Assigment 1

Desirée Gijón Gómez Student id: drf623

December 14, 2020

Exercise 1 (24 points) . Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be (non-zero) normed vector spaces over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C}

• [5p]. Let $T: X \to Y$ be a linear map. Set $||x||_0 = ||x||_X + ||Tx||_Y$, for all $x \in X$. Show that $||\cdot||_0$ is a norm on X. Show next that the two norms $||\cdot||_X$ and $||\cdot||_0$ are equivalent if and only if T is bounded.

Let's check the axioms of norm: for any $\lambda \in \mathbb{K}$, $x, y \in X$

1. $\|\lambda x\|_0 = |\lambda| \|x\|_0$.

$$\|\lambda x\|_0 = \|\lambda x\|_X + \|T(\lambda x)\|_Y = |\lambda| \|x\|_X + \|\lambda T(x)\|_Y =$$
$$= |\lambda| (\|x\|_X + \|T(x)\|_Y) = |\lambda| \|x\|_0.$$

2. $||x||_0 \ge 0$ for any $x \in X$ and $||x||_0 = 0 \iff x = 0$. The first part is obvious, and for the second part:

$$0 = ||x||_0;$$

$$0 = ||x||_X + ||T(x)||_Y;$$

as the two terms are non negative numbers:

$$0 = ||x||_X = ||T(x)||_Y,$$

so as $0 = ||x||_X$ then x = 0.

3. $||x+y||_0 \le ||x||_0 + ||y||_0$. That will deduce from $||\cdot||_X$ and $||\cdot||_Y$ being norms and linearity of T.

Let's prove now that $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent if and only if T is bounded.

• \Leftarrow If T is bounded then there exists $||T|| = \sup\{||Tx||_Y, ||x||_X \le 1\}$ and $||Tx||_Y \le ||T|| ||x||_X$ for any $x \in X$. We have to prove there exist c, C > 0 such that $c||x||_X \le ||x||_0 \le C||x||_X$ for any $x \in X$. First, as $||Tx||_Y \ge 0$, $||x||_0 \ge ||x||_X$ for any $x \in X$ (so we take c = 1). On the other hand:

$$||x||_0 = ||x||_X + ||T(x)||_Y \le ||x||_X + ||T|| ||x||_X = (1 + ||T||) ||x||_X.$$

So taking C = 1 + ||T||, the two norms are equivalent.

• \implies If there exists some C > 0 such that $||x||_0 \le C||x||_X$, then:

$$||x||_X + ||T(x)||_Y \le C||x||_X;$$

$$||T(x)||_Y \le (C-1)||x||_X$$

and that inequality implies T is bounded.

• [4p]. Show that any linear map $T: X \to Y$ is bounded, if X is finite dimensional.

For the first part, we now T is bounded if and only if the two norms considered are equivalent on X, and for *Theorem 1.6* any 2 norms on X are equivalent when X is finite-dimensional.

[5p]. Suppose that X is infinite dimensional. Show that there exists a linear map T: X → Y, which is not bounded (= not continuous). [Hint: Take a Hamel basis for X.] Let X be a vector space over K. An algebraic basis for X is a family (e_i)_{i∈I} of elements in X with the following property: For each vector space Y over K, and each family (y_i)_{i∈I} in Y there exists precisely one linear map T: X → Y satisfying T (e_i) = y_i, for all i ∈ I. One can show that this condition is equivalent to the more usual definition of an algebraic basis: for each x ∈ X, there is a unique family (λ_i)_{i∈I} in K for which the set {i ∈ I : λ_i ≠ 0} is finite and x = ∑_{i∈I} λ_ie_i. When X is infinite dimensional, an algebraic basis is also called a Hamel basis. It is a consequence of Zorn's lemma that each infinite dimensional vector space admits a Hamel basis. You are free to use these facts without further justifications.

We take a Hamel basis $(e_i) \subset X$ and define a norm on X such that this basis is orthogonal with respect to it, i.e. for $x \in X$, if $x = \sum \lambda_i e_i$ then we define $||x|| := \sqrt{\sum |\lambda_i|^2}$.

Now we choose $Y = \mathbb{K}$ and a countable subset of the Hamel basis $(e_n)_{n \geq 0} \subset (e_i)$. Also we consider the unique linear map such that $T(e_n) = n$ and $T(e_i) = 0$ otherwise.

