BIG DATA ANALYTICS Basic concepts of Statistical Learning

Olga Klopp klopp@essec.edu

Why Estimate f

How Do We Estimate f?

- ▶ Suppose that we observe a quantitative response Y and p different predictors $X_1, X_2, ..., X_p$
- We assume that there is some relationship between Y and $X = (X_1, X_2, ..., X_p)$:

$$Y = f(X) + \epsilon$$

- f is some fixed but unknown function of $X_1,...,X_p$ and ϵ is a random error term
 - lacktriangleright ϵ is independent of X and has mean zero
 - lack f represents the systematic information that X provides about Y

Goal: to estimate f based on the observed points

Statistical Learning

Why Estimate f

How Do We Estimate f?

Assessing Model Accuracy

Statistical learning refers to a set of approaches for estimating f

Today:

- lackbox Outline some of the key theoretical concepts that arise in estimating f
- ► Tools for evaluating the estimates

Outline

Why Estimate f

How Do We Estimate f ?

Assessing Model Accuracy

Why Estimate f?

How Do We Estimate f?

Outline

Why Estimate f?

How Do We Estimate f?

Assessing Model Accuracy

Why Estimate f?

How Do We Estimate f?

Prediction

Two main reasons: prediction and inference

Prediction:

- ▶ In many situations, a set of inputs X is available, but the output Y cannot be easily obtained
- $\qquad \qquad \mathbf{We \ can \ predict} \ Y \ \mathrm{using} \ \hat{Y} = \hat{f}(X)$
- $ightharpoonup \hat{f}$ is our estimate for f
- $lacksim \hat{Y}$ is the resulting prediction for Y
- ▶ In this setting, \hat{f} is often treated as a black box:
 - one is not concerned with the exact form of \hat{f} provided that it yields accurate predictions for Y

Why Estimate f?

How Do We Estimate f?

Reducible and irreducible errors

- ▶ The accuracy of \hat{Y} as a prediction for Y depends on two quantities: the *reducible error* and the *irreducible error*
- ullet \hat{f} will not be a perfect estimate for f: reducible error
 - lacktriangle we can potentially improve the accuracy of \hat{f} by using the most appropriate statistical learning technique
- ightharpoonup Variability associated with ϵ also affects the accuracy of our predictions: irreducible error
 - **ightharpoonup** By definition, ϵ cannot be predicted using X
 - No matter how well we estimate f, we cannot reduce the error introduced by ϵ .

Why Estimate f?

How Do We Estimate f ?

Example

- Suppose that X₁,...,X_p are characteristics of a patient's blood sample
- Y is a variable encoding the patient's risk for a severe adverse reaction to a particular drug
- ▶ We seek to predict Y using X to avoid giving the drug to patients who are at high risk
- ► The risk of an adverse reaction might vary for a given patient on a given day (irreducible error):
 - manufacturing variation in the drug itself
 - patient's general feeling of well-being on that day

Our focus is on techniques for estimating f with the aim of minimizing the reducible error.

Why Estimate f?

How Do We Estimate f?

Inference

Why Estimate f?

How Do We Estimate f ?

- We are often interested in understanding the way that Y is affected as $X_1,...,X_p$ change
- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
- $lackbox{Now }\hat{f}$ cannot be treated as a black box: we need to know its exact form

Inference

Answering the following questions:

- Which predictors are associated with the response?
 - $\,\blacktriangleright\,$ often only a small fraction of the available predictors are substantially associated with Y
 - identifying the few important predictors among a large set of possible variables can be extremely useful
- What is the relationship between the response and each predictor?
 - lacktriangle Some predictors may have a positive relationship with Y
 - Other predictors may have the opposite relationship
 - ► The relationship between the response and a given predictor may also depend on the values of the other predictors

Why Estimate f?

low Do We stimate f?

Inference

Why Estimate f?

How Do We Estimate f ?

- ► Can the relationship between Y and each predictor be summarized using a linear equation?
 - Historically, most methods for estimating f have taken a linear form
 - In some situations, it is a reasonable assumption
 - Often the true relationship is more complicated: a linear model may not provide an accurate representation of the relationship between the input and output variables

What method?

Depending on whether our goal is prediction, inference, or a combination of the two, different methods for estimating f may be appropriate:

- Linear models: relatively simple and interpretable inference
- Drawback: may not yield as accurate predictions as some other approaches
- ► The highly non-linear approaches can potentially provide quite accurate predictions for *Y*
- Drawback: a less interpretable model for which inference is more challenging

Why Estimate f?

How Do We Estimate f?

Accuracy

Outline

Why Estimate f?

How Do We Estimate f?

