Obliczenia Naukowe Lista 2

Kamil Włodarski, 267139

12 listopada 2022

Spis treści

1	1 Zadanie 1	1
	1.1 Wstęp	 1
2	2 Zadanie 2	2
	2.1 Wstep	 2
	2.2 Wyniki	 2
3	3 Zadanie 3	3
	3.1 Wstep	 3
	3.2 Wyniki	 4
	· · · · · · · · · · · · · · · · · · ·	
4	4 Zadanie 4	5
	4.1 Wstep	 5
	· · · · · · · · · · · · · · · · · · ·	
5	5 Zadanie 5	6
	5.1 Wstep	 6
	V2	
6	6 Zadanie 6	7
		 7
		
	· · · · · · · · · · · · · · · · · · ·	

1 Zadanie 1

1.1 Wstęp

Celem zadania jest zbadanie wpływu niewielkich zmian w wartościach wektorów na wartość ich iloczynu skalarnego. Do przedstawienia tych zmian wykorzystujemy wektory z zadania 5 z poprzedniej listy postaci:

$$x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]$$

$$y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]$$
(1)

a po zmianach

$$x' = [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995]$$
 (2)

1.2 Wyniki

algorytm	Float 32 x	Float 64 x	Float 32 x'	Float 64 x'
a)	-0.4999443	1.0251881368296672e-10	-0.4999443	-0.004296342739891585
b)	-0.4543457	-1.5643308870494366e-10	-0.4543457	-0.004296342998713953
c)	-0.5	0.0	-0.5	-0.004296342842280865
d)	-0.5	0.0	-0.5	-0.004296342842280865
biblioteka	-0.34720382	1.0251881368296672e-10	-0.34720382	-0.004296342739891585

Tabela 1: Porównanie wyników dla zmienionych danych

1.3 Wnioski

Jak możemy zaobserwować z tabeli 1 dla arytmetyki Float
32 otrzymane wyniki są identyczne. Natomiast dla arytmetyki Float
64 zaszły spore zmiany. Zauważmy że wartość dokładna dla

$$x' \cdot y = -0.004296343192495245$$

a więc błąd względny jest stosunkowo niewielki. Jednak zmiana w danych rzędu 10^{-10} spowodował zmianę wyniku z rzędu 10^{-11} na rząd 10^{-3} . Możemy zatem stwierdzić że zadanie jest źle uwarunkowane.

2 Zadanie 2

2.1 Wstęp

Celem zadania było narysowanie wykresów funkcji $f(x) = e^x ln(1 + e^{-x})$ w dwóch różnych programach do rysownia wykresów oraz porównanie otrzymanych wyników z obliczeniem granicy funkcji f w nieskończoności.

2.2 Wyniki

Obliczamy wartość granicy:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x \ln(1 + e^{-x}) = 1$$
 (3)

Rysunek 1: Wykers - Julia Plots (backend GR)

Rysunek 2: Wykres - Wolfram Alpha

Możemy zaobserwować że na obu wykresach wynik nie zgadza się z obliczoną wartością. Wynika to ze złego uwarunkowania zadania. Niewielkie zmiany wynikające z ograniczonej precyzji arytmetyki wpływają na duże wachania wyników (co widać na wykresie dla przdziału od 30 do 40). Dla wartości x wiekszych od około 36 wyniki na wykresach są równe 0. Wynika to z tego że dla dużych x zachodzi $1+e^{-x}\approx 1$ zatem $ln(1+e^{-x})\approx 0$. Problem ten występuje w dwóch zaufanych programch co potwierdza tezę o złym uwarunkowaniu zadań.

3 Zadanie 3

3.1 Wstęp

Zadanie polegało na porównaniu metod rozwiązywania układów równań liniowych Ax=b pod względem błedów w obliczeniach. Porównanie obejmowało następujące macierze:

- 1. macierze Hilberata stopnia $n \in \{1, 3, 5, \dots, 29\}$
- 2. losowe macierze stopnia $n \in \{5, 10, 20\}$ o współczynnikach uwarunkowania $c \in \{1, 10, 10^3, 10^7, 10^{12}, 10^{16}\}$

Układy równań rozwiązywane były za pomocą metod:

- 1. metoda eliminacji Gaussa
- 2. metoda macierzy odwrotnej

Na początku generujemy wektor b=Ax dla $x=(1,...,1)^T$. Znamy zatem dokładną wartość x za pomocą którego będziemy obliczać wartość błędu.

