9 OPTIMIZATION

LINEAR PROGRAMMING

LINEAR PROGRAMMING

- A linear programming problem consists of:
 - (objective function) a linear function f from \mathbb{R}^n into \mathbb{R}
 - (constraints) A system of linear inequalities in variables x_1, \ldots, x_n .
- The goal is to find a solution x that maximizes f(x).

Maximize
$$2x_1 + 3x_2$$

subject to $3x_1 + 2x_2 \le 1200$
 $x_1 + 2x_2 \le 800$
 $x_1 + x_2 \le 450$
and $x_1 \ge 0, x_2 \ge 0$.

Given:
$$\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$
 in \mathbb{R}^m $\mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ in \mathbb{R}^n an $m \times n$ matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$

• Find:

an *n*-tuple
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 in \mathbb{R}^n to maximize
$$f(x_1, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Subject to:

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \le b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \le b_m$$
and
$$x_j \ge 0 \quad \text{for } j = 1, \dots, n$$

This may be restated in the vector-matrix form:

Maximize
$$f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$$

subject to the constraints $A\mathbf{x} \leq \mathbf{b}$
and $\mathbf{x} \geq \mathbf{0}$

- Feasible solution: a vector **x** that satisfies all the constraints.
- Feasible solutions (\mathcal{F}): the set of all feasible solutions.
- A vector $\overline{\mathbf{x}}$ in \mathcal{F} is an optimal solution if

$$f(\overline{\mathbf{x}}) = \max_{\mathbf{x} \in \mathcal{F}} f(\mathbf{x})$$

- A canonical form is not very restrictive
 - To minimize a function, replace it with maximizing the negation of the function
 - A constraint of the form $a_{i1}x_1 + \cdots + a_{in}x_n \ge b_i$
 - can be replaced by $-a_{i1}x_1 \cdots a_{in}x_n \le -b_i$
 - An equality constraint $a_{i1}x_1 + \cdots + a_{in}x_n = b_i$
 - can be replaced with two inequalities:

$$a_{i1}x_1 + \dots + a_{in}x_n \le b_i$$
$$-a_{i1}x_1 - \dots - a_{in}x_n \le -b_i$$

- If the constraints are inconsistent, the problem becomes infeasible.
- If the objective function takes on arbitrarily larges values, the problems becomes unbounded.

Infeasible: Maximize
$$5x$$

subject to $x \le 3$
 $-x \le -4$
 $x \ge 0$

Unbounded: Maximize 5xsubject to $-x \le 3$ $x \ge 0$

Theorem. If:

- the feasible set is nonempty, and
- the objective function is bounded on the feasible set,
- Then:
 - the canonical linear programming problem has at least one optimal solution.
 - At least one of the optimal solutions is an extreme point in the feasible solution.
- To find an optimal solution, we can evaluate objective function at each of the extreme points of the feasible set and select the point that gives the largest value.

Example:

Maximize
$$f(x_1, x_2) = 2x_1 + 3x_2$$

subject to $x_1 \le 30$
 $x_2 \le 20$
 $x_1 + 2x_2 \le 54$
and $x_1 \ge 0, x_2 \ge 0$.

- **Solution**: The figure in the next slide shows the 5 extreme points (corresponding to the 5 vertices of the feasible set)
- They are found by solving appropriate pairs of linear equations
 - For example, (14,20) is found by solving $x_1 + 2x_2 = 54$ and $x_2 = 20$.

Solution: Maximize $f(x_1, x_2) = 2x_1 + 3x_2$

subject to
$$x_1 \leq 30$$

 $x_2 \leq 20$
 $x_1 + 2x_2 \leq 54$
and $x_1 \geq 0, x_2 \geq 0$.

$2x_1 + 3x_2$
0
60
96 ←
88
60

- 1) Select an extreme point **x** of the feasible set.
- 2) Consider all edges of the feasible set that join to **x**. If the objective function does not increase by moving along any of these edges, **x** is an optimal solution.
- 3) If *f* is increasing by moving along one or more of the edges, follow the path that gives the largest increase and move to the extreme point at the opposite end.
- 4) Repeat steps 2 and 3.

- In the following, we assume vector \mathbf{b} is non-negative and the problem is in the canonical form (we have max and ≤).
- Slack variable: a non-negative variable added to the smaller side of an inequality to convert it into equality.
 - Example: $5x_1 + 7x_2 \le 80 \rightarrow 5x_1 + 7x_2 + x_3 = 80$ and $x_3 \ge 0$
- If *A* is $m \times n$, the addition of *m* slack variables in A**x**≤**b** gives a linear system with *m* equations and n+m variable.
- A solution to this equation is called **basic feasible solution**, if at most *m* of the variables are positive (and all variables are non-negative).
- **Basic variables**: occur only in one equation and has a coefficient of 1.

