NH C 8 JULY FE

SEQUENCE LISTING Duke University York, John D <120> NOVEL TARGETS FOR LITHIUM THERAPY AND TOXICITY TREATMENT <130> 180/158/2 <150> US 60/401480 <151> 2002-08-06 <160> 24 <170> PatentIn version 3.2 <210> <211> 2113 <212> DNA <213> Homo sapiens <220> <221> mRNA <222> (1)..(2113) <400> 1 ggaattcggc acgagaagct cggtactgga cacaacgagg gacctgggtc tacgataacg egettttget eeteetgaag tgtetttggt eeaaegttgt teeagagtgt accatggett ccagtaacac tgtgttgatg cggttggtag cctccgcata ttctattgct caaaaggcag gaatgatagt cagacgtgtt attgctgaag gagacctggg tattgtggag aagacctgtg caacagacet geagaceaaa getgacegat tggeacagat gageatatgt tetteattgg eceggaaatt eeceaaaete acaattatag gggaagagga tetgeettet gaggaagtgg atcaagaget gattgaagae agteagtggg aagaaataet gaageaacea tgeecatege agtacagtgc tattaaagaa gaagatctcg tggtctgggt tgatcctctg gatggaacca aggaatatac cgaaggtett ettgacaatg taacagttet tattggaatt gettatgaag gaaaagccat agcaggagtt attaaccagc catattacaa ctatgaggca ggaccagatg ctgtgttggg gaggacaatc tggggagttt taggtttagg cgcctttggg tttcagctga aagaagtccc tgctgggaaa cacattatca caactactcg atcccatagc aacaagttgg ttactgactg tgttgctgct atgaaccccg atgctgtgct gcgagtagga ggagcaggaa ataagattat teagetgatt gaaggeaaag eetetgetta tgtatttgea agteetggtt gtaagaagtg ggatacttgt gctccagaag ttattttaca tgctgtggga ggcaagttaa ccgatatcca tgggaatgtt cttcagtacc acaaggatgt gaagcatatg aactctgcag

gagtcctggc cacactgagg aattatgact actatgcaag ccgagttcca gaatctatta

aaaatgcact tgttccttaa aggaaagttt catttggccg ggcgcggtgg ctcatgcctg

taatcccagc actttgggag gccgaggcag gtggatcact tgagctcagg agtttgagac

cageetggge aatategtga gaeeccatet etacaaaaat acaaattaac tgggeateet

gtcatgcgcc tgtcatccca gctacttgag aggctgaagc agaagaatct cttgagcccg

60

180

240

300

360

420

480

600

660

720

780

840

900

960

1020

1080

1140

1200

gaaggcggag gttgcagtga gctgagatcg tgccactgca ctccagcctg agtgacagga 1320 gttaagccct gtctcagaaa aaaaacataa acccaaaaag tacttaaagt ttcatttact 1380 tactaggaaa agacttggtt ctcaaataat acattttaag attaattggg tagaattaga 1440 gttccacctt tatcattgtt gacagtgatt tatatttagt tatattta gaataaaaat 1500 taactaaata atttaacttg attaatacca ttactcaacc tgacaattga gttggagact 1560 tataaactca ttatggttat catgtgtttt cctgttgaat gtgaagaagt gagaaaacat 1620 ttgccaatga cagttaggcg tgcacactga ccattcactg ataaaccaga ttctgcctga 1680 atctgaaggg attgcttgta gcatagggtt tagtggcgtg atcttgggtc actgcggccc getteegggg tteatgette teetgeetag eteegggtag etgggaetge ageaeggeee 1800 acgctggtaa ttttttgtat gatggtgaga agttttcacc gtgttgccag gatggcttat 1860 cctgacatcg tgatctgtat gcctcggatc ccaaagtgca tgggatgaca gctgtgagcc 1920 accgcacttg gcttaaacca gatttcttta gggcacattt ttttggaatc tcactctgtt 1980 tttcacagta attttaaaaa cgttttatcc aattagaata tatatgatgt tattatatat 2040 gcttatgaaa cagatttatg agaaaagttt tttttaaata aattatttaa tccctaaaaa 2100 aaaaaaaaa aaa 2113

<210> 2

<211> 308

<212> PRT

<213> Homo sapiens

<220>

<221> PEPTIDE

<222> (1)..(308)

