```
In [70]: |import pandas_datareader as pdr
          import pandas as pd
          from datetime import datetime
          import yfinance as yf
          import matplotlib.pyplot as plt
          %matplotlib inline
In [14]: | ## Downloading and importing the data
          data = 'TSLA'
In [17]: yf.download(data)
          Out[17]:
                         Open
                                    High
                                               Low
                                                        Close
                                                               Adj Close
                                                                           Volume
               Date
          2010-06-29
                       1.266667
                                 1.666667
                                           1.169333
                                                      1.592667
                                                                1.592667 281494500
                       1.719333
                                                      1 588667
                                 2.028000
                                           1.553333
                                                                1.588667 257806500
           2010-06-30
                                           1.351333
          2010-07-01
                       1.666667
                                 1.728000
                                                      1.464000
                                                                1.464000
                                                                        123282000
                       1.533333
                                                      1.280000
          2010-07-02
                                 1.540000
                                           1.247333
                                                                1.280000
                                                                         77097000
                                 1.333333
                                                                        103003500
           2010-07-06
                       1.333333
                                           1.055333
                                                      1.074000
                                                                1.074000
           2023-09-11 264.269989 274.850006 260.609985 273.579987 273.579987 174667900
          2023-09-12 270.760010 278.390015 266.600006
                                                   267.480011
                                                              267.480011 135999900
          2023-09-13 270.070007 274.980011 268.100006 271.299988 271.299988 111673700
           2023-09-14 271.320007 276.709991 270.420013 276.040009 276.040009 107709800
          2023-09-15 277.549988 278.980011 271.000000 274.390015 274.390015 133422800
          3327 rows × 6 columns
In [19]: | tsla = yf.download(data)
          [********* 100%********** 1 of 1 completed
In [22]: tsla.tail()
Out[22]:
                                    High
                                                               Adj Close
                                                                           Volume
                         Open
               Date
          2023-09-11 264.269989 274.850006 260.609985 273.579987 273.579987 174667900
           2023-09-12 270.760010 278.390015 266.600006 267.480011 267.480011 135999900
           2023-09-13 270.070007 274.980011 268.100006 271.299988 271.299988
                                                                         111673700
           2023-09-14 271.320007 276.709991 270.420013 276.040009 276.040009 107709800
          2023-09-15 277.549988 278.980011 271.000000 274.390015 274.390015 133422800
In [45]: # Rearranging the column names
          data = pd.DataFrame(tsla)
          df_tesla = data[['High','Low','Open','Close','Volume','Adj Close']]
         df_tesla.tail()
Out[45]:
                          High
                                              Open
                                                        Close
                                                                Volume Adj Close
               Date
          2023-09-11 274.850006 260.609985 264.269989 273.579987 174667900 273.579987
           2023-09-12 278.390015 266.600006 270.760010 267.480011 135999900 267.480011
           2023-09-13 274.980011 268.100006 270.070007 271.299988
                                                              111673700 271.299988
           2023-09-14 276.709991 270.420013 271.320007 276.040009 107709800 276.040009
           2023-09-15 278.980011 271.000000 277.549988 274.390015 133422800 274.390015
In [46]: type(df_tesla)
Out[46]: pandas.core.frame.DataFrame
In [49]: df_tesla['High'].plot(figsize=(12,4))
Out[49]: <Axes: xlabel='Date'>
            400
           300
           200
```

