

4. Numerische Differentiation

A Practical Course in Numerical Methods for Engineers

Barbara Wirthl, M.Sc. Technische Universität München

Lehrstuhl für Numerische Mechanik

Überprüfungstermine

Derzeitige Planung:

1. Überprüfung: Mittwoch 7. Dezember 2022 2. Überprüfung: Mittwoch 1. Februar 2023

- Um das Modul positiv zu absolvieren, ist die Teilnahme an beiden Terminen zwingend erforderlich.
- Die genaue Uhrzeit teilen wir Ihnen jeweils ca. eine Woche vor der Überprüfung mit.
- Bitte melden Sie sich in TUMonline zur Prüfung an. Das dabei angegebene Datum wird nicht dem Überprüfungsdatum entsprechen.
- Bitte melden Sie sich nur an, wenn Sie wirklich planen, an den Überprüfungen teilzunehmen.

1. Überprüfung

Derzeitige Planung:

Mittwoch 7. Dezember 2022, MW 1264 - Computer-Red-Pool

- ► Ihren Zeitslot erhalten Sie ein paar Tage vorher per E-Mail
- Prüfungssprechstunde am Montag 05.12.
- Fragen?

Ablauf:

Aufgabe #				Geprüft:
Ergebnis +	f(1.0) =	☐ Richtig	\square Falsch	
Plot	err(1.0) =			
Nachbearbeitung	f(1.0) =	☐ Richtig	☐ Falsch	
+ Plot	err(1.0) =			
Erklärung	☐ Richtig (Implementierungsfehler)	☐ Fehler	☐ Falsch	
	☐ Richtige Erklärung			

Erklärungen

Alles implementiert:

```
nodes = zeros(9.2):
nodes(1,:) = [-1, -1,]; % ...
elements = zeros(3.4):
elements (1...) = [1.2.5.4]: % ...
sol = zeros(9.1):
for i = 1.9
  sol(i) = nodes(i,1) * nodes(i,1) \leftarrow
      + nodes(i,2) * nodes(i,2);
end
tri = [1,2,3; 3,4,1];
numele = size(elements.1):
for i = 1.3
  idx = elements(i.:):
  tr = trisurf(tri.nodes(idx.1).←
     nodes(idx,2),sol(idx)');
  hold on
end
```

Unvollständig mit Kommentaren:

```
% Knotenkoordinaten als Matrix speichern
% Flemente definieren als Matrix
% enthaelt die Knoten-IDs des jeweiligen Elements
% Berechnung der Loesung z = x^2 + y^2
for i = 1:numnodes
    % Loesungsvektor sol(i) = z(i) = x(i) * x(i) + \leftarrow
       y(i) * y(i)
end
% Gibt an, aus welchen Knoten des Vierecks die ←
   beiden Dreiecke gebildet werden
tri =
for i = 1:numele
    % trisurf(tri, x-Koordinaten des Elements i, ←
       y-Koordinaten des Elements i, Funktionswert←
        z=x^2+v^2
    % Grafik halten, damit in jeder Schleife das ←
       berechnete Dreieck hinzugefuegt werden kann
end
```


Pingo

Schwierigkeit der Aufgabenblätter

Wie schwierig fanden Sie die Aufgabenblätter bisher?

- ► Einfach.
- Passend.
- ► Schwierig.

Schwierigkeit der Aufgabenblätter

Was war Ihre größte Schwierigkeit?

- ▶ Ich habe die Theorie nicht verstanden.
- Die Implementierung.
- ▶ Beides.
- Andere.

Erklärung?

Wie weit sind Sie bei dieser Aufgabe gekommen?

- ▶ Ich habe einen entsprechenden Plot erhalten und verstanden.
- ▶ Ich habe einen entsprechenden Plot erhalten aber nicht verstanden.
- ▶ Ich habe die Bereiche 1 und 3 verstanden.
- Ich habe den Bereich 2 verstanden.

Exakter Schnittpunkt:

Gerade durch P_1 und P_2 :

$$y = \frac{\Delta y}{\Delta x} \cdot x + 1 = \frac{y_2 - y_1}{x_2 - x_1} \times + 1$$

$$= \frac{(1 + \delta) - 1}{\delta} \times + 1$$

$$y = 2$$
 -> $\times ex = \frac{\delta}{(1+\delta)-1} = 1$

$$\mathbf{P}_1 = \begin{pmatrix} 0.0 \\ 1.0 \end{pmatrix} \quad \mathbf{P}_2 = \begin{pmatrix} \delta \\ 1.0 + \delta \end{pmatrix}$$

Numerische Bestimmung des Schnittpunktes:

$$\times_{\text{num}} = \frac{\delta}{(1+\delta)-1}$$
fast gleich groß -> Auslöschung

Numerische Bestimmung des Schnittpunktes:

$$X_{\text{num}} = \frac{\delta}{(1+\delta)-1}$$

Maschinengenauigkeit ε :

Feinster auflösbarer Schritt zwischen zwei Zahlen

$$\rightarrow$$
 für double precision $\varepsilon = 2 \cdot 10^{-16}$

(1) δ unterhalb Maschinengenauigkeit

Unterschied ($1+\delta$) vs 1 nicht mehr berechenbar

Ergebnis ist Null

Division durch 0

= Inf

$$|X_{\text{ex}} - X_{\text{num}}| = \left| 1 - \frac{\delta}{(1+\delta)-1} \right|$$

$$= \left| 1 - \frac{\delta}{\delta \pm \epsilon} \right|$$

$$= \left| \frac{\pm \varepsilon}{\delta \pm \varepsilon} \right|$$

Lagrange-Polynom 4. Ordnung:

Lagrange-Interpolation

Verbessert sich die Interpolationsgüte der Lagrange-Interpolation, wenn mehr Stützstellen hinzugefügt werden?

