[x fval] = fzero (function, x0) assigns the value of the function at x to the variable fval.

x=fzero(function, x0, optimset('display', 'iter')) displays the output of each iteration during the process of finding the solution.

- When the function can be written in the form of a polynomial, the solution, or the roots, can be found with the roots command, as explained in Chapter 8 (Section 8.1.2).
- The fzero command can also be used to find the value of x where the function has a specific value. This is done by translating the function up or down. For example, in the function of Sample Problem 9-1 the first value of x where the function is equal to 0.1 can be determined by solving the equation $xe^{-x} 0.3 = 0$. This is shown below:

```
>> x=fzero('x*exp(-x)-0.3',0.5)
x = 0.4894
```

9.2 FINDING A MINIMUM OR A MAXIMUM OF A FUNCTION

In many applications there is a need to determine the local minimum or maximum of a function of the form y = f(x). In calculus the value of x that corresponds to a local minimum or maximum is determined by finding the zero of the derivative of the function. The value of y is determined by substituting the x into the function. In MATLAB the value of x where a one-variable function f(x) within the interval $x_1 \le x \le x_2$ has a minimum can be determined with the fminbnd command which has the form:

- The function can be entered as a string expression, or as a function handle, in the same way as with the fzero command. See Section 9.1 for details.
- The value of the function at the minimum can be added to the output by using the option

where the value of the function at x is assigned to the variable fval.

Within a given interval, the minimum of a function can either be at one of the
end points of the interval or at a point within the interval where the slope of the
function is zero (local minimum). When the fminbnd command is executed,
MATLAB looks for a local minimum. If a local minimum is found, its value is

compared to the value of the function at the end points of the interval. MAT-LAB returns the point with the actual minimum value for the interval.

For example, consider the function $f(x) = x^3 - 12x^2 + 40.25x - 36.5$, which is plotted in the interval $0 \le x \le 8$ in the figure on the right. It can be observed that there is a local minimum between 5 and 6, and that the absolute minimum is at x = 0. Using the fminbnd command with the interval $3 \le x \le 8$ to find the location of the local min-

imum and the value of the function at this point gives:

```
>> [x fval]=fminbnd('x^3-12*x^2+40.25*x-36.5',3,8)

x = 5.6073

fval = The local minimum is at x = 5.6073. The value of the function at this point is -11.8043.
```

Notice that the fminbnd command gives the local minimum. If the interval is changed to 0 < x < 8, fminbnd gives:

```
>> [x fval]=fminbnd('x^3-12*x^2+40.25*x-36.5',0,8)

x =
0
fval =
-36.5000

The minimum is at x = 0. The value of the function at this point is -36.5.
```

For this interval the fminbnd command gives the absolute minimum which is at the end point x = 0.

• The fminbnd command can also be used to find the maximum of a function. This is done by multiplying the function by -1 and finding the minimum. For example, the maximum of the function $f(x) = xe^{-x} - 0.2$ (from Sample Problem 9-1) in the interval 0 < x < 8 can be determined by finding the minimum of the function $f(x) = -xe^{-x} + 0.2$ as shown below:

```
>> [x fval]=fminbnd('-x*exp(-x)+0.2',0,8)

x = 1.0000

fval = The maximum is at x = 1.0. The value of the function at this point is 0.1679.
```