

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехники и комплексной автоматизации» КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине «Вычислительная математика»

Студент:	Степанов Никита Николаевич
Группа:	PK6-55B
Тип задания:	лабораторная работа
Тема:	Интерполяция в условиях измерений
	с неопределенностью (вариант 5)

Студент	подпись, дата	$\frac{\text{Степанов } H. \ H}{\Phi_{\text{амилия, И.О.}}}$
Преподаватель	подпись, дата	Фамилия, И.О.

Содержание

Интер	поляция в условиях измерений с неопределенностью (вариант 5)	3
1	Цель выполнения лабораторной работы	6
2	Знакомство с интерполяцией	6
	1. Коэффициенты естественного кубического сплайна	6
	2. Значение кубического сплайна и его производной в точке	7
	3. График аппроксимации зависимости уровня поверхности жидкости	
	h(x) от координаты x	7
3	Анализ влияния неопределенностей на результат	
	интерполяции	10
	1. Базисный полином Лагранжа	10
	2. Интерполяционный полином Лагранжа	10
	3. Анализ влияния погрешности на интерполяцию (абсциссы узлов)	10
	4. Анализ влияния погрешности на интерполяцию (ординаты узлов)	14
	5. Анализ влияния погрешности на интерполяцию (кубический сплайн).	17
4	Заключение	26

Интерполяция в условиях измерений с неопределенностью (вариант 5)

Задание

Базовая часть

- 1. Разработать функцию $qubic_spline_coeff(x_nodes, y_nodes)$, которая посредством решения матричного уравнения вычисляет коэффициенты естественного кубического сплайна.
- 2. Написать функции $qubic_spline(x, qs_coeff)$ и $d_qubic_spline(x, qs_coeff)$, которые вычисляют соответственно значение кубического сплайна и его производной в точке x (qs_coeff обозначает матрицу коэффициентов).
- 3. Используя данные в таблице (Рис. 2), требуется построить аппроксимацию зависимости уровня поверхности жидкости h(x) от координаты x с помощью кубического сплайна и продемонстрировать ее на графике вместе с исходными узлами.

Рис. 1. Поверхность вязкой жидкости (серая кривая), движущейся сквозь некоторую среду (например, пористую). Её значения известны только в нескольких точках(красные узлы)

i	1	2	3	4	5	6	7	8	9	10	11
$\overline{x_i}$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
h_i	3.37	3.95	3.73	3.59	3.15	3.15	3.05	3.86	3.60	3.70	3.02

Рис. 2. Значения уровня поверхности вязкой жидкости

Продвинутая часть

- 1. Разработать функцию $l_i(i, x, x_nodes)$, которая возвращает значение i базисного полинома Лагранжа, заданного на узлах с абсциссами x nodes, в точке x.
- 2. Написать функцию $L(x, x_nodes, y_nodes)$, которая возвращает значение интерполяционного полинома Лагранжа, заданного на узлах с абсциссами x_nodes и ординатами y_nodes , в точке x.
- 3. Известно, что при измерении координаты x_i всегда возникает погрешность, которая моделируется случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} . Требуется провести следующий анализ, позволяющий выявить влияние этой погрешности на интерполяцию:
- (a) Сгенерировать 1000 векторов значений $[\tilde{x_1},...,\tilde{x_{11}}]^T$, предполагая, что $\tilde{x_i} = x_i + Z$ соответствует значению в таблице 1 и Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} .
- (b) Для каждого из полученных векторов построить интерполянт Лагранжа, предполагая, что в качестве абсцисс узлов используются значения $\tilde{x_i}$, а ординат h_i из таблицы 1. В результате вы должны иметь 1000 различных интерполянтов.
- (c) Предполагая, что все интерполянты представляют собой равновероятные события, построить такие функции $\tilde{h}_l(x)\tilde{h}_u(x)$, где $\tilde{h}_u(x) < \tilde{h}_u(x)$ для любого $x \in [0;1]$, что вероятность того, что значение интерполянта в точке х будет лежать в интервале $[\tilde{h}_l(x); \tilde{h}_u(x)]$ равна 0.9.
- (d) Отобразить на едином графике функции $\tilde{h}_l(x), \tilde{h}_u(x)$ усредненный интерполянт и узлы из таблицы 1.
- (е) Какие участки интерполянта и почему являются наиболее чувствительными к погрешностям?
- 4. Повторить анализ, описанный в предыдущем пункте, в предположении, что координаты x_i вам известны точно, в то время как измерения уровня поверхности h_i имеют ту же погрешность, что и в предыдущем пункте. Изменились ли выводы вашего анализа?

