

Table of Contents: Volume 244 1986

No. 1 1–242 issued on 02.04.1986
No. 2 243–470 issued on 24.04.1986
No. 3 471–694 issued on 22.05.1986

Abolinš-Krogis A: The effect of carbonic anhydrase, urea and urease on the calcium carbonate deposition in the shell-repair membrane of the snail, *Helix pomatia* L. 655–660

Abrahamsohn PA, see Zorn TMT, et al. 445–450

Adal MN: The transverse tubular system of cat intrafusal muscle fibres 197–202

Aida I, Sakai Y, Matsushima S, Kamiguchi Y, Mikamo K: A quantitative study of synaptic ribbons in pinealocytes of adult Chinese hamsters (*Cricetulus griseus*) under different photoperiodic conditions 107–113

Akisaka T, Gay CV: An ultracytochemical investigation of ouabain-sensitive p-nitrophenylphosphatase in chick osteoclasts 57–62

Alcorn D, see Gall JAM, et al. 203–208

Altner H, Hatt H, Altner I: Structural and functional properties of the mechanoreceptors and chemoreceptors in the anterior oesophageal sensilla of the crayfish, *Astacus astacus* 537–547

Altner H, see Lee J-K 371–383

Altner I, see Altner H, et al. 537–547

Amenta F, see Erdö SL, et al. 621–626

Anderson EO, see Robles LJ, et al. 115–120

Arikuni T, see Ichimura T, et al. 569–576

Ban T, see Fujita H, et al. 63–67

Bartheld von CS, Meyer DL: Central projections of the nervus terminalis in the bichir, *Polypterus palmas* 181–186

Bartheld von CS, Meyer DL: Central connections of the olfactory bulb in the bichir, *Polypterus palmas*, reexamined 527–535

Batten TFC: Ultrastructural characterization of neurosecretory fibres immunoreactive for vasotocin, isotocin, somatostatin, LHRH and CRF in the pituitary of a teleost fish, *Poecilia latipinna* 661–672

Behar T, see Kachar B, et al. 27–38

Bevilacqua EMAF, see Zorn TMT, et al. 445–450

Biasi De S, Frassoni C, Zuccarello LV: Glutamic acid decarboxylase (GAD)-like immunoreactivity in the pedal ganglion of *Mytilus galloprovincialis* 591–593

Blähser S, Oksche A, Farmer DS: Projection of fibers immunoreactive to an antiserum against gonadoliberin (LHRH) into the pineal stalk of the white-crowned sparrow, *Zonotrichia leucophrys gambelii* 193–196

Blanchette-Mackie EJ, Briggs T, Chernick SS, Scow RO: Lipolysis of serum-activated triacylglycerol at the surface of J774.1 macrophages. A biochemical – electron-microscopic study 95–105

Bohnert A, Hornung J, Mackenzie IC, Fusenig NE: Epithelial-mesenchymal interactions control basement membrane production and differentiation in cultured and transplanted mouse keratinocytes 413–431

Boniver J, see Brelinska R, et al. 673–679

Bouzehouane U, see Wolburg H 187–192

Brandt I, see Mechtersheimer G, et al. 471–478

Brelinska R, Houben-Defresne M-P, Boniver J: Multicellular complexes of thymocytes and different types of thymic stromal cells in the mouse 673–679

Breneman JW, see Robles LJ, et al. 115–120

Breton B, see Kah O, et al. 327–337

Briggs T, see Blanchette-Mackie EJ, et al. 95–105

Brown BE, see Menon GK, et al. 385–394

Burnstock G, see Kobayashi Y, et al. 595–604

Burnstock G, see Kobayashi Y, et al. 605–612

Butkus A, see Gall JAM, et al. 203–208

Calas A, see Kah O, et al. 577–582

Callé A, see Magloire H, et al. 133–140

Chan W, see Cutz E, et al. 227–233

Cheng TP-O: Redistribution of cell surface transferrin receptors prior to their concentration in coated pits as revealed by immunoferitin labels 613–619

Chernick SS, see Blanchette-Mackie EJ, et al. 95–105

Christensen TA, see Hoskins SG, et al. 243–252

Cieciora L, Rydzynski K, Pięta P, Klimek I: Freeze-fracture studies on mitochondrial membranes of spermatocytes 439–443

Coghlan JP, see Gall JAM, et al. 203–208

Corrigan A, see Kah O, et al. 327–337

Costa M, see Macrae IM, et al. 173–180

Couet de HG, Jablonski PP, Perkin JL: Calmodulin associated with rhabdomeric photoreceptor microvilli of arthropods and squid 315–319

Crucie WLR, see Stuess SL 147–151

Cutz E, Goniakowska-Witalinska L, Chan W: An immunohistochemical study of regulatory peptides in lungs of amphibians 227–233

Dannies PS, see Martinez-Campos A 21–26

Drews U, see Thiedemann K-U, et al. 153–164

Dubois-Dalcq M, see Kachar B, et al. 27–38

Dubourg P, see Kah O, et al. 577–582

Dulka JG, see Kah O, et al. 327–337

Eastwood AB, see Peachey LD, et al. 9–19

Elger M, Hentschel H: Cell junctions in the renal tubule of a fresh-water teleost, *Salmo gairdneri* Rich. 395–401

Elias PM, see Menon GK, et al. 385–394

Emson PC, see Yokokawa K, et al. 271–278

Endo Y, see Iwanaga T, et al. 565–568

Erdö SL, Somogyi J, Hámori J, Amenta F: Light- and electron-microscopic visualization of γ -aminobutyric acid and GABA-transaminase in the oviduct of rats. Predominant occurrence in epithelium 621–626

