MATH2349 Semester 1, 2018

Assignment 3

Vamika Pardeshi-s3701024, Ritwick Dev-s3702041

Required packages

Hide

```
library(readr)
                   #Useful for importing data
library(readxl)
                   #Useful for importing excel sheets
library(foreign)
                   #Useful for importing SPSS, SAS, STATA etc. data files
library(gdata)
                   #useful for providing various tools for data manipulation
library(rvest)
                   #Useful for scraping HTML data
library(tidyr)
                   #Useful for tidying data
                   #Useful for data manipulation
library(dplyr)
library(deductive) #Useful for deductive data correction and Imputation
library(validate) #Useful for data validation
library(Hmisc)
                   #Useful in recoding missing values
library(stringr)
                   #Useful for sampling character vectors for string manipulations
library(lubridate) #Useful for working with dates and times
library(outliers) #Useful in removing outliers
                   #Useful for multivariate normality tests
library(MVN)
library(infotheo) #Useful for implementing measures of information theory based on several e
ntropy estimators
library(MASS)
                   #Useful to support Venables and Ripley
library(caret)
                   #Useful for model training process for complex regression & classification
problems
library(mlr)
                   #Useful for providing unified interface for machine learning tasks in R
library(ggplot2)
                   #Useful for creating graphics based on 'The Grammar of graphics'
library(knitr)
                   #Useful for creating nice tables
                   #Useful in creating functions
library(raster)
                   #Useful for Descriptive Statistics
library(mosaic)
```

Executive Summary

The two datasets 'races' and 'runs' have been imported to R and then merged to form Racing_data. Furthermore, inspected the variable and the data structure of this combined dataset. Factorized the horse country variable and changed its labels. Since, the dataset was already following the tidy data principles, there was no need to tidy steps performed. Four new columns have been mutated, i.e,

- **1.Ratio of win to place**-to check the probability of the horse in a particular race. Higher the Ratio of win to place, higher will be the chances of the horse to win the race. Although other factors also play a crucial role in deriving a probability of the winning horse like the speed of the horse, track condition, jockey weight, trainer of the horse and handicapped weights on the horse etc.
- **2.Horse weight**-to get the measured weight of the horse subtracted the actual weight (jockey weight+ handicapped weight on the horse) from the declared weight (horse weight+ jockey weight+ handicapped weight on the horse).
- **3.Ratio of horse weight to actual weight-**to calculate the proportion of the horse weight to the actual weight in a particular race, this affects the speed of the horse.
- **4.Average horse speed**-to get the average speed of the horse in a race with respect to the length of the race track.

After this, scanned for the NA values and inconsistencies which were removed from the data. Although, many numeric columns are present in the dataset, but performing outlier treatment for all those columns is not relevant, as few of these columns are ID's of a race, horse, jockey and trainer etc. Detected and removed the outlier, firstly plotted a boxplot for the length behind column to determine the length by which the horse is lagging behind from the winning horse. Next, in order to compare a quantitative variable with a qualitative variable, bivariate boxplot was plotted for horse weight and going (track condition). In addition to that, a scatter plot was plotted for horse weight and actual weight variables. Moreover, a multivariate outlier treatment is performed on a particular class of the race with horse weight and actual weight variables. Lastly, tranformed the data by using Log and Square root transformation for reducing the skewness, on the variables ratio of horse to actual weight and declared weight, respectively.