3.2 Wyniki

n	rank(A)	$\operatorname{cond}(A)$	Błąd metody gaussa	Błąd metody inwersji
1	1	1.0	0.0	0.0
3	3	524.0567775860644	8.022593772267726e-15	0.0
5	5	476607.2502425855	1.6828426299227195e-12	3.3544360584359632e-12
7	7	4.753673567446793e8	1.2606867224171548e-8	4.713280397232037e-9
9	9	4.9315375594102344e11	3.8751634185032475e-6	4.541268303176643e-6
11	10	5.222701316549833e14	0.00015827808158590435	0.007618304284315809
13	11	3.1883950689209334e18	0.11039701117868264	5.331275639426837
15	12	3.67568286586649e17	4.696668350857427	7.344641453111494
17	12	1.249010044779401e18	13.707236683836307	10.516942378369349
19	13	6.472700911391398e18	102.15983486270827	109.94550732878284
21	13	3.2902428208431683e18	44.089455838364245	34.52041154914292
23	13	6.313779002744782e17	25.842511917947366	22.272314298730727
25	13	1.3309197502927598e18	7.095757204652332	21.04404299195525
27	14	4.414670357556845e18	27.43309009053957	35.68974530952139
29	14	$8.060274133463556\mathrm{e}{18}$	60.095450394724104	43.40383683199056

Tabela 2: Wyniki uzyskane dla macierzy Hilberta

n	rank(A)	$\operatorname{cond}(A)$	Błąd metody gaussa	Błąd metody inwersji
5	5	1.000000000000000009	3.060673659425244e-16	3.020133145511626e-16
5	5	9.99999999999996	2.808666774861361e-16	2.482534153247273e-16
5	5	999.999999999857	6.5670419225326395e-15	1.0892413880551921e-14
5	5	9.999999998635737e6	8.133223951217187e-12	5.964510355819713e-11
5	5	9.999943413412513e11	2.7805652886404725e-6	4.593503791348379e-6
5	4	$6.888608345035059\mathrm{e}15$	0.08892817369964817	0.08149003006503311
10	10	1.00000000000000007	2.406906162008981e-16	2.482534153247273e-16
10	10	10.0000000000000005	4.468561475845091e-16	4.852068387831066e-16
10	10	1000.0000000001311	1.5653750946155902e-15	3.577606488591348e-15
10	10	$1.00000000006102864\mathrm{e}7$	2.579925170969555e-16	3.990599096986678e-11
10	10	9.999464315535171e11	3.8286577808794076e-5	3.8106121601169446e-5
10	9	$1.882825895626886\mathrm{e}16$	0.9662342952346062	0.9555169780346657
20	20	1.00000000000000001	5.318651993048588e-16	4.041272810440265e-16
20	20	9.9999999999995	3.5631068175681536e-16	3.4219371797089426e-16
20	20	999.999999999999	2.4070725912555422e-14	2.5171672154895007e-14
20	20	$1.0000000000554964\mathrm{e}7$	2.473866335488334e-10	2.1583978340191717e-10
20	20	9.999645898112601e11	6.188174002882354e-5	5.9457597544732435e-5
20	19	$5.296277499395706\mathrm{e}{15}$	0.1458943411371944	0.1052297639579993

Tabela 3: Wyniki uzyskane dla Losowych Macierzy

3.3 Wnioski

Macierze Hilberta osiągają bardzo duże wskaźniki uwarunkowania nawet przy niewielkich rozmiarach macierzy. Dane wskazują na to że metoda gaussa jest skuteczniejsza dla tego typu macierzy jednak błędy względne dla macierzy większych od 15 wydają się wyjątkowo duże. W przypadku macierzy losowych ciężko jest zaobserwować różnicę pomiędzy dwoma metodami. Natomiast błędy są znacznie mniejsze niż dla macierzy Hilberta. Wydają się one zależeć od współczynnika uwarunkowania a nie od wielkości macierzy. Taki stan sugeruje, że rozwiązywanie układu równań liniowych dla macierzy Hilberta jest problemem źle uwarunkowanym. Dodatkowo możemy wnioskować że znając współczynnik uwarunkowania możemy szacować błąd względny.

