CHAPTER 02

삼각함수

삼각함수 역함수 역삼각함수

김 수 환 동의대학교 수학과

Contents

2.1 삼각함수

2.2 역함수

2.3 역삼각함수

60분법과 호도법

● 60분법:

- ▶ 양의 각도: 시계반대 방향으로 측정한 각도
- 음의 각도 : 시계 방향으로 측정한 각도
- ➤ 시초선 : 반직선 OX
- ➢ 동경: 반직선 OP

[그림 1-12] 시초선과 동경

▶ 호도법:

- 호의 길이를 이용하여 각을 표현하는 방법
- ▶ 반지름의 길이와 호의 길이가 동일한 중심각: 1(라디안:rad)

$$\theta : 360^{\circ} = r : 2\pi r$$

$$1 \text{(rad)} = \theta = \frac{180^{\circ}}{\pi} \approx 57.2958^{\circ}$$

[그림 4-4] 1라디안의 정의

60분법과 호도법

예제 1-21

그래프를 그려 다음 문제를 풀어라.

(a) 115°를 음의 각도로 설명하라.

(b) −35°를 양의 각도로 설명하라.

[표 1-1] 60분법과 호도법으로 표현한 각도

60분법	0°	30°	45°	60°	90°	120°	135°	150°	180°
호도법	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π
60분법	210°	225°	240°	270°	300°	315°	330°	360°	
호도법	$\frac{7}{6}\pi$	$\frac{5}{4} \pi$	$\frac{4}{3}\pi$	$\frac{3}{2}\pi$	$\frac{5}{3}\pi$	$\frac{7}{4}\pi$	$\frac{11}{6}\pi$	2π	

예제 1-22

다음 60분법의 각도를 호도법으로 표현하라.

(a) 15°

(b) 75°

삼각함수의 정의

● 삼각함수의 정의

$$\sin \theta = \frac{y}{r}, \cos \theta = \frac{x}{r}, \tan \theta = \frac{y}{x}$$

[그림 1-13] 각도와 삼각함수

2사분면	1사분면
3사분면	4사분면

	$\sin heta$	$\cos \theta$	$\tan \theta$
$ heta$ \subseteq 1사분면	+	+	+
$ heta$ \in 2사분면	+	_	_
$ heta$ \in 3사분면	_	_	+
$ heta$ \subseteq 4사분면	_	+	_

[그림 1-14] 평면의 영역 구분과 각 영역에서의 삼각함수 값

삼각함수의 정의

예제 1-23

다음 문제를 풀어라.

- (a) $\sin \theta = \frac{3}{5}$ 이고 θ 가 1사분면의 각일 때, $\cos \theta$ 와 $\tan \theta$ 를 구하라.
- (b) $\cos \theta = -\frac{12}{13}$ 이고 θ 가 3사분면의 각일 때, $\sin \theta$ 와 $\tan \theta$ 를 구하라.

 $\sin x$, $\cos x$ 와 $\tan x$ 를 이용하여

$$\csc x = \frac{1}{\sin x}$$
, $\sec x = \frac{1}{\cos x}$, $\cot x = \frac{1}{\tan x}$

을 정의한다. $\csc x$ 는 '코시컨트 x', $\sec x$ 는 '시컨트 x', $\cot x$ 는 '코탄젠트 x'라 읽는다.

삼각함수의 특수각

▶ 1사분면의 특수각에 대한 삼각함수 값

[표 1-2] 특수각에 대한 삼각함수 값

	특수각							
삼각함수	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$			
$\sin x$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$			
$\cos x$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$			
$\tan x$	$\frac{\sqrt{0}}{\sqrt{4}}$	$\frac{\sqrt{1}}{\sqrt{3}}$	$\frac{\sqrt{2}}{\sqrt{2}}$	$\frac{\sqrt{3}}{\sqrt{1}}$	정의 안 됨			

예제 1-24

다음 값을 구하라.

(a)
$$\csc \frac{\pi}{6}$$

(c)
$$\cot \frac{\pi}{4}$$

(b)
$$\sec \frac{\pi}{3}$$

(d)
$$\csc \frac{\pi}{4}$$

삼각함수의 그래프

● 삼각함수의 기본 성질

주기함수의 정의 p가 0이 아닌 상수라 하자. 정의역 내의 임의의 점 x에 대해 f(x) = f(x+p)가 성립하면 함수 f(x)는 p를 주기로 하는 **주기함수**라 한다.

