Dependency Parsing

Language Technology 1 WS 2014

Günter Neumann

+Overview

- Dependency Grammar vs Dependency Parsing
- Transition-Based vs Graph-Based Dependency Parsing

*Syntactic Theories

*Dependency Representation

- The basic idea:

 Syntactic structure consists of lexical items, linked by binary, asymmetric, directed, anti-reflexive, anti-transitive, labeled relations called dependencies.
- A → B; <B,A>
 (A is head/parent/governor; B is dependent/child/subordinate)
- Syntactic structures are usually trees, i.e. they have the following properties: connectedness, single-headiness, rooted, acyclicity, (projectivity)

Connected, A-cyclic, Single-head

- A syntactic structure is complete (connected)
- A syntactic structure is hierarchical (acyclic)
- Each word has at most one head (single head)
- Adding a special root-node can enforce connectedness.

Economic news had little effect on financial markets.

Example of a Projective Dependency Tree

That glory shall last till I go gray

How would we parse this?

*Dependency Grammar

- History: ancient Greek, Sanskrit, Latin, Arabic, medieval Europe, 1900s
- Problematic phenomena: coordination, no groupings, auxiliaries
- Variations: single vs. multiple layers (morphology, syntax), different tagsets and structures (Stanford vs. CoNLL)

+

Dependency Parsing

- The problem
 - Input: sentence $x = w_0, w_1, ..., w_n$ with $w_0 = root$
 - Output: dependency graph G = (V, A) for x whereby:
 - $V = \{0, 1, ..., n\}$ is the node set
 - A is the edge set, i.e., $(i, j, k) \in A$ represents a dependency from w_i to w_j with label $I_k \in L$

+Parsing

Economic news had little effect on financial markets . Economic news had little effect on financial markets . had little effect on financial markets news Economic obj рс sbj nmod nmod nmod nmod on news **Economic** little effect financial had

Dependency Parsing

- Easy to implement
 - No artificial (non-terminal) nodes
 - Linear complexity possible (deterministic parsing)
- Easy to evaluate
 - Attachment scores are very straightforward
- Very expressive
 - Suitable for free word order languages
- Useful representations
 - Very close to semantics, which is very often done next

*Applications

- Almost any language technology can profit from dependency parsing:
 - Machine Translation
 - Information Extraction
 - Textual Entailment
 - Question Answering
 - Summarisation
 - Text Generation

+Grammar vs. Data-Driven

- Rule systems:
 - Lists of words for every category
 - Which categories occur with which categories
 - Valency
- Data-driven systems:
 - Use tree banks to learn how to link words
 - Dependency tree banks are available for many languages (CoNLL-X shared task)

⁺Transition-Based vs. Graph-Based

- Two predominant parser types
 - similar performance
 - completely different approaches
- Transition-based:
 - the result is constructed after a series of transitions (local decisions)
- Graph-based:
 - the result is constructed in few steps (global decisions)

*Graph-Based Parsing

- Given the input $I = w_1, w_2, \ldots, w_n$, where each word corresponds to a node v_1, v_2, \ldots, v_n find a graph G = (V, A), such that G is a rooted tree and $A = \{ \langle A_1, B_1 \rangle, \langle A_2, B_2 \rangle, \ldots, \langle A_n, B_n \rangle \}$ corresponds to the correct dependency tree.
- Solution: Maximum Spanning Trees (MST)

+Chu-Liu-Edmonds

x = root John saw Mary

If not a tree, identify cycle and contract Recalculate arc weights into and out-of cycle

Find highest scoring incoming arc for each vertex

If this is a tree, then we have found MST!!

