Devoir surveillé nº 7

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ▶ Les calculatrices sont interdites.

Problème 1 —

On désigne dans la suite par $\mathbb{R}[X]$ l'espace vectoriel des polynômes a coefficients réels et par Δ l'opérateur de différences finies, qui est défini sur $\mathbb{R}[X]$ par :

$$\forall P \in \mathbb{R}[X], \ \Delta(P) = P(X+1) - P(X)$$

Pour tout entier naturel k, on pose $\Delta^k = Id_{\mathbb{R}[X]}$ si k = 0 et $\Delta^k = \Delta \circ \Delta \circ \cdots \circ \Delta$ (k fois) si $k \geqslant 1$. Ce problème propose l'étude de cet endomorphisme Δ et de certaines de ses applications.

Partie I – Etude de l'endomorphisme Δ

On définit la famille de polynômes réels $(P_n)_{n\in\mathbb{N}}$ par $P_0=1$ et par les relations suivantes :

$$\forall n \geqslant 1, \ P_n(X) = \frac{1}{n!} X(X-1) \dots (X-n+1) = \frac{1}{n!} \prod_{k=0}^{n-1} (X-k)$$

- **1.** Une base de $\mathbb{R}_n[X]$.
 - **a.** Etablir, pour tout $n \in \mathbb{N}$, que $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.
 - **b.** Etablir, pour tous entiers naturels k et m, que $P_k(m)$ et $P_k(-m)$ sont des entiers.
 - c. En déduire, pour tout $P \in \mathbb{R}_n[X]$, que les coordonnées de P dans la base $(P_k)_{0 \le k \le n}$ sont des nombres entiers si et seulement si on a : $\forall m \in \mathbb{Z}$, $P(m) \in \mathbb{Z}$.
- **2.** Etude de l'endomorphisme Δ .
 - a. Etablir que Δ est un endomorphisme de $\mathbb{R}[X]$.
 - **b.** Calculer $\Delta(P_0)$, puis montrer que $\Delta(P_{n+1}) = P_n$ pour tout $n \in \mathbb{N}$.
 - c. On considère un polynome non nul P de degré d. Préciser le degré du polynome $\Delta(P)$ et donner $\Delta^{d+1}(P)$.
 - **d.** Préciser le noyau de Δ , puis étudier si Δ est injectif et surjectif.
- **3.** Expression d'un polynôme dans la base $(P_k)_{0 \le k \le n}$ de $\mathbb{R}_n[X]$.
 - a. Calculer $\Delta^k(P_i)$ et en déduire que $\Delta^k(P_i)(0)$ vaut 1 si j=k et 0 sinon.
 - **b.** En déduire, pour tout polynôme $P \in \mathbb{R}_n[X]$, la formule suivante :

$$P = \sum_{k=0}^{n} \Delta^{k}(P)(0)P_{k}$$

Partie II – Approximation de dérivées n^{èmes} par différences finies

1. Puissances de l'endomorphisme Δ .

Etablir la formule suivante pour tout polynôme P de $\mathbb{R}[X]$:

$$\forall n \in \mathbb{N}, \ \Delta^n(P) = \sum_{j=0}^n \binom{n}{j} (-1)^{n-j} P(X+j)$$

- 2. Application au calcul de différentes sommes.
 - a. Préciser le coefficient de P_n dans la décomposition du polynôme X^n dans la base $(P_k)_{0 \leqslant k \leqslant n}$. En déduire la valeur de $\Delta^n(X^n)$, puis établir la formule suivante :

$$\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} j^n = n!$$

b. Démontrer la formule suivante pour $0 \le k < n$:

$$\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} j^k = 0$$

3. Approximation d'une dérivée $\mathfrak{n}^{\mathrm{ème}}$ par différences finies.

On considère une fonction f de classe \mathcal{C}^m définie de \mathbb{R} dans \mathbb{R} , puis un point $\mathfrak{a} \in \mathbb{R}$ et un entier naturel \mathfrak{n} compris entre 1 et \mathfrak{m} $(1 \leq \mathfrak{n} \leq \mathfrak{m})$, et on pose alors :

$$\forall h \in \mathbb{R}^*, \ A_n(h) = \frac{1}{h^n} \sum_{j=0}^n \binom{n}{j} (-1)^{n-j} f(\alpha + jh)$$

- **a.** Exprimer f(a+h) à l'aide de la formule de Taylor-Young appliquée a l'ordre n lorsque h tend vers 0. Quelles formules en déduit-on pour f(a+jh), où $0 \le j \le n$, en changeant h en jh?
- **b.** En déduire que l'expression $h^n A_n(h)$ admet un développement limité a l'ordre n quand h tend vers 0, et préciser les coefficients de h^j ($0 \le j < n$) et de h^n dans celui-ci. Quelle est la limite de $A_n(h)$ quand h tend vers 0?

