Computation, learning, and typology
Class 4: Converging grammars and
typological frequency

Adam Albright and Eric Baković

CreteLing 2023 — July 2023

creteling2023.phonology.party

Converging grammars

Predicting typological frequency

- Over the last few sessions, we have introduced some intuitive ideas about how formal properties of grammars may correlate with typological frequency
 - Simplicity: scored more highly by evaluation metric = preferred by learners ⇒ more common typologically?
 - Learning trajectory: fewer learning "updates" ⇒ quicker to learn ⇒ more common typologically?
- Another question that has arisen: if more grammars can generate a pattern, is it more frequent?

R-volume

The R-volume hypothesis Bane & Riggle (2008); Riggle (2010)

- Given a constraint set $\mathbb C$ with size $|\mathbb C|$, and a set of tableaux for various UR's,
 - The number of distinct languages (sets of winners) is typically less than the number of total rankings ($|\mathbb{C}|!$)
- Reason: not all constraints are able to conflict with each other, so some distinct total rankings converge on the same language
- Hypothesis: more rankings that generate a language
 ⇒ greater typological frequency

Illustration: Bane & Riggle (2008)

 Set of 12 constraints for quantity-insensitive (QI) stress, from Gordon (2002)

ALIGN(σ́/ờ)-Edge	Assign one * for each unstressed $\boldsymbol{\sigma}$ at the edge of a
Align(σ)-L, Align(σ)-R	Assign one \ast for each σ separating stress from the
	edge of the word
Align(σ/σ)-L, Align(σ/σ)-R	Assign one \ast for each σ separating stress from the
	edge of the word

NonFinality Assign one * for stress on the final σ

*CLASH Assign one * for each sequence of two stressed o's

*Lapse Assign one * for each sequence of two stressless σ *Lapse-L/R Assign one * if neither of the initial/final two σ

stressed

*EXTENDLAPSE Assign one * for each sequence of three stressless * EXTLAPSE-R Assign one * if none of the final three σ 's is stresse

The predicted typology

- Gordon also assumes one meta-ranking
 - Either ALIGN(σ)-L or ALIGN(σ)-R must be ranked lowest (or 'inactive'/absent)
- Two sets of 11! total rankings = 79,833,600
- Reduce to 152 distinct patterns
- Predicts 24 attested patterns, 128 unattested patterns¹
- Every predicted pattern can be derived by multiple total rankings
 - Smallest by 23,760; largest by 11,880,000

¹Bane and Riggle note two attested patterns that were not known to Gordon, and are not generated by his constraint set.

Relative frequencies

- The "largest" ranking: 11,880,000
 - Fixed initial stress, no secondary stress
 - Example: Koromfé (Gur; Rennison, 1997)
- · The smallest: unattested

Comparing to typological frequency

- Bane and Riggle compare r-volumes to empirical counts from the STRESSTYP database
- 306 QI stress systems
- Examples

Pattern	Rankings	r-vol	Lgs	Emp. prob.
Fixed initial	11,880,000	14.9%	69	22.5%
Penultimate	228,0960	2.9%	60	19.6%
Antepenultimate	285,120	0.4%	8	2.6%
Peninitial	31,6800	0.4%	12	3.9%
(Unattested)	23,760	0.3%	0	0%

 What is the relation between r-volume and empirical frequency?

Bane and Riggle's result

Figure 7: Linear and exponential regressions of typological frequency as a function of the natural logarithm of the pattern's r-volume.

Summary

- The very most popular patterns generally have higher r-volumes
 - Final .242, initial .225, penultimate .196, initial/alternating/non-fin .056, initial/alternating .049, penultimate alternating .049, peninitial .039, antepenultimate .026
- Significant, but also not especially great predictor

Rankings or parses

Rankings, or parses?

- Recall Kager (2012): modeled stress windows at word edges, using various foot-based constraint sets
- Feet introduce "hidden" (silent) structure: determine a phonetic property (position of stress), but are not themselves present phonetically
- Multiple footings can yield the same output
 - σ(σσ) vs. (σσ)<σ>
 - These correspond to different rankings, each with their own r-volume
- Kager's hypothesis: stress patterns with more parses are more frequent typologically

Kager's observation: parses and attestation

N	Ex.
16	Modern Greek
16	Spanish
11	Kobon
10	_
9	Comanche
9	_
8	Aguaruna
8	Kashaya
8	Azkoitia Basque
8	_
6	Gidabal
6	Korafe
6	Норі
6	_
6	Terêna
6	_
6	Pirahã
5	_
5	_
5	_
5	Latin

