MODELAGEM E SIMULAÇÃO PPGI/UNINOVE

Henrique Pougy RA 622150028

GOLF PUTTING

Modelo conceitual

ENTENDIMENTO DO PROBLEMA

O dono de um mini-golfe notou que a taxa de retorno de seus novos clientes é baixa. Após pesquisas qualitativas, percebeu que a principal queixa é devido à **dificuldade** do jogo para clientes novatos.

RESTRIÇÕES

- No entanto, ele sabe que se reduzir excessivamente a dificuldade, perderá também seus clientes regulares.
- É preciso que o jogo permaneça competitivo.
- Ele não tem recursos para criar duas pistas separadas com dificuldades distintas.

OBJETIVO

Reduzir a dificuldade do jogo para que os jogadores mais inábeis tenham a mesma probabilidade, em média, de fazer pontos (acertar o putting) do que os jogadores com habilidade média.

GOLF PUTTING

Dados

DADOS DISPONÍVEIS

- Dados sobre putting contendo:
 - X: a distância da bola até o centro do buraco em pés;
 - N: a quantidade total de puttings feita daquela distância;
 - Y: a quantidade de acertos de puttings feitos daquela distância;
- Sabemos também:
 - O diâmetro da bola em polegadas;
 - O diâmetro do buraco em polegadas;

DADOS DISPONÍVEIS

X (distância em pés)	N (nº tentativas)	Y (nº acertos)
2	1443	1346
3	694	577
7	256	136
20	152	24

ACERTO VS DISTÂNCIA

Probabilidade de acerto:

Qtd. Acertos/

Qtd. Tentativas

GOLF PUTTING

Modelagem Conceitual

MODELAGEM CONCEITUAL

- Para uma mesma distância, cada tentativa (putting) é independente das precedentes e das seguintes:
 - P(Acerto [i-1] | distância) ⊥ P(Acerto[i] | distância)

As amostras são independentes se condicionadas aos parâmetros do modelo (distância X)

$$P(y_i | y_{i-1}, D = d) = P(y_i | D = d)$$

MODELAGEM CONCEITUAL

Para cada distância X[i] e quantidade de tentativas N[i], a quantidade de acertos Y[i] pode ser modelada como uma distribuição binomial.

Y[i] ~ Binomial(N[i], P[i])

■ Temos que encontrar uma função de ligação que permita modelar P[i] para cada X[i]: ou seja, que defina a probabilidade de acerto em função da distância.

GOLF PUTTING

Modelo V.1

REGRESSÃO LOGÍSTICA

Y[i] ~ Binomial(N[i], P[i]) onde:
 P[i] = logit^-1(a + b*X[i])

```
@model function logreg(X, n, y; predictors=size(X, 2))
# priors

α ~ Normal(0, 2.5) # nāo é alpha, é α
β = Vector{Float64}(undef, predictors)

for i in 1:predictors
β[i] ~ Normal()
end

# likelihood
for i in 1:length(y)
y[i] ~ BinomialLogit(n[i], α + X[i, :] · β) #\cdot TAB (dot product)
end
end
end;
```

REGRESSÃO LOGÍSTICA

AVALIAÇÃO

- Otimização para o problema de negócio depende da redução da distância da bola em relação aos buracos, mas jogadores piores tendem a fazer mais de um putting, de modo que eles mesmos já realizam esse ajuste naturalmente.
- Modelo não permite entender a relação entre a probabilidade de acerto e a habilidade do jogador.
- O ajuste é satisfatório, mas não resolve o problema.

GOLF PUTTING

Modelo V.2

O que faz a bola de golfe entrar?

- A altura máxima será (R-r).
- Ou seja, consideramos o raio do buraco (R) e subtraímos dele o raio da bola (r) pois é preciso haver espaço para a bola entrar.
- Se não subtrairmos o raio da bola e considerarmos a altura máxima como o Raio do buraco, a bola de golfe poderá passar por ele no limite, apenas bordejando o buraco (e logo, não entrando).

- A função inversa do Seno é o Arcoseno
- Se o ângulo for zero, a altura também será zero (logo, a bola passará com seu centro exatamente no centro do buraco).
- Se o ângulo for negativo, passará "abaixo" do centro, se for positivo, passará "acima" do centro.

- Uma boa prior distribution para o ângulo é a distribuição normal centrada em zero, pois:
- Os jogadores miram e acertam em média no centro
- Os erros estão centrados nessa média.
- Não há preferência por "errar" mais para cima ou para baixo.

Dado que já conhecemos a média, o parâmetro a ser inferido é portanto o desvio padrão desta distribuição normal: ou seja, o grau de controle que os jogadores têm sobre esse ângulo (que deveria ser 0°).

- A probabilidade de que a bola entre no buraco, para uma dada distância X, é dada pela probabilidade de que o módulo do ângulo seja menor do que o ângulo limite:
 - Pr(|ângulo| < arcoseno((R-r)/x)</p>
- Essa probabilidades será igual a:
 - 2 \(\phi \) (\(\text{angulo_limite-m\'e} \) desvio_padr\(\text{ao} \))-1
 - Φ é a CDF da Normal
 - A média é 0
 - 2 * \(\phi \) porque \(\epsi \) bicaudal
 - -1 porque x (1-x): p é o "centro" dos limites

MODELO

■ Modelo em Turing

```
function max_angle(r, R, x)

return asin((R-r)/x)
end

@model function trigon_reg(x, n, y, r, R)
    # priors
    σ ~ truncated(Normal(0, 2.5); lower=0)

# likelihood
for i in 1:length(y)
    p = 2 * cdf(Normal(0, σ), max_angle(r, R, x[i]))-1
    y[i] ~ BinomialLogit(n[i], p)
end
end;
```

RESULTADOS

AVALIAÇÃO

- Ajuste é superior
- Agora temos um novo parâmetro: o grau de controle do jogador sobre o ângulo em que ele acerta a bola
 - Jogadores piores terão um desvio padrão maior
 - Jogadores melhores terão um desvio padrão menor
- A distribuição posterior de sigma representa como esse grau de controle se distribui no conjunto de jogadores
- Agora conseguimos resolver o problema!

GOLF PUTTING

Simulação

Podemos identificar na distribuição posterior do parâmetro sigma original o percentil extremo à direita (ou seja, o maior nível de "erro" dos jogadores que conseguiram acertar)

Podemos gerar vários modelos, um para cada diâmetro de buraco, e ver como isso afeta o parâmetro sigma:

Buracos maiores, tendem a ter um sigma médio superior (ou seja, na média, é possível "errar mais" em relação ao ângulo

Diametro (polegadas)	Sigma médio
4.25	0.0381874
5.25	0.0471095
6.25	0.0624821
7.25	0.0765048
8.25	0.0813176
9.25	0.0999186

O diâmetro ideal dos buracos é de aprox. 7 polegadas!

OBRIGADO!

Referências:

Gelman, Andrew (2019). "Model building and expansion for golf putting". Disponível em: https://mc-stan.org/users/documentation/case-studies/golf.html

Dados extraídos de:

https://statmodeling.stat.columbia.edu/2019/03/21/new-golf-putting-data-and-a-new-golf-putting-model/