Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Андрей Михайлович Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

0.1	Топология метрических пространств	2
0.2	Подпространство метрического пространства	4
0.3	Компакты	5

Определение 0.1. Пусть $\{x_n\} \subset X, a \in X$. Говорят, что x_n сходится к a, если $\rho(x_n, a) \to 0$. Пишут $\lim_{n \to \infty} x_n = a$ или $x_n \to a$.

Замечание.

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n > N(x_n \in B_{\varepsilon}(a))$$

Следствие. $x_n \to a, x_n \to b \Leftrightarrow a = b$

Доказательство.
$$0 \leqslant \rho(a,b) \leqslant \underbrace{\rho(a,x_n)}_{\to 0} + \underbrace{\rho(x_n,b)}_{\to 0}$$

Следствие. $x_n \to a \Rightarrow \{x_n\}$ — ограничена (то есть $\{x_n\}$ ограничено как множество).

Доказательство.
$$\rho(x_n, a) \to 0 \Rightarrow \{\rho(x_n, a)\}$$
 ограничена $\Rightarrow \exists R \in \mathbb{R} : R > \sup\{\rho(x_n, a)\} \Rightarrow x_n \in B_R(a)$.

Следствие. Пусть $\{x_n\}, \{y_n\}: x_n \to a, y_n \to b$ — последовательности в нормированном линейном пространестве, $\{\alpha_n\} \subset \mathbb{R}: \alpha_n \to \alpha$. Тогда

- 1. $x_n + y_n \to a + b$
- 2. $\alpha_n x_n \to \alpha a$

Доказательство.

1.
$$||x_n + y_n - (a+b)|| \le \underbrace{||x_n - a||}_{\to 0} + \underbrace{||y_n - b||}_{\to 0}$$

2.
$$\|\alpha_n x_n - \alpha x\| = \|\alpha_n x_n - \alpha x_n + \alpha x_n - \alpha a\| \leqslant \underbrace{|\alpha_n - \alpha|}_{\to 0} \|x_n\| + |\alpha| \underbrace{\|x_n - a\|}_{\to 0}$$

0.1 Топология метрических пространств

Определение 0.2. Пусть (X, ρ) — метрическое пространство, $E \subset X$.

- 1. $x \in int \ E \Leftrightarrow \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset E$. Множество $int \ E$ называются множеством внутренних точек
- 2. $x \in ext\ E \Leftrightarrow \exists \varepsilon > 0: B_{\varepsilon}(x) \subset X \setminus E$. Множество $ext\ E$ называются множеством внешних точек
- 3. $x \in \delta E \Leftrightarrow \forall \varepsilon > 0 : B_{\varepsilon}(x) \cap E \neq \varnothing, B_{\varepsilon}(x) \cap (X \setminus E) \neq \varnothing$. Множество δE называются множеством граничных точек

Определение 0.3.

- 1. $X = int \ E \sqcup ext \ E \sqcup \delta E$
- 2. $ext E = int (X \setminus E)$

Определение 0.4. Множество $G \subset X$ называется открытым, если все его точки являются внутренними $(G = int \ G)$

Определение 0.5. Множество $G \subset X$ называется открытым, если $X \setminus G$ открыто

Утверждение 0.1.

- 1. Открытый шар $B_r(a)$ открыт
- 2. Замкнутый шар $\overline{B_r}(a)$ замкнут
- 3. int E открыто

Доказательство.

- 1. $x \in B_r(a)$. Положим $\varepsilon = r \rho(x, a)$. Тогда если $y \in B_\varepsilon(x) \Rightarrow \rho(y, a) \leqslant \rho(y, x) + \rho(x, a) \leqslant \varepsilon + \rho(x, a) \leqslant r \Rightarrow B_\varepsilon(x) \subset B_r(a)$.
- 2. $x\in X\setminus \overline{B_r}(a)$. $\varepsilon=\rho(x,a)-r\Rightarrow$ аналогично пункту 1), $X\setminus \overline{B_r}(a)$ открыто, т.е. $\overline{B_r}(a)$ замкнуто
- 3. $x \in int E \Rightarrow \exists B_{\varepsilon}(x) \subset E \Rightarrow B_{\varepsilon}(x) \subset int E$, т.к. $B_{\varepsilon}(x)$ открыто.

