1 Infiniteness of delay-1 unary deterministic oritatami system

Fig. 1. zig-zag conformation

1.1 Introduction

In this section, we consider the finiteness of structures produced deterministically at delay 1. Our result, cases of arity 1 and 3 can only yield finite structures of size $\mathcal{O}(n)$, and cases of arity 4 and more can only yield finite structures which is size of $mathcalO(n^2)$, and a case of arity 2 can yield infinite structures but they are only the zig-zag conformation shown in Fig.1.

Let Ξ be a deterministic oritatami system of delay 1 and arity 2. Assume its seed σ consists of n beads. For $i \geq 0$ let C_i be the unique elongation of σ by w[1..i], that is, foldable by Ξ . Hence $C_0 = \sigma$.

Let us consider the stabilization of the *i*-th bead a_i upon C_{i-1} . The bead cannot collaborate with any succeeding bead $w[i+1], w[i+2], \cdots$ at delay 1. There are just two ways to get stabilized at delay 1. One way is to be bound to another bead. The other way is through a tunnel section. A tunnel section consists of four beads that occupy four neighbors of a point (Fig.2). Accordingly, how they are stabilized can be described by a binary sequence S of b's (bound) and t's (tunnel section); priority is given to t, that is, S[i] = t if the i-th bead w_i is stabilized not only by being bound but also through a tunnel section.

Assume that four of the six neighbors of a point p are occupied by beads $a_{j_1}, a_{j_2}, a_{j_3}, a_{j_4}$ while the other two are free. We call such a point p the inside of a tunnel and points p' the entrance of a tunnel except when p' is inside of a tunnel. If the beads w[i-2] and w[i-1] are stabilized respectively at one of the two free neighbors and at p one after another, then the next bead w[i] cannot help but be stabilized at the other free neighbor. In this way, w[i] can get stabilized without being bound.

We say that point p is reachable from a conformation C if there exists a directed path P' from the last point of C that does not cross the path of C. We define $binding\ capability$ with reachable.

Definition 1 (binding capability). Let B_i be $(\{(h,i)|^{\forall}h < i\} \cup \{(i,j)|^{\forall}j > i\}) \cap H$. Moreover, let R_i be a set of neighbors of w[i] that are free and reachable from C_j where C_j is a conformation which stabilized until w[j]. The number of

binding capabilities of a conformation C_j is denoted $\#bc(C_j)$ and is defined by $\sum_{k=-n+1}^{j} \min\{|B_k|, |R_k|\}.$

Fig. 2. Through a tunnel section

Theorem 1 (Tunnel Troll Theorem). Let Ξ be a unary oritatami system of $\delta = 1, \alpha = 2$. If there are indices i and j such that $S[i..j+1] = bbt^{(j-i-1)}b$, then $\#bc(C_{i-1}) > \#bc(C_j)$ and if $S[i..j+1] = bt^lbt^mb$ (l+m=j-i-1), then $\#bc(C_{i-1}) > \#bc(C_j)$. On the other hand, at $\delta = 1$ and $\alpha \geq 3$, if S[k] = t, then $\#bc(C_{k-1}) > \#bc(C_k)$.

Proof. Assume Ξ is deterministic. Each bead in the transcript is bound either inside a tunnel or outside. If a bead is stabilized inside a tunnel, then the position of successor is already decided either inside of a tunnel or outside. Moreover, if a bead is stabilized outside a tunnel, then its position is either an entrance of a tunnel or not.

Tunnel sections have three possible shapes up to symmetry : straight(A), obtuse(B) and acute(C) turn (Fig. 3), and we will consider each of those.

Lemma 1. For unary transcripts at $\delta = 1$, if a bead has no free hand, then at least $\alpha + 2$ of its neighbors have to be occupied.

Lemma 2. Let Ξ be an oritatami system at $\delta = 1, \alpha = 2$. Assume Ξ stabilizes the transcript until w[i-1]. If w[i] is stabilized at an entrance point of tunnel A or B, then $\#bc(C_{i-1}) > \#bc(C_i)$.

