hochschule mannheim

Understanding Eventual Consistency

MSI Presentation SS2014

Horst Schneider, Patrick Beedgen Hochschule Mannheim

June 17th, 2014

Introduction

"...the storage system guarantees that if no new updates are made to the object, eventually all accesses will return the last updated valuee"
–W. Vogels (2009)

Introduction

Interpretations of Eventual Consistency

Interpretation 1:

"When you read data[...], the response might not reflect the results of a recently completed write operation. The response might include some stale data. Consistency across all copies of the data is usually reached within a second; so if you repeat your read request after a short time, the response returns the latest data."

Interpretation 2:

"This sort of system we term "single writer eventual consistency". So what are its properties?

(1) A client could read stale data. (2) The client could see out-of-order write operations. [...] So this is our weakest form of consistency - eventually consistent with out of order reads in the short term"

Introduction

Interpretations of Eventual Consistency

DynamoDB Documentation

"When you read data[...], the response might not reflect the results of a recently completed write operation. The response might include some stale data. Consistency across all copies of the data is usually reached within a second; so if you repeat your read request after a short time, the response returns the latest data."

MongoDB Documentation

"This sort of system we term "single writer eventual consistency". So what are its properties?

- (1)A client could read stale data.
- (2)The client could see out-of-order write operations.[...] So this is our weakest form of consistency - eventually consistent with out of order reads in the short term."

The Problem

- Disparate and low-level formalisms consistency model is tied to system implementation
- Weak guarantees in realistic scenarios updates never stop
- Conflict resolution policies resolution of conflicts in multiple replicas
- Combinations of different consistency levels strong consistency may be needed at certain times
- \Rightarrow Some sort of formalism is needed to define semantics of Eventual Consistency

Agenda

Anfang Hauptteil Horst

• A replicated database stores **objects** $Obj = \{x, y, \dots\}$

- A replicated database stores **objects** $Obj = \{x, y, \dots\}$
- Every object $x \in Obj$ has
 - a value $\in Val$

- A replicated database stores **objects** $Obj = \{x, y, \dots\}$
- Every object $x \in \text{Obj has}$
 - a value $\in Val$
 - a **type** type(*x*)

- A replicated database stores **objects** $Obj = \{x, y, \dots\}$
- Every object $x \in \text{Obj has}$
 - a value $\in Val$
 - a **type** type(*x*)
 - ullet operations $\operatorname{Op}_{\operatorname{type}(x)}$ that a client can perform on it

- A replicated database stores **objects** $Obj = \{x, y, ...\}$
- Every object $x \in \text{Obj has}$
 - a value $\in Val$
 - a **type** type(x)
 - operations $Op_{tvpe(x)}$ that a client can perform on it
- Two examples: Int Register intreg, Counter ctr

$$\begin{aligned} & \text{Op}_{\text{ctr}} = \{\text{rd}, \text{inc}\} \\ & \text{Op}_{\text{intreg}} = \{\text{rd}, \text{wr}(k) | k \in \mathbb{Z}\} \end{aligned}$$

Sequential Data Type Specification

In a *strongly consistent system*, the semantics of a data type can be described by a function

$$S_{\tau}: \mathrm{Op}_{\tau}^+ \to \mathrm{Val}$$

Sequential Data Type Specification

In a *strongly consistent system*, the semantics of a data type can be described by a function

$$S_{\tau}: \mathrm{Op}_{\tau}^{+} \to \mathrm{Val}$$

Examples:

$$S_{\rm ctr}(\sigma rd) = (\text{number of inc operations in } \sigma);$$

Sequential Data Type Specification

In a *strongly consistent system*, the semantics of a data type can be described by a function

$$S_{\tau}: \mathrm{Op}_{\tau}^+ \to \mathrm{Val}$$

Examples:

$$S_{\rm ctr}(\sigma {\rm rd}) = ({\rm number\ of\ inc\ operations\ in\ }\sigma);$$

 $S_{\rm intreg}(\sigma {\rm rd}) = k;$ if ${\rm wr}(0)\sigma = \sigma_1 {\rm wr}(k)\sigma_2$ and σ_2 does not contain wr operations

Sequential Data Type Specification

In a *strongly consistent system*, the semantics of a data type can be described by a function

$$S_{\tau}: \mathrm{Op}_{\tau}^+ \to \mathrm{Val}$$

Examples:

$$S_{\mathrm{ctr}}(\sigma \mathrm{rd}) = (\mathrm{number\ of\ inc\ operations\ in\ }\sigma);$$

 $S_{\mathrm{intreg}}(\sigma \mathrm{rd}) = k;$ if $\mathrm{wr}(0)\sigma = \sigma_1 \mathrm{wr}(k)\sigma_2$ and σ_2 does not contain wr operations
 $S_{\mathrm{intreg}}(\sigma \mathrm{wr}(k)) = S_{\mathrm{ctr}}(\sigma \mathrm{\ inc}) = \bot;$

Conflict Resolution Strategies

 Make concurrent operations commutative

- Make concurrent operations commutative
- Order concurrent operations

- Make concurrent operations commutative
- Order concurrent operations
- 3 Flag conflicts (let the user decide)

- Make concurrent operations commutative
- Order concurrent operations
- Second States (18 the user decide)
- 4 Resolve conflicts semantically

Replicated Data Type Specification

• S_{τ} is not strong enough to formalize these strategies

Replicated Data Type Specification

- S_{τ} is not strong enough to formalize these strategies
- visibility and order of preceding operations have to be included

Replicated Data Type Specification

- S_{τ} is not strong enough to formalize these strategies
- visibility and order of preceding operations have to be included
- F_{τ} : takes an **operation context** and returns a **value**

$$F_{\tau}(C) \in \mathrm{Val}$$

Replicated Data Type Specification

- S_{τ} is not strong enough to formalize these strategies
- visibility and order of preceding operations have to be included
- F_{τ} : takes an **operation context** and returns a **value**

$$F_{\tau}(C) \in \text{Val}$$

 operation context C adds visibility and arbitration relations to preceding operations:

$$C = (f, V, ar, vis)$$

Replicated Data Type Specification

- S_{τ} is not strong enough to formalize these strategies
- visibility and order of preceding operations have to be included
- F_{τ} : takes an **operation context** and returns a **value**

$$F_{\tau}(C) \in \text{Val}$$

 operation context C adds visibility and arbitration relations to preceding operations:

$$C = (f, V, \operatorname{ar}, \operatorname{vis})$$

$$u \xrightarrow{\operatorname{vis}} v, \operatorname{vis} \subseteq V \times V$$

Replicated Data Type Specification

- S_{τ} is not strong enough to formalize these strategies
- visibility and order of preceding operations have to be included
- F_{τ} : takes an **operation context** and returns a **value**

$$F_{\tau}(C) \in \text{Val}$$

 operation context C adds visibility and arbitration relations to preceding operations:

$$C = (f, V, \operatorname{ar}, \operatorname{vis})$$

$$u \xrightarrow{\operatorname{vis}} v, \operatorname{vis} \subseteq V \times V$$

$$u \xrightarrow{\operatorname{ar}} v, \operatorname{ar} \subseteq V \times V$$

Ende Hauptteil Horst

Anfang Hauptteil Patrick

Levels of Eventual Consistency

- With replicated data types we can define multiple forms of eventual consistency
 - Basic eventual consistency
 - Ordering guarantees
 - on-demand consistency strengthening
- Every form contains multiple axioms

Axiomatic Specification Framework Client Interaction Model

- Clients often wish to perform multiple operations within some context
- bla

Basic Eventual Consistency Axioms

- Axioms a database has to fulfill to be eventual consistent
- SOWF, ARWF, VISWF, RVAL, EVENTUAL, THINAIR

Session guarantees

- Axioms that ensure that databases stay consistent within a single session with a client
- RYW, MR, WYRV, WFRA, MWV, MWA

Causal Consistency Axioms

• POCV, POCA, COCV, COCA

Ende Hauptteil Patrick

Conclusion

- Which problems does the techreport solve?
- What is not solved by it?
- What do we think about it?