Типы уравнений

Бирюк Илья Александрович 7 октября 2024 г.

Содержание

1	Name	3
2	Метрические характеристики графов	4

1 Name

Теорема. Пусть G – это (n,m) граф, k – число компонент связности Тогда

$$n-k \leqslant m \leqslant \frac{(n-k)(n-k+1)}{2},.$$

 \mathcal{A} оказательство. $m\leqslant n-k$ - Доказывается по мат индукции $m\leqslant \frac{(n-k)(n-k+1)}{2}$ - Берём $k\geqslant 2$

1. рисуем k полных графов

$$G_1$$
 G_2 \cdots G_k

- 2. Вынимаем из G_{k-1} точку и перемещаем её в G_k (сохраняя полноту). Возьмём, что $\forall n \leq k, V(G_k) \geqslant V(G_n)$. Тогда количество рёбер изменится на $V(G_k) (V(G_n) 1) > 0$.
- 3. Повторяем так, пока все кроме последнего подграфа не будут тривиальными (то есть пока они не будут иметь одну вершину).
- 4. Самый экстремальный случай, изолированные вершины и K_{n-k+1} , тогда число рёбер

$$C_{n-k+1}^2 = \frac{(n-k)(n-k+1)}{2}.$$

Теорема. Пусть G связный граф $u \in E(G)$.

- 1. Eсли принадлежит некоторому циклу, то граф G-e связен
- 2. Если не принадлежит никакому циклу, то граф G-e содержит ровно 2 компоненты связности

Доказательство. Возьмём $e = uv, e \in E(G)$

- 1. Если принадлежит некоторому циклу, то граф G e связен
 - (а) Нарисуем цикл

(b) Удалим *е*

Как можно заметить, не появилось ни одной компоненты связности.

- 2. Если не принадлежит никакому циклу, то граф G-e содержит ровно 2 компоненты связности
 - (a) Учитывая условия выше, мы можем разделить граф на 2 части, имеющие маршрут к u без v и наоборот

(b) Удаляем ребро e, и видим, что появилось 2 компоненты связности

2 Метрические характеристики графов

Для параграфа: G - связен

Определение. Расстояние d(u,v) между вершинами $u \neq v$ графа G – длинна крат-чайшей простой цепи, если u = v, то d(u,v) = 0

Свойства:

1. Свойство неотрицательности.

$$d(u,v) \geqslant 0$$
 и $d(u,v) = 0 \Leftrightarrow u = v, \forall u,v \in V(G)$.

2. Свойство симметрии.

$$d(u, v) = d(v, u), \ \forall u, v \in V(G).$$

3. Свойство треугольников.

$$d(u, v) \leq d(u, w) + d(w, u), \ \forall u, v \in V(G).$$

Определение. Эксцентриситетом вершины называется величина

$$e(v) = \max d(v, u), v \in V(G),$$

то есть максимальное расстояние от вершины до другой какой-либо вершины графа).

Определение. Радиусом графа называется величина

$$r(G) = \min e(v), \ v \in V(G).$$

Определение. Диаметром графа называется величина

$$d(G) = \max e(v), \ v \in V(G).$$

Определение. Вершина в графа G называется центральной, если e(v) = r(G) и **периферической**, если e(v) = d(G).

Определение. Центр графа, множество всех его центральных вершин, перефирия, перефирийных.

Пример, в круге Эксцентриситет вершины:

Теорема. Для любого графа H существует граф G, центр которого порождает H.

Доказательство.

1. Возьмём граф H

2. Добавим к нему вершины x, y, z, t, x и y Соедениены со всеми вершинами H

Как видно $\forall v \in V(H), e(v) = r(G) = 2$

Теорема. Для любого связного графа ж верно: $r(G) \leq diam(G) \leq 2r(G)$

Доказательство.

- $1. \ r(G) \leqslant diam(G)$ очевидно
- 2. $diam(G) \leq 2r(G)$. Берём две переферичиские(u,v) и одну центральную(w). Тогда данное равенство получается через равенство треугольника:

