Chapter 10

正规算子的结构理论

10.1 线性算子的伴随

先来回顾一下算子伴随: \mathcal{B} 和 \mathcal{C} 分别为线性空间 V 和 W 的定序基, V^* 和 W 分别为 V 和 W 的对偶空间, \mathcal{B}^* 和 \mathcal{C}^* 分别为 \mathcal{B} 和 \mathcal{C} 的对偶基, 对给定的线性变换 $\tau \in \mathcal{L}(V,W)$, 有算子伴随 $\tau^\times : W^* \to V^*$, $g \mapsto \tau^\times = g \circ \tau$, 线性变换在定序基上与其算子伴随在对偶基上的表示存在关系: $[\tau]_{\mathcal{B}\mathcal{C}} = [\tau^\times]_{\mathcal{C}^*\mathcal{B}^*}$.

下面来定义另一种伴随: 对于有限维内积向量空间 V 和 W, $\dim V = n$, $\dim W = m$, Riesz 映射 $\mathcal{R}_V : V^* \to V$, $\mathcal{R}_W : W^* \to W$, \mathcal{R}_W 为共轭同构, \mathcal{R}_W 有其逆同构 \mathcal{R}_W^{-1} , 从而有映射 $\mathcal{T}^* = \mathcal{R}_V \circ \mathcal{T}^\times \circ \mathcal{R}_W$.

定理 10.1 (课本定理10.1): (1) τ^* 为线性变换, 即 $\tau^* \in \mathcal{L}(W, V)$.

- (2) $\langle v, \tau^*(w) \rangle = \langle \tau(v), w \rangle$, 称 τ^* 为 τ 的伴随.
- $(3) [\tau]_{\mathcal{BC}} = [\tau^*]_{\mathcal{CB}}^{\dagger}.$
- $\mathbf{i}\mathbf{E}: \quad (1) \quad \tau^* = \mathcal{R}_V \circ \tau^{\times} \circ \mathcal{R}_W^{-1} : W \to V,$

 $\forall u_1, u_2 \in W, \ \tau^*(ru_1 + tu_2) = \mathcal{R}_V \circ \tau^\times \circ \mathcal{R}_W^{-1}(ru_1 + tu_2) = \mathcal{R}_V \circ \tau^\times (\mathcal{R}_W^{-1}(ru_1 + tu_2)) = \mathcal{R}_V \circ \tau^\times (\bar{r}\mathcal{R}_W^{-1}(u_1) + \bar{t}\mathcal{R}_W^{-1}(u_2)) = \mathcal{R}_V(\tau^\times (\bar{r}\mathcal{R}_W^{-1}(u_1) + \bar{t}\mathcal{R}_W^{-1}(u_2))) = \mathcal{R}_V(\bar{r}\tau^\times (\mathcal{R}_W^{-1}(u_1)) + \bar{t}\tau^\times (\mathcal{R}_W^{-1}(u_2))) = r\mathcal{R}_V(\tau^\times (\mathcal{R}_W^{-1}(u_1)) + \bar{t}\tau^\times (\mathcal{R}_W^{-1}(u_2))) = r\mathcal{R}_V(\tau^\times (\mathcal{R}_W^{-1}(u_1)) + \bar{t}\tau^\times (\mathcal{R}_W^{-1}(u_2))) = r\tau^*(u_1) + t\tau^*(u_2), \ \text{其中利用了引理} \ 10.1, \ \text{得证}.$

- (2) $\forall v \in V, w \in W, \langle v, \tau^*(w) \rangle = \langle v, \tau^*(w) \rangle = \langle v, \mathcal{R}_V(\tau^{\times} \circ \mathcal{R}_W^{-1}(w)) \rangle = \tau^{\times} \circ \mathcal{R}_W^{-1}(w)(v) = \mathcal{R}_W^{-1}(w) \circ \tau(v) = \mathcal{R}_W^{-1}(w)(\tau(v)) = \langle \tau(v), w \rangle.$
- (3) 设 V 的正交归一基 $\mathcal{B} = \{b_1, \dots, b_n\}, W$ 的正交归一基 $\mathcal{C} = \{c_1, \dots, c_n\}, [\tau]_{\mathcal{B}\mathcal{C}} = ([\tau(b_1)]_{\mathcal{C}} \dots [\tau(b_n)]_{\mathcal{C}}), [\tau^*]_{\mathcal{C}\mathcal{B}} = ([\tau(c_1)]_{\mathcal{B}} \dots [\tau(c_m)]_{\mathcal{B}}),$

同理, 设 $[\tau(c_j)]_{\mathcal{B}} = \begin{pmatrix} \beta_{1j} \\ \vdots \\ \beta_{nj} \end{pmatrix}$, $\tau^*(c_j) = \sum_{k=1}^n \beta_{kj} b_k$, $\langle \tau^*(c_j), b_i \rangle = \langle \sum_{k=1}^n \beta_{kj} b_k, b_i \rangle = \sum_{k=1}^n \beta_{kj} \langle b_k, b_i \rangle = \langle b_k \rangle$

 $\sum_{k=1}^{n} \beta_{kj} \delta_{ki} = \beta_{ij},$

 $X :: \langle \tau(b_i), c_j \rangle = \langle b_i, \tau^*(c_j) \rangle = \overline{\langle \tau^*(c_j), b_i \rangle}, :: \alpha_{ii}^* = \beta_{ij} \Longrightarrow [\tau]_{\mathcal{BC}} = [\tau^*]_{\mathcal{CB}}^{\dagger}.$

引理 10.1: Riesz 映射的逆 \mathcal{R}^{-1} 共轭线性.

 $\mathbf{i}\overline{\mathbf{E}} \colon \forall x_1, x_2 \in V, \ \exists f_1 = \mathcal{R}^{-1}(x_1), f_2 = \mathcal{R}^{-1}(x_2) \in V^*, \ \text{s.t.} \ \forall v \in V, \ f_1(v) = \langle v, x_1 \rangle, \ f_2(v) = \langle v, x_2 \rangle$ $\implies \forall \overline{r}, \overline{t} \in F, \ \overline{r}\mathcal{R}^{-1}(x_1)(v) + \overline{t}\mathcal{R}^{-1}(x_2)(v) = (f)(\overline{r}f_1 + \overline{t}f_2)(v) = \overline{r}f_1(v) + \overline{t}f_2(v) = \overline{r}\langle v, x_1 \rangle + \overline{t}\langle v, x_2 \rangle = \langle v, rx_1 \rangle + \overline{t}\langle v, x_2 \rangle$

 $\langle v, tx_2 \rangle = \langle v, rx_1 + tx_2 \rangle = \mathcal{R}^{-1}(rx_1 + rx_2)$

 $\Longrightarrow \mathcal{R}^{-1}(rx_1 + tx_2) = \bar{r}\mathcal{R}^{-1}(x_1) + \bar{t}\mathcal{R}^{-1}(x_2).$

