

Algorithmique et Complexité

Emmanuel Hebrard et Mohamed Siala

Laboratoire conventior avec l'Université Fédér de Toulouse Midi-Pyrén

Plan

- 1 Introduction à la Complexité des Algorithmes
- 2 Analyse Asymptotique
- Algorithmes Récursifs
- Programmation Dynamique
- 6 Algorithmes gloutons
- 6 Représentation des Données
- Classes de Complexité
- 8 La Classe NP
- 9 Algorithmes de recherche

Informations Pratiques

- Nos coordonnées :
 - ► Emmanuel Hebrard, Mohamed Siala
 - ► Mail : hebrard@laas.fr, siala@laas.fr
 - ▶ Page du cours : https://moodle.insa-toulouse.fr/enrol/index.php?id=251
 - ► Volume (prévu) :
 - ★ CM: 8 séance d'1h15
 - ★ TD: 9 séance d'1h15 (3 groupes: Emmanuel Hebrard, Marie-José Huguet, Mohamed Siala)
- Évaluation :
 - ▶ 1 examen à la fin du cours
 - ★ Les documents sont autorisés

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

- Transparents sur la page du cours (ils seront distribués!)
- Support de cours d'Olivier Bournez pour l'Ecole Polytechnique (lien sur la page du cours)
- "Introduction to Algorithms"

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein

MIT Press.

- "Computational Complexity"
 - Christos H. Papadimitriou

Addison-Wesley.

"Computational Complexity: A Modern Approach"

Sanjeev Arora and Boaz Barak

Princeton University.

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Supports de cours

Question d'un entretien d'embauche chez Google

- Soit un histogramme avec n barres sur lequel on a versé un volume d'eau infini.
 - Donnez un algorithme pour calculer le volume d'eau résiduel (16).
 - Donnez un algorithme pour calculer le volume d'eau résiduel en temps linéaire.

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Vaincre la Combinatoire : Algo. ou Matériel?

Problème du Voyageur de Commerce

- donnée : ensemble de villes
- question : quel est le plus court chemin passant une fois par chaque ville?
- Méthode "Brute-force": trois instructions par nano seconde
- Un ordinateur plus rapide : une instruction par temps de Planck $(5.39 \times 10^{-44} s)$
- Un ordinateur plus parallèle : remplissons l'univers de processeurs d'un mm³

```
donnée
                                                processeur de Planck
                 processeur 3 GHz
                                                                               massivement parallèle
10 villes
                       1/100s
15 villes
                       1 heure
19 villes
                         1 an
27 villes
               8 \times \hat{a}ge de l'univers
                                                        5/1000s
35 villes
             5e+23 \times \text{âge de l'univ}.
40 villes
             4e+31 \times \text{âge de l'univ}.
                                                       12 heures
50 villes
           1,5e+48 \times \text{âge de l'univ}.
                                              4000 \times \hat{a}ge de l'univers
                                                                                  temps de planck
95 villes
           5e+131 \times \hat{a}ge de l'univ.
                                             1,3e+87 \times \text{âge de l'univ}.
                                                                                3 \times \hat{a}ge de l'univers
```


- Savoir développer des algorithmes efficaces
- Savoir analyser l'efficacité d'un algorithme
- Comprendre la notion de complexité d'un problème

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS 7 / 17

Introduction à la Complexité des Algorithmes

Problème & Donnée

Définition : Problème \(\simeq \) fonction sur les entiers

- Une question Q qui associe une donnée x à une solution Q(x)
 - "Quel est le plus court chemin de x_1 vers x_2 par le réseau R?"
 - ► "Quel est la valeur du carré de x?"
- Q est une relation, pas toujours une fonction : plus court(s) chemin(s)
- On peut se restreindre aux fonctions

- 16
- Problème : "Étant donné un ensemble de villes, quel est le plus court chemin passant une fois par chaque ville?"
- Instance: "Les préfectures d'Occitanie"
- Solution: "Auch \rightarrow Montauban \rightarrow Cahors \rightarrow Rodez \rightarrow Mende \rightarrow Nimes \rightarrow Montpellier \rightarrow Albi \rightarrow Toulouse \rightarrow Carcassonne \rightarrow Perpignan \rightarrow Foix \rightarrow Tarbes"

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

9 / 173

Algorithme

• Un algorithme est une méthode pour calculer la solution Q(x) d'un problème, pour toute valeur de la donnée X

Algorithme pour le problème Q

- Composée d'instructions primitives : exécutable par une machine
- Déterministe : une seule exécution possible pour chaque donnée
- Correct : termine et retourne la bonne solution Q(x) pour toute valeur de la donnée x

Qu'est-ce qu'une "instruction primitive"?

Pas de définition formelle dans ce cours : langages de programmations classiques (boucles, conditions, assignements, opérations arithmétiques, etc.)

Preuve de correction

- Pour prouver qu'un algorithme est correct (terminaison + résultat attendu) on va souvent utiliser la notion d'invariant de boucle
- Invariant de boucle = Propriété maintenue par une boucle qui permet de prouver que l'algorithme est correct

Invariant de boucle

- Initialisation : L'invariant est vrai avant la première itération de la boucle.
- Conservation : Si l'invariant est vrai avant une itération de la boucle, il le reste avant l'itération suivante a.
- Terminaison : Une fois la boucle terminée, l'invariant implique q'une certaine propriété est maintenue (qui sert à montrer que la solution est correcte ou que l'algorithme termine).
- a. Avant une itération veut dire avant de faire le test de la boucle

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

Exemple: TriSélection

L'algorithme suivant trie un tableau L de n éléments.

```
Algorithme: TriSélection
  Données : tableau L de n éléments comparables
  Résultat : le tableau trié
1 pour i allant de 1 à n faire
      m \leftarrow i;
       pour j allant de i + 1 à n faire
           si L[j] < L[m] alors
4
            m \leftarrow j;
5
      échanger L[i] et L[m];
7 retourner L;
```

$$i = 1$$
 | 29 | 30 | 17 | 9 | 0 | 24
 $i = 2$ | 0 | 30 | 17 | 9 | 29 | 24
 $i = 3$ | 0 | 9 | 17 | 30 | 29 | 24
 $i = 4$ | 0 | 9 | 17 | 30 | 29 | 24
 $i = 5$ | 0 | 9 | 17 | 24 | 29 | 30

Exemple: Prouver que TriSélection est correct

- TriSélection termine? Oui car :
 - ► En dehors de la boucle principale, il y a un nombre fini d'instructions (0)
 - ▶ 2ème boucle : n est constant, j est strictement croissant et la boucle se termine pour j > n
 - ▶ 1ère boucle : n est constant, i est strictement croissant, la boucle se termine pour i > n, et la 2ème boucle termine
- TriSélection retourne un résultat correct? Invariant de boucle Inv(i): Au début de la *i*ème itération de la 1ère boucle "pour",
- (a) trie(i): Les i-1 premiers éléments sont triés **b** mins(i): Les i-1 premiers éléments sont les plus petits

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

Invariants pour TriSélection

L'algorithme suivant trie un tableau T de n éléments.

Algorithme: TriSélection

Résultat : le tableau trié

Données : tableau L de n éléments comparables

1 pour i allant de 1 à n faire $m \leftarrow i$; pour j allant de i + 1 à n faire 3 si L[j] < L[m] alors Δ $m \leftarrow j$; 5 échanger L[i] et L[m];

7 retourner L;

Invariants:

Au début de l'itération i :

i - 1 1ers éléments triés

b i-1 1ers éléments minimums

$$i = 1$$
 29 30 17 9 0 24
 $i = 2$ 0 30 17 9 29 24
 $i = 3$ 0 9 17 30 29 24
 $i = 4$ 0 9 17 30 29 24
 $i = 5$ 0 9 17 24 29 30

Démonstration de TriSélection par invariant

Au début de la ième itération de la 1ère boucle "pour", 2 invariants :

- (a) trie(i): Les i-1 premiers éléments sont triés
- **b** mins(i): Les i-1 premiers éléments sont les plus petits

Preuve

- Initialisation : trie(i) et mins(i) sont vrais lors de la première itération de la boucle car pour i = 1 la liste des i 1 premiers éléments est vide
- Conservation : Supposons que les invariants soient vrais à l'itération i. On montre qu'ils sont vrais à l'itération i+1 :
 - Les i-1 premiers éléments du tableau L ne changent pas (le seul changement est à la ligne 6 et $m \ge i$). Donc trie(i) et mins(i) impliquent trie(i+1).
 - A la ligne 6, L[m] est le plus petit élément parmi $L[i], \ldots, L[n]^a$, et il est échangé avec L[i]. Donc mins(i) implique mins(i+1).
- Terminaison : La fin de la boucle correspond au début d'une itération i = n + 1, Mais trie(n + 1) implique que L est totalement trié et donc l'algorithme est correct.
- a. Il faudrait faire une autre preuve par invariant pour montrer ça!!

.<mark>AAS-CNRS</mark> 'Laboratoire d'analyse et d'architecture des systèmes du CNRS Introduction à la Complexité des Algorithmes

15 / 173

Complexité Algorithmique : pourquoi?

Pour développer des algorithmes efficaces, il faut pouvoir :

- Évaluer la complexité d'un algorithme;
- Comparer deux algorithmes entre eux;

Qu'est ce qu'un algorithme efficace?

Critère : utilisation d'une ressource, e.g., le temps (d'exécution) ou l'espace (mémoire)

Le temps d'exécution

Le temps d'exécution

Le temps d'exécution est la durée (en secondes, minutes, etc.) nécessaire au programme pour s'éxecuter.

Mais le temps d'éxecution dépend :

- de la machine;
- du système d'exploitation;
- du langage;
- de la donnée;

On veut une méthode indépendante de l'environnement.

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

Nombre d'opérations élémentaires (I)

Opération élémentaire

Une opération élementaire est une opération qui prend un temps constant

• Même temps d'exécution quelque soit la donnée

Exemples d'opérations en temps constant

- Instructions assembleur
- Opérations arithmétiques $(+, \times, -)$, affectation, comparaisons sur les **types primitifs** (entiers, flottants, etc.)

Exemple

L'algorithme suivant calcule $n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$ (avec 0! = 1).

Algorithme: Factorielle		nombre	coût
Données : un entier <i>n</i>		Hombre	cour
Résultat : un entier valant n!			
1 <i>fact</i> ← 1;	initialisation :	$1 \times$	1 op.
2 pour <i>i allant de</i> 2 <i>à n</i> faire	itérations :	$n \times$	1 op.
$3 \boxed{ fact \leftarrow fact * i;}$	mult. + affect. :	$(n-1)\times$	2 op.
4 retourner fact;	retour fonction :	$1 \times$	1 op.

Nombre total d'opérations :

$$1 + n + (n - 1) * 2 + 1 = 3n$$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

Exemple: TriSélection

```
Algorithme: TriSélection
                                                                                                 nombre
                                                                                                                               coût
  Données : tableau L de n éléments comparables
  Résultat : le tableau trié
1 pour i allant de 1 à n faire
                                                                            itérations :
                                                                                                  n \times
                                                                                                                               1 op.
       m \leftarrow i;
                                                                            affectation:
                                                                                                                               1 op.
                                                                                                 \sum_{i=1}^{n} (n-i) \times \sum_{i=1}^{n} (n-i) \times n \times ? \times
        pour j allant de i + 1 à n faire
                                                                            itérations :
                                                                                                                               1 op.
            si L[j] < L[m] alors
                                                                            comparaison:
                                                                                                                               1 op.
           m \leftarrow j;
                                                                            affectation:
5
                                                                                                                               1 op.
       échanger L[i] et L[m];
                                                                            échange :
                                                                                                                               3 op.
                                                                                                 n \times
7 retourner L:
```

Nombre total d'opérations :

$$n(n+4) \le n+n+2\sum_{i=1}^{n}(n-i-1)+?+3n \le n(2n+5)$$

Nombre d'opérations élémentaires (II)

- Le nombre d'opérations dépend en général de la donnée du problème ;
 - (a) trier 10 entiers est plus facile que trier 1000000 entiers?
 - (b) trier une liste très désordonnée est plus difficile?
- Le nombre d'opérations est calculé en fonction de la donnée, mais comment tenir compte de toutes les valeurs possibles?
 - ▶ Plusieurs types de complexités → pire/meilleur cas ou en moyenne.
- Quel paramètre choisir? Est-il possible de comparer des algorithmes pour des données distinctes?
 - ▶ On calcule la complexité en fonction de la taille de la donnée : |x| est le nombre de bits de la représentation en mémoire de la donnée x
- Comment connaît-on la taille |x| de la donnée x? (cf. "Représentation des Données")

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

Complexité en fonction de la taille de la donnée

Soit $Co\hat{u}t_A(x)$ la complexité de l'algorithme A sur la donnée x de taille |x|.

Complexité dans le meilleur des cas

$$\operatorname{Inf}_{\mathcal{A}}(|x|) = \min\{\operatorname{Coût}_{\mathcal{A}}(x) \mid x \text{ de taille } |x|\}$$

Complexité dans le pire des cas

$$Sup_{\mathcal{A}}(|x|) = \max\{Co\hat{\mathrm{ut}}_{\mathcal{A}}(x) \mid x \text{ de taille } |x|\}$$

Complexité en moyenne

Besoin d'une probabilité P() pour toutes les données de tailles n

$$\operatorname{Moy}_{A}(|x|) = \sum_{x \text{ de taille } |x|} P(x) \cdot \operatorname{Coût}_{A}(x)$$

Exemple (Recherche dans un tableau)

L'algo. suivant recherche l'élément e dans un tableau.

