WE CLAIM:

- A cell comprising a nucleic acid molecule wherein said nucleic acid molecule comprises:
 - a) one or more target binding domains wherein said target
 binding domain is between 10 and 600 nucleotides in length and
 that target binding of the nucleic acid molecule to a target premRNA expressed within a cell;
 - b) a 3' splice region comprising a branchpoint, a pyrimidine tract and a 3' splice acceptor site;
 - c) a spacer region that separates the 3' splice region from the target binding domain; and
 - d) nucleotide sequence to be trans-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- A cell comprising a nucleic acid molecule wherein said nucleic acid molecule comprises:
 - a) one or more target binding domains wherein said target
 binding domain is between 10 and 600 nucleotides in length and
 that target binding of the nucleic acid molecule to a target premRNA expressed within a cell

- b) a 5' splice site;
- c) a spacer region that separates the 5' splice site from the target binding domain; and
- a nucleotide sequence to be trans-spliced to the target premRNA;

wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.

- The cell of claim 1 wherein the nucleic acid molecule further comprises a
 donor site.
- 4. The cell of Claim 1 wherein the nucleic acid molecule further comprises a safety nucleotide sequence comprising one or more complementary sequences that bind to one or more sides of the 3' splice region.
- 5. The cell of Claim 2 wherein the nucleic acid molecule further comprises a safety nucleotide sequence comprising one or more complementary sequences that bind to one or more sides of the 5' splice region.
- 6. The cell of Claim 1 wherein the nucleic acid molecule further comprises sequences encoding a translatable protein product.

- 7. The cell of Claim 1 or 3 wherein the nucleic acid molecule further comprises a nucleotide sequence containing a translational stop codon.
- 8. A cell comprising a recombinant vector wherein said vector expresses a nucleic acid molecule comprising:
 - a) one or more target binding domains wherein said target binding domain is between 10 and 600 nucleotides in length and that target binding of the nucleic acid molecule a target pre-mRNA expressed within a cell;
 - a 3' splice region comprising a branchpoint, a pyrimidine tract and
 a 3' splice acceptor site;
 - c) a spacer region that separates the 3' splice region from the target binding domain; and
 - d) a nucleotide sequence to be trans-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 9. A cell comprising a recombinant vector wherein said vector expresses a nucleic acid molecule comprising:

a) one or more target binding domains wherein said target binding domain is between 10 and 600 nucleotides in length and that target

NY02.301650 1

- binding of the nucleic acid molecule a target pre-mRNA expressed within a cell;
- b) a 5' splice site;
- c) a spacer region that separates the 5' splice site from the target binding domain; and
- a nucleotide sequence to be trans-spliced to the target pre-mRNA;
 wherein said nucleic acid molecule is recognized by nuclear
 splicing components within the cell.
- The cell of claim 8 wherein the nucleic acid molecule further comprises a5' donor site.
- 11. A method of producing a chimeric RNA molecule in a cell comprising:

 contacting a target pre-mRNA expressed in the cell with a nucleic acid

 molecule recognized by nuclear splicing components wherein said nucleic

 acid molecule comprises:
 - a) one or more target binding domains wherein said target binding domain is between 10 and 600 nucleotides in length and that target binding of the nucleic acid molecule to a target pre-mRNA expressed within a cell;
 - b) a 3' splice region comprising a branchpoint, a pyrimidine tract and a 3' splice acceptor site;

- c) a spacer region that separates the 3' splice region from the target binding domain; and
- a nucleotide sequence to be trans-spliced to the target pre-mRNA; under conditions in which a portion of the nucleic acid molecule is trans-spliced to a portion of the target pre-mRNA to form a chimeric RNA within the cell.
- 12. A method of producing a chimeric RNA molecule in a cell comprising: contacting a target pre-mRNA expressed within the cell with a nucleic acid molecule recognized by nuclear splicing components wherein said nucleic acid molecule comprises:
 - a) one or more target binding domains wherein said target binding domain is between 10 and 600 nucleotides in length and that target binding of the nucleic acid molecules target pre-mRNA expressed within a cell;
 - b) a 5' splice site;
 - c) a spacer region that separates the 5' splice site from the target binding domain; and
 - a nucleotide sequence to be trans-spliced to the target premRNA;

wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.

- 13. A method of claim 11 wherein the nucleic acid molecule further comprises a 5' donor site.
- 14. The method of claim 11, wherein the chimeric RNA molecule comprises sequences encoding a translatable protein.
- 15. The method of claim 11, wherein the chimeric RNA molecule comprises sequences encoding a toxin.
- 16. A nucleic acid molecule comprising:
 - a) one or more target binding domains wherein said target binding domain is between 10 and 600 nucleotides in length and that target binding of the nucleic acid molecule to a target pre-mRNA expressed within a cell;
 - b) a 3' splice region comprising a branchpoint, a pyrimidine tract and a 3' splice acceptor site;
 - c) a spacer region that separates the 3' splice region from the target binding domain;
 - d) a safety sequence comprising one or more complementary sequences that bind to one or both sides of the 3' splice site; and

- e) a nucleotide sequence to be trans-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 17. A nucleic acid molecule comprising:
 - a) one or more target binding domains wherein said target binding domain is between 10 and 600 nucleotides in length and that target binding of the nucleic acid molecule a target pre-mRNA expressed within a cell;
 - b) a 5' splice site;
 - c) a spacer region that separates the 5' splice site from the target binding domain;
 - d) a safety sequence comprising one or more complementary sequences that bind to one or both sides of the 5' splice site; and
 - e) a nucleotide sequence to be trans-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 18. The nucleic acid molecule of claim 16 wherein the nucleic acid molecule further comprises a 5' donor site.