 $: [\tau]_{\mathcal{BC}} = [\tau^{\times}]_{\mathcal{C}^{*}\mathcal{B}^{*}}^{T}, [\tau]_{\mathcal{BC}} = [\tau^{*}]_{\mathcal{CB}}^{\dagger}, : [\tau^{\times}]_{\mathcal{C}^{*}\mathcal{B}^{*}} = \overline{[\tau^{*}]_{\mathcal{CB}}}.$ 当然这也可用类似定理 10.1 (3) 的证明方法证明:

 $\mathbf{\tilde{u}}: [\tau^{\times}]_{\mathcal{C}^*\mathcal{B}^*} = \Big([\tau^{\times}(c_1^*)]_{\mathcal{B}^*} \quad \cdots \quad [\tau^{\times}(c_n^*)]_{\mathcal{B}^*} \Big), \ [\tau^*]_{\mathcal{C}\mathcal{B}} = \Big([\tau^*(c_1)]_{\mathcal{B}^*} \quad \cdots \quad [\tau^*(c_n)]_{\mathcal{B}} \Big),$

设
$$[\tau^{\times}(c_i^*)]_{\mathcal{B}^*} = \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{ni} \end{pmatrix}, \ \ \ \ \, \bigcup \tau^{\times}(c_i^*) = \sum_{k=1}^n \alpha_{ki} b_k^*,$$

设
$$[\tau^*(c_i)]_{\mathcal{B}} = \begin{pmatrix} \beta_{1i} \\ \vdots \\ \beta_{mi} \end{pmatrix}$$
,则 $\tau^*(c_i) = \sum_{k=1}^m \beta_{ki} b_k$.

一方面, $\mathcal{R}_W^{-1}(c_i)(c_j) = \langle c_j, c_i \rangle = \delta_{ij}, \mathcal{R}_V(c_i) = c_i^*$

 $\Longrightarrow \langle b_j, \tau^*(c_i) \rangle = \langle b_j, \mathcal{R}_V \circ \tau^\times \circ \mathcal{R}_W^{-1}(c_i) \rangle = \langle b_j, \mathcal{R}_V(\tau^\times (\mathcal{R}_W^{-1}(c_i))) \rangle = \langle b_j, \mathcal{R}_V(\tau^\times (c_i^*)) \rangle = \tau^\times (c_i^*)(b_j) = c_i^* \circ \tau^\times (b_j) = c_i^* \circ$

10. 正规算子的结构理论

$$(\sum_{k=1}^{n} \alpha_{ki} b_{k}^{*}) (b_{j}) = \sum_{k=1}^{n} \alpha_{ki} b_{k}^{*} (b_{j}) = \sum_{k=1}^{n} \alpha_{ki} \delta_{jk} = \alpha_{ji};$$
 另一方面, $\langle b_{j}, \tau^{*}(c_{i}) \rangle = \langle b_{j}, \sum_{k=1}^{m} \beta_{ki} b_{k} \rangle = \sum_{k=1}^{m} \overline{\beta_{ki}} \langle b_{j}, b_{k} \rangle = \sum_{k=1}^{m} \overline{\beta_{ki}} \delta_{jk} = \overline{\beta_{ji}}.$ 故 $\alpha_{ji} = \overline{\beta_{ji}}$, 得证.

定理 10.2 (课本定理10.2): V, W 为有限维内积向量空间, $\forall \sigma, \tau \in \mathcal{L}(V, W), \forall r \in F$,

- (1) $(\sigma + \tau)^* = \sigma^* + \tau^*$.
- (2) $(r\tau)^* = \bar{r}\tau^*$.
- (3) $\tau^{**} = \tau \perp \langle \tau^*(v), u \rangle = \langle v, \tau(u) \rangle$.
- (4) 若 V = W, 则 $(\tau \circ \sigma)^* = \sigma^* \circ \tau^*$.
- (5) V = W, $\Xi \tau \cup (\tau^{-1})^* = (\tau^*)^{-1}$.
- (6) $V = W, p(x) \in \mathbb{R}[x], \text{ } \emptyset p(\tau)^* = p(\tau^*).$
- (7) $S \neq V$ 的子空间, $\tau \in \mathcal{L}(V)$, 则 $S \neq \tau$ 的不变子空间 $\iff S^{\perp} \neq \tau^*$ 的不变子空间.
- $\text{i.i.} \quad (1) \ \forall u \in W, \ \forall v \in V, \ \langle v, (\sigma + \tau)^*(u) \rangle = \langle (\sigma + \tau)(v), u \rangle = \langle \sigma(v) + \tau(v), u \rangle = \langle \sigma(v), u \rangle + \langle \tau(v), u \rangle = \langle v, \sigma^*(u) \rangle + \langle v, \tau^*(u) \rangle = \langle v, \sigma^*(u) + \tau^*(u) \rangle = \langle v, \sigma^*(u) + \tau^*(u) \rangle \Longrightarrow (\sigma + \tau)^*(u) = (\sigma^* + \tau^*)(u) \Longrightarrow (\sigma + \tau)^* = \sigma^* + \tau^*.$
 - (2) $\forall u \in W, \forall v \in V, \langle v, (r\tau)^*(u) \rangle = \langle r\tau(v), u \rangle = r \langle v, \tau^*(u) \rangle = \langle v, \bar{r}\tau^*(u) \rangle \Longrightarrow (r\tau)^*(u) = \bar{r}\tau(u) \Longrightarrow (r\tau)^* = \bar{r}\tau^*.$
 - (3) $\forall u \in W, \ \forall v \in V, \ \langle u, \tau^{**}(v) \rangle = \langle u, (\tau^{*})^{*}(v) \rangle = \langle \tau^{*}(u), v \rangle = \overline{\langle v, \tau^{*}(u) \rangle} = \overline{\langle \tau(v), u \rangle} = \langle u, \tau(v) \rangle \Longrightarrow \tau^{**}(v) = \tau(v) \Longrightarrow \tau^{**} = \tau.$
 - $(4) \ \forall v \in V, \ \forall u \in W, \ \langle u, (\tau \circ \sigma)^*(v) \rangle = \langle (\tau \circ \sigma)(u), v \rangle = \langle \tau(\sigma(u)), v \rangle = \langle \sigma(u), \tau^*(v) \rangle = \langle u, \sigma^*(\tau^*(v)) \rangle = \langle u, \sigma^*(v) \rangle = \langle u, \sigma^*($

$$V \xrightarrow{\sigma} V \xrightarrow{\tau} V$$

$$V \xrightarrow{\sigma \circ \tau} V \xrightarrow{(\sigma \circ \tau)^*} V$$

(5)
$$(\tau^{-1})^* \circ \tau^* = (\tau \circ \tau^{-1})^* = 1_V^* = 1_V \Longrightarrow (\tau^{-1})^* = (\tau^*)^{-1}.$$

$$(\because \langle u, v \rangle = \mathcal{R}^{-1}(v)(u) = (\mathcal{R}^{-1}(v) \circ 1_{V})(u) = \langle u, \mathcal{R}_{V}(\mathcal{R}_{V}^{-1}(v) \circ 1_{V}) \rangle)$$

$$\mathcal{R}_{V}(\mathcal{R}_{V}^{-1}(v) \circ 1_{V}) = v$$

$$v$$

$$\uparrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow$$

- (6) $(\tau \circ \tau)^* = \tau^* \circ \tau^*, (\tau^k)^* = (\tau^*)^k,$ 若 $r \in \mathcal{R}, \ \mathbb{M} \ (r\tau)^* = rt^*, (r\tau^k)^* = r(\tau^*)^k$ $\Longrightarrow (p(\tau))^* = p(\tau^*).$
- (7) : S 是 τ 的不变子空间, : $\tau(S) \subseteq S$, $\forall v \in S^{\perp}, \forall u \in S, \tau(u) \in S \Longrightarrow \langle u, \tau^*(v) \rangle = \langle \tau(u), v \rangle = 0 \Longrightarrow \tau^*(v) \in S^{\perp} \Longrightarrow S^{\perp}$ 是 τ^* 的线性不变子空间.