4 Zadanie 4

4.1 Wstęp

W zadaniu tym rozpatrujemy złośliwy wielomian Wilkinsona. Sprawdzamy jak pakiet **Polynomials** radzi sobie z wyznaczaniem pierwiastków oraz powtarzamy eksperymat Wilkinsona.

4.2 Wyniki

k	$ P(z_k $	$ p(z_k) $	$ z_k - k $
1	35696.50964788257	36720.50964788227	3.0109248427834245e-13
2	176252.60026668405	192636.60026691604	$2.8318236644508943\mathrm{e}\text{-}11$
3	279157.6968824087	362101.69687113096	4.0790348876384996e-10
4	3.0271092988991085e6	2.7649652999648857e6	1.626246826091915e-8
5	$2.2917473756567076\mathrm{e}7$	$2.2277473671348542\mathrm{e}7$	6.657697912970661e-7
6	1.2902417284205095e8	1.2769707122070245e8	1.0754175226779239e-5
7	4.805112754602064e8	4.780526156335614e8	0.00010200279300764947
8	1.6379520218961136e9	$1.6337585675856934\mathrm{e}9$	0.0006441703922384079
9	4.877071372550003e9	4.870348427548107e9	0.002915294362052734
10	$1.3638638195458128\mathrm{e}{10}$	$1.362843071072106\mathrm{e}{10}$	0.009586957518274986
11	3.585631295130865e10	3.584087897760478e10	0.025022932909317674
12	$7.533332360358197\mathrm{e}{10}$	$7.531256581876213\mathrm{e}{10}$	0.04671674615314281
13	1.9605988124330817e11	$1.9602984002587503\mathrm{e}{11}$	0.07431403244734014
14	3.5751347823104315e11	$3.574748406282602\mathrm{e}{11}$	0.08524440819787316
15	8.21627123645597e11	8.215740477766903e11	0.07549379969947623
16	$1.5514978880494067\mathrm{e}{12}$	$1.5514314565843672\mathrm{e}{12}$	0.05371328339202819
17	$3.694735918486229\mathrm{e}{12}$	3.6946500070912217e12	0.025427146237412046
18	$7.650109016515867\mathrm{e}{12}$	$7.650001670877033\mathrm{e}{12}$	0.009078647283519814
19	$1.1435273749721195\mathrm{e}{13}$	1.14351402511197e13	0.0019098182994383706
20	$2.7924106393680727\mathrm{e}{13}$	$2.7923942556843\mathrm{e}{13}$	0.00019070876336257925

Tabela 4: Wyniki dla wielomianu Wilkinsona

k	$ P(z_k $	$ p(z_k) $	$ z_k - k $
1	20259.872313418207	20259.87231341787	1.6431300764452317e-13
2	346541.4137593836	362925.41376118705	5.503730804434781e-11
3	2.2580597001197007e6	2.448523699173658e6	3.3965799062229962e-9
4	1.0542631790395478e7	1.0280487766874775e7	8.972436216225788e-8
5	3.757830916585153e7	4.691967282113626e7	1.4261120897529622e-6
6	1.3140943325569446e8	2.037447840252475e8	2.0476673030955794e-5
7	3.939355874647618e8	1.7130336640684276e9	0.00039792957757978087
8	1.184986961371896e9	1.870372834263971e10	0.007772029099445632
9	2.2255221233077707e9	1.3757961713967935e11	0.0841836320674414
10	$1.0677921232930157\mathrm{e}{10}$	$1.491107673054507\mathrm{e}{12}$	0.6519586830380407
11	$1.0677921232930157\mathrm{e}{10}$	1.491107673054507e12	1.1109180272716561
12	3.1401962344429485e10	3.296740218390893e13	1.665281290598479
13	3.1401962344429485e10	3.296740218390893e13	2.0458202766784277
14	$2.157665405951858\mathrm{e}{11}$	$9.545850646509295\mathrm{e}{14}$	2.518835871190904
15	$2.157665405951858\mathrm{e}{11}$	$9.545850646509295\mathrm{e}{14}$	2.7128805312847097
16	$4.850110893921027\mathrm{e}{11}$	$2.7421389644464932\mathrm{e}{16}$	2.9060018735375106
17	$4.850110893921027\mathrm{e}{11}$	$2.7421389644464932\mathrm{e}{16}$	2.825483521349608
18	$4.557199223869993\mathrm{e}{12}$	$4.252503605819883\mathrm{e}17$	2.4540214463129764
19	$4.557199223869993\mathrm{e}{12}$	$4.252503605819883\mathrm{e}17$	2.0043294443099486
20	$8.756386551865696\mathrm{e}{12}$	1.3743593161201708e18	0.8469102151947894

