Neveu Schwarz Indecomposables

Michael Canagasabey Supervisor: David Ridout

ANZAMP Annual Meeting

Outline

- Background
 - Neveu Schwarz Algebra
 - Verma Modules
 - Singular Vectors
- Pusion
 - Coproduct Formulae
 - An example
 - Towards a Classification of Indecomposables

Neveu Schwarz Algebra

 \mathbb{Z}_2 graded Lie algebra

Neveu Schwarz Algebra

\mathbb{Z}_2 graded Lie algebra

Commutation Relations

$$\begin{split} [L_m,L_n] &= (m-n)L_{m+n} + \frac{C}{12}(m^3-m)\delta_{m,-n} & m,n \in \mathbb{Z} \\ [L_m,G_n] &= \left(\frac{m}{2}-n\right)G_{m+n} & m \in \mathbb{Z}, n \in \mathbb{Z} + \frac{1}{2} \\ \{G_m,G_n\} &= 2L_{m+n} + \frac{C}{3}(m^2-\frac{1}{4})\delta_{m,-n} & m,n \in \mathbb{Z} + \frac{1}{2} \end{split}$$

Neveu Schwarz Algebra

\mathbb{Z}_2 graded Lie algebra

Commutation Relations

$$\begin{split} [L_m,L_n] &= (m-n)L_{m+n} + \frac{C}{12}(m^3-m)\delta_{m,-n} & m,n \in \mathbb{Z} \\ [L_m,G_n] &= \left(\frac{m}{2}-n\right)G_{m+n} & m \in \mathbb{Z}, n \in \mathbb{Z} + \frac{1}{2} \\ \{G_m,G_n\} &= 2L_{m+n} + \frac{C}{3}(m^2-\frac{1}{4})\delta_{m,-n} & m,n \in \mathbb{Z} + \frac{1}{2} \end{split}$$

$$\mathsf{SVir} = \mathfrak{n}^- \oplus \underbrace{\left(\mathbb{C} \mathit{L}_0 \oplus \mathbb{C} \mathit{C}\right) \oplus \mathfrak{n}^+}_{\mathsf{h}^+}$$

We begin with a one dimensional module $\mathbb{C}v_{h,c}$ over \mathfrak{b}^+ such that

We begin with a one dimensional module $\mathbb{C}v_{h,c}$ over \mathfrak{b}^+ such that

We begin with a one dimensional module $\mathbb{C}v_{h,c}$ over \mathfrak{b}^+ such that

- n⁺ acts by zero
- C is multiplication by c (central charge)

We begin with a one dimensional module $\mathbb{C}v_{h,c}$ over \mathfrak{b}^+ such that

- n⁺ acts by zero
- $oldsymbol{O}$ C is multiplication by c (central charge)
- \bullet L_0 is multiplication by h (conformal dimension)

We begin with a one dimensional module $\mathbb{C}v_{h,c}$ over \mathfrak{b}^+ such that

- n⁺ acts by zero
- C is multiplication by c (central charge)
- \bullet L_0 is multiplication by h (conformal dimension)

Then the Verma module is the induced module

$$V(h,c) = \operatorname{Ind}_{\mathfrak{h}^+}^{\mathsf{NS}} \mathbb{C} v_{h,c}$$

We begin with a one dimensional module $\mathbb{C}v_{h,c}$ over \mathfrak{b}^+ such that

- n⁺ acts by zero
- \circ C is multiplication by c (central charge)
- \bullet L_0 is multiplication by h (conformal dimension)

Then the Verma module is the induced module

$$V(h,c) = \mathsf{Ind}_{\mathfrak{b}^+}^{\mathsf{NS}} \mathbb{C} v_{h,c}$$

This is a free module over $\mathbf{U}(\mathfrak{n}^-)$ with a basis of ordered monomials

$$\dots L_{-2}^{n_2}G_{-3/2}^{k_2}L_{-1}^{n_1}G_{-\frac{1}{2}}^{k_1}v_{h,c}$$

We begin with a one dimensional module $\mathbb{C}v_{h,c}$ over \mathfrak{b}^+ such that

- n⁺ acts by zero
- C is multiplication by c (central charge)
- \bullet \bullet \bullet L₀ is multiplication by \bullet (conformal dimension)

Then the Verma module is the induced module

$$V(h,c) = \operatorname{Ind}_{\mathfrak{b}^+}^{\mathsf{NS}} \mathbb{C} v_{h,c}$$

This is a free module over $\mathbf{U}(\mathfrak{n}^-)$ with a basis of ordered monomials

$$\dots L_{-2}^{n_2} G_{-3/2}^{k_2} L_{-1}^{n_1} G_{-\frac{1}{2}}^{k_1} v_{h,c}$$

We call $v_{h,c}$ a **highest weight vector**.