定理 10.3 (课本定理10.3): V, W 为有限维内积向量空间, $\tau \in \mathcal{L}(V, W)$, 则

- (1) $\ker \tau^* = (\operatorname{Im} \tau)^{\perp}$, 等价地, $\operatorname{Im} \tau^* = (\ker \tau)^{\perp}$.
- (2) $\ker \tau^* \tau = \ker \tau$, $\ker \tau \tau^* = \ker \tau^*$.
- (3) $\operatorname{Im} \tau^* \tau = \operatorname{Im} \tau^*, \operatorname{Im} \tau \tau^* = \operatorname{Im} \tau.$
- (4) $\rho_{ST}^* = \rho_{T^{\perp}S^{\perp}}$.
- 证: (1) $\forall w \in \text{Im } \tau \iff \exists u \in V, \text{ s.t. } w = \tau(u),$ $v \in \ker \tau^* \iff \tau^*(v) = 0 \iff \langle w, v \rangle = \langle \tau(u), v \rangle = \langle u, \tau^*(v) \rangle = \langle u, 0 \rangle = 0 \iff v \in (\text{Im } \tau)^{\perp}, \text{ id } \ker \tau^* = (\text{Im } \tau)^{\perp}.$

 $\forall w \in \ker \tau \Longleftrightarrow \tau(w) = 0 \in W,$ $v \in \operatorname{Im} \tau^* \Longleftrightarrow \exists u \in W, \text{ s.t. } \tau^*(u) = v \Longleftrightarrow \langle w, v \rangle = \langle w, \tau^*(u) \rangle = \langle \tau(w), u \rangle = \langle 0, u \rangle = 0 \Longleftrightarrow v \in (\ker \tau)^{\perp}, \text{ id}$ $\operatorname{Im} \tau^* = (\ker \tau)^{\perp}.$

 $(2) \ v \in \ker \tau \tau^* \iff \tau^* \tau = 0 \implies \langle v, \tau^* \tau(v) \rangle = 0 \iff \langle \tau(v), \tau(v) \rangle = 0 \implies \tau(v) = 0 \iff v \in \ker \tau, \text{ id} \ker \tau^* \tau \subseteq \ker \tau.$

 $\forall v \in \ker \tau \Longrightarrow \tau(v) = 0 \Longrightarrow \tau^*\tau(v) = 0 \Longleftrightarrow v \in \ker \tau^*\tau, \text{ if } \ker \tau \subseteq \ker \tau^*\tau.$

综上, $\ker \tau^* \tau = \ker \tau$.

同理, $\operatorname{Im} \tau \tau^* = \ker \tau^*$.

(3) $\forall v \in \operatorname{Im} \tau^* \tau$, $\exists u \in V$, s.t. $\tau^* \tau(v) = \tau^*(\tau(v))$, 即 $\exists w = \tau(v) \in W$, s.t. $v = \tau^*(w)$, 故 $\operatorname{Im} \tau^* \tau \in \operatorname{Im} \tau^*$. $\forall v \in \operatorname{Im} \tau^*$, $\exists w \in W$, s.t. $v = \tau^*(w)$, τ 为共轭同构, $documber \exists u \in V$, s.t. $w = \tau(u) \Longrightarrow v = \tau^* \tau(u)$, 故 $\operatorname{Im} \tau^* \in \operatorname{Im} \tau^* \tau$.

综上, $\operatorname{Im} \tau^* \tau = \operatorname{Im} \tau^*$.

同理, $\operatorname{Im} \tau \tau^* = \operatorname{Im} \tau$.

(4) $\forall u, v \in V$,

$$\begin{split} \rho_{ST} : V \to V, \, u &= u_S + u_T \mapsto u_S, \, v = v_S + v_T, \, \not\exists \, \forall \, u_S \in S, \, u_T \in T, \, v_S \in S, \, v_T \in T, \, V = S \oplus T, \\ \rho_{T^\perp S^\perp} : V \to V, \, u &= u_{S^\perp} + u_{T^\perp} \mapsto u_{T^\perp}, \, v = v_{S^\perp} + v_{T^\perp} \mapsto v_{T^\perp}, \, \not\exists \, \forall \, u_{S^\perp} \in S^\perp, \, u_{T^\perp} \in T^\perp, \, v_{S^\perp} \in S^\perp, \\ v_{T^\perp} \in T^\perp, \, V &= S^\perp \oplus T^\perp, \end{split}$$

 $\therefore \langle u, \rho_{ST}^*(v) \rangle - \langle u, \rho_{T^{\perp}S^{\perp}}(v) \rangle = \langle u_S, v \rangle - \langle u, v_{T^{\perp}} \rangle = \langle u_S, v \rangle - \langle u_S, v_{T^{\perp}} \rangle + \langle u_S, v_{T^{\perp}} \rangle - \langle u, v_{T^{\perp}} \rangle = \langle u_S, v - v_{T^{\perp}} \rangle - \langle u_S, v_{T^{\perp}} \rangle = \langle u_S, v_{T^{\perp}} \rangle + \langle u_S, v_{T^{\perp$

10.2 正交(/幺正)对角化

先来回顾一下线性变换可对角化的充要条件: $\tau \in \mathcal{L}(V)$, τ 可对角化 (即 \exists 一组基 \mathcal{B} , $[\tau]_{\mathcal{B}}$ 为对角阵)

- $\iff m_{\tau}(x) = (x \lambda_1) \cdots (x \lambda_k)$, 其中 λ_i 互不相同
- $\iff V = \mathcal{E}_{\lambda_1} \oplus \cdots \oplus \mathcal{E}_{\lambda_k}$
- $\iff \tau$ 的特征向量构成 V 的一组基
- ⇔ 几何重数 (特征子空间的维数) = 代数重数 (特征多项式的根的重数)
- $\iff \tau = \lambda_1 \rho_1 + \dots + \lambda_k \rho_k$, 其中 λ_i 互不相同, $\rho_1 + \dots + \rho_k = 1$ 为单位分解 (即 ρ_i 为投影, $\sum_i \rho_i = 1$ 且 $\rho_i \rho_j = \rho_j \rho_i = \delta_i j \rho_i$).

再来回顾一下向量正交: 向量 u 与 v 正交 $\iff \langle u, v \rangle = 0$.

