知的情報処理論 (第1回)

2023年4月11日(火) 産業科学研究所 駒谷 和範

音声対話システム 『明日の朝7時に 起こして アラームを午前7時 にセットしました。 人間の音声による問いかけに対して、それを理解し 応答を返すシステム スマホ上の音声応答アプリ(Apple Siri, NTTドコモ my daiz, Yahoo! Japan 音声アシスト, etc.) スマートスピーカ(Amazon Echo, Google Home, LINE Clova) 対話ロボット(SB Robotics Pepper, etc.)

人工知能 AI (Artificial Intelligence)

- the science and engineering of making intelligent machines, especially intelligent computer programs (<u>知的な</u>機械, 特に 知的なコンピュータプログラムを作る科学と技術)
 - □ 元来は研究分野名
 - 「電気工学」「土木工学」などと同様
 - □ 近年「知的なシステム」を指す言葉としても使われている
 - 「AIが小説を書いた」 vs.「(人間が作った)プログラムが小説を出力した」
- ふるまいが知的だと感じられれば「人工知能」
 - 古くはルールを人手で書くアプローチが主流 最近はデータから学習する方法が成功
 - □ 必ずしも「人工知能=ディープラーニング」ではない

人工知能

- 2種類のゴール
 - □ 科学的ゴール: 知能の解明
 - □ 工学的ゴール: 知能の実現

人工知能!?

■ 茶運び人形

https://www.youtube.com/watch?v=2uVkrKLxMyw

⇒中身を知ろう!

人工知能の歴史

人工知能の歴史(第1次ブーム~冬)

- 1950年: チューリングテスト (Turing)
 - □ 1952年IBM が最初の商用計算機を発売.
 - □ 1956年FORTRAN
- 1956年: ダートマス会議
 - 「人工知能」という用語が確立
- 1956年: Logic Theorist (Simon & Newell)
- 1958年: LISP の開発(McCarthy)
 - → 当初は楽観的な見通し. しかしうまく行かず、 1960年代後半から急速に鎮静化.

ELIZA (Weizenbaum, 1966)

- 表層的な解析のみで応答を返すシステム
- 自由対話
 - 精神科医(セラピスト)の対話を模倣
- 現在で言うところの人工無脳, chatbot
- Emacs で M-x doctor で起動

Elizaによる対話の例

<u>U: ユーザ(人間の患者)</u>, S: システム(Eliza)

- U1: みんなー緒よ
- S1: どんな風に?
- U2: いつもいろんなことで、 いらいらさせるの
- S2: 具体的な例は思い浮かびますか?
- U3: えっと, 私のボーイフレンドがここに来させたの
- S3: あなたのボーイフレンドがここに来させた
- U4: 彼は私がたいてい落ち込んでるっていうの
- S4: あなたが落ち込んでいると聞いてお気の毒に思います
- U5: そうなの. 私は不幸せなの.
- S5: ここに来ることは、不幸せじゃなくなるのに役立つと思いますか?

...

Elizaの内部処理の例(1)

- キーワードに対応した応答文を用意し出力
- □ "always"(例(2))
 - → "Can you think of a specific example?"
- □ motherなど家族に関連する語
 - → "tell me more about your family"
- 入力文文型とのマッチング(例(3))
 - □ You are A. → what makes you think I am A?
 - 入力が"You are very helpful." だった場合、"You are A." という文型と最も近いため A = very helpful として、what makes you think I am very helpful? を出力
 - □ B is C. \rightarrow Why do you think B is C?

Elizaの内部処理の例(2)

- マッチする入力文型がない場合:(例(1))
 - Why do you ask?
 - □ Is that an important question?
- 入力文中にキーワードがない場合:
 - □ Please go on.
 - □ I see.

Mini Quiz #1

- 機械を「賢い」と感じるのはどのようなときか
 - □ 機械がどのように動けば「賢い」と感じるか
 - 例えば最近のことばを話す「人工知能」(Siri, Alexa, りんな, etc.) の<u>応答内容</u>は、Elizaよりも賢くなっているのか
 - 「どう」賢いか
 - どういう観点では「賢くなっていない」か

チューリングテスト (1950)

- A.M. Turing による思考実験
- タイピング対話において、対話相手が 人間かシステムかを、被験者が当てられるか

チューリングテスト

- コンピュータが相手だったにもかかわらず、 人間が相手だったと推定⇒ そのコンピュータには人間なみの知能がある
- ■「知能とは何か」という問題に対する一つの定義
- 人間なみの知能?
 - □ Eliza は人間なみの知能を持っていると言えるか?
 - □ 中身を知ると賢いと思えなくなる

ローブナー賞 (Loebner Prize)

- 1991年から毎年開催されているコンテスト
- 人間と最もうまく対話したシステムが受賞 http://www.aisb.org.uk/events/loebner-prize
- ■「5分程度の会話で、30%以上の人間が判断できなければ」
- 「うまく対話した」というより「うまく騙した」
 - □ 人間が犯しやすいスペルミスをわざとする
 - □ 入力に人間らしい不規則な「間」を入れる
 - □ 複雑な計算に早く正確に答えない

