Chapter 1, Section 1

James Lee

April 23, 2025

2. Let $Y \subseteq \mathbb{A}^3$ be the set $Y = \{(t, t^2, t^3) \mid t \in k\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that A(Y) is isomorphic to a polynomial ring in one variable over k. We say that Y is given by the parametric representation x = t, $y = t^2$, $z = t^3$.

Proof. We have $I(Y)=(x^2-y,x^3-z)$, and Y is irreducible since it is homeomorphic to the affine line \mathbb{A}^1 under the map $t\mapsto (t,t^2,t^3)$, thus Y is an affine variety of dimension 1. Consider the map $f:k[x,y,z]\to k[t]$ defined by

$$x \mapsto t, \quad y \mapsto t^2, \quad z \mapsto t^3.$$

It is clearly surjective, and k[t] is an integral domain, which implies $\ker f$ is a prime ideal. Since $\dim k[t] = 1$, the set Y is an affine variety of dimension 1 provided $\ker f = I(Y)$. We obviously have $I(Y) \subseteq \ker f$. By (1.8A), we have

height ker
$$f + \dim k[t] = \dim k[x, y, z] \implies$$
 height ker $f = 2$,

and $(x^2 - y)$ is a prime ideal contained in I(Y), thus I(Y) cannot be properly contained in $\ker f$, hence $\ker f = I(Y)$.

3. Let Y be the algebraic set in \mathbb{A}^3 defined by the two polynomials $x^2 - yz$ and xz - x. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.

Proof. We claim that

$$Y = Z((x, y)) \cup Z((x, z)) \cup Z((x^2 - y, z - 1)).$$

It is clear the subsets Z((x,y)) and Z((x,z)) are irreducible. What is less obvious is the irreducibility of $Z((x^2-y,z-1))$. Observe that

$$\frac{k[x,y,z]}{(x^2-y,z-1)} \simeq \frac{k[x,y]}{(x^2-y)} \simeq k[x,x^2] \simeq k[x],$$

hence $(x^2-y,z-1)$ is a prime ideal, hence $Z((x^2-y,z-1))$ is irreducible. If $P=(u,v,w)\in Y$, then $u^2-vw=0$ and uw-u=0, so by the second equation either u=0 or u=1. If u=0, either v=0 or w=0, which implies $P\in Z((x,y))$ or $P\in Z((x,z))$. If u=1, then we have $P\in Z((x^2-y,z-1))$. The converse direction follows in similar fashion.

6. Any nonempty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.

Proof. Let X be an irreducible topological space and let U be a non-empty proper open subset of X. Then C=X-U is a proper closed subset of X, so we have $X=\overline{U}\cup C$, hence $\overline{U}=X$. Conversely, if every open subset of a topological space is dense, and we have $X=C_1\cup C_2$ for two closed subsets of X with C_1 proper, then $U_1=X-C_1$ is an open subset contained in C_2 , which implies $X=\overline{U_1}\subseteq \overline{C_2}=C_2$, hence $C_2=X$. It follows immediately that any open subset of an irreducible space is irreducible: if $V\subset U$ are open subsets, then the closure of V as a subspace of V is the intersection of V and its closure as a subspace of V, and V is dense in V, hence it is dense in V. Now, if V is an open subset of V for an irreducible subset V of any topological space V, then it must meet V by definition of the closure of a subset, then the closure of V as a subspace of V contains V since V is dense in V, hence V by definition of the closure of a subset, then the closure of V as a subspace of V contains V since V is dense in V, hence V by definition of the closure of a subset, then the closure of V as a subspace of V contains V since V is dense in V, hence V by definition of the closure of V and V is dense in V, hence V by definition of the closure of V and V is dense in V, hence V by definition of V and V is dense in V, hence V by definition of V is dense in V by definition of V in V in

- 7. (a) Show that the following conditions are equivalent for a topological space X:
 - (i) X is noetherian;

- (ii) every nonempty family of closed subsets has a minimal element;
- (iii) X satisfies the ascending chain condition for open subsets;
- (vi) every nonempty family of open subsets has a maximal element.
- (b) A noetherian topological space is quasi-compact.
- (c) A subset of a noetherian topological space is noetherian in its induced topology.
- (d) A noetherian space which is also Hausdorff must be a finite set with the discrete topology.

