Chapter 14. Dynamic Programming

Joon Soo Yoo

May 15, 2025

Assignment

- ► Read §14.1
- ► Problems
 - ► §14.1 2, 5

Chapter 14: Dynamic Programming

- ► Chapter 14.1: Rod Cutting
- Chapter 14.2: Matrix-Chain Multiplication
- Chapter 14.3: Elements of Dynamic Programming
- Chapter 14.4: Longest Common Subsequence
- ► Chapter 14.5: Optimal Binary Search Trees

Dynamic Programming: Overview

- Dynamic programming, like divide-and-conquer solves problems by combining solutions to subproblems.
- ► **Note:** "Programming" here refers to a **tabular method**, not writing code.
- Divide-and-conquer divides a problem into disjoint subproblems.
- Dynamic programming applies when subproblems overlap.

When to Use Dynamic Programming

- In divide-and-conquer, subproblems are independent.
- In dynamic programming, subproblems share sub-subproblems.
- Recomputing shared subproblems leads to inefficiency.
- Dynamic programming solves each sub-subproblem once, storing results in a table.

Dynamic Programming: Problem Type

- Typically applies to **optimization problems**.
- Many possible solutions exist; each has a value.
- Goal: Find a solution with the optimal (min or max) value.
- We refer to this as an optimal solution, not necessarily the optimal solution.

Four Steps to Solve with Dynamic Programming

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- Compute the value of an optimal solution (usually bottom-up).
- 4. Construct an optimal solution from computed information.

Note: If only the value is needed, step 4 can be skipped.

Four Steps in Dynamic Programming: Rod Cutting

- 1. **Optimal Substructure:** If we make a first cut of length i, then the best revenue is: p[i] + r[n-i]
- 2. Recursive Definition: $r[n] = \max_{1 \le i \le n} (p[i] + r[n-i])$
- 3. Bottom-Up Computation: Fill array r[0...n] iteratively using the recurrence.
- 4. **Solution Construction:** Track the first cut s[n], then reconstruct by reducing $n \to n s[n]$.

Chapter 14: Dynamic Programming

- Chapter 14.1: Rod Cutting
- Chapter 14.2: Matrix-Chain Multiplication
- Chapter 14.3: Elements of Dynamic Programming
- ► Chapter 14.4: Longest Common Subsequence
- ► Chapter 14.5: Optimal Binary Search Trees

14.1 Rod Cutting: Problem Setup

- ► Given: Price table p[i] for rods of length i, and a rod of length n.
- Soal: Determine the maximum revenue (r_n) by cutting (or not cutting) the rod.

Length (i)	1	2	3	4	5	6	7	8	9	10
Price $(p[i])$	1	5	(8)	9	10	17	17	20	24	30

Example: For n = 4, cutting into two 2-inch pieces gives:

$$r_4 = p[2] + p[2] = 5 + 5 = 10 \rightarrow \text{optimal.}$$

How Many Ways to Cut?

- ▶ For rod of length n, there are n-1 potential cut positions.
- **Each** position: cut or don't cut $\rightarrow 2^{n-1}$ total ways to cut.
- ► Example notation: 7 = 2 + 2 + 3 means cut into pieces of lengths 2, 2, and 3.
- We want a decomposition $n = i_1 + i_2 + \cdots + i_k$ that maximizes: $r_n = p[i_1] + p[i_2] + \cdots + p[i_k]$

Rod Cutting: Optimal Revenue by Inspection

- $ightharpoonup r_1 = 1 \text{ from } 1$
- $r_2 = 5 \text{ from } 2$
- $r_3 = 8 \text{ from } 3$
- $r_4 = 10 \text{ from } 2 + 2$
- $r_5 = 13 \text{ from } 2 + 3$
- $ightharpoonup r_6 = 17 \text{ from } 6$
- $r_7 = 18$ from 1 + 6 or 2 + 2 + 3
- $r_8 = 22 \text{ from } 2 + 6$
- $r_0 = 25 \text{ from } 3 + 6$
- $r_{10} = 30 \text{ from } 10$

Observation: Sometimes no cut yields the optimal value.

Recursive Formulation: Two Subproblems

 \blacktriangleright We express r_n — the max revenue from a rod of length n —

using:
$$m \propto \begin{cases} p_n, & r_1 + r_{n-1}, & r_2 + r_{n-2}, & \dots, & r_{n-1} + r_1 \end{cases}$$

- ▶ **Option 1:** No cut \rightarrow revenue = ρ_n
- ▶ **Option 2:** First cut at position $i \in [1, n-1] \rightarrow$ split into sizes i and n-i, and recursively solve both
- ► This uses **optimal substructure**: solve two smaller rod-cutting subproblems.

