П.2. Признаки сравнения

Теорема 15. Рассмотри интеграл $\int_a^{+\infty} \frac{Mdx}{x^{\alpha}}$, где M>0, a>0. Этот интеграл расходится при $\alpha > 1$ и расходится при $\alpha \le 1$.

Доказательство. Пусть $\alpha \neq 1$. Тогда $\int_a^{+\infty} \frac{Mdx}{x^{\alpha}} = \frac{Mx^{1-\alpha}}{1-\alpha} \Big|_a^{+\infty} = \left[\frac{+\infty, \ \alpha < 1}{\frac{Ma^{1-\alpha}}{1-\alpha}, \ \alpha > 1}\right]$. Пусть $\alpha=1$. Тогда $\int_a^{+\infty} \frac{M dx}{x} = M \ln x \Big|_a^{+\infty} = +\infty$.

Теорема 16 (Сравнение несобственных интегралов 1 рода). Пусть на интервале $[a; +\infty)$ $0 \le \varphi(x) \le f(x)$. Тогда:

- Если $\int_a^{+\infty} f(x) dx$ сходится, то $\int_a^{+\infty} \varphi(x) dx$ сходится.
- Если $\int_a^{+\infty} \varphi(x) dx$ расходится, то $\int_a^{+\infty} f(x) dx$ расходится.

Доказательство. Рассмотрим доказательства для обоих случаев:

- Пусть существует предел $\lim_{b\to +\infty}\int_a^b f(x)dx=I$. Но по свойству определенных интегралов $\int_a^b \varphi(x) dx \leq \int_a^b f(x) dx \leq I$. Рассмотри функцию $\Phi(b) = \int_a^b \varphi(x) dx$. Эта функция возрастающая и ограничена сверху. Следовательно, существует ее предел $\lim_{b \to +\infty} \int_a^b \varphi(x) dx$, т.е. интеграл сходится.
- 2) От противного: Пусть $\int_a^{+\infty} \varphi(x) dx$ расходится и $\int_a^{+\infty} f(x) dx$ сходится. Тогда, по первому пункту доказательства $\int_a^{+\infty} \varphi(x) dx$ сходится. Противоречие. Следовательно, $\int_a^{+\infty} f(x) dx$ расходится.

Геометрический смысл теоремы: площадь криволинейной трапеции, ограниченной меньшей функцией, имеющей предел на +∞, меньше площади криволинейной трапеции, ограниченной большей функцией, имеющей предел на

Теорема 17 (признак сходимости неопределенных интегралов первого <u>рода).</u> Пусть f(x) определена на интервале $[a; +\infty)$, где a>0 и $f(x)\geq 0$. Тогда, если

- Если существуют такие $M>0, \alpha>1$, что $f(x)\leq \frac{M}{r^{\alpha}}$, то интеграл $\int_{a}^{+\infty} f(x) dx$ сходится.
- Если существуют такие M>0, $1\geq \alpha>0$, что $f(x)\geq \frac{M}{x^{\alpha}}$, то интеграл $\int_{a}^{+\infty} f(x) dx$ расходится.

<u>Доказательство.</u> Очевидно. Вытекает из теорем 15 и 16. <u>Пример:</u> Рассмотрим интеграл $\int_1^{+\infty} \frac{dx}{x^2(e^x+1)} \cdot \frac{1}{x^2(e^x+1)} < \frac{1}{2x^2}$. Но $\int_1^{+\infty} \frac{dx}{2x^2}$ сходится. Следовательно, и исходный интеграл сходится.

П.З. Абсолютная и исходная сходимости

Теорема 18. Пусть f(x) непрерывна на интервале $[a; +\infty)$. Тогда, если сходится интеграл $\int_a^{+\infty} |f(x)| dx$, то сходится и интеграл $\int_a^{+\infty} f(x) dx$.

