Jesenski ispitni rok

7. rujna 2016.

Ime i Prezime:

Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (8 bodova)

Zadan je sustav na slici 1. Pritom: m je masa tijela, g je ubrzanje sile teže, x je pomak tijela u odnosu na ishodište (vidi sliku 1), $F_{\mathbf{k}} = kx^3$ je sila opruge, k je konstanta opruge, $F_{\mathbf{tr}}(x)$ je sila trenja, F je vučna sila, a α je kut pod kojim djeluje vučna sila F. Sila trenja je proporcionalna ukupnoj sili $F_{\mathbf{N}}$ kojom tijelo okomito pritišće podlogu i sljedećeg je oblika: $F_{\mathbf{tr}} = F_{\mathbf{N}} \arctan(x)$.

Slika 1: Načelna shema sustava.

- a) (3 boda) Napišite diferencijalnu jednadžbu koja opisuje dinamičku ovisnost pomaka tijela x u odnosu na ishodište o vučnoj sili F.
- b) (3 boda) Linearizirajte sustav oko ishodišta x=0. Napomena: $\frac{d}{dx}\arctan x=\frac{1}{1+x^2}$.
- c) (2 boda) Zapišite linearizirani sustav u prostoru stanja, ako su zadana stanja $x_1 = x$, $x_2 = \dot{x}$, ulaz u sustav je u = F, a izlaz iz sustava je y = x.

zadatak (12 bodova)

Zadana je prijenosna funkcija procesa $G_p(s) = \frac{2}{s(s+4)}$.

- (3 boda) Skicirajte amplitudno-frekvencijsku karakteristiku procesa aproksimiranu pravcima. Pritom jasno naznačite lomne frekvencije i nagibe pravaca.
- $(3\ boda)$ Odredite odstupanje u decibelima između stvarne amplitudno-frekvencijske karakteristike procesa i njene aproksimacije na frekvenciji $\omega=2\mathrm{rad/s}$.
- $(3\ boda)$ Izračunajte iznos pojačanja kojeg bi trebalo dodati u otvoreni krug upravljanja kako bi se postiglo nadvišenje prijelazne funkcije zatvorenog kruga $\sigma_m \approx 7\%$. Pritom koristite približnu vezu između pokazatelja kvalitete u vremenskom i frekvencijskom području.
- a) (3 boda) Ako se procesom upravlja s proporcionalnim regulatorom pojačanja $K_p=1.5$ u zatvorenom krugu s jediničnom povratnom vezom, odredite regulacijsko odstupanje u ustaljenom stanju na referencu oblika r(t)=0.2S(t)+tS(t-2).

3. zadatak (11 bodova)

Na slici 2 prikazan je sustav upravljanja. Zadana je prijenosna funkcija $G(s) = \frac{2}{s(s+4)}$

Slika 2: Sustav upravljanja.

- $(5 \ bodova)$ Zadano je $G_M = \frac{1}{1+Ts}$. Korištenjem Hurwitzovog kriterija odredite za koje vrijednosti vremenske konstante T je zatvoreni sustav upravljanja stabilan.
- $(6 \ bodova)$ Zadano je $G_M = \frac{1}{1+s}$. Korištenjem Nyquistovog dijagrama (uz jasno označene sve karakteristične točke) odredite je li sustav upravljanja stabilan.

4. zadatak (10 bodova)

Procesom
$$G_{\rm P}(s) = \frac{1}{s+0.02}$$
 upravlja se PI regulatorom $G_{\rm R}(s) = K_{\rm R} \frac{T_{\rm I} s + 1}{T_{\rm I} s}$.

- (3 boda) Diskretizirajte PI regulator s vrijednostima parametara $K_{\rm R}=8$ i $T_{\rm I}=0.5$ korištenjem Tustinove metode uz vrijeme uzorkovanja T=10 ms. Zapišite rekurzivnu jednadžbu koja opisuje ponašanje regulatora.
- (3 boda) Proces $G_P(s)$ diskretizirajte metodom diskretizacije kojom se u diskretnoj domeni zadržavaju svojstva kontinuirane prijelazne funkcije uz vrijeme uzorkovanja T=10 ms.
- (4 boda) Korištenjem Juryevog kriterija odredite stabilnost diskretnog <u>zatvorenog</u> sustava upravljanja uz prijenosne funkcije procesa $G_{\rm P}(z) = \frac{0.01}{z-1}$ i regulatora $G_{\rm R}(z) = \frac{z-0.98}{z-1}$.

52+43