Data

- The datasets contain data of thoroughbred horse racing in Hong Kong. Horse racing being a massive business in Hong Kong, resulting in betting pools bigger than all racetracks in US combined.
- There are two datasets i.e races and runs, presented in CSV format. * races.csv represents data on condition of each race that includes distance, track condition, distance and dividends paid. Whereas, runs.csv represents data of each horse running in each of the races mentioned in races.csv.
- In runs.csv, each line describes the characteristics of one horse run, in one of the races given in races.csv, and it contains the following variables-
 - 1. race id- unique identifier for the race
 - 2. horse_no- the number assigned to this horse, in the race
 - 3. horse id- unique identifier for this horse
 - 4. result- finishing position of this horse in the race
 - **5. won-** whether horse won (1) or otherwise (0)
 - 6. lenghts_behind- finishing position, as the number of horse lengths behind the winner
 - 7. horse_age- current age of this horse at the time of the race
 - 8. horse country- country of origin of the horse
 - 9. horse_type- sex of the horse, e.g. Gelding, Mare, Horse, Rig, Colt, Filly
 - 10.horse rating-rating number assigned by HKJC to this horse at the time of the race
 - 11.declared_weight- declared weight of the horse and jockey, in lbs
 - **12.actual weight-** actual weight carried by the horse, in lbs
 - 13.draw- post position number of the horse in this race
 - **14.finish** time- finishing time of the horse in this race (in sec)
 - 15.win_odds- win odds for this horse at start of race
 - **16.place odds-** place odds for this horse at start of race (finishing in 1st, 2nd or 3rd position)
 - 17.trainer id- unique identifier of the horse's trainer at the time of the race
 - 18.jockey_id- unique identifier of the jockey riding the horse in this race
- In races.csv, the condition of an individual race is described in each line, and it contains the following variables-
 - 1. race_id- unique identifier for the race
 - 2. date- date of the race, in YYYY-MM-DD format.
 - **3. venue-** a 2-character string, representing which of the 2 race courses this race took place at: ST = Shatin,HV = Happy Valley
 - 4. race_no- race number of the race in the day's meeting
 - 5. config- race track configuration, mostly related to the position of the inside rail
 - **6. surface-** a number representing the type of race track surface: 1 = dirt, 0 = turf
 - 7. distance- distance of the race, in metres
 - 8. going- track condition
 - 9. horse_ratings- range of horse ratings that may participate in this race
 - 10.prize- the winning prize, in HK Dollars
 - 11.race_class- a number representing the class of the race

```
12.place_combination1- placing horse no. 1st
```

13.place_combination2- placing horse no. 2nd

14.place_combination3- placing horse no. 3rd

15.place_dividend1- placing dividend paid (for place_combination1)

16.place dividend2- placing dividend paid (for place combination2)

17.place_dividend3- placing dividend paid (for place_combination3)

18.win_combination1- winning horse number

Source: https://www.kaggle.com/gdaley/hkracing

https://ev.turnitin.com/app/carta/en_us/?student_user=1&lang=en_us&o=955457124&u=1072354159

Read/Import Data

- Data has been imported to R, by using read.csv() function, from the package readr ,using the argument stringsAsFactors = FALSE as by default read.csv converts strings to factors.
- · Imported datasets are saved as Race and Run.
- Race and Run are then merged using the key variable race_id.
- Using the generic function left_join, Race is added to the Run dataframe and the combined dataframe is renamed as Racing_data.
- Validated the first few rows of the dataframes using the generic function head().

Hide

getwd()

[1] "C:/Users/Ritwick Dev/Documents/Data Preprocessing"

Hide

setwd("C:\\Users\\Ritwick Dev\\Documents\\Data Preprocessing")
Race <- read.csv("races.csv", stringsAsFactors = FALSE)
Run <- read.csv("runs.csv", stringsAsFactors = FALSE)
head(Race)</pre>

	_	date <chr></chr>	ve <chr></chr>	race co <int> <c< th=""><th>nfig surface hr> <int></int></th><th></th><th>going <chr></chr></th><th>horse_ratings <chr></chr></th></c<></int>	nfig surface hr> <int></int>		going <chr></chr>	horse_ratings <chr></chr>
1	0	2/06/1997	ST	1 A	0	1400	GOOD TO FIRM	40-15
2	1	2/06/1997	ST	2 A	0	1200	GOOD TO FIRM	40-15
3	2	2/06/1997	ST	3 A	0	1400	GOOD TO FIRM	60-40
4	3	2/06/1997	ST	4 A	0	1200	GOOD TO FIRM	120-95
5	4	2/06/1997	ST	5 A	0	1600	GOOD TO FIRM	60-40
6	5	2/06/1997	ST	6 A	0	1200	GOOD TO FIRM	60-40

	race_id <int></int>	horse <int></int>	horse_id <int></int>	result <int></int>		lengths_behind <dbl></dbl>		horse_country <chr></chr>	horse_t <chr></chr>
1	0	1	3917	10	0	8.00	3	AUS	Gelding
2	0	2	2157	8	0	5.75	3	NZ	Gelding
3	0	3	858	7	0	4.75	3	NZ	Gelding
4	0	4	1853	9	0	6.25	3	SAF	Gelding
5	0	5	2796	6	0	3.75	3	GB	Gelding
6	0	6	3296	3	0	1.25	3	NZ	Gelding
6 ו	rows 1-1	0 of 18 colu	mns						
4									•

