Resultados sobre convergencia de series de Fourier Trabajo de Fin de Grado

David López del Pino

Universidad de Málaga

1 de julio de 2025

Contenidos

- Preliminares
 - Espacios L^p
 - Series de Fourier
 - Resultados de Análisis Funcional
- 2 Convergencia puntual
 - Una función continua cuya serie de Fourier diverge en un punto
 - Una función de L¹ cuya serie de Fourier diverge en todo punto
 - Fenómeno de Gibbs
- 3 Convergencia en L^p
 - Convergencia en L^1
 - El teorema de interpolación de Riesz-Thorin
 - Convergencia en L^p para 1

Contenidos

- Preliminares
 - Espacios L^p
 - Series de Fourier
 - Resultados de Análisis Funcional
- 2 Convergencia puntual
 - Una función continua cuya serie de Fourier diverge en un punto
 - Una función de L^1 cuya serie de Fourier diverge en todo punto
 - Fenómeno de Gibbs
- 3 Convergencia en L^p
 - Convergencia en L^1
 - El teorema de interpolación de Riesz-Thorin
 - Convergencia en L^p para 1

Contenidos

- Preliminares
 - Espacios L^p
 - Series de Fourier
 - Resultados de Análisis Funcional
- 2 Convergencia puntual
 - Una función continua cuya serie de Fourier diverge en un punto
 - Una función de L^1 cuya serie de Fourier diverge en todo punto
 - Fenómeno de Gibbs
- 3 Convergencia en L^p
 - Convergencia en L^1
 - El teorema de interpolación de Riesz-Thorin
 - Convergencia en L^p para 1

Si $1 \le p < \infty$, se define

$$L^p(\mathbb{T}) = \Big\{ f \colon \mathbb{R} \to \mathbb{C} \mid f \text{ medible y } 2\pi\text{-periódica,} \int_{-\pi}^{\pi} |f(t)|^p \ dt < \infty \Big\},$$

$$\|f\|_{
ho}=\left(rac{1}{2\pi}\int_{-\pi}^{\pi}|f(t)|^{
ho}\,dt
ight)^{rac{1}{
ho}},\qquad f\in L^{
ho}(\mathbb{T}).$$

Para $p = \infty$, se define

$$L^{\infty}(\mathbb{T}) = \Big\{ f \colon \mathbb{R} \to \mathbb{C} \mid f \text{ medible y } 2\pi\text{-peri\'odica, } \sup_{x \in \mathbb{R}} |f(x)| < \infty \Big\}$$

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|, \qquad f \in L^{\infty}(\mathbb{T}).$$

Identificamos funciones iguales en casi todo punto

Si $1 \le p < \infty$, se define

$$L^p(\mathbb{T}) = \Big\{ f \colon \mathbb{R} \to \mathbb{C} \mid f \text{ medible y } 2\pi\text{-periódica,} \int_{-\pi}^{\pi} |f(t)|^p \ dt < \infty \Big\},$$

$$\|f\|_p=\left(rac{1}{2\pi}\int_{-\pi}^\pi |f(t)|^p\,dt
ight)^{rac{1}{p}}, \qquad f\in L^p(\mathbb{T}).$$

Para $p = \infty$, se define

$$L^{\infty}(\mathbb{T}) = \Big\{ f \colon \mathbb{R} o \mathbb{C} \mid f \text{ medible y } 2\pi\text{-periódica, sup es } |f(x)| < \infty \Big\},$$

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|, \qquad f \in L^{\infty}(\mathbb{T}).$$

Identificamos funciones iguales en casi todo punto

Si $1 \le p < \infty$, se define

$$L^p(\mathbb{T}) = \Big\{ f \colon \mathbb{R} o \mathbb{C} \mid f ext{ medible y } 2\pi ext{-periódica,} \int_{-\pi}^{\pi} |f(t)|^p \, dt < \infty \Big\},$$

$$\|f\|_p=\left(rac{1}{2\pi}\int_{-\pi}^\pi |f(t)|^p\,dt
ight)^{rac{1}{p}}, \qquad f\in L^p(\mathbb{T}).$$

Para $p = \infty$, se define

$$L^{\infty}(\mathbb{T}) = \Big\{ f \colon \mathbb{R} \to \mathbb{C} \mid f \text{ medible y } 2\pi\text{-peri\'odica, sup es } |f(x)| < \infty \Big\},$$

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|, \qquad f \in L^{\infty}(\mathbb{T}).$$

Identificamos funciones iguales en casi todo punto.

Sea $f \in L^1(\mathbb{T})$.

