

Computer Arithmetic-II
Signed binary numbers

Binary number representation

- 1. Representing binary signed integers:
 - a) Sign-magnitude
 - b) One's complement signed magnitude
 - c) Two's complement signed magnitude
- 2. Representing binary integer/fractions:
 - a) Fixed-point numbers
 - b) Floating-point numbers

Review

Unsigned (positive) numbers

Range of unsigned binary numbers

• **Example**: n = 3:

$$0 \rightarrow [2^3-1] = 7$$

3-bit unsigned binary number

8-bit unsigned binary numbers

$$255 = 2^8 - 1$$

Largest unsigned 32-bit integer

- For a 32-bit computer ...
- What is the largest unsigned integer that can hold?

32-bits

$$2^{32}-1 = 4, 294, 967, 295$$

Binary unsigned numbers

$$(110110.1)_2 = 1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 + 1 * 2^{-1}$$

= $32 + 16 + 0 + 4 + 2 + 0 + 0.5$
= 54.5

1. Representing binary signed integers

- a) Signed-magnitude (review)
- b) 1's complement signed-magnitude
- c) 2's complement signed-magnitude

Unsigned-magnitude (review)

A n-bit binary number has 2ⁿ distinct values.

Decimal	Unsigned
+7	111
+6	110
+5	100
+4	100
+3	011
+2	010
+1	001
0	000

Signed-magnitude

a) Signed-magnitude

- 1 << leftmost bit = Negative number
- 0 << leftmost bit = Positive number

Decimal	signed	
-3	1 11	NEGATIVE

+3 0 11 POSITIVE

a) Signed-magnitude

- A n-bit binary number has 2ⁿ distinct values.
 - Assign Half to negative (One MSB)
 - and Half to positive integers (Zero MSB)
 - with two values for the Zero (0)

Decimal	Unsigned
+7	111
+6	110
+5	101
+4	100
+3	011
+2	010
+1	001
0	000

> A T I > / E
SATIVE
ITIVE

3-bit signed-magnitude numbers

- A 3-bit binary number has a total of 2³ = 8 numbers.
- Using signed number representation, we have negative and positive numbers: Divide 8 by 2 → 4. We have:
 - 4-positive (+0 \rightarrow +3)
 - 4-negative (-0 \rightarrow -3) numbers.
- The only «problem» is that we have 2 different zeros (-0, +0).

Decimal	Unsigned	Signed
+7	111	
+6	110	
+5	100	
+4	100	
+3	011	011
+2	010	010
+1	001	001
+0	000	000
-0		100
-1		101
-2		110
-3		111
-4		

The range is: $+3 \rightarrow -3$ We have 2 ways to represent zero

Range: Signed-magnitude numbers

In general

2ⁿ⁻¹-1 to -(2ⁿ⁻¹-1)

Decimal	Unsigned	Signed
+7	111	
+6	110	
+5	100	
+4	100	
+3	011	011
+2	010	010
+1	001	001
+0	000	000
-0		100
-1		101
-2		110
-3		111
-4		

Signed-magnitude

Not used in modern computing ... because there are two representations for the zero.

IBM7090/ 1959

In general: Range of n-bit numbers

b) 3-bit 1's complement signed-magnitude

The range is: $+3 \rightarrow -3$

In general

 $2^{n-1}-1$ to $-(2^{n-1}-1)$

Decimal	Unsigned	Signed	1's Comp.
+7	111		
+6	110		
+5	100		
+4	100		
+3	011	011	011
+2	010	010	010
+1	001	001	001
→ +0	000	000	000
→ -0		100	111
-1		101	110
-2		110	101
-3		111	100
-4			

We have 2 ways to represent zero

1's complement signed-magnitude

Not used in modern computing ... because there are two representations for the zero

CDC160A/1960 UNIVAC 1100/2200 /1962

c) 3-bit 2's complement signed magnitude

Decimal	Unsigned	Signed	1's Comp.	2's Comp
+7	111			
+6	110			
+5	100			
+4	100			
+3	011	011	011	011
+2	010	010	010	010
+1	001	001	001	001
+0	000	000	000	000
-0		100	111	000
-1		101	110	111
-2		110	101	110
-3		111	100	101
-4				100

