《计算机网络原理》

课程编号: 40240513

讲课教师: 吴建平 徐明伟 尹霞

本科生必修课

计算机科学与技术系

第四章 物理层

各种通信技术是网络空间技术体系的支撑

互联网体系结构是网络空间技术体系的核心

研究互联网各部分功能组成及其相互关系

网络层承上启下,保证全网通达,是体系结构的核心

难点

在传送格式和转发方式相对稳定的情况下,路 由控制必须不断满足通信和应用发展需求(复杂多变量)达到全网最优(互联网研究的重大科学难题)

主要教学内容和学时分配

第一章	引言	3
第二章	计算机网络的体系结构	6
第三章	数据通信的基本原理	3
第四章	物理层	3
第五章	数据链路层	6
第六章	局域网与介质访问控制层	6
第七章	网络层	9
第八章	传送层	3
第九章	应用层	3
第十章	网络安全	3
机动		3
共计		48

第四章 物理层 主要内容

- 4.1 物理层的定义、功能和特性(物理接口)
- 4.2 导向传输介质
- 4.3 无线传输
- 4.4 频谱用于传输
- 4.5 公共电话交换网络
- 4.6 蜂窝网络
- 4.7 有线电视
- 4.8 通信卫星
- 4.9 不同接入网络的比较

4.1 物理层的定义、功能和特性(1)

• 物理层的定义

ISO/OSI 关于物理层的定义:

物理层提供机械的、电气的、功能的和规程的特性,目的是启动、维护和关闭数据链路实体之间进行比特传输的物理连接。这种连接可能通过中继系统,在中继系统内的传输也是在物理层的。

• 物理层的功能

在两个网络设备之间提供透明的比特流传输。

• 研究内容

物理连接的启动和关闭,正常数据的传输,以及维护管理。

4.1 物理层的定义、功能和特性(2)

- 几点说明
 - 连接方式(点到点,点到多点)
 - 通信方式(单工,半双工,全双工)
 - 位传输方式(串行,并行)
- 物理层的四个重要特性
 - 机械特性 (mechanical characteristics)
 - 电气特性 (electrical characteristics)
 - 功能特性 (functional characteristics)
 - 规程特性 (procedural characteristics)

4.1 物理层的定义、功能和特性(3)

• 机械特性

主要定义物理连接的边界点,即接插装置。规定物理连接时所采用的规格、引脚的数量和排列情况。常用的标准接口:

- ISO 2110 25芯连接器: EIA RS-232-C, EIA RS-366-A
- ISO 2593 34芯连接器: V.35宽带MODEM
- ISO 4902 37芯和9芯连接器: EIA RS-449
- ISO 4903 15芯连接器: X.20, X.21, X.22

• 电气特性

规定传输二进制位时,线路上信号的电压高低、阻抗匹配、 传输速率和距离限制。

早期的标准是在边界点定义电气特性,例如EIA RS-232-C、V.28;最近的标准则说明了发送器和接受器的电气特性,而且给出了有关对连接电缆的控制。

4.1 物理层的定义、功能和特性(4)

CCITT 标准化的电气特性标准:

- CCITT V.10/X.26: 新的非平衡型电气特性, EIA RS-423-A
- CCITT V.11/X.27: 新的平衡型电气特性, EIA RS-422-A
- CCITT V.28: 非平衡型电气特性, EIA RS-232-C
- CCITT X.21/EIA RS-449
- 功能特性

主要定义各条物理线路的功能。线路的功能分为四大类:

- 数据
- 控制
- 定时
- 地
- 规程特性

主要定义各条物理线路的工作规程和时序关系。

4.2 导向传输介质

- 导向传输介质 (Guided transmission media)
 - -永久存储 Persistent storage
 - -双绞线 Twisted pairs
 - -同轴电缆 Coaxial cable
 - -电力线 Power lines
 - —光纤 Fiber optics

永久存储

- 由磁性存储设备或固态存储设备组成
- 最普通传送数据的方法
 - -写数据到永久存储设备
 - -把永久存储设备发送到目前地
 - -从永久存储设备读出数据
- 特别适用于那些高速率数据或者强调单位数据成本的应用 系统
- 永远不要低估一辆满载着磁带在高速公路上飞施的汽车的带宽

双绞线

A category 5e twisted pair consists of two insulated wires gently twisted together. Four such pairs are typically grouped in a plastic sheath to protect the wires and keep them together.

