

Feuille $n^{\circ}2$: Variable Complexe

Exercice 1:

On découpe l'intégrale en quatre morceaux correspondant aux quatre segments de droite :

Intégrale 1 : $z = x \in [-R, +R]$. Lorsque $R \to \infty$, on obtient $I_1 = \sqrt{\pi}$,

Intégrale 2 : $z = R + iy, y \in \left[0, \frac{\alpha}{2}\right]$. Lorsque $R \to \infty$, on obtient $I_2 = 0$,

Intégrale 3 : $z = -R + iy, y \in \left[0, \frac{\alpha}{2}\right]$. Lorsque $R \to \infty$, on obtient $I_3 = 0$, Intégrale 4 : $z = x + \frac{1}{2}i\alpha, x \in [-R, +R]$. Lorsque $R \to \infty$, on obtient $I_4 = -e^{\alpha^2/4} \left[\int_{-\infty}^{+\infty} e^{-x^2} \cos(\alpha x) \ dx - i \int_{-\infty}^{+\infty} e^{-x^2} \sin(\alpha x) \ dx \right]$,

$$\int_0^{+\infty} e^{-x^2} \cos(\alpha x) \ dx = \frac{\sqrt{\pi}}{2} e^{-\alpha^2/4}$$

Exercice 2:

1) a)
$$\int_{\Gamma} \frac{dz}{z-a} = 2i\pi$$
 b) $\int_{\Gamma'} \frac{dz}{z-a} = 2i\pi$ c) $\int_{\Gamma} \frac{dz}{z-a} = 0$
2) $f(z) = \frac{2}{z} + \frac{1}{z-1}$ et $\int_{\Gamma} f(z)dz = 6i\pi$

2)
$$f(z) = \frac{2}{z} + \frac{1}{z-1}$$
 et $\int_{\Gamma} f(z) dz = 6i\pi$

Exercice 3:

1) On a

$$\frac{f(a+h)-f(a)}{h} = \frac{1}{2i\pi} \int_{\Gamma} \frac{f(z)}{(z-a)(z-a-h)} dz \underset{h\to 0}{\longrightarrow} \frac{1}{2i\pi} \int_{\Gamma} \frac{f(z)}{(z-a)^2} dz$$

2) En utilisant $f'(a) = \frac{1}{2i\pi} \int_{\Gamma} \frac{f(z)}{(z-a)^2} dz$ avec a = -1 et $f(z) = e^{2z}$, on trouve

$$\int_{\Gamma} \frac{e^{2z}}{(z+1)^2} dz = \frac{4i\pi}{e^2}$$