UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

FACULTAD DE INGENIERÍA DE SISTEMAS COMPUTACIONALES

PRINCIPIOS DE PROGRAMACIÓN

LABORATORIO 1

PRESENTADO POR: JULIÁN CIPAGAUTA E-8-139960

PRESENTADO A: MG. KEXY RODRÍGUEZ

15 DE SEPTIEMBRE DE 2021 CIUDAD DE PANAMÁ, PANAMÁ

Enunciado

Escriba un algoritmo que pida al docente 5 (cinco) calificaciones para obtener el promedio final.

Entradas	Proceso	Salida
notes idx = 0	Recibe las notas en un arreglo, las suma, divide entre 5 y retorna el resultado	average

```
Algoritmo GetAverageNote
* A partir de 5 notas dadas por el usuario, obtiene el promedio.
*/
{
/**
  * Bloque de variables de entrada
 flotante notes[5];
  * Bloque de variables de control
 entero idx;
  * Bloque de variables de salida
 flotante average;
  * Bloque de Instrucciones
 imprimir("¡Hola! Soy un algoritmo para el promedio de 5 notas.\n");
 idx = 0;
 hacer {
  imprimir("¿Cuál sería la nota #", (idx + 1), "?: ");
  leer(notes[idx]);
  average += notes[idx] / 5;
  imprimir("\n");
  idx++;
 } mientras (idx < 5);
```

```
imprimir("Perfecto, el promedio final es: ", average, "\n");
imprimir("¡Buen día!\n");
/**
 * Fin
 */
}
```

Los datos de prueba a considerar para la prueba de escritorio serán: 65,75.8,90,89 y 95 para la variable *notes*.

Variables en memoria		Pantalla	
notes	average	Faillalla	
{65,75.8,90,89,95}	82.96	¡Hola! Soy un algoritmo para el promedio de 5 notas. ¿Cuál sería la nota #1?: 65 ¿Cuál sería la nota #2?: 75.8 ¿Cuál sería la nota #3?: 90 ¿Cuál sería la nota #4?: 89 ¿Cuál sería la nota #5?: 95 Perfecto, el promedio final es: 82.96 ¡Buen día!	

Enunciado

Escriba un algoritmo que lea la temperatura en Fahrenheit y la transforme a Celsius.

Entradas	Proceso	Salida
fahrenheit	Recibe una medida en fahrenheit, le resta 32, la multiplica por 5, la divide en 9 y retorna el valor.	celsius

```
Algoritmo FahrenheitToCelsius
* A partir de una temperatura en Fahrenheit (°F) convertirla a su equivalente en
Celsius
* (°C).
*/`
{
  * Bloque de variables de entrada
 flotante fahrenheit;
 * Bloque de variables de salida
 flotante celsius;
 * Bloque de Instrucciones
 imprimir("¡Hola! Soy un algoritmo para calcular la conversión");
 imprimir("de Fahrenheit a Celsius\n");
 imprimir("Para comenzar, ¿Cuál sería la temperatura en Fahrenheit (°F)?:\n");
 leer(fahrenheit);
 celsius = ((fahrenheit - 32) * 5) / 9;
 imprimir("Perfecto, la temperatura en celsius es: ", celsius, "°C\n");
 imprimir("¡Buen día!\n");
  * Fin
  */
}
```

Los datos de prueba a considerar para la prueba de escritorio serán: 105.6 para la variable fahrenheit.

Variables en memoria		Pantalla
fahrenheit	celsius	r ailtalla
105.6	40.89	¡Hola! Soy un algoritmo para calcular la conversión de Fahrenheit a Celsius Para comenzar, ¿Cuál sería la temperatura en Fahrenheit (°F)?: 105.6 Perfecto, la temperatura en celsius es: 40.89°C ¡Buen día!

Enunciado

Escriba un algoritmo que lea el precio de 2(dos) productos y calcule el total a pagar con el impuesto de 7%.