5. Повторить два предыдущие пункта для случая интерполяции кубическим сплайном. Какие выводы вы можете сделать, сравнив результаты анализа для интерполяции Лагранжа и интерполяции кубическим сплайном?

1 Цель выполнения лабораторной работы

Цель выполнения лабораторной работы – знакомство с интерполяцией в целом (базовая часть), анализ влияния неопределенностей на ее результат (продвинутая часть)

2 Знакомство с интерполяцией

1. Коэффициенты естественного кубического сплайна

Разработаем функцию $qubic_spline_coeff(x_nodes, y_nodes)$, которая посредством решения матричного уравнения вычисляет коэффициенты естественного кубического сплайна. Однако, для большего удобства будем возвращать матрицу размерности (N-1)*4, где N- кол-во узлов интерполяции. Составление и решение матричного уравнения Ac=b и дальнейшее использование коэффицента кубического сплайна c для нахождения других коэффициентов: a,b,d происходит согласно материалу и формулам, предсталенных в лекциях.

```
1 def qubic spline coeff(x nodes, y nodes):
       N = len(x nodes)
2
3
       A = [[0] * N  for i in range (0,N)]
       A[0][0] = 1
4
       A[N-1][N-1] = 1
       a = [y \text{ nodes}[i] \text{ for } i \text{ in range}(0, N)]
 6
       h = np.array([x nodes[i + 1] - x nodes[i] for i in range(0, N-1)])
 7
       b = np.array([0] + [((3 / h[i] * (a[i + 1] - a[i]) - (3 / h[i - 1] * (a[i] - a[i - 1])))) for
            i in range (1, N-1)] + [0])
       for i in range (1, N-1):
9
10
                A[i][i-1] = h[0]
                A[i][i] = 2*(h[0] + h[1])
11
                A[i][i+1] = h[1]
12
13
14
       A inv = np.linalg.inv(A)
       c = A \text{ inv } @ b
15
16
       res = np.zeros((N-1, 4))
17
18
       for i in range (0, N-1):
19
            res[i][0] = a[i]
20
            res[i][1] = ((1 / h[i]) * (a[i+1] - a[i]) - (h[i] / 3) * (c[i+1] + 2*c[i]))
21
22
            res[i][2] = c[i]
23
            res[i][3] = (c[i+1] - c[i]) / (3 * h[i])
24
25
       return res
```

2. Значение кубического сплайна и его производной в точке

Напишем функции $qubic_spline(x, qs_coeff)$ и $d_qubic_spline(x, qs_coeff)$, которые вычисляют соответственно значение кубического сплайна и его производной в точке x (qs_coeff обозначает матрицу коэффициентов). Аналогично п. 1, формула для кубического сплайна берется из лекций, формула для производной кубического сплайна получается, соответственно, посредством дифференцирования формулы для кубического сплайна.

```
S_i(x_i) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 - формула кубического сплайна S_i(x_i)' = b_i + 2c_i(x - x_i) + 3d_i(x - x_i)^2 - формула производной кубического сплайна
```

```
1 def qubic spline(x nodes, x, qs coeff):
 2
 3
      for i in range (0, len(x nodes)-1):
            if (x \text{ nodes } [i] \le x \le x \text{ nodes } [i+1]):
 4
 5
              k = i
 6
              x wk = x
 7
              break
 8
      S i = qs coeff[k][0] + qs coeff[k][1] * (x wk - x nodes[k]) + qs coeff[k][2] * ((x wk
            - \times \operatorname{nodes}[k] *2) + \operatorname{qs} \operatorname{coeff}[k][3] * ((\times \operatorname{wk} - \times \operatorname{nodes}[k]) *3)
      return S i
10
11
12
13 def d qubic spline(x nodes, x, qs coeff):
         for i in range (0, len(x nodes)-1):
14
15
            if (x \text{ nodes } [i] \le x \le x \text{ nodes } [i+1]):
              k = i
16
17
              break
18
         Sd i = qs \operatorname{coeff}[k][1] + 2 * qs \operatorname{coeff}[k][2] * (x - x \operatorname{nodes}[k]) + 3 * qs \operatorname{coeff}[k][3] *
19
              ((x - x \text{ nodes}[k])**2)
         return Sd i
20
```

