第一章 线性规划

第四节 单纯形法

- 典式
 - 迭代原理
 - 单纯形法举例
 - ■两阶段法

$$(LP)\min S = CX$$

$$AX = b$$
 $R(A) = m$

 $X \geq 0$

$$A = (p_1, p_2, \dots, p_m, p_{m+1}, p_{m+2}, \dots, p_n) = (B, N)$$
 $B^{-1}b \ge 0$ $B($ 可行基) N

$$X = (x_1, x_2, \dots, x_m, x_{m+1}, x_{m+2}, \dots, x_n)^T = \begin{pmatrix} X_B \\ X_N \end{pmatrix}$$

$$C = (c_1, c_2, \dots, c_m, c_{m+1}, c_{m+2}, \dots, c_n) = (C_B, C_N)$$

$$(LP)\min S = CX \qquad C = (C_B, C_N)$$

$$AX = b \qquad A = (B, N) \qquad X = \begin{pmatrix} X_B \\ X_N \end{pmatrix}$$

$$X \ge 0$$

$$AX = b \longrightarrow (B, N) {X_B \choose X_N} = b \longrightarrow BX_B + NX_N = b$$

$$\longrightarrow X_B + B^{-1}NX_N = B^{-1}b \longrightarrow X_B = B^{-1}b - B^{-1}NX_N$$

$$S = CX = (C_B, C_N) \begin{pmatrix} X_B \\ X_N \end{pmatrix} = C_B X_B + C_N X_N$$
$$= C_B (B^{-1}b - B^{-1}NX_N) + C_N X_N$$
$$= C_B B^{-1}b + (C_N - C_B B^{-1}N)X_N$$

复习
$$C-C_BB^{-1}A \ge 0 \Leftrightarrow C_N-C_BB^{-1}N \ge 0$$

 $\min S = CX$ AX = b $X \ge 0$

$$C - C_B B^{-1} A = (C_B, C_N) - C_B B^{-1} (B, N)$$

$$= (C_B, C_N) - (C_B, C_B B^{-1} N)$$

$$= (0, C_N - C_B B^{-1} N)$$

$$X = \begin{pmatrix} X_B \\ X_N \end{pmatrix}$$

定理1-1(最优性判别定理)

对于 (*LP*) 的基 *B*, 若有 $X_R^* = B^{-1}b \ge 0$ 且 $C-C_BB^{-1}A \ge 0$ $(C_N-C_BB^{-1}N \ge 0)$,则基本可行解

$$X^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
 是(XP)的最优解,称为最优基本可行解,

B称为最优基。检验数向量 非基变量检验数向量

单纯形法的基本思想:

第一章 线性规划

一. 典式

- 典式的向量形式
 - 典式的分量形式
 - 典式的表格形式(单纯形表)

基本可行解

1. 典式的向量形式 $S = CX = C_B B^{-1}$ 一个典式唯一地对

$$(LP)\min S = CX$$

$$AX = b \qquad X_B = B^{-1}b - B^{-1}NX_N$$

$$X > 0$$

 \blacksquare 可行基B

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$
 基本可行解

$$\min S = C_B B^{-1}b + (C_N - C_B B^{-1}N)X_N \qquad \text{APITME}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = X_B \qquad X_B + B^{-1}NX_N = B^{-1}b \qquad X = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} \qquad S = C_B B^{-1}b$$

称为(LP)的以 x_1, x_2, \dots, x_m 为基变量的典式 典式的向量形式

阿里:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$
 $\lim_{X_1 + X_2 + 0} S = x_1 + x_2 + 2x_3 + 2x_4$ $\lim_{X_2 + 0} S = x_1 + x_2 + 2x_3 + x_4 = 1$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $\lim_{X_3 + 0} S = C_B B^{-1} N X_N$ \lim_{X_3

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \quad X_N \ge 0$$

$$B^{-1}(A,b) = B^{-1} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & B & 2 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & E_1 & B^{-1} & 0 & P \end{pmatrix}$$
 初等行变换 亦可

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases} \begin{cases} x_1 - 2x_3 + x_4 = 0 \\ x_2 + 2x_3 + 0x_4 = 1 \end{cases}$$

$$C_B B^{-1} b = (1,1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1 \quad C_N - C_B B^{-1} N = (2,2) - (1,1) \begin{pmatrix} -2 & 1 \\ 2 & 0 \end{pmatrix} = (2,1)$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N = 1 + (2,1) \binom{x_3}{x_4} = 1 + 2x_3 + x_4$$

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_j \ge 0, \quad j = 1, 2, 3, 4 \end{cases}$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \quad X_N \ge 0$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & B & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 & 2 \\ x_1 & x_2 & x_3 & x_4 \end{pmatrix} b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} R(A) = 2$$

$$B^{-1}(A,b) = B^{-1} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & B & 2 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & E_1 & B^{-1} & 0 & B \end{pmatrix} b \quad C_B B^{-1} b = 1$$

典式(基变量为 x_1, x_2):

$$\min S = 1 + 2x_3 + x_4$$

$$\begin{cases} x_1 & -2x_3 + x_4 = 0 \\ x_2 + 2x_3 + 0x_4 = 1 \\ x_j \ge 0, j = 1, 2, 3, 4 \end{cases}$$

