RESULTADO DE APRENDIZAJE

RdA de la asignatura:

• **RdA 2:** Aplicar modelos de aprendizaje automático supervisado y no supervisado, así como su validación y optimización, en la resolución de problemas tanto reales como simulados.

Resultados específicos:

- Comprender el método de retropropagación y su deducción matemática.
- Revisar las técnicas de optimización en el entrenamiento de redes neuronales.

INTRODUCCIÓN

Pregunta inicial: ¿Qué desafíos enfrenta el entrenamiento de redes neuronales y cómo podemos mitigarlos para mejorar su desempeño?

DESARROLLO

Actividad 1: Deducción del método de retropropagación

¿Cómo lo haremos?

- Clase magistral: Explicación detallada del método de retropropagación:
 - Introducción a la retropropagación y su propósito en redes neuronales.
 - Deducción paso a paso del algoritmo, desde la función de pérdida hasta el cálculo de gradientes usando la regla de la cadena.

Verificación de aprendizaje:

- ¿Cómo se utiliza la regla de la cadena en el cálculo de gradientes?
- ¿Qué rol desempeña la función de pérdida en la retropropagación?
- ¿Por qué es fundamental calcular los gradientes de manera eficiente en redes neuronales?

Actividad 2: Regularización y optimización en redes neuronales

¿Cómo lo haremos?

- Clase magistral: Presentación de conceptos clave:
 - Regularización: L1, L2 y Dropout.
 - Early stopping como estrategia para evitar el sobreajuste.
 - Diferentes optimizadores: SGD, Adam, RMSProp, etc.
 - Learning rate adaptativo y su impacto en el entrenamiento.
- Ejercicio práctico: Implementación guiada en un notebook de Python:
 - Configurar y entrenar una red neuronal básica.
 - Aplicar técnicas de regularización y evaluar resultados.
 - Comparar el rendimiento utilizando diferentes optimizadores.
 - Implementar early stopping y observar su impacto en el sobreajuste.

Verificación de aprendizaje:

- ¿Cómo afecta la regularización al sobreajuste?
- ¿Cuáles son las diferencias principales entre SGD y Adam como optimizadores?
- ¿Qué ventajas ofrece el learning rate adaptativo frente a un learning rate constante?

CIERRE

Tarea: Desarrollar los ejercicios planteados en el siguiente cuaderno, usando mejoras en el entrenamiento de la red, y entregarlo por el aula virtual:

Enlace al cuaderno: 07-Perceptron.ipynb.

Preguntas para reflexionar:

- 1. ¿Qué técnicas de regularización funcionan mejor en diferentes escenarios?
- 2. ¿Cómo podrías mejorar el desempeño de una red neuronal sin cambiar su arquitectura?
- 3. ¿Cómo afecta el tamaño del dataset al rendimiento del modelo y la necesidad de regularización?

Para la próxima clase: Exploración de arquitecturas avanzadas como redes convolucionales y recurrentes. Previsualizar el notebook: Arquitecturas Avanzadas.