清华大学 2007 年硕士生入学考试试题

准考证号______ 系别______ 考试日期_____

考试科目______ 专业____

试题内容:

一、(10 分) 电路如题一图所示。当 R 的值为多大时可获得最大功率?并求该最大功率。

二、(123) 列写求解题二图所示电路中回路电流 I_1 , I_2 和 I_3 所需的回路方程,并整理成如下矩阵形式:

$$\begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ I_1 \\ \mathbf{i} \\ I_2 \\ \mathbf{i} \\ I_3 \end{bmatrix} = \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix}$$

三、求解下列各题(本题共30分)

- 1. 已知某端口取关联参考方向的电压 u(t) 、电流 i(t) 波形分别如题三图 (a) 、题三图 (b) 所示。
 - (1) 分别求电压 u(t) 、电流 i(t) 的有效值;
 - (2) 定性说明电压 u(t) 、电流 i(t) 所含的谐波成分;
 - (3) 计算由电压 u(t) 、电流 i(t) 所产生的平均功率。
 - 2. 求题三图(c)所示二端口网络的传输参数方程。
- 3. 求题三图 (d) 所示电路中电压源发出的有功功率。已知电源电压为 $u_s(t)=2\sqrt{2}\sin(2000t+30^\circ)$ V 。理想变压器变比n=2,回转器回转电阻 $\alpha=2\Omega$ 。

1 页 共 3 页

- 4. 已知某均匀传输线上距离始端 xkm 处线上电流的一个分量为 $i(x,t)=0.202e^{-0.000171x}\sin(100\pi t-0.001062x+39.14^\circ)\,\mathbf{A}$
- (1)说明该电流分量是正向行波还是反向行波;
- (2) 若波阻抗 $Z_c = 890 \angle -9.14^{\circ} \Omega$,求同方向行进的电压波;
- (3) 求传播常数 γ 、相位速度 ν 和波长 λ 。

四、(10 分) 含有理想运算放大器的电路如题四图所示。试求该电路的输入阻抗并说明该电路的作用。

第 2 页 共 3 页

五、(16分)

1. 对称三相电路如题五图(a) 所示。已知电源线电压为 380V, 电源发出的总平均功率 10kW, 总负载功率因数为 0.9(感性); 三相电动机负载吸收的平均功率为 8kW, 功率因数为 0.8(感性)。求负载阻抗 Z。

2. 电路如题五图(b)所示。已知对称三相电源的内

阻抗 Z_1 = 1+ j1 Ω ,Y 形连接对称三相负载阻抗 Z_2 = 30+ j40 Ω 。求 b、c 间短路时的短路电流 I_{bc} 。

题五图(b)

六、(12 分) 电路如题六图所示。开关 S 换路前电路已达稳态。 t=0时开关 S 由位置 1 合向位置 2。求开关换路后的电流 $i_1(t)$ 、 $i_2(t)$ 和电压 u(t) ,并画出波形图(本题限时域求解)。

七、(12 分) 电路如题七图(a) 所示,电压源激励如题七图(b) 所示。开关 S 闭合前电路已进入稳态。求开关

第 3 页 共 3

页