Notes on Modular Forms

Lei

February 20, 2025

1 Hecke Operators

Thoughout this section, we fix the following data:

- a group Ω ;
- a submonoid $\Delta \subset \Omega$;
- a nonempty collection \mathscr{X} of subgroups of Ω , in which all members are commensurable¹ to each other, and

$$\Gamma \subset \Delta \subset \tilde{\Gamma} := \{ g \in \Omega \mid g\Gamma g^{-1} \approx \Gamma \}, \ \forall \Gamma \in \mathscr{X};$$

- a commutative ring \mathbb{K} '
- a left K-module M with a right Δ -action $(m, \delta) \mapsto m\delta$, i.e, a monoid homomorphism

$$\Delta \to \operatorname{End}_{\mathbb{K}}(M) \quad \delta \mapsto m \mapsto m\delta.$$

1.1 Commensurability

Recall that two subgroups $\Gamma, \Gamma' < \Omega$ are commensurable if both $[\Gamma : \Gamma \cap \Gamma']$ and $[\Gamma' : \Gamma \cap \Gamma']$ are finite, and this is an equivalence relation.

Lemma 1.1. $\tilde{\Gamma}$ is a group and depends only on the commensurable class of Γ .

Proposition 1.1. Let $\alpha \in \tilde{\Gamma}$ and $\Gamma \approx \Gamma'$. Then there is a bijection

$$\Gamma' \cap (\alpha^{-1}\Gamma\alpha) \backslash \Gamma' \longleftrightarrow \Gamma \backslash \Gamma\alpha\Gamma'$$
$$\Gamma''^{2}x \longleftrightarrow \Gamma\alpha x$$

and $\Gamma \backslash \Gamma \alpha \Gamma'$ is finite.

Proof. The map

$$\Gamma' \to \Gamma \backslash \Gamma \alpha \Gamma' \quad x \mapsto \Gamma \alpha x$$

is clearly surjective. Now $\forall x, y \in \Gamma'$,

$$\Gamma \alpha x = \Gamma \alpha y \iff \exists g \in \Gamma, g \alpha x = \alpha y$$

 $\iff \exists g' \in \Gamma'', g' x = y;$

so injective.

By definitions and the last lemma, $\Gamma' \cap (\alpha^{-1}\Gamma\alpha) \approx \Gamma'$, giving finiteness.

 $^{^1 \}mbox{Write} \; \Gamma \approx \Gamma' \mbox{ if } \Gamma \mbox{ is commensurable to } \Gamma'.$

²Of course, $\Gamma'' = \Gamma' \cap (\alpha^{-1}\Gamma\alpha)$.

1.2 Double Coset Algebra

1.2.1 Double Cosets and Convolution

Recall that the \mathbb{K} -module $\mathcal{F}(\Omega,\mathbb{K})$ of all functions $\Omega \to \mathbb{K}$ admits a \mathbb{K} -linear left Ω -action

$$(\gamma f)(z) := f(\gamma^{-1}z)$$

and a right Ω -action

$$(f\gamma)(z) := f(z\gamma).$$

Def-Thm 1. Let $\Gamma, \Gamma' \in \mathscr{X}$. Define $\mathscr{H}(\Gamma \backslash \Delta / \Gamma')$ to be the \mathbb{K} -module³ consists of functions $f : \Omega \to \mathbb{K}$ such that:

- supp $f \subset \Delta$ and $\Gamma \setminus (\text{supp } f) / \Gamma'$ is a finite set,
- f is left- Γ -invariant and right- Γ' -invariant.

Then $\mathcal{H}(\Gamma \setminus \Delta/\Gamma')$ is a free K-module, with a basis given by the double cosets in $\Gamma \setminus \Delta/\Gamma'$, i.e.,

$$[\Gamma \gamma \Gamma'] := \mathbf{1}_{\Gamma \gamma \Gamma'}, \ \gamma \in \Delta.$$

We thus identify $\mathscr{H}(\Gamma \setminus \Delta/\Gamma')$ with the free module $\mathbb{Z}[\Gamma \setminus \Delta/\Gamma']$ generated by $\Gamma \setminus \Delta/\Gamma'$, and we identify the function $[\Gamma \gamma \Gamma'] := \mathbf{1}_{\Gamma \gamma \Gamma'}$ with the double coset $\Gamma \gamma \Gamma'$.

Def-Thm 2 (Convolution). Let $\Gamma, \Gamma', \Gamma'' \in \mathcal{X}$. We define an convolution operator

$$*: \mathscr{H}(\Gamma \backslash \Delta / \Gamma') \times \mathscr{H}(\Gamma' \backslash \Delta / \Gamma'') \to \mathscr{H}(\Gamma \backslash \Delta / \Gamma'')$$

via

$$(\alpha * \beta)(x) := \sum_{h \in \Gamma' \setminus \Omega} \alpha(xh^{-1})\beta(h) = \sum_{\Omega / \Gamma'} \alpha(h)\beta(h^{-1}x).$$

The above equation is well-defined and holds. Moreover,

- this convolution operator * is distributive and associative,
- $1_{\Gamma} \in \mathcal{H}(\Gamma \setminus \Delta/\Gamma)$ is both a left and right *identity* for *.

