FINANCIAL ECONOMETRICS

- Week 2, Lecture 2 -

FINANCIAL ANALYSIS OF ARCH AND GARCH MODELS

VU ECONOMETRICS AND DATA SCIENCE 2024-2025

Paolo Gorgi

Financial analysis of GARCH

Question: What have we done until now?

- Introduced ARCH and GARCH models;
- Derived their stochastic properties;

Question: Why is this useful?

Answer: Financial analysis:

- Filtering conditional variance;
- Calculating risk measures;
- Forecasting risk.

Today's class

- Filtering volatility
- 2 Diagnostic analysis and model selection
 - Diagnostic tests
 - Model selection
- Measuring financial risk and forecasting
 - Value-at-Risk
 - Forecasting
 - News impact curve

Filtering volatility

Filtering the conditional volatility

Question: Can we find an "estimate" (filter) of the unknown sequence of conditional variances $\{\sigma_t^2\}_{t=1}^T$?

Answer: Yes! Run the updating equation under $\hat{\theta}_T$.

Note: we have already learned how to estimate θ_0 .

Notation: filtered sequence $\{\hat{\sigma}_t^2\}_{t=1}^T$

$$\hat{\sigma}_t^2 = \hat{\omega} + \hat{\beta}_1 \hat{\sigma}_{t-1}^2 + \hat{\alpha}_1 y_{t-1}^2, \qquad \text{for} \quad t = 2, \dots, T.$$

Note 1: $\hat{\sigma}_1^2$ can be set equal to sample variance;

Note 2: Sample variance of first few observations may even be better!

Filtering volatility with R (i)

Estimating the conditional variance with R.

Note: R code available in analysis_GARCH.R

First: Take the parameter estimates omega_hat, alpha_hat and beta_hat and the data x.

Next: define filter vector sigma2

```
n <- length(x)
sigma2 <- rep(0,n)
sigma2[1] <- var(x)</pre>
```

Note: You may consider a different initial value for $\hat{\sigma}_1^2$.

Filtering volatility with R (ii)

```
Finally: We are now ready to filter the conditional variance using a
for loop
for(t in 2:n){
   sigma2[t] = omega_hat + alpha_hat*x[t-1]^2 +
                     beta hat*sigma2[t-1]
}
Note 1: The filter uses the estimated parameters;
Note 2: You can also obtain an estimate of \sigma_t^2 at time T+1 (n+1)
since sigma2[n] and and x[n] are available;
Note 3: The value \sigma_{T+1}^2 is a forecast of the conditional variance!
```

Filtering volatility with R (iii)

Stacking the code together we have the script:

Filtering volatility with R (iv)

Figure: Time series (first plot) and estimated filtered variance (second plot).

Diagnostic analysis and model selection

Diagnostic tests (i)

Question: Can we trust the filtered variance?

Is it accurate? Valid even?

Answer: Maybe!

Problem: GARCH model may not be appropriate:

- Observation equation may be too simplistic;
- Gaussianity assumption may fail;
- Output Updating equation may be incorrect;
- Number of lags may be insufficient.

Solution: Test model specification with diagnostic tests!

Diagnostic tests (ii)

ARCH and GARCH models: we can use the residuals $u_t = y_t/\hat{\sigma}_t \approx \epsilon_t$ to test for correct model specification.

Specification tests: fall into two main categories:

- Homoscedasticity tests:
 - ϵ_t is assumed to have fixed conditional variance (ϵ_t is iid);
 - Hence: residuals $\{u_t\}_{t=1}^T$ should have fixed conditional variance!
- Normality tests:
 - ϵ_t is assumed to have a normal distribution;
 - Hence: residuals $\{u_t\}_{t=1}^T$ should have a normal distribution!

Homoscedasticity tests (i)

Simple homoscedasticity test:

- \bullet Plot ACF of squared residuals $\{u_t^2\}_{t=1}^T;$
- Verify squared residuals are uncorrelated by looking at the ACF.

In R:

Obtain the residual vector u

Plot the ACF of squared residuals

Verify that ACF vector is within the 95% confidence intervals.

Homoscedasticity tests (ii)

Figure: Squared residuals (first plot) and autocorrelation function of squared residuals (second plot).

Normality test

Normality tests: Jarque-Bera (JB) test

JB test statistic:
$$JB = \frac{T+1}{6} \left(\hat{\mu}_3^2 + \frac{1}{4} (\hat{\mu}_4 - 3)^2 \right).$$

- $\hat{\mu}_3$ is sample skewness and $\hat{\mu}_4$ is sample kurtosis
- H_0 : residuals are normal, H_1 : residuals not normal
- $JB \sim \chi_2^2$ under H_0 (Chi-square distribution with 2 df).

In R:

jarque.bera.test(u)

 The output gives you the p-value of the test along with other information.

Model selection

Important: In practice we need to choose the ARCH or GARCH model that best describes the data. In other words, we need to decide the order p and q of a GARCH(p,q).