Entradas	Proceso	Salida
product1 product2 ITBMS = 0.07	Recibe el valor de dos productos, los suma, obtiene el impuesto (7%) y retorna el monto total.	subtotal tax total

```
Algoritmo GetTotalPriceOfTwoProducts
 * A partir del precio de dos productos, retorna el precio total con impuesto del
 */
 * Bloque de Constantes
 ITBMS = 0.07;
 * Bloque de variables de entrada
 flotante product1, product2;
 * Bloque de variables de salida
 flotante tax, subtotal, total;
 * Bloque de Instrucciones
 imprimir("¡Hola! Soy un algoritmo para calcular el impuesto de 2 productos.\n");
 imprimir("Para comenzar, ¿Cuál es el precio del producto 1?:\n");
 leer(product1);
 imprimir("Ahora, ¿Cuál es el precio del producto 2?:\n");
 leer(product2);
 subtotal = product1 + product2;
 tax = subtotal * ITBMS;
 total = subtotal + tax;
 imprimir("Perfecto, este es el total:\n");
 imprimir("-----
 imprimir("Producto 1: B/. ", product1, "\n");
```

```
imprimir("Producto 2: B/. ", product2, "\n");
imprimir("Subtotal: B/. ", subtotal, "\n");
imprimir("Impuestos: B/. ", tax, "\n");
imprimir("Total B/. ", total,"\n", );
imprimir("-----\n");
/**

* Fin
*/
}
```

Los datos de prueba a considerar para la prueba de escritorio serán: 1.99 para la variable *product1* y 8.95 para la variable *product2*.

Variables en Memoria				
product1 product2 tax subtotal total				total
1.99	8.95	0.77	10.94	11.71

Pantalla

¡Hola! Soy un algoritmo para calcular el impuesto de 2 productos.

Para comenzar, ¿Cuál es el precio del producto 1?:

1.99

Ahora, ¿Cuál es el precio del producto 2?:

8.95

Perfecto, este es el total:

Producto 1: B/. 1.99 Producto 2: B/. 8.95 Subtotal: B/. 10.94

Impuestos: B/. 0.77

Total B/. 11.71

Enunciado

Escriba un algoritmo que lea una cantidad en galones y lo transforme a litros

Entradas	Proceso	Salida
gallons GALLONS_TO_LITERS = 3.78541	Recibe un valor en galones, lo multiplica por la razón de cambio y retorna el valor en litros.	liters

```
Algoritmo GallonsToLiters
 * A partir de una medida de volumen en galones, retornar la medida en litros.
 * Bloque de Constantes
 GALLONS TO LITERS = 3.78541;
/**
 * Bloque de variables de entrada
 flotante gallons;
 * Bloque de variables de salida
 flotante liters;
 * Bloque de Instrucciones
 imprimir("¡Hola! Soy un algoritmo para convertir galones a litros. \n");
 imprimir("Para comenzar: ¿Cuántos galones tienes?\n");
 leer(gallons);
 liters = gallons * GALLONS_TO_LITERS;
 imprimir("Usted tiene ", liters, " litros.\n");
 imprimir("¡Buen día!\n");
 /**
 * Fin
```

```
*/
}
```

Los datos de prueba a considerar para la prueba de escritorio serán: 45.5 para la variable *gallons*.

Variables en Memoria		Pantalla	
gallons	liters		
45.5	172.24	¡Hola! Soy un algoritmo para convertir galones a litros. Para comenzar: ¿Cuántos galones tienes? 45.5 Usted tiene 172.24 litros. ¡Buen día!	

