(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年9 月18 日 (18.09.2003)

PCT

(10) 国際公開番号 WO 03/076118 A1

(51) 国際特許分類7: B23K 26/38, B28D 5/00, H01L 21/301

(21) 国際出願番号:

PCT/JP03/02866

(22) 国際出願日:

2003年3月11日(11.03.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-67348 2002 年3 月12 日 (12.03.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 浜松ホトニクス株式会社 (HAMAMATSU PHOTONICS K.K.) [JP/JP]; 〒435-8558 静岡県 浜松市 市野町1126番地の 1 Shizuoka (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 福世 文嗣 (FUKUYO,Fumitsugu) [JP/JP]; 〒435-8558 静岡県 浜 松市 市野町1126番地の1 浜松ホトニクス株式会社内 Shizuoka (JP). 福満 憲志 (FUKUMITSU,Kenshi) [JP/JP]; 〒435-8558 静岡県 浜松市 市野町1126番地の1 浜松ホトニクス株式会社内 Shizuoka (JP). 内山 直己 (UCHIYAMA,Naoki) [JP/JP]; 〒435-8558 静岡県 浜 松市 市野町1126番地の1 浜松ホトニクス株式会社内 Shizuoka (JP).
- (74) 代理人: 長谷川 芳樹、 外(HASEGAWA, Yoshiki et al.); 〒104-0061 東京都 中央区 銀座一丁目 10番6号 銀座 ファーストビル 創英国際特許法律事務所 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,

[毓葉有]

(54) Title: SEMICONDUCTOR SUBSTRATE, SEMICONDUCTOR CHIP, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD

(54) 発明の名称: 半導体基板、半導体チップ、及び半導体デバイスの製造方法

(57) Abstract: A semiconductor substrate the functional element of which is prevented from being broken down by cutting during the process of manufacturing a semiconductor device. A semiconductor substrate (1) is characterized in that cutting start regions (9a, 9b) are formed inside a melting process region by multiphoton absorption by irradiation with a laser beam at the focal point of the laser beam. Thus, a functional element is formed on the surface of the semiconductor substrate as conventional. Since the cutting start regions (9a, 9b) are formed inside the semiconductor substrate (1), the semiconductor substrate (1) is cut by high-precision breaking with a relatively small force along the cutting start regions (9a, 9b).

O 03/076118 A1

当該集光点の位置で多光子吸収という現象が発生することで、半導体基板の内部に形成される。この多光子吸収を発生し得るレーザ光の照射においては、半導体基板の表面ではレーザ光がほとんど吸収されないため、半導体基板の表面が溶融することはない。したがって、半導体デバイスの製造工程において、従来通り半導体基板の表面に機能素子を形成することができる。さらに、この半導体基板によれば、改質領域によって切断起点領域が半導体基板の内部に形成されている。半導体基板の内部に改質領域が形成されていると、改質領域を起点として比較的小さな力で半導体基板に割れが発生するため、切断起点領域に沿って高い精度で半導体基板を割って切断することができる。したがって、半導体デバイスの製造工程において、従来のような機能素子形成後の切削加工や加熱溶融加工が不要となり、半導体基板の切断による機能素子の破壊を防止することができる。

5

10

15

20

25

ここで、集光点とは、レーザ光が集光した箇所のことである。また、機能素子とは、フォトダイオード等の受光素子やレーザダイオード等の発光素子、或いは回路として形成された回路素子等を意味する。さらに、切断起点領域とは、半導体基板が切断される際に切断の起点となる領域を意味する。したがって、切断起点領域は、半導体基板において切断が予定される切断予定部である。そして、切断起点領域は、改質領域が連続的に形成されることで形成される場合もある。

また、本発明に係る半導体基板は、集光点におけるピークパワー密度が 1×1 0^8 (W/c m²) 以上で且つパルス幅が 1μ s 以下の条件でのレーザ光の照射により当該レーザ光の集光点の位置で形成される溶融処理領域を含む改質領域によって、切断起点領域が内部に形成されていることを特徴とする。

この半導体基板によれば、集光点におけるピークパワー密度が 1×10^8 (W $/ cm^2$)以上で且つパルス幅が $1 \mu s$ 以下の条件でのレーザ光の照射により当該レーザ光の集光点の位置で形成される溶融処理領域を含む改質領域が、半導体基板の内部に形成されている。すなわち、この溶融処理領域は、レーザ光の集光

点が半導体基板の内部に合わされ、当該集光点の位置で多光子吸収という現象が発生し局所的に加熱されることで、半導体基板の内部に形成される。この溶融処理領域は上述した改質領域の一例であるので、この半導体基板によっても、半導体デバイスの製造工程において、半導体基板の表面に機能素子を形成することができ、且つ機能素子形成後における半導体基板の切断による機能素子の破壊を防止することができる。

5

10

15

20

25

また、本発明に係る半導体基板は、レーザ光の照射により当該レーザ光の集光 点の位置で形成される改質領域によって、切断起点領域が内部に形成されている ことを特徴とする。そして、この改質領域は、溶融処理した領域である場合もあ る。

この半導体基板によれば、上述した本発明に係る半導体基板と同様の理由により、半導体デバイスの製造工程において、半導体基板の表面に機能素子を形成することができ、且つ機能素子形成後における半導体基板の切断による機能素子の破壊を防止することができる。ただし、改質領域の形成は、多光子吸収が原因となる場合もあるし、他が原因となる場合もある。

また、本発明に係る半導体基板は、外縁に沿った外縁部を有し、外縁部の内側部分の内部には改質領域によって切断起点領域が形成されていることを特徴とする。

この半導体基板によれば、上述した本発明に係る半導体基板と同様の理由により、半導体デバイスの製造工程において、半導体基板の表面に機能素子を形成することができ、且つ機能素子形成後における半導体基板の切断による機能素子の破壊を防止することができる。しかも、半導体基板における外縁部の内側部分の内部に切断起点領域を形成することで、半導体基板の搬送工程や機能素子形成のための加熱工程等において半導体基板の不測の切断を防止することが可能になる

このとき、切断起点領域は格子状に形成されており、切断起点領域により仕切

られた区画部のうち、外縁部側に位置する区画部の角部分においては、切断起点 領域が交差して形成されていることが好ましい。これにより、外縁部側に位置す る区画部の角部分においても、当該区画部の他の部分と同様に切断起点領域の形 成が確実且つ良好なものとなり、半導体基板を切断した際に当該区画部に対応す る半導体チップにチッピングやクラッキングが発生するのを防止することが可能 になる。ここで、格子状とは、直交する2つの方向に延在する切断起点領域が交 差する場合に限らず、互いに異なる2つの方向に延在する切断起点領域が交差す る場合を意味する。また、交差とは、互いに異なる2つの方向に沿った切断起点 領域が直接交わる場合に限らず、互いに異なる2つの方向に沿った切断起点 領域が直接交わる場合(すなわち、ねじれの関係にある場合)をも含む意味であ る。

5

10

15

20

25

また、半導体基板の表面には、半導体基板の内部に形成された切断起点領域の位置を識別するための識別マークが設けられていることが好ましい。切断起点領域は半導体基板の内部に形成されているが、切断起点領域の位置を識別するための識別マークが半導体基板の表面に設けられているため、半導体デバイスの製造工程において、半導体基板の内部に形成された切断起点領域の位置を認識マークに基づいて把握し、機能素子のパターンニングや半導体基板の切断等を行うことができる。

上記目的を達成するために、本発明に係る半導体チップは、半導体基板の内部に集光点を合わせてレーザ光を照射することにより、半導体基板の内部に多光子吸収による改質領域を形成し、当該改質領域を切断起点領域として半導体基板の切断をすることで形成され、切断による切断面に改質領域を有していることを特徴とする。

この半導体チップによれば、改質領域により切断面が保護されるため、切断面 におけるチッピングやクラッキングの発生を防止することができる。さらに、半 導体チップの周縁部が切断面により囲まれている場合には、半導体チップの周縁

部が改質領域により囲まれることとなり、これにより、半導体チップの抗折強度 を向上させることができる。

また、本発明に係る半導体チップは、半導体基板の内部に集光点を合わせて、 集光点におけるピークパワー密度が 1×10^8 (W/cm^2) 以上で且つパルス幅 が 1μ S以下の条件でレーザ光を照射することにより、半導体基板の内部に溶融 処理領域を含む改質領域を形成し、当該溶融処理領域を含む改質領域を切断起点 領域として半導体基板の切断をすることで形成され、切断による切断面に、溶融 処理領域を含む改質領域を有していることを特徴とする。

5

10

15

20

この半導体チップにおける溶融処理領域は上述した改質領域の一例であるので、この半導体チップによっても、切断面におけるチッピングやクラッキングの発生を防止することができると共に、半導体チップの周縁部が切断面により囲まれている場合には、半導体チップの抗折強度を向上させることができる。

また、本発明に係る半導体チップは、半導体基板の内部に集光点を合わせてレーザ光を照射することにより、半導体基板の内部に改質領域を形成し、当該改質領域を切断起点領域として半導体基板の切断をすることで形成され、切断による切断面に改質領域を有していることを特徴とする。そして、この改質領域は、溶融処理した領域である場合もある。

この半導体チップによれば、上述した本発明に係る半導体チップと同様の理由 により、切断面におけるチッピングやクラッキングの発生を防止することができ ると共に、半導体チップの周縁部が切断面により囲まれている場合には、半導体 チップの抗折強度を向上させることができる。ただし、改質領域の形成は、多光 子吸収が原因となる場合もあるし、他が原因となる場合もある。

また、本発明に係る半導体チップは、溶融処理領域を含む改質領域が端面に形成されていることを特徴とする。

25 この半導体チップによれば、半導体基板の切断による切断面等の端面における チッピングやクラッキングの発生を防止することができると共に、半導体チップ

の周縁部を改質領域で囲めば、半導体チップの抗折強度を向上させることができる。

以上により、本発明に係る半導体デバイスの製造方法は、半導体基板の内部に 集光点を合わせてレーザ光を照射し、半導体基板の内部に多光子吸収による改質 領域を形成し、この改質領域によって、半導体基板の切断予定ラインに沿って半 導体基板のレーザ光入射面から所定距離内側に切断起点領域を形成する工程と、 切断起点領域を形成する工程後、半導体基板に機能素子を形成する工程と、機能 素子を形成する工程後、切断起点領域に沿って半導体基板を切断する工程とを備 える構成を採ることができる。そして、この改質領域は、溶融処理した領域であ る場合もある。

また、本発明に係る半導体デバイスの製造方法は、半導体基板の内部に集光点を合わせてレーザ光を照射し、半導体基板の内部に改質領域を形成し、この改質領域によって、半導体基板の切断予定ラインに沿って半導体基板のレーザ光入射面から所定距離内側に切断起点領域を形成する工程と、切断起点領域を形成する工程後、半導体基板に機能素子を形成する工程と、機能素子を形成する工程後、切断起点領域に沿って半導体基板を切断する工程とを備える構成を採ることができる。そして、この改質領域は、溶融処理した領域である場合もある。

図面の簡単な説明

5

10

15

25

図1は、本実施形態に係るレーザ加工方法によるレーザ加工中の半導体基板の 20 平面図である。

図2は、図1に示す半導体基板のII-II線に沿った断面図である。

図3は、本実施形態に係るレーザ加工方法によるレーザ加工後の半導体基板の平面図である。

図4は、図3に示す半導体基板のIV-IV線に沿った断面図である。

図5は、図3に示す半導体基板のV-V線に沿った断面図である。

図6は、本実施形態に係るレーザ加工方法により切断された半導体基板の平面

図である。

5

15

25

図7は、本実施形態に係るレーザ加工方法により切断されたシリコンウェハの 一部における断面の写真を表した図である。

図8は、本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコン 基板の内部の透過率との関係を示すグラフである。

図9は、本実施形態に係るレーザ加工装置の概略構成図である。

図10は、実施例1に係る半導体基板の斜視図である。

図11は、図10に示す半導体基板のXI-XI線に沿った断面図である。

図12は、図10に示す半導体基板のXII-XII線に沿った断面図である。

10 図13は、図10に示す半導体基板の表面に設けられたレーザマークの写真を 表した図である。

図14は、実施例1に係る半導体基板の製造方法を説明するためのフローチャートである。

図15は、実施例2に係る半導体基板の平面図である。

図16は、図15に示す半導体基板の要部拡大図である。

図17は、図15に示す半導体基板の製造方法を説明するための平面図である

図18は、図15に示す半導体基板のXVIII-XVIII線に沿った断面図である。 図19は、実施例に係る半導体チップの斜視図である。

20 発明を実施するための最良の形態

以下、図面と共に本発明の好適な実施形態について詳細に説明する。本実施形態に係る半導体基板及び半導体チップを構成するに際しては、半導体基板の内部に集光点を合わせてレーザ光を照射し、半導体基板の内部に多光子吸収による改質領域を形成する、というレーザ加工方法を使用する。そこで、このレーザ加工方法、特に多光子吸収について最初に説明する。

材料の吸収のバンドギャップEgよりも光子のエネルギーhνが小さいと光学

的に透明となる。よって、材料に吸収が生じる条件は $h_v > E_c$ である。しかし、光学的に透明でも、レーザ光の強度を非常に大きくすると $n_h_v > E_c$ の条件 (n=2, 3, 4, · · ·) で材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強度はレーザ光の集光点のピークパワー密度 (W/cm^2) で決まり、例えばピークパワー密度が 1×10^8 (W/cm^2) 以上の条件で多光子吸収が生じる。ピークパワー密度は、(集光点におけるレーザ光の1パルス当たりのエネルギー)÷(レーザ光のビームスポット断面積×パルス幅)により求められる。また、連続波の場合、レーザ光の強度はレーザ光の集光点の電界強度(W/cm^2)で決まる。

5

10

15

20

25

このような多光子吸収を利用する本実施形態に係るレーザ加工の原理について、図1~図6を参照して説明する。図1はレーザ加工中の半導体基板1の平面図であり、図2は図1に示す半導体基板1のIIーII線に沿った断面図であり、図3はレーザ加工後の半導体基板1の平面図であり、図4は図3に示す半導体基板1のIVーIV線に沿った断面図であり、図5は図3に示す半導体基板1のVーV線に沿った断面図であり、図6は切断された半導体基板1の平面図である。

図1及び図2に示すように、半導体基板1の表面3には、半導体基板1を切断すべき所望の切断予定ライン5がある。切断予定ライン5は直線状に延びた仮想線である(半導体基板1に実際に線を引いて切断予定ライン5としてもよい)。本実施形態に係るレーザ加工は、多光子吸収が生じる条件で半導体基板1の内部に集光点Pを合わせてレーザ光Lを半導体基板1に照射して改質領域7を形成する。なお、集光点とはレーザ光Lが集光した箇所のことである。

レーザ光Lを切断予定ライン5に沿って(すなわち矢印A方向に沿って)相対的に移動させることにより、集光点Pを切断予定ライン5に沿って移動させる。これにより、図3~図5に示すように改質領域7が切断予定ライン5に沿って半導体基板1の内部にのみ形成され、この改質領域7でもって切断起点領域(切断予定部)9が形成される。本実施形態に係るレーザ加工方法は、半導体基板1が

レーザ光Lを吸収することにより半導体基板1を発熱させて改質領域7を形成するのではない。半導体基板1にレーザ光Lを透過させ半導体基板1の内部に多光子吸収を発生させて改質領域7を形成している。よって、半導体基板1の表面3ではレーザ光Lがほとんど吸収されないので、半導体基板1の表面3が溶融することはない。

5

10

15

20

25

半導体基板1の切断において、切断する箇所に起点があると半導体基板1はその起点から割れるので、図6に示すように比較的小さな力で半導体基板1を切断することができる。よって、半導体基板1の表面3に不必要な割れを発生させることなく半導体基板1の切断が可能となる。

なお、切断起点領域を起点とした半導体基板の切断には、次の2通りが考えら れる。1つは、切断起点領域形成後、半導体基板に人為的な力が印加されること により、切断起点領域を起点として半導体基板が割れ、半導体基板が切断される 場合である。これは、例えば半導体基板の厚さが大きい場合の切断である。人為 的な力が印加されるとは、例えば、半導体基板の切断起点領域に沿って半導体基 板に曲げ応力やせん断応力を加えたり、半導体基板に温度差を与えることにより 熱応力を発生させたりすることである。他の1つは、切断起点領域を形成するこ とにより、切断起点領域を起点として半導体基板の断面方向(厚さ方向)に向か って自然に割れ、結果的に半導体基板が切断される場合である。これは、例えば 半導体基板の厚さが小さい場合には、1列の改質領域により切断起点領域が形成 されることで可能となり、半導体基板の厚さが大きい場合には、厚さ方向に複数 列形成された改質領域により切断起点領域が形成されることで可能となる。なお 、この自然に割れる場合も、切断する箇所において、切断起点領域が形成されて いない部位に対応する部分の表面上にまで割れが先走ることがなく、切断起点領 域を形成した部位に対応する部分のみを割断することができるので、割断を制御 よくすることができる。近年、シリコンウェハ等の半導体基板の厚さは薄くなる 傾向にあるので、このような制御性のよい割断方法は大変有効である。

さて、本実施形態において多光子吸収により形成される改質領域としては、次 に説明する溶融処理領域がある。

半導体基板の内部に集光点を合わせて、集光点における電界強度が 1×10^8 (W/cm²)以上で且つパルス幅が 1μ s以下の条件でレーザ光を照射する。これにより半導体基板の内部は多光子吸収によって局所的に加熱される。この加熱により半導体基板の内部に溶融処理領域が形成される。溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。半導体基板がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。電界強度の上限値としては、例えば 1×10^{12} (W/cm²)である。パルス幅は例えば $1ns\sim200ns$ が好ましい。

本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により確認した。実験条件は次の通りである。

- (A) 半導体基板:シリコンウェハ (厚さ350 μm、外径4インチ)
- (B) レーザ

5

10

15

20

25

光源:半導体レーザ励起Nd:YAGレーザ

波長:1064nm

レーザ光スポット断面積:3.14×10⁻⁸cm²

発振形態:Qスイッチパルス

繰り返し周波数:100kHz

パルス幅:30ns

出力:20 μ J/パルス

レーザ光品質:TEM₀₀

偏光特性:直線偏光

(C) 集光用レンズ

5

10

15

20

25

倍率:50倍

N. A. : 0. 55

レーザ光波長に対する透過率:60パーセント

(D) 半導体基板が載置される載置台の移動速度:100mm/秒

図7は、上記条件でのレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。シリコンウェハ11の内部に溶融処理領域13が形成されている。なお、上記条件により形成された溶融処理領域13の厚さ方向の大きさは100μm程度である。

例えば、Nd: YAGレーザの波長である1064nmにおいて、シリコン基板の厚さが500 μ m以下の場合、シリコン基板の内部ではレーザ光が80%以上透過することが分かる。図7に示すシリコンウェハ11の厚さは350 μ mであるので、多光子吸収による溶融処理領域13はシリコンウェハの中心付近、つまり表面から175 μ mの部分に形成される。この場合の透過率は、厚さ200 μ mのシリコンウェハを参考にすると、90%以上なので、レーザ光がシリコンウェハ11の内部で吸収されるのは僅かであり、ほとんどが透過する。このことは、シリコンウェハ11の内部でレーザ光が吸収されて、溶融処理領域13がシリコンウェハ11の内部に形成(つまりレーザ光による通常の加熱で溶融処理領域が形成)されたものではなく、溶融処理領域13が多光子吸収により形成され

たことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶接学会 全国大会講演概要第66集(2000年4月)の第72頁~第73頁の「ピコ秒 パルスレーザによるシリコンの加工特性評価」に記載されている。

5

10

15

20

25

なお、シリコンウェハは、溶融処理領域でもって形成される切断起点領域を起点として断面方向に向かって割れを発生させ、その割れがシリコンウェハの表面と裏面とに到達することにより、結果的に切断される。シリコンウェハの表面と裏面に到達するこの割れは自然に成長する場合もあるし、シリコンウェハに力が印加されることにより成長する場合もある。なお、切断起点領域からシリコンウェハの表面と裏面とに割れが自然に成長する場合には、切断起点領域を形成する溶融処理領域が溶融している状態から割れが成長する場合と、切断起点領域を形成する溶融処理領域が溶融している状態から再固化する際に割れが成長する場合とのいずれもある。ただし、どちらの場合も溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断面には、図7のように内部にのみ溶融処理領域が形成されている。半導体基板の内部に溶融処理領域でもって切断起点領域を形成すると、割断時、切断起点領域ラインから外れた不必要な割れが生じにくいので、割断制御が容易となる。

以上、多光子吸収により形成される改質領域として溶融処理領域の場合を説明 したが、半導体基板の結晶構造やその劈開性などを考慮して切断起点領域を次の ように形成すれば、その切断起点領域を起点として、より一層小さな力で、しか も精度良く半導体基板を切断することが可能になる。

すなわち、シリコンなどのダイヤモンド構造の単結晶半導体からなる基板の場合は、(111)面(第1劈開面)や(110)面(第2劈開面)に沿った方向に切断起点領域を形成するのが好ましい。また、GaAsなどの閃亜鉛鉱型構造のIII-V族化合物半導体からなる基板の場合は、(110)面に沿った方向に切断起点領域を形成するのが好ましい。

なお、上述した切断起点領域を形成すべき方向(例えば、単結晶シリコン基板

における(111)面に沿った方向)、或いは切断起点領域を形成すべき方向に 直交する方向に沿って半導体基板にオリエンテーションフラットを形成すれば、 そのオリエンテーションフラットを基準とすることで、切断起点領域を形成すべ き方向に沿った切断起点領域を容易且つ正確に半導体基板に形成することが可能 になる。

上述したレーザ加工方法に使用されるレーザ加工装置について、図9を参照して説明する。図9はレーザ加工装置100の概略構成図である。

5

10

15

20

25

レーザ加工装置100は、レーザ光Lを発生するレーザ光源101と、レーザ光Lの出力やパルス幅等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、レーザ光Lの反射機能を有しかつレーザ光Lの光軸の向きを90°変えるように配置されたダイクロイックミラー103と、ダイクロイックミラー103で反射されたレーザ光Lを集光する集光用レンズ105と、集光用レンズ105で集光されたレーザ光Lが照射される半導体基板1が載置される載置台107と、載置台107を回転させるためのタステージ108と、載置台107をX軸方向に移動させるためのX軸ステージ109と、載置台107をX軸方向に直交するY軸方向に移動させるためのY軸ステージ111と、載置台107をX軸及びY軸方向に直交するZ軸方向に移動させるための2軸ステージ113と、式軸方のステージ108、109、111、113の移動を制御するステージ制御部115とを備える。

載置台107は、半導体基板1を赤外線で照明するために赤外線を発生する赤 外透過照明116と、半導体基板1が赤外透過照明116による赤外線で照明さ れるよう、半導体基板1を赤外透過照明116上に支持する支持部107aとを 有している。

なお、Z軸方向は半導体基板1の表面3と直交する方向なので、半導体基板1 に入射するレーザ光Lの焦点深度の方向となる。よって、Z軸ステージ113を Z軸方向に移動させることにより、半導体基板1の表面3や内部にレーザ光Lの

集光点Pを合わせることができる。また、この集光点PのX(Y)軸方向の移動は、半導体基板1をX(Y)軸ステージ109(111)によりX(Y)軸方向に移動させることにより行う。

レーザ光源101はパルスレーザ光を発生するNd:YAGレーザである。レーザ光源101に用いることができるレーザとして、この他、Nd:YVO $_4$ レーザ、Nd:YLFレーザやチタンサファイアレーザがある。溶融処理領域を形成する場合には、Nd:YAGレーザ、Nd:YVO $_4$ レーザ、Nd:YLFレーザを用いるのが好適である。本実施形態では、半導体基板1の加工にパルスレーザ光を用いているが、多光子吸収を起こさせることができるなら連続波レーザ光でもよい。

5

10

15

20

25

レーザ加工装置100はさらに、載置台107に載置された半導体基板1を可視光線により照明するために可視光線を発生する観察用光源117と、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された可視光用のビームスプリッタ119とを備える。ビームスプリッタ119と集光用レンズ105との間にダイクロイックミラー103が配置されている。ビームスプリッタ119は、可視光線の約半分を反射し残りの半分を透過する機能を有しかつ可視光線の光軸の向きを90°変えるように配置されている。観察用光源117から発生した可視光線はビームスプリッタ119で約半分が反射され、この反射された可視光線がダイクロイックミラー103及び集光用レンズ105を透過し、半導体基板1の切断予定ライン5等を含む表面3を照明する。

レーザ加工装置100はさらに、ビームスプリッタ119、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された撮像素子121及び結像レンズ123を備える。撮像素子121としては例えばCCDカメラがある。切断予定ライン5等を含む表面3を照明した可視光線の反射光は、集光用レンズ105、ダイクロイックミラー103、ビームスプリッタ119を透過し、結像レンズ123で結像されて撮像素子121で撮像され、撮像データとなる。

なお、半導体基板1を赤外透過照明116による赤外線で照明すると共に、後述する撮像データ処理部125により結像レンズ123及び撮像素子121の観察面を半導体基板1の内部に合わせれば、半導体基板1の内部を撮像して半導体基板1の内部の撮像データを取得することもできる。

レーザ加工装置100はさらに、撮像素子121から出力された撮像データが入力される撮像データ処理部125と、レーザ加工装置100全体を制御する全体制御部127と、モニタ129とを備える。撮像データ処理部125は、撮像データを基にして観察用光源117で発生した可視光の焦点を表面3上に合わせるための焦点データを演算する。この焦点データを基にしてステージ制御部115が2軸ステージ113を移動制御することにより、可視光の焦点が表面3に合うようにする。よって、撮像データ処理部125はオートフォーカスユニットとして機能する。また、撮像データ処理部125は、撮像データを基にして表面3の拡大画像等の画像データを演算する。この画像データは全体制御部127に送られ、全体制御部で各種処理がなされ、モニタ129に送られる。これにより、モニタ129に拡大画像等が表示される。

全体制御部127には、ステージ制御部115からのデータ、撮像データ処理部125からの画像データ等が入力し、これらのデータも基にしてレーザ光源制御部102、観察用光源117及びステージ制御部115を制御することにより、レーザ加工装置100全体を制御する。よって、全体制御部127はコンピュータユニットとして機能する。

以下、実施例により、本発明についてより具体的に説明する。

[半導体基板の実施例1]

5

10

15

20

25

本発明に係る半導体基板の実施例1について、図10~図13を参照して説明する。図10は実施例1に係る半導体基板1の斜視図であり、図11は図10に示す半導体基板1のXI-XI線に沿った断面図であり、図12は図10に示す半導体基板1のXII-XII線に沿った断面図であり、図13は図10に示す半導体基板

次に、上述したレーザ加工装置100による半導体基板1の製造方法について、図9及び図14を参照して説明する。図14は半導体基板1の製造方法を説明するためのフローチャートである。

5

10

15

20

25

まず、半導体基板1の光吸収特性を図示しない分光光度計等により測定する。この測定結果に基づいて、半導体基板1の表面3にレーザマーク19を形成するためのレーザ光と、半導体基板1に対して透明な波長又は吸収の少ない波長のレーザ光Lとを発生するレーザ光源101をそれぞれ選定する(S101)。続いて、半導体基板1の厚さを測定する。厚さの測定結果及び半導体基板1の屈折率を基にして、半導体基板1の乙軸方向の移動量を決定する(S103)。これは、半導体基板1に対して透明な波長又は吸収の少ない波長のレーザ光Lの集光点Pを半導体基板1の内部に位置させるために、半導体基板1の表面3に位置するレーザ光Lの集光点Pを基準とした半導体基板1の乙軸方向の移動量である。この移動量は全体制御部127に入力される。

半導体基板1をレーザ加工装置100の載置台107の支持部材107a上に 載置する。そして、観察用光源117から可視光を発生させて半導体基板1を照 明する(S105)。照明された半導体基板1の表面3を撮像素子121により撮 像する。撮像素子121により撮像された撮像データは撮像データ処理部125 に送られる。この撮像データに基づいて撮像データ処理部125は観察用光源1 17の可視光の焦点が表面3に位置するような焦点データを演算する(S107)。

この焦点データはステージ制御部115に送られる。ステージ制御部115は、この焦点データを基にして2軸ステージ113を2軸方向の移動させる(S109)。これにより、観察用光源117の可視光の焦点が半導体基板1の表面3に位置する。なお、撮像データ処理部125は、撮像データに基づいて半導体基板1の表面3の拡大画像データを演算する。この拡大画像データは全体制御部127を介してモニタ129に送られ、これによりモニタ129に半導体基板1の表

面3の拡大画像が表示される。

5

10

15

20

25

続いて、半導体基板1のOF15の方向がYステージ111のストローク方向に一致するよう、 6ステージ108により半導体基板1を回転させる(S111)。さらに、半導体基板1の表面3にレーザマーク19を形成するためのレーザ光の集光点が、半導体基板1の表面3における基準原点直上の位置となるよう、X軸ステージ109、Y軸ステージ111及びZ軸ステージ113により半導体基板1を移動させる(S113)。この状態でレーザ光を照射し、半導体基板1の表面3における基準原点直上の位置にレーザマーク19を形成する(S115)。

その後、ステップS103で決定され全体制御部127に予め入力された移動量データが、ステージ制御部115に送られる。ステージ制御部115はこの移動量データに基づいて、レーザ光Lの集光点Pが半導体基板1の内部となる位置に、Z軸ステージ113により半導体基板1をZ軸方向に移動させる(S117)。

続いて、レーザ光源101からレーザ光Lを発生させて、レーザ光Lを半導体 基板1に照射する。レーザ光Lの集光点Pは半導体基板1の内部に位置している ので、溶融処理領域は半導体基板1の内部にのみ形成される。そして、X軸ステ ージ109やY軸ステージ111により半導体基板1を移動させて、半導体基板 1の内部に、OF15に平行な方向に延びる切断起点領域9a及びOF15に垂 直な方向に延びる切断起点領域9bのそれぞれを、基準原点から所定の間隔毎に 複数形成し(S119)、実施例1に係る半導体基板1が製造される。

なお、半導体基板1を赤外透過照明116による赤外線で照明すると共に、撮像データ処理部125により結像レンズ123及び撮像素子121の観察面を半導体基板1の内部に合わせれば、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bを撮像して撮像データを取得し、モニタ129に表示させることもできる。

以上説明したように、実施例1に係る半導体基板1は、半導体基板1の内部に

集光点Pが合わされ、集光点Pにおけるピークパワー密度が 1×10^8 (W/c m^2)以上で且つパルス幅が 1μ s 以下の条件でレーザ光Lが照射されることで、半導体基板1の内部に多光子吸収による溶融処理領域が形成されている。この多光子吸収を発生し得るレーザ光Lの照射においては、半導体基板1の表面3ではレーザ光Lがほとんど吸収されないため、半導体基板1の表面3が溶融することはない。したがって、半導体デバイスの製造工程においては、従来通りの工程によって、半導体基板1の表面3に機能素子を形成することができる。なお、半導体基板1の裏面17を半導体基板10の表面3と同様に扱うことができるのは勿論である。

5

10

15

20

25

また、実施例1に係る半導体基板1は、溶融処理領域でもって切断起点領域9 a及び切断起点領域9bが半導体基板1の内部に形成されている。半導体基板1 の内部に溶融処理領域が形成されていると、溶融処理領域を起点として比較的小さな力で半導体基板1に割れが発生するため、切断起点領域9a及び切断起点領域9bに沿って高い精度で半導体基板1を割って切断することができる。よって、半導体デバイスの製造工程においては、従来のような機能素子形成後の切削加工や加熱溶融加工が不要となり、例えば、切断起点領域9a及び切断起点領域9bに沿うよう半導体基板1の裏面17にナイフエッジを当てるだけで半導体基板1を切断することができる。したがって、機能素子形成後の半導体基板1の切断による機能素子の破壊を防止することができる。

さらに、実施例1に係る半導体基板1においては、レーザマーク19とOF15との両者が、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bの位置の基準となっている。したがって、半導体デバイスの製造工程においては、レーザマーク19とOF15とに基づいて、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bの位置を把握し、機能素子のパターンニングや半導体基板1の切断等を行うことができる。

なお、半導体基板1の内部に溶融処理領域が形成されると、意識的に外力を印

加しなくても、溶融処理領域を起点として(すなわち、切断起点領域9 a 及び切断起点領域9 b に沿って)、半導体基板1の内部に割れが発生する場合がある。この割れが半導体基板1の表面3及び裏面17に到達するか否かは、半導体基板1の厚さ方向における溶融処理領域の位置や、半導体基板1の厚さに対する溶融処理領域の大きさ等に関係する。したがって、半導体基板1の内部に形成する溶融処理領域の位置や大きさ等を調節することによって、半導体デバイスの製造工程において半導体基板1がハンドリングされたりヒートサイクルを経たりすることで、半導体基板1の表面3及び裏面17に割れが到達しないよう、或いは切断直前に半導体基板1の表面3及び裏面17に割れが到達するよう、種々の制御を行うことができる。

[半導体基板の実施例2]

5

10

15

20

25

本発明に係る半導体基板の実施例 2 について、図 15 ~図 18 を参照して説明する。実施例 2 に係る半導体基板 1 は、厚さ 350 μ m、外径 4 インチの円板状の G a A s ウェハであり、図 15 に示すように、半導体基板 1 の周縁部の一部が直線となるよう切り欠かれて O F 15 が形成されている。

この半導体基板1は、外縁に沿った外縁部31(図15の2点鎖線の外側部分)を有し、この外縁部31の内側部分32(図15の2点鎖線の内側部分)の内部には、実施例1に係る半導体基板1と同様に、OF15と平行な方向に延びる複数本の切断起点領域9aと、OF15に垂直な方向に延びる複数本の切断起点領域9bとが形成されている。このように、内側部分32の内部に切断起点領域9a,9bが格子状に形成されることで、内側部分32は多数の矩形状の区画部33に仕切られる。

半導体デバイスの製造工程においては、この区画部33毎に機能素子が形成され、その後、切断起点領域9a,9bに沿って半導体基板1が切断されて、各区画部33が個々の半導体チップに対応することとなる。

そして、図16に示すように、多数の区画部33のうち、外縁部31側に位置

する区画部33の外縁部31側の角部分33aにおいては、切断起点領域9aと 切断起点領域9bが交差して形成されている。すなわち、角部分33aにおいて 、切断起点領域9aは切断起点領域9bを超えて終端しており、切断起点領域9 bは切断起点領域9aを超えて終端している。なお、「多数の区画部33のうち 、外縁部31側に位置する区画部33」とは、換言すれば「多数の区画部33の うち、外縁部31に隣接して形成された区画部33」ということもできる。

5

10

15

20

25

次に、実施例2に係る半導体基板1の製造方法について説明する。図17に示すように、半導体基板1の内側部分32と同等の形状を有する開口部35が形成されたマスク36を用意する。そして、内側部分32が開口部35から露出するように半導体基板1にマスク36を重ねる。これにより、半導体基板1の外縁部31がマスク36で覆われることになる。

この状態で、例えば上述のレーザ加工装置100を用いて、半導体基板1の内部に集光点を合わせてレーザ光を照射し、半導体基板1の内部に多光子吸収による溶融処理領域を形成することで、半導体基板1のレーザ光入射面(すなわち、マスク36の開口部35から露出する半導体基板1の表面)から所定距離内側に切断起点領域9a,9bを形成する。

このとき、レーザ光の走査ラインとなる切断予定ライン5を、OF15を基準として格子状に設定するが、各切断予定ライン5の始点5a及び終点5bをマスク36上に位置させれば、半導体基板1の内側部分32に対して確実に且つ同等の条件でレーザ光が照射されることになる。これにより、内側部分32の内部に形成される溶融処理領域をいずれの場所でもほぼ同等の形成状態とすることができ、精密な切断起点領域9a,9bを形成することが可能になる。

なお、マスク36を用いずに、半導体基板1の内側部分32と外縁部31との 境界付近に各切断予定ライン5の始点5a及び終点5bを位置させて、各切断予 定ライン5に沿ってレーザ光の照射を行うことにより、内側部分32の内部に切 断起点領域9a,9bを形成することも可能である。

以上説明したように、実施例2に係る半導体基板1によれば、実施例1に係る 半導体基板1と同様の理由により、半導体デバイスの製造工程において、半導体 基板1の表面に機能素子を形成することができ、且つ機能素子形成後における半 導体基板1の切断による機能素子の破壊を防止することができる。

しかも、半導体基板1の内側部分32の内部に切断起点領域9a,9bが形成され、外縁部31には切断起点領域9a,9bが形成されていないことから、半導体基板1全体としての機械的強度が向上することになる。したがって、半導体基板1の搬送工程や機能素子形成のための加熱工程等において、半導体基板1が不測の下に切断されてしまうという事態を防止することができる。

5

10

15

20

25

また、外縁部31側に位置する区画部33の角部分33aにおいては、切断起点領域9a,9bが交差して形成されているため、角部分33aにおいても、当該区画部33の他の部分と同様に切断起点領域9a,9bの形成が確実且つ良好なものとなる。したがって、半導体基板1を切断した際に当該区画部33に対応する半導体チップにチッピングやクラッキングが発生するのを防止することができる。

また、図18に示すように、切断起点領域9a,9bは半導体基板1の内部に 収まり、外部には露出しないため、切断起点領域9a,9bを構成する溶融処理 領域を形成する際にガスが発生するようなことも防止される。

さらに、切断起点領域 9 a , 9 b を構成する溶融処理領域が半導体基板 1 の内部に形成されていることで、不純物を捕獲するゲッタリング効果が期待され、半導体デバイスの製造工程において、重金属等の不純物をデバイス活性領域から取り除くことが可能になる。このことは、実施例 1 に係る半導体基板 1 についても同様である。

[半導体チップ、及び半導体デバイスの製造方法の実施例]

本発明に係る半導体チップ、及び半導体デバイスの製造方法の実施例について 、図19を参照して説明する。図19は、実施例に係る半導体チップ21の斜視

図である。

5

10

15

20

25

実施例1に係る半導体チップ21は、次に示すようにして形成されたものである。すなわち、上述した実施例1又は実施例2に係る半導体基板1を用い、半導体デバイスの製造工程において、半導体基板1の内部に形成された切断起点領域9a及び切断起点領域9bの位置をレーザマーク19とOF15とに基づいて把握し、パターンニングにより半導体基板1の表面3に複数の機能素子23を形成する。そして、プローブテスト等の検査工程を経た後に、レーザマーク19とOF15とに基づいて切断起点領域9a及び切断起点領域9bに沿うよう半導体基板1の裏面17にナイフエッジを当てて半導体基板1を切断し、半導体チップ21を得る。

このように形成された半導体チップ21は、図15に示すように、その周縁部が切断面25により囲まれており、半導体チップ21の端面のうち切断面25に切断起点領域9a又は切断起点領域9bを有している。切断起点領域9a及び切断起点領域9bは共に、溶融処理領域でもって形成されているため、半導体チップ21は、切断面25に溶融処理領域を有していることになる。

以上説明したように、実施例に係る半導体チップ21によれば、溶融処理領域により切断面25が保護されるため、切断面25におけるチッピングやクラッキングの発生を防止することができる。また、半導体チップ21の周縁部が切断面25により囲まれているため、半導体チップ21の周縁部が溶融処理領域により囲まれることとなり、これにより、半導体チップ21の抗折強度を向上させることができる。

以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に 限定されないことはいうまでもない。

上記実施形態では、半導体基板の内部に形成された切断起点領域の位置を識別するための識別マークとして、半導体基板の表面にレーザマーク及びOFを設けたが、例えば、レーザマークを複数設けたり、或いはラインを引いたり等、種々

の方法で半導体基板の表面に識別マークを設けることができる。

また、上記実施形態は、切断起点領域が半導体基板の内部に格子状に形成された場合であったが、切断起点領域はレーザ加工により形成されるため、任意の形状のラインに沿って切断起点領域を形成することができる。

さらに、上記実施形態の半導体チップは、周縁部が切断面で囲まれたものであったが、周縁部の一部のみが切断面であっても、溶融処理領域により切断面におけるチッピングやクラッキングの発生が防止され、半導体チップの抗折強度が向上することとなる。

産業上の利用可能性

以上説明したように、本発明によれば、レーザ光の照射により当該レーザ光の 集光点の位置で形成される多光子吸収による改質領域が、半導体基板の内部に形成されている。すなわち、この改質領域は、レーザ光の集光点が半導体基板の内部に合わされ、当該集光点の位置で多光子吸収という現象が発生することで、半導体基板の内部に形成される。この多光子吸収を発生し得るレーザ光の照射においては、半導体基板の表面ではレーザ光がほとんど吸収されないため、半導体基板の表面が溶融することはない。したがって、半導体デバイスの製造工程において、従来通り半導体基板の表面に機能素子を形成することができる。

さらに、本発明によれば、改質領域によって切断起点領域が半導体基板の内部 に形成されている。半導体基板の内部に改質領域が形成されていると、改質領域 を起点として比較的小さな力で半導体基板に割れが発生するため、切断起点領域 に沿って高い精度で半導体基板を割って切断することができる。したがって、半 導体デバイスの製造工程において、従来のような機能素子形成後の切削加工や加 熱溶融加工が不要となり、半導体基板の切断による機能素子の破壊を防止するこ とができる。

20

5

10

15

請求の範囲

1. レーザ光の照射により当該レーザ光の集光点の位置で形成される多光子吸収による改質領域によって、切断起点領域が内部に形成されていることを特徴とする半導体基板。

5 2. 集光点におけるピークパワー密度が 1×10^8 (W/c m²) 以上で且つパルス幅が 1μ s 以下の条件でのレーザ光の照射により当該レーザ光の集光点の位置で形成される溶融処理領域を含む改質領域によって、切断起点領域が内部に形成されていることを特徴とする半導体基板。

- 3. レーザ光の照射により当該レーザ光の集光点の位置で形成される改質領域によって、切断起点領域が内部に形成されていることを特徴とする半導体基板。
- 4. 前記改質領域は、溶融処理した領域であることを特徴とする請求の範囲第3項記載の半導体基板。
- 5. 外縁に沿った外縁部を有し、前記外縁部の内側部分の内部には改質領域に よって切断起点領域が形成されていることを特徴とする半導体基板。
- 6. 前記切断起点領域は格子状に形成されており、

10

15

20

前記切断起点領域により仕切られた区画部のうち、前記外縁部側に位置する前 記区画部の角部分においては、前記切断起点領域が交差して形成されていること を特徴とする請求の範囲第5項記載の半導体基板。

- 7. 前記半導体基板の表面には、前記半導体基板の内部に形成された前記切断 起点領域の位置を識別するための識別マークが設けられていることを特徴とする 請求の範囲第1項~第6項のいずれか1項記載の半導体基板。
- 8. 半導体基板の内部に集光点を合わせてレーザ光を照射することにより、前 記半導体基板の内部に多光子吸収による改質領域を形成し、当該改質領域を切断 起点領域として前記半導体基板の切断をすることで形成され、
- 25 前記切断による切断面に前記改質領域を有している、 ことを特徴とする半導体チップ。

9. 半導体基板の内部に集光点を合わせて、集光点におけるピークパワー密度 が 1×1 0 8 (W/c m 2) 以上で且つパルス幅が 1 μ s 以下の条件でレーザ光を 照射することにより、前記半導体基板の内部に溶融処理領域を含む改質領域を形成し、当該溶融処理領域を含む改質領域を切断起点領域として前記半導体基板の 切断をすることで形成され、

前記切断による切断面に、前記溶融処理領域を含む改質領域を有している、ことを特徴とする半導体チップ。

10. 半導体基板の内部に集光点を合わせてレーザ光を照射することにより、前記半導体基板の内部に改質領域を形成し、当該改質領域を切断起点領域として前記半導体基板の切断をすることで形成され、

前記切断による切断面に前記改質領域を有している、 ことを特徴とする半導体チップ。

5

10

20

- 11. 前記改質領域は、溶融処理した領域であることを特徴とする請求の範囲第10項記載の半導体チップ。
- 12. 溶融処理領域を含む改質領域が端面に形成されていることを特徴とする 半導体チップ。
 - 13. 半導体基板の内部に集光点を合わせてレーザ光を照射し、前記半導体基板の内部に多光子吸収による改質領域を形成し、この改質領域によって、前記半導体基板の切断予定ラインに沿って前記半導体基板のレーザ光入射面から所定距離内側に切断起点領域を形成する工程と、

前記切断起点領域を形成する工程後、前記半導体基板に機能素子を形成する工程と、

前記機能素子を形成する工程後、前記切断起点領域に沿って前記半導体基板を 切断する工程と、

- 25 を備えることを特徴とする半導体デバイスの製造方法。
 - 14. 半導体基板の内部に集光点を合わせてレーザ光を照射し、前記半導体基

板の内部に改質領域を形成し、この改質領域によって、前記半導体基板の切断予 定ラインに沿って前記半導体基板のレーザ光入射面から所定距離内側に切断起点 領域を形成する工程と、

前記切断起点領域を形成する工程後、前記半導体基板に機能素子を形成する工 5 程と、

前記機能素子を形成する工程後、前記切断起点領域に沿って前記半導体基板を 切断する工程と、

を備えることを特徴とする半導体デバイスの製造方法。

15. 前記改質領域は、溶融処理した領域であることを特徴とする請求の範囲 第13項又は第14項記載の半導体デバイスの製造方法。

図2

5/13

WO 03/076118

図10

図11

7/13

8/13

図15

図16

図18

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/02866

Ct 4.0			
A. CLASS	SIFICATION OF SUBJECT MATTER C1 ⁷ B23K26/38, B28D5/00, H01L	21/301	
	to International Patent Classification (IPC) or to both n	national classification and IPC	
	OS SEARCHED		
Minimum d Int.	documentation searched (classification system followed at C1 B23K26/38, B28D5/00, H01L)	by classification symbols) 21/301	
Jits Koka	tion searched other than minimum documentation to th uyo Shinan Koho 1922–1996 i Jitsuyo Shinan Koho 1971–2003	Jitsuyo Shinan Toroku Koh Toroku Jitsuyo Shinan Koh	no 1996–2003 no 1994–2003
	lata base consulted during the international search (nan	ne of data base and, where practicable, sea	rch terms used)
			T
Category*	Citation of document, with indication, where ap	· · ·	Relevant to claim No.
A	JP 4-111800 A (Nippon Sekies 13 April, 1992 (13.04.92), Page 2, upper right column, right column, line 7; Fig. 1 (Family: none)	line 16 to lower	1-15
A	JP 10-305420 A (Nippon Glass 17 November, 1998 (17.11.98) Claims; detailed explanation Par. Nos. [0021] to [0024]; (Family: none)	, of the invention;	1-15
	•		
× Further	er documents are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 04 June, 2003 (04.06.03) "T" later document published after the international filing date priority date and not in conflict with the application but of understand the principle or theory underlying the invention of considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention of considered to involve an inventive step when the document of particular relevance; the claimed invention of considered to involve an inventive step when the document of particular relevance; the claimed invention of considered to involve an inventive step when the document of particular relevance; the claimed invention of considered to involve an inventive step when the document of particular relevance; the claimed invention of considered to involve an inventive step when the document of particular relevance; the claimed invention of considered to involve an inventive step when the document of particular relevance; the claimed invention of considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention of considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention of considered novel or cannot			ne application but cited to erlying the invention callaimed invention cannot be red to involve an inventive claimed invention cannot be to when the document is documents, such a skilled in the art family
	nailing address of the ISA/ nese Patent Office	Authorized officer	
Faccimile Me		Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/02866

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5211805 A (Rangaswamy SRINVASAN), 18 May, 1993 (18.05.93), Column 1, lines 6 to 10, 42 to 45; column 4, lines 60 to 68; column 8, line 59 to column 9, line 2; Figs. 1 to 4 & JP 6-198475 A	1-15
A	Katsuyoshi MIDORIKAWA "Femto-byo Laser no Genjo to Kako Oyo", Dai 45 kai Laser-netsu Kako Kenkyukai Ronbunshu, December, 1998, ISBN 4-947684-21-6, 3.4 Local Machining by Nonlinear Effect, 5.4 Modifying Transparent Material	1-15
·		

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C17 B23K26/38, B28D5/00, H01L21/301

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' B23K26/38, B28D5/00, H01L21/301

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2003年1996-2003年

日本国実用新案登録公報日本国登録実用新案公報

1994-2003年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
A	JP 4-111800 A(日本石英硝子株式会社)1992.04.13, 第2頁右上欄第16行-第2頁右下欄第7行,第1図(ファミリーなし)	1-15		
A	JP 10-305420 A(日本硝子株式会社)1998.11.17,特許請求の範囲, 発明の詳細な説明【0021】-【0024】,第1,3図(ファミリーなし)	1-15		
A	US 5211805 A(Rangaswamy SRINIVASAN)1993.05.18, 第1欄第第6-10行,第1欄第42-45行,第4欄第60-68行, 第8欄第59行-第9欄第2行,第1-4図 & JP 6-198475 A	1–15		

区欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	緑川 克美,フェムト秒レーザの現状と加工応用,第45回レーザ 熱加工研究会論文集,1998.12, ISBN 4-947684-21-6,3.4非線形効 果による局所的加工,5.4透明材料の改質	1-15
	•	