非零元构成的正交集线性无关.

若 $\dim V < \infty$, 则 V 有正交归一基.

那么, τ 是否可正交对角化? 哪一类 τ 可正交对角化?

定义 10.1 <u>正交(/幺正)对角化</u>: $\tau \in \mathcal{L}(V)$, 若 \exists 一组正交归一基 \mathcal{O} , s.t. $[\tau]_{\mathcal{O}}$ 为对角阵, 则称 τ 可正交(/幺正)对角化.

定理 10.4: τ 可正交归一化 $\iff \tau$ 的特征向量构成 V 的正交基.

定义 10.2 正规算子: $\dim V < \infty$, $\tau \in \mathcal{L}(V)$, 若 $\tau^*\tau = \tau\tau^*$, 则称 τ 为正规算子.

定理 10.5 (课本第3 版定理10.8): 对正规算子 $\tau \in \mathcal{L}(V)$,

 τ^* , τ^{-1} (在 τ 可逆的前提下), $p(\tau)$ ($p(x) \in F[x]$) 正规.

- (2) $\|\tau(v)\| = \|\tau^*(v)\|$, $\mathbb{M}\overline{m} \ker \tau = \ker \tau^*$.
- (3) $\forall k \in \mathbb{Z}^+, \ker \tau^k = \ker \tau.$
- (4) $m_{\tau}(x) = p_1(x) \cdots p_m(x)$, 其中 $p_i(x)$ 不可约且互不相同.
- (5) $\tau(v) = \lambda v \Longrightarrow \tau^*(v) = \bar{\lambda}v.$
- (6) $\lambda_i \neq \lambda_j \Longrightarrow \mathcal{E}_{\lambda_i} \perp \mathcal{E}_{\lambda_i}$.

证: (1)
$$(\tau^*)^*\tau^* = \tau^{**} = \tau\tau^* = \tau^*\tau = \tau^*\tau^{**} = \tau^*(\tau^*)^* \Longrightarrow \tau^*$$
 正规.

$$(\tau^{-1})^*\tau^{-1} = (\tau^*)^{-1}\tau^{-1} = (\tau\tau^*)^{-1} = (\tau^*\tau)^{-1} = \tau^{-1}(\tau^*)^{-1} = \tau^{-1}(\tau^{-1})^* \Longrightarrow \tau^{-1} \text{ } \vec{\mathbb{E}} .$$

$$(\tau^i)^*\tau^i = (\tau^i)^*\tau^i = (\tau^i)^*\tau^i = (\tau^i)^*\tau^i = \tau^i$$
 正规,即 τ 与 τ^* 可交换) = $\tau^i(\tau^*)^i = \tau^i(\tau^i)^* \Longrightarrow \tau^i$ 正规

$$\implies (r_i \tau^i)^* (r_i \tau^i) = \bar{r}(\tau^i)^* r \tau^i = r \tau^i \bar{r}(\tau^i)^* = (r \tau^i)(r \tau^i)^* \implies r \tau^i \text{ E}$$

$$\implies p(\tau)p^*(\tau) = \left(\sum_i r_i \tau^i\right) \left(\sum_j r_j \tau^j\right)^* = \sum_{i,j} r_i \tau^i \bar{r}_j (\tau^j)^* = \sum_{i,j} \bar{r}_j (\tau^j)^* \bar{r}_i \tau^i = \left(\sum_j r_j \tau^j\right)^* \left(\sum_i r_i \tau^i\right) = p^*(\tau)p(\tau) \implies p(\tau) \text{ if } \#.$$

- $(2) \|\tau(v)\|^2 = \langle \tau(v), \tau(v) \rangle = \langle v, \tau^*(\tau(v)) \rangle = \langle v, (\tau^* \circ \tau)(v) \rangle = \langle v, (\tau \circ \tau^*)(v) \rangle = \langle v, \tau(\tau^*(v)) \rangle = \langle \tau^*(v), \tau^*(v) \rangle = \|\tau^*(v)\|^2 \Longrightarrow \|\tau(v)\|^2 = \|\tau^*(v)\|,$
 - 故 $\ker \tau = \{v \mid \tau(v) = 0\} = \{v \mid ||\tau(v)|| = 0\} = \{v \mid ||\tau^*(v)|| = 0\} = \{v \mid \tau^*(v) = 0\} = \ker \tau^*.$
- (3) $\ker \tau \subset \ker \tau^k$ 显然. 下面来证 $\ker \tau^k \subset \ker \tau$:

$$\Leftrightarrow \sigma = \tau^* \tau, \ \ \ \ \ \sigma^* = (\tau^* \tau)^* = \tau^* \tau^{**} = \tau^* \tau = \sigma,$$

$$\forall v \in \ker \tau^k, \, \tau^k(v) = 0 \Longrightarrow \sigma^k(v) = (\tau^*\tau)^k(v) = (\because \tau \text{ 正规, 即 } \tau \text{ 与 } \tau^* \text{ 可交换})(\tau^*)^k\tau^k(v) = 0,$$

$$0 = \langle 0, \sigma^{k-2}(v) \rangle = \langle \sigma^k(v), \sigma^{k-2}(v) \rangle = \langle \sigma \circ \sigma^{-1}(v), \sigma^{k-2}(v) \rangle = \langle \sigma^{k-1}(v), \sigma^* \circ \sigma^{k-2} \rangle = (: \sigma^* = \sigma) \langle \sigma^{k-1}(v), \sigma \circ \sigma^{k-2}(v) \rangle = \langle \sigma^{k-1}(v), \sigma^{k-1}(v) \rangle = \|\sigma^{k-1}(v)\| \Longrightarrow \sigma^{k-1}(v) = 0.$$
 以此类推得 $\sigma(v) = 0$

$$\Longrightarrow 0 = \langle v, 0 \rangle = \langle v, \sigma(v) \rangle = \langle v, \tau^*(\tau(v)) \rangle = \langle \tau(v), \tau(v) \rangle = \|\tau(v)\|^2 \Longrightarrow \tau(v) = 0 \Longrightarrow v \in \ker \tau \Longrightarrow \ker \tau^k \subseteq \ker \tau.$$

综上, 得证.

(4) $m_{\tau}(x) = up_1^{e_1}(x) \cdots p_m^{e_m}(x)$, 其中 p_i 不可约且互不相同, $e_i \in \mathbb{Z}^+$,

要证 $m_{\tau}(x) = p_1(x) \cdots p_m(x)$, 即证 $e_i = 1 \forall i$,

$$\forall v, \, m_{\tau}(\tau)(v) = p_1^{e_1}(\tau) \cdots p_m^{e_m}(\tau)(v) = p_1^{e_1}(\tau)[p_2^{e_2}(\tau) \cdots p_m^{e_m}(\tau)(v)] = 0,$$

 $\therefore \tau$ 正规, $\therefore p_1(\tau)$ 正规 $\Longrightarrow \ker p_1(\tau) = \ker p_1^{e_1}(\tau)$

$$\implies p_1(\tau)[p_2^{e_2}(\tau)\cdots p_m^{e_m}(\tau)(v)] = 0 \implies p_1(x)p_2^{e_2}(x)\cdots p_m^{e_m}(x) \in \langle m_{\tau}(x)\rangle \implies m_{\tau}(x) = p_1^{e_1}(x)p_2^{e_2}(x)\cdots p_m^{e_m}(x) \mid p_1^{e_2}(x)\cdots p_m^{e_m}(x) \implies e_1 = 1,$$

 $p_i(\tau)$ 正规, 即 $p_i(\tau)$ 可交换, $p_i(\tau)$ 同理可得 $e_i = 1 \forall i$, 故得证.

