

Challenges and Future Prospects for Power Systems Due to the Rapid Expansion of RE

Table of Contents

Power System Environmental Changes

Past Efforts and Limitations

Power System Environmental Changes

Past Efforts and Limitations

Characteristics of Korea's Power System

(Korea's Characteristics) Isolated Power System, Highest Level of Equipment Density

General Feature

✓ (RE Increase) Korea is classified as Stage2 Under the IEA Framework,

① Isolated System, ② High Share of PV, ③ Concentrated deployment of RE(PV)

in the Honam Region are causing issues seen in Stage 3-4

【IEA: Anticipated Issues By RE Integration Stage】

Segment	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5, 6
RE Share	Less than 3%	3~15%	15~25%	Greater than 25%	Greater than 25%+
Main Issue	None	Visibility ·Monitoring ·Data Acquisition	Flexibility Flexibility Resource Reserve Margin	Stability ·Voltage/Frequency ·Lack of Inertia	Surplus · Supply-Demand Imbalance
Expected time	~'14	'15~'25	'25~'34	'34~	'34+~

Changes in Power System(RE as the Main Resource)

Changes (RE Increase)

√ (Supply-Demand Management) Annual minimum demand decline

☞ (Minimum Demand) Long Holiday(New year, Chuseok) → Weekend in Spring and Fall(PV 高)

< Solar PV Capacity Trend>

PV Concentration in Honam, Yeongnam

- Regional Gen. > Regional Demand
- ★ PV = 81.1% of Total RE
- → 60.3% of PV in Honam, Yeongnam

Power Supply-Demand Operation(Flexibility Issues)

- **Y** PV daytime rise → Low coal & LNG utilization, deeper Duck curve
- ✓ Insufficient Network to Capital, High-cost LNG operation, Reduced downward Flexibility

Market/Total Demand(1p.m.): 47.0 / 48.2GW

- Coal(20.8GW, 43%), Nuclear(17.3GW, 36%)
- Maximum Coal, Minimum LNG operation
- Demand variability 小, Min Demand at 4AM

Market/Total Demand(1p.m.): 35.8/54.6GW

- PV(20.5GW, 37.5%), Nuclear(20.2GW, 37.0%)
- Coal&LNG Min operation(Only must-run Units online)
- Demand variability 大, Min Demand at 12PM

Transmission Network Operation(Stability Issues)

Stability Issue

- (1) (Voltage) Southern PV Surplus → Need to send power to ChungCheong
 - → Tie-Transmission Line Saturated
- (2) (Transient) Honam PV Surplus → Large scale generation Region
 - → Hanbit NPP instability on Line fault

Impact of RE Expansion on Conventional Generators

Impact on Coal/LNG Generator

Y

(Utilization/Start-Stop) RE Growth → Low utilization, More start-stops

(Maintenance Rate) Frequent start-stop → Higher planned/unplanned maintenance

* (Coal) Higher unplanned outage rate (LNG) Shorter maintenance cycle → Higher unplanned outage rate

Power System Environmental Changes

Past Efforts and Limitations

Efforts for Stable Power System Operation

Min. Coal/LNG operation in a low demand period

* All Coal/LNG units stopped except must-run units

* First Nuclear power output curtailment in 2020

⁴Mandatory online dispatch control for RE(market rule modification, April '20)

⁴Quasi-Central generator dispatch implementation('24 Fall~)

* Dispatch to non-central generators during low demand period(with compensation)

- **✓**New resources(ESS charge time shift, Plus DR, '24 Spring~)
 - * Solar PV linked ESS : charge start time $6AM \rightarrow 10AM$
 - * Plus DR: ESS, Vehicle Charger, pumping station

Power balancing expected to be more challenging

Despite various measures, Oversupply issue is expected to continue due to RE growth

East/West coast HVDC Network Reinforcement Plan

- ✓ (Overview) Reinforcement of Backbone Grid for Power System
 - Direct Supply from Honam NPP/RE & East coast NPP/Coal to Capital Area

