BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẨNG NĂM 2003 ĐÁP ÁN -THANG ĐIỂM

ĐỀ THI CHÍNH THỰC

Môn thi: TOÁN Khối D

NỘI DUNG	ÐIỂM
Câu 1.	2điểm
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số $y = \frac{x^2 - 2x + 4}{x - 2}$.	1 điểm
Tập xác định : $\mathbf{R} \setminus \{2\}$.	
Ta có $y = \frac{x^2 - 2x + 4}{x - 2} = x + \frac{4}{x - 2}$.	
$y' = 1 - \frac{4}{(x-2)^2} = \frac{x^2 - 4x}{(x-2)^2}.$ $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 4. \end{bmatrix}$	0,25đ
$\lim_{x \to \infty} [y - x] = \lim_{x \to \infty} \frac{4}{x - 2} = 0 \Rightarrow \text{ tiệm cận xiên của đồ thị là: } y = x,$	
$\lim_{x\to 2} y = \infty \Rightarrow \text{ tiệm cận đứng của đồ thị là: } x = 2.$	
Bảng biến thiên:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5đ
Đồ thị không cắt trục hoành.	
Đồ thị cắt trục tung tại điểm (0; -2).	
2	0,25đ
$\frac{1}{x}$	
2)	1 điểm
Đường thẳng d_m cắt đồ thị hàm số (1) tại 2 điểm phân biệt	
\Leftrightarrow phương trình $x + \frac{4}{x-2} = mx + 2 - 2m$ có hai nghiệm phân biệt khác 2	0,5đ
$\Leftrightarrow (m-1)(x-2)^2 = 4$ có hai nghiệm phân biệt khác $2 \Leftrightarrow m-1>0 \Leftrightarrow m>1$. Vậy giá trị m cần tìm là $m>1$.	0,5đ

Câu 2.	2điểm
1) Giải phương trình $\sin^2\left(\frac{x}{2} - \frac{\pi}{4}\right) \operatorname{tg}^2 x - \cos^2\frac{x}{2} = 0$ (1)	1 điểm
Điều kiện: $\cos x \neq 0$ (*). Khi đó	
$(1) \Leftrightarrow \frac{1}{2} \left[1 - \cos\left(x - \frac{\pi}{2}\right) \right] \frac{\sin^2 x}{\cos^2 x} = \frac{1}{2} (1 + \cos x) \Leftrightarrow (1 - \sin x) \sin^2 x = (1 + \cos x) \cos^2 x$	
$\Leftrightarrow (1-\sin x)(1-\cos x)(1+\cos x) = (1+\cos x)(1-\sin x)(1+\sin x)$	
$\Leftrightarrow (1 - \sin x)(1 + \cos x)(\sin x + \cos x) = 0$	0,5đ
$\Leftrightarrow \begin{bmatrix} \sin x = 1 \\ \cos x = -1 \Leftrightarrow \\ \tan x = 1 \end{bmatrix} \begin{cases} x = \frac{\pi}{2} + k2\pi \\ x = \pi + k2\pi \\ x = -\frac{\pi}{4} + k\pi \end{cases} (k \in \mathbb{Z}).$	
$\Leftrightarrow \cos x = -1 \Leftrightarrow x = \pi + k2\pi \qquad (k \in \mathbb{Z}).$	0,25đ
L	
Kết hợp điều kiện (*) ta được nghiệm của phương trình là: $\begin{bmatrix} x = \pi + k2\pi \\ x = -\frac{\pi}{4} + k\pi \end{bmatrix}$ $(k \in \mathbb{Z})$.	0,25đ
2) Giải phương trình $2^{x^2-x}-2^{2+x-x^2}=3$ (1).	<u>1 điểm</u>
$\text{D}\bar{\mathbf{a}}t \ t = 2^{x^2 - x} \Longrightarrow t > 0.$	
Khi đó (1) trở thành $t - \frac{4}{t} = 3 \Leftrightarrow t^2 - 3t - 4 = 0 \Leftrightarrow (t+1)(t-4) = 0 \Leftrightarrow t = 4 \text{ (vì } t > 0)$	0,5đ
Vậy $2^{x^2-x} = 4 \Leftrightarrow x^2 - x = 2 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 2. \end{bmatrix}$	
Do đó nghiệm của phương trình là $\begin{bmatrix} x = -1 \\ x = 2. \end{bmatrix}$	0,5đ
Câu 3.	3điểm
1)	<u>1 điểm</u>
Từ $(C): (x-1)^2 + (y-2)^2 = 4$ suy ra (C) có tâm $I(1;2)$ và bán kính $R = 2$.	