- (5) $\tau(v) = \lambda v \Longrightarrow (\tau \lambda)(v) = 0 \Longrightarrow v \in \ker(\tau \lambda),$
 - $:: \tau$ 正规, $:: \tau \lambda$ 正规 $\Longrightarrow \ker(\tau \lambda) = \ker(\tau \lambda)^*$
 - $\implies v \in \ker(\tau \lambda)^* = \ker(\tau^* \bar{\lambda})$
- (6) $\forall 0 \neq v \in \mathcal{E}_{\lambda_i}, \forall 0 \neq u \in \mathcal{E}_{\lambda_i}, \not \perp \psi \quad \lambda_i \neq \lambda_i$

$$\lambda_i \langle v, u \rangle = \langle \lambda_i v, u \rangle = \langle \tau(v), u \rangle = \langle v, \tau^*(u) \rangle = \langle v, \overline{\lambda_j} u \rangle = \lambda_j \langle v, u \rangle \Longrightarrow (\lambda_i - \lambda_j) \langle v, u \rangle = 0,$$

 $\therefore \lambda_i - \lambda_i \neq 0, \ \therefore \langle v, u \rangle = 0.$

定理 10.6 正规算子的谱的结构: 复情形(课本定理10.13): $F = \mathbb{C}$, dim $V < \infty$, $\tau \in \mathcal{L}(V)$, 则下列叙述等价:

- (1) τ 正规.
- (2) τ 可正交对角化, $V = \mathcal{E}_{\lambda_i} \odot \cdots \odot \mathcal{E}_{\lambda_k}$.
- (3) $\tau = \lambda_1 \rho_1 + \dots + \lambda_k \rho_k$, 其中 $\rho_1 + \dots + \rho_k = 1$ 为单位分解, 对 $i \neq j$, $\operatorname{Im} \rho_i \perp \operatorname{Im} \rho_j$, $\operatorname{Im} \rho_i \perp \ker \rho_i$.

证: "(1) \Longrightarrow (2)": τ 正规, τ 的极小多项式的不可约多项式的次数均为 1, 即 $m_{\tau}(x) = p_1(x) \cdots p_k(x) = (x - \lambda_1) \cdots (x - \lambda_k)$, 其中 $p_i(x) \in \mathbb{C}[x]$ 为不可约多项式, λ_i 互不相等,

 $\Longrightarrow V = \mathcal{E}_{\lambda_1} \odot \cdots \odot \mathcal{E}_{\lambda_k},$

 $\mathbb{X} : \mathbb{X} \quad i \neq j, \, \mathcal{E}_{\lambda_i} \perp \mathcal{E}_{\lambda_i}, \, \therefore \, V = \mathcal{E}_{\lambda_i} \odot \cdots \odot \mathcal{E}_{\lambda_k}.$

 $"(2) \Longrightarrow (1)": :: \tau \ \text{可正交对角化}, :: \exists \ \text{正交归一基} \ \mathcal{O}, \text{ s.t. } [\tau]_{\mathcal{O}} = \operatorname{diag}(\lambda_1, \cdots, \lambda_k), \ [\tau]_{\mathcal{O}} = \operatorname{diag}(\overline{\lambda_1}, \cdots, \overline{\lambda_k})$ $\Longrightarrow [\tau]_{\mathcal{O}}[\tau^*]_{\mathcal{O}} = \operatorname{diag}(|\lambda_1|^2, \cdots, |\lambda_k|^2) = [\tau^*]_{\mathcal{O}}[\tau]_{\mathcal{O}} \Longrightarrow [\tau^*\tau(v)]_{\mathcal{O}} = [\tau^*]_{\mathcal{O}}[\tau]_{\mathcal{O}}[v]_{\mathcal{O}} = [\tau]_{\mathcal{O}}[\tau^*]_{\mathcal{O}}[v]_{\mathcal{O}} = [\tau\tau^*(v)]_{\mathcal{O}} \Longrightarrow \tau\tau^* = \tau^*\tau.$

 $"(3) \iff (1)": 利用引理 10.2, \ker \rho^* = (\operatorname{Im} \rho)^{\perp} = \ker \rho, \operatorname{Im} \rho^* = (\ker \rho)^{\perp} = \operatorname{Im} \rho \Longrightarrow \rho^* = \rho.$ $\tau^* = \overline{\lambda_1}\rho_1 + \dots + \overline{\lambda_k}\rho_k,$ $\tau^*\tau = (\sum_i \lambda_i \rho_i) \left(\sum_j \overline{\lambda_j}\rho_j\right) = \sum_{ij} \lambda_i \overline{\lambda_j}\rho_i \rho_j = \sum_{ij} \lambda_i \overline{\lambda_j}\delta_{ij}\rho_i = \sum_i |\lambda_i|^2 \rho_i = \sum_{ij} \overline{\lambda_j}\lambda_i \rho_j \rho_i = \tau \tau^* \Longrightarrow \tau$ 正规.

引理 10.2: $V = S \odot T$, 正交投影 $\rho_{ST} : V \to V$, $u = u_S + u_T \to u_S$, 则 $\ker \rho \perp \operatorname{Im} \rho$.

证: $\forall v \in \ker \rho_{ST}, v = v_S + v_T$ 其中 $v_S \in S, v_T \in T$,

 $\rho_{ST}(v) = v_S = 0 \Longrightarrow v = v_T \in T.$

 $\forall w_S \in \text{Im } \rho_{ST}, \exists w \in V, \text{ s.t. } \rho_{ST}(w) = w_S \Longrightarrow w = w_S + w_T, \not \sqsubseteq \psi w_S \in S, w_T \in T.$

 $v \in T, w_S \in S, v \perp w \Longrightarrow \ker \rho \perp \operatorname{Im} \rho.$

由于 $\mathbb{R}[x]$ 中不可约多项式的最高次数为 2, 故实数域上的向量空间的线性算子的最小多项式的分解形式与复情形有所不同.

