

СЕРТИФИКАТ ТР ТС 010/2011 №RU C-RU.AB72.B.01786 СЕРТИФИКАТ ТР ТС 032/2013 №RU C-RU.AB72.B.01792 ЗАКЛЮЧЕНИЕ ООО "Газпром ВНИИГАЗ" №31323949-210-2015 от 14.12.2015г.

КАТАЛОГ

СЛЕДУЕМ ПУТЕМ НОВЕЙШИХ ТЕХНОЛОГИЙ, ОПИРАЯСЬ НА ЛУЧШИЕ ИНЖЕНЕРНЫЕ ТРАДИЦИИ

ЗАДВИЖКИ

СОДЕРЖАНИЕ

О компании	4
Введение	6
Химический состав, механические свойства и режимы термообработки основных марок сталей ТПА	8
Преимущества и особенности конструкций	10
- Особенности конструкций клиньев	11
Задвижки клиновые	12
- технические характеристики	12
- структура условного обозначения	12
- диапазон давлений и номинальных диаметров в зависимости от условий применения	13
- основные детали задвижек	14
- материальное исполнение составных частей	15
- основные габаритные и присоединительные размеры	16
Информация по коррозии металлов	22
Сертификаты соответствия	24
Опросный лист	25

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ОКОМПАНИИ

На сегодняшний день основным направлением деятельности нашей компании является производство высокотехнологичной запорно-регулирующей арматуры, в частности шаровых кранов, шиберных и клиновых задвижек и регулирующих, запорно-регулирующих, запорных, отсечных клапанов для нужд газовой, нефтяной, химической и других отраслей промышленности.

Применительно к производству и реализации запорно-регулирующей арматуры на предприятии введены системы:

- менеджмента качества, соответствующая ГОСТ ISO 9001-2011 (ISO 9001:2008);
- экологического менеджмента, соответствующая ГОСТ Р ИСО 14001-2007 (ISO 14001:2004);
- менеджмента безопасности труда и охраны здоровья, соответствующая ГОСТ Р 54934-212 (OHSAS 180001:2007).

Территория предприятия составляет 22 370 м.кв. и обладает удобной железнодорожной и транспортной развязкой. Предприятие оборудовано большегрузными грузоподъемными механизмами и оснащено современным металлообрабатывающим, опрессовочным, дробеструйным и покрасочным оборудованием. Техническая оснащенность предприятия позволяет вести полный технологический цикл производства. Производственные мощности ООО «Инженерные Технологии» размещены на 7947 м.кв., и включают в себя: техническую и конструкторскую службу, испытательную лабораторию, службу технического контроля, заготовительный участок, формообразующий участок, участок механической обработки основных корпусных деталей, участок по изготовлению уплотнений, штоков, седел, колец, крепежа, шлифовальный участок, термический участок, гальванический участок, сварочный участок, сборочный участок, участок монтажа и настройки исполнительных механизмов (КИПиА), малярный участок, участок маркировки и упаковки готовой продукции и другие вспомогательные службы, и отделы предприятия.

Обладая практически полным циклом производства и имея четкую отлаженную работу всех производственных участков, мы не только профессионально занимаемся производством и ремонтом трубопроводной арматуры, но и изготовлением различного нефтегазового оборудования по техническим условиям Заказчика, по российским и зарубежным стандартам ГОСТ, ASME, ISO, DIN.

Наше предприятие, по особому требованию заказчика, имеет возможность изготавливать трубопроводную арматуру в специальном исполнении, с применением специальных материалов и конструкций для таких условий эксплуатации как:

- холодный климат;
- морской климат;
- агрессивные рабочие среды с повышенным содержанием H2S и CO2;
- взрывоопасные и токсичные среды;
- низко- и высокотемпературные среды (от -196°C до +800°C).

При этом применяются современные виды защитных и упрочняющих покрытий (полимерные, гальванические и др.), наплавок (стеллит, карбид хрома) корпусных деталей, рабочих деталей и узлов. Применяются специальные керамические и полимерные материалы, а так же специализированные нержавеющие стали такие как Duplex, Super duplex, Hastelloy, Inconel, и титан.

Для агрессивных и особоагрессивных рабочих сред, наша запорно-регулирующая арматура изготавливается с применением материалов, устойчивых к сульфидному сероводородному растрескиванию под напряжением (NACE MR 0175-97), при этом применяются только материалы, прошедшие успешные испытания в ООО «Газпром ВНИИГАЗ» на возможность их применения для изготовления корпусных деталей трубопроводной арматуры, предназначенной для эксплуатации в условиях месторождений природного газа, содержащего сероводород и диоксид углерода до 25% и более каждого.

При этом мы всегда учитываем особые требований Заказчика по материальному, климатическому, техническому исполнению арматуры. Всегда внимательно прорабатываются все технические вопросы, касательно эксплуатационных характеристик трубопроводной арматуры с учетом свойств рабочей среды, режимов работы, вешних воздействий и нагрузок.

Благодаря данной работе стало возможно производство и применение новых модификаций в конструкциях трубопроводной арматуры, обеспечивающих высокие показатели надежности при эксплуатации.

