Logica e Modelli Computazionali

Complessità Computazionale

Marco Console

Ingegneria Informatica e Automatica (Sapienza, Univerità di Roma)

Limiti Pratici

- Abbiamo discusso la teoria della computabilità e costruito funzioni non Computabili
 - Non esiste cioè una macchina di Turing in grado di calcolare tale funzioni
 - Nessun modello computazionale noto fa meglio della MT da questo punto di vista
- La Turing Computabilità non assicura però una soluzione pratica ad un problema
 - Il miglior algoritmo possibile potrebbe impiegare moltissimo tempo per risolverlo
 - Il miglior algoritmo possibile potrebbe richiedere moltissima memoria per risolverlo
- Per studiare quest'ulteriore aspetto della natura dei problemi computazionali ci rivolgiamo alla teoria della complessità computazionale
- Tenteremo (non sempre riuscendoci) di rispondere alla seguente domanda

Quante risorse sono necessarie per risolvere un problema computazionale?

Risorse – Tempo e Spazio

- Dobbiamo per prima cosa definire quali sono le risorse a cui siamo interessati
 - Considereremo le risorse Tempo e Spazio come segue
- Tempo: Quanto tempo impiega una macchina per risolvere il problema?
 - Anche se un problema è Turing Computabile, se la macchina che lo risolve ha bisogno di mesi, anni o secoli per terminare, la computabilità non ci aiuta affatto
- Spazio: Quanta memoria utilizza la macchina per risolvere il problema?
 - Anche se un problema è Turing Computabile, se la macchina che lo risolve ha bisogno di milioni o miliardi di Terabyte di memoria, non riusciremo a lanciare la nostra soluzione su nessun calcolatore reale
- Come per la teoria della computabilità noi considereremo Macchine di Turing
 - Per una certa funzione f, quanto tempo impiega una MT che calcola f a terminare?
 - Per una certa funzione f, quanto nastro impiega una MT che calcola f a terminare?

Complessità del Caso Peggiore (1/3)

- Ovviamente diversi input potrebbero dar vita a diversi comportamenti di un MT
 - Con un input (difficile da valutare) una macchina potrebbe dover consumare tantissime risorse
 - Con un altro (facile da valutare) input la stessa macchina potrebbe usare pochissime risorse
- Per capire quanto un input è "difficile" ci baseremo sulla sua dimensione
 - Più celle di nastro occupa più lo riteniamo complesso
 - Anche se potrebbero esserci altri parametri, questa scelta è ragionevole perché, per problemi reali, una MT deve almeno controllare tutto o quasi l'input prima di decidere se accettare
- Ovviamente, la quantità di risorse richieste da un macchina varia per input della stessa dimensione
 - Un input σ di dimensione n potrebbe essere difficile da valutare
 - Un altro input τ di dimensione n potrebbe essere facile da valutare
- Noi considereremo le risorse nel caso peggiore, cioè per ogni possibile dimensione $n \in \mathbb{N}$ dell'input, considereremo l'input di dimensione n che da vita al consumo di risorse maggiore

Complessità del Caso Peggiore (2/3)

- La teoria della complessità computazionale parte dalle premesse che abbiamo identificato
- Per la risorsa Tempo impiegata da una Macchia di Turing M
 - Assumiamo che ogni cambio di configurazione di M costi 1 unità (nessuna in particolare)
 - Definiamo una funzione matematica $f_M: \mathbb{N} \to \mathbb{N}$ che, per ogni $n \in \mathbb{N}$ restituisce il numero di configurazioni che la macchina deve attraversare prima di terminare per l'input di dimensione n che richiede il numero maggiore di configurazioni
 - Studiamo l'andamento asintotico di tale funzione f_M
- Per la risorsa Spazio impiegata da una Macchia di Turing M
 - Assumiamo che ogni cella del nastro di M costi 1 unità (nessuna in particolare)
 - Definiamo una funzione matematica $g_M: \mathbb{N} \to \mathbb{N}$ che, per ogni $n \in \mathbb{N}$ restituisce il massimo numero di celle scritte dalla macchina durante una esecuzione per un input di dimensione n
 - Studiamo l'andamento asintotico di tale funzione g_M

Complessità del Caso Peggiore (3/3)

- Ovviamente queste sono analisi "poco raffinate"
 - L'andamento asintotico di una funzione perde molta informazione
- Ci danno però una indicazione di quanto tempo e spazio impieghi la macchina.
 - In particolar modo se ci accorgiamo che l'andamento asintotico di f_M o g_M è quello di una funzione la cui forma chiusa è nota
- Supponiamo, ad esempio, che un passo di una MT possa essere eseguito in $1\mu s$

