Classification of Quadratic Forms over $\mathbb Q$

Shubin Xue

Beijing Institute of Technology

2025-09-11

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- **Appendix**
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

Notations

- K: an arbitrary field and $\operatorname{char} K \neq 2$.
- \bullet X, Y, Z: variables.
- ullet \mathbb{P} : the set of prime numbers.
 - $\bullet \ p \in \mathbb{P}.$
 - \mathbb{Q}_p : the completion of \mathbb{Q} at p.
- $\mathbb{V}=\mathbb{P}\cup\{\infty\}$.
 - $v \in \mathbb{V}$.
 - $\mathbb{Q}_{\infty} = \mathbb{R}$
- Denote by the same letter an element and its class modulo.

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- - Classification Results
 - Proof of Hasse-Minkowski Theorem

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- Appendix
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

Quadratic Froms

- $f(\vec{X}) = \sum_{i,j=1}^{n} a_{ij} X_i X_j$ is a quadratic form
 - $\vec{X}=(X_1,\cdots,X_n)\in K^n$ and $a_{ij}=a_{ji}\in K.$
- The matrix $A_f = (a_{ij})$ associated with f is Symmetric.
 - $f(\vec{X}) = \vec{X}^T A_f \vec{X}.$
- The pair (K^n, f) is a quadratic space.
 - $f \sim g$: $\exists P \in GL(n,K)$ s.t. $A_f = P^T A_g P$.
- $f(X_1, \dots, X_n)$ and $g(X_1, \dots, X_m)$

$$f \oplus g = f(X_1, \cdots, X_n) + g(X_{n+1}, \cdots, X_{n+m})$$

Background(17-18th century)

Theorem (Fermat's Two-Square Theorem)

An odd prime p can be represented as the sum of two squares if and only if $p \equiv 1 \pmod{4}$.

Theorem (Gauss's Three-Square Theorem)

All positive integers except those of the form $4^a(8m-1)$ can be represented as the sum of three squares.

Background(19-20th century)

Theorem (Gauss's Classification of Quadratic Forms)

Quadratic forms in the same equivalence class represent exactly the same set of numbers.

Theorem (Hasse-Minkowski)

f represents 0 over \mathbb{Q} iff it represents 0 over all \mathbb{Q}_v .

Representing Numbers

• f represents $a \in K$: $\exists 0 \neq x \in K^n$ s.t. f(x) = a.

Proposition

Let $a \in K^{\times}$. TFAE:

- f represents a
- $f \sim f_1 \oplus aZ^2$ where f_1 is of rank f 1.
- $f_a = f \oplus -aZ^2$ represents 0.

Corollary (Hasse-Minkowski Theorem)

f represents $a \in \mathbb{Q}^{\times}$ over \mathbb{Q} iff it represents a over all \mathbb{Q}_n .

• Apply Hasse-Minkowski Theorem to $f_a = f \oplus -aZ^2$.

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- Appendix
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

Decomposing quadratic spaces

Theorem (Witt's cancellation)

$$f_1 \oplus g_1 \sim f_2 \oplus g_2$$
 and $g_1 \sim g_2$ implies $f_1 \sim f_2$.

- \bullet (V,Q): A quadratic space.
- \bullet (U,Q) and (W,Q): Isomorphic subspaces.

Figure: Witt's Cancellation Theorem

$f \sim g \text{ over } \mathbb{Q}$

Theorem ([Ser73] p. 44, chap. 4, sec. 3.3, theorem 9)

Two non-degenerate quadratic forms of rank n over \mathbb{Q} are equivalent iff they are equivalent over each \mathbb{Q}_v .

- Suppose $f \sim g$ over \mathbb{Q}_v for all v. Take a represented by f over \mathbb{Q} .
- Then f represents a over all \mathbb{Q}_v . And a is represented by g over all \mathbb{Q}_v , since $f \sim g$ over all \mathbb{Q}_v .
- By the Hasse-Minkowski Theorem, a is represented by both f and g over \mathbb{Q} .
- Thus $f \sim aZ^2 \oplus f_1$, $g \sim aZ^2 \oplus g_1$, where rank $f_1 = \operatorname{rank} g_1 = n 1$.
- By Witt's cancellation, we have $f_1 \sim g_1$ over \mathbb{Q}_v for all $v \in \mathbb{V}$.
- By induction on rank n, $f_1 \sim g_1$ over \mathbb{Q} , thus $f \sim g$ over \mathbb{Q} .

