Pipeline Architecture Document

1. Architectural Diagram

The pipeline is structured into five distinct stages: Data Ingestion, Data Preprocessing & Feature Engineering, Model Training, Model Evaluation, and Model Persistence & Output.

2. Pipeline Stages and Data Flow

Stage	Input	Process	Output	Artifacts
1. Data Ingestio n	Raw CSV files (coin_gecko_*.csv)	Loads files, merges, sorts, and converts the data into a single DataFrame.	Combined Raw DataFrame	\$\text{df_raw}\$
2. Data Preproce ssing & Feature Enginee ring	Combined Raw DataFrame	1. Preprocessing: Drop non-numeric columns (coin, symbol, date), Impute missing values (median). 2. Feature Engineering: Calculate the \$\text{Liquidity_Ind ex}\$ target and \$\text{Vol_Price_Rat io}\$ feature. 3. Scaling & Split: Scale all features using \$\text{MinMaxScaler}\$, then split into Train/Test sets.	<pre>t{train}}, \text{X}_{\text{ test}}, \text{y}_{\text{t} rain}},</pre>	\$\text{df_featured}\$, , \$\text{data_scaler.p} kl}\$
	t{train}},	Initializes and trains the \$\text{RandomForest Regressor}\$ model using the training features and the target \$\text{Liquidity_Inde x}\$.	Trained ML Model	\$\text{model}\$ object

Stage	Input	Process	Output	Artifacts
4. Model Evaluati on	Trained Model, Test Sets (\$\text{X}_{\tex} t{test}}, \text{y}_{\text{t} est}}\$)	Uses the trained model to predict values for \$\text{X}_{\text{test}} \$\$, then compares predictions against \$\text{y}_{\text{test}} \$\$.	Performance Metrics (RMSE, MAE, \$R^2\$)	\$metrics_repor t}\$
5. Model Persiste nce & Output	Trained Model, Scaler, Metrics	Saves the trained model and scaler to disk for future deployment/inference. Generates the final project documentation.	Persistent Model Files	\$liquidity_pre dictor.pkl}\$, \$data_scaler.p kl}\$

3. Data Integrity and Control

Aspect	Description	Justification
Data Quality Check	Initial check for missing values and data types upon ingestion.	Ensures robustness; handled by median imputation for numerical stability.
Feature Transformation	MinMaxScaler applied across all numerical features (excluding the target during the split).	Standardizes the wide range of values (e.g., price vs. market cap) for effective model training.
Data Split Integrity	Shuffle is set to \$\text{False}\$ during \$\text{train_test_split}\$ (or a time-series split is implied).	Crucial for time-series data to prevent future information from "leaking" into the training set, ensuring realistic model evaluation.

4. Output Documentation

The final deliverable package (e.g., GitHub repository or zipped folder) contains the outputs from the pipeline stages, fulfilling all project requirements:

- 1. **Machine Learning Model:** \$\text{liquidity_predictor.pkl}\$ (The trained \$\text{RandomForestRegressor}\$).
- 2. **Data Processing & Feature Engineering:** \$\text{data_scaler.pkl}\$ (The saved \$\text{MinMaxScaler}\$) and a conceptual definition of all engineered features.
- 3. **Exploratory Data Analysis (EDA) Report:** Summary of descriptive statistics and correlation analysis.
- 4. **Project Documentation:**
 - High-Level Design (HLD) Document: Architectural overview and component breakdown.
 - Low-Level Design (LLD) Document: Detailed function specifications and algorithms.
 - **Pipeline Architecture Document (This Document):** Description of the data flow and stages.
 - **Final Report (Conceptual):** Summary of findings, model performance (RMSE, MAE, \$R^2\$), and key insights into liquidity drivers.