The range is:

Positive (+0 → +3)

Negative (-1 → -4)

... we have 1 way

to represent zero

2's complement signed-magnitude

- Today's processors represent signed integers using two's complement ...
- Why?
- Because a 2's complement signed-magnitude representation has a single representation for zero (0)

Range for n-bit 2's complement signed

For our 3-bit $[2^3 = 8 \dots \text{divide by } 2 \rightarrow 4 = 2^2]$ For our example the range is $(-4 \rightarrow +3)$:

$$2^{3-1} \rightarrow 2^{3-1} - 1 = -2^2 \rightarrow 2^2 - 1 = -4 \rightarrow +3$$

22

Modulo-16 system (4-bits)

В	\	/alue represented	
$b_3^{}b_2^{}b_1^{}b_0^{}$	Sign and magnitude	1's complement	2's complement
0 1 1 1	+ 7	+ 7	+ 7
0 1 1 0	+ 6	+ 6	+ 6
0 1 0 1	+ 5	+ 5	+ 5
0 1 0 0	+ 4	+ 4	+ 4
0 0 1 1	+ 3	+ 3	+ 3
0 0 1 0	+ 2	+ 2	+ 2
0 0 0 1	+ 1	+ 1	+ 1
0 0 0 0	+ 0	+ 0	+ 0
1 0 0 0	- 0	- 7	- 8
1 0 0 1	- 1	- 6	- 7
1 0 1 0	- 2	- 5	- 6
1 0 1 1	- 3	- 4	- 5
1 1 0 0	- 4	- 3	- 4
1 1 0 1	- 5	- 2	- 3
1 1 1 0	- 6	- 1	- 2
1 1 1 1	- 7	- 0	- 1

In general: Range of n-bit numbers

Range of 32-bit 2's comp. signed numbers

$$2^{31}-1 = 4,294,967,295$$

4 Giga

32 bit OS - 4 GB RAM

32-bit and 64-bit

32-bit:

```
2<sup>32</sup> = 4,294,967,296
4,294,967,296 / (1,024 x 1,024) = 4,096 MB = 4GB (gigabytes)
```

64-bit:

2⁶⁴ = 18,446,744,073,709,551,616 18,446,744,073,709,551,616 / (1,024 × 1,024) = 16EB (exabytes)

Note that ... giga >> tera >> peta >> exa

32-bit and 64-bit

Example of general purpose processor evolution: More processing ability, more addressable memory

64-bit computers can realistically access 4 GB - 128 GB of RAM.

64-bit CPU

Example

Apple: A11 Bionic CPU (iPhone-8, X)

Apple: A11 Bionic CPU (iPhone-8, X)

Apple: A11 Bionic CPU (iPhone-8, X)

- The A-11 Bionic features an Apple-designed 64-bit ARMv8-A six-core CPU
 - Two high-performance cores: called Monsoon
 - Four energy-efficient cores: called Mistral
- The A11 is manufactured by TSMC using a 10 nm FinFET process

Apple: A11 Bionic: The neural engine

Real-Numbers

Real-Numbers

For Real-Numbers: Fixed-Point and Floating-Point Number representations are used Why?

Why?

- Because we need to ...
 - Expand the number range ... and... and include smaller numbers than 1

 Use integers, positive and negative numbers in decimal notation.

2. Fixed-Point Numbers

Fixed-Point Numbers

Fixed point number representation: Every word has the same number of digits and the binary point is always fixed at the same position.

http://www.diycalculator.com/sp-round.shtml

Fixed-Point Arithmetic is used ...

- Fixed-Point arithmetic is used in applications where speed is more important than precision:
 - Digital Signal/Image Processing
 - Control Systems
 - Mobile smartDevices
 - Games
- Fixed-point calculations require less memory and less processor time
- Fixed-point hardware are much less complicated than those of floating-point hardware.

Floating-Point Numbers (FPN)

- FPN are: 32/64/128 bits long ...
- Sign bit
- Exponent part
- Significant part

FPN (next lecture)