1. Отчет за 2016 год

к.т.н. Черкашин Е.А.

Заявлено в планы на 2016 год. *Разработка методов извлечения онтологии, как грубой модели информационной системы, из неформализованных описаний системы.*

Предложена методика автоматизированного построения концептуальной модели предметной области. В основу методики входит полисистемное онтологическое представление предметной области, где составляющие онтологии представляют собой систему слоев (категорий), отображаемых друг в друга при помощи функторов. Полисистемное представление позволяет создавать концептуальный базис, поддерживающий тождественность элементов онтологий, предназначенных для различных аспектов моделирования предметной области и исследуемого объекта.

На первом шаге методики в текстах входных документов автоматически выделяется набор ключевых слов, производится построение иерархической классификаций документов согласно выделенному набору ключевых слов и словосочетаний. На втором шаге осуществляется поименование узлов иерархической классификации наиболее часто встречающимися ключевыми словами в соответствующем под поддереве классификации. Первый и второй шаги выполняются согласно существующим алгоритмам, адаптированным для обработки текстов предметной области. Результатом второго этапа является тезаурус, онтология, где задан словарь концептов и отношения вида «is—a» («является») между этими концептами.

На *третьем шаге* производится сопоставление сгенерированного тезауруса терминологическому базису используемой полисистемы онтологий. В результате такого сопоставления тезаурус обогащается как новыми «горизонтальными» отношениями, так и производится его оценка на полноту относительно отношений, заданных в полисистеме онтологий. После анализа полученной онтологии производится ее интегрирование в полисистему в виде нового слоя. При необходимости более детальной декомпозиции предметной области предусматривается повторение методики над частями текста более мелкого масштаба (переход от документам к их разделам, от разделов к отдельным таблицам и строкам).

Основная цель исследований – разработка методики рекурсивной декомпозиции автоматизируемой предметной области и ее привязка к существующим слоям полисистемы онтологий. Такая привязка позволяет переносить существующие программные реализации теорий слоев на новые слои по их образу и подобию.

В 2016 году в рамках исследования разработана программная инфраструктура для хранения слоев полисистемы с использованием существующих стандартных онтологий. Слой представляет собой часть онтологии (ядро), которая подвергается отображению в другой слой через функтор или является результатом такого отображения. Слои хранятся в онтологической базе в виде графов. Хранилище онтологий реализовано при помощи системы ClioPatria, использующей язык логического программирования Prolog в качестве языка реализации. Это позволяет создавать логические теории слоев непосредственно на сервере. Кроме того, декларативная сущность Prolog-а значительно упрощает задачу переноса реализаций теорий между слоями, т.е. порождение программ-аналогов.

В хранилище онтологий загружен ряд онтологий, предназначенных для описания организационной структуры предприятий, сообществ и документов. Разработаны программные модули для представления аннотаций документов в стандарте Open Annotation и NEPOMUK (Network Environment for Personalized, Ontology-based Management of Unified Knowledge), а также данные физических и юридических лиц – FOAF, в онтологическом

Рис. 1: Представление предметной области в виде полисистемы онтологий.

Слои A, C – стандартные онтологии; A, B – слои, категории; B – ядро (категория) стандартной онтологии C; $B \to A$ – интерпретация объектов и стрелок B в онтологии A (морфизм); D – онтология предметной области; $D \to B$ – интерпретация предметной области D (онтологии, категории, слоя) в слой B. Пунктирные стрелки восстановлены в D по их аналогам из B. Морфизмы стрелок между слоями на рисунке не отображены.

хранилище, а также модули для порождения аннотаций из результатов анализа текстов документов.

Разработанная распределенная система применена в решении задачи автоматизации анализа структуры текстов учебных программ технического вуза. Для этого произведена разметка абзацев учебных программ обозначениями концептов, задающих семантическое значение материалу, представленному в абзаце или таблице. Затем выполнено машиное обучение, направленное на распознавание концепта в зависимости от свойств, выделенных в абзаце (наличие ключевых слов, определенных словосочетаний и стилей представления текста). Результатом применения синтезированной системы знаний является семантическая разметка документа, которая отображается на слои полисистемы, что в дальнейшем позволяет применять к элементам документов те или иные алгоритмы обработки данных, а также стили и форматы отображения.

2. Проблематика МDE

Основная проблема разработки программного обеспечения (Π O) — это сложность, связанная с большим количеством взаимодействующих гетерогенных компонент в рамках одного программного комплекса. В основе каждого компонента находится модель, являющаяся продуктом анализа предметной области (см. рис. 2), которая должна изменяться в соответствии с изменением предметной областью.

Качество получаемых программных комплексов (ПК) существенно зависит от надлежащего *целенаправленного* структурирования моделей ПК. Т. е. методологию ТРИЗ¹, весьма широко используемую в строительстве и машиностроении, начали использовать только сейчас при проектировании сложных ПК. ТРИЗ направляет процесс мышления (arrow thinking) в конструктивном продуктивном направлении. Автоматный подход и подходы на интуитивных уточнениях алгоритма недостаточны для выражения структур

¹Теории рационализации и изобретательства.

и семантики сложных современных систем. Дачные подходы не предоставляют адекватных методов и инструментов для спецификации и описания межструктурных отношений и операций над структурами, что является основой современных подходов к разработке ПО. В то числе, классическое образование разработчиков, основанное на математике Бурбаки, является причиной скептицизма по отношению применимости современных математических подходов в инженерии ПО.

Процесс внесения изменений в ПО представляет собой исправление программного кода, при этом отображаемая им модель становиться неактуальной. Основная задача MDE — это использование интеллекта разработчика на этапе моделирования, а не кодирования. Программный код — это специальнывй вариант модели ПО, являющийся клнечным шагом последовательного уточнения модели².

Теорию категорий (ТК) следует рассматривать как общую глобальную теоретическую среду (framework), применимую на всех уровнях моделирования ПО. Если за основу берется циклическая методика инженерии ПО (Инжерения ПО -> Информатика -> Математика -> Категорная метаматематика -> Инженерия ПО), то ТК помещается в центр модели, и это значительно унифицирует процессы моделирования в инжерении ПО.

Рис. 2: Общая схема MDE

Система строится из отдельных моделей, которые представляют оригинальный объект. Объект – структура целостная, и его компоненты, представленные в виде моделей, перекрывают друг друга, взаимодействуют друг с другом. Класс моделей включает модели в виде структурных объектов отображаемых друг в друга. А это основной феномен категорий – функтор.

3. Юниверсум моделей

Модели – это многосортные структуры, являющиеся элементами при построении теории метамоделей. Рассмотрим обобщенный вид такой теории из [39;20]. Метамодельная категория $\mathbf{M}=(G_M,C_M)$, где G_M – граф (или более общий вариант а priori заданного предпучка топоса \mathbf{G}), а C_M – множество ограничений (т.е. свойства диаграммы³), заданных над G_M . Экземпляром метамодели \mathbf{M} является пара $A=(G_A,t_A)$, где G_A – это другой граф (объект в \mathbf{G}) и $t_A:G_A\to G_M$ – отображение (стрелка в \mathbf{G}), которую следует понимать как определение типа, которые удовлетворяют ограничению $A\models C_M$

²Здесь наше понимание процессов преобразования MDA PIM в PSM полностью совпадает.

³Специальная категория, в т.ч. функтор.

(более детально в [20]). Отображение экземпляров $A \to B$ – это отображение графов $f: G_A \to G_B$, которое совместно с определением типа $f: t_B = t_A$ дает коммутативную диаграмму. Эти элементы задают категорию $\pmb{Mod}(M) \subset \pmb{G}/G_M M$ -экземпляров.

Чтобы как-то объединить в одну структуру разрозненные гетерогенные экземпляры различных метамоделей, определим метамодельные морфизмы $m:M\to N$ как [sketch]-морфизмы, т.е., отображения графов $m:G_M\to G_N$ совместимые по ограничениям. Эти отображения задают категорию \pmb{MMod} . Теперь можно объединить все категории $\pmb{Mod}(M)$ в одну категорию \pmb{Mod} , где объектами являются экземпляры (= G-стрелки⁴) $t_A:G_A\to G_{M(A)}, t_B:G_B\to G_{M(B)}$ и т.д., причем каждая стрелка имеет свою метамодель, а морфизмы $f:A\to B$ являются парами $f_{data}:G_A\to G_B, f_{meta}:M(A)\to M(B)$ такие, что $f_{data};t_B=t_A;f_{meta}$, т.е., образуют коммутативные квадраты в \pmb{G} . Таким образом, \pmb{Mod} – это подкатегория категории стрелки \pmb{G}^{\to} .

Можно показать, что [[ко]предельный] декартов квадрат (коамальгама), построенный на действительном экземпляре $t_B:G_B\to G_N$ метамодели N вдоль [sketch]-морфизма $m:M\to N$ приводит к действительному экземпляру M [20]. Таким образом определяется расслоение ${\pmb p}:{\pmb Mod}\to {\pmb MMod}$, чей декартов подъем порождается этими предельными декартовыми квадратами.

4. Трансформация моделей (MDA)

По большому счету MDE не интересует процесс трансформации в программный код, т. к. интересует больше процесс внесения изменений (актуализация категории метамодели). Но в целом трансформация представляет собой последовательное уточнение описания модели до конкретных модулей, реализованных в конкретной среде программирования.

5. Подходы к внесению изменений в модели

В настоящее время выделяются два подхода к реализации трансформации – физическое объединение моделей и распространение изменений. В первом подходе последовательно на каждом этапе объединения из двух моделей строится одна, при этом общие концепты сливаются в один. Второй подход базируются на расслоении категории метамоделей на отдельные модели, связанные друг с другом через функторы. Эти функторы в нотации полисистемного анализа и синтеза реализуют интерпретации объектов и стрелок (морфизмов).

Процесс объединения моделей (первый случай) состоит из двух шагов — а) создание спецификации объединения, и этот этап является творческим, б) собственно объединение, представляющее собой выполнение алгебраических операций над моделями с целью построить общий копредел диаграммы (категорию) (см. рис. 3). Случай аналогичный этому рассматривается в диссертации д.ф.—м.н. Ковалева Сергея (ИДСТУ СО РАН выступал в качестве ведущей организации в 2012 году). Основное достоинство подхода, основанного на объединении моделей, — это первый шаг в трансформации: в результате объединения создается модель модуля, где все функции интегрированы в модуль, что влечет более оптимизированный программный код (далекий от МDЕ пример — LLVM). У С. Ковалева в качестве базовой методики проектирования выступало аспекториентированное программирование, где исходными моделями для трансформации

⁴Есть категории стрелок, но, вроде, не данный случай.

служили амальгамы (копределы) таких объединений. Из диссертации не понятно было как они строились на практике, были изучены их свойства.

Рис. 3: Построение амальгамы в процессе объединения моделей M-требуемая объединенная модель, A, B, C... – исходные модели.

Во втором случае трансформация моделей представляет собой процесс восстановление сквозной интерпретации концептов и стрелок в расслоении, в случае, если одна из моделей (слой) подверглась изменению. Актуализация представляет собой преобразование пары морфизмов (межслойная интерпретация; измененная структура в слое, рис. 4) в новую пару морфизмов и распространение этой процедуры на другие слои. Достоинство подхода – более естественное для человека представление метамодельной категории (в виде слоев) и локализованная процедура изменений (не зтрагивается все модель в целом).

Рис. 4: Распространение изменений

Закрашенные фигуры — состояние полисистемы до запуска процесса распространения изменений, незакрашенные — результат процесса. A', B', r' и т.п. — производные объекты и отображения; bPpg — "обратное" распространение изменения (морфизм $(r,b) \to (a,r')$), fPpg — прямое $((r',a') \to (r'',b'))$. В случае (b) перед распространением еще вычисляются отношения между объектами, в (a) они заданы.

В обоих случаях присутствуют этапы, где необходимо задействовать творческий потенциал разработчика. В первом случае – формирование спецификации объединения, во втором – изъятие недостающей информации при актуализации эпиморфизмов и

мономорфизмов. Во втором случае имеет смысл исследовать возможности компьютера в самообучении: строить слои моделей (UML, Онтологических, Реляционных и т.п.) по мере поступления информации от пользователя и проведения актуализации на предыдущих циклах разработки. Чем больше структур удастся ассимилировать, тем меньше вопросов надо будет задавать разработчику.

