Analyse

Table des matières			Première partie
I	Séries numériques	1	Séries numériques
1	Quelques rappels et compléments sur les suites	1	On considère une suite (réelle ou complexe) $(u_n)_{n\in\mathbb{N}}$ et on étudie la somme infinie $\sum_{n=0}^{+\infty}u_n$.
II	Séries numériques	2	n=0
	•		Remarque 1. Question:
2	Séries à termes positifs	2	Est-ce que cette somme est bien définie, c'est-à-dire appartient à \mathbb{R} ou \mathbb{C} .
	2.1 Comparaison entre séries et intégrales généralisées	2	•
	2.2 Critères de comparaison	3	Exemple. $u_n = 1, \sum_{n=0}^{\infty} u_n = +\infty$
	2.3 Comparaison avec une suite géométrique	4	n=0
	2.4 Séries à termes de signe quelconque	4	$- u_n = n, \sum_{n=0}^{\infty} u_n = +\infty$
	2.4.1 Séries absolument convergentes	4	<i>n</i> =0 1 ∞
	2.4.2 Séries alternées		$-u_n = \frac{1}{n}, \sum_{n=0}^{\infty} u_n = +\infty$
	2.4.3 Règle d'Abel	5	$- u_n = \frac{1}{n}, \sum_{n=0}^{\infty} u_n = +\infty$ $- u_n = \frac{1}{n^2}, \sum_{n=0}^{\infty} u_n = \frac{\pi^2}{6}$

1 Quelques rappels et compléments sur les suites

Une suite $(u_n)_{n\in\mathbb{N}}$ converge s'il existe $l\in\mathbb{R}$ tel que $\forall \varepsilon>0,\ \exists N\in\mathbb{N},\ \forall n\geq N,\ |u_n-l|<\varepsilon.$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy si $\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ \forall m \geq N, \ |u_n - u_m| < \epsilon.$

Proposition 1. *Toute suite convergente est de Cauchy.*

Proposition 2. Dans \mathbb{R} ou dans \mathbb{C} , toute suite de Cauchy est convergente.

On dit que \mathbb{R} (ou \mathbb{C}) est un espace métrique complet.

Équivalents:

Si
$$u_n = n^2$$
 et $v_n = n^3$, on a $\lim_{n \to \infty} u_n = +\infty$ et $\lim_{n \to +\infty} v_n = +\infty$.
Cependant, $(v_n)_{n \in \mathbb{N}}$ est plus rapide que $(u_n)_{n \in \mathbb{N}}$. Les équivalents

servent à comparer des vitesses de convergence.

Définition 1. Deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont équivalentes si $\lim_{n\to\infty}\frac{u_n}{v_n}=1.$

On note $u_n \sim v_n$

Dans ce cas, les deux suites ont la même vitesse de convergence. Cela n'a aucun intérêt que si (u_n) tend vers $0, +\infty$ ou $-\infty$

Exemple. $Si \lim_{n \to \infty} a_n = 0$, alors,

$$-e^{a_n}-1\sim a_n$$

$$-e^{a_n}-1\sim a_n$$

Deuxième partie

Séries numériques

On prend une suite réelle (ou complexe) $(u_n)_{n\in\mathbb{N}}$. La somme infinie $\sum_{n\geq 0} u_n$ est la série de terme général u_n .

On lui associe la suite des sommes partielles $(S_n)_{n\in\mathbb{N}}$, définie par $S_n = \sum_{k=0}^n u_k.$

On dit que la série $\sum u_n$ converge si la suite $(S_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R} (elle a une limite et cette limite est réelle). Sinon, la série diverge.

Si la série converge, son reste est la suite $(R_n)_{n\in\mathbb{N}}$ définie par $R_n =$ $\sum_{k=n+1}^{+\infty} u_k \text{ et } \sum_{k=0}^{+\infty} \text{ est la somme de la série.}$ On a $S_n + R_n = \sum_{k=0}^{+\infty} u_k$.
Notons que $\lim_{n \to +\infty} R_n = 0$.