Наша продукция подвергается контролю качества на всех стадиях производства, каждое изделие подлежит приемо-сдаточным испытаниям, что позволяет добиться высоких показателей надежности, благодаря чему наша продукция имеет значительно больший средний ресурс и, как следствие, гарантийный срок эксплуатации, чем у аналогичной арматуры других производителей.

Для трубопроводов с высокими техническими требованиями к рабочей среде, времени закрытия трубопроводная арматура комплектуются импортными запорными узлами (шарами и седлами), изготовленными в Германии по современным технологиям таких заводов-изготовителей как OHL Gutermuth и Perrin GmbH.

Благодаря индивидуальной разработке присоединительных площадок под приводы как по импортным и отечественным стандартам, так и по чертежам заказчика, запорно-регулирующая арматура нашего производства может комплектоваться всеми типами пневматических, электрических, ручных приводов любых производителей. При этом мы в основном используем продукцию таких мировых лидеров, как Rotork, AUMA, Niwatec, что позволяет существенно расширить их диапазон применения, при времени открытия/закрытия арматуры: от 0,1 секунды.

ВВЕДЕНИЕ

Задвижка - один из самых распространенных видов запорной арматуры. Запирающий элемент перемещается перпендикулярно оси потока рабочей среды. Благодаря малому гидравлическому сопротивлению они используются в разнообразных условиях эксплуатации, в том числе и на магистральных трубопроводах, для которых характерно высокоскоростное движение среды. Еще одним из достоинств является малая строительная длина.

Задвижки не предназначены для регулирования расхода среды, они используются преимущественно в качестве запорной арматуры.

Задвижки изготавливаются по ТУ 3741-003-11912158-2015.

По конструкции запорных органов задвижки подразделяются:

- 1. **Клиновые задвижки** седла в корпусе расположены под небольшим углом друг к другу, а затвор представляет собой устройство в виде клина жесткого, упругого или двухклинового, который в положении «закрыто» плотно входит в пространство между седлами. Тот или иной вид клина выбирается в зависимости от условий эксплуатации.
 - жесткий клин конструкция обеспечивает надежную герметичность запорного органа. Но для этого требуется высокая точность обработки для совпадения углов клина и седел. Недостаток такой конструкции заклинивание затвора и закрытом положении в результате колебания температур.
 - двухдисковый клин запорный орган состоит из двух дисков, расположенных под углом друг к другу, скрепленные между собой. Такая конструкция имеет возможность само установки относительно седел корпуса, поэтому допускаются небольшие погрешности угла наклона при их изготовлении. Двухдисковый клин снижает возможность заклинивания, так же снижает усилие необходимое для закрытия.
 - упругий клин это модификация двухдискового клина, диски которого связаны упругим элементом, способным изгибаться, обеспечивая плотный контакт между уплотнительными поверхностями в положении «закрыто». Достоинства упругого клина не требуется трудоемкая пригонка затвора по корпусу и имеет более простую конструкцию, чем двухдисковый.
- 2. Параллельные задвижки в параллельных задвижка уплотнительные поверхности двух седел в корпусе расположены параллельно друг к другу. Затвор состоит из двух дисков, которые в положении «закрыто» при помощи специального грибка прижимаются к седлам, перекрывая проход рабочей среде через корпус.
- **3.** Шиберные задвижки в данной конструкции запорным органом является плоская металлическая пластина. Такую конструкцию применяют для транспортировки сточных вод, сыпучих веществ и тяжелых нефтепродуктов.

Конструкция задвижек допускает прохождение очистного скребка для удаления скопившегося мусора а также проверки проходимости трубопроводов.

Задвижки применяются для следующих рабочих сред:

- Газообразная углекислый газ, азот, воздух, аммиак, неагрессивный природный газ, газообразные нефтепродукты, газообразные углеводороды.
- **Жидкая** жидкие углеводороды, нефть и нефтепродукты, этиленгликоль, турбинные масла, метанол (CH3OH), растворы хлоридов.

Механические примеси в следующих количествах:

- влага и конденсат до 1500мг/м3;
- механические примеси до 10мг/м3;
- размеры отдельных частиц в примеси до 1мм;
- натрий и калий (в сумме) не более 1мг/м

Задвижки могут изготавливаться в специальном исполнении для:

- агрессивных рабочих сред (с повышенным содержанием сероводорода (H2S) и углекислого газа (CO2) до 6% об.);
- особо агрессивных рабочих сред с повышенным содержанием сероводорода (H2S) и углекислого газа (CO2) до 25% об. и выше.

Для изготовления корпусов таких задвижек применяются марки стали соответствующие ГОСТ Р 53678-2009, ГОСТ Р 53679-2009, СТ ЦКБА 052-2008, NACE MR0175, NACE MR0103, а также прошедшие испытания на стойкость против сероводородного разрушения по методике стандарта NACE TM 0177.

Температурное исполнение задвижек может быть различным, в соответствии с ГОСТ 15150:

- Исполнение Т (-30°С...+60°С)
- Исполнение У(-45°С...+60°С)
- Исполнение УХЛ (-60°С...+60°С)

Присоединение к трубопроводу может быть различным:

- фланцевое;
- под приварку;
- муфтовое;
- цапковое;
- штуцерное.

