Funkcje tworzące – zadania kwalifikacyjne

Mateusz Rapicki, Piotr Suwara

19 maja 2012

Rozwiązania zadań kwalifikacyjnych należy wysyłać do 14 lipca na adresy obu prowadzących: Mateusz Rapicki, mati717@gmail.com, Piotr Suwara, peter_de_sowaro@o2.pl. Jeśli przesyłacie zdjęcia/skany, nie zapomnijcie obniżyć ich jakości, aby zajmowały mało miejsca (np. zapisując je w formacie jpg w jakości 30 korzystając z programu GIMP). Zachęcamy do znacznie wcześniejszego przesyłania rozwiązań – możliwa jest wtedy wcześniejsza ich ocena i poprawa. Na stronie ukaże się skrypt z materiałami pomocnymi w rozwiązywaniu poniższych zadań.

1 Podstawy

Należy rozwiązać wszystkie z podanych poniżej 10 zadań. Jeśli sprawiają Wam one jakiekolwiek trudności, nie wahajcie się prosić nas o wyjaśnienie i pomoc.

- 1. Udowodnij, że ciąg $a_n = 11n + 7$ nie zawiera żadnej z liczb ciągu Fibonacciego. Wska-zówka: rozpatrz reszty z dzielenia przez 11.
- 2. Dla jakich n liczba $\frac{n^3+n+1}{n^2-n+1}$ jest całkowita? Wskazówka: policz największy wspólny dzielnik.
- 3. Niech d_n oznacza liczbę ciągów liter a, b, c długości n takich, że litery a, b nie stoją bezpośrednio obok siebie. Wyznacz wzór rekurencyjny, w którym każdy wyraz ciągu d_n będzie uzależniony tylko od dwóch poprzednich. Wskazówka: Niech a_n oznacza liczbę ciągów takich jak wyżej, ale w których n-tą literą jest a. Podobnie b_n, c_n to liczba ciągów spełniających powyższe warunki kończących się na, odpowiednio, b lub c. Wyznacz a_n, b_n, c_n w zależności od $a_{n-1}, b_{n-1}, c_{n-1}$. Korzystając z tego, że $d_n = a_n + b_n + c_n$, wyznacz d_n w zależności od d_{n-1}, d_{n-2} .
- 4. Wyraź:

(a)
$$\prod_{1 \leqslant j \leqslant k \leqslant n} a_j a_k$$
 za pomocą $\prod_{i=1}^n a_i$.

- (b) $\sum_{1 \leq i < j < k \leq n} a_{ijk}$ jako trzykrotną sumę: po i, potem po j, potem po k.
- (c) $\sum_{1\leqslant i < j < k \leqslant n} a_{ijk}$ jako trzykrotną sumę: pok, potem poj, potem poi.

5. Udowodnij
$$\binom{n-1}{k-1} \binom{n}{k+1} \binom{n+1}{k} = \binom{n-1}{k} \binom{n+1}{k+1} \binom{n}{k-1}$$
.

- 6. Wyznacz ciąg tworzony przez funkcję $A(x) = \frac{1}{1-2x}$. Rozwiń w szereg potęgowy.
- 7. Oblicz (dla $\varepsilon = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \mu = \varepsilon + 1$):

(a)
$$(1+2i)^5 - (1-2i)^5$$

(b)
$$\frac{(1+i)^9}{(1-i)^7}$$

(c)
$$\frac{1-5i}{2+3i}$$

(d)
$$1 + \varepsilon + \varepsilon^2$$

(e)
$$1 + \bar{\varepsilon} + \bar{\varepsilon}^2$$

(f)
$$(x - \varepsilon)(x - \bar{\varepsilon})$$

(g)
$$(x - \mu)(x - \bar{\mu})$$

8. w_1, \ldots, w_n to różne pierwiastki zespolone stopnia $n \ge 1, n > 2$, udowodnij, że:

(a)
$$\sum_{i=1}^{n} w_i = 0$$

(b)
$$\sum_{1 \leqslant i < j \leqslant n} w_i w_j = 0$$

Wskazówka: w_i są pierwiastkami wielomianu $x^n - 1$; zastosuj wzory Viete'a.

