Next-Gen CGRA Architecture

System Architecture (1/2)

- Clock domain based CGRA
 - Allow different part of the chips to operate at different frequencies
- Power domain based CGRA
 - Multiple power domains on the chip –
 Low-voltage, Always-on, Shut-down
- DVFS (Dynamic voltage frequency scaling) support
 - Variable operating voltage & frequency.
 DVFS can be used for non-timing critical applications

Power Domain based CGRA

System Architecture (2/2)

- Fast reconfiguration/Run-time reconfigurability
 - Configuration currently takes ~100 JTAG clock cycles per configuration register
 - Ability to swap out applications quickly
 - E.g. mapping different convolution layers in CNN

CGRA Hardware Virtualization

- Resource re-use when application size is bigger than available hardware resources
- Multi-rate support for different applications
- State machine based design

Representative fast-reconfiguration architecture

Resource sharing in CGRA

Stanford University

PE Architecture

- Analyze the target applications to find frequently occurring common patterns/compute kernels
- Improve compute density for PEs
 - Current version uses 2 input-PE
 - 3-input based PE design
 - Absolute difference addition, FMA
- Support new operations division, modulo, saturation etc.
- Super-PE architecture
 - Multi-precision handling
 - Virtualization
- Homogeneous vs Heterogeneous PE tiles
 - All PEs do not need to support all the functionalities Improve compute density E.g. LUTs, register files

PE Clustering

Memory Architecture

- Dual ported memory
 - Flexible and simpler design compared to single-ported SRAM and additional logic
 - Enable irregular access patterns
- Double buffering
 - Supply operands out of one buffer while performing LD/ST operations on the other
 - Allow hardware to overlap computation and memory loads
- Memory hierarchies
 - Optimize data locality
- DMA Engine
 - Mem-tile to Mem-tile copying or moving of data within memory

Architecture template with double buffer & memory hierarchy

CGRA Connectivity/Routing

- Explore dataflows/customized connectivity patterns for a class of applications
- Interconnect architecture exploration
 - Trade-offs between flexibility, fanouts and different topologies
- Routing Profile Extraction
 - List of key switchbox parameters needed for P&R to better evaluate metrics like IO utilization, wirelength length stats, routing density etc.