Then T is linear and is not bounded, as:

$$\sup\{|Tx|, ||x|| = 1\} \ge \sup\{|T(e_i)|\} \ge \sup_{n>0} n.$$

• [5p]. Suppose again that X is infinite dimensional. Argue that there exists a norm $\|\cdot\|_0$ on X, which is not equivalent to the given norm $\|\cdot\|_X$, and which satisfies $\|x\|_X \leq \|x\|_0$ for all $x \in X$. Conclude that $(X, \|\cdot\|_0)$ is not complete if $(X, \|\cdot\|_X)$ is a Banach space.

If we take the not bounded linear map T for the previous exercise, the first part show us that the norm $\|x\|_0 := \|x\|_X + \|Tx\|_Y$ is not equivalent to $\|x\|_X$. And also, by constuction $\|\cdot\|_0 \ge \|\cdot\|_X$. Now, for HW3 Problem 1, if $(X, \|\cdot\|_X)$ and $(X, \|\cdot\|_0)$ were both complete, as $\|\cdot\|_0 \ge \|\cdot\|_X$, then the two norms would be equivalent and they are not, so $(X, \|\cdot\|_0)$ cannot be complete.

• [5p]. Give an example of a vector space X equipped with two inequivalent norms $\|\cdot\|$ and $\|\cdot\|'$ satisfying $\|x\|' \leq \|x\|$, for all $x \in X$, such that $(X, \|\cdot\|)$ is complete, while $(X, \|\cdot\|')$ is not. [Hint: Take $(X, \|\cdot\|) = (\ell_1(\mathbb{N}), \|\cdot\|_1)$ with a suitable choice of $\|\cdot\|'$; or take $(X, \|\cdot\|) = (L_2([0, 1], m), \|\cdot\|_2)$ with a suitable choice of $\|\cdot\|'$, where m is the Lebesgue measure.

We take $X = \ell_1(\mathbb{N}) = \{(x_n) \subset \mathbb{K}, \sum_{n=1}^{\infty} |x_n| < \infty\}$, and with norm $\|\cdot\|_1$. By HW1 Problem 5, $(X, \|\cdot\|_1)$ is a Banach space. In addition, we can also consider the infinity norm $||(x_n)||_{\infty} = \sup_{n>1} \{|x_n|\}$, as it's well-defined on X.

It's clear that $\|\cdot\|_{\infty} \leq \|\cdot\|_{1}$, as for each element of the sequence $|x_{n}| \leq$ Then $(x_n) \in X$ and $\|(x_n)\|_{\infty} = 1$, but $\|(x_n)\|_1 = [C] + 1 > C$, so it's not true

that $\|\cdot\|_1 \leq C\|\cdot\|_{\infty}$. Then the two norms can't be equivalent.

 $(X,\|\cdot\|_{\infty})$ can't be a Banach space by the same argument of the previous part.

Exercise 2 (20points) . Let $1 \le p < \infty$ be fixed, and consider the subspace M of the Banach space $(\ell_p(\mathbb{N}), \|\cdot\|_p)$, considered as a vector space over \mathbb{C} , given

$$M = \{(a, b, 0, 0, \ldots) : a, b \in \mathbb{C}\}\$$

Let $f: M \to \mathbb{C}$ be given by f(a, b, 0, 0, 0, ...) = a + b, for all $a, b \in \mathbb{C}$

• [8p]. Show that f is bounded on $(M, \|\cdot\|_p)$ and compute $\|f\|$. (Answer depends on p.)

It's easy to show that f is bounded: for any $x = (a, b, 0, ...) \in M$ we have:

$$|f(x)| = |a+b| \le |a| + |b| = |a|^{p^{1/p}} + |b|^{p^{1/p}} \le$$

 $\le ||x||_p + ||x||_p = 2||x||_p$

That shows that f is bounded. To compute the exact norm of f we will have to study

$$\sup_{\|x\|_p=1}\{|f(x)|\}=\sup_{|a|^p+|b|^p=1}\{|a+b|\}\leq \sup_{|a|^p+|b|^p=1}\{|a|+|b|\}$$

So we are going to study the maxima of the function $h(t) = t + (1 - t^p)^{1/p}$ with $t \in [0, 1]$.

