MTH211A: Theory of Statistics

Quiz1

Name:	BOLUTION SET	Roll number:
Time: 15 minutes	3	Total marks: $5+5=10$

Suppose that the joint distribution of daily study time (X) and daily screen time (Y) of students at IITK is assumed to be normally distributed with parameters $(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$.

A person randomly selects 10 students from IITK, and inquires about their daily study time and screen time. The person then tabulates the responses as follows:

Serial no →	1	2	3	4	5	6	7	8	9	10
Study time (in hrs)	11.76	10.27	9.34	9.00	10.77	10.57	12.99	9.93	10.10	9.52
Screen time (in hrs)	4.00	5.60	6.50	5.50	4.68	6.41	4.68	5.11	6.04	6.46

Q.1 Find an estimate of the variability of daily screen time for a randomly chosen student of HTK based on this sample. Justify why you think this is a good estimate.

Let X be the Grandom variable indicating study time of 11TK students, and Y be the Grandom variable indicating Green time.

Variability of a grandom variable & can be measured by its variance. So, we need to estimate $var(y) = \sigma_y^2$.

We know that $S_y^2 = \frac{1}{(n-1)} \cdot \frac{\sum_{i=1}^{n} (y_i - y_n)^2}{(n-1)^{n-1}}$ is the Sample variance,

and it satisfies $E[S_y^{*2}] = \sigma_y^2$. So, on an average S_y^{*2}

neither over-estimates nor under-estimates oy? So, we

use 5^{*2}_{y} as an estimator of 6^{2}_{y} .

Based on the 10 given nealizations $y_1 = 4.00$, ..., $y_{10} = 46.46$, we calculate $y_1 = x_1 = x_2 = x_2 = x_3 = x_4 = x_4$

Q.2 Suppose you know that the daily study time of a particular student is 10 hours. How will you modify the estimate of variability of screen time for that student?

When it is given that X=10, the instead on considering the marginal distribute of Y, we would consider the conditional distribute of Y given X=10.

We know that

$$\gamma \mid x=10 \sim N \left(\mu_{\gamma} + \rho \frac{\sigma_{\gamma}}{\sigma_{x}} \left(10 - \mu_{x} \right), \sigma_{\gamma}^{2} \left(1 - \rho^{2} \right) \right)$$

The variability of this distr. is measured by its variance, i.e., $\sigma_y^2(1-\rho^2) = \sigma_y^2 - \sigma_y^2 \rho^2$

As we do not have nealizates available from the conditional distribute, we would separately estimate σ_y^2 and ρ_z^2 . From part (a) we have estimate of σ_y^2 .

Fronther, p can be estimated by sample correlation coefficient

$$R_{XY} = \frac{1}{2\pi} \sum_{i=1}^{n} (x_i - \bar{x}_n) (y_i - \bar{y}_n)$$

$$S_X S_Y$$

Bosed on the 10 realization, we will estimate Try (realization of Rxy), and the proposed estimate of variability would be

8x2 (1- x2xy).