## 11.9 Fourier Transform.

**Discrete and Fast Fourier Transforms** 

(푸리에 변환. 이산 및 고속 푸리에 변환)

$$f(x) = \int_0^\infty [A(\omega)\cos\omega x + B(\omega)\sin\omega x]d\omega$$

$$A(\omega) = \frac{1}{\pi} \int_{-\infty}^\infty f(v)\cos\omega v \, dv$$

$$B(\omega) = \frac{1}{\pi} \int_{-\infty}^\infty f(v)\sin\omega v \, dv$$

$$f(x) = \frac{1}{\pi} \int_0^\infty \int_{-\infty}^\infty [f(v)\cos\omega v \cos\omega x + f(v)\sin\omega v \sin\omega x] dv \, d\omega$$

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} [f(v) \cos \omega v \cos \omega x + f(v) \sin \omega v \sin \omega x] dv d\omega$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(v) \cos (\omega v - \omega x) dv d\omega$$

$$(1^*) \qquad = \frac{1}{\pi} \int_{0}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) \cos (\omega x - \omega v) dv \right] d\omega$$

$$(1) \qquad = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) \cos (\omega x - \omega v) dv \right] d\omega \quad \therefore \text{Even wrt } \omega$$

(2) 
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) \sin(\omega x - \omega v) dv \right] d\omega = 0$$
[Because 
$$\int_{-\infty}^{\infty} f(v) \sin(\omega x - \omega v) d\omega = 0$$
]

$$(1) f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) \cos(\omega x - \omega v) dv \right] d\omega$$

$$(2) \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) \sin(\omega x - \omega v) dv \right] d\omega = 0$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) \cos(\omega x - \omega v) dv + i \int_{-\infty}^{\infty} f(v) \sin(\omega x - \omega v) dv \right] d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) e^{i(\omega x - \omega v)} dv \right] d\omega$$

$$(4) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) e^{i\omega(x - v)} dv \right] d\omega$$

## **Complex Fourier Integral:**

(4) 
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) e^{i\omega(x-v)} dv \right] d\omega$$

# Fourier Transform and Inverse Fast Fourier Transform (푸리에 변환과 역변환)

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(v)e^{i\omega(x-v)}dv d\omega$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v)e^{-i\omega v}dv \right] e^{i\omega x}d\omega$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x}d\omega$$

$$where \ \hat{f}(\omega) = \left[ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v)e^{-i\omega v}dv \right]$$
(6)

: Fourier Transform of f

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v) e^{-i\omega v} dv \right] e^{i\omega x} d\omega \qquad (5)$$

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v)e^{-i\omega v} dv$$
 (6)



Fourier Transform: 
$$\mathcal{F}(f) = \hat{f}(\omega) = \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v)e^{-i\omega v} dv\right]$$
 (6)

Inverse Fourier T: 
$$\mathbf{\mathcal{G}}^{-1}(\hat{f}) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} d\omega$$
 (7)

## Theorem1 Existence of the Fourier Transform

Sufficient condition for the existence of the Fourier transform (6) are

- 1. f(x) is piecewise continuous on every finite interval
- 2. f(x) is absolutely integrable on the x-axis

Fourier Transform:

$$\mathcal{F}(f) = \hat{f}(\omega) = \left[ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v) e^{-i\omega v} dv \right]$$
(6)

## **■** Ex. 1 Fourier Transform

Find the transform of f(x)=1 if |x|<1 and f(x)=0 otherwise.



Sol.

$$\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-iwx} dx = \frac{1}{\sqrt{2\pi}} \cdot \frac{e^{-iwx}}{-iw} \Big|_{-1}^{1}$$

$$= \frac{1}{-iw\sqrt{2\pi}} \left( e^{-iw} - e^{iw} \right) = \frac{-2i\sin w}{-iw\sqrt{2\pi}} = \sqrt{\frac{2}{\pi}} \frac{\sin w}{w}$$

■ Example 2 Fourier Transform Find the transform of f(x)=e<sup>-ax</sup> if x>0 and f(x)=0 if x<0; here a>0.



Sol.

$$egin{aligned} \mathcal{F}(f) &= \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx \ &= rac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-ax} e^{-i\omega x} dx \ &= rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(a+i\omega)x} dx \ &= rac{1}{\sqrt{2\pi}} rac{e^{-(a+i\omega)x}}{-(a+i\omega)} igg|_{0}^{\infty} \ &= rac{1}{\sqrt{2\pi}} rac{1}{(a+i\omega)} \end{aligned}$$

# Physical Interpretation: Spectrum(물리적 해석)

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} d\omega \qquad (7)$$

- 1. Spectral representation: f(x) is a superposition sinusoidal oscillations f all possible frequencies. In optics, light is a superposition of colors(frequencies).
- 2.  $\hat{f}(\omega)$  is the intensity of f(x), spectral density, in the frequency interval  $\omega \sim \omega + \Delta \omega$ .
  - $|\hat{f}(\omega)|^2$  is the energy density in the frequency interval  $\omega \sim \omega + \Delta \omega$ .
- 3. Total energy of a physical system=  $\int_{-\infty}^{\infty} |\hat{f}(\omega)|^2 d\omega$

