Complex Analysis, midterm exam

Prof. Jinxin Xue

Problem1. [Cauchy-Riemann Equation]

Given u(x, y) as follows, find v(x, y) such that u+iv is an analytic function

$$u(x,y) = \frac{y}{x^2 + y^2}, u(x,y) = x - xy$$

Problem2. [Rouché Theorem]

Let f be a holomorphic function on an open set U and d be an open disc whose closure is in U. Suppose |f| is constant on ∂D . Prove that f has at least one zero in D(hint: consider $g(z) = f(z) - f(z_0)$ for $z_0 \in D$)

Problem3. [Möbius Transformation]

It's known that the automorphism group $\operatorname{Aut}(\mathbb{H})$ of the upper half plane \mathbb{H} is the group $\operatorname{PSL}_2\mathbb{R} = \{\frac{az+b}{cz+d}, a, b, c, d \in R, ad-bc=1\}/\{\pm id\}$ Prove that an element in $\operatorname{Aut}(\mathbb{H})$ maps the positive y-axis to either a vertical line or a half circle intersecting the x-axis orthogonally.

Problem4. [Residue Theorem]

Evaluate the integral using residue theorem

$$\int_0^{+\infty} \frac{\cos x}{x^2 + a^2} \mathrm{d}x, a \in R$$

Problem5. [Schwarz Lemma]

Prove that a bijective conformal mapping from the disk to itself is a fractional linear transformation, using Schwarz Lemma.

Problem6. $[Aut(\mathbb{H})]$

Let $\phi \in \text{Aut}(\mathbb{H})$. Suppose $\phi(i)=i$. Prove that ϕ has the form $\frac{zcos\theta-sin\theta}{zsin\theta+cos\theta}, \theta \in [0,2\pi)$

Problem7. [Uniformly Convergence]

Prove the series $\sum_{n=1}^{+\infty} \frac{nz^n}{1-z^n}$ converge uniformly within every closed disk $\{|z|< r\}$ for each r<1

Problem8. [Conformal Mapping]

Find a conformal mapping that sends the strip $|Imz|<\frac{\pi}{2}$ onto the disk $\mathbb{D}=\{|z|<1\}$

Problem9. [Singularities]

Suppose f is meromorphic on $\mathbb C$ but not entire, and let $g=e^f$. Prove that g is not meromorphic on $\mathbb C$

Problem10.

Let Ω be the simply connected domain $\mathbb C$ $(-\infty,0]$, and define log on it. Evaluate the limits

$$\lim_{y \to 0^+} (\log_{\Omega}(x + yi) - \log_{\Omega}(x - yi))$$

for x > 0 and x < 0