Dynamic models of matching

Alfred Galichon (NYU) Joint work with Pauline Corblet (Sciences Po) and Jeremy Fox (Rice)

> Econometrics of Games, Matching and Networks Toulouse School of Economics, June 16, 2021

Slides available from $https://github.com/alfredgalichon/presentations/blob/master/2021-06-16_Galichon-tse-slides.pdf$

- Dynamic aspects are crucial for matching problems
 - ► In labor economics (human capital formulation)
 - ► In family economics (fertility decisions)
 - ► In mergers and acquisitions
 - ► In school choice
 - ► Etc.
- ▶ We offer a framework for these dynamic matching problems:
 - ▶ with or without unobserved heterogeneity
 - ▶ with finite or infinite (stationary) horizon
 - with equilibrium prediction, structural estimation, comparative statics and welfare

- ► Large current literature on the estimation of **static transferable utility** (TU) two-sided (matching) models in the static case:
 - ► Choo and Siow (2006), Fox (2010), Galichon and Salanié (2011), Dupuy and Galichon (2014), Chiappori, Salanié and Weiss (2019), Fox et al. (2018)
- ▶ Dynamic discrete choice literature on one-sided models since Rust (1987) assumes the decision maker's type evolves stochastically depending on the choice made at the previous period.
- ► Today's goal: investigate the dynamic aspect of static matching models by assuming that the match has an effect on types *on both sides of the market*. And show how to take models to data on **changing relationships over time**.

- ► NTU case when matches are forever (e.g. kidney)
 - ▶ Unver (2010), Bloch and Cantala (2017), Doval (2021)
- ► Search and matching: the matching has no effect on partners, but match opportunities are scarse
 - NTU case: Burdett and Coles (1997); Eeckhout (1999), Peski (2021), Ederer (2021)
 - ► TU case: Shimer and Smith (2000) .
- ► TU case:
 - Erlinger, McCann, Shi, Siow and Wolthoff (2015), McCann, Shi, Siow and Wolthoff (2015) – 2 period sequential matching, with universities in a first period, then with firms.
 - ► Choo (2015) studies a dynamic matching problem with a focus on the age of marriage

Populations:

- ▶ $z \in \mathcal{Z}$ agents to be matched, z = x (worker) or z = y (firms)
- $ightharpoonup q_z = \text{mass of agents of type } z \text{ (fixed for now)}$

Matches:

- ▶ $a \in A$ matches; a = xy or a = x (unassigned worker) or a = y (unassigned firm)
- w_a = cardinality of the match (2 for pair, 1 for unassigned)
- $ightharpoonup \tilde{S}_a = \text{joint transferable surplus of match } a$
 - ► Choo-Siow's separable random utility assumption:

$$\tilde{S}_a = S_a + \sum_{z \in a} \varepsilon_z$$
, where (ε_z) vector of idiosyncratic payoff shifters (Gumbel for simplicity)

Equilibrium quantities:

- \triangleright p_z =payoff of z
- $\triangleright u_a = \text{mass of match } a$

Static TU matching with random utility: equilibrium insights (1)

Result 1 (Choo-Siow): (μ_a) and (p_z) are related by $\mu_a = \exp\left(w_a^{-1}\left(S_a + \sum_{z \in a} (\log q_z - p_z)\right)\right)$ and (p_z) solves $\sum_{a \ni z} \exp\left(w_a^{-1}\left(S_a + \sum_{z \in a} (\log q_z - p_z)\right)\right) = q_z$ for each z.

A short proof in the next slide...

We need to determine

- \blacktriangleright $\mu_a=$ mass of matches of type a is formed so that $\sum_{a\ni z}\mu_a=q_z$
- ▶ U_{za} = z's share of surplus in a match a so that $S_a = \sum_{z \in a} U_{za}$ and so that agent z in a match a gets $U_{za} + \varepsilon_a$
- ▶ p_z = average payoff of players of type z, so that $p_z = \log \sum_{a \ni z} \exp U_{za}$

Logit model: probability that
$$z$$
 chooses match a is $\mu_a/q_z=\frac{\exp U_{za}}{\sum_{a\ni z}\exp U_{za}}=\exp \left(U_{za}-p_z\right)$ hence $\log \left(\mu_a/q_z\right)=U_{za}-p_z$

Choo-Siow: summing over
$$z \in a$$
 yields $\mu_a = \exp\left(w_a^{-1}\left(S_a + \sum_{z \in a} (\log q_z - p_z)\right)\right)$.

