

Patent number:

DE4436197

Publication date:

1996-04-18

Inventor:

WOBBEN ALOYS (DE)

Applicant:

WOBBEN ALOYS (DE)

Classification:

- international:

F03D11/00

- european:

F03D11/00

Application number:

DE19944436197 19941011

Priority number(s):

DE19944436197 19941011

Abstract of **DE4436197**

The plant has a rotary carrier (14) attached to a mast (3) mounted on a foundation and supporting a rotor shaft with a rotor hub and at least one rotor blade (5) of a glass-fibre-reinforced non-conductive plastics material. An electrically-conductive lightning conductor (11) is attached to the carrier for contacting the rotor blade at a given distance from the rotor hub. The lightning conductor lies at a defined distance from an electrically earthed diverter ring (10) provided by the carrier, the tip of the rotor blade fitted with a conductive A1 cap (6) and the inner end of the rotor blade incorporating a conductive A1 ring (8), cooperating with the lightning conductor.

Data supplied from the esp@cenet database - Worldwide

(B) BUNDESREPUBLIK
DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 44 36 197 A 1

(5) Int. Cl.⁵: F 03 D 1 1 /00

DEUTSCHES PATENTAMT

(1) Aktenzeichen:(2) Anmeldetag:

P 44 36 197.1

11. 10. 94

3 Offenlegungstag:

18. 4.96

① Anmelder:

Wobben, Aloys, 26607 Aurich, DE

(4) Vertreter:

Jabbusch und Kollegen, 26135 Oldenburg

② Erfinder: gleich Anmelder

Prüfungsantrag gem. § 44 PatG ist gestellt

- (5) Windenergieanlage mit Blitzschutzeinrichtung
- Die Erfindung betrifft eine Windenergiesnlage mit einem Maschinenträger, der auf einem Unterbau drehbar angeordnet ist, mit einer auf dem Maschinenträger gelagerten Rotorwelle mit einer Rotornabe und mit mindestens einem Rotorblatt, vorzugsweise aus elektrisch nicht leitendem Material, wie glasfaserverstärktem Kunststoff.

Der Erfindung liegt die Aufgabe zugrunde, eine Windenergieanlage der eingangs genannten Gattung aufzuzeigen, bei der ein einschlagender Blitz ableitbar ist, ohne Beschädigun-

gen zu verursachen.

Diese Aufgabe ist erfindungsgemäß dadurch gelöst worden, daß im Bereich jeder Rotorblattwurzel, in einem Isolations-Abstand zur Rotornabe, ein mit der Rotorblattwurzel in elektrischer Wirkverbindung stehendes Blitzableitungsorgan angeordnet ist, das einen Überleitungsvorsrung aufweist, der einem feststehenden, elektrisch leitenden Bauteil des Maschinenträgers, der geerdet ist, bis auf einen vorbestimmten Abstand angenähert ist.

Beschreibung

Die Erfindung betrifft eine Windenergieanlage mit einem Maschinenträger, der auf einem Unterbau drehbar angeordnet ist, mit einer auf dem Maschinenträger gelagerten Rotorwelle mit einer Rotornabe und mit mindestens einem Rotorblatt, vorzugsweise aus elektrisch nicht leitendem Material, wie glasfaserverstärktem Kunststoff.

elektrischer Energie hat in den letzten Jahren aufgrund der knappen Vorräte an fossilen Energieträgern zugenommen. Um den Wind wirtschaftlich zur Erzeugung der elektrischen Energie nutzen zu können, müssen diese Windenergieanlagen in Gebieten aufgestellt werden, 15 in denen häufig ein mittlerer bis starker Wind auftritt. Bevorzugte Aufstellungsgebiete sind deshalb Meeresküsten, freie Felder oder Berge.

Die Aufstellung der Windenergieanlagen in diesem freien Gelände und auch die große Bauhöhe der Wind- 20 energieanlagen verursachen für diese eine relativ hohe Blitzeinschlagsgefährdung.

Bei bekannten Windenergieanlagen wird ein Blitzeinschlag über die Rotornabe, die Rotorwelle und die Rotorlagerungen des Maschinenträgers in den Unterbau 25 und in das Fundament der Windenergieanlage abgeleitet. Der Unterbau kann als Turm, Plattform oder dergleichen ausgebildet sein. Die bei einem Blitzeinschlag auftretenden Spannungsdifferenzen von einigen Millionen Volt bewirken fließende Ströme mit einer Strom- 30 stärke bis zu 100.000 Ampere. Diese Ströme mit so hohen Stromstärken können nachteilig dazu führen, daß die stromdurchflossenen Bauteile, wie die Rotornabe und die Rotorlagerungen, beschädigt werden. Die Folge sind dann zeit- und kostenaufwendige Reparaturen.

