Time Series Analysis

Lecture 8: State Space Model Stochastic Volatility

Tohid Ardeshiri

Linköping University
Division of Statistics and Machine Learning

October 4, 2019

1/12

Remaining Course topics

ARIMA models

- State space models (2 lectures, 1 teaching session with hand-in, 1 computer lab with short report)
 - ► Linear and Gaussian state space models (Chapter 6.1)
 - ► Kalman filtering, Kalman smoothing and Forecasting (Chapter 6.2)
 - ► Maximum likelihood estimate of the state space models (Chapter 6.3)
 - ► Stochastic volatility (Chapter 6.11)

Recurrent Neural Networks (RNNs) (1 lecture and 1 Computer lab No examination)

Summary lecture

Why Stochastic volatility

$$\mathbf{z}_t = A\mathbf{z}_{t-1} + e_t, \qquad e_t \sim N(0, Q)$$

 $\mathbf{x}_t = C\mathbf{z}_t + \nu_t, \qquad \nu_t \sim N(0, R)$

- Filtering: Kalman filtering, $f(\mathbf{z}_t|\mathbf{x}_{1:t})$
- Smooting: Kalman smoothing, $f(\mathbf{z}_t|\mathbf{x}_{1:T})$
- Modelling: Maximum likelihood and EM, $\widehat{\theta} = \arg \max_{\theta} f(\mathbf{x}_{1:T}|\theta)$
- Case study on Stochastic volatility via a generalization of the above tools

In finance, **return** is a profit on an investment. It comprises any change in value of the investment, and/or cash flows which the investor receives from the investment, such as interest payments or dividends.

Stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed.

In the following:

 r_t denote the return of some financial asset. A common model for the return is

$$r_t = \beta \sigma_t \epsilon_t$$

- \bullet σ_t is the volatility process and
- ϵ_t is an iid sequence and $\epsilon_t \sim iid(0,1)$ and ϵ_t is independent of past σ_s (s < t)

In the following:

 r_t denote the return of some financial asset. A common model for the return is

$$r_t = \beta \sigma_t \epsilon_t$$

- \bullet σ_t is the volatility process and
- ϵ_t is an iid sequence and $\epsilon_t \sim iid(0,1)$ and ϵ_t is independent of past σ_s $(s \leq t)$
- Let $\mathbf{z}_t = \log \sigma_t^2$ and consider the hidden autoregressive model

$$\mathbf{z}_t = \phi \mathbf{z}_{t-1} + w_t$$
$$r_t = \beta \exp(\mathbf{z}_t/2)\epsilon_t$$

Whiteboard

In this model $w_t \sim iidN(0, \sigma_w^2)$ and ϵ_t is iid noise with finite moments.

$$\mathbf{z}_t = \phi \mathbf{z}_{t-1} + w_t$$
$$r_t = \beta \exp(\mathbf{z}_t/2)\epsilon_t$$

Furthermore, let $\mathbf{x}_t = \log r_t^2$ and $\nu_t = \log \epsilon_t^2$. We obtain

$$\mathbf{x}_t = \alpha + \mathbf{z}_t + \nu_t$$

We can move the α to the state equation and rewrite it as

$$\begin{aligned} \mathbf{z}_t &= \phi_0 + \phi_1 \mathbf{z}_{t-1} + \mathbf{w}_t \\ \mathbf{x}_t &= \mathbf{z}_t + \nu_t \end{aligned}$$

where the ϕ_0 is called the leverage effect.

The distribution of ν_t is not Gaussian because

$$u_t = \log \epsilon_t^2 \text{ and}$$
 $\epsilon_t \sim iidN(0,1)$

Hence, ν is distributed as a log of a chi-squared distribution with defree of freedom 1 with density

$$f(\nu) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(e^{\nu} - \nu)\} \qquad -\infty < \nu < \infty$$

Stochastic Volatility - Gaussian mixture approximation

Instead let us approximate $f(\nu)$ by a Gaussian mixture

$$f(\eta) = \pi_0 N(\eta; 0, \sigma_0^2) + \pi_1 N(\eta; \mu_1, \sigma_1^2)$$

That is,

$$\eta_t = I_t n_{t0} + (1 - I_t) n_{t1}$$

where I_t is an iid Bernoulli process where $Pr\{I=0\}=\pi_0$ and $Pr\{I=1\}=\pi_1, \ \pi_0+\pi_1=1$. Also,

$$n_{t0} \sim N(0, \sigma_0^2)$$

 $n_{t1} \sim N(\mu_1, \sigma_1^2)$

Stochastic Volatility - Gaussian sum approximation

$$f(\eta) = \pi_0 N(\eta; 0, \sigma_0^2) + \pi_1 N(\eta; \mu_1, \sigma_1^2) \qquad -\infty < \eta < \infty$$

$$f(\nu) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(e^{\nu} - \nu)\}$$
 $-\infty < \nu < \infty$

 $f(\nu)$ and $f(\eta)$ are plotted for comparison. The dashed line is the Gaussian sum approximation, $f(\eta)$.

Stochastic Volatility - Gaussian sum formulation

The problem is finding the filtering distribution of $\mathbf{z}_t | \mathbf{x}_{1:t}$ when

$$\mathbf{z}_t = \phi_0 + \phi_1 \mathbf{z}_{t-1} + w_t$$
$$\mathbf{x}_t = \mathbf{z}_t + \eta_t$$

and

$$w_t \sim iidN(0, \sigma_w^2)$$

$$\eta_t \sim \pi_0 N(0, \sigma_0^2) + \pi_1 N(\mu_1, \sigma_1^2)$$

where $\pi_0 + \pi_1 = 1$

Whiteboard

The problem is finding the filtering distribution of $\mathbf{z}_t | \mathbf{x}_{1:t}$ when

$$\mathbf{z}_t = A\mathbf{z}_{t-1} + w_t$$

 $\mathbf{x}_t = C\mathbf{z}_t + \eta_t$

and

$$w_t \sim iidN(0, Q)$$

 $\eta_t \sim \pi_0 N(\mu_0, R_1) + \pi_1 N(\mu_1, R_2)$

where $\pi_0 + \pi_1 = 1$

Read home

• Shumway and Stoffer, Chapter 6.11