РГПУ им. А.И. Герцена

К работе допущены	
Работа выполнена	
Отчёт сдан	

Отчет по лабораторной работе №7

(Индивидуальная задача)

«Корреляционный анализ»

Работу выполнили: <u>Леонтьева А.В.</u>

Шадрин А.В,

Тихонова Э.К,

Столяренко К.А

Факультет: ИИТиТО

 Группа:
 2об-ИВТ-1/20

Корреляционный анализ

Выполнил: студент 2 курса РГПУ им. Герцена, ИВТ 1/2, Шадрин А.В.

Оборудование: ПК, Excel, Word

Индивидуальная задача

Постановка задачи:

В ходе статистического исследования три группы населения города Санкт-Петербург расставляли в порядке возрастания 10 музыкальных групп/исполнителей в разных жанрах, в итоге были получены три последовательности рангов (в первой строке приведены ранги группы A, во второй — ранги группы B, в третьей — ранги группы C):

Α	1	2	3	4	5	6	7	8	9	10
В	8	2	6	9	3	1	5	4	7	10
С	10	8	7	9	6	5	4	3	2	1

Определить группы населения, оценки которых имеют наиболее выраженную зависимость, используя коэффициент ранговой корреляции Спирмена. Построить корреляционное поле.

Решение:

Определим разности рангов, их квадраты и суммы:

$d_i = a - b$	-7	0	-3	-5	2	5	2	4	2	0	Сумма	0
$(d_i)^2$	49	0	9	25	4	25	4	16	4	0	Сумма	136
$d_i = a - c$	-9	-6	-4	-5	-1	1	3	5	7	9	Сумма	0
$d_i = a - c$ $(d_i)^2$	81	36	16	25	1	1	9	25	49	81	Сумма	324
$d_i = b - c$ $(d_i)^2$	-2	-6	-1	0	-3	-4	1	1	5	9	Сумма	0
$(d_i)^2$	4	36	1	0	9	16	1	1	25	81	Сумма	174

$$r_{s ab} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = 0,175758$$

$$r_{s ac} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = -0.96364$$

$$r_{s bc} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = -0.05455$$

$$t = |r_s| \sqrt{\frac{n-2}{1-r_s^2}}$$

$$t_{\rm \kappa p} = t_{0.05\,8} = 1.86$$

$$t_{\text{pacu }ab} = |0,175758| \sqrt{\frac{10 - 2}{1 - (0,175758)^2}} = 0.175758$$

$$t_{\text{pacч }ac} = |-0.96364| \sqrt{\frac{10 - 2}{1 - (-0.96364)^2}} = 10.19985$$

$$t_{\text{pacy }bc} = |-0.05455| \sqrt{\frac{10 - 2}{1 - (-0.05455)^2}} = 0.154508$$

10.19985 > 1.86 > 0.175758 > 0.154508 ($\underline{t_{\text{расч}}} > t_{\text{кр}}$). Следовательно, ас является единственной парой, обладающей статистически значимой корреляцией рангов, при 5 %- ном уровне значимости.

Результат:

Корреляционное поле

 $10.19985 > \underline{1,86} > 0.175758 > 0,154508 (\underline{t_{\text{расч}}} > t_{\text{кр}})$. Следовательно, ас является единственной парой, обладающей статистически значимой корреляцией рангов, при 5 %- ном уровне значимости.

Корреляционный анализ

Выполнил: студент 2 курса РГПУ им. Герцена, ИВТ 1/2, Столяренко К.А.

Оборудование: ПК, Excel, Word

Индивидуальная задача

Постановка задачи:

В ходе статистического исследования три группы населения города Санкт-Петербург расставляли в порядке возрастания 10 музыкальных групп/исполнителей в разных жанрах, в итоге были получены три последовательности рангов (в первой строке приведены ранги группы A, во второй — ранги группы B, в третьей — ранги группы C):

Α	1	2	3	4	5	6	7	8	9	10
В	8	2	6	9	3	1	5	4	7	10
С	10	8	7	9	6	5	4	3	2	1

Определить группы населения, оценки которых имеют наиболее выраженную зависимость, используя коэффициент ранговой корреляции Спирмена. Построить корреляционное поле.

