1. Probar que para todo número natural n, la expresión

$$n^7 - n$$

es divisible por 21.

- 2. Sea A un DIP con un único ideal maximal m=(x). Probar que todos los elementos de la forma $1 + \lambda x$ con $\lambda \in A$ son invertibles.
 - 3. Consideremos el polinomio $f(T) = T^4 10T^2 + 5$.
 - (a) Estudiar si f es un elemento irreducible de $\mathbb{Q}[T]$.
- (b) Sea a una raíz en R de f(T), escribir razonadamente el grado [Q(a) : Q]. Si $b = a^2$ encontrar el polinomio mínimo de b y dedúzcase el valor
 - de [Q(b):Q]. Establecer también razonadamente el grado [Q(a):Q(b)].
 - (c) Racionalizar la expresión

$$\frac{1}{a-1}$$
.

4. Sea E/\mathbb{Q} una extensión simple transcendente; esto es $E=\mathbb{Q}(\alpha)$ con α transcendente sobre \mathbb{Q} . Dado un automorfismo $\phi \in G(E:\mathbb{Q})$, probar que se cumple que

$$\phi(\alpha) = \frac{a\alpha + b}{c\alpha + d}$$

con a, b, c, d son números racionales tales que $ad - cb \neq 0$.