Section 9.5: The Divergence, Integral, Ratio and Root Tests - Solutions

Warm up:

For each of the following, answer **True** or **False**, and explain why.

- (a) If $a_n \ge 0$ and $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} a_n^2$ converges.
- (b) If $a_n, b_n \ge 0$ and both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge, then $\sum_{n=0}^{\infty} a_n b_n$ converges.
- **Problem 1** (a) Why can we not use the Comparison test with $\sum_{k=1}^{\infty} \frac{1}{k^2}$ to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 5}$ converges?
 - (b) Adjust $\sum_{k=1}^{\infty} \frac{1}{k^2}$ to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 5}$ converges via the Comparison Test.
 - (c) Give a convergent series we can use in the Limit Comparison Test to show that $\sum_{k=1}^{\infty} \frac{1}{k^2-5}$ converges.

Group work:

Problem 2 Determine if the following series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{(7n+1)^2 \cdot 2^n}{5^n}$$

Learning outcomes:

Section 9.5: The Divergence, Integral, Ratio and Root Tests - Solutions

(b)
$$\sum_{n=1}^{\infty} a_n$$
, where $a_{n+1} = \frac{2n+5}{3n-1} \cdot a_n$ and $a_1 = 1$.

(c)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^2 + 1}$$

(d)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

(e)
$$\sum_{k=1}^{\infty} \frac{(k!)^3}{(3k)!}$$

Problem 3 Determine if the following series converge or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^3 + 1}$$

(c)
$$\sum_{n=0}^{\infty} \frac{\cos^2 n}{n^3 + 1}$$

(b)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^4 + 1}$$

(d)
$$\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^2 e^{-n} \right]$$