Bayesian Estimation: loss, risk, Bayes risk, and Bayes estimator

Notes by Guoqi Qian (edited by Heejung Shim)

Loss and risk

The Mean Squared Error (MSE) of an estimator T of $\tau(\theta)$, namely $E[T-\tau(\theta)]^2$, measures the expected squared error loss. One can consider other types of loss function.

- ▶ Loss function $L(t;\theta)$ is a real-valued function such that $L(t;\theta) \ge 0$ for all t and $L(t;\theta) = 0$ when $t = \tau(\theta)$.
- ▶ Risk function $R_T(\theta)$ is the expectation of the loss function w.r.t. the data, i.e.

$$R_T(\theta) = E[L(T; \theta)] = \int L(t(\mathbf{x}); \theta) f(\mathbf{x}|\theta) d\mathbf{x}$$

where the estimator $T=t(\mathbf{X})$ is a function of the data $\mathbf{X}=(X_1,\cdots,X_n)^T$, and $f(\mathbf{x}|\theta)$ is the joint pdf (or pmf) of \mathbf{X} .

Minimization of loss and risk?

- ▶ Given R_T , the best estimator would be the one which minimises the risk function for the true value of θ , except that we don't know θ .
 - We would settle for an estimator T^* which minimizes $R_T(\theta)$ for all possible values of θ .
 - Unfortunately such estimators rarely exist.
- An estimator T_1 dominates another estimator T_2 iff $R_{T_1}(\theta) \leq R_{T_2}(\theta)$ for all $\theta \in \Theta$, and $R_{T_1}(\theta) < R_{T_2}(\theta)$ for at least some $\theta \in \Theta$. T is an admissible estimator iff no other estimators dominate it.
 - It is usually possible to identify a class of admissible estimators

Bayesian approach

Regard the parameter θ as a random variable having a pdf $p(\theta)$, where $p(\theta)$ is called the **prior distribution** or **prior density**.

► Then Bayes risk is defined to be

$$E_{\theta}[R_T(\theta)] = \int_{\Theta} R_T(\theta) p(\theta) d\theta,$$

which is just an expected risk w.r.t. the prior distribution.

Bayes estimator is defined to be the estimator T^* which minimizes the Bayes risk:

$$E_{\theta}[R_{T^*}(\theta)] \leq E_{\theta}[R_T(\theta)] \quad \text{for every estimator } T \text{ of } \tau(\theta).$$

Namely,
$$T^* = \arg\min_T E_{\theta}[R_T(\theta)].$$

How to find the Bayes estimator?

$$E_{\theta}[R_{T}(\theta)] = \int_{\Theta} R_{T}(\theta)p(\theta)d\theta = \int_{\Theta} \left[\int_{\mathbf{x}} L(t(\mathbf{x});\theta)f(\mathbf{x}|\theta)d\mathbf{x} \right] p(\theta)d\theta$$

$$= \int_{\Theta} \int_{\mathbf{x}} L(t(\mathbf{x});\theta)f(\mathbf{x}|\theta)p(\theta)d\mathbf{x}d\theta$$

$$= \int_{\mathbf{x}} \left[\int_{\Theta} L(t(\mathbf{x});\theta) \frac{f(\mathbf{x}|\theta)p(\theta)}{\int_{\Theta} f(\mathbf{x}|\theta)p(\theta)d\theta}d\theta \right] \left[\int_{\Theta} f(\mathbf{x}|\theta)p(\theta)d\theta \right] d\mathbf{x}$$

$$= \int_{\mathbf{x}} \left[\int_{\Theta} L(t(\mathbf{x});\theta)p(\theta|\mathbf{x})d\theta \right] f(\mathbf{x})d\mathbf{x}$$

$$= \int_{\mathbf{x}} E_{\theta|\mathbf{x}}[L(T;\theta)]f(\mathbf{x})d\mathbf{x} = E_{\mathbf{x}} \left(E_{\theta|\mathbf{x}}[L(T;\theta)] \right)$$

Thus if an estimator minimizes $E_{\theta|\mathbf{x}}[L(T;\theta)]$ for each \mathbf{x} , it must also minimize the Bayes risk $E_{\theta}[R_T(\theta)]$.

Bayes estimator under squared loss

The Bayes estimator is that which minimizes $E_{\theta|\mathbf{x}}[L(T;\theta)]$.

Theorem (Bayes estimator under squared loss)

Suppose we choose to use the squared loss function $L(t;\theta)=[t-\tau(\theta)]^2$, then

$$T^* = E_{\theta|\mathbf{x}}[\tau(\theta)] = \int_{\Theta} \tau(\theta) p(\theta|\mathbf{x}) d\theta$$

is the Bayes estimator of $\tau(\theta)$.

Proof:

Remarks

- 1. $f(\mathbf{x}) = \int_{\Theta} f(\mathbf{x}|\theta) p(\theta) d\theta$ is the marginal pdf of \mathbf{X} .
- 2. The conditional pdf $p(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)p(\theta)}{\int_{\Theta} f(\mathbf{x}|\theta)p(\theta)d\theta}$ is called the **posterior pdf** of θ .
- 3. Using squared loss, the Bayes estimator T^* is the posterior mean of $\tau(\theta)$.

Bayes estimator under absolute loss

Theorem (Bayes estimator under absolute loss)

Suppose we choose to use the absolute loss function $L(t;\theta)=|t-\tau(\theta)|$, then the Bayes estimator of $\tau(\theta)$ is the median of the posterior distribution.

Proof:

Remarks

- 1. The idea involved in Bayes estimation is very appealing. Without any information or with only prior information about θ , we would estimate $\tau(\theta)$ by its prior mean. Once the data are observed, new information about θ is available, we then would estimate $\tau(\theta)$ by its posterior mean.
- The posterior mean may be analytically intractable if the posterior pdf is mathematically complicated. This difficulty may be overcome by using numerical techniques to approximate the posterior mean.
- 3. The Bayesian approach also gives a natural way of producing confidence intervals (called credible intervals) .