Partie III – Calcul de la somme des puissances des n premiers entiers

- 1. Etude de séries télescopiques.
 - a. Etablir la formule suivante pour $Q \in \mathbb{R}[X]$ et $R = \Delta(Q)$:

$$\forall p \in \mathbb{N}, \ \sum_{k=0}^{p} R(k) = Q(p+1) - Q(0)$$

- **b.** Exprimer les polynômes X, X^2 et X^3 dans la base (P_0, P_1, P_2, P_3) de $\mathbb{R}_3[X]$. En déduire des polynômes Q_1, Q_2, Q_3 tels qu'on ait $\Delta(Q_1) = X, \Delta(Q_2) = X^2, \Delta(Q_3) = X^3$.
- **c.** Donner alors l'expression factorisée des sommes $\sum_{k=0}^{p} k$, $\sum_{k=0}^{p} k^2$ et $\sum_{k=0}^{p} k^3$.

2. Recherche d'une suite de polynômes (B_n) telle que $\Delta(B_{n+1}) = X^n$.

Afin de généraliser le calcul précédent, on recherche une suite de polynômes $(B_n)_{n\geqslant 1}$ telle qu'on ait pour tout $n\in\mathbb{N}$ la relation $\Delta(B_{n+1})=X^n$.

- **a.** Montrer, pour tout polynôme $P \in \mathbb{R}[X]$, la formule $(\Delta(P))' = \Delta(P')$.
- $\mathbf{b.}$ Etablir, si une telle suite de polynômes $(B_{\mathfrak{n}})$ existe, qu'on a :
 - $ightharpoonup \forall n \geqslant 1, \ B'_{n+1} nB_n \in \operatorname{Ker} \Delta;$
 - $ightharpoonup \forall n \geqslant 1, B_{n+1}(1) = B_{n+1}(0);$
 - ightharpoonup le polynôme B_1 est unitaire et de degré 1.
- c. Inversement, établir par récurrence qu'une suite $(B_n)_{n\geqslant 1}$ satisfaisant ces trois conditions vérifie $\Delta(B_{n+1})=X^n$ pour tout $n\geqslant 1$, et qu'on a alors $\sum_{k=0}^p k^n=B_{n+1}(p+1)-B_{n+1}(0)$ pour tout entier naturel p.

On recherche en particulier une suite de polynômes (B_n) vérifiant les conditions suivantes :

- (A) $\forall n \ge 1, B'_{n+1} = nB_n;$
- (B) $\forall n \geqslant 1$, $B_{n+1}(1) = B_{n+1}(0)$;
- (C) le polynôme B_1 est unitaire et de degré 1.
- 3. Existence, unicité et construction de la suite (B_n) .
 - a. Vérifier que les conditions (A), (B), (C) sont équivalentes aux conditions suivantes :
 - (A') $\forall n \ge 1, B'_{n+1} = nB_n;$
 - $({\rm B'}) \ \forall n \geqslant 1, \ \int_0^1 B_n(t) \ dt = 0 \, ;$
 - (C') le polynôme B_1 est unitaire et de degré 1.
 - $\mathbf{b.} \ \mathrm{D\acute{e}terminer} \ \mathrm{les} \ \mathrm{polyn\^{o}mes} \ B_1, \ B_2, \ B_3, \ B_4 \ \mathrm{et} \ \mathrm{retrouver} \ \mathrm{ainsi} \ \sum_{k=0}^p k, \ \sum_{k=0}^p k^2 \ \mathrm{et} \ \sum_{k=0}^p k^3.$
 - c. Etablir alors l'existence et l'unicité d'une suite de polynômes $(B_n)_{n\geqslant 1}$ qui vérifie les trois conditions (A'), (B'), (C') définies ci-dessus, et montrer qu'on $a: \forall n\geqslant 1, \ B_n\in \mathbb{Q}[X]$.
 - d. En déduire un algorithme d'obtention des polynômes B_k pour $1\leqslant k\leqslant n,$ où n est donné.