## An Example

Harmonic Oscillator: 
$$my'' + ky = 0$$
  
 $y' \times (my'' + ky = 0)$   $my'y'' + kyy' = 0$   
 $f: \frac{1}{2}m(y')^2 + \frac{1}{2}ky^2 = \frac{1}{2}mv^2 + \frac{1}{2}ky^2 = E_0: Total \ Energy$   
 $my'' + ky = 0$   
 $y = a_1\cos\omega_0x + b_1\sin\omega_0x = c_1e^{i\omega_0x} + c_{-1}e^{-i\omega_0x}, \quad \omega_0^2 = k/m$   
 $= A + B \quad where \quad A = c_1e^{-i\omega_0x}, \quad B = c_{-1}e^{i\omega_0x}$   
 $y' = A' + B' = i\omega_0(A - B)$   
 $E_0 = \frac{1}{2}mv^2 + \frac{1}{2}ky^2 = \frac{1}{2}m[i\omega_0(A - B)]^2 + \frac{1}{2}k(A + B)^2$   
 $= -\frac{1}{2}(m\omega_0)^2(A - B)^2 + \frac{1}{2}k(A + B)^2$   
 $= 2kAB = 2k(c_1e^{-i\omega_0x})(c_{-1}e^{i\omega_0x}) = 2kc_1c_{-1} = 2k|c_1|^2$ 

# **Theorem 2 Linearity of the Fourier Transform**

The Fourier transform is a linear operation; that is, for any functions f(x) and g(x) whose Fourier transforms exist and constants a and b,

$$\mathcal{J}(af+bg) = a\mathcal{J}(f) + b\mathcal{J}(g)$$
 (8)

Proof.

$$egin{align} \mathcal{G}(af+bg) &= aF(f) + bF(g) \ &= rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [af(x) + bg(x)] e^{-i\omega x} dx \ &= arac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx + brac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx \ &= a\mathcal{F}(f) + b\mathcal{F}(g) \end{split}$$

# Theorem 3 Fourier Transform of the derivative of f(x)

Let f(x) be continuous on the x-axis and  $f(x) \rightarrow 0$  as  $|x| \rightarrow \infty$ . Furthermore, let f'(x) be absolutely integrable on the x-axis. Then

Proof. 
$$\begin{split} \mathcal{F}\{f'(x)\} &= i\omega \, \mathcal{F}\{f(x)\} \qquad (9) \\ \mathcal{F}\{f''(x)\} &= -\omega^2 \, \mathcal{F}\{f(x)\} \qquad (10) \\ \mathcal{F}\{f'(x)\} &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x) e^{-i\omega x} dx \\ &= \frac{1}{\sqrt{2\pi}} \left[ f(x) e^{-i\omega x} \Big|_{-\infty}^{\infty} - (-i\omega) \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx \right] \\ &= 0 + i\omega \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx \\ &= i\omega \, \mathcal{F}\{f(x)\} \end{split}$$

## Example 3 Application of the Theorem 3

Find the Fourier transform of  $x \exp(-x^2)$  from Table III, Sec. 11.10.

Table III, Sec. 11.10

$$\mathcal{F}\left\{\exp(-ax^2)\right\} = \frac{1}{\sqrt{2a}} \exp(-\omega^2/4a)$$

Sol.

$$\mathcal{J}\{x \exp(-x^2)\} = \mathcal{J}\{(-1/2)[\exp(-x^2)]'\}$$

$$= (-1/2)i\omega \mathcal{J}\{\exp(-x^2)\}$$

$$= -\frac{1}{2}i\omega \frac{1}{\sqrt{2}}\exp(-\omega^2/4)$$

$$= -\frac{i\omega}{2\sqrt{2}}\exp(-\omega^2/4)$$

# Convolution(합성곱)

The convolution f\*g of functions f and g is defined by

(11) 
$$h(x) = (f*g)(x) = \int_{-\infty}^{\infty} f(p)g(x-p)dp$$
$$= \int_{-\infty}^{\infty} f(x-p)g(p)dp$$

# Theorem 4 Convolution Theorem(합성곱 정리)

Suppose that f(x) and g(x) are piecewise continuous, bounded, and absolutely integrable on the x-axis. Then

(12) 
$$\mathcal{F}{f*g} = \sqrt{2\pi} \mathcal{F}{f} \mathcal{F}{g}$$

Proof.

$$(f*g)(x) = \int_{-\infty}^{\infty} f(p)g(x-p)dp = \int_{-\infty}^{\infty} f(x-p)g(p)dp$$
 $\mathcal{F}\{f*g\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(p)g(x-p)dp \right] e^{-i\omega x} dx$ 
 $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(p)g(x-p)e^{-i\omega x} dx dp$ 

$$egin{aligned} \mathcal{J}\{f*g\} &= rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(p)g(x-p)e^{-i\omega x} dx dp \ &= Let \ x-p = q, \ then \ x = p+q \ &= rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(p)g(q)e^{-i\omega(p+q)} dq dp \ &= rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(p)e^{-i\omega p} dp \int_{-\infty}^{\infty} g(q)e^{-i\omega q} dq \ &= \sqrt{2\pi} \ \mathcal{J}(f) \ \mathcal{J}(g) \end{aligned}$$

