This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) 日本国体部庁 (JP)

(43)公開日 平成11年(1999)4月30日

						(全10目)
		ပ				OL
	451	O	651			等を請求 未請求 請求項の数15 〇1 (全 10 頁)
	/10	70/12	/10			未確求
F I	H01L Z	23	22			整查额次
微別記号	451					
	21/10	27/04	21/822	801/12	21/8242	
(51) Int CL.	H01L					

(21)出原番号	传图 平9-288690	(71)出現人 00002185	. 581200000	
			ンニー株式会社	
(22) 出版日	平成9年(1997)10月21日		東京都品川区北島川6丁目7番35号	
		(72)発明者	広中 克行	
			東京都最川区北島川6丁目7番35号 ソニ	7,
			一株式会社内	
		(72)発明者	为己 肝薬	
			東京都島川区北島川6丁目7番35号 ソニ	7,
			一株式会社内	
		(72)発明者	機切 千春	
			東京都最川区北畠川6丁目7番35号 ソニ	7
			一株式会社内	•
		(74)代理人 弁理士	中阻士 水油 玩 的	
			最終頁に続く	ř.

(54) 【発明の名称】 「骸電体キャパシタおよびその製造方法

[21] [聚約]

膜と層間絶縁膜との反応による誘電体キャパシタの特性 タの特性の劣化を防止することができる誘電体キャパシ 【課題】 誘粒体キャパンタの誘쓉体膜または強誘電体 の劣化を防止すること、および誘電体キャパシタの誘電 **体膜または強誘電体膜の酸素欠陥による誘電体キャパシ** タおよびその製造方法を提供する。

SiO2 膜6で覆う。Ta2 O5 膜5およびSiO2 膜 散ける。コンタクトホール7を通じて上部電極4と接続 SBT膜3と、上部電極4とを順次積層し、この誘電体 6のうち上部電極4の上の部分にコンタクトホール7を 模5の表面を水素拡散防止効果がある絶縁性のSiN膜 キャパシタをTa2 O5 膜5で覆い、その表面をさらに するように引き出し電極8を散ける。また、Ta2 O5 【解決手段】 導電性のSi基板1上に下部電極2と、 で覆うようにしてもよい。

[特許請求の範囲]

と、上記誘宜体膜上の上部電極とからなる誘電体キャパ 【請求項1】 下部電極と、上記下部電極上の誘電体膜 ンタにおいて、 L記誘電体キャパシタが、N b 2 O5 、T a 2 O5 、Z r O2 、Ce O2 、Y2 O3 またはHf2 O3 からなる 反応防止膜で覆われていることを特徴とする誘電体キャ

Ba) v (Ta, Nb) 2 O₂ (ただし、1.70≦x $\leq 2.50, 0.60 \leq y \leq 1.20, z = 9 \pm d, 0$ ≤d≤1.0)で扱される結晶相を主たる結晶相とする 強誘電体からなることを特徴とする請求項1記載の誘電 【請求項2】 上記誘電体膜は、Bix (Sr, Ca, 体キャパシタ。

(Zr_z Ti_{1-z}) 1.0 O_{3.0} (ただし、0.75≦x 【請求項4】 下部電極と、上記下部電極上の誘電体膜 と、上記誘電体膜上の上部電極とからなる誘電体キャパ 【請求項3】 上記誘電体膜は、(P b_x N b_{l-x})_y で扱される結晶相を主たる結晶相とする強誘電体からな ることを特徴とする請求項1記載の誘電体キャパシタ。 $\leq 1.0, 0.9 \leq y \leq 1.2, 0.1 \leq z \leq 0.7$ シタにおいて、

防止効果がある絶縁性の窒化膜で限われていることを特 上記誘電体キャパシタが酸化膜およびその上の水素拡散 徴とする誘電体キャパシタ。

2 O5 , Z r O2 , C e O2 , Y2 O3 またはH f2 O 3からなることを特徴とする請求項4記載の誘電体キャ 【請求項5】 上記酸化膜が、N b 2 O5 、T a

Ba) y (Ta, Nb) 2 O₂ (ただし、1. 70≦× ≤2. 50, 0. 60≤y≤1. 20, z=9±d, 0 ≤d≤1.0)で表される結晶相を主たる結晶相とする 強誘電体からなることを特徴とする請求項4記載の誘電 【翻求項6】 上記誘電体膜は、Bix (Sr, Ca, 体キャパンタ。

(Zr₂ Ti₁₋₂) 1,0 O_{3,0} (ただし、0.75≤x で扱される結晶相を主たる結晶相とする強誘電体からな 【翻求項8】 下部電極と、上記下部電極上の誘電体膜 と、上記跡電体膜上の上部電極とからなる誘電体キャパ 【静求項7】 上記誘電体膜は、(Pbx Nb_{l-x}) y $\leq 1.0, 0.9 \leq y \leq 1.2, 0.1 \leq z \leq 0.7$ ることを特徴とする請求項4記載の誘題体キャパシタ。 シタの製造方法において、

