CMSC204 Kartchner

V(StateGraph) = {Oregon, Alaska, Texas, Hawaii, Vermont, NewYork, California} E(StateGraph) = {(Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii), (Hawaii, California), (Hawaii, New York), (Texas, Vermont), (Vermont, California), (Vermont, Alaska)}

1. Draw the StateGraph

1. Describe the graph pictured above, using the formal graph notation.

$$V(StateGraph) = \{O, A, T, H, V, N, C\}$$

$$E(StateGraph) = \{(A, O), (H, A), (H, T), (T, H), (H, C), (H, N), (T, V), (V, C), (V, A)\}$$

- 2. a. Is there a path from Oregon to any other state in the graph? No
 - b. Is there a path from Hawaii to every other state in the graph? Yes
 - c. From which state(s) in the graph is there a path to Hawaii? Texas

3. a. Show the adjacency matrix that would describe the edges in the graph. Store the vertices in alphabetical order

States		О	A	T	H	V	N	C1
Oregon Alaska Texas Hawaii Vermont	О	0	0	0	0	0	0	0
	A	1	0	0	0	0	0	0
	T	0	0	0	1	1	0	0
NewYork California	H	0	1	1	0	0	1	1
	V	0	1	0	0	0	0	1
	N	0	0	0	0	0	0	0
	С	0	0	0	0	0	0	0

3. b. Show the adjacency lists that would describe the edges in the graph

Oregon				
Alaska	Oregon			
Texas	Hawaii	Vermont		
Hawaii	Alaska	California	New York	Texas
Vermont	Alaska	California		
New York				
California				

- 4 a. Which of the following lists the graph nodes in depth first order beginning with E?
- A) E, G, F, C, D, B, A
- B) G, A, E, C, B, F, D
- C) E, G, A, D, F, C, B
- D) E, C, F, B, A, D, G
- 4 b. Which of the following lists the graph nodes in breadth first order beginning at F?
 - A) F, C, D, A, B, E, G
 - B) F, D, C, A, B, C, G
 - C) F, C, D, B, G, A, E
 - D) a, b, and c are all breadth first traversals

5. Find the shortest distance from Atlanta to every other city

Washington: 600

Denver: 2680

Houston: 800

Dallas: 1900

Chicago: 2800

Austin: 2100

6. Find the minimal spanning tree using Prim's algorithm. Use 0 as the source vertex . Show the steps.

By vertices:

7. Find the minimal spanning tree using Kruskal's algorithm. Show the weights in order and the steps.

By vertices:

- 25

- 4
- 0

8. Find the minimal spanning tree using the algorithm you prefer. Use Minneapolis/St. Paul as the source vertex

By Prims Algorithm: Minneapolis/St. Paul

Des Moines Madison Milwaukee Chicago St Louis Detroit

9. List the nodes of the graph in a breadth first topological ordering. Show the steps using arrays predCount, topologicalOrder and a queue

Pred Count [i]	0	1	2	3	4	5	6	7	8	9
1 st iter	0	1	1	3	3	2	2	0	2	2
end iter	0	0	0	0	0	0	0	0	0	0

Topologic al Order [i]	0	1	2	3	4	5	6	7	8	9
Final values	0	7	1	2	5	6	4	8	3	9

Queue first iter

0, 7

10. List the nodes of the graph in a breadth first topological ordering.

Start
Discrete Math
Programming 1
Programming 2
Computer Organization
Algorithms
High-Level Languages
Operating Systems
Theory of Computation
Compilers
Senior Seminar
End