Álgebra Conmutativa

Abraham Rojas

Índice general

I	Teoría básica	5							
1.	Ideales y módulos en anillos conmutativos 1.1. Ideales primos, maximales								
2.	Dos operaciones fundamentales								
	2.1. Localización								
	2.1.1. Cambios de base								
	2.2. Producto tensorial	10							
	2.3. Aplicaciones	11							
	2.3.1. Fibras de morfismos	11							
	2.3.2. Lema de Nakayama								
	2.3.3. Principios locales-globales	11							
3.	Algunos anillos importantes 1								
	3.1. Algunos dominios								
	3.2. Condición noetheriana								
	3.2.1. Anillos y módulos noetherianos	13							
	3.2.2. Artinianos	13							
4.	Anillos completos	15							
5.	Extensiones integrales								
	5.1. Propiedades	17							
	5.2. Grupos de automorfismos del anillos	17							
	5.3. Normalización de K -álgebras	17							
	5.4. Valuaciones	18							
	5.5. Regularidad	19							
II	Álgebra Homológica	21							
6.	Dimensión v multiplicidad	23							

4 ÍNDICE GE	ENERAI
-------------	--------

	6.1.	Primos asociados	23
	3121		 24
			- · 24
	6.2.		_ · 25
			26
			²⁷
			28
			29
		1	- 29
	0.,.	compreges de nezeda :	
7.	Heri	ramientas categóricas	31
	7.1.	Localización de categorías	31
8.	Cate	egorías Aditivas	33
		Objetos projetivos e injetivos	33
		8.1.1. Resoluciones	
	8.2.		34
			34
	8.3.		34
9.	Com	plejos en Categorías aditivas	35
10	.Los	funtores Ext y Tor	37
		•	37
		· · · · · · · · · · · · · · · · · · ·	37
11.	.Seqı	uencias espectrales	39
III	К-Т	Georía -	41
12 .	.sdfs		43

Parte I Teoría básica

Ideales y módulos en anillos conmutativos

Sea *A* un anillo conmutativo (con unidad). tengo miedo de las cosas que tienes que decirme, hbjhvjhvjbjhbjhvjhv sdfgoijdsofg

El **radical** de *I* es definido como

$$\sqrt(I) = a \in A \mid a^n \in I \text{ para algun } n \in \mathbb{N}.$$

Ejercicio 1 IJ, $I \cap J$, I + J, \sqrt{I} son ideales de A. Además, $IJ \subset I \cap J$.

Definimos el **anillo cociente** de A sobre el ideal I como el cociente de grupos abelianos A/I. Podemos darle una estructura de anillo, considerando la multiplicación $\overline{a}\overline{b}:=\overline{ab}$ (ejercicio fácil). De esta forma, la proyección $\pi:A\to A/I$ es un epimorfismo de anillos.

Ejercicio 2 (Teorema de isomorfismo) Sea ϕ un epimorfismo de anillos. ...

Teorema 1 (Lema de correspondencia) contenidos...

1.1. Ideales primos, maximales

Un ideal I es **primo** si satisface

$$x, y \in I$$
 implica $x \in I$ o $y \in I$.

El conjunto de los ideales primos de A es denotado por $\operatorname{Spec} A$.

Ejemplo 1

La **altura** de $\mathfrak{p} \in \operatorname{Spec} A$ es el supremo de $n \in \mathbb{N}$ tal que existe una cadena $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{l}_n = \mathfrak{p}$ en Spec , denotada por alt \mathfrak{p}

La **dimensión de Krull** (o simplemente, dimensión) de A es el supremo de las alturas de sus ideales primos, será denotada por $\dim A$.

Ejemplo 2 contenidos...

Teorema 2 El mapa $\phi:A\to B$ un mapa de anillos. La preimagen de un ideal primo es un ideal primo.

Un ideal es **maximal** si es maximal en el conjunto de los ideales de I, según la relación de inclusión.

Proposición 1 Sea I un ideal de A.

- 1. I es primo si y solo si A/I es un dominio.
- 2. I es primo si y solo si A/I es un cuerpo

En particular, todo ideal maximal es primo.

Ejemplo 3 la preimagen no preserva maximales excepto si el mapa es sobre

Teorema 3 Todo ideal propio y todo elemento de A^{\times} está contenido en un ideal maximal.

Un **anillo local** es aquel que posee un único ideal maximal. En el próximo capítulo, vamos a construir muchos ideales locales.

Un anillo **semilocal** es un anillo con una cantidad finita de ideales maximales. Entre estos, destacan los anillo artinianos.

Ejemplo 4 (Ideales radicales) Un anillo radical es aquel donde

1.2. Pre-álgebra Homológica

Sea

Teorema 4 (fundamental) Secuencias exactas cortas inducen secuencias exactas largas en homología.