$f_{M}(n)$	n = 10	n=20	n = 50	n = 100	n = 1000
n	10μs	$20\mu s$	50 <i>μs</i>	100μs	1ms
$n * \log_2 n$	33.2μs	86.4 <i>µs</i>	0.28 <i>ms</i>	0.6 <i>ms</i>	9.9 <i>ms</i>
n^2	0.1ms	0.4ms	2.5 <i>ms</i>	10 <i>ms</i>	1 <i>s</i>
n^3	1ms	8 <i>ms</i>	125 <i>ms</i>	1 <i>s</i>	16.6 <i>min</i>
2^n	1ms	1 <i>s</i>	35.7 <i>a</i>	$\approx 10^{14} a$??

Notazione O-Grande

Notazione O-Grande

- Per descrivere il comportamento asintotico di una funzione utilizziamo la notazione O-grande
- **Definizione**. Siano $f: \mathbb{N} \to \mathbb{N}$ e $g: \mathbb{N} \to \mathbb{N}$ due funzioni.
- **Definizione**. $f(n) = \mathcal{O}(g(n))$ (f(n) è un **O-grande** di g(n)) se esistono due costanti c > 0 e $n_0 \ge 0$ tali che

$$f(n) \le c \cdot g(n)$$
, per ogni $n \ge n_0$

- Intuitivamente, $f(n) = \mathcal{O}(g(n))$ se esiste un certo valore di n (n_0) dopo il quale il valore f(n) è più piccolo di $c \cdot g(n)$.
- In altre parole, f(n) cresce al più quanto g(n), a partire da un certo valore di n

Notazione O Grande – Esempio Grafico

Alcune Regole Utili

• Assumiamo tre funzioni f(n), g(n) e h(n)

1.
$$f(n) + g(n) = \mathcal{O}(\max\{f(n), g(n)\})$$

L'andamento asintotico di una somma dipende dal termine più veloce (dominante)

2.
$$f(n) \cdot g(n) = \mathcal{O}(f(n) \cdot g(n))$$

L'andamento asintotico di un prodotto dipende da entrambi gli operandi

3. Se
$$f(n) = \mathcal{O}(g(n))$$
 e $g(n) = \mathcal{O}(h(n))$ allora $f(n) = \mathcal{O}(h(n))$

L'andamento asintotico è transitivo

Alcuni Andamenti Asintotici Utili

- Costanti. Per ogni costante c, c = O(g(n)), per ogni g(n)
 - Funzioni costanti non crescono al variare di n
- Polinomi. Sia $p(n) = c_0 + c_1 n^1 + \cdots + c_m n^m$ un polinomio di grado m. $p(n) = \mathcal{O}(n^m)$
 - Un polinomio cresce asintoticamente come il suo coefficiente di grado maggiore
- Logaritmi. Sia p(n) un polinomio. $log(n) = \mathcal{O}(p(n))$
 - Il logaritmo cresce asintoticamente meno di un polinomio
- Esponenziali. Sia p(n) un polinomio. $p(n) = O(t^n)$, per ogni t > 1
 - Un polinomio cresce asintoticamente meno di un esponenziale

Esempi di Crescita

	constant	logarithmic	linear	N-log-N	quadratic	cubic	exponential
n	O(1)	O(log n)	O(n)	O(n log n)	O(n ²)	O(n ³)	O(2 ⁿ)
1	1	1	1	1	1	1	2
2	1	1	2	2	4	8	4
4	1	2	4	8	16	64	16
8	1	3	8	24	64	512	256
16	1	4	16	64	256	4,096	65536
32	1	5	32	160	1,024	32,768	4,294,967,296
64	1	6	64	384	4,069	262,144	1.84 x 10 ¹⁹

Esempi di Crescita – In Prospettiva

- n = 300
 - Iscritti alla triennale di ingegneria informatica ogni anno (circa)
- $n^2 = 90000$
 - Studenti iscritti a Sapienza 115000 (la più grande in Europa per numero di studenti)
- $n^3 = 27000000$ (27 milioni)
 - Cittadini Italiani circa 60000000
- $n^4 = 8100000000$ (8 miliardi 100 milioni)
 - Popolazione mondiale circa 800000000 (8 miliardi)
- $2^n > 2 \cdot 10^{90}$ (un bel po' ©)
 - Atomi nell'universo ≤ 10^{82}

