Name:	
Teacher:	

SYDNEY TECHNICAL HIGH SCHOOL

Mathematics Extension 1

Preliminary Yearly Examination September 2009

Time allowed — 90 minutes

Instructions

- Reading time 5 minutes
- Approved calculators may be used.
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks awarded are shown on each question.
- Total marks 60
- Attempt all questions.
- Start each question on a new page.

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total

(2)

- a) Use the Remainder Theorem to find the remainder when $P(x) = 2x^5 3x^2 + 7$ (1) is divided by (x 3).
- b) Find the coordinates of the point which divides the interval A(-2,1) to B(3,2) in the ratio 4:3.
- c) The sketch shows the cubic y = P(x).

- (i) What is the equation of P(x) if it is monic?
- (ii) If it is not monic, find the equation of P(x) if P(2) = 4? (2)
- d) Find the equation of the normal to the curve $y = x^{\frac{3}{2}}$ at the point (4, 8). (3)

Question 2 Marks 10

- a) Find the acute angle between the lines 2x + y 3 = 0 and 5x 2y + 4 = 0 (2) to the nearest minute.
- b) The cubic $3x^3 8x^2 + 6x 1$ has roots α , β and γ .

Evaluate: (i) $\alpha + \beta + \gamma$ (1)

$$(ii)$$
 $\alpha\beta\gamma$ (1)

(iii)
$$\alpha\beta + \alpha\gamma + \beta\gamma$$
 (1)

(iv)
$$\left(\alpha\beta + \frac{1}{\alpha\beta}\right) + \left(\alpha\gamma + \frac{1}{\alpha\gamma}\right) + \left(\beta\gamma + \frac{1}{\beta\gamma}\right)$$

- c) Describe, with the aid of diagrams and mathematical language, the meaning of:
 - (i) continuity at a point on a curve. (1)
 - (ii) differentiability at a point on a curve. (1)

a)	Find the derivative of $y = x^2 \sqrt{1 - x}$, expressing your answer as a	(3)
	single fraction.	

b) Solve
$$\frac{x-2}{x+2} \ge 1$$
 (3)

c) (i) Find the distance of
$$R(1,-2)$$
 from the line $x - 2y + 3 = 0$. (2)

(ii) Show, without graphing, that
$$R(1,-2)$$
 and $S(-2,3)$ are on opposite sides of the line $x-2y+3=0$.

d) Find the Cartesian equation represented by
$$x = \frac{t}{2}$$
 and $y = 2t^2$. (1)

Question 4 Marks 10

a)
$$f(x) = \sqrt{x^2 - 9}$$

b) (i) Show that
$$\frac{1+\cos 2A}{\sin 2A} = \cot A$$
 (2)

c) P(x,y) is constrained such that $\angle APB = 90^\circ$ where A is (1,-1) and B is (7,3).

(ii) Show that the locus of
$$P(x,y)$$
 is a circle. (2)

Que	estion 5	Marks 10
a)	A parabola has the equation $6y = x^2 - 4x - 14$.	
	(i) Express the equation of the parabola in the form $(x - h)^2 = 4a(y - k)$.	(2)
	Find:	
	(ii) the coordinates of the vertex.	(1)
	(iii) the coordinates of the focus.	(1)
	(iv) the equation of the directrix.	(1)
b)	Solve $3\sin x - 2\cos x = 2$, for $0^{\circ} \le x^{\circ} \le 360^{\circ}$.	(3)
c)	Show that $\sqrt{x} + \frac{5}{\sqrt{x}} = 3$ has no real solutions.	(2)
	•	
One	stion 6	Marks 10

(3)

(1)

(2)

(2)

(2)

Solve $\cos^2 \theta - \sin 2\theta = 0$, for $0^\circ \le \theta^\circ \le 360^\circ$.

The tangents at P and Q meet at R.

Show that p + q = 2pq.

Find the equation of the chord *PQ*.

(iv) Find the equation of the locus of *R*.

(iii) Find the coordinates of R in terms of p and q.

 $P(8p,4p^2)$ and $Q(8q,4q^2)$ are variable points on the parabola $x^2=16y$.