3. График аппроксимации зависимости уровня поверхности жидкости h(x) от координаты x

В данном задании необходимо, используя данные в таблице (Рис. 2), построить аппроксимацию зависимости уровня поверхности жидкости h(x) от координаты x с помощью кубического сплайна и продемонстрировать ее на графике вместе с исходными узлами. Осуществим все это с помощью раннее созданных функций. При этом сгенирируем 1000 точек на отрезке [0;1] с помощью функции бибилиотеки numpy языка Python.

```
1 \times = \text{np.linspace}(x\_\text{nodes}[0], x\_\text{nodes}[10], 1000)

2 \text{ y} = [\text{qubic\_spline}(x\_\text{nodes}, x[i], \text{res}) \text{ for } i \text{ in range } (0, \text{len}(x))]

3 \text{ plt.subplots}(\text{figsize} = (10, 10))
```

```
4 plt.plot(x, y, color = 'black')
5 plt.scatter(x_nodes, y_nodes, color = 'blue', label = 'Интерполяционные узлы')
6 plt.legend()
7 plt.grid()
```


Рис. 3. Аппроксимация зависимости уровня поверхности жидкости h(x) от координаты x с помощью кубического сплайна. Исходные интерполяционные узлы отмечены синим цветом.

Для большей наглядности, приложу график производной кубического сплайна, построенного на том же наборе точек, что и график кубического сплайна.

Рис. 4. Производная аппроксимации зависимости уровня поверхности жидкости h(x) от координаты x с помощью кубического сплайна. Исходные интерполяционные узлы отмечены синим цветом.

3 Анализ влияния неопределенностей на результат интерполяции

1. Базисный полином Лагранжа

Согласно заданию, разработаем функцию $l_i(i, x, x_nodes)$, которая возвращает значение i-го базисного полинома Лагранжа, заданного на узлах с абсциссами x_nodes , в точке x. Формула для i – базисного полинома Лагранжа представлена в лекциях.

```
1 def l i(i, x, x nodes):
2
       num = 1
       den = 1
3
       for k in range (0, len(x nodes)):
4
           if k == i:
5
6
             pass
 7
           else:
             num = num * (x - x nodes[k])
8
9
10
       for k in range (0, len(x nodes)):
           if k == i:
11
12
             pass
13
             den = den * (x nodes[i] - x nodes[k])
14
15
       I = num / den
       return |
16
```

2. Интерполяционный полином Лагранжа

Согласно заданию, разработаем функцию $L(x, x_nodes, y_nodes)$, которая возвращает значение интерполяционного полинома Лагранжа, заданного на узлах с абсциссами x_nodes и ординатами y_nodes , в точке x. Формула для интерполяционного полинома Лагранжа представлена в лекциях.

```
1 def L(x, x_nodes, y_nodes):
2    L_a = 0
3    for i in range (0,len(x_nodes)):
4    L_a = L_a + l_i(i, x, x_nodes) * y_nodes[i]
5    return L_a
```

- 3. Анализ влияния погрешности на интерполяцию (абсциссы узлов)
- а. Генерация 1000 векторов значений $[\tilde{x_1},...,\tilde{x_{11}}]^T$

Согласно заданию, необходимо: сгенерировать 1000 векторов значений $[\tilde{x_1},...,\tilde{x_{11}}]^T$, предполагая, что $\tilde{x_i}=x_i+Z$ соответствует значению в таблице 1 и Z является

случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} .

