Title of the Document

Author Name

June 22, 2024

Contents

Title of the Document 2

1 Exercises

- 1. Let (X,d) be a metric space and $S \subset X$. Show that $\partial S \subset \overline{S} \cap \overline{S^c}$.
- 2. Show that for an arbitrary choice of $a, b, r \in \mathbb{R}$, the closed disk $D = \{(x, y) \mid (x a)^2 + (y b)^2 \le r^2\}$ is a bounded set in \mathbb{R}^2 .
- 3. Let (X,d) be a metric space and for $x,y\in X$. Show that if $d(x,y)<\epsilon$ for every $\epsilon>0$, then x=y.

(i)

Assume $\partial S \subseteq \overline{S} \cap \overline{S^c}$.

Then by $x \in \partial S \implies \forall \epsilon > 0 : B_{\epsilon}(x) \cap S^c \neq \emptyset$.

However, by $x \in \partial S$, this value of ϵ implies

$$B_{\epsilon}(x) \cap S \neq \emptyset \Rightarrow B_{\epsilon}(x) \nsubseteq S$$

which is a contradiction, implying our assumption that $x \in \partial S \cap S'$ must be false and

$$\partial S \cap S' = \emptyset$$

(ii)

A set S is bounded if and only if $\exists M \in \mathbb{R}^+ \forall x, y \in S$

$$d(x,y) \leq M$$

Let $a, b, r \in \mathbb{R}$.

$$S = \{(x,y) \mid (x-a)^2 + (y-b)^2 \le r^2\}$$

$$\implies x^2 - 2ax + a^2 + y^2 - 2yb + b^2 \le r^2$$

$$\implies x^2 - 2ax + y^2 - 2yb + r^2 - a^2 - b^2$$

$$\implies x^2 + y^2 \le r^2 - a^2 - b^2 + 2ax + 2yb$$

We need to show x^2 is bounded:

$$(x-a)^2 \le r^2$$

$$\implies |x-a| \le |r|$$

$$\implies |x-a| \le |r| \implies |x| \le |r| + |a|$$

$$\implies |x| = |x+a-a| \le |x-a| + |a|$$

$$\implies |x| \le |r| + |a|$$

(iii)

A set S is bounded if it is contained within some ball, i.e., $\exists M \in \mathbb{R}^+ \ \forall x,y \in S \ d(x,y) \leq M$

Title of the Document 3

$$\Rightarrow$$
 $|y| \le r + |a| \Rightarrow x^2 \le (r + |a|)^2$

Same for y, $y^2 \le (r + |b|)^2$

$$\forall z = (x, y) \in D_{r,a,b}, \quad ||z|| = \sqrt{x^2 + y^2} \le \sqrt{(r + |a|)^2 + (r + |b|)^2}$$

Thus, if $\mathcal{M} = \sqrt{(r+|a|)^2 + (r+|b|)^2}$, the bound holds.

IS normed boundless = distance boundless.

Let
$$x = (x_1, x_2), y = (y_1, y_2) \in D_{r,a,b}$$

$$z_2 \in \{x, y\}$$
 $(x_2 - a)^2 + (x_2 - b)^2 = r^2$

$$\Rightarrow d(z_1, (a, b)) = \sqrt{(x_2 - a)^2 + (x_2 - b)^2} \le r$$

$$\Rightarrow d(x,y) < d(x,(a,b)) + d(y,(a,b))$$

$$= \sqrt{(x_1 - a)^2 + (x_1 - b)^2} + \sqrt{(y_1 - a)^2 + (y_1 - b)^2}$$

$$\leq r + r = 2r$$
.

- (iii) Suppose that $x \neq y$. Then $d(x,y) \neq 0$. Thus if we choose $\epsilon = d(x,y) \Rightarrow \epsilon > 0$ but $d(x,y) \notin \epsilon$. (contradiction).
 - (contradiction) Suppose $x \neq y$ and so $d(x,y) \neq 0$. Choose $\epsilon > 0$ so that $\epsilon = d(x,y)$. Then we must have $d(x,y) < \epsilon = d\left(\frac{d(x,y)}{2}\right) = \frac{d(x,y)}{2}$ which is a contradiction, as this implies $d(x,y) \leq \frac{d(x,y)}{2} \Rightarrow d(x,y) = s < \epsilon = \frac{s}{2} \Rightarrow s = s < \frac{s}{2} \Rightarrow 2s < s$. Thus x = y.
- (iv) Let $(V, \|\cdot\|)$ be a normed vsp. Then let r > 0 and $x \in V$. Then $B_r(x) = \{u \in V \mid d(x, u) < r\}$ $B_{r+\|x\|}(0) = \{v \in V \mid d(0, v) < r + \|x\|\}$

Let
$$y \in B_r(x)$$
.
 $d(0,y) \le d(0,x) + d(x,y) \ d(0,y) \le ||x|| + r$
 $\Rightarrow B_r(x) \subseteq B_{r+||x||}(0)$

(v) Suppose S is bounded. Then $\exists M \in \mathbb{R} : \forall x \in S ||x|| \leq M$. (Equiv to $\exists M > 0 : \forall x \in V$) $x \in B_M(0)$