同轴电缆

A coaxial cable consists of a stiff copper wire as the core, surrounded by an insulating material. The insulator is encased by a cylindrical conductor, often as a closely woven braided mesh. The outer conductor is covered in a protective plastic sheath.

电力线

Using power lines for networking is simple. In this case, a TV and a receiver are plugged into the wall, which must be done anyway because they need power. Then they can send and receive movies over the electrical wiring.

光纤

- 基本上允许无限带宽
- 必须考虑高效利用带宽的成本
 - -既要考虑末端的光电转换装置,又要考虑长距离传输
- 传输场景
 - 长距离主干网传输
 - 高速 LANs
 - 高速的互联网访问
- 关键部件
 - -光源,传输介质和检测设备
- 传输系统

光的折射和反射

Figure (a) illustrates a light ray inside a silica fiber impinging on the air/silica boundary at different angles. Figure (b) illustrates light trapped by total internal reflection.

红外线通过光纤时的衰减

Attenuation of light through fiber in the infrared region is measured in units of decibels (dB) per linear kilometer of fiber.

光纤的内部结构和带护套的3根光纤

光纤与铜线的比较

- 光纤比铜线的优点
 - 更高的带宽
 - 不受电源浪涌、电磁干扰或电源故障等影响
 - 体积又轻又小
 - 降低维护成本
 - 安全性好
- 光纤的缺点
 - 技术难度大, 技术操作要求高
 - 容易损坏
 - 接口成本高

4.3 无线传输

- 电磁频谱
 - -调制波幅、频率或相位
- •跳频扩频
 - -发射器每秒从一个频率跳到另一个频率数百次
- •直接序列扩频
 - -代码序列将数据信号扩展到更宽的频带
- •超宽频带
 - -通信发送一系列低能量的快速脉冲,改变它们的载波频率来传递 信息

电磁频谱及其在通信中的应用

4.4 频谱用于传输

- •无线电传输
 - -全向波,易于产生,长距离传播,穿透建筑物
- •微波传输
 - -需要中继器的定向波,不易穿透建筑物
- •红外传输
 - –用于短距离通信的非导向波,相对定向,价格便宜,易于建造,不易穿透实心墙
- •光通信/激光通信
 - -非导向的光通信

各频段无线电波的传播

在 VLF、LF 和 MF 频段中,无线电波沿地面波传播。在 HF 频段,它们从电离层反弹。

激光通信

热气流会干扰激光通信系统。图为具有两个激光器的双向系统。

4.5 公共电话交换网络

- •电话系统的结构
- •本地回路:电话调制解调器,ADSL和光纤
 - -电话调制解调器

电话系统的结构 (1 of 2)

(a) Fully interconnected network. (b) Centralized switch. (c) Two-level hierarchy.

电话系统的结构 (2 of 2)

A typical circuit route for a long-distance call.

本地回路: 电话调制解调器, ADSL和光纤

- 电话调制解调器 Telephone Modems
- 数字用户线 Digital Subscriber Lines (DSL)
- 光纤到 X (FTTX)

电话调制解调器

The use of both analog and digital transmission for a computer-to-computer call. Conversion is done by the modems and codecs.

典型的ADSL部署结构

A typical ADSL equipment configuration.

无源光网络光纤到户

Passive optical network for Fiber To The Home.

