SCREAM minus iSCREAM

Side-Channel Resistant Authenticated Encryption with Masking

Vincent Grosso¹ <u>Gaëtan Leurent</u>²
François-Xavier Standert¹ Kerem Varici¹
Anthony Journault¹ François Durvaux¹
Lubos Gaspar¹ Stéphanie Kerckhof¹

¹UCL, Belgium & ²Inria, France scream@uclouvain.be

DIAC 2014

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 1/23

Authenticated Encryption

Many different ways to build authenticated encryption

Block cipher based

SCREAM design

●000000

- ▶ 2-pass: GCM, CCM, ...
- ▶ 1-pass: OCB, ...
- Nonce-misuse resistant: SIV, COPA, POET, ...
- Permutation based
 - SpongeWrap, DuplexWrap, MonkeyWrap, APE, ...
- Stream cipher + MAC
 - Encrypt-then-MAC, MAC-then-Encrypt, Encrypt-and-MAC
- Dedicated
 - Helix/Phelix, ALE, ...

Block cipher modes

- Block ciphers are very popular primitives
 - Efficient: lightweight block ciphers as small as stream ciphers
 - Versatile: modes for encryption, authentication, authenticated encryption, hashing, key derivation, ...
 - We (mostly) know how to build them: AES is a trusted standard
 - ► No attacks against AES with less than 2¹²⁸ data and time
- Need a mode of operation
 - To deal with messages of arbitrary length
 - To achieve specific security goals
 - Encryption: CBC, CFB, OFB, CTR
 - Authenticated Encryption: OCB, SILC, CLOC, OTR, COPA, JAMBU, ELmD, POET, ...
 - Most modes offer birthday security: there are attacks with 2⁶⁴ data

Birthday-bound security

Birthday bound security

SCREAM design

Most modes based on an *n*-bit primitive can only encrypt $2^{n/2}$ blocks securely

- Because collisions in the internal state reveal information
 - E.g., CBC collisions reveal plaintext XOR
- Because proofs require the PRF-PRP switching lemma
 - E.g. CTR mode is distinguishable after $2^{n/2}$ blocks

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 4/23

Birthday-bound security

Birthday bound security

Most modes based on an *n*-bit primitive can only encrypt $2^{n/2}$ blocks securely

- ▶ Modes with a 128-bit primitive (AES) have limited security
 - ► Google stores about 15EB (2⁶⁰ 128-bit blocks)
 - ► Internet traffic is about 1ZB/year (2⁶⁶ 128-bit blocks)

Solutions

SCREAM design

- ▶ Use a larger primitive: OMD, Minalpher, Sponges, ...
- ▶ Use beyond-birthday modes: CENC, SHELL
- ▶ Use a tweakable block cipher: Deoxys, Joltik, SCREAM

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 4/23

Birthday-bound security

Birthday bound security

Most modes based on an *n*-bit primitive can only encrypt $2^{n/2}$ blocks securely

- Modes with a 128-bit primitive (AES) have limited security
 - ► Google stores about 15EB (2⁶⁰ 128-bit blocks)
 - ► Internet traffic is about 1ZB/year (2⁶⁶ 128-bit blocks)

Solutions

- Use a larger primitive: OMD, Minalpher, Sponges, ...

Birthday-bound security

Birthday bound security

Most modes based on an *n*-bit primitive can only encrypt $2^{n/2}$ blocks securely

- ▶ Modes with a 128-bit primitive (AES) have limited security
 - ► Google stores about 15EB (2⁶⁰ 128-bit blocks)
 - ► Internet traffic is about 1ZB/year (2⁶⁶ 128-bit blocks)

Solutions

SCREAM design

- Use a larger primitive: OMD, Minalpher, Sponges, ...
- ▶ Use beyond-birthday modes: CENC, SHELL
- Use a tweakable block cipher: Deoxys, Joltik, SCREAM

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014

4/23

Birthday-bound security

Birthday bound security

Most modes based on an *n*-bit primitive can only encrypt $2^{n/2}$ blocks securely

- Modes with a 128-bit primitive (AES) have limited security
 - ► Google stores about 15EB (2⁶⁰ 128-bit blocks)
 - ► Internet traffic is about 1ZB/year (2⁶⁶ 128-bit blocks)

