

Некоммерческое акционерное общество

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра электротехники

ЦЕПИ С РАСПРЕДЕЛЕННЫМИ И СОСРЕДОТОЧЕННЫМИ ПАРА- МЕТРАМИ. ТЕОРИЯ ЧЕТЫРЕХПОЛЮСНИКОВ

Методические указания и задания по выполнению лабораторных работ для студентов специальности 5В070200 - Автоматизация и управление

СОСТАВИТЕЛИ: С.Ю. Креслина, А.Т. Аршабекова. Цепи с распределенными и сосредоточенными параметрами. Теория четырехполюсников. Методические указания и задания по выполнению лабораторных работ для студентов специальности - 5В070200 Автоматизация и управление — Алматы: АУЭС, 2019. — 28 с.

Методические указания и задания по выполнению лабораторных работ содержат четыре лабораторных работ по разделам: четырехполюсники, электрические фильтры, линии с распределенными параметрами.

Каждая лабораторная работа содержит следующие разделы: цель работы, подготовку к работе, задание к выполнению работы, методические указания по выполнению и анализу полученных результатов, а также выводы о проделанной работе.

Методические указания и задания по выполнению лабораторных работ предназначены для студентов специальности — 5B070200 Автоматизация и управление.

Ил. 21, табл. 16, библиогр. – 13 назв.

Рецензент: доцент каф. ЭССиС Б. К. Курпенов

Печатается по плану издания некоммерческого акционерного общества «Алматинский университет энергетики и связи» на 2019 г.

Введение

Для повышения качества подготовки специалистов, формирования у студентов творческого мышления и инженерных навыков большое значение имеют лабораторные занятия. Данная методическая разработка содержит описание лабораторных работ по дисциплинам «Цепи с распределенными и сосредоточенными параметрами» и «Теория четырехполюсников» для студентов специальности «Автоматизация и управление». Лабораторные задания представляют собой комплекс работ экспериментального и расчетного характера по четырехполюсникам, электрическим фильтрам, линиям с распределенными параметрами. Все лабораторные работы выполняются фронтальным методом после того, как материал данной темы изложен на лекции.

Порядок выполнения и оформления лабораторных работ по дисциплинам «Цепи с распределенными и сосредоточенными параметрами», «Теория четырехполюсников».

Предварительная подготовка и допуск к работе.

- 1. Прежде, чем приступить к очередным занятиям, студент должен ознакомиться с содержанием лабораторной работы, изучить теоретический материал по соответствующей теме.
- 2. Результаты подготовки должны быть отражены в отчёте выполняемой работы, который должен содержать:
 - а) письменные ответы на вопросы по части «Подготовка к работе»;
 - б) предварительные расчеты;
 - в) исследуемые схемы;
 - г) таблицы для записи результатов измерений.
- 3. В начале занятия студент должен получить допуск к следующей работе, имея индивидуальный отчёт.

Прежде чем приступить к следующей работе необходимо защитить полностью оформленную предыдущую работу.

Во время занятия студент должен выполнить работу (собрать схемы, проделать необходимые измерения и записать результаты в заранее подготовленные таблицы).

- 4. Готовность студентов к выполнению работы проверяет преподаватель, задавая контрольные вопросы по теории, порядку выполнения данной работы, действию схем, применяемым формулам и ожидаемым результатам. Вопросы могут быть заданы в устной и письменной форме.
- 5. Студенты, не выполнившие требования третьего пункта, а также те студенты, теоретическая подготовка которых признана неудовлетворительной, к работе не допускаются.
- 6. Студенты, не допущенные к работе, должны использовать оставшееся время для изучения теории, а также для оформления и защиты сделанных ранее работ.

7. Работы, не выполненные в срок, студенты проделывают в отведенное для отработки время. Допуск к работе студент получает на общих основаниях.

Оформление отчетов и защита лабораторных работ.

- 1. Студент должен представить полностью оформленный к защите отчёт каждой проделанной работы.
- 2. Оформленный отчёт предыдущей работы должен быть представлен в начале следующего занятия и защищён во время занятия.
 - 3. Отчёт должен содержать титульный лист и следующие разделы:
 - а) цель работы;
 - б) основные теоретические положения и ответы на вопросы подготовки;
 - в) схемы исследуемых цепей;
- г) расчётные формулы, вычисления, предполагаемые графики исследуемых электрических величин и режимов цепи;
- д) результаты исследования (таблицы, графики, числовые значения параметров и электрических величин);
 - е) выводы по работе.

Отчёты оформляются на листах белой или линованной бумаги формата A4, которые заполняются с одной стороны. В тексте, написанном чётко и аккуратно пастой одного цвета, допускается применение только общепринятых обозначений или сокращений, расшифрованных при первом упоминании.

1 Лабораторная работа №1. Исследование пассивных симметричных четырёхполюсников

Цель: исследование режимов короткого замыкания и холостого хода работы пассивного симметричного четырёхполюсника и определение его параметров путём компьютерного моделирования с использованием программы «Electronics Workbench».

