

Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction

Wenlin Chen Austin Tripp José Miguel Hernández-Lobato

Goal: find novel molecules with desirable biochemical/physicochemical properties.

Goal: find novel molecules with desirable biochemical/physicochemical properties.

Challenge:

- Evaluating molecular properties is slow and expensive: small datasets are ubiquitous.
- Chemical space is huge and complex: exhaustive search is prohibitive.

Goal: find novel molecules with desirable biochemical/physicochemical properties.

Challenge:

- Evaluating molecular properties is slow and expensive: small datasets are ubiquitous.
- Chemical space is huge and complex: exhaustive search is prohibitive.

Gaussian processes (GPs):

- ✓ GPs are well-calibrated models with generally reliable uncertainty on small datasets.
- ✓ GPs could be used as surrogate models in Bayesian optimization to guide molecule search.

Goal: find novel molecules with desirable biochemical/physicochemical properties.

Challenge:

- Evaluating molecular properties is slow and expensive: small datasets are ubiquitous.
- Chemical space is huge and complex: exhaustive search is prohibitive.

Gaussian processes (GPs):

- ✓ GPs are well-calibrated models with generally reliable uncertainty on small datasets.
- ✓ GPs could be used as surrogate models in Bayesian optimization to guide molecule search.
- ➤ Hand-designing kernels for structured data like molecules is challenging.

Goal: find novel molecules with desirable biochemical/physicochemical properties.

Challenge:

- Evaluating molecular properties is slow and expensive: small datasets are ubiquitous.
- Chemical space is huge and complex: exhaustive search is prohibitive.

Gaussian processes (GPs):

- ✓ GPs are well-calibrated models with generally reliable uncertainty on small datasets.
- ✓ GPs could be used as surrogate models in Bayesian optimization to guide molecule search.
- ➤ Hand-designing kernels for structured data like molecules is challenging.

We want better GP models for molecules!

Model: Deep Kernel Gaussian Processes

Why not just learn features for molecules using a deep neural network (DNN)?

Model: Deep Kernel Gaussian Processes

Why not just learn features for molecules using a deep neural network (DNN)?

Deep kernel GPs operate on features learned by a DNN.

Representation learning (DNN) + Uncertainty (GP)

Model: Deep Kernel Gaussian Processes

Why not just learn features for molecules using a deep neural network (DNN)?

Deep kernel GPs operate on features learned by a DNN.

Representation learning (DNN) + Uncertainty (GP)

$$k_{m{ heta},m{\phi}}(m{x},m{x}') = c_{m{ heta}}(\mathbf{f}_{m{\phi}}(m{x}),\mathbf{f}_{m{\phi}}(m{x}'))$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

- 1. Deep Kernel Learning (DKL, Wilson et al., 2016)
 - All parameters are learned by minimizing the negative log marginal likelihood (NLML) on a single dataset. $\psi^* = \arg\min \mathrm{NLML}\,(\psi, \mathcal{S}_{\mathcal{T}})$
 - Pure **single-task learning** (a separate deep kernel GP is trained for each task).

- 1. Deep Kernel Learning (DKL, Wilson et al., 2016)
 - All parameters are learned by minimizing the negative log marginal likelihood (NLML) on a single dataset. $\psi^* = \arg\min \mathrm{NLML}\,(\psi, \mathcal{S}_{\mathcal{T}})$
 - Pure **single-task learning** (a separate deep kernel GP is trained for each task).
 - ➤ Severe overfitting (Ober et al., 2021) on small datasets despite the use of type-II ML.

DKL makes all output values strongly correlated!

- 2. Deep Kernel Transfer (DKT, Patacchiola et al., 2020)
 - All parameters are learned by minimizing the expected NLML over a distribution of datasets.

$$\psi^* = \operatorname*{arg\,min}_{\psi} \mathbb{E}_{p(\mathcal{T})}[\mathrm{NLML}(\psi, \mathcal{T})]$$

- Pure **meta-learning** (all parameters are shared across tasks).

- 2. Deep Kernel Transfer (DKT, Patacchiola et al., 2020)
 - All parameters are learned by minimizing the expected NLML over a distribution of datasets.

$$\psi^* = \operatorname*{arg\,min}_{\psi} \mathbb{E}_{p(\mathcal{T})}[\operatorname{NLML}(\psi, \mathcal{T})]$$

- Pure **meta-learning** (all parameters are shared across tasks).
- **Underfitting** due to **model mis-specification**.

