KNU 4471.043 컴파일러 설계

고상기

3주차

2022 Spring

강원대학교 컴퓨터공학과

1

2주차 요약

• 컴파일러의 논리적 구조

• 어휘 분석의 예

• 구문 분석의 예

• 의미 분석의 예

• 컴파일러의 물리적 구조

3주차 개요

• 형식 언어란?

• 형식 문법이란?

- 정규 표현식
- 유한 오토마타
- 정규 문법과 정규 표현식 그리고 오토마타

• 언어_{language}: 알파벳으로부터 생성되는 모든 문자열들의 부분집합

• 문법grammar: 언어를 정의하고 생성하는 도구

• 인식기_{recognizer}: 언어를 인식하는 가상의 기계

알파벳alphabet

- 언어의 문장을 이루는 기본적인 기호_{symbol}의 집합
 - 알파벳은 공집합이 아닌 기호들의 유한 집합으로 Σ로 표기한다.
 - **1.** $\Sigma_{kor} = \{ \neg, \bot, \sqsubseteq, \supseteq, ..., \bar{\sigma} \}$
 - **2.** $\Sigma_{eng} = \{a, b, c, d, ..., z\}$
 - 3. $\Sigma_{binary} = \{0, 1\}$
 - 일반 프로그래밍 언어에서는 사용 가능한 문자나 기호들의 집합을 알파벳이라 한다.

문자열string

- 알파벳 Σ에 대한 문자열은 알파벳에서 정의된 기호들을 나열한 유한 수열_{finite sequence}이다.
 - 알파벳 Σ = {a, b, c}가 주어졌을 때 a, ca, ccba 등을 문자열이라 한다.
 - 언어 이론에서 문자열은 종종 문장sentence이나 단어word와 동의어로 사용된다.
 - 보통 문자를 표시할 때는 영어의 a,b,c,... 등을 주로 사용하고, 문자열을 나타낼 때는 u,v,w,... 등을 주로 사용한다.
 - $| \Psi | w = ababaa, u = babbbbcc$

문자열의 길이_{length}

- 문자열을 이루는 기호의 개수를 의미하며 문자열 w의 길이를 |w|로 표시한다.
 - **1.** $w_1 = abc$ 일 때, $|w_1| = 3$
 - **2.** $w_2 = aabbab일 때, |w_2| = 6$
 - **3.** $w = a_1 a_2 \cdots a_k$ 일 때, |w| = k

문자열의 결합concatenation

- 두 개의 문자열을 연결하여 새로운 문자열을 만드는 연산
 - 문자열 u, v가 각각 $u = a_1 a_2 a_3 \cdots a_n, v = b_1 b_2 b_3 \cdots b_m$ 일 때, 두 문자열의 결합은 $u \cdot v$ 또는 uv로 표시하며 $uv = a_1 a_2 a_3 \cdots a_n b_1 b_2 \cdots b_m$ 이다.
 - 두 문자열 u = Kangwon, v = University가 있을 때,

uv = KangwonUniversity, vu = UniversityKangwon

빈 문자열empty string

- 문자열의 길이가 0인 문자열
 - ε으로 표기
 - 어떤 문자열 u, v에 대하여 다음과 같은 속성을 갖는다.
 - 1. $u\varepsilon = u = \varepsilon u$
 - 2. $u\varepsilon v = uv$
 - λ 로도 표시하며, 공 문자열 또는 널 문자열 $_{null\ string}$ 이라고도 한다. 결합 연산의 경우 arepsilon을 항등원으로 취한다.
 - a^n 은 기호 a가 n개 연결된 문자열을 나타내는데, 이 때 $a^0 = \varepsilon$ 으로 표시할 수 있다.

문자열의 역reverse

- 문자열을 이루는 요소들을 역순으로 뒤집은 것이다.
 - 문자열 w = kangwon에 대해 문자열 역인 w^R 은,

$$w^R = nowgnak$$
.

접두사_{prefix}와 접미사_{suffix}

- 문자열 w = uv일 때, u = w의 접두사라 한다. 이 때, $u \neq w$ 이면 이를 진접두v = v이면 하다.
- 문자열 w = uv일 때, v를 w의 접미사_{suffix}라 한다.
- 문자열 w = computer에 대해서,
 - 1. 접두사: ε , co, com, comp, comput, compute, computer
 - **2.** 접미사: arepsilon, r, er, ter, uter, puter, mputer, omputer, computer

∑-클리니-스타_{Kleene-Star, reflexive transitive closure}

- 빈 문자열을 포함하여 알파벳 Σ의 결합 연산에 의해 만들 수 있는 모든 문자열들의 집합을 Σ*라고 쓴다. (Σ에 클리니-스타 연산을 적용한 것)
 - Σ -클리니-스타에서 빈 문자열을 제외한 Σ -클리니-플러스 $_{\text{Kleene-Plus, transitive closure}}$ Σ^+ 도 존재한다. 이 때, $\Sigma^* \{\varepsilon\} = \Sigma^+$ 가 성립한다.
 - $\Sigma = \{0,1\}$ 일 때, $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$.