Лемма 0.1. Объединение любого количества открытых множеств и пересечение конечного количества открытых множеств является открытым множеством

Определение 0.6. $\overset{\circ}{B}_{r}(a) = B_{r}(a) \setminus \{a\}$

Определение 0.7. Точка $x\in X$ называется предельной множества E, если $\forall \varepsilon>0$ $\overset{\circ}{B}_{\varepsilon}$ $(x)\cap E\neq\varnothing$

Множество всех предельных точек принято обозначать через E'

Теорема 0.1 (Критерий замкнутости). Следующие утверждения равносильны:

- 1. E замкнуто
- 2. $E \supset \delta E$
- 3. $E \supset ext E$
- 4. $\forall \{x_n\} \subset E(x_n \to x \Rightarrow x \in E)$

Доказательство.

- $1\Rightarrow 2$: Пусть $x\in X\setminus E\Rightarrow \exists B_{\varepsilon}(x)\subset X\setminus E$, т.е. x внешняя точка E. Тогда $\delta E\subset E$
- $2\Rightarrow 3$: Пусть x предельная точка тогда она либо внутренняя, и тогда $x\in E,$ либо граничная, но $\delta E\subset E\Rightarrow x\in E$
- $3\Rightarrow 4$: Пусть $\{x_n\}\subset E, x_n\to x$. Тогда либо $\exists x_n=x$ и тогда $x\in E$, либо x предельная точка, и она $\in E$.

 $\overline{\Phi\Pi M M \Phi T M}$, весна 2025

 $4\Rightarrow 1$: Рассмотрим $x\in X\setminus E$. Пусть она не является внутренней для $X\setminus E$. Тогда $\forall \varepsilon>0 \exists B_{\varepsilon}(x)\cap E\neq\varnothing\Rightarrow$ рассмотрим последовательность точек $x_n\in\exists B_{\varepsilon}(x)\cap E:x_n\to x$. Такая последовательность существует по Аксиоме Выбора $(\exists \varphi:2^X\to X:\varphi(x)\subset X\Rightarrow x_n=\varphi\left(B_{\frac{1}{n}}(x)\right))$. Но тогда $x\in E$. Противоречие

Определение 0.8. $\overline{E}=E\cup\delta E$ — замыкание множества E

Замечание.

- 1. $\overline{E} = X \setminus ext E$
- 2. $F\supset E$, причем F замкнутое. Тогда $F\supset \overline{E}$

Доказательство.

- 1. $X = int \ E \cup ext \ E \cup \delta E$.
- 2. $X \setminus F \subset X \setminus E \Rightarrow X \setminus F \subset int(X \setminus E) \Rightarrow F \supset \overline{E}$.

Замечание. $x \in \overline{E} \Leftrightarrow \forall \varepsilon > 0 B_{\varepsilon}(x) \cap E \neq \varnothing \Leftrightarrow \exists \{x_n\} \subset E(x_n \to x)$

Определение 0.9. $x \in X$ называется точкой прикосновения E, если $\forall \varepsilon > 0 B_{\varepsilon}(x) \cap E \neq \varnothing$

0.2 Подпространство метрического пространства

Определение 0.10. Пусть (X, ρ) — метрическое пространство, $\emptyset \neq E \subset X$. Тогда $\rho|_{E \times E}$ — метрика на E. Пара $(E, \rho|_{E \times E})$ называется подпространством (X, ρ) , $\rho|_{E \times E}$ называется индуцированной метрикой на E

Определение 0.11. $B_r^E(x) = \{ y \in E | \rho(x, y) < \varepsilon \}$

Замечание. $B_r^E(x) = B_r^X(x) \cap E$

Лемма 0.2. U открыто в $E \Leftrightarrow \exists V \subset X : U = V \cap E$, причем V открыто

Доказательство.

- $\Rightarrow x \in U \Rightarrow \exists B_{\varepsilon_x}^E(x) \subset U$, т.е. $U = \bigcup_{x \in U} B_{\varepsilon_x}^E(x)$. Положим $V = \bigcup_{x \in U} B_{\varepsilon_x}^X(x)$ открытое в X. Тогда $V \cap E = \bigcup_{x \in U} (B_{\varepsilon_x}^X(x) \cap E) = \bigcup_{x \in U} B_{\varepsilon_x}^E(x) = U$
- $\Leftarrow x \in U = V \cap E$, где V открыто в $X \Rightarrow \forall x \in V \exists B_{\varepsilon}^X(x) \subset V \Rightarrow B_{\varepsilon}^E(x) = B_{\varepsilon}^E(x) \cap E \subset V \cap E$.