Algorithme: RechercheElmt

Données : un entier e et un tableau L

contenant e

Résultat : l'indice i t.q. L[i] = e

 $i \leftarrow 0$;

tant que $L[i] \neq e$ faire

 $i \leftarrow i + 1;$

retourner i;

Le nombre de comparaisons dépend de la

- e est dans la case $1 \rightarrow 1$ comp.
- e est dans la case $j \rightarrow j$ comp.
- e est dans la case $n \to n$ comp. (n = |L| : taille de L)

meilleur: 1 comp.

pire: n comp.

moyenne : $\frac{n+1}{2}$ (voir slide suivant)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

Complexité en moyenne (Recherche)

L'algo. suivant recherche l'élément e dans un tableau.

Algorithme: RechercheElmt

Données: un entier e et un tableau L

contenant e

Résultat : l'indice i t.q. L[i] = e

i : entier:

début

 $i \leftarrow 0$;

tant que $L[i] \neq e$ faire

 $i \leftarrow i + 1;$

retourner i;

Hyp.:

- distribution uniforme
- nbOcc(e) = 1

$$\Rightarrow P(L[i] = e) = 1/n.$$

On applique la formule :

$$\operatorname{Moy}_{A}(n) = \sum_{x \text{ de taille } n} P(x) \cdot \operatorname{Coût}_{A}(x)$$

$$\operatorname{Moy}_{A}(n) = \frac{1}{n} \times \frac{n(n+1)}{2}$$

moyenne : $\frac{n+1}{2}$

Complexité en moyenne (TriSélection)

- $Inf_{TriS\acute{e}lection}(n) = n(n+4)$, $Sup_{TriS\acute{e}lection}(n) = n(2n+5)$
- Le temps de calcul T(n) de TriSélection pour n élément est tel que :

$$c_1 \cdot (n^2 + 4n) \le T(n) \le c_2 \cdot (2n^2 + 5n)$$

- Les valeurs des constantes c₁ et c₂ dépendent de :
 - Le coût exact des opérations (comparaisons, affectations, etc.)
 - Le matériel (processeur, RAM, etc.)
 - Le logiciel (langage, compilateur, système d'exploitation, etc.)
- Impossible à quantifier!
- Les variations de c_1 et c_2 sont plus importantes que le facteur (inférieur à 2) entre $n^2 + 4n$ et $2n^2 + 5n$
- $\operatorname{Inf}_{\operatorname{TriS\'election}}(n) \simeq \operatorname{Moy}_{\operatorname{TriS\'election}}(n) \simeq \operatorname{Sup}_{\operatorname{TriS\'election}}(n) \simeq cn^2$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

```
Algorithme: TriRapide
```

Données: tableau L d'elts comparables, entiers s, e Résultat : le tableau trié entre les indices s et e

1 Procedure TriRapide(L, s, e)

2 si
$$s < e$$
 alors
3 $p \leftarrow \text{Partition}(L, s, e);$
4 TriRapide $(L, s, p - 1);$
5 TriRapide $(L, p + 1, e);$

6 Fonction Partition (L, s, e)

```
7
          pivot \leftarrow L[e];
          i \leftarrow s;
 8
          pour j allant de s à e-1 faire
 9
               si L[j] < pivot alors
10
                     échanger L[i] avec L[j];
11
12
                     i \leftarrow i + 1;
```

échanger L[i] avec L[e]; 13 14

retourner i;

Exemple: TriRapide

Invariants

►
$$L[0], ..., L[i-1] < pivot$$

► $L[i], ..., L[j-1] \ge pivot$

Complexité de TriRapide

```
Algorithme: TriRapide
Procedure TriRapide (L, s, e)
     si s < e alors
           p \leftarrow \text{Partition}(L, s, e);
           TriRapide(L, s, p - 1);
           TriRapide(L, p + 1, e);
Procedure Partition (L, s, e)
     pivot \leftarrow L[e];
     i \leftarrow s;
     {f pour}\ j\ {\it allant}\ de\ s\ \grave{\it a}\ e-1\ {f faire}
           si L[j] < pivot alors
                échanger L[i] avec L[j];
                i \leftarrow i + 1;
     échanger L[i] avec L[e];
     retourner i;
```

Opération caractéristique

lci on compte le nombre de comparaisons, égal au nombre total d'opérations, à une constante près.

- TriRapide fait un nombre constant (disons c₁) d'opérations pour chaque comparaison
 - ► Au plus un échange et entre 1 et 2 incrémentation(s)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

Complexité dans le pire des cas (TriRapide)

```
Algorithme: TriRapide
Procedure TriRapide (L, s, e)
     si \ s < e \ alors
          p \leftarrow \text{Partition}(L, s, e);
          TriRapide(L, s, p - 1);
          TriRapide (L, p + 1, e);
Procedure Partition(L, s, e)
```

```
pivot \leftarrow L[e];
i \leftarrow s;
pour j allant de s à e-1 faire
     si L[j] < pivot alors
           échanger L[i] avec L[j];
          i \leftarrow i + 1;
```

échanger L[i] avec L[e]; retourner i;

- Pire des cas : les éléments sont déja triés!
- Le pivot est comparé aux n-1 éléments et reste en dernière position
- Partition retourne toujours e
 - ▶ Partition (L, 1, n), Partition (L, 1, n 1),...
- Nombre total de comparaisons :

$$\sum_{i=1}^{n} (n-i) = n^2 - \sum_{i=1}^{n} i = n(n-1)/2$$

Complexité en moyenne (TriRapide)

```
Algorithme: TriRapide
Procedure TriRapide (L, s, e)
     si \ s < e \ alors
          p \leftarrow \text{Partition}(L, s, e);
          TriRapide(L, s, p - 1);
          TriRapide(L, p + 1, e);
Procedure Partition(L, s, e)
     pivot \leftarrow L[e];
     i \leftarrow s;
     pour j allant de s à e-1 faire
          si L[j] < pivot alors
              échanger L[i] avec L[j];
     échanger L[i] avec L[e];
     retourner i;
```

- Deux éléments sont comparés une fois au plus
 - ► Si deux éléments sont comparés, un des deux est un pivot, et ils seront séparés
- On calcule l'espérance E du nombre total de comparaisons

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Introduction à la Complexité des Algorithmes

Complexité en moyenne (TriRapide)

- Soit la liste triée des éléments de $T: z_1 < z_2 < \ldots < z_n$
- Si on note $p(z_i, z_i)$ la probabilité que z_i et z_i soient comparés, alors l'espérance E du nombre de comparaisons est donc :

$$\sum_{i=1}^{n-1} \sum_{i=i+1}^{n} p(z_i, z_j)$$

- z_i et z_i sont comparés ssi un des deux est le premier pivot parmi $z_i, z_{i+1}, \ldots, z_i$
 - ▶ sinon, le pivot z_k sépare $z_i < z_k$ et $z_i > z_k$!
- Donc $p(z_i, z_j) = 2/(j i + 1)$ (les choix de pivot sont équiprobables)

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{j=1}^{n-i} \frac{2}{j+1} \le 2 \sum_{i=1}^{n-1} \sum_{j=1}^{n} \frac{1}{j} \simeq 2n \ln n$$

	TriSélection	TriRapide
$\overline{\operatorname{Sup}(n)}$	$c_1 n^2$	$c_2 n^2$
Moy(n)	$c_3 n^2$	<i>c</i> 4 <i>n</i> ln <i>n</i>

- Soient :
 - ▶ $T^s(n)$ le temps effectif de calcul pour TriSélection de n éléments, $\simeq \text{Moy}_s(n) = c_3 n^2$
 - $ightharpoonup T^r(n)$ le temps effectif de calcul pour TriRapide de n éléments, $\simeq \operatorname{Moy}_r(n) = c_4 n \ln n$
- Expérience : essayons pour n = 100000 et estimons n = 300000

$$c_3 = \frac{T^s(100000)}{100000^2} \qquad c_4 = \frac{T^r(100000)}{100000 \ln 100000}$$
 et donc (pour $T^s(100000) = 1.65$ et $T^r(100000) = .006$) :
$$T^s(n) = \frac{T^s(100000)}{100000^2} n^2 \qquad \text{pour } n = 300000 : \quad \simeq 14.67$$

$$T^r(n) = \frac{T^r(100000)}{100000 \ln 100000} n \ln n \qquad \text{pour } n = 300000 : \quad \simeq 0.019$$

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS Introduction à la Complexité des Algorithmes

31 / 173

Analyse Asymptotique

Complexité Algorithmique

- Vision pessimiste : la **complexité** d'un algortihme est souvent définie comme sa performance **asymptotique** dans le **pire cas**
- Que signifie dans le pire des cas?
 - Parmi toutes les données x de taille n, on ne considère que celle qui maximise $Co\hat{u}t_A(x)$
- Que signifie asymptotique?
 - ▶ comportement de l'algorithme pour des données de taille *n arbitrairement grande*
 - pourquoi?

- Soit deux algorithmes de complexités $f_1(n)$ et $f_2(n)$
- Quel algorithme préférez-vous?
- La courbe verte semble correspondre à un algorithme plus efficace...
- ... mais seulement pour de très petites valeurs!

LAAS-CNRS / Laboratoir

e d'analyse et d'architecture des systemes du Civi

Analyse Asymptotique

33 / 173

Ordre de grandeur : motivation

- Les calculs à effectuer pour évaluer le temps d'exécution d'un algorithme peuvent parfois être longs et pénibles;
- De plus, le degré de précision qu'ils requièrent est souvent inutile;
 - ▶ $n \log n + 5n \rightarrow 5n$ va devenir "négligeable" (n >> 1000)
 - ightharpoonup différence entre un algorithme en $10n^3$ et $9n^3$: effacé par une accélération de $\frac{10}{9}$ de la machine
- On aura donc recours à une approximation de ce temps de calcul, représentée par les notations \mathcal{O}, Ω et Θ

Hypothèse simplificatrice

On ne s'intéresse qu'aux fonctions asymptotiquement positives (positives pour tout $n \ge n_0$)

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

34 / 173

Notation \mathcal{O} : définition

$\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}^{+*}, \ \forall n \geq n_0 \ : \qquad f(n) \leq c \times g(n)$$

Borne supérieure : $f(n) \in \mathcal{O}(g(n))$ s'il existe une constante c, et un seuil à partir duquel f(n) est inférieure à g(n), à un facteur c près;

Exemple: $f(n) \in \mathcal{O}(g(n))$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

35 / 173

Notation \mathcal{O} : preuve

$\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}^{+*}, \ \forall n \geq n_0 \ : \qquad f(n) \leq c \times g(n)$$

Prouver que $f(n) \in \mathcal{O}(g(n))$: jeux contre un perfide adversaire \forall

Tour du joueur \exists objectif : $f(n) \le cg(n)$ choisit c et n_0

Tour du joueur \forall objectif : f(n) > cg(n) choisit $n \ge n_0$

Arbitre détermine le gagnant : $f(n) \le cg(n)$

Notation \mathcal{O} : exemple

 $\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}^{+*}, \ \forall n \geq n_0 : f(n) \leq c \times g(n)$$

Jeux : prouver que la fonction $f_2(n) = 6n^2 + 2n - 8$ est en $\mathcal{O}(n^2)$:

Tour du joueur \exists choisit c = 6 et $n_0 = 0$

Tour du joueur \forall choisit n = 5

Arbitre $6 \times 5^2 + 2 \times 5 - 8 > 6 \times 5^2$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

38 / 173

Notation \mathcal{O} : exemple

 $\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}^{+*}, \ \forall n \geq n_0 \ : \qquad f(n) \leq c \times g(n)$$

Jeux : **prouver** que la fonction $f_2(n) = 6n^2 + 2n - 8$ est en $\mathcal{O}(n^2)$:

Tour du joueur \exists objectif : $f(n) \le cg(n)$ c = 7 et $n_0 = 0$

Tour du joueur \forall objectif : f(n) > cg(n) choisit ?

Arbitre $6n^2 + 2n - 8 \le 7n^2$ est toujours vrai

Focus sur \mathcal{O}

$\mathcal{O}(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}^{+*}, \ \forall n \geq n_0 : f(n) \leq c \times g(n)$$

Exercice : $2n^2$ est-il en $\mathcal{O}(n^2)$? Pareil pour 2n.

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

40 / 173

Notation Ω : définition

$\Omega(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists n_0 \in \mathbb{N}, \ \exists c \in \mathbb{R}^{+*}, \ \forall n \geq n_0 : f(n) \geq c \times g(n)$$

Borne inférieure : $f(n) \in \Omega(g(n))$ s'il existe un seuil à partir duquel f(n) est supérieure à g(n), à une constante multiplicative près ;

Exemple: $g(n) \in \Omega(f(n))$

Notation Θ : définition

 $\Theta(g(n))$ est l'ensemble de fonctions f(n) telles que :

$$\exists c_1, c_2 \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N}, \forall n > n_0, c_1 \times g(n) \leq f(n) \leq c_2 \times g(n)$$

Borne supérieure et inférieure : $\Theta(g(n)) = \Omega(g(n)) \cap \mathcal{O}(g(n))$; f(n) est en $\Theta(g(n))$ si elle est prise en sandwich entre $c_1g(n)$ et $c_2g(n)$;

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

42 / 173

Focus sur ⊖

f(n) est en $\Theta(g(n))$ si :

$$\exists c_1, c_2 \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N}, \forall n > n_0, \qquad c_1 \times g(n) \leq f(n) \leq c_2 \times g(n)$$

Exercice : $2n^2$ est-il en $\Theta(n^2)$? Pareil pour 2n.

Notation asymptotique d'une fonction

• Quelle est la borne asymptotique de f(n)?

