Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 7061 Avaliação I – 2015/2 (22/09/2015)

Questão 1: [5,0 pontos] Para o circuito a seguir assuma que: $R_1=R_2=R_3=R_4=R_5=R_6=R_G=R$; os amplificadores operacionais u1 e u2 são idênticos e possuem tensão de offset não nula; o amplificador operacional u3 possui ganho de laço aberto finito; os operacionais saturam em ±15V; as demais características dos operacionais são ideais. (a) Calcule V_{out} em função dos parâmetros do circuito, do amplificador operacional e de V_1 e V_2 ; (b) Assumindo-se que $R=10k\Omega$, $V_{os1}=0$, $V_{os2}=0$, $A\rightarrow\infty$, e $V_1=10V$, qual é a faixa de valores de V_2 que pode ser aplicado no circuito sem que nenhum dos amplificadores operacionais sature?

Questão 2: [3,0 pontos] Assumindo que a tensão v_i varia linearmente entre 0 e 150V, determine a tensão v_o ao longo do tempo. Assuma diodos ideais e: (a) apresente v_i e v_o sobre o mesmo eixo do tempo; (b) apresente o gráfico $v_i \times v_o$.

Questão 3: [2,0 pontos] Para o amplificador operacional ideal a seguir, sendo $v_{in}>0$, determine: (a) a equação da tensão de saída V_{out} , em função dos parâmetros do circuito, assumindo que o diodo é representado por sua equação exponencial; (b) Baseado no primeiro item dessa questão informe qual é a operação matemática realizada pelo circuito quando $v_{in}/RI_s>>1$; (b) o ponto quiescente do diodo através do método gráfico, assumindo que $v_{in}=4V$ e $R=1k\Omega$.

Curva do diodo: $i_D = I_s(e^{\frac{v_d}{\eta v_T}} - 1)$

