1. Identify the two-by-two matrix with matrix elements $a_{ij}=i-j$.	1 punto
$\bigcirc \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	
$\bigcirc \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	
$\bigcirc\begin{pmatrix}0&1\\-1&0\end{pmatrix}$	
(1 0)	
2. The matrix product $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$ is equal to	1 punto
$left(egin{array}{ccc} -2 & 2 \\ 2 & -2 \end{pmatrix}$	
$\bigcirc \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$	
$\bigcirc \begin{pmatrix} -2 & 2 \\ 2 & 2 \end{pmatrix}$	
$lefterightarrow egin{pmatrix} -2 & 2 \ 2 & -2 \end{pmatrix}$	
$\bigcirc egin{pmatrix} 2 & -2 \ -2 & 2 \end{pmatrix}$	
$O\left(egin{matrix} -2 & 2 \ -2 & 2 \end{matrix} ight)$	
$\bigcirc \begin{pmatrix} -2 & -2 \\ 2 & 2 \end{pmatrix}$	
Let A and B be n -by- n matrices with $(AB)_{ij}=\sum_{k=1}^n a_{ik}b_{kj}$. If A and B are upper triangular matrices, then $a_{ik}=0$ or $b_{kj}=0$ when	1 punto
A, $k < i$ B, $k > i$ C, $k < j$ D, $k > j$	1 punto
A, $k < i$ B, $k > i$ C. $k < j$ D, $k > j$	1 punto
A, $k < i$ B, $k > i$ C, $k < j$ D, $k > j$	1 punto
A. $k < i$ B. $k > i$ C. $k < j$ D. $k > j$ $\bigcirc \ \text{A or C only}$ $\bigcirc \ \text{A or D only}$	1 punto
A. $k < i$ B. $k > i$ C. $k < j$ D. $k > j$ O A or C only B or C only B or D only	
$\begin{array}{lll} \text{A.} k < i & \text{B.} k > i & \text{C.} k < j & \text{D.} k > j \\ & \text{O Aor Conly} & & & \\ & \bullet & \text{Aor Donly} & & \\ & \bullet & \text{Bor Conly} & & \\ & \bullet & \text{Bor Donly} & & \\ & \bullet & \text{L.} & (\text{ABC})^{\text{T}} \text{ is equal to} & & \\ & \bullet & & \text{A}^{\text{T}} \text{C}^{\text{T}} \text{B}^{\text{T}} & & \\ & \bullet & & & \text{A}^{\text{T}} \text{C}^{\text{T}} \text{B}^{\text{T}} & & \\ & & & & & & & & \\ \end{array}$	
A. $k < i$ B. $k > i$ C. $k < j$ D. $k > j$ A or C only A or D only B or C only B or D only 1. $(ABC)^T$ is equal to $A^TB^TC^T$	
A. $k < i$ B. $k > i$ C. $k < j$ D. $k > j$ A or Conty A or D onty Bor Conty Bor D onty (ABC) ^T is equal to $A^TB^TC^T$ $A^TC^TB^T$ $C^TA^TB^T$	
$A.k < i \qquad B.k > i \qquad C.k < j \qquad D.k > j$ $\bigcirc \text{ Aor Conly}$ $\bigcirc \text{ Aor Donly}$ $\bigcirc \text{ Bor Donly}$ $\bigcirc \text{ Bor Donly}$ $1. (ABC)^T \text{ is equal to}$ $\bigcirc A^TB^TC^T$ $\bigcirc A^TC^TB^T$ $\bigcirc C^TA^TB^T$ $\bigcirc C^TB^TA^T$	
$A.k < i \qquad B.k > i \qquad C.k < j \qquad D.k > j$ $\bigcirc \text{ Aor Conly}$ $\bigcirc \text{ Aor Donly}$ $\bigcirc \text{ Bor Donly}$ $\bigcirc \text{ Bor Donly}$ $1. (ABC)^T \text{ is equal to}$ $\bigcirc A^TB^TC^T$ $\bigcirc A^TC^TB^T$ $\bigcirc C^TA^TB^T$ $\bigcirc C^TB^TA^T$	
A. $k < i$ B. $k > i$ C. $k < j$ D. $k > j$ A or C only A or D only B or C only B or D only 1. $(ABC)^T$ is equal to $A^TB^TC^T$ $A^TC^TB^T$ $C^TA^TB^T$ $C^TA^TB^T$ $C^TA^TB^T$ Correcto 2. Suppose A is a square matrix. Which matrix is not symmetric? $A + A^T$	1/1punto
A. $k < i$ B. $k > i$ C. $k < j$ D. $k > j$ A or Conly A or D only Bor Conly Bor D only 1. $(ABC)^T$ is equal to $A^TB^TC^T$ $A^TC^TB^T$ $C^TA^TB^T$ $C^TA^TB^T$ $C^TB^TA^T$ Correcto	1/1punto
A. $k < i$ B. $k > i$ C. $k < j$ D. $k > j$ A or C only A or D only B or C only B or D only 1. $(ABC)^T$ is equal to $A^TB^TC^T$ $A^TC^TB^T$ $C^TA^TB^T$ $C^TA^TB^T$ $C^TA^TB^T$ Correcto 2. Suppose A is a square matrix. Which matrix is not symmetric? $A + A^T$	1/1punto