Computing its critical points and solving h'(t) = 0 we get to the equation

$$0 = 1 - (1 - t^p)^{\frac{1}{p} - 1} t^{p-1}$$

which has solution $t_0 = \left(\frac{1}{2}\right)^{1/p}$. Analyzing the sign of h' we get to the conclusion that h reaches its maximum on t_0 , which is the value $h(t_0) = \left(\frac{1}{2}\right)^{1/p} + \left(1 - \frac{1}{2}\right)^{1/p} = 0$

So $\sup_{\|x\|_p=1}\{|f(x)|\}\leq \frac{2}{2^{1/p}}$, and this value is actually attained for the vector $x = ((\frac{1}{2})^{1/p}, (\frac{1}{2})^{1/p}, 0, \ldots)$. So, $||f|| = \frac{2}{2^{1/p}}$.

> • [7p]. Show that if 1 , then there is a unique linear functionalF on $\ell_{p}(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

We have a trivial extension of f given by $F(a_1, a_2, a_3, ...) = a_1 + a_2$. It's lineal and an extension of f, and verifies the norm condition, as we already have ||F|| > ||f|| and:

$$||F|| = \sup_{\sum_{n=1}^{\infty} |a_n|^p = 1} \{ |F(a_1, a_2, a_3, \ldots)| \} =$$

$$= \sup_{\sum_{n=1}^{\infty} |a_n|^p = 1} \{ |a_1 + a_2| \} \le \sup_{\sum_{n=1}^{\infty} |a_n|^p = 1, a_i = 0, i \ge 3} \{ |a_1| + |a_2| \} = ||f||$$

where in (*) the inequality holds because we maximize $|a_1 + a_2|$ if we maximize a_1^p and a_2^p , making $a_i = 0, i \ge 3$. So ||f|| = ||F||.

On the other hand let's prove uniqueness of F, i.e, that $F(0,0,a_3,a_4,\ldots) =$ 0 for any (a_n) with $a_1 = a_2 = 0$. Then let's suppose for some (a_n) that $F(0,0,a_3,a_4,\ldots) \neq 0$. Then, as $F(0,0,a_3,a_4,\ldots) = \sum_i F(0,0,0,\ldots,a_i,0,\ldots)$, for some a_i we have $F(0,0,0,\ldots,a_i,0,\ldots)\neq 0$. If we multiply a_i by $F(0,0,0\ldots,a_i,0,\ldots)$ and then normalize it, we can make $|a_i|=1$ and $\alpha:=$ $F(0,0,0,\ldots,a_i,0,\ldots)>0.$

Now, for any 0 < r < 1 we define:

$$(x_n) = ((1-r^p)^{1/p} \frac{1}{2^{1/p}}, (1-r^p)^{1/p} \frac{1}{2^{1/p}}, 0, \dots, ra_i, 0, \dots).$$

It verifies $\sum_{n=1}^{\infty} |x_n|^p = 1$, so $|F(x_n)| \leq \frac{2}{2^{1/p}}$. On the other hand:

$$|F(x_n)| = F(x_n) = (1 - r^p)^{1/p} F(\frac{1}{2^{1/p}}, \frac{1}{2^{1/p}}, 0, \dots) + r\alpha =$$

= $(1 - r^p)^{1/p} \frac{2}{2^{1/p}} + r\alpha$

Therefore, for any 0 < r < 1:

$$(1 - r^p)^{1/p} \frac{2}{2^{1/p}} + r\alpha \le \frac{2}{2^{1/p}},$$

$$r\alpha \le (1 - (1 - r^p)^{1/p}) \frac{2}{2^{1/p}},$$

$$\alpha \le \underbrace{\frac{(1 - (1 - r^p)^{1/p})}{r}}_{(\triangle)} \frac{2}{2^{1/p}}$$

If p > 1, we can compute the limit $\lim_{r\to 0} (\triangle)$ (using L'Hôpital's rule) and conclude that it tends to 0. That makes $\alpha = 0$ and we get our contradiction. We notice that for p=1 the argument doesn't work as $\Delta=1$

> • [5p]. Show that if p = 1, then there are infinitely many linear functional F on $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

We can extend the functional to $F(a_1, a_2, a_3, ...) = a_1 + a_2$. It's clearly linear, extends f and its norm (which verifies $||F|| \ge ||f||$ due to being an extension of f):

$$||F|| = \sup_{\sum_{n=1}^{\infty} |a_n| = 1} \{ |F(a_1, a_2, a_3, \dots)| \} =$$

$$= \sup_{\sum_{n=1}^{\infty} |a_n| = 1} \{ |a_1 + a_2| \} \le \sup_{\sum_{n=1}^{\infty} |a_n| = 1} \{ |a_1| + |a_2| \} \le 1 = ||f||$$

because $\sum_{n=1}^{\infty} |a_n| = 1$ implies $|a_1| + |a_2| \le 1$.