Taken from Introduction to Data-Driven Dependency Parsing (Ryan McDonald, Joakim Nivre)

+

Edmonds Algorithm

- For all nodes (modulo root node): Choose the best incoming edge
- Repeat (greedily) until the graph contains a cycle
 - Consider each cycle as a virtual node. Compute modified edge weights for all edges which enter the cycle from outside
 - Idea: distribute (add) weights of edges of cycle to the incoming edges of the virtual node, e.g.,
 - $w_n(root,saw) = w(root,saw) + w(saw,john)$
 - -40 = 10 + 30

*Graph-Based Parsing

- Advantages:
 - State-of-the art performance
 - Works well for long sentences/dependencies
- Disadvantages:
 - Not incremental
 - Computationally expensive (Chu-Liu-Edmonds need O(n*n) to find MST)

*Transition-Based Parsing

- The parse of the sentence is a sequence of operations (transitions)
- The result is a complete set of dependency pairs, which satisfy tree constraints
- An oracle tells the parser what action should be taken in every step:
 - Training use training data for simulating a perfect oracle (you have the desired result given)
 - Application use classifiers for simulating an oracle (train models, that allow the oracle to choose correct actions)

+

Transition System

- Given the input $I = w_1, w_2, \dots, w_n$ perform $S = c_0, c_1, \dots, c_n$, such that $A = \{\langle A_1, B_1 \rangle, \langle A_2, B_2 \rangle, \dots, \langle A_n, B_n \rangle\}$ corresponds to the correct dependency tree
- Configuration state of the parser
 - Define the set of possible transitions, e.g.:
 - Conditions (permissibility):
 - left_link(a, b) b should not have a parent; if <a, b> is added to A, A should not contain a cycle etc.
- **■** Effects:
 - left_link(a, b) \rightarrow a becomes the parent of b
 - right_link(a, b) → b becomes the parent of a
 - $shift(a, b) \rightarrow move on to next pair$
- Initial configuration / terminal configuration

*Parsing Algorithms

• Naïve:

- For every word j in the sentence try to combine it with other words i in the sentence (i < j):
- Possible operations:

```
make j the parent of i make i the parent of j do not combine and j+1, i=0 do not combine and i+1 Initial state: Start with the first word Terminal state: j > sentence length
```

- Nivre (Arc-Eager, Arc-Standard)
- Covington's parsing strategy

+Ex: ₀John₁saw₂Mary_{3.4}

```
c_0: j = 1; i = 0, A = {}: initial state
    c_0 \rightarrow c_1: do not combine; i+1
                                                                                                                               (j=2, i=4, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
                                                (j=1, i=1, A = \{\})
                                                                                    c_{19} \rightarrow c_{19}: make j the part of i
    c_1 \rightarrow c_2: do not combine; i+1
                                                (j=1, i=2, A = \{\})
                                                                                    c_{13} \rightarrow c_{14}: do not combine; j+1
                                                                                                                               (j=3, i=0, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
    c_2 \rightarrow c_3: make i the parent of j;
                                                (j=1, i=2, A = {<1,2>})
                                                                                     c_{14} \rightarrow c_{15}: do not combine;i+1
                                                                                                                                 (j=3, i=1, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
    c_3 \rightarrow c_4: do not combine; i+1
                                                (j=1, i=3, A = {<1,2>})
                                                                                      c_{15} \rightarrow c_{16}: do not combine; i+1
                                                                                                                                  (j=3, i=2, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
    c_4 \rightarrow c_g: do not combine; i+1
                                                (j=1, i=4, A = {<1,2>})
                                                                                      c_{16} \rightarrow c_{17}: do not combine; i+1
                                                                                                                                 (j=3, i=3, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
                                                                                      c_{17} \rightarrow c_{18}: do not combine;i+1
    c_s \rightarrow c_e: do not combine; j+1
                                                (j=2, i=0, A = {<1,2>})
                                                                                                                                  (j=3, i=4, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
    c_6 \rightarrow c_7: make i the parent of j
                                                (j=2, i=0, A = {<1,2>,<2,0>})
                                                                                        c_{18} \rightarrow c_{19}: do not combine; j+1
                                                                                                                                   (j=4, i=0, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
                                                                                        c_{19} \rightarrow c_{20}: do not combine; i+1
    c_7 \rightarrow c_8: do not combine; i+1
                                                (j=2, i=1, A = \{<1,2>,<2,0>\})
                                                                                                                                    (j=4, i=1, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
                                                                                                                                    (j=4, i=2, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
    c_{g} \rightarrow c_{g}: do not combine; i+1
                                                (j=2, i=2, A = \{<1,2>,<2,0>\})
                                                                                        c_{20} \rightarrow c_{21}: do not combine; i+1
    c_9 \rightarrow c_{10}: do not combine; i+1
                                                (j=2, i=3, A = \{<1,2>,<2,0>\})
                                                                                         c_{21} \rightarrow c_{22}: do not combine;i+1
                                                                                                                                    (j=4, i=3, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
    c_{10} \rightarrow c_{11}: make j the part of i
                                                (j=2, i=3, A = \{<1,2>,<2,0>,<3,2>\}) c_{22} \rightarrow c_{23}: do not combine; i+1 (j=4, i=4, A = \{<1,2>,<2,0>,<3,2>,<4,2>\})
• c_{11} \rightarrow c_{12}: do not combine; i+1
                                                 (j=2, i=4, A = {<1,2>,<2,0>,<3,2>}) c<sub>23</sub> terminal configuration
```

