Package 'SIHR'

September 25, 2022

	September 23, 2022
Type Package	
Title Statistical Inference	in High Dimensional Regression
Version 1.1.0	
Author Prabrisha Rakshit,	Zhenyu Wang, Zijian Guo, Tony Cai
Maintainer Zijian Guo <z< th=""><th>ijguo@stat.rutgers.edu></th></z<>	ijguo@stat.rutgers.edu>
(1) linear functionals sion ('Cai et al.' (2019 (2) individual treatme (3) quadratic function	cedures in the high-dimensional setting for in generalized linear regres-0) <arxiv:1904.12891>, 'Guo et al.' (2020) <arxiv:2012.07133>, 'Cai et al.' (2021) ent effects in generalized linear regression, nals in generalized linear regres-19) <arxiv:1909.01503>).</arxiv:1909.01503></arxiv:2012.07133></arxiv:1904.12891>
License GPL-3	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.2.0	
URL https://github.co	om/prabrishar1/SIHR
Imports CVXR, glmnet, stats	
R topics documen	ted:
LF	1
Index	8
ITE	Inference for difference of linear combinations of the regression vec- tors in high dimensional generalized linear regressions

Description

Computes the bias-corrected estimator of the difference of linearcombinations of the regression vectors for the high dimensional generalized linear regressions and the corresponding standard error.

2 ITE

Usage

```
ITE(
  Х1,
  y1,
  Х2,
  y2,
  loading.mat,
  model = c("linear", "logistic", "logistic_alter"),
  intercept = TRUE,
  intercept.loading = FALSE,
  beta.init1 = NULL,
  beta.init2 = NULL,
  lambda = NULL,
  mu = NULL,
  prob.filter = 0.05,
  rescale = 1.1,
  alpha = 0.05,
  verbose = TRUE
)
```

Arguments X1

y1	Outcome vector for the first sample, of length n_1
X2	Design matrix for the second sample, of dimension $n_2 \ge p$
y2	Outcome vector for the second sample, of length n_1
loading.mat	Loading matrix, nrow=p, each column corresponds to a loading of interest
model	The high dimensional regression model, either "linear" or "logistic" or "logistic_alter"
intercept	Should intercept(s) be fitted for the initial estimators (default = $TRUE$)
intercept.loadi	ng
	Should intercept term be included for the loading (default = FALSE)
beta.init1	The initial estimator of the regression vector for the 1st data (default = NULL)
beta.init2	The initial estimator of the regression vector for the 2nd data (default = NULL)
lambda	The tuning parameter in fitting initial model. If NULL, it will be picked by cross-validation. (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction. If $NULL$ it will be searched automatically. (default = $NULL$)
rescale	The constant to enlarge the standard error, considering finite sample bias. (default = 1.1)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate $message(s)$ be printed (default = TRUE)

Design matrix for the first sample, of dimension $n_1 \ge p$

Value

A list consists of plugin estimators, debiased estimators, and confidence intervals. For logistic regression, it also returns those items after probability transformation.

LF 3

	est.plugin.vec	The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat
	est.debias.vec	The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat
	se.vec	The vector of standard errors of the bias-corrected estimators, length of $ncol(loading.mat)$; corresponding to different column in loading.mat
	ci.mat	The matrix of two.sided confidence interval for the linear combination, dimension of $ncol(loading.mat)$ x 2; the row corresponding to different column in $loading.mat$
prob.debias.vec		
		The vector of bias-corrected estimators after probability transformation, length of ncol(loading.mat); corresponding to different column in loading.mat.
	prob.se.vec	The vector of standard errors of the bias-corrected estimators after probability transformation, length of ncol(loading.mat); corresponding to different column in loading.mat.
	prob.ci.mat	The matrix of two.sided confidence interval of the bias-corrected estimators after probability transformation, dimension of ncol(loading.mat) x 2; the row corresponding to different column in loading.mat.

Examples

```
X1 = matrix(rnorm(100*10), nrow=100, ncol=10)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*10), nrow=90, ncol=10)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
loading1 = c(1, 1, rep(0,8))
loading2 = c(-0.5, -1, rep(0,8))
loading.mat = cbind(loading1, loading2)
Est = ITE(X1, y1, X2, y2, loading.mat, model="linear")
### compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
### summary statistics
summary(Est)
```

LF

Inference for linear combination of the regression vector in high dimensional generalized linear regression

Description

Inference for linear combination of the regression vector in high dimensional generalized linear regression

4 LF

Usage

```
LF(
    X,
    y,
    loading.mat,
    model = c("linear", "logistic", "logistic_alter"),
    intercept = TRUE,
    intercept.loading = FALSE,
    beta.init = NULL,
    lambda = NULL,
    mu = NULL,
    prob.filter = 0.05,
    rescale = 1.1,
    alpha = 0.05,
    verbose = TRUE
)
```