基本可行解:

$$X = (0,1,0,0)^T$$

目标值:
$$S=1$$
 $S=C_BB^{-1}b$

$$X = \begin{pmatrix} B^{-1}b \geq 0 \\ 0 \end{pmatrix}$$

$$S = C_B B^{-1} b$$

基变量: 只出现在其中一 个方程中,且系数为1。

基本可行解

2. 典式的分量形式

$$\boldsymbol{X}_{R} + \boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{X}_{N} = \boldsymbol{B}^{-1} \boldsymbol{b}$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \quad X_N \ge 0$$

$$A = (p_1, p_2, \dots, p_m, p_{m+1}, p_{m+2}, \dots, p_n) = (B, N)$$
 $B^{-1}b \ge 0$ $B($ 可行基)

$$B^{-1}N = (B^{-1}p_{m+1}, B^{-1}p_{m+2}, \dots, B^{-1}p_n)$$

$$B^{-1}b = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix} \ge 0 \qquad = \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix}$$

$$\begin{aligned}
X_{B} + B^{-1}NX_{N} &= B^{-1}b \\
B^{-1}b &= \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix} \ge 0 \quad B^{-1}N = \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix} \\
X &= (x_{1}, x_{2}, \cdots, x_{m}, x_{m+1}, x_{m+2}, \cdots, x_{n})^{T} = \begin{pmatrix} X_{B} \\ X_{N} \end{pmatrix} \\
\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{pmatrix} + \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix} \begin{pmatrix} x_{m+1} \\ x_{m+2} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix}$$

$$|X_B + B^{-1}NX_N = B^{-1}b|$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} + \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \ddots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix} \begin{pmatrix} x_{m+1} \\ x_{m+2} \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix}$$

$$\begin{cases} x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10} \\ x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20} \end{cases}$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0 \quad X_N \ge 0$$

$$min S = CX
AX = b
X \ge 0$$

$$C = (c_1, c_2, \dots, c_m, c_{m+1}, c_{m+2}, \dots, c_n) = (C_B, C_N)$$

$$C_B$$

$$\boldsymbol{B}^{-1}\boldsymbol{b} = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix}$$

$$B^{-1}b = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix} \qquad B^{-1}N = \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix}$$

$$C_B B^{-1} b = y_{00}$$
 $(C_N - C_B B^{-1} N) = (y_{0m+1}, y_{0m+2}, \dots, y_{0n})$

$$\min S = C_B B^{-1} b + (C_N - C_N)$$

$$X_B + B^{-1} N X_N = I$$

$$X_B \ge 0 \quad X_N \ge 0$$

 $\min S = C_R B^{-1} b + (C_N - 1. 每个方程都有且仅有一个基变$ $X_B + B^{-1}NX_N = B$ 量,基变量仅出现在一个方程中 且系数为1。

2. 非基变量的系数是其检验数。

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \cdots + y_{0n}x_n$$
 典式的分
$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \cdots + y_{1n}x_n = y_{10}$$
 量形式
$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \cdots + y_{2n}x_n = y_{20}$$

$$\dots$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \cdots + y_{mn}x_n = y_{m0}$$

$$x_j \ge 0, j = 1, 2, \cdots n$$

$$C_R B^{-1}b = y_{00} \qquad C_N - C_R B^{-1}N = (y_{0m+1}, y_{0m+2}, \cdots, y_{0n})$$

线性规划1-4

$$C_{N} - C_{B}B^{-1}N = (y_{0m+1}, y_{0m+2}, \dots, y_{0n})$$

$$min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$\begin{split} &C_{N} - C_{B}B^{-1}N \\ &= (c_{m+1}, c_{m+2}, \cdots c_{n}) - C_{B}B^{-1}(p_{m+1}, p_{m+2}, \cdots, p_{n}) \\ &= (c_{m+1}, c_{m+2}, \cdots c_{n}) - (C_{B}B^{-1}p_{m+1}, C_{B}B^{-1}p_{m+2}, \cdots, C_{B}B^{-1}p_{n}) \\ &= (c_{m+1} - C_{B}B^{-1}p_{m+1}, c_{m+2} - C_{B}B^{-1}p_{m+2}, \cdots, c_{n} - C_{B}B^{-1}p_{n}) \end{split}$$

$$y_{0m+1} = c_{m+1} - C_B B^{-1} p_{m+1}$$
 非基变量 x_j 的检验数
$$y_{0m+2} = c_{m+2} - C_B B^{-1} p_{m+2}$$

$$\vdots$$

$$y_{0n} = c_n - C_B B^{-1} p_n$$
 $j = m+1, m+2, \dots, n$

典式的分量形式:
$$y_{00} = C_B B^{-1} b$$
 $y_{0j} = c_j - C_B B^{-1} p_j$

 $\min S = y_{00} + y_{0m+1} x_{m+1} + y_{0m+2} x_{m+2} + \dots + y_{0n} x_n$

$$(x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10})$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20}$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

$$x_i \geq 0, j = 1, 2, \dots n$$

基本可行解:
$$X^{0} = (y_{10}, y_{20}, \dots, y_{m0}, 0, 0, 0, \dots, 0)^{T} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$

目标值:
$$S^0 = y_{00} = C_B B^{-1} b$$

$$3.-y_{00} = -S + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \cdots + y_{0n}x_n$$

$$min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \cdots + y_{0n}x_n$$

$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \cdots + y_{1n}x_n = y_{10}$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \cdots + y_{2n}x_n = y_{20}$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \cdots + y_{mn}x_n = y_{m0}$$

$$x_1 \quad x_2 \cdots x_m \quad x_{m+1} \quad x_{m+2} \cdots x_n$$

$$y_{0j} - y_{00} \quad 0 \quad 0 \quad \cdots \quad 0 \quad y_{0m+1} \quad y_{0m+2} \cdots y_{0n}$$

$$x_1 \quad y_{10} \quad 1 \quad 0 \quad \cdots \quad 0 \quad y_{1m+1} \quad y_{1m+2} \cdots y_{1n}$$

$$x_2 \quad y_{20} \quad 0 \quad 1 \quad \cdots \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2n}$$

