What are the real numbers continued...

Clarice Poon

Semester 1 (2021)

Useful Inequalities

Max, min, sup and inf

The completeness axiom

Useful Inequalities

The binomial inequality

Proposition 2.3

Let $x \in \mathbb{R}$ be such that x > -1 and $n \in \mathbb{N}$. Then,

$$(1+x)^n \ge 1 + nx.$$

The absolute value

Definition 2.4

The absolute value of a real number $x \in \mathbb{R}$ is

$$|x| := \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

The absolute value

Definition 2.4

The absolute value of a real number $x \in \mathbb{R}$ is

$$|x| := \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

e.g.
$$|-2| = 2$$
 and $|3| = 3$.

The absolute value

Definition 2.4

The absolute value of a real number $x \in \mathbb{R}$ is

$$|x| := \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

e.g.
$$|-2| = 2$$
 and $|3| = 3$.

Proposition 2.5

- i) for all $x \in \mathbb{R}$, $x \le |x|$.
- ii) for all $x \in \mathbb{R}$, $-x \le |x|$.
- iii) for all $x \in \mathbb{R}$, |-x| = |x|.
- iv) for all $x, y \in \mathbb{R}$, |xy| = |x||y|.

The triangle inequality

Proposition 2.6

For all $x, y \in \mathbb{R}$,

- 1. $|x + y| \le |x| + |y|$ (triangle inequality),
- 2. $||x| |y|| \le |x y|$ (reverse triangle inequality).

Intervals

Given $a, b \in \mathbb{R}$, we set

$$(a, b) = \{x \in \mathbb{R} : a < x < b\},\$$

$$[a, b] = \{x \in \mathbb{R} : a \le x \le b\},\$$

$$(a, b] = \{x \in \mathbb{R} : a < x \le b\},\$$

$$[a, b) = \{x \in \mathbb{R} : a \le x < b\}.$$

Furthermore, for any $a \in \mathbb{R}$,

$$(a, \infty) = \{x \in \mathbb{R} : x > a\},$$
$$[a, \infty) = \{x \in \mathbb{R} : x \ge a\},$$
$$(-\infty, a) = \{x \in \mathbb{R} : x < a\},$$
$$(-\infty, a] = \{x \in \mathbb{R} : x \le a\}.$$

Max, min, sup and inf

Maximum and minimum of sets

Definition 2.10

Consider a set $S \subseteq \mathbb{R}$. Assume that $S \neq \emptyset$.

- (i) Let $s_0 \in \mathbb{R}$. We say s_0 is the maximum of S and write $s_0 = \max S$ if $s_0 \in S$ and $s \leq s_0$ for all $s \in S$.
- (ii) Let $s_0 \in \mathbb{R}$. We say s_0 is the minimum of S and write $s_0 = \min S$ if $s_0 \in S$ and $s \ge s_0$ for all $s \in S$.

Maximum and minimum of sets

Definition 2.10

Consider a set $S \subseteq \mathbb{R}$. Assume that $S \neq \emptyset$.

- (i) Let $s_0 \in \mathbb{R}$. We say s_0 is the maximum of S and write $s_0 = \max S$ if $s_0 \in S$ and $s \leq s_0$ for all $s \in S$.
- (ii) Let $s_0 \in \mathbb{R}$. We say s_0 is the minimum of S and write $s_0 = \min S$ if $s_0 \in S$ and $s \geq s_0$ for all $s \in S$.

Not all subsets of reals have maximums and minimums!

- $(-\infty,0)$ has no maximum and no minimum.
- (-2,0] has maximum of 0 and no minimum.
- $\{\frac{1}{n}: n \in \mathbb{N}\}$ has maximum 1 but no minimum.

Upper and lower bounds

Upper and lower bounds

Consider a set $S \subseteq \mathbb{R}$.

- 1. A number $M \in \mathbb{R}$ is said to be an **upper bound** of S if $s \leq M$ for all $s \in S$.
- 2. A number $m \in \mathbb{R}$ is said to be a **lower bound** of S if $s \ge m$ for all $s \in S$.
- 3. The set S is called **bounded above** if it has an upper bound and **bounded below** if it has a lower bound. We say that S is **bounded** if it is bounded above and below.

Upper and lower bounds

Upper and lower bounds

Consider a set $S \subseteq \mathbb{R}$.

- 1. A number $M \in \mathbb{R}$ is said to be an **upper bound** of S if s < M for all $s \in S$.
- 2. A number $m \in \mathbb{R}$ is said to be a **lower bound** of S if $s \ge m$ for all $s \in S$.
- 3. The set S is called **bounded above** if it has an upper bound and **bounded below** if it has a lower bound. We say that S is **bounded** if it is bounded above and below.
- $(-\infty,0)$ has 3 has an upper bound but has no lower bound.
- (-2,0] has 1 has an upper bound and -2 as a lower bound.
- $\{\frac{1}{n}: n \in \mathbb{N}\}$ has 1 as an upper bound and -8 as a lower bound.

Supremum and infimum

Supremum and infimum

Consider a set $S \subseteq \mathbb{R}$.

- 1. A number $T \in \mathbb{R}$ is called **supremum** or **least upper bound** of S if T is an upper bound of S and any other upper bound M of S satisfies $T \leq M$. We write $T = \sup S$.
- 2. A number $t \in \mathbb{R}$ is called **infimum** or **greatest lower bound** of S if t is a lower bound of S and any other lower bound m of S satisfies $t \ge m$. We write $t = \inf S$.

The completeness axiom

\mathbb{Q} and \mathbb{R} are different!

For example, there is no element $r \in \mathbb{Q}$ such that $r^2 = 2$.

Consider
$$S = \{x \in \mathbb{Q} : x^2 < 2\}.$$

S is clearly bounded. Does S has a least upper bound in \mathbb{Q} ?

The completeness axiom

The completeness axiom

(C) Every **non-empty** set of real numbers that is **bounded above** has a least upper bound.

This captures our intuition that $\mathbb Q$ is riddled with holes while $\mathbb R$ is complete.

Using the completeness axiom, we can prove

- the existence of $\sqrt{2}$ in \mathbb{R} .
- for all $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n \ge x$. (Archimedean property)
- \mathbb{Q} is dense in \mathbb{R} .