HAI406X : Algèbre linéaire

Chapitre B.1

Géométrie affine et vectorielle

B.I.A) POINTS ET VECTEURS.

Repères, cordonnées dans le plan

Repères, cordonnées dans le plan

Vecteurs

Vecteurs

Deux points définissent un vecteur :

$$A(x_A, y_A) \quad B(x_B, y_B)$$

$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}.$$

Remarque : On notera

$$\overrightarrow{AB} \in \mathbb{R}^2$$
.

Vecteurs

Deux points définissent un vecteur :

$$A(x_A, y_A) \quad B(x_B, y_B)$$

$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}.$$

Remarque : On notera

$$\overrightarrow{AB} \in \mathbb{R}^2$$
.

Points et vecteurs

Rappel: A tout point du plan on peut associer un vecteur

$$A(x_A, y_A) \qquad \rightarrow \qquad \overrightarrow{OA} = \begin{pmatrix} x_A \\ y_A \end{pmatrix}$$

En particulier, l'ensemble des vecteurs est noté \mathbb{R}^2 .

Remarque : A tout vecteur de \mathbb{R}^2 on peut associer un point du plan

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \longrightarrow A(u_1, u_2)$$

Distinguer point (en ligne) et vecteur (en colonne)

Définition [Translation] Soit un vecteur $\mathbf{u} \in \mathbb{R}^2$

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

On définit l'application "translation de vecteur **u**" comme ci-dessous :

$$T_{\mathbf{u}}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x_A, y_A) \longmapsto (x_A + u_1, y_A + u_2)$

Définition [Translation] Soit un vecteur $\mathbf{u} \in \mathbb{R}^2$

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

On définit l'application "translation de vecteur **u**" comme ci-dessous :

$$T_{\mathbf{u}}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x_A, y_A) \longmapsto (x_A + u_1, y_A + u_2)$

Définition [Translation] Soit un vecteur $\mathbf{u} \in \mathbb{R}^2$

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

On définit l'application "translation de vecteur **u**" comme ci-dessous :

$$T_{\mathbf{u}}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x_A, y_A) \longmapsto (x_A + u_1, y_A + u_2)$

Repères, cordonnées dans l'espace

Repères, cordonnées dans l'espace

Repères, cordonnées dans l'espace

Vecteurs

Deux points définissent un vecteur :

$$A(x_A, y_A, z_A)$$
 $B(x_B, y_B, z_B)$

$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}.$$

Remarque: On notera

$$\overrightarrow{AB} \in \mathbb{R}^3$$
.

Vecteurs

Deux points définissent un vecteur :

$$A(x_A, y_A, z_A)$$
 $B(x_B, y_B, z_B)$

$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}.$$

Remarque: On notera

$$\overrightarrow{AB} \in \mathbb{R}^3$$
.

Vecteurs

Deux points définissent un vecteur :

$$A(x_A, y_A, z_A)$$
 $B(x_B, y_B, z_B)$

$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}.$$

Remarque: On notera

$$\overrightarrow{AB} \in \mathbb{R}^3$$
.

Points et vecteurs

Rappel: A tout point de l'espace on peut associer un vecteur

$$A(x_A, y_A, z_A)$$
 \rightarrow $\overrightarrow{OA} = \begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix}$

En particulier, l'ensemble des vecteurs est noté \mathbb{R}^3 .

Remarque : A tout vecteur de \mathbb{R}^3 on peut associer un point de l'espace

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \longrightarrow A(u_1, u_2, u_3)$$

Définition [Translation]

Soit un vecteur $\mathbf{u} \in \mathbb{R}^3$

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$

On définit l'application "translation de vecteur **u**" comme ci-dessous :

$$T_{\mathbf{u}}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \ (x_A, y_A, z_A) \longmapsto (x_A + u_1, y_A + u_2, z_A + u_3)$$

Généralisations

Géométrie en "dimension n"

Soit *n* un entier non-nul.

Un n-uplet est associé à un point de l'"espace à n dimensions"

Exemple : $A(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

▶ Deux points de l'"espace à n dimensions" définissent un vecteur :

Exemple:
$$A(x_1, x_2, ..., x_n)$$
 $B(y_1, ..., y_n)$

$$\overrightarrow{AB} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix} \in \mathbb{R}^n.$$

Généralisations

Géométrie en "dimension n"

Soit *n* un entier non-nul.