Complessità Temporale

Complessità Temporale

- Sia $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$ una Macchina di Turing terminante con k nastri e x un input per M
- Definizione. L'esecuzione di M con input x ($E_M(x)$) è la sequenza di configurazioni di M C_1 , C_2 , ..., C_n tale che
 - C_1 è la configurazione iniziale di M con input x
 - C_n è una configurazione accettante\rifiutante
 - $C_i \Rightarrow_M C_{i+1}$ per ogni i = 1, ..., n-1
- Definizione. La complessità temporale $f_M: \mathbb{N} \to \mathbb{N}$ di M è la funzione $f_M(n) = \max_{\{x \in \Sigma^* \mid |x| = n\}} |E_M(x)|$
 - $f_M(n)$ è la lunghezza della più lunga esecuzione di M con input σ tale che $|\sigma| = n$
- **Definizione**. Sia $f: \mathbb{N} \to \mathbb{N}$ una funzione. TIME(g) è la famiglia dei linguaggi che possono essere decisi da una Macchina di Turing M la cui complessità temporale f_M è un O-grande di g
 - Problemi che possono essere risolti con una macchina il cui tempo di esecuzione cresce al più quanto g

Consideriamo una macchina M che riconosce il linguaggio $PAL_{\{a,b\}} = \{w \in \{a,b\}^* \mid w = \overline{w}\}$

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup,\rightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) \ x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a,x) \ x\notin\{a,\#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no}, x, -)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato

 q_0

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $ ightarrow$)
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a, x) x \notin \{a, \#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

 $a \mid b \mid b \mid a \mid \sqcup \mid \dots$

Stato q_a

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup,\rightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) \ x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$({q'}_a,x) \ x\notin\{a,\#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no}, x, -)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato

 q_{a}

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $ ightarrow$)
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) \ x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$({q'}_a,x) \ x\notin\{a,\#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no}, x, -)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $ ightarrow$)
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a, x) x \notin \{a, \#\}$	$(q_{no},x,-)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato q_{ret}

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup,\rightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) \ x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a,x) \ x\notin\{a,\#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no}, x, -)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato

 q_{ret}

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $ ightarrow$)
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a, x) x \notin \{a, \#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

 \dagger b b \sqcup \sqcup \sqcup \sqcup

Stato q₀

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
$(q_0$, $\sqcup)$	$(q_{yes}$, \sqcup , $ ightarrow$)
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$({q'}_a,x) \ x\notin\{a,\#\}$	$(q_{no},x,-)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato q_b

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $ ightarrow$)
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a, x) x \notin \{a, \#\}$	$(q_{no},x,-)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato q_b

b

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup,\rightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$({q'}_a,x) \ x\notin\{a,\#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no}, x, -)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret},x)\mid x\neq \#$	(q_{ret}, x, \leftarrow)

Stato a'_h

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup,\rightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) \ x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$({q'}_a,x) \ x\notin\{a,\#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no}, x, -)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato

 q_{ret}

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $ ightarrow$)
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a,x) \ x\notin\{a,\#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no}, x, -)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato q₀

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup,\rightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a, x) x \notin \{a, \#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Accetta la stringa corrente.

Dimensione Input 4

Tempo = 15

 q_{yes}

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup,\rightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$({q'}_a,x) \ x\notin\{a,\#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato

 q_0

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup, ightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$({q'}_a,x) \ x\notin\{a,\#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no}, x, -)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato q_a

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup,\rightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a, x) x \notin \{a, \#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato q_a

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup, ightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a, x) x \notin \{a, \#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Stato q'a

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $ ightarrow$)
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) \ x \in \{a, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_a, x) x \notin \{a, \#\}$	$(q_{no}, x, -)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no}, x, -)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret}, x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

Rfiuta la stringa corrente.

