Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

• Instructor: He Wang Email: he.wang@northeastern.edu

§2. Matrix Algebra.

CONTENTS

1.	Sum and scalar product	1
2.	Matrix Product	2
3.	Inverse of a matrix	6
4.	The transpose A^T	8

9

1. Sum and scalar product

Definition 1. • The *sum* A + B of $m \times n$ matrices A and B is

• The **scalar product** $r \cdot A$ of a scalar $r \in \mathbb{F}$ and A is

LU factorizations and Gaussian elimination

Theorem 2. For $n \times m$ matrices A, B, C and scalar r, s, the following hold.

- (1) A + B = B + A;
- (2) (A + B) + C = A + (B + C);
- (3) A + 0 = A;
- (4) A + (-A) = 0;
- (5) r(A+B) = rA + rB;
- (6) (r+s)A = rA + sA;
- (7) r(sA) = (rs)A;
- (8) 1A = A.

Geometric meanings of vectors:

Definition 3. A vector \vec{b} in \mathbb{F}^m is called *linear combination* of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ in \mathbb{F}^m if

$$\vec{b} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_n \vec{v}_n$$

Definition 4. The dot product of two vectors

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \text{ and } \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

is defined as

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

2. Matrix Product

• Product of a matrix A and a vector $\vec{x} \in \mathbb{F}^n$.

Definition 5. The **product** of A and \vec{x} defined to be

$$A\vec{x} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n.$$

The product of A and \vec{x} can be computed as

$$A\vec{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix}$$

Proposition 6. Let A be an $m \times n$ matrix with columns $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$, and let \vec{b} be a vector in \mathbb{F}^m . Then the matrix equation

$$A\vec{x} = \vec{b}$$

has the same solution set as the vector equation

$$x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n = \vec{b},$$

which has the same solution set as the linear system with augmented matrix

$$\left[\begin{array}{cccc} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n & \vec{b} \end{array}\right].$$

Theorem 7 (Algebraic Rules for $A\vec{x}$). If A is an $m \times n$ matrix, \vec{u} and \vec{v} are vectors in \mathbb{F}^n and c is a scalar, then

- (1.) $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$
- (2.) $A(c\vec{u}) = c(A\vec{u})$.

More generally,

Definition 8. Let A be an $m \times n$ matrix and B be a $n \times p$ matrix.

Define the **product** of A and B, to be the $m \times p$ matrix

$$AB := [A\vec{b}_1 \quad A\vec{b}_2 \quad \dots \quad A\vec{b}_p]$$

• The Row-Column Rule for Computing $A \cdot B$

The (i, j)-th entry of AB is

$$\sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj},$$

which equals the dot product of the i-th row of A with the j-th column of B

Example 9. Calculate
$$AB$$
 for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$.

Theorem 10 (Properties of Matrix Multiplication). Let A be an $m \times n$ matrix, and let B and C be matrices for which the indicated operations are defined. Let I_n denote the $n \times n$ identity matrix.

- \bullet A(BC) = (AB)C.
- $\bullet \ A(B+C) = AB + AC.$
- \bullet (A+B)C = AC + BC.
- r(AB) = (rA)B where r is any scalar.
- \bullet $I_m A = A = A I_n$.

Proof.

$$[A(BC)]_{ij} = \sum_{k=1}^{n} a_{ik} (BC)_{kj} = \sum_{k=1}^{n} a_{ik} \left(\sum_{l=1}^{p} b_{kl} c_{lj} \right) = \sum_{k=1}^{n} \sum_{l=1}^{p} a_{ik} b_{kl} c_{lj}$$

$$C[\dots - \sum_{l=1}^{p} (AB)_{ij} c_{ij} - \sum_{l=1}^{p} \left(\sum_{l=1}^{n} a_{ij} b_{kl} \right) c_{lj} - \sum_{l=1}^{p} \sum_{l=1}^{n} a_{ij} b_{kl} c_{lj}$$

$$[(AB)C]_{ij} = \sum_{l=1}^{p} (AB)_{il} c_{lj} = \sum_{l=1}^{p} \left(\sum_{k=1}^{n} a_{ik} b_{kl}\right) c_{lj} = \sum_{l=1}^{p} \sum_{k=1}^{n} a_{ik} b_{kl} c_{lj} = \sum_{k=1}^{n} \sum_{l=1}^{p} a_{ik} b_{kl} c_{lj}$$
So $A(BC) = (AB)C$

So,
$$A(BC) = (AB)C$$
.

Example 11.
$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \neq BA$$

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix} = AC$$

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Definition 12. If A is an $n \times n$ matrix. We define the k-th power of A as

$$A^k = \underbrace{A \cdot A \cdot \cdots \cdot A}_{k \text{ factors}}.$$

Example 13. Calculate X^2 , X^3 , X^4 , ... for the following matrices

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Definition 14 (Elementary matrices).

