Оптика.					
Закон преломления:	$n_1 \sin \varphi_1 = n_2 \sin \varphi_2$	Электромагнитное поле сферической волны:	$\vec{H} = k^2 (\vec{n} \times \vec{p_0}) \frac{e^{i(kr - \omega t)}}{r},$ $\vec{E} = \vec{H} \times \vec{n}, k = \frac{\omega}{c}, \vec{n} = \frac{\vec{r}}{r}$		
Закон отражения:	Угол падения равен углу отражения.	Показатели преломления и отражения:	$\sqrt{\varepsilon} = n + i\kappa$		
Формула тонкой линзы:	$\frac{1}{F} = \frac{1}{f} + \frac{1}{d}$	Асимптотическое значение показателя преломления:	$n_0 = n(0) = \sqrt{1 + \frac{\omega_p^2}{\omega_0^2}}$		
Фокусное расстояние через радиусы кривизны:	$\frac{1}{F} = (n-1)(\frac{1}{R_1} + \frac{1}{R_2})$ («-» перед $\frac{1}{R_i}$, если соответствующая поверхность вогнутая)	Закон Бугера:	$k = \frac{\omega\sqrt{\varepsilon}}{c} = \frac{\omega}{c}n + i\frac{\omega}{c}\kappa = k_r + i\frac{\alpha}{2}, I = I_0e^{-\alpha x}$		
Фокусное расстояние двух линз:	$\frac{1}{F} = \frac{1}{F_1} + \frac{1}{F_2} - \frac{1}{F_1 F_2}$	Диэлектрическая про- ницаемость плазмы:	$\varepsilon = 1 - \left(\frac{\omega_p}{\omega}\right)^2 = 1 - \frac{4\pi N e^2}{m\omega^2}$		
Волновое уравнение: Скорость света в среде:	$\frac{\frac{1}{v^2}\frac{\partial^2 \vec{E}}{\partial t^2} - \Delta \vec{E} = 0, \frac{1}{v^2}\frac{\partial^2 \vec{H}}{\partial t^2} - \Delta \vec{H} = 0}{v = \frac{c}{n} = \frac{c}{\sqrt{\epsilon \mu}}}$	Групповая скорость: Интенсивность суммы двух волн:	$v_{gr} = \frac{d\omega}{dk}$ $I = I_1 + I_2 + 2\sqrt{I_1 I_2} cos[\Delta \varphi(r)]$		
Уравнение Гельмгольца:	$\Delta \vec{E} + \frac{\omega^2}{v^2} \vec{E} = 0, \Delta \vec{H} + \frac{\omega^2}{v^2} \vec{H} = 0$	Видимость:	$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$ $I_{max} = (\sqrt{I_1} + \sqrt{I_2})^2$		
Плоская волна:	$\vec{E}(x,t) = \vec{E_1}\cos((\vec{k},\vec{x}) - \omega t + \varphi_1)$	Интенсивность макси- мумов:	$I_{max} = (\sqrt{I_1} + \sqrt{I_2})^2$		
Комплексная амплитуда:	$\vec{E}(x,t) = \vec{E}_0 \exp(i(\vec{k}, \vec{x}) - \omega t)$	Интенсивность миниму- мов:	$I_{min} = (\sqrt{I_1} - \sqrt{I_2})^2$		
Волновое число:	$ ec{k} =rac{\omega}{v}=rac{\omega}{c}n, ec{k}$ задаёт направление распространения волны.	Видимость суммы двух волн:	$V = \frac{2\sqrt{I_1 I_2}}{I_1 + I_2}$		
Фазовая скорость волны:	$v = \frac{\omega}{k} = \frac{c}{n}$	Интер-ция двух плоских волн с уравнениями: $A_i(\vec{r},t)=a_i\cos(\vec{k_i}\vec{r}-\omega t+\varphi_i), i=1,2$	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} cos[\vec{K}\vec{r} + \delta],$ $\vec{K} = \vec{k_1} - \vec{k_2}, \delta = \varphi_1 - \varphi_2$		
Длина волны:	$\lambda=vT=rac{C}{nV}=rac{2\pi c}{n\omega}=rac{\lambda_0}{n},\lambda_0$ — длина волны в вакууме.	Условие максимумов:	$(\vec{K} \cdot \vec{r}) + \delta = 2\pi m, m \in \mathbb{Z}$		
