Transmission of Electromagnetic Waves Through Multiple Materials

Michael Daum

Introduction

- EM waves undergo changes in different materials
 - Speed, wavelength, intensity
- Based on material properties $(\varepsilon, \mu, \sigma)$

$$\zeta = \sqrt{\frac{\mu_{eq}}{\varepsilon_{eq}}}$$

• Can be modeled by reflection and transmission coefficients

$$\Gamma_{1,2} = \frac{\zeta_2 - \zeta_1}{\zeta_2 + \zeta_1}$$

$$\tau_{1,2} = \frac{2\zeta_2}{\zeta_2 + \zeta_1}$$

0

Methods

- em-waves package in python
 - Numpy and matplotlib
 - Medium, wave, and sine classes
- Modified package
 - Relied on lists
 - Medium/sine classes unchanged
 - Methods to calculate constants changed
 - Animation function changed

Results

Conclusions

- Substantial more work to make package usable for people in this industry
 - Fix amplitude calculations (position dependence centered at zero)
 - Thickness
 - Co-channel interference
 - Higher order transmission/reflection
- Currently good for introductions to the ideas using qualitative graphs