Yuli Wu Contour Refinement of Leukocyte Segmentations in Scans of Stained Bone Marrow

Lehrstuhl für Bildverarbeitung

RNTHAACHEN

Active Contour Models - Chan-Vese

Methodology

$$E_{ACWE}(\overline{I_1}, \overline{I_2}, \mathscr{C}) = \mu \cdot l(\mathscr{C})$$

$$+ \lambda_1 \int_{inside(\mathscr{C})} |I(x_0) - \overline{I_1}|^2 dx$$

inside(
$$\mathscr{C}$$
)
$$+ \lambda_2 \qquad \left| I(x_0) - \overline{I_2} \right|^2 dx$$

 $outside(\mathscr{C})$

Idea: minimise the Energy Function

μ : edge length

λ_1, λ_2 : difference from average, intensity range

Known as Active Contours Without Edges

Methodology

Normalisation

Preprocessing

Segmentation

Active Contour Models - Chan-Vese

- Idea: minimise the Energy Function
- Known as Active Contours Without Edges

$$E_{ACWE}(\overline{I_1}, \overline{I_2}, \mathscr{C}) = \mu \cdot l(\mathscr{C})$$

$$+ \lambda_1 \int_{inside(\mathscr{C})} |I(x_0) - \overline{I_1}|^2 dx$$

$$+ \lambda_2 \int_{outside(\mathscr{C})} |I(x_0) - \overline{I_2}|^2 dx$$

 μ : edge length

 λ_1, λ_2 : difference from average, intensity range

Methodology

Preprocessing

Outline

Methodology

