第四次书面作业

1. (贪心算法设计与证明)

Given a list of n natural numbers d_1, d_2, \ldots, d_n , show how to decide in polynomial time whether there exists an undirected graph G = (V, E) whose node degrees are precisely the numbers d_1, d_2, \ldots, d_n . (That is, if $V = \{v_1, v_2, \ldots, v_n\}$, then the degree of v_i should be exactly d_i .) G should not contain multiple edges between the same pair of nodes, or "loop" edges with both endpoints equal to the same node. Prove that your algorithm is correct.

2. (贪心算法设计与证明)

一个n位正整数a,去掉其中的k位数字,剩下的数字按原次序排序组成一个新的正整数,要使之最小。如何删除?(注意:a的最高位不为数字 0,剩余数字首数字也不能为 0)。证明你的算法是正确的。

3. (贪心算法设计与证明)

有n个任务,按任务的截止完成时间 t_i 已排好序。每个任务完成需要花费时间 c_i 。你现在希望从时刻0 开始完成尽量多的任务。问最多能完成多少任务?可以设计一个这样的算法:根据截止时间顺序选择每个任务,一旦发现某个任务加入后不能保证现有任务都在截止时间之前完成,则从中删除花费时间最长的任务。这个算法正确吗?如果正确,请用类似数学归纳法的方法证明该算法的正确性;否则,请举反例说明。