In particular, the operator * makes

$$\mathscr{H}_{\Delta}(\Gamma) := \mathscr{H}(\Gamma \backslash \Delta / \Gamma) = \mathbb{Z}[\Gamma \backslash \Delta / \Gamma]$$

a \mathbb{K} -algebra.

We then give a formula of *. For $\alpha, \beta, \gamma \in \Delta$, write

$$[\Gamma \alpha \Gamma'] * [\Gamma' \beta \Gamma''] = \sum_{\gamma \in \Gamma \setminus \Delta / \Gamma''} m(\alpha, \beta; \gamma) [\Gamma \gamma \Gamma''].$$

Apply RHS to γ , one checks $([\Gamma \alpha \Gamma'] * [\Gamma' \beta \Gamma'']) (\gamma) = m(\alpha, \beta; \gamma)$. To determine these quantities, write

$$\Gamma \alpha \Gamma' = \bigsqcup_{a \in A} \Gamma a, \ \Gamma' \beta \Gamma'' = \bigsqcup_{b \in B} \Gamma' b.$$

 $^{^3}A$ K-submodule of $\mathcal{F}(\Omega,\mathbb{K})$

Then

$$\begin{split} m(\alpha,\beta;\gamma) &= \left(\left[\Gamma \alpha \Gamma' \right] * \left[\Gamma' \beta \Gamma'' \right] \right) (\gamma) \\ &= \sum_{h \in \Gamma' \backslash \Omega} \left[\Gamma \alpha \Gamma' \right] (\gamma h^{-1}) \cdot \left[\Gamma' \beta \Gamma'' \right] (h) \\ &= \sum_{h \in \Gamma' \backslash (\Gamma' \beta \Gamma'')} \left[\Gamma \alpha \Gamma' \right] (\gamma h^{-1}) = \sum_{b \in B} \left[\Gamma \alpha \Gamma' \right] (\gamma b^{-1}). \end{split}$$

Note that

$$[\Gamma \alpha \Gamma'](x) = \begin{cases} 1, & \exists a \in A, x \in \Gamma a \\ 0, & \text{otherwise} \end{cases} = \#\{a \in A \mid \Gamma x = \Gamma a\},$$

SO

$$m(\alpha, \beta; \gamma) = \# \{ (a, b) \in A \times B \mid \Gamma \gamma = \Gamma ab \}. \tag{1}$$

Considering right cosets rather than left cosets gives a similar formula.

The following is a useful result in computation.

Proposition 1.2. If $\alpha, \gamma \in \Delta$, and γ normalises Γ , then

$$[\Gamma \alpha \Gamma] * [\Gamma \gamma \Gamma] = [\Gamma \alpha \gamma \Gamma],$$

$$[\Gamma \gamma \Gamma] * [\Gamma \alpha \Gamma] = [\Gamma \gamma \alpha \Gamma].$$

Proof. Write $\Gamma \alpha \Gamma = \bigsqcup_{a \in A} \Gamma a$. As $\Gamma \gamma \Gamma = \Gamma \gamma$ and

$$\Gamma\alpha\gamma\Gamma=\Gamma\alpha\Gamma\gamma=\bigsqcup_{a\in A}\Gamma a\gamma,$$

the structure constants

$$m(\alpha, \gamma; \delta) = \# \left\{ a \in A \mid \Gamma \delta = \Gamma a \gamma \right\} = \begin{cases} 1, & \delta \in \Gamma \alpha \gamma \Gamma, \\ 0, & \delta \notin \Gamma \alpha \gamma \Gamma. \end{cases}$$

1.2.2 Commutativity

An **anti-involution** of a monoid Δ is a map $\tau : \Delta \to \Delta$ s.t.

$$\tau(xy) = \tau(y)\tau(x), \quad \tau(1) = 1, \quad \tau^2 := \tau \circ \tau = id.$$

Theorem 1. Let $\Gamma \in \mathscr{X}$. If there *exists* an anti-involution $\tau : \Delta \to \Delta$ that stabilises every double coset of Γ , then $\mathscr{H}_{\Delta}(\Gamma) = \mathscr{H}(\Gamma \setminus \Delta/\Gamma)$ is a commutative \mathbb{K} -algebra.

1.3 The Action of Double Coset Algebras

We consider the action of double cosets $\mathcal{H}(\Gamma \setminus \Delta/\Gamma')$ on

$$M^{\Gamma} = \{ x \in M \mid x\gamma = x, \forall \gamma \in \Gamma \}.$$

Def-Thm 3. For $f \in \mathcal{H}(\Gamma \backslash \Delta / \Gamma')$, define

$$f: M^{\Gamma} \longrightarrow M^{\Gamma'}$$

$$x \longmapsto xf := \sum_{\delta \in \Gamma \setminus \Delta} f(\delta) x \delta.$$

This action is well-defined. Moreover, it is comptatible with convolution.

- If $f \in \mathcal{H}(\Gamma \backslash \Delta / \Gamma')$, $f' \in \mathcal{H}(\Gamma' \backslash \Delta / \Gamma'')$, then x(f * f') = (xf)f'.
- In case $\Gamma' = \Gamma$, $x\mathbf{1}_{\Gamma} = x$.

In particular, M^{Γ} is a right $\mathcal{H}_{\Delta}(\Gamma)$ -module, with the action of the basis $\{\Gamma\gamma\Gamma\}_{\gamma\in\Delta}$ given by

$$\Gamma \gamma \Gamma = \bigsqcup_{i=1}^{n} \Gamma \gamma_i \implies m[\Gamma \gamma \Gamma] = \sum_{i=1}^{n} m \gamma_i.$$

Corollary 1.1. If γ normalises Γ , then $m[\Gamma \gamma \Gamma] = m\gamma$.

2 Hecke Operators for $\Gamma_0(N)$ and $\Gamma_1(N)$

We specialise our discussion in the last section to the case of modular forms. Let

- $\Omega := \mathrm{GL}(2,\mathbb{Q})^+,$
- $\mathbb{K} := \mathbb{Z}$,
- $\mathscr{X} = \text{congruence subgroups},$

Lemma 2.1. Any two congruence subgroups are commensurable.

Proof. Note that
$$\Gamma(N) \cap \Gamma(N') = \Gamma(\operatorname{lcm}(N, N'))$$
.

Lemma 2.2. If Γ is a discrete subgroup of $SL(2,\mathbb{Z})$, then in $GL(2,\mathbb{Q})^+$, the group $\tilde{\Gamma} = GL(2,\mathbb{Q})^+$.

Fix a weight k and consider all the modular forms

$$M:=\bigcup_{\Gamma\in\mathscr{X}}M_k(\Gamma)=\sum_{\Gamma}M_k(\Gamma)$$

and its \mathbb{C} -subspace

$$S := \bigcup_{\Gamma \in \mathscr{X}} S_k(\Gamma) = \sum_{\Gamma} S_k(\Gamma).$$

• Note that we have $\bigcup = \sum$, because

$$M_k(\Gamma) + M_k(\Gamma') \subset M_k(\Gamma \cap \Gamma').$$

Define a right-action of $GL(2,\mathbb{R})^+$ on M by

$$f|_k \gamma(z) := (\det \gamma)^{k-1} j(\gamma, z)^{-k} f(\gamma z).$$

Lemma 2.3. For all $\Gamma \in \mathcal{X}$ and $\gamma \in GL(2,\mathbb{R})^+$,

$$f \in M_k(\Gamma) \implies f|_k \gamma \in M_k(\Gamma \cap \gamma^{-1} \Gamma \gamma).$$

It remains true for S_k .

Proof. Just don't forget to check the cusps!

It is now straightforward to check that we defined an action on M which stabilises S.

Lemma 2.4. $M^{\Gamma} = M_k(\Gamma), S^{\Gamma} = S_k(\Gamma).$

Now we go to the case of $\Gamma_0(N)$ and $\Gamma_1(N)$.

2.1 The Algebras

We consider these monoids:

$$\Delta(N) := \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| \det A > 0, \ (a, N) = 1, \ N \mid c \right\}$$

$$= \left\{ A \in \operatorname{GL}(2, \mathbb{Q})^+ \cap \operatorname{M}_2(\mathbb{Z}) \middle| A \bmod N \in \begin{pmatrix} (\mathbb{Z}/N\mathbb{Z})^{\times} & * \\ & * \end{pmatrix} \right\},$$

$$\Delta^{\circ}(N) := \left\{ A \in \Delta(N) \mid (\det A, N) = 1 \right\},$$

$$\Delta_1(N) := \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Delta^1(N) \middle| a \equiv 1 \pmod{N} \right\}$$

$$= \left\{ A \in \operatorname{GL}(2, \mathbb{Q})^+ \cap \operatorname{M}_2(\mathbb{Z}) \middle| A \bmod N \in \begin{pmatrix} 1 & * \\ & * \end{pmatrix} \right\}.$$

Define

$$\mathscr{H}_i(N) := \mathscr{H}_{\Delta(N)}(\Gamma_i(N)), \quad \mathscr{H}_i^{\circ}(N) := \mathscr{H}_{\Delta^{\circ}(N)}(\Gamma_i(N)), \qquad i = 0, 1$$

and $\mathcal{H}_1(N) := \mathcal{H}_{\Delta_1(N)}(\Gamma_1(N))$.

Proposition 2.1. All the algebras mentioned above are commutative.

Proof. Check that

$$A = \begin{pmatrix} a & b \\ cN & d \end{pmatrix} \longmapsto \begin{pmatrix} a & c \\ bN & d \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 \\ & N \end{pmatrix}^{-1} A \begin{pmatrix} 1 \\ & N \end{pmatrix} \end{pmatrix}^{\mathsf{t}}$$

verifies the conditions of Theorem 1.

We are particularly interested in $\mathcal{H}_0(N)$ and $\mathcal{H}_1(N)$.

2.2 Product Formula for $\mathcal{H}_0(N)$

Theorem 2 (A coset representative of $\mathcal{H}_0(N)$). $\Gamma_0(N) \setminus \Delta(N) / \Gamma_0(N)$ admits coset representative given by

$$\begin{pmatrix} u \\ v \end{pmatrix}, \quad u \mid v, \ (u, N) = 1.$$

The double coset of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ correspond to

$$\begin{pmatrix} u \\ v \end{pmatrix}$$
, where $\begin{cases} uv = ad - bc \\ u = (a, b, c, d). \end{cases}$

Proposition 2.2. The double coset

$$\Gamma_0(N) \begin{pmatrix} u \\ v \end{pmatrix} \Gamma_0(N) = \bigsqcup_{g \in M_{u,uv}} \Gamma_0(N)g,$$

where

$$M_{u,n} = \left\{ \begin{pmatrix} a & b \\ & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}) \middle| \begin{array}{c} u = (a,b,d) \\ & n = ad \\ & (a,N) = 1 \\ & b \text{ permutes a representative of } \mathbb{Z}/d\mathbb{Z} \right\}$$

In particular,

$$\begin{bmatrix} \begin{pmatrix} 1 & \\ & n \end{pmatrix} \end{bmatrix} \Gamma_0(N) \begin{pmatrix} 1 & \\ & n \end{pmatrix} \Gamma_0(N) = \bigsqcup_{g \in M_{1,n}} \Gamma_0(N) g$$

and

$$M_{1,n} = \left\{ \begin{pmatrix} a & b \\ & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}) \middle| \begin{array}{c} (a,b,d) = 1 \\ & ad = n \\ & (a,N) = 1 \\ & b \text{ permutes a representative of } \mathbb{Z}/d\mathbb{Z} \right\}$$

Example 2.1. Let p be a prime.

• If $p \mid N$, then

$$\begin{bmatrix} \begin{pmatrix} 1 & \\ & p \end{pmatrix} \end{bmatrix} = \bigsqcup_{i \in \mathbb{Z}/p\mathbb{Z}} \Gamma_0(N) \begin{pmatrix} 1 & i \\ & p \end{pmatrix}.$$

• If $p \nmid N$, then

$$\left[\begin{pmatrix}1\\&p\end{pmatrix}\right]=\bigsqcup_{i\in\mathbb{Z}/p\mathbb{Z}}\Gamma_0(N)\begin{pmatrix}1&i\\&p\end{pmatrix}\sqcup\Gamma_0(N)\begin{pmatrix}p\\&1\end{pmatrix}.$$

Next, we must find the multiplication formula for these double cosets. Note that $\operatorname{diag}(u, u)$ lies in the centre of $\operatorname{GL}(2, \mathbb{Q})^+$, so $\operatorname{diag}(u, u)$ normalises $\Gamma_0(N)$. Hence

$$\begin{bmatrix} \begin{pmatrix} u & \\ & v \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} u & \\ & u \end{pmatrix} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 1 & \\ & v/u \end{pmatrix} \end{bmatrix},$$

and thus we need only to find the formula for diag(1, n)'s.

Proposition 2.3 (Multiplication formulas). Let $n, m \in \mathbb{Z}$, p be a prime.

• If (n, m) = 1, then

$$\begin{bmatrix} \begin{pmatrix} 1 & \\ & n \end{pmatrix} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 1 & \\ & m \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 1 & \\ & nm \end{pmatrix} \end{bmatrix}.$$

• If $p \mid N$, then

$$\left[\begin{pmatrix}1&\\&p\end{pmatrix}\right]\left[\begin{pmatrix}1&\\&p^r\end{pmatrix}\right]=\left[\begin{pmatrix}1&\\&p^{r+1}\end{pmatrix}\right].$$

• If $p \nmid N$, then

$$\begin{bmatrix} \begin{pmatrix} 1 & \\ & p \end{pmatrix} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 1 & \\ & p^r \end{pmatrix} \end{bmatrix} = \begin{cases} \begin{bmatrix} \begin{pmatrix} 1 & \\ & p^2 \end{pmatrix} \end{bmatrix} + (p+1) \begin{bmatrix} \begin{pmatrix} p \\ & p^r \end{pmatrix} \end{bmatrix}, \quad r = 1, \\ \begin{bmatrix} \begin{pmatrix} 1 & \\ & p^{r+1} \end{pmatrix} \end{bmatrix} + p \begin{bmatrix} \begin{pmatrix} p \\ & p^r \end{pmatrix} \end{bmatrix}, \quad r \geq 2.$$

Proof. Just some elementary computation, but I would like to write them down as detailed as possible. Write $\Gamma = \Gamma_0(N)$. Let (n, m) = 1. We need to find

$$\#\{(A,B)\in M_{1,n}\times M_{1,m}\mid \Gamma AB=\Gamma\gamma\},\quad \gamma=\begin{pmatrix}u&\\&v\end{pmatrix},$$

so we investigate $M_{1,n}M_{1,m}$ first. Look at

$$\begin{pmatrix} a & b \\ & d \end{pmatrix} \begin{pmatrix} e & f \\ & h \end{pmatrix} = \begin{pmatrix} ae & af + bh \\ & dh \end{pmatrix}$$

One checks directly that:

- (ae, af + bh, dh) = 1.
- ae permutes the factors of nm that are prime to N.
- When diaganol fixed, since $a \in (\mathbb{Z}/h\mathbb{Z})^{\times}$ and $h \in (\mathbb{Z}/d\mathbb{Z})^{\times}$, the upper-right af + bh permutes $\mathbb{Z}/dh\mathbb{Z} \simeq \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/h\mathbb{Z}$.

Therefore

$$M_{1,n}M_{1,m} = M_{1,nn}, \quad (n,m) = 1,$$

$$\begin{bmatrix} \begin{pmatrix} 1 \\ & n \end{pmatrix} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 1 \\ & m \end{pmatrix} \end{bmatrix} = \sum_{u|v,(u,N)=1} \# \{A \in M_{1,nm} \mid \Gamma A = \Gamma \operatorname{diag}(u,v) \} \begin{bmatrix} \begin{pmatrix} u \\ & v \end{pmatrix} \end{bmatrix}$$

$$= \sum_{u|v,(u,N)=1} \# \{A \in M_{1,nm} \mid \Gamma A = \Gamma \operatorname{diag}(u,v) \} [A].$$

For different $A \in M_{1,nm}$, the cosets ΓA are different, hence

$$\#\{A \in M_{1,nm} \mid \Gamma A = \Gamma \operatorname{diag}(u,v)\} \leq 1.$$

Actually, there is a unique diag(u, v) in each ΓA : in order

$$\begin{pmatrix} a & b \\ Nc & d \end{pmatrix} \begin{pmatrix} x & y \\ & z \end{pmatrix} = \begin{pmatrix} ax & ay + bz \\ Ncx & Ncy + dz \end{pmatrix}$$

being diaganol, c must be 0, so $a=d=\pm 1$, and $b=\pm y/z$. As u=ax>0, the choice is unique, and we have proven that $[\operatorname{diag}(1,n)][\operatorname{diag}(1,m)]=[\operatorname{diag}(1,nm)]$.

2.3 From Γ_0 to Γ_1

Proposition 2.4. Let $\Gamma_0 \supset \Gamma_1$ be congruence subgroups, $\Delta_0 \supset \Delta_1$ be monoids, satisfying the following conditions:

- (a) $\Delta_i \supset \Gamma_i$, i = 0, 1.
- (b) $\forall \alpha \in \Delta_1, \Gamma_0 \alpha \Gamma_0 = \Gamma_0 \alpha \Gamma_1.$
- (c) $\forall \alpha \in \Delta_1, \ \Gamma_0 \alpha \cap \Delta_1 = \Gamma_1 \alpha.$
- (d) $\Gamma_0 \Delta_1 = \Delta_0$.

Then the map

$$\Gamma_1 \setminus \Delta_1 / \Gamma_1 \to \Gamma_0 \setminus \Delta_0 / \Gamma_0$$
, $\Gamma_1 \alpha \Gamma_1 \mapsto \Gamma_0 \alpha \Gamma_0$

is bijective, and induces an isomorphism

$$\mathscr{H}_{\Delta_1}(\Gamma_1) \simeq \mathscr{H}_{\Delta_0}(\Gamma_0)$$

as \mathbb{Z} -algebras.

If $\alpha \in \Delta_1$, and the double coset

$$\Gamma_0 \alpha \Gamma_0 = \bigsqcup_i \Gamma_0 \alpha_i, \text{ with } \alpha_i \in \Gamma_1,$$

then

$$\Gamma_1 \alpha \Gamma_1 = \bigsqcup_i \Gamma_1 \alpha_i.$$

The conditions in Proposition 2.4 are satisfied when

$$\Gamma_0 = \Gamma_0(N), \quad \Delta_0 = \Delta(N),$$

 $\Gamma_1 = \Gamma_1(N), \quad \Delta_1 = \Delta_1(N),$

giving $\mathcal{H}_1(N) \simeq \mathcal{H}_0(N)$. Theorem 2 holds if we replace $\Gamma_0(N)$ by $\Gamma_1(N)$, while Proposition 2.2 needs a bit adjustment.