Предварительно создадим матрицу необходимой размерности, затем заполним ее, таким образом, что каждый элемент будет иметь вид: $vecs[i][j] = x_nodes[j] + np.random.normal(0, 0.01)$ После этого, транспонируем матрицу "иксов" с погрешностями, т. к. в условии каждый вектор имеет именно столбец координат узлов по оси абсцисс, а не строку.

Библиотечная функция *пр.random.normal* модуля *питру* возвращает образцы нормального распределения, согласно заданным параметрам.

```
vecs = [[0] * 11 for i in range (0,1000)]
for i in range (0,1000):
   for j in range (0, 11):
      vecs[i][j] = x_nodes[j] + np.random.normal(0, 0.01)
   vecs = np.transpose(vecs)
   vecs = np.array(vecs)
```

Интерполянты Лагранжа для каждого из векторов

Необходимо для каждого из раннее полученных векторов (координаты абсцисс с погрешностью, координаты ординат - нет) построить интерполянт Лагранжа. В результате необходимо получить 1000 графиков. Будем это осуществлять с помощью ранее разработанной функции $L(x, x \ nodes, y \ nodes)$.

Рис. 5. 1000 интерполянтов Лагранжа, построенных на узлах $[\tilde{x_1},...,\tilde{x_{11}}]_{i,y_nodes}$

с. Построение функций $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$ (аналитический вид)

Необходимо построить функции $\tilde{h}_l(x)\tilde{h}_u(x)$, где $\tilde{h}_u(x) < \tilde{h}_u(x)$ для любого $x \in [0;1]$, что вероятность того, что значение интерполянта в точке х будет лежать в интервале $[\tilde{h}_l(x); \tilde{h}_u(x)]$ равна 0.9.

Осуществим это с помощью функции percentile модуля numpy. Алгоритм следующий:

- 1. Находим срез значений ординат интерполянтов в конкретной точке
- 2. Находим заданный перцентиль
- 3. Повторяем для каждой точки

В итоге получаем набор значений ординат интерполянтов, которые соответствуют заданному перцентилю. Для решения данной задачи я выбрал перцентиль 5 и, соответственно, 95.

```
p_95 = [np.percentile(interp_lagr[:, i], 95) for i in range (0, 100)]

2 p_5 = [np.percentile(interp_lagr[:, i], 5) for i in range (0, 100)]
```

d. Отображение функций $\tilde{h}_l(x)$, $\tilde{h}_u(x)$ и усредненного интерполянта, а также интерполяционных узлов

Для решения данной задачи, необходимо отобразить функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$ и усредненный интерполянт,и, кроме того, интерполяционные узлы. Функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$ были найдены в прошлом пункте, а усредненный интерполянт находится путем нахождения перцентиля 50. Алгоритм его нахождения аналогичен описанному раннее.

```
mean = [np.percentile(interp_lagr[:, i], 50) for i in range (0, 1000)]

plt.subplots(figsize = (10, 10))

plt.plot(x_int, p_95, label = "h_u(x)")

plt.plot(x_int, p_5, label = "h_l(x)")

plt.plot(x_int, mean, label = "Усредненный интерполянт")

plt.scatter(x_nodes, y_nodes, color = 'blue', label = 'Интерполяционные узлы')

plt.legend()

plt.grid()
```


Рис. 6. Функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$, усредненный интерполянт. Интерполяционные узлы отмечены синим.

е. Какие участки интерполянта и почему являются наиболее чувствительными к погрешностям?

Паразитные осцилляции, возникающие при интерполяции полиномом Лагранжа, очень сильно проявляются на концах отрезка и слабо в середине. Проблема такого поведения, заключается в базисных полиномах Лагранжа, именно ближе к концам отрезка интерполирования "группируются" их экстремумы. Что, собственно, приводит к сильному проявлению паразитных осцилляций.