中国語の部屋

- J.R. Searle (哲学者)による思考実験 (1980)
- チューリングテストに対する有名な反論

出力が正しかったとしても、中にいる人は中国語を 全く理解していない

人工知能の歴史(第2次ブーム~冬)

- 1970年代: 新たな計算機環境を用いて人工知能研究が再興
 - SHRDLU (Winograd, 1970), フレーム理論(Minsky)→ 研究の中心は記号処理から知識表現へ
- 1980年代: 実用になる知識処理プログラム
 - MYCIN (Buchanan):伝染性血液疾患を扱うエキスパートシステム
 - □ 第五世代コンピュータ(1982~;通産省)
 - □ フレーム問題, シンボルグラウンディング問題
- 1990年代: AIの冬
 - □ ルールベースの方法論の限界

SHRDLU (Winograd, 1970)

■ 積み木の世界(Block world)

http://hci.stanford.edu/~winograd/shrdlu/

SHRDLUにおける内部処理

- ■自然言語理解
 - 「大きな 赤い ブロック を持ちあげよ」⇒ hold(block(large, red))
 - □ 照応処理:「それ」
- 推論・プランニング
 - 状態の記述(集合):in(box1, pyramid(blue)), in(box2, block(blue)), ...ontable(box1), clear(box1), handempty
 - □ オペレータ: stack(x, y)
 - 前提: holding(x) かつ clear(y)
 - 追加リスト: handempty かつ on(x, y) かつ clear(x)
 - □ ゴールに向かうオペレータ系列を求める → プランニング

SHRDLUによる対話例

- 大きな赤いブロックを持ち上げよ
 - わかりました
- そのピラミッドをつかめ
 - □ どのピラミッドかわかりません
- いま持っているより背の高いブロックを探して、それを箱に入れよ
 - □「それ」はいま持っているものより背の高いブロックだと仮定します
 - わかりました
- 箱には何が入っているか
 - □ 青のピラミッドと青のブロックです
- 箱の中にないブロックはいくつか
 - 4つです

閉世界仮説 (closed world assumption)

フレーム問題

- McCarthy and Hayes (1969)
 - 世界の中から、関係のあることがらだけを選び出すことは 実は非常に難しい
- 例: 爆弾のある部屋から美術品を運び出すロボット
 - □ ロボット1号
 - 「台車を押すと美術品が運べる」は知っている
 - 「台車に爆弾が仕掛けられていることがある」 ことは知らない
 - □ 改良型ロボット2号
 - 台車を動かすことによる「全て」の影響を考慮
 - □ もし台車を動かしても、天井は落ちてこない。
 - □ もし台車を動かしても、部屋の壁の色はかわらない
 - □ もし台車を動かしても、部屋の電気は消えない.
 - もし台車を動かしても、壁に穴があいたりしない

http://www.ai-gakkai.or.jp/whatsai/Altopics1.html の例を使用

人工知能の歴史(第3次ブーム~)

- 最近:
 - □ 統計的機械学習の成果を利用
 - □ データから学習したボトムアップ知識
 - 深層学習(Deep Learning)
 - ビッグデータ, クラウドコンピューティング

アルファ碁が世界最強棋士に勝利 (2017年5月)

www.asahi.com より

人間 vs コンピュータ

- 2人ゲーム(<u>完全情報・確定</u>ゲーム)
 - □ オセロ: (6×6)の盤では必勝手順が解明済み
 - □ チェス
 - 1997年Deep Blue がカスパロフに勝利
 - □ 将棋:
 - 2010年10月11日 あから2010が、清水女流王将に勝利
 - 2013年 電王戦. 計算機側が3勝1敗1引分け
 - 2017年 第2期電王戦
 - □ 2戦とも佐藤名人相手に圧勝
 - □ 囲碁
 - 2016年3月 Alpha Goが韓国のプロ棋士に4勝1敗
 - 2017年 Alpha Go Zero 自分自身との対局から学習

人間 vs コンピュータ

- クイズ:
 - □ 2011年2月18日Watson がクイズ番組Jeopardy!で勝利
- ■「ロボットは東大に入れるか」(東ロボプロジェクト)
 - □ 2011年スタート
 - □ 2021 年東大入試合格を目標
 - □ 2016年11月(全体としては)断念
- シンギュラリティ(2045年)?
 - Ray Kurzweil, The Singularity is Near: When Humans Transcend Biology (2006) (邦訳:『ポスト・ヒューマン誕生-コンピュータが人類の知性を 超えるとき』NHK出版 (2007))

Mini Quiz #2

- コンピュータ(AI)の性能が上がり、人間の知的 作業の大部分が不要になる日は来ると思う?
 - □ どういう作業はAIに代替される?
 - □ どういう作業はAIに代替されない?

