In [1]: import pandas as pd

In [2]: data=pd.read_csv("/home/placement/Downloads/Titanic Dataset.csv")

In [3]: data.describe()

Out[3]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [4]: data.head()

Out[4]:

		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
-	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In	[5]:	data.isna().su	um()
0ut	[5]:	PassengerId	0
		Survived	0
		Pclass	0
		Name	0
		Sex	0
		Age	177
		SibSp	0
		Parch	0
		Ticket	0
		Fare	0
		Cabin	687
		Embarked	2
		dtype: int64	

```
In [6]: data['PassengerId'].unique()
Out[6]: array([ 1,
                       2,
                                      5,
                                            6,
                                                      8,
                                                           9,
                                                               10,
                                                                     11,
                                                                          12,
                            3,
                                                 7,
                                                                               13.
                                 4,
                                                          22,
                      15.
                           16,
                                17,
                                     18,
                                           19,
                                                20,
                                                     21,
                                                               23,
                                                                     24,
                                                                          25.
                                                                               26.
                 14,
                                30,
                                                33,
                                                     34,
                                                          35,
                 27,
                      28,
                           29,
                                     31,
                                           32,
                                                               36,
                                                                     37,
                                                                          38,
                                                                               39,
                 40.
                      41,
                           42,
                                43,
                                     44,
                                           45,
                                                46,
                                                     47,
                                                          48,
                                                               49,
                                                                     50,
                                                                          51.
                                                                               52.
                      54,
                           55,
                                56,
                                           58,
                                                59,
                                                          61,
                                                               62,
                 53,
                                     57,
                                                     60,
                                                                     63,
                                                                          64,
                                                                               65,
                                          71,
                                                72,
                 66,
                      67,
                           68,
                                69,
                                     70,
                                                     73,
                                                          74,
                                                               75,
                                                                     76,
                                                                          77,
                                                                               78,
                                           84,
                                                          87,
                      80.
                           81,
                                82,
                                     83,
                                                85,
                                                     86,
                                                               88,
                                                                     89,
                      93,
                           94,
                                95,
                                     96,
                                          97,
                                                98,
                                                     99, 100, 101, 102, 103, 104,
                 92,
                105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
                118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
                131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
                144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
                157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
                170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
                183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
                196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
                209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
                222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
                235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
                248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
                261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
                274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,
                287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299
                300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,
                313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
                326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,
                339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351,
                352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,
                365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377,
                378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390,
                391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403,
                404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416,
                417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429
                430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442,
                443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455,
                456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,
                469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481,
                482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494,
                495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507,
```

```
508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520,
521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533,
534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546,
547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,
560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572,
573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585,
586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598,
599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611,
612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624,
625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637,
638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650,
651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663,
664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676,
677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689,
690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702,
703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715,
716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728,
729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741,
742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754,
755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767,
768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780,
781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793,
794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806,
807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819,
820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832,
833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845,
846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858,
859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871,
872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884,
885, 886, 887, 888, 889, 890, 891])
```

```
In [7]: data['Survived'].unique()
Out[7]: array([0, 1])
In [8]: data['Pclass'].unique()
Out[8]: array([3, 1, 2])
```

```
In [9]: data['Age'].unique()
Out[9]: array([22. , 38. , 26. , 35. ,
                                         nan, 54.
                                                 , 2. , 27. , 14. ,
              4. . 58.
                        , 20. , 39. , 55. , 31. , 34.
                                                        , 15.
                        , 40. , 66. , 42. , 21.
                                                  , 18.
                                                        , 3.
                        , 65. , 28.5 , 5. , 11.
                                                  , 45.
                                                        , 17.
                        , 0.83, 30.
                                    , 33. , 23.
                                                 , 24.
              16. , 25.
                                                        , 46.
              71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
              51. , 55.5 , 40.5 , 44. , 1. , 61. , 56.
              45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
              60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
              70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
```

In [10]: datal=data.drop(['PassengerId','Ticket','Cabin','Name','SibSp','Parch'],axis=1)
 datal

Out[10]:

		Survived	Pclass	Sex	Age	Fare	Embarked
_	0	0	3	male	22.0	7.2500	S
	1	1	1	female	38.0	71.2833	С
	2	1	3	female	26.0	7.9250	S
	3	1	1	female	35.0	53.1000	S
	4	0	3	male	35.0	8.0500	S
	886	0	2	male	27.0	13.0000	S
	887	1	1	female	19.0	30.0000	S
	888	0	3	female	NaN	23.4500	S
	889	1	1	male	26.0	30.0000	С
	890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
1 list(data1)
In [11]:
Out[11]: ['Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked']
In [12]: data1.isna().sum()
Out[12]: Survived
                       0
         Pclass
                       0
         Sex
                       0
         Age
                     177
         Fare
                       0
         Embarked
                       2
         dtype: int64
In [13]: data1.shape
Out[13]: (891, 6)
```

