

CLRS Notes

Classic ElegantIATEX Template

Author: Haopeng Li

Institute: ElegantIATEX Program

Date: July 27, 2022

Contents

Chapter	r 1 Analysis of Algorithms	1
1.1	The problem of sorting	1
1.2	Insertion Sort	1
1.3	Running time	1
1 4	Merge Sort	3

Chapter 1 Analysis of Algorithms

Introduction	
\square N	lerge sort

☐ Asymptotic analysis ☐ Recurrences

Definition 1.1 (Algorithms)

☐ *Insertion sort*

The theoretical study of computer-program performance and resource usage.

4

Note Why study algorithms and performance?

- Algorithms help us to understand scalability.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a language for talking about program behavior.
- Performance is the currency of computing.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!

1.1 The problem of sorting

Problem 1.1(The problem of sorting)

- Input:sequence $\langle a_1, a_2, \cdots, a_n \rangle$ of numbers.
- Output: permutation $< a_1', a_2', \cdots, a_n' > \text{such that } a_1' \le a_2' \le \cdots \le a_n'$

1.2 Insertion Sort

```
Insertion-Sort(A,n)
for j <- 2 to n
  do key <- A[j]
  i <- j - 1
  while i > 0 and A[i] > key
      do A[i+1] <- A[i]
      i<- i-1
      A[i+1] = key</pre>
```

1.3 Running time

- The running time depends on the input:an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

1.3.1 Kinds of Analysis

Definition 1.2 (Worst-Case(usually))

T(n) = maximum time of algorithm on any input of size n.

*

Definition 1.3 (Average-Case(Sometimes))

- T(n) =expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Definition 1.4 (Best-case: (bogus))

Cheat with a slow algorithm that works fast on some input.

- **Note** What is insertion sort's worst-case time?
 - It depends on the speed of our computer:
 - relative speed (on the same machine),
 - absolute speed (on different machines).

Note BIG IDEA:

- 1. Ignore machine-dependent constants.
- 2. look at the growth of T(n) as $n \to \infty$
- 3. "Asymptotic Analysis"

1.3.2 Θ -Notation

Definition 1.5 (Θ -Notation)

 $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

Note Engineering: Drop low-order terms; Ignore leading constants.

Example 1.1

$$3n^3 + 90n^2 - 5n + 6046 = \Theta\left(n^3\right)$$

1.3.3 Asymptotic performance

Note When n gets large enough, a $\Theta(n^2)$ algorithm always beats a $\Theta(n^3)$ algorithm.

Note

- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing of engineering objectives.
- Asymptotic analysis is a useful tool to help to structure our thinking.

1.3.4 Insertion sort analysis

Worst case

Input reverse sorted

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^{2})$$

Average case

All permutations equally likely.

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^{2})$$

Note Is insertion sort a fast sorting algorithm?

- Moderately so, for small n
- Not at all, for large n

1.4 Merge Sort

Merge-Sort A[1..n]

- 1. If n = 1, done
- 2. Recurisively sort $A[1...\lceil n/2]$ and $A[\lceil n/2\rceil+1...n]$
- 3. Merge the 2 sorted lists.

Note Key subroutine: MERGE

1.4.1 Analyzing Merge Sort

Time = $\Theta(n)$ to merge a total of n elements (linear time).

$$T(n) \qquad \text{MERGE-SORT } A[1 \dots n]$$

$$\Theta(1) \qquad 1. \text{ If } n = 1, \text{ done.}$$

$$2T(n/2) \qquad 2. \text{ Recursively sort } A[1 \dots \lceil n/2 \rceil]$$
 and
$$A[\lceil n/2 \rceil + 1 \dots n].$$

$$\Theta(n) \qquad 3. \text{ "Merge" the 2 sorted lists}$$

Note Sloppiness: 2T(n/2) should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

1.4.2 Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1\\ 2T(n/2) + \Theta(n) \text{ if } n > 1 \end{cases}$$

Note

- We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- CLRS and Lecture 2 provide several ways to find a good upper bound on T(n).

1.4.3 Recursion tree

Example 1.2 Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

1.4.4 Conclusions

- $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- \bullet In practice, merge sort beats insertion sort for n>30 or so.