Ex1.
$$(z^2+1)^2 0 = z-3=0 \quad \forall \quad z^2+1=0$$

E22. P(2) = (2-i)z+i

Q) Silve
$$P(z) = 0$$
 (=) $(2-i)z + i = 0$
 $(z-i)z + i = 0$

$$= -\frac{i}{2-i}z - \frac{i(2+i)}{4+i}z = -\frac{i(2+i)}{4+i}z = -\frac{i}{5}z - \frac{2}{5}z = -\frac{2}{5}z =$$

b) Solve
$$P(z) = 2$$
 and $P(z) = -2 + 2i$.
 $(2-i)_{z+i} = 2 = 2 = \frac{2-i}{2-i} = 1$
 $(2-i)_{z+i} = -2 + 2i = 2 = \frac{-2+i}{2-i} = -1$

Ez3.

Let r>0 and explain why $z^2=-r$ has exactly two solutions given by $z_0=-i\,\mathrm{Tr}$ and $z_1=i\,\mathrm{Tr}$. Recall from polar coordinates that z^2 is given by (r,Tr) . Since multiplication of complex numbers equates to multiplying the moduli and adding arguments, then $z^2=z\cdot z$ is represented by $(\mathrm{Tr},\pm\frac{\pi}{2})$ (or simply apply proposition 152). Therefore z_0 and z_1 are solutions. Uniqueness follows by the fundamental theorem of algebra (2.11).

b) Solve
$$z^2 = 16$$
 and $z^2 = -16$

$$z^2 = 16 \iff z = \pm 4.$$

$$z^2 = -16 \iff z = \pm 4i \quad \text{by} \quad a$$

c) Solve
$$z^2 = 17$$
 and $z^2 = -17$

$$z^2 = 17 \iff z = \pm \sqrt{7}$$

$$z^2 = -17 \iff z = \pm i\sqrt{7} \implies by = a$$
.

d) Solve
$$z^2 = 625$$
 and $z^2 = -625$

$$z^2 = 625 \iff z = \pm 25$$

$$z^2 = -625 \iff z = \pm 25; \quad \text{by a}.$$

e) Let be a real number. Show that the solutions to $z^2 = ib$

lie on the line y=x for b>0 and y=-x for b<0. Assume b>0, then $z^2=be^{\frac{\pi}{2}i}$ and

the solutions amount to $z_s = \sqrt{G} e^{\frac{\pi}{4}i}$ and $z_i = \sqrt{G} e^{\frac{5\pi}{4}i}$

Similarly we get the solutions $z_1 = \sqrt{b} e^{-\frac{\pi}{4}i}$ and $z_3 = \sqrt{b} e^{\frac{3\pi}{4}i}$ for b < 0.

Ez 4. Show that -1+2; is a root of $P(z)=3(z^2+2z+5)$. a) State the second root and factorize P(z).

$$\begin{array}{rcl}
P\left(-1+2i\right) &=& \left(-1+2i\right)^{2} + 2 \cdot \left(-1+2i\right) + 5 \\
&=& 1 - 4i - 4 - 2 + 4i + 5 \\
&=& 0.
\end{array}$$

The second root is -1-2i, thus $P(z) = 3 \left(z - (-1+2i) \right) \left(z - (-1-2i) \right).$

Given that i and 1+i are roots of $G(z) = z^2 - z - 2iz - 1 + i$

Simplify <u>G(2)</u> 2-1-i.

We factor G(2) such that

$$\frac{z^{2}-z-2iz-1+i}{z-1-i}=\frac{\left(z-i\right)\left(z-(1+i)\right)}{\left(z-(1+i)\right)}=z-i.$$

Note that two roots are given for a degree 2 polynamich, and so 2.11 ensures these are all the roots.

Ex5. a) Show $x_0 = 1$ is a root of $P(x) = x^3 - x^2 + x - 1$, and determine G such that $P(x_0) = (x - 1)$ $G(x_0)$.

We just follow 2.6 directly to determine Q. First we have $P(1) = 1^3 - 1^2 + 1 - 1 = 0.$

We have
$$n=3$$
, so $b_{2}=1$ $(b_{n-1}=a_{n})$
 $b_{1}=-1+1\cdot 1=0$ $(b_{k}=a_{k+1}+z_{0}\cdot b_{k+1}, k=n-7,...,0)$
 $b_{0}=1+1\cdot 0=1$
 $b_{0}=1+1\cdot 0=1$
 $b_{0}=1+1\cdot 0=1$

b) Compute all the roots of
$$P(z) = \left(z^6 - z^5 + z^4 - z^3\right) \left(z - 1\right).$$

Write on factorized form and state root multiplicity.

$$P(z) = z^3 \cdot (z-1) Q(z) \cdot (z-1)$$
 using a).