▶ 삼각함수의 주기

 $y = \sin x$ 와 $y = \cos x$ 는 주기가 2π 인 주기함수이고, $y = \tan x$ 는 주기가 π 인 주기함수이다.

삼각함수의 그래프

[그림 1-15] 주기성을 갖는 삼각함수

삼각함수의 주기

▶ 변형된 삼각함수의 주기

- $y = \sin ax$ 이면, 이 함수의 주기는 $\frac{2}{a}\pi$ 이다.
- $y = \cos bx$ 이면, 이 함수의 주기는 $\frac{2}{b}\pi$ 이다.
- $y = \tan cx$ 이면, 이 함수의 주기는 $\frac{\pi}{c}$ 이다.

예제 1-25

다음 함수의 주기를 구하라.

(a)
$$y = \sin 4x$$

(c)
$$y = \cos \frac{3}{2}x$$

(b)
$$y = \sin \frac{1}{4} x$$

(d)
$$y = \tan \frac{4}{3}x$$

삼각함수의 최댓값과 최솟값

 \triangleright 삼각함수의 최댓값과 최솟값 $: \sin x$ 와 $\cos x$ 모두 최댓값 1과 최솟값 -1을 가짐

How to 1-5 변형된 형태의 사인함수의 최댓값과 최솟값을 구하는 방법

- ① $y = \sin ax$ 는 사인함수의 주기만 바뀐 것이므로 이 함수의 최댓값은 1, 최솟값은 -1이다.
- ② $y = \sin a(x-b)$ 는 $y = \sin ax$ 를 x축 방향으로 b 만큼 평행이동한 것이므로, 이 함수의 최댓값은 1 , 최솟값은 -1이다.
- ③ $y = c \sin a(x-b)$ 는 최댓값 1, 최솟값 -1을 갖는 $y = \sin a(x-b)$ 에 상수 c 가 곱해진 것이므로, 최댓값은 |c|, 최솟값은 -|c|이다.
- 4 $y = c \sin a(x-b) + d$ 는 $y = c \sin a(x-b)$ 의 그래프가 y축 방향으로 d 만큼 평행이동한 것이 므로, 최댓값은 |c|+d, 최솟값은 -|c|+d이다.

삼각함수의 대칭성

예제 1-26

다음 함수의 최댓값과 최솟값을 구하라.

(a)
$$y = \sin \frac{1}{4} x$$

(b)
$$y = \cos 3(x-1)$$

(c)
$$y = 3 \sin 2x$$

(d)
$$y = 2\cos\frac{1}{2}(x+1) + 3$$

▶ 삼각함수의 대칭성

기함수와 우함수의 정의

- ① f(-x) = -f(x)이면 f(x)를 기함수라 한다.
- ▶ 함수의 그래프를 그렸을 때 그 그래프가 원점 대칭인 경우
- ② f(-x) = f(x)이면 f(x)를 우함수라 한다.
 - ▶ 그래프가 y축 대칭인 경우

삼각함수의 기본 성질

예제 1-27

다음을 간단히 하라.

(a) $\sin(-x)$

(b) $\cos (-x)$

(c) tan(-x)

예제 1-28

다음 함수가 기함수인지 또는 우함수인지 판정하라.

(a)
$$f(x) = x^3 + \sin x$$
 (b) $g(x) = x^2 + \cos x$ (c) $h(x) = x \tan x$

(b)
$$g(x) = x^2 + \cos x$$

(c)
$$h(x) = x \tan x$$

삼각함수에서 는 제곱의 위치에 따라 의미가 다름

- ① $y = \sin(x^2)$ 은 괄호를 없애고 $y = \sin x^2$ 으로 나타낸다.
- ② $y = (\sin x)^2$ 은 괄호를 없애고 $y = \sin^2 x$ 로 나타낸다.

삼각함수의 기본 성질

예제 1-29

다음 함수가 기함수인지 또는 우함수인지 판정하라.