Racing_data <- Run %>% left_join(Race , by = "race_id")
head(Racing_data)

1	race_id	horse	horse_id	result		lengths_behind	horse_age	horse_country	horse_
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<chr></chr>	<chr></chr>
1	0	1	3917	10	0	8.00	3	AUS	Gelding
2	0	2	2157	8	0	5.75	3	NZ	Gelding
3	0	3	858	7	0	4.75	3	NZ	Geldin
4	0	4	1853	9	0	6.25	3	SAF	Geldin
5	0	5	2796	6	0	3.75	3	GB	Gelding
6	0	6	3296	3	0	1.25	3	NZ	Geldin
6 rc	ows 1-1	0 of 35 colu	mns						

Understand

- The base R function class() returned the \$names, \$row_names and \$class of Racing_data.
- The base R function length() is used to check the number of columns in Racing_data dataframe.
- Using the base R function dim() returned the dimensions of the dataframe Racing data.
- Generic function str() is used to see the detailed structure of the dataframe Racing_data.
- Using the base R function factor() changed the labels for the column horse_country.
- Moreover, ordered the levels using the argument ordered=TRUE for Racing_data\$horse_country.
- levels() is used to check levels for the column horse_country .
- dmy() function is from the package lubridate is used to change the datatype from character to date.

Hide

class(Racing_data)	
[1] "data.frame"	
	Hide
length(Racing_data)	
[1] 35	
	Hide
<pre>dim(Racing_data)</pre>	
[1] 79447 35	
	Hide
str(Racing_data)	

```
'data.frame': 79447 obs. of 35 variables:
$ race id
                : int 0000000000...
$ horse no
                 : int 1 2 3 4 5 6 7 8 9 10 ...
$ horse id
                 : int 3917 2157 858 1853 2796 3296 911 2170 1730 2998 ...
$ result
                : int 10 8 7 9 6 3 12 1 13 14 ...
$ won
                 : int 000000100...
$ lengths_behind : num 8 5.75 4.75 6.25 3.75 1.25 9.5 0 9.75 999 ...
                : int 3 3 3 3 3 3 3 3 3 ...
$ horse age
                : chr "AUS" "NZ" "NZ" "SAF" ...
$ horse_country
$ horse type
                : chr "Gelding" "Gelding" "Gelding" "...
$ horse_rating
                : int 60 60 60 60 60 60 60 60 60 ...
$ declared weight : num 1020 980 1082 1118 972 ...
$ actual weight : int 133 133 132 127 131 127 123 128 123 125 ...
                 : int 7 12 8 13 14 5 11 2 6 9 ...
$ draw
$ finish time
                : num 83.9 83.6 83.4 83.6 83.2 ...
                 : num 9.7 16 3.5 39 50 7 99 12 38 39 ...
$ win_odds
$ place odds
                : num 3.7 4.9 1.5 11 14 1.8 28 3.6 13 12 ...
$ trainer id
                : int 118 164 137 80 9 54 55 47 75 109 ...
              : int 2 57 18 59 154 34 149 183 131 145 ...
$ jockey_id
$ date
                : chr "2/06/1997" "2/06/1997" "2/06/1997" "2/06/1997" ...
                : chr "ST" "ST" "ST" "ST" ...
$ venue
                : int 111111111...
$ race no
$ config
                : chr "A" "A" "A" "A" ...
               : int 0000000000...
$ surface
$ distance
               "GOOD TO FIRM" "GOOD TO FIRM" "GOOD TO FIRM" "GOOD TO FIRM" ...
$ prize
                 5000 ...
                : int 5555555555...
$ race class
$ place combination1: int  8 8 8 8 8 8 8 8 8 8 ...
$ place_combination2: int 11 11 11 11 11 11 11 11 11 11 ...
$ place_combination3: int 6 6 6 6 6 6 6 6 6 6 ...
$ place dividend1 : num 36 36 36 36 36 36 36 36 36 36 ...
$ place_dividend2 : num 25 25 25 25 25 25 25 25 25 25 ...
$ place_dividend3 : num  18 18 18 18 18 18 18 18 18 18 ...
$ win_combination1 : int  8 8 8 8 8 8 8 8 8 8 ...
```

```
attributes(Racing_data)
```

\$class
[1] "data.frame"