The chord PQ produced passes through the fixed point (4,0).

a)

b)

(i)

(ii)

2009 Preliminary Extension 1 Mathematics Yearly - Solutions

(2) a)
$$P(x)=2x^{5}-3x^{2}+7$$

 $P(3)=2x^{5}-3x^{3}+7$
 $=486-37+7$
 $=466$
 $P(x)=(x-3)\cdot Q(x)+466$

c) (i) equation
$$\Rightarrow y = x(x-3)^2$$

= $x(x^2-6x+9)$
= x^2-6x^2+9x

(ii)
$$y = a(x^3-6x^2+9x)$$

 $= 4 = a(8-27+18)$
 $= 2a$
 $= 2x^3-12x^2+18x$

$$\frac{1}{x} = \frac{1}{1} = \frac{1}{7}$$

$$\frac{1}{x} = \frac{1}{7} = \frac{1}{7}$$

$$\frac{1}{7} = \frac{1}{7}$$

a)
$$y = x^{\frac{3}{2}}$$

$$= \frac{3}{2} \int x$$

$$= \frac{3}{2} \int x$$

$$= 3 \quad \text{who } x = 4 \quad (\text{positive root} \text{ as } y = 8)$$

$$-1. y - 8 = -\frac{1}{3}(x - 4)$$

$$-1. 3y - 24 = 4 - x$$

$$-1. x + 3y - 28 = 0$$

a)
$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

= $\left| \frac{-2 - \frac{5}{2}}{1 + \frac{-2 \cdot \frac{5}{2}}{2}} \right|$
= $\left| \frac{-4\frac{1}{2}}{1 + \frac{-4}{2}} \right|$

$$= \left| \frac{2}{1 + 2 \cdot \frac{5}{2}} \right|$$

$$= \left| \frac{4!}{2} \right|$$

$$= \left| \frac{9}{8} \right|$$

$$= \tan^{-1} \left(\frac{9}{8} \right)$$

$$= 48^{\circ} 12^{\circ}$$

$$2x + y - 3 = 0$$
 $m. = -2$

$$5x - 2y + 4 = 0$$
 $m_{2} = \frac{5}{2}$

(i)
$$\lambda + \beta + \gamma = -\frac{b}{q}$$
 (ii) $\lambda \beta \gamma = -\frac{d}{q}$

$$= \frac{g}{3}$$

$$= \frac{1}{3}$$
(iv) $\left(\lambda \beta + \frac{1}{\beta \beta}\right) + \left(\lambda \gamma + \frac{1}{\beta \gamma}\right) + \left(\beta \gamma + \frac{1}{\beta \delta}\right)$

$$= \frac{1}{2\beta} + \frac{1}{2\beta} + \frac{1}{2\beta} + \frac{1}{2\beta} + \frac{1}{2\beta} + \frac{1}{2\beta} + \frac{1}{2\beta}$$

$$= \frac{1}{2\beta} + \frac{1}{$$

(ii)
$$\angle \beta 8 = -\frac{d}{a}$$
 (iii) $\angle \beta 7 + 28 + \beta 8$

$$= \frac{1}{3} = \frac{c}{a}$$

It is possible to find a decivative at x=a or it is possible to draw a tongent to the cure at x=a.

example above is continuous but NOT differentiable at x = a.

$$(27 \ a) \ y = x^2 \sqrt{1-x}$$

= $x^2 (1-x)^{\frac{1}{2}}$

$$= \frac{1}{2\pi \sqrt{1-x}} = \frac{2\sqrt{1-x}}{2\sqrt{1-x}}$$

$$= \frac{2\pi \sqrt{1-x} - \frac{x^2}{2\sqrt{1-x}}}{2\sqrt{1-x}}$$

$$= \frac{2\pi\sqrt{1-x} - \frac{2}{x^2}}{2\sqrt{1-x}}$$

$$= \frac{4x(1-x) - x^2}{2\sqrt{1-x}}$$

$$= \frac{4x - 4x^2 - x^2}{2\sqrt{1-x}}$$

$$= \frac{4x - 5x^2}{2\sqrt{1-x}}$$

$$= \frac{x(4-5x)}{2\sqrt{1-x}}$$

1, x < -2

b)
$$\frac{x-2}{x+2} \ge 1$$
 $\frac{x}{x+2} \ge 1$
 $\frac{x}{x+2} \ge 1$
 $\frac{x}{x+2} \ge 1$
 $\frac{x^2-4}{x^2-4} \ge \frac{x^2+4x+4}{x^2+4x+4}$
 $\frac{x}{x+2} \le 0$
 $\frac{x}{x+2} \le 0$

$$d_{1} = \left| \frac{Ax_{1} + By_{1} + C}{\sqrt{A^{2} + B^{2}}} \right|$$

$$= \left| \frac{Ax_{1} + By_{1} + C}{\sqrt{A^{2} + B^{2}}} \right|$$

$$= \left| \frac{Ax_{1} + By_{1} + C}{\sqrt{A^{2} + B^{2}}} \right|$$

$$= \left| \frac{8}{\sqrt{55}} \right|$$

$$d) = \frac{1}{2} \quad y = 2t^2$$

$$\therefore f = \lambda x$$

$$\therefore y = 2(\lambda x)^{2}$$

$$= 8x^{2}$$

$$x^{2} = 4$$

(ii)
$$S(-2, 3)$$

$$d_2 = \left| \frac{1 \times 2 - 2 \times 3 + 3}{\sqrt{5}} \right|$$

$$= \left| -\frac{5}{\sqrt{5}} \right|$$

is s is an opposite side of line is value signs ar opposito in sign.

