Algorithms 02 CS201

Kaustuv Nag

Order of Growth and Asymptotic Efficiency

- ► The *rate of growth*, or the *order of growth*, of the running time is a simplifying abstraction.
 - We consider only the leading term of a formula (e.g., an^2), since the lower-order terms are relatively insignificant for large values of n.
 - ▶ We also ignore the leading term's constant coefficient.
 - ▶ We usually consider one algorithm to be more efficient than another if its worstcase running time has a lower order of growth.
- ▶ When we look at input sizes large enough to make only the order of growth of the running time relevant, we study the *asymptotic efficiency* of algorithms.
 - ▶ We are concerned with how the running time of an algorithm increases with the size of the input in the limit, as the size of the input increases without bound.

Θ-notation

▶ For a given function g(n), we denote by $\Theta(g(n))$ the set of functions

$$\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$

$\Theta(g(n))$

- A function f(n) belongs to the set $\Theta(g(n))$ if there exist positive constants c_1 and c_2 such that it can be "sandwiched" between $c_1g(n)$ and $c_2g(n)$ for sufficiently large n.
- ▶ Because $\Theta(g(n))$ is a set, we could write " $f(n) \in \Theta(g(n))$ " to indicate that f(n) is a member of $\Theta(g(n))$.
- ▶ Instead, we usually write " $f(n) = \Theta(g(n))$ " to express the same notion.
 - ► This might be confusing because we *abuse* equality in this way, but doing so has its advantages.
- ightharpoonup g(n) is an asymptotically tight bound for f(n).
- ► The definition of $\Theta(g(n))$ requires that every member $f(n) \in \Theta(g(n))$ be asymptotically nonnegative, that is, that f(n) be nonnegative whenever n is sufficiently large.
 - \triangleright An asymptotically positive function is one that is positive for all sufficiently large n.
 - ▶ the function g(n) itself must be asymptotically nonnegative, or else the set $\Theta(g(n))$ is empty.

Θ-notation: An Example

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

To justify this, We must determine positive constants c_1 , c_2 , and n_0 such that

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$
, for all $n \ge n_0$

Dividing by n^2 yields

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

For right-hand inequality $n \ge 1$ and $c_2 \ge \frac{1}{2}$. For $n \ge 7$ and $c_1 \le \frac{1}{14}$. So, we choose $c_1 = \frac{1}{14}$, $c_2 = \frac{1}{2}$, and $n_0 = 7$.

Θ-notation: An Example

$$6n^3 \neq \Theta(n^2)$$

- ▶ Suppose, c_2 and n_0 exist such that $6n^3 \le c_2n^2$ for all $n \ge n_0$.
- ▶ Dividing by n^2 yields $n \le \frac{c_2}{6}$, which cannot possibly hold for arbitrarily large n, since c_2 is constant.
- ► Hence, by contradiction it is proved that $6n^3 \neq \Theta(n^2)$.

O-notation

- ▶ When we have only an *asymptotic upper bound*, we use *O*-notation.
- For a given function g(n) we denote by O(g(n)) (pronounced "big-oh of g of n" or sometimes just "oh of g of n") the set of functions

$$O(g(n))=\{f(n):$$
 there exist positive constants c and n_0 such that $0\leq f(n)\leq c(g(n))$ for all $n\geq n_0\}$

- We write f(n) = O(g(n)) to indicate that a function f(n) is a member of the set O(g(n)).
- ► $f(n) = \Theta(g(n))$ implies f(n) = O(g(n)).
- $ightharpoonup \Theta(g(n)) \subseteq O(g(n))$

O-notation

Ω -notation

- \blacktriangleright When we have only an *asymptotic lower bound*, we use Ω-notation.
- For a given function g(n) we denote by $\Omega(g(n))$ (pronounced "big-omega of g of n" or sometimes just "omega of g of n") the set of functions

$$\Omega(g(n))=\{f(n):$$
 there exist positive constants c and n_0 such that $0\leq c(g(n))\leq f(n)$ for all $n\geq n_0\}$

- We write $f(n) = \Omega(g(n))$ to indicate that a function f(n) is a member of the set $\Omega(g(n))$.
- ► $f(n) = \Theta(g(n))$ implies $f(n) = \Omega(g(n))$.
- $ightharpoonup \Theta(g(n)) \subseteq \Omega(g(n))$
- ► **Theorem:** For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Ω -notation

o-notation

▶ We define o(g(n)) ("little-oh of g of n") as the set

$$o(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that}$$
 $0 \le f(n) < c(g(n)) \text{ for all } n \ge n_0 \}$

- For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

ω -notation

- ▶ $f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$.
- We define $\omega(g(n))$ ("little-omega of g of n") as the set

$$\omega(g(n))=\{f(n):$$
 there exist positive constants c and n_0 such that $0\leq c(g(n))< f(n)$ for all $n\geq n_0\}$

- For example, $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$.

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Properties

Assume f(n) and g(n) are asymopotically positive.

Transitivity

- $ightharpoonup f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$
- ightharpoonup f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n))
- $ightharpoonup f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$
- ightharpoonup f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n))
- $ightharpoonup f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$

Reflexivity

- $ightharpoonup f(n) = \Theta(f(n))$
- f(n) = O(f(n))
- $ightharpoonup f(n) = \Omega(f(n))$

Properties

Symmetry

 $ightharpoonup f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$

Transpose Symmetry

- ► f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$
- ► f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$

Note

- ▶ We say that f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)), and f(n) is asymptotically larger than g(n) if $f(n) = \omega(g(n))$.
- ▶ Although any two real numbers can be compared, not all functions are asymptotically comparable.

White Board

White Board