Recall that

$$\Gamma_0(N) \to (\mathbb{Z}/N\mathbb{Z})^{\times} \quad \begin{pmatrix} * & * \\ & d \end{pmatrix} \mapsto \bar{d}$$

induces a group isomorphism

$$\Gamma_0(N)/\Gamma_1(N) \simeq (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

Definition 4 (diamond operator). For $d \in (\mathbb{Z}/N\mathbb{Z})^{\times}$, define

$$\langle d \rangle := [\Gamma_1(N)\gamma_d\Gamma_1(N)],$$

where $\gamma_d \in \Gamma_0(N)$ is any lift of d.

- The operator $\langle d \rangle$ is independent to the choice of γ_d , because the γ_d 's differ by an element in $\Gamma_1(N)$.
- $\langle d \rangle \langle d' \rangle = \langle dd' \rangle$.

Proposition 2.5. The double coset

$$\Gamma_1(N)\begin{pmatrix} u \\ v \end{pmatrix}\Gamma_1(N) = \bigsqcup_{g \in M_{u,v}} \Gamma_1(N)\gamma_a g, \quad g = \begin{pmatrix} a & * \\ & * \end{pmatrix}.$$

Proof. We can find γ_a s.t. $\gamma_a g \in \Gamma_1(N)$. As $\gamma_a \in \Gamma_0(N)$, the formula is true by Proposition 2.4.

Moreover, the formulas in Proposition 2.3 holds for $\Gamma_1(N)$ after changing every $\begin{pmatrix} a & * \\ & * \end{pmatrix}$ to $\gamma_a \begin{pmatrix} a & * \\ & * \end{pmatrix}$.

2.4 Another Basis

Definition 5 (The operator T(n)). Let $n \in \mathbb{Z}_{\geq 1}$ and consider

$$\Delta^n(N) := \{ A \in \Delta(N) \mid \det A = n \}.$$

Write $\Gamma_0(N) \setminus \Delta^n(N) / \Gamma_0(N) = \bigsqcup_i \Gamma_0(N) g_i \Gamma_0(N)$, we define

$$T(n) := \sum_i [\Gamma_0(N)g_i\Gamma_0(N)] \in \mathscr{H}_0(N).$$

By Theorem 2, we may take g_i 's to be

$$\begin{pmatrix} u \\ n/u \end{pmatrix} \text{ with } \begin{cases} (u, N) = 1, \\ u^2 \mid n, \end{cases}$$

yielding

$$T(n) = \sum_{u} \begin{bmatrix} \begin{pmatrix} u & \\ & n/u \end{pmatrix} \end{bmatrix}$$
$$= \sum_{u} \begin{bmatrix} \begin{pmatrix} u & \\ & u \end{pmatrix} \begin{pmatrix} 1 & \\ & n/u^2 \end{pmatrix} \end{bmatrix}.$$

as the representative g_i 's, which in turn shows that $\Gamma_0(N)\backslash \Delta^n(N)/\Gamma_0(N)$ is a finite set and T(n) is well-defined. In particular, for p prime,

$$T(p) = \begin{bmatrix} \begin{pmatrix} 1 & \\ & p \end{pmatrix} \end{bmatrix}.$$

For $\Gamma_1(N)$, we consider $\Delta_1^n(N) := \Delta^n(N) \cap \Delta_1(N)$ and define $T(n) \in \mathcal{H}_1(N)$ using the same formula.

From Proposition 2.3, we deduce the formulas for T(n)'s.

Proposition 2.6 (Multiplication formulas for T(n)). Let $n, m \in \mathbb{Z}$, p be a prime.

- The map $T: \mathbb{Z}_{\geq 1} \to \mathscr{H}_i(N)$ is multiplicative: if (n,m)=1, then T(nm)=T(n)T(m).
- If $p \mid N$, then $T(p)T(p^r) = T(p^{r+1}), r \in \mathbb{Z}_{\geq 1}$.
- If $p \nmid N$, then $T(p)T(p^r) = T(p^{r+1}) + p \begin{bmatrix} \gamma_p \begin{pmatrix} p & \\ & p \end{bmatrix} \end{bmatrix} T(p^{r-1})$.

2.5 Hecke Algebra: the Hecke Action on Modular Forms

Fix a weight $k \in \mathbb{Z}_{>1}$. Define the ring or \mathbb{Z} -algebra

$$\mathbb{T}_i(N) := \operatorname{im}\left(\mathscr{H}_i(N) \to \operatorname{End}_{\mathbb{C}}(M_k(N))\right) \tag{2}$$

and the operators

$$T_n := \text{image of } T(n) \in \mathcal{H}_i(N) \text{ in } \text{End}_{\mathbb{C}}(M_k(N)).$$

for i = 0, 1.

