Binary Search

Problem

A sorted array of numbers without repetition

You are given a number X, you have to say after which position X will be put in the sorted array?

Problem

How we can solve

• A Linear Search: Iterate one by one and find the position

idx	0	1	2	3	4	5	6	7	8	9	10	11	12	13
value	1	5	7	10	17	29	35	47	49	51	53	107	125	137

X	How many index need to be traversed
6	2
36	7
140	14
108	12

In worst cases, we have to traverse |N| element each time.

|N| = array size

What if we were asked about X multiple times ? $\approx |N| * |N| *$

Can we solve this faster

• Yes! Binary Search!

Binary search is a searching technique, where we divide our problem's search space into **2 separate parts** and then search our solution.

Applying Binary Search

idx	0	1	2	3	4	5	6	7	8	9	10	11	12	13
value	1	5	7	10	17	29	35	47	49	51	53	107	125	137

mid = floor((st+en)/2) M = array[mid]

Algorithm

- 1. Find Middle element (M) of search space
- 2. If x < M, we will search in left subarray/sub space [st,en=mid-1]
- 3. Else, we will search in right subarray/sub space [st=mid, en]
- 4. If remained with two numbers just normally search

Applying Binary Search(step: 1)

idx	0	1	2	3	4	5	6	7	8	9	10	11	12	13
value	1	5	7	10	17	29	35	47	49	51	53	107	125	137

st=0, en=13, mid=(st+en)/2 = 6 => M=Array[6] = 35, X=52 \le 35, st=mid=6, en=13

6	7	8	9	10	11	12	13
35	47	49	51	53	107	125	137

Applying Binary Search (step: 2)

6	7	8	9	10	11	12	13
35	47	49	51	53	107	125	137

st=6, en=13, mid=(st+en)/2 = 9 => M=Array[9] = 51, X=52 ₹51, st=mid=9, en=13

9	10	11	12	13
51	53	107	125	137

Applying Binary Search (step: 3)

9	10	11	12	13
51	53	107	125	137

9	10	
51	53	

Applying Binary Search (step: 4)

Binary Search: Complexity

X	Linear Search	Binary Search
6	2	3
36	7	3
140	14	5
108	12	4

Big O Complexity: $O(\log_2(N))$

If we are asked Q times, then in worst cases.

$$Q * N >= Q * log_2(|N|)$$

$$=> Q * 13 >= Q * log_2(13)$$

 $=> Q * 13 >= Q * 3^+$

$$=> Q * 13 >= Q * 3^{+}$$

In each step, we are nullifying half(n/2), and a number can be halved $\log_2(N)$ times.

Binary Search: Properties

- Falls under the umbrella of **Divide and conquer** strategy
- Problem's characteristics need to support monotonically increasing/
 decreasing property -> otherwise we can not discard half search space, E.g,
 unsorted array

Binary Search: Issues

- Partition System: [low, mid] [mid+1, high] vs [low, mid-1][mid, high]
 - Depends on problem specification how we need to divide
 - The intuition of searching space remains same
- Corner Case of Adjacent Indexes, high = low+1

```
While (low <= high) {
    If (low == high) {
        ....
        break
    }
    Mid = (low+high)/2
}
[low, mid-1] [mid+1, high]
```

```
low = 3, high = 4
mid = (3+4)/2 = 3
[3, 2] [3, 4] -> Loop
```

```
low = 3, high = 4
mid = (3+4+1)/2 = 4
[3, 3] [4, 4] -> No Loop
```

Binary Search: Floating Point Cases

- Binary search can be used to solve problems having floating point values

also. E.g, find (\sqrt{x})

```
While (low <= high) {
    If (low == high) {
        ....
        break
    }
    Mid = (low+high)/2
}
[low, mid] [mid, high]
```

```
- (0+8)/2 = 4; 4 * 4 > 8; [0, 4]

- (0+4)/2 = 2; 2 * 2 < 8 [2, 4]

- (2+4)/2 = 3; 3 * 3 > 8; [2, 3]

......
```

What is the stopping condition

- **Desired precision gap:** abs (found ans - desired ans) <= some defined small value. E.g,

(mid * mid - result) <= 10⁽⁻⁹⁾

- Add precision flexibility with your comparison constraint

Binary Search: Good and Bad Cases

- If the value is not found: Complete search with no results
- The answer lying in the middle will be faster reached compared to the results lying in two sides,
 - The more the answers lying in the side, the more the cost will increase

Mid1 = low + (high-low)/3 Mid2 = high - (high-low)/3 Search value >= mid1:

- [mid1, high]

Search value <= mid2:

- [low, mid2]

idx	0	1	2	3	4	5	6	7	8	9	10	11	12	13
value	1	5	7	10	17	29	35	47	49	51	53	107	125	137

Let's assume, these values denote coordinates of n points. Need to find the point from which the summation of distance of each point gets minimized

idx	0	1	2	3	4	5	6	7	8	9	10	11	12	13
value	1	5	7	10	17	29	35	47	49	51	53	107	125	137
distance	659	611					465							

Mid1 =
$$0+(13-0)/3 = 4$$
,
Mid2 = $13 - (13-0)/3 = 9$

idx	0	1	2	3	4	5	6	7	8	9	10	11	12	13
value	1	5	7	10	17	29	35	47	49	51	53	107	125	137