Diffusion Curvature

2	Kincaid MacDonald 1, Dhananjay Bhaskar 2, Kaly Zhang 2, Ian Adelstein 3 Smita Krishnaswamy 4,5
4	1 Yale.
5	2 MILA,
6	³ Yale Department of Math,
7	⁴ Yale Department of Applied Math,
8	⁵ Yale School of Medicine,

 $Corresponding \ author: \ Kincaid \ MacDonald, \ {\tt kincaid@aya.yale.edu}$

9 Abstract

- For a number of years now work has been proceeding in order to bring to perfec-
- tion the crudely conceived idea of a machine that would not only supply inverse
- reactive current for use in unilateral phase detractors, but would also be capable of
- automatically synchronizing cardinal grammeters. Such a machine is the "Turbo-
- 14 Encabulator."

Plain Language Summary

- We introduce Diffusion Curvature, a fast, differentiable, noise-robust pointwise cur-
- vature for graphs and point clouds.

1 Introduction

- Recent years have seen a growing appreciation that black-box machine learning
- methods can understand data better (and, in turn, be better understood) by incor-
- porating geometric information.

2 Data & Methods

23 Source: Article Notebook

22

Figure 1: Diffusion Curvature vs Gaussian Curvature of the Torus

- 24 Source: Article Notebook
- 3 Conclusion
- References
- 27 Source: Article Notebook