Digital Systems -Sequential Logic

Introduction

- Outputs of sequential logic depend on current *and* prior input values it has *memory*.
- Some definitions:
 - State: all the information about a circuit necessary to explain its future behavior
 - Latches and flip-flops: state elements that store one bit of state
 - Synchronous sequential circuits: combinational logic followed by a bank of flip-flops

Sequential Circuits

- Give sequence to events
- Have memory (short-term)
- Use feedback from output to input to store information

State Elements

- The state of a circuit influences its future behavior
- State elements store state
 - Bistable circuit
 - SR Latch
 - D Latch
 - D Flip-flop

Bistable Circuit

- Fundamental building block of other state elements
- Two outputs: Q, \overline{Q}
- No inputs

Bistable Circuit Analysis

- Consider the two possible cases:
 - -Q = 0: then Q = 1 and Q = 0 (consistent)

-Q = 1: then $\overline{Q} = 0$ and Q = 1 (consistent)

- Bistable circuit stores 1 bit of state in the state variable, Q (or Q)
- But there are no inputs to control the state

SR (Set/Reset) Latch

• SR Latch

- Consider the four possible cases:
 - S = 1, R = 0
 - S = 0, R = 1
 - S = 0, R = 0
 - S = 1, R = 1

-S=1, R=0: then Q=1 and $\overline{Q}=0$

-S=0, R=1: then Q=0 and $\overline{Q}=1$

-S=1, R=0: then Q=1 and $\overline{Q}=0$

-S=0, R=1: then Q=0 and $\overline{Q}=1$

$$-S=1$$
, $R=1$: then $Q=0$ and $\overline{Q}=0$

-
$$S = 1$$
, $R = 1$: then $Q = 0$ and $\overline{Q} = 0$ (invalid state: $\overline{Q} \neq \text{NOT } Q$)

SR Latch Symbol

- SR stands for Set/Reset Latch
 - Stores one bit of state (Q)
- Control what value is being stored with S, R inputs
 - Set: Make the output 1 (S = 1, R = 0, Q = 1)
 - Reset: Make the output $0 (S = 0, R = 1, Q = \mathbf{0})$

SR Latch Symbol

• Must do something to avoid invalid state (when S = R = 1)

D Latch

- Two inputs: *CLK*, *D*
 - *CLK*: controls *when* the output changes
 - D (the data input): controls what the output changes to
- Function
 - When CLK = 1, D passes through to Q (the latch is transparent)
 - When CLK = 0, Q holds its previous value (the latch is opaque)
- Avoids invalid case when $Q \neq \text{NOT } \overline{Q}$

D Latch Internal Circuit

CLK	D	D	S	R	Q	Q
0	X					
1	0					
1	1					

D Latch Internal Circuit

CLK	D	D	S	R	Q	Q
0	X	X	0	0	Q_{pre}	\overline{Q}_{prev}
1	0	1	0	1	0	1
1	1	0	1	0	1	0

D Flip-Flop

- Two inputs: *CLK*, *D*
- Function
 - The flip-flop "samples" D on the rising edge of CLK
 - When *CLK* rises from 0 to 1, *D* passes through to *Q*
 - Otherwise, Q holds its previous value
 - Q changes only on the rising edge of CLK
- A flip-flop is called an *edge-triggered* device because it is activated on the clock edge

 D Flip-Flop

D Latch

Q (latch)

D Latch

Sequential Logic

- Sequential circuits: all circuits that aren't combinational
- A problematic circuit:

• This circuit has no inputs and 1-3 outputs

Sequential Logic

- Sequential circuits: all circuits that aren't combinational
- A problematic circuit:

- This circuit has no inputs and 1-3 outputs
- It is an astable circuit that oscillates
- Its period depends on the delay of the inverters which depends on the manufacturing process, temperature, etc
- The circuit has a *cyclic path*: output fed back to input