Solutions

- Use a larger primitive: OMD, Minalpher, Sponges, ...
- Use beyond-birthday modes: CENC, SHELL
- ▶ Use a tweakable block cipher: Deoxys, Joltik, SCREAM

Tweakable block cipher based AE modes

Definition (Tweakable block cipher – Liskov, Rivest, Wagner)

Family of permutation indexed by a key K (secret) and a tweak T (public)

For each tweak $T, x \mapsto E_K(T, x)$ is an independent PRF

- ► TAE: Tweakable Authenticated Encryption (Liskov, Rivest, Wagner)
 - Inspired by OCB
 - Tweak is Nounce+Counter
 - Full n-bit security

SCREAM design 0000000

Tweakable block cipher based AE modes

TAE Features

SCREAM design

- ► Fully parallelizable
- ▶ 128-bit security with 128-bit state
 - + key, nounce, checksum
- Low overhead for authentication (1TBC)
- Minimal extension
- Patent-free?

SCREAM design

TBC design

We want to design a tweakable block cipher that is efficient on wide range of platform and secure.

- Side-channel resistance necessary in many lightweight settings
- Usual approach:
- ▶ We use LS-Designs, with a reverse approach:
- Previous work: Zorro, PICARO

We want to design a tweakable block cipher that is efficient on wide range of platform and secure.

- Side-channel resistance necessary in many lightweight settings
 - Avoid your car keys / credit card being cloned
- Usual approach:

SCREAM design

- Design a secure cipher (AES, PRESENT, Noekeon, ...)
- Implement with side-channel countermeasures
- We use LS-Designs, with a reverse approach:
 - Use operations that are easy to mask
 - In order to design a secure cipher
- Previous work: Zorro, PICARO

Choice of operations

Important remark

SCREAM design 0000000

Logic gates are easier to mask than table-based S-boxes (If we target Boolean masking)

- Use bitsliced S-boxes (SERPENT, Noekeon, ...)
 - ▶ One word contains the msb (resp. 2nd bit, ...) of every S-box
 - Bitwise operations: 8 S-boxes in parallel using 8-bit words
 - Use a small number of non-linear gates
- We can use tables for the diffusion layer!

DIAC 2014

7/23

Choice of operations

Important remark

SCREAM design

Logic gates are easier to mask than table-based S-boxes (If we target Boolean masking)

- ▶ Use bitsliced S-boxes (SERPENT, Noekeon, ...)
 - ▶ One word contains the msb (resp. 2nd bit, ...) of every S-box
 - ▶ Bitwise operations: 8 S-boxes in parallel using 8-bit words
 - Use a small number of non-linear gates
- We can use tables for the diffusion layer!
 - Efficient, good diffusion
 - Easy to mask (linear)

- Mathematical description: SPN network
 - S-boxes

SCREAM design 000000

- With simple gate representation
- Linear diffusion layer
 - Mixes the full state
 - Binary coefficients
- Good design criterion: wide-trail

- Bitslice implementation:
 - S-box as a series of bitwise operations with CPU words
 - L-box tables for diffusion layer
 - Easy to mask (simple non-linear ops., complex linear ops.)

SCREAM design 000000

$$x \leftarrow P \oplus K$$

for $0 \le r < N_r$ do
 \triangleright S-box layer:
for $0 \le i < l$ do
 $x[i, \star] = S[x[i, \star]]$
 \triangleright L-box layer:
for $0 \le j < s$ do
 $x[\star,j] = L[x[\star,j]]$
 \triangleright Key addition:
 $x \leftarrow x \oplus k_r$
return x

State as a bit-matrix

S-box layer

L-box layer

Changes in SCREAM v3

SCREAM v3 uses the original TAE mode Mistakes in the initial mode (TAE variant)

[Lei & Siang]

2 iSCREAM removed
Problems with iSCREAM S-Box and L-Box

Improved S-Box
Better difference probability

Canteaut, Duval & Leurent]

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 9/23

- SCREAM v3 uses Mistakes in the ir
- 2 iSCREAM removed Problems with iSCREA
- 3 Improved S-Box
 Better difference probability

