Package 'metapower'

October 13, 2022

Type Package
Title Power Analysis for Meta-Analysis
Version 0.2.2
Description A simple and effective tool for computing and visualizing statistical power for meta-analysis, including power analysis of main effects (Jackson & Turner, 2017) <doi:10.1002 jrsm.1240="">, test of homogeneity (Pigott, 2012)<doi:10.1007 978-1-4614-2278-5="">, subgroup analysis, and categorical moderator analysis (Hedges & Pigott, 2004)<doi:10.1037 1082-989x.9.4.426="">.</doi:10.1037></doi:10.1007></doi:10.1002>
Depends R (>= 3.6)
License GPL-2
Encoding UTF-8
LazyData true
Imports cowplot (>= 1.0.0), dplyr (>= 0.8.5), ggplot2 (>= 3.3.0), knitr (>= 1.28), magrittr (>= 1.5), tidyr (>= 1.0.2), testthat (>= 2.3.2), rlang (>= 0.4.5)
Suggests rmarkdown (>= 2.1)
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Author Jason Griffin [aut, cre]
Maintainer Jason Griffin <jasongriffin138@gmail.com></jasongriffin138@gmail.com>
Repository CRAN
Date/Publication 2021-02-08 13:20:02 UTC
R topics documented:
homogen_power

2 homogen_power

homogen_power

Compute Power for Test of Homogeneity in Meta-analysis

Description

Compute statistical power for the Test of Homogeneity for meta-analysis under both fixed- and random-effects models.

Usage

```
homogen_power(
  effect_size,
  study_size,
  k,
  i2,
  es_type,
  p = 0.05,
  con_table = NULL
)
```

Arguments

effect_size	Numerical value of effect size.
study_size	Numerical value for number number of participants (per study).
k	Numerical value for total number of studies.
i2	Numerical value for Heterogeneity estimate (i^2).
es_type	'Character reflecting effect size metric: 'r', 'd', or 'or'.
р	Numerical value for significance level (Type I error probability).
con_table	(Optional) Numerical values for $2x2$ contingency table as a vector in the following format: $c(a,b,c,d)$.

2x2 Table	Group 1	Group 2
Present	a	b
Not Present	c	d

mod_power 3

Value

Estimated Power to detect differences in homogeneity of effect sizes for fixed- and random-effects models

References

Borenstein, M., Hedges, L. V., Higgins, J. P. T. and Rothstein, H. R.(2009). Introduction to meta-analysis, Chichester, UK: Wiley.

Hedges, L., Pigott, T. (2004). The Power of Statistical Tests for Moderators in Meta-Analysis, Psychological Methods, 9(4), 426-445. doi: https://dx.doi.org/10.1037/1082-989x.9.4.426

Pigott, T. (2012). Advances in Meta-Analysis. doi: https://dx.doi.org/10.1007/978-1-4614-2278-5

See Also

```
https://jason-griffin.shinyapps.io/shiny_metapower/
```

Examples

```
homogen_power(effect_size = .5, study_size = 10, k = 10, i2 = .50, es_type = "d")
```

mod_power

Compute Power for Categorical Moderator Analysis in Meta-analysis

Description

Computes statistical power for categorical moderator analysis under fixed and random effects models.

Usage

```
mod_power(
  n_groups,
  effect_sizes,
  study_size,
  k,
  i2,
  es_type,
  p = 0.05,
  con_table = NULL
)
```

4 mpower

Arguments

n_groups	Numerical value for the levels of a categorical variable.
effect_sizes	Numerical values for effect sizes of for each group.
study_size	Numerical value for number of participants (per study).
k	Numerical value for total number of studies.
i2	Numerical value for Heterogeneity estimate (i^2).
es_type	Character reflecting effect size metric: 'r', 'd', or 'or'.
р	Numerical value for significance level (Type I error probability).
con_table	(Optional) List of numerical values for 2x2 contingency tables as a vector in the following format: c(a,b,c,d). These should be specified for each group(i.e., n_groups).

2x2 Table	Group 1	Group 2
Present	a	b
Not Present	c	d

Value

Estimated Power estimates for moderator analysis under fixed- and random-effects models

See Also

```
https://jason-griffin.shinyapps.io/shiny_metapower/
```

Examples

mpower 5

Description

Computes statistical power for summary effect sizes in meta-analysis.