Proposition 2.7. Let $m, n \in \mathbb{Z}_{\geq 1}$ and p a prime.

- $T_{mn} = T_m T_n$ if (m, n) = 1.
- $T_p T_{p^r} = T_{p^{r+1}}$ if $p \mid N$.
- $T_pT_{p^r}=T_{p^{r+1}}+p^{k-1}\left\langle p\right\rangle T_{p^{r-1}},$ where the diamond operators act trivially on $M_k(\Gamma_0(N))$.

Proof. Let $f \in M_k(\Gamma_1(N))$ or $M_k(\Gamma_0(N))$. Since diag(p,p) normalises $\Gamma_1(N)$ and $\Gamma_0(N)$, we have

$$f \begin{vmatrix} f \\ k \end{vmatrix} \begin{bmatrix} p \\ p \end{bmatrix} = f \begin{vmatrix} k \\ p \end{pmatrix} = p^{k-2}f,$$

Since $\Gamma_1(N) \triangleleft \Gamma_0(N)$, we have

$$f|_k[\gamma_p] = f|_k \gamma_p = \langle p \rangle f.$$

The relations between these operators are now clear from Proposition 2.6.

3 Group Cohomology

Recall that for a group G and a G-mod M, we define

$$H^{1}(G, M) = \frac{Z^{1}(G, M)}{B^{1}(G, M)} = \frac{\{f : G \to M \mid f(ab) = af(b) + f(a)\}}{\{g \mapsto gm - m \mid m \in M\}}.$$

We apply this construction to:

- G = a congruence subgroup $\Gamma < \mathrm{SL}_2(\mathbb{Z})$,
- $M = V_n(R)$ as follows. Let R be a ring, $n \in \mathbb{Z}_{\geq 1}$. Define

$$R[X,Y]_n := \{\text{homogeneous polynomials of degree } n\},$$

a free R-module of rank n+1. The monoid $M_2(\mathbb{Z}) \cap GL_2(\mathbb{Q})^+$ acts on $R[X,Y]_n$ by

$$\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} P\right)(X,Y) := P\left(\begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = P(aX + cY, bX + dY);$$

this is the *left* action on $R[X,Y] \hookrightarrow \{\text{function } R \times R \to R\}$ induced by the *right* action on $R \times R$. We set $V_n(R) := R[X,Y]_n$ with its $\mathrm{SL}_2(\mathbb{Z})$ -action.

Note that $V_n(R) \simeq \operatorname{Sym}^n R^2$, where R^2 is equipped with the standard $\operatorname{SL}_2(\mathbb{Z})$ -action.

We will show that $H^1(\Gamma, V_n(\mathbb{C}))$ "resembles" a space of modular forms. It has an integral structure

$$H^1(\Gamma, V_n(\mathbb{Z})) \hookrightarrow H^1(\Gamma, V_n(\mathbb{C})),$$

which could give rise to the \mathbb{Z} -lattice we used in the last section.

Proposition 3.1. If S is flat over R, then as S-modules,

$$H^1(\Gamma, V_n(S)) \simeq H^1(\Gamma, V_n(R)) \otimes_R S.$$

3.1 The Eichler-Shimura map

Define the space of anti-holomorphic cusp forms

$$\overline{S_k(\Gamma)} := \{ \overline{f} : z \mapsto \overline{f(z)} \mid f \in S_k(\Gamma) \}.$$

Definition 6. For $n \geq 0$, $u, v \in \mathcal{H}$, $f \in M_{n+2}(\Gamma)$, define

$$I_f(u,v) := \int_u^v f(z)(Xz+Y)^n dz$$
$$I_{\bar{f}}(u,v) := \int_u^v \overline{f(z)}(X\bar{z}+Y)^n dz.$$

These integrals take values in $V_n(\mathbb{C})$.

Lemma 3.1. Let $f \in M_{n+2}(\Gamma)$ or $S_{n+2}(\Gamma)$, $u, v, w \in \mathcal{H}$.

•
$$I_f(u, w) = I_f(u, v) + I_f(v, w)$$
.

• If $\gamma \in M_2(\mathbb{Z}) \cap GL_2(\mathbb{Q})^+$, then

$$I_f(\gamma u, \gamma v) = (\det g)^{-n} \gamma I_{f|_{n+2}\gamma}(u, v).$$

In particular, if $\gamma \in \Gamma$, then

$$I_f(\gamma u, \gamma v) = \gamma I_f(u, v).$$

Theorem 3. The map

$$M_{n+2}(\Gamma) \oplus \overline{S_{n+2}(\Gamma)} \longrightarrow H^1(\Gamma, V_n(\mathbb{C}))$$

$$(f,\bar{g}) \longmapsto (\gamma \mapsto I_f(a,\gamma a) + I_{\bar{g}}(b,\gamma b))$$

where $a, b \in \mathcal{H}$ are arbitarily chosen, is a well-defined isomorphism, called the **Eichler-Shimura map**.