• Se definen los *coeficientes de Fourier de f* como

$$c_k(f) = rac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt, \qquad k \in \mathbb{Z}$$

• La serie de Fourier de f es la serie formal

$$Sf(x) = \sum_{k \in \mathbb{Z}} c_k(f) e^{ikx}.$$

• La suma parcial *n*-ésima esta serie es

$$S_n f(x) = \sum_{k=-n}^n c_k(f) e^{ikx}$$

Sea $f \in L^1(\mathbb{T})$.

• Se definen los coeficientes de Fourier de f como

$$c_k(f) = rac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt, \qquad k \in \mathbb{Z}$$

• La serie de Fourier de f es la serie formal

$$Sf(x) = \sum_{k \in \mathbb{Z}} c_k(f) e^{ikx}.$$

• La suma parcial *n*-ésima esta serie es

$$S_n f(x) = \sum_{k=-n}^n c_k(f) e^{ikx}$$

Sea $f \in L^1(\mathbb{T})$.

• Se definen los coeficientes de Fourier de f como

$$c_k(f) = rac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt, \qquad k \in \mathbb{Z}.$$

• La serie de Fourier de f es la serie formal

$$Sf(x) = \sum_{k \in \mathbb{Z}} c_k(f) e^{ikx}.$$

• La suma parcial *n*-ésima esta serie es

$$S_n f(x) = \sum_{k=-n}^n c_k(f) e^{ikx}.$$

Un polinomio trigonométrico es una función $F \colon \mathbb{R} \to \mathbb{C}$ de la forma

$$F(x) = \sum_{k=-n}^{n} c_k e^{-ikx},$$

con $n \in \mathbb{N}$ y $c_k \in \mathbb{C}$ para todo $k \in \mathbb{Z}$ con $|k| \leq n$.

Dado $n \in \mathbb{N} \cup \{0\}$, el *núcleo de Dirichlet de orden n* es la función $D_n \colon \mathbb{R} \to \mathbb{C}$ definida por

$$D_n(x) = \sum_{k=-n}^n e^{ikx}.$$

Si $f \in L^1(\mathbb{T})$, $n \in \mathbb{N}$ y $x \in \mathbb{R}$,

$$S_n f(x) = f * D_n(x).$$

Un polinomio trigonométrico es una función $F \colon \mathbb{R} \to \mathbb{C}$ de la forma

$$F(x) = \sum_{k=-n}^{n} c_k e^{-ikx},$$

con $n \in \mathbb{N}$ y $c_k \in \mathbb{C}$ para todo $k \in \mathbb{Z}$ con $|k| \leq n$.

Dado $n \in \mathbb{N} \cup \{0\}$, el *núcleo de Dirichlet de orden n* es la función $D_n \colon \mathbb{R} \to \mathbb{C}$ definida por

$$D_n(x) = \sum_{k=-n}^n e^{ikx}.$$

Si $f \in L^1(\mathbb{T})$, $n \in \mathbb{N}$ y $x \in \mathbb{R}$,

$$S_n f(x) = f * D_n(x)$$

Un polinomio trigonométrico es una función $F\colon \mathbb{R} o \mathbb{C}$ de la forma

$$F(x) = \sum_{k=-n}^{n} c_k e^{-ikx},$$

con $n \in \mathbb{N}$ y $c_k \in \mathbb{C}$ para todo $k \in \mathbb{Z}$ con $|k| \leq n$.

Dado $n \in \mathbb{N} \cup \{0\}$, el *núcleo de Dirichlet de orden n* es la función $D_n \colon \mathbb{R} \to \mathbb{C}$ definida por

$$D_n(x) = \sum_{k=-n}^n e^{ikx}.$$

Si $f \in L^1(\mathbb{T})$, $n \in \mathbb{N}$ y $x \in \mathbb{R}$,

$$S_n f(x) = f * D_n(x).$$

Si $T: X \to Y$ es lineal y continua, se define la *norma de T* como

$$||T|| = \inf\{C > 0 \colon ||T(x)||_Y \le C||x||_X \text{ para todo } x \in X\}.$$

Se tiene que

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||_Y}{||x||_X} = \sup_{||x||_X = 1} ||T(x)||_Y = \sup_{||x||_X \leq 1} ||T(x)||_Y.$$

Teorema de la acotación uniforme

Sea $\{T_j\}_{j\in I}$ una familia de aplicaciones lineales y continuas de X en Y. Supongamos que

- $(X, \|\cdot\|_X)$ es de Banach.
- Para cada $x \in X$, el conjunto $\{T_i(x): j \in I\}$ es acotado en Y.