Dos operaciones fundamentales

El producto tensorial y la localización son operaciones funtoriales entre módulos con importantes interpretaciones geométricas. En ambos casos, comenzaremos dando las definiciones básicas para luego pasar directamente a las *definiciones universales* que, como sabemos, facilitan los cálculos con isomorfismos. Terminaremos el capítulo dando ejemplos que son piezas clave en el desenvolvimiento de otras áreas matemáticas.

2.1. Localización

2.1.1. Cambios de base

Teorema 5 La localización (respecto a algún conjunto multiplicativo) es un funtor exacto.

Corolario 1 (Localización de morfismos de módulos)

Teorema 6 (Localización e ideales) Sean A un anillo $y \in A$ un conjunto multiplicativo, con mapa de localización $\rho: A \to S^{-1}A$.

- 1. Los ideales de $S^{-1}A$ son de la forma $S^{-1}I$ donde I es un ideal de A.
- *2.* Spec(ρ) *es inyectivo y tiene imagen*

$$D_S = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \cap S = \emptyset \}.$$

- 3. Tenemos una biyección
- 4. Sea $\mathfrak{p} \in \operatorname{Spec} A$, tenemos que

$$\dim A \ge \dim A_{\mathfrak{p}} + \dim A/\mathfrak{p}.$$

2.2. Producto tensorial

Sean M,N módulos. Sea P el módulo libre con base $M\times N$, sea R el submódulo generado por los elementos de la forma

- $lacktriangledown e_{(am,n)} ae_{(m,n)}$, $e_{(m,an)} ae_{(m,n)}$,
- $= e_{(m_1+m_2,n)} e_{(m_1,n)} e_{m_2,n},$
- \bullet $e-m, n_1+n_2-e_{m,n_1}-e_{m,n_2}$

El **producto tensorial** de M y N (sobre A) está definido por $M \otimes N = P/R$. La clase de (m,n) es denotada por $m \otimes n$. De esta manera, la operación $\otimes : M \times N \to M \cdot N$ es bilineal.

Teorema 7 (Propiedad universal) Para todo módulo T y todo mapa bilineal $\phi: M \times N \to T$ existe un único morfismo de módulos $f: M \cdot N \to T$ tal que $\phi = f \circ \otimes$

Teorema 8 (Exactitud a derecha) Si $M \to N \to P \to 0$ es una secuencia exacta, entonces la secuencia inducida es exacta:

$$M \otimes T \to N \otimes T \to P \otimes T \to 0$$

Isomorfismos básicos

- 1. $(M \otimes N) \otimes P \simeq M(\otimes N \otimes P)$
- 2. $A \otimes M \stackrel{\sim}{\to} M$, $a \otimes m \mapsto am$.
- 3. $M \otimes N \stackrel{\simeq}{\to} N \otimes M$,
- **4.** $M \otimes \left(\bigoplus_{i \in I} N_i\right) \stackrel{\sim}{\to} \bigoplus_{i \in I} (M \otimes N_i), m \otimes (n_i) \mapsto (m \otimes n_i)$
- 5. $M \otimes (A/I) \stackrel{\simeq}{\to} M/IM$, $m \otimes \overline{a} \mapsto \overline{am}$.
- 6. $S^{-1}A \otimes M \stackrel{\simeq}{\to} S^{-1}M$, $(a/s) \otimes m \mapsto (am)/s$.
- 7. $A[x] \cdot B \rightarrow B[x]$
- 8. $A/I \otimes A/J \simeq A/(I+J)$.

Ejemplo 5 producto tensorial de espacio vectoriales

Teorema 9 (cambios de base)

Teorema 10 El coproducto en la categoría de las A-álgebras es el producto tensorial sobre A.

2.3. APLICACIONES 11

2.3. Aplicaciones

2.3.1. Fibras de morfismos

Lema 1 Sea $\phi: A \to B$ un morfismo de anillos y sea $f = \operatorname{Spec}(\phi)$.

1.

$$f^{-1}(V(I)) = \operatorname{Spec}(B \otimes A/I)$$

2. Sea S un conjunto multiplicativo,

$$f^{-1}(D_S) = \operatorname{Spec}(B \otimes A/I)$$

Teorema 11 Existe una biyección natural

$$f^{-1}(\mathfrak{p}) = \operatorname{Spec} B \otimes k(\mathfrak{p})$$

Ejercicio 3 (Módulos y morfismos planos) contenidos...

