學號:B05902128 系級: 資工三 姓名:鄭百凱

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 9 小時內的污染源 feature 當作一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- c. 第 1-3 題請都以題目給訂的兩種 model 來回答
- d. 同學可以先把 model 訓練好, kaggle 死線之後便可以無限上傳。
- e. 根據助教時間的公式表示, (1) 代表 p = 9x18+1 而(2) 代表 p = 9*1+1
- 註:1~3 題皆是用 adagram, 其中 learning rate = 1, 起始值都是 0, iterate 100000 次
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

	(1) p = 9x18+1	(2) $p = 9*1+1$
Public	5.63779	5.90263
Private	7.21546	7.22356
平均	6.42663	6.56310

由表可見不管在 public 還是 private 的 data set, 163 維的 linear regression 皆有著較低的 error。原因估計是因為 163 維相較 10 維有著較大的 function space, 因此 bias 比較小。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

	(1) $5HR p = 5x18+1$	(2) $5HR p = 5*1+1$
Public	5.98257	6.22732
Private	7.16701	7.22552
平均	6.57479	6.72642

抽前 5 小時的 error 比抽前 9 小時的 error 大,而且 5 小時中取全部的 feature 又比只取 PM2.5 要來的好。1、2 小題中,可以看出維度的數量大致跟 error 呈負相關。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖將不同的 lambda 產生的 w 丟到 kaggle 的結果

	λ=0.1	λ=0.01	λ=0.001	λ=0.0001
Public (1)	5.63780	5.63779	5.63779	5.63779
p = 9x18+1				
Private (1)	7.21545	7.21546	7.21546	7.21546
p = 9x18+1				
平均 (1)	6.42663	6.42663	6.42663	6.42663
p = 9x18+1				
Public (2)	5.90263	5.90263	5.90263	5.90263
p = 9*1+1				
Private (2)	7.22356	7.22356	7.22356	7.22356
p = 9*1+1				
平均 (2)	6.56310	6.56310	6.56310	6.56310
p = 9*1+1				

由圖可知,不管是 10 維還是 163 維,四條線都重疊了。所以在只改變 λ 且 λ 介於 0.1~0.0001 的情況下,error 的下降速率是幾乎一樣的。要看出變化可能要讓 λ 提高到 10 以上。而從圖或從表都可以看出來,就算加了 regularization,163 維的表現還是比 10 維好。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一純量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^{N}$ $(\mathbf{y}^n-\mathbf{x}^n\cdot\mathbf{w})^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X}=[\mathbf{x}^1\,\mathbf{x}^2\,...\,\mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y}=[\mathbf{y}^1\,\mathbf{y}^2\,...\,\mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^TX)yX^T$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-1}yX^{T}$

C

將 loss function 對 w 做微分,使其等於一個 0 向量。解完這個方程式就可以得到 w 的最佳解為 $(X^TX)^{-1}X^Ty$