]), M-Compute-Opt(j-1)).
return M[j].
```

For sorting: O(n log(n))
For M-Compute-Opt(n): O(n)

Weighted interval: Unwind recursion

```
BOTTOM-UP (n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n)
Sort jobs by finish time so that f_1 \leq f_2 \leq ... \leq f_n.
Compute p(1), p(2), ..., p(n).
M[0] \leftarrow 0.
FOR j = 1 TO n
   M[j] \leftarrow \max \{ v_j + M[p(j)], M[j-1] \}.
```

Sorting: $O(n \log(n))$

For-loop: O(n)

Weighted interval scheduling: finding a solution

- Q. DP algorithm computes optimal value. How to find solution itself?
- A. Make a second pass.

```
Find-Solution(j)
if j = 0
  return Ø.
else if (v[j] + M[p[j]] > M[j-1])
  return {j} ∪ Find-Solution(p[j]).
else
  return Find-Solution(j-1).
```

Rod Cutting Problem

Given a rod of length n inches and a table of prices p_i for i = 1, 2, ... n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

length i	1	2	3	4	5	6	7	8	9	10
price p _i	1	5	8	9	10	17	17	20	24	30

Rod Cutting Problem

Given a rod of length n inches and a table of prices p_i for i = 1, 2, ... n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Brute Force: How many different ways to cut the rod?

Rod Cutting Problem

The 8 possible ways of cutting up a rod of length 4. Above each piece is the value of that piece.

Brute Force: 2ⁿ⁻¹ different ways to cut the rod.