Practice Exam III

Questions

The dataset in Real estate valuation data set.xlsx contains real estate prices in Sindian (Xindian) District of New Taipei City in Taiwan. The seven inputs are as follows:

Column name	Description
X1	transaction date. (for example, 2013.250=2013 March, etc.)
X2	age of the house. (unit: years)
X3	distance to the nearest MRT station. (unit: meters)
X4	number of convenience stores within walking distance.
X5	latitude. (unit: degree)
X6	longitude. (unit: degree)

The output variable, price, is as follows:

• Y = house price of unit area (10000 New Taiwan Dollar/Ping, where Ping is a local unit, 1 Ping = 3.3 meter squared)

Question 1 (15 marks)

Re-create the following plot as closely as you can. You may need the following information:

- 1. The EPSG code 3825 was used to project the coordinates.
- 2. If the hex bins are not available to you, use stat_summary_2d.
- 3. The fill aesthetic was mapped the the median house price in each bin.

Question 2 (15 marks)

A property analyst informs you that the centre of town is at (506800, 2765500). Add a column to your dataset that contains the Euclidean distance the the centre of town.

Now, create **two** graphics that demonstrate how price varies with the other variables. Please ensure that the following criteria are satisfied: * Distance to the centre of town must be present in at least one of the graphs. * The price variable must be present in both of them.

Question 3 (10 marks)

The same property analyst suspects that price has a non-linear relationship with house age: For modern houses, the price decreases with age but for vintage houses, the prices increases with age.

The problem is that the change-point is unknown - at what age should we classify a house as vintage? The following function will return the parameters for a line of best fit through these points, given a change-point.

```
get_gradient_intercept <- function(price, age, breakpoint) {
  modern <- pmin(age - breakpoint, 0)
  vintage <- pmax(age - breakpoint, 0)
  lm0 <- lm(price ~ modern + vintage)
  coef(lm0)
}</pre>
```

For instance, if the analyst believed the change-point was at 10 years:

```
(coefs <- get_gradient_intercept(re2$price, re2$house_age, 10))
## (Intercept) modern vintage
## 34.35780172 -1.87805087 0.08756953</pre>
```

Then the fitted line would be plotted like this:

Find the **optimal change-point**. Desribe what criteria you used to find it, and then create a properly annotated plot similar to the one above that summarises the relationship.