MA3111: Mathematical Image Processing Homework 2

To submit, zip the followings into mipXXXXX.zip where XXXXX is your student ID:

- report file: contains answers to all questions, including the requested figures in Problem 2.
- sharpen_by_spatial_laplacian.m: code written for Problem 2.

Problem 1: Filter by Laplacian

In this problem, you are given two Laplacian filters $k_i(x,y), i \in \{1,2\}$ mentioned in class and three images $f_j(x,y), j \in \{1,2,3\}$. Compute 2-D discrete-time convolution $(k_i \star f_j)(x,y), \forall i \in \{1,2\}, \forall j \in \{1,2,3\}$, i.e. perform a total of six convolutions.

Below we specify two Laplacian filters $k_1(x, y)$ and $k_2(x, y)$ by two tables. In each table the leftmost column and the bottom row specify y and x coordinates, respectively, and all other non-empty cells contain function values. The function has zero value at locations corresponding to empty cells and locations outside the range of the table.

Laplacian filter k_1 :

1		1	
0	1	-4	1
-1		1	
	-1	0	1

Laplacian filter k_2 :

1	1	1	1
0	1	-8	1
-1	1	1	1
	-1	0	1

Image of a vertical edge $f_1(x,y)$ for $(x,y) \in \mathbb{Z}^2$:

$$f_1(x,y) = \begin{cases} 1 & \text{if } x \le 0 \\ 0 & \text{otherwise} \end{cases}$$

Image of a diagonal edge $f_2(x, y)$ for $(x, y) \in \mathbb{Z}^2$:

$$f_2(x,y) = \begin{cases} 1 & \text{if } x+y < 0 \\ 0 & \text{otherwise} \end{cases}$$

$$f_3(x,y)$$
 for $(x,y) \in \mathbb{Z}^2$:

$$f_3(x,y) = a + by + cx + dxy$$

where $(a, b, c, d) \in \mathbb{R}^4$ are any fixed real numbers.

Problem 2: Spatial domain Laplacian sharpening

Fill in the computation in sharpen_by_spatial_laplacian.m, where you convolve the input image blurry-moon.tif with the following Laplacian filter discussed in class.

1	1	1	1
0	1	-8	1
-1	1	1	1
	-1	0	1

Do not call any of MATLAB's built-in functions like conv(2) and filter(2) to do the convolution. The output image will be

$$g(x,y) \approx f(x,y) + c\nabla^2 f(x,y).$$

For simplicity, you can keep the size of the image unchanged, and don't alter the first and last columns and rows of the image.

Try c = 1 and c = -1, and attach the corresponding output images in the report. For the best visual result, display the output image using imshow(im).