Chapitre 1: Loi d'action de masse

I L'eau – les solutions aqueuses

A) La molécule d'eau

• H₂O:

Représentation de Lewis:

• Géométrie : tétraédrique

O est au centre d'un tétraèdre dont les deux H et les deux doublets non liants occupent les quatre sommets

 $\hat{HOH} = 104^{\circ}27'$ (Inférieure à la valeur normale pour un tétraèdre régulier : $109^{\circ}26'$)

$$d(O, H) = 0.096$$
nm

$$E(O-H) = 463 \text{kJ.mol}^{-1}$$

La liaison O-H est courte et solide.

• C'est une molécule polaire : O est plus électronégatif que H.

$$H^{\stackrel{\scriptscriptstyle{+}}{-}} \overset{\delta}{\overset{\scriptstyle{-}}{\overset{\scriptstyle{2}}{\overset{\scriptstyle{\delta}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{\delta}}{\overset{\scriptstyle{-}}{\overset{\scriptstyle{-}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{\delta}}{\overset{\scriptstyle{-}}{\overset{\scriptstyle{-}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{-}}{\overset{\scriptstyle{-}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\;{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\;{+}}}}{\overset{\scriptstyle{+}}}{\overset{\;{+}}}}{\overset{\scriptstyle{+}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\;{+}}}}{\overset{\scriptstyle{+}}}}{\overset{\scriptstyle{+}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{}}}{\overset{\;{+}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{\;{+}}}}{\overset{$$

H et O sont porteurs d'une "charge fictive" Moment dipolaire électrique pour la molécule d'eau :

$$p = 1,85$$
Debye; 1Debye = $\frac{1}{3}.10^{-29}$ C.m

Conséquences : propriétés acido-basiques de la molécule d'eau :

- L'eau a des propriétés basiques (les doublets non liants de l'oxygène ont une affinité pour les charges positives) :

- L'excès de charge $+\delta$ sur les hydrogènes fait que H_2O est un donneur de proton (c'est un réactif acide).

$$B + H = \overline{O}| = BH + |\overline{O}|$$
 $H + H$
Ion hydroxyde HO

B) Eau liquide

- Dans la vapeur d'eau (phase gazeuse), les molécules sont distribuées de façon aléatoire avec des mouvements désordonnés.
- Dans l'eau liquide, il y a une ébauche de structure (la présence d'une molécule à un endroit influence la distribution des autres molécules dans son voisinage immédiat).

Liaison hydrogène:

La phase liquide est très stable ($T_{\text{\'ebullition}} = 100$ °C)

• L'eau est un bon solvant (mise en solution de sels ou de molécules polaires) Exemple : molécule de chlorure d'hydrogène dans l'eau H–Cl (polaire)

 δ va ensuite augmenter de plus en plus (le doublet est repoussé par le O et attiré par le H). Donc H-Cl = $H^+ + |Cl|^-$ (cassure de la liaison)

Ensuite, les molécules d'eau vont entourer les ions H⁺ et Cl⁻ :

L'eau possède une constante diélectrique très élevée : ε_r = 80 (1 pour le vide) :

L'eau possède une constante diélectrique très élevée :
$$\mathcal{E}_r = 80$$
 (1 pour $q_1 \rightarrow F_{\text{élec}}$ vide $q_2 \rightarrow q_1 \rightarrow F_{\text{élec}}$ eau $q_2 \rightarrow q_2 \rightarrow q_2 \rightarrow q_2$

On a :
$$\|\vec{F}_{\text{élec}}\| = \varepsilon_r \|\vec{F}'_{\text{élec}}\| = 80 \times \|\vec{F}'_{\text{élec}}\|$$

H⁺ et Cl⁻ peuvent donc très facilement s'éloigner (la charge qui les retient est très faible).

Dispersion définitive.

II Activité – quotient de réaction

A) Activité d'une espèce chimique

L'activité d'une espèce chimique dépend de la phase dans laquelle elle se trouve.

1) Espèce en solution aqueuse diluée

Pour une solution diluée, H₂O est la seule espèce ultra majoritaire dans la solution. Pour une espèce A en solution aqueuse (ou $A_{(aq)}$), on définit l'activité :

$$a(A_{(aq)}) = \frac{[A]}{C^0} \quad C^0 = 1 \text{mol.L}^{-1}$$

a est sans dimension (valeur numérique de la concentration en mol.L⁻¹)

Quand [A] augmente, on observe un écart de plus en plus grand.

Cas particulier : $a(H_2O)$ = constante = 1 (convention)

2) A en phase solide/liquide (non miscible)

L'activité est indépendante de la quantité de matière de A (mais A est supposée présente quand même) : $a(A_{(1)}) = 1$; $a(A_{(s)}) = 1$ (convention)

3) A en phase gazeuse

L'activité est proportionnelle à la quantité de matière :

$$a(A_{(g)}) = \frac{P_A}{P^0}$$
 $P^0 = 1bar$

B) Quotient de réaction

On considère une réaction bilan : $0 = \sum_{i} v_i A_i$

Les espèces sont introduites dans des proportions données ; on connaît donc les activités de chacune des espèces.

Quotient de la réaction
$$Q = \prod_{i} a(A_i)^{v_i}$$

Q est une fonction de ξ , croissante.

