Problema 409. Propuesto por Joaquim Nadal Vidal, Llagostera, Girona.

Dados los radios a y b y la distancia entre los centros c, de dos circunferencias intersecantes, encontrar el área del cuadrilátero formado por las rectas tangentes en los puntos de intersección de ambas.

Solución de Florentino Damián Aranda Ballesteros. Córdoba (España).

En la construcción adjunta se muestran las circunferencias de centros A y B y radios, a y b, respectivamente.

Sean T y T', los puntos de intersección entre ambas circunferencias.

$$AB = c$$
.

Por fin, sean DT y DT' las tangentes correspondientes a la circunferencia de centro A y sean CT y CT', las tangentes asociadas a la circunferencia de centro B.

Sea [CTDT'], el valor del área del cuadrilátero CTDT'. Bastará para nuestro propósito calcular el área del ΔCTD , ya que $[CTDT'] = 2 \cdot [\Delta CTD]$.

Ahora bien, del ΔABT conocemos su área por la fórmula de Herón:

$$[\Delta ABT] = \sqrt{s(s-a)(s-b)(s-c)} \text{ siendo } s = \frac{1}{2}(a+b+c).$$

Así resulta que,

$$h_T = HT = \frac{2[\Delta ABT]}{c} = \frac{2\sqrt{s(s-a)(s-b)(s-c)}}{c}$$

Por el Teorema del cateto aplicado al triángulo rectángulo ΔATD , $AT^2 = AH \cdot AD \rightarrow AD = \frac{AT^2}{AH}$. Como $AH^2 = AT^2 - h_T^2 = a^2 - h_T^2$, resulta que:

$$AH^{2} = a^{2} - \frac{4s(s-a)(s-b)(s-c)}{c^{2}} = \frac{4a^{2}c^{2} - (a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{4c^{2}}$$

$$AH^{2} = \frac{4a^{2}c^{2} - (a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{4c^{2}} = \frac{(a^{2} - b^{2} + c^{2})^{2}}{4c^{2}}$$

Por tanto,

$$AD = \frac{AT^2}{AH} = \frac{2a^2c}{a^2 - b^2 + c^2}$$

De igual manera, obtendríamos el valor de la longitud de BC:

$$BC = \frac{2b^2c}{-a^2 + b^2 + c^2}$$

Observamos que sólo pueden darse los siguientes dos casos, debido a la igualdad entre los ángulos $\angle ATC$ y $\angle BTD$. En un caso, los puntos C y D son exteriores y en el otro caso, interiores al $\triangle ATB$.

En cualquier caso, siempre tenemos que:

$$CD = AD + BC - AB = \frac{2a^2c}{a^2 - b^2 + c^2} + \frac{2b^2c}{-a^2 + b^2 + c^2} - c$$

Por fin, el área $[CTDT'] = 2 \cdot [\Delta CTD] = CD \cdot h_T$

$$[CTDT'] = CD \cdot h_T = \left(\frac{2a^2c}{a^2 - b^2 + c^2} + \frac{2b^2c}{-a^2 + b^2 + c^2} - c\right) \frac{2\sqrt{s(s-a)(s-b)(s-c)}}{c}$$

$$[CTDT'] = \left(\frac{2a^2}{a^2 - b^2 + c^2} + \frac{2b^2}{-a^2 + b^2 + c^2} - 1\right) 2\sqrt{s(s-a)(s-b)(s-c)}$$

$$[CTDT'] = \frac{(-a+b+c)(a-b+c)(a+b-c)(a+b+c)}{(a^2-b^2+c^2)(-a^2+b^2+c^2)} 2\sqrt{s(s-a)(s-b)(s-c)}$$

$$[CTDT'] = \frac{16(s-a)(s-b)(s-c)s}{(a^2-b^2+c^2)(-a^2+b^2+c^2)} 2\sqrt{s(s-a)(s-b)(s-c)}$$

$$[CTDT'] = \frac{32\sqrt{s^3(s-a)^3(s-b)^3(s-c)^3}}{(a^2-b^2+c^2)(-a^2+b^2+c^2)};$$

$$[\mathit{CTDT'}] = \frac{\sqrt{(-a+b+c)^3(a-b+c)^3(a+b-c)^3(a+b+c)^3}}{2(a^2-b^2+c^2)(-a^2+b^2+c^2)}$$