Usage

```
mpower(
  effect_size,
  study_size,
  k,
  i2,
  es_type,
  test_type = "two-tailed",
  p = 0.05,
  con_table = NULL
)
```

Arguments

effect_size	Numerical value of effect size.
study_size	Numerical value for number number of participants (per study).
k	Numerical value for total number of studies.
i2	Numerical value for Heterogeneity estimate (i^2).
es_type	Character reflecting effect size metric: 'r', 'd', or 'or'.
test_type	Character value reflecting test type: ("two-tailed" or "one-tailed").
p	Numerical value for significance level (Type I error probability).
con_table	(Optional) Numerical values for $2x2$ contingency table as a vector in the following format: $c(a,b,c,d)$.

2x2 Table	Group 1	Group 2
Present	a	b
Not Present	С	d

Value

Estimated Power

References

Borenstein, M., Hedges, L. V., Higgins, J. P. T. and Rothstein, H. R.(2009). Introduction to meta-analysis, Chichester, UK: Wiley.

Hedges, L., Pigott, T. (2004). The Power of Statistical Tests for Moderators in Meta-Analysis, Psychological Methods, 9(4), 426-445 doi: https://dx.doi.org/10.1037/1082-989x.9.4.426

Pigott, T. (2012). Advances in Meta-Analysis. doi: https://dx.doi.org/10.1007/978-1-4614-2278-5 Jackson, D., Turner, R. (2017). Power analysis for random-effects meta-analysis, Research Synthesis Methods, 8(3), 290-302 doi: https://dx.doi.org/10.1002/jrsm.1240

6 plot_mod_power

See Also

```
https://jason-griffin.shinyapps.io/shiny_metapower/
```

Examples

```
mpower(effect_size = .2, study_size = 10, k = 10, i2 = .5, es_type = "d")
```

plot_homogen_power

Plot Power Curve for Test of Homogeneity

Description

Plots power curves for the test of homogeneity for different levels of within-study variation for fixed effects models. For random-effects models, power curves are plotted for various levels of heterogeneity.

Usage

```
plot_homogen_power(obj)
```

Arguments

obj

should be an "homogen_power" object

Value

Power curve plot for the user specified input parameters

plot_mod_power

Plot Power Curve for Categorical Moderators

Description

Plots power curves for categorical moderator in meta-analysis

Usage

```
plot_mod_power(obj)
```

Arguments

obj

This should be an 'mod_power' object

Value

Power curves for moderator analysis under fixed and random effects models

plot_mpower 7

plot_mpower

Plot Power Curve for Meta-analysis

Description

Plots power curves for fixed effects models with various effect size magnitudes. Also plots power curves for various levels of heterogeneity (e.g., i2 = 75

Usage

```
plot_mpower(obj)
```

Arguments

obj

This should be an "mpower" object

Value

Power curve plot for the user specified input parameters

plot_subgroup_power

Plot Power Curve for Subgroup analysis

Description

Plots power curves to detect subgroup differences in meta-analysis.

Usage

```
plot_subgroup_power(obj)
```

Arguments

obj

This should be an 'subgroup_power' object

Value

Power curves to detect subgroup differences for fixed and random effects models

8 subgroup_power

subgroup_power

Compute Power for Subgroup Analysis in Meta-analysis

Description

Computes statistical power for different subgroups under fixed and random effects models.

Usage

```
subgroup_power(
  n_groups,
  effect_sizes,
  study_size,
  k,
  i2 = 0.5,
  es_type,
  p = 0.05,
  con_table = NULL
)
```

Arguments

n_groups	Numerical value for the number of subgroups.
effect_sizes	Numerical values for effect sizes of for each group.
study_size	Numerical value for number of participants (per study).
k	Numerical value for total number of studies.
i2	Numerical value for Heterogeneity estimate (i^2).
es_type	Character reflecting effect size metric: 'r', 'd', or 'or'.
p	Numerical value for significance level (Type I error probability).
con_table	(Optional) List of numerical values for $2x2$ contingency tables as a vector in the following format: $c(a,b,c,d)$. These should be specified for each subgroup (i.e., n_groups).

2x2 Table	Group 1	Group 2
Present	a	b
Not Present	c	d

Value

Estimated Power estimates for subgroup differences under fixed- and random-effects models

See Also

```
https://jason-griffin.shinyapps.io/shiny_metapower/
```

subgroup_power 9

Examples

Index

```
homogen_power, 2

mod_power, 3

mpower, 4

plot_homogen_power, 6

plot_mod_power, 6

plot_mpower, 7

plot_subgroup_power, 7

subgroup_power, 8
```