Der Erfindung liegt die Aufgabe zugrunde, eine Windenergieanlage der eingangs genannten Gattung aufzuzeigen, bei der ein einschlagender Blitz ableitbar ist, ohne Beschädigungen zu verursachen.

worden, daß im Bereich jeder Rotorblattwurzel, in einem Isolations-Abstand zur Rotornabe, ein mit der Rotorblattwurzel in elektrischer Wirkverbindung stehendes Blitzableitungsorgan angeordnet ist, das einen Überleitungsvorsprung aufweist, der einem feststehen- 45 den, elektrisch leitenden Bauteil des Maschinenträgers. der geerdet ist, bis auf einen vorbestimmten Abstand angenähert ist.

Erfindungsgemäß wird somit ein in ein Rotorblatt der Windenergieanlage einschlagender Blitz vorteilhaft 50 nicht über die Rotornabe und die Rotorlagerungen, sondern im Bereich der Rotorblattwurzel von dem Rotorblatt über das Blitzableitungsorgan abgeleitet. Das vorzugsweise glasfaserverstärkte Kunststoffmaterial der Rotorblattwurzel bewirkt dabei aufgrund des ausrei- 55 Rotorblattes wird somit vermieden. chenden Isolations-Abstandes die Isolation der Rotornabe. Das Blitzableitungsorgan rotiert mit der Rotorblattwurzel um das feststehende, elektrisch leitende Bauteil des Maschinenträgers. Der Blitz wird in dieses Bauteil über den Überleitungsvorsprung des Blitzablei- 60 tungsorgans abgeleitet.

Der Abstand zwischen dem Überleitungsvorsprung und dem feststehenden Bauteil ist sehr klein. Bei Blitzeinschlag bildet sich deshalb zwischen dem Überleitungsvorsprung und dem Bauteil eine Funkenstrecke 65 aus. Zwischen Überleitungsvorsprung und Bauteil tritt eine Funkenentladung auf, bei der der Widerstand des Luftspaltes schnell abfällt und der Blitzstrom abfließen

Bei der Ableitung des Blitzeinschlages treten in der Windenergieanlage somit vorteilhaft keine Beschädigungen auf.

Nach einer ersten Weiterbildung ist die Erfindung dadurch gekennzeichnet, daß das Blitzableitungsorgan eine Fangstange ist. Die Fangstange ist beispielsweise auf einer Rotornabenverkleidung angeordnet, so daß sich ihre Anordnung zur Rotorblattwurzel nicht verän-Der Einsatz von Windenergieanlagen zur Erzeugung 10 dert. Die Rotornabenverkleidung besteht aus einem elektrisch nicht leitenden Material, damit der Blitzeinschlag über die Fangstange nur in das feststehende Bauteil des Maschinenträgers abgeleitet wird.

Nach einer nächsten Weiterbildung der Erfindung ist vorgesehen, daß das feststehende, elektrisch leitende Bauteil des Maschinenträgers ein koaxial zur Rotor welle angeordneter Ableitring ist und daß dieser in seinem dem Überleitungsvorsprung zugekehrten Bereich einen vorbestimmten Blitzableitungsweg aufweist. Von dem Überleitungsvorsprung tritt der abgeleitete Blitzeinschlag in den Ableitring ein. Dabei kann der vorbestimmte Blitzableitungsweg beispielsweise dadurch ausgebildet sein, daß in einer Lackbeschichtung des Ableitringes ein Bereich mit einer geringeren Lackschichtdikke angeordnet ist.

Eine weitere Weiterbildung der Erfindung sieht vor, daß die Fangstange mit ihrem dem Überleitungsvorsprung abgewandten freien Ende einem auf der Rotorblattwurzel angeordneten elektrischen Leitelement bis auf einen vorbestimmten Abstand angenähert ist. Das auf der Rotorblattwurzel angeordnete elektrische Leitelement dient vorteilhaft der Überleitung der Blitzströme vom Rotorblatt auf die Fangstange. Der Abstand, bis auf den die Fangstange dazu dem Leitelement angenähert ist, ist sehr klein, so daß bei Blitzeinschlag auch zwischen diesen Bauteilen eine Funkenstrecke ausgebildet wird und die Blitzströme nach einer Funkenemtladung mit geringem Widerstand über die Fangstange absließen können. Die berührungslose Annäherung hat Diese Aufgabe ist erfindungsgemäß dadurch gelöst 40 auch den Vorteil, daß zum Beispiel korrosionschützende Lackschichten nicht durch eine schleifende Anlage beschädigt werden.