Proof.

- (a) (i) \implies (ii) If (ii) is false there is a non-empty collection T of closed subsets with no minimal element, and we can construct inductively a non-terminating strictly decreasing sequence in T.
 - (ii) \Longrightarrow (iii) Let $U_1 \subset U_2 \subset \cdots$ be an ascending chain of open subsets of X and let $C_i = X U_i$. Then $\{C_i\}_{i \geq 1}$ is a non-empty collection of closed subsets of X, hence has a minimal element, say C_m . Hence, we have $U_m = U_{m+1} = \cdots$.
 - (iii) \implies (iv) If (iv) is false, then there is a non-empty collection S of open subsets with no maximal element, and we can construct inductively a non-terminating strictly increasing sequence in S.
 - (iv) \implies (i) Let $C_1 \supseteq C_2 \supseteq \cdots$ be a descending chain of closed subsets of X and let $U_i = X C_i$. Then $\{U_i\}_{i \ge 1}$ is a non-empty collection of open subsets of X, hence has a maximal element, say U_m . Hence, we have $C_m = C_{m+1} = \cdots$.
- (b) Suppose X is not quasi-compact so that the set Σ of non-quasi-compact closed subsets of X is non-empty. Let Y be a minimal element in Σ . If U is an open subset of Y, then $A = \overline{U}$ and B = Y U are closed subsets of X contained in Y such that $Y = A \cup B$. Since Y is minimal amongst the set of non-quasi-compact closed subsets in X, A and B must be compact; however, a finite union of compact sets is compact, a contradiction.
- (c) Let Y be a subspace of X. Then any open subset of Y is of the form $V = U \cap Y$ for some open subset U of X, so if $V_1 \subseteq V_2 \subseteq \cdots$ is an ascending chain of open sets in Y with $V_i = U_i \cap Y$, then let $U'_i = \bigcup_{j \leq i} U_i$ so that we have the ascending chain $U'_1 \subseteq U'_2 \subseteq \cdots$ and

$$U_i'\cap Y=\bigcup_{j\leq i}U_i\cap Y=\bigcup_{j\leq i}V_i=V_i.$$

If X is noetherian, then this chain eventually terminates, say at i=n, which implies the chain $V_1 \subseteq V_2 \subseteq \cdots$ terminates at $V_n = U'_n \cap Y$. Hence, Y is noetherian.

(d) Every subspace of a noetherian space is compact since every subspace is noetherian, and in a Hausdorff space every compact set is closed, hence every subset is closed, therefore a noetherian Hausdorff space must be discrete. Finiteness follows from quasi-compactness.

8. Let Y be an affine variety of dimension r in \mathbb{A}^n . Let H be a hypersurface in \mathbb{A}^n , and assume that $Y \nsubseteq H$. Then every irreducible component of $Y \cap H$ has dimension r-1.

Proof. Let $Y = Z(\mathfrak{p})$ and H = Z(f) for some prime ideal \mathfrak{p} and irreducible polynomial f in $k[x_1, \ldots, x_n]$. If $Y \nsubseteq H$, then $f \notin \mathfrak{p}$, so the image of f in $A(Y) = k[x_1, \ldots, x_n]/\mathfrak{p}$ is not a zero-divisor. If f is a unit in A(Y), then f does not vanish at any points in Y, which implies Y and H does not intersect, so $Y \cap H$ has no irreducible components (the empty set is defined to be not irreducible). Otherwise, the coordinate ring of an irreducible component of $Y \cap H$ corresponds to a minimal prime ideal \mathfrak{q} in A(Y) which contains f. By Krull's Hauptidealsatz, any such prime ideal must have height 1, and since A(Y) has dimension r, it follows that $A(Y)/\mathfrak{q}$ has dimension r-1 by (1.8A).

9. Let $\mathfrak{a} \subseteq A = k[x_1, \dots, x_n]$ be an ideal which can be generated by r elements. Then every irreducible component of $Z(\mathfrak{a})$ has dimension $\geq n - r$.

