Recall

Any string S[1..n] can be written in its normal form:

$$S = ($$
)³

Let
$$p = n - \beta$$
, then $S = w^{n/p} = w^{\lfloor n/p \rfloor} w'$, where $w' = S[1...n-\lfloor n/p \rfloor \cdot p]$

The *normal form* of S[1..n] is w^{n/p^*} , where p^* is the minimum period

If a string S[1..n] is not periodic, i.e. $p^*=n$, then it is **primitive**

A string w is a tandem repeat (or square) if:

A tandem repeat $\alpha\alpha$ is primitive if and only if α is primitive

A string $w = \alpha^k$ for k = 3,4,... is (by some) called a tandem array

A string w is a tandem repeat (or square) if:

A tandem repeat $\alpha\alpha$ is primitive if and only if α is primitive

A string $w = \alpha^k$ for k = 3,4,... is (by some) called a tandem array

Note: "tandem repeat" (and "tandem array") is a string property, i.e. a string can be a "tandem repeat" ...

How difficult is it to decide if S[1..n] is a tandem repeat?

A string w is a tandem repeat (or square) if:

A tandem repeat $\alpha\alpha$ is primitive if and only if α is primitive

A string $w = \alpha^k$ for k = 3,4,... is (by some) called a tandem array

Note: "tandem repeat" (and "tandem array") is a string property,

Find minimum period p^* in time O(n), if n/p^* is 2,4,6..., then "yes"

How difficult is it to decide if S[1..n] is a tandem repeat?

Occurrences of tandem repeats

An occurrence of a tandem repeat in **S**:

Tandem repeat $\alpha\alpha$ is in S, if it occurs one or more times in S. Note that an occurrence can be encoded in space O(1) as $(i, |\alpha|, 2)$

Occurrences of tandem repeats

An occurrence of a tandem repeat in S:

Tandem repeat $\alpha\alpha$ is in S, if it occurs one or more times in S. Note that an occurrence can be encoded in space O(1) as $(i, |\alpha|, 2)$

Computational problems:

- (1) Find all occurrences of tandem repeats in S[1..n]
 - (2) Find all (primitive) tandem repeats in S[1..n]

Occurrences of tandem repeats

An occurrence of a tandem repeat in S:

Tandem repeat $\alpha\alpha$ is in S, if it occurs one or more times in S. Note that an occurrence can be encoded in space O(1) as $(i, |\alpha|, 2)$

Computational problems:

- (1) Find all occurrences of tandem repeats in S[1..n]
 - (2) Find all (primitive) tandem repeats in S[1..n]

A branching occurrence of a tandem repeats in S:

A simple example

The strings aaaaaa contains:

In general the a^n contains $\lfloor n^2/4 \rfloor$ occurrences of $\lfloor n/2 \rfloor$ tandem repeats, but there is only one primitive tandem repeat aa ...

A simple example

The strings aaaaaa contains:

In general the a^n contains $\lfloor n^2/4 \rfloor$ occurrences of $\lfloor n/2 \rfloor$ tandem repeats, but there is only one primitive tandem repeat aa ...

... or equivalently one maximal repetition (1, 1, n), which we also call a primitive tandem array ...

Observation: there can be no more than $O(n^2)$ occurrences of tandem repeats in S[1..n], but how many are e.g primitive?

Fibonacci strings

Lemma 3.4.1: The Fibonacci string f_n is defined recursively as:

$$f_0 = b, f_1 = a, \text{ and } f_n = f_{n-1}f_{n-2}$$

$$f_0 = b$$

 $f_1 = a$
 $f_2 = ab$
 $f_3 = aba$
 $f_4 = abaab$
 $f_5 = abaababa$

The length of f_n is the *n*th Fibonacci number f_n , i.e. $f_0=1$, $f_1=1$, and $f_n=f_{n-1}+f_{n-2}$...

Fibonacci strings are highly repetitive ...

Fibonacci strings

Lemma 3.4.1: The Fibonacci string f_n is defined recursively as:

$$f_0 = b, f_1 = a, \text{ and } f_n = f_{n-1} f_{n-2}$$

$$f_0 = b$$
 $f_1 = a$
 $f_2 = ab$
 $f_3 = aba$
 $f_4 = abaababa$

The length of f_n is the *n*th Fibonacci number f_n , i.e. $f_0=1$, $f_1=1$, and $f_n=f_{n-1}+f_{n-2}$...

Fibonacci strings are highly repetitive ...

Theorem 3.4.8: A Fibonacci string of length n contains $\Omega(n \log n)$ occurrences of primitive tandem repeats ...