$$x = \frac{1}{2} \quad y = 2t^{2}$$

$$. t = 2x \quad \therefore \quad y = 2(2\pi)^{2}$$

$$= 8x^{2}$$

$$or \quad x^{2} = \frac{y}{8}$$

$$Q \neq q \qquad q(x) = \sqrt{x^2 - q}$$

(i)
$$f(x)$$
 is undefined when $x^2 - 9 < 0$
 $x^2 < 9$
 $-3 < x < 3$

b) (i) RTS
$$\frac{1+\cos 2A}{\sin 2A} = \cot A$$
 (ii) $\cot 22^{\circ}30^{\circ} = \frac{1+\cos 45^{\circ}}{\sin 45^{\circ}}$

LHS = $\frac{1+\cos 2A}{\sin 2A}$

= $\frac{1+\cos 2A}{\sin 2A}$

= $\frac{1+\cos 2A}{\sin 2A}$

WB Use $\frac{1+\cos 2A}{\cos 2A}$

= $\frac{1+\cos 2A}{\sin 2A}$
 $\frac{1+\cos 2A}{\cos 2A}$

c)
$$A(1,-1)$$
 $B(7,3)$ $APB = 90^{\circ}$
(i) $gat AP = \frac{y_2 - y_1}{x_2 - x_1}$ (ii) $gat BP = \frac{y_- 3}{x_- 7}$
 $= \frac{y_- - i}{x_- 1}$ $N_{our} \frac{y_+ i_+ x_2 - y_-}{x_- 1} = -1$
 $= \frac{y_+ i_-}{x_- 1}$ $(y_+ i)(y_- i_-) = -(x_- i)(x_- 7)$
 $= \frac{y_+ i_-}{x_- 1}$ $(y_+ i)(y_- i_-) = -x_-^2 + 8x_- 7$

: (x -4) +(y-1) = 13 which is a wick.

$$=\frac{1+\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$$

$$=\frac{\sqrt{2}+1}{\sqrt{2}}$$

a)
$$6y = x^2 - 4x - 14$$

(i)
$$x^{2}-4x-14=6y$$

 $(x-2)^{2}-18=6y$
 $(x-2)^{2}=6(y+3)$
 $(x-2)^{2}=4x\frac{3}{2}(y+3)$

(ii) Vertex
$$\Rightarrow$$
 (2,-3)

(iii) focus
$$\Rightarrow$$
 $(2, -\frac{3}{2})$

c)
$$\int x + \frac{5}{5} = \frac{3}{5}$$

 $\therefore x^2 + 10x + 25 = 9x$
 $\therefore x^2 + x + 25 = 0$
 $\therefore x^2 + x + 25 = 0$
 $\Rightarrow -1 \pm \sqrt{-99}$
 $\Rightarrow -1 \pm \sqrt{-99}$
 $\Rightarrow -99$
 $\Rightarrow -99$
 $\Rightarrow -99$
 $\Rightarrow -99$
 $\Rightarrow -99$
 $\Rightarrow -99$

26
a)
$$\cos^{2}\theta - \sin 2\theta = 0$$

i. $\cos^{2}\theta - 2\sin\theta\cos\theta = 0$

i. $\cos\theta = \cos\theta = 2\sin\theta$

i. $\cos\theta = \cos\theta = 2\sin\theta$

i. $\theta = 90^{\circ}, 270^{\circ}$

i. $\theta = \frac{2}{3}\sin\theta$

ii. $\theta = \frac{2}{3}\sin\theta$

ii. $\theta = \frac{2}{3}\sin\theta$

ii. $\theta = \frac{2}{3}\sin\theta$

ii. $\theta = \frac{2}{3}\sin\theta$

iii. $\theta = \frac{2}{$

b)
$$P(8p,4p^2)$$
 $Q(8q,4q^2)$ on $x^2 = 16y$

a) three PQ =
$$y = (p+q)x - apq$$

i. $y = (p+q)x - 4pq$

b)
$$(4,0)$$
 satisfies thord
 $0 = 4 \left(\frac{p+q}{2} \right) - 4 \frac{pq}{2}$
 $pq = \frac{p+q}{2}$
 $pq = \frac{p+q}{2}$

of)
$$x = 2apq$$

$$y = apq$$

$$Pq = q$$

$$x = 2ay$$

$$x = 2ay$$

$$x = 2y \Rightarrow be wort R (with $x \leq 0$)$$