It's unrealistic to assume all datasets are drawn from an identical GP with the same noise, signal variance, characteristic lengthscales!

- ADKF-IFT interpolates between DKL and DKT:

- ADKF-IFT interpolates between DKL and DKT:
 - Partition the deep kernel parameters $\psi = [\theta, \phi]$ into two disjoint sets $\psi_{meta} = \phi$ and $\psi_{adapt} = \theta$.

- ADKF-IFT interpolates between DKL and DKT:
 - Partition the deep kernel parameters $\psi = [\theta, \phi]$ into two disjoint sets $\psi_{meta} = \phi$ and $\psi_{adapt} = \theta$.
 - Adapt base kernel parameters $\psi_{adapt} = \theta$ to each task's training set $\mathcal{S}_{\mathcal{T}}$ by minimizing the NLML \mathcal{L}_T train loss.

$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg \, min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}}$$

- ADKF-IFT interpolates between DKL and DKT:
 - Partition the deep kernel parameters $\psi = [\theta, \phi]$ into two disjoint sets $\psi_{meta} = \phi$ and $\psi_{adapt} = \theta$.
 - Adapt base kernel parameters $\psi_{adapt} = \theta$ to each task's training set $\mathcal{S}_{\mathcal{T}}$ by minimizing the NLML \mathcal{L}_T train loss.
 - Meta-learn feature extractor parameters $\psi_{meta} = \phi$ to optimize the model's average performance on the test sets $Q_{\mathcal{T}}$ of many tasks (after $\psi_{adapt} = \theta$ has been separately adapted to each of these tasks).

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}$$

- ADKF-IFT interpolates between DKL and DKT:
 - Partition the deep kernel parameters $\psi = [\theta, \phi]$ into two disjoint sets $\psi_{meta} = \phi$ and $\psi_{adapt} = \theta$.
 - Adapt base kernel parameters $\psi_{adapt} = \theta$ to each task's training set $\mathcal{S}_{\mathcal{T}}$ by minimizing the NLML \mathcal{L}_T train loss.
 - Meta-learn feature extractor parameters $\psi_{meta} = \phi$ to optimize the model's average performance on the test sets Q_T of many tasks (after $\psi_{adapt} = \theta$ has been separately adapted to each of these tasks).
- The validation loss \mathcal{L}_V is the negative log joint predictive posterior on the test set $\mathcal{Q}_{\mathcal{T}}$ given the training set $\mathcal{S}_{\mathcal{T}}$.

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\text{arg min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\text{arg min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}}_{\text{meta}}$$

- ADKF-IFT interpolates between DKL and DKT:
 - Partition the deep kernel parameters $\psi = [\theta, \phi]$ into two disjoint sets $\psi_{meta} = \phi$ and $\psi_{adapt} = \theta$.
 - Adapt base kernel parameters $\psi_{adapt} = \theta$ to each task's training set $\mathcal{S}_{\mathcal{T}}$ by minimizing the NLML \mathcal{L}_T train loss.
 - Meta-learn feature extractor parameters $\psi_{meta} = \phi$ to optimize the model's average performance on the test sets Q_T of many tasks (after $\psi_{adapt} = \theta$ has been separately adapted to each of these tasks).
- The validation loss \mathcal{L}_V is the negative log joint predictive posterior on the test set \mathcal{Q}_T given the training set \mathcal{S}_T .
- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}}_{\text{meta}}$$

- Interpretation: DNN meta-learns generally useful features across tasks, such that a task-specific GP operates on top of such features achieves the highest predictive performance on average.

Contrast DKL, DKT and ADKF-IFT

Contrast DKL, DKT and ADKF-IFT

Justification: two related tasks are more likely to have different noise levels, signal variances, or characteristic lengthscales than to require substantially different feature representations.

Contrast DKL, DKT and ADKF-IFT

optimize ψ_{adapt} optimize ψ_{adapt} optimize ψ_{adapt} τ_{2} τ_{3} Expected validation loss τ_{3} τ_{4} τ_{4} τ_{4} τ_{5} τ_{5} τ_{6} (c) Deep Kernel Learning (DKL)

- **ADKF-IFT** reduces overfitting:
 - ✓ It regularizes the feature extractor using meta-learning.
 - ✓ It learns feature extractor and base kernel parameters on different subsets (train/test) of a dataset.
- **ADKF-IFT** reduces underfitting:
 - ✓ It adapts base kernel parameters separately to each task.

