Lecture 24

Aakash Jog

Tuesday $20^{\rm th}$ January, 2015

Contents

1	Vec	or Fields 2
	1.1	Curl
	1.2	Divergence
2	Stol	e's and Gauss' Theorem

1 Vector Fields

1.1 Curl

Definition 1. Let

$$\overline{F}(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))$$

be a vector field in \mathbb{R}^3 and let there exist first order partial derivatives of P, Q, R. Then $\operatorname{curl} \overline{F}$ is a vector field in \mathbb{R}^3 which is defined as

$$\operatorname{curl} \overline{F} = (R_y - Q_z, P_z - R_x, Q_x - P_y) = \nabla \times \overline{F}$$

Theorem 1. If $\overline{F} = (P, Q, R)$ is a vector field defined of \mathbb{R} with continuous first order partial derivatives of P, Q, R and $\operatorname{curl} \overline{F} = \overline{0}$, then \overline{F} is a conservative vector field.

1.2 Divergence

Definition 2. Let $\overline{F}(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z))$ be a vector field in \mathbb{R}^3 and let there exist P_x , Q_y , R_z . Then the divergence of \overline{F} is

$$\operatorname{div} \overline{F} = P_x + Q_y + R_z = \nabla \cdot \overline{F}$$

2 Stoke's and Gauss' Theorem

Definition 3 (Curve with positive orientation). Let S be a surface with normal \hat{n} and let C be a curve which bounds S. Then C is a curve with positive orientation with respect to S if, as we walk on C in this direction and with our head in the direction of \hat{n} , the surface S is always on our left.

Theorem 2 (Stoke's Theorem). Let S be a piecewise smooth surface with normal \hat{n} and let S be bounded by a curve C which is piecewise smooth, simple, closed and with positive orientation with respect to S. Let $\overline{F}(x,y,z) = (P(x,y,z),Q(x,y,z),R(x,y,z))$ be a vector field such that there exist continuous first order partial derivatives of P, Q, R in an open domain of \mathbb{R}^3 which contains S. Then

$$\int_{C} \overline{F} \cdot \hat{T} \, \mathrm{d}s = \iint_{S} \operatorname{curl} \overline{F} \cdot \hat{n} \, \mathrm{d}S$$

Remark 1. Stoke's Theorem is a generalization of Green's Theorem.