#### Differentiation

# CHEA Makara

4th Year Engineering in Majoring Data Science Department of Applied Mathematics and Statistics, ITC

12 March 2024

- Derivatives at a Point
- 2 Differentiability
- 3 Direct Computation of Derivatives
- 4 Differentiation Rules
- Derivatives of Composition Function
- 6 Higher Order Derivatives
- Application

#### Derivatives at a Point

#### Definition 1

Let  $f: I \to \mathbb{R}$  and  $x_0 \in I$ . The **derivative** of a function f at  $x_0$  is the value of the limit.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{1}$$

or

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \tag{2}$$

#### Theorem 1

- f is said to be **differentiable** at  $x_0$  if that limit exists.
- f is called **differentiable** on the interval  $[a,b] \in I$  if it is differentiable at every point  $x \in [a,b]$

We denote by y' or f'(x) or  $\frac{df}{dx}(x)$ 

Chea Makara Derivatives 12 March 2024 3/32

#### **Derivatives Defined**

#### Other notation

from (2): we can find the derivative with x instead of  $x_0$  and  $\Delta x$  instead of h, then

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 (3)

If we write y = f(x), the change of the function f(x) for small increasing amount  $\Delta x$ , then  $\Delta y = f(x + \Delta x) - f(x)$ . So

$$f'(x) = \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \tag{4}$$

Chea Makara Derivatives 12 March 2024 4/32

- Derivatives at a Point
- ② Differentiability
- 3 Direct Computation of Derivatives
- Differentiation Rules
- Derivatives of Composition Function
- 6 Higher Order Derivatives
- Application

## Differentiability

#### Definition 7

let  $x_0 \in I$  and  $f: I \to \mathbb{R}$ . then

- We denote f has right-hand derivative by  $f'_r(x_0)$  at  $x_0$  iff  $\lim_{h\to 0^+} \frac{f(x_0+h)-f(x_0)}{h}$
- We denote f has left hand derivative by  $f'_l(x_0)$  at  $x_0$  iff  $\lim_{h\to 0^-} \frac{f(x_0+h)-f(x_0)}{h}$

#### Theorem 3

Let  $x_0 \in I$  and  $f: I \to \mathbb{R}$ . Then, f is differentiable at  $x_0$  iff  $f'_I(x_0) = f'_I(x_0)$ 

#### Theorem 4

If f is differentiable at  $x_0$ , then f is continuous at  $x_0$ 

- Derivatives at a Point
- 2 Differentiability
- 3 Direct Computation of Derivatives
- 4 Differentiation Rules
- 5 Derivatives of Composition Function
- 6 Higher Order Derivatives
- Application

## Direct computation of derivatives

**1** The derivative of any constant function is zero. Let f(x) = c, where c is a constant in the set of real numbers. Then,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0.$$

•

② Consider the derivative of f(x) = x. Using definition of derivatives we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h} = 1$$

## Direct computation of derivatives

**3** Derivative of f(x) = kx is f'(x) = k, where  $k \in \mathbb{R}$ . Consider

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{k(x+h) - kx}{h} = k \lim_{h \to 0} \frac{h}{h} = k$$

• Derivative of  $f(x) = x^n$  is  $f'(x) = nx^{n-1}$ . Consider

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$
$$= \lim_{h \to 0} \frac{(x+h-x)[(x+h)^{n-1} + \dots + (x+h)x^{n-2} + x^{n-1}]}{h} = nx^{n-1}$$

#### **Proposition**

If  $y = u^n$ , where u is the function of x then  $y'(x) = \frac{dy}{dx} = \frac{du^n}{dx} = nu'u^{n-1}$ 

Chea Makara Derivatives 12 March 2024 9 / 32

## Derivative of Trigonometric Function

• Derivative of  $f(x) = \sin(x)$  is  $f'(x) = \cos(x)$ . Consider

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{2\cos[(x+h+x)/2]\sin[((x+h)-x)/2]}{h}$$

$$= \lim_{h \to 0} \frac{2\cos(x+h/2)\sin(h/2)}{h} = \lim_{h \to 0} 2\cos(x+h/2) \times \frac{\sin(h/2)}{2(h/2)}$$

$$= \lim_{h \to 0} \cos(x+h/2) = \cos(x)$$

- ② Derivative of  $f(x) = \cos(x)$  is  $f'(x) = -\sin(x)$
- ① Derivatives of  $f(x) = \cot(x)$  is  $f'(x) = -\frac{1}{\sin^2(x)} = -(1 + \cot^2(x))$

Chea Makara Derivatives 12 March 2024 10 / 32

## Derivatives of Trigonometric Function

#### Proposition

If u is the function of x, then

- $y = \sin(u)$  then  $y' = u' \cos(u)$
- $y = \cos(u)$  then  $y' = -u' \sin(u)$
- $y = \tan(u)$  then  $y' = \frac{u'}{\cos^2(x)} = u'(1 + \tan^2 u)$
- $y = \cot u$  then  $y' = -\frac{u'}{\sin^2 u} = -u'(1 + \cot^2 u)$

