Controle Fuzzy

(5 pontos)

Data de entrega 04 de novembro

Enviar Relatório e Códigos em MATLAB/Python

Atividade 1 (5 pontos)

Para o sistema de segunda ordem, implementar um sistema de controle Fuzzy, que diminua o tempo de assentamento para 1 s, e com um sobre valor menor do que 10%.

RiseTime: 0.7089

TransientTime: 1.9930

SettlingTime: 1.9930

SettlingMin: 0.9001

SettlingMax: 1.0460

Overshoot: 4.5986

Undershoot: 0

Peak: 1.0460

PeakTime: 1.4693

```
clc
clear
close all
wn = 3;
ep = 0.7;
Num = wn^2;
Den = [1 2*ep*wn wn^2];
sys = tf(Num, Den);
step(sys,5)
grid
figure
rlocus(sys)
stepinfo(sys)
```


Desenvolver as seguintes questões:

- 1. Construir a base de regras Erro x Δ Erro x U. Obter a Surface para avaliar o desempenho das regras.
- 2. Implementar o sistema de inferência Fuzzy em malha fechada, atendendo as especificações desejadas de ts< 1s e overshoot<10%. Realizar as simulações com diferentes valores de set-point
- 3. Inserir variações nos coeficientes da planta para avaliar a robustez do controlador Fuzzy
- 4. Realizar as simulações com diferentes valores de desvio padrão do ruído
- 5. Inserir ruído do tipo Gaussiano para avaliar a robustez do controlador Fuzzy
- 6. Realizar comparações com controladores Clássicos do tipo PID

Exemplo de sistema de primeira ordem

Comparação entre controlador PID e Fuzzy

Resposta no tempo com diferentes set-points

		DE										
		BN	MN	SN	Z	SP	MP	BP				
Ε	BN	SD	SD	SD	SD	SD	BD	BD				
	MN	SD	SD	SD	SD	SD	MD	BD				
	SN	SD										
	Z	SI	SI	SI	Z	SD	SD	SD				
	SP	SI										
	MP	ВІ	МІ	SI	SI	SI	SI	SI				
	ВР	ВІ	ВІ	SI	SI	SI	SI	SI				

SUPERFÍCIE DE CONTROLE

- Com duas entradas e uma saída, o mapeamento entrada-saída é uma superfície, designada como *superfície de controle*.
- Relação entre *error* e *change in error* no lado da premissa, e a ação de controle *u* no lado da conclusão.

SUPERFÍCIE DE CONTROLE

- As depressões horizontais são devido aos máximos do conjunto das premissas.
- A depressão no centro implica em baixa sensibilidade em direção a mudanças tanto no erro quanto na variação do erro próximo ao regime permanente.
- Isto é uma vantagem se a sensibilidade ao ruído deve ser baixa quando a planta está próxima da referência.
 - Por outro lado, se a planta é instável, em malha aberta, próximo a referência, será necessário ter um ganho maior próximo ao centro.

SUPERFÍCIE DE CONTROLE

- **Um valor negativo do erro** indica que a saída da planta y está acima da referência *Ref* (*erro*= *Ref* -y).
- Um valor negativo para variação do erro indica que a saída da planta está crescendo e se aproximando ou se afastando do valor constante de *Referência*.
 - Um valor positivo indica que a saída da planta está decrescendo, se aproximando ou se afastando da *Referência*.

	NB	NM	NS	QZ	PS	PM	РВ
NB				NB(3)			
NM				NM(7)			
NS			NS(15)	NS(11)	PS(14)		
QZ	PB(4)	PM(8)	PS(12	QZ(17)	NS(10)	NM(6)	NB(2)
PS			PS(16)	PS(9)	NS(13)		
PM				PM(5)			
РВ				PB(1)			