Notation asymptotique (de l'expression fermée) d'une fonction

Les mêmes simplifications pour \mathcal{O}, Ω et Θ :

- on ne retient que les termes dominants
- on supprime les constantes multiplicatives

Exemple

Soit $g(n) = 4n^3 - 5n^2 + 2n + 3$;

- ① on ne retient que le terme de plus haut degré : $4n^3$ (pour n assez grand le terme en n^3 "domine" les autres, en choisissant bien c_1, c_2 , on peut avoir $c_1n^3 \le g(n) \le c_2n^3$)
- 2 on supprime les constantes multiplicatives : n^3 (on peut la choisir!)

et on a donc $g(n) \in \Theta(n^3)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

44 / 173

Relation des principaux ordres de grandeur

Indépendant de la taille de la donnée : $\mathcal{O}(1)/\Theta(1)$

Un algorithme dont la donnée est de taille |x| = n est dit :

- Constant si sa complexité est en $\mathcal{O}(1)$
- **Logarithmique** si sa complexité est en $\Theta(\log n)$
- **Linéaire** si sa complexité est en $\Theta(n)$
- Quadratique si sa complexité est en $\Theta(n^2)$
- **Polynomial** si sa complexité est en $\mathcal{O}(n^{\mathcal{O}(1)})$
- Exponentiel si sa complexité est en $\Theta(c^{\Theta(n)})$ pour une constante c>1

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Analyse Asymptotique

Quelques remarques (à prouver comme exercice)

- $f \in \mathcal{O}(g)$ ssi $g \in \Omega(f)$
- $f \in \Theta(g)$ ssi $g \in \Theta(f)$
- Si $\lim_{n \to \infty} rac{f(n)}{g(n)} = c > 0$ (constante) alors $f \in \Theta(g)$ (et donc $g \in \Theta(f)$)
- Si $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ alors $f \in \mathcal{O}(g)$ et $f \notin \Omega(g)$
- Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ alors $f \in \Omega(g)$ et $f \notin \mathcal{O}(g)$

Règle de l'Hôpital

f et g deux fonctions dérivables t.q. $\lim_{n\to\infty}f(n)=\lim_{n\to\infty}g(n)=\infty$, alors :

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$
 si cette limite existe.

f' (respectivement g') représente la dévirée de f (respectivement g)

Règles de calculs : combinaisons des complexités

- ullet Les instructions de base prennent un temps constant, noté $\mathcal{O}(1)$;
- On additionne les complexités d'opérations en séquence :

$$\Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n))$$

- Branchements conditionnels : max (analyse dans le pire des cas)
- L'ordre de grandeur maximum est égal à la somme des ordres de grandeur :

$$\max(\Theta(f(n)), \Theta(g(n))) = \Theta(f(n)) + \Theta(g(n))$$

$\begin{array}{c|c} \textbf{Exemple} \\ \textbf{si} & <\!\! condition \!\!> \textbf{alors} & \Theta(g(n)) \\ & \#\! instructions\ (1); & \Theta(f_1(n)) \\ \textbf{sinon} & & \\ & \#\! instructions\ (2); & \Theta(f_2(n)) \end{array} \right\} = \Theta(g(n) + f_1(n) + f_2(n))$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

49 / 173

Règles de calculs : combinaison des complexité

- Dans les boucles, on multiplie la complexité du corps de la boucle par le nombre d'itérations;
- Calcul de la complexité d'une boucle while :

Exemple

en supposant qu'on a $\Theta(h(n))$ itérations

$$\left. egin{aligned} \Theta(g(n)) \\ \Theta(f(n)) \end{aligned} \right\} = \Theta(h(n) \times (g(n) + f(n)))$$

Règles de calculs : combinaison des complexité

- Dans les boucles, on multiplie la complexité du corps de la boucle par le nombre d'itérations;
- Calcul de la complexité d'une boucle for :

Exemple

pour i allant de a à b faire
 #instructions ;

$$\Theta(f(n))$$
 $= \Theta((b-a+1)\times f(n))$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

50 / 173

Calcul de la complexité asymptotique d'un algorithme

- Pour calculer la complexité d'un algorithme :
 - 1 on calcule la complexité de chaque "partie" de l'algorithme;
 - on combine ces complexités conformément aux règles qu'on vient de voir;
 - on simplifie le résultat grâce aux règles de simplifications qu'on a vu;
 - * élimination des constantes, et
 - ★ conservation du (des) termes dominants

Exemple : calcul de la factorielle de $n \in \mathbb{N}$

• Reprenons le calcul de la factorielle, qui nécessitait 3n opérations :

Algorithme: Factorielle(n) nombre coût Données: un entier n **Résultat**: un entier valant n! 1 fact, i : entier; 2 début $fact \leftarrow 2$; initialisation: $\Theta(1)\times$ $\Theta(1)$ pour i allant de 3 à n faire $\Theta(n) \times$ $\Theta(1)$ itérations : $fact \leftarrow fact * i;$ mult. + affect. : $\Theta(n) \times$ $\Theta(1)$ retour fonction: $\Theta(1) \times$ $\Theta(1)$ retourner fact;

Nombre total d'opérations :

$$\Theta(1) + \Theta(n) * \Theta(1) + \Theta(n) * \Theta(1) + \Theta(1) = \Theta(n)$$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Analyse Asymptotique

52 / 173

Exemple : TriSélection

Algorithme: TriSélection nombre coût **Données :** tableau L de n éléments comparables Résultat : le tableau trié 1 pour i allant de 1 à n faire itérations : $n \times$ 1 op. $m \leftarrow i$; affectation: 1 op. $\sum_{i=1}^{n} (n-i) \times \sum_{i=1}^{n} (n-i) \times n \times ? \times$ pour j allant de i + 1 à n faire 3 itérations : 1 op. si L[j] < L[m] alors 4 comparaison: 1 op. $m \leftarrow j$; 5 affectation: 1 op. échanger L[i] et L[m]; échange : 3 op. $n \times$ 7 retourner L;

Séries arithmétiques

$$\sum_{i=1}^{n} (n-i-1) = n^2 - n - \sum_{i=1}^{n} i = n^2 - n - (1+2+3+\cdots+n) = n^2 - n - \frac{1}{2}n(n+1)$$

Nombre total d'opérations : $\Theta(n^2) = \Theta(|L|^2)$

Algorithmes Récursifs

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes Récursifs

54 / 173

Force brute

- L'approche "force brute" : énumération exhaustive de toutes les configurations possibles de la solution recherchée
- Exemple : Un algorithme de tri de type "force brute" génère toutes les permutations possibles de la liste jusqu'à trouver la permutation ordonnée.
- Inefficace!
- Exemple (algorithme de tri de type "force brute") : le nombre de permutations possible est n! donc la complexité d'un tel algorithme est $\Theta(n!)$

Diviser pour régner (Divide and conquer)

- "Diviser pour régner" est une méthode de conception d'algorithmes qui se base sur une "conception par décomposition" :
 - Diviser le problème en sous problèmes plus facile à résoudre
 - Combiner les résultats des sous problèmes pour résoudre le problème initial
- Cas idéal : le problème est décomposable en sous-problèmes indépendents
 - Dans ce cas, combiner les résultats est trivial
 - ▶ Parfois, les sous-problèmes sont seulement plus "faiblement" liés, et combiner les résultats peut-être complexe
- Algorithmes typiquement récursifs

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes Récursifs

66 / 173

Exemple avec un algorithme de tri

```
Algorithme: TriFusion (L)

Données: une liste L

Résultat: la liste L triée

mil: entier;

si \mid L \mid \leq 1 alors

\mid retourner \ L;

sinon

mil \leftarrow \lfloor \frac{\mid L \mid +1}{2} \rfloor;

L_l \leftarrow TriFusion(L[:mil]);

L_r \leftarrow TriFusion(L[mil:]);

retourner \ Fusion(L_l, L_r);
```

```
Algorithme: Fusion (L_1, L_2)
Données: deux listes triées L_1 et L_2
Résultat: une liste L triée contenant les éléments de L_1 et de L_2
L: liste vide; i,j,k \leftarrow 1; tant que k < |L| faire

\begin{array}{c|c} \mathbf{si} \ i > |L_1| \ ou \ (j \leq |L_2| \ et \ L_1[i] > L_2[j]) \ \mathbf{alors} \\ & \text{insérer} \ L_2[j] \ \mathbf{a} \ \text{la fin de} \ L; \\ & j \leftarrow j + 1; \\ \mathbf{sinon} \\ & \text{insérer} \ L_1[i] \ \mathbf{a} \ \text{la fin de} \ L; \\ & k \leftarrow k + 1; \\ \mathbf{retourner} \ L \end{array}
```


Tri Fusion

```
Algorithme: TriFusion (L)
Données : une liste L
Résultat : la liste L triée
mil: entier;
si |L| \leq 1 alors
   retourner L;
sinon
      mil \leftarrow \lfloor \frac{|L|+1}{2} \rfloor;
      L_l \leftarrow \text{TriFusion}(L[:mil]);
      L_r \leftarrow \text{TriFusion}(L[mil:]);
      retourner Fusion(L_l, L_r);
```

```
• Déroulement de l'algorithme avec la liste (6, 2, 1, 8, 5, 4, 3, 7):
```

```
Division : (6, 2, 1, 8) (5, 4, 3, 7)
           Division: \langle 6, 2 \rangle \langle 1, 8 \rangle
               Division : \langle 6 \rangle \langle 2 \rangle
               Fusion : \langle 2, 6 \rangle
               Division : \langle 1 \rangle \langle 8 \rangle
               Fusion : \langle 1, 8 \rangle
           Fusion: \langle 1, 2, 6, 8 \rangle
          Division: \langle 5, 4 \rangle \langle 3, 7 \rangle
               Division : \langle 5 \rangle \langle 4 \rangle
               Fusion: \langle 4, 5 \rangle
               Division : \langle 3 \rangle \langle 7 \rangle
               Fusion : \langle 3, 7 \rangle
           Fusion: \langle 3, 4, 5, 7 \rangle
► Fusion : ⟨1, 2, 3, 4, 5, 6, 7, 8⟩
```

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

Preuve de correction

Terminaison :

- ► TriFusion ne s'appelle lui même que 2 fois
- ► A chaque appel récursif, la taille de la liste |L| est strictement plus petite
- ▶ Il n'y a pas d'appel récursif pour $|L| \le 1$ ⇒ nombre total d'appels récursifs est fini
- Correction (TriFusion(L) est triée, par récurrence sur |L|):
 - ▶ Pour $|L| \le 1$, la liste est déjà triée
 - ▶ TriFusion(L) triée si $|L| \le n$; est-ce que TriFusion(L) est triée si $|L| \le n + 1$?
 - ▶ TriFusion(L) renvoie Fusion(TriFusion(L[: mil]), TriFusion(L[mil:]))
 - ▶ TriFusion(L[:mil]) et TriFusion(L[mil:]) sont triées par l'hypothèse de récurrence puisque $|L[:mil]| \le n$ et $|L[mil:]| \leq n$
 - ▶ ⇒ les préconditions de Fusion sont respectées, montront qu'il est correct, par invariants :

 - ★ $i = |L_1| + 1$ ou k = 1 ou $L[k-1] \le L_1[i]$
 - ★ $j = |L_2| + 1$ ou k = 1 ou $L[k-1] \le L_2[i]$

Analyse de la complexité d'un algorithme récursif

La structure d'un algorithme récursif AlgoRec(x) est :

si condition d'arrêt alors

retourner solution triviale;

sinon

retourner Fusion(AlgoRec(p(x,1)),AlgoRec(p(x,2)),...,AlgoRec(p(x,a)));

- p "coupe" la donnée x (de taille |x| = n) en a morceaux de taille g(n)
- Fusion "recolle" les morceaux en h(n)

Forme récursive de la complexité $T(n) = \begin{cases} \Theta(1) & \text{si } \dots \\ {}_{a}T(g(n)) + h(n) & \text{sinon} \end{cases}$

On veut trouver une expression fermée (ou explicite) de la complexité

$$T(n) \in \mathcal{O}(f(n))$$

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

Exemple: TriFusion

- TriFusion "coupe" la donnée L (de taille |L| = n) en 2 morceaux de taille $\frac{n}{2}$
- Fusion "recolle" les morceaux en $\Theta(n)$

Forme récursive de la complexité de TriFusion :

$$T(n) = \begin{cases} \Theta(1) & \text{si } n \leq 1\\ \frac{2}{3}T(\frac{n}{2})T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + n & \text{sinon} \end{cases}$$

Forme fermée de la complexité de TriFusion :

$$\exists c, n_0 \forall n > n_0$$
 $T(n) \leq cn \log n$
càd $T(n) \in \mathcal{O}(n \log n)$

Méthode par substitution

- Il faut avoir une intuition sur la forme de la solution (TriFusion : $\mathcal{O}(n \log n)$)
- On veut montrer que $T(n) = 2T(\frac{n}{2}) + \Theta(n) \in \mathcal{O}(n \log n)$
- On montre par récurrence qu'il existe f(n) t.q. $\forall n \ T(n) \leq f(n)$
 - ▶ On va en déduire **a posteriori** que $T(n) \in \mathcal{O}(f(n))$

Attention!

- L'hypothèse de récurrence est $T(n) \le f(n)$, et **non** $T(n) \in \mathcal{O}(f(n))$
- L'hypothèse de récurrence "pour tout $n \le k$, $T(n) \in \mathcal{O}(f(n))$ " ne veut pas dire grand chose puisque la notation \mathcal{O} est définie pour n arbitrairement grand : on remplace tous les termes en $\mathcal{O}, \Omega, \Theta$ par une fonction élément de l'ensemble

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

Méthode par substitution (condition aux limites)

$$T(n) = 2T\left(\frac{n}{2}\right) + n \le cn\log n$$

- Il faut montrer que la formule est vraie pour les conditions limites de la récurrence pour des données de petite taille, i.e. n=1
- **Problème**: c'est faux pour n = 1 car $c \times 1 \times \log 1 = 0 < T(1) = 1$;
- Mais on cherche à montrer la complexité pour des données de grande taille : $n \ge n_0$ et on a le choix pour n_0 \implies vérifier pour T(2) (et T(3))
- On peut aussi borner par $f(n) = cn \log n + b$ puisque $cn \log n + b \in \mathcal{O}(n \log n)$
 - ▶ Ou même $f(n) = cn \log n + an + b$

Méthode par substitution (condition aux limites)

$$T(n) = 2T\left(\frac{n}{2}\right) + n \le cn \log n$$

On vérifie que la formule tient pour T(2) et T(3)

$$T(2) = 2T(2/2) + 2$$
 $T(2) = 2T(1) + 2$
 $T(2) = 2 * 1 + 2 = 4 \le 2c \log 2 = 2c$
 $T(2) = 4 \le 2c$
 $c \ge 2$

- On fait la même chose pour T(3)...
- ... et on obtient que c doit être ≥ 2 .