언어_{language}

- 알파벳 Σ에 대해 Σ*의 부분 집합을 의미한다.
 - 유한 언어finite language: 언어에 속하는 문자열의 수가 유한한 경우
 - 무한 언어_{infinite language}: 언어에 속하는 문자열의 수가 무한한 경우
 - 1. $\Sigma = \{a,b\}$ 일 때, $L_1 = \Sigma^*$ 는 무한 언어
 - 2. L₂ = {a,ba,aaa}는 유한 언어
 - 3. $L_3 = \{a^p \mid p$ 는 소수 $_{prime\ number}\}$ 는 무한 언어
 - **4.** $L_4 = \{a^n b^n \mid n \ge 1\}$ 는 무한 언어

- 여기서 말하는 언어는 의미_{semantic}의 개념을 포함하지 않는다.
- 언어는 단지 문자열들의 집합으로 정의되고 형식 언어 이론은 문자열 집합을 생성하는 형식 문법과 이를 인식하는 가상 기계에 관한 이론이다.

형식 언어 간의 연산

두 언어의 합집합union

- 두 언어 L과 M의 합집합 $L \cup M$ 은 언어 L에 속하는 문자열이거나 M에 속하는 문자열의 집합이다.
- $L \cup M = \{ w \mid w \in L \not\subseteq w \in M \}.$
- $L = \{aaa, bbb\}, M = \{aaa, ccc\} \supseteq \mathbb{H}, L \cup M = \{aaa, bbb, ccc\}.$

두 언어의 결합concatenation

- 두 언어 L과 M의 결합 LM은 L에 속하는 문자열과 M에 속하는 문자열을 결합한 것으로 교환 법칙은 성립하지 않는다.
- $LM = \{uv \mid u \in L \ 0 | \exists v \in M\}.$
- $L = \{aaa, \varepsilon\}, M = \{bbb, c, \varepsilon\}$ 일 때, $LM = \{\varepsilon, c, aaa, bbb, aaabbb, aaac\}.$

형식 언어 간의 연산

거듭제곱_{square}

- 언어 L의 거듭 제곱은 재귀적으로_{recursively} 다음과 같이 정의한다.
 - 먼저, $L^0 = \{\varepsilon\}$ 이라 하자.
 - 그렇다면 $n \ge 1$ 에 대해, $L^n = LL^{n-1}$ 이 성립한다.
 - $L = \{a, ba\}$ 일 때, $L^3 = \{aaa, aaba, abaa, ababa, baaa, baaba, babaa, bababa\}$.

클리니-스타Kleene-Star, reflexive transitive closure

- 언어 *L*에 대한 클리니-스타 *L**는 다음과 같이 정의한다.
 - $L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \cdots \cup L^n \cup \cdots = \bigcup_{i=0}^{\infty} L^i$
 - 언어 L에 대한 클리니-플러스 L⁺는 다음과 같이 정의한다.
 - $L^+ = L^1 \cup L^2 \cup L^3 \cup \dots \cup L^n \cup \dots = \bigcup_{i=1}^{\infty} L^i = L^* L^0$

형식 문법의 정의

형식 문법 $G = (V_N, V_T, P, S)$ 는 다음과 같이 네 가지 항목으로 정의한다.

- 1. V_N: 논터미널 기호_{nonterminal symbol}의 유한 집합
- 2. V_T : 터미널 기호_{terminal symbol}의 유한 집합

$$V_N \cap V_T = \emptyset, \ V_N \cup V_T = V$$

3. P: 생성 규칙production rule의 유한 집합

$$\alpha \rightarrow \beta \in P, \ \alpha \in V^+, \ \beta \in V^*$$

4. $S: V_N$ 에 속하는 기호로써, 다른 논터미널 기호와 구별하여 시작 기호 $_{start\ nonterminal}$ 라 한다.

표기법 정의_{notation}

- S, A, B, C와 같이 영문 대문자로 구성된 기호는 논터미널 기호이다. (S는 시작기호)
- '('와 ')'로 묶어서 나타낸 기호도 논터미널 기호이다.
- a, b, c와 같은 영문 소문자로 구성된 기호와 +, -, *, / 등의 연산자 기호, 괄호나 쉼표와 같은 구분자_{delimiter}, 0,1,2와 같은 아라비아 숫자들은 터미널 기호이다.
- X, Y, Z와 같은 영문 알파벳 끝부분의 대문자는 임의의 터미널 기호 또는 논터미널 기호를 의미한다.
- u, v, w, x, y, z와 같은 영문 알파벳 끝부분의 소문자는 터미널 기호로 이루어진 문자열을 나타낸다.
- α, β, γ 와 같은 그리스어 소문자는 논터미널 기호 또는 터미널 기호로 구성된 문자열을 나타낸다.

