

# PHYSICS PROJECT DAYS



UN VOYAGE DANS L'INCONNU : À LA RECHERCHE DE SOURCES DE NEUTRINOS AVEC ICECUBE

#### L'ÉQUIPE DISPONIBLE DURANT LES PROCHAINS JOURS



Chris



Jonathan



Karlijn



Mathieu



Matthias

#### PROGRAMME



#### OBSERVATION DU CIEL



#### DIFFÉRENTES LONGUEURS D'ONDE



#### UNE NOUVELLE VOIE: LES RAYONS COSMIQUES





protons et noyaux sans électrons (ions)



#### INTERLUDE : ORDRES DE GRANDEUR D'ÉNERGIE



1 eV = énergie acquise par un électron soumis à un potentiel de 1 V

#### INTERLUDE: ORDRES DE GRANDEUR D'ÉNERGIE





### ÉTUDE DE SOURCES ASTROPHYSIQUES



|             | Rayonnement<br>électromagnétique     | Rayons cosmiques                                   | Un messager parfait ?                       |
|-------------|--------------------------------------|----------------------------------------------------|---------------------------------------------|
| Propriétés  | Pas de charge électrique             | Chargés donc influencés par les champs magnétiques | Pas de charge électrique                    |
| Interaction | Absorbé par les nuages moléculaires, | Interagissent dans<br>l'atmosphère terrestre       | Pas intercepté par la matière intercellaire |
| Information | Signature de divers phénomènes       | Signe de l'accélération de particules              | Informations complémentaires                |

#### UN MESSAGER PARFAIT, LES NEUTRINOS?



#### Propriétés des neutrinos :

- Charge neutre
- ❖ Masse très petite
- Trois saveurs...
- ... chacunes associées à une particule chargée de même saveur (e,μ,τ)
- Interagissent très faible avec la matière
- Produits en grande quantité dans des phénomènes naturels

#### INTERLUDE : LES PARTICULES ÉLÉMENTAIRES



#### SOURCE EXTRA-TERRESTRE LA PLUS PROCHE : LE SOLEIL



10<sup>11</sup> = 100 000 000 000 par seconde

#### LA TIMIDITÉ DES NEUTRINOS



#### ORIGINE DES NEUTRINOS



## COMMENT LES DÉTECTER?

#### INTERLUDE: EFFET TCHERENKOV

Flash de lumière bleue produit lorsqu'une particule chargée se propage plus vite que la lumière <u>dans un milieu</u>.





#### MÉTHODE DE DÉTECTION DES NEUTRINOS



#### DÉTECTEUR SUPER-KAMIOKANDE

- Piscine de 50000
  tonnes d'eau
- Au fond d'une mine au Japon
- Equipé de détecteurs sur tous les côtés



#### DÉTECTEUR ANTARES

- Dans les profondeurs de la mer Méditerranée
- 12 lignes verticales
- 75 photomultiplicateurs par ligne
- Couvre une masse d'eau de 12 millions de tonne



#### DÉTECTEUR KM3NET

- Dans les profondeurs de la mer Méditerranée
- ♦ >300 lignes
- Couvre un volume
  d'eau de plus de 1
  km³ = plus de 1
  gigatonne
- En cours de déploiement !



#### DÉTECTEUR ICECUBE

construisons un détecteur au Pôle Sud



#### DÉTECTEUR ICECUBE





#### À QUOI RESSEMBLE UNE INTERACTION DE NEUTRINO?



plus de lumière = plus haute énergie

#### À QUOI RESSEMBLENT LES DONNÉES DU DÉTECTEUR



0.01 s de données

#### TAUX DE DÉTECTION

- Muons produits dans l'atmosphère
- Neutrinos produits dans l'atmosphère
- Neutrinos d'origine astrophysique



| Neutrinos<br>astrophysiques                           | Neutrinos<br>atmosphériques                                | Muons atmosphériques                                                  | Bruit optique et<br>électronique       |  |  |
|-------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|--|--|
| "Signal"                                              | Pas intéressant pour nous = "bruit de fond" ("background") |                                                                       |                                        |  |  |
| В                                                     | Peu de lumière                                             |                                                                       |                                        |  |  |
| Peut provenir de toutes les directions                | Peut provenir de toutes les directions                     | Principalement traces descendantes                                    | -                                      |  |  |
| Lumière localisée dans le<br>détecteur (ligne/sphère) | Lumière localisée dans le<br>détecteur (ligne/sphère)      | Lumière localisée dans le<br>détecteur (ligne) avec<br>point d'entrée | Détections à travers tout le détecteur |  |  |







interaction de neutrino bien localisé dans le détecteur



#### RÉCAPITULATIF

- ☐ Direction de l'événement :
  - ☐ descendant : probablement un muon ?
  - ☐ montant : neutrino ?
- ☐ Contenance de l'événement :
  - □ contenu dans le détecteur : grande chance d'être un neutrino
- ☐ Énergie du neutrino :
  - ☐ liée à la quantité de lumière déposée

#### EXEMPLES

neutrino contenu

trace traversant tout
le détecteur
(si descendante = muon)