> Eine erste Untererfindung, für die auch selbständliger Schutz beansprucht wird, ist dadurch gekennzeichnet, daß jedes Rotorblatt an seiner Spitze und in einem Isolations-Abstand zur Rotornabe auf seiner Rotorblattwurzel angeordnete elektrische Leitelemente aufweist, die miteinander elektrisch leitend verbunden sind.

> Die Ausstattung jedes Rotorblattes mit diesen elektrischen Leitelementen hat den Vorteil, daß ein in das Rotorblatt einschlagender Blitz über diese aufgenommen und mit einem geringen Widerstand abgeleitet werden kann. Eine Beschädigung des vorzugsweise aus glassaserverstärktem Kunststoffmaterial hergestellten

Nach einer Weiterbildung der Erfindung ist vorgesehen, daß das an der Spitze des Rotorblattes angeord nete Leitelement als Aluminiumformteil ausgebildet ist. Diese Ausbildung hat den Vorteil, daß Aluminium ein leichter und somit für die Anordnung an der Rotorblattspitze gut geeigneter Werkstoff und zugleich ein guter ele ktrischer Leiter ist.

Eine nächste Weiterbildung sieht vor, daß in der Vorderkante und in der Hinterkante jedes Rotorblattes elektrische Leitelemente angeordnet sind, welche die an der Spitze des Rotorblattes und auf seiner Rotorblattwurzel angeordneten Leitelemente elektrisch leitend verbinden. Diese Leitelemente leiten die Blitzströme

Beschreibung

Die Erfindung betrifft eine Windenergieanlage mit einem Maschinenträger, der auf einem Unterbau drehbar angeordnet ist, mit einer auf dem Maschinenträger gelagerten Rotorwelle mit einer Rotornabe und mit mindestens einem Rotorblatt, vorzugsweise aus elektrisch nicht leitendem Material, wie glasfaserverstärktem Kunststoff.

elektrischer Energie hat in den letzten Jahren aufgrund der knappen Vorräte an fossilen Energieträgern zugenommen. Um den Wind wirtschaftlich zur Erzeugung der elektrischen Energie nutzen zu können, müssen diein denen häufig ein mittlerer bis starker Wind auftritt. Bevorzugte Aufstellungsgebiete sind deshalb Meeresküsten, freie Felder oder Berge.

Die Aufstellung der Windenergieanlagen in diesem freien Gelände und auch die große Bauhöhe der Wind- 20 energieanlagen verursachen für diese eine relativ hohe Blitzeinschlagsgefährdung.

Bei bekannten Windenergieanlagen wird ein Blitzeinschlag über die Rotornabe, die Rotorwelle und die Rotorlagerungen des Maschinenträgers in den Unterbau 25 und in das Fundament der Windenergieanlage abgeleitet. Der Unterbau kann als Turm, Plattform oder dergleichen ausgebildet sein. Die bei einem Blitzeinschlag auftretenden Spannungsdifferenzen von einigen Millionen Volt bewirken fließende Ströme mit einer Strom- 30 stärke bis zu 100.000 Ampere. Diese Ströme mit so hohen Stromstärken können nachteilig dazu führen, daß die stromdurchflossenen Bauteile, wie die Rotornabe und die Rotorlagerungen, beschädigt werden. Die Folge sind dann zeit- und kostenaufwendige Reparaturen.

Der Erfindung liegt die Aufgabe zugrunde, eine Windenergieanlage der eingangs genannten Gattung aufzuzeigen, bei der ein einschlagender Blitz ableitbar ist, ohne Beschädigungen zu verursachen.

worden, daß im Bereich jeder Rotorblattwurzel, in einem Isolations-Abstand zur Rotornabe, ein mit der Rotorblattwurzel in elektrischer Wirkverbindung stehendes Blitzableitungsorgan angeordnet ist, das einen Überleitungsvorsprung aufweist, der einem feststehen- 45 den, elektrisch leitenden Bauteil des Maschinenträgers, der geerdet ist, bis auf einen vorbestimmten Abstand angenähert ist.