Assessing Model Accuracy

Why Estimate f?

How Do We Estimate f?

- lacktriangle We observe a set of n different data points
- ► These observations are called the training data: we will use these observations to train, or teach, our method how to estimate f
- ▶ Our goal is to apply a learning method to the training data in order to estimate the unknown function *f*:
 - we want to find a function \hat{f} such that $Y \approx \hat{f}(X)$ for any observation (X,Y)
- Statistical learning methods: parametric or non-parametric

Parametric methods involve a two-step approach:

- 1. We make an assumption about the functional form of f
 - ightharpoonup e.g. f is linear in X
 - the problem of estimating f is simplified: one only needs to estimate the p + 1 coefficients $\beta_0, \beta_1, ..., \beta_p$
- 2. After a model has been selected, we need a procedure that uses the training data to fit or train the model
 - the most common approach to fitting the linear model is the ordinary least squares
 - other approaches: Lasso, elastic-net...

Parametric approach reduces the problem of estimating f to the one of estimating a set of parameters

- ▶ It is easier to estimate a set of parameters, than to fit an entirely arbitrary function *f*
- $\,\blacktriangleright\,$ The model we choose will usually not match the true unknown form of f
 - ▶ If the chosen model is too far from the true *f*: poor estimate
- ➤ To address this problem: choosing flexible models that can fit many different possible functional forms for f:
 - estimating a greater number of parameters
 - more complex models can lead to overfitting the data: the estimates follow the noise closely.

Non-parametric Methods

Why Estimate f?

How Do We Estimate f?

- Non-parametric methods do not make explicit assumptions about the functional form of f
- They seek an estimate of f that gets as close to the data points as possible without being too rough or wiggly
- ▶ Major advantage: they have the potential to accurately fit a wider range of possible shapes for *f*
- Major disadvantage: a large number of observations is required in order to obtain an accurate estimate for f

- ► Less flexible methods: can produce a relatively small range of shapes to estimate *f*
 - e.g. linear regression is a quite inflexible approach
- ▶ Why would we ever choose to use a more restrictive method instead of a very flexible approach?
- ▶ If we are mainly interested in inference: restrictive models are much more interpretable
 - e.g. in the linear model it is quite easy to understand the relationship between Y and $X_1, X_2, ..., X_v$
 - ightharpoonup very flexible approaches can lead quite complicated estimates of f o difficult to understand how any individual predictor is associated with the response.

The Trade-Off Between Prediction Accuracy and Model Interpretability

Why Estimate f?

How Do We Estimate f?

Assessing Model Accuracy

- ▶ In some settings we are only interested in prediction
- ▶ Will it be best to use the most flexible model available?
- Surprisingly, this is not always the case!
 - often we get more accurate predictions using a less flexible method

Overfitting in highly flexible methods

Outline

Why Estimate f

How Do We Estimate f ?

Assessing Model Accuracy

Why Estimate f?

How Do We Estimate f ?

Assessing Model Accuracy

Why Estimate f

How Do We Estimate f?

- No one method dominates all others over all possible data sets
- Decide for any given set of data which method produces the best results
- Selecting the best approach can be one of the most challenging parts of performing statistical learning in practice

- We need some way to measure how well predictions of a statistical learning method actually match the observed data
- ► In the regression setting, the most commonly-used measure is the Mean Squared Error (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

where $\hat{f}(x_i)$ is the prediction that \hat{f} gives for the ith observation

► The MSE is small if the predicted responses are very close to the true responses

- The MSE is computed using the training data that was used to fit the model
- ► We are usually interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data
 - e.g. we are interested in developing an algorithm to predict a stock's price based on previous stock returns
 - we can train the method using stock returns from the past 6 months
 - we don't care how well our method predicts last week's stock price
 - we are interested in how well our model will predict tomorrow's price or next month's price.

Test Mean Squared Error

Why Estimate f

How Do We Estimate f?

- Let (x_0, y_0) be a test observation not used to train the statistical learning method
- $lackbox{We want to know whether } \hat{f}(x_0)$ is approximately equal to y_0
- Select the model for which the test MSE is as small as possible

- ► How can we select a method that minimizes the test MSE?
- Available large test data set:
 - evaluate test MSE
 - select the learning method for which the test MSE is smallest
- What if no test observations are available?
- ► Can we simply select a statistical learning method that minimizes the training MSE?

There is no guarantee that the method with the lowest training MSE will also have the lowest test MSE

Test MSE

Why Estimate f

How Do We Estimate f?

- Many statistical methods specifically estimate coefficients to minimize the training set MSE
- ► For these methods, the training set MSE can be quite small, but the test MSE is often much larger.

