- 3. $(\mathbb{R}^3, +, 0)$ vectors in \mathbb{R}^3 with vector addition forms an Abelian group. (x, y, z) + (x', y', z') = (x + x', y + y', z + z') vector addition. 0 = (0, 0, 0) is the identity. (-x, -y, -z) = -(x, y, z) is the inverse of (x, y, z).
- 4. $(M_n, *, I_n)$ $n \times n$ invertible matrices with real coefficients under matrix multiplication with I_n as the identity element forms a group, which is <u>NOT</u> Abelian.
- 5. Set $A = \mathbb{Z}$ and recall the equivalence relation $x \equiv y \mod 3$ i.e. x and y have the same remainder under the division by 3. Recall that $\mathbb{Z}/\sim=\{0,1,2\}$, i.e. the set of equivalence classes under the partition determined by this equivalence relation. We denote $\mathbb{Z}/\sim=\{0,1,2\}=\mathbb{Z}_3$

Consider $(\mathbb{Z}_3, \oplus_3, 0)$ where \oplus_3 is the operation of addition modulo 3, i.e. $1+0=1, 1+1=2, 1+2=3\equiv 0 \mod 3$.

Claim: $(\mathbb{Z}_3, \oplus_3, 0)$ is an Abelian group.

Proof of Claim: Associativity of \oplus_3 follows from the associativity of +, addition on \mathbb{Z} . Clearly, 0 is the identity (don't forget 0 stands for all elements with remainder 0 under division by 3, **i.e.** $\{0, 3, -3, 6, -6, ...\}$). To compute inverses recall that $a\oplus_3 a^{-1} = 0, 0$ is the inverse of 0 because 0+0=0. 2 is the inverse of 1 because $1+2=3\equiv 0 \mod 3$, and 1 is the inverse of 2 because $2+1=3\equiv 0 \mod 3$.

More generally, consider the equivalence relation on \mathbb{Z} given by $x \equiv y \mod n$ for $n \geq 1$. $\mathbb{Z}/N = \{0,1,...,n-1\} = \mathbb{Z}_n$. All possible remainders under division by n are the equivalence classes. Let \oplus_n be addition mod n. By the same argument as above, $(\mathbb{Z}_n, \oplus_n, 0)$ is an Abelian group.

- **Q:** What if we consider multiplication mod n, i.e. \otimes_n . Is $(\mathbb{Z}_n, \otimes_n, 1)$ a group?
- **A:** No! $(\mathbb{Z}_n, \otimes_n, 1)$ is not a group because 0 is not invertible: for any $a \in \mathbb{Z}_n$, $0 \otimes_n a = a \otimes_n 0 = 0 \neq 1$.
- Q: Can this be fixed?
- **A:** Troubleshoot how to get rid of 0.

Consider $\mathbb{Z}_n^* = \mathbb{Z}_n \setminus \{0\} = \{1, 2, ..., n-1\}$ all non-zero elements in \mathbb{Z}_n^* . This eliminates 0 as an element, but can 0 arise any other way from the binary operation? It turns out the answer depends on n. If n is not prime, say n = 6, we get **zero divisors**, i.e. elements that yield 0 when multiplied. These are precisely the factors of n. For n = 6,

 $\mathbb{Z}_6^*=\{1,2,3,4,5\}$ but $2\otimes_6 3=6\equiv 0$ mod 6, so 2 and 3 are zero

Claim: If n is prime, then $(\mathbb{Z}_n^*, \otimes_n, 1)$ is an Abelian group.

Used in cryptography $\rightarrow n$ is taken to be a very large prime number. As an example, let us look at the multiplication table for \mathbb{Z}_5^* to see the inverse of various elements: $\mathbb{Z}_5^* = \mathbb{Z}_5 \setminus \{0\} = \{0, 1, 2, 3, 4, \} \setminus \{0\} = \{0, 1, 2, 3, 4, \} \setminus \{0\}$ $\{1, 2, 3, 4\}$

Ī		1	2	3	4
Ī	1			_	4
	2				3
	3	3	1	4	2
	4	4	3	2	1

The fact that $(\mathbb{Z}_n^*, \otimes_n, 1)$ is Abelian follows from the commutativity of multiplication on \mathbb{Z} .

6. Let (A, *, e) be any group, and let $a \in A$.

Consider $A' = \{a^m \mid m \in \mathbb{Z}\}$ all powers of a. It turns out (A', *, e) is a group called the cyclic group determined by a. (A', *, e) is Abelian regardless of whether the original group was Abelian or not because of the theorem we proved on powers of a: $\forall m, n \in \mathbb{Z}$ $a^m * a^n =$ $a^{m+n} = a^{n+m} = a^n * a^m.$

Cyclic groups come in two flavours: finite (A') is a finite set and infinite (A' is an infinite set).

