

NASA

Spacecraft Modularity for Serviceable Spacecraft

Presented at AIAA Space 2015 September 1, 2015

Benjamin B. Reed
Deputy Project Manager
Satellite Servicing Capabilities Office
http://ssco.gsfc.nasa.gov

Introduction: Modularity

 Modularity – the degree to which a system's components may be separated and recombined

Highly integrated, serviceable with extreme difficulty

Highly modular, easily serviceable

Introduction: On-Orbit Servicing

Overview: On-Orbit Servicing

Complexity

Goals

Mission Enabling

Repair/ Enhancement

Life extension

Type of Servicer (Human/Robotic)

Robotic autonomous

Robotic teleoperated

Human

Human + robot

Type of Client

Cooperative

Noncooperative **Facility Class**

Small

On-orbit servicing missions vary along multiple parameters.

Goals of On-Orbit Servicing

Higher Value/ Higher Cost

- Mission Enabling
 - Missions that would not be possible without on orbit servicing activities
 - Examples: ISS, future life finder telescope

- Repair / Enhancement
 - On-orbit servicing to repair (i.e. salvage) or improve existing missions
 - Examples: HST, SolarMax, Intelsat VI

Lower Value/ Lower Cost

- Life Extension
 - On-orbit servicing to extend the life of existing missions
 - Examples: Future on-orbit refueling

Type of Servicer

Robotic (teleoperated, autonomous)

- Avoids putting humans at risk
- Can go where humans presently cannot go
- Historically in conjunction with astronauts
- Advances in capabilities are ongoing
- Works best with known interfaces

Astronauts (with and without robot)

- Astronaut dexterity and tactile sensing far surpass current robotic capabilities
- Especially important for complex interfaces (non-cooperative S/C)

Astronauts and robots working together bring the highest capabilities to servicing tasks.

Type of Client

Facility Class

Smaller

Cooperative

Non-Cooperative

Examples: HST

Examples: Landsat 7

Types of servicing: Life extension, repair, enhancement

Types of servicing: Repair, life

extension

Complexity: Low

Complexity: High

Examples: Most existent SC

Examples: MMS, ROSE

Types of servicing: life

Types of servicing: Module replacement and/or life extension if multi-sortie

extension (refueling), repair

mission

Complexity: Low

Complexity: High

Aspects of Cooperative Clients

Mission Element	Serviceable	Highly Cooperative
Rendezvous	Optical targets	RF crosslink
Capture	Reference markings	Grapple and standard docking features
Life Enhancement (Refueling)	External valve labels	Robotically compatible valves
Repair / Upgrade	Planned accessibility	Modular design Robotic interfaces

Modularity is a key aspect for cooperatively serviceable spacecraft.

Spacecraft Modularity

For our purposes, modularity in spacecraft has three key aspects:

- having units with relatively simple interfaces that can be easily removed and replaced,
- grouping of components into these units, and
- the standardization of unit (module) designs

Building blocks are important, but all of these aspects are relevant for spacecraft modularity.

Modularity Spectrum

Typical Spacecraft Bus

- Many individual components
- · Optimized for mass
- Specialized interfaces
- Single line I&T flow
- No easily serviceable interfaces

Minimally Modular Bus

- Components collected into a small number of large modules.
- Allows parallel I&T flows.

e.g. Commercial **Communications Satellite Families**

Serviceable Modularity

- Some components grouped for servicing/I&T
- · Some standardized interfaces
- Parallel I&T flows
- Accommodates servicing - some complexity

e.g. HST, ISS

High Level Modularity

- Components grouped into replaceable modules
- · Highly standardized interfaces
- Parallel I&T flows increased flexibility
- Accommodates servicing - minimal complexity

e.g. MMS, ROSE

Highly Integrated

Highly Modular

Serviceable Modularity: HST

- HST was designed from the ground up with servicing in mind
- Many components designed to be manipulated on orbit
 - Some component grouping and standard interfaces
- HST still lacked high level component grouping and interface standardization.
 - Complex, customized servicing tools and procedures

Wide Field Camera 3 (WFC3)
Into Aft Shroud Radial Bay

Six batteries Into Bays 2 and 3

ORUs Replaced
During HST SM4

Three Rate Sensor Units (RSU)
Into Aft Shroud

Science Instrument Command and Data Handling (SI C&DH) unit Into Bay 10

High-Level Modularity: MMS

- Components grouped into serviceable modules (e.g. subsystem level)
- Standard module designs especially interfaces → reduced GSE Costs
- Highly parallel module I&T flows and simplified spacecraft I&T → reduced I&T schedule and budget, increased flexibility

ROSE: Objectives

- MMS demonstrated the cost benefits of modularity
- ROSE seeks to improve on the MMS example by bringing in state-of-the-art technology
- Modularity = Flexibility + Affordability
 - Standard module interface provides flexibility
 - Component changes are isolated to the module – do not impact full system
 - Provides customization, technology infusion and least cost component selection with minimal NRE
 - Commercial competition at the module level
- ROSE takes advantage of all of the I&T benefits of modularity

ROSE Spacecraft Overview

ROSE Modularity

- Each module contains a standard Module Interface Unit (MIU)
- MIU provides power management, command and telemetry interfaces
- Flexible component interfaces

 Standard module mechanical design with robotically compatible interfaces

Conclusions

• Throughout NASA's long history of on-orbit servicing, modularity has played a key role in spacecraft designs

 Modularity and serviceability go hand in hand. Cooperative spacecraft allow for high value servicing missions with minimum complexity, risk and cost.

- The modular ROSE spacecraft architecture is designed for flexibility and affordability
 - The modular design provides maximum flexibility for component selection
 - The same design attributes also make ROSE a highly cooperative spacecraft for on orbit servicing

http://bit.ly/1PA8feJ

Paper Coauthors

- Dino Rossetti, Ph.D., Conceptual Analytics, LLC
- Beth Keer, NASA/Goddard Space Flight Center
- John Panek, Ph.D., NASA/Goddard Space Flight Center
- Frank Cepollina, NASA/Goddard Space Flight Center
- Robert Ritter, Orbital ATK