<u>Dimensione Input 4</u>

 $\underline{\text{Tempo} = 6}$

b

Stato

 q_{no}

b

(q,x)	$\delta(q,x)$
(q_0,a)	$(q_a, \#, \rightarrow)$
(q_0,b)	$(q_b, \#, \rightarrow)$
$(q_0, \#)$	$(q_0, \#, \rightarrow)$
(q_0,\sqcup)	$(q_{yes},\sqcup,\rightarrow)$
(q_a,\sqcup)	(q'_a,\sqcup,\leftarrow)
$(q_a, x) \mid x \neq \sqcup$	(q_a, x, \rightarrow)
(q_b,\sqcup)	(q'_b,\sqcup,\leftarrow)
$(q_b, x) \mid x \neq \sqcup$	(q_b, x, \rightarrow)
$(q'_a, x) x \in \{a, \#\}$	$(q_{ret},\!\sqcup,\leftarrow)$
$(q'_a, x) x \notin \{a, \#\}$	$(q_{no},x,-)$
$(q'_b, x) x \in \{b, \#\}$	$(q_{ret},\!\sqcup,\leftarrow)$
$(q'_b, x) x \notin \{b, \#\}$	$(q_{no},x,-)$
$(q_{ret}, \#)$	$(q_0, \#, \rightarrow)$
$(q_{ret},x) \mid x \neq \#$	(q_{ret}, x, \leftarrow)

- La macchina che abbiamo descritto esegue le seguenti operazioni per ogni x
 - 1. Dato un input $x \in \{a, b\}^*$ con |x| = n
 - 2. Per $i = 1, ..., \frac{n}{2}$ confronta il simbolo i-esimo con il simbolo n 1-esimo di x
 - 1. Se sono diversi rifiuta
 - 3. Se tutti i controlli sono andati a buon fine accetta
- Per ogni input $x \operatorname{con} |x| = n$
 - La macchina esegue $\frac{n}{2}$ fasi (gli $\frac{n}{2}$ controlli dei caratteri agli estremi opposti della stringa)
 - Ogni fase prevede al più 2n + 1 passi
 - Spostare la testina dall'inizio alla fine del nastro (al più n configurazioni)
 - Eseguire il controllo (una configurazione 1)
 - Tornare indietro (al più *n* configurazioni)
- La macchina M ha complessità temporale $f_M = O(n^2)$
- Proposizione. La funzione $PAL_{\{a,b\}}$ è in $TIME(n^2)$

La Classe di complessità P

- Convenzionalmente, consideriamo trattabili nella pratica i problemi per cui il corrispondente linguaggio si trova in $TIME(n^k)$ per un qualche $k \in N$
- **Definizione**. La classe **P** è definita come $P = \bigcup_{k \in N} TIME(n^k)$
 - L'unione di tutti i linguaggi decidibili con una macchina di Turing il cui tempo di esecuzione cresce al più come un polinomio nella dimensione dell'input
- Proposizione. I linguaggi non-contestuali sono un sottoinsieme stretto di P
- Corollario. I linguaggi regolari sono un sottoinsieme stretto di P

La Classe di Complessità EXPTIME

- Convenzionalmente, consideriamo non trattabili nella pratica quelli per cui il corrispondente linguaggio si trova in $TIME(2^{c \cdot n})$ per un qualche $c \in N$ ma non in P
- Definizione. La classe EXPTIME è definita come EXPTIME = $\bigcup_{k \in N} \mathsf{TIME}(2^{c \cdot n})$
 - L'unione di tutti i linguaggi decidibili con una macchina di Turing il cui tempo di esecuzione cresce al più come un esponenziale nella dimensione dell'input

Problemi in **EXPTIME** – **Esempio**

- Esistono dei linguaggi in **EXPTIME** per cui siamo riusciti a dimostrare che non esiste una Macchina di Turing che li decide e il cui tempo di esecuzione è polinomiale
 - Sono ovviamente complessi anche solo da definire ...
- Il seguente problema (abbastanza intuitivo nella definizione) è uno di questi: data una Macchina di Turing M, un input x per M e un interno $k \in \mathbb{N}$, è vero che M termina in al più k passi?
- Definizione. $H_b = \{ (e(M), e(\sigma), e(n)) \mid M \text{ termina dopo } n \text{ passi } su \text{ input } \sigma \} \text{ dove } e(M) \text{ è}$ l'encoding di una Turing Machine, $M(\sigma)$ è l'encoding dell'input di M e e(n) è l'Encoding binario di n
- Proposizione. Il linguaggio H_b è in EXPTIME ma non in P
- Dimostrazione (intuizione). Dobbiamo simulare la macchina per al più $n = O(2^{|e(n)|})$ passi