Galichon Dynamic matching SLIDE 8/17

Static TU matching with random utility: equilibrium insights (3)

Note that at equilibrium, $\sum_{a\in\mathcal{A}}w_a\mu_a=\sum_{z\in\mathcal{Z}}q_z$. Hence, define

$$Z(q, p, S) = \sum_{a \in \mathcal{A}} w_a \exp\left(w_a^{-1} \left(S_a + \sum_{z \in a} (\log q_z - p_z)\right)\right) - \sum_{z \in \mathcal{Z}} q_z.$$

We have
$$\frac{\partial Z(p,q,S)}{\partial p_z} = -\sum_{a\ni z} \mu_a$$
, with $\mu_a = \exp\left(w_a^{-1}\left(S_a + \sum_{z\in a} (\log q_z - p_z)\right)\right)$.

Therefore:

Result 2 (Galichon-Salanié): The equilibrium (p_z) solves

$$\min_{p} \sum_{z \in \mathcal{Z}} q_z p_z + Z(p, q, S).$$

(This is the regularized – by random utility – version of Shapley-Shubrik where Z(p, q, S) is a soft penalization of the stability constraints $p_x \geq S_x$, $p_y \geq S_y$ and $p_x + p_y \geq S_{xy}$.)

We now consider a two-sided Rust-type dynamic matching model with TU. Assume that individuals' types vary across periods, and that the transition depend on current period match.

Consider

\mathbb{R}_{za}

the mass of individuals z induced forward at next period by one unit of match a.

For instance, if a=xy, worker x's type will transition to x' with proba. $\mathbb{P}_{x'|xy'}$ and firm y's type will transition to y' with proba. $\mathbb{Q}_{y'|xy}$. In that case,

$$\mathbb{R}_{za} = \sum_{x'} 1\{z = x'\} \mathbb{P}_{x'|xy} + \sum_{y'} 1\{z = y'\} \mathbb{Q}_{y'|xy}.$$

Note that (as in Rust) the transition are Markovian: (x chooses a=xy w.p. μ_a/q_x) and then (transitions to x' w.p. $\mathbb{R}_{x'|xy}$). Hence, conditional transition probability $x\to x'$ equals to $\sum_y \mu_{xy} \mathbb{R}_{x'|xy}/q_x$.

In that case, S_a needs to accrue for future-period payoffs p', in addition to short-term joint payoff Φ_a , and $S_a = \Phi_a + \beta \sum_z \mathbb{R}_{za} p'_z = (\Phi + \beta \mathbb{R}^\top p')_z$.

Now redefine Z by inserting expression for S, we have

$$Z\left(q,p,p'\right) = \sum_{a \in \mathcal{A}} w_a \exp\left(w_a^{-1} \left(\left(\Phi + \beta \mathbb{R}^\top p'\right)_a + \sum_{z \in a} (\log q_z - p_z)\right)\right) - \sum_{z \in \mathcal{Z}} q_z$$

Z is all we need to write the equilibrium equations of the model. Indeed,

- $ightharpoonup \partial Z/\partial q_z = \sum_{a \ni z} \mu_a/q_z 1$ excess share of demand for type z
- $ightharpoonup -\partial Z/\partial p_z = \sum_{a \ni z} \mu_a = \text{mass of } z \text{ at current period}$
- $\blacktriangleright \beta^{-1}\partial Z/\partial p_z' = \sum_{a \in \mathcal{A}} \mathbb{R}_{za}\mu_a = \text{mass of } z \text{ at next period}$

A stationary equilibrium has

$$p = p'$$
 [rational expectations]

and expresses as

$$\left\{ \begin{array}{l} \frac{\partial Z(q,p,p)}{\partial q_z} = 0 \text{ [market clearing for each type]} \\ \beta \frac{\partial Z(q,p,p)}{\partial p_z} + \frac{\partial Z(q,p,p)}{\partial p_z'} = 0 \text{ [stationarity]} \end{array} \right. .$$

Note that Z is concave in q and jointly convex in (p, p').