Question: Can we just look at diagnostic tests to choose between a GARCH(1,1) and an ARCH(3) for instance? Answer: No!

- Several <u>nested</u> models may be well specified;
- Several competing models may seem well specified!

Solution: We can use model selection criteria!

Note: The log-likelihood offers natural comparison term;

However: Model selection by comparing log-likelihoods leads to overfitting (intro Econometrics).

Overfitting with log-likelihood

Overfitting: Larger nested models always increase log-Likelihood.

Example: sample log-likelihood of GARCH(2,2) is always larger than that of GARCH(1,1)... even if the GARCH(1,1) is the correct model!!

Problem: sample log-likelihood increases not because the model is better, but simply because it is able to overfit the data!

Solution: penalize the number of parameters in the model.

Note: This is the main idea behind the majority of the so-called *information criteria*.

Information Criteria

Akaike's information criterion (AIC):

AIC =
$$2k - 2 \log L(y_1, ..., y_T; \hat{\theta}_T)$$
,

Bayesian Information Criterion (BIC)

BIC =
$$\log(T)k - 2\log L(y_1, ..., y_T; \hat{\theta}_T)$$
.

Notes:

- Both the AIC and BIC are based on a negative log-likelihood;
- 2 Lower value of the criterion indicates better model;
- **③** AIC and BIC form *reasonable* basis for model selection.

Measuring financial risk and forecasting

Value-at-Risk (i)

Financial analysis: focus on risk measures.

Value-at-Risk (VaR): is a popular risk measure!

Idea of VaR: the daily α -VaR is the minimum amount the investor stands to loose with probability α in one day.

Example: If a portfolio has a daily 10%-VaR of 1 million euros. Then, there is a 10% probability that the value of the portfolio will fall by more than 1 million euros in one day.

Important: the VaR is typically stated in *percentage loss*:

• If a portfolio has a daily 5%-VaR of 17%, THEN there is a 5% probability that the value of the portfolio will fall by more than 17% of its value in one day.

Value-at-Risk (ii)

Mathematically: given a % return $y_t = (p_t - p_{t-1})/p_{t-1}$, the 5%-VaR is defined as the value c that satisfies

$$P(y_t \le c) = 0.05.$$

Note 1: in other words, the α -VaR is the **quantile** of level α of y_t

Note 2: in practice we can use log-returns since log-returns are a good approximation of % returns, i.e.

$$y_t = \log(p_t) - \log(p_{t-1}) \approx (p_t - p_{t-1})/p_{t-1}.$$

Conditional VaR

Important: GARCH models allow us to obtain a conditional VaR at each time point t + 1.

GARCH: we know that $y_{t+1}|Y^t \sim N(0, \sigma_{t+1}^2)$.

As a result: the conditional VaR at time t + 1 (α -VaR_{t+1}) is the quantile of $y_{t+1}|Y^t$.

- The α -VaR_{t+1} is the value q that satisfies $P(y_{t+1} \leq q|Y^t) = \alpha$,
- Therefore, the α -VaR $_{t+1}$ is:

$$\alpha\text{-VaR}_{t+1}=z_{\alpha}\sigma_{t+1},$$

where z_{α} is the quantile of level α of the standard normal.

Conditional VaR in R (i)

```
Conditional VaR with R: analysis_GARCH.R calculates the \alpha-VaR for \alpha = 0.1, 0.05, \text{ and } 0.01
```

First: Obtain the conditional variance sigma2

Finally: Use R's quantile function for the Normal distribution qnorm() to obtain the desired quantiles

```
VaR10 <- qnorm(0.1,0,sqrt(sigma2))
VaR05 <- qnorm(0.05,0,sqrt(sigma2))
VaR01 <- qnorm(0.01,0,sqrt(sigma2))</pre>
```

Conditional VaR with R (ii)

Figure: Conditional α -VaR for $\alpha = 0.1$, $\alpha = 0.05$, and $\alpha = 0.01$, estimated from a GARCH(1,1) model.

Important: we are often interested in forecasting the risk of financial assets. In the following, we shall see how to **forecast volatility**.

Problem: assume we are at time T and we want to forecast the variance of y_{T+h} for $h = \{1, 2, ...\}$.

Solution: we can use the conditional variance of y_{T+h} given Y^T as forecast. The variance forecast h steps ahead is

$$\sigma_T^2(h) = \operatorname{Var}(y_{T+h}|Y^T).$$

Forecasting conditional volatility (ii)