1.1 Подготовка к работе

- 1.1.1 Выбрать схему и параметры исследуемого четырехполюсника согласно заданному варианту (таблица 1.1).
- 1.1.2 Записать выражения, определяющие А-параметры пассивного симметричного четырёхполюсника, используя режим короткого замыкания и холостого хода.
- 1.1.3 Рассчитать А-параметры пассивного симметричного четырёхполюсника, согласно заданному варианту (таблица 1.1). Результаты расчётов записать в таблицу 1.4 (теоретический расчет).
- 1.1.4 Записать уравнения для определения входные сопротивления четырёхполюсника в режимах холостого хода \underline{Z}_{X} , короткого замыкания \underline{Z}_{K} .
- 1.1.5 Рассчитать входные сопротивления четырёхполюсника в режимах холостого хода Z_X , короткого замыкания Z_K согласно заданному варианту (таблица 1.1). Результаты расчётов записать в таблицу 1.5 (теор. расчет).
- 1.1.6 Записать уравнения для определения характеристического сопротивления четырёхполюсника \underline{Z}_{c} , постоянной передачи четырёхполюсника $\underline{\Gamma}$.
- 1.1.7 Рассчитать характеристическое сопротивление четырёхполюсника \underline{Z}_{c} , постоянную передачи четырёхполюсника $\underline{\Gamma}$ согласно заданному варианту (таблица 2.1). Результаты расчёта записать в таблицу 1.5 (теор. расчет).
 - 1.1.8 Нарисовать таблицу 1.2.

1.2 Задание к выполнению работы

1.2.1 Собрать электрическую схему (см. рисунок 1.9) заданного четырехполюсника в режиме холостого хода согласно заданному варианту.

Таблица 1.1

№ варианта	№ рисунка	U_1 , B	f,кГц	R, Ом	L, мГн	С, мкФ
1	1.1	10	1,0	100	6	_
2	1.2	12	1,6	130	ı	0,5
3	1.3	14	1,5	160	ı	0,8
4	1.4	16	1,8	190	8	_
5	1.5	18	2,0	150	ı	0,4
6	1.6	20	2,2	110	5	_
7	1.7	22	2,4	120	7	_
8	1.8	24	2,6	100	_	0,7

Рисунок 1.7

Рисунок 1.8

Рисунок 1.9

Рисунок 1.10

- 1.2.2 Установить на генераторе действующее значение входного напряжения U_I и частоту f согласно таблице 1.1.
- 1.2.3 В режиме холостого хода (зажимы 2-2/ разомкнуты, $Z_H = \infty$, $I_2 = 0$) измерить напряжение на входе четырёхполюсника U_I , напряжение на выходе четырёхполюсника U_2 , ток на входе четырёхполюсника I_I . Измерить временной сдвиг по фазе между напряжением на входе $u_1(t)$ и напряжением на вы-

ходе $u_2(t)$ четырёхполюсника: T2-T1 и временной сдвиг по фазе между напряжением на входе четырёхполюсника $u_1(t)$ и током $i_1(t)$ на входе четырёхполюсника: T2-T1. Результаты записать в таблицу 1.2.

1.2.4 В режиме короткого замыкания на зажимах $2-2^{\prime}$ ($Z_H=0$, $U_2=0$) измерить напряжение на входе четырёхполюсника U_1 , токи на входе I_1 и выходе I_2 четырёхполюсника. Измерить временной сдвиг по фазе между напряжением на входе $u_1(t)$ и токами на входе $i_1(t)$ и выходе $i_2(t)$ четырёхполюсника: T2-T1. Результаты записать в таблицу 1.2.

Таблица 1.2

таолица										
Режим	U_{I} ,	U_2 ,	<i>T2-T1</i> ,	$\Psi_{\mathrm{u}2}$	I_1 ,	<i>T2-T1</i> ,	Ψ_{i1}	I_2 ,	<i>T2-T1</i> ,	Ψ_{i2}
работы	В	В	c		A	c		A	c	
Холостой								0	-	-
ход										
Короткое		0	-	-						
замыка-										
ние										

Таблица 1.3

таолица т	• •			
Режим	U_{I} ,	\dot{U}_2 ,	\dot{I}_1 ,	\dot{I}_2 ,
работы	В	В	A	A
Холостой				
ход				
Короткое				
замыкание				

Таблица 1.4

Тионици тт		ı	ı	
Вид исследования	Δ 1 1	$\underline{\mathbf{A}}_{12}$, Om	<u>А</u> ₂₁ , См	$\underline{\mathbf{A}}_{22}$
Бид исследования	<u>A</u> 11	$\frac{11}{12}$, OW	$\frac{11}{21}$, CM	<u>11</u> 22
Теоретический расчет				
теоретический расчет				
Расчет по эксперименталь-				
Tac let no skenephinentanb				
ным данным				

Таблица 1.5

Вид исследования	<u>Z</u> _κ , O _M	<u>Z</u> _x , O _M	<u>Z</u> c, Ом	$\underline{\Gamma}$
Теоретический расчет				
Расчет по эксперименталь-				
ным данным				