Justification: two related tasks are more likely to have different noise levels, signal variances, or characteristic lengthscales than to require substantially different feature representations.

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\qquad \qquad \text{best response function for a given task } \mathcal{T} \text{ and } \psi_{\text{meta}}$$

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem.

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\text{arg min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\text{arg min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\qquad \qquad \text{best response function for a}}_{\text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}}}$$

- Inner optimization: the gradient of the train loss \mathcal{L}_T can be calculated using auto-diff.

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem. ψ_{meta} alone

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \text{best response function for a given task } \mathcal{T} \text{ and } \psi_{\text{meta}}$$

- Inner optimization: the gradient of the train loss \mathcal{L}_T can be calculated using auto-diff.
- Outer optimization: how to calculate the gradient for the validation loss \mathcal{L}_V ?

Hypergradient:
$$\frac{d\mathcal{L}_{V}}{d\boldsymbol{\psi}_{\text{meta}}} = \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{meta}}} + \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}} \frac{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}}{\partial\boldsymbol{\psi}_{\text{meta}}}, \quad \text{(by chain rule)}$$

$$\frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{meta}}} = \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{meta}}} + \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}} \frac{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}}{\partial\boldsymbol{\psi}_{\text{meta}}},$$

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem. ψ_{meta} alone

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}}_{\text{meta}}$$

- Inner optimization: the gradient of the train loss \mathcal{L}_T can be calculated using auto-diff.
- Outer optimization: how to calculate the gradient for the validation loss \mathcal{L}_V ?

Hypergradient:
$$\frac{d\mathcal{L}_{V}}{d\boldsymbol{\psi}_{\text{meta}}} = \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{meta}}} + \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}} \frac{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}}{\partial\boldsymbol{\psi}_{\text{meta}}}, \quad \text{(by chain rule)}$$

$$\frac{\text{easy}}{\partial\boldsymbol{\psi}_{\text{meta}}} = \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}} \frac{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}}{\partial\boldsymbol{\psi}_{\text{meta}}},$$

- \star The best response function ψ_{adapt}^* is defined by an **argmin function!** How to differentiate it?
- * Auto-diff requires tracking the gradients through many iterations of the inner optimization (intractable)!

Solve the Bilevel Optimization Problem by Implicit Function Theorem

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem. \downarrow implicit function of ψ_{meta} alone

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}}_{\text{meta}}$$

- Outer optimization: how to calculate the gradient for the validation loss \mathcal{L}_V ?

Hypergradient:
$$\frac{d\mathcal{L}_{V}}{d\boldsymbol{\psi}_{\text{meta}}} = \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{meta}}} + \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}} \frac{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}}{\partial\boldsymbol{\psi}_{\text{meta}}}, \text{ (by chain rule)}$$

$$\frac{\partial\boldsymbol{\psi}_{\text{adapt}}}{\partial\boldsymbol{\psi}_{\text{meta}}} = \frac{\partial\boldsymbol{\psi}_{\text{adapt}}}{\partial\boldsymbol{\psi}_{\text{meta}}} + \frac{\partial\boldsymbol{\psi}_{\text{adapt}}}{\partial\boldsymbol{\psi}_{\text{meta}}} \frac{\partial\boldsymbol{\psi}_{\text{adapt}}}{\partial\boldsymbol{\psi}_{\text{meta}}},$$

- Since ψ_{adapt}^* is a critical point of the train loss \mathcal{L}_T , we can apply the Implicit Function Theorem (IFT)!

Solve the Bilevel Optimization Problem by Implicit Function Theorem

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem. ψ_{meta} alone

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}}_{\text{meta}}$$

- Outer optimization: how to calculate the gradient for the validation loss \mathcal{L}_V ?