(12) 
$$\mathcal{F}\lbrace f^*g\rbrace = \sqrt{2\pi} \,\,\mathcal{F}\lbrace f\rbrace \,\,\mathcal{F}\lbrace g\rbrace$$

Inverse Fourier Transform

(7) 
$$\mathbf{g}^{-1}(\hat{f}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) \, e^{i\omega x} d\omega$$

(13) 
$$(f^*g)(x) = \int_{-\infty}^{\infty} \hat{f}(\omega) \hat{g}(\omega) e^{i\omega x} d\omega$$

# Discrete Fourier Transform(DFT), Fast FT(FFT)

Let f(x) be periodic, for simplicity of period  $2\pi$ .

Assume that N measurements are taken over the interval  $0 \le x \le 2\pi$  at the following regularly spaced points

(14) 
$$x_k = \frac{2\pi k}{N}, \quad k = 0, 1, \dots, N-1$$

Let's find a complex trigonometric polynomial q(x)

(15) 
$$q(x) = \sum_{n=0}^{N-1} c_n e^{inx_k}$$

that interpolates f(x)at the nodes (14), that is,  $q(x_k)=f(x_k)$ .

(16) 
$$f(x_k) = f_k = q(x_k) = \sum_{n=0}^{N-1} c_n e^{inx_k}, \quad k = 0, 1, \dots, N-1$$

Hence we must determine the coefficients  $c_0$ , ...,  $c_{N-1}$  such that (16) holds.

(16) 
$$f_{k} = \sum_{n=0}^{N-1} c_{n} e^{inx_{k}}, \quad k = 0, 1, \dots, N-1$$

$$f_{k} e^{-imx_{k}} = e^{-imx_{k}} \sum_{n=0}^{N-1} c_{n} e^{inx_{k}} = \sum_{n=0}^{N-1} c_{n} e^{i(n-m)x_{k}}$$

$$\sum_{k=0}^{N-1} f_{k} e^{-imx_{k}} = \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} c_{n} e^{i(n-m)x_{k}}$$

$$= \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} e^{i(n-m)2\pi k/N}$$

$$= \sum_{n=0}^{N-1} c_{n} \sum_{k=0}^{N-1} [e^{i(n-m)2\pi/N}]^{k} = \sum_{n=0}^{N-1} c_{n} \sum_{k=0}^{N-1} r^{k}$$

$$where \quad r = e^{i(n-m)2\pi/N}$$

$$\sum_{k=0}^{N-1} r^k = \begin{cases} N, & r=1 \\ \frac{1-r^n}{1-r}, & r \neq 1 \end{cases}$$
  $r = e^{i(n-m)2\pi/N}$ 

$$\begin{cases}
n = m : r = 1 \\
n \neq m : r \neq 1
\end{cases}$$

$$\cdot \begin{cases}
n = m : \sum_{k=0}^{N-1} r^k = \sum_{k=0}^{N-1} 1 = N \\
\vdots \\
n \neq m : \sum_{k=0}^{N-1} r^k = \frac{1 - r^N}{1 - r} = \frac{1 - [e^{i(n-m)2\pi/N}]^N}{1 - e^{i(n-m)2\pi/N}} = 0
\end{cases}$$

(17) 
$$\sum_{k=0}^{N-1} f_k e^{-imx_k} = \sum_{n=0}^{N-1} c_n \sum_{k=0}^{N-1} [e^{i(n-m)2\pi/N}]^k = \sum_{n=0}^{N-1} c_n \sum_{k=0}^{N-1} r^k$$

$$\sum_{k=0}^{N-1} r^k = egin{cases} N, & n=m \ 0, & n
eq m \end{cases}$$

$$\therefore \sum_{k=0}^{N-1} f_k e^{-imx_k} = \sum_{n=0}^{N-1} c_n \sum_{k=0}^{N-1} r^k = Nc_m$$

(18\*) 
$$c_n = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{-inx_k}$$
  $where \ f_k = f(x_k), \ k = 0, 1, \dots, N-1$ 

(18\*) 
$$c_n = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{-inx_k}$$

FFT를 이용하여 c<sub>n</sub>을 구할 때 N이 연속적으로 반으로 감소 하므로 다음 식이 일반적임

Since computation of the  $c_n$  (by the FFT) involve successive halfing of the problem size N, it is practical to drop the 1/N, and define the DFT of the given signal by the following equation.

