

EAS GASAL 2023/2024

Mata Kuliah : Aljabar 1

Semester : Gasal

Hari/Tgl : Rabu/13 Desember 2023

Waktu/Sifat : 100 menit/Tutup Dosen : Prof. Subiono, MS;

Dian Winda S., M.Si;

Soleha M.Si;

HARAP DIPERHATIKAN !!!

Segala jenis pelanggaran (mencontek, kerjasama, dsb) yang dilakukan pada saat ETS/EAS akan dikenakan sanksi pembatalan matakuliah pada semester yang sedang berjalan sesuai dengan aturan akademik yang berlaku di ITS

- 1. Diberikan homomorfisma $\theta: \mathbb{Z}_{24} \to S_8$ di mana $\theta([1]_{24}) = (2 \ 3)(1 \ 4 \ 6 \ 7)$. Dapatkan $\ker(\theta)$ dan $\theta([10]_{24})$. Jelaskan!
- 2. Diberikan suatu grup siklik G dan N adalah sebarang subgroup normal dari G. Maka tunjukkan bahwa grup faktor G/N adalah grup siklik.
- 3. (a) Tentukan semua anggota dari $Aut(\mathbb{Z}_{12})$.
 - (b) Apakah Aut(\mathbb{Z}_{12}) $\