Đường thẳng d có véctơ pháp tuyến là $\overline{n} = (1; -1)$. Do đó đường thẳng Δ đi qua $x-1 y-2$	
$I(1;2)$ và vuông góc với d có phương trình: $\frac{x-1}{1} = \frac{y-2}{-1} \Leftrightarrow x+y-3=0$.	
Tọa độ giao điểm H của d và Δ là nghiệm của hệ phương trình:	
$\begin{cases} x - y - 1 = 0 \\ x + y - 3 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 1 \end{cases} \Rightarrow H(2;1).$	
Gọi J là điểm đối xứng với $I(1;2)$ qua d . Khi đó	
$\begin{cases} x_J = 2x_H - x_I = 3 \\ y_I = 2x_H - x_I = 0 \end{cases} \Rightarrow J(3;0).$	0,5
Do đó (C') có phương trình là: $(x-3)^2 + y^2 = 4$.	0,25đ
Tọa độ các giao điểm của (C) và (C') là nghiệm của hệ phương trình:	
$\begin{cases} (x-1)^2 + (y-2)^2 = 4 \\ (x-3)^2 + y^2 = 4 \end{cases} \Leftrightarrow \begin{cases} x-y-1=0 \\ (x-3)^2 + y^2 = 4 \end{cases} \Leftrightarrow \begin{cases} y=x-1 \\ 2x^2 - 8x + 6 = 0 \end{cases} \Leftrightarrow \begin{bmatrix} x=1, y=0 \\ x=3, y=2. \end{cases}$	0.5-
Vậy tọa độ giao điểm của (C) và (C') là $A(1;0)$ và $B(3;2)$.	0,25đ

	ا عما
Ta có cặp vectơ pháp tuyến của hai mặt phẳng xác định d_k là $\overrightarrow{n_1} = (1; 3k; -1)$	<u>1 điểm</u>
và $\overrightarrow{n_2} = (k; -1; 1)$. Vector pháp tuyến của (P) là $\overrightarrow{n} = (1; -1; -2)$.	
Đường thẳng d_k có vectơ chỉ phương là:	
$\vec{u} = [\vec{n_1}, \vec{n_2}] = (3k - 1; -k - 1; -1 - 3k^2) \neq \vec{0} \forall \ k.$	0,5đ
Nên $d_k \perp (P) \Leftrightarrow \vec{u} \parallel \vec{n} \Leftrightarrow \frac{3k-1}{1} = \frac{-k-1}{-1} = \frac{-1-3k^2}{-2} \Leftrightarrow k=1.$	0,5 đ
Vậy giá trị k cần tìm là $k = 1$.	
	1 1.2
3) $C \qquad P \qquad \text{Ta có } (P) \perp (Q) \text{ và } \Delta = (P) \cap (Q), \text{ mà}$	<u>1 điểm</u>
$C \qquad P \qquad \text{Ia co}(P) \perp (Q) \text{ va } \Delta = (P) \cap (Q), \text{ ma} \\ AC \perp \Delta \Rightarrow AC \perp (Q) \Rightarrow AC \perp AD, \text{ hay}$	
H $EAD = 90^{\circ}$. Tương tự, ta có $BD \perp \Delta$ nên	
$B \rightarrow BD \perp (P)$, do đó $BD = 90^{\circ}$. Vậy A và B	0.25.1
A, B nằm trên mặt cầu đường kính CD . Và bán kính của mặt cầu là:	0,25đ
$R = \frac{CD}{2} = \frac{1}{2}\sqrt{BC^2 + BD^2}$	
$R = \frac{1}{2} = \frac{1}{2} \sqrt{BC + BD}$	
$= \frac{1}{2} \sqrt{AB^2 + AC^2 + BD^2} = \frac{a\sqrt{3}}{2}.$	0,25đ
Gọi H là trung điểm của $BC \Rightarrow AH \perp BC$. Do $BD \perp (P)$ nên $BD \perp AH \Rightarrow AH \perp (BCD)$.	
a 1 1/3//.	