_AAS-CNRS ′ Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

Méthode par substitution (Récurrence)

$$T(n) = 2T\left(\frac{n}{2}\right) + n \le cn\log n$$

• On suppose que $T(x) \le cx \log x$ est vrai pour tout $2 \le x \le n-1$; En particulier :

$$T\left(\frac{n}{2}\right) \le c\frac{n}{2}\log\frac{n}{2}$$

On vérifie que c'est aussi le cas pour x = n en substituant la formule pour T(x) dans son expression récursive :

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$\leq 2c\frac{n}{2}\log\left(\frac{n}{2}\right) + n$$

$$\leq cn\log\frac{n}{2} + n$$

$$= cn\log n - cn\log 2 + n$$

$$= cn\log n - cn + n$$

$$\leq cn\log n \qquad (pour c \geq 1)$$

• On a pris $c \geq 2$, pour satisfaire les conditions initiales T(2) et T(3)

Diviser pour régner : TriFusion

Exemple

```
Algorithme: TriFusion (L)
Données : une liste L
Résultat : la liste L triée
si |L| < 1 alors
      retourner L;
sinon
      mil \leftarrow \lfloor \frac{|L|+1}{2} \rfloor;

L_l \leftarrow \text{TriFusion}(L[:mil]);
       L_r \leftarrow \text{TriFusion}(L[mil:]);
      retourner Fusion(L_l, L_r);
```

$$T(n) = egin{cases} \Theta(1) & ext{si } n = 1 \ 2 \frac{n}{2b} + \Theta(n^{1d}) & ext{si } n > 1 \end{cases}$$

• Trifusion : a = 2, b = 2, d = 1

• L'algorithme découpe la donnée en a sous-problèmes de taille $\frac{n}{b}$, les résout récursivement et rassemble les réponses en $\Theta(n^d)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

Diviser pour régner : RechBin

Exemple

Algorithme: RechBin (L) Données : tableau trié L contenant e

Résultat : la position de e dans L $m \leftarrow \left\lfloor \frac{|L|}{2} \right\rfloor;$ si L[m] = e alors retourner msinon si L[m] < e alors retourner RechBin(L[m+1:])

retourner RechBin(L[:m])

$$T(n) = egin{cases} \Theta(1) & ext{si } n=1 \ 1_a T\left(rac{n}{2b}
ight) + \Theta(n^{0d}) & ext{si } n>1 \end{cases}$$

• Recherche Binaire : a = 1, b = 2, d = 0

• L'algorithme découpe la donnée en $\frac{a}{b}$ sous-problèmes de taille $\frac{n}{b}$, les résout récursivement et rassemble les réponses en $\Theta(n^d)$

Théorème maître (général) - version simplifiée

- On ne considère que les récurrences $T(n) = aT(\frac{n}{b}) + \Theta(n^d)$ (ou $\mathcal{O}(n^d)$) avec $a \ge 1, b > 1, d \ge 0$

 - 1 Si $d > \log_b a$, $T(n) = \Theta(n^d)$ 2 Si $d < \log_b a$, $T(n) = \Theta(n^{\log_b a})$ 3 Si $d = \log_b a$, $T(n) = \Theta(n^d \log n)$

complexité dominée par le coût de fusion complexité dominée par le coût du sous-problème pas de domination

Tri fusion :

$$T(n) = \begin{cases} \Theta(1) & \text{si } n = 1\\ 2T(n/2) + \Theta(n) & \text{si } n > 1 \end{cases}$$

• a = 2, b = 2, d = 1, $\log_2 2 = 1 = d$

On est donc dans le 3ème cas et la complexité en $\Theta(n \log n)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes Récursifs

Théorème maître (général) - version simplifiée

- On ne considère que les récurrences $T(n) = aT(\frac{n}{b}) + \Theta(n^d)$ (ou $\mathcal{O}(n^d)$) avec $a \ge 1, b > 1, d \ge 0$
 - 1 Si $d > \log_b a$, $T(n) = \Theta(n^d)$ 2 Si $d < \log_b a$, $T(n) = \Theta(n^{\log_b a})$ 3 Si $d = \log_b a$, $T(n) = \Theta(n^d \log n)$

complexité dominée par le coût de fusion complexité dominée par le coût du sous-problème pas de domination

Recherche binaire :

$$T(n) = \begin{cases} \Theta(1) & \text{si } n = 1 \\ T(\frac{n}{2}) + \Theta(1) & \text{si } n > 1 \end{cases}$$

• a = 1, b = 2, d = 0, $\log_2 1 = 0 = d$

On est donc dans le cas 3 et la complexité en $\Theta(\log n)$

Programmation Dynamique

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Contexte & Plan du Chapitre

- Nous allons découvrir une nouvelle méthode de conception d'algorithme : la programmation dynamique
- Nous allons introduire cette méthode à travers le problème de multiplication de matrices
- Nous allons résoudre ce problème avec 3 approches différentes :
 - Approche force brute
 - Algorithme récursif
 - Opening in the second of th

Le Problème de Multiplication de Matrices

	•	
	$l_{2,1}c_{31} + l_{2,2}c_{32} + l_{2,3}c_{33}$	

• Cas général : A_1 de taille $t_0 \times t_1$ et A_2 de taille $t_1 \times t_2$, il y a $t_0 \times t_1 \times t_2$ multiplications à faire. La matrice résultante est de taille $t_0 \times t_2$.

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Associativité de la Multiplication

- 3 matrices A_1 , A_2 , A_3 de dimensions (10×4) , (4×100) , (100×25) , respectivement.
- On veut calculer $A_1 * A_2 * A_3$
- Il y a deux façons (la multiplication est associative) :
- Nombre de multiplications nécessaires :
 - $((A_1 * A_2) * A_3)$:
 - 10 * 4 * 100 = 4000 multiplications pour calculer $M = A_1 * A_2$ de dimension 10×100
 - 2 10 * 100 * 25 = 25000 multiplications pour calculer $M * A_3$
 - 3 total: 29000 multiplications
 - $(A_1 * (A_2 * A_3))$
 - 1 4*100*25 = 10000 multiplications pour calculer $N = A_2*A_3$ de dimension 4×25
 - 2 10 * 4 * 25 = 1000 multiplications pour calculer $A_1 * N$
 - 3 total: 11000 multiplications

Problème de Multiplication de Matrices

- Soit $A_1, A_2, \ldots A_n$ n matrices
- A_i de taille $t_{i-1} * t_i$
- On veut trouver un parenthésage de $A_1 \times A_2 \times \dots A_n$ qui minimise le nombre de multiplications pour calculer le produit $A_1 \times A_2 \times \dots A_n$

_AAS-CNRS ' Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Force brute

- Énumérer tous les parenthésages possibles
- Calculer le coût de chaque parenthésage
- Choisir la solution avec la valeur mimimale

Combien de Parenthésages Possibles?

- 3 matrices $A_1 * A_2 * A_3 \rightarrow 2$ possibilités : $(A_1 * A_2) * A_3$ et $A_1 * (A_2 * A_3)$
- Pour 4 matrices → 5 possibilités
 - $((A_1 * A_2) * A_3) * A_4, (A_1 * (A_2 * A_3)) * A_4, (A_1 * A_2) * (A_3 * A_4),$
 - $A_1 * ((A_2 * A_3) * A_4) \text{ et } A_1 * (A_2 * (A_3 * A_4))$
- Pour 5 matrices → 14 possibilités
- Pour 10 matrices? → 4862 possibilités
- Pour 50 matrices \rightarrow 5 \times 10²¹ possibilités
- ullet Cas général : pour n matrices, il y a C(n-1) parenthésages possibles, où C(n) est le nombre de Catalan $C(n) = \frac{1}{n+1} \times \binom{2n}{n}$ (à étudier en détail en TD)
- $C(n) \in \Omega(\frac{4^n}{n^{1.5}})$
- La complexité de l'approche force brute est $\Omega(\frac{4^n}{n^{1.5}})$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Solution Récursive (Diviser pour Régner)

Un parenthésage peut se voir comme un arbre :

$$(((A_1*A_2)*((A_3*A_4)*A_5))*(A_6*A_7))*(A_8*A_9)$$

• Il y a n-1 possibilités pour la racine de l'arbre : on peut résoudre récursivement les n-1 sous-problèmes, et choisir le meilleur

Solution Récursive (Diviser pour Régner)

- Pour chaque solution, il faut découper la séquence $A_1,..A_n$ en deux sous séquences $A_1..A_k$ et $A_{k+1}..A_n$ (le calcul sera $(A_1 \times ... A_k) * (A_{k+1} \times ... A_n)$)
- Soit m[i][j] le coût minimal pour la séquence $A_i \dots A_j$ (avec i < j)
- Solution du problème est m[1][n]
- Pour le parenthésage $(A_1..A_k) \times (A_{k+1}..A_n)$, le coût en fonction de k est :

$$cout(k) = m[1][k] + m[k+1][n] + t_0 \times t_k \times t_n$$

$$\implies m[1][n] = \min\{m[1][k] + m[k+1][n] + t_0 \times t_k \times t_n \mid 1 \le k < n\}$$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Algorithme Récursif

```
Algorithme: cout_recursif (A_1 \dots A_n)
```

Données : Une liste de matrices $A_1, A_2, \dots A_n$ de tailles $t_0 \times t_1, t_1 \times t_2, \dots t_{n-1} \times t_n$

Résultat : nombre minimal de multiplications pour calculer $A_1 \times ... \times A_n$

début

```
c, tmp: entier;
c \leftarrow \infty;
si n=1 alors
     retourner 0;
      pour k de 1 à n-1 faire
           tmp \leftarrow \text{cout\_recursif}(A_1 \dots A_k) + \text{cout\_recursif}(A_{k+1}, A_n) + t_0 \times t_k \times t_n;
           si tmp < c alors
     retourner c;
```


Complexité de cout_recursif

$$T(n) = \begin{cases} c_1 & \text{si } n = 1\\ \sum_{k=1}^{n-1} (T(k) + T(n-k) + c_2) & \text{si } n > 1 \end{cases}$$

Avec c_1 et c_2 deux constantes

- Comment calculer la complexité sous une forme non-récursive ?
- Le théorème maître ne s'applique pas
- On va utiliser la méthode par substitution. D'abord on simplifie la récursion

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Programmation Dynamique

80 / 173

Complexité de cout_recursif

$$T(n) = \sum_{k=1}^{n-1} (T(k) + T(n-k) + c_2) = c_2 n + \sum_{k=1}^{n-1} (T(k) + T(n-k))$$

$$T(n) = c_2 n + T(1) + T(n-1)T(1) + T(2) + T(n-2)T(2) + \dots + T(n-1) + T(1)T(n-1)$$

$$T(n) = c_2 n + 2\sum_{k=1}^{n-1} T(k)$$

Complexité de cout_recursif

$$T(n) - T(n-1) = c_2 n - c_2(n-1) + 2 \sum_{k=1}^{n-1} T(k) - 2 \sum_{k=1}^{n-2} T(k)$$

= $c_2 + 2T(n-1)$

$$T(n) = egin{cases} c_1 & ext{si } n=1 \ 3T(n-1)+c_2 & ext{si } n>1 \end{cases}$$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Complexité de cout_recursif

$$T(n) = egin{cases} c_1 & ext{si } n=1 \ 3T(n-1)+c_2 & ext{si } n>1 \end{cases}$$

- Arbre de profondeur n et facteur de branchement $3: T(n) \in \mathcal{O}(3^n)$
- Hypothèse de récurrence : $T(n) \le c3^n$
- $T(1) = c3^{1-1} = c$, on choisit $c = c_1$
- On suppose que $T(x) \le c_1 3^x$ est vrai pour tout $1 \le x \le n-1$;
- On vérifie que c'est aussi le cas pour x = n:

$$T(n) = 3T(n-1)$$

$$\leq 3c_13^{n-1}$$

$$\leq c_13^n$$

• Même preuve pour $T(n) \in \Omega(n^3)$, donc $T(n) \in \Theta(n^3)$

Comparaison : Force Brute / Solution Récursive

- La complexité de l'approche force brute est en $\Omega(\frac{4^n}{n^{1.5}})$ et la complexité de l'algorithme récursif est en $\Theta(3^n)$.
- Soit $f(n) = \frac{4^n}{n^{1.5}}$ et $g(n) = 3^n$. On veut comparer asymptotiquement f et g.
- Rappel:
 - ▶ Si $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$ (constante) alors $f \in \Theta(g)$ (et donc $g \in \Theta(f)$)

 - ► Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ alors $f \in \mathcal{O}(g)$ et $f \notin \Omega(g)$ ► Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ alors $f \in \Omega(g)$ et $f \notin \mathcal{O}(g)$

Règle de l'Hôpital

f et g deux fonctions dérivables t.q. $\lim_{n\to\infty}f(n)=\lim_{n\to\infty}g(n)=\infty$, alors :

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$
 si cette limite existe.

f' (respectivement g') représente la dévirée de f (respectivement g)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Comparaison : Force Brute / Solution Récursive

- Rappel : la complexité de l'approche force brute est en $\Omega(\frac{4^n}{n^{1.5}})$ et la complexité de l'algorithme récursif est en $\Theta(3^n)$. Que choisir?
- On va comparer $\frac{4^n}{n^{1.5}}$ et $3^n \implies$ on calcule $\lim_{n\to\infty} \frac{\frac{4^n}{n^{1.5}}}{3^n}$?
 - $\frac{\frac{4^n}{n^{1.5}}}{3^n} = \frac{\frac{4}{3}^n}{n^{1.5}}$
 - ▶ On utilise la règle de l'Hôpital : $\lim_{n \to \infty} \frac{(\frac{4}{3}^n)'}{(n^{1.5})'} = \lim_{n \to \infty} \frac{\ln(\frac{4}{3})\frac{4}{3}^n}{1.5n^{0.5}} = \lim_{n \to \infty} \frac{(\ln(\frac{4}{3})\frac{4}{3}^n)'}{(1.5n^{0.5})'} = \lim_{n \to \infty} \frac{\ln(\frac{4}{3})*\ln(\frac{4}{3})\frac{4}{3}^n}{1.5*0.5*n^{-0.5}} = \infty$
 - ▶ Donc $\lim_{n\to\infty} \frac{\frac{4^n}{n^{1.5}}}{\frac{3^n}{3^n}} = \infty$ et par conséquent : $\frac{4^n}{n^{1.5}} \in \Omega(3^n)$ et $\frac{4^n}{n^{1.5}} \notin \mathcal{O}(3^n)$
 - L'algorithme récursif est meilleur que l'approche force brute


```
Algorithme: cout_recursif (A_1 \dots A_n)
Données : Une liste de matrices A_1, A_2, \dots A_n de tailles t_0 \times t_1, t_1 \times t_2, \dots t_{n-1} \times t_n
Résultat: nombre minimal de multiplications pour calculer A_1 \times ... \times A_n
     c, tmp: entier;
     c \leftarrow \infty;
     si n=1 alors
          retourner 0;
     sinon
          pour k de 1 à n-1 faire
                tmp \leftarrow \text{cout\_recursif}(A_1 \dots A_k) + \text{cout\_recursif}(A_{k+1}, A_n) + t_0 \times t_k \times t_n;
                si tmp < c alors
                 retourner c;
```

- cout_recursif (A_i, A_i) est appelé plusieurs fois (e.g. on appelle cout_recursif (A_4, A_n) quand k = 1, k = 2, et k = 3).
- L'algorithme récursif fait beaucoup de calculs redondants! on peut l'améliorer
- Programmation dynamique

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Programmation Dynamique

- Méthode de conception de type "diviser pour régner"
- Souvent utilisée avec des problèmes d'optimisation (on cherche une solution qui minimise ou maximise un critère)
- Assure que chaque sous-problème est traité une seule fois afin d'éviter le problème de redondance.
- Idée clé :
 - mémoriser les solutions des sous-problèmes (dans un tableau/matrice par exemple)
 - ▶ approche ascendante : Soit P(n) le problème à résoudre de taille n. Pour tout k < i, si P(i) dépend de P(k), alors résoudre P(k) avant de résoudre P(i)

Multiplication de matrices : Programmation Dynamique

```
m[i][j] = \min\{m[i][k] + m[k+1][j] + t_{i-1} \times t_k \times t_i \mid i \le k < j\}
```

- Si on connait m[i][k] et m[k+1][j] (pour tout $k \in [i,j-1]$), alors on peut calculer m[i][j] efficacement
- Il n'y a que n(n-1)/2 séquences en tout
- Il faut s'assurer que l'algorithme calcule le coût de chaque séquence de longueur / avant de calculer le coût d'une séquence de taille l+1
- Donc l'algorithme doit calculer (dans l'ordre)
 - **1** Le coût des séquences de taille 2 : m[1][2], m[2][3], ... m[n-1][n]
 - 2 Puis le coût des séquences de taille $3: m[1][3], m[2][4], \ldots m[n-2][n]$
 - **3** ...
 - 4 Finalement le coût de la séquence de taille n (coût de la solution optimale) : m[1][n]

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Multiplication de matrices : Programmation Dynamique

```
Algorithme: CoutMultiplication_ProgDynamique
Données : Une liste de matrices A_1, A_2, \dots A_n de tailles t_0 \times t_1, t_1 \times t_2, \dots t_{n-1} \times t_n
Résultat : nombre minimal de multiplications pour calculer A_1 \times \ldots \times A_n
I, tmp : entier;
                                                                    /* m[i][j] : coût min pour <math>A_i, \ldots A_i (i < j) */
m[][]: matrice de taille n \times n;
pour i de 1 à n faire
                                                                                                      /* Initialisation */
 | m[i][i] = 0 ;
pour I de 2 à n faire
     pour i de 1 à n-l+1 faire
                                                                /* séquence de longeur / qui commence en A_i */
          j \leftarrow i + l - 1;
          m[i][j] \leftarrow \infty;
          pour k de i à j-1 faire
               tmp \leftarrow m[i][k] + m[k+1][j] + t_{i-1} \times t_k \times t_j;
                si tmp < m[i][j] alors
                 \lfloor m[i][j] \leftarrow tmp;
```

retourner m[1][n]

Complexité de CoutMultiplication_ProgDynamique

- $\Theta(n^2)$ séquences, $\Theta(n)$ pour calculer chaque séquence
- CoutMultiplication_ProgDynamique $\in \Theta(n^3)$
- Meilleur que l'algorithme récursif $(\Theta(3^n))$ et la force brute $(\Omega(\frac{4^n}{(n-1)^{1.5}})$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Programmation Dynamique

Programmation Dynamique : Résumé

- Diviser le problème en sous-problèmes
- Si le nombre de sous-problèmes n'est pas trop grand : réserver la mémoire pour stoquer la solution de chaque sous-problème
- Trouver un ordre permettant de résoudre chaque sous-problème qu'une seule fois, en utilisant les solutions stoquées

Algorithmes gloutons

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons

Rappel

- Nous avons traité deux types de problèmes :
 - Les problèmes de décision : Trouver une solution qui satisfait des critères (i.e., problème de tri, problème de recherche d'élément, PGCD, etc)
 - Les problèmes d'optimisation : Trouver une solution qui satisfait des critères et qui minimise ou maximise un coût (e.g., parenthèsage pour la multiplication de matrices). Le coût dans ce cas s'associe à une "fonction objectif".
- Nous avons étudié différentes approches de résolutions :
 - L'approche force brute (recherche exhaustive, énumération)
 - Paradigme diviser pour régner (et les algorithmes récursifs)
 - Programmation dynamique
- On découvre aujourd'hui une nouvelle approche de résolution (l'approche gloutonne) et la structure de représentation "matroïdes" qui permet de concevoir des approches gloutonnes optimales

Algorithmes gloutons (Greedy algorithms)

- Contexte : typiquement pour les problèmes d'optimisation
- Principe:
 - ► Résoudre le problème en une séquence d'étapes/choix : arbre de décision
 - ★ Explorer toutes les branches (Algorithmes récursifs)
 - ★ N'explorer qu'une fois les branches isomorphes (Programmation Dynamique)
 - * N'explorer qu'une branche! (choix qui semble optimal à l'étape courante)
- Avantage : Rapide en temps de calcul
- Inconvénient : Pas de garantie sur l'optimalité

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes gloutons

94 / 173

Exemple : Problème du Voyageur de commerce

Voyageur de commerce (optimisation)

- donnée : ensemble de villes
- question : quel est le plus court cycle passant par toutes les villes une seule fois ?

Figure – Une solution non optimale

- Cycle : a,b,c,d,a
- Coût de la solution :7 + 3 + 2 + 5 = 17

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes gloutons

96 / 173

Figure – Une solution optimale

- Cycle : a,c,b,d,a
- Coût de la solution :1 + 3 + 4 + 5 = 13

Énumération exhaustive?

- 2 Villes \implies 1
- 3 Villes \implies 1
- 4 Villes \implies 3
- 5 Villes \implies 12
- ullet n Villes $\Longrightarrow \frac{(n-1)!}{2}$ (la moitié du nombre de permutations possible de taille n-1)
- 40 villes \implies à peu près 10^{46} solutions à tester!
- Avec une machine moderne : 3×10^{29} années (plus que *AgeUnivers*³)!
- La recherche exhaustive est inefficace!!

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons

Idée gloutonne : Choisir la ville non visitée la plus proche

Figure – Construction de la solution gloutonne

- Chemin actuel : a, c, d, b
- Coût actuel : 0 + 1 + 2 + 4 + 7 = 14

Algorithme Glouton

Solution suboptimale

Mais algorithme efficace : $\mathcal{O}(n^2)$ contre $\Omega(n!)$ pour l'exploration complète

Algorithme Glouton pour le voyageur de commerce

```
Algorithme: Glouton (n, distance)
Données : n \in \mathbb{N}^* : nombre de villes, distance[i][j] \in \mathbb{R}^+ : la distance entre ville i et ville j
Résultat : Permutation de 1, \ldots, n
début
       Ensemble \leftarrow \{1, \ldots n\};
       \textit{element} \leftarrow \textbf{1} \; ;
       Permutation \leftarrow element;
       Ensemble \leftarrow Ensemble \setminus {element};
       tant que |Permutation| < n faire
               min \leftarrow +\infty:
               pour e \in Ensemble faire
                       \mathbf{si}_{.}\mathit{distance}[\mathit{element}][\mathit{e}] < \mathit{min}_{.}\mathbf{alors}
                               min \leftarrow distance[element][e];
                               \textit{ville} \leftarrow \textit{e} \ ;
                                                                                                           // Ajouter ville à la fin de Permutation
               Permutation \leftarrow Permutation, ville~;
               Ensemble \leftarrow Ensemble \setminus {ville};
               element \leftarrow ville;
       retourner Permutation;
```

Complexité : $O(n^2)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes gloutons

100 / 173

Matroïdes

Cas favorable

- Dans certains cas, on peut montrer que la solution gloutonne est optimale!
- Lorsque l'espace de recherche (l'ensemble des sommets de l'arbre de recherche) possède une structure de matroïde
- Dans ce cas, il est possible de résoudre en temps polynomial un problème dont l'espace de recherche est (sur)exponentiel

- Un matroïde est un couple $\mathcal{M} = (\mathcal{E}, \mathcal{I})$ qui satisfait les conditions suivantes :
 - $ightharpoonup \mathcal{E}$ est un ensemble fini non vide
 - $ightharpoonup \mathcal{I}$ est un ensemble de sous ensembles de $\mathcal E$ tel que :
 - ★ Si $H \in \mathcal{I}$, et $F \subset H$, alors $F \in \mathcal{I}$ (on dit que \mathcal{I} est héréditaire)
 - **★** Si $F \in \mathcal{I}$, $H \in \mathcal{I}$ et |F| < |H|, alors $\exists x \in H \setminus F$ tel que $F \cup \{x\} \in \mathcal{I}$ (propriété d'échange)
- Soit $\mathcal{M} = (\mathcal{E}, \mathcal{I})$ un matroïde et $H \in \mathcal{I}$, alors H est appelé "sous ensemble indépendant"
- Une base de $\mathcal{M} = (\mathcal{E}, \mathcal{I})$ est un sous ensemble indépendant maximal par inclusion
 - ▶ $F \in \mathcal{I}$ est une base de \mathcal{M} si et seulement si $\forall x \in \mathcal{E} \setminus F, \ F \cup \{x\} \notin \mathcal{I}$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons

Exemple (simple) de Matroïde

- $\mathcal{E} = \{1, 2, 3, 4\}$
- $\mathcal{I} = \{\{\}, \{1\}, \{2\}, \{4\}, \{1,4\}, \{2,4\}\}$
- Preuve
 - \triangleright \mathcal{E} est un ensemble fini non vide (évident)
 - - ★ Pour $\{2,4\}$: $\{\}$ $\in \mathcal{I}$, $\{2\}$ $\in \mathcal{I}$, $\{4\}$ $\in \mathcal{I}$
 - **★** Pour $\{1,4\}: \{\} \in \mathcal{I}, \{1\} \in \mathcal{I}, \{4\} \in \mathcal{I}$
 - ★ Pour $\{1\}$: $\{\}$ \in \mathcal{I} , $\{1\}$ \in \mathcal{I}
 - ★ Pour $\{2\}$: $\{\}$ \in \mathcal{I} , $\{2\}$ \in \mathcal{I}
 - ★ Pour $\{3\}: \{\} \in \mathcal{I}, \{4\} \in \mathcal{I}$
 - ★ Pour $\{\}: \{\} \in \mathcal{I}$
 - Propriété d'échange :
 - **★** Pour $H = \{1, 4\}$ et $F = \{2\} : F \cup \{4\} \in I$
 - **★** Pour $H = \{2, 4\}$ et $F = \{1\} : F \cup \{2\} \in I$
 - Pour $H = \{4\}$ et $F = \{\} : F \cup \{4\} \in I$

Exemple (plus complexe) de Matroïde

- \mathcal{E} : les arêtes E d'un graphe G = (V, E)
- \mathcal{I} : les sous ensembles de E qui sont des forêts (graphes sans cycle)
- Preuve
 - \triangleright \mathcal{E} est un ensemble fini non vide (l'ensemble vide est une forêt)
 - $ightharpoonup \mathcal{I}$ est héréditaire car une forêt dont on retire une arête reste une forêt
 - Propriété d'échange :
 - \star Soit I et J deux forêts telles que |I| < |J|, et considerons le graphe formé par les arêtes $I \cup J$
 - \star Chaque cycle de ce graphe comporte au moins une arête dans $I \setminus J$ et une arête dans $J \setminus I$
 - \star Pour chaque cycle, retirons la deuxième arête (celle de $J \setminus I$)
 - \star Le graphe résultant contient l et n'a pas de cycle (et donc appartient à \mathcal{I})
 - \star II possède au moins une arête de $J\setminus I$ puisque qu'on en a retiré au plus $|I\setminus J|<|J\setminus I|$
- Les bases de $\mathcal{M} = (\mathcal{E}, \mathcal{I})$ sont des arbres couvrants

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons

Matroïde pondéré

- Soit $\mathcal{M} = (\mathcal{E}, \mathcal{I})$ un matroïde
- $\mathcal M$ est pondéré s'il existe une fonction de poids pour les éléments de $\mathcal E$. Pour chaque $x\in\mathcal E$, $w(x)\in\mathbb R^{+*}$ est le poids de x.
- Si F est un sous ensemble de \mathcal{E} , alors le poids de F se définit avec $w(F) = \sum_{x \in F} w(x)$
- Problème de la base optimale :
 - ▶ Donnée : $\mathcal{M} = (\mathcal{E}, \mathcal{I})$: matroïde et w : fonction de poids
 - ▶ Question : Trouver la base $F \in \mathcal{I}$ de poids minimal ou maximal

Algorithme glouton

```
Algorithme: Glouton (\mathcal{M}(\mathcal{E}, \mathcal{I}), w)
Données : \mathcal{M}(\mathcal{E}, \mathcal{I}) : matroïde, w : fonction de poids
Résultat : ?Sous ensemble indépendant de E de poids maximal
début
      F \leftarrow \{\};
      n \leftarrow |\mathcal{E}|;
      L \leftarrow Trier(\mathcal{E}) par poids décroissant ;
      pour i \in [1..n] faire
            si F \cup \{L[i]\} \in \mathcal{I} alors
              | F \leftarrow F \cup \{L[i]\};
      retourner F;
```

Complexité: Si le test d'appartenance (ligne 7) se fait en O(f(n)), alors la complexité de Glouton $(\mathcal{M}(\mathcal{E},\mathcal{I}), w)$ est $O(n\log(n) + nf(n))$ avec $n = |\mathcal{E}|$ (car le tri peut se faire en O(nlog(n)).

