BioPhysics Project

Download the FASTA sequence (UniProt ID) and convert it to PIR format.

Search for suitable templates of the sequence using BLASTp.

Select the top five templates for the next step and write the reason behind selecting these templates.

Gene Name: THC05 UniProt ID: Q13769

Download the FASTA sequence.

Fasta File:

>sp|Q13769

MSSESSKKRKPKVIRSDGAPAEGKRNRSDTEQEGKYYSEEAEVDLRDPGRDYELYKYTCQ ELQRLMAEIQDLKSRGGKDVAIEIEERRIQSCVHFMTLKKLNRLAHIRLKKGRDQTHEAK QKVDAYHLQLQNLLYEVMHLQKEITKCLEFKSKHEEIDLVSLEEFYKEAPPDISKAEVTM GDPHQQTLARLDWELEQRKRLAEKYRECLSNKEKILKEIEVKKEYLSSLQPRLNSIMQAS LPVQEYLFMPFDQAHKQYETARHLPPPLYVLFVQATAYGQACDKTLSVAIEGSVDEAKAL FKPPEDSQDDESDSDAEEEQTTKRRRPTLGVQLDDKRKEMLKRHPLSVMLDLKCKDDSVL HLTFYYLMNLNIMTVKAKVTTAMELITPISAGDLLSPDSVLSCLYPGDHGKKTPNPANQY QFDKVGILTLSDYVLELGHPYLWVQKLGGLHFPKEQPQQTVIADHSLSASHMETTMKLLK TRVQSRLALHKQFASLEHGIVPVTSDCQYLFPAKVVSRLVKWVTVAHEDYMELHFTKDIV DAGLAGDTNLYYMALIERGTAKLQAAVVLNPGYSSIPPVFQLCLNWKGEKTNSNDDNIRA MEGEVNVCYKELCGPWPSHQLLTNQLQRLCVLLDVYLETESHDDSVEGPKEFPQEKMCLR LFRGPSRMKPFKYNHPQGFFSHR

Converted into PIR format using:

```
# Reading FASTA file
fasta_file = "input.fasta"
record = SeqIO.read(fasta_file, "fasta")

# Writing PIR file
pir_file = "output.pir"
with open(pir_file, "w") as output_handle:
    SeqIO.write(record, output_handle, "pir")
```

output.pir:

>P1;THC05

sequence:THCO5:::::0.00: 0.00

MSSESSKKRKPKVIRSDGAPAEGKRNRSDTEQEGKYYSEEAEVDLRDPGRDYELYKYTCQ ELQRLMAEIQDLKSRGGKDVAIEIEERRIQSCVHFMTLKKLNRLAHIRLKKGRDQTHEAK QKVDAYHLQLQNLLYEVMHLQKEITKCLEFKSKHEEIDLVSLEEFYKEAPPDISKAEVTM GDPHQQTLARLDWELEQRKRLAEKYRECLSNKEKILKEIEVKKEYLSSLQPRLNSIMQAS LPVQEYLFMPFDQAHKQYETARHLPPPLYVLFVQATAYGQACDKTLSVAIEGSVDEAKAL FKPPEDSQDDESDSDAEEEQTTKRRRPTLGVQLDDKRKEMLKRHPLSVMLDLKCKDDSVL HLTFYYLMNLNIMTVKAKVTTAMELITPISAGDLLSPDSVLSCLYPGDHGKKTPNPANQY QFDKVGILTLSDYVLELGHPYLWVQKLGGLHFPKEQPQQTVIADHSLSASHMETTMKLLK TRVQSRLALHKQFASLEHGIVPVTSDCQYLFPAKVVSRLVKWVTVAHEDYMELHFTKDIV DAGLAGDTNLYYMALIERGTAKLQAAVVLNPGYSSIPPVFQLCLNWKGEKTNSNDDNIRA MEGEVNVCYKELCGPWPSHQLLTNQLQRLCVLLDVYLETESHDDSVEGPKEFPQEKMCLR LFRGPSRMKPFKYNHPQGFFSHR*

Search for suitable templates of the sequence using BLASTp against the PDB database:

Similar function: Templates with known functions similar to your target protein are preferable.

Experimental structures: If available, choose templates with experimentally determined three-dimensional structures.

High sequence identity: Templates with a higher sequence identity are generally more reliable for homology modeling.

