Внешний курс

Отчёт по разделу 1

Аскеров Александр Эдуардович

Содержание

1	Пункт 2.1	4
2	Пункт 2.2	10
3	Пункт 2.3	14
4	Пункт 2.4	17

Список иллюстраций

1.1	Протокол прикладного уровня	4
1.2	Протокол ТСР работает на транспортном уровне	5
1.3	Адреса IPv4	6
1.4	Определение DNS сервера	7
1.5	Последовательность протоколов в модели ТСР/ІР	7
1.6	Протокол http	8
1.7	Составляющие протокола https	8
1.8	Версия протокола TLS	9
1.9	Фаза "рукопожатия" протокола TLS	9
2.1	Куки	11
2.2	Использование куки	12
2.3	Сервер генерирует куки	13
$\frac{2.3}{2.4}$		13
4. 1	Хранение куки	13
3.1	Число промежуточных узлов в луковой сети Tor	14
3.2	IP-адрес получателя	15
3.3	Общий секретный ключ	16
3.4	Получение пакетов через Tor	16
4.1	Определение Wi-Fi	17
4.2	Протокол работы Wi-Fi	18
4.3	Методы обеспечения шифрования и аутентификации в сети Wi-Fi	18
4.4	Передача данных между хостом сети и роутером	19
4.5	Метод аутентификации для домашней сети	19
1.0		エノ

Выберем протокол прикладного уровня.

Выберите протокол прикладного уровня

Выберите один вариант из списка

UDP			
ТСР			
HTTPS			
○ IP			

Рис. 1.1: Протокол прикладного уровня

Укажем уровень, на котором работает протокол ТСР.

Рис. 1.2: Протокол ТСР работает на транспортном уровне

Выберем все корректные адреса IPv4.

Выберите все корректные адреса IPv4

Выберите все подходящие отв

Рис. 1.3: Адреса IPv4

Первые два варианта не подходят, так как в них есть числа, превышающие 255.

Дадим определение DNS серверу.

Рис. 1.4: Определение DNS сервера

Выберем корректную последовательность протоколов в модели ТСР/ІР.

Выберите корректную последовательность протоколов в модели TCP/IP

Выберите один вариант из списка

сетевой — прикладной — канальный — транспортный прикладной — транспортный — канальный — сетевой транспортный — сетевой — прикладной — канальный прикладной — транспортный — сетевой — канальный

Рис. 1.5: Последовательность протоколов в модели ТСР/ІР

Выберем, что предполагает протокол http.

Рис. 1.6: Протокол http

💿 передачу данных между клиентом и сервером в открытом виде

Выберем, из чего состоит протокол https.

Протокол https состоит из

Выберите один вариант из списка

✓ Хорошая работа.

Одной фазы аутентификации сервера

Фазы рукопожатия и передачи данных

двух фаз: аутентификация клиента и сервера и шифрования данных

трех фаз: аутентификации клиента, аутентификация сервера, генерация общего ключа

Рис. 1.7: Составляющие протокола https

Выберем, чем определяется версия протокола TLS.

Рис. 1.8: Версия протокола TLS

Выберем, что не предусмотрено в фазе "рукопожатия" протокола TLS.

В фазе "рукопожатия" протокола TLS не предусмотрено

Выберите один вариант из списка

Верно. Так держать!
 формирование общего секретного ключа между клиентом и сервером
 аутентификация (как минимум одной из сторон)
 выбираются алгоритмы шифрования/аутентификации
 шифрование данных

Рис. 1.9: Фаза "рукопожатия" протокола TLS

Выберем, что хранят куки.

Куки хранят:

Выберите все подходящие

Вы решили сложную задачу, поздравл их вопросы, или сравнить своё решен

Рис. 2.1: Куки

Выберем, для чего не используются куки.

Рис. 2.2: Использование куки

Выберем, что генерируют куки.

Рис. 2.3: Сервер генерирует куки

Скажем, хранятся ли сессионные куки в браузере.

Сессионные куки хранятся в браузере?

Выберите один вариант из списка

Рис. 2.4: Хранение куки

Да, на некоторое время, заданное в сервером

Укажем, сколько промежуточных узлов в луковой сети Тог.

Сколько промежуточных узлов в луковой сети TOR?

Выберите один вариант из списка

Рис. 3.1: Число промежуточных узлов в луковой сети Тог

Укажем, кому известен ІР-адрес получателя.

ІР-адрес получателя известен

Выберите все подходящие

Вы решили сложную задачу, поздрав. их вопросы, или сравнить своё решен

Рис. 3.2: ІР-адрес получателя

Укажем, как отправитель генерирует общий секретный ключ.

Рис. 3.3: Общий секретный ключ

Укажем, должен ли получатель использовать браузер Tor (или другой браузер, основанный на луковой маршрутизации) для успешного получения пакетов.

Рис. 3.4: Получение пакетов через Тог

Дадим определение Wi-Fi.

Рис. 4.1: Определение Wi-Fi

Выберем, на каком уровне работает протокол Wi-Fi.

Рис. 4.2: Протокол работы Wi-Fi

Выберем небезопасный метод обеспечения шифрования и аутентификации в сети Wi-Fi.

Небезопасный метод обеспечения шифрования и аутентификации в сети Wi-Fi

Рис. 4.3: Методы обеспечения шифрования и аутентификации в сети Wi-Fi

Укажем, как передаются данные между хостом сети и роутером.

Данные между хостом сети (компьютером или смартфоном) и роутером

Выберите один вариант из списка ✓ Всё правильно. Передаются в открытом виде после аутентификации устройств передаются в зашифрованном виде после аутентификации устройств передаются в открытом виде передаются в зашифрованном виде

Рис. 4.4: Передача данных между хостом сети и роутером

Выберем метод аутентификации для домашней сети.

Для домашней сети для аутентификации обычно используется метод

Рис. 4.5: Метод аутентификации для домашней сети