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons

106 / 173

L'importance des matroïdes

Théorème

Glouton $(\mathcal{M}(\mathcal{E},\mathcal{I})$, w) retourne une base optimale de \mathcal{M}

```
Algorithme: Glouton (\mathcal{M}(\mathcal{E}, \mathcal{I}), w)
```

Données : $\mathcal{M}(\mathcal{E}, \mathcal{I})$: matroïde, w : fonction de poids

Résultat : Sous ensemble indépendant de E de poids maxminimal

début

```
F \leftarrow \{\};
n \leftarrow |\mathcal{E}|;
L \leftarrow \mathit{Trier}(\mathcal{E}) par poids décroissant ;
\mathbf{pour} \ \ i \in [1..n] \ \mathbf{faire}
        si F \cup \{L[i]\} \in \mathcal{I} alors
          F \leftarrow F \cup \{L[i]\};
retourner F;
```


Exemple

- Supposons qu'on veuille mettre toutes les machines de l'INSA en réseau en minimisant la longueur de cable nécessaire
- Pour n machines, il y a n^{n-2} câblages tels qu'il existe un chemin unique entre toute paire de machines ▶ Pour 50 machines : $3, 5 \cdot 10^{81}$ câblages possibles
- Arbre couvrant de poids minimum!

```
Algorithme: Kruskal (G = (V, E), w) = Glouton sur les forêts de G
Données : G = (V, E) : graphe, w : fonction de longueur des arêtes
Résultat : Arbre couvrant de poid minimum
début
     F \leftarrow \{\};
     n \leftarrow |E|;
     L \leftarrow Trier(E) par poids croissant;
    pour i \in [1..n] faire
         si F \cup \{L[i]\} ne contient pas de cycle alors
           F \leftarrow F \cup \{L[i]\};
    retourner F;
```

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes gloutons

108 / 173

Conclusion

- Rappel pour un problème d'optimisation :
 - Une solution est une sortie qui respecte les exigences du problème
 - Le coût d'une solution est la valeur correspondante à la fonction objectif
 - ▶ Une solution optimale est une solution qui optimise l'objectif
- Pour exploiter Glouton $(\mathcal{M}(\mathcal{E},\mathcal{I}), w)$ pour un problème d'optimisation \mathcal{P} :
 - ▶ Il faut trouver un matroïde $\mathcal{M}(\mathcal{E},\mathcal{I})$ pondéré tel qu'une solution optimale de \mathcal{P} correspond à une base (i.e., élément maximal de \mathcal{I}) de poids optimal que l'on peut calculer à partir de Glouton $(\mathcal{M}(\mathcal{E},\mathcal{I})$, w)
 - ▶ Dans ce cas, l'algorithme glouton est garanti de retourner une solution optimale
- Cette approche ne s'applique pas à tous les problèmes. En particulier, il y a souvent deux limites :
 - Le problème n'a pas une struture de matroïde
 - **2** Le test d'appartenance $(F \in \mathcal{I}?)$ peut être coûteux en temps (e.g. en $\mathcal{O}(2^n)$

Représentation des Données

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

Complexité en fonction de la taille de la donnée

- Pourquoi calculer la complexité en fonction de la taille de la donnée?
- Sinon quel paramètre choisir?
 - ▶ Multiplication de x par y: en fonction de x? de y? de x + y? de xy?
- Sinon comment comparer des algorithmes avec des données différentes?
 - ► Est-ce que Factorielle est plus efficace que triSélection?
 - Factorielle : $\Theta(x)$ opérations, $|x| = \log_2 x$, donc $\Theta(2^{|x|})$ opérations
 - lacktriangledown triSélection : $\Theta(n^2)$ opérations, |T|=n, donc $\geq \Theta(|L|^2)$ opérations
- Comment connaître la taille de la donnée?

Calculer la taille de la donnée

On compte le nombre de bits mémoire, en ordre de grandeur (Θ)

• Exemples :

▶ Types char, int, float, etc. : $\mathcal{O}(1)$

▶ Type \mathbb{N} : $\Theta(\log n)$ (pour un entier $\leq n$)

▶ Type liste d'int : $\Theta(n)$ (pour une liste de longueur $\leq n$)

Borne supérieure (\mathcal{O})

Trouver un encodage

Borne inférieure (Ω)

Principe des tiroirs

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

112 / 173

Encodage

Encodage

Un encodage pour un type de donnée $\mathcal T$ est une fonction *injective* :

$$f: \mathcal{T} \mapsto \{0,1\}^k$$

- Tout $x \in \mathcal{T}$ a un seul code f(x) (fonction)
 - ► Sinon on ne peut pas toujours encoder
- Pour $x, y \in \mathcal{T}$ distincts, $f(x) \neq f(y)$ (injective)
 - ► Sinon on ne peut pas toujours decoder
- Exemples : ASCII, Morse,...

Encodage d'un char

- Représenter les entiers entre 0 et 255 (char)
- Chaque bit repésente un terme de la somme $x = \sum_{i=0}^{7} b_i 2^i$
- Pour $x = 75 : 1 \times 2^6 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0$

Borne supérieure (et inféreieure)

Si c est de type "char" alors $|c| \in \mathcal{O}(1)$, et donc $|c| \in \Theta(1)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

Encodage d'un entier $n \in \mathbb{N}$

- Code en base 2 : $\mathcal{O}(\log_2 n)$ pour coder tout entier naturel $\leq n$
- Problème : combien de bits allouer pour coder *n'importe quel* entier? ∞ ?
- Donner le nombre de bits "utiles" en préfixe, en code unaire (autant de 0 que de bits significatifs)
- Code en $\mathcal{O}(\log_2(n))$ pour le préfixe + $\mathcal{O}(\log_2(n))$ pour le suffixe

Borne supérieure

Si $n \in \mathbb{N}$ alors $|n| \in \mathcal{O}(\log n)$

Encodage d'un tableau de n int

- Chaque int requiert 4 octets : $n \times \mathcal{O}(1)$
- Même astuce que pour les entiers, le nombre d'éléments en préfixe : $\mathcal{O}(\log n)$
- $n \times \mathcal{O}(1) + \mathcal{O}(\log n) = \mathcal{O}(n)$

Borne supérieure

Si L est un tableau contenant n int, alors $|L| \in \mathcal{O}(n)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

Borne inférieure sur la taille de la donnée

Quelques principes de base de dénombrement

Principe additif

Les choix *mutuellement exclusifs* se combinent par addition.

• Ex : combien de choix possibles de plats principal si on a 3 types de viande, 2 poisson et 3 plats végétariens? 3 + 2 + 3 = 8 plats

Principe multiplicatif

Les choix *indépendents* se combinent par multiplication.

- Combien de menus s'il y a 3 entrées, 4 plats, et 4 desserts ? $3 \times 4 \times 4 = 48$ menus
- Combien de valeurs possibles pour un int sur 32 bits? 2³² valeurs

Principes des tiroirs

Principe des tiroirs

Si m objets sont rangés dans n tiroirs, alors un tiroir en contient au moins $\lceil \frac{m}{n} \rceil$.

- Si m > n objets sont rangés dans n tiroirs, alors un tiroir en contient au moins 2
- Il y a deux londoniens avec exactement le même nombre de cheveux
 - ▶ Il n'y a pas plus d'un million de cheveux sur un crâne, donc pas plus d'un million de nombres de cheveux distincts
 - ▶ Il y a plus d'un million de londoniens
 - m londoniens à répartir parmi n chevelures possibles \Rightarrow au moins deux londoniens avec la même chevelure

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

Minorant pour l'espace mémoire

un encodage est une fonction injective d'un type de donnée vers les mots binaires :

$$f: \mathcal{T} \mapsto \{0, 1\}^k \quad \text{avec } f(x) \in \{0, 1\}^{|x|}$$

- Il y a 2^k mots binaires de longueur k (Principe multiplicatif)
- Il faut au moins autant de mots binaires que de valeurs possibles pour la donnée
 - Principe des tiroirs : sinon, des données distinctes ont le même code, et f est non-injective

Minorant pour la taille |x| d'une donnée x de type T

Soit $\#(\mathcal{T})$ le nombre de valeurs possibles du type de donnée \mathcal{T} , la mémoire |x| nécessaire pour stocker une donné $x \in \mathcal{T}$ est telle que $2^{|x|} \geq \#(\mathcal{T})$, \Rightarrow

$$|x| \in \Omega(\log \#(\mathcal{T}))$$

Bornes inférieures

- Calculons $\#(\mathcal{T})$, le nombre de valeurs possibles pour la donnée x de type \mathcal{T} :
 - ▶ Entier naturel inférieur ou égal à n : n + 1, soit $\Theta(n)$

Pour \times un entier naturel inférieur ou égal à n:

 $|x| \in \Omega(\log n)$ et puisqu'il existe un encodage tel que $|x| \in \mathcal{O}(\log n)$, alors $|x| \in \Theta(\log n)$

- Tableau d'int de longueur $n: (2^{32})^n$, soit $\Theta(2^{32n})$
- Tableau d'int de longueur $\leq n : \sum_{i=0}^{n} 2^{32i}$, soit $\Theta(2^{32n})$
- $\log_2(2^{32n}) = 32n\log_2(2) = 32n$

Pour L un tableau d'int de longueur $\leq n$:

 $|L| \in \Omega(n)$ et puisqu'il existe un encodage tel que $|L| \in \mathcal{O}(n)$, alors $|L| \in \Theta(n)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

Complexité en fonction de la taille de la donnée

- L'algorithme **A** est en $\Theta(f(x))$ pour une donnée x
- La taille |x| de la donnée est en $\Theta(g(x))$, et donc $x \in \Theta(g^{-1}(|x||))$
- Alors la complexité de **A** est en $\Theta(f(g^{-1}(|x|)))$

Exemple

Algorithme : Carré(x)**Données :** un entier x **Résultat :** un entier valant x^2 r : entier; début $r \leftarrow 0$; pour i allant de 1 à x faire pour j allant $de\ 1$ à x faire $r \leftarrow r + 1$; retourner r;

- Complexité : $\Theta(x^2)$
- Taille de la donnée $|x| = \Theta(\log x)$
- Autrement dit, $x = \Theta(2^{|x|})$
- Donc complexité en $\Theta(2^{2|x|})$ (exponentielle!)

Représentation des données et conception d'algorithmes

La manière dont les données (et les variables auxiliaires) sont représentées en mémoire a souvent un impact direct sur la complexité d'un algorithme

- Que choisir entre un std::vector, std::list, std::map,...?
- Le meilleur choix dépend du contexte!
- Choisir la structure pour laquelle les opérations utiles sont les plus efficaces

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

Structure de données

Le choix de la structure de données est très important dans la conception d'un algorithme

- Choisir la structure pour laquelle les opérations utiles sont les plus efficaces
- Un type abstrait est défini par les opérations qui sont efficaces sur ce type
 - ▶ Insertion (I) : ajouter un nouvel élément
 - ▶ test d'**Appartenance** (A) : vérifier si l'élément x est présent
 - ► **Suppression** (S) : supprimer un élément *x*
 - ▶ Suppression du Dernier (SD) : supprimer le dernier élément inséré
 - ▶ Suppression du Premier (SP) : supprimer le premier élément inséré
 - ► Suppression du Minimum (SM) : supprimer l'élément minimum

Structure de données

- Un type abstrait est défini par les opérations qui sont efficaces sur ce type
- Une *réalisation* correspond à du code (des algorithmes)

Type Abstrait	Réalisation	I	А	S	SP	SD	SM
Pile	Liste chainée	$\mathcal{O}(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\mathcal{O}(1)$	$\Theta(n)$
File	Liste chainée avec pointeurs <i>début</i> et <i>fin</i>	$\mathcal{O}(1)$	$\Theta(n)$	$\Theta(n)$	$\mathcal{O}(1)$	Θ(n)	$\Theta(n)$
Index statique	Vecteur trié	$\Theta(n)$	$\mathcal{O}(\log n)$	$\Theta(n)$	N/A	N/A	$\Theta(n)$
File de priorité	Tas binaire	$\mathcal{O}(\log n)$	$\Theta(n)$	$\Theta(n)$	N/A	N/A	$\mathcal{O}(\log n)$
Ensemble	Table de hâchage	$\mathcal{O}(1)$	$\mathcal{O}(1)^*$ $\Theta(n)$	$\mathcal{O}(1)^*$ $\Theta(n)$	N/A	N/A	$\Theta(n)$
Ensemble trié	ABR, AVL Arbre rouge-noir	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	N/A	N/A	$\mathcal{O}(\log n)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

Exemple : Table de Hâchage

Fichier des étudiants de l'INSA, accéder rapidement aux fichier d'un étudiant qui en fait la demande : Il faut une *clé unique* pour identification

- Tatouer chaque étudiant avec son numéro d'inscrit (1, ..., n)?
 - ▶ Une table L avec L[x] contenant les informations pour l'étudiant x
- Utiliser le numéro de sécurité sociale?
 - Beaucoup trop de clés possibles!