Lemma 3. Let w[i] be a bead which is stabilized at the exit of a tunnel. At $\delta = 1$, $\alpha = 2$, if we assume $S[h..i+1] = bt^{(i-h)}b$ (h < i), then $\#bc(C_{h-1}) \ge \#bc(C_i)$ and $\#bc(C_{i-2}) \ge \#bc(C_i)$. On the other hand, if we assume $S[k] = t(k \le i)$ at $\delta = 1$, $\alpha \ge 3$, then $\#bc(C_{k-1}) > \#bc(C_k)$.

Lemma 4. Let Ξ be a unary oritatami system of $\delta = 1, \alpha = 2$. We assume $S[h..i+1] = bt^{(i-h)}b$ (1 < h < i). If at least one of w[h+1..i] is stabilized by tunnel C, then $\#bc(C_{h-3}) > \#bc(C_{h+1})$ and $\#bc(C_{h-3}) > \#bc(C_i)$.

Let us first consider cases of $\delta \geq 3, \alpha = 1$. These cases are clearly true because of lemma3.

Next, we consider the case of $\delta=2, \alpha=1$. We assume there is an index h such that S[h-1..h+1]=bbt or S[h-1..h+1]=tbt. According to lemma2, if w[h+1] is stabilized by tunnel A or B, then $\#bc(C_{h-1})>\#bc(C_h)$. Also, According to lemma4, if w[h+1] is stabilized by tunnel C, then $\#bc(C_{h-3})>\#bc(C_{h+1})$. On the other hand, if $S[k..l]=bt^{l-k}b$, then $\#bc(C_{k-1})\geq \#bc(C_l)$ because of lemma3. Therefore, if there are indices i and j such that $S[i..j+1]=btt^{(j-i-1)}b$ or $S[i..j+1]=bt^mbt^nb$ (m+n=j-i-1), then $\#bc(C_{i-1})>\#bc(C_j)$.

Fig. 3. All possible tunnel sections: straight, obtuse turn, and acute turn

Proof (lemma 1). Any transcript bead has predecessor and successor except for the first and last beads. If the bead does not have any free hand, then it uses hands with α neighbors. Thus, lemma 1 is clearly true.

Proof (lemma 2). Fig.4 exhibits all the three kinds of entrance of tunnel A, B. Let w[i] be stabilized at an entrance point of Tunnel A or B. All cases are $\#bc(C_{i-1}) > \#bc(C_i)$ as follows.

- Case of t_0

Let us consider points n_3 , n_4 . At least one of the points n_3 or n_4 is free because if both of them are occupied, p' is inside of tunnel. If n_3 is free, then p' has to be bound to a bead other than n_1 to deterministically stabilize. In this situation, at least three neighbors of n_1 are free, that is, n_1 has at least one free hand from lemma 1. Hence, p' must be bound to n_1 . Thus, a case of t_0 consumes two hands and it does not supply any binding capabilities.

- Case of t_{+60}

In this case, too, n_4 or n_5 is free. If n_5 is free, p' has to be bound to n_1 or n_2 . If n_5 is occupied, then n_4 is free. This time, by n_2 has some free hands so p' has to be bound to n_2 .

In this situation, p' is able to supply a binding capabilities which could bind a bead into n_4 or n_5 . However, n_2 and n_3 are part of a contiguous conformation. According to Jordan curve theorem, any successors of p' cannot reach a point n_4 or n_5 so this capability is inactive. Thus, in the case of $t_{\pm 60}$ # $bc(C_{i-1}) > \#bc(C_i)$.

- Case of $t_{\pm 120}$

Binding capabilities that p' supplies are inactive according to Jordan curve theorem on n_1 and n_2 . Moreover, p' has to be bound to one of n_3, n_4, n_5 in order to deterministically stabilize. Thus, in the case of $t_{\pm 120}$ is $\#bc(C_{i-1}) > \#bc(C_i)$.