Vậy AH là khoảng cách từ A đến mặt phẳng (BCD) và $AH = \frac{1}{2}BC = \frac{a\sqrt{2}}{2}$.	0,5đ
	ŕ
Câu 4.	2điểm
	2điểm
Câu 4. 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$.	2điểm
Câu 4.	2điểm
Câu 4. 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$.	2điểm
Câu 4. 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}.$	2điểm 1 điểm
Câu 4. 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}.$ $y' = 0 \Leftrightarrow x = 1.$ $\text{Ta có } y(-1) = 0, y(1) = \sqrt{2}, y(2) = \frac{3}{\sqrt{5}}.$	2điểm 1 điểm
Câu 4. 1) Tîm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}.$ $y' = 0 \Leftrightarrow x = 1.$ $\text{Ta có } y(-1) = 0, \ \ y(1) = \sqrt{2}, \ \ y(2) = \frac{3}{\sqrt{5}}.$ $\text{Vậy } \max_{[-1;2]} y = y(1) = \sqrt{2} \text{và} \qquad \min_{[-1;2]} y = y(-1) = 0.$	2điểm 1 điểm 0,5đ
Câu 4. 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}.$ $y' = 0 \Leftrightarrow x = 1.$ $\text{Ta có } y(-1) = 0, y(1) = \sqrt{2}, y(2) = \frac{3}{\sqrt{5}}.$	2điểm 1 điểm 0,5đ
Câu 4. 1) Tîm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}$. $y' = 0 \Leftrightarrow x = 1$. Ta có $y(-1) = 0$, $y(1) = \sqrt{2}$, $y(2) = \frac{3}{\sqrt{5}}$. Vậy $\max_{[-1;2]} y = y(1) = \sqrt{2}$ và $\min_{[-1;2]} y = y(-1) = 0$. 2) Tính tích phân $I = \int_{0}^{2} x^2 - x dx$.	2điểm 1 điểm 0,5đ
Câu 4. 1) Tîm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}.$ $y' = 0 \Leftrightarrow x = 1.$ $\text{Ta có } y(-1) = 0, \ \ y(1) = \sqrt{2}, \ \ y(2) = \frac{3}{\sqrt{5}}.$ $\text{Vậy } \max_{[-1;2]} y = y(1) = \sqrt{2} \text{và} \qquad \min_{[-1;2]} y = y(-1) = 0.$ 2) Tính tích phân $I = \int_{0}^{2} \left x^2 - x \right dx$. $\text{Ta có } x^2 - x \le 0 \iff 0 \le x \le 1, \text{ suy ra}$	2điểm 1 điểm 0,5đ 1 điểm
Câu 4. 1) Tîm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}.$ $y' = 0 \Leftrightarrow x = 1.$ $\text{Ta có } y(-1) = 0, \ \ y(1) = \sqrt{2}, \ \ y(2) = \frac{3}{\sqrt{5}}.$ $\text{Vậy } \max_{[-1;2]} y = y(1) = \sqrt{2} \text{và} \qquad \min_{[-1;2]} y = y(-1) = 0.$ 2) Tính tích phân $I = \int_{0}^{2} \left x^2 - x \right dx$. $\text{Ta có } x^2 - x \le 0 \iff 0 \le x \le 1, \text{ suy ra}$	2điểm 1 điểm 0,5đ
Câu 4. 1) Tîm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}.$ $y' = 0 \Leftrightarrow x = 1.$ $\text{Ta có } y(-1) = 0, y(1) = \sqrt{2}, y(2) = \frac{3}{\sqrt{5}}.$ Vậy $\max_{[-1;2]} y = y(1) = \sqrt{2}$ và $\min_{[-1;2]} y = y(-1) = 0.$ 2) Tính tích phân $I = \int_{0}^{2} \left x^2 - x \right dx$. $\text{Ta có } x^2 - x \le 0 \iff 0 \le x \le 1, \text{ suy ra}$ $I = \int_{0}^{1} (x - x^2) dx + \int_{1}^{2} (x^2 - x) dx$	2điểm 1 điểm 0,5đ 1 điểm