[Lei & Siang]

nder, Minaud & Rønjom]

Canteaut, Duval & Leurent1

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 9/23

Changes in SCREAM v3

SCREAM v3 uses the original TAE mode Mistakes in the initial mode (TAE variant)

[Lei & Siang]

2 iSCREAM removed
Problems with iSCREAM S-Box and L-Box

[Leander, Minaud & Rønjom]

3 Improved S-Box
Better difference probability

Canteaut, Duval & Leurent]

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 9/23

SCREAM v3 uses the original TAE mode Mistakes in the initial mode (TAE variant)

[Lei & Siang]

9/23

2 iSCREAM removed
Problems with iSCREAM S-Box and L-Box

[Leander, Minaud & Rønjom]

Improved S-Box
Better difference probability

[Canteaut, Duval & Leurent]

Whirlpool

DIAC 2014

10/23

Trade-off between S-Box properties and implementation cost

- Crypton v0.5
- ➤ Zorro
- Robin

- Fantomas

 - - - Iceberg

Crypton v1.0

Khazad

Results from [CDL SAC'15]:

Feistel

- ▶ $\delta(F) \ge 8$, tight
 - Requires S_1 , S_3 APN, S_2 perm. with $\delta(S_2) = 4$
- $\mathcal{L}(F) \geq 48$
 - $\mathcal{L}(F) \ge 64 \text{ if } \delta(F) < 32$

MISTY

- ▶ $\delta(F) \ge 8$, tight
 - Requires S_2 , S_3 APN, S_1 perm. with $\delta(S_1) = 4$
 - ► *F* is not a permutation!
- $\mathcal{L}(F) \geq 48$
 - $\mathcal{L}(F) \ge 64 \text{ if } \delta(F) < 32$
- Permutation: $\delta(F) \ge 16$, tight
- Exhaustive search over small implem. for APN function & perm, with $\delta = 4$

Results from [CDL SAC'15]:

Feistel

- ▶ $\delta(F) \ge 8$, tight
 - Requires S_1 , S_3 APN, S_2 perm. with $\delta(S_2) = 4$
- $\mathcal{L}(F) \geq 48$
 - $\mathcal{L}(F) \ge 64 \text{ if } \delta(F) < 32$

MISTY

- ▶ $\delta(F) \ge 8$, tight
 - ► Requires S_2 , S_3 APN, S_1 perm. with $\delta(S_1) = 4$
 - ► *F* is not a permutation!
- $ightharpoonup \mathcal{L}(F) \geq 48$
 - ▶ $\mathcal{L}(F) \ge 64 \text{ if } \delta(F) < 32$
- Permutation: $\delta(F) \ge 16$, tight
- Exhaustive search over small implem. for APN function & perm. with $\delta = 4$

Exhaustive search over small implementations

Permutation with $\delta = 4$

- Easy search
 - Re-use results from Üllrich et al.
- 9-instruction solutions
 - 4 non-linear
 - 4 XOR
 - 1 copy

4 NL gates is optimal

APN function

- Expensive search
 - No permutation filtering
 - 6k core-hours
- 10-instruction solutions
 - But 6 non-linear
- 11-instruction solutions
 - 4 non-linear
 - 5 XOR
 - 2 copy
- 4 NL gates is optimal

