

深度学习硬件

Hardware-Architectures for Deep Learning

教师: 陈震

单位: 清华大学基础工业训练中心

深度学习软硬件布局

- DL硬件
- DL软件
- AI产业

深度学习框架

- Tensor Flow: Google Deep Learning Library
 - Supports general deep learning with symbolic diff.
 - Python on top of C++ (Easy + Fast)
 - GPU, cluster, and mobile implementations
- pyTorch: *Facebook* Al research
 - Tensor Library
 - File I/O Interface Library
- Berkeley Caffe: GPU accelerated Computer Vision
 - Focused on computer vision and GPU acceleration
 - C++ with Python support (Very Fast + somewhat easy)
 - Rich library of pre-trained models (Caffe Model Zoo)
- Theano: *U of Montreal*
 - General Symbolic Diff. Modeling Framework
 - Covers many recent research models
 - Python only (easy but not fast)
- DMLC/MXNET: Amazon
- CNTK:Microsoft
- Baidu/PaddlePaddle

PYTÖRCH

深度学习硬件-专用加速器

- Deep Learning Accelerator (DLA)
- 谷歌
 - 2016年发布TPU一代(用于推断)
 - 2017年发布TPU二代和Cloud TPU(用于训练和推断, 2017年10月)
- 英伟达
 - 开源深度学习加速器XAVIER DLA (2017年5月)
 - http://nvdla.org/
- •运算能力单位:
 - TFLOPS tera floating point operation 1万亿次
 - PFLOPS peta floating point operation 1千万亿次
 - EFLOPS exa floating point operation 1百亿亿次

谷歌TPU

- 张量处理器TPU (tensor processing unit)
- 协处理模式工作 (coprocessor) PCle-v3
- TPU一代
- TPU二代 Cloud TPU
- 运算速度: 180 teraflops 64GB
- 二维高速环形网络,单精度浮点MXU(matrix Unit)

每秒 180 万亿次浮点运算 64 GB 高带宽内存 (HBM)

谷歌TPU

- 张量处理单元 (TPU)
- 为机器学习设计的 ASIC,应用于包括 Google 翻译、 Google 相册、 Google 搜索、 Google 助理和 Gmail。

Cloud TPU v3 测试版 每秒 420 万亿次浮点运算 128 GB HBM

Cloud TPU v2 Pod Alpha 版 每秒 11.5 千万亿次浮点运算 4 TB HBM 二维环形网状网络

GPU编程

- NVIDIA GPU显卡
- 协处理模式工作(Coprocessor)
- 开发卡: Titan XP (帕斯卡架构)
- 开发工具: CUDA
- 编程语言: C++
- 运算速度: 12 TFLOPs

Nvidia GPU卡参数

产品名称	GTX 1080Ti	RTX 2080Ti	TITAN Xp	TITAN V	TITAN RTX
GPU架构	Pascal	Turing	Pascal	Volta	Turing
GPU芯片数量	(GP102) x 1	(TU102) x 1	(GP102) x 1	(GV100) x 1	(TU100) x 1
CUDA核心数	3584	4352	3840	5120	4608
单精度计算峰值	11 Tflops	14.2 Tflops	12 Tflops	15 Tflops	16.3 Tflops
双精度计算峰值	N/A	N/A	N/A	N/A	N/A
内存容量	11GB	11GB	12GB	12GB	24GB
内存带宽	320GB/s	616GB/s	480GB/s	652.8GB/s	672GB/s
总功耗	250W	260W	250W	250W	280W
散热方式	主动散热	主动散热	主动散热	主动散热	主动散热
Display端口	1	1	1	4	4

Intel公司

- Intel公司
 - 至强融核(Xeon Phi处理器)Knights Mill
 - Deep Learning Inference Accelerator (DLIA)
- 协处理模式工作
- 指令集
 - "四倍融合乘加指令"(QFMA:Quad Fused Multiply Add)
 - "四倍虚拟神经网络指令" (QVNNI: Quad Virtual Neural Network Instruction)。
- QFMA把Knights Mill的单精度性能提高一倍,QVNNI指令则可以进一步降低精度,同时满足深度学习框架的精度需求

Intel公司

- Intel收购的Nervana System
- NNP(Neural Network Processors)(2017年10月)
- 协处理模式工作

安谋ARM

- Project Trillium, Arm's Machine Learning (ML) platform
- Arm ML processor, Arm OD processor 和Arm NN SDK
- 性能4.6 TOPs, 功耗3 TOPs/ W

 https://developer.arm.com/products/pr ocessors/machine-learning

FPGA编程

- PYNQ: Xilinx APSoCs
- ARM+Zynq-7000
- 开发工具: Xilinx vivado 2017.3
- 程序: Python/C++/HLS
- 应用:
 - Binary Neural Network
 - https://github.com/Xilinx/BNN-PYNQ/
 - CNN Example
 - https://github.com/awai54st/PYNQ-Classification

谢谢指正!

zhenchen@tsinghua.edu.cn