Assume a non homogeneity exists

$$\dot{x} = Ax + g$$

Proceed exactly in the same way as earlier

$$x = Bz \qquad \dot{z} = B^{-1}ABz + B^{-1}g$$

- Now these are a set of first order equations with non homogeneous part which can be solved as earlier with Integrating factor or otherwise.
- Use of variation of parameters: $\dot{x} = Ax + g$
- Let x_h be solution of homogeneous part and let x_p be the particular solution

$$(\dot{x_p}) = Ax_p + g$$
 $(\dot{x_h}) = Ax_h$

• As earlier in variation of parameters approach hypothesize that the particular solution is obtainable from homogeneous solution $x_p = \Omega(t)v(t)$

Substitute in the governing equation to get:

$$(\dot{\Omega}\dot{v}) = A\Omega\dot{v} + g \Rightarrow (\dot{\Omega})\dot{v} + \Omega\dot{v} = A\Omega\dot{v} + g$$
$$(\dot{\Omega})\dot{v} + \Omega\dot{v} = A\Omega\dot{v} + g \Rightarrow \Omega\dot{v} = g$$

• Above coloured terms cancel since Ω is fundamental solution of homogeneous equation

$$\dot{v} = \Omega^{-1}g \Rightarrow v = \int \Omega^{-1}gdt$$

Section 10.3

18
$$x'_1 = 5x_1 - 4x_2 + 4x_3 - 3e^{-3t}$$

 \cdot $x'_2 = 12x_1 - 11x_2 + 12x_3 + t$
 $x'_3 = 4x_1 - 4x_2 + 5x_3$
 $x_1(0) = 1, x_2(0) = -1, x_3(0) = 2$

Solution: Let
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 and $X' = \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}$

Let's rewrite the given system in terms of matrices:

$$X' = AX + G$$

with A being a real, constant, 3×3 matrix

$$X' = \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} 5x_1 - 4x_2 + 4x_3 \\ 12x_1 - 11x_2 + 12x_3 \\ 4x_1 - 4x_2 + 5x_3 \end{pmatrix} = \begin{pmatrix} 5 & -4 & 4 \\ 12 & -11 & 12 \\ 4 & -4 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} -3e^{-3t} \\ t \\ 0 \end{pmatrix}$$
Let's calculate eigenvalues of **A**.
$$A \qquad G$$

Let's calculate eigenvalues of **A**.

$$|\lambda I_2 - A| = \begin{vmatrix} \lambda - 5 & 4 & -4 \\ -12 & \lambda + 11 & -12 \\ -4 & 4 & \lambda - 5 \end{vmatrix}$$

$$|\lambda I_2 - A| = (\lambda - 5) \begin{vmatrix} \lambda + 11 & -12 \\ 4 & \lambda - 5 \end{vmatrix} - 4 \begin{vmatrix} -12 & -12 \\ -4 & \lambda - 5 \end{vmatrix} - 4 \begin{vmatrix} -12 & \lambda + 11 \\ -4 & \lambda - 5 \end{vmatrix} - 4 \begin{vmatrix} -12 & \lambda + 11 \\ -4 & \lambda - 5 \end{vmatrix}$$

$$(\lambda + 3)(\lambda - 1)(\lambda - 1) = 0$$

$$\lambda_1 = -3 , \quad \lambda_2 = 1 , \quad \lambda_3 = 1$$

eigenvector corresponding to $\lambda_1 = -3$ $E_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

eigenvector corresponding to
$$\lambda_2 = 1$$
 and $\lambda_3 = 1$ $E_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and $E_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

