MONITORAGGIO DI PRESENZE PER UNA RIDUZIONE DEGLI SPRECHI

Cecilia Trevisi - mat.862637 Giacomo Rabuzzi - mat.864452 Riccardo Pajno - mat.864557

Dataset di 10122 osservazioni e 20 variabili:

- Date: data della rilevazione
- Time: tempo della rilevazione espresso in ore/minuiti/secondi
- S1-4 Temp: temperatura in gradi Celsius dei quattro sensori
- S1-4 Light: luce in 1 Lux dei quattro sensori
- S1-4 Sound: suono in 0.01V* dei quattro sensori
- S5 CO2: CO2 in 5ppm dei quattro sensori
- S5 CO2 Slope: pendenza della CO2
- S6-7 PIR: presenza -1 o assenza-0 di movimento
- Room_Occupancy_Count: numero di persone all'interno della stanza

Analisi dei *legami* tra variabili

Preparazione dei dati \rightarrow *PCA* sull'intero dataset

1. K-MEANS

K-Medie

2. CLUSTERING GERARCHICO

Clustering gerarchico

Cluster Dendrogram

di.1 hclust (*, "ward.D2")

3. MODEL-BASED CLUSTERING

Model based clustering (struttura VVV)

Preparazione dei dati:

- Suddivisione del dataset completo in training e test con rispettive proporzioni 80% e 20%
- Applicazione della PCA sul training e calcolo degli scores sul test
- Addestramento degli algoritmi tramite una k-fold cross validation con k=5

1. K-NN

Modello ottimale con k=5

Metrica	Classe 0	Classe 1	Classe 2	Classe 3	Media
F ₁	0.997	0.9 <u>5</u> 1	0.944	0.940	0.958
BA	0.994	0.980	0.970	0.9725	0.979

Tabella 2.1: Risultati di F1 e Balanced Accuracy (BA)

2. SUPPORT VECTOR MACHINE

Modello ottimale con kernel radiale, costo = 27.89 e un γ = 0.014

Metrica	Classe 0	Classe 1	Classe 2	Classe 3	Media
F1	0.998	0.975	0.948	0.936	0.964
BA	0.995	0.981	0.974	0.96 7	0.979

Tabella 2.2: Risultati di F1 e Balanced Accuracy (BA)

3. RANDOM FOREST

Modello ottimale con 355 alberi e 2 features

Metrica	Classe 0	Classe 1	Classe 2	Classe 3	Media
F1	0.997	0.938	0.931	0.937	0.951
BA	0.994	0.962	0.963	0.976	0.974

Tabella 2.3: Risultati di F1 e Balanced Accuracy (BA)

4. RETE NEURALE

Modello ottimale con 16 neuroni nell'hidden layer e coefficiente di regolarizzazione λ = 0.07

Metrica	Classe 0	Classe 1	Classe 2	Classe 3	Media
F1	0.999	0.981	0.955	0.953	0.972
BA	0.995	0.981	0.974	0.981	0.983

Tabella 2.4: Risultati di F1 e Balanced Accuracy (BA)

5. PROPORTIONAL ODDS

$$logit(P(G \leq \mathcal{G}_j \mid \mathbf{X} = \mathbf{x}) = \beta_{0j} + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}, \qquad j = 1, \dots, k-1,$$

Metrica	Classe 0	Classe 1	Classe 2	Classe 3	Media
F ₁	0.982	0.389	0.705	0.652	
BA	0.925	0.664	0.829	0.805	

Tabella 2.5: Risultati di F1 e Balanced Accuracy (BA)

EFFICACIA

EFFICIENZA

Algoritmo	Purity	Silhouette Media
K-medie	0.838	0.460
K-medoidi	0.713	0.328
Kernel K-medie	0.730	-0.260
Gerarchico	0.828	0.469
Model-based	0.839	0.414

-	
0.838	0.460
0.713	0.328
0.730	-0.260
0.828	0.469
0.839	0.414
	0.713 0.730 0.828

Tabella 3.1: Valori di Purity e Silhouette per vari algoritmi.

Algoritmo	Tempo
K-medie	0.2 S
K-medoidi	35.66 s
Kernel K-medie	603.88 s
Gerarchico	5.06 s
Model-based	2.78 s

Tabella 3.4: Algoritmi di classificazione e tempo computazionale

Algoritmo	Sensitivity Classe 0	Media sensitivity altre classi
KNN	0.996	0.948
Support Vector Machine	0.998	0.951
Random Forest	0.996	0.938
Rete neurale	0.999	0.960
Proportional Odds	0.993	0.550

Tabella 3.2: Valori di Sensitivity per i vari algoritmi.

Algoritmo	Tempo
KNN	1.48 s
Support Vector Machine	0.63 s
Random Forest	1.73 s
Rete neurale	4.04 S
Proportional Odds	1.83 s

Tabella 3.5: Algoritmi di classificazione e tempo computazionale