9. Zapisz f(x) w postaci $f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k$:

(a)
$$f(x) = x^4 + 2x^3 - 3x^2 - 4x + 1$$
, $x_0 = -1$

(b)
$$f(x) = x^5$$
, $x_0 = 1$

(c)
$$f(x) = g(x+3), g(x) = x^4 - x^3 + 1, \quad x_0 = 0$$

10. Udowodnij, że $x^2 + x + 1$ dzieli $x^{3n} + x^{3m+1} + x^{3k+2}$ dla dowolnych naturalnych n, m, k. I sposób: zauważ, że $x^2 + x + 1$ dzieli $x^3 - 1$, czyli dzieli $x^{l+3} - x^l$. II sposób: znajdź pierwiastki zespolone $x^2 + x + 1$ i pokaż, że są to pierwiastki $x^{3n} + x^{3m+1} + x^{3k+2}$, z odpowiednimi krotnościami.

2 Trudniejsze

Z poniższych zadań można rozwiązać co najwyżej 5. Każde wybrane zadanie musi być z innego działu. Rozwiązanie 5 zadań gwarantuje kwalifikację. Można zakwalifikować się rozwiązując mniej zadań – to zależy od tego, ile zadań uda się rozwiązać innym uczestnikom.

Teoria liczb:

- 11. Udowodnij, że jeśli dla liczby całkowitej dodatniej n liczba $2^n + 1$ jest pierwsza, to n jest potęgą liczby 2.
- 12. Udowodnij, że dla dowolnej liczby całkowitej a > 1 zachodzi $(a^n 1, a^m 1) = a^{(n,m)} 1$, gdzie (a, b) oznacza największy wspólny dzielnik liczb a i b.

Kombinatoryka:

- 13. Udowodnij tożsamość $\sum_{k=0}^{m} (-1)^k \binom{r}{k} = (-1)^m \binom{r-1}{m}$ dla dowolnych liczb całkowitych dodatnich m, r.
- 14. Oblicz $\sum_{k=1}^{n} {k+1 \choose 2} 3^k$ dla dowolnej liczby całkowitej dodatniej n.

Funkcje tworzące:

- 15. Wyznacz funkcję tworzącą ciąg $a_n = 3n + 5$ i zapisz ją w zwartej postaci.
- 16. Rozwiń $A(x,y)=\frac{1}{1-y-x^2}$ jako szereg od x oraz y, oblicz współczynnik w tym rozwinięciu przy wyrazie x^ky^l .

Liczby zespolone:

- 17. Oblicz $\sum_{k=0}^{n} {n \choose k} \cos ka \, dla \, a \in [0, \pi].$
- 18. Niech $z \in \mathbb{C} \setminus \mathbb{R}$ oraz $\frac{1+z+z^2}{1-z+z^2} \in \mathbb{R}$. Udowodnij, że |z|=1.

Wielomiany:

- 19. $f(x) = \prod_{i=1}^{n} (x x_i)$, gdzie liczby $x_1, \dots, x_n, 0$ są parami różne. Pokaż, że wielomian $\sum_{i=1}^{n} \frac{g(x_i)f(x)}{f'(x_i)(x x_i)}$ przyjmuje w x_i wartości $g(x_i)$.
- 20. Udowodnij, że jeśli wielomian o współczynnikach wymiernych dzieli się przez $x \sqrt{2}$, to dzieli się przez $x^2 2$.

3 Ekstra

Rozwiązanie poniższego zadania bardzo nam zainponuje (choć jeszcze nie ustaliliśmy nagrody za jego zrobienie).

101.
$$f(x) = \prod_{i=1}^{n} (x - x_i)$$
, gdzie liczby $x_1, \dots, x_n, 0$ są parami różne. Pokaż, że $\sum_{i=1}^{n} \frac{x_i^k}{f'(x_i)}$ jest równe 0 dla $0 \le k \le n-2$ oraz 1 dla $k=n-1$.