4. Анализ влияния погрешности на интерполяцию (ординаты узлов)

а. Генерация 1000 векторов значений $[\tilde{y_1},...,\tilde{y_{11}}]^T$

Пункт выполняется аналогично пункту 3a

```
1 vecs1 = [[0] * 11 for i in range (0,1000)]
2 for i in range (0,1000):
3    for j in range (0, 11):
4       vecs1[i][j] = y_nodes[j] + np.random.normal(0, 0.01)
5 vecs1 = np.transpose(vecs1)
6 vecs1 = np.array(vecs1)
```

b. Интерполянты Лагранжа для каждого из векторов

Необходимо для каждого из раннее полученных векторов (координаты абсцисс - нет, координаты ординат с погрешностью) построить интерполянт Лагранжа. В результате необходимо получить 1000 графиков. Решение аналогично пункту 3b.

Рис. 7. 1000 интерполянтов Лагранжа, построенных на узлах x_nodes , $[\tilde{y_1},...,\tilde{y_{11}}]_i$

с. Построение функций $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$ (аналитический вид)

Необходимо построить функции $\tilde{h}_l(x)\tilde{h}_u(x)$, где $\tilde{h}_u(x) < \tilde{h}_u(x)$ для любого $x \in [0;1]$, что вероятность того, что значение интерполянта в точке х будет лежать в интервале $[\tilde{h}_l(x); \tilde{h}_u(x)]$ равна 0.9.

Осуществим это с помощью функции percentile модуля numpy.

Алгоритм дальнейшего нахождения данных фукнций совпадает с алгоритмом 3c

```
1 p_95 = [np.percentile(interp_lagr[:, i], 95) for i in range (0, 100)]
2 p_5 = [np.percentile(interp_lagr[:, i], 5) for i in range (0, 100)]
```

d. Отображение функций $\tilde{h}_l(x)$, $\tilde{h}_u(x)$ и усредненного интерполянта, а также интерполяционных узлов

Для решения данной задачи, необходимо отобразить функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$ и усредненный интерполянт, и, кроме того, интерполяционные узлы. Функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$ были найдены в прошлом пункте, а усредненный интерполянт находится путем нахождения перцентиля 50. Алгоритм его нахождения аналогичен описанному раннее.

```
mean = [np.percentile(interp_lagr[:, i], 50) for i in range (0, 100)]

plt.plot(x_int, p_95, label = "h_u(x)")

plt.plot(x_int, p_5, label = "h_l(x)")

plt.plot(x_int, mean, label = "Усредненный интерполянт")

plt.scatter(x_nodes, y_nodes, color = 'blue', label = 'Интерполяционные узлы')

plt.legend()

plt.grid()
```


Рис. 8. Функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$, усредненный интерполянт. Интерполяционные узлы отмечены синим.

е. Какие участки интерполянта и почему являются наиболее чувствительными к погрешностям? *Изменились ли выводы вашего анализа?

Аналогично пункту 3e, наибольшие паразитные осцилляции наблюдаются ближе к концам отрезка интерполяции. Причина этого - аналогична пункту 3e и заключается в базисных полиномах Лагранжа.

В целом, мои выводы не изменились, однако в данном случае, паразитные осцилляции имеют даже большую видимость, нежели в предыдущем пункте 3е. Это связано с тем, что значения ординат узлов, на которые умножаются базисные полиномы лагранжа, имееют некоторую погрешность из нормального распределения.