<400> 2

Met Ala Ser Ser Asn Thr Val Leu Met Arg Leu Val Ala Ser Ala Tyr 1 $$ 5 $$ 10 $$ 15

Ser Ile Ala Gln Lys Ala Gly Met Ile Val Arg Arg Val Ile Ala Glu 20 25 30

Gly Asp Leu Gly Ile Val Glu Lys Thr Cys Ala Thr Asp Leu Gln Thr 35 40 45

Lys Ala Asp Arg Leu Ala Gln Met Ser Ile Cys Ser Ser Leu Ala Arg 50 60

Lys Phe Pro Lys Leu Thr Ile Ile Gly Glu Glu Asp Leu Pro Ser Glu 65 70 75 80

Glu Val Asp Gln Glu Leu Ile Glu Asp Ser Gln Trp Glu Glu Ile Leu 85 90 95

Lys Gln Pro Cys Pro Ser Gln Tyr Ser Ala Ile Lys Glu Glu Asp Leu 100 105 110

Val Val Trp Val Asp Pro Leu Asp Gly Thr Lys Glu Tyr Thr Glu Gly 115 120 125

Leu Leu Asp Asn Val Thr Val Leu Ile Gly Ile Ala Tyr Glu Gly Lys 130 140

Ala Ile Ala Gly Val Ile Asn Gln Pro Tyr Tyr Asn Tyr Glu Ala Gly 145 150 155 160

Pro Asp Ala Val Leu Gly Arg Thr Ile Trp Gly Val Leu Gly Leu Gly 165 170 175

Ala Phe Gly Phe Gln Leu Lys Glu Val Pro Ala Gly Lys His Ile Ile 180 185 190

Thr Thr Arg Ser His Ser Asn Lys Leu Val Thr Asp Cys Val Ala 195 200 205

Ala Met Asn Pro Asp Ala Val Leu Arg Val Gly Gly Ala Gly Asn Lys 210 215 220

Ile Ile Gln Leu Ile Glu Gly Lys Ala Ser Ala Tyr Val Phe Ala Ser 225 230 235 240

Pro Gly Cys Lys Lys Trp Asp Thr Cys Ala Pro Glu Val Ile Leu His
245 250 255

Ala Val Gly Gly Lys Leu Thr Asp Ile His Gly Asn Val Leu Gln Tyr 260 265 270

His Lys Asp Val Lys His Met Asn Ser Ala Gly Val Leu Ala Thr Leu 275 280 285

Arg Asn Tyr Asp Tyr Tyr Ala Ser Arg Val Pro Glu Ser Ile Lys Asn 290 295 300

Ala Leu Val Pro

<210> 3

<211> 27

<212> PRT

<213> Artificial

<220>

<223> Li-sensitive sequence uniting motif.

<220>

<221> MISC_FEATURE

```
<222>
      (2)..(2)
<223> X is any number of integers of any amino acid.
<220>
<221> MISC_FEATURE
<222>
      (5)..(5)
<223> X is any number of integers of any amino acid.
<220>
<221> MISC_FEATURE
<222>
      (8) . . (8)
<223>
      X is isoleucine or an amino acid that can be conservatively
       substituted in place thereof.
<220>
<221> MISC_FEATURE
<222>
      (10)..(10)
<223>
      X is glycine or an amino acid that can be conservatively
       substituted in place thereof.
<220>
<221>
      MISC_FEATURE
<222>
      (11)..(11)
<223> X is threonine or an amino acid that can be conservatively
       substituted in place thereof.
<220>
<221> MISC_FEATURE
<222>
      (12)..(12)
<223> X is any number of integers of any amino acid.
<220>
<221> MISC_FEATURE
<222>
      (13)..(13)
<223> X is tryptophan or an amino acid that can be conservatively
       substituted in place thereof.
<220>
<221>
      MISC_FEATURE
<222>
       (14) . . (14)
<223> X is aspartic acid or an amino acid that can be conservatively
       substituted in place thereof.
<220>
<221> MISC_FEATURE
<222>
      (15)..(25)
<223> X is any amino acid.
<400> 3
Asp Xaa Glu Glu Xaa Asp Pro Xaa Asp Xaa Xaa Xaa Xaa Xaa Xaa
                5
                                    10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Gly
            20
<210>
<211>
      290
<212>
      PRT
<213> Artificial
<220>
<223> Li-sensitive sequence uniting motif for Impasel.
```

```
<220>
<221> MISC_FEATURE
<222> (1)..(46)
<223> X is any amino acid.
<220>
<221> MISC_FEATURE
<222> (48)..(69)
<223> X is any amino acid.
<220>
<221> MISC_FEATURE
<222> (72)..(89)
<223> X is any amino acid.
<220>
<221> MISC_FEATURE
<222> (96)..(218)
<223> X is any amino acid.
<220>
<221> MISC_FEATURE
<222> (221)..(231)
<223> X is any amino acid.
<220>
<221> MISC FEATURE
<222> (234)..(290)
<223> X is any amino acid.
<400> 4
10
40
Xaa Xaa Xaa Xaa Clu Glu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Pro Ile Asp Gly Thr Xaa
         85
100
                   105
120
```