2 O5 , Ta2 O5 , ZrO2 , CeO2 , Y2 O3 ♯ たはHf2 O3 からなる反応防止膜を形成するようにし たことを特徴とする誘電体キャパシタの製造方法。 上記移電体キャパシタを被殺するようにしてNb

【請求項9】 上記反応防止膜を形成した後、酸素雰囲

気中で熱処理するようにしたことを特徴とする請求項8

記載の誘電体キャパシタの製造方法。

a, Ba) $_{y}$ (Ta, Nb) $_{2}$ O $_{z}$ (tttU, 1, 70 d、0≤d≤1.0)で表される結晶相を主たる結晶相 とする強誘電体からなることを特徴とする請求項8記載 [請求項10] 上記誘電体膜は、Bix (Sr, C $\leq x \leq 2.50$, 0. $60 \leq y \leq 1.20$, $z = 9 \pm$ の誘電体キャパシタの製造方法。

7) で扱される結晶相を主たる結晶相とする強誘電体か らなることを特徴とする訓水項8記載の誘電体キャパシ 【静水項11】 上記勝電体膜は、(Pbx Nbl-x) y (Zr_z Ti_{1-z}) 1.0 O_{3.0} (ただし、0.75≦ $x \le 1.0, 0.9 \le y \le 1.2, 0.1 \le z \le 0.$ タの製造方法。

[翻水項12] 下部電極と、上記下部電極上の誘電体 膜と、上記誘弧体膜上の上部電極とからなる誘電体キャ パシタの製造方法において、

るようにしたことを特徴とする誘電体キャパシタの製造 上記誘追体キャパシタを被覆するように酸化膜およびそ の上に水素拡散防止効果がある絶縁性の窒化膜を形成す

【翻求項13】 上記選化膜の形成を域圧下で行うこと を特徴とする請求項12記載の誘電体キャパシタの製造 方法。

d、0≤d≤1.0)で表される結晶相を主たる結晶相 とする強誘電体からなることを特徴とする請求項12記 a, Ba) y (Ta, Nb) 2 Oz (ただし、1. 70 [請求項14] 上記跡記体膜は、Bix (Sr, C $\le x \le 2$. 50, 0. 60 $\le y \le 1$. 20, $z = 9 \pm$ 戦の誘乱体キャパシタの製造方法。

らなることを特徴とする請求項12記載の誘電体キャパ 7) で扱される結晶相を主たる結晶相とする強誘電体か y (Z rz T i 1-z) 1.0 O3.0 (ただし、0.75≦ [請求項15] 上記誘電体版は、(Pbx Nbl-x) $x \le 1.0, 0.9 \le y \le 1.2, 0.1 \le z \le 0.$ シタの製造方法。

【発明の詳細な説明】

[0000]

【発明の属する技術分野】この発明は、誘電体キャパシ タおよびその製造方法に関し、特に、誘電体キャパシタ を用いた半導体メモリに適用して好適なものである。 [0002] 【従来の技術】従来、半導体メモリにおける誘電体キャ (SOG) あるいはホウ素リンシリケートガラス (BP パシタは、SiO2 膜、SiN膜、スピンオンガラス SG)膜などの層間絶縁膜で被覆されていた。

【発明が解決しようとする戰題】ところが、誘題体キャ あるいはSrBi2 Ta2 O9 (SBT) 膜などの誘電 ペシタに用いられるSrTiOg 膜、BaSrTiOg (BST) 睒、Pb (Zr, Ti) O3 (PZT) 睒、 体膜または強誘電体膜が層間絶縁膜と反応してしまい、 [0003]

3

€

務館体キャパシタの特性が著しく劣化してしまうという

【0004】また、半導体メモリにおける誘電体キャパ に酸化膜であるため、トランジスタの活性化プロセスで ある、ホーミングアニールなどの遠元性雰囲気中におけ る熱処理により、酸素欠陥が生じ、誘電体キャパシタの タを被覆することにより特性の劣化を防止することが提 案されている。しかしながら、この窒化膜を形成するプ 窒化膜と酸化膜である誘電体膜や強誘電体膜との界面で は酸素欠陥が発生しやすくなっており、誘饵体膜や強誘 生成された酸素欠陥を酸化性雰囲気中の熱処理により解 木素の拡散を防止する効果が失われてしまうなどの問題 シタに用いられる誘電体膜、強誘電体膜は上述したよう この酸素欠陥による特性の劣化を防止するために、水素 の拡散を防止する効果を有する窒化膜で誘電体キャパシ 電体膜の特性劣化の原因となってしまう。ここで、一旦 ロセスでは、大量の水素が発生してしまうのみならず、 消しようとすると、今度は窒化膜が酸化されてしまい、 特性が著しく劣化するといった問題があった。そこで、

【0005】したがって、この発明の目的は、誘電体キ ャパシタの誘電体膜または強誘電体膜と層間絶縁膜との とができる誘電体キャパシタおよびその製造方法を提供 反応による誘電体キャパシタの特性の劣化を防止するこ することにある。

の誘電体膜または強誘電体膜の酸素欠陥による誘電体キ ャパシタの特性の劣化を防止することができる誘電体キ 【0006】この発明の他の目的は、誘電体キャパシタ ャパシタおよびその製造方法を提供することにある。 0007