Erfindungsgemäß wird somit ein in ein Rotorblatt der Windenergieanlage einschlagender Blitz vorteilhaft 50 nicht über die Rotornabe und die Rotorlagerungen, sondern im Bereich der Rotorblattwurzel von dem Rotorblatt über das Blitzableitungsorgan abgeleitet. Das vorzugsweise glasfaserverstärkte Kunststoffmaterial der Rotorblattwurzel bewirkt dabei aufgrund des ausrei- 55 Rotorblattes wird somit vermieden. chenden Isolations-Abstandes die Isolation der Rotornabe. Das Blitzableitungsorgan rotiert mit der Rotorblattwurzel um das feststehende, elektrisch leitende Bauteil des Maschinenträgers. Der Blitz wird in dieses Bauteil über den Überleitungsvorsprung des Blitzablei- 60 tungsorgans abgeleitet.

Der Abstand zwischen dem Überleitungsvorsprung und dem feststehenden Bauteil ist sehr klein. Bei Blitzeinschlag bildet sich deshalb zwischen dem Überleitungsvorsprung und dem Bauteil eine Funkenstrecke 65 aus. Zwischen Überleitungsvorsprung und Bauteil tritt eine Funkenentladung auf, bei der der Widerstand des Luftspaltes schnell abfällt und der Blitzstrom abfließen

kann.

Bei der Ableitung des Blitzeinschlages treten in der Windenergieanlage somit vorteilhaft keine Beschädigungen auf.

Nach einer ersten Weiterbildung ist die Erfindung dadurch gekennzeichnet, daß das Blitzableitungsor-gan eine Fangstange ist. Die Fangstange ist beispielsweise auf einer Rotornabenverkleidung angeordnet, so daß sich ihre Anordnung zur Rotorblattwurzel nicht verän-Der Einsatz von Windenergieanlagen zur Erzeugung 10 dert. Die Rotornabenverkleidung besteht aus einem elektrisch nicht leitenden Material, damit der Blitzeinschlag über die Fangstange nur in das feststehende Bauteil des Maschinenträgers abgeleitet wird.

Nach einer nächsten Weiterbildung der Erfindung ist se Windenergieanlagen in Gebieten aufgestellt werden, 15 vorgesehen, daß das feststehende, elektrisch leitende Bauteil des Maschinenträgers ein koaxial zur Rotorwelle angeordneter Ableitring ist und daß dieser in seinem dem Überleitungsvorsprung zugekehrten Bereich einen vorbestimmten Blitzableitungsweg aufweist. Von dem Überleitungsvorsprung tritt der abgeleitete Blitzeinschlag in den Ableitring ein. Dabei kann der vorbestimmte Blitzableitungsweg beispielsweise dadurch ausgebildet sein, daß in einer Lackbeschichtung des Ableitringes ein Bereich mit einer geringeren Lackschicht dikke angeordnet ist.

Eine weitere Weiterbildung der Erfindung sieht vor, daß die Fangstange mit ihrem dem Überleitungsvorsprung abgewandten freien Ende einem auf der Rotorblattwurzel angeordneten elektrischen Leitelement bis auf einen vorbestimmten Abstand angenähert ist. Das auf der Rotorblattwurzel angeordnete elektrische Leitelement dient vorteilhaft der Überleitung der Blitzströme vom Rotorblatt auf die Fangstange. Der Abstand, bis auf den die Fangstange dazu dem Leitelement angenä-35 hert ist, ist sehr klein, so daß bei Blitzeinschlag auch zwischen diesen Bauteilen eine Funkenstrecke ausgebildet wird und die Blitzströme nach einer Funkenemtladung mit geringem Widerstand über die Fangstange absließen können. Die berührungslose Annäherung hat Diese Aufgabe ist erfindungsgemäß dadurch gelöst 40 auch den Vorteil, daß zum Beispiel korrosionschützende Lackschichten nicht durch eine schleifende Anlage beschädigt werden.

> Eine erste Untererfindung, für die auch selbständiger Schutz beansprucht wird, ist dadurch gekennzeichnet, daß jedes Rotorblatt an seiner Spitze und in einem Isolations-Abstand zur Rotornabe auf seiner Rotorblatt-wurzel angeordnete elektrische Leitelemente aufweist, die miteinander elektrisch leitend verbunden sind.