We look for highest weight vectors within the Verma module and term these **singular vectors**.

We look for highest weight vectors within the Verma module and term these singular vectors.

$$\det_{n}(c,h) = \alpha_{n} \prod_{\substack{0 < rs/2 \le n \\ r \cong s[2]}} [h - h_{r,s}(t)]^{d(n-rs/2)}$$

We look for highest weight vectors within the Verma module and term these singular vectors.

$$\det_{n}(c,h) = \alpha_{n} \prod_{\substack{0 < rs/2 \leq n \\ r \cong s[2]}} [h - h_{r,s}(t)]^{d(n-rs/2)}$$

$$h_{r,s} = \frac{(r-st)^2 - (1-t)^2}{8t}$$
 $t \in \mathbb{C}^*, r, s \in \mathbb{Z}_+$

We look for highest weight vectors within the Verma module and term these **singular vectors**.

$$\det_{n}(c,h) = \alpha_{n} \prod_{\substack{0 < rs/2 \leq n \\ r \cong s[2]}} [h - h_{r,s}(t)]^{d(n-rs/2)}$$

$$h_{r,s} = \frac{(r-st)^2 - (1-t)^2}{8t}$$
 $t \in \mathbb{C}^*, r, s \in \mathbb{Z}_+$

A singular vector is found at grade $\frac{rs}{2}$ and generates a Verma submodule, $V(h_{r,s} + \frac{rs}{2}, c)$.

Classification of SVir Submodule Structure

$Q_{r,s}$ module

Definition

 $Q_{r,s}$ is the quotient of $V(h_{r,s},c)$ by the submodule generated by the singular vector at grade $\frac{rs}{2}$

$Q_{r,s}$ module

Definition

 $Q_{r,s}$ is the quotient of $V(h_{r,s},c)$ by the submodule generated by the singular vector at grade $\frac{rs}{2}$

E.g. For the module $V(h_{3,1}=0,c=0)$ we have the singular vector

$$(L_{-1}G_{-1/2} - \frac{1}{2}G_{-3/2})v_{0,0}$$

at grade 3/2. We will refer to the quotient as $Q_{3,1}$.

Fusion

Decompose $Q_{r_1,s_1}\otimes Q_{r_2,s_2}\sim \mathsf{OPE}$'s in CFT

Vectors in module \sim fields in CFT

We need an appropriate coproduct to make this connection

Coproduct Formulae

We have the mode expansion for each generator in SVir

$$G(w) = \sum_{n \in \mathbb{Z} + 3/2} w^{n-3/2} G_{-n}, \qquad L(w) = \sum_{n \in \mathbb{Z} + 2} w^{n-2} L_{-n}$$

Fusion

Coproduct Formulae

We have the mode expansion for each generator in SVir

$$G(w) = \sum_{n \in \mathbb{Z}+3/2} w^{n-3/2} G_{-n}, \qquad L(w) = \sum_{n \in \mathbb{Z}+2} w^{n-2} L_{-n}$$

We consider the action of a mode on the product space as

$$\Delta(S_n)(v_1 \otimes v_2) = \oint_C dww^n S(w) V(v_1, \zeta) V(v_2, z) \Omega \qquad S = L, G$$

Coproduct Formulae

We have the mode expansion for each generator in SVir

$$G(w) = \sum_{n \in \mathbb{Z}+3/2} w^{n-3/2} G_{-n}, \qquad L(w) = \sum_{n \in \mathbb{Z}+2} w^{n-2} L_{-n}$$

We consider the action of a mode on the product space as

$$\Delta(S_n)(v_1 \otimes v_2) = \oint_C dww^n S(w) V(v_1, \zeta) V(v_2, z) \Omega \qquad S = L, G$$

From this we derive two coproduct formulae for each generator S_n

$$\Delta(S_n) = \sum_{m=1-h}^{\infty} a_m(S_m \otimes \mathbf{1}) + \epsilon_1 \mathbf{1} \otimes S_n$$

$$\tilde{\Delta}(S_n) = S_n \otimes \mathbf{1} + \epsilon_1 \sum_{m=1-h}^{\infty} b_m (\mathbf{1} \otimes S_m)$$

Algebraic Formulation

We consider the fusion product as follows

$$(Q_{r_1,s_1} imes Q_{r_2,s_2})_f:=(Q_{r_1,s_1}\otimes Q_{r_2,s_2})/(\Delta- ilde{\Delta})$$

Fusion

Algebraic Formulation

We consider the fusion product as follows

$$(\mathit{Q}_{\mathit{r}_{1},\mathsf{s}_{1}} imes \mathit{Q}_{\mathit{r}_{2},\mathsf{s}_{2}})_{\mathit{f}} := (\mathit{Q}_{\mathit{r}_{1},\mathsf{s}_{1}} \otimes \mathit{Q}_{\mathit{r}_{2},\mathsf{s}_{2}})/(\Delta - ilde{\Delta})$$

This can be shown to reproduce the fusion rules for a number of examples. We will analyse the fusion product, to some grade n. Gaberdiel shows that

$$(Q_1 \times Q_2)_f^n \subseteq Q_1^s \otimes Q_2^n$$

Fusion

Algebraic Formulation

We consider the fusion product as follows

$$(Q_{r_1,s_1} imes Q_{r_2,s_2})_f:=(Q_{r_1,s_1}\otimes Q_{r_2,s_2})/(\Delta- ilde{\Delta})$$

This can be shown to reproduce the fusion rules for a number of examples. We will analyse the fusion product, to some grade n. Gaberdiel shows that

$$(Q_1 \times Q_2)_f^n \subseteq Q_1^s \otimes Q_2^n$$

where we have the **special subspace** defined as follows

$$Q^{s}=Q/\left\langle L_{-m},G_{-n}|m\geq2,n\geqrac{3}{2}
ight
angle Q$$

$$Q_{3,1}^s \otimes Q_{3,1}^0$$

$$v \quad \bullet \quad w$$

$$G_{-\frac{1}{2}}v \quad \bullet$$

$$L_{-1}v \quad \bullet$$

$$\swarrow L_{-1}G_{-\frac{1}{2}}v$$

$$L_{-1}G_{-\frac{1}{2}}v=G_{-\frac{3}{2}}v$$

as singular vector set to zero.

Here we have a tensor basis consisting of $\{v \otimes w, G_{-\frac{1}{2}}v \otimes w, L_{-1}v \otimes w\}$. We calculate $\Delta(L_0)$ wrt this basis

$$Q_{3,1}^{s} \otimes Q_{3,1}^{0}$$

$$v \quad \bullet \quad w \qquad \xrightarrow{\Delta(L_{0})}$$

$$G_{-\frac{1}{2}}v \quad \bullet$$

$$L_{-1}v \quad \bullet$$

$$Q^s_{3,1}\otimes Q^0_{3,1}$$

$$v \bullet u$$

$$\begin{array}{ccc} G_{-\frac{1}{2}}v & \bullet \\ L_{-1}v & \bullet \end{array}$$

$$L_{-1}v$$

$$h = 0$$

$$\bullet \qquad h = \frac{1}{2}$$

$$Q^s_{3,1} \otimes Q^{1/2}_{3,1}$$

$$\boldsymbol{w}$$

$$\bullet \quad G_{-\frac{1}{2}}\iota$$

$$L_{-1}v$$
 \bullet

$$Q_{3,1}^{s} \otimes Q_{3,1}^{1/2}$$

$$v \quad \bullet \quad w$$

$$G_{-\frac{1}{2}}v \quad \bullet \quad G_{-\frac{1}{2}}w$$

$$L_{-1}v \quad \bullet$$

$$Q_{3,1}^s \otimes Q_{3,1}^1$$

$$v \quad \bullet \quad w$$

$$G_{-\frac{1}{2}}v \quad \bullet \quad \bullet \quad G_{-\frac{1}{2}}w$$

$$L_{-1}v \quad \bullet \quad \bullet \quad L_{-1}w$$

•

$$Q_{3,1}^{s} \otimes Q_{3,1}^{3/2}$$

$$v \quad \bullet \quad w$$

$$G_{-\frac{1}{2}}v \quad \bullet \quad G_{-\frac{1}{2}}w$$

$$L_{-1}v \quad \bullet \quad L_{-1}w$$

$$s.v. \quad \bullet \quad G_{-\frac{3}{2}}w$$

$$Q_{3,1}^{s} \otimes Q_{3,1}^{3/2}$$

$$v \bullet w$$

$$G_{-\frac{1}{2}}v \bullet G_{-\frac{1}{2}}w$$

$$L_{-1}v \bullet L_{-1}w$$

$$s.v. \times G_{-\frac{3}{2}}w$$

$$Q_{1,1} \bigoplus [Q_{3,1} + Q_{5,1}]$$

$$\downarrow \qquad \qquad \downarrow^{L_0 - \frac{1}{2}} \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

Category \mathcal{O}

- M is finitely generated
- ② For any $w \in M$, $U(\mathfrak{n}^+)w$ is finite dimensional.
- C acts on M by multiplication by c
- \bullet L_0 acts semisimply on M

We are interested in the fusion products that lead to representations outside Category \mathcal{O} . In particular, where L_0 can have Jordan cells of rank at most two.We would like to classify such indecomposables.