*Naive Algorithm

- Obvious disadvantages:
 - Too many senseless configurations
 - O(n²) runtime (if no readings are considered)

- Advantages:
 - Simple to implement

⁺Oracle

• Which transition to chose in which state?

- Every configuration is transformed to a feature vector:
 - The history of previous transitions can be used
 - Word information and context information is available
 - External resources can be used

+Feature Models:: ₀John₁saw₂Mary₃.₄

- Sample configuration:
 - $(j=2, i=3, A = \{<1,2>,<2,0>\})$
- Feature templates:
 - Word form of token x: wf(x)
 - Pos tag of token x: pos(x)
 - Distance between tokens x and y: dist(x,y)
 - Is token x the root node?: isRoot(x)
- Features:
 - wf(2)=saw, wf(3)=Mary, pos(2)=VBD, pos(3)=NNP, dist(2,3)=1, isRoot(2)=true, wf(1)=John, pos(1)=NNP
- Transition: make j the part of i
- For some learning approaches very complex feature engineering is required

Supervised Machine Learning

- Compute all feature vector for all annotated sentences from training corpus
- Print all feature vectors into a file in the format required by the machine learning method of your choice:
 - wfi=Mary posi=NNP wfj=saw posj=VBD link2
 - wfi=Mary posi=NNP wfj=John posj=NNP shift
- Or
 - 1:1 2:1 3:1 4:1 0
 - 1:1 2:1 5:1 6:1 1
 - Define alphabet:
 - (1 wfi=Mary; 2 posi=NNP; 3 wfj=saw; 4 posj=VBD; 5
 wfj=John; 6 posj=NNP); (0 link2, 1 shift)
- Or Weka ARFF (cf. lecture on text classification)

*Classification

- Instance: wfi=Mary posi=NNP wfj=saw posj=VBD ?
- Classes: $c_1 link(i,j)$, $c_2 link(j,i)$, $c_3 shift$ etc.
- Classification:
 - $sum(c_1)=d_1+w_{1,c1}+w_{2,c1}+w_{3,c1}w_{n,c1}$
 - $sum(c_2)=d_2+w_{1,c2}+w_{2,c2}+w_{n,c2}$
 - $sum(c_3)=d_3+w_{1,c3}+w_{2,c3}+w_{n,c3}$
- Biggest sum(c_i):
 - $\max = \max\{\operatorname{sum}(c_1), \operatorname{sum}(c_2), \operatorname{sum}(c_3)\}$
- Probability of c_i:
 - $p(c_j) = \exp(sum(c_j) max)$
- Normalisation: $p(c_j)$ • $p(c_j) = \sum_{i=1}^{n} p(c_i)$

*Classification

- $sum(c_1)=1.323$, $sum(c_2)=-0.119$, $sum(c_3)=-1.204$
- The maximum is obviously max=sum(c_1)=1.323
- $p(c_1)=\exp(sum(c_1)-max)=\exp(0)=1$
- $p(c_2) = \exp(sum(c_2) max) = \exp(-1.442) = 0.236$
- $p(c_3) = \exp(sum(c_3) max) = \exp(-2.527) = 0.08$
- The sum of all $sum(c_i)$ is 1.316. Thus the normalised probability distribution is:
- $p(c_1) = \frac{1}{1316} = 0.76$
- $p(c_2) = \frac{0.236}{1.316} = 0.18$
- $p(c_3) = \frac{0.08}{1.316} = 0.06$

*Summary

- Dependency Grammar and Parsing
- Graph-based parsing
- Transition-based approach
- Learning and Classification