I have only two templates.

High sequence identity: Choosing templates with a high percentage of sequence identity to target protein.

Coverage: The template covers a significant portion of the target sequence.

E-value: Lower E-values indicate better homology.

Select and align chains **7ZNL_E**, and **7APK_E** to model the missing regions(these templates are selected because they have almost 100% query coverage and around 99% identity with the query).

Using the best template structure, generate ten models. Evaluate all the models by calculating the DOPE score.

Best template structure: **7ZNL_E**Using 7znl, generate ten models:

■ 7znl	18-11-2023 01:41	PDB File	7,493 KB
Align_Model	20-11-2023 15:41	Text Document	3 KB
Align_Model	20-11-2023 15:37	PY File	1 KB
assess	29-10-2022 02:45	PY File	1 KB
assess	20-11-2023 15:58	Compiled Python	2 KB
automodel	29-10-2022 02:45	PY File	46 KB
automodel	20-11-2023 15:52	Compiled Python	53 KB
Multi_model	20-11-2023 16:42	Text Document	668 KB
Multi_model	20-11-2023 16:25	PY File	1 KB
pdb_95.pir	15-07-2022 05:56	PIR File	64,457 KB
THCO5 -7znlE.pap	20-11-2023 15:41	PAP File	3 KB
THCO5	20-11-2023 12:28	ALI File	1 KB
■ THCO5.B99990001	20-11-2023 16:27	PDB File	426 KB
THCO5.B99990002	20-11-2023 16:29	PDB File	426 KB
THCO5.B99990003	20-11-2023 16:30	PDB File	426 KB
THCO5.B99990004	20-11-2023 16:32	PDB File	426 KB

= Tucos possessos	20.44.2022.45.22	200 511	105.10
THCO5.B99990003	20-11-2023 16:30	PDB File	426 KB
THCO5.B99990004	20-11-2023 16:32	PDB File	426 KB
■ THCO5.B99990005	20-11-2023 16:34	PDB File	426 KB
■ THCO5.B99990006	20-11-2023 16:36	PDB File	426 KB
■ THCO5.B99990007	20-11-2023 16:38	PDB File	426 KB
■ THCO5.B99990008	20-11-2023 16:39	PDB File	426 KB
■ THCO5.B99990009	20-11-2023 16:41	PDB File	426 KB
THCO5.B99990010	20-11-2023 16:42	PDB File	426 KB
THCO5.D00000001	20-11-2023 16:27	D00000001 File	23 KB
THCO5.D00000002	20-11-2023 16:29	D00000002 File	19 KB
THCO5.D00000003	20-11-2023 16:30	D00000003 File	19 KB
THCO5.D00000004	20-11-2023 16:32	D00000004 File	22 KB
THCO5.D00000005	20-11-2023 16:34	D00000005 File	19 KB
THCO5.D00000006	20-11-2023 16:36	D00000006 File	21 KB
THCO5.D00000007	20-11-2023 16:38	D00000007 File	19 KB
THCO5.D00000008	20-11-2023 16:39	D00000008 File	17 KB
THCO5.D00000009	20-11-2023 16:41	D00000009 File	18 KB
THCO5 D00000010	20 11 2023 16:42	D00000010 File	23 KB

Evaluating all the models by calculating the DOPE score:

THCO5.B99990001.pdb 5361.35303 -42149.51953 0.11013 THCO5.B99990002.pdb 5960.03027 -39069.76953 0.05055 THCO5.B99990003.pdb 5831.55713 -42991.85547 0.08512 THCO5.B99990004.pdb 5287.98389 -43196.62500 0.20044 THCO5.B99990005.pdb 5772.12646 -42612.83984 0.11936 THCO5.B99990006.pdb 5198.93213 -43242.58594 0.16481 THCO5.B99990007.pdb 5998.61865 -42732.57422 0.06710 THCO5.B99990008.pdb 6179.66113 -41441.01563 0.13697 THCO5.B99990009.pdb 5930.36084 -40859.38672 0.06257		molpdf	DOPE score	GA341 score
THCO5.B99990002.pdb 5960.03027 -39069.76953 0.05055 THCO5.B99990003.pdb 5831.55713 -42991.85547 0.08512 THCO5.B99990004.pdb 5287.98389 -43196.62500 0.20044 THCO5.B99990005.pdb 5772.12646 -42612.83984 0.11936 THCO5.B99990006.pdb 5198.93213 -43242.58594 0.16481 THCO5.B99990007.pdb 5998.61865 -42732.57422 0.06710 THCO5.B99990008.pdb 6179.66113 -41441.01563 0.13697 THCO5.B99990009.pdb 5930.36084 -40859.38672 0.06257				
THCO5.B99990003.pdb 5831.55713 -42991.85547 0.08512 THCO5.B99990004.pdb 5287.98389 -43196.62500 0.20044 THCO5.B99990005.pdb 5772.12646 -42612.83984 0.11936 THCO5.B99990006.pdb 5198.93213 -43242.58594 0.16481 THCO5.B99990007.pdb 5998.61865 -42732.57422 0.06710 THCO5.B99990008.pdb 6179.66113 -41441.01563 0.13697 THCO5.B99990009.pdb 5930.36084 -40859.38672 0.06257		5361.35303	-42149.51953	0.11013
THCO5.B99990004.pdb 5287.98389 -43196.62500 0.20044 THCO5.B99990005.pdb 5772.12646 -42612.83984 0.11936 THCO5.B99990006.pdb 5198.93213 -43242.58594 0.16481 THCO5.B99990007.pdb 5998.61865 -42732.57422 0.06710 THCO5.B99990008.pdb 6179.66113 -41441.01563 0.13697 THCO5.B99990009.pdb 5930.36084 -40859.38672 0.06257	THC05.B99990002.pdb	5960.03027	-39069.76953	0.05055
THCO5.B99990005.pdb 5772.12646 -42612.83984 0.11936 THCO5.B99990006.pdb 5198.93213 -43242.58594 0.16481 THCO5.B99990007.pdb 5998.61865 -42732.57422 0.06710 THCO5.B99990008.pdb 6179.66113 -41441.01563 0.13697 THCO5.B99990009.pdb 5930.36084 -40859.38672 0.06257	THC05.B99990003.pdb	5831.55713	-42991.85547	0.08512
THCO5.B99990006.pdb 5198.93213 -43242.58594 0.16481 THCO5.B99990007.pdb 5998.61865 -42732.57422 0.06710 THCO5.B99990008.pdb 6179.66113 -41441.01563 0.13697 THCO5.B99990009.pdb 5930.36084 -40859.38672 0.06257	THC05.B99990004.pdb	5287.98389	-43196.62500	0.20044
THC05.B99990007.pdb 5998.61865 -42732.57422 0.06710 THC05.B99990008.pdb 6179.66113 -41441.01563 0.13697 THC05.B99990009.pdb 5930.36084 -40859.38672 0.06257	THC05.B99990005.pdb	5772.12646	-42612.83984	0.11936
THCO5.B99990008.pdb 6179.66113 -41441.01563 0.13697 THCO5.B99990009.pdb 5930.36084 -40859.38672 0.06257	THC05.B99990006.pdb	5198.93213	-43242.58594	0.16481
THC05.B99990009.pdb 5930.36084 -40859.38672 0.06257	THC05.B99990007.pdb	5998.61865	-42732.57422	0.06710
	THC05.B99990008.pdb	6179.66113	-41441.01563	0.13697
THCOS R99990010 ndh 5//1 37500 -/3623 36719 0 08697	THC05.B99990009.pdb	5930.36084	-40859.38672	0.06257
111c03:1033330010:pub 3441:37300 43023:30713 0:00037	THCO5.B99990010.pdb	5441.37500	-43623.36719	0.08697

Model 10 has the best DOPE score. Because lower DOPE scores generally indicate better model quality.

Compare the DOPE score profile of the template and best-modelled structure and attach the profile plot.

Compare the RMSD of the best model and template structure (Attach the snapshot of superimposed structures - Basic).

