Q No.	PAPER NAME Uncertainty Modelling for Intelligent Systems Q.SETTER INITIALS JL	Marks
1 (a)	$m = \{i\} : 0.1, \ \{d, s\} : 0.2, \ \{d, i\} : 0.1, \ \{d, s, i\} : 0.6$	4
1 (b)	$Bel({d,i}) = m({d,i}) + m({i}) = 0.1 + 0.1 = 0.2$	1
	$Pl(\{d,i\}) = m(\{d,i,s\}) + m(\{d,i\}) + m(\{d,s\}) + m(\{i\}) = 1$	1
1 (c)	$P(i m) = \frac{m(\{d,i,s\})}{3} + \frac{m(\{d,i\})}{2} + \frac{m(\{i\})}{1} = \frac{0.6}{3} + \frac{0.1}{2} + 0.1 = 0.35$	2
	$P(d m) = \frac{m(\{d,i,s\})}{3} + \frac{m(\{d,i\})}{2} + \frac{m(\{d,s\})}{2} = \frac{0.6}{3} + \frac{0.1}{2} + \frac{0.2}{2} = 0.35$	2
	$P(s m) = \frac{m(\{d,i,s\})}{3} + \frac{m(\{d,s\})}{2} = \frac{0.6}{3} + \frac{0.2}{2} = 0.3$	2
1 (d)	The mass function from the second survey is $m_2 = \{d, s\} : 0.2, \{d, i\} : 0.4, \{d, s, i\} : 0.4$	1
	$\{d,s\}:0.2$ $\emptyset:0.02$ $\{d,s\}:0.04$ $\{d\}:0.02$ $\{d,s\}:0.12$	2
		2
	$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	$m_1 \oplus m_2 = \{d, s\} : \frac{0.04 + 0.12 + 0.08}{0.98} = 0.24490, \ \{d, i\} : \frac{0.04 + 0.24 + 0.04}{0.98} = 0.32653$	3
	$\{i\}: \frac{0.04+0.04}{0.98} = 0.08163, \{d\}: \frac{0.02+0.08}{0.98} = 0.10204, \{d,i,s\}: \frac{0.24}{0.98} = 0.24450$	
1 (e)	$Bel(\{d,i\}) = m(\{d,i\}) + m(\{d\}) + m(\{i\}) = 0.32653 + 0.10204 + 0.08163 = 0.5102$	1
	$Pl(\{d,i\}) = m(\{d,i,s\}) + m(\{d,s\}) + m(\{d,i\}) + m(\{i\}) = 1$	
	Hence, there is no change to the plausibility which remains at 1, but there is a substantial increase in	1
	belief from 0.2 to 0.5102.	
	Continued on more	,

Continued on next page...

Q No.	PAPER NAME Uncertainty Modelling for Intelligent Systems Q.SETTER INITIALS JL	Marks
2 (a)	$P(B G) = 0.3 \text{ and } P(B G^c) = 0.1$	1
	By Bayes theorem $P(G B) = \frac{P(B G)P(G)}{P(B)} = \frac{P(B G)P(G)}{P(B G)P(G) + P(B G)(1 - P(G))}$	2
	$= \frac{0.3P(G)}{0.3P(G)+0.1(1-P(G))} = \frac{0.3P(G)}{0.2P(G)+0.1}$	1
	The upper bound is when $P(G) = 0.6$ which gives $\frac{0.3(0.6)}{0.2(0.6)+0.1} = 0.8182$	1
	The lower bound is when $P(G) = 0.4$ which gives $\frac{0.3(0.4)}{0.2(0.4)+0.1} = 0.6667$	1
2 (b)	Let $p(w_i) = p_i$ then from the knowledge base $p_1 = \frac{1}{4}(p_1 + p_3)$ which implies $p_3 = 3p_1$	2
	Hence, $H = -p_1 \log_2(p_1) - p_2 \log_2(p_2) - 3p_1 \log_2(3p_1) - (1 - 4p_1 - p_2) \log_2(1 - 4p_1 - p_2)$	1
	$\frac{\partial H}{\partial p_2} = 0 \Rightarrow -\log_2(p_2) + \log_2(1 - 4p_1 - p_2) = 0 \Rightarrow p_2 = 1 - 4p_1 - p_2$	1
	$\frac{\partial \tilde{H}}{\partial p_1} = 0 \Rightarrow -\log_2(p_1) - 3\log_2(3p_1) + 4\log_2(1 - 4p_1 - p_2) = 0$	2
	$\Rightarrow p_1(3p_1)^3 = (1 - 4p_1 - p_2)^4 \Rightarrow 3^3 p_1^4 = p_2^4 \Rightarrow p_2 = 3^{\frac{3}{4}} p_1$	
	Substituting gives $3^{\frac{3}{4}}p_1 = 1 - 4p_1 - 3^{\frac{3}{4}}p_1 \Rightarrow p_1 = \frac{1}{2(3^{\frac{3}{4}}) + 4}$	1
	$P(G^c \cap H^c) = p_4 = p_2 = 3^{\frac{3}{4}}p_1$	1
	$p_2 = \frac{3^{\frac{3}{4}}}{2(3^{\frac{3}{4}})+4} = 0.26633$	1
2 (c)	$P(X_1, X_2, X_3, X_4, X_5, X_6) = P(X_1)P(X_2)P(X_3 X_1, X_2)P(X_4 X_3)P(X_5 X_3)P(X_6 X_4, X_5)$	2
	1+1+4+2+2+4=14	2
	$2^6 - 1 = 63$	1

Continued on next page...

