Introduction to Electronics Part 4: Non-Linear Element L19: Non-Linear Analysis

Dr. Rik Dey

ASSISTANT PROFESSOR, ELECTRICAL ENGINEERING, IIT KANPUR

2023-24 SEM-II | ESC201A INTRODUCTION TO ELECTRONICS CIRCUITS

References

• To prepare these slides, materials from following books have been used.

• Foundations of Analog and Digital Electronic Circuits by A. Agarwal and J. H. Lang, Elsevier

Generalized Time-Invariant Resistor

Dr. Rik Dey

Switch: Linear Time-Varying Resistor

short circuit

t < 0

open circuit

Unidirectional Device: Non-linear Time-invariant Resistor

Dr. Rik Dey ESC201, 2023-24 Sem-II

I-V Characteristics: Non-linear Behavior

Applied voltage = v_D

Diode current:

$$i_D = I_S \left(\exp\left(\frac{v_D}{nV_T}\right) - 1 \right)$$

 I_S : Reverse saturation current

n: ideality factor (= 1 for ideal diodes)

$$V_T = \frac{kT}{q} \approx 26m\text{V} \text{ at T} = 300\text{K}$$

☐ How to analyze circuits containing diodes?

Forward and Reverse Bias

$$I_D = I_S \left(\exp\left(\frac{v_D}{V_T}\right) - 1 \right)$$

☐ Forward Bias:

$$v_d >> V_T = 26mV$$

$$i_D \approx I_S \times \exp\left(\frac{v_d}{V_T}\right)$$

☐ Reverse Bias:

$$v_d = -v_R$$
 $|v_R| >> V_T$

$$i_D = I_S \left(\exp\left(-\frac{v_R}{V_T}\right) - 1 \right) \approx -I_S$$

Method of Approximation

$$V_S = R I + V_D$$
 $I = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right)$

2 equations, 2 variables

$$V_S = RI_S \left(e^{\frac{V_D}{V_T}} - 1 \right) + V_D$$

- Non-linear equation: How to solve?
 - Numerical methods, graphical method, analytical method, etc.
- We can however approximate its behavior with piecewise linear one
 - I-V graph is approximated by joining two or more straight lines

Diode: Approximate I-V Models

Dr. Rik Dey

Self-Consistent Analysis

- How to know in which state diode is?
 - Easier if the voltage is known.
 - Otherwise
 - Analyze circuit assuming diode is forward biased
 - Check assumption (I > 0?)
 - Analyze circuit assuming diode is reverse biased
 - Check assumption (V < 0?)
 - Select the consistent one.
- What if 2 diodes: 4 possible circuits, only 1 will be valid
- N diodes \Rightarrow 2^N circuits, only one will be valid

Breakdown and Zener Diode

Dr. Rik Dey

Zener Diode: Approximation I-V Model

Method of assumed states: 3 possibilities

Diode: Piecewise Linear Approximation

Method of assumed states: 2 possibilities

Method of assumed states: 3 possibilities

Switch vs Unidirectional Device

short circuit t > 0

--- t < 0

open circuit

Switch: Time-Dependent

Electrical Switch: Three Terminal Device to Diode

➤ Diode-connected transistor (MOSFET)

Unidirectional Device: Square Law

$$i_{DS} = \begin{cases} \frac{K(v_{DS} - V_T)^2}{2} & \text{for } v_{DS} \ge V_T \\ 0 & \text{for } v_{DS} < V_T \end{cases}$$

Square Law Device: Analytical Solution

$$i_D = \begin{cases} K v_D^2 & \text{for } v_D > 0 \\ 0 & \text{for } v_D \le 0. \end{cases}$$

$$V_T=0$$

$$\frac{\nu_D - E}{R} + i_D = 0 \qquad i_D = K \nu_D^2.$$

$$i_D = K v_D^2$$
.

$$RK\nu_D^2 + \nu_D - E = 0.$$

$$\frac{\nu_D - E}{R} + K\nu_D^2 = 0.$$

$$\nu_D = \frac{-1 + \sqrt{1 + 4RKE}}{2RK}$$

$$v_D = \frac{-1 + \sqrt{1 + 4RKE}}{2RK} \qquad i_D = K \left\lceil \frac{-1 + \sqrt{1 + 4RKE}}{2RK} \right\rceil^2$$

