30

CLAIMS

What is claimed is:

1	-1	A	c	1						. 1		c
1	- 1	A method	Ωŧ	aecom	nasino	ลท	ımage	compr	191no	the	STANS	Ot.
_		11 IIICIIIOA	O.	accom	POSITION	ull	mac	COLLEGE	101112	LIL	Dicpo	, О1.

- a) decomposing the image into a plurality of stripes;
- 3 b) decomposing each stripe into foreground and background
- 4 image layers, and a mask layer; and
- 5 c) applying a smoothing filter to interpolate irrelevant pixel
- 6 values in the foreground and background layers for wavelet encoding
- 7 efficiency.
- 1 2. The method of claim 1 further comprising the step of:
- d) encoding the foreground, background, and mask layers with a
- 3 forward discrete wavelet transformation encoder.
- 1 3. The method of claim 2 wherein the foreground and background are
- 2 JPEG 2000 encoded, wherein the mask is encoded with one of a JBIG and a
- 3 JBIG2 encoder.
- 1 4. The method of claim 1 wherein step c) further comprises the steps
- 2 of:
- i) determining a layer base color and offsets to a common
- 4 reduced area of each layer to identify image and mask layer values for all
- 5 regions except an overlapped common reduced area; and
- 6 ii) separating the overlapped common reduced area into
- 7 foreground and background layers.
- 1 5. The method of claim 1 wherein step c) further comprises the steps:
- 2 i) classifying each pixel within a selected layer as relevant or
- 3 irrelevant; and

31

- 4 ii) applying a smoothing filter to each irrelevant pixel, p_c ,
- 5 proceeding in a raster scan order to interpolate a value for that irrelevant
- 6 pixel.
- 1 6. The method of claim 5 wherein a normalized weighted average of
- 2 the relevant pixels and the causal irrelevant pixels contribute to the
- 3 interpolated value.
- 1 7. The method of claim 5 wherein the smoothing filter is a weighted
- 2 Gaussian filter.
- 1 8. The method of claim 7 wherein each element of the smoothing
- 2 filter is of the form $w_{kl}V_{kl}$, wherein V_{kl} is a non-weighted filter value,
- 3 wherein w_{kl} is a function of its associated pixel causality and relevance.
- 1 9. The method of claim 8 wherein $w_{kl} = 0$ for the center pixel (p_c) and
- 2 any non-causal irrelevant pixel.
- 1 10. The method of claim 8 wherein $w_{kl} = m_1$ if its associated pixel is a
- 2 relevant pixel, wherein $w_{kl} = m_2$ if the associated pixel is a causal irrelevant
- 3 pixel.
- 1 11. The method of claim 10 wherein $\frac{m_1}{m_2} > 1$.
- 1 12. The method of claim 10 wherein $\frac{m_1}{m_2} = 2$.

32

- 1 13. The method of claim 1 wherein step b) further comprises the steps
- 2 of:
- 3 i) dividing a selected layer into a plurality of decision regions
- 4 (D_{ij}) and associated analysis regions (A_{ij}) , wherein each $D_{ij} \subseteq A_{ij}$; and
- 5 ii) assigning the entire region D_{ij} to one of the background and
- 6 foreground layers, if a contrast of A_{ij} does not exceed a pre-determined
- 7 threshold.
- 1 14. The method of claim 13 wherein the entire region D_{ij} is assigned to
- 2 the foreground or background layers based on whether the average pixel
- 3 value AVG(Dij) is closer to an average pixel value of neighboring
- 4 foreground regions or neighboring background regions.
- 1 15. The method of claim 1 wherein step b) further comprises the steps
- 2 of:
- dividing a selected layer into a plurality of decision regions
- 4 (D_{ij}) and associated analysis regions (A_{ij}) , wherein each $D_{ij} \subseteq A_{ij}$; and
- $_{5}$ ii) distributing the pixels of D_{ij} between the background and
- 6 foreground layers, if a contrast of A_{ij} exceeds a pre-determined threshold.
- 1 16. The method of claim 15, wherein step b)(ii) further comprises the
- 2 steps of:
- 3 i) separating the pixels of A_{ij} into two groups, GROUP_1 and
- 4 GROUP_2;
- 5 ii) compute an average (AVG_1, AVG_2) for each group; and
- 6 iii) mutually exclusively assigning the pixels of D_{ij} in GROUP_1
- 7 and GROUP_2 to a selected one of the foreground and background layers
- 8 based on a comparison of the relative luminance of GROUP_1 and
- 9 GROUP_2.

- 1 17. A method of preparing an image for efficient wavelet transform
- 2 compression, comprising the steps of:
- a) separating the image into foreground and background image
- 4 layers, and a mask layer; and
- 5 b) applying a smoothing filter to interpolate irrelevant pixel
- 6 values in the foreground and background layers for coder efficiency.
- 1 18. The method of claim 17 wherein a normalized weighted average of
- 2 the relevant pixels and the causal irrelevant pixels contribute to the
- 3 interpolated value.
- 1 19. The method of claim 17 wherein the smoothing filter is a weighted
- 2 Gaussian filter.
- 1 20. The method of claim 17 wherein each element of the smoothing
- 2 filter is of the form $w_{kl}V_{kl}$, wherein V_{kl} is a non-weighted filter value,
- 3 wherein w_{kl} is a function of its associated pixel causality and relevance.
- 1 21. The method of claim 20 wherein $w_{kl} = 0$ for the center pixel (p_c) and
- 2 any non-causal irrelevant pixel.
- 1 22. The method of claim 20 wherein $w_{kl} = m_1$ if its associated pixel is a
- 2 relevant pixel, wherein $w_{kl} = m_2$ if the associated pixel is a causal irrelevant
- 3 pixel.
- 1 23. The method of claim 22 wherein $\frac{m_1}{m_2} > 1$.

1 24. The method of claim 22 wherein $\frac{m_1}{m_2} = 2$.