Essner E, see Gordon SR 583–589

Farmer DS, see Blähser S, et al. 193–196

Franzini-Armstrong C, see Peachey LD, et al. 9–19

Frassoni C, see Biasi De S, et al. 591–593

Fujita H, Tatsumi H, Ban T, Tamura S: Fine-structural characteristics of the liver of the cod (*Gadus morhua macrocephalus*), with special regard to the concept of a hepatoskeletal system formed by Ito cells 63–67

Fujita M, see Hatae T, et al. 39–46

Fujita T, see Iwanaga T, et al. 565–568

Furness JB, see Macrae IM, et al. 173–180

Fusenig NE, see Bohnert A, et al. 413–431

Gall JAM, Alcorn D, Butkus A, Coghlan JP, Ryan GB: Distribution of glomerular peripolar cells in different mammalian species 203–208

Gambke B, see Maier A, et al. 635–643

Gash DM, see Notter MFD, et al. 69–76

Gausecker von B, Steinmann GG, Hansmann M-L, Harpprecht J, Milicevic NM, Müller-Hermelink H-K: Immunohistochemical characterization of the thymic microenvironment. A light-microscopic and ultrastructural immunocytochemical study 403–412

Gay CV, see Akisaka T 57–62

Geffard M, see Kah O, et al. 577–582

Giris S, see Yokokawa K, et al. 271–278

Glant T, Mikecz K: Antigenic profiles of human, bovine and canine articular chondrocytes 359–369

Goniakowska-Witalinska L, see Cutz E, et al. 227–233

Gordon SR, Essner E: Actin, myosin, and laminin localization in retinal vessels of the rat 583–589

Grayson S, see Menon GK, et al. 385-394
 Grimaud JA, see Magloire H, et al. 133-140
 Guldenaar SEF, Nahke P, Pickering BT: Immunocytochemical evidence for the presence of a mutant vasopressin precursor in the supraoptic nucleus of the homozygous Brattleboro rat 433-438
 Gupta M, see Notter MFD, et al. 69-76
 Halfter W, see Liu L, et al. 501-513
 Hámori J, see Erdő SL, et al. 621-626
 Hand AR, see Jamur MC, et al. 557-563
 Hansmann M-L, see Gaudecker von B, et al. 403-412
 Harding CV, see Lo W-K 253-263
 Harpprecht J, see Gaudecker von B, et al. 403-412
 Hartmann DJ, see Magloire H, et al. 133-140
 Hashimoto PH, see Ichimura T, et al. 569-576
 Hassall CJS, see Kobayashi Y, et al. 595-604
 Hassall CJS, see Kobayashi Y, et al. 605-612
 Hatae T, Fujita M, Sagara H: Helical structure in the apical tubules of several absorbing epithelia. Kidney proximal tubule, visceral yolk sac and ductuli efferentes 39-46
 Hatt H, see Altner H, et al. 537-547
 Heath R, see Yoshimura N, et al. 265-270
 Hentschel H, see Elger M 395-401
 Hildebrand JG, see Hoskins SG, et al. 243-252
 Hillyard CV, see Yokokawa K, et al. 271-278
 Höhne K-H, see Schulze W, et al. 1-8
 Hollingdale MR, see Meis JFGM, et al. 345-350
 Holy JM, Oaks JA: Ultrastructure of the tegumental microvilli (microtriches) of *Hymenolepis diminuta* 459-468
 Homberg U, see Hoskins SG, et al. 243-252
 Hornung J, see Bohnert A, et al. 413-431
 Hoskins SG, Homberg U, Kingan TG, Christensen TA, Hildebrand JG: Immunocytochemistry of GABA in the antennal lobes of the sphinx moth *Manduca sexta* 243-252
 Houben-Drefrene M-P, see Brelińska R, et al. 673-679
 Hunt TC, Rowley AF: Studies on the reticulo-endothelial system of the dogfish, *Scyliorhinus canicula*. Endocytic activity of fixed cells in the gills and peripheral blood leucocytes 215-226
 Ichikawa T, see Yamada C, et al. 687-690
 Ichimura T, Arikuni T, Hashimoto PH: Fine-structural study of the pineal body of the monkey (*Macaca fuscata*) with special reference to synaptic formations 569-576
 Iga T, Matsuno A: Motile iridophores of a freshwater goby, *Odontobutis obscura* 165-171
 Isobe Y, Shimada Y: Organization of filaments underneath the plasma membrane of developing chicken skeletal muscle cells in vitro revealed by the freeze-dry and rotary replica method 47-56
 Iwanaga T, Fujita T, Takeda N, Endo Y, Lederis K: Urotensin I-like immunoreactivity in the midgut endocrine cells of the insects *Gryllus bimaculatus* and *Periplaneta americana* 565-568
 Jablonski PP, see Couet de HG, et al. 315-319
 Jamur MC, Vugman I, Hand AR: Ultrastructural and cytochemical studies of acid phosphatase and trimetaphosphatase in rat peritoneal mast cells developing in vivo 557-563
 Jap PHK, see Meis JFGM, et al. 345-350
 Jasani B, see Yoshimura N, et al. 265-270
 Joffre A, see Magloire H, et al. 133-140
 Jørgensen TM, see Möller JC, et al. 479-491
 Józsa R, Vigh S, Mess B, Schally AV: Ontogenetic development of corticotropin-releasing factor (CRF)-containing neural elements in the brain of the chicken during incubation and after hatching 681-685
 Kachar B, Behar T, Dubois-Dalcq M: Cell shape and motility of oligodendrocytes cultured without neurons 27-38
 Kah O, Breton B, Dulka JG, Nunez-Rodriguez J, Peter RE, Corrigan A, Rivier JE, Vale WW: A reinvestigation of the Gn-RH (gonadotrophin-releasing hormone) systems in the goldfish brain using antibodies to salmon Gn-RH 327-337
 Kah O, Dubourg P, Onteniente B, Geffard M, Calas A: The dopaminergic innervation of the goldfish pituitary. An immunocytochemical study at the electron-microscope level using antibodies against dopamine 577-582
 Kamiguchi Y, see Aida I, et al. 107-113
 Kastner V, see Newgreen DF, et al. 299-313
 Kay J, see Yoshimura N, et al. 265-270
 Kegler LL, see Robles LJ, et al. 115-120
 Kiktenko AI: Biondi bodies in the choroid plexus epithelium of the human brain. A scanning electron-microscopic study 239-240
 Kingan TG, see Hoskins SG, et al. 243-252
 Klimek I, see Cieciura L, et al. 439-443
 Kobayashi H, see Yamada C, et al. 687-690
 Kobayashi Y, Hassall CJS, Burnstock G: Culture of intramural cardiac ganglia of the newborn guinea-pig. I. Neuronal elements 595-604
 Kobayashi Y, Hassall CJS, Burnstock G: Culture of intramural cardiac ganglia of the newborn guinea-pig. II. Non-neuronal elements 605-612
 Krisch B, Nahke P, Richter D: Immunocytochemical staining of supraoptic neurons from homozygous Brattleboro rats by use of antibodies against two domains of the mutated vasopressin precursor 351-358
 Layer PG, see Liu L, et al. 501-513
 Lederis K, see Iwanaga T, et al. 565-568
 Lee J-K, Altner H: Structure, development and death of sensory cells and neurons in the pupal labial palp of the butterflies *Pieris rapae* L. and *Pieris brassicae* L. (Insecta, Lepidoptera) 371-383
 Lindberg I, see Wang Y-N 77-85
 Liu L, Halfter W, Layer PG: Inhibition of cell proliferation by cytosin-arabinoside and its interference with spatial and temporal differentiation patterns in the chick retina 501-513
 Livingston A, Morris B: Localisation of [³H] clonidine binding in rat neurohypophysis by means of electron-microscopic autoradiography 469-471
 Lo W-K, Harding CV: Structure and distribution of gap junctions in lens epithelium and fiber cells 253-263
 Lösecke W, Naumann W, Sterba G: Immuno-electron-microscopic analysis of the basal route of secretion in the subcommisural organ of the rabbit 451-458
 MacIntyre I, see Yokokawa K, et al. 271-278
 Mackenzie IC, see Bohnert A, et al. 413-431
 Macrae IM, Furness JB, Costa M: Distribution of subgroups of noradrenaline neurons in the coeliac ganglion of the guinea-pig 173-180
 Magloire H, Callé A, Hartmann DJ, Joffre A, Serre B, Grimaud JA, Schué F: Type-I collagen production by human odontoblast-like cells in explants cultured on cyanoacrylate films. Electron-immunolocalization of fibronectin at cell/film interface 133-140
 Maier A, Gambke B, Pette D: Degeneration-regeneration as a mechanism contributing to the fast to slow conversion of chronically stimulated fast-twitch rabbit muscle 635-643
 Malendowicz LK, Robba C, Nussdorfer GG: Sex differences in adrenocortical structure and function. XXII. Light- and electron-microscopic morphometric studies on the effects of gonadectomy and gonadal hormone replacement on the rat adrenal cortex 141-145
 Martinez-Campos A, Dannies PS: A possible differentiation of anterior pituitary cells in collagen gels into neurons 21-26
 Masuda H, see Owarike K, et al. 87-93
 Matsuno A, see Iga T 165-171
 Matsushima S, see Aida I, et al. 107-113
 Matsutani T, Nomura T: Serotonin-like immunoreactivity in the central nervous system and gonad of the scallop, *Patinopecten yessoensis* 515-517
 Mechtersheimer G, Brandt I, Möller P: Differences in marker expression among branched histiocytic cells in T-cell areas of