 $0 \quad 0 \quad \dots \quad 1 \quad y_{mm+1} \quad y_{mm+2} \quad \dots \quad y_{mn}$

$$\min S = C_B B^{-1}b + (C_N - C_B B^{-1}N)X_N$$

$$\max S = CX$$

$$AX = b$$

$$X \rightarrow B^{-1}NX - B^{-1}b$$

$$X_B + B^{-1}NX_N = B^{-1}b$$
$$X_B \ge 0 \quad X_N \ge 0$$

$$C = (c_1, c_2, \dots, c_m, c_{m+1}, c_{m+2}, \dots, c_n) = (C_B, C_N)$$

$$B^{-1}b = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix} \qquad B^{-1}N = \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix}$$

$$C_B B^{-1} b = y_{00}$$
 $C_N - C_B B^{-1} N = (y_{0m+1}, y_{0m+2}, \dots, y_{0n})$

单纯形表:

$$y_{0j} = c_j - C_B B^{-1} p_j \quad C - C_B B^{-1} A^{-1}$$

-C	$_{B}B^{-1}b$	\mathcal{X}_1	\mathcal{X}_2	• • •	\mathcal{X}_{m}	X_{m+1}	X_{m+2}	• • •	\mathcal{X}_n
y_{0j}	$-y_{00}$	0	0	• • •	0	y_{0m+1}	y_{0m+2}	• • •	y_{0n}
X_1	y_{10}	1	0	• • •	0	y_{1m+1}	y_{1m+2}	• • •	y_{1n}
x_2	y ₂₀	0	1	• • •	0	y_{2m+1}	y_{2m+2}	$B^{-1}N$	y_{2n}
$\dot{\mathcal{X}}_m$	\dot{y}_{m0}	0	0	• • •	1	\mathcal{Y}_{mm+1}	${\cal Y}_{mm+}$	2 •••	y_{mn}

$$B^{-1}b \quad C - C_B B^{-1} A = (C_B, C_N) - C_B B^{-1} (B, N)$$

$$= (C_B, C_N) - (C_B, C_B B^{-1} N)$$

$$= (0, C_N - C_B B^{-1} N)$$

$$= (0, 0, \dots, 0, y_{0m+1}, y_{0m+2}, \dots, y_{0n})$$

单纯形表:
$$S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_n$$

$$B^{-1}b \ge 0 \qquad x_1 x_2 \cdots x_m x_{m+1} x_{m+2} \cdots x_n$$

基本可行解: $X^0 = (y_{10}, y_{20}, \cdots, y_{m0}, 0, 0, 0, \cdots, 0)^{T} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0$

目标值:
$$S^0 = y_{00} = C_B B^{-1} b$$

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$x_i \ge 0, \quad j = 1, 2, 3, 4$$

单纯形表:

		\boldsymbol{x}_1	\boldsymbol{x}_{2}	x_3	$\boldsymbol{x_4}$	
y_{0j}	-1	0	0	2	1	
x_1	0	1	0	-2	1	
x_2	1	0	1	2	0	

$$\min S = 1 + 2x_3 + x_4
\begin{cases}
x_1 & -2x_3 + x_4 = 0 \\
x_2 + 2x_3 + 0x_4 = 1 \\
x_j \ge 0, j = 1, 2, 3, 4
\end{cases}$$

基本可行解:

$$X = (0,1,0,0)^T$$

目标值: S=1

线性规划1-2

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$x_i \ge 0, \quad j = 1, 2, 3, 4$$

		\boldsymbol{x}_1	\boldsymbol{x}_{2}	x_3	x_4
y_{0j}	0	1	1	2	2
x_1	1	1_{R}	1	0	1
x_2	2	1 B	¹ 2	2	1
y_{0j}	-1	0	0	2	1
x_1	1	1	1	0	1
x_2	1	0	1	2	0
y_{0j}	-1	0	0	2	1
x_1	0	1	, 0	-2	1
\boldsymbol{x}_2	1	0	1	2	0

]	min	$S = 1 + 2x_3 + x_4$
	x_1	$-2x_3 + x_4 = 0$
		$x_2 + 2x_3 + 0x_4 = 1$
	x_j	$\geq 0, j = 1, 2, 3, 4$

基本可行解:

$$X = (0,1,0,0)^T$$

目标值: S=1

		x_1	\boldsymbol{x}_2	x_3	x_4
y_{0j}	-1	0	0	2	1
\boldsymbol{x}_1	0	1	0	-2	1
\boldsymbol{x}_{2}	1	0	1	2	0

线性规划1-2

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$x_i \ge 0, \quad j = 1, 2, 3, 4$$

		x_1	\boldsymbol{x}_{2}	x_3	x_4
y_{0j}	0	1	1	2	2
x_1	1	1	1	0	1
x_3	2	1	2	2	1
y_{0j}	-1	0	0	2	1
\boldsymbol{x}_1	1	1	1	0	1
x_3	1	0	1	2	0
y_{0j}	-2	0	-1	0	1
x_1	1	1	1	0	1
x_3	1/2	0	1/2	1	0

$$\min S = 2 - x_2 + x_4$$

$$x_1 + x_2 + x_4 = 1$$

$$1/2 x_2 + x_3 + 0x_4 = 1/2$$

$$x_j \ge 0, j = 1, 2, 3, 4$$

基本可行解:

$$X = (1,0,1/2,0)^T$$

目标值: S=2

第一章 线性规划

第四节 单纯形法

- ✓典式
- 迭代原理
- 单纯形法举例
- ■两阶段法

1.典式的向量形式:

min
$$S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

 $X_B + B^{-1} N X_N = B^{-1} b$
 $X_B \ge 0$ $X_N \ge 0$

$\min S = CX \\ AX = b \\ X \ge 0$

2.典式的分量形式:

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_n$$

$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10}$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20}$$

$$\dots$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

$$x_j \ge 0, j = 1, 2, \dots n$$

1.典式的向量形式:

基本可行解

复习

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0 \quad X_N \ge 0$$

$$X = \begin{pmatrix} B^{-1}b \geq 0 \\ 0 \end{pmatrix}$$

$$S = C_B B^{-1} b$$

2.典式的分量形式:

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_n$$

$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10}$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20}$$

$$\dots$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

基本可行解: $X^0 = (y_{10}, y_{20}, \dots, y_{m0}, 0, 0, \dots, 0)^T = \begin{pmatrix} B^{-1}b \geq 0 \\ 0 \end{pmatrix}$

目标值:

$$S^0 = y_{00}$$

线性规划1-4

3. 典式的表格形式(单纯形表)

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_n$$

$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10}$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20}$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

		x_1	\boldsymbol{x}_2		$\boldsymbol{\mathcal{X}}_{m}$	x_{m+1}	X_{m+2}	• • •	\boldsymbol{x}_n
							y_{0m+2}		
x_1	y_{10}	1	0	• • •	0	y_{1m+1}	y_{1m+2}	• • •	y_{1n}
							y_{2m+2}		
\dot{x}_m	y_{m0}	0	0	• • •	1	y_{mm+1}	y_{mm+}	2 •••	y_{mn}

单纯形表

单纯形表:

$$y_{0j} = c_j - C_B B^{-1} p_j$$
 $C - C_B B^{-1} A \ge 0$

$$C-C_BB^{-1}A$$

- C	BB	λ_1	\mathcal{X}_2	• • •	λ_{m}	λ_{m+1}	λ_{m+2}	• • •	\mathcal{X}_n
	$-y_{00}$	0	0	• • •	0	y_{0m+1}	y_{0m+2}	• • •	y_{0n}
								• • •	
x_2	<i>y</i> ₂₀	0	1	• • •	0	y_{2m+1}	y_{2m+2}	$B^{-1}N$	y_{2n}

$$B^{-1}b \geq 0$$

O D-11 v v

基本可行解: $X^0 = (y_{10}, y_{20}, \dots, y_{m0}, 0, 0, \dots, 0)^T$

 $X_m \mid y_{m0} \mid 0 \quad 0 \quad \dots \quad 1 \quad Y_{mm+1} \quad Y_{mm+2} \quad \dots$

目标值:

$$S^0 = y_{00}$$

最优解

第一章 线性规划

第四节 单纯形法

- √典式
- 迭代原理
 - 单纯形法举例
 - ■两阶段法

二. 迭代原理:

1. 初始单纯形表

		$X_1 \ X_2 \cdots X_p \cdots X_m \ X_{m+1} \ X_{m+2} \cdots X_q \cdots X_n$
y_{0j}	$-y_{00}$	$0 0 \cdots 0 y_{0m+1} y_{0m+2} \cdots y_{0q} \cdots y_{0n}$
$\overline{x_1}$	y_{10}	1 0 0 0 y_{1m+1} y_{1m+2} y_{1q} y_{1n}
\mathcal{X}_2	y_{20}	$0 1 \cdots 0 y_{2m+1} y_{2m+2} \cdots y_{2q} \cdots y_{2n}$
\mathcal{X}_{p}	y_{p0}	$0 0 \cdots 1 \cdots 0 \mathbf{y}_{pm+1} \mathbf{y}_{pm+2} \cdots \mathbf{y}_{pq} \cdots \mathbf{y}_{pn}$
\mathcal{X}_{m}	y_{m0}	
\boldsymbol{B}^{\cdot}	$b^{-1}b \geq 0$	$X_1 \ X_2 \cdots X_p \cdots X_m X_{m+1} \ X_{m+2} \cdots X_q \cdots X_n$

$$B^{-1}b \ge 0 x_1 x_2 \dots x_p \dots x_m x_{m+1} x_{m+2} \dots x_q \dots x_n X_n X_0 = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0, \dots, 0, \dots, 0)^T$$

初始基本可行解

二. 迭代原理:

2. 判断当前基本可行解是否是最优解:

- 1)若 $C C_B B^{-1} A \ge 0$ 或 $C_N C_B B^{-1} N \ge 0$,
 即非基变量 x_j 的检验数 $y_{0j} = c_j C_B B^{-1} p_j$ 都 ≥ 0 ,
 则 X^0 是最优解。
- 2) 若有某些检验数 $y_{0i} < 0$,例如: $y_{0q} < 0 (m+1 \le q \le n)$,则 X^0 不是最优解(在非退化情况下)。

1)单纯形表
$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$
 $C_N - C_B B^{-1} N \ge 0$

$$x_1 x_2 \cdots x_p \cdots x_m x_{m+1} x_{m+2} \cdots x_q \cdots x_n$$

$$y_{0j} - y_{00} \quad 0 \quad 0 \quad \cdots \quad 0 \quad y_{0m+1} y_{0m+2} \cdots y_{0q} \cdots y_{0n}$$

$$x_1 \quad y_{10} \quad 1 \quad 0 \quad \cdots \quad 0 \quad y_{1m+1} \quad y_{1m+2} \cdots y_{1q} \cdots y_{1n}$$

$$x_2 \quad y_{20} \quad 0 \quad 1 \quad \cdots \quad 0 \quad \cdots \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_p \quad y_{p0} \quad 0 \quad 0 \quad \cdots \quad 1 \quad \cdots \quad 0 \quad y_{pm+1} \quad y_{pm+2} \cdots y_{pq} \cdots y_{pn}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad \cdots \quad 0 \quad \cdots \quad 1 \quad y_{mm+1} \quad y_{mm+2} \cdots y_{mq} \cdots y_{mn}$$

$$R^{-1} h > 0$$

$$B^{-1}b\geq 0$$

$$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0, \dots 0, \dots 0)^{T}$$