► Un *n*-uplet est associé à un point de l'"espace complexe à *n* dimensions"

Exemple : $A(x_1, x_2, \dots, x_n) \in \mathbb{C}^n$

Deux points de l'"espace complexe à n dimensions" définissent un vecteur :

Exemple:
$$A(x_1, x_2, ..., x_n)$$
 $B(y_1, ..., y_n)$

$$\overrightarrow{AB} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix} \in \mathbb{C}^n.$$

dans l'espace "à n dimensions" $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

Définition [Translation]

Soit un vecteur $\mathbf{u} \in \mathbb{K}^n$

$$\mathbf{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

On définit l'application "translation de vecteur **u**" comme ci-dessous :

$$T_{\mathbf{u}}: \mathbb{K}^n \longrightarrow \mathbb{K}^n$$

 $(x_1,\ldots,x_n) \longmapsto (x_1+u_1,\ldots,x_n+u_n)$

Définition de matrice

Définition. Etant donnés $(n, p) \in [\mathbb{N}^*]^2$, on appelle matrice à p lignes et n colonnes à coefficients dans \mathbb{K} un tableau d'éléments de \mathbb{K} contenant p lignes et n colonnes.

Définition. Une matrice carrée est une matrice qui a autant de lignes que de colonnes.

Notation.

$$\mathcal{M}_n(\mathbb{K}) = \{ \text{ matrices carrées } M \text{ à } n \text{ lignes } \}$$

Vocabulaire.

Soit A une matrice a p lignes et n colonnes

- ▶ si p = 1 la matrice A est dite (vecteur) ligne
- ightharpoonup si n=1 la matrice A est dite (vecteur) colonne

Conventions

Notations. Soit *A* une matrice à *p* lignes et *n* colonnes.

On note :

$$A = egin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \ a_{2,1} & a_{2,2} & \dots & a_{2,n} \ dots & dots & \ddots & dots \ a_{p,1} & a_{p,2} & \dots & a_{p,n} \end{pmatrix}$$

ou

$$A = (a_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le n}}$$

On note $a_{i,j}$ le coefficient à l'intersection de la i-ième ligne et de la j-ième colonne.

Lignes et colonnes

Soit *A* une matrice à *p* lignes et *n* colonnes.

$$A = egin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \ a_{2,1} & a_{2,2} & \dots & a_{2,n} \ dots & dots & \ddots & dots \ a_{p,1} & a_{p,2} & \dots & a_{p,n} \end{pmatrix}$$

A est constituée de n matrices colonnes $C_j \in \mathcal{M}_{p,1}(\mathbb{K})$

$$C_1 = egin{pmatrix} a_{1,1} \ a_{2,1} \ dots \ a_{p,1} \end{pmatrix} \quad \ldots \quad C_n = egin{pmatrix} a_{1,n} \ a_{2,n} \ dots \ a_{p,n} \end{pmatrix}$$

appelées colonnes de A

Applications

Notations. Soit *A* une matrice à *p* lignes et *n* colonnes.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \dots & a_{p,n} \end{pmatrix}$$

A est constituée de p matrices lignes $L_i \in \mathcal{M}_{1,n}(\mathbb{K})$

$$L_1 = (a_{1,1} \ a_{1,2} \ \dots \ a_{1,n})$$
 \ldots
 $L_p = (a_{p,1} \ a_{p,2} \ \dots \ a_{p,n})$

appelées lignes de A.