On a
$$S_n + R_n = \sum_{k=0}^{+\infty} u_k$$

Exercice. (Á savoir), la série géométrique $u_n = a^n$ avec $a \in \mathbb{R}$,

$$S_n = \sum_{k=0}^n u_k = \sum_{k=0}^n a^k = \frac{1 - a^{n+1}}{1 - a}$$

- Si a = 1, on a $u_n = 1$ pour tout entier naturel n, donc $\sum_{n \ge 0} u_n$
- Si a = -1, $S_n = \frac{1 (-1)^{n+1}}{2}$ n'a pas de limite et donc $\sum_{n \ge 0} u_n$ diverge.
- Si-1 < a < 1 (ou |a| < 1), $S_n = \frac{1-a^{n+1}}{1-a}$

En résumé, $\sum\limits_{n\geq 0}a^n$ converge si et seulement si |a|<1 et si |a|<1,

alors
$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$$

Proposition 3. *Critère de Cauchy :*

 $\sum_{n>0} u_n$ converge si et seulement si la suite $(S_n)_{n\in\mathbb{N}}$ converge. c'est-à-dire $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, \forall, \forall m \ge N, |S_n - S_m| < \varepsilon \text{ ou encore}$

Application :

La série harmonique $\sum_{n\geq 1} \frac{1}{n}$.

On montre que cette série est divergente.

On note
$$S_n = \sum_{k=1}^n \frac{1}{k}$$

Pour tout entier $n \ge 1$, on a:

$$S_{2n} - S_n = \frac{1}{n+1} + \dots + \frac{1}{2n} \ge \frac{1}{2n}$$
..

2 Séries à termes positifs

On suppose que $u_k \ge 0$ pour tout $n \in \mathbb{N}$ (ou du moins à partir d'un certain rang). Dans ce cas, la suite des sommes partiels $(S_n)_{n\in\mathbb{N}}$ est positive et croissante. Par conséquent, $(S_n)_{n\in\mathbb{N}}$ converge si et seulement si elle est majorée. Dans le cas contraire, on a $\lim_{n\to\infty} S_n = +\infty$.

Théorème 1. $\sum_{k\geq 0} u_n$ converge si et seulement si $(S_n)_{n\in\mathbb{N}}$ est majoré.

2.1 Comparaison entre séries et intégrales généralisées

Théorème 2. *Soit* $f : \mathbb{R} \to \mathbb{R}$, *une fonction décroissante et positive. Alors,* la suite $(U_n)_{n\in\mathbb{N}}$ définie par $U_n = \sum_{k=0}^n f(k) - \int_0^n f(t) dt$ converge.

Par conséquent, la série $\sum\limits_{n>0}f(n)$ et l'intégrale $\int_0^{+\infty}f(t)dt$ ont la même nature.

Démonstration. Pour tout $k \in \mathbb{N}$, on a :

$$f(k+1) \cdot 1 \le \int_{k}^{k+1} f(t) dt \le f(k) \cdot 1$$

On montre alors que $(U_n)_{n\in\mathbb{N}}$ est minorée par 0.

On a:

$$U_n = f(n) + \sum_{k=0}^{n-1} f(k) - \sum_{k=0}^{n-1} \int_k^{k+1} f(t) dt$$
$$= f(n) + \sum_{k=0}^{n-1} (f(k) - \int_k^{k+1} f(t) dt)$$

avec $f(n) \ge 0$ et $f(k) - \int_{k}^{k+1} f(t) dt \ge 0$. Donc, $U_n \ge 0$ pour tout $n \in \mathbb{N}$.

