## October 2010

## KNITRO 7.0 User Options for AMPL



KNITRO user options can be set from AMPL by typing the name of the option and a numeric value. When using AMPL's interactive mode, set all options in a single command; for example,

ampl: option knitro\_options "maxit=100 opttol=1.0e-5";

When running Knitro directly with an AMPL problem, set user options on the command line with the problem name; for example,

knitroampl testproblem.nl maxit=100 opttol=1.0e-5

A complete list of available KNITRO options can always be shown by typing: knitroampl -=

| OPTION             | DESCRIPTION                                               | DEFAULT |
|--------------------|-----------------------------------------------------------|---------|
| alg                | optimization algorithm used:                              | 0       |
| algorithm          | 0: let KNITRO choose the algorithm                        |         |
|                    | 1: Interior/Direct (barrier) algorithm                    |         |
|                    | 2: Interior/CG (barrier) algorithm                        |         |
|                    | 3: Active Set algorithm                                   |         |
| bar_directinterval | frequency for trying to force direct steps                | 10      |
| bar_feasible       | whether feasibility is given special emphasis:            | 0       |
|                    | 0: no special emphasis on feasibility                     |         |
|                    | 1: iterates must honor inequalities                       |         |
|                    | 2: emphasize first getting feasible before optimizing     |         |
|                    | 3: implement both options 1 and 2 above                   |         |
| bar_feasmodetol    | tolerance for entering stay feasible mode                 | 1.0e-4  |
| bar_initmu         | initial value for barrier parameter                       | 1.0e-1  |
| bar_initpt         | initial point strategy for barrier algorithms             | 0       |
|                    | 0: let KNITRO choose the initial point strategy           |         |
|                    | 1: shift the initial point to improve barrier performance |         |
|                    | 2: do not alter the initial point supplied by the user    |         |
| bar_maxbacktrack   | maximum number of linesearch backtracks                   | 3       |
| bar_maxrefactor    | maximum number of KKT refactorizations allowed            | 0       |
| bar_murule         | barrier parameter update rule:                            | 0       |
|                    | 0: let KNITRO choose the barrier update rule              |         |
|                    | 1: monotone decrease rule                                 |         |
|                    | 2: adaptive rule based on complementarity gap             |         |
|                    | 3: probing rule (Interior/Direct only)                    |         |
|                    | 4: safeguarded Mehrotra predictor-corrector type rule     |         |
|                    | 5: Mehrotra predictor-corrector type rule                 |         |
|                    | 6: rule based on minimizing a quality function            |         |

