Lecture 17 Copyright by Hongyun Wang, UCSC

List of topics in this lecture

- Analytical expression of option price C(s, t) at time t when S(t) = s
- Expected reward at time T for paying C(s, t) for the option
- Nominal value at time *T* of amount *C*(*s*, *t*) at time *t*
- Effect of interest rate: option price increase with interest rate
- Effect of volatility: option price increase with volatility

Review

Black-Scholes option pricing model

Evolution of the stock price

 $dS = \mu S dt + \sigma S dW$ with Ito interpretation

Options associated with a stock

1 unit of call option = $\underline{\text{the right}}$ to buy 1 share of ABC at price K at time T.

1 unit of put option = the right to sell 1 share of ABC at price K at time T.

Assumption on the price of an option

The option price at time t is a <u>deterministic</u> function of the current stock price S(t) and the current time t.

Option price function: C(s, t),

the deterministic function connecting the stock price and the option price

The key question:

Suppose I am a market maker and I am required to set and publish C(s, t).

How should I set function C(s, t) to avoid a guaranteed loss?

Delta hedging portfolio

1 unit of delta hedging of time t

= owning (-1) unit of call option and $C_s(S(t), t)$ shares of stock.

<u>Caution:</u> the composition of portfolio varies with t.

Net gain/loss in time period [0, *T*]

Suppose that over time period [0, T], we maintain a portfolio of F(S(t), t) units delta hedging of time t, at time t by carrying out transactions needed to adjust the portfolio.

We set
$$F(s,t) = (C(s,t) - C_s(s,t)s)r - C_t(s,t) - \frac{1}{2}C_{ss}(s,t)\sigma^2s^2$$

...

$$G_{\text{Total}} = \int \left(\left(C(s,t) - C_s(s,t) s \right) r - C_t(s,t) - \frac{1}{2} C_{ss}(s,t) \sigma^2 s^2 \right)^2 \bigg|_{s=S(t)} dt$$

 G_{Total} would be a risk-free gain unless (·) $\equiv 0$.

Governing equation of C(s, t)

$$\begin{cases} C_t(s,t) + \frac{1}{2}\sigma^2 s^2 C_{ss}(s,t) = r(C(s,t) - sC_s(s,t)) \\ C(s,t)\Big|_{t=T} = \max(s - K, 0) \end{cases}$$

End of review

Analytical expression of C(s, t)

We solve for C(s, t) from the PDE and the final condition.

We use a change of variables to write it as a simple initial value problem.

Change of variables

New time variable

$$\tau = T - t$$
 time to expiration
==> $t = T - \tau$

New spatial (price) variable

$$x = \log \frac{s}{K} + \left(r - \frac{1}{2}\sigma^2\right)(T - t)$$

$$= > s = K \exp\left(x - \left(r - \frac{1}{2}\sigma^2\right)\tau\right)$$

New price function

$$u(x,\tau) = e^{r(T-t)}C(s,t)$$

$$= > C(s,t) = e^{-r\tau}u(x,\tau)$$

<u>Derivatives</u> of C(s, t)

We start with the derivatives of (τ, x) with respect to (t, s).

$$\frac{\partial \tau}{\partial t} = -1, \quad \frac{\partial \tau}{\partial s} = 0$$

$$\frac{\partial x}{\partial t} = \frac{\partial}{\partial t} \left(\log \frac{s}{K} + \left(r - \frac{1}{2} \sigma^2 \right) (T - t) \right) = -\left(r - \frac{1}{2} \sigma^2 \right)$$

$$\frac{\partial x}{\partial s} = \frac{\partial}{\partial s} \left(\log \frac{s}{K} + \left(r - \frac{1}{2} \sigma^2 \right) (T - t) \right) = \frac{1}{s}$$

We express derivatives of C(s, t) in terms of those of $u(x, \tau)$ using the chain rule.