the lymphoreticular system and among their epidermis- and mucosa-associated equivalents 471–478

Meis JFGM, Rijntjes PJM, Verhave J-P, Ponnudurai T, Hollingdale MR, Smith JE, Sinden RE, Jap PHK, Meuwissen JHETH, Yap SH: Fine structure of the malaria parasite *Plasmodium falciparum* in human hepatocytes in vitro 345–350

Menon GK, Grayson S, Brown BE, Elias PM: Lipokeratinocytes of the epidermis of a cetacean (*Phocaena phocena*). Histochemistry, ultrastructure, and lipid composition 385–394

Mess B, see Józsa R, et al. 681–685

Meuwissen JHETH, see Meis JFGM, et al. 345–350

Meyer DL, see Bartheld von CS 181–186

Meyer DL, see Bartheld von CS 527–535

Meyer-Rochow VB, see Obika M 339–343

Mikamo K, see Aida I, et al. 107–113

Mikecz K, see Giant T 359–369

Milicevic NM, see Gadecker von B, et al. 403–412

Milici AJ, Peters K-R, Palade GE: The endothelial pocket. A new structure in fenestrated endothelia 493–499

Møller JC, Jørgensen TM, Mortensen J: Proximal tubular atrophy: Qualitative and quantitative structural changes in chronic obstructive nephropathy in the pig 479–491

Møller M, see Reuss S 691–694

Møller P, see Mechtersheimer G, et al. 471–478

Morinaga S, see Tsumuraya M, et al. 519–525

Morris B, see Livingston A 469–471

Mortensen J, see Møller JC, et al. 479–491

Müller-Hermelink H-K, see Gadecker von B, et al. 403–412

Murachi T, see Yoshimura N, et al. 265–270

Nahke P, see Krisch B, et al. 351–358

Nahke P, see Guldema SEF, et al. 433–438

Nakajima T, see Tsumuraya M, et al. 519–525

Nakajima Y, Obika M: Growth and maturation of melanosomes in the melanophores of a teleost, *Oryzias latipes* 279–283

