5

CLAIMS

What is claimed is:

- 1. A program storage device accessible by a computer, tangible embodying a program of instructions executable by said computer to perform method steps for protein structure alignment, said methods steps comprising of:
 - (a) receiving a first protein with N₁ atoms;
 - (b) receiving a second protein with N₂ atoms;
 - (c) making an initial alignment of said atoms of said first protein to said atoms of said second protein;
 - (d) calculating all atomic distances between said coordinates of said atoms of said first protein and said atomic coordinates of said atoms of said second protein;
 - (e) defining a matrix with a plurality of binary assignment variables wherein each binary assignment variable corresponding to either a match or to a gap;
 - (f) defining one or more mean field equations wherein said plurality of binary assignment variables are replaced by a plurality of continuous mean field variables, whereby said each mean field variable has a value between 0 and 1, and a plurality of forces that are proportional to said atomic distances squared;
 - (g) formulating an energy function, wherein:

said energy function includes a first cost for each said atomic distance wherein said distance is a weighted body transformation using said continuous mean field variables of said first protein while keeping said second protein fixed;

said energy function includes a second cost λ for each said gap by either said first protein or said second protein,

said energy function includes a third cost δ for a position-independent consecutive said gap;

20

25

10

5

said energy function includes a fourth cost for enforcing a constraint to satisfy that each said atom of said first protein either aligns with said atom of said second protein or to said gap;

- (h) minimizing by an iterative process of said energy function and updating said continuous mean field variables in said mean field equations for a decreasing set of temperatures T until convergence to a predefined convergence value is reached; and
- (i) after convergence rounding off said continuous mean field variables to either 0 or 1.
 - 2. The method as set forth in claim 1, wherein said step of formulating an energy function further comprises a fifth cost for discouraging crossed matches.
 - 3. The method as set forth in claim 1, wherein said second cost λ is a value between 0.01 and 0.5.
 - 4. The method as set forth in claim 3, wherein said second cost λ for a α -site in a α -helix has a larger said second cost λ by a factor between 0.01 and 0.5 of said second cost λ .
 - 5. The method as set forth in claim 3, wherein said second cost λ for a β -sheet has a larger said second cost λ by a factor between 0.01 and 0.5 of said second cost λ .
 - 6. The method as set forth in claim 1, wherein said third cost δ is a function of said second cost λ divided by a value between 1 and 20.
 - 7. The method as set forth in claim 1, wherein fourth cost includes a parameter γ with a value between 0 and 0.2.

25

5

10

- 8. The method as set forth in claim 1, wherein said step of minimizing by an iterative process includes an iteration parameter ε with a value between 0.5 and 0.95.
- 9. The method as set forth in claim 1, wherein said step of minimizing by an iterative process further comprises the step of initiating said temperature to a value between 1 and 100.
- 10. A method of using a mean field approach for protein structure alignment, comprising the steps of:
 - (a) providing a first protein with N_1 atoms;
 - (b) providing a second protein with N₂ atoms;
 - (c) making an initial alignment of said atoms of said first protein to said atoms of said second protein;
 - (d) calculating all atomic distances between said coordinates of said atoms of said first protein and said atomic coordinates of said atoms of said second protein;
 - (e) defining a matrix with a plurality of binary assignment variables wherein each binary assignment variable corresponding to either a match or to a gap;
 - (f) defining one or more mean field equations wherein said plurality of binary assignment variables are replaced by a plurality of continuous mean field variables, whereby said each mean field variable has a value between 0 and 1, and a plurality of forces that are proportional to said atomic distances squared;
 - (g) formulating an energy function, wherein:
 said energy function includes a first cost for each said atomic distance wherein said distance
 is a weighted body transformation using said continuous mean field variables of said first
 protein while keeping said second protein fixed;

20

25

said energy function includes a second cost λ for each said gap by either said first protein or said second protein,

said energy function includes a third cost δ for a position-independent consecutive said gap; said energy function includes a fourth cost for enforcing a constraint to satisfy that each said atom of said first protein either aligns with said atom of said second protein or to said gap;

- (h) minimizing by an iterative process of said energy function and updating said continuous mean field variables in said mean field equations for a decreasing set of temperatures T until convergence to a predefined convergence value is reached; and
- (i) after convergence rounding off said continuous mean field variables to either 0 or 1.
 - 11. The method as set forth in claim 10, wherein said step of formulating an energy function further comprises a fifth cost for discouraging crossed matches.
 - 12. The method as set forth in claim 10, wherein said second cost λ is a value between 0.01 and 0.5.
 - 13. The method as set forth in claim 12, wherein said second cost λ for a α -site in a α -helix has a larger said second cost λ by a factor between 0.01 and 0.5 of said second cost λ .
 - 14. The method as set forth in claim 12, wherein said second cost λ for a β -sheet has a larger said second cost λ by a factor between 0.01 and 0.5 of said second cost λ .
 - 15. The method as set forth in claim 10, wherein said third cost δ is a function of said second cost λ divided by a value between 1 and 20.

- 16. The method as set forth in claim 10, wherein fourth cost includes a parameter γ with a value between 0 and 0.2.
- 17. The method as set forth in claim 10, wherein said step of minimizing by an iterative process includes an iteration parameter ε with a value between 0.5 and 0.95.
- 18. The method as set forth in claim 10, wherein said step of minimizing by an iterative process further comprises the step of initiating said temperature to a value between 1 and 100.