5. Анализ влияния погрешности на интерполяцию (кубический сплайн)

1.а. Генерация 1000 векторов значений $[\tilde{x_1},...,\tilde{x_{11}}]^T$

Пункт выполняется аналогично пункту За

```
1 vecs_x_spl = [[0] * 11 for i in range (0,1000)]
2 for i in range (0,1000):
3     for j in range (0, 11):
4         vecs_x_spl[i][j] = x_nodes[j] + np.random.normal(0, 0.01) #x_nodes with errors
5 vecs_x_spl = np.transpose(vecs_x_spl)
6 vecs_x_spl = np.array(vecs_x_spl)
```

1.b. Кубические интерполянты для каждого из векторов

Идейно данный пункт совпадает с пунктом 3 b, однако в данном пункте используется другой способ интерполяции - кубический сплайн. Кроме того, в контексте данной задачи, необходимо модифицировать функцию $qubic_spline(x, qs_coeff)$ и добавить дополнительный аргумент - x_nodes , т. к. каждый из сплайнов строится на своем отрезке $[\tilde{x}_1,...,\tilde{x}_{11}]^T$ Кроме того, т. к. потенциально значения $[\tilde{x}_1,...,\tilde{x}_{11}]^T$ могут располагаться вне отрезка [0;1] или же, не покрывать его полностью, было принято решение в теле функции $qubic_spline(x_nodes, x, qs_coeff)$ учесть этот момент и ввести превентивные меры:

```
1 def qubic spline(x nodes, x, qs coeff):
                         x \text{ wk} = 0 \# if x < x \text{ nodes}[0]
                         k = 0 \# if x < x \mod s[0]
                         for i in range (0, len(x nodes)-1):
                                               if (x \text{ nodes } [i] \le x \le x \text{ nodes } [i+1]):
    6
                                                          k = i
     7
                                                          x wk = x
    8
                                                          break
    9
                         if (x>1):
                                    x \text{ wk} = 1 \# \text{if } x > x \text{ nodes[len(x nodes) - 1]}
10
                                    k = len(x nodes) - 1 \# if x > x nodes[len(x nodes) - 1]
11
                         S = qs = coeff[k][0] + qs = coeff[k][1] * (x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) + qs = coeff[k][2] * ((x = wk - x = nodes[k]) 
                                                 - \times \operatorname{nodes}[k] *2) + \operatorname{qs} \operatorname{coeff}[k][3] * ((\times \operatorname{wk} - \times \operatorname{nodes}[k]) *3)
                         return S i
```

Алгоритм нахождения значений кубического сплайна в каждой точке:

- 1. Для каждого сплайна строится своя матрица коэффициентов, по своему набору узлов абсцисс, узлы ординат общие для каждого сплайна
- $2.\ \ \mathcal{A}$ ля каждого сплайна в каждой промежуточной точке отрезка находится свое значение i-го интерполянта
- 3. После нахождения промежуточных значений для каждого слпайна, строится график, где отображаются все 1000 сплайнов на заданном отрезке

```
1 plt.subplots(figsize = (10, 10))
2
3 x_nod = np.linspace(x_nodes[0], x_nodes[10], 1000)
4 for i in range (0, 1000):
5
6 matrix = qubic_spline_coeff(vecs_x_spl[: , i], y_nodes)
7 S = [qubic_spline(vecs_x_spl[: , i], x_nod[j], matrix) for j in range (0, len(x_nod))]
8 plt.plot (x, S)
9
10 plt.scatter(x_nodes, y_nodes, color = 'blue', label = 'Интерполяционные узлы')
11 plt.legend()
12 plt.grid()
```


Рис. 9. 1000 графиков для Интерполяции кубическим сплайном, построенных на узлах $[\tilde{x_1},...,\tilde{x_{11}}]_i,\ y_nodes$

1.с. Построение функций $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$ (аналитический вид)

Необходимо построить функции $\tilde{h}_l(x)\tilde{h}_u(x)$, где $\tilde{h}_u(x) < \tilde{h}_u(x)$ для любого $x \in [0;1]$, что вероятность того, что значение интерполянта в точке х будет лежать в интервале $[\tilde{h}_l(x); \tilde{h}_u(x)]$ равна 0.9.

Идейно данный пункт схож с пунктом 3.c (аналогичное использование функции np.percentile, однако, т. к. используется другой способ интерполяции, то имеются свои корректировки.