Nakamura F, Suzuki Y, Yoshimura F: Immunohistochemical and ultrastructural study of anterior pituitary cells in the female Afghan pika, *Ochotona rufescens rufescens* 627–633

Naumann W, see Lösecke W, et al. 451–458

Newgreen DF, Scheel M, Kastner V: Morphogenesis of sclerotome and neural crest in avian embryos. In vivo and in vitro studies on the role of notochordal extracellular material 299–313

Newman GR, see Yoshimura N, et al. 265–270

Nomura T, see Matsutani T 515–517

Notter MF, Gupta M, Gash DM: Neuronal properties of monkey adrenal medulla in vitro 69–76

Nottoli VA, see Robles LJ, et al. 115–120

Nunez-Rodriguez J, see Kah O, et al. 327–337

Nussdorfer GG, see Malendowicz LK, et al. 141–145

Oaks JA, see Holy JM 459–468

Obika M, Meyer-Rochow VB: Ultrastructure of microtubules in dermal melanophores and spinal nerve of the Antarctic teleost *Pagothenia borchgrevinki* 339–343

Obika M, see Nakajima Y 279–283

Oksche A, see Blähser S, et al. 193–196

Onteniente B, see Kah O, et al. 577–582

Owaribe K, Sugino H, Masuda H: Characterization of intermediate filaments and their structural organization during epithelium formation in pigmented epithelial cells of the retina in vitro 87–93

Palade GE, see Milici AJ, et al. 493–499

Peachey LD, Eastwood AB, Franzini-Armstrong C: Shape and disposition of clefts, tubules, and sarcoplasmic reticulum in long and short sarcomere fibers of crab and crayfish 9–19

Perkin JL, see Couet de HG, et al. 315–319

Peter RE, see Kah O, et al. 327–337

Peters K-R, see Milici AJ, et al. 493–499

Pette D, see Maier A, et al. 635–643

Pickering BT, see Guldema SEF, et al. 433–438

Piekos WB: The role of reflecting pigment cells in the turnover of crayfish photoreceptors 645–654

Pięta P, see Cicciura L, et al. 439–443

Ponnudurai T, see Meis JFGM, et al. 345–350

Rehder U, see Schulze W, et al. 1–8

Reuss S, Möller M: Direct projections to the rat pineal gland via the stria medullaris thalami. An anterograde tracing study by use of horseradish peroxidase 691–694

Richter D, see Krisch B, et al. 351–358

Riemer M, see Schulze W, et al. 1–8

Rijntjes PJM, see Meis JFGM, et al. 345–350

Rivier JE, see Kah O, et al. 327–337

Robba C, see Malendowicz LK, et al. 141–145

Robles LJ, Breneman JW, Anderson EO, Nottoli VA, Kegler LL: Immunocytochemical localization of a rhodopsin-like protein in the lipochondria in photosensitive neurons of *Aplysia californica* 115–120

Rowley AF, see Hunt TC 215–226

Ryan GB, see Gall JAM, et al. 203–208

Rydzynski K, see Cicciura L, et al. 439–443

Sagara H, see Hatae T, et al. 39–46

Sakai Y, see Aida I, et al. 107–113

Sato T, Wake K: Separation of the pineal vesicle from the wall of the third ventricle during the post-hatching development of the chicken 321–326

Schally AV, see Józsa R, et al. 681–685

Scheel M, see Newgreen DF, et al. 299–313

Schué F, see Magloire H, et al. 133–140

Schulze W, Riemer M, Rehder U, Höhne K-H: Computer-aided three-dimensional reconstructions of the arrangement of primary spermatocytes in human seminiferous tubules 1–8

Schweers F-M, see Thiedemann K-U, et al. 153–164

Schwerdtfeger WK: Septal afferents to the area dentata terminate on vasoactive intestinal polypeptide (VIP)-like immunoreactive, non-pyramidal neurons. An electron-microscopic immunocytochemical degeneration study in the rat 235–238

Scow RO, see Blanchette-Mackie EJ, et al. 95–105

Serre B, see Magloire H, et al. 133–140

Shimada Y, see Isobe Y 47–56

Shimosato Y, see Tsumuraya M, et al. 519–525

Shiosaka S, see Yokokawa K, et al. 271–278

Shiotani Y, see Yokokawa K, et al. 271–278

Sinden RE, see Meis JFGM, et al. 345–350

Smith JE, see Meis JFGM, et al. 345–350

Sohal GS, see Yamashita T 121–131

Somogyi J, see Erdö SL, et al. 621–626

Sonoda T, see Yokokawa K, et al. 271–278

Steinmann GG, see Gadecker von B, et al. 403–412

Sterba G, see Lösecke W, et al. 451–458

Stuessi SL, Cruce WLR: Afferent and efferent components of the facial nerve in a frog, *Rana pipiens* 147–151

Sugino H, see Owaribe K, et al. 87–93

Suzuki M, see Tsumuraya M, et al. 519–525

Suzuki Y, see Nakamura F, et al. 627–633

Takeda N, see Iwanaga T, et al. 565–568

Tamura S, see Fujita H, et al. 63–67

Tatsumi H, see Fujita H, et al. 63–67

Thiedemann K-U, Vanittanakom P, Schweers F-M, Drews U: Embryonic cholinesterase activity during morphogenesis of the mouse genital tract. Light- and electron-microscopic observations 153–164

Tohyama M, see Yokokawa K, et al. 271–278

Tsumuraya M, Nakajima T, Morinaga S, Shimosato Y, Suzuki M, Yamaguchi K: Morphological variation of immunoreactive cells positive to cholecystokinin 33 (10–20) and gastrin 34 (1–15) in human duodenum 519–525

Ushiki T: A scanning electron-microscopic study of the rat thymus with special reference to cell types and migration of lymphocytes into the general circulation 285–298