定理 10.7 <u>正规算子的谱的结构: 实情形(课本定理10.14)</u>: $F = \mathbb{R}$, $\dim V < \infty$, $\tau \in \mathcal{L}(V)$ 正规 $\iff V = \mathcal{E}_{\lambda_1} \odot \cdots \odot \mathcal{E}_{\lambda_k} \odot D_1 \odot \cdots \odot D_l$, 其中 \mathcal{E}_{λ_i} 为 τ 的不变子特征空间, λ_i 为 τ 的谱, D_i 为 τ_i 的二维不可约不变子空间且 D_i 中有基 \mathcal{B}'_i , s.t. $[\tau]_{\mathcal{B}'} = \begin{pmatrix} s_i & t_i \\ -t_i & s_i \end{pmatrix}$,

$$[\tau]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & & & & & & \\ & \ddots & & & & & \\ & & \lambda_k & & & & \\ & & & \begin{pmatrix} s_1 & t_1 \\ -t_1 & s_1 \end{pmatrix} & & & \\ & & & \ddots & & \\ & & & & \begin{pmatrix} s_l & t_l \\ -t_l & s_l \end{pmatrix} \end{pmatrix}_{n \times n}$$

 \Box

证: τ 的极小多项式 $m_{\tau}(x) = (x - \lambda_1) \cdots (x - \lambda_t) q_1(x) \cdots q_l(x)$, 其中 $q_i(x)$ 不可约, $\deg q_i(x) = 2$, $\lambda_i \in \mathbb{R}$ 互不相同, 无妨 $q_i(x) = x^2 + b_i x + c_i$, q_i 不可约, $\Delta = b_i^2 - 4c_i < 0$,

$$D_i$$
 的基为 $\mathcal{B}_i \equiv \{v_i, \tau(v_i)\}, [\tau]_{\mathcal{B}_i} = \begin{pmatrix} 0 & -c_i \\ 1 & -b_i \end{pmatrix}.$

为使 τ 在 D_i 中的表示更对称,对 $[\tau]_{\mathcal{B}_i}$ 做相似变换到基 \mathcal{B}_i' 上,s.t. $[\tau]_{\mathcal{B}_i'} = \begin{pmatrix} s_i & t_i \\ -t_i & s_i \end{pmatrix}$,其中 $s_i = -\frac{b_i}{2}$, $t_i = \frac{\sqrt{4c_i - b_i^2}}{2}$.

问题 **10.1:** 如何相似变换? $\mathcal{B}'_i =$?

 $\mathbf{m}: : [\tau]_{\mathcal{B}_i}$ 和 $[\tau]_{\mathcal{B}_i'}$ 的特征多项式相同, 均为 $q_i(x)$, 特征值相同, 均为 $q_i(x)$ 的根 $x_i^{\pm} = \frac{-b_i \pm i \sqrt{4c_i - b_i^2}}{2}$, : 这一相似变

$$[\tau]_{\mathcal{B}_i} \text{ 的特征向量为} \frac{1}{\sqrt{s_i^2 + t_i^2 + 1}} \begin{pmatrix} -x_i^- \\ 1 \end{pmatrix} = \frac{1}{\sqrt{s_i^2 + t_i^2 + 1}} (-x_i^- v_i + \tau(v_i)), \frac{1}{\sqrt{s_i^2 + t_i^2 + 1}} \begin{pmatrix} -x_i^+ \\ 1 \end{pmatrix} = \frac{1}{\sqrt{s_i^2 + t_i^2 + 1}} (-x_i^+ v_i + \tau(v_i)),$$

即
$$[\tau]_{\mathcal{B}_i}$$
 的特征分解为 $[\tau]_{\mathcal{B}_i} = Q\Lambda Q^{-1}$, 其中 $Q = \frac{1}{\sqrt{s_i^2 + t_i^2 + 1}} \begin{pmatrix} -x_i^- & -x_i^+ \\ 1 & 1 \end{pmatrix}$, $\Lambda = \begin{pmatrix} x_i^+ & 0 \\ 0 & x_i^- \end{pmatrix}$.

 $[\tau]_{\mathcal{B}_i'}$ 的特征向量为 $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$, $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$, 即 $[\tau]_{\mathcal{B}_i'}$ 的特征分解为 $[\tau]_{\mathcal{B}_i'} = P\Lambda P^{-1}$, 其中 $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$.

相似变换下,
$$[\tau]_{\mathcal{B}'_i} = T[\tau]_{\mathcal{B}_i} T^{-1}$$
, 故其中 $T = PQ^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \frac{\sqrt{s_i^2 + t_i^2 + 1}}{x_i^+ - x_i^-} \begin{pmatrix} 1 & x_i^+ \\ -1 & -x_i^- \end{pmatrix} = \frac{\sqrt{s_i^2 + t_i^2 + 1}}{\sqrt{2}(x_i^+ - x_i^-)} \begin{pmatrix} 0 & x_i^+ - x_i^- \\ 2i & -ib_i \end{pmatrix} = \frac{\sqrt{c_i + 1}}{\sqrt{2}\sqrt{4c_i - b_i^2}} \begin{pmatrix} 0 & \sqrt{4c_i - b_i^2} \\ 2 & -b_i \end{pmatrix}, T^{-1} = QP^{-1} = \frac{1}{\sqrt{s_i^2 + t_i^2 + 1}} \begin{pmatrix} -x_i^- & -x_i^+ \\ 1 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} = \frac{1}{\sqrt{2(s_i^2 + t_i^2 + 1)}} \begin{pmatrix} -(x_i^+ + x_i^-) & -i(x_i^+ - x_i^-) \\ 2 & 0 \end{pmatrix}$

$$\frac{1}{\sqrt{2(c_i+1)}} \begin{pmatrix} b_i & \sqrt{4c_i - b_i^2} \\ 2 & 0 \end{pmatrix}.$$

当然, 也可调整 T 前的系数从而得 $T = \begin{pmatrix} 0 & 1 \\ \frac{2}{\sqrt{4c_i - b_i^2}} & -\frac{b_i}{\sqrt{4c_i - b_i^2}} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{1}{t_i} & \frac{s_i}{t_i} \end{pmatrix}, T^{-1} = \begin{pmatrix} \frac{b_i}{2} & \frac{\sqrt{4c_i - b_i^2}}{2} \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -s_i & t_i \\ 1 & 0 \end{pmatrix}.$

 $-s_i v + \tau(v_i), b_2' = t_i v_i \}.$

对 $F = \mathbb{Q}$, 由于 $\mathbb{Q}[x]$ 中的不可约多项式无次数限制, 线性算子的极小多项式可分解成任意次数不可约多项式 的乘积, 此时子空间没有确定的维数, 故此时没有普适的定理.

8 / 11

10.3 特殊的正规算子

定义 10.3 自伴随(/厄米)算子: 满足 $\tau = \tau^*$.

定义 **10.4** 斜伴随(/反厄米)算子: 满足 $\tau = -\tau^*$.

定义 10.5 酉(/幺正)算子: 满足 $\tau^* = \tau^{-1}$.

