

《人工智能数学原理与算法》

第2章:机器学习基础

2.6 逻辑回归!!

王翔

xiangwang@ustc.edu.cn

01 分类问题

02 逻辑回归

03 过拟合

目录

口 更复杂的模型往往偏差更少……

使用两个特征的贷款违约预测器可以达到预期效果,但是...

从来不存在100%的正确预测:这 个人是否会违约?

更复杂的模型:考虑更多的特征 (包含离散特征)?

Word Weight 年收入 +1.5 贷款金额 ?

更少的偏差 → 可能更准确,需要更多数 据来学习

偏差较小的模型往往需要更多数据才能学得好,但如果 数据充足,效果会更好

口 学习决策边界

特征	值	学到的系数
ho(x)	1	0.23
h1(x)	x[1]	1.12
h2(x)	x[2]	- 1.07

口 二次特征 (二维)

特征	值	学到的系数
ho(x)	1	1.68
h1(x)	x[1]	1.39
h2(x)	x[2]	-0.59
h3(x)	$(x[1])^2$	-0.17
h4(x)	$(x[2])^2$	- 0.96

口 6阶特征 (二维)

口 20阶特征 (二维)

特征	值	学到的系数
ho(x)	1	8.7
h1(x)	x[1]	5.1
h2(x)	x[2]	78.7
h11(x)	$(x[1])^6$	-7.5
h12(x)	$(x[2])^6$	3803
h13(x)	$(x[1])^7$	21.1
h14(x)	$(x[2])^7$	-2406
h37(x)	(x[1]) ¹⁹	-2*10 ⁻⁶
h38(x)	$(x[2])^{19}$	-0.15
h39(x)	$(x[1])^{20}$	- 2*10 ⁻⁸
h40(x)	$(x[2])^{20}$	0.03

通常,过度拟合与非常大的估计系数[®] 有关

口 分类中的过拟合

分类器的过拟合: 对预测的过度自信

口 逻辑回归模型

口 逻辑回归中过度拟合的微妙后果

口 逻辑回归模型系数的影响

输入: #贷款金额=2, #年收入=1

W 0	0
W #贷款金额	+2
W #年收入	-2

\mathbf{W}_0	0
W #贷款金额	+6
W #年收入	-6

口 学到的概率

特征	值	学到的系数
h ₀ (x)	1	0.23
h1(x)	x[1]	1.12
h ₂ (x)	x[2]	-1.07

$$P(y = +1 | x, w) = \frac{1}{1 + e^{-w > h(x)}}$$

口 学到的概率 (二次特征)

特征	值	学到的系数
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.58
h ₃ (x)	$(x[1])^2$	-0.17
h ₄ (x)	$(x[2])^2$	-0.96

$$P(y = +1 \mid x, w) = \frac{1}{1 + e^{-w h(x)}}$$

口 学到的概率 (二次特征)

特征	值	学到的系数
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.58
h ₃ (x)	$(x[1])^2$	-0.17
h ₄ (x)	$(x[2])^2$	-0.96

$$P(y = +1 \mid x, w) = \frac{1}{1 + e^{-w h(x)}}$$

口 过拟合:对于预测过分自信

逻辑回归中的过拟合: 另一个视角

口 线性可分数据

注 1: 如果使用 D个特征,线性可

分性发生在 D维空间中

注 2: 如果有足够多的特征,数据

(几乎) 总是线性 可分的

如果满足以下条件,则数据是线性可分的:

- 存在系数 ŵ 使得:
 - 对于训练数据中所有正样本:

$$Score(x) = \widehat{w}^T h(x) > 0$$

- 对于训练数据中所有负样本:

$$Score(x) = \widehat{w}^T h(x) < 0$$

training_error($\hat{\mathbf{w}}$) = 0

口 线性可分性对系数的影响

最大似然估计 (MLE) 偏好特定模型→ 对于线性可分离数据,系数趋于无穷大!

