Generatory liczb pseudolosowych

Tomasz Kubik

Definicja

- Generator liczb pseudolosowych (ang. Pseudo-Random Number Generator, PRNG)
 - program, który na podstawie niewielkiej ilości informacji (ziarna, ang. seed) generuje deterministycznie "potencjalnie nieskończony" ciąg bitów, który pod pewnymi względami jest podobny o ciągu uzyskanego z prawdziwie losowego źródła
 - generowane ciągi nie są całkiem losowe: jeśli ziarno jest reprezentowane przez k bitów informacji, to generator może wygenerować n-bitowy ciąg jedynie na 2^k sposobów spośród 2ⁿ możliwych

Zastosowania

- obliczenia probabilistyczne (wystarczają "słabe" generatory)
 - całkowanie metodą Monte-Carlo
- kryptografia (wymagają "silnych" generatorów)
 - synchroniczne szyfrowanie strumieniowe:
 - tajnym kluczem jest ziarno. Znając klucz nadawca generuje ciąg bitów i składa je operacją XOR z bitami wiadomości. Odbiorca generuje ten sam ciąg bitów pseudolosowych i odzyskuje oryginalną wiadomość poprzez złożenie go operacją XOR z bitami wiadomości zaszyfrowanej Ciąg bitów klucza generowany jest niezależnie od szyfrowanej wiadomości i kryptogramu. Musi być zachowana synchronizacja pomiędzy nadawca i odbiorca.
 - zmiana bitu kryptogramu (przekłamanie) nie wpływa na możliwość deszyfrowania pozostałych bitów
 - dodanie lub usunięcie bitu powoduje utratę synchronizacji.
 - istnieje możliwość zmiany wybranych bitów kryptogramu, a co za tym idzie zmiany deszyfrowanej wiadomości.

Metoda Monte Carlo

- Definicja ogólna:
 - Technika Monte Carlo (MC) jest to dowolna technika używająca liczb losowych do rozwiązania problemu
- Definicja Haltona (1970):
 - Metoda Monte Carlo jest to metoda reprezentująca rozwiązanie problemu w postaci parametru pewnej hipotetycznej populacji i używająca sekwencji liczb losowych do skonstruowania próby losowej danej populacji, z której to statystyczne oszacowania tego parametru mogą być otrzymane.
- Metoda Monte Carlo jest stosowana do modelowania matematycznego procesów zbyt złożonych, aby można było przewidzieć ich wyniki za pomocą podejścia analitycznego
- Istotną rolę w metodzie MC odgrywa losowanie (wybór przypadkowy) wielkości charakteryzujących proces
- Metoda MC jest stosowana do:
 - obliczanie całek
 - łańcuchy procesów statystycznych
 - optymalizacja

Obliczanie liczby π metodą MC

 Załóżmy, że chcemy obliczyć pole koła wpisanego w kwadrat o boku równym 2r, gdzie r - promień koła. Pola koła i kwadratu opisują wzory:

$$P_{koło} = \pi r^2$$
 $P_{kwadrat} (2 r)^2 = 4 r^2$
 $stad:$
 $\pi = 4 P_{koło} / P_{kwadrat}$

Obliczanie liczby π metodą MC

- Wyznaczamy wewnątrz kwadratu bardzo dużo losowych punktów
- Zliczamy te punkty, które wpadają do wnętrza koła
- Stosunek liczby punktów zawierających się w kole do wszystkich wylosowanych punktów będzie dążył w nieskończoności do stosunku pola koła do pola kwadratu:

```
\pi = 4 P_{kolo} / P_{kwadrat} \pi \approx 4 n_{kolo} / n_{kwadrat}
```

- gdzie: n_{koło} liczba punktów w kole, n_{kwadrat} liczba wszystkich punktów
- Marquis Pierre-Simon de Laplace (1886)