Hypergradient:
$$\frac{d\mathcal{L}_{V}}{d\boldsymbol{\psi}_{\text{meta}}} = \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{meta}}} + \frac{\partial\mathcal{L}_{V}}{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}} \frac{\partial\boldsymbol{\psi}_{\text{adapt}}^{*}}{\partial\boldsymbol{\psi}_{\text{meta}}}, \quad \text{(by chain rule)}$$

- Since ψ_{adapt}^* is a critical point of the train loss \mathcal{L}_T , we can apply the Implicit Function Theorem (IFT)!

$$\begin{aligned} \textbf{IFT:} \quad & \frac{\partial \, \psi_{\text{adapt}}^*}{\partial \, \psi_{\text{meta}}} \bigg|_{\psi_{\text{meta}}'} = - \left(\frac{\partial^2 \, \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}'})}{\partial \, \psi_{\text{adapt}} \, \partial \, \psi_{\text{adapt}}^T} \right)^{-1} \frac{\partial^2 \, \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}'})}{\partial \, \psi_{\text{adapt}} \, \partial \, \psi_{\text{meta}}^T} \bigg|_{\psi_{\text{meta}}', \psi_{\text{adapt}}', \psi_{\text{adapt}}'}, \\ \text{where } \, \psi_{\text{adapt}}' = \psi_{\text{adapt}}^*(\psi_{\text{meta}}', \mathcal{S}_{\mathcal{T}'}). \end{aligned}$$

$$(\text{inverse Hessian}) \qquad (\text{mixed partial derivatives})$$

Exact and Efficient Gradient Computation

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem. ϕ implicit function of ψ_{meta} alone

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}}_{\text{meta}}$$

Exact and Efficient Gradient Computation

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem. \downarrow implicit function of ψ_{meta} alone

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}}_{\text{meta}}$$

- Inner optimization: the gradient of the train loss \mathcal{L}_T can be calculated using auto-diff.
 - ✓ No backpropagate through the feature extractor is required!
 - ✓ Use L-BFGS for base kernel parameter $\psi_{adapt} = \theta$ optimization (fast and efficient).

Exact and Efficient Gradient Computation

- Meta-training: ADKF-IFT can be formalized as a bi-level optimization problem. ψ_{meta} alone

$$\psi_{\text{meta}}^* = \underset{\psi_{\text{meta}}}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{\text{meta}}, \psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})],$$
s.t.
$$\psi_{\text{adapt}}^*(\psi_{\text{meta}}, \mathcal{S}_{\mathcal{T}}) = \underset{\psi_{\text{adapt}}}{\operatorname{arg\,min}} \ \mathcal{L}_T(\psi_{\text{meta}}, \psi_{\text{adapt}}, \mathcal{S}_{\mathcal{T}}). \longleftarrow \underbrace{\begin{array}{c} \text{best response function for a} \\ \text{given task } \mathcal{T} \text{ and } \psi_{\text{meta}} \end{array}}_{\text{meta}}$$

- Inner optimization: the gradient of the train loss \mathcal{L}_T can be calculated using auto-diff.
 - ✓ No backpropagate through the feature extractor is required!
 - ✓ Use L-BFGS for base kernel parameter $\psi_{adapt} = \theta$ optimization (fast and efficient).
- Outer optimization: the hypergradient of the validation loss \mathcal{L}_V can be obtained using IFT.

$$\text{IFT:} \quad \frac{\partial \boldsymbol{\psi}_{\text{adapt}}^*}{\partial \boldsymbol{\psi}_{\text{meta}}} \bigg|_{\boldsymbol{\psi}_{\text{meta}}'} = - \left[\frac{\partial^2 \mathcal{L}_T(\boldsymbol{\psi}_{\text{meta}}, \boldsymbol{\psi}_{\text{adapt}}, \mathcal{S}_{\mathcal{T}'})}{\partial \boldsymbol{\psi}_{\text{adapt}} \partial \boldsymbol{\psi}_{\text{adapt}}^T} \right]^{-1} \frac{\partial^2 \mathcal{L}_T(\boldsymbol{\psi}_{\text{meta}}, \boldsymbol{\psi}_{\text{adapt}}, \mathcal{S}_{\mathcal{T}'})}{\partial \boldsymbol{\psi}_{\text{adapt}} \partial \boldsymbol{\psi}_{\text{meta}}^T} \bigg|_{\boldsymbol{\psi}_{\text{meta}}', \boldsymbol{\psi}_{\text{adapt}}', \boldsymbol{\psi}_{\text{adapt}}'}^T,$$

- \checkmark Common GP based kernels (e.g., RBF) contains only a handful of parameters $\psi_{adapt} = \theta$.
- ✓ The inverse Hessian in IFT can be computed exactly without any approximation!

