The 2024 ICPC ShaanXi Provincial Contest

西安交通大学程序设计竞赛校队

2024.6.2

预期题目难度顺序

● 签到题: AFM

• 铜牌题: GCL

• 银牌题: BE

• 金牌题: DK

▶ 捧杯: IJ

● 防 AK 题: H

实际通过数量

A Chmod

题意

给定 chmod 模式串,输出对应的权限字符串。

• Idea: Rhodoks

Solution: Corycle

Std & Data: Corycle

• Verifier: Luan_233, MCPlayer542

A Chmod

按照题意模拟即可。

F 写都写了,交一发吧

题意

给定一个长度为 n 的序列 g_i , 求 gi& gj, $1 \le i$, $j \le n$ 的最大值。

• Idea: MCPlayer542

Solution: MCPlayer542

• Std & Data: MCPlayer542

Verifier: Rhodoks, Lrefrain

F 写都写了,交<u>一发吧</u>

注意到代码可以重复提交,容易发现最优解为每次都提交得分最高的代码,得分即为单次提交所能获得的最高分。

遍历数组取得最大值输出即可。

M 窗花

题意

求 n 个整点坐标,对角线长为 2cm 且与坐标轴平行的正方形窗花的总覆盖面积。

Idea: Rhodoks

Solution: Rhodoks

Std & Data: HCCH

Verifier: Shirost, Rhodoks

M 窗花

解法 1:

考虑旋转 45°,则所有正方形各边均平行于坐标轴,可以很容易计数。

解法 2:

考虑把每个正方形拆分成四个小三角形,对每个窗花记录占用了哪些小 三角形。

解法 3:

考虑按照 × 坐标从小到大,相同则 y 坐标从小到大排序依次加入正方形,注意到此时新加入的窗花只会和位于 (x-1,y) 和 (x,y-1) 的窗花重叠且 (x-1,y) 和 (x,y-1) 之间不互相重叠。减去重叠部分面积,计算实际的面积增量即可。

G 消失的数字

题意

1-9 中的一个数字(及包含其作为数位的数)消失了,问 $n(1 \le n \le 10^{18})$ 现在是第几个存在的自然数。

Idea: Rhodoks

Solution: Rhodoks

Std & Data: uuku

• Verifier: Luan_233, Lrefrain

G 消失的数字

先考虑 x = 9 的情况,我们有 8 之后是 10, 188 之后是 200。不难发现,这其实就是'逢九进一',也就是说新的数列其实就是九进制数,那我们想求它是第几个其实就是把这个九进制数转换成十进制数。

那么再看 $x \neq 9$ 的情况,其实和上一种情况是一样的,把所有大于 x 的数位都减一是不改变数的顺序的,那我们将所有大于 x 的数位都减一后,新的数列也是九进制数,转成十进制即可。

要注意的是,自然数是包括 0 的,所以最后答案要加一。

C换座位

题意

给出长为 n 数组 a_i , 你需要找到长为 n 的数组 b_i $(1 \le i \le n, 1 \le b_i \le 2n)$ 满足 $\forall i \ne j, b_i \ne b_j$ 且 $\forall i, b_i = i$ 或 $b_i = a_i$ 。最大化 $b_i = a_i$ 的个数并输出最大值。

• Idea: Rhodoks

Solution: Rhodoks

Std & Data: yyf_0404

Verifier: Veritas, Shirost

C换座位

考虑建图, i 向 a_i 连边,因为每个点至多有一条出边,所以这是一个内向基环树森林 + 树森林。

对于基环树,只有环上的点可以同时移动。

对于树,应该取最长的以树根为终点的路径,移动所有路径上的点。

考虑拓扑排序求最长路,如果发现是树,则答案加上最长路的边数。最 后答案加上未入队的点数(也就是环上的总点数)。

时间复杂度 O(n)。

L 下棋

题意

初始有 \times 个棋子,两个人轮流行动拿走棋子,拿走的棋子数量 y 要求满足在 k 进制下各位数的乘积是 y 的因子,寻找一个最小的 k 使得先手必胜。

• Idea: Luan_233, Rhodoks

Solution: Luan_233

Std & Data: Luan_233

Verifier: Aquamoon, Veritas

L 下棋

注意到无论在何种进制下,y一定满足最低位非 0。并且任何一个个位数 y 都是合法的。

类似于巴什博奕,注意到当先手拿到的 $(x)_k$ 末位为 0 时,无论怎么拿都会拿成末位非 0。所以策略很显然,后手只需要拿走个位上的数字个棋子就可以保证先手拿到的 $(x)_k$ 末位为 0。必败态 (x=0) 必然存在于 x 末位为 x 的集合内。