たはHi203からなる反応防止膜で覆われていること O5 , Ta2 O5 , ZrO2 , CeO2 , Y2 O3 \$ 【課題を解決するための手段】上記目的を達成するため に、この発明の第1の発明は、下部電極と、下部電極上 の誘電体膜と、誘電体膜上の上部電極とからなる誘電体 キャパシタにおいて、誘電体キャパシタが、Nb

【0008】この発明の第2の発明は、下部電極と、下 る誘電体キャパシタにおいて、誘電体キャパシタが酸化 **較およびその上の水素拡散防止効果がある絶縁性の窒化** 部電極上の誘電体膜と、誘電体膜上の上部電極とからな を特徴とするものである。

たはH f₂ O₃ からなる膜を用いることにより、反応を 2 O5 , Ta2 O5 , ZrO2 , CeO2 , Y2 O3 ♯ は、各種の酸化膜を用いることができるが、特に、Nb 【0009】この第2の発明において、酸化膜として 膜で覆われていることを特徴とするものである。 防止する効果を有する膜を得ることができる。

【0010】この第2の発明において、水素拡散防止効 果がある絶縁性の窒化膜の膜厚は、好適には、10~5 00mmの範囲から選ばれる。

る誘租体キャパシタの製造方法において、誘租体キャパ r O2 、C e O2 、Y2 O3 またはH f 2 O3 からなる 反応防止膜を形成するようにしたことを特徴とするもの 【0011】この発明の第3の発明は、下部電極と、下 部電極上の誘電体膜と、誘電体膜上の上部電極とからな シタを被撥するようにしてN b2 O5 、T a 2 O5 、 Z

【0012】この第3の発明において、典型的には、反 応防止膜を形成した後、酸素雰囲気中で熱処理する。

0℃の温度で熱処理する。また、この第3の発明におい 3)を0.5%以上含む酸化雰囲気中で、300~60 て、好適には、03を0.5%以上含む酸化雰囲気中で 防止膜を形成した後、誘電体キャパシタを、オゾン (O 【0013】この第3の発明において、好適には、反応 の熱処理を300~600℃の温度で行った後、窓素雰 **囲気中で熱処理する。** 【0014】この発明の第4の発明は、下部電極と、下 シタを、酸化膜およびその上の水素拡散防止効果がある 部電極上の誘電体膜と、誘電体膜上の上部電極とからな る誘電体キャパシタの製造方法において、誘電体キャパ 絶縁性の窒化膜で被覆するように形成するようにしたこ とを特徴とするものである。 【0015】この第4の発明において、典型的には、窯 化膜の形成は域圧下で行う。 【0016】この発明の第4の発明において、水素拡散 防止効果がある絶縁性の窒化膜の膜厚は、好適には、1 0~500mmの範囲から選ばれる。

に挟まれた強誘電体膜の材料として用いられる誘電体の 【0017】この発明において、上部電極と下部電極と 50, 0. 60≤y≤1. 20, z=9±d, 0≤d≤ 1. 0) で扱される結晶相を主たる結晶相として、好適 には、85%以上含む強誘電体(若干のBiおよびTa 具体例を挙げると、組成式Bix (Sr, Ca, Ba) v (Ta, Nb) 2 O₂ (ただし、1. 70≤x≤2. またはNbの酸化物や複合酸化物を含有してもよい)

1.0 03.0 (ただし、0. 75≤x≤1.0、0.9≤ 体 (若干のPbおよびNbまたは2rやTiの酸化物や y ≤ 1.2、0.1≤ z ≤ 0.7) で表される結晶相を 主たる結晶相として、好適には、85%以上含む強誘電 複合酸化物を含有してもよい) である。前者の代表例は SrBi2 Ta2 Og (SBT) であり、後者の代表例 や、組成式 (P bx N b l-x) y (Z r z T i l-z) はPb (Zr, Ti) O3 (PZT) である。

【0018】また、この発明において、反応防止膜の膜 【0019】上述のように構成されたこの発明の第1お 【0020】また、この発明の第2および第4の発明に 膜で被覆していることにより、誘電体キャパシタの誘電 よび第3の発明によれば、誘電体キャパシタを反応防止 厚は、好適には、5~300nmの範囲から選ばれる。 体膜と層間絶縁膜との反応を防止することができる。

により、ホーミングアニールなどの還元性雰囲気の熱処 **塞化膜との間には酸化膜が設けられているので、窒化膜** と誘電体キャパンタの誘電体膜または強誘電体膜とが直 よれば、誘電体キャパシタを酸化膜およびその上の木業 拡散防止効果がある絶縁性の窒化膜で被限していること 接接することにより界面での酸素欠陥が発生する問題も 理により誘電体膜または強誘電体膜に酸素欠陥が生じる のを防止することができる。また、誘電体キャパシタと

