Algebra

A + B = B + A $A \cdot B \neq B \cdot A$ a + B = B + a A + (B + C) = (A + B) + C A(BC) = (AB)C a(bC) = (ab)C A(B + C) = AB + AC a(B + C) = aB + aC

Operations

 $A \pm B$ is possible if their sizes are the same. $A \cdot B$ is possible if $\operatorname{col}(A) = \operatorname{row}(B)$ and $AB_{ij} = A_i \cdot B_j$. Power, $A^n = A \cdot A^2 \cdot A^3 \cdot \cdots \cdot A^n$ for n > 0. If A is invertible then n < 0. Inverse, $A^{-1} = B$ iff BA = AB = I. Moreover $(AB)^{-1} = B^{-1}A^{-1}$. Transpose, $A^m_{n \times n} = A_{n \times m}$ s.t. $(A^T)^T = A$ and $(AB)^T = B^T A^T$.

Common Matrices

Zero matrix, O s.t. $A \pm O = O \pm A = A$, A - A = O and OA = AO = O. Identity matrix, I_n s.t. all diagonal elements are 1 and all non-diagonal elements are 0. Elementary Matrix, E is matrix formed by a single row/col operation on I. E transfers its operations when multiplied. E is invertible and E^{-1} is also an elementary matrix.

Invertibility

A is invertible iff: A^{-1} is invertible and $(A^{-1})^{-1} = A$ or A^n is invertible and $(A^n)^{-1} = (A^{-1})^n$ for $n \in \mathbb{N}$ or kA is invertible and $(kA)^{-1} = k^{-1}A^{-1}$ for $k \neq 0$

Row Echelon Form of a Matrix

first non zero element in a row is 1 all rows with only zeros are grouped lower leading 1 is right of the upper leading 1

Reduced Row Echelon Form of a Matrix: each column with a leading 1 has 0 in all rows

Row and inverse Row Operations

 R_{ij} represents ith and jth row of matrix A $aR_i = \frac{1}{a}R_i$ for $a \neq 0$ (multiples can be taken out or multiplied) $R_{ij} = R_{ji}$ (rows can be interchanged) $R_i + aR_j = R_{i+cj}$ (one row can me multiplied and added to another row)

Column and Inverse Column Operations are the same

Square Matrices

```
Equivalent Statements for A_{n \times n}:

A is invertible

Ax = O has only the trivial solution, i.e. x = O

Ax = b is consistent for every b_{n \times 1} and has only one sol, i.e. x = A^{-1}b
```

Properties

reduced row echelon form = $I_{n \times n}$ $A = E_0 \cdot E_1 \cdot E_2 \cdot \dots \cdot E_n$ determinant of $A = \det(A) \neq O$

Common Classes and their Properties

Diagonal matrix, D_n s.t. only diagonal elements are non-zero while diagonal elements are 0. Upper matrix, U s.t. the diagonal and upper elements are non-zero while other are 0. Lower matrix, U s.t. the diagonal and lower elements are non-zero while other are 0. Hence $U^T = L$ and $L^T = U$, $L_a \cdot L_b = L_c$ and $U_a \cdot U_b = U_c$. If U, L have non zero determinant, then they are invertible and $L^{-1} = L$ and $U^{-1} = U$

 $Determinant = d_1 \cdot d_2 \cdot d_3 \dots d_n$

Symmetric matrix is s.t. the the upper diagonal is reflected onto the lower diagonal.

 $A^T = A$

If A, B are symmetrical, then $A \pm B$ and kA are also symmetrical If A is invertible, then AA^{T} , $A^{T}A$ and A^{-1} are also symmetrical

Determinant

 M_{ij} is the matrix without the ith row and jth col.

