基本再生產数 Basic reproduction number R_O

Chaochen Wang | 王 超辰 公衆衛生学講座

2020-07-29(水)1限

感染症の感染モデル

- 20人の集団の中で1人が感染者となった。
- 1人が2人に感染させる力があるとする。
- 人の出入りのない、すなわち 出生、死亡がなく、 引っ越しもない集団とする。

最終的には、感染者は何人になるか?

3 感染者: 4人 未感染者:13人 既感染者: 3人

感染者: ❷⊁人 未感染者:5%人 既感染者:75人 6 / 19 00:59

間接予防効果 (herd immunity)

- 次々と感染者は増えていくが
- 未感染者の数が減るに従って
- 既感染者が増えることによって
- 感染者の数は減少に向かう
- 最終的に未感染者を残したまま 感染流行は終息する

SIR モデル (1)

人口は3つの集団に分類される:

- S: Susceptible 未感染者数 感染する可能性がある集団
- I: Infectious 感染者数 症状あり、伝染しうる期間である集団
- R: Recover 回復者数 感染後回復し免疫状態がある集団

SIR モデル (2)

$$egin{aligned} rac{dS(t)}{dt} &= -eta S(t)I(t) \ rac{dI(t)}{dt} &= eta S(t)I(t) - \gamma I(t) \ rac{dR(t)}{dt} &= \gamma I(t) \end{aligned}$$

- β: 感染確率(1人の感染者が1人に1日でうつす確率)
- γ : 回復率 (1日で5人に1人回復するなら $\gamma=0.2$)

SIR モデル (3)

感染が始まったばかりの時は(初期状態) $S(t)=S_0$ として置き換える

$$egin{aligned} rac{dI(t)}{dt} &= eta S(t)I(t) - \gamma I(t) \ rac{dI(t)}{dt} &= eta S_0 I(t) - \gamma I(t) \ rac{dI(t)}{dt} &= (eta S_0 - \gamma)I(t) \ \Rightarrow I(t) &= I_0 e^{(eta S_0 - \gamma)t} \end{aligned}$$

T2 / 19 00:59

基本再生產数 究 0

$$I(t)=I_0e^{(eta S_0-\gamma)t}=I_0e^{(rac{eta S_0}{\gamma}-1)\gamma t}$$

$$\mathfrak{R}_0 = rac{eta S_0}{\gamma}$$

 \mathfrak{R}_0 は は基本再生産数と呼ぶ。 \mathfrak{R}_0 は1人の感染者が何人の未感染者に感染させる期待値

$$\mathfrak{R}_0 \left\{ > 1$$
 感染が拡大する < 1 感染が自然に終息する

例: 1000 人の集団に新興感染症 を持った1人が侵入

- 感染確率: $\beta = 0.00015 \times 12 = 0.0018$
 - 一度の接触で感染する確率が0.00015と仮定する
 - 1人が1日平均他人と12回接触があると仮定する
- 回復率: 1日で1人が回復すると仮定する $\gamma=1$
- 1日あたりの未感染者数の変化 $rac{dS(t)}{dt} = -eta S(t) I(t) = 0.0018 imes 1000 imes 1 = -1.8$
- ・ 1日あたりの感染者数の変化 $rac{dI(t)}{dt}=eta S(t)I(t)-\gamma I(t)=1.8-1 imes 1=0.8$
- ullet 1日あたりの既感染者数の変化 $rac{dR(t)}{dt}=\gamma I(t)=1$

14 / 19 00:59

例

$$\mathfrak{R}_0 = rac{eta S_0}{\gamma} = rac{0.0018 imes 1000}{1} = 1.8$$

Show	Show 6 entries Search:							
	日常	S	1 \$	R	dS/dt	dI/dt	dR/dt	R_0
1	1	1000	1	0	-1.8	0.8	1	1.8
2	2	998.2	1.8	1	-3.234168	1.434168	1.8	1.79676
3	3	994.965832	3.234168	2.8	-5.792195979	2.558027979	3.234168	1.790938498
4	4	989.173636	5.792195979	6.034168	-10.3130776	4.520881624	5.792195979	1.780512545
5	5	978.8605584	10.3130776	11.82636398	-18.17111682	7.858039219	10.3130776	1.761949005
6	6	960.6894416	18.17111682	22.13944158	-31.42224013	13.25112331	18.17111682	1.729240995

Showing 1 to 6 of 26 entries

Previous 1 2 3 4 5 Next

未感染1000人における流行の経時変化

集団免疫

例のシミュレーションによれば、結局全員が罹患することなく、約200人が感染症にかからずに流行が終息した。最後に残った200人は、800人の免疫獲得者によって、感染患者からブロックされた形となる。

(未感染者の減少と既感染者が増加するため、感染者と未感染者の接触する機会が減る)**病原性が弱まるからではない。**

これを集団免疫 (herd immunity)と呼ぶ。

基本再生産数を減らすには

$$\mathfrak{R}_0 = rac{eta S_0}{\gamma}$$

- ullet ワクチンを導入すれば、未感染者(S)が減る
- 積極的に検査と感染者を治療することによって、回 復率 (γ) を上げる
- 手洗い、運動、マスク着用、3密を避けることによって、感染確率 (β) が減る