是最优解

2) 单纯形表

		$x_1 x_2 \cdots x_p \cdots x_m x_{m+1} x_{m+2} \cdots x_q \cdots x_n$
y_{0j}	$-y_{00}$	$0 0 \cdots 0 y_{0m+1} y_{0m+2} \cdots y_{0q} < 0 y_{0n}$
$\overline{x_1}$	y_{10}	1 0 0 y_{1m+1} y_{1m+2} y_{1q} y_{1n}
\mathcal{X}_2	y_{20}	1 000 y_{1m+1} y_{1m+2} y_{1q} y_{1n} 0 100 y_{2m+1} y_{2m+2} y_{2q} y_{2n}
	y_{p0}	$0 0 \cdots 1 \cdots 0 \mathcal{Y}_{pm+1} \mathcal{Y}_{pm+2} \mathcal{Y}_{pq} \cdots \mathcal{Y}_{pn}$
\mathcal{X}_{m}	y_{m0}	$0 0 \cdots 1 \mathcal{Y}_{mm+1} \mathcal{Y}_{mm+2} \cdots \mathcal{Y}_{mq} \cdots \mathcal{Y}_{mn}$

$$B^{-1}b \geq 0$$

$$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0, \dots 0, \dots 0)^{T}$$

不是最优解

二. 迭代原理:

3. 转移到新的基本可行解:

- 确定进基变量
 - ■确定离基变量
 - 进行换基运算

1.典式的向量形式:

min
$$S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

 $X_B + B^{-1} N X_N = B^{-1} b$
 $X_B \ge 0$ $X_N \ge 0$

$\min S = CX \\ AX = b \\ X \ge 0$

2.典式的分量形式:

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_n$$

$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10}$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20}$$

$$\dots$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

$$x_j \ge 0, j = 1, 2, \dots n$$

1) 确定进基变量:

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0q}x_{q} + \dots + y_{0n}x_{n}$$

$$x_{1} \quad x_{2} \quad \dots \quad x_{p} \quad \dots \quad x_{m} \quad x_{m+1}x_{m+2} \quad x_{q} \quad \dots \quad x_{n}$$

$$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, \quad 0, \quad 0 \dots, 0, \dots 0)^{T} \quad S^{0} = y_{00}$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, y'_{p0}, \dots y'_{m0}, \quad 0, \quad 0 \dots, 0 > 0 \dots)^{T}$$

$$S^{1} = y_{00} + y_{0q}\theta \quad \langle S^{0} = y_{00} \downarrow \quad x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

确定进基变量的准则:

将检验数<0的非基变量进基做基变量,可使新的基本可行解相应目标函数值下降。

确定进基变量的准则:

如果有不止一个负检验数,则有两种方法确定进基变量 x_a :

1. Bland 规则:
$$q = \min\{j | y_{0j} < 0, j = 1, 2, \dots, n\}$$

2. 最负检验数法:
$$y_{0q} = \min\{y_{0j} | y_{0j} < 0, j = 1, 2, \dots, n\}$$

单纯形表

		$X_1 \ X_2 \cdots X_p \cdots X_m \ X_{m+1} \ X_{m+2} \cdots X_q \cdots X_n$
y_{0j}	$-y_{00}$	$0 0 \cdots 0 \mathbf{y}_{0m+1} \mathbf{y}_{0m+2} \cdots \mathbf{y}_{0q} < 0 \mathbf{y}_{0n}$
$\overline{x_1}$	y_{10}	1 0 \cdots 0 y_{1m+1} y_{1m+2} \cdots y_{1q} \cdots y_{1n}
\mathcal{X}_2	y_{20}	1 0 0 0 y_{1m+1} y_{1m+2} y_{1q} y_{1n} 0 1 0 0 y_{2m+1} y_{2m+2} y_{2q} y_{2n}
	y_{p0}	$0 0 \cdots 1 \cdots 0 \mathbf{y}_{pm+1} \mathbf{y}_{pm+2} \cdots \mathbf{y}_{pq} \cdots \mathbf{y}_{pn}$
\mathcal{X}_{m}	y_{m0}	$0 0 \cdots 1 \mathcal{Y}_{mm+1} \mathcal{Y}_{mm+2} \cdots \mathcal{Y}_{mq} \cdots \mathcal{Y}_{mn}$

采用Bland规则方法确定进基变量 x_q .

3. 转移到新的基本可行解:

- ✓确定进基变量
- 确定离基变量
 - 进行换基运算

1.典式的向量形式:

min
$$S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

 $X_B + B^{-1} N X_N = B^{-1} b$
 $X_B \ge 0$ $X_N \ge 0$

$\min S = CX \\ AX = b \\ X \ge 0$

2.典式的分量形式:

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_n$$

$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10}$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20}$$

$$\dots$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

$$x_j \ge 0, j = 1, 2, \dots n$$

2) 确定离基变量:

$$x_{m} + y_{mm+1}x_{m+1} + \dots + y_{mq}x_{q} + \dots + y_{mn}x_{n} = y_{m0}$$
 $y'_{m0} = y_{m0} - y_{mq}\theta \ge 0$
 $x_{j} \ge 0, j = 1, 2, \dots n$

$$y'_{10} = y_{10} - y_{1q}\theta \ge 0$$
$$y'_{20} = y_{20} - y_{2q}\theta \ge 0$$

$$y'_{m0} = y_{m0} - y_{mq}\theta \ge 0$$

2) 确定离基变量:
$$\frac{y_{p0}}{y_{pq}} < \frac{y_{10}}{y_{1q}} \rightarrow y_{1q} \cdot \frac{y_{p0}}{y_{pq}} < y_{10}$$

$$X_{1} \quad X_{2} \dots X_{p} \dots X_{m} \quad X_{m+1} X_{m+2} \quad X_{q} \dots X_{n}$$

$$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0 \dots, 0, \dots 0)^{T} \quad S^{0} = y_{00}$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, y'_{p0}, \dots y'_{m0}, 0, 0 \dots, 0, \dots 0)^{T} \quad S^{1} = y_{00} + y_{0q} \theta$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, 0, \dots y'_{m0}, 0, 0 \dots, \frac{y_{p0}}{y_{pq}}, 0)^{T}$$

