GenrELM: An ELM Approach to Automatic Music Genre Classification using Bass Lines

J. Gabrielle M. Macaraig *March 13, 2013*

Outline

- Introduction
- Literature Review
- Statement of the Problem
- Objectives
- Proposed Approach
- Experiments and Results
- Conclusion and Future Works

Music

 "the science or art of ordering tones or sounds in succession, in combination, and in temporal relationships to produce a composition having unity and continuity" (Merriam-Webster)

- Rhythm
- Melody
- Harmony
- Texture
- Dynamics
- Tone Color

- Rhythm
 - element of "time"
 - beat

- Melody
 - horizontal representation of pitch
 - tune

- Harmony
 - vertical representation of pitch

- Texture
 - number of individual melodies and their relationships
 - monophonic
 - polyphonic
 - homophonic

- Dynamics
 - relative loudness and softness of music

- Tone Color
 - timbre/ quality of sound

Bass Lines

- a monophonic instrumental melody
- played by instruments having a low-pitched sound (i.e. bass guitar, double bass)

Bass Lines

- bridges together melodic and rhythmic sections in most musical styles
- "...the groundwork or foundation upon which all musical composition is to be erected." (Christopher Simpson)

Bass Lines

- can establish rhythm
- has tune
- does not harmonize in itself alone
- monophonic
- low-pitched sound

Melodic Intervals

 represents the number of semitones in a given time interval

semitone – half-step-distance between two adjacent notes

Genre

- a way of organizing, classifying, and grouping music
- a kind of music (Franco Fabbri)

Extreme Learning Machine (ELM)

- machine learning algorithm
- created for single-hidden layer feed forward networks

Extreme Learning Machine (ELM)

- slow learning speed
- over training
- local optima entrapment

Extreme Learning Machine (ELM)

Given a training set , hidden node output function , and hidden node number L,

step 1 Randomly generate hidden parameters (a_i, b_i) , i = 1,...,L.

step 2 Calculate the hidden layer output matrix **H**.

step 3 Calculate the output weight vector $\boldsymbol{\beta}$:

$$\beta = H^{\dagger}T$$
, where $T = [t_1, ..., t_N]^T$.

Literature Review

- Karpov, I.: Hidden Markov Classification for Musical Genres (2002)
- McKay, C. and Fujinaga, I.:
 Automatic Genre Classification
 using Large High-Level
 Musical Feature Sets (2004)

Literature Review

- Haggblade, M., Hong, Y., and Kao, K.: *Music Genre Classification* (2011)
 - K-Nearest Neighbour, K-means, multiclass SVM, and neural networks

Literature Review

- Meng, A., et al.: Temporal Feature Integration for Music Genre Classification (2007)
- Şimşekli, U.: Automatic Music Genre Classification using Bass Lines (2010)
 - K-nearest neighbor classifier

Statement of the Problem

Statement of the Problem

 to create a platform for automatic music genre classification using information on bass lines

Objectives

- to apply the ELM algorithm to music genre classification
- to evaluate the performance of ELM in genre classification by varying the number of its hidden nodes,

Objectives

- to evaluate the performance of ELM in genre classification by introducing a regularization coefficient, and
- to evaluate the performance of ELM in genre classification by altering the network structure.

General Flow

Input

- MIDI file containing bass lines only
- Any length

Feature Extraction

Genre Taxonomy

Jazz	Rhythm & Blues	Rock	- root genre
Bebop	Blues Rock	Hard Rock	C
Swing	Funk	Metal	leaf
Bossa Nova	Rock 'n Roll	Alternative Rock	genres

ELM Training

L - no. of hidden nodes

ELM Training

- Generate Hidden Node Parameters
 - random-generated integers from
 - -1 to 1
 - input layer to hidden layer

$$a = \begin{bmatrix} -0.804 & \cdots & -0.855 \\ \vdots & \ddots & \vdots \\ -0.299 & \cdots & -0.181 \end{bmatrix}_{d \times L}$$

input weights

$$b = \begin{bmatrix} 0.528 \\ \vdots \\ -0.269 \end{bmatrix}_{t}$$
 bias

d – input vector length L – no.of hidden nodes

ELM Training

Calculate Hidden Layer Output

Matrix
$$H = \begin{bmatrix} G(a_i, b_i, x_1) & \cdots & G(a_L, b_L, x_1) \\ \vdots & \cdots & \vdots \\ G(a_i, b_i, x_N) & \cdots & G(a_L, b_L, x_N) \end{bmatrix}_{N \times L}^{j \in 1, 2, \dots, N} i \in 1, 2, \dots, L$$

$$f(x) = \frac{1}{1 + \exp(-w)}$$
 activation function

$$f(x) = \frac{1}{1 + \exp(-w)}$$

function

$$w = \left(\sum F_i * a\right) + b$$

Calculate Output Weight Vector

$$\boldsymbol{\beta} = \boldsymbol{H}^{\dagger} \boldsymbol{T}$$

$$\boldsymbol{T} = \begin{bmatrix} 1 & 0 & 0 \\ \vdots & \cdots & \vdots \\ 0 & 0 & 1 \end{bmatrix}_{N \times m}$$

$$\boldsymbol{\beta} = \begin{bmatrix} \cdots & \cdots & \cdots \\ \vdots & \cdots & \vdots \\ \cdots & \cdots & \cdots \end{bmatrix}_{L \times m}$$

