Coq Survival Kit

David Pichardie, Sandrine Blazy ENS Rennes - IRISA - Université Rennes 1

Table of contents

- admit
- intros
- intros <u>names</u>
- assert
- assumption
- split
- <u>left/right</u>
- destruct on P/\Q
- destruct on P\/Q
- destruct on False
- destruct on a term
- apply
- exists
- rewrite
- simpl
- unfold

- <u>;</u>
- induction term
- congruence
- omega

Tactics used in Lecture3.v

on a hypothesis of the form P/\Q

on a hypothesis of the form PVQ

on a hypothesis of the form False

H: False

P

destruct H

no more subgoal

on a term with an inductive type

left / right

tac1; tac2

$$tac1$$
; tac2

goal0

 $goal2$

If tac1 generates several subgoals, tac2 is applied on each of them.

simpl

see also simpl in *

But the behavior of the command is not always that simple ...

intros

P -> Q

P -> Q -> R

forall (a : A), P

intros

a : A

Ρ

You should think about a term of type **Prop** as a logical property

P: Prop intros

P: Prop

H : P

Q

H : P

H0 : Q

R

In Coq, we often use the form $P\Rightarrow Q\Rightarrow R \text{ instead of } P\wedge Q\Rightarrow R$

intros *names*


```
a : A
                       intros a
forall (a : A), P
                                        P
                                        P: Prop
                                        H : P
P: Prop
                       intros H
P -> Q
                                        H : P
                     intros H H0
                                        H0 : Q
_____
P -> Q -> R
                                        R
                       intros H
                                        False
not P
```

not P is a macro for P -> False

admit

P

admit	
	>

no more subgoal

- solve the current subgoal with an axiom
- this is cheating!

congruence

It solves automatically a subgoal using only the following deduction rules

$$\overline{x = x}$$

$$\frac{x=y \quad (P \ x)}{(P \ y)} \qquad \frac{(C \ x)=(C \ y)}{(C \ x)\neq (C' \ y)} \qquad \frac{(C \ x)=(C \ y)}{x=y}$$

$$\overline{(C\ x) \neq (C'\ y)}$$

$$\frac{(C \ x) = (C \ y)}{x = y}$$

where C and C' are constructors

Examples

$$H : S n = S m$$

no more subgoal

plus
$$n p = plus m p$$

n: nat

H : S n = 0

congruence

no more subgoal

False

induction

on a term with an inductive type

P (S m)

assert

rewrite

Coq guesses how to instantiate the quantifiers

omega

(do a Require Import ZArith before using it)

It solves automatically a subgoal using only arithmetic reasoning on nat and Z. Beware, this is only for *linear arithmetic*: multiplication is only understood if one of the arguments is a numerical constant.

Examples

$$H : x \le y + 1$$

$$H0 : 2 * y \le z - 3$$

2 * x +1 <= z

omega

no more subgoal

omega

no more subgoal

$$x + (y + z) = (x + y) + z$$

apply

H: forall x y, P x y -> Q y
-----Q (f a)

Coq guesses how to instantiate the quantifiers

H: forall x y, P x y \rightarrow Q y

Pa(fa)

We have to help Coq and give him the missing instantiation

Other useful tactics

assumption

unfold

replace a name by its definition

Definition succ (n:nat) := S n.

split

exists

exists x, P x

exists t

p t

inv

```
can be loaded with the library MSMLib given
or by inserting Ltac inv H := inversion H; clear H; try subst.
                   Inductive le (n : nat) : nat -> Prop :=
                      le_n :
                     (* ==== *)
                       le n n
                      le_S m
                       (Hle: n \le m):
                      (* ==== *)
                       le n (S m).
    H: le n O
                                    inv H
    P n
                                                        P O
    H: le n m
                                    inv H
                                         first subgoal
    Q n m
                                                        Q m m
                                                        m': nat
                                                        H': le n m'
```

second subgoal

Q n (S m')

