第一次习题课讲义

常运航

1 第六周作业

作业 1.1 (课本 15.1.11) 设 f 是定义在有界开区间 (a,b) 上的连续函数,证明: f 一致连续当且仅当 f 在 a 的右极限和 b 的左极限都存在。

证明. \leftarrow : 左极限和右极限都存在时,f 可以延拓定义到 [a,b] 上连续(类比 14 题),故一致连续。

 \Rightarrow : 设 $x_n \in (a,b)$ 单调趋近于 a, 先证明 $f(x_n)$ 是一个 Cauchy 列,再证明这个极限一定是 a 处的右极限,另外一边同理

作业 1.2 (课本 15.1.20) 设 f 是闭区间 [a,b] 上的函数,对任意 $\delta > 0$,证明: 函数 f 的振幅大于或等于 δ 的点集 $D_{\delta} = \{x \in [a,b] | \omega_f(x) \geq \delta\}$ 是闭集。

证明. 反证,设 $x_0 \in [a,b] \setminus D_\delta$, $x_0 \in D_\delta$ 的聚点,由假设

$$\omega_f(x_0) = \lim_{p \to 0} \sup_{x, y \in (x_0 - p, x_0 + p)} |f(x) - f(y)| < \delta$$
 (1)

从而有 p_0

$$\sup_{x,y\in(x_0-p_0,x_0+p_0)} |f(x) - f(y)| < \delta$$
 (2)

又 x_0 是 D_δ 的聚点 \Rightarrow , $\exists x_1 \neq x_0, x_1 \in (x_0 - p_0, x_0 + p_0)$ 使得 $\omega_f(x_1) \geq \delta$, 找 x_1 的一个开邻域 $(x_1 - p_1, x_1 + p_1)$ 包含在 $(x_0 - p_0, x_0 + p_0)$ 中,有 $\sup_{x,y \in (x_1 - p_1, x_1 + p_1)} |f(x) - f(y)| \geq \delta$ 得到矛盾。故 D_δ 是闭集。

作业 1.3 (课本 15.1.22) 设 f,g 是 D 上的一致连续函数,并且它们有界,证明 fg 一致连续,举反例说明有界性是必要的。

作业 1.4 (课本 15.1.25) 证明 Riemann 函数在任意点的极限为 0

证明. $\forall \varepsilon > 0, R(x) > \varepsilon$ 的点只有有限个,因此总可以取 x 的一个足够小的去心开邻域使得里面的函数值都小于 ε 。

作业 1.5 (课本 15.1.27) 设函数 f 在区间 [a,b] 上单调增, $x_1 < x_2 < \dots$ 是 f 的间断点,定义 [a,b] 上的函数 h(x) 如下:h(a) = 0,当 x > a 时有

$$h(x) = [f(a+0) - f(a)] + \sum_{x_k < x} [f(x_k+0) - f(x_k-0)] + [f(x) - f(x-0)]$$
 (3)

证明 h(x) 是单调增函数, g(x) = f(x) - h(x) 连续。

证明. $x_i < x < x_{i+1}$ 时, $h(x) = [f(a+0) - f(a)] + \sum_{k=1}^{i} [f(x_k+0) - f(x_k-0)]$ 是常值函数,且随 i 的增大而增大。而 $h(x_i-0) < h(x_i) < h(x_i+0)$,故 h(x) 是单调增函数。

 $x_i < x < x_{i+1}$ 时,f(x),h(x) 均连续,故 g(x) 连续。 $x = x_i$ 时, $g(x_i+0) = f(x_i+0) - [f(a+0) - f(a) + \sum_{k=1}^{i} (f(x_k+0) - f(x_k-0))] = f(x_i-0) - [\sum_{k=1}^{i-1} (f(x_k+0) - f(x_k-0))] = g(x_i-0) = g(x_i)$ 故连续。

作业 1.6 (课本 15.2.2) 设 $\sum_{n=1}^{\infty} a_n$ 为每项都为正的收敛级数,证明:存在绝对收敛级数 $\sum_{n=1}^{\infty} b_n$ 使得

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0 \tag{4}$$

证明. 记 $S = \sum_{n=1}^{\infty} a_n, S_n = \sum_{i=1}^n a_i, \beta_n = S - S_{n-1}$,构造 $b_n = \sqrt{\beta_n} - \sqrt{\beta_{n+1}} > 0$,

$$\lim_{n \to \infty} \beta_n = 0 \Rightarrow \lim_{n \to \infty} \sum_{i=1}^n b_i = \lim_{n \to \infty} (\sqrt{\beta_1} - \sqrt{\beta_{n+1}}) = \sqrt{\beta_1}$$
 (5)

绝对收敛,此时

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n(\sqrt{\beta_n} + \sqrt{\beta_{n+1}})}{\beta_n - \beta_{n+1}} = \lim_{n \to \infty} (\sqrt{\beta_n} + \sqrt{\beta_{n+1}}) = 0$$
 (6)

作业 1.7 (课本 15.2.3) 证明级数 $\sum_{n=1}^{\infty} \frac{(-1)^{\lceil \sqrt{n} \rceil}}{n}$ 收敛

证明. 原式等于 $\sum_{k=1}^{\infty} (-1)^k \left(\sum_{i=k^2}^{(k+1)^2-1} \frac{1}{i}\right)$,而

$$\sum_{i=k^2}^{(k+1)^2-1} \frac{1}{i} - \sum_{i=(k+1)^2}^{(k+2)^2-1} \frac{1}{i}$$

$$= \frac{2k+1}{k^2(k^2+2k+1)} + \dots + \frac{2k+1}{(k^2+2k)(k^2+4k+1)} - \frac{1}{k^2+4k+2} - \frac{1}{k^2+4k+3}$$
(8)

$$\geq \frac{(2k+1)^2}{(k^2+2k)(k^2+4k+1)} - \frac{2}{k^2+4k+2} > 0 \tag{9}$$

两个求和逐项配对。当 n 足够大时, $\sum_{i=k^2}^{(k+1)^2-1} \frac{1}{i}$ 随 k 单调递减,由交错级数知原级数收敛。

作业 1.8 (课本 15.2.4) 设 $\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} |a_{mn}|) < \infty$, 证明:

(1) 可数集合 $\{a_{mn}|m,n\in\mathbb{N}\}$ 的任意排列求和均收敛; $(2)\sum_{m=1}^{\infty}(\sum_{n=1}^{\infty}a_{mn})=\sum_{m=1}^{\infty}(\sum_{m=1}^{\infty}a_{mn})$

证明. (1) 由题意可证得任意排列求和其实都是绝对收敛的;

(2) 取教材 P72 第一段中定义的 $a_{mn}^{\pm} = \frac{|a_{mn}| \pm a_{mn}}{2}$,由题设知 $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (a_{mn}^{+} + a_{mn}^{-}) < \infty$ 。可以将原式分解为 $\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{mn}) = \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{mn}^{+}) - \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{mn}^{-})$,因此我们只需要证明 $\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{mn}^{+}) = \sum_{n=1}^{\infty} (\sum_{m=1}^{\infty} a_{mn}^{+})$ 即可。又 $\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{mn}^{+}) \geq \sum_{m=1}^{\infty} (\sum_{n=1}^{k} a_{mn}^{+}) = \sum_{n=1}^{k} (\sum_{m=1}^{\infty} a_{mn}^{+})$, k 取极限得到 $LHS \geq RHS$,同理我们也有 $RHS \geq LHS$ 得证。