Фланцы могут быть плоские приварные, приварные встык (воротниковые), свободные на приварном кольце, резьбовые, с впадиной под сварку. Исполнение фланцев (в зависимости от требования Заказчика) может быть как и в соответствии с российскими стандартами ГОСТ 12815-80, ГОСТ 12820-80, ГОСТ 12821-80, ГОСТ 12822-80, ГОСТ Р 54432-2011, так и в соответствии с иностранными стандартами ASME B16.5, ASME B16.47, комплект стандартов DIN, ISO 7005-1:1992.

Управление запорным органом задвижки может быть различным:

- ручное управление (с помощью ручки или редуктора);
- электрический привод;
- пневматический привод;
- гидравлический привод;
- пневмогидравлический привод;

Арматура изготавливается с защитным атмосферостойким покрытием для категорий коррозионной активности атмосферы С1, С2, С3, С4, С5-I по ISO 12944-2:1988, а также в соответствии с утвержденными методиками Заказчика.

ХИМИЧЕСКИЙ СОСТАВ, МЕХАНИЧЕСКИЕ СВОЙСТВА И РЕЖИМЫ ТЕРМООБРАБОТКИ ОСНОВНЫХ МАРОК СТАЛЕЙ ТПА

Вид по-	Обоз	начение					Химичес	кий состав,	%	
лучения заготовки	ГОСТ	Марка мате- риала	С	Mn	Si	Cr	Мо	Ni	Cu	Р
	977-88	20Л	0,15-0,26	0,35-1,08	0,12-0,67	-	-		-	Не более 0,035
	21357-87	20ГЛ	0,15-0,27	1,00-1,50	0,12-0,67	Не более 0,40	-	Не более 0,40	-	Не более 0,020
Отливки	ASTM A352	LCB	Не более 0,30	Не более 1,00	Не более 0,60	Не более 0,50	Не более 0,20	Не более 0,50	Не более 0,30	Не более 0,040
	977-88	12Х18Н9ТЛ	Не более 0,13	0,88-2,20	0,12-0,67	16,5-20,5	-	7,5-11,5	-	Не более 0,035
	977-88	12X18H- 12M3TЛ	Не более 0,13	0,88-2,20	0,12-0,67	15,5-19,5	2,98-4,02	10,5-13,5	-	Не более 0,035
	1050-88	20	0,17-0,24	0,35-0,65	0,12-0,67	Не более 0,25	-			Не более 0,035
	19281-89	09Г2С	Не более 0,14	1,30-1,80	0,12-0,67	Не более 0,30	-	Не более 0,30	-	Не более 0,040
	ASTM A350	LF2	Не более 0,30	0,6-1,35	0,15-0,30	Не более 0,30	Не более 0,12	-	Не более 0,40	Не более 0,035
Прокат	5949-75	12X18H10T	Не более 0,13	Не более 2,05	0,12-0,67	16,8-19,2	-	8,85- 11,15	-	Не более 0,035
	5949-75	10X17H- 13M2T	Не более 0,11	Не более 2,05	0,12-0,67	15,8-19,2	1,9-3,1	11,85- 14,15	-	Не более 0,025
	5949-75	30X13	0,26-0,35	Не более 0,8	0,12-0,67	12,0-14,0	-	-	-	Не более 0,025
	4543-71	40X	0,35-0,45	0,48-0,82	0,12-0,67	0,78-1,15	-	-	-	Не более 0,035
	8479-70	20 гр. IV	0,17-0,24	0,35-0,65	0,12-0,67	Не более 0,25	-			Не более 0,02
	8479-70	09Г2С гр. IV	Не более 0,14	1,30-1,80	0,12-0,67	Не более 0,30	-	Не более 0,30	-	Не более 0,02
Поковки	ASTM A350	LF2	Не более 0,30	0,6-1,35	0,15-0,30	Не более 0,30	Не более 0,12	-	Не более 0,40	Не более 0,035
Пок	25054-84	12X18H10T	Не более 0,13	Не более 2,05	0,12-0,67	16,8-19,2	-	8,85- 11,15	-	Не более 0,035
	25054-84	10X17H- 13M2T	Не более 0,11	Не более 2,05	0,12-0,67	15,8-19,2	1,9-3,1	11,85- 14,15	-	Не более 0,025
	25054-84	30X13	0,26-0,35	Не более 0,8	0,12-0,67	12,0-14,0	-	-	-	Не более 0,025

