Machine Learning and Data Mining (IT4242E)

Quang Nhat NGUYEN

quang.nguyennhat@hust.edu.vn

Hanoi University of Science and Technology
School of Information and Communication Technology
Academic year 2021-2022

The course's content:

- Introduction
- Performance evaluation of the ML/DM system
- Regression problem
- Classification problem
- Clustering problem
- Association rule mining problem

Association rule mining – Introduction

- The problem of association rule mining:
 - Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of association rules:

```
\{ Diaper \} \rightarrow \{ Beer \}
\{ Milk, Bread \} \rightarrow \{ Eggs, Coke \}
\{ Beer, Bread \} \rightarrow \{ Milk \}
```

Basic concepts (1)

Itemset

- □ A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- □ *k*-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- □ E.g., $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- □ E.g., s({Milk, Bread, Diaper}) = 2/5

Frequent/large itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Basic concepts (2)

Association rule

- □ An implication expression of the form X → Y, where X and Y are itemsets
- □ E.g., $\{Milk, Diaper\} \rightarrow \{Beer\}$

Rule evaluation metrics

- Support (s)
 - Fraction of transactions that contain both X and Y

Confidence (c)

 Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$\{Milk, Diaper\} \rightarrow Beer$$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association rule mining task

- Given a set of transactions T, the goal of association rule mining is to find all rules having:
 - □ support ≥ minsup threshold, and
 - □ confidence ≥ minconf threshold
- Brute-force approach
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
- The brute-force approach has too high computational cost – not feasible for implementation in practice!

Mining association rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Các luật kết hợp:

```
\{ \text{Milk, Diaper} \} \rightarrow \{ \text{Beer} \} \quad (s=0.4, c=0.67) 
\{ \text{Milk, Beer} \} \rightarrow \{ \text{Diaper} \} \quad (s=0.4, c=1.0) 
\{ \text{Diaper, Beer} \} \rightarrow \{ \text{Milk} \} \quad (s=0.4, c=0.67) 
\{ \text{Beer} \} \rightarrow \{ \text{Milk, Diaper} \} \quad (s=0.4, c=0.67) 
\{ \text{Diaper} \} \rightarrow \{ \text{Milk, Beer} \} \quad (s=0.4, c=0.5) 
\{ \text{Milk} \} \rightarrow \{ \text{Diaper, Beer} \} \quad (s=0.4, c=0.5)
```

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining association rules

- A process of association rule mining consists of two main phases (steps)
 - Frequent/large itemset generation
 - Generate all itemsets whose support ≥ minsup
 - Rule generation
 - From each frequent itemset, generate high confidence rules (their confidence ≥ minconf)
 - Each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent itemset generation

Given *d* items, there are 2^d possible candidate itemsets

Frequent itemset generation

Brute-force approach

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
- Match each transaction against every candidate
- □ Complexity ~ O(N.M.w)
 - Given M = 2^d, this cost is too high!

Frequent itemset generation strategies

- Reduce the number of candidates (M)
 - □ Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset (i.e., the average number of items in an itemset w) increases
- Reduce the number of matchings/comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing number of candidates

- Apriori principle Prunning based on the support value
 - If an itemset is frequent, then all of its subsets must also be frequent
 - If an itemset is infrequent, then all of its supersets must also be infrequent
- Apriori principle holds due to the anti-monotone property of the support measure

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

Support of an itemset never exceeds the support of its subsets

Apriori: Prunning based on support (1)

Apriori: Prunning based on support (2)

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

1-itemsets (individual items)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

2-itemsets

(No need to generate candidates involving *Coke* or *Eggs*)

minsup = 3

3-itemsets

- If every subset is considered: ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
- With support-based pruning:

$$6 + 6 + 1 = 13$$

Itemset	Count
{Bread,Milk,Diaper}	3

Apriori algorithm

- Generate frequent itemsets of length 1 (i.e., frequent 1itemsets)
- Set k=1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the database
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Apriori: Factors affecting complexity

Choice of minimum support threshold

- Lowering support threshold results in more frequent itemsets
- This may increase number of candidates and maximum length of frequent itemsets

Dimensionality (number of items) of the dataset

- More space is needed to store support count of each item
- If number of frequent items also increases, both computation and I/O costs may also increase

Size of the database

 Since Apriori makes multiple passes, run time of algorithm may increase with number of transactions

Average transaction width

 When the transaction width increases, the max length of frequent itemsets also increases

Rule generation (1)

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L \setminus f$ satisfies the minimum confidence requirement
 - □ E.g., If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB

■ If |L| = k, then there are $(2^k - 2)$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule generation (2)

- How to efficiently generate rules from frequent itemsets?
- In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But, confidence of rules generated from the same itemset has the anti-monotone property
 - □ E.g., For L = {A,B,C,D}: $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$
 - Confidence is anti-monotone w.r.t. the number of items on the right hand side of the rule

Apriori: Rule generation (1)

Apriori: Rule generation (2)

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
 - Example: join the two rules
 (CD => AB, BD => AC)
 would produce the new
 candidate rule (D => ABC)
- Prune rule D => ABC, if one of its subsets (AD=>BC, BCD=>A, ...) does not have high confidence

References

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. Addison-Wesley, 2006.