DRSS Severity Classification on OCT images

Team Members: Abhimanyu Bambhaniya, Yangyu Chen

Data Analysis

- DRSS Severity in the OLIVES PRIME dataset [1]
 - Three Classes
 - 0: DRSS levels 35 and 43
 - 1: DRSS level 47 and 53
 - **2**: DRSS level 61, 63, 71 and 85.

Treatment of data as volume of 49 Frames.

Metadata usage

Metadata Correlation w DRSS

Four Classifications

- 3D ResNet18 [2]
 - Expand one channel image to three channels
 - o 33.336 M Parameters

- Vision Transformer
 - o 3 Encoders, 512 Dim, 8 Heads.
 - 16 M Parameters

Multi-model Layout

Four Classifications

- SVM
 - Image Preprocessing
 - Histogram of Oriented Gradients (HOG)
 - Principal Component Analysis (PCA)
 - Linear Kernel

- K-NN
 - Focus on a smaller section of the image

Challenges and Solutions

- Missing image
 - Use Neighbor image

- Imbalance dataset: 0.32: 0.49: 0.19
 - Weighted loss function

- Slow Training
 - Checkpointing
 - AutoScaling on V100 GPUs

Challenges and Solutions

Small training set in volume granularity (495 Training points, 163 Testing points)

A. Data Augmentation

- 1. Baseline transforms: Resize (224, 224) and Normalize
- 2. Baseline + Rotation by 3° + Contrast with factor=0.5
- 3. Baseline + Rotation by 3° + Gaussian Blur with kernel size=(5, 5)
- 4. Baseline + Horizontal Flip + Contrast with factor=0.5
- 5. Baseline + Horizontal Flip + Gaussian Blur with kernel size=(5, 5)

Augmentation with Rotation

Augmentation with Horizontal Flip

Evaluation

Method	Test Balanced Accuracy(%)	Specificity	Sensitivity
3D ResNet18	50.76	0.7454	0.5076
ViT	40.66	0.7056	0.4049
SVM	36.80	0.6709	0.3680
K-NN	40.29	0.7188	0.3939

Table 1. Best Accuracy Table

Ablation study - 3D ResNet18

LR	# Metadata Features	Batch 4	Batch 8	Batch 16
1e-4	0	42.91%	46.04%	37.76%
1e-4	2 (Leakage Index, Age)	50.09%	49.53%	50.76%
1e-4	9	44.94%	43.78%	45.79%

Table 2. Number of Metadata Features VS. Test Balanced Accuracy

LR	# Metadata Features	Batch 4	Batch 8	Batch 16
1e-3	2	33.33%	33.33%	44.93%
1e-4	2	50.09%	49.53%	50.76%
1e-5	2	48.26%	39.32%	38.95%

Table 3. LR VS. Test Balanced Accuracy

SVM and KNN Results

Number of PCA Components vs. Test Accuracy

K Values vs. Test Accuracy

Thank You

GitHub DropBox

References

[1]: Mohit Prabhushankar, Kiran Kokilepersaud, Yash-yee Logan, Stephanie Trejo Corona, Ghassan AlRegib, & Charles Wykoff. (2022). OLIVES Dataset: Ophthalmic Labels for Investigating Visual Eye Semantics [Data set]. Advances in Neural Information Processing Systems 35 (NeurIPS 2022), New Orleans. Zenodo. https://doi.org/10.5281/zenodo.710523

[2]: Ellis D.G., Aizenberg M.R. (2021) Trialing U-Net Training Modifications for Segmenting Gliomas Using Open Source Deep Learning Framework. In: Crimi A., Bakas S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science, vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_4