Enunciado

Escriba un algoritmo que lea el precio de un producto y le calcule el descuento del 25%. El algoritmo debe imprimir el precio inicial, el descuento y el precio final

Entradas	Proceso	Salida
grossPrice DISCOUNT_PERCENTA GE = 0.25	Recibe el valor de un producto, le resta el 25% de descuento y retorna el monto final.	discount totalPrice

```
Algoritmo GetDiscountedPrice
 * A partir de un precio, calcular el descuento del 25% y retornar el valor total.
 * Bloque de Constantes
 DISCOUNT PERCENTAGE = 0.25
 * Bloque de variables de entrada
float grossPrice;
 * Bloque de variables de salida
float discount, totalPrice;
 * Bloque de Instrucciones
imprimir("¡Hola! Soy un algoritmo para calcular el 25%% de descuento en un
precio dado por ti.");
imprimir("Para iniciar, ¿Cuál es el precio inicial?:");
 leer(grossPrice);
 discount = grossPrice * DISCOUNT PERCENTAGE;
 totalPrice = grossPrice - discount;
 imprimir("¡Listo! Estos son los resultados:");
 imprimir("-----");
```

```
imprimir("Precio inicial: B/. ", grossPrice);
imprimir("Descuento: -B/. ", discount);
imprimir("Precio final: B/. ", totalPrice);
imprimir("------");
imprimir("¡Buen día!");
/**
  * Fin
  */
}
```

Los datos de prueba a considerar para la prueba de escritorio serán: 250.95 para la variable *grossPrice*.

Variables en memoria		
grossPrice	discount	totalPrice
250.95	62.74	188.21

Pantalla

¡Hola! Soy un algoritmo para calcular el 25% de descuento en un precio dado por ti.

Para iniciar, ¿Cuál es el precio inicial?:

250.95

¡Listo! Estos son los resultados:

Precio inicial: B/. 250.95 Descuento: -B/. 62.74 Precio final: B/. 188.21

¡Buen día!

Enunciado

Escriba un algoritmo que transforme de dólares a Renminbi.

Entradas	Proceso	Salida
dollars YUAN_TO_DOLLARS = 6.46	Recibe un monto en dólares, lo multiplica por el factor de cambio y retorna el resultado en Renminbi.	yuans

```
Algoritmo DollarToRenminbi
 * A partir de un monto en dólares, retorna el valor en Renminbi
 * Bloque de Constantes
 YUAN TO DOLLARS = 6.46;
 * Bloque de variables de entrada
 */
 float dollars;
 * Bloque de variables de salida
 float yuans;
 * Bloque de Instrucciones
 imprimir("¡Hola! Soy un algoritmo para cambiar dólares a yuanes (Renminbi).");
 imprimir("Para iniciar, ¿Cuántos dólares tienes?:");
 leer(dollars);
 yuans = dollars * YUAN TO DOLLARS;
 imprimir("Tienes \(\frac{\pmathbf{Y}}{\pmathbf{I}}\), yuans);
 imprimir("¡Muchas gracias!");
 * Fin
```

Los datos de prueba a considerar para la prueba de escritorio serán: 1250.50 para la variable dollars.

	/ariables en memoria Pantalla		
dollars	yuans		
1250.50	8078.23	¡Hola! Soy un algoritmo para cambiar dólares a yuanes (Renminbi). Para iniciar, ¿Cuántos dólares tienes?: 1250.50 Tienes ¥/. 8078.23 ¡Muchas gracias!	

Enunciado

Escriba un algoritmo que calcule el ITBMS de un producto y el total a pagar

Entradas	Proceso	Salida
grossPrice TAX_PERCENTAGE = 0.07	Recibe un monto, calcula el ITBMS (7%), lo suma y retorna el total.	tax totalPrice

```
Algoritmo TaxCalculator
 * Recibe un precio y devuelve el precio total con el impuesto (7%)
 * Bloque de Constantes
TAX PERCENTAGE = 0.07;
 * Bloque de variables de entrada
flotante grossPrice;
 * Bloque de variables de salida
flotante tax, totalPrice;
 * Bloque de Instrucciones
 imprimir("¡Hola! Soy un algoritmo que te ayudará a saber el precio total de un
producto."):
imprimir("Para iniciar, me podrías decir: ¿Cuál es el precio inicial?");
leer(grossPrice);
tax = grossPrice * TAX PERCENTAGE;
 totalPrice = grossPrice + tax;
 imprimir("¡Listo! esto son los resultados:");
 imprimir("-----");
imprimir("Precio: ", grossPrice);
imprimir("Impuesto: B/. ", tax);
imprimir("Total: B/. ", totalPrice);
 imprimir("-----");
 imprimir("¡Gracias por utilizarme!");
```

```
imprimir("¡Buen día!");
/**

* Fin
*/
}
```

Los datos de prueba a considerar para la prueba de escritorio serán: 8.95 para la variable *grossPrice*.