			Mex	аническ	сие свої	і́ства, не	менее		Твер-			
S	Другие	σв, МПа	σт, МПа	δ, %	Ψ, %	KC +20°C	:U, Дж/см -45°C	₁2 -60°C	дость, НВ	Режимы термичес	кой обработки, °С	
Не более 0,035	-	412	216	22	35	49	30	-	-	Нормализация 880-900	Отпуск 630-650	
Не более 0,020	-	500	300	20	35	-	-	30	143-187	Нормализация 920-940	Охлаждение воздух	
Не более 0,045	-	485- 655	275	22	-	-	60	-	-		аводом изготовите- ем	
Не более 0,030	5*C≤T≤0,7	441	196	25	32	590	-	30	-	Закалка 1050-1100	Охлаждение в масле воде или на воздухе	
Не более 0,030	5*C≤T≤0,6	441	216	25	30	590	-	30		Закалка 1050-1100	Охлаждение в воде	
Не более 0,04	-	410	245	25	35	-	30	-	≤167	Нормализация 900-920	Охлаждение воздух	
Не более 0,045	-	430	295	21	-	-	-	30	167-207	Закалка 930-940	Отпуск 630-640	
Не более 0,040	-	485- 655	250	22	30	-	30	-	197		аводом изготовите- ем	
Не более 0,045	5*C≤T≤0,8	510	196	40	55	-	-	30	-	Закалка 1020-1100	Охлаждение в масле воде или на воздухе	
Не более 0,045	5*C≤T≤0,75	510	215	40	55	-	-	30		Закалка 1050-1100	Охлаждение в масле воде или на воздухе	
Не более 0,045	-	650	440	16	55	78	-	30	131-217	Закалка 1000-1130	Отпуск 660-770	
Не более 0,045	-	980	785	10	45	59	-	-	≤217	Нормализация 860	Отпуск 500	
Не более 0,02	-	470	245	22	48	88	30	-	143-179		аводом изготовите- ем	
Не более 0,02	-	530	275	20	40	-	-	30	156-197		аводом изготовите- ем	
Не более 0,040	-	485- 655	250	22	30	-	30	-	197		аводом изготовите- ем	
Не более 0,045	5*C≤T≤0,8	510	196	40	55	-	-	30	-	Закалка 1020-1100	Охлаждение в масле воде или на воздухе	
Не более 0,045	5*C≤T≤0,75	510	215	40	55	-	-	30		Закалка 1050-1100	Охлаждение в масле воде или на воздухе	
Не более 0,045	-	650	440	16	55	78	-	30	131-217	Закалка 1000-1130	Отпуск 660-770	

ПРЕИМУЩЕСТВА И ОСОБЕННОСТИ КОНСТРУКЦИЙ

ОСОБЕННОСТИ КОНСТРУКЦИЙ КЛИНЬЕВ

Жесткий клин

Наиболее распространенный тип клина. Эта конструкция не только самая простая и прочная, но и самая экономичная среди остальных типов. Преимущества этого клина, что он обладает высокой устойчивостью к коррозии и вибрации. Но так же имеет и ряд недостатков - при больших нагрузках, передаваемых на задвижку через трубопровод, а так же при высоких колебаниях температур может произойти заклинивание или повреждение седел.

Двухдисковый клин

Особенность этой конструкции способность к самоустановке. В этом случае нет необходимости в столь точной обработке уплотняющих поверхностей как с жестким клином. В таких задвижках легче восстановить герметичность завтора при изнашивании уплотнительных поверхностей дисков. По сравнению с жестким клином более дорогостоящая конструкция, но снижено усилие для закрытия задвижки, и ниже вероятность заклинивания.

Упругий клин

Особенностью этой конструкции является способность уплотнительной поверхности изгибаться под действием деформаций седла, что исключает возможность заклинивания затвора при тепловом расширении задвижки в закрытом состоянии. Этот тип клина применяют на трубопроводах с паром и другими средами имеющие высокие температуры.

Параллельный затвор

Задвижки с таким затвором называют параллельными. Основное их преимущество это минимальные значения крутящих моментов, отсутствие риска заклинивания между седлами корпуса. Конструкция седел и дисков является самоочищающейся и препятствует образованию налетов и отложений на уплотнительных поверхностях.

ЗАДВИЖКИ КЛИНОВЫЕ

Задвижки клиновые относятся к запорной арматуре, проход в которых перекрывается поступательным перемещением запорного органа в направлении, перпендикулярном движению потока рабочей среды. В полностью открытом положении задвижки нижняя точка клина расположена выше проходного сечения трубопровода, что обеспечивает беспрепятственный проход рабочей среды, минимизирует потери рабочего давления, увеличивая эффективность транспортировки. Так же позволяет использование в трубопроводах очистного скребка.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Рабочая среда	Неагрессивные, агрессивные и особоагрессивные жидкие и газообразные среды, продукты не нефтяной и газовой промышленности.				
Стандарт	ТУ 3742-001-11912158-2015, API 6D				
Климатическое исполнение по ГОСТ 15150-69	T(-30°С+60°С) У(-45°С+60°С) УХЛ (-60°С+60°С)				
Температура рабочей среды	от -60°C до +225°C				
Класс герметичности затвора по ГОСТ Р 54808-2011	A,B				
Присоединение к трубопро- воду	Фланцевое; под приварку				
Показатели надежности	Срок службы до списания - не менее 40 лет Ресурс до списания - не менее 320 000 часов Вероятность безотказной работы - не менее 0,95 за назна- ченный ресурс				
Назначенные показатели	Назначенный срок службы - 30 лет Назначенный ресурс - 3000 циклов*				

^{*}Изменяется в зависимости от номинального диаметра задвижки

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ:

1 2	3	4	DN	PN	5	6				
1 – тип арматуры			GV - для задвижки клиновой							
2 - способ присоедине	ния к армат	ype	1- фланцевое 2- под приварку 3- муфтовое 4- бугельное 5- быстросъемное							
3 - способ управления			4- ручной привод 5- электропривод							
4 - материал корпуса			1 - углеродистая сталь 2 - нержавеющая сталь							
5 - климатическое испо	олнения		У1 - от -40°С до +60°С УХЛ1 - от -60°С до +60°С							
6 - материал корпуса			Наименование стали из которой изготовлен корпус крана							

Пример условного обозначения:

Задвижка клиновая GV151 DN25 PN16 У1 ст20Л по ТУ 3741-003-11912158-2015.

