

Fundus Image Analysis and Grading for Diabetic Retinopathy

Team: Pooja Krishnan, Veronika Kotova, Shraddha Beedu, Ali Kareem Raja

Tutor: Hasan Sarhan

Problem Statement
Proposed Approach
MNet
ANet
CNet
Integration
Learning Outcomes
Impediments

Problem statement

Diabetic retinopathy (DR)

- Leading cause of vision loss in the general population
- Affects up to 80 % of people who have had diabetes for 20 years or more

Challenges

- Detecting the subtle pathological lesion characteristic of early-stage disease
- No large well annotated datasets

Source: https://nei.nih.gov/health/diabetic/retinopathy, accessed on 11.12.2018

Proposed approach

Goal

Convolutional Neural Network based algorithm for:

- diagnosing 5 stages of DR
- highlight suspicious regions

DR stages

- 0 no DR
- 1 mild
- 2 Moderate
- 3 Severe
- 4 Proliferative

Datasets

- EyePACS
- IDRiD

Source: T.Y. Wong, C.M. Cheung, M. Larsen, S. Sharma, and R. Simó. *Diabetic retinopathy*, 16012. Nature Reviews Disease Primers, 2016

Architecture (Zoom-in Net)

Source: Z.Wang, Y.Yin, J.Shi, W.Fang, H.Li, and X.Wang. *Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection*, pages 267–275. Springer International Publishing, 2017

Main Network (M-Net)

Main Network (M-Net)

- **Input:** Pre-processed images of size 512x512
- Output: Probability of the image belonging to each disease level
- Output from layer
 5xIncepetion-resnet-C is taken as input for A-Net.
- Concatenate the left and right eye for classification.
- Weighted loss computation
- Challenge: getting the concatenation right

Mnet training. Original approach

Advantages

- 1. Quick
- 2. Computational resource friendly
- 3. Easily portable

Disadvantages

No understanding of what happening

Mnet training. Subsetting

- 1. L2 regularization
- Weighted Kappa Score

Mnet. 1 eye

Further plans:

- 1. Train on more images
- 2. Double check Cohen's kappa score

Attention Network (A-Net)

Source: Z.Wang, Y.Yin, J.Shi, W.Fang, H.Li, and X.Wang. *Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection*, pages 267–275. Springer International Publishing, 2017

Attention Network (A-Net)

Gated map

A-Net with 2-eye M-Net

Weighted SoftMax Cross Entropy Loss (with L2 regularization): 9.30 Kappa Score: 0.16

A-Net with 1-eye M-Net Model

Weighted SoftMax Cross Entropy Loss (with L2 regularization): 9.25 Kappa Score: 0.48

Source: Z.Wang, Y.Yin, J.Shi, W.Fang, H.Li, and X.Wang. *Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection*, pages 267–275. Springer International Publishing, 2017

Recap: Initializing Inception

Approach:

- Retrain all layers
- Using TF-Slim implementation
- Create TF-Records of all images then train
- Data set : IDRiD

Result:

- Trained the network up to 20k steps
- We have an initialized model for training with accuracy of 92% and loss of 0,70

Integration

Planned:

- Initially planned on a single training pipeline for all 5 Neural Nets
- Unfeasible due to highly coupled nature of project

Implementation:

- Write each component independently
- Write output of each component into a binary file
- Saved checkpoints of each component used to get feature maps

Integration

A-net Attention Maps

Resize to size of original Images

Process

- Zooming-in suspicious attention regions
- Record the highest response in the attention map and crop the region
- Mask the region around the crop to avoid re-selection
- Repeat until total of N-coordinates are recorded

Crop Detection

Crops

Output

• For all the crops of the same eye, take an element wise max

Concatenation:

- Concatenate feature vector from C-Net with feature vector from M-Net
- From C-Net : "Global Pool" layer
- From M-Net: "Conv2d_2a_5x5" layer

C-Net Results

Training Loss: 0.372

Training Cohen's Kappa: 0.118

Checkpoint Used: Pre-trained from IDRiD Dataset

Summary

Network	Training Loss	Training Kappa	Validation Loss	Validation Kappa
M-Net 1 Eye	0.05	0.06	0.13	0.06
M-Net 2 Eye	0.03	0.07	0.05	0.07
A-Net	9.25	0.48	9.26	0.47
C-Net	0.372	0.118	0.47	0.08

Impediments

- Limitation of resources in proportion to size of the problem
 - 5 Networks
 - 85 GB
- Google Colab with multiple experiments, time out issues
- Strong dependency between groups, and models

Learning Outcomes

Questions?

Topics:

Problem Statement

Proposed Approach

Recap

MNet

ANet

CNet

Integration

Learning Outcomes

Impediments

