分散の加法性を視覚的に理解する

Sampo Suzuki, CC 4.0 BY-NC-SA 2021-05-30

Introduction

2021 年度データ分析勉強会のテキストである『統計解析のはなし』 [大平, 2006] の「標本が2つになれば」(P26~) には分散の加法性の話 が出てきます。分散の加法性は理解できるようでいて、理解できてい ないので、Rを使って分散の加法性を可視化しながら説明してみます。 以降、平均値 μ 、標準偏差 σ 、分散 σ^2 である正規分布を $N(\mu,\sigma^2)$ と表記します。

加法性を可視化する

以下の平均値と標準偏差を持つ二つの正規分布を rnorm() 関数によ る正規分布乱数を用いて作成1します。ここでは処理の都合上、二つを データフレームにまとめてあります。

Table 1: 二つの正規分布

正規分布	平均	標準偏差	備考
$N(\mu_a, \sigma_a^2)$	$\mu_a = 10$	$\sigma_a = 10$	
$N(\mu_b, \sigma_b^2)$	$\mu_b = 30$	$\sigma_b = 10$	

```
x \leftarrow data.frame(a = rnorm(n, mean = 10, sd = 10),
                  b = rnorm(n, mean = 30, sd = 10))
```

Table 2: 二つの正規分布の要約統計量

正規分布	平均	標準偏差	備考
$ \frac{N(\mu_a, \sigma_a^2)}{N(\mu_b, \sigma_b^2)} $	9.9951475 29.9989783	9.9959159 10.0051801	

この二つの正規分布 $N(\mu_a, \sigma_a^2)$ と $N(\mu_b, \sigma_b^2)$ からランダムサンプリ ングにより一つずづ値を取り出して加算します。すなわち

 $N(\mu_a, \sigma_a^2)$ から取り出した値 + $N(\mu_b, \sigma_b^2)$ から取り出した値

という新しい値を作成します。取り出した値は元に戻し、同様の取 り出し、加算を繰り返すと以下のようなデータが作成できます。ここ ではスペースの都合で先頭から限定して表示しています。

 1 n = 5×10^{6} 個の値を作成しています

Figure 1: $N(\mu_a, \sigma_a^2)$ の分布

Figure 2: $N(\mu_b, \sigma_b^2)$ の分布

```
c \leftarrow c(sample(x + a, n, replace = TRUE) + sample(x + b, n, replace = TRUE))
head(c, 50)
```

```
## [1] 57.33431 13.86405 21.24315 21.52298 60.14019 64.89915 39.53705 30.66057
## [9] 35.58985 44.39301 42.75026 24.11251 46.36193 33.31220 35.95976 25.68859
## [17] 46.92637 70.78838 57.07144 70.56954 47.77346 31.30232 26.13623 54.24486
## [25] 33.07926 27.85359 46.79052 56.22061 44.89961 42.29841 40.51847 48.20768
## [33] 61.10274 53.15060 39.06615 45.27197 12.96846 46.94400 37.67426 49.17930
## [41] 55.30332 43.38246 37.50048 16.14157 53.31532 36.56948 36.82211 35.10256
## [49] 53.73004 39.41396
```

分散の加法性により上記のデータは $N(\mu_a + \mu_b, \sigma_a^2 + \sigma_b^2))$ という正 規分布になるはずですが実際はどうでしょう。各正規分布の平均値と 分散を比較します。

正規分布	平均	分散	備考
$N(\mu_a, \sigma_a^2)$	9.9951475	99.9183346	元の分布
$N(\mu_b, \sigma_b^2)$	29.9989783	100.1036293	元の分布
$N(\mu_a + \mu_b, \sigma_a^2 + \sigma_b^2))$	39.9941258	200.0219639	分散の加法性
$N(\mu_c, \sigma_c^2)$	39.9905755	200.0174879	

このように確かに分散の加法性が成り立っており、正規分布 $N(\mu_a, \sigma_a^2)$ や $N(\mu_b, \sigma_b^2)$ より横に広がった正規分布になっていることが 分かります。

Figure 3: $N(\mu_c, \sigma_c^2)$ の分布

同一の正規分布から取り出し値を加算した場合

次に二つの正規分布 $N(\mu_a, \sigma_a^2)$ と $N(\mu_b, \sigma_b^2)$ がまったく等しいと仮 定します。つまり

 $\mu_a = \mu_b = \mu_d$

 $\sigma_a = \sigma_b = \sigma_d$

という正規分布 $N(\mu_d, \sigma_s^2)$ を作成します。

```
d < rnorm(n, mean = 10, sd = 10)
```

head(d, 50)

```
## [1] 2.2233014 1.5846010 9.6193505 6.4874410 -6.7454230 3.7869663
## [7] 7.1527368 8.8026565 15.4411933 9.4532447 32.2050733 -3.9343231
## [13] -0.5036607 16.6210855 12.6110213 16.7782865 3.2212688 2.9894326
## [19] 2.5727131 12.8557626 17.3988821 11.1802089 4.8892306 15.0641506
## [25] 5.3592454 12.9890084 20.9063492 9.4312083 9.8147737 -4.3556116
## [31] 20.9061069 0.3316442 0.5345106 17.6295992 11.4236104 -2.4654854
## [37] 14.2736619 4.6445990 7.4769036 8.6161968 7.1881268 9.9389923
## [43] 13.1300344 0.4984865 23.6710128 21.3089260 20.7042437 3.2072904
## [49] 14.2789681 16.7855235
```

