PTC 2020 – Sistemas de Controle 2^a PROVA - 2015

Nome:	N°USP:	
Instruções:		

1. Duração: 1h40min

2. Ao final da prova, entregue esta folha de questões devidamente identificada.

1) Um determinado sistema de controle possui a seguinte função de transferência de malha aberta:

$$G(s) = \frac{1}{s(s+1)}$$

Considerando-se realimentação unitária, pretende-se construir um compensador tipo PD dado pela seguinte função de transferência.

$$G_c(s) = K_p(1 + T_d s)$$

Para tanto, pede-se:

- a) Desenhe o lugar das raízes e determine os valores de T_d de modo que a resposta do sistema ao degrau na referência seja sempre amortecida para $\forall K_p > 0$. (1.5)
- b) Supondo T_d = 1 determine o valor de K_p tal que a resposta ao degrau unitário tenha um tempo de subida de t_r = 1s. (1.0)

a) Projete um controlador PID para o levitador eletromagnético da figura seguinte, de modo que os pólos de malha fechada dominantes tenham coeficientes de amortecimento ξ= 0.5, frequência natural ω_n = 2rad/s e que o pólo estável da planta seja cancelado.
(1.5)

 $G_c(s) = K_P(1 + \frac{1}{T_I s} + T_D s) = K \frac{(s+a)(s+b)}{s}$

b) É possível realizar o projeto cancelando, porém o pólo instável? Justifique. (1.0)

3) Considere um servomecanismo com a seguinte função de transferência em malha aberta.

$$G_{\iota}(s) = \frac{KK_{\iota}}{Ts+1} = \frac{Y(s)}{U(s)}$$

A resposta do sistema a um degrau unitário é apresentada no gráfico a seguir.

Pede-se:

- Os valores de KK, e de T. (0.5)
- Projete um compensador PI (para controle de velocidade) tal que o pólo em malha aberta seja cancelado e escolha um ganho para o compensador tal que a constante de tempo do sistema em malha fechada seja igual a 0,2s. Considere realimentação unitária.

4) Considere o sistema abaixo para o qual se utiliza um controlador tipo FID. A finção de transferência do controlador é dada por:

$$G_c(s) = K_r(1 + \frac{1}{T_s s} + T_{os})$$

Uma das maneiras de se ajustar os parâmetros do controlador PID (quando o modelo da planta não é bem conhecido) é através de um dos métodos de Ziegler-Nichols, descrito a seguir:

Segundo método (ensaio em malha fechada): com o sistema em malha fechada e utilizando inicialmente um controlador proporcional, aumentar continuamente o ganho proporcional até

K_{P}	Ti	To
0.5 Kcr		
0.45 Kcr	Pcr/12	
0.6 Kcr	Pcr /2	Per/8
	0.45 Kcr	0.45 Kcr Pcr/1.2

que surja uma oscilação sustentada. Sejam, então, Ker o valor do ganho nessa situação e Per o período da oscilação verificada. O ajuste dos parâmetros do controlador é obtido através da tabela ao lado.

Determine através do método anteriormente descrito os valores apropriados para K_P , T_P e T_D , (1.5).

Um determinado sistema de controle possui a seguinte função de transferência de malha aberta:

$$G(s) = \frac{k}{(2s+1)(s+1)(0.5s+1)}$$

Considerando-se realimentação unitária, pretende-se construir um compensador tipo avanço tal que a constante de erro de posição estático seja $k_p = 9$, e a margem de fase (MF) seja igual a 25°. Para tanto, pede-se:

a) O valor de k. (0.5)

b) O diagrama de Bode considerando o valor de k do item anterior é apresentado na figura a seguir. Calcule a margem de fase e projete o compensador proposto indicando e justificando claramente os valores calculados. Considere como margem de segurança para o projeto um valor de fase adicional de 5° (1.0)

c) Calcule, a partir da figura do sistema compensado, as novas MF e MG do sistema e

comente os resultados. (0.5)

2 25 33/12 Named deserver a 1.50 pera algues trains de Tass THEL 9.5 Loso pro De Tale I o sistore é estérel e o terporto so dearous o sample amattenda (+ >1) Por Tax/ tomas \$21 para oliques voluers de Vy e Turo « instaval b) (9(1) (1(1) = - Kp 4(to-1) = 2,198 + 1 Kg 1 - 2,000 - 1 Kg 2,000/

ores o deser uniform E En in 1 Ear = 1- 1- 1- 1- 14/p = 01 -> Kp = 9 20 K = 100 (5) = 100 KYE = 100 = 9) R(S) = KKE = > R(S) = 3(TE+145E+1) = # 1 3(54 HEE) = T (= + 51 M) a = WKE b = WKE R(s) = \frac{1}{5} - \frac{1}{5} + \frac{1}{ Por t=02 tomos Thoras 0,44 (do giolica)=1-e# b) GOLK (1+ TE) = K (TE) Por concele & pola, tomamor Ti = T = 3.15 Getricular = KWK 9K (RCS) 9K 1 Quel enos 71 = 0,2 => 9K = 3-1 => K = 1,722 (1.0)

	Westan 4	
		un controle posmerere proporcional Gickele K. torres
	Ge (5)-	(50) (50) (50) (50) (50) (50) (50) (50)
		ectoristica & dada, entre per stille ser en.
		o critério de Paul terra
		II I A deale of properties of felicle is storice
-		60-E 0 = 12.240
		1
10		= 60. Neste cost tenos um par de polas complexas consegu
		eiro imaginario Denotindo or por toros terros
		+ 6600 + 11000 + 66 + 10
		5 - GW + 113W = G6 +0 +1
		Iw = w3 w= ± VII rowls
		611 = 66
Ace		período de períodos e dada per
TA TEST	5233	1 Per = 1 Per = 1,89 s
50		, do tobola, tiennos os conficientes do PID:
Tine		
	Kp = C	0,6 Ker = 36
	THE	Per 12 = 0,947
	To =	Per/8 30,237

O) kg = 800 (6(5) = K = 3 K = 9	
0) kg = & m (6(5) = K -> K - 9 K - 9	
10) Do grofino temos ME + 9,375" . MG-47,744.	
Assim, Am = 25 - 9,375 15 = 20,425°	
Son Om + 1-0/ - 5 Son Om + Son Smol - 1-0/ - 5	
=> (1+ 5+ 0m)N=1-5m 0m => N-1-5m 0m = 0,179	
Do grafico, para um gento de - 20/an (VS) = 3,10 6 formas vim	= 2600
10m = 1 = 7 = 5 ton = 0,7225	
Freq de monta = 1,3945' e = 2,890 5"	
Composition G (5) = 1+0,2467	
Ac morgers de establidade aumonorario, porém vindo mão se	
de segurarça. O parte	
de seguents maint	