

Solar Energy Materials and Solar Cells 34 (1994) 607-612

Contents Volume 34

Vol. 34, Nos. 1–4 (September I 1994)

Preface 1 OVERVIEW OF RECENT PHOTOVOLTAIC DEVELOPMENTS H. Sakai 9 Status of amorphous silicon solar cell technologies in Japan H.W. Schock Solar cells based on CuInSe2 and related compounds: recent progress in Europe 19 Y. Kuwano The PV Era is coming — the way to GENESIS 27 NATIONAL PROJECTS J.L. Stone SOLAR 2000: the next critical step towards large-scale commercialization of photovoltaics in the United States 41 J. Song Recent progress in national photovoltaic project in Korea 51 C. Jivacate et al. PV development in Thailand 57

K.G. Adanu Promoting photovoltaic electricity usage in developing countries — Experience from Ghana 67

E. Usher, G. Jean and G. Howell The use of photovoltaics in a northern climate 73

x-Si HIGH-EFFICIENCY SINGLE CRYSTAL SILICON SOLAR CELLS

M.A. Green, S.R. Wenham, C.B. Honsberg and D. Hogg
 Transfer of buried contact cell laboratory sequences into commercial production

P.A. Basore, J.M. Gee, M.E. Buck, W.K. Schubert and D.S. Ruby Simplified high-efficiency silicon cell processing	91
S.R. Wenham, C.B. Honsberg and M.A. Green Buried Contact Silicon Solar Cells	101
K. Fukui, Y. Fukawa, H. Takahashi, K. Okada, M. Takayama, K. Shirasawa and H. Watanabe Large-area high-efficiency single crystalline silicon solar cells	111
C.B. Honsberg, F. Yun, A. Ebong, M. Taouk, S.R. Wenham and M.A. Green 685 mV Open-circuit voltage laser grooved silicon solar cell	117
K. Yoshioka, K. Endoh, M. Kobayashi, A. Suzuki and T. Saitoh Design and properties of a refractive static concentrator module	125
B. Sørensen Model optimization of photovoltaic cells	133
Y. Ichikawa Fabrication technology for large-area a-Si solar cells	321
K. Matsukuma, K. Morita and T. Warabisako Performance simulation for bifacial silicon solar cells	141
SURFACE PASSIVATION FOR SINGLE CRYSTAL SILICON SOLAR CELLS	
A.G. Aberle, G. Heiser and M.A. Green Two-dimensional minority carrier flow in high-efficiency silicon solar cells at short-circuit, open-circuit and maximum power point operating conditions	149
T. Saitoh, Y. Nishimoto and H. Hasegawa Measurement of surface recombination velocity of silicon wafers under sunlight condition by novel photoluminescence surface state spectroscopy	161
T. Uematsu, Y. Nagata, H. Ohtsuka, T. Warabisako, H. Nomura and T. Saitoh Characterization of surface recombination velocity at Si solar cell surface under high injection level	169
C. Leguijt, P. Lölgen, J.A. Eikelboom, P.H. Amesz, R.A. Steeman, W.C. Sinke, P.M. Sarro, L.A. Verhoef, PP. Michiels, Z.H. Chen and A. Rohatgi Very low surface recombination velocities on 2.5 Ω cm Si wafers, obtained with low-temperature PECVD of Si-oxide and Si-nitride	177
M. Kaneiwa, S. Okamoto, I. Yamasaki, M. Nishida and T. Nammori Cell structures with low-high heterojunction of c-Si and μc-Si:H under rear contact for improvement of efficiencies	183
K. Fujimoto, Y. Sogawa, K. Shima, Y. Okayasu and K. Kumagai High efficiency silicon solar cells by plasma-CVD method	193

Contante Volume	/ Solar Fuero	Materials and Solar	Calle 24	(1004) 607 613
Contents Volume	/ Solar Energy	materiais ana Solar	Ceus 34	(1994) 00/-012

