Chapter 9: Partially Observable Markov Decision Problems

ROB311: Artificial Intelligence

Chandra Gummaluru

University of Toronto

Winter 2024

Recall that for an MDP with

Recall that for an MDP with

• transition probabilities, $p(\cdot|\cdot,\cdot)$

Recall that for an MDP with

- transition probabilities, $p(\cdot|\cdot,\cdot)$
- reward function, $r(\cdot, \cdot, \cdot)$

Recall that for an MDP with

- transition probabilities, $p(\cdot|\cdot,\cdot)$
- reward function, $r(\cdot, \cdot, \cdot)$

optimal quality function satisfied:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a') \right).$$

Finite MDPs: Example

Finite MDPs: Example

Want to find optimal policy for $\begin{tabular}{l} \end{table}$ with T=3 ($\gamma=1$).

s	a	q^*	q^*
,	•		
	%		
Ò	(Sall)		
\$	Ø		
	Ø		
O	(20)		
Ó	(Sal)		

Recall that for an MDP with

- transition probabilities, $p(\cdot|\cdot,\cdot)$
- reward function, $r(\cdot, \cdot, \cdot)$

optimal quality function satisfied:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a') \right).$$

Recall that for an MDP with

- transition probabilities, $p(\cdot|\cdot,\cdot)$
- reward function, $r(\cdot, \cdot, \cdot)$

optimal quality function satisfied:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a') \right).$$

Want to generalize when $p(\cdot|\cdot,\cdot)$ and/or $r(\cdot,\cdot,\cdot)$ unknown.

Finite MDPs: Example

Finite MDPs: Example

If $\gamma = 0$, then:

If $\gamma = 0$, then:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) r(s, a, s'),$$

If $\gamma = 0$, then:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) r(s, a, s'),$$

i.e., $q^*(s,a)$ is expected value of immediate reward from $s \ \text{w}/\ a.$

If $\gamma = 0$, then:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) r(s, a, s'),$$

i.e., $q^*(s, a)$ is expected value of immediate reward from $s \le a$.

Thus, can estimate $q^*(s, a)$ as follows:

If $\gamma = 0$, then:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) r(s, a, s'),$$

i.e., $q^*(s, a)$ is expected value of immediate reward from $s \le a$.

Thus, can estimate $q^*(s, a)$ as follows:

(1) simulate transition from s w/ a many (say K) times

If $\gamma = 0$, then:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) r(s, a, s'),$$

i.e., $q^*(s, a)$ is expected value of immediate reward from $s \le a$.

Thus, can estimate $q^*(s, a)$ as follows:

- (1) simulate transition from $s \neq a \pmod s$ times
- (2) compute empirical average reward

If $\gamma = 0$, then:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) r(s, a, s'),$$

i.e., $q^*(s, a)$ is expected value of immediate reward from $s \le a$.

Thus, can estimate $q^*(s, a)$ as follows:

- (1) simulate transition from s w/ a many (say K) times
- (2) compute empirical average reward

$$\bar{R}_K = \frac{1}{K} \sum_{k=1}^K r_k,$$

where r_k is reward obtained in k^{th} simulation

If $\gamma = 0$, then:

$$q^*(s, a) = \sum_{s'} p(s'|s, a) r(s, a, s'),$$

i.e., $q^*(s, a)$ is expected value of immediate reward from $s \le a$.

Thus, can estimate $q^*(s, a)$ as follows:

- (1) simulate transition from s w/ a many (say K) times
- (2) compute empirical average reward

$$\bar{R}_K = \frac{1}{K} \sum_{k=1}^K r_k,$$

where r_k is reward obtained in k^{th} simulation Can show that $\lim_{K\to\infty} \bar{R}_K = q^*(s,a)$.

