Un problème d'Hofstadter pour ses lecteurs curieux

Pierre Letouzey

10 avril 2018

Code Coq + rapport technique + cet exposé

https://github.com/letouzey/hofstadter_g

Apéritif : fiboscargot

```
let rec f n l a = match n,l with
| (0|1), [] -> succ a
| (0|1), m::1 -> f m l (succ a)
| _ -> f (n-1) (n-2 :: l) a

let fiboscargot n = f n [] 0
```

Un arbre auto-similaire

Douglas Hofstadter, "Gödel, Escher, Bach", p.135

Un arbre auto-similaire

Combien de noeuds par niveau ?

Numérotons!

Parcours en largeur, de gauche à droite

Une racine ad-hoc

Et la fonction parent est . . .

$$G(n) = n - G(G(n-1))$$
 $(n > 0)$
 $G(0) = 0$

Aparté : arbre de fonction, fonction d'arbre

Soit un arbre:

- infini
- dont les noeuds ont des arités finies non nulles
- numéroté via un parcours en largeur

Que peut-on dire de sa fonction parent ?

Recip. que faut-il sur une fonction $\mathbb{N} \to \mathbb{N}$ pour qu'elle soit la fonction parent d'un et un seul tel arbre ?

Aparté : arbre de fonction, fonction d'arbre

- ▶ f croissante
- ► f(n)<n hormis à la racine
- ► f surjective
- f ne stationne pas (i.e. tend vers $+\infty$)

Fibonacci

$$F_0 = 0$$

 $F_1 = 1$
 $F_{n+2} = F_n + F_{n+1}$

Théorème de Zeckendorf

Décomposition $n = \sum F_i$ canonique:

- 1. pas de F_0 ni F_1
- 2. pas de redondance
- 3. pas de nombres de Fibonacci consécutifs

Décomposition faible : (1) + (2)

Thm: tout entier naturel a une unique décomposition canonique.

Zeckendorf, variante

Def: le rang d'une décomposition est l'indice du plus petit terme.

Algo: canonisation d'une décomposition faible de n

- le nombre de termes croît ou stagne
- ▶ le rang augmente (par pas de 2) ou stagne

Etude de G

Etude de G

$$G(n) = n - G(G(n-1))$$

- ▶ Existence + encadrement $0 \le G(n) \le n$
- G(0) = 0, G(1) = 1 puis $1 \le G(n) < n$
- ightharpoonup G "avance" par pas de 0 ou +1
- ▶ Après un pas à 0, forcément un +1
- ▶ Jamais trois +1 de suite

On peut en fait montrer que $G(n) = \lfloor (n+1)/\phi \rfloor$

Surjectivité

Propriété importante:

$$ightharpoonup G(n+G(n))=n$$

Conséquence:

$$G(n) + G(G(n+1) - 1) = n$$

G et Fibonacci

- ▶ $G(F_i) = F_{i-1}$
- ▶ Plus généralement: $G(\Sigma F_i) = \Sigma F_{i-1}$, en partant d'une décomposition faible
- ▶ Preuve selon le rang de la décomposition (2, pair>2, impair).
- ▶ Nombreuses conséquences concernant G et le rang.

Et en Coq?

Jusqu'ici, rien que du connu (cf https://oeis.org/A005206). Attention à la littérature (en particulier un article buggé de 1986) ! Preuves Coq "maisons", sans trop de soucis:

- ▶ DeltaList.v
- ▶ Fib.v
- ▶ FunG.v
- ▶ Phi.v

A problem for curious readers is:

Suppose you flip diagram G around as if in a mirror, and label the nodes of the new tree so that they increase from left to right. Can you find a recursive *algebraic* definition for this "flip-tree" ?

Arbre miroir

Solution?

- ▶ Il y avait une conjecture sur https://oeis.org/A123070
- Mais pas de preuve. . .
- Hofstadter devait probablement avoir au moins cette formule

$$\overline{G}(n) = n + 1 - \overline{G}(\overline{G}(n-1) + 1) \qquad (n > 3)$$

$$\overline{G}(n) = \lceil n/2 \rceil \qquad (n \le 3)$$

Preuve papier pénible, multiples cas (vive Coq!)

Grandes lignes

- ▶ Une fonction *depth* donnant l'étage de *n* dans l'arbre.
- ▶ En fait un inverse de Fibonacci.
- ▶ Aussi calculable en itérant *G* sur *n* jusqu'à atteindre 1.
- ▶ Une fonction *flip* qui renverse un étage de l'arbre: $flip(1+F_k), ..., flip(F_{k+1}) = F_{k+1}, ..., 1+F_k$.
- ▶ Def: $flip(n) = if n \le 1$ then n else 1 + F(3 + depth(n)) n.
- ▶ Def: $\overline{G}(n) = flip(G(flip(n)))$
- Et on montre que ce \overline{G} valide bien l'équation précédente, cf FlipG.v

Autre résultat principal

Def: n est de rang 3-impair si sa décomposition canonique commence par $F_3 + F_{2p+1} + ...$

Thm: $\overline{G}(n) = 1 + G(n)$ si n est de rang 3-impair, sinon $\overline{G}(n) = G(n)$.

Preuve: encore pire actuellement que la précédente, pléthore de cas.

Cor: \overline{G} et G diffèrent pour n=7, puis tous les 5 ou 8 entiers.

Dérivées

Def: $\Delta G(n) = G(n+1) - G(n)$.

Prop: $\Delta G(n+1) = 1 - \Delta G(n) \cdot \Delta G(G(n))$.

Def: $\Delta \overline{G}(n) = \overline{G}(n+1) - \overline{G}(n)$.

Prop: $\Delta \overline{G}(n+1) = 1 - \Delta \overline{G}(n) \cdot \Delta \overline{G}(\overline{G}(n+1))$ (pour n>2).

Equation alternative

Anciens essais: pour n>3, $\overline{G}(n-1) + \overline{G}(\overline{G}(n)) = n$

Mais ceci ne caractérise pas une unique fonction (sauf à exiger qu'elle soit monotone).

Conclusions & Perspectives

- On trouve encore des conjectures "abordables" sur OEIS
- ▶ Des preuves étonnemment délicates pour de "simples" entiers.
- ► Merci Coq.
- Preuves papier plus directes ?
- Preuves Coq moins pédestres (quasi 5000 lignes en tout) ?
- ▶ Généralisation à H(n) = n H(H(H(n-1))), etc ?
- ► Fonctions mutuelles d'Hofstadter (M et F) ?
- ▶ Autres apparitions de *G* à étudier (jeu de Wythoff. . .)