Quantentheorie II Übung 11

Besprechung: 2021WE27 (KW27)

SS 2021

Prof. Dominik Stöckinger (IKTP)

1. Questions

- (a) What is the "optical theorem" and its interpretation?
- (b) What are the so-called "unitarity bounds" on the partial cross sections σ_l ?
- (c) Which partial wave is dominant in case of the δ -function potential? (In other words, which δ_l are largest/non-zero?)
- (d) Which of the spherical harmonics Y_{lm} represents best the temperature distribution of the earth's surface?
- 2. Green function and Fourier transformation: compute the integral

$$\int \frac{d^3q}{(2\pi)^3} \frac{e^{i\vec{q}\cdot\vec{x}}}{k^2 - q^2 - i\varepsilon}$$

in the limit $\varepsilon \to 0_+$ (the sign of the imaginary term is opposite to the lecture).

3. S-wave scattering: the differential cross section of a pure s-wave scattering is given as

$$\frac{d\sigma}{d\Omega} = a$$
, where $a > 0$.

What is the complex scattering amplitude $f(\theta)$?

4. Scattering on sphere: we consider s-wave scattering on a homogeneous sphere potential

$$V(r) = \begin{cases} V_0 > 0 & \text{for } r < a, \\ 0 & \text{for } r \ge a. \end{cases}$$

- (a) Take first $V_0 \to \infty$ and solve the radial part of the Schrödinger equation exactly for l = 0, i.e. obtain the radial function $u_0(r)$ and the scattering phase δ_0 exactly.
- (b) What is the equation for the scattering phase δ_0 when $E < V_0$ (now $V_0 < \infty$)?
- (c) Estimate the scattering phase δ_0 and the partial cross section σ_0 when the energy of the incoming particle is small, $k \to 0$.
- 5. Scattering on exponential potential (again): a particle with mass m is scattered on the potential

$$V(r) = -V_0 e^{-\frac{r}{R_0}}, \quad V_0 > 0.$$

- (a) Compute the scattering phase of s-wave scattering δ_0 . Use the scattering amplitude $f(\theta, \phi)$ obtained in the exercise 10.
- (b) What is the equation to determine the phase of the p-wave scattering δ_1 ?
- (c) The Born approximation is valid when $|\psi^{(1)}(\vec{r})| \ll |\phi_k(\vec{r})| = 1$, or equivalently

$$\frac{m}{2\pi} \left| \int d^3r' V(r') \frac{e^{ik|\vec{r} - \vec{r'}|}}{|\vec{r} - \vec{r'}|} e^{ikz'} \right| \ll 1 \quad \xrightarrow{r \to 0} \quad \left| \int_0^\infty dr V(r) (e^{2ikr} - 1) \right| \ll \frac{k}{m}, \tag{1}$$

What are the conditions to satisfy Eq. (1) for $kR_0 \gg 1$ and $kR_0 \ll 1$ respectively?