On montre maintenant que $(U_n)_{n\in\mathbb{N}}$ est décroissante.

$$U_{n+1} - U_n = \sum_{k=0}^{n+1} f(k) - \int_0^{n+1} f(t) dt - \sum_{k=0}^n f(k)$$
$$= f(n+1) - \int_n^{n+1} f(t) dt$$
$$\leq 0$$

Donc $U_{n+1} \leq U_n$.

En résumé, on a :

$$\int_0^n f(t)dt + U_n = \sum_{k=0}^n f(k)$$

avec $\lim_{n\to\infty} U_n = l \in \mathbb{R}$ Si $\int_0^{+\infty} f(t)dt$ converge, alors, $\lim_{n\to\infty} \int_0^n f(t)dt \in \mathbb{R}$ et donc $\lim_{n\to\infty}\sum_{k=0}^n f(k)\in\mathbb{R} \text{ Si } \int_0^{+\infty}f(t)dt \text{ diverge, alors, } \lim_{n\to\infty}\int_0^n f(t)dt=+\infty \text{ et}$ donc $\lim_{n\to\infty} \sum_{k=0}^{n} f(k) = +\infty$

Réciproquement, si la somme converge, alors l'intégrale converge et si la somme diverge, alors l'intégrale diverge.

Application:

Pour les séries de Riemann, si $\alpha \in \mathbb{R}$, $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Critères de comparaison

On considère deux suites positives $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$

Théorème 3. On suppose que $0 \le u_n \le v_n$ pour tout $n \in \mathbb{N}$, alors:

- $Si \sum_{n \le 0} v_n$ converge alors $\sum_{n \le 0} u_n$ converge $Si \sum_{n \le 0} v_n$ diverge alors $\sum_{n \le 0} u_n$ diverge

Démonstration.

$$S_n = \sum_{k=0}^n u_k$$

$$S_n' = \sum_{k=0}^n \nu_k$$

On a $0 \le S_n \le S'_n$

 \sum

Corrolaire 1. S'il existe a et b strictements positifs tels que $a \le \frac{u_n}{v_n} \le b$ pour tout $n \in \mathbb{N}$, alors $\sum_{n \ge 0} u_n$ et $\sum_{n \ge 0} v_n$ ont la même nature.

Démonstration.

$$av_n \le u_n \le bv_n$$

Corrolaire 2. Si on a $u_n \sim v_n$, alors $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ ont la même nature. De plus, si $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ convergent, alors les restes sont équivalents. $R_n = \sum_{k=n+1}^{\infty} u_k \sim R'_n = \sum_{k=n+1}^{\infty} v_k$

$$R_n = \sum_{k=n+1}^{\infty} u_k \sim R'_n = \sum_{k=n+1}^{\infty} v_k$$

Dans le cas où elles divergent, les sommes partielles sont équivalentes :

$$S_n = \sum_{k=0}^n u_k \sim S'_n = \sum_{k=0}^n v_k$$

Démonstration. Si $u_n \sim v_n$, alors, $\lim_{n \to \infty} \frac{u_n}{v_n} = 1$

Donc, $\exists N \in \mathbb{N}, \ \forall n \leq N, \ 0, 5 \leq \frac{u_n}{v_n} \leq 1, 5$

D'où
$$0.5v_n \le u_n \le 1.5v_n$$

Exemple.

2.3 Comparaison avec une suite géométrique

Rappel 1. Si $a \in \mathbb{R}$ (ou \mathbb{C}), alors $\sum_{n \ge 0} a^n$ converge si et seulement si |a| < 1. Et dans ce cas, on a;

$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$$

On suppose que $u_n \ge 0$ pour tout $n \in \mathbb{N}$.

