FOCS Notes 2/14/2020

Lecture 10 Number Theory

- Division and Greatest Common Divisor (GCD)
 - Euclid's algorithm for GCD
 - Bezout's Identity
- Modular Arithmetic
 - Cryptography
 - RSA public key cryptography

Contents

1	Basics	1
	1.1 Quotient-Remainder Theorem	1
	1.2 Primes	1
2	Common Divisors	2
3	Modular Arithmetic	3

1 Basics

1.1 Quotient-Remainder Theorem

For $n \in \mathbb{Z}$ and $d \in \mathbb{N}$, n = qd + r, where $0 \le r \le d$ and $q \in \mathbb{Z}$ and $r \in \mathbb{N}$ are unique Ex: n = 27, $d = 6 \longrightarrow q = 4$, r = 3 n = -27, $d = 6 \longrightarrow q = -5$, 3 *NOTE* remainder must be positive Define d is a divisor of n, written d|n, if the remainder in the QRT is zero. That is, $d|n \iff n = qd$ for some $q \in \mathbb{Z}$

1.2 Primes

 $P = \{2, 3, 5, 7, 11, \dots\} = \{p | p \ge 2 \text{ and the only divisors of } p \text{ are } 1 \text{ and } p\}$

Composite Numbers

 $\overline{\text{All the number} \geq 2}$ with more than 2 prime divisors.

Facts

- 1) d|0
- 2) d|n and $d|m \rightarrow d|(n+m)$
- 3) d|n and $d'|m \rightarrow dd'|nm$
- 4) d|n then xd|xn for $x \in \mathbb{Z}$
- 5) d|m and $m|n \to d|n$
- 6) d|(m+n) and $d|m \to d|n$

```
Proof. d|m+n \Rightarrow m+n = q_1d

d|m \Rightarrow m = q_2d

n = (q_1 - q_2)d

\Rightarrow d|n
```

2 Common Divisors

We say d is a common divisor of m and n if d|m and d|nm and n are coprime or relatively prive if they have no common divisors other than 1

GCD

We say d = gcd(m, n) if any l that is a common divisor of m and n satisfies $l \leq gcd(m, n)$ Ex: divisors of $30 = \{1, 2, 3, 4, 6, 10, 15, 30\}$ divisors of $42 = \{1, 2, 3, 6, 7, 14, 21, 42\}$ common divisors $= \{1, 2, 3, 6\}$ gcd(30, 42) = 6

Q: Efficient Algg for finding gcd(m, n)?

One that doesn't require factorization

<u>Fact:</u> gcd(m, n) = gcd(m, rem(n, m)) *NOTE* rem(n, m) = r after using QRT to write n = qm + r

Check: gcd(30, 42) = gcd(30, 12) = gcd(12, 6) = gcd(6, 0) = 6

Ex: gcd(42, 108) = gcd(42, 24) = gcd(24, 18) = gcd(18, 6) = gcd(6, 0) = 6

Claim gcd(m, n) = gcd(m, rem(n, m))

Proof. Idea:

- (1) show gcd(m,n)|m and gcd(m,n)|rem(n,m) which gives $gcd(m,n) \leq gcd(m,rem(n,m))$
- (2) then show qcd(m, rem(n, m))|m and qcd(m, rem(n, m))|n which gives $qcd(m, rem(n, m)) \leq qcd(m, n)$

To show (1): Clearly gcd(m,n)|m. Now consider rem(n,m) comes from $n=qm+r\Rightarrow rem(n,m)=n-qm$ and since gcd(m,n)|n and gcd(m,n)|(-qm), we have gcd(m,n)|n-qm so gcd(m,n)|rem(n,m). We see that $gcd(m,n) \leq gcd(m,rem(n,m))$

To show (2): Trivially gcd(m, rem(n, mm))|m, and since gcd(m, rem(n, m))|m and gcd(m, rem(n, m))|rem(n, m), we have gcd(m, rem(n, m))|qm + rem(n, m) = n Therefore gcd(m, rem(n, m)) is a common divisor of m and n and satisfies $gcd(m, rem(n, m)) \leq gcd(m, n)$

We conclude from (1) and (2) that gcd(m, rem(n, m)) = gcd(m, n)

