Lecture 24, Oct. 25

24.1 Theorem (The Division Algorithm). Let $a, b \in \mathbb{Z}$ with $b \neq 0$. There exist unique $q, r \in \mathbb{Z}$ such that a = qb + r and $0 \leq r < |b|$

Since $b \neq 0$, either b > 0 or b < 0.

Case 1: Suppose b > 0. Let $q = \lfloor a/b \rfloor$ $(q \le a/b \text{ and } q+1 > a/b)$. Let r = a - qb.

Proof. Since $q \le a/b$ we have

$$qb \le a$$
$$0 \le a - qb$$
$$0 < r$$

Since q + t > a/b

$$(q+1)b > a$$

$$qb+b > a$$

$$b > a - qb$$

$$b > r$$

Thus r < b = |b|

Another proof. Suppose b > 0 and a > 0. Consider the sequence

Eventually, the terms kb exceed a. Choose $q \ge 0$ so that $qb \le a$ and (q+1)b > a. (In fact, we choose q = max(S) where $S = \{t \ge - \mid tb \le a\}$ and we have $S \ne \emptyset$ since $0 \in S$ and S is bounded above by a+1)

Then we have

$$qb \le a$$
$$0 \le a - qb$$
$$0 \le r$$

and

$$(q+1)b > a$$

$$qb+b > a$$

$$b > a - qb$$

$$b > r$$

So r < b = |b|.

Case 2: Suppose b < 0. Let c = -b so c > 0. Using the result of Case 1 we can choose $p, r \in \mathbb{Z}$ so that a = pc + r and $0 \le r < c$. Then a = -pb + r. So we can choose q = -p to get a = qb + r and $0 \le r < |b|$.

Proof of Uniqueness. Suppose that

$$a = qb + r$$
 with $0 \le r < |b|$

and Suppose that

$$a = pb + s$$
 with $0 \le r < |b|$

Suppose, for a contradiction, that $r \neq s$. Then $0 \leq r < s < |b|$. Since r < s we have s - r > 0 Since $r \geq 0$ and s < |b| we have $s - r \leq s < |b|$. Thus 0 < s - r < |b|. Since a = qb + r and a = pb + s,

$$qb + r = pb + s$$
$$qb - pb = s - r$$
$$(q - p)b = s - r$$

Thus $b \mid (s - r)$

. . .

Leads to contradiction.

Thus r = s.

. . .

Then p = q

24.2 Theorem (The Euclidean Algorithm with Back-substitution). Let $a, b \in \mathbb{Z}$, and let d = gcd(a, b). Then there exist $s, t \in \mathbb{Z}$ such that as + bt = d.

The proof of the theorem provides an **Algorithm** (that is a systematic procedure) called the **The Euclidean Algorithm** for computing d = gcd(a, b) and an algorithm, called **Back-Substitution**, for finding $s, t \in \mathbb{Z}$ such that as + bt = d.