Question	Answer	Marks	Guidance	
	Use product rule to differentiate x^2y	*M1	There must be evidence of implicit differentiation	
	Obtain correct $2xy + x^2 \frac{dy}{dx}$	A1		
	Obtain $\left[2xy + x^2 \frac{dy}{dx} + \right] 6y^2 \frac{dy}{dx} = 0$	*B1		
	Substitute $x = 4$, $y = 2$ to find value of $\frac{dy}{dx}$	DM1	dependent on at least one term involving $\frac{dy}{dx}$	
	Obtain $-\frac{2}{5}$	A1	SOI, OE	
	Attempt equation of normal passing through (4, 2)	M1	with numerical gradient correctly obtained from the negative reciprocal of <i>their</i> derivative	
	Obtain $5x - 2y - 16 = 0$	A1		
		7		