Contents

Pı	reface	xi	
1	Intro	duction	1
	1.1	What is	machine learning? 1
	1.2	Supervis	sed learning 1
		1.2.1	Classification 2
		1.2.2	Regression 7
		1.2.3	Overfitting and generalization 10
	1.3	Unsuper	vised learning 11
		1.3.1	Clustering 12
		1.3.2	Self-supervised learning 12
		1.3.3	Evaluating unsupervised learning 13
	1.4	Reinford	rement learning 13
		1.4.1	Challenges in RL 14
		1.4.2	Comparing supervised, unsupervised and reinforcement learning 15
	1.5	Discussi	on 15
		1.5.1	The relationship between ML and other fields 16
		1.5.2	Structure of the book 16
		1.5.3	Caveats 16
	_		
Ι	Fou	ındatio	ns 19
2	Prob	abilistic	inference 21
	2.1	Introduc	etion 21
	2.2	Bayes' r	ule 21
		2.2.1	Example: testing for COVID-19 22
		2.2.2	Example: The Monty Hall problem 23
		2.2.3	Inverse problems 24
	2.3	Bayesian	a concept learning 25
		2.3.1	Learning a discrete concept: the number game 26
		2.3.2	Learning a continuous concept: the healthy levels game 32

X CONTENTS

	2.4	Bayesian	machine learning 35
		2.4.1 E	Example: scalar input, binary output 37
		2.4.2 E	Example: binary input, scalar output 38
		2.4.3 S	caling up 39
3	Prob	abilistic 1	models 41
	3.1	Bernoulli	and binomial distributions 41
		3.1.1 I	Definition 41
		3.1.2 S	igmoid (logistic) function 42
		3.1.3 E	Binary logistic regression 44
	3.2	Categorica	al and multinomial distributions 45
		3.2.1 I	Definition 45
		3.2.2 S	oftmax function 45
		3.2.3 N	Aulticlass logistic regression 46
			og-sum-exp trick 47
	3.3	Univariate	e Gaussian (normal) distribution 48
			Cumulative distribution function 48
			Probability density function 49
			Regression 50
			Vhy is the Gaussian distribution so widely used? 51
			Half-normal 52
	3.4		er common univariate distributions 52
			tudent t distribution 52
			Cauchy distribution 54
			baplace distribution 54
			Seta distribution 55
			Gamma distribution 55
	3.5		variate Gaussian (normal) distribution 57
			Definition 57
			Mahalanobis distance 58
			Marginals and conditionals of an MVN 60
	0.0		Example: Imputing missing values 60
	3.6		sussian systems 61
			Example: inferring a latent vector from a noisy sensor 62
	0.7		Example: inferring a latent vector from multiple noisy sensors 63
	3.7	Mixture n	
			Gaussian mixture models 65
			Mixtures of Bernoullis 67
	2.0		Gaussian scale mixtures 68
	3.8		stic graphical models 70
			$egin{align*} & ext{Representation} & 71 \ & ext{nference} & 71 \ & ext{} \end{aligned}$
		3.8.3 L	earning 73

77

4 Parameter estimation

CONTENTS xi

4.1	Introdu	ction 77
4.2	Maxim	ım likelihood estimation (MLE) 77
	4.2.1	Definition 77
	4.2.2	Justification for MLE 78
	4.2.3	Example: MLE for the Bernoulli distribution 79
	4.2.4	Example: MLE for the categorical distribution 80
	4.2.5	Example: MLE for the univariate Gaussian 81
	4.2.6	Example: MLE for the multivariate Gaussian 82
	4.2.7	Example: MLE for linear regression 84
4.3	Empirio	cal risk minimization (ERM) 85
	4.3.1	Example: minimizing the misclassification rate 85
	4.3.2	Surrogate loss 85
4.4	Regular	rization 86
	4.4.1	Example: MAP estimation for the Bernoulli distribution 8'
	4.4.2	Example: MAP estimation for the multivariate Gaussian 8
	4.4.3	Example: weight decay 89
	4.4.4	Picking the regularizer using a validation set 91
	4.4.5	Cross-validation 91
	4.4.6	Early stopping 93
	4.4.7	Using more data 93
4.5	The me	thod of moments 95
	4.5.1	Example: MOM for the univariate Gaussian 95
	4.5.2	Example: MOM for the uniform distribution 95
4.6	Online	(recursive) estimation 96
	4.6.1	Example: recursive MLE for the mean of a Gaussian 96
	4.6.2	Exponentially-weighted moving average (EMA) 97
	4.6.3	Bayesian inference 98
4.7	Parame	ter uncertainty 98
Opti	imizatio	n algorithms 99
5.1	Introdu	_
	5.1.1	Local vs global optimization 99
	5.1.2	Constrained vs unconstrained optimization 101
	5.1.3	Convex vs nonconvex optimization 101
	5.1.4	Smooth vs nonsmooth optimization 102
5.2	First-or	der methods 102
	5.2.1	Descent direction 103
	5.2.2	Step size (learning rate) 103
	5.2.3	Convergence rates 105
	5.2.4	Momentum methods 106
5.3	Second-	order methods 108
	5.3.1	Newton's method 108
	5.3.2	BFGS and other quasi-Newton methods 109
	5.3.3	Trust region methods 110
	5 3 4	Natural gradient descent 111