Решение:

Определим разности рангов, их квадраты и суммы:

$d_i = a - b$	-7	0	-3	-5	2	5	2	4	2	0	Сумма	0
$(d_i)^2$	49	0	9	25	4	25	4	16	4	0	Сумма	136
$d_i = a - c$	-9	-6	-4	-5	-1	1	3	5	7	9	Сумма	0
$d_i = a - c$ $(d_i)^2$	81	36	16	25	1	1	9	25	49	81	Сумма	324
$d_i = b - c$ $(d_i)^2$	-2	-6	-1	0	-3	-4	1	1	5	9	Сумма	0
$(d_i)^2$	4	36	1	0	9	16	1	1	25	81	Сумма	174

$$r_{s ab} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = 0,175758$$

$$r_{s ac} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = -0.96364$$

$$r_{s bc} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = -0.05455$$

$$t = |r_s| \sqrt{\frac{n-2}{1-r_s^2}}$$

$$t_{\rm \kappa p} = t_{0.05\,8} = 1.86$$

$$t_{\text{pacu }ab} = |0,175758| \sqrt{\frac{10 - 2}{1 - (0,175758)^2}} = 0.175758$$

$$t_{\text{pacч }ac} = |-0.96364| \sqrt{\frac{10 - 2}{1 - (-0.96364)^2}} = 10.19985$$

$$t_{\text{pacy }bc} = |-0.05455| \sqrt{\frac{10 - 2}{1 - (-0.05455)^2}} = 0.154508$$

10.19985 > 1.86 > 0.175758 > 0.154508 ($\underline{t_{\text{расч}}} > t_{\text{кр}}$). Следовательно, ас является единственной парой, обладающей статистически значимой корреляцией рангов, при 5 %- ном уровне значимости.

Результат:

Корреляционное поле

10.19985 > 1.86 > 0.175758 > 0.154508 ($\underline{t_{\text{расч}}} > t_{\text{кр}}$). Следовательно, ас является единственной парой, обладающей статистически значимой корреляцией рангов, при 5 %- ном уровне значимости.

Корреляционный анализ

Выполнила: студентка 2 курса РГПУ им. Герцена, ИВТ 1/2, Леонтьева А.В.

Оборудование: ПК, Excel, Word

Индивидуальная задача

Постановка задачи:

В ходе статистического исследования три группы населения города Санкт-Петербург расставляли в порядке возрастания 10 музыкальных групп/исполнителей в разных жанрах, в итоге были получены три последовательности рангов (в первой строке приведены ранги группы A, во второй — ранги группы B, в третьей — ранги группы C):

Α	1	2	3	4	5	6	7	8	9	10
В	8	2	6	9	3	1	5	4	7	10
С	10	8	7	9	6	5	4	3	2	1

Определить группы населения, оценки которых имеют наиболее выраженную зависимость, используя коэффициент ранговой корреляции Спирмена. Построить корреляционное поле.

Решение:

Определим разности рангов, их квадраты и суммы:

$d_i = a - b$	-7	0	-3	-5	2	5	2	4	2	0	Сумма	0
$(d_i)^2$	49	0	9	25	4	25	4	16	4	0	Сумма	136
$d_i = a - c$	-9	-6	-4	-5	-1	1	3	5	7	9	Сумма	0
$d_i = a - c$ $(d_i)^2$	81	36	16	25	1	1	9	25	49	81	Сумма	324
$d_i = b - c$ $(d_i)^2$	-2	-6	-1	0	-3	-4	1	1	5	9	Сумма	0
$(d_i)^2$	4	36	1	0	9	16	1	1	25	81	Сумма	174

$$r_{s ab} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = 0,175758$$

$$r_{s ac} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = -0.96364$$

$$r_{s bc} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = -0.05455$$

$$t = |r_s| \sqrt{\frac{n-2}{1-r_s^2}}$$

$$t_{\rm \kappa p} = t_{0.05\,8} = 1.86$$

$$t_{\text{pacu }ab} = |0,175758| \sqrt{\frac{10 - 2}{1 - (0,175758)^2}} = 0.175758$$

$$t_{\text{pacч }ac} = |-0.96364| \sqrt{\frac{10 - 2}{1 - (-0.96364)^2}} = 10.19985$$

$$t_{\text{pacy }bc} = |-0.05455| \sqrt{\frac{10 - 2}{1 - (-0.05455)^2}} = 0.154508$$