40 1 40 1 40 1 40 1 40 1

- - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- - Classification Results
 - Proof of Hasse-Minkowski Theorem

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- Appendix
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

General Ideas

- Reduce to classifying non-degenerate rank n quadratic forms of the shape $f \sim \sum_{i=1}^n a_i X_i^2$, where $a_i \in K^\times/(K^\times)^2$.
 - Invariant rank: non-degenerate.
 - Symmetric matrices: diagonal.
 - $\sum a_i b_i^2 X_i^2 \sim \sum a_i X_i^2$: squared-free.
- If $f \sim g$, $\det(A_f) = \det(P^T A_g P) = \det(A_g) \det(P)^2$
 - Invariant discriminant: $d = \det(A)$ in $K^{\times}/(K^{\times})^2$.
- $\mathbb{R}^{\times}/(\mathbb{R}^{\times})^2 \cong \{1, -1\}.$
- $\bullet \mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2 \cong K_4 = \{1, a, p, ap\}.$

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- Appendix
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

Case over $\mathbb R$

- Invariants:
 - Rank: $\operatorname{rank} f = n$.
 - Signature: (r,s) := (# positive eigenvalues, # negative eigenvalues).

Theorem (Sylvester's law of inertia)

Let
$$f = \sum_{i,j=1}^n a_{ij} X_i X_j$$
 be a quadratic form of rank n over \mathbb{R} . Then

$$f \sim X_1^2 + X_2^2 + \dots + X_r^2 - X_{r+1}^2 - \dots - X_{r+s}^2$$
.

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- Appendix
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

Binary Quadratic Forms over $\mathbb{Q}_{p\neq 2}$

Theorem

Two quadratic forms of rank 2 over $\mathbb{Q}_{p\neq 2}$ are equivalent iff they have the same discriminant d and a common representive number a.

- ullet Take a represented by both f and g.
- $f \sim f_1 \oplus aZ^2$ where rank $f_1 = 1$.
- Then $f_1 = adX^2$. Thus f is determined. Similarly for g.

Binary Quadratic Forms over $\mathbb{Q}_{p\neq 2}$

ap		p	a	1	d	
ap		p	a	1	1	
p)	ap	1		a	
a		1			p	
1					ap	
$\frac{ap}{\text{(a) } p \equiv 1 \pmod{4}}$						

d	1	a	p	ap
1	1	a	p	ap
a		1	ap	p
p			1	a
ap				1

Table: Equivalent classes of nondegenerate quadratic forms over \mathbb{Q}_n when n=2

• Fix d: classification depends on whether 1 can be represented.

Hilbert Symbol

$$\bullet \ f = aX^2 + bY^2 \ \text{represents} \ 1 \iff Z^2 \oplus -f \ \text{represents} \ 0.$$

Hilbert symbol:

$$(a,b) = \begin{cases} 1 & Z^2 - aX^2 - bY^2 \text{ represents 0,} \\ -1 & \text{Otherwise.} \end{cases}$$

Computation of Hilbert Symbol

$\overline{(\cdot,\cdot)}$	0	1	a	p
0	1	1	1	1
1		1	1	1
a			1	-1
p				$(-1)^{\frac{p-1}{2}}$

Table: Hilbert symbol, $p \neq 2$

• Hilbert symbol is a symmetric non-degenerate bilinear form.

Hasse Invariant

- $f \sim \sum_{i=1}^n a_i X_i^2$ with $n \ge 3$.
 - Hasse invariant: $\varepsilon(f) = \prod_{i < j} (a_i, a_j)$
- \bullet $f=a_1X_1^2\oplus f_1$ with $f_1=a_2X_2^2+\cdots+a_nX_n^2$
 - $d(f) = \prod_{i=1}^{n} a_i = a_1 \prod_{i=2}^{n} a_i = a_1 d(f_1)$.
 - $\varepsilon(f) = \prod_{1 \le i < j \le n} (a_i, a_j) = \varepsilon(f_1) \cdot (a_1, a_2 \cdots a_n) = \varepsilon(f_1) \cdot (a_1, a_1 d(f)).$

Theorem (([Ser73] p. 36, chap. 4, sec. 2.2, theorem 6))

f represents 0 iff:

- For n = 2: d = -1;
- For n = 3: $(-1, -d) = \varepsilon$;
- For n=4: $d \neq 1$ or d=1 and $\varepsilon = (-1,-1)$;
- For $n \geq 5$: no conditions.