Fig. 4. Direction into a entrance

Proof (lemma 3). Fig.5 exhibits all the two kinds of exit of tunnel. At least one of points n_1 or n_2 is free because if both of them are occupied, p' is inside of tunnel.

$$\delta = 1, \alpha = 2$$

Let Ξ be a unary oritatami system at $\delta = 1, \alpha = 2$. We assume $S[h..i+1] = bt^{(i-h)}b$ (h < i). Let a be $\#bc(C_{i-2}) - \#bc(C_{i-1}) = a$. Then, $\#bc(C_i) - \#bc(C_{i-1}) \le a$ as follows. Also, if i - h > 1 and j is such that h < j < i, then $\#bc(C_{j-1}) \ge \#bc(C_j)$ because all neighbors of w[j] are occupied by beads forming the tunnel so that any w[i+1..] cannot reach neighbors of w[j]. Thus, $\#bc(C_{h-1}) \ge \#bc(C_i)$ and $\#bc(C_{i-2}) \ge \#bc(C_i)$.

- Case of both n_1 and n_2 being free
 - This case can be regarded the same as entrance. See Fig.5 (Left). Predecessor n_5 has to be bound to n_4 and n_5 because both of n_3 and n_4 have binding capabilities. Hence, $a \geq 2$. This time, $\alpha = 2$, that is, this case $\#bc(C_i) \#bc(C_{i-1}) \leq a$.
- Case of n_1 is occupied See Fig.5 (Right). If n_1 is occupied, then n_2 is free so that n_5 has to be bound n_4 . Hence, $a \ge 1$. This case can supply two binding capabilities but p' can bind to only one of n_0 or n_2 because n_0 or n_2 will be occupied by the successor of p'. Therefore, this case $\#bc(C_i) - \#bc(C_{i-1}) \le a$.

$$\delta=1,\alpha\geq 3$$

Let Ξ be a unary oritatami system at $\delta = 1, \alpha \geq 3$. We assume w[i] is stabilized at exit of tunnel. In all cases $\#bc(C_{i-1}) > \#bc(C_i)$. Moreover, if $S[k] = t(k \leq i)$,

then $\#bc(C_{k-1}) > \#bc(C_k)$ because both sides of the path p in Fig.6 (n_1, n_2) have two free points and one of n_1, n_2 is not the predecessor so that it has hand and moreover that w[k] supplies any binding capabilities because its neighbors are occupied by beads of tunnel.

- Case of n_1 and n_2 are free
- In $\alpha \geq 3$, if three neighbors of a bead leave, then it can supply two binding capabilities. Therefore predecessor n_5 has to be bound n_3 and n_4 , and p', too. In this case, at least four bindings are consumed and at most two are added. Thus, it consumes some binding capabilities, overall.
- Case of n_1 is occupied

In this case, n_4 leave at least two bindings and n_3 , n_1 also leave at least one binding. Therefore n_5 has to be bound n_3 and n_4 , and p' also has to be bound n_1 and n_4 . In this case, at least four bindings are consumed and at most two are added. Thus, it consumes some binding capabilities, totally.

Fig. 5. Exit of Tunnel

Proof (lemma 4). Let Ξ be a unary oritatami system at $\delta=1, \alpha=2$. Assume $S[h..i+1]=bt^{i-h}b(h<i)$. If at least one of w[h+1..i] are stabilized by tunnel C, then only w[h+1] can use tunnel C because if w[g] which is one of w[h+2..i], with $h+2\leq g\leq i$ is stabilized by tunnel C, C_g is a terminal.

Let us consider stabilization S[h-1..h+1] = tbt or S[h-1..h+1] = bbt as follows. In result, $\#bc(C_{h-3}) > \#bc(C_{h+1})$. In addition according to lemma3 $\#bc(C_{h+1}) \ge \#bc(C_i)$. Thus, $\#bc(C_{h-3}) > \#bc(C_{h+1})$ and $\#bc(C_{h-3}) > \#bc(C_i)$.

Case of S[h-1..h+1] = tbt Fig.7 exhibits all the two kinds of stabilization depending on structures of tunnel C.