La Classe di Complessità **EXPTIME**

Complessità Non-Deterministiche e la Classe NP

Fra EXPTIME e P

- La distinzione fra la classe P e la classe EXPTIME è molto netta
 - **EXPTIME** contiente **P** ma anche problemi molto più complessi
 - Alcuni di questi problemi non possono essere risolti in pratica
 - Esempio: Per controllare $se(e(M), e(\sigma), e(n)) \in H_b$ servono $2^{|e(n)|}$ passi
 - Esempio: Per |e(n)| = 100 abbiamo $2^{|e(n)|} \ge 10^{80}$ (stima degli atomi nell'universo)
- Se le nostre analisi si riducessero a dire se un problema è in P o in EXPTIME ma non in P non sarebbero particolarmente utili
- Esistono delle classi di problemi intermedie?
 - Non necessariamente contenute in P ma non complesse come EXPTIME

Macchina di Turing Non-Deterministica – Intuizione

- Per ottenere analisi più raffinate, introduciamo la nozione di MdT non deterministiche
- Intuizione. Come per gli ASF, la prossima configurazione di una MdT non deterministica è definita da un insieme di transizioni possibili invece di una singola transizione
 - La funzione di transizione collega una configurazione ad un insieme di possibili transizioni
 - La macchina accetta se esiste almeno una configurazione accettante che può essere raggiunta in questo modo
- Intuizione 1. Dal punto di vista della computabilità, le macchine non-deterministiche sono identiche a quelle deterministiche
 - Tesi di Church e Turing
- Intuizione 2. Dal punto di vista della complessità, le macchine non-deterministiche definiscono classi differenti che ci consentono di eseguire analisi più accurate

Macchina di Turing Non Deterministica – Definizione Formale

Definizione. Una macchina di Turing non deterministica (MTND) M è una 7-upla $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$ tale che:

- Σ è un insieme finito di simboli, detto insieme dei simboli di input che non include il simbolo blank ⊔
- Γ con Σ ⊆ Γ è un insieme finito di simboli, detto insieme dei simboli del nastro, che include il simbolo blank ⊔
- Q è un insieme finito e non vuoto di stati tali che:
 - $q_0 \in Q$ è lo stato iniziale
 - $q_{ves} \in Q$ è lo stato accettante
 - $q_{no} \in Q$ è lo stato rifiutante
- $Q' = Q \setminus \{q_{yes}, q_{no}\}$
- δ è la funzione di transizione; ovvero, una funzione totale definita come segue

$$\delta: Q' \times \Gamma \to P(Q \times \Gamma \times \{\leftarrow, \rightarrow, -\})$$

Macchina di Turing Non-Deterministica – Configurazioni

- Sia $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{ves}, q_{no} \rangle$ una macchina di Turing non deterministica
- **Definizione**. Una **configurazione** di M è una 3-upla $C = (\sigma, q, \tau)$ tale che:
 - σ è una **stringa sull'alfabeto** Γ (nastro a sinistra della testina)
 - $\tau = a\tau'$ è una **stringa sull'alfabeto** Γ (nastro a destra della testina e a è il simbolo corrente)
 - $-q \in Q$ è uno **stato** di M (stato corrente della configurazione)
- Definizione. Una configurazione $C = (\sigma, q, \tau)$ di M è detta:
 - Accettante (finale) se $q = q_{yes}$
 - Rifiutante (finale) se $q = q_{no}$
 - Iniziale se se $q=q_0$, $\sigma=\epsilon$ (stringa vuota) e $\tau\in\Sigma^*$ (τ è una stringa dell'alfabeto dell'input)
- Nota. <u>Le definizioni di configurazione sono identiche a quelle per la machina standard</u>

Macchina di Turing Non-Deterministica – Esecuzioni

• Sia $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{ves}, q_{no} \rangle$ una macchina di Turing non deterministica

- Definizione. Una configurazione C genera una configurazione D in M ($C \Rightarrow_M D$) se
 - $C = (\sigma y, q, x\tau), D = (\sigma, q', yz\tau) \in \delta(q, x) \in (q', z, \leftarrow) \in \sigma \neq \epsilon \text{ (movimento a sinistra)}$
 - $C = (\epsilon, q, x\tau), D = (\epsilon, q', z\tau)$ e $\delta(q, x)$ ∈ (q', z, \leftarrow) (movimento a sinistra bloccato)
 - $C = (\sigma, q, xy\tau), D = (\sigma z, q', y\tau) \in \delta(q, x) \in (q', z, \rightarrow) \in \tau \neq \epsilon$ (movimento a destra)
 - $C = (\sigma, q, \epsilon), D = (\sigma z, q', \epsilon)$ e $\delta(q, \sqcup)$ ∈ (q', z, \rightarrow) (movimento a destra oltre il nastro corrente)
 - $C = (\sigma, q, x\tau), D = (\sigma, q', z\tau) \in \delta(q, x) \in (q', z, -)$ (nessun movimento)