Z=0 is a root of multiplicity 3.

Z=1 is a root of multiplicity 2.

 $z = \pm i$ are roots of multiplicity 1, see G(z). $P(z) = z^3 (z - i) (z + i) (z - i)^2$.

Show that 2 is a double root of P(2)=224-423-162+32.

Let's just do descent. Clearly 2 is a root.

$$\begin{vmatrix}
b_3 = 2 \\
b_2 = -4 + 2 \cdot 2 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
b_1 = 0 + 2 \cdot 0 = 0 \\
b_2 = -16 + 2 \cdot 0 = -16
\end{vmatrix}$$

P(2) = (2-2) Q(2). Now descend a as well.

Note that 2 is indeed a root of Q.

$$b_2 = 2$$

$$b_1 = 0 + 2 \cdot 2 = 4$$

$$b_0 = 0 + 2 \cdot 4 = 8$$

$$\begin{cases}
 R(z) = 2z^2 + 4z + 8.$$

It follows by 2.6 that 2 is a double root of P(Z), since

d) Find all solutions to $R(z)=2z^4-4z^3-16z+32=0$. We've established that 2 is a double root in c). We need only solve R(z)=0. Let's apply proposition 2.24.

$$D = 4^{2} - 4 \cdot 2 \cdot 8 = 16 - 64 = -48 \implies \omega_{o} = \pm i \left[\frac{148}{8} \right]$$

$$Z = \frac{-4 \pm i \sqrt{48}}{2 \cdot 2} = -1 \pm \sqrt{\frac{48}{16}} i = -1 \pm \sqrt{3} i.$$

$$P(z) = (z-2)^2 \cdot (z-(-1+3i)) \cdot (z-(-1-3i))$$

Exb. A polynomial is a function, and it represents a formula for all values given a specific input. In an extended sense this represents all the possible equations.

An equations puts forward a question regarding which input corresponds to a given value.

Anywhere from 0 to n.

- · Anywhere from 0 to n if the degree is even.

 Anywhere from 1 to n if the degree is odd.
- · n roots counting multiplicity.
- Not necessarily, since you could just scale one, and then they're different, but the roots are intact: $P(z) = (z-z_1)^{k_1} \cdot (z-z_2)^{k_2} \cdots (z-z_m)^{k_m} \\ \neq (\cdot (z-z_1)^{k_1} \cdot (z-z_2)^{k_2} \cdots (z-z_m)^{k_m}, \quad c \in C.$

Ex7.
a)
$$P(x) = 25x^4 - 33x^3 + 49x^2 - 97x + 96$$
, $x \in \mathbb{R}$.
 $P'(x) = 100x^3 - 99x^2 + 98x - 97$.

6) Determine
$$f'(t)$$
 and $f'(o)$ given
$$f(t) = t - 3t^3 + 1 + i(t^2 - 5t - 1), \quad t \in \mathbb{R}.$$

$$f'(t) = 1 - 9t + i(2t - 5).$$

$$f'(o) = 1 - 5i.$$

c) Given $g(t) = (i \cdot t^2 + t - i) \cdot ((1 + i)t - i)$, $t \in \mathbb{R}$, there is exactly one solution to g'(t) = -6 - i exist. Find it.

$$g(t) = (i - 1) t^{3} + t^{2} + (1+i) t^{2} - it + (1-i) t - 1$$

$$= -t^{3} + 2t^{2} + t - 1 + i (t^{3} + t^{2} - 2t)$$

$$g'(t) = -3t^{2} + 4t + 1 + i (3t^{2} + 2t - 2)$$

The solution is t = -1.

Show that we can differentiate by treating i as a constant.

$$G(x) = x^2 + 2x - 1 + i(2x^2 - 5x + 1)$$

Let's see that G' behaves nicely in both instances.

Yes these methods agree.

