# 数学笔记

Ying Kanyang\*

April 1, 2018

# Contents

| 1 笔记正文 |     | 建文                                          | 2 |
|--------|-----|---------------------------------------------|---|
|        | 1.1 | March 11, 2018                              | 2 |
|        |     | 1.1.1 <b>题</b> 1 <b>,</b> 2004 <b>年全国赛题</b> | 2 |
|        | 1.2 | April 01, 2018                              | 4 |
|        |     | 191 期9 无来源                                  |   |

 $<sup>^*</sup>$ Ningbo Foreign Language School J<br/>1907

# 1 笔记正文

## 1.1 March 11, 2018

#### 1.1.1 题 1, 2004 年全国赛题

已知点 A(0,3)、B(-2,-1)、C(2,-1), $P(t,t^2)$  为抛物线  $y=x^2$  上位于三角形 ABC 内(包括边界)的一动点,BP 所在直线交 AC 于 E,CP 所在直线交 AB 于 F。请将  $\frac{BF}{CE}$  表示为自变量 t 的函数。



#### 思路:

第一种方法就是直接解析,计算出点的坐标并求出 BF 与 CE 的长度,从而得出比值。但是这种方法需要深厚的代数功底,需要解出大量高次含参方程,不推荐在竞赛考试中使用。

第二种方法借助了相似,通过相似将  $rac{BF}{CE}$  转换为另一个可简单表示并化简的代数式。但是比较难想到。

#### 解法一:

通过解析,得到下列直线的解析式:

$$\begin{cases}
AB : y = 2x + 3 \\
AC : y = -2x + 3
\end{cases}$$

$$BP : y = \frac{t^2 + 1}{t + 2}x + \frac{2t^2 - t}{t + 2}$$

$$CP : y = \frac{t^2 + 1}{t - 2}x - \frac{2t^2 + t}{t - 2}$$
(1)

通过联立方程组的方式,得到  $E(\frac{-2t^2+4t+6}{t^2+2t+5},\frac{7t^2-2t+3}{t^2+2t+5})$  与  $F(\frac{2(t^2+2t-3)}{t^2-2t+5},\frac{7t^2+2t+3}{t^2-2t+5})$  用欧几里得算法得到 BF 与 CE 的线段长度:

$$\begin{cases}
BF: \sqrt{\left|\frac{7t^2 + 2t + 3}{t^2 - 2t + 5} + 1\right|^2 + \left|\frac{2(t^2 + 2t - 3)}{t^2 - 2t + 5} + 2\right|^2} \\
CE: \sqrt{\left|\frac{7t^2 + 2t + 3}{t^2 - 2t + 5} + 1\right|^2 + \left|\frac{2(t^2 + 2t - 3)}{t^2 - 2t + 5} + 2\right|^2}
\end{cases} \tag{2}$$

化简<sup>1</sup>得:

$$\begin{cases}
BF : 4\sqrt{5} \left| \frac{t^2 + 1}{t^2 - 2t + 5} \right| \\
CE : 4\sqrt{5} \left| \frac{t^2 + 1}{t^2 - 2t + 5} \right|
\end{cases} \tag{3}$$

 $\therefore \frac{BF}{CE} = \frac{t^2 + 2t + 5}{t^2 - 2t + 5} \, ^2$ 



过 P 作 BC 平行线交 AB 与 AC 于点 M 和 N

过 P 作 AB 平行线交 BC 于点 I

过 P 作 AC 平行线交 BC 于点 J

:: MB = NC

<sup>1</sup>本步骤使用了 Mathematica

 $2t^{2}+2t+5$  与  $t^{2}-2t+5$  恒成立

$$\frac{BF}{CE} = \frac{BF}{MB} \cdot \frac{CN}{CE}$$

$$= \frac{BC}{CI} \cdot \frac{BJ}{BC}$$

$$= \frac{BJ}{CI}$$

$$= \frac{BC - PN}{BC - PM}$$

$$= \frac{BC - (\frac{1}{2}MN - t)}{BC - (\frac{1}{2}MN + t)}$$

代入  $MN = 3 - t^2$  与 BC = 4,可得  $\frac{BF}{CE} = \frac{t^2 + 2t + 5}{t^2 - 2t + 5}$ 

一般地,对于上述的解法,需要注意 P 的范围,通过求出抛物线与线段 AB 和 AC 的交点,得到范围  $-1\leqslant t\leqslant 1$ 

## 1.2 April 01, 2018

#### 1.2.1 题 2, 无来源

已知抛物线  $y=x^2+(k+1)x+1$  与 x 轴的两交点 A、B 不全在原点的左侧,抛物线顶点为 C,则当  $\Delta ABC$  恰为等腰三角形时,求 k 的值。

#### 思路:

讨论制约条件并进行解析。

#### 解:

- $\therefore$  函数与 x 轴有两个交点
- $\begin{array}{l} \therefore \Delta > 0 \\ \Delta = (k+1)^2 4 \\ \vdots \\ = k^2 + 2k + 1 4 \\ \vdots \\ = k^2 + 2k 3 \\ > 0 \end{array}$
- $\therefore k > 3$  或 k < -1
- : 两交点 A、B 不全在原点的左侧且  $x^2 + (k+1)x + 1 = 0$  两根之积为 1
- $A_x \cdot B_x = 1$  且 A、B 均在原点右侧

$$AB = |x_1 - x_2| = \sqrt{(x_1 - x_2)^2}$$

作  $CH \perp x$  轴于点 H

可得  $CH : AH = \sqrt{3} : 1$ 

 $=\sqrt{k^2+2k-3}$ 

$$\begin{cases} x_1 \cdot x_2 > 0 \\ x_1 + x_2 > 0 \end{cases} \tag{4}$$

进一步,推导出:

$$\frac{AH \cdot \sqrt{3} = CH}{\frac{\sqrt{3[(k+1)^2 - 4]}}{2}} = \frac{(k+1)^2 - 4}{4}$$
(5)

令  $(k+1)^2-4$  为  $\alpha$ 解得

$$\begin{cases} \alpha_1 = 0\\ \alpha_2 = 12 \end{cases} \tag{6}$$

对于  $(k+1)^2 - 4 = \alpha_1$ , 解得:

$$\begin{cases}
k_1 = 1 \\
k_2 = -3
\end{cases}$$
(7)

对于  $(k+1)^2 - 4 = \alpha_2$ , 解得:

$$\begin{cases}
k_3 = 3 \\
k_4 = -5
\end{cases}$$
(8)

:: 制约条件

 $\therefore k = -3$  或 -5

特殊的, 当 k=-3 时, A、B、C 三点重合,  $\Delta ABC$  不存在

 $\therefore k = -5$