Example: Find a basic solution for the following:

$$2x_1 + 3x_2 + 4x_3 \le 60$$
$$3x_1 + x_2 + 5x_3 \le 46$$
$$x_1 + 2x_2 + x_3 \le 50$$

Solution:

$$2x_1 + 3x_2 + 4x_3 + x_4 = 60$$

$$3x_1 + x_2 + 5x_3 + x_5 = 46$$

$$x_1 + 2x_2 + x_3 + x_6 = 50$$

• The following simple is the basic feasible solution (it corresponds to the extreme point (0,0,0)):

$$x_1 = x_2 = x_3 = 0$$
, $x_4 = 60$, $x_5 = 46$, and $x_6 = 50$

- Basic variables (x_4, x_5, x_6) are said to be "in" the solution.
- Variables (x_1, x_2, x_3) are said to be "out" the solution.

- In simplex, the role a variable plays, changes!
- Consider the system (of constraints):

$$a_{11}x_1 + \dots + a_{1k}x_k + \dots + a_{1n}x_n = b_1$$

 \vdots
 $a_{i1}x_1 + \dots + a_{ik}x_k + \dots + a_{in}x_n = b_i$
 \vdots
 $a_{m1}x_1 + \dots + a_{mk}x_k + \dots + a_{mn}x_n = b_m$

- Suppose we bring x_k "in" the solution, using equation p to pivot on the entry $a_{pk} x_k$.
- The basic solution of the resulting system is feasible iff the following conditions are satisfied:
 - Coefficient a_{pk} of x_k must be positive (when the p^{th} equation is divided by a_{pk} , the new b_p must be positive).
 - Ratio b_p/a_{pk} must be the smallest among all ratios b_i/a_{ik} for which $a_{ik}>0$ (in this case, the new terms b_i will be positive).

Example:

Maximize
$$25x_1 + 33x_2 + 18x_3$$

subject to $2x_1 + 3x_2 + 4x_3 \le 60$
 $3x_1 + x_2 + 5x_3 \le 46$
 $x_1 + 2x_2 + x_3 \le 50$
and $x_j \ge 0$ for $j = 1, ..., 3$.

- Solution:
- First, add slack variables.
- Then, change the objective function $25x_1 + 33x_2 + 18x_3$ into an equation by introducing a new variable $M = 25x_1 + 33x_2 + 18x_3$.
- Now, the goal is to maximize M where

$$-25x_1 - 33x_2 - 18x_3 + M = 0$$

Among all solutions of the following, find a solution for which $x_i \ge 0$ (j = 1,...,6) and M is as large as possible.

$$2x_1 + 3x_2 + 4x_3 + x_4 = 60$$

$$3x_1 + x_2 + 5x_3 + x_5 = 46$$

$$x_1 + 2x_2 + x_3 + x_6 = 50$$

$$-25x_1 - 33x_2 - 18x_3 + M = 0$$

• First, form **initial simplex tableau**:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & M \\ 2 & 3 & 4 & 1 & 0 & 0 & 0 & 60 \\ 3 & 1 & 5 & 0 & 1 & 0 & 0 & 46 \\ 1 & 2 & 1 & 0 & 0 & 1 & 0 & 50 \\ \hline -25 & -33 & -18 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

• Basic solution is $x_1 = x_2 = x_3 = 0$, $x_4 = 60$, $x_5 = 46$, $x_6 = 50$, M = 0

- *M* will rise when any of x_1 , x_2 or x_3 rises ($M=25x_1+33x_2+18x_3$).
- Coefficient of x_2 is the largest of the three coefficients
 - Bringing x_2 into the solution will cause the greatest increase in M.
- To bring x_2 into the solution:
 - Compute the ratios b/a_{i2} , for each row *i* except the last one.
 - 60/3, 46/1, 50/2
 - 60/3 is the smallest, so row 1 is selected

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & M \\ 2 & \boxed{3} & 4 & 1 & 0 & 0 & 0 & 60 \\ 3 & 1 & 5 & 0 & 1 & 0 & 0 & 46 \\ 1 & 2 & 1 & 0 & 0 & 1 & 0 & 50 \\ \hline -25 & -33 & -18 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

The result is:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & M \\ \frac{2}{3} & 1 & \frac{4}{3} & \frac{1}{3} & 0 & 0 & 0 & 20 \\ \frac{7}{3} & 0 & \frac{11}{3} & -\frac{1}{3} & 1 & 0 & 0 & 26 \\ -\frac{1}{3} & 0 & -\frac{5}{3} & -\frac{2}{3} & 0 & 1 & 0 & 10 \\ -3 & 0 & 26 & 11 & 0 & 0 & 1 & 660 \end{bmatrix}$$

- The basic feasible solution is: $x_1 = x_3 = x_4 = 0$, $x_2 = 20$, $x_5 = 26$, $x_6 = 10$, M = 660.
- $M = 660 + 3x_1 26x_3 11x_4$ and all the variables are non-negative
 - *M* rises only if x_1 increases.
 - Coefficients of x_3 and x_4 are negative, so their rise will decrease M.
 - So x_1 comes into the solution.

