(b) at least one activator (II).(I) has formula CrX₃ and L has formula (VII). A(2-A6C, 4-G1A) E(5-E, 5-L3B, 10-J2C1) . Б **₽**4 ì *WO 200058319-A1 New olefin oligomerization catalyst, useful for making oligomers BADI 1999.03.29 MAAS H, MIHAN S, KOEHN R, SEIFERT G, TROPSCH J 2000.03.25 2000WO-EP02660, 1999.05.14 1999DEfor oxo-alcohol production, comprises chromium compound, C2000-206455 N(CN JP KR SG US) R(AT BE CH CY DE DK ES FI 1999.09.11 1999-1043544(+1999US-277823) (2000.10.05) C07F FR GB GR IE IT LU MC NL PT SE) 1022048, 1999,09.11 1999DE-1043544 triazacyclohexane ligand and activator (Ger) 11/00, B01J 31/18, C07C 2/32, 29/16 A17 E19 2000-679290/66 Addul. Data: **BASF AG**

X = abstractable counterion; and R^1 - $R^9 = hydrogen$, organosilicon group or optionally substituted 1-30C organic group, and two geminal or vicinal R groups

WO 200058319-A+ may together complete a 5- or 6-membered ring. INDEPENDENT CLAIMS are also included for the following:

(a) a chromium compound (I) and a ligand (L), or a preformed (I)-L

complex; and

Oligomerization catalyst (A) for olefins comprises:

DETAILED DESCRIPTION

(b) at least one activator (II).

complex; and

(a) a chromium compound (I) and a ligand (L), or a preformed (I)-L

Oligomerization catalyst (A) for olefins comprises:

NOVELTY

(a) preparation of oligomers (III) of up to 30C by reacting at least one olefin at 0-150°C and 1-200 bar in presence of (A);

(b) (III) produced this way;

(c) oxo-alcohols (IV) produced from (III) by conventional hydroformylation; and

(d) New compounds (1,3,5-tris(2-alkyl-substituted alkyl)-1,3,5-triazacyclohexane)CrCl₃ (V).

ISE

(A) is used to make olefin oligomers (III) of up to 30C. These are used (i) to prepare oxo-alcohols (IV) by conventional hydroformylation and (ii) as copolymers for plastics. (IV) are components of surfactants and plasticizers for polymers.

ADVANTAGE

(A) are stable, can be produced inexpensively and have better activity and selectivity for low molecular weight oligomers. Practically no products larger than 500 D are formed.

SPECIFIC COMPOUNDS

The compound [(1,3,5-tris(2-n-propylheptyl)-1,3,5-triazacyclohexane)CrCl₃] is claimed.

EXAMPLE

An autoclave, flushed with argon, was charged with 14.5 mg of (1,3,5-tri-n-octyl-1,3,5-triazacyclohexane)chromium(III) chloride complex in 25 ml heptane and 14.3 mg 2,5-dimethylpyrrole in 10 ml heptane. The reactor was flushed three times with ethylene, then 0.75 ml of 1M aluminum triethyl in n-hexane added and ethylene introduced to 25 bars. The mixture was heated to 80°C (40 bars) and maintained under these conditions, with stirring, for 2 hours. After cooling and venting, the reaction mixture was treated with 1 ml water (to destroy the catalyst), then insolubles filtered off, dried and weighed. The yield of oligomers was 18.6 kg per g of chromium in the catalyst and product distribution was (by weight) hexene 44.4%; decene 33.1%; tetradecene 10.9% and 'polymer' 1.5%.

DEFINITIONS

Preferred Definitions: R^1 , R^2 and R^3 = 1-12C alkyl, 6-15C aryl or 6-8C aralkyl; other R = H or methyl; X = Cl or tosylate

WO 200058319-A+/1

WO 200058319-A/2 generally recovered by distillation. The most preferred reaction is trimerization of ethylene. (35pp1251DwgNo.0/0) (i) an optionally substituted 5-membered aromatic nitrogen heterocycle moles (I), or its complex; 10-8 to 100, especially 10-5 to 0.05, moles Nand an aluminum alkyl (VI) in which alkyl groups may be partially presence of, per kg reaction mixture, 10^7 to 1, especially 10^5 to 10^2 heterocycle and 10^{-8} to 500, preferably 0.5×10^{-5} to 0.5, moles (VI), with mole ratios 1:1-5:5-50. Oligomerization is in usual solvents, bar, and is performed continuously or batchwise. The oligomers are generally hydrocarbons, at 1-120, preferably 70-110,°C and 3-120 Polymers - Preferred Process: Oligomerization is performed in the (a) (1,3,5-tris(n-octyl or benzyl)-1,3,5- triazacyclohexane)CrCl₃; Preparation: The (I)-L complex is formed by simple reaction, in Alkylalumoxans may also be used as (II). Especially preferred Organic Chemistry - Preferred Catalysts: (II) is a mixture of: replaced by halo and/or alkoxy or (ii) a boron compound and (VI). (b) 2,5-dimethylpyrrole and TECHNOLOGY FOCUS solution or suspension. (c) Et3Al or EtAICl2. catalysts comprise: 2000-679290/66