100

2010

2012

2014

2016

2018

Date

2020

2022

2024

```
Out[56]: <Axes: xlabel='Date'>
               400
               300
               200
               100
                  0
           2022-01
                        2022-03
                                                                              2022-11
                                                                                           2023-01
                                                                                                        2023-03
                                                   2022-07
                                                                                                                      2023-05
                                                                                                                                   2023-07
                                                                                                                                                 2023-09
                                                                                      Date
In [60]: df_tesla['High'].plot(xlim = ['2022-01-01','2023-09-11'],ylim = [100,500], figsize=(12,4), c='green')
Out[60]: <Axes: xlabel='Date'>
               500
               450
               400
               350
               300
               250
               200
               150
               100
                                                                                                                                                2023-09
                                                                                           2023-01
                                                                                                        2023-03
                                                   2022-07
                                                                                                                      2023-05
                                                                                                                                   2023-07
           2022-01
                        2022-03
                                                                              2022-11
                                                                                     Date
In [62]: df_tesla.index
'2023-09-01', '2023-09-05', '2023-09-06', '2023-09-07', '2023-09-08', '2023-09-11', '2023-09-12', '2023-09-13', '2023-09-14', '2023-09-15'],
                          dtype='datetime64[ns]', name='Date', length=3327, freq=None)
In [67]: ## Reviewing data of specific date range
          index = df_tesla.loc['2022-01-01':'2023-09-11'].index
          share_open = df_tesla.loc['2022-01-01':'2023-09-11']['Open']
In [68]: share_open
Out[68]: Date
          2022-01-03
                          382.583344
          2022-01-04
                          396.516663
          2022-01-05
                          382.216675
          2022-01-06
                          359.000000
          2022-01-07
                          360.123322
          2023-09-05
                          245.000000
          2023-09-06
                          255.139999
          2023-09-07
                          245.070007
          2023-09-08
                          251.220001
          2023-09-11
                          264.269989
          Name: Open, Length: 424, dtype: float64
In [69]: index
Out[69]: DatetimeIndex(['2022-01-03', '2022-01-04', '2022-01-05', '2022-01-06', '2022-01-10', '2022-01-11', '2022-01-12', '2022-01-13', '2022-01-14',
                           '2023-08-28', '2023-08-29', '2023-08-30', '2023-08-31', '2023-09-01', '2023-09-05', '2023-09-06', '2023-09-07', '2023-09-08', '2023-09-11'],
```

In [56]: ## x limit and y limit

df_tesla['High'].plot(xlim = ['2022-01-01','2023-09-11'],figsize=(12,4))

dtype='datetime64[ns]', name='Date', length=424, freq=None)

In [78]: ## Subplot on share open prize
 figure,axis=plt.subplots()
 plt.tight_layout()
 figure.autofmt_xdate()
 axis.plot(index,share_open)

Out[78]: [<matplotlib.lines.Line2D at 0x18f42e07650>]

Datetime Index

```
In [80]: df_tesla = df_tesla.reset_index()
In [82]: df_tesla.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3327 entries, 0 to 3326
        Data columns (total 7 columns):
             Column
                        Non-Null Count Dtype
                        3327 non-null datetime64[ns]
         0
             Date
             High
                        3327 non-null float64
                        3327 non-null
          2
                                      float64
             Low
                        3327 non-null
                                       float64
             0pen
                                      float64
             Close
                        3327 non-null
                        3327 non-null
             Volume
                                      int64
            Adj Close 3327 non-null
                                      float64
        dtypes: datetime64[ns](1), float64(5), int64(1)
```

In [83]: df_tesla.tail()

memory usage: 182.1 KB

Out[83]:

	Date	High	Low	Open	Close	Volume	Adj Close
3322	2023-09-11	274.850006	260.609985	264.269989	273.579987	174667900	273.579987
3323	2023-09-12	278.390015	266.600006	270.760010	267.480011	135999900	267.480011
3324	2023-09-13	274.980011	268.100006	270.070007	271.299988	111673700	271.299988
3325	2023-09-14	276.709991	270.420013	271.320007	276.040009	107709800	276.040009
3326	2023-09-15	278.980011	271.000000	277.549988	274.390015	133422800	274.390015

```
In [84]: df_tesla = df_tesla.set_index("Date", drop = True)
```

In [86]: df_tesla.tail()

Out[86]:

	High	Low	Open	Close	Volume	Adj Close
Date						
2023-09-11	274.850006	260.609985	264.269989	273.579987	174667900	273.579987
2023-09-12	278.390015	266.600006	270.760010	267.480011	135999900	267.480011
2023-09-13	274.980011	268.100006	270.070007	271.299988	111673700	271.299988
2023-09-14	276.709991	270.420013	271.320007	276.040009	107709800	276.040009
2023-09-15	278.980011	271.000000	277.549988	274.390015	133422800	274.390015