\$row.names										
[1] 1 2 3 4 5 6 7	8	9	10	11	12	13	14	15	16	17
18 19 20 21 22 23 24 25										
[26] 26 27 28 29 30 31 32	33	34	35	36	37	38	39	40	41	42
43 44 45 46 47 48 49 50 [51] 51 52 53 54 55 56 57	58	59	60	61	62	63	64	65	66	67
68 69 70 71 72 73 74 75	50	22	00	01	02	05	04	05	00	07
[76] 76 77 78 79 80 81 82	83	84	85	86	87	88	89	90	91	92
93 94 95 96 97 98 99 100										
[101] 101 102 103 104 105 106 107	108	109	110	111	112	113	114	115	116	117
118 119 120 121 122 123 124 125	422	124	425	126	427	420	120	4.40	444	4.42
[126] 126 127 128 129 130 131 132 143 144 145 146 147 148 149 150	133	134	135	136	13/	138	139	140	141	142
[151] 151 152 153 154 155 156 157	158	159	160	161	162	163	164	165	166	167
168 169 170 171 172 173 174 175							_0.	_05		_0,
[176] 176 177 178 179 180 181 182	183	184	185	186	187	188	189	190	191	192
193 194 195 196 197 198 199 200										
[201] 201 202 203 204 205 206 207	208	209	210	211	212	213	214	215	216	217
218 219 220 221 222 223 224 225	222	224	225	226	227	220	220	240	241	242
[226] 226 227 228 229 230 231 232 243 244 245 246 247 248 249 250	233	234	235	236	237	238	239	240	241	242
[251] 251 252 253 254 255 256 257	258	259	260	261	262	263	264	265	266	267
268 269 270 271 272 273 274 275										
[276] 276 277 278 279 280 281 282	283	284	285	286	287	288	289	290	291	292
293 294 295 296 297 298 299 300										
[301] 301 302 303 304 305 306 307	308	309	310	311	312	313	314	315	316	317
318 319 320 321 322 323 324 325 [326] 326 327 328 329 330 331 332	333	334	225	336	227	338	330	340	2/1	342
343 344 345 346 347 348 349 350	223	224	222	330	337	226	229	540	241	J42
[351] 351 352 353 354 355 356 357	358	359	360	361	362	363	364	365	366	367
368 369 370 371 372 373 374 375										
[376] 376 377 378 379 380 381 382	383	384	385	386	387	388	389	390	391	392
393 394 395 396 397 398 399 400										
[401] 401 402 403 404 405 406 407	408	409	410	411	412	413	414	415	416	417
418 419 420 421 422 423 424 425 [426] 426 427 428 429 430 431 432	433	434	435	436	437	438	439	440	441	442
443 444 445 446 447 448 449 450	433	737	433	430	437	430	433	440	771	772
[451] 451 452 453 454 455 456 457	458	459	460	461	462	463	464	465	466	467
468 469 470 471 472 473 474 475										
[476] 476 477 478 479 480 481 482	483	484	485	486	487	488	489	490	491	492
493 494 495 496 497 498 499 500			-10	-44	-10	-40	-44	-4-	-46	-4-
[501] 501 502 503 504 505 506 507 518 519 520 521 522 523 524 525	508	509	510	511	512	513	514	515	516	51/
[526] 526 527 528 529 530 531 532	533	534	535	536	537	538	539	540	541	542
543 544 545 546 547 548 549 550								5.0	J	J
[551] 551 552 553 554 555 556 557	558	559	560	561	562	563	564	565	566	567
568 569 570 571 572 573 574 575										
[576] 576 577 578 579 580 581 582	583	584	585	586	587	588	589	590	591	592
593 594 595 596 597 598 599 600	600	600	C10	C11	C12	C12	C1 4	C1 F	C1 C	C17
[601] 601 602 603 604 605 606 607 618 619 620 621 622 623 624 625	800	609	ρтΩ	ρΙΙ	ρΙΖ	613	614	ρ1 2	ρΤρ	ρΙ/
[626] 626 627 628 629 630 631 632	633	634	635	636	637	638	639	640	641	642
643 644 645 646 647 648 649 650	- 	·		- 	- - ·	•		•	-	
[651] 651 652 653 654 655 656 657	658	659	660	661	662	663	664	665	666	667