4.6 蜂窝网络

- 移动电话的不同代
- 最初的三代: 1G, 2G, 3G
 - -分别提供模拟语音、数字语音以及数字语音和数据(互联网、电子邮件等)
- 4G 技术增加了容量
 - -物理层传输技术和基于 IP 的飞峰窝 (毫微微峰窝,家庭蜂窝)
 - -4G 仅基于分组交换(非电路交换)
- 5G 现在正在推出
 - -支持高达 20 Gbps 的传输和更密集的部署
 - -专注于减少网络延迟

基本概念: 蜂窝, 越区切换, 寻呼

(a) 频率不会在相邻的单元格中重复使用。(b) 要添加更多用户,可以使用较小的单元格。

第一代 (1G) 技术: 模拟语音

- 1946 push to talk systems
- 1960 IMTS (Improved Mobile Telephone System)
 - Two frequencies: one for sending, one for receiving
- 1983 AMPS (Advanced Mobile Phone System)
 - Analog mobile phone system
 - Cells are typically 10 to 20 km across
 - Used FDM to separate channels
 - 832 full-duplex channels that consist of a pair of simplex channels used (Frequency Division Duplex)
 - Each simplex channel is 30 kHz wide
 - -832 channels in AMPS are divided into four categories

呼叫管理

Outgoing calls

- Phone switched on, number entered, CALL button hit
- Phone transmits called number and its own identity on the access channel
- Base informs the MSC and MSC looks for a channel for the call

Incoming calls

- Idle phones continuously listen to the paging channel to detect messages directed at them
- Packet sent to base station in the current cell as a broadcast on the paging channel
- The called phone responds on the access channel
- Called phone switches to channel and starts ringing sound

第二代 (2G) 技术: 数字语音

Digital advantages

- Provides capacity gains by allowing voice signals to be digitized and compressed
- Improves security by allowing voice and control signals to be encrypted
- Deters fraud and eavesdropping, whether from intentional scanning or echoes of other calls due to RF propagation
- Enables new services such as text messaging

Three systems developed

- D-AMPS (Digital Advanced Mobile Phone System)
- GSM (Global System for Mobile communications)
- CDMA (Code Division Multiple Access)

GSM: 全球移动通信系统 (1 of 3)

GSM 移动网络结构.

GSM: 全球移动通信系统 (2 of 3)

GSM 使用 124 个频道,每个频道都使用一个 8 槽 TDM 系统。

GSM: 全球移动通信系统 (3 of 3)

A portion of the GSM framing structure.

第三代 (3G) 技术: 数字语音和数字数据

Soft handoff (a) before, (b) during, and (c) after.

第四代 (4G) 技术: 分组交换

- •也称为: IMT Advanced, 高级国际移动通信系统
- •完全基于分组交换技术
- •EPC (Evolved Packet Core,演进的分组核心)允许分组交换
 - -简化 的IP 网络:将语音流量与数据网络分开
 - -在 IP 数据包中同时承载语音和数据
 - -使用统计多路复用方法分配资源的 IP 语音 (VoIP) 网络
 - -EPC 以这样一种方式管理资源,即面对在许多用户之间共享的网络资源时,语音质量仍然很高

第五代 (5G) 技术

- •两个主要参数
 - -比 4G 技术更高的数据速率和更低的延迟
- •用于增加网络容量的技术
 - -超致密化和卸载
 - -增加毫米波带宽
 - -通过大规模 MIMO (多输入多输出) 技术的进步提高频谱效率
- •网络切片功能
 - -允许蜂窝运营商在同一共享物理基础设施上创建多个虚拟网络
 - -可以将网络部分专门用于特定的客户使用(专网)

4.7 有线电视

- Cable networks
 - Will factor heavily into future broadband access networks
- Many people nowadays get their television, telephone, and Internet service over cable
- 2018 DOCSIS standard
 - Provides information related to modern cable network architectures

有线电视的历史: 公用天线电视

An early cable television system.

有线电视宽带互联网接入: HFC 网络 (1 of 2)

(a) Hybrid Fiber-Coax cable network. (b) The fixed phone system.

有线电视宽带互联网接入: HFC 网络 (2 of 2)

Frequency allocation in a typical cable TV system used for Internet access.

