Tracking of a maneuvering vehicle

Abramov Semen,
Belikov Ilia,
Nikolay Zherdev,
Mikhail Kulbeda

What to do if your vehicle does a strong maneuver?

Grounds why the chosen method is the best method

- We have knowledge of model of a moving vehicle
- Linear Kalman filter is easy to implement

Measured Trajectory

Initially filtered

Estimated trajectory with Kalman filter, var_acc = 0.01**2

Initially filtered Y

Residuals Y

Χ

Try to reset P-filtered if residuals > 2.5 * σ-noise for both X and Y

Filtered Trajectory with reset P

Estimated trajectory with Kalman filter, reset P_

Filtered Y Trajectory

Estimated trajectory with Kalman filter, reset P_

Filtration error covariance

Let's try to change variance of random acceleration 0.01^2 -> 0.03^2

Filtered Trajectory

Estimated trajectory with Kalman filter, var_acc = 0.03**2

0.01^{^2} reset-P 0.03^{^2}

Filtered Y-trajectory

0.01^{^2} reset-P 0.03^{^2}

reset-P

0.03^2

0.01^2 init 0.01²
reset-P

0.05^2 only

delta between (0.01 + resetP) and 0.05

General conclusions about the efficiency of method

Two approaches:

- 1. Reset P to huge values when residuals $> 2.5 \sigma$ -noise
 - faced big spikes in the beginning of turn
- 2. Change variance of random acceleration from 0.01² —> 0.03²
 - reduced residuals

As we see, the second approach gives better results especially when we have data with not so large amount of huge residuals for X and Y simultaniously.