... actually f_n contains $0.7962f_n \log f_n + O(f_n)$ occurrences of primitive tandem repeats [Fraenkel & Simpson 1999] ...

Fibonacci strings

Lemma 3.4.1: The Fibonacci string f_n is defined recursively as:

$$f_0 = b, f_1 = a, \text{ and } f_n = f_{n-1}f_{n-2}$$

$$f_0 = b$$

... since Crochemore's algorithm (sect. 12.1) finds all occurrences of primitive tandem repeats in S[1..n] in time $O(n \log n)$, no string of length n contains more than $O(n \log n)$ occurrences of primitive tandem repeats

 $f_5 = abaababa$

Theorem 3.4.8: A Fibonacci string of length n contains $\Omega(n \log n)$ occurrences of primitive tandem repeats ...

... actually f_n contains $0.7962f_n \log f_n + O(f_n)$ occurrences of primitive tandem repeats [Fraenkel & Simpson 1999] ...

Crochemore 1981 (Smyth 12.1.1): Find all occurrences of primitive tandem repeats in time $O(n \log n)$ and space O(n).

Crochemore 1981 (Smyth 12.1.1): Find all occurrences of primitive tandem repeats in time $O(n \log n)$ and space O(n).

Apostolico and Preparata 1983: Find all occurrences of primitive tandem repeats in time $O(n \log n)$ and space O(n). Suffix tree based.

Crochemore 1981 (Smyth 12.1.1): Find all occurrences of primitive tandem repeats in time $O(n \log n)$ and space O(n).

Apostolico and Preparata 1983: Find all occurrences of primitive tandem repeats in time $O(n \log n)$ and space O(n). Suffix tree based.

Main and Lorentz 1984 (Smyth 12.1.2): Find all occurrences of tandem repeats in time $O(n \log n + |\text{boutput}|)$ and space O(n).

Crochemore 1981 (Smyth 12.1.1): Find all occurrences of primitive tandem repeats in time $O(n \log n)$ and space O(n).

Apostolico and Preparata 1983: Find all occurrences of primitive tandem repeats in time $O(n \log n)$ and space O(n). Suffix tree based.

Main and Lorentz 1984 (Smyth 12.1.2): Find all occurrences of tandem repeats in time $O(n \log n + |\text{loutput}|)$ and space O(n).

Stoye and Gusfield 1998: Find all occurrences of tandem repeats in time $O(n \log n + |\text{loutput}|)$ and space O(n), can also be adapted to find all occurrences of primitive tandem repeats in time $O(n \log n)$. Suffix tree based.

Crochemore 1981 (Smyth 12.1.1): Find all occurrences of primitive tandem repeats in time $O(n \log n)$ and space O(n).

Apostolico and Preparata 1983: Find all occurrences of primitive tandem repeats in time $O(n \log n)$ and space O(n). Suffix tree based.

Main and Lorentz 1984 (Smyth 12.1.2): Find all occurrences of tandem repeats in time $O(n \log n + |\text{boutput}|)$ and space O(n).

Stoye and Gusfield 1998: Find all occurrences of tandem repeats in time $O(n \log n + |\text{loutput}|)$ and space O(n), can also be adapted to find all occurrences of primitive tandem repeats in time $O(n \log n)$. Suffix tree based.

Basic observation

A branching occurrence of a tandem repeats in S:

Lemma: any non-branching occurrence (i, l, 2) of a tandem repeat is the left-rotation of another tandem repeat (i+1, l, 2), starting one position to its right.

Example:


```
Lemma (folklore): Consider two positions i and j of S, 1 \le i < j \le n, let l = j - i. Then the following assertions are equivalent: a. (i, l, 2) is an occurrence of a tandem repeat b. i and j occur in the same leaf-list of some node v in T(S) with
```

depth $D(v) \ge l$

Lemma (folklore): Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

a. (i, l, 2) is an occurrence of a tandem repeat

b. *i* and *j* occur in the same leaf-list of some node v in T(S) with depth $D(v) \ge l$

Example: ABAABAABBBA\$
1 2 3 4 5 6 7 8 9 10 11 12

ABAABAABBBBA\$
1 2 3 4 5 6 7 8 9 10 11 12

ABBAABBBBA\$
1 2 3 4 5 6 7 8 9 10 11 12

Lemma (folklore): Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

a. (i, l, 2) is an occurrence of a tandem repeat

b. *i* and *j* occur in the same leaf-list of some node v in T(S) with depth $D(v) \ge l$

