Cooper Johnston

Compendium of Lecture Notes and Exercises in Introductory Abstract Algebra

Adopted from lectures, notes, and exercises by Hugues Verdure and Philippe Moustrou

for the course MAT-2300, Algebra 1 at UiT – The Arctic University of Norway Department of Mathematics and Statistics

Contents

0	Fou	Foundations					
	0.1	Prerequisites, conventions, and notation	5				
	0.2	Sets and relations					
	0.3		6				
	Solv	red exercises	7				
1	Gro	Groups and Subgroups					
	1.1	Groups	9				
	1.2	Subgroups	10				
	1.3	Cosets	12				
	1.4	Normal subgroups	14				
	Solv		15				
2	\mathbf{Rel}	ations Between Groups	21				
	2.1	Group homomorphisms	21				
	2.2	Permutation groups					
	2.3	Finitely generated abelian groups					
	2.4	Group action on a set					
	2.5		28				
	Solv		28				
3	Rin	gs and Fields	29				
	3.1	Rings	29				
	3.2	-					
	3.3						
	3.4	Polynomials					
		red exercises					

Chapter 0

Foundations

0.1 Prerequisites, conventions, and notation

We will assume the reader is familiar with the concept of a set, set-builder notation, and basic set operations. By convention, the set of natural numbers \mathbb{N} will be taken to start from 1.

0.2 Sets and relations

Definition 0.2.1. For two sets A and B, any subset of $A \times B$ is called a relation, and for all (a, b) in this relation, we say a is related to b, denoted, for example, by $a \sim b$.

Definition 0.2.2. A relation $a \sim b$ is called an equivalence relation if it is

- (1) reflexive: for every a, we have $a \sim a$;
- (2) symmetric: for every a, b such that $a \sim b$, we have $b \sim a$; and
- (3) transitive: for every a, b, c such that $a \sim b$ and $b \sim c$, we have $a \sim c$.

Definition 0.2.3. The set $[a] = \{b \mid a \sim b\}$ is called the equivalence class of a.

Theorem 0.2.4. Let \sim be an equivalence relation on a set X. Then, the equivalence classes are disjoint and form a partition of X.

Proof. Let $x_1, x_2 \in X$ and consider the equivalence classes $[x_1]$ and $[x_2]$. Suppose they are not disjoint. Then, there exists a y such that $y \in [x_1] \cap [x_2]$, so $x_1 \sim y$ and $x_2 \sim y$. By the symmetric property, $x_1 \sim y$ and $y \sim x_2$, so by the transitive property, $x_1 \sim x_2$.

Now let $x \in [x_1]$. Then, $x_1 \sim x$, and since $x_1 \sim x_2$, we have $x_2 \sim x$, so $x \in [x_2]$. Thus, $[x_1] \subseteq [x_2]$, and similarly, $[x_2] \subseteq [x_1]$, so $[x_1] = [x_2]$.

6 0 Foundations

0.3 Examples of proofs

Claim 0.3.1 (For a direct proof). The product of two odd numbers is odd.

Proof. Let a and b be odd. Then, a=2n+1 and b=2k+1 for some $n,k\in\mathbb{Z},$ so we have

$$ab = (2n+1)(2k+1) = 4nk + 2n + 2k + 1 = 2(2nk+n+k) + 1$$

which is odd since $2nk + n + k \in \mathbb{Z}$.

Claim 0.3.2 (For a proof by contraposition). Let $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.

Proof. Suppose n is even. Then, n = 2k for some $k \in \mathbb{Z}$, so

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$

which is even since $2k^2 \in \mathbb{Z}$. Hence, if n^2 is odd, then n is odd.

Claim 0.3.3 (For a proof by contradiction). Let $p \in \mathbb{Z}$. If p is prime, then $\sqrt{p} \notin \mathbb{Q}$.

Proof. Suppose $\sqrt{p} \in \mathbb{Q}$. Then, there exist some $a, b \in \mathbb{Z}$, $b \neq 0$ such that $\sqrt{p} = a/b$. Without loss of generality, assume $\gcd(a, b) = 1$. We see

$$p = \left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2} \iff pb^2 = a^2 \implies p \mid a^2,$$

and since p is prime, we see $p \mid a$. There must then exist some $n \in \mathbb{Z}$ such that a = np, so

$$pb^2 = a^2 = (np)^2 = n^2p^2 \iff b^2 = n^2p \implies p \mid b^2 \iff p \mid b.$$

Thus, p divides both a and b, but this is a contradiction since gcd(a,b) = 1. Hence, $\sqrt{p} \notin \mathbb{Q}$.

Claim 0.3.4 (For a proof by induction). Let $n \in \mathbb{N}$. If $n \geq 5$, then $n! \geq 2^n$.

Proof. For our base step, we see 5! = 120 and $2^5 = 32$, so $5! \ge 2^5$. As our inductive hypothesis, assume $k! \ge 2^k$ for some $k \ge 5$. Then,

$$(k+1)k! \ge (k+1)2^k \ge 6 \cdot 2^k \ge 2 \cdot 2^k = 2^{k+1} \implies (k+1)! \ge 2^{k+1}.$$

Hence, $n! \geq 2^n$ for all $n \geq 5$.

Note that this does not address the fact that $4! \geq 2^4$.

Solved exercises 7

Solved exercises

Set operations

For each of the following, find $A \cap B$, $A \cup B$, $A \setminus B$, $B \setminus A$, $A \times B$, and $B \times A$.

Exercise 0.1. Let $A = \{-1, 1\}$ and $B = \{1, 2, 3\}$.

Solution. We have

$$A \cap B = \{1\},\$$
 $A \cup B = \{-1, 1, 2, 3\},\$
 $A \setminus B = \{-1\},\$
 $B \setminus A = \{2, 3\},\$
 $A \times B = \{(-1, 1), (-1, 2), (-1, 3), (1, 1), (1, 2), (1, 3)\},\$
 $B \times A = \{(1, -1), (1, 1), (2, -1), (2, 1), (3, -1), (3, 1)\}.$

Exercise 0.2. Let A = [-1, 1] and B = (0, 3].

Solution. We have

$$A \cap B = (0, 1],$$

 $A \cup B = [-1, 3],$
 $A \setminus B = [-1, 0],$
 $B \setminus A = (1, 3],$
 $A \times B = \{(a, b) \mid a \in [-1, 1], b \in (0, 3]\},$
 $B \times A = \{(b, a) \mid b \in (0, 3], a \in [-1, 1]\}.$

Exercise 0.3. Let A = (1, 3) and $B = [0, \infty)$.

Solution. We have

$$A \cap B = (1,3),$$

 $A \cup B = [0,\infty),$
 $A \setminus B = \emptyset,$
 $B \setminus A = [0,1] \cup [3,\infty),$
 $A \times B = \{(a,b) \mid a \in (1,3), b \in [0,\infty)\},$
 $B \times A = \{(b,a) \mid b \in [0,\infty), a \in (1,3)\}.$

Proofs

Let $a, b, c \in \mathbb{N}$ where a and b are coprime. Prove the following.

Exercise 0.4. If $a \mid bc$, then $a \mid c$.

8 0 Foundations

Solution. Suppose $a \mid bc$. Then, there exists some $n \in \mathbb{Z}$ such that na = bc, so $b \mid na$. Now suppose n is not a multiple of b. Then, a and b must share a common factor greater than 1, but a and b are coprime, so this is impossible. Therefore, n must be a multiple of b; that is, there exists some $k \in \mathbb{Z}$ such that n = kb, so

$$na = bc \iff \frac{n}{b}a = c \iff \frac{bk}{b}a = c \iff ka = c \implies a \mid c.$$

Exercise 0.5. If $a \mid c$ and $b \mid c$, then $ab \mid c$.

Solution. Suppose $a \mid c$ and $b \mid c$. Then, c is a multiple of a, and c is a multiple of b. Let $p_1p_2\cdots p_n$ be the prime factorization of a, and let $q_1q_2\cdots q_k$ be the prime factorization of b. Since a and b are coprime, we see $\{p_1, p_2, \ldots, p_n\} \cap \{q_1, q_2, \ldots, q_k\} = \emptyset$, so the prime factorization of c must include all of the p_i s and all of the q_i s. Therefore, c is a multiple of $p_1p_2\cdots p_nq_1q_2\cdots q_k = ab$, so $ab \mid c$. \square

Chapter 1

Groups and Subgroups

1.1 Groups

Definition 1.1.1. Let S be a set. A mapping

$$\begin{array}{cccc} \odot: & S \times S & \to & S \\ & (x,y) & \mapsto & x \odot y \end{array}$$

is called a law of composition on S.

