Minimum distance faculty

Marco D'Amico - Niccoló Didoni

December 2021

1 Solution

The problem required to add a constraint to express the fact that a customer has to be assigned to the closest active centre.

Let us consider the following constraint

$$x_{ij}d_{ij} \le d_{ih}y_h + D(1 - y_h) \quad \forall i \in C \ \forall j, h \ne j \in S$$

where D is a large positive constant (ideally larger than the biggest distance between any two customer and centre).

Let us check that constraint 1 works for every combination of x and y.

• If $x_{ij} = 0$ and $y_h = 0$ (i.e. customer *i* isn't assigned to centre *j* and centre $h \neq j$ isn't active) then distance d_{ij} can be whatever with respect to d_{ih} and the constraint is trivially satisfied (because we defined $D \geq 0$).

$$0 \cdot d_{ij} \le d_{ih} \cdot 0 + D(1-0)$$
$$0 < D$$

• If $x_{ij} = 0$ and $y_h = 1$ (i.e. customer i isn't assigned to centre j and centre $h \neq j$ is active) then distance d_{ij} can be whatever with respect to d_{ih} . Distance d_{ij} can be smaller than d_{ih} because there could exist an active centre k so that $d_{ik} \leq d_{ij} \leq d_{ih}$. The constraint is always true because the distance d parameter is non negative by construction.

$$0 \cdot d_{ij} \le d_{ih} \cdot 1 + D(1-1)$$
$$0 < d_{ih}$$

• If $x_{ij} = 1$ and $y_h = 0$ (i.e. customer i is assigned to centre j and centre $h \neq j$ is not active) then the distances d_{ih} and d_{ij} can be whatever because h is not active.

$$1 \cdot d_{ij} \le d_{ih} \cdot 0 + D(1 - 0)$$
$$d_{ij} \le D$$

The constraint is true because we defined D as a big constant bigger than the maximum distance d_{max} between a customer and a centre.

• If $x_{ij}=1$ and $y_h=1$ (i.e. customer i is assigned to centre j and centre $h\neq j$ is active) then distance d_{ij} must be smaller than distance d_{ih} .

$$1 \cdot d_{ij} \le d_{ih} \cdot 1 + D(1-1)$$
$$d_{ij} \le d_{ih}$$

Since the constraint holds for every combination of x and y, it correctly models the fact that a customer has to be assigned to the closest active centre.