Semantic Theory 2020 – Practice Exam Supplementary materials

1 Type Theory: Semantics

Let U is a non-empty set of entities. For every type τ , the domain of possible denotations D_{τ} is given by:

- $D_e = U$
- $D_t = \{0, 1\}$
- $D_{\langle \sigma, \tau \rangle}$ is the set of functions from D_{σ} to D_{τ} .

A model structure is a pair $M = \langle U_M, V_M \rangle$ such that U_M is a non-empty set of individuals, and V_M is a function assigning every non-logical constant of type τ a member of D_{τ} .

Interpretation:

- $[\![\alpha]\!]^{M,g} = V_M(\alpha)$ if α is a constant
- $[\![\alpha]\!]^{M,g} = g(\alpha)$ if α is a variable
- $[\alpha(\beta)]^{M,g} = [\alpha]^{M,g} ([\beta]^{M,g})$
- $[\![\lambda v\alpha]\!]^{M,g}$ = that function $f: D_{\sigma} \to D_{\tau}$ such that for all $a \in D_{\sigma}$, $f(a) = [\![\alpha]\!]^{M,g[v/a]}$ (for v a variable of type σ)
- $\bullet \ \ \llbracket \alpha = \beta \rrbracket^{M,g} = 1 \ \text{iff} \ \ \llbracket \alpha \rrbracket^{M,g} = \llbracket \beta \rrbracket^{M,g}$
- $\bullet \ \ \llbracket \neg \varphi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \varphi \rrbracket^{M,g} = 0$
- $[\![\varphi\wedge\psi]\!]^{M,g}=1$ iff $[\![\varphi]\!]^{M,g}=1$ and $[\![\psi]\!]^{M,g}=1$
- $[\![\varphi\vee\psi]\!]^{M,g}=1$ iff $[\![\varphi]\!]^{M,g}=1$ or $[\![\psi]\!]^{M,g}=1$
- $[\![\varphi \to \psi]\!]^{M,g} = 1$ iff $[\![\varphi]\!]^{M,g} = 0$ or $[\![\psi]\!]^{M,g} = 1$

- $[\exists v \varphi]^{M,g} = 1$ iff there is an $a \in D_{\tau}$ such that $[\![\varphi]\!]^{M,g[v/a]} = 1$ (for v a variable of type τ)
- $\llbracket \forall v \varphi \rrbracket^{M,g} = 1$ iff for all $a \in D_{\tau}$, $\llbracket \varphi \rrbracket^{M,g[v/a]} = 1$ (for v a variable of type τ)

2 Generalized Quantifiers

Definition 1 (Persistence: $\uparrow mon$). A determiner D is persistent in M iff: for all X, Y, Z: if D(X, Z) and $X \subseteq_M Y$, then D(Y, Z)

Definition 2 (Antipersistence: $\downarrow mon$). A determiner D is antipersistent in M iff: for all X, Y, Z: if D(X, Z) and $Y \subseteq_M X$, then D(Y, Z)

Definition 3 (Upward Monotinicity: $mon \uparrow$). A quantifier Q is upward monotonic (or: monotone increasing) in $M = \langle U, V \rangle$ iff Q is "closed under supersets", i.e.: for all $X, Y \subseteq U$: if $X \in Q$ and $X \subseteq Y$, then $Y \in Q$

Definition 4 (Downward Monotinicity: $mon \downarrow$). A quantifier Q is downward monotonic (or: monotone decreasing) in $M = \langle U, V \rangle$ iff Q is closed under inclusion: for all $X, Y \subseteq U$: if $X \in Q$ and $Y \subseteq X$, then $Y \in Q$

Definition 5 (Conservativity). A quantifier Q is conservative in $M = \langle U, V \rangle$ iff for every $A, B \subseteq U$: $D(A, B) \Leftrightarrow D(A, A \cap B)$

3 DRT: Syntax

A discourse representation structure (DRS) K is a pair $\langle U_K, C_K \rangle$ where U_K is a set of discourse referents, and C_K is a set of conditions. The set of well-formed conditions is defined as follows:

- $R(u_1,...,u_n)$, where R is an n-place relation and $u_i \in U_K$
- u = v, with $u, v \in U_K$
- u = a, with $u \in U_K$ and a is a proper name
- $K_1 \Rightarrow K_2$, where K_1 and K_2 are DRSs
- $K_1 \vee K_2$, where K_1 and K_2 are DRSs
- $\neg K_1$, where K_1 is a DRS

4 DRT: Embedding, verifying embedding

Let U_D be a set of discourse referents, $K = \langle U_K, C_K \rangle$ a DRS with $U_K \subseteq U_D$, and $M = \langle U_M, V_M \rangle$ a model structure of first-order predicate logic that is suitable for K. An embedding of U_D into M is a (partial) function from U_D to U_M that assigns individuals from U_M to discourse referents. An embedding f verifies the DRS K in M ($f \models_M K$) iff

- 1. $U_K \subseteq Dom(f)$, and
- 2. f verifies each condition $\alpha \in C_K$.

f verifies a condition α in M ($f \models_M \alpha$) in the following cases:

- $f \models_M R(u_1, ..., u_n)$ iff $\langle f(u_1), ..., f(u_n) \rangle \in V_M(R)$
- $f \models_M u = v \text{ iff } f(u) = f(v)$
- $f \models_M u = a \text{ iff } f(u) = V_M(a)$
- $f \models_M K_1 \Rightarrow K_2$ iff for all $g \supseteq_{U_{K_1}} f$ such that $g \models_M K_1$, there is a $h \supseteq_{U_{K_2}} g$ such that $h \models_M K_2$
- $f \models_M \neg K_1$ iff there is no $g \supseteq_{U_{K_1}} f$ such that $g \models_M K_1$
- $f \models_M K_1 \vee K_2$ iff there is a $g_1 \supseteq_{U_{K_1}} f$ such that $g_1 \models_M K_1$, or there is a $g_2 \supseteq_{U_{K_2}} f$ such that $g_2 \models_M K_2$.