Exhaustive search over small implementations

Permutation with $\delta = 4$

APN function

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 12/23

```
function SBOX(W_0, ..., W_7)
                                                                              function InvSBox(W_0, ..., W_7)
                                                                                    t_0 = \neg((W_1 \wedge W_2) \oplus W_0)
     t_0 = (W_1 \wedge W_2) \oplus W_0
     t_1 = (W_1 \oplus W_3)
                                                                                    t_1 = (W_1 \oplus W_3)
     t_2 = W_2 \oplus t_0
                                                                                    t_2 = W_2 \oplus t_0
     W_4 = W_4 \oplus ((W_3 \oplus t_2) \wedge (W_2 \oplus t_1))
                                                                                    W_4 = W_4 \oplus ((W_3 \oplus t_2) \wedge (W_2 \oplus t_1))
     W_5 = W_5 \oplus t_2
                                                                                    W_5 = W_5 \oplus t_2
     W_6 = W_6 \oplus (W_3 \wedge t_0)
                                                                                    W_6 = W_6 \oplus (W_3 \wedge t_0)
     W_7 = W_7 \oplus (t_1 \wedge t_2)
                                                                                    W_7 = W_7 \oplus (t_1 \wedge t_2)
     t_0 = (W_4 \wedge W_5) \oplus W_6
                                                                                    t_0 = (W_4 \wedge W_5) \oplus W_6
     t_1 = (W_5 \vee W_6) \oplus W_7
                                                                                    t_1 = (W_5 \vee W_6) \oplus W_7
     t_2 = (W_7 \wedge t_0) \oplus W_4
                                                                                    t_2 = (W_7 \wedge t_0) \oplus W_4
     t_3 = (W_4 \wedge t_1) \oplus W_5
                                                                                    t_3 = (W_4 \wedge t_1) \oplus W_5
     W_0 = W_0 \oplus t_0
                                                                                    W_0 = W_0 \oplus t_0
     W_2 = W_2 \oplus t_1
                                                                                    W_2 = W_2 \oplus t_1
     W_1 = W_1 \oplus t_2
                                                                                    W_1 = W_1 \oplus t_2
     W_3 = W_3 \oplus t_3
                                                                                    W_3 = W_3 \oplus t_3
     t_0 = \neg((W_1 \wedge W_2) \oplus W_0)
                                                                                    t_0 = (W_1 \wedge W_2) \oplus W_0
     t_1 = (W_1 \oplus W_3)
                                                                                    t_1 = (W_1 \oplus W_2)
     t_2 = W_2 \oplus t_0
                                                                                    t_2 = W_2 \oplus t_0
     W_4 = W_4 \oplus ((W_3 \oplus t_2) \wedge (W_2 \oplus t_1))
                                                                                    W_4 = W_4 \oplus ((W_3 \oplus t_2) \wedge (W_2 \oplus t_1))
                                                                                    W_5 = W_5 \oplus t_2
     W_5 = W_5 \oplus t_2
     W_6 = W_6 \oplus (W_3 \wedge t_0)
                                                                                    W_6 = W_6 \oplus (W_3 \wedge t_0)
     W_7 = W_7 \oplus (t_1 \wedge t_2)
                                                                                    W_7 = W_7 \oplus (t_1 \wedge t_2)
```

		Implem.		Prop	erties
S-Box	Construction	^, V	\oplus	\mathcal{L}	δ
AES	Inversion	32	83	32	4
Whirlpool	Lai-Massey	36	58	64	8
CRYPTON	3-r. Feistel	49	12	64	8
iSCREAM v1	3-r. Feistel	12	24	64	16
SCREAM v1	3-r. MISTY (3/5 bits)	11	25	64	16
LS (unnamed)	Whirlpool-like	16	41	64	10
SCREAM v3	3-r. Feistel	12	27	64	8

SCREAM v3 S-box

- ► Only 3 extra operations (1 non-linear)
- ▶ Improved differential probability, no fixed points
- ▶ Inverse S-box almost for free

Choice of components:

- ▶ 8-bit S-box
 - Built from 3 smaller S-boxes (Feistel-like structure)
 - ▶ $Pr_{lin} = 2^{-2}$, $Pr_{diff} = 2^{-5}$, 12 non-linear gates
 - Differential trails must have less than 26 active S-Boxes
- ▶ 16-bit L-box
 - ► Branch number 8 (optimal for a binary matrix)
 - Orthogonal matrix: differential and linear properties equivalent
 - Built from QR[32,16,8]

Tweak/Key schedule

Security

- Add a tweak/key schedule to turn block cipher into tweakable block
 - ▶ 128-bit block
 - ▶ 128-bit key
 - 128-bit tweak
- Tweak and key have a similar role (cf. TWEAKEY framework)
- Must be secure against chosen-tweak attacks (≈ related-key)
- Use ideas from LED:

- One step is two rounds: B active S-Boxes
- At least half the steps are active with related-key

Security against Differential and Linear Cryptanalysis

- Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active
- Wide-trail strategy:

Setting	1	2	3	4	5	6	7		9	10	11	12
Single Key	0	8		16	16	24	24	32				
Related Key	0	0		8	8	16	16	16	24	24	24	32

- Fixed key ⊕ Chosen tweak ≈ Related key At least one half of the steps active
- Wide-trail strategy: every 2-round step has at least 8 active S-boxes.

