试卷 5

	8. 当利用大小为 N 的数组顺序存储一个栈时, 若用 top = = N 表示栈空, 用 top = =
一 、单选题(本大题共 20 小题。每小题 1 分,共 20 分。请将答案填入括号内,并 将结果填入答题卡。)	表示栈满,则向这个栈插入一个元素时,首先应执行()操作修改 top 指针。
1. 在数据结构中,从逻辑上可以把数据结构分为()。	A. top++ B. top C. top=0 D. top=N
A. 动态结构和静态结构 B. 紧凑结构和非紧凑结构和	9. 在线性表的顺序存储结构中,已知首元的存储地址是200,每个元素的长度为2
C. 内部结构和外部结构 D. 线性结构和非线性结构	则第 11 个元素的存储首址是 ()。
2. 算法分析的两个主要方面是()。	A. 200 B. 212 C. 222 D. 220
A. 时间复杂性和空间复杂性 B. 正确性和简明性	10. 将一棵树转换为一棵二叉树,该二叉树的根结点()。
C. 可读性和有效性 D. 数据复杂性和程序复杂性	A. 一定有右子树 B. 一定没有右子树
 3. 线性表的顺序存储结构是一种()的存储结构。 	C. 不一定有右子树 D. 以上都不是
A. 顺序存取 B. 随机存取 C. 索引存取 D. HASH 存取	11. 设高度为 h 的二叉树上只有度为 0 和度为 2 的结点,则此类二叉树的结点至少有
4. 带头结点的单链表为空表的判定条件是()。	() 个。
A. $head = NULL$ B. $head \rightarrow next = NULL$	A. $2h-1$ B. $2h$ C. $2h+1$ D. 2^h-1
C. head \rightarrow next = = head D. head $<>$ NULL	12. 深度为 5 的二叉树至多有 () 个结点。
5. 在一个单链表中,若删除 p↑(即 P 所指) 结点的后续结点,则执行语句()。	A. 16 B. 32 C. 31 D. 10
A. $p \rightarrow next = p \rightarrow next \rightarrow next \rightarrow next;$	13. 由权值分别为 3, 8, 6, 2 的四叶子结点生成一棵哈夫曼树,它的带权路径长度为
B. $p = p \rightarrow next$;	()。
C. $p \rightarrow next = p \rightarrow next \rightarrow next$;	A. 24 B. 38 C. 19 D. 35
D. $p = p \rightarrow next \rightarrow next$;	14. 一个含有 n 个顶点的简单无向图,最多有 () 条边。
6. 一个栈的入栈序列是 a b c d e,则栈的出栈序列不可能是 ()。	A. n B. $n (n-1)$ C. $n (n-1)/2$ D. $2n$
A. edcba B. decba C. dceab D. abcde	15. 一个有 n 个顶点的无向图, 若采用邻接矩阵表示, 则该矩阵的大小为 ()。
	A. n B. $(n-1)^2$ C. $n-1$ D. n^2
7. 一个队列的入队序列是1234,则队列的输出序列是()。	16. 在具有 n 个顶点的强连通图中至少含有()。

A. 4321 B. 1234 C. 1432 D. 3241

A. n-1 条有向边 B. n 条有向边	续都可。
C. n(n-1)/2 条有向边 D. n(n-1)条有向边	5. () 单链表是指每个结点只含一个 data 域的链表。
17. 与邻接矩阵相比,邻接表更适合于存储()。	6. () 栈和队列是两种操作受限的线性表。
A. 无向图 B. 连通图 C. 稀疏图 D. 稠密图	7. () 用二叉链表表示具有 n 个结点的二叉树时, 空指针域的个数为 n-1。
18. 对线性表进行二分查找时,要求线性表必须()。	8. () 在一个小根堆中,堆顶结点的值是所有结点中的最大值
A. 以顺序方式存储且结点按关键字有序排序	9. ()插入排序的基本操作是在一个有序表中进行查找和插入。
B. 以顺序方式存储	10. () 快速排序法是稳定的排序方法。
C. 以链接方式存储且结点按关键字有序排序	
D. 以链接方式存储	三、填空题(将你认为正确的答案填在相应的空中,并填入答题卡。本大题共 10 小
19. 己知一个有序表为: {1, 3, 9, 12, 32, 41, 45, 62, 75, 77, 82, 95, 100},	题,每空 2 分,共 20 分)
用二分查找法查找值为82的结点时,经过()次比较后查找成功。	1. 数据元素及其关系在计算机存储器内的表示称为。
A. 8 B. 4 C. 2 D. 1	2. 已知在结点个数大于 1 的单循环链表中, 指针 p 指向表中某个结点, 则下列程序
20. 在随机情况下,二叉排序树的平均查找长度的数量级别为()。	段执行结束时,指针 q 指向结点 p↑(即 p 所指)的结点。
$A. O(1)\qquad B. O(n)\qquad \qquad C. O(n^2)\qquad \qquad D. O(logn)$	q = p;
	while $(q->next != p)$ $q = q->next$;
二、 判断题 (下面命题你认为正确的在题前的括号内打"√",错误的打"×",并填	3. 假设 S 和 X 分别表示进栈和出栈操作,由输入序列"ABC"得到输出序列
入答题卡。本大题共 10 小题,每小题 1 分,共 10 分)	"BCA"的操作序列为 SSXSXX,则由 "a*b+c/d"得到 "ab*cd/+"的操作序列
1. () 与数据元素本身的形式、内容、相对位置、个数无关的是数据的逻辑结	为。
构。 2. ()线性结构的基本特征是:每个结点有且仅有一个直接前趋和一个直接后	4. 设循环队列的元素存放在一维数组 Q[0 ·· 30]中, front 指向队头元素的前一个位
继。	置, rear 指向队尾元素。若 front = 25, rear = 5, 则该队列中的元素个数
3.()每种数据结构都具备三个基本运算:插入、删除和查找。	为。
4. () 线性表若采用链式存储结构,要求内存中可用存储单元的地址连续不连	5. 假设以一维数组 S[n(n+1)/2] 作为 n 阶对称矩阵 A 的存储空间,以行序为主序
T. () 及且私有水川近代市園和博, 安水門作用型用作園平加的地址是续作是	存储 A 的下三角元素,则元素 A[5][6] 的值存储在 S [] 中。