Lemma (folklore): Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

- a. (i, l, 2) is an occurrence of a tandem repeat
- b. *i* and *j* occur in the same leaf-list of some node v in T(S) with depth $D(v) \ge l$

Lemma (folklore): Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

- a. (i, l, 2) is an occurrence of a tandem repeat
- b. *i* and *j* occur in the same leaf-list of some node v in T(S) with depth $D(v) \ge l$

Lemma: Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

- a. (i, l, 2) is an occurrence of a branching tandem repeat
- b. *i* and *j* occur in the same leaf-list of a node v in T(S) with depth D(v) = l and not in the same leaf-list of any node with depth > l

Lemma: Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

- a. (i, l, 2) is an occurrence of a branching tandem repeat
- b. *i* and *j* occur in the same leaf-list of a node v in T(S) with depth D(v) = l and not in the same leaf-list of any node with depth > l

Lemma: Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

- a. (i, l, 2) is an occurrence of a branching tandem repeat
- b. *i* and *j* occur in the same leaf-list of a node v in T(S) with depth D(v) = l and not in the same leaf-list of any node with depth > l

Lemma: Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

- a. (i, l, 2) is an occurrence of a branching tandem repeat
- b. *i* and *j* occur in the same leaf-list of a node v in T(S) with depth D(v) = l and not in the same leaf-list of any node with depth > l

Basic algorithm

Idea: for each node v of T(S), find the positions i in LL(v) where $\alpha\alpha = L(v)L(v)$ occurs as a branching tandem repeat (i, D(v), 2) ...

Algorithm:

All nodes of T(S) begin unmarked. Step 1 is repeated until all nodes are marked.

- 1. Select an unmarked internal node v. Mark v and execute steps 2a and 2b for node v.
- 2a. Collect the leaf-list LL(v).
- 2b. For each leaf i in LL(v), test whether the leaf j=i+D(v) is in LL(v). If so, test whether $S[i] \neq S[i+2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.

Basic algorithm

Idea: for each node v of T(S), find the positions i in LL(v) where $\alpha c = L(v)L(v)$ occurs as a branching tandem repeat (i, D(v), 2) ...

All nodes of T(S) begin unmarked. Step 1 is repeated until all nodes are mark

- 1. Select an unmarked internal node v. Mark v and execute steps 2a and 2b for
- 2a. Collect the leaf-list LL(v).

2b. For each leaf i in LL(v), test whether the leaf j=i+D(v) is in LL(v). If so, test whether $S[i] \neq S[i+2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.

i and *j* are in leaf-lists of distinct children of v, i.e they are not in the same leaf-list for any node with depth > D(v) ...

Basic algorithm

Idea: for each node v of T(S), find the positions i in LL(v) where $\alpha\alpha = L(v)L(v)$ occurs as a branching tandem repeat (i, D(v), 2) ...

Algorithm:

All nodes of T(S) begin unmarked. Step 1 is repeated until all nodes are marked.

- 1. Select an unmarked internal node v. Mark v and execute steps 2a and 2b for node v.
- 2a. Collect the leaf-list LL(v).
- 2b. For each leaf i in LL(v), test whether the leaf j = i + D(v) is in LL(v). If so, test whether $S[i] \neq S[i + 2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.

Analysis: $O(n^2)$ time, and O(n) space, if we can test in time O(1)

Testing in constant time

Idea: make a depth-first numbering of the leaves in T(S) and a corresponding lookup-table ...

Testing in constant time

Idea: make a depth-first numbering of the leaves in T(S) and a corresponding lookup-table ...

We cannot afford to spend time O(|LL(v)|) at each node, ...

For each leaf i in LL(v), test whether the leaf j = i + D(v) is in LL(v). If so, test whether $S[i] \neq S[i+2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.

We cannot afford to spend time O(|LL(v)|) at each node, ...

For each leaf i in LL(v), test whether the leaf j = i + D(v) is in LL(v). If so, test whether $S[i] \neq S[i + 2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.

Recall:

Lemma: Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

- a. (i, l, 2) is an occurrence of a branching tandem repeat
- b. i and j occur in the same leaf-list of a node v in T(S) with depth D(v) = l and not in the same leaf-list of any node with depth > l

We cannot afford to spend time O(|LL(v)|) at each node, ...

For each leaf i in LL(v), test whether the leaf j = i + D(v) is in LL(v). If so, test whether $S[i] \neq S[i + 2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.