```
In [14]: data1['Sex']=data1['Sex'].map({'male':1,'female':0})
    data1
```

Out[14]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

```
In [15]: data1['Pclass'].unique()
```

Out[15]: array([3, 1, 2])

/tmp/ipykernel_11595/2983102192.py:1: FutureWarning: The default value of numeric_only in DataFrame.median
is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' i
s deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.
 data2=data1.fillna(data1.median())

Out[16]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	28.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

Out[17]: <Axes: >


```
In [18]: plt.hist(data1['Age'])
```



```
In [20]: data2.isna().sum()
Out[20]: Survived
                     0
         Pclass
                     0
         Sex
                     0
         Age
         Fare
         Embarked
         dtype: int64
In [21]: data2.fillna(35,inplace=True)
In [22]: data2.isna().sum()
Out[22]: Survived
                     0
         Pclass
                     0
         Sex
                     0
         Age
         Fare
         Embarked
         dtype: int64
In [23]: data2.describe()
```

Out[23]:

	Survived	Pclass	Sex	Age	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	0.647587	29.361582	32.204208
std	0.486592	0.836071	0.477990	13.019697	49.693429
min	0.000000	1.000000	0.000000	0.420000	0.000000
25%	0.000000	2.000000	0.000000	22.000000	7.910400
50%	0.000000	3.000000	1.000000	28.000000	14.454200
75%	1.000000	3.000000	1.000000	35.000000	31.000000
max	1.000000	3.000000	1.000000	80.000000	512.329200

13/22

```
In [24]: data['Age'].unique()
Out[24]: array([22. , 38. , 26. , 35. , nan, 54. , 2. , 27. , 14. ,
                         , 20. , 39. , 55. , 31.
                  , 58.
                                                  , 34.
                                                        , 15.
                         , 40. , 66. , 42. , 21.
                                                  , 18.
                         , 65.
                               , 28.5 , 5. , 11.
                                                   , 45.
                                                         , 17.
                         , 0.83, 30. , 33. , 23.
                                                  , 24.
              71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
              51. , 55.5 , 40.5 , 44. , 1. , 61.
                                                  , 56.
              45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
              60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
              70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
In [25]: data3=data2.groupby(['Age']).count()
        data3
```

Out[25]:

	Carvivca	1 01433	OCA	· u·c	Linbanca
Age					
0.42	1	1	1	1	1
0.67	1	1	1	1	1
0.75	2	2	2	2	2
0.83	2	2	2	2	2
0.92	1	1	1	1	1
70.00	2	2	2	2	2
70.50	1	1	1	1	1
71.00	2	2	2	2	2
74.00	1	1	1	1	1
80.00	1	1	1	1	1

Survived Pclass Sex Fare Embarked

88 rows × 5 columns