1.3 Обработка результатов экспериментов

- 1.3.1 По значениям T2-T1 рассчитать начальные фазы напряжения на выходе четырёхполюсника Ψ_{u2} и начальные фазы токов на входе Ψ_{i1} и выходе Ψ_{i2} четырёхполюсника для исследуемых режимов. Результаты записать в таблицу 1.2.
- 1.3.2 Записать комплексы напряжения \dot{U}_2 и токов $i_{\scriptscriptstyle 1},i_{\scriptscriptstyle 2}$ для исследуемых режимов в таблицу 1.3 .
- 1.3.3 По экспериментальным данным рассчитать А-параметры пассивного симметричного четырёхполюсника: \underline{A}_{11} , \underline{A}_{12} , \underline{A}_{21} , \underline{A}_{22} по напряжениям \dot{U}_1, \dot{U}_2 и токам \dot{I}_1, \dot{I}_2 в режимах холостого хода и короткого замыкания:

$$\underline{A}_{11} = \left(\frac{\dot{U}_1}{\dot{U}_2}\right)_{I_2=0}; \underline{A}_{21} = \left(\frac{\dot{I}_1}{\dot{U}_2}\right)_{I_2=0}; \underline{A}_{12} = \left(\frac{\dot{U}_1}{\dot{I}_2}\right)_{U_2=0}; \underline{A}_{22} = \left(\frac{\dot{I}_1}{\dot{I}_2}\right)_{U_2=0}.$$

- 1.3.4 По экспериментальным данным рассчитать входные сопротивления четырёхполюсника для всех исследуемых режимов. Результаты расчётов записать в таблицу 1.5 (расчёт по экспериментальным данным).
- 1.3.5~ По экспериментальным данным рассчитать характеристическое сопротивление четырёхполюсника \underline{Z}_{c} , постоянную передачи четырёхполюсника $\underline{\Gamma}$ для всех исследуемых режимов. Результаты расчётов записать в таблицу 1.5 (расчёт по экспериментальным данным).
 - 1.3.6 Сравнить результаты экспериментов и теоретических расчётов.

1.4 Методические указания по измерению начальных фаз напряжений и токов

Измерить начальные фазы напряжения и токов можно с помощью осциллографа (рисунок 1.11). Для измерения начальных фаз напряжений канал А осциллографа подключают к точке 1 (красят этот провод в красный цвет), а канал В к точке 2 (красят этот провод в синий цвет). Выставив курсор 1 на ноль напряжения на входе четырёхполюсника $u_1(t)$, а курсор 2 на ближайший ноль напряжения на выходе четырёхполюсника $u_2(t)$ можно измерить временной сдвиг между напряжениями $u_1(t)$ и $u_2(t)$ по табло T2-T1. Фазовый сдвиг вычисляется по формуле:

$$\psi_{U1} - \psi_{U2} = 360^{\circ} \times (T2 - T1) \times f.$$

Если принять, что $\psi_{U1} = 0$, то $\psi_{U2} = -360^{\circ} \times (T2-T1) \times f$.

Для измерения начальных фаз токов в ветвь измеряемого тока подключается резистор с малым сопротивлением.

Для измерения начальной фазы тока на входе четырёхполюсника $i_1(t)$ между точками 1' и a включают сопротивление R=1 Om, канал B осциллографа подключается к точке a. Выставив курсор 1 на ноль напряжения $u_1(t)$, а курсор 2 на ближайший ноль тока $i_1(t)$, измеряют временной сдвиг между током $i_1(t)$ и напряжением $u_1(t)$ на табло T2-T1. Начальную фазу тока ψ_{i1} вычисляют по формуле:

$$\psi_{il} = -360^{\circ} \times (T2-T1) \times f.$$

После измерения начальной фазы тока $i_1(t)$ сопротивление $\mathit{R}=\mathit{I}$ Om отключают.

Для измерения начальной фазы тока на выходе четырёхполюсника $i_2(t)$ между точками 2^{\prime} и b включают сопротивление R=IOм, канал B осциллографа подключается к точке b. Выставив курсор I на ноль напряжения $u_1(t)$, а курсор 2 на ближайший ноль тока $i_2(t)$, измеряют временной сдвиг между напряжением $u_1(t)$ и током $i_2(t)$ на табло T2-TI. Начальную фазу тока $i_2(t)$ вычисляют по формуле:

$$\psi_{i2} = -360^{\circ} \times (T2-T1) \times f.$$

После измерения начальной фазы тока $i_2(t)$ сопротивление $R=1O_M$ от-ключают.

Рисунок 1.11

1.5 Контрольные вопросы

- 1.5.1 Дать определение четырехполюсников.
- 1.5.2 Какие четырехполюсники называются пассивными и активными?
- 1.5.3 Какие четырехполюсники называются симметричными и несимметричными?
 - 1.5.4 Записать уравнения четырёхполюсника в А-, Z-, Y-, Н- параметрах.
- 1.5.5 Каким условиям удовлетворяют А-параметры пассивного четырёхполюсника, симметричного четырёхполюсника?
 - 1.5.6 Как определяется входное сопротивление четырёхполюсника?
- 1.5.7 Записать уравнения для определения вторичных параметров четырехполюсника.

2 Лабораторная работа №2. Исследование пассивных электрических фильтров

Цель: исследовать частотные характеристики для простейших низкочастотных (ФНЧ) и высокочастотных (ФВЧ) фильтров.

2.1 Подготовка к работе

- 2.1.1 Выбрать согласно варианту схему и параметры фильтра (таблица 2.1).
- 2.1.2 Рассчитать f_{cp} и ρ согласно варианту (таблица 2.1). Результаты занести в таблицу 2.2.
- 2.1.3 Нарисовать схему электрического фильтра согласно заданному варианту (рисунки 2.1-2.6) и таблицу 2.2.

