Chapitre III

Équation Différentielle (\neq)

I°) Équation du type : y' + ay = 0 $(a \in \mathbb{R})$

$$y' + ay = 0 \quad (a \in \mathbb{R})$$

1/ Définition :

Toute équation (E): y' + ay = 0 $(a \in \mathbb{R})$ est appelée équation différentielle linéaire du premier ordre sans second membre.

Exemple:

 (E_1) : y' + 2y = 0 est une équation différentielle linéaire du premier ordre sans second membre.

I-2) Résolution

On considère l'équation différentielle (E): $y' + ay = 0 \quad (a \in \mathbb{R})$

L'ensemble des solutions de (E) est l'ensemble des fonctions dérivables sur \mathbb{R} vérifiant :

$$f'(x) + af(x) = 0$$

Soit (E): $y' + ay = 0 \quad (a \in \mathbb{R})$

- La fonction nulle est solution de (E)
- $y \neq 0$ avec y solution de (E) sur \mathbb{R}

$$y' + ay = 0 \quad \Leftrightarrow \quad y' = -ay$$

$$\frac{y'}{y} = -a$$

On intègre:

$$\int \frac{y'}{y} dx = \int -a dx$$

$$\ln |y| = -ax + c \quad (\text{avec } c \in \mathbb{R})$$

$$|y| = e^{-ax+c} = e^c \cdot e^{-ax}$$

D'où:

$$y_1 = ke^{-ax}$$
 avec $k = e^c \in \mathbb{R}^*$

Conclusion: L'ensemble des solutions est:

$$y(x) = ke^{-ax}, \quad k \in \mathbb{R}$$

Réciproquement:

Soit y une fonction de (\mathbb{R}) et $g(x) = y(x)e^{ax}$ Si g(x) est dérivable sur \mathbb{R} , alors :

$$g(x) = y(x)e^{ax}$$

On a:

$$g'(x) = y'(x)e^{ax} + ay(x)e^{ax} = e^{ax}(y'(x) + ay(x))$$

Comme y'(x) + ay(x) = 0, alors :

$$g'(x) = e^{ax} \cdot 0 = 0 \Rightarrow g'(x) = 0$$

Donc g est une constante :

Il existe $k \in \mathbb{R}$ tel que $g(x) = k \Rightarrow y(x)e^{ax} = k \Rightarrow y(x) = ke^{-ax}$

Conclusion:

$$(E): \quad y' + ay = 0 \quad \Rightarrow \quad y(x) = ke^{-ax}$$