prudent to consider whether the abnormal event will fail only a single member.

Because accidents, misuse, and sabotage are normally unforeseeable events, they cannot be defined precisely. Likewise, general structural integrity is a quality that cannot be stated in simple terms. It is the purpose of Section 1.4 and the commentary to direct attention to the problem of local collapse, present guidelines for handling it that will aid the design engineer, and promote consistency of treatment in all types of structures and in all construction materials. ASCE does not intend, at this time, for this standard to establish specific events to be considered during design or for this standard to provide specific design criteria to minimize the risk of progressive collapse.

Accidents, Misuse, Sabotage, and Their Consequences. In addition to unintentional or willful misuse, some of the incidents that may cause local collapse (Leyendecker et al. 1976) are explosions caused by ignition of gas or industrial liquids; boiler failures; vehicle impact; impact of falling objects; effects of adjacent excavations; gross construction errors; very high winds such as tornadoes; and sabotage. Generally, such abnormal events would not be a part of normal design considerations. The distinction between general collapse and limited local collapse can best be made by example as follows.

General Collapse. The immediate, deliberate demolition of an entire structure by phased explosives is an obvious instance of general collapse. Also, the failure of one column in a one-, two-, three-, or possibly even four-column structure could precipitate general collapse because the local failed column is a significant part of the total structural system at that level. Similarly, the failure of a major bearing element in the bottom story of a two- or three-story structure might cause general collapse of the whole structure. Such collapses are beyond the scope of the provisions discussed herein. There have been numerous instances of general collapse that have occurred as the result of such events as bombing, landslides, and floods.

Limited Local Collapse. An example of limited local collapse would be the containment of damage to adjacent bays and stories following the destruction of one or two neighboring columns in a multibay structure. The restriction of damage to portions of two or three stories of a higher structure following the failure of a section of bearing wall in one story is another example.

Examples of General Collapse.

Ronan Point. A prominent case of local collapse that progressed to a disproportionate part of the whole

building (and is thus an example of the type of failure of concern here) was the Ronan Point disaster, which brought the attention of the profession to the matter of general structural integrity in buildings. Ronan Point was a 22-story apartment building of large, precastconcrete, load-bearing panels in Canning Town, England. In March 1968, a gas explosion in an 18th-story apartment blew out a living room wall. The loss of the wall led to the collapse of the whole corner of the building. The apartments above the 18th story, suddenly losing support from below and being insufficiently tied and reinforced, collapsed one after the other. The falling debris ruptured successive floors and walls below the 18th story, and the failure progressed to the ground. Better continuity and ductility might have reduced the amount of damage at Ronan Point.

Another example is the failure of a one-story parking garage reported in Granstrom and Carlsson (1974). Collapse of one transverse frame under a concentration of snow led to the later progressive collapse of the whole roof, which was supported by 20 transverse frames of the same type. Similar progressive collapses are mentioned in Seltz-Petrash (1979).

Alfred P. Murrah Federal Building. On April 19, 1995, a truck containing approximately 4,000 lb of fertilizer-based explosive (ANFO) was parked near the sidewalk next to the nine-story reinforced concrete office building (Weidlinger 1994, Engrg. News Rec. 1995; Longinow 1995; and Glover 1996). The side facing the blast had corner columns and four other perimeter columns. The blast shock wave disintegrated one of the 20×36 in. perimeter columns and caused brittle failures of two others. The transfer girder at the third level above these columns failed, and the upper-story floors collapsed in a progressive fashion. Approximately 70 percent of the building experienced dramatic collapse. One hundred sixtyeight people died, many of them as a direct result of progressive collapse. Damage might have been less had this structure not relied on transfer girders for support of upper floors, if there had been better detailing for ductility and greater redundancy, and if there had been better resistance for uplift loads on floor slabs.

There are a number of factors that contribute to the risk of damage propagation in modern structures (Breen 1976). Among them are the following:

1. There is an apparent lack of general awareness among engineers that structural integrity against collapse is important enough to be regularly considered in design.