- Compute the ratios b_i/a_{ij} for rows 1 and 2: 30 and 78/7.
 - The second one is smaller, so row 2 is selected:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & M \\ \frac{2}{3} & 1 & \frac{4}{3} & \frac{1}{3} & 0 & 0 & 0 & 20 \\ \hline \frac{7}{3} & 0 & \frac{11}{3} & -\frac{1}{3} & 1 & 0 & 0 & 26 \\ -\frac{1}{3} & 0 & -\frac{5}{3} & -\frac{2}{3} & 0 & 1 & 0 & 10 \\ \hline -3 & 0 & 26 & 11 & 0 & 0 & 1 & 660 \end{bmatrix}$$

The result is:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & M \\ 0 & 1 & \frac{2}{7} & \frac{3}{7} & -\frac{2}{7} & 0 & 0 & \frac{88}{7} \\ 1 & 0 & \frac{11}{7} & -\frac{1}{7} & \frac{3}{7} & 0 & 0 & \frac{78}{7} \\ 0 & 0 & -\frac{8}{7} & -\frac{5}{7} & \frac{1}{7} & 1 & 0 & \frac{96}{7} \\ 0 & 0 & \frac{215}{7} & \frac{74}{7} & \frac{9}{7} & 0 & 1 & \frac{4854}{7} \end{bmatrix}$$

- The basic feasible solution is: $x_3 = x_4 = x_5 = 0$, $x_1 = 78/7$, $x_2 = 88/7$, $x_6 = 96/7$, M = 4854/7
- $M = 4854/7 215/7 x_3 74/7 x_4 9/7 x_5$
- All the coefficients are negative, so M can not be larger than 4854/7 (because x_3 and x_4 and x_5 are non-negative)!
- So the solution is optimal
 - The maximum value is 4854/7
 - It occurs when $x_1 = 78/7$ and $x_2 = 88/7$ and $x_3 = 0$.
 - The value of x_6 is not part of the solution, because it is *slack* variable!

SIMPLEX ALGORITHM FOR CANONICAL LINEAR PROGRAMMING

1) Change inequality constraints into equality by adding *slack variables*. Let *M* be a variable equal to objective function. Below the constraints equations, write:

- (objective function) + M = 0

- 2) Set up *initial simplex tableau*. The slack variables (and M) provide the initial basic feasible solution.
- 3) Check the last row of the tableau for optimality. If all the entries to the left of vertical line are non-negative, the solution is optimal. If some are negative, choose variable x_k for which the entry in the last row is as negative as possible.
- 4) Bring x_k into the solution. Do this by pivoting on the positive entry a_{pk} for which the non-negative ratio b_i/a_{ik} is the smallest.

SIMPLEX ALGORITHM FOR CANONICAL LINEAR PROGRAMMING

5) Repeat Steps 3-4, until all the entries in the last row are non-negative.

Example: Minimize $x_1 + 2x_2$

subject to
$$x_1 + x_2 \ge 14$$

 $x_1 - x_2 \le 2$
and $x_1 \ge 0, x_2 \ge 0$.

- **Solution**: the minimum of *f* over a set occurs at the same point as the maximum of *-f* over the same set.
- Moreover in the canonical form, the constraints must use \leq .

Maximize
$$-x_1 - 2x_2$$

subject to $-x_1 - x_2 \le -14$
 $x_1 - x_2 \le 2$
and $x_1 \ge 0, x_2 \ge 0$.

Let $M = -x_1 - 2x_2$ and add slack variables:

$$-x_1 - x_2 + x_3 = -14$$

$$x_1 - x_2 + x_4 = 2$$

$$x_1 + 2x_2 + M = 0$$

The **initial simplex tableau** will be:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & M \\ -1 & -1 & 1 & 0 & 0 & -14 \\ 1 & -1 & 0 & 1 & 0 & 2 \\ \hline 1 & 2 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- Corresponding basic solution: $x_1 = x_2 = 0$, $x_3 = -14$, $x_4 = 2$, M=0.
- Since x_3 is negative, this solution is not feasible.
 - Each term in the augmented column above horizontal line must be non-negative.

