Network Layer Overview

Services and Protocols

- To transport **segments** from the **sending host**, to the **receiving host** the following happens:
 - 1. The sender encapsulates segments into datagrams and passes them to the link layer.
 - 2. The receiver delivers segments to the transport layer protocol.
 - 3. A router is a piece of network hardware than manages traffic between networks.
 - Routers work by examining the headers in **IP datagrams (Packets)**, and move the datagrams from **input ports** to **output ports**; with the goal of transfering datagrams along the end-end path.
 - Routers work a the **Network Layer (Layer 3)**, and also use layers 1 and 2 to facilitate the data transfer.
 - Routers us Internet Protocol Addresses (IP Address) to identify networks / hosts.

Key Network-Layer Functions

- One key network-layer function is **forwarding**, **forwarding** involves **moving packets** from a **rounter's input link** to the appropriate **output link**.
- Another key network-layer function is **routing**, **routing** involves **determining the route taken by packets** from the **source** to the **destination**.
 - There are many routing algorithms that can be used the achieve this.

The Data Plane vs The Control Plane

- The data plane is a local, per-router function that determines how packets arriving on a router's input port is forwarded to router's output port.
- The control plane is a network-wide function, that determines how packets are routed amongst routers along end-end paths from source host to destination host.
 - There are two control-plane approaches:
 - 1. Traditional routing algorithms that are implemented in routers.
 - 2. Software-defined networking (SDN) that is implemented in remote servers.

Per-Router Control PLane Software-Defined Networking (SDN) Control Plane

- Per-Router control plane consits of a routing algorithm in every router that interacts with the control plane. Each router determines where to route the packets.
- SDN is composed of remote controller computers, that install forwarding tables in router. The routers then use these tables to forwards packets.

Network Service Models

• Internet service models:

Network		Service	Quality of Service (QoS) Guarantees ?			
Arc	hitecture	Model	Bandwidth	Loss	Order	Timing
	Internet	best effort	none	no	no	no
	ATM	Constant Bit Rate	Constant rate	yes	yes	yes
	ATM	Available Bit Rate	Guaranteed min	no	yes	no
	Internet	Intserv Guaranteed (RFC 1633)	yes	yes	yes	yes
	Internet	Diffserv (RFC 2475)	possible	possibly	possibly	no

• Though the **best effor service model** may not provide any guarantees, it allowed the internet to be widely deployed, and adopted.

Router Architecture Overview

Routers

- A router is a networking device that forwards and router data packets between networks.
- Routers have input ports and output ports, to receive and forward packets respectively.

- The green boxes represents the **physical layer**, the blue boxes represent the **link layer**, and the red boxes represent the **network layer**.
- The first red box continas a queue of packets that need to be forwarded, and the lookup table, that map headers to ports.
- **Destination-based forwarding** is forwarding based only on the **destination IP Address** (traditional).
- Generalized forwarding is forwarding based on any set of header field values.
- The following is an example of a lookup table:

Destination Address Range	Link Interface
11001000 00010111 000 <mark>10000 00000000</mark> through	0
11001000 00010111 000 <mark>10111 11111111</mark>	
11001000 00010111 000 <mark>11000 00000000</mark> through	1
11001000 00010111 000 <mark>11000 11111111</mark>	
11001000 00010111 000 <mark>11001 00000000</mark> through	2
11001000 00010111 00011111 11111111	
otherwise	3

 To determine which interface a an IP address should be mapped to, you see what address range has the longest prefix that matches the IP address of the packet that is being router.

Switching Fabrics

• Switching fabrics are responsible for transfering the packet from the input link to the appropriate output link.

- The switching rate is the rate at which packets can be transferred from inputs to outputs.
- There are three main types of switching fabrics:

- With **memory switching**, the packets are copied to the **system's memory**. This limits the switching rate to the **memories bandwidth**. This type of switching is directly under the control of the **CPU**.
- With **bus switching**, the packets are delivered from the **input port's memory**, to the **output port's memory** directly. The switching speed is limited to the **speed of the bus** (which is much faster than memory switching).
- With interconnnection network switching, is similar to the bus, except we can transfer several packets in parallel.

Input Port Functions

•