Consider simpler MDP:

Simulate process from pmany times:

Simulate process from pmany times:

$$h_1 = \left\langle \left(\varnothing, \varnothing, , , 0 \right), \left(, , , , , , 4 \right) \right\rangle$$

Simulate process from _many times:

$$h_1 = \left\langle \left(\varnothing, \varnothing, , , 0 \right), \left(, , , , , 4 \right) \right\rangle$$

$$h_2 = \left\langle \left(\varnothing, \varnothing, , , 0 \right), \left(, , , , , 4 \right) \right\rangle$$

Simulate process from /m many times:

$$h_{1} = \left\langle \left(\varnothing,\varnothing, \clubsuit, 0\right), \left(\clubsuit, , , 4\right) \right\rangle$$

$$h_{2} = \left\langle \left(\varnothing,\varnothing, \clubsuit, 0\right), \left(\clubsuit, , 4\right) \right\rangle$$

$$\vdots$$

$$h_{N-1} = \left\langle \left(\varnothing,\varnothing, \clubsuit, 0\right), \left(\clubsuit, , , , , 0\right) \right\rangle$$

$$h_{N} = \left\langle \left(\varnothing,\varnothing, \clubsuit, 0\right), \left(\clubsuit, , , , , , , 0\right) \right\rangle$$

Simulate process from __ many times:

$$h_{1} = \left\langle \left(\varnothing, \varnothing, \clubsuit, 0\right), \left(\clubsuit, , , 4\right) \right\rangle$$

$$h_{2} = \left\langle \left(\varnothing, \varnothing, \spadesuit, 0\right), \left(\clubsuit, , 4\right) \right\rangle$$

$$\vdots$$

$$h_{N-1} = \left\langle \left(\varnothing, \varnothing, \spadesuit, 0\right), \left(\clubsuit, , , , , 0\right) \right\rangle$$

$$h_{N} = \left\langle \left(\varnothing, \varnothing, \spadesuit, 0\right), \left(\clubsuit, , , , , , 0\right) \right\rangle$$

Compute empirical average:

$$\bar{R}_N = \frac{4+4+\dots+2+2}{N}$$

Simulate process from __ many times:

$$h_{1} = \left\langle \left(\varnothing,\varnothing, \clubsuit, 0\right), \left(\clubsuit, , , 4\right) \right\rangle$$

$$h_{2} = \left\langle \left(\varnothing,\varnothing, \spadesuit, 0\right), \left(\clubsuit, , 4\right) \right\rangle$$

$$\vdots$$

$$h_{N-1} = \left\langle \left(\varnothing,\varnothing, \spadesuit, 0\right), \left(\clubsuit, , , , , 0\right) \right\rangle$$

$$h_{N} = \left\langle \left(\varnothing,\varnothing, \spadesuit, 0\right), \left(\clubsuit, , , , , , 0\right) \right\rangle$$

Compute empirical average:

$$\bar{R}_N = \frac{4+4+\dots+2+2}{N} \approx 2$$

$$\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

$$\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$
$$= \frac{k-1}{k} \bar{x}_{k-1} + \frac{1}{k} x_k$$

$$\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

$$= \frac{k-1}{k} \bar{x}_{k-1} + \frac{1}{k} x_k$$

$$= \bar{x}_{k-1} + \frac{1}{k} (x_k - \bar{x}_{k-1})$$

Average of x_1, x_2, \ldots :

$$\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

$$= \frac{k-1}{k} \bar{x}_{k-1} + \frac{1}{k} x_k$$

$$= \bar{x}_{k-1} + \frac{1}{k} (x_k - \bar{x}_{k-1})$$

Update rule:

$$\bar{x} \leftarrow \bar{x} + \alpha \left(x_{\mathsf{new}} - \bar{x} \right).$$

Average of x_1, x_2, \ldots :

$$\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

$$= \frac{k-1}{k} \bar{x}_{k-1} + \frac{1}{k} x_k$$

$$= \bar{x}_{k-1} + \frac{1}{k} (x_k - \bar{x}_{k-1})$$

Update rule:

$$\bar{x} \leftarrow \bar{x} + \alpha \left(x_{\mathsf{new}} - \bar{x} \right).$$
 learning rate

Apply to q function after each transition, (s, a, s'):

Apply to q function after each transition, (s, a, s'):

$$q^*(s,a) \leftarrow q^*(s,a) + \frac{1}{N(s,a)} \left(r(s,a,s') - q^*(s,a) \right)$$

Apply to q function after each transition, (s, a, s'):

$$q^*(s,a) \leftarrow q^*(s,a) + \frac{1}{N(s,a)} \left(r(s,a,s') - q^*(s,a) \right)$$

For $\gamma \neq 0$, use old q^* values:

Apply to q function after each transition, (s, a, s'):

$$q^*(s, a) \leftarrow q^*(s, a) + \frac{1}{N(s, a)} \left(r(s, a, s') - q^*(s, a) \right)$$