2.3.2. Lema de Nakayama

Teorema 12 (Lema de Nakayama) Sea A un anillo y sea m um ideal tal que, para todo $x \in m$, 1 + x es invertible. Sea M un A-módulo, tenemos que:

- 1. Si $M = \mathfrak{m}M$ y es finitamente generado, entonces M = 0.
- 2. Si N_1 y N_2 son submódulos de M, con N_1 finitamente generado, entonces

$$N_1 \subset N_2 + \mathfrak{m} N_1$$
 implica que $N_1 \subset N_2$

Ejercicio 4 Sea (A, \mathfrak{m}, k) y sea M un A-módulo libre de rango finito. Tenemos que $\dim_k M/I$ es finito si y solo si existe un entero $k \geq 1$ tal que $\mathfrak{m}^k \subset I$.

Ejercicio 5 (usado en singularidades) A local tal que m es finitamente generado

- 1. Sea I un ideal. $\mathfrak{m}^k \subset I$ si y solo si $\mathfrak{m} \subset I + \mathfrak{m}^{k+1}$.
- 2. f_i genera \mathfrak{m}_k si y solo si $\langle \overline{f}_i \rangle_{\mathbb{R}} = \mathfrak{m}^k/\mathfrak{m}^{k+1}$.

En particular tenemos

Corolario 2 (Bases minimales) Sea (A, \mathfrak{m}, k) un anillo local. a_1, \ldots, a_n generan \mathfrak{m} (como ideal) si y solamente si $\overline{a}_1, \ldots, \overline{a}_n$ generan \mathfrak{mm}^2 como un k-espacio vectorial. En particular, $\delta(\mathfrak{m}) = \dim_k(\mathfrak{m}/\mathfrak{m}^2)$.

2.3.3. Principios locales-globales

Algunos anillos importantes

3.1. Algunos dominios

anillos de factorizción única (equivalencia, relación con elementos primos e irreducibles, son normales), dominios principales (submódulo de un f.g.), euclidianos, ejemplos

3.2. Condición noetheriana

3.2.1. Anillos y módulos noetherianos

Teorema 13 Si A es un anillo noetheriano, entonces $\dim A$ es finita

Ejercicio 6 En un anillo noetheriano, todo ideal posee solo un número finito de ideales primos minimales.

Teorema 14 (Caracterización) Sea $0 \to M' \to M \to M'' \to 0$ secuencia exacta de A-módulos. M es noetheriano (artiniano) si y solo si M' e M'' son noetherianos (artinianos). En particular, cocientes y localizaciones de módulos de módulos noetherianos (artinianos) son noetherianos (artinianos).

Corolario 3 Un módulo finitamente generado sobre un anillo noetheriano es noetheriano.

3.2.2. Artinianos

Teorema 15 (Módulos artinianos) Seja M un A-módulo.

- 1. $\log_A M < \infty$ si y solo si M es artiniano y noetheriano.
- 2. En el caso anterior, todas las secuencias de composición tienen la misma longitud.

aditividad

Teorema 16 (Anillos artinianos) Sea A un anillo artiniano.

- 1. Spec A es finito.
- 2. Todo ideal primo es maximal.

3.

$$A \simeq A_{\mathfrak{m}_1} \times \cdots A_{\mathfrak{m}_n}$$

donde \mathfrak{m}_i son los ideales maximales de A.

4. Dominios artinianos son cuerpos.

Anillos completos

Sean A un anillo, I un ideal y M un A-módulo.

Ejercicio 7 1. La unión disjunta de M/I^nM , $n \in \mathbb{N}_0$ (considerando cada cociente como la familia de las clases laterales), es una topología en M, al incluir el conjunto vacío.

2. Esta topologia es Hausdorff si y solo si $\bigcap I^n = (0)$.

Esta topología es la **topología** I-ádica de M.

Teorema 17 (Artin-Rees) Sea A un anillo noetheriano, sean $N \subset M$ A-módulos, con M finitamente generado. Dado un ideal I, la topologia I-ádica de N coincide con la restricción de la topología I-ádica de M en N.

Corolario 4 (Teorema de Intersección de Krull) Sea A un anillo noetheriano e I un ideal propio. Si A es local o si A es un dominio, entonces la topologia I-ádica es Hausdorff.

Ejemplo 6 (Álgebra de Tate)

Teorema 18 *El completamento es un funtor exato.*

Teorema 19 sea A un anillo noetheriano $I \subset A$ un idela y M un A-módulo finitamente generado. Tenemos que:

- 1. El mapa natural $M \otimes_A \hat{A} \to \hat{M}$ es un isomorfismo.
- 2. Sea J un ideal de A, entonces $\hat{J} = J\hat{A}$.
- 3. $\dim \hat{A} = \dim A$???

Extensiones integrales

Teorema 20 (Criterios de integridad) Sea $A \subset B$ una extensión de anillos y sea $b \in B$. Son equivalentes:

- 1. b es integral sobre A.
- 2. A[b] es una A-álgebra finita.
- 3. $A[b] \subset C$ para alguna A-subálgebra $C \subset B$.

