Table 3.4: Some Common Z-transform Pairs

x(t)	x(n)	X(z)		12 - 14 - 0
		With positive power of z	With negative power of z	ROC
	δ(n)	1	1	Entire z-plane
	u(n) or 1	$\frac{z}{z-1}$	$\frac{1}{1-z^{-1}}$	z >1
	a ⁿ u(n)	$\frac{z}{z-a}$	$\frac{1}{1-az^{-1}}$	z > a
	n a ⁿ u(n)	$\frac{az}{(z-a)^2}$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
	n² an u(n)	$\frac{az(z+a)}{(z-a)^3}$	$\frac{az^{-1}(1+az^{-1})}{(1-az^{-1})^3}$	z > a
	- a ⁿ u(-n-1)	$\frac{z}{z-a}$	$\frac{1}{1-az^{-1}}$	z < a
	-na ⁿ u(-n-1)	$\frac{az}{(z-a)^2}$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
t u(t)	nT u(nT)	$\frac{Tz}{(z-1)^2}$	$\frac{Tz^{-1}}{(1-z^{-1})^2}$	z >1
t² u(t)	(nT) ² u(nT)	$\frac{T^2z(z+1)}{(z-1)^3}$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z >1
e ^{-at} u(t)	e ^{- anT} u(nT)	$\frac{z}{z-e^{-aT}}$	$\frac{1}{1-e^{-aT}z^{-1}}$	z > e ^{-aT}
te-at u(t)	nTe-anTu(nT)	$\frac{z T e^{-aT}}{(z-e^{-aT})^2}$	$\frac{z^{-1} T e^{-aT}}{(1 - e^{-aT} z^{-1})^2}$	z > e ^{-aT}
$\sin\Omega_0 t u(t)$	$\sin \Omega_0 nT \ u(nT)$ = $\sin \omega n \ u(nT)$ where, $\omega = \Omega_0 T$	$\frac{z\sin\omega}{z^2 - 2z\cos\omega + 1}$	$\frac{z^{-1}\sin\omega}{1-2z^{-1}\cos\omega+z^{-2}}$	z >1
$\cos\Omega_0 t u(t)$	cos Ω0nT u(nT) = cos ωn u(nT) where, ω = Ω ₀ T	$\frac{z(z-\cos\omega)}{z^2-2z\cos\omega+1}$	$\frac{1 - z^{-1} \cos \omega}{1 - 2z^{-1} \cos \omega + z^{-2}}$	z >1

Note: 1. The signals multiplied by u(n) are causal signals (defined for $n \ge 0$).

2. The signals multiplied by u(-n-1) are anticausal signals (defined for $n \le 0$).