Całkowanie numeryczne metodą MC

 obliczamy przybliżoną wartość całki oznaczonej

 $I = \int_{x_p}^{x_k} f(x) dx$

- dla funkcji f(x), której całkę chcemy obliczyć w przedziale [xp,xk] wyznaczamy prostokąt obejmujący pole pod wykresem tej funkcji o wysokości h i długości podstawy (xk-xp)
- losujemy n punktów i zliczamy te punkty nw, które wpadają w pole pod wykresem funkcji
- wartość całki obliczana jest na podstawie wzoru przybliżonego:

$$I = \int_{x_p}^{x_k} f(x) dx \approx \frac{n_w}{n} h(x_k - x_p)$$

Deska Galtona

- Pochylona deska z wbitymi gwoździami ułożonymi w trójkąt. Kulki wpadające do poszczególnych przegródek pod deską tworzą histogram rozkładu dwumianowego, prawie równego rozkładowi normalnemu (dokładnie byłyby one równe dla nieskończonej liczby nieskończenie małych kulek i nieskończenie dużej liczby przegródek).
- Deska Galtona ilustruje więc sposób powstawania w naturże rozkładu normalnego pod wpływem drobnych losowych odchyleń.
- Funkcja rozkładu prawdopodobieństwa

$$\binom{n}{k}p^k(1-p)^{n-k}$$

Załóżmy, że deska Galtona ma n przegródek. Prawdopodobieństwo, że kuleczka wpadnie do przegródki numer k $\left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{k-k}$

$$\left(\frac{1}{2}\right)^k \cdot \left(\frac{1}{2}\right)^{n-1}$$

Pożądane cechy generatorów

- trudne do ustalenia ziarno, choć znany jest ciąg wygenerowanych bitów, trudne do ustalenia kolejno generowane bity, choć znany jest ciąg bitów dotychczas wygenerowanych
- 1. Jednorodność. W każdym punkcie generowanego ciągu bitów prawdopodobieństwo wystąpienia jedynki lub zera jest takie samo i wynosi 1/2, oczekiwana liczba zer w całym ciągu wynosi około n/2 dla ciągu n bitów.
- 2. Skalowalność. Każdy podciąg ciągu bitów, który uzyskał pozytywny wynik testu jakości, poddany temu samemu testowi powinien również uzyskać wynik pozytywny.
- 3. Zgodność. Zachowanie generatora musi dawać podobne rezultaty niezależnie od początkowej wartości lub fizycznego zjawiska będącego źródłem "losowości".

Liniowy generator kongruencyjny (ang. Linear Congruential Generator)

Algorytm:

$$x_{i+1} = (a \times x_i + c) \mod m$$

bit_{i+1} = s_{i+1} mod 2

gdzie:

- a, c, i m to ustalone stałe (mnożnik, przyrost, moduł)
- x₀ to ziarno (stan początkowy), kolejne x to liczby pseudolosowe
- bit to kolejno generowany bit

Rodzaje generatorów LCG

Addytywny LCG

$$x_{i+1} = (a \times x_i + c) \mod m$$

Multiplikatywny LCG

$$x_{i+1} = a \times x_i \mod m$$

- Generowane kolejno liczby są z zakresu od 0 do c-1, stąd po m cyklach obliczeniowych liczby pseudolosowe zaczynają się powtarzać
- Dla pewnych kombinacji parametrów generowany ciąg jest prawie losowy, dla innych bardzo szybko staje się okresowy

- Okres obu przedstawionych generatorów zależy od wartości parametrów równania i opisują twierdzenia:
 - Jeżeli m = 2^k , dla m ≥ 3 , to maksymalny okres generatora liniowego wynosi N = 2^{k-2} , gdy a = 3 mod 8 lub a = 5 mod 8.
 - Jeżeli m jest liczbą pierwszą, to generator liniowy posiada okres maksymalny równy m, gdy a jest pierwiastkiem pierwotnym m
 - Pierwiastek pierwotny modulo n to liczba z przedziału
 1, n − 1 >, której potęgi modulo n dają wszystkie
 liczby z < 1, n − 1 >.

Algorytm doboru współczynników dla generatora LCG

- Określamy zakres liczb pseudolosowych
 - 0..x_{max} dla LCG addytywnego
 - 1..x_{max} dla LCG multiplikatywnego
- Moduł m jest zawsze o 1 większy od maksymalnej liczby w zakresie, czyli:

$$m = x_{max} + 1$$

- Przyrost c musi być względnie pierwszy z modułem m
 - moduł m można rozłożyć na czynniki pierwsze i jako c wybrane mogą być czynniki nie występujące w rozłożeniu
 - c może być generowane pseudolosowe, pod warunkiem, że spełnia warunek: gcd(c,m) = 1
- Mnożnik a dobierany jest tak, aby a 1 było podzielne przez każdy czynnik pierwszy modułu m
 - jeśli moduł m dzieli się przez 4, to a 1 również powinno być podzielne przez 4

Przykład generatora LCG (wg D. Knutha)