For example, let $(A, *, e) = (\mathbb{Q}^*, \times, 1)$

If
$$a = -1$$
 $A' = \{(-1)^m \mid m \in \mathbb{Z}\} = \{-1, 1\}$ is finite.
If $a = 2$ $A' = \{2^m \mid m \in \mathbb{Z}\} = \{1, 2, \frac{1}{2}, 4, \frac{1}{4}, ...\}$ is infinite.

If a=2

7.7Homomorphisms and Isomorphisms

Task: Understand the most natural functions between objects in abstract algebra such as semigroups, monoids or groups.

Definition: Let (A,*) and (B,*) both be semigroups, monoids or groups. A function $f: A \to B$ is called a homomorphism if

$$f(x * y) = f(x) * f(y) \forall x, y \in A.$$

In other words, if f is a function that respects (behaves well with respect to) the binary operation.

Examples:

1. Consider $(\mathbb{Z}, +, 0)$ and $(\mathbb{R}^*, \times, 1)$. Pick $a \in \mathbb{R}^*$, then $f(n) = a^n$ is a homomorphism between $(\mathbb{Z}, +, 0)$ and $(\mathbb{R}^*, \times, 1)$ because $(\mathbb{R}^*, \times, 1)$ is a group, and we proved for groups that $a^{m+n} = f(m+n) = a^m * a^n = f(m) * f(n) \ \forall m, n \in \mathbb{Z}.$

- 2. More generally, $\forall a \in A$ invertible, where (A, *) is a monoid with identity element e, $f(m) = a^m$ gives a homomorphism between $(\mathbb{Z}, +, 0)$ and (A', *, e), where as before $A' = \{a^m \mid m \in \mathbb{Z}\} \subset A$. We get even better behaviour if we require $f : A \to B$ to be bijective.
- **Definition:** Let (A, *) and (B, *) both be semigroups, monoids or groups. A function $f: A \to B$ is called an isomorphism if $f: A \to B$ is both bijective AND a homomorphism.

Examples:

- 1. Let $A' = \{2^m \mid m \in \mathbb{Z}\} = \{1, 2, \frac{1}{2}, 4, \frac{1}{4}, ...\}$ $f(m) = 2^m$ from $(\mathbb{Z}, +, 0)$ to $(A', \times, 1)$ is an isomorphism since $2^m \neq 2^n$ if $m \neq n$.
- 2. Let $A' = \{(-1)^m \mid m \in \mathbb{Z}\} = \{-1, 1\}$ $f(m) = (-1)^m$ from $(\mathbb{Z}, +, 0)$ to $(A', \times, 1)$ is <u>NOT</u> an isomorphism since it's not injective $(-1)^2 = (-1)^4 = 1$.
- **Theorem:** Let (A, *) and (B, *) both be semigroups, monoids or groups. The inverse $f^{-1}: B \to A$ of any isomorphism $f: A \to B$ from A to B is itself an isomorphism.
- **Proof:** If $f: A \to B$ is an isomorphism $\Rightarrow f: A \to B$ is bijective $\Rightarrow f^{-1}: B \to A$ is bijective (proven when we discussed functions).
- To show $f^{-1}: B \to A$ is a homomorphism, let $u, v \in B$. $\exists x, y \in A$ s.t. $x = f^{-1}(u)$ and $y = f^{-1}(v)$, but then u = f(x) and v = f(y).
- Since $f: A \to B$ is a homomorphism, f(x * y) = f(x) * f(y) = u * v. Then $f^{-1}(u * v) = f^{-1}(f(x * y)) = x * y = f^{-1}(u) * f^{-1}(v)$ as needed.

qed

- **Definition:** Let (A, *) and (B, *) both be semigroups, monoids or groups. If $\exists f : A \to B$ an isomorphism betwen A and B, then (A, *) and (B, *) are said to be isomorphic.
- **Remark:** "Isomorphic" comes from "iso" same and "morph \overline{e} " form: the same abstract algebra structure on both (A,*) and (B,*) given to you in two different guises. As the French would say: "Même Marie, autre chapeau" same Mary, different hat.

8 Formal Languages

Task: Use what we learned about structues in abstract algebra in order to make sense of formal languages and grammars.

Let A be a finite set. When studying formal languages, we call A an alphabet and the elements of A letters.

Examples:

1. $A = \{0, 1\}$ binary digits

2. $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

3. A =letters of the English alphabet

decimal digits

the set of all words of length n over the alphabet A.

Definition: $\forall n \in \mathbb{N}^*$, we define a word of length n in the alphabet A as being any string of the form $a_1, a_2, ..., a_n$ s.t. $a_i \in A \quad \forall i, 1 \leq i \leq n$. Let A^n be