Note that S is necessarily closed under the operation defined by such a law. Examples include addition of natural numbers and multiplication of $n \times n$ matrices. Subtraction of natural numbers, however, is not closed and therefore not a law of composition.

Definition 1.1.2. A law of composition \odot on S is called associative if for every $x,y,z\in S$, we have $(x\odot y)\odot z=x\odot (y\odot z)$. The law \odot is called commutative if for every $x,y\in S$, we have $x\odot y=y\odot x$.

Definition 1.1.3. Let G be a set and \odot be a law of composition on G. A pair (G, \odot) is called a group if

- (1) ⊙ is associative;
- (2) there exists a neutral element $e \in G$ such that for every $g \in G$, we have $g \odot e = e \odot g = g$; and
- (3) for every $g \in G$, there exists an inverse element $g^{-1} \in G$ such that $g \odot g^{-1} = g^{-1} \odot g = e$.

A group whose law is commutative is called commutative or abelian.

We will typically refer to a group by its set and denote compositions of its elements using multiplicative notation ab if commutativity is not assumed, or additive notation a + b if commutativity is assumed; in the latter case, the inverse of a is denoted -a.

Proposition 1.1.4. The neutral element of a group is unique.

Proof. Let G be a group, and let $e_1, e_2 \in G$ such that for every $g \in G$, we have

$$e_1g = ge_1 = g$$
 and $e_2g = ge_2 = g$.

Then, in particular, $e_1e_2 = e_1$ and $e_1e_2 = e_2$, so $e_1 = e_2$.

Proposition 1.1.5. Let G be a group. For every $g \in G$, its inverse element g^{-1} is unique.

Proof. Let $g \in G$. Suppose h_1 and h_2 are both inverses of g. Then,

$$gh_1 = h_1g = e$$
 and $gh_2 = h_2g = e$,

SO

$$h_1 = h_1 e = h_1(gh_2) = (h_1g)h_2 = eh_2 = h_2.$$

Proposition 1.1.6. Let G be a group, and let $g, h, i \in G$. Then,

- $(1) (g^{-1})^{-1} = g;$
- (2) $(gh)^{-1} = h^{-1}g^{-1};$
- (3) the equations gx = h and xg = h have unique solutions $x \in G$; and
- (4) if gi = hi or ig = ih, then g = h.

These can be proven with straightforward computations.

1.2 Subgroups

Definition 1.2.1. Let (G, \odot) be a group, and let $H \subseteq G$. If $(H, \odot|_{H \times H})$ is a group, it is called a subgroup of G.

Theorem 1.2.2. Let G be a group, and let $H \subseteq G$, $H \neq \emptyset$. Then, H is a subgroup of G if and only if for every $x, y \in H$, we have $xy^{-1} \in H$.

Do this proof!

To denote the set of integer multiples of some $n \in \mathbb{Z}$, we will use the notation $n\mathbb{Z} = \{k \in \mathbb{Z} \mid k \equiv 0 \pmod{n}\}.$

Proposition 1.2.3. Let $n \in \mathbb{Z}$. Then, $(n\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Z}, +)$.

Proof. We see $0 \in n\mathbb{Z}$ for all $n \in \mathbb{Z}$, so $n\mathbb{Z} \neq \emptyset$. Let $a, b \in n\mathbb{Z}$. Then, a = kn and b = ln for some $k, l \in \mathbb{Z}$, so we have

$$a + (-b) = a - b = kn - ln = (k - l)n \in n\mathbb{Z}.$$

Hence, by Theorem 1.2.2, $(n\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Z}, +)$.

1.2 Subgroups 11

Proposition 1.2.4. Every subgroup of $(\mathbb{Z},+)$ is of the form $(n\mathbb{Z},+)$ for some $n \in \mathbb{Z}$.

Proof. Let H be a subgroup of $(\mathbb{Z}, +)$. If $H = \{0\}$, then $H = 0\mathbb{Z}$. Otherwise, let $k \in H \setminus \{0\}$. Without loss of generality, take k to be positive. Now let $S = H \cap \mathbb{Z}^+$. Since $k \in S$, we see $S \neq \emptyset$, so S has a minimal element, say n.

Since $n \in H$, we see $n\mathbb{Z} \subseteq H$. Additionally, rewriting k in terms of its Euclidean division by n as k = nq + r where $q, r \in \mathbb{Z}, \ 0 \le r < n$, we see r = k - nq. Since n is minimal, we must have r = 0. Thus, $k = nq \in n\mathbb{Z}$, so $H \subseteq n\mathbb{Z}$. Hence, $H = n\mathbb{Z}$.

Proposition 1.2.5. Let G be a group, and let $S \subseteq G$. Then, there exists a unique subgroup H of G such that

- (1) $S \subseteq H$ and
- (2) if H' is a subgroup of G and $S \subseteq H'$, then H is a subgroup of H'.

Proof A. Let X be the set of all subgroups of G that contain S. Since $G \in X$, we see $X \neq \emptyset$. Now let $H = \bigcap_{J \in X} J$. We see $S \subseteq H$. Finally, let $x, y \in H$. Then, $x, y \in J$ for all $J \in X$, and since each J is a subgroup of G, we have $xy^{-1} \in J$ for all $J \in X$. Thus,

$$xy^{-1} \in \bigcap_{I \in X} J = H,$$

so, by Theorem 1.2.2, H is a subgroup of G.

Now suppose there exist two subgroups H_1, H_2 satisfying (1) and (2). Then, $S \subseteq H_1$ and $S \subseteq H_2$. Since H_2 is a subgroup of G containing S, by (2) we have $H_1 \subseteq H_2$; likewise, $H_2 \subseteq H_1$, so $H_1 = H_2$. Hence, H is unique.

Alternatively, we can use a constructive proof:

Proof B. Let $H = \{g_1^{\pm 1}g_2^{\pm 1} \cdots g_k^{\pm 1} \mid g_1, g_2, \dots, g_k \in S\}$. Then, $S \subseteq H$. Further, let $x, y \in H$. Then, $x = g_1^{\pm 1}g_2^{\pm 1} \cdots g_n^{\pm 1}$ and $y = h_1^{\pm 1}h_2^{\pm 1} \cdots h_m^{\pm 1}$ for some $g_1, g_2, \dots, g_n, h_1, h_2, \dots, h_m \in S$, so

$$\begin{split} xy^{-1} &= g_1^{\pm 1} g_2^{\pm 1} \cdots g_n^{\pm 1} (h_1^{\pm 1} h_2^{\pm 1} \cdots h_m^{\pm 1})^{-1} \\ &= g_1^{\pm 1} g_2^{\pm 1} \cdots g_n^{\pm 1} (h_m^{\pm 1})^{-1} \cdots (h_2^{\pm 1})^{-1} (h_1^{\pm 1})^{-1} \\ &= g_1^{\pm 1} g_2^{\pm 1} \cdots g_n^{\pm 1} h_m^{\mp 1} \cdots h_2^{\mp 1} h_1^{\mp 1} \in H. \end{split}$$

Thus, H is a subgroup of G. Uniqueness can be shown in the same way as in Proof A.

Definition 1.2.6. The subgroup H from Proposition 1.2.5 is called the subgroup generated by S, denoted $\langle S \rangle$. This is, in other words, the smallest subgroup of G that contains S. When $\langle S \rangle = G$ for some group G, we say S generates G. When this S is finite, we say G is finitely generated.

Definition 1.2.7. A group generated by one element, say x, is called a cyclic group, denoted $\langle x \rangle$.

We will use the notation x^n to denote an element x of a group composed with itself n times.

Proposition 1.2.8. Let G be a group, and let $g \in G$. Then,

- (1) $\langle g \rangle = \langle \{g\} \rangle = \{g^m \mid m \in \mathbb{Z}\};$
- (2) $\langle g \rangle$ is infinite if and only if there does not exist an $m \in \mathbb{N}$ such that $g^m = e$; and
- (3) if $\langle g \rangle$ is finite, then $|\langle g \rangle| = \min\{m \in \mathbb{N} \mid g^m = e\}$.

