	Estimating n!	
	$n! < n^n$ $n! \approx \frac{n^n}{e^n} \sqrt{2\pi n}$	
	logn! < nlogn	
	$n! > \left(\frac{n}{2}\right)^{\frac{n}{2}}$	
	2/og2 < logn!	
a	$\approx \frac{n}{2}(\log n - \log 2)$ for bign $\frac{n}{2}\log n < \log n$?	
	⇒ logn! ~ Cnlogn	
	2/3/15	-
	VLWI	•
	graph $G = \{V(G), E(G)\}$ $\Rightarrow (x,y) \in E(G) \Rightarrow (y,x) \in E(G)$	
	set (xw) EV(G) xV(G)	
	Vertices edges	
	Kn = E(Kn)	
	Complete Graph (2) edges	
	loops (x,x)	
	double SE(G) multiset	
	edges ((x,y) appears >1 time	
	Simple: a graph w/ no loops or double edges	
	Cn	
	Cycle graph Cy Cs V(G) = {0,1,, n-1}	, &
	polygon $E(G) = \frac{2}{3}(x, x+1) \pmod{n} x = \frac{2}{3}$:V(G)}
	Tree a graph w/ no cycles, connected: = \ X, y \ V(G) can find	
	path x → y	
	edges (x,x,1); (x,x2),	
	$(x_{n-1}, x_n), (x_n, x)$	
	$V(G) = [3] \langle A \rangle$	
	$V(G)=[4]$ \square	
	NZNZ	
	\times \times \times \times	
	n ⁿ⁻² trees (proof later!)	
	11 Trees (proof later.)	6

2.1] There are n labeled trees on n vertices. Proof3 Let t(dy,..., dn) be # of trees with vertex degrees munset Edy, dns \rightarrow degrees 3,1,1,1 t(5,2)=t(2,5)Fact a tree on n vertices has n-1 edges - nedges = a cycle Wlog di = dz - . = dn dn=1 because Zdi=2n-2 must be cycle t(d,...,dn) = t(d,...,dn-1,1) = = t(d, ..., di-1, di-1, diti, ..., dn-1) take away this edge and you have a tree with one less vertex and one less edge Guess t(d1,...,dn) = (d1-1,d2-1,...dn-1) works check boundary cases then check recurrence. (X1+X2+...+Xk)"= Z (r1...rk) X1r1 ... Xkrk plux X1= ... = XK= $n^{n-2} = \Sigma + (d_1, ..., d_n)$ k=n n'= n-2 - Graphs - Eurenan/ Hamiltonian - Check Cn, Kn - labeled v/ unlabeled - Trees - Split into equivalence classes & count automorphisms - labeled nn-z