Multiple Choice Gravity Fields Paper Questions Jan 2002—Jan 2010 (old spec)

8 The gravitational potential difference between the surface of a planet and a point P, 10 m above the surface, is 8.0 J kg⁻¹. Assuming a uniform field, what is the value of the gravitational field strength in the region between the planet's surface and P?

Jan 2002

$$\mathbf{A} = 0.80 \, \mathrm{N \, kg^{-1}}$$

$$\mathbf{B} = 1.25 \,\mathrm{N \, kg^{-1}}$$

$$\mathbf{C} \quad 8.0\,\mathrm{N\,kg^{-1}}$$

$$\mathbf{D} \quad 80\,\mathrm{N\,kg^{-1}}$$

9 Which one of the following graphs correctly shows the relationship between the gravitational force, F, between two masses and the distance, r, between them?

A satellite is in orbit at a height h above the surface of a planet of mass M and radius R. What is the velocity of the satellite?

$$\mathbf{A}$$
 $\sqrt{\frac{GM(R+h)}{R}}$

$$\mathbf{B} \qquad \qquad \sqrt{\frac{GM(R+h)}{R}}$$

C
$$\sqrt{\frac{GM}{(R+h)}}$$

$$\mathbf{D} \qquad \qquad \frac{\sqrt{G\mathbf{M}}}{(R+h)}$$

- A small mass is situated at a point on a line joining two large masses m_1 and m_2 such that it experiences no resultant gravitational force. If its distance from the mass m_1 is r_1 and its distance from the mass m_2 is r_2 , what is the value of the ratio $\frac{r_1}{r_2}$?
 - $\mathbf{A} \qquad \frac{m_1^2}{m_2^2} \qquad \qquad r_2$

Jan 2003

- $\mathbf{B} \qquad \frac{m_2^2}{m_1^2}$
- \mathbf{C} $\sqrt{\frac{m_1}{m_2}}$
- $\mathbf{D} \qquad \sqrt{\frac{m_2}{m_1}}$
- A planet of mass M and radius R rotates so rapidly that loose material at the equator just remains on the surface. What is the period of rotation of the planet?

G is the universal gravitational constant.

- $\mathbf{A} \qquad \qquad 2\pi \sqrt{\frac{R}{GM}}$
- $\mathbf{B} \qquad \qquad 2\pi \sqrt{\frac{R^2}{GM}}$
- \mathbf{C} $2\pi \sqrt{\frac{GM}{R^3}}$
- $\mathbf{D} \qquad 2\pi \sqrt{\frac{R^3}{GM}}$
- Which one of the following has different units to the other three?
 - A gravitational potential
 - **B** gravitational field strength
 - **C** force per unit mass
 - **D** gravitational potential gradient
- A planet has a radius half of the Earth's radius and a mass a quarter of the Earth's mass. What is the approximate gravitational field strength on the surface of the planet?

Jan 2004

- **A** 1.6 N kg^{-1}
- **B** 5.0 N kg^{-1}
- C 10 N kg⁻¹
- \mathbf{D} 20 N kg⁻¹

8 The following data refer to two planets.

	radius/km	density/kg m ⁻³
planet P	8 000	6 000
planet Q	16 000	3 000

Jun 2004

Jun 2005

The gravitational field strength at the surface of P is $13.4\,\mathrm{N\,kg^{-1}}$. What is the gravitational field strength at the surface of Q?

- $\mathbf{A} \qquad 3.4\,\mathrm{N\,kg^{-1}}$
- **B** $13.4 \,\mathrm{N \, kg^{-1}}$
- C $53.6 \,\mathrm{N\,kg^{-1}}$
- $\mathbf{D} = 80.4 \,\mathrm{N \, kg^{-1}}$
- 9 Near the surface of a planet the gravitational field is uniform and for two points, 10 m apart vertically, the gravitational potential difference is $3 \, \mathrm{J \, kg^{-1}}$. How much work must be done in raising a mass of 4 kg vertically through 5 m?
 - **A** 3 J
 - **B** 6 J
 - **C** 12 J
 - **D** 15 J
- 7 The Earth has density ρ and radius R. The gravitational field strength at the surface is g. What is the gravitational field strength at the surface of a planet of density 2ρ and radius 2R?
 - $\begin{array}{ccc} \mathbf{A} & g \\ \mathbf{B} & 2g \end{array}$
 - $\frac{-8}{C}$
 - \mathbf{D} 16g
- 10 The graph shows how the gravitational potential, V, varies with the distance, r, from the centre of the Earth.

What does the gradient of the graph at any point represent?

- A the magnitude of the gravitational field strength at that point
- **B** the magnitude of the gravitational constant
- **C** the mass of the Earth
- **D** the potential energy at the point where the gradient is measured

8 The diagram shows two positions, X and Y, at different heights on the surface of the Earth.

Which line, A to D, in the table gives correct comparisons at X and Y for gravitational potential and angular velocity?

	gravitational potential at X compared with Y	angular velocity at X compared with Y
A	greater	greater
В	greater	same
С	greater	smaller
D	same	same

- A projectile moves in a gravitational field. Which one of the following is a correct statement for the gravitational force acting on the projectile?
 - **A** The force is in the direction of the field.
 - **B** The force is in the opposite direction to that of the field.
 - **C** The force is at right angles to the field.
 - **D** The force is at an angle between 0° and 90° to the field.
- Which one of the following graphs correctly shows the relationship between the gravitational force, F, between two masses and their separation r.