Corolario 5 (Caracterización de extensiones integrales) 1.

5.1. Propiedades

Lema 2 (Elevador) contenidos...

Teorema 21 (Fibras integrales)

Falta going down... que será mostrado después

Ejemplo 7

Clausura integral... y propiedades

Proposición 2 Una álgebra finitamente generada sobre un anillo noetheriano es noetheriana (sobre sí misma). Localizaciones igual..

5.2. Grupos de automorfismos del anillos

5.3. Normalización de K-álgebras

Teorema 22 (Normalización de Noether) Sea K un cuerpo y sea A una K-álgebra finitamente generada. Entonces existen $x_1, \ldots x_n \in A$ algebraicamente independientes sobre K tal que A es finito sobre $K[x_1, \ldots x_n]$

Teorema 23 Sea K un cuerpo y sea A un dominio que es una K-álgebra finitamente generada. Luego:

- 1. $\dim A = \operatorname{gr.tr.}_K \operatorname{Frac} A$.
- 2. Para todo $\mathfrak{p} \in \operatorname{Spec} A$:

alt
$$\mathfrak{p} + \dim A/\mathfrak{p} = \dim A$$
.

3. Sea L una extensión de cuerpos finita de $\operatorname{Frac} A$. Tenemos que ic_L es un A-módulo finitamente generado, y también una K-álgebra finitamente generada.

Teorema 24 (Dimensión de fibras) Sean (A, \mathfrak{m}, k) y (B, \mathfrak{n}, l) noetherianos, sea $\phi: A \to B$ morfismo local. Sea (M_n) una filtración \mathfrak{q} —estable. Entonces

$$\dim B \le \dim A + \dim B \otimes_A k$$

con igualdad si B es fielmente plano sobre A.

Corolario 6 Sea A anillo noetheriano. Entonces dim $A[x_1, \ldots, x_n] = \dim A + n$.

Teorema 25 Hilbert's Nullstellensatz Sea K un cuerpo.

- 1. Si $K \subset L$ es una extensión de cuerpos tal que L es finitamente generado como K-álgebra, entonces la extensión es finita.
- 2. Sea A una K-álgebra finitamente generada sobre K. Sea $P \in \operatorname{Spec} A$. Entonces P es un ideal maximal si y solamente si $\dim_K A/P$ es finita.
- 3. Sea (A, \mathfrak{m}, k) que es un K-álgebra finitamente generada, entonces k es un extensión finita de K. Si K es algebraicamente cerrado, entonces k = K.

5.4. Valuaciones

Sea K un cuerpo y G un grupos abeliano totalmente ordenado. Una **valuación** de K con valores en G es una función $v:K^{\times}\to G$ tal que

- 1. v(xy) = v(x) + v(y),
- 2. $v(x + y) \ge \min\{v(x), v(y)\}.$

El **anillo de valuación asociado** a v es el subanillo local de K dado por $R = \{x \in K \mid v(x) \geq 0\}$; su ideal maximal está formado por los elementos con elementos cuya valuación es positiva, junto con el 0.

Si k es un subcuerpo de K tal que $v|_{k^{\times}}=0$, v es valuación de K/k, y R es el anillo de valuación de K/k.

5.5. REGULARIDAD 19

Un **anillo de valuación** es un dominio que el anillo asociado a alguna valuación de su cuerpo de fracciones.

Una valuación $v:K^{\times}\to G$ es **discreta** si $G=\mathbb{Z}$. La definición de **anillo de valuación discreta** es análoga a la anterior.

Sean (A, \mathfrak{m}, k_1) y (B, \mathfrak{n}, k_2) dos anillos locales dentro un cuerpo K. Decimos que B domina A si $A \subset B$ y $\mathfrak{n} \cap A = \mathfrak{m}$.

- **Teorema 26** 1. Sea K un cuerpo. Un anillo local R en K es una anillo de valuación de K si y solo si es un elemento maximal en el conjunto de los anillos locales en K, respecto a la relación de dominación.
 - 2. Todo anillo local en K está dominado por un anillo de valuación en K

Teorema 27 Sea (A, \mathfrak{m}, k) noetheriano de dimensión 1. Son equivalentes

- 1. A es un anillo de valuación discreta.
- 2. A es normal.
- 3. A es regular.
- 4. m es principal.

Un **dominio de Dedekind** es un dominio noetheriano normal de dimensión 1. Por el Teorema... y el anterior, cada localización en un ideal primo no nulo es un DVD.

Proposición 3 La clausura integral de un dominio de Dedekind en una extensión finita de su cuerpo de fracciones es también un dominio de Dedekind.

