UNMASKING FINANCIAL FRAUD

Comparing the Performance of Graph Neural Networks and Traditional Models Approaches

By: Kanishk Goel

AGENDA

Introduction

Traditional ML Approaches

Why Graph Neural Networks?

Graph Architecture

Dataset

Experimental Setup

Results

Conclusion

INTRODUCTION

- Financial fraud is a growing issue, leading to billions of dollars in losses annually.
- Credit card fraud is the most common form of identity theft
- Impact of Fraud:
 - Erodes consumer trust.
 - Increases business operational costs.
 - Causes financial and legal challenges.
 - Affects economic stability.

Choose the best model for financial fraud detection Traditional Models Effective for tabular data Choose the best model for financial fraud detection Graph Neural Networks Suitable for graph-based data

CHALLENGES

- Fraudsters are adaptive and change patterns
- Hard to get real-world data
- High imbalance in dataset
- Multiple accounts or cards being used
- The evolving complexity of fraud patterns.
- The critical role of model explainability

TRADITIONAL ML MODELS

Why Graph Neural Networks

- Transactions form a graph network
- GNNs learn from node embeddings and edge interactions, capturing hidden fraud patterns
- Traditional ML models treat transactions as independent instances, losing relational insights
- GNNs are capable of processing vast volumes of data

////////

Types of Graph

Homo-genous graph:

- A homogeneous graph consists of only one type of node and one type of edge.
- Simpler to train but does not capture different entity roles in the graph.
- Eg. Social Network Analysis: Nodes represent users, edges represent friendships.

Hetero-genous graph:

- A heterogeneous graph consists of multiple types of nodes and edges, capturing more complex relationships.
- More complex but captures richer relationships.
- Implemented by HeteroGCN
- Eg. Financial Fraud Detection: Nodes represent Customers, Merchants, Transactions.

DATASET

- Simulated credit card transaction dataset containing transactions from the duration 1st Jan 2019 - 31st Dec 2020.
- Covers credit cards of 1000 customers doing transactions with a pool of 800 merchants.
- Generated using Sparkov Data Github tool created by Brandon Harris.

DATA PREPROCESSING

- One-Hot Encoding: for low-cardinality features (e.g., device type).
- Label Encoding: for ordinal relationships (e.g., city size).
- Target Encoding: for high-cardinality features like merchant category

- Converted timestamp to datetime format.
- Extracted hour and day for temporal analysis.
- Applied sinusoidal encoding to preserve cyclic patterns

Essential for creating
 Heterogeneous Graph using
 PyTorch Geometric

Made with 🐎 Napki

GRAPH STRUCTURE

• Transaction nodes: 1296675

Merchant nodes: 693

Customer nodes: 983

• Edge type:

customer ←→ merchant: 479072

o transaction ←→ customer: 1296675

○ transaction ← transaction: 1296675

GNN Architecture

EXPERIMENTAL SETUP

- Used 4 HeteroConv layers with GraphSAGE
- Embedding size of 32
- AWS EC2 G5.2xlarge with 32 gb memory and GPU Accelerated due to millions of records
- Batch size of 128 yield best results with 60 epochs
- Used early-stopping with patience = 10 is used to avoid overfitting

EVALUATION METRICS

- AUC-PR: measures the model's ability to correctly identify the positive class (fraud) across all threshold.
- **F1-score**: balances the trade-off between precision and recall, and is especially useful when both false positives and false negatives have significant consequences

RESULTS

Methods	Precision	Recall	F1-Score	AUCPR
XGBoost	0.89	0.52	0.66	0.76
Random Forest	0.93	0.52	0.67	0.76
Decision Tree	0.60	0.68	0.64	0.41
Logistic Regression	0.00	0.00	0.00	0.13
GNN	0.73	0.65	0.68	0.47

Methods	Precision	Recall	F1-Score	AUCPR
XGBoost	0.92	0.75	0.83	0.92
Random Forest	0.93	0.72	0.81	0.90
Decision Tree	0.66	0.80	0.72	0.57
GNN	0.90	0.75	0.82	0.73

CONCLUSION

- GNNs outperform classical models when relational structures dominate and feature engineering is limited.
- Heterogeneous message passing (users, merchants, transactions) boosts fraud detection performance.
- In Dataset 2, classical models (XGBoost, Random Forest) slightly outperformed due to strong, explicit features.
- GNNs excel in relationally complex, feature-sparse environments.
- Classical models remain strong when features are rich and well-crafted.

FEEDBACK!