Пример. $X = \mathbb{R}, E = (-1, 3].$

- 1. $A = (1,3] = (1,4) \cap E$ открыто в E (но не в X)
- 2. B = (-1, 0) замкнута в E (но не в X)
- 3. C = (0,1] не замкнуто и не открыто

0.3 Компакты

Пусть (X, ρ) — метрические пространства, $K \subset X$ — подпространство.

Определение 0.12. Семейство $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$, где $G_{\lambda}\subset X$ называется покрытием K, если $K\subset\bigcup_{{\lambda}\in\Lambda}G_{\lambda}$

Определение 0.13. Если $\forall \lambda G_{\lambda}$ — открытое множество, то $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ называется открытым покрытием

Определение 0.14. K называется компактом в X, если \forall открытого покрытия $\{G_{\lambda}\}_{{\lambda} \in \Lambda}$, существует конечное подпокрытие, т.е. $\exists m \in \mathbb{N}, \lambda_1, \lambda_2, \ldots \lambda_m \in \Lambda : K \subset \bigcup G_{\lambda_i}$

Пример. Замкнутый брус $B = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$ является компактом в \mathbb{R}^n

Доказательство. Пусть это не так. Поделим ребра изначального бруса пополам и рассмотрим брусья, которые получаются произведением отрезков, каждый из которых ялвяется половиной изначального отрезка соответственно. Один из таких брусьев не покрывается конечным числом G_{λ} , полученный брус назовем B^2 Разделим его на 2^n частей и будем продолжать процесс — получатся брусья $B^k \forall k$. Заметим, что $|b_n^k - a_n^k| \to 0$ при $k \to \infty$ (каждый отрезок делится пополам). Тогда последовательность отрезков $u_k = [a_n^k, b_n^k]$ будет стягивающейся. Тогда $\forall n \exists c_n : c_n \in [a_n^k, b_n^k]$. Тогда $\exists C \in \mathbb{R}^n : C = (c_1, c_2, \dots c_n) \in B^k \forall k$, при этом $\exists G_{\lambda} : C \in G_{\lambda} \Rightarrow \exists \varepsilon : B_{\varepsilon}(C) \subset G_{\lambda}$. Выберем k так, чтобы $\sum_{i=1}^n (b_i^k - a_i^k) < \varepsilon$. Так можно сделать, т.к. $[a_n^k, b_n^k]$ — стягивающаяся по k. Но тогда $\forall T \in B^k$ $\rho(T, C) \leqslant \sum_{i=1}^n (b_i^k - a_i^k) < \varepsilon \Rightarrow B^k \subset B_{\varepsilon}(C) \subset G_{\lambda} \Rightarrow$ противоречие, т.к. B^k не должно покрываться конечни числом G_{λ}

Замечание. K — компакт в $(X, \rho) \Leftrightarrow K$ компакт в (K, ρ) .

Доказательство. Следует из определения компактности и структуры подпространств \Box

Лемма 0.3. Пусть (X, ρ) — метрическое пространство, $K \subset X$. Если K — компакт, то K ограничено и замкнуто в X

 \mathcal{A} оказательство. Пусть $a \in X$. Т.к $\{B_n(a)\}_{n \in \mathbb{N}}$ — открытое покрытие $K \Rightarrow \exists$ конечное подпокрытие, т.е. $\exists N: K \subset \{B_n(a)\}_{n \leqslant N}$. Но тогда $K \subset B_N(a)$. Теперь, пусть $a \in X \setminus K$. Рассмотрим $\{X \setminus \overline{B}_{\frac{1}{n}}(a)\}_{n \in \mathbb{N}}$. Это тоже покрытие K. Но тогда $\exists N: K \subset \{X \setminus \overline{B}_{\frac{1}{n}}(a)\}_{n \leqslant N}$. Но тогда $K \in X \setminus \overline{B}_{\frac{1}{n}}(a) \Rightarrow \overline{B}_{\frac{1}{n}}(a) \cap K = \emptyset$.

Лемма 0.4. Пусть (X, ρ) — метрическое пространство, K — компакт в X. Если $F \subset K$, F замкнуто в X, то F — компакт.