Алгоритм:

- 1. Создаем пустую матрицу, размерности $1000 \ x \ N$, где N кол-во промежуточных точек
- 2. Для каждого сплайна находим свою матрицу коэффициентов
- 3. Заполняем матрицу значений сплайна в точке для каждой промежуточной точки и сплайна. В результате получится матрица, содержащая значение каждого сплайна в каждой промежуточной точке
- 4. Процесс нахождения необходимых значений перцентилей аналогичен пункту 3.c

```
1 x_int = np.linspace(0, 1, 1000)
2 S_res = np.zeros((1000, len(x_int)))
3 for i in range (0, 1000):
4    matrix = qubic_spline_coeff(vecs_x_spl[: , i], y_nodes)
5    for j in range (0, len(x_int)):
6        S_res[i, j] = qubic_spline(vecs_x_spl[:, i], x_int[j], matrix)
7 print(np.shape(S_res))
```

1.d. Отображение функций $\tilde{h}_l(x)$, $\tilde{h}_u(x)$ и усредненного интерполянта, а также интерполяционных узлов

Отобразим на едином графике необходимые функции

```
1 p_95 = [np.percentile(S_res[:, i], 95) for i in range (0, 1000)]
2 p_5 = [np.percentile(S_res[:, i], 5) for i in range (0, 1000)]
3 mean = [np.percentile(S_res[:, i], 50) for i in range (0, 1000)]
4 plt.subplots(figsize = (10, 10))
5
6 plt.plot(x_int, p_95)
7 plt.plot(x_int, p_5)
8 plt.plot(x_int, mean)
9 plt.scatter(x_nodes, y_nodes, color = 'blue', label = 'Интерполяционные узлы')
10 plt.legend()
11 plt.grid()
```


Рис. 10. Функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$, усредненный интерполянт. Интерполяционные узлы отмечены синим.

1.е. Какие участки интерполянта и почему являются наиболее чувствительными к погрешностям? *Изменились ли выводы вашего анализа?

Паразитных осцилляций практически не наблюдается, кроме того, нет тенденции их появления ближе к концам отрезка интерполяции. Причина, почему при интерполяции кубическими сплайнами, паразитных осцилляций меньше чем при интерполяции полиномом Лагранжа, заключается в самом методе аппроксимации - при интерполяции Лагранжа, мы пытаемся аппроксимировать функцию многочленом высокой степени, причем всю функцию сразу. При интерполяции кубическими сплайнами, мы аппроксимируем полиномом заданной степени (не большой, например - в нашем случае: 3) и кроме того, мы аппроксимируем этим полиномом не весь рассматриваемый отрезок, а лишь его часть. То есть вся интерполяция в данном случае получается путем "склеивания" достаточно гладких "кусочков" сплайна, что и приводит к существенно меньшим осцилляциям, ошибкам.

2.
а Генерация 1000 векторов значений $[\tilde{y_1},...,\tilde{y_{11}}]^T$

Пункт выполняется аналогично пункту 5.1.a, за тем исключением, что погрешность

добавляется не к абсциссам, а к ординатам узлов.

```
vecs_y_spl = [[0] * 11 for i in range (0,1000)]
for i in range (0,1000):
    for j in range (0, 11):
        vecs_y_spl[i][j] = y_nodes[j] + np.random.normal(0, 0.01) #y_nodes with errors
vecs_y_spl = np.transpose(vecs_y_spl)
vecs_y_spl = np.array(vecs_y_spl)
print(np.shape(vecs_y_spl)
```

2.b. Кубические интерполянты для каждого из векторов

Пункт аналогичен пункту 5.1.b.

```
plt.subplots(figsize = (10, 10))

x_nod = np.linspace(x_nodes[0], x_nodes[10], 1000)

for i in range (0, 1000):

matrix = qubic_spline_coeff(x_nodes, vecs_y_spl[:, i])

S = [qubic_spline(x_nodes, x_nod[j], matrix) for j in range (0, len(x_nod))]

plt.plot (x, S)

plt.scatter(x_nodes, y_nodes, color = 'blue', label = 'Интерполяционные узлы')

plt.legend()

plt.grid()
```


Рис. 11. 1000 графиков для Интерполяции кубическим сплайном, построенных на узлах $(\mathbf{x} \mod \mathbf{s}), [\tilde{y_1},...,\tilde{y_{11}}]^T$

2.с. Построение функций $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$ (аналитический вид)

Пункт аналогичен пункту 5.1.c.

