Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет инфокоммуникационных технологий

Основы кибербезопасности

Практическая работа №3

Выполнил:

студент группы K34211 Фисенко Максим Вячеславович

Проверил:

преподаватель практики, КТН Назаров Михаил Сергеевич

Оглавление

Введение	3
Содержание отчета	4
Задание 1. Проверка корректности работы Docker	4
Задание 2. Создание лаборатории для тестирования и поиска	
уязвимостей	5
Задание 3. Работа со сканером уязвимостей OpenVAS	7
Вывод по работе	11

Введение

В данной практической работе было необходимо изучить типовой алгоритм работы с инструментами обнаружения уязвимостей информационных систем. В ходе практической работы были приобретены практические навыки по использованию сканера уязвимостей, а также по идентификации уязвимостей информационной системы.

Для выполнения данной практической работы использовался персональный компьютер на операционной системе *Windows* с подключенной через *WSL* дистрибутивом *Linux Ubuntu*.

Содержание отчета

Задание 1. Проверка корректности работы Docker

Первым делом для выполнения данной практической работы необходимо было проверить работоспособность *Docker* на устройстве. Для этого в терминале была предпринята попытка запустить простой образ *helloworld*. Как видно на рисунке 1 ниже, контейнер с образом был успешно запущен, а это значит, что *Docker* на устройстве работает.

Рисунок 1 - Запуск контейнера hello-world

Так как далее при выполнении лабораторной работы необходимо будет поднимать свой веб-сервер, необходимо было проверить, нет ли с этим проблем на данном устройстве. Для этого на порту 80 был запущен контейнер webserver nginx с помощью ввода в терминал команды docker run --detach – publish=80:80 –name=webserver nginx. Контейнер был успешно запущен, и при вводе в адресную строку http://localhost успешно отображалась приветственная страница (рисунок 2).

Рисунок 2 - Приветственная страница webserver nginx

Далее в терминал была введена команда *docker container ls*, которая показывает информацию о всех запущенных контейнерах, а в данном случае, о контейнере *webserver nginx* (рисунок 3).

maksim@pc:~\$ c	docker co	ntainer ls			•	
CONTAINER ID	IMAGE	COMMAND	CREATED	STATUS	PORTS	NAMES
01fcb81e776a	nginx	"/docker-entrypoint"	About a minute ago	Up About a minute	0.0.0.0:80->80/tcp	webserver

Рисунок 3 - Информация о запущенных контейнерах

Задание 2. Создание лаборатории для тестирования и поиска уязвимостей

После проверки работоспособности *Docker* нужно было скачать на устройство образы, которые будут необходимы для выполнения практической работы. Это было сделано с помощью команды *docker pull*. На рисунке 4 с помощью команды *docker images* были выведены все образы, скачанные на устройство, из которых *metasploitable2*, *kali-rolling* и *openvas* — те самые образы, которые необходимы для выполнения практической работы.

maksim@pc:~\$ docker images	5			
REPOSITORY	TAG	IMAGE ID	CREATED	SIZE
nginx	latest	1ee494ebb83f	3 days ago	192MB
kalilinux/kali-rolling	latest	4df3f4beda4d	6 days ago	129MB
mysql	latest	10db11fef9ce	6 weeks ago	602MB
mysql	8.0	9f4b39935f20	6 weeks ago	590MB
postgres	16.3	cff6b68a194a	6 months ago	432MB
sonarqube	10.5.1-community	b728f044f72f	7 months ago	787MB
hello-world	latest	d2c94e258dcb	19 months ago	13.3kB
mikesplain/openvas	latest	889967897c49	5 years ago	6.39GB
tleemcjr/metasploitable2	latest	db90cb788ea1	6 years ago	1.51GB

Рисунок 4 - Скачанные на устройство образы

Далее необходимо было запустить контейнеры с нужными образами. Для этого первым делом с помощью команды docker network create pentest была создана сеть pentest, в которой и будут работать контейнеры. Затем с помощью docker run были запущены и сами контейнеры с именами metasploitable2 и kalibox. При этом данные контейнеры были запущены в интерактивном режиме в двух разных терминалах. После запуска контейнеров необходимо было убедиться в том, что контейнеры видят друг друга в сети. Для этого сначала в *kalibox* была использована утилита *ifconfig*, благодаря которой мы узнали *ip*-адрес данного контейнера (рисунок 5). Стоит отметить, что для ее использования предварительно был установлен пакет *net-tools*.

```
(root® attacker)-[/]
# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
        inet 172.18.0.3 netmask 255.255.0.0 broadcast 172.18.255.255
        ether 02:42:ac:12:00:03 txqueuelen 0 (Ethernet)
        RX packets 15169 bytes 21917599 (20.9 MiB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 4965 bytes 328946 (321.2 KiB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рисунок 5 - Утилита ifconfig

В свою очередь, в контейнере *metasploitable2* была использована утилита *ping* на адрес, который был узнан на предыдущем шаге. Как видно из рисунка 6 ниже, *ICMP*-пакеты успешно пересылаются между двумя контейнерами, а это значит, что они успешно видят друг друга в сети.