定理 10.8 厄米算子的性质(课本第3 版定理10.11): $\dim V < \infty, \tau, \sigma \in \mathcal{L}(V)$, 则

- (1) 若 τ , σ 厄米, 则 $\tau + \sigma$, τ^{-1} , $p(\tau)$ $(p(x) \in \mathbb{R}[x])$ 厄米.
- (2) $F = \mathbb{C}$, 则 τ 厄米 $\iff \langle \tau(v), v \rangle \in \mathbb{R}$.
- (3) τ 为复算子或实对称算子, 则 $\tau = 0 \iff \forall v \in V, \langle \tau(v), v \rangle = 0$.
- (4) τ 厄米, 则 $m_{\tau}(x)$ 仅有实根.
- 证: $(1) (\tau + \sigma)^* = \tau^* + \sigma^* = \tau + \sigma \Longrightarrow \tau + \sigma$ 厄米. $(\tau^{-1})^* = (\tau^*)^{-1} = \tau^{-1} \Longrightarrow \tau^{-1}$ 厄米. $p^*(\tau) = (\sum_i r_i \tau^i)^* = \sum_i r_i (\tau^i)^* = \sum_i r_i (\tau^*)^i = \sum_i r_i \tau^i = p(\tau) \Longrightarrow p(\tau)$ 厄米.
 - (2) " \iff ": $\langle \tau(v), v \rangle = \langle v, \tau^*(v) \rangle = \langle v, \tau(v) \rangle = \overline{\langle \tau(v), v \rangle} \Longrightarrow \langle \tau(v), v \rangle \in \mathbb{R}$.
 - (3) "⇒": 显然. 复算子的 "⇐" 见定理 ??, 下证实对称算子的 "⇐". 实对称算子即实厄米算子. ∵ $F = \mathbb{R}$, ∵ $\langle u, v \rangle = \langle v, u \rangle$. $\forall u, v \in V, \ 0 = \langle \tau(u+v), u+v \rangle = \langle \tau(u), u \rangle 0 + \langle \tau(u), v \rangle + \langle \tau(v), u \rangle + \langle \tau(v), v \rangle 0 = \langle \tau(u), v \rangle + \langle \tau(v), u \rangle = \langle u, \tau^*(v) \rangle + \langle \tau(v), u \rangle = \langle u, \tau(v) \rangle + \langle \tau(v), u \rangle = 2 \langle \tau(v), u \rangle \Longrightarrow \tau(v) = 0 \Longrightarrow \tau = 0.$
 - (4) τ 厄米, 则 τ 正规. 设 λ 为 τ 的特征值, 亦即 $m_{\tau}(x)$ 的根, 则 $\bar{\lambda}$ 为 τ^* 的特征值. $\lambda v = \tau(v) = \tau^*(v) = \bar{\lambda}v \Longrightarrow \lambda = \bar{\lambda} \Longrightarrow \lambda \in \mathbb{R}$, 故 $m_{\tau}(x)$ 仅有实根.

定理 10.9 <u></u> <u>酉算子的性质(课本第3 版定理10.12)</u>: $\dim V < \infty, \, \sigma, \tau \in \mathcal{L}(V), \, 则$

- (1) $\sigma, \tau \stackrel{\text{def}}{=} r\tau (|r| = 1), \sigma \circ \tau, \tau^{-1} \stackrel{\text{def}}{=} .$
- (2) τ 酉 $\Longleftrightarrow \tau$ 等距同构.
- (3) τ 酉 $\iff \tau$ 将一组正交归一基变换为正交归一基.
- (4) τ 酉, 则 τ 的特征值模长 = 1.
- 证: $(1) (r\tau)^*(r\tau) = \bar{r}\tau^*r\tau = \bar{r}r\tau^*\tau = \bar{r}r1 = 1 \Longrightarrow r\tau$ 酉. $(\sigma \circ \tau)^*(\sigma \circ \tau) = \tau^*\sigma^*\sigma\tau = \tau^{-1}\sigma^{-1}\sigma\tau = 1 \Longrightarrow \sigma \circ \tau$ 酉. $(\tau^{-1})^* = (\tau^*)^{-1} = (\tau^{-1})^{-1} \Longrightarrow \tau^{-1}$ 可逆.

9 / 11

- (2) "⇒": ∵ 酉算子有逆, ∴ 必双射, 下证等距. $\langle \tau(u), \tau(v) \rangle = \langle u, \tau^*(\tau(v)) \rangle = \langle u, \tau^{-1}(\tau(v)) \rangle = \langle u, v \rangle \Longrightarrow \tau$ 等距, 故 τ 等距同构. "⇐": ∵ τ 等距同构, ∴ $\langle u, \tau^*(\tau(v)) \rangle = \langle \tau(u), \tau(v) \rangle = \langle u, v \rangle \Longrightarrow \tau^*(\tau(v)) = v \Longrightarrow \tau^* \circ \tau = 1 \Longrightarrow \tau$ 酉.
- (3) "⇒": 取一组正交归一基 $\mathcal{O} = \{o_1, \cdots, o_n\}, \langle o_i, o_j \rangle = \delta_{ij}.$ $\therefore \langle \tau(o_i), \tau(o_j) \rangle = \delta_{ij}$ 且 $\dim \tau(\mathcal{O}) = \dim \mathcal{O}, \therefore \tau(\mathcal{O})$ 为一组正交归一基. "⇐": 若 $\tau(\mathcal{O})$ 为正交归一基, 则 $\forall u, v \in V, u = \sum_{i=1}^n \alpha_i o_i, v = \sum_{j=1}^n \beta_j o_j,$ $\langle \tau(u), \tau(v) \rangle = \langle \tau(\sum_{i=1}^n \alpha_i o_i), \tau(\sum_{j=1}^n \beta_i o_i) \rangle = \sum_{i,j=1}^n \alpha_i \overline{\beta_j} \langle \tau(o_i), \tau(o_j) \rangle = \sum_{i,j=1}^n \alpha_i \beta_j \delta_{ij} = \sum_{i=1}^n \alpha_i \beta_j \langle \sigma_i, \sigma_i \rangle = \langle \sum_{i=1}^n \alpha_i o_i, \sum_{j=1}^n \beta_j o_j \rangle = \langle u, v \rangle \Rightarrow \tau$ 等距同构 $\Rightarrow \tau$ 酉.
- (4) 设 λ 为 τ 的特征值, $\tau(v) = \lambda v$, $\tau^*(v) = \bar{\lambda} v$. $v = \tau^{-1}(\tau(v)) = \tau^*(\tau(v)) = \bar{\lambda} \lambda v = |\lambda| v \Longrightarrow |\lambda| = 1$.

定理 **10.10** 正规算子的结构(课本第3 版定理**10.18):** (1) $F = \mathbb{C}$,

- (a) τ 正规 $\iff \tau$ 正交归一对角化 $\iff \tau$ 有正交谱分解 $\tau = \lambda_1 \rho_1 + \dots + \lambda_k \rho_k$, 其中 λ_i 互不相同, $\rho_1 + \dots + \rho_k = 1$ 为单位分解, $\ker \rho_i \perp \operatorname{Im} \rho_i$.
- (b) 特征值为实数的正规算子厄米.
- (c) 特征值的模长 = 1 的正规算子酉.
- (2) $F = \mathbb{R}$,
 - (a) τ 正规 $\iff \tau = \mathcal{E}_{\lambda_1} \odot \cdots \odot \mathcal{E}_{\lambda_k} \odot D_1 \odot \cdots \odot D_l$, 其中 D_i 为二维不可约的 τ 不变子空间, D_i 上 τ 的 矩阵表示为 $\begin{pmatrix} s_i & t_i \\ -t_i & s_i \end{pmatrix}$.
 - (b) 若上述正交直和式中无 D_i , 则 τ 厄米.
 - (c) 若在 D_i 上的 τ 的矩阵表示为 $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, 则 τ 酉, 称为 **正交算子**.

