

(3)

:

≡ ×

Question pool Unit 2

Question 46

1/1

Find It
$$_{\text{X} \to \infty} \left(\frac{ln(1 + \frac{(x+3)^3(2x+9)}{(4x^3+3)})}{x^3 + 3x^2 + 9x + 27} \right)$$

Hide answer choices ^

- (A) 0
- B 1
- C Undefined
- D -1/35

Question 47

1/1

Find
$$\operatorname{It}_{n \to \infty} \sum_{a=0}^{n-1} \frac{\sin(\frac{a}{n})}{n}$$

Hide answer choices ^

- A 1/a
- (B) 1
- C 1-cos(1)
- (D) 0

Question 48

1/1

Find
$$lt_{X \to 0} \left(\frac{ln(1+x^4)}{x} \right)$$

Hide answer choices ^

- (A) 1
- B -1
- **G** 0
- D Undefined

Question 49

≡ X Question pool Unit 2

1/1

In the group G={1,3,7,9} under multiplication modulo 10, $(3 \times 7^{-1})^{-1}$ is equal to

Hide answer choices ^

Question 25

- A 9
- (B) 5
- (c) 7
- (D) 3

Question 26
 1/1

The order of $(-i)^2$ in the group (C^*, \cdot) is

Hide answer choices ^

- A 2
- (B) 1
- (C) 4
- (D) 3

Question 27

Which one of the following is false

Hide answer choices ^

- (N,+) is a semi-group
- (B) (N, ·) is a monoid
- C (Z, ·) is a group
- (D) The set of all even integers is a group under usual addition is a group

If a, b, c are three elements of a group (G,*) and (a*b)* x = c then x = c

- (A) $c*(a^{-1}*b^{-1})$
- (B) $c*(b^{-1}*a^{-1})$
- \bigcirc $(a^{-1}*b^{-1})*c$

:

= >

Question pool Unit 2

Question 16

1/1

Let (G,*) be a group. If $a \in G$ be any element, then

Hide answer choices ^

- **A** $O(a) = O(a^{-1})$
- (B) $a = a^{-1}$
- (c) $a*a^{-1} = a$
- $a*a^{-1} = a^{-1}$

Question 17

1/1

The number of generators of an infinite cyclic group is

Hide answer choices A

- (A) 1
- (B) 2
- G
- (D) Infinite

Question 18

1/1

Every group of order 7 is

Hide answer choices ^

- (A) Not abelian
- B Not cyclic
- C Cyclic
- D None of these

Question 19

1/1

The total number of generators of a finite cyclic group of order 28 is

- (A) 10
- B 8

:

= >

Question pool Unit 2

Question 19

1/1

The total number of generators of a finite cyclic group of order 28 is

Hide answer choices .

- (A) 10
- (B) 8
- **G** 12
- (D) 14

Question 20

1/1

In the multiplicative group of 2 X 2 matrices of the form $\begin{bmatrix} a & a \\ a & a \end{bmatrix}$, $a \neq 0$ and $a \in R$ inverse of $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ is

Hide answer choices .

- B 1/4 1/4 1/4
- G [1/8 1/8]
- Does not exist

Question 21

1/1

Identify the false statement

Hide answer choices .

- (A) In a group of even order, there exists an element other than identity which is its own inverse.
- **B** In an Abelian group $(ab)^2 = a^2b^2 \ \forall \ a,b \in G$
- C Cube roots of unity form an Abelian group
- D In $(G, *), ab = ac \rightarrow b = c \forall a, b, c \in G$

Question 22

1/1

In the group $\{Z_6, +(mod 6)\}, 2+4^{-1}+3^{-1}$ is equal to

3

≡ >

Question pool Unit 2

Question 37

1/1

Find
$$lt_{x
ightarrow -2}rac{sin(rac{1+(rac{(x+2)^2(x^2+1)}{x^3+3})}{x+2})}{(x+2)}$$

Hide answer choices ^

- (A) ∞
- (B) 0
- **C** 2
- (D) ∞

Question 38

1/1

Find
$$lt_{x o 0} rac{2cos(2x) + 3cos(5x) - 5cos(19x)}{cos(4x) - cos(3x)}$$

Hide answer choices ^

- A -76
- (B) -6
- (C) -7
- (D) 0

Question 39

1/1

Find
$$lt_{p
ightarrow \infty} rac{p^5.p!}{5.6...(5+p)}$$

- A 4!
- B) 5!
- (C) 0
- D ~

cuchd.blackboard.com/u

Question pool Unit 2

Question 7

1/1

A subset H of a group (G, *) is a group iff

Hide answer choices A

- (A) a,b∈H⇒a*b∈H
- (B) $a \in H \Rightarrow a^{-1} \in H$
- $a,b \in H \Rightarrow a*b^{-1} \in H$
- D H contains the identity elements