> Die Ausstattung jedes Rotorblattes mit diesen ælektrischen Leitelementen hat den Vorteil, daß ein im das Rotorblatt einschlagender Blitz über diese aufgemommen und mit einem geringen Widerstand abgelleitet werden kann. Eine Beschädigung des vorzugsweise aus glasfaserverstärktem Kunststoffmaterial hergestellten

Nach einer Weiterbildung der Erfindung ist vorgesehen, daß das an der Spitze des Rotorblattes angeordnete Leitelement als Aluminiumformteil ausgebildet ist. Diese Ausbildung hat den Vorteil, daß Aluminium ein leichter und somit für die Anordnung an der Rotorblatts pitze gut geeigneter Werkstoff und zugleich ein guter elektri-

scher Leiter ist.

Eine nächste Weiterbildung sieht vor, daß in der Vorderkante und in der Hinterkante jedes Rotorblattes elektrische Leitelemente angeordnet sind, welche die an der Spitze des Rotorblattes und auf seiner Rotorblattwurzel angeordneten Leitelemente elektrisch leitend verbinden. Diese Leitelemente leiten die Blitzströme

Die Darstellung in der Fig. 4 verdeutlicht auch, daß der Ableitring 10 im Bereich der Annäherung des Überleitungsvorsprunges 11 auf Höhe des Kreuzverbinders 16 einen vorbestimmten Blitzableitungsweg 17 in Form einer geringeren Lackschichtdicke aufweist. Fig. 4 zeigt auch, daß der Aluminiumring 8 um die Rotorblattwurzel 24 halbkreisförmig herumgeführt ist, um beide Leitelemente 7 miteinander zu verbinden und um bei den möglichen Winkeleinstellungen des Rotorblattes 5 eine elek- 10 trische Wirkverbindung zur Fangstange 9 zu gewährleisten. Die Fangstange 9 weist an ihrem dem Aluminiumring 8 bis auf den vorbestimmten Abstand angenäherten, freien Ende 25 eine die Feldstärke im Vergleich zur Umgebung erhöhende kegelförmige Spitze auf.

Fig. 5 zeigt eine elektrisch leitende Verbindung zwischen dem Maschinenträger 14 und dem oberen Bereich des Turms 3. In diesem Bereich des Turms 3 ist eine waagerecht liegende Reibscheibe 20 koaxial zur Drehachse des Maschinenträgers 14 angeordnet. Der Ma- 20 schinenträger 14 hat in einem den Turm 3 zugekehrten Bereich ein Blitzableitungselement, das als mit einem Anpreßdruck beaufschlagter Stößel 19 ausgebildet ist. Dieser Stößel 19 ist in diesem Bereich so am Maschinenträger 14 senkrecht angeordnet, daß er auf die Reib- 25 scheibe 20 drückt und somit eine elektrisch leitende Verbindung herstellt. Auch bei Drehungen des Maschinenträgers 14 bleibt diese Verbindung aufgrund der schleifenden Anlage bestehen.

Ein in die Windenergieanlage einschlagender Blitz 30 wird folgendermaßen abgeleitet:

Ein in ein Rotorblatt 5 einschlagender Blitz wird zunächst in den Maschinenträger 14 abgeleitet. Ausgehend vom Aluminiumformteil 6 oder einem Leitelement 7 wird der Blitz über die Leitelemente 7 in den Alumini- 35 umring 8 abgeleitet. Unabhängig vom momentanen Rotorblattwinkel wird der Blitz vom Aluminiumring 8 dann über die Fangstange 9 in den Ableitring 10 übergeleitet. Über den vorbestimmten Blitzableitungsweg 17 des Ableitringes 10 wird der Blitz über nicht dargestellte 40 leitende Verbindungen in den Maschinenträger 14 eingeleitet.

Ein in die zusätzliche Fangstange 12 einschlagender Blitz wird über die Verbindung 13 gleichfalls in den

Maschinenträger 14 eingeleitet.

Die Blitzableitung vom Maschinenträger 14 in den Turm 3 erfolgt über die sich in schleifender Anlage befindenden Stößel 19 und Reibscheibe 20. Die Blitzableitung ist somit auch unabhängig von der momentanen Drehstellung des Maschinenträgers 14 gewährleistet.

Die weitere Blitzableitung erfolgt über den Turm 3, das Fundament 4 und die in das Erdreich laufenden

Ringerder 27.

