Параллелограмм и его площадь

Определение и свойства параллелограмма

Параллелограммом называется четырехугольник, у которого две пары параллельных сторон.

Теорема 3 (о свойствах параллелограмма)

- 1) Противоположные стороны параллелограмма равны.
- 2) Диагонали параллелограмма точкой пересечения делятся пополам.

*

Доказательство. 1) Пусть ABCD — параллелограмм. Проведем его диагональ AC. Так как отрезки AB и CD параллельны, то накрест лежащие углы $\angle 1$ и $\angle 2$. Аналогично так как $BC \parallel AC$, то $\angle 3 = \angle 4$.

У треугольников ABC и ACD сторона общая, а углы, пригающие к этой стороне, соответственно равны. Следовательно, $\triangle ABC = \triangle CDA$ (по второму признаку равенства треугольников). А тогда AB = CD и BC = DA. Первое свойство доказано.

2) Проведем и вторую диагональ. O — точка пересечения диагоналей AC и BD. Треугольники ABO и CDO равны, так как AB = CD, $\angle 1 = \angle 2$ и $\angle 5 = \angle 6$. Поэтому AO = CO и BO = DO.

Признаки параллелограмма

Теорема 4

·

Четырехугольник называется параллелограммом, если:

- 1) он имеет две пары равных противоположных сторон;
- 2) его диагонали, пересекаясь, делятся пополам;

- 3) сумма соседних углов равна 180°;
- 4) противоположные углы равны;
- 5) две его противоположные стороны равны и параллельны.

*

Доказательство. 1) Пусть в четырехугольнике ABCD противоположные стороны равны: AB = CD и AB = BC. Пусть диагональ AC четырехугольника ABCD разбивает его на два треугольника. Треугольники ABC и CDA равны, так как AB = CD, BC = AD и сторона AC общая. Следовательно, соответственные углы этих треугольников равны. Поэтому $\angle 3 = \angle 4$. Из равенства этих накрест лежащих углов, образованных прямыми BC и AD и секущей AC, вытекает, что прямые BC и AD параллельны.

Аналогично из равенства углов 1 и 2 вытекает параллельность AB и CD. Итак, ABCD — параллелограмм.

- 2) Пусть в четырехугольнике ABCD диагонали AC и BD пересекаются в точке O и делятся ей пополам: AO = CO и BO = DO. Так как вертикальные углы равны, то $\triangle AOD = \triangle COB$ (по первому признаку равенства треугольников). Следовательно, AD = BC. Аналогично AB = CD. По первому признаку четырехугоник ABCD параллелограмм.
- 3) Пусть в четырехугольнике ABCD стороны AB и CD равны и параллельны: AB = CD и $AB \parallel CD$. Проведем диагональ AC и рассмотрим треугольнии ABC и CDA. Они равны по первому признаку равенства треугольников. Следовательно, стороны BC и AD равны и ABCD параллелограм (по первому признаку).

Высотой параллелограмма называют общий перпендикуляр его противоположных сторон (или содержащих их прямых).

Теорема 5

*

Площадь параллелограмма равна произведению его стороны и проведенной к ней высоты (S=ah).

Доказательство. Проведем диагональ параллелограмма. Она разбивает его на два треугольника с равными основаниями a и высотами h. Площади этих треугольников равны $\frac{1}{2}ah$. Площадь S параллелограмма равна сумме площадей этих треугольников.

Значит,
$$S = \frac{1}{2}ah + \frac{1}{2}ah = ah$$
.

Частные виды параллелограмма

Прямоугольник можно определить как четырехугольник, все углы которого равны. Так как его противоположные стороны равны, то он является параллелограммом.

Свойство прямоугольника

*

Диагонали прямоугольника равны.

*

Доказательство. Проведем в прямоугольнике ABCD диагонали AC и BD. Прямоугольные треугольники BAD и CDA равны. Поэтому равны и их гипотенузы: AC = BD.

Признак прямоугольника

*

Параллелограмм, диагонали которого равны, является прямоугольником.

*

Доказательство. Пусть в параллелограмме ABCD диагонали равны: AC = BD. Тогда $\triangle ACD = \triangle DBA$. Следовательно, $\angle D = \angle A$. Аналогично доказывается что $\angle A = \angle B$ и $\angle B = \angle C$. Поэтому $\angle A = \angle B = \angle C = \angle D = 90^\circ$. Итак, ABCD — прямоугольник. \blacksquare

Ромбом называется четырехугольник, все стороны которого равны. Ромб является параллелограммом, по первому признаку параллелограмма.

Свойство ромба

*

Диагонали ромба взаимно перпендикулярны и являются биссектрисами углов ромба.

*

Доказательство. Пусть диагонали AC и BD ромба ABCD перескаются в точке O. Так как AO = OC, то BO — медиана равнобедренного треугольника ABC. Поэтому BO — биссектриса и высота этого треугольника. Следовательно, $\angle ABO = \angle CBO$ и $BO \perp AC$.

Признаки ромба

*

- 1) Если диагонали параллелограмма взаимно перпендикулярны, то параллелограмм является ромбом.
- 2) Если диагональ параллелограмма является биссектрисой угла, то параллелограмм является

*

Квадрат называется четырехугольник, у которого все стороны и углы равны. Он является прямоугольником, ромбом и параллелограммом одновременно. (У него нет характерных свойств, так как квадрат — это совокупность свойств параллелограмма, прямоугольника и ромба)

Параллелепипед. Призмы.

Параллелепипедом называется многогранник, у которого шесть граней и все они — параллелограммы.

Многогранник, все грани которого прямоугольники — **прямоугольный параллелепипед.**

Два параллельных друг другу ребра параллелепипеда, не лежащие в одной его грани, являются противоположными сторонами диагонального сечения параллелепипеда, которое также представляет собой параллелограмм.

Диагональное сечение параллелепипеда рассекает его на две треугольные призмы.

n-угольной призмой называется многогранник, имеющий n+2 грани, из которых две грани, называемые основанием призмы, представляют собой n-угольники с соответсвенно равными и параллельными сторонами, а остальные n граней — параллелограммы.

Эти (остальные) грани называют **боковыми гранями призмы**, а их стороны, не лежащие в основании призмы, — **боковыми ребрами призмы**.

Все боковые грани призмы равны и параллельны друг

другу.

Параллелепипед — частный случай четырехугольной призмы: любая пара его противположных сторон может считаться её основаниями.

Треугольник — вырожденная трапеция, параллелограмм — частный случай трапеции. Отсюда площадь треугольника, параллелограмма и трапеции можно вычеслять с помощью одной формулы — формулы площади трапеции $(S=\frac{1}{2}(a+b)h)$.

Created by KAD