

Operation Analytics and Investigating Metric Spike

Case Study 1: Job Data Analysis

Case Study 2: Investigating Metric Spike

Project Description

In this project, we will leverage advanced SQL skills and queries to address operational challenges, enabling us to effectively monitor and respond to sudden changes in key metrics. This approach will provide valuable insights into performance fluctuations and help in proactively identifying and solving potential issues.

Methodology and Technology Stack Implemented

1. Methodology-

- Conduct a thorough review of the tasks and get familiar with the provided data file by importing it into MySQL for in-depth analysis. This will ensure a clear understanding of the data structure and content before proceeding with further tasks.
- Following the creation of the database, the necessary insights are generated from the database tables by executing queries in MySQL Workbench.

2. Technology Stack Implemented-

 In order to perform the task, MySQL Workbench has been used, as it is considered to be a idol software to run the

Case Study 1: Job Data Analysis

Jobs Reviewed Over Time

Objective: Calculate the number of jobs reviewed per hour for each day in November 2020.

Throughput Analysis:

Calculating a 7-day rolling average provides a more comprehensive and clearer view compared to using daily metrics alone.

Language Share Analysis

The highest percentage share is 34.9% for French, while the lowest percentage share is 3.7% for Hindi.

Duplicate Rows Detection

Actor ID 1003 has duplicate entries in the database.

Case Study 2: Investigating Metric Spike

Weekly User Engagement

Week 30 has the highest number of users, while week 35 sees the lowest user activity.

User Growth Analysis

Week 35 of 2014 saw the highest user growth rate on record.

Weekly Retention Analysis

To analyze weekly retention effectively, we want to measure the number of users who return each week following their sign-up week. Here's a streamlined query with clear steps for a **Weekly Retention Analysis**

```
SELECT
1 •
          first AS week numb.
2
          SUM(CASE WHEN week numb = 0 THEN 1 ELSE 0 END) AS 'week 0',
3
          SUM(CASE WHEN week_numb = 1 THEN 1 ELSE 0 END) AS `week 1`,
          SUM(CASE WHEN week_numb = 2 THEN 1 ELSE 0 END) AS `week 2`,
         SUM(CASE WHEN week_numb = 3 THEN 1 ELSE 0 END) AS `week 3`,
          SUM(CASE WHEN week_numb = 4 THEN 1 ELSE 0 END) AS `week 4`,
          SUM(CASE WHEN week_numb = 5 THEN 1 ELSE 0 END) AS `week 5`,
8
9
          SUM(CASE WHEN week_numb = 6 THEN 1 ELSE 0 END) AS `week 6`,
10
          SUM(CASE WHEN week_numb = 7 THEN 1 ELSE 0 END) AS `week 7`,
           SUM(CASE WHEN week_numb = 8 THEN 1 ELSE 0 END) AS `week 8`,
11
12
          SUM(CASE WHEN week_numb = 9 THEN 1 ELSE 0 END) AS `week 9`,
         SUM(CASE WHEN week_numb = 10 THEN 1 ELSE 0 END) AS `week 10`,
13
         SUM(CASE WHEN week_numb = 11 THEN 1 ELSE 0 END) AS `week 11`,
14
        SUM(CASE WHEN week_numb = 12 THEN 1 ELSE 0 END) AS `week 12`,
15
        SUM(CASE WHEN week_numb = 13 THEN 1 ELSE 0 END) AS `week 13`,
        SUM(CASE WHEN week_numb = 14 THEN 1 ELSE 0 END) AS `week 14`,
         SUM(CASE WHEN week_numb = 15 THEN 1 ELSE 0 END) AS `week 15`,
19
         SUM(CASE WHEN week_numb = 16 THEN 1 ELSE 0 END) AS `week 16`,
20
          SUM(CASE WHEN week_numb = 17 THEN 1 ELSE 0 END) AS `week 17`,
21
          SUM(CASE WHEN week_numb = 18 THEN 1 ELSE 0 END) AS `week 18`
22
      FROM (
               SELECT
23
24
                   a.user_id,
 25
                   a.login_week,
 26
                   b.first_,
27
                    a.login_week - b.first_ AS week_numb
               FROM (
 28
 29
                   SELECT
30
                        user_id,
 31
                        EXTRACT(WEEK FROM occurred_at) AS login_week
 32
                    FROM events_table
33
                    GROUP BY user_id, login_week
               ) a
 34
 35
               JOIN (
36
                 SELECT
37
 38
                        MIN(EXTRACT(WEEK FROM occurred_at)) AS first_
 39
                    FROM events_table
                    GROUP BY user_id
40
 41
               ) b ON a.user_id = b.user_id
 42
          ) AS temp
          GROUP BY first
 43
 44
          ORDER BY first_;
```

week_nu	ımb week 0	week 1	week 2	week 3	week 4	week 5	week 6	week /	week 8	week 9	week 10	week 11	week 12	week 13	week 14	week 15	week 16	week 1/	week 1
17	663	472	324	251	205	187	167	146	145	145	136	131	132	143	116	91	82	77	5
18	596	362	261	203	168	147	144	127	113	122	106	118	127	110	97	85	67	4	0
19	427	284	173	153	114	95	91	81	95	82	68	65	63	42	51	49	2	0	0
20	358	223	165	121	91	72	63	67	63	65	67	41	40	33	40	0	0	0	0
21	317	187	131	91	74	63	75	72	58	48	45	39	35	28	2	0	0	0	0
22	326	224	150	107	87	73	63	60	55	48	41	39	31	1	0	0	0	0	0
23	328	219	138	101	90	79	69	61	54	47	35	30	0	0	0	0	0	0	0
24	339	205	143	102	81	63	65	61	38	39	29	0	0	0	0	0	0	0	0
25	305	218	139	101	75	63	50	46	38	35	2	0	0	0	0	0	0	0	0
26	288	181	114	83	73	55	47	43	29	0	0	0	0	0	0	0	0	0	0
27	292	199	121	106	68	53	40	36	1	0	0	0	0	0	0	0	0	0	0
28	274	194	114	69	46	30	28	3	0	0	0	0	0	0	0	0	0	0	0
29	270	186	102	65	47	40	1	0	0	0	0	0	0	0	0	0	0	0	0
30	294	202	121	78	53	3	0	0	0	0	0	0	0	0	0	0	0	0	0
31	215	145	76	57	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32	267	188	94	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33	286	202	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34	279	44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Examine weekly user retention following their initial product sign-up.

Weekly Engagement Per Device

Week 30 saw the highest number of active users on the MacBook Pro, while Week 35 had the lowest number of active users on the Acer Aspire desktop.

Email Engagement Analysis

Week 34 had the highest engagement with email services, while Week 35 recorded the lowest email engagement.

Weekly Performance and Engagement Insights

- On November 11, 2010, approximately 218 jobs were reviewed, the highest count compared to other days.
- A 7-day rolling average is recommended for throughput, as it better reflects overall performance and highlights trends more effectively than daily metrics.
- The French language holds the largest percentage share among languages, with 35%.
- Week 30 recorded the highest number of active users, while Week 17 had the fewest.
- User growth peaked in Week 33, with Week 35 experiencing the lowest growth rate.
- The highest number of active users on the MacBook Pro was observed in Week 30, whereas Week 35 saw the lowest number of active users on the Acer Aspire desktop.
- Engagement with email services was highest in Week 34 and lowest in Week 35.

Result

This project enhanced my query-writing skills and strengthened my problem-solving abilities. One of the challenges I encountered was the time required to clean and prepare the data to ensure it could be fully utilized.