

Modelling and Predicting Disturbance Damage in Swiss Forests

March 14th, 2025

Roman Flury, Jeanne Portier, Daniel Scherrer, Brigitte Rohner, Golo Stadelmann & Esther Thürig

MASSIMO

2019

a **MA**nagement **S**cenario **SI**mulation **MO**del

New disturbance module! (windthrow and bark beetles) Felling Thinning Management Protection forest Forest reserves Background matalit r or trees Stadelmann et al. Species Ingrowth DBH Growth

Disturbance module: Potential damage and actual forest stock

MASSIMO combining simulated forest with potential damage to predict forest disturbances.

 \bullet \bullet

Potential damage-maps summarizing 10 years – independent of MASSIMO and future forest stock.

Damage data from Waldschutz Schweiz

- Windthrow and bark beetle damage per forest district (Forst Kreis).
- For windthrow damage it is known whether from spruce or other species – from 2019 information about winter and summer storm damage.

Spruce windthrow damage in 1'000 m³ per forest district of the year 2018.

Time series of windthrow damage visualized with boxplots of forest districts; x depict respective mean.

 Bark beetle damage timeseries since 1990, including nests and remaining beetle wood.

Disturbance module: Potential damage vs. actual forest stock

We model at forest district level

- observed damage [m³]/total volume [m³],
- which corresponds to the proportion that is potentially damaged
- * we differ between conifer/spruce and broadleaves forests

Total volume of standing trees per forest district and main tree species (spruce, etc.) is available from NFI.

We include at NFI level

• Climate, topography, soil properties, etc.

Forest districts showing spruce windthrow damage/total spruce volume of the year 2018 (Burglind storm).

Predicted conifer windthrow damage per year – Extreme events?

Blue: RCP-4.5 Wet

Green: RCP-4.5 Medium

Red: RCP-8.5 Dry

Disturbance modelling for spruce

Per forest district and year (t)

Modelling winter storms - Data

Climate scenarios

Conditions	GCM	RCM	RCP	Resolution
Dry	MOHC-HadGEM2-ES	CLMcom-CCLM4-8-17	8.5	EUR-44
Medium	ICHEC-EC-EARTH	SMHI-RCA4	4.5	EUR-44
Wet	ICHEC-EC-EARTH	DMI-HIRHAM5	4.5	EUR-11

Used for MASSIMO simulations (Brunner et al. 2019)

NFI data

Previous winter storms (Lothar 1999 & Vivian 1990)

Windstorm gusts at return period of 30/50/100 years

Modelling winter storms

1. Compare climate scenarios per NFI plot

Blue: RCP-4.5 Wet

Green: RCP-4.5 Medium

Red: RCP-8.5 Dry

2. Check frequency in production regions

 Assuming that winter storms are large scale events affecting many plots within production regions.

Modelling winter storms

How to decide on locations/NFI-plots?

Extreme winter storm damage [%]

~ peak wind gusts + predisposition factors

3. Train a statistical model for selected dates per production region based on

- proportion of damage on NFI plots from Vivian & Lothar
- in relation to important factors, such as
 - windthrow predisposition factors according to literature, e.g. elevation, windexposition, slope, soil depth, TWI
 - predicted return gust speeds (Meteo Schweiz)

4. Upscale potential damage to forest districts

average of representative NFI plots

Disturbance modelling for spruce

Per forest district and year (t)

Post-Windthrow Management Decision Tree

Thank you!