135

145 150 155 170 195 200 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Asp Xaa Xaa Xaa 210 215 220 Xaa Xaa Xaa Xaa Xaa Xaa Gly Gly Xaa Xaa Xaa Xaa Xaa Xaa 230 235 250 260 265 280 Xaa Xaa 290 <210> 5 <211> 399 <212> PRT <213> Artificial <220> <223> Li-sensitive sequence uniting motif for 1ptase. <220> <221> MISC_FEATURE <222> (1)..(53) <223> X is any amino acid. <220> <221> MISC_FEATURE <222> (55)..(78) <223> X is any amino acid.

<220>

<220>

<221> MISC_FEATURE <222> (81)..(152)

<223> X is any amino acid.

<222> (159)..(314) <223> X is any amino acid.

<220>

<221> MISC FEATURE

<222> (317)..(327)

<223> X is any amino acid.

<220>

<221> MISC_FEATURE

<222> (330)..(399)

<223> X is any amino acid.

<400> 5

55

120

135

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Pro Ile Asp Ser Thr Xaa Xaa 145

165 170

185

Xaa	Xaa Xaa											
Xaa	Xaa Xaa 240											
Xaa	Xaa Xaa 255											
Xaa	Xaa Xaa											
Xaa	Xaa Xaa											
Xaa	Xaa Xaa											
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Asp Xaa Xaa 305 310 315	Xaa Xaa 320											
Xaa Xaa Xaa Xaa Xaa Xaa Gly Gly Xaa Xaa Xaa Xaa Xaa 325 330	Xaa Xaa 335											
Xaa	Xaa Xaa											
Xaa	Xaa Xaa											
Xaa	Xaa Xaa											
Xaa	Xaa											
<210> 6 <211> 338 <212> PRT <213> Artificial												
<220> <223> Li-sensitive sequence uniting motif for Fbpase1.												
<220> <221> MISC_FEATURE <222> (1)(74) <223> X is any amino acid.												
<220> <221> MISC_FEATURE <222> (76)(97) <223> X is any amino acid.												

<220 <221 <222 <223	l>	(100	_FEAT	L18)	no ac	cid.									
<220> <221> MISC_FEATURE <222> (125)(279) <223> X is any amino acid.															
<220> <221> MISC_FEATURE <222> (282)(292) <223> X is any amino acid.															
<220> <221> MISC_FEATURE <222> (295)(338) <223> X is any amino acid.															
<400)> (5													
Xaa 1	Xaa	Xaa	Xaa	Xaa 5	Xaa	Xaa	Xaa	Xaa	Xaa 10	Xaa	Xaa	Xaa	Xaa	Xaa 15	Xaa
Xaa	Xaa	Xaa	Xaa 20	Xaa	Xaa	Xaa	Xaa	Xaa 25	Xaa	Xaa	Xaa	Хаа	Хаа 30	Xaa	Xaa
Xaa	Xaa	Xaa 35	Xaa	Xaa	Xaa	Xaa	Xaa 40	Xaa	Xaa	Xaa	Xaa	Xaa 45	Xaa	Xaa	Xaa
Xaa	Xaa 50	Xaa	Xaa	Xaa	Xaa	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Xaa	Xaa	Xaa	Xaa
Xaa 65	Xaa	Xaa	Xaa	Xaa	Xaa 70	Xaa	Xaa	Xaa	Xaa	Asp 75	Xaa	Xaa	Xaa	Xaa	Xaa 80
Xaa	Xaa	Xaa	Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	Xaa 90	Xaa	Xaa	Xaa	Xaa	Xaa 95	Xaa
Xaa	Glu	Glu	Xaa 100	Xaa	Xaa	Xaa	Хаа	Xaa 105	Xaa	Xaa	Xaa	Xaa	Xaa 110	Xaa	Xaa
Xaa	Xaa	Хаа 115	Xaa	Xaa	Xaa	Asp	Pro 120	Leu	Asp	Gly	Ser	Xaa 125	Xaa	Xaa	Xaa
Xaa	Xaa 130	Xaa	Xaa	Xaa	Xaa	Xaa 135	Xaa	Xaa	Xaa	Xaa	Xaa 140	Xaa	Xaa	Xaa	Xaa
Xaa 145	Xaa	Xaa	Xaa	Xaa	Xaa 150	Xaa	Xaa	Xaa	Xaa	Xaa 155	Xaa	Xaa	Xaa	Xaa	Хаа 160