て図面を参照しながら説明する。なお、以下の実施形態 の全図においては、同一または対応する部分には同一の 【発明の実施の形態】以下、この発明の実施形態につい

強誘電体膜としてのSBT膜3と、例えばRuO₂ 膜お れている。これらの膜の膜厚の一例を挙げると、T:版 は30nm、Pt版は200nm、SB2 Ta2 Og 版 は200nm、RuO2 脱は200nm、Ru膜は20 膜5の装面はさらに 層間 絶験 脱としての SiO2 膜6で られている。そして、このコンタクトホール7を通じて 上部電極4と接続されるように例えばAI合金からなる 【0022】図1はこの発明の第1の実施形態による勝 **閻体キャパンタを示す。図1に示すように、この誘電体** よびその上のRロ膜からなる上部電極4とが順次積層さ 0 n m である。この誘電体キャパシタは、反応防止膜と **覆われている。これらの膜の膜厚の一例を挙げると、T** ある。これらのTa2 O5 膜5およびSiO2 膜6のう ち上部電極4の上の部分にはコンタクトホール7が設け キャパシタにおいては、導む性のSi基板1上に、例え してのTa2 O5 膜5で覆われており、このTa2 O5 a2 Os版5は30 nm, SiO2 膜6は200 nmで ばT:膜およびその上のP・膜からなる下部電極2と、 引き出し電極8が設けられている。

実施形態による誘電体キャパンタの製造方法について説 【0023】次に、上述のように構成されたこの第1の

グ法により通常の条件で後に下部電極2となるT: 膜お **ノルーゲル法によりSBT膜3を形成する。次に、この** 【0024】まず、Si 基板1上に例えばスパッタリン よびPt膜を順次成散する。次に、Pt膜上に、例えば SBT膜3上に例えばスペッタリング法あるいはMOC VD法により通常の条件で後に上部電極4となるRuO 2 膜およびRu膜を順次成膜する。

【0025】次に、このRu膜上にリソグラフィ工程に より誘饵体キャパシタの形状に対応した形状のレジスト パターン (図示せず)を形成した後、このレジストパタ ーンをマスクとして、例えばArガス、O2 ガスおよび C12 ガスの混合ガスを用いた例えばプラズマエッチン グ法によってT:膜の表面が瞬出するまでエッチングを 行うことにより誘電体キャパシタの形状にパターニング

する。その後、レジストパターンを除去する。

【0027】 次に、Ta2 O5 膜5上にリソグラフィエ 程により誘電体キャパシタの形状よりわずかに大きな形 状のレジストパターン(図示セず)を形成し、いのレジ 【0026】次に、例えばMOCVD法により全面にT a 2 O 5 膜 5 を成膜する。

ストパターンをマスクとして例えば反応性プラズマエッ 膜を順次エッチングする。その後、レジストパターンを

チング法によりTa2 O5 膜5および下部電極2のTi

【0028】次に、例えば酸素雰囲気中において例えば 700℃で30分間熱処理する。 [0029] 次に、全面に例えばCVD法により通常の 条件でSiO2 膜6を成膜した後、Ta2 O5 膜5およ びSiO2 版6のうち、上部電極4上の所定部分をエッ 全面に例えばスパッタリング法によりAI合金膜を成膜 した後、このAI合金膜をエッチングにより所定形状に チング除去してコンタクトホール7を形成する。次に、 パターニングして引き出し電極8を形成する。

【0030】以上の工程により、図1に示す目的とする 誘電体キャパシタが製造される。

 $2P_{\rm r} = 20 \sim 26 \, \mu \, {\rm C} / {\rm c \, m}^2 \, o$ 値が得られた。この して分極(P) 一粒圧(V) ヒステリシスを測定した結 【0031】以上のようにして製造された誘電体キャパ シタのS;基板1と引き出し電極8との間に電圧を印加 2PF の値はSBT膜3を用いた誘電体キャパンタとし ては良好な値であり、これが、Si 基板1を通した測定 で得られた。これに対し、反応防止膜としてのTa2O 5 膜5を成膜せず、誘電体キャパシタをSiO2 膜6で 直接被覆した従来の誘電体キャパシタの誘電分極値2P 果、強誘電体メモリで重要な誘電分極値(残留分極値) r は、10 μ C / c m² 以下であった。

ば、誘電体キャパシタとSi〇2 膜6との間に、反射防 の間の反応を防止することができるので、誘電分極値の 【0032】以上のように、この第1の実施形態によれ 止膜としての酸素のトラップ効果が大きく熱的に安定な してのSiO2 膜6と強誘電体膜としてのSBT膜3と 低下などの誘電体キャパシタの特性の劣化を防止するこ とができる。したがって、誘電体キャパシタの信頼性を Ta2 O5 膜5を設けていることにより、層間絶縁膜と 向上させることができる。

と、強誘電体膜としてのSBT膜13と、例えば1 r 膜 IrO2 膜は100nm、Ir膜は30nm、SBT膜 13は150nm、上部電極14としての1r膜は10 【0033】図2はこの発明の第2の実施形態による勝 間体キャパシタを示す。図2に示すように、この誘電体 からなる上部電極14とが順次積層されている。これら の膜の膜厚の一例を挙げると、下部電極12を構成する キャパシタにおいては、導配性のSi 基板11上に、I r O2 膜およびその上の1 r 膜からなる下部電極12