Entonces el conjunto $\{||T_i||: j \in I\}$ es acotado en \mathbb{R}

Si $T: X \to Y$ es lineal y continua, se define la *norma de T* como

$$||T|| = \inf\{C > 0 \colon ||T(x)||_Y \le C||x||_X \text{ para todo } x \in X\}.$$

Se tiene que

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||_Y}{||x||_X} = \sup_{||x||_X = 1} ||T(x)||_Y = \sup_{||x||_X \leq 1} ||T(x)||_Y.$$

Teorema de la acotación uniforme

Sea $\{T_j\}_{j\in I}$ una familia de aplicaciones lineales y continuas de X en Y. Supongamos que

- $(X, \|\cdot\|_X)$ es de Banach.
- Para cada $x \in X$, el conjunto $\{T_i(x): j \in I\}$ es acotado en Y.

Entonces el conjunto $\{||T_j||: j \in I\}$ es acotado en \mathbb{R} .

Existe una función continua cuya serie de Fourier diverge en un punto.

Consideramos la familia de aplicaciones lineales y continuas $\{T_n\}_{n\in\mathbb{N}}$, donde

$$T_n \colon \mathcal{C}([-\pi, \pi]) \longrightarrow \mathbb{R},$$
 $g \longmapsto \mathcal{S}_n g(0).$

Se demuestra que

$$||T_n|| = ||D_n||_1 \xrightarrow{n \to \infty} \infty.$$

Por el teorema de la acotación uniforme, existe $g \in \mathcal{C}([-\pi,\pi])$ cor

$$\sup_{n\in\mathbb{N}}|T_n(g)|=\infty$$

Existe una función continua cuya serie de Fourier diverge en un punto.

Consideramos la familia de aplicaciones lineales y continuas $\{T_n\}_{n\in\mathbb{N}}$, donde

$$T_n \colon \mathcal{C}([-\pi, \pi]) \longrightarrow \mathbb{R},$$
 $g \longmapsto S_n g(0).$

Se demuestra que

$$||T_n|| = ||D_n||_1 \xrightarrow{n \to \infty} \infty.$$

Por el teorema de la acotación uniforme, existe $g \in \mathcal{C}([-\pi,\pi])$ con

$$\sup_{n\in\mathbb{N}}|T_n(g)|=\infty.$$

Sea $\alpha \in \mathbb{R}$.

- Si $\alpha \geq 0$, se define la parte fraccionaria de α como $\langle \alpha \rangle = \alpha E(\alpha)$.
- Si $\alpha < 0$, se define la parte fraccionaria de α como $\langle \alpha \rangle = \langle -\alpha \rangle$.

- $\langle \alpha \rangle \in [0,1)$ para todo $\alpha \in \mathbb{R}$.
- Si $|\alpha| < 1$, entonces $\langle \alpha \rangle = |\alpha|$.
- Si $\alpha \in \mathbb{R}$ y $n \in \mathbb{Z}$, entonces $\langle \alpha + n \rangle = \langle \alpha \rangle$.
- Si $\alpha, \beta > 0$, entonces $\langle \alpha + \beta \rangle = \langle \langle \alpha \rangle + \langle \beta \rangle \rangle$.

Sea $\alpha \in \mathbb{R}$.

- Si $\alpha \geq 0$, se define la parte fraccionaria de α como $\langle \alpha \rangle = \alpha E(\alpha)$.
- Si $\alpha < 0$, se define la parte fraccionaria de α como $\langle \alpha \rangle = \langle -\alpha \rangle$.

- $\langle \alpha \rangle \in [0,1)$ para todo $\alpha \in \mathbb{R}$.
- Si $|\alpha| < 1$, entonces $\langle \alpha \rangle = |\alpha|$.
- Si $\alpha \in \mathbb{R}$ y $n \in \mathbb{Z}$, entonces $\langle \alpha + n \rangle = \langle \alpha \rangle$.
- Si $\alpha, \beta > 0$, entonces $\langle \alpha + \beta \rangle = \langle \langle \alpha \rangle + \langle \beta \rangle \rangle$.

Lema

Sea $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

- El conjunto $\{\langle k\alpha\rangle\colon k\in\mathbb{N}\}$ es denso en [0,1).
- El conjunto $\{\langle k\alpha \rangle \colon k \in \mathbb{I}\}$ es denso en [0,1).

Lema

Sea $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

- El conjunto $\{\langle k\alpha\rangle\colon k\in\mathbb{N}\}$ es denso en [0,1).
- El conjunto $\{\langle k\alpha\rangle\colon k\in\mathbb{I}\}$ es denso en [0,1).

