Design Principles for Precision Mechanisms

3. Flexure Mechanisms

Design Principles: Flexure Mechanisms

Flexure Mechanisms: Why?

- Miniaturization
- No friction
- Controlling DOFs

Design Principles: Flexure Mechanisms

.

Flexure Mechanisms: Limitations

- Limited stroke
- Stress
- Stiffness/Energy

Deflection formula or Euler-Bernoulli equations

$$\frac{d^{2}f}{dx^{2}} = \frac{1}{EI}M(x) = \frac{1}{EI}(F(L-x)+M)$$

$$\frac{df}{dx} = \frac{1}{EI}(FLx - F\frac{1}{2}x^{2} + Mx + C_{1}) = \varphi$$

$$f = \frac{1}{EI}(F\frac{1}{2}Lx^{2} - F\frac{1}{6}x^{3} + \frac{1}{2}Mx^{2} + C_{1}x + C_{2})$$

$$f = \frac{ML^{2}}{2EI} + \frac{FL^{3}}{3EI}$$

$$\varphi = \frac{ML}{EI} + \frac{FL^{2}}{2EI}$$

$$f(x=0) = 0 \Rightarrow C_{1} = 0$$

$$f(x=0) = 0 \Rightarrow C_{2} = 0$$

Design Principles: Flexure Mechanisms

3

Deflection of beam-end about instant centre of rotation P

- Force *F* in B; $L = l : x = 2/3 \cdot l$ 1)
- 2) When $L \to \infty$ (load is moment), then $x \to l/2$

Design Principles: Flexure Mechanisms

A single flexure may serve as a hinge when it is in line with the dominant load

Design Principles: Flexure Mechanisms

Loadability and stiffness

Design Principles: Flexure Mechanisms

Equal stiffness in every direction?

$$F\cos(\alpha) = c_x f\cos\beta \rightarrow \frac{F^2\cos^2(\alpha)}{c_x^2} = f^2\cos^2(\beta)$$

$$F\sin(\alpha) = c_y f\sin\beta \rightarrow \frac{F^2\sin^2(\alpha)}{c_x^2} = f^2\sin^2(\beta)$$

$$f(\alpha) = F \sqrt{\frac{\cos^2(\alpha)}{(c_x)^2} + \frac{\sin^2(\alpha)}{(c_y)^2}}$$

$$f(0) = \frac{F}{c}$$
 principal direction

$$f\left(\frac{\pi}{2}\right) = \frac{F}{c_{y}}$$
 principal direction

If
$$c_x = c_y = c$$
, then $f = \frac{F}{c}$, is independent of α , and $\beta = \alpha$

Generic model of a cross flexure

$$k_{\varphi} = \frac{M_{\varphi}}{\varphi} = 4 \cdot \left\{ \frac{1}{K_{z1} \cdot l_1} \cdot \left(1 - 3a_1 + 3a_1^2\right) + \frac{1}{K_{z2} \cdot l_2} \cdot \left(1 - 3a_2 + 3a_2^2\right) \right\}$$

 $K_z = \frac{1}{E \cdot I}$ for beams with cross sections with approximately the same thickness as width.

 $K_z = \frac{(1 - v^2)}{E \cdot I}$ for beams with cross sections with large width to thickness ratio.

Design Principles: Flexure Mechanisms

Symmetric cross flexure

$$M_{in1LS} = \frac{EI}{L}\varphi$$

$$\sigma_{\varphi} = \frac{M_{in1LS}(\frac{1}{2}t)}{I} = \frac{\varphi Et}{2l}$$

$$k_{\varphi} = \frac{M_{tot}}{\varphi} = \frac{2EI}{l}$$

Design Principles: Flexure Mechanisms

1.

Asymmetric cross flexure

Cross spring hinge

11

Design Principles: Flexure Mechanisms

Stiffness reduction due to eccentric tensile load

• The displacement x of point A:

• The compliance in A is then:

$$\frac{1}{c(a)} = \left\{ \frac{l}{E \cdot A} \cdot \left(1 + a^2 \cdot \frac{A}{I} \right) \right\}^{-1}$$

Design Principles: Flexure Mechanisms

Stiffness reduction due to eccentric tensile load

• Stiffness ratio

Design Principles: Flexure Mechanisms

13

15

Stiffness reduction due to eccentric tensile load

• Stiffness ratio

For a beam with a square cross-section and tensile force with an eccentricity $a/h^* = 0.5$, the tensile stiffness drops by a factor of 4!

Design Principles: Flexure Mechanisms

14

The over-constraint of a cross flexure

Design Principles: Flexure Mechanisms

Resolving the overconstraint of a cross flexure

Design Principles: Flexure Mechanisms

Adjustment of two angles (1/2)

Two cascaded cross flexure mechanisms based on wire flexures

Design Principles: Flexure Mechanisms

General equation:

$$\begin{bmatrix} F \\ M \end{bmatrix} = \frac{E \cdot I}{l^3} \cdot \begin{bmatrix} 12 & -6l \\ -6l & 4l^2 \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \psi \end{bmatrix}$$

Stiffness

$$\psi = 0 \rightarrow c_x = \frac{F}{\Delta x} = 12 \cdot \frac{E \cdot I}{l^3}$$

