CINEMÁTICA DE LA PARTÍCULA

MODELO DE PARTÍCULA

En el estudio del movimiento de traslación, se usará el "MODELO DE PARTÍCULA" y se describirá el movimiento de un cuerpo, cualquiera que sea su forma, tamaño o masa como el movimiento de una partícula.

VARIABLES CINEMÁTICAS

CANTIDAD	SIMBOLO 2D/3D	SIMBOLO 1D	UNIDAD DE MEDIDA (SI)	CARÁCTER
Posición	\vec{r}	x, y	m	VECTOR
Desplazamiento	$\overrightarrow{\Delta r}$	Δx, Δy	m	VECTOR
Velocidad promedio	$ec{v}_{prom}$	V _{promx} , V _{promy}	m/s	VECTOR
Rapidez promedio	Rap _{prom}		m/s	ESCALAR
Velocidad (instantánea)	\vec{v}	$V_{x_r}V_Y$	m/s	VECTOR
Rapidez (instantánea)	v		m/s	ESCALAR
Aceleración promedio	\vec{a}_{prom}	a _{promx} , a _{promy}	m/s²	VECTOR
Aceleración (instantánea)	\vec{a}	a _x , a _y	m/s²	VECTOR

POSICIÓN \vec{r} , x, y, [m]

La posición de una partícula es el lugar que la partícula ocupa en el espacio con respecto a un punto de referencia elegido, que podemos considerar como el origen de un sistema de coordenadas ortogonales.

Ejemplo: gráfica de posición vs tiempo generada a partir del movimiento rectilíneo uniformemente variado del vehículo mostrado en la figura.

LONGITUD DE TRAYECTORÍA *l*, [m]

Es la distancia total recorrida por la partícula entre el punto de partida y el punto final de su movimiento.

DESPLAZAMIENTO Δr , Δx , Δy , [m]

El desplazamiento de una partícula se define como el cambio en la posición que experimenta la partícula en un intervalo de tiempo determinado.

- * Es independiente de la trayectoria seguida por la partícula,
- * Solo depende de sus posiciones inicial y final.

$$\overrightarrow{\Delta r} = \vec{r}_f - \vec{r}_o$$

$$\Delta x = x_f - x_o$$

VELOCIDAD PROMEDIO [m/s]

La velocidad promedio se define como desplazamiento de la partícula dividido entre el intervalo de tiempo

$$\vec{v}_{prom} = \frac{\overrightarrow{\Delta r}}{\Delta t} = \frac{\vec{r}_f - \vec{r}_o}{t_f - t_o}$$

$$v_{promx} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_o}{t_f - t_o}$$
 $v_{promy} = \frac{\Delta y}{\Delta t} = \frac{y - y_o}{t_f - t_o}$

VELOCIDAD PROMEDIO, descripción gráfica: es la pendiente a la recta secante a la curva posición vs tiempo.

RAPIDEZ PROMEDIO [m/s]

La rapidez promedio de una partícula, una cantidad escalar, se define como la distancia total recorrida dividida entre el intervalo total necesario para recorrer esa distancia.

$$Rap_{prom} = \frac{longitud\ total\ de\ la\ trayectoria}{\Delta t}$$

EJEMPLO No. 1: Un pequeño roedor sale de su madriguera en busca de comida, primero camina 5.00 m a 30.0° al Este del Norte, luego camina 3.00 m al Norte y finalmente 10.0 m a 60.0° al Norte del Oeste, tardando 2.00 minutos en encontrar comida. Determine:

- a) La magnitud y dirección de su desplazamiento total.
- b) La magnitud de su velocidad promedio.
- c) Su rapidez promedio.
- d) Cuanto tendría que recorrer y en qué dirección para regresar directamente a su madriguera.

VELOCIDAD (instantánea), [m/s]

La velocidad instantánea (llamada comúnmente solo velocidad) es el límite de la velocidad media conforme el intervalo de tiempo se acerca a cero; es igual a la tasa instantánea de cambio de posición con el tiempo, es decir "la derivada de la posición respecto al tiempo"

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Definición gráfica de la velocidad instantánea.

Se define como la pendiente de la recta tangente a la curva posición vs tiempo en el instante de interés.

... su valor v_{med-x} = Δx/Δt se acerca a la velocidad instantánea.

Cuando la velocidad media v_{med-x} es calculada en intervalos cada vez más cortos ...

La velocidad instantánea v_x en un tiempo dado es igual a la pendiente de la tangente a la curva x-t en ese tiempo.

RAPIDEZ (instantánea), [m/s]

La rapidez instantánea (llamada comúnmente solo rapidez) de una partícula se define como la magnitud del vector velocidad instantánea.

VELOCIDAD (Instantánea)	RAPIDEZ (instantánea)	
$\vec{v} = 3\hat{\imath} + 4\hat{\jmath} \ (m/s)$	v = 5m/s	
$v_x = -5m/s$	v = 5m/s	
$v_y = +5m/s$	v = 5m/s	

ACELERACIÓN PROMEDIO \vec{a}_{prom} , $a_{prom.x_I}$ [$^m/_{s^2}$]

La aceleración promedio se define como el cambio en la velocidad dividido entre el intervalo de tiempo durante el cual ocurre ese cambio

$$\vec{a}_{prom} = \frac{\overrightarrow{\Delta v}}{\Delta t} = \frac{\vec{v}_f - \vec{v}_o}{t_f - t_o}$$

$$a_{promx} = \frac{\Delta v_x}{\Delta t} = \frac{v_{x_f} - v_{x_o}}{t_f - t_o} \qquad a_{promy} = \frac{\Delta v_y}{\Delta t} = \frac{v_{y_f} - v_{y_o}}{t_f - t_o}$$

ACELERACIÓN (instantánea) \vec{a} , a_x , $[^m/_{s^2}]$

La aceleración instantánea (llamada comúnmente solo aceleración) es el límite de la aceleración media conforme el intervalo de tiempo se acerca a cero; es igual a la tasa instantánea de cambio de velocidad con el tiempo, es decir "la derivada de la velocidad respecto al tiempo"

$$a_{x} = \lim_{\Delta t \to 0} \frac{\Delta v_{x}}{\Delta t} = \frac{dv_{x}}{dt}$$

Aceleración promedio e instantánea, definición gráfica

Gráficamente la aceleración promedio se define como la pendiente de la recta secante a la curva velocidad vs tiempo, mientras que la aceleración instantánea es la pendiente de la recta tangente a la curva velocidad vs tiempo en el instante de interés.