Recall:

Lemma: Consider two positions i and j of S, $1 \le i < j \le n$, let l = j - i. Then the following assertions are equivalent:

- a. (i, l, 2) is an occurrence of a branching tandem repeat
- b. *i* and *j* occur in the same leaf-list of a node v in T(S) with depth D(v) = l and not in the same leaf-list of any node with depth > l

... i and j must be in leaf-lists of different children of v ...

For node v let v' be the child of v with the largest leaf-list ...

$$Large(v) = LL(v')$$

$$Small(v) = LL'(v) = LL(v) - LL(v')$$

Observation: There is no branching occurrence (i, D(v), 2) where i and j = i + D(v) are both in Large(v), i.e. either i or i + D(v) are in Small(v) ...

For node v let v' be the child of v with the largest leaf-list ...

$$Large(v) = LL(v')$$

$$Small(v) = LL'(v) = LL(v) - LL(v')$$

Observation: There is no branching occurrence (i, D(v), 2) where i and j = i + D(v) are both in Large(v), i.e. either i or i + D(v) are in Small(v) ...

Idea: For every i in Small(v) report:

(i, D(v), 2) as branching iff $i+D(v) \in LL(v)$ and $S[i] \neq S[i+2D(v)]$

(i-D(v), D(v), 2) as branching iff $i-D(v) \in LL(v')$ and $S[i-D(v)] \neq S[i+D(v)]$

For node v let v' be the child of v with the largest leaf-list ...

$$Large(v) = LL(v')$$

$$Small(v) = LL'(v) = LL(v) - LL(v')$$

Observation: There is no branching occurrence (i, D(v), 2) where i and j = i + D(v) are both in Large(v), i.e. either i or i + D(v) are in Small(v)

This finds all branching occurrences of L(v)L(v) at positions in Small(v)

Idea: For every i in Small(v) report:

(i, D(v), 2) as branching iff $i+D(v) \in LL(v)$ and $S[i] \neq S[i+2D(v)]$

(i-D(v), D(v), 2) as branching iff $i-D(v) \in LL(v')$ and $S[i-D(v)] \neq S[i+D(v)]$

For node v let v' be the child of v with the largest leaf-list ...

$$Large(v) = LL(v')$$

$$Small(v) = LL'(v) = LL(v) - LL(v')$$

Observation: There is no branching occurrence (i, D(v), 2) where i and j = i + D(v) are both in Large(v), i.e. either i or i + D(v) are in Small(v) ...

Idea: For every i in Small(v) report: (i, D(v), 2) as branching iff $i+D(v) \in$

This finds all branching occurrences of L(v)L(v) at positions in Large(v)

(i-D(v), D(v), 2) as branching iff $i-D(v) \in LL(v')$ and $S[i-D(v)] \neq S[i+D(v)]$

Idea: for each node v of T(S), find the positions i in LL(v) where (i, D(v), 2) is a branching occurrence by examining Small(v) ...

All nodes of T(S) begin unmarked. Step 1 is repeated until all nodes are marked.

- 1. Select an unmarked internal node v. Mark v and execute steps 2a, 2b and 2c for node v.
- 2a. Collect the list LL'(v) for v.
- 2b. For each leaf i in LL'(v), test whether leaf j=i+D(v) is in LL(v), the leaf-list of v. If so, test whether $S[i] \neq S[i+2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.
- 2c. Do the same test for each leaf j in LL'(v), and i = j D(v).

Idea: for each node v of T(S), find the positions i in LL(v) where (i, D(v), 2) is a branching occurrence by examining Small(v) ...

All nodes of T(S) begin unmarked. Step 1 is repeated until all nodes are marked.

- 1. Select an unmarked internal node v. Mark v and execute steps 2a, 2b and 2c for node v.
- 2a. Collect the list LL'(v) for v.
- 2b. For each leaf i in LL'(v), test whether leaf j=i+D(v) is in LL(v), the leaf-list of v. If so, test whether $S[i] \neq S[i+2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.
- 2c. Do the same test for each leaf j in LL'(v), and i = j D(v).

Idea: for each node v of T(S), find the positions i in LL(v) where (i, D(v), 2) is a branching occurrence by examining Small(v) ...

All nodes of T(S) begin unmarked. Step 1 is repeated until all nodes are marked.

- 1. Select an unmarked internal node v. Mark v and execute steps 2a, 2b and 2c for node v.
- 2a. Collect the list LL'(v) for v.
- 2b. For each leaf i in LL'(v), test whether leaf j=i+D(v) is in LL(v), the leaf-list of v. If so, test whether $S[i] \neq S[i+2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.
- 2c. Do the same test for each leaf j in LL'(v), and i = j D(v).

i.e test if *i* is in LL(v'), i.e. Large(v), and if $S[i] \neq S[i+2D(v)]$...

