Head of the second of the secon

📊 Investigating EV Range, Battery Capacity & Energy Consumption

Welcome! In this project, I analyze Electric Vehicle (EV) Data to uncover trends, detect anomalies, and provide actionable insights.

Loading the Dataset & Rename columns

```
import pandas as pd

# Load FEV dataset
Fev_df = pd.read_excel("FEV-data-Excel.xlsx")

# Rename columns
Fev_df.rename(columns={
    "Minimal price (gross) [PLN]": "Price_PLN",
    "Engine power [KM]": "Engine_Power",
    "Maximum torque [Nm]": "Torque",
    "Battery capacity [kWh]": "Battery_Capacity",
    "Range (WLTP) [km]": "Range_km",
    "mean - Energy consumption [kWh/100 km]": "Energy_Consumption",
}, inplace=True)

# First few rows of dataset
Fev_df.head()
```

	_	_
_	4	÷
-	7	7

	Car full name	Make	Model	Price_PLN	Engine_Power	Torque	Type of brakes	Drive type	Battery_Capacity	Range_km	•••	Permissable gross weight [kg]	Maximum load capacity [kg]
0	Audi e- tron 55 quattro	Audi	e-tron 55 quattro	345700	360	664	disc (front + rear)	4WD	95.0	438		3130.0	640.0
1	Audi e- tron 50 quattro	Audi	e-tron 50 quattro	308400	313	540	disc (front + rear)	4WD	71.0	340		3040.0	670.0
2	Audi e- tron S quattro	Audi	e-tron S quattro	414900	503	973	disc (front + rear)	4WD	95.0	364		3130.0	565.0
3	Audi e- tron Sportback 50 quattro	Audi	e-tron Sportback 50 quattro	319700	313	540	disc (front + rear)	4WD	71.0	346		3040.0	640.0
4	Audi e- tron Sportback 55 quattro	Audi	e-tron Sportback 55 quattro	357000	360	664	disc (front + rear)	4WD	95.0	447		3130.0	670.0

5 rows × 25 columns

Task 1: Filter EVs Based on Budget & Range

```
Objective: Identify EVs with: ✓ Budget <= 350,000 PLN ✓ Minimum range => 400 km

# Filter EVs
filtered_evs = Fev_df[(Fev_df["Price_PLN"] <= 350000) & (Fev_df["Range_km"] >= 400)].reset_index()

# Group by manufacturer & calculate average battery capacity
battery_capacity_avg = filtered_evs.groupby("Make")["Battery_Capacity"].mean().reset_index()

# Select specific columns
filtered_evs = filtered_evs[["Car full name", "Make", "Price_PLN", "Range_km", "Engine_Power"]]

# Convert filtered results into markdown format
filtered_evs = filtered_evs.to_markdown()
battery_capacity_avg = battery_capacity_avg.to_markdown()

print(filtered_evs)
```

		Car full name	İ	Make	Price_PLN	Range_km	Engine_Power
	:	:		:	:	:	:
	0	Audi e-tron 55	quattro	Audi	345700	438	360
	1	BMW iX3		BMW	282900	460	286
	2	Hyundai Kona e	lectric 64kWh	Hyundai	178400	449	204
	3	Kia e-Niro 64kW	lh i	Kia	167990	455	204
	4	Kia e-Soul 64kW	lh i	Kia	160990	452	204
	5	Mercedes-Benz E	QC	Mercedes-Benz	334700	414	408
	6	Tesla Model 3 S	Standard Range Plus	Tesla	195490	430	285
	7	Tesla Model 3 Long Range Tesla Model 3 Performance Volkswagen ID.3 Pro Performance Volkswagen ID.3 Pro S Volkswagen ID.4 1st		Tesla	235490	580	372
	8			Tesla	260490	567	480
	9			Volkswagen	155890	425	204
	10			Volkswagen	179990	549	204
	11			Volkswagen	202390	500	204
		Make	Battery_Capacity				
	:	;		: [
	0	Audi	95				
	1	BMW	80				
	2	Hyundai	64				
	3	Kia	64				
	4	Mercedes-Benz	80				
	5	Tesla	68				
	6	Volkswagen	70.6667				

Findings:

- 1. Filtering affordable high -range EVs helps customers choose efficiently.
- 2. Battery capacity varies per manufacturer, affecting range and efficiency.

