```
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from scipy import stats
```

Estimating the average weight of Women Olympians

```
df2 = pd.read_csv('athletes.csv')
df2.head()
```

\Box		id	name	nationality	sex	dob	height	weight	sport	gold	silv
	0	736041664	A Jesus Garcia	ESP	male	10/17/69	1.72	64.0	athletics	0	
	1	532037425	A Lam Shin	KOR	female	9/23/86	1.68	56.0	fencing	0	
	2	435962603	Aaron Brown	CAN	male	5/27/92	1.98	79.0	athletics	0	>
	4										

```
df2 = df2[df2['sex'] == 'female']
df2.head()
```

		id	name	nationality	sex	dob	height	weight	sport	gold	S
_	1	532037425	A Lam Shin	KOR	female	9/23/86	1.68	56.0	fencing	0	
	8	87689776	Aauri Lorena Bokesa	ESP	female	12/14/88	1.80	62.0	athletics	0	
	9	997877719	Ababel Yeshaneh	ETH	female	7/22/91	1.65	54.0	athletics	0	
4											•

```
(5205, 11)

df2_samp = df2.sample(frac=0.1)  #draw the samples
df2_samp.shape
```

(520, 11)

df2.shape

```
mean_hat = df2_samp['weight'].mean()
                                           # sample mean
mean hat
     62.136546184738954
mean hat samples = []
for i in range(1000):
    sample = df2.sample(frac=0.1)
    mean sample = sample['weight'].mean()
    mean hat samples.append(mean sample)
sns.distplot(mean_hat_samples)
     /usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di
       warnings.warn(msg, FutureWarning)
     <matplotlib.axes. subplots.AxesSubplot at 0x7f5f8fa92190>
        0.8
        0.6
      Density
0.4
        0.2
        0.0
           60.5
                61.0
                      61.5
                           62.0
                                 62.5
                                       63.0
                                            63.5
                                                 64.0
                                                       64.5
std_hat = df2_samp['weight'].std()/np.sqrt(len(df2_samp)) #sigma
std hat
     0.4644734919737783
z=stats.norm.ppf(q = 0.975)
Ζ
     1.959963984540054
lower_limit = mean_hat - z*std_hat
upper_limit = mean_hat + z*std_hat
lower limit, upper limit
     (61.226194868696794, 63.046897500781114)
```

(61.22406695447786, 63.049025415000045)