 Jun 2006

 \mathbf{C}

D

When at the surface of the Earth, a satellite has weight W and gravitational potential energy -U. It is projected into a circular orbit whose radius is equal to twice the radius of the Earth. Which line, A to D, in the table shows correctly what happens to the weight of the satellite and to its gravitational potential energy?

	weight	gravitational potential energy
A	becomes $\frac{W}{2}$	increases by $\frac{U}{2}$
В	becomes $\frac{W}{4}$	increases by $\frac{U}{2}$
C	remains W	increases by U
D	becomes $\frac{W}{4}$	increases by U

A small mass is situated at a point on a line joining two large masses m_1 and m_2 such that it experiences no resultant gravitational force. If its distance from the centre of mass m_1 is r_1 and its distance from the centre of mass m_2 is r_2 , what is the value of the ratio $\frac{r_1}{r_2}$?

Jun 2007

$$\mathbf{A} = \frac{m_1^2}{m_2^2}$$

B
$$\frac{{m_2}^2}{{m_1}^2}$$

$$\mathbf{C} \qquad \sqrt{\frac{m_1}{m_2}}$$

$$\mathbf{D} \qquad \sqrt{\frac{m_2}{m_1}}$$

11 The Earth may be considered to be a uniform sphere of mass M and radius R. Which one of the following equations correctly relates the gravitational constant, G, with the acceleration due to gravity, g, at its surface?

$$\mathbf{A} \qquad G = \frac{M}{gR^2}$$

$$\mathbf{B} \qquad G = \frac{gM}{R^2}$$

$$\mathbf{C} \qquad G = \frac{R^2}{gM}$$

$$\mathbf{D} \qquad G = \frac{gR^2}{M}$$

12 What is the unit of gravitational potential?

- \mathbf{A} J
- $\mathbf{B} \qquad \mathrm{J}\,\mathrm{kg}^{-1}$
- \mathbf{C} m s⁻²
- $\mathbf{D} \qquad \mathrm{N}\,\mathrm{kg}^{-1}$
- 10 The diagram shows two objects of equal mass m separated by a distance r.

Which line, **A** to **D**, in the table gives the correct values of the gravitational field strength and gravitational potential at the mid-point P between the two objects?

	gravitational field strength	gravitational potential
A	$-\frac{8Gm}{r^2}$	$-\frac{4Gm}{r}$
В	$-\frac{8Gm}{r^2}$	0
C	0	$-\frac{4Gm}{r}$
D	0	0

- Mars has a diameter approximately 0.5 that of the Earth, and a mass of 0.1 that of the Earth. If the gravitational potential at the Earth's surface is -63 MJ kg⁻¹, what is the approximate value of the gravitational potential at the surface of Mars?
 - $\mathbf{A} \qquad -13\,\mathrm{MJ\,kg}^{-1}$
 - $\mathbf{B} \qquad -25\,\mathrm{MJ\,kg}^{-1}$
 - \mathbf{C} -95 MJ kg⁻¹
 - $\mathbf{D} \qquad -320\,\mathrm{MJ\,kg}^{-1}$

- **9** Which one of the following has different units to the other three?
 - **A** gravitational potential gradient

Jun 2008

- **B** gravitational field strength
- **C** force per unit mass
- **D** gravitational potential
- The gravitational field strength at the surface of the Earth, of radius R, is g and the weight of an object on the surface is W. The object is now taken to a distance of 3R from the centre of the Earth. Which line, A to D, in the table gives the weight of the object and the gravitational field strength at this distance?

 Jan 2009

	weight	gravitational field strength
A	$\frac{W}{9}$	<u>g</u> 9
В	<u>W</u> 9	<u>g</u> 3
C	$\frac{W}{4}$	<u>g</u> 4
D	$\frac{W}{3}$	$\frac{g}{3}$

10 The graph shows how the gravitational potential, V, varies with the distance, r, from the centre of the Earth.

What does the gradient of the graph at any point represent?

- **A** the mass of the Earth
- **B** the magnitude of the gravitational constant
- C the magnitude of the gravitational field strength at that point
- **D** the potential energy at the point where the gradient is measured

	radius/km	density/kg m ⁻³
planet P	8000	6000
planet Q	16000	3000

The gravitational field strength at the surface of P is $13.4\,\mathrm{N\,kg}^{-1}$. What is the gravitational field strength at the surface of Q?

- \mathbf{A} 3.4 N kg⁻¹ \mathbf{B} 13.4 N kg⁻¹
- C 53.6 N kg $^{-1}$
- **D** 80.4 N kg^{-1}
- When at the surface of the Earth, a satellite has weight W and gravitational potential energy -U. It is projected into a circular orbit whose radius is equal to twice the radius of the Earth. Which line, **A** to **D**, in the table shows correctly what happens to the weight of the satellite and to its gravitational potential energy?

	weight	gravitational potential energy
A	becomes $\frac{W}{2}$	increases by $\frac{U}{2}$
В	becomes $\frac{W}{4}$	increases by $\frac{U}{2}$
C	remains W	increases by U
D	becomes $\frac{W}{4}$	increases by U