Imaging Biomarkers

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

Topics

- Biomarkers
- Imaging biomarkers
- Course summary
- Course evaluation
- Final exam

Biomarkers

- Any detectable biological parameter that can help establish the presence or severity of disease
 - Biochemical
 - Genetic
 - Histologic
 - Anatomic
 - Physical
 - Functional
 - Metabolic

Imaging biomarkers

- Any biomarker detectable through imaging
- A good biomarker
 - Is closely related to disease
 - Measurement is
 - Accurate
 - Reproducible (across time, imaging centers)
 - Feasible over time
- Imaging biomarkers can be more specific than standard clinical biomarkers
- Many of the same imaging biomarkers can be used in preclinical and clinical trials
 - Translational research

Imaging for preclinical testing

Willman (2008)

Preclinical and clinical imaging

TABLE 2.1 Summary of Current Imaging Modalities of Interest in Drug Research and Discovery					
Technique	Clinical Imaging	Resolution	Animal Imaging	Resolution and Time Scale	Application
SPECT (low energy γ-rays)	Yes	6-8 mm; s	Yes	1-2 mm; min	Functional
PET (high energy γ-rays)	Yes	4 mm; s	Yes	1-2 mm; min	Metabolic, functional, molecular
CT Ultrasound	Yes Yes	0.5 mm; s 300–500 μm; s	Yes Yes	50–100 μ m; min 50 μ m; min	Anatomical, functional Anatomical, functional
MRI	Yes	1 mm; s to min	Yes	$80-100~\mu\mathrm{m}$; s to h	Anatomical, functional,
Bioluminescence	No	_	Yes	1-10 mm; s to min	Molecular
Near infrared fluorescence imaging	No		Yes	1-3 mm; s to min	Molecular

Imaging in clinical trials

- Safety and efficacy of treatment is tested in clinical trials
- Imaging may improve trial efficiency
 - Identify promising treatment earlier
 - Identify ineffective treatment sooner
 - Reduce number of patients required
 - Identify patients most likely to benefit
- Example: metastatic liver cancer
 - Traditional end point: 5 year survival
 - Surrogate end points
 - Tumor volume on CT
 - Biomarkers for angiogenesis (blood flow and volume) on MRI
 - Longitudinal study to test for effects of therapy

Field	lmaging biomarker	Imaging modality		
Oncology	Tumour size and extent	MRI, CT, ultrasound		
	Tumour metabolism/proliferation	PET, SPECT		
	Tumour angiogenesis	PET, SPECT, MRI, ultrasound		
Cardiology	Vulnerable atherosclerotic plaque	MRI, PET, ultrasound, CT		
	Angiogenesis in ischaemia and infarction	PET, MRI, ultrasound		
	Viability of myocardium	PET, MRI		
	Cardiac contraction function	Ultrasound, MRI, CT		
	Lumen diameter/volume	MRI, CT		
	Carotid intima/plaque thickness	Ultrasound		
	Carotid plaque composition	MRI, CT		
	Coronary artery plaque	Ultrasound (intravascular)		
	Coronary artery calcification	СТ		
Neurology	Brain infarction size and extent	MRI, CT		
	Lesion size and activity in multiple sclerosis	MRI, PET, SPECT		
	Structural atrophy in Alzheimer's disease	MRI		
Rheumatology	Loss and chemical change of articular cartilage	MRI		
	Inflammatory activity	MRI, PET		
	Bone density	CT, plain radiography		
	Bone fracture	CT, plain radiography, MRI		
Pulmonology	Inflammatory activity	MRI, CT		
	Perfusion and ventilation	SPECT, MRI		

