L_1 regularized Least Squares $\frac{1}{2}\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1$

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft: June 16, 2018 Last update: October 28, 2019

Overview

- lacksquare L_1 regularized least square
- $oldsymbol{2}$ L_1 norm and L_2 norm
 - ullet L_1 norm induces sparsity
 - \bullet L_1 norm is less sensitive to outlier
- lacksquare L_1 norm and L_0 norm
- 4 Summary

L_1 regularized least square problem

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^{m \times 1}$, find $\mathbf{x} \in \mathbb{R}^{n \times 1}$ by solving

$$(\mathcal{P}_1): \quad \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

A regularized least square problem

- ullet $\frac{1}{2}\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_2^2$: data fitting term
- ullet $\lambda \| \mathbf{x} \|_1$: regularizer
- $\lambda \ge 0$: regularization parameter
- $\|\mathbf{x}\|_1$: L_1 norm of vector \mathbf{x} , not differentiable

The regularizer $\lambda \|\mathbf{x}\|_1$ is a sparsity inducing regularizer, it promote the sparsity of solution \mathbf{x} obtained by solving \mathcal{P}_1

L_2 regularized least square problem

The classical L_2 regularized least square

$$(\mathcal{P}_2): \quad \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_2^2$$

- a.k.a. Tikhonov regularization
- $\|\mathbf{x}\|_2$: L_2 norm of vector \mathbf{x} , it is differentiable
- The regularizer $\lambda \|\mathbf{x}\|_2^2$ forces solution \mathbf{x} to have small size (in L_2 norm)

L_1 norm and L_2 norm

For a vector $\mathbf{x} \in \mathbb{R}^{n \times 1}$

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \dots + |x_n|$$

- $\|\mathbf{x}\|_2$ is differentiable. We have $\frac{\partial \|\mathbf{x}\|_2}{\partial \mathbf{x}} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2}$ and $\frac{\partial \|\mathbf{x}\|_2^2}{\partial \mathbf{x}} = 2\mathbf{x}$
- ullet $\|\mathbf{x}\|_1$ is not-differentiable : absolute value is non-differentiable
- ullet We use sub-gradient to handle the non-differentiable $\|\mathbf{x}\|_1$

L_2 norm has squares, L_1 don't

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} = \text{ sum of squares}$$

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \ldots + |x_n| = \text{ sum of magnitudes}$$

Consider the squaring action on a component x_i :

- If x_i is large (says $x_i > 1$) : x_i^2 becomes very big, so x_i has more contribution in the sum.
- If x_i is small (says $x_i < 1$) : x_i^2 becomes very small, so x_i has less contribution in the sum.
- So L_2 norm will pay more attention on large components L_1 norm does not square the magnitude in both cases, so L_1 norm pay will more attention on small components than L_2 norm \Longrightarrow it forces small components to zero more quickly than L_2 norm.

$\overline{L_1}$ norm regularization induces sparsity

$$(\mathcal{P}_2): \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_2^2, \quad (\mathcal{P}_1): \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

For (\mathcal{P}_2) , large components in \mathbf{x} will get more attention, they will be compressed more during the minimization, so the sol.

- does not have large component
- is allowed to have many small non-zero components

For (\mathcal{P}_1) , small components in \mathbf{x} get more attention (compared to L_2), so the sol.

- ullet does not contain many small non-zero components as the L_2 case, small components in ${f x}$ will become zero
- is allowed to have a few large components
- ullet i.e., the sol. obtained by solving (\mathcal{P}_1) will be sparse

L_1 norm is less sensitive to outlier

Suppose component x_1 in \mathbf{x} is an outlier.

Fact: outlier has extreme magnitude (far away from the normal range).

A way to handle outlier: discard it.

i.e. pay no attention to outlier : assume we know x_1 is outlier, we can just ignore x_1 as it does not provide useful but harmful information.

 L_2 norm has square operation : it will be sensitive to x_1 . L_1 norm has no square operation : it is less sensitive to x_1 \implies it is more robust to outlier

L_1 norm and L_0 norm

For a vector $\mathbf{x} \in \mathbb{R}^{n \times 1}$

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \dots + |x_n|$$

$$\|\mathbf{x}\|_0 = \#\{\ i \mid x_i \neq 0\ \} = \text{ number of nonzeros in } \mathbf{x}$$

- ullet Other name of L_0 norm : cardinality
- ullet L_0 norm can be treated as the limit of L_p norm as p o 0

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n x_i^p\right)^p$$

- ullet L_0 norm is not a "norm" : L_p norm is not a norm when p < 1
- Like L_1 norm, L_0 norm is also non-differentiable : L_p norm is non-differentiable when $p \leq 1$

L_1 and L_0 regularized least squares

$$(\mathcal{P}_1): \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1, \quad (\mathcal{P}_0): \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_0$$

- ullet L_0 regularization select the component of ${f x}$
- ullet (\mathcal{P}_0) is NP-hard : see p.8-10 here.

Relation between (\mathcal{P}_0) and (\mathcal{P}_1)

- (\mathcal{P}_1) can be used as an approximation of (\mathcal{P}_0) : solving (\mathcal{P}_1) provides an approximate sol. for (\mathcal{P}_0)
- In fact (\mathcal{P}_1) is a convex relaxation of (\mathcal{P}_0) : the cost function of (\mathcal{P}_0) is non-convex while that of (\mathcal{P}_1) is convex
- Under some condition on matrix A, the sol. of (\mathcal{P}_1) is a sol. of (\mathcal{P}_0) this is the theoretical foundation of compressive sensing

Therefore we can solve (\mathcal{P}_0) via solving (\mathcal{P}_1) .

Plot of L_0 , L_1 , L_2 norm

Figure: L_0

Figure: L_1

Figure: L_2

- ullet L_1 norm is a convex envelope of L_0 norm on [-1, 1]
- ullet L_2 norm is also a convex envelope of L_0 norm on [-1, 1]

On the gradient on scalar x

- ullet Gradient of L_0 : zero everywhere, undefined at x=0
- Gradient of L_1 : +1 if x > 0, -1 if x < 0 and undefined if x = 0
- Gradient of $L_2:2x$

Last page - summary

• L_1 regularized least squares : given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^{m \times 1}$, find $\mathbf{x} \in \mathbb{R}^{n \times 1}$ by solving

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

- ullet L_1 norm compared with L_2 norm and L_0 norm
- ullet L_1 norm promotes sparsity in solution ${f x}$
- L_1 norm is less sensitive to outlier

Next document : how to solve L_1 regularized least squares

End of document