- Left of Fig.7

In this figure, Bead n_4 has at least one binding so that w[h-1] has to bound n_4 . Moreover, w[h] has to bind to one of n_1, n_2, n_3 in order to stabilize deterministically. On the other hand, w[h+1] can supply two bindings but has

only two free neighbors. One of them is occupied by a successor. Therefore w[h+1] can only bind one of n_5, n_6 , that is, w[h+1] supplies at most one binding. Thus, this case $\#bc(C_{h-1}) > \#bc(C_{h+1})$.

Right of Fig.7

These cases are divided on number of capabilities that w[h-1] consumes.

- w[h-1] does not consume any bindings According to lemma3, $\#bc(C_{h-3}) \ge \#bc(C_{h-1})$ because of S[h-1] = t. w[h] has to bound one of n_1, n_2, n_3 in order to stabilize deterministically so that $\#bc(C_{h-1}) > \#bc(C_h)$. w[h+1] has to be bound to w[h-1]because w[h-1] has bindings, that is, w[h+1] consumes at least one hand and supplies at most one hand so that $\#bc(C_h) \ge \#bc(C_{h+1})$. Thus, in this cases $\#bc(C_{h-3}) > \#bc(C_{h+1})$.
- w[h-1] consumes one binding In this case, w_h has to be bound one of n_1, n_2, n_3 . In addition, w[h-1] and w[h+1] are not supply any bindings. Thus, in this cases consume some binding capabilities.
- w[h-1] consumes two bindings In this case, w[h-1] already consumes two binding. w[h] has to be bound. w[h+1] supplies two bindings. Thus, in this cases $\#bc(C_{h-1}) > \#bc(C_{h+1})$.

Fig. 7. Case of S[h-1..h+1] = tbt

Case of S[h-1..h+1] = bbt Let us consider number of consumed bindings by w[h-1] (Fig.8).

-w[h-1] consumes one binding In this situation, w[h-1] supplies one active binding whereas w[h+1] consumes this binding. In addition, w[h] has to bound to one of n_1, n_2, n_3 . Thus, in this cases consume some binding capabilities. -w[h-1] consumes two bindings

In this case, w[h-1] already consumes two binding. w[h] has to be bound. w[h+1] supplies at most two bindings. Thus, in this cases consume some binding capabilities.

Fig. 8. Case of S[h-1..h+1] = bbt

1.2 On structures provided by a unary and $\delta = 1$ oritatami system

Theorem 2 ($\delta = 1, \alpha = 2$). Let Ξ be a unary oritatami system of $\delta = 1, \alpha = 2$. It can yield infinite structures but they are only zig-zag conformation.

Proof. By Tunnel Troll Theorem, any tunnel sections which represented in bbt^+ or bt^+bt^+ consume binding capabilities. If the sequence S is free from any subsequence of the form bt^+bt^+ , then it can factorize as $S=u_1u_2u_3\cdots$ for some $u_1,u_2,u_3,\dots\in\{b\}\cup bbt^+$. Assume the length of σ is n, seed supplies at most 2n binding capabilities. Therefore formula 1 hold.

$$\exists i \in \mathbb{N} \quad s.t. \quad u_{i-1}, u_i, u_{i+1}, u_{i+2}, \dots \in \{b\}$$
 (1)

Let us represent S as $S[i.i+1...] = v_i v_{i+1} v_{i+2} \cdots$ for some $v_i, v_{i+1}, v_{i+2}, \cdots \in \{a, o\}$ where if v_k is a, then v_{k+1} is bound to v_{k-1} , if v_k is a, then a is NOT bound to a bound to a is a.

