CS270 Digital Image Processing

Lecture 7-1: Spatial Filtering

Yuyao Zhang, Xiran Cai PhD

zhangyy8@shanghaitech.edu.cn caixr@shanghaitech.edu.cn

SIST Building 2 302-F/302-C

Course piazza link: piazza.com/shanghaitech.edu.cn/spring2021/cs270spring2021

Outline

- **➤** Spatial filtering definition
- **➢Smoothing(平滑)**
 - Linear filter
 - Non-linear filter
- ➤ Sharpening (锐化)
 - Spatial differentiation
 - Laplace filter

Spatial Filtering

- > A Spatial filter is directly applied on the image
- ➤ A Spatial filter is also called spatial masks (掩模)、kernels (核)、templates (模板)、windows (窗口)
- A Spatial filter consists of
 - 1) neighborhood 2) a predefined operation
- > A Spatial filter can be linear and nonlinear
 - Linear spatial filter corresponds to spectral filter in frequency domain
 - Nonlinear spatial filter cannot be accomplished in frequency domain

Time-domain Convolution

Convolution of two signals x(t) and h(t), denoted by x(t) * h(t), is defined by

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t - \tau)d\tau$$

> For discrete-time

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

Spatial Filter

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

- f(x,y): input image
- g(x,y): output filtered image
- w(s,t): $m \times n$ spatial filter, where m = 2a + 1, n = 2b + 1

Spatial Filter

> For discrete-time convolution

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

Spatial filter

w(-1,-1)	w(-1,0)	w(-1,1)
w(0,-1)	w(0,0)	w(0,1)
w(1,-1)	w(1,0)	w(1,1)

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

Correlation and Convolution (2D)

Equations

Correlation

$$w(s,t) \approx f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolution

$$w(s,t) \star f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Spatial Filter Masks

➤ Linear Spatial Filter (线性滤波器)

$$\bullet \qquad R = \frac{1}{9} \sum_{k=1}^9 z_k$$

$$h(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

- ➤ Nonlinear Spatial Filter(非线性滤波器)
 - Max filter (最大值滤波)
 - Median filter (中值滤波)

Smooth Filters (平滑滤波器)

- > Blurring for preprocessing tasks
- Noise deduction
 - Linear filter: average filtering lowpass filter in frequency domain
 - Nonlinear filter

Smooth Filters (平滑滤波器)

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

	1	2	1
1/16 ×	2	4	2
	1	2	1

Filter size

Smooth Filter and Thresholding(阈值处理)

Nonlinear Smooth Filters

➤ Order-statistic filter (统计排序滤波器)

Ex: median filter (中值滤波器)

 $g(x,y) = median\{m \times n \text{ pixel neighbouring around } I(x,y)\}$

50	48	46	42
52	0	50	48
46	47	255	40
51	48	46	42

Sharpening Filter

- ➤ Spatial differentiation (空间微分)
- > Sharpening filter
 - Laplacian filtering (拉普拉斯算子)

Derivative

Sharpening Filter

- 1. Zero in area of constant intensity
- 2. Nonzero at the onset of intensity step or ramp
- 3. (1) Nonzero along intensity ramp -1st order derivative
 - (2) Zero along intensity ramp with constant slope 2nd order derivative

Sharpening Filter

- > To highlight transitions in intensity
- > Accomplished by spatial differentiation
 - First-order derivative: $\frac{\partial f}{\partial x} = f(x+1) f(x)$
 - Second-order derivative: $\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) 2f(x)$

Laplacian(拉普拉斯算子)

For an image function f(x, y),

X direction:
$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

Y direction:
$$\frac{\partial^2 f}{\partial y^2} = f(x, y + 1) + f(x, y - 1) - 2f(x, y)$$

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
$$= f(x,y+1) + f(x,y-1) + f(x+1,y) + f(x-1,y) - 4f(x,y)$$

Laplacian Filter Masks

0	1	0	1	1	1	0	-1	0	-1	-1	-1
1	-4	1	1	-8	1	-1	4	-1	-1	8	-1
0	1	0	1	1	1	0	-1	0	-1	-1	-1

Laplacian Filter Masks

$$g(x,y) = f(x,y) + c\nabla^2 f(x,y)$$
, where $c = \pm 1$

	1	
1	-4	1
	1	

$$c = -1$$

$$c = 1$$

Image Sharpening with Laplacian

Implementations in matlab

Low pass filter example:

```
>> LP = 1/9 *[1,1,1;1,1,1;1,1,1];
>> im3 = imfilter(com,LP);
>>figure; imshow(im3,[]);
```

Median filter example:

```
>> J2 = medfilt2(im,[3 3]);
>> J4 = medfilt2(im,[6 6]);
>> J3 = medfilt2(im,[11 1]);
>> J5 = medfilt2(im,[1 11]);
```

Sharpening filter example:

```
>> f3 = [-1,-1,-1; -1,8,-1;-1,-1,-1];
>> J1 = imfilter(im,f1);
>>figure; imshow(J1,[]);
```


Take home message

- For image processing, the spatial domain processing is similar to 1-D signal processing in time domain.
- The spatial filter we discussed in this lecture is actually the calculation of correlation between the image and the filter.
 When using a diagnose symmetric filter, it is equivalent to convolution.
- Common spatial filters include smoothing filter and sharpening filter.

