StereoVision

Paulo Dias

Sumary

- Introduction Stereopsis
- Camera models and Camera calibration
- Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Template Matching
 - Stereo Matching

Introduction

What is stereo?

Where is it coming from?

Where can you see it or use it?

Sumary

- Introduction Stereopsis
- Camera models and Camera calibration
- Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Template Matching
 - Stereo Matching

Human Visual System

- Many of the perceptual cues we use to visualize 3D structure are available in 2D projections
- Such cues include:
 - occlusion (one object partially covering another)
 - perspective (point of view)
 - familiar size (we know the real-world sizes of many objects)
 - atmospheric haze (objects further away look more washed out)
- Four cues are missing from single 2D views:
 - stereo parallax seeing a different image with each eye
 - movement parallax -seeing different images when we move the head
 - Accommodation the eyes' lenses focus on the object of interest
 - Convergence both eyes converge on the object of interest

Stereopsis

Stereo = "solid" or "three-dimensional" opsis = appearance or sight

Also: "binocular vision",

"binocular depth perception"

"stereoscopic depth perception"

- Stereopsis is the impression of depth that is perceived when a scene is viewed with both eyes by someone with normal binocular vision
- Binocular disparity is due to the different position of our two eyes

Stereopsis

- Depth perception in stereo is based on stereopsis:
 - when the brain registers and fuses two images
 - Image parallax means that the two eyes register different images (horizontal shift)
 - The amount of shift depends on the "interpupillary distance" (IPD) (varies for each person in the range of 53-73 mm)
 - Works in the near field (to a few meters from the eye)

Stereopsis

(Hearn and Baker, 2002)

object

Right eye image Left eye image

Stereopsis: implications for Graphic devices

 Present two images of the same scene

- Two images can be presented
 - at the same time on two displays

HMD

- time-sequenced on one display active glasses
- spatially-sequenced on one display auto-stereoscopic displays

Left eye, right eye images (Burdea and Coiffet., 2003)

Common ways to produce 3D sensation

Anaglyphs: two colored images and color coded glasses (red/cyan(green))

- Two images with different light polarization and polarizing glasses
 - Linear and circular
- Double frame-rate displays combined with LCD shutter glasses
- Autostereoscopic displays
 - Parallax barrier and lenticular lens
- Head Mounted Displays (HMDs)
- and "exotic displays"

Sumary

- Introduction Stereopsis
- Camera models and Camera calibration
- Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Template Matching
 - Stereo Matching

Camera model

pinhole camera model

We get

$$x = f \frac{X}{Z}$$

$$y = f \frac{Y}{Z}$$

OpenCV Camera model

- OpenCV Camera model:
 - 4 intrinsic parameters:
 - Focal distance: f_x , f_y
 - Optical centre: c_x , c_y
 - 5 distortion parameters
 - Lens distortion: k_1 , k_2 , k_3 , p_1 , p_2
 - 6 extrinsic parameters:
 - Rotation: r_x , r_y , r_z
 - Translation: t_x , t_y , t_z

Total: 15 parameters

Other models: Tsai, Heikkila, Zhang

Sumary

- Introduction Stereopsis
- Camera models and Camera calibration
- Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Template Matching
 - Stereo Matching

StereoVision

- Capability to define depth from 2 images
- Possible by computing correspondences between two images

 Two perfectly aligned, coplanar cameras with same focal distance:

•
$$\frac{T}{Z} = \frac{T - (x^l - x^r)}{(Z - f)}$$
 then $Z = \frac{T(Z - f)}{T - (x^l - x^r)}$,

•
$$TZ - Z(x^l - x^r) = TZ - fT$$

• So:
$$Z = \frac{fT}{d}$$

=>Stereo system have good depth resolution for close objects since depth is inversely proportional to disparity.

- Easy to relate correspondence to depth in frontal parallel arrangement
- Problem: how to map real configuration to frontal parallel arrangement.

Sumary

- Introduction Stereopsis
- Camera models and Camera calibration
- Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Template Matching
 - Stereo Matching

Epipolar geometry

 An epipole is a projection of the optical centre of a camera on the other image plane

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Epipolar geometry

- What is it useful for?:
 - Given a point in an image, its corresponding point in the other image lies on the corresponding epipolar line
 - Order is preserved (given 2 points A e B in a given order in one images, order will be the same in the other image)

=>Epipolar geometry transform a 2D search (in image) into a 1D search (along epipolar lines) saving resources and avoiding errors.

