

Presenting the paper:

Efficient Poverty Mapping from High Resolution Remote Sensing Images

Michelle Bösiger, Erind Shima, Reto Krummenacher

Seminar CSAI4SG, Fall 2021

December 8, 2021

Content

- > Introduction
- > The method
- > The conclusion

Questions:

- Why do we need the data?
- How to measure the local poverty level?
- > Why this method is by far the most practical and accurate?

Different Methods:

> Consumption Expenditure

Different Methods:

- > Consumption Expenditure
- > Household Surveys
- > Economic Livelihoods (satellite imagery)

Low-resolution satellite images

High-resolution satellite images

- > Feb 2020: Generating Interpretable Poverty Maps using Object Detection in Satellite Images
 - https://arxiv.org/pdf/2002.01612.pdf
- Jun 2020: Efficient Poverty Mapping using Deep Reinforcement Learning. First Version of third paper including an appendix https://arxiv.org/pdf/2006.04224v1.pdf
- Jan 2021: Efficient Poverty Mapping from High Resolution Remote Sensing Images https://arxiv.org/pdf/2006.04224.pdf

Inputs

Living standard measurement study (LSMS):

- > Measuring household expenditure for 2'716 households
- > Spatial aggregation for 320 clusters, each of size 10km×10km

Inputs

Living standard measurement study (LSMS)

- > Measuring household expenditure for 2'716 households
- > Spatial aggregation for 320 clusters, each of size 10km×10km

Satellite Images:

- > HR image with 1000×1000 pixels, 0.3m resolution
- \rightarrow Thus a cluster consists of $34 \times 34 = 1156$ tiles
- > LR image with 1014imes1014 pixels, 10m resolution, divided into tiles corresponding to each HR image

Overview

Architecture and Training

Policy Network:

- > ResNet with 32 layers, residual Networks include skipping connections
- > Trained with freely available xView dataset: http://xviewdataset.org/

Architecture and Training

Policy Network

- > ResNet with 32 layers, residual Networks include skipping connections
- > Trained with freely available xView dataset: http://xviewdataset.org/

Object detection:

- > YOLOv3 You Only Look Once
- > Object detection not like in region-CNN but the complete image divided into a grid.
- Trained on xView dataset

Architecture and Training

Policy Network

- > ResNet with 32 layers, residual Networks include skipping connections
- > Trained with freely available xView dataset: http://xviewdataset.org/

Object detection

- > YOLOv3 You Only Look Once
- > Object detection not like in region-CNN but the complete image divided into a grid.
- > Trained on xView dataset

GBDT:

> Trained on raw object counts for 10 object classes using HR tiles and poverty score from LSMS

Results and conclusions

- > Analysis based on Season.
- > Quantitative Analysis.
- > Impact on Interpretability.
- Cost saving.

Analysis based on Season

The presence of greenery during **wet season** allows a better identification of regions containing objects of interest, than during **dry season**.

Quantitative Analysis

Some results of poverty prediction in Uganda.

	No Dropping	Fixed-18	Random-25	Stochastic-25	Green	Counts Pred.	Sett. Layer	Nightlights	Ours (Dry sea.)	Ours (Wet sea.)
r^2	0.53	0.43	0.34	0.26	0.33	0.49	0.45	0.45	0.51 ± 0.01	$\frac{0.61}{0.01}$
MSE	1.86	2.20	2.67	3.13	2.56	1.91	2.16	2.17	1.89 ± 0.02	$\textbf{1.46} \pm \textbf{0.02}$
Explained Variance	0.54	0.43	0.33	0.27	0.36	0.48	0.46	0.45	0.50 ± 0.01	$\textbf{0.63} \pm \textbf{0.02}$
HR Acquisition.	1.0	0.18	0.25	0.25	0.19	0.19	0.19	0.12	0.19	0.19

Our model outperforms the "No Dropping" model, using more or less **80 percent** fewer HR images.

Also relying on data layers such as **settlement** and **nightlights**! $(+ 0.16 \text{ r}^2)$

Impact on Interpretability

An important contribution of Ayush et al's method was to introduce **model interpretability**: that allows successful application in different domains.

Our method obtains practically the **same** SHAP values of the "No Dropping" method, for every feature.

Cost saving

Considering that:

- > Current pricing for HR RGB imagery: **10-20 dollars per km**².
- > Land area of Uganda: **240k km**².

If we set 15 dollars, an average imagery price, for each km²...

Cost saving

...we reach a cost save of roughly **2.9 million dollars**!

This represents a potentially larger cost saving if our approach is scaled at a country or continent scale.

Connection to our seminar

- Computational sustainability?
- > AI?
- > Social Good?

Connection to our seminar

- > Computational sustainability?
 - \Rightarrow Yes
- > AI?
 - \Rightarrow Yes
- > Social Good?
 - \Rightarrow Yes

Questions?

michellej.boesiger@stud.unibas.ch erind.shima@stud.unibas.ch reto.krummenacher@unibas.ch