DFT: 
$$\widehat{f_n} = Nc_n = \sum_{k=0}^{N-1} f_k e^{-inx_k} = \sum_{k=0}^{N-1} f_k e^{-in2\pi k/N}$$
 (18)

DFT of the given signal  $f=[f_0 \ \cdots \ f_{N-1}]^T$  is defined by the vector  $\hat{f}=[\hat{f_0} \ \cdots \ \hat{f}_{N-1}]^T$ 

DFT: 
$$\widehat{f_n} = Nc_n = \sum_{k=0}^{N-1} f_k e^{-inx_k} = \sum_{k=0}^{N-1} f_k e^{-in2\pi k/N}$$
 (18)

$$egin{array}{lll} n=0 & :\widehat{f_0} & =f_0+f_1+\cdots+f_{N-1} \ n=1 & :\widehat{f_1} & =f_0+f_1e^{-i2\pi/N}+\cdots+f_{N-1}[e^{-i2\pi/N}]^{N-1} \ n=2 & :\widehat{f_2} & =f_0+f_1e^{-i4\pi/N}+\cdots+f_{N-1}[e^{-i4\pi/N}]^{N-1} \end{array}$$

 $\hat{n} = N - 1 : \hat{f}_{N-1} = f_0 + f_1 e^{-i(N-1)2\pi/N} + \dots + f_{N-1} [e^{-i(N-1)2\pi/N}]^{N-1}$ 

In matrix form, 
$$\hat{f} = \begin{bmatrix} \hat{f}_0 \\ \vdots \\ \hat{f}_{N-1} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & \end{bmatrix} \begin{bmatrix} f_0 \\ \vdots \\ f_{N-1} \end{bmatrix} = F_N f$$

$$\begin{split} \hat{f} &= \begin{bmatrix} \hat{f}_0 \\ \vdots \\ \hat{f}_{N-1} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & \end{bmatrix} \begin{bmatrix} f_0 \\ \vdots \\ f_{N-1} \end{bmatrix} = F_N f \quad \text{F}_N \text{: Fourier matrix} \\ \hat{f} &= F_N f \\ where \\ \hat{f} &= [\hat{f}_0 \hat{f}_1 \hat{f}_2 \cdots \hat{f}_{N-1}]' \quad f = [f_0 f_1 f_2 \cdots f_{N-1}]' \\ F_N &= [e_{nk}] \\ e_{nk} &= e^{-inx_k} = e^{-i2\pi nk/N} = \mathbf{w}^{nk}, \quad \mathbf{w} = \mathbf{w}_N = e^{-2\pi i/N} \quad \text{(19} \\ F_N &= \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \mathbf{w}_N^1 & \mathbf{w}_N^2 & \cdots & \mathbf{w}_N^{N-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \mathbf{w}_N^{N-1} & [\mathbf{w}_N^{N-1}]^2 & \cdots & [\mathbf{w}_N^{N-1}]^{N-1} \end{bmatrix} \end{split}$$

# Example 4 Discrete Fourier Transform(DFT), N=4

Find the DFT of sampled values  $f=[0\ 1\ 4\ 9]^T$ .

Sol.

$$\begin{aligned} \mathbf{W} &= \mathbf{W_4} = e^{-2\pi i/4} = -i \\ F_4 &= \begin{bmatrix} \mathbf{W_4^0} & \mathbf{W_4^0} & \mathbf{W_4^0} & \mathbf{W_4^0} \\ \mathbf{W_4^0} & \mathbf{W_4^1} & \mathbf{W_4^2} & \mathbf{W_4^3} \\ \mathbf{W_4^0} & \mathbf{W_4^2} & \mathbf{W_4^4} & \mathbf{W_4^6} \\ \mathbf{W_4^0} & \mathbf{W_4^3} & \mathbf{W_4^6} & \mathbf{W_4^9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & (-i)^2 & (-i)^3 \\ 1 & (-i)^2 & [(-i)^2]^2 & [(-i)^2]^3 \\ 1 & (-i)^3 & [(-i)^3]^2 & [(-i)^3]^3 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix} \end{aligned}$$

$$egin{aligned} \hat{f} &= F_N f \ &= egin{bmatrix} 1 & 1 & 1 & 1 & 1 \ 1 & -i & -1 & i \ 1 & -1 & 1 & -1 \ 1 & i & -1 & -i \end{bmatrix} egin{bmatrix} 0 \ 1 \ 4 \ 9 \end{bmatrix} \ &= egin{bmatrix} 14 \ -4 + 8i \ -6 \ -4 - 8i \end{bmatrix} \end{aligned}$$

## **Inverse Discrete Fourier Transform(IDFT)**

OFT: 
$$f \longrightarrow \widehat{f}$$
  $\widehat{f} = F_N f$ 

DFT: 
$$f \longrightarrow \hat{f}$$
  $\hat{f} = F_N f$ 
IDFT:  $\hat{f} \longrightarrow f$   $f = F_N^{-1} \hat{f}$ 

(21a) 
$$\overline{F}_n F_N = F_N \overline{F}_n = NI$$
,  $I: N \times N$  Unit Matrix

(21b) 
$$F_N^{-1} = \frac{1}{N} \overline{F}_N$$

Proof of (21): Next slide

(21a) 
$$\overline{F}_n F_N = F_N \overline{F}_n = N I$$
,  $I: N \times N$  Unit Matrix  
(21b)  $F_N^{-1} = \frac{1}{N} \overline{F}_N$ 

### Proof of (21)

$$G_N = F_n F_N = [g_{jk}]$$
 $g_{jk} = j$ -th row of  $\overline{F}_n imes k$ -th column of  $F_N$ 
 $= (\overline{w}^j w^k)^0 + (\overline{w}^j w^k)^1 + (\overline{w}^j w^k)^2 + \dots + (\overline{w}^j w^k)^{N-1}$ 
 $= W^0 + W^1 + W^2 + \dots + W^{N-1}$ 
where  $W = \overline{w}^j w^k = e^{i(2\pi j/N)} e^{-i(2\pi k/N)}$ 
 $= \sum_{m=0}^{N-1} W^m$ 
 $= e^{-i2\pi (k-j)/N}$ 

$$W = e^{-i2\pi(k-j)/N}$$
  $\longrightarrow \begin{cases} j \neq k : & W \neq 1 \\ j = k : & W = 1 \end{cases}$ 

$$g_{jk} = \sum_{k=0}^{N-1} W^k = \begin{cases} j 
eq k : & g_{jk} = \frac{W^0(1 - W^N)}{1 - W} = 0 \\ j = k : & W = 1, & \therefore g_{jk} = N \end{cases}$$



## Fast Fourier Transform(FFT)

DFT: 
$$c_n = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{-inx_k}$$
 (18\*)

For DFT,

Required Number of Operations: O(N2)

FFT: O(N log<sub>2</sub>N)





$$\mathbf{w}_{N}^{2} = \mathbf{w}_{2M}^{2} = (e^{-2\pi i/N})^{2} = e^{-4\pi i/N} = e^{-2\pi i/M} = \mathbf{w}_{M}$$

Split the vector  $f = [f_0 \ f_1 \ f_2 \ \cdots \ f_{N-1}]'$  into two vectors  $f_{en}$  and  $f_{od}$ with M=N/2 components each.

$$f_{ev} = [f_0 \ f_2 \ \cdots \ f_{N-2}]'$$
  
 $f_{od} = [f_1 \ f_3 \ \cdots \ f_{N-1}]'$ 

$$\begin{split} f_{ev} &= [f_0 \ f_2 \ \cdots \ f_{N-2}]' \\ &\stackrel{\text{DFT}}{\longrightarrow} \hat{f}_{ev} = [\hat{f}_{ev,0} \ \hat{f}_{ev,1} \ \cdots \ \hat{f}_{ev,M-1}]' = F_M f_{ev} \\ f_{od} &= [f_1 \ f_3 \ \cdots \ f_{N-1}]' \\ &\stackrel{\text{DFT}}{\longrightarrow} \hat{f}_{od} = [\hat{f}_{od,0} \ \hat{f}_{od,1} \ \cdots \ \hat{f}_{od,M-1}]' = F_M f_{od} \end{split}$$



$$(22) \quad \begin{array}{ll} (a) & \hat{f}_{n} = \hat{f}_{ev,n} + \omega_{M}^{n} \hat{f}_{od,n} & n = 0, \cdots, M-1 \\ (b) & \hat{f}_{n+M} = \hat{f}_{ev,n} - \omega_{M}^{n} \hat{f}_{od,n} & n = 0, \cdots, M-1 \end{array}$$

Proof of (22)

$$\begin{split} \widehat{f_n} &= \sum_{k=0}^{N-1} f_k \omega_N^{nk} \quad (18)(19) \\ &= \sum_{k=0}^{M-1} f_{2k} \omega_N^{n2k} + \sum_{k=0}^{M-1} f_{2k+1} \omega_N^{n(2k+1)} \\ &= \sum_{k=0}^{M-1} f_{2k} \omega_M^{nk} + \omega_N^{n} \sum_{k=0}^{M-1} f_{2k+1} \omega_M^{nk}, \quad (\because \omega_N^2 = \omega_M) \\ (23) &= (22a) \quad \widehat{f_n} &= \sum_{k=0}^{M-1} f_{2k} \omega_M^{nk} + \omega_N^{n} \sum_{k=0}^{M-1} f_{2k+1} \omega_M^{nk} \\ (22b) \quad \widehat{f_{n+M}} &= \sum_{k=0}^{M-1} f_{2k} \omega_M^{(n+M)k} + \omega_N^{(n+M)k} \sum_{k=0}^{M-1} f_{2k+1} \omega_M^{(n+M)k} \\ &= \sum_{k=0}^{M-1} f_{2k} \omega_M^{nk} - \omega_N^{n} \sum_{k=0}^{M-1} f_{2k+1} \omega_M^{nk} \quad (\because \omega_N^M = -1) \end{split}$$