• $x_{i+1} = (a \times x_i + c) \mod m$

```
x_0 - ziarno a = [\pi \times 10^9] c = [e \times 10^9] m = 34359738368 = 2^{35} e = 2,7182818284590452353602874713527...
```

- podstawa logarytmów naturalnych

Przykładowa implementacja LCG

```
#include <iostream>
using namespace std;
int main()
  unsigned long long m, a, c, x, x0;
  cin >> m >> a >> c >> x0;
  x = x0;
  do
   x = (a * x + c) % m;
    cout << x << " ";
  } while (x != x0);
  cout << endl;</pre>
  return 0;
```

Problemy generatorów LCG

- jeśli moduł jest potęgą liczby 2 (m= 2^k) to młodsze bity generowanych liczb pseudolosowych posiadają krótszy okres powtarzania niż cała liczba pseudolosowa
- problem występuje, gdyż wyliczanie operacji modulo zastępowane jest obcinaniem bitów:

$$x_{i+1} = (a \times x_i + c) \mod 2^k = (a \times x_{i-1} + c)$$
 obcięte do k bitów

Przykładowe implementacje LCG

Źródło	а	b	С	Wyjściowe bity ziarna w <i>rand()</i> lub <i>w Random(L)</i>
Numerical Recipes	1664525	1013904223	2 ³²	
Borland C/C++	22695477	1	2 ³²	bity 3016 w <i>rand()</i> , 300 w <i>Irand()</i>
GNU Compiler Collection	69069	5	2 ³²	bity 3016
ANSI C: Watcom, Digital Mars, CodeWarrior, IBM VisualAge C/C++	1103515245	12345	2 ³²	bity 3016
Borland Delphi, Virtual Pascal	134775813	1	2 ³²	bity 6332 w (seed * L)
Microsoft Visual/Quick C/C++	214013	2531011	2 ³²	bity 3016
ANSIC	1103515245	12345	2 ³¹	
MINSTD	16807	0	2 ³¹ -1	
RANDU	65539	0	2 ³¹	
SIMSCRIPT	630360016	0	2 ³¹ -1	
BCSLIB	5 ¹⁵	7261067085	2 ³⁵	
<u>BCPL</u>	2147001325	715136305	2 ³²	
URN12	452807053	0	2 ³¹	
APPLE	1220703125	0	2 ³⁵	
Super-Duper	69069	0	2 ³²	

LFSR — Linear Feedback Shift Register

- LFSR posiada rejestr przesuwający o długości n bitów, który na początku zawiera losowe bity.
- Niektóre bity rejestru są poddawane operacji XOR i wynik zastępuje najstarszy bit rejestru, jednocześnie pozostałe bity przesuwane są o jedna pozycje w prawo i najmłodszy bit staje się kolejnym bitem generowanego ciągu.

Przykład LFSR

- Rejestr 4-bitowy, którego pierwszy i czwarty bit są poddawane operacji XOR
- Początkowo rejestr zawiera same jedynki
- Generowany ciąg to najmłodsze (prawe) bity kolejnych stanów rejestru
- n-bitowy rejestr może znaleźć się w jednym z 2ⁿ – 1 stanów, teoretycznie może więc generować ciąg o długości 2ⁿ – 1 bitów. Potem ciąg powtarza się.
- Rejestr zawierający same zera generuje niekończący się ciąg zer)

Cechy LFSR

- LFSR ma słaba wartość kryptograficzna gdyż znajomość 2n kolejnych bitów ciągu pozwala na znalezienie wartości generowanych od tego miejsca.
- LFSR działa jednak bardzo szybko, zwłaszcza jeśli jest to układ sprzętowy, i stąd jest on bardzo atrakcyjny w praktycznych zastosowaniach.
- Można konstruować bardziej skomplikowane układy zawierające kilka LFSR i nieliniową funkcję f przekształcającą bity generowane przez poszczególne LFSR.

Generator Geffe

- Generator Geffe ma słabe własności kryptograficzne ze względu na korelacje pomiędzy generowanymi bitami i bitami LFSR 1 lub LFSR 2
- Niech y(t) = $f(x_1(t), x_2(t), x_3(t))$, wtedy $P(y(t) = x_1(t)) = P(x_2(t) = 1) + P(x_2(t) = 0) \cdot P(x_3(t) = x_1(t)) = 1/2 + 1/2 \cdot 1/2 = 3/4$, i podobnie dla $x_3(t)$.