B.I.B) NOTIONS D'ESPACE VECTORIEL

 $\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C}, n \geq 2$

Définition [somme, multiplication par un scalaire] Etant donnés

- ▶ **u** et **v** deux vecteurs de Kⁿ
 - $\lambda \in \mathbb{K}$

on définit $\mathbf{w} = \mathbf{u} + \mathbf{v}$ et $\mathbf{x} = \lambda * \mathbf{u}$ par

$$\mathbf{w} = \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} \lambda u_1 \\ \vdots \\ \lambda u_n \end{pmatrix}.$$

Exemple:

$$\mathbf{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad 2\mathbf{u} - \mathbf{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

 $\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C}, \, n \geq 2$

Définition [somme, multiplication par un scalaire] Etant donnés

- ▶ **u** et **v** deux vecteurs de Kⁿ
 - $\lambda \in \mathbb{K}$

on définit $\mathbf{w} = \mathbf{u} + \mathbf{v}$ et $\mathbf{x} = \lambda \mathbf{u}$ par

$$\mathbf{w} = \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} \lambda u_1 \\ \vdots \\ \lambda u_n \end{pmatrix}.$$

Exemple:

$$\mathbf{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad 2\mathbf{u} - \mathbf{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Proposition

Etant donnés **u**, **v** et **w** trois vecteurs de \mathbb{K}^n , λ et μ dans \mathbb{K}

- ightharpoonup u + v = v + u
- ightharpoonup u + (v + w) = (u + v) + w
- ightharpoonup $\mathbf{u} + \mathbf{0}_n = \mathbf{u}$
- ▶ on peut construire un vecteur $\mathbf{x} \in \mathbb{K}^n$ tq

$$\mathbf{u} + \mathbf{x} = \mathbf{0}_n$$
.

- $(\lambda + \mu)\mathbf{u} = \lambda\mathbf{u} + \mu\mathbf{u}$
- $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$
- $\lambda(\mu \mathbf{u}) = (\lambda \mu) \mathbf{u}$
- ► 1 * u = u

Remarque : On dit que $(\mathbb{K}^n, +, *)$ est un \mathbb{K} -espace vectoriel.

Proposition

Etant donnés \mathbf{u} , \mathbf{v} et \mathbf{w} trois vecteurs de \mathbb{K}^n , λ et μ dans \mathbb{K}

- ightharpoonup u + v = v + u
- ightharpoonup u + (v + w) = (u + v) + w
- ightharpoonup $\mathbf{u} + \mathbf{0}_n = \mathbf{u}$
- ▶ on peut construire un vecteur $\mathbf{x} \in \mathbb{K}^n$ tq

$$\mathbf{u} + \mathbf{x} = \mathbf{0}_n$$
.

- $(\lambda + \mu)\mathbf{u} = \lambda\mathbf{u} + \mu\mathbf{u}$
- $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$
- $\lambda(\mu \mathbf{u}) = (\lambda \mu) \mathbf{u}$
- ▶ 1 * u = u

$$\mathbf{0}_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Remarque : On dit que $(\mathbb{K}^n, +, *)$ est un \mathbb{K} -espace vectoriel.

Combinaison linéaire de vecteurs

Définition. Etant donné un entier $k \ge 2$ et

- ▶ $\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(k)}$ des vecteurs de \mathbb{K}^n
- $\triangleright \lambda^{(1)} \dots, \lambda^{(k)}$ des éléments de \mathbb{K}

on appelle combinaison linéaire des $\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(k)}$ de coefficients $\lambda^{(1)}, \dots, \lambda^{(k)}$ le vecteur

$$\lambda^{(1)}\mathbf{u}^{(1)}+\ldots+\lambda^{(k)}\mathbf{u}^{(k)}$$

Exemple :
$$\lambda^{(1)} = 2$$
 et $\lambda^{(2)} = -1$

$$\mathbf{u}^{(1)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} , \quad \mathbf{u}^{(2)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} , \qquad \lambda^{(1)} \mathbf{u}^{(1)} + \lambda^{(2)} \mathbf{u}^{(2)} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Combinaison linéaire de vecteurs

Définition. Etant donné un entier k > 2 et

- $ightharpoonup \mathbf{u}^{(1)}, \dots, \mathbf{u}^{(k)}$ des vecteurs de \mathbb{K}^n
- $\triangleright \lambda^{(1)} \dots, \lambda^{(k)}$ des éléments de \mathbb{K}

on appelle combinaison linéaire des $\mathbf{u}^{(1)},\ldots,\mathbf{u}^{(k)}$ de coefficients $\lambda^{(1)},\ldots,\lambda^{(k)}$ le vecteur

$$\sum_{j=1}^k \lambda^{(j)} \mathbf{u}^{(j)}$$

Exemple :
$$\lambda^{(1)} = 2$$
 et $\lambda^{(2)} = -1$

$$\bm{u}^{(1)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \;, \quad \bm{u}^{(2)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \;, \qquad \lambda^{(1)} \bm{u}^{(1)} + \lambda^{(2)} \bm{u}^{(2)} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Sous-espace (vectoriel) engendré