Lema

Sea $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

- El conjunto $\{\langle k\alpha \rangle \colon k \in \mathbb{N}\}$ es denso en [0,1).
- El conjunto $\{\langle k\alpha \rangle \colon k \in \mathbb{I}\}$ es denso en [0,1).

Figura: Representación de $\langle \alpha \rangle, \langle 2\alpha \rangle, \dots, \langle N\alpha \rangle$ para $\alpha = \sqrt{2}$.

Existe una función de $L^1(\mathbb{T})$ cuya serie de Fourier diverge en todo punto.

Se define $f: \mathbb{R} \to \overline{\mathbb{R}}$ como

$$f(x) = \sum_{k=1}^{\infty} \frac{1}{\sqrt{A_{n_k}}} F_{n_k}(x),$$

donde

- $\{A_n\}_{n=1}^{\infty}$ es una sucesión de números positivos con lím $_{n\to\infty}A_n=\infty$.
- $\{F_n\}_{n=1}^{\infty}$ es una sucesión de polinomios trigonométricos no negativos.

Tomando las sucesiones adecuadas, se tiene que $f \in L^1(\mathbb{T})$ y que para todo $x \in [0, 2\pi)$, la sucesión $\{S_n f(x)\}_{n=1}^{\infty}$ no converge.

Existe una función de $L^1(\mathbb{T})$ cuya serie de Fourier diverge en todo punto.

Se define $f: \mathbb{R} \to \overline{\mathbb{R}}$ como

$$f(x) = \sum_{k=1}^{\infty} \frac{1}{\sqrt{A_{n_k}}} F_{n_k}(x),$$

donde

- $\{A_n\}_{n=1}^{\infty}$ es una sucesión de números positivos con lím $_{n\to\infty}A_n=\infty$.
- $\{F_n\}_{n=1}^{\infty}$ es una sucesión de polinomios trigonométricos no negativos.

Tomando las sucesiones adecuadas, se tiene que $f \in L^1(\mathbb{T})$ y que para todo $x \in [0, 2\pi)$, la sucesión $\{S_n f(x)\}_{n=1}^{\infty}$ no converge.

Una función continua cuya serie de Fourier diverge en un punto Una función de \boldsymbol{L}^1 cuya serie de Fourier diverge en todo punto Fenómeno de Gibbs

Teorema de Carleson-Hunt

Sea $f \in L^p(\mathbb{T})$, con $1 . Entonces <math>\{S_n f\}_{n=1}^{\infty}$ converge a f en casi todo punto.

Consideramos la función $f:[-\pi,\pi] \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} 1 & \text{si } 0 \le x \le \pi, \\ -1 & \text{si } -\pi \le x < 0. \end{cases}$$

La serie de Fourier de f es

$$Sf(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\text{sen}((2k-1)x)}{2k-1}$$

Se tiene que

•
$$Sf(x) = f(x)$$
 para todo $x \in (-\pi, \pi) \setminus \{0\}$.

•
$$Sf(0) = Sf(\pi) = Sf(-\pi) = 0.$$

Consideramos la función $f:[-\pi,\pi] \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} 1 & \text{si } 0 \le x \le \pi, \\ -1 & \text{si } -\pi \le x < 0. \end{cases}$$

La serie de Fourier de f es

$$Sf(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\text{sen}((2k-1)x)}{2k-1}.$$

Se tiene que

•
$$Sf(x) = f(x)$$
 para todo $x \in (-\pi, \pi) \setminus \{0\}$.

•
$$Sf(0) = Sf(\pi) = Sf(-\pi) = 0.$$

Consideramos la función $f:[-\pi,\pi] \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} 1 & \text{si } 0 \le x \le \pi, \\ -1 & \text{si } -\pi \le x < 0. \end{cases}$$

La serie de Fourier de f es

$$Sf(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\text{sen}((2k-1)x)}{2k-1}.$$

Se tiene que

- Sf(x) = f(x) para todo $x \in (-\pi, \pi) \setminus \{0\}$.
- $Sf(0) = Sf(\pi) = Sf(-\pi) = 0.$

Una función continua cuya serie de Fourier diverge en un punto Una función de L¹ cuya serie de Fourier diverge en todo punto **Fenómeno de Gibbs**

El primer máximo local de $S_n f$ en $[0, \frac{\pi}{2}]$ es $x_n = \frac{\pi}{2E(\frac{n+1}{2})}$, y se verifica

$$\lim_{n\to\infty} S_n f(x_n) = \frac{2}{\pi} \int_0^{\pi} \frac{\operatorname{sen}(t)}{t} dt = G.$$

El número real G se denomina constante de Gibbs.