유도derivation

- 형식 문법이 어떤 언어를 생성하는지 어떻게 확인하지?
- 시작 기호로부터 생성 규칙을 반복 적용하여 터미널 기호로 이루어진 문자열들을 만들어낸다.
- 이것을 유도라고 하고 '⇒' 기호를 사용하여 과정을 기술한다.
- 생성 규칙 lpha
 ightarrow eta가 존재하고, $\gamma, \delta \in V^*$ 일 때, 다음과 같이 생성 규칙을 적용한다.

$$\gamma \alpha \delta \Rightarrow \gamma \beta \delta$$

- 생성 규칙을 적용하면 규칙의 왼편에 있는 부분(α)이 오른편에 있는 부분(β) 으로 대체된다.
- '⇒'는 영 번 이상의 유도_{zero or more derivations}를 의미하며, '⇒'는 한 번 이상의 유도_{one or more derivations}를 의미한다.
- 만약 $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{n+1} \in V^*$ 이고, $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \alpha_3 \Rightarrow \dots \Rightarrow \alpha_{n+1}$ 이 존재한다면, $\alpha \stackrel{n}{\Rightarrow} \alpha_{n+1}$ 으로 쓰고, $\alpha \stackrel{*}{\Rightarrow} \alpha_{n+1}$ 로도 쓸 수 있다.

유도 예

다음의 문법 *G*가 문자열 0,0000,001100 등을 생성하는지 확인해보자.

$$\begin{split} G &= \big(\{S,A\}, \ \{0,1\}, \ P, \ S \big), \\ P &= \{S \to 0 A S, \ S \to 0, \ A \to S 1 A, \ A \to 10, \ A \to S S \}. \end{split}$$

- **1.** 0의 경우 ' $S \Rightarrow 0$ ' 규칙을 통해 바로 확인 가능
- 2. 0000은?

$$S \Rightarrow 0AS$$

$$\Rightarrow 0SSS$$

$$\Rightarrow 00SS$$

$$\Rightarrow 000S$$

$$\Rightarrow 0000$$

3. 001100은?

형식 문법이 생성하는 언어

문장과 문장 형태

- 앞서 설명한 대로 S ⇒ w₁ ⇒ w₂ ⇒ · · · w_n ⇒ w와 같은 유도 과정이 있으면,
 S ⇒ w라고 쓸 수 있다.
- 이 때, w가 V*에 속하면 w_1, w_2, \dots, w_n, w 등을 문장 형태_{sentential form}라 하고 V_T^* 에 속하면 문장_{sentence}라고 한다.
- 다시 말해, 터미널 기호와 논터미널 기호의 조합으로 구성되어 있는 문자열을 문장 형태라 하고, 터미널 기호로만 구성된 문자열을 문장이라고 한다.

형식 문법이 생성하는 언어

• 형식 문법 G가 생성하는 언어는 G에 의해 생성되는 문장의 집합이며 L(G)로 표기한다.

$$L(G) = \{ w \mid S \stackrel{*}{\Rightarrow} w, w \in V_T^* \}$$

다음의 문법 G₁는 어떤 언어를 생성할까?

$$G_1 = (\{S, A, B, C\}, \{a, b\}, P, S),$$

$$P = \{S \rightarrow A, A \rightarrow abC \mid aABC, bB \rightarrow bbb, bC \rightarrow bb\}.$$

다음의 문법 G₂는 어떤 언어를 생성할까?

$$\begin{split} G_2 &= \big(\{\textit{S},\textit{A}\}, \ \{\textit{a},\textit{b}\}, \ \textit{P}, \ \textit{S}\big), \\ \textit{P} &= \{\textit{S} \rightarrow \textit{a}\textit{A}\textit{a}, \ \textit{A} \rightarrow \textit{a}\textit{A}\textit{a} \mid \textit{b}\}. \end{split}$$

다음의 문법 G₃는 어떤 언어를 생성할까?

$$\begin{split} &G_3 = \big(\{ \textit{S}, \textit{A}, \textit{B} \}, \ \, \{ \textit{a}, \textit{b} \}, \ \, \textit{P}, \ \, \textit{S} \big), \\ &\textit{P} = \{ \textit{S} \rightarrow \textit{aS} \mid \textit{aA}, \ \, \textit{A} \rightarrow \textit{aB}, \ \, \textit{B} \rightarrow \textit{aB} \mid \textit{a} \}. \end{split}$$

다음의 문법 G_4 는 어떤 언어를 생성할까?

$$G_4 = (\{S,A\}, \{a\}, P, S),$$

$$P = \{S \rightarrow a \mid aA, A \rightarrow aS\}.$$

촘스키 위계Chomsky hierarchy

노암 촘스키_{Noam Chomsky} (1928-현재)

- 미국의 언어학자, 철학자, 정치 활동가, 저술가. 현재는 MIT의 언어학과 교수
- 수많은 자연어의 문법으로부터 보편적인 문법을 찾아내고자 시도 — "언어는 유한한 수단의 무한한 활용을 수반한다."
- 변형생성문법_{transformational} generative grammar 이론을 개발
- 1956년, 형식 언어를 생성하는 형식 문법들 사이의 위계인 촘스키 위계Chomsky hierarchy를 제안

촘스키 위계Chomsky hierarchy

촘스키 위계는 아래의 네 유형으로 이루어진다.