$$\frac{\partial}{\partial t}C(s,t) = \frac{\partial}{\partial \tau} \left[e^{-r\tau}u(x,\tau) \right] \cdot \frac{\partial \tau}{\partial t} + \frac{\partial}{\partial x} \left[e^{-r\tau}u(x,\tau) \right] \cdot \frac{\partial x}{\partial t}$$

$$= re^{-r\tau}u(x,\tau) - e^{-r\tau} \frac{\partial}{\partial \tau}u(x,\tau) - \left(r - \frac{1}{2}\sigma^2 \right) e^{-r\tau} \frac{\partial}{\partial x}u(x,\tau)$$

$$\frac{\partial}{\partial s}C(s,t) = \frac{\partial}{\partial x} \left[e^{-r\tau}u(x,\tau) \right] \cdot \frac{\partial x}{\partial s} = e^{-r\tau} \frac{\partial}{\partial x}u(x,\tau) \cdot \frac{1}{s}$$

$$\frac{\partial^2}{\partial s^2}C(s,t) = \frac{\partial}{\partial s} \left[e^{-r\tau} \frac{\partial}{\partial x}u(x,\tau) \cdot \frac{1}{s} \right]$$

$$= \frac{\partial}{\partial s} \left[e^{-r\tau} \frac{\partial}{\partial x}u(x,\tau) \right] \cdot \frac{1}{s} - e^{-r\tau} \frac{\partial}{\partial x}u(x,\tau) \cdot \frac{1}{s^2}$$

$$= e^{-r\tau} \frac{\partial^2}{\partial x^2}u(x,\tau) \cdot \frac{1}{s^2} - e^{-r\tau} \frac{\partial}{\partial x}u(x,\tau) \cdot \frac{1}{s^2}$$

Equation for $u(x, \tau)$

Substituting these derivatives into the PDE for C(s, t), we obtain the PDE for $u(x, \tau)$.

$$\underbrace{re^{-r\tau}u(x,\tau) - e^{-r\tau}\frac{\partial}{\partial \tau}u(x,\tau) - \left(r - \frac{1}{2}\sigma^{2}\right)e^{-r\tau}\frac{\partial}{\partial x}u(x,\tau)}_{C_{t}(s,t) \equiv T_{1} + T_{2} + T_{3}} + \underbrace{\frac{1}{2}\sigma^{2}\left[e^{-r\tau}\frac{\partial^{2}}{\partial x^{2}}u(x,\tau) - e^{-r\tau}\frac{\partial}{\partial x}u(x,\tau)\right]}_{\frac{1}{2}\sigma^{2}s^{2}C_{ss}(s,t) \equiv T_{4} + T_{5}} = \underbrace{r\left(e^{-r\tau}u(x,\tau) - e^{-r\tau}\frac{\partial}{\partial x}u(x,\tau)\right)}_{r(C(s,t) - sC_{s}(s,t)) \equiv T_{6} + T_{7}}$$

Combining T_1 with T_6 , first part of T_3 with T_7 , second pat of T_3 with T_5 , we obtain

$$-e^{-r\tau} \frac{\partial}{\partial \tau} u(x,\tau) + \frac{1}{2} \sigma^2 e^{-r\tau} \frac{\partial^2}{\partial x^2} u(x,\tau) = 0$$

$$= > u_{\tau}(x,\tau) = \frac{1}{2} \sigma^2 u_{xx}(x,\tau)$$

where $u(x, \tau)$ is related to C(s, t) by

$$u(x,\tau) = e^{r\tau}C(s,t)$$
, $x = \log\frac{s}{K} + \left(r - \frac{1}{2}\sigma^2\right)\tau$, $\tau = T - t$.

Initial condition for $u(x, \tau)$

We use
$$s = K \exp\left(x - \left(r - \frac{1}{2}\sigma^2\right)\tau\right)$$
 to write out $u(x, \tau)|_{\tau = 0}$.

$$u(x, \tau)|_{\tau = 0} = C(s, t)|_{t = T} = \max(s - K, 0) = K \max((e^x - 1), 0)$$

The initial value problem (IVP) for $u(x, \tau)$

$$\begin{cases} u_{\tau}(x,\tau) = \frac{1}{2}\sigma^{2}u_{xx}(x,\tau) \\ u(x,\tau)\Big|_{\tau=0} = K \begin{cases} (e^{x}-1), & x>0 \\ 0, & x<0 \end{cases}$$

Solution of $u(x, \tau)$

$$u(x,\tau) = \int_{-\infty}^{\infty} u(y,0) \frac{1}{\sqrt{2\pi\sigma^2\tau}} \exp\left(\frac{-(y-x)^2}{2\sigma^2\tau}\right) dy$$
$$= \frac{K}{\sqrt{2\pi\sigma^2\tau}} \int_{0}^{\infty} (e^y - 1) \exp\left(\frac{-(y-x)^2}{2\sigma^2\tau}\right) dy \equiv K(I_2 - I_1)$$

We express I_1 and I_2 in terms of the error function.

