Alexander S. Kulikov

Steklov Mathematical Institute at St. Petersburg, Russian Academy of Sciences and University of California, San Diego

 There are cases when a solution exists, but it is not easy to construct it by hand

- There are cases when a solution exists, but it is not easy to construct it by hand
- Let computers do the job!

- There are cases when a solution exists, but it is not easy to construct it by hand
- Let computers do the job!
- For two puzzles (n queens and 16 diagonals), we will implement a program that will solve a puzzle on your laptop in blink of an eye

Outline

N Queens: Brute Force Search

N Queens: Backtracking

16 Diagonals

Chess Queen

A chess queen moves vertically, horizontally, or diagonally

Chess Queen

A chess queen moves vertically, horizontally, or diagonally

N Queens Problem

Problem

Is it possible to place n queens on an $n \times n$ chessboard such that no two queens attack each other?

• It is known that this is possible for all $n \ge 4$

- It is known that this is possible for all $n \ge 4$
- But already for n = 8 it is not easy to construct a solution by hand

• Since we are placing n queens on an $n \times n$ board, there should be exactly one queen in each column

- Since we are placing n queens on an n × n board, there should be exactly one queen in each column
 - If there are two queens in a column, they attack each other. Hence at most one queen in each column

- Since we are placing n queens on an n × n board, there should be exactly one queen in each column
 - If there are two queens in a column, they attack each other. Hence at most one queen in each column
 - If there is a column without a queen, then the total number of queens is less than n

- Since we are placing n queens on an n × n board, there should be exactly one queen in each column
 - If there are two queens in a column, they attack each other. Hence at most one queen in each column
 - If there is a column without a queen, then the total number of queens is less than n
- For the same reason, there should be exactly one queen in each row

Solution is a Permutation

Solution is a Permutation

Solution is a Permutation

But Not Every Permutation is a Solution

But Not Every Permutation is a Solution

How to check whether a permutation is a solution?

Cells in the Same Diagonal

cells $[i_1, j_1]$ and $[i_2, j_2]$ are on the same diagonal, if and only if $|i_1 - i_2| = |j_1 - j_2|$

Is a Solution?

```
import itertools as it

def is_solution(perm):
    for (i1, i2) in it.combinations(range(len(perm)), 2):
        if abs(i1 - i2) == abs(perm[i1] - perm[i2]):
            return False

    return True

assert(is_solution([1, 3, 0, 2]) == True)
assert(is_solution([3, 1, 0, 2]) == False)
```

Brute Force Search Program

```
import itertools as it
def is solution (perm):
    for (i1, i2) in it.combinations(range(len(perm)), 2):
        if abs(i1 - i2) == abs(perm[i1] - perm[i2]):
            return False
    return True
for perm in it.permutations(range(8)):
    if is solution(perm):
        print (perm)
        exit()
```

Conclusion

• The program finds a solution for n = 8 immediately

Conclusion

- The program finds a solution for n = 8 immediately
- But already for n = 13 takes too long

Conclusion

- The program finds a solution for n = 8 immediately
- But already for n = 13 takes too long
- Next part: will optimize the program so that it is able to find a solution quickly even for n = 20

Outline

N Queens: Brute Force Search

N Queens: Backtracking

16 Diagonals

Main Idea of Backtracking

• Construct a permutation piece by piece

Main Idea of Backtracking

- Construct a permutation piece by piece
- Backtrack if the current partial permutation cannot be extended to a valid solution

Generating All Permutations

```
def generate permutations(perm, n):
    if len(perm) == n:
        print (perm)
        return
    for k in range(n):
        if k not in perm:
            perm.append(k)
            generate permutations (perm, n)
            perm.pop()
```

generate permutations (perm = [], n = 4)

Output

_	, 2, 3]	[2, 0, 1, 3]
[0, 1	, 3, 2]	[2, 0, 3, 1]
[0, 2	, 1, 3]	[2, 1, 0, 3]
[0, 2	, 3, 1]	[2, 1, 3, 0]
[0, 3	, 1, 2]	[2, 3, 0, 1]
[0, 3	, 2, 1]	[2, 3, 1, 0]
[1, 0	, 2, 3]	[3, 0, 1, 2]
[1, 0	, 3, 2]	[3, 0, 2, 1]
[1, 2	, 0, 3]	[3, 1, 0, 2]
[1, 2	, 3, 0]	[3, 1, 2, 0]
[1, 3	, 0, 2]	[3, 2, 0, 1]
[1, 3	, 2, 0]	[3, 2, 1, 0]

Idea

If the current (partial) permutation cannot be extended to a solution (i.e., it already contains two queens that attack each other), stop trying to extend it

Idea

If the current (partial) permutation cannot be extended to a solution (i.e., it already contains two queens that attack each other), stop trying to extend it

```
def can_be_extended_to_solution(perm):
    i = len(perm) - 1
    for j in range(i):
        if i - j == abs(perm[i] - perm[j]):
            return False
    return True
```

Resulting Program

```
def extend(perm, n):
    if len(perm) == n:
        print (perm)
        exit()
    for k in range(n):
        if k not in perm:
            perm.append(k)
            if can be extended to solution(perm):
                 extend(perm, n)
            perm.pop()
extend(perm = [], n = 20)
```

Summary

 Main idea of backtracking: cut dead ends of the recursion tree

Summary

- Main idea of backtracking: cut dead ends of the recursion tree
- Since many ends are dead, it works faster than a naive enumeration of all permutations

Outline

N Queens: Brute Force Search

N Queens: Backtracking

16 Diagonals

3×3 Grid: 6 Diagonals

Problem

In a 3×3 grid, draw 6 diagonals that do not touch each other.

3×3 Grid: 6 Diagonals

Problem

In a 3×3 grid, draw 6 diagonals that do not touch each other.

3×3 Grid: 6 Diagonals

Problem

In a 3×3 grid, draw 6 diagonals that do not touch each other.

4×4 Grid: 10 Diagonals

Problem

In a 4 \times 4 grid, draw 10 diagonals that do not touch each other.

4×4 Grid: 10 Diagonals

Problem

In a 4 \times 4 grid, draw 10 diagonals that do not touch each other.

5×5 Grid: 16 Diagonals

Problem

In a 5×5 grid, draw 16 diagonals that do not touch each other.

5×5 Grid: 16 Diagonals

Problem

In a 5 \times 5 grid, draw 16 diagonals that do not touch each other.

Exercise

Implement a backtracking procedure for solving this problem.

 Fill in the grid gradually (say, from bottom to top, from left to right)

- Fill in the grid gradually (say, from bottom to top, from left to right)
- For each cell consider three possibilities:

- Fill in the grid gradually (say, from bottom to top, from left to right)
- For each cell consider three possibilities:
 - 1. Diagonal from BL corner to TR corner

- Fill in the grid gradually (say, from bottom to top, from left to right)
- For each cell consider three possibilities:
 - 1. Diagonal from BL corner to TR corner
 - 2. Diagonal from BR corner to TL corner

- Fill in the grid gradually (say, from bottom to top, from left to right)
- For each cell consider three possibilities:
 - Diagonal from BL corner to TR corner
 - 2. Diagonal from BR corner to TL corner
 - 3. No diagonal

- Fill in the grid gradually (say, from bottom to top, from left to right)
- For each cell consider three possibilities:
 - 1. Diagonal from BL corner to TR corner
 - 2. Diagonal from BR corner to TL corner
 - 3. No diagonal
- Each time when a new diagonal is placed, check whether it conflicts with other diagonals. If it does, backtrack