General Framework vs. Specific Instantiations

ADKF-IFT can be formalized as a **bi-level optimization** problem:

$$egin{aligned} oldsymbol{\psi}_{ ext{meta}}^* &= rg \min_{oldsymbol{\psi}_{ ext{meta}}} & \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{ ext{meta}}, \psi_{ ext{adapt}}^*(\psi_{ ext{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})], \ & ext{s.t.} & oldsymbol{\psi}_{ ext{adapt}}^*(\psi_{ ext{meta}}, \mathcal{S}_{\mathcal{T}}) &= rg \min_{oldsymbol{\psi}_{ ext{adapt}}} & \mathcal{L}_T(\psi_{ ext{meta}}, \psi_{ ext{adapt}}, \mathcal{S}_{\mathcal{T}}). \end{aligned}$$

- $\checkmark \psi_{adapt}, \psi_{meta}, \mathcal{L}_T, \mathcal{L}_V$ could be anything, which makes ADKF-IFT a general framework.
- \checkmark Any particular choice of ψ_{adapt} , ψ_{meta} , \mathcal{L}_T , \mathcal{L}_V is an **instantiation** of the general framework.
- ✓ DKL and DKT are special instantiations (extreme cases) of this general framework!

The General Framework Unifies Previous Methods (DKL and DKT)

Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT)

$$egin{aligned} oldsymbol{\psi}^*_{ ext{meta}} &= rg \min_{oldsymbol{\psi}_{ ext{meta}}} \ \mathbb{E}_{p(\mathcal{T})}[\mathcal{L}_V(\psi_{ ext{meta}}, \psi^*_{ ext{adapt}}(\psi_{ ext{meta}}, \mathcal{S}_{\mathcal{T}}), \mathcal{T})], \ & ext{s.t.} \quad oldsymbol{\psi}^*_{ ext{adapt}}(\psi_{ ext{meta}}, \mathcal{S}_{\mathcal{T}}) &= rg \min_{oldsymbol{\psi}_{ ext{adapt}}} \ \mathcal{L}_T(\psi_{ ext{meta}}, \psi_{ ext{adapt}}, \mathcal{S}_{\mathcal{T}}). \end{aligned}$$

$$m{\psi}_{adapt} = m{\psi} = [m{ heta}, m{\phi}]$$
 $m{\psi}_{meta} = m{\emptyset}$
 $m{\mathcal{L}}_T = ext{NLML}$
 $m{\mathcal{L}}_V = ext{NLML}$
 $m{\psi}_{adapt} = m{\emptyset}$

$$oldsymbol{\psi}_{meta} = oldsymbol{\psi} = [oldsymbol{ heta}, oldsymbol{\phi}]$$
 $oldsymbol{\mathcal{L}}_{V} = ext{NLML}$
 $oldsymbol{\psi}_{adapt} = oldsymbol{\emptyset}$

$$\boldsymbol{\psi}^* = \operatorname*{arg\,min}_{\boldsymbol{\psi}} \operatorname{NLML}\left(\boldsymbol{\psi}, \mathcal{S}_{\mathcal{T}}\right)$$

Deep Kernel Learning (DKL)

$$\psi^* = \underset{\psi}{\operatorname{arg\,min}} \mathbb{E}_{p(\mathcal{T})}[\operatorname{NLML}(\psi, \mathcal{T})]$$

Deep Kernel Transfer (DKT)

Experiment 1: Few-shot Molecular Property Prediction on FS-Mol

- FS-Mol (Stanley et al., 2021): 4,938 training tasks, 40 validation tasks, 157 test tasks; 233,786 unique compounds.

✓ The improvements of ADKF-IFT over other methods are statistically significant!

Experiment 1: Ablation Study and Analysis on FS-Mol

(a) Classification (157 tasks).

(b) Regression (111 tasks).

