BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Ce qui nous intéresse	2
2.	Notations utilisées	2
3.	Cas 0	2
4.	Cas 1	2
5.	Cas 2	2
6.	Cas 3	3
7.	Cas 4	3
8.	AFFAIRE À SUIVRE	3

Date: 25 Jan. 2024.

1. CE QUI NOUS INTÉRESSE

Existe-t-il $(n,k) \in \mathbb{N}^* \times \mathbb{N}$ tel que $\prod_{i=0}^k (n+i)$ soit le carré d'un entier?

2. NOTATIONS UTILISÉES

Dans la suite, nous utiliserons les notations suivantes.

- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\} \text{ et } {}^{2}\mathbb{N}_{*} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}.$
- $\forall (n,k) \in \mathbb{N}^* \times \mathbb{N}$, $\pi_n^k = \prod_{i=0}^k (n+i)$. Par exemple, nous avons $\pi_n^0 = n$ et $\pi_n^1 = n(n+1)$.
- \bullet $\mathbb P$ désigne l'ensemble des nombres premiers.
- $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*$, $v_p(n) \in \mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)} \mid n$, mais $p^{v_p(n)+1} \nmid n$.

$$3. \text{ Cas } 0$$

Donnons juste un fait basique concernant l'ensemble ²N, fait qui nous sera utile par la suite.

Fait 3.1.
$$\forall (n,m) \in {}^{2}\mathbb{N}_{*} \times {}^{2}\mathbb{N}_{*}$$
, si $n \neq m$, alors $|n-m| \geq 3$.

Démonstration. Quitte à échanger les rôles, on peut supposer n>m. Par hypothèse, nous avons $(N,M)\in\mathbb{N}^*\times\mathbb{N}^*$ tel que $n=N^2$ et $m=M^2$. Comme n>m, nous avons aussi N>M. Les implications suivantes permettent de conclure.

$$\implies N \ge M + 1$$

$$\implies N^2 \ge (M+1)^2$$

$$\implies n \ge m + 2M + 1$$

$$\implies n-m \ge 2M+1$$

$$\implies n-m \ge 3$$

4. Cas 1

Supposons que $\pi_n^1 = n(n+1) \in {}^2\mathbb{N}_*$.

Clairement $\forall p \in \mathbb{P}$, $v_p(\pi_n^1) \in 2\mathbb{N}$. Or $p \in \mathbb{P}$ ne pent diviser à la fois n et n+1. Nous savons donc que $\forall p \in \mathbb{P}$, $v_p(n) \in 2\mathbb{N}$ et $v_p(n+1) \in 2\mathbb{N}$, autrement dit $n \in {}^2\mathbb{N}$ et $n+1 \in {}^2\mathbb{N}$. D'après le fait 3.1, nous savons que ceci est impossible. Nous arrivons donc au fait suivant.

Fait 4.1.
$$\forall n \in \mathbb{N}^*$$
, $n(n+1) \notin {}^2\mathbb{N}$.

Supposons que $\pi_n^2 = n(n+1)(n+2) \in {}^2\mathbb{N}_*$.

Posant m=n+1, nous avons $\pi_n^2=(m-1)m(m+1)=m(m^2-1)$ où $m\in\mathbb{N}_{\geq 2}$.

Comme $\forall p \in \mathbb{P}$, $v_p(\pi_n^2) \in 2\mathbb{N}$, et comme de plus $p \in \mathbb{P}$ ne pent diviser à la fois m et m^2-1 , nous savons que $\forall p \in \mathbb{P}$, $v_p(m) \in 2\mathbb{N}$ et $v_p(m^2-1) \in 2\mathbb{N}$, autrement dit $m \in {}^2\mathbb{N}$ et $m^2-1 \in {}^2\mathbb{N}$. D'après le fait 3.1, nous savons que $m^2-1 \in {}^2\mathbb{N}$ est impossible. Nous arrivons donc au fait suivant.

Fait 5.1.
$$\forall n \in \mathbb{N}^*$$
, $n(n+1)(n+2) \notin {}^2\mathbb{N}$.

Nous pouvons ici faire les manipulations algébriques naturelles suivantes.

$$\pi_n^3 = n(n+3) \cdot (n+1)(n+2)$$

$$= (n^2 + 3n) \cdot (n^2 + 3n + 2)$$

$$= (m-1)(m+1)$$

$$= m^2 - 1$$

De nouveau, le fait 3.1 nous permet d'aboutir au fait suivant.

Fait 6.1.
$$\forall n \in \mathbb{N}^*, n(n+1)(n+2)(n+3) \notin {}^2\mathbb{N}$$
.

Nous allons démontrer le fait suivant de deux façons différentes, toutes les deux étant intéressantes dans leur approche.

Fait 7.1.
$$\forall n \in \mathbb{N}^*$$
, $n(n+1)(n+2)(n+3)(n+4) \notin {}^2\mathbb{N}$.

$$D\'{e}monstration. XXX$$

$$D\'{e}monstration. XXX$$

8. AFFAIRE À SUIVRE...