МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информационные Технологии»

Тема: Введение в анализ данных

Студент гр. 3341	Мальцев К.Л.
Преподаватель	 Иванов Д.В.

Санкт-Петербург 2024

Цель работы

Целью работы является изучение основ анализа данных и написание программы на языке Python, анализирующей и классифицирующей данные с помощью библиотеки *sklearn*.

Задание

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Реализуйте функцию load data(), принимающей на ВХОД аргумент train size (размер обучающей выборки, по умолчанию равен 0.8), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со образом: значением train size, следующим ИЗ данного запишите train size данных из data, взяв при этом только 2 столбца в переменную X train и train size данных поля target в у train. В переменную X test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в у test — оставшиеся данные поля target, в этом вам поможет функция train test split модуля sklearn.model selection (в качестве состояния рандомизатора функции train test split необходимо указать 42.).

В качестве **результата** верните X_train, X_test, y_train, y_test.

Пояснение: X_{train} , X_{test} - двумерный массив, y_{train} , y_{test} . — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, y_train с параметрами n_neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте функцию predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_{test}) , которая выполняет классификацию данных из X_{test} .

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), результаты принимающую классификации И истинные тестовых (y test), метки данных которая считает отношение предсказанных результатов, совпавших c «правильными» в у test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве **результата** верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент mode - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

В отчёте приведите (чек-лист преподавателя):

• описание реализации 5и требуемых функций

- исследование работы классификатора, обученного на данных разного размера
- о приведите точность работы классификаторов, обученных на данных от функции load_data со значением аргумента train_size из списка: 0.1, 0.3, 0.5, 0.7, 0.9
 - о оформите результаты пункта выше в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора, обученного с различными значениями *n neighbors*
- о приведите точность работы классификаторов, обученных со значением аргумента *n neighbors* из списка: 3, 5, 9, 15, 25
- в качестве обучающих/тестовых данных для всех классификаторов возьмите результат *load_data* с аргументами по умолчанию (учтите, что для достоверности результатов обучение и тестирование классификаторов должно проводиться на одних и тех же наборах)
 - о оформите результаты в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора с предобработанными данными
- о приведите точность работы классификаторов, обученных на данных предобработанных с помощью скейлеров из списка: StandardScaler, MinMaxScaler, MaxAbsScaler
- в качестве обучающих/тестовых данных для всех классификаторов возьмите результат load_data с аргументами по умолчанию учтите, что для достоверности сравнения результатов классификации обучение должно проводиться на одних и тех же данных, поэтому предобработку следует производить после разделения на обучающую/тестовую выборку.
 - о оформите результаты в виде таблицы
 - о объясните полученные результаты

Выполнение работы

При написании программы были реализованы следующие функции:

 $load_data(train_size=0.8)$ принимает на вход размер обучающей выборки $train_size$ (по умолчанию 0.8). функция загружает данные о вине из библиотеки sklearn в переменную wine с помощью $load_wine()$. Затем с помощью $train_test_split()$ данные разбиваются на тренировочную и тестовую выборки.

 $train_model(X_train, y_train, n_neighbors=15, weights='uniform')$ создаёт экземпляр классификатора, обученного memodom k-ближайших cocedeй с помощью KNeighborsClassifier(). Количество соседей $n_neighbors$ по умолчанию равно 15, веса — 'uniform'. Затем происходит обучение на переданных данных, а затем возвращается экземпляр классификатора.

 $predict(clf, X_test)$ принимает обученную модель и с помощью метода классификатора predict() выполняет классификацию из набора данных X_test . Функция возвращает предсказанные данные.

 $estimate(res, y_test)$ принимает результаты классификации res и истинные метки тестовых данных y_test и оценивает качество результатов классификации с помощью $accuracy_score()$. Функция возвращает округленный до 0.001 результат.

scale(data, mode='standard') принимает на вход данные data и тип скейлера mode (по умолчанию 'standard'). Функция обрабатывает данные по одному из трёх скейлеров: 'standard', 'minmax' и 'maxabs' и возвращает обработанные данные.

Точность работы классификаторов, обученных на разных размерах обучающей выборки *train size* для функции *load data()* представлены в табл. 1.

Таблица 1 – Точность работы классификаторов при разных train size

Значение train_size	Точность работы
0.1	0.379
0.3	0.8
0.5	0.843
0.7	0.815
0.9	0.722

Как видно, наилучшая точность работы достигается при значениях $train\ size\ 0.5$ или 0.7; при меньших значениях модели не хватает данных для

обучения, а при больших может происходить переобучение модели или недостаток данных для валидации прогресса при обучении.

Точность работы классификаторов, обученных с разными значениями n_neighbors, но на одинаковых тренировочных данных, приведена в табл.2.

Таблица 2 – Точность работы при различных n neighbors

Значение <i>n_neighbors</i>	Точность работы
3	0.861
5	0.833
9	0.861
15	0.861
25	0.833

Видно, что точность работы меняется при различных значениях n_n меняется. Наилучшие значения достигаются при значениях n_n меняется 3, 9 и 15, хотя при n_n менее з точность работы, скорее, случайна, т.к. модель может быть подвержена шуму. При больших значениях n_n менее полезной.

Точность работы классификаторов, обученных на предобработанных данных с помощью различных скейлеров, приведена в табл. 3.

Таблица 3 – Точность работы при предобработанных данных

Скейлер	Точность работы
'standard'	0.889
'minmax'	0.806
'maxabs'	0.75

Видно, что наилучшие результаты достигаются при скейлере 'standard'. Этот скейлер хорошо подходит для большинства алгоритмов машинного обучения.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

$N_{\underline{0}}$	Входные данные	Выходные данные	Комментарии
Π/Π			
1.	X_train, X_test, y_train, y_test = load_data() clf = train_model(X_train, y_train) res = predict(clf, X_test) est = estimate(res, y_test) print(est)	0.861	Стандартное обучение
2.	X_train, X_test, y_train, y_test = load_data() X_train_scaled = scale(X_train, 'minmax') X_test_scaled = scale(X_test, 'minmax') clf = train_model(X_train, y_train) res = predict(clf, X_test) est = estimate(res, y_test) print(est)	0.806	Обучение со скейлером

Выводы

В ходе выполнения работы были изучены основы анализа данных на языке Python с применением библиотеки *sklearn*. Разработаны функции для выгрузки данных, обучения модели, оценки её эффективности и др. Была проанализирована точность работы моделей при различных условиях обучения.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
from sklearn import datasets
     from sklearn.model selection import train test split
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import accuracy score
     import sklearn.preprocessing
     def load data(train size=0.8):
          model = datasets.load wine()
          X = model.data[:, :2]
          y = model.target
X_train, X_test, y_train, y_test = train_test_split(X,
train_size=train_size, test_size=1-train_size, random_state=42)
          return X_train, X_test, y_train, y_test
     def train model(X train, y train, n neighbors=15, weights='uniform'):
                             KNeighborsClassifier(n neighbors=n neighbors,
          clf
weights=weights)
          clf.fit(X_train, y_train)
          return clf
     def predict(clf, X test):
          return clf.predict(X test)
     def estimate(res, y test):
          return round(accuracy score(y test, res), 3)
     def scale(data, mode='standard'):
          if(mode == 'minmax'):
              scaler = MinMaxScaler()
          elif(mode == 'maxabs'):
              scaler = MaxAbsScaler()
          elif(mode == 'standard'):
              scaler = StandardScaler()
          else:
              return None
          return scaler.fit transform(data)
```