| OPTION          | DESCRIPTION                                                     | DEFAULT |
|-----------------|-----------------------------------------------------------------|---------|
| bar_penaltycons | technique for penalizing constraints in the barrier algorithms: | 0       |
| • •             | 0: let KNITRO choose the strategy                               |         |
|                 | 1: do not apply penalty approach to any constraints             |         |
|                 | 2: apply a penalty approach to all general constraints          |         |
| bar_penaltyrule | penalty parameter rule for step acceptance:                     | 0       |
|                 | 0: let KNITRO choose the strategy                               |         |
|                 | 1: use single penalty parameter approach                        |         |
|                 | 2: use more tolerant, flexible strategy                         |         |
| blasoption      | specify the BLAS/LAPACK function library to use:                | 1       |
| •               | 0: use KNITRO built-in functions                                |         |
|                 | 1: use Intel Math Kernel Library functions                      |         |
|                 | 2: use the dynamic library specified with "blasoptionlib"       |         |
| debug           | enable debugging output:                                        | 0       |
|                 | 0: no extra debugging                                           |         |
|                 | 1: print info to debug solution of the problem                  |         |
|                 | 2: print info to debug execution of the solver                  |         |
| delta           | initial trust region radius scaling                             | 1.0e0   |
| feastol         | feasibility termination tolerance (relative)                    | 1.0e-6  |
| feastol_abs     | feasibility termination tolerance (absolute)                    | 0.0e-0  |
| gradopt         | gradient computation method:                                    | 1       |
|                 | 1: use exact gradients                                          |         |
|                 | 2: compute forward finite-difference approximations             |         |
|                 | 3: compute centered finite-difference approximations            |         |
| hessopt         | Hessian (Hessian-vector) computation method:                    | 1       |
| -               | 1: use exact Hessian derivatives                                |         |
|                 | 2: use dense quasi-Newton BFGS Hessian approximation            |         |
|                 | 3: use dense quasi-Newton SR1 Hessian approximation             |         |
|                 | 4: compute Hessian-vector products by finite diffs              |         |
|                 | 5: compute exact Hessian-vector products                        |         |
|                 | 6: use limited-memory BFGS Hessian approximation                |         |
| honorbnds       | 0: allow bounds to be violated during the optimization          | 2       |
|                 | 1: enforce bounds satisfaction of all iterates                  |         |
|                 | 2: enforce bounds satisfaction of initial point                 |         |
| infeastol       | tolerance for declaring infeasibility                           | 1.0e-8  |
| linsolver       | linear system solver to use inside KNITRO:                      | 0       |
|                 | 0: let KNITRO choose the linear system solver                   |         |
|                 | 1: (not currently used; same as 0)                              |         |
|                 | 2: use a hybrid approach; solver depends on system              |         |
|                 | 3: use a dense QR method (small problems only)                  |         |
|                 | 4: use HSL MA27 sparse symmetric indefinite solver              |         |
|                 | 5: use HSL MA57 sparse symmetric indefinite solver              |         |
| lmsize          | number of limited-memory pairs stored in LBFGS approach         | 10      |
| lpsolver        | 1: use internal LP solver in Active Set algorithm               | 1       |
| ippoivoi        | 2: use ILOG-CPLEX LP solver in Active Set algorithm             |         |
|                 | _                                                               |         |
|                 | (requires a valid CPLEX license)                                |         |

| OPTION                                  | DESCRIPTION                                                                                                                                                                   | DEFAULT |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| maxcgit                                 | maximum allowable conjugate gradient (CG) iterations: 0: let KNITRO set the number based on the problem size $n$ : maximum of $n>0$ CG iterations per minor iteration         | 0       |
| maxcrossit                              | maximum number of allowable crossover iterations                                                                                                                              | 0       |
| maxit                                   | maximum number of iterations before terminating 0: let KNITRO set the number based on the problem $n\colon$ maximum limit of $n>0$ iterations                                 | 0       |
| maxtime_cpu                             | maximum CPU time in seconds before terminating                                                                                                                                | 1.0e8   |
| maxtime_real                            | maximum real time in seconds before terminating                                                                                                                               | 1.0e8   |
| mip_branchrule                          | MIP branching rule:  0: let KNITRO choose the branching rule  1: most-fractional branching  2: pseudo-cost branching  3: strong branching                                     | 0       |
| mip_debug                               | MIP debugging level  0: no MIP debugging output  1: print MIP debugging information                                                                                           | 0       |
| mip_gub_branch                          | Branch on GUBs  0: do not branch on GUB constraints  1: allow branching on GUB constraints                                                                                    | 0       |
| mip_heuristic                           | heuristic search approach  0: let KNITRO decide whether to apply a heuristic  1: do not apply any heuristic  2: use feasibility pump heuristic  3: use MPEC heuristic         | 0       |
| mip_heuristic_maxit                     | heuristic search iteration limit                                                                                                                                              | 100     |
| $\mathtt{mip}_{-}\mathtt{implications}$ | Add logical implications  0: do not add constraints from logical implications  1: add constraints from logical implications                                                   | 1       |
| mip_integer_tol                         | threshold for deciding integrality                                                                                                                                            | 1.0e-8  |
| mip_integral_gap_abs                    | absolute integrality gap stop tolerance                                                                                                                                       | 1.0e-6  |
| mip_integral_gap_rel                    | relative integrality gap stop tolerance                                                                                                                                       | 1.0e-6  |
| mip_knapsack                            | add knapsack cuts  0: do not add knapsack cuts  1: add knapsack inequality cuts only  2: add knapsack inequality and equality cuts                                            | 1       |
| mip_lpalg                               | LP subproblem algorithm  0: let KNITRO decide the LP algorithm  1: Interior/Direct (barrier) algorithm  2: Interior/CG (barrier) algorithm  3: Active Set (simplex) algorithm | 0       |
| mip_maxnodes                            | maximum nodes explored                                                                                                                                                        | 100000  |
| mip_maxsolves                           | maximum subproblem solves                                                                                                                                                     | 200000  |
| mip_maxtime_cpu                         | maximum CPU time in seconds for MIP                                                                                                                                           | 1.0e8   |
| mip_maxtime_real                        | maximum real time in seconds for MIP                                                                                                                                          | 1.0e8   |

