(NATURAL SCIENCE)

Vol. 62 No. 5 JUCHE105 (2016).

방사성전기영동분석체계를 리용한 방사성In, Ga화합물의 전기영동에 대한 연구

정철진, 석철

전해질용액속에서의 수평식전기영동법은 미량의 무담체방사성핵종의 상태와 많은 물리화학적, 열력학적 및 운동학적상수들을 결정할수 있는 편리한 방법이다.[3-8]

우리는 방사성전기영동분석체계를 리용하여 ¹¹¹In³⁺과 ⁶⁷Ga(OH)₃의 전기영동도와 이온 세기사이의 관계, In-DTPA의 안정상수 등을 결정하였다.

실 험 방 법

방사선스펙트르분석기의 변환통로는 512이며 방사능은 NaI(Tl) 섬광검출기로 측정하였다.[1] pH는 완충용액으로, 이온세기는 KNO₃ 으로 조절하고 방사성원천으로는 ¹¹¹InCl₃을 리용하였다.

최대방사능판정법(그림 1)으로 인디움이온을 무한휘석할 때 전 기영동도를 결정하였다.

5mL(200kBq)정도의 In³⁺용액을 전기영동관에 주입하고 고압을 걸어주었다. 형성된 방사능구역은 전기영동관에서 전기마당(10V/cm)에 의하여 이동해간다. 다음 전기마당을 없애고 영동관의 방사능분포를 측정하였다.

실험결과 및 해석

¹¹¹In(Ⅲ)이온의 무한희석때 전기영동도결정 매질의 이온세기에 따

전기영 <u>다음</u> 정 매질의 이온세기에 따 그림 1. 르는 In이온의 전기영동

도변화는 그림 2와 같다.

전기영동도와 이온세기사이에는 다음과 같은 경험식이 성립한다.[6]

$$U(I) = U_0 - (B_1 U_0 + B_2) \frac{\sqrt{I}}{1 + B_3 \sqrt{I}}$$
 (1)

그림 2로부터 결정한 In이온의 무한희석때 전 기영동도는 6.5·10⁻⁴cm²·V⁻¹·s⁻¹로서 선행연구결과 (6.5·10⁻⁴cm²·V⁻¹·s⁻¹[3])와 일치하였다.

그림 1. 최대방사능판정 알고리듬

핵좀에 따르는 전기영동도변화 ¹¹¹InCl₃용액과 ¹³⁷CsNO₃용액을 동시에 영동관에 주입하고 영동시간에 따르는 거리변화를 측정한 결과는 그림 3, 4와 같다.

그림 4. ¹³⁷CsNO₃용액에서 영동시간에 따르는 거리변화

그림 3, 4에 의하여 매 용액의 전기영동도값을 계산한 결과 ¹³⁷CsNO₃용액에서 *U*=(7.48 ±0.08)·10⁻⁴cm²·V⁻¹·s⁻¹, ¹¹¹InCl₃용액에서 *U*=(5.86±0.05)·10⁻⁴cm²·V⁻¹·s⁻¹이다.

따라서 $^{137}\mathrm{Cs}^+$ 과 $^{111}\mathrm{In}^{3+}$ 을 동시에 표식하여 핵종에 따르는 이온의 전기영동도를 결정할 수 있다.

In-DTPA의 안정상수결정과 ⁶⁷Ga(OH)₃의 수화과정 ¹¹¹In을 리용하여 In-DTPA를 표식하 고 온도 25℃, 전기마당의 세기 10V/cm, 용 액의 이온세기 0.1의 조건에서 pH에 따르는 In-DPTA의 전기영동도변화를 측정한 결과 는 그림 5와 같다.

그림 5로부터 결정한 In-DTPA의 안정 상수값은 β≈1.14·10²⁹ 또는 lgβ≈29.06이다.

온도 25℃, 용액의 이온세기 0.1, 전기마당의 세기 10V/cm의 조건에서 pH에 따르는

그림 5. pH에 따르는 In-DTPA의 전기영동도변화

⁶⁷Ga(OH)₃의 전기영동도변화를 측정한 결과는 그림 6과 같다.

그림 6. pH에 따르는 ⁶⁷Ga(OH)₃의 전기영동도변화

그림 6으로부터 계산한 Ga(OH)₃의 산 및 염기로서의 해리상수값은 표 1, 2와 같다.