### **EXAMPLE 5 Fast Fourier Transform(FFT), N=4**

Find the FFT and DFT for the signal  $(f_0 \ f_1 \ f_2 \ f_3)$ 

Sol. 
$$(22a) \quad \widehat{f_n} = \sum_{k=0}^{M-1} f_{2k} \omega_M^{nk} + \omega_N^n \sum_{k=0}^{M-1} f_{2k+1} \omega_M^{nk}$$
 
$$\hat{f_0} = \hat{f}_{ev,0} + \omega_N^0 \hat{f}_{od,0} = (f_0 + f_2) + (f_1 + f_3)$$
 
$$\hat{f_1} = \hat{f}_{ev,1} + \omega_N^1 \hat{f}_{od,1} = (f_0 - f_2) - i(f_1 - f_3)$$
 
$$(22b) \quad \hat{f}_{n+M} = \sum_{k=0}^{M-1} f_{2k} \omega_M^{nk} - \omega_N^n \sum_{k=0}^{M-1} f_{2k+1} \omega_M^{nk}$$
 
$$\hat{f_2} = \hat{f}_{ev,0} - \omega_N^0 \hat{f}_{od,0} = (f_0 + f_2) - (f_1 + f_3)$$

 $\hat{f}_3 = \hat{f}_{ev,1} - \omega_N^1 \hat{f}_{od,1} = (f_0 - f_2) - (-i)(f_1 - f_3)$ 

#### 1. By FFT



$$\hat{f}_{ev,0} = f_0 + f_2$$
  $\hat{f}_{od,0} = f_1 + f_3$ 
 $\hat{f}_{ev,1} = f_0 - f_2$   $\hat{f}_{od,1} = f_1 - f_3$ 

$$\hat{f}_0 = \hat{f}_{ev,0} + \omega_N^0 \hat{f}_{od,0} = (f_0 + f_2) + (f_1 + f_3)$$
 $\hat{f}_1 = \hat{f}_{ev,1} + \omega_N^1 \hat{f}_{od,1} = (f_0 - f_2) - i(f_1 - f_3)$ 

$$\hat{f}_2 = \hat{f}_{ev,0} - \omega_N^0 \hat{f}_{od,0} = (f_0 + f_2) - (f_1 + f_3)$$
 $\hat{f}_3 = \hat{f}_{ev,1} - \omega_N^1 \hat{f}_{od,1} = (f_0 - f_2) - (-i)(f_1 - f_3)$ 

### 2. By DFT

$$w = w_4 = e^{-2\pi i/4} = -i$$

$$F_4 = egin{bmatrix} \mathbf{W_4^0 \ W_4^0 \ W_4^0$$

$$\hat{f} = F_N f \ = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & -i & -1 & i \ 1 & -1 & 1 & 1 \ 1 & i & -1 & -i \end{bmatrix} egin{bmatrix} f_0 \ f_1 \ f_2 \ f_3 \end{bmatrix} = egin{bmatrix} f_0 + f_1 + f_2 + f_3 \ f_0 - i f_1 - f_2 + i f_3 \ f_0 - f_1 + f_2 - f_3 \ f_0 + i f_1 - f_2 - i f_3 \end{bmatrix}$$

# Table I. Fourier Cosine Transforms

| f(x)                                                                         | $\hat{f}_c(w) = \mathcal{F}_c(f)$                                 | f(x)                                                                                                    |
|------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $\begin{cases} 1 & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$ | $\sqrt{\frac{2}{\pi}} \frac{\sin aw}{w}$                          | $x^{n}e^{-ax}  (a > 0)$ $\begin{cases} \cos x & \text{if } 0 < x < \\ 0 & \text{otherwise} \end{cases}$ |
| $x^{a-1}$ $(0 < a < 1)$                                                      | $\sqrt{\frac{2}{\pi}}  \frac{\Gamma(a)}{w^a} \cos \frac{a\pi}{2}$ | cos $(ax^2)$ $(a > 0)$                                                                                  |
| $e^{-ax}$ $(a > 0)$                                                          | $\sqrt{\frac{2}{\pi}} \left( \frac{a}{a^2 + w^2} \right)$         | $\sin(ax^2)  (a > 0)$ $\frac{\sin ax}{x}  (a > 0)$                                                      |
| $e^{-x^2/2}$                                                                 | $e^{-w^2/2}$                                                      | $\frac{e^{-x}\sin x}{x}$                                                                                |
| $e^{-ax^2}  (a > 0)$                                                         | $\frac{1}{\sqrt{2a}} e^{-w^2/(4a)}$                               | $J_0(ax)  (a > 0)$                                                                                      |