5

xii CONTENTS

5.4	Stocha	stic gradient descent 114
	5.4.1	Application to finite sum problems 115
	5.4.2	Example: SGD for fitting linear regression 115
	5.4.3	Choosing the step size 116
	5.4.4	Iterate averaging 117
	5.4.5	Variance reduction 117
	5.4.6	Preconditioned SGD 118
5.5	Constr	rained optimization 121
	5.5.1	Lagrange multipliers 122
	5.5.2	The KKT conditions 123
	5.5.3	Linear programming 124
	5.5.4	Quadratic programming 126
	5.5.5	Mixed integer linear programming 127
5.6	Proxin	nal gradient method 127
	5.6.1	v e
	5.6.2	Proximal operator for ℓ_1 -norm regularizer 129
	5.6.3	Proximal operator for quantization 130
5.7	Bound	optimization 131
	5.7.1	
	5.7.2	
	5.7.3	
	5.7.4	1
5.8	Blackb	oox and derivative free optimization 142
	5.8.1	
	5.8.2	<u> </u>
	5.8.3	Model-based blackbox optimization 143
Info	rmatio	n theory 145
6.1	Entrop	y 145
	6.1.1	
	6.1.2	Cross entropy 147
	6.1.3	Joint entropy 147
	6.1.4	Conditional entropy 148
	6.1.5	Perplexity 149
	6.1.6	Differential entropy for continuous random variables 149
6.2	Relativ	ve entropy (KL divergence) 151
	6.2.1	Definition 151
	6.2.2	Interpretation 151
	6.2.3	Example: KL divergence between two Gaussians 151
	6.2.4	Non-negativity of KL 152
	6.2.5	KL divergence and MLE 152
	6.2.6	Forward vs reverse KL 153
6.3	Mutua	l information 154
	6.3.1	Definition 154
	6.3.2	Interpretation 155

6

CONTENTS xiii

		6.3.3	Example 155				
		6.3.4	Conditional mutual information 156				
		6.3.5	Normalized mutual information 157				
		6.3.6	MI as a "generalized correlation coefficient" 157				
		6.3.7	Data processing inequality 159				
		6.3.8	Sufficient Statistics 160				
		6.3.9	Fano's inequality 160				
7	Baye	esian st	atistics 163				
	7.1	Introdu	uction 163				
		7.1.1	Computing the posterior 163				
		7.1.2	Summarizing the posterior 163				
	7.2	Conjug	gate priors 167				
		7.2.1	The beta-binomial model 168				
		7.2.2	The Dirichlet-multinomial model 174				
		7.2.3	The Gaussian-Gaussian model 178				
		7.2.4	The multivariate Gaussian-Gaussian model 183				
		7.2.5	Beyond conjugate priors 189				
	7.3	Noninf	ormative priors 189				
		7.3.1	Jeffreys priors 190				
		7.3.2	Invariant priors 192				
		7.3.3	Reference priors 193				
	7.4		chical priors 193				
		7.4.1	A hierarchical binomial model 194				
		7.4.2	A hierarchical Gaussian model 195				
	7.5	1 1					
		7.5.1	A hierarchical binomial model 199				
		7.5.2	A hierarchical Gaussian model 200				
	7.6	*	an model comparison 201				
		7.6.1	Bayesian model selection 201				
		7.6.2	Bayes model averaging 202				
		7.6.3	Occam's razor 203				
		7.6.4	Connection between cross validation and marginal likelihood 204				
		7.6.5	Information criteria 206				
		7.6.6	Bayesian hypothesis testing 208				
		7.6.7	Group comparisons 210				
		7.6.8	Posterior predictive checks 212				
	7.7		kimate inference algorithms 214				
		7.7.1	Grid approximation 215				
		7.7.2	Laplace approximation 215				
		7.7.3	Variational approximation 216				
		7.7.4	Markov Chain Monte Carlo (MCMC) approximation 218				
		7.7.5	Online inference using assumed density filtering 219				