9

0 n m である。この誘電体キャパシタは、反応防止膜と 5 膜15の表面はさらに水素拡散防止効果がある絶縁性 膜15およびSiN膜16のうち上部電極14の上の部 接続されるように例えばAI合金からなる引き出し電極 のSiN膜16で覆われている。ここで、これらの膜の て、このコンタクトホール17を通じて上部電極14と してのTa2 O5膜15で覆われており、このTa2 O SiN膜16は200nmである。これらのTa2 O5 膜厚の一例を挙げると、Ta2 O5 膜15は30nm、 分にはコンタクトホール17が設けられている。そし 18が設けられている。

[0034] 次に、上述のように構成されたこの第2の 実施形態による誘電体キャパシタの製造方法について説

するBiSrTaO版 (ただし、原子組成比は1.8≦ 2)を成膜する。次に、このBiSrTaO膜上に例え 【0035】まず、Si 揺板11上に例えばスパッタリ O2 膜および1 r 膜を順次成膜する。次に、この1 r 膜 ばスパッタリング法あるいはMOCVD法により通常の ング法により通常の条件で後に下部電極12となる1 r 上に、例えばCVD法によりアモルファス相を主成分と 2Bi/Ta≤2. 8, 0, 6≤2Sr/Ta≤1. 条件で後に上部電極14となる1r膜を成膜する。

により下部電極12の1rO2膜の表面が露出するまで 2 ガスの混合ガスを用いた例えばプラズマエッチング法 【0036】次に、リソグラフィ工程により1r膜上に 誘電体キャペシタの形状に対応した形状のレジストペタ ーン (図示せず) を形成した後、このレジストパターン をマスクとして、例えばArガス、O2 ガスおよびCI エッチングを行う。その後、レジストパターンを除去す 【0037】次に、例えばMOCVD法により全面にT 82 05 膜15を成膜する。 【0038】次に、例えば酸素雰囲気中において例えば 800℃で1時間熱処理する。これによって、上述のB i SrTaO膜がSBT膜13となる。

チング法によりTa2 O5 膜15および下部電極12の I r O2 膜を順改エッチングする。その後、レジストパ フィ工程により誘電体キャパシタよりわずかに大きい形 状のレジストパターン (図示せず) を形成し、このレジ ストパターンをマスクとして例えば反応性プラズマエッ 【0039】 次に、このTa2 O5 膜15上にリソグラ ターンを除去する。

埋する。次に、Ta2 O5 膜15およびSiN膜16の り、減圧下においてSiN膜16を成膜する。次に、9 5%のN2 ガスと5%のH2 ガスとから構成されたホー ミングガス雰囲気中において、400℃で30分間熱処 【0040】次に、全面に例えばプラズマCVD法によ てコンタクトホール17を形成する。次に、全面に例え うち、上部電極14の上の所定部分をエッチング除去し

ばスパッタリング法によりA1合金膜を成膜した後、こ のAI合金膜をエッチングにより所定形状にパターニン グして引き出し電極18を形成する。

【0041】以上の工程により、図2に示す目的とする **務電体キャパシタが製造される。** 【0042】以上のようにして製造された誘電体キャパ シタのP – Vヒステリシスを、第1の実施形態と同様に $2P_r = 20 \sim 2.6 \, \mu \, \text{C} / \text{cm}^2$ の値が得られた。この 2 Pr の値はSBT膜13を用いた誘電体キャパシタと しては良好な値であり、これがSi 基板11を通した測 定で得られた。これに対し、Ta2 O5 膜15上に20 して測定した結果、強誘電体メモリで重要な誘電分極値 0 n mの膜厚のSiO2 膜を成膜した誘電体キャパシタ ‡のSBT膜の誘電分極値2Pr は、10μC/cm² 以下であった。

るとともに、Ta2 O5 膜15の上にさらに水素拡散防 ことができる。また、ホーミングガス雰囲気中での熱処 とにより特性の回復が可能である。したがって、誘道体 【0043】以上のように、この第2の実施形態によれ 止効果があるSiN膜16で覆うようにしていることに より、ホーミングガス雰囲気中での熱処理における水素 の拡散による誘電体キャパシタの特性の劣化を防止する 理によって誘電体キャパシタの特性が多少劣化してしま ば、Ta2 O5 膜で誘追体キャパシタを覆っていること により、第1の実施形態と同様の効果を得ることができ うようなことがあっても、窒素雰囲気中で熱処理するこ キャパシタの倍頼性を向上させることができる。

【0044】次に、この発明の第3の実施形態による誘

【0045】この第3の実施形態による誘電体キャパシ タにおいては、反応防止膜としてCeO2 膜を用いる。 その他のことは、第2の実施形態と同様である。 電体キャペンタについて説明する。

ャパシタの製造方法は、第2の実施形態と同様であるの 【0046】また、この第3の実施形態による誘電体キ

[0047] この第3の実施形態によれば、第2の実施 で説明を省略する。

形態と同様の効果を得ることができる。

極22を構成するTi膜は10nm、TiN膜は30n **T膜23は200nm、上部電極24としての1 r膜は** 膜としてのZrO2 膜25で覆われており、このZrO 2 膜25の表面はさらに水素拡散防止効果がある絶縁性 【0048】図3はこの発明の第4の実施形態による誘 **電体キャパシタを示す。図3に示すように、この誘電体** i 膜、TiN膜、IrO2 膜および1r膜が順次積層さ れた下部電極22と、強誘電体膜としてのPZT膜23 と、例えば1 r 膜からなる上部電極24とが順次積層さ れている。これらの膜の膜厚の一例を挙げると、下部電 m、1rO2 膜は100nm、1r膜は50nm、PZ 100nmである。この誘電体キャパシタは、反応防止 キャパシタにおいては、導電性のSi基板21上に、T