Recall that the normal CDF has the expression

$$\frac{1}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^{x} \exp\left(\frac{-\xi^2}{2\sigma^2\tau}\right) d\xi = \frac{1}{2}\left(1 + \operatorname{erf}\left(\frac{x}{\sqrt{2\sigma^2\tau}}\right)\right)$$

We write out integral I_1 in terms of the error function.

$$I_1 = \frac{1}{\sqrt{2\pi\sigma^2\tau}} \int_{0}^{\infty} \exp\left(\frac{-(y-x)^2}{2\sigma^2\tau}\right) dy$$

change of variables $\xi = x - y$

$$= \frac{1}{\sqrt{2\pi\sigma^2\tau}} \int_{-\infty}^{x} \exp\left(\frac{-\xi^2}{2\sigma^2\tau}\right) d\xi = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{x}{\sqrt{2\sigma^2\tau}}\right)\right)$$

For integral I_2 , we first complete the square in the exponent.

$$I_{2} = \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} \int_{0}^{\infty} \exp\left(\frac{-(y-x)^{2}}{2\sigma^{2}\tau} + y\right) dy$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} \int_{0}^{\infty} \exp\left(\frac{-\left[y^{2} - 2(x+\sigma^{2}\tau)y + (x+\sigma^{2}\tau)^{2}\right]}{2\sigma^{2}\tau} + x + \frac{\sigma^{2}\tau}{2}\right) dy$$

$$= \exp\left(x + \frac{\sigma^{2}\tau}{2}\right) \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} \int_{0}^{\infty} \exp\left(\frac{-(y-x-\sigma^{2}\tau)^{2}}{2\sigma^{2}\tau}\right) dy$$

We then use change of variables $\xi = x + \sigma^2 \tau - y$ to write I_2 as

$$I_{2} = \exp\left(x + \frac{\sigma^{2}\tau}{2}\right) \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} \int_{-\infty}^{(x+\sigma^{2}\tau)} \exp\left(\frac{-\xi^{2}}{2\sigma^{2}\tau}\right) dy$$
$$= \exp\left(x + \frac{\sigma^{2}\tau}{2}\right) \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{x + \sigma^{2}\tau}{\sqrt{2\sigma^{2}\tau}}\right)\right)$$

Combining I_1 and I_2 , we obtain an analytical expression for $u(x, \tau)$

$$u(x,\tau) = \frac{K}{2} \exp\left(x + \frac{\sigma^2 \tau}{2}\right) \left(1 + \operatorname{erf}\left(\frac{x + \sigma^2 \tau}{\sqrt{2\sigma^2 \tau}}\right)\right) - \frac{K}{2} \left(1 + \operatorname{erf}\left(\frac{x}{\sqrt{2\sigma^2 \tau}}\right)\right)$$

Solution of C(s, t)

$$C(s,t) = e^{-r\tau}u(x,\tau), \quad x = \log\frac{s}{K} + \left(r - \frac{1}{2}\sigma^2\right)\tau, \quad \tau = T - t$$

From the expression of x, we have

$$x + \frac{\sigma^2 \tau}{2} = \log \frac{s}{K} + r\tau$$
, $\exp \left(x + \frac{\sigma^2 \tau}{2} \right) = \frac{s}{K} e^{r\tau}$