E28.

a) Solve
$$z^2 = 3-4i$$
. (Assuming a solution should be based on ch.2)

$$2^{2} = (x+iy)^{2} = x^{2}-y^{2}+2xyi = 3-4i$$

=>
$$x^2-y^2 = 3$$
 $\wedge 2xy = -4$

Let $y = -\frac{2}{\pi}$ and substitute:

$$\chi^{2} - \left(-\frac{2}{x}\right)^{2} = 3 \ (=) \ \chi^{2} - \frac{4}{x^{2}} = 3 \ (=) \ \chi^{4} - 4 = 3 \ (=) \ ($$

$$\langle = \rangle$$
 $u^2 - 3u^2 - 4 = 0 \langle = \rangle$ $u = \frac{3 \pm 5}{2} = \begin{cases} 4 \\ -1 \end{cases}$

Since $u=x^2$ then -1 is not a solution, as x and y are real numbers. For u=4 we have $x=\pm 2$, and so $y=\mp 1$. The solutions are

6) Compute the roots of $P(z) = z^2 - (1+2i)z - \frac{3}{2} + 2i$. We use 2.24 directly.

$$\mathcal{D} = \left(-(1+2i)\right)^2 - 4 \cdot 1 \cdot \left(-\frac{3}{2} + 2i\right)$$

$$= 1 - 4 + 4i + 6 - 8i = 3 - 4i$$

Since $\omega_o^2 = D$ we can apply a) in the solution.

If we use the formula, then only one solution wo is necessary!

$$z_1 = \frac{1+2i-(2-i)}{2} = -\frac{1}{2} + \frac{3}{2}i$$

$$Z_2 = \frac{1+2i+(2-i)}{2} = \frac{3}{2} + \frac{1}{2}i$$

Ex 9. We're given $\alpha = 3-4i$ and $S = \{z \in C \mid |z| = 5\}.$

as Show that $\alpha \in S$ and illustrate.

$$|\alpha| = \sqrt{3^2 + (-4)^2} = 5$$

b) The polynomial $P(z) = z^2 + \alpha z + b$ has real coefficients and $P(\alpha) = 0$.

State all the roots of P(z) and compute a and b.

Firstly the second root is $\bar{\alpha} = 3 + 4i$. Using the roots we factorize P and compute a and b from there.

$$P(z) = (2 - (3 - 4i)) (2 - (3 + 4i))$$

$$= z^{2} - (3 + 4i)z - (3 - 4i)z + 3^{2} + 4^{2}$$

$$= z^{2} - 6z + 25.$$

So a= -6 and b= 25.

Let $C \in \mathbb{R}$ and $|C| \leq 10$. Show that the roots of $G(z) = z^2 + Cz + 25$

belong to S. Note that $D = c^2 - 100$, so we get if |c| = 100 $z = -c \pm i\sqrt{100 - c^2} = -\frac{c}{2} \pm \sqrt{25 - \frac{c^2}{4}}i$.

We used 3.a) to determine w_0 from $w^2 = c^2 - 100$, since $|C| \le 10$, i.e. $D \le 0$. For |C| = 10 we have $C = \pm 10$, so $z = -\frac{C}{2}$ and $|Z| = |-\frac{C}{2}| = 5$ $\Rightarrow z \in S$.

For 10/<10 We have

$$|z| = \sqrt{\left(-\frac{c}{2}\right)^2 + 25 - \frac{c^2}{4}} = 5 = 7$$
 $z \in S$ as desired.

d) Given the real quadratic equation $Z^{2} + mz + n = 0,$

show that if $-2\sqrt{n} \le m \le 2\sqrt{n}$, then the solutions \ge can be found as the intersection of the vertical line through $-\frac{m}{2}$ and the circle centered at 0 with radius \sqrt{n} .

This is a reformulation of c). The real part of the solution together with the modulus yield the desired result.

We deal with this in two parts. First the extremes. Assume $|m| = 2\sqrt{n}$, then

$$D = m^{2} - 4 \cdot n = 4n - 4n = 0$$

$$\Rightarrow z = -\frac{m}{2} \quad \text{and} \quad |z| = \sqrt{\left(-\frac{m}{2}\right)^{2}} = \sqrt{n}.$$

There's one unique solution of multiplicity 2. The solution is at $-\frac{m}{2}$ and sits on the desired circle.

Now assume that $|m| < 2\sqrt{n}$, then

$$D = m^2 - 4 \cdot n < 0$$
 and $D \in \mathbb{R}$,

so we apply 3.a, i.e. $\omega^2 = D$ and $\omega = \pm i \sqrt{4n - m^2}$. $Z = -\frac{m \pm \sqrt{4n - m^2}}{2} = -\frac{m}{2} \pm \sqrt{n - \frac{m^2}{4}} i \text{, vertical line } -\frac{m}{2}.$ $|Z| = \sqrt{\left(-\frac{m}{2}\right)^2 + \left(\sqrt{n - \frac{m^2}{4}}\right)^2} = \sqrt{n} \text{, radius } \sqrt{n}.$