Доказательство. Рассмотрим функции $f^+(x)$ и $f^-(x)$, где $f^+(x) =$ $\frac{|f(x)|+f(x)}{2}$, $f^-(x)=\frac{|f(x)|-f(x)}{2}$. Следовательно, $f^+(x)$ и $f^-(x)\geq 0$. Если их сложить, получим: $|f(x)| = f^+(x) + f^-(x)$ и $f(x) = f^+(x) - f^-(x)$. Рассмотрим интеграл

 $\int_a^b |f(x)| dx = \int_a^b f^+(x) dx + \int_a^b f^-(x) dx$. Значит, так как существует предел $\lim_{b \to +\infty} \int_a^b |f(x)| dx$, то должны существовать и пределы $\lim_{b \to +\infty} \int_a^b f^+(x) dx$, $\lim_{b \to +\infty} \int_a^b f^-(x) dx$, так как в противном случае не существовал бы $\lim_{b \to +\infty} \int_a^b |f(x)| dx$. Теперь распишем интеграл $\int_a^b f(x) dx = \int_a^b f^+(x) dx - \int_a^b f^-(x) dx$. Аналогично, интеграл левой части существует, так как существуют оба интеграла из правой части. Следовательно, существует и $\lim_{b \to +\infty} \int_a^b f(x) dx$, то есть интеграл сходится. Замечание. Утверждение, обратное теореме, неверно. Если сходится интеграла.

Замечание. Утверждение, обратное теореме, неверно. Если сходится интеграл $\int_a^{+\infty} |f(x)| dx$, то говорят, что этот интеграл сходится абсолютно. Если же интеграл $\int_a^{+\infty} |f(x)| dx$ не сходится, а $\int_a^{+\infty} f(x) dx$ сходится, то говорят, что этот интеграл сходится условно.

Пример: $\int_{1}^{+\infty} \frac{\sin x dx}{x\sqrt{1+x^2}}$ сходится абсолютно. Рассмотрим интеграл $\int_{1}^{+\infty} \left| \frac{\sin x dx}{x\sqrt{1+x^2}} \right|$. $\left| \frac{\sin x dx}{x\sqrt{1+x^2}} \right| \leq \frac{1}{x\sqrt{x^2+1}} \leq \frac{1}{x^2}$, а интеграл $\int_{1}^{+\infty} \frac{dx}{x^2}$ сходится.

§13. Несобственные интегралы от неограниченных функций

(несобственные интегралы второго рода)

Пусть функция f(x) задана на некотором интервале [a;b). Пусть в точке b функция имеет бесконечный разрыв, т.е. $\begin{cases} f(x) \to \infty \\ x \to b - 0 \end{cases}$. Рассмотрим интеграл $\int_a^{b-\varepsilon} f(x) dx$. Этот интеграл существует, так как функция непрерывна. Тогда рассмотрим предел $\lim_{\varepsilon \to +0} \int_a^{b-\varepsilon} f(x) dx$. Если этот предел существует, то говорят, что несобственный интеграл второго рода существует и сходится: $\int_a^b f(x) dx \equiv \lim_{\varepsilon \to +0} \int_a^{b-\varepsilon} f(x) dx$. Если этот предел не существует, то говорят, что несобственный интеграл не существует или расходится. Точку b называют особой точкой

функций f(x). **Замечание.** Аналогичным образом определяется несобственный интеграл второго рода, где специальной точкой является точка a.

Пусть точка c является внутренней точкой интервала (a;b) и пусть эта точка является особой точкой функции f(x), т.е. $\lim_{x\to c-\varepsilon} f(x) = \infty$ и $\lim_{x\to c+\varepsilon} f(x) = \infty$. Если существуют пределы $\lim_{\varepsilon_1\to +0}\int_a^{c-\varepsilon_1} f(x)dx$ и $\lim_{\varepsilon_2\to +0}\int_{c+\varepsilon_2}^b f(x)dx$, то говорят, что несобственный интеграл с особой точкой c сходится: $\int_a^b f(x)dx = \lim_{\varepsilon_1\to +0}\int_a^{c-\varepsilon_1} f(x)dx + \lim_{\varepsilon_2\to +0}\int_{c+\varepsilon_2}^b f(x)dx$. Иначе же говорят о расходимости, или несуществовании несобственного интеграла второго рода с особой точкой c. Если же в пределах ε_1 и ε_2 будут равны, то говорят о существовании несобственного интеграла в смысле главного значения (V.P.): $\int_a^b f(x)dx = \lim_{\varepsilon_1\to 0} \left(\int_a^{c-\varepsilon} f(x)dx + \int_{c+\varepsilon}^b f(x)dx\right)$.