Отличие лишь в том, что в пункте 5.1.c абсциссы узлов с погрешностями, а в этом пунтке - ординаты узлов с погрешностями.

```
1 x_int = np.linspace(0, 1, 1000)
2 S_res1 = np.zeros((1000, len(x_int)))
3 for i in range (0, 1000):
4  matrix = qubic_spline_coeff(x_nodes, vecs_y_spl[:, i])
5  for j in range (0, len(x_int)):
6  S_res1[i, j] = qubic_spline(x_nodes, x_int[j], matrix)
```

2.d. Отображение функций $\tilde{h}_l(x)$, $\tilde{h}_u(x)$ и усредненного интерполянта, а также интерполяционных узлов

Отобразим на едином графике необходимые функции

```
p_95 = [np.percentile(S_res1[:, i], 95) for i in range (0, 1000)]

p_5 = [np.percentile(S_res1[:, i], 5) for i in range (0, 1000)]

mean = [np.percentile(S_res1[:, i], 50) for i in range (0, 1000)]

plt.subplots(figsize = (10, 10))

plt.plot(x_int, p_95)

plt.plot(x_int, p_5)

plt.plot(x_int, mean)

plt.scatter(x_nodes, y_nodes, color = 'red', label = 'Интерполяционные узлы')

plt.legend()

plt.grid()
```


Рис. 12. Функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$, усредненный интерполянт. Интерполяционные узлы отмечены красным.

2.е. Какие участки интерполянта и почему являются наиболее чувствительными к погрешностям? *Изменились ли выводы вашего анализа?

Выводы аналогично пункту 5.1.e, кроме того, в данном случае паразитных осцилляций еще меньше, что свидельствует о том, что погрешность ординат узлов

менее существенно влияет на итоговую интерполяцию, чем погрешность абсцис
с узлов.

4 Заключение

В ходе данной лабораторной работы было сделано и изучено, а так же проанализировано:

- 1. Интерполяция в простейшем случае, применение интерполяции к реальным практическим задачам (ассоциация с вязкой жидкостью)
- 2. Осуществление интерполяции полиномом Лагранжа и кубическими сплайнами
- 3. Сравнение и анализ одного вида интерполяции при погрешностях разных координат узлов (абсцисс, ординат)
- 4. Сравнение и анализ разных видов интерполяции при погрешностях разных координат узлов (абсцисс, ординат)

В совокупности, данная лабораторная работа позволила лучше проработать материал, связанный с понятиями: аппроксимация, интерполяция, экстраполяция, полином Лагранжа, базисный полином Лагранжа, кубический сплайн, паразитные осцилляции, нормальное распределение, доверительный интервал, перцентиль.

Список использованных источников

- 1. Першин А.Ю. Лекции по курсу «Вычислительная математика». Москва, 2018-2021. С. 140.
- 2. Першин А. Ю. Видео-лекции по курсу "Вычислительная математика". Москва, 2021 https://www.youtube.com/channel/UC69GDhPVLY_7IXn3EhmcH2w
- 3. [Электронный ресурс] Wikipedia https://ru.wikipedia.org/wiki/Квантиль

Выходные данные

Степанов Н. Н.. Отчет о выполнении лабораторной работы по дисциплине «Вычислительная математика». [Электронный ресурс] — Москва: 2021. — 26 с. URL: https://sa2systems.ru: 88 (система контроля версий кафедры PK6)

Постановка: © ассистент кафедры РК-6, PhD А.Ю. Першин Решение и вёрстка: © студент группы РК6-55Б, Степанов Н. Н.

2021, осенний семестр