8 Bayesian decision theory 221

CONTENTSxiv

	8.1	Bayesian decision theory 221
		8.1.1 Basics 221
		8.1.2 Classification problems 222
		8.1.3 ROC curves 224
		8.1.4 Precision-recall curves 226
		8.1.5 Regression problems 228
		8.1.6 Probabilistic prediction problems 229
	8.2	A/B testing 231
		8.2.1 A Bayesian approach 232
		8.2.2 Example 234
	8.3	Bandit problems 236
		8.3.1 Contextual bandits 236
		8.3.2 Markov decision processes 237
		8.3.3 Exploration-exploitation tradeoff 238
		8.3.4 Optimal solution 238
		8.3.5 Regret 240
		8.3.6 Upper confidence bounds (UCB) 241
		8.3.7 Thompson sampling 242
		8.3.8 Simple heuristics 243
	8.4	Discussion 244
		8.4.1 The separation principle and its limits 244
		8.4.2 Optimality of the Bayesian approach and its limits 245
п	Li	near models 247
0		
9		ar discriminant analysis 249
	9.1	Introduction 249 Consider discriminant analysis 240
	9.2	Gaussian discriminant analysis 249 9.2.1 Quadratic decision boundaries 250
		9.2.1 Quadratic decision boundaries 250 9.2.2 Linear decision boundaries 251
		9.2.3 The connection between LDA and logistic regression 251
		9.2.4 Model fitting 252
		9.2.4 Model fitting 252 9.2.5 Nearest centroid classifier 254
		9.2.6 Fisher's linear discriminant analysis 254
	9.3	Naive Bayes classifiers 258
	9.0	9.3.1 Example models 259
		9.3.2 Model fitting 260
		9.3.3 Bayesian naive Bayes 261
		9.3.4 The connection between naive Bayes and logistic regression 261
	9.4	Generative vs discriminative classifiers 262
	<i>3</i> .±	9.4.1 Advantages of discriminative classifiers 262
		9.4.1 Advantages of discriminative classifiers 263
		9.4.2 Advantages of generative classifiers 263 9.4.3 Handling missing features 263
		5.4.5 Handing missing reatures 205

Draft of "Probabilistic Machine Learning: An Introduction". December 26, 2020

10	Logis	stic regr	ession 265	
	10.1	Introduc	tion 265	
	10.2	Binary l	ogistic regression 265	
		10.2.1	Linear classifiers 265	
		10.2.2	Nonlinear classifiers 266	
		10.2.3	Maximum likelihood estimation 268	
		10.2.4	Stochastic gradient descent 271	
			Perceptron algorithm 272	
		10.2.6	Iteratively reweighted least squares 272	
		10.2.7	MAP estimation 274	
		10.2.8	Standardization 275	
	10.3	Multino	mial logistic regression 276	
		10.3.1	Linear and nonlinear classifiers 276	
		10.3.2	Maximum likelihood estimation 277	
			Gradient-based optimization 279	
			Bound optimization 279	
			MAP estimation 281	
			Maximum entropy classifiers 281	
			Hierarchical classification 282	
			Handling large numbers of classes 283	
	10.4		ssing discrete input data 285	
		10.4.1	One-hot encoding 285	
			Feature crosses 285	
			Dealing with text 286	
	10.5		ogistic regression 288	
			Mixture model for the likelihood 288	
	10.0		Bi-tempered loss 288	
	10.6	*	logistic regression 292	
		10.6.1	Approximating the posterior predictive 292	
			Laplace approximation 293	
			MCMC approximation 295	
			Variational inference 297	2∩1
		10.6.5	Online inference using assumed density filtering	301
11	Line	ar regres	sion 305	
	11.1	Introduc	tion 305	
	11.2	Standard	l linear regression 305	
		11.2.1	Terminology 305	
		11.2.2	Least squares estimation 306	
		11.2.3	Other approaches to computing the MLE 310	
		11.2.4	Measuring goodness of fit 313	
	11.3	Ridge re	gression 315	
		11.3.1	Computing the MAP estimate 316	
		11.3.2	0 0	17
		11 3 3	Choosing the strength of the regularizer 319	