\checkmark DKT \approx DKT+ \leq ADKF < ADKF+

- DKT+ is like DKT but tuning the base kernel parameters θ for each task during meta-testing.
- ADKF is like ADKF+ but ignoring the gradient through the best response function ψ_{adapt}^* .

$$\frac{d \mathcal{L}_{V}}{d \boldsymbol{\psi}_{\text{meta}}} = \frac{\partial \mathcal{L}_{V}}{\partial \boldsymbol{\psi}_{\text{meta}}} + \frac{\partial \mathcal{L}_{V}}{\partial \boldsymbol{\psi}_{\text{adapt}}^{*}} \frac{\partial \boldsymbol{\psi}_{\text{adapt}}^{*}}{\partial \boldsymbol{\psi}_{\text{meta}}^{*}},$$

Experiment 1: Ablation Study and Analysis on FS-Mol

- Blue histogram: the distribution of the base kernel parameters θ across different tasks learned by ADKF-IFT.
- Dotted vertical line: the base kernel parameters $\boldsymbol{\theta}$ shared across all tasks learned by DKT.
- \checkmark The base kernel parameters θ do vary across tasks!
- ✓ ADKF-IFT achieves **better signal-to-noise ratio!**

Experiment 2: OOD Molecular Property Prediction and Optimization

- Bayesian optimization (BO)

(a) Molecular docking.

- (b) Antibiotic discovery. (c) Antiviral drug design.
- (d) Material design.

- Surrogate model: GP operating on top of the features extracted by DNNs metatrained on FS-Mol by different methods.
- **Evaluation:** four OOD molecular design tasks outside of FS-Mol.

- Test predictive negative log likelihood (NLL)

Feature	Out-of-domain molecular design task						
representation	Molecular docking	Antibiotic discovery	Antiviral drug design	Material design			
Fingerprint	1.138 ± 0.014	1.669 ± 0.075	4.601 ± 0.086	1.091 ± 0.011			
PAR	1.270 ± 0.019	2.185 ± 0.115	4.840 ± 0.086	1.283 ± 0.017			
MAT	1.528 ± 0.028	2.390 ± 0.104	4.797 ± 0.088	2.198 ± 0.063			
GNN-MT	1.994 ± 0.050	3.692 ± 0.225	6.399 ± 0.181	7.254 ± 0.217			
CNP	1.493 ± 0.028	2.537 ± 0.162	5.005 ± 0.086	1.741 ± 0.043			
ProtoNet	1.147 ± 0.013	1.615 ± 0.094	5.060 ± 0.086	1.032 ± 0.009			
DKT	1.167 ± 0.012	1.602 ± 0.073	4.975 ± 0.092	1.026 ± 0.009			
ADKF-IFT	1.137 ± 0.011	1.496 ± 0.043	4.781 ± 0.087	$\boldsymbol{0.996 \pm 0.007}$			

- ✓ ADKF-IFT enables **fastest discovery of** top performing molecules!
- ✓ ADKF-IFT achieves **competitive test** predictive performance!

Summary

Our proposed Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT) approach:

- ✓ meta-learns feature representations that facilitate the adaptation of task-specific GP models;
- ✓ generalizes DKL and DKT for training deep kernel GPs using a bilevel optimization framework;
- ✓ efficiently solve the bilevel optimization problem by implicit function theorem;
- ✓ produces state-of-the-art results on few-shot molecular property prediction benchmarks;
- ✓ achieves great performance on OOD molecular property prediction and optimization tasks;
- ✓ produces well-calibrated models for fully-automated high-throughput experimentation that could accelerate drug discovery and material design.

Thank you!

Limitations and Future Work Directions

- 1. Use ARD for the lengthscale parameter in the base kernel for automatic feature selection.
- 2. Adapt the feature extractor to each task by allowing small deviations from a meta-learned prior.
- 3. Adopt a more principled approximate inference method for GP classification.
- 4. Inject domain expertise from drug discovery into the base kernel with hand-curated features and kernel combination.
- 5. Consider other application domains such as few-shot image classification.

Appendix 1: Mean ranks of Compared Methods on FS-Mol

Table 4: Mean ranks of all compared methods in terms of their performance on all FS-Mol test tasks.

(a) Classification (157 tasks).

		Support set size					
Method	16	32	64	128	256		
GNN-ST	11.29	11.53	11.75	11.85	12.19		
kNN	10.89	10.48	10.33	10.15	9.37		
MAT	10.43	10.44	10.19	9.69	9.70		
RF	8.15	7.89	7.06	6.25	4.47		
PAR	7.70	7.98	8.30	8.83	10.81		
GNN-MT	7.33	7.18	7.08	6.59	6.53		
DKL	7.28	7.49	7.98	8.42	8.21		
GP-ST	6.71	6.57	6.28	6.18	5.14		
GNN-MAML	6.36	6.92	7.42	7.89	8.90		
CNP	5.00	5.81	6.36	6.91	7.78		
ProtoNet	4.00	3.40	3.11	2.98	3.85		
DKT	3.44	3.19	2.99	2.99	2.67		
ADKF-IFT	2.41	2.12	2.14	2.26	1.38		

(b) Regression (111 tasks).