Tabela 5: Wyniki dla wielomianu Wilkinsona po niewielkiej zmianie

Jak widać z tabeli 4 pierwiastki wyznaczane przez Julię nie są do końca poprawne. Wartości są zbliżone do właściwych, ale ze względu na duże współczynniki przy wielomianie i niedokładność arytmetyki float64 przy zapisie dużych liczb obliczane wartości wielomianu w pierwiastkach są odległe od 0. Tabela 5 obrazuje nam jak niewielkie zaburzenie w wartości jednego ze współczynników wielomianu mocno zmienia otrzymane wyniki. Pokazuje to że wielomian Wilkinsona jest źle uwarunkowany.

5 Zadanie 5

5.1 Wstęp

Zadanie polegało na obliczeniu 40 iteracji ciągu p_n zadanego wzorem:

$$p_{n+1} := p_n + rp_n(1 - p_n)$$

dla $p_0 = 0.01$ i r = 3 na następujące sposoby:

- 1. w arytmetyce Float64
- 2. w arytmetyce Float32
- 3. w arytmetyce Float32 ale obcinając p_{10} do 3 miejsc po przecinku

5.2 Wyniki

Float32	Float32 z obcięciem	Float64
0.25860548	1.093568	0.011611238029748606

Tabela 6: Wyniki zadania 5

Jak widać dla każdej metody wyniki są zupełnie inne. Wynika to z szybkiej kumulacji się błędów zaokrągleń w kolejnych iteracjach. Pokazuje to że takie zadanie jest źle uwarunkowane. Obcięcie przy 10 iteracji znacznie zmienia wynik końcowy co potwierdza nam że błędy przy każdej iteracji kumulują się dla kolejnych.

6 Zadanie 6

6.1 Wstęp

Zadanie polega na rozpatrzeniu 40 iteracji ciągu opisanego rekurencją:

$$x_{n+1} = x_n^2 + c$$

dla następujących argumentów:

1.
$$c = -2 i x_0 = 1$$

2.
$$c = -2 i x_0 = 2$$

4.
$$c = -1$$
 i $x_0 = 1$

5.
$$c = -1$$
 i $x_0 = -1$

6.
$$c = -1$$
 i $x_0 = 0.75$

7.
$$c = -1$$
 i $x_0 = 0.25$

6.2 Wyniki

Rysunek 3: c = -2 i $x_0 = 1$

Rysunek 4: c = -2 i $x_0 = 2$

Rysunek 6: c = -1 i $x_0 = 1$

Rysunek 7: c = -1 i $x_0 = -1$

Rysunek 8: c = -1 i $x_0 = 0.75$

Rysunek 9: c = -1 i $x_0 = 0.25$

Z zadania możemy wyciągnąć następujące wnioski:

- 1. dla liczb całkowitych ciąg zachowuje się zgodnie z oczekiwaniami
- 2. skończona dokładność arytmetyki sprawia że dla wartości początkowych 0.25 i 0.75 ciąg zbiega z czasem do liczb całkowitych
- 3. zmiana wartości początkowej z 2 na 1.99999999999999999 sprawia że wartości ciągu w wyniku kumulacji błędu z czasem zaczynają znacząco odbiegać od oczekiwanych

Pokazuje nam to jak ważnej jest zawracanie uwagi na kumulację błędów podczas obliczeń.