- Type-0 문법: 무제약 문법unrestricted grammar: 생성 규칙에 어떠한 제한도 없음
 - 생성 규칙: $\alpha \rightarrow \beta$. 단 α 는 빈 문자열이 될 수 없다.
- Type-1 문법: 문맥-인식 문법_{context-sensitive grammar}: 생성 규칙의 왼쪽 부분이 오른쪽 부분보다 길 수 없음
 - 생성 규칙: $\alpha \to \beta$. 단, $|\alpha| \le |\beta|$, $\alpha \in V^+$, $\beta \in V^*$.
- Type-2 문법: 문맥-자유 문법_{context-free grammar}: 생성 규칙의 왼쪽 부분은 하나의 논터미널 기호여야 함
 - 생성 규칙: $A \rightarrow \alpha$. 단, $A \in V_N, \beta \in V^*$.
- Type-3 문법: 정규 문법_{regular grammar}: 생성 규칙의 오른쪽 부분에 최대 하나의 논터미널이 있으며 항상 가장 왼쪽 (또는 항상 가장 오른쪽)에 위치해야 함
 - 생성 규칙: A → a와 A → aB (또는 A → Ba). 단, a ∈ V_T, A, B ∈ V_N.

형식 문법의 분류

형식 문법을 분류하는 방법

- 1. 먼저 정규 문법인지 확인한다.
- 정규 문법이 아니라면, 문맥-자유 문법인지 확인한다.
- 3. 문맥-자유 문법이 아니라면, 문맥-인식 문법인지 확인한다.
- **4.** 문맥-인식 문법이 아니라면, 무제한 문법으로 분류한다.

다음의 문법 G₁는 촘스키 위계 상 어디에 속하는가?

$$G_1 = (\{S, A, B, C\}, \{a, b\}, P, S),$$

 $P = \{S \to A, A \to abC \mid aABC, bB \to bbb, bC \to bb\}.$

다음의 문법 G₂는 촘스키 위계 상 어디에 속하는가?

$$G_2 = \big(\{S,A\}, \ \{a,b\}, \ P, \ S \big),$$

$$P = \{S \rightarrow aAa, A \rightarrow aAa \mid b\}.$$

다음의 문법 G₃는 촘스키 위계 상 어디에 속하는가?

$$G_3 = (\{S, A, B\}, \{a, b\}, P, S),$$

 $P = \{S \rightarrow aS \mid aA, A \rightarrow aB, B \rightarrow aB \mid a\}.$

다음의 문법 G₄는 촘스키 위계 상 어디에 속하는가?

$$G_4 = \big(\{S,A\},\ \{a\},\ P,\ S\big),$$

$$P = \{S \rightarrow a \mid aA, A \rightarrow aS\}.$$

형식 언어의 예

아래의 언어들은 형식 언어 이론에서 자주 언급되는 언어들이다.

- 1. 단순 매칭 언어_{simple matching language}: $L_m = \{a^n b^n \mid n \ge 0\}$
- 2. 중복 매칭 언어_{double matching language}: $L_{dm} = \{a^n b^n c^n \mid n \ge 0\}$
- 3. 좌우 대칭 언어_{mirror image language}: $L_{mi} = \{ww^R \mid w \in \Sigma^*\}$
- **4.** 회문 언어_{palindrome language}: $L_r = \{ w \mid w = w^R \}$
- 5. 복사 언어_{copy language}: $L_c = \{ww \mid w \in \Sigma^*\}$
- 6. 괄호 언어_{parenthesis language}: $L_p = \{w \mid w \vdash \overline{\omega} \text{ door } \exists v \in \mathbb{R}\}$

형식 언어와 인식기1

Language	Automaton	Grammar	Recognition
Recursively Enumerable Languages	Turing Machine	Unrestricted Baa → A	Undecidable ?
Context- Sensitive Languages	Linear Bounded	Context Sensitive $A t \longrightarrow aA$	Exponential?
Context- Free Languages	Pushdown Stack	Context Free $S \longrightarrow gSc$	Polynomial
Regular Languages	Finite-State Automaton	Regular A → cA	Linear

 $^{^{1}}$ D. B. Searls, The language of the genes. Nature 420, 211–217, 2012

정규 표현식regular expression

- 정규 언어를 표현하기 위한 일종의 표기법이다.
- 다음과 같이 재귀적으로 정의한다.
 - 알파벳 Σ 가 주어졌을 때, \emptyset , ε 그리고 Σ 에 속한 모든 기호 a는 정규 표현식이다.
 - 만약, R₁과 R₂가 정규 언어 L₁과 L₂를 표현하는 정규 표현식이라면,
 - 1. $(R_1) + (R_2)$ 는 $L_1 \cup L_2$ 를 표현하는 정규 표현식이다.
 - 2. $(R_1) \cdot (R_2)$ 는 $L_1 L_2$ 를 표현하는 정규 표현식이다.
 - 3. (R₁)*는 L*를 나타내는 정규 표현식이다.
- 정규 표현식을 구성하는 연산자는 클리니-스타(*), 결합(·), 합집합(+)이 있으며 연산자의 우선 순위는 클리니-스타 > 결합 > 합집합이다.
- 연산자 우선 순위가 결정되면 괄호는 생략할 수 있으며 결합 연산자 ''은 생략 가능하다.