	Support set size						
Method	16	32	64	128	256		
MAT	7.60	7.45	7.26	7.06	7.19		
GNN-MT	6.61	6.40	6.15	5.95	5.58		
RF	5.00	4.47	4.16	3.72	3.56		
DKL	4.42	5.16	5.63	6.10	6.35		
GP-ST	4.23	4.14	3.87	3.37	3.07		
CNP	3.88	4.45	4.95	5.73	6.47		
DKT	2.12	2.08	2.29	2.32	2.43		
ADKF-IFT	2.12	1.86	1.68	1.74	1.36		

Appendix 2: Statistical Comparisons on FS-Mol

Table 5: p-values from the two-sided Wilcoxon signed-rank test for statistical comparisons between ADKF-IFT and DKT/DKT+/ADKF. The null hypothesis is that the median of their performance differences on all FS-Mol test tasks is zero. The significance level is set to $\alpha = 0.05$.

Production of the Company of Company		Support set size					
Compared models	Task type	16	32	64	128	256	
ADKF-IFT vs DKT	Classification Regression	1.4×10^{-12} 8.2×10^{-2}	8.1×10^{-14} 9.6×10^{-2}	$egin{array}{c} 2.3 imes 10^{-12} \ 3.7 imes 10^{-5} \end{array}$	$egin{array}{c} 1.0 imes 10^{-8} \ 7.1 imes 10^{-5} \end{array}$	$3.4 imes 10^{-7} \ 9.8 imes 10^{-7}$	
ADKF-IFT vs DKT+	Classification Regression	$3.2 \times 10^{-13} \ 3.2 \times 10^{-2}$	7.0×10^{-15} 4.2×10^{-1}	$egin{array}{c} 2.3 imes 10^{-13} \ 3.4 imes 10^{-5} \ \end{array}$	$egin{array}{c} 1.2 imes 10^{-9} \ 5.2 imes 10^{-10} \end{array}$	$1.6 \times 10^{-6} \\ 1.2 \times 10^{-5}$	
ADKF-IFT vs ADKF	Classification Regression	$egin{array}{ccc} 1.7 imes 10^{-2} \ 2.8 imes 10^{-3} \end{array}$	1.1×10^{-1} 4.2×10^{-4}	4.8×10^{-1} 1.3×10^{-3}	8.3×10^{-1} 4.1×10^{-6}	$1.6 \times 10^{-3} \\ 1.3 \times 10^{-5}$	

The improvements of ADKF-IFT over other methods are statistically significant!

Appendix 3: Sub-benchmark Performance on FS-Mol

Table 6: Mean performance with standard errors of top performing methods on FS-Mol test tasks within each sub-benchmark (broken down by EC category) at support set size 64 (the median of all considered support sizes). Note that class 2 is most common in the FS-Mol training set ($\sim 1,500$ training tasks), whereas classes 6 and 7 are least common in the FS-Mol training set (< 50 training tasks each).

(a) Classification (\triangle AUPRC).

FS-Mol sub-benchmark (EC category)		Method					
Class	Description	#tasks	RF	GP-ST	ProtoNet	DKT	ADKF-IFT
1	oxidoreductases	7	0.156 ± 0.044	0.152 ± 0.040	0.137 ± 0.037	0.145 ± 0.040	0.160 ± 0.045
2	kinases	125	0.152 ± 0.009	0.161 ± 0.009	0.285 ± 0.010	0.282 ± 0.010	$\boldsymbol{0.299 \pm 0.010}$
3	hydrolases	20	0.229 ± 0.032	0.230 ± 0.032	0.245 ± 0.034	0.254 ± 0.034	0.262 ± 0.033
4	lysases	2	0.276 ± 0.182	0.284 ± 0.189	0.265 ± 0.211	0.272 ± 0.206	0.279 ± 0.201
5	isomerases	1	0.166 ± 0.040	$\boldsymbol{0.212 \pm 0.052}$	0.172 ± 0.044	0.204 ± 0.058	0.198 ± 0.046
6	ligases	1	0.149 ± 0.035	0.199 ± 0.028	0.170 ± 0.028	0.229 ± 0.013	0.231 ± 0.022
7	translocases	1	$\boldsymbol{0.128 \pm 0.039}$	0.109 ± 0.049	0.099 ± 0.028	0.122 ± 0.022	0.109 ± 0.033
	all enzymes	157	0.163 ± 0.009	0.171 ± 0.009	0.271 ± 0.009	0.271 ± 0.010	$\textbf{0.285} \pm \textbf{0.010}$

