Stroke Prediction

According to the World Health Organization (WHO) stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths.

This dataset is used to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from collections import Counter
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import warnings
warnings.filterwarnings('ignore')
```

Exploratory Data Analysis

- 1. Correlation
- 2. Missing values
- 3. Outliers
- 4. Categorical Variables
- 5. Balancing Dataset

Read and count data

https://www.kaggle.com/fedesoriano/stroke-prediction-dataset

Correlation

```
sns.heatmap(df.corr())
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f55c3fd2c90>

Get column information

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	id	5110 non-null	int64				
1	gender	5110 non-null	object				
2	age	5110 non-null	float64				
3	hypertension	5110 non-null	int64				
4	heart_disease	5110 non-null	int64				
5	ever_married	5110 non-null	object				
6	work_type	5110 non-null	object				
7	Residence_type	5110 non-null	object				
8	<pre>avg_glucose_level</pre>	5110 non-null	float64				
9	bmi	4909 non-null	float64				
10	smoking_status	5110 non-null	object				
11	stroke	5110 non-null	int64				
dtyp	<pre>dtypes: float64(3), int64(4), object(5)</pre>						
memory usage: 479.2+ KB							

Describe Data

df.describe()

	10	age	hypertension	heart_disease	avg_glucose_level	
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28
std	21161.721625	22.612647	0.296607	0.226063	45.283560	-
min	67.000000	0.080000	0.000000	0.000000	55.120000	1(
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	2
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	3:
max	72940.000000	82.000000	1.000000	1.000000	271.740000	9

HeatMap to check the Missing values/Null values of all columns

Identifying and Handling Outliers

df.boxplot(column='bmi')

min_threshold, max_threshold = df.bmi.quantile([0.001, 0.999])
min_threshold, max_threshold

(12.754000000000001, 64.9840000000011)

new_df = df[(df.bmi<max_threshold) & (df.bmi>min_threshold)]
new_df.shape

(4899, 12)

new_df.boxplot(column='bmi')

<matplotlib.axes._subplots.AxesSubplot at 0x7f55c1028550>

df.boxplot(column='avg_glucose_level')

<matplotlib.axes._subplots.AxesSubplot at 0x7f55c1005390>

min_threshold_glucose, max_threshold_glucose = new_df.avg_glucose_level.quantile([0.001,
min_threshold_glucose, max_threshold_glucose

(55.26898, 240.59239999999994)

new_df = new_df[(new_df.avg_glucose_level<max_threshold_glucose) & (new_df.avg_glucose_le
new_df.shape</pre>

(4845, 12)

new_df.boxplot(column='avg_glucose_level')

<matplotlib.axes._subplots.AxesSubplot at 0x7f55c0e66c50>

Describe data after handling outliers

new_df.describe()

	id	age	hypertension	heart_disease	avg_glucose_level	
count	4845.000000	4845.000000	4845.000000	4845.000000	4845.000000	484

21/22, 2:18 PM			11_CIS8005_I				
	mean	37004.718885	42.672008	0.089783	0.048504	103.904778	2
	std	20992.945627	22.516498	0.285901	0.214850	42.134289	
	min	77 000000	0.080000	0.000000	0.000000	55 270000	11

Heat map after handling outliers

50%	37483.000000	44.000000	0.000000	0.000000	91.350000	2		
<pre>sns.heatmap(new_df.isnull(),yticklabels=False,cbar=False,cmap='viridis')</pre>								

Handling Categorical Variable using One Hot Encoding

We have below Categorical variables in our dataset: gender, ever_married, work_type, Residence_type, smoking_status

```
ndf_gender=pd.get_dummies(new_df['gender'])
ndf_gender=ndf_gender.drop(['Other'],axis=1)
ndf_ever_Married=pd.get_dummies(new_df['ever_married'])
ndf_work_type=pd.get_dummies(new_df['work_type'])
ndf_Residence_type=pd.get_dummies(new_df['Residence_type'])
ndf_smoking_status=pd.get_dummies(new_df['smoking_status'])
new_df=pd.concat([new_df,ndf_gender,ndf_ever_Married,ndf_work_type,ndf_Residence_type,ndf
new_df=new_df.drop(['gender','ever_married','work_type','Residence_type','smoking_status'
new_df.rename(columns={"Yes":"Married","No":"UnMarried"},inplace=True)
new_df.head(5)
```

	id	age	hypertension	heart_disease	<pre>avg_glucose_level</pre>	bmi	stroke	Female
0	9046	67.0	0	1	228.69	36.6	1	0

