

Tutorial – 1 (01-08-2022)

Programme	B.Tech. (All Branches)	Semester	Fall 2022-2023
Course Name	Discrete Mathematics And Graph Theory	Course Code	MAT2002
Faculty Name	Dr. Navneet Kumar Verma	Slot / Class No	A21+A22+A23
Submission date	01-08-2022	Max. Marks	10

Answer ALL the Questions

Q. No. Question Description

Each question is of equal marks

- **1.** Let $A \subseteq Z$ and $f: A \to N$ a one-to-one function. (Z is set of integers; N is set of natural numbers). We defined a relation R on 'A' as follows: for all $x, y \in A$, $(x, y) \in R$ iff and only if f(y) = k f(x) for some $k \in N$.
 - a) Prove that R is partial order relation on A.
 - **b)** Let $A = \{4,5,6,7,8,9\}$ and suppose f(x) = 10 x. Draw the Hasse diagram for the poset (A:R)
- 2. Let $A = \{1, 2, 4, 8\}$ and let \leq be the partial order of divisibility on A. Let $A' = \{0, 1, 2, 3\}$ and let \leq ' be the usual relation "less than or equal to" on integers. Show that (A, \leq) and (A', \leq') are isomorphic posets.