In [88]: ## year end frequency
df_tesla.resample(rule='A').min()

Out[88]:

	High	Low	Open	Close	Volume	Adj Close
Date						
2010-12-31	1.108667	0.998667	1.076000	1.053333	1777500	1.053333
2011-12-31	1.484667	1.407333	1.452000	1.455333	3594000	1.455333
2012-12-31	1.790000	1.509333	1.774667	1.519333	5473500	1.519333
2013-12-31	2.225333	2.140667	2.205333	2.194000	6603000	2.194000
2014-12-31	9.800000	9.111333	9.366667	9.289333	19983000	9.289333
2015-12-31	12.619333	12.093333	12.388667	12.333333	10620000	12.333333
2016-12-31	10.331333	9.403333	9.488000	9.578000	24892500	9.578000
2017-12-31	14.688667	14.064000	14.316667	14.466000	32800500	14.466000
2018-12-31	17.355333	16.306000	16.851999	16.704000	46210500	16.704000
2019-12-31	12.445333	11.799333	12.073333	11.931333	36984000	11.931333
2020-12-31	26.990667	23.367332	24.980000	24.081333	52073100	24.081333
2021-12-31	188.736664	179.830002	184.183334	187.666672	29401800	187.666672
2022-12-31	116.269997	108.239998	110.349998	109.099998	41864700	109.099998
2023-12-31	111.750000	101.809998	103.000000	108.099998	83166000	108.099998

In [90]: df_tesla.resample(rule='A').max()

Out[90]:

	High	Low	Open	Close	Volume	Adj Close
Date						
2010-12-31	2.428000	2.316667	2.391333	2.364667	281494500	2.364667
2011-12-31	2.333333	2.268667	2.308667	2.329333	172767000	2.329333
2012-12-31	2.663333	2.474000	2.546000	2.534000	85206000	2.534000
2013-12-31	12.966667	12.558000	12.930667	12.891333	557458500	12.891333
2014-12-31	19.427999	18.693333	19.177999	19.069332	490225500	19.069332
2015-12-31	19.110001	18.420000	18.680000	18.817333	234744000	18.817333
2016-12-31	17.955999	16.967333	17.763332	17.694668	356136000	17.694668
2017-12-31	25.974001	25.290001	25.779333	25.666668	296871000	25.666668
2018-12-31	25.830667	24.474667	25.000000	25.304667	504745500	25.304667
2019-12-31	29.020666	28.423332	29.000000	28.729334	450091500	28.729334
2020-12-31	239.573334	230.373337	233.330002	235.223328	914082000	235.223328
2021-12-31	414.496674	405.666656	411.470001	409.970001	268189500	409.970001
2022-12-31	402.666656	378.679993	396.516663	399.926666	221923300	399.926666
2023-12-31	299.290009	289.519989	296.040009	293.339996	306590600	293.339996

In [92]: df_tesla.resample(rule='A').max()['Open'].plot()

Out[92]: <Axes: xlabel='Date'>


```
In [105]: ## Quartly end frequency
df_tesla.resample(rule='QS').max().loc['2019-01-01':'2023-09-11']
```

Out[105]:

	High	Low	Open	Close	Volume	Adj Close
Date						
2019-01-01	23.466667	22.943333	23.080667	23.153999	362262000	23.153999
2019-04-01	19.744667	19.144667	19.219999	19.454000	398206500	19.454000
2019-07-01	17.738001	17.210667	17.278000	17.658667	336274500	17.658667
2019-10-01	29.020666	28.423332	29.000000	28.729334	450091500	28.729334
2020-01-01	64.599335	60.068001	61.566666	61.161331	914082000	61.161331
2020-04-01	72.512665	66.915337	67.518669	71.987335	487977000	71.987335
2020-07-01	167.496674	156.836670	167.380005	166.106674	584781000	166.106674
2020-10-01	239.573334	230.373337	233.330002	235.223328	666378600	235.223328
2021-01-01	300.133331	290.533325	297.126678	294.363342	268189500	294.363342
2021-04-01	260.263336	244.203339	256.899994	254.106674	147052200	254.106674
2021-07-01	266.333344	258.333344	262.399994	263.786682	100847400	263.786682
2021-10-01	414.496674	405.666656	411.470001	409.970001	188556300	409.970001
2022-01-01	402.666656	378.679993	396.516663	399.926666	151565700	399.926666
2022-04-01	384.290009	362.433319	378.766663	381.816681	144973200	381.816681
2022-07-01	314.666656	305.579987	311.666656	309.320007	142032300	309.320007
2022-10-01	257.500000	242.009995	254.500000	249.440002	221923300	249.440002
2023-01-01	217.649994	206.110001	211.759995	214.240005	306590600	214.240005
2023-04-01	276.989990	261.119995	275.130005	274.450012	211797100	274.450012
2023-07-01	299.290009	289.519989	296.040009	293.339996	175158300	293.339996

```
In [97]: df_tesla.resample(rule='QS').max()['High'].plot(xlim = ['2019-01-01','2023-09-11'])
```

Out[97]: <Axes: xlabel='Date'>

In [99]: ## Business End Frequency
df_tesla.resample(rule='BA').max()

Out[99]:

	High	Low	Open	Close	Volume	Adj Close
Date						
2010-12-31	2.428000	2.316667	2.391333	2.364667	281494500	2.364667
2011-12-30	2.333333	2.268667	2.308667	2.329333	172767000	2.329333
2012-12-31	2.663333	2.474000	2.546000	2.534000	85206000	2.534000
2013-12-31	12.966667	12.558000	12.930667	12.891333	557458500	12.891333
2014-12-31	19.427999	18.693333	19.177999	19.069332	490225500	19.069332
2015-12-31	19.110001	18.420000	18.680000	18.817333	234744000	18.817333
2016-12-30	17.955999	16.967333	17.763332	17.694668	356136000	17.694668
2017-12-29	25.974001	25.290001	25.779333	25.666668	296871000	25.666668
2018-12-31	25.830667	24.474667	25.000000	25.304667	504745500	25.304667
2019-12-31	29.020666	28.423332	29.000000	28.729334	450091500	28.729334
2020-12-31	239.573334	230.373337	233.330002	235.223328	914082000	235.223328
2021-12-31	414.496674	405.666656	411.470001	409.970001	268189500	409.970001
2022-12-30	402.666656	378.679993	396.516663	399.926666	221923300	399.926666
2023-12-29	299.290009	289.519989	296.040009	293.339996	306590600	293.339996

```
In [100]: df_tesla.resample(rule='BA').max()['High'].plot(xlim = ['2019-01-01','2023-09-11'])
Out[100]: <Axes: xlabel='Date'>
```


In [106]: ## Business End Quartly Frequency
df_tesla.resample(rule='BQS').max().loc['2019-01-01':'2023-09-11']

Out[106]:

	High	Low	Open	Close	Volume	Adj Close
Date						
2019-01-01	23.466667	22.943333	23.080667	23.153999	362262000	23.153999
2019-04-01	19.744667	19.144667	19.219999	19.454000	398206500	19.454000
2019-07-01	17.738001	17.210667	17.278000	17.658667	336274500	17.658667
2019-10-01	29.020666	28.423332	29.000000	28.729334	450091500	28.729334
2020-01-01	64.599335	60.068001	61.566666	61.161331	914082000	61.161331
2020-04-01	72.512665	66.915337	67.518669	71.987335	487977000	71.987335
2020-07-01	167.496674	156.836670	167.380005	166.106674	584781000	166.106674
2020-10-01	239.573334	230.373337	233.330002	235.223328	666378600	235.223328
2021-01-01	300.133331	290.533325	297.126678	294.363342	268189500	294.363342
2021-04-01	260.263336	244.203339	256.899994	254.106674	147052200	254.106674
2021-07-01	266.333344	258.333344	262.399994	263.786682	100847400	263.786682
2021-10-01	414.496674	405.666656	411.470001	409.970001	188556300	409.970001
2022-01-03	402.666656	378.679993	396.516663	399.926666	151565700	399.926666
2022-04-01	384.290009	362.433319	378.766663	381.816681	144973200	381.816681
2022-07-01	314.666656	305.579987	311.666656	309.320007	142032300	309.320007
2022-10-03	257.500000	242.009995	254.500000	249.440002	221923300	249.440002
2023-01-02	217.649994	206.110001	211.759995	214.240005	306590600	214.240005
2023-04-03	276.989990	261.119995	275.130005	274.450012	211797100	274.450012
2023-07-03	299.290009	289.519989	296.040009	293.339996	175158300	293.339996

```
In [102]: df_tesla.resample(rule='BA').max()['High'].plot(xlim = ['2019-01-01','2023-09-11'])
```

Out[102]: <Axes: xlabel='Date'>


```
250
                200
                150
                100
                 50
                                2019-12-31 00:00:00
                                                      2020-12-31 00:00:00
                                                                            2021-12-31 00:00:00
                                                                                                  2022-12-30 00:00:00
                                                                Date
In [116]: ## Monthly share price data
              df_tesla['Open'].resample(rule='M').max().loc['2023-01-01':'2023-09-11']
Out[116]: Date
              2023-01-31
                                 178.050003
              2023-02-28
                                 211.759995
              2023-03-31
                                 206.210007
              2023-04-30
                                 199.910004
              2023-05-31
                                 200.100006
              2023-06-30
                                 275.130005
              2023-07-31
                                 296.040009
              2023-08-31
                                 266.260010
              Freq: M, Name: Open, dtype: float64
In [114]: df_tesla['Open'].resample(rule='M').max().loc['2023-01-01':'2023-09-11'].plot(kind='bar')
Out[114]: <Axes: xlabel='Date'>
                300
                250
                200
                150
                100
                 50
                          2023-01-31 00:00:00
                                                           2023-04-30 00:00:00
                                                                      2023-05-31 00:00:00
                                                                                            2023-07-31 00:00:00
                                     2023-02-28 00:00:00
                                                2023-03-31 00:00:00
                                                                                 2023-06-30 00:00:00
                                                                                                        2023-08-31 00:00:00
```

In [115]: ## Plotting Graphs

Out[115]: <Axes: xlabel='Date'>

df_tesla['Open'].resample(rule='BA').mean().loc['2019-01-01':'2023-09-11'].plot(kind='bar')

```
NaN
          2010-07-02
                          NaN
          2010-07-06
                       2.028
          2010-07-07
                       2.028
          Name: High, dtype: float64
In [125]: df_tesla['Open:30 days rolling'] = df_tesla['Open'].rolling(30).mean()
```

Date

In [118]: ## Aggregate Function

2010-06-29

2010-06-30

2010-07-01

Out[118]: Date

df_tesla['High'].rolling(5).max().head(6)

NaN

NaN

```
In [120]: df_tesla.head()
```

Out[120]:

	High	Low	Open	Close	Volume	Adj Close	Open:30 days rolling
Date							
2010-06-29	1.666667	1.169333	1.266667	1.592667	281494500	1.592667	NaN
2010-06-30	2.028000	1.553333	1.719333	1.588667	257806500	1.588667	NaN
2010-07-01	1.728000	1.351333	1.666667	1.464000	123282000	1.464000	NaN
2010-07-02	1.540000	1.247333	1.533333	1.280000	77097000	1.280000	NaN
2010-07-06	1.333333	1.055333	1.333333	1.074000	103003500	1.074000	NaN

In [126]: df_tesla[['Open','Open:30 days rolling']].plot(figsize=(12,5))

Out[126]: <Axes: xlabel='Date'>

In []: