Simulated Annealing for Makespan Scheduling

Kenneth Young Lotte Romijn Ria Szeredi

University of Melbourne

- * Simulated Annealing
 - * Cooling Schedule
 - * Initial Temperature

* Simulated Annealing

- Cooling Schedule
- Initial Temperature
- Experimental Results
 - Various research questions explored

- Simulated Annealing
 - Cooling Schedule
 - Initial Temperature
- * Experimental Results
 - * Various research questions explored

* Allows moving to a worse solution with some probability which decreases with time

- * Allows moving to a worse solution with some probability which decreases with time
- * Slight modification to track the best solution found by the algorithm

- * Allows moving to a worse solution with some probability which decreases with time
- Slight modification to track the best solution found by the algorithm
- * Free parameters:
 - 1. Neighbourhood: 2-exchange "jump"
 - 2. Cooling schedule
 - 3. Initial temperature value

Simulated Annealing: Cooling Schedules

* 4 different cooling schedules considered:

1. Exponential multiplicative:
$$f_1(T_0, I) = T_0 \cdot \mu^I$$

2. Simple exponential:
$$f_2(T_0, I) = T_0 - I$$

3. Linear multiplicative:
$$f_3(T_0, I) = \frac{1}{1+I} \cdot T_0$$

4. Quadratic multiplicative:
$$f_4(T_0, I) = \frac{1}{1 + I^2} \cdot T_0$$

Simulated Annealing: Cooling Schedules

Simulated Annealing: Initial Temperature

- Good choice of initial temperature depends largely on instance
- * Algorithm by Ben-Ameur [1]:
 - * Generates a temperature so that the probability of accepting a cost increase is equal to a specified value

- * Simulated Annealing
 - * Cooling Schedule
 - * Initial Temperature
- * Experimental Results
 - Various research questions explored

1. Which cooling schedule performs best?

- 1. Which cooling schedule performs best?
- 2. Is the algorithm for the generation of the **initial temperature** efficient?

- 1. Which **cooling schedule** performs best?
- 2. Is the algorithm for the generation of the **initial temperature** efficient?
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?

- 1. Which cooling schedule performs best?
- 2. Is the algorithm for the generation of the **initial temperature** efficient?
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?
- 4. What are the **performance limitations** of our algorithm?
 - a) Processing time distribution
 - b) Instance size

- 1. Which cooling schedule performs best?
- 2. Is the algorithm for the generation of the **initial temperature** efficient?
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?
- 4. What are the **performance limitations** of our algorithm?
 - a) Processing time distribution
 - b) Instance size
- 5. What is the **best measure of solution quality**?

- 1. Which cooling schedule performs best?
- 2. Is the algorithm for the generation of the **initial temperature** efficient?
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?
- 4. What are the **performance limitations** of our algorithm?
 - a) Processing time distribution
 - b) Instance size
- 5. What is the best measure of solution quality?

Experiments: Cooling Schedules

Linear Multiplicative Cooling

Quadratic Multiplicative Cooling

Run time

Experiments: Cooling Schedules

Linear Multiplicative Cooling

Quadratic Multiplicative Cooling

Makespan Gap

- 1. Which cooling schedule performs best?
- 2. Is the algorithm for the generation of the **initial temperature** efficient?
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?
- 4. What are the **performance limitations** of our algorithm?
 - a) Processing time distribution
 - b) Instance size
- 5. What is the best measure of solution quality?

* Including initial temperature algorithm as part of Simulated Annealing is not time efficient

- * Including initial temperature algorithm as part of Simulated Annealing is not time efficient
- * Temperatures generated for a range of instances of different sizes

- * Including initial temperature algorithm as part of Simulated Annealing is not time efficient
- * Temperatures generated for a range of instances of different sizes
- * Conclusion: choose initial temperature to be 1.5 times the maximum processing time

- 1. Which cooling schedule performs best?
- 2. Is the algorithm for the generation of the **initial temperature** efficient?
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?
- 4. What are the **performance limitations** of our algorithm?
 - a) Processing time distribution
 - b) Instance size
- 5. What is the best measure of solution quality?

Experiments: SA Comparison

GLS Results

(Initial Solution: GMS)

Experiments: SA Comparison

VDS Results

(Initial Solution: GMS)

Experiments: SA Results

SA Results

(Initial Solution: GMS)

- 1. Which cooling schedule performs best?
- 2. Is the algorithm for the generation of the **initial temperature** efficient?
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?
- 4. What are the **performance limitations** of our algorithm?
 - a) Processing time distribution
 - b) Instance size
- 5. What is the best measure of solution quality?

- * So far: uniform distribution used to generate processing times
- * Is there a distribution for which Simulated Annealing gives bad solutions?

- * So far: uniform distribution used to generate processing times
- * Is there a distribution for which Simulated Annealing gives bad solutions?

* Increase size of instance: 500, 1000, 5000, 10000 jobs...

Poor Distribution

- 1. Which cooling schedule performs best?
- 2. Is the algorithm for the generation of the **initial temperature** efficient?
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?
- 4. What are the **performance limitations** of our algorithm?
 - a) Processing time distribution
 - b) Instance size
- 5. What is the **best measure of solution quality**?

* Fractional lower bound is not a good measure of solution quality when *n* and *m* are comparable

- * Fractional lower bound is not a good measure of solution quality when *n* and *m* are comparable
- * Constraint Programming (CP) model to generate an exact solution

- * Fractional lower bound is not a good measure of solution quality when *n* and *m* are comparable
- * Constraint Programming (CP) model to generate an <u>exact</u> solution
- * Runtime of CP model varies drastically, especially for larger instances

m	10	20	30	40	50	60	70	80	90	100
2	0.002	0	0	0	0	0	0	0	0	0
4	0.000	0.003	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0
6	0	0.013	0.007	0.004	0.003	0.002	0.001	0.001	0.001	0.001
8	0	0.014	0.019	0.012	0.007	0.004	0.004	0.003	0.003	0.002
10	0	0.003	0.042	0.048	0.017	0.008	0.006	0.007	0.002	0.001

The average ratio minus 1 of the SA solution to the optimal solution (by CP), for instances that were solved to optimality within 5 minutes.

Summary

- We applied Simulated Annealing to the Makespan Scheduling problem
- * Different cooling schedules and an algorithm for initial temperature were investigated
- * Simulated Annealing found to be much faster than GLS, VDS and CP

Thank you!

References

1. Ben-Ameur, W. (2004). Computing the initial temperature of simulated annealing. Computational Optimization and Applications, 29(3):369–385.