Proof.

- (1) Since $\langle g \rangle$ is a group, it must contain all compositions of g with itself, i.e. g^m for all $m \in \mathbb{N}$, as well as its inverse g^{-1} and the inverses of those compositions, so at the minimum, $\langle g \rangle$ contains $\{g^m \mid m \in \mathbb{Z}\}$, which is a subgroup of G. Hence, $\langle g \rangle = \{g^m \mid m \in \mathbb{Z}\}$.
- (2) Suppose $\langle g \rangle$ is finite. Equivalently, there exist some $n, k \in \mathbb{Z}$, $n \neq k$ such that $g^n = g^k$; without loss of generality, take n > k. We see

$$g^n = g^k \iff g^n g^{-k} = g^k g^{-k} \iff g^{n-k} = e,$$

i.e. there exists an $m = n - k \in \mathbb{N}$ such that $g^m = e$. Hence, $\langle g \rangle$ is infinite if and only if such an m does not exist.

(3) From the proof for (2), it follows that if $\langle g \rangle$ is finite, then the set $\{m \in \mathbb{N} \mid g^m = e\}$ is nonempty and therefore has a least element, say n. We see $\{e, g, g^2, \dots, g^{n-1}\} \subseteq \langle g \rangle$. Let $g^k \in \langle g \rangle$ for some $k \in \mathbb{Z}$. We can rewrite k in terms of its Euclidean division by n as k = nq + r for some $q, r \in \mathbb{Z}$, $0 \le r < n$, giving us

$$g^k=g^{nq+r}=(g^n)^qg^r=e^qg^r=g^r\in\{e,g,g^2,\ldots,g^{n-1}\},$$
 so $\langle g\rangle\subseteq\{e,g,g^2,\ldots,g^{n-1}\}.$ Hence, $\langle g\rangle=\{e,g,g^2,\ldots,g^{n-1}\},$ so $|\langle g\rangle|=n.$

Definition 1.2.9. Let x be some element in a group. Then, the cardinality of $\langle x \rangle$ is called the order of x, denoted $\operatorname{ord}(x)$.

1.3 Cosets

Definition 1.3.1. Let G be a group and H be a subgroup of G, and let $g \in G$. Then, the set

$$gH = \{gh \mid h \in H\}$$

1.3 Cosets 13

is called the left coset of H associated with g, and the set

$$Hg = \{hg \mid h \in H\}$$

is called the right coset of H associated with g.

Theorem 1.3.2. Let G be a group and H be a subgroup of G, and let $x, y \in G$. Then, the relations \sim_l and \sim_r on G such that

$$x \sim_l y \iff x^{-1}y \in H \text{ and } x \sim_r y \iff xy^{-1} \in H$$

are equivalence relations.

Proof. By Definition 0.2.2, we have three criteria for \sim_l to be an equivalence relation:

- (1) We see $x^{-1}x = e \in H$, so $x \sim_l x$ (reflexive).
- (2) Suppose $x \sim_l y$. Then, $x^{-1}y \in H$, so $(x^{-1}y)^{-1} = y^{-1}x \in H$; therefore, $y \sim_l x$ (symmetric).
- (3) Let $z \in G$. Suppose $x \sim_l y$ and $y \sim_l z$. Then, $x^{-1}y, y^{-1}z \in H$, so $(x^{-1}y)(y^{-1}z) \in H$ and

$$(x^{-1}y)(y^{-1}z) = x^{-1}(yy^{-1})z = x^{-1}z;$$

thus, $x \sim_l z$ (transitive).

Hence, \sim_l is an equivalence relation. The same for \sim_r can be proven similarly.

Corollary 1.3.3 (Alternative definition of the left and right cosets). Let G be a group and H be a subgroup of G, and take \sim_l and \sim_r as defined in Theorem 1.3.2. Then, the left cosets of H in G are the equivalence classes of \sim_l , and the right cosets are the equivalence classes of \sim_r .

Corollary 1.3.4. Let G be a group and H be a subgroup of G. The left cosets of H in G form a partition of G. The same applies for the right cosets.

We will use the notation G/H to denote to denote the set of left cosets of H in G and $H\backslash G$ to denote the set of right cosets.

Proposition 1.3.5. Let G be a group and H be a subgroup of G. Then, there exists a bijection between G/H and $H\backslash G$. It follows that the number of left cosets is equal to the number of right cosets when finite.

Proof. Do this proof!

Definition 1.3.6. Let G be a group and H be a subgroup of G. The cardinality of G/H is called the index of H in G, denoted [G:H].

Proposition 1.3.7. Let G be a group and H be a subgroup of G. Then, there exists a bijection between any two cosets of H in G. It follows that if H is finite, then all the cosets are finite and have the same cardinality.

Proof. Let $g \in G$. Consider the mapping

$$\begin{array}{ccc} f_g: & H & \to & gH \\ & h & \mapsto & gh \end{array}.$$

By the definition of gH, we see f_g is well-defined and surjective. Let $h, h' \in H$ such that gh = gh'. Then, by Proposition 1.1.6, we see h = h', so f_g is injective. Hence, f_g is a bijection.

Theorem 1.3.8 (Lagrange's theorem). Let G be a finite group and H be a subgroup of G. Then, the order of every subgroup of H divides the order of G.

Proof. By Corollary 1.3.4, we see G is the union of the left cosets, which are necessarily disjoint, so |G| is the sum of the cardinalities of the cosets. By Proposition 1.3.7, the cardinalities of the cosets are the same and equal to |H|, so

$$|G| = [G:H]|H|.$$

Corollary 1.3.9. Let G be a group and H, K be subgroups of G where $K \subseteq H$. Then,

$$[G:K] = [G:H][H:K].$$

Corollary 1.3.10. Let G be a group, and let $g \in G$. If G is finite, then $\operatorname{ord}(g)$ divides |G|. It follows that $g^{|G|} = e$.

Corollary 1.3.11. Let G be a finite group. If |G| is prime, then, G is cyclic; in other words, $G = \langle g \rangle$ for all $g \in G \setminus \{e\}$.

1.4 Normal subgroups

Definition 1.4.1. Let G be a finite group and H be a subgroup of G. If for every $g \in G$, we have gH = Hg, i.e. the left and right cosets are the same, then H is called a normal subgroup of G.

Theorem 1.4.2. Let G be a finite group and H be a subgroup of G. Then, H is a normal subgroup of G if and only if for every $g \in G$ and $h \in H$, we have $ghg^{-1} \in H$.

Proof.

(\Rightarrow) Suppose H is a normal subgroup of G. Then, for all $g \in G$, we have gH = Hg, so for all $h \in H$, we have $gh \in Hg$. This means there exists some $k \in H$ such that gh = kg, so

$$ghg^{-1} = kgg^{-1} = k.$$

Hence, $ghg^{-1} \in H$.

Solved exercises 15

(\Leftarrow) Suppose for every $g \in G$ and $h \in H$, we have $ghg^{-1} \in H$. Let $x \in jH$ for some $j \in G$. Then, there exists some $k \in H$ such that

$$x = jk = jk(j^{-1}j) = (jkj^{-1})j \in Hj,$$

so $jH \subseteq Hj$. Similarly, it can be shown that $Hj \subseteq jH$; hence, jH = Hj.

Theorem 1.4.3. Let G be a group and H be a normal subgroup of G. Then, G/H can be given a group structure with the composition law

$$\bigcirc: \quad G/H \times G/H \quad \to \quad G/H \\ (xH, yH) \quad \mapsto \quad (xy)H \ .$$

Proof. We have three criteria for $(G/H, \emptyset)$ to be a group:

(1) Let $x_1, x_2, y_1, y_2 \in G$ such that $x_1H = x_2H$ and $y_1H = y_2H$. Since H is a normal subgroup, for all $h \in H$, there exists some $h' \in H$ such that $y_1h = h'y_2$, so $x_1y_1h = x_1h'y_2$. Similarly, there exists some $h'' \in H$ such that $x_1h' = h''x_2$, so

$$x_1y_1h = x_1h'y_2 = h''x_2y_2.$$

This means that $(x_1y_1)H = H(x_2y_2)$, so since H is a normal subgroup, $(x_1y_1)H = (x_2y_2)H$. Thus, \oslash is well-defined. Associativity follows from the law of composition on G.

