②	Congratulations! You passed!			
	Grade received 80%	Latest Submission Grade 80%	To pass 80% or higher	Go to next item
1.	Which of these best descril	bes unsupervised learning?		1 / 1 point
	A form of machine lead A form of machine lead A form of machine lead A form of machine lead Correct Unsupervised learning	rning that finds patterns without us rning that finds patterns using unla rning that finds patterns using labe	abeled data (x). eled data (x, y) ng examples do not have targets or labels "y". R	decall
2.	Which of these statemen The number of clusters	its are true about K-means? Check along the context of the context $c^{(i)}$ is equal means with $K=3$ clusters, then	al to the number of training examples.	0 / 1 point
	assuming counting The number of cluster	g starts at 1. Her centroids μ_k is equal to the num	to. If $K=3$, then $c^{(i)}$ would be one of 1,2 or 3 aber of examples. Uster centroid μ_k is also going to be a vector of	
	The dimension of μ	μ_k matches the dimension of the execution μ_k	xamples.	
3.	Pick the one with the Pick the last one (i.e.,	lowest cost ${\cal J}$ the 100th random initialization) be was the point of random initializati	e should you pick from the 100 resulting solutio ecause K-means always improves over time ion.	1/1 point
	Correct K-means can arrive the solution with the	_	n initialization. After running repeated trials, cho	oose
4.	 The cost can be greated The cost will either deal Because K-means tries iteration. 	er or smaller than the cost in the precedence or stay the same after each	$J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_K)$ after each revious iteration, but it decreases in the long rule iteration By sgreater than or equal to the cost in the previous greater than or equal to the cost in the previous formula $J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_K)$ after each revious iteration.	

⊘ Correct

The cost never increases. K-means always converges.

5.	In K-means, the elbow method is a method to		
	O Choose the best random initialization		
	Choose the number of clusters K		
	O Choose the best number of samples in the dataset		
	Choose the maximum number of examples for each cluster		
	Correct The elbow method plots a graph between the number of clusters K and the cost function. The 'bend' in the cost curve can suggest a natural value for K. Note that this feature may not exist or be significant in some data sets.		

1 / 1 point