Définition. Etant donné un entier $k \ge 1$ et une famille $\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(k)}$ de k vecteurs de \mathbb{K}^n , on appelle espace engendré par les $\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(k)}$ le sous-ensemble de \mathbb{K}^n défini par :

$$\langle \textbf{u}^{(1)}, \dots, \textbf{u}^{(k)} \rangle = \left\{ \text{combinaisons linéaires des } \textbf{u}^{(1)}, \dots, \textbf{u}^{(k)} \right\} \,.$$

Exemples:

Pour tout vecteur **u** de \mathbb{K}^n , on a :

$$\langle \mathbf{u} \rangle = \{ t\mathbf{u}, t \in \mathbb{K} \}.$$

$$\begin{array}{c} \blacktriangleright \mbox{ Pour } \pmb{e}^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \,, \quad \pmb{e}^{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \,, \mbox{ on a :} \\ \langle \pmb{e}^{(1)}, \pmb{e}^{(2)} \rangle = \mathbb{K}^2. \end{array}$$

Sous-espace (vectoriel) engendré

Définition. Etant donné un entier $k \ge 1$ et une famille $\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(k)}$ de k vecteurs de \mathbb{K}^n , on appelle espace engendré par les $\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(k)}$ le sous-ensemble de \mathbb{K}^n défini par :

$$\langle \mathbf{u}^{(1)}, \dots, \mathbf{u}^{(k)} \rangle = \left\{ \sum_{j=1}^k \lambda^{(j)} \mathbf{u}^{(j)}, \quad (\lambda^{(1)}, \dots, \lambda^{(k)}) \in \mathbb{K}^k \right\}.$$

Exemples:

▶ Pour tout vecteur \mathbf{u} de \mathbb{K}^n , on a :

$$\langle \mathbf{u} \rangle = \{ t\mathbf{u}, t \in \mathbb{K} \}.$$

$$\text{Pour } \textbf{e}^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \,, \quad \textbf{e}^{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \,, \text{ on a :}$$

$$\langle \textbf{e}^{(1)}, \textbf{e}^{(2)} \rangle = \mathbb{K}^2.$$

Sous-espace vectoriel de \mathbb{K}^n

Proposition. Soit E un sous-espace de \mathbb{K}^n engendré par des vecteurs $\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(k)}$ de \mathbb{K}^n . Alors, on a :

- ▶ le vecteur nul est un élément de E
- ▶ pour tout $\mathbf{u} \in E$ et $\mathbf{v} \in E$, $\mathbf{u} + \mathbf{v} \in E$
- ▶ pour tout $\lambda \in \mathbb{K}$ et $\mathbf{u} \in E$, $\lambda \mathbf{u} \in E$.

Définition. Soit E un sous-ensemble de \mathbb{K}^n . Si on a :

- ▶ le vecteur nul est un élément de E
- ▶ pour tout $\mathbf{u} \in E$ et $\mathbf{v} \in E$, $\mathbf{u} + \mathbf{v} \in E$
- ▶ pour tout $\lambda \in \mathbb{K}$ et $\mathbf{u} \in E$, $\lambda \mathbf{u} \in E$.

on dit que E est un sous-espace vectoriel de \mathbb{K}^n .

Sous-espace vectoriel de \mathbb{K}^n

Exercice: Parmi les ensembles E suivants, lesquels sont des sous-espaces vectoriel de \mathbb{R}^n .

