Review 3.2 - 3.4

Liang Ling E0220121@...

MATH@NUS

September 29, 2018

- **1)** Whether a set of k vectors span the whole \mathbb{R}^n
- 2 Determine whether $span(S_1) \subset span(S_2)$
- Subspace
- 4 Linear Independent

If k < n the corresponding row-echelon form (see next page) has at least one zero row, then $span(S) \neq \mathbb{R}^n$.

Theorem

Let $S = \{u_1, \dots, u_k\}$ be a set of vectors in \mathbb{R}^n . If k < n, then S cannot span \mathbb{R}^n .

Remark: This theorem says that a set of k vectors can at most span \mathbb{R}^k .

A useful method

Let $S = \{u_1, \dots, u_k\} \subset \mathbb{R}^n$, where $u_i = (a_{i1}, \dots, a_{in}), 1 \leq i \leq k$. To show that $span(S) = \mathbb{R}^n$ we need to verify that for any $v = (v_1, \dots, v_n) \in \mathbb{R}^n$, v is contained in span(S). Now $v \in span(S)$ if and only if the vector equation

$$c_1u_1+\cdots+c_ku_k=v$$

has a solution for c_1, \cdots, c_k , which means that the linear system

$$\begin{cases} a_{11}c_1 + a_{21}c_2 + \dots + a_{k1}c_k &= c_1 \\ a_{12}c_1 + a_{22}c_2 + \dots + a_{k2}c_k &= c_2 \\ \vdots &\vdots &\vdots \\ a_{1n}c_1 + a_{2n}c_2 + \dots + a_{kn}c_k &= c_n \end{cases}$$

is consistent.

A useful method – continued

Write the linear system on the last page as matrix form Ac = v:

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{k1} \\ a_{12} & a_{22} & \cdots & a_{k2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{kn} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

- **1** If a row-echelon form of A does not have any zero row, then the linear system always consistent regardless of the values of v_1, \dots, v_n and hence $span(S) = \mathbb{R}^n$.
- ② If a row-echelon form of A has at least one zero row, then the linear system is not always consistent and hence $span(S) \neq \mathbb{R}^n$.
- See Q1.

- ① Whether a set of k vectors span the whole \mathbb{R}^r
- 2 Determine whether $span(S_1) \subset span(S_2)$
- Subspace
- 4 Linear Independent

whether $span(S_1) \subset span(S_2)$

Let $S_1 = \{u_1, u_2, \dots, u_k\}, S_2 = \{v_1, v_2, \dots, v_m\}$ be subsets of \mathbb{R}^n .

Theorem

 $span(S_1) \subset span(S_2)$ if and only if each u_i is a linear combination of v_1, v_2, \cdots, v_m .

Whether $span(S_1) = span(S_2)$

- For two sets A and B, if we want to prove A = B, we need to show that $A \subset B$ and $B \subset A$.
- $S_1 = \{u_1, u_2, \dots, u_k\}, S_2 = \{v_1, v_2, \dots, v_m\}$ be subsets of \mathbb{R}^n .
- By the last theorem, to show that $span(S_1) = span(S_2)$, we need to show that $span(S_1) \subset span(S_2)$ and $span(S_2) \subset span(S_1)$.
- It suffice to show that:
 - 1. each u_i is a linear combination of v_1, v_2, \dots, v_m ; and
 - 2. each v_i is a linear combination of u_1, u_2, \dots, u_k .

For instance, See Q3 and

Theorem

Let u_1, u_2, \dots, u_k be vectors in \mathbb{R}^n , if u_k is a linear combination of u_1, u_2, \dots, u_{k-1} , then

$$span\{u_1, u_2, \cdots, u_{k-1}\} = span\{u_1, u_2, \cdots, u_k\}.$$

Find a set of vectors that span the solution space of homogeneous system.

- Use Gaussian elimination to solve the homogeneous system.
- Write down the general solution as

$$x=t_1r_1+\cdots t_kr_k,$$

where t_1, \dots, t_k are arbitrary real numbers.

- **1** Then $\{r_1 \cdots, r_k\}$ span the solution space.
- For details, see the proof of Theorem 3.3.6 in your textbook.

See Q2.

- ① Whether a set of k vectors span the whole \mathbb{R}^n
- 2 Determine whether $span(S_1) \subset span(S_2)$
- Subspace
- 4 Linear Independent

Subspace

Definition

Let V be a subset of \mathbb{R}^n , then V is called a subspace of \mathbb{R}^n if V = span(S) where $S = \{u_1 \cdots, u_k\}$ for some vector $u_1 \cdots, u_k \in \mathbb{R}^n$. We called that V is the subspace spanned by S or S spans the subspace V.

- **1** If V is a subspace, then $0 \in V$.
- ② (Zero space) $\{0\} = span\{0\}$.

$$\mathbb{R}^n = span\{e_1, \cdots, e_n\}$$

where
$$e_1=(1,0,\cdots,0), e_1=(0,1,\cdots,0),\cdots, e_n=(0,0,\cdots,1).$$

• How to verify that a set V is a subspace? See Q4.

- 1) Whether a set of k vectors span the whole \mathbb{R}^r
- 2 Determine whether $span(S_1) \subset span(S_2)$
- Subspace
- 4 Linear Independent

Linear Independent

Definition

Let $S = \{u_1 \cdots, u_k\}$ be a set of vectors in \mathbb{R}^n . Consider the equation

$$c_1u_1+\cdots c_ku_k=0,$$

- 1. S is called a linear independent set and $u_1 \cdots, u_k$ are said to be linear independent if the equation has only trivial solution $c_1 = \cdots = c_k = 0$.
- 2. Otherwise, S is called a linear dependent set and $u_1 \cdots, u_k$ are said to be linear denpendent

How to remove the redundant vector?

As we may have that

$$span\{u_1\cdots,u_k\}=span\{u_1\cdots,u_{k-1}\}.$$

Which means that in this case u_k is redundant, i.e., if we let $S = \{u_1 \cdots, u_k\}$, then

$$span(S) = span(S - u_k).$$

• To remove the "redundant" vector in a set of vector S, we mean that first S must be linear dependent, or there is no vector that is redundant. Second, we need to find a vector u such that

$$span(S) = span(S - \{u\}).$$

• To do this, we need $u \in span(S - \{u\})$. (why?)

