Université de Batna 2 3^{eme} année SAD Faculté des Mathématiques et Informatique Année 2021-2022 Département de mathématiques

Examen final (Statistiques inférentiélles 2)

Exércice 1 (Intérogation) Dans le but de vérifier si un dé est bien équilibré une machine "lance" le dé 1000 fois et on observe le nombre de points sur la face visible du dé. Les résultats sont donnés dans le tableau suivant

Face	1	2	3	4	5	6
Observations	180	167	158	210	135	150

Faire un test au niveau 5% pour vérifier si le dé est équilibré.

Remarque: Utilisez les conditions d'application du test du **khi-deux** (χ^2)

Exércice 2 On s'intéresse au rendement d'orge pour quatre variétés différentes. On dispose de quatre parcelles avec une variété d'orge pour chacune. On répète cette expérience à des endroits différents. On a obtenu :

	variété 1	variété 2	variété 3	variété 4
	46	57	50	39
	43	53	41	51
	48	43	47	45
		54	42	43
		48		
Total	137	255	180	178
Nombres d'observations	3	5	4	4

-Soit le tableau d'analyse de la variance suivant:

Variation	Somme des carrés	Degré de liberté	Quotient
Variation due au facteur	$nS_A^2 = \dots$	k - 1 =	$\frac{n\mathbf{S}_A^2}{\mathbf{k} - 1} = \dots$
Variation résiduelle	$nS_R^2 = 263, 6667$	$n - k = \dots$	$\frac{n\mathbf{S}_R^2}{\mathbf{n} - \mathbf{k}} = \dots$
Variation totale	$nS^2 = \dots$	n - 1 =	

- 1. Completez le tableau
- **2**. Calculer les estimations des moyennes \bar{x}_1 , \bar{x}_2 , \bar{x}_3 , \bar{x}_4 et \bar{x} . Considérons l'hypothèse entre les rendement des différentes variétés d'orge

 (\mathbf{H}_0) : les rendements moyens de chaque variété sont égaux contre

 $(\mathbf{H}_1):$ il y a une différence significative entre les rendement des différentes variétés d'orge

Peut-on considérer que les quatre types d'orges sont équivalents a un seuil de risque $\alpha = 5\%$,

Bon courage

Solution

Exercice 1 (Intérogation) Considérons la v.a. qui donne le nombre de points sur la face visible du dé, on veut confronter les hypothèses

$$\begin{cases}
H_0: p_i = \frac{1}{6} \text{ pour chaque } i = 1, 2, \dots 6 \\
H1: p_i \neq \frac{1}{6} \text{ pour au moins un } i
\end{cases}$$
(La var X suit la loi uniforme) — (1points)

Le test d'ajustement du khi-deux est de rejeter H_0 si

$$\chi_{calc}^{2} = \sum_{i=1}^{k} \frac{(O_{i} - T_{i})^{2}}{T_{i}} \ge \chi_{k-1,\alpha}^{2}$$

où k = 6 et $\alpha = 0.05$. On obtien

	x_i	1	2	3	4	5	6	$\longrightarrow \boxed{(2points)}$
ĺ	T_i	166.67	166.67	166.67	166.67	166.67	166.67	(2points)

$$p = \frac{180 + 167 + 158 + ...150}{6} = \frac{1000}{6} = 166.67 \text{ et } T_i = Np_i \longrightarrow \boxed{\text{(1points)}}$$

et ainsi les conditions d'application du test du khi-deux sont respectées. On observe

$$\chi^{2}_{calc} = \sum_{i=1}^{k} \frac{(O_{i} - T_{i})^{2}}{T_{i}} = \frac{(180 - 166.67)^{2}}{166.67} + \frac{(167 - 166.67)^{2}}{166.67} + \dots \frac{(150 - 166.67)^{2}}{166.67}$$

$$= 20.468 \longrightarrow 1 \text{point}$$

Or $\chi^2_{\mathbf{5},\mathbf{0.05}} = \mathbf{11.07}$ donc on rejette H_0 et on doit conclure avec un niveau de $\mathbf{5}\%$ que le dé n'est pas équilibré. \longrightarrow $(\mathbf{1points})$

Exercice 2 On a

$$n = 16, n_1 = 3, n_2 = 5, n_3 = 4, n_4 = 45 \longrightarrow \boxed{\text{(1points)}}$$

$$egin{array}{lll} ar{x}_1 &=& rac{1}{3}({f 137}) = {f 45}, {f 67}; \, ar{f x}_2 = rac{1}{5}({f 255}) = {f 51}, {f 00}, \, ar{f x}_3 = rac{1}{4}({f 180}) = {f 45}, {f 00} \ , \ ar{x}_4 &=& rac{1}{4}({f 178}) = {f 44}, {f 50}; \, ar{f x} = rac{1}{16}({f 3} imes {f 45}, {f 67} + {f 5} imes {f 51}, {f 00} + {f 4} imes {f 45}, {f 00} + {f 4} imes {f 44}, {f 50}) = {f 46}, {f 8750}: \ ar{f 8750} &=& {f 175} + {f 175} +$$

1. Considérons l'hypothèse (H_0) : les rendements moyens de chaque variété sont égaux. En effet, la décomposition de la variation totale dans cette situation sera :

$$SC_{Tot} = nS^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{ij}^{2} - \frac{1}{n} \left(\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{ij} \right)^{2}$$

$$= 46^{2} + 43^{2} \dots + 43^{2} - \frac{(750)^{2}}{16} \longrightarrow (2points)$$

$$SC_{Fac} = SC_{Tot} - SC_{Res} = nS^{2} - nS_{R}^{2}$$

$$= 389.7500 - 263.6667 = 126.0833 \longrightarrow (2points)$$

 SC_{Res} est donnée

2.

Variation	Somme des carrés	Degré de liberté	Quotient		
due au facteur S_A^2	126.0833	3	$\frac{n \times S_A^2}{3} = 42.0278$		(2points)
résiduelle SC_{Res}	263.6667	12	$\frac{n imes S_R^2}{14} = 21.9722$,	(2points)
totale nS^2	389.7500	15			

On a d'une part $F_{obs} = 1,9128$ et d'autre part

$$f_{\alpha} = f(\mathbf{3}, \mathbf{12}, \mathbf{0.99}) = \mathbf{5}, \mathbf{9525} \longrightarrow \boxed{\mathbf{(2points)}},$$

alors on ne rejette pas H_0 car $F_{obs} < f\alpha$, cela signifier qu'il y a pas une différence significatives entre les rendement des différentes variétés d'orge \longrightarrow (2points)

$$F_{obs} = rac{\dfrac{n imes S_A^2}{3}}{\dfrac{n imes S_R^2}{12}} = \mathbf{1}, \mathbf{9128} - \mathbf{1}$$
 (1points)