Vale WW, see Kah O, et al. 327–337

Vanittanakom P, see Thiedemann K-U, et al. 153-164
Verhave J-P, see Meis JFGM, et al. 345-350
Vigh S, see Józsa R, et al. 681-685
Vugman I, see Jamur MC, et al. 557-563
Wake K, see Sato T 321-326
Wang Y-N, Lindberg I: Distribution and characterization of the opioid octapeptide met⁵-enkephalin-arg⁶-gly⁷-leu⁸ in the gastrointestinal tract of the rat 77-85
Witaliński W: Egg-shells in mites. I. A comparative ultrastructural study of vitelline envelope formation 209-214
Wolburg H, Bouzehouane U: Comparison of the glial investment of normal and regenerating fiber bundles in the optic nerve and optic tectum of the goldfish and the Crucian carp 187-192
Wright GM: Immunocytochemical study of fibronectin in the sea lamprey, *Petromyzon marinus*, and the Atlantic hagfish, *Myxine glutinosa* 549-555
Yamada C, Yamada S, Ichikawa T, Kobayashi H: Immunohistochemical localization of urotensin I and other neuropeptides in the caudal neurosecretory system of three species of teleosts and two species of elasmobranchs 687-690
Yamada S, see Yamada C, et al. 687-690
Yamaguchi K, see Tsumuraya M, et al. 519-525
Yamashita T, Sohal GS: Development of smooth and skeletal muscle cells in the iris of the domestic duck, chick and quail 121-131
Yap SH, see Meis JFGM, et al. 345-350
Yokokawa K, Tohyama M, Shiosaka S, Shiotani Y, Sonoda T, Emson PC, Hillyard CV, Girgis S, MacIntyre I: Distribution of calcitonin gene-related peptide-containing fibers in the urinary bladder of the rat and their origin 271-278
Yoshimura F, see Nakamura F, et al. 627-633
Yoshimura N, Murachi T, Heath R, Kay J, Jasani B, Newman GR: Immunogold electron-microscopic localisation of calpain I in skeletal muscle of rats 265-270
Zorn TMT, Bevilacqua EMAF, Abrahamsohn PA: Collagen remodeling during decidualization in the mouse 445-450
Zuccarello LV, see Biasi De S, et al. 591-593

Indexed in *Current Contents*

Subject Index

Absorptive cells
Hatae T, et al. 39–46

Acid hydrolases
Jamur MC, et al. 557–563

Actin
Coutet de HG, et al. 315–319
Gordon SR, et al. 583–589
Isobe Y, et al. 47–56

Actin filaments
Isobe Y, et al. 47–56
Owaribe K, et al. 87–93

Adenosine triphosphatase
Akisaka T, et al. 57–62

Adrenal cortex
Malendowicz LK, et al.
141–145

Adrenal medulla
Notter MFD, et al. 69–76

Aging
Kiktenko AI 239–240

Antennae
Hoskins SG, et al. 243–252

Area dentata
Schwerdtfeger WK 235–238

Astrocytes
Wolburg H, et al. 187–192

Atrophy
Møller JC, et al. 479–491

Autonomic ganglia
Kobayashi Y, et al. 595–
604, 605–612
Macrae IM, et al. 173–180