Variables en memoria			
grossPrice tax		totalPrice	
8.95	0.63	9.58	

Pantalla

¡Hola! Soy un algoritmo que te ayudará a saber el precio total de un producto. Para iniciar, me podrías decir: ¿Cuál es el precio inicial? 8.95

¡Listo! esto son los resultados:

Precio: B/. 8.95 Impuesto: B/. 0.63 Total: B/. 9.58

¡Gracias por utilizarme!

¡Buen día!

Enunciado

Escriba un algoritmo que calcule el salario mensual a partir de un pago por hora considerando que labora 45 horas semanales

Entradas	Proceso	Salida
fare HOURS_PER_DAY = 8 HOURS_PER_WEEK = 45 WEEKS_PER_MONTH = 4 MONTHS_PER_YEAR = 13	Recibe una tarifa por hora, la multiplica por los distintos factores de cambio para retornar el salario anual, mensual, semanal y diario.	annualSalary monthlySalary weeklySalary dailySalary

```
Algoritmo GetSalary
* Retorna el valor del salario diario, semanal, mensual y anual a partir del valor
 * por hora.
*/
/**
 * Bloque de Constantes
 HOURS PER DAY = 8;
 HOURS_PER_WEEK = 45;
WEEKS_PER_MONTH = 4;
 MONTHS PER YEAR = 13;
 * Bloque de variables de entrada
 */
flotante fare;
 * Bloque de variables de salida
flotante annualSalary, monthlySalary, weeklySalary, dailySalary;
 * Bloque de Instrucciones
 imprimir("¡Hola! Soy un algoritmo para calcular tu salario total.\n");
 imprimir("Para empezar, me podrías decir: ¿Cuánto ganas por hora?\n");
 leer(fare);
```

```
weeklySalary = fare * HOURS PER WEEK;
dailySalary = fare * HOURS PER DAY;
monthlySalary = weeklySalary * WEEKS_PER_MONTH;
annualSalary = monthlySalary * MONTHS PER YEAR;
imprimir("Listo, esta sería la información de tu salario:\n");
imprimir(" Con un pago por hora de: B./ ", fare, "\n");
imprimir("-----\n"):
imprimir("Por día ganas: B/. ", dailySalary, "\n");
imprimir("Por semana ganas: B/. ", weeklySalary, "\n");
imprimir("Por mes ganas: B/. ", monthlySalary, "\n");
imprimir("Por año ganas: B/. ", annualSalary, "**\n");
imprimir("-----\n");
imprimir("** Estamos asumiendo que tu empresa paga 28 días al mes ");
imprimir("y 13 meses por año, como lo establece la ley.\n");
imprimir("¡Buen día!\n");
* fin
*/
```

Los datos de prueba a considerar para la prueba de escritorio serán: 12.50 para la variable fare

Variables en memoria				
fare	dailySalary	weeklySalary	MonthlySalary	AnnualSalary
12.50	100.00	562.50	2250.00	29250.00

Pantalla

¡Hola! Soy un algoritmo para calcular tu salario total.

Para empezar, me podrías decir: ¿Cuánto ganas por hora?

12.50

Listo, esta sería la información de tu salario:

----- Con un pago por hora de: B./ 12.50

Por día ganas: B/. 100.00 Por semana ganas: B/. 562.50 Por mes ganas: B/. 2250.00 Por año ganas: B/. 29250.00**

** Estamos asumiendo que tu empresa paga 28 días al mes y 13 meses por año, como establece la ley.

¡Buen día!

Enunciado

Escriba un algoritmo que calcule cuánto es el descuento del seguro educativo (1.25%) de un salario mensual.