2	31112	80.0	0	1	105.92	32.5	1	0
3	60182	49.0	0	0	171.23	34.4	1	1
4	1665	79.0	1	0	174.12	24.0	1	1
5	56669	81.0	0	0	186.21	29.0	1	0

Segregating Predictors and Target

```
Preds=new_df.drop(["id", "stroke"],axis=1)
Target=new_df["stroke"]
```

Check for Data Distribution and handle the imbalances(if any)

```
def get_labels(a,b):
  if a==0:
   label1="Stroke"
  else:
    label1="Not a Stroke"
  if b==0:
   label2="Stroke"
  else:
    label2="Not a Stroke"
  return label1, label2
labels=list(Counter(Target).keys())
Data = [Counter(Target)[0],Counter(Target)[1]]
label1,label2=get labels(labels[0],labels[1])
my labels = label1,label2
plt.pie(Data,labels=my_labels,autopct='%1.1f%%')
plt.title('DataSet Distribution of Raw Data w.r.t Target')
plt.axis('equal')
plt.show()
```

DataSet Distribution of Raw Data w.r.t Target

The above chart indicates that data is Imbalanced

Handle Imbalance using RamdomOversampling Technique

RamdomOversampling Technique is effective for the machine learning algorithms that seek good splits of the data, such as support vector machines and decision trees.

```
from sklearn.model_selection import train_test_split
X_Train,X_Test,y_Train,y_Test=train_test_split(Preds,Target,train_size=0.7)

from imblearn.over_sampling import RandomOverSampler

os=RandomOverSampler(.75)
X_Train_os,y_Train_os=os.fit_resample(X_Train,y_Train)
Counter(y_Train_os)

Counter(y_Train_os)

Counter(\{0: 3252, 1: 2439\})

labels=list(Counter(y_Train_os).keys())
Data = [Counter(y_Train_os)[0],Counter(y_Train_os)[1]]
label1,label2=get_labels(labels[0],labels[1])
my_labels = label1,label2
plt.pie(Data,labels=my_labels,autopct='%1.1f%%')
plt.title('DataSet Distribution w.r.t Target after Applying RandomOversampling')
plt.axis('equal')
plt.show()
```

DataSet Distribution w.r.t Target after Applying RandomOversampling Stroke

After applying RandomOverSampling on training dataset, now the data distrbution looks balanced

Model Training and Evaluation

- 1. Decision Tree Classification.
- 2. Support Vector Classification.
- 3. KNN with RandomSearchCV
- 4. XGBoost

Decision Tree Classification

```
Inputs: X_Train_os, y_Train_os
```

Output: y_pred

Tools: DecisionTreeClassifier from sklearn.tree

from sklearn.tree import DecisionTreeClassifier

```
model_dt=DecisionTreeClassifier()
model_dt.fit(X_Train_os,y_Train_os)

DecisionTreeClassifier()

y_pred_dt=model_dt.predict(X_Test)
print("Metricies of Deccision Tress Classifier Model")
```

print("Metricies of Deccision Tress Classifier Model")
print("Confustion Matrix is as follows \n{}".format(confusion_matrix(y_Test,y_pred_dt)))
print("Accuracy : {} ".format(accuracy_score(y_Test,y_pred_dt)))
print("Classification Reports are as follows \n{}".format(classification_report(y_Test,y))

Metricies of Deccision Tress Classifier Model Confustion Matrix is as follows [[1336 57]

[57 4]]

Accuracy : 0.921595598349381

Classification Reports are as follows

	precision	recall	f1-score	support
0	0.96	0.96	0.96	1393
	0.07	0.07	0.07	61
accuracy			0.92	1454
macro avg	0.51	0.51	0.51	1454
weighted avg	0.92	0.92	0.92	1454