(a)
$$f(x) = \sin x^2$$

(b)
$$g(x) = \sin^2 x + x$$

▶ 삼각함수 관련 문제를 풀 때 반드시 알아야 할 공식

$$\sin^2 x + \cos^2 x = 1$$

2
$$1 + \tan^2 x = \sec^2 x$$

3
$$1 + \cot^2 x = \csc^2 x$$

역함수

● 역함수

역함수의 정의 $f: X \to Y$ 가 전단사함수이면 임의의 $y \in Y$ 에 대해 f(x) = y가 되는 단 하나의 x가 대응한다. 함수 $g: Y \to X$ 를 g(y) = x라 하면, g를 함수 f의 역함수라 정의하고, 이를 f^{-1} 로 나타낸다.

[그림 1-16] 역함수의 정의

역함수

How to 1-6 역함수를 구하는 방법

- ① 주어진 함수 f 가 전단사함수인가를 확인한다.
- 2 정의역의 변수 x와 치역의 변수 y를 맞바꾼다.
- **3** 식을 y에 대해 정리하면 그 결과가 역함수가 된다.
- 4 만일 y에 대해 정리했을 때 식이 두 개가 나타나면 정의역과 치역을 이용하여 역함수를 결정한다.

예제 1-30

 $y = x^3 + 1$ 의 역함수를 구하라.

예제 1-31

 $y = x^2$ 의 역함수를 구하라.

역함수

정리 1-4 역함수의 정의역과 치역

 $f: A \to B$ 가 전단사함수이면, f^{-1} 이 존재하고 $f^{-1}: B \to A$ 이다.

예제 1-32

다음 문제를 풀어라.

- (a) 정의역이 $[0, \infty)$ 일 때, $f(x) = x^2$ 의 역함수를 구하라.
- (b) 정의역이 $(-\infty, 0]$ 일 때, $f(x) = x^2$ 의 역함수를 구하라.

● 역삼각함수

▶ 사인함수의 역함수

$$y = \sin x$$
의 정의역을 $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ 로 제한하면

$$\sin x: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow [-1, 1]$$

은 전단사함수가 된다.

[그림 1-17-0] 사인함수

[How to 1-6]의 역함수를 구하는 방법에 따라 x와 y를 맞바꾸면 $x = \sin y$ 가 되는데, 이 식을 $y = \sin^{-1} x$ 로 나타내며, '아크사인 x'라 읽는다. 이때

$$\sin^{-1} x \colon [-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

이다.

[그림 1-17] 사인함수의 역함수

예제 1-33

다음 값을 구하라.

(a)
$$\sin^{-1} \frac{1}{2}$$

(b)
$$\sin^{-1} 1$$

▶ 코사인함수의 역함수

 $y = \cos x$ 의 정의역을 $[0, \pi]$ 로 제한하면

$$\cos x : [0, \pi] \rightarrow [-1, 1]$$

은 전단사함수가 된다.

[How to 1-6]의 역함수를 구하는 방법에 따라 x와 y를 맞비 꾸면 $x = \cos y$ 가 되는데, 이 식을 $y = \cos^{-1} x$ 로 나타내며, '아크코사인 x'라 읽는다. 이때

$$\cos^{-1} x : [-1, 1] \to [0, \pi]$$

이다.

[그림 1-18-0] 코사인함수

[그림 1-18] 코사인함수의 역함수

예제 1-34

다음 값을 구하라.

(a)
$$\cos^{-1} \frac{1}{2}$$

(b)
$$\cos^{-1} 1$$

▶ 탄젠트함수의 역함수

 $y = \tan x$ 의 정의역을 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 로 제한하면

$$\tan x : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow (-\infty, \infty)$$

는 전단사함수가 된다.

[How to 1-6]의 역함수를 구하는 방법에 따라 x와 y를 맞바꾸면 $x = \tan y$ 가 되는데, 이 식을 $y = \tan^{-1} x$ 로 나타내며, '아크탄젠트 x'라 읽는다. 이때

$$\tan^{-1} x : (-\infty, \infty) \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

이다.

예제 1-35

다음 값을 구하라.

(a)
$$\tan^{-1} \sqrt{3}$$

(b) $\tan^{-1} 1$

Thank you!