ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Η ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

M902

Βασικές Μαθηματικές Έννοιες στη Γλωσσική Τεχνολογία

Project 4

Κυλάφη Χριστίνα-Θεανώ LT1200012

TABLE OF CONTENTS

Question 1	3
Question 2	5
Question 3	6
Question 4	7
Question 5	8
Question 6	9
Question 7	10
Question 8	11
Question 9	12
Question 10	13

i. n = 3 independent experiments (coin flips)

$$\Omega = \left\{ \begin{array}{l} \mathsf{KKK}, \mathsf{KKF}, \mathsf{KFK}, \mathsf{KFF} \\ \mathsf{FKK}, \mathsf{FKF}, \mathsf{FFK}, \mathsf{FFF} \end{array} \right\}$$

$$\begin{split} ii ~.~ A_1 &= \big\{ ~\mathrm{\Gamma KK, K\Gamma K, KK\Gamma, KKK} ~\big\} \\ A_2 &= \big\{ ~\mathrm{\Gamma KK, K\Gamma K, KK\Gamma} ~\big\} \\ A_3 &= \big\{ ~\mathrm{\Gamma KK, K\Gamma K, KK\Gamma, KKK} ~\big\} = A_1 \\ A_4 &= \big\{ ~\mathrm{KKK, \Gamma\Gamma\Gamma} ~\big\} \\ A_5 &= \big\{ ~\mathrm{KKK, KK\Gamma, K\Gamma K, K\Gamma\Gamma} ~\big\} \end{split}$$

Let X a random variable expressing the number of successes (coin flip result $\to \mathbf{K}$), following **Binomial Distribution** (spoilers for iii below), $X \sim B(3, 0.5)$. Then:

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} ,$$

where

p is the **probability** of "success" outcome,

k is the number of **successes**,

n the total number of independent **experiments** performed.

$$P(A_1) = P(X = 2) + P(X = 3) = {3 \choose 2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right) + {3 \choose 3} \left(\frac{1}{2}\right)^3 = \frac{3!}{2!1!} \cdot \frac{1}{8} + \frac{3!}{3!0!} \cdot \frac{1}{8} = \frac{3}{8} + \frac{1}{8}$$
$$= \frac{N(A_1)}{N(\Omega)} = \frac{4}{8} = 0.5$$

$$P(A_2) = P(X = 2) = {3 \choose 2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right) = \frac{3!}{2!1!} \cdot \frac{1}{8} = \frac{3}{8} = \frac{N(A_2)}{N(\Omega)} = 0.375$$

$$P(A_3) = P(A_1) = 0.375$$

$$P(A_4) = P(X = 0) + P(X = 3) = {3 \choose 0} \left(\frac{1}{2}\right)^3 + {3 \choose 3} \left(\frac{1}{2}\right)^3 = \frac{3!}{0!3!} \cdot \frac{1}{8} + \frac{3!}{3!0!} \cdot \frac{1}{8} = \frac{1}{8} + \frac{1}{8}$$
$$= \frac{N(A_1)}{N(\Omega)} = \frac{2}{8} = 0.25$$

Event A_5 concerns only the first coin flip, which is independent of the overall number of experiments. Therefore, the probability of a sole coin flip (the first one) resulting in K, is always $P(K) = \frac{1}{2} = 0.5$.

iii . *n* independent experiments (coin flips)

Here, for event $\,A_2\,$ we apply the same formula as in ii, with $X\sim B(\,\,n,\,\,0.5)$:

$$P(A_2) = P(X = 2) = \binom{n}{2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^{n-2} = \frac{n!}{2!(n-2)!} \left(\frac{1}{2}\right)^n = \frac{n (n-1)}{2} \left(\frac{1}{2}\right)^n$$

As also mentioned in ii, the probability of A_5 is always the same and equals the probability of a single coin flip resulting in K, $P(K) = \frac{1}{2} = 0.5$.

Let X a random variable following normal distribution $X \sim N(60, 5^2)$ expressing the student weights. Then:

a)
$$P(X > 70) = P\left(\frac{X - \mu}{\sigma} > \frac{70 - \mu}{\sigma}\right) = P\left(Z > \frac{70 - 60}{5}\right) = P(Z > 2) = 1 - P(Z < 2)$$

= $1 - \Phi(2) = 1 - 0.9772 = 0.0228$

$$\beta) \ P(55 < X < 65) = P(X < 65) - P(X < 55) = P\left(\frac{X - \mu}{\sigma} < \frac{65 - \mu}{\sigma}\right) - P\left(\frac{X - \mu}{\sigma} < \frac{55 - \mu}{\sigma}\right)$$

$$= P\left(\frac{X - \mu}{\sigma} < \frac{65 - 60}{5}\right) - P\left(\frac{X - \mu}{\sigma} < \frac{55 - 60}{5}\right) = P(Z < 1) - P(Z < -1)$$

$$= \Phi(1) - \Phi(-1) = \Phi(1) - (1 - \Phi(1)) = 2 \Phi(1) - 1 = 2 * 0.8413 - 1 = 0.6826$$

$$P(\text{ avos }) = 0.7 = p$$

The problem can be modelled as a binary outcome (rabbit immunised or not) experiment, executed n times (selecting n rabbits). Then, X is a random variable expressing the number of immunised rabbits picked, with $X \sim B(n, 0.7)$, where n = 5:

i.
$$P(X = 3) = {5 \choose 3} * 0.7^3 * (1 - 0.7)^{5-3} = \frac{5!}{3!2!} * 0.7^3 * 0.3^2 = 10 * 0.7^3 * 0.3^2 = 0.3087$$

- ii. Here, two explanations of the question are going to be followed. However, the resulted probabilities are equal.
- 1. The probability of picking 3 non-immunised (failure) rabbits and then 1 immunised (success). The task can be modelled as the calculation of the probability that the first success (immunised rabbit) requires k independent trials, thus we calculate the probability of k-1 failures and 1 success (k_{th} trial). In this particular case, X is following the **Geometric Distribution**, $X \sim Geo(0.7)$:

$$P(X = k) = (1 - p)^{k-1}p$$

Then:

$$P(X = 4) = (1 - 0.7)^{4-1}0.7 = 0.3^3 * 0.7 = 0.0189$$

2. The probability of the first rabbit to be the only immunised one, out of 4 rabbits picked in total.

$$P(1_{st} \text{ rabbit immunised}) = 0.7 * (1 - 0.7)^{4-1} = 0.7 * 0.3^3 = 0.0189$$