Facts about GCD

- 1) gcd(m, n) = gcd(m, rem(n, m))
- 2) Every common divisor l of m and n divides qcd(m,n)
- 3) For every $k \in \mathbb{N}$, gcd(km, kn) = k * gcd(m, n)
- 4) If gcd(l, m) = 1 and gcd(l, n) = 1 then gcd(l, mn) = 1
- 5) If l|mn and gcd(l,m) = 1, then l|n

Bezout's Identity

gcd(m,n) is the smallest positive integer linear combination of m and n: gcd(m,n)=mx+ny where $x,y\in\mathbb{Z}$ Ex: 3 and 5 satisfy gcd(3,5)=1 1=2*3-5 42 and 108 satisfy gcd(42,108)=6 6=2*108-5*42

Proof. Let l be the smallest positive integer combination of m and n

First show l < qcd(m, n)

We must establish that l|m and l|n. Note that we can write m = ql + r where $0 \le r < l$. r = m - ql = m - q(mx + ny) = m(1-q) - n(qy). This implies r = 0 because otherwise 0 < r < l is a positive integer combination of m and n that is smaller than l, which is a contradiction.

The same argument for n shows that l|n. We see that $l \leq gcd(m,n)$

Second show $gcd(m, n) \leq l$

Recall $l = mx + ny \Rightarrow gcd(m, n)|l$

Therefore gcd(m, n) = l

Proof of GCD fact 5)

Proof. $gcd(l,m) = 1 \Rightarrow 1 = lx + my \Rightarrow n = l(nx) + mny$. Note l|l and l|mn, so l|l(nx) + nmy so l|n

Proof of GCD fact 2)

Proof. gcd(m,n) = mx + ny and l|m and l|m so l|gcd(m,n)

Proof of GCD fact 4)

Proof. 1 = la + mb

1 = lc + nd

 $\Rightarrow (la+mb)(lc+nd) = l^2ac + lmbc + lnad + mnbd = l(lac+mbc+nad) + mn(bd) = 1$

3 Modular Arithmetic

Motivation: Cryptography

Alice wants to send Bob message M, but Charlie can intercept all transmissions

Alice and Bob share a large prime number k

 $M_* = Mk$

Finefor one round because to recover M, Charlie has to factorize M_* (practically impossible)

Problem: if Alice sends two messages: $M_*^1 = M_1 k$ and $M_*^2 = M_2 k$, Charlie can compute $gcd(M_1 k, M_2 k) = kgcd(M_1, M_2)$ if M_1 and M_2 are co-prime

Weaknesses:

- Requires private-key
- Only really works once

One solution: RSA (Rivest, Shamir, Adleman) public-key cryptography scheme

• uses modular arithmetic with primes

Modular arithmetic

 $a \equiv b \mod d \text{ if } d|(a-b)$

 $15 \equiv 1 \mod 2$ because 15 - 1 = 14 is divisible by 2

We can show that many of the usual arithmetic properties are preserved under modularity.

 $a + b \equiv c + e \mod d$ if $a \equiv b \mod d$ and $b \equiv e \mod d$

 $(c*a) \mod d = (c \mod d)*(a \mod d) \mod d$

Properties of modular arithmetic

 $a \equiv b \mod d$

 $r \equiv s \ mod \ d$

```
(i) ar \equiv bs \mod d
```

(ii)
$$a + r \equiv b + s \mod d$$

(iii)
$$a^n \equiv b^n \mod d$$

Property 1 Proof:

Proof.
$$a \equiv b \mod d \Rightarrow a = b + dq$$

 $r \equiv s \mod d \Rightarrow r = s + dm$
 $\Rightarrow ar = (b + dq)(s + dm) = bs + d(qs + bm + dqm)$
 $\Rightarrow ar \equiv bs \mod d$

$15 \not\equiv 13 \bmod 12$

 $15*6\ mod\ 12 = 90\ mod\ 12 = 6$

 $13*6 \ mod \ 12 = 78 \ mod \ 12 = 6$

 $15 * 6 \mod 12 \equiv 13 * 6 \mod 12$, but $15 \not\equiv 13 \mod 12$.

Conclusion: there is no multiplicative inverse of 6 mod 12

Modular Division

If $ac = bc \mod d$, and gcd(c, d) = 1, then $a \equiv b \mod d$ Proof in book.

Fact: If d is a prime number, then gcd(c, d) = 1

 $ac = bc \ mod \ d \iff a \equiv b \ mod \ d$

and equivalently, there exists z such that $z*c \equiv 1 \mod d$