Документация по мат. моделированию. ПАСЬКО Д. А.

Решение ОДУ первого порядка методом Эйлера

1. Постановка задачи

Численно решить начальную задачу для дифференциального уравнения:

$$6. \begin{cases} y' = \cos x \\ y(0) = 1 \end{cases}$$

Найти аналитическое решение дифференциального уравнения и сравнить его с численным решением.

2. Аналитическое решение задачи

Решим исходное уравнение:

$$y' = \cos x$$

$$\frac{dy}{dx} = \cos x$$

$$dy = \cos x dx$$

$$y = \sin x + C$$

Решим задачу Коши:

$$1 = \sin 0 + C \rightarrow C = 1 \rightarrow \sin x + 1$$

3. Конечно-разностная схема

Метод Эйлера:

$$y'_{0} = \cos 0 = 1$$

$$y_{1} = y(x_{0} + \tau) = y_{0} + y'_{0}\tau$$
...
$$y_{i+1} = y(x_{i} + \tau) = y_{i} + y'_{i}\tau$$

4. Таблица

τ	0.1	0.01	0.001	0.0001	0.00001	10^{-6}
погрешнос	0.099964	0.00999998	0.001	0.0001	1.00002e-005	1.00004e-006
ТЬ						

Погрешность — это разница между аналитическим и численным решением в точке T=10.

Решение системы с трёхдиагональной матрицей

Решение ДУ с помощью решения системы с трёхдиагональной матрицей

5. Постановка задачи

Численно решить краевую задачу:

6.
$$\begin{cases} u_{xx} = -100\cos 10x \\ u(0) = 1 \\ u(1) = \cos 10 \end{cases}$$

Найти аналитическое решение дифференциального уравнения и сравнить его с численным решением.

6. Аналитическое решение задачи

Решение дифференциального уравнения:

$$u(x) = \cos 10x$$

7. Конечно-разностная схема

Поскольку $u_{xx}(t,x) \sim \frac{u(x+2h)-2u(x+h)+u(x)}{h^2}$ и $u_{xx}=f$, то $\frac{u(x+2h)-2u(x+h)+u(x)}{h^2}=f(x) \rightarrow u(x+2h)-2u(x+h)+u(x)=h^2f(x)$. То есть имеется система с трёхдиагональной матрицей.

8. Таблица

h	Расстояние до искомой функции
0.1	0.197568
0.01	0.0161742
0.001	0.00186502

Решение уравнения теплопроводности явной схемой

9. Постановка задачи

Численно решить краевую задачу:

6.
$$\begin{cases} u_t = u_{xx} + \cos 10x(1+100t) \\ u(t,0) = t \\ u(t,1) = t \cos 10 \\ u(0,x) = 0 \end{cases}$$

Найти аналитическое решение дифференциального уравнения и сравнить его с численным решением.

10. Аналитическое решение задачи

Решение дифференциального уравнения угадывается:

$$u(t,x) = \cos 10x \ t$$

Действительно,

1)
$$u_t = \cos 10x$$

 $u_{xx} = -100t * \cos 10x = u_t - \cos 10x(1 + 100t)$

- 2) u(t, 0) = t
- 3) $u(t, 1) = t\cos 10$
- 4) u(0,x) = 0

11. Конечно-разностная схема

Поскольку

$$u_t(t,x) \sim \frac{u(t+ au,x)-u(t,x)}{ au}$$
 , $u_{xx}(t,x) \sim (\frac{u(t,x+h)-u(t,x)}{h})_x \sim \frac{u(t,x+2h)-u(t,x+h)-u(t,x+h)+u(t,x)}{h^2} = \frac{u(t,x+2h)-2u(t,x+h)+u(t,x)}{h^2}$ и $u_t = u_{xx}+f$, то $\frac{u(t,x+2h)-2u(t,x+h)+u(t,x)}{h^2} = \frac{u(t+ au,x)-u(t,x)}{ au} + f(t,x)$. Далее, если u_j^k — значение функции u в точке $(k au,jh)$, то явная конечно — разностная схема имеет вид $u_j^{k+1} = const \times u_{j+1}^k + (1-2const)u_j^k + const \times u_{j-1}^k + au_{jh}^{k au}$, где $const = au/h^2$. После этого можно писать программу.

12.Таблица

	τ	0.1	0.01	0.001
h	погрешность			
0.1		8.2638e+025	1.00651e+087	0.0365383
0.01		1.34871e+020	2.43213e+241	nan
0.001		1.23804e+040	nan	nan

Погрешность — это разница между аналитическим и численным решением в точке T = 2, X = 0.5.

Решение уравнения теплопроводности неявной схемой

13.Постановка задачи

Численно решить краевую задачу:

6.
$$\begin{cases} u_t = u_{xx} + \cos 10x(1 + 100t) \\ u(t, 0) = t \\ u(t, 1) = t \cos 10 \\ u(0, x) = 0 \end{cases}$$

Найти аналитическое решение дифференциального уравнения и сравнить его с численным решением.

14. Аналитическое решение задачи

Решение дифференциального уравнения угадывается:

$$u(t,x) = \cos 10x t$$

Действительно,

5)
$$u_t = \cos 10x$$

 $u_{xx} = -100t * \cos 10x = u_t - \cos 10x(1 + 100t)$

6)
$$u(t,0) = t$$

7)
$$u(t, 1) = t\cos 10$$

8)
$$u(0,x) = 0$$

15. Конечно-разностная схема

Поскольку
$$u_t(t,x) \sim \frac{u(t+\tau,x)-u(t,x)}{\tau}$$
 , $u_{xx}(t,x) \sim \frac{u(t+\tau,x-h)-2u(t+\tau,x)+u(t+\tau,x+h)}{h^2}$ и $u_t = u_{xx} + f$, то $\frac{u(t+\tau,x)-u(t,x)}{\tau} = \frac{u(t+\tau,x-h)-2u(t+\tau,x)+u(t+\tau,x+h)}{h^2} + f(t,x)$. Далее, если $u_j^k - 1$ значение функции u в точке $(k\tau,jh)$, то неявная конечно — разностная схема имеет вид $u_j^k = -const \times u_{j-1}^{k+1} + (1-2const)u_j^{k+1} - const \times u_{j+1}^{k+1} = u_j^k + \tau f_j^k$, где $const = \tau/h^2$. После этого можно писать программу.

16. Таблица

	τ	0.1	0.01	0.001
h	погрешность			
0.1		0.736304	0.409567	0.055425
0.01		1.58884	1.14978	0.52972

Погрешность — это разница между аналитическим и численным решением в точке $T=2,\,X=0.5.$