L – no. of hidden nodes

N – training set size

m – no. of output nodes

- w/ regularization parameter
 - any positive number C

$$\beta = H^{T} \left(\frac{I}{C} + HH^{T} \right)^{-1} T$$

Target Output Mapping

Genre	Node 1	Node 2	Node 3
Jazz	1	0	0
Rhythm & Blues	0	1	0
Rock	0	0	1

Genre (Root: Jazz)	Node 1	Node 2	Node 3
Bebop	1	0	0
Swing	0	1	0
Bossa Nova	0	0	1

Target Output Mapping (cont'd)

Genre (Root: RnB)	Node 1	Node 2	Node 3
Blues Rock	1	0	0
Funk	0	1	0
Rock 'n Roll	0	0	1

Genre (Root: Rock)	Node 1	Node 2	Node 3
Hard Rock	1	0	0
Metal	0	1	0
Alternative Rock	0	0	1

- two-step manner
 - 1. Classify according to root genre
 - 2. Based on result in step 1, classify according to its corresponding leaf genres
 - output function

$$f(x) = H(x)\beta$$

Genre Taxonomy

Jazz	Rhythm & Blues	Rock	- root genre
Bebop	Blues Rock	Hard Rock	
Swing	Funk	Metal	1
Bossa Nova	Rock 'n Roll	Alternative Rock	leaf genres

 Max. Output Node-to-Genre Mapping

Output Node with Max. Value	Genre
1	Jazz
2	Rhythm & Blues
3	Rock

Output Node with Max. Value	Genre (Jazz)	
1	Bebop	
2	Swing	
3	Bossa Nova	

 Max. Output Node-to-Genre Mapping (cont'd)

Output Node with Max. Value	Genre (R'nB)
1	Blues Rock
2	Funk
3	Rock 'n Roll

Output Node with Max. Value	Genre (Rock)	
1	Hard Rock	
2	Metal	
3	Alternative Rock	

- System Specifications
 - Hardware
 - Intel Core i5 CPU M 460 @ 2.53GHz
 - 2048MB RAM
 - Software:
 - Windows 8 Pro 32-bit (6.2, Build 9200)
 - Eclipse Juno IDE
 - Java Virtual Machine

- Experimental Setups
 - Variation in training and test sets used
 - Variation in number of hidden nodes
 - Introduction of a regularization parameter
 - Variation in reg. coeff values

- Experimental Setups
 - Variation in network structure (i.e. no. of output nodes)
 - Comparison with existing study

- Experimental Settings
 - 30 trials per setup
 - Dataset
 - 225 MIDI Files
 - Training: 80%
 - Testing: 20%
 - Random-stratified

- Experimental Settings
 - Dataset (cont'd.)

	Training	Testing
Jazz	60	15
R'nB	60	15
Rock	60	15
Root	180	45

- Experimental Settings
 - Dataset (cont'd.)

		Training	Testing
Jazz	Bebop	20	5
	Swing	20	5
	Bossa Nova	20	5
R'nB	Blues Rock	20	5
	Funk	20	5
	Rock 'n Roll	20	5
Rock	Hard Rock	20	5
	Metal	20	5
	Alternative	20	5

- Experimental Settings
 - initial parameters
 - Basic ELM
 - No. of hidden nodes

10

- ELM w/ regularization parameter
 - Regularization coeff

0.2

- dataset
 - random partitioning of dataset
 - fixed dataset

Max

Mean

Max Min Mean

Max

Mean

Max

Mean

50

Max Min Mean

50

	Root (300 hidden nodes)	Leaf (100 hidden nodes)
Basic ELM	49.11%	50.08%
ELM w/ reg. coeff	85.11%	62.96%

Algorithm	Distance Metric / Type	Root Accuracy (%)	Leaf Accuracy (%)
KNN	ED	97.78	84.44
	EMD	93.33	80.00
	KL ₂ D	93.33	80.00
	NCD	75.56	66.67
	PWED	100	86.67
ELM		100	95.56

Conclusion

- ELM is robust
 - good for music genre classification
- ELM is able to make good generalizations even with just a few hidden nodes, but declines when the number of hidden nodes is increased

Conclusion

- Adding a regularization parameter makes the ELM more stable.
- Hierarchical approach is better than flat classification

Future Works

- Online-Sequential ELM (OS-ELM)
 - No need for retraining when data/training set is updated
- Larger dataset
- Bassline Transcription

