Logikos pagrindai ir diskretinė matematika. Grafai_4

Doc. dr. Beatričė Andziulienė

4. Grafų vaizdavimas kompiuteryje

Gretimumo matrica
Incidencijų matrica
Briaunų matrica
Gretimumo struktūra
Nuoseklaus peržiūrėjimo masyvas
Tiesioginių nuorodų masyvas

Parametrai

- Informacijos apimtis
- Galimybė padaryti klaidą
- ♦ Viršūnės, gretimos viršūnei k paieška

Gretimumo matrica_1

Grafo G(V,E) gretimumo matrica yra kvadratinė n-tosios eilės matrica $M_{i,j}$, i=1...n; j=1...n, kurios elementas m_{ij} apibrėžiamas taip

 $m_{i,j}$ =1, jei viršūnės v_i ir v_j yra gretimos,

 $m_{i,i}$ =0, priešingu atveju.

Neorientuoto grafo matrica yra <u>simetrinė</u>, orientuoto - <u>nesimetrinė</u>

Gretimumo matrica_2

Grafo G(n,m) gretimumo matrica

	1	2	3	4	n
1	m_{11}	m ₁₂	m ₁₃	m ₁₄	m _{1n}
2	m ₂₁	m ₂₂	m ₂₃	m ₁₄	m _{2n}
3	m ₃₁	m ₃₂	m ₃₃	m ₃₄	m _{3n}
# # # A					
n	m_{n1}	m_{n2}	m _{n3}	m _{n4}	m _{nn}

Gretimumo matrica_3

Matrica kvadratinė, simetrinė

Gretimumo matricoje *i-toje* eilutėje esančių vienetukų skaičius lygus *i-tosios viršūnės laipsniui*

Orientuoto grafo gretimumo matrica_1

Orientuotojo grafo G(V,E) gretimumo matrica yra <u>kvadratinė</u> n-tosios eilės matrica $M_{i,j}$, i=1...n; j=1...n, kurios elementas M_{ij} apibrėžiamas taip

 $M_{i,j}$ =1, jei viršūnės ir v_j yra gretimos ir viršunė v_i yra <u>lanko pradžia</u>

 $M_{i,i}$ =0, priešingu atveju.

Orientuoto grafo matrica yra nesimetrinė

Orientuoto grafo gretimumo matrica_2

Orietuoto grafo gretimumo matricoje *i-toje* eilutėje esančių vienetukų skaičius lygus *i-tosios* viršūnės <u>išėjimo puslaipsniui</u>

Grafo vaizdavimo gretimumo matrica pvz.1

Grafo vaizdavimo gretimumo matrica pvz.2

Remdamiesi gretimumo matricomis, nubraižome grafus

0	1	1	-1	0
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
0	1	1	-1	0_

	0	1	1	1	0	0	-
				1			
***	1	0	0	1	0	0	
***	1	1	1		0		
***	0	0	0	0	0	1	
***	_0	0	0	0	1	0	

Grafų vaizdavimas incidencijų matrica_2

Briaunos

Grafo G(n,m) incidencijų matrica nesimetrinė

Nerientuoto grafų incidencijų matrica

Nerientuoto grafo G(n,m) incidencijų matrica yra n-eilučių ir m stulpelių matrica $H_{i,j}$, i=1...n; j=1...m, kurios elementas H_{ij} apibrėžiamas taip:

- $H_{i,j}$ =1, jei viršūnė v_i yra incidentiška briaunai
- H_{i,j} =0, jei viršūnė v_i yra neincidentiška
 briaunai e_i,

Grafų vaizdavimas incidencijų matrica_3

Neorientuoto grafo incidencijų matrica

Orientuoto grafų incidencijų matrica

Orientuoto grafo G(n,m) incidencijų matrica yra n-eilučių ir m stulpelių matrica $H_{i,j}$, i=1...n; j=1...m, kurios elementas H_{ij} apibrėžiamas taip:

- H_{i,j} =1, jei viršūnė v_i yra incidentiška lankui e_j, ir yra jo <u>pradžia</u>
- H_{i,j} =0, jei viršūnė v_i yra neincidentiška lankui e_j,
- H_{i,j} =-1, jei viršūnė v_i yra incidentiška lankui e_j, ir yra jo galas

Grafų vaizdavimas incidencijų matrica_3

Orientuoto grafo incidencijų matrica

Incidencijų matrica

Informacijos apimtis. Kaip ir gretimumo matricos atveju, incidencijų matrica turi $n \cdot m$ elementų ir yra reta.

Galimybė padaryti klaidą yra didelė prie didesnių *n* ir *m* reikšmių.