Задвижка клиновая с фланцевым присоединением, с электроприводом, материал корпуса углеродистая сталь 20Л, DN25 PN16, климатическое исполнение У1

ДИАПАЗОНЫ ДАВЛЕНИЙ И НОМИНАЛЬНЫХ ДИАМЕТРОВ В ЗАВИСИМОСТИ ОТ УСЛОВИЯ ПРИМЕНЕНИЯ

Условия применения	PN16	PN25-40	PN63-100	PN160	PN200-250	PN400
25	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark
32	\checkmark	$\sqrt{}$	\checkmark	\checkmark	\checkmark	$\sqrt{}$
40	\checkmark	$\sqrt{}$	\checkmark	\checkmark	\checkmark	\checkmark
50	\checkmark	$\sqrt{}$	\checkmark	\checkmark	\checkmark	$\sqrt{}$
65	\checkmark	$\sqrt{}$	\checkmark	\checkmark	\checkmark	$\sqrt{}$
80	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$
100	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
125	$\sqrt{}$	V	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
150	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$
200	$\sqrt{}$	J	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
250	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	\checkmark
300	$\sqrt{}$	J	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
400	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$
450	\checkmark	J	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
500	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$
550	$\sqrt{}$	J	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
600	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
650	√	V	V			
700	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
750	√	√	V			
800	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
850	√	√	$\sqrt{}$			
900	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
950	√	V	V			
1000	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
1100	√	√	V			
1200	$\sqrt{}$	$\sqrt{}$				
1300	√					
1400	$\sqrt{}$					
1500	√					
1600	$\sqrt{}$					

ОСНОВНЫЕ ДЕТАЛИ ЗАДВИЖЕК

1. Корпус; 2. Прокладка; 3. Седло; 4. Клин; 5 Шпиндель; 6. Обратное седло; 7. Сальниковое уплотнение; 8. Прижимная втулка; 9. Болт; 10. Гайка; 11. Шайба; 12. Фланец сальника; 13. Шпилька корпуса; 14. Гайка корпуса; 15. Крышка; 16. Тавотница; 17. Резьбовая втулка; 18. Гайка; 19. Штурвал; 20. Гайка; 21. Штифт.

МАТЕРИАЛЬНОЕ ИСПОЛНЕНИЕ СОСТАВНЫХ ЧАСТЕЙ

Nº		зание		Наиг	менование исполн	Эния	
 п/п		Наименование	Углеродистое -45°С+225°С	Сероводородо- стойкое -45°С+225°С	Хладостойкое -60°С+225°С	Нержавеющее -60°С+225°С	Криогенное -196°С+425°С
1	Корпус	Литой	20Л	A352 LCB	20ГЛ	12Х18Н9ТЛ	12Х18Н12М3ТЛ
	Кор	Кованый	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
2	Пр	оокладка	ТРГ, СНП	ТРГ, СНП	ТРГ, СНП	ТРГ, СНП	ТРГ, СНП
3		Седло	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
	Ξ	Литой	20Л	A352 LCB	20ГЛ	12Х18Н9ТЛ	12Х18Н12М3ТЛ
4	Клин	Кованый	20	A350 LF2	09Г2С	12X18H12M2T	
	упл но	аплавка ютнитель- й поверх- ти седла и клина	ЦН-6Л или ЦН- 12М	Стеллит, карбид хрома	ЦН-6Л или ЦН- 12М	ЦН-12М или ЦН-2	ЦН-12М или ЦН-2
5	Ш	Іпиндель	20X13	12X18H10T	20X13	12X18H10T	12X18H10T
6	Обратное 20 седло		A350 LF2	09Г2С	12X18H10T	12X18H12M2T	
7		тьниковое лотнение			ТРГ		
8		ижимная втулка	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
9		Болт	20,25, 35	30XMA 20XH3A		12X18H10T	10X17H13M3T
10		Гайка	35, 35X, 40X	30XMA	20XH3A	12X18H10T	10X17H13M3T
11		Шайба	20, 25, 35	30XMA	20XH3A	12X18H10T	10X17H13M3T
12	Фла	анец саль- ника	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
13	Шпі	илька кор- пуса	20 ,25, 35	30XMA	20XH3A	12X18H10T	10X17H13M3T
14	Гайн	ка корпуса	35, 35X, 40X	30XMA	20XH3A	12X18H10T	10X17H13M3T
	лка	Литой	20Л	A352 LCB	20ГЛ	12Х18Н9ТЛ	12Х18Н12М3ТЛ
15	Крышка	Кованый	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
16	Та	вотница			ГОСТ 19863-74		
17		езьбовая втулка			ЛС59-1		
18		Гайка	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
19	L	Цтурва л	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
20		Гайка	35, 35X, 40X	30XMA	20XH3A	12X18H10T	10X17H13M3T
21		Штифт	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T