XVI CONTENTS

11.4	Robust	linear regression 319
	11.4.1	Robust regression using the Student t distribution 319
	11.4.2	Robust regression using the Laplace distribution 321
	11.4.3	Robust regression using Huber loss 322
	11.4.4	Robust regression by randomly or iteratively removing outliers 323
11.5	Lasso r	egression 323
	11.5.1	MAP estimation with a Laplace prior (ℓ_1 regularization) 323
	11.5.2	Why does ℓ_1 regularization yield sparse solutions? 324
	11.5.3	Hard vs soft thresholding 325
	11.5.4	Regularization path 327
	11.5.5	Comparison of least squares, lasso, ridge and subset selection 328
	11.5.6	Variable selection consistency 329
	11.5.7	Group lasso 330
	11.5.8	Elastic net (ridge and lasso combined) 333
	11.5.9	Optimization algorithms 333
11.6	Bayesia	n linear regression 335
	11.6.1	Computing $p(\mathbf{w} \mathcal{D}, \sigma^2)$ with Gaussian prior 335
	11.6.2	Computing $p(\mathbf{w}, \sigma^2 \mathcal{D})$ with Gaussian-Gamma prior 339
	11.6.3	Uninformative priors 341
	11.6.4	Sparsity-promoting priors 343
	11.6.5	Hierarchical priors 346
	11.6.6	Empirical Bayes (Automatic relevancy determination) 348
	11.6.7	Online inference (recursive least squares) 351
~		
12 Gene	eralized	linear models 353
12.1	Introdu	ction 353
12.2	The exp	ponential family 353
	12.2.1	Definition 353
	12.2.2	Examples 354
	12.2.3	Log partition function is cumulant generating function 358
	12.2.4	MLE for the exponential family 360
	12.2.5	Exponential dispersion family 360
12.3	Genera	lized linear models (GLMs) 361
	12.3.1	Examples 361
	12.3.2	Maximum likelihood estimation 363
	12.3.3	GLMs with non-canonical link functions 364
12.4	Probit :	regression 365
	12.4.1	Latent variable interpretation 365
	12.4.2	Maximum likelihood estimation 366
	12.4.3	Bayesian inference 367
	12.4.4	Ordinal probit regression 367
	12.4.5	Multinomial probit models 368

CONTENTS xvii

III I	Deep neural networks 369
13 Neu	ral networks for unstructured data 371
13.1	Introduction 371
13.2	Multilayer perceptrons (MLPs) 372
	13.2.1 The XOR problem 372
	13.2.2 Differentiable MLPs 373
	13.2.3 Activation functions 374
	13.2.4 Example models 376
	13.2.5 The importance of depth 380
	13.2.6 Connections with biology 382
13.3	Backpropagation 384
	13.3.1 Forwards pass 384
	13.3.2 Backwards pass 384
	13.3.3 Automatic differentiation 386
	13.3.4 Computation graphs 388
13.4	
	13.4.1 Tuning the learning rate 390
	13.4.2 Vanishing and exploding gradients 390
	13.4.3 Residual connections 392
	13.4.4 Batch normalization 393
10.5	13.4.5 Parameter initialization 395
13.5	Regularization 397
	13.5.1 Early stopping 397
	13.5.2 Weight decay 397 13.5.3 Sparse DNNs 397
	13.5.4 Dropout 399
	13.5.5 Bayesian neural networks 399
13.6	Other kinds of feedforward networks 400
10.0	13.6.1 Radial basis function networks 400
	13.6.2 Mixtures of experts 401
14 Neu	ral networks for images 407
14.1	Introduction 407
14.2	Basics 407
	14.2.1 Convolution in 1d 407
	14.2.2 Convolution in 2d 409
	14.2.3 Convolution as matrix-vector multiplication 410
	14.2.4 Boundary conditions and strides 410
	14.2.5 Pooling layers 413
	14.2.6 Normalization layers 414
149	14.2.7 Putting it altogether 415
14.3	Image classification using CNNs 415

Do not distribute without permission from Kevin P. Murphy and MIT Press.

