FEATURES

- Output Current up to 300mA
- MLCC, Aluminum electrolytic capacitor applicable
- Three Terminal Adjustable(ADJ) or Fixed 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, 5.0V
- Line Regulation typically at 0.1% max.
- Load Regulation typically at 0.2% max.
- Internal Current and Terminal Protection
- Surface Mount Package SOT-23
- Moisture Sensitivity Level 3

APPLICATION

- Active SCSI Terminators
- Portable/ Plan Top/ Notebook Computers
- High Efficiency Linear Regulators
- SMPS Post Regulators
- Mother B/D Clock Supplies
- Disk Drives
- Battery Chargers

ORDERING INFORMATION

Device	Package
TJ1117GSF-ADJ	SOT-23-3L
TJ1117GSF-X.X	501-23-3L

X.X = Output Voltage = 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, 5.0V

DESCRIPTION

The TJ1117 is a low power positive-voltage regulator designed. This device is an excellent choice for use in battery-powered applications, as active terminators for the SCSI bus, and portable computers. The TJ1117 features low quiescent current and low dropout voltage of 1.2V at a full load and lower as output current decreases. TJ1117 is available as an adjustable or fixed 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5.0V. The TJ1117 is offered in a 3-pin surface mount package SOT-23. The output capacitor is needed for output stability of TJ1117 as required by most of the other regulator circuits.

Absolute Maximum Ratings

(T₁ = 25 °C unless otherwise specified)

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
DC Input Voltage	Vin	-	20	V
Lead Temperature (Soldering, 5 seconds)	T _{SOL}	-	260	$^{\circ}$
Operating Junction Temperature Range	T _{OPR}	-40	125	${\mathbb C}$
Storage Temperature Range	T _{STG}	-65	150	$^{\circ}$ C

Ordering Information

V _{out}	Package	Order No.	Supplied As	Status
ADJ	SOT-23	TJ1117GSF-ADJ	Reel	Active
1.2V	SOT-23	TJ1117GSF-1.2	Reel	Contact us
1.5V	SOT-23	TJ1117GSF-1.5	Reel	Contact us
1.8V	SOT-23	TJ1117GSF-1.8	Reel	Contact us
2.5V	SOT-23	TJ1117GSF-2.5	Reel	Contact us
3.3V	SOT-23	TJ1117GSF-3.3	Reel	Active
5.0V	SOT-23	TJ1117GSF-5.0	Reel	Contact us

PIN CONFIGURATION

SOT-23

PIN DESCRIPTION

Pin No.	SO ⁻	Г-23
FIII NO.	Name	Function
1	ADJ/GND	Adjustable / Ground
2	V _{OUT}	Output Voltage
3	V _{IN}	Input Voltage

Typical Application Circuit

ELECTRICAL CHARACTERISTICS

For ADJ Output Voltage

(T_A=25 $^{\circ}\text{C}$, C_{IN} = C_{O} = 10uF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
V _{REF}	Reference Voltage	V _{IN} =5V, I _O =10mA	1.238	1.250	1.262	V
V_{REF}	Reference Voltage	$I_{O} = 10$ mA to 300mA, V_{IN} - $V_{REF} = 1.5V$ to 13.75V $(T_{J} = 0 \sim 125 ^{\circ}\text{C})$	1.219		1.281	V
ΔV_{LINE}	Line Regulation	$I_{O} = 10 \text{mA}$, $V_{IN} - V_{REF} = 1.5 \text{V}$ to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	$I_0 = 10$ mA to 300mA, $V_{IN} - V_{REF} = 2$ V		0.2	0.4	%
V _{IN}	Operating Input Voltage				12	V
I _{ADJ}	Adjustment pin Current	V_{IN} - V_{REF} = 1.5V to 12V, I_{O} = 100mA		35	120	uA
ΔI _{ADJ}	Adjustment Pin Current Change	V_{IN} - V_{REF} = 1.5V to 12V, I_{O} = 100mA to 300mA		0.5	5	uA
I _{O(MIN)}	Minimum Load Current	V _{IN} =5V, V _{REF} =0V		5	10	mA
Io	Current Limit	V_{IN} - V_{REF} = 5V	1000	1250	1600	mA
EΝ	Output Noise(%V ₀)	B = 10Hz to 10kHz, T _J = 25 ℃		0.003		%
SVR	Supply Voltage Rejection	$I_{O} = 300$ mA, $f = 120$ Hz, $V_{IN} - V_{REF} = 3V$, $V_{RIPPLE} = 1$ V _{PP}	60	75		dB

For 1.2V Output Voltage

(T_A=25 $^{\circ}$ C, C_{IN} = C_O = 10uF unless otherwise specified)

		(-7)				-1 /
Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 2.7V, I _O = 10mA	1.176	1.200	1.224	V
Vo	Output Voltage	V_{IN} = 2.7V to 12V, I_{O} = 0mA to 300mA (T_{J} = 0 ~ 125 $^{\circ}$ C)	1.152		1.248	V
ΔV_{LINE}	Line Regulation	$I_{O} = 0$ mA , $V_{IN} = 2.7$ V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 10mA to 300mA, V _{IN} = 3.2V		0.2	0.4	%
V_{IN}	Operating Input Voltage				12	V
I _D	Quiescent Current	V _{IN} - V _O = 5V		5	10	mA
lo	Current Limit	V _{IN} - V _O = 5V	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25 ℃		0.003		%
SVR	Supply Voltage Rejection	I _O = 300mA, f = 120Hz, V _{IN} - V _O = 1.5V, V _{RIPPLE} = 1V _{PP}	60	75		dB

For 1.5V Output Voltage

 $(T_A=25\,^{\circ}\text{C}, C_{IN}=C_O=10 \text{uF} \text{ unless otherwise specified})$

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 3.0V , I _O = 10mA	1.485	1.5	1.515	V
Vo	Output Voltage	V_{IN} = 3.0V to 12V, I_{O} = 0mA to 300mA (T_{J} = 0 ~ 125 °C)	1.470		1.530	V
ΔV_{LINE}	Line Regulation	$I_0 = 0$ mA , $V_{IN} = 3.0$ V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I_{O} = 0mA to 300mA, V_{IN} = 3.5 V		0.2	0.4	%
V _{IN}	Operating Input Voltage				12	V
I _D	Quiescent Current	V _{IN} - V _O = 5V		5	10	mA
Io	Current Limit	$V_{IN} - V_O = 5V$	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, $T_J = 25^{\circ}\text{C}$		100		uV
SVR	Supply Voltage Rejection	$I_{O} = 300 \text{mA}, f = 120 \text{Hz},$ $V_{IN} - V_{O} = 3 \text{V}, V_{RIPPLE} = 1 \text{V}_{PP}$	60	75		dB

For 1.8V Output Voltage

 $(T_A=25\,^{\circ}\text{C},\,C_{IN}=C_O=10\text{uF}$ unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 3.3V, I _O = 10mA	1.782	1.8	1.818	V
Vo	Output Voltage	$V_{IN} = 3.3 V$ to 12V, $I_O = 0$ mA to 300mA $(T_J = 0 \sim 125^{\circ}\text{C})$	1.764		1.836	V
ΔV_{LINE}	Line Regulation	$I_0 = 0$ mA , $V_{IN} = 3.3$ V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 0mA to 300mA, V _{IN} = 3.8 V		0.2	0.4	%
V _{IN}	Operating Input Voltage				12	V
I _D	Quiescent Current	V _{IN} - V _O = 5V		5	10	mA
lo	Current Limit	V _{IN} - V _O = 5V	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25 ℃		100		uV
SVR	Supply Voltage Rejection	$I_O = 300 \text{mA}, f = 120 \text{Hz},$ $V_{IN} - V_O = 3V, V_{RIPPLE} = 1V_{PP}$	60	75		dB

For 2.5V Output Voltage

 $(T_A=25^{\circ}C, C_{IN}=C_O=10 uF unless otherwise specified)$

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 4.0V, I _O = 10mA	2.475	2.5	2.525	V
Vo	Output Voltage	V_{IN} = 4.0V to 12V, I_{O} = 0mA to 300mA (T_{J} = 0 ~ 125 °C)	2.450		2.550	V
ΔV_{LINE}	Line Regulation	$I_O = 0$ mA , $V_{IN} = 4.0$ V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 0mA to 300mA, V _{IN} = 4.5 V		0.2	0.4	%
V _{IN}	Operating Input Voltage				12	V
I _D	Quiescent Current	$V_{IN} - V_O = 5V$		5	10	mA
Io	Current Limit	$V_{IN} - V_O = 5V$	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, $T_J = 25 ^{\circ}\text{C}$		100		uV
SVR	Supply Voltage Rejection	$I_{O} = 300$ mA, $f = 120$ Hz, $V_{IN} - V_{O} = 3$ V, $V_{RIPPLE} = 1$ V _{PP}	60	75		dB

For 3.3V Output Voltage

(T_A=25 $^{\circ}$ C, C_{IN} = C_O = 10uF unless otherwise specified)

	output tollage	(.H_20 c)	<u> </u>	Tour arriou		op comea,
Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 4.8V, I _O = 10mA	3.267	3.3	3.333	V
Vo	Output Voltage	$V_{IN} = 4.8 V$ to 12V, $I_O = 0$ mA to 300mA $(T_J = 0 \sim 125^{\circ}\text{C})$	3.234		3.366	V
ΔV_{LINE}	Line Regulation	$I_{O} = 0$ mA , $V_{IN} = 4.8$ V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 0mA to 300mA, V _{IN} = 5.3 V		0.2	0.4	%
V_{IN}	Operating Input Voltage				12	V
I _D	Quiescent Current	V _{IN} - V _O = 5V		5	10	mA
lo	Current Limit	V _{IN} - V _O = 5V	1000	1250	1600	mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25 ℃		100		uV
SVR	Supply Voltage Rejection	I _O = 300mA, f = 120Hz, V _{IN} - V _O = 3V, V _{RIPPLE} = 1V _{PP}	60	75		dB

For 5.0V Output Voltage

 $(T_A=25^{\circ}C, C_{IN}=C_O=10 \text{ur} \text{ unless otherwise specified})$

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 6.5V, I _O = 10mA	4.950	5.0	5.050	V
Vo	Output Voltage	$V_{IN} = 6.5 V$ to 15V, $I_O = 0$ mA to 300mA $(T_J = 0 \sim 125 ^{\circ}\text{C})$	4.900		5.100	V
ΔV_{LINE}	Line Regulation	$I_{O} = 0$ mA , $V_{IN} = 6.5$ V to 15V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	$I_0 = 0$ mA to 300mA, $V_{IN} = 7.0 \text{ V}$		0.2	0.4	%
V _{IN}	Operating Input Voltage				12	V
I _D	Quiescent Current	$V_{IN} - V_O = 5V$		5	10	mA
Io	Current Limit	$V_{IN} - V_O = 5V$	1000	1250	1600	mA
EΝ	Output Noise(%V ₀)	B = 10Hz to 10kHz, $T_J = 25 ^{\circ}\text{C}$		100		uV
SVR	Supply Voltage Rejection	$I_{O} = 300$ mA, $f = 120$ Hz, $V_{IN} - V_{O} = 3$ V, $V_{RIPPLE} = 1$ V _{PP}	60	75		dB

For All Output Voltage

(T_A=25 $^{\circ}$ C , C_{IN} = C_O = 10uF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
V _D	Dropout Voltage	I _O = 300mA		1.3		V
	Temperature Stability			0.5		%
	Long Term Stability	1000 hrs, T _J = 125℃		0.3		%
	Thermal Regulation	T _A = 25 °C 30ms Pulse		0.003		%/W