Comparing the RMSD of the best model and template structure (Attach the snapshot of superimposed structures - Basic)

```
CmdLoad: "" loaded as "7znl".
CmdLoad: "" appended into object "THCO5.B99990010", state 2.
PyMOL>align template, model
Selector-Error: Invalid selection name "template".
template<--
PyMOL>align 7znl ,THCO5.B99990010
Match: read scoring matrix.
Match: assigning 11173 x 683 pairwise scores.
MatchAlign: aligning residues (11173 vs 683)...
MatchAlign: score 2759.000
ExecutiveAlign: 4145 atoms aligned.
ExecutiveRMS: 45 atoms rejected during cycle 1 (RMSD=47.61).
ExecutiveRMS: 18 atoms rejected during cycle 2 (RMSD=46.76).
ExecutiveRMS: 8 atoms rejected during cycle 3 (RMSD=46.43).
ExecutiveRMS: 1 atoms rejected during cycle 4 (RMSD=46.29).
ExecutiveRMS: 1 atoms rejected during cycle 5 (RMSD=46.27).
Executive: RMSD = 46.256 (4072 to 4072 atoms)
```


Refine the best-modelled structure using the Advanced Modelling technique using the top 5 templates. Generate ten models and calculate the DOPE score for each.

Got only two templates, using the advanced Modelling technique,

Generating ten models and calculating the DOPE score for each:

>> Summary of successfully	produced models	s:	
Filename	molpdf	DOPE score	GA341 score
THCO5.B99990001.pdb	14039.76172	-61091.00781	1.00000
THCO5.B99990002.pdb	13689.39844	-61583.10547	1.00000
THCO5.B99990003.pdb	14012.65527	-60554.16016	1.00000
THCO5.B99990004.pdb	15351.11328	-60020.52344	1.00000
THCO5.B99990005.pdb	15207.13086	-59362.60547	1.00000
THCO5.B99990006.pdb	13705.48730	-62052.34766	1.00000
THCO5.B99990007.pdb	13694.52148	-60961.15234	1.00000
THCO5.B99990008.pdb	13732.67090	-60762.07031	1.00000
THCO5.B99990009.pdb	15065.17383	-59361.82813	1.00000
THCO5.B99990010.pdb	13841.96680	-61761.55859	1.00000
Total CPU time [seconds]			: 812.53

Best model: THC05.B99990006.pdb

Attach a plot comparing the DOPE score profile of selected templates and the best model (Advanced).

Attach a plot comparing the DOPE score profile of the best model generated from basic and advanced modeling and write about their structural differences.

DOPE score profile of the best model generated from basic modeling:

Filename	molpdf	DOPE score	GA341 score
THC05.B99990001.pdb	5361.35303	-42149.51953	0.11013
THC05.B99990002.pdb	5960.03027	-39069.76953	0.05055
THC05.B99990003.pdb	5831.55713	-42991.85547	0.08512
THC05.B99990004.pdb	5287.98389	-43196.62500	0.20044
THC05.B99990005.pdb	5772.12646	-42612.83984	0.11936
THC05.B99990006.pdb	5198.93213	-43242.58594	0.16481
THC05.B99990007.pdb	5998.61865	-42732.57422	0.06710
THC05.B99990008.pdb	6179.66113	-41441.01563	0.13697
THC05.B99990009.pdb	5930.36084	-40859.38672	0.06257
THC05.B99990010.pdb	5441.37500	-43623.36719	0.08697

DOPE score profile of the best model generated from advanced modeling:

>> Summary of successfully	produced models	5:		
Filename	molpdf	DOPE score	GA341 score	
THC05.B99990001.pdb	14039.76172	-61091.00781	1.00000	
THC05.B99990002.pdb	13689.39844	-61583.10547	1.00000	
THCO5.B99990003.pdb	14012.65527	-60554.16016	1.00000	
THCO5.B99990004.pdb	15351.11328	-60020.52344	1.00000	
THCO5.B99990005.pdb	15207.13086	-59362.60547	1.00000	
THC05.B99990006.pdb	13705.48730	-62052.34766	1.00000	
THC05.B99990007.pdb	13694.52148	-60961.15234	1.00000	
THC05.B99990008.pdb	13732.67090	-60762.07031	1.00000	
THCO5.B99990009.pdb	15065.17383	-59361.82813	1.00000	
THC05.B99990010.pdb	13841.96680	-61761.55859	1.00000	
Total CPU time [seconds]			: 812.53	

The model using best modeling is less superimposed than advanced modeling.

Align all the selected templates with the best model obtained using basic and advanced modeling methods and show their RMSD differences.