Minimum number of active S-Boxes												
Setting	1	2	3	4	5	6	7	8	9	10	11	12
Single Key	0	8	8	16	16	24	24	32				
Related Key	0	0	8	8	8	16	16	16	24	24	24	32

Improved Security Analysis

- Components designed to make those simple trails expensive.
 - Combine analysis at step level, and analysis at S-box level
- Optimal trails have two third of the steps active (fixed key).
 - See submission for more details
- We recommend
 - ▶ 10 rounds for single key security
 - 12 rounds for related key security

Minimum number of active S-Boxes												
Setting	1	2	3	4	5	6	7	8	9	10	11	12
Single Key	0	8	14	20	28	35						
Related Key	0	0	8	14	14	22	28	28	36			

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 18/23

Hardware:

- The tweakable block cipher costs about the same as AES
- Low overhead for TAE mode
- Parallelism can be leveraged in a pipeline implementation

Micro-controller:

- Good performance of the TBC (< 8k cycles)
- Very good when masking is needed

► High-end CPU:

- Parallelism exploited with SIMD
 - Vector permute for the L-box
- Performance similar to AFS-GCM

(excluding hardware AES)

19/23

DIAC 2014

- Use large registers (128-bit) for bitsliced S-box
- Use vector permute instructions for L-box
 - 4-bit to 8-bit table with pshufb in SSSE3, vtbl in NEON
 - 16-bit to 16-bit table as 8 small tables
 - Constant time (no cache timing side-channel)

Results

- ► Fantomas has performances close to AES (excluding hardware AES)
- ► Tweak gives more security, requires more rounds (20 vs. 12)
- ▶ The TAE mode has a very small overhead
- Performances similar to AES-GCM

(excluding hardware AES)

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 20/23

Implementation: High-end CPUs

Software performance for long messages (cycles/byte)

	SCREAM v3	SCREAM v2	AES-GCM	AES
ARM Cortex A15	-	23.5	31.1	17.8
Atom	57	56	28.8	17
Nehalem	10.8	10.7	9.9	6.9
Ivy Bridge AES-NI	7.9	7.7	8.3	5.4
Ivy Bridge AES-NI			2.5	1.3

TODO

- ► AVX2 implementation (Haswell): currently 5.7 c/B
- ► AVX512-BW implementation (Xeon Skylake?)

SCREAM (UCL,Inria) SCREAM minus iSCREAM DIAC 2014 20 / 23

Implementation: AVR micro-controller

- ► TBC performance: ≈ 7700 cycles
 - Using 1kB table
 - Smaller tables possible with more cycles
- ▶ In many cases, side-channel protection will be required
 - Scream is very efficient with masking
 - Noekeon also very good (similar components)

Implementation: AVR micro-controller

SCREAM (UCL,Inria)

Implementation: Hardware

- We consider implementations with 128-bit datapath
 - Reasonable cost/performance trade-off
- Low amount of logic in one round
 - We can unroll one full step (2 cycles)
 - One step ≈ one AES round
 - ▶ Scream TBC ≈ AFS
- Low overhead for TAE mode
 - Few extra state variables

TAE Mode

- Fully parallelizable
- ▶ 128-bit security / 128-bit state
 - + key, nounce, checksum
- Low overhead (1TBC)
- Minimal extension
- ▶ Patent-free?

LS Tweakable Block Cipher

- Clean and simple design
 - SPN, Wide-trail
 - Simple bounds for trails
- Scalable
 - Hardware: small state
 - Microcontrollers: masking
 - High-end CPUs: vectorized

- High security, high performances
- Improved security margin in SCREAM v3
- The tweakable block cipher is also a useful primitive in itself.
 - Can be used with SCT mode for nonce-misuse resistance