定义 10.6 正交算子: $F = \mathbb{R}$ 的酉算子.

10.4 (半)正定算子

定义 10.7 (半)正定算子: $F = \mathbb{R}$, dim $V < \infty$, $\tau \in \mathcal{L}(V)$ 厄米, 若 $\forall v \in V$, $\langle \tau(v), v \rangle > (\geq)0$, 则 τ (半)正定.

定理 10.11 (课本第3 版定理10.22): $F = \mathbb{C}$, dim $V < \infty$, $\tau \in \mathcal{L}(V)$ 厄米, 则

- (1) τ 半正定 $\iff \tau$ 的特征值 ≥ 0 .
- (2) τ 正定 $\iff \tau$ 的特征值 > 0.

10. 正规算子的结构理论 10.5. 算子的极分解

 $\overline{\mathbf{u}}$: " \Longrightarrow ": 设 λ 为 τ 的特征值,

 $\therefore \tau$ (半)正定, $\therefore \langle \tau(v), v \rangle > (\geq)0$, 又 $\therefore \langle \tau(v), v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle \geq 0 \Longrightarrow \lambda > (\geq)0$, $\therefore \lambda > (\geq)0$. " \longleftarrow ": $\therefore \rho$ 厄米, $\therefore \tau$ 的正交谱分解 $\tau = \lambda_1 \rho_1 + \dots + \lambda_k \rho_k$.

对 τ 的函数操作均等效于作用于其谱分解的特征值上: $\tau^2 = \sum_{ij} \lambda_i \lambda_j \rho_i \rho_j = \sum_{ij} \lambda_i \lambda_j \delta_{ij} \rho_i = \sum_i \lambda_i^2 \rho_i$, 类似地, $\tau^k = \sum_i \lambda^k \rho_k$,

 $\rho \tau = r \sum_{i} \lambda_{i} \rho_{i} = \sum_{i} r \lambda_{r} \rho_{i},$

 $\implies \forall f(x) \in F[x], f(\tau) = \sum_i f(\lambda_i) \rho_i,$

 \forall 可由多项式近似的 g(x), $g(\tau) = \sum_{i} g(\lambda_i) \rho_i$.

 $:: \tau$ (半)正定, :: 必可定义其平方根 $\sqrt{\tau} = \sqrt{\lambda_1}\rho_1 + \dots + \sqrt{\lambda_k}\rho_k$, 此处 $\lambda_i > (\geq)0$, 否则 $\sqrt{\tau}$ 不一定合法.

定理 **10.12** (课本第3 版定理**10.23**): τ 厄米, 则

- (1) τ 半正定 $\iff \tau$ 有正平方根.
- (2) τ 半正定 $\Longleftrightarrow \tau = \sigma^* \circ \sigma$, 其中 $\sigma \in \mathcal{L}(V)$ (注意这里的 σ 不唯一).

证: (1) τ 半正定, 即 $\tau = \sum_{i} \lambda_{i} \rho_{i}$, 其中 $\lambda_{i} \geq 0 \iff \sqrt{\tau} = \sum_{i} r_{i} \rho_{i}$, 其中 $r_{i} = \sqrt{\lambda_{i}}$.

(2) " \Longrightarrow ": 取 $\sigma = \sqrt{\tau}$ 即得证.

"ሩ": $\langle \tau(v), v \rangle = \langle \sigma^* \circ \sigma(v), v \rangle = \langle \sigma(v), \sigma(v) \rangle = \|\sigma(v)\|^2 \ge 0 \Longrightarrow \tau$ 半正定.

定理 10.13 <u>半正定算子的复合半正定的条件(课本第3 版定理10.24)</u>: $\sigma, \tau \in \mathcal{L}(V)$ 半正定, 若 $\sigma\tau = \tau\sigma$, 则 $\sigma\tau$ 半正定.

证:
$$\because \sigma \tau = \tau \sigma$$
, $\because \sqrt{\sigma} \sqrt{\tau} = \sqrt{\tau} \sqrt{\sigma}$
 $\Rightarrow \sigma \tau = \sqrt{\sigma} \sqrt{\sigma} \sqrt{\tau} \sqrt{\tau} = (\sqrt{\sigma} \sqrt{\tau})(\sqrt{\sigma} \sqrt{\tau})$, 故 $\sigma \tau$ 半正定.

10.5 算子的极分解

定理 10.14 <u>算子的极分解(课本第3 版定理10.25)</u>: $F = \mathbb{C}$, 有限维内积向量空间 $V, \tau \in \mathcal{L}(V)$, 则 \exists ! 半正定算子 ρ 及酉算子 ν , s.t. $\tau = \nu \rho$, 且若 τ 可逆, 则 ν 唯一.

证: 取 $\rho = \sqrt{\tau^* \tau}$, 则 $\|\rho(v)\|^2 = \langle \rho(v), \rho(v) \rangle = \langle v, \rho^* \rho(v) \rangle = \langle v, \rho^2(v) \rangle = \langle v, \tau^* \tau(v) \rangle = \langle \tau(v), \tau(v) \rangle = \|\tau(v)\|^2$. 取 $\nu : \operatorname{Im} \rho \to \operatorname{Im} \tau$, $\rho(v) \mapsto \tau(v)$.

先证 ν 为映射: 若 $\rho(v) = \rho(u)$, 则 $\rho(u-v) = 0 \Longrightarrow \|\rho(u-v)\|^2 = 0 \Longrightarrow \|\tau(u-v)\| = ^2 = \langle \tau(u-v), \tau(u-v) \rangle = 0 \Longrightarrow \tau(u-v) = 0 \Longrightarrow \tau(v) = \tau(u)$, 故 ν 为映射.

 $\|\nu(\rho(v))\| = \|\tau(v)\| = \|\rho(v)\|, \therefore v$ 等距同构 $\Longrightarrow \nu$ 酉.

当 τ 不可逆时, 拓展 ρ 的像为 τ 的像的方式不唯一, 故 ν 不唯一.

若 σ 酉, 则其特征值模 $|\lambda|=1$, 可记为 $\lambda_i=e^{i\theta_i}$, 其中 $\theta_i\in\mathbb{R}$, 则 $\sigma=\lambda_1\rho_1+\cdots+\lambda_k\rho_k=e^{i\theta_1}\rho_1+\cdots+e^{i\theta_k}\rho_k$, 其中 $\rho_1+\cdots+\rho_k=1$ 为正交单位分解. 令 $H=\theta_1\rho_1+\cdots+\theta_k\rho_k$, 则

11 / 11

10. 正规算子的结构理论 10.5. 算子的极分解

- (1) $H^* = H$.
- (2) $\sigma = e^{iH}$.

此处 H 类似量子力学中的哈密顿量, σ 类似演化算子.