TABLE OF SPECIFICATIONS FOR EXAM QUESTIONS

University of Liberal Arts Bangladesh

Department: Computer Science and Engineering (CSE) Midterm Examinations, Semester: Summer 2020

Program: B.Sc. in CSE

Course Code: CSE417 Course Title: Automata and Theory of Computation Credit Hr: 3
Time: 1 Hours Total Marks: 25

Name & Designation of the Examiner: Satyaki Das, Lecturer

Learning Outcomes (LO):

1. **Describe** the principles and concept of automata along with its benefits.

- 2. **Explain** features of state machines to design and develop solutions
- 3. **Solve** a wide range of practical problems for automata and formal languages.
- 4. **Understand** real-life problem and **be able** to design the solution using automata.
- 5. **Design and develop** solutions to real-life problems.

Levels in Bloom's Cognitive Domain:

C1: Remember

C2: Understand

C3: Apply

C4: Analyze

C5: Evaluate

Date: 12.08.2020

C6: Create

Question No.	Learning Outcomes (CO)	Level in Bloom's Cognitive Domain along with Allocation of Marks							
		C1	C2	C3	C4	C5	C6		
1	1, 2	2	3						
2	1, 2			3	2				
3	1, 2, 3	1	2		4				
4	1, 2, 3	1	2	5					
Total Allocation of Marks	25	4	7	8	6				

Question No.		Learning Outcome						
		CO1	CO2	CO3	CO4	CO5	CO6	
1		3	2					
2		3	2					
3		1	2	4				
4		1	2	5				
Total Allocation of Marks	25	8	8	9				

Signature of the Examiner

Department of Computer Science and Engineering University of Liberal Arts Bangladesh

Mid-Term Examination (Summer 2020)

Course: Automata and Theory of Computation (CSE 417)

Section: 2 --- Duration: 1 Hour

PLEASE ANSWER ALL QUESTIONS.

Total 25 Marks

QUESTION 1

What are the 5-tuples of a DFA?

What is the difference between the formal definitions of DFA, NFA and ϵ -NFA? Explain with a suitable example. (2+3=5 Marks)

QUESTION 2

Consider the following E-NFA:

Convert the E-NFA to its equivalent NFA.

What will be the output for inputs "000" and "111"?

(3+2=5 Marks)

QUESTION 3

Define the transition function, δ for an NFA.

"All DFAs are by definition an NFA"- Explain

Suppose you are trying to develop a game where the user starts from the center (0,0) of a standard cartesian coordinate system. The user can either move up (denoted by U/\uparrow) or he can move right (denoted by R/\rightarrow). Assume the user wins the game if s/he reaches (2,1). Design the NFA that can determine if the user wins the game. Provide, Q, Σ , q0, and F. (1+2+4=7 Marks)

QUESTION 4

Prepare the state transition table for the NFA you designed. Convert it to its equivalent DFA.

How would you convert a DFA to its equivalent NFA?

Is it possible for a DFA to have more than one final state?

(5+2+1=8 Marks)

END OF QUESTIONS