Design Principles: Flexure Mechanisms

25

27

One sheet flexure under parallel guiding

The maximum bending stress (parallel guiding) occurs at the clamp:

$$\sigma_{b,\text{max}} = \frac{3 \cdot E \cdot h \cdot \Delta x}{l^2}$$

Design Principles: Flexure Mechanisms

26

Force F evokes reactions N_1 and N_2

$$K_1 = K_2 = K$$

$$M_1 = M_2 = M$$

$$N_1 = N_2 = N$$

 $2M - N \cdot b + F \cdot a = 0$

$$\varphi = \frac{K \ell^2}{2EI} - \frac{M\ell}{EI} = 0 \longrightarrow M = \frac{K\ell}{2}$$

$$N = F \cdot (l/2 + a)/b$$

Design Principles: Flexure Mechanisms

Sheet flexure parallel guiding

Design Principles: Flexure Mechanisms

Design Principles: Flexure Mechanisms

Principle of a wire flexure parallel guiding

Design Principles: Flexure Mechanisms

33

35

Second order shortening of sheet (wire) flexures

$$\delta y = 0.6 \frac{z^2}{l}$$

Design Principles: Flexure Mechanisms

34

36

Compensating the "shortening effect"

Design Principles: Flexure Mechanisms

Sheet and wire flexures with reinforced mid-sections ⇒ Limited capacity in compression ⇒ Buckling C Reinforced mid-section

$$\begin{bmatrix} F \\ M \end{bmatrix} = E \cdot I \cdot \begin{bmatrix} \frac{1}{l^3} \cdot \frac{12}{1 - p^3} & \frac{1}{l^2} \cdot \frac{-6}{(1 - p^3)} \\ \frac{1}{l^2} \cdot \frac{-6}{(1 - p^3)} & \frac{1}{l} \cdot \frac{(4 + p + p^2)}{1 - p^3} \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \psi \end{bmatrix}$$

Design Principles: Flexure Mechanisms

37

39

Normal stiffness c_y of a reinforced flexure

Design Principles: Flexure Mechanisms

Basic formula for stiffness calculations on flexures

	width h	width h 10	diameter d x x wire spring	atiffened leaf spring
longitudinal stiffness c _{xx}	$\frac{EA}{\ell} = \frac{Eth}{\ell}$	3Eth £	$\frac{\mathrm{EA}}{\ell} = \frac{\mathrm{E}_{\overline{4}}^{\mathrm{H}} \mathrm{d}^2}{\ell}$	$\frac{3E_{4}^{\Pi}d^{2}}{t}$
lateral stiffness c _{zz}	$\frac{12EI}{\ell^3} = \frac{Eht^3}{\ell^3}$	$\frac{72}{5} \frac{\text{EI}}{\ell^3} = 1, 2 \frac{\text{Eht}^3}{\ell^3}$	$12 \frac{\text{EI}}{t^3} = 0.6 \frac{\text{Ed}^4}{t^3}$	$\frac{72}{5} \frac{\text{EI}}{t^3} = 0.7 \frac{\text{Ed}^4}{t^3}$
bending stress σ _{Ψz}	3Etz	3Etz	3Edz t ²	3Edz t²
buckling load F _k	4π ² ΕΙ ℓ ²	$\frac{\pi^2 EI}{\left(\ell/6\right)^2} - \frac{36\pi^2 EI}{\ell^2}$	$\frac{4\pi^2 EI}{\epsilon^2}$	36π ² ΕΙ ε ²

Design Principles: Flexure Mechanisms

Hole flexure applications

The right-hand wall is fixed. The blue part is adjustable by a screw (dark blue box) in the height direction. The blue part also has to sustain an external force F

Design Principles: Flexure Mechanisms

61

63

Adjustable slit

A screw

constraining only the longitudinal direction

Mechanism's principle

- ⇒For an optical instrument
- ⇒ Adjustable in width from 0 to 1 mm, symmetrical with its bisector

Design Principles: Flexure Mechanisms

Adjustable slit

Mechanism's principle

Embodiment design

Design Principles: Flexure Mechanisms

Mirror angle adjustment mechanism

- \Rightarrow Screw 2 for course adjustment
- ⇒ Screw 1 for fine adjustment

Design Principles: Flexure Mechanisms

6

Elastic Adjustment

Reduction of input motion by deflection ratio

67

Design Principles: Flexure Mechanisms

Elastic Adjustment

Tilt adjustment of roller by elastic/plastic deformation

Design Principles: Flexure Mechanisms

Flexures in tube walls: hollow tie rod

Equivalent to double cardan coupling

Design Principles: Flexure Mechanisms

77

79

Concertina bush

Compliance in z, θ and φ through slots in tube wall

 x, z, ψ : high stiffness

 y, θ, φ : low stiffness

Design Principles: Flexure Mechanisms

78

Straight guiding flexure mechanism in tube wall

A high value for h gives a high y-stiffness

B FI₁ FI₂

Design Principles: Flexure Mechanisms

Spring structures with negative spring stiffness (1/2)

Design Principles: Flexure Mechanisms

$$c = -\frac{576EI}{l^3}$$

$$\sigma_{b,\text{max}} = 12.7 \cdot Eh \sqrt{\frac{\Delta L}{L^3}}$$

Design Principles: Flexure Mechanisms

81

83

Pendulum and inverse-pendulum

Design Principles: Flexure Mechanisms

82

Lateral stiffness <u>preloaded</u> tensile members

Pendulum frequency $fe = \frac{1}{2\pi} \sqrt{\frac{c_x}{m}} = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$

Design Principles: Flexure Mechanisms

Lateral stiffness of a compressively loaded flexure

Design Principles: Flexure Mechanisms

Flexure parallel guidance with preload for negative stiffness in x-direction and 1 DOF coupling to functional parallel guiding

Design Principles: Flexure Mechanisms 86

End of chapter 3

Design Principles: Flexure Mechanisms

87