On the other hand, we have another candidates for extending f: $F_k(a_1, a_2, a_3, \ldots) = \sum_{i=1}^k a_i$ for any $k \geq 3$. Linearity and extension of F_k are clear, and the equality of the norms works by the same argument as before: verifies $||F_k|| \ge ||f||$ due to being an extension of f and:

$$||F_k|| = \sup_{\sum_{n=1}^{\infty} |a_n|=1} \{ |F(a_1, a_2, a_3, \ldots)| \} =$$

$$= \sup_{\sum_{n=1}^{\infty} |a_n|=1} \{ \left| \sum_{i=1}^{k} a_i \right| \} \le \sup_{\sum_{n=1}^{\infty} |a_n|=1} \{ \sum_{i=1}^{k} |a_i| \} \le 1 = ||f||$$

because $\sum_{n=1}^{\infty} |a_n| = 1$ implies $\sum_{i=1}^{k} |a_i| \le 1$. (We could also even consider an extension $\bar{F}(a_1, a_2, \ldots) = \sum_{i=1}^{\infty} a_i$, which will be well defined as that series converge absolutely and K is complete, and will be an extension by the same arguments as above).

Exercise 3 (25 points). Let X be an infinite dimensional normed vector space over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

> • [5p]. Let $n \geq 1$ be an integer. Show that no linear map $F: X \to \mathbb{K}^n$ is injective.

If F were injective then X would be isomorphic to F(X) which would be a subspace of \mathbb{K}^n , so F(X) would be finite dimensional with X infinite-dimensional.

• [5p]. Let $n \geq 1$ be an integer and let $f_1, f_2, \ldots, f_n \in X^*$. Show that

$$\bigcap_{j=1}^{n} \ker (f_j) \neq \{0\}$$

[Hint: Consider the map $F: X \to \mathbb{K}^n$ given by $F(x) = (f_1(x), f_2(x), \dots, f_n(x)), x \in X$.].

We consider $F: X \to \mathbb{K}^n$ defined by $F(x) = (f_1(x), f_2(x), \dots, f_n(x)), x \in X$. By the first part, it can't be injective, then $\ker F \neq \{0\}$. On the other hand $\ker F = \{x \in X, (f_1(x), f_2(x), \dots, f_n(x)) = 0\} = \{x \in X, f_i(x) = 0, i = 1, \dots, n\} = \bigcap_{i=1}^n \ker f_i$.

• [5p]. Let $x_1, x_2, \ldots, x_n \in X$. Show that there exists $y \in X$ such that ||y|| = 1 and $||y - x_j|| \ge ||x_j||$ for all $j = 1, 2, \ldots n$. [Hint: Use Theorem 2.7 (b) from lectures to get started.]

Theorem 2.7b) In the lectures says that given X a normed space, $0 \neq x \in X$ then there exists $f \in X^*$ with ||f|| = 1 and f(x) = ||x||. First we notice that if some $x_j = 0$ then there's nothing to prove for x_j , so we may assume all x_j are non-zero. Let's consider then $f_i \in X^*$ for each x_i given by the theorem. By the second part in this exercise, $\bigcap_{i=1}^n \ker f_i \neq \{0\}$. We take $0 \neq y \in \bigcap_{i=1}^n \ker f_i \neq \{0\}$, which can be taken such that ||y|| = 1, by normalizing y. We have in consequence:

$$f(x_j - y) = f(x_j) - f(y) = f(x_j) = ||x_j||;$$

$$|f(x_j - y)| \le ||f|| ||x_j - y|| = ||x_j - y||$$

So we get $||x_j|| \le ||x_j - y||$.

• [5p]. Show that one cannot cover the unit sphere $S = \{x \in X : \|x\| = 1\}$ with a finite family of closed balls in X such that none of the balls contains 0.

Assume by contradiction that there exists $x_1, \ldots, x_n \in X$, $r_1, \ldots, r_n > 0$ such that $S \subset \bigcup_{i=1}^n \bar{B}(x_i, r_i)$ such that $0 \notin \bar{B}(x_i, r_i)$, i.e. $|x_i| > r_i$. By the third part of this exercise there exists $y \in S$ with $||y - x_j|| \ge ||x_j|| > r_j$. So $y \notin \bar{B}(x_j, r_j)$ for all $j = 1, \ldots, n$.