정규 표현식 예

알파벳 $\Sigma = \{0,1\}$ 이 주어졌을 때, 아래의 정규 표현식들이 나타내는 언어는?

- **1.** 0+1
- 2. (0+1)0
- **3.** 0*
- 4. $(0+1)^*$
- **5.** 0*1*

정규 표현식의 대수학적 성질

1.
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

2.
$$(\alpha\beta)\gamma = \alpha(\beta\gamma)$$

$$3. \ \alpha + \beta = \beta + \alpha$$

4.
$$\alpha + \alpha = \alpha$$

5.
$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$

6.
$$(\beta + \gamma)\alpha = \beta \alpha + \gamma \alpha$$

7.
$$\varepsilon \alpha = \alpha = \alpha \varepsilon$$

8.
$$\alpha^* = \varepsilon + \alpha \alpha^*$$

9.
$$(\alpha^*)^* = \alpha^*$$

(합집합에 대한 결합 법칙)

(접속에 대한 결합 법칙)

(합집합에 대한 교환 법칙)

(분배 법칙)

(분배 법칙)

(결합 연산의 항등원)

유한 오토마타finite-state automata, FA

- 가장 간단한 형태의 언어 인식기이며 간단히 FA라고 부른다.
- 형식적으로 수식을 통해 표현하는 방법과 상태 전이도_{state transition diagram}를 그려 표현하는 방법이 있다.
- 상태 전이도를 그릴 땐, FA의 각 상태_{state}를 노드로 표현하고, 간선은 전이_{transition}를 나타낸다.
- FA의 최종 상태_{final state}는 이중 원_{double circle}으로 나타내고 시작 상태_{initial state}는 시작 간선으로 표시한다.
- 아래는 정규 표현식 (a+b)*abb를 인식하는 FA를 그린 것이다.

FA의 형식적 정의formal definition

FA $M = (Q, \Sigma, \delta, q_0, F)$ 은 다음과 같이 정의된다.

- 1. Q: 상태의 유한 집합
- 2. Σ: 입력 기호의 유한 집합
- 3. δ : 전이 함수 $_{\text{transition function}}$ 로 $Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$ (Q의 멱집합)의 원소이다. 즉, $\delta(q,a) = \{p_1,p_2,\ldots,p_n\} \subseteq Q$.
- **4.** q_0 : 시작 상태를 의미하며 $q_0 \in Q$ 를 만족한다.
- 5. F: 최종 상태의 집합을 의미하며 $F \subseteq Q$ 를 만족한다.

전이 함수 δ 는 아래와 같이 문자열 입력에 대해 확장될 수 있다.

$$\delta: Q \times \Sigma \to Q \Rightarrow \delta^*: Q \times \Sigma^* \to Q$$

위의 확장을 활용하여, FA M이 인식하는 언어는 다음과 같이 정의될 수 있다.

$$L(M) = \{ w \mid \delta^*(q_0, w) \cap F \neq \emptyset \}$$

FA를 형식적으로 표현하기 예

정규 표현식 $(a+b)^*abb$ 를 인식하는 FA $M=(Q,\Sigma,\delta,q_0,F)$ 는 다음과 같이 표현된다.

상태 집합
$$Q = \{q_0, q_1, q_2, q_3\},$$

입력 기호 $\Sigma = \{a, b\},$
전이 함수 δ : $\delta(q_0, a) = \{q_0, q_1\},$
 $\delta(q_0, b) = \{q_0\},$
 $\delta(q_1, b) = \{q_2\},$
 $\delta(q_2, b) = \{q_3\},$
시작 상태 $q_0 = q_0,$
최종 상태 집합 $F = \{q_3\}.$

결정적 FA와 비결정적 FA

- FA는 기본적으로 비결정적nondeterministic이다.
- 비결정적 FAnondeterministic FA는 줄여서 NFA라고 부른다.
- NFA 중에 다음 두 가지 조건을 만족하는 것들을 결정적 FA_{deterministic FA}, 즉 DFA 라고 부른다.

DFA의 조건

- 1. ε 에 의한 상태 전이(ε -전이_{epsilon transition})가 존재하지 않는다.
- 2. 모든 상태에서, 하나의 기호를 읽고 이동할 수 있는 상태의 수는 한 가지이다.
- 3. 다시 말하면, 상태 전이 함수 δ 가 $Q \times \Sigma \rightarrow Q$ 가 된다.

DFA 예

다음 FA
$$M = (Q, \Sigma, \delta, q_0, F)$$
가 DFA인지 판단해보자.