< West Coast North-South HVDC Backbone>

- (Voltage) DC 500kV (VSC Type)
- (Capacity) 2GW × 4 (8GW)
- (Completion Date) '32~

< East Coast East-West HVDC Backbone>

- ► (Voltage) DC 500kV (LCC Type)
- (Capacity) 4GW × 2 (8GW)
- (Completion Date) 1st '26.10, 2nd '27.12

□ East/West Line expansion → LNG(Capital area) shutdown possible → Greater grid flexibility

Power System Environmental Changes

Past Efforts and Limitations

Flexibility Enhancement(Generator Flexibilization)

Nuclear Power Plant

✓ Development of Flexible Nuclear Operation Technology(~2035)

	Category	As-is (Planned Curtailment)	
Load	Operation range	100-80-100%	
Following	Operating Period	Within 40 days / year	
operation	Ramp Rate	3%/hour	
Frequ	ency Control(GF)	N/A	

To-be	(Continuous Flexible Operation)		
100-50-100%			
	Within 200 days / year		
	25%/hour		
	±3%(50~100% Range)		

✓ Small Modular Reactor(SMR) Technology Development

- * (High Performance) 100-20-100% Load following, 5%/min ramp, 20 min from 100→20%
- $\sqrt{\text{Tech Development + Standard Design Approval}} o$ Construction permit early 2030s
 - → Commercialization by 2035(175MW*4)

Flexibility and Constraint Relief through Rated Operation

* Policy decision needed(equity& fairness)

As-is	To-be	
Operate at 104~110% of rated capacity	Operate at 100%(Reduction of up to 1.0GW)	

Reduced output → Improve supply-demand flexibility, constraints, reduce start-stop(Coal)

Flexibility Enhancement(Generator Flexibilization)

Coal

- **✓** Flexibility Expansion via Equipment Upgrade
 - (Min. output) SamcheockGreen#1,2 665 → 600MW('23) SamcheockTP#1,2 583 → 495MW ('25)
- **⊀** Review min. operation tech(e.g. single mill operation)

LNG

- **★** Expand GT-only operations, smaller units in new builds
 - * e.g.) GT#1 + ST#1 → GT#2 + ST#1 (smaller units)
- **✓** Securing Inertia by adding synchronous condenser to plants
 - Use stand-by plants as synchronous condensers
 - Need 15GWs by '30. New CCGT with Sync-condenser + dedicated Units

Flexibility Enhancement(New Flexibility Resource & Market Reform)

New Flexibility Resources

('23) 68MW, Jeju island ('25) 523MW for Mainland, 40MW for Jeju island (~'29) 2.22GW

✓ Pumped-Hydro Storage

4.7GW in operation, 5.7GW in progress, (~'38) 11.7GW in total

Long duration BESS & Pumped-storage → Ease constraints, balance supply-demand

Expand RE Flexibility

Expand "Real-Time Online Controllable Resources"

530MW('24 Fall) → 1,076MW('25 Summer), further expansion planned

⊀ RE-linked ESS (1.6GW PCS)

(Now) time-based charge/discharge (Future) based on irradiance & frequency

RE-Linked ESS = Grid flexibility resources

- ✓ Strengthen RE performance verification process(Online Dispatch, Voltage control, etc)
 - (Conventional) Full performance test before operation
 - (RE) Same process but limited verification

Flexibility Enhancement(New Flexibility Resource & Market Reform)

Power Market Modernization Pilot Program(Jeju island, '24.6~)

- RE Bidding → Merit Order Dispatch (provide incentives as CP)
 - → Decrease in RE output curtailment, Enhance power system efficiency

✓ Real-Time market

- (From) Day-ahead market (To)Real-time market with price signals(15min)
- → Improve demand and RE forecast accuracy

✓ Reserve market

- Real-time based reserve procurement
- → only required reserves

Ancillary Service Market

Enhance compensation for flexibility(control service, RE ancillary)

- Commercialize services(e.g. sync condenser, ESS frequency support)
 - → Timely active stability resource deployment

