Final project: Scalable Log Determinants for Gaussian Process Kernel Learning

A. Bauman, F. Loginov, K. Nazirkhanova, K. Pirov, A.Savinov

Skoltech

December 20, 2018

What method was improved?

Regression for Gaussian Processes In GP we have to deal with symmetric positive semi-definite covariance matrix \widetilde{K} :

$$\log |\widetilde{K}| = \mathsf{tr}(\log(\widetilde{K}))$$

How to estimate trace

Stochastic trace estimation

$$\operatorname{tr}(f(A)) \approx \frac{n}{n_{\nu}} \sum_{l=1}^{n_{\nu}} v_{l}^{T} f(A) v_{l}$$

Methods

- Chebyshev
- 2 Lanczos
- Taylor series

Chebyshev

z - probe vector, c_i - coefficients of Chebyshev decomposition

$$B = \frac{2\widetilde{K}}{\lambda_{max} - \lambda_{min}} - \frac{\lambda_{max} + \lambda_{min}}{\lambda_{max} - \lambda_{min}} I$$

$$w_0 = z, w_1 = Bz, w_{j+1} = 2Bw_j w_{j-1} \text{ for } j \ge 1$$

$$\log |\widetilde{K}| \approx \mathbb{E} \left[\sum_{j=0}^m c_j z^T w_j \right]$$

Chebyshev

$$\begin{split} \frac{\partial w_0}{\partial \theta_i} &= 0, \quad \frac{\partial w_1}{\partial \theta_i} = \frac{\partial B}{\partial \theta_i} z, \\ \frac{\partial w_{j+1}}{\partial \theta_i} &= 2 \left(\frac{\partial B}{\partial \theta_i} w_j + B \frac{\partial w_j}{\partial \theta_i} \right) - \frac{\partial w_{j-1}}{\partial \theta_i} \text{ for } j \geq 1 \\ \frac{\partial}{\partial \theta_i} \log |\widetilde{K}| &\approx \mathbb{E} \left[\sum_{j=0}^m c_j z^T \frac{\partial w_j}{\partial \theta_i} \right] \end{split}$$

Lanczos

$$\widetilde{K}Q_{m} = Q_{m}T + \beta_{m}q_{m+1}e_{m}^{T}$$

$$z^{T}\log(\widetilde{K})z \approx e_{1}^{T}\log(\|z\|^{2}T)e_{1}$$

$$\widehat{g} = Q_{m}(T^{-1}e_{1}\|z\|) \approx \widetilde{K}^{-1}z$$

$$tr(\widetilde{K}^{-1}(\frac{\partial \widetilde{K}}{\partial \theta_{i}})) = \mathbb{E}\left[(\widetilde{K}^{-1}z)^{T}\frac{\partial \widetilde{K}}{\partial \theta_{i}}z\right]$$

One more idea

$$\log(A)=2^k\log(A^{\frac{1}{2^k}})$$

$$\log(I-W)=-\sum_{n=1}^\infty\frac{W^n}{n}, \text{if }||W||<1$$
 Due to $\sqrt[n]{n}\to 1$

bue to $\sqrt{n} = 71$

$$W=I-(A^{\frac{1}{2}})^k$$

And $A^{1/2} o \text{Newton}$

Results

Results

Results

Accuracy and Stability

Comparison with built in function

Thank you for your attention! Q & A

References

- Kun Dong, David Eriksson, Hannes Nickisch, David Bindel, Andrew Gordon Wilson, Scalable Log Determinants for Gaussian Process Kernel Learning, Neural Information Processing Systems Conference 2017, https://arxiv.org/pdf/1711.03481.pdf
- Geoff Pleiss, Jacob R. Gardner, Kilian Q. Weinberger, Andrew Gordon Wilson, Constant-Time Predictive Distributions for Gaussian Processes, 2018, https://arxiv.org/abs/1803.06058