Spatial Predictive Process Model

John Tipton

January 23, 2014

1 Full Dimensional Model Statement

1.1 Data Model

$$oldsymbol{y}_t = oldsymbol{H}_t oldsymbol{X} oldsymbol{eta}_t + oldsymbol{\eta}_t + oldsymbol{\epsilon}_t$$

1.2 Process Model

$$\begin{split} \boldsymbol{\beta}_t &\sim N(\boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta}) & \boldsymbol{\Sigma}_{\beta} = \sigma_{\beta}^2 \boldsymbol{I}_t \\ \boldsymbol{\eta}_t &\sim N(0, \boldsymbol{\Sigma}_{\eta}) & \boldsymbol{\Sigma}_{\eta} = \sigma_{\eta}^2 \boldsymbol{R}(\phi) & \boldsymbol{R}(\phi) = \exp\left(-\boldsymbol{D}_t/\phi\right) \\ \boldsymbol{\epsilon}_t &\sim N(0, \boldsymbol{\Sigma}_{\epsilon}) & \boldsymbol{\Sigma}_{\epsilon} = \sigma_{\epsilon}^2 \boldsymbol{I}_t \end{split}$$

1.3 Parameter Model

$$\begin{split} & \boldsymbol{\mu}_{\beta} \sim N(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}) \\ & \sigma_{\beta}^{2} \sim IG(\alpha_{\beta}, \beta_{\beta}) \\ & \sigma_{\eta}^{2} \sim IG(\alpha_{\eta}, \beta_{\eta}) \\ & \sigma_{\epsilon}^{2} \sim IG(\alpha_{\epsilon}, \beta_{\epsilon}) \\ & \phi \sim IG(\alpha_{\phi}, \beta_{\phi}) \end{split}$$

where I_{β} is the identity matrix of size $\tau \times \tau$ where τ is the number of parameters in β_t , I_t is the identity matrix of size $n_t \times n_t$ and n_t is the number of samples of y_t at time t and D_t is the distance matrix between locations observed at time t. Define $\Sigma = \Sigma_{\eta} + \Sigma_{\epsilon}$

2 Predictive Process

For large dimensional spatial processes it can be computationally expensive to invert Σ . This motivates the use of a predictive process $\tilde{\boldsymbol{\eta}}$ to approximate $\boldsymbol{\eta}$ over a set of knots \tilde{S} where $\tilde{\boldsymbol{\eta}} = \boldsymbol{r}(\boldsymbol{s}, \boldsymbol{s}^* | \sigma_{\eta}^2, \phi)^T \boldsymbol{R}^{*-1} (\boldsymbol{s}^*, \boldsymbol{s}^* | \sigma_{\eta}^2, \phi) \boldsymbol{\eta}^*$. The covariance between the desired locations $\boldsymbol{s} \in S$ and the set of knots $\boldsymbol{s}^* \in \tilde{S}$ is $\boldsymbol{r}(\boldsymbol{s}, \boldsymbol{s}^* | \sigma_{\eta}^2, \phi)$. The covariance matrix over the set of knots is $\boldsymbol{R}^{*-1}(\boldsymbol{s}^*, \boldsymbol{s}^* | \sigma_{\eta}^2, \phi)$. The lower dimensional $\boldsymbol{\eta}^* \sim \text{MVN}(\boldsymbol{0}, \boldsymbol{R}^{*-1}(\boldsymbol{s}^*, \boldsymbol{s}^* | \sigma_{\eta}^2, \phi))$.

3 Posterior

$$\prod_{t=1}^T [\boldsymbol{\beta}_t, \boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2, \sigma_{\eta}^2, \sigma_{\epsilon}^2, \phi | \boldsymbol{y}_t] \propto \prod_{t=1}^T [\boldsymbol{y}_t | \boldsymbol{\beta}_t, \sigma_{\eta}^2, \phi, \sigma_{\epsilon}^2] [\boldsymbol{\beta}_t | \boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2] [\boldsymbol{\mu}_{\beta}] [\sigma_{\beta}^2] [\sigma_{\epsilon}^2] [\phi]$$