```
root@victim:/# ping 172.18.0.3

PING 172.18.0.3 (172.18.0.3) 56(84) bytes of data.

64 bytes from 172.18.0.3: icmp_seq=1 ttl=64 time=0.052 ms

64 bytes from 172.18.0.3: icmp_seq=2 ttl=64 time=0.030 ms

64 bytes from 172.18.0.3: icmp_seq=3 ttl=64 time=0.030 ms

64 bytes from 172.18.0.3: icmp_seq=4 ttl=64 time=0.039 ms

64 bytes from 172.18.0.3: icmp_seq=5 ttl=64 time=0.031 ms

^C

--- 172.18.0.3 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 6862ms

rtt min/avg/max/mdev = 0.030/0.036/0.052/0.010 ms
```

Рисунок 6 - Утилита ping

Затем в контейнере *metasploitable2* была создана новая учетная запись *maksim* (рисунок 7).

```
root@victim:/# useradd maksim
root@victim:/# passwd maksim
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
root@victim:/# usermod -aG sudo maksim
```

Рисунок 7 – Создание новой учетной записи

Наконец, был запущен контейнер с *openvas*. Контейнер был запущен на порту 443 с помощью следующей команды:

docker run --network=pentest -d -p 443:443 --name openvas mikesplain/openvas

Таким образом, после запуска данного контейнера на устройстве работало одновременно 3 контейнера, что было проверено опять же с помощью команды *docker container ls* (рисунок 8).

ı	maksim@pc:-\$ docker container ls							
	CONTAINER ID	IMAGE	COMMAND	CREATED	STATUS	PORTS		NAMES
	46102722cc45	mikesplain/openvas	"/bin/sh -c /start"	2 minutes ago	Up 2 minutes	0.0.0.0:443->443/tcp,	9390/tcp	openvas
	9cef9722c3a6	kalilinux/kali-rolling	"bash"	9 minutes ago	Up 9 minutes			kalibox
	b64f52f922cf	tleemcjr/metasploitable2	"sh -c '/bin/service…"	11 minutes ago	Up 11 minutes			metasploitable2

Рисунок 8 – Три работающих контейнера

Задание 3. Работа со сканером уязвимостей OpenVAS

Так как контейнер с *openvas* был успешно запущен, можно было переходить уже непосредственно к работе со сканером уязвимости. Для этого необходимо было открыть страницу *https://localhost*. Крайне важно, что необходимо было открыть именно *httpS://localhost*. Мною, к сожалению, это изначально не было сделано, из-за чего довольно много времени было потрачено на поиск и решение проблемы. В итоге страница была открыта, и стартовая страница *openvas* успешно отображалась в браузере (рисунок 9).

Рисунок 9 — Стартовая страница openvas

В форме было введено *admin* в качестве логина и пароля, после чего была открыта главная страница *openvas*. Первым делом на данной странице было необходимо завести учетную запись для проведения локальных проверок, что и было сделано – была создана учетная запись с именем *maksim* (рисунок 10).

Рисунок 10 – Создание учетной записи

Затем было необходимо задать цель сканирования. В качестве цели необходимо было выбрать контейнер *metasploit2*, *ip*-адрес которого был обнаружен с помощью всё той же утилиты *ping*. В окне были заполнены все необходимые данные о цели сканирования, включающие в себя и данный *ip*-адрес (рисунок 11).

Рисунок 11 – Создание цели сканирования

После того, как была задана цель сканирования, в *openvas* необходимо было создать задачу. В окне *New Task* было указано название задачи, а в поле *Scan Targets* была добавлена созданная на предыдущем шаге цель (рисунок 12).

Рисунок 12 – Создание задачи

Наконец, все приготовления были закончены, и процесс сканирования был начат при нажатии на кнопку. Для удобства сверху была выбрана опция автообновления страницы каждые 5 минут. В результате, где-то в течение часа

процесс сканирования был завершен, и отчет об этом появился на странице (рисунок 13).

Рисунок 13 – Отчет о сканировании

