EXERCICE 2 (3 points)

L'exercice porte sur l'architecture matérielle, les réseaux et les systèmes d'exploitation.

Nous allons étudier les communications entre Bob et Alice. Ils communiquent au travers du réseau ci-dessous dont le protocole de routage est le protocole OSPF qui minimise le cout des communications :

Figure 1 : Plan du réseau de communication entre Alice et Bob.

LAN: réseau local; WAN: réseau étendu; R: routeur; Sw: Switch

Une adresse IPv4 est composée de quatre octets soit 32 bits. Une adresse de sousréseau avec la notation /n signifie que les n premiers bits de l'adresse correspondent à la partie « réseau » et les suivants à la partie « machine ».

L'adresse dont tous les bits de la partie « machine » sont à 0 est appelée adresse du réseau.

L'adresse dont tous les bits de la partie « machine » sont à 1 est appelée adresse de diffusion.

Ces adresses sont réservées et ne peuvent pas être attribuées à des machines.

Le choix des routes empruntées par les paquets IP est uniquement basé sur le protocole OSPF. On prendra comme débit maximal de référence 10 000 Mbit/s.

Le cout est alors calculé de la façon suivante :

$$cout = \frac{\text{débit maximal de référence}}{\text{débit du réseau concerné}}$$

1. La configuration IP partielle ci-dessous a été affichée sur l'un des ordinateurs :

IP hôte : 172.16.2.3

IP passerelle : 172.16.2.253

Indiquer en justifiant si cette configuration appartient à l'ordinateur de Bob ou d'Alice.

- 2. Le réseau WAN8 a un débit de 1 000 Mbit/s. Calculer le cout correspondant.
- **3.**On donne les tables de routage des routeurs R1 à R5, dans lesquelles Pass. désigne la passerelle (qui correspond au routeur suivant) :

Routeur R1			
Destination	Pass.	Cout	
LAN1	-	-	
LAN2	R2	21	
WAN1	-	ı	
WAN2	-	1	
WAN3	R2	10	
WAN4	R2	11	
WAN5	R2	10	
WAN6	R2	11	
WAN7	R2	11	
WAN8	R2	11	

Routeur R2		
Destination	Pass.	Cout
LAN1	R1	10
LAN2	R5	11
WAN1	-	-
WAN2	R1	10
WAN3	-	-
WAN4	R4	1
WAN5	-	ı
WAN6	R5	1
WAN7	R4	1
WAN8	R5	1

Routeur R3		
Destination	Pass.	Cout
LAN1	R4	21
LAN2	R5	20
WAN1	R4	11
WAN2	-	1
WAN3	R4	10
WAN4	-	ı
WAN5	R5	10
WAN6	R5	10
WAN7	R4	10
WAN8	-	-

Routeur R4		
Destination	Pass.	Cout
LAN1	R2	11
LAN2	R2	12
WAN1	R2	1
WAN2	R3	10
WAN3	-	_
WAN4	-	_
WAN5	R2	1
WAN6	R2	2
WAN7	-	_
WAN8	R2	2

Routeur R5		
Destination	Pass.	Cout
LAN1	R2	11
LAN2	R6	10
WAN1	R2	1
WAN2	R3	10
WAN3	R2	1
WAN4	R2	2
WAN5	-	ı
WAN6	-	-
WAN7	R2	2
WAN8	-	-

Figure 2 : Tables de routage des routeurs R1 à R5

Écrire sur votre copie la table de routage du routeur R6.

4. Bob envoie un message à Alice.

Énumérer dans l'ordre tous les routeurs par lesquels transitera ce message.

5. Un routeur tombe en panne, le nouveau cout pour la route entre Bob et Alice est de 111. Déterminer le nom du routeur en panne.