Санкт-Петербургский государственный университет
Математико-механический факультет
Кафедра статистического моделирования

Диалоговая система принятия решения и ее использование при размещении товара на складе

Прудникова Юлия Андреевна, гр. 522

Научный руководитель: д.ф.-м.н., профессор Сушков Ю.А. Рецензент: Иванов А.Ю.

Санкт-Петербург 2006

Актуальность

Задачи оптимизации, автоматизации и принятия решений в областях:

- производственных процессов;
- транспортных перевозок;
- складского хозяйства и др.
- В целях оптимизации вышеперечисленных задач часто используют методы теории принятия решений (ПР).
- В целях автоматизации создают программные диалоговые системы (ПДС) основанные на методах ПР.

Актуальность

ПДС, направленные на решения конкретных задач:

- учитывают:
 - особенности области деятельности ЛПР;
 - опыт и психологию ЛПР;
- предполагают:
 - полностью определенное множество альтернатив.

Вопросами организации складского хозяйства занимается складская логистика.

Рассмотрим некоторые задачи складской логистики:

- автоматизация работы персонала склада;
- оптимальное размещение товара на складе.

Актуальность

Вопрос изучения связей между ранжированиями объектов.

Иногда необходима мера близости экспертных оценок, которая учитывает места объектов в упорядочениях.

Пример. Рассмотрим $A_1 = (a_1, a_2, \dots, a_{n-1}, a_n),$ $A_2 = (a_2, a_1, \dots, a_{n-1}, a_n), A_3 = (a_1, a_2, \dots, a_n, a_{n-1}).$ Пусть $d(A_1, A_2)$ – расстояние между упорядочениями, тогда $d(A_1, A_2) > d(A_1, A_3).$

Цель работы

Настоящая работа имеет целью:

- создание программной диалоговой системы, позволяющей автоматизировать и оптимизировать работу персонала склада при размещении товара, основанной на обработке базы данных склада, а так же некоторых методах теории ПР;
- поиск расстояния между экспертными оценками, которое учитывает места объектов в упорядочениях.

Постановка задачи 1

Склад представляет собой:

- N q-этажных стеллажей;
- $A = \{a_{ikl}\}_{i=1..N, k=1..q, l=1..L_i}$ множество ячеек;
- на каждый этаж k, k = 1..q, стеллажа j, j = 1..N, помещается товар общей массой $\leq M_{i_k}$;
- товар $P = \{p_i\}, i = 1, 2... (h_i высота, w_i ширина, b_i$ длина и m_i – масса).

Постановка задачи 1

Определение 1. Под оптимальным размещением p_i , i = 1, 2...по a_{ikl} понимается рациональный выбор ячейки, т.е. выполнение всех условий предъявленных персоналом склада с целью уменьшения временных затрат на размещение товара.

Задача ПР, где:

- **в** критерии: $K = \{K_1, ..., K_n\}$;
- **альтернативы:** $A = \{a_{jkl}\}_{j=1..N, k=1..q, l=1..L_i}$;
- **цель:** оптимальное размещение p_i , i = 1, 2... по a_{ikl} .

Задача 1: Необходимо найти единственную ячейку a_{jkl} из множества A, удовлетворяющую критериям K_i , j = 1..n, при размещении p_i , i = 1, 2...

Решение задачи 1

Программная диалоговая система (ПДС)

ПДС предполагает:

- работу с базой данных склада;
- реализацию методов ПР с целью нахождения оптимального размещения товара.

ПДС основана на следующих методах теории ПР:

- морфологический ящик;
- множество Парето;
- табличный метод;
- метод анализа иерархий.

Программная диалоговая система

Этап 1. Морфологический ящик.

Исходное морфологическое множество сужается благодаря ограничениям:

- по высоте этажа;
- по удаленности стеллажа.

Этап 2. Ранжирование альтернатив с целью нахождения множества Парето.

Программная диалоговая система

Этап 3. Табличный метод.

На этапе работы с множеством Парето в ПДС предусмотрены:

- возможность выбора ячейки;
- уменьшение границ табличного метода;
- помощь при нулевом покрывающем множестве.

Программная диалоговая система

Этап 4. Метод анализа иерархий.

- Помощь при несогласованной расстановке приоритетов в матрицах парных сравнений
- Выбор оптимальной ячейки в соответствии с методом анализа иерархий

Постановка задачи 2

Рассмотрим два полных упорядочения n объектов:

$$A = (q_1^A,..,q_n^A)$$
 и $B = (q_1^B,..,q_n^B)$. Обозначим искомое расстояние за $d(A,B)$.

Расстояние d(A, B) должно удовлетворять следующим аксиомам:

- стандартным аксиомам расстояния ($a\kappa cuombi \ 1.1-1.3$);
- аксиомам, выполнение которых позволяет учитывать места объектов в упорядочениях ($a\kappa cuom bi 2-4$).

Задача 2: Необходимо найти расстояние между полными упорядочениями A и B - d(A, B), удовлетворяющее аксиомам 1.1-1.3, 2-4.

Решение задачи 2

Алгоритм построения расстояния.

 $d(A,B)=(i_1,..,i_n), i_i\in\{1,..,n-1\}, j=1..n.$ Каждому элементу q_{i}^{A} сопоставим некоторое число p_{i}^{A} – место, которое занимает элемент q_i^A в упорядочении A.

Алгоритм основан на сортировке выбором.

Приведем B к A.

Пусть на *j*-ом шаге надо переставить q_i . d_{a}^{BA} — число в n-ичной системе:

$$d_{q_i}^{BA} = (0, ..., 0, 1, ..., 1, 0, ...0).$$

Таким образом:

$$d(A,B) = \sum_{i=1}^{n} d_{q_i}^{BA}.$$

Решение задачи 2

- **Утверждение 1.** d(A, B) = d(B, A).
- **Утверждение 2.** $d(A,B) + d(B,C) \ge d(A,C)$ и $d(A,B) + d(B,C) = d(A,C) \Leftrightarrow [A,B,C].$
- **Утверждение 3.–4.** Расстояние d(A, B), найденное с помощью Алгоритма, удовлетворяет $a\kappa cuomam\ 2-4$.

Теорема 1. Расстояние d(A, B), найденное с помощью Алгоритма, является расстоянием для полных упорядочений, которое удовлетворяет аксиомам 1.1-1.3, 2-4.

Результаты

Созданная ПДС:

- учитывает специфику задачи автоматизации и оптимизации работы персонала склада при размещении товара;
- опирается на методы теории ПР.

Найденное расстояние между экспертными оценками, учитывает места объектов в упорядочениях.

В качестве дальнейшего развития результатов предлагаем:

- добавить в ПДС оптимальное размещение товара в ячейке;
- расширить область применения расстояния до любых упорядочений; использовать расстояние в ПДС.