Как видно на рисунке 13, представленном выше, сканер нашел достаточно большое количество угроз, из которых 22 угрозы имеют наивысший статус опасности. При более подробном рассмотрении отчета о сканировании можно посмотреть на все найденные угрозы (рисунок 14).

Report: Results (64 of 405)			500		ID: e5c34d11-7b62-4f00- Modified: Sat Nov 30 16:05:12 : Created: Sat Nov 30 15:39:03 : Owner: admin	2024
	10.00				0.0	1 - 64 of 64
Vulnerability	ie 🔀	Severity	⊚ QoD	Host	Location	Actions
OS End Of Life Detection	E3	10.0 (High)	80%	172.18.0.2 (metasploitable2.pentest)	general/tcp	FA (4)
TWiki XSS and Command Execution Vulnerabilities		10.0 (High)	80%	172.18.0.2 (metasploitable2.pentest)	80/tcp	25 本
rexec Passwordless / Unencrypted Cleartext Login	23	10.0 (High)	80%	172.18.0.2 (metasploitable2.pentest)	512/tcp	2 3
Possible Backdoor: Ingreslock	O	10.0 (High)	99%	172.18.0.2 (metasploitable2.pentest)	1524/tcp	E7 (4)
Distributed Ruby (dRuby/DRb) Multiple Remote Code Execution Vulnerabilities	2	10.0 (High)	99%	172.18.0.2 (metasploitable2.pentest)	8787/tcp	田 📥
DistCC Remote Code Execution Vulnerability		9.3 (High)	99%	172.18.0.2 (metasploitable2.pentest)	3632/tcp	田本
MySQL / MariaDB weak password	2	9.0 (High)	95%	172.18.0.2 (metasploitable2.pentest)	3306/tcp	77. M
/NC Brute Force Login	E3	9.0 (High)	95%	172.18.0.2 (metasploitable2.pentest)	5900/tcp	田
lostgreSQL weak password	23	9.9 (High)	99%	172.18.0.2 (metasploitable2,pentest)	5432/tcp	田 🏂
phpinfo() output Reporting	O	7.5 (High)	80%	172.18.0.2 (metasploitable2.pentest)	80/tcp	FR (m)
riki Wiki CMS Groupware < 4.2 Multiple Unspecified Vulnerabilities		7.5 (High)	80%	172.18.0.2 (metasploitable2.pentest)	80/tcp	田 🛣
sh Unencrypted Cleartext Login	23	7.5 (High)	80%	172.18.0.2 (metasploitable2.pentest)	514/tcp	田 🗯
login Passwordless / Unencrypted Cleartext Login		7.5 (High)	70%	172.18.0.2 (metasploitable2.pentest)	513/tcp	7A (M)
Test HTTP dangerous methods	E3	7.5 (High)	99%	172.18.0.2 (metasploitable2.pentest)	80/tcp	图 🗯
HP-CGI-based setups vulnerability when parsing query string parameters from php files.		7.5 (High)	95%	172.18.0.2 (metasploitable2.pentest)	80/tcp	22 📥
Check for Backdoor in UnrealIRCd		7.5 (High)	70%	172.18.0.2 (metasploitable2.pentest)	6697/tcp	37 M
theck for Backdoor in UnrealIRCd		7.5 (High)	70%	172.18.0.2 (metasploitable2.pentest)	6667/tcp	E3 🙈
pache Tomcat Server Administration Unauthorized Access Vulnerability	2	7.5 (High)	98%	172.18.0.2 (metasploitable2.pentest)	8180/tcp	田木
pache Tomcat Manager Remote Unauthorized Access Vulnerability	E3	7.5 (High)	98%	172.18.0.2 (metasploitable2.pentest)	8180/tcp	EX (%)
sftpd Compromised Source Packages Backdoor Vulnerability		7.5 (High)	99%	172.18.0.2 (metasploitable2.pentest)	6200/tcp	图 無
sftpd Compromised Source Packages Backdoor Vulnerability		7.5 (High)	99%	172.18.0.2 (metasploitable2.pentest)	21/tcp	2 4
SSH Brute Force Logins With Default Credentials Reporting	8	7.5 (High)	95%	172.18.0.2 (metasploitable2.pentest)	22/tcp	EX (4)

Рисунок 14 – Список найденных угроз по уменьшению опасности

Вывод по работе

В результате выполнения данной лабораторной работы на персональном компьютере была развернута среда *OpenVAS*, которая просканировала контейнер с сервером *metasploit2* и обнаружила в нем уязвимости, показав каждую из них и отсортировав их список по степени опасности. Помимо *openvas*, в ходе выполнения работы был активно задействован *Docker*, а также утилиты *ping* и *ifconfig*. По результатам выполнения работы можно с уверенностью сказать, что цель практической работы была достигнута.