Exemples:

*
$$\operatorname{NaCl}_{(s)} = \operatorname{Na}_{(aq)}^+ + \operatorname{Cl}_{(aq)}^-; Q = \left[\operatorname{Na}^+\right] \left[\operatorname{Cl}^-\right] \times \frac{1}{C^{0^2}}$$

*
$$2Na_{(s)} + H_2O = Na_2O_{(s)} + H_{2(g)}$$
; $Q = \frac{a(Na_2O_{(s)}) \times a(H_{2(g)})}{a(H_2O) \times a(Na_{(s)})} = \frac{P_{H_2}}{P^0}$ (à condition que

Na_(s) et Na₂O_(s) soient présents en solution)

C) Réaction chimique

Avancement de réaction : $\xi = \frac{\Delta n(A_i)}{v_i}$

L'avancement ξ peut évoluer entre ξ_{\min} et ξ_{\max}

• ξ sera maximum quand le réactif limitant est complètement consommé

$$\xi_{\text{max}} = \frac{n(R_k)_0}{a_k} (R_k \text{ réactif limitant}, a_k \text{ coefficient stoechiométrique de } R_k)$$

ullet sera minimum lorsque le produit limitant est complètement consommé

$$\xi_{\min} = -\frac{n(P_j)_0}{a'_j}$$
 (P_j produit limitant, a'_j coefficient stoechiométrique de P_j)

• si on attend assez longtemps, $\xi \xrightarrow[t \to +\infty]{} \xi_{\text{final}}$

 $1^{\rm er}$ cas : $\xi_{\rm final} = \xi_{\rm max}$. La réaction est totale : Réactifs ightarrow Produits

 $2^{\mathrm{\grave{e}me}}$ cas : $\xi_{\mathrm{final}} = \xi_{\mathrm{min}}$. La réaction est nulle : Réactifs \leftarrow Produits (inverse et totale)

 $3^{
m eme}$ cas : $\xi_{
m min} < \xi_{
m final} < \xi_{
m max}$; $\xi_{
m final} = \xi_{
m \'eq}$. Équilibre chimique

D) Equilibre chimique

1) Loi d'action de masse

A l'équilibre chimique, $Q = Q_{\text{éq}}$; $Q(\xi_{\text{éq}}) = K(T)$

K(T): constante d'équilibre de la réaction ; pour une réaction donnée, K ne dépend que de la température et pas des quantités introduites des A_i .

 $Q(\xi) < K(T) \Leftrightarrow \xi(t) < \xi_{\acute{e}q} \Leftrightarrow$ la réaction se produit dans le sens direct.

 $Q(\xi) > K(T) \Leftrightarrow \xi(t) > \xi_{\acute{e}q} \Leftrightarrow$ la réaction se produit dans le sens inverse.

En connaissant K(T) et les quantités de matière initiales, on peut donc retrouver $\xi_{\text{\'e}_{a}}$.

Exemple:

$$I_{2} + I^{-} = I_{3}^{-}$$

$$C_{0} = 0.10 - 0.50 = 0$$

$$C_{\text{éq}} = 0.10 - x = 0.50 - x = x$$

$$x = \frac{\xi_{\text{éq}}}{V} ; V = 1L ; x_{\text{min}} = 0 ; x_{\text{max}} = 0.10 \text{mol.L}^{-1}$$

$$Q_{0} = \frac{\left[I_{3}^{-}\right]_{0}}{\left[I_{2}\right]_{0}\left[I^{-}\right]_{0}} \times C^{0} = 0 < K(T)$$

Donc la réaction se fait dans le sens direct.

A l'équilibre :

$$Q_{\acute{e}q} = \frac{x}{(0,10-x)(0,50-x)} \times C^0 = K(T)$$

$$\Leftrightarrow x = K(T) \times (0.10 - x)(0.50 - x)$$

$$\Leftrightarrow x_{\acute{e}g} = 0.0994 \text{mol.L}^{-1} \quad \text{avec } K(T) = 413.5$$

La réaction est donc presque totale.

Avec d'autres valeurs initiales : $[I_2]_0 = [I^-]_0 = 0$ $[I_3^-]_0 = 1 \text{mol.L}^{-1}$

$$x_{\min} = -1 \text{mol}$$
; $x_{\max} = 0 \text{mol.L}^{-1}$

$$Q_0 = +\infty > K(T)$$

Donc la réaction se fait dans le sens inverse. A l'équilibre :

$$Q_{\acute{e}q} = K(T) \Leftrightarrow (1+x) = K(T) \times (-x)(-x) \Leftrightarrow x_{\acute{e}q} = -0.038 \text{mol.L}^{-1}$$

2) Etude quantitative de l'état final

 1^{er} cas : $K(T) \le Q_{\min}$. A l'état final, $Q_{\text{final}} = Q_{\min}$ ($\xi_{\text{final}} = \xi_{\min}$)

La réaction est donc nulle (Réactifs ← Produits)

 $2^{\rm ème}$ cas : $K(T) \le Q_{\rm max}$. A l'état final, $Q_{\rm final} = Q_{\rm max}$ ($\xi_{\rm final} = \xi_{\rm max}$)

La réaction est donc totale (Réactifs → Produits)

$$3^{\text{ème}}$$
 cas: $Q_{\min} < K(T) < Q_{\max}$.

A l'état final (équilibre chimique) $Q_{\text{final}} = K(T)$

Cas particulier:

Pour une réaction de la forme $A_{(aq)} + B_{(aq)} = C_{(aq)} + D_{(aq)}$ Si $K>10^4$, on peut considérer la réaction comme totale Si $K<10^{-4}$, on peut considérer la réaction comme nulle