Square Law Device: Graphical Load Line Analysis

$$i_D = \begin{cases} K v_D^2 & \text{for } v_D > 0 \\ 0 & \text{for } v_D \le 0. \end{cases}$$

$$V_T = 0$$

$$\frac{v_D - E}{R} + i_D = 0 \qquad i_D = K v_D^2.$$

$$i_D = K \nu_D^2.$$

$$i_{\rm D} = -\frac{\nu_{\rm D} - E}{R}$$

Unidirectional Device: Exponential Law

$$i_D = I_S \left(\exp\left(\frac{v_D}{nV_T}\right) - 1 \right), n = 1$$

$$i_D = I_s(e^{\nu_D/V_{TH}} - 1).$$

$$V_T = V_{TH} = \frac{kT}{q} \approx 26 \text{ mV}$$

at T = 300K

Exponential Law Device: Analytical Solution

$$I = rac{V_S - V_D}{R}$$
 $I = I_S \left(\exp \left(rac{V_D}{nV_T}
ight) - rac{V_S - V_D}{nV_T}
ight)$

$$w = rac{I_S R}{n V_{
m T}} \left(rac{I}{I_S} + 1
ight) \qquad I/I_S = e^{V_D/n V_{
m T}} \; -$$

$$we^w = rac{I_S R}{n V_{
m T}} e^{rac{V_D}{n V_{
m T}}} e^{rac{I_S R}{n V_{
m T}} \left(rac{I}{I_S}+1
ight)} \qquad we^w = rac{I_S R}{n V_{
m T}} e^{rac{V_S}{n V_{
m T}}} e^{rac{-IR}{n V_{
m T}}} e^{rac{IRI_S}{n V_{
m T}I_S}} e^{rac{I_S R}{n V_{
m T}}}$$

$$we^w = rac{I_S R}{nV_{
m T}} e^{rac{V_S + I_S R}{nV_{
m T}}} = ext{c, Constant} \hspace{0.5cm} w = W \left(rac{I_S R}{nV_{
m T}} e^{rac{V_S + I_S R}{nV_{
m T}}}
ight)$$

W(c) is the Lambert W function evaluated at the value c

Exponential Law Device: Iterative Solution

$$I=rac{V_S-V_D}{R}$$

$$I = I_S \left(\exp\left(\frac{V_D}{nV_T}\right) - 1 \right)$$
 $e^{\frac{V_D}{nV_T}} = \frac{I}{I_S} + 1$

$$rac{V_D}{nV_{
m T}} = \lnigg(rac{I}{I_S}+1igg)$$

$$rac{V_D}{nV_{
m T}} = \ln\!\left(rac{V_S - V_D}{RI_S} + 1
ight)$$

$$V_D = n V_{
m T} \ln igg(rac{V_S - V_D}{R I_S} + 1igg)$$

- > Start with an initial guess on the RHS
- > Evaluate the LHS to improve upon
- > Iterate until desired accuracy is achieved

Square Law Device: Graphical Load Line Analysis

$$\frac{v_D - E}{R} + i_D = 0$$

$$i_{\rm D} = -\frac{\nu_{\rm D} - E}{R}$$

$$i_D = I_S \left(\exp\left(\frac{v_D}{nV_T}\right) - 1 \right)$$

Square Law Device: Parallel Combination

$$V_T=0$$

$$i$$
 v_1
 v_2
 v_D
 v_D

$$K = 0.1 \frac{A}{V^2}$$

$$v_D = 2 \text{ V}$$

$$i_D = 0.1v_D^2 = 0.1 \times 2^2 = 0.4 \text{ A}$$

$$i_1 = i_2 = 0.4 \text{ A}$$

$$i = i_1 + i_2 = 0.8 \text{ A}$$

V = 2 V

Exponential Law Device: Series Combination

$$i_{\rm D} = I_{\rm s}(e^{\nu_{\rm D}/V_{TH}}-1)$$

$$I_s = 10^{-12} \text{ A}, V_{TH} = 0.025 \text{ V}.$$

$$v_1 = 0.025 \ln(10^{12}I + 1) = 0.025 \ln(10^{12} \times 2 + 1) = 0.71 \text{ V}$$

$$v_1 = v_2 - v_1$$

$$v_2 = 2v_1 = 1.42 \text{ V}$$

$$v_2 - v_1 = v_3 - v_2$$

$$v_3 = 3v_1 = 2.13 \text{ V}$$

$$v_3 - v_2 = v_4 - v_3$$

$$v_4 = 4v_1 = 2.84 \text{ V}.$$

Square Law Device: Circuit Analysis

Square Law Device: Circuit Analysis

Piecewise Linear Approximation: Circuit Analysis

Small Signal Analysis

Small Signal Analysis

Small Signal Analysis Result

Small Signal Analysis Method

- Operate at some bias point V_D , I_D
- Superimpose small signal v_d on top of V_D
- Response i_d to small signal v_d is approximately linear

$$v_D = V_D + v_d$$

 $i_D = I_D + i_d$

Linear $i_d = k v_d$

signal

Bias Additional small signal

signal

Bias Additional small signal

Incremental Model: General

Incremental Model: General

- Same model for R, C, L
- Voltage source with constant voltage -> short circuit
- Current source with constant current -> open circuit

