Movimento retilíneo	Deslocamento: $\Delta \vec{r} = \vec{r}_f - \vec{r}_0$			
	Velocidade: $\vec{v} = \frac{d\vec{r}}{dt}$ Aceleração: $\vec{a} = \frac{d\vec{v}}{dt}$			
Movimento retilíneo com aceleração constante	Posição: $\vec{r}(t) = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$			
	Velocidade: $\vec{v}(t) = \vec{v}_0 + \vec{a}t$; $\vec{v}^2 = \vec{v}_0^2 + 2\vec{a} \cdot \Delta \vec{r}$			
Movimento circular	Velocidade angular: $\omega=\frac{d\theta}{dt}=\frac{v}{R}\;\;$; Aceleração angular: $\alpha=\frac{d\omega}{dt}$			
	Aceleração normal: $a_n=rac{v^2}{R}$; Aceleração tangencial: $a_t=rac{dv}{dt}$			
Movimento circular com aceleração contante	Posição angular: $\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$			
	Velocidade angular: $\omega\left(t\right)=\omega_{0}+\alpha t$			
Forças	2ª Lei de Newton: $\Sigma \vec{F} = m \vec{a} = m \frac{d \vec{v}}{dt}$			
	Força gravítica: $F_g = G \frac{m_1 \cdot m_2}{d^2}$; Força elástica: $F_e = -kx$			
	Força de atrito de escorregamento: $F_a = \mu R_N$;			
	Força de atrito em fluídos: $F_a=rac{1}{2}C ho Av^2$			
Trabalho & Energia	Trabalho de uma força: $W_{A o B}=\int_A^B ec F\cdot dec r$			
	$E_{ m cinética} = rac{1}{2} m v^2; \; E_{ m Pgrav{ m fica}} = mgh; \; E_{ m Pel{ m ástica}} = rac{1}{2} k x^2$			
	$W_{\vec{F}_R} = \Delta E_c$; $W_{F(\text{conservativas})} = -\Delta E_p$			
	$\Delta E_{\text{mecânica}} = W_{F(\text{exteriores})}$			
	Potência média: $P_{ m m\acute{e}dio}=rac{W}{\Delta t}$; Potência instantânea: $P=ec{F}.ec{v}$			
	Rendimento: $\eta = \frac{ ext{Energia útil}}{ ext{Energia disponível}}$			
Impulso & Quantidade de Movimento	Momento Linear (quantidade de movimento): $ec{p}=mec{v}$			
	Impulso: $\vec{I}=\int_{t_i}^{t_f} \vec{F} \ dt = \Delta \vec{p}$; Coeficiente de restituição: $e=\frac{ v_{2,f}-v_{1,f} }{ v_{1,0}-v_{2,0} }$			
	Centro de Massa:			
	Posição: $\vec{r}_{CM} = \frac{\sum_{i=1}^n m_i \vec{r}_i}{\sum_{i=1}^n m_i} = \frac{\sum_{i=1}^n m_i \vec{r}_i}{M}$ Velocidade: $\vec{v}_{CM} = \frac{1}{M} \sum_{i=1}^n m_i \vec{v}_i$			
	Aceleração: $\vec{a}_{CM} = \frac{1}{M} \sum_{i=1}^n m_i \vec{a}_i$			
	Sistemas de Massa Variável:			
	$v_f - v_0 = v_e \ln \frac{M_0}{M_f} \qquad F_{propulsora} = M \frac{dv}{dt} = -v_e \frac{dM}{dt}$			
Movimento harmónico simples (sistema massa – mola)	Posição: $x(t) = x_{\rm m} \cos (\omega t + \phi)$			
	Velocidade: $v(t) = -\omega x_{\rm m} \sin(\omega t + \phi)$			
	Aceleração: $a(t)=-\omega^2x_{\rm m}\cos(\omega t+\phi)$ Frequência: $f=\frac{1}{T}$ Frequência angular: $\omega=\sqrt{\frac{k}{m}}=\frac{2\pi}{T}$			
	·			
	Energia Cinética: $E_C = \frac{1}{2}kx_m^2\sin^2(\omega t + \phi)$			
	Energia Potencial elástica: $E_{pe} = \frac{1}{2}kx_m^2\cos^2(\omega t + \phi)$			
Movimento harmónico amortecido	Intensidade da força de atrito: $F_{atrito} = -bv$			
	Posição: $x(t) = x_m e^{-\frac{b}{2m}t} cos(\omega' t + \phi)$			
	Frequência angular: $\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$			
	Energia mecânica: $E_m=rac{1}{2}kx_m^2e^{-rac{b}{m}t}$			

