LA FONCTION INVERSE E03

EXERCICE Nº1 (Le corrigé)

Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = -10x + 62 - \frac{3240}{x}$

1) Montrer que pour tout réel non nul, $f'(x) = \frac{-10(x-18)(x+18)}{x^2}$

D'une part,

$$f(x) = -10x + 62 - \frac{3240}{x}$$

$$f(x) = -10 \times x + 62 - 3240 \times \frac{1}{x}$$

$$f'(x) = -10 \times 1 + 0 - 3240 \times \frac{-1}{x^2}$$

$$f'(x) = -10 + \frac{3240}{x^2}$$

D'autre part,

$$\frac{-10(x-18)(x+18)}{x^2} = \frac{-10[x^2-324]}{x^2} = \frac{-10x^2+3240}{x^2} = \frac{-10x^2}{x^2} + \frac{3240}{x^2} = -10 + \frac{3240}{x^2}$$

On en déduit que $f'(x) = \frac{-10(x-18)(x+18)}{x^2}$

2) Dresser le tableau de variation de la fonction f sur \mathbb{R}^* .

Nous aurons du tableau de signes de la dérivée que nous allons inclure dans le tableau de variation.

- -10 est toujours négatif; x^2 est positif sur \mathbb{R}^*
- $x-18 > 0 \Leftrightarrow x > 18$ et
- $x+18 > 0 \Leftrightarrow x > -18$

Ę	x+18.	$> 0 \Leftrightarrow x > -18$						
	\boldsymbol{x}	$-\infty$	-18		0	18		+∞
	-10	1		_	_		_	
	x - 18	_		_	_	0	+	
	x+18	_	0	+	+		+	
	x^2	+		+	+		+	
	f'(x)	_	0	+	+	0	_	
	f(x)	+∞	422	+∞		-298		` −∞

• f(-18)=422 et f(18)=-298

Limite en $-\infty$

 $\lim_{x \to -\infty} x = -\infty$

d'où

$$\lim_{x \to -\infty} -10x = +\infty$$

- $\lim_{x \to -\infty} 62 = 62$
- $\lim_{x \to -\infty} \frac{1}{x} = 0$

d'où

$$\lim_{x \to -\infty} \frac{-3240}{x} = 0$$

On en déduit que : $\lim_{x \to \infty} f(x) = +\infty$

Limite en 0

$$\lim_{x \to 0^{-}} x = 0$$

d'où

$$\lim_{x \to 0} -10x = 0$$

- $\lim_{x \to 0} 62 = 62$
- $\lim_{x \to 0^-} \frac{1}{x} = -\infty$

d'où

$$\lim_{x \to 0^{-}} \frac{-3240}{x} = +\infty$$

On en déduit que : $\lim_{x \to 0^{-}} f(x) = +\infty$

Limite en 0⁺

$$\lim_{n \to \infty} x = 0$$

d'où

$$\frac{\text{d'où}}{\lim -10 \, x = 0}$$

- $\lim_{x \to 0^{+}} 62 = 62$
- $\lim_{x \to \infty} \frac{1}{x} = +\infty$

d'où

$$\lim_{x \to 0^+} \frac{-3240}{x} = -\infty$$

On en déduit que : $\lim_{x \to 0^+} f(x) = -\infty$

Limite en $+\infty$

 $\lim_{x \to +\infty} x = +\infty$

d'où

 $\lim_{x \to +\infty} -10 x = -\infty$

- lim 62=62
- $-\lim_{x\to+\infty}\frac{1}{x}=0$

d'où

$$\lim_{x \to +\infty} \frac{-3240}{x} = 0$$

On en déduit que : $\lim_{x \to \infty} f(x) = -\infty$