상태 집합
$$Q=\{q_0,q_1,q_2,q_3\},$$

입력 기호 $\Sigma=\{a,b\},$
전이 함수 $\delta:$ $\delta(q_0,a)=\{q_2\},$ $\delta(q_0,b)=\{q_1\},$ $\delta(q_1,a)=\{q_3\},$ $\delta(q_1,b)=\{q_0\},$ $\delta(q_2,a)=\{q_0\},$ $\delta(q_2,b)=\{q_3\},$ $\delta(q_3,a)=\{q_1\},$ $\delta(q_3,b)=\{q_2\},$

시작 상태 $q_0 = q_0$,

최종 상태 집합 $F = \{q_0\}$.

DFA에서의 문자열 인식 예

다음은 슬라이드 36페이지의 DFA를 상태 전이도로 표현한 것이다.

- 문자열 abab가 인식되는지 확인해보자.
- 문자열 ababaab가 인식되는지 확인해보자.

NFA에서의 문자열 인식 예

다음은 슬라이드 33페이지의 NFA를 상태 전이도로 표현한 것이다.

• 문자열 baabb가 인식되는지 확인해보자.

NFA와 DFA의 관계

- DFA보다 NFA가 언어의 구조를 더 쉽게 표현할 수 있다.
 - 모든 DFA는 NFA이기 때문에 당연한 사실이다. 제약 조건이 더 적으므로 표현의 가능성이 더 풍부하다.
- NFA는 DFA보다 프로그램으로 구현하기 어렵다.
 - 되추적_{backtracking} 알고리즘을 구현하거나 하거나 기호를 읽을 때마다 상태 집합을 업데이트해야 한다.
- DFA는 프로그램으로 구현하면 문자열을 인식하는 알고리즘을 훨씬 더 효율적으로 구현할 수 있다.
 - 문자열의 길이가 n일 때, O(n) 시간 알고리즘을 간단히 구현할 수 있다.
- 결론: 주어진 언어를 인식할 수 있는 NFA를 먼저 만든 후 이것을 DFA로 변환할 수는 없을까?

Theorem

모든 NFA는 동등equivalent 한 언어를 인식하는 DFA를 갖는다.

ε -클로거 $_{\rm epsilon-closure}$

- NFA $M = (Q, \Sigma, \delta, q_0, F)$ 가 주어지고 상태 $q \in Q$ 는 M의 상태 중 하나이고, $P \subseteq Q$ 는 M의 상태 집합 Q의 부분 집합이다.
- 상태 q의 ε -클로저는 ε -closure(q)로 표현하며 상태 q와 상태 q로부터 ε -전이에 의해 도달할 수 있는 NFA의 모든 상태의 집합을 말한다.
- 이 때, 상태 집합 P의 arepsilon-클로저는 arepsilon-closure(P)로 쓰고 아래와 같이 정의한다.

$$\varepsilon$$
-closure(P) = $\bigcup_{p \in P} \varepsilon$ -closure(p).

• 다시 말해 상태 집합 P의 ε -클로저는 P에 속한 상태 각각의 ε -클로저를 계산한 후 합집합을 구한 것이다.

ε -클로저 구하기 예

- ε -closure $(q_0) = \{q_0, q_1, q_2, q_4, q_7, q_8\}$
- ε -closure $(q_1) = \{q_1, q_2, q_4\}$
- ε -closure $(q_2) = \{q_2\}$

부분집합 구성 알고리즘subset construction algorithm

부분집합 구성 알고리즘은 NFA로부터 동등한 언어를 인식하는 DFA를 만드는 과정이다. NFA $M=(Q,\Sigma,\delta,q_0,F)$ 이 입력으로 주어졌다고 가정하자.

- 알고리즘의 순서는 다음과 같다.
 - **1.** 시작 상태 q_0 에 대해 ϵ -클로저를 구하고 그 상태 집합 ϵ -closure(q_0)를 새로운 DFA의 시작 상태로 둔다.
 - 2. 방금 계산한 ε -closure(q_0)를 집합 D_s 에 넣는다.
 - 3. 집합 D_s 에서 하나의 상태 $T \subseteq Q$ 를 꺼낸 후, 그 상태에서 가능한 모든 입력 기호 $a \in \Sigma$ 에 대해 각자 도달할 수 있는 상태 집합 T_a 를 만든다.
 - **4.** 각각의 상태 집합 T_a 로부터 ε -closure(T_a)를 계산한다.
 - 5. 모든 입력 기호 $a \in \Sigma$ 에 대해 상태 ε -closure(T_a)를 DFA의 새로운 상태로 추가하고 (집합 D_s 에 추가) 상태 T에서 상태 ε -closure(T_a)로 입력 기호 a를 받아 이동하는 전이를 생성한다. (ε -closure(T_a)가 DFA에 이미 존재한다면 전이만 생성한다.)
 - 6. 집합 D_s 가 공집합이 될 때까지 3. 과정을 반복한다.
 - 7. 새롭게 만들어진 DFA의 상태 T'이 아래 조건을 만족하면 DFA의 최종 상태가 된다.

$$\varepsilon$$
-closure $(q_0) = \{q_0, q_1, q_2, q_4, q_7, q_8\}$

start
$$\rightarrow \boxed{0,1,2,4,7,8}$$

$$\begin{split} \varepsilon\text{-closure}(q_0) &= \{q_0, q_1, q_2, q_4, q_7, q_8\} \\ &\to \varepsilon\text{-closure}(\delta(\{q_0, q_1, q_2, q_4, q_7, q_8\}, a)) = \{q_1, q_2, q_3, q_4, q_6, q_7, q_8, q_9\} \end{split}$$

$$\varepsilon$$
-closure $(q_0) = \{q_0, q_1, q_2, q_4, q_7, q_8\}$

$$\rightarrow \varepsilon\text{-closure}\big(\delta\big(\{q_0,q_1,q_2,q_4,q_7,q_8\},b\big)\big) = \{q_1,q_2,q_4,q_5,q_6,q_7,q_8\}$$

• 아래의 NFA를 DFA로 변환해보자.

• 아래의 NFA를 DFA로 변환해보자.

DFA의 크기를 줄이는 방법

- DFA의 상태수를 최소화하기
 - DFA의 상태수를 줄여 DFA를 이용하는 어휘 분석기의 크기를 줄일 수 있다.
 - DFA의 상태 간의 동치 관계equivalence relation를 계산하여 동치인 상태들을 합친다.

Definition

FA의 두 상태 p와 q는 모든 문자열 $w \in \Sigma^*$ 에 대해 아래의 조건을 만족할 때 구분 불가능 $_{\text{indistinguishable}}$ 하다고 말한다:

$$\delta^*(p,w)\in F$$
 일 때 $\delta^*(q,w)\in F$ 이고, $\delta^*(p,w)\notin F$ 일 때 $\delta^*(q,w)\notin F$.

만약 아래의 조건을 만족하는 만족하는 문자열 $w \in \Sigma^*$ 가 존재하면, 두 상태는 구분 가능 $_{
m distinguishable}$ 하다고 말한다:

$$\delta^*(p,w) \in F$$
 이고 $\delta^*(q,w) \notin F$ 이거나, $\delta^*(p,w) \notin F$ 이고 $\delta^*(q,w) \in F$.

DFA 최소화 알고리즘minimization algorithm

DFA $M = (Q, \Sigma, \delta, q_0, F)$ 이 입력으로 주어졌다고 가정하자.

- 알고리즘의 순서는 다음과 같다.
 - 1. 시작 상태 q_0 에서 도달 불가능한unreachable 상태들을 모두 제거한다.
 - 2. 전체 상태를 최종 상태와 최종 상태가 아닌 두 동치류 equivalence class로 나눈다.
 - 하나의 동치류 안에서 같은 입력 기호에 대해 서로 다른 동치류로 가는 전이가 존재하면 그 동치류를 분할하여 나눈다.
 - 4. 더 이상 새로운 분할이 일어나지 않을 때까지 3. 의 과정을 반복한다.
 - 5. 최종적으로 만들어지는 최소화된 DFA $M' = (Q', \Sigma, \delta, q'_0, F')$ 는 다음과 같이 정의된다.
 - Q'의 한 상태를 [q]로 표시하며, 이는 상태 q를 포함하는 동치류를 나타낸다.
 - 두 동치류 [p]와 [q]에 대해 $\delta(p,a) = q$ 면, $\delta'([p],a) = [q]$ 이다.
 - $q_0' = [q_0]$
 - $F' = \{[q] \mid F\}$

입력		2			
	q_0	q_1	q_2	q ₃	q_4
а	1	1	1	1	1
b	1	1	1	2	1

q₃이 b를 읽고 다른 동치류로
 이동하므로, {q₀, q₁, q₂}와 {q₃}을
 분할한다.

입력	1			2	3
	q_0	q_1	q_2	q ₃	q_4
а	1	1	1	1	1
b	1	2	1	3	1

q₁이 b를 읽고 다른 동치류로
 이동하므로, {q₀, q₂}와 {q₁}을
 분할한다.

입력	1		2	3	4
	q_0	q_2	q_1	q_3	q_4
а	2	2	2	2	2
b	1	1	3	4	1

• 더 이상 구분 가능한 동치류가 없음

• 다음 DFA를 최소화해보자.

정규 문법, 정규 표현식, FA의 동치 관계

아래의 방법을 통해 정규 문법, 정규 표현식, FA가 동치 관계임을 증명한다.

- 정규 문법을 정규 표현식으로 변환한다.
- 정규 표현식을 FA로 변환한다.
- FA를 정규 문법으로 변환한다.

즉 임의의 정규 언어가 주어졌을 때, 이것을 셋 중 어떤 것으로도 표현할 수 있다!

정규 문법을 정규 표현식으로 변환하기

- 정규 표현 방정식regular expression equation: 계수가 정규 표현으로 구성된 방정식
- 주어진 정규 문법을 정규 표현 방정식으로 바꾼 후, 방정식의 해를 구한다.

