

David Landoll
Applications Architect
Mentor Graphics Corp.

MAPLD 2009

GRENCS

Today's FPGAs

- Fabrication advances provide more available silicon area
 More functionality can weigh less and take up less space
 Integrating/reusing capabilities lowers cost

Integration Presents New Challenges

Such integration usually involves multiple independent clock domains, which leads to clock-domain crossings and metastability errors!

Clock Domain Crossing (CDC) Errors Unpredictable Loss of Data

- CDC problems
 - corrupt control and data signals
 - are subtle, intermittent, unpredictable
 - are the 2nd major cause of respins
 - are difficult to reproduce and debug
 - are temperature, voltage, and process sensitive
 - will only occur in hardware; often in the final design
- Traditional verification techniques *do not* work for CDC signals

A CDC Verification methodology is needed to reduce the risk of CDC related data errors

Metastability What the heck is it, anyway?

- What is a clock?
 - Periodic pulsing signal
- Vcc, Vdd: +5V, +3.3V Vee, Vss: GND: **0**V
- Digital logic uniformly connected to this signal
- Acts as the Symphony Conductor keeps logic in sync
- Action happens across the logic at one specific point
 - **■** Typically the "rising edge"

Metastability What the heck is it, anyway?

- What's in a register?
 - (Also known as a latch, flip-flop, etc)
 - Contain transistors that "trap" the input value at the appropriate time
 - E.g. rising edge of the clock
 - How does this happen?

- Let's take a look at a register
 - CMOS D-type transmission gate flip-flop

```
0 D Q 0
```

```
-- simple D-type flip-flop
process(CLK)
begin
  if rising_edge(CLK) then
    Q <= D;
  end if;
end process;</pre>
```


Transistor Model of a D Flip-Flop

- Let's take a look at a register
 - CMOS D-type transmission gate flip-flop

```
1 D Q C
```

```
-- simple D-type flip-flop
process(CLK)
begin
  if rising_edge(CLK) then
   Q <= D;
  end if;
end process;</pre>
```


Transistor Model of a D Flip-Flop

- Let's take a look at a register
 - CMOS D-type transmission gate flip-flop

```
1 D Q 1
```

```
-- simple D-type flip-flop
process(CLK)
begin
  if rising_edge(CLK) then
    Q <= D;
  end if;
end process;</pre>
```


Transistor Model of a D Flip-Flop

- Let's take a look at a register
 - CMOS D-type transmission gate flip-flop

```
-- simple D-type flip-flop
process(CLK)
begin
  if rising_edge(CLK) then
    Q <= D;
  end if;
end process;</pre>
```


Only works if D has a "good value" at the rising edge of the clock (no Set-up/hold time violations)

■ When setup/hold conditions are violated, the output of a storage element becomes unpredictable

- This effect is called metastability
- If not contained, metastability can propagate...

Metastability is UNAVOIDABLE in designs with multiple asynchronous clocks

Clock Domain Crossings Guaranteed to Cause Metastability

When 2 or more designs run on disparate clocks:

- The clocks will continually skew, guaranteeing setup/hold violations
- Signals from one design to another are "Clock Domain Crossings" (CDCs)

Mitigating Clock Domain Crossing Issues

Problem:

- Signals crossing a clock domain will violate set-up/hold
- Impact: Control/data signals will be dropped/corrupted
 - Loss of Data

Approaches:

- Avoid having systems that have multiple clocks
 - Although sensible, it's becoming impossible
- Design around the problem
 - Designer can add "synchronizers" to the design
 - Metastability still happens, but nobody else sees it
 - E.g. 2DFF, FIFO, etc.
 - "Fences in" metastability

Isolate Metastability: Synchronizers

- Designers add synchronizers to reduce the probability of metastable signals
- Synchronizers are sub-circuits that can prevent metastable values from being sampled across clock domains
 - Take unpredictable metastable signals and create predictable behavior

Mitigating Clock Domain Crossing Issues Isolate Metastability: Synchronizers

When metastability occurs, the delay through a synchronizer becomes unpredictable

Synchronizer Delays Can Reconverge with unexpected results

- CDC signals cross with an assumed relationship
- Can be combinational, sequential, or deeply sequential
- Unpredictable delays on CDC paths lead to reconvergence errors
 - Designs need logic to correctly handle reconvergence
 - Can occur on single-bit or multiple-bit signals

Valid Command – but delayed

And, Synchronizers Fail if Misused

- Synchronization between clock domains *requires* a transfer protocol
 - Ensures data is *predictably* transferred between domains
- These protocols *must* be verified
- When protocol is violated
 - Data is lost
 - Simulation may not show a failure
 - Silicon will eventually show a functional error

Data-Mux (DMUX) Synchronizer

Synchronizer won't function properly if the required Transfer Protocol is violated

Verification Must Cover All Three CDC Problems

Clock domain crossings need:

- Structured synchronization
- Transfer protocols
- Global reconvergence checking

Mitigating Clock Domain Crossing Issues

Problem:

- Signals crossing a clock domain will violate set-up/hold
- Impact: Control/data signals will be dropped/corrupted

Approaches:

- Avoid having systems that have multiple clocks
- Designer can add "synchronizers" to the design
- Designer-added synchronizers + full CDC verification
 - Assures synchronizers are present and used correctly

Recommendations

During design planning

- 1. Create systems/designs using 1 clk, 1 edge when possible
- 2. If multiple clocks are required, try to use 1 designer for both clock domains, and use coding guidelines
 - 1. Use signal naming conventions
 - 2. Many clock domain errors come from design changes, not the initial design

For Example:

- Append "_A_reg" to signals leaving A-clk register, "_A" for A-clk combo signals
- Leverage during code reviews help identify missing synchronizers
- Make sure ONLY _A_reg signals go to synchronizers (no combo logic)

Verifying CDC Synchronization

Problem:

- Missing synchronizers will create metastability
- Correctly placed but misused synchronizers won't work
- Reconvergence of synchronized signals can create unexpected behavior

Approaches:

- Simulation
 - Digital logic simulators do NOT model transistor behavior
 - Do not model "metastability"

For example ...