Support Vector Classification Model

```
Inputs: X_Train_os, y_Train_os
```

Output: y_pred

Tools: SVC from sklearn.svm

```
from sklearn.svm import SVC
model svc=SVC()
model svc.fit(X Train os,y Train os)
    SVC()
y pred svm=model svc.predict(X Test)
print("Metricies of Support Vector Classification Model")
print("Confustion Matrix is as follows \n{}".format(confusion_matrix(y_Test,y_pred_svm))
print("Accuracy : {} ".format(accuracy_score(y_Test,y_pred_svm)))
print("Classification Reports are as follows \n{}".format(classification report(y Test,y
    Metricies of Support Vector Classification Model
    Confustion Matrix is as follows
    [[1044 349]
     [ 13 48]]
    Accuracy: 0.7510316368638239
    Classification Reports are as follows
                  precision recall f1-score support
                       0.99
                                0.75
                                           0.85
                                                     1393
                       0.12
                                 0.79
                                           0.21
                                                       61
                                           0.75
        accuracy
                                                     1454
                       0.55
                                           0.53
                                                     1454
       macro avg
                                0.77
```

0.83

1454

KNN with RandomSearchCV

Inputs: X_Train_os, y_Train_os, cv, random_state

0.95

Output: y_pred

weighted avg

Tools: KNeighborsClassifier from sklearn.neighbours; KFold, RandomizedSearchCV

0.75

from sklearn.model_selection

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import KFold, RandomizedSearchCV
model_knn=KNeighborsClassifier()
```

```
grid={'n_neighbors':[5]}
cv=KFold(n splits=30,random state=None,shuffle=False)
model rscv = RandomizedSearchCV(model knn, grid,cv=cv,random state=0)
model rscv.fit(X Train os,y Train os)
     RandomizedSearchCV(cv=KFold(n splits=30, random state=None, shuffle=False),
                        estimator=KNeighborsClassifier(),
                        param distributions={'n neighbors': [5]}, random state=0)
model rscv.best params
     {'n neighbors': 5}
y_pred_rscv=model_rscv.predict(X_Test)
print("Metricies of RandomizedSearchCV Model")
print("Confustion Matrix is as follows \n{}".format(confusion matrix(y Test,y pred rscv)
print("Accuracy : {} ".format(accuracy_score(y_Test,y_pred_rscv)))
print("Classification Reports are as follows \n{}".format(classification report(y Test,y
    Metricies of RandomizedSearchCV Model
    Confustion Matrix is as follows
     [[1242 151]
     [ 46 15]]
    Accuracy: 0.8645116918844566
     Classification Reports are as follows
                   precision recall f1-score support
                        0.96
                                  0.89
                                            0.93
                                                      1393
                1
                        0.09
                                  0.25
                                            0.13
                                                        61
                                            0.86
                                                      1454
        accuracy
       macro avg
                        0.53
                                  0.57
                                            0.53
                                                      1454
    weighted avg
                        0.93
                                 0.86
                                            0.89
                                                      1454
```

XGBoost

Inputs: X_Train_os, y_Train_os

Output: y_pred

Tools: XGBClassifier from xgboost

```
from xgboost import XGBClassifier

model_xg=XGBClassifier()
model_xg.fit(X_Train_os,y_Train_os)

XGBClassifier()
```

```
y_pred_xg=model_xg.predict(X_Test)
print("Metricies of XGBOOST Model")
print("Confustion Matrix is as follows \n{}".format(confusion matrix(y Test,y pred xg)))
print("Accuracy : {} ".format(accuracy_score(y_Test,y_pred_xg)))
print("Classification Reports are as follows \n{}".format(classification report(y Test,y
    Metricies of XGBOOST Model
     Confustion Matrix is as follows
     [[1163 230]
     [ 29
             32]]
    Accuracy: 0.8218707015130674
     Classification Reports are as follows
                   precision
                             recall f1-score
                                                  support
                       0.98
                                 0.83
                                           0.90
                                                      1393
                       0.12
                                 0.52
                                           0.20
                1
                                                       61
                                           0.82
                                                     1454
        accuracy
                                           0.55
                       0.55
                                                     1454
       macro avg
                                 0.68
```

0.87

1454

Plotting ROC curve

weighted avg

```
from sklearn.metrics import plot_roc_curve
disp=plot_roc_curve(model_dt,X_Test,y_Test)
plot_roc_curve(model_svc,X_Test,y_Test,ax=disp.ax_)
plot_roc_curve(model_rscv,X_Test,y_Test,ax=disp.ax_)
plot_roc_curve(model_xg,X_Test,y_Test,ax=disp.ax_)
```

0.94

0.82

```
<sklearn.metrics._plot.roc_curve.RocCurveDisplay at 0x7f55b6c47190>
```

from sklearn.neighbors import KNeighborsClassifier

from sklearn model selection import cross val score

Text(0, 0.5, 'Error Rate')