Using these results, we write $C(s, t) = e^{-r\tau}u(x, \tau)$ as

$$C(s,t) = \frac{s}{2} \left[1 + \operatorname{erf}\left(\frac{\log \frac{s}{K} + \left(r + \frac{\sigma^{2}}{2}\right)\tau}{\sqrt{2\sigma^{2}\tau}}\right) \right] - \frac{e^{-r\tau}K}{2} \left[1 + \operatorname{erf}\left(\frac{\log \frac{s}{K} + \left(r - \frac{\sigma^{2}}{2}\right)\tau}{\sqrt{2\sigma^{2}\tau}}\right) \right]$$

where $\tau = T - t$

Function $\phi(\eta)$ and its derivative

We re-write C(s, t) as

$$C(s,t) = \frac{e^{-r\tau}K}{2} \left[\exp(\log\frac{s}{K} + r\tau) \left[1 + \operatorname{erf}\left(\frac{\log\frac{s}{K} + r\tau + \frac{\sigma^{2}}{2}\tau}{\sqrt{2\sigma^{2}\tau}}\right) \right] - \left[1 + \operatorname{erf}\left(\frac{\log\frac{s}{K} + r\tau - \frac{\sigma^{2}}{2}\tau}{\sqrt{2\sigma^{2}\tau}}\right) \right] \right]$$

$$= > C(s,t) = \frac{e^{-r\tau}K}{2} \phi(\eta,\omega), \quad \eta = \log\frac{s}{K} + r\tau, \quad \omega = \frac{1}{2}\sigma^{2}\tau$$
 (C-1)

where function $\phi(\eta, \omega)$ is defined as

$$\phi(\eta,\omega) = e^{\eta} \left[1 + \operatorname{erf}\left(\frac{\eta + \omega}{\sqrt{4\omega}}\right) \right] - \left[1 + \operatorname{erf}\left(\frac{\eta - \omega}{\sqrt{4\omega}}\right) \right]$$
 (F-1)

We calculate the derivative of $\phi(\eta, \omega)$.

$$\frac{\partial}{\partial \eta} \operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \exp(-z^{2})$$

$$\frac{\partial}{\partial \eta} \operatorname{erf}\left(\frac{\eta + \omega}{\sqrt{4\omega}}\right) = \frac{2}{\sqrt{\pi}} \exp\left(-\frac{(\eta^{2} + 2\eta\omega + \omega^{2})}{4\omega}\right) \frac{1}{\sqrt{4\omega}}$$

$$\frac{\partial}{\partial \eta} \operatorname{erf}\left(\frac{\eta - \omega}{\sqrt{4\omega}}\right) = \frac{2}{\sqrt{\pi}} \exp\left(-\frac{(\eta^{2} - 2\eta\omega + \omega^{2})}{4\omega}\right) \frac{1}{\sqrt{4\omega}}$$

$$= > e^{\eta} \frac{\partial}{\partial \eta} \operatorname{erf}\left(\frac{\eta + \omega}{\sqrt{4\omega}}\right) = \frac{\partial}{\partial \eta} \operatorname{erf}\left(\frac{\eta - \omega}{\sqrt{4\omega}}\right)$$

$$= > \frac{\partial}{\partial \eta} \phi(\eta, \omega) = e^{\eta} \left(1 + \operatorname{erf}\left(\frac{\eta + \omega}{\sqrt{4\omega}}\right)\right) > 0 \qquad (DF-1)$$

Function $C_s(s, t)$

We use (DF-1) to calculate $C_s(s, t)$, which is needed in the delta hedging.

$$C(s,t) = \frac{e^{-r\tau}K}{2}\phi(\eta,\omega), \quad \eta = \log\frac{s}{K} + r\tau, \quad \omega = \frac{1}{2}\sigma^{2}\tau$$

$$= > \frac{\partial}{\partial s}C(s,t) = \frac{e^{-r\tau}K}{2}\frac{\partial}{\partial \eta}\phi(\eta,\omega)\frac{d\eta}{ds} = \frac{e^{-r\tau}K}{2}e^{\eta}\left(1 + \operatorname{erf}\left(\frac{\eta + \omega}{\sqrt{4\omega}}\right)\right)\frac{1}{s}$$

$$= \frac{1}{2}\left(1 + \operatorname{erf}\left(\frac{\eta + \omega}{\sqrt{4\omega}}\right)\right), \quad e^{\eta} = \frac{s}{K}e^{r\tau}$$

We arrive at

$$C_s(s,t) = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{\eta + \omega}{\sqrt{4\omega}}\right) \right), \quad \eta = \log \frac{s}{K} + r\tau, \quad \omega = \frac{1}{2}\sigma^2 \tau$$

Expected reward for paying C(s, t) for the option

We compare the rewards of buying the option vs not buying.

