07: Regularization

Previous Next Index

The problem of overfitting

- So far we've seen a few algorithms work well for many applications, but can suffer from the problem of overfitting
- What is overfitting?
- What is regularization and how does it help

Overfitting with linear regression

- Using our house pricing example again
 - o Fit a linear function to the data not a great model
 - This is **underfitting** also known as **high bias**
 - Bias is a historic/technical one if we're fitting a straight line to the data we have a strong preconception that there should be a linear fit
 - In this case, this is not correct, but a straight line can't help being straight!
 - Fit a quadratic function
 - Works well
 - Fit a 4th order polynomial
 - Now curve fit's through all five examples
 - Seems to do a good job fitting the training set
 - But, despite fitting the data we've provided very well, this is actually not such a good model
 - This is **overfitting** also known as **high variance**
 - Algorithm has high variance
 - High variance if fitting high order polynomial then the hypothesis can basically fit any data
 - Space of hypothesis is too large

- To recap, if we have too many features then the learned hypothesis may give a cost function of exactly zero
 - But this tries too hard to fit the training set

• Fails to provide a *general* solution - **unable to generalize** (apply to new examples)

Overfitting with logistic regression

- Same thing can happen to logistic regression
 - Sigmoidal function is an underfit
 - o But a high order polynomial gives and overfitting (high variance hypothesis)

Addressing overfitting

- Later we'll look at identifying when overfitting and underfitting is occurring
- Earlier we just plotted a higher order function saw that it looks "too curvy"
 - o Plotting hypothesis is one way to decide, but doesn't always work
 - Often have lots of a features here it's not just a case of selecting a degree polynomial, but also harder to plot the data and visualize to decide what features to keep and which to drop
 - o If you have lots of features and little data overfitting can be a problem
- How do we deal with this?
 - o 1) Reduce number of features
 - Manually select which features to keep
 - Model selection algorithms are discussed later (good for reducing number of features)
 - But, in reducing the number of features we lose some information
 - Ideally select those features which minimize data loss, but even so, some info is lost
 - o 2) Regularization
 - lacktriangle Keep all features, but reduce magnitude of parameters θ
 - Works well when we have a lot of features, each of which contributes a bit to predicting y

Cost function optimization for regularization

• Penalize and make some of the θ parameters really small \circ e.g. here θ_3 and θ_4

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \log \Theta_3^2 + \log \Theta_4^2$$

- The addition in blue is a modification of our cost function to help penalize θ_3 and θ_4
 - $\circ~$ So here we end up with θ_3 and θ_4 being close to zero (because the constants are massive)
 - So we're basically left with a quadratic function

- In this example, we penalized two of the parameter values
 - o More generally, regularization is as follows
- Regularization
 - Small values for parameters corresponds to a simpler hypothesis (you effectively get rid
 of some of the terms)
 - o A simpler hypothesis is less prone to overfitting
- Another example
 - $\circ \ \ \text{Have 100 features } x_1, x_2, ..., x_{100}$
 - o Unlike the polynomial example, we don't know what are the high order terms
 - How do we pick the ones to pick to shrink?
 - With regularization, take cost function and modify it to shrink all the parameters
 - Add a term at the end
 - This regularization term shrinks every parameter
 - \blacksquare By convention you don't penalize θ_0 minimization is from θ_1 onwards

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \right]$$

- In practice, if you include θ_0 has little impact
- λ is the regularization parameter

- o Controls a trade off between our two goals
 - 1) Want to fit the training set well
 - 2) Want to keep parameters small
- With our example, using the **regularized objective** (i.e. the cost function with the regularization term) you get a much smoother curve which fits the data and gives a much better hypothesis
 - If λ is very large we end up penalizing ALL the parameters (θ_1 , θ_2 etc.) so all the parameters end up being close to zero
 - If this happens, it's like we got rid of all the terms in the hypothesis
 - This results here is then underfitting
 - So this hypothesis is too biased because of the absence of any parameters (effectively)
- So, λ should be chosen carefully not too big...
 - $\circ~$ We look at some automatic ways to select λ later in the course

Regularized linear regression

- Previously, we looked at two algorithms for linear regression
 - Gradient descent
 - Normal equation
- Our linear regression with regularization is shown below

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

- Previously, gradient descent would repeatedly update the parameters θ_j , where j = 0,1,2...n simultaneously
 - Shown below

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \qquad \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$(j = \mathbb{X}, 1, 2, 3, \dots, n)$$

- We've got the θ_0 update here shown explicitly
 - This is because for regularization we don't penalize θ_0 so treat it slightly differently
- How do we regularize these two rules?
 - \circ Take the term and add $\lambda/m * \theta_j$