Theorem (아덴 정리_{Arden's theorem})

lpha,eta가 정규 표현식일 때, lpha가 ϵ 을 포함하지 않는다면 X=lpha X+eta의 유일한 해는 $X=lpha^*eta$ 이다. 2

증명

$$X = \alpha X + \beta$$

$$= \alpha(\alpha^*\beta) + \beta$$

$$= \alpha^+\beta + \beta$$

$$= (\alpha^+ + \varepsilon)\beta$$

$$= \alpha^*\beta \text{ (해가 유일하다는 증명은 생략)}$$

²https://web.archive.org/web/20110708171054/https://www.cs.cmu.edu/ cdm/pdf/KleeneAlg.pdf

정규 문법을 정규 표현식으로 변환하기 2

정규 문법 $G = (V_N, V_T, P, S)$ 이 입력으로 주어졌다고 가정하자.

- 알고리즘의 순서는 다음과 같다.
 - 1. 정규 문법으로부터 정규 표현 방정식을 만든다.
 - 2. 정규 표현 방정식 중 $X = \alpha X + \beta$ 꼴의 식을 찾아 모두 $X = \alpha^* \beta$ 로 변환한다.
 - 3. 다른 방정식에 새롭게 구해진 정규 표현식을 대입하여 시작 기호에 해당하는 정규 표현식을 찾는다.
 - 4. 시작 기호에 대해 정규 표현식을 찾게 되면, 해당 정규 표현식이 기존 정규 문법이 생성하던 언어를 표현하게 된다.

정규 문법을 정규 표현식으로 변환하는 예

다음 정규 문법 G를 정규 표현식으로 변환해보자.

$$G = (\{S, A, B\}, \{a, b\}, P, S),$$

$$P = \{S \rightarrow aA \mid bS, A \rightarrow aS \mid bB, B \rightarrow aB \mid bB \mid \epsilon\}.$$

1. 생성 규칙을 정규 표현 방정식으로 변환

$$S = aA + bS$$
, $A = aS + bB$, $B = aB + bB + \varepsilon = (a + b)B + \varepsilon$

- 2. 아덴 정리에 따라, $B = (a+b)^* \varepsilon = (a+b)^*$ 이 된다.
- 3. 구해진 정규 표현식을 다른 방정식에 대입한다.

$$S = aA + bS$$

$$= a(aS + bB) + bS$$

$$= aaS + abB + bS$$

$$= (aa + b)S + ab(a + b)^*$$

정규 표현식을 FA로 변환하기

- 정규 표현식이 재귀적recursively으로 정의되었음을 기억하자.
- 정규 표현식을 더 큰 정규 표현식으로 조립할 때의 경우의 수만큼만 고려하면 된다.
- 공집합 Ø을 인식하는 FA:

• 빈 문자열 ε 을 인식하는 FA:

기호 a ∈ Σ를 인식하는 FA:

정규 표현식을 FA로 변환하기 2

FA M₁과 M₂가 주어졌을 때, L(M₁) + L(M₂)를 인식하는 FA:

FA M₁과 M₂가 주어졌을 때, L(M₁)L(M₂)를 인식하는 FA:

• FA M이 주어졌을 때, L(M)*를 인식하는 FA:

정규 표현식을 FA로 변환하기 예

• 정규 표현식 $(a+b)^*$ 를 인식하는 FA를 구성해보자.

• 정규 표현식 $(a+b)^*a$ 를 인식하는 FA를 구성해보자.

FA를 정규 문법으로 변환하기

- FA를 정규 문법으로 변환하는 것은 매우 간단하다.
- FA $M = (Q, \Sigma, \delta, q_0, F)$ 가 주어졌다고 가정하자.
 - **1.** $V_N = Q$, $V_T = \Sigma$, $S = q_0$ 로 둔다.
 - 2. $\delta(q,a)=p$ 꼴의 상태 전이마다 $q\to ap$ 꼴의 생성 규칙을 P에 추가한다.
 - 3. 최종 상태 집합에 속하는 $q \in F$ 에 대해, $q \to \varepsilon$ 생성 규칙을 추가한다.
- 아래의 예를 통해 연습해보자.

Any questions?

참고문헌

- A. Aho, J. Ullman, R. Sethi, M. S. Lam, Compilers: Principles, Techniques, and Tools (2nd Edition),
 Addison Wesley, 2006
- R. Sebesta, Concepts of Programming Languages, 5th Edition, Addison-Wesley, 2001
- K. C. Louden, Compiler Construction: Principles and Practice, Cengage Learning, 1997
- K. C. Louden and K. A. Lambert, Programming languages: Principles and Practice, 3rd Edition,
 Cengage Learning, 2012
- 박두순, 컴파일러의 이해, 한빛아카데미, 2016
- 김종훈, 김종진, 프로그래밍 언어론 : 쉽게 배우는 언어의 원리와 구조, 한빛미디어, 2013