Nominal value at time T of amount C(s, t) at time t

$$e^{r(T-t)}C(s,t)$$

= the nominal value at time T of amount C(s, t) at time t

where C(s, t) is the amount needed to buy the option at time t when the stock price is s.

We write out $e^{r(T-t)}C(s, t)$ using equation (C-1)

$$e^{r\tau}C(s,t) = \frac{K}{2}\phi(\eta,\omega), \quad \eta = \log\frac{s}{K} + r\tau, \quad \omega = \frac{1}{2}\sigma^2\tau$$

Next we calculate the expected reward at time *T* for owning the option.

Evolution of $Y = \log(S)$

$$dS = \mu S dt + \sigma S dW$$
, starting at $S(t) = s$

The Ito interpretation of this SDE corresponds to

$$dY = \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dW, \quad Y = \log(S) \text{ starting at } Y(t) = \log(s)$$

$$= > Y(T) = Y(t) + \left(\mu - \frac{\sigma^2}{2}\right) (T - t) + \sigma \left(W(T) - W(t)\right)$$

$$= > Y(T) = \log(s) + \left(\mu - \frac{\sigma^2}{2}\right) \tau + N(0, \sigma^2 \tau), \quad \tau = T - t$$

The probability density of Y(T) is

$$=> \rho_{Y}(y) = \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} \exp\left(\frac{-\left(y - \log(s) - \left(\mu - \frac{\sigma^{2}}{2}\right)\tau\right)^{2}}{2\sigma^{2}\tau}\right)$$

Expected reward at time T

$$E(\max(S(T)-K,0)) = E(\max(\exp(Y(T))-K,0))$$

$$= \int_{-\infty}^{\infty} \max(e^{y}-K,0)\rho_{Y}(y)dy = \int_{\log(K)}^{\infty} (e^{y}-K)\rho_{Y}(y)dy$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} \int_{\log(K)}^{\infty} (e^{y}-K)\exp\left(\frac{-\left(y-\log(s)-\mu\tau+\frac{\sigma^{2}}{2}\tau\right)^{2}}{2\sigma^{2}\tau}\right)dy = J_{2}-J_{1}$$

We calculate I_1 and I_2 similar to what did previously for I_1 and I_2 .

In J_1 , we use change of variables: $y = -\xi$

$$J_{1} = \frac{K}{\sqrt{2\pi\sigma^{2}\tau}} \int_{-\infty}^{\log(K)} \exp\left(\frac{-\left(\xi + \log(s) + \mu\tau - \frac{\sigma^{2}}{2}\tau\right)^{2}}{2\sigma^{2}\tau}\right) d\xi$$
$$= \frac{K}{2} \left(1 + \operatorname{erf}\left(\frac{\eta_{\mu} - \omega}{\sqrt{4\omega}}\right)\right), \quad \eta_{\mu} = \log\frac{s}{K} + \mu\tau, \quad \omega = \frac{1}{2}\sigma^{2}\tau$$

In J_2 , we complete square and use change of variables: $y = -\xi$

$$J_{2} = \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} \int_{\log(K)}^{\infty} \exp\left(\frac{y2\sigma^{2}\tau - \left(y - \log(s) - \mu\tau + \frac{\sigma^{2}}{2}\tau\right)^{2}}{2\sigma^{2}\tau}\right) dy$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} \exp\left(\log(s) - \mu\tau\right) \int_{\log(K)}^{\infty} \exp\left(\frac{-\left(y - \log(s) - \mu\tau - \frac{\sigma^{2}}{2}\tau\right)^{2}}{2\sigma^{2}\tau}\right) dy$$