хаа	хаа	хаа	180	Xaa	Xaa	Xaa	Xaa	Xaa 185	Xaa	Xaa	Xaa	Xaa	Xaa 190	Xaa	Xaa		
Xaa	Xaa	Xaa 195	Xaa	Xaa	Xaa	Xaa	Xaa 200	Хаа	Xaa	Xaa	Xaa	Xaa 205	Xaa	Xaa	Xaa		
Xaa	Xaa 210	Xaa	Xaa	Xaa	Xaa	Xaa 215	Xaa	Xaa	Xaa	Xaa	Xaa 220	Xaa	Xaa	Xaa	Xaa		
Xaa 225	Xaa	Xaa	Xaa	Xaa	Xaa 230	Xaa	Xaa	Xaa	Xaa	Xaa 235	Xaa	Xaa	Xaa	Xaa	Xaa 240		
Xaa	Xaa	Xaa	Xaa	Xaa 245	Xaa	Xaa	Xaa	Xaa	Xaa 250	Xaa	Xaa	Xaa	Xaa	Xaa 255	Xaa		
Xaa	Xaa	Xaa	Xaa 260	Xaa	Xaa	Xaa	Xaa	Xaa 265	Xaa	Xaa	Xaa	Xaa	Xaa 270	Xaa	Xaa		
Xaa	Xaa	Xaa 275	Xaa	Xaa	Xaa	Xaa	Tyr 280	Glu	Xaa	Xaa	Xaa	Xaa 285	Xaa	Xaa	Xaa		
Xaa	Xaa 290	Xaa	Xaa	Gly	Gly	Xaa 295	Xaa	Xaa	Xaa	Xaa	Xaa 300	Xaa	Xaa	Xaa	Xaa		
Xaa 305	Xaa	Xaa	Xaa	Xaa	Xaa 310	Xaa	Xaa	Xaa	Xaa	Xaa 315	Xaa	Xaa	Xaa	Xaa	Xaa 320		
Xaa	Xaa	Xaa	Xaa	Xaa 325	Xaa	Xaa	Xaa	Xaa	Xaa 330	Xaa	Xaa	Xaa	Xaa	Xaa 335	Xaa		
Xaa	Xaa																
<210)> '	7															
<212		53 ONA															
<21		artif	Eicia	al													
<220)>																
<22	3> !	5' D1	IA PC	CR pr	rimer	: .											
<400> 7 ggatccgagc tcgaattcca ccatggagat ccccgggagc ctgtgcaaga aag 5											53						
<210		3															
	L> ! 2> I																
<213> artificial																	
<220																	
<223	3> 5	5' DN	IA PO	CR pi	imer												
<400> 8											_						
COCTAI	CCOIL	CCIS	ccac	, C T C C		10000	·~~~~	7 7 2 7	***	1500	OFF:	2020			•		

```
<210> 9
<211> 49
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer
agatetttea attgaagett gtegaceage atgtegggga teaagaage
                                                                       49
<210> 10
<211> 48
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer.
<400> 10
agatctaagc ttccgcggtc gacctggagc caaaggctta gttcttct
                                                                       48
<210> 11
<211> 31
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer
<400> 11
ggatccatgc ctgctcctca cggtggtatt c
                                                                       31
<210> 12
<211> 43
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer.
<400> 12
ccgcggtcga cgcggccgcg gtcgatcatg aattttgccc tac
                                                                       43
<210> 13
<211> 31
<212> DNA
<213> artificial
<223> 5' DNA PCR primer.
<400> 13
ggatccaagc acactgtaca ccaatggcta c
                                                                       31
<210> 14
<211> 42
<212> DNA
<213> artificial
<220>
```

```
<223> 5' DNA PCR primer.
gcggccgccg cggtcgaccg gatcagaatt tcacggtaat cc
                                                                      42
<210> 15
<211> 31
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer.
<400> 15
atcgatcata tggagccctt gcgtaaacca c
                                                                      31
<210> 16
<211> 22
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer
<400> 16
tcatatttga cagcggaacg tg
                                                                      22
<210> 17
<211>
      981
<212> DNA
<213> artificial
<220>
<223> Fragment of BPntase genomic DNA located between exons 5 and 6
       with 5' and 3' engineered restriction sites.
gtagcacctc acatactctc ccagctccag agctaggccc ctcctgggga atcactgttg
                                                                      60
tacacttcct ttcctgaggg actgtgctga catgtctgac tgggctagag aaatgctcca
                                                                     120
ccacccctgg tcccatagca tcccctcacc tgaggttgtc acaggtaaga aaaccagaag
                                                                     180
gcatcgaatt aaatccagag gtgtaaaagt caggaggagt tgtgtgagag ctcacacctg
                                                                     240
taatctcagc acactggggc agagggactg ctttgagttt gaggccatct tgagtgctat
                                                                     300
acatggcaag ttctgggtca gcttgggtta gagcaagacc ttttctaggc aaagcaagac
                                                                     360
attagtcaga agaacccagt ctcagagctg gacttcgggt tttatttgtt tgtttgtttg
                                                                     420
tttttatttt ttgagacagg gtttctctgt gtagccctgg ttgtcctggc actcactttg
                                                                     480
tagaccagac tggcctcgaa ctcagaaatc tgcctgcctc tgcctcccga gtgctgggat
                                                                     540
taaaggtgtg cgccaccact gcctggctta gacttcaagt tttaaaagcc tagagttgta
gttttgaaat aaagatctgc attgagaact tgtgaggctg aggcaggaag actgtgaggt
                                                                     660
cagectggee tteacagtga gtttcaggte agectgagat agaggageag tgtgaggeea
                                                                     720
gaaggacccc acaaagaaag acctccacag cgctgcttct aacgggtcca gcttcgagag
                                                                     780
```

