Bayes for Beginners

Presenters: Shuman ji & Nick Todd

Statistic Formulations.

- P(A): probability of event A occurring
- P(A|B): probability of A occurring given B occurred
- P(B|A): probability of B occurring given A occurred
- P(A,B): probability of **A and B** occurring simultaneously (joint probability of A and B)

Joint probability of A and B

$$P(A,B) = P(A|B)*P(B) = P(B|A)*P(A)$$

Bayes Rule

- True Bayesians actually consider conditional probabilities as more basic than joint probabilities. It is easy to define P(A|B) without reference to the joint probability P(A,B). To see this note that we can rearrange the conditional probability formula to get:
- P(A|B) P(B) = P(A,B)by symmetry:
- P(B|A) P(A) = P(A,B)
- It follows that:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- which is the so-called Bayes Rule.
- Thus, Bayes Rule is a simple mathematical formula used for calculating conditional probabilities

ASSUMPTIONS

- P(A) =1% of women aged forty who participate in a routine screening have breast cancer
- P(B|A)=80% of women with breast cancer will get positive tests
 - 9.6% of women without breast cancer will also get positive tests

EVIDENCE

A woman in this age group had a positive test in a routine screening

PROBLEM

What's the probability that she has breast cancer?

- = proportion of cancer patients with positive results, within the group of All patients with positive results
- \rightarrow P(A|B)
- P(B)= proportion of all patients with positive results

ASSUMPTIONS

100 out of 10,000 women aged forty who participate in a routine screening have breast cancer

80 of every 100 women with breast cancer will get positive tests

950 out of 9,900 women without breast cancer will also get positive tests

PROBLEM

If 10,000 women in this age group undergo a routine screening, about what fraction of women with positive tests will actually have breast cancer?

Before the screening:

100 out of 10000women with breast cancer 9,900 out of 10000women without breast cancer

After the screening:

- A = 80 out of 10000women with breast cancer and positive test
- B = 20 out of 10000 women with breast cancer and negative test
- C = 950 out of 10000 women without breast cancer and positive test
- D = 8,950 out of 10000women without breast cancer and negative test
- All patients that has positive test result = A+C

 Proportion of cancer patients with positive results, within the group of ALL patients with positive results:

A/(A+C) = 80/(80+950) = 80/1030 = 0.078 = 7.8%

Prior Probabilities:

```
100/10,000 = 1/100 = 1\% = p(A)
9,900/10,000 = 99/100 = 99\% = p(~A)
```

Conditional Probabilities:

```
A = 80/10,000 = (80/100)*(1/100) = p(B|A)*p(A) = 0.008

B = 20/10,000 = (20/100)*(1/100) = p(~B|A)*p(A) = 0.002

C = 950/10,000 = (9.6/100)*(99/100) = p(B|~A)*p(~A) = 0.095

D = 8,950/10,000 = (90.4/100)*(99/100) = p(~B|~A)*p(~A) = 0.895
```

Rate of cancer patients with positive results, within the group of ALL patients with positive results: P(A|B) = P(B|A) * P(A) / P(B) = 0.008/(0.008+0.095) = 0.008/0.103 = 0.078 = 7.8%

Another example

- Suppose that we are interested in diagnosing cancer in patients who visit a chest clinic:
- Let A represent the event "Person has cancer"
- Let B represent the event "Person is a smoker"
- We know the probability of the prior event P(A)=0.1 on the basis of past data (10% of patients entering the clinic turn out to have cancer). We want to compute the probability of the posterior event P(A|B). It is difficult to find this out directly. However, we are likely to know P(B) by considering the percentage of patients who smoke suppose P(B)=0.5. We are also likely to know P(B|A) by checking from our record the proportion of smokers among those diagnosed. Suppose P(B|A)=0.8.
- We can now use Bayes' rule to compute:
- P(A/B) = (0.8 * 0.1)/0.5 = 0.16
- Thus we found the proportion of cancer patients who are smokers.

Naïve Bayes Classifier

Given the following data, labelled as Red and Green. Predict the class of a new point

Priori Probability

```
Prior Probability of GREEN: number of GREEN objects / total number of objects
```

Prior Probability of RED: number of RED objects / total number of objects

Prior Probability for GREEN: 40 / 60

Prior Probability for RED: 20 / 60

The likely hood of a point is defined by its neighbours

Likelihood of X given GREEN $\propto \frac{Number\ of\ GREEN\ in\ the\ vicinity\ of\ X}{Total\ number\ of\ GREEN\ cases}$ Likelihood of X given RED $\propto \frac{Number\ of\ RED\ in\ the\ vicinity\ of\ X}{Total\ number\ of\ RED\ cases}$

Probability of X given GREEN
$$\propto \frac{1}{40}$$

Probability of X given RED
$$\propto \frac{3}{20}$$

Posterior probability of X being GREEN \propto

Prior probability of $GREEN \times Likelihood$ of X given GREEN

$$=\frac{4}{6}\times\frac{1}{40}=\frac{1}{60}$$

Posterior probability of X being $RED \propto$

Prior probability of RED \times Likelihood of X given RED

$$=\frac{2}{6}\times\frac{3}{20}=\frac{1}{20}$$

Second Example

Let's say that we have data on 1000 pieces of fruit. They happen to be **Banana**, **Orange** or some **Other Fruit**. We know 3 characteristics about each fruit:

- 1. Whether it is Long
- 2. Whether it is Sweet and
- 3. If its color is Yellow.

Туре	Long	Not	Long	Sweet	: N	lot Sweet	:	Yellow	w Not Yel	low Total
Banana	400		100	350		150		450	50	500
Orange	0		300	150		150		300	0	300
Other Fruit	100	1	100	150	-	50	Ш	50	150	200
Total	500	I	500	650		350	П	800	200	1000

Let's say that we are given the properties of an unknown fruit, and asked to classify it. We are told that the fruit is Long, Sweet and Yellow. Is it a Banana? Is it an Orange? Or Is it some Other Fruit?

Second Example

The so-called "Prior" probabilities.

```
P(Banana) = 0.5 (500/1000)
P(Orange) = 0.3
P(Other Fruit) = 0.2
```

Probability of "Evidence"

```
p(Long) = 0.5
P(Sweet) = 0.65
P(Yellow) = 0.8
```

Probability of "Likelihood"

```
P(Long|Banana) = 0.8
P(Long|Orange) = 0 [Oranges are never long in all the fruit we have seen.]
....
P(Yellow|Other Fruit) = 50/200 = 0.25
P(Not Yellow|Other Fruit) = 0.75
```

Second Example

Second Example