For $\gamma \neq 0$, use old q^* values:

$$q^*(s,a) \leftarrow q^*(s,a) + \frac{1}{N(s,a)} \left(\left[r(s,a,s') + \gamma \max_{a'} q^*(s',a') \right] - q^*(s,a) \right).$$

RL: Policy Extraction

To extract policy:

$$\pi(a|s) = \begin{cases} 1 & a = \arg\max_{a'} q^*(s, a) \\ 0 & \text{otherwise.} \end{cases}$$

RL: Estimating q^* Empirically

For original MDP, can simulate process from p w/ random actions:

RL: Estimating q^* Empirically

For original MDP, can simulate process from p w/ random actions:

$$h = \left\langle \left(\varnothing,\varnothing, \clubsuit, 0\right), \left(\clubsuit, \clubsuit, \diamondsuit, 0\right), \left(\diamondsuit, \bigcirc, \clubsuit, 0\right), \left(\clubsuit, \diamondsuit, \diamondsuit, 3\right) \right\rangle$$

- 1: **for** each episode **do**
- 2: set initial state $s \leftarrow s_0$
- 3: while $s \notin \mathcal{T}$ do
- 4: randomly choose an action in $\mathcal{A}(s)$
- 5: get next state, s', and reward r
- 6: update N(s,a) and $q^*(s,a)$ as follows:

$$q^{*}(s,a) \leftarrow q^{*}(s,a) + \frac{1}{N(s,a)} \left(r(s,a,s') + \gamma \max_{a'} q^{*}(s',a') - q^{*}(s,a) \right)$$
$$N(s,a) \leftarrow N(s,a) + 1$$

- $N(s,a) \leftarrow N(s,a) + 1$
- 7: $s \leftarrow s'$
- 8: **end while**
- 9: end for

Form a bijection b/w state-space and subset of \mathbb{N} :

define the state constants
HUNGRY, RAW, RIPE, ROTTEN, FULL, DEAD = 0, 1, 2, 3, 4, 5
states = [HUNGRY, RAW, RIPE, ROTTEN, FULL, DEAD]

Form a bijection b/w actions and subset of \mathbb{N} :

define the action constants
HUNT, PLANT, HARVEST, WAIT = 0, 1, 2, 3
actions = [HUNT, PLANT, HARVEST, WAIT]

Define the topology of the MDP:

lacktriangle a map, A, so A[s] $\equiv A(s)$

```
# the set of legal actions from each state
A = {}
A[HUNGRY] = [HUNT, PLANT]
A[RAW] = [HARVEST, WAIT]
A[RIPE] = [HARVEST]
A[ROTTEN] = [HARVEST]
```

ullet a list, tstates, so tstates $\equiv \mathcal{T}$

```
tstates = [FULL, DEAD]
```

Define the properties of the MDP:

 \bullet a map, P, so P[s,a][s2] $\equiv p(s'|s,a)$

```
# the state transition distributions
P = {}
P[HUNGRY, HUNT] = [0.0, 0.0, 0.0, 0.0, 0.5, 0.5]
P[HUNGRY, PLANT] = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0]
P[RAW, HARVEST] = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]
P[RAW, WAIT] = [0.0, 0.0, 0.7, 0.3, 0.0, 0.0]
P[RIPE, HARVEST] = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]
P[ROTTEN, HARVEST] = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]
```

ullet a map, R, so R[s,a,s2] $\equiv r(s,a,s')$

```
# the reward function
R = {}
R[HUNGRY, HUNT, FULL] = 4
R[RAW, HARVEST, FULL] = 1
R[RIPE, HARVEST, FULL] = 3
```

Define the transition dynamics of the MDP:

```
import numpy as np
def transition(s, a):
    # choose the next state based on the distribution
    snew = np.random.choice(states, p = P[s,a])
    # determine the reward
    if (s,a,snew) not in R.keys():
        rnew = 0
    else:
        rnew = R[(s,a,snew)]
    # return the next state and reward
    return snew, rnew
```

Define the Q-learning data:

ullet maps, ${f Q}$ and ${f N}$, so ${f Q}[{f s},{f a}]\equiv q^*(s,a)$ and ${f N}[{f s},{f a}]\equiv N(s,a)$

```
Q, N = {}, {}
for s in states:
    for a in A[s]:
        Q[s,a] = 0
        N[s,a] = 0
```

