Combinatorics

Thomas Fleming

November 19, 2021

Contents

Lecture 33: Cut Norm Proofs

Mon 07 May 2018 03:04

Let A be a $m \times n$ matrix with $\vec{x} \in \mathbb{R}^n$, $\vec{y} \in \mathbb{R}^m$ and $|\vec{x}|_{\infty} \leq 1$ and $|\vec{y}|_{\infty} \leq 1$. Then, we consider $\max |\langle A\vec{x}, \vec{y} \rangle| = ||A||_{\pi}$.

Proposition 0.1. We claim

$$||A||_{\square} \leq ||A||_{\pi}.$$

Proof. If S, T are submatrices inducing $||A||_{\square}$. That is

$$\left| \sum_{i \in T, j \in S} a_{i,j} \right| = ||A||_{\square}.$$

Letting \vec{x}, \vec{y} be indicator vectors for S, T respectively, we see this sum is simply

$$\left| \sum_{i \in T, j \in S} a_{ij} \right| = \left| \langle Ax, y \rangle \right| \le \max \left| \langle Ax, y \rangle \right|.$$

It is also possible to set an upper bound, $\|A\|_{\pi} \leq 4\|A\|_{\square}$. Let x,y be vectors such that $|\langle Ax,y\rangle| = \|A\|_{\pi}$. Then, we see we can fix k and perform a sort of division such that $\left|\sum_{i=1}^m \sum_{j=1}^n a_{ij}x_jy_i\right| = |Px_k + Q|$ for some matrices P,Q. Then, as this is a linear with $x_k \in [-1,1]$ we see the maximum modulus must be achieved on an endpoint, hence we can restrict $x \in \{-1,1\}^n$, $y \in \{-1,1\}^m$. Then dividing the columns of the matrix into two pieces, those for which $x_i = 1$ and those for which $x_i = -1$, and denoting them T^+, T^- and similarly dividing the rows into S^+, S^- according to the sign of y_i , we see

$$||A||_{\pi} = \left| \sum_{i,j} a_{ij} x_j y_i \right|$$

.

Then, we can split this sum into four pieces according to the elements belonging to T^+, S^+ , T^+, S^- and so on, we see each piece is less than $||A||_{\square}$ so triganle inequality yields the upper bound.

Lecture 34

Fri 19 Nov 2021 10:25

Notation. We will begin denoting a matrix of size $n \times m$ with n, m being the number of indices in the rows, columns respectively as an $R \times C$ matrix with set R of row indices and C of column indices. It is of note that this definition allows us to consider R, C to be unordered and hence we can imagine them in any convenient order we want.

Definition 0.1. Given an $R \times C$ matrix , then, for subsets $S \subseteq R, T \subseteq C, d \in R'$, we denote the new $R \times C$ matrix

$$\operatorname{Cut}(S, T, d) = (c_{ij}); c_{ij} = \begin{cases} d, & i \in S, j \in T \\ 0, & i \notin S \text{ or } j \notin T \end{cases}$$

We see this matrix is simply a scaled copy of $J_{|S|,|T|}$ embedded in the zero matrix of size $R \times C$.

First, we examine an ε , regular pair (R, C) of density d = d(R, C). Denote A to be the biadjacency matrix A(R, C). Applying ε -regularity yields the following result,

Proposition 0.2. $A(R,C) = dJ_{|R|,|C|} + W$ for some sufficiently exceptional matrix having $||W||_{\square} \le \varepsilon |R| |C|$ if and only if (R,C) is an ε -regular pair.

Proof. First the forward implication. Then, denote $B=A-dJ_{|R|,|C|}$. Then, $|b_{ij}|\leq 1$ for all i,j. Moreover, $b_{ij}=\left\{ \begin{array}{ll} -d, & a_{ij}=0\\ 1-d, & a_{ij}=1 \end{array} \right.$ Then, suppose $S\subseteq R,\,T\subseteq C.$ If $|S|\leq \varepsilon\,|R|$ or $|T|\leq \varepsilon\,|C|$, then

$$\left| \sum_{S,T} b_{ij} \right| \le |S| \, |T| \le \varepsilon \, |R| \, |C| \, .$$

In this case (R, C) is ε -regular.

Otherwise, if $|S| > \varepsilon |R|$ and $|T| > \varepsilon |C|$, then $|d(S,T) - d| < \varepsilon$. Expanding terms yields

$$\begin{aligned} |d\left(S,T\right)-d| &= \left|\frac{e\left(S,T\right)}{|S|\left|T\right|} - d\right| \\ &= |e\left(S,T\right) - d\left|S\right|\left|T\right|\right| \\ &< \varepsilon \left|S\right|\left|T\right| \\ &< \varepsilon \left|R\right|\left|C\right|. \end{aligned}$$

Then, note that $e\left(S,T\right)-d\left|S\right|\left|T\right|=\sum_{i\in S,j\in T}b_{ij}$ and the ε -regularity immediately follows. \Box

Now, we generalize this concept. Suppose A is an $R\times C$ matrix. Then, we wish to construct

$$A = D^{(1)} + \ldots + D^{(s)} + w$$

for some $D^{(t)} = \text{Cut}(R_t, C_t, d_t)$ for sets R_t, C_t and densities d_t and an exceptional set W with the following conditions holding,

- \bullet S is bounded,
- $|d_t|$ is bounded,
- and $||W||_{\square}$ is small.

More precisely,

Proposition 0.3. There are real $c_1>0$, $c_2>0$ so that for every $\varepsilon\in(0,1)$ with A being an $R\times C$ matrix having $\|A\|_\infty\leq 1$ we find

$$A = D^{(1)} + \ldots + D^{(s)} + w$$

having

- $||W||_{\square} \le \varepsilon |R| |C|$,
- $S < \frac{c_1}{\varepsilon^2}$,
- $\bullet \ \sup\{d_t: 1 \le t \le s\} \le 2.$