由定理 3.2 可知,若 \overline{v} 可以 S 是完备的,即 $M^e(S) = \{Q\}$ 仅包含一个等价鞅测度,那么 任何 Contingent claim f $S \to \mathbb{R}$, $(f \not + f) = f$, $(f \not + f)$, $(f \not$

此时 f 在 t=0 时刻的 <u>公平价格</u>为 <u>a = EQ[f]</u>. 那么,若<u>市场 S 不完备</u>,该如何确定 f 在 t=0 时刻的 公平价格?

 $\overline{\mathbb{C}} \times 3.9$ (公平价格,fair $\overline{\mathbb{C}} \times \mathbb{C} = \mathbb{C} \times \mathbb{C}$) 设市场 $\overline{\mathbb{C}} \times \mathbb{C} \times \mathbb{C}$

 $K^{f,a} = Span \{f-a, K\} = \{\lambda(f-a) + \mu \int_{0}^{T} HdS : \lambda \in \mathbb{R}, \mu \in \mathbb{R}, H \in \mathcal{H}\}$ 满足 $K^{f,a} \cap L^{o}_{+} = \{0\}.$

定理 3.40: 假设市场 S 无套利, $f: \Omega \to \mathbb{R}$ (关于厅可测) 为一个 contingent claim. 定义 $\Sigma(f) = \inf \{ E_{\Omega}[f] : \Omega \in \mathcal{M}^{t}(S) \}$,

 $\bar{\pi}(f) = \sup\{E_{\mathbb{Q}}[f]: \mathbb{Q} \in \mathcal{N}^{e}(S)\}.$

- (2) 如果 $\Sigma(f) < \overline{\pi}(f)$, 那有 $(\Sigma(f), \overline{\pi}(f)) = \{ E_Q[f]: Q \in M^e(S) \}$,此时 $Q \in \mathbb{R}$ 为 f 的 一个公平价格当且仅当 $Q \in (\Sigma(f), \overline{\pi}(f))$.

证明:

(1) 若 $\Sigma(f) = \overline{\chi}(f) = \overline{\chi}(f)$,那 对任何 $\mathbb{Q} \in \mathcal{M}^{e}(S)$,稍 $\overline{\chi}(f) = \mathbb{E}_{\mathbb{Q}}[f]$

电界, $E_Q[f-\pi(f)]=0$ 对任何 $Q\in M^e(S)$ 均成立。因此,由.推论 3.8 可得 $f-\pi(f)\in K$,即存在某个 $H\in \mathcal{H}$ 使得 $f-\pi(f)=\int_o^T H\,ds$. 故表达式 $f=\pi(f)+\int_o^T H\,dS$ 成立。

(2) 现在假设 $\Sigma(f) < \overline{\chi}(f)$. 令 $\underline{I} = \{ \underline{E_Q[f]} : \underline{Q} \in \mathcal{M}^e(S) \}$. 易验证 I 为R里的 $- \Gamma \times \underline{Q} = \{ \underline{E_{Q_1}[f]} \in \underline{I}, \underline{E_{Q_2}[f]} \in \underline{I} \in \underline{I} \} = \{ \underline{Q} \in \mathcal{M}^e(S) \}, \underline{M} \times \underline{M} \in \underline{M} \in$

先证明 a 是 f 的 - 个公平价格 当且仅当 a G I:

若 $a \in I$,那么存在某个 $Q \in M^e(S)$ 使得 $a = E_Q[f]$,此时必有 $E_Q[f-a] = 0$. 这意味着 若 $f-a \ge 0$,从有 f-a = 0. 因而 $K^{f,a} \cap L^q = \{0\}$,(验证该推导!) 故由定义 3.9 可得, $a \not = f$ 的一个公平价格.

EQ[9] = 0 对任何gekf,a 成立.

由于 $g \in K^{f,a}$ 可被表示为 $g = \lambda(f-a) + \mu \int_0^\tau H dS$, $H \in \mathcal{H}$, $\lambda \in \mathbb{R}$, $\mu \in \mathbb{R}$, μ

- (i) \mathbb{R} $\lambda=1$, $\mathcal{H}=0$: $\mathbb{E}_{\mathbb{Q}}[f-a]=0 \Rightarrow a=\mathbb{E}_{\mathbb{Q}}[f];$
- (ii) 取 $\lambda = 0$, $\mu = 1$: EQ[$\int_0^T H ds$] = 0 \Rightarrow Q \in M^e(S) \not 为 S 的 等价 鞅 测度 对任何 $H \in \mathcal{H}$ (利用定理 2.5).