 H. Keppner, P. Torres, R. Flückiger, J. Meier, A. Shah, C. Fortmann, P. Fath, G. Willeke, K. Happle and H. Kiess Passivation properties of amorphous and microcrystalline silicon layers deposited by VHF-GD for crystalline silicon solar cells 	201
POLYCRYSTALLINE SILICON SOLAR CELLS	
A. Yoshida, M. Kitagawa, F. Tojo, N. Egashira, K. Nakagawa, T. Izumi and T. Hirao Hydrogen, fluorine ion implantation effects on polycrystalline silicon grain boundaries	211
 H. Nakaya, M. Nishida, Y. Takeda, S. Moriuchi, T. Tonegawa, T. Machida and T. Nunoi Polycrystalline silicon solar cells with V-grooved surface 	219
A. Rohatgi, Z. Chen, P. Sana, J. Crotty and J. Salami High efficiency multicrystalline silicon solar cells	227
H.E. Elgamel, M.Y. Ghannam, C. Vinckier, J. Nijs, R. Mertens and R. Van Overstraeten Boosting the efficiency of solar cells fabricated on electromagnetic cold crucible cast multicrystalline silicon by means of hydrogen passivation	237
N. Yuge, H. Baba, Y. Sakaguchi, K. Nishikawa, H. Terashima and F. Aratani Purification of metallurgical silicon up to solar grade	243
POLYCRYSTALLINE THIN-FILM SILICON SOLAR CELLS	
M. Konuma, I. Silier, E. Czech and E. Bauser Semiconductor liquid phase epitaxy for solar cell application	251
S. Arimoto, H. Morikawa, M. Deguchi, Y. Kawama, Y. Matsuno, T. Ishihara, H. Kumabe and T. Murotani High-efficient operation of large-area (100 cm²) thin film polycrystalline silicon solar cell based on SOI structure	257
F. Tamura, Y. Okayasu and K. Kumagai Fabrication of poly-crystalline silicon films using plasma spray method	263
D. He, N. Okada and I. Shimizu Carrier transport and structural properties of polysilicon films prepared by layer- by-layer technique	271
R. Shimokawa, K. Ishii, H. Nishikawa, T. Takahashi, Y. Hayashi, I. Saito, F. Nagamine and S. Igari Sub-5 µm thin film c-Si solar cell and optical confinement by diffuse reflective-substrate	277

T. Matsuyama, T. Baba, T. Takahama, S. Tsuda and S. Nakano Polycrystalline Si thin-film solar cell prepared by solid phase crystallization (SPC) method	285
AMORPHOUS SILICON	
HIGH-EFFICIENCY AMORPHOUS SILICON SOLAR CELLS	
Y. Ashida Single-junction a-Si solar cells with over 13% efficiency	291
Y. Hishikawa, M. Isomura, S. Okamoto, H. Hashimoto and S. Tsuda Effects of the i-layer properties and impurity on the performance of a-Si solar cells	303
W.W. Wenas, A. De, A. Yamada, M. Konagai and K. Takahashi Optimization of ZnO for front and rear contacts in a-Si solar cells	313
S. Guha, J. Yang, A. Banerjee, T. Glatfelter, K. Hoffman and X. Xu Progress in multijunction amorphous silicon alloy-based solar cells and modules	329
K. Nomoto, H. Saitoh, A. Chida, H. Sannomiya, M. Itoh and Y. Yamamoto a-Si alloy three-stacked solar cells with high stabilized-efficiency	339
A. Bubenzer, P. Lechner, H. Schade and H. Rübel Process technology for mass production of large-area a-Si solar modules	347
G. Tao, M. Zeman and J.W. Metselaar Accurate generation rate profiles in a-Si:H solar cells with textured TCO sub- strates	359
T. Sawada, N. Terada, T. Takahama, H. Tarui, M. Tanaka, S. Tsuda and S. Nakano Numerical approach for high-efficiency a-Si solar cells	367

