Como treinar o seu grafão

Lucas N. F. Teles

May 18, 2024

Frank P. Ramsey

Frank Plumpton Ramsey (1903-1930) foi um matemático, filósofo e economista britânico.

Figure: Ramsey circa 1925.

Frank P. Ramsey

Frank Plumpton Ramsey (1903-1930) foi um matemático, filósofo e economista britânico.

Figure: Ramsey com 18 anos.

Paul Erdős

Paul Erdős foi um prolífico matemático húngaro com contribuições em diversas áreas, provavelmente sendo principalmente reconhecido como um dos criadores da Combinatória moderna. Diretamente relacionado a isso está a popularização do resultado central desta apresentação, o Teorema de Ramsey.

Figure: Paul Erdős em 1990.

O problema da festa: Caso m = n

A introdução mais clássica à esse assunto se dá com o problema da festa:

<u>Problema:</u> Quantas pessoas precisam ser convidadas para uma festa para garantir que dentre os convidados:

- 1. ou existam m pessoas tais que todas se conhecem entre si,
- 2. ou existam m pessoas tais que nenhuma delas se conhece?

Será que não é possível, não importa o quão grande a festa for, de convidar pessoas de uma forma que nenhum desses dois casos ocorra?

Obs: Podemos tratar de um caso mais geral onde procuramos garantir que existem m pessoas que todas se conhecem ou n que não se conhecem, mas focaremos no caso onde m=n.

Grafos completos

A forma usual de visualizar esse problema é com grafos completos. Grafos completos são objetos matemáticos da seguinte forma. Acrescento uma notação que utilizamos para esses e para um caso ainda mais geral que grafos:

Representamos por $[A]^r$ o conjunto de todos os subconjuntos de r elementos de um conjunto A. Para $n \in \mathbb{N}$, definimos $[n]^r$ como todos os subconjuntos de r elementos de $\{1,2,3,...,n\}$. Segue que $[\mathbb{N}]^r$ representará o conjunto de todos os conjuntos de números naturais com r elementos. No caso r=2 teremos uma representação natural por grafos completos.

Exemplo:
$$[3]^2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}.$$

Figure: Grafo completo $[3]^2$.

Colorações

A forma como nós vamos representar se duas pessoas se conhecem ou não é com cores: Chamamos de **coloração** uma função $c:[n]^r \to \{1,2,...,k\}$ (ou $c:[\mathbb{N}]^r \to \{1,2,...,k\}$) para k um número natural.

Figure: Grafo completo $[9]^2$.

Figure: Grafo completo $[9]^2$ colorido.

O problema da festa com m = n = 3

Como isso nos ajuda a lidar com o problema da festa? Se representarmos cada pessoa por um vértice de um grafo completo podemos associar às arestas cores com azul representando se elas se conhecem e vermelho se não se conhecem. Nesse caso estamos buscando por 3 vértices onde todas as conexões são da mesma cor, o que nos leva à seguinte definição:

Dada uma coloração de $[n]^r$ (ou $[\mathbb{N}]^r$), chamamos um subconjunto $m \subseteq \{1, 2, 3, ..., n\}$ ($m \subseteq \mathbb{N}$, respectivamente) de **monocromático** se a imagem de todo elemento de $[m]^r$ tem a mesma cor.

O que buscamos então dada uma coloração qualquer de um grafo $[n]^2$ é um conjunto de 3 vértices do grafo que é monocromático.

O problema da festa com m = n = 3

Testando os grafos $[5]^2$ e $[6]^2$ nós temos

Figure: Não dá sempre certo no grafo $[5]^2$:(.

Figure: Dá sempre certo no $[6]^2$:) (fica como exercício para o espectador).

Os Teoremas De Ramsey

Os teoremas de Ramsey respondem de forma mais geral o problema da festa, demonstraremos agora duas versões desse teorema:

Teorema de Ramsey (finito): Sejam r,k e b naturais quaisquer. Existe um natural n tal que, para qualquer coloração $c:[n]^r \to \{1,2,...,k\}$, existe um subconjunto $m \subseteq \{1,2,...,n\}$ monocromático com b elementos.