Let us consider the case of v_k is o. See Fig.9. w[i-1] consumes some binding capabilities because v_{i-1} is b. If the number of w[i-1]'s bindings is one binding, then w[i+1] has to be bound except n_1 or n_2 so that w[i+1] must consumes two bindings except the case of n_1 and n_2 are occupied and w[i] consumes at least one binding. If n_1 and n_2 are occupied, then w[i-1]'s bindings are inactive, that is, w[i-1] consumes two binding capabilities. Therefore, this case consumes binding capabilities. If w[i-1] dose Not have any bindings, then w[i-1] already consumes two bindings. In addition, w[i] and w[i+1] consume at least one

binding. Therefore this case consumes binding capabilities. Thus, the formula 2 hold and according to the formula 1 and the formula 2, the formula 3 is hold. Thus, in this case, oritatami system can yield infinite structures but they are only zig-zag conformation.

$$\exists j \in \mathbb{N} \quad s.t. \quad u_j, u_{j+1}, u_{j+2}, \dots \in \{a\}$$
 (2)

$$|S| > \forall m \in \mathbb{N} \quad \to \quad \exists n \in \mathbb{N} \quad s.t. \quad S[n], S[n+1], \dots \in \{a\}$$
 (3)

Fig. 9. Case of S[i]

Theorem 3 ($\delta = 1, \alpha = 3$). Let Ξ be a unary oritatami system of $\delta = 1, \alpha = 3$. It can yield only finite structures whose size is $\mathcal{O}(n)$.

Lemma 5. Let p be a point whose neighbors is occupied at least two point. If w[i] is not stabilized and w[i-1] includes neighbors of p, then w[i] is stabilized at p with at least one bond, w[i] is stabilized at another point of p otherwise with at least two bond except any neighbors of p is occupied.

Proof (proof of lemma). Assume the transcript is stabilized until w[i-1]. One of neighbors of p is not w[i-1] where this bead regards n_1 . If w[i-1] include neighbors of p and w[i] is stabilized at another point of p with one bond. Then, any neighbors do not have bond without w[i-1]. Neighbors of n_1 have to be occupied at least five according to lemma 1 and two of them include neighbors of p where each of them regards n_2, n_3 . In the same way, five neighbors of n_2 and n_3 are occupied and each of one of them includes neighbors of p where they regard n_4, n_5 one of n_5 's neighbors includes neighbors of p where it regards n_6 . Then, any neighbors of p are occupied. That is, if some neighbors of p are free, then there exists a bead which has bonds in neighbors.

Proof. Let us show that $\#bc(C_{i-1}) > \#bc(C_i)$, that is, when w[i] is stabilized, w[i] uses at least two hands. Let us assume w[i] is able to be stabilized with using one hand. Fig.10 exhibits all the three kinds of possibility of stabilized w[i]. Then, w[i] can be also stabilized at n_3 .

Case of straight

- Case of n_3 is free

According to assumption, w[i] uses only one hand. Therefore, any neighbors of n_3 are occupied according to the lemma 5. n_3 and the point which is stabilized w[i] are free so that n_1 has some bond by lemma 1. Accordingly, this situation is non-deterministic. Thus, n_3 and n_4 have to be occupied because of symmetry.

Otherwise

Because of S[i] = b, at least one of n_1 and n_2 have to be free. Let us regard that n_1 is free. Neighbors of n_1 have to be occupied and at least two neighbors of n_{-1} have to be free for n_1 and w[i]. According to lemma1, n_{-1} have some hand. Therefore w[i] can be also stabilized n_1 , that is, this situation is non-deterministic. Thus, one of n_3 and n_4 has to be free.

Therefore, this case is false.

Case of obtuse

- Case of n_3 is free

Any neighbors of n_3 have to be occupied but the point which is stabilized w[i] is free. Thus n_3 has to be occupied.

- Case of n_4 is free

According to lemma 5, n_2 has to be occupied because n_4 is free. Also n_0 has to be occupied from lemma 1. Thus, only one of n_0 , n_3 leave some hands or both of them do not leave any hands because w[i] use only one bond.

If n_0 has some hands, then n_3 does not have any hands so that n_{-3} is occupied. Also n_{-3} must not have any hands so that n_{-2} is occupied and also n_{-1} is occupied. Therefore any neighbors of w[i] are occupied so that w[i+1] cannot provide.

If n_3 has some hands, then n_0 does not have any hands so that n_{-1} is occupied. In the same previous way, any n_{-2} , n_{-3} are occupied. Therefore any neighbors of w[i] are occupied.