Nota. <u>Una configurazione C potrebbe generare più di una configurazione D</u>

Macchina di Turing Non-Deterministica – Esecuzioni

- Definizione. La macchina M accetta l'input $\sigma \in \Sigma^*$ se esiste una sequenza finita di configurazioni $C_1, C_2, ..., C_n$ di M tale che le seguenti proprietà sono soddisfatte
 - $C_1 = (\epsilon, q_0, \sigma);$
 - C_n è una configurazione accettante;
 - $-C_i \Rightarrow_M C_{i+1}$ per ogni i = 1, ..., n-1
- Definizione. La macchina M rifiuta l'input $\sigma \in \Sigma^*$ se ogni sequenza finita di configurazioni $C_1, C_2, ..., C_n$ di M tale $C_1 = (\epsilon, q_0, \sigma)$ e $C_i \Rightarrow_M C_{i+1}$ per ogni i = 1, ..., n-1 è tale che C_n è rifiutante

Macchina di Turing Non-Deterministica – Esempio

- Sia $\mathcal{L} \subseteq \{a, b\}^*$ il linguaggio delle stringhe s tale che
 - Ogni stringa inizia con a
 - Ogni a è seguita da b o da c
 - Ogni b è seguita da b o da c
 - Ogni c è seguita da a
- La MTND definita dalla tabella riconosce £ ed è terminante

$$- \Sigma = \{a, b\}; \Gamma = \Sigma \cup \{\sqcup\}; Q = \{q_0, q_1, q_2, q_{yes}, q_{no}\}$$

(q,x)	$\delta(q,x)$
(q_0,a)	$\{(q_b, a, \rightarrow), (q_c, a, \rightarrow)\}$
(q_0,b)	$\{(q_{no},b,-)\}$
(q_0,c)	$\{(q_{no},c,-)\}$
(q_a, a)	$\{(q_b, a, \rightarrow), (q_c, a, \rightarrow)\}$
(q_a, b)	$\{(q_{no},b,-)\}$
(q_a,c)	$\{(q_{no},c,-)\}$
(q_b, a)	$\{(q_{no},b,-)\}$
(q_b, b)	$\{(q_b, b, \rightarrow), (q_c, b, \rightarrow)\}$
(q_b,c)	$\{(q_{no},c,-)\}$
(q_c,a)	$\{(q_{no},a,-)\}$
(q_c,b)	$\{(q_{no},b,-)\}$
(q_c,c)	$\{(q_a,c,\rightarrow)\}$
(∗,⊔)	$\{(q_{yes},\sqcup,-)\}$

MTDN – Configurazioni

• Configurazioni generate con input $\sigma = abbca$

(q,x)	$\delta(q,x)$
(q_0,a)	$\{(q_b, a, \rightarrow), (q_c, a, \rightarrow)\}$
(q_0,b)	$\{(q_{no},b,-)\}$
(q_0,c)	$\{(q_{no},c,-)\}$
(q_a, a)	$\{(q_b,a,\rightarrow),(q_c,a,\rightarrow)\}$
(q_a, b)	$\{(q_{no},b,-)\}$
(q_a,c)	$\{(q_{no},c,-)\}$
(q_b, a)	$\{(q_{no},b,-)\}$
(q_b, b)	$\{(q_b,b,\rightarrow),(q_c,b,\rightarrow)\}$
(q_b, c)	$\{(q_{no},c,-)\}$
(q_c, a)	$\{(q_{no},a,-)\}$
(q_c,b)	$\{(q_{no},b,-)\}$
(q_c,c)	$\{(q_a, c, \rightarrow)\}$
(∗,⊔)	$\{(q_{yes},\sqcup,-)\}$

MTDN – Configurazioni

• Configurazioni generate con input $\sigma = aba$

(q,x)	$\delta(q,x)$
(q_0, a)	$\{(q_b, a, \rightarrow), (q_c, a, \rightarrow)\}$
(q_0,b)	$\{(q_{no},b,-)\}$
(q_0,c)	$\{(q_{no},c,-)\}$
(q_a, a)	$\{(q_b, a, \rightarrow), (q_c, a, \rightarrow)\}$
(q_a, b)	$\{(q_{no},b,-)\}$
(q_a,c)	$\{(q_{no},c,-)\}$
(q_b, a)	$\{(q_{no},b,-)\}$
(q_b, b)	$\{(q_b,b,\rightarrow),(q_c,b,\rightarrow)\}$
(q_b, c)	$\{(q_{no},c,-)\}$
(q_c, a)	$\{(q_{no},a,-)\}$
(q_c,b)	$\{(q_{no},b,-)\}$
(q_c,c)	$\{(q_a, c, \rightarrow)\}$
(∗,⊔)	$\{(q_{yes},\sqcup,-)\}$