(2) Since $H = e_G H$, we have, for all $gH \in G/H$,

$$H \oslash qH = e_G H \oslash qH = (e_G q)H = qH$$
,

and, similarly, $gH \oslash H = gH$, so we have the neutral element H.

(3) Let $gH \in G/H$. Naturally, the inverse of gH is $g^{-1}H$:

$$(gg^{-1})H = e_G H = H.$$

Solved exercises

Groups

Determine whether the following are groups, and show why or why not.

Exercise 1.1. Consider $(\{1,0,-1\},+)$ where + is standard addition.

Solution. Notice
$$1 + 1 = 2 \notin \{1, 0, -1\}$$
, so $(\{1, 0, -1\}, +)$ is not a group.

Exercise 1.2. Consider (\mathbb{R}, \odot) where \odot is defined such that for $x, y \in \mathbb{R}$, we have $x \odot y = xy + (x^2 - 1)(y^2 - 1)$.

Solution. Notice

$$2 \odot (3 \odot 4) = 2 \odot ((3)(4) + (3^2 - 1)(4^2 - 1)) = 2 \odot 132$$
$$= (2)(132) + (2^2 - 1)(132^2 - 1) = 52533,$$

while

$$(2 \odot 3) \odot 4 = ((2)(3) + (2^2 - 1)(3^2 - 1)) \odot 4 = 30 \odot 4$$

= $(30)(4) + (30^2 - 1)(4^2 - 1) = 13605$,

so \odot is not associative. Hence, (\mathbb{R}, \odot) is not a group.

Exercise 1.3. Consider (\mathbb{R}^+, \odot) where \odot is defined such that for $x, y \in \mathbb{R}^+$, we have $x \odot y = \sqrt{x^2 + y^2}$.

Solution. Notice that for all $x \in \mathbb{R}^+$,

$$x \odot 0 = \sqrt{x^2 + 0^2} = \sqrt{x^2} = x$$

so 0 is the neutral element under \odot ; however, $0 \notin \mathbb{R}^+$, so (\mathbb{R}^+, \odot) is not a group. \square

Exercise 1.4. Consider $(\mathbb{R} \setminus \{-1\}, \odot)$ where \odot is defined such that for $x, y \in \mathbb{R} \setminus \{-1\}$, we have $x \odot y = x + y + xy$.

Solution. Suppose there exists a pair (x, y) such that $x \odot y = -1$. Then,

$$x + y + xy = -1$$

$$y(1+x) = -1 - x$$

$$y = -\frac{1+x}{1+x}$$

$$y = -1,$$

so such a pair cannot be in $(\mathbb{R} \setminus \{-1\}) \times (\mathbb{R} \setminus \{-1\})$; thus, \odot is a law of composition on $\mathbb{R} \setminus \{-1\}$. We also see

$$(x \odot y) \odot z = (x + y + xy) \odot z = (x + y + xy) + z + (x + y + xy)z$$

= $x + y + xy + z + xz + yz + xyz$
= $x + (y + z + yz) + x(y + z + yz) = x \odot (y + z + yz)$
= $x \odot (y \odot z)$,

so \odot is associative. Finally, notice that for all $x \in \mathbb{R} \setminus \{-1\}$, we have

$$x \odot 0 = x + 0 + x(0) = x$$

(neutral element), and

$$x \odot -\frac{x}{1+x} = x - \frac{x}{1+x} + x\left(-\frac{x}{1+x}\right) = x - \frac{x}{1+x} - \frac{x^2}{1+x}$$
$$= \frac{x(1+x) - x}{1+x} - \frac{x^2}{1+x} = \frac{x^2}{1+x} - \frac{x^2}{1+x} = 0$$

(inverse). Hence, $(\mathbb{R} \setminus \{-1\}, \odot)$ is a group.

Solved exercises 17

Exercise 1.5. Consider (C, \cdot) where $C = \{z \in \mathbb{C} \mid |c| = 1\}$ and \cdot is standard multiplication.

Solution. Since \mathcal{C} is the unit circle, we can uniquely represent each $z \in \mathcal{C}$ in polar form as $z = e^{i\theta}$ for some $\theta \in (-\pi, \pi]$, and we know $e^{i\theta} \in \mathcal{C}$ for all $\theta \in \mathbb{R}$. Let $e^{i\theta_1}, e^{i\theta_2} \in \mathcal{C}$. Then,

$$e^{i\theta_1} \cdot e^{i\theta_2} = e^{i\theta_1 + i\theta_2} = e^{i(\theta_1 + \theta_2)} \in \mathcal{C}.$$

so standard multiplication is a law of composition on \mathcal{C} , and we know standard multiplication is associative. The neutral element under standard multiplication is $1 = e^{i(0)} \in \mathcal{C}$. Finally, notice that for all $e^{i\theta} \in \mathcal{C}$,

$$e^{i\theta} \cdot e^{i(-\theta)} = e^{i\theta - i\theta} = e^0 = 1$$

(inverse). Hence, (\mathcal{C}, \cdot) is a group.

Exercise 1.6. Consider $(\mathrm{SL}_n(\mathbb{R}), \cdot)$ where $\mathrm{SL}_n(\mathbb{R})$ is the set of all $n \times n$ matrices over \mathbb{R} with determinant 1 and \cdot is standard matrix multiplication.

Solution. Let $A, B \in \mathrm{SL}_n(\mathbb{R})$. Then,

$$det(AB) = det(A) \ det(B) = (1)(1) = 1,$$

so $AB \in \mathrm{SL}_n(\mathbb{R})$. Thus, standard matrix multiplication is a law of composition on $\mathrm{SL}_n(\mathbb{R})$, and we know standard matrix multiplication is associative. The neutral element under standard matrix multiplication is I_n and $\det(I_n) = 1$, so $I_n \in \mathrm{SL}_n(\mathbb{R})$. Finally, taking A^{-1} as the standard matrix inverse, we see

$$\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{1} = 1,$$

so $A^{-1} \in \mathrm{SL}_n(\mathbb{R})$. Hence, $(\mathrm{SL}_n(\mathbb{R}), \cdot)$ is a group.

Exercise 1.7. Consider (Q,\cdot) where $Q=\{\pm I_2,\pm I,\pm J,\pm K\}$,

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \quad I = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \quad J = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \qquad \quad K = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix},$$

and \cdot is standard matrix multiplication.

Solution. For I_2 , I, J, and K, we have the composition table

and we know for any matrices A and B,

$$(-A)B = A(-B) = -AB$$
 and $(-A)(-B) = AB$,

so standard matrix multiplication is a law of composition on Q. We also know standard matrix multiplication is associative. The neutral element under standard matrix multiplication of 2×2 matrices is $I_2 \in Q$. Finally, from the composition table, we have the inverses

$$I_2^{-1} = I_2$$
 $I^{-1} = -I$ $J^{-1} = -J$ $K^{-1} = -K$

and from these we see

$$(-I_2)^{-1} = -I_2$$
 $(-I)^{-1} = I$ $(-J)^{-1} = J$ $(-K)^{-1} = K$.

Hence, (Q, \cdot) is a group.

Exercise 1.8. Consider (H, \cdot) where H is the set of upper triangular 3×3 matrices over \mathbb{R} whose diagonal entries are all 1 and \cdot is standard matrix multiplication.

Solution. Let $a, b, c, x, y, z \in \mathbb{R}$. Then,

$$\begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+x & b+xc+y \\ 0 & 1 & c+z \\ 0 & 0 & 1 \end{bmatrix} \in H,$$

so standard matrix multiplication is a law of composition on H, and we know standard matrix multiplication is associative. The neutral element under standard matrix multiplication of 3×3 matrices is $I_3 \in H$. Finally, computing the standard matrix inverse, we see

$$\begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -x & xz - y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{bmatrix} \in H.$$

Hence, (H, \cdot) is a group.

Subgroups

For each of the following, determine whether H is a subgroup of G, and show why or why not.

Exercise 1.9. Let $G = (\mathbb{R}, +)$ and $H = \{-1, 0, 1\}$.

Solution. Notice $1+1=2\notin H$. Hence, H is not a subgroup of G.