//	2018	MATH234	19 Semester	1, 2018			
	668 669 670 671 672 673 674 675						
	[676] 676 677 678 679 680 681 682	683 6	684 685	686 687	688 689	690 69	91 692
	693 694 695 696 697 698 699 700						
	[701] 701 702 703 704 705 706 707	708 7	709 710	711 712	713 714	715 71	.6 717
	718 719 720 721 722 723 724 725	722 -		726 727	720 720	740 74	14 740
	[726] 726 727 728 729 730 731 732 743 744 745 746 747 748 749 750	/33 /	/34 /35	/36 /3/	/38 /39	740 74	11 /42
	[751] 751 752 753 754 755 756 757	750 7	750 760	761 762	763 764	765 76	66 767
	768 769 770 771 772 773 774 775	736 7	759 700	701 702	705 704	705 70	707
	[776] 776 777 778 779 780 781 782	783 7	784 785	786 787	788 789	790 79	1 792
	793 794 795 796 797 798 799 800					-	
	[801] 801 802 803 804 805 806 807	808 8	809 810	811 812	813 814	815 81	6 817
	818 819 820 821 822 823 824 825						
	[826] 826 827 828 829 830 831 832	833 8	834 835	836 837	838 839	840 84	1 842
	843 844 845 846 847 848 849 850						
	[851] 851 852 853 854 855 856 857	858 8	359 860	861 862	863 864	865 86	66 867
	868 869 870 871 872 873 874 875	000 0	004 005	006 007	000 000	000 00	1 000
	[876] 876 877 878 879 880 881 882 893 894 895 896 897 898 899 900	883 8	884 885	886 887	888 889	890 89	91 892
	[901] 901 902 903 904 905 906 907	908 0	919	911 912	913 914	915 91	6 917
	918 919 920 921 922 923 924 925	500 5	,03 310	J11 J12	J1J J14	J1J J1	.0 317
	[926] 926 927 928 929 930 931 932	933 9	934 935	936 937	938 939	940 94	1 942
	943 944 945 946 947 948 949 950						
	[951] 951 952 953 954 955 956 957	958 9	959 960	961 962	963 964	965 96	66 967
	968 969 970 971 972 973 974 975						
	[976] 976 977 978 979 980 981 982	983 9	984 985	986 987	988 989	990 99	992
	993 994 995 996 997 998 999 1000						
	<pre>[reached getOption("max.print") omit</pre>	ted 7844	17 entries	5]			
	#namas						
	\$names [1] "race id" "horse no"	"h	norse id"		"result"		"wo

[1] "race_id"	"horse_no"	"horse_id"	"result"	"wo
n"	"lengths_behind"			
[7] "horse_age"	"horse_country"	"horse_type"	"horse_rating"	"dec
lared_weight"	"actual_weight"			
[13] "draw"	"finish_time"	"win_odds"	"place_odds"	"tra
iner_id"	"jockey_id"			
[19] "date"	"venue"	"race_no"	"config"	"sur
face"	"distance"			
[25] "going"	"horse_ratings"	"prize"	"race_class"	"pla
ce_combination1"	"place_combination2"			
[31] "place_comb	ination3" "place_dividend1"	"place_dividend2"	"place_dividend3"	"win
_combination1"				

Hide

Racing_data\$horse_country <- factor(Racing_data\$horse_country,levels = c("AUS","NZ","SAF","G
B","USA","IRE","FR","CAN"),labels = c("AUSTRALIA","NEWZEALAND","SOUTHAFRICA","GREATBRITAIN",
"UNITEDSTATESAMERICA","IRELAND","FRANCE","CANADA"), ordered = TRUE)
levels(Racing_data\$horse_country)</pre>

[1] "AUSTRALIA" "UNITEDSTATESAMERICA"	"NEWZEALAND"	"SOUTHAFRICA"	"GREATBRITAIN"
[6] "IRELAND"	"FRANCE"	"CANADA"	

Racing_data\$date <- dmy(Racing_data\$date)
head(Racing_data)</pre>

	race_id <int></int>	horse <int></int>	horse_id <int></int>		 <int></int>	lengths_behind <dbl></dbl>	horse_age <int></int>	horse_country <ord></ord>	_
1	0	1	3917	10	0	8.00	3	AUSTRALIA	Gelding
2	0	2	2157	8	0	5.75	3	NEWZEALAND	Gelding
3	0	3	858	7	0	4.75	3	NEWZEALAND	Gelding
4	0	4	1853	9	0	6.25	3	SOUTHAFRICA	Gelding
5	0	5	2796	6	0	3.75	3	GREATBRITAIN	Gelding
6	0	6	3296	3	0	1.25	3	NEWZEALAND	Gelding
6 ו	rows 1-1	0 of 35 colu	mns						
4									•

Tidy & Manipulate Data I

- Tidying the data is not required as the dataframe is already conforming the tidy data principles that is-
- 1. Each variable has its own column.
- 2. Each observation has its own row.
- 3. Each value has its own cell.