Ν	Ex.
5	Ctr, W. Macedonian
4	_
4	_
4	_
4	_
4	_
3	Ossetic
3	_
3	Choguita Rarámuri
3	_
3	_
3	_
3	_
3	_
3	Kunjen
3	Yapese
3	_
3	_
3	_
3	_
2	_

N	Ex.
2	_
2	-
2	-
2	_
2	_
2	-
2	-
2	-
2	-
2	-
2	-
2	-
2	-
2	-
2	-
2	-
2	-
1	-
1	-
1	_

N	Ex.	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	
1	_	

Kager's observation: parses and attestation

- Patterns are more likely to be attested if they can be produced in multiple ways (more parses)
- Kager does not consider the relation between number of parses and number of rankings
 - If a pattern can be produced with multiple parses, by necessity it can be produced by multiple rankings
 - However, it is also possible for a pattern to correspond to exactly one parse, but supported by many rankings
- Question: is Kager's observation really about r-volume, and not the number of parses?

A toy example to test this

Peninitial vs. penultimate stress

- · Penultimate stress: two parses
 - Final trochee: σσ(σσ)
 - Final iamb + final σ extrametricality: $\sigma(\sigma \dot{\sigma}) \langle \sigma \rangle$
- Peninitial: just one parse
 - Initial iamb: (σό)σσ
 - Assumption: no such thing as initial syllable extrametricality
- Empirically: penultimate ≈5 times more frequent
 - 60 vs. 12 lgs in StressTyp

Rankings for penultimate vs. peninitial stress

- Peninitial
 - lambs:

```
ALL-FT-L ≫ ALL-FT-R
IAMB ≫ TROCHEE
```

- Penultimate
 - · lambs:

ALL-FT-R
$$\gg$$
 ALL-FT-L IAMB \gg TROCHEE NONFIN \gg ALL-FT-R

Trochees:

```
\begin{array}{l} \text{All-Ft-R} \gg \text{All-Ft-L} \\ \text{Trochee} \gg \text{Iamb} \\ \text{All-Ft-R} \gg \text{NonFin} \end{array}
```

- Although there are two parses for penultimate stress, both involve more crucial rankings (smaller r-volume?)
- · Question: does frequency of penultimate stress

The r-volume of Kager's parses

- Constraint set
 - ALL-FT-L, ALL-FT-R
 - IAMB, TROCHEE
 - NonFin
- Candidate set
 - Syllables parsed or unparsed into feet
 - Feet: iamb (σό), trochee (όσ), degenerate (ό)
- Introduces one additional parse for penultimate stress: $\langle \sigma \sigma \rangle (\dot{\sigma}) \langle \sigma \rangle$ (non-final degenerate trochees)
- Also one additional mostly-peninitial language: initial in disyllables, peninitial otherwise

The typology

- Out of 120 (=5!) logically possible languages, only 11 distinct languages/patterns
- Focus here on "penultimate" and "peninitial" patterns
- R-vol of penultimate = .225, peninitial = .058/.125

	Parse	r-Vol
Penultimate	⟨σσ⟩(όσ)	0.092
	$\langle \sigma \rangle (\sigma \acute{\sigma}) \langle \sigma \rangle$	0.033
	$\langle \sigma \sigma \rangle$ ($\dot{\sigma}$) $\langle \sigma \rangle$	0.100
Peninitial	(σό)⟨σσ⟩	0.058
	$(\sigma \acute{\sigma}) \langle \sigma \sigma \rangle + \text{nonfin}$	0.067

More generally...

Pattern	Parses	R-Vol	StressTyp2
initial	3	0.3750	101
final	2	0.2417	104
penult	3	0.2250	75
peninit	1	0.0583	16
peninit+nonfin	1	0.0667	1
antepenult	1	0.0333	11

Summary of this demonstration

- Turns out that r-volume and number of parses are correlated
- Other cases may yet show inverse predictions for r-vol and number of parses
- Both favor the typologically more common pattern, to some extent
 - Strength of preference less than observed asymmetry

References

- Bane, Max, and Jason Riggle. 2008. Three correlates of the typological frequency of quantity-insensitive stress systems. *Proceedings of the tenth meeting of acl special interest group on computational morphology and phonology*, SigMorPhon '08, 29–38. Stroudsburg, PA, USA: Association for Computational Linguistics. Online: http://dl.acm.org/citation.cfm?id=1626324.1626330.
- GORDON, MATTHEW. 2002. A factorial typology of quantity-insensitive stress. *Natural Language & Linguistic Theory* 20.491–552.
- KAGER, RENÉ. 2012. Stress in windows: Language typology and factorial typology. *Lingua* 122.1454–1493.

References (cont.)

Rennison, John. 1997. Koromfe. New York: Routledge.

RIGGLE, JASON. 2010. Sampling rankings. University of Chicago ms.