419

14.3.2 Common models

xviii CONTENTS

14.4	Solving	other discriminative vision tasks with CNNs 423
	14.4.1	Image tagging 423
	14.4.2	Object detection 424
	14.4.3	Human pose estimation 425
	14.4.4	Image segmentation 425
14.5	Genera	ting images by inverting CNNs 428
	14.5.1	Converting a trained classifier into a generative model 428
	14.5.2	Image priors 428
	14.5.3	Visualizing the features learned by a CNN 430
	14.5.4	Deep Dream 431
	14.5.5	Neural style transfer 432
14.6	Adversa	arial Examples 435
	14.6.1	Whitebox (gradient-based) attacks 436
	14.6.2	Blackbox (gradient-free) attacks 437
	14.6.3	Real world adversarial attacks 438
	14.6.4	Defenses based on robust optimization 438
	14.6.5	Why models have adversarial examples 439
15 Neu	ral netv	vorks for sequences 443
15.1	Introdu	action 443
15.2	Recurre	ent neural networks (RNNs) 443
	15.2.1	Vec2Seq (sequence generation) 443
	15.2.2	1 (1)
	15.2.3	- ' '
	15.2.4	Beam search 449
	15.2.5	Backpropagation through time 449
	15.2.6	Gating and long term memory 450
15.3	1d CNI	$\frac{N_{\mathrm{S}}}{N_{\mathrm{S}}}$ 452
	15.3.1	1d CNNs for sequence classification 452
	15.3.2	Causal 1d CNNs for sequence generation 453
15.4	Attenti	on 454
	15.4.1	Seq2seq with attention 455
	15.4.2	Seq2vec with attention 456
	15.4.3	Attention as a soft dictionary lookup 456
	15.4.4	Soft vs hard attention 458
15.5	Transfo	ormers 458
	15.5.1	Self-attention 459
	15.5.2	Multi-headed attention 460
	15.5.3	Positional encoding 461
	15.5.4	Putting it altogether 461
	15.5.5	Comparing transformers, CNNs and RNNs 462
15.6		t transformers 463
	15.6.1	Fixed non-learnable localized attention patterns 463
	15.6.2	Learnable sparse attention patterns 464
	15.6.3	Memory and recurrence methods 465

15.6.4 Low-rank and kernel methods 465

IV	Nonparametric models	469
----	----------------------	-----

16 Exer	mplar-based methods 471	
16.1	K nearest neighbor (KNN) classification 471	
	16.1.1 Example 472	
	16.1.2 The curse of dimensionality 472	
	16.1.3 Reducing the speed and memory requirements 47	74
	16.1.4 Open set recognition 474	
16.2	Learning distance metrics 475	
	16.2.1 Linear and convex methods 476	
	16.2.2 Deep metric learning 477	
	16.2.3 Classification losses 478	
	16.2.4 Ranking losses 478	
	16.2.5 Speeding up ranking loss optimization 480	
	16.2.6 Other training tricks for DML 483	
16.3	Kernel density estimation (KDE) 483	
	16.3.1 Density kernels 484	
	16.3.2 Parzen window density estimator 484	
	16.3.3 How to choose the bandwidth parameter 486	
	16.3.4 From KDE to KNN classification 486	
	16.3.5 Kernel regression 487	
17 Kerr	nel methods 491	
17.1	Inferring functions from data 491	
	17.1.1 Smoothness prior 492	
	17.1.2 Inference from noise-free observations 492	
	17.1.3 Inference from noisy observations 494	
17.2	Mercer kernels 494	
	17.2.1 Mercer's theorem 494	
	17.2.2 Some popular Mercer kernels 495	
17.3	Gaussian processes 500	
	17.3.1 Noise-free observations 500	
	17.3.2 Noisy observations 501	
	17.3.3 Comparison to kernel regression 502	
	17.3.4 Weight space vs function space 503	
	17.3.5 Numerical issues 503	
	17.3.6 Estimating the kernel 504	
	17.3.7 GPs for classification 507	
117 /	17.3.8 Connections with deep learning 508	
17.4	Scaling GPs to large datasets 508	
	17.4.1 (Sparse) variational inference 509	
	17.4.2 Exploiting structure in the kernel matrix 513	