| f(x)                                                                              | $\hat{f}_c(w) = \mathcal{F}_c(f)$                                                        |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                                   | $\sqrt{\frac{2}{\pi}} \frac{n!}{(a^2 + w^2)^{n+1}} \operatorname{Re}(a + iw)^{n+1}$      |
| $\begin{cases} \cos x & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$ | $\frac{1}{\sqrt{2\pi}} \left[ \frac{\sin a(1-w)}{1-w} + \frac{\sin a(1+w)}{1+w} \right]$ |
| $\cos(ax^2)  (a > 0)$                                                             | $\frac{1}{\sqrt{2a}}\cos\left(\frac{w^2}{4a} - \frac{\pi}{4}\right)$                     |
| $\sin\left(ax^2\right)  (a > 0)$                                                  | $\frac{1}{\sqrt{2a}}\cos\left(\frac{w^2}{4a} + \frac{\pi}{4}\right)$                     |
| $\frac{\sin ax}{x}  (a > 0)$                                                      | $\sqrt{\frac{\pi}{2}}\left(1-u(w-a)\right)$                                              |
| $\frac{e^{-x}\sin x}{x}$                                                          | $\frac{1}{\sqrt{2\pi}} \arctan \frac{2}{w^2}$                                            |
| $J_0(ax)  (a > 0)$                                                                | $\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{a^2 - w^2}} (1 - u(w - a))$                         |

## Table II. Fourier Sine Transforms

| f(x)                                                                         | $\hat{f}_{s}(w) = \mathcal{F}_{s}(f)$                             | f(x)                                                                              | $\hat{f}_{s}(w) = \mathcal{F}_{s}(f)$                                                                                       |
|------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| $\begin{cases} 1 & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$ | $\sqrt{\frac{2}{\pi}} \left[ \frac{1 - \cos aw}{w} \right]$       | $x^n e^{-ax}  (a > 0)$                                                            | $\sqrt{\frac{2}{\pi}} \frac{n!}{(a^2 + w^2)^{n+1}} \operatorname{Im}(a + iw)^{n+1}$                                         |
| $1/\sqrt{x}$                                                                 | $1/\sqrt{w}$                                                      | $xe^{-x^2/2}$                                                                     | $we^{-w^2/2}$                                                                                                               |
| $1/x^{3/2}$                                                                  | $2\sqrt{w}$                                                       | $xe^{-ax^2}  (a > 0)$                                                             | $\frac{w}{(2a)^{3/2}} e^{-w^2/4a}$                                                                                          |
| $x^{a-1}$ $(0 < a < 1)$                                                      | $\sqrt{\frac{2}{\pi}}  \frac{\Gamma(a)}{w^a} \sin \frac{a\pi}{2}$ | $\begin{cases} \sin x & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$ | $\frac{w}{(2a)^{3/2}} e^{-w^2/4a}$ $\frac{1}{\sqrt{2\pi}} \left[ \frac{\sin a(1-w)}{1-w} - \frac{\sin a(1+w)}{1+w} \right]$ |
| $e^{-ax}$ $(a > 0)$                                                          | $\sqrt{\frac{2}{\pi}} \left( \frac{w}{a^2 + w^2} \right)$         | $\frac{\cos ax}{x}  (a > 0)$                                                      | $\sqrt{\frac{\pi}{2}}u(w-a)$                                                                                                |
| $\frac{e^{-ax}}{x}  (a > 0)$                                                 | $\sqrt{\frac{2}{\pi}} \arctan \frac{w}{a}$                        | $\arctan \frac{2a}{x}$ $(a > 0)$                                                  | $\sqrt{2\pi} \frac{\sin aw}{w} e^{-aw}$                                                                                     |

# Table III. Fourier Transforms

| f(x)                                                                                   | $\hat{f}(w) = \mathcal{F}(f)$                      | f(x)                                                                                | $\hat{f}(w) = \mathcal{F}(f)$                                       |
|----------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| $\begin{cases} 1 & \text{if } -b < x < b \\ 0 & \text{otherwise} \end{cases}$          | $\sqrt{\frac{2}{\pi}} \frac{\sin bw}{w}$           | $\begin{cases} e^{ax} & \text{if } b < x < c \\ 0 & \text{otherwise} \end{cases}$   | $\frac{e^{(a-iw)c} - e^{(a-iw)b}}{\sqrt{2\pi}(a-iw)}$               |
| $\begin{cases} 1 & \text{if } b < x < c \\ 0 & \text{otherwise} \end{cases}$           | $\frac{e^{-ibw} - e^{-icw}}{iw\sqrt{2\pi}}$        | $\begin{cases} e^{iax} & \text{if } -b < x < b \\ 0 & \text{otherwise} \end{cases}$ | $\sqrt{\frac{2}{\pi}}  \frac{\sin b(w-a)}{w-a}$                     |
| $\frac{1}{x^2 + a^2}  (a > 0)$                                                         | $\sqrt{\frac{\pi}{2}} \frac{e^{-a w }}{a}$         | $\begin{cases} e^{iax} & \text{if } b < x < c \\ 0 & \text{otherwise} \end{cases}$  | $\frac{i}{\sqrt{2\pi}} \frac{e^{ib(a-w)} - e^{ic(a-w)}}{a-w}$       |
| $\begin{cases} x & \text{if } 0 < x < b \\ 2x - b & \text{if } b < x < 2b \end{cases}$ | $\frac{-1 + 2e^{ibw} - e^{-2ibw}}{\sqrt{2\pi}w^2}$ | $e^{-ax^2}  (a > 0)$                                                                | $\frac{1}{\sqrt{2a}}e^{-w^2/4a}$                                    |
| $\begin{cases} e^{-ax} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases} (a > 0)$ | $\frac{1}{\sqrt{2\pi}(a+iw)}$                      | $\frac{\sin ax}{x}  (a > 0)$                                                        | $\sqrt{\frac{\pi}{2}}  \text{if }  w  < a;$ $0 \text{ if }  w  > a$ |