Таблица 2.1

таолица 2.	_				
№ варианта	Тип	Схема	$U_1(B)$	L(мГн)	С(мкФ)
	Фильтра	фильтра			
1	ФНЧ	Т-схема	5	80	0,5
2	ФВЧ	Т-схема	4	70	0,4
3	ФНЧ	П-схема	3	60	0,6
4	ФВЧ	П-схема	4	50	0,7
5	ФНЧ	Т-схема	5	40	0,3

2.2 Задание к выполнению работы

- 2.2.1 Собрать цепь (рисунок 2.1...2.4), включив в неё исследуемый фильтр согласно заданному варианту (таблица 3.1).
- 2.2.2 Установить значения входного напряжения U_I , индуктивности L и емкости C, сопротивление R_H = ρ согласно варианту (таблица 2.1).
- 3.2.3 Изменяя частоту генератора f, умножая на соответствующий коэффициент частоту среза (12 значений), используя таблицу 2.3 для ФНЧ или 2.4 для ФВЧ, измерить напряжения U_2 на выходе фильтра и временной сдвиг по фазе T2-T1 между напряжениями на выходе $u_2(t)$ и входе $u_1(t)$. Напряжение на входе фильтра U_1 поддерживать постоянным. Результаты измерений занести в таблицу 2.2.

Рисунок 2.1 - Фильтр низкочастотный П-образный

Рисунок 2.2 - Фильтр низкочастотный Т-образный

Рисунок 2.3 - Фильтр высокочастотный П-образный

Рисунок 2.4 - Фильтр высокочастотный Т-образный

Таблипа 2.2

таолица 2	•=			
	$f_{cp} =$	$R_{H} = ; U_{1} = ;$	L = ; C = ;	
f , Γ ц	U_{2}	$T_2 - T_1$	a, Hn	b^0
f_{I}				
f_{12}				

2.3 Обработка результатов экспериментов

- 2.3.1 Рассчитать коэффициент затухания a(f) и коэффициент фазы b(f), занести в таблицу 2.2.
- 2.3.2 Построить экспериментальный график a(f) по данным таблицы 2.2, совместив его с теоретическим графиком a(f) (таблицы 2.3 или 2.4).
- 2.3.3 Построить экспериментальный график b(f) по данным таблицы 2.2, совместив его с теоретическим графиком b(f) (таблицы 2.3 или 2.4).
- 2.3.4 Сделать выводы о проделанной работе: сравнить теоретические графики a(f) и b(f) с экспериментальными, проанализировать зависимость a(f) и b(f) в полосе пропускания и в полосе задерживания.

Таблипа 2.3

ФНЧ	f/fcp	0,2	0,4	0,5	0,6	0,7	0,8	1,0	1,1	1,2	1,5	2,0	4,0
	a,Hn	0	0	0	0	0	0	0	0,90	1,26	1,94	2,74	4,16
	$b,^{0}$	23	47	60	74	90	106	180	180	180	180	180	180

Таблица 2.4

ФВЧ	f/fcp	0,25	0,5	0,67	0,83	0,9	1	1,25	1,43	1,67	2	2,5	5
	а,Нп	4,1	2,74	1,94	1,26	0,9	0	0	0	0	0	0	0
	-b, ⁰	180	180	180	180	180	180	106	90	74	60	47	23

2.4 Методические указания

При согласовании фильтра с нагрузкой напряжения входа $U_{\it I}$ и выхода $U_{\it 2}$ связаны соотношением:

$$\frac{\dot{U}_1}{\dot{U}_2} = e^g = e^a e^{jb}.$$

Коэффициент затухания определяется по формуле:

$$a=\ell n\frac{U_1}{U_2},$$

коэффициент фазы $b=\psi_I-\psi_2$, где ψ_I и ψ_2 — начальные фазы соответственно входного и выходного напряжений.

Частота среза f_{cp} для ФНЧ определяется по формуле $f_{cp} = \frac{1}{\pi \sqrt{LC}}$, а для ФВЧ - $f_{cp} = \frac{1}{4\pi \sqrt{LC}}$. Сопротивление нагрузки принимается равным характеристическому $R_H = \rho = \sqrt{\frac{L}{C}}$.

Рисунок 2.5

Коэффициент фазы определяется через временной сдвиг по фазе T2-T1 между напряжениями на выходе $u_2(t)$ и входе $u_1(t)$ по формуле $b=-\left(T2-T1\right)\cdot 360^0\cdot f$.

Измерить начальные фазы напряжений можно с помощью осциллографа (рисунок 2.5). Для измерения начальной фазы напряжения $u_1(t)$ канал А осциллографа подключают к точке 1 (красят этот провод в красный цвет). Для измерения начальной фазы напряжения $u_2(t)$ на выходе канал В осциллографа подключают к точке 2 (красят этот провод в синий цвет). Выставив курсор 1 на ноль напряжения на входе $u_1(t)$, а курсор 2 на ближайший ноль напряжения на выходе $u_2(t)$, измерить временной сдвиг между напряжениями $u_2(t)$ и $u_1(t)$ по табло T2-T1.

2.5 Контрольные вопросы

- 2.5.1 Дайте понятия низкочастотного, высокочастотного, полосного и заграждающего фильтров.
- 2.5.2 Дайте определение вторичных параметров фильтров. В каких единицах они измеряются?
- 2.5.3 Что такое область пропускания и область затухания идеального фильтра?
 - 2.5.4 Привести П-образную и Т-образную схемы ФНЧ.
 - 2.5.5 Привести П-образную и Т-образную схемы ФВЧ.
 - 2.5.6 Привести графики зависимостей для a(f) и b(f) ФНЧ.
 - 2.5.7 Привести графики зависимостей для a(f) и b(f) ФВЧ.
 - 2.5.8 Привести расчётные формулы f_{cp} и ρ для ФНЧ.
 - 2.5.9 Привести расчётные формулы f_{cp} и ρ для ФВЧ.