综上, 可得助时 $a = E_{Q}[f] \in I(因为 Q \in M^{e}(S))$

接下来证明 $I = \{E_{\Omega}(f): \Omega \in M^{e}(S)\} = (\underline{T}(f), \overline{T}(f))$. 显然,由 $\underline{T}(f) \in \overline{T}(f)$ 的 定义可知, $I = \{E_{\Omega}(f): \Omega \in M^{e}(S)\} = (\underline{T}(f), \overline{T}(f))$, $\underline{T}(f) \in E_{\Omega}(f) \leq \overline{T}(f)$. 我们需要排除"边界情况" $E_{\Omega}(f) = \underline{T}(f) \in E_{\Omega}(f) = \overline{T}(f)$.

假设 $\alpha = \text{Ed}[f] = \overline{\pi}(f)$ 对某个 $\widehat{\Omega} \in M^e(S)$ 成。 那么,因为 $\overline{\pi}(f) = \sup \{ \text{Ed}[f] : \Omega \in M^e(S) \}_{\mathcal{A}}$ 对任何 $\Omega \in M^e(S)$,以有

 $\mathbb{E}_{\mathbb{Q}}[f-\bar{\pi}(f)] = \mathbb{E}_{\mathbb{Q}}[f] - \bar{\pi}(f) \leq 0 \quad \text{Ki}.$

由定理 3.6, 诚条件 等价于说 $f-\overline{\chi}(f) \in C$. 由 C 的 定义, 存在某个 $g \in K$ 使得 $g \geq f-\overline{\chi}(f)$. 由于 $\widehat{\chi}(g)$ 由于 $\widehat{\chi}(g)$ 由定理 2.5 可知 $\widehat{\chi}(g)$ = O. 故

 $0 = \text{Eq}[9] \ge \text{Eq}[f - \bar{\chi}(f)] = \text{Eq}[f] - \bar{\chi}(f) = 0$ $0 = \text{Eq}[9] \ge \text{Eq}[f - \bar{\chi}(f)] = \text{Eq}[f] - \bar{\chi}(f) = 0$ 0 = Eq[9] = 0 0 =

这意味着 $O = \mathbb{E}_{\widehat{Q}} \left[g - (f - \overline{\chi}(f)) \right]$ 对非负值的随机变量 $g - (f - \overline{\chi}(f))$ 成立. 由于 \widehat{Q} 为等价 测度,以上等政意味着

 $g(\omega) = f(\omega) - \bar{\chi}(f)$ 对任何 $\omega \in \Omega$ 成立.

由于 $g \in K$, 存在一个 $H \in \mathcal{H}$, 使得 $S_o^T H ds = f - \overline{\pi}(f)$, 即

 $f = \bar{\pi}(f) + \int_{0}^{\tau} H dS.$

然而,如果 $f = \overline{\pi}(f) + \int_{0}^{\tau} H dS$,那么由推论3.1 可知

元(f) = E_{Q} [f] 对任何Q $\in \mathcal{M}^{e}(S)$ 都放.

这与假设 $\Sigma(f) < \bar{\chi}(f)$ 矛盾! 因此不存在任何 $\hat{Q} \in M^e(S)$ 可以使得 $E_{\hat{Q}}[f] = \bar{\chi}(f)$.

类似可证明,不存在任何 $\mathbb{Q} \in \mathcal{M}^{e}(S)$ 能使得 $\mathbb{E}_{\mathbb{Q}}[f] = \Sigma(f)$. 因此可得:

 $I = \{ E_{Q}[f] : Q \in M^{e}(S) \} = (\underline{\pi}(f), \overline{\pi}(f))$ $\underline{\pi} \ \underline{\pi}(f) < \overline{\pi}(f) \text{ or } \underline{\pi}(f).$

П

定理 3.11 (Superreplication). 假设市场 S 无套利, $f: \Omega \to \mathbb{R}$ (厅 可测) 为一个 contingent claim. $f: \Omega \to \mathbb{R}$ (厅 可测) 为一个 $f: \Omega \to \mathbb{R}$ (斤 可测) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R}$) 为一个 $f: \Omega \to \mathbb{R}$ (万 $f: \Omega \to \mathbb{R$

 $\bar{\pi}(f) = \sup\{E_{Q}[f]: Q \in M^{e}(S)\}$

= max{En[f]: Q E Ma (S)}

证明:由定理3.10的证明可知, f-元(f) ϵ C. 因此

 $f = \pi(f) + g$ $\forall x \neq y \in C$

= 元(f) + h - 儿 对某个hek, 几日 Lq

≤ 元(f) + h 对某 he K.

即, 元(f) > inf {ae \mathbb{R} : 存在某个h \in K 使得 a + h > f }.

若 $\alpha < \pi(f)$, 那么由于 $\pi(f) = \sup\{\text{Eq}[f]: Q \in M^c(S)\}$, 必在某个Q $\in M^c(S)$ 使得 $\in \mathbb{R}^{n}$ 是 $\in \mathbb{R$

EQ[a+h] = a < EQ[f].

 这意味着不存在 h ∈ K 能够 使得 f ≤ α + h. 因此,