Question 8

1/1

In any group, the number of improper subgroups is

Hide answer choices ^

- A 2
- B) 3
- C Depends of the group
- (D) 1

Question 9

1/1

In a group (G,*) for some a of G, $a^2 = e$ where e is the identity element. Then

Hide answer choices ^

- B $a = a^{-1}$
- (C) a=e
- D None of these

Question 10

1/1

In the group G=[2,4,6,8] under multiplication modulo 10, the identity element is

:

= 3

Question pool Unit 2

Question 34

1/1

Let G denote the set of all n X n non-singular matrices with rational numbers as entries. Then under multiplication

Hide answer choices >

- (A) G is a subgroup
- B) G is a finite abelian group
- G is an infinite, non-abelian group
- (D) G is infinite, abelian

Question 35

1/1

 $Z_n = \{0,1,2,...,(n-1)\}$ fails to be a group under multiplication modulo n because

Hide answer choices .

- (A) Closure property fails
- B) Closure holds but not associativity
- C There is no identity
- There is no inverse for an element of the set

Question 36

1/1

Find
$$lt_{x
ightarrow 0} rac{2cos(2x) + 3cos(5x) - 5cos(19x)}{cos(4x) - cos(3x)}$$

Hide answer choices .

- (A) 3/2
- (B) 0
- G 4/3
- (D) -4/3

Question 37

Find
$$lt_{x \to -2} \frac{sin(\frac{1+(\frac{(x+2)^2(x^2+1)}{x^3+3})}{x+2})}{(\frac{x+2}{x^3+3})}$$

:

= >

Question pool Unit 2

Question 28

1/1

If a, b, c are three elements of a group (G,*) and (a*b)* x = c then x = c

Hide answer choices .

- (A) $c*(a^{-1}*b^{-1})$
- (B) $c*(b^{-1}*a^{-1})$
- (c) (a-1*b-1)*c
- (b⁻¹*a⁻¹)*c

Question 29

1/1

If a*b denote the bigger among a and b and a . b =(a*b)+3 then 4.7 is equal to

Hide answer choices .

- (A) 4
- (B) 31
- G 10
- (D) 8

Question 30

1/1

Which of the following is true

Hide answer choices .

- A The set of all fourth roots of unity is a multiplicative group
- (B) The set of all cube roots of unity is an additive group
- (ab)⁻¹ = $a^{-1}b^{-1}$ for all a, b in any group G
- (ab)² = a^2b^2 for all a, b in any group G, then the group G is non-abelian

Question 31

1/1

The set of all integers multiples of 5 is a sub-group of

- (A) The set of all rational numbers under multiplication
- B) The set of all integers under multiplication

:

Question pool Unit 2 Question 4 1/1 The set G={0,1,2,3,4,5} with the operation of addition modulo 6 is a group. Which of the following is a sub group of G Hide answer choices . A {0, 3} (B) {2, 4} (C) {1, 3} (D) {2, 3} Question 5 171 In the group of non-zero rational numbers under the binary operation * given by $a*b = \frac{ab}{5}$ the identity element and the inverse of 8 are respectively Hide answer choices . (A) 5 and 5/8 B 5 and 25/8 C 5 and 8/25 D None of these Question 6 1/1 If every element of a group G is its own inverse, then G is Hide answer choices . (A) Finite (B) Infinite C Cyclic (D) Abelian Question 7 171

A subset H of a group (G, *) is a group iff

Hide answer choices .

A a,b∈H⇒a*b∈H

(B) $a \in H \Rightarrow a^{-1} \in H$

Question pool Unit 2

Question 22

1/1

In the group $\{Z_6, +(mod 6)\}, 2+4^{-1}+3^{-1}$ is equal to

Hide answer choices .

- (A) 2
- (C) 4
- D 3

Question 23

1/1

The set of all 2 X 2 matrices over the real numbers is not a group under matrix multiplication because

Hide answer choices .

- (A) Associative law is not satisfied
- B Inverse axiom is not satisfied
- C Closure property is not satisfied
- (D) Identity element does not exist

Question 24

1/1

The number of improper subgroups of G = [1, -1, l, -l] w.r.t multiplication is

Hide answer choices .

- A 2
- (B) 3
- (C) 4
- (D) 1

Question 25

1/1

In the group G={1,3,7,9} under multiplication modulo 10, $(3 \times 7^{-1})^{-1}$ is equal to

- B) 5

:

≡ ×

Question pool Unit 2

Question 43

1/1

Find
$$lt_{p o\infty}rac{rac{p^{rac{1}{2}.p!}}{rac{1}{2}.rac{3}{2}\dots(p+rac{1}{2})}$$

Hide answer choices ^

- \bigcirc $\sqrt{\pi}$
- B) ∞
- $\int \sqrt{\pi} /2$
- (D) 0

Question 44

1/1

Find
$$lt_{n o \infty} (1 + rac{1}{n})^n$$

•••

Hide answer choices ^

- B e-1
- (C) 0
- (D) ∞

Question 45

1/1

Find
$$\operatorname{lt}_{{\scriptscriptstyle X} \, \rightarrow \, {\scriptscriptstyle \infty}} (1 + \frac{1}{x^2 + 2x + 1})^{x^2 + 3x + 1}$$

- B) 1
- (C) e²
- D 1/e

cuchd.blackboard.com/u

Question pool Unit 2 Assignment Content Question 1 1/1 In the group (Z, *) of all integers, where a * b = a + b + 1 for all $a, b \in Z$, the inverse of -2 is Hide answer choices . (A) -2 B 0 C) -4 (D) 2 Question 2 1/1 In the group G = [0, 1, 2, 3, 4, 5] under addition modulo 6, the value of $(3 + 5^{-1})^{-1}$ is Hide answer choices . (A) 5 (B) 4 **G** 2 (D) 3 Question 3 1/1 If G is a group of even order, then Hide answer choices . (A) $a^2 = e$ for all $a \in g$ $a^2 = e$ for atleast one $a \in g$ (c) $a^2 = a$ for all $a \in g$ (D) None of these

(B) G is a finite abelian group

G is an infinite, non-abelian group

3

:

Question pool Unit 2

Question 13

1/1

The set $\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$ where $a,b \in R$ under matrix multiplication forms

Hide answer choices ^

- An abelian group
- (B) Non-abelian group
- (C) Cyclic group
- D None of these

Question 14

1/1

In a group (G,*) the equation x*a=b has a

Hide answer choices ^

- A Unique solution $b*a^{-1}$
- (B) Unique solution $a^{-1}*b$
- \bigcirc Unique solution $a^{-1}*b^{-1}$
- (D) Many solution

Question 15

1/1

If in a group G, if $a^2 = e$ for all $a \in G$ then

Hide answer choices ^

- A G is abelian
- B G is not abelian
- (C) O(G)=2 only
- D None of these

Question 16

1/1

Let (G,*) be a group. If $a \in G$ be any element, then

Hide answer choices ^

A $O(a) = O(a^{-1})$

:

= >

Question pool Unit 2

Question 10

1/1

In the group G=[2,4,6,8] under multiplication modulo 10, the identity element is

Hide answer choices ^

- A 6
- (B) 8
- (C) 4
- (D) 2

Question 11

1/1

The set of all non-zero real numbers with the operation * defined on it by $a*b = \frac{ab}{2}$ is an abelian group. The identity of the group is

Hide answer choices ^

- (A) 1
- **B** 2
- (C) 1/2
- D 1/3

Question 12

1/1

Square matrices of the type $\begin{bmatrix} x & x \\ x & x \end{bmatrix}$, $x \ne 0$ form a group under the usual matrix multiplication. The identity of the group is

Hide answer choices ^

- $\mathbf{A} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- \bigcirc $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Question 13

3

:

≡ X Question pool Unit 2

Question 40

1/1

Find
$$= lt_{x
ightarrow 0} rac{sin(x)}{tan(x)}$$

Hide answer choices ^

(A) 0

B 1

(€) ∞

(D) 2

Question 41

1/1

Find
$$lt_{x
ightarrow 0} rac{sin(x^2)}{x}$$

Hide answer choices ^

A ∞

B -1

C 0

(D) 2^2

Question 42

1/1

Find
$$lt_{x o -33} rac{ln(x^3 + 68x^2 + 1222x + 2179) - ln(x+1)}{(x^2 + 66x + 1089)}$$

Hide answer choices 🔺

A -33

(B) 1/2

(c)

D 31/32

Question 43

₹ X Question 48	Question pool Unit 2	
	Find $lt_{X\to 0} \left(\frac{ln(1+x^4)}{x}\right)$	***
	x - 0 (x)	
Hide answer choices ^		
A 1B -1		
© •		
D Undefined		
Question 49		1/1
	Find $lt_{x o 0}(rac{1}{sin^2(x)})$	***
Hide answer choices ^		
A 2		
B 1 C 0		
D undefined		
Question 50		1/1
	Find $lt_{x ightarrow\infty}((rac{x^3+x^2+x}{x^3+x+1})^{x+3})$	***
	2 1211	
Hide answer choices •		
A e		
B e ^{−1}		
© 0		
D 1		

Feedback for student

Feedback