## **Summary**

Bardia Mojra February 1, 2022 Seminar on Active Learning Robotic Vision Lab

## Task-Aware Variational Adversarial Active Learning

Kwanyoung Kim, Dongwon Park, Kwang In Kim, Se Young Chun

**Introduction** Deep learning requires large amounts of data to train properly and the high cost of labeling entire datasets have created an urgent need for more efficient learning algorithms. *Active learning (AL) aims to improve learning by querying the most informative samples to be annotated unlabeled pool.* Existing AL methods can be categorized into two main groups, task-agnostic and task-aware. Task-agnostic (or distribution-based) methods rely on distribution of labeled or input data, P(x) to identify *influential points*. Such techniques query samples in high-density regions and are good for learning distribution of standalone clusters but they do not make any determination on input-output depency. This becomes particularly important in classification tasks where there is always the possibility of partial distribution overlap among latent space variables from different classes.

Task-aware methods address this limitation by modeling such dependence, e.g. via estimating the conditional distribution P(y|x). Such methods identify difficult data points by querying samples from high uncertainty regions, e.g. overlapping or boundary regions. Task-agnostic methods do not exploit structures from tasks and task-aware methods do not seem to well-utilize overall data distribution. Recently, SRAAL introduced a method that combines task-aware and task-agnostic approached with a uncertainty indicator and with a unified representation for both labeled and unlabeled data [1]. Even though SRAAL achieved state-of-the-art performance, it did not use information directly about the task [2] and its learner seems to be limited to only VAE-type networks with a latent space for its unified representation.

In this paper, the authors propose a novel method which builds upon variational adversarial active learning [3] and utilizes [2] for exploit the structure P(y|x) of the problem at hand. In this approach by combining it.

## The figure



Figure 1: Visual results of active learning methods (Learning loss [40], VAAL [31], our TA-VAAL) on imbalanced toy example at the 5th stage. *Red* and *blue* dots indicate samples assigned to class 0 and 1, respectively. Ten samples at that stage (denoted by *black* cross) were selected using each method. The oracle decision boundary of the model is shown as a black dash line. Learning loss identified difficult samples near the decision boundary and VAAL found influential samples over the entire set. Our TA-VAAL selected samples that are both difficult (near decision boundary) and influential (over the entire set).

## References

- [1] B. Zhang, L. Li, S. Yang, S. Wang, Z.-J. Zha, and Q. Huang, "State-relabeling adversarial active learning," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8756–8765, 2020.
- [2] D. Yoo and I. S. Kweon, "Learning loss for active learning," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 93–102, 2019.
- [3] S. Sinha, S. Ebrahimi, and T. Darrell, "Variational adversarial active learning," in *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 5972–5981, 2019.