Task 2: Detecting Energy Consumption Outliers

Full EVs with unusually high or low energy consumption using the Interquartile Range (IQR) method.

```
# Calculate Q1, Q3 & IQR
Q1 = Fev_df["Energy_Consumption"].quantile(0.25)
Q3 = Fev_df["Energy_Consumption"].quantile(0.75)
IQR = Q3 - Q1

# Define outlier thresholds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Find outliers
outliers
outliers = Fev_df[(Fev_df["Energy_Consumption"] < lower_bound) | (Fev_df["Energy_Consumption"] > upper_bound)]

# Display results
print(outliers[["Car full name", "Make", "Energy_Consumption"]])

Empty DataFrame
Columns: [Car full name, Make, Energy_Consumption]
Index: []
```

Findings

☑ Energy consumption across all EVs is fairly consistent—there are no extreme inefficiencies or exceptionally optimized models. ☑ No unusual spikes or drops in energy usage mean that manufacturers design EVs with similar efficiency levels. ☑ Recommendation: Instead of focusing on energy outliers, we could compare average energy consumption per brand to find the most efficient EVs

Task 3: Battery Capacity vs Range

Q Does higher battery capacity lead to longer range?

```
import matplotlib.pyplot as plt

plt.scatter(Fev_df["Battery_Capacity"], Fev_df["Range_km"], color='blue')
plt.xlabel("Battery Capacity (kWh)")
plt.ylabel("Range (km)")
plt.title("Battery Capacity vs EV Range")
```


Findings:

- 1. Higher battery capacity generally extends range
- 2. Some high-capacity EVs have short ranges, indicating inefficiency

🗸 📌 Task 4: EV Recommendation System

Enter budget, range, and battery capacity, and get top 3 matching EVs!

```
from tabulate import tabulate
class EVRecommendation:
    def __init__(self, df):
        self.df = df
    def recommend(self, budget, min_range, min_battery_capacity):
        # Filter EVs based on criteria
        eligible_evs = self.df[
            (self.df["Price_PLN"] <= budget) &</pre>
            (self.df["Range_km"] >= min_range) &
            (self.df["Battery_Capacity"] >= min_battery_capacity)
        ]
        # Select relevant columns & sort by range
        top_evs = eligible_evs.sort_values(by="Range_km", ascending=False).head(3)
        return top_evs[["Car full name", "Make", "Price_PLN", "Range_km", "Battery_Capacity"]]
# Instantiate & use the recommendation system
ev_recommender = EVRecommendation(Fev_df)
recommended_evs = ev_recommender.recommend(350000, 400, 50)
# Display results in a table format using Tabulate
print(tabulate(recommended_evs, headers="keys", tablefmt="github"))
```

₹		Car full name	Make	Price_PLN	Range_km	Battery_Capacity
	:	Tesla Model 3 Long Range Tesla Model 3 Performance	Tesla Tesla	235490 260490	580 567	75 75
	48	Volkswagen ID.3 Pro S	Volkswagen	179990	549	77

Findings

Customers can instantly identify the best EVs based on range, price, and battery efficiency.

- Sorting by range ensures optimal battery performance.
- ▼ Tesla & Volkswagen manufacturers Brand offer high-performance EVs within budget.

Task 5: Hypothesis Testing

♦ Comparing Tesla vs Audi Engine Power using a Two-Sample T-Test

```
# Select engine power data for Tesla & Audi
tesla_power = Fev_df[Fev_df["Make"] == "Tesla"]["Engine_Power"]
audi_power = Fev_df[Fev_df["Make"] == "Audi"]["Engine_Power"]

# Perform t-test
t_stat, p_value = ttest_ind(tesla_power, audi_power)

# Display results
print(f"T-Statistic: {t_stat:.2f}, P-Value: {p_value:.4f}")
T-Statistic: 1.70, P-Value: 0.1167
```

Findings from the T-Test (Tesla vs Audi Engine Power)

Since the **p-value = 0.11**, which is greater than 0.05, **we fail to reject the null hypothesis**.

This means there is no statistically significant difference in the average engine power between Tesla and Audi— any variation might be due to random chance rather than an actual performance difference.

The T-statistic = 1.70 suggests Tesla's engine power might be slightly higher than Audi's, but not enough to be statistically confirmed.

Q Business Insight: ☑ Performance differences might not be drastic, making Audi and Tesla comparable in engine power. ☑ Tesla may still focus on acceleration, while Audi might prioritize efficiency and balanced performance. ☑ If considering engine power alone, both brands offer similar levels, so buyers should look at other features like range, battery efficiency, and technology.

Project Explanation Video

https://drive.google.com/file/d/1MfrUJW01THw0r-5nYpF7guQqqXidCD8y/view?usp=drivesdk