XX CONTENTS

	17.4.3 Random feature approximation 514		
17.5	Support vector machines (SVMs) 516		
	17.5.1 Large margin classifiers 516		
	17.5.2 The dual problem 518		
	17.5.3 Soft margin classifiers 520		
	17.5.4 The kernel trick 521		
	17.5.5 Converting SVM outputs into probabilities 522		
	17.5.6 Connection with logistic regression 522		
	17.5.7 Multi-class classification with SVMs 523		
	17.5.8 How to choose the regularizer C 524		
	17.5.9 Kernel ridge regression 525		
	17.5.10 SVMs for regression 526		
17.6	Sparse vector machines 528		
	17.6.1 Relevance vector machines (RVMs) 529		
	17.6.2 Comparison of sparse and dense kernel methods 529		
18 Tree	s, forests, bagging and boosting 533		
	Classification and regression trees (CART) 533		
	18.1.1 Model definition 533		
	18.1.2 Model fitting 534		
	18.1.3 Regularization 535		
	18.1.4 Pros and cons 535		
18.2	Ensemble learning 537		
	18.2.1 Stacking 537		
	18.2.2 Ensembling is not Bayes model averaging 537		
18.3			
18.4	Random forests 539		
18.5	Boosting 540		
	18.5.1 Forward stagewise additive modeling 541		
	18.5.2 Quadratic loss and least squares boosting 541		
	18.5.3 Exponential loss and AdaBoost 541		
	18.5.4 LogitBoost 544		
	18.5.5 Gradient boosting 545		
18.6	Interpreting tree ensembles 549		
	18.6.1 Feature importance 549		
	18.6.2 Partial dependency plots 550		
V Be	eyond supervised learning 553		
19 Lear	ning with fewer labeled examples 555		
19.1			
10.1	19.1.1 Examples 555		
	19.1.2 Theoretical justification 556		
19.2	Transfer learning 557		

Draft of "Probabilistic Machine Learning: An Introduction". December 26, 2020

CONTENTS xxi

	19.2.1 Fine-tuning 557
	19.2.2 Supervised pre-training 558
	19.2.3 Unsupervised pre-training (self-supervised learning) 559
	19.2.4 Domain adaptation 562
19.3	Meta-learning 562
	19.3.1 Model-agnostic meta-learning (MAML) 563
19.4	Few-shot learning 564
	19.4.1 Matching networks 565
19.5	Word embeddings 566
	19.5.1 Methods based on SVD 566
	19.5.2 Word2vec 568
	19.5.3 RAND-WALK model of word embeddings 570
	19.5.4 Word analogies 571
	19.5.5 Contextual word embeddings 572
19.6	Semi-supervised learning 576
	19.6.1 Self-training and pseudo-labeling 577
	19.6.2 Entropy minimization 578
	19.6.3 Co-training 580
	19.6.4 Label propagation on graphs 581
	19.6.5 Consistency regularization 582
	19.6.6 Deep generative models 583
	19.6.7 Combining self-supervised and semi-supervised learning 586
19.7	Active learning 587
	19.7.1 Decision-theoretic approach 587
	19.7.2 Information-theoretic approach 588
	19.7.3 Batch active learning 588
20 Dim	ensionality reduction 591
20.1	Principal components analysis (PCA) 591
	20.1.1 Examples 591
	20.1.2 Derivation of the algorithm 593
	20.1.3 Computational issues 596
	20.1.4 Choosing the number of latent dimensions 598
20.2	Factor analysis 600
	20.2.1 Generative model 600
	20.2.2 Probabilistic PCA 602
	20.2.3 EM algorithm for FA/PPCA 603
	20.2.4 Unidentifiability of the parameters 605
	20.2.5 Nonlinear factor analysis 607
	20.2.6 Mixtures of factor analysers 608
	20.2.7 Exponential family factor analysis 609
	20.2.8 Factor analysis models for paired data 610
20.3	Autoencoders 613
	20.3.1 Bottleneck autoencoders 614
	20.3.2 Denoising autoencoders 615