• a scalar, $s0 \equiv s_0$

```
s0 = HUNGRY
```

a scalar, sims, denoting # of simulations

```
sims = 500
```

Define the Q-learning algorithm:

```
for t in range(1, sims):
    snew = s0
    while snew not in tstates:
      # randomly choose an action (and get next state).
      s = snew
      a = np.random.choice(A[s])
      N(s,a) += 1
      snew, rnew = transition(s, a)
      # find the maximum q-value from new state.
      qmax = 0
      if snew not in tstates:
        for a2 in A[snew]:
          qmax = max(qmax, Q[snew, a2])
      # apply q-learning update rule.
      Q[s,a] += 1/N[s,a] * (rnew + discount * qmax - Q[s,a])
```

RL: Training versus Testing

Episodes are classified as either

- training (sim): reward accumulated during episode does not count
- testing (test): reward accumulated during episode counts

Two common scenarios:

- (1) K sims, 1 test
- (2) K tests

RL: K-Sims, 1 Test

In the case of K sims, 1 test:

- (1) select actions randomly during K sims
- (2) extract optimal policy, π^*
- (3) use π^* during test

RL: K tests

In the case of K tests:

- maximize average reward over K tests
- must balance between exploration and exploitation

Common ways to balance exploration and explotation:

- (1) ε -greedy
- (2) UCB

In episode k, choose optimal action w/ probability $\varepsilon(k)$, where:

In episode k, choose optimal action w/ probability $\varepsilon(k)$, where:

• $\varepsilon(0) \approx 0$

In episode k, choose optimal action w/ probability $\varepsilon(k)$, where:

- $\varepsilon(0) \approx 0$
- $\varepsilon(k)$ is increasing

In episode k, choose optimal action w/ probability $\varepsilon(k)$, where:

- $\varepsilon(0) \approx 0$
- $\varepsilon(k)$ is increasing
- $\varepsilon(k) \to 1$ as $k \to \infty$

In episode k, choose optimal action w/ probability $\varepsilon(k)$, where:

- $\varepsilon(0) \approx 0$
- $\varepsilon(k)$ is increasing
- $\varepsilon(k) \to 1$ as $k \to \infty$

Common choice for $\varepsilon(k)$ is 1-1/k.

RL: K tests, UCB Algorithm

In episode k, choose action that maximizes UCB(·), where:

$$\label{eq:UCB} \text{UCB}(s,a) = \begin{cases} q^*(s,a) + C\sqrt{\frac{\log(k)}{N(s,a)}} & N(s,a) > 0 \\ \infty & \text{otherwise} \end{cases}$$

and N(s,a)=# of times a taken from s.

Infinite MDPs: Example

- 1: **for** each episode **do**
- 2: set initial state $s \leftarrow s_0$
- 3: while $s \notin \mathcal{T}$ do
- 4: randomly choose an action in $\mathcal{A}(s)$
- 5: get next state, s', and reward r
- 6: update N(s,a) and $q^*(s,a)$ as follows:

$$q^*(s, a) \leftarrow q^*(s, a) + \frac{1}{N(s, a)} \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a') - q^*(s, a) \right)$$
$$N(s, a) \leftarrow N(s, a) + 1$$

- 7: $s \leftarrow s'$
- 8: end while
- 9: end for

- 1: **for** each episode **do**
- 2: set initial state $s \leftarrow s_0$
- 3: while $s \notin \mathcal{T}$ do \leftarrow possible infinite loop
- 4: randomly choose an action in $\mathcal{A}(s)$
- 5: get next state, s', and reward r
- 6: update N(s,a) and $q^*(s,a)$ as follows:

$$q^*(s, a) \leftarrow q^*(s, a) + \frac{1}{N(s, a)} \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a') - q^*(s, a) \right)$$
$$N(s, a) \leftarrow N(s, a) + 1$$

- 7: $s \leftarrow s'$
- 8: end while
- 9: end for

- 1: **for** each episode **do**
- 2: $l \leftarrow 0$
- 3: set initial state $s \leftarrow s_0$
- 4: while $s \not\in \mathcal{T}$ and $l < l_{\sf max}$ do
- 5: randomly choose an action in $\mathcal{A}(s)$
- 6: get next state, s', and reward r
- 7: update N(s,a) and $q^*(s,a)$ as follows:

$$q^{*}(s, a) \leftarrow q^{*}(s, a) + \frac{1}{N(s, a)} \left(r(s, a, s') + \gamma \max_{a'} q^{*}(s', a') - q^{*}(s, a) \right)$$
$$N(s, a) \leftarrow N(s, a) + 1$$