5.5. Regularidad

Un anillo local (A, \mathfrak{m}, k) noetheriano es dicho **regular** si $\delta(\mathfrak{m}) = \dim A = \dim_k(\mathfrak{m}/\mathfrak{m}^2)$.

Teorema 28 (Teorema de estructura de Cohen) $Si(A, \mathfrak{m}, k)$ es regular completo de dimensión n conteniendo un cuerpo, entonces

$$A \simeq k[[x_1,\ldots,x_n]].$$

Parte II Álgebra Homológica

Dimensión y multiplicidad

El **radical** de un módulo M es definido como el radical $\operatorname{Anu} M$, denotado por $\operatorname{rad} M$. Es claro que $\operatorname{rad}(R/\operatorname{Anu}) = \operatorname{rad}/\operatorname{Anu} M$. En particular, si A es local entonces $\mathfrak{m} = \operatorname{rad} M$.

6.1. Primos asociados

Sea A un anillo y M un A-módulo.

 $\mathfrak{p} \in \operatorname{Spec} A$ es un **primo asociado** de M si

$$existem \in M \text{ tal que } \mathfrak{p} = \operatorname{Anu} m$$

El conjunto de primos asociado es denotado por $\mathrm{Aso}_A M$ o $\mathrm{Aso}\, M$.

Ejercicio 8 (fácil e importante) 1. $\mathfrak{p} \in \operatorname{Aso} M$ si y solo si existe $A/\mathfrak{p} \hookrightarrow M$.

- **2.** Aso $(A/\mathfrak{p}) = \{\mathfrak{p}\}.$
- 3. $ZD(M) = \bigcup_{\mathfrak{p} \in \operatorname{Aso} M} \mathfrak{p}$.

Proposición 4 Sea A un anillo noetheriano y sea M un A-módulo finitamente no nulo. Luego aso $M \neq \emptyset$.

Proposición 5 Sea $0 \to M' \to M \to M'' \to 0$ una secuencia exacta. Luego

$$\mathrm{Aso}\,M'\subset\mathrm{Aso}\,M\subset\mathrm{Aso}\,M'\cup\mathrm{Aso}\,M''.$$

Teorema 29 (Cadenas primarias) Sea A anillo noetheriano y sea M un A-módulo finitamente generado. Luego existe una cadena de submódulos (llamada **primaria**) $0 = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_n = M$ tal que

$$M_{i+1}/M_i \simeq A/\mathfrak{p}_i \ con \ \mathfrak{p}_i \in \operatorname{spec} A$$

Además $Aso M \subset \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$, para cualquier cadena primaria como la anterior. En particular Aso M es finito.

Un primo asociado es llamado **encajado** si no es minimal en $\operatorname{Aso} M$ (por inclusión).

Ejemplo 8 (geometría) también sobre cadenas primarias y primos asociados en general

Lema 3 Sea A noetheriano y M finitamente generado,

$$\operatorname{Aso}_{A_{\mathfrak{p}}} M_{\mathfrak{p}} = \{\mathfrak{q}A_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Aso}_A M, \ \mathfrak{q} \subset \mathfrak{p}\}.$$

6.1.1. Descomposición primaria

Sea $\mathfrak{p}\operatorname{Spec} A$. Decimos que un submódulo propio P de M es \mathfrak{p} -primario si $\operatorname{Aso} M/P = \{\mathfrak{p}\}.$

La descomposición primaria es una versión débil de las factorización en factores primos y en anillos de Dedekind.

El caso más importante es M=A noetheriano y P es un ideal propio.

Lema 4 (Teorema chino de residuos primarios) Sea A noetheriano y sea M un A-módulo finitamente generado. Luego, existe A-módulos $E(\mathfrak{p})$, con Aso $E(\mathfrak{p}) = \{\mathfrak{p}\}$ y un encaje

$$M \hookrightarrow \prod_{\mathfrak{p} \in \operatorname{Aso} M} E(\mathfrak{p}).$$

Teorema 30 (Descomposición primaria) Sea A un anillo noetheriano y sea M un A-módulo fintamente generado. Dado un submódulo N de M:

$$N = \bigcap_{\mathfrak{p} \in \operatorname{Aso} M/N} Q(\mathfrak{p})$$

donde cada $Q(\mathfrak{p}) \subset M$ es un submódulo \mathfrak{p} -primario de M, que solo dependen M, N y \mathfrak{p} .

Ejemplo 9 no única.

6.1.2. Soporte

conjunto de los $\mathfrak p$ tal es que $M_{\mathfrak p} \neq 0$.

Lema 5 (Propiedades) 1. sop $M \subset V(\operatorname{Anu} M)$

- 2. aditividad en secuencias exactas
- 3. producto tensorial

4. $sop M = \bigcup_{\mathfrak{p} \in Aso M} V(\mathfrak{p})$. En particular $Aso M \subset sop M$ y comparten los mismos primos minimales.