Tidy & Manipulate Data II

- Mutated the column Ratio_of_win_to_place and ratio_of_horse_to_actual by dividing the column win_odds by place_odds and horse_weight by actual_weight, respectively.
- Calculated Average_horse_speed by didviding distance by finish_time
- Created horse_weight by substracting actual_weight from declared_weight ...

	race_id <int></int>	horse <int></int>	horse_id <int></int>		 <int></int>	lengths_behind <dbl></dbl>	horse_age <int></int>	horse_country <ord></ord>	_
1	0	1	3917	10	0	8.00	3	AUSTRALIA	Gelding
2	0	2	2157	8	0	5.75	3	NEWZEALAND	Gelding
3	0	3	858	7	0	4.75	3	NEWZEALAND	Gelding
4	0	4	1853	9	0	6.25	3	SOUTHAFRICA	Gelding
5	0	5	2796	6	0	3.75	3	GREATBRITAIN	Gelding

	race_id <int></int>	horse <int></int>	horse_id <int></int>	result <int></int>		lengths_behind <dbl></dbl>	horse_age <int></int>		horse_t <chr></chr>
6	0	6	3296	3	0	1.25	3	NEWZEALAND	Gelding
6 r	ows 1-10	0 of 39 colu	mns						
4									•

Scan I

- Subsetted the dataframe Racing Data mutate using subset by column numbers on and named it RDC.
- Calculated the column mean of price for winning horse and named it col_means, got the index for each NA values and stored it in the variable Index and finally replaced the NA values with mean.
- Deleted the column price from the Racing_Data_mutate.
- Created a new variable Racing_Data_New by adding RDC to Racing_Data_mutate using the function left_join.
- Deleted the duplicate values from the dataframe Racing_Data_New.
- Performed these above steps as impute() function, from the package hmisc, was throwing an error.
- Imputed the variables declared_weight, horse_weight, ratio_of_horse_to_actual using the argument fun=mean and for variables horse_country and horse_type using fun=mode.
- Inspected the dataframe Racing_Data_New for NA values by using the function is.na() and calculated the total sum of NA values.
- Moreover created a custom function to check for any inconsistencies and special values.

```
RDC <- Racing_Data_mutate[,c(1,27)]
col_means <- colMeans(RDC[,-1], na.rm = TRUE)

Error in base::colMeans(x, na.rm = na.rm, dims = dims, ...):
    'x' must be an array of at least two dimensions</pre>
```

Scan II

- Using the Racing_Data_New dataframe, inspected the variable lengths_behind for outlier in by plotting a boxplot.
- Using the function favstats, calculated the descriptive statistics like mean, standard deviation and quartile values.
- Calculated the upper fence (Q3 + 1.5(IQR)) and lower fence (Q1 1.5(IQR)) using the Quartile values.
- Created a subset of the dataframe Racing_Data_New by removing the univariate outliers using the upper fence values and named it Racing_Data_New_subset.
- Plotted a boxplot for the variable lengths_behind again for dataframe Racing_Data_New_subset.
- A bivariate box plot is illustrated, by using a quantitative variable horse_weight and a qualitative variable going in the dataset Racing_Data_New.
- In order to get the scatter plot, plot() function is used and outliers in horse_weight and actual_weight have been detected from the dataframe Racing_Data_New. To detect multivariate outliers, firstly subsetted the Racing_Data_New data, which is race class=13 with the two variables horse_weight and actual weight. Then, mvn() function is used to detect multivariate outliers with argument multivariateOutlierMethod="quan" and showOutliers= TRUE, using the chi-square distribution critical value approach and represent them on a plot.

boxplot(Racing_Data_New\$lengths_behind , main="Boxplot of Horse lagging behind the winner bef ore removing outlier", horizontal= TRUE , col="light pink" , xlab = "Lenghts Behind in meter" ,ylim=c(0,200))

Boxplot of Horse lagging behind the winner before removing outlier

Lenghts Behind in meter

Hide

favstats(~lengths_behind , data = Racing_Data_New)

	min <dbl></dbl>	Q1 <dbl></dbl>	median <dbl></dbl>	Q3 <dbl></dbl>	m <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	n <int></int>	missing <int></int>
	-0.5	1.75	4	6.75	999	6.108901	33.63621	79447	0
1 row									