4 Full Conditionals

4.1 Full Conditional for β_t

 $\begin{aligned} \text{For } t &= 1, \dots, T, \\ & [\boldsymbol{\beta}_t | \cdot] \propto [\boldsymbol{y}_t | \boldsymbol{\beta}_t, \sigma_{\eta}^2, \sigma_{\epsilon}^2, \phi] [\boldsymbol{\beta}_t | \boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2] \\ & \propto e^{-\frac{1}{2}} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)_e^{-\frac{1}{2}} (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta})^T \boldsymbol{\Sigma}_{\beta}^{-1} (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta}) \\ & \propto e^{-\frac{1}{2}} \{\boldsymbol{\beta}_t^T (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}^{-1} \boldsymbol{H}_t \boldsymbol{X} + \boldsymbol{\Sigma}_{\beta}^{-1}) \boldsymbol{\beta}_t - 2 \boldsymbol{\beta}_t^T (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}^{-1} \boldsymbol{y}_t + \boldsymbol{\Sigma}_{\beta}^{-1} \boldsymbol{\mu}_{\beta}) \} \end{aligned}$

which is Normal with mean $\boldsymbol{A}^{-1}\boldsymbol{b}$ and variance \boldsymbol{A}^{-1} where

$$\begin{aligned} \boldsymbol{A}^{-1} &= (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}^{-1} \boldsymbol{H}_t \boldsymbol{X} + \boldsymbol{\Sigma}_{\beta}^{-1})^{-1} \\ \boldsymbol{b} &= (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}^{-1} \boldsymbol{y}_t + \boldsymbol{\Sigma}_{\beta}^{-1} \boldsymbol{\mu}_{\beta}) \end{aligned}$$

4.2 Full Conditional for μ_{β}

$$\begin{split} [\boldsymbol{\mu}_{\beta}|\cdot] &\propto \prod_{t=1}^{T} [\boldsymbol{\beta}_{t}|\boldsymbol{\mu}_{\beta}, \sigma_{\beta}^{2}][\boldsymbol{\mu}_{\beta}] \\ &\propto e^{-\frac{1}{2}\sum_{t=1}^{T} (\boldsymbol{\beta}_{t} - \boldsymbol{\mu}_{\beta})^{T} \boldsymbol{\Sigma}_{\beta}^{-1} (\boldsymbol{\beta}_{t} - \boldsymbol{\mu}_{\beta})} e^{-\frac{1}{2} (\boldsymbol{\mu}_{\beta} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}_{0}^{-1} (\boldsymbol{\mu}_{\beta} - \boldsymbol{\mu}_{0})} \\ &\propto e^{-\frac{1}{2} (\boldsymbol{\mu}_{\beta}^{T} (T \boldsymbol{\Sigma}_{\beta}^{-1} + \boldsymbol{\Sigma}_{0}^{-1}) \boldsymbol{\mu}_{\beta} - 2 \boldsymbol{\mu}_{\beta}^{T} (\sum_{t=1}^{T} \boldsymbol{\Sigma}_{\beta}^{-1} \boldsymbol{\beta}_{t} + \boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0})) \end{split}$$

which is multivariate normal with mean $(T\boldsymbol{\Sigma}_{\beta}^{-1} + \boldsymbol{\Sigma}_{0}^{-1})^{-1}(\sum_{t=1}^{T}\boldsymbol{\Sigma}_{\beta}^{-1}\boldsymbol{\beta}_{t} + \boldsymbol{\Sigma}_{0}^{-1}\boldsymbol{\mu}_{0})$ and variance $(T\boldsymbol{\Sigma}_{\beta}^{-1} + \boldsymbol{\Sigma}_{0}^{-1})^{-1}$

4.3 Full Conditional for σ_{β}^2

$$\begin{split} [\sigma_{\beta}^2|\cdot] &\propto \prod_{t=1}^T [\boldsymbol{\beta}_t|\boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2] [\sigma_{\beta}^2] \\ &\propto (\prod_{t=1}^T |\boldsymbol{\Sigma}_{\beta}|^{-\frac{1}{2}}) e^{-\frac{1}{2} \sum_{t=1}^T (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta})^T \boldsymbol{\Sigma}_{\beta}^{-1} (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta}) (\sigma_{\beta}^2)^{-(\alpha_{\beta}+1)} e^{-\frac{\beta_{\beta}}{\sigma_{\beta}^2}} \\ &\propto (\sigma_{\beta}^2)^{-(\alpha_{\beta} + \frac{\sum_{t=1}^T n_t}{2} + 1)} e^{-\frac{1}{\sigma_{\beta}^2} (\frac{1}{2} \sum_{t=1}^T (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta})^T (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta}) + \beta_{\beta})} \end{split}$$