Théorème 4. Règle de Cauchy On suppose que $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = l \ge 0$. Alors:

- Si l < 1, alors $\sum_{n \ge 0} u_n$ converge Si l > 1, alors $\sum_{n \ge 0} u_n$ diverge grossièrement

Remarque 2. *Si* l = 1, *tout peut arriver.* $u_n = \frac{1}{n^\alpha}$

$$(u_n)^{\frac{1}{4}} = (\frac{1}{n^{\alpha}})^{\frac{1}{4}}$$

$$= \frac{1}{n^{\frac{\alpha}{n}}}$$

$$= \frac{1}{e^{\frac{\alpha}{n}} \ln n}$$

$$= e^{-\frac{\alpha}{n} \ln n}$$

 $Comme \lim_{n \to +\infty} \frac{\ln n}{n} = 0$

On $a \lim_{n \to +\infty} e^{-\frac{\alpha}{n} \ln n} = e^0 = 1$. On $a \lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = 1$ pour tout α . mais $si \alpha > 1$, $\sum u_n$ converge et si $\alpha \leq 1$, $\sum u_n$ diverge

Démonstration. On a $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = l$, donc,

— Si l > 1,
On prend $\varepsilon > 0$, tel que $1 < l - \varepsilon$.

Il existe $N \in \mathbb{N}$ tel que $\forall n \geq N$, $1 < l - \varepsilon < (u_n)^{\frac{1}{n}}$ Donc $u_n > (l - \varepsilon)^n$ pour tout $n \geq N$.
Comme $l - \varepsilon > 1$, on a $\lim_{n \to \infty} (l - \varepsilon)^n = +\infty$ et donc $\lim_{n \to \infty} u_n = +\infty$

Théorème 5. Règle de d'Alembert On suppose que $u_n > 0$ à partir d'un certain rang.

On suppose de plus que $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l$

Alors:

- Si l < 1, alors $\sum u_n$ converge
- Si l > 1, alors $\sum u_n$ diverge grossièrement

Remarque 3. Si l = 1, on ne peut rien dire : $u_n = \frac{1}{n^{\alpha}}$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}$$

Démonstration. $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=l$

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \ \forall n \ge N, \ l - \varepsilon < \frac{u_{n+1}}{u_n} < l + \varepsilon$$

— Si l < 1, on prend $\varepsilon > 0$ tel que $l + \varepsilon < 1$. Il existe $N \in \mathbb{N}$ tel que $\forall n \ge N$, $0 \le \frac{u_{n+1}}{u_n} \le l + \varepsilon$. Si n > N, on a :

$$\prod_{k=N}^{n-1} \frac{u_{k+1}}{u_k} = \frac{u_n}{u_N} < (l+\varepsilon)^{n-N}$$

On obtient alors

$$0 \le u_n \le u_N$$
$$(l+\varepsilon)^{n-N}$$

— Idem

2.4 Séries à termes de signe quelconque

2.4.1 Séries absolument convergentes

Définition 2. On dit que la série $\sum_{n\geq 0} u_n$ est absolument convergente si $\sum_{n\geq 0} |u_n|$ converge.

Théorème 6. Si la série $\sum_{n\geq 0} u_n$ converge absolument alors elle converge.

 $\emph{D\'{e}monstration}. \ \sum\limits_{n\geq 0} |u_n|$ convergeant, la série vérifie le critère de Cauchy :

Si on prend $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, \ \forall p \in \mathbb{N}, \ \left| \sum_{k=n}^{n+p} |u_k| \right| < \varepsilon$$

On a donc, pour tout $n \ge N$, et pour tout $p \in \mathbb{N}$,

$$\left| \sum_{k=n}^{n+p} u_k \right| \le \sum_{k=n}^{n+p} |u_k| < \varepsilon$$

Donc la série $\sum\limits_{n\geq 0}u_n$ vérifie le critère de Cauchy, donc elle converge. $\ \Box$

Remarque 4. Attention, la réciproque est fausse :

Exemple.
$$u_n = \frac{(-1)^n}{n}$$

 $\sum_{n\geq 1} \frac{(-1)^n}{n} converge$
 $mais \sum_{n\geq 1} \left| \frac{(-1)^n}{n} \right| converge$

2.4.2 Séries alternées

Ce sont des séries de la forme $\sum_{n\geq 0} (-1)^n a_n$ où $a_n\geq 0$ pour tout $n\in\mathbb{N}$.