The forecast $\sigma_T^2(h)$ is given by:

$$\begin{split} \sigma_T^2(h) &= \mathbb{V}\mathrm{ar}(y_{T+h}|Y^T) = \mathbb{E}(y_{T+h}^2|Y^T) & (\mathbb{E}(y_{T+h}|Y^T) = 0) \\ &= \mathbb{E}(\sigma_{T+h}^2 \epsilon_{T+h}^2 |Y^T) & \text{(by definition)} \\ &= \mathbb{E}(\sigma_{T+h}^2 |Y^T) \times \mathbb{E}(\epsilon_{T+h}^2 |Y^T) & (\epsilon_{T+h} \perp \sigma_{T+h}^2) \\ &= \mathbb{E}(\sigma_{T+h}^2 |Y^T) \times \mathbb{E}(\epsilon_{T+h}^2) & (\epsilon_{T+h} \perp Y^T) \\ &= \mathbb{E}(\sigma_{T+h}^2 |Y^T) & (\epsilon_{T+h} \sim N(0,1)) \end{split}$$

Conclusion: we must obtain $\mathbb{E}(\sigma_{T+h}^2|Y^T)$

- (for h = 1) $\sigma_T^2(1) = \mathbb{E}(\sigma_{T+1}^2|Y^T) = \sigma_{T+1}^2 \ (\sigma_{T+1}^2 \text{ is constant given } Y^T)$
- (for h > 1) $\sigma_T^2(h) = \mathbb{E}(\sigma_{T+h}^2|Y^T)$ depends on the model we use!

Forecasting conditional volatility: ARCH(1)

ARCH(1) model:

$$\sigma_T^2(h) = \mathbb{E}(\sigma_{T+h}^2|Y^T) = \mathbb{E}(\omega + \alpha_1 y_{T+h-1}^2|Y^T)$$
$$= \omega + \alpha_1 \mathbb{E}(y_{T+h-1}^2|Y^T)$$
$$= \omega + \alpha_1 \mathbb{E}(\sigma_{T+h-1}^2|Y^T)$$
$$= \omega + \alpha_1 \sigma_T^2(h-1)$$

Therefore: The forecast is given by the following recursion

$$\sigma_T^2(h) = \omega + \alpha_1 \sigma_T^2(h-1),$$

where the recursion is initialized at $\sigma_T^2(1) = \sigma_{T+1}^2$.

Forecasting conditional volatility: GARCH(1,1)

GARCH(1,1) model:

$$\sigma_T^2(h) = \omega + (\alpha_1 + \beta_1)\sigma_T^2(h-1),$$

where the recursion is initialized at $\sigma_T^2(1) = \sigma_{T+1}^2$.

Note:

- \bullet $\sigma_T^2(h)$ converges to the unconditional variance as $h \to \infty$
 - $\bullet \quad \text{GARCH}(1,1): \lim_{h\to\infty} \sigma_T^2(h) = \omega/(1-\beta_1-\alpha_1);$
 - **1** In practice: $\sigma_T^2(h) \approx \omega/(1-\beta_1-\alpha_1)$ for large h.
- ② The true $\sigma_T^2(h)$ cannot be obtained because θ_0 is unknown
 - In practice: we use the estimate $\hat{\sigma}_T^2(h)$ evaluated at $\hat{\theta}_T$.

Forecasting the conditional density (i)

Recall: ARCH and GARCH describe conditional density of y_t given Y^{t-1}

$$y_t|Y^{t-1} \sim N(0,\sigma_t^2)$$
.

Question: what is the density of y_{T+1} conditional on the sample

 $y_1, ..., y_T$?

Answer:

$$y_{T+1}|Y^T \sim N(0,\sigma_{T+1}^2)$$
.

Note: forecasted density for time T+1 is easy to obtain because σ_{T+1}^2 is given!

Forecasting the conditional density (ii)

Note: the conditional density is intractable for h > 1

$$y_{T+2}|Y^T = \sigma_{T+2}\epsilon_{T+2}|Y^T.$$

- $\bullet \ \sigma_{T+2}\epsilon_{T+2}|Y^T = (\sigma_{T+2}|Y^T) \times \epsilon_{T+2};$
- ϵ_{T+2} is Gaussian;
- $y_{T+1}^2|Y^T$ has a generalized χ^2 distribution;
- Hence: $\sigma_{T+2}\epsilon_{T+2}|Y^T|$ is the product between the square root of a generalized χ^2 and a normal...:(

Note: Conditional densities for h > 1 can be obtained by simulations (here we focus on one-step-ahead forecasts).

News Impact Curve

News impact curve (NIC):

- Interesting piece of information obtained immediately upon estimating the parameters of an ARCH or GARCH model;
- Commonly used to describe volatility dynamics.

Definition: the NIC is the updating function that maps values of y_t to values of σ_{t+1}^2 .

In essence: we fix σ_t^2 to some value and look at the GARCH update as a function of y_t only.

News Impact Curve: GARCH(1,1) plot

Figure: GARCH(1,1) NIC for $\omega=0.1,\ \beta=0.8,\ \mathrm{and}\ \alpha=0.05,\ 0.1,\ 0.2.$

Note: small absolute value of y_t lead to a decrease in conditional volatility

Note: large values of $|y_t|$ lead to explosive increase in the conditional volatility

News Impact Curve: Extensions

Advanced Econometrics (Master's course):

- Robust NIC;
- 2 Leverage effects;
- Breaks;
- General nonlinear filter.