Generatory sterowane zegarem

- Generator o zmiennym kroku, przemienny Stop-and-Go (ang. alternating step generator, Stop-and-Go)
- LFSR 1 jest przesuwany w każdym takcie zegara.
- Jeśli na wyjściu LFSR 1 jest 1 to LFSR 2 jest przesuwany; LFSR 3 nie jest przesuwany (poprzedni bit jest powtarzany).
- Jeśli na wyjściu LFSR 1 jest 0 to LFSR 3 jest przesuwany; LFSR 2 nie jest przesuwany (poprzedni bit jest powtarzany).
- Wyjściowe bity LFSR 2 i LFSR 3 są dodawane modulo 2 () dając kolejny bit generowanego ciągu.

Generator obcinający (ang. shrinking generator)

Generatory, w których skorzystano z trudności obliczeniowych

- Generator Blum-Micali
- Generator RSA
- Generator Blum-Blum-Shub BBS
- Generator RC 4

Generator Blum-Micali

- Wykorzystuje trudność w obliczaniu logarytmu dyskretnego
- Na początek wybierane są dwie liczby pierwsze a i p oraz ziarno x₀ (ziarno)
- Następnie obliczane jest
 x_{i+1} = a x_i (mod p) dla i = 1, 2, 3, . . .
- Pseudolosowy ciąg bitów dostarcza wzór
 k_i =1 jeżeli x_i < (p 1)/2,
 k_i = 0 w przeciwnym przypadku

Generator RSA

- Wykorzystuje trudność związaną z faktoryzacją liczb
- Na początek wybierane są dwie liczby pierwsze p i q (N = p q) oraz liczba e względnie pierwsza z (p - 1)(q - 1).
- Następnie wybierana jest losowe ziarno x₀
 mniejsze od N, oraz obliczane jest
 x_{i+1} = x_i^e (mod N)
- generowanym bitem jest najmłodszy bit x_i

Generator Blum Blum Shub

Algorytm

$$x_{i+1} = (x_i)^2 \mod M$$

• gdzie:

```
M = p q
```

- p, q to duże liczby pierwsze dających w dzieleniu przez 4 resztę 3 i mające możliwie największy wspólny dzielnik gcm(φ(p-1), φ(q-1))

$$\phi(n) = n (1 - 1/p_1) (1 - 1/p_2)...(1-1/p_k),$$

- gdzie p₁ do p_k są wszystkimi czynnikami pierwszymi liczby n liczonymi bez powtórzeń
- x0 obliczane jest dla x będącego losową liczbą względnie pierwszą z M
- Wynikiem generatora jest kilka ostatnich bitów (najmłodszy bit) x_k
- Generator ten jest dość powolny, za to jest bardzo bezpieczny.
 Przy odpowiednich założeniach, odróżnienie jego wyników od szumu jest równie trudne jak faktoryzacja M

Generator RC 4

- Opracowany przez Rona Rivesta w 1987
 r. Przez kilka lat był tajny, aż do publikacji w 1994 r. programu realizującego ten algorytm w Internecie
- algorytm pracuje w trybie OFB (Output Feedback)
- Ciąg generowany przez RC 4 jest losowym ciągiem bajtów.

Algorytm RC 4

- Algorytm używa dwóch wskaźników i, j przyjmujących wartości 0, 1, 2, . . . , 255 oraz Sboksu z wartościami S₀, S₁, . . . , S₂₅₅, które tworzą permutacje liczb 0, 1, . . . , 255.
- Inicjalizacja:
 - Na początku i = j = 0, S_I = I dla I = 0, 1, . . . , 255, kolejna 256-bajtowa tablica wypełniana jest bajtami klucza, przy czym klucz jest używany wielokrotnie, aż do wypełnienia całej tablicy K0,K1, . . . ,K255.
- Następnie wykonujemy:

```
for i = 0 to 255:

j = (j + S_i + K_i) \pmod{256}

zamień S_i z S_i
```

Algorytm RC 4

Generowanie kolejnego bajtu:

```
i = i + 1 \pmod{256}

j = j + S_i \pmod{256}

zamien S_i z S_j

I = S_i + S_j \pmod{256}

K = S_i
```

- Otrzymany bajt K jest dodawany modulo 2 (xor) z kolejnym bajtem wiadomości dając kolejny bajt kryptogramu (przy deszyfrowaniu role tekstu jawnego i kryptogramu się zamieniają).
- Algorytm RC 4 jest używany w wielu programach komercyjnych.