- 8: $l \leftarrow l + 1$
- 9: $s \leftarrow s'$
- 10: end while
- 11: end for

Frame Title

Choice of γ and l_{max} are coupled:

- $\gamma \approx 1$ requires large $l_{\rm max}$
- $\gamma \approx 0$ requires small l_{max}

Makes the following assumptions:

ullet environment modelled using state space, ${\cal S}$

- ullet environment modelled using state space, ${\cal S}$
- single agent

- ullet environment modelled using state space, ${\cal S}$
- single agent
- $S_t = \text{state after transition } t$

- ullet environment modelled using state space, ${\cal S}$
- single agent
- $S_t = \text{state after transition } t$
- $A_t = action inducing transition t$

- ullet environment modelled using state space, ${\cal S}$
- single agent
- $S_t = \text{state after transition } t$
- $A_t = action inducing transition t$
- stochastic state transitions w/ memoryless property:

$$S_T \perp S_0, A_1 \dots, A_{T-1}, S_{T-2} | S_{T-1}, A_T$$

Makes the following assumptions:

- ullet environment modelled using state space, ${\cal S}$
- single agent
- $S_t = \text{state after transition } t$
- $A_t = action inducing transition t$
- stochastic state transitions w/ memoryless property:

$$S_T \perp S_0, A_1 \dots, A_{T-1}, S_{T-2} | S_{T-1}, A_T$$

• R_t = reward for transition t, i.e., (S_{T-1}, A_T, S_T)

- ullet environment modelled using state space, ${\cal S}$
- single agent
- $S_t = \text{state after transition } t$
- $A_t = action inducing transition t$
- stochastic state transitions w/ memoryless property:

$$S_T \perp S_0, A_1 \dots, A_{T-1}, S_{T-2} | S_{T-1}, A_T$$

- R_t = reward for transition t, i.e., (S_{T-1}, A_T, S_T)
- O_t = observation of S_t

Markov Decision Processes (MDPs)

 $S_0, A_1, R_1, S_1, A_2, R_2, S_2, \dots$ form a Bayesian network:

Markov Decision Processes (MDPs)

 $S_0, A_1, R_1, S_1, A_2, R_2, S_2, \dots$ form a Bayesian network:

 $S_0, O_0, A_1, R_1, S_1, O_1, A_2, R_2, S_2, O_2 \dots$ form a Bayesian network:

 $S_0, O_0, A_1, R_1, S_1, O_1, A_2, R_2, S_2, O_2 \dots$ form a Bayesian network:

Need to specify...

Need to specify...

initial state distribution:

$$p_0(s) := \mathbb{P}[S_0 = s]$$

Need to specify...

• initial state distribution:

$$p_0(s) := \mathbb{P}[S_0 = s]$$

transition distribution:

$$p(s'|s,a) := \mathbb{P}[S_t = s'|A_t = a, S_{t-1} = s]$$

Need to specify...

• initial state distribution:

$$p_0(s) := \mathbb{P}[S_0 = s]$$

transition distribution:

$$p(s'|s,a) := \mathbb{P}[S_t = s'|A_t = a, S_{t-1} = s]$$

reward function:

$$r(s, a, s') := \text{reward for transition } (s, a, s')$$

Need to specify...

• initial state distribution:

$$p_0(s) := \mathbb{P}[S_0 = s]$$

transition distribution:

$$p(s'|s,a) := \mathbb{P}[S_t = s'|A_t = a, S_{t-1} = s]$$

reward function:

$$r(s, a, s') := \text{reward for transition } (s, a, s')$$

policy for choosing actions:

$$\pi_t(a|o_0,\ldots,o_t) := \mathbb{P}[A_t = a|O_0 = o_0,\ldots,O_t = o_t]$$

Need to specify...