Фаза волны:	$\varphi = (\vec{k}, \vec{r}) - \omega t$	Условие минимумов:	$(\vec{K} \cdot \vec{r}) + \delta = \pi(2m+1), m \in \mathbb{Z}$		
$egin{array}{c} { m C}$ вязь амплитуд $ec{H}$ и $ec{E}$:	$\sqrt{\varepsilon}E_0 = \sqrt{\mu}H_0$	Расстояние между поло- сами:	$K = \vec{k_1} - \vec{k_2} = 2k\sin(\frac{\alpha}{2}),$ $\Delta x = \frac{2\pi}{K} = \frac{\lambda}{2\sin(\frac{\alpha}{2})}$		
Уравнения Максвелла для плоских волн:	$\vec{k} \times \vec{E} = \frac{\omega}{c} \vec{B}, (\vec{k}, \vec{D}) = 0,$ $\vec{k} \times \vec{H} = \frac{\omega}{c} \vec{D}, (\vec{k}, \vec{B}) = 0$ $A = A_0 \frac{e^{ikr - i\omega t}}{r}$	Максимумы в схеме Юнга:	$x_{max} = \frac{\lambda L}{d} m$		
Расходящаяся сфериче- ская волна:	$A = A_0 \frac{e^{i\kappa r - i\omega t}}{r}$	Минимумы в схеме Юн- га:	$x_{min} = \frac{\lambda L}{d} (m + \frac{1}{2})$		
Сходящаяся сферическая волна:	$A = A_0 \frac{e^{-ikr - i\omega t}}{r}$	Функция когерентно- сти:	$\overline{A^2(t)} = \overline{A^2(t+\tau)} = I_0,$ $\overline{A^2(t)A^2(t+\tau)} = \Gamma(\tau),$ $I = 2I_0 + 2\Gamma(\tau)$		

Оптика.				
Комплексная функция ко- герентности:	$\hat{\Gamma}(\tau) = I_0 e^{i\omega_0 \tau}$			
Степень временной когерентности γ :	$\hat{\Gamma}(\tau) = I_0 \hat{\gamma}(\tau),$ $\hat{\gamma}(\tau) = \gamma(\tau) e^{i[\omega_0 \tau + \varphi_0(\tau)]}$			
Связь видимости и степени когерентности:	$V = \gamma(\tau) $			
Функция временной коге- рентности:	$\Gamma(\tau) = \frac{1}{\Delta \tau} \int_0^{\Delta t} A(t_1) A(t_1 + \tau) dt$			
Теорема Винера-Хинчина:	$dI_0 = J(\omega)d\omega, I_0 = \int_0^\infty J(\omega)d\omega,$ $I = 2\int_0^\infty J(\omega)(1 + \cos(\omega\tau))d\omega,$ $\Gamma(\tau) = \int_0^\infty J(\omega)\cos\omega\tau d\omega$			
Теорема Винера-Хинчина (комплексная форма):	$\hat{\Gamma}(\tau) = \int_{-\infty}^{\infty} J(\omega) e^{i\omega\tau} d\omega$			
Радиус m -ой зоны Френеля:	$R_m = \sqrt{m\lambda f}$			
П-дь <i>m</i> -ой зоны Френеля: Разность хода от двух со- седних щелей в дифрак- ционной решетке:	$S_m = \pi \lambda f$ $\Delta = d \sin \Theta$			
Условие максимумов для решетки:	$d\sin\Theta = m\lambda$			
Распределение интенсив- ности излучения при ди- фракции Фраунгофера:	$I = I_0 \frac{\sin^2(\frac{N}{2}kd \cdot \sin(\Theta))}{\sin^2(\frac{1}{2}kd \cdot \sin(\Theta))}$			
Соотношения для направлений на главные максимумы при дифракции на решетке:	$d(\sin\Theta - \sin\Theta_0) = m\lambda$			
Интенсивность излучения в главных максимумах:	$I = N^2 I_0$			
Угловая ширина главного максимума:	$\Delta\Theta = \frac{2\lambda}{Nd}$			
Интенсивность в дополни- тельных максимумах:	$I^{(n)} = \frac{4I_0}{(kd\Theta_{max})^2} = \frac{I_0 N^2}{\pi^2 (n + \frac{1}{2})^2}$			
Влияние ширины щели на дифракционную картину:	$I = I_0 \frac{\sin^2(\frac{1}{2}kb\sin\theta)}{(\frac{1}{2}kb\sin\theta)^2} \frac{\sin^2(\frac{1}{2}Nkd\sin\theta)}{\sin^2(\frac{1}{2}kd\sin\theta)}$			