1. Назначение, конструкция и работа корректора приёмистости (автомата приёмистости)

Назначение

Обеспечивает необходимую скорость изменения подачи топлива при переходе с одного режима работы двигателя на другой режим работы двигателя.

Исходя из условий стабильности работы компрессора, КС и турбины двигателя.

Так как при резком повышении расхода топлива может произойти перегрев и оплавление лопаток турбины.

А при резком снижении расхода топлива может произойти помпаж в компрессоре и погасание факелов пламени в КС.

Режим	αруд	$\pi_{{\scriptscriptstyle K\!\Sigma}}$	$G_{\text{т.час},}$	n _{BT} ,	n _{кнд} ,	n _{КВД} ,	Р,
		112	кг/час	об/мин	об/мин	об/мин	кгс
Земной малый	40°	3,2	400	1400	2690	8500	400
газ							
Взлётный	115°	21	3000	5210	10530	14200	6500

Время приёмистости с режима ПМГ режима Взлётный $5,0^{+1,0}_{-0,5}$ с.

Конструкция

Корректор приёмистости состоит из:

- пружина с регулировочным винтом 40;
- золотник 41;
- чувствительный элемент 31 с регулировочным винтом 30.

Работа

При поступлении команды пилота на увеличение режима работы двигателя, разность сил и давлений жидкости на сервопоршне Д.И. заставляет Д.И. опускаться (открываться).

При этом из нижней полости сервопоршня Д.И. должен быть вытеснен керосин. Он вытесняется через отверстие в золотнике корректора приёмистости.

Величина открытия отверстия в корректоре приёмистости не постоянная. Она зависит от режима работы двигателя, а именно от $\pi_{\kappa\Sigma}$.

Когда $\pi_{\kappa\Sigma}$ маленькое (например на режиме МГ $\pi_{\kappa\Sigma}=3,2$), то чувствительный элемент корректора приёмистости под действием перепада давлений жидкости, подводимой от ПГП-1 и ПГП-2 сдвигается влево, перемещая золотник влево. Отверстие сообщающее нижнюю полость сервопоршня Д.И. со сливом сужается. Поэтому перетекание жидкости из нижней полости сервопоршня Д.И. на слив затруднено, и происходит медленно, Д.И. движется вниз медленно.

Когда $\pi_{\kappa\Sigma}$ больше (например, на режиме 0,7 Ном $\pi_{\kappa\Sigma}=12$), то чувствительный элемент сдвигается правее, перемещая вправо золотник. Отверстие сообщающее нижнюю полость сервопоршня Д.И. со сливом расширяется. Поэтому перетекание жидкости из нижней полости сервопоршня Д.И. на слив облегчается, и происходит уже быстрее, Д.И. движется вниз быстрее.

При поступлении команды пилота на сброс режима, разность сил и давлений жидкости на сервопоршне Д.И. заставляет Д.И. подниматься (закрываться). Но жидкость должна теперь пополнять нижнюю полость

сервопоршня через корректор приёмистости за счёт разряжения в ней. Этот процесс протекает дольше. Поэтому время обратной приёмистости (время перехода с режима Взлёт на режим Малый газ дольше — 8...10 секунд). Это соответствует теоретически необходимому количеству топлива, т.к. двигатель снижает обороты медленнее, чем набирает.