gctttctcac agctgccaga gagaatgttg ttggcccctg gaggagatag agtgatagtg

according the first according to the first ac
atgcatatgt actgtgaaaa tgtgtgagag gcagtgtgtt cgtatgtgtg tctgtgagta 960
taacccatgc gtatgtaatc t 981
<210> 18 <211> 35 <212> DNA <213> artificial
<220> <223> 5' DNA PCR primer
<400> 18 ggcgcgccgt agcacctcac atactctccc agctc 35
<210> 19 <211> 34 <212> DNA <213> artificial
<220> <223> 3' DNA PCR primer
<400> 19 ggcgcgccag attacatacg catgggttat actc 34
<210> 20 <211> 4858 <212> DNA <213> artificial
<pre><220> <223> Fragment of the genomic BPntase sequence with engineered 5' and 3' flanking restriction sites.</pre>
<400> 20 tggcgagctt gcttattctg ctttcagagt atggggttgt ataaagcacg tggcgccaca 60
ctggggtttc ccgactctta gcccatttaa agcaggttgg aatctagagc gttatgaaag 120
agtttctcaa ttagagaaga gaatattcca aataatttaa aagcaccttt gcaaacttga 180
actgttgtgg agctgggaat gcagttcagt ggtagtgcct gcttggtgtg tgtcaggggc 240
gtgtgtgatc tctatcagca cacacacac cacacacac cacgcacgca cgcacacaca
cacgcacgca cacacacacg cacacacgca cgcacacacg cgcgcacaca cacacaca
cacacacaca cacacacget gttttaaact atgattgttt attggtatac agtttcacac 420
ggtagtacaa gctgatctca gattcatggc tgtccttcta tgtcctgata ttagagccgt 480
gcagtgctat ccagcctcac ttctcagtct tttttgtttt ttgttttgtt
ttgttttatt tttttgagac agggtttctc tgtgaagccc tggctgtcct ggaactcact 600
ctgtagacca ggctggcctc gaactcagaa atccgcctgc ctctgcctcc cgagtgctgg 660
gattaaaggc gtgcgccgcc acgcccggcg tcacttctca gtcttagctg ctgttacttc 720
tctgagaagc agcgagggcc ctcactagtt gatccctggg ctcgggtctg cgttatactg 780