• E_{ij} denotes the matrix obtained by switching the *i*-th and *j*-th rows of I_n .

$$I \xrightarrow{R_i \leftrightarrow R_j} E_{ij}$$

• $E_i(c)$ denotes the matrix obtained by multiplying the *i*-th row by a nonzero c.

$$I \xrightarrow{cR_i} E_i(c)$$

• $E_{ij}(d)$ denotes the matrix adding d times the j-th row to the i-th row.

$$I \xrightarrow{R_i + dR_j} E_{ij}(d)$$

Proposition 15 (Elementary matrices multiplications). Multiply a matrix A with an elementary on the **left** side is equivalent to an elementary row operation is performed on the matrix A.

Product of block matrices.

If
$$A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$$
 and $B = \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix}$, then

3. Inverse of a matrix

Definition 16. An $n \times n$ matrix A is called **invertible** if there exists an $n \times n$ matrix B such that

$$AB = BA = I_n.$$

Proposition 17. If A is invertible, then it has only one inverse.

Theorem 18. Let A and B be $n \times n$ invertible matrices.

o

o

o

o

o

o

o

Example 19. The inverse of the elementary matrices.		
$E_{ij}^{-1} =$		
$E_i(c)^{-1} =$		
$E_{ij}(d)^{-1} =$		
Theorem 20 (The inverse matrix theorem). Let A be an $n \times n$ matrix. Then the next statements are all equivalent (that is, they are either all true or all false). (1) The matrix A is invertible.		
(2) There is a square matrix B such that $BA = I$.		
(3) The linear system $A\vec{x} = \vec{0}$ has only the trivial solution.		
(4) rank $A = n$. (5) The reduced row echelon form of A is identity matrix, i.e. $\mathbf{rref}(A) = I_n$.		
(6) The matrix A is a product of elementary matrices.		
(7) There is a square matrix C such that $AC = I_n$.		
(8) The linear system $A\vec{x} = \vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{F}^n$.		
Proof. $(1) \Rightarrow (2)$		
$(2) \Rightarrow (3)$		
$(3) \Rightarrow (4)$		
$(4) \Rightarrow (5)$		
$(5) \Rightarrow (6)$		
$(6) \Rightarrow (1)$		

Theorem 21 (Algorithm for Computing A^{-1}). Given an $n \times n$ matrix A.

1. Define an $n \times 2n$ "augmented matrix"

 $[A \mid I_n]$

2. Find $rref[A \mid I_n]$ using elementary row operations to

Example. Find the inverse of matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$

Example 22. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible, find A^{-1} .

4. The transpose A^T

Definition 23. Given an $m \times n$ matrix A, we define the **transpose matrix** $A^T = [c_{ij}]$, as $c_{ij} = a_{ji}$.

Theorem 24 (Properties of Matrix Transposition). Let A and B be matrices such that the indicated operations are well defined.

- $\bullet \ (A^T)^T = A.$
- $\bullet \ (A+B)^T = A^T + B^T.$
- $(rA)^T = rA^T$ for any scalar r.
- $\bullet \ (AB)^T = B^T A^T.$

Proof. Compare the (i, j)-entry of the matrix.

$$[(AB)^T]_{ij} = [AB]_{ji} = \sum_k a_{jk} b_{ki}$$
$$[B^T A^T]_{ij} = \sum_k [B^T]_{ik} [A^T]_{kj} = \sum_k b_{ki} a_{jk} = \sum_k a_{jk} b_{ki}.$$

Theorem 25. If AB is defined, then $rank(AB) \leq rank A$.

Theorem 26. $rank(A) = rank(A^T)$.

Theorem 27. If AB is defined, then $rank(AB) \leq min\{rank A, rank B\}$.

5. LU factorizations and Gaussian elimination

LU-decomposition is a matrix product version of Gaussian elimination.

Definition 28. An $m \times m$ matrix L with entries l_{ij} is called

- lower triangular if $l_{ij} = 0$ whenever j > i.
- unit lower triangular if it is lower triangular, and $l_{ii} = 1$ for each i = 1, ..., m.

Definition 29. Let A be an $m \times n$ matrix. An **LU factorization** for A is given by writing A as the product

$$A = L \cdot U$$

with L a unit lower triangular $m \times m$ matrix, and U an $m \times n$ matrix in ref.

Use of LU factorizations:

Algorithm for Finding an LU Factorization:

Suppose A is an $m \times n$ matrix that can be transformed into a matrix in echelon form by using only Row-Replacement operations.

Then an LU factorization of A can be obtained as follows.

- 1. Reduce A to echelon form U using only Row-Replacement operations.
- 2. Let L be the matrix obtained from I_m by applying the inverse Row-Replacement operations from Step 1, in reverse order.

Remark: There are several variations of LU-factorization: e.g.,

- 1. LDU-decomposition. A = LDU. Here D means a diagonal matrix and U is an unit upper triangular matrix.
- 2. LU-factorization with pivoting. PA = LU. Here P is a permutation matrix, obtained by multiplication of elementary matrices E_{ij} .

Page 10