

RNS INSTITUTE OF TECHNOLOGY, BENGALURU - 98 DEPARTMENT OF MATHEMATICS

18MAT41: Complex Analysis, Probability and Statistical Methods

Assignment - I

Submission Last Date: 01.06.2021

Q. No										CO'S
1.	Fit a best	Level L1, L2	CO4							
	x 1	2	3	4 5		7	8	9		
	y 2	6	7	8 1	.0 11	11	10	9		
2.	Fit a best fitting equation in the form $y = ax^b$ for the following data:								L1, L2	CO4
	x 1 2 3 4 5 6									
	у	2.98	4.26	5.21	6.1	6.8		7.5		
3.	Fit a best fitting equation in the form $y = ax + b$ for the following data:								L1, L2	CO4
	X	5	10	15	20	25				
	у	2.98	4.26	5.21	6.1	6.8				
4.			-	-	r from the		-		L1, L2	CO4
	regression: $y = 0.516x + 33.73$ and $x - 32.52 = 0.512y + 32.52$									
5.		_			s of regress		n sho	w that	L1, L2	CO4
	$tan\theta = -$	$\frac{\sigma_x \sigma_y}{\sigma_x \sigma_y} \left(\frac{1-\sigma_x \sigma_y}{\sigma_x \sigma_y}\right)$	$\frac{r^2}{}$). Expla	ain the si	gnificance	when				
	,	·								
	r = 0 an				1.1' C		<u> </u>	1	T 1 T 2	004
6.			t of correl	ation and	d lines of re	gressio	n for t	ine	L1, L2	CO4
	following									
	X	1	2	3	4	5				
	У	2	5	3	8	7				
7.	• While calculating correlation coefficient between two variables x and y from 25 pairs of observations, the following results were obtained:								L1, L2	CO4
	n=25, $\sum x = 125$, $\sum y = 100$, $\sum x^2 = 650$, $\sum y^2 = 460$, $\sum xy = 508$. Later it was discovered at the time checking that the pairs of values									
	(8,12) an	<i>d</i> (6,8) w	ere copie	d down a	ıs (6,14)an	d (8,6)	. Obta	in the		
	correct value of correlation coefficient.									
8.	-		-		the lines of	regress	ion of	the	L1, L2	CO4
	variables :	-	ind the fo	llowing						
	1) Mean of x and y									
9.	2) Coefficient of correlation between x and y If the correlation coefficient between two verichles x and x is 0.5 and								L1, L2	CO4
7.	If the correlation coefficient between two variables x and y is 0.5 and the acute angle between their lines of regression is $\tan^{-1}\left(\frac{3}{5}\right)$, show that									004
	the acute a									
	$\sigma_{x=}\frac{1}{2}\sigma_{y}.$									
10.	The scores for 9 students in Physics and Maths are as follows:									CO4
	Physics	35 23		17	10 43	9	6	28		
	Maths	30 33	3 45	23	8 49	12	4	31		

RNS INSTITUTE OF TECHNOLOGY, BENGALURU - 98 DEPARTMENT OF MATHEMATICS

ith a Difference	-					.							
	Compute the ranks of students in the two subjects and compute the										the		
	Spearman's rank correlation.												
11.	A random variable X has the following probability function.											L1, L2	CO3
										~ \			
	i) Find the value of k ii) Evaluate P(X<6) iii) P(X>6) iv) P(0 <x<5)< th=""><th></th><th></th></x<5)<>												
	X 0 1 2 3 4 5 6 7												
		P(x)	0	k	2k	2k	3k	k^2	$2k^2$	$7k^2 + k$			
12.	The probability distribution of a random variable <i>X</i> is given by the										L1, L2	CO3	
	following table:												
		X	0	1	2	3	4	5					
		P(x)	K	5k	10k	10k	5k	K					
	Find i) k ii) $P(X \le 1)$ iii) $P(0 \le X \le 3)$ iv) Mean and Variance												
	The probability of germination of a seed in a packet of seeds is found									l	L1, L2	CO3	
13.	to be 0.7. If 10 seeds are taken for experimenting on germination in a									ι			
	laboratory, find the probability that (i) 8 seeds germinate												
	(ii) at least 8 seeds germinate (iii) at most 8 seeds germinate.												
	In Sampling a large number of parts manufactured by a machine, the											L1, L2	CO3
14.	mean number of defective in a sample of 20 is 2. Out of 1000 such												
						_							
	samples, how many would be expected to contain at least three defective parts.												
15.	1									L1, L2	CO3		
15.	In a certain factory turning out razor blades, there is a small chance of										LI,LZ	COS	
	0.002 for a blade to be defective. The blades are supplied in packets of 10. Use Poisson distribution to calculate the approximate number of packets containing i) no defective ii) one defective iii) two defective blades, in a consignment of 10,000 packets.												