- 19. The nucleic acid molecule of claim 16 or 17 wherein the nucleic acid molecule further comprises sequences encoding a translatable protein product.
- 20. The nucleic acid molecule of claim 16 or 17 wherein the translatable protein product is a toxin.
- 21. An expression vector wherein said vector expresses a nucleic acid molecule comprising:
 - a) one or more target binding domains wherein said target binding domain is between 10 and 600 nucleotides in length and that target binding of the nucleic acid molecule to a target pre-mRNA expressed within a cell;
 - b) a 3' splice region comprising a branchpoint, a pyrimidine tract and a 3' splice acceptor site;
 - c) a spacer region that separates the 3' splice region from the target binding domain; and
 - d) nucleotide sequence to be trans-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.

- 22. A eukaryotic expression vector wherein said vector expresses a nucleic acid molecule comprising:
 - a) one or more target binding domains wherein said target binding domain is between 10 and 600 nucleotides in length and that target binding of the nucleic acid molecule to a target pre-mRNA expressed within a cell;
 - b) a 5' splice site;
 - c) a spacer region that separates the 5' splice site from the target binding domain; and
 - a nucleotide sequence to be trans-spliced to the target premRNA;

wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.

- 23. The vector of claim 21 wherein the nucleic acid molecule further comprises a 5' donor site.
- 24. The expression vector of claim 21 or 22 further comprising a safety sequence comprising one or more complementary sequences that bind to one or both sides of the splice site.

- 25. A cell comprising a nucleic acid molecule wherein said nucleic acid molecule comprises:
 - a) a 3' splice region comprising a branch point, a pyrimidine tract and
 a 3' splice acceptor site; and
 - b) a nucleotide sequence to be *trans*-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 26. A cell comprising a nucleic acid molecule wherein said nucleic acid molecule comprises:
 - a) a 5' splice site;
 - c) a spacer region that separates the 5' splice site from the target binding domain; and
 - d) a nucleotide sequence to be trans-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 27. The cell of claim 25 wherein the nucleic acid molecule further comprises a 5' donor site.
- 28. The cell of claim 25 or 26 wherein the nucleotide sequences to be transspliced to the target pre-mRNA comprises a nucleotide sequence tag.

- 29. A cell comprising a recombinant vector wherein said vector expresses a nucleic acid molecule comprising:
 - a) a 3' splice region comprising a branchpoint, a pyrimidine tract and a 3' splice acceptor site; and
 - b) a nucleotide sequence to be *trans*-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 30. A cell comprising a recombinant vector wherein said vector expresses a nucleic acid molecule comprising:
 - a) a 5' splice site; and
 - b) a nucleotide sequence to be *trans*-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 31. The cell of claim 29 wherein the nucleic acid molecule further comprises a 5' donor site.
- 32. A method of producing a chimeric RNA molecule in a cell comprising:

 contacting a target pre-mRNA expressed in the cell with a nucleic acid

 molecule recognized by nuclear splicing components wherein said nucleic

 acid molecule comprises:

- a 3' splice region comprising a branch point, a pyrimidine tract and
 a 3' splice acceptor site; and
- b) a nucleotide sequence to be *trans*-spliced to the target pre-mRNA; under conditions in which a portion of the nucleic acid molecule is trans-spliced to a portion of the target pre-mRNA to form a chimeric RNA within the cell.
- 33. A method of producing a chimeric RNA molecule in a cell comprising: contacting a target pre-mRNA expressed within the cell with a nucleic acid molecule recognized by nuclear splicing components wherein said nucleic acid molecule comprises:
 - a) a 5' splice site; and
 - d) a nucleotide sequence to be *trans*-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 34. A method of claim 32 wherein the nucleic acid molecule further comprises a 5' donor site.
- 35. The method of claim 32, wherein the chimeric RNA molecule comprises a nucleotide sequence tag.

- 36. An eukaryotic expression vector wherein said vector expresses a nucleic acid molecule comprising:
 - a) a 3' splice region comprising a branchpoint, a pyrimidine tract and a 3' splice acceptor site; and
 - b) a nucleotide sequence to be *trans*-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 37. An eukaryotic expression vector wherein said vector expresses a nucleic acid molecule comprising:
 - a) a 5' splice site; and
 - d) a nucleotide sequence to be *trans*-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 38. The vector of claim 36 wherein the nucleic acid molecule further comprises a 5' donor site.
- 39. An expression library comprising recombinant expression vectors wherein said vectors expresses a nucleic acid molecule comprising:
 - a 3' splice region comprising a branchpoint, a pyrimidine tract and
 a 3' splice acceptor site; and

- d) a nucleotide sequence to be *trans*-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 40. An expression library comprising recombinant expression vectors wherein said wherein said vector expresses a nucleic acid molecule comprising:
 - a) a 5' splice site; and
 - b) a nucleotide sequence to be *trans*-spliced to the target pre-mRNA; wherein said nucleic acid molecule is recognized by nuclear splicing components within the cell.
- 41. The expression library of claim 39 wherein the nucleic acid molecule further comprises a 5' donor site.
- 42. The expression library of claim 39 or 40 wherein the nucleotide sequence to be spliced to the target pre-mRNA comprises a nucleotide sequence tag.
- 43. A method for mapping exon-intron boundaries in pre-mRNA molecules comprising:
 - (i) contacting a nucleic acid molecule to a target pre-mRNA molecule, under conditions in which a portion of the nucleic acid molecule is

- trans-spliced to a portion of the target pre-mRNA to form a chimeric mRNA;
- (ii) amplifying the chimeric mRNA molecule;
- (iii) selectively purifying the amplified molecule; and
- (iv) determining the nucleotide sequence of the amplified molecule thereby identifying the intron-exon boundaries.