ET4020 - Xử lý tín hiệu số Chương 2: Các phép biến đổi Fourier

TS. Đặng Quang Hiếu http://dsp.edabk.org

Trường Đại học Bách Khoa Hà Nội Viện Điện tử - Viễn thông

Năm học 2012 - 2013

Outline

Biến đổi Fourier

Chuỗi Fourier rời rạc cho dãy tuần hoàn

Biến đổi Fourier rời rạc

Biến đổi Fourier

$$x(n) \xrightarrow{\mathrm{FT}} X(e^{j\omega}) = \mathrm{FT}\{x(n)\} = \sum_{x=-\infty}^{\infty} x(n)e^{-j\omega n}$$

- ightharpoonup Tuần hoàn với chu kỳ 2π
- ▶ Phổ biên độ: $|X(e^{j\omega})|$, và phổ pha: $\arg\{X(e^{j\omega})\}$.
- ► Biến đổi ngược:

$$X(e^{j\omega}) \xrightarrow{\text{IFT}} x(n) = \text{IFT}\{X(e^{j\omega})\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Các ví dụ về FT

- 1. Tìm $X(e^{j\omega})$, $|X(e^{j\omega})|$ và $\arg\{X(e^{j\omega})\}$ của các dãy sau đây:
 - (a) $x(n) = \delta(n)$
 - (b) $x(n) = \delta(n-2)$
 - (c) $x(n) = \delta(n-2) \delta(n)$
 - (d) $x(n) = rect_N(n)$
 - (e) $x(n) = (0.5)^n u(n)$
 - (f) x(n) = u(n)
- 2. Xét bộ lọc thông thấp lý tưởng có đáp ứng tần số (trong một chu kỳ) như sau:

$$H_{lp}(e^{j\omega}) = \left\{ egin{array}{ll} 1, & |\omega| \leq \omega_c \ 0, & \omega_c < |\omega| \leq \pi \end{array}
ight.$$

- (a) Hãy tìm đáp ứng xung $h_{lp}(n)$ của bộ lọc này.
- (b) Giải bài toán cho trường hợp bộ lọc thông cao

Phổ biên độ và phổ pha của ${ m rect}_{10}(n)$

Các tính chất

Quan hệ với biến đổi z:

$$X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}$$

Diều kiện hội tụ:

$$\sum_{n=-\infty}^{\infty}|x(n)|<\infty$$

Một hệ thống LTI có đáp ứng tần số khi và chỉ khi nó ổn định.

- Tuyến tính, dịch thời gian, dịch tần số, chập, v.v.
- Các tính chất đối xứng
- Quan hệ Parseval

$$\sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

▶ Định lý Wiener - Khintchine: Nếu $x(n) \in \mathbb{R}$ thì

$$\operatorname{FT}\{r_{xx}(n)\} = S_{XX}(e^{j\omega}) := |X(e^{j\omega})|^2$$

trong đó $S_{XX}(e^{j\omega})$ là phổ mật độ năng lượng của x(n).

Outline

Biến đổi Fourier

Chuỗi Fourier rời rạc cho dãy tuần hoàn

Biến đổi Fourier rời rac

Khái niệm dãy tuần hoàn

$$\tilde{x}(n) = \tilde{x}(n-N), \quad \forall n$$

- ▶ Chu kỳ $N \in \mathbb{Z} \to$ ký hiệu $\tilde{x}(n)_N$.
- ► Tồn tại khai triển Fourier
- Khác hệ số N so với khái niệm chuỗi Fourier cho tín hiệu tuần hoàn trong môn Tín hiệu và hệ thống!

Định nghĩa cặp chuỗi Fourier rời rạc cho dãy tuần hoàn

$$\tilde{X}(k) = \sum_{n=0}^{N-1} \tilde{x}(n)e^{-j\frac{2\pi}{N}kn}$$

$$\tilde{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) e^{j\frac{2\pi}{N}kn}$$

- $W_N = e^{-j\frac{2\pi}{N}}.$
- ▶ Biên độ và pha: $|\tilde{X}(k)|$, $\arg{\{\tilde{X}(k)\}}$.

Ví dụ: Cho tín hiệu tuần hoàn $\tilde{x}(n)$ với chu kỳ N:

$$ilde{x}(n) = \left\{ egin{array}{ll} 1, & \ell N \leq n \leq \ell N + M - 1, & orall n \in \mathbb{Z}, M < N \\ 0, & n & ext{còn lại} \end{array}
ight.$$

Hãy tìm $\tilde{X}(k)$, $|\tilde{X}(k)|$, $\arg{\{\tilde{X}(k)\}}$.