6. Построение метамодельной категории

На первоначальном этапе MDE существует проблема первоначального построения метамодельной категории, т.е. для построения полной системы (категории) моделей необходимо выделить в предметной области объекты и модели и построить функторы между концептами и моделями, т.е. объекты категории метамодели **MM od** и морфизмы в этой категории. В качестве методики предлагается использовать методологию полисистемного анализа и синтеза, а метамодель строить как полисистему. В какой-то мере она отражена рис. 4b.

Разработанные процедуры распознавания концептов на примере рабочих и учебных программ вуза — это примеры реализации этой задачи. По набору примеров (абзацев), их характеристических свойств (морфизмы модели), определяется концепт (название сущности, свойства), связь между концептами и свойствами, а также между концептами, в нашем случае — это описания, последовательности и зависимости (структурные и семантические), затем, задаются отображения этих элементов в другие слои (например, мереологический, автоматный, логический и т.д.). В качестве трансформации выступает процедура представление системы модулей, всяческие проверки на полноту (относительно требуемых в слоях отношений между известными/распознанными концептами), генерация новых версий представлений (по новым ФОС) и т.п.

7. К решению задачи разработки методики построения онтологической модели предметной области

Здесь необходимо доделать задачу анализа процесса разработки программы, фиксируемого в репозитариях типа GIT. Задача состоит в том, чтобы в сообщениях программистов выделить концепты и построит в слоях семантическую интерпретацию через указание кусков кода, реализующих интерпретацию этого концепта. Для решения этой задачи пригодится весь собранный и сконструированный инструментарий обработки естественно-языковых текстов.

Полученные к настоящему моменту результаты (задел) опубликованы в докладе Extraction of Thesaurus and Project Structure from Linux Kernel Source Tree.

8. Развернутый научный отчет РФФИ 00166 Технология интеграции распределенных web-сервисов и данных в рамках междисциплинарной информационно-аналитической среды

В настоящее время активно развиваются научные исследования окружающей среды и управления природно-ресурсным потенциалом, носящих междисциплинарный характер и требующих интеграции и комплексного использования методов обработки научных пространственных ресурсов. Увеличение скорости передачи данных сети Интернет, развитие и стандартизация программного интерфейса браузеров позволяют удаленно использовать методы в виде сервисов на основе стандартов Open Geospatial Consortium (OGC), которые обеспечивают взаимодействие различных программных систем через Интернет. Это обуславливает актуальность комплексного использования распределенных разнородных сервисов и данных, для которых требуются новые подходы к представлению пространственных данных, передачи пространственных данных между сервисами, поиску сервисов, согласованию форматов данных, организации асинхронного вычислительного процесса, где операторами являются сервисы и т.д. В рамках проекта планируется создание технологий разработки Web Processing Service (WPS) сервисов на основе библиотек программного кода, языков сценариев, методов доступа к базовым пространственным данным и другого ПО, повышающих эффективность разработки, объединения и использования разных сервисов для проведения междисциплинарных исследований окружающей среды региона и управления его природно-ресурсным потенциалом.

- 1. Разработать сервис классификации GRID данных на основе правил пользователя. Разработать методы применения SLD стилей для результатов работы сервисов на основе расширения набора метаданных сервисов. Создать механизм передачи сервисам результатов запроса к табличным данным, для что позволит перед запуском сервисов выполнять их фильтрацию и обобщение данных. Исполнители: Бычков И.В., Фёдоров Р.К., Ружников Г.М.
- 2. Разработать Web-приложения конвертирования неструктурированной информации, представленной в формате табличного процессора, в базы данных, на основе логического вывода правил анализа табличной компоновки. Развить методы словообразования в совокупности с методами фонетического и орфографического анализа для повышения качества очистки данных и приведения к эталонным значениям в процессе интеграции разнородных табличных документов. Повысить качество очистки данных на основе их структурного описания. Исполнители: Бычков И.В., Шигаров А.О., Парамонов В.В.
- 3. Разработать сервисы конвертации в формат SMD для геоданных, представленных в PostGIS. Разработать сервисы построения файлов MRG по пользовательским данным. Исполнители: Хмельнов А.Е., Фереферов Е.С., Гаченко А.С.

