Econometrics Problem Set 5

 $Gigi\ Lin$

October 17, 2018

Question 1: Chernozhukov et al (2015)

By censoring, we see that the effect of expenditure on alcohol consumption is much more pronounced, than without censoring. In this way, households that do not purchase alcohol are not included in the analysis; thus avoiding biasing the coefficient estimates downwards.

Quantile IV regression (uncensored)	Number	οf	obs	=
Endogenous variable = logexp				
Instrument(s) = logwages nkids				
First stage estimation = quantile regression				
Weighted bootstrap(10) confidence intervals	Level	(%)		=

alcohol	25	50	75
logexp			
_b	.0401086	.1346318	.1254976
mean	.0517212	.1628565	.084136
lower	.0229566	.1042195	1872512
upper	.1241916	.2183429	.4369495
logexp2			
_b	0029476	011193	0113
mean	0038306	0135181	007601
lower	010249	0186806	0394653
upper	0013758	0084022	.0154976
nkids			
_b	0066548	0136839	033145
mean	0066994	0178548	0383522
lower	0088402	026406	048844
upper	0031931	0118195	0266865
cons			
_b	1182446	3608853	2539255
mean	1536844	4371881	1371894
lower	3476746	5857071	-1.108983
upper	0749172	2799253	.6731477
hat			
_b	.0099471	.0183555	.0319904
mean	.0100943	.0094097	.0393337
lower	0040624	0056555	.0102596
	0040024		

Figure 1: Uncensored output statistics

Censored quantile IV regression	Number	of obs	=	1655
Censoring point = 0				
Endogenous variable = logexp				
Instrument(s) = logwages nkids				
First stage estimation = quantile regression				
Weighted bootstrap(10) confidence intervals	Level (%)	=	95

alcohol	25	50	75
logexp			
_b	.3216247	.2463935	.0946595
mean	.3284591	.3840601	.160221
lower	.0298652	.101788	2191503
upper	.6011192	.8430048	.8970088
logexp2			
_b	0282586	0213251	0087811
mean	0286405	0335717	0147132
lower	0539386	0754104	0822622
upper	0015171	0076445	.0187026
nkids			
_b	0097902	0161236	0344429
mean	0108346	0220546	0387873
lower	0169723	0277458	0506933
upper	0045927	0160467	0290805
_cons			
_b	8877962	6626081	1591261
mean	9119706	-1.035604	3379363
lower	-1.633326	-2.277361	-2.320282
upper	102954	2786761	.7495545
ehat			
_b	003214	.0123775	.0305732
mean	0020835	.000129	.0355202
lower	0232633	0224354	0095712
upper	.0153978	.0221342	.0657327

Figure 2: Censored output statistics $\,$

Question 2

Consider the random variables t_1, \ldots, t_n that are independent and follow an exponential distribution $f(t, \lambda)$ with a parameter λ . Solve for the MLE estimator of λ in a closed form.

To find the likelihood function, we can use

$$\mathcal{L}(\lambda|t_1,\dots,t_n) = \prod_{i=1}^n f(y_i) = \lambda e^{-\lambda y_1} \lambda e^{-\lambda y_2} \dots \lambda e^{-\lambda y_l} = \lambda^n e^{-\lambda} \sum_{i=1}^n y_i$$

If we take the log of the likelihood function:

$$l = ln(L(\lambda|y_1, y_2, \dots, y_n)) = nln\lambda - \lambda \sum_{i=1}^{n} y_i = 0$$

Taking the FOC wrt λ we get:

$$\frac{\partial l}{\partial \lambda} = (n \ln \lambda - \lambda \sum_{i=1}^{n} y_i) = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i = 0$$

Which gives us our final result of

$$\lambda = \frac{n}{\sum_{i=1}^{n} y_i}$$