xxii CONTENTS

		20.3.3	Contractive autoencoders 615
		20.3.4	Sparse autoencoders 617
		20.3.5	Variational autoencoders 618
	20.4	Manifol	d learning 623
		20.4.1	What are manifolds? 623
		20.4.2	The manifold hypothesis 623
		20.4.3	Approaches to manifold learning 624
		20.4.4	Multi-dimensional scaling (MDS) 625
		20.4.5	Isomap 628
		20.4.6	Kernel PCA 628
		20.4.7	Maximum variance unfolding (MVU) 630
		20.4.8	Local linear embedding (LLE) 631
		20.4.9	Laplacian eigenmaps 632
		20.4.10	t-SNE 635
01	C1	4 •	690
4 1		tering	639
	21.1	Introdu	
			Evaluating the output of clustering methods 639
	21.2		nical agglomerative clustering 641
		21.2.1	<u> </u>
		21.2.2	Example 644
	21.3		s clustering 645
			The algorithm 646
			Examples 646
			Vector quantization 647
		21.3.4	The K-means++ algorithm 649
			The K-medoids algorithm 649
		21.3.6	• •
	01.4	21.3.7	
	21.4		ng using mixture models 653
	01.5	21.4.1	Mixtures of Gaussians 654
	21.5	_	l clustering 654
			Normalized cuts 654
			Eigenvectors of the graph Laplacian encode the clustering 656
			Example 656
	01.6	21.5.4	Connection with other methods 657
	21.6	Bicluste	
			Basic biclustering 658
		21.6.2	Nested partition models (Crosscat) 659
22	Reco	mmend	er systems 663
	22.1	Explicit	feedback 663
		22.1.1	Datasets 663
		22.1.2	Collaborative filtering 664
			Matrix factorization 665

	00 1 4 A 4 1 1 CCT
00.0	22.1.4 Autoencoders 667
22.2	Implicit feedback 669
	22.2.1 Bayesian personalized ranking 669 22.2.2 Factorization machines 670
20.2	
22.3 22.4	Leveraging side information 671 Exploration-exploitation tradeoff 672
	ph embeddings 675
	Introduction 675
23.2	Graph Embedding as an Encoder/Decoder Problem 676
23.3	Shallow graph embeddings 678
	23.3.1 Unsupervised embeddings 678
	23.3.2 Distance-based: Euclidean methods 679
	23.3.3 Distance-based: non-Euclidean methods 680
	23.3.4 Outer product-based: Matrix factorization methods 680
	23.3.5 Outer product-based: Skip-gram methods 681
	23.3.6 Supervised embeddings 682
23.4	Graph Neural Networks 683
	23.4.1 Message passing GNNs 683
	23.4.2 Spectral Graph Convolutions 685
	23.4.3 Spatial Graph Convolutions 685
00.5	23.4.4 Non-Euclidean Graph Convolutions 687
23.5	Deep graph embeddings 687
	23.5.1 Unsupervised embeddings 687
00 C	23.5.2 Semi-supervised embeddings 690
23.6	Applications 691
	23.6.1 Unsupervised applications 691
	23.6.2 Supervised applications 693
Append	lices 695
VI A	ppendix: Mathematical backgound 697
A Som	e useful mathematics 699
A.1	Introduction 699
A.2	Sets, functions and relations 699
11.2	A.2.1 Functions 699
	A.2.2 Relations 703
A.3	Matrix calculus 704
11.0	A.3.1 Derivatives 704
	A.3.2 Gradients 705
	A.3.3 Jacobian 706
	A.3.4 Hessian 706
	A 3.5 Gradients of commonly used functions 706