Como aplicación tenemos el siguiente

Teorema 31 A noetheirano, m finitamente generado

- 1. $\log M < \infty \iff \operatorname{Aso} M \subset \operatorname{SpecMax} M \iff \operatorname{sop} M \subset \operatorname{SpecMax} M$.
- 2. Si K es algebraicamente cerrado $lon_{K[X_1,...,X_n]} M = dim_K M$. En particular, M es artiniano si y solo si es dimensión finita sobre K.

Ejemplo 10

Ejercicio 9 (importante en multiplicidad) Sea A anillo, I ideal y M módulo.

- 1. $sop(M/IM) \subset sop M \cap V(I)$, vale la igualdad si M es finatamente generado.
- 2. Si M es finitamente generado entonces

$$V(I + \operatorname{Anu} M) = \operatorname{sop}(M/IM) = V(\operatorname{Anu}(M/IM))$$

Definimos la **dimensión** del módulo un M no nulo por

$$\dim M = \sup\{r \in \mid \exists \mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_r \text{ en } \operatorname{sop} M\}.$$

Ejercicio 10 Suponga que M es noetheriano, luego $\dim M = \max \{\dim(R/\mathfrak{p}) \mid \mathfrak{p} \in \text{sop } M \text{ es minimal} \}.$

6.2. Anillos y módulos graduados

Sea (G, +) un monoide conmutativo. Un **anillo** G-**graduado** es un anillo A tal que

- 1. $A = \bigoplus_{g \in G} A_g$,
- 2. $A_g \cdot A_h \subset A_{g+h}$ para todo $g, h \in G$.

Los elementos de A_{g_o} son llamados **homogéneos de grado** g_0 . Si $a = \sum_{g \in G} a_g \in A$, tal que cada $a_g \in G$, llamamos a_{g_0} la **componente homogénea** de grado g de a.

Observe que cada A_g es un A_0 -módulo y A es una A_0 -álgebra. Denotamos $A_+ = \bigoplus_{g \in G^\times}$, que es un ideal de A.

Lema 6 Sea A un anillo G—graduado que es una A_0 —álgebra finitamente generada. Sea M un A—módulo finitamente generado. Luego las componentes homogéneas de M son A_0 -módulos finitamente generados y se anulan si n es pequeño.

Un morfismo $\phi:A\to B$ entre anillos G-graduados es un **morfismo gradua-do** si $\phi(A_q)\subset B_q$.

Sea A un anillo G-graduado. Un A-módulo M es un A-**módulo graduado** si $M = \bigoplus_{g \in G} M_g$ tal que $A_g \cdot M_h \subset M_{g+h}$. Las definiciones de elementos homogéneos, componentes homogéneas y morfismo graduado entre módulos graduados son análogas a las anteriores.

Un N un submódulo de M es un G-**submódulo graduado** si $N=\bigoplus_{g\in G}N\cap M_g$. En particular, un **ideal graduado** de A es un A-submódulo graduado de A. Definimos el A-módulo graduado M(d) como el A-módulo definido por $M(d)_g=M_{d+g}$ para todo $g\in G$.

- **Ejercicio 11** 1. Cocientes de módulos graduados son graduados, e inducen sequencias exactas corta de módulos graduados.
 - 2. El radical de un ideal homogéneo es homogéneo.

Ejemplo 11

Lema 7 Las siguientes condiciones son equivalentes:

- 1. I es homogéneo
- 2. $a \in I$ si y solo si cada componente homogénea de a está en I
- 3. I es generado por elementos homogéneos (posiblemente de diferentes grados).

6.3. Polinomio de Hilbert-Samuel

Sea A un anillo \mathbb{Z} -graduado tal que

- A_0 un anillo artiniano,
- A es una A_0 -álgebra finitamente generada.

Sea M un A-módulo graduado finitamente generado.

La **serie de Hilbert** de M está dada por

$$HS_M = \sum \operatorname{lon}(M_n)t^n.$$

Está bien definida pues M_0 es finitamente generado sobre A_0 (.), luego $lon_{A_0} M_n < \infty$ (.).

Veremos que está función coincide con un polinomio cuando n es grande.