所以末尾一位为0的时候先手必败,反之则必胜。那么令 $(x)_k$ 的末位不为0, k只需要取最小的非因子即可,最小非因子是对数级别的,可以通过暴力枚举获得。

题意

构造一个 $n \times m$ 的矩阵,其中每个位置要么是 1,要么是 + 或者 *,使得在满足每一行每一列均为一个合法表达式的前提下,最小化每一行、每一列表达式的值之和。

Idea: Rhodoks

Solution: Rhodoks, Lrefrain

Std & Data: Aquamoon

Verifier: uuku, HCCH

对于行列大小均为偶数的情况,以 6×8 为例答案形如

注意到每行/每列恰有一个 11。由于无法构造出只含 1 的解,显然使用乘号连接 11 和 1 是最优的。

对于列大小为奇数的情况,以 6×9 为例:

所有包含两个 11 的行都必须使用一个 +,否则会产生 11×11 的结果,这是我们不能接受的。

同时,除此之外每多使用一个 +,都会使答案增加,所以只需要在这些行中选恰好一个运算符改为 + 即可。

行大小为奇数的情况类似。

对于行列大小均为奇数的情况,以 7×9 为例:

1	1	1	1	1 1	1	1	1	1
				*				
				1				
				+				
1	*	1	*	1	*	1	*	1
1	1	1	1	1	1	1	1	1

所有包含两个 11 的行都必须使用一个 +,所有包含两个 11 的列都必须使用一个 +。

如图所示,观察位于交点的六个运算符,需要保证每行都有一个 +,每列都有一个 +。可以考虑斜着分配。

通过搜索和合理的剪枝,能在可接受的时间内算出答案。

考虑答案空间只有 9×9 ,可以搜出所有的答案硬编码在代码中(打表)。

E 商路

题意

圆上有若干点,每个点只能向离它最远的点连有向线段,保证线段之间 不相交不重合的前提下最多可以连几条线段(端点可以相交)

Idea: Rhodoks

Solution: Rhodoks

Std & Data: Veritas

• Verifier: Corycle, Aquamoon

E 商路

引理 1: 不存在市场 A, B, C, D,两两互不相同,且商路 \overrightarrow{AB} 与 \overrightarrow{CD} 同时存在。

如图所述,假设存在一条商路 \overrightarrow{AB} ,作 AO 直线交圆于另外一点 A',作 点 B 关于直线的对称点 B'。我们假设存在与点 A,B 不同的两点 C,D, \overrightarrow{CD} 是另外一条商路。

E商路

情况 1: 点 D 位于弧 BA'B' 上。

此时我们发现距离点 A 最远的点变成了点 D,矛盾。

E 商路

情况 2: 点 D 位于弧 AB 上。

由于线段 CD 和线段 AB 不能相交,所以点 C 也在弧 AB 上,我们注意到,因为弧 AB 不是优弧,所以线段 CD 一定比线段 CA, CB 的较长者短。矛盾。

E 商路

情况 3: 点 D 位于弧 BA 上。

作线段 BD, AD 的中垂线交弧 \overrightarrow{AB} 于点 E, F, 因为点 D 是点 C 的最远点,所以点 C 必须在弧 \overrightarrow{EF} 上,则此时两商路相交,矛盾。

综上所述,引理得证。

E商路

引理 2: 若存在商路 \overrightarrow{AB} , 则其余商路必与 \overrightarrow{AB} 交且仅交于 A 或 B。

由引理1可自然推得。

E商路

引理 3: 若存在商路 AB, 则其余商路只可能:

- 均与 AB 交于点 A。
- 均与 AB 交于点 B。
- 数量恰好为两条,分别与 \vec{AB} 交于点 A,B,且之间交于圆上一点 C。

若存在两商路,端点分别为 A, B, C, D(如上图所示),则点 C, D 必定重合,否则违反引理 1。

E 商路

最终题解

通过双指针求出距离每个点;最远的点,考虑两种情况:

- 1. 商路 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{BC} , 此时需要点 B, C 均为点 A 的最远点且点 C 是点 B 的最远点。三个点构成一个等腰三角形。
- 2. 所有商路要么以点 A 为起点或以点 A 为终点。 枚举哪个点为引理 3 中前两种情况的交点。所有距点其最远的点中包含 点 A 的点向点 A 连商路,对于距离点 A 最远的点,如果其没有向点 A 连商路,则自点 A 向其连商路。

时间复杂度 O(n)