- For this, we find another negative entry in the same row
 - If there is no such entry, the problem has no feasible solution.
 - This negative entry corresponds to variable we bring into solution.
 - In our example, either x_1 or x_2 can be brought into.
- We bring x_2 :
 - We select the entry a_{i2} (in column 2) for which the ratio b_i/a_{i2} is the smallest non-negative number.
 - In our example, only -14/-1 is non-negative, so the first row is selected: x_1 x_2 x_3 x_4 M

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & M \\ 1 & 1 & -1 & 0 & 0 & 14 \\ 2 & 0 & -1 & 1 & 0 & 16 \\ -1 & 0 & 2 & 0 & 1 & -28 \end{bmatrix}$$

- Now all entries in the augmented column (except the bottom entry) are non-negative, simplex can start.
- In the end, we will have the following tableau:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & M \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 6 \\ 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 8 \\ \hline 0 & 0 & \frac{3}{2} & \frac{1}{2} & 1 & -20 \end{bmatrix}$$

- Thus, maximum feasible value of $-x_1 2x_2$ is -20, when $x_1 = 8$ and $x_2 = 6$.
 - So, the minimum value of $x_1 + 2x_2$ is 20.

Associated with each canonical maximization problem, there is a related minimization problem, called the *dual* problem:

Primal Problem P		Dual Pr	oblem <i>P</i> *
Maximize	$f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$	Minimize	$g(\mathbf{y}) = \mathbf{b}^T \mathbf{y}$
subject to	$A\mathbf{x} \leq \mathbf{b}$	subject to	$A^T \mathbf{y} \geq \mathbf{c}$
	$\mathbf{x} \geq 0$		$y \ge 0$

Example: find the dual of the following primal problem:

Maximize	$5x_1 + 7x_2$	
subject to	$2x_1 + 3x_2 \le 25$	
	$7x_1 + 4x_2 \le 16$	
	$x_1 + 9x_2 \le 21$	
and $x_1 \ge 0, x_2 \ge 0$.		

Solution:

Minimize
$$25y_1 + 16y_2 + 21y_3$$

subject to $2y_1 + 7y_2 + y_3 \ge 5$
 $3y_1 + 4y_2 + 9y_3 \ge 7$
and $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$.

- The dual of the dual problem is the original problem.
- **The Duality Theorem**: Let P be a linear programming problem with feasible set F and let P* be the dual problem with feasible set F*.
 - If F and F^* are both nonempty, P and P^* both have optimal solutions (say x and y, respectively), and f(x) = g(y).
 - If one of the problems P or P^* has an optimal solution (x or y, respectively), so does the other and f(x) = g(y).
 - If either P or P^* is solved by the simplex method, the solution of its dual is displayed in the bottom row of the final tableau in the columns associated with the *slack* variables.

- **Example**: Consider the following primal and dual problems:
 - The prime problem *P*:

Maximize
$$f(x_1, x_2, x_3) = 25x_1 + 33x_2 + 18x_3$$

subject to $2x_1 + 3x_2 + 4x_3 \le 60$
 $3x_1 + x_2 + 5x_3 \le 46$
 $x_1 + 2x_2 + x_3 \le 50$
and $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

• The dual problem *P**:

Minimize
$$g(y_1, y_2, y_3) = 60y_1 + 46y_2 + 50y_3$$

subject to $2y_1 + 3y_2 + y_3 \ge 25$
 $3y_1 + y_2 + 2y_3 \ge 33$
 $4y_1 + 5y_2 + y_3 \ge 18$
and $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$.

The final tableau for the primal problem is:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & M \\ 0 & 1 & \frac{2}{7} & \frac{3}{7} & -\frac{2}{7} & 0 & 0 & \frac{88}{7} \\ 1 & 0 & \frac{11}{7} & -\frac{1}{7} & \frac{3}{7} & 0 & 0 & \frac{78}{7} \\ 0 & 0 & -\frac{8}{7} & -\frac{5}{7} & \frac{1}{7} & 1 & 0 & \frac{96}{7} \\ 0 & 0 & \frac{215}{7} & \frac{74}{7} & \frac{9}{7} & 0 & 1 & \frac{4854}{7} \end{bmatrix}$$

- The *slack variables* are x_4 and x_5 and x_6 .
- They give the optimal solution to the dual problem P^* .
 - Thus: $y_1 = 74/7$ and $y_2 = 9/7$ and $y_3 = 0$.
 - g(74/7, 9/7, 0) = 60(74/7) + 46(9/7) + 50(0) = 4854/7.