Exercise 1.10. Let $G = (\mathbb{R}, +)$ and $H = \mathbb{R} \setminus \{0\}$.

Solution. The neutral element of G is $0 \notin H$. Hence, H is not a subgroup of G. \square

Exercise 1.11. Let $G = (\mathbb{C} \setminus \{0\}, \cdot)$ and $H = \mathbb{R} \setminus \{0\}$.

Solution. Let $h_1, h_2 \in H = \mathbb{R} \setminus \{0\}$. Then, since $h_1, h_2 \neq 0$, we have

$$h_1 h_2^{-1} = h_1 \cdot \frac{1}{h_2} = \frac{h_1}{h_2} \in \mathbb{R} \setminus \{0\} = H.$$

Hence, H is a subgroup of G.

Solved exercises 19

Exercise 1.12. Let $G = (\mathbb{R} \setminus \{0\}, \cdot)$ and $H = \{-1, 1\}$.

Solution. We see

$$(-1)^{-1} = \frac{1}{-1} = -1$$
 and $1^{-1} = \frac{1}{1} = 1$,

SO

$$-1 \cdot (-1)^{-1} = -1 \cdot -1 = 1 \in H, \qquad -1 \cdot 1^{-1} = -1 \cdot 1 = -1 \in H,$$

$$1 \cdot (-1)^{-1} = 1 \cdot -1 = -1 \in H, \qquad 1 \cdot 1^{-1} = 1 \cdot 1 = 1 \in H.$$

Hence, H is a subgroup of G.

Exercise 1.13. Let $G = (\mathbb{C} \setminus \{0\}, \cdot)$ and $H = \{e^{i(2\pi k)/n} \mid k \in \{0, 1, \dots, n-1\}\}$ for some $n \in \mathbb{N}$.

Solution. Let $h_1, h_2 \in H$. Then, $h_1 = e^{i(2\pi k)/n}$ and $h_2 = e^{i(2\pi l)/n}$ for some $k, l \in \{0, 1, \ldots, n-1\}$, so

$$h_2^{-1} = \left(e^{i(2\pi l)/n}\right)^{-1} = e^{-i(2\pi l)/n},$$

and we see

$$h_1 h_2^{-1} = e^{i(2\pi k)/n} \cdot e^{-i(2\pi l)/n} = e^{i(2\pi (k-l))/n}.$$

Let $m = (k - l) \mod n$. Then,

$$h_1 h_2^{-1} = e^{i(2\pi(k-l))/n} = e^{i(2\pi m)/n} \in H.$$

Hence, H is a subgroup of G.

Exercise 1.14. Let $G = (GL_n(\mathbb{R}), \cdot)$ where $GL_n(\mathbb{R})$ is the set of all invertible $n \times n$ matrices over \mathbb{R} , and let $H = (SL_n(\mathbb{R}), \cdot)$.

Solution. Let $A, B \in H = \mathrm{SL}_n(\mathbb{R})$. Then,

$$\det(A) = \det(B) = 1 \neq 0,$$

so A^{-1} and B^{-1} exist and

$$\det(B^{-1}) = \frac{1}{\det(B)} = \frac{1}{1} = 1.$$

Therefore,

$$\det(AB^{-1}) = \det(A)\det(B^{-1}) = 1 \cdot 1 = 1$$

so $AB^{-1} \in H$. Hence, H is a subgroup of G.

Cyclic groups

Exercise 1.15. Let G be a group, and let $x \in G$ where x is of order k. Prove that if m is an integer such that $x^m = e_G$, then $k \mid m$.

Solution. Since x is of order k, we have by definition that k is the smallest positive integer such that $x^k = e_G$. Suppose $x^m = e_G$ for some $m \in \mathbb{Z}$. We can rewrite m in terms of its Euclidean division by k as m = kq + r for some $q, r \in \mathbb{Z}$ where $0 \le r < k$, giving us

$$x^{m} = x^{kq+r} = x^{kq}x^{r} = (x^{k})^{q}x^{r} = e_{G}^{q}x^{r} = x^{r}.$$

so $x^r = e_G$. Since r < k and k is minimal, we must have r = 0, so m = kq. Hence, $k \mid m$.

Chapter 2

Relations Between Groups

2.1 Group homomorphisms

Definition 2.1.1. Let (G, \odot) and (G', \oslash) be groups. A mapping $\phi : G \to G'$ is called a group homomorphism if for every $x, y \in G$, we have

$$\phi(x\odot y)=\phi(x)\oslash\phi(y).$$

Definition 2.1.2. A group homomorphism is called an isomorphism if it is a bijection. A group G is called isomorphic to a group G' if there exists an isomorphism $\phi: G \to G'$. We denote this by $G \simeq G'$.

Proposition 2.1.3. Let $\phi:(G,\odot)\to(G',\varnothing)$ be a homomorphism. Then,

- (1) $\phi(e_G) = e_{G'}$; and
- (2) for all $g \in G$, we have $\phi(g^{-1}) = (\phi(g))^{-1}$.

Proof.

(1)

...

Do this proof!

(2) By definition, $(\phi(g))^{-1}$ is the inverse of $\phi(g)$ in G'. We see

$$\phi(g^{-1}) \oslash \phi(g) = \phi(g^{-1} \odot g) = \phi(e_G) = e'_G,$$

so $\phi(g^{-1})$ is also the inverse of $\phi(g)$ in G'. Hence, by uniqueness of the inverse,

$$\phi(g^{-1}) = (\phi(g))^{-1}.$$

Definition 2.1.4. Let $\phi: G \to G'$ be a homomorphism. The set

$$\operatorname{im}(\phi) = \{\phi(g) \mid g \in G\}$$

is called the image of ϕ .

Proposition 2.1.5. Let $\phi: G \to G'$ be a homomorphism. Then, $\operatorname{im}(\phi)$ is a subgroup of G'.

Proof. Let $x, y \in \text{im}(\phi)$. Then, there exist some $u, v \in G$ such that $\phi(u) = x$ and $\phi(v) = y$, so

$$xy^{-1} = \phi(u)(\phi(v))^{-1} = \phi(u)\phi(v^{-1}) = \phi(uv^{-1}).$$

Since $uv^{-1} \in G$, we see $xy^{-1} \in \text{im}(\phi)$. Hence, $\text{im}(\phi)$ is a subgroup of G'.

Definition 2.1.6. Let $\phi: G \to G'$ be a homomorphism. The set

$$\ker(\phi) = \{ g \in G \mid \phi(g) = e_{G'} \}$$

is called the kernel of ϕ .

Theorem 2.1.7. Let $\phi: G \to G'$ be a homomorphism. Then, ϕ is injective if and only if $\ker(\phi) = \{e_G\}$.

Proof.

- (\Rightarrow) Suppose ϕ is injective. Since $\phi(e_G) = e_{G'}$, we know $\{e_G\} \subseteq \ker(\phi)$. Let $x \in \ker(\phi)$. Then, $\phi(x) = e_{G'} = \phi(e_G)$, so since ϕ is injective, $x = e_G$, which implies $\ker(\phi) \subseteq \{e_G\}$. Hence, $\{e_G\} = \ker(\phi)$.
- (\Leftarrow) Suppose $\ker(\phi) = \{e_G\}$. Let $x, y \in G$ such that $\phi(x) = \phi(y)$. Then,

$$e_{G'} = \phi(x)(\phi(x))^{-1} = \phi(y)(\phi(x))^{-1} = \phi(y)\phi(x^{-1}) = \phi(yx^{-1}).$$

Thus, $yx^{-1} \in \ker(\phi)$, so $yx^{-1} = e_G$, which implies y = x. Hence, ϕ is injective.

Theorem 2.1.8. Let $\phi: G \to G'$ be a homomorphism. Then, $\ker(\phi)$ is a normal subgroup of G.

Do this proof!

Proof.

Theorem 2.1.9. Let G be a group and H be a subgroup of G. Then, H is a normal subgroup of G if and only if there exists a surjective homomorphism $\phi: G \to G'$ for some group G' such that $H = \ker(\phi)$.

Do this proof!

Proof.

Theorem 2.1.10. Let $\phi: G \to G'$ be an isomorphism. Then, ϕ^{-1} is an isomorphism.