Idea: for each node v of T(S), find the positions i in LL(v) where (i, D(v), 2) is a branching occurrence by examining Small(v) ...

All nodes of T(S) begin unmarked. Step 1 is repeated until all nodes are marked.

- 1. Select an unmarked internal node v. Mark v and execute steps 2a, 2b and 2c for node v.
- 2a. Collect the list LL'(v) for v.
- 2b. For each leaf i in LL'(v), test whether leaf j=i+D(v) is in LL(v), the leaf-list of v. If so, test whether $S[i] \neq S[i+2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.
- 2c. Do the same test for each leaf j in LL'(v), and i = j D(v).

Running time?

Idea: for each node v of T(S), find the positions i in LL(v) where (i, D(v), 2) is a branching occurrence by examining Small(v) ...

All nodes of T(S) begin unmarked. Step 1 is repeated until all nodes are marked.

- 1. Select an unmarked internal node v. Mark v and execute steps 2a, 2b and 2c for node v.
- 2a. Collect the list LL'(v) for v.
- 2b. For each leaf i in LL'(v), test whether leaf j=i+D(v) is in LL(v), the leaf-list of v. If so, test whether $S[i] \neq S[i+2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.
- 2c. Do the same test for each leaf j in LL'(v), and i = j D(v).

Analysis: O(|Small(v)|) time at each node, and O(n) space

"Smaller half" trick

For node v let v' be the child of v with the largest leaf-list ...

$$Large(v) = LL(v')$$

$$Small(v) = LL'(v) = LL(v) - LL(v')$$

"Smaller half" trick:

$$\sum_{v} |Small(v)| = O(n \log n)$$

Using time O(|Small(v)|) at each node, implies time $O(n \log n)$ in total

"Smaller half" trick

Proof: count how many times each leaf can be in Small(v) for any v ...

"Smaller half" trick:

$$\sum_{v} |Small(v)| = O(n \log n)$$

Using time O(|Small(v)|) at each node, implies time $O(n \log n)$ in total

"Smaller half" trick

Proof: count how many times each leaf can be in Small(v) for any v ...

If leaf l is in Small(v), then $|T(u)| \le |T(v)|/2$, otherwise T(v') wouldn't be large ...

I.e. leaf l can be in a Small(v) at most log(n) times a long the path from l to the root.

"Smaller half" trick:

$$\sum_{v} |Small(v)| = O(n \log n)$$

Using time O(|Small(v)|) at each node, implies time $O(n \log n)$ in total

Idea: for each node v of T(S), determine if $\alpha \alpha = L(v)L(v)$ is a branching tandem repeat by examining Small(v) ...

All nodes of T(S) begin unmarked. Step 1 is repeated until all nodes are marked.

- 1. Select an unmarked internal node v. Mark v and execute steps 2a, 2b and 2c for node v.
- 2a. Collect the list LL'(v) for v.
- 2b. For each leaf i in LL'(v), test whether leaf j=i+D(v) is in LL(v), the leaf-list of v. If so, test whether $S[i] \neq S[i+2D(v)]$. There is a branching tandem repeat of length 2D(v) starting at position i if and only if both tests return true.
- 2c. Do the same test for each leaf j in LL'(v), and i = j D(v).

Analysis: $O(n \log n)$ time, and O(n) space

Putting it all together

Algorithm: Start at each occurrence of a branching tandem repeats, and do a series of consecutive left-rotations to find all occurrences of tandem repeats ...

Example:

Analysis: $O(n \log n + |\text{loutput}|)$ time, and O(n) space

Putting it all together

Algorithm: Start at each occurrence of a branching tandem repeats, and do a series of consecutive left-rotations to find all occurrences of tandem repeats ...

Example:

Analysis: $O(n \log n + |\text{loutput}|)$ time, and O(n) space

The algorithm can be extended to find all occurrences of primitive tandem repeats in time $O(n \log n)$...

Implementation details

Make "depth first"-numbering of leaves, lookup-table, and annotation of internal with interval in an initial depth-first traversal of T(S) ...

Report (or count) occurrences of tandem repeats in a depth-first traversal of T(S), report from v when all children have been reported from ...

Note that the annotation of nodes with intervals makes it easy to determine |LL(v)| and v'...

Keep track of leaf-lists in e.g. linked lists which can be concatenated in time O(1) ... or do you need explicitly to keep track of the leaf-lists at all? (Hint: You don't)