ОСНОВНЫЕ ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

PN, Мпа	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	W, мм	т, кг
	15	108	14	95	19	195	120	4
	20	117	19	105	26	210	120	5
	25	127	25	115	33	240	140	7
	32	140	32	135	39	300	180	10
	40	165	32	145	46	395	200	14
	50	178	51	160	58	400	200	19
	65	191	64	180	77	435	200	25
	80	203	76	195	90	515	250	33
	100	229	102	215	110	595	280	49
	125	254	127	245	135	725	280	62
1 4	150	267	152	280	161	780	300	77
1,6	200	292	203	335	222	975	350	123
	250	330	254	405	278	1150	400	188
	300	356	305	460	330	1380	450	288
	350	381	334	520	382	1545	500	385
	400	406	387	580	432	1733	500	500
	450	432	438	640	484	1915	500	601
	500	457	489	710	535	2122	600	764
	600	508	591	840	636	2520	600	1007
	700	610	684	910	726	-	-	-
	800	711	779	1020	826	-	-	-
	900	711	874	1120	926	-	-	-

PN, Мпа	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	W, мм	т, кг
	15	140	14	95	19	198	120	6
	20	152	19	105	26	215	140	7
	25	165	25	115	33	245	160	10
	32	178	32	135	39	306	180	15
	40	190	32	145	46	400	200	21
	50	216	51	160	58	420	200	25
	65	241	64	180	77	446	200	30
	80	283	76	195	90	537	250	48
	100	305	102	230	110	619	280	73
	125	381	127	270	135	722	300	99
2,5	150	403	152	300	161	806	350	130
	200	419	203	360	222	1000	400	208
	250	457	254	425	278	1240	450	334
	300	502	305	485	330	1425	500	450
	350	762	334	550	382	1585	600	704
	400	838	387	610	432	1790	500	923
	450	914	438	660	484	1960	650	1131
	500	991	489	730	535	2158	750	1345
	600	1131	591	840	636	2576	900	2122
	700	1538	684	960	726	-	-	-
	800	1750	779	1075	826	-	-	-

PN, Мпа	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	W, мм	m, кг
	15	140	14	95	19	198	120	6
	20	152	19	105	26	215	140	7
	25	165	25	115	33	245	160	10
	32	178	32	135	39	306	180	15
	40	190	32	145	46	400	200	21
	50	216	51	160	58	420	200	25
	65	241	64	180	77	446	200	30
	80	283	76	195	90	537	250	48
	100	305	102	230	110	619	280	73
	125	381	127	270	135+	722	300	99
4,0	150	403	152	300	161	806	350	130
	200	419	203	375	222	1000	400	208
	250	457	254	445	278	1240	450	334
	300	502	305	510	330	1425	500	450
	350	762	334	550	382	1585	600	704
	400	838	387	610	432	1790	500	923
	450	914	438	680	484	1960	650	1131
	500	991	489	730	535	2158	750	1345
	600	1131	591	840	636	2576	900	2122
	700	1538	684	960	726	-	-	-
	800	1750	779	1075	826	-	-	-

PN, Мпа	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	W, мм	т, кг
	50	300	51	195	58	444	200	32
	65	330	64	220	77	500	250	52
	80	390	76	230	90	558	280	60
	100	450	102	265	110	665	300	107
	125	508	127	310	135	760	350	175
	150	600	152	350	161	868	450	216
10,0	200	660	203	430	222	1073	500	399
	250	787	254	500	278	1263	650	605
	300	838	305	585	330	1600	700	851
	350	889	337	655	382	1705	900	1177
	400	991	387	715	432	1835	900	1513
	500	1194	489	-	535	-	-	-
	600	1397	591	-	636	-	-	-

PN, Мпа	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	W, мм	т, кг
	50	300	51	195	58	500	280	70
	65	419	64	220	77	550	280	110
	80	390	76	230	90	610	300	140
	100	450	102	265	110	702	350	200
	125	508	127	310	135	850	400	258
16,0	150	600	152	350	161	980	500	358
	200	660	203	430	222	1100	650	550
	250	787	254	500	278	1320	700	1000
	300	838	305	585	330	1500	900	1215
	350	1029	322	-	382	1900	900	1600
	400	1140	373	-	432	2050	900	2150

PN, Мпа	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	W, мм	т, кг
	50	368	51	216	58	510	280	70
	65	419	64	244	77	560	300	110
	80	470	76	267	90	620	350	175
	100	546	102	311	110	728	400	270
	125	673	127	375	135	870	450	378
25,0	150	705	144	398	161	1000	500	520
	200	832	192	483	222	1130	750	820
	250	991	239	584	278	1360	900	1560
	300	1130	287	673	330	-	-	-
	350	1257	315	749	382	-	-	-
	400	1384	360	825	432	-	-	-