which is $IG(\alpha_{\beta} + \frac{\sum_{t=1}^{T} n_{t}}{2}, \frac{1}{2} \sum_{t=1}^{T} (\boldsymbol{\beta}_{t} - \boldsymbol{\mu}_{\beta})^{T} (\boldsymbol{\beta}_{t} - \boldsymbol{\mu}_{\beta}) + \beta_{\beta})$ since the determinant $|\boldsymbol{\Sigma}_{\beta}| = (\sigma_{\beta}^{2})^{n_{t}}$ and $\boldsymbol{\Sigma}_{\beta}^{-1} = \frac{1}{\sigma_{\beta}^{2}} \boldsymbol{I}_{t}$

4.4 Full Conditional for σ_{η}^2

$$\begin{split} [\sigma_{\eta}^2|\cdot] &\propto \prod_{t=1}^T [\boldsymbol{y}_t|\boldsymbol{\beta}_t, \sigma_{\eta}^2, \phi, \sigma_{\epsilon}^2] [\sigma_{\eta}^2] \\ &\propto (\prod_{t=1}^T |\boldsymbol{\Sigma}|^{-\frac{1}{2}}) e^{-\frac{1}{2} \sum_{t=1}^T (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t) (\sigma_{\eta}^2)^{-\alpha_{\eta} + 1} e^{-\frac{\beta_{\eta}}{\sigma_{\eta}^2}} \\ &\propto |\boldsymbol{\Sigma}|^{-\frac{T}{2}} e^{-\frac{1}{2} \sum_{t=1}^T (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t) (\sigma_{\eta}^2)^{-\alpha_{\eta} + 1} e^{-\frac{\beta_{\eta}}{\sigma_{\eta}^2}} \end{split}$$

which can be sampled using a Metropolis-Hastings step

4.5 Full Conditional for σ_{ϵ}^2

$$\begin{split} &[\sigma_{\epsilon}^{2}|\cdot] \propto \prod_{t=1}^{T} [\boldsymbol{y}_{t}|\boldsymbol{\beta}_{t}, \sigma_{\eta}^{2}, \boldsymbol{\phi}, \sigma_{\epsilon}^{2}][\sigma_{\epsilon}^{2}] \\ &\propto (\prod_{t=1}^{T} |\boldsymbol{\Sigma}|^{-\frac{1}{2}}) e^{-\frac{1}{2} \sum_{t=1}^{T} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t} \boldsymbol{X} \boldsymbol{\beta}_{t})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t} \boldsymbol{X} \boldsymbol{\beta}_{t}) (\sigma_{\epsilon}^{2})^{-\alpha_{\epsilon} + 1} e^{-\frac{\beta_{\epsilon}}{\sigma_{\epsilon}^{2}}} \\ &\propto |\boldsymbol{\Sigma}|^{-\frac{T}{2}} e^{-\frac{1}{2} \sum_{t=1}^{T} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t} \boldsymbol{X} \boldsymbol{\beta}_{t})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t} \boldsymbol{X} \boldsymbol{\beta}_{t}) (\sigma_{\epsilon}^{2})^{-\alpha_{\epsilon} + 1} e^{-\frac{\beta_{\epsilon}}{\sigma_{\epsilon}^{2}}} \end{split}$$

which can be sampled using a Metropolis-Hastings step

4.6 Full Conditional for ϕ

$$\begin{split} [\phi|\cdot] &\propto \prod_{t=1}^{T} [y_t|\beta_t, \sigma_{\eta}^2, \phi, \sigma_{\epsilon}^2][\phi] \\ &\propto \prod_{t=1}^{T} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} e^{-\frac{1}{2}} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t) \phi^{-\alpha_{\phi} + 1} e^{-\frac{\beta_{\phi}}{\phi}} \\ &\propto |\boldsymbol{\Sigma}|^{-\frac{T}{2}} e^{-\frac{1}{2}} \sum_{t=1}^{T} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t) \phi^{-\alpha_{\phi} + 1} e^{-\frac{\beta_{\phi}}{\phi}} \end{split}$$

which can be sampled using a Metropolis-Hastings step

5 Posterior Predictive Distribution

The posterior predictive distribution for \boldsymbol{y}_t is sampled a each MCMC iteration k by

$$\boldsymbol{y}_t^{(k)} \sim N(\boldsymbol{H_t} \boldsymbol{X} \boldsymbol{\beta}_t^{(k)}, \boldsymbol{\Sigma}^{(k)})$$