MATA51: Teoria da Computação Semestre 2021.1 Profa. Laís Salvador Atividade 1 – Conjuntos e Linguagens Alberto Lucas e Renata Ribeiro

1 – Mostre que para qualquer alfabeto \sum , o conjunto \sum^* de todas as sequências de símbolos de \sum é enumerável.

Base:

Considerando Σ^* o conjunto de todas as cadeias que podem ser formadas com o alfabeto Σ e sendo w uma sequência de símbolos de Σ^* . Supondo que w = ε . Ou seja, para a | Σ^* | = 0 há uma associação direta entre a mesma e o número natural (neste caso 0).

Hipótese:

É possível atrelar qualquer palavra em Σ^* a um número natural n.

Passo Indutivo:

Para $|\sum|>0$ e sabendo que $\{a,b\}$ são os únicos símbolos de \sum . Então, apenas as palavras em \sum^* que não começam com ϵ (exceto o próprio ϵ) são suficientes para representar todos os números naturais. Portanto, \sum^* é pelo menos tão grande quanto os números naturais.

Usando a lógica do Hotel de Hilbert, considerando, por exemplo Σ ' (Σ + um símbolo qualquer s), é possível pegar qualquer palavra em Σ * e acrescendo s obter uma representação | Σ | +1 de um número natural. Prova-se que há uma maneira de atribuir um número natural único a qualquer palavra em Σ *. Existe, portanto, uma relação 1 para 1 e tanto os naturais quanto Σ * possuem a mesma cardinalidade. Assim prova-se a enumerabilidade.

2 – Uma linguagem L definida sobre um alfabeto ∑ é enumerável? Justifique a sua resposta.

Se a linguagem L é finita, então sim, por definição é enumerável tendo em vista que ambos (alfabeto e linguagem) são finitos. Caso contrário, teremos duas opções: (1) a linguagem L é infinita e é possível fazer uma bijeção com os naturais e é, portanto, enumerável; (2) a linguagem L é infinita e **não** é possível fazer uma bijeção com os naturais e é, neste caso, não enumerável.

3 – Suponha Σ = { a, b}. Escreva um programa/algoritmo que, quando recebe como entrada o natural i, determina a cadeia wi $\in \Sigma^*$.

Usando um pseudocódigo baseado na ordenação lexicográfica, temos:

início

fim

```
ler natural x

count = 1

se x é igual a 0

imprime a palavra vazia

senao

enquanto count < x

repete a e b a quantidade de vezes de count para que o tamanho da

palavra seja igual a count

(ex: count = 1 repete a e b somente uma vez)

guarda resultado de cada palavra em um vetor

count = count + 1

faz uma ordenação simples (insert/bubble)

imprime a palavra correspondente ao vetor (ex: vetor[x-1])
```

4 – Mostre que o conjunto dos número racionais é enumerável

O conjunto Z dos números inteiros é enumerável visto que podemos pensar na função que leva N em Z associando os números naturais aos inteiros na seguinte ordem: 0, 1, -1, 2, -2, 3, -3, etc. Essa função pode ser dada por:

$$f(n) = \begin{cases} n/2: & \text{se n \'e par}; \\ -(n-1)/2 & \text{se n \'e \'impar}; \end{cases}$$

(mostrando q é bijeção)

Daí, seja Z^* o conjunto dos inteiros não nulos, desta forma, temos que $Z^* \subseteq Z$ é enumerável, pois:

Seja B um conjunto enumerável, e $A\subseteq B$. Por hipótese, existe uma enumeração b1, b2, b3,... para B. Eliminando os termos $b_i \notin A$ desta enumeração, obtém-se uma enumeração para A.

Obs: tome B como Z e A como Z*

Portanto, segue do teorema de que **todo subconjunto de um conjunto é enumerável**, então Z^* também é enumerável. Agora, seja $\varphi: Z \times Z^* \to Q$, com $\varphi(p, q) = p/q$, temos que, supondo X, Y conjuntos enumeráveis, o produto cartesiano $X \times Y$ é enumerável. Daí $Z \times Z^*$ é enumerável e como φ é sobrejetiva, segue que se $f: X \to Y$ é sobrejetiva e X é enumerável, então Y é enumerável.

Ilustrando:

A figura acima fornece uma maneira intuitiva de listarmos os números racionais, de modo a obter uma bijeção com os números naturais. Desta forma, seguindo as indicações das setas formamos a seguinte sequência:

$$(1,2,1/2,1/3,3,4,3/2,2/3,1/4,\cdots)$$

Portanto, conclui-se intuitivamente, por ilustração e por definição que Q é enumerável.

 $5 - \text{Seja } \Sigma = \{ \text{ a, b} \}$, o que podemos afirmar sobre $2\Sigma^*$ (conjunto de linguagens sobre Σ)? Ele é um conjunto enumerável? Justifique a sua resposta.

Não é um conjunto enumerável. Sigma estrela é um conjunto infinito e $P(\sum^*)$ é o conjunto das partes deste. $P(\sum^*)$ possui, obviamente, mais elementos que \sum^* , por definição de conjunto das partes. Então $P(\sum^*)$ é um conjunto não-enumerável tendo em vista que não é possível fazer uma bijeção com os naturais pois \sum^* é um conjunto infinito e $P(\sum^*)$ é muito maior que o conjunto dos naturais.

6 – Representações de linguagens (gramáticas e reconhecedores) são cadeias finitas sobre um alfabeto finito. O que podemos afirmar sobre a cardinalidade do conjunto de representações de linguagens? É um conjunto enumerável ou não enumerável?

A cardinalidade de uma gramática é finita tendo em vista que existem finitos símbolos pertencentes à gramática. A gramática é um conjunto enumerável, visto que é possível contar os finitos símbolos pertencentes à ela. Por exemplo: uma gramática $G(N, \Sigma)$,

P, S) em que é $\sum = \{a, b\}$, N é o conjunto de estados $\{P, S\}$, P é o estado inicial e S é o estado final.

A cardinalidade dos reconhecedores é finita se considerarmos o conjunto de estados. Se considerarmos a quantidade de palavras que é possível reconhecer, pode ser enumerável ou não enumerável.