Příklad 1.

Na množině {1, 2, 3, 4} najděte relaci, která je symetrická i antisymetrická.

Příklad 2.

Na množině {1, 2, 3, 4} najděte relaci, která není ani symetrická, ani antisymetrická.

Příklad 3.

Určete, kolik je na n-prvkové množině relací:

- a) reflexivních
- b) symetrických
- c) antisymetrických

Příklad 4.

Jak vypadá relace $R \circ R$, je-li R definovaná jako:

- a) relace = na \mathbb{N}
- b) relace \leq na \mathbb{N}
- c) relace < na \mathbb{N}
- d) relace < na \mathbb{R}

Příklad 5.

Najděte relace R, S na libovolné množině X takové, že $R \circ S \neq S \circ R$.

Příklad 6.

Dokažte, že funkce $f:A\to A$ pro konečnou množinu A je prostá právě, když je na. Platí to i pro nekonečnou množinu?

Příklad 7.

Nechť X je konečná množina a R,S relace na této množině. Rozhodněte, zda pro $V \in \{\text{reflexivni}, \text{symetrická}, \text{antisymetrická}, \text{tranzitivni}\}$ a pro $\odot \in \{\cap, \cup, \setminus, \Delta, \circ\}$ platí tvrzení: "Jestliže má R i S vlastnost V, pak i $R \odot S$ má vlastnost V."

Příklad 8.

Rozhodněte, zda jsou následující relace \sim na množině Xekvivalence. Pokud ano, popište třídy ekvivalence:

- a) $X = \mathbb{N}, p \in \mathbb{N}^+, a \sim b \Leftrightarrow p \setminus (a b)$
- b) $X = \mathbb{Z} \setminus \{0\}, a \sim b \Leftrightarrow a \setminus b \wedge b \setminus a$
- c) $X = \mathbb{Z}, a \sim b \Leftrightarrow b = -a$
- d) $X = \mathbb{N}, a \sim b \Leftrightarrow |b a| \leq 1$
- e) $X = \mathbb{Z} \times \mathbb{N}^+, (a, b) \sim (c, d) \Leftrightarrow \frac{a}{c} = \frac{b}{d}$
- f) $X = 2^{\mathbb{N}}$, $A \sim B \Leftrightarrow$ existuje bijekce z A do B
- g) X = množina všech přímek v rovině, $p \sim q \Leftrightarrow p$ a q jsou rovnoběžné