Macchina di Turing Non-Deterministica – Equivalenza

- Definizione. L'insieme L(M) delle stringhe che M riconosce è detto il linguaggio riconosciuto da M
- Definizione. Una MTND M è terminante se per ogni stringa $\sigma \in \Sigma$ M accetta o rifiuta σ
- Teorema. Sia £ un linguaggio di stringhe.
 - 1. \mathcal{L} è riconosciuto da un MTND se e solo se \mathcal{L} è Turing Riconoscibile
 - 2. \mathcal{L} è riconosciuto da un MTND se e solo se \mathcal{L} è Turing Decidibile
- Dimostrazione. La dimostrazione procede sfruttando una serie di proprietà delle MTND
 - 1. Le configurazioni generate da M con input σ definiscono un albero
 - 2. Esplorando tale albero con una ricerca in ampiezza possiamo
 - 1. trovare la configurazione accettante se esiste oppure
 - 2. Rifiutare, se tale configurazione non esiste e la macchina termina
 - 3. La ricerca in ampiezza si può implementare un un 3-TM
 - 1. Che è equivalente a una Macchina di Turing standard

Complessità Temporale Non-Deterministica

- Definizioni simili a quelle che abbiamo dato per le macchine deterministiche possono essere date per quelle non-deterministiche
- Sia $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{ves}, q_{no} \rangle$ una Macchina di Turing non-deterministica terminante e $x \in \Sigma^*$
- Definizione. Una esecuzione di M con input x è una sequenza di configurazioni di M C_1 , C_2 , ..., C_n tale che
 - C_1 è la configurazione iniziale di M con input x
 - C_n è una configurazione accettante\rifiutante
 - $C_i \Rightarrow_M C_{i+1}$ per ogni i = 1, ..., n-1
- Definizione. Utilizziamo $E_M(x)$ per l'insieme di tutte le esecuzioni di M con input x
- Definizione. La complessità temporale $f_M: \mathbb{N} \to \mathbb{N}$ di M è la funzione $f_M(n) = \max_{\{x \in \Sigma^* \mid |x| = n\}} |E_M(x)|$
 - $f_M(n)$ è la lunghezza della più lunga esecuzione di M con input σ tale che $|\sigma| = n$

Nondeterminismo come modello computazionale - Il

- **Definizione**. Sia g: $\mathbb{N} \to \mathbb{N}$ una funzione. NTIME(g) è la famiglia dei linguaggi che possono essere decisi da una Macchina di Turing non-deterministica M la cui complessità temporale f_M è un Ogrande di g
- Definizione. L'unione di tutti i linguaggi che sono in $NTIME(n^k)$ per un qualche $k \in N$ viene denotata con NP (Non-Deterministic Polynomial Time); ovvero

$$\mathbf{NP} = \bigcup_{k \in N} NTIME(n^k)$$

- Proposizione. Ogni problema in P è anche in NP; ovvero, P ⊆ NP
- La classe NP gioca un ruolo importante nella teoria della complessità
 - Moltissimi problemi pratici sono in questa classe
 - Una macchina non-deterministica è molto potente anche se è vincolata a tempo di esecuzione polinomiale

Esempi di Linguaggi in NP - SAT

- Fissiamo un alfabeto di variabili proposizionali ${f V}$ e un Encoding ragionevole ${m e}$ per le formule proposizionali su ${m V}$
 - Possiamo utilizzare i simboli stessi delle formule nella macchina
- **Definizione.** L_{SAT} è il linguaggio di stringhe definito come segue $\{e(\varphi) \mid \varphi \text{ è una formula proposizionale soddisfacibile su } V\}$
- Proposizione. L_{SAT} è in NP

Esempi di Linguaggi in NP - SAT

- Proposizione. L_{SAT} è in NP
- **Dimostrazione**. Per decidere se $\varphi \in L_{SAT}$ una macchina M può eseguire due fasi
- 1. M genera non-deterministicamente una interpretazione \mathcal{I} per φ (GUESS)
 - Per ogni variabile v M sceglie non-deterministicamente fra v = 1 oppure v = 0
 - Ci sono un numero di variabili in φ al più pari alla dimensione di φ quindi questa fase può essere seguita in un numero polinomiale di passi della macchina
- 2. M verifica se \mathcal{I} è un modello per φ (CHECK)
 - È possible farlo in tempo polinomiale (applicando le regole delle tabelle di verità)

