Definition. Given $u \in \mathbb{N}^n$ with $||u||_1 = md$, let us define a partition of u by d as a sequence of vectors $v_i \in \mathbb{N}^n$, $||v_i||_1 = d$, $i \in \{1...m\}$, such that $\sum_{i=1}^m v_i = u$.

Example. For u = [1, 3, 2] and d = 3, there are 6 partitions:

- [0,1,2] + [1,2,0] and [1,2,0] + [0,1,2]
- [0,2,1] + [1,1,1] and [1,1,1] + [0,2,1]
- [0,3,0] + [1,0,2] and [1,0,2] + [0,3,0]

Problems.

- 1. Express the number of partitions $\phi(u, d)$.
- 2. Give an efficient algorithm for the computation of all solutions.

Note. Converting an S-patch into a four-sided S-patch involves a computation in the order of

$$\sum_{u} \phi(u, d),$$

where n is the number of sides, d is the depth of the original S-patch, and m = n - 2. The summation goes through all possible values of $u \in \mathbb{N}^n$ with $||u||_1 = md$, the number of which is

$$\binom{n+md-1}{md}$$
.