4. Моделирование сервисов на основе онтологического подхода (2014). Создание подсистемы индуктивного приобретения знаний о предметной области на основе анализа изменений структур данных компонент программ (информационно-вычислительного ресурса). Разработать технологию построения моделей информационных потоков в вычислительных сетях на основе анализа изменений их структуры (2016). Исполнитель: Е.А. Черкашин

8.1. Полученные в ходе выполнения Проекта важнейшие результаты

Развит подход к полисистемному онтологическому моделированию предметной области информационных систем. Предложена методика анализа изменения структуры документов и построения структуры информационных потоков объектов между документами, а также технология построения вопросно-ответных диалоговых подсистем, ориентированных на приобретение дополнительной информации от пользователя.

8.2. Сопоставление полученных результатов с мировым уровнем

Полисистемное представление онтологий позволяет полностью использовать все наработанные с 2001 года технологии Семантического Веба, а также обобщить большинство расширений семантическох сетей, например, самой известной — MultiNet (MeshNet). Подход позволяет развить современную методологию проектирования информационных систем процедурами полисистемного расслоения на этапе анализа предметной области, а также провести синтез технологий Семантического Веба с технологиями проектирования информационных систем.

8.3. Методы и подходы, использованные в ходе выполнения Проекта (описать, уделив особое внимание степени оригинальности и новизны)

Одной из важных задач, которой уделено внимание в рамках проекта, является онтологическое моделирование предметной области информационных систем и их взаимодействие с WPS. При решении данной задачи уделялось внимание мультидисциплинарной природе исследуемого объекта.

Предметная область информационной системы представляется в виде полисистемы онтологий. Полисистема онтологий — это расслоенная структура, где каждый слой (в идеале) представляет собой категорию; элементы категории отображаются в элементы других слоев (концепты в концепты, стрелки в стрелки), и такое отображение, функтор, есть интерпретация одного слоя другим. Интерпретация позволяет переносить алгоритмы и программы, реализующие свойства одного слоя, в другой, строить процедуры обработки данных по образу и подобию, а также обеспечивать верификацию слоев на структурную корректность и полноту, строя и анализируя указанные интерпретации.

Полисистема онтологий строиться из существующих стандартных онтологий, например, разработанных в проекте Linked Data. Слой строится из той части онтологии, которая представима в виде полноценной категории, затем требуется построить интерпретацию в другой слой, такую, чтобы все концепты и стрелки нового слоя были отображены в другом слое в виде соответствующих структур. Такой подход к использованию онтологий позволяет, концентрироваться на важной части онтологии, реле-

вантной к исследуемому объекту, а также сопоставлять онтологии не просто на уровне эквивалентности аналогичные концепты двух различных онтологий, а указывать через интерпретацию конкретный вариант тождественности составляющих элементов.

Для представления в виде полисистемы онтологий предметной области разрабатываемой информационной системы адаптирована методика полисистемного расслоения (Черкашин А.К., 1997)), которая ранее в таких задачах не была использована. При этом система концептов строится, например, в результате автоматизированного анализа текста входных документов существующими методами. В результате такого анализа выделяются ключевые слова, формируется иерархическая классификация входных документов по схожести друг с другом, задаются ключевые термины, характеризующие основные узлы классификации. Эти термины задают тезаурус, разновидность онтологии, где концепты связаны друг с другом отношением "is-a". Затем эти концепты привязываются через интерпретацию к существующему слою полисистемы онтологии, который соответствует тезаурусу. Если такой слой существует, то на следующем шаге тезаурус дополняется отношениями, имеющими интерпретацию в смежном слое полисистемы, т.к. все слои должны быть связаны морфизмами.

На этапе пополнения тезауруса предложен вариант методики ведения диалога с пользователем, цель которого дополнить структуру разрабатываемой концептуальной модели задачи до выполнения свойства полноты относительно структуры смежных слоев. Вопросы диалога синтезируются на основе анализа структуры морфизма и стрелок в смежных слоях. В диалоге ответ, название отношения, выбирается пользователем из возможных вариантов существующих отношений (стрелок) в слоях или, если ничего подходящего в полисистеме нет, задается новое имя.