If both of n_0, n_3 do not have any hands, then both of n_{-1}, n_{-3} are occupied. If one of n_{-1}, n_{-3} has some hands, the other does not have any hands so that n_{-2} is occupied. If both of n_{-1}, n_{-3} do not have any hands, n_{-2} has to be occupied and n_{-2} has some hands. Therefore any neighbors of w[i] are occupied so that w[i+1] cannot provide.

Thus n_3 has to be occupied in order to yield infinite structures.

- Case of n_2 is free

Any neighbors of n_2 have to be occupied so that n_0 is occupied. Any neighbors of n_0 except n_2 have to be also occupied but the point which is stabilized w[i] is free. Thus n_2 has to be occupied.

- Case of n_0 is free

Any neighbors of n_0 have to be occupied so that n_{-1} is occupied. Any neighbors of n_{-1} except n_0 have to be also occupied but the point which is stabilized w[i] is free. Thus n_0 has to be occupied.

Therefore, any situations contradict S[i] = b.

Case of acute

- Case of n_4 is free
 - n_4 and a point which is stabilized w[i] are free so that w[i-2] has some hands according to lemma1. However, w[i] can be also stabilized n_4 in this case. Thus, n_4 has to be occupied.
- Case of n_2 is free

According to lemma 5, n_0 has to be occupied. n_1 has to be also occupied because of lemma 1. We consider this case just like case of obtuse and that n_4 is free. Then if w[i-2] binds w[i], any n_{-1}, n_{-2}, n_{-3} are occupied. If n_1 binds w[i], this case is same. Also if n_1 and w[i-2] do not have any hand, any n_{-1}, n_{-2}, n_{-3} are occupied. Therefore, w[i+1] cannot be provided.

- Case of n_0 is free
- Any neighbors of n_0 have to be occupied so that n_1 is occupied. Any neighbors of n_1 except n_0 have to be also occupied but the point which is stabilized w[i] is free. Thus n_0 has to be occupied.
- Case of n_1 is free

Any neighbors of n_1 have to be occupied so that n_{-1} is occupied. Any neighbors of n_{-1} except n_1 have to be also occupied but the point which is stabilized w[i] is free. Thus n_1 has to be occupied.

Therefore, any situations contradict S[i] = b.

Hence, assumption that w[i] is able to be stabilized with using one hand is false. Therefore, when w[i] is stabilized, w[i] uses at least two hands.

Fig. 10. All possible directions of w[i]: straight, obtuse, acute.

Theorem 4 ($\delta = 1, \alpha = 4$). Let Ξ be a unary oritatami system of $\delta = 1, \alpha = 4$. It can yield only finite structures whose size is $\mathcal{O}(n^2)$.

Lemma 6. Any beads which are already stabilized by some bonds use at least two bonds.

Proof (proof of lemma). Let us consider when w[i] is stabilized by only one bond. See Fig.11. According to lemma1, if n_3 is free, w[i-2] has some hands. Thus, n_4 has to be occupied in order to stabilize deterministically. Moreover, also n_2 has to be occupied for deterministic and also n_0, n_1, n_1 has some hands because n_3 is free. Therefore, w[i] is stabilized at n_3 and it has to use at least two hands. It contradict assumption.

Proof. According to lemma6, when w[i] is stabilized, it has to use at least two bonds. Let us consider when a bead w[i] which is the first bead out of $\bigcirc_{w[-n+1]}^n$ is stabilized. See Fig.12. any n_0, n_1, n_3, n_5 is free because if some of them is occupied, w[i] is not the first bead out of $\bigcirc_{w[-n+1]}^n$. At least two neighbors of w[i] except predecessor have to be occupied in order to bind. In this case, a point which is able to put a bead is only n_2 . Therefore, any transcript cannot be stabilized in out of $\bigcirc_{w[-n+1]}^n$. Hence oritatami system can yield only a finite structure whose size is $\mathcal{O}(n^2)$ in $\delta = 1, \alpha = 4$.

Fig. 11. $\alpha = 4$: when w[i] is stabilized

Fig. 12. the first bead out of $\bigcirc_{w[-n+1]}^n$