

Measures Of Central Tendency

central value

Measures of Central Tendency

- One of the important objectives of statistical analysis is to get one single value that describes the characteristic of entire mass of selected data
- Such value is called as "Central Value" or "Average" or expected value of the variable
- Average
 - Average is an attempt to find one single figure to describe the whole of figures
 - Average is a single value selected from a group of values to represent them in some way
 - Average is sometimes described as a number which is typical of the whole group
- Objectives of averaging
 - To get single value that describes the characteristics of the entire group
 - To facilitate comparison

Requisites of good average

- Easy to understand
- Simple to compute
- Based on all the items **
- Not be unduly affected by extreme observations
- Rigidly defined → formula
- Capable of further algebraic treatment
- Sampling stability

Types of Averages

Mean

Simple Arithmetic Mean – Individual Series

- Direct method
- Steps
 - Add all the observations together and obtain the total $\sum X$
 - Divide the total by number of observations

$$\bar{X} = \frac{X1 + X2 + X3 \dots + Xn}{N}$$

OR

$$\bar{X} = \frac{\sum X}{N}$$

Simple Arithmetic Mean - Individual Series

- Shortcut method (Using Assumed Mean)
- Steps
 - Take an assumed mean and denote it as A
 - Take the deviations of items from assumed mean and denote them by d
 - Obtain the sum of these deviations i.e. $\sum d$
 - Apply the formula

$$\bar{X} = A + \frac{\sum d}{N}$$

Simple Arithmetic Mean – Individual Series

- Following are the monthly income of 10 employees in an office
 - **1**4780, 15760, 26690, 27750, 24840, 24920, 16100, 17810, 27050, 16950
- Calculate arithmetic mean of income

direct method

$$\frac{1}{x} = \frac{40}{8} = 5$$

ass ameau (y) = 10

Simple Arithmetic Mean – Discrete Series

- Direct method
- Steps
 - Multiply the frequency of each row with the variable and obtain the total $\sum fX$
 - Divide the total by number of observation that is the total frequency

- Where
 - f = frequency
 - X = observations
 - N = total frequency = **2 -**

Simple Arithmetic Mean – Discrete Series

- Shortcut method Using Assumed mean
- Steps
 - Take an assumed mean and denote it by A
 - Take the deviations of the variable X from the assumed mean and denote the deviations by d
 - Multiply this deviation by respective frequency and take the total $\sum f d$
 - Apply the formula

$$\bar{X} = A + \frac{\sum fd}{N}$$

- Where
 - f = frequency
 - d = deviation from Assumed mean
 - A = assumed mean
 - N = total frequency

Simple Arithmetic Mean – Discrete Series

From the following data of marks obtained by students, calculate arithmetic mean

Marks	20	30	40	50	60	70
# students	8	12	20	10	6	4

$$\bar{x} = \frac{zfx}{N} = \frac{2460}{60} = 41$$

Simple Arithmetic Mean – Continuous Series

- Direct method
- Steps
 - Obtain the mid point of each class and denote it by m
 - Multiply these mid points by the respective frequency of each class and obtain $\sum fm$
 - Divide the total obtained by the sum of frequency (N)

$$\bar{X} = \frac{\sum fm}{N}$$

- Where
 - f = frequency
 - m = mid point of each class
 - N = total frequency = ==

Simple Arithmetic Mean – Continuous Series

- Shortcut method Using Assumed mean
- Steps
 - Take an assumed mean and denote it by A
 - From the mid point of each class deduct the assumed mean
 - Multiply the respective frequencies of each class by the deviations and obtain $\sum f d$
 - Apply formula

$$\bar{X} = A + \frac{\sum fd}{N}$$

- Where
 - f = frequency
 - d = deviation of class mid point from assumed mean
 - A = assumed mean
 - N = total frequency

Simple Arithmetic Mean – Continuous Series

From the following data of marks obtained by students, calculate arithmetic mean

Marks	0-10	10-20	20-30	30-40	40-50	50-60
# students	5	10	25	30	20	10

$$\frac{2fm}{x^2} = \frac{3300}{100} = \frac{33}{100}$$

Mathematical Properties of Arithmetic Mean

- Sum of the deviations of the items from the arithmetic mean (taking sign into account) is always zero
- Sum of the squared deviations of the items from arithmetic mean is minimum, that is, less than the sum
 of squared deviations of the items from any other value
- Including the mean value in the series multiple times wont change the mean
- If we have arithmetic mean and number of items of two or more than two related groups, we can compute combined mean of these groups using formula $\frac{1}{x} = \frac{1}{x}$

