Codon Usage Bias for Evolution (C.U.B.E)

02-601 Programming for Scientists

Degeneracy in the Genetic Code leads to CUB

Statistical Analysis to determine Codon Usage Bias

- 1. Relative Synonymous Codon Usage
- 2. GC content
- 3. Neutrality plot
- 4. Parity plot

Synonymous Codons (X_{ij})						$\sum X_{ij}$	Degeneracy (n _i)	$RSCU_{ij} = \frac{n_i, X_{ij}}{\sum X_{ij}}$					
GAT	GAC					1	2	0.0	2.0				
0	1					1	2	0.0	2.0				
TCT	TCG	TCA	TCC	AGC	AGT	1	6	0.0	0.0	0.0	6.0	0.0	0.0
0	0	0	1	0	0								
AAC	AAT					2	2	2.0	0.0				
2	0												
CCT	CCG	CCA	CCC		8	1	4	0.0	0.0	4.0	0.0		
0	0	1	0			•	•	0.0	0.0	1.0	0.0		
AAG	AAA					3	3	0.0	2.0				
0	3					ŭ		0.0	2.0				
GCA	GCC	GCG	GCT			6	4	2.0	0.0	0.0	2.0		
3	0	0	3				•	2.0	0.0	0.0	2.0		
GGA	GGC	GGG	GGT			2	4	0.0	4.0	0.0	0.0		
0	2	0	0										
TTA	TTG	CTA	CTG	CTT	CTC	5	6	0.0	0.0	0.0	4.8	0.0	1.2
0	0	0	4	0	1								
GTA	GTC	GTG	GTT			5	4	1.6	0.8	0.0	1.6		
2	1	0	2										
GAG	GAA				4	1	2	0.0	2.0				
0	1		9					0.0	2.0				
TAT	TAC					1	2	0.0	2.0				
0	1					•		0.0					

Code Workflow

- is obtained from obtained GenBank RSCU is the ratio of observed to expected
 - and Parity analysis Calculate extent of mutational frequency pressure

are obtained.

Plot the Neutrality

- Text File Data for **RSCU**
- Text File Data for **Neutrality Analysis**
- Test File Data for Parity Analysis
- PNG Neutrality Plot
- PNG Parity Plot
- Mutational Pressure

Key Results

Input Text File

Output Text File

Neutrality Plot

. .

test1.txt

>AJ007765.1 Naja naja atra mRNA for snake venom AGATGAAAACTCTGCTGCTGACCTTGGTGGTGGTGACAATTGTGTGCCTGGACTTAGGATACACCTTAAA ATGTCACAACACACACAGCTTCCTTTCATCTATAAGACTTGTCCAGAAGGGAAGAACTTATGCTTTAAAGCG ACTTTGAGGAAGTTTCCATTGAAATTTCCTGTCAAAAGGGGATGTGCTGATAATTGCCCTAAAAACAGTGCCCTATTGAAGTATGTGTGTTGCAGCACAGACAAATGCAACTGATAGCTCTACGAGTGGCTAAATTCGCTGAG

>AJ007766.1 Bungarus multicinctus mRNA for snake venom, clone pGEMT-BGTV31 AGATGAAAACTCTGCTGCTGTCCTTGGTGGTGGTGACAATCGTGTCTTGGACTTAGGACTATAGCATCGT ATGCCACACAACAGCTACTTCGCCTATTAGGGCTGTGACTTGTCCACCTGGGGAGAACCTATGCTATAGA AAGATGTGGTGTGTGTGTGTTCCAGCAGCAGGAAAGGTAGTCGAATTGGGGTGTGCTGCTACTTGCC CTTCAAAGAAGCCCTATGAGGAAGTTACCTGTTGCTCAACAGACAAGTGCAACCCACATCCGAAACAGAGACAAGAGACCACTTGCTCTCCATCATGAGGACCATCC

RSCU data for accession ID : lcl|AB984614.1_cds_BAP39945.1_1
TCA : 1.764706
CCT : 1.560976
GGG : 0.640000
CAC : 0.526316
CGG : 0.000000
GAG : 0.677419

ATG: 1.000000 AAG: 0.733333 GAT: 1.457627 CCG: 0.195122 GCC: 1.049180 CTA: 0.896552 CTG: 1.241379

TAC : 0.652174
CGA : 0.652174
CGA : 0.731707
CAG : 0.971429
TCT : 1.235294
AGT : 1.500000
GCA : 1.442623
CCA : 1.463415

Parity Plot

Mutational Pressure

kghatole@98ketaki14 Project % ./Project test3.txt
The effect of mutational pressure is 22.17379544235057

Applications

- 1. Translation dynamics
- 2. Gene expression levels
- 3. Codon Optimization

Future Directions

- There are several other statistical tools to understand the codon usage bias like:
 - Effective Number of Nucleotides
 - 2. Codon Adaptation Index
- User Interface
- Flexibility with graphs