- ► True *f*: black curve
- ▶ Orange curve: the linear regression fit
- ► Blue and green curves: smoothing splines with different levels of smoothness

4 日 × 4 周 × 4 国 × 4 国 ×

Why Estimate f?

How Do We Estimate f?

- How Do We Estimate f?
- Assessing Model Accuracy

- ► As the level of flexibility increases, the curves fit the observed data more closely
- ► The green curve is the most flexible and matches the data very well
- ▶ It fits the true f poorly because it is too wiggly

Why Estimate f

How Do We

- ► The orange, blue and green squares indicate the MSEs associated with the corresponding curves
- ► The training MSE declines monotonically as flexibility increases: the green curve has the lowest training MSE of all three method

- Why Estimate
- How Do We Estimate f?

 Assessing Model

Accuracy

- Red curve: the test MSE
- ► The test MSE initially declines as the level of flexibility increases, then it starts to increase again!

- A monotone decrease in the training MSE and a U-shape in the test MSE
- ▶ A fundamental property: as model flexibility increases, training MSE will decrease, but the test MSE may not
- When a given method yields a small training MSE but a large test MSE: overfitting the data
 - Learning procedure is working too hard to find patterns in the training data, and may pick up some patterns that are just caused by noise
 - When we overfit the training data, the test MSE will be very large because the supposed patterns don't exist in the test data.

Overfitting

Why Estimate f

How Do We Estimate f?

- We almost expect the training MSE to be smaller than the test MSE because most statistical learning methods seek to minimize the training MSE
- Overfitting refers specifically to the case in which a less flexible model would have yielded a smaller test MSE.

- ► The expected test MSE can always be decomposed into the sum of three quantities:
 - the variance of $\hat{f}(x_0)$
 - the squared bias of $\hat{f}(x_0)$
 - **b** the variance of the error terms ϵ

$$\mathbb{E}(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\mathbf{\hat{f}}(\mathbf{x_0})) + [\operatorname{Bias}(\mathbf{\hat{f}}(\mathbf{x_0}))]^2 + \operatorname{Var}(\epsilon)$$

The Bias-Variance Trade-Off

Why Estimate f?

How Do We Estimate f?

$$\mathbb{E}(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\mathbf{\hat{f}}(\mathbf{x_0})) + [\operatorname{Bias}(\mathbf{\hat{f}}(\mathbf{x_0}))]^2 + \operatorname{Var}(\epsilon)$$

- ▶ The expected test MSE can never lie below $Var(\epsilon)$, the irreducible error
- ▶ In order to minimize the expected test error, we need to select a statistical learning method that simultaneously achieves low variance and low bias

Variance

- ▶ The variance is the amount by which \hat{f} would change if we estimated it using a different training data set
- lacktriangle Different training data sets will result in a different \hat{f}
- ▶ Ideally, the estimate for *f* should not vary too much between training sets
- If a method has high variance then small changes in the training data can result in large changes in \hat{f}
- In general, more flexible statistical methods have higher variance.

Why Estimate f?

How Do We Estimate f?

- Bias refers to the error that is introduced by approximating a real-life problem by a much simpler model
 - e.g. linear regression assumes that there is a linear relationship between Y and X_1, X_2, \ldots, X_p
 - It is unlikely that any real-life problem truly has such a simple linear relationship
 - performing linear regression will undoubtedly result in some bias in the estimate of f
- Generally, more flexible methods result in less bias

The Bias-Variance Trade-Off

- As we use more flexible methods, the variance will increase and the bias will decrease
- ► The relative rate of change of these two quantities determines whether the test MSE increases or decreases:

 - At some point increasing flexibility has little impact on the bias but starts to significantly increase the variance
 the test MSE increases.

Why Estimate f?

How Do We Estimate f?

The Bias-Variance Trade-Off

The relationship between bias, variance, and test set MSE is the bias-variance trade-off

- Good test set performance of a statistical learning method requires low variance as well as low bias
- ► A trade-off: it is easy to obtain a method with extremely low bias but high variance or a method with very low variance but high bias
- ► The challenge lies in finding a method for which both the variance and the squared bias are low.

Why Estimate f?

How Do We Estimate f?

The Classification Setting

- ▶ Focus on the regression setting
- Many of the concepts, such as the bias-variance trade-off, transfer over to the classification setting
- In both the regression and classification settings, choosing the correct level of flexibility is critical to the success of any statistical learning method
- ▶ The bias-variance tradeoff can make this a difficult task
- Next lecture we will discuss some methods for estimating test error rates which allow choosing the optimal level of flexibility

Why Estimate f

How Do We Estimate f?