D 双子序列

题意

给定 S、 s_1 、 s_2 ,定义一个 S 的子串的反感度为 s_1 、 s_2 作为子序列在子串内出现次数的乘积,求所有 S 的子串反感度之和。

Idea: Luan_233

Solution: Rhodoks

Std & Data: Luan_233

Verifier: Electro_Master, yyf_0404

D 双子序列

考虑贡献转化,转化为对每个 s_1 、 s_2 构成的 pair,能够在多少个区间内产生贡献,显然是包含这两个串的所有区间,

也就是:左端点在 S 开头到两个串的第一个字符,右端点在两个串最后一个字符到 S 末尾,这些区间均可产生贡献。

考虑设计一个 DP, DP 的时候记录所有匹配方案的左端点:

设 f[i,j,k] 表示当前处理到 S 的第 i 个字符, s_1 匹配完前 j 个字符, s_2 匹配完前 k 个字符时,所有的匹配方案中的 s_1 和 s_2 的起始位置之和。

显然有转移如下:

D 双子序列

$$f[i-1, j-1, k] \rightarrow f[i, j, k]$$
 if $S_i = s_{1j}$
 $f[i-1, j, k-1] \rightarrow f[i, j, k]$ if $S_i = s_{2k}$
 $f[i-1, j-1, k-1] \rightarrow f[i, j, k]$ if $S_i = s_{1j}$ and $S_i = s_{2k}$
 $f[i-1, j, k] \rightarrow f[i, j, k]$

边界条件是: 当 j 或者 k 这两维从全 0 变成至少有一个是 1 的时候,表示两个串第一个字符在此出现,此时 f[i,j,k]+=i。

统计答案的时候,计算 $f[i,|s_1|,|s_2|]$ 相比于前一位的增量,也就是恰好在这一位结束的匹配方案,乘上 |S|=i+1 后计入答案。

容易发现上面求解的是 f 的差分数组与后缀长度之积,其实等于 $f[i,|s_1|,|s_2|]$ 之和,枚举求和即可。

时空复杂度 $O(|S||s_1||s_2|)$ 。

K 致命公司

题意

有 n 个通道, 会有 m 个弹簧头在 t_i 时刻在 x_i 通道距离你 y_i 米出现, 并在出现后的每时刻朝你移动 k 米。每时刻你可以选择看一个通道里的弹簧头,则该时刻该通道里的弹簧头将不会移动。问你最晚可以活到哪个时刻。

• Idea: Rhodoks

Solution: Shirost

Std & Data: Shirost

Verifier: Corycle, HCCH

K 致命公司

答案具有二段性,考虑二分答案,判断能否活到第 T-1 个时刻。

对于第 i 个弹簧头,其在第 T-1 个时刻前不到达原点的条件是:在时刻 $[t_i,T)$ 内,至少向通道 x_i 凝视了 $\left\lceil \frac{k(T-t_i)-y_i}{k} \right\rceil = (T-t_i)-\left\lfloor \frac{y_i}{k} \right\rfloor$ 个时刻。

这样我们可以得到若干形如在时刻 $[t_i, T)$ 内,至少向通道 x_i 凝视了 m_i 个时刻的限制条件。

注意到这些条件的时间区间的右端点是固定的,所以在较短的区间内进 行的凝视,肯定也在较长的区间内起效。

考虑按照起点 t_i 倒序排序所有的要求,贪心地把时间分配给对应的通道,如果可以分配,则说明可以活到第 T-1 个时刻。

时间复杂度 $O((n+m)(\log m + \log y_i))$

题意

给定一个长为 n 的测试点序列 a_i , q 次询问,每次给出 u, l, 求一个 r 使得 $\sum_{i=1}^{1e6} score(i, l, r)$ 的值最大,有多个 r 输出较小的。 定义 $score(x, l, r) = \sum_{i=1}^{r} f(x, a_i)$ 其中

$$\mathit{f}(x,y) = \begin{cases} u-y, & x=1 \\ u, & 1 < x \leq y, \gcd(x,y) = 1 \\ -x \cdot y, & x \neq 1, \gcd(x,y) = x \\ 0, & \text{otherwise.}. \end{cases}$$

Idea: MCPlayer542

Solution: Luan_233, MCPlayer542

Std & Data: MCPlayer542

Verifier: yyf_0404, Electro_Master

出题人在打 Div3 的时候看错题导致没能 AK 耿耿于怀,并再缝合了一点点数论成分以加强该题。

简单推一下式子:

$$\sum_{i=1}^{10^{6}} score(i, l, r) = \sum_{i=1}^{10^{6}} \sum_{j=l}^{r} f(i, a_{j}) = \sum_{j=l}^{r} \sum_{i=1}^{10^{6}} f(i, a_{j})$$

$$= \sum_{i=l}^{r} u \cdot \varphi(a_{i}) - a_{i} \cdot \sigma(a_{i})$$

$$= \sum_{i=1}^{r} u \cdot \varphi(a_{i}) - a_{i} \cdot \sigma(a_{i}) - \sum_{i=1}^{l-1} u \cdot \varphi(a_{i}) - a_{i} \cdot \sigma(a_{i})$$

其中 $\varphi(x)$, $\sigma(x)$ 分别为欧拉函数和除数函数。由于 / 是给定的,显然后一项是常数,因此我们只需最大化 $\sum_{i=1}^r u \cdot \varphi(a_i) - a_i \cdot \sigma(a_i)$ 即可。

令 $\Phi(x)=\sum_{i=1}^x \varphi(a_i),\ \Psi(x)=\sum_{i=1}^x a_i\cdot \sigma(a_i),\$ 则我们需要最小化 $ans=u\cdot \Phi(x)-\Psi(x)$ 。

因此问题可转化为过任意一个可行的 r 的决策点 $(\Phi(r), \Psi(r))$ 的一次函数 y=ux-ans 的截距最小是多少。容易发现我们只需在所有可行 r 决策点的下凸包上二分即可。

由于 $\Phi(x)$ 和 $\Psi(x)$ 是单调的,我们只需将询问按 / 离线,倒着逐步将每个 $(\Phi(r),\,\Psi(r))$ 加入单调栈维护下凸包,并对每个 I_i 与当前新加入的 I_i 一致的询问,用该询问的 I_i 在当前凸包上二分即可。其中 $\Phi(r)$ 和 $\Psi(r)$ 可以用线性筛求得。

注意在有多个 r 可取得最大值时需要输出最小的 r, 且 $u \cdot \Phi(r)$ 的大小可能会接近 long long 的上界 (实际数据中并没有刻意去卡)。

也可以考虑将询问按 u 离线,初始时认为每个起始点 l 的最优答案为自身 (即 u=0 的情况),在 u 每次增加的时候考虑哪个点不再优于其右侧点,并且用一些数据结构对区间进行合并,因而能计算新的 u 下的答案。

验题中也有使用李超线段树通过该题的队伍。

| 猜质数 |

题意

给定 n, k,要求进行 n 次询问,每次可以询问 a_i ,得到 $g((p^k)^{a_i})$ 。要求恰好 n 次询问后自由选择 m,求出 $(p^k)^{a_i} mod(m \cdot a_i)$ 。

其中 g(x) = f(f(f(...f(x)))), f(x) 是 x 的各位数字之和。

- Idea: MCPlayer542
- Solution: MCPlayer542, Aquamoon
- Std & Data: MCPlayer542
- Verifier: uuku, Electro_Master

| 猜质数 |

构造题。

题目的条件乍看之下很毒瘤,给出的信息十分有限 (一次 $a_i = 1$ 的查询即可获得所有 x 下的 $g(q^x)$,在输入包含 $a_i = 1$ 的情况下多余的查询是没用的),实际上只需要进行简单的构造就可以水过本题。

首先经过简单的推导可知 g(x) 对题目范围内涉及的任何数 x 而言都等价于 $(x-1 \bmod 9)+1$,即我们可以获得一个数 $\bmod 9$ 的值。

同时考虑 n=1 时我们必须通过单次询问得到 $q^{a_1} \mod (m \cdot a_1)$,且有 $m \geq 35$,因此必须确定另一个 q 的取模恒等式。

| 猪质数 |

这里的取模恒等式我们可以从两个方向考虑。

首先可以通过欧拉定理得知 $q^{\phi(m)} \mod m = 1$ 在 $\gcd(q,m) = 1$ 时成立,且若上式成立,可以推广到 $q^{\phi(m \cdot p_0)} \mod (m \cdot p_0) = 1$ 在 $p_0 \mid m$ 时成立,此时 q 的指数增长速度和模数增长速度相同。

因此可以考虑采用欧拉定理并尽可能地构造优秀的 m 使其满足题目条件且为偶数,则对于所有的 $p \nmid m$ 均能得到正确答案。于是在足够多的 m 里随机选取一个并不断乘二倍增,并利用 g(x) 提供的 $\mathrm{mod} 9$ 和 $q^{2^i} \mathrm{mod} (2^{i+1}) = 1$ 进行 CRT 即可。

然而事实是打表之后发现恰当的 m 非常少,因此无法避免在目前数据范围内产生碰撞,被出题人卡掉。

| 猜质数 |

其次可以考虑分圆多项式 $\Phi_{p_0^s}(1)=p_0$ 对任意质数 p_0 和正幂 s 成立, $\Phi_1(1)=1-1=0$,且 $q^{p_0^s}-1=\prod_{i=0}^s\Phi_{p_0^i}(q)$ 。显然在 $q \bmod p_0=1$ 时有 $\Phi_{p_0^i}(q) \bmod p_0=\Phi_{p_0^i}(1) \bmod p_0=0$ 。

可得 $q^{p_0^s} - 1$ 是 p_0^{s+1} 的倍数。

因此 $q^{
ho_0^{
ho}} mod
ho_0^{
ho+1} = 1$ 成立,q 的指数增长速度和模数增长速度相同。

我们只需取以上两个结论中较简单的一个特殊情形,即均取 $p_0=2$ 即可。

| 猜质数 |

考虑 p 是奇质数,即 q 是奇数,因此 $\gcd(q,2^i)=1$ 且 $q \bmod 2=1$ 成立;并且我们还可以发现对 $p_0=2$ 有一些更强的性质,因为我们可以得到 $q^2-1=(q-1)(q+1)$ 是 8 的倍数,故 $q^2 \bmod 8=1$ 。

由此我们可以倍增得到 $q^4 \mod 16 = 1$, $q^8 \mod 32 = 1$, ...

将该恒等式与查询到的 $\bmod 9$ 的结果 CRT 即可得到 $q^{2^i} \bmod 36 \times 2^i$ 。

最初这题其实需要发现 $q^2 \mod 12 = 1$, 由于 g(x) 的性质而被降级到了目前的版本。

题意

给定一个 n 个点 m 条边的有向无环图, 对每个点 i 求 min(Maxflow(1, i), k)。

• Idea: Cretaceous

• Solution: Cretaceous, MCPlayer542

Std & Data: Rhodoks

Verifier: Lrefrain

我们提出了一个随机算法可以以 $O((n+m)k^2)$ 的复杂度通过本题,算法流程大致描述如下:

对任意边 $e = (u_e, v_e)$ 计算一个向量 $w_e \in \mathbb{Z}_p^k$, 定义如下:

若 e 的起始点 $u_e = s$,则 w_e 在 \mathbb{Z}_p^k 中独立均匀随机生成;

若 $u_e \neq s$, 则记 u_e 的入边向量组为 M_{u_e} , w_e 是 M_{u_e} 的随机线性组合。

最后对每个汇点 $t \neq s$ 计算其入边对应向量组的秩 $rank(M_t)$,若 $rank(M_t) < k$ 则认为 $rank(M_t)$ 是该汇点的最大流;否则报告最大流至 少为 k。

一个直观的理解如下:

由最大流最小割定理,最大流等于最小割,假设我们找到一组最小割 e_1, e_2, \cdots, e_x ,那么最终汇点 t 的入边向量组均为割集边向量 $w_{e_1}, w_{e_2}, \cdots, w_{e_x}$ 随机生成,且割集边向量大概率线性无关。

所以 t 的入边向量组的秩,大概率是最小割的值。特别的,如果最小割的值大于 k,则我们的算法无法判断具体的最小割值。

因为图是 DAG,可以使用拓扑序推进算法。

注意到生成出边时,在入度和出度为 O(m) 时,朴素的实现会退化成 $O(m^2k)$ 复杂度。

解决方法是,对于每个点维护一个大小为 $k \times k$ 的线性基,将所有入边向量插入线性基,单次插入复杂度为 $O(k^2)$,点的入边向量组的秩,即是线性基中向量的个数。生成出边时,仅使用线性基中的至多 k 个向量随机生成,单次生成复杂度也是 $O(k^2)$ 。

对于单个答案的错误概率,我们给出一个上界为 $O(\frac{n}{P})$ 。理论上需要跑至少 2 次以保证所有点的正确性,但每个点的概率并不互相独立,实测单次运行的结果正确率非常高。

FOCS 2011 的论文 Graph Connectivities, Network Coding, and Expander Graphs 给出了一个和我们的算法极其相似的做法,可以在 $O(mk^{\omega-1})$ 的时间复杂度内进行求解,其中 $\omega \approx 2.38$ 是矩阵乘法的复杂度指数。

其相对我们做法的主要区别在于:

- 使用 Expander Graphs and Superconcentrators 方法将原图转换成一个最大流和原图相等,但是点入度限制为常数的新图。从而取代线性基。
- ② 使用复杂度更优的矩阵求秩方法,使 $a \times b$ 的矩阵求秩可以在 $O(ab^{\omega-1})$ 的复杂度内完成。

欢迎感兴趣的选手阅读。