

Course > Week 7... > Compr... > Quiz 7

Quiz 7

Problem 1

1/1 point (graded)

Suppose we use a basis expansion $\Phi\left(x\right)$ for the purposes of getting a quadratic decision boundary. For two-dimensional data, we can do this by expanding to five features. What decision boundary is represented by $w\cdot\Phi\left(x\right)+b=0$ for w=(2,1,2,-1,0) and b=-1?

$$\bigcirc 2x_1^2 + x_2^2 + 2x_1 - x_2 - 1 = 0$$

$$\bigcirc 2x_1^2 + x_1 + 2x_2^2 - x_2 - 1 = 0$$

$$2x_1 + x_2 + 2x_1^2 - x_2^2 - 1 = 0$$

$$\bigcirc 2x_1 + x_1^2 + 2x_2 - x_2^2 - 1 = 0$$

Submit

Problem 2

1/1 point (graded)

True or false: When using a basis expansion of $x \in \mathbb{R}^6$ to get a quadratic boundary, the expanded feature vector $\Phi(x)$ has 36 pairwise features of the form x_1x_6 or x_2x_4 .

True

False

Submit

Problem 3

1/1 point (graded)

We want to use basis expansion of two-dimensional inputs $x=(x_1,x_2)$ to get a quadratic boundary. If the target boundary is given by the equation $(x_1-2)^2+(x_2-1)^2=16$, what is the coefficient vector, w, and constant, b, such that the boundary has the form $w\cdot\Phi(x)+b=0$?

- $\bigcirc w = (-4 \quad -2 \quad 1 \quad 1 \quad 0), b = -16$
- $w = (1 \ 1 \ -4 \ -2 \ 5), b = -11$
- w = (1 -2 1 -11 0), b = 16

Submit

Problem 5

1/1 point (graded)

For 12-dimensional x, what is the dimension of the basis expansion $\Phi(x)$ that we use for getting a quadratic boundary?

O 24	
<u> </u>	
o 90	
O 144	
✓	
Submit	
Problem 6	5
	$^{ m ed}$ set with n data points, each of d dimensions, what is the dimension of the $^{ m ich}$ is used in the dual form of the perceptron algorithm?
$\bigcirc d$	
o n	
$\bigcirc d^2$	
$\bigcap n^2$	
✓	
Submit	
Problem 7	7
oading [Math]ax ¹]/jax/output/HTML-CSS/fonts/STIX/Variants/Regular/All.js

Given vectors , which of the following expressions can be used in place of , where is the basis expansion used for a quadratic boundary?

○ [Math Processing Error]	
Lo	
✓	
Submit	
Problem 8	
1/1 point (graded) Which vector are we solving for when using the dual form of the SVM	?
α	
x	
onone of the above	
✓	
Submit	
Problem 9	
1/1 point (graded) Loading [MathJax]/jax/output/HTML-CSS/fonts/STIX/Variants/Regular/All.js	

Which expression(s) can be used to classify a new point with the kernel SVM? Select all that apply.

✓					
sig	$\sum_{n=1}^{n}$	$\alpha_i v^{(i)} (\Phi(x^{(i)})$	$\Phi(x) + b$		

$$= \operatorname{sign} \left(\sum_{i=1}^{n} w \cdot \Phi \left(x^{(i)} \right) + b \right)$$

$$\operatorname{sign}\left(\sum_{i=1}^{n} w \cdot \Phi\left(x^{(i)}\right) + b\right)$$

$$\operatorname{sign}\left(w \cdot \Phi\left(x\right) + b\right)$$

$$sign\left(\sum_{i=1}^{n} \left(\Phi\left(x^{(i)}\right) \cdot \Phi\left(x\right)\right) + b\right)$$

Problem 10

1/1 point (graded)

If you are finding a degree decision boundary and if, then the term is part of the $x \in \mathbb{R}^7 \qquad x_1 x_3 x_4 x_7^2$ expanded feature vector, . 4

 $\Phi(x)$

True

Submit

Problem 11

1/1 point (graded)

Which is/are the correct kernel function(s), , that is used to find a degree decision Loading [MathJax]/jax/output/HTML-CSS/fonts/STIX/Variants/Regular/All.js -3 polynomiaBboundary.)

k (-	Y 7) =	Υ	7

$$k\left(x,z\right) = \left(1 + x \cdot z\right)^{3}$$

$$k(x, z) = \Phi(x) \cdot \Phi(z)$$

$$k(x, z) = (1 + \Phi(x) \cdot \Phi(z))^3$$

Submit

Problem 12

1/1 point (graded)

Vectors that produce high values with the kernel function are more similar or less similar than vectors that produce low values?

More similar

Submit

Problem 13

1/1 point (graded)

True or false: Decision trees typically perform best when they are grown until the training error is .

○ True
• False
✓
Submit
Problem 14
1/1 point (graded) Overfitting the data with a decision tree will result in which of the following?
☐ Training error going up
☑ Training error going down
✓ Test error going up
☐ Test error going down
✓
Submit
Problem 15
1/1 point (graded) True or false: When decision stumps are used as weak classifiers for AdaBoost, the final decision boundary is linear.
○ True
oading [MathJax]/jax/output/HTML-CSS/fonts/STIX/Variants/Regular/All.js

© All Rights Reserved