3 Лабораторная работа №3. Исследование различных режимов в длинных линиях с потерями

Цель: получение навыков исследования различных режимов в длинных линиях с потерями путем компьютерного моделирования.

3.1 Подготовка к работе

- 3.1.1 Выбрать согласно варианту первичные параметры линии (таблица 3.1).
- 3.1.2 Рассчитать $R_{\it l},~L_{\it l},~C_{\it 2},~R_{\it 2}$ согласно заданному варианту (таблица 3.1).
- 3.1.3 Рассчитать волновое сопротивление линии \underline{Z}_B согласно заданному варианту (таблица 3.1).

Таблица 3.1

вариант	U ₁ , KB	ℓ, KM	$ k_1 $	$ k_2 $	$R_0, \frac{O_M}{\kappa_M}$	$\frac{L_0 \cdot 10^{-3}}{\frac{\Gamma_H}{\kappa_M}}$	$\frac{G_0 \cdot 10^{-6}}{\frac{C_M}{\kappa_M}}$	$\frac{C_0 \cdot 10^{-9}}{\frac{\Phi}{\kappa M}}$	<i>R_H</i> , Ом
1	400	700	1,043	0,927	0,07	1,0	0,2	9,0	450
2	600	800	1,056	0,899	0,09	1,2	0,08	8,3	400
3	110	1000	1,11	0,815	0,1	1,3	0,3	9,5	500
4	220	900	1,089	0,845	0,08	1,4	0,06	8,8	470
5	330	1100	1,16	0,753	0,06	1,35	0,1	10	550

3.2 Задание к выполнению работы

3.2.1 Собрать схему линии с потерями (рисунок 3.1). Выставить значения R_1 , L_1 , C_2 , R_2 , согласно предварительному расчету по заданному варианту.

Рисунок 3.1

3.2.2 Подключить генератор, нагрузку и измерительные приборы (рисунок 3.2).

3.2.3 Установить на генераторе значение напряжения в начале линии U_I , частоту $f=50\ \Gamma u$, сопротивление приемника R_H согласно заданному варианту.

В нагрузочном режиме измерить и записать в таблицу 4.2 действующее значение напряжения в конце линии U_2 , действующие значения токов в начале линии I_1 и в конце линии I_2 , начальную фазу напряжения в конце линии ψ_{U_2} и начальные фазы токов в начале ψ_{i_1} и в конце линии ψ_{i_2} .

Рисунок 3.2

В нагрузочном режиме измерить и записать в таблицу 3.2 действующее значение напряжения в конце линии U_2 , действующие значения токов в начале линии I_1 и в конце линии I_2 , начальную фазу напряжения в конце линии ψ_{u_2} и начальные фазы токов в начале ψ_{i_1} и в конце линии ψ_{i_2} .

- 3.2.4 Изменить сопротивление RH на \underline{Z}_B (режим согласованной нагрузки). Измерить и записать в таблицу 3.2 действующее значение напряжения U_2 , действующие значения токов в начале линии I_1 , в конце линии I_2 , начальную фазу напряжения в конце линии ψ_{U_2} и начальные фазы токов в начале ψ_{i_1} и в конце линии ψ_{i_2} .
- 3.2.5 Зажимы 2 и 2' замыкаем накоротко (режим короткого замыкания в конце линии U_2 =0). Измерить и записать в таблицу 3.2 действующие значения токов в начале линии I_1 , в конце линии I_2 , начальные фазы токов в начале ψ_{i_1} и в конце линии ψ_{i_2} .
- 3.2.6 Зажимы 2 и 2' размыкаем (режим холостого хода в конце линии I_2 =0). Измерить и записать в таблицу 3.2 действующее значение напряжения в конце линии U_2 , действующие значения токов в начале линии I_1 , начальные фазы напряжения в конце линии ψ_{U_2} и тока в начале линии ψ_{i_1} .

Таблица 3.2

Режим работы	U_{I} ,		T_2 - T_1 , c	ψ_{U2} ,	I_{1} , A	T_2 - T_1 , c	ψ_{i1} , град	I_2,A	T_2 - T_1 , c	ψ_{i2} ,
	кВ	кВ		град						град
Нагрузочный										
режим										
$R_H =$										
Согласованная										
нагрузка										
$\underline{Z}_H = \underline{Z}_B =$										
Короткое за-										
мыкание		0								
$R_H=0$										
Холостой ход				_				0		
$R_H = \infty$										

3.3 Обработка результатов экспериментов

- 3.3.1 Рассчитать начальные фазы напряжения $\psi_{\scriptscriptstyle U_2}$ и токов $\psi_{\scriptscriptstyle i_1}$, $\psi_{\scriptscriptstyle i_2}$ для всех режимов. Результаты записать в таблицу 3.2.
- 3.3.2 Записать комплексы напряжений \dot{U}_2 и токов \dot{I}_1, \dot{I}_2 для всех исследуемых режимов. Результаты занести в таблицу 3.3.
- 3.3.3 По экспериментальным значениям рассчитать входное сопротивление линии Z_{BX} , активные мощности в начале P_I и конце P_2 линии и КПД линии η для всех исследуемых режимов. Результаты записать в таблицу 3.3.
- 3.3.4 Сравнить полученные результаты. Сделать выводы по результатам работы.