3×3 matrix **A** has 3 linearly independent eigenvectors and therefore it's **diagonalizable** matrix

$$P^{-1}A P = D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$P^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ 2 & -1 & 1 \\ 3 & -2 & 3 \end{pmatrix}$$

$$put X = PZ \quad in \qquad X' = AX + G$$

$$Z' = DZ + P^{-1}G$$

$$\begin{pmatrix} Z_1' \\ Z_2' \\ Z_3' \end{pmatrix} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \\ Z_3 \end{pmatrix} + \begin{pmatrix} -1 & 1 & -1 \\ 2 & -1 & 1 \\ 3 & -2 & 3 \end{pmatrix} \begin{pmatrix} -3e^{-3t} \\ t \\ 0 \end{pmatrix}$$

$$Z_1' = -3Z_1 + 3e^{-3t} + t$$

$$Z_2' = Z_2 - 6e^{-3t} - t$$

$$Z_3' = Z_3 - 9e^{-3t} - 2t$$

After Multiply
$$e^{3t}$$
 on both side $(a^{3t}7)' - 3 + ta^{3t}$

 $Z_1' + 3Z_1 = 3e^{-3t} + t$

$$(e^{3t}Z_1)' = 3 + te^{3t}$$
$$e^{3t}Z_1$$
$$= \int (3 + te^{3t}) dt$$

$$Z_2' - Z_2 = -6e^{-3t} -$$

After Multiply e^{-t} on both side

$$(e^{-t}Z_2)' = -6e^{-3t} - t$$

$$e^{-t}Z_2$$

$$= \int -6e^{-4t} - t e^{-t} dt$$

$$Z_2' - Z_2 = -6e^{-3t} - t$$
 | $Z_3' - Z_3 = -9e^{-3t} - 2t$

After Multiply e^{-t} on both side

$$(e^{-t}Z_2)' = -6e^{-3t} - t$$
 $(e^{-t}Z_3)' = -9e^{-3t} - 2t$
 $e^{-t}Z_2$ $e^{-t}Z_2$

$$= \int -6e^{-4t} - t e^{-t} dt = \int -9e^{-4t} - 2te^{-t} dt$$

$$Z_{1} = \frac{t}{3} - \frac{1}{9} + 3te^{-3t} + c_{1}e^{-3t}$$

$$Z_{2} = (t+1) + \frac{3}{2}e^{-3t} + c_{2}e^{t}$$

$$Z_{3} = 2(t+1) + \frac{9}{4}e^{-3t} + c_{3}e^{t}$$

$$Z(t) = \begin{pmatrix} \frac{t}{3} - \frac{1}{9} + 3te^{-3t} + c_{1}e^{-3t} \\ (t+1) + \frac{3}{2}e^{-3t} + c_{2}e^{t} \\ 2(t+1) + \frac{9}{4}e^{-3t} + c_{3}e^{t} \end{pmatrix}$$

Finally, we can calculate **X=PZ**.

$$x_1(0) = 1$$
 $x_2(0) = -1$ $x_3(0) = 2$
 $c_1 + c_2 + \frac{8}{9} + \frac{3}{2} = 1$ $3c_1 + c_3 + \frac{5}{3} + \frac{9}{4} = -1$ $c_1 - c_2 + c_3 + \frac{8}{9} + \frac{3}{4} = 2$
 $c_1 + c_2 = -\frac{25}{18}$ $3c_1 + c_3 = -\frac{59}{12}$ $c_1 - c_2 + c_3 = \frac{13}{36}$

Solving equation (i), (ii) and (iii) we get

$$c_1 = -\frac{35}{9}$$
 and $c_2 = \frac{5}{2}$ and $c_3 = \frac{27}{4}$

Put the value of c_1 and c_2 in X(t)

$$X(t) = \begin{pmatrix} \frac{5}{2}e^{t} + \frac{4}{3}t + \frac{8}{9} + (3t - \frac{43}{18})e^{-3t} \\ \frac{27}{4}e^{t} + 3t + \frac{5}{3} + (9t - \frac{113}{12})e^{-3t} \\ \frac{17}{4}e^{t} + \frac{4}{3}t + \frac{8}{9} + (3t - \frac{113}{36})e^{-3t} \end{pmatrix}$$