Recursive Formulation: Single Subproblem View

► A simplified recurrence:

$$r_n = \max_{1 \le i \le n} \{ p_i + r_{n-i} \}$$

- View each decomposition as:
 - ► Cutting off a piece of size *i*
 - Recursively solving the remainder of size n-i
- ▶ If i = n, this means no cut at all: $r_n = p_n + r_0 = p_n + 0$
- Advantage: only one recursive call per term

Recursive Rod Cutting: Top-Down Approach

Implements the recurrence:

$$r_{n} = \max_{1 \leq i \leq n} (p[i] + r[n - i])$$

Straightforward, recursive algorithm:

$$T(n)$$

CUT-ROD(p, n)

if $n = 0$
 $p(i) + CR(n - 1)$
 $q = -\infty$

for $i = 1$ to n
 $q = max\{q, p[i] + CUT-ROD($p, n - i$)\}$

return q

$$T(n) = |+T(n - i)|$$

$$q = -\infty$$
 $q = -\infty$
 $q = -\infty$

Why This Recursive Version is Inefficient

- ► This version works it computes the correct value of r_n
- But it has exponential time complexity:
 - Each call spawns multiple recursive calls
 - Many subproblems are solved repeatedly
- ► For example, CUT-ROD(p, 3) calls:

$$CUT$$
- $ROD(p, 2)$, CUT - $ROD(p, 1)$, CUT - $ROD(p, 0)$

- Example: For n = 40, execution can take minutes or even hours.
- ► Time roughly doubles for each increase in n
- ► This motivates the need for a better solution: memoization or tabulation.

The Recursion Tree Grows Exponentially

- ▶ Define T(n) as the number of calls made to CUT-ROD(p, n).
- ► The recurrence:

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 with base case $T(0) = 1$

Solves to:

$$T(n) = 2^n$$

So the naive recursive version takes exponential time.

Why is $T(n) = 2^n$? (Step-by-Step Proof)

Let T(n) be the number of calls made by CUT-ROD(p, n).

Recursive definition:

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$

Base case:

$$T(0) = 1$$

Build up step-by-step:

$$T(1) = 1 + T(0) = 1 + 1 = 2$$
 $T(2) = 1 + T(0) + T(1) = 1 + 1 + 2 = 4$
 $T(3) = 1 + T(0) + T(1) + T(2) = 1 + 1 + 2 + 4 = 8$
 $T(4) = 1 + T(0) + T(1) + T(2) + T(3) = 1 + 1 + 2 + 4 + 8 = 16$

Pattern: $T(n) = \frac{2^n}{n}$

Conclusion: The recursion tree grows exponentially CUT-ROD has exponential time complexity.

Dynamic Programming for Rod Cutting

- ► Goal: avoid solving the same subproblems repeatedly (as in naive recursion).
- Key idea: solve each subproblem only once and save the result.
- ► This transforms the exponential-time recursive solution into a polynomial-time one.
- This is a classic time-memory trade-off: extra space to store results → less time spent recomputing.
- Final runtime: $\theta(n^2)$ instead of $\theta(2^n)$

Two DP Implementations

1. Top-Down with Memoization

- Recursive approach that saves results as they are computed.
- Each call checks: "Have I already solved this subproblem?"
- ▶ If yes \rightarrow return saved result. If no \rightarrow compute, save, then return.
- We call this memoization.

2. Bottom-Up Approach

- Solve smaller subproblems first, then build up to the full problem.
- ▶ Use a loop to fill a table from size 0 up to size *n*.
- ▶ No recursion or function calls; everything is table-driven.

Memoization vs. Bottom-Up

- **Same asymptotic runtime:** Both run in $\Theta(n^2)$
- ► Top-Down (Memoized):
 - Easier to write (recursive)
 - May avoid solving all subproblems if not needed
 - Higher overhead due to recursive calls
- Bottom-Up:
 - More efficient in practice
 - Solves all subproblems in order
 - Avoids recursion → better constant factors

Memoized-CUT-ROD (Top-Down)

```
MEMOIZED-CUT-ROD(p(n))
   let r[0:n] be a new array // will remember solution values in r
  for i = 0 to n
       r[i] = -\infty
   return MEMOZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
                       // already have a solution for length n?
   if r[n] \geq 0
       return r n
   if n == 0
                                PCAJ CK(n-x)
  else q = -\infty
       for i = 1 to n // i is the position of the first cut
           q = \max\{q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n-i, r)\}
                       // remember the solution value for length n
                              27x C121 C02x
```

BOTTOM-UP-CUT-ROD (Iterative)

```
BOTTOM-UP-CUT-ROD(p, n)
   let r[0:n] be a new array // will remember solution values in r
                               // for increasing rod length j
      for i = 1 to j
                              // i is the position of the first cut
          q = \max\{q, p[i] + r[j-i]\}
                               // remember the solution value for length j
   return r[n]
             g = pc1) + rc.]
```

Time Complexity of Dynamic Programming Rod Cutting

Key Idea:

▶ Both DP versions solve the problem using *n* subproblems: one for each rod length from 1 to *n*.

Bottom-Up Version:

- ▶ Outer loop runs n times (for j = 1 to n)
- ▶ Inner loop tries all first cuts i = 1 to j
- ► Total work:

$$\sum_{i=1}^{n} j = \frac{n(n+1)}{2} = \Theta(n^2)$$

Question?