Imaging strategies using PET/SPECT

Drug	Technique	Measurements	Phase	Application		
Positron-emission/	Positron-emission/single-photon-emission tomography					
Cisplatin	13N-Cisplatin	Pharmacokinetics	Preclinical/clinical	Glioblastoma ¹⁵⁸		
Fluorouracil	11F-Fluorouracil	Pharmacokinetics	Clinical	Colorectal cancer ¹³⁸		
Tamoxifen	¹¹ F-Tamoxifen	Pharmacokinetics	Clinical	Breast tumour ¹⁴⁰		
HuMV833	124I-HuMV833	Pharmacokinetics	Clinical	Solid tumour ¹⁴¹		
Gefitinib	¹¹ F-FDG	Tumour metabolism	Preclinical	Non-small-cell lung cancer and epithelial carcinoma ¹⁴²		
Neoadjuvant chemotherapy	³³ F-FDG and ³³ O- water	Tumour metabolism and blood perfusion	Clinical	Locally advanced breast cancer ¹⁴³		
Combretastatin A4 phosphate	¹⁵ O-water and ¹⁵ O- carbon monoxide	Tumour blood perfusion	Clinical	Solid tumours144		
HSV-1TK gene therapy	124I–FIAU	Extent of HSV-1 TK gene expression	Clinical	Glioblastoma ³⁴⁵		
Various chemotherapeutic drugs	^{san} Tc-Annexin V	Apoptosis	Clinical	Lung cancer, lymphoma, breast cancer ⁷⁹		
Gefitinib	11F-FAZA	Hypoxia	Preclinical	Squamous cell carcinoma ¹⁰⁶		

Pharmacokinetics and microdosing studies

- Suboptimal pharmacokinetics can lead to up to 40% of drug failures by Phase I trials
- Microdose study (~1% of the estimated therapeutic dose)
- PET can measure drug
 - Absorption
 - Biodistribution
 - Metabolism
- Two approaches
 - Direct labeling of drug
 - Competitive binding
 - Measures occupancy with and without drug in system

Strategies using US

Drug	Technique	Measurements	Phase	Application
Ultrasound (US)				
Gemcitabline	Targeted microbubbles	Tumour anglogenesis	Preclinical	Pancreatic tumour 95
SU5416* and endostatin	Contrast-enhanced Doppler US	Tumour blood perfusion	Preclinical	Prostate cancer and glioblastoma ¹⁵⁵
ZD6126‡	DopplerUS	Tumour blood perfusion	Preclinical	Melanoma ¹⁵⁷
Soluble form of VEGFR2	Contrast-enhanced Doppler US	Tumour blood perfusion	Preclinical	Prostate cancer ¹⁵⁸
ZD6126 [‡] and DC101 [§]	US with speckle variance flow processing	Tumour blood perfusion	Preclinical	Breast carcinoma ¹⁵⁹
Thalidomide	Contrast-enhanced US	Tumour blood perfusion	Clinical	Hepatocellular carcinoma ¹⁶⁰
Thalidomide	Power Doppler US	Tumour blood perfusion	Clinical	Hepatocellular carcinoma ¹⁶¹
SU11248	Power Doppler US	Tumour blood perfusion	Preclinical	Lung carcinoma ¹⁶²
Interferon-y	Power Doppler US	Tumour blood perfusion	Preclinical	Melanoma ¹⁶³
Paclitaxel	Paclitaxel-containing microbubbles	US-guided drug delivery	Preclinical	Improved drug delivery ¹⁵⁴
DC 101 ⁵	Contrast-enhanced Doppler US	Tumour blood perfusion	Preclinical	Squamous cell carcinoma ¹⁶⁵