Identification of Indecomposables

In the previous example we saw the following structure

$$Q_{3,1} + Q_{5,1}$$

$$X = G_{-\frac{1}{2}}$$

$$L_0 - \frac{1}{2}$$

Identification of Indecomposables

Kac Table for c=0

	s				
	1	2	3	4	5
1	0	0.5625	1.5	28/9	5
2	0/1	1/5	1/1	11/5	4/1
3	0	1/9	0.5	14/9	3
4	1/4	- 1/9	1/4	8/9	9/4
5	0.5	1/9	0	5/9	1.5

Results

Table: c=0 module decomposition

\times_f	$Q_{1,1}$	$Q_{3,1}$	$Q_{5,1}$
$Q_{1,1}$	$Q_{1,1}$	$Q_{3,1}$	$Q_{5,1}$
$Q_{3,1}$		$Q_{1,1} \oplus [Q_{3,1} + Q_{5,1}]$	$[Q_{3,1}+Q_{5,1}]\oplus Q_{1,7}$
$Q_{5,1}$			$\left[Q_{1,1}+Q_{7,1} ight]_1\oplus \left[Q_{3,1}+Q_{5,1} ight]_2\oplus Q_{9,1}$

Table: c=0 beta numbers

\times_f	$Q_{1,1}$	$Q_{3,1}$	$Q_{5,1}$	$Q_{7,1}$
$Q_{1,1}$				
$Q_{3,1}$		$\beta = -1$	$\beta = -1$	$\beta = -15$
$Q_{3,1}$ $Q_{5,1}$			$\beta_1 = -\frac{1}{4}, \beta_2 = -1$	

Table: c=3/2 module decomposition

\times_f	$Q_{3,1}$	$Q_{5,1}$
$Q_{3,3}$	$Q_{1,3}+Q_{3,3}+Q_{5,3}$	
$Q_{3,5}$	$Q_{1,5}+Q_{3,5}+Q_{5,5}$	
$Q_{3,7}$	$Q_{1,7}+Q_{3,7}+Q_{5,7}$	
$Q_{5,5}$		$Q_{1,5} + Q_{3,5} + Q_{5,5} + Q_{7,5} + Q_{9,5}$

Table: c=3/2 beta numbers

\times_f	$Q_{3,1}$	$Q_{5,1}$
$Q_{3,s}$	$\beta_i = 0$	
$Q_{5,5}$		$\beta_i = 0$

$$\left(Q_{r,1} imes Q_{r',1}
ight)_f \cong igoplus_{r''=|r-r'|+1}^{r+r'-1} Q_{r'',1}$$

Results

Table: c = -5/2 module decomposition

\times_f	$Q_{3,1}$	$Q_{5,1}$
$Q_{3,1}$	$Q_{1,1}+Q_{5,1}\oplus Q_{3,1}$	$egin{aligned} Q_{3,1} \oplus [Q_{5,1} + Q_{7,1}] \ [[Q_{1,1} + Q_{5,1}]_1 + Q_{7,1}]_2 \oplus Q_{3,1} \oplus Q_{9,1} \end{aligned}$
$Q_{5,1}$		$\Big \; \left[\left[Q_{1,1} + Q_{5,1} ight]_1 + Q_{7,1} ight]_2 \oplus Q_{3,1} \oplus Q_{9,1} \; \Big \;$
$Q_{7,1}$	$[Q_{5,1}+Q_{7,1}]\oplus Q_{9,1}$	-

Table: c=-5/2 beta numbers

\times_f	$Q_{3,1}$	$Q_{5,1}$
$Q_{3,1}$	$\beta = 0$	$\beta = -2$
$Q_{5,1}$		$\beta_1=0,\beta_2=-2$
$Q_{7,1}$	$\beta = -2$	

Things to do

- Repeat these computations for the Ramond Sector
- Classify indecomposables in the language of module extensions