Una función continua cuya serie de Fourier diverge en un punto Una función de L¹ cuya serie de Fourier diverge en todo punto **Fenómeno de Gibbs**

Dado $p \in \overline{\mathbb{R}}$ con $1 \leq p \leq \infty$, se trata de estudiar si

$$\lim_{n\to\infty} \|S_n f - f\|_p = 0$$

para toda $f \in L^p(\mathbb{T})$.

Lema

Si $1 \le p < \infty$, son equivalentes

- $\{S_n f\}_{n=1}^{\infty}$ converge a f en $L^p(\mathbb{T})$ para toda $f \in L^p(\mathbb{T})$.
- Existe $C_p > 0$ tal que

$$||S_n f||_p \leq C_p ||f||_p$$

para todo $n \in \mathbb{N}$ y toda $f \in L^p(\mathbb{T})$

Dado $p \in \overline{\mathbb{R}}$ con $1 \leq p \leq \infty$, se trata de estudiar si

$$\lim_{n\to\infty} \|S_n f - f\|_p = 0$$

para toda $f \in L^p(\mathbb{T})$.

Lema

Si $1 \le p < \infty$, son equivalentes

- $\{S_n f\}_{n=1}^{\infty}$ converge a f en $L^p(\mathbb{T})$ para toda $f \in L^p(\mathbb{T})$.
- Existe $C_p > 0$ tal que

$$||S_n f||_p \leq C_p ||f||_p$$

para todo $n \in \mathbb{N}$ y toda $f \in L^p(\mathbb{T})$.

Existe $f \in L^1(\mathbb{T})$ tal que $\{S_n f\}_{n=1}^{\infty}$ no converge a f en $L^1(\mathbb{T})$.

Se considera la familia de aplicaciones lineales y continuas $\{T_n\}_{n\in\mathbb{N}}$

$$T_n \colon L^1(\mathbb{T}) \longrightarrow L^1(\mathbb{T}),$$
 $f \longmapsto S_n f.$

Usando el teorema de la acotación uniforme, se demuestra que existen $n \in \mathbb{N}$ y $f \in L^1(\mathbb{T})$ tales que

$$||T_n(f)||_1 > C||f||_1$$

para todo C > 0.

Existe $f \in L^1(\mathbb{T})$ tal que $\{S_n f\}_{n=1}^{\infty}$ no converge a f en $L^1(\mathbb{T})$.

Se considera la familia de aplicaciones lineales y continuas $\{T_n\}_{n\in\mathbb{N}}$,

$$T_n: L^1(\mathbb{T}) \longrightarrow L^1(\mathbb{T}),$$

 $f \longmapsto S_n f.$

Usando el teorema de la acotación uniforme, se demuestra que existen $n\in\mathbb{N}$ y $f\in L^1(\mathbb{T})$ tales que

$$||T_n(f)||_1 > C||f||_1$$

para todo C > 0.

Teorema de interpolación de Riesz-Thorin

Sean $p, q, r \in \mathbb{R}$ con $1 . Sea <math>T : L^p(\mathbb{T}) \to L^p(\mathbb{T})$ una aplicación lineal. Supongamos que existen $M_p, M_q > 0$ tales que

- $||T(f)||_p \leq M_p ||f||_p$ para toda $f \in L^p(\mathbb{T})$.
- $||T(f)||_q \le M_q ||f||_q$ para toda $f \in L^q(\mathbb{T})$.

Entonces existe $M_r > 0$ tal que

$$||T(f)||_r \leq M_r ||f||_r$$

para toda $f \in L^r(\mathbb{T})$.

- ① Primero se prueba para $p \in \mathbb{N}$ par y con p > 2.
- ② Luego se prueba para p > 2 usando el teorema de interpolación de Riesz-Thorin.
- **③** Finalmente se prueba para 1 mediante un argumento de dualidad.

- **1** Primero se prueba para $p \in \mathbb{N}$ par y con p > 2.
- ② Luego se prueba para p > 2 usando el teorema de interpolación de Riesz-Thorin
- **③** Finalmente se prueba para 1 mediante un argumento de dualidad.

- **1** Primero se prueba para $p \in \mathbb{N}$ par y con p > 2.
- ② Luego se prueba para p > 2 usando el teorema de interpolación de Riesz-Thorin.
- **③** Finalmente se prueba para 1 mediante un argumento de dualidad.

- **1** Primero se prueba para $p \in \mathbb{N}$ par y con p > 2.
- ② Luego se prueba para p > 2 usando el teorema de interpolación de Riesz-Thorin.
- **③** Finalmente se prueba para 1 mediante un argumento de dualidad.