电视数据服务接口规范 DOCSIS

- DOCSIS (Data Over Cable Service Interface Specification) 3.1 latest version
 - Introduced Orthogonal Frequency Division Multiplexing (OFDM)
 - Introduced wider channel bandwidth and higher efficiency
 - Enabled over 1 Gbps of downstream capacity per home
- Extensions to DOCSIS 3.1
 - Full Duplex operation (2017) and DOCSIS Low Latency (2018)
- Cable Internet subscribers require a DOCSIS cable modem
- Modem-to-home network interface: Ethernet connection

2.8 通信卫星

通信卫星及其一些特性,包括地球上空高度、往返延迟时间和全球覆盖所需的卫星数量。

地球同步卫星 (1 of 2)

Band	Downlink	Uplink	Bandwidth	Problems
L	1.5 GHz	1.6 GHz	15 MHz	Low bandwidth; crowded
S	1.9 GHz	2.2 GHz	70 MHz	Low bandwidth; crowded
С	4.0 GHz	6.0 GHz	500 MHz	Terrestrial interference
Ku	11 GHz	14 GHz	500 MHz	Rain
Ka	20 GHz	30 GHz	3500 MHz	Rain, equipment cost

The principal satellite bands.

地球同步卫星 (2 of 2)

VSATs using a hub.

中地球轨道卫星

- MEO (Medium-Earth Orbit) satellites
 - Found at lower altitudes between the two Van Allen belts
 - Drift slowly in longitude (6 hours to circle the earth)
 - Must be tracked as they move through the sky
 - Have a smaller footprint on the ground
 - Require less powerful transmitters to reach them
- •用于导航系统
- 例如:
 - -由大约 30 颗 GPS (全球定位系统) 卫星组成的星座, 轨道距离约为 20,200 公里

低地球轨道卫星 (1)

依星卫星构成了围绕地球的6条项链

低地球轨道卫星 (2)

(a) 空中中继

(b) 地面中继

2.9 不同接入网络的比较

- •地面无线接入网络:移动通信网络和有线/无线局域网络
 - -移动通信网络: 4G、5G、......
 - -有线/无线局域网络: WiFi
- ·地面有线接入网络:有线电视、光纤和ADSL
 - -相似处
 - -不同之处
- •卫星和地面主干网

地面接入网络: 电视, 光纤和 ADSL

Similarities

- Comparable service and comparable prices
- -Use fiber in the backbone

Differences

- Last-mile access technology at the physical and link layers
- Bandwidth consistency
- Cable subscribers share the capacity of a single node
- Maximum speeds
- Availability
- Security

卫星与地面主干网

- Communication satellites niche markets
 - Rapid deployments
 - Places where the terrestrial infrastructure is poorly developed
 - When broadcasting is essential
- United States has some competing satellite-based Internet providers
- Satellite Internet access seeing a growing interest
 - In-flight Internet access

马斯克星链计划:卫星互联网

马斯克星链计划简介

星链是由美国太空探索技术公司于2014年提出的低轨互联网星座计划,可进一步提升美军导航定位系统的精度和抗干扰能力。可用于对洲际弹道导弹弹头的直接碰撞式拦截。可有效推动军事通信网络与商业通信网络之间的无缝切换。目标是建设一个全球覆盖、大容量、低时延的天基通信系统,在全球范围内提供高速互联网服务。

该计划拟用4.2万颗卫星来取代地面上的传统通信设施,从而在全球范围内提供价格低廉、高速且稳定的卫星宽带服务。太空探索技术公司计划在2019年至2024年间在太空搭建由约1.2万颗卫星组成的"星链"网络提供互联网服务,其中1584颗将部署在地球上空550千米处的近地轨道,并从2020年开始工作。据有关文件显示,该公司还准备再增加3万颗,使卫星总量达到约4.2万颗。

2022年5月22日,太空探索技术公司(SpaceX)的 Starlink 卫星互联网服务又取得了阶段性的测速结果,结果显示该服务下载速度达到了 301 Mbps。

星链: 历史不长, 发展很快

布局卫星互联网架构,2015年星链计划推出。SpaceX公司提出太空高速 互联网通项目即星链 (Starlink) 计划。已注册美国、英国、加拿大、澳 大利亚、新西兰和墨西哥等32个国家的50万名用户、9种语言。

布局物联网和移动应用,2021年至2022年持续多方合作和投入。2021年9月,SpaceX全资收购了物联网卫星初创公司蜂群技术(Swarm Technologies)。2022年4月,马斯克正式收购网络社交平台推特(Twitter);9月,华为和苹果公司先后宣布在其最新旗舰款手机华为Mate 50和iPhone 14开通手机MSS服务。12月,SpaceX公司向美国联邦通信委员会(FCC)提交了MSS申请。

面向政府和军方服务,2022年正式开启"星盾"计划。2022年12月, SpaceX公司发布了专门为美国国家安全机构和五角大楼等服务的星盾 (Starshield) 计划。该计划将利用星链卫星的技术和发射能力,为国家 安全工作提供支持和保障。

星链:首次应用,意义深远

星链在马里乌波尔作战行动 中为乌军保持通信畅通发挥 了重要作用。 星链成为乌军 一线部队获取外部作战态势、 情报信息的关键渠道

精确杀伤支撑

星链在乌军对俄重要作战平台、军方要员的杀伤方面发挥了重要作用,如"莫斯科"号巡洋舰打击行动和对总参谋长格拉西莫夫等人的斩首行动等

指控链路补强

在对地面目标进行打击的过程中,乌军通过星链建立了无人机与地面打击力量的联系,实现从传感器到射手的完整链条,提高了对重要目标的打击效果

战情舆论传播

星链地面终端配备至乌政府部门、关键基础设施甚至重要企业、个人,成为保障乌克兰方面对外发声、获取国际支持、开展认知舆论战的重要渠道。

星链: 天地一体化互联网的初级阶段

星链使互联网不易覆盖的边远地区、或受战争灾害影响互联网遭到破坏的地区,具备通过卫星通信手段迅速接入互联网的能力。展现了天地一体化互联网的雏形态势和巨大前景。从地面互联网向天地一体化互联网的变革,很可能是互联网自诞生以来最重要的边界扩展与技术突破,意义重大,前景广阔。

星链—星盾:大幅度增强美网络战攻防能力

星链增强网络攻防特定能力。通过搭载专用载荷,星链可依托数量优势实施空间信号干扰,严重影响我北斗定位、授时、导航和通信,甚至导致功能失效。"星盾"服务于美国家安全和军事部门,可用于对地侦察、空间通信和载荷托管等。

星链支撑网络攻防体系能力。美第一代"抵消战略"以核优势抵消常规兵力,第二代"抵消战略"以精确制导抵消动能火力,第三代"抵消战略"正是以"军民融合、天地互联"结合模式的"颠覆性"网络战攻防能力,谋求"体系优势",主导未来新的网络战游戏规则。

"星链:反制星链需要另辟途径(以网制链)

现有各类反制星链的物理手段对星链作用有限。其数千颗卫星形成了"打不烂、 摧不垮"的规模优势。而比拼成本、功率和发射能力,我方也不占优。星链的空间 灵活组网和自动变轨功能进一步提升了其抗毁能力。这可能意味着最具打击价值的 "关键脆弱点"并不存在,或即使被摧毁也能很快替代。

采用互联网技术和思维的"以网制链"是反制星链的有力武器。 星链在物理世界"发星成链",但最终要在网络空间"组网互联"发挥作用,其高度依赖互联网技术,存在大量互联网的安全漏洞和风险。要放弃头痛医头、硬碰硬打的传统思维,努力找到反制星链的"软肋"。

首先,星链作为互联网的接入和延伸,一定存在各种互联网**安全漏洞和风险**。

其次,星链终端必然要通过星间链路和星座组网汇集,连接全球互联网,一定存在许多"连接瓶颈"和"拥塞路段"。找准这些,就可以实施"大面积反制"。

最后,大规模低轨星链终端会层层上连到"中轨"、"高轨"和"同步"卫星星座,最终形成庞大的天地一体化互联网体系。一体化大规模分层路由系统是其最大"命门"。

本章结束