Acoustic Features and Autoencoders for Fault Detection in Rotating Machines: A Case Study

Leonardo Afonso Ferreira Bortoni Pablo Andretta Jaskowiak

November 18, 2024

Outline

- Motivation
- Case Study: MaFaulDa
- Autoencoder Based Approah
- Results and Discussion
- Final Remarks

Motivation

- Electric motors are ubiquotous in industrial processes
- Machinery faults might result in human and economic harm

Preventive maintanance and early fault detection

Figure adapted from: Saufi, S.R. et al.: Challenges and Opportunities of Deep Learning Models for Machinery Fault Detection and Diagnosis: A Review. IEEE Access 7, 122644–122662 (2019).

Motivation

- Obtaining labeled data is challenging
 - Determination of every possible failure type
 - Different operational environments

- Autoencoders for Machine Fault Detection (MFD)
 - Unsupervised (only normal operation data required)
 - Only acoustic data is considered (early detection)

5 Case Study

MaFaulDa

MaFaulDa: <u>Ma</u>chinery <u>Faul</u>t <u>Da</u>tabase

- 1,951 multivariate time-series (50KHz)
 - 49 under normal operation condition
 - 1,902 faulty scenarios (5 different types merged as fault)
- Eight different sensors (time-series)
 - Six acceleromenters
 - A tachometer
 - A microphone
- We consider classes "normal" and "fault" (merged)

Feature Extraction

Mel Frequency Energy Coefficients (MFECs)

- In brief, application o FFT to windowed segments
- Window frames are stacked into resulting objects
- We also down-sampled the audio signal (3 subsamples)
- Final dataset with ~410k objects / 1,600 features
 - ~10k normal vs ~400k abnormal

Statistical and Spectral Features

• The "traditional" approach for feature extraction

A total of 13 features are extracted for each series

root mean square; square root of the signal's amplitude; kurtosis value; kurtosis factor; skewness value; peak-to-peak value; crest factor; impulse factor; margin factor; shape factor; frequency center; root variance frequency and; rms frequency

Previous work on MaFaulDa relied on these features

Statistical and Spectral Features

Two baseline feature sets from this extraction procedure

- Acoustic data sensor only a single time-series (B13)
 - Final feature set with cardinality 13

- All data sensors a total of eight time series (B104)
 - Final feature set with cardinality 104

11 Autoencoder Based Approach

Autoencoder Based Approach

- After grid search on different parameters
 - Six internal layers
 - ReLu activation Function + Adam optimizer

Autoencoder Based Approach

- Fault indicated if reconstruction error is high enough
 - Employed a validation set and resorted to Youden Index
 - Four values considered for threshold
 - Min, Max, Mean, Median (as observed in validation set)

14 Results and Discussion

Results and Discussion

We considered four baselines, all MLPs

B104	B13	\mathbf{MLP}	$_{ m cMLP}$
[104-Input]	[13-Input]	$[1600 ext{-Input}]$	[1600-Input]
$[{ m BatchNorm}]$	$[{ m BatchNorm}]$	$[{ m BatchNorm}]$	$[{ m BatchNorm}]$
[104, 104, ReLU]	[13, 13, ReLU]	[1600, 1600, ReLU]	[1600, 16, ReLU]
[104, 104, ReLU]	[13, 13, ReLU]	[1600, 1600, ReLU]	[16, 1600, ReLU]
[104, 1, Sigmoiid]	[13, 1, Sigmoid]	[1600, 1, Sigmoid]	[1600, 1, Sigmoid]

- Evaluations were performed considering
 - AUC, G-means, TPR and, TNR

Results and Discussion

17 Final Remarks

Final Remarks

- Autoencoders provide promising results
 - No need for labeled data

- MLPs based on full feature set and MFECs
 - Good overall results, but need labeled data

- Statistical and Spectral Features
 - Poor results based only on acoustic features

Final Remarks

- Fault detection based on Autoencoders
 - Viable considering only acoustic data

- We plan to explore different flavors
 - Convolutional and Variational Autoencoders

Explore models on open-set scenarios

Thanks for the attention

Questions?

pablo.andretta@ufsc.br