Các tính chất

- ► Tuyến tính, dịch thời gian, dịch tần số
- ▶ Đối ngẫu: Nếu

$$\tilde{x}(n) \stackrel{\mathrm{DFS}}{\longleftrightarrow} \tilde{X}(k)$$

thì

$$\tilde{X}(n) \stackrel{\mathrm{DFS}}{\longleftrightarrow} N\tilde{x}(-k)$$

Các tính chất đối xứng

Chập tuần hoàn

$$\tilde{x}_1(n) \stackrel{\text{DFS}}{\longleftrightarrow} \tilde{X}_1(k)$$
 $\tilde{x}_2(n) \stackrel{\text{DFS}}{\longleftrightarrow} \tilde{X}_2(k)$

Nếu $\tilde{X}_3(k) = \tilde{X}_1(k)\tilde{X}_2(k)$ \longrightarrow Chập tuần hoàn:

$$\tilde{x}_3(n)_N = \tilde{x}_1(n)(\tilde{x})_N \tilde{x}_2(n) = \sum_{m=0}^{N-1} \tilde{x}_1(m) \tilde{x}_2(n-m)$$

Các bước tính chập tuần hoàn

Tìm $\tilde{x}_3(n_0)$, $\forall n_0 \in [0, (N-1)]$

- (1) Lấy đối xứng $\tilde{x}_2(m) \rightarrow \tilde{x}_2(-m)$
- (2) Dịch theo trục thời gian đi n_0 mẫu
- (3) Nhân: $\tilde{v}_{n_0}(m) = \tilde{x}_1(m)\tilde{x}_2(n_0 m)$ trong đoạn [0, (N-1)]
- (4) Tính tổng: Cộng tất cả thành phần khác không của $\tilde{v}_{n_0}(m)$ trong đoạn $[0,(N-1)]\to \tilde{x}_3(n_0)$
- (5) Kết quả là một dãy tuần hoàn với chu kỳ N: $\tilde{x}_3(n_0) = \tilde{x}_3(n_0 + rn), \quad \forall r \in \mathbb{Z}.$

Minh họa các bước tính phép chập tuần hoàn

Kết quả phép chập tuần hoàn

Bài tập

- 1. Viết chương trình Matlab để vẽ phổ biên độ và phổ pha của một dãy có chiều dài hữu hạn bất kỳ
- Sử dụng hàm freqz trong Matlab để vẽ đáp ứng tần số của một hệ thống LTI từ phương trình sai phân tuyến tính hệ số hằng.
- 3. Lấy mẫu tần số. Cho dãy x(n) có chiều dài hữu hạn L với phổ $X(e^{j\omega})$ (chu kỳ 2π). Để biểu diễn phổ tín hiệu, người ta lấy các mẫu tại tần số $\omega=k\frac{2\pi}{N}$ để thu được $X(e^{jk\frac{2\pi}{N}})$ với chu kỳ lấy mẫu $\frac{2\pi}{N}$. Với những giá trị nào của N thì ta có thể tái tạo lại hoàn toàn x(n) từ các mẫu $X(e^{jk\frac{2\pi}{N}})$?

Outline

Biến đổi Fourier

Chuỗi Fourier rời rạc cho dãy tuần hoàn

Biến đổi Fourier rời rạc

Khái niệm

Xét tín hiệu x(n) có chiều dài hữu hạn N, nếu lấy đủ mẫu (tối thiểu N / một chu kỳ) của phổ $X(e^{j\omega})$, thì có thể khôi phục lại được x(n).

→ Biến đổi Fourier rời rạc DFT cho dãy có chiều dài hữu hạn!

Cho x(n) với chiều dài hữu hạn N: x(n) = 0, $\forall n < 0, n > N-1$, ta có dãy tuần hoàn $\tilde{x}(n)$:

$$\tilde{x}(n) = x(n \mod N)$$

Lấy một chu kỳ từ DFS $\{\tilde{X}(k)\}$:

$$X(k) = \left\{ egin{array}{ll} ilde{X}(k), & 0 \leq k \leq (N-1) \ 0, & k ext{ còn lại} \end{array}
ight.$$

Định nghĩa cặp biến đổi Fourier rời rạc

$$X(k) = \mathrm{DFT}\{x(n)\} = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}, \quad \forall k \in [0, N-1]$$

$$x(n) = \operatorname{IDFT}\{X(k)\} = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}, \quad \forall n \in [0, N-1]$$

Ví dụ: Tìm DFT N-điểm của $x(n) = rect_M(n)$ cho ba trường hợp: M = 1, M = N và 1 < M < N.