Simulation Does NOT Reflect Silicon Behavior

Verifying CDC Synchronization

Problem:

- Missing synchronizers will create metastability
- Correctly placed but misused synchronizers won't work
- Reconvergence of synchronized → Control logic bugs

Approaches:

- Simulation
 - Won't model CDC's correctly to detect errors
- Static Timing Analysis
 - Can be used to identify signals that cross domains
 - Can be used as input for a manual review
 - But...Won't detect missing or incorrectly used synchronizers, or reconvergence

Verifying CDC Synchronization

Problem:

- Missing synchronizers will create metastability
- Correctly placed but misused synchronizers won't work
- Reconvergence of synchronized → Control logic bugs

Approaches:

- Simulation
 - Won't model CDC's correctly to detect errors
- Static Timing Analysis
 - Identifies signals for manual review, but otherwise useless

Manual Design Reviews

- Error prone (and very time consuming)
- Typically only identifies synchronizer structures, misses reconvergence and invalid sync protocol usage
- Evidence suggests at least some synchronizers will be missed

For Example... Trivial Reconvergence Error

- Reconverging synchronized CDC signals timing is unpredictable.
- Need to verify the downstream logic can handle variations
 - Manually identifying the reconvergence is very hard
 - Manually identifying all possible behaviors is harder
 - Manually assuring logic will behave correctly typically intractable

Verifying CDC Synchronization

Problem:

- Missing synchronizers will create metastability
- Correctly placed but misused synchronizers won't work
- Reconvergence of synchronized → Control logic bugs

Approaches:

- **Simulation -** Won't model CDC's correctly to detect errors
- Timing Analysis Identifies signals for review, but otherwise useless
- Manual Design Reviews error prone, incomplete
- Lab Verification?
 - Problem is intermittent, debug is impossible
- Spice simulation? It *does* model transistors, but...
 - Where will you get the "Spice deck"? (transistor level model)
 - Would be far too slow on a large FPGA

Verifying CDC Synchronization

Problem:

- Missing synchronizers will create metastability
- Correctly placed but misused synchronizers won't work
- Reconvergence of synchronized → Control logic bugs

Approaches:

- So we need a new method that reliably:
 - Identifies ALL CDC signals, structures, reconvergence
 - Assures ALL connected, functioning correctly
 - Creates reports for manual reviews
 - → The EDA industry has responded
 - 6 commercial tools now available...and counting
 - But...most won't identify all 3 of our CDC issues

Mentor's CDC Verification Technology

Who's using our technology?

- Mil-Aero
 - Honeywell, Inc.
 - L-3 Communications
 - Lockheed Martin Co
 - Ministry of Aerospace & Aeronautics
 - Northrop Grumman Corp
 - Raytheon
 - Rockwell Collins Inc.
 - SAAB Group
 - Thales
- Commercial
 - Widely used in commercial space
- The market leader in CDC verification

Example Value from One Customer

Design

- IEEE standard serial communications core
- Used in 50-60 other COMMERCIAL ASIC products
- Widely deployed (millions in use daily)

Placed core in a sensor guidance system

- Found issues in the lab
- Debugged FPGA for weeks
- Suspected a CDC issue, but not sure...

Deployed Mentor's CDC solution

- Results same day
- Found 199 serious CDC bugs!
 - 45 Missing Synchronizers
 - 83 Incorrect Synchronizers
 - **■** 76 Reconverging Signals
 - 11 other problems
- Most resulting from "more stressful" usage

In production:

- Commercial ASIC: Customer issue device is erratic, locks up
- Avionics: Could result in an Airworthiness Directive

Summary Recommendations

During design planning

- 1. Create systems/designs using 1 clk, 1 edge when possible
- 2. If multiple clocks are required, try to use 1 designer for all clock domains
- 3. When multi-clock design is required, plan for proper verification

During verification

- 1. Watch for multiple clocks in designs (*Tip Count PLLs*)
- 2. Ask how CDC issues are mitigated (remember there are 3)

Utilize commercial tools designed for detecting these problems

- 1. Verify all 3 classes of CDC problems
 - 1. Structural Verification
 - 2. Protocols Verification
 - 3. Reconvergance Verification
- 2. Use reports to aid manual reviews
- 3. Use CDC tools to support ROBUSTNESS

In Conclusion ...

- Every multi-clock design is subject to metastability
- Traditional verification methodologies CANNOT assure robustness
- To properly mitigate the dangers of CDC, we strongly recommend a solution that...:
 - Supports Manual Reviews
 - Automatically reports all sources of CDC problems
 - Has a proven CDC verification methodology & customer success