$$= \frac{K}{\sqrt{2\pi\sigma^{2}\tau}} \exp\left(\log\frac{s}{K} + \mu\tau\right) \int_{-\infty}^{-\log(K)} \exp\left(\frac{-\left(\xi + \log(s) + \mu\tau + \frac{\sigma^{2}}{2}\tau\right)^{2}}{2\sigma^{2}\tau}\right) d\xi$$

$$= \frac{K}{2} \exp(\eta_{\mu}) \left(1 + \operatorname{erf}\left(\frac{\eta_{\mu} + \omega}{\sqrt{4\omega}}\right) \right), \quad \eta_{\mu} \equiv \log \frac{s}{K} + \mu \tau, \quad \omega = \frac{1}{2} \sigma^{2} \tau$$

The expected reward at time *T* is

$$E\left(\max(S(T)-K,0)\right)$$

$$=\frac{K}{2}\exp(\eta_{\mu})\left(1+\operatorname{erf}\left(\frac{\eta_{\mu}+\omega}{\sqrt{4\omega}}\right)\right)-\frac{K}{2}\left(1+\operatorname{erf}\left(\frac{\eta_{\mu}-\omega}{\sqrt{4\omega}}\right)\right)$$

Recall the definition of $\phi(\eta, \omega)$ in (F-1).

We write the expected reward at time *T* as

$$E(\max(S(T)-K,0)) = \frac{K}{2}\phi(\eta_{\mu},\omega), \quad \eta_{\mu} \equiv \log \frac{s}{K} + \mu\tau, \quad \omega = \frac{1}{2}\sigma^2\tau$$

We compare it with the <u>nominal value</u> at time T of amount C(s, t) at time t

$$e^{r\tau}C(s,t) = \frac{K}{2}\phi(\eta_r,\omega), \quad \eta_r \equiv \log\frac{s}{K} + r\tau, \quad \omega = \frac{1}{2}\sigma^2\tau$$

The two values have the same form with r corresponding to μ .

Expected reward of owning the option vs nominal value at time T of amount C(s, t)

The reward at time T of owning the option is not risk-free (in fact, it has very high risk!). It is a random variable with the average

$$E(\max(S(T)-K,0))=\frac{K}{2}\phi(\eta_{\mu},\omega)$$

The nominal value at time T of amount C(s, t) at time t is risk-free.

$$e^{r\tau}C(s,t) = \frac{K}{2}\phi(\eta_r,\omega)$$

The basic principle of risk-reward tells us that we should have

$$\frac{K}{2}$$
 $\phi(\eta_{\mu},\omega) > \frac{K}{2}\phi(\eta_{r},\omega)$

(DF-1) implies that $\phi(\eta, \omega)$ is an increasing function of η .

$$==> \eta_{\mu} > \eta_{r} ==> \mu > r$$

Remarks:

• For the underlying stock, an investment is not risk-free.

$$dS = \mu S dt + \sigma S dW$$

$$==> dE(S) = \mu E(S)dt$$

==>
$$\frac{dE(S)}{dt}$$
 = $\mu E(S)$ which is an exponential growth with rate = μ

 μ > r corresponds to the principle that the expected reward of a risky investment should be higher than the risk-free reward (based on interest rate).

• The risk-reward principle is true in the broader sense when we include rewards of all forms received from all sources.

Example:

Buying a lottery ticket.

I may assign a significant monetary value to the excitement of possibly winning or I may believe my number selection scheme will increase my chance so that my perceived average reward is significantly larger than the lottery ticket price.

The effect of interest rate r on C(s, t)

We write C(s, t) as

$$C(s,t) = \frac{K}{2} e^{-r\tau} \phi(\eta,\omega) = \frac{s}{2} e^{-\eta} \phi(\eta,\omega), \quad \eta \equiv \log \frac{s}{K} + r\tau, \quad \omega = \frac{1}{2} \sigma^2 \tau$$

The effect of interest rate r is contained in variable η .