It won't be proved in this course that this is an isomorphism.

Proof that this is well defined.

4 Modular Curves

The purpose of this section is to introduce modular curves as Riemann surfaces and realize modular forms in the cohomologies of modular curves.

4.1 Modular Curves: Classical Version

Let Γ be a congruence subgroup of $\mathrm{SL}_2(\mathbb{Z})$. We assume that Γ contains no ellptic elements, so that

$$\pi_{\Gamma}: \mathcal{H} \to Y(\Gamma)$$

is a covering of group Γ , and any $\Gamma' \triangleleft \Gamma$ induces a Galois covering

$$\pi_{\Gamma,\Gamma'}:Y(\Gamma')\to Y(\Gamma)$$

of group Γ/Γ' .

4.1.1 Review: cohomologies of sheaves

4.1.2 Cohomologies of locally constant sheaves on $Y(\Gamma)$

Let V be a $\mathbb{Z}[\Gamma]$ -module with discrete topology. Consider the diagonal action of Γ on $\mathcal{H} \times V$, which gives a covering

$$\Gamma \setminus (\mathcal{H} \times V) \to \Gamma \setminus \mathcal{H} = Y(\Gamma).$$

Define \underline{V}_{Γ} to be the sheaf on $Y(\Gamma)$ of sections of the covering $\Gamma \setminus (\mathcal{H} \times V) \to Y(\Gamma)$. This is a locally constant sheaf with stalk V, and there is a natrual isomorphism $\underline{V}_{\Gamma} \simeq (\pi_{\Gamma *}\underline{V})^{\Gamma}$. Moreover, $\Gamma \mapsto \underline{V}_{\Gamma}$ is functorial: for $\Gamma' \triangleleft \Gamma$,

$$\underline{V}_{\Gamma} \simeq (\pi_{\Gamma,\Gamma'} * \underline{V}_{\Gamma'})^{\Gamma/\Gamma'},$$

which induces

$$H^i(Y(\Gamma),\underline{V}_{\Gamma}) = H^i\left(Y(\Gamma), (\pi_{\Gamma,\Gamma'} * \underline{V}_{\Gamma'})^{\Gamma/\Gamma'}\right) \to H^i(Y(\Gamma), \pi_{\Gamma,\Gamma'} * \underline{V}_{\Gamma'})^{\Gamma/\Gamma'} = H^i(Y(\Gamma'),\underline{V}_{\Gamma'})^{\Gamma/\Gamma'}.$$

The kernels and cokernels of these maps are controlled by the Leray-Serre spectrual sequence. If, furthermore, V is a \mathbb{Q} -vector space, then we get isomorphisms $H^i(Y(\Gamma), \underline{V}_{\Gamma}) \simeq H^i(Y(\Gamma'), \underline{V}_{\Gamma'})^{\Gamma/\Gamma'}$.

4.1.3 The Hecke action on cohomologies

Let $G = \mathrm{GL}_2(\mathbb{Q})^+$, and V be a $\mathbb{Z}[G]$ -module. We define

$$H^i(V) := \varinjlim_{\Gamma} H^i(Y(\Gamma), \underline{V}_{\Gamma}).$$

If V is a \mathbb{Q} -vector space, $H^i(V)^{\Gamma} = H^i(Y(\Gamma), \underline{V}_{\Gamma})$. So our goal is to define a right G-action on $H^i(V)$ to obtain the Hecke operators on cohomologies, and we do this by defining

$$H^i(Y(\Gamma), \ \underline{V}_{\Gamma}) \to H^i(Y(g^{-1}\Gamma g), \ \underline{V}_{q^{-1}\Gamma q}), \quad g \in G$$

as the one induced from

$$l_g: Y(g^{-1}\Gamma g) \to Y(\Gamma) \quad z \mapsto gz$$

.

4.2 Modular Curves: Adelic Version

Let $K \subset GL_2(\mathbb{A}_f)$ be compact open. We define

$$Y(K) := \mathrm{GL}_2(\mathbb{Q})^+ \backslash \mathcal{H} \times (\mathrm{GL}_2(\mathbb{A}_f)/K)$$

4.2.1 Cohomologies

Let V be a $\mathbb{Z}[\operatorname{GL}_2(\mathbb{Q})^+]$ -module.

4.2.2 The Hecke action on cohomologies

This time we consider the right $G = GL_2(\mathbb{A}_f)$ -action on

$$H^i(V) = \varinjlim_K H^i(Y(K), \underline{V}_K)$$

given by

$$l_g: Y(g^{-1}Kg) \to Y(K) \quad (z, \ k \cdot g^{-1}Kg) \mapsto (z, \ kg^{-1} \cdot K).$$

4.3 The Eichler-Shimura Isomorphism