Задание №4 «Метод Лапласа. Функция Эйри»

Задача 4.1. Вычислить значения

функций Эйри первого и второго рода.

$$\operatorname{Ai}(z) = \int_{-i\infty}^{+i\infty} \exp\left(zt - \frac{t^3}{3}\right) \frac{dt}{2\pi i}$$

$$\operatorname{Bi}(z) = \left[\int_{-i\infty}^{+\infty} + \int_{+i\infty}^{+\infty} \right] \exp\left(zt - \frac{t^3}{3}\right) \frac{dt}{2\pi}.$$

Ответ выразить через $\Gamma(\frac{1}{3})$.

Задача 4.2. Описать все решения уравнения

$$y''' - xy = 0.$$

Найти вещественное локализованное решение $y_-(x)$ и нормировать его условием $\int_{-\infty}^{+\infty} y_-(x) = 1$. Найти расходящееся при $x \to \pm \infty$ решение $y_+(x)$ и нормировать его значением $y_+(0) = 1$.

Задача 4.3. Найти нормированные собственные функции и энергии электрона в потенциале U(x) = F|x|. Ответ выразить через нули функции Эйри z_n , нули её производной z'_n и значения функции в этих точках $\operatorname{Ai}(z'_n)$, $\operatorname{Ai}'(z_n)$.

Задача 4.4 (*). Доказать тождество ($\omega = e^{\pm i2\pi/3}$)

$$\operatorname{Ai}(z) + \omega \operatorname{Ai}(\omega z) + \omega^2 \operatorname{Ai}(\omega^2 z) = 0.$$

Задача 4.5 (*). Показать, что функции $\psi(z)={\rm Ai}^2(z)$ и $\varphi(z)={\rm Bi}^2(z)$ удовлетворяют уравнению

$$\psi''' - 4z\psi' - 2\psi = 0.$$

При помощи метода Лапласа найти интегральное представление для ${\rm Ai}^2(z).$

Fonyc: Каким контуром даётся функция $Bi^2(z)$?