• initial state distribution:

$$p_0(s) := \mathbb{P}[S_0 = s]$$

transition distribution:

$$p(s'|s,a) := \mathbb{P}[S_t = s'|A_t = a, S_{t-1} = s]$$

reward function:

$$r(s, a, s') := \text{reward for transition } (s, a, s')$$

policy for choosing actions:

$$\pi_t(a|o_0,\ldots,o_t) := \mathbb{P}[A_t = a|O_0 = o_0,\ldots,O_t = o_t]$$

measurement model:

$$m(o|s) := \mathbb{P}[O_t = o|S_t = s]$$

Now suppose wants to feed child:

Now suppose a wants to feed child:

cannot know satiety of child exactly

Now suppose a wants to feed child:

- cannot know satiety of child exactly
- whether apple is edible or not must be inferred from senses

Now suppose a wants to feed child:

- cannot know satiety of child exactly
- whether apple is edible or not must be inferred from senses

Possible observations for the apple:

Possible observations for the child's satiety:

:) :(:|

Measurement distribution for child's satiety:

	:)	: (:
,	0.0	0.8	0.2
	0.0	0.8	0.2
	0.0	0.8	0.2
	0.0	0.8	0.2
	0.8	0.2	0.0
	0.0	0.0	1.0

Measurement distribution for the apple is:

1.0	0.0	0.0	0.0	0.0
0.2	0.6	0.2	0.0	0.0
0.0	0.3	0.4	0.3	0.0
0.0	0.0	0.0	0.2	0.8
1.0	0.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0	0.0

Observe that policy is now time-dependent.

Observe that policy is now time-dependent.

If we assume agent cannot use past observations, i.e.,

$$A_t \perp O_0, \ldots, O_{t-1}|O_t,$$

Observe that policy is now time-dependent.

If we assume agent cannot use past observations, i.e.,

$$A_t \perp O_0, \ldots, O_{t-1}|O_t,$$

policy becomes time-independent,

$$\pi_t(a|o_0,\ldots,o_t) = \pi_0(a|o_t).$$

Observe that policy is now time-dependent.

If we assume agent cannot use past observations, i.e.,

$$A_t \perp O_0, \ldots, O_{t-1}|O_t,$$

policy becomes time-independent,

$$\pi_t(a|o_0,\ldots,o_t) = \pi_0(a|o_t).$$

Only need to specify π_0 .

 $S_0, O_0, A_1, R_1, S_1, O_1, A_2, R_2, S_2, O_2 \dots$ form a Bayesian network:

 $S_0, O_0, A_1, R_1, S_1, O_1, A_2, R_2, S_2, O_2 \dots$ form a Bayesian network:

... assuming $A_t \perp O_0, \ldots, O_{t-1}|O_t$.

Observe that policy is now time-dependent.

If we assume agent cannot use past observations, i.e.,

$$A_t \perp O_0, \ldots, O_{t-1}|O_t,$$

policy becomes time-independent,

$$\pi_t(a|o_0,\ldots,o_t) = \pi_0(a|o_t).$$

Only need to specify π_0 .

Observe that policy is now time-dependent.

If we assume agent cannot use past observations, i.e.,

$$A_t \perp O_0, \ldots, O_{t-1}|O_t,$$

policy becomes time-independent,

$$\pi_t(a|o_0,\ldots,o_t) = \pi_0(a|o_t).$$

Only need to specify π_0 .

But assumption is not true in general.

Maintain a belief (probability distribution) over the states:

Maintain a belief (probability distribution) over the states:

Assume actual state is the most likely state.

Since actual state is unknown, so are legal actions.

Can fix by assuming A(s) = A(s') := A for all s, s':

- if $a \notin \mathcal{A}(s)$, then p(s'|s,a) = 0 for all $s' \neq s$
- if $a \notin \mathcal{A}(s)$, then r(s, a, s') = 0 for all s'

Let b_t denote the belief after t observations:

Let b_t denote the belief after t observations:

ullet b_t is a probability distribution

Let b_t denote the belief after t observations:

- ullet b_t is a probability distribution
- $b_t(s_t|a_{1:t}, o_{0:t}) = \mathbb{P}[S_t = s_t|A_t = a_t, O_{0:t} = o_{0:t}]$

Let b_t denote the belief after t observations:

- b_t is a probability distribution
- $b_t(s_t|a_{1:t}, o_{0:t}) = \mathbb{P}[S_t = s_t|A_t = a_t, O_{0:t} = o_{0:t}]$

Initial belief distribution is:

$$b_0(s_0) = \mathbb{P}[S_0 = s_0].$$

Let b_t denote the belief after t observations:

- b_t is a probability distribution
- $b_t(s_t|a_{1:t}, o_{0:t}) = \mathbb{P}[S_t = s_t|A_t = a_t, O_{0:t} = o_{0:t}]$

