

Filtragem de pacotes

□ Funcionamento:

- Baseia-se na filtragem de datagramas IP recebidos, através de decisões do tipo "permitir/bloquear"
- Cada decisão "permitir/bloquear" é tomada consultando-se as regras de filtragem estabelecidas e os cabeçalhos TCP/IP do datagrama

□ Exemplos de regras de Filtragem:

- "Permitir Telnet somente para IP 143.107.161.199"
- "Repudiar todas as mensagens ICMP externas"

2

Processo de análise

 Cada datagrama em transito é comparado com as regras de filtragem definidas

 □ As regras de filtragem são varridas de forma sequencial, de cima para baixo

 Quando um datagrama satisfaz uma regra há um *Match* e sai da fila

☐ A listagem das regras termina com a política padrão

Permitir porta TCP 80
Permitir porta TCP 25
Permitir porta UDP 53
Permitir ICMP tipo 0
Política padrão

Filtragem de pacotes □ Controle de acesso baseado na comparação do cabeçalho do pacote com as regras de filtragem Não analisado Transporte, aplicação e dados IΡ TCP Regras TCP Regra 1 TCP Regra 2 Regra 3 IΡ TCP Regra 4

Política padrão

- □ A Política padrão se aplica quando um datagrama não realiza nenhum Match com as regras definidas
 - o Padrão = Descartar tudo
 - Para políticas de controle mais restritivas
 - Tudo que n\u00e3o \u00e9 expressamente permitido \u00e9 proibido
 - Necessário definir regras para permitir tráfego desejado
 - Padrão = Aceitar tudo
 - Para políticas mais permissivas
 - Tudo que não é expressamente proibido é permitido
 - Devem ser definidas regras para bloquear tráfego indesejado

Considerações

- ☐ A regras estão em uma única tabela
- □ A tabela é varrida em uma direção (p. ex. de cima para baixo)
- □ Quando houver um match o pacote sai da fila de processamento
- □ A ordem das regras é muito importante pois regras iguais mas com ordem diferente podem gerar resultados diferentes

Importância da ordem das regras

Conjunto 1

Regra	Acesso	
Protocolo TCP Porta 25	Permitido	
IP S:10.0.0.0/24	Negado	
Protocolo UDP Porta 53	Permitido	
Protocolo TCP Porta 80	Permitido	
Padrão	Negado	

Conjunto 2

Regra	Acesso	
IP S:10.0.0.0/24	Negado	
Protocolo TCP Porta 25	Permitido	
Protocolo UDP Porta 53	Permitido	
Protocolo TCP Porta 80	Permitido	
Padrão	Negado	

S: 10.0.0.5 TCP Porta S: 5420 Porta D: 25

Cabeçalho recebido

Otimização das regras

Cada linha da tabela de regras demanda uma etapa de processamento (ciclos de CPU do firewall)

Mais Regras Maior Uso Menor Rede Lenta

- □ Muito importante otimizar as regras:
 - o Ajustando a ordem
 - o Consolidando as regras de forma eficiente

Gerenciamento do fluxo de comunicação

- □ Tecnologias para gerenciamento do fluxo:
 - Stateless: Sem conhecimento do estado
 - o Stateful: com conhecimento do estado

18

Tecnologia Stateless

- □ Cada pacote é analisado individualmente
- □ Não há conhecimento do estado da comunicação
- □ Tecnologia antiga e em desuso
- □ Desvantagem
 - o Impossibilidade de implementação de regras precisas
 - o Complexidade das regras de filtragem
 - o Dificuldade de gerenciamento de regras de filtragem
 - A cada regra de entrada precisa definir uma regra de saída
 - A regra de saída é excessivamente permissiva

Stateless – regras genéricas

Precisa gerar regras suficientemente genéricas para permitir a volta a todas as origens

Regra de entrada Regra de saida

IP origem	Porta Origem	IP destino	Porta Destino	Ação
Any	≽1023	10.0.0.5	TCP 80	Aceita
10.0.0.5	80	Any	≻1023	Aceita

Para garantir o fluxo de retorno precisa habilitar:

- Qualquer destino
- As portas altas >1023

Tecnologia Stateful

- □ 'Utiliza uma tabela de estado que mantêm o estado de cada "fluxo de comunicação"
- Os pacotes são analisados como componentes de um único fluxo de dados, permitindo uma análise mais eficiente e rápida
- □ Fluxo de análise:
 - Para cada pacote recebido é verificado se há correspondência na tabela de estado
 - Caso não haja, é verificada a lista de controle de acesso

Stateful - Tabela de estado

- □ Tabela dinâmica utilizada para realizar o *track* (rastreamento) das comunicações
- □ Cada nova conexão aceita gera uma nova entrada na tabela
- □ A validação do pacote (filtragem) é aplicada somente ao primeiro pacote do fluxo pertencente a comunicação

Criação de regras de firewall

□ Necessidade apresentada:

Permitir acesso da Internet ao servidor Web de e-commerce

□ Estudo da necessidade de acesso:

- o Acesso serviços http e https nas portas TCP 80 e 443
- Acesso IP do servidor Web 10.0.10.12
- o Acesso permitido para qualquer sistema na Internet

□ Formalização das regras de acesso:

IP origem	Porta Origem	IP destino	Porta Destino	Ação
Any	TCP > 1023	10.0.10.12	TCP 80	Aceita
Any	TCP > 1023	10.0.10.12	TCP 443	Aceita