Таблица 3.3

таолица 5.							
Режим ра- боты	\underline{Z}_{BX}	\dot{I}_1, A	$\overset{\cdot}{U}_{2}$, kB	I_2, A	P_1, kBm	P_2, kBm	$\eta\%$
Нагрузочный							
режим							
$R_H =$							
Согласованная							
нагрузка							
$\underline{Z}_H = \underline{Z}_B =$							
Короткое за-							
мыкание							
$R_H=0$							
Холостой ход							
$R_H = \infty$							

3.4 Методические указания

Для исследования различных режимов в длинной линии с потерями путем компьютерного моделирования линия рассматривается как симметричный четырехполюсник, представленный симметричной Т-образной схемой замещения (рисунок 3.3).

Сопротивление R_I , индуктивность L_I , проводимость G_2 и емкость C_2 для симметричной T-схемы равны:

$$Z_{1} = Z_{0}lk_{1} = (R_{0} + j\omega L_{0})lk_{1} = R_{1} + j\omega L_{1};$$

$$R_{1} = R_{0}l|k_{1}|$$

$$L_{1} = L_{0}l|k_{1}|$$

$$Y_{2} = Y_{0}lk_{2} = (G_{0} + j\omega C_{0})lk_{2} = G_{2} + j\omega C_{2};$$

$$G_{2} = G_{0}l|k_{2}|; R_{2} = \frac{1}{G_{2}}$$

$$C_{2} = C_{0}l|k_{2}|$$

где R_0, L_0, G_0, C_0 - первичные параметры линии;

1 - длина линии;

$$k_1 = \frac{2(ch\gamma l - 1)}{\gamma l s h \gamma l},$$
 $k_2 = \frac{s h \gamma l}{\gamma l}$ - комплексные коэффициенты, с достаточной

для практических расчётов точностью можно использовать модули $|k_1|, |k_2|, \gamma = \sqrt{(R_0 + j\omega L_0)(G_0 + j\omega C_0)}$ - коэффициент распространения.

$$\underline{Z}_{B} = \sqrt{\frac{\underline{Z}_{0}}{\underline{Y}_{0}}} = \sqrt{\frac{R_{0} + j\omega \cdot L_{0}}{G_{0} + j\omega \cdot C_{0}}} = z_{B} \cdot e^{j\theta}$$
 - волновое или характеристическое сопро-

тивление линии.

Для измерения и расчета начальных фаз напряжений и токов использовать «Методические указания по измерению начальных фаз напряжений и токов» в лабораторной работе № 1.

3.5 Контрольные вопросы

- 3.5.1 Какие величины называются первичными параметрами линии?
- 3.5.2 Какие величины называются вторичными параметрами линии?
- 3.5.3 Записать формулы для определения \underline{Z}_0 , \underline{Y}_0 .
- 3.5.4 Записать выражения, определяющие коэффициент распространения γ и волновое сопротивление Z_B .
 - 3.5.5 Записать уравнения линии с гиперболическими функциями.
 - 3.5.6 Какая нагрузка называется согласованной?
- 3.5.7 Как рассчитать мощность в начале линии P_1 , мощность в конце линии P_2 , $K\Pi \mathcal{I}$ линии?

4 Лабораторная работа №4. Исследование различных режимов в линии без потерь

Цель работы: получение навыков исследования различных режимов в линии без потерь путём компьютерного моделирования.

4.1 Подготовка к работе

- 4.1.1 Выбрать согласно варианту первичные параметры линии (таблица 4.1).
- 4.1.2 Рассчитать параметры линии: Z_B , λ , k_1 , k_2 , L_1 , C_2 согласно варианту (таблица 5.1). Исходные данные и результаты расчётов записать в таблицу 4.2.
- 4.1.3 Рассчитать согласно заданному варианту токи, напряжения для различных режимов работы линии. Результаты расчётов занести в таблицу 4.4 (теоретический расчет).

Таблица 4.1

No	U ₁ ,B	f , Гц	ℓ , м	$L_0, \frac{M\kappa\Gamma_H}{M}$	$C_0, \frac{\Pi\Phi}{M}$	R _н ,Ом
1	10	10^{8}	0,375	1,57	7,1	800
2	15	10^{8}	0,5	1,67	6,67	1000
3	20	10^{7}	3,75	2,0	5,57	200
4	12	10^{9}	0,1	2,5	4,46	400
5	18	10^{8}	0,25	1,57	7,1	700
6	25	10^{7}	2,5	2,0	5,57	300

Таблица 4.2

U ₁ , B	f, Гц	ℓ, м	$\frac{L_0,}{\frac{M\kappa\Gamma H}{M}}$	$\frac{C_0}{n\phi}$	Z _B , O _M	\mathbf{k}_1	k_2	L_1 , мк Γ н	С2, пФ	λ,м

Таблица 4.3

таоннда не										
Режим работы	U_1,B	U_2 , B	T_2 - T_1 , c	ψυ2, гр.	<i>I</i> ₁ , <i>A</i>	T_2 - T_1 , c	Ψi1, гp.	<i>I</i> ₂ , <i>A</i>	T_2 - T_1 , c	ψ _{i2} , гр.
Нагрузочный										
режим										
$R_H =$										
Согласованная										
нагрузка										
$R_H = Z_B =$										
Короткое за-										
мыкание		0								
$R_H=0$		U								
Холостой ход								0		
$R_H = \infty$								U		

