

Generalized Scalable Neighborhood Component Analysis for Remote Sensing Image Characterization

Jian Kang¹, Ruben Fernandez Beltran², Antonio Plaza³

- 1. School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
- 2. Institute of New Imaging Technologies, University Jaume I, E-12071 Castellon, Spain
- 3. Hyperspectral Computing Laboratory, University of Extremadura, E-10003 Caceres, Spain

Outline

- Introduction
- Motivation
- Background Knowledge
- Generalized Scalable Neighborhood Component Analysis (GSNCA)

- Experiments
- Conclusion

Introduction

 Remote Sensing (RS) technology development meets big Earth Observation (EO) data

Credit: Wikipedia

 Retrieving interested contexts from big EO data is a basic task in RS

Introduction

 Characterizing the contexts of RS images with low-dimensional features is the key for achieving image retrieval

 Deep learning has been a workhorse for learning those features

$$f(\cdot)$$
 \longrightarrow

Introduction and Motivation

 Most state-of-the-art methods focus on designing proper CNN architectures for characterizing RS images based on deep embeddings

 Few work have focused on investigating the performance of learned embeddings and the associated metric space

 A unified loss function for modeling semantic relationships among RS images with both single and multiple labels

Background Knowledge

Neighborhood Component Analysis (NCA)

$$p_{ij} = \frac{\exp(-\|\mathbf{A}\mathbf{x}_i - \mathbf{A}\mathbf{x}_j\|_2^2)}{\sum_{k \neq i} \exp(-\|\mathbf{A}\mathbf{x}_i - \mathbf{A}\mathbf{x}_k\|_2^2)},$$

- o p_{ij} the probability that the sample \mathbf{x}_j is the neighbor of the sample \mathbf{x}_i
- A the linear feature mapping
- $0 ext{d}_{ij} = \|\mathbf{A}\mathbf{x}_i \mathbf{A}\mathbf{x}_j\|_2^2$ distance of projected features in latent space

Background Knowledge

- NCA
 - \circ The sample \mathbf{X}_i can be correctly classified is with the probability

$$p_i = \sum_{j \in \Omega_i} p_{ij}$$

O NCA loss is:

$$\mathcal{L} = -\sum_{i} \log(p_i)$$

- Objective of NCA
 - Learn the linear mapping of features which can pull the projected features sharing the same class together in the latent space

Background Knowledge

- Scalable Neighborhood Component Analysis (SNCA) [2]
 - Loss function

Generalization of SNCA to multi-label RS image characterization

Two images sharing more labels should be closer in latent space

• Reformulate the classification probability of x_i based on the indicator function

$$p_i = \sum_{j \in \Omega_i} p_{ij} \qquad \longrightarrow \qquad p_i = \sum_j \mathbb{1}_{\Omega_i}(j) p_{ij} \qquad \mathbb{1}_{\Omega_i}(j) := \begin{cases} 1 & \text{if } j \in \Omega_i, \\ 0 & \text{if } j \notin \Omega_i. \end{cases}$$

The indicator function can be also considered as a weighting matrix

$$p_i = \sum_{j} \mathbb{1}_{\Omega_i}(j) p_{ij} \longrightarrow p_i = \sum_{j} w_{ij} p_{ij}$$

• $p_i = \sum_j w_{ij} p_{ij}$ w_{ij} weights measuring the level of similarities between \mathbf{X}_i and \mathbf{X}_j

$$w_{ij} = \frac{\langle \mathbf{y}_i, \mathbf{y}_j \rangle + C}{2C}, \quad w_{ij} \in [0, 1]$$

$$\mathbf{y}_i, \mathbf{y}_j \in [+1, -1]^C$$

C the total number of classes

- 1: [Bare-soil; Buildings; Cars; Court; Grass]
- 2: [Bare-soil; Buildings; Cars; Court]
- 3: [Bare-soil; Buildings; Cars]
- 4: [Buildings]

$$w_{12} > w_{13} > w_{14}$$

Loss function

$$\mathcal{L}_{ ext{GSNCA}} = -\sum_{i} \log(\sum_{j} w_{ij} p_{ij})$$

Framework [3]

Experimental Setup

Dataset	UCM; AID; DFC15 (Mutli-label)					
Data Splitting	Train:0.7, Val:0.1, Test:0.2					
Tasks	KNN classification; Image retrieval					
Metrics	WMAP; MAP; Hamming Loss; F1/2; Precision; Recall					
Compared Methods	BCE; LSEP [4]					