Teorema 32 (Hilbert-Serre) Suponga que $M_n = 0$ para $n < n_0$ y $M_{n_0} \neq 0$. Luego existen $f(t) \in \mathbb{Z}[t]$, con $f(0) \neq 0$ y $k_i \geq 1$ tales que

$$PH(t) = \frac{f(t)}{t^{-n_0}(1 - t^{k_1}) \cdots (1 - t^{k_r})}$$

Corolario 7 Si $A = A_0[x_1, \dots x_n]$ con $x_i \in R_1$ entonces

$$PH_M = \frac{e(t)}{t^{n_0}(1-t)^d}$$

donde $e(t) \in \mathbb{Z}$, $e(0), e(1) \neq 0$ y $r \geq d \geq 0$. Además, existe $h(n) \in \mathbb{Q}[n]$ de grau d-1 tal que

$$l_{A_0}(M_n) = h_M$$
 para $n \ge \operatorname{gr} e(t) + n_0.$

6.4. Polinomio de Hilbert-Samuel

Una **filtración** $F^{\bullet}M$ de M es una cadena descendente infinita de submódulos $\cdots \supset F^nM \supset F^{n+1} \supset \cdots$.

Si $IF^nM \subset F^{n+1}M$ para todo n, es llamada I-filtración, y es I-estable si además existen i, j tales que $M = F^iK$ y $I^nF^jM = F^{n+j}$ para todo n > 0.

La **filtración** I-**ádica** está definida por $(I^nM)_{n\neq 0}$, definiendo $I^n=0$ si $n\leq 0$. Claramente es estable.

Considere los anillos graduados

$$\mathcal{R}(I) := igoplus_{n \in \mathbb{Z}} I^n \quad ext{ and } \quad G_I(R) := \mathcal{R}(I)/(\mathcal{R}(I)(-1)) = igoplus_{n \geq 0} I^n/I^{n+1}$$

llamados el **álgebra de Rees (extendida)** de I y el **anillo asociado** a I, respectivamente. Note que G_I es una (A/I)-álgebra.

Ejercicio 12 Si I es finitamente generado, entonces $\mathcal{R}(I)$ es una A-álgebra finitamente generada.

Sea $F^{\bullet}M$ una I-filtración, considere los A-módulos

$$\mathcal{R}\left(F^{\bullet}M
ight):=igoplus_{n\in\mathbb{Z}}F^{n}M\quad ext{ and }\quad G(M):=\mathcal{R}\left(F^{\bullet}M
ight)/\left(\mathcal{R}\left(F^{\bullet}M
ight)\left(-1
ight)
ight)$$

Note que $\mathcal{R}(F^{\bullet}M[m]) = \mathcal{R}(F^{\bullet}M)(m)$ and G(M[m]) = (G(M))(m).

La función de Hilbert-Samuel está definida por

$$HS\left(F^{\bullet}M,t\right) := \sum_{n>0} \ell\left(M/F^{n}M\right)t^{n}$$

cuando los coeficienes son finitos. Estaremos interesados en la filtracion ádica, en ese caso escribiremos $HS_{\mathfrak{q}}.$

Teorema 33 (Samuel) A anillo noetheriano y M A—módulo fintamente generado. Sea I ideal de A. Luego

$$HS_F(t) = \frac{e(t)}{t^{l-1}(1-t)^{d+1}}$$

donde $e(t) \in \mathbb{Z}[t]$ y $e(0), e(1) \neq 0$ y $l \in \mathbb{Z}$ y $r \geq d \geq 0$, además existe un polinomio $p \in \mathbb{Q}$ de grado d tal que $lon(M/M_i) = p(n)$ para $n \geq gr e(t) - l + 1$.

p es llamado **polinomio de Hilbert-Samuel**, denotado por $\lambda_F M(t)$. En el caso de la filtración I-ádica, será denotado por $\lambda_I M$

Corolario 8 (Relación entre polinomio de Samuel Hilbert) En el caso anterior, si $\lambda_I(n) - \lambda_F(n) \neq 0$, es un polinomio de grado $\leq d-1$ y coeficiente principal positivo. Luego, d y e(1) no dependen de la filtración escogida.

Proposición 6 Sea $0 \to M' \to M \to M'' \to 0$ una secuencia exacta de módulos noetherianos.

- 1. $\log(M/IM) < \infty \iff \log(M'/IM') < \infty \iff \log(M''/IM'') < \infty$.
- 2. $Si lon(M/IM) < \infty$ entonces

$$\operatorname{gr}[\lambda_I M'(n) - \lambda_I M(n) + \lambda_I M''(n)] \le \operatorname{gr} \lambda_I M'(n) - 1$$

y tiene coeficiente principal positivo, además

$$\operatorname{gr} \lambda_I M(n) = \max \{ \operatorname{gr} \lambda_I M'(n), \operatorname{gr} \lambda_I M''(n) \}$$

En el caso anterior, I es un **ideal paramétrico** de MEn el teorema anterior, g(n) es llamado **polinomio de Hilbert** de M.

6.5. Teorema de la dimensión de Krull

Sea A un anillo, M noetheriano no nulo, I ideal paramétrico. Sea $\mathfrak{m}=\operatorname{rad} M$ y $J=\operatorname{Anu}(M/IM)$.