Initial belief distribution is:

$$b_0(s_0) = \mathbb{P}[S_0 = s_0].$$

Need a way to find $b_t(\cdot)$ from b_{t-1} , $a_{1:t}$, and $o_{0:t}$.

$$b_t(s_t|a_{1:t},o_{0:t}) := \mathbb{P}[s_t|o_{0:t},a_{1:t}]$$

$$\begin{aligned} b_t(s_t|a_{1:t},o_{0:t}) &:= \mathbb{P}[s_t|o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[s_t,o_{0:t},a_{1:t}] \end{aligned}$$

$$\begin{aligned} b_t(s_t|a_{1:t},o_{0:t}) &:= \mathbb{P}[s_t|o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[s_t,o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[o_t|s_t]\mathbb{P}[s_t,o_{0:t-1},a_{1:t}] \end{aligned}$$

$$b_{t}(s_{t}|a_{1:t}, o_{0:t}) := \mathbb{P}[s_{t}|o_{0:t}, a_{1:t}]$$

$$= \eta \mathbb{P}[s_{t}, o_{0:t}, a_{1:t}]$$

$$= \eta \mathbb{P}[o_{t}|s_{t}]\mathbb{P}[s_{t}, o_{0:t-1}, a_{1:t}]$$

$$= \eta m(o_{t}|s_{t}) \sum_{s_{t-1}} \mathbb{P}[s_{t}, s_{t-1}, o_{0:t-1}, a_{1:t}]$$

$$\begin{split} b_t(s_t|a_{1:t},o_{0:t}) &:= \mathbb{P}[s_t|o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[s_t,o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[o_t|s_t]\mathbb{P}[s_t,o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} \mathbb{P}[s_t,s_{t-1},o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} \mathbb{P}[s_t|s_{t-1},a_t]\mathbb{P}[s_{t-1},o_{0:t-1},a_{1:t}] \end{split}$$

$$\begin{split} b_t(s_t|a_{1:t},o_{0:t}) &:= \mathbb{P}[s_t|o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[s_t,o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[o_t|s_t]\mathbb{P}[s_t,o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} \mathbb{P}[s_t,s_{t-1},o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} \mathbb{P}[s_t|s_{t-1},a_t]\mathbb{P}[s_{t-1},o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t)\mathbb{P}[s_{t-1},o_{0:t-1},a_{1:t}] \end{split}$$

$$\begin{split} b_t(s_t|a_{1:t},o_{0:t}) &:= \mathbb{P}[s_t|o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[s_t,o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[o_t|s_t] \mathbb{P}[s_t,o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} \mathbb{P}[s_t,s_{t-1},o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} \mathbb{P}[s_t|s_{t-1},a_t] \mathbb{P}[s_{t-1},o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) \mathbb{P}[s_{t-1},o_{0:t-1},a_{1:t}] \\ &= m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) \mathbb{P}[s_{t-1}|o_{0:t-1},a_{1:t-1}] \end{split}$$

$$\begin{split} b_t(s_t|a_{1:t},o_{0:t}) &:= \mathbb{P}[s_t|o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[s_t,o_{0:t},a_{1:t}] \\ &= \eta \mathbb{P}[o_t|s_t] \mathbb{P}[s_t,o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} \mathbb{P}[s_t,s_{t-1},o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} \mathbb{P}[s_t|s_{t-1},a_t] \mathbb{P}[s_{t-1},o_{0:t-1},a_{1:t}] \\ &= \eta m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) \mathbb{P}[s_{t-1},o_{0:t-1},a_{1:t}] \\ &= m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) \mathbb{P}[s_{t-1}|o_{0:t-1},a_{1:t-1}] \\ &= m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) b_{t-1}(s_{t-1}|a_{1:t-1},o_{1:t-1}) \end{split}$$

Putting it all together:

$$b_t(s_t|a_{1:t},o_{0:t}) = m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) b_{t-1}(s_{t-1}|a_{1:t-1},o_{0:t-1}).$$

Putting it all together:

$$b_t(s_t|a_{1:t},o_{0:t}) = m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) b_{t-1}(s_{t-1}|a_{1:t-1},o_{0:t-1}).$$

Only holds for $t \geq 1$.