gggagtcgga agactggtta ccccgatttg tactgatacg gagatttgca ttcttggtta 840 cagacctcgg ccaccgacct gcagaccaaa gccgaccgct tggtgcagat gagcatatgc 900 tettecetgg eceggaagtt ecegaagetg accateatag gggaagaggt gagaggegeg 960 cgccacttgg attcataccc tacctgccat tgagccgtag gttatggtca gtcttagcgt 1020 tggcactaac gttccaacac aaagcgatcg ttttccttag gggaaaaatc tgacttaatg 1080 atattttggt ccacttaatg ggctaagtct ccatttctag tgatgggagc tatggtcacc 1140 attgtaatac catacgatgg actcagtggc agaaagtcgc ctactgtatg tgaggctcta 1200 aggtgggaga catctcagtc ataagaccat gtggctcaca tatgtgaggt cctgggttgg 1260 agcccctgca tcagcagtta tatgtgaaga gtcggcaagg ttctggaact ctgagatgac 1320 tgggcttggt ttgcttgtct gcttgtccgt catttcagat tggacttgtg tacttacaac 1380 tgaaacaata gactatgttt tagttttgtt ttttattaag ttagttcgtt gacaatttag 1440 tgcatacatg taatacattc tgatttccct catacttcgg attctcctcc cctccccttc 1500 ttccttgccc gcccctctt cccacttagt ttattcagga tcatccatgt gaccatttca 1560 ttgggaccat ccattggtca tcagtggtgc acagctgaaa gcaatggctt cccctttccc 1620 tgaatcagtc tgtaggaaat agttctgcag tgaaggagag agagtgctgg tctgcatctc 1680 tectecacet etgettaact gttgggacte attetttete agacecagea cagteatetg 1740 gttgttgaga gttcatgctt gcactggctc gcaccccagt aatgacgttt ggcagccctt 1800 eteccegitt ticagetett accatettic tgeceetete etacaaagee tggtaaacet 1860 tagaggggat aaatgtctaa atatcttatt cagagctgag caatcagctg taagtttgtc 1920 ttattaggcc ttcatatatc tctcccttca ttatagtcct ctagaaagag aatcttctct 1980 gactaagget gagtggtaat tegetatgtg aataaacate tatatttagg aagetgtttg 2040 acactgtgtg actttagtaa agctgtagag tttaactccc taagaggact catggcctcc 2100 ctttttatac actgagtggg tctccagaca tggagtgtgt ttaacgtact aagcgtggat 2160 teccatgetg gagtageest cacattegat caagageagg tagttacees ccaacagtge 2220 cgacactgtt gttgtaccag tgagcacagc ttgcctgaca gatggtgctg tagtttgtca 2280 ggtgcacaga tgggcaatac tttcttcccc agcagcctgc agagaaaatg tgttcaggtc 2340 tgacttettt gteteatgea accaaagtgt gtggtgteat tageagtaag gtettageat 2400 ctaatgctag tgggcaacca agaaaaatga caatgcctat attgtcttag ggcagtggga 2460 cctccgtgac caacttatca ggaggcacca cacacacagc aggtggggtt ttaatgaagg 2520 ataatttcac aggggagcag tttctaggtc tctctcttcc aacttaaaaa aatgcatcct 2580 agttattgtg agtaaattga aaatcaacag ataagttagt ttccaacagt gcgatgtcag 2640 gcctctggac gtgtggaaga cagcagtatt ccatgtactg ggatagctgg ccatgtgccg 2700 gaacagctgg gctacggatg ctgttcttag tgttgtaagg aattgccaca ccagtttcca 2760