By applying Theorem to $f_a = f \oplus -aZ^2$, we obtain:

Corollary (([Ser73] p. 37, chap. 4, sec. 2.2, corollary to themrem 6))

f represents $a \in \mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2$ iff:

- For n = 1: a = d;
- For n = 2: $(a, -d) = \varepsilon$;
- For n=3: $a \neq d$ or a=d and $\varepsilon=(-1,-d)$;
- For $n \geq 4$: no conditions.

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- Appendix
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

$f \sim g$ over \mathbb{Q}_p

Theorem (([Ser73] p. 39, chap. 4, sec. 2.3, theorem 7))

Two non-degenerate quadratic forms of rank n over \mathbb{Q}_p are equivalent iff they have the same discriminant d and Hasse invariant ε .

- f,g have same d and ε , thus there exists $a\in\mathbb{Q}_p^{\times}$ which both represented by f and g.
- ullet Then $f\sim f_1\oplus aZ^2$, where f_1 is of rank n-1. Similarly for g.
- d and ε of f_1 can be determined:
 - $d(f_1) = ad(f) = ad(g) = d(g_1)$
 - $\varepsilon(f_1) = \varepsilon(f) \cdot (a, ad(f)) = \varepsilon(g) \cdot (a, ad(g)) = \varepsilon(g_1)$
- ullet Thus f_1,g_1 share the same d and arepsilon. QED by induction.

- - Classification and Representation
 - Local-to-Global Principle
- - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- **Appendix**
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_p
 - Classification of Quadratic Forms over \mathbb{Q}_p
- Appendix
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

Classification of Quadratic Forms over \mathbb{Q}_n

The invariants d and ε satisfy the following relations:

- For n = 1: $\varepsilon = 1$:
- For n=2: $d\neq -1$ or $\varepsilon=1$;
- For n > 3: no conditions.
- n = 1: $f = dX^2$
- n = 2: $f = aX^2 + adY^2$
- n = 3: $f = a \oplus aZ^2$
 - d(q) = ad and $\varepsilon(q) = \varepsilon(a, -d)$
- n > 3: $f = q(X_1, X_2, X_3) \oplus X_1^2 \oplus \cdots \oplus X_n^2$
 - d(g) = d and $\varepsilon(g) = \varepsilon$

Classification of Quadratic Forms over O

Theorem (Product formula)

$$(a,b)_v=1$$
 for almost all $v\in\mathbb{V}$ and $\prod_{v\in\mathbb{V}}(a,b)_v=1$

The invariants d_v and ε_v satisfy the following relations:

- $\varepsilon_v = 1$ for almost $v \in \mathbb{V}$, and $\prod_{v \in \mathbb{V}} \varepsilon_v = 1$.
- $\varepsilon_v = 1$ if n = 1 and if n = 2 and if the image d_v of d in $\mathbb{Q}_n^{\times}/\mathbb{Q}_n^{\times 2}$ is equal to -1.
- $r, s \ge 0$ and r + s = rank.
- $d_{\infty} = (-1)^s$
- $\varepsilon_{\infty} = (-1)^{s(s-1)/2}$

- Background and Approaches
 - Classification and Representation
 - Local-to-Global Principle
- Quadratic Forms over \mathbb{Q}_n
 - General Ideas
 - Classification of Quadratic Forms over R
 - Invariants that Determine the Representation over \mathbb{Q}_n
 - Classification of Quadratic Forms over \mathbb{Q}_p
- Appendix
 - Classification Results
 - Proof of Hasse-Minkowski Theorem

Skeleton of Proof

Theorem (Hasse-Minkowski)

f represents 0 over \mathbb{Q} iff it represents 0 over \mathbb{R} and all \mathbb{Q}_n .

Skeleton of Proof:

- n=2: Fermat's Two-Square Theorem.
- n=3: Gauss's Three-Square Theorem.
- n=4: Lagrange's Four-Square Theorem.
- n 5: Mathematical induction.

References I

[Ser73] Jean-Pierre Serre. A Course in Arithmetic. Vol. 7. Graduate Texts in Mathematics. New York, NY: Springer, 1973. ISBN: 978-0-387-90041-4 978-1-4684-9884-4. DOI: 10.1007/978-1-4684-9884-4.