

Universidad de Costa Rica Facultad de Ciencias Escuela de Matemática Departamento de Matemática y Ciencias Actuariales

Tarea 4 CA-0411 I CICLO 2025

1. Instrucciones

A continuación se muestran las instrucciones de la tarea:

- La solución a cada tarea se debe subir en el aula virtual, no puedn ser enviadas por correo u otro medio.
- Las tareas se pueden hacer en parejas, pero cada persona deberá entregar la solución.
- Todas las tareas tienen el mismo valor en la nota final del curso.
- Las tareas se pueden entregar tarde, pero cada día de atraso tendrá un rebajo de 10 puntos.

2. Preguntas

- 1. (10 puntos) Complete las demostraciones de las reglas de asignación de la presentación de la semana 7.
- 2. (20 puntos) Diseñe un algoritmo en pseudocódigo para el Método del Análisis Discriminante Lineal, cuadrático y Naive Bayes según la teoría vista en clase. Programe esto en una clase que se llame analisis_predictivo También incluya métodos para el gráfico del plano principal y del círculo de correlaciones. Compare los resultados con respecto a usar lda, qda y bayes de Python. Para esto use el archivo de datos EjemploAD.csv.
- 3. (20 puntos) Generalización matricial de las inercias:

Se consideran p variables continuas x_1, \ldots, x_p observadas en una muestra Ω de n individuos. Cada individuo $i \in \Omega$ se representa con el vector fila $x_i^t = (x_{i1}, \ldots, x_{ip})$ y cada variable x_j con el vector columna $x_j = (x_{1j}, \ldots, x_{nj})^t$.

Sea y una variable cualitativa que determina una partición $P = \{C_1, \dots, C_r\}$ del conjunto Ω en r grupos. Definiciones:

• X: matriz $n \times p$ centrada por columnas.

- $D = \operatorname{diag}(p_i)$: matriz de pesos de los individuos.
- A cada clase C_s se le asigna un peso $q_s = \sum_{i \in C_s} p_i$ y centro de gravedad $g_s = \frac{1}{q_s} \sum_{i \in C_s} p_i x_i$.
- $D_q = \operatorname{diag}(q_i)$: matriz diagonal de pesos de las clases.
- C_g : matriz con las filas g_s^t como centros de gravedad.

Como X está centrada, el centro de gravedad global es g=0 y la matriz de covarianza total es:

$$V = X^{t}DX = \sum_{i=1}^{n} p_{i}x_{i}x_{i}^{t} = \sum_{s=1}^{r} \sum_{i \in C_{s}} p_{i}x_{i}x_{i}^{t}$$

La matriz de covarianza dentro de clase V_s es:

$$V_{s} = \frac{1}{q_{s}} \sum_{i \in C_{s}} p_{i}(x_{i} - g_{s})(x_{i} - g_{s})^{t}$$

Y la matriz de covarianza intra-clase es:

$$V_W = \sum_{s=1}^r q_s V_s = \sum_{s=1}^r \sum_{i \in C_s} p_i (x_i - g_s) (x_i - g_s)^t$$

La matriz de covarianza inter-clase es:

$$V_B = \sum_{s=1}^r q_s g_s g_s^t = C_g^t D_q C_g$$

Demuestre lo siguiente:

- a) $V = V_B + V_W$
- b) $\sum_{s=1}^{r} q_s g_s = 0$, por tanto rango $(C_g) \le r 1$
- c) rango (C_g) = rango (V_B)

Además, con el archivo EjemploAD.csv calcule: $g_A,\,g_B,\,g_C,\,V,\,V_B,\,V_W$ y verifique que $V=V_B+V_W$.

4. (20 puntos) Con la tabla novatosNBA.csv, que contiene métricas de desempeño de novatos de la NBA en su primera temporada, realice lo siguiente:

- a) Use LDA, QDA y Bayes en Python para generar un modelo predictivo utilizando el 80 % para aprendizaje y 20 % para prueba. Calcule los índices de precisión e interprete los resultados.
- b) Construya un DataFrame comparando los modelos actuales con los de tareas anteriores, usando las métricas: Precisión Global, Error Global, Precisión Positiva (PP) y Precisión Negativa (PN). Determine cuál modelo es mejor.
- 5. (20 puntos) Con el conjunto de datos diabetes.csv, realice:
 - a) Cargue los datos en Python.
 - b) Genere modelos LDA, QDA y Bayes (75% entrenamiento, 25% prueba). Calcule matriz de confusión, precisión global y por clase. ¿Son buenos los resultados? Justifique.
 - c) Compare los modelos con los desarrollados en tareas anteriores en un DataFrame con: Precisión Global, Error Global, PP y PN.
 - d) Repita el inciso anterior seleccionando solo 6 variables predictoras. ¿Mejora la predicción?
- 6. (20 puntos) Para la siguiente tabla (vista en clase), se tiene una nueva fila: t = (Isabel, F, 4, ?). Prediga manualmente si Isabel pertenece a la clase pequeño, mediano o alto.

Nombre	Género	Altura	Clase
Kristina	F	1	Р
Jim	M	5	A
Maggi	F	4	M
Martha	F	4	M
Stephanie	F	2	Р
Bob	M	4	M
Kathy	F	1	Р
Dave	M	2	Р
Worth	M	6	A
Steven	M	6	A
Debbie	F	3	M
Todd	M	5	M
Kim	F	5	M
Amy	F	3	M
Wynette	F	3	M

7. (20 puntos) Para la siguiente tabla, se tiene una nueva fila: 12 = (1, 3, 2, 4, ?). Prediga manualmente si el individuo es buen pagador o mal pagador.

Id	Monto Crédito	Ingreso Neto	Monto Cuota	Grado Académico	Buen Pagador
1	2	4	1	4	Sí
2	2	3	1	4	Sí
3	4	1	4	2	No
4	1	4	1	4	Sí
5	3	3	3	2	No
6	3	4	1	4	Sí
7	4	2	3	2	No
8	4	1	3	2	No
9	3	4	1	3	Sí
10	1	3	2	4	Sí
11	1	4	2	4	Sí

Entregables

Debe subir en el Aula Virtual el script de pruebas y un documento autoreproducible con la solución de la tarea.