PN, Мпа	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	W, мм	m, кг
	50	451	42	235	58	530	280	100
	65	508	52	267	77	580	300	150
	80	578	62	305	90	650	350	245
	100	673	87	356	110	750	400	390
40,0	125	794	96	419	135	900	500	550
	150	914	131	483	161	1040	600	780
	200	1022	179	552	222	1150	750	1260
	250	1270	223	673	278	1400	900	2380
	300	1422	265	762	330	-	-	-

ИНФОРМАЦИЯ ПО КОРРОЗИИ МАТЕРИАЛОВ

Коррозионная среда	Углеродистая сталь	Нержавеющая сталь	Пружинная сталь	Коррозионная среда	Углеродистая сталь	Нержавеющая сталь	Пружинная сталь
Ацетатные растворители	D	А	А	Сернистый углерод	В	А	А
Уксусная кислота	С	Α	Α	Хлорированная вода	D	С	С
Ацетон	В	Α	А	Лимонная кислота	С	А	А
Спирты	В	Α	Α	Этиленгликоль	Α	А	Α
Амины	В	А	А	Азотная кислота	С	В	В
Безводный аммиак	В	Α	А	Нитробензол	D	А	В
Трихлорид сурьмы	D	С	В	Нефтепродукты	В	А	В
Битум	В	Α	А	Щавелевая кислота	С	В	В
Хлорид бария	С	А	А	Кислород	А	А	А
Гидроксид бария	С	А	А	Цианид калия	В	В	В
Бензол	В	А	А	Пропан	В	А	А
Бром, сухой газ	D	С	С	Смола	D	Α	А
Пахта	С	А	А	Нитрат серебра	D	А	В
Гидроокись кальция	С	А	А	Гидросульфат натрия	С	В	В
Карболовая кислота	В	А	А	Гидроксид магния	В	А	А
Двуокись углерода	В	А	Α	Ртуть	В	Α	Α
Фтор, газ	С	С	В	Цианистая ртуть	D	В	В
Фреон, сырой	С	В	В	Хлорид никеля	D	В	В
Нефть	А	А	А	Пероксид натрия	С	А	А
Фурфурол	В	В	В	Пар, 400 оС	Α	Α	А
Очищенный газолин	А	А	В	Хлорид серы	С	С	В
Глюкоза	В	А	Α	Диоксид серы	D	В	С
Глицерин	В	А	А	Сернистая кислота	D	В	С
Хлорид водорода	С	С	В	Толуол	Α	А	Α
Сероводород, сухой	В	А	А	Скипидар	В	А	А
Сероводород, сырой	В	А	А	Гидроокись натрия	В	А	А
Йод	D	В	А	Нитрат натрия	В	А	А
Керосин	А	А	А	Диметилбензол	С	А	А
Оксипропионовая кислота	D	В	А	Хлорид цинка	D	В	В

А - Хорошая устойчивость - Наилучший материал для использования

В - Средняя устойчивость - Подходит для использования в большинстве случаев

С - Сомнительная устойчивость - Использовать осторожно

D - Недостаточная устойчивость.

^{*}Данные получены теоретическим путем. Наилучшие варианты использования выбирает конечный пользователь.

Коррозионная среда	A352 LCB (20ГМЛ)	A182 F304 (08X18H10T)	A182 F316 (08X17H- 13M2T)	4130 (30XMA)	Коррозионная среда	A352 LCB (20ГМЛ)	A182 F304 (08X18H10T)	A182 F316 (08X17H- 13M2T)	4130 (30XMA)
Ацетатные растворители	С	А	А	С	Сернистый углерод	С	А	А	В
Уксусная кислота	С	В	А	С	Хлорированная вода	D	D	С	D
Ацетон	В	Α	А	В	Лимонная кислота	С	В	В	В
Спирты	С	Α	А	Α	Этиленгликоль	В	Α	Α	Α
Амины	В	Α	А	В	Азотная кислота	D	С	В	С
Безводный аммиак	В	Α	А	В	Нитробензол	D	В	А	С
Трихлорид сурьмы	D	D	С	D	Нефтепродукты	В	Α	А	В
Битум	С	Α	А	В	Щавелевая кислота	В	В	А	В
Хлорид бария	С	Α	А	В	Кислород	Α	Α	А	Α
Гидроксид бария	С	Α	А	В	Цианид калия	С	В	В	В
Бензол	В	Α	А	Α	Пропан	В	Α	А	В
Бром, сухой газ	D	С	С	D	Смола	С	Α	А	С
Пахта	С	Α	А	В	Нитрат серебра	D	Α	А	С
Гидроокись кальция	С	Α	А	В	Гидросульфат натрия	С	В	В	С
Карболовая кислота	В	Α	А	Α	Гидроксид магния	В	Α	А	В
Двуокись углерода	В	В	А	В	Ртуть	С	Α	А	В
Фтор, газ	С	С	В	С	Цианистая ртуть	D	В	В	С
Фреон, сырой	С	С	В	С	Хлорид никеля	D	С	В	С
Нефть	Α	Α	А	Α	Пероксид натрия	С	Α	А	С
Фурфурол	В	В	В	В	Пар, 400 С	Α	Α	Α	Α
Очищенный газолин	Α	Α	А	Α	Хлорид серы	D	С	С	С
Глюкоза	В	Α	А	В	Диоксид серы	D	В	А	D
Глицерин	В	Α	А	В	Сернистая кислота	D	В	В	С
Хлорид водорода	С	D	С	С	Толуол	В	Α	А	Α
Сероводород, сухой	В	А	А	В	Скипидар	Α	А	А	В
Сероводород, сырой	В	В	А	В	Гидроокись натрия	В	А	А	В
Йод	D	С	В	С	Нитрат натрия	В	В	А	В
Керосин	Α	Α	А	Α	Диметилбензол	С	Α	А	С
Оксипропионовая кислота	D	В	А	С	Хлорид цинка	D	С	В	С