The RMSD difference of advanced modeling is greater than that of basic modeling.

```
PyMOL>align 7znl, 7apk
Match: read scoring matrix.
Match: assigning 11173 x 9967 pairwise scores.
MatchAlign: aligning residues (11173 vs 9967)...
MatchAlign: score 49087.000
ExecutiveAlign: 71921 atoms aligned.
ExecutiveRMS: 1740 atoms rejected during cycle 1 (RMSD=6.32).
ExecutiveRMS: 3646 atoms rejected during cycle 2 (RMSD=2.55).
ExecutiveRMS: 4682 atoms rejected during cycle 3 (RMSD=1.90).
ExecutiveRMS: 4176 atoms rejected during cycle 4 (RMSD=1.55).
ExecutiveRMS: 4822 atoms rejected during cycle 5 (RMSD=1.30).
Executive: RMSD = 1.044 (52855 to 52855 atoms)
```

Align all the selected templates (7znl) with the best model(THCO5.B99) obtained using basic and advanced modeling methods

```
PyMOL>align THCO5.B99990006, 7znl
Match: read scoring matrix.
Match: assigning 683 x 11173 pairwise scores.
MatchAlign: aligning residues (683 vs 11173)...
MatchAlign: score 2759.000
ExecutiveAlign: 4145 atoms aligned.
ExecutiveRMS: 216 atoms rejected during cycle 1 (RMSD=19.80).
ExecutiveRMS: 237 atoms rejected during cycle 2 (RMSD=16.05).
ExecutiveRMS: 337 atoms rejected during cycle 3 (RMSD=13.79).
ExecutiveRMS: 249 atoms rejected during cycle 4 (RMSD=9.72).
ExecutiveRMS: 127 atoms rejected during cycle 5 (RMSD=6.87).
Executive: RMSD = 5.645 (2979 to 2979 atoms)
```


Align all the selected templates (7apk) with the best model(THCO5.B99990006) obtained using an advanced modeling method.

```
PyMOL>align THCO5.B99990006, 7apk
Match: read scoring matrix.
Match: assigning 683 x 9967 pairwise scores.
MatchAlign: aligning residues (683 vs 9967)...
MatchAlign: score 2752.500
ExecutiveAlign: 4214 atoms aligned.
ExecutiveRMS: 227 atoms rejected during cycle 1 (RMSD=19.26).
ExecutiveRMS: 256 atoms rejected during cycle 2 (RMSD=16.03).
ExecutiveRMS: 311 atoms rejected during cycle 3 (RMSD=13.65).
ExecutiveRMS: 236 atoms rejected during cycle 4 (RMSD=9.69).
ExecutiveRMS: 176 atoms rejected during cycle 5 (RMSD=7.16).
Executive: RMSD = 5.748 (3008 to 3008 atoms)
```


Align all the selected templates(7apk,7znl) with the best model(THCO5.B99990010) obtained using basic modeling method

```
PyMOL>align THC05.B99990010, 7apk

Match: read scoring matrix.

Match: assigning 683 x 9967 pairwise scores.

MatchAlign: aligning residues (683 vs 9967)...

MatchAlign: score 2752.500

ExecutiveAlign: 4214 atoms aligned.

ExecutiveRMS: 247 atoms rejected during cycle 1 (RMSD=18.20).

ExecutiveRMS: 301 atoms rejected during cycle 2 (RMSD=14.24).

ExecutiveRMS: 380 atoms rejected during cycle 3 (RMSD=11.41).

ExecutiveRMS: 256 atoms rejected during cycle 4 (RMSD=6.92).

ExecutiveRMS: 152 atoms rejected during cycle 5 (RMSD=3.98).

Executive: RMSD = 2.502 (2878 to 2878 atoms)
```


PyMOL>align THCO5.B99990010, 7znl

Match: read scoring matrix.

Match: assigning 683 x 11173 pairwise scores. MatchAlign: aligning residues (683 vs 11173)...

MatchAlign: score 2759.000

ExecutiveAlign: 4145 atoms aligned.

ExecutiveRMS: 239 atoms rejected during cycle 1 (RMSD=18.94). ExecutiveRMS: 287 atoms rejected during cycle 2 (RMSD=14.35). ExecutiveRMS: 381 atoms rejected during cycle 3 (RMSD=11.50). ExecutiveRMS: 248 atoms rejected during cycle 4 (RMSD=6.96). ExecutiveRMS: 142 atoms rejected during cycle 5 (RMSD=3.65).

Executive: RMSD = 2.328 (2848 to 2848 atoms)