Teorema de Ramsey (infinito): Sejam r e k naturais quaisquer. Para qualquer coloração $\overline{c: [\mathbb{N}]^r \to \{1, 2, ..., k\}}$ existe um subconjunto $M \subseteq \mathbb{N}$ monocromático com infinitos elementos.

Cola para as demonstrações

 $[A]^r$ é o conjunto de todos os subconjuntos de A com r elementos e $[n]^r$ é o conjunto de todos os subconjuntos de $\{1,2,...,n\}$ com r elementos.

Uma **coloração** é uma função $c:[n] \to \{1,...,k\}$ (ou $c:[\mathbb{N}] \to \{1,...,k\}$) que associa à cada elemento de $[n]^r$ (ou $[\mathbb{N}]^r$) uma dentre k cores. Um subconjunto $b \subseteq n$ (ou $b \subseteq \mathbb{N}$) é **monocromático** se c leva todo elemento de $[b]^r$ à mesma cor.

Princípio da casa dos pombos: Se nk + 1 elementos estão contidos em k conjuntos disjuntos, algum conjunto contém n + 1 elementos.

Teorema de Ramsey (finito): Sejam r, k e b naturais quaisquer. Existe um natural n tal que, para qualquer coloração $c: [n]^r \to \{1, 2, ..., k\}$, existe um subconjunto $m \subseteq \{1, 2, ..., n\}$ monocromático com b elementos.

Teorema de Ramsey (infinito): Sejam r e k naturais quaisquer. Para qualquer coloração $c: [\mathbb{N}]^r \to \{1, 2, ..., k\}$ existe um subconjunto $M \subseteq \mathbb{N}$ monocromático com infinitos elementos.

Aplicações dos Teoremas de Ramsey

Teorema (de Schur): Para qualquer natural k existe um natural N tal que para qualquer coloração de N ($c:[N]^1 \to \{1,2,...,k\}$) existem 3 números naturais x,y,z em $\{1,2,...,N\}$ com a mesma cor e tais que x+y=z.

<u>Teorema:</u> Toda sequência $(x_n)_{n\geq 1}$ de números reais tem

- 1. uma subsequência $(x_{n_j})_{j\geq 1}$ constante,
- 2. ou uma subsequência $(x_{n_j})_{j\geq 1}$ estritamente crescente,
- 3. ou uma subsequência $(x_{n_j})_{j\geq 1}$ estritamente decrescente.

Bônus: Números de Ramsey

Números de Ramsey: O número de Ramsey R(n,n) representa o menor número de pessoas tal que sempre achamos dentre elas ou n que se conhecem entre si ou n que não se conhecem.

"Imagine que alienígenas invadam a terra e ameaçem nos destruir se não encontrarmos o valor de R(5,5). Poderíamos juntar todas as melhores mentes e mais rápidos computadores e, dentro de um ano, provavelmente conseguiríamos. Se os alienígenas quisessem R(6,6), não teríamos escolha senão lançar um ataque preventivo." - Paul Erdős.

Figure: Erdős em 1992.

Referências

- ► Fotos do Ramsey: https://www.stephenburch.com/lettice/letticefam.htm
- ► Foto 1 do Erdős: https://www.privatdozent.co/p/the-mathematical-nomad-paul-erdos
- Grafo 1: https://commons.wikimedia.org/wiki/File:Complete_graph_K3.svg
- ► Grafo 2: https://commons.wikimedia.org/wiki/File:8-simplex_graph.png
- ► Grafo 3: https://commons.wikimedia.org/wiki/File: RamseyTheory_K9_K3_in_G_no_K4_in_complement_G.png
- ► Grafo 4: https://commons.wikimedia.org/wiki/File:RamseyTheory_K5_no_mono_K3.PNG
- ► Grafo 5: https://commons.wikimedia.org/wiki/File:Friends_strangers_graph_1.png
- ► Foto 2 do Erdős: https://commons.wikimedia.org/wiki/File: Erdos_budapest_fall_1992_(cropped).jpg
- ► Citação do Erdős: "Ramsey Theory" por Ronald L. Graham and Joel H. Spencer, Scientific American (July 1990), p. 112-117.