Доказательство. Рассмотрим произвольное покрытие $\{G_{\lambda}\}_{\lambda \in \Lambda}$ для F. Тогда $\{G_{\lambda}\}_{\lambda \in \Lambda} \cup \{X \setminus F\}$ — открытое покрытие K, т.к. $\bigcup G_{\lambda} \cup (X \setminus F) = X$. Поскольку K — компакт, то $K \subset \bigcup_{i \leqslant N} G_{\lambda_i} \cup (X \setminus F) \Rightarrow F \subset \bigcup_{i \leqslant N} G_{\lambda_i}$

Лемма 0.5 (Лебега о покрытии). Пусть (X, ρ) — метрическое пространство, $K \subset X$ — такое, что любая последовательность элементов из K имеет сходящуюся в K подпоследовательность. Пусть $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ — открытое покрытие K, тогда $\exists \varepsilon > 0 \forall x \in K \exists \lambda \in \Lambda(B_{\varepsilon}(x) \subset G_{\lambda})$

Доказательство. От противного. Пусть $\forall n \in \mathbb{N} \exists x_n \in K \forall \lambda \in \Lambda \left(B_{\frac{1}{n}}(x_n) \not\subset G_{\lambda} \right)$. По условию, $\exists \{x_{n_k}\}: x_{n_k} \to x \in K. \ x \in \bigcup_{\lambda \in \Lambda} G_{\lambda} \exists \lambda_0 \in \Lambda(x \in G_{\lambda_0}) \Rightarrow \exists \alpha > 0 B_{\alpha}(x) \subset G_{\lambda_0}$ Начиная с какого-то момента, $x_{n_k} \in B_{\frac{\alpha}{2}}(x), \frac{1}{n_k} < \frac{\alpha}{2}$. Рассмотрим $z \in B_{\frac{1}{n_k}}(x_{n_k})$. Тогда $\rho(z,x) \leqslant \rho(z,x_{n_k}) + \rho(x,x_{n_k}) < \alpha$, т.е. $B_{\frac{1}{n_k}}(x_{n_k}) \subset B_{\alpha}(x) \subset G_{\lambda_0}$. Получили противоречие, т.к. $B_{\frac{1}{n_k}}(x_{n_k}) \subset G_{\lambda_0}$

Теорема 0.2. Пусть (X, ρ) — метрическое пространство, $K \subset X$. Следующие условия эквивалентны:

- 1. $K \kappa$ омпакт
- 2. Любая полследовательность элементов из K имеет сходящуюся в K подпоследовательность.

Доказательство.

 $(1) \Rightarrow (2)$ Предположим, что из последовательности $\{x_n\}$ нельзя выделить сходящуюся последовательность, т.е.

$$\forall a \in K \exists \delta_a > 0 \exists N_a \forall n \geqslant N_a (x_n \notin B_{\delta_a}(a))$$

Заметим, что $\{B_{\delta_a}(a)\}_{a\in K}$ — открытое покрытие K. Тогда $K=\bigcup_{i\leqslant N}B_{\delta_{a_i}}(a_i)$. Но тогда в каком-то из множеств $B_{\delta_{a_i}}(a_i)$ бесконечно много точек, противоречие, т.к. $\exists N_{a_i} \forall n\geqslant N_{a_i}(x_n\notin B_{\delta_{a_i}}(a_i))\Rightarrow$ их должно быть конечно.

 $(2) \Rightarrow (1)$ Пусть любая полследовательность элементов из K имеет сходящуюся в K. Тогда

$$\forall \varepsilon > 0 \exists x_1, x_2 \dots x_n \subset K(K \subset \bigcup B_{\varepsilon}(x_i))$$

Пусть $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ — открытое покрытие K по Лемме, $\exists \varepsilon > 0 \forall x \in K \exists \lambda \in \Lambda(B_{\varepsilon}(x)) \subset G_{\lambda}$. Но тогда рассмотрим $\lambda_1, \lambda_2 \dots \lambda_n$ такие, что $B_{\varepsilon}(x_i) \subset G_{\lambda_i} \Rightarrow K \subset \bigcup G_{\lambda_i}$

Следствие (Критерий компактности в \mathbb{R}^n). $K \subset \mathbb{R}^n$ — компакт $\Leftrightarrow K$ замкнуто и ограничено

Доказательство.

- ⇒ Лемма
- $\Leftarrow K$ ограничено $\Rightarrow \exists x \in \mathbb{R}^n, r > 0 : K \subset B_r(x)$. Рассмотрим $B = [x_1 r_1, x_1 + r_1] \times [x_2 r_2, x_2 + r_2] \times \cdots \times [x_n r_n, x_n + r_n]$. B компакт, $K \subset B$ замкнуто, тогда K компакт.