$$Y^{0}_{20} = y_{20} - y_{2q} \theta \ge 0 \quad \Rightarrow \theta \le \frac{y_{p0}}{y_{pq}} (y_{pq} > 0)$$

$$y'_{p0} = y_{p0} - y_{pq} \theta \ge 0 \quad \Rightarrow \theta \le \frac{y_{p0}}{y_{pq}} (y_{pq} > 0)$$

$$y'_{m0} = y_{m0} - y_{mq} \theta \ge 0 \quad \Rightarrow \theta \le \frac{y_{m0}}{y_{pq}} (y_{mq} > 0)$$

$$\theta = \min\{\frac{y_{i0}}{y_{iq}} | y_{iq} > 0, 1 \le i \le m\} = \frac{y_{p0}}{y_{pq}}$$

 x_p 称为**离基变**量 最小非负比值准则

单纯形表

第一种情况: 假设 $y_{1q}, y_{2q}, \dots y_{pq}, \dots y_{mq} > 0$

$$\theta = \min\{\frac{y_{10}}{y_{1q}}, \frac{y_{20}}{y_{2q}}, \dots, \frac{y_{p0}}{y_{pq}}, \dots, \frac{y_{m0}}{y_{mq}}\} = \underbrace{y_{p0}}_{y_{pq}} x_p$$
称为离基变量

单纯形表

1								
			x_1	$x_2 \cdots y$	$x_p \cdots x_m$	X_{m+1}	$x_{m+2} \cdots x_q$	$\boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\lambda}_n$
	y_{0j}	$-y_{00}$	0	0(0 0	y_{0m+1}	$y_{0m+2} \cdot \cdot y_{0m}$	$_{q}<0\overline{\mathcal{Y}_{0n}}$
	X_1	y ₁₀	1	0(0 0	y_{1m+1}	$y_{1m+2} \dots y_{1m}$	y_{1n}
	\mathcal{X}_2	y ₂₀	0	1	0 0	y_{2m+1}	$y_{2m+2} \cdots y_2$	y_{2n}
($lefte{x}_p$	y_{p0}	0	0	1 0	y_{pm+1}	$y_{pm+2} \dots y_{p}$	09 • • • y pn
	\mathcal{X}_{m}	y_{m0}	0	0 …	0 · · · 1	y_{mm+1}	y_{mm+2} . y_m	$\mathbf{q} \cdot \cdot \mathbf{y}_{mn}$

第二种情况: 若 $y_{iq} \leq 0, i = 1, 2, \dots, m$,则对 θ 没限制,

$$y'_{10} = y_{10} - y_{1q}\theta \ge 0$$

$$y'_{20} = y_{20} - y_{2q}\theta \ge 0$$

$$y'_{m0} = y_{m0} - y_{mq}\theta \ge 0$$

$$\overrightarrow{\mathbb{M}} \quad S^1 = y_{00} + y_{0q} \theta \xrightarrow[\theta \to +\infty]{} -\infty,$$

即(LP)没有有限的最优解。

第三种情况: 无穷多最优解判别条件:

$$X_{1} \quad X_{2} \dots X_{p} \quad \dots X_{m} \quad X_{m+1} X_{m+2} \quad X_{q} \dots X_{n}$$

$$X_{0}^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0 \dots, 0, \dots 0)^{T} \quad S^{0} = y_{00}$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, y'_{p0}, \dots y'_{m0}, 0, 0 \dots, 0)^{T} \quad S^{1} = y_{00} + y_{0q} \theta$$

$$Y'_{10} = y_{10} - y_{1q} \theta \ge 0$$

 $y'_{20} = y_{20} - y_{2q}\theta \ge 0$

 $y_{p0}' = y_{p0} - y_{pq}\theta \ge 0$

$$\lfloor y'_{m0} = y_{m0} - y_{mq}\theta \ge 0$$

非基变量 x_q 的检验数 $y_{0q} = 0$, 则 $S^1 = y_{00} + y_{0q}\theta = y_{00} \Rightarrow$ 最优值

若对于某个基本可行解,所有检验数都非负,且 存在一个非基变量的检验数=0,则(*LP*) 有无穷多 个最优解。

线性规划1-4

3. 转移到新的基本可行解:

- ✓确定进基变量
- ✓确定离基变量
- 进行换基运算

3) 换基运算:

 $-y_{00}$ 0 0 ... 0 ... 0 y_{0m+1} y_{0m+2} ... y_{0q} 0 y_{0n} $x_1 y_{10} - y_{1q} \cdot \frac{y_{p0}}{y_{pq}} \dots 0 \dots 0 y_{1m+1} y_{1m+2} \dots y_{1q} 0 \dots y_{1n}$ $y_{20} - y_{2q} \cdot \frac{y_{p0}}{y_{pq}} \cdot \cdot \cdot 0 \cdot \cdot 0 \quad y_{2m+1} \quad y_{2m+2} \cdot \cdot \cdot y_{2q} \cdot \cdot \cdot y_{2n}$ $\boldsymbol{x}_{m} \quad \boldsymbol{y}_{m0} = \boldsymbol{y}_{mq} \cdot \frac{\boldsymbol{y}_{p0}}{\boldsymbol{y}_{pq}} \cdot \boldsymbol{0} \cdot \boldsymbol{1} \quad \boldsymbol{y}_{mm+1} \quad \boldsymbol{y}_{mm+2} \cdot \boldsymbol{y}_{mq} \boldsymbol{0} \cdot \boldsymbol{y}_{mn}$

因为 x_a 代替 x_n 成为第p 个方程的基变量,所以它只能出 现在第2个方程中,且系数为1,不能出现在其他方程中, 检验数也为0。

3. 转移到新的基本可行解:

- ✓确定进基变量
- ✓确定离基变量
- ✓进行换基运算

二. 迭代原理:

迭代原理:

$$S^{1} = y_{00} + y_{0q}\theta < S^{0} = y_{00}$$

送代原理:

$$X_{1} X_{2} X_{p} X_{m} X_{m+1} X_{m+2} X_{q} X_{n}$$

$$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0, \dots, 0, \dots, 0)^{T}$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, 0, \dots, y'_{m0}, 0, 0, \dots, y'_{p0}, \dots, 0)^{T}$$

初始基本可行解 X^0

$$\boldsymbol{B}_0 = (\boldsymbol{p}_1, \boldsymbol{p}_2, \cdots \boldsymbol{p}_p \cdots \boldsymbol{p}_m)$$

 X^0 是最

$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$

$$y_{0q} < 0$$

确定进基变量
$$x_a$$

$$q = \min\{j | y_{0j} < 0, j = 1, 2, \dots, n\}$$

确定离基变量 x_n

$$\theta = \min\{\frac{y_{i0}}{y_{iq}} | y_{iq} > 0, 1 \le i \le m\} = \frac{y_{p0}}{y_{pq}}$$

换基运算

若 $y_{ia} \leq 0$, (LP)没有有限的最优解。

新的基本可行解 X^1

$$\boldsymbol{B}_{1} = (\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots \boldsymbol{p}_{a} \cdots \boldsymbol{p}_{m})$$

第一章 线性规划

第四节 单纯形法

- ✓典式
- ✓迭代原理
- 单纯形法举例
 - ■两阶段法

例1-10 求解线性规划问题: 典式 $c_j \times \mathcal{C}_B B(\overline{b},0),0,0,3,4)^{B^{-1}b}$

$$\min S = x_1 - 2x_2 + x_3 - 3x_4 \qquad \min S = x_1 - 2x_2 + x_3 - 3x_4$$

$$x_1 + x_2 + 3x_3 + x_4 = 6 \qquad x_1 + x_2 + 3x_3 + x_4 = 6$$

$$B_0 = (p_1, p_5, p_6) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_{1} + x_{2} + 3x_{3} + x_{4} = 6$$

$$-2x_{2} + x_{3} + x_{4} + x_{5} = 3$$

$$-x_{2} + 6x_{3} - x_{4} + x_{6} = 4$$

$$x_{j} \ge 0, j = 1, 2, 3, 4, 5, 6$$

单
姑
元
形
表

<u>.</u> [x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	x_6
	C_{B}	X_{B}	-6	0	-3	-2	-4	0	0
	1	X_1	6	1	1	3	1	0	0
		X_5		0	-2	1	1	1	0
	0	X_6	4	0	-1	6	-1	0	1

线性规划1-4

 $y_{0i} = c_j - C_B B^{-1} p_j \ge 0$ $C - C_B B^{-1} A \ge 0$

表		X_1	\boldsymbol{x}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	\mathcal{X}_{6}
X_{B}	-6	0	-3	-2	-4	0	0
x_2	6	1	1	3	1	0	0
X_5	15	2	0	7	3	1	0
X_6	4	0	-1	6	-1	0	1

$$x_1$$
 x_2 x_3 x_4 x_5 x_6
 $X^0 = (6, 0, 0, 0, 3, 4)^T$ $S^0 = 6$

表		X_1	\boldsymbol{x}_{2}	x_3	\mathcal{X}_4	\mathcal{X}_{5}	X_6
X_{B}	6	0	-3	-2	-4	0	0
x_2	6	1	1	3	1	0	0
X_5	15	2	0	7	3	1	0
X_6	10	1	0	9	0	0	1

$$x_1$$
 x_2 x_3 x_4 x_5 x_6
 $X^0 = (6, 0, 0, 0, 3, 4)^T$ $S^0 = 6$

表		x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	\mathcal{X}_{6}
X_{B}	-6	0	-3	-2	-4	0	0
x_2	6	1	1	3	1	0	0
X_5	15	2	0	7	3	1	0
X_6	10	1	0	9	0	0	1

$$x_1$$
 x_2 x_3 x_4 x_5 x_6
 $X^0 = (6, 0, 0, 0, 3, 4)^T$ $S^0 = 6$

表		x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	\mathcal{X}_{6}	
$X_{\scriptscriptstyle B}$	12	3	0	7	-1	0	0	_
x_2	6	1	1	3	1	0	0	×3
X_5	15	2	0	7	3	1	0	
X_6	10	1	0	9	0	0	1	

$$x_1$$
 x_2 x_3 x_4 x_5 x_6
 $X^0 = (6, 0, 0, 0, 3, 4)^T$ $S^0 = 6$

|
$$A = \begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & -2 & 1 & 1 & 1 & 0 \\ 0 & -1 & 6 & -1 & 0 & 1 \end{bmatrix}, \frac{B_0 = (p_1, p_5, p_6)}{B_1 = (p_2, p_5, p_6)} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x_2 & 6 & 1 & 1 & 3 & 1 & 0 & 0 \\ \hline x_4 & 5 & 2/3 & 0 & 7/3 & 1 & 1/3 & 0 \\ \hline x_6 & 10 & 1 & 0 & 9 & 0 & 0 & 1 \end{bmatrix} \times \frac{1}{3}$$

$$X_1$$
 X_2 X_3 X_4 X_5 X_6
 $X^0 = (6, 0, 0, 0, 3, 4)^T$ $S^0 = 6$
 $X^1 = (0, 6, 0, 0, 15, 10)^T$ $S^1 = -12$

表	<u> </u>	x_1	x_2	x_3	x_4	\mathcal{X}_{5}	χ_6
X_{B}	12	3	0	7	-1	0	0
X_2	1	1/3	1	2/3	0	-1/3	0
x_4	5	2/3	0	7/3	1	1/3	0
X_6	10	1	0	9	0	0	1