Для хранения и преобразования полисистемы онтологий разработан специальный сервер. Основу сервера представляет сервер онтологий Cliopatria и реализация языка программирования SWI-Prolog. Созданы модули обеспечения взаимодействия клиентским приложениям, реализуемым на языках программирования Python (python-engines) и JavaScript (dustis).

Другой задачей, решаемой при помощи полисистемного подхода является анализ изменения структуры семантически размеченных документов и построения модели информационных потоков объектов между документами. Два документа участвуют во взаимодействии, если содержать общую логическую структуру (ссылку на один и тот же объект), при этом документы должны относится к разным классам. Документ связывает части информационных потоков, и связь интерпретируется как преобразование исходной структуры в ряд новых. Конечным результатом анализа является построение слоя, элементы которого интерпретируются устойчивыми паттернами преобразований объектов (распознавание схожих структур и их классификация).

С использованием технологий Семантического Веба разработана спецификация параметров WPS-сервисов, которые позволяют определить требования к параметрам в виде реляционных таблиц. Спецификация определяет название параметра (сущности) и набор атрибутов. Каждый атрибут характеризуется названием, именем в базе данных, типом данных, единицами измерения (для числовых данных), элементом управления и его свойствами. Элемент управления определяет для атрибута пользовательский интерфейс редактирования и отображения данных. Свойства элемента управления позволяют настраивать пользовательский интерфейс в зависимости от характеристик данных, например, единицы измерения для числовых данных или определять тип географических данных. Спецификации представлены в виде каталога. Применение спецификаций позволяет настраивать WPS-сервис на структуру и свойства данных пользователя, в том

числе

- 1. Создавать таблицы, требуемые для определенного сервиса анализа или обработки данных, на основе спецификаций параметров.
- 2. Обобщать различные по структуре пользовательские таблицы, содержащие общую спецификацию или унаследованные от нее другие спецификации.
- 3. Применять WPS-сервисы к любым таблицам содержащими данную спецификацию или спецификацию, унаследованную от данной.
- 4. Проводить анализ и создавать отчеты по совмещенным пользовательским таблинам.

Дальнейшая разработка данной технологии позволит существенно усовершенствовать технологии адаптации и конвертации данных документальных источников (таблиц, отчетов) к структуре входных данных сервисов WPS, разрабатывать алгоритмы интерпретации результатов расчетов в виде документов, предназначенных для чтения пользователем, а также интегрировать WPS в системы документооборота.

В рамках проекта разработаны алгоритмы и программная реализация нескольких методик анализа структуры (пластики) рельефа на основе GRID-данных высот. Программное обеспечение позволяет выделять в структуре рельефа местности зоны конвергенции и дивергенции вещества, а также проводить автоматизированный анализ объемов горных пород, складывающих рельеф местности с учетом разрушения и вымывания. Алгоритмы и программное обеспечение использовано в исследованиях разломной микроструктуры рельефа Западного побережья оз. Байкал в Ольхонском районе Иркутской области. Алгоритмы строятся на основе матричного преобразования поля градиентов высоты рельефа, а также фильтрации координат точек GRID-а на основе логических ограничений с последующей аппроксимацией поверхностей трехмерными сплайнами.

8.4. Вклад каждого члена коллектива в выполнение Проекта в 2016 году (указать работу, выполненную каждым членом коллектива по Проекту в 2016 году с новой строки)

Черкашин Е.А. разработал методику анализа и описания информационных потоков между документами, формирующими предметную область проектируемой информационной системы.

8.5. Адреса (полностью) ресурсов в Интернете, подготовленных авторами по данному проекту, например, http://www.somewhere.ru/mypub.html

```
https://github.com/CellulaProject;
https://github.com/eugeneai/python-pengines;
https://github.com/eugeneai/ontology-server;
https://github.com/eugeneai/dockerfiles/tree/master/ontology-server;
https://github.com/eugeneai/dustjs.
```

Список литературы

[1] Zinovy Diskin, Tom Maibaum. Category Theory and Model-Driven Engineering: From Formal Semantics to Design Patterns and Beyond. Proceedings of ACCAT 2012 EPTCS 93, U. Golas, T. Soboll (Eds.), 2012, pp. 1–21, doi:10.4204/EPTCS.93.1. URL:http://arxiv.org/pdf/1209.1433.pdf.