Proof. Let \odot denote the law of composition for group G and \oslash denote the law for G', let $f = \phi^{-1}$, and let $x, y \in G'$. f is clearly well-defined, and we see

$$\phi(f(x)\odot f(y))=\phi(f(x))\oslash \phi(f(y))=x\oslash y=\phi(f(x\oslash y)).$$

Since ϕ is injective, this implies $f(x) \odot f(y) = f(x \odot y)$, so f is a homomorphism. Injectivity and surjectivity can be easily verified. Hence, f is an isomorphism.

Theorem 2.1.11 (Fundamental theorem on homomorphisms). Let $\phi: G \to G'$ be a homomorphism. Then, the mapping

$$\psi: G/\ker(\phi) \to \operatorname{im}(\phi)$$
$$q\ker(\phi) \mapsto \phi(q)$$

is an isomorphism.

Proof. We have four criteria for ψ to be an isomorphism:

(1) Let g, h be such that $g \ker(\phi) = h \ker(\phi)$. Then, $h^{-1}g \in \ker(\phi)$, so

$$\phi(h^{-1}g) = e_{G'}$$
$$(\phi(h))^{-1}\phi(g) = e_{G'}$$
$$\phi(g) = \phi(h).$$

Thus, ψ is well-defined.

(2) Let $g \ker(\phi), h \ker(\phi) \in G/\ker(\phi)$. Then,

$$\psi(g \ker(\phi) h \ker(\phi)) = \psi((gh) \ker(\phi)) = \phi(gh) = \phi(g) \phi(h)$$
$$= \psi(g \ker(\phi)) \psi(h \ker(\phi)),$$

so ψ is a homomorphism.

- (3) Let $g \ker(\phi) \in \ker(\psi)$. Then, $\psi(g \ker(\phi)) = e_{G'}$, so $g \in \ker(\phi)$, which implies $g \ker(\phi) = \ker(\phi)$. Thus, by Theorem 2.1.7, ψ is injective.
- (4) ψ is surjective by construction since it maps to $\operatorname{im}(\phi)$.

This theorem is also known as the first isomorphism theorem.

2.2 Permutation groups

Proposition 2.2.1. Let X be a set, and let S(X) be the set of all bijections from X to X. Then, $(S(X), \circ)$, where \circ is composition of mappings, is a group.

Proof. Do this proof!

Definition 2.2.2. Take S(X) as defined in Proposition 2.2.1 for some set X. A subgroup of S(X) is called a permutation group. Any mapping in such a group is called a permutation.

Theorem 2.2.3 (Cayley's theorem). Every group is isomorphic to a permutation group.

Proof.

Do this proof!

Definition 2.2.4. Let $A = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. Then, $S_n = S(A)$ is called the symmetric group on n elements.

More generally, S_n can be used to describe the group of permutations of any finite set. Since any finite set is isomorphic to a subset of \mathbb{N} , we can apply this definition by assigning a label in A to each element. The results we will show for S_n therefore apply with this generalization as well.

Note that for any $n \in \mathbb{N}$, we have $|\mathcal{S}_n| = n!$. This may be familiar if you recall the notion of a permutation of a set as a rearrangement of its elements. The notation may also be familiar—consider the following permutation $\sigma \in \mathcal{S}_5$:

$$1 \mapsto 3$$
$$2 \mapsto 2$$
$$3 \mapsto 5$$
$$4 \mapsto 4$$
$$5 \mapsto 1.$$

This can be written as

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}.$$

Definition 2.2.5. Let $\sigma = S_n$. The set

$$supp(\sigma) = \{i \in \{1, 2, ..., n\} \mid \sigma(i) \neq i\}$$

is called the support of σ .

Proposition 2.2.6. Let $\sigma, \tau \in \mathcal{S}_n$. If $\operatorname{supp}(\sigma) \cap \operatorname{supp}(\tau) = \emptyset$, then $\sigma \circ \tau = \tau \circ \sigma$.

Proof. Let $i \in \{1, 2, ..., n\}$. We have three cases:

- (1) Suppose $i \notin \text{supp}(\sigma) \cup \text{supp}(\tau)$. Then, $\sigma(i) = \tau(i) = i$, so $(\sigma \circ \tau)(i) = \sigma(\tau(i)) = \sigma(i) = i = \tau(i) = \tau(\sigma(i)) = (\tau \circ \sigma)(i).$
- (2) Suppose $i \in \text{supp}(\sigma)$. Then, $i \notin \text{supp}(\tau)$, so

$$(\sigma \circ \tau)(i) = \sigma(\tau(i)) = \sigma(i),$$

and since $i \in \text{supp}(\sigma)$, we have $\sigma(i) \in \text{supp}(\sigma)$, so $\sigma(i) \notin \text{supp}(\tau)$. Thus,

$$(\tau \circ \sigma)(i) = \tau(\sigma(i)) = \sigma(i) = (\sigma \circ \tau)(i).$$

(3) If $i \in \text{supp}(\tau)$, the proof can be done in the same way as in the above case.

Hence,
$$\sigma \circ \tau = \tau \circ \sigma$$
.

Cycles

Definition 2.2.7. An element $\sigma \in \mathcal{S}_n$ is called a cycle if there exists some $x \in \{1, 2, ..., n\}$ such that $\text{supp}(\sigma) = \{\sigma^i(x) \mid i \in \mathbb{N}\}$. Let $l = |\text{supp}(\sigma)|$. We denote the cycle

$$(x, \sigma(x), \ldots, \sigma^{l-1}(x))$$

where l is called its length. A cycle of length 2 is called a transposition.

Proposition 2.2.8. Let σ be a cycle of length l. Then, $\operatorname{ord}(\sigma) = l$.

This follows by construction.

Proposition 2.2.9. Let $\sigma \in \mathcal{S}_n$, and let $A = \{1, 2, ..., n\}$. Then, the relation \sim on A defined such that for all $a, b \in A$,

$$a \sim b \iff$$
 there exists some $k \in \mathbb{Z}$ such that $b = \sigma^k(a)$

is an equivalence relation.

Proof. We have three criteria for \sim to be an equivalence relation:

- (1) Since $a = \sigma^0(a)$, we have $a \sim a$ (reflexive).
- (2) Suppose $a \sim b$. Then, $b = \sigma^k(a)$ for some $k \in \mathbb{Z}$, so $a = \sigma^{-k}(b)$. Thus, $b \sim a$ (symmetric).
- (3) Let $c \in A$. Suppose $a \sim b$ and $b \sim c$. Then, $b = \sigma^k(a)$ and $c = \sigma^m(b)$ for some $k, m \in \mathbb{Z}$, so $c = \sigma^m(\sigma^k(a)) = \sigma^{m+k}(a)$. Thus, $a \sim c$ (transitive).

Corollary 2.2.10 (Alternative definition of a cycle). Take \sim as defined in Proposition 2.2.9 for some $\sigma \in \mathcal{S}_n$. Then, σ is a cycle if and only if \sim has at most one equivalence class containing more than one element.

Theorem 2.2.11. Let $\sigma \in \mathcal{S}_n$. Then, there exist some unique cycles $\tau_1, \tau_2, \ldots, \tau_k$ with disjoint supports such that $\sigma = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k$. In other words, every permutation of a finite set can be decomposed as the product of unique cycles with disjoint supports.

Proof. Let A_1, A_2, \ldots, A_k be the equivalence classes of \sim , and let $\tau_1, \tau_2, \ldots, \tau_k$ be the cycles defined such that

$$\tau_i(x) = \begin{cases} \sigma(x), & x \in A_i \\ x, & \text{otherwise.} \end{cases}$$

We see $\sigma = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k$, and since A_1, A_2, \ldots, A_k are necessarily disjoint, $\tau_1, \tau_2, \ldots, \tau_k$ have disjoint supports.

Definition 2.2.12. Let $\sigma \in \mathcal{S}_n$ with decomposition $\sigma = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k$ as given by Theorem 2.2.11. Let l_1, l_2, \ldots, l_k denote the lengths of $\tau_1, \tau_2, \ldots, \tau_k$, respectively, where $l_1 \geq l_2 \geq \cdots \geq l_k$. The sequence (l_1, l_2, \ldots, l_k) is called the type of σ .

