Bloom littr
cheum ordrævat 9 = U, cele v prostoru o (191) budeme opét hasharot, ale hash tabulka Lude mit
. Indeme opét husbarat, ale hash tarette.
velikest e(191)
, a priposestine tale positie
x + 4 Pr [alg reline "x & 9] =1
pro xx y R[1 >0
mane m-bitaré pole A[0,, m-1] zpointles ynulosore
a l'édeme pourtrat le nézavislych hæsh. *c. n., -, e
dues épêt rada nationale

Insurt (x):

1. pro i = 1,..., k

2. A[h; (x)] ←1

Find (x)

1. roborn A[ha(w)] 1-... 1 A[ha(w)]

Zahashovali jsme n prohii (tedy n=181). Pr[A[i]=0] pro nějakí i?
huždů hash ku netretí A[i]

o (1-in)

o nějakí i?

to motome pro všech u prvhi Zahashij & kambalir jinem

Zahashij & kambalir jinem

yuzijeme m >> k a lim $(1-\frac{1}{a})^a = e$ $\Rightarrow \text{R[A[:]=0]} \approx e^{\frac{\ln n}{m}}$ Pst false positive? · pro proch X& y mes- platit, èe A[h, (x)],..., A[hk(x)] musit viechny byt 1 · pst, il rejsen 1 je z predchosího výpočtu $\approx e^{-\frac{kn}{n}}$ • Pr [false positive] $\approx (1 - e^{-\frac{km}{n}})^k$ deploile A[h:(x)]=0, tety A[h:(x)]=1 Chieme mit pot. Salse positive pro perné y mensione à Epro e<1. Jæle ybræt mæ 6? • Oin $p = e^{-\frac{k_n}{m}}$ · Pr[false positin] & (1-p) · 02n f= (1-p)k

- · predstame si, re m je taky pevní
- · cheure minimalizerat fei l v prom. h

$$\frac{dq}{dk} = \ln(1-p) + \frac{kn}{m} \cdot \frac{e^{-kn}}{1-e^{-kn}}$$

- · overte si, le glob min je v bode le= ln2. n/m
- * nupl. pro $m = \frac{n}{2}$ chance $k = 2 \ln 2 = 1.39 \le 2$

SUFFIX AR	RAY
po relete	S délky un mane pole A délky un
A [:]	index i-tého réjmensiho suffixu S
	déller réjdelsiho spoleiného pre fixu
	S[A[i]:] a S[A[i+1]:]
	neidels

Jah spočítat nejbelst S[A[:]:]	a S[A[j]:], polud
prelix	
mane pole L?	
RMQ	
·= range min query	
omaine pole A dilly n	
. cheene DS pro rychté dotary	umin z A[i], A[in], , A[j].
	min z celiho
, ,	
	min z intercebi delly ? min z intercebi delly 1
	min 2 intervalés delley 1

Joh sa ponoci L hledat ujslegty patterne P case O(n+lgm)? opet binarne puline r L. zaražka devo r... tara ila pravo m... strid · 02n. s(i) = T[S[i]:] o prédictarme so, le 7 relurse mone lep (s(1), P) a lep (P, s(r)) · pomoir spara table i leont. case specitains (cp (s(1), s(m)) a (s(m), s(r)) • 3 pripady, orn. $k \in lep(s(1), P)$ k < lap(s(1), s(m)) · s(1) a s(m) muj delsi spol. pre hx më s(m) a P $s(l) \leq lex$ φ $\Rightarrow S(\bigcap [k+1] = S(m)[k+1]) a$ · tim pådem viak s(P)[b+1] > s(m)[b+1] · mireme tely næstarit L&m ii) k > lop (s(1), s(m)) · tim pådem P < lex S (m)

(ii) k = lip(s(l), s(m))· pak podle prvního rozdílného zneelen P[k:] a s(m)[k:]· jistime, jestli $P \leq lex s(m)$ nebo naopak · jiden znak P nikely nesrovnáváne s s(m) doelnát