### **SUMMARY OF CHAPTER 11**

Fourier Series(period=2n)

(1\*) 
$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
  
 $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$   
 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \quad n = 1, 2, \cdots$   
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \quad n = 1, 2, \cdots$ 

Fourier Series(period=2L)

(1) 
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left\{ a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right\}$$

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

(1) 
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

If f(x) is even,

$$a_{0} = \frac{1}{2L} \int_{-L}^{L} f(x) dx = \frac{1}{L} \int_{0}^{L} f(x) dx$$

$$a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx = 0$$

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

$$(1) f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

If f(x) is odd,

$$a_0 = rac{1}{2L} \int_{-L}^{L} f(x) dx = \mathbf{0}$$
 $a_n = rac{1}{L} \int_{-L}^{L} f(x) \cos rac{n\pi x}{L} dx = \mathbf{0}$ 
 $b_n = rac{1}{L} \int_{-L}^{L} f(x) \sin rac{n\pi x}{L} dx = rac{2}{L} \int_{\mathbf{0}}^{L} f(x) \sin rac{n\pi x}{L} dx$ 

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

Fourier Integral:

(3) 
$$f(x) = \int_0^\infty [A(\omega) \cos \omega x + B(\omega) \sin \omega x] d\omega$$

(4) where 
$$A(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos \omega v \, dv$$
  $B(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin \omega v \, dv$ 

Fourier Integral in Complex Form:

## Complex Fourier Integral:

(5) 
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(v) e^{i\omega(x-v)} dv \right] d\omega$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} d\omega$$

where

(6) 
$$\hat{f}(\omega) = \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v) e^{-i\omega v} dv\right]$$

### **Fourier Transform:**

(6) 
$$\hat{f}(\omega) = \left[ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v) e^{-i\omega v} dv \right]$$

### **Inverse Fourier Transform:**

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) \, e^{i\omega x} d\omega$$

**Fourier Cosine Transform:** 

(7) 
$$\mathcal{F}_{c}(f) = \hat{f}_{c}(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos \omega x \, dx$$

**Inverse Fourier Cosine Transform:** 

$$f(x) = \mathcal{F}_{\mathsf{C}}^{-1}[\hat{f_c}(\omega)] = \sqrt{\frac{2}{\pi}} \int_0^\infty \hat{f_c}(\omega) \cos \omega x \, d\omega$$

Fourier Sine Transform:

(8) 
$$\mathcal{F}_{S}(f) = \hat{f}_{S}(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin \omega x \, dx$$

**Inverse Fourier Sine Transform:** 

$$f(x) = \mathcal{F}_{\mathbf{S}}^{-1}[\hat{f}_{\mathbf{S}}(\omega)] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{\mathbf{S}}(\omega) \sin \omega x \, d\omega$$

**Discrete Fourier Transform:** 

The rouner mansion is 
$$f = [f_0 \ \cdots \ f_{N-1}]^T$$
  $\xrightarrow{\text{DFT}} \hat{f} = [\hat{f_0} \ \cdots \ \hat{f}_{N-1}]^T$   $\hat{f} = [f_0 \ \cdots \ \hat{f}_{N-1}]^T$   $\hat{f} = [f_0 \ \cdots \ \hat{f}_{N-1}]^T$  In matrix form,  $\hat{f} = \begin{bmatrix} \hat{f_0} \ \vdots \ \hat{f}_{N-1} \end{bmatrix} = \begin{bmatrix} 1 \ \cdots \ 1 \ \vdots \ 1 \ \cdots \ \end{bmatrix} \begin{bmatrix} f_0 \ \vdots \ f_{N-1} \end{bmatrix} = F_N f$ 

$$F_N = egin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & \mathbf{w}_N^1 & \mathbf{w}_N^2 & \cdots & \mathbf{w}_N^{N-1} \ dots & dots & dots & dots \ 1 & \mathbf{w}_N^{N-1} & [\mathbf{w}_N^{N-1}]^2 & \cdots & [\mathbf{w}_N^{N-1}]^{N-1} \end{bmatrix}, \quad \mathbf{w} = \mathbf{w}_N = e^{-2\pi i/N}$$

#### **Fast Fourier Transform:**



### **Homework for Chapter 11**

**11.1** 16, 18

**11.2** 24, 26

**11.7** 7, 10

**11.8** 1, 9

11.9 2,7

Due: Nov. 16

Send your solution by email to <a href="mailto:twjeong@jbnu.ac.kr">twjeong@jbnu.ac.kr</a>

File name of your solution: AEM2\_your-name\_Ch11