Autonomic innervation
Macrae IM, et al. 173–180

Basal body
Erdö SL, et al. 621–626

Basal lamina
Bohnert A, et al. 413–431

Biondi bodies
Kiktenko AI 239–240

Blood cells
Hunt TC, et al. 215–226

Blood vessels
Gordon SR, et al. 583–589

Brain, invertebrate
Hoskins SG, et al. 243–252

Brain, vertebrate
Józsa R, et al. 681–685
Kah O, et al. 327–337

Brain lesions
Kah O, et al. 327–337

Brainstem
Stuesse SL, et al. 147–151

Calcitonin gene-related peptide
(CGRP)
Yokokawa K, et al. 271–278

Calcium ions
Coutet de HG, et al. 315–319

Calmodulin
Coutet de HG, et al. 315–319

Calpain
Yoshimura N, et al. 265–
270

Capillaries
Gordon SR, et al. 583–589
Milici AJ, et al. 493–499

Carbonic anhydrase
Abolinš-Krogis A 655–660

Castration
Malendowicz LK, et al.
141–145

Catecholamine-containing cells
Notter MFD, et al. 69–76

Catecholamine-containing neurons
Notter MFD, et al. 69–76

Catecholamine-synthesizing enzymes
Notter MFD, et al. 69–76

Cell culture
Blanchette-Mackie EJ, et al.
95–105

Glant T, et al. 359–369

Kachar B, et al. 27–38

Notter MFD, et al. 69–76

Owaribe K, et al. 87–93

Cell differentiation
Kachar B, et al. 27–38

Cell junctions
Elger M, et al. 395–401

Cell migration, motility,
movements
Kachar B, et al. 27–38

Cell surface
Cheng TP-O 613–619

Cerebral ganglia
Matsutani T, et al. 515–517

Chemoreceptors
Altner H, et al. 537–547

Bartheld von CS, et al. 181–
186

Lee J-K, et al. 371–383

Cholecystokinin (CCK)
Tsumuraya M, et al. 519–
525

Cholinesterase
Thiedemann K-U, et al.
153–164

Chondrocyte antigens
Glant T, et al. 359–369

Chondrocytes
Glant T, et al. 359–369

Choroid plexus
Kiktenko AI 239–240

Cilia
Erdö SL, et al. 621–626

Circadian rhythm
Aida I, et al. 107–113

Clonidine
Livingston A, et al. 469–471

Coated pits
Cheng TP-O 613–619

Coeliac ganglion
Macrae IM, et al. 173–180

Cold exposure
Obika M, et al. 339–343

Collagen
Magloire H, et al. 133–140

Martinez-Campos A, et al.
21–26

Collagen fibers, filaments
Magloire H, et al. 133–140

Zorn TMT, et al. 445–450

Compound eye
Piekos WB 645–654

Connective tissue

Wright GM 549–555

Corticotropin-releasing factor
(CRF)
Batten TFC 661–672

Józsa R, et al. 681–685

Corticotropes
Nakamura F, et al. 627–633

Cytoskeleton
Coutet de HG, et al. 315–319

Isobe Y, et al. 47–56

Decidua
Zorn TMT, et al. 445–450

Degeneration
Lee J-K, et al. 371–383

Maier A, et al. 635–643

Desmosomes
Fujita H, et al. 63–67

Development, ontogenetic
Isobe Y, et al. 47–56

Józsa R, et al. 681–685

Lee J-K, et al. 371–383

Liu L, et al. 501–513

Newgreen DF, et al. 299–
313

Sato T, et al. 321–326

Thiedemann K-U, et al.
153–164

Yamashita T, et al. 121–131

Dexamethasone
Notter MFD, et al. 69–76

Diabetes insipidus
Krisch B, et al. 351–358

Differentiation
Lee J-K, et al. 371–383

Liu L, et al. 501–513

Dopamine
Kah O, et al. 577–582

Duodenum
Tsumuraya M, et al. 519–
525

Dynorphin
Macrae IM, et al. 173–180

Endocytosis
Cheng TP-O 613–619

Hatae T, et al. 39–46

Endometrium
Zorn TMT, et al. 445–450

Endothelium
Milici AJ, et al. 493–499

Enkephalin
Wang Y-N, et al. 77–85

Enkephalin-like immunoreactivity
Wang Y-N, et al. 77–85

Enolase, neuron-specific
Cutz E, et al. 227–233

Epidermis
Holy JM, et al. 459–468

Mechtersheimer G, et al.
471–478

Menon GK, et al. 385–394

Epithelial cells
Gaudecker von B, et al.
403–412

Kiktenko AI 239–240

Moller JC, et al. 479–491

Epithelial differentiation
Kiktenko AI 239–240

Epithelium

Bohnert A, et al. 413–431

Lo W-K, et al. 253–263

Extracellular matrix, –
structures
Newgreen DF, et al. 299–
313

Eyes, lateral
Liu L, et al. 501–513

Fiber cells
Lo W-K, et al. 253–263

Fibroblasts
Martinez-Campos A, et al.
21–26

Fibronectin
Magloire H, et al. 133–140

Wright GM 549–555

Filaments, 10-nm, intermediate
Owaribe K, et al. 87–93

Freeze-fracturing
Cieciura L, et al. 439–443

Elger M, et al. 395–401

Lo W-K, et al. 253–263

GABA
Erdö SL, et al. 621–626

Hoskins SG, et al. 243–252

Ganglia, invertebrate
Matsutani T, et al. 515–517

Ganglia, spinal
Yokokawa K, et al. 271–278

Gap junctions (see also Nexus)
Elger M, et al. 395–401

Ichimura T, et al. 569–576

Lo W-K, et al. 253–263

Gastric endocrine cells,
gastrointestinal hormones
Wang Y-N, et al. 77–85

Gastrin
Tsumuraya M, et al. 519–
525

Ganglia, invertebrate
Biasi De S, et al. 591–593

Gills
Hunt TC, et al. 215–226

Genitalia, female
Thiedemann K-U, et al.
153–164

Genitalia, male
Thiedemann K-U, et al.
153–164

Glutamic acid decarboxylase
Biasi De S, et al. 591–593

Golgi complex
Jamur MC, et al. 557–563

Golgi impregnation, technique
Peachey LD, et al. 9–19

Gonadotrophin-releasing
hormone
Kah O, et al. 327–337

Gonadotropic cells,
gonadotropes
Nakamura F, et al. 627–633

Gonads (invertebrates)
Matsutani T, et al. 515–517

Growth hormone cells
Nakamura F, et al. 627–633

Gut
Iwanaga T, et al. 565–568

Wang Y-N, et al. 77–85

Gut hormones

Wang Y-N, et al. 77–85
Heart, innervation
 Kobayashi Y, et al. 595–
 604, 605–612

Hepatocytes
 Fujita H, et al. 63–67
 Meis JFGM, et al. 345–350

High-voltage electron microscopy
 Peachey LD, et al. 9–19

Hippocampus
 Schwerdtfeger WK 235–238

Histiocytes
 Mechtersheimer G, et al.
 471–478

Horseradish-peroxidase (HRP) technique, – transport
 Bartheld von CS, et al. 181–
 186

Reuss S, et al. 691–694

Hypothalamus
 Guldenaar SEF, et al. 433–
 438

Kah O, et al. 327–337

Image processing
 Schulze W, et al. 1–8

Immunocytochemistry
 Biasi De S, et al. 591–593
 Cheng TP-O 613–619
 Gaudecker von B, et al.
 403–412

Kah O, et al. 327–337
 Lösecke W, et al. 451–458
 Robles LJ, et al. 115–120
 Wright GM 549–555

Immunohistochemistry
 Iwanaga T, et al. 565–568
 Kah O, et al. 577–582
 Lösecke W, et al. 451–458
 Tsumuraya M, et al. 519–
 525

Inflammation
 Hunt TC, et al. 215–226

Innervation
 Iga T, et al. 165–171
 Kah O, et al. 577–582
 Reuss S, et al. 691–694
 Yamashita T, et al. 121–131

Interdigitating cells
 Ushiki T 285–298

Interneurons
 Schwerdtfeger WK 235–238

Interstitial cells
 Kobayashi Y, et al. 605–612

Intrafusal fibers
 Adal MN 197–202

Iridophores
 Iga T, et al. 165–171

Iris
 Yamashita T, et al. 121–131

Isotocin
 Batten TFC 661–672

Juxtaglomerular apparatus, – region
 Gall JAM, et al. 203–208

Kallikrein
 Gall JAM, et al. 203–208

Keratinocytes
 Bohnert A, et al. 413–431
 Menon GK, et al. 385–394

Kidney

Elger M, et al. 395–401
 Hatae T, et al. 39–46
 Milici AJ, et al. 493–499
 Möller JC, et al. 479–491