Dạng ma trận

Xét ma trận $\mathbf{W}_{N \times N}$ trong đó $W_{kn} = W_N^{kn}$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_N^1 & W_N^2 & \cdots & W_N^{(N-1)} \\ 1 & W_N^2 & W_N^4 & \cdots & W_N^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{(N-1)} & W_N^{(N-1)2} & \cdots & W_N^{(N-1)^2} \end{bmatrix}$$

và

$$\mathbf{X} = [X(0), X(1), \dots, X(N-1)]^T$$

 $\mathbf{x} = [x(0), x(1), \dots, x(N-1)]^T$

DFT và IDFT có thể được biểu diễn dưới dạng:

$$\mathbf{X} = \mathbf{W}\mathbf{x}$$

 $\mathbf{x} = \frac{1}{N}\mathbf{W}^{H}\mathbf{X}$

Dịch vòng: Một chu kỳ của tín hiệu tuần hoàn sau dịch

Dịch vòng: Đặt lên một vòng tròn và quay quanh tâm

Tính chất dịch

▶ Dịch thời gian

DFT
$$\{x(n - n_0)_N\} = e^{-j(2\pi/N)kn_0}X(k)$$

► Dịch tần số

DFT
$$\{e^{j(2\pi/N)k_0n}x(n)\}=X(k-k_0)_N$$

Đối ngẫu

Nếu

$$\mathrm{DFT}\{x(n)\} = X(k)$$

thì

$$\mathrm{DFT}\{X(n)\} = Nx(-k)_N$$

Lưu ý: $x(-k)_N = ?$

Đảo trục thời gian

Nếu

$$DFT\{x(n)\} = X(k)$$

thì

$$DFT\{x(-n)_N\} = X(-k)_N$$

Các tính chất đối xứng

(a) DFT
$$\{x^*(n)\} = X^*(-k)_N$$

(b) DFT
$$\{x^*(-n)_N\} = X^*(k)$$

(c) DFT{Re[
$$x(n)$$
]} = $\frac{1}{2}[X(k) + X^*(-k)_N]$

(d) DFT
$$\{\frac{1}{2}[x(n) + x^*(-n)_N]\} = \text{Re}[X(k)]$$

(e) Nếu
$$x(n) \in \mathbb{R}$$

$$X(k) = X^*(-k)_N = X^*(N-k)$$

$$\blacktriangleright \operatorname{Re}[X(k)] = \operatorname{Re}[X(N-k)]$$

$$\operatorname{Im}[X(k)] = -\operatorname{Im}[X(N-k)]$$

$$|X(k)| = |X(N-k)|$$

$$\arg\{X(k)\} = -\arg\{X(N-k)\}$$

Chập vòng

Định nghĩa chập vòng:

$$x_3(n)_N = x_1(n)(*)_N x_2(n) = \sum_{m=0}^{N-1} x_1(m) x_2(n-m)_N, \quad \forall n \in [0, N-1]$$

Áp dụng DFT ta có:

DFT
$$\{x_1(n)(*)_N x_2(n)\} = X_1(k) X_2(k)$$

Cách tính chập vòng:

- ► Miền thời gian
- ► Miền tần số

Ví dụ: Tính chập vòng 5-điểm (N = 5) của hai dãy sau:

$$x_1(n) = \text{rect}_4(n) + 0.5\delta(n-4)$$

$$x_2(n) = \left\{ egin{array}{ll} 1 - rac{n}{4}, & 0 \leq n \leq 4 \\ 0, & n ext{ còn lại} \end{array}
ight.$$

Dạng ma trận của chập vòng

$$\textbf{x}_3 = \textbf{X}_2 \cdot \textbf{x}_1$$

trong đó $\mathbf{x}_3 = [x_3(0), x_3(1), \cdots, x_3(N-1)]^T$, $\mathbf{x}_1 = [x_1(0), x_1(1), \cdots, x_1(N-1)]^T$ và \mathbf{X}_2 là (circulant matrix):

$$\mathbf{X}_2 = \left[egin{array}{cccc} x_2(0) & x_2(N-1) & \cdots & x_2(1) \\ x_2(1) & x_2(0) & \cdots & x_2(2) \\ \vdots & \vdots & \ddots & \vdots \\ x_2(N-1) & x_2(N-2) & \cdots & x_2(0) \end{array}
ight]$$

- ightharpoonup Dạng ma trận của chập tuyến tính ightharpoonup ma trận Toeplitz!
- Làm thế nào để tính chập vòng bằng Matlab?

Mối quan hệ giữa chập vòng và chập tuyến tính

Cho hai dãy có chiều dài hữu hạn, x(n): $[0\cdots(N-1)]$ và h(n): $[0\cdots(M-1)]$. Nếu

$$y_1(n) = x(n) * h(n)$$

và

$$y_2(n) = x(n)(*)_L h(n)$$

- (a) Với những giá trị nào của L thì $y_1(n) = y_2(n)$, $\forall n$?
- (b) Nếu L=N thì tại những thời điểm n nào ta có $y_1(n)=y_2(n)$?

Quan hệ Parseval

$$\sum_{n=0}^{N-1} x(n)y^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)Y^*(k)$$

Nếu x(n) = y(n):

$$\sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$$