When $\beta=1$, set F(q,p)=Z(q,p,p) is concave-convex and the equations of the model $\begin{cases} \partial F(q,p)/\partial q=0\\ \partial F(q,p)/\partial p=0 \end{cases}$

are obtained as the saddlepoint conditions for the min-max problem

$$\min_{p} \max_{q} F(q, p)$$
.

Computation using Chambolle-Pock's first order scheme:

$$\left\{ \begin{array}{l} q^{t+1} = q^t - \epsilon \partial_q F\left(q^t, 2p^t - p^{t-1}\right) \\ p^{t+1} = p^t + \epsilon \partial_p F\left(q^t, p^t\right) \end{array} \right.$$

Surprising fact: algorithm works even for $\beta < 1$ although min-max interpretation is lost.

Some econometrics

Now assume we want to solve the inverse problem: based on observed $\hat{\mu}_a$ recover information about Φ .

Parameterize $\Phi_a = \sum_k \phi_{ak} \lambda_k$ and look for λ .

Express

$$Z(q, p, p', \lambda)$$

$$= \sum_{a \in \mathcal{A}} w_a \exp\left(w_a^{-1} \left(\left(\sum_k \phi_{ak} \lambda_k + \beta \mathbb{R}^\top p'\right)_a + \sum_{z \in a} (\log q_z - p_z)\right)\right)$$

$$- \sum_{z \in \mathcal{Z}} q_z$$

and note that the partial derivatives of Z with respect to the new variables λ_k also have a natural interpretation. Indeed,

$$\frac{\partial Z}{\partial \lambda_k} = \sum_{a \in A} \mu_a \phi_{ak}$$

is the predicted k-th moments of ϕ .

Define a function H as

$$H\left(q,p,p',\lambda
ight)=Z\left(q,p,p',\lambda
ight)-\sum_{a\in\mathcal{A}}\hat{\mu}_{a}\phi_{ak}\lambda_{k}$$

which is jointly convex in (p, p', λ) , and note that the indentifying equations are now

$$\begin{cases} \begin{array}{l} \frac{\partial H(q,p,p',\lambda)}{\partial q} = 0 \text{ [market clearing]} \\ \beta \frac{\partial H(q,p,p',\lambda)}{\partial p} + \frac{\partial H(q,p,p',\lambda)}{\partial p'} = 0 \text{ [stationarity]} \\ \frac{\partial H(q,p,p',\lambda)}{\partial \lambda} = 0 \text{ [moment matching]} \end{array} \end{cases}$$

In the case $\beta=1$ this is still a saddlepoint problem, now

$$\min_{p,\lambda} \max_{q} H(q, p, p, \lambda)$$

for which Chambolle-Pock's first order scheme still applies. It even (mysteriously) still applies when $\beta < 1$.

Births and deaths

▶ Consider now a situation where there are births and deaths. Let i_z^t be the inflow of type z at time t ($i_z^t < 0$ if net exits), we have

$$R\mu^t + i^t = q^{t+1}$$

where $1^{\top}i = 0$.

► Potential function now becomes

$$\begin{aligned} &H\left(q,p,p',\lambda\right) \\ &= \sum_{a \in \mathcal{A}} w_a \exp\left(w_a^{-1} \left(\left(\sum_k \phi_{ak} \lambda_k + \beta \mathbb{R}^\top p'\right)_a + \sum_{z \in a} (\log q_z - p_z)\right)\right) \\ &- \sum_{z \in \mathcal{Z}} q_z + \beta \sum_{z \in \mathcal{Z}} i_z^t p'_z \end{aligned}$$

► We have

$$\begin{cases} \frac{\partial H(q,p,p',\lambda)}{\partial q} = \sum_{a\ni z} \mu_a/q_z - 1\\ \frac{\partial H(q,p,p',\lambda)}{\partial p} = -\sum_{a\ni z} \mu_a\\ \frac{\partial H(q,p,p',\lambda)}{\partial \lambda} = \beta R \mu^t + \beta i^t \end{cases}$$

and the previous theory extends.

- ► Indentification issues à la Kalouptsidi, Scott & Souza-Rodrigues (2019) and Kalouptsidi, Kitamura and Lima (2021).
- ightharpoonup Theoretical convergence of the first order scheme outisde of eta=1 (min-max).
- ▶ Empirical application: human capital accumulation on the labor market.
- ► With Dupuy, Ciscato and Weber: application to family economics (divorce, remarriage and the number of kids).
- Extention to imperfectly transferable utility (later).