Classification

A 10 minute crash-course

What is it?

Classification

Regression

Methods:

Perceptron:

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological review*, 65(6), 386.

$$f(x) = \begin{cases} 1 & \text{if } \mathbf{x}^T \mathbf{w} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Logistic Regression:

$$P(y_i = 1 | \mathbf{x}_i; \mathbf{w}, b) = \frac{1}{1 + e^{-(\mathbf{x}^T \mathbf{w} + b)}}$$

The logistic sigmoid function

Overfitting

Overfitting 2

Regularization

Training, Validation and you

$$\mathbf{X}_{fit} \cap \mathbf{X}_{test} = \emptyset$$

Fitting and test set have zero intersection

$$\mathbf{X}_{train} \subset \mathbf{X}_{fit}$$
 $\mathbf{X}_{val} \subset \mathbf{X}_{fit}$
 $\mathbf{X}_{train} \cap \mathbf{X}_{val} = \emptyset$

The fitting set is split in training and validation, these also have zero intersection

Nonlinear classification

Receiver Operator Characteristic curve