- ▶ Ja, sie wird besser.
- Nein, sie wird schlechter.
- ▶ Dies lässt sich im Allgemeinen nicht sagen.

Aufgabenblatt 2: Aufgabe 2 – Lagrange-Polynom 80. Ordnung

Was fällt Ihnen beim Plot des Lagrange-Polynoms 80. Ordnung auf?

Überprüfung

Aufgabenblatt 2: Aufgabe 2 – Lagrange-Polynom 80. Ordnung

Hier Lagrange-Polynom 10. Ordnung für $f(x) = \frac{1}{(1+25x^2)}$:

Aufgabenblatt 2: Aufgabe 2 - Lagrange-Polynom 80. Ordnung

(Schrittweite $\Delta x = 0.0005$ für Plot)

Aufgabenblatt 2: Aufgabe 2 - Lagrange-Polynom 80. Ordnung

Lagrange-Polynom:

$$P_n(x) = L_{n1}(x) y_1 + ... + L_{n(n+1)}(x) y_{n+1} = \sum_{i=1}^{n+1} L_{ni}(x) y_i$$

Lagrange–Basispolynome $L_{80,i}$:

$$L_{80,1}(x = 0.025) = 0.06298$$

$$L_{80,2}(x = 0.025) = 5.0384$$

:

$$L_{80.39}(x = 0.025) = -81784172438588440576$$

$$L_{80,40}(x = 0.025) = 85787593467051343872$$

$$L_{80,41}(x = 0.025) = -85706149549203210240$$
 -

$$L_{80,42}(x = 0.025) = 81551169098308255744$$

$$L_{80.80}(x = 0.025) = 0.032092$$

numerisch

instabil

Hinweise zu Aufgabenblatt 3

Keine symbolische Ableitung in Matlab

Nicht:

1 syms x t diff(
$$\sin(x*t^2)$$
)

Ableitungen der Ansatzfunktionen analytisch berechnen

$$N^{1}(\xi,\eta) = \frac{1}{4}(1-\xi)(1-\eta) \longrightarrow \frac{\partial N^{1}(\xi,\eta)}{\partial \xi} = -\frac{\frac{1}{4}(1-\eta)}{\frac{1}{4}}$$

Aufgabenblatt 4

Aufgabe 1: Finite-Differenzen-Approximation

Es ist die Funktion $f(x) = \left(\frac{x}{1+x}\right)^5$ gegeben. Approximieren Sie die Ableitung f' an der Stelle $x_0 = 0.6$ unter Verwendung geeigneter diskreter Funktionswerte $f(x_0 + kh)$, (k = -2, -1, 0, 1, 2)

mit Hilfe der folgenden Finite-Differenzen-Verfahren für h = 0.1:

- Zweipunkte-Formel $(x_0 h, x_0)$
- Dreipunkte-Endpunkt-Formel $(x_0, x_0 + h, x_0 + 2h)$
- Dreipunkte-Mittelpunkt-Formel $(x_0 h, x_0, x_0 + h)$
- 4. Fünfpunkte-Mittelpunkt-Formel $(x_0 2h, x_0 h, x_0, x_0 + h, x_0 + 2h)$

Der exakte Wert der Ableitung ist f'(x = 0.6) = 0.0386238098144531.

Numerische Differentiation: Finite-Differenzen-Approximation

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \longrightarrow f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

Numerische Differentiation: Finite-Differenzen-Approximation

Zweipunkte-Formel:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

Dreipunkte-Endpunkt-Formel:

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi)$$

Dreipunkte-Mittelpunkt-Formel:

$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f^{(3)}(\xi)$$

Fünfpunkte-Mittelpunkt-Formel:

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi)$$

Herleitung: Faires, J. D., & Burden, R. L. (1994). Numerische Methoden. Näherungsverfahren und ihre praktische Anwendung. Heidelberg, Berlin, Oxford: Spektrum Akademischer Verlag. Kapitel 4.9

Aufgabenblatt 4

Aufgabe 2: Konvergenz der Finite-Differenzen-Approximation

Erstellen Sie zwei Plots für $x_0 = 0.6$ und $x_0 = 2.0$, die den Fehler der Approximation

$$|f'(x = x_0) - f'_{2P,3PE,3PM,5PM}(x = x_0)|$$

aller in Aufgabe 1 verwendeten Methoden in Abhängigkeit von h darstellen. Verwenden Sie dazu h=1.0 bis $h=10^{-5}$. Plotten Sie zusätzlich die Referenzkurven $g_1(h)=h$, $g_2(h)=h^2$ und $g_3(h)=h^4$. Skalieren Sie beide Achsen der Diagramme logarithmisch.

Analysieren Sie die Plots und erklären Sie das auftretende Verhalten. Vergleichen Sie die auftretende Konvergenzordnung der Verfahren mit den Referenzkurven.

Und los...

Nächste Tutorsprechstunden:

Montag 14.11. 10:00 – 12:15 Uhr MW1264 Mittwoch 16.11. 15:30 – 17:45 Uhr MW1264

Nächstes Aufgabenblatt:

Donnerstag 17.11. 17:00 - 17:45 Uhr MW2050 + Zoom