Sumary

- Introduction Stereopsis
- Camera models and Camera calibration
- Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Template Matching
 - Stereo Matching

Essential and Fundamental Matrices

- Epipolar Geometry is defined by:
 - Information about relative position between the cameras (rotation and translation)
 [extrinsic] – Essential Matrix (E)
 - Intrinsic parameters of the cameras (focal length, lens distortion, optical centre, etc...) –
 Fundamental Matrix (F)

Essential matrix

- Matrix that maps a 3D point in one image with its corresponding 3D point on the other image considering translation and rotation between cameras:
- $p_l^T E p_r = 0$
- p_l and p_r are in camera 3D coordinate system

Fundamental matrices

- Matrix that maps a pixel in one image with its corresponding pixel on the other image considering rotation, translation and intrinsic parameters of the cameras:
- $u_l^T F u_r = 0$
- u_l e u_r are in image 2D coordinate system

Fundamental and essential matrices

- Fundamental and Essential matrices represent the transformation between the stereo pair images. Fundamental matrix operates in image coordinates (pixels) and Essential matrix operates in physical coordinates.
- Possible to evaluate with 8 point correspondences (eight point algorithm: http://www.cs.unc.edu/~marc/tutorial/node
 54.html)

Sumary

- Introduction Stereopsis
- Camera models and Camera calibration
- Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Template Matching
 - Stereo Matching

Image rectification

 Given the fundamental matrix, it is possible to rectify an image by aligning epipolar lines in rows on the two rectified images getting a frontal parallel arrangement.

Image rectification

Original images

Rectified images

From Visual 3D Modeling from Images (http://www.cs.unc.edu/~marc/tutorial/)

Disparity map

 In rectified images, disparity is simply difference between pixel coordinates xl and xr.

Tsukuba head and lamp stereo dataset

Sumary

- Introduction Stereopsis
- Camera models and Camera calibration
- Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Template Matching
 - Stereo Matching

Template Matching

• Template matching is moved to all positions (u, v) in image and computes p(a, b) to evaluate how well template matches image in that position

Original Image

Template Matching

p(a,b) Matching function

Detected Point

• Object is on image at position where occurs $\max(p(a,b))$ if $\max(p(a,b)) > \text{threshold}$

Template Matching

Several possible functions to compare template and

image p(a, b):

Square difference matching

Correlation coefficient matching

Matching Result

Detected Point

Matching Result

Detected Point

Detected Point

Sumary

- Introduction Stereopsis
- Camera models and Camera calibration
- Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Template Matching
 - Stereo Matching

Stereo Matching algorithm

- Match Pixels in Conjugate Epipolar Lines
 - This is a tough problem
 - Numerous approaches
 - A good survey and evaluation: http://vision.middlebury.edu/stereo/

Basic stereo algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Block Matching algorithm

- Block Matching:
 - Divides an image into macroblocks and compare each with a corresponding block and its neighbours in a another image
- Several Metrics

Mean difference or Mean Absolute Difference
 (MAD)

Mean Squared Error (MSE)

– . . .

Window size

W = 3

W = 20

Effect of window size

Smaller window

Larger window

Better results with adaptive window

- T. Kanade and M. Okutomi, <u>A Stereo Matching</u>
 <u>Algorithm with an Adaptive Window: Theory and</u>
 <u>Experiment</u>, Proc. International Conference on
 Robotics and Automation, 1991.
- D. Scharstein and R. Szeliski. <u>Stereo matching with nonlinear diffusion</u>. International Journal of Computer Vision, 28(2):155-174, July 1998

Stereo results

- Data from University of Tsukuba
- Similar results on other images with ground truth

Scene

Ground truth

Stereo: Real application

- Sistemas Embarcados de Vistoria (SEV)
 - Stereo vision system with two AVT Mako cameras
 - baseline is around 0.1 meters
 - horizontally aligned.

Stereo: Real application

Stereo Vision and SLAM

Stereo Vision – Errors

- Errors in stereo system comes from
 - Camera calibration errors
 - Poor image resolution
 - Occlusions
 - Violations of brightness constancy (specular reflections)
 - Large motions
 - Low-contrast image regions

Stereo Vision - Steps

- Stereo vision steps
 - Calibrate cameras
 - Rectify images
 - Compute disparity
 - Estimate depth

Stereo Vision in OpenCV

- cvFindChessboardCorners: detect chessboard corner in stereo images
- cvStereoCalibrate: calibrates stereo rig
- cvStereoRectify: computes rotations that make both camera planes the same.
- cvInitUndistortRectifyMap and cvRemap: use to compute undistortion map and rectified images
- Stereo correspondence (ex: cvFindStereoCorrespondenceBM): computes the disparity map.
- cvReprojectImageTo3D: disparity map to 3D with calibrated cameras

OPENCV STEREO VISION DEMO

Some references

- Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly, Cambridge, MA, 2008.
- Olivier Faugeras Three-dimensional computer vision: a geometric viewpoint. MIT Press Cambridge, MA, USA ©1993
- Szeliski, R. (2010).. Computer Vision: Algorithms and Applications, Springer
- Quang-Tuan Luong. "Learning Epipolar Geometry".
 Retrieved 2007-03-04.