Imaging strategies using MR

Magnetic resonance imaging (MRI)/spectroscopy				
AG013925*	Contrast-enhanced MRI	Tumour blood perfusion	Preclinical	Colon carcinoma ¹⁴⁶
Various chemotherapeutic drugs	Contrast-enhanced MRI	Tumour blood perfusion	Clinical	Urinary bladder cancer ¹⁴⁷
PTK787/ZK222584	Contrast-enhanced MRI	Tumour blood perfusion	Clinical	Colorectal cancer ¹⁴⁸
ZD6126 [‡]	Contrast-enhanced MRI	Tumour blood perfusion	Preclinical	Rat GH3 prolactinoma and murine RIF-1 fibrosarcoma ¹⁴⁸
Combretastatin A4 phosphate	Contrast-enhanced MRI	Tumour blood perfusion	Clinical	Solid tumours ¹⁵⁰
Endostatin	Contrast-enhanced MRI	Tumour blood perfusion	Clinical	Solid tumours ¹⁵³
Combretastatin A4 phosphate	Contrast-enhanced MRI	Tumour blood perfusion	Preclinical/clinical	Rat P22 carcinosarcoma and human solid tumour ¹⁵²
Fluorouracil	¹⁸ F-Fluorouracil	Pharmacokinetics	Clinical	Breast, colorectal, and other tumours ¹⁵³
Gemcitabine	¹⁸ F-Gemcitabine	Pharmacokinetics	Preclinical	Colon carcinoma ³⁵⁴
Ifosfamide	³³ P-Ifosfamide	Pharmacokinetics	Preclinical	GH3 prolactinoma and breast tumours 155

Diffusion MRI as a guide to therapy

- Relation of tumor to neighboring fiber tracks
- Example: pyramidal tract displaced by astrocytoma, viewed intra-operatively

Prior to surgery

Sorensen (2006)

Targeted contrast agents

- Iron-based T2 contrast agent (ferumoxtran-10)
 - taken up by healthy lymph nodes
- Distinguishes healthy (top) from malignant tumor (bottom)

Pre-injection

Post-injection

Imaging in Clinical Trials and Imaging Biomarkers

- PET, US, and MRI can be used to evaluate drug distribution, efficacy
- Clinical trials are expensive, high-risk
- Imaging biomarkers can
 - Reduce costs
 - Improve the odds of identifying good treatments
 - Benefit pharmaceutical industry, physicians, and patients

Course Overview: What have we been talking about?

- Image information
 - Ways to quantify image quality
 - Sources of contrast
 - Data modeling
 - Limitations of imaging
- Image-based measurement of
 - Intrinsic tissue properties
 - Position
 - Volume and shape
 - Motion
 - Diffusion and tissue microstructure
 - Tissue perfusion
 - Blood flow
 - Metabolism
 - Oxygen use
 - Molecular receptor density

The Bigger Picture

- Applications of quantitative imaging
 - Measure tissue structure and physiology
 - Characterize disease in an individual
 - Group studies to understand general features of diseases
 - Evaluate therapy
 - 'Precision' medicine
- How medical imaging technology is being used in
 - Medical centers
 - Pharmaceutical industry
 - Biomedical research institutes
- Developed skills for image research
 - Programming tools for image analysis
 - Modeling experience
 - Relation of image information to tissue properties

https://www.athomo.com/wall_fram

Course Evaluation

- Check your email for "course evaluation"
- Provide your feedback on the course:
 - What works well now?
 - What could work better?
 - What topics are missing?
 - Should we spend class time differently?
 - Any suggestions for making the course more interesting/valuable?
- It's your gift to future QFI students!

Announcements

- Take-home final
 - Available on Brightspace (Sunday)
 - Open notes, books, internet (but not conversation)
 - Turn in by Tuesday (Dec. 13, 11:59pm)

https://www.alamy.com/stock-photo-an-old-open-book-with-blank-pages-48212229.htm

Sources

- N Beckmann, ed. In Vivo MR Techniques in Drug Discovery and Development (Taylor & Francis, 2006).
- JS Smith, AG Sorensen, JH Thrall. Biomarkers in imaging: realizing radiology's future. *Radiology* 227: 633-638 (2003).
- AG Sorensen, Magnetic resonance as a cancer imaging biomarker. J Clin Oncol 24: 3274-3281 (2006).
- JK Willmann et al, Molecular imaging in drug development. Nature Reviews Drug Discovery 7: 591-607 (2008).