Câu 4. 1) Tîm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}.$ $y' = 0 \Leftrightarrow x = 1.$ $\text{Ta có } y(-1) = 0, y(1) = \sqrt{2}, y(2) = \frac{3}{\sqrt{5}}.$ Vậy $\max_{[-1;2]} y = y(1) = \sqrt{2}$ và $\min_{[-1;2]} y = y(-1) = 0.$ 2) Tính tích phân $I = \int_{0}^{2} \left x^2 - x \right dx$. $\text{Ta có } x^2 - x \le 0 \iff 0 \le x \le 1, \text{ suy ra}$ $I = \int_{0}^{1} (x - x^2) dx + \int_{1}^{2} (x^2 - x) dx$	2điểm 1 điểm 0,5đ 1 điểm
Câu 4. 1) Tîm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{x+1}{\sqrt{x^2+1}}$ trên đoạn $[-1; 2]$. $y' = \frac{1-x}{\sqrt{(x^2+1)^3}}.$ $y' = 0 \Leftrightarrow x = 1.$ $\text{Ta có } y(-1) = 0, \ \ y(1) = \sqrt{2}, \ \ y(2) = \frac{3}{\sqrt{5}}.$ $\text{Vậy } \max_{[-1;2]} y = y(1) = \sqrt{2} \text{và} \qquad \min_{[-1;2]} y = y(-1) = 0.$ 2) Tính tích phân $I = \int_{0}^{2} \left x^2 - x \right dx$. $\text{Ta có } x^2 - x \le 0 \iff 0 \le x \le 1, \text{ suy ra}$	2điểm 1 điểm 0,5đ 1 điểm 0,5đ

Câu 5.	1điểm
Cách 1: Ta có $(x^2+1)^n = C_n^0 x^{2n} + C_n^1 x^{2n-2} + C_n^2 x^{2n-4} + + C_n^n$,	
$(x+2)^n = C_n^0 x^n + 2C_n^1 x^{n-1} + 2^2 C_n^2 x^{n-2} + 2^3 C_n^3 x^{n-3} + \dots + 2^n C_n^n.$	
Dễ dàng kiểm tra $n = 1, n = 2$ không thỏa mãn điều kiện bài toán.	
Với $n \ge 3$ thì $x^{3n-3} = x^{2n}x^{n-3} = x^{2n-2}x^{n-1}$.	
Do đó hệ số của x^{3n-3} trong khai triển thành đa thức của $(x^2+1)^n(x+2)^n$ là	
$a_{3n-3} = 2^3 \cdot C_n^0 \cdot C_n^3 + 2 \cdot C_n^1 \cdot C_n^1$	0,75đ
$2n(2n^2-3n+4) \qquad \qquad \boxed{n=5}$,
Vậy $a_{3n-3} = 26n \Leftrightarrow \frac{2n(2n^2 - 3n + 4)}{3} = 26n \Leftrightarrow \begin{vmatrix} n = 5 \\ n = -\frac{7}{2} \end{vmatrix}$	0,25đ
Vây $n = 5$ là giá trị cần tìm (vì n nguyên dương).	0,230
Cách 2: Ta có	hoặc
$(x^{2}+1)^{n}(x+2)^{n} = x^{3n}\left(1+\frac{1}{x^{2}}\right)^{n}\left(1+\frac{2}{x}\right)^{n}$	
$= x^{3n} \left[\sum_{i=0}^{n} C_n^i \left(\frac{1}{x^2} \right)^i \sum_{k=0}^{n} C_n^k \left(\frac{2}{x} \right)^k \right] = x^{3n} \left[\sum_{i=0}^{n} C_n^i x^{-2i} \sum_{k=0}^{n} C_n^k 2^k x^{-k} \right].$	
Trong khai triển trên, luỹ thừa của x là $3n-3$ khi $-2i-k=-3$, hay $2i+k=3$. Ta chỉ có hai trường hợp thỏa điều kiện này là $i=0,k=3$ hoặc $i=1,k=1$.	
Nên hệ số của x^{3n-3} là $a_{3n-3} = C_n^0.C_n^3.2^3 + C_n^1.C_n^1.2$.	0,75đ
Do đó $a_{3n-3} = 26n \Leftrightarrow \frac{2n(2n^2 - 3n + 4)}{3} = 26n \Leftrightarrow \begin{bmatrix} n = 5 \\ n = -\frac{7}{2} \end{bmatrix}$	
Vậy $n = 5$ là giá trị cần tìm (vì n nguyên dương).	0,25đ