

Экспериментатор одновременно подбрасывает монету (М) и кидает игральную кость (К). Какое количество информации содержится в эксперименте (Э)?

Аддитивность:

$$i(\mathfrak{I})=i(M)+i(K)=>i(12$$
 исходов $)=i(2$ исхода $)+i(6$ исходов $):\log_{x}12=\log_{x}2+\log_{x}6$ Неотрицательность:

Функция $log_x N$ неотрицательно при любом x>1 и $N\geq 1$

Монотонность:

С увеличением p(M) или p(K) функция $i(\mathfrak{I})$ монотонно возрастает.

Принцип неопределённости:

При наличии всегда только одного исхода (монета и кость с магнитом) количество информации равно нулю: $\log_{\star}1 + log_{\star}1 = 0$

(1916-2001)

Мера Хартли подходит лишь для систем с равновероятными состояниями. Если состояния системы S не равновероятны, используют меру Шеннона:

$$i(S) = -\sum_{i=1}^{N} p_i \cdot log_2 p_i,$$

где N - число состояний системы, рі — вероятность того, что система <math>S находится в состоянии і (сумма всех p_i равна 1).

Формула Хартли является частным случаем формулы Шеннона!

Пример 1. Количество информации в акте подбрасывания обычной монеты по формуле Хартли равно $\log_2 2 = 1$ бит. По формуле Шеннона получим то же $i_{s1} = -0.5 * \log_2 0, 5 - 0, 5 * \log_2 0, 5 = 1$ бит.