School of Computing and Information Systems COMP90038 Algorithms and Complexity Tutorial Week 4

Sample answers

1. One possible way of representing a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is as an array A of length n+1, with A[i] holding the coefficient a_i .

- (a) Design a brute-force algorithm for computing the value of p(x) at a given point x. Express this as a function PEVAL(A, n, x) where A is the array of coefficients, n is the degree of the polynomial, and x is the point for which we want the value of p.
- (b) If your algorithm is $\Theta(n^2)$, try to find a linear algorithm.
- (c) Is it possible to find an algorithm that solves the problem in sub-linear time?

Answer.

(a) Working from right-to-left, the following algorithm is the natural formulation:

```
\begin{aligned} & \textbf{function} \ \text{Peval}(A,n,x) \\ & \textit{result} \leftarrow 0.0 \\ & \textbf{for} \ i \leftarrow n \ \text{downto} \ 0 \ \textbf{do} \\ & \textit{summand} \leftarrow 1.0 \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ i \ \textbf{do} \\ & \textit{summand} \leftarrow x \times \textit{summand} \\ & \textit{result} \leftarrow \textit{result} + a[i] \times \textit{summand} \\ & \textbf{return} \ \textit{result} \end{aligned}
```

The complexity is $\Theta(n^2)$.

(b) Working from left-to-right allows us to avoid many redundant calculations of x^i . It gives an algorithm that is both simpler and more efficient:

```
function PEVAL(A, n, x)

result \leftarrow a[0]

summand \leftarrow 1.0

for i \leftarrow 1 to n do

summand \leftarrow x \times summand

result \leftarrow result + a[i] \times summand

return result
```

- (c) We cannot solve the problem in less than linear time, because we clearly need to access each of the n+1 coefficients.
- 2. Trace the brute-force string search algorithm on the following input: The path p is 'needle', and the text t is 'there_need_not_be_any'. How many comparisons (successful and unsuccessful) are made?

Answer. 21 character comparisons are made.

3. Assume we have a text consisting of one million zeros. For each of these patterns, determine how many character comparisons the brute-force string matching algorithm will make:

- (a) 010001 (b)
- (b) 000101
- (c) 011101

Answer.

- (a) 2×999995 comparisons
- (b) 4×999995 comparisons
- (c) 2×999995 comparisons
- 4. Give an example of a text of length n and a pattern, which together constitute a worst-case scenario for the brute-force string matching algorithm. How many character comparisons, as a function of n, will be made for the worst-case example.

Answer. The worst case happens when we have a text of length n consisting of the same character c repeated n times, together with a pattern of length m, consisting of m-1 occurrences of c, followed by a single character different from c. In this case, the outer loop is traversed n-m+1 times, and each time, m character comparisons are made before failure is detected. Altogether we have $(n-m+1)m=(n+1)m-m^2$ comparisons. As a function of m, this has its maximal value where n+1-2m=0, that is, when the length of the pattern is about half that of the text.

5. The assignment problem asks how to best assign n jobs to n contractors who have put in bids for each job. An instance of this problem is an $n \times n$ cost matrix C, with C[i,j] specifying what it will cost to have contractor i do job j. The aim is to minimise the total cost. More formally, we want to find a permutation $\langle j_1, j_2, \ldots j_n \rangle$ of $\langle 1, 2, \ldots, n \rangle$ such that $\sum_{i=1}^n C[i, j_i]$ is minimized.

Use brute force to solve the following instance:

	Job 1	Job 2	Job 3	Job 4
Contractor 1	9	2	7	8
Contractor 2	6	4	3	7
Contractor 3	5	8	1	8
Contractor 4	7	6	9	4

Answer.

Permutation	Cost		
1,2,3,4	9+4+1+4	=	18
1,2,4,3	9+4+8+9	=	30
1,3,2,4	9+3+8+4	=	24
1,3,4,2	9+3+8+6	=	26
1,4,2,3	9+7+8+9	=	33
1,4,3,2	9+7+1+6	=	23
2,1,3,4	2+6+1+4	=	13
2,1,4,3	2+6+8+9	=	25
:			

and so on. The minimal cost is 13, for permutation (2, 1, 3, 4).

6. Give an instance of the assignment problem which does not include the smallest item C[i, j] of its cost matrix.

Answer.

	Job 1	Job 2
Contractor 1	1	2
Contractor 2	2	4