

PHYSICS

Chapter 9

SISTEMA INTERNACIONAL

En Una investigación dijo que la causa original de la pérdida fue "el error de conversión de las unidades inglesas a unidades métricas" en una pieza del programa informático que operaba la nave desde la Tierra.

1.- SISTEMA INTERNACIONAL (SI)

Denominado también Sistema Internacional de medidas

Creado en 1960 por la Conferencia General de Pesas y Medidas, definió 6 unidades físicas fundamentales y en 1971 añadió la séptima, el mol.

Formado por: unidades básicas o fundamentales y unidades derivadas.

HELICO | THEORY 2. CLASIFICACIÓN DE LAS CANTIDADES FÍSICAS POR SU ORIGEN

A) Cantidades Físicas Fundamentales

- Sirven de base para expresar las demás cantidades físicas.
- Son independientes entre si.

Cantidad física fundamentales	Unidad básica o fundamental	Símbolo
Longitud	metro	m
Masa	kilogramo	kg
Tiempo	segundo	S
Intensidad de corriente eléctrica	ampere	Α
Temperatura	kelvin	K
Cantidad de sustancia	mol	mol
Intensidad luminosa	candela	cd

B) Cantidades Físicas Derivadas

• Son aquellas cantidades físicas que están expresadas en función de las cantidades físicas fundamentales.

Cantidad derivada física	Unidad	Símbolo
Área	metro cuadrado	m ²
Volumen	metro cúbico	m^3
Velocidad	metro por segundo	m/s
Aceleración	metro por segundo cuadrado	m/s ²
Fuerza	newton	N
Presión	pascal	Pa
Energía	joule	J
Potencia	watt	W

Los nombres de las unidades se escriben con minúsculas con sus respectivos símbolos a excepción de los que corresponden a nombres.

CORRETO	INCORRECTO
metro (m)	Metro
kilogramo (kg)	Kilogramo, kilo
ampere (A)	Ampere
newton (N)	Newton
watt (W)	WATT

El sistema internacional de unidades, hoy en día considera ______ cantidades físicas fundamentales, siendo la séptima unidad fundamental, ________, la última considerada en 1971.

¿Qué cantidades físicas fundamentales podríamos describir con los siguientes instrumentos?

1. <u>temperatura</u>

masa

3. longitud

4. <u>tiempo</u>

3

Indicar 2 cantidades físicas fundamentales, con su respectiva unidad de medida en el SI, que podemos utilizar para describir el gráfico que se muestra.

CANTIDAD FÍSICA FUNDAMENTAL	UNIDAD
masa	kilogramo
temperatura	kelvin

Indicar 2 cantidades físicas derivadas, con su respectiva unidad de medida en el SI, que podemos utilizar para describir el fenómeno que se esta realizando según el gráfico.

CANTIDAD FÍSICA DERIVADA FUERZO Velocidod Mewton metro por segundo

Relacionar:

- A) Temperatura
- B) Intensidad de corriente eléctrica
- C) Cantidad de sustancia
- D) Intensidad luminosa

Indicar la clase de cantidades físicas (fundamentales o derivadas) e indique su unidad en el SI.

CANTIDAD FÍSICA	CLASE	UNIDAD	
Energía	derivada	joule	
Longitud	fundamental	metro	
Aceleración	derivada	metro por segundo cuadrado	
Temperatura	fundamental	belvin	

7 El deportista intentará levantar los 110 kg que se muestran para lo cual tomo concentración de unos 20 s para luego elevarlo con una rapidez de aproximadamente 2 m/s, luego al soltarlo por seguridad al deportista se le registra la presión y su temperatura.

¿Qué cantidades físicas fundamentales y derivadas se han mencionado en el texto?

Cantidad física Cantidad física derivada fundamental 110 kg-->(masa) m/s-->velocidad presión 20 s -->(tiempo) temperatura

8

Pedro anota en una ficha de trabajo de laboratorio, los siguientes datos sobre el movimiento de los cuerpos.

Experiment o	Distancia (cm)	Tiempo (s)	Velocidad (m/s)
1	10	5	2
2	15	7,5	2
3	20	10	2
4	25	12,5	2

Indique la proposición correcta.

- A. La distancia y el tiempo son magnitudes físicas derivadas.
- B. La velocidad es una cantidad física que depende de las cantidades físicas fundamentales: distancia y tiempo.
- C. La distancia y la velocidad son cantidades físicas derivadas
- D. La velocidad es una cantidad física fundamental.

Se agradece su colaboración y participación durante el tiempo de la clase.