Experimental Results

KNN classification

	UCM				AID				DFC15				
		$F_{ m s}^1$	$F_{ m s}^2$	P_{s}	$R_{\rm s}$	$F_{ m s}^1$	$F_{ m s}^2$	$P_{\rm s}$	$R_{\rm s}$	$F_{ m s}^1$	$F_{ m s}^2$	P_{s}	$R_{\rm s}$
ResNet18	Contrastive	64.67	64.63	69.49	65.73	75.43	74.75	80.78	75.67	_	_	_	_
	BCE	87.76	88.23	89.19	89.19	88.31	87.42	91.77	87.25	92.74	91.88	95.38	91.55
	GSNCA	88.47	88.87	89.82	89.76	89.13	88.43	92.39	88.37	93.08	92.47	95.19	92.32
	LSEP	88.75	89.37	89.65	90.40	89.78	89.13	92.70	89.17	92.91	92.04	95.58	91.72
	GSNCA-BCE	89.82	90.26	91.06	91.15	90.26	89.66	93.11	89.63	94.72	94.35	96.09	94.29
ResNet50	Contrastive	77.02	76.78	81.50	77.49	76.31	75.88	80.42	76.88	_	_	_	_
	BCE	89.73	90.61	90.10	91.76	89.18	88.45	92.32	88.37	93.95	93.39	95.88	93.24
	GSNCA	89.68	90.11	90.71	90.91	90.43	89.88	93.27	89.95	94.53	94.27	95.79	94.31
	LSEP	90.36	91.26	90.57	92.43	89.43	88.65	92.74	88.58	93.52	93.03	95.49	92.96
	GSNCA-BCE	91.31	91.92	91.98	92.83	90.95	90.82	92.79	91.08	95.80	95.78	96.53	95.95
WideResNet50	Contrastive	74.84	74.99	78.36	76.08	81.06	80.30	85.48	80.59	_	_	_	_
	BCE	88.45	88.89	89.75	89.76	89.36	88.67	92.41	88.63	93.39	92.94	95.29	92.88
	GSNCA	90.31	90.81	91.21	91.68	90.55	89.93	93.39	89.89	94.81	94.46	96.31	94.44
	LSEP	90.22	90.81	91.13	91.79	89.40	88.56	92.87	88.44	93.68	92.92	96.11	92.67
	GSNCA-BCE	90.81	91.18	$\boldsymbol{91.97}$	91.92	91.02	90.50	93.66	90.49	95.96	95.73	97.13	95.74

Experimental Results

• Image retrieval

		UCM				AID		DFC15			
		WMAP	MAP(%)	HL	WMAP	MAP(%)	HL	WMAP	MAP(%)	HL	
ResNet18	Contrastive	1.97	86.77	0.19	3.66	93.31	0.18	_	_	_	
	BCE	2.52	97.70	0.13	4.25	97.36	0.12	2.37	100.00	0.12	
	GSNCA	2.63	99.17	0.11	4.35	99.17	0.11	2.43	100.00	0.10	
	LSEP	2.75	99.79	0.09	4.39	99.06	0.11	2.40	100.00	0.11	
	GSNCA-BCE	2.71	99.70	0.10	4.47	99.29	0.09	2.51	100.00	0.07	
ResNet50	Contrastive	2.28	97.02	0.15	3.85	93.44	0.17	_	_	_	
	BCE	2.64	98.99	0.11	4.33	98.31	0.11	2.45	100.00	0.09	
	GSNCA	2.71	99.64	0.10	4.47	99.67	0.09	2.51	99.99	0.08	
	LSEP	2.77	99.81	0.09	4.40	99.52	0.10	2.46	100.00	0.09	
	GSNCA-BCE	2.80	99.92	0.08	4.60	99.66	0.07	2.58	100.00	0.06	
WideResNet50	Contrastive	2.22	96.47	0.15	3.99	95.49	0.15	_	_	_	
	BCE	2.62	99.37	0.11	4.39	98.93	0.10	2.45	100.00	0.09	
	GSNCA	2.73	99.44	0.10	4.48	99.49	0.09	2.53	99.95	0.07	
	LSEP	2.76	99.87	0.09	4.40	99.75	0.10	2.47	100.00	0.09	
	GSNCA-BCE	2.80	99.87	0.08	4.59	99.75	0.07	2.57	99.99	0.06	

Experimental Results

Image retrieval

Sand, Trees

GSNCA-BCE

LSEP

Bare-soil, Grass

Pavement, Sand

Bare-soil, Grass

Bare-soil, Grass

Grass. Pavement, Sand

Grass, Pavement, Sand

Grass, Pavement, Sand

Bare-soil, Grass, Pavement, Sand

Bare-soil, Grass, Pavement, Sand

Conclusion

• Generalize the SNCA framework for multi-label RS image characterization

 Compared to the other state-of-the-art methods, the proposed GSNCA can achieve the superior performance on feature extraction for multi-label RS images

Thank you for your attention!

https://jiankang1991.github.io/