• [5p]. Show that S is non-compact and deduce further that the closed unit ball in X is non-compact.

We'll be done when we give an open recover of S by open balls such that the closed balls don't contain 0. Then, if S were compact, there would be a finite recover $S \subset \cup_{i=1}^n B(x_i,r_i)$. But then applying closures (S is closed) $S \subset \overline{\cup_{i=1}^n B(x_i,r_i)} = \bigcup_{i=1}^n \overline{B}(x_i,r_i)$, and we will have a contradiction. We take the open cover by $\{B(x,\frac{1}{2})\}_{x\in S}$. Then $S \subset \bigcup_{x\in S} B(x,\frac{1}{2})$ and $0 \notin \overline{B}(x,\frac{1}{2})$.

For the closed unit ball B, it's a closed space in X, same as S (as they are preimages of a continuous function in X, the norm), and then S is closed in B. So if B were compact, then S will be a closed subspace of a compact subspace, and therefore compact. So B can't be compact.

Exercise 4 (20 points) . Let $L_1([0,1],m)$ and $L_3([0,1],m)$ be the Lebesgue spaces on [0,1] Recall from HW2 that $L_3([0,1],m) \subsetneq L_1([0,1],m)$. For $n \geq 1$, define:

$$E_n := \left\{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le n \right\}$$

• [6p]. Given $n \ge 1$, is the set $E_n \subset L_1([0,1],m)$ absorbing? Justify.

It's not absorbing: if we consider $h(x) = \frac{1}{x^{2/3}}$, then $h \in L_1([0,1], m)$. However, for any $0 < k \in \mathbb{K}$:

$$\int_{[0,1]} \left| k \frac{1}{x^{2/3}} \right|^3 dx = k^3 \int_{[0,1]} \frac{1}{x^2} dx = \infty$$

So for any $0 < k \in \mathbb{K}$, $kh \notin E_n$.

On the other hand E_n is actually convex: if $f, g \in E_n$ and 0 < t < 1 then:

$$\int_{[0,1]} |tf + (1-t)g|^3 dm \le \int_{[0,1]} t |f|^3 + (1-t) |g|^3 dm \le tn + (1-t)n = n$$

So $tf + (1-t)g \in E_n$.

• [7p]. Show that E_n has empty interior in $L_1([0,1],m)$, for all $n \ge 1$.

We are going to show that given $f \in E_n$, for any r > 0, the open balls: $B_1(f,r) = \{g \in L_1([0,1]) \int_{[0,1]} |f-g| \, dm < r\}$ verify that $B_1(f,r) \not\subset E_n$. In other words, for any E_n , any $f \in E_n$ and any r > 0, we are going to give $g_r \in B_1(f,r)$ with $g_r \not\in E_n$.

If f = 0, then we define $h(x) := \frac{1}{x^{2/3}}$ and consider $g_r(x) = \frac{r}{2}h(x)$. As $\int_{[0,1]} \frac{1}{x^{2/3}} dx = 1$, then $\int_{[0,1]} |g_r - 0| dm < r$. However, $g_r \notin E_n$ by our reasoning above on the part that the E_n are not absorbing.

In the general case, we consider $g_r(x) := f(x) + \frac{r}{2}h(x)v(x)$, with $v : [0,1] \to \mathbb{K}$ such that |v(x)| = 1 and has the same angle as f(x) (i.e. $v(x) = \frac{f(x)}{|f(x)|}$ if $f(x) \neq 0$, 1 otherwise), so that $|g_r(x)| = |f(x)| + \frac{r}{2}|h(x)|$.

Then $g_r \in B_1(f,r)$ and:

$$\int_{[0,1]} |g_r| \, dm = \int_{[0,1]} \left| f + \frac{r}{2} h(x) v(x) \right|^3 dm \ge^* \int_{[0,1]} \frac{r^3}{8} h^3(x) dx = \infty.$$

The inequality (*) we'll come from expanding the binomial. Then $g_r \notin E_n$.

• [8p]. Show that E_n is closed in $L_1([0,1], m)$, for all $n \ge 1$.

We'll prove that for any sequence $\{f_j\} \subset E_n$ such that there exists $f \in L_1[0,1]$ with $\lim_{j\to\infty} ||f_j - f||_1 = 0$, then $f \in E_n$.

We'll use the result that if $f_j \to f$ in L_1 , then there exists a subsequence f_{j_k} such that $f_{j_k} \to f$ almost everywhere. That implies that $|f_{j_k}|^3 \to |f|^3$ almost everywhere.

