CS4495/6495 Introduction to Computer Vision

9A-L3 Mean shift segmentation

Slides originally by Y. Ukrainitz & B. Sarel

Mean shift algorithm

The mean shift algorithm seeks *modes* or local maxima

of density in the feature space

Input image

Feature space (L*u*v* color values)

Mean shift in space Region of interest Center of mass Mean Shift vector

Mean shift in space Region of interest Center of mass

Mean Shift vector

Mean shift in space Region of interest Center of mass Mean Shift

Mean Shift vector

Mean shift in space

Region of interest

Center of mass

Mean Shift vector

Mean shift in space Region of interest Center of mass Mean Shift vector

Mean shift in space Region of interest Center of mass

Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc.)
- Initialize windows at individual feature points (pixels)
- Perform mean shift for each window (pixel) until convergence
- Merge windows (pixels) that end up near the same "peak" or mode

Mean shift segmentation results

Dorin Comaniciu & Peter Meer, PAMI 2002

Mean shift segmentation results

Mean shift segmentation results

Dorin Comaniciu & Peter Meer, PAMI 2002

Mean shift

Pros:

- Automatically finds basins of attraction
- One parameter choice (window size)
- Does not assume (image) shape on clusters
- Generic technique
- Find multiple modes

Mean shift

Cons:

- Selection of window size
- Does not scale well with dimension of feature space

Segmentation as clustering

Color, brightness, position alone are not enough to distinguish all regions...

Segmentation as clustering

Grouping pixels based on texture similarity

Filter bank of 24 filters

Feature space: Filter bank responses (e.g., 24D)

Texture representation example

Kristen Grauman

Texture features

- Find "textons" by clustering vectors of filter bank outputs
- Describe texture in a window based on its texton histogram

Image

Texton map

Image segmentation example

Texture-based regions

Color-based regions

Kristen Grauman