Q No.	PAPER NAME Uncertainty Modelling for Intelligent Systems Q.SETTER INITIALS JL	Marks
3 (a)	1) $Pos(\emptyset) = 0$, $Pos(W) = 1$, 2) $Pos(A \cup B) = \max(Pos(A), Pos(B))$	2
	$1 = Pos(W) = Pos(A \cup A^c) = \max(Pos(A), Pos(A^c))$	1
3 (b)(i)	$m:=\{0,1,2,3,4\}:0.1,\ \{0,1,2,3\}:0.1,\ \{0,1,2\}:0.3,\ \{0,1\}:0.1,\ \{0\}:0.4$	5
3 (b) (ii)	$Nec(\{0,1,2\}) = m(\{0,1,2\}) + m(\{0,1\}) + m(\{0\}) = 0.4 + 0.1 + 0.3 = 0.8$	2
3 (c)	A Kripke interpretation is a pair $\langle W, E \rangle$ where W is a set of possible worlds and $E: W^2 \to \{0,1\}$	2
	is a relation on W .	
3 (d)(i)	$\{w_4\}$	1
3 (d) (ii)	$\{w_1, w_3, w_4\}$	1
3 (d) (iii)	$\{w_3,w_4\}$	2
3 (e)	If $w \models \Box(F \to G)$ then for all w' where $E(w, w') = 1, w' \models F \to G$	1
	Now suppose $w \not\models \Box F \to \Box G$ then $w \models \Box F$ and $w \not\models \Box G$	1
	Hence, there exists $w' \in W$ such that $E(w, w') = 1$ and $w' \models F$ and $w' \not\models G$	1
	Therefore, $w' \not\models F \to G$ which is a contradiction.	1

Continued on next page...

Q No.	PAPER NAME Uncertainty Modelling for Intelligent Systems Q.SETTER INITIALS JL	Marks
4 (a)	Consider a man with a lot of hair on his head. One hair is plucked at a time until he is bald. It	4
	follows that there must be a hair pluck at which the man switches from being not bald to being bald.	
	However, this is counter intuitive since the difference of one hair cannot induce a category change	
	from not bald to bald. This or an alternative version of sorites.	
4 (b)	$S(x,y) = 1 - T(1-x, 1-y) = 1 - \frac{(1-x)(1-y)}{(1-x)+(1-y)-(1-x)(1-y)}$	3
	$=1-\frac{(1-x)(1-y)}{1-xy}=\frac{x+y-2xy}{1-xy}$	1
4(c)	First we show that min is the only idempotent t-norm.	
	Suppose T is idempotent and w.l.o.g assume $x \leq y$.	1
	Then by idempotence and the axioms of a t-norm $x = T(x, x) \le T(x, y) \le T(x, 1) = x$.	2
	Hence, $T(x, y) = x = \min(x, y)$.	1
	We now show by a counter example that min does not satisfy the law of non-contradiction.	
	Let $\chi_{\tilde{A}}(w) = 0.5$ and therefore $\chi_{\tilde{A}^c}(w) = 0.5$. Hence, $\chi_{\tilde{A} \cap \tilde{A}^c}(w) = \min(0.5, 0.5) = 0.5 \neq 0$.	2
4 (d)	$\tilde{A}_{\alpha} = \{4, 5, 6\} : \alpha \in [0, 0.2), \{4, 5\} : \alpha \in (0.2, 0.4], \{4\} : \alpha \in (0.4, 1]$	1
	$\tilde{B}_{\alpha} = \{1, 2, 3\} : \alpha \in (0, 0.5], \{1, 2\} : \alpha \in (0.5, 0.7], \{1\} : \alpha \in (0.7, 1]$	
	$2\tilde{A}_{\alpha} = \{8, 10, 12\} : \alpha \in [0, 0.2), \{8, 10\} : \alpha \in (0.2, 0.4], \{8\} : \alpha \in (0.4, 1]$	1
	$\tilde{B}_{\alpha}^{2} = \{1, 4, 9\} : \alpha \in (0, 0.5], \{1, 4\} : \alpha \in (0.5, 0.7], \{1\} : \alpha \in (0.7, 1]$	
	$2\tilde{A}_{\alpha} - \tilde{B}_{\alpha}^{2} \qquad \{8, 10, 12\} : [0, 0.2) \qquad \{8, 10\} : (0.2, 0.4] \qquad \{8\} : (0.4, 1]$	
	$ \boxed{ \{1,4,9\}: (0,0.5] \{7,4,-1,9,6,1,11,8,3\}: (0,0.2) \{7,9,4,6,-1,1\}: (0.2,0.4) \{7,4,-1\}: (0.4,0.5] } $	2
	$\{1,4\}:(0.5,0.7]$ \emptyset \emptyset $\{7,4\}:(0.5,0.7]$	2
	$\{1\}:(0.7,1]$ \emptyset $\{7\}:(0.7,1]$	
	$f(\tilde{A}_{\alpha}, \tilde{B}_{\alpha}) = \{7, 4, -1, 9, 6, 1, 11, 8, 3\} : \alpha \in (0, 0.2], \{7, 9, 4, 6, -1, 1\} : \alpha \in (0.2, 0.4], \{7, 4, 1\} : \alpha \in (0.2, 0.4], \{7, $	1
	$(0.4, 0.5], \{7, 4\} : \alpha \in (0.5, 0.7], \{7\} : \alpha \in (0.7, 1]$	
	$f(\tilde{A}, \tilde{B}) = 7/1 + 4/0.7 + 1/0.5 + 9/0.4 + 6/0.4 + -1/0.4 + 11/0.2 + 8/0.2 + 3/0.2$	1