Movimento harmónico	Intensidade da força: $F = F_0 \cos(\omega_f t)$					
forçado	Posição: $y(t) = y_m \cos(\omega_f t - \alpha)$					
	Amplitude: $y_m = \frac{F_0/m}{\sqrt{\left(\omega_f^2 - \omega_0^2\right)^2 + \frac{b^2}{m^2}\omega_f^2}}$					
	Fase inicial: $\operatorname{tg} \alpha = \frac{\omega_f^2 - \omega_0^2}{\frac{b}{m}\omega_f}$					
Movimento harmónico	Posição angular: $ heta(t) = heta_m cos(\omega t + \phi)$					
simples (pêndulo gravítico simples)	Velocidade angular: $\frac{d\theta(t)}{dt} = -\omega \theta_m \sin \left(\omega t + \phi\right)$					
	Aceleração angular: $\frac{d^2\theta(t)}{dt^2} = -\omega^2 \; \theta_m \; cos \; (\omega t + \phi)$					
	Frequência angular $\omega=\sqrt{rac{g}{L}}$					
Movimento ondulatório	Equação de onda: $y(x,t)=y_{\mathrm{m}}sen(kx\pm\omega t+\phi)$					
	Comprimento de onda e frequência (meio homogéneo): $\lambda = \frac{v}{f}$					
	Número de onda: $k=rac{2\pi}{\lambda}$; Frequência angular: $\omega=rac{2\pi}{T}$; Velocidade de propagação					
	corda tensa	sól	ido	fluído		
	\overline{T}		\(\overline{Y} \)	B		
	$v = \sqrt{\frac{T}{\mu}} \qquad \qquad v = \sqrt{\frac{Y}{\rho}}$		$\sqrt{\frac{1}{\rho}}$	$v = \sqrt{\frac{\nu}{\rho}}$		
	Potência transmitida por uma onda numa corda: $P=rac{1}{2}\mu v\omega^2 y_{ m m}^2$					
	Ondas Estacionárias Equação de onda: $y(x,t) = [y_m \ sen(kx)] \ cos(\omega t)$					
	Frequências dos modos normais de vibração					
	dois limites fixos/abertos		um limite fixo/aberto			
	$f_n = \frac{v}{\lambda_n} = n \frac{v}{2L}$		$f_n = \frac{v}{\lambda_n} = n \frac{v}{4L}$			
			l			
Ondas sonoras						
	Equação de deslocamento das partículas: $s(x,t)=s_m\cos(kx-\omega t)$ Equação de variação de pressão: $\Delta p(x,t)=\Delta p_m\sin(kx-\omega t)$; $\Delta p_m=(v\rho\omega)s_m$					
	Intensidade Sonora: $I = \frac{P}{A} = \frac{1}{2} \rho v \omega^2 s_m^2$					
	Nível Sonoro: $\beta = 10 \log \frac{I}{I_0}$ com $I_0 = 10^{-12} \mathrm{W/m^2}$					
	Efeito Doppler: $f' = f \frac{v \pm v_D}{v \pm v_F}$					

Circunferência: perímetro $P=2\pi r$; Área de um círculo: $A=\pi r^2$;

Esfera: área: $A=4\pi r^2$; volume $V=\frac{4}{3}\pi r^3$ Cilindro: área: $A=(2\pi r^2+2\pi r\times L)$; volume $V=(\pi r^2\times L)$