$$X_1$$
 X_2 X_3 X_4 X_5 X_6
 $X^0 = (6, 0, 0, 0, 3, 4)^T$ $S^0 = 6$
 $X^1 = (0, 6, 0, 0, 15, 10)^T$ $S^1 = -12$

 $\times (-1)$

表		X_1	\mathcal{X}_2	\mathcal{X}_3	x_4	\mathcal{X}_{5}	X_6
$X_{\scriptscriptstyle B}$	17	11/3	0	28/3	0	1/3	0
X_2	1	1/3	1	2/3	0	-1/3	0
X_4	5	2/3	0	7/3	1	1/3	0
X_6	10	1	0	9	0	0	1

$$X_1$$
 X_2 X_3 X_4 X_5 X_6
 $X^0 = (6, 0, 0, 0, 3, 4)^T$ $S^0 = 6$
 $X^1 = (0, 6, 0, 0, 15, 10)^T$ $S^1 = -12$

min
$$S = x_1 - 2x_2 + x_3 - 3x_4$$
 min $S = x_1 - 2x_2 + x_3 - 3x_4$ $x_1 + x_2 + 3x_3 + x_4 = 6$ $x_1 + x_2 + 3x_3 + x_4 = 6$ $x_1 + x_2 + 3x_3 + x_4 = 6$ $x_1 + x_2 + 3x_3 + x_4 = 6$ $x_2 + 6x_3 - x_4 \le 4$ $x_3 \ge 0, j = 1, 2, 3, 4$ $x_3 \ge 0, j = 1, 2, 3, 4, 5, 6$ $x_4 = 1, 2, 3, 4$ $x_4 = 1, 3, 4$ $x_5 \ge 0, x_4 + x_6 = 4$ $x_5 \ge 0, x_4 + x_6 = 4$ $x_5 \ge 0, x_4 + x_6 = 4$ $x_5 \ge 0, x_5 = 1, 2, 3, 4, 5, 6$ $x_6 \ge 0, x_6 = 1, 2, 3, 4, 5, 6$

$$A = \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & -2 & 1 & 1 & 1 & 0 \\ 0 & -1 & 6 & -1 & 0 & 1 \end{pmatrix}, \frac{B_1 = (p_2, p_5, p_6)}{B^* = (p_2, p_4, p_6)} = \begin{pmatrix} 1 & 1 & 0 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$

例1-11 求解线性规划问题:
$$y_{0j} = c_j - C_B B^{-1} p_j$$
 $y_{00} = C_B B^{-1} b$ $\max S = x_1 + 3x_2 + 4x_3$ $\min(-S) = -x_1 - 3x_2 - 4x_3$ $3x_1 + 5x_2 - 4x_3 \le 10$ 标准形 $-2x_1 + 3x_2 + x_3 \le 5$ $x_j \ge 0, j = 1, 2, 3$ $x_j \ge 0, j = 1, 2, 3, 4, 5$

			C_{j}	-1	-3	-4	0	0
单纯				X_1	x_2	x_3	\mathcal{X}_4	X_5
	C_{B}	X_{B}	0	-1	-3	-4	0	0
形表	0	x_4	10	3	5	-4	1	0
	0	X_5	5	-2	3	1	0	1

$$x_1$$
 x_2 x_3 x_4 x_5
 $X^0 = (0, 0, 0, 10, 5)^T$ $S^0 = 0$

		x_1	\mathcal{X}_2	x_3	X_4	\mathcal{X}_{5}	
X_{B}	10/3	0	-4/3	-16/3	1/3	0	+
x_1	10/3	1	5/3	-4/3	1/3	0	
X_5	5	-2	3	1	0	1	

$$x_1$$
 x_2 x_3 x_4 x_5
 $X^0 = (0, 0, 0, 10, 5)^T$ $S^0 = 0$

		x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	
X_{B}	10/3	0	-4/3	-16/3	1/3	0	
x_1	10/3	1	5/3	-4/3	1/3	0	×
X_5	35/3	0	19/3	-5/3	2/3	1	

$$x_1$$
 x_2 x_3 x_4 x_5
 $X^0 = (0, 0, 0, 10, 5)^T$ $S^0 = 0$

例1-11 $y_{0j} = c_j - C_B B^{-1} p_j \ge 0 \quad C - C_B B^{-1} A \ge 0$

		x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}
$X_{\scriptscriptstyle B}$	10/3	0	-4/3	-16/3	1/3	0
x_1	10/3	1	5/3	-4/3	1/3	0
X_5	35/3	0	19/3	-5/3	2/3	1

$$x_1$$
 x_2 x_3 x_4 x_5
 $X^0 = (0, 0, 0, 10, 5)^T$ $S^0 = 0$
 $X^1 = (10/3, 0, 0, 0, 35/3)^T$ $S^1 = -10/3$

$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$
 $C - C_B B^{-1} A \ge 0$

		x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}
X_{B}	10/3	0	-4/3	-16/3	1/3	0
x_1	10/3	1	5/3	-4/3	1/3	0
X_5	35/3	0	19/3	-5/3	2/3	1

$$X^{2}$$
 $S^{2} = y_{00} + y_{0q}\theta = -\frac{10}{3} - \frac{16}{3}\theta \xrightarrow{\theta \to +\infty} -\infty$

该问题没有有限的最优解

$$X^{0} = (0, 0, 0, 10, 5)^{T} S^{0} = 0$$

$$X^1 = (10/3,0, 0, 0, 35/3)^T$$
 $S^1 = -10/3$

第一章 线性规划

第四节 单纯形法

- ✓典式
- ✓迭代原理
- ✓ 单纯形法举例
- ■两阶段法

作业: P95 6(1)(2)(3)

作业: P41 6(1)(2)(3)