Merits

- It is simplest average to understand and easiest to compute
- It is affected by value of every item in the series
- It is defined by rigid mathematical formula with the result that everyone who computes the average gets the same answer
- It lends itself to subsequent algebraic treatment better than median or mode.
- The mean is typical in the sense that it is the center of gravity, balancing the values on the either sides of it
- It is calculated values and not based on the positions

Geometric Mean

- Steps
 - Multiply all the values and get the result
 - Get the square root to the Nth power to find the geometric mean

$$\bar{X} = \sqrt[N]{x_1 * x_2 * \dots * x_n}$$

Harmonic Mean

- Steps
 - Get reciprocal of each number and add together
 - Divide the number of values by the total calculated eariler

$$\bar{X} = \frac{N}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

Weighted Mean

- Steps
 - Multiply every value with corresponding weight
 - Add the values together
 - Divide the total by sum of all the weights

$$\bar{X} = \frac{\sum WiXi}{W1 + W2 \dots + Wn}$$

$$x = 1, 2, 3, 4, 5$$

entreme value

 $x = (3)$
 $x = (3$

$$\frac{7}{8} = \frac{11,5}{6} = \frac{12.}{6}.$$

position based average

Median
middlemost value

Median

C liet g values

- By definition, it refers to the middle value in a distribution
- The median is just 50th percentile value below which 50% of the values in the sample fall
- It splits the observations into two halves
- Unlike the mean, median is calculated by position (which refers to the place of the value in the series)

Median – Individual Series

Steps

- Arrange the data in the ascending or descending order of magnitude
- In a group composed of an odd number of values such as 7, add 1 to the total number of values and divide it by 2. Thus 7 + 1 would be 8 which divided by 2 gives 4 the position used to calculate the mean
- In a group composed of even number of values such as 10, use the average of middle two values. Thus 10/2 gives 5-4 which will produce a median by taking average of 5^{th} and 6^{th} position values

$$median = \frac{N+1}{2}$$

median

odd no g values

median =
$$\left(\frac{N+1}{2}\right)^{\frac{1}{1}}$$
 value

N= 5

median = $\left(\frac{5t1}{2}\right)$ = s^{rd} value

Even no q values

median = average of two middle

median = aug $\left(\left(\frac{N}{2} \right)^m, \left(\frac{N}{2} \right)^m \right)$

 $median = \frac{30+25}{2} = 32.5$

Median - Individual Series

- **E.g.** 1:
 - find median of 14100, 14150, 16080, 17120, 15200, 16160, 17400
 - Arrange them in ascending order
 - **14100**, **14150**, **15200**, **16080**, **16160**, **17120**, **17400**
 - Median = (N + 1) / 2th item
 - Median = $7 + 1/2 = 4^{th}$ item => 16080
- E.g. 2:
 - Find median of 19, 28, 40, 10, 29, 50, 37, 89, 90, 60
 - Arrange them in ascending order
 - **10**, 19, 28, 29, 37, 40, 50, 60, 89, 90
 - Median = (N + 1)/ 2 the item
 - Median = average of 5^{th} and 6^{th} items => Average(37, 40) =>38.50

Median – Discrete Series

Steps

- Arrange the data in ascending or descending order of magnitude
- Find out cumulative frequencies
- Apply the formula (N + 1) / 2 the item
- Now look at the cumulative frequency and find the total which is either equal to (N + 1) /2 or next higher to that and
 determine the value of variable corresponding to it
- This gives the value of median

position =
$$\left(\frac{N+1}{2}\right)$$

Median - Discrete Series 20 20 20 20 ...

s values	
----------	--

Marks	20	30	40	50	60	70
# students	8	12	20	10	6	4

fre que	מיץ	Marks (*)	#students (F)	<u>Cumulative</u> frequency
		20	8	8 % 80 % X
	median	30		20 7, 20.5 ×
N= EF	الحسا	40	20	40 7,305
N= 60		50	10	50
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		60	6	56
		70	4	60

- Median is (N + 1) / 2 th item => (60 + 1) / 2 = 30.5 th item
- Since the value at 30.5th (or just higher than it) is 40
- Median = 40

N= 2F= 40

position= N+1 41
2 2015

median = (2)

