CE394M: Isoparametric elements and Gauss integration

Krishna Kumar

University of Texas at Austin

krishnak@utexas.edu

February 9, 2019

Overview

Rectangular elements

2 Isoparametric elements

Four-node rectangular element. The nodes are by definition numbered counter-clockwise.

As the element has four nodes, it is necessary to start with a polynomial that has four parameters.

$$Te = \alpha_0^e + \alpha_1^e x + \alpha_2^e y + \alpha_3^e xy$$

It is possible to express $(\alpha_0^e, \alpha_1^e, \alpha_2^e, \alpha_3^e)$ in terms of the nodal values $(T_1^e, T_2^e, T_3^e, T_4^e)$. A derivation shape functions is tedious as it is necessary to invert a 4 x 4 matrix.

The Shape Functions should be 1 at each node, and 0 otherwise can be used to determine the 4 coefficients.

An alternative and more elegant approach is to construct the shape functions by the **tensor product method**. This is based on taking products of one-dimensional shape functions.

Construction of two dimensional shape functions.

For example, N_2^e , which has to have the value one at node 2 and zero at the other nodes, is obtained by taking the product of the one-dimensional shape functions $N_2^{e,1d}(x)$ and $N_1^{e,1d}(y)$.

$$N_2^e = N_2^{e,1d}(x) \times N_1^{e,1d}(y)$$

As visible in the figure above the product $N_2^{e,1d}(x) \times N_1^{e,1d}(y)$ has the value one at node 2 and is zero at nodes 1, 3 and 4.

$$N_2^e(x,y) = \frac{x - x_1^e}{x_2^e - x_1^e} \frac{y - y_4^e}{y_1^e - y_4^e} = -\frac{1}{A^e} (x - x_1^e) (y - y_4^e)$$

The four shape functions, also called **bilinear shape functions**, for the quadrilateral element are:

$$\begin{split} N_1^e(x,y) &= \frac{x - x_2^e}{x_1^e - x_2^e} \frac{y - y_4^e}{y_1^e - y_4^e} = -\frac{1}{A^e} (x - x_2^e) (y - y_4^e) \\ N_2^e(x,y) &= \frac{x - x_1^e}{x_2^e - x_1^e} \frac{y - y_4^e}{y_1^e - y_4^e} = -\frac{1}{A^e} (x - x_1^e) (y - y_4^e) \\ N_3^e(x,y) &= \frac{x - x_1^e}{x_2^e - x_1^e} \frac{y - y_1^e}{y_4^e - y_1^e} = -\frac{1}{A^e} (x - x_1^e) (y - y_1^e) \\ N_4^e(x,y) &= \frac{x - x_2^e}{x_1^e - x_2^e} \frac{y - y_1^e}{y_4^e - y_1^e} = -\frac{1}{A^e} (x - x_2^e) (y - y_1^e) \end{split}$$

where A^e is the area of the element.

The four shape functions are plotted in the following figure:

Four shape functions of the rectangular element (on $[0,2] \times [0,2]$).

If the sf equations are used for interpolating the temperature field over arbitrary quadrilaterals, the scalar field (e.g., temperature) across the element boundaries will be not continuous.

Two element mesh with rectangle shape functions. Although the two nodal values on the edge agree, the temperature distribution is still discontinuous.

The computed shape functions are suitable for rectangles and could be used with meshes consisting only of rectangles, but they are not suitable for arbitrary quadrilaterals.

Therefore, these shape functions are of limited use for practical applications. To obtain the shape functions for arbitrary quadrilaterals we need to visit the idea of isoparametric mapping.

Isoparametric mapping in 1D

Shape functions for a two-noded element.

Global coordinate x and local coordinate ξ

Isoparametric mapping in 1D

 $Mapping\ of\ the\ parent\ element\ onto\ the\ physical\ element.$