のSiN版26で限われている。ここで、これらの膜の i N版26は200nmである。これらの2rO2 膜2 5 およびS i N膜 2 6 のうち上部電極 2 4 の上の部分に のコンタクトホール27を通じて上部電極24と接続さ れるように例えばAI合金からなる引き出し電極28が はコンタクトホール27が設けられている。そして、こ 膜厚の一例を挙げると、ZrO2膜25は30nm、S 数けられている。

実施形態による誘電体キャパシタの製造方法について説 【0049】次に、上述のように構成されたこの第4の

【0050】まず、Si 基板21上に例えばスパッタリ る。次に、このIr膜上に例えばCVD法によりアモル ファス相を主成分としたPb2rTiO膜(ただし、原 子組成比は0.1≦Zr/Pb≦0.7、0.3≦Ti 2)を成膜する。次に、このPbZrTiO膜上に例え ばスパッタリング法あるいはMOCVD法により通常の 例えばArガス、O2 ガスおよびC12 ガスの混合ガス を用いた例えばプラズマエッチング法により下部電極2 ング法により通常の条件で後に下部電極22となるTi に、この1r膜上にリソグラフィエ程により誘電体キャ /Pb≤0.9,0.9≤Pb/(Zr+Ti)≤1. パシタの形状に対応したレジストパターン (図示せず) を形成した後、このレジストパターンをマスクとして、 2の1 r O2 膜の表面が腐出するまでエッチングを行 膜、TiN膜、IrO2 膜および1r膜を順次成膜す 条件で後に上部電極24となる1r膜を成膜する。次 う。その後、レジストパターンを除去する。

【0051】次に、例えばMOCVD法により全面に2 【0052】次に、2rO₂ 膜25上にリソグラフィエ r O₂ 版25を成膜する。

程により上部電極24の形状よりもわずかに大きな形状 のレジストパターン (図示セず) を形成し、このレジス トパターンをマスクとして例えば反応性プラズマエッチ ング法により2r02 膜25、1r膜、1r02 膜、T iN膜およびT:膜を順次エッチングする。その後、 ジストパターンを除去する。 【0053】次に、例えば酸素雰囲気中において例えば 700℃で1時間熱処理する。これによって、上述のP bZrTiO膜がPZT膜23となる。

ングガス雰囲気中において、400℃で30分間熱処理 ち、上部電極24の上の所定部分をエッチング除去して コンタクトホール27を形成する。次に、例えばスパッ タリング法により全面にAI合金膜を成膜した後、この 【0054】次に、全面に例えばプラズマCVD法によ り破圧下においてSiN膜26を成膜する。次に、95 %のN2 ガスと5%のH2 ガスとから構成されたホーミ AI合金膜をエッチングにより所定形状にパターニング する。次に、2 r O₂ 膜25およびSiN膜26のう して引き出し電極28を形成する。

【0055】以上の工程により、図3に示す目的とする 誘電体キャペンタが製造される。

して測定した結果、強誘電体メモリで重要な誘電分極値 $2 P_{\rm r} = 20 \sim 60 \, \mu \, {\rm C} / {\rm c \, m}^2 \,$ の値が得られた。この しては良好な値であり、これがS;基板21を通した捌 定で得られた。これに対し、2 r O2 膜25上に200 おいては、誘電分極値 $2P_{
m r}$ は $15 \mu {
m C}/{
m cm}^2$ 以下で 【0056】以上のようにして製造された誘電体キャパ シタのP-Vヒステリシスを、第1の実施形態と同様に 2 Pr の値はP2 T膜23を用いた誘電体キャパシタと n mの膜厚のSiO2膜を成膜した誘電体キャパシタに

【0057】この第4の実施形態によれば、第2の実施 形態と同様の効果を得ることができる。

膜は100nm, RuO₂ 膜は100nm, BST膜3 205 脱35は、さらに水素拡散防止効果があるSiN としてのSi〇2 膜37で覆われている。これらの膜の mである。これらのTa2 O5 版35、SiN膜36お よびSi〇2 膜37のうち上部電極34の上の部分には 電体キャパシタを示す。図4に示すように、この誘電体 i N膜、R u膜およびR u O2 膜が順次積層された下部 膜33と、例えばTiN膜からなる上部電極34とが順 と、下部電極32を構成するTiN脱は50nm、Ru 3は50nm、上部街機34としてのTiN版は100 nmである。また、この誘電体キャパシタは、反応防止 膜としてのTa2 O5 膜35で覆われており、このTa 膜36で覆われている。また、Ta2 O5 膜35および SiN版36で股われた誘電体キャパシタは層間絶縁膜 SiN膜36は100nm、SiO2 膜37は200n コンタクトホール38が設けられている。そして、この コンタクトホール38を通じて上部電極34と接続され るように例えばAI合金からなる引き出し電極39が散 【0058】図4はこの発明の第5の実施形態による誘 電極32と、(Ba_{0.5} Sr_{0.5}) TiO₃ (BST) キャパシタにおいては、導1性のS;基板31上に、1 膜厚の一例を挙げると、Ta2 O5 膜35は30nm、 次稅局されている。これらの睒の睒厚の一例を挙げる けられている。