Labial palps
 Lee J-K, et al. 371–383

Lamellar bodies
 Blanchette-Mackie EJ, et al.
 95–105

Menon GK, et al. 385–394

Laminin
 Gordon SR, et al. 583–589

Lens
 Lo W-K, et al. 253–263

LHRH (Luliberin, GnRH)
 Blähser S, et al. 193–196

LHRH-immunoreactivity
 Batten TFC 661–672
 Blähser S, et al. 193–196
 Kah O, et al. 327–337

LHRH-neurons
 Blähser S, et al. 193–196
 Kah O, et al. 327–337

Lipids
 Menon GK, et al. 385–394

Lipochondria
 Robles LJ, et al. 115–120

Lipolysis
 Blanchette-Mackie EJ, et al.
 95–105

Lipoprotein
 Blanchette-Mackie EJ, et al.
 95–105

Liver, liver cells; see also Hepatocytes
 Fujita H, et al. 63–67

Lung
 Cutz E, et al. 227–233

Lymph nodes
 Mechtersheimer G, et al.
 471–478

Lymphatic vessels
 Ushiki T 285–298

Lymphocyte migration
 Ushiki T 285–298

Lymphocytes
 Glant T, et al. 359–369

Lymphoid cells
 Brelińska R, et al. 673–679

Lyosomes
 Jamur MC, et al. 557–563

Macrophages, see also Reticulum cells
 Blanchette-Mackie EJ, et al.
 95–105

Mast cells
 Jamur MC, et al. 557–563

Mechanoreceptors
 Altnier H, et al. 537–547

Medulla oblongata
 Stuessle SL, et al. 147–151

Melanogenesis
 Nakajima Y, et al. 279–283

Melanophores
 Nakajima Y, et al. 279–283

Melanosomes
 Nakajima Y, et al. 279–283

Mesenchymal cells, mesenchyme
 Obika M, et al. 339–343

Thiedemann K-U, et al.
 153–164

Met-enkephalin-like immunoreactivity
 Wang Y-N, et al. 77–85

Microenvironment
 Gaudecker von B, et al.
 403–412

Microtrichia (Microtriches)
 Holy JM, et al. 459–468

Microtubules
 Obika M, et al. 339–343

Microvilli
 Couet de HG, et al. 315–319
 Holy JM, et al. 459–468

Mitochondria
 Cieciura L, et al. 439–443

Monocytes
 Hunt TC, et al. 215–226

Motility
 Iga T, et al. 165–171
 Kachar B, et al. 27–38

Mucosa
 Mechtersheimer G, et al.
 471–478

Muscle, smooth
 Yamashita T, et al. 121–131

Muscle, striated, skeletal
 Isobe Y, et al. 47–56
 Maier A, et al. 635–643
 Yamashita T, et al. 121–131
 Yoshimura N, et al. 265–
 270

Myelin
 Blanchette-Mackie EJ, et al.
 95–105

Myeloblasts
 Isobe Y, et al. 47–56

Myosin
 Gordon SR, et al. 583–589
 Maier A, et al. 635–643

Nephron
 Elger M, et al. 395–401
 Möller JC, et al. 479–491

Nephropathy
 Möller JC, et al. 479–491

Nerve fibers
 Wolburg H, et al. 187–192

Nerve growth factor
 Notter MFD, et al. 69–76

Nerves, degeneration
 Lee J-K, et al. 371–383

Nerves, regeneration
 Wolburg H, et al. 187–192

Nervous system, central
 Stuessle SL, et al. 147–151

Neural crest, – cells
 Newgreen DF, et al. 299–
 313

Neuroendocrine system, diffuse
 Cutz E, et al. 227–233

Neuroglia
 Lösecke W, et al. 451–458

Neurons
 Kobayashi Y, et al. 595–604
 Robles LJ, et al. 115–120

Neuropeptide

immunocytochemistry
 Cutz E, et al. 227–233
 Józsa R, et al. 681–685
 Macrae IM, et al. 173–180
 Wang Y-N, et al. 77–85

