102

Leibniz Universität Hannover

RL FINAL PROJECT 2022

VRP-GYM

MOTIVATION

- Logistics plays a huge role in globalization
- Reduce CO2 emission with intelligent routing
- Active research area

NP-Hard problem

OUR PROJECT

- Implemented an easy to extent and well documented VRP gym environment
- ▶ Three variants and a state of the art attention based agent¹
 - TSP: Agent needs to traverse all nodes
 - VRP: Agent traverses all nodes and has to return to depot
 - ▶ IRP: Agent needs to traverse all nodes and has to deliver demand

ENVIRONMENT

Observation Space

$$OBS_{TSP,VRP} \in \mathbb{R}^{b \times n \times 4}$$

$$OBS_{IRP} \in [\mathbb{R}^{b \times n \times 5}, \mathbb{R}^{b \times 1}]$$

- ▶ Each node entry consists of the coordinates, if it's a depot and if it's visitable. For IRP the demand on each node and the current load is added.
- Action Space
 - ▶ Each node in the graph that is currently visitable
- Reward
 - Negative traversed distance of current step
- Markov Assumption holds true

TRAINING EVALUATION

EVALUATION

ATTENTION AGENT ON VRP AND IRP PROBLEM WITH 20 NODES

Vehicle Routing Problem

Inventory Routing Problem

FUTURE WORK

- Implement and evaluate other VRP variants and agents
 - Agent can control multiple vehicles to solve task
- Evaluate on larger graphs (1000+ nodes)
 - Remove solved graph parts and create new embedding
- Benchmark against heuristics
- Optimize efficiency of environment

QUESTIONS?