Théorème 7. Si la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante et converge vers 0, alors $\sum_{n\geq 0} (-1)^n a_n$ converge.

De plus, si on note
$$R_n = \sum_{k=n+1}^{\infty} (-1)^k a_k$$
, alors on $a | R_n | \le a_{n+1}$

Démonstration. La preuve sera faite en exercice

Exemple. $\sum_{n\geq 1} \frac{(-1)^n}{n}$ converge.

2.4.3 Règle d'Abel

Théorème 8. Soient deux suites $(\alpha_n)_{n\in\mathbb{N}}$ et $(u_n)_{n\in\mathbb{N}}$ qui vérifient :

- 1. $(\alpha_n)_{n\in\mathbb{N}}$ est positive, décroissante et converge vers 0.
- 2. $Il\ existe\ M > 0\ tel\ que$

$$\forall n \in \mathbb{N}, \left| \sum_{k=0}^{n} u_k \right| \leq M$$

Alors $\sum_{n\geq 0} \alpha_n u_n$ converge.

Démonstration. La preuve sera faite en exercice

Exemple.
$$\sum_{n\geq 1} \frac{\cos n}{n}$$
$$On \ a \frac{\cos n}{n} = \frac{1}{n} \cos n.$$

- $-(\frac{1}{n})_{n\geq 1}$ est positive, décroissante et converge vers 0.
- On montre qu'il existe M > 0 tel que pour tout $n \in \mathbb{N}^*$, on a:

$$\left| \sum_{k=1}^{n} \cos(k) \right| \le M$$

On écrit $cos(k) = \Re(e^{ik})$ Donc,

$$\left| \sum_{k=1}^{n} \cos(k) \right| = \left| \sum_{k=1}^{n} \Re(e^{ik}) \right|$$
$$= \left| \Re(\sum_{k=1}^{n} e^{ik}) \right|$$
$$= \left| \Re(\sum_{k=0}^{n} e^{ik}) - 1 \right|$$

On sait aussi que

$$\sum_{k=0}^{n} e^{ik} = \sum_{k=0}^{n} (e^{i})^{k} = frac1 - e^{i(n+1)}1 - e^{i}$$

Rappel 2. Si $z \in \mathbb{C}$, alors, $|\Re(z)| \le |z|$ et $|\Im(z)| \le |z|$ On en déduit :

$$\left| \sum_{k=1}^{n} \cos(k) \right| \le \left| \Re \left(\sum_{k=0}^{n} e^{ik} \right) \right| + 1 \le \left| \sum_{k=0}^{n} e^{ik} \right| + 1$$

Donc:

$$\left| \sum_{k=1}^{n} \cos(k) \right| \leq \left| frac1 - e^{i(n+1)} 1 - e^{i} \right| + 1 \leq frac |1 - e^{i(n+1)}| |1 - e^{i}| + 1 \leq frac |1| + |e^{i(n+1)}| + |e^{i(n$$

Exercice. Utilisation du Théorème d'Abel pour montrer le théorème des séries alternées :

$$\sum_{n\geq 0} (-1)^n a_n$$

 $avec(a_n)_{n\in\mathbb{N}}$ décroissante et converge vers 0.

Il suffit de vérifier qu'il existe M > 0 tel que

$$\forall n \in \mathbb{N}, \left| \sum_{k=0}^{n} (-1)^k \right| \leq M$$

Selon la parité de
$$n$$
, $\left|\sum_{k=0}^{n} (-1)^{k}\right|$ vaut 0 ou 1 .

$$Donc \left|\sum_{k=0}^{n} (-1)^{k}\right| \leq 1 \text{ pour tout } n \in \mathbb{N}$$