(b) Regression (R_{os}^2) .

FS-Mol sub-benchmark (EC category)			Method				
Class	Description	#tasks	RF	GP-ST	CNP	DKT	ADKF-IFT
1	oxidoreductases	6	0.108 ± 0.087	0.103 ± 0.076	-0.012 ± 0.011	0.098 ± 0.078	0.116 ± 0.079
2	kinases	82	0.160 ± 0.019	0.162 ± 0.022	0.127 ± 0.017	0.343 ± 0.022	$\boldsymbol{0.363 \pm 0.024}$
3	hydrolases	19	0.256 ± 0.058	0.267 ± 0.061	0.014 ± 0.015	0.295 ± 0.063	$\boldsymbol{0.310 \pm 0.062}$
4	lysases	2	0.418 ± 0.405	0.417 ± 0.416	0.100 ± 0.068	0.440 ± 0.418	0.442 ± 0.403
5	isomerases	1	0.125 ± 0.077	0.086 ± 0.082	-0.012 ± 0.010	0.209 ± 0.113	$\boldsymbol{0.226 \pm 0.063}$
6	ligases	1	0.182 ± 0.040	0.202 ± 0.079	0.002 ± 0.004	0.277 ± 0.035	$\boldsymbol{0.279 \pm 0.043}$
	all enzymes	111	0.178 ± 0.019	0.181 ± 0.021	0.097 ± 0.014	0.321 ± 0.021	$\boldsymbol{0.340 \pm 0.022}$

Appendix 4: Meta-testing Cost on FS-Mol

Figure 5: Wall-clock time consumed (with standard errors) when meta-testing on a pre-defined set of FS-Mol classification tasks using each of the compared meta-learning methods.

Appendix 6: Few-shot Molecular Property Prediction on MoleculeNet (Wu et al., 2018)

Table 1: Mean test performance (AUROC%) with standard deviations of all compared methods on MoleculeNet benchmark tasks at support set size 20 (i.e., 2-way 10-shot).

36.1.1	MoleculeNet benchmark task (#compounds in total)						
Method	Tox21 (8,014)	SIDER (1,427)	MUV (93,127)	ToxCast (8,615)			
Siamese	80.40 ± 0.35	71.10 ± 4.32	59.59 ± 5.13	-			
ProtoNet	74.98 ± 0.32	64.54 ± 0.89	65.88 ± 4.11	63.70 ± 1.26			
MAML	80.21 ± 0.24	70.43 ± 0.76	63.90 ± 2.28	66.79 ± 0.85			
TPN	76.05 ± 0.24	67.84 ± 0.95	65.22 ± 5.82	62.74 ± 1.45			
EGNN	81.21 ± 0.16	72.87 ± 0.73	65.20 ± 2.08	63.65 ± 1.57			
IterRefLSTM	81.10 ± 0.17	69.63 ± 0.31	45.56 ± 5.12	_			
PAR	82.06 ± 0.12	74.68 ± 0.31	66.48 ± 2.12	69.72 ± 1.63			
ADKF-IFT	82.43 ± 0.60	67.72 ± 1.21	98.18 ± 3.05	72.07 ± 0.81			
Pre-GNN	82.14 ± 0.08	73.96 ± 0.08	67.14 ± 1.58	73.68 ± 0.74			
Meta-MGNN	82.97 ± 0.10	75.43 ± 0.21	68.99 ± 1.84	-			
Pre-PAR	84.93 ± 0.11	78.08 ± 0.16	69.96 ± 1.37	75.12 ± 0.84			
Pre-ADKF-IFT	86.06 ± 0.35	70.95 ± 0.60	95.74 ± 0.37	$\textbf{76.22} \pm \textbf{0.13}$			