| OPTION                                  | DESCRIPTION                                                                                                                                                                                                                                                                                                              | DEFAULT |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| mip_method                              | MIP method                                                                                                                                                                                                                                                                                                               | 0       |
| -                                       | 0: let KNITRO choose the method                                                                                                                                                                                                                                                                                          |         |
|                                         | 1: branch and bound method                                                                                                                                                                                                                                                                                               |         |
|                                         | 2: hybrid method for convex nonlinear models                                                                                                                                                                                                                                                                             |         |
| mip_outinterval                         | MIP node output interval                                                                                                                                                                                                                                                                                                 | 10      |
| mip_outlevel                            | MIP output level                                                                                                                                                                                                                                                                                                         | 1       |
| mip_outsub                              | enable MIP subproblem debug output                                                                                                                                                                                                                                                                                       | 0       |
| mip_pseudoinit                          | method to initialize pseudo-costs                                                                                                                                                                                                                                                                                        | 0       |
|                                         | 0: let KNITRO choose the method                                                                                                                                                                                                                                                                                          |         |
|                                         | 1: use average value                                                                                                                                                                                                                                                                                                     |         |
|                                         | 2: use strong branching                                                                                                                                                                                                                                                                                                  |         |
| mip_rootalg                             | root node relaxation algorithm                                                                                                                                                                                                                                                                                           | 0       |
|                                         | 0: let KNITRO decide the root algorithm                                                                                                                                                                                                                                                                                  |         |
|                                         | 1: Interior/Direct (barrier) algorithm                                                                                                                                                                                                                                                                                   |         |
|                                         | 2: Interior/CG (barrier) algorithm                                                                                                                                                                                                                                                                                       |         |
|                                         | 3: Active Set algorithm                                                                                                                                                                                                                                                                                                  |         |
| mip_rounding                            | MIP rounding rule                                                                                                                                                                                                                                                                                                        | 0       |
| 1 0                                     | 0: let KNITRO choose the rounding rule                                                                                                                                                                                                                                                                                   |         |
|                                         | 1: do not attempt rounding                                                                                                                                                                                                                                                                                               |         |
|                                         | 2: use fast heuristic                                                                                                                                                                                                                                                                                                    |         |
|                                         | 3: apply rounding solve selectively                                                                                                                                                                                                                                                                                      |         |
|                                         | 4: apply rounding solve always                                                                                                                                                                                                                                                                                           |         |
| mip_selectrule                          | MIP node selection rule                                                                                                                                                                                                                                                                                                  | 0       |
| •                                       | 0: let KNITRO choose the node select rule                                                                                                                                                                                                                                                                                |         |
|                                         | 1: use depth first search                                                                                                                                                                                                                                                                                                |         |
|                                         | 2: use best bound node selection                                                                                                                                                                                                                                                                                         |         |
|                                         | 3: use a combination of depth first and best bound                                                                                                                                                                                                                                                                       |         |
| mip_strong_candlim                      | strong branching candidate limit                                                                                                                                                                                                                                                                                         | 10      |
| mip_strong_level                        | strong branching level limit                                                                                                                                                                                                                                                                                             | 10      |
| mip_strong_maxit                        | strong branching subproblem iteration limit                                                                                                                                                                                                                                                                              | 1000    |
| mip_terminate                           | termination condition for MIP                                                                                                                                                                                                                                                                                            | 0       |
| •                                       | 0: terminate at optimal solution                                                                                                                                                                                                                                                                                         |         |
|                                         | 1: terminate at first integer feasible solution                                                                                                                                                                                                                                                                          |         |
| ms_enable                               | 0: multi-start not enabled                                                                                                                                                                                                                                                                                               | 0       |
|                                         | 1: multi-start enabled                                                                                                                                                                                                                                                                                                   |         |
| ms_maxbndrange                          | maximum range to vary unbounded $x$ when generating start points                                                                                                                                                                                                                                                         | 1.0e3   |
| ms_maxsolves                            | maximum number of start points to try during multi-start                                                                                                                                                                                                                                                                 | 0       |
|                                         | 0: let KNITRO set the number based on problem size                                                                                                                                                                                                                                                                       |         |
|                                         | n: try exactly $n > 0$ start points                                                                                                                                                                                                                                                                                      |         |
| ms_maxtime_cpu                          | maximum CPU time for multi-start, in seconds                                                                                                                                                                                                                                                                             | 1.0e8   |
| ms_maxtime_real                         | maximum real time for multi-start, in seconds                                                                                                                                                                                                                                                                            | 1.0e8   |
| ms_num_to_save                          | number feasible points to save in "knitro_mspoints.log"                                                                                                                                                                                                                                                                  | 0       |
|                                         |                                                                                                                                                                                                                                                                                                                          | 1.0e-6  |
|                                         |                                                                                                                                                                                                                                                                                                                          | 1.0e20  |
|                                         |                                                                                                                                                                                                                                                                                                                          |         |
| ms_oorminaoo                            |                                                                                                                                                                                                                                                                                                                          |         |
|                                         |                                                                                                                                                                                                                                                                                                                          |         |
|                                         | <u>-</u>                                                                                                                                                                                                                                                                                                                 |         |
| ms_savetol ms_startptrange ms_terminate | tolerance for feasible points to be considered distinct maximum range to vary all x when generating start points  termination condition for multi-start  0: terminate after ms_maxsolves  1: terminate at first local optimum (if before ms_maxsolves)  2: terminate at first feasible solution (if before ms_maxsolves) |         |