tatggctgca ctggtttccc accagcaatg aaggagtccc tcttttccac cctcaccagc 2820 actgcctgtc ttgaggtttc ttacggattg ccattctgac aggacaagat gaaatcttag 2880 agcagettta atttgtaett eettttgtge taatgatgte aaataetttt taaaatgttt 2940 attitteaat cetattaett tigagaatte teigtieagt teeatageee attittigetg 3000 ttgtttgttg acacagggtc tttctctatg tatccctggc tatgtagaac agagttacct 3060 caaagctgac agagatccat ctacttttac ctcccaggtg ctgggattag aggcatgcag 3120 atttttaaag ttattaatat ttatttgtgt acctgtgtct gatctgtgta tgtggatgga 3180 tgttttgctt gcctggatag ctctgctcca catgtgagcc agttacctgc ggtggccaga 3240 agagggcatc ggatgccctg gaactggagt taggatggtt gtgagctgcc tgtgggtgct 3300 cgagaacaag cctgggtcct cgggagagca gcgttgttct tacctcctag cccactctcc 3360 ageteegggg gttgattett gtteaagaca geagagaagg etegagette eetettetee 3420 gtgtagacat ccagtcttcc cagcgccagt ttgagatgct ccctctccct tcgtgtattt 3480 ttggtgtgtt tttcaagaat caggtggctg taattgtatg gcattagtcc ggggtttcca 3540 ttctgttgca ctgatctaca catcggtttt tgtgccagca ccgtgccctt tgttaccctg 3600 attetgtagt gttattttgg etcagaattt ttttggetge etgggeettt tgtgttttge 3660 atcactcatt ctaccgatcc atgagcaggg agacctttca tctactagtc tctgccttga 3720 tttctttctt tagagttttt tgagacaggg tctcacatat aatcttggct gaccaggaac 3780 tcagtgtgta gaccaggctg gcctcaaact cacagagttc tgcctgcctc tgccccctga 3840 gtgctggggt ttaaggctta tgccactggg cctgggattt tctctgattt taaagttttc 3900 attgtagagg ttcttcactt ctttgcttgg gtttcctctg aggtactttg tttattaagg 3960 ctgctataaa tgggattgtt tttctgattt cttcttcacc ttgtttgcca ttggtataaa 4020 aaagcatgcc atgtgtgtat cctgacactg cagaagtgtt agtaattcta ggagctttct 4080 ggtggagact gtagggtctc ccatgtacag cattatattc tctgtagaca ggaacacgct 4140 gtcttcttta tttcctacct atattccttt cccatcttgt ttttattgtt ttagctaaga 4200 ctaaaacacc aaatcgatgg ccctgtctcg cttctagttt taatgttgat gtttgtttgg 4260 cagggtctcg ttacttagcc caggctggcc ttgaattctt cctgcttcat ccaacccagt 4320 gctgggatta ccagtacaca ggactctata aaaaggtttt tgtttttgtt attgttttta 4380 tttctctctt ctctgcactc acattgcccc tctggtgctg gagatcatgc cagagtctcg 4440 tgtgtgctgg gcaattactg accactgagc tggatcccag gtcccttgtg taactcaatg 4500 ccaagttcat tcccactgtc tcagcctccc agcattccaa aggaaattgg ggaaacagaa 4560 atatgtaaag gaaactggat gtatttacaa ttttaggtaa acagatatga ggaaaaggtt 4620 ttgggttcct tctagacgtt cctgagtcag ggtttacatg tggctaggac ccagccgtga 4680 ggctttctgt gaggatgctg ttcctcgtgc tcatacttca aactaggatg gaagctcctg 4740 ggccaatcct agctgctcac ttcctctctt tcggctcctg ccagtcttat gctaggtttg 4800

ctataa	aaagc tctaaatatt agagaaatta aacagaagtg gct	aggcgtc	ccattgct	4858
<210>	21			
<211>				
<212>				
	artificial			
<220>				
<223>	PCR DNA primer			
<400>	21			
gcggcc	egetg gegagettge ttattetget tteag			35
<210>	22			
<211>	32			
<212>	DNA			
<213>	artificial			
<220>				
<223>	PCR DNA primer			
<400>	22			
	agca atgggacgcc tagccacttc tg			32
<210>	23			
<211>	24			
<212>	DNA			
<213>	artificial			
<220>	·			
	oligonucleotide for PCR screen			
<400>	23			
	ccttg ggacaagaga tcag			24
<210>	24			
<211>	24			
<212>				
<213>	artificial			
<220>				
<223>	DNA oligonucleotide for PCR screen			
<400>	24			
	agaac ggagccggtt ggcg			24
ccaaa	igaac ggagccggtt ggcg			24