►
$$E = \mathbb{R}^n$$

► pour $n = 2$, $E = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \text{ tel que } x^2 + y^2 = 1 \right\}$,
► pour $n = 3$, $E = \left\{ \begin{pmatrix} 1 + t \\ t \\ -t \end{pmatrix}, t \in \mathbb{R} \right\}$

$$\begin{cases} -t \\ -t \end{cases}, \quad t = 1$$

$$\begin{cases} t+s \\ t-s \end{cases} \quad (t,s) \in \mathbb{R}^2$$

▶ pour
$$n = 3$$
, $E = \left\{ \begin{pmatrix} t+s \\ t-s \\ 2t \end{pmatrix}, (t,s) \in \mathbb{R}^2 \right\}$

Si ce sont des sous-espaces vectoriels, dire s'ils sont engendré par une famille finie de vecteurs.

B.I.C) RETOUR À LA GÉOMÉTRIE

Notion de droite affine

Définition. Etant donnés $A(x_A, y_A)$ un point du plan et \mathbf{u} un vecteur de \mathbb{R}^2 non nul on appelle droite affine passant par A et de vecteur directeur \mathbf{u} le sous-ensemble $D_A[\mathbf{u}]$ du plan défini par :

$$D_A[\mathbf{u}] = \{T_{t\mathbf{u}}(A), t \in \mathbb{R}\}$$

Remarque. Par les coordonnées, on a la définition équivalente :

$$D_A[\mathbf{u}] = \{(x_A + tu_1, y_A + tu_2), t \in \mathbb{R}\}.$$

Proposition. Etant donnés deux points distincts *A* et *B*, il existe une unique droite (affine) passant par *A* et *B*.

Notion de droite affine

Définition. Etant donnés $A(x_A, y_A, z_A)$ un point de l'espace et \mathbf{u} un vecteur de \mathbb{R}^3 non nul on appelle droite affine passant par A et de vecteur directeur \mathbf{u} le sous-ensemble $D_A[\mathbf{u}]$ du plan défini par :

$$D_A[\mathbf{u}] = \{T_{t\mathbf{u}}(A), t \in \mathbb{R}\}$$

Remarque. Par les coordonnées, on a la définition équivalente :

$$D_A[\mathbf{u}] = \{(x_A + tu_1, y_A + tu_2, z_A + tu_3), t \in \mathbb{R}\}.$$

Proposition. Etant donnés deux points distincts *A* et *B*, il existe une unique droite (affine) passant par *A* et *B*.

Notion de droite affine

Définition. Etant donnés $A(x_1, ..., x_n)$ un point de l'espace à n dimensions et \mathbf{u} un vecteur de \mathbb{K}^n non nul on appelle droite affine passant par A et de vecteur directeur \mathbf{u} le sous-ensemble $D_A[\mathbf{u}]$ du plan défini par :

$$D_A[\mathbf{u}] = \{T_{t\mathbf{u}}(A), t \in \mathbb{R}\}$$

Remarque. Par les coordonnées, on a la définition équivalente :

$$D_A[\mathbf{u}] = \{(x_1 + tu_1, \dots, x_n + tu_n), \quad t \in \mathbb{R}\}.$$

Proposition. Etant donnés deux points distincts *A* et *B*, il existe une unique droite (affine) passant par *A* et *B*.

Notion de droite vectorielle

Remarque. Toutes les droites de même vecteur directeur (=parallèles) partagent la même "direction".

Définition. Etant donné \mathbf{u} un vecteur de \mathbb{K}^n non nul on appelle droite vectorielle dirigée par \mathbf{u} le sous-ensemble de \mathbb{K}^n défini par :

$$D[\mathbf{u}] = \{t\mathbf{u}, t \in \mathbb{R}\}$$

Proposition. Etant donné **u** un vecteur de \mathbb{K}^n non nul, on a $D[\mathbf{u}] = \langle \mathbf{u} \rangle$.

Remarque. Une droite vectorielle se "dessine" comme une droite affine passant par l'origine.