뀨	1	Ga(OH)	100	염기로서의	해리상수값
	٠.	Out OII	13-1		

тН	$\overline{U}/(\cdot 10^{-4} \text{cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1})$	실험값	리론값[2]
pm	0 /(·10 cm · v ·s)		口 七 版[2]
10.52	1.97	$k_1 = 7.03 \cdot 10^{-11}$	_
11.02	3.74	$k_2 = 1.74 \cdot 10^{-11}$	$1.6 \cdot 10^{-11}$
11.85	5.24	$k_3 = 1.41 \cdot 10^{-12}$	4.10^{-12}

표 2. Ga(OH)3의 산으로서의 해리상수값

рН	\overline{U} /(·10 ⁻⁴ cm ² ·V ⁻¹ ·s ⁻¹)	실험값	리론값[2]
3.94	0.97	$k_1 = 1.69 \cdot 10^{-11}$	_
3.26	3.96	$k_2 = 1.60 \cdot 10^{-11}$	$4.8 \cdot 10^{-11}$
2.27	5.63	$k_3 = 2.17 \cdot 10^{-12}$	$2 \cdot 10^{-12}$

표 1, 2에서 보는바와 같이 해리상수값들은 리론값들과 큰 차이가 없다고 볼수 있다. 이온의 확산결수결정 확산의 제2법칙은 다음과 같다.

$$\partial C/\partial t = -D(\partial^2 C/\partial x^2) \tag{2}$$

여기서 C는 확산물질의 농도, t는 확산시간, x는 확산거리, D는 확산결수이다.

확산물질의 초기농도를 M_0 이라고 하면 식 (2)로부터 다음과 같은 풀이를 얻을수 있다.

$$C(x, t) = \frac{M_0}{2\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$
 (3)

이로부터 표준두제곱편차와 확산결수는 다음과 같이 표시된다.

$$\sigma^{2}(t) = \frac{1}{n-1} \sum_{i=1}^{n} (\overline{x} - x_{i})^{2} = \int_{0}^{\infty} x^{2} \frac{1}{\pi D t} \exp\left(-\frac{x^{2}}{4Dt}\right) dx = 2Dt$$
 (4)

$$D = \sigma^2(t)/2t \tag{5}$$

식 (5)를 리용하여 시간에 따르는 방사능분포상태로부터 확산곁수를 결정할수 있다. 영동관에서 확산시간에 따르는 ¹¹¹In(Ⅲ)과 [In-DTPA]²⁻의 방사능분포곡선은 그림 7, 8 과 같다.

그림 7. 확산시간에 따르는 ¹¹¹In(Ⅲ)의 방사능분포곡선

1-4는 확산시간이 각각 3, 6, 9, 12h인 경우

그림 8. 확산시간에 따르는 [In-DTPA]²⁻의 방사능분포곡선

1-4는 확산시간이 각각 3, 6, 9, 12h인 경우

그림 7, 8로부터 결정한 ¹¹¹In(Ⅲ)과 [In-DTPA]²⁻의 확산곁수는 각각 (7.45±0.09)·10⁻⁶, (2.46±0.05)·10⁻⁶cm²/s이다.

맺 는 말

우리는 방사성전기영동분석체계를 리용한 전기영동도결정방법을 확립하였다.

In³⁺의 무한희석때 전기영동도는 6.5·10⁻⁴cm²·V⁻¹·s⁻¹이고 ¹¹¹In-DTPA의 안정상수값은 약 1.14·10²⁹이며 ¹¹¹In³⁺의 확산곁수는 (7.45±0.09)·10⁻⁶cm²·s⁻¹이였다.

또한 ⁶⁷Ga을 리용하여 Ga이온의 전기영동도를 측정하여 해리상수를 결정한 결과 선행 연구결과와 큰 차이가 없다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 55, 9, 98, 주체98(2009).
- [2] 류상근 등; 무기화학(비과도원소), 김일성종합대학출판사, 191, 1996.
- [3] Г. Д. Бончев и др.; ОИЯИ, Р6-2000-77, Дубна, 2000.
- [4] А. Н. Приемышев и др.; ОИЯИ, Р13-2000-43, Дубна, 2000.
- [5] A. Laznickova et al.; J. Radioanal. Nucl. Chem., 273, 3, 583, 2007.
- [6] P. I. Ivanov et al.; J. Radioanal. Nucl. Chem., 258, 3, 639, 2003.
- [7] E. Tomarchio et al.; Radiation Physics and Chemistry, 80, 3, 318, 2011.
- [8] 刘平 等; 核技术, 28, 1, 69, 2005.

주체105(2016)년 1월 5일 원고접수

On the Electrophoresis of Radioactive In and Ga Compounds using Radioactive Electrophoresis Analytical System

Jong Chol Jin, Sok Chol

We studied on the existence state and behavior of 67 Ga(OH)₃ in solution and determined the physicochemical constant of radioactive 111 In(III), indium-dietylentriaminepentaacetacid(111 In-DTPA) in a free electrolyte by the horizontal zone electrophoresis using the radio-electrophoresis analytical system.

Key words: electrophoresis, In-DTPA, physicochemical constant