Entradas	Proceso	Salida
ED_DESC = 0.125 grossSalary	Recibe el monto bruto del salario, calcula el descuento educativo, se lo aplica y retorna el salario neto.	discount netSalary

```
Algoritmo GetNetSalary
* A partir de un salario bruto, retorna en pantalla el salario con el descuento
educativo
 * aplicado.
 */
 * Bloque de Constantes
  ED DESC = 0.125;
 * Bloque de variables de entrada
flotante grossSalary;
 * Bloque de variables de salida
 flotante netSalary, discount;
 * Bloque de Instrucciones
imprimir("¡Hola! Soy un algoritmo diseñado para ayudarte a obtener tu salario
neto después del descuento");
imprimir("del seguro educativo (1.25%). Bueno, empecemos... ¿Cuánto fue tu
salario bruto?\n");
leer(grossSalary);
discount = grossSalary * ED DESC;
netSalary = grossSalary - discount;
imprimir("Este mes obtendrás: B/. ", netSalary," y te descontarán -B/. ", discount,
".");
```

```
imprimir("Buen día.");

/**
  * Fin
  */
}
```

Los datos de prueba a considerar para la prueba de escritorio serán: 1850.96 para la variable *grossSalary*.

Variables en memoria		
grossSalary	discount	netSalary
1850.96	231.37	1619.59

Pantalla

¡Hola! Soy un algoritmo diseñado para ayudarte a obtener tu salario neto después del descuento

del seguro educativo (1.25%). Bueno, empecemos... ¿Cuánto fue tu salario bruto?

1850.96

Este mes obtendrás: B/. 1619.59 y te descontarán -B/. 231.37 Buen día.

Enunciado

Escriba un algoritmo para calcular la distancia recorrida en metros a partir de la velocidad constante Km/h y un tiempo determinado (h).

Entradas	Proceso	Salida
speed hours minutes	Recibe una velocidad, un total de horas y minutos de trayecto, convierte los minutos a decimales, se los suma a las horas, multiplica las horas por la velocidad y retorna la distancia de recorrido total.	distance

```
Algoritmo GetDistance
 * Recibe una velocidad, un total de horas y minutos de trayecto y retorna la
distancia de
 * recorrido total.
 * Bloque de variables de entrada
 flotante speed;
 entero minutes, hours;
 * Bloque de variables de salida
 flotante distance;
  * Bloque de Instrucciones
 imprimir("¡Hola! Soy un algoritmo diseñado exclusivamente para decirte la
distancia recorrida en determinado tiempo.");
 imprimir("Bueno, empecemos... Por favor, introduce la velocidad:");
 leer(speed):
 imprimir("¡Perfecto!, tu velocidad es de ", speed, " km/h. ¿Por cuántas horas
estuviste en esa velocidad?");
```

```
leer(hours);
imprimir("¡Listo! Ahora, ¿Cuántos minutos?");
distance = speed * (hours + (10 * minutes) / 60);
imprimir("La distancia recorrida fue de ", distance, "km en un tiempo de ", hours,
":", minutes, " horas a ", speed, " km/h.");
imprimir("Espero haber sido de ayuda, ¡gracias!");
imprimir('Ten un buen día');
/**
    * Fin
    */
}
```

Los datos de prueba a considerar para la prueba de escritorio serán: 80.0 para la variable speed, 3 para la variable hours y 0 para la variable minutes.

Variables en memoria			
speed	hours	minutes	distance
80.0	3	0	240.0

Pantalla

¡Hola! Soy un algoritmo diseñado exclusivamente para decirte la distancia recorrida en determinado tiempo.

Bueno, empecemos... Por favor, introduce la velocidad:

80

¡Perfecto!, tu velocidad es de 80.00 km/h. ¿Por cuántas horas estuviste en esa velocidad?

3

¡Listo! Ahora, ¿Cuántos minutos?

0

La distancia recorrida fue de 240.00 km en un tiempo de 3:0 horas a 80.00 km/h.

Espero haber sido de ayuda, ¡gracias!

Ten un buen día