Differentiating $e^{-\eta}\;\varphi(\eta,\omega)$ and using (F-1) and (DF-1), we have

$$\frac{\partial}{\partial \eta}\!\!\left(e^{-\eta}\,\varphi(\eta,\!\omega)\right)\!=\!-e^{-\eta}\,\varphi+e^{-\eta}\frac{\partial}{\partial \eta}\varphi\!=\!e^{-\eta}\!\!\left(1\!+\!erf\!\left(\frac{\eta\!-\!\omega}{\sqrt{4\omega}}\right)\right)>0$$

$$=> \frac{\partial}{\partial r}C(s,t) = \frac{s}{2}\frac{\partial}{\partial \eta}\left(e^{-\eta}\phi\right)\frac{d\eta}{dr} = \frac{s\tau}{2}e^{-\eta}\left(1 + \operatorname{erf}\left(\frac{\eta - \omega}{\sqrt{4\omega}}\right)\right) > 0$$

Conclusion:

Option price C(s, t) increases with interest rate r.

Interpretation:

When interest rate r is higher, the perceived future drift μ for the stock price must be higher in one of the two ways below:

- \circ The hike of interest rate r is in response to the increase in the perceived future drift μ . That is, the increase in the perceived future drift precedes the hike of interest rate.
- When the interest rate *r* is raised, it makes the stock less attractive as an investment. In response, the stock drops to a lower price to increase the future

percentage-wise gain so as to attract investors. When the perceived future drift is large enough, the stock price drop stops.

Thus, a higher interest rate r must correspond to a higher perceived future drift μ , in one way or the other. A higher perceived future drift μ increases the average reward at time T of owning the option and makes the option price higher.

The effect of volatility σ

The effect of volatility σ is contained in variable ω .

We differentiate $\phi(\eta, \omega)$ with respect to σ .

$$\begin{split} & \phi(\eta,\omega) = \mathrm{e}^{\eta} \Bigg[1 + \mathrm{erf} \Bigg(\frac{\eta + \omega}{\sqrt{4\omega}} \Bigg) \Bigg] - \Bigg[1 + \mathrm{erf} \Bigg(\frac{\eta - \omega}{\sqrt{4\omega}} \Bigg) \Bigg], \qquad \eta \equiv \log \frac{s}{K} + r\tau, \quad \omega = \frac{1}{2} \sigma^2 \tau \\ & \frac{\partial}{\partial \omega} \phi(\eta,\omega) = \mathrm{e}^{\eta} \exp \Bigg(\frac{-(\eta^2 + 2\eta\omega + \omega^2)}{4\omega} \Bigg) \Bigg(-\frac{\eta}{4\omega^{3/2}} + \frac{1}{4\omega^{1/2}} \Bigg) \\ & - \exp \Bigg(\frac{-(\eta^2 - 2\eta\omega + \omega^2)}{4\omega} \Bigg) \Bigg(-\frac{\eta}{4\omega^{3/2}} - \frac{1}{4\omega^{1/2}} \Bigg) \\ & = \exp \Bigg(\frac{-(\eta^2 - 2\eta\omega + \omega^2)}{4\omega} \Bigg) \frac{1}{2\omega^{1/2}} > 0 \\ & \frac{\partial}{\partial \sigma} \phi(\eta,\omega) = \frac{\partial}{\partial \omega} \phi(\eta,\omega) \cdot \frac{d\omega}{d\sigma} = \exp \Bigg(\frac{-(\eta^2 - 2\eta\omega + \omega^2)}{4\omega} \Bigg) \frac{1}{2\omega^{1/2}} \cdot \sigma \tau > 0 \\ & \frac{\partial}{\partial \sigma} \mathcal{C}(s,t) = \frac{K}{2} \mathrm{e}^{-r\tau} \frac{\partial}{\partial \sigma} \phi(\eta,\omega) > 0 \end{split}$$

Conclusion:

Option price C(s, t) increases with volatility σ .

Interpretation:

A higher volatility increases the average reward at time *T* of owning the option and makes the option price higher.

The case of unknown σ

We can estimate σ from the past history of stock price and then use the estimated σ to predict the option price C(s, t).

Conversely, we can use the current market price C(s, t) of the option to estimate investors' perceived future volatility of the underlying stock.

• C(s, t) increases with σ monotonically.

AM216 Stochastic Differential Equations

• For each realized sample of market price C(s, t), there is a corresponding estimated value of future volatility σ .