Exercise: Model predictive control with the race car

In the following exercise, we will play around with variations of optimal control.

Tasks

- 1. We will start by casting a simulation task as a nonlinear optimization problem solved in Opti. For this purpose, we use a collocation scheme. With some hand-waving, this boils down to:
 - ullet Subdivide the integration horizon T into N integration intervals referred to by index k.
 - Introduce state variables at the beginning of each interval: $X_k \in \mathbb{R}^{n_x}$.
 - Introduce helper variables: $X_k^c \in \mathbb{R}^{n_x \times \text{degree}}$.
 - On each interval k, consider a polynomial that exactly interpolates through X_k and X_k^c .
 - Enforce that the polynomial's slope should match the ODE, point-wise.
 - Enforce continuity of the polynomials at the interval boundaries.
 - All of the above polynomial activity can be represented by constant linear maps.

Run the Opti example below, and verify that the car covers a distance of $4.066\,\mathrm{m}$

```
f = dae.create('f', {'x', 'u'}, {'ode'});  % System dynamics
T = 2;
             % Integration horizon [s]
N = 20;
             % Number of integration intervals
dt = T/N;
             % Length of one interval
nx = dae.nx; % Number of states
% A helper function to get the index of a state with a particular name
indx = @(name) find(strcmp(cellstr(dae.x), name));
indy = @(name) find(strcmp(cellstr(dae.y), name));
% Numeric coefficient matrices for collocation
degree = 3;
method = 'radau';
tau = casadi.collocation_points(degree,method);
[C,D,B] = casadi.collocation_coeff(tau);
opti = casadi.Opti(); % Opti context
xk = casadi.MX(x0);
x_{traj} = \{xk\};
                     % Place to store the state solution trajectory
for k=1:N % Loop over integration intervals
```

```
% Decision variables for helper states at each collocation point
   Xc = opti.variable(nx, degree);
    % Slope of polynomial at collocation points
     = [xk Xc];
   Pidot = (Z * C)/dt;
    \% Collocation constraints (slope matching with dynamics)
    opti.subject_to(Pidot == getfield(f('x', Xc), 'ode'));
    % Continuity constraints
    xk_next = opti.variable(nx);
    opti.subject_to(Z * D==xk_next);
    % Initial guesses
    opti.set_initial(Xc, repmat(x0,1,degree));
    opti.set_initial(xk_next, x0);
    xk = xk_next;
    x_{traj}{end+1} = xk;
x_traj = [x_traj{:}];
opti.minimize(0);
options = struct;
```

The template script also comes with plotting code that can be used to obtain:

2. Start from the solution of the previous task, but extend the problem's decision variables and constraints.

Page 2 Matlab

Find a formulation and a control trajectory such that the car reaches s(T)=4 at the end of the horizon, whilst staying within track boundaries: $-0.2 \le n(t) \le 0.2$.

The result may look something like this:

3. Optional: compute a control trajectory that minimizes lap-time. The length of the lap is 4π . Meaningful bounds of the problem's quantities are given in the table below.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Quantity	Lower bound	Upper bound
\overline{n}	-0.2	0.2
D	-1	1
\dot{D}	-20	20
δ	-0.8	0.8
$\dot{\delta}$	-4	4
a_{long}	-10	6
a_{lat}	-10	10

With N=40, the optimal solution should look like the following picture:

Page 3 Matlab

- 4. We will work towards model predictive control (MPC) now. Start from the solution script of Task 3.
 - \bullet Pick a prediction horizon of $T=0.5\,\mathrm{s}$ and N=10.
 - Introduce a parameter \bar{x}_0 , i.e. a changable quantity that is not optimized over: ...
 - Introduce an extra decision variable for x_0 : ...
 - Instead of a final constraint on s(T), use -s(T) in the objective.
 - Relax the solver tolerance with the ipopt.tol option set to 1e-5.
 - ullet Obtain a pure CasADi function out of the Opti problem: ... Here, mpc_step maps from the current state \bar{x}_0 and initial guesses for states & controls to the optimal states & controls. Verify that the car ends up at $3.13822\,\mathrm{m}$ at the end of the horizon.

MPC is simply the computation and application of mpc_step in a loop: Now, MPC is about repeatedly solving this problem in a receding horizon fashion: ...

The resulting closed-loop trajectory should look something like this:

Page 4 Matlab

5. Optional: Gauss-Newton and fatrop solver

Page 5 Matlab