- Sum for every θ (i.e. j = o to n)
- This gives regularization for gradient descent
- We can show using calculus that the equation given below is the partial derivative of the regularized $J(\theta)$

$$\theta_j := \theta_j - \alpha \quad \left[\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \right]$$

$$\frac{2}{2\Theta_j} \underbrace{\frac{(j = \mathbf{X}, 1, 2, 3, \dots, n)}{\text{cagularizal}}}_{\text{cagularizal}}$$

- The update for θ_i
 - $\circ \theta_i$ gets updated to
 - θ_i α * [a big term which also depends on θ_j]
- So if you group the θ_i terms together

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

• The term

$$(1 - \alpha \frac{\lambda}{m})$$

- Is going to be a number less than 1 usually
- Usually learning rate is small and m is large
 - So this typically evaluates to (1 a small number)
 - So the term is often around 0.99 to 0.95
- This in effect means θ_i gets multiplied by 0.99
 - Means the squared norm of θ_i a little smaller
 - o The second term is exactly the same as the original gradient descent

Regularization with the normal equation

- Normal equation is the other linear regression model
 - Minimize the $J(\theta)$ using the normal equation
 - To use regularization we add a term $(+ \lambda [n+1 \times n+1])$ to the equation
 - $[n+1 \times n+1]$ is the n+1 identity matrix

$$O = \left(\begin{array}{c} \chi^{T} \chi + \lambda \\ \end{array} \right) \left(\begin{array}{c} \lambda \\ \end{array} \right) \left(\begin{array}{c}$$

Regularization for logistic regression

- We saw earlier that logistic regression can be prone to overfitting with lots of features
- Logistic regression cost function is as follows;

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)} + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))\right]$$

• To modify it we have to add an extra term

$$+\frac{\lambda}{\sum_{i=1}^{2m}\sum_{j=1}^{r}O_{j}^{2}}$$

- This has the effect of penalizing the parameters θ_1 , θ_2 up to θ_n
 - Means, like with linear regression, we can get what appears to be a better fitting lower order hypothesis
- How do we implement this?
 - o Original logistic regression with gradient descent function was as follows

$$\theta_j := \theta_j - \alpha$$
 $\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ $(j = 0, 1, 2, 3, \dots, n)$

- Again, to modify the algorithm we simply need to modify the update rule for θ_1 , onwards
 - Looks cosmetically the same as linear regression, except obviously the hypothesis is very different

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Advanced optimization of regularized linear regression

• As before, define a costFunction which takes a θ parameter and gives jVal and gradient back

```
function [jVal, gradient] = costFunction(theta)       jVal = [ code to compute \ J(\theta)] ;        gradient(1) = [ code to compute \ \frac{\partial}{\partial \theta_0} J(\theta) \ ] ;        gradient(2) = [ code to compute \ \frac{\partial}{\partial \theta_1} J(\theta) \ ] ;        gradient(3) = [ code to compute \ \frac{\partial}{\partial \theta_2} J(\theta) \ ] ;        \vdots        gradient(n+1) = [ code to compute \ \frac{\partial}{\partial \theta_n} J(\theta) \ ] ;
```

- use fminunc
 - Pass it an @costfunction argument
 - Minimizes in an optimized manner using the cost function
- jVal
 - Need code to compute $J(\theta)$
 - Need to include regularization term
- Gradient
 - Needs to be the partial derivative of $J(\theta)$ with respect to θ_i
 - Adding the appropriate term here is also necessary

```
function [jVal, gradient] = costFunction(theta)
```

$$\begin{aligned} \mathbf{jVal} &= \texttt{[code to compute } J(\theta) \texttt{];} \\ J(\theta) &= \left[-\frac{1}{m} \sum_{i=1}^m y^{(i)} \log \left(h_\theta(x^{(i)}) + (1-y^{(i)}) \log 1 - h_\theta(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2 \\ \texttt{gradient(1)} &= \texttt{[code to compute } \frac{\partial}{\partial \theta_0} J(\theta) \texttt{];} \\ &\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} \\ \texttt{gradient(2)} &= \texttt{[code to compute } \frac{\partial}{\partial \theta_1} J(\theta) \texttt{];} \\ &\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)} + \frac{\lambda}{m} \theta_1 \\ \texttt{gradient(3)} &= \texttt{[code to compute } \frac{\partial}{\partial \theta_2} J(\theta) \texttt{];} \\ &\vdots &\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)} + \frac{\lambda}{m} \theta_2 \\ &\vdots &gradient(n+1) = \texttt{[code to compute } \frac{\partial}{\partial \theta_n} J(\theta) \texttt{];} \end{aligned}$$

- Ensure summation doesn't extend to to the lambda term!
 It doesn't, but, you know, don't be daft!