Accelerating ZF-Net Forward Propagation by CUDA

Wenqi Jiang (wj2285) Hanzhou Gu(hg2498)

CPU convolution: For each point in the output, do convolution

for i in output row:
for j in output col:
for k in output layer:
do convolution

CPU (Multiple Cores)

GPU (Hundreds of Cores)

GPU convolution: Have many cores, each core correspond to an point of output.

in every thread:
do convolution

No disgusting for loop any more!

2000 times faster than CPU in our experiment!

Challenge: Fast Memories are very limited!

Shared Memory per Block: 48KB

Constant Memory in total: 64KB

Layer 2:

Input: 169 KB (but we can use many blocks)

Filter: $4 \times 384 \times 3 \times 256 = 3,456 \text{ KB}$

Natural idea: Store input to shared memory; Leave filter in global memory

Time consumed in convolution layers

Not good enough!

Input size is far more smaller than filter

In the majority of time, GPU is loading filters rather than loading input

Advanced idea: load filter to Shared Memory iteratively (since Shared memory is very limited)

Time consumed in convolution layers

Much better!

Compare to naïve parallel:

2 x faster (kernel + memory copy)

3 x faster (kernel)

Magic! Changing the block size can significantly influence the algorithm performance!

Philosophy of designing high performance parallel algorithm: put data in fast memories, use them as much as possible.

Block setting 1: filter in shared memory can only be used very few times

Block setting 2: filter in shared memory can be used many times, which speeds up the algorithm

Time consumed in convolution layers

Compare to naïve parallel:

10.0 x faster (kernel)

2.4 x faster (kernel + memory copy)

Compare to Block setting 1:

3.9 x faster (kernel)

1.4 x faster (kernel + memory copy)

Fully-connected Layers: Matrix Multiplication of arbitrary size

```
Serial

for I in matrix1. length:

for j in matrix2.length:

for k in matrix1.width:

do multiplication

Optimization 1:

for each block:

Naïve Parallel

threads number:=

size of output matrix

for each iteration:

do multiplication of two cell

Optimization 2:

for each block:
```

for each iteration:

prefeching the tile in to register

copy input to shared memory

do tiled multiplication

for each iteration:

copy input to shared memory

do tiled multiplication

Parallel computing much faster

Max Equation

• The max() equation returns the largest value from a set of values.

S: Set of Discrete Values

R: Set of Continuous Real Values

∈ : Symbol for Element of a Set

x; : An Instance of an Element of a Set

≥ : Greater than or equal to for all elements in a set

Serial Softmax:

batch size 128

for each row:

calculate and compare SM

Parallel Max and Sum:

batch size 128

halving thread in each iteration:

do reduction

• Condition is met where element x_j is the maximum in $x \in S$, when:

 \mathbf{x}_{j} is greater than or equal to all elements \mathbf{x}_{i} in set S

$$\downarrow \\ \mathbf{x}_{\mathbf{j}} \geq \mathbf{x}_{\mathbf{i}}, \mathbf{x} \in \mathbf{S}$$

Parallel findMaxElement:

batch size 128

halving thread in each iteration

do reduction

SoftMax Equation

- The softmax() equation takes as input a set of real values, and outputs a new set of values between 0 and 1, and where the values add up to one.
 - Typically used in squashing the outputs of a neural network.
 - Inputs can be any real values of any range (e.g., > 1.0).
 - Outputs from softmax represent probabilities.

Overall Result

Best optimized algorithm compare to naïve parallel:

```
3 x faster (kernel + memory copy)
```

2.2 x faster (kernel)

Best optimized algorithm compare to serial:

```
696 x faster (kernel + memory copy) 3905 x faster (kernel)
```