LAB 3 Bioinformatics

Hugo Morvan William Wiik

 $\begin{array}{c} {\rm STIMA} \\ {\rm Department~of~Computer~and~Information~Science} \\ {\rm Link\"{o}pings~universitet} \\ 2024-11-29 \end{array}$

Contents

1	Que	estion 1	1	
	1.1	Question 1.1	1	
	1.2	Question 1.2 *	4	
2 Q	Que	Question 2		
	2.1	Question 2.1	5	
	2.2	Question 2.2*	6	

1 Question 1

Using the script http://ape-package.ird.fr/APER/APER2/SylviaWarblers.R obtain the *Sylvia* warblers phylogeny (the script saves in in the file sylvia_nj_k80.tre). The geographical range data can be found in http://ape-package.ird.fr/APER/APER2/sylvia_data.txt and in the script is referenced as DF\$geo.range. Notice that one tip is removed due to missing data

```
sw_phyl <- read.tree("sylvia_nj_k80.tre")
plot(sw_phyl)</pre>
```


DF\$geo.range

```
## [1] "temp" "temptrop" "temptrop" "temptrop" "temptrop" "temp"
## [7] "temp" "temp" "temptrop" "temptrop" "temptrop" "trop"
## [13] "trop" "trop" "temptrop" "temptrop" "temptrop"
## [19] "temptrop" "temptrop" "temptrop" "temptrop"
```

1.1 Question 1.1

Explain all the steps in the script required to obtain the phylogeny and trait data.

Answer:

```
Load the libraries:
```

```
library(ape)
library(phyloch)
```

Read the nucleotid sequence:

```
x <- paste("AJ5345", 26:49, sep = "")
x <- c("Z73494", x)
sylvia.seq <- read.GenBank(x)</pre>
```

Obtain species names and get rid of the rest:

```
taxa.sylvia <- attr(sylvia.seq, "species")
names(taxa.sylvia) <- names(sylvia.seq)
rm(sylvia.seq)
taxa.sylvia[1] <- "Sylvia_atricapilla"
taxa.sylvia[24] <- "Sylvia_abyssinica"</pre>
```

Read data from text file, then save the data:

```
sylvia.eco <- read.table("sylvia_data.txt")
str(sylvia.eco)
rownames(sylvia.eco)
save(sylvia.clus, taxa.sylvia, sylvia.eco,
    file = "sylvia.RData")</pre>
```

Load the DNA sequences, and calculate pairwise distance matrices from the DNA sequences using various DNA evolutionary models (K80, F84, TN93, GG95):

```
sylvia.seq.ali<-sylvia.seq
syl.K80 <- dist.dna(sylvia.seq.ali, pairwise.deletion = TRUE)
syl.F84 <- dist.dna(sylvia.seq.ali, model = "F84", p = TRUE)
syl.TN93 <- dist.dna(sylvia.seq.ali, model = "TN93", p = TRUE)
syl.GG95 <- dist.dna(sylvia.seq.ali, model = "GG95", p = TRUE)</pre>
```

Print correlation between the different model estimations:

```
round(cor(cbind(syl.K80, syl.F84, syl.TN93, syl.GG95)), 3)
```

More correlation analysis?:

```
syl.JC69 <- dist.dna(sylvia.seq.ali, model = "JC69", p = TRUE)</pre>
syl.raw <- dist.dna(sylvia.seq.ali, model = "raw", p = TRUE)</pre>
layout(matrix(1:2, 1))
plot(syl.JC69, syl.raw)
abline(b = 1, a = 0) # draw x = y line
plot(syl.K80, syl.JC69)
abline(b = 1, a = 0)
Clustering analysis?
layout(matrix(1:3, 1))
for (i in 1:3) {
    s <- logical(3); s[i] <- TRUE
    x <- sylvia.seq.ali[, s]
    d <- dist.dna(x, p = TRUE)</pre>
    ts <- dist.dna(x, "Ts", p = TRUE)
    tv <- dist.dna(x, "Tv", p = TRUE)</pre>
    plot(ts, d, xlab = "Number of Ts or Tv", col = "blue",
         ylab = "K80 distance", xlim = range(c(ts, tv)),
         main = paste("Position", i))
    points(tv, d, col = "red")
}
Some plotting:
y <- numeric()
for (i in 1:3) {
    s <- logical(3); s[i] <- TRUE
    y <- c(y, dist.dna(sylvia.seq.ali[, s], p = TRUE))
g \leftarrow gl(3, length(y) / 3)
library(lattice)
histogram(~ y | g, breaks = 20)
Calculate distance between to topo:
nj.sylvia.K80 <- nj(syl.K80)
nj.sylvia.GG95 <- nj(syl.GG95)
dist.topo(nj.sylvia.K80, nj.sylvia.GG95)
Bootstrap something then use result to create the tree:
grep("Chamaea", taxa.sylvia, value = TRUE)
f <- function(xx) root(nj(dist.dna(xx, p=TRUE)), "AJ534526")</pre>
tr <- f(sylvia.seq.ali)</pre>
## same than: tr <- root(nj.sylvia.K80, "AJ534526")</pre>
nj.boot.sylvia <- boot.phylo(tr, sylvia.seq.ali, f, 200,
```

1.2 Question 1.2 *

2 Question 2

Install the ade4 package. Included with it you will find the carnivores dataset, data(carni70)

2.1 Question 2.1

Explore the data set and report what can be found in it. Provide some plots.

```
library(ade4)
library(ggplot2)
library(cowplot)
data(carni70)
tab_df <- as.data.frame(carni70$tab)</pre>
summary(tab_df)
##
         size
                          range
## Min. : 0.040 Min.
                           : 0.120
## 1st Qu.: 1.282
                     1st Qu.: 2.062
## Median : 3.200
                     Median : 6.125
## Mean : 14.288
                      Mean :10.721
## 3rd Qu.: 7.293
                      3rd Qu.:17.750
## Max.
         :266.500
                            :36.000
                      Max.
p1 <- ggplot(tab_df, aes(x = size)) +
  geom_histogram(binwidth = 5, fill = "skyblue", color = "black", alpha = 0.7) +
  labs(title = "Histogram of Size", x = "Size", y = "Frequency") + theme_bw()
p2 <- ggplot(tab_df, aes(x = range)) +</pre>
  geom_histogram(binwidth = 1, fill = "salmon", color = "black", alpha = 0.7) +
  labs(title = "Histogram of Range", x = "Range", y = "Frequency") + theme_bw()
p3 <- ggplot(tab_df, aes(x = size, y = range)) +
  geom_point(color = "blue") +
  labs(title = "Scatter Plot of Size vs Range", x = "Size", y = "Range") + theme_bw()
cowplot::plot_grid(p1, p2, p3, ncol = 2)
```


- ## [1] "Total number of carnivores: 70"
- ## [1] "The carnivore with biggest size: Ursus_arctos"

Size

- ## [1] "The carnivore with smallest size: Mustela_nivalis"
- ## [1] "The carnivore with biggest range: Puma_concolor"
- ## [1] "The carnivore with smallest range: Bassariscus_pauli"

There are 70 carnivores, with a median size of 3.2 and a median range of 6.1. Two clear outliers in size are Ursus arctos (Brown bear) and Tremarctos ornatus (Spectacled bear).

2.2 Question 2.2*