Patentansprüche

1. Windenergieanlage mit einem Maschinenträger, der auf einem Unterbau drehbar angeordnet ist, mit einer auf dem Maschinenträger gelagerten Rotorwelle mit einer Rotornabe und mit mindestens einem Rotorblatt, vorzugsweise aus elektrisch nicht leitendem Material, wie glasfaserverstärktem Kunststoff, dadurch gekennzeichnet, daß im Bereich jeder Rotorblattwurzel (24), in einem Isolations-Abstand zur Rotornabe, ein mit der Rotor- 65 blattwurzel (24) in elektrischer Wirkverbindung stehendes Blitzableitungsorgan angeordnet ist, das einen Überleitungsvorsprung (11) aufweist, der einem feststehenden, elektrisch leitenden Bauteil des Maschinenträgers (14), der geerdet ist, bis auf einen vorbestimmten Abstand angenähert ist.

2. Windenergieanlage nach Anspruch 1, dadurch gekennzeichnet, daß das Blitzableitungsorgan eine

Fangstange (9) ist.

3. Windenergieanlage nach Anspruch 1 oder 2. dadurch gekennzeichnet, daß das seststehende, elektrisch leitende Bauteil des Maschinenträgers (14) ein koaxial zur Rotorwelle angeordneter Ableitring (10) ist und daß dieser in seinem dem Überleitungsvorsprung (11) zugekehrten Bereich einen vorbestimmten Blitzableitungsweg (17) aufweist.

4. Windenergieanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fangstange (9) mit ihrem dem Überleitungsvorsprung (11) abgewandten freien Ende (25) einem auf der Rotorblattwurzel (24) angeordneten, elektrischen Leitelement bis auf einen vorbestimmten

Abstand angenähert ist.

5. Windenergieanlage mit einem Maschinenträger, der auf einem Unterbau drehbar angeordnet ist, mit einer auf dem Maschinenträger gelagerten Rotorwelle mit einer Rotornabe und mit mindestens einem Rotorblatt, vorzugsweise aus elektrisch nicht leitendem Material, wie glasfaserverstärktem Kunststoff, dadurch gekennzeichnet, daß jedes Rotorblatt (5) an seiner Spitze und in einem Isolations-Abstand zur Rotornabe auf seiner Rotorblattwurzel (24) angeordnete, elektrische Leitelemente aufweist, die miteinander elektrisch leitend verbunden sind.

6. Windenergieanlage nach Anspruch 5, dadurch gekennzeichnet, daß das an der Spitze des Rotorblattes (5) angeordnete Leitelement als Aluminium-

formteil (6) ausgebildet ist.

7. Windenergieanlage nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß in der Vorderkante und in der Hinterkante jedes Rotorblattes (5) elektrische Leitelemente (7) angeordnet sind, welche die an der Spitze des Rotorblattes (5) und auf seiner Rotorblattwurzel (24) angeordneten Leitelemente elektrisch leitend verbinden.

8. Windenergieanlage nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß das auf der Rotorblattwurzel (24) angeordnete Leitelement ein auf der Oberfläche der Rotorblattwurzel (24) mindestens abschnittsweise horizontal umlaufender

Aluminiumring (8) ist.

9. Windenergieanlage, mit einem Maschinenträger, der auf einem Unterbau drehbar angeordnet ist, mit einer auf dem Maschinenträger gelagerten Rotorwelle mit einer Rotornabe und mit mindesterns einem Rotorblatt, dadurch gekennzeichnet, daß in einem Bereich des Maschinenträgers (14), der dem Unterbau zugekehrt ist, ein Blitzableitungselernent angeordnet ist, das sich mit einem elektrisch leitenden Bauelement des Unterbaus in schleifender Anlage befindet.

10. Windenergieanlage nach Anspruch 9, dadurch gekennzeichnet, daß das Blitzableitungselement als ein mit einem Anpressdruck beaufschlagter Stößel

(19) ausgebildet ist.

55

11. Windenergieanlage nach Anspruch 9 oder 10. dadurch gekennzeichnet, daß das elektrisch leitende Bauelement des Unterbaus eine Reibscheibe (20) ist, die im oberen Bereich des Unterbaus in einer waagerechten Ebene und koaxial zur Dreh-

achse des Maschinenträgers (14) liegend angeordnet ist.

Hierzu 4 Seite(n) Zeichnungen

-30

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 44 36 197 A1 F 03 D 11/00 18. April 1996

Fig.2

Nummer: Int. Cl.⁵: Offenlegungstag: DE 44 36 197 A1 F 03 D 11/00 18. April 1996

Nummer: Int. Cl.⁵: Offenlegungstag: DE 44 36 197 A1 F 03 D 11/00 18. April 1996