3.	Which matrix is the inverse of	$\binom{2}{1}$	$\binom{2}{2}$?

1/1punto

- $\begin{array}{ccc}
 \bullet & \frac{1}{2} \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix} \\
 \circ & \frac{1}{2} \begin{pmatrix} -2 & 2 \\ 1 & -2 \end{pmatrix} \\
 \circ & \frac{1}{2} \begin{pmatrix} 2 & 2 \\ -1 & -2 \end{pmatrix} \\
 \circ & \frac{1}{2} \begin{pmatrix} -2 & -2 \\ 1 & 2 \end{pmatrix}
 \end{array}$

⊘ Correcto

2. Which matrix rotates a three-by-one column vector an angle heta counterclockwise around the x-axis?

1/1punto

- $\begin{pmatrix}
 \sin\theta & 0 & \cos\theta \\
 0 & 1 & 0 \\
 \cos\theta & 0 & -\sin\theta
 \end{pmatrix}$
- $\begin{pmatrix}
 \cos\theta & -\sin\theta & 0 \\
 \sin\theta & \cos\theta & 0 \\
 0 & 0 & 1
 \end{pmatrix}$
- $\bigcirc \ \, \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$

⊘ Correcto

1. Which matrix is not orthogonal?

1/1punto

- $\bigcirc \ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
- $\begin{array}{ccc}
 \begin{pmatrix}
 1 & 0 \\
 0 & -1
 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

⊘ Correcto

2. Which matrix rotates a three-by-one column vector an angle θ counterclockwise around the x-axis?

1/1punto

3. Which matrix, when left multiplying another matrix, moves row one to row two, row two to row three, and row three to row one?

1/1punto

- $\bigcirc \ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

⊘ Correcto

1. Identify the two-by-two matrix with matrix elements $a_{ij}=ij$.	1/1punto
$\bigcirc \begin{pmatrix} 1 & 4 \\ 4 & 2 \end{pmatrix}$	
$\bigcirc \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$	
$leftharpoonup \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$	
$\bigcirc \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}$	
⊙ correcto	
The matrix product $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ is equal to	1/1punto
$\bigcirc \begin{pmatrix} 5 & 3 \\ 8 & 5 \end{pmatrix}$	
$ \bigcirc \begin{pmatrix} 5 & 8 \\ 3 & 5 \end{pmatrix} $	
$\bigcirc \begin{pmatrix} 8 & 3 \\ 3 & 5 \end{pmatrix}$	
$igodentiles \left(egin{smallmatrix} 8 & 5 \\ 5 & 3 \end{matrix} ight)$	
3. Let ${ m A}$ be a lower triangular matrix with elements a_{ij} . Then $a_{ij}=0$ when	1/1punto
$\bigcirc \ \ i \geq j$	
\bigcirc $i \leq j$	
igcirc $i>j$ $igcirc$ $i< j$	
⊘ Correcto	
4. Let $A,B,$ and C be n -by- n invertible matrices. Then $(ABC)^{-1}$ is equal to	1/1punto
\bigcirc A ⁻¹ B ⁻¹ C ⁻¹	
$\bigcirc A^{-1}C^{-1}B^{-1}$	
\odot C ⁻¹ B ⁻¹ A ⁻¹	
$\bigcirc \ { m C}^{-1}{ m A}^{-1}{ m B}^{-1}$	
○ Correcto	

- \odot A A^T
- $\bigcirc A + A^T$
- \bigcirc AA^T
- $\bigcirc A^T A$

⊘ Correcto

6. Which matrix is the inverse of $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$?

1/1punto

- $\bigcirc \ \frac{1}{2} \begin{pmatrix} 2 & -2 \\ -2 & 1 \end{pmatrix}$
- $\bigcirc \ \frac{1}{2} \begin{pmatrix} 2 & -2 \\ 2 & 1 \end{pmatrix}$
- 7. Which matrix is not orthogonal?

1/1punto

- $\begin{pmatrix}
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0
 \end{pmatrix}$
- 8. Which matrix, when placed to the left of another matrix to multiply, permutes rows two and three of the other matrix?

0/1punto

- $\bigcirc \begin{pmatrix}
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0
 \end{pmatrix}$
- $\begin{pmatrix}
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 0 & 0 & 1
 \end{pmatrix}$
- $\begin{pmatrix}
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 0 & 1 & 0
 \end{pmatrix}$
- $\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 1 & 0
 \end{pmatrix}$

9. A matrix raised to the 5th power is the matrix multiplied by itself five times, and the trace of a matrix is the sum of its diagonal elements. What is the trace of

1/1punto

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}^{5}$$

- 6
- O 12
- O 18
- O 24
- **⊘** Correcto

 $\textbf{10.} \ \, \mathsf{Let} \, A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \, \mathsf{and} \, \mathsf{write} \, A \, \mathsf{as} \, \mathsf{the} \, \mathsf{sum} \, \mathsf{of} \, \mathsf{a} \, \mathsf{symmetric} \, \mathsf{and} \, \mathsf{skew} \cdot \mathsf{symmetric} \, \mathsf{matrix}. \, \, \mathsf{The} \, \mathsf{skew} \cdot \mathsf{symmetric} \, \mathsf{matrix} \, \mathsf{is} \, \mathsf{equal} \, \mathsf{to} \, \mathsf{od} \, \mathsf{od$

1/1punto

- $\begin{array}{c}
 \begin{pmatrix}
 1 \\
 2 \\
 -1 \\
 0
 \end{pmatrix}$ $\begin{array}{c}
 0 \\
 -1 \\
 0
 \end{pmatrix}$ $\begin{array}{c}
 0 \\
 -1 \\
 0
 \end{pmatrix}$ $\begin{array}{c}
 0 \\
 1 \\
 0
 \end{pmatrix}$ $\begin{array}{c}
 1 \\
 0 \\
 0
 \end{pmatrix}$
- $\bigcirc \ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$