Table de Hâchage : n enregistrements / table de taille $m \in \Theta(n)$

- Soit U l'ensemble des clés possibles, avec $|U| = M, m \ll M$
- Soit $h: U \mapsto \{1, \dots, m\}$ un fonction de hâchage : renvoie un index pour chaque clé, par ex. $h(x) = ((ax + b) \mod p) \mod m)$ avec $m \ll p \ll M$ premier et 0 < a, b < p
- L'enregistrement de clé x est stocké dans L[h(x)]. Si h(x) = h(y) et $x \neq y$ on dit qu'il y a une collision

Exemple: Table de Hâchage

- Analyse de la complexité du test d'appartenance (A)
 - Pire des cas $T_{\text{max}}(n) = \Theta(n)$ (tous les enregistrements ont la même valeur de hâchage)
 - Pour $T_{moy}(n)$ on suppose une distribution uniforme des valeurs de h(x) dans $\{1,\ldots,m\}$
 - Soit |L[i]| la longueur de la liste L[i], et E(|L[i]|) l'espérance de |L[i]| : $\sum_{i=1}^{m} E(|L[i]|) = n$
 - ▶ Mais E(|L[i]|) ne dépend pas de i, donc $T_{moy}(n) = E(|L[i]|) = n/m \in \mathcal{O}(1)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Représentation des Données

126 / 173

Exemple: Tas Binaire

• Invariants : arbre binaire complet; sommet parent < fils

 parent de $i : \lfloor i/2 \rfloor$ fils gauche de i : 2i fils droit de i : 2i + 1

- Insertion : la position libre la plus à gauche possible sur le dernier niveau
 - ▶ Percolation échange avec le parent jusqu'à ce que l'invariant soit rétabli $O(\log n)$
- Suppression du minimum : la racine, qu'on remplace par le "dernier" sommet
 - ▶ Percolation échange avec le fils minimum jusqu'à ce que l'invariant soit rétabli $O(\log n)$

Donnée : une liste L d'éléments comparables

Pour chaque $x \in L$:

• Insérer x dans le tas binaire H

Tant que H n'est pas vide :

- Extraire le minimum de H et l'afficher
- n insertions en $\mathcal{O}(\log n)$
- n suppressions en $\mathcal{O}(\log n)$
- Complexité du tri par tas : $\mathcal{O}(n \log n)$ (égale à celle de TriFusion)

AAS-CNRS
Laboratoire d'analyse et d'architecture des systèmes du CNRS

Représentation des Données

128 / 173

Classes de Complexité

La complexité d'un problème, à quoi ça sert?

- Pour pouvoir analyser objectivement un algorithme
 - Optimalité
- Parce que la difficulté du problème détermine le type de méthode
 - solutions adaptées aux problèmes difficiles
- Parce que la difficulté du problème est parfois une garantie
 - Cryptographie, Block Chain

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

130 / 173

Problème

Définition : Problème \simeq fonction

- Une question Q qui associe une donnée x à une réponse y
 - "Quel est le plus court chemin de x_1 vers x_2 par le réseau R?"
 - "Quel est la valeur du carré de x?"
- Q_{pcc} : Réseau: R, Villes: $x_1, x_2 \mapsto \text{Route}: x_1, u_1, u_2, \dots, u_k, x_2$
- Q_{carr} : Entier: $x \mapsto$ Entier: x^2

- Problèmes généraux (fonctions)
- Problèmes d'optimisation : la solution est le *minimum* d'un ensemble
- Problèmes de décision : la réponse est dans {oui, non}

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Classes de Complexité

132 / 173

Problème de décision

Problème de décision Q

Fonction $Q: x \mapsto \{\mathbf{oui}, \mathbf{non}\}\$

• Pour un problème d'optimisation, on peut généralement définir un problème **polynomialement** équivalent dont la réponse est dans {oui, non}, :

Voyageur de commerce (optimisation)

- donnée : ensemble de villes
- question : quel est le plus court chemin passant par toutes les villes ?

Voyageur de commerce (décision)

- donnée : ensemble de villes, entier k
- question : est-ce qu'il existe un chemin de longueur inférieure à k passant par toutes les villes?

Classes de problèmes

Comment évaluer la complexité d'un problème?

La complexité d'un problème :

La complexité du meilleur algorithme pour le résoudre

Un algorithme est en temps :

- constant si sa complexité dans le pire des cas est bornée par une constante
- linéaire si sa complexité dans le pire des cas est en $\Theta(n)$
- quadratique si sa complexité dans le pire des cas est en $\Theta(n^2)$
- polynomial si sa complexité dans le pire des cas est en $\mathcal{O}(n^c)$ avec c>0
- exponentiel si elle est en $\Theta(2^{n^c})$ pour un certain c > 1

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

134 / 173

Borne inférieure pour les algorithmes de tri

Tri par comparaison

- donnée : une liste d'éléments comparables
- question : quelle est la liste triée de ces éléments?
- Considérons les algorithmes de tri qui ne peuvent pas "lire" ces éléments, seulement les comparer (e.g. un tableau de pointeurs vers une classe d'objets comparables).
- Lors de son execution, cet algorithme va comparer k paires d'éléments (x, y), le résultat peut être 0 (x < y)ou 1 $(x \ge y)$
- On peut considérer que la donnée de l'algorithme est une table de longueur k avec les résultats des comparaisons:

$$x = \underbrace{[0,0,1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,1]}_{t}$$

Borne inférieure pour les algorithmes de tri

• Un algorithme est deterministe, donc deux tables de comparaisons identiques donnent la même exécution, et donc la même liste triée

$$2^{k} \left\{ \begin{array}{l} [0,0,1,0,1,1,1,1,\ldots] \\ [0,0,1,0,1,1,1,1,\ldots] \\ [0,1,0,0,1,0,0,1,\ldots] \\ [1,0,0,0,0,1,1,1,\ldots] \\ [0,1,1,0,1,1,0,0,\ldots] \\ [1,0,1,0,0,1,1,0,\ldots] \\ [1,0,1,0,0,1,1,0,\ldots] \\ [1,0,1,0,0,1,1,0,\ldots] \\ \vdots \\ \vdots \end{array} \right\} n!$$

- Au plus k comparaisons, donc au plus 2^k données/exécutions distinctes
- Chacune des n! permutations de la donnée doit correspondre à une exécution distincte

principe des tiroirs
$$2^k \ge n!$$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Classes de Complexité

136 / 173

Borne inférieure pour les algorithmes de tri

$$2^{k} \ge n! \implies k \ge \log(n!)$$

$$= \log(n(n-1)(n-2)...2)$$

$$= \log n + \log(n-1) + \log(n-2) + ... + \log(2)$$

$$= \sum_{i=2}^{n} \log i$$

$$= \sum_{i=2}^{n/2-1} \log i + \sum_{i=n/2}^{n} \log i$$

$$\ge \sum_{i=n/2}^{n} \log \frac{n}{2}$$

$$= \frac{n}{2} \log \frac{n}{2}$$

$$= \Omega(n \log n)$$

Borne inférieure pour les algorithmes de tri

Théorème

Tout algorithme de tri par comparaison est en $\Omega(n \log n)$

- Attention, il existe des algorithmes de tri en $\mathcal{O}(n)$
 - ▶ Mais ces algorithmes font des hypothèses sur les éléments à trier
- Dans le cas général d'éléments comparables sans propriété particulière : impossible de les trier avec une complexité dans le pire des cas inférieure à $\Omega(n \log n)$
 - TriParTas et TriFusion sont optimaux!

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Classes de Complexité

Classes "Temps Polynômial" et "Temps Exponentiel"

P-TIME ou simplement : P

Ensemble des problèmes pour lesquels il existe un algorithme polynômial (en $\mathcal{O}(n^c)$ pour une constante c)

EXP-TIME:

Ensemble des problèmes pour lesquels il existe un algorithme exponentiel (en $\mathcal{O}(2^{n^c})$ pour une constante c)

- Evidemment, $P \subseteq EXP$ -TIME
- Est-ce que $P \subset EXP$ -TIME? Oui!
- Il existe des problèmes en $\Omega(2^n)$

La Classe NP

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS La Classe NP

140 / 173

Problèmes entre P et P-SPACE

- Faciles à vérifier
- Certains sont difficiles (pas d'algorithme polynomial connu)

Classe NP "Non-deterministe Polynomial"

Ensemble des problèmes de décision tels que lorsque la réponse est "oui", il existe un *certificat* que l'on peut utiliser pour vérifier cette réponse en temps polynomial.

- Le certificat doit permettre de prouver que "oui" est bien la réponse correcte
 - ▶ Il faut pouvoir coder le certificat en espace **polynomial** dans la taille de la donnée
 - ▶ Il faut pouvoir faire la démonstration en temps polynomial dans la taille de la donnée

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS La Classe NP

142 / 173

Exemple : Le problème de 3-coloration

Donnée: Un graphe G = (S, A) (sommets S; arêtes A)

Question: Est-ce qu'il est possible de colorier les sommets de *G* avec au plus 3 couleurs en évitant que deux sommets adjacents partagent la même couleur.

3-Coloration est dans NP

Certificat : La coloration (tableau – couleur du *i*-ème sommet dans la case *i*)

De taille polynomiale (dans la TDLD)

quelle est la taille de la donnée du problème? taille : $|G| = \Theta(|S| + |A|)$

quelle est la taille du certificat? taille : $\Theta(|S|)$

Vérifiable en temps polynomial (dans la TDLD) : algorithme

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

La Classe NP

Exemple : Le problème de Factorisation

Factorisation

donnée: Un nombre entier x

question: Donner la décomposition en

facteurs premier de x

Facteur Minimum

donnée: Un nombre entier x

question: x admet-il un facteur premier

inférieur à k

• On peut factoriser en temps polynomial s'il existe un algorithme polynomial pour le problème de décision :

 \simeq

- ▶ Recherche binaire, $O(\log x)$ résolutions de FacteurMinimum pour trouver le facteur premier minimum p
- Méthode récursive : résoudre Factorisation(x/p) tant que x > 1. La décomposition a $O(\log x)$ facteurs, donc au plus $\log^2 x = |x|^2$ appels à un algorithme polynomial en |x|

Autrement dit $FacteurMinimum \in \mathbf{P} \iff Factorisation \in \mathbf{P}$

FacteurMinimum est dans NP

Quels sont les facteurs premiers de 218633 ? $218633 = 19 \times 37 \times 311$

- Certificat : la décomposition en facteurs premiers
 - ▶ Tester si un nombre n est premier est polynomial (Algorithme AKS en $(\log^{12} n)$)
 - ► Tester si le produit des facteurs est bien égal à x est polynomial (multiplication en $O(\log^2 x)$)
 - ► Tester si un des facteurs est inférieur à *k* est polynomial

Factorisation est difficile?

Ce problème n'est pas (à l'heure actuelle) dans ${f P}$: on ne connait pas d'algorithme polynomial pour le résoudre

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS La Classe NP

146 / 173

P, NP et la Cryptographie

Système d'authentification A

- comparaison entre une clé privée y (mot de passe / pin) et une clé publique x (login / carte bancaire)
- autorise la transaction si et seulement si A(x) = y
- Supposons que calculer A soit polynomial : pirater le système serait facile!
- Supposons que vérifier A(x) = y ne soit pas polynomial : authentifier serait difficile!
- A doit être un problème "difficile" dans NP

Système d'authentification RSA (Rivest-Shamir-Adleman) : A = Factorisation

La clé publique x est le produit de deux grand nombres premiers y_1,y_2 qui sont gardés privés.

- Authentification : verifier $Factorisation(x) = y_1, y_2$ est facile
- Sûreté : trouver y_1, y_2 étant donné x est difficile

P et NP

- P est la classe des problèmes "faciles à résoudre"
- NP est la classe des problèmes "faciles à vérifier"
- Est-ce qu'il y a une différence?
 - ► On ne connait pas d'algorithme polynomial pour 3-coloration, Factorisation ou Voyageur de commerce
 - ► Mais personne ne sait s'il en existe!

Conjecture $P \neq NP$

- Un des 7 "problèmes du millénaire" du Clay Mathematics Institute, prix de \$1 000 000
 - Conjecture de Poincaré (résolue par G. Perelman)
 - Conjecture de Birch and Swinnerton-Dyer
 - ► Conjecture de Hodge
 - Solutions des équations de Navier-Stokes
 - P versus NP
 - Hypothèse de Riemann
 - Existence de Yang-Mills et de l'écart de masse
- ullet Preuve de $\mathbf{P}
 eq \mathbf{NP}$: un problème dans \mathbf{NP} mais pas dans \mathbf{P}
 - ▶ Montrer qu'un problème est dans NP est facile : certificat polynomial
 - Montrer qu'un problème n'est pas dans P est difficile : tout algorithme est en $\Omega(2^n)$
- ullet Preuve de ${f P}={f NP}$: un algorithme polynomial pour un problème ${f NP}$ -complet

_AAS-CNRS | Laboratoire d'analyse et d'architecture des systèmes du CNRS La Classe NP

148 / 173

Problèmes NP-complet

Problème NP-complet

Un problème est NP-complet si et seulement si :

- Il appartient à NP
- Il est au moins aussi difficile que tout les autres problèmes dans NP (si ce problème était facile, alors tous les problèmes dans NP seraient faciles)
- Comment peut-on dire qu'un problème A est au moins aussi difficile qu'un problème B?
- Il existe des problèmes NP-complets
 - ▶ Le problème *SAT* est **NP**-complet, Le problème *3-coloration* est **NP**-complet
 - ► Factorisation n'est pas connu pour être NP-complet
 - On essaie de montrer que s'il existe un algorithme polynomial pour A, alors il existe un algorithme polynomial pour SAT ($A \in \mathbf{P} \implies SAT \in \mathbf{P} \implies \mathbf{P} = \mathbf{NP}$)

L'importance de la classe NP

- Ces problèmes sont partout : en intelligence artificielle, en cryptographie, dans l'industrie...
- Il n'existe pas de méthode efficace dans le pire des cas, mais il existe des méthodes efficaces en pratique
 - ▶ Des algorithmes "intelligents" peuvent résoudre (optimalement) de très grandes instances

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS La Classe NP

150 / 173

Algorithmes de recherche

Problèmes difficiles

Comment résoudre un problème NP-complet?

