Выбор архитектуры модели для прогнозирования тока экструдера

📌 1. Цель проекта

Разработать точную и устойчивую модель прогнозирования тока экструдера на основе временных рядов с промышленного оборудования.

Ключевая задача — предсказание поведения в реальном режиме работы, с учётом нестационарности, шумов и смены режимов.

🔁 2. Эволюция подхода: от LSTM к гибридной модели с вниманием

Этап	Архитектура	Цель
1	LSTM(128) \rightarrow LSTM(64) \rightarrow Dense	Базовая модель, проверка применимости RNN
2	CNN → LSTM → Dense	Добавление локальных паттернов через свёртки
3	$CNN \rightarrow BiLSTM \rightarrow Attention \rightarrow GRU \rightarrow Dense$	Гибридная модель с механизмом внимания
4	Автоподбор гиперпараметров (Keras Tuner)	Оптимизация архитектуры и параметров

🧱 3. Подготовка данных

Источники:

- Теги: value_14 (ток экструдера), value_10, value_16
- Период: 05.03.2024 05.03.2025
- Частота: 2-6 измерений в минуту

Этапы обработки:

- 1. Восстановление временного индекса заполнение пропущенных секунд
- 2. Линейная интерполяция для восстановления пропусков
- 3. Формирование режима работы:
 - mode = 1, если value_14 != 0 (оборудование в работе)
 - mode = 0, если value_14 == 0 (простой)
- 4. Инжиниринг признаков:
 - Лаги (1–6)
 - Разность между значениями

- Скользящие средние, СКО, дисперсия
- Автокорреляция
- Итого: до 48 признаков

🔄 4. Этап 1: Базовая LSTM-модель

Архитектура:

```
model = Sequential([
Input(shape=(sequence_length, num_features)),
LSTM(128, return_sequences=True),
Dropout(0.2),
LSTM(64),
Dropout(0.2),
Dense(1)
])
```

• **Оптимизатор:** Adam

• Loss: MSE

• sequence_length: 10, 15, 20, 25

Результаты (прогноз на 1 лаг):

Период обучения	МАЕ (обучение)	МАЕ (тест)			
2 месяца	6.57	8.86			
4 месяца	7.60	7.51 🔽			
▼ Вывол: 4 месяца — лучший баланс между обобщением и переобучением.					

🔄 5. Этап 2: Гибридные модели с вниманием

Цель:

Улучшить качество за счёт:

- CNN выделение локальных аномалий
- **BiLSTM** захват двунаправленных зависимостей
- **Внимание (Attention)** фокусировка на критических участках
- **GRU** компактная альтернатива LSTM

Архитектура (на примере Модели №2):

```
inputs = Input(shape=(look_back, n_features))
# CNN: локальные паттерны
conv = Conv1D(filters=128, kernel_size=5, padding='causal', activation='relu')(inputs)
```

```
pool = MaxPooling1D(pool_size=2)(conv)
# BiLSTM: долгосрочная память
lstm = Bidirectional(LSTM(128, return_sequences=True))(pool)
drop1 = Dropout(0.3)(lstm)
# Attention: фокус на важных шагах
attention = Attention()([drop1, drop1])
attention = GlobalAveragePooling1D()(attention)
# GRU: дополнительная рекуррентная обработка
gru = GRU(160)(drop1)
# Объединение и выход
combined = Concatenate()([attention, gru])
dense = Dense(128, activation='relu', kernel_regularizer=l2(0.01))(combined)
drop2 = Dropout(0.3)(dense)
output = Dense(n_output_steps)(drop2)
model = Model(inputs, output)
```


🔍 6. Этап 3: Подбор архитектуры и параметров

Тестировались:

- Разные фильтры в Conv1D (64–512)
- Размер ядра: 3, 5, 7
- Количество юнитов в LSTM/GRU
- Dropout: 0.1–0.5
- Learning rate: 1e-4 1e-2
- sequence length: 10, 15, 20, 25

Ключевые выводы:

- 1. Лучшие результаты при sequence_length = 20
- 2. Увеличение сложности не всегда улучшает качество
- 3. Модели №2 и №4 показали наилучший потенциал
- 4. Внимание и GRU критически важны для фокусировки на аномалиях

※ 7. Этап 4: Автоматический подбор гиперпараметров (Hyperparameter Tuning)

Инструмент:

• **Keras Tuner** (Bayesian Optimization)

Цель:

Найти оптимальные параметры для **Моделей №1, №2, №3, №4** (обучение прервано из-за лимитов Colab, но получены промежуточные результаты)

Лучшие гиперпараметры (на примере Модели №2):

Параметр	Оптимальное значение
conv_filters	416
conv_kernel_size	5
lstm_units	64
gru_units	304
dense_units	424
dropout_rate	0.1
l2_reg	0.062
learning_rate	0.00038

📊 8. Результаты: Сравнение моделей

Модель	МАЕ(обучение)	МАЕ (тест)	MEDIAN RE (тест)		
LSTM (базовая)	7.60	7.51	_		
CNN+LSTM (Справка 4)	38.7	136.43	_		
Модель №1_авто	32.80	41.60	13.52%		
Модель №2_авто 🗸	31.14	41.05	13.96%		
Модель №3_авто	31.18	41.23	14.53%		
Модель №4_авто	34.04	43.36	15.18%		
Лучшая модель: №2_авто — гибрид CNN + BiLSTM + Attention + GRU					

🤽 9. Прогноз на разные горизонты

Горизонт	МАЕ (тест)
10 мин (20 лагов)	136.43
30 мин (60 лагов)	139.96
60 мин (120 лагов)	147.28

- Качество снижается с ростом горизонта ожидаемо.
- Прогноз на **10–30 минут** наиболее точен.

🔽 10. Итоговые выводы

- 1. **Базовая LSTM** хороша для **краткосрочного прогноза (1 лаг)**, но не хватает выразительной силы для сложных паттернов.
- 2. **Гибридные модели с вниманием наиболее эффективны** для данного типа данных:
 - CNN выделяет локальные аномалии
 - BiLSTM захватывает долгосрочные зависимости
 - Внимание фокусируется на критических участках
 - GRU улучшает динамику
- 3. Автоподбор гиперпараметров подтвердил:
 - Оптимальные значения фильтров, юнитов, dropout
 - **Модель №2** лучший компромисс между качеством и сложностью
- 4. Качество данных ключевое ограничение:
 - Смешанные режимы (пуск, работа, простой)
 - Нулевые значения
 - Отрицательная скорость → Требует уточнения у заказчика и улучшения сегментации
- 5. Дальнейшие шаги:
 - Дообучить Модель №2 с найденными гиперпараметрами
 - Провести **интерпретацию внимания** (SHAP, attention weights)
 - Реализовать онлайн-прогнозирование
 - Перейти к прогнозированию отказов (классификация)