Regular Expressions for Languages over $\Sigma = \{0, 1\}$

(a) $\{w \in \Sigma^{\star} | w \text{ begins with a } 0 \text{ and ends with a } 1\}$

Regular Expression:

 $0\Sigma^{\star}1$

(b) $\{w \in \Sigma^{\star} | w ext{ contains at least four } 0s\}$

Regular Expression:

 $\Sigma^{\star}0\Sigma^{\star}0\Sigma^{\star}0\Sigma^{\star}0\Sigma^{\star}$

(c) $\{w \in \Sigma^{\star} | w ext{ contains the substring } 1101\}$

Regular Expression:

 $\Sigma^{\star}1101\Sigma^{\star}$

(d) $\{w \in \Sigma^{\star} | w \text{ has length at least 4 and its third symbol is a 0} \}$

Regular Expression: $\Sigma\Sigma0\Sigma\Sigma^{\star}$

(e)

 $\{w \in \Sigma^{\star} | w \text{ begins with a 0 and has even length, or begins with a 1 and has odd length}\}$

Regular expression:

 $0(\Sigma\Sigma)^{\star}|1(\Sigma\Sigma)^{\star}\Sigma$

(f) $\{\epsilon, 0\}$

Regular Expression:

 $\epsilon |0$

(g) The empty set

Regular Expression: Ø

(h) All strings over Σ

Regular Expression: Σ^*

(i) All strings over Σ except the empty string

Regular Expression: Σ^+

2. Strings in Languages over $\Sigma = \{a,b\}$

For each of the following languages, give...

- two strings that are members and
- two strings that are not members
- **(a) a^*b^*
 - members
 - \bullet ϵ
 - bbaa
 - non-members
 - *ab*
 - baab
- **(b)** $a(ab)^*b$
 - members
 - *ab*
 - *abb*
 - non-members
 - *ba*
 - *aa*
- (c) $a^+ \cup b^+$
 - members
 - a

- *bb*
- non-members
 - *ϵ*
 - *ab*
- (d) (aba)[⋆]
 - members
 - *aba*
 - ullet
 - non-members
 - abaa
 - ab
- (e) $\Sigma a \Sigma^* b \Sigma^* a \Sigma$
 - members
 - *aabaa*
 - babab
 - non-members
 - bbbaa
 - aaaaa
- (f) $aba \cup bab$
 - members
 - *aba*
 - bab
 - non-members
 - *ab*
 - *ba*
- (g) $b(\epsilon \cup a)b$
 - members
 - bb
 - bab
 - non-members
 - *ba*
 - *ab*

- (h) $\Sigma^{\star}(a \cup ba \cup bb)\Sigma^{\star}$
 - members
 - a
 - aaa
 - non-members
 - none; this language allows any string over Σ , as long as it contains at least one of $a,\,ba$, or bb somewhere in it.

3. Regularity of Languages over $\Sigma = \{a,b,c\}$

(a)
$$\{a^{2i}b^{j}|i,j\geq 1\}$$

- This language is **not** regular because it requires counting (to ensure the number of a's are in multiples of 2)
- Counting indicates a non-regular language. Finite automata does not have memory for this.

(b)
$$\{a^n b^m c^k | n, m, k \ge 1\}$$

 This language is regular because it doesn't require counting. (It only needs one of each member)

START
$$a \rightarrow q1$$
 $b \rightarrow q2$ $c \rightarrow q3$

(c)
$$\{a^nb^{n+m}c^k|n,m,m\geq 1\}$$

- This language is **not** regular. It requires counting the number of a's and b's to make sure that the number of b's is at least as many as the number of a's'.
- Counting indicates a non-regular language. Finite automata does not have memory for this.