Lição 7

Listas

Objetivos

Ao final desta lição, o estudante será capaz de:

- Explicar as definições e conceitos básicos de listas
- Usar as diferentes representações de lista: seqüencial e encadeada
- Diferenciar lista encadeada simples, lista encadeada dupla, lista circular e lista com header nodes
- Explicar como as listas são aplicadas na aritmética polinomial
- Discutir as estruturas de dado usadas na alocação dinâmica de memória usando métodos sequential-fit e métodos buddy-system

Definição e Conceitos Relacionados

- Conjunto finito de zero ou mais elementos
- Elementos podem ser atômicos ou listados
 - Lista Linear
 - Lista Generalizada

Definição e Conceitos Relacionados: Lista Generalizada

Representações de Listas

Apropriada para listas naturalmente estáticas

Representações de Listas

- Representação "linkada" de lista Linear Singly-Linked
- Apropriada para listas com tamanho desconhecido

Representações de Listas

Operação	Representação Seqüencial	Representação Linkada
Determinando se uma lista é vazia	O(1)	O(1)
Encontrando o comprimento	O(1)	O(n)
Acessando o n ^{ésimo} elemento	O(1)	O(n)
Atualizando o n ^{ésimo} elemento	O(1)	O(n)
Deletando o nésimo elemento	O(n)	O(n)
Inserindo um novo elemento	O(n)	O(1)

 Formada pela configuração do link no último node apontando para o primeiro node

Passaremos agora para o NetBeans

Operação de Concatenação:

- Lista Singly-Linked com Header Node
- Header node é também conhecido como list head
- List head serve como um sentinela em uma lista circular para indicar preenchimento transversal da lista

Representações de Listas: Lista Double-Linked

- Nodes têm ponteiros para ambos os vizinhos da lista, esquerda e direita
- Pode ser constituída da seguinte forma:
 - Lista linear Doubly-linked
 - Lista circular Doubly-linked
 - Lista circular com list head Doubly-linked

Representações de Listas: Lista Double-Linked

Propriedades:

- LLINK(L) = RLINK(L) = L significa que a lista L está vazia
- Pode inserir um novo *node*, digamos o *node* β, à esquerda (ou direita) de qualquer *node*, digamos o *node* α, no tempo O(1), conhecendo apenas α
- Pode eliminar qualquer *node*, diz-se *node* α , em L no tempo O(1), conhecendo apenas o endereço α

Representações de Listas: Lista Double-Linked

Inserção

Deleção

- Características para negociar
- Lista circular Singly-linked com list head pode ser usada

• Exemplo: $P(x,y,z) = 20x^5y^4 - 5x^2yz + 13yz^3$

Representação do zero polinomial:

Adição Polinomial (P + Q)

P α P α Q

Subtração Polinomial

- Q = P Q = P + (- Q)
- Percorre Q e nega os coeficientes adicionados ao polinômio
- Multiplicação Polinomial
 - Ao se multiplicar dois polinômios P e Q, um zero polinomial R é necessário para receber o produto, i.e. R = R + P*Q
 - Todo termo em P é multiplicado com todo termo em Q

Passaremos agora para o NetBeans

Alocação Dinâmica de Memória

- DMA Gerenciamento do memory pool usando técnicas para alocação e desalocação de blocos
- É também conhecida como alocação dinâmica de armazenamento
- Envolve duas operações:
 - Reserva alocação de memória para um pedido de tarefa
 - Liberação retorna a memória antes alocada para o memory pool
- Duas técnicas:
 - Método sequential fit todos os blocos liberados são concebidos em uma lista singly-linked chamada de lista disponível
 - Método buddy-system blocos são alocados apenas em tamanhos quantum

Reserva

Reserva

Tarefa	Pedido
A	2K
В	8K
С	9K
D	5K
Е	7K

Memory Pool

Reserva

Estruturas de Dados

Liberação

(A)	
block reservado	
(B) block livre	
(C) block livre	
(b)	

Possíveis casos na Liberação

- Liberação
- Sorted-List

- Liberação
- Sorted-List

- Liberação
- Boundary-Tag

- Liberação
- Boundary-Tag

Alocação Dinâmica de Memória: Buddy-System

- Blocos são alocados em tamanhos quantum
- Algumas listas disponíveis para cada tamanho alocável
- Dois métodos:
 - Binary buddy-system os tamanhos dos blocos são baseados em potência de 2
 - Fibonacci buddy-system os tamanhos dos blocos são baseados na série Fibonacci

Alocação Dinâmica de Memória: Buddy-System

- Método Binary Buddy-System: Reserva
- Método Binary Buddy-System: Liberação

Alocação Dinâmica de Memória: Fragmentação

- Fragmentação Externa
- Fragmentação interna

Sumário

- Definição e Conceitos Relacionados
 - Lista Generalizada
- Representações de Listas
 - Lista Circular Singly-Linked
 - Lista Double-Linked
- Aplicação: Aritmética Polinomial
- Alocação Dinâmica de Memória
 - Sequential-Fit
 - Buddy-System
 - Fragmentação

Parceiros

 Os seguintes parceiros tornaram JEDITM possível em Língua Portuguesa:

