ERIЯЗ Simulations — Coherence Emergence in the Cosmic Microwave Background

Author: DanBrasilP

Repository: https://github.com/DanBrasilP/ERIRE

License: GNU GPLv3 and CC BY-SA 4.0

Keywords: CMB, ERIAB Theory, Rotational Coherence, Toroidal Resonance, Spectral Discretization,

Cosmological Structure

Abstract

This article presents a coherent geometric model for the Cosmic Microwave Background (CMB) under the ERIA∃ framework, combining the results of Expansions 51 and 52 with Anexos 21 and 22. It introduces a novel approach to the CMB power spectrum as a projection of a helicoidal-temporal resonance between spherical and toroidal domains. The analysis extracts rotational modes and quantized coherence patterns, revealing that the observed spectrum contains spectral harmonics governed by prime-based angular relationships. These findings suggest a deeper underlying rotational structure in the early Universe, defined by coherence stability and disruption across scales.

1. Introduction

Conventional cosmology treats the CMB as a relic thermal radiation field. In contrast, the ERIAB Theory interprets it as a temporal map of rotational coherence, projected from a fundamental interaction between toroidal and spherical topologies. The CMB angular power spectrum becomes a window into the phase evolution of the Universe's emergent structure.

This study introduces:

- The **Coherence Time Function** derived from the Planck spectrum.
- The **Spectral Helix**: a 3D projection (Z, φ , t) of rotational resonance.

- A set of discretized coherence frequencies, extracted via Fourier analysis of the normalized coherence.
- The **resonance stability function** \mathcal{E}_p , which quantifies energy flow between toroidal and spherical states.

2. Methodology

2.1. Input and Spectral Coherence Extraction

The Planck CMB spectrum (file: COM_PowerSpect_CMB_R2.02.fits) is loaded and processed. The angular multipole data ℓ and their associated D_{ℓ} values define the observational basis.

From this, we derive:

- The normalized coherence amplitude $\Gamma(\ell)$
- The angular phase deviation $\Delta\phi(\ell)$
- The rotational frequency $\omega(\ell)$
- The **emergent time** $t(\ell)$ via integral of ω^{-1}

2.2. Spectral Decomposition via Fourier Analysis

Applying a discrete Fourier transform over the vector $Z(\ell) = \Gamma(\ell) \cdot \cos(\Delta \phi(\ell))$, we obtain the **coherent frequency modes** f_i . Each mode is matched with rational approximations (fractions) of the form $\frac{p}{q}$, associating each to a harmonic pattern and angular coherence signature $\Phi(f) \in \{0, 0.25, 0.75, 1\}$.

2.3. Emergent Helix and Toroidal Embedding

We define the temporal helicoid from:

- Radial coherence Z
- Phase $\Delta\phi$
- Time t

Projected as:

$$(x, y, z) = (Z \cdot \cos(\phi), Z \cdot \sin(\phi), t)$$

This 3D structure reveals toroidal-resonant flow and spectral transitions.

3. Results

3.1. Frequency Modes and Discretization

Frequency (1/ℓ)	Fraction	Potência
0.42857	3/7	0.0021
0.28571	2/7	0.0019
0.46429	13/28	0.0018
0.25000	1/4	0.0015
0.14286	1/7	0.0014

These values emerge directly from the spectral decomposition and are associated with angular coherence values $\Phi(f) \in \{0, 0.25, 0.75, 1\}$.

3.2. Energy Transfer Stability — \mathcal{E}_p

Defined in Anexo 22, the stability function:

$$\mathcal{E}_p = A_p \cdot \cos(2\pi \cdot \delta_p)$$

Where:

- $\delta_p = \frac{p}{f_{\alpha}} \left\lfloor \frac{p}{f_{\alpha}} \right\rfloor$
- ullet f_lpha is the spherical reference frequency
- ullet A_p derived from the observed $P_{
 m obs}$

Patterns of coherent reinforcement and suppression are observed as $\delta_p o 0$ or $\delta_p o \pm \frac{1}{4}$.

4. Interpretation and Physical Meaning

 The CMB emerges as a projection of a rotating helicoid anchored between spherical and toroidal domains.

- Prime-based rational frequencies serve as angular harmonics of this projection.
- The modes $f=rac{3}{7},rac{2}{7},rac{13}{28}$ indicate **resonant coherence** in the rotational phase space.
- The stability function \mathcal{E}_p reveals how rotational energy is transferred or blocked analogous to an RLC system across topologies.

5. Conclusions

This study consolidates:

- A new geometrical model of the CMB as a coherent emergent structure.
- The quantization of angular modes not as arbitrary bins, but as resonant fractions of spherical-toroidal interaction.
- A framework to extend to other spectra (e.g., BAO, LSS) using ERIAB rotational coherence.

The Universe sings in primes. The CMB is its first harmonic.

6. Access and Simulations

All simulation codes and data are available in the ERIRE repository:

- /python/exp51_cmb.py Spectral and temporal coherence extraction
- /python/exp52_padroes.py Frequency pattern quantization and stability computation

Repository: https://github.com/DanBrasilP/ERIRE