Теория множеств

Отображение (функция)

Последова тельность

пеория пределов. Непрерывность.

Homework

Понятие множества. Понятие функции. Последовательности.

Абдуллин Рустам Фаритович

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ

30 ноября 2020 г.

Теория множеств

Отображение (функция)

Последова тельность

пределов. Непрерывность.

Homework

- 1 Теория множеств
- 2 Отображение (функция)
- Последова-тельность
- 4 Теория пределов. Непрерывность.
- **5** Homework

Теория множеств

Отображение (функция)

Последова тельность

Теория пределов. Непрерывность.

Homework

Предпосылки

- Наивная теория множеств Георг Кантор
 - 1 парадокс Кантора
 - 2 парадокс Рассела
- Аксиоматические теории множеств (Цермело, Френкель, Борель, Лебег)

Теория множеств

Отображение (функция)

Последова тельность

Теория пределов. Непрерывность.

Homework

- Множество набор (совокупность) каких-либо объектов, которые называются элементами данного множества. Принадлежность объекта к множеству обозначается $x \in A$ (x элемент множества A).
- Множество, которое не имеет элементов, называется пустым \varnothing .
- Множество A подмножество множества B ($A \subseteq B$), если для любого элемента $x \in A$ верно $x \in B$.
- A строгое подмножество B ($A\subset B$), если $A\subseteq B$ и существует $y\in B$, такой что $y\notin A$.

Теория множеств

Отображение (функция)

Последова тельность

Теория пределов. Непрерывность.

Homeworl

Основные операции над множествами

- объединение, обозначается как $A \cup B$, содержит все элементы из A и B
- пересечение, обозначается как $A\cap B$, содержит элементы, содержащиеся и в A, и в B
- разность, обозначается как $A\setminus B$, содержит все элементы из A, которые не входят в B

Теорема 1

Если верно $A\subseteq M$ и $B\subseteq M$, то $(M\setminus A)\cup (M\setminus B)=M\setminus (A\cap B)$ и $(M\setminus A)\cap (M\setminus B)=M\setminus (A\cup B)$

Теория множесті

Отображение (функция)

Последова тельность

пределов. Непрерывность.

Homework

Основные определения

см. Лекции + рукопись

- Понятие функции
- Область определения (область существования) функции
- Область значений функции
- Образ функции (в чем разница с областью значений)

Теория множест

Отображение (функция) Последова-

тельность Теория

пределов. Непрерывность.

Homework

Последовательность

- *Последовательность* пронумерованный набор объектов (допускаются повторения)
- Последовательность всякое отображение $f: \mathbb{N} \to X$
- Числовая последовательность последовательность, где $X=\mathbb{R}\left(\{x_n\}_{n=1}^\infty\right)$

Теория множести

Отображение (функция)

Последовательность

Теория пределов. Непрерыв-

Homework

Определение 1

Число a — является пределом числовой последовательности $\{x_n\}_{n=1}^\infty$, обозначается $\lim_{n\to\infty}x_n=a$, если $\forall \varepsilon>0$ $\exists N\in\mathbb{N}\mid \forall n>N$ верно $|x_n-a|<\varepsilon$.

Определение 2

Если для элементов последовательностей $\{x_n\}_{n=1}^{\infty}$, $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ верно $a_n \leq x_n \leq b_n$ и $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = c$, то $\lim_{n \to \infty} x_n = c$

Homeworl

- $\lim_{n\to\infty} n = \infty$;
- $\bullet \lim_{n \to \infty} \frac{1}{n} = 0;$
- $\lim_{n \to \infty} \frac{x^m + 1}{x^n + 1} = 0$, если m < n;
- $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$

множеств

Отображение (функция)

Последова-

Теория пределов.

Непрерывность.

Homeworl

Предел функции в точке

 $\lim_{x o a}f(x)=A$, если $\forall \varepsilon>0$ $\exists \delta=\delta(\varepsilon)$, такое что для всех x из области определения функции и удовлетворяющих условию $0<|x-a|<\delta$ выполняется $|f(x)-A|<\varepsilon$.

Предел слева

 $\lim_{x\to a-0} f(x) = A', \text{ если } \forall \varepsilon>0 \ \exists \delta=\delta(\varepsilon), \text{ такое что для всех } x \text{ из области определения функции и удовлетворяющих условию } 0 < a-x < \delta \ \text{ (или тоже самое } (a-\delta < x < a)) выполняется <math>|f(x)-A'| < \varepsilon.$

Предел справа

 $\lim_{x \to a+0} f(x) = A''$, если $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon)$, такое что для всех x из области определения функции и удовлетворяющих условию $0 < x - a < \delta$ (или тоже самое $(a < x < a + \delta)$) выполняется $|f(x) - A''| < \varepsilon$.

Теория множеств

Отображение (функция)

Последова тельность

Теория пределов. Непрерывность.

Homework

Непрерывность

Предел функции существует, тогда и только тогда, когда A' = A'' Виды разрыва в точке

- **Устранимый**, если A' = A''
- Разрыв первого рода, если $A' \neq A''$ и $A' A'' < \infty$
- Разрыв второго рода, если $A' \neq A''$ и хотя бы один из пределов равен ∞

• Если функция непрерывна в точке, то предел функции к этой точке равен значению функции в этой точке

•
$$f(x) = \frac{x^2 - 1}{x - 1}$$
 в точке $x = 1$

•
$$f(x) = \operatorname{sgn}(x)$$

$$\bullet \ f(x) = \frac{1}{x}$$

• замечательные пределы:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Homework

Содержание

Теория множеств

Отображение (функция)

Последов: тельность

пределов. Непрерывность.

Homework

- Демидович. Сборник задач и упражнений по математическому анализу. № 1, 2, 3, 4, 6, 7, 151, 152, 160, 166, 168, 175
- Доказать теорему 1