## Derivatives of Exponential and Logarithmic Function

**1** Derivative  $y = e^x$  is  $y' = e^x$ . Consider

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x(e^h - 1)}{h} = e^x$$

② Derivatives of y = ln(x) is  $y' = \frac{1}{x}$ . Consider

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \lim_{h \to 0} \frac{\ln((x+h)/x)}{h}$$
$$= \lim_{h \to 0} \frac{\ln(1+h/x)}{x(h/x)} = \frac{1}{x}$$

## **Proposition**

If u is the function of x, then

• 
$$v = e^u$$
 then  $v' = u'e^u$ 

• 
$$y = \ln(u)$$
 then  $y' = \frac{u'}{u}$ 

12 / 32

Chea Makara Derivatives 12 March 2024

- Derivatives at a Point
- 2 Differentiability
- 3 Direct Computation of Derivatives
- Oifferentiation Rules
- Derivatives of Composition Function
- 6 Higher Order Derivatives
- Application

#### Differentiation Rules

Let  $\lambda \in \mathbb{R}$  and  $u, v : I \to \mathbb{R}$ .. Suppose u, v are differentiable. Then

• Constant Multiple Rule:  $(\lambda u(x))' = \lambda u'(x)$  or

$$\frac{d(\lambda u(x))}{dx} = \lambda \frac{du(x)}{dx}$$

• Sum Rule:  $(u \pm v)' = u' \pm v'$  or

$$\frac{d(u\pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$$

• Product rule(u.v)' = u'v + v'u or

$$\frac{d(uv)}{dx} = \frac{du}{dx}v + \frac{dv}{dx}u$$

• Quotient rule:  $(\frac{u}{v})' = \frac{u'v - u.v'}{v^2}$  or

$$\frac{d}{dx}(\frac{u}{v}) = \frac{\frac{du}{dx}v - \frac{dv}{dx}u}{v^2}$$

 Chea Makara
 Derivatives
 12 March 2024
 14/32

## Example

#### Find the derivative of the following function

$$y = 2x + 3$$

$$y = (x^2 + x + 1)^8$$

$$y = 4e^{2x}$$

$$y = 2e^{x^3+1}$$

$$y = \ln(2x^2 + 1)$$

**6** 
$$y = \cos(2x)$$

$$y = \sin(3x^3 + 2x)$$

$$y = \tan(e^{x+1})$$

$$y = (x^3 + 1)\cos(2x)$$

$$y = \frac{\sin(x)}{x^2 + 1}$$

- Derivatives at a Point
- 2 Differentiability
- 3 Direct Computation of Derivatives
- 4 Differentiation Rules
- 5 Derivatives of Composition Function
- 6 Higher Order Derivatives
- Application

## **Derivatives of Composition Function**

### Theorem (chain rule)

Let f and g be the functions,  $f,g:I\to\mathbb{R}$ .  $\forall x\in I$  and g is differentiable at x and f is differentiable at g(x), the derivative of the composite function  $h(x)=(f\circ g)(x)=f(g(x))$  is given by

$$h'(x) = f'(g(x)).g'(x)$$

Alternatively, if y is a function of u, and u is a function of x, then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

- Derivatives at a Point
- 2 Differentiability
- 3 Direct Computation of Derivatives
- 4 Differentiation Rules
- 5 Derivatives of Composition Function
- 6 Higher Order Derivatives
- Application

## Higher Order Derivatives

#### Definition 8

Let  $f: I \to R$  we defined  $f^{(n)}(x_0)$  is the derivative of  $f^{(n-1)}$  at  $x_0$  if it exists, for  $n = 1, 2, \cdots$ 

- $f^{(n)}$  is called the derivative of  $f^{(n-1)}$
- $f^{(n)}$  is called the n-th derivative, or derivative of order n, of f.
- We say that f is n times differentiable on  $\mathbb{I}$  iff  $f^{(n)}$  id defined on I.
- We say that f is infinitely differentiable on I iff f is n times differentiable on I,  $\forall n \in \mathbb{N}$

#### Notation

The nth derivative of f is denoted  $f^{(n)}$ . Thus

- Zero derivative of f is :  $f^{(0)} = f$
- First derivative of f is : f'(x)
- Second derivative of f is: f''(x)

- Third derivative is  $f^{(3)}(x)$
- Fourth derivative is  $f^{(4)}$
- . . . .

## **Operation Notation**

**Operation notation**. A common variation on Leibniz' notation for derivatives is called operator notation, as in

$$\frac{d(x^4 - 2x)}{dx} = \frac{d}{dx}(x^4 - 2x) = 4x^3 - 2$$

For higher derivatives one can write

$$\frac{d^n y}{dx^n} = f^{(n)}(x)$$

As Example

$$\frac{d^2y}{dx^2} = \left(\frac{d}{dx}\right)^2 y$$

Note

$$\frac{d^2y}{dx^2} \neq \left(\frac{dy}{dx}\right)^2$$

## Higher Order Derivatives

Example: Find the nth derivative of  $y = \sin(x)$ 

$$y' = \cos(x) = \sin(\pi/2 + x)$$

$$y'' = -\sin(x) = \sin(2\pi/2 + x)$$

$$y''' = -\cos(x) = \sin(3\pi/2 + x)$$

$$y^{(4)} = \sin(x) = \sin(4\pi/2 + x)$$

$$y^{(5)} = \cos(x) = \sin(5\pi/2 + x)$$

$$y^{(n)} = \sin(n\pi/2 + x)$$

## Higher Order derivatives

#### Leibniz's rule for higher derivatives

Let  $\lambda \in \mathbb{R}, n \in \mathbb{N}, f : g : I \to \mathbb{R}$  are n times differentiable on I. Then

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k)}$$

Example: Find nth derivatives of the following function.

$$(2x^3 + x + 1)\sin(x)$$

$$2x^2 + x + 1$$
  
 $1 - x$ 

- Derivatives at a Point
- 2 Differentiability
- 3 Direct Computation of Derivatives
- 4 Differentiation Rules
- Derivatives of Composition Function
- 6 Higher Order Derivatives
- Application

### Extreme Value

#### Definition 9

A constant *c* is called a **critical point** of *f* if one of following satisfy:

- f'(c) = 0
- $\circ$  f'(x) does not exists

#### The tangent of a curve

The line equation is defined by y = mx + b or  $(y - y_0 = f'(x_0)(x - x_0))$ , where  $f'(x_0)$  is the slope and  $y_0$  is the intercept.

### L'Hôpital Rule

Suppose  $f,g:I\to\mathbb{R}$  and  $a\in I$  then for the following indeterminate form  $(\frac{0}{0})$  or  $(\frac{\infty}{\infty})$ 

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}, \text{ where } g'(x)\neq 0$$



#### Rolle' Theorem

Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If f(a) = f(b) then there is ta least one number  $c \in (a, b)$  such that f'(c) = 0

Chea Makara Derivatives 12 March 2024 25 / 32

#### Monotone Functions

**1** *f* is said to be **increasing** on *I* if:

$$\forall (x_1, x_2) \in I^2 : x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$$

f is said to be strictly increasing on I if:

$$\forall (x_1, x_2) \in I^2 : x_1 < x_2 \Longrightarrow f(x_1) < f(x_2).$$

**1** If is said to be **decreasing** on *I* if:

$$\forall (x_1, x_2) \in I^2 : x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$$

f is said to be strictly decreasing on I if:

$$\forall (x_1, x_2) \in \mathbb{R}^2 : x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$$

.

f is said to be monotone (strictly monotone) on I if f is either decreasing or increasing (strictly decreasing or strictly increasing) on I.

#### Monotone Functions

#### Theorem 5

Let f be a function that is continuous on [a, b] and differentiable on (a, b).

- If  $f'(x) \ge 0, \forall x \in (a, b) \Longrightarrow f$  is increasing on [a, b]
- ② If  $f'(x) \le 0, \forall x \in (a, b) \Longrightarrow f$  is decreasing on [a, b]



### Local Maximum and Local Minimum of the Function

### Definition (Local Maximum, Local Minimum and First Derivatives)

• we say f has the local maximum at  $x_0$  if  $\begin{cases} f'(x)>0 & \text{if} & x< x_0\\ f'(x)=0 & \text{if} & x=x_0\\ f'(x)<0 & \text{if} & x>x_0 \end{cases}$  • we say f has the local minimum at  $x_0$  if  $\begin{cases} f'(x)<0 & \text{if} & x< x_0\\ f'(x)=0 & \text{if} & x=x_0\\ f'(x)>0 & \text{if} & x>x_0 \end{cases}$ 

Chea Makara Derivatives 12 March 2024 29 / 32

## Local Maximum and Local Minimum



Chea Makara Derivatives 12 March 2024

30 / 32

#### Local Maximum and Local Minimum

#### Technique to find the Relative Extreme

- After we do the f'(x) then we set f'(x) = 0 after that we consider its sign
  - **1** If its sign change from (+) to (-), then f has the local maximum
  - 2 If its sign change from (-) to (+), then f has the local minimum

**Example 1** Find the Relative Extreme value of  $y = f(x) = -x^3 + 3x^2 + 1$ 

**Example 2:** What's the value m such that  $y = x^3 + 3mx^2 - mx + 2$  has both local maximum and local minimum.

### Local Maximum and Local Minimum and Second Derivative

#### Definition

Relative Extreme and Second Derivatives The function y = f(x) has two times derivation at  $x_0$ 

- We say f has the local maximum at  $x_0$  if  $\begin{cases} f'(x_0) = 0 \\ f''(x_0) < 0 \end{cases}$  We say f has the local minimum at  $x_0$  if  $\begin{cases} f'(x_0) = 0 \\ f''(x_0) > 0 \end{cases}$