Esempi di Linguaggi in NP – Hamiltonian Path

- **Definizione.** Un grafo è una coppia $\langle V, E \rangle$ dove V è un insieme (nodi) e E è un insieme di coppie non ordinate di elementi di V (archi)
- **Definizione.** Un cammino (path) p in un grafo G è una sequenza di archi $(e_1, e_2, ..., e_n)$ di G tale che $e_i \cap e_{i+1} \neq \emptyset$, per i = 1, ..., n e **ogni nodo** compare al più una volta nella sequenza associata.
- **Definizione.** . Un cammino (path) p in un grafo G è Hamiltoniano se ogni nodo di G compare almeno (esattamente) una volta nella sequenza.
- Fissiamo un Encoding ragionevole *e* per i grafi non orientati
 - Simboli per i nodi e coppie per gli archi oppure matrice di incidenza
- Definizione. Il linguaggio di stringhe P_H è definito come segue $\{e(G) \mid G \text{ contiene un cammino hamiltoniano}\}$
- Proposizione. P_H è in NP

Esempi di Linguaggi in NP – Hamiltonian Path

Esiste un Hamiltonian Path

NON Esiste un Hamiltonian Path

Esempi di Linguaggi in NP – Hamiltonian Path

- Proposizione. P_H è in NP
- **Dimostrazione**. Per decidere se $\sigma \in P_H$ una macchina M può eseguire due fasi
- 1. M genera non-deterministicamente una sequenza di archi \mathcal{A} di G (GUESS)
 - Per ogni arco a M sceglie non-deterministicamente se $a \in \mathcal{A}$ oppure $a \notin \mathcal{A}$
 - Ci sono un numero di archi in G al più pari alla dimensione di G quindi questa fase può essere seguita in un numero polinomiale di passi della macchina
- 2. M verifica se \mathcal{A} è un cammino Hamiltoniano per G (CHECK)
 - Verifichiamo che la sequenza sia un cammino scorrendola (passi polinomiali)
 - Verifichiamo che il cammino tocca tutti I nodi del grafo (passi polinomiali)

Nondeterminismo come modello computazionale - III

• **Definizione**. L'unione di tutti i linguaggi che sono in $NTIME(2^{k \cdot n})$ per un qualche $k \in N$ viene denotata con **NEXPTIME** (**Non-Deterministic Exponential Time**); ovvero

$$\mathbf{NP} = \bigcup_{k \in N} NTIME(2^{k \cdot n})$$

Proposizione. Ogni problema in NP è anche in NEXPTIME; ovvero, NP ⊆ NEXPTIME

Relazioni tra classi di complessità

Relazione tra le classi di complessità - Tempo

- E' ovvio che P ⊆ NP e che EXPTIME ⊆ NEXPTIME
- E' anche ovvio che (N)P \subseteq (N)EXPTIME (ogni polinomio f è tale che $f(n) = O(2^n)$)
- Meno ovvio è il fatto che NP ⊆ EXPTIME,
 - Ma può essere dimostrato
- Proposizione. Se $L \in NTIME(f(n))$ allora $L \in TIME(2^{f(n)})$
 - Se un linguaggio L è riconosciuto da una macchina di Turing non-deterministica M in tempo f(n), allora è possibile costruire una macchina di Turing multi-nastro M' che riconosce L e che opera in tempo $O(2^{f(n)})$

Recap e Vari Problemi Aperti

- Il seguente risultato è una conseguenza delle definizioni che abbiamo dato
- Teorema 1. P ⊆ NP ⊆ EXPTIME ⊆ NEXPTIME
- La comunità scientifica congettura che tutte inclusioni siano in realtà strette. (⊂)
 - Esiste un problema in Y che non è in X per ogni X ⊆ Y con X,Y ∈ {P,NP,EXPTIME,NEXPTIME}
- Tuttavia, l'unica cosa che sappiamo è che:
 - P ⊂ EXPTIME
 - Esite un problema in EXPTIME ce non è in P
 - NP ⊂ NEXPTIME
 - Esite un problema in NEXPTIME ce non è in NP
- Tra questi problemi ancora aperti c'è problema P ≟ NP, che è uno dei sette problemi del Millennio
 - Il premio per la risoluzione del problema è di 1 milione di dollari!