数据对 $\hat{\mathbf{w}}_1$ =1.0, $\hat{\mathbf{w}}_2$ =-1.5 线性可分

数据对 $\hat{\mathbf{w}}_1$ =10, $\hat{\mathbf{w}}_2$ =-15 同样线性可分

数据对 $\hat{\mathbf{w}}_1$ =10⁹, $\hat{\mathbf{w}}_2$ =-1.5x10⁹ 同样线性可分z

口 逻辑回归中过度拟合的双重后果

惩罚系数规模以缓解过度拟合

口 总损失的形式

我们希望平衡:

- i. 函数与数据的拟合程度
- ii. 系数的大小

惩罚系数规模以缓解过度拟合

L2正则的逻辑回归

口 考虑以下优化目标

选择 ŵ 以最大化:

$$\ell(w) - \lambda ||w||_2^2$$

▼ 调整参数λ = 在拟合与参数规模之间平衡

L2正则的逻辑回归

使用以下方式选择 \:

- 验证集(适用于大型数据集)
- 交叉验证(适用于较小的数据集) (如岭/套索回归)

口 20 阶特征下, 正则化惩罚 λ 的影响

正则化	λ = 0	λ = 0.00001	λ = 0.001	λ = 1	λ = 10
系数范围	-3170 ~ 3803	-8.04 ~ 12.14	-0.70 ~ 1.25	-0.13 ~ 0.57	-0.05 ~ 0.22
决策边界	1 N 0 -1 -2 -3-5 -4 -3 -2 -1 0 1 2 3	4 3 2 1 1 X 0 -1 -2 -3-5 -4 -3 -2 -1 0 1 2 3	A 3 2 1 X 0 -1 -2 -3 5 -4 -3 -2 -1 0 1 2 3 x[1]	A 3 2 1 X 0 -1 -2 -3 5 -4 -3 -2 -1 0 1 2 3 x(1)	4 3 2 1 × 0 -1 -2 -3-5 -4 -3 -2 -1 0 1 2 3 x[1]

□ 系数路径 (Coefficient path)

口 20 阶特征下,正则化可以降低过拟合

正则化	λ = 0	$\lambda = 0.00001$	λ = 0.001	λ = 1
系数范围	-3170 to 3803	-8.04 to 12.14	-0.70 to 1.25	-0.13 to 0.57
决策边界	10 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 3 3 4 4 4 4 5 6 7 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 2 3 2 1 1 2 3 2 1 0 1 2 3 2 1 0 0.0 2 1 1 2 3 2 1 1 1 2 3 2 1 1 1 2 3 2 1 1 1 2 3 2 1 1 1 2 3 2 1 1 1 1	$\begin{bmatrix} 2 & & & & & & & & & \\ & 3 & & & & & & & \\ & 2 & & & & & & & \\ & 1 & & & & & & \\ & 2 & & & & & & \\ & 1 & & & & & \\ & 2 & & & & & \\ & 1 & & & & & \\ & 2 & & & & & \\ & 1 & & & & & \\ & 2 & & & & & \\ & 1 & & & & & \\ & 2 & & & & & \\ & 2 & & & &$

逻辑回归

口 L2正则逻辑回归的梯度上升


```
init \mathbf{w}^{(1)} = 0, t = 1

while ||\nabla \ell(\mathbf{w}^{(t)})|| > \epsilon

for j = 0,...,D

partial[j] = \sum_{i=1}^{N} h_j(\mathbf{x}_i) \left( \mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \right)

\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} + \mathbf{\eta} \text{ (partial[}j] - 2\lambda \mathbf{w}_j^{(t)} \text{)}

t \leftarrow t + 1
```

惩罚系数规模以缓解过度拟合

L1正则的逻辑回归

口 使用L1惩罚进行稀疏逻辑回归

选择 ŵ 以最大化:

$$\ell(\mathbf{w}) - \lambda ||\mathbf{w}||_1$$

▼ 调整参数λ = 在拟合与参数规模之间平衡

L1正则的逻辑回归

使用以下方式选择 \:

- 验证集 (适用于大型数据集)
- 交叉验证(适用于较小的数据集) (如岭/套索回归)

口 L1正则下的系数路径

逻辑回归中的过拟合总结

- 描述分类任务中过拟合的表现与影响
 - 识别过拟合的发生时机
 - 较大的学习系数与过拟合现象
 - 分析过拟合对线性分类器决策边界及预测概率的影响
- 利用正则化缓解过拟合问题
 - 阐述L2正则化逻辑回归质量指标的构建动机
 - 采用L1正则化获得稀疏逻辑回归解
 - · 分析调节参数A变化对估计系数的影响规律
 - 使用梯度上升法估计L2正则化逻辑回归系数
 - 解读系数路径图