Proof. We proceed by induction on r. If r=1 and $\mathfrak{a}=(f)$, then the irreducible components of $Z(\mathfrak{a})$ correspond to the irreducible factors of f, which are hypersurfaces in \mathbb{A}^n and therefore has dimension n-1. Let r>1 and assume the statement to be true for r-1 and suppose $\mathfrak{a}=(f_1,\ldots,f_{r-1},f_r)$. An irreducible component of $Z(f_1,\ldots,f_{r-1},f_r)$ corresponds to a minimal prime ideal \mathfrak{p} in $k[x_1,\ldots,x_n]$ containing (f_1,\ldots,f_{r-1},f_r) , and by the inductive hypothesis a minimal prime ideal containing (f_1,\ldots,f_{r-1}) have height at most r-1, so by Krull's Hauptidealsatz, \mathfrak{p} can have height at most r, hence A/\mathfrak{p} has dimension at least n-r, hence an irreducible component of $Z(f_1,\ldots,f_{r-1},f_r)$ have dimension at least n-r.

- **10.** (a) If Y is any subset of a topological space X, then dim $Y \leq \dim X$.
 - (b) If X is a topological space which is covered by a family of open subsets $\{U_i\}$, then dim $X = \sup \dim U_i$
 - (c) Give an example of a topological space X and a dense open subset U with $\dim U < \dim X$.
 - (d) If Y is a closed subset of an irreducible finite dimensional topological space X, and if dim $Y = \dim X$, then Y = X.
 - (e) Give an example of a noetherian topological space of infinite dimension.

Proof.

- (a) If $Z_0 \subset Z_1 \subset \cdots \subset Z_n$ is a chain of distinct irreducible closed subsets of Y, then their closures as subsets of X are also irreducible by Exercise 1.6, that is $\overline{Z_0} \subset \overline{Z_1} \subset \cdots \subset \overline{Z_n}$ is a chain of distinct irreducible closed subsets of X, hence dim $Y \leq \dim X$. It is indeed distinct since if $x \in Z_{i+1}$ and $x \in \overline{Z_i} = \overline{C_i \cap Y} \subseteq C_i \cap \overline{Y}$ for some closed subset C_i of X, then x must be in $Z_{i+1} \cap C_i \cap \overline{Y} = Z_i$.
- (b) By (a) we have $\sup \dim U_i \leq \dim X$. Conversely, if $Z_0 \subset Z_1 \subset \cdots \subset Z_n$ is a chain of distinct irreducible closed subsets of X, then there exists $U \in \{U_i\}$ such that $V_0 = Z_0 \cap U \neq \emptyset$, thus $V_i = Z_i \cap U \neq \emptyset$, so by Exercise 1.6 $V_0 \subset V_1 \subset \cdots \subset V_n$ is a distinct chain of irreducible closed subsets in U, therefore $n \leq \dim U$, hence taking the supremum we have $\dim X \leq \sup \dim U_i$.
- (c) Let $X = \{a, b\}$ with topology defined by the open subsets $\{\emptyset, \{a\}, X\}$. Then $U = \{a\}$ is dense since the only closed subset containing U is X, and it has dimension 0, but X has dimension 1.
- (d) If Y itself is irreducible, then any chain $Z_0 \subset Z_1 \subset \cdots \subset Z_n$ of irreducible closed subsets of Y can be extended to $Z_0 \subset Z_1 \subset \cdots \subset Z_n \subset Y$ unless $Z_n = Y$, so if $n = \dim Y$ then we must have $Z_n = Y$, and since $\dim Y = \dim X$, Y cannot be a proper subset of X. Otherwise, if Y is not irreducible then Y and therefore Z_n are proper subsets of X, and by the proof of (a) any chain in Y induces a chain of same length in X. Since \overline{Z}_n is a proper subset of X, the chain can be extended to $\overline{Z_0} \subset \overline{Z_1} \subset \cdots \subset \overline{Z_n} \subset X$, contradicting the dimensions of X and Y. Hence, Y = X.
- (e) Let $X = \mathbb{N}$ with topology defined by the closed sets $C_n = \{1, \ldots, n\}$. If $\{C_{n_{\alpha}}\}$ is any collection of closed subsets, then the minimal element is $C_{n_{\beta}}$ for $n_{\beta} = \min n_{\alpha}$, so X is noetherian. Also, every closed set is irreducible, so we have an infinite chain of irreducible closed subsets $C_1 \subset C_2 \subset \cdots$.