 $C_{ij} = (-1)^{i+j} M_{ij}$

Adjoint of A is a matrix s.t. $A_{ij} = C_{ij}$

Determinant of a 3 by 3 matrix, $\det(A) = a_{1i}C_{1i} + a_{2i}C_{2i} + \cdots + a_{ni}C_{ni} = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{im}C_{im}$

Properties

 $\det(A) = \det(A^T)$ if P = x P = x C = x C

if $R_i \propto R_j$ or $C_i \propto C_j$, then $\det = 0$

if size of $A = n \times n$, then $\det(kA) = k^n \det(A)$

if A, B, C have the same size $(n \times n)$ that differ by rth row s.t. $C_r = A_r + B_r$, then $\det(C) = \det(A) + \det(B)$

If A, B have the same size $(n \times n)$, then $\det(A \cdot B) = \det(A) \cdot \det(B)$

If A is invertible, then $det(A^{-1}) = (det(A))^{-1}$

Operations:

If A has the size $n \times n$,

If $A \to aR_i \to B$, then $\det(A) = a \det(B)$

If $A \to R_{ii} \to B$, then $\det(A) = -\det(B)$

If $A \to R_i + aR_i \to B$, then $\det(A) = \det(B)$

Determining Inverse Matrix using Determinant

 $A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{Adj}(A)$

Crammer's Rule, $x_j = \frac{\det(A_j)}{\det(A)}$ where $A_j = A$ s.t. the jth col contains only x

Let V be an arbitrary non empty set on which two operations (addition and multiplication) are defined

Axioms of a Vector Space:

```
u, v \in V, then u + v \in V (closure law of +)

u + v = v + u (commutative)

u + (v + w) = (u + v) + w (associative)

\exists O \in V \text{ s.t. } O + u = u + O = u \ \forall u \in V \text{ (additive identity)}

\exists -u \text{ s.t. } -u + u = u + (-u) = O \ \forall u \in V \text{ (additive inverse)}

if u \in V \text{ and } k \in \mathbb{R}, then ku \in V \text{ (closure law of x)}

k(u + v) = ku + kv \text{ (distributive)}

(k + m)u = ku + mu \text{ (distributive)}

k(mu) = (km)u \text{ (associative)}

1u = u
```

bspaces

W is a subspace of V iff closure law of addition and multiplication hold and $W \subset V$. Subspaces of \mathbb{R}^n include \mathbb{R}^2 ($\{0\}$ and the set of all lines through the origin) and \mathbb{R}^3 ($\{0\}$, the set of all lines through the origin and the set of all planes passing through the origin)

Linear System:

If Ax = 0 is a homogeneous linear system with m equations and n unknown variables, then the set of solution is a subspace of \mathbb{R}^n .

Linear combination of vectors, $W = k_1v_1 + k_2v_2 + k_3v_3 + \dots + k_rv_r$ where k are scalars and v are vectors.

If $V = \{v_1, v_2, v_3, \dots, v_r\}$, then the set W of linear combinations is a subspace of V. W is the smallest subspace of V that contains $v_1, v_2, v_3, \dots v_r$ in the sense that every other subspace containing $v_1, v_2, v_3, \dots v_r$ must also contain W. If $S = \{v_1, v_2, v_3, \dots, v_r\}$, then W of V is the space spanned by S, i.e. W = span(S), if $\det \neq 0$.

Ax = O has at least one solution, i.e. trivial sol. If it is the only solution, then the system is linearly independent (det $\neq 0$) and A is invertible. If there are any non-trivial solutions, the the system is linearly dependent (det = 0) and A is not invertible.

A set S with at least 2 vectors is linearly dependent iff at least one of the vectors can be expressed as a linear combination of the other vector (i.e. the vectors do not lie in the same axis or plane). Otherwise it is linearly independent. If S spans V and is linearly independent, then S is the basis of V.

00

Dimension

```
\dim(V) = number of vectors in a basis of V

\dim(\mathbb{R}^n) = n

\dim(P_n) = n+1

\dim(M_{mn}) = mn
```

number of vectors in bases = r

if $r < \dim(V)$, it does not span V

if $r = \dim(V)$, it spans V and forms basis for V if $r > \dim(V)$, the vectors are linearly dependent