Proposition 2.2.13. Let $\sigma \in \mathcal{S}_n$ with type (l_1, l_2, \dots, l_k) . Then,

$$\operatorname{ord}(\sigma) = \operatorname{lcm}\{l_1, l_2, \dots, l_k\}.$$

Proof. We can decompose σ into cycles as $\sigma = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k$ where $\tau_1, \tau_2, \ldots, \tau_k$ have length l_1, l_2, \ldots, l_k , respectively. Since the τ_i s have disjoint supports, they commute, so for every $m \in \mathbb{N}$, we have

$$\sigma^m = \tau_1^m \circ \tau_2^m \circ \cdots \circ \tau_k^m.$$

Since $\operatorname{ord}(\tau_i) = l_i$ for $1 \leq i \leq k$, we see that if $\sigma^m = \operatorname{id}$, then m is a multiple of each of the l_i s. Hence, by definition, $\operatorname{ord}(\sigma)$ is the lowest such m.

Transpositions and alternating groups

Corollary 2.2.14 (to Theorem 2.2.11). Every permutation in S_n can be decomposed as the product of transpositions.

Proposition 2.2.15. Let $\sigma \in \mathcal{S}_n$. Either all transposition decompositions of σ are the product of an even number of transpositions, or all of them are the product of an odd number of transpositions.

Proof. Consider the group of permutations of the rows of the $n \times n$ identity matrix I_n . Let us call this group P. As remarked following Definition 2.2.4, $P \simeq S_n$. We know $\det(I_n) = 1$, and transposing any two rows of a square matrix changes the sign of its determinant.

Let $\rho \in P$, and let $A = \rho(I_n)$. Suppose ρ can be decomposed as an even number of transpositions. Then, $\det(A) = 1$. Now suppose ρ can also be decomposed as an odd number of transpositions. Then, $\det(A) = -1$, a contradiction. Hence, no $\rho \in P$ can be decomposed into the product of both an even number and an odd number of transpositions.

Definition 2.2.16. Let $\sigma \in \mathcal{S}_n$, and let k be the number of transpositions in some transposition decomposition of σ . The number $\epsilon(\sigma) = (-1)^k$ is called the signature of σ . The permutation σ is called even if k is even or odd if k is odd.

Proposition 2.2.17. Let $A_n = \{ \sigma \in S_n \mid \epsilon(\sigma) = 1 \}$. Then, A_n is a normal subgroup of S_n .

Proof. Let $\alpha \in \mathcal{A}_n$ and $\sigma \in \mathcal{S}_n$. For some $k, m \in \mathbb{N}$, α can be decomposed as the product of some number 2k of transpositions and σ can be decomposed as the product of some number m of transpositions, so there exists a decomposition of $\sigma \circ \alpha \circ \sigma^{-1}$ into some number m + 2k + m = 2(m + k) of transpositions. Since 2(m + k) is even, $\sigma \circ \alpha \circ \sigma^{-1} \in \mathcal{A}_n$. Hence, by Theorem 1.4.2, \mathcal{A}_n is a normal subgroup of \mathcal{S}_n .

We can alternatively show that the mapping

$$\epsilon: (S_n, \circ) \to (\{-1, 1\}, \cdot)$$
 $\sigma \mapsto \epsilon(\sigma)$

is a group homomorphism and that $A_n = \ker(\epsilon)$. By Theorem 2.1.8, this implies A_n is a normal subgroup of S_n .

Definition 2.2.18. A_n as defined in Proposition 2.2.17 is called the alternating group on n elements.

2.3 Finitely generated abelian groups

Recall the Cartesian product of two sets A and B:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

We can give group structure to the Cartesian product of an arbitrary number of groups.

Proposition 2.3.1. Let G_1 and G_2 be two groups. The set $G_1 \times G_2$ together with the law of composition

$$\bigcirc : (G_1 \times G_2) \times (G_1 \times G_2) \to G_1 \times G_2 ((a_1, a_2), (b_1, b_2)) \mapsto (a_1b_1, a_2b_2)$$

is a group.

Proof. We have three criteria for $(G_1 \times G_2, \odot)$ to be a group:

(1) Let
$$(a_1, a_2), (b_1, b_2), (c_1, c_2) \in G_1 \times G_2$$
. Then,

$$\begin{aligned} ((a_1, a_2) \odot (b_1, b_2)) \odot (c_1, c_2) &= (a_1 b_1, a_2 b_2) \odot (c_1, c_2) \\ &= ((a_1 b_1) c_1, (a_2 b_2) c_2) \\ &= (a_1 (b_1 c_1), a_2 (b_2 c_2)) \\ &= (a_1, a_2) \odot (b_1 c_1, b_2 c_2) \\ &= (a_1, a_2) \odot ((b_1, b_2) \odot (c_1, c_2)), \end{aligned}$$

so \odot is associative.

(2) Let e_1 be the neutral element of G_1 and e_2 be the neutral element of G_2 . Naturally, the neutral element of $G_1 \times G_2$ is then (e_1, e_2) :

$$(a_1, a_2) \odot (e_1, e_2) = (a_1e_1, a_2e_2) = (a_1, a_2).$$

(3) Naturally, the inverse of (a_1, a_2) is (a_1^{-1}, a_2^{-1}) :

$$(a_1, a_2) \odot (a_1^{-1}, a_2^{-1}) = (a_1 a_2^{-1}, a_2 a_2^{-1}) = (e_1, e_2).$$

Corollary 2.3.2. Let $\{G_i\}_{i\in I}$ be a family of groups for some non-empty (perhaps infinite) index set I. The set

$$\prod_{i \in I} G_i = \{ (g_i)_{i \in I} \mid g_i \in G_i \text{ for all } i \in I \},$$

where $(g_i)_{i\in I}$ denotes the sequence of g_i s as a touple, together with the law of composition \odot defined such that for all $(g_i)_{i\in I}$, $(h_i)_{i\in I} \in \{G_i\}_{i\in I}$,

$$(g_i)_{i\in I}\odot(h_i)_{i\in I}=(g_ih_i)_{i\in I}$$

is a group.

Corollary 2.3.3. Let $\{G_i\}_{i\in I}$ be a family of abelian groups for some non-empty index set I. The set

$$\bigoplus_{i \in I} G_i = \{(g_i)_{i \in I} \mid g_i \in G_i \text{ for all } i \in I, g_i \neq e_i \text{ for only finitely many } i \in I\},$$

where e_i denotes the neutral element of group G_i , together with the law of composition \odot given in Corollary 2.3.2, is a group. Furthermore, $\bigoplus_{i \in I} G_i = \prod_{i \in I} G_i$ when I is finite; otherwise, $\bigoplus_{i \in I} G_i$ is a proper subgroup of $\prod_{i \in I} G_i$.

Definition 2.3.4. Let $\{G_i\}_{i\in I}$ be a family of groups for some non-empty index set I. The group $\prod_{i\in I}G_i$ from Corollary 2.3.2 is called the direct product of the G_i s. If the G_i s are abelian, the group $\bigoplus_{i\in I}G_i$ from Corollary 2.3.3 is called the direct sum of the G_i s.

For a finite family of groups $\{G_1, G_2, \dots, G_n\}$, we can denote their direct sum as

$$G_1 \oplus G_2 \oplus \cdots \oplus G_n$$
.

2.4 Group action on a set

2.5 Sylow's theorem (?)

Solved exercises

Chapter 3

Rings and Fields

3.1 Rings

Definition 3.1.1. Let R be a set, and let + and \cdot be two laws of composition on R. The triple $(R, +, \cdot)$ is called a ring if

- (1) (R, +) is an abelian group;
- (2) · is associative; and
- (3) · is distributive over +, i.e. for all $x, y, z \in R$, we have

$$(x+y) \cdot z = x \cdot z + y \cdot z$$
 and $z \cdot (x+y) = z \cdot x + z \cdot y$.

Let $(R, +, \cdot)$ be a ring, and let $a, b \in R$. For the neutral element of R under +, we will use the notation 0 or 0_R ; for the inverse of a under +, we will use the notation -a; and for the composition $a \cdot b$, we will use the notation ab. We will also assume the conventional order of operations, i.e. that \cdot comes before +.

Proposition 3.1.2. Let $(R, +, \cdot)$ be a ring. Then,

- (1) for all $a \in R$, we have a(0) = 0a = 0; and
- (2) for all $a, b \in R$, we have

$$a(-b) = (-a)b = -(ab)$$
 and $(-a)(-b) = ab$.

