Hoja 3 Autómatas y Lenguajes

Víctor de Juan Sanz

2014

1. Análisis sintáctico ascendente

Ejercicio 1: Sea la siguiente gramática:

- (1) S := A
- $(2) \quad S ::= B$
- $(3) \quad A ::= cA + b$
- (4) A ::= a
- (5) B := cB + a
- (6) B := b

Calcula los conjuntos primero y siguiente para cada símbolo no terminal.

- Primero(A): c,a
- Siguiente(A): \$,+
- Primero (B): c,b
- Siguiente (B): \$,+
- Primero (S): a,b,c
- Siguiente (S): \$

Ejercicio 2: Sea la siguiente gramática LR(0):

- (1)E ::= T
- (2)E := E + T
- (3)T ::= i
- (4)T ::= (E)

Calcula el cierre de la configuración inicial E' ::= .E\$

ODocumento compilado el 25 de noviembre de 2014 a las 14:45

$$E' ::= .E\$$$
 $E ::= .E + T$
 $E ::= .T$
 $T ::= .i$
 $T ::= .(E)$

Ejercicio 3:

- a) Calcula el cierre de la configuración E ::= (.L)
- **b)** Calcula el estado al que se llega desde el estado anterior tras reconocer el símbolo no terminal L.

APARTADO A)

$$E ::= (.L)$$

$$L ::= .L, E$$

$$L ::= .E$$

$$E ::= .i$$

$$E ::= .(L)$$

Apartado B)

$$L ::= (L.)$$

Ejercicio 4:

- a) Dibuja el diagrama de estados del analizador LR(0) para dicha gramática.
- b) Calcula la tabla de análisis para el analizador LR(0).
- c) Indica justificadamente si la gramática es LR(0). Indica justificadamente si es SLR(1).

Apartado A)

Apartado B)

	i	Р	S	n	:	λ
$\overline{S_0}$	d1					
$\overline{S_1}$		d4			d2	
$\overline{S_2}$				d3		
$\overline{S_3}$	r2	r2	r2	r2	r2	r2
S_4	r3	r3	r3/d5	r3	r3	r3
$\overline{S_5}$				d6		
S_6	r1	r1	r1	r1	r1	r1

Apartado C)

Esta gramática no es LR(0) porque presenta conflictos.

Tampoco sería LR(1) debido a la regla λ , que hace imposible distinguir cuando reducir y cuándo desplazar.

Ejercicio 5:

- a) Dibuja el diagrama de estados del analizador LR(0) para dicha gramática.
- b) Calcula la tabla de análisis para el analizador LR(0).
- c) Indica justificadamente si la gramática es LR(0). Indica justificadamente si es SLR(1).

Apartado A)

Apartado B)

	S	L	E	i	=	b	С	d	$ \lambda $	\$
S_0	d1									
S_1						d3				d2
$\overline{S_2}$	r1	r1	r1	r1	r1	r1	r1	r1	r1	r1
S_3		d10	d8	d4		d7				
$\overline{S_4}$					d5					
$\overline{S_5}$							d6			
S_6	r4	r4	r4	r4	r4	r4	r4	r4	r4	r4
$\overline{S_7}$	r5	r5	r5	r5	r5	r5	r5	r5	r5	r5
S_8				d9						
$\overline{S_9}$	r3	r3	r3	r3/d4	r3	r3/d7	r3	r3	r3	r3
S_{10}								s11		
S_{11}	r11	r11	r11	r11	r11	r11	r11	r11	r11	r11

Apartado C)

Esta gramática no es LR(0) porque presenta conflictos.

Tampoco sería LR(1) debido a la regla λ , que hace imposible distinguir cuando reducir y cuándo desplazar.

Ejercicio 6:

a)

$$P(X) = \{e, g\}$$

$$P(Y) = \{g\}$$

$$P(Z) = \{h\}$$

$$S(X) = \{\$\}$$

 $S(Y) = \{\$, e, h\}$
 $S(Z) = \{\$, f\}$

b)

$$P(X) = \{c, i, f\}$$

$$P(Y) = \{i, f\}$$

$$P(Q) = \{f\}$$

$$S(X) = \{\$, i, f\}$$

 $S(Y) = \{\$, i, f\}$
 $S(Q) = \{\$, i, f\}$

c)

$$P(X) = \{",",.,e\}$$

$$P(A) = \{0,1,",",.,e\}$$

$$P(B) = \{0,1,",",.,e\}$$

$$S(X) = \{\$, 0, 1\}$$

$$S(A) = \{\$, \}$$

$$S(B) = \{\$, ", ", ., e\}$$

Ejercicio 7: Calcula los símbolos de adelanto para el cierre de las siguientes reglas y gramáticas:

a) = Cierre de E' ::= .E{\$} para la gramática:

$$E' ::= E$$

$$E ::= T$$

$$E ::= E + T$$

$$T ::= i$$

$$T ::= (E)$$

b) Cierre de S' ::= .S $\{\$\}$ para la gramática:

$$S' ::= S$$

$$S ::= L = R$$

$$S ::= R$$

$$L ::= *R$$

$$L ::= i$$

$$R ::= L$$

c) Cierre de E ::= (.L) $\{\$\}$ para la gramática:

$$E ::= (L)$$

$$E ::= a$$

$$L ::= L, E$$

$$L ::= E$$

Apartado a)

Apartado b)

$$S' ::= .S$$
 {\$}
 $S ::= .L = R$ {\$, i}
 $S ::= .R$ {\$}
 $L ::= .*R$ {=}
 $L ::= .i\{=\}$
 $R ::= .L\{=\}$

Apartado c)

$$E ::= (.L)$$
 {\$}
 $L ::= .L, E$ {\$},
 $L ::= .E$ {\$,','}
 $E ::= .a$ {')',\$}