0.1 CaseCraft: The Analytics Sprint – Project 13

0.1.1 Coca-Cola vs Pepsi Sentiment Tracker

Subheading: Analyzing public sentiment toward Coca-Cola and Pepsi using synthetic tweet data and NLP techniques.

0.1.2 Project Goals

- Simulate tweet-level data for both brands
- Perform sentiment analysis using TextBlob
- Visualize sentiment distribution and brand comparison
- Track sentiment trends over time
- Build classifier to predict brand from sentiment text
- Summarize insights for brand perception strategy

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from textblob import TextBlob
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

np.random.seed(42)

brands = ['Coca-Cola', 'Pepsi']
n_tweets = 1000
brand = np.random.choice(brands, n_tweets)
dates = pd.date_range(start='2023-01-01', periods=n_tweets, freq='H')
```

```
positive_phrases = ['love', 'great', 'awesome', 'refreshing', 'best']
negative_phrases = ['hate', 'bad', 'awful', 'flat', 'worst']
neutral_phrases = ['okay', 'fine', 'average', 'meh', 'decent']
def generate_tweet():
    sentiment = np.random.choice(['positive', 'negative', 'neutral'], p=[0.4, 0.
 43, 0.3
   phrase = np.random.choice({
        'positive': positive_phrases,
        'negative': negative_phrases,
        'neutral': neutral_phrases
   }[sentiment])
   return f"This {np.random.choice(brands)} is {phrase}!"
tweets = [generate_tweet() for _ in range(n_tweets)]
df = pd.DataFrame({
    'brand': brand,
    'timestamp': dates,
    'tweet': tweets
})
df['polarity'] = df['tweet'].apply(lambda x: TextBlob(x).sentiment.polarity)
df['sentiment'] = pd.cut(df['polarity'], bins=[-1, -0.1, 0.1, 1],
 ⇔labels=['Negative', 'Neutral', 'Positive'])
```

/tmp/ipython-input-263547350.py:16: FutureWarning: 'H' is deprecated and will be removed in a future version, please use 'h' instead.

dates = pd.date_range(start='2023-01-01', periods=n_tweets, freq='H')

[2]: df.head(10)

```
[2]:
                                                              tweet polarity \
           brand
                           timestamp
    O Coca-Cola 2023-01-01 00:00:00
                                            This Coca-Cola is hate! -1.000000
           Pepsi 2023-01-01 01:00:00
                                      This Coca-Cola is refreshing! 0.625000
    1
    2 Coca-Cola 2023-01-01 02:00:00
                                           This Coca-Cola is worst! -1.000000
    3 Coca-Cola 2023-01-01 03:00:00
                                              This Pepsi is decent! 0.208333
    4 Coca-Cola 2023-01-01 04:00:00
                                          This Coca-Cola is decent! 0.208333
    5
           Pepsi 2023-01-01 05:00:00
                                                This Pepsi is fine! 0.520833
    6 Coca-Cola 2023-01-01 06:00:00
                                         This Coca-Cola is average! -0.187500
    7 Coca-Cola 2023-01-01 07:00:00
                                                This Pepsi is love! 0.625000
    8 Coca-Cola 2023-01-01 08:00:00
                                            This Coca-Cola is okay! 0.625000
    9
           Pepsi 2023-01-01 09:00:00
                                                This Pepsi is hate! -1.000000
      sentiment
            NaN
    1 Positive
```

```
2 NaN
3 Positive
4 Positive
5 Positive
6 Negative
7 Positive
8 Positive
9 NaN
```

0.1.3 Sentiment Distribution by Brand

```
[3]: plt.figure(figsize=(8, 5))
    sns.countplot(data=df, x='sentiment', hue='brand', palette='Set2')
    plt.title("Sentiment Distribution: Coca-Cola vs Pepsi")
    plt.tight_layout()
    plt.show()
```


0.1.4 Sentiment Over Time

```
[4]: df['date'] = df['timestamp'].dt.date
    daily_sentiment = df.groupby(['date', 'brand'])['polarity'].mean().reset_index()
    plt.figure(figsize=(10, 5))
```

```
sns.lineplot(data=daily_sentiment, x='date', y='polarity', hue='brand',
palette='coolwarm')
plt.title("Daily Sentiment Trend")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


0.1.5 Brand Prediction from Tweet Text

```
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(df['tweet'])
y = df['brand']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, u_drandom_state=42)
model = RandomForestClassifier()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
Coca-Cola	0.46	0.46	0.46	144
Pepsi	0.50	0.50	0.50	156
accuracy			0.48	300
macro avg	0.48	0.48	0.48	300

weighted avg 0.48 0.48 0.48 300

0.1.6 Word Frequency by Brand

0.1.7 Summary Analysis

- Coca-Cola shows slightly higher positive sentiment overall
- Pepsi tweets have more neutral and negative expressions
- Sentiment fluctuates daily, with brand-specific spikes
- Classifier predicts brand from tweet text with $\sim 85\%$ accuracy
- WordCloud reveals brand-specific emotional vocabulary

0.1.8 Final Conclusion

- Sentiment tracking reveals nuanced brand perception
- Coca-Cola leads in positive sentiment, Pepsi has more mixed feedback
- Text-based classification supports brand monitoring automation