Lema 8 $\lambda_I, \lambda_{\mathfrak{m}}$ existen y tienen el mismo grado, denotado por d(M).

Sea s(M) el menor s tal que existen $x_1, \ldots, x_s \in \mathfrak{m}$ tal que $\operatorname{lon}(M/\langle x_1, \ldots, x_s \rangle M) < \infty$. Caso $\operatorname{lon} M < \infty$ definimos s(M) = 0. Esos elementos son llamados **sistema de parámetros** para M, y forman un ideal paramétrico.

6.6. MULTIPLICIDAD 29

Lema 9 Sea A un anillo, M noetheriano no nulo semilocal, I un ideal paramétrico de M, sea x

Teorema 34 (Krull) Sea M un módulo noetheriano semilocal no nulo. Luego

$$\dim M = d(M) = s(M)z\infty$$

Corolario 9 (para secuencias regulares) sea $x \in \operatorname{rad} M$. Entonces

$$\dim(M/xM) \ge \dim M - 1,$$

con igualdad si y solo si $x \notin \mathfrak{p}$ para todo $\mathfrak{p} \in \operatorname{sop} M$, con $\dim(R/\mathfrak{p}) = \dim M$ (en particular, si x no es divisor de zero)

Teorema 35 (Ideal de Krull) Sea A un anillo noetheriano e I un ideal propio. Tenemos que, para todo ideal primo minimal de I, alt $\mathfrak{p} \leq \delta(I)$.

Corolario 10 *Para todo* (A, \mathfrak{m}, k) , $\dim A \leq \dim_k \mathfrak{m}/\mathfrak{m}^2$.

6.6. Multiplicidad

Por el corolario ... podemos definir la **multiplicidad** de I en M como

6.7. Complejos de Kozsul

Herramientas categóricas

7.1. Localización de categorías

Categorías Aditivas

Una categoria pre-aditiva es uma categoria tal que os $\mathrm{Hom}(A,B)$ possuem estrutura de grupo abeliano, e composição de morfismos é bilinear. Em particular, existem morfismos nulos.

Um funtor entra categorias preaditivas é **aditivo** se os mapas $F: \operatorname{Hom}(A,B) \to \operatorname{Hom}(F(A),F(B))$ são homomorfismos de grupos.

Proposición 7 *Numa categoria pre-aditiva, tudo produto finito é um coproduto, e vice-versa (chamado de biproduto).*

Uma **categoria aditiva** é uma categoria pre-aditiva que admite biprodutos finitos. Em particular, os biprodutos vazios são objetos zero.

Uma categoria abeliana é uma categoria aditiva tal que:

- 1. Todo morfismo possui núcleo e conúcelo,
- 2. todo monomorfismo (resp. epimorfismo) é o kernel (resp. cokernel) de um morfismo.

Um **complexo** numa categoria aditiva C é uma sequência de objetos $\{X_i\}$

8.1. Objetos projetivos e injetivos

Um objeto Q numa categoria é **injetivo** se para todo monomorfismo $f: X \to Y$ e todo morfismo $g: X \to Q$ existe um morfismo $h: Y \to Q$ tal que $h \circ f = g$. Uma categoria **tem suficientes injetivos** se para todo objeto X existe um monomorfismo $X \to Q$, com Q injetivo.

Um objeto P numa categoria é **injetivo** se para todo epimorfismo $e: E \to X$ e todo morfismo $f: P \to X$ existe um morfismo $h: P \to E$ tal que $e \circ h = f$. Uma categoria **tem suficientes projetivos** se para todo objeto A existe um epimorfismo $P \to A$, com P projetivo.

Proposición 8 Numa categoria abeliana,

- lacktriangle um objeto é injetivo se e somente se $\operatorname{Hom}(\cdot,Q)$ é exato
- lacktriangle um objeto é projetivo se e somente se $\operatorname{Hom}(\cdot,Q)$ é exato.
- 8.1.1. Resoluciones
- 8.2. Categoría Trianguladas
- 8.2.1. La categoría homotópica
- 8.3. Categorías derivadas

Capítulo 9 Complejos en Categorías aditivas

Los funtores Ext y Tor

Teorema 36 (Serre) Sea (A, \mathfrak{m}, k) noetheriano regular, tenemos que $A_{\mathfrak{p}}$ es regular para todo $\mathfrak{p} \in \operatorname{Spec} A$.

Teorema 37 (Auslander-Buchsbaum) *Todo* (A, \mathfrak{m}, k) *noetheriano regular es un DFU.*

Corolario 11 Todo dominio noetheriano regular es normal.

10.1. Cohen-Macaulay

10.2. Condición Gorenstein

Capítulo 11 Sequencias espectrales

Parte III

K-Teoría

Capítulo 12 sdfs