CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructors: Davis Foote and Jacob Andreas

University of California, Berkeley

Constraint Satisfaction Problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Allows useful general-purpose algorithms with more power than standard search algorithms

Constraint Satisfaction Problems

CSP Formulation

Search Formulation
States

Successor Function

Goal Test

What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state,

discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

CSP Examples

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors

Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

 Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: N-Queens

• Formulation 1:

• Variables: X_{ij}

■ Domains: {0,1}

Constraints

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

• Formulation 2:

• Variables: Q_k

■ Domains: $\{1, 2, 3, ... N\}$

Constraints:

Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$

Explicit: $(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\}$

. . .

Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - **•** {1,2,...,9}
- Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

(or can have a bunch of pairwise inequality constraints)

Varieties of CSPs and Constraints

Varieties of CSPs

Discrete Variables

- Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
- Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

Continuous variables

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by LP methods (see cs170, 270, 127/227 series for a bit of this theory)

Varieties of Constraints

Varieties of Constraints

 Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$$SA \neq green$$

Binary constraints involve pairs of variables, e.g.:

$$SA \neq WA$$

Higher-order constraints involve 3 or more variables:
 e.g., Sudoku row constraints

Preferences (soft constraints):

- E.g., red is better than green
- Often representable by a cost for each variable assignment
- Gives constrained optimization problems
- (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

What would BFS do?

$$\{WA=g\} \{WA=r\} \dots \{NT=g\} \dots$$

[Demo: coloring -- dfs]

Search Methods

What would BFS do?

What would DFS do?

What problems does naïve search have?

Backtracking Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search
- Can solve n-queens for n ≈ 25

Backtracking Example

Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking ({ }, dsp)
function Recursive-Backtracking (assignment, csp) returns soln/failure
   <u>if assignment</u> is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
            add \{var = value\} to assignment
            result \leftarrow Recursive-Backtracking(assignment, csp)
            if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Filtering: Can we detect inevitable failure early?
- Ordering:
 - Which variable should be assigned next?

Filtering

Keep track of domains for unassigned variables and cross off bad options

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(x) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]

[Demo: coloring – iterative improvement]

Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
 - Ordering
 - Filtering

Iterative min-conflicts is often effective in practice

Local Search

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes

Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

Simple, general idea:

Start wherever

Repeat: move to the best neighboring state

If no neighbors better than current, quit

What's bad about this approach?

Complete?

Optimal?

What's good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
              schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                        T, a "temperature" controlling prob. of downward steps
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

