

Year 11 Mathematics Specialist Test 4 2016

Calculator Free Trigonometry

STUDENT'S NAME		
DATE:	TIME: 50 minutes	MARKS : 50
INSTRUCTIONS:		

INSTRUCTIONS:

Standard Items: Special Items:

Pens, pencils, ruler, eraser.

Notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (16 marks)

Prove the following identities

(a)
$$\frac{1-\sin x}{1+\sin x} = (\sec x - \tan x)^2$$

$$RHS = \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x}\right)$$
[4]

$$= \frac{1-\sin x}{\cos x}$$

$$= \frac{1-\sin x}{\cos x}$$

$$= \frac{1-\sin x}{1-\sin x}$$

(b)
$$\frac{\sin 2A + \cos 2A + 1}{\sin A + \cos A} = 2\cos A$$

(c)
$$\sec^2 A = \frac{\csc A}{\csc A - \sin A}$$

[4]

$$RHS = \frac{1}{\sin A} = \frac{1}{\sin A}$$

$$\frac{1}{\sin A} = \frac{1}{\sin A}$$

$$\frac{\sin 8A \cos A - \sin 6A \cos 3A}{\cos 2A \cos A - \sin 3A \sin 4A} = \tan 2A$$

$$LHS = \frac{1}{2} \left[\sin 9A + \sin 7A \right] - \frac{1}{2} \left[\sin 9A + \sin 3A \right]$$

$$\frac{1}{2} \left[\cos A + \cos 3A \right] - \frac{1}{2} \left[\cos A - \cos 7A \right]$$

$$= \frac{\sin 7A - \sin 3A}{\cos 3A + \cos 7A}$$

$$= \frac{2\cos 8A \sin 2A}{2\cos 8A \cos 2A} = \frac{\tan 2A}{2\cos 8A \cos 2A}$$

[4]

2. (4 marks)

Using a suitable addition formula, calculate the exact value of cos 75°

$$4075 = ws (30+45) = wo30 wo45 - sin30 sin45$$

$$= \sqrt{3} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot$$

3. (4 marks)

Show that $8\cos 80^{\circ}\cos 40^{\circ}\cos 20^{\circ} = 1$

$$245 = \frac{7}{2} [1080 (100 20 + 10060)]$$

$$= \frac{4}{2} [10080 (100 20 + 10060)]$$

$$= \frac{4}{2} [10080 (1000 + 1000 + 100140)]$$

$$= 2 [10060 + (1000 - 10080 - 10040)]$$

$$= 2 [10060 + (1000 - 10080 - 10040)]$$

$$= 2 [10060 + (1000 - 10040)]$$

$$= 2 [10080 + (1000 - 10040)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 (1000 + 12)]$$

$$= 4 [10080 ($$

4. (11 marks)

Solve the following equations for the given domains

(a)
$$2\sin\theta + \cos 2\theta = 1$$
, $0^{\circ} \le \theta \le 180^{\circ}$

$$\Rightarrow 2\sin^{2}\theta - 2\sin^{2}\theta = 1$$

$$\Rightarrow 2\sin^{2}\theta - 2\sin^{2}\theta = 0$$

$$\Rightarrow 2\sin^{2}\theta (\sin^{2}\theta - 1) \Rightarrow 0 \Rightarrow \sin^{2}\theta = 0$$

$$\theta = 0,180$$

$$\theta = 90$$

(b)
$$\sin 2\theta = \sin \frac{\pi}{6}$$
, $0 < \theta < 2\pi$

$$20 = \frac{17}{6}, \frac{517}{6}, \frac{1377}{6}, \frac{1277}{6}$$

$$\Rightarrow 0 = \frac{77}{12}, \frac{517}{12}, \frac{1377}{12}, \frac{1377}{12}$$

(c)
$$\tan \theta + 3\cot \theta = 5\sec \theta$$
, $0 < \theta < 2\pi$

$$\frac{\sin \theta}{\cos \theta} + \frac{3\cos \theta}{\sin \theta} = \frac{5}{\cos \theta}$$

Asside and

$$\frac{\sin \theta}{\cos \theta} + \frac{3\cos \theta}{\sin \theta} = \frac{5}{\cos \theta}$$

$$\Rightarrow \sin \theta + 3 - 3\sin \theta = 5\sin \theta$$

$$\Rightarrow \sin \theta + 3 - 3\sin \theta = 5\sin \theta$$

$$\Rightarrow \sin \theta + 3 - 3\sin \theta = 5\sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta = \sin \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos \theta + 3\cos \theta$$

$$\Rightarrow \sin \theta + 3\cos$$

- 5. (7 marks)
 - (a) Show that the equation $\cos 3x \sin 2x = 0$ can be written as $\cos x(4\sin^2 x + 2\sin x 1) = 0$

- =) 4003x-3con-2sixcom =0
- => unx (4win-2sinx-3) = 0
- => con (4-4sin n-2sen-3)=0
- =) won (45in 2x + 25ix -1) = 0

- (c) Hence, by using the quadratic formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$, give the exact value for $\sin \frac{\pi}{10}$, if T_0 is a solution of the given eqn. [3]
 - Sinx= =2 ± 14+16

If $A + B = \frac{\pi}{4}$ and $\tan A = \frac{n}{n+1}$, determine, in terms of n

(a)
$$\tan B$$
. (Hint: use the identity for $\tan (A + B)$)

tan
$$(A+B)$$
 = $\frac{\tan A + \tan B}{1 - \tan A + \tan B}$ = $\frac{n}{1 - \tan A + \tan B}$ = $\frac{n}{n+1}$ + $\frac{n}{n+1}$ = $\frac{1}{n+1}$ = $\frac{1}{n+1}$

(b)
$$tan(A - B)$$

[4]

[4]