Proposition Etant donnés deux vecteurs \mathbf{u} et \mathbf{v} de \mathbb{K}^n , on a deux possibilites

i) il existe t et s dans \mathbb{K} non tous deux nuls tels que

$$t\mathbf{u} + s\mathbf{v} = 0$$

alors
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u} \rangle$$
 ou $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v} \rangle$.

ii) pour tout $(t, s) \in \mathbb{K}^2$ on a l'implication

$$(t\mathbf{u} + s\mathbf{v} = 0) \Rightarrow (s = 0 \text{ et } t = 0)$$

alors
$$\langle \mathbf{u} \rangle \cup \langle \mathbf{v} \rangle \subset \langle \mathbf{u}, \mathbf{v} \rangle$$
 avec $\langle \mathbf{u} \rangle \cup \langle \mathbf{v} \rangle \neq \langle \mathbf{u}, \mathbf{v} \rangle$

- ► Si **u** ou **v** sont nuls, on est dans le cas i).
- **▶** Si **u** ≠ 0

Cas i) si
$$t\mathbf{u} + s\mathbf{v} = 0$$
 alors

$$s \neq 0$$
 et $t\mathbf{u} + s\mathbf{v} = 0$

Cas ii) On appelle plan vectoriel l'ensemble $\langle \mathbf{u}, \mathbf{v} \rangle$.

- ► Si **u** ou **v** sont nuls, on est dans le cas i).
- **▶** Si **u** ≠ 0

Cas i) si
$$t\mathbf{u} + s\mathbf{v} = 0$$
 alors

$$s \neq 0$$
 et $\mathbf{v} = -\frac{t}{s}\mathbf{u}$

Cas ii) On appelle plan vectoriel l'ensemble $\langle \mathbf{u}, \mathbf{v} \rangle$.

- ► Si **u** ou **v** sont nuls, on est dans le cas i).
- **▶** Si **u** ≠ 0

Cas i) si $t\mathbf{u} + s\mathbf{v} = 0$ alors

v est colinéaire à u

Cas ii) On appelle plan vectoriel l'ensemble $\langle \mathbf{u}, \mathbf{v} \rangle$.

Notion de plan affine

dans l'espace (à n dimensions $n \ge 2$)

Définition. Etant donnés $A(x_1, ..., x_n)$ un point et \mathbf{u}, \mathbf{v} deux vecteurs non-colinéaires de \mathbb{K}^n , on appelle plan affine passant par A de plan directeur $\langle \mathbf{u}, \mathbf{v} \rangle$ le sous-ensemble $P_A[\mathbf{u}, \mathbf{v}]$ de \mathbb{K}^n défini par :

$$P_A[\mathbf{u}, \mathbf{v}] = \{ T_{\mathbf{w}}(A), \quad \mathbf{w} \in \langle \mathbf{u}, \mathbf{v} \rangle \}$$

Remarque. On a la définition équivalente :

$$P_A[\mathbf{u},\mathbf{v}] = \{T_{t\mathbf{u}+s\mathbf{v}}(A), \quad (t,s) \in \mathbb{K}^2\}.$$

Proposition. Etant donnés trois points du plan non-alignés A, B et C il existe exactement un plan passant par A, B et C.

Notion de plan affine

dans l'espace (à n dimensions $n \ge 2$)

Définition. Etant donnés $A(x_1, ..., x_n)$ un point et \mathbf{u}, \mathbf{v} deux vecteurs non-colinéaires de \mathbb{K}^n , on appelle plan affine passant par A de plan directeur $\langle \mathbf{u}, \mathbf{v} \rangle$ le sous-ensemble $P_A[\mathbf{u}, \mathbf{v}]$ de \mathbb{K}^n défini par :

$$P_A[\mathbf{u},\mathbf{v}] = \{T_{\mathbf{w}}(A), \quad \mathbf{w} \in \langle \mathbf{u},\mathbf{v} \rangle \}$$

Remarque. On a la définition équivalente :

$$P_A[\mathbf{u},\mathbf{v}] = \{(x_1 + tu_1 + su_1, \dots, x_n + tu_n + sv_n), (t,s) \in \mathbb{K}^2\}.$$

Proposition. Etant donnés trois points du plan non-alignés A, B et C il existe exactement un plan passant par A, B et C.

Propriétés des plans affines

- Le seul plan affine du plan est lui-même
- Si on oublie de vérifier que \mathbf{u} et \mathbf{v} ne sont pas colinéaires, il peut arriver que $\langle \mathbf{u}, \mathbf{v} \rangle$ soit une droite vectorielle et $P_A[\mathbf{u}, \mathbf{v}]$ une droite affine ... voire un point.