この正規分布 $N(\mu_d, \sigma_s^2)$ から先程と同様にランダムサンプリング により一つずづ値を取り出して加算しますが、今回は同一正規分布 $N(\mu_d, \sigma_d^2)$ ですので、二つ取り出します。取り出した値は元の正規分 布に戻し同様の操作を繰り返します。

```
e <- c(sample(d, n, replace = TRUE) + sample(d, n, replace = TRUE))
head(e, 50)
## [1] 27.3004509 29.7200016 23.9848304 3.4979476 13.4630279 31.4064247
## [7] 3.5155251 19.0187285 28.3528654 20.0649361 18.2230424 24.6737595
## [13] 7.3944569 17.7851179 52.5397998 34.1228952 10.0614182 42.4256975
## [19] 6.4739662 2.8623599 39.3945190 18.6478855 1.5683397 6.2463979
## [25] 23.2930933 22.1717747 16.2854189 29.2877362 12.5280934 5.7419326
## [31] 24.0009893 14.8794803 29.7507442 9.4592030 44.8896683 -0.4141265
## [37] 18.6104193 6.7617456 19.7407097 10.2755228 28.0814354 24.1566475
## [43] 27.4349759 19.9207832 6.6807422 9.2693959 20.5320835 38.7083146
 ## [49] 17.1549492 -1.1296295
```

分散の加法性により以下が成り立ちます。

$$N(\mu_d + \mu_d, \sigma_d^2 + \sigma_d^2) = N(2\mu_d, 2\sigma_d^2)$$

つまり、正規分布 $N(\mu_d, \sigma_d^2)$ から取り出した二つの値の和である正 規分布 $N(\mu_e, \sigma_e^2)$ は

正規分布	平均	分散	備考
$\overline{N(\mu_e, \sigma_e^2)}$	$2\mu_d$	$2\sigma_d^2$	

という正規分布をすることになります。加法性と実際の正規分布を 比べてみると

正規分布	平均	分散	備考
$N(\mu_d, \sigma_d^2)$ $N(2\mu_d, 2\sigma_d^2)$ $N(\mu_e, \sigma_e^2)$	10.0026499 20.0052998 20.0026644	99.9740994 199.9481988 199.9443459	元の分布 分散の加法性

となり、同一正規分布の場合でも分散の加法性が成り立っているこ とが分かります。

Figure 4: $N(\mu_d, \sigma_d^2)$ の分布

Figure 5: $N(\mu_e, \sigma_e^2)$ の分布

同一の正規分布から取り出した値を平均した場合

最後に同一の正規分布 $N(\mu_d, \sigma_d^2)$ から取り出した二つの値の**平均値** の分布を考えてみます。「二つの値の平均値の平均値」とは、正規分布 $N(\mu_d, \sigma_d^2)$ から、ランダムサンプリングで二つの値を取り出して、そ の平均値を取るということです。取り出した値は元の正規分布へ戻し、 同様の操作を繰り返します。

f <- c((sample(d, n, replace = TRUE) + sample(d, n, replace = TRUE)) / 2)</pre> head(f, 20)

[1] 8.7305884 14.9020097 8.8849919 16.4786882 8.3310684 5.1886257

[7] 12.4705646 -1.5500875 -0.5659579 9.1376441 11.6390996 18.5703466

[13] 9.7226476 15.8533947 19.5455885 11.9792291 11.4669204 3.8360299

[19] 15.0274205 16.0350309

この正規分布正規分布 $N(\mu_f,\sigma_f^2)$ は、二つの値の平均値、つまり二 つの値を半分に割った値ですので正規分布 $N(2\mu_d, 2\sigma_d^2)$ のすべての値 を半分にした正規分布になると予想できます。

「二つの標本の平均値」の平均値
$$=rac{2\mu_d}{2}=\mu_d$$

「二つの標本の平均値」の標準偏差 =
$$\sqrt{rac{2\sigma_d^2}{2}}=rac{\sigma_d}{\sqrt{2}}$$

「二つの標本の平均値」の分散
$$=(rac{\sigma_d}{\sqrt{2}})^2=rac{\sigma_d^2}{2}$$

正規分布	平均	分散	標準偏差	備考
$N(\mu_d, \sigma_d^2)$	10.0026499	99.9740994	9.9987049	元の分布
$N(\mu_d, \frac{\sigma_d^2)}{2}$	10.0026499	49.9870497	7.070152	分散の加法性
$N(\mu_f, \sigma_f^2)$	10.0038582	49.9996318	7.0710418	

このように元の分布よりも鋭い分布になっていることがわかり ます。

Figure 6: $N(\mu_d, \sigma_d^2)$ の分布

Figure 7: $N(\mu_f, \sigma_f^2)$ の分布

About handout style

The Tufte handout style is a style that Edward Tufte uses in his books and handouts. Tufte's style is known for its extensive use of sidenotes, tight integration of graphics with text, and well-set typography. This style has been implemented in LaTeX and HTML/CSS², respectively.

 $^2\,\mathrm{See}$ Github repositories tufte-latex and tufte-css

References

平大平. 『統計解析のはなし』. 日科技連出版, 改訂版 edition, 2006. URL https://www.juse-p.co.jp/products/view/196. ISBN 978-4-8171-8028-5.