LISTA DE EXERCÍCIOS – linguagens tipo 2 e autômatos com pilha

- 1. Construa um autômato com pilha para a linguagem $L=\{w \in \{a,b\}^* : w=w^R\};$
- 2. Idem anterior para $L = \{w \in \{a, b\}^* : w \text{ tem o dobro de b's em relação à quantidade de a's}\};$
- 3. Através de algum conceito estudado como, por exemplo, o teorema do bombeamento ou o autômato com pilha, identifique e justifique o tipo da linguagem e o porquê dela ser ou não livre de contexto.
 - a. $\{x^ty^nz^m: m, n, t \in N^+, t = 5m\}$; (Obs. Use o bombeamento e faça um AP)
 - b. $\{w^rx^sy^tz^u: r, s, t, u \in N^+, r+t = s+u\}$; (Obs. Use o modelo de autômato ou algum propriedade de fechamento)
 - c. $L = \{ww^R \mid w \in \{a, b\}^*\}$; (Obs. Use o modelo de autômato)
 - d. $\{x^ny^nzx^ny^n: n \in N^+\}$; (Obs. Use o bombeamento).
- 4. Baseado na gramática G, descrita a seguir, desenhe a árvore de derivação da cadeia "xzxzzyzyyz". Encontre a derivação mais à esquerda para a cadeia e mostre a seqüência de produções para obtê-la. $G=(\{S, M, N\}, \{x, y, z\}, \{S \rightarrow MzSzN, S \rightarrow \epsilon, M \rightarrow xM, M \rightarrow x, N \rightarrow yN, N \rightarrow z\}, S);$
- 5. Transforme a gramática do exercício anterior em uma gramática na forma normal de Chomsky.
- 6. Construa um autômato de pilha determinístico que aceite a linguagem gerada pela gramática G cujas regras são {S → aSb, S → c}, onde S é o único símbolo nãoterminal da gramática e o símbolo inicial, e a, b, c são símbolos terminais.
- 7. Use o teorema do bombeamento ou alguma propriedade de fechamento para mostrar que as linguagens abaixo não são livres de contexto:
 - a. $L=\{a^p | p \in um \text{ número primo}\};$
 - b. $L=\{w | w \in \{a, b, c\}^*, e \text{ w tem o mesmo número de a s, b s e c s}\}$
 - c. L={www| $w \in \{a, b\}^*$ };
- 8. Construa um autômato de pilha que aceite a linguagem gerada pela gramática G definida no exercício 4.
- 9. Se $L_1 \subseteq \Sigma^*$ e $L_2 \subseteq \Sigma^*$ são linguagens, o quociente de L_1 por L_2 à direita é definido como:
 - $L_1/L_2 = \{w | w \in \Sigma^* : \exists u \in L_2 \text{ tal que } wu \in L_1\};$
 - a. Mostre que se L₁ é livre de contexto e R é regular, então L₁/R é livre de contexto (lembre-se das propriedades de fechamento);
- 10. Sejam M_1 e M_2 autômatos com pilha. Mostre com construir autômatos com pilha que aceitem $L(M_1) \cup L(M_2)$, $L(M_1)L(M_2)$ e $L(M_1)^*$, fornecendo outra demonstração ao teorema sobre operações fechadas em linguagens livres de contexto.