```
In [26]: data2['Pclass']=data2['Pclass'].map({1:'F',2:'S',3:'T'})
```

In [27]: data2.head(10)

Out[27]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Т	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Т	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Т	1	35.0	8.0500	S
5	0	Т	1	28.0	8.4583	Q
6	0	F	1	54.0	51.8625	S
7	0	Т	1	2.0	21.0750	S
8	1	Т	0	27.0	11.1333	S
9	1	S	0	14.0	30.0708	С

Out[28]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	0	1
										•••	
886	0	1	27.0	13.0000	0	1	0	0	0	0	1
887	1	0	19.0	30.0000	1	0	0	0	0	0	1
888	0	0	28.0	23.4500	0	0	1	0	0	0	1
889	1	1	26.0	30.0000	1	0	0	0	1	0	0
890	0	1	32.0	7.7500	0	0	1	0	0	1	0

891 rows × 11 columns

In [29]: cor=data4.corr() cor

Out[29]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
Survived	1.000000	-0.543351	-0.064910	0.257307	0.285904	0.093349	-0.322308	0.060095	0.168240	0.003650	-0.155660
Sex	-0.543351	1.000000	0.081163	-0.182333	-0.098013	-0.064746	0.137143	-0.064296	-0.082853	-0.074115	0.125722
Age	-0.064910	0.081163	1.000000	0.096688	0.323896	0.015831	-0.291955	0.075229	0.030248	-0.031415	-0.014665
Fare	0.257307	-0.182333	0.096688	1.000000	0.591711	-0.118557	-0.413333	0.045646	0.269335	-0.117216	-0.166603
Pclass_F	0.285904	-0.098013	0.323896	0.591711	1.000000	-0.288585	-0.626738	0.083847	0.296423	-0.155342	-0.170379
Pclass_S	0.093349	-0.064746	0.015831	-0.118557	-0.288585	1.000000	-0.565210	-0.024197	-0.125416	-0.127301	0.192061
Pclass_T	-0.322308	0.137143	-0.291955	-0.413333	-0.626738	-0.565210	1.000000	-0.052550	-0.153329	0.237449	-0.009511
Embarked_35	0.060095	-0.064296	0.075229	0.045646	0.083847	-0.024197	-0.052550	1.000000	-0.022864	-0.014588	-0.076588
Embarked_C	0.168240	-0.082853	0.030248	0.269335	0.296423	-0.125416	-0.153329	-0.022864	1.000000	-0.148258	-0.778359
Embarked_Q	0.003650	-0.074115	-0.031415	-0.117216	-0.155342	-0.127301	0.237449	-0.014588	-0.148258	1.000000	-0.496624
Embarked_S	-0.155660	0.125722	-0.014665	-0.166603	-0.170379	0.192061	-0.009511	-0.076588	-0.778359	-0.496624	1.000000

Out[30]: <Axes: >


```
In [31]: data4.groupby('Survived').count()
Out[31]:
                  Sex Age Fare Pclass_F Pclass_S Pclass_T Embarked_35 Embarked_C Embarked_Q Embarked_S
           Survived
                0 549
                       549
                            549
                                    549
                                             549
                                                     549
                                                                549
                                                                           549
                                                                                      549
                                                                                                 549
                1 342
                       342
                            342
                                    342
                                             342
                                                     342
                                                                342
                                                                           342
                                                                                      342
                                                                                                 342
In [32]: y=data4['Survived']
          x=data4.drop('Survived',axis=1)
In [33]: y
Out[33]: 0
                 0
                 1
          3
                 0
          886
                 0
          887
          888
          889
          890
          Name: Survived, Length: 891, dtype: int64
In [34]: from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

localhost:8888/notebooks/Titanic.ipynb

18/22

In [35]: x_test.head(5)

Out[35]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
709	1	28.0	15.2458	0	0	1	0	1	0	0
439	1	31.0	10.5000	0	1	0	0	0	0	1
840	1	20.0	7.9250	0	0	1	0	0	0	1
720	0	6.0	33.0000	0	1	0	0	0	0	1
39	0	14.0	11.2417	0	0	1	0	1	0	0

In [36]: $x_{train.head}(5)$

Out[36]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
6	1	54.0	51.8625	1	0	0	0	0	0	1
718	1	28.0	15.5000	0	0	1	0	0	1	0
685	1	25.0	41.5792	0	1	0	0	1	0	0
73	1	26.0	14.4542	0	0	1	0	1	0	0
882	0	22.0	10.5167	0	0	1	0	0	0	1

In [37]: y_test.head(5)

Out[37]: 709 1 439 0 840 0 720 1 39 1

Name: Survived, dtype: int64

```
In [38]: y train.head(5)
Out[381: 6
                0
                0
         718
         685
                0
         73
                0
         882
         Name: Survived, dtype: int64
In [39]: from sklearn.linear model import LogisticRegression
         classifier=LogisticRegression()
         classifier.fit(x train,y train)
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ logistic.py:458: ConvergenceWa
         rning: lbfqs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/pre
         processing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (https://scikit-learn.or
         g/stable/modules/linear model.html#logistic-regression)
           n iter i = check optimize result(
Out[39]:
          ▼ LogisticRegression
          LogisticRegression()
In [40]: y pred=classifier.predict(x test)
```

```
In [41]: y pred
Out[41]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
               1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
               0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
               0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
               1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
               0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
               0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0])
In [42]: from sklearn.metrics import confusion matrix
        confusion matrix(y test,y pred)
Out[42]: array([[154, 21],
               [ 37, 83]])
In [43]: from sklearn.metrics import accuracy score
        accuracy score(y test,y pred)
Out[43]: 0.8033898305084746
```

```
In [44]: y
Out[44]: 0
                0
         2
               0
         886
         887
                1
         888
                0
         889
                1
         890
                0
         Name: Survived, Length: 891, dtype: int64
In [ ]:
In [ ]:
```