CS2100: Computer Organisation Tutorial #7: Combinational Circuits

(Week 9: 16 – 20 March 2020) **Answers**

Note that for questions on logic design, you may assume that logical constants 0 and 1 are always available. However, complemented literals are not available unless otherwise stated.

Tutorial questions

1. A certain circuit takes in a 4-bit unsigned binary number *ABCD*, and outputs a 2-bit binary number *EF* that is the result of the **input value modulo 3** (i.e. the remainder of the input value divided by 3).

For example, if *ABCD* is 1000 (which represents the decimal value 8), then the output *EF* is 10 (decimal value 2).

You are also told that 1100, 1101, 1110 and 1111 will not appear as input to the circuit.

Fill in the truth table below and express *E* and *F* in simplified SOP form.

Based on your expressions for E and F, what would the output be if the following invalid inputs are fed into the circuit? (a) ABCD = 1100; (b) ABCD = 1101.

	Inp	uts	Outputs		
Α	В	C	D	E	F
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	X	X
1	1	0	1	X	X
1	1	1	0	X	X
1	1	1	1	X	X

Answers:

$$E = A \cdot C' \cdot D' + B \cdot C' \cdot D + A \cdot C \cdot D + A' \cdot B' \cdot C \cdot D'$$

$$F = B \cdot C' \cdot D' + B \cdot C \cdot D + A \cdot C \cdot D' + A' \cdot B' \cdot C' \cdot D$$

(b) If
$$ABCD = 1101$$
, then $EF = 10$

- 2. [AY2013/14 Semester 2 Exam Q8)
 - a. You want to construct a circuit that takes in a 4-bit unsigned binary number ABCD and outputs a 4-bit unsigned binary number EFGH where EFGH = (ABCD + 1) / 2. Note that the division is an integer division. For example, if ABCD = 0110 (or 6 in decimal), then EFGH = 0011 (or 3 in decimal). If ABCD = 1101 (or 13 in decimal), then EFGH = 0111 (or 7 in decimal).

Construct the above circuit using a single **4-bit parallel adder** and at most one logic gate with no restriction on its fan-in.

b. The following table shows the 4221 code and 8421 code (also known as BCD code) for the ten decimal digits 0 through 9.

Digit	4221 code	8421 code		
0	0000	0000		
1	0001	0001		
2	0010	0010		
3	0011	0011		
4	0110	0100		
5	1001	0101		
6	1100	0110		
7	1101	0111		
8	1110	1000		
9	1111	1001		

You want to construct a 4221-to-8421 decimal code converter, which takes in a 4-bit 4221 decimal code *PQRS* and generates the corresponding 4-bit 8421 decimal code *WXYZ*.

Let's call the circuit you created in part (a) above the A1H (Add-1-then-Half) device, represented by the block diagram below. Implement your 4221-to-8421 decimal code converter using this A1H device with the fewest number of additional logic gates.

P	Q	R	S	W	X	Υ	Ζ
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	1	0	0	1	0	0
1	0	0	1	0	1	0	1
1	1	0	0	0	1	1	0
1	1	0	1	0	1	1	1
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	1

- 3. Given a 4-bit magnitude comparator as shown on the right, implement the following 4-variable Boolean functions using only this single magnitude comparator with no other logic gates. (Note that there could be multiple answers.)
- 4-bit X_3 X_2 **COMP** X_1 X_0 X<Y X=Y Y_3 X>Y Y_2 Y_1 Y_0

- (a) $F(A,B,C,D) = \Sigma m(12-15)$.
- (b) $G(A,B,C,D) = \Sigma m(0, 6, 9, 15)$.
- (c) $H(A,B,C,D) = \Sigma m(0, 1, 6, 7, 8, 9, 14, 15)$.
- (d) $Z(A,B,C,D) = \Sigma m(1, 3, 5, 7, 9, 11, 13)$.

Answers:

As long as B = C. or (possibly other answers?)