2413, Machine Learning, Tutorial 7 Universität Bern

Simon Jenni (jenni@inf.unibe.ch)

Mutual Information

1. Consider the following set of 2-dimensional points, sampled from two classes:

x_1	x_2	y
1	0	1
0	1	1
0	0	1
0	1	1
0	0	0
1	1	0
1	0	0
0	0	0

Find the feature x_i with the highest mutual information

$$MI(x_i, y) = \sum_{x_i \in \{0,1\}} \sum_{y \in \{0,1\}} p(x_i, y) \log \frac{p(x_i, y)}{p(x_i) p(y)}.$$
 (1)

Solution

Since we don't know the true distributions of the variables, we use the empirical distributions: $p(y=1)=0.5, \ p(y=0)=0.5, \ p(x_1=1)=3/8, \ p(x_1=0)=5/8, \ p(x_2=1)=3/8, \ p(x_2=1)=5/8, \ p(x_1=1,y=1)=1/8, \ p(x_1=1,y=0)=2/8, \ p(x_1=0,y=1)=3/8, \ p(x_1=0,y=0)=2/8, \ p(x_2=1,y=1)=2/8, \ p(x_2=1,y=0)=1/8, \ p(x_2=0,y=1)=2/8, \ p(x_2=0,y=0)=3/8.$

We then have: $MI(x_1, y) = 1.29$ and $MI(x_2, y) = 1.4$. We can then conclude that x_2 has the highest mutual information with the label y.

Regularization

2. Consider the problem of linear regression with a Gaussian prior on the parameter vector θ of the form $p(\theta) = \mathcal{N}(0, \lambda I)$, where I is the identity matrix. Derive the cost function for the **MAP** estimate θ_{MAP} .

Hint: Remember the linear regression assumption $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$ where $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma)$.

Solution

Linear regression can be seen as a maximum likelihood estimation, where the error $\epsilon^{(i)}$ is modeled according to a Gaussian Distribution:

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right). \tag{2}$$

that implies

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right).$$
(3)

We then estimate the optimal θ by maximizing eq.(3) over all the training samples

$$\theta_{ML} = \arg\max_{\theta} \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta).$$
 (4)

In the case of regularized linear regression θ is a random variable, therefore we have that the optimal θ is given by the *maximum a posteriori* estimate

$$\theta_{MAP} = \arg\max_{\theta} \prod_{i=1}^{m} p(y^{(i)}|x^{(i)}, \theta) p(\theta). \tag{5}$$

Since we assume that θ_i are i.i.d. and follow a Gaussian distribution, we have

$$p(\theta) = \prod_{j=1}^{n} p(\theta_j) = \frac{1}{\sqrt{2\pi}\lambda} \prod_{j=1}^{n} \exp\left(-\frac{\theta_j^2}{2\lambda^2}\right).$$
 (6)

since $\arg\max_{\theta} \prod_{i=1}^m p(y^{(i)}|x^{(i)},\theta)p(\theta)$. = $\arg\max_{\theta} \log(\prod_{i=1}^m p(y^{(i)}|x^{(i)},\theta)p(\theta))$, we have

$$\theta_{MAP} = \arg\max_{\theta} \log(\prod_{i=1}^{m} p(y^{(i)}|x^{(i)}, \theta)p(\theta))$$

$$= \arg\max_{\theta} m \log\left(\frac{1}{\sqrt{2\pi}\sigma}\right) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{m} (y^{(i)} - \theta^{T}x^{(i)})^{2} + n \log\left(\frac{1}{\sqrt{2\pi}\lambda}\right) - \frac{1}{2\lambda^{2}} \sum_{j=1}^{n} \theta_{j}^{2}$$

$$= \arg\min_{\theta} \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^{T}x^{(i)})^{2} + \frac{\sigma^{2}}{2\lambda^{2}} \sum_{i=1}^{n} \theta_{j}^{2}.$$
(9)

3. What is the gradient of the cost derived in the previous question?

Solution

Eq.(9) can be written in the following notation

$$\ell(\theta; X, y, \hat{\lambda}) = \frac{1}{2} ||y - X\theta||_2^2 + \frac{\hat{\lambda}}{2} ||\theta||_2^2$$
 (10)

where $X \in \mathcal{R}^{mxn}$ is a matrix where the ith row is $(x^{(i)})^T$, $y \in \mathcal{R}^m$ is a vector where the ith element is $y^{(i)}$ and $\hat{\lambda} = \frac{\sigma^2}{\lambda^2}$. The gradient to respect to θ is then

$$\nabla_{\theta} \ell(\theta; X, y, \hat{\lambda}) = -X^{T} (y - X\theta) + \hat{\lambda}\theta. \tag{11}$$

If we equal the gradient to zero we obtain

$$\theta_{MAP} = (X^T X + \hat{\lambda}I)^{-1} X^T y \tag{12}$$