Hide

Upper_fence $\langle (6.75 + (3/2)*(6.75 - 1.75)) \#q3 + (3/2)(q3-q1)$ Upper_fence

[1] 14.25

Hide

Lower_fence $\langle (1.75 - (3/2)*(6.75 - 1.75)) \# q1 - (3/2)(q3-q1)$ Lower_fence

[1] -5.75

Racing_Data_New_subset <- subset(Racing_Data_New , (lengths_behind < Upper_fence))
boxplot(Racing_Data_New_subset\$lengths_behind , main="Boxplot of Horse lagging behind the win
ner after removing outlier", horizontal= TRUE , col="light blue" , xlab = "Lenghts Behind in
meter" ,ylim=c(0,20))</pre>

Boxplot of Horse lagging behind the winner after removing outlier

Hide

boxplot(Racing_Data_New\$horse_weight ~ Racing_Data_New\$going, main = "Boxplot of horse weight
by type of racing track before removing Outlier", ylab = "Horse Weight", xlab = "Type of Rac
ing Track",col = "red")

Boxplot of horse weight by type of racing track before removing Outlier

Hide

Racing_Data_New %>% plot(horse_weight ~ actual_weight,data=., ylab="Horse weight", xlab="Weight on the horse", main ="Boxplot of horse weight by Weight on the horse")

Boxplot of horse weight by Weight on the horse

Racing_subset_for_mvn <- Racing_Data_New %>% filter(race_class == 13) %>% dplyr::select(hor
se_weight, actual_weight)
head(Racing_subset_for_mvn)

horse_weight <dbl></dbl>	actual_weight <int></int>
949	133
949	127
996	127
1005	124
1138	124
957	123
6 rows	

Hide

Mahalanobis_distance_QQ_plot <- mvn(data = Racing_subset_for_mvn, multivariateOutlierMethod =
 "quan", showOutliers = TRUE)</pre>

Transform

- By plotting histogram using the generic function hist(), it is noticed that ratio_of_horse_to_actual weight and declared_weight is slightly skewed to the right.
- Log and square root transformation is performed to reduce the skewness and named it as Log_ratio_of_horse_to_actual and Square_Root respectively.

- Plotted a histogram for Log_ratio_of_horse_to_actual and Square_Root using the function hist() with the argument prob = TRUE which plots a density function instead of frequency.
- Calculated the mean and standard deviation for Log_ratio_of_horse_to_actual and Square_Root, saved it as Mean, Sd and Mean1, S1 respectively.
- Created a sequence using the function seq and minimum & maximum values in the data set for Log_ratio_of_horse_to_actual and Square_Root.
- Using the function dnorm we calculated the density of the Log_ratio_of_horse_to_actual and Square_Root with the mean and standard deviation that we calculated for them respectively.
- Plotted a sequence of points at the specified coordinates using the generic function points() with a normal distribution overlay over the histogram.

Hide

hist(Racing_Data_New\$ratio_of_horse_to_actual,main = "Histogram of declared to actual weight
before transformation" , xlab = "Ratio of declared to actual weight", col = "grey")

Histogram of declared to actual weight before transformation


```
Log_ratio_of_horse_to_actual <- log(Racing_Data_New$ratio_of_horse_to_actual)
hist(Log_ratio_of_horse_to_actual ,xlim = c(1.8,2.4),ylim = c(0,5),prob = TRUE, main = "Histo
gram for log of horse weight to actual weight after transformation" , xlab = "Log ratio of ho
rse weight to actual weight", col = "orange" )
Mean <- mean(Log_ratio_of_horse_to_actual)
Sd <- sd(Log_ratio_of_horse_to_actual)
X <- seq(min(Log_ratio_of_horse_to_actual) , max(Log_ratio_of_horse_to_actual),0.01)
Y <- dnorm(X,Mean,Sd)
points(X,Y,type = "l", col = "blue",lwd = 2)</pre>
```

Histogram for log of horse weight to actual weight after transformation

Log ratio of horse weight to actual weight

Hide

hist(Racing_Data_New\$declared_weight,main = "Histogram of declared weight before transformati
on" , xlab = "Declared weight", col = "grey")

Histogram of declared weight before transformation

Histogram for Square root of declared after transformation

Square root of declared weight