5. La courbe suivante représente l'évolution du module H de la fonction transfert en fonction de la fréquence réduite $\frac{I}{\epsilon}$

- 5.1 Préciser la nature du filtre.
- **5.2** Déterminer la fréquence de résonnance f_0 ainsi que la largeur Δf de la bar passante à –3 dB du filtre en fonction de la fréquence d'échantillonnage
- **6.** À l'aide de l'expression de $\underline{H}(j\omega)$ donnée à la question 4, préciser l'expressi du déphasage $\varphi(\omega) = \arg[\underline{H(j\omega)}]$, introduit par ce filtre.
 - **6.1** Représenter l'évolution de φ en fonction de la fréquence réduite $\frac{t}{t}$.
 - 6.2 Pourquoi un tel filtre est-il dit « à phase linéaire » ?

8 Passe-bas numérique et moyenneur (d'après sujet d'examen)

Un microcontrôleur gère les informations issues d'un capteur de pression é de générer un nombre e, proportionnel à la pression mesurée. Pour extraire composante continue et éliminer le bruit de quantification, un filtrage numéric est appliqué à cette séquence de mesures {e,}. En sortie de ce filtre, on disp alors d'une séquence de nombres $\left\{s_{\mathbf{f}_{\mathbf{h}}}\right\}$. Dans un second temps, une moyenne \mathbf{f} mesures filtrées $s_{
m f}$ est ensuite réalisée avant de transmettre la séquence $\{s_{
m g}\}$

- 1. Quel est le type de filtre qui permet l'extraction de la composante continue
- $= \frac{1}{1+j\frac{\omega}{C}}$ d'un filtre analogique **2.** On veut transposer la transmittance $\underline{T}(j\omega) = -$

numérique T(z). On donne : $\omega_{\rm C} = 2\pi f_{\rm C}$ avec $f_{\rm C} = 5$ Hz.

- **2.1** On prend l'équivalence de la dérivée $j\omega \leftrightarrow \frac{1-z^{-1}}{T_E}$. Donner l'expression de la transmittance T(z) et montrer qu'elle peut se mettre sous la forme $T(z) = \frac{T_0}{1 - Y_0 z^{-1}}$. Identifier T_0 et Y_0 .
- **2.2** On donne : $T_0 = 5.910^{-2}$ et $Y_0 = 0.94$. Vérifier la stabilité du filtre numérique.
- 2.3 Établir l'algorithme qui permet au calculateur de relier la séquence de sortie filtrée $\{s_t\}$ à celle d'entrée $\{e_n\}$. Vérifier la relation $s_t=ae_n+bs_{t_n}$, exprimer a et b en fonction de T_0 et Y_0 et donner leur valeur numérique.
- 3. Le microcontrôleur permet également de faire une moyenne sur les dernières valeurs de $s_{\rm t}$. On donne ci-dessous les trois symboles représentant les fonctions élémentaires d'un programme :

Sommateur

Retard-Mémorisation

Multiplication par la constante a

3.1 À partir de la structure de l'algorithme représentée ci-dessous, établir l'expression de $s_{{}_{\! h}}$ en fonction des valeurs de $s_{{}_{\! h}}$, $s_{{}_{\! h_{\!-\!1}}}$, $s_{{}_{\! h_{\!-\!2}}}$, ...

3.2 Sachant que l'entrée $s_{\rm f}$ est nulle pour n < 0, compléter le tableau suivant en y reportant les valeurs prises par s_n correspondant à la réponse de l'algorithme à l'entrée s_t.

n	0	1	2	3	4	5	6
S _{fn}	2,05	1,98	2,11	1,93	1,97	2,07	1,89
5	0,41						

9 Caractérisation d'un filtre récursif

Un filtre numérique est caractérisé par sa fonction de transfert 0,2*z* $H(z) = \frac{0.22}{z^2 - 1.3z + 0.36}.$

- 1. Vérifier que H(z) s'écrit encore $H(z) = \frac{0.2z}{(z-0.4)(z-0.9)}$, et discuter de la stabilité
- 2. Déterminer son équation de récurrence et représenter le schéma bloc correspondant.