【0059】次に、上述のように構成されたこの第5の 実施形態による誘電体キャパシタの製造方法について説

ては、例えばBa(DPM)2 (DPM=ジピバロイル メタネート)、Sr (DPM) 2 およびTi (i-OC 3 H7) 4 の各有機金属原料を用いる。次に、このBS このRuO2 膜上に、例えばMOCVD法によりBST 膜33を形成する。このMOCVD法における原料とし T膜33上に例えばCVD法により通常の条件で後に上 【0060】まず、Si 基板31上に例えばスパッタリ ング法により通常の条件で後に下部配極32となるTi N膜、R u脱およびR u O2 膜を順次成膜する。次に、

8

部電極34となるTiN膜を成膜する。

【0061】次に、このTiN膜上にリソグラフィ工程 9 ガスの混合ガスを用いた例えばプラズマエッチング法 により上部監極34のTiN膜、BST膜33、下部電 極32を構成するRuO₂ 膜、Ru膜およびTiN膜を 頃次エッチングする。その後、レジストパターンを除去 により誘電体キャパシタの形状に対応したレジストパタ **一ン (図示せず) を形成した後、このレジストパターン** をマスクとして、例えばArガス、O2 ガスおよびCl

【0062】次に、全面に例えばCVD法により通常の 膜35の装面に例えばCVD法により減圧下においてS 条件でTa2〇5 膜35を成膜した後、このTa2〇5 i N膜36を成膜する。

【0064】次に、窒素雰囲気中において例えば700 によりSiN膜36およびTa2 O5 膜35を順次エッ 【0063】次に、リソグラフィJ:程によりSiN膜3 6.上に誘電体キャパシタの形状よりわずかに大きいレジ ストパターン (図示せず)を形成し、このレジストパタ ーンをマスクとして例えば反応性プラズマエッチング法 チングする。その後、レジストパターンを除去する。

Cで1時間熱処理した後、95%のN2 ガスと5%のH 2 ガスとから構成されたホーミングガス雰囲気中におい て例えば400℃で30分間熱処理する。

N膜36およびSiO2 膜37のうち、上部電極34の [0065] 次に、例えばCVD法により全面にSiO 上の所定部分をエッチング除去してコンタクトホール3 8を形成する。次に、例えばスパッタリング法により全 2 膜37を成膜する。その後、Ta2 O5 膜35、Si 面にAI合金膜を成膜した後、このAI合金膜をエッチ ングにより所定形状にパターニングして引き出し電極3 【0066】以上の工程により、図4に示す目的とする 誘電体キャパシタが製造される。

9を形成する。

[0067]以上のようにして製造された誘電体キャパ シタ中のBST膜33の誘電率を測定した結果、誘電率 として150~200の値が得られた。この誘電率の値 は誘電体キャパシタ中のBST膜33にとって良好な値 36で覆われていない誘電体キャパンタのBST膜33 である。これに対し、Ta2O5 膜35およびSiN膜 の誘電率は100以下であった。

[0068] この第5の実施形態によれば、第2の実施 形態と同様の効果を得ることができる。 [0069] 図5は、この発明の第6の実施形態による よる強勝電体不揮発性メモリは、メモリセルを構成する 務電体キャパンタとしてスタック型務電体キャパンタを 強誘電体不御発性メモリを示す。この第6の実施形態に 用いたものである。

【0070】図5に示すように、この第6の実施形態に よる強誘電体不揮発性メモリにおいては、p型Si基板

極44に対して自己整合的に設けられている。これらの ルスペーサ45が設けられている。ゲート電極44の両 **一ス領域46およびドレイン領域47が、このゲート電** いる。この場合、サイドウォールスペーサ45の下方の 部分におけるソース領域46およびドレイン領域47に けられており、このnチャネルMOSトランジスタQは いわゆるLDD(Lightly Doped Drain) 構造を有してい 41の変面にSiO2 膜からなるフィールド絶縁膜42 が強択的に設けられ、これによって素子分離が行われて いる。このフィールド絶縁膜42に囲まれた部分の活性 領域の表面にはSi02 膜からなるゲート絶縁膜43が 設けられている。符号44はゲート電極を示す。このゲ ート電極44の側壁にはSiO2 からなるサイドウォー 側の部分におけるp型Si基板41中には、n+型のソ ゲート追悔44、ソース領域46およびドレイン領域4 7 により n チャネルMOSトランジスタQが構成されて は、例えばn- 型の低不純物濃度部46a、47aが設