xxiv CONTENTS

	A.4	Convex	aty 708
		A.4.1	Convex sets 708
		A.4.2	Convex functions 710
		A.4.3	Jensen's inequality 712
		A.4.4	Subgradients 712
		A.4.5	Taylor series approximation 713
		A.4.6	Bregman divergence 714
		A.4.7	Conjugate duality 715
В	Line	ar algel	<mark>ora</mark> 719
	B.1	Introdu	action 719
		B.1.1	
		B.1.2	Vector spaces 722
		B.1.3	Norms of a vector and matrix 724
		B.1.4	Properties of a matrix 726
		B.1.5	Special types of matrices 728
	B.2	Matrix	multiplication 732
		B.2.1	
		B.2.2	Matrix-Vector Products 732
		B.2.3	
		B.2.4	Application: manipulating data matrices 735
		B.2.5	Kronecker products 737
		B.2.6	Einstein summation 738
	B.3	Matrix	inversion 739
		B.3.1	The inverse of a square matrix 739
		B.3.2	Schur complements 739
		B.3.3	The matrix inversion lemma 741
		B.3.4	Matrix determinant lemma 741
	B.4	Eigenva	alue decomposition (EVD) 742
		B.4.1	Basics 742
		B.4.2	Diagonalization 743
		B.4.3	Eigenvalues and eigenvectors of symmetric matrices 743
		B.4.4	Geometry of quadratic forms 744
		B.4.5	Standardizing and whitening data 744
		B.4.6	Power method 746
		B.4.7	
		B.4.8	
	B.5	Singula	r value decomposition (SVD) 747
		B.5.1	Basics 747
		B.5.2	
			Pseudo inverse 749
			SVD and the range and null space of a matrix 750
		B.5.5	
	B.6		matrix decompositions 752
		B.6.1	LU factorization 752

		B.6.2	QR decomposition 752
		B.6.3	Cholesky decomposition 753
	B.7	Solving	systems of linear equations 754
		B.7.1	Solving square systems 755
		B.7.2	Solving underconstrained systems (least norm estimation) 755
		B.7.3	Solving overconstrained systems (least squares estimation) 756
\mathbf{C}	Prob	ability	759
	C.1	Introduc	etion 759
		C.1.1	What is probability? 759
		C.1.2	Types of uncertainty 759
		C.1.3	Fundamental rules of probability 760
	C.2	Random	variables 761
		C.2.1	Discrete random variables 761
		C.2.2	Continuous random variables 762
	C.3	Sets of r	related random variables 764
		C.3.1	Joint, marginal and conditional distributions 764
		C.3.2	Bayes' rule 765
		C.3.3	Independence and conditional independence 765
	C.4	_	ies of a distribution 766
		C.4.1	Moments of a distribution 766
		C.4.2	Covariance 769
		C.4.3	Correlation 769
		C.4.4	Uncorrelated does not imply indpendent 770
		C.4.5	Correlation does not imply causation 771
		C.4.6	Simpsons' paradox 771
	C.5		mations of random variables 772
		C.5.1	Discrete case 773
		C.5.2	Continuous case 773
		C.5.3	Invertible transformations (bijectors) 773
		C.5.4	Moments of a linear transformation 775
		C.5.5	The convolution theorem 776
		C.5.6	Central limit theorem 778
D	Freq	uentist :	statistics 779
	D.1	Introduc	
	D.2	Fisher in	nformation matrix (FIM) 779
		D.2.1	Definition 779
		D.2.2	Connection between the FIM and the Hessian of the NLL 780
		D.2.3	Examples 781
		D.2.4	Connection between FIM and KL divergence 782
	D.3	_	g distributions 783
		D.3.1	Exact sampling distribution of the MLE 783
		D.3.2	Large sample approximation 785
		D.3.3	Bootstrap approximation 786

CONTENTSxxvi

Bibliography			851
\mathbf{E}	Exer	cises	815
		D.8.5	Why isn't everyone a Bayesian? 812
		D.8.4	p-values depend on the stopping rule 811
		D.8.3	p-values overstate evidence against the null hypothesis 810
		D.8.2	p-values confuse deduction with induction 810
		D.8.1	Confidence intervals are not credible 809
	D.8		gies of frequentist statistics 808
		D.7.5	p-values 808
			χ^2 test 807
		D.7.2 D.7.3	t-test 806
		D.7.1 D.7.2	Null hypothesis significance testing (NHST) 806
	D.7	0 1	esis testing 804 Likelihood ratio test 805
	D 7		Statistical learning theory 803
			Cross-validation 802
		D.6.2	Structural risk 802
		D.6.1	Empirical risk 800
	D.6	-	eal risk minimization 800
			Stein's paradox 798
			Admissible estimators 797
		D.5.2	Consistent estimators 797
		D.5.1	·
	D.5		atist decision theory 794
		D.4.4	
			The bias-variance tradeoff 790
			Variance of an estimator 789
	D.4		d variance 789 Bias of an estimator 789
	ъ.	D.3.4	Confidence intervals 788
		D 0 4	