- А Хорошая устойчивость Наилучший материал для использования
- В Средняя устойчивость Подходит для использования в большинстве случаев
- С Сомнительная устойчивость Использовать осторожно
- D Недостаточная устойчивость.

^{*}Данные получены теоретическим путем. Наилучшие варианты использования выбирает конечный пользователь.

СЕРТИФИКАТЫ СООТВЕТСТВИЯ

ОПРОСНЫЙ ЛИСТ НА ЗАДВИЖКИ

		Опрос	ный лист на задвижки	1				
Орг	анизация:							
Адр	ec:							
ФИС) Тактного лица:							
	жность:							
Теле	ефон/факс/ ail:							
Объ	ьект онструкции:							
Tpe	буемое							
Усло	овное значение*							
1	Тип арматуры		□ Клинова	эя		о Ц	Іиберная	
2	Марка ранее установ	зленной арматуры (замена)		·				
3	Условный диаметр D)Ν, мм	Условное давление PN, МПа					
4		Рабочая среда	Жидкость		Газ	3	п Пар	
5		Название рабочей среды					<u>'</u>	
6		Состав рабочей среды						
7	Рабочая среда	Максимальное рабочее давление, МПа						
8		Температура рабочей среды, °С	max min					
9		Сейсмостойкое	До	баллов	по шк	кале MSK-64		
		исполнение	углеродистая стал	1b -		□ A350 LE2 (r	кованый корпус)	
10			Городионая оная				титой корпус)	
11		Материал корпуса	🗆 нержавеющая ста		1	□ A182 F304 (кованый корпус) □ A182 F316 (кованый корпус) □ A351 CF8 (литой корпус) □ A351 CF8M (литой корпус)		
			□ по выбору произв					
12	Технические параметры	Материал запорного органа	□ углеродистая сталь □ нержавеющая сталь Наплавка: □ 13Cr □ ENP □ Stellite □ по выбору производителя					
13		Особые требования к материалам	□ NACE MR □ КСU ≤ □ Класс прочности					
14		Присоединение к	Фланцевое ————			Привар	ное —	
15		трубопроводу	🗆 Другое			<u></u>		
16	1	Класс герметичности	_A _AA _B _C _0	CC D D E	_ EE _	F□G ποΓC	OCT P 54808-2011	
17	1	Рубашка обогрева	□Да			□ Нет		
18	1	Цвет корпуса	Цвет			 Код RAL		
10	-	дост корпуса				.од голь		
19		Строительная длинна	□ FOCT			🗆 Другая		
-	T .	D				D.		
20	Тип и параметры	Ручной	🗆 Ручка / штурвал			□ Редуктор)	

21	привода	Электрический	пОт	 крытие / Закры ^г	тие	ПР	егулиро	овани	16
22		Напряжение питания		~380 B		1210	2. y2141p0		= 24 B
		(переменный ток)					14		
23		Управление приводом	сигна = 24\ = 110 = 220 = Др	/	Аналоговый сигнал □ 420мА □ HART □ Другой		□ Modl □ Field □ Profil □ Друг	ous bus ous ой	
24		Обратная связь (датчик положения)	сигна = 24\ = 110	кретный ал / □DC / □AC DV □DC / □AC DV □DC / □AC yroй	Аналоговый сигнал □ 420мА □ HART □ Другой		Интера Modb Field Profib Друг	bus bus ous	полевой шины
25		Степень взрывозащиты оборудования			□ Exd			□н€	ЭТ
26		Степень пылевлагозащиты оборудования IP	□ IP 6 □ IP 6 □ IP 6	7					
27		Ручной дублер	□ Да						□ Нет
28		Механический указатель положения							□ Нет
29		Кабельные вводы	□ Да						□ Нет
30	Принадлежности	Ответные фланцы		Нет	□ Да	Мат	гериал_		
31		Материал крепёжных деталей							
32		Особые требования к материалам	□ KC	СЕ MR U ≤ асс прочности _					
33		Место установки		Помещение	□ Откр. пло	ощ.		Г	Тодземная
34		Длина штока для подземной установки, мм							
35	Установка	Трубопровод		атериал		пар	раметрі	ы	
36		Температура окружающей среды	min			max	(
37	Дополнительная инф	ормация:							

Подпись ответственного лица	_()
Дата заполнения "" 201г.	

НАШИ ПАРТНЕРЫ

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

460034, РОССИЯ, Г. ОРЕНБУРГ УЛ. ИЛЕКСКАЯ, Д. 1

+7(3532)666-777 +7(3532)661-990

WWW.E-T-A.ORG INFO@E-T-A.ORG

