Assignment #3

UW-Madison MATH 421

GEOFF YOERGER March 2, 2021

Exercise #1: In this problem we investigate left and right hand limits which are defined as follows.

Definition. We write $\lim_{x\to a^+} f(x) = L$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that: if x > a and $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition. We write $\lim_{x\to a^-} f(x) = L$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that: if x < a and $0 < |x-a| < \delta$, then $|f(x) - L| < \epsilon$.

Prove the following.

Theorem. $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^-} f(x) = L$.

Proof. $(\lim_{x\to a} f(x) = L \implies \lim_{x\to a^+} f(x) = L \wedge \lim_{x\to a^-} f(x) = L)$:

Because $\lim_{x\to a} f(x) = L$, $\forall \epsilon > 0 \; \exists \delta > 0 : 0 < |x-a| < \delta \implies |f(x) - L| < \epsilon$

If $0 < |x - a| < \delta$, it follows that $x \neq a$. Thus either x > a or x < a. Then,

whenever x > a, $x > a \land 0 < |x - a| < \delta \equiv 0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \epsilon$. Thus, $\lim_{x \to a^+} f(x) = L$. Since $x \not< a$, $x < a \land 0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \epsilon$, holds because of the falsity of the implicator. Thus, $\lim_{x \to a^-} f(x) = L$.

Likewise, whenever x < a, $x < a \land 0 < |x - a| < \delta \equiv 0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \epsilon$. Thus, $\lim_{x \to a^-} f(x) = L$. Since $x \not> a$, $x > a \land 0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \epsilon$ holds, because of the falsity of the implicator. Thus, $\lim_{x \to a^+} f(x) = L$.

Thus, $(\lim_{x\to a} f(x) = L \implies \lim_{x\to a^+} f(x) = L \wedge \lim_{x\to a^-} f(x) = L)$.

 $(\lim_{x\to a^+} f(x) = L \wedge \lim_{x\to a^-} f(x) = L \implies \lim_{x\to a} f(x) = L):$

Because $\lim_{x\to a^+} f(x) = L$, $\forall \epsilon > 0 \; \exists \delta > 0 : x > a \land 0 < |x-a| < \delta \implies |f(x) - L| < \epsilon$.

Because $\lim_{x \to a^-} f(x) = L$, $\forall \epsilon > 0 \; \exists \delta > 0 : x < a \land 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$.

If $0 < |x - a| < \delta$, it follows that $x \neq a$. Thus either x > a or x < a. Then,

whenever $x > a, x > a \land 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon \equiv 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$.

Thus, $\lim_{x\to a} f(x) = L$.

Likewise, whenever x < a, $x < a \land 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon \equiv 0 < |x - a| < \delta \implies f(x) = \frac{L}{2}$

 $|f(x) - L| < \epsilon$. Thus, $\lim_{x \to a} f(x) = L$.

Thus, $(\lim_{x\to a} f(x) = L.$

Exercise #2: Consider the function

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ 1 & \text{if } x \text{ is rational.} \end{cases}$$

Using the ϵ/δ definition, prove that $\lim_{x\to a} f(x)$ does not exist for every real number a (and hence f is discontinuous at every real number).

Proof. Suppose for a contradiction that $\exists a : \lim_{x \to a} f(x) = L$.

Hence $\forall \epsilon > 0 \; \exists \delta > 0 : 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$.

Notice that $\forall x : f(x) \in \{0, 1\}.$

Let $\epsilon = min\{|L|, |L-1|\}.$

When f(x) = 1, $|f(x) - L| = |1 - L| = |L - 1| \not< \epsilon = |L - 1|$.

When f(x) = 0, $|f(x) - L| = |0 - L| = |L| < \epsilon = |L|$.

Thus, $\exists \epsilon$ where $\forall \delta \ 0 < |x-a| < \delta \nrightarrow |f(x)-L| < \epsilon$. Hence, $\exists a : \lim_{x \to a} f(x) = L$ is a contradiction, and $\forall a : \lim_{x \to a} f(x)$ DNE.

Exercise #3: Prove the following

- (a) The function f(x) = x is continuous.
- (b) If n is a natural number, then the function $f_n(x) = x^n$ is continuous.
- (c) If g is a polynomial, then g is continuous on \mathbb{R} .
- (d) If h is a rational function, then h is continuous at every point in its domain.

(Hint: b,c,d should follow quickly from results in class)

Proof of (a). "f(x) = x is continuous" means $\forall a \ \forall \epsilon > 0 \ \exists \delta > 0 : 0 < |x-a| < \delta \implies |f(x)-f(a)| < \epsilon$ Fix a. Fix ϵ . Let $\delta = \epsilon$. If $0 < |x-a| < \delta$, then $|f(x)-f(a)| = |x-a| < \delta = \epsilon$. Since ϵ was arbitrary, $\forall \epsilon > 0 \ \exists \delta > 0 : 0 < |x-a| < \delta \implies |f(x)-f(a)| < \epsilon$. Since a was arbitrary, $\forall a \ \forall \epsilon > 0 \ \exists \delta > 0 : 0 < |x-a| < \delta \implies |f(x)-f(a)| < \epsilon$.

Proof of (b). Because f(x) = x is continuous, and using the theorem proved in class, it follows from induction that $f(x) = x^2 = x \cdot x$ is continuous, $f(x) = x^3 = x^2 \cdot x$ is continuous, \dots Hence, $\forall n \in \mathbb{N} : f(x) = x^n$ is continuous.

Proof of (c). By definition, $g(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \cdots + a_n \cdot x^n$ for some numbers a_0, a_1, \dots, a_n . Because the functions $f(x) = a_0$, $f(x) = a_1$, \cdots , $f(x) = a_n$ are continuous, and the functions f(x) = x, $f(x) = x^2$, \cdots , $f(x) = x^n$ are continuous, it follows from the theorem proved in class that the functions $f(x) = a_0$, $f(x) = a_1 \cdot x$, $f(x) = a_2 \cdot x^2$, \cdots , $f(x) = a_n \cdot x^n$ are continuous.

It follows from induction using the theorem proved in class that the functions $f(x) = a_0 + a_1 \cdot x$, $f(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 = (a_0 + a_1 \cdot x) + a_2 \cdot x^2$, \cdots , $f(x) = (a_0 + a_1 \cdot x + \cdots + a_{n-1} \cdot x^{n-1}) + a_n \cdot x^n = a_0 + a_1 \cdot x + \cdots + a_n \cdot x^n$ are continuous.

Proof of (d). Notice that, by definition, the domain of a rational function $f(x) = \frac{g(x)}{h(x)}, g, h$ are polynomials is wherever $h(x) \neq 0$.

It follows from the theorem proved in the class, because g(x) and h(x) are polynomials that are continuous, that f(x) is continuous in its domain.

Exercise #4: Spivak, Chapter 6, Problem 3 (a).

Theorem. Given a function f where $\forall x : |f(x)| \le |x|$, f is continuous at 0.

Proof. Notice that when x = 0, $|f(0)| \le |0| \implies f(0) = 0$ $\lim_{x\to 0} f(x) = 0$ means $\forall \epsilon \exists \delta : |x| < \delta \implies |f(x)| < \epsilon$.

Fix ϵ . Let $\delta = \epsilon$.

If $|x| < \delta$, then $|f(x)| < |x| < \delta = \epsilon$.

Since ϵ was arbitrary, $\lim_{x\to 0} f(x) = 0$.