- Si $P \neq NP$ (et tant que le contraire n'est pas prouvé) il n'existe pas d'algorithme efficace sur *toutes* les instances
- Il faut donc chercher parmi toutes les solutions possibles : l'espace de recherche
- ... ou accepter de ne pas résoudre toutes les instances de façon exacte (approximation)
- Mais beaucoup de cas sont favorables, on peut faire beaucoup mieux que "Generate and test"!
- Recherche arborescente

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes de recherche

152 / 173

Rappel: Coloration de graphes

Nombre Chromatique

 $\chi(G)$ est le plus petit entier tel que chaque sommet de G peut être associé à une couleur parmi $\chi(G)$ sans que les deux sommets d'une même arête ne partagent la même couleur.

Coloration

donnée: Un graphe G = (S, A)

question: Quel est le nombre chromatique $\chi(G)$ de G?

Algorithme glouton?

Par couleur

- Assigne la première couleur à un nombre maximal de sommets
- Heuristique : par ordre décroissant de degré

Peut surestimer $\chi(G)$ par un facteur $\Theta(n)$

Par sommet

- Explore les sommets dans un certain ordre et assigne la première couleur disponible pour ce sommet
- Heuristique : par ordre décroissant de degré de saturation (nombre de couleurs parmi les voisins)

Peut surestimer $\chi(G)$ par un facteur $\Theta(n)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes de recherche

Modèle et espace de recherche

Modèle et espace de recherche

Dans un problème de minimisation P avec une fonction d'objectif f, étant donnée une instance $x \in P$, on cherche une solution y qui minimise f(x, y)

Un *modèle* est une représentation des choix possibles pour y, il définit un *espace de recherche* $\Sigma_{P,x}$ tel que $\forall x \in P$, arg $\min_{y} f(x,y) \in \Sigma_{P,x}$

- Exemple : coloration de graphes
 - On peut représenter une solution y par une table col qui associe une couleur à chaque sommet
 - ▶ On peut déterminer une borne supérieure *k* sur le nombre de couleurs

Espace de recherche Σ

Pour une instance x = (S, A), $\Sigma_{Col,x}$ est l'ensemble des tableaux de longueur |S| dont les cases contiennent une couleur parmi k : taille de l'espace de recherche $|\Sigma_{\mathsf{Col}, \mathsf{x}}| = k^{|S|}$

Algorithmes de recherche

Recherche arborescente

Pour 3 couleurs : $3^4 = 81$ solutions, mais seulement 6 feuilles (élagage). $\chi(G) = 3$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes de recherche

156 / 173

Recherche arborescente

Arbre de recherche

On définit un arbre par une racine r, une fonction N qui associe à chaque noeud de l'arbre la liste de ses descendants et une fonction booléenne ℓ telle que $\ell(x) = vrai$ si et seulement si x est une feuille.

Recherche (minimisation)

Données : Un arbre $\langle r, N, \ell \rangle$ et une fonction f qui

associe un réel à chaque feuille de l'arbre

Résultat : Le minimum de f

 $\mathit{opt} \leftarrow \infty$ $E \leftarrow \{r\}$

tant que E n'est pas vide faire

Retirer un élement x de E

 $\operatorname{si} \ell(x) \operatorname{alors} \operatorname{opt} \leftarrow \min(f(x), \operatorname{opt})$

pour chaque $y \in N(x)$ **faire** Ajouter $y \ge E$

retourner opt

Coloration du graphe G = (S, A) par C

- Noeud de l'arbre : une coloration (partielle) col
 - associe une couleur (ou \emptyset) col[v] aux sommets $v \in S$
- Racine : la table t.q. $col[v] = \emptyset$ quelque soit $v \in S$
- \(\ell \) :renvoie vrai si et seulement si col associe une couleur à tous les sommets
- N: pour un sommet v tel que $col[v] = \emptyset$, et pour chaque $c \in C \setminus \{col[w] \mid (v, w) \in A\}$:
 - contient col_c t.q. $col_c[w] = col[w]$ si $w \neq v$ et c sinon

Recherche en profondeur d'abord

Recherche en profondeur (DFS)

Données : Un arbre $\langle r, N, \ell \rangle$ et une fonction f qui associe

un réel à chaque feuille de l'arbre

Résultat : Le minimum de f

 $opt \leftarrow \infty$ $E \leftarrow \{r\}$

tant que E n'est pas vide faire

Dépiler le dernier élement x de E si $\ell(x)$ alors $opt \leftarrow \min(f(x), f)$

sinon

pour chaque $y \in N(x)$ faire Empiler y sur E

retourner opt

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes de recherche

158 / 173

Recherche en largeur d'abord

Recherche en largeur (BFS)

Données : Un arbre $\langle r, N, \ell \rangle$ et une fonction f qui associe

un réel à chaque feuille de l'arbre

Résultat : Le minimum de f

 $opt \leftarrow \infty$ $E \leftarrow \{r\}$

tant que E n'est pas vide faire

Choisir le premier élement x de la file E $\operatorname{si} \ell(x) \operatorname{alors} \operatorname{opt} \leftarrow \min(f(x), \operatorname{opt})$

sinon

pour chaque $y \in N(x)$ faire Insérer y dans E

retourner opt

Recherche en profondeur ou en largeur?

- Complexité en temps dans le pire des cas : identique
- BFS est exponentiel en mémoire : il faut stocker autant de points de l'espace de recherche que la largeur de l'arbre (même ordre de grandeur que l'arbre lui-même)
- DFS est polynomial en mémoire : il suffit de stocker une branche (logarithmique dans la taille de l'arbre)
- BFS (Breadth-first search) peut facilement devenir "Best-first search"
 - On peut explorer les branches les plus prometteuses en premier

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes de recherche

160 / 173

L'Algorithme A* (A étoile)

- Soit x un noeud de l'arbre de recherche. Dans le cas de la coloration de graphe, ce noeud correspond à une coloration, qu'on appellera col_x.
 - Le coût propre au noeud x est dénoté g(x). Par exemple le nombre de couleurs utilisées dans col_x .
 - La fonction h(x) est une heuristique admissible si toute feuille l de l'arbre de recherche qui descend de x a un coût g(l) = f(l) et tel que $g(l) \ge g(x) + h(x)$.

Algorithme A*

Explore en premier le noeud x de l'arbre de recherche tel que g(x) + h(x) est minimum

Théorème

Si h est admissible, alors la première solution trouvée par Algorithme A * est optimale

A^*

```
Données : Un arbre \langle r, N, \ell \rangle, une fonction f qui associe un réel à chaque feuille de l'arbre, deux fontions g,h qui associent un coût à chaque noeud de l'arbre de recherche et telles que pour toute feuille I, on a f(I) \geq g(x) + h(x)

Résultat : Le minimum de f
opt \leftarrow \infty
E \leftarrow \{r\}
tant que E n'est pas vide faire

Choisir l'élement x dans E qui minimise g(v) + h(v)
si \ell(x) alors

opt \leftarrow min(f(x), opt)
retourner opt
sinon

pour chaque y \in N(x) faire Insérer y dans E
```

Algorithme A étoile

- Soit x la première feuille de l'arbre de recherche, on a g(x) = f(x)
- Supposons qu'il existe une feuille x' telle que g(x') = f(x') < g(x)
- Tous les ascendants x'' de x' sont tels que $g(x'') + h(x'') \le g(x') < g(x)$
- C'est une contradiction puisque au moins un de ces sommets est ouvert, et donc la branche qui mène à x' sera explorée avant la feuille x

_AAS-CNRS 'Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes de recherche

162 / 173

Heuristique admissible

Heuristique admissible pour la coloration de graphe

h(x) =la taille d'une clique dans le sous-graphe de G induit par les sommets dont le voisinage contient au moins un sommet pour chacune des couleurs de col_x

Sous-graphe

Le sous-graphe G_E induit par $E \subseteq S$ du graphe G = (S, A):

- a pour ensemble de sommets E;
- a une arête (v, w) si et seulement si $v \in E, w \in E$ et $(v, w) \in A$.

Clique

Un ensemble K est une clique du graphe G si et seulement si le sous-graphe de G induit par K est complet (contient une arête pour chaque paire de sommets dans K)

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes de recherche

163 / 173

Exemple

- Soit x un noeud de l'arbre de recherche correspondant au graphe partiellement coloré ci-contre
- 3 couleurs utilisées dans col_x donc g(x) = 3
- Le sous-graphe induit par les sommets avec un voisin de chacune des 3 couleurs contient une clique de taille 3
 - donc h(x) = 3, et f(x) > g(x) + h(x) = 6

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes de recherche

Séparation et évaluation (Branch & Bound)

Borne inférieure

Pour un noeud x de l'arbre de recherche, Ib(x) est une borne inférieure de la fonction d'objectif f si et seulement si pour toute feuille I du sous-arbre enraciné en x, on a :

$$Ib(x) \leq f(I)$$

Élagage

- Supposons qu'il existe une solution σ de coût $f(\sigma) = ub$.
 - Si $lb(x) \geq ub$ alors le sous-arbre enraciné en x ne contient pas de solutions meilleures que σ
 - Autrement dit, il est inutile d'explorer ce sous-arbre
- Les fonction g et h définies pour l'algorithme A^* sont telles que :
 - g(x) et g(x) + h(x) sont des bornes inférieures

Branch & Bound pour la coloration

Algorithmes de recherche

166 / 173

Symétries

Symétrie

Une symétrie d'un espace de recherche Σ est une bijection $\varphi: \Sigma \mapsto \Sigma$ invariante pour la fonction d'objectif :

- Pour tout point I de l'espace de recherche (resp. noeud x de l'arbre) : $f(I) = f(\varphi(I))$ (resp. $f(x) = f(\varphi(x))$)
- Symétrie des couleurs : permutation des couleurs
 - ▶ Rouge \rightarrow Bleu \rightarrow Vert \rightarrow Rouge
- Symétrie du graphe : automorphisme du graphe
 - \triangleright $v_1 \leftrightarrow v_5$, $v_2 \leftrightarrow v_4$, $v_3 \leftrightarrow v_6$

Composition de symétries

Si φ_1 et φ_2 sont des symétries, alors $\varphi_1 \circ \varphi_2$ en est une

Dans cet exemple, il y a 3! = 6 symétries de couleur, et 2 symétries du graphe, donc $6 \times 2 = 12$ symétries au total

LAAS CNRS

Brisure de symétrie

- Il est inutile d'explorer des regions symétriques de l'espace de recherche
 - Si le choix de couleur pour le premier sommet est v_1 ="rouge", il n'y a pas de solutions strictement meilleures dans le sous-arbre v_1 ="bleu"
 - lacktriangle La symétrique de cette solution par la transformation "bleu" ightarrow "rouge" a le même nombre de couleurs
- On peut parfois changer l'espace de recherche pour ne pas re-visiter des cas symétriques

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes de recherche

168 / 173

Brisure de symétrie (exemple)

Briser les symétries de couleur

Étant donné un sommet v_i du graphe :

- Une branche pour chaque couleur déjà utilisée;
- Et une branche pour *une* nouvelle couleur.

Changer l'espace de recherche

- L'espace de recherche n'est pas unique : example Récurrence de Zykov
- Soit *col* une coloration optimale de G = (S, A). Pour toute paire de sommets v, w, tel que $(v, w) \notin A$:
 - ▶ Soit v et w ont des couleurs différentes $(col[v] \neq col[w])$
 - **Séparation** : rajouter l'arête (v, w) ne change pas $\chi(G)$
 - Soit v et w ont la même couleur (col[v] = col[w])
 - **\star** Contraction: fusionner v et w ne change pas $\chi(G)$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Algorithmes de recherche

Récurrence de Zykov

- Pour chaque non-arête v, w
 - Une branche pour $v \neq w$ (rajouter l'arête (v, w))
 - Une branche pour v = w (fusionner v et w)
- Ici, un seul point de choix : $a \neq d$ ou a = d
- Le noeud est une feuille si le graphe n'a aucune non-arête (aucune contraction ou séparation n'est possible)

Recherche arborescente

Quel algorithme?

- Définition d'un modèle : espace de recherche
 - ► Table de couleurs? Choix des contractions/séparations?
- Définition de l'arbre de recherche : branchement
 - ► Un sous-arbre par couleur? Deux sous-arbres "couleur *c* / autre couleur"?
- Définition de l'arbre de recherche : feuilles
- Définition de l'arbre de recherche : DFS ou BFS
- Methodes de raisonnement : élagage
 - ▶ Brisure de symétrie ? Borne inférieure ?

Quelle strategie?

- Beaucoup de décisions sont heuristiques
 - Dans quel ordre doit-on visiter les sommets du graphe dans un problème de coloration?
 - Dans quel ordre doit-on visiter les sous-arbres?
- Ces décisions sont très importantes en pratique

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS Algorithmes de recherche

172 / 173

Résoudre des problèmes NP-complets par recherche arborescente

• Voyageur de Commerce 115K villes des USA

• Coloration de Graphe "followers" Google+ (108K sommets, 12M arcs, $\chi = 326$)