

Predictive Maintenance Using Digital Twins

ิ ฉันต้องการความช่วยเหลือ.

Ich brauche Hilfe.

Necesito ayuda.

Segítségre van szükségem.

Мне нужна помощь.

انا بحاجة الى مساعدة.

J'ai besoin d'aide.

I need help.

Χρειάζομαι βοήθεια.

ฉันต้องการความช่วยเหลือ.

Ich brauche Hilfe.

Necesito ayuda.

Segítségre van szükségem.

Мне нужна помощь.

انا بحاجة الى مساعدة.

I need help.

J'ai besoin d'aide.

Χρειάζομαι βοήθεια.

I need help. One of my seals is leaking. I will shut down your line in 5 days

Prevent system downtime

by sending sensor data

to a predictive maintenance algorithm

created using a Digital Twin

and machine learning in MATLAB.

Triplex Pump

- Crankshaft drives three plungers
 - Each 120 degrees out of phase
 - One chamber always discharging
 - Smoother flow than single or duplex piston pumps

Agenda

- Predictive Maintenance Workflow
- Build a Digital Twin
 - Model physical system
 - Tune using measured data
- Create Predictive Model
 - Model component failure
 - Generate training data
 - Select and train classification model
- Deploy Fault Diagnostics Algorithm

Predictive Maintenance Workflow

- Sensor data isn't always available
 - Failure conditions difficult to reproduce
 - Time consuming or costly to generate

Solution: Build digital twin and generate sensor data using simulation

- Developing algorithm is complex
 - Requires complex concepts and analysis

Solution: Use MATLAB to simplify process of developing and deploying algorithm

Baker Hughes Develops Predictive Maintenance Software for Gas and Oil Extraction Equipment Using Data Analytics

and Machine Learning

Challenge

Develop a predictive maintenance system to reduce pump equipment costs and downtime

Solution

Use MATLAB to analyze nearly one terabyte of data and create a neural network that can predict machine failures before they occur

Results

- Savings of more than \$10 million projected
- Development time reduced tenfold
- Multiple types of data easily accessed

Truck with positive displacement pump.

"MATLAB gave us the ability to convert previously unreadable data into a usable format; automate filtering, spectral analysis, and transform steps for multiple trucks and regions; and ultimately, apply machine learning techniques in real time to predict the ideal time to perform maintenance."

- Gulshan Singh, Baker Hughes

Link to user story

12

Agenda

- Predictive Maintenance Workflow
- Build a Digital Twin
 - Model physical system
 - Tune using measured data
- Create Predictive Model
 - Model component failure
 - Generate training data
 - Select and train classification model
- Deploy Fault Diagnostics Algorithm

Build Digital Twin of Hydraulic Pump

Estimate Parameters Using Measured Data

Model:

Challenge: Simulation results do not match behavior of real system

Solution: Use Simulink Design Optimization to automatically tune model parameters

Agenda

- Predictive Maintenance Workflow
- Build a Digital Twin
 - Model physical system
 - Tune using measured data
- Create Predictive Model
 - Model component failure
 - Generate training data
 - Select and train classification model
- Deploy Fault Diagnostics Algorithm

Model Component Failure

- Generic faults in many components
 - Short circuit, open circuit, friction, fade, etc.
 - Trigger based on time or conditions
- Adjust parameter values
 - Worn bearing adds friction
 - Blocked inlet has reduced passage area
- Adjust network
 - Seal leakage adds flow path
- Custom effects in Simulink
 - Broken winding applies no torque for 1/3 of every revolution

Crank Bearing

Model Component Failure in Pump

Enable from UI or MATLAB


```
fx >> sm_pump_triplex_config_model...
    ('sm_pump_triplex', 'Seal Leak', 'Off', 1);
```

Visual indication of fault

Quickly Create Sensor Data Using Parallel Computing and Initial State

- Classification model requires data at various levels of failure for all fault combinations of interest
 - Many tests required
- Speed up tests
 - Start from steady state

Quickly Create Sensor Data Using Parallel Computing and Initial State

- Classification model requires data at various levels of failure for all fault combinations of interest
 - Many tests required
- Speed up tests
 - Start from steady state
 - Run tests in parallel

Distribute to multiple desktop workers or across a computing cluster

Running simulations in parallel speeds up your testing process.

Agenda

- Predictive Maintenance Workflow
- Build a Digital Twin
 - Model physical system
 - Tune using measured data
- Create Predictive Model
 - Model component failure
 - Generate training data
 - Select and train classification model
- Deploy Fault Diagnostics Algorithm

Extract Training Data from Sensor Measurements

- Perform FFT on results
 - Save frequencies, magnitudes, fault type

Classification Model Training Data

Run	Freq_1	Peak_1	Freq_2	Peak_2	Fault
1	0.0021	0.0062	0.3152	0.0006	Leak_P1
2	0.0021	0.0062	0.3361	0.0006	 Leak_P1
3	0.0021	0.0063	0.3319	0.0006	Leak_P1
	:				:
31	0.0021	0.0104	0.3319	0.0073	Block_P1
32	0.0021	0.0107	0.3319	0.0075	 Block_P1
33	0.0021	0.0109	0.3319	0.0077	Block_P1
	:				:
91	0.0021	0.0092	0.3319	0.0042	Leak P1, Block P1
92	0.0021	0.0095	0.3319	0.0044	 Leak P1, Block P1
93	0.0021	0.0097	0.3319	0.0045	Leak P1, Block P1
	:				:
181	0.0021	0.0055			Nominal

Evaluate all Classification Models

- Select data for training
- Train classifers
- Evaluate results
- Export trained classifer for testing in Digital Twin

Test Algorithm in Simulation

enablePred

▶ cmdSpeed

- Connect trained algorithm to digital twin
 - Verify behavior on new scenarios before deploying in embedded code

faultClassifier

FFT and Classification

hmiVec

Automate Entire Algorithm Development Process

- Test and update algorithm when any aspect of system changes
 - Environment: temperature, fluid, power source
 - Supplier: Seals, valves, tolerances, material
 - Design: Larger, smaller, new markets
- Improve algorithm with new data
 - Tune digital twin with field data, automatically update algorithm

Prevent system downtime

by sending sensor data

to a predictive maintenance algorithm

created using a Digital Twin

and machine learning in MATLAB.

