P3 CG 2011.2

Computação Gráfica 1 Prof. Rodrigo de Toledo Data: 12/12/2011

P3

- 1) (2 pontos) Quais as vantagens em existir um tipo vec4 nativo nas GPU programáveis?
- 2) (2 pontos) Calcule algebricamente a normal de um ponto (x,y,z) na superfície de um torus T, cuja equação implícita está descrita abaixo. Dica: comece deduzindo o produto notável (a + b + c d)². $T(x,y,z) = (x^2 + y^2 + z^2 (r^2 + R^2))^2 4R^2(r^2 z^2) = 0$
- 3) (2 pontos) Dada uma malha poligonal cuja topologia 2D é descrita por uma estrutura *half-edge*: class Vertex { Point2D p; H_Edge hEdge;} //hEdge cuja origim é o ponto p class H_Edge { Vertex vOrig; H_Edge eTwin; Face f; H_Edge eNext;} class Face { H_Edge HEdge;}

Faça uma função int isNeighbor(Vertex v, Face f) que retorna 0 caso o vértice v pertença a face f, 1 caso v seja vizinho a f (ou seja, esteja a uma aresta de distância da face f) ou 2 caso contrário.

4) (2 pontos) Dado uma função intercepta(Q, raio) que retorna os dois pontos desordenados de interseção entre um raio parametrizado em t e uma quádrica; descreva um algorítimo que selecione o intervalo de t (t_i , t_o) resultado de uma expressão CSG: $Q_1 \cap Q_2$. Obs: Considere que as duas interseções possuem raízes reais positivas. Caso não haja interseção, t_i e t_o devem receber Null.

- 5) (2 pontos) (a) Dado um triângulo no plano XY, monte as matrizes com coordenadas homogêneas das operações necessárias para realizar uma rotação em torno do ponto X_0, Y_0 .
- (b) Dado que $X_0 = 2$, $Y_0 = 1$ e $\alpha = 45^{\circ}$, calcule a matriz final única (com coordenadas homogêneas) que deverá ser aplicada a cada vértice para que seja realizada a operação desejada.

Dicas:

- matriz de rotação sem coordenada homogênea é:
- $s(\theta) sin(\theta)$ x θ $sin(\theta)$ y
 - $\cos(45^{\circ}) = \sin(45^{\circ}) = \sqrt{2/2}$

Publicado por Google Drive – Denunciar abuso – 5Atualizado automaticamente a cada minutos