Al Development Workflow Assignment

Part 1: Short Answer Questions

1. Problem Definition

- Hypothetical AI Problem: Predicting employee attrition in a large corporation.
- Objectives:
 - 1. Identify employees at high risk of leaving.
 - 2. Reduce overall attrition rate by 10% in one year.
 - 3. Provide actionable insights for HR interventions.
- · Stakeholders:
 - o Human Resources Department
 - o Department Managers
- . Key Performance Indicator (KPI):
 - Percentage reduction in actual attrition rate after model deployment.

2. Data Collection & Preprocessing

- Data Sources:
 - 1. Employee HR records (demographics, tenure, performance).
 - 2. Employee engagement survey results.
- Potential Bias:
 - Survey response bias: Employees who are dissatisfied may be less likely to complete surveys, skewing the data.
- · Preprocessing Steps:
 - 1. Handle missing values (e.g., impute or remove incomplete records).
 - 2. Normalize numerical features (e.g., salary, tenure).
 - 3. Encode categorical variables (e.g., department, job role)

3. Model Development

- Model Choice: Random Forest robust to overfitting, handles mixed data types, and provides feature importance.
- Data Splitting: 70% training, 15% validation, 15% test (stratified by attrition label).
- Hyperparameters to Tune:
 - 1. Number of trees (n_estimators): Affects model complexity and performance.
 - 2. Maximum tree depth (max_depth): Controls overfitting.

4. Evaluation & Deployment

- Evaluation Metrics:
 - 1. F1 Score balances precision and recall, important for imbalanced classes.
 - 2. ROC-AUC measures overall model discrimination.
- Concept Drift:
 - When the statistical properties of input data change over time, reducing model accuracy.
 - Monitoring: Track model performance metrics over time and set up alerts for significant drops.
- · Technical Challenge:
 - Scalability ensuring the model can handle predictions for thousands of employees in real-time.

Part 2: Case Study Application

Problem Scope

- Problem: Predict patient readmission risk within 30 days post-discharge
- Objectives:
 - o Identify high-risk patients for targeted interventions.
 - Reduce readmission rates and associated costs.
- Stakeholders:
 - Hospital administrators
 - o Clinicians (doctors, nurses)

Data Strategy

- Data Sources:
 - Electronic Health Records (EHRs)
 - · Patient demographics and social determinants
- Ethical Concerns:
 - 1. Patient privacy and data security.
 - 2. Potential for algorithmic bias affecting vulnerable groups.
- Preprocessing Pipeline:
 - o Data cleaning (remove duplicates, handle missing values)
 - Feature engineering (e.g., count of previous admissions, comorbidity index)
 - o One-hot encoding for categorical variables (e.g., discharge disposition)
 - o Normalization of continuous variables (e.g., age, lab results)

Model Development

- Model Choice: Logistic Regression interpretable, suitable for binary classification, and widely used in healthcare.
- Hypothetical Confusion Matrix:

	Predicted Readmit	Predicted No Readmit
Actual Readmit	30	10
Actual No Readmit	15	45

Precision: 30 / (30+15) = 0.67
 Recall: 30 / (30+10) = 0.75

Deployment

- Integration Steps:
 - 1. Develop API for model predictions.
 - 2. Integrate with hospital EHR system.
 - 3. Train staff on model usage and interpretation.
- Regulatory Compliance:
 - Ensure all data handling and storage comply with HIPAA.
 - o Regular audits and access controls.

Optimization

• Overfitting Solution: Use regularization (e.g., L1/L2 penalty in logistic regression).

Part 3: Critical Thinking

Ethics & Bias

- Impact of Biased Data:
 - o Biased training data may lead to unfair predictions, e.g., underestimating risk for certain demographic groups, resulting in unequal care.
- Mitigation Strategy:
 - o Implement fairness-aware algorithms and regularly audit model outputs for disparate impact.

Trade-offs

- Interpretability vs. Accuracy:
 - Highly accurate models (e.g., deep neural networks) may be less interpretable, which is problematic in healthcare where decisions must be
 explainable. Logistic regression or decision trees offer more transparency.
- · Limited Resources Impact:
 - Resource constraints may necessitate simpler models (e.g., logistic regression) that require less computation and are easier to deploy.

Part 4: Reflection & Workflow Diagram

Reflection

- Most Challenging Part: Ensuring data quality and addressing bias, as healthcare data is often messy and sensitive.
- Improvements: With more time/resources, I would collect more diverse data and involve domain experts in feature engineering.

Workflow Diagram Description

- Stages:
 - 1. Problem Definition
 - 2. Data Collection
 - 3. Data Preprocessing
 - 4. Model Development
 - Model Evaluation
 - 6. Deployment
 - 7. Monitoring & Maintenance
- (See diagrams/workflow_diagram.png for the visual flowchart.)

References

• scikit-learn documentation: https://scikit-learn.org/stable/

- pandas documentation: https://pandas.pydata.org/HIPAA guidelines: https://www.hhs.gov/hipaa/index.html