373

379

385

393

401

S. Wagner, K. Vasanth, M. Nakata, J. Yang and S. Guha Measuring and modelling of a-Si,Ge: H solar cells

Surface microstructures of ZnO coated SnO₂: F films

The wave nature of light in computer analysis of solar cells

W. Ma, C.C. Lim, T. Saida, H. Okamoto and Y. Hamakawa

F. Smole, M. Topič and J. Furlan

P. Popović, J. Furlan and W. Kusian

Si: C: H junction

cell performance

T. Ikeda, K. Sato, Y. Hayashi, Y. Wakayama, K. Adachi and H. Nishimura

Amorphous silicon solar cell computer model incorporating the effects of TCO/a-

Microcrystalline silicon carbide — New useful material for improvement of solar

AMORPHOUS SILICON ALLOYS AND RELATED MATERIALS

T. Fujii, K. Sameshima, H. Okada, K. Yoshida, T. Hashimoto, M. Yoshimoto, T. Fuyuki and H. Matsunami Characterization of hydrogenated amorphous silicon-carbon films deposited by hybrid-plasma CVD	409
P. Sichanugrist, T. Sasaki, A. Asano, Y. Ichikawa and H. Sakai Amorphous silicon oxide and its application to metal/n-i-p/ITO type a-Si solar cells	415
K. Sayama, A. Terakawa, M. Shima, E. Maruyama, K. Ninomiya, H. Tarui, S. Tsuda and S. Nakano Control of a-SiGe: H film quality with regard to its composition	423
H. Deki, M. Ohmura, S. Miyazaki and M. Hirose Narrow-bandgap a-Ge: H/a-Si: H multilayers for amorphous silicon-based solar cells	431
S. Takeuchi, H. Hirose, S. Nitta, T. Itoh and S. Nonomura Optical properties of random amorphous multilayers a-Si: H/a-Si ₃ N _{4+x} : H	439
S. Fujikake, H. Ota, M. Ohsawa, T. Hama, Y. Ichikawa and H. Sakai Light-induced recovery of a-Si solar cells	449
STABILITY OF AMORPHOUS SILICON MATERIALS	
R.E.I. Schropp, M.B. von der Linden, J. Daey Ouwens and H. de Gooijer Apparent "gettering" of the Staebler-Wronski effect in amorphous silicon solar cells	455
K. Asaoka ,, M. Izumina, Y. Tawada, T. Hama, M. Itoh, Y. Suzuki, M. Ohnishi and R. Shimokawa	
Current-induced degradation method for stabilization of a-Si solar cell	465
S. Igari, J. Nose, T. Hiruma, F. Nagamine and K. Fujisawa Accelerated degradation test method for a-Si PV modules	473
K. Takahisa, K. Nakamura, S. Nakazawa, Y. Sugiyama, J. Nose, S. Igari and T. Hiruma	
Long-term reliability of amorphous silicon solar cells	485
H. Tanaka, N. Ishiguro, T. Miyashita, N. Yanagawa, M. Sadamoto, M. Koyama, Y. Ashida and N. Fukuda	
Fabricating high performance a-Si solar cells by alternately repeating deposition and hydrogen plasma treatment method	493

NEW FABRICATION TECHNOLOGY

K. Yamamoto, T. Suzuki, K. Kondo, T. Okamoto, M. Yamaguchi, M. Izumina and Y. Tawada	
Low temperature Si crystal growth by alternating deposition and hydrogen etching sequences and its application to the p-layer of a-Si: H solar cells	501
K.C. Park, S.K. Kim, M. Park, J.M. Jun, K.H. Lee and J. Jang Growth of high quality microcrystalline silicon by layer-by-layer deposition technique	509
T. Yokoi, M. Azuma, H. Ishida and I. Shimizu Fabrication of stable hydrogenated amorphous silicon from SiH ₂ Cl ₂ by ECR-hydrogen-plasma	517
S. Muramatsu, R. Suzuki, L. Wei and S. Tanigawa Microvoids in a-Si: H and a-SiGe: H alloys	525
CHARACTERIZATION OF AMORPHOUS SILICON MATERIALS	
A. Mettler, N. Wyrsch, M. Goetz and A. Shah Deep defect determination by the constant photocurrent method (CPM) in annealed or light soaked amorphous hydrogenated silicon (a-Si:H)	533
M. Sasaki, S. Okamoto, Y. Hishikawa, S. Tsuda and S. Nakano Characterization of the defect density and band tail of an a-Si: H i-layer for solar cells by improved CPM measurements	541
S. Nonomura, T. Nishiwaki, E. Nishimura, S. Hasegawa, T. Itoh and S. Nitta Characterization of high quality a-Si: H for solar cells at low energy and at low temperature by PDS	549
M. Zeman, J.A. Willemen, S. Solntsev and J.W. Metselaar Extraction of amorphous silicon solar cell parameters by inverse modelling	557
T. Ohira, T. Inamuro and T. Adachi Molecular dynamics simulation of amorphous silicon with Tersoff potential	565
L.Q. Li, G.Q. Pan, H.W. Diao, X.B. Liao and Z.P. You Effects of 1 MeV-electron irradiation on a-Si solar cells	571
Announcement	577
Book Reviews and Conference Announcements	579
Author Index Volume 34	581
Subject Index Volume 34	590
Contents Volume 34	606
Selected Back Issues	613