

MEAer e MEFT 2020/2021

Teresa Mendes de Almeida

Aula Prática P6

MATÉRIA: análise de circuitos com díodos (modelos lineares por troços).

AULA PRÁTICA: serão resolvidos alguns dos problemas ou algumas alíneas dos problemas aqui propostos; os restantes problemas e/ou alíneas são deixados como exercício para trabalho autónomo (as soluções estão no final).

AULA ONLINE: o acesso à sessão zoom é enviado por email para os alunos inscritos em cada horário das aulas práticas. A validação é feita através das credenciais oficiais no domínio do Técnico. O endereço para envio do email é o que está registado no fenix.

O QUE É PRECISO: acesso simultâneo ao enunciado e ao conteúdo da sessão zoom (2 monitores e écran estendido, enunciado em papel, etc.), lápis e papel para notas (ou equivalente digital) e máquina de calcular.

Problema 1

Problema 2

Is the LED on the circuit emitting light? Use the ideal diode model. $.. \ V1 = 12 V \ .. \ V2 = -30 V \ .. \ R4 = 10 \Omega \ .. \ R5 = 12 \Omega \ ..$ No Yes

MEAer e MEFT 2020/2021

Teresa Mendes de Almeida

Aula Prática P6

Problema 3

Escolha a afirmação correcta, admitindo para o díodo de junção pn um modelo ideal.

- a) $v_1(t) = 10V \implies$ o díodo está a conduzir (ON) e $i_2(t) = 2mA$.
- b) $v_1(t) = -5V \implies$ o díodo está cortado (OFF) e $i_2(t) = -4mA$.
- c) O díodo está cortado (OFF) quando $v_1(t) > 0V$.
- d) Nenhuma das respostas anteriores.

Problema 4

Problema 5

Admita para o díodo um modelo linear por troços com $\,V_{\!\scriptscriptstyle D0}=0.6V\,$ e escolha a afirmação correcta.

- a) A resistência equivalente vista pelo díodo é $R_1 // R_2$.
- b) $I_3 < -0.5mA \implies \text{diodo ON}.$
- c) $I_3 < 0.5mA \implies \text{diodo OFF.}$
- d) Nenhuma das respostas anteriores.

 $V_{D0} = 0.6V$ $R_1 = 1.2k\Omega$ $R_2 = 6.8k\Omega$

MEAer e MEFT 2020/2021

Teresa Mendes de Almeida

Aula Prática P6

Problema 6

Escolha a afirmação correcta para o circuito da figura, considerando para o díodo um modelo linear por troços com $V_{D0}=0.7V$, $R_{B}=3.5k\Omega$ e $R_{C}=350\Omega$.

- a) $v_A(t) = 1 + 3\cos(\omega t)V$ \Rightarrow O díodo está sempre a conduzir.
- b) $v_A(t) = 2.8V \implies i_D(t) = 1mA \text{ e } i_C(t) = 2mA$.
- c) $v_A(t) = -11.2V \implies i_D(t) = 1mA \text{ e } i_C(t) = -2mA$.
- d) Nenhuma das respostas anteriores.

Problema 7

Problema 8

Using the voltage source + resistor model for the diode, find Vba. Use VD = 0.78V and RD = 30Ω . \therefore I1 = -89μ A \therefore V2 = 2mV \therefore R3 = $62k\Omega$ \therefore

MEAer e MEFT 2020/2021

Teresa Mendes de Almeida

Aula Prática P6

Problema 9

Admita o sinal de entrada $v_1(t) = 20\cos\left(100\pi t\right) V$, $R = 5\mathrm{k}\Omega$ e, para o díodo de junção, considere o modelo de díodo ideal. Escolha a afirmação correcta acerca da função realizada pelo circuito.

- $\mathbf{a}) \text{ A característica de transferência \'e: } v_2\left(t\right) = \begin{cases} 0 \mathbf{V} &, v_1\left(t\right) \geq 0 \mathbf{V} \\ v_1\left(t\right) / 2 &, v_1\left(t\right) < 0 \mathbf{V} \end{cases}.$
- **b**) O circuito detecta os picos negativos de $v_1(t)$.
- c) O circuito limita inferiormente a tensão.
- d) Nenhuma das respostas anteriores.

Problema 10

Admita o modelo ideal para o díodo e $v_2(t) = 10\cos(\omega t)$ V . Escolha a afirmação verdadeira.

a)
$$V_1 = -5V \implies v_3(t) = 5 + 10\cos(\omega t)V$$
.

b)
$$V_1 = 5V$$
 \Rightarrow o díodo está cortado e $v_3(t) = v_2(t)$.

- c) $V_1 = -4V \implies$ o circuito limita inferiormente a tensão e o valor máximo de $v_3(t)$ é -4V.
- d) Nenhuma das respostas anteriores.

Problema 11

Escolha a afirmação verdadeira, admitindo para o LED um modelo linear por troços com $V_{D0} = 1.6 \mathrm{V}$.

- a) $I_1 = 4\text{mA} \implies V_2 = 4\text{V}$.
- **b**) $I_1 > 0A \implies \text{LED on (aceso)}.$
- c) $I_1 = 6\text{mA} \implies I_L = 2.6\text{mA}$.
- d) Nenhuma das respostas anteriores.

Problema 12

Admita um sinal de entrada $v_{in}(t)=24\cos\left(\pi10^4t\right)$ V e para os díodos de junção considere um modelo linear por troços com $V_{D0}=0.7$ V. Escolha a afirmação correta acerca da função realizada pelo circuito.

- a) A característica de transferência é: $v_{out}(t) = \begin{cases} -1.4V & , v_{in}(t) < 1.4V \\ v_{in}(t) & , v_{in}(t) \ge 1.4V \end{cases}$
- ${f b})$ O circuito realiza um retificador de meia-onda negativo.
- c) O circuito limita inferiormente a tensão.
- d) Nenhuma das respostas anteriores.

MEAer e MEFT 2020/2021

Teresa Mendes de Almeida

Aula Prática P6

Problema 13

Sabendo que $v_{in}(t) = 20\sin(\omega t)$ V e $v_{o}(t)$ é o sinal de saída, escolha a afirmação verdadeira.

- a) O circuito realiza um detector de picos negativos e quanto menor for o valor da capacidade, menor será o valor da ondulação em $v_O(t)$.
- b) O circuito realiza um limitador duplo.
- c) O circuito realiza um rectificador de ½-onda negativo.
- d) Nenhuma das respostas anteriores.

TÉCNICO LISBOA

Teoria dos Circuitos e Fundamentos de Electrónica

MEAer e MEFT 2020/2021

Teresa Mendes de Almeida

Aula Prática P6

Soluções

Problema 1

D OFF

$$P_5 = -140.625 nW$$

Problema 2

Não.

Problema 3

c) O díodo está cortado (OFF) quando $v_1(t) > 0V$.

Problema 4

D ON

$$P_1 = -38.7 \, mW$$

Problema 5

b) $I_3 < -0.5 mA \implies \text{diodo ON}.$

Problema 6

c)
$$v_A(t) = -11.2V \implies i_D(t) = 1mA \text{ e } i_C(t) = -2mA$$
.

Problema 7

Sim.

Problema 8

$$D \text{ on } \rightarrow V_{ba} = -782.29 mV$$

Problema 9

Α

Problema 10

D

Problema 11

С

Problema 12

 \mathcal{C}

Problema 13

D