Median – Continuous Series

Steps

- Determine the particular class in which the value of median lies, consider this as median class
- Calculate the cumulative frequencies
- Use N/2 as the rank of the median
- Use the formula

$$median = L + \frac{\frac{N}{2} - cf}{f} * i$$

Where

- L = Lower limit of the median class (the class in which middle item of the distribution lies)
- cf = cumulative frequency of the class preceding the median class
- f = frequency of the median class
- i = class interval of the median class

Median – Continuous Series

Marks	0-10	10-20	20-30	30-40	40-50	50-60
# students	5	10	25	30	20	10

- The median class is => 100/2 => 50 lies in (30-40)
- Median = 30 + ((100/2 40)/30) * 10
- Median = 30 + (10/30) * 10 = 33.33

$$N = \mathbb{Z} f = \frac{100}{2}$$
 $\left(\frac{N}{2}\right) = \frac{100}{2} = \frac{50}{2}$

	×	, 	
	Marks	#students	cf
	0-10	5	5 750 X
	10-20	10	15 755
median	20-30	25	40 750 7
class ->	30-40	30	70 750 V
	40-50	20	90
	50-60	10	100

median: L+
$$\frac{11/2-cF}{f}$$
 = $30+\frac{50-40}{30}*10=\frac{33.33}{20}$

median
$$\Rightarrow$$
 F | C.F. \Rightarrow N= Zf= 20
Median \Rightarrow S= 10
10.15 6 18 median chass= \Rightarrow 10
15-20 2 2 20
median \Rightarrow L+ $\frac{N/2-cF}{f}$ \Rightarrow 1
$$= 5 + \frac{10-4}{8} \Rightarrow$$
 5

median \Rightarrow 8:75

Merits

names = [...]

- It is useful in case of open-end classes since only the position and not the values of the items must be known
- Median is recommended if the distribution has unequal classes
- Extreme values do not affect the median as strongly as they do the mean
- It is most appropriate average in dealing with qualitative data <a>>>
- Value of median can be calculated graphically
- It represents clear-cut the middle value in the distribution

Limitations

- For calculating median, it is necessary to arrange the data in a specific order
- Since it is a middle value, its value is not determined by each and every observation
- It is not capable of algebraic treatment
- The value of median is affected more by fluctuations than the value of the arithmetic mean
- It is erratic if the number of observations is very small

Mode

fix the NA/missing records

Mode = value with max frequency

- The mode or modal value is that value in a series which occurs most frequently
- That is the mode always will have the highest frequency in the data
- There are many situations where mean and median fails to reveal the true middle value, in such scenarios mode is used to find the central value

Mode – Individual Series

Steps

Count the number of times the various values repeate themselves and the value occurring maximum number of times is
the modal value

```
■ E.g. 10, 28, 39, 40, 10, 20, 40, 50, 10 => mode = [10] → Single mode
```

- E.g. 10, 20, 40, 50, 10, 20, 30, 40, 50 => mode = [10, 20, 50] 407 → muti mode
- E.g. 10, 20, 30, 40, 50, 60, 70, 80, 90 => mode = [] → No mode

Mode – Discrete Series

- Steps
 - Mode can be determined just be inspection
 - i.e. by looking to that value of the variable around which the items are most heavily concentrated

E.g.

			<u> </u>			
Marks	20	30	40	50	60	70
# students	8	12	20	10	6	4

mode

■ The mode here is 40

Mode – Continuous Series

- Steps
 - Find the modal class by finding the largest value
 - Determine the value of mode by applying the following formula

$$mode = L + \frac{\Delta_1}{\Delta_1 + \Delta_2} *$$

- Where
 - L = Lower limit of modal class
 - Δ_1 = difference between the frequency of modal class and frequency of pre-modal class
 - Δ_2 = difference between the frequency of modal class and frequency of post-modal class

```
i = class intervol
```

Mode – Continuous Series

Marks	0-10	10-20	20-30	30-40	40-50	50-60
# students	5	10	25	30	20	10

- Modal class here is: 30-40 > Frequency 30 is max
- Using the formula

■ Mode =
$$30 + (5 / (5 \pm 10)) * 10$$

$$\Delta 1 = 30 - 25 = 5$$
 $\Delta 2 = 30 - 20 = 10$

Merits

- Mode is the most typical or representative value of the distribution
- Like median, mode is not unduly affected by extreme values
- It can be used to describe the qualitative phenomenon ***
- The value of mode can be calculated graphically

Limitations

- The value of mode can not always be determined
- It is not capable of algebraic manipulation
- The value of mode is not based on each and every value of distribution