Neurosecretion
 Guldenaar SEF, et al. 433–
 438

Yamada C, et al. 687–690

Neurosecretory release sites
 Batten TFC 661–672

Neurosecretory system, caudal
 Yamada C, et al. 687–690

Notochord
 Newgreen DF, et al. 299–
 313

Odontoblasts
 Magloire H, et al. 133–140

Olfactory bulb
 Bartheld von CS, et al. 181–
 186

Olfactory epithelium
 Bartheld von CS, et al. 181–
 186

Olfactory system
 Bartheld von CS, et al. 181–
 186, 527–535

Hoskins SG, et al. 243–252

Kah O, et al. 327–337

Oligodendroglial cells
 Kachar B, et al. 27–38

Oogenesis
 Witaliński W 209–214

Optic nerve, tract
 Wolburg H, et al. 187–192

Osteoclasts
 Akisaka T, et al. 57–62

Ovary
 Witaliński W 209–214

Oviduct
 Erdö SL, et al. 621–626

Parasitic larva
 Meis JFGM, et al. 345–350

Paraventricular nucleus
 Guldenaar SEF, et al. 433–
 438

Reuss S, et al. 691–694

Peptidergic neurons
 Cutz E, et al. 227–233

Peripolar cells
 Gall JAM, et al. 203–208

Permeability
 Menon GK, et al. 385–394

Phagocytosis
 Hunt TC, et al. 215–226

Phenylthiourea
 Nakajima Y, et al. 279–283

Phosphatases
 Akisaka T, et al. 57–62

Photoperiods
 Aida I, et al. 107–113

Photoreceptor cells
 Couet de HG, et al. 315–319

Photoreceptor turnover
 Piekos WB 645–654
 Couet de HG, et al. 315–319

Pigment cells
 Piekos WB 645–654

Pineal gland
 Aida I, et al. 107–113

Ichimura T, et al. 569–576

Pineal nerves
Reuss S, et al. 691–694
Sato T, et al. 321–326

Pinealocytes
Ichimura T, et al. 569–576

Pineal organ, – complex
Reuss S, et al. 691–694
Sato T, et al. 321–326

Pineal region
Sato T, et al. 321–326

Pineal synaptic ribbons
Aida I, et al. 107–113
Ichimura T, et al. 569–576

Pituitary gland, neurointermediate lobe
Batten TFC 661–672
Kah O, et al. 577–582

Pituitary gland, pars anterior (distalis)
Kah O, et al. 577–582
Martinez-Campos A, et al.
21–26
Nakamura F, et al. 627–633

Pituitary gland, pars nervosa
Guldemaar SEF, et al. 433–
438

Livingston A, et al. 469–471

Prolactin (LTH)
Martinez-Campos A, et al.
21–26

Prolactin cells
Nakamura F, et al. 627–633

Proteinases
Yoshimura N, et al. 265–
270

Receptors, membrane
Cheng TP-O 613–619
Livingston A, et al. 469–471

Regeneration
Maier A, et al. 635–643

Reissner's fiber
Lösecke W, et al. 451–458

Reticuloendothelial system

Reticulum cells, see

Macrophages
Hunt TC, et al. 215–226

Retina
Gordon SR, et al. 583–589
Liu L, et al. 501–513

Retinal pigment epithelium

Owaribe K, et al. 87–93

Rhabdom
Pickos WB 645–654

Rhodopsin
Robles LJ, et al. 115–120

Sarcoplasmic reticulum
Adal MN 197–202

Peachey LD, et al. 9–19

Satellite cells, neuronal
Kobayashi Y, et al. 605–612

Schwann cells
Kobayashi Y, et al. 605–612

Sclerotome
Newgreen DF, et al. 299–313

Scolopidia
Lee J-K, et al. 371–383

Secretory process, cycle
Lösecke W, et al. 451–458

Seminiferous epithelium
Schulze W, et al. 1–8

Sensilla
Altner H, et al. 537–547

Sensory cells
Altner H, et al. 537–547
Lee J-K, et al. 371–383

Septum
Schwerdtfeger WK 235–238

Serotonin-containing cells
Cutz E, et al. 227–233

Sexual dimorphism
Malendowicz LK, et al.
141–145

Shell-repair membrane
Abolinš-Krogis A 655–660

SIF cell
Kobayashi Y, et al. 595–604

Somatostatin-containing neurons
Macrae IM, et al. 173–180

Somatostatin immunoreactivity
Batten TFC 661–672

Spermatocytes
Cieciura L, et al. 439–443
Schulze W, et al. 1–8

Spermatogenesis
Schulze W, et al. 1–8

Spinal cord
Stuessle SL, et al. 147–151

Spinal nerves
Obika M, et al. 339–343

Spleen
Mechtersheimer G, et al.
471–478

Sporozoite
Meis JFGM, et al. 345–350

Stimulation
Maier A, et al. 635–643

Stria medullaris thalami
Reuss S, et al. 691–694

Structural patterns
Liu L, et al. 501–513

Subcommissural organ
Lösecke W, et al. 451–458

Substance P
Yokokawa K, et al. 271–278

Supraoptic nucleus
Guldemaar SEF, et al. 433–
438

Krisch B, et al. 351–358

Synapses
Ichimura T, et al. 569–576

Synaptic ribbons
Aida I, et al. 107–113
Ichimura T, et al. 569–576

Teeth
Magloire H, et al. 133–140

Telencephalon
Bartheld von CS, et al. 181–
186, 527–535

Teratogenesis
Liu L, et al. 501–513

Testis
Cieciura L, et al. 439–443
Hatae T, et al. 39–46
Schulze W, et al. 1–8

Thymus
Brelinska R, et al. 673–679
Gaudecker von B, et al.
403–412

Mechtersheimer G, et al.
471–478

Ushiki T 285–298

Thyrotropin (TSH), thyrotropes
Nakamura F, et al. 627–633

Tight junctions
Elger M, et al. 395–401

Tissue culture
Bohnert A, et al. 413–431
Kobayashi Y, et al. 595–
604, 605–612

Martinez-Campos A, et al.
21–26

Tonsils
Mechtersheimer G, et al.
471–478

Tracer studies
Bartheld von CS, et al. 527–
535

Transferrin
Cheng TP-O 613–619

Transplantation
Bohnert A, et al. 413–431

Transport, intracellular
Akisaka T, et al. 57–62

T-tubules
Adal MN 197–202
Peachey LD, et al. 9–19

Urea
Abolinš-Krogis A 655–660

Urease
Abolinš-Krogis A 655–660

Urinary bladder
Yokokawa K, et al. 271–278

Urotensin I
Iwanaga T, et al. 565–568
Yamada C, et al. 687–690

Uterus
Zorn TMT, et al. 445–450

Vasoactive intestinal polypeptide (VIP)
Macrae IM, et al. 173–180
Schwerdtfeger WK 235–238

Vasopressin
Guldemaar SEF, et al. 433–
438

Krisch B, et al. 351–358

Vasopressin system
Krisch B, et al. 351–358

Vasotocin
Batten TFC 661–672

Vimentin
Owaribe K, et al. 87–93

Visual system
Wolburg H, et al. 187–192

Vitellin
Witaliński W 209–214

Vitelline envelope
Witaliński W 209–214

Yolk sac
Hatae T, et al. 39–46