Arguments

X Design matrix, of dimension $n \times p$ y Outcome vector, of length n

 ${\tt loading.mat} \qquad {\tt Loading\ matrix}, {\tt nrow} = p, {\tt each\ column\ corresponds\ to\ a\ loading\ of\ interest}$

model The high dimensional regression model, either "linear" or "logistic" or

"logistic_alter"

intercept Should intercept be fitted for the initial estimator (default = TRUE)

intercept.loading

Should intercept term be included for the loading (default = FALSE)

beta.init The initial estimator of the regression vector (default = NULL)

lambda The tuning parameter in fitting initial model. If NULL, it will be picked by cross-

validation. (default = NULL)

mu The dual tuning parameter used in the construction of the projection direction.

If NULL it will be searched automatically. (default = NULL)

rescale The enlargement factor for asymptotic variance of the bias-corrected estimator

to handle super-efficiency. (default = 1.1)

alpha Level of significance to construct two-sided confidence interval (default = 0.05)

verbose Should intermediate message(s) be printed, the projection direction be returned.

(default = TRUE)

Value

est.plugin.vec The vector of plugin(biased) estimators for the linear combination of regression

coefficients, length of ncol(loading.mat); each corresponding to a loading of

interest

est.debias.vec The vector of bias-corrected estimators for the linear combination of regression

coefficients, length of ncol(loading.mat); each corresponding to a loading of

interest

se.vec The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat);

each corresponding to a loading of interest

QF 5

Ci.mat The matrix of two.sided confidence interval for the linear combination, of dimension ncol(loading.mat) x 2; each row corresponding to a loading of interest

The matrix of projection directions; each column corresponding to a loading of interest. It will be returned only if verbose set as TRUE

Examples

```
X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = -0.5 + X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
loading1 = c(1, 1, rep(0, 8))
loading2 = c(-0.5, -1, rep(0, 8))
loading.mat = cbind(loading1, loading2)
Est = LF(X, y, loading.mat, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

QF

Inference for quadratic forms of the regression vector in high dimensional generalized linear regressions

Description

Inference for quadratic forms of the regression vector in high dimensional generalized linear regressions

Usage

```
QF(
 Χ,
 у,
 G,
 A = NULL,
 model = c("linear", "logistic", "logistic_alter"),
 intercept = TRUE,
 beta.init = NULL,
 split = TRUE,
 lambda = NULL,
 mu = NULL,
 prob.filter = 0.05,
 rescale = 1.1,
  tau1 = c(0.5, 1),
  tau2 = 0,
 alpha = 0.05,
  verbose = TRUE
)
```

QF

Arguments

Χ	Design matrix, of dimension $n \times p$
У	Outcome vector, of length n
G	The set of indices, G in the quadratic form
A	The matrix A in the quadratic form, of dimension $ G \times G $. If NULL A would be set as the $ G \times G $ submatrix of the population covariance matrix corresponding to the index set G (default = NULL)
model	The high dimensional regression model, either "linear" or "logistic" or "logistic_alter"
intercept	Should intercept be fitted for the initial estimator (default = TRUE)
beta.init	The initial estimator of the regression vector (default = NULL)
split	Sampling splitting or not (default = TRUE)
lambda	The tuning parameter in fitting initial model. If $NULL$, it will be picked by cross-validation. (default = $NULL$)
mu	The dual tuning parameter used in the construction of the projection direction. If NULL it will be searched automatically. (default = NULL)
prob.filter	The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
rescale	The enlargement factor for asymptotic variance of the bias-corrected estimator to handle super-efficiency. (default $= 1.1$)
tau1	The enlargement factor for asymptotic variance of the bias-corrected estimator to handle super-efficiency. It allows for a scalar or vector. (default = $c(0.5,1)$)
tau2	The enlargement factor for asymptotic variance of the initial estimator to handle super-efficiency. It allows for a scalar or vector (default = 0)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed, the projection direction be returned. (default = TRUE)

Value

est.plugin	The plugin(biased) estimator for the quadratic form of the regression vector restricted to G
est.debias	The bias-corrected estimator of the quadratic form of the regression vector
se	Standard errors of the bias-corrected estimator, length of tau1; corrsponding to different values of tau1
add.len	Added lengths accounted for asymptotic variance of the initial estimators
ci.mat	The matrix of two.sided confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau1 and tau2
proj	The projection direction. It will be returned only if verbose set as TRUE

Examples

```
X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
G = c(1,2)
A = matrix(c(1.5, 0.8, 0.8, 1.5), nrow=2, ncol=2)
Est = QF(X, y, G, A, model="linear")
```

QF 7

```
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

Index

- ITE, 1
- LF, 3
- QF, 5