

Biomédica

Requisitos para a ação LASER

Emissão estimulada

Fonte de energia externa

 Inversão da população

Ganho

Feedback

Tempo de vida dos níveis de energia

Vamos construir um LASER

Laser

Absorção, emissão espontânea e emissão estimulada

 $E_2 - E_1 = \Delta E = h\nu$

A emissão estimulada introduz a coerência. Fotões com características idênticas de fase, direção de propagação, comprimento de onda e polarização.

Inversão da população por laser

A relação entre as taxas de emissão e os tempos de vida dos níveis envolvidos são

fundamental para obter inversão e ganho de população.

http://www.a ml.engineerin g.columbia.ed u/ntm/level2/c

Inversão da população por laser

Four Level Scheme

Com 4 níveis é muito mais fácil obter a inversão da população, a população inicial em N1 é geralmente muito mais baixa do que em N0 (portanto, mais fácil de ultrapassar povoando N2 com potências de bombagem relativamente menores).

Bomba de laser

É necessário dispor de uma fonte de energia externa para excitar os "meios activos" para obter

inversão e ganho de população.

O tipo de fonte de energia depende do tipo de LASER:

- Bomba ótica (lâmpada de flash, ou outro LASER)
- Bomba eléctrica
- Raio X
- Bomba química (reação química)

Ter a fonte de energia e o meio ativo para proporcionar ganho ótico.

Falta alguma coisa para ter um LASER funcional?

Cavidade ressonante laser (seleção espetral e feedback)

Os espelhos aumentam o percurso efetivo de interação dos fotões na cavidade, aumentando a **probabilidad de emissão estimulada**.

A cavidade suporta apenas certos tipos de **modos longitudinais**, que cumprem as condições de fronteira da cavidade.

Apenas alguns modos se sobrepõem à banda de absorção do meio ativo.

$$\Delta E \Delta t \sim \hbar$$

$$\Delta f \Delta t \sim 1/(2\pi)$$

$$m\lambda = 2L$$
 $fm = c/\lambda = mc/(2L)$
 $\Delta f = c/2L$

2Lasers e Ótica Biomédica 2019/2020

m= ?; Δf =? Se a largura de banda de ganho Ne =1,6 GHz m=

Cavidade Ressonante Laser (Modos Transversais)

Laser Modes (a) An off-axis transverse mode is able to self-replicate after one round trip. (b) Wavefronts in a self-replicating wave (c) Four low order transverse cavity modes and their fields. (d) Intensity patterns in the modes of (c).

© 1999 S.O. Kasap Optoelectronics (Prentice Hall)

Laser - Emissão Estimulada dentro de uma cavidade ótica

A cavidade ótica permite a realimentação e a filtragem espetral

O LASER

O LASER é feito por um meio que armazena energia, entre espelhos - onde um dos os espelhos são parcialmente reflectores, permitindo que parte da luz saia da cavidade.

Para que um laser funcione como tal, a intensidade deve ser mais elevada após uma viagem de ida e volta à volta da cavidade $I_3 \geq I_0$

As perdas por absorção, dispersão e reflexão ocorrem no interior da cavidade. Em geral, a radiação LASER só será emitida se:

Um feixe de luz LASER é:

Quando os ganhos superam as perdas, dizse

a condição "Threshold".

- Monocromático: Tem um comprimento de onda estreito específico λ (cor bem definida). A emissão λ é determinada pela
 - quantidade de energia libertada pelo eletrão na transição para um nível quântico inferior.
- **Coerente**: A luz é "organizada" cada fotão é um clone do seu par estimulado. Todos os fotões têm propriedades semelhantes de fase, comprimento de onda, polarização e direção.
- Colimado: O feixe LASER é estreito e direcional, muito brilhante com uma divergência muito pequena. Ao contrário de

um flash

luz, que emite luz em todas as direcções, difusa e de baixa luminosidade.

Pode ser operado com emissão contínua ou pulsada.

Ring Cavity Resonator of Coherent, Inc. Verdi Green DPSS Laser

Direccionalidade

Divergência: Lâmpada > 180°

LED: 15°

Laser: mrad (1/100 de graus)

Laser Beam Divergence in the Near and Far Field

Monocromático (largura de banda espetral muito estreita)

Spectra From Common Sources of Visible Light

Sol, lâmpada de tungsténio: 100's

nm

LED: 20 nm

Laser: sub pm! (khz)

Tipos de lasers

- Cristais (por exemplo, Rubi, Nd:YAG)
- Semicondutores (InGa As)
- Gás (por exemplo, He-Ne, KrF)
- Corantes (Rodamina)

Laser type	Wavelength	Typical pulse duration
Argon ion	488/514 nm	CW
Krypton ion	531/568/647 nm	CW
He-Ne	633 nm	CW
CO_2	10.6 μm	CW or pulsed
Dye laser	450-900 nm	CW or pulsed
Diode laser	670-900 nm	CW or pulsed
Ruby	694 nm	1-250 μs
Nd:YLF	1053 nm	100 ns – 250 μs
Nd:YAG	1064 nm	$100 \text{ ns} - 250 \mu \text{s}$
Ho:YAG	2120 nm	$100 \text{ ns} - 250 \mu \text{s}$
Er:YSGG	2780 nm	$100 \text{ ns} - 250 \mu\text{s}$
Er:YAG	2940 nm	$100 \text{ ns} - 250 \mu \text{s}$
Alexandrite	720-800 nm	$50 \text{ns} - 100 \mu \text{s}$
XeCl	308 nm	20–300 ns
XeF	351 nm	10-20 ns
KrF	248 nm	10-20 ns
ArF	193 nm	10−20 ns
Nd:YLF	1053 nm	30–100 ps
Nd:YAG	1064 nm	30-100 ps
Free electron laser	800-6000 nm	$2-10 \mathrm{ps}$
Ti:Sapphire	700–1000 nm	$10 \mathrm{fs} - 100 \mathrm{ps}$

Monitor Photodiode

Figure 4

Connector -

Lasers

http://www.gaotec.com/index.php/products-applications/clc-laser/about-laser-wavelengthandapplications

Exercícios

2. Calcule o número de comprimentos de onda da luz vermelha emitida por um laser He-Ne, (λ= 632,8 nm), que cabem numa folha de papel com uma espessura de 0,075 mm. Qual seria o comprimento ocupado pelo mesmo número de comprimentos de onda, para micro-ondas com uma frequência de 10 GHz?

- 3. Uma lâmpada de flash (3,0 V, 0,25 A) converte cerca de 10% da sua potência em luz ($\lambda \sim 550$ nm). Se o feixe tiver uma secção inicial de 5 cm²:
 - a. Quantos fotões são emitidos por segundo?
 - b. Quantos fotões existem em cada m de feixe?
 - c. Quais são as características do vetor apontador (direção e magnitude?)? Na saída da lâmpada.

Bibliografia e multimédia

http://www.phy.cuhk.edu.hk/phyworld/articles/laser/laser_e.html

http://www.aml.engineering.columbia.edu/ntm/level2/ch02/html/l2c02s04.html

http://electron6.phys.utk.edu/optics421/modules/m5a/lasers.htm

http://userweb.eng.gla.ac.uk/douglas.paul/QCL/popinversion.html

			Capítulos Tsia	Niemz	Hecht
17/2	Semana 2	Simulação laser JAVA. Princípios de ação do laser e propriedades da luz laser. Tipos de lasers.	1.6-7		13.1