Computer Science & Information Technology

Discrete Mathematics

DPP: 2

Set Theory and Algebra

- **Q1** Let A be {a, b, c}. Let the relation R on A and let R = {(b, a), (b, c), (c, a), (c, b), (b, b)}.
 - Which of the following statements about R is/are true?
 - (A) R is neither reflexive nor irreflexive.
 - (B) R is not symmetric.
 - (C) R is transitive.
 - (D) R is not anti-symmetric.
- Q2 Let A and B be two sets such that $A \times B = \{(1, 1), (2, 2), (3, 1), (3, 2), (1, 2), (1, 4), (2, 1), (2, 4), (3, 4)\}.$ What is the value of |P(A)| + |P(B)|?
- Q3 The relation R is defined on $Z = \{0, \pm 1, \pm 2, \pm 3...\}$ by xRy if and only if($x^2 + y^2$) mod 4 = 0. Then R is:
 - (A) Reflexive, Symmetric
 - (B) Transitive, Symmetric
 - (C) Symmetric
 - (D) Reflexive, Symmetric and Transitive
- Q4 Let R be the relation on the real numbers given by xRy iff (x y)2 < 0. Then which of the following statement is/are true?
 - (A) R is an equivalence relation.
 - (B) R is symmetric.
 - (C) R is asymmetric and anti-symmetric both.
 - (D) R is transitive.
- Q5 Let R be the relation on R (Where R is set of Natural Number) given by xRy if and only if x <2y + 1, then R is_____
 - (A) Reflexive, but not symmetric and not transitive
 - (B) Reflexive, Symmetric, and not transitive
 - (C) Not Reflexive, not symmetric and Transitive

- (D) Reflexive, but not symmetric and Transitive
- **Q6** Let R be the relation on A = {1, 2, 3, 4} given by R = {(1, 2), (2, 1), (2, 3), (4, 4), (3, 4)}. What is the cardinality of the reflexive closure of R?
- Q7 Let R be the relation on A = {1, 2, 3, 4, 5} given by R = {(1, 2), (2, 2), (2, 4), (2,3), (1, 1), (3, 3), (3, 2)}. What is the cardinality of the symmetric closure of R?_____
- Q8 Let R be the relation on A = {1, 2, 3, 4} given by R = {(1, 2), (2, 3), (4, 1), (3, 4)}. What is the cardinality of the transitive closure of R?
- Q9 Suppose that R is the relation on positive real numbers such that xRy if and only if xy = 1. Then R satisfies how many of the properties given below?
 - (i) Reflexive
 - (ii) Irreflexive
 - (iii) Symmetric
 - (iv) Anti-symmetric
 - (v) Transitive
 - (vi) Asymmetric
- **Q10** Let R be the relation $\{(a, b) \mid a \neq b\}$ on the set of integers. What is the reflexive closure of R?
 - $(A) \{(a, b) \mid a = b\}$
 - (B) $\{(a, b) \mid a \le b\}$
 - (C) $\{(a, b) \mid a \ge b\}$
 - (D) $Z \times Z$

Answer Key

Q1 (A, B, D)

Q2 16~16

Q3 (B)

Q4 (B, C, D)

Q5 (A)

Q6 8~8

Q7 9~9

Q8 16~16

Q9 1~1

Q10 (D)

Hints & Solutions

Q1 Text Solution:

 $R = \{(b, a), (b, c), (c, a), (c, b), (b, b)\}$

(a) **True;** as (a, a), (c, c) is not there,

⇒ Not reflexive

(b) True; as (a, b) is not there.

(c) **False;** as (c, b), (b, c) is there but (c, c) is not there.

(d) **True;** due to existence of pair (b, c) &(c, b)

Q2 Text Solution:

 $A = \{1, 2, 3\}$ and $B = \{1, 2, 4\}$

|P(A)| = 2

3 = 8, and |P(B)| = 2

3 = 8.

So, the value of |P(A)| + |P(B)| = 8 + 8 = 16.

Q3 Text Solution:

R is not reflexive because $(1, 1) \notin R$.

R is symmetric because if $(x^2 + y^2) \mod 4 = 0$ then y

2 + x

 $2 \mod 4 = 0$.

R is also transitive because R contains all those pairs which consists of even numbers.

 $R = \{(2, 0), (2, 4), (4, 8), (8, 12) ...\}$

So, if x

2 + y

 $2 \mod 4 = 0 \mod y$

2 + z

 $2 \mod 4 = 0$, then x

2 + z

 $2 \mod 4 = 0.$

So. R is transitive.

Q4 Text Solution:

Square of any number can't be less than zero, so, it will contain only \emptyset . and \emptyset other than reflexivity satisfies all other properties. Since R is not reflexive hence option (a) is not correct.

Q5 Text Solution:

xRy if (x < 2y + 1)

Reflexive as

 $x < 2x + 1 \{always true\}$

Symmetric:

example

 $(1, 5) 1 < 2 (5) + 1 but (5, 1) \notin R (5 < 2(1) + 1)$

Therefore, Not symmetric,

For Transitivity:

Take example of (5, 3) \notin R & (3, 2) \notin R but (5, 2) \notin R

Therefore, Not transitive.

Q6 Text Solution:

The reflexive closure of R = $\{(1, 2), (2, 1), (2, 3), (4, 4), (3, 4), (1, 1), (2, 2), (3, 3)\}$

So, its cardinality = 8.

Q7 Text Solution:

The symmetric closure of R = {(1, 2), (2, 1), (2, 2), (2, 4), (4, 2), (2, 3), (1, 1), (3,3), (3, 2)}.

So, its cardinality = 9.

Q8 Text Solution:

The transitive closure of R= {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 2), (2, 3), (2, 4), (4, 2), (1, 3), (3, 1), (1, 4), (4, 1), (3, 4), (4, 3)}.

So, its cardinality = 16.

Q9 Text Solution:

 $(1, 1) \in R$, but 2, 2 \notin R. So, it is neither reflexive nor irreflexive. Also, it is not asymmetric.

If xy = 1 then yx = 1. So, it is symmetric.

Since $(2, 1/2) \in R$ and $(1/2, 2) \in R$ but $(2, 2) \notin R$.

So, it is neither transitive nor anti-symmetric.

Q10 Text Solution:

Given $\{(a, b) \mid a \neq b\}$ means all possible pairs except self pair basically $\{(a, b) \mid a \neq b\} \cup \{(a, b) \mid a = b\} = Z \times Z$ therefore, (d) is correct.

