SPRINT 3

Date	03 November 2022
Team ID	PNT2022TMID24730
Project Name	DETECTING PARKINSON'S DISEASE USING
	MACHINE LEARNING
Maximum Marks	4 Marks

5. Initialize a MinMaxScaler and scale the features to between -1 and 1 to normalize them. The MinMaxScaler transforms features by scaling them to a given range. The fit_transform() method fits to the data and then transforms it. We don't need to scale the labels.

- a. #DataFlair Scale the features to between -1 and 1
- b. scaler=MinMaxScaler((-1,1))
- c. x=scaler.fit_transform(features)
- d. y=labels

Screenshot:

```
[5]: #DataFlair - Scale the features to between -1 and 1
scaler=MinMaxScaler((-1,1))
x=scaler.fit_transform(features)
y=labels
```

6. Now, split the dataset into training and testing sets keeping 20% of the data for testing.

```
a. #DataFlair - Split the dataset
```

b. x_train,x_test,y_train,y_test=train_test_split(x, y, test_size=0.2, random_state=7)

Screenshot:

```
[6]: #DataFlair - Split the dataset
x_train,x_test,y_train,y_test=train_test_split(x, y, test_size=0.2, random_state=7)
```