Multiple choice questions

- 1. The normal equations to fit the straight line y = mx + c are
 - (a) $\Sigma y = n \Sigma x + \Sigma cm$, $\Sigma xy = c \Sigma x^2 + c \Sigma n$
 - (b) $\Sigma y = m \Sigma x + \text{nc}$, $\Sigma xy = m \Sigma x^2 + c \Sigma x$
 - (c) $\Sigma y = c \Sigma x + \Sigma cm$, $\Sigma xy = c \Sigma x^2 + c \Sigma n$
 - (d) $\Sigma y = n \Sigma x + m \Sigma n$, $\Sigma xy = c \Sigma x^2 + m \Sigma x$
- 2. The equation $v = at^b$ can be reduced to y = a + bx where x is
 - (a) $\log_{10} a$
- (b) $\log_{10} t$
- (c) $\log_{10} v$
- (d) None
- 3. To fit $y = ax^b$ by least square method, normal equations are
 - (a) $\Sigma Y = na + b \Sigma x$, $\Sigma xY = a \Sigma x + b \Sigma x^2$
 - (b) $\Sigma y = nA + b \Sigma x$, $\Sigma xy = A \Sigma x + b \Sigma x^2$
 - (c) $\Sigma Y = nA + B \Sigma X$, $\Sigma XY = A \Sigma X + B \Sigma X^2$
 - (d) $\Sigma Y = nA + B \Sigma x$, $\Sigma xY = A \Sigma x + B \Sigma x^2$
- 4. In y = a + bx, $\Sigma x = 50$, $\Sigma y = 80$, $\Sigma xy = 1030$, $\Sigma x^2 = 750$ and n = 10 then a is
 - (a) 1.26 (b) 1.28
- (c) 1.7
- (d) 1.8
- 5. A parabolic curve is of the form

RNS INSTITUTE OF TECHNOLOGY, BENGALURU - 98 DEPARTMENT OF MATHEMATICS

6	· · ·	· · ·	* /		(d) Neither of them $y + b$. The correlation	on coefficient is				
0.	(a) $-\sqrt{0.2}$	(b)0.45	-	c) -0.45		on coefficient is				
7.	If the correlation c	oefficient is zer	o, the two regre	ssion lines are	;					
	(a) Parallel (b)	Perpendicular	(c) Coincident	(d) Inclined	d at 45^0 to each othe	er.				
8.	If r_1 and r_2 are two									
	(a) standard devia	tion (b) Con	stant terms of th	e regression l	ines					
	(c) slopes of regre	ession lines (c	l) correlation co	efficient.						
9.	If the two regression coefficients are perpendicular to each other then the coefficient of correlation is									
	(a) ± 1			(d) -1						
10.	The value of coeff	icient of correla	tion lies betwee	n And						
	(a) 0 and 1	(b) -1 and 0	(c) -1 an	nd 1 (d) non	пе					
11.	If the regression co	* *	* *	` ′						
	(a) inconsistent	(b) consistent	(c) Posit	tive (d) Neg	gative					
12.	If two regression li	ines coincide th	en the correlatio	n coefficient	is					
	(a) ±1	(b) 1	(c) 0	d) Neg	ative					
13.	Which of the follow	wing mentioned	d standard Proba	bility density	functions is applicab	ole to discrete				
	ndom Variables?	\mathcal{E}		3	11					
	a) Gaussian Distrib	bution b) Poisso	on Distribution c) Rayleigh Di	stribution d) Expone	ntial Distribution				
14.					complement, according					
	probability?				•					
	a) $P(G) = 1 / P(H)$	b) P(G	$\mathbf{b} = 1 - \mathbf{P}(\mathbf{H}) \mathbf{c}$	P(G) = 1 + F	P(H) d) $P(G) = P(G)$	(H)				
15.	A variable that can	ı assume any va	lue between two	given points	is called	-				
	a) Continuous rand	dom variable b)	Discrete randon	n variable c) I	rregular random vari	iable				
	d) Uncertain rando	om variable								
16.	If a variable can ce	_				_				
			Discrete randon	n variable c) I	rregular random vari	iable				
	d) Uncertain rando									
17.					is given by	_				
	a) $P(X)$ b) $\sum_{x} x P(x)$			as expected v	alue					
18.	If $\Sigma P(x) = k^2 - 8 t$									
1.0	a) 0 b) 1			ata						
19.	If $P(x) = 0.5$ and x		n)E(x) = ?							
20	a) 1 b) 0.5	, ,	41	1						
∠U.	In a discrete proba			i probabilities	s is aiways?					
	a) 0 b) Infin	nite c) 1	u) Underined							