Putting it all together:

$$b_t(s_t|a_{1:t},o_{0:t}) = m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) b_{t-1}(s_{t-1}|a_{1:t-1},o_{0:t-1}).$$

Only holds for $t \geq 1$.

For t = 0 (assuming uniform prior):

$$b_0(s_0|o_0) = \frac{\mathbb{P}[o_0|s_0]\mathbb{P}[s_0]}{\sum_s \mathbb{P}[o_0|s]\mathbb{P}[s]}$$

Putting it all together:

$$b_t(s_t|a_{1:t},o_{0:t}) = m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) b_{t-1}(s_{t-1}|a_{1:t-1},o_{0:t-1}).$$

Only holds for $t \geq 1$.

For t = 0 (assuming uniform prior):

$$b_0(s_0|o_0) = \frac{\mathbb{P}[o_0|s_0]\mathbb{P}[s_0]}{\sum_s \mathbb{P}[o_0|s]\mathbb{P}[s]} = \frac{m(o_0|s_0)b_0(s_0)}{\sum_s m(o_0|s)b_0(s)}$$

Putting it all together:

$$b_t(s_t|a_{1:t},o_{0:t}) = m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) b_{t-1}(s_{t-1}|a_{1:t-1},o_{0:t-1}).$$

Only holds for $t \geq 1$.

For t = 0 (assuming uniform prior):

$$b_0(s_0|o_0) = \frac{\mathbb{P}[o_0|s_0]\mathbb{P}[s_0]}{\sum_s \mathbb{P}[o_0|s]\mathbb{P}[s]} = \frac{m(o_0|s_0)b_0(s_0)}{\sum_s m(o_0|s)b_0(s)} = \frac{m(o_0|s_0)}{\sum_s m(o_0|s)}.$$

Assume the following for ::

Assume the following for ::

• initial distribution, $b_0(s_0)$ over states is uniform

Assume the following for ::

- initial distribution, $b_0(s_0)$ over states is uniform
- action sequence is

$$\langle a_1, a_2, a_3 \rangle = \langle , \bigcirc, \bigcirc \rangle$$

Assume the following for 🧥:

- initial distribution, $b_0(s_0)$ over states is uniform
- action sequence is

$$\langle a_1, a_2, a_3 \rangle = \langle , \bigcirc, \bigcirc \rangle$$

observation sequence is

$$\langle o_0, o_1, o_2, o_3 \rangle = \left\langle \left(: (, \bigcirc), \left(: (, \bigcirc), \left(: (, \bigcirc) \right), \left(: (, \bigcirc) \right), \left(: (, \bigcirc) \right) \right\rangle \right\rangle$$

Assume the following for \cite{A} :

- initial distribution, $b_0(s_0)$ over states is uniform
- action sequence is

$$\langle a_1, a_2, a_3 \rangle = \langle , \bigcirc, \bigcirc \rangle$$

observation sequence is

$$\left\langle o_{0},o_{1},o_{2},o_{3}\right\rangle =\left\langle \left(:\left(,\rule{0cm}{1.5em}\right),\left(:\left(,\rule{0cm}{1.5em}\right),\left(:\left(,\rule{0cm}{1.5em}\right),\left(:\left(,\rule{0cm}{1.5em}\right)\right)\right\rangle$$

Want to find state distribution, $b_3(s_3|a_{1:3},o_{0:3})$.

Recall relevant equations:

$$b_0(s_0|o_0) = \frac{m(o_0|s_0)}{\sum_s m(o_0|s)}$$

and

$$b_t(s_t|a_{1:t},o_{0:t}) = m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t) b_{t-1}(s_{t-1}|a_{1:t-1},o_{0:t-1}).$$

Calculate the beliefs:

s	$b_0(s)$	$b_0(s o_0)$	$b_1(s o_{0:1},a_1)$	$b_2(s o_{0:2},a_{1:2})$	$b_3(s o_{0:3},a_{1:3})$
,					
6					
-					

POMDPs: Measurement Models

Measurement distributions are:

					:)	: (:
1.0	0.0	0.0	0.0	0.0	0.0	0.8	0.2
0.2	0.6	0.2	0.0	0.0	0.0	0.8	0.2
0.0	0.3	0.4	0.3	0.0	0.0	0.8	0.2
0.0	0.0	0.0	0.2	0.8	0.0	0.8	0.2
1.0	0.0	0.0	0.0	0.0	0.0	0.8	0.2
1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0