Viršūnės, gretimos viršūnei k, neorientuotojo grafo atveju randamos taip:

 $for j := 1 \ to \ m \ do$ $if \ a[k, j] = 1 \ then \ for \ i := 1 \ to \ n \ do$ $if \ (a[i, j] = 1) \ and \ (i <> k) \ then "viršūnė i \ yra$ $gretima \ viršūnei \ k";$

Pastaba. Orientuotojo grafo atveju sąlyga "a [i, j] = 1" turi būti pakeista sąlyga "a[i, j] = -1".

Gretimumo gretimumo sąrašai (struktūra)

Gretimumo sąrašai t.y. grafo pavaizdavimas sąrašo struktūra atspindinčia grafo viršūnių gretimumą.

Tai yra masyvas sudarytas iš įrašų, nurodančių pasirinktai viršūnei gretimas viršūnes t. y. atspindintis viršūnės aplinką

Neorientuoto grafo gretimumo sąrašai

Neorientuotam grafui **G(n, m)** gretimumo sąrašai tai bus masyvai turintys **n+2m** elementų.

G(4,5) bus 4+2*5=14 elementų

Orientuotojo grafo gretimumo sąrašai

Orientuotam grafui **G** (n, m) gretimumo sąrašai tai bus masyvai turintys n+m elementų.

G(4,5) bus 4+5=9 elementų

Grafo vaizdavimas gretimumo struktūra_1

Gretimumo struktūra apibrėžiama kaip grafo viršūnių aplinkų (viršūnei gretimų viršūnių aibių) šeima:

Grafo vaizdavimas gretimumo struktūra_2

Orientuotam grafui:

Nuoseklaus peržiūrėjimo masyvas

Tai masyvas, turintis n+2m elementų neorientuotojo grafo atveju ir n+m – orientuotojo grafo atveju.

Masyvas sudaromas taip: iš eilės, pradedant pirmąja viršūne ir baigiant paskutiniąja, kiekvienai viršūnei rašomas viršūnės numeris su minuso ženklu, o po jo rašomos tai viršūnei gretimos viršūnės.

Jei šį masyvą pažymėsime simboliu *P*, tai nagrinėtiems grafams gausime:

Nuoseklaus peržiūrėjimo masyvas

Vertinant šį grafo vaizdavimo būdą pagal aukščiau minėtus kriterijus, galima pasakyti, kad *informacija kompaktiška, suklydimo* galimybė nėra didelė, tačiau ilgas gretimų viršūnių išrinkimas. Todėl žymiai efektyvesnis yra žemiau pateiktas grafo užrašas, kuri vadinsime tiesioginių nuorodų masyvais arba briaunų (lankų) ir jų adresų masyvais.

Tiesioginių nuorodų masyvai

Briaunų (lankų) ir jų adresų masyvai

Tiesioginių nuorodų masyvai

Skaičiai virš elementų rodo jų vietą (adresą) masyve L. Turint tik masyvą L sužinoti viršūnes, gretimas viršūnei k, yra neįmanoma. Todėl įvedamas antras — viršūnių adresų masyvas lst, turintis n + 1 elementą. Šis masyvas sudaromas taip:

/st[1] := 0;/st[i + 1] := /st[1] + o[i], i = ,

čia d[i] - itosios viršūnės laipsnis. Aišku, kad lst[k] parodo, kiek reikia praleisti masyvo L elementų, kad rastume viršūnes, gretimas viršūnei k. Vadinasi, viršūnės, gretimos viršūnei k, masyve L yra išsidėstę pradedant adresu lst[k] + 1 ir baigiant adresu lst[k + 1].

Grafų vaizdavimas briaunų matrica_1

Grafo G(n,m) briaunų (lankų) matrica yra 2 x m formato matrica B vadinamas briaunų (lankų) matrica, jei (b_{1j}, b_{2j}), j=1,m yra j-oji grafo briauna (lankas).

Orientuoto grafo atveju

 $\mathbf{b_{1j}}$ žymi j-ojo lanko pradžią,

b_{2i} – j-ojo lanko pabaigą.

Grafų vaizdavimas briaunų matrica_2

Neorientuoto grafo briaunų matrica

$$A = \begin{bmatrix} 1 & 1 & 1 & 2 & 2 & 3 \\ 2 & 3 & 4 & 4 & 3 & 4 \end{bmatrix}$$

Orientuoto grafo lankų matrica

$$A = \begin{bmatrix} 1 & 2 & 2 & 3 & 1 & 4 \\ 3 & 1 & 3 & 4 & 4 & 2 \end{bmatrix}$$