領域46の上の所定部分における層間絶縁膜48にはコ ち、多結晶S:プラグ50およびその近傍の周間絶縁膜 で、Ti膜の膜厚は例えば30mmであり、Pt膜の膜 【0071】符号48は例えばホウ素リンシリケートガ ラス (BPSG) 膜のような層間絶縁膜を示す。ソース ンタクトホール49が設けられ、このコンタクトホール 8の上に第1の実施形態による誘電体キャパシタと同様 およびP t 膜が順次積層されており、これらのT; 膜お 厚は例えば200nmである。この下部電極51のPt 膜上には例えばSBT膜のような強誘電体膜52が積層 のKu膜からなる上部電極53が積層されている。下部 電極51、強誘電体膜52および上部電極53によりス て、この誘電体キャパシタCとnチャネルMOSトラン の多結晶 S i プラグ50およびその近傍の周間絶縁膜4 48の上に延在するように、例えば、所定形状のTi膜 よびP t 膜により下部電極5 1 が形成されている。ここ され、さらにその上に、例えばRuO2 膜およびその上 **タック型の誘電体キャパシタCが構成されている。そし** 49内に多結晶Siプラグ50が埋め込まれている。こ な構造の誘電体キャペシタが設けられている。すなわ ジスタロとにより、1個のメモリセルが構成されてい

膜からなる反応防止膜54で覆われており、さらに、例 た、層間絶縁膜55上には例えばAI合金からなる配線 電極57が設けられている。この配線電極57は、コン 【0012】 誘電体キャパシタCは、例えばTa2 O5 る。nチャネルMOSトランジスタQのドレイン領域4 7の上の部分における層間絶縁膜48および層間絶縁膜 タクトホール56を通じてnチャネルMOSトランジス 55にはコンタクトホール56が散けられている。ま えばSiO2 膜からなる層間絶縁膜55で覆われてい タQのドレイン領域47と接続されている。

【0073】以上のように、この第6の実施形態によれ ば、誘電体キャパシタCと層間絶縁膜55との間に反応 防止膜54を設けていることにより、 層間絶縁膜55と ることができるので、特性の良好な誘弧体キャパシタを 務電体キャパシタCの強務電体膜5.2との反応を防止す 有する強誘電体不揮発性メモリを得ることができる。

【0074】図6はこの発明の第7の実施形態による強 誘電体不揮発性メモリを示す。なお、図6において、図 5と同一または対応する部分に同一の符号を付す。

[0075] 図6に示すように、この第7の実施形態に よる強誘電体メモリにおいては、誘電体キャパシタCの らに、その反応防止膜54の表面を覆うようにして、水 **素拡散防止効果がある層間絶縁膜としての例えばSiN** 膜のような窒化膜58が設けられている。その他のこと は第6の実施形態による強誘電体不揮発性メモリと同様 全面を覆うように反応防止膜54が散けられており、 であるので、説明を省略する。

【0076】この第7の実施形態によれば、第6の実施 形態と同様の効果を得ることができるとともに、反応防 止膜54の表面を窒化膜58で覆うようにしていること により、ホーミングガス中での熱処理における水素の拡 散を防ぐことができるので、木菜の拡散による誘乳体キ ャパシタこの特性の劣化を防ぐことができる。

に説明したが、この発明は、上述の実施形態に限定され 【0077】以上、この発明の実施形態について具体的 るものではなく、この発明の技術的思想に基づく各種の 変形が可能である。

【0078】例えば、上述の実施形態において挙げた数 値、構造、有機金属原料はあくまでも例に過ぎず、必要 に応じてこれらとは異なる数値、構造、有機金属原料を 用いてもよい。

【発明の効果】以上説明したように、この発明の第1の

[<u>×</u>

Nb2 O5 . Ta2 O5 . ZrO2 . CcO2 . Y2 O 3 またはHf2 O3 からなる反応防止膜で覆うようにし ていることにより、誘饵体キャパシタの誘電体膜または 強誘電体膜と層間絶縁膜との反応による誘電体キャパシ 発明および第3の発明によれば、誘電体キャパシタを、 タの特性の劣化を防止することができる。

拡散防止効果がある絶縁性の窒化膜で覆うようにしてい 遺体膜の酸素欠陥による誘電体キャパシタの特性の劣化 【0080】この発明の第2の発明および第4の発明に よれば、誘電体キャパシタを酸化膜およびその上の水素 ることにより、誘電体キャパシタの誘電体膜または強誘 を防止することができる。

【図面の簡単な説明】

[図1] この発明の第1の実施形態による誘電体キャパ ンタを示す断面図である。 【図2】この発明の第2の実施形態による誘電体キャパ 【図3】この発明の第4の実施形態による誘道体キャパ ンタを示す断面図である。

ンタを示す断面図である。

[図4] この発明の第5の実施形態による誘電体キャパ ンタを示す断面図である。

【図5】この発明の第6の実施形態による強誘電体不揮 発性メモリを示す断而図である,

【図6】この発明の第7の実施形態による強誘電体不相 発性メモリを示す断面図である。

1、11、21、31・・・8:基板、2、12、2 2、32···下部電極、3、13····SBT膜、 【符号の説明】

4、14、24、34···上部電極、5、15、35 ZrOz 膜、26、36···SiN膜、33···B ····Ta2 O5 版、23····P2T版、25···

図2

[図4]

[图3]

[図2]

[図6]

特開平11-121704

6)