APPLICATION CIRCUIT

Fig.1 300mA Current Output

Fig.2 Typical Adjustable Regulator

Fig.3 Negative Supply

Fig.4 Active Terminator for SCSI-2BUS

Fig.5 Voltage Regulator with Reference

Fig.6 Battery Backed-up Regulated Supply

Jul. 2015 R3.0 - 9 - HTC

TYPICAL OPERATING CHARACTERISTICS

OUTPUT VOLTAGE CHANGE vs. TEMPERATURE

ADJ PIN CURRENT vs. AMBIENT TEMPERATURE

QUIESCENT CURRENT CHANGE vs. AMBIENT TEMPERATURE

Jul. 2015 R3.0 - 10 -

APPLICATION INFORMATION

Maximum Output Current Capability

The TJ1117 can deliver a continuous current of 300mA over the full operating junction temperature range. However, the output current is limited by the restriction of power dissipation which differs from packages. A heat sink may be required depending on the maximum power dissipation and maximum ambient temperature of application. With respect to the applied package, the maximum output current of 300mA may be still undeliverable due to the restriction of the power dissipation of TJ1117. Under all possible conditions, the junction temperature must be within the range specified under operating conditions. The temperatures over the device are given by:

$$TC = TA + PD \times \theta CA / TJ = TC + PD \times \theta JC / TJ = TA + PD \times \theta JA$$

where TJ is the junction temperature, TC is the case temperature, TA is the ambient temperature, PD is the total power dissipation of the device, θ CA is the thermal resistance of case-to-ambient, θ JC is the thermal resistance of junction-to-case, and θ JA is the thermal resistance of junction to ambient. The total power dissipation of the device is given by:

```
PD = PIN - POUT = (VIN X IIN)-(VOUT X IOUT)
= (VIN X (IOUT+IGND)) - (VOUT X IOUT) = (VIN - VOUT) X IOUT + VIN X IGND
```

where IGND is the operating ground current of the device which is specified at the Electrical Characteristics. The maximum allowable temperature rise (TRmax) depends on the maximum ambient temperature (TAmax) of the application, and the maximum allowable junction temperature (TJmax):

$$TRmax = TJmax - TAmax$$

The maximum allowable value for junction-to-ambient thermal resistance, θJA , can be calculated using the formula:

$$\theta JA = TRmax / PD = (TJmax - TAmax) / PD$$

TJ1117 is available in SOT23 package. The thermal resistance depends on amount of copper area or heat sink, and on air flow. If the maximum allowable value of θ JA calculated above is over 300°C/W for SOT-23 package, no heat sink is needed since the package can dissipate enough heat to satisfy these requirements. If the value for allowable θ JA falls near or below these limits, a heat sink or proper area of copper plane is required. In summary, the absolute maximum ratings of thermal resistances are as follow:

Absolute Maximum Ratings of Thermal Resistance

Characteristic	Symbol	Rating	Unit
Thermal Resistance Junction-To-Ambient / SOT-23	θJA-SOT-23	300	°C/W

No heat sink / No air flow / No adjacent heat source / 0.066 inch² copper area. (T_A=25°C)

In case that there is no cooling solution and no heat sink / minimum copper plane area for heat sink, the maximum allowable power dissipation of each package is as follow;

Characteristic	Symbol	Rating	Unit
Maximum Allowable Power Dissipation at T _A =25°C / SOT-23	P _{DMax-SOT-23}	0.333	W

- Please note that above maximum allowable power dissipation is based on the minimum copper plane area which does not exceed the proper footprint of the package. And the ambient temperature is 25°C.

If proper cooling solution such as heat sink, copper plane area, air flow is applied, the maximum allowable power dissipation could be increased. However, if the ambient temperature is increased, the allowable power dissipation would be decreased.

Power Dissipation(PD) vs. Ambient Temperature(TA)

REVISION NOTICE

The description in this datasheet can be revised without any notice to describe its electrical characteristics properly.