4.2 Задание к выполнению лабораторной работы

- 4.2.1 Собрать электрическую схему (рисунок 4.1).
- 4.2.2 Установить на генераторе действующее значение напряжения в начале линии U_1 , частоту f, согласно заданному варианту, и рассчитанные параметры четырёхполюсника L_1 и C_2 .
- 4.2.3 Установить сопротивление приёмника R_H , согласно заданному варианту. В нагрузочном режиме измерить и записать в таблицу 4.3 действующее значение напряжения в конце линии U_2 , действующие значения токов в начале линии I_1 и в конце линии I_2 , начальную фазу напряжения в конце линии ψ_{U_2} и начальные фазы токов в начале ψ_{i_1} и в конце линии ψ_{i_2} . Результаты записать в таблицу 4.3.

Рисунок 4.1

- 4.2.4 Изменить сопротивление RH на Z_B (режим согласованной нагрузки). Измерить и записать в таблицу 4.3 действующее значение напряжения U_2 , действующие значения токов в начале линии I_1 , в конце линии I_2 , начальную фазу напряжения в конце линии ψ_{U_2} и начальные фазы токов в начале ψ_{i_1} и в конце линии ψ_{i_2} .
- 4.2.5 Зажимы 2 и 2' замыкаем накоротко (режим короткого замыкания в конце линии U_2 =0). Измерить и записать в таблицу 4.3 действующие значения токов в начале линии I_1 , в конце линии I_2 , начальные фазы токов в начале ψ_{i_1} и в конце линии ψ_{i_2} .
- 4.2.6 Зажимы 2 и 2' размыкаем (режим холостого хода в конце линии I_2 =0). Измерить и записать в таблицу 4.3 действующее значение напряжения в конце линии U_2 , действующие значения токов в начале линии I_1 , начальные фазы напряжения в конце линии ψ_{U_2} и тока в начале линии ψ_{i_1} .

4.3 Оформление и анализ результатов работы

4.3.1 Рассчитать начальные фазы напряжения ψ_{v_2} и токов ψ_{i_1} , ψ_{i_2} . для всех режимов. Результаты записать в таблицу 4.3.

Таблица 4.4

таолица 4.4	•							
Режим работы	Вид	\underline{Z}_{BX}		$\overset{\cdot}{U}_{2}$, B	7 A	P_1,Bm	P_2,Bm	$\eta\%$
т ежны рассты	иссл.	=BX	I_1, A	U_2, B	I_2, A	1,277	12,2	.,,,
Нагрузочный	Teop.							
режим	расч.							
$R_{H}=$	эксп.							
Согласованная нагрузка	Teop.							
	расч.							
$R_H = Z_B =$	эксп.							
Короткое за-	Teop.							
мыкание $R_H = 0$	расч.							
	эксп.							
V	Teop.							
Холостой ход	расч.							
$R_H = \infty$	эксп.							

- 4.3.2 Записать комплексы напряжений \dot{U}_2 и токов \dot{I}_1, \dot{I}_2 для всех исследуемых режимов. Результаты занести в таблицу 4.4.
- 4.3.3 По экспериментальным значениям рассчитать входное сопротивление линии Z_{BX} , активные мощности в начале P_I и конце P_2 линии и КПД линии η для всех исследуемых режимов. Результаты записать в таблицу 4.4.

4.3.4 Сравнить полученные результаты. Сделать выводы по результатам работы.

Для измерения и расчета начальных фаз напряжений и токов использовать «Методические указания по измерению начальных фаз напряжений и токов» в лабораторной работе № 1.

4.4 Методические указания

Для высокочастотных коротких по длине линий выполняются условия $R_0 << \omega L_0$ и $G_0 << \omega C_0$, поэтому с достаточно большой точностью можно пренебречь сопротивлением R_0 и проводимостью утечки G_0 и рассматривать линию, как линию без потерь.

При исследовании различных режимов в линии путём компьютерного моделирования линия рассматривается как симметричный четырёхполюсник, который может быть представлен симметричной Т- или П-образной схемой замещения.

Представим линию без потерь симметричной Π -образной схемой (рисунок 4.2).

Рисунок 4.2

Сопротивление \underline{Z}_1 и проводимость \underline{V}_2 для симметричной Π -схемы равны:

$$\begin{split} & \underline{Z}_1 = j\omega L_0 l k_1 = j\omega L_1; \\ & \underline{Y}_2 = j\omega C_0 l k_2 = j\omega C_2; \\ & L_1 = L_0 \ell k_1 \\ & C_2 = C_0 \ell k_2 \end{split}$$

где ℓ -длина линии;

 L_0, C_0 – первичные параметры линии без потерь;

$$k_{1}=rac{\sineta\ell}{eta\ell},\,k_{2}=rac{2(1-\coseta\ell)}{eta\ell\sineta\ell}$$
 - коэффициенты;

 ω = $2\pi f$ - угловая частота, β = $\omega\sqrt{L_{0}C_{0}}$ -коэффициент фазы, $\beta\ell$ измеряется в рад.