- 6. 在一个稀疏矩阵中,每个非零元素 *aii* 所对应的三元组表示为______
- 7. 森林的先根遍历序列,正是对应二叉树的______遍历序列。
- 8. 一棵含 999 个结点的完全二叉树的深度为______
- 9. 在含有 n 个 (n≥3) 顶点的无向图中,要使每对顶点之间都存在回路,则至少需要条边。
- 10. 在线性表的散列存储中,处理冲突常用的有"开放定址法"和_______等方法。

四、综合题(本大题共5小题。每小题8分,共40分)

1. 算法填空。在画有横线的地方填写合适的内容。

从类型为 SqList 的线性表 L 中删除与 x 值相等的所有元素。

2. 阅读以下算法,并回答问题。

已知下列程序, Ls 指向带头结点的单链表。

```
typedef struct node {
    DataType data;
    struct node * next;
} * LinkList;

void func2 (LinkList Ls)
{
    LinkList p, q;
    q = Ls → next;
    if (q && q → next)
    {
        Ls → next = q → next;
        p = q;
        while (p → next)
            p = p → next;
        p → next = q;
        q → next = NULL;
    }
}
```

请回答下列问题:

(1) 当 Ls 指向的链表如下图所示,请画出执行本函数之后的链表的结果。

- (2) 请简述算法的功能。
- 3. 试将下列二叉树还原为对应的树或森林。

4. 假定用于通讯的电文仅由 8 个字母 C_1 、 C_2 、...、 C_8 组成,各字母在电文中出现的频率分别为: 15, 3, 14, 2, 6, 9, 16, 17。试为这 8 个字母设计哈夫曼编码,并填入下表。

(注意:构造哈夫曼树时,要求左子树根结点的值小于右子树根结点的值。)

C_1	C_2	C ₃	C ₄
C ₅	C ₆	C ₇	C_8

5. 假定一组记录的排序码为: (40, 80, 36, 64, 75, 66, 46, 79, 56, 38, 84, 25), 对其进行二路归并排序, 试给出至第二趟归并排序过程及结果。

五、编写算法(本题 10 分)

已知线性表中的元素按增值排序,并以带表头结点的单链表作存储结构。试编写一个函数,删除表中所有值大于 m1 且小于 m2 的元素(若表中存在这样的元素), m1 和 m2 是给定的两个参变量,它们的值为任意的整数。

单链表的类型定义如下:

typedef struct node{
 DataType data;
 struct node *next;
}LinkNode, *LinkList;

算法的函数原型给定为:

void func3 (linklist head; int m1; int m2)

试卷5答案和评分标准

一、单项选择 $(20 \times 1 = 20 \text{ 分})$

DABBC CBBDB

ACDCDBCABD

二、判断正误 $(10 \times 1 = 10 \text{ 分})$

 $\sqrt{\times}$

- 三、填空(10×2=20分)
 - 1. 存储结构 或者 物理结构
 - 2. 前趋
 - 3. SXSSXXSSXSSXXX
 - 4. 11
 - 5. 26 或者 19
 - 6. (i, j, a_{ij})
 - 7. 先序
 - 8. 10
 - 9. **n**
 - 10. 链地址 或者 溢出区

四、综合题 $(5 \times 8 = 40 \text{ 分})$

- 1. \bigcirc *L.elem*[j]
 - ② L.length --
 - ③ *i* ++
- 2. ① Ls 2 3 4 5 1 ^
 - ② 算法功能:将链表中的第一个结点摘下追加到链表的表尾
- 3. 森林如右图

4. 编码如下表,构造的 Huffman 树如右

0 和 1 同时翻转也可以

C_1	C_2	C_3	C_4		
111	10101	110	10100		
C_5	C_6	C_7	C_8		
1011	100	00	01		

5. 第一趟 (40, 80, 36, 64, 66, 75, 46, 79, 38, 56, 25, 84) 第二趟 (36, 40, 64, 80, 46, 66, 75, 79, 25, 38, 56, 84)

五、算法设计(10分)

```
void func3(LinkList head, int m1, int m2)
{ // 最快的方法
  LinkNode *p, *q, *r;
  p = head->next; // p 为当前结点
  q = head; // q 为 p 的前趋
  while (p != NULL && p->data <= m1)
  { // 首先寻找到第一个需要删除的结点
     q = p;
     p = p - next;
  while (p \stackrel{!=}{=} NULL \&\& p->data < m2)
  { // 然后依次连续删除所有数据在此范围内的结点
     r = p;
     q->next = p->next;
                   // 或者 delete r;
     free(r);
     p = q->next;
```

也可以直接从链表的第一个结点开始依次检查各个结点,只要结点数据在此范围就删除掉,算法比较简单,一个循环即可,但是平均时间比前者略长