ного значения
$$(V.P.)$$
: $\int_a^b f(x) dx = \lim_{\varepsilon \to +0} \left(\int_a^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^b f(x) dx \right)$.
Примеры: 1) $\int_0^1 \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to +0} \int_0^{1-\varepsilon} \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to +0} \arcsin x \Big|_0^{1-\varepsilon} = \frac{\pi}{2}$.
2) $(V.P.) \int_{-1}^2 \frac{dx}{x} = \lim_{\varepsilon \to +0} \left(\int_{-1}^{-\varepsilon} \frac{dx}{x} + \int_{\varepsilon}^2 \frac{dx}{x} \right) = \lim_{\varepsilon \to +0} \left(\ln|x| \Big|_{-1}^{-\varepsilon} + \ln|x| \Big|_{\varepsilon}^2 \right) = \ln 2$.

Теорема 19 (признак сходимости и расходимости интегралов 2 рода). Пусть f(x) непрерывна на интервале [a;b) и b – особая точка f(x). Тогда:

- 1) Если существуют такие M>0 и 0< m<1, что для любого x из исходного интервала выполняется неравенство $0< f(x) \leq \frac{M}{(b-x)^m}$, то интеграл $\int_a^b f(x) dx$ сходится.
- Если существуют такие M>0 и $m\geq 1$, что для любого x из исходного 2) интервала выполняется неравенство $f(x) > \frac{M}{(b-x)^m}$ то интеграл $\int_a^b f(x) dx$ расходится.

Доказательство. Можно произвести замену переменной и свести к несобственному интегралу первого рода, для которого признак доказан.

Замечание. Заменой переменной несобственный интеграл второго рода можно свести к интегралу первого рода и наоборот. В силу этого для интегралов второго рода выполняются признаки сравнения.

§14. Некоторые часто встречающиеся несобственные интегралы

- 1) Интеграл Эйлера $\int_0^{\pi/2} \ln \sin x \, dx$. Особая точка x=0. Выполним замену x = 2t. Получаем $\int_0^{\pi/2} \ln \sin x \, dx = 2 \int_0^{\pi/4} \ln \sin 2t \, dt = 2 \int_0^{\pi/4} (\ln 2 + \ln \sin t + 1) \int_0^{\pi/4} (\ln 2 + \ln \sin t) dt$ $\ln \cos t)dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \sin t \, dt + 2\int_0^{\pi/4} \ln \cos t \, dt = \begin{bmatrix} t = \frac{\pi}{2} - u; \, dt = -du \\ \ln \cos t = \ln \cos(\frac{\pi}{2} - u) = \ln \sin u \end{bmatrix} = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \sin t \, dt + 2\int_0^{\pi/4} \ln \cos t \, dt = \begin{bmatrix} t = \frac{\pi}{2} - u; \, dt = -du \\ \ln \cos t = \ln \cos(\frac{\pi}{2} - u) = \ln \sin u \end{bmatrix} = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \sin t \, dt + 2\int_0^{\pi/4} \ln \cos t \, dt = \begin{bmatrix} t = \frac{\pi}{2} - u; \, dt = -du \\ \ln \cos t = \ln \cos(\frac{\pi}{2} - u) = \ln \sin u \end{bmatrix} = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \sin t \, dt + 2\int_0^{\pi/4} \ln \cos t \, dt = \begin{bmatrix} t = \frac{\pi}{2} - u; \, dt = -du \\ \ln \cos t = \ln \cos(\frac{\pi}{2} - u) = \ln \sin u \end{bmatrix} = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \sin t \, dt + 2\int_0^{\pi/4} \ln \cos t \, dt = \begin{bmatrix} t = \frac{\pi}{2} - u; \, dt = -du \\ \ln \cos t = \ln \cos(\frac{\pi}{2} - u) = \ln \sin u \end{bmatrix} = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln \cos t \, dt = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4} \ln 2 \, d$ $\frac{\pi}{2}\ln 2 + 2\int_0^{\pi/4}\ln \sin t \,dt + 2\int_{\pi/4}^{\pi/2}\ln \sin u \,du = \frac{\pi}{2}\ln 2 + 2\int_0^{\pi/2}\ln \sin t \,dt.$ Следовательно, $\int_0^{\pi/2} \ln \sin x \, dx = -\frac{\pi}{2} \ln 2.$
 - 2) Интеграл Пуассона $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$. 3) Интеграл Дирихле $\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.