Найти аналитические выражения для коэффициентов многочлена R(x)

Сначала я задаю все функции:

$$\begin{split} &\text{T1}[\texttt{k}_{_},\,\texttt{d}_{_}] := \frac{1 - 4\,\texttt{k}}{\left(\texttt{Pi}\left(1 - 4\,\texttt{k}\right)\right)^2 - 4\,\texttt{d}^2};\\ &\text{T2}[\texttt{k}_{_},\,\texttt{d}_{_}] := \frac{1 + 4\,\texttt{k}}{\left(\texttt{Pi}\left(1 + 4\,\texttt{k}\right)\right)^2 - 4\,\texttt{d}^2};\\ &\text{A}[\texttt{k}_{_},\,\texttt{d}_{_},\,\texttt{x}_{_}] := 1 - 4\,\texttt{Pi}\,\texttt{T2}[\texttt{k},\,\texttt{d}]\,\texttt{x} + \frac{4\,\texttt{x}^2}{\left(\texttt{Pi}\left(1 + 4\,\texttt{k}\right)\right)^2 - 4\,\texttt{d}^2};\\ &\text{B}[\texttt{k}_{_},\,\texttt{d}_{_},\,\texttt{x}_{_}] := 1 - 4\,\texttt{Pi}\,\texttt{T1}[\texttt{k},\,\texttt{d}]\,\texttt{x} + \frac{4\,\texttt{x}^2}{\left(\texttt{Pi}\left(1 - 4\,\texttt{k}\right)\right)^2 - 4\,\texttt{d}^2}; \end{split}$$

Теперь вводим многочлен как функцию от d и x, устанавливаем верхний предел произведения равным бесконечности.

$$\text{Rb}\left[\text{d_, x_} \right] := \left(1 - 4 \, \text{Pi} \, \frac{\text{x}}{\frac{\text{Pi}^2 - 4 \, \text{d}^2}{\text{Pi}^2 - 4 \, \text{d}^2}} \right) \, \prod_{k=1}^{\text{Infinity}} \left(\text{A[k, d, x] } \star \text{B[k, d, x]} \right);$$

Далее считаем значение этого многочлена и применяем функцию упростить (Simplify). Это приводит к удивительным результатам:

Получили очень простое выражение. Переменной x в явном виде тут не содержится. Для того чтобы определить множители перед x, x^2 , x^3 и так далее введем обозначение: Функция R от d и x

$$R[d_, x_] := 1 - Sec[d] Sin[x]$$

 $cekahc$ $cuhyc$

Теперь введем новую функцию R1 которая будет равна разложению в ряд тейлора функции R(d,x) но зоависить также от чисел а и b, где а - степень разложения, b - максимальный порядок разложения.

$$R1[d_, x_, a_, b_] := Series[R[d, x], \{x, a, b\}]$$
 разложить в ряд

И затем просто введем функцию a(i) значение которой будут равно коэффициенту перед x^{i-1} :

Выведем значения в удобной табличной форме:

```
TableForm[Table[\{a_i, a[i, d, x, x0], x^{i-1}\}, \{i, 1, 13\}], табличная \cdots таблица значений
```

TableHeadings \rightarrow {{}, {"Коэф.", "Его выражение", "степень х"}}]

табличные заголовки

Коэф.	Его выражение
a_1	$1 + x0 \cos[x0] \sec[d] - \frac{1}{6} x0^3 \cos[x0] \sec[d] - \sec[d] \sin[x0] + \frac{1}{2} x0^2 \sec[d] \sin[x0]$
a_2	$-\cos[x0] \sec[d] + \frac{1}{2} x0^2 \cos[x0] \sec[d] - x0 \sec[d] \sin[x0] + \frac{1}{6} x0^3 \cos[x0] \cos[x0] + \frac{1}{6} x0^3 \cos[x0] + 1$
a_3	$-\frac{1}{2}$ x0 Cos[x0] Sec[d] + $\frac{1}{12}$ x03 Cos[x0] Sec[d] + $\frac{1}{2}$ Sec[d] Sin[x0] - $\frac{1}{4}$ x02 Sec[d]
a_4	$\frac{1}{6} \cos[x0] \sec[d] - \frac{1}{12} x0^2 \cos[x0] \sec[d] + \frac{1}{6} x0 \sec[d] \sin[x0] - \frac{1}{36} x0^3 \sec[d]$
a_5	$\frac{1}{24}$ x0 Cos[x0] Sec[d] - $\frac{1}{144}$ x0 ³ Cos[x0] Sec[d] - $\frac{1}{24}$ Sec[d] Sin[x0] + $\frac{1}{48}$ x0 ² Sec
a ₆	$-\frac{1}{120}\cos[x0] \sec[d] + \frac{1}{240}x0^{2}\cos[x0] \sec[d] - \frac{1}{120}x0 \sec[d] \sin[x0] + \frac{1}{720}x0^{3}$
a ₇	$-\frac{1}{720} \times 0 \cos[\times 0] \sec[d] + \frac{\times 0^3 \cos[\times 0] \sec[d]}{4320} + \frac{1}{720} \sec[d] \sin[\times 0] - \frac{\times 0^2 \sec[d] \sin[\times 0]}{1440}$
a ₈	$\frac{\cos[x0]\mathrm{Sec}[d]}{5040} - \frac{x0^2\mathrm{Cos}[x0]\mathrm{Sec}[d]}{10080} + \frac{x0\mathrm{Sec}[d]\mathrm{Sin}[x0]}{5040} - \frac{x0^3\mathrm{Sec}[d]\mathrm{Sin}[x0]}{30240}$
a_9	$\frac{\text{x0 Cos}[\text{x0}] \text{Sec}[\text{d}]}{40320} - \frac{\text{x0}^3 \text{Cos}[\text{x0}] \text{Sec}[\text{d}]}{241920} - \frac{\text{Sec}[\text{d}] \text{Sin}[\text{x0}]}{40320} + \frac{\text{x0}^2 \text{Sec}[\text{d}] \text{Sin}[\text{x0}]}{80640}$
a ₁₀	$-\frac{\cos[x0]\sec[d]}{362880}+\frac{x0^2\cos[x0]\sec[d]}{725760}-\frac{x0Sec[d]Sin[x0]}{362880}+\frac{x0^3Sec[d]Sin[x0]}{2177280}$
a ₁₁	$-\frac{\text{x0} \cos[\text{x0}] \sec[\text{d}]}{3628800} + \frac{\text{x0}^3 \cos[\text{x0}] \sec[\text{d}]}{21772800} + \frac{\sec[\text{d}] \sin[\text{x0}]}{3628800} - \frac{\text{x0}^2 \sec[\text{d}] \sin[\text{x0}]}{7257600}$
a ₁₂	$\frac{\cos[x0]\operatorname{Sec}[d]}{39916800} - \frac{x0^2\cos[x0]\operatorname{Sec}[d]}{79833600} + \frac{x0\operatorname{Sec}[d]\operatorname{Sin}[x0]}{39916800} - \frac{x0^3\operatorname{Sec}[d]\operatorname{Sin}[x0]}{239500800}$
a ₁₃	$\frac{x0 \cos[x0] \sec[d]}{479 \cos 1600} - \frac{x0^3 \cos[x0] \sec[d]}{2874 \cos 9600} - \frac{\sec[d] \sin[x0]}{479 \cos 1600} + \frac{x0^2 \sec[d] \sin[x0]}{958 \cos 200}$