Alice transmet un 7-uple binaire $\mathbf{x} = [x_1, \dots, x_7]$ à Bob avec la convention que le message secret associé est le syndrome $\sigma(\mathbf{x})$. Pour communiquer un secret de trois bits, on transmet donc sur le canal sept symboles binaires. On suppose que \mathbf{x} , et donc \mathbf{s} , suivent des lois uniformes dans $\{0,1\}^7$ et $\{0,1\}^3$.

On suppose maintenant que Alice communique à Bob deux secrets de trois bits, soit \mathbf{s} et \mathbf{t} , en transmettant les deux 7-uples $\mathbf{x} = [x_1, \dots, x_7]$ et $\mathbf{y} = [y_1, \dots, y_7]$. Une espionne, Eve, est capable d'intercepter jusqu'à 7 des 14 symboles transmis, mais pas plus. Montrer qu'elle est capable d'obtenir un des secrets, mais que quels que soient les symboles qu'elle intercepte, elle a zéro bit d'information sur au moins un des deux secrets \mathbf{s} ou \mathbf{t} .

– Exercice 6. On considère le code linéaire ternaire C de matrice de parité

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 0 & 1 & 0 & 0 \\ -1 & 1 & -1 & 0 & 0 & 1 & 0 \\ -1 & -1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

- a) Quels sont les paramètres du code C?
- b) Combien le code C a-t-il de mots de poids minimum?

– EXERCICE 7. Montrer que si un code linéaire C a une distance minimale 4, alors il existe des mots \mathbf{x} de l'espace tels que pour tout mot de code $\mathbf{c} \in C$, la distance de Hamming de \mathbf{x} à \mathbf{c} vérifie $d(\mathbf{x}, \mathbf{c}) \geqslant 2$. En déduire qu'il n'existe pas de code linéaire binaire de paramètres [7, 4, 4].

- EXERCICE 8. On considère le code binaire C de matrice de parité

$$\mathbf{H} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- a) Quels sont les paramètres de ce code?
- b) On reçoit le mot

où la première coordonnée a été effacée. En faisant l'hypothèse qu'au plus une coordonnée non effacée est en erreur, montrer qu'on peut retrouver le mot de code d'origine sans ambiguïté et le donner.

- c) Donner une configuration minimale d'effacements (avec un nombre minimum d'effacements) non corrigible, et une configuration maximale d'effacements corrigible.
- d) Quels sont les paramètres du code dual C^{\perp} ?
- e) Calculer le nombre de mots de l'espace $\{0,1\}^{10}$ qui ne sont pas à distance 0 ou 1 d'un mot de code.