

数学B問題

(120分)

【必答問題】 数学B受験者は B1, B2, B3, B4 を全問解答せよ。

- $\mathbf{B1}$ 放物線 $C_1: y=x^2-2x-3$ がある。 C_1 がx 軸から切り取る線分の長さをLとする。
 - (1) Lを求めよ。
 - (2) 放物線 C_1 を y 軸方向に a だけ平行移動して得られる放物線を C_2 とする。 C_2 が x 軸から切り取る線分の長さが $\frac{\sqrt{3}}{2}$ L であるとき,定数 a の値を求めよ。 (配点 20)
- **B2** 3つの集合 $A = \{a+3, a+6\}$, $B = \{-a+5, -a+7\}$, $C = \{1, 2, 3, 4, 5\}$ がある。ただし、a は整数の定数とする。
 - (1) 集合Aの2つの要素a+3, a+6がともに集合Cに属するとき, aの値を求めよ。
 - (2) $A \subset C$ または $B \subset C$ であるとき, $A \cap B = \phi$ となるような a の値を求めよ。ただし, ϕ は空集合を表す。
- ${f B3}$ 数直線上に点Pがあり、はじめ点Pは原点にある。袋の中に1から4までの数字が書かれた玉がいずれも1個ずつ、合計4個あり、袋の中から玉を1個ずつ取り出していく。ただし、取り出した玉は元に戻さないものとする。取り出した玉に書かれた数だけ点Pを数直線の正の方向へ動かし、点Pの座標が7以上となったとき終了とする。終了までに取り出した玉の個数をnとし、終了したときの点Pの座標をXとする。
 - (1) n=2 となる確率を求めよ。
 - (2) n=4 となる確率を求めよ。また、 $n \le 3$ となる確率を求めよ。
- (3) n=3 となる事象を A, X=7 となる事象を B とする。事象 A と B がともに起こる確率 $P(A\cap B)$ を求めよ。また,A が起こったときの B が起こる条件付き確率を求めよ。

(配点 40)

- $\mathbf{B4}$ 座標平面上に半径r(r>1) の円 C と図形 F: y=m|x-2|(m は正の定数)がある。また、円 C は点 (2,1) を通り、x 軸と y 軸に接している。
 - (1) rの値を求めよ。
 - (2) C と F が共有点を 3 個だけもつとき, m の値を求めよ。
 - (3) m は(2)で求めた値とする。x 軸に接し、F と共有点を 1 個だけもつような円の中心の軌跡を求めよ。 (配点 40)

【選択問題】 数学B受験者は,次のB5 \sim B8のうちから2題を選んで解答せよ。

- **B5** 数列 $\{a_n\}$ は $a_1=2$, $a_{n+1}=pa_n+3$ $(n=1, 2, 3, \dots)$ を満たしている。ただし,p は正の定数とする。
 - (1) p=1 のとき、 a_{20} を求めよ。

0

- (2) $a_3-a_1=15$ であるとき、pの値を求めよ。また、このとき、 a_n を nを用いて表せ。
- (3) (2)のとき, $\sum\limits_{k=1}^{n}k(a_k+3)$ を n を用いて表せ。 (配点 40)
- $oxed{B6}$ OA = 2, OB = 1, $\angle AOB = 120^\circ$ の $\triangle OAB$ がある。点 $C \in \overline{OC} = \overline{OA} + 2\overline{AB}$ で定め、点 $P \in \overline{OP} = k\overline{OA}$ (0 < k < 1) で定める。また, $\overline{OA} = \overline{a}$, $\overline{OB} = \overline{b}$ とする。
 - (1) 内積 $\overline{a \cdot b}$ の値を求めよ。また, \overline{OC} を \overline{a} , \overline{b} を用いて表せ。
 - (2) 線分 AC を 1:2 に内分する点を D,線分 OC の中点を M とし, $\triangle PDM$ の重心を G とする。 \overrightarrow{OG} を k, \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また,点 G が辺 OB 上にあるとき,k の値を求めよ。
 - (3) (2)の点 G が辺 OB 上にあるとき、点 G から直線 PD に引いた垂線と直線 PD との交点を H とする。 $\overrightarrow{PH} = t$ \overrightarrow{PD} と表されるとき、実数 t の値を求めよ。 (配点 40)

- **B7** 3次関数 $f(x) = x^3 3ax^2 + bx + 8$ (a, bは実数) があり, f'(1) = 0 である。
 - (1) bをaを用いて表せ。
 - (2) 方程式 f'(x) = 0 を解け。また,f(x) が x = 1 で極小値をとるとき,a のとり得る値の 範囲を求めよ。
 - (3) (2)のとき, f(x) の極大値を M, 極小値を m とする。M を a を用いて表せ。さらに、m が正のとき、M のとり得る値の範囲を求めよ。

- **B8** 2つの関数 $f(x) = 2^x$, $g(x) = \left(\frac{1}{2}\right)^{x-5}$ がある。
 - (1) f(0), g(0) の値をそれぞれ求めよ。
 - (2) 方程式 f(x) = g(x) を解け。また、 $f(\alpha) g(\alpha) = 31$ を満たす α の値を求めよ。
 - (3) (2)の α に対して、曲線 y=f(x)、y=g(x) と直線 $y=f(\alpha)$ で囲まれた部分D (境界線を含む)を図示せよ。また、D に含まれる格子点の個数を求めよ。ただし、格子点とはx 座標、y 座標がともに整数である点のことである。 (配点 40)