10.19985 > 1.86 > 0.175758 > 0.154508 ($\underline{t_{\text{расч}}} > t_{\text{кр}}$). Следовательно, ас является единственной парой, обладающей статистически значимой корреляцией рангов, при 5 %- ном уровне значимости.

Результат:

Корреляционное поле

 $10.19985 > \underline{1,86} > 0.175758 > 0,154508 (\underline{t_{\text{расч}}} > t_{\text{кр}})$. Следовательно, ас является единственной парой, обладающей статистически значимой корреляцией рангов, при 5 %- ном уровне значимости.

Корреляционный анализ

Выполнила: студентка 2 курса РГПУ им. Герцена, ИВТ 1/2, Тихонова Э.К.

Оборудование: ПК, Excel, Word

Индивидуальная задача

Постановка задачи:

В ходе статистического исследования три группы населения города Санкт-Петербург расставляли в порядке возрастания 10 музыкальных групп/исполнителей в разных жанрах, в итоге были получены три последовательности рангов (в первой строке приведены ранги группы A, во второй — ранги группы B, в третьей — ранги группы C):

Α	1	2	3	4	5	6	7	8	9	10
В	8	2	6	9	3	1	5	4	7	10
С	10	8	7	9	6	5	4	3	2	1

Определить группы населения, оценки которых имеют наиболее выраженную зависимость, используя коэффициент ранговой корреляции Спирмена. Построить корреляционное поле.

Решение:

Определим разности рангов, их квадраты и суммы:

$d_i = a - b$	-7	0	-3	-5	2	5	2	4	2	0	Сумма	0
$(d_i)^2$	49	0	9	25	4	25	4	16	4	0	Сумма	136
$d_i = a - c$	-9	-6	-4	-5	-1	1	3	5	7	9	Сумма	0
$d_i = a - c$ $(d_i)^2$	81	36	16	25	1	1	9	25	49	81	Сумма	324
$d_i = b - c$	-2	-6	-1	0	-3	-4	1	1	5	9	Сумма	0
$d_i = b - c$ $(d_i)^2$	4	36	1	0	9	16	1	1	25	81	Сумма	174

$$r_{s ab} = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)} = 0,175758$$

$$r_{s ac} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = -0.96364$$

$$r_{s bc} = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)} = -0.05455$$

$$t = |r_s| \sqrt{\frac{n-2}{1-r_s^2}}$$

$$t_{\rm \kappa p} = t_{0.05\,8} = 1.86$$

$$t_{\text{pacu }ab} = |0,175758| \sqrt{\frac{10 - 2}{1 - (0,175758)^2}} = 0.175758$$

$$t_{\text{pacч }ac} = |-0.96364| \sqrt{\frac{10 - 2}{1 - (-0.96364)^2}} = 10.19985$$

$$t_{\text{pacy }bc} = |-0.05455| \sqrt{\frac{10 - 2}{1 - (-0.05455)^2}} = 0.154508$$

10.19985 > 1.86 > 0.175758 > 0.154508 ($\underline{t_{\text{расч}}} > t_{\text{кр}}$). Следовательно, ас является единственной парой, обладающей статистически значимой корреляцией рангов, при 5 %- ном уровне значимости.

Результат:

Корреляционное поле

 $10.19985 > \underline{1,86} > 0.175758 > 0,154508 (\underline{t_{\text{расч}}} > t_{\text{кр}})$. Следовательно, ас является единственной парой, обладающей статистически значимой корреляцией рангов, при 5 %- ном уровне значимости.