Optimal Binary Search Trees

Dynamic programming.

Operation Research.

The goal of the maximum weight independent set problem (MWIS) is to compute, for a given set of geometric objects with certain weights, a subset of disjoint (non-overlapping) objects with maximum total weight.

There is a PTAS (polynomial-time algorithm scheme) for MWIS in disk graphs, provided that a disk representation of the graph is given. The running-time for achieving approximation ratio $1 + \epsilon$ is $n^{O(1/\epsilon^2)}$ for a disk graph with n disks.

Details:

• Executed on: Ter Out 07 09:26:48 BRT 2014.

• Number of disks: 1.

• Execution time: 1,132668 SECONDS.

• Memory required: 172 bytes.

Nodes

	Name	Probabilities
1	A0	0,00

Table 1: Nodes probabilities.

Contents

O	Optimal Binary Search Trees					
	Nodes	1				
	Execution	3				
	Analisis	4				
	Digest	5				

Execution

	1	2	
0	0,00	340282346638528859811704183484516925440,00	
1		0,00	

Table 2: Table A.

	1	2
0	0	0
1		0

Table 3: Table R.

Analisis

Figure 1: Optimal search tree.

Digest

 $\bullet \ \, {\rm Total \ nodes}: \, 1.$

 $\bullet \ \mathrm{Levels}: \ 1.$

 $\bullet \ \operatorname{Expected \ cost}: 340282346638528859811704183484516925440, 00.$