| OPTION          | DESCRIPTION                                                | DEFAULT |
|-----------------|------------------------------------------------------------|---------|
| newpoint        | 0: no action                                               | 0       |
|                 | 1: save the latest new point to file "knitro_newpoint.log" |         |
|                 | 2: append all new points to file "knitro_newpoint.log"     |         |
| objrange        | maximum allowable objective function magnitude             | 1.0e20  |
| opttol          | optimality termination tolerance (relative)                |         |
| opttol_abs      | optimality termination tolerance (absolute)                | 0.0e-0  |
| outappend       | append output to existing files:                           | 0       |
|                 | 0: do not append                                           |         |
|                 | 1: do append                                               |         |
| outdir          | directory where output files are created                   |         |
| outlev          | printing output level:                                     | 2       |
|                 | 0: no printing                                             |         |
|                 | 1: just print summary information                          |         |
|                 | 2: print basic information every 10 iterations             |         |
|                 | 3: print basic information at each iteration               |         |
|                 | 4: print all information at each iteration                 |         |
|                 | 5: also print final (primal) variables                     |         |
|                 | 6: also print final Lagrange multipliers (sensitivies)     |         |
| outmode         | 0: direct KNITRO output to standard out (e.g., screen)     | 0       |
|                 | 1: direct KNITRO output to the file "knitro.log"           |         |
|                 | 2: print to both the screen and file "knitro.log"          |         |
| pivot           | initial pivot threshold for matrix factorizations          | 1.0e-8  |
| $presolve\_dbg$ | 0: no debugging information                                | 0       |
|                 | 2: print the KNITRO problem with AMPL model names          |         |
| scale           | 0: do not scale the problem                                | 1       |
|                 | 1: perform automatic scaling of functions                  |         |
| soc             | 0: do not allow second order correction steps              | 1       |
|                 | 1: selectively try second order correction steps           |         |
|                 | 2: always try second order correction steps                |         |
| xtol            | stepsize termination tolerance                             | 1.0e-15 |