COSC 580 Project 2

Group Member: Yuming Wang, Ziang He, Jiancheng Sun

Group Number: 6

1. Source Identification

For this project, we used three datasets to build our Database System:

- Dataset_0: <u>United States COVID-19 Cases</u>, <u>Deaths</u>, and <u>Laboratory Testing (NAATs) by</u>
 State, Territory, and Jurisdiction
- Dataset 1: Data Table for Vaccinations Equity (SVI)
- Dataset 2: Data Table for Vaccinations Equity (Metro/Non-Metro)

1.1. Dataset 0

This dataset shows the number of COVID-19 *cases*, *deaths and laboratory testing* for every 100,000 people over the last 7 days, allowing us to compare areas with different population sizes.

1.2. Dataset 1 and Dataset 2

These two datasets provide a county-level view of COVID-19 vaccination coverage, social vulnerability and Metropolitan vs. Non-Metropolitan:

<u>Social vulnerability</u> is measured by CDC Social Vulnerability Index (SVI), which uses U.S. Census data on categories like poverty, housing, and vehicle access to estimate a community's ability to respond to and recover from disasters or disease outbreaks.

<u>Metropolitan vs. Non-Metropolitan</u> classification is based off an aggregation of the six 2013 National Center for Health Statistics (NCHS) Urban-Rural classifications, where "Metro" counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro and "Non-Metro" counties include Micropolitan and Non-Core (Rural).

1.3. Data Preprocessing and Table Building

For these datasets, we do some preprocessing to build our own database.

- For these datasets, we do some preprocessing to build our database. Although the datasets we collected contain *regional information*, such as state names, some are abbreviated, and some are full. For this problem, we matched the abbreviation of the state name with the full name of the state name and constructed the "*states table*".
- In addition, for the data of "Total_Cases", "Total_Deaths", "Confirmed_Deaths", "Probable_Deaths", "Confirmed_Cases", "Probable_Cases" of each state in Dataset_0, we have established different tables to store them to meet the requirements of *3NF*. They all use "State Code" as the *primary key*.
- The data in Dataset_1 and Dataset_2 *overlap with multiple attributes*, which provide a county-level view of COVID-19 vaccination coverage from social vulnerability and Metropolitan vs. Non-Metropolitan, respectively. We extracted "SVI", "Metro", "County" and "State Code" from these two datasets and defined the "*County Index*" as the

- primary key to build the "county_table".
- In addition, for the *overlapping parts* of the two data: the proportion of fully vaccinated people in different age groups and the residence reporting completeness of each county, we extracted and constructed the "*county_vaccinated_rate_table*", and used "*county*" as the primary key.

2. Schema Definition

We used *Entity Relationship Diagram (ERD)* to present the relations and relationships. Every relation is in *3NF*, which means every non-key attribute is dependent on the key and nothing but the key.

3. Functional Dependencies

3.1. county table

 $FD: \{County_Index\# \rightarrow State_Code, County, SVI, Metro\}$

3.2. states_table

3.4. tot case table

3.5. tot death table

3.7. conf/prob_death_table

4. Canned Queries

In this database, we can support some query functions.

Some examples of retrieving some *extreme values* are given below:

Eg1:

Query	select * fro from tot_cas			where Total	I_Cases = (select max(T	Total_Cases)
Result			State_Code	Total_Cases	Case_Rate_per_100000	
		١	CA	9015587	22817	

Eg2:

Query	select * from tot_case_table where Total_Cases = (select min(Total_Cases) from tot_case_table);						
Result			State_Code	Total_Cases	Case_Rate_per_100000		
		>	VT	105475	16903		

Eg3:

Query	<pre>select*from tot_death_table where Total_Deaths = (select max(Total_Deaths) from tot_death_table);</pre>						
Result			State_Code	Total_Deaths	Death_Rate_per_100000		
		•	CA	86185	218		

Eg4:

Query	select*from from tot_dea			where Total_	Deaths = (select min(Tot	ral_Deaths)
Result			State_Code	Total_Deaths	Death_Rate_per_100000	
		•	VT	578	92	

Some examples of *range searches* are given below:

Eg5:

8-	
	SELECT State_Code, Case_Rate_per_100000 FROM tot_case_table order by Case_Rate_per_100000 desc limit 10;

Result		State_Code	Case_Rate_per_100000
	•	AK	32105
		RI	32086
		ND	31368
		TN	29510
		KY	28979
		υT	28861
		SC	28444
		WV	27587
		AR	27337
		AZ	27303

Eg6:

Query	SELECT State_Code, Case_Rate_per_100000 FROM tot_case_table where Case_Rate_per_100000 > 27000;						
Result		State_Code	Case_Rate_per_100000				
	•	AK	32105				
		AZ	27303				
		AR	27337				
		FL	27120				
		KY	28979				
		ND	31368				
		RI	32086				
		SC	28444				
		TN	29510				
		UT	28861				
		WV	27587				
		WI	27088				

Eg7:

Query	SELECT State Code, Death Rate per 100000 FROM tot death table where Death_Rate_per_100000 > 350;						
Result			State_Code	Death_Rate_per_100000			
		•	AL	384			
			AZ	385			
			AR	359			
			LA	362			
			MI	352			
			MS	411			
			NJ	372			
			TN	363			
			WV	365			

Here are some examples of *sorting by value*:

Eg8:

Query	select	State_Code,	(count(case	when	SVI='High'	then	State_Code
	end)/co	unt(State_Cod	e)) as rate fron	county_	_table		
	group b	y State Code					
	order by	y rate desc					
	limit 10);					

Result		State_Code	rate
	١	AZ	0.7333
		LA	0.7031
		MS	0.6707
		NM	0.6364
		GA	0.5786
		SC	0.5435
		AR	0.5333
		ОК	0.4805
		AL	0.4478
		NC	0.4400

Eg9:

Query	select State Code, rate from(select State_Code, (count(case when SVI='High' then State_Code end)/count(State_Code)) as rate from county_table group by State_Code order by rate desc) as a where rate > 0.5;					
Result			State_Code	rate		
		١	AZ	0.7333		
			LA	0.7031		
			MS	0.6707		
			NM	0.6364		
			GA	0.5786		
			SC	0.5435		
			AR	0.5333		

Eg10:

Query	select State_Code,rate from(select_State_Code, (count(case_when_SVI='High'_then_State_Code end)/count(State_Code)) as rate from county_table group by State_Code order by rate desc) as a
	where rate > 0.3 ;

Result		State_Code	rate
	١	AZ	0.7333
		LA	0.7031
		MS	0.6707
		NM	0.6364
		GA	0.5786
		SC	0.5435
		AR	0.5333
		OK	0.4805
		AL	0.4478
		NC	0.4400
		FL	0.4328
		TX	0.4291
		CA	0.3966
		KY	0.3583

Eg11:

Query	le jo	in tot death	tal Cases as death rate table using(State Code)	
Result		State_Code	death_rate	
	١	PA	0.015815759965569366	
		MS	0.01545774332345899	
		NJ	0.015175476921269441	
		MI	0.014831186743799074	
		AL	0.014609718348648763	
		GA	0.014594692200207716	
		CT	0.014553975161581344	
		LA	0.01446299422235031	
		NV	0.014392601664567291	
		MD	0.014151215332653455	

Eg12:

Query	select Metro,SVI, group by Metro,S		nt(*) as grou	ıp_number	from county_tab	le
Result			Metro	SVI	group_number	
		•	Metro	Low-Mod	344	
			Metro	Low	341	
			Non-metro	High	584	
			Metro	Mod-High	329	
			Metro	High	221	
			Non-metro	Mod-High	475	
			Non-metro	Low-Mod	459	
					2	
			Non-metro	Low	465	
				Low-Mod	1	
			Non-metro		1	