Proof.

(1) We can rewrite 0 as 0 + 0 and use the distributive property:

$$a(0) = a(0+0) 0a = (0+0)a$$

$$a(0) = a(0) + a(0) 0a = 0a + 0a$$

$$a(0) - (a(0)) = a(0) + a(0) - (a(0)) 0a - (0a) = 0a + 0a - (0a)$$

$$0 = a(0) 0 = 0a.$$

(2) Note that for any $x, y \in R$, we have x = y if and only if x - y = 0. Thus, since

$$a(-b) + (ab) = a(-b+b) = a(0) = 0,$$

we have a(-b) = -(ab). Similarly, we can show (-a)b = (-ab). By substitution, we then see

$$(-a)(-b) - (ab) = (-a)(-b) + a(-b) = (-a+a)(-b) = 0(-b) = 0,$$

so $(-a)(-b) = ab$.

Definition 3.1.3. A ring $(R, +, \cdot)$ is called

- (1) commutative if \cdot is commutative;
- (2) a ring with identity if there exists some $u \in R$ such that for every $a \in R$, we have au = ua = a; or
- (3) an integral domain if it is a commutative ring with identity and for all $a, b \in R$, if ab = 0, then a = 0 or b = 0.

As with groups, we will also typically denote a ring $(R, +, \cdot)$ simply by its set R. We will also denote the element $u \in R$ from Definition 3.1.3 by 1 or 1_R .

Proposition 3.1.4. Let R be a ring with identity. Then,

- (1) the element $1 \in R$ is unique; and
- (2) if there exist $b, c \in R$ such that ab = ca = 1 for some $a \in R$, then b = c.

Proof.

- (1) Suppose there exist $u, v \in R$ such that for every $a \in R$, we have au = ua = a and av = va = a. Then, in particular, u = uv = v.
- (2) By the associative property, we see

$$b = 1b = (ca)b = c(ab) = c(1) = c.$$

Definition 3.1.5. Let R be a commutative ring with identity. An element $a \in R \setminus \{0\}$ is called a zero divisor if there exists some $b \in R \setminus \{0\}$ such that ab = 0.

Proposition 3.1.6. Let R be a commutative ring with identity. Then, the following are equivalent:

- (1) R has no zero divisors;
- (2) R is an integral domain;
- (3) for every $a, b, c \in R$ where $a \neq 0$, if ab = ac, then b = c.

3.1 Rings 31

Proof. Clearly, R is an integral domain if and only if R has no zero divisors. Now, let $a \in R \setminus \{0\}$ and suppose for all $b, c \in R$, we have

$$ab = ac$$

$$ab - ac = 0$$

$$a(b - c) = 0.$$

Since $a \neq 0$, we see by definition R is an integral domain if and only if this implies b - c = 0 or, equivalently, b = c.

Definition 3.1.7. Let R be a ring with identity. An element $a \in R$ is called a unit if there exists some $a^{-1} \in R$ such that $aa^{-1} = a^{-1}a = 1$. The set of units of R is denoted R^* .

Proposition 3.1.8. Let R be a ring with identity. Then, (R^*, \cdot) is a group.

Proof. We have three criteria for (R^*, \cdot) to be a group:

(1) Let $a, b \in \mathbb{R}^*$. Then, there exist some $a^{-1}, b^{-1} \in \mathbb{R}$ such that

$$aa^{-1} = a^{-1}a = 1$$
 and $bb^{-1} = b^{-1}b = 1$.

Since associativity follows from the ring, we have

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = a(1)a^{-1} = aa^{-1} = 1,$$

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}(1)b = b^{-1}b = 1.$$

Thus, \cdot is an associative law of composition on R^* .

- (2) For every $a \in R^*$, we have 1a = a(1) = a, so 1 is the neutral element.
- (3) By construction, a^{-1} is then the inverse of a.

Definition 3.1.9. A ring R is called a field if it is a commutative ring with identity and all its nonzero elements are units, i.e. $R \setminus \{0\} = R^*$.

Proposition 3.1.10. Let R be a ring with identity. Every unit of R is not a zero divisor.

Proof. Let $a \in R^*$. Then, there exists some $a^{-1} \in R$ such that $aa^{-1} = a^{-1}a = 1$. Suppose a is a zero divisor. Then, there exists some $b \in R \setminus \{0\}$ such that ab = ba = 0, so

$$(aa^{-1})b = (a^{-1}a)b = a^{-1}(ab) = a^{-1}(0) = 0$$
 and $(aa^{-1})b = 1b = b$,

which implies b = 0, a contradiction. Hence, a cannot be a zero divisor.

Corollary 3.1.11. Any field is an integral domain.

Theorem 3.1.12. Any finite integral domain is a field.

Proof. Let R be a finite integral domain, and let $a \in R \setminus \{0\}$. Consider the mapping

$$\begin{array}{cccc} f: & R & \to & R \\ & x & \mapsto & ax \end{array}.$$

Let $x, x' \in R$ such that ax = ax'. Since R is an integral domain, left cancellation implies x = x', so f is injective. Further, since f is an injective map between finite sets of the same cardinality, f is also surjective, so there exists some $b \in R$ such that $f(b) = ab = 1 \in R$, and since an integral domain is necessarily commutative, we also have ba = 1. Hence, a is a unit, so $R \setminus \{0\} = R^*$.

Definition 3.1.13. Let $(R, +, \cdot)$ be a ring, and let $S \subseteq R$. If $(S, +, \cdot)$ is a ring, it is called a subring of R.

Theorem 3.1.14. Let R be a ring, and let $S \subseteq R$, $S \neq \emptyset$. Then, S is a subring of R if and only if for every $a, b \in S$, we have $a - b \in S$ and $ab \in S$.

Do this proof!

Proof.

Definition 3.1.15. Let R be a ring with identity, and let

$$K = \{ n \in \mathbb{N} \mid \underbrace{1_R + \dots + 1_R}_{n \text{ times}} = 0 \}.$$

The number

$$\operatorname{char}(R) = \left\{ \begin{array}{ll} 0, & K = \varnothing \\ \min(K), & \text{otherwise} \end{array} \right.$$

is called the characteristic of R.

Proposition 3.1.16. The characteristic of an integral domain is either 0 or prime.

Do this proof!

Proof.

Homomorphisms of rings

Definition 3.1.17. Let $(R, +, \cdot)$ and (S, \oplus, \odot) be two rings. A mapping $\phi : R \to S$ is called a homomorphism of rings if for all $x, y \in R$, we have

$$\phi(x+y) = \phi(x) \oplus \phi(y) \quad \text{and} \quad \phi(x \cdot y) = \phi(x) \odot \phi(y).$$

A homomorphism of rings that is a bijection is called an isomorphism.

Proposition 3.1.18. Let $(R, +, \cdot)$ and (S, \oplus, \odot) be two rings. If there exists a homomorphism of rings $\phi : R \to S$, then there exists a group homomorphism $\psi : (R, +) \to (S, \oplus)$.

Do this proof!

Proof.

Proposition 3.1.19. Let $\phi: R \to S$ be a homomorphism of rings. Then, ϕ is an isomorphism if and only if there exists a unique isomorphism $\rho: S \to R$ such that $\rho \circ \phi = \mathrm{id}_R$ and $\phi \circ \rho = \mathrm{id}_S$.

3.2 Ideals 33

Do this proof!

Proof.

Definition 3.1.20. Let ϕ be a homomorphism of rings. The image and kernel of the underlying group homomorphism ψ from Proposition 3.1.18 are called the image and kernel of ϕ .

Proposition 3.1.21. Let $\phi: R \to S$ be a homomorphism of rings. Then,

- (1) $\operatorname{im}(\phi)$ is a subring of S;
- (2) $\ker(\phi)$ is a subring of R;
- (3) ϕ is injective if and only if $\ker(\phi) = \{0_R\}$;
- (4) ϕ is surjective if and only if $im(\phi) = S$; and
- (5) for every $x \in R$ and $y \in \ker(\phi)$, we have $xy \in \ker(\phi)$.

Proof. _____

Do this proof!

- 3.2 Ideals
- 3.3 Arithmetic in integral domains
- 3.4 Polynomials

Solved exercises