Токи и напряжения для различных режимов работы линии вычисляют по формулам:

- нагрузочный режим:

$$\dot{U}_{2} = \frac{\dot{U}_{1}}{\cos \beta \ell + j(Z_{B}/R_{H})\sin \beta \ell};$$

$$\dot{I}_{2} = \dot{U}_{2}/R_{H};$$

$$\dot{I}_{1} = \dot{I}_{2}(\cos \beta \ell + j\frac{R_{H}}{Z_{B}}\sin \beta \ell);$$

- холостой ход:

$$\dot{U}_{2} = \frac{\dot{U}_{1}}{\cos \beta \ell}; \dot{I}_{2} = 0; \quad \dot{I}_{1} = j \frac{\dot{U}_{2}}{Z_{R}} \sin \beta \ell;$$

- короткое замыкание:

$$\dot{U}_{2} = 0; \quad \dot{I}_{2} = \frac{\dot{U}_{1}}{jZ_{R}\sin\beta\ell}; \quad \dot{I}_{1} = \dot{I}_{2}\cos\beta\ell;$$

- согласованная нагрузка:

$$Z_{H} = Z_{B};$$
 $\dot{U}_{2} = \dot{U}_{1}e^{-j\beta\ell};$ $\dot{I}_{2} = \dot{U}_{2}/Z_{B};$ $\dot{I}_{1} = \dot{U}_{1}/Z_{B}.$

4.5 Контрольные вопросы

- 4.5.1 Какая линия называется линией без потерь?
- 4.5.2 Как определяются вторичные параметры линии без потерь?
- 4.5.3 Записать уравнения передачи линии без потерь.
- 4.5.4 Какая нагрузка называется согласованной? Чему равно входное сопротивление линии при согласованной нагрузке?
- 4.5.5 При какой нагрузке в линии без потерь наблюдается режим стоячих волн?
 - 4.5.6 Входное сопротивление короткозамкнутой линии без потерь.
 - 4.5.7 Входное сопротивление разомкнутой линии без потерь.

Список литературы

Основная

- 1 Креслина С.Ю., Нурмадиева Э.А. Цепи с распределенными и сосредоточенными параметрами. Теория четырехполюсников. Методические указания и задания к лабораторным работам для специальности 5В070200 Автоматизация и управление. Алматы: АУЭС, 2014. 21 с.
- 2 Креслина С.Ю., Аршабекова А.Т. Цепи с распределенными и сосредоточенными параметрами. Методические указания и задания к расчетнографическим работам № 1,2. Алматы: АУЭС, 2013. 14 с.
- 3 Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. М.: Гардарики, 2013.-638 с.
- 4 Бессонов Л.А. Теоретические основы электротехники. Электромагнитное поле. М.: Гардарики, 2014. 638 с.
- 5 К.С. Демирчян, Л.Р. Нейман, Н.В. Коровкин, В.Л. Чечурин. ТОЭ: В 3-х т. Учебник для вузов. Спб.: Питер, 2006.
- 6 Денисенко В.И., Креслина С.Ю., Светашев Г.М. ТОЭ2. Конспект лекций (для бакалавриата 050702 Автоматизация и управление). Алматы: АИЭС, 2009. 62 с.
- 7 Денисенко В.И., Креслина С.Ю. ТОЭ1. Конспект лекций (для бакалавриата 050702 Автоматизация и управление). Алматы: АИЭС, 2008. 67 с.
- 8 Денисенко В.И., Зуслина Е.Х ТОЭ. Учебное пособие. Алматы: АИ-ЭС, 2000. 83 с.

Дополнительная

- 9 Сборник задач по теоретическим основам электротехники/ Л.Д.Бессонов, И.Г.Демидова, М.Е.Заруди и др. -М.: Высшая школа, 2003. -159 с.
- 10 Прянишников В.А. ТОЭ: Курс лекций: Учебное пособие 3-е изд., перераб. и доп. СПб., 2000-368 с.
- 11 Электротехника и электроника в экспериментах и упражнениях: Практикум на Electronics Workbench. В 2-х томах/ Под ред. Д.И. Панфилова М.: ДОДЭКА, 1999. т.1-Электротехника. 304 с.
- 12 Шебес М.Р., Каблукова М.В. Задачник по теории линейных электрических цепей. М.: Высшая школа, 1990. 544с.
- 13 Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. М.: Энергоатомиздат, 1989. -528 с.

Содержание

Введение	3
1 Лабораторная работа №1. Исследование пассивных симметричных	
четырёхполюсников	5
 Лабораторная работа №2. Исследование пассивных электрических фильтр 	
3 Лабораторная работа №3. Исследование различных режимов в длинных линиях с потерями	
4 Лабораторная работа №4. Исследование различных режимов в линии без	• • •
потерь	21
Список литературы	

Светлана Юрьевна Креслина Алма Тулендиевна Аршабекова

ЦЕПИ С РАСПРЕДЕЛЕННЫМИ И СОСРЕДОТОЧЕННЫМИ ПАРАМЕТ-РАМИ. ТЕОРИЯ ЧЕТЫРЕХПОЛЮСНИКОВ

Методические указания и задания по выполнению лабораторных работ для студентов специальности 5В070200 - Автоматизация и управление

Редактор Л.Т. Сластихина Специалист по стандартизации Г.И. Мухаметсариева

Подписано в печать «»	Формат 60х84 1/16
Тираж 50 экз.	Бумага типографская №1
Объем 1.7 уч изд. л.	Заказ Цена 850 тенге

Копировально-множительное бюро некоммерческого акционерного общества «Алматинский университет энергетики и связи» 050013, Алматы, ул. Байтурсынова, 126.