Davies-Bouldin's index

$$DB(u) = \frac{1}{u} \sum_{r=1}^{u} \max_{\substack{s \\ r \neq s}} \left(\frac{S_r + S_s}{d_{rs}} \right),$$

where: r, s = 1, ..., u – cluster number,

u – number of clusters ($u \ge 2$),

i, k = 1, ..., n – object number,

n – number of objects,

 P_r , $P_s - r$ -th, s-th cluster,

 $\mathbf{z}_r = (z_{r1}, \dots, z_{rm})$ – centroid or medoid of cluster P_r , $j = 1, \dots, m$ – variable number,

 $d_{rs} = \sqrt[p]{\sum_{j=1}^{m} |z_{rj} - z_{sj}|^p}$ - distance between centroids or medoids of clusters P_r and P_s (for

p = 1 Manhattan distance, for p = 2 Euclidean distance),

 $S_r = \sqrt[q]{\frac{1}{n_r} \sum_{i \in P_r} \sum_{j=1}^m \left| x_{ij}^r - z_{rj} \right|^q} - \text{dispersion measure of a cluster } P_r \text{ (for } q = 1 \text{ the average } 1 \text{ the average }$

distance of objects in cluster P_r to the centroid or medoid of cluster P_r ; for q=2 the standard deviation of the distance of objects in cluster P_r to the centroid or medoid of cluster P_r), $n_r(n_s)$ – number of objects in cluster $P_r(P_s)$.

The value of u, which minimizes DB(u), is regarded as specifying the number of clusters. The Davies-Bouldin's index have two limitations:

- index is not permitted if the number of clusters equals the number of objects (DB(u) = 0) if u=n).
- the certain number of clusters to have only one object is allowed. An unlimited number of single member clusters is not permitted.

DB(u) is a very good cluster separation measure if each cluster contain at least two objects.

References

Davies, D.L., Bouldin, D.W. (1979), A cluster separation measure, "IEEE Transactions on Pattern Analysis and Machine Intelligence", vol. 1, no. 2, 224-227.