Now we'll use the Fatou's lemma: given a sequence of non-negative measurable functions $\{g_n\}$ then $\liminf g_n$ is also measurable and:

$$\int \liminf g_n dm \le \liminf \int g_n dm.$$

In our case with $|f_{j_k}|^3$, we have that $\liminf |f_{j_k}|^3 = |f|^3$ so:

$$\int_{[0,1]} |f|^3 dm \le \liminf \int_{[0,1]} |f_{j_k}|^3 \le n$$

as $f_{j_k} \in E_n$. Then $f \in E_n$.

• [4p]. Conclude from (b) and (c) that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$

We want to show that $L_3([0,1],m)$ is a countable union of nowhere dense sets. The sets E_n verify $Int(\bar{E}_n) = Int(E_n) = \emptyset$, so they are nowhere dense. Finally, $L_3([0,1],m) = \bigcup_{n=1}^{\infty} E_n$ as if $f \in L_3([0,1],m)$ then $\int_{[0,1]} |f|^3 dm < \infty$, so there exists some $n \in \mathbb{N}$ such that $f \in E_n$.

Exercise 5 (11 points) . Let H be an infinite dimensional separable Hilbert space with associated norm $\|\cdot\|$, let $(x_n)_{n\geq 1}$ be a sequence in H, and let $x\in H$.

• [2p]. Suppose that $x_n \to x$ in norm, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample.

 $x_n \to x$ in norm means $||x_n - x|| \to 0$. We want to show that $||x_n|| \to ||x||$, which is equivalent to $|||x_n|| - ||x||| \to 0$. We notice that:

$$||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x||,$$

therefore $||x_n|| - ||x|| \le ||x_n - x||$. Analogously, it can be shown that $||x|| - ||x_n|| \le ||x_n - x||$, so $||x_n|| - ||x||| \le ||x_n - x||$. So:

$$0 \le |||x_n|| - ||x||| \le ||x_n - x||$$

then $|||x_n|| - ||x||| \to 0$, so $||x_n|| \to ||x||$.

• [5p]. Suppose that $x_n \to x$ weakly, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample. [Hint: Consider an orthonormal basis $(e_n)_n \ge 1$ in H, and use HW4.]

As it has been said in the lectures, any separable Hilbert space admits countable orthonormal basis $(e_n)_{n\geq 1}$ in H. By HW P2a $x_n\to x$ weakly if and only if $f(x_n)\to f(x)$ for any $f\in H^*$. By the Riesz representation theorem we know

that any $f \in H^*$ is of the form f_y whith $f_y(x) = \langle x, y \rangle$ for some unique $y \in H$. On the other hand, as $(e_n)_{n \geq 1}$ is orthonormal basis, we get that for any $y \in H$, $y = \sum_n y_n e_n$ with $\{y_n \neq 0\}$ finite and $y_n = \langle y, e_n \rangle$.

Then for any $y \in H$, $f_y(e_n) = \langle e_n, y \rangle = \bar{y_n}$. As the set $\{y_n \neq 0\}$ is finite, $f_y(e_n) \to 0 = f_y(0)$. So for any $f \in H^*$ we have $f(e_n) \to f(0)$, so $e_n \to 0$ weakly. However, $||e_n|| = 1$ so $||e_n|| \to ||0||$.

• [4p]. Suppose that $||x_n|| \le 1$, for all $n \ge 1$, and that $x_n \to x$ weakly, as $n \to \infty$. Is it true that $||x|| \le 1$? Give a proof or a counterexample.

 $x_n \to x$ weakly is equivalent to $f(x_n) \to f(x)$ for any $f \in H^*$, i.e., $\langle x_n, y \rangle \to \langle x, y \rangle$ for any $y \in H$. In particular for x, we have $\langle x_n, x \rangle \to \|x\|^2$, so we have $|\langle x_n, x \rangle| \to \|x\|^2$.

On the other hand, we can apply Cauchy-Schwartz inequality:

$$|\langle x_n, x \rangle|^2 \le ||x_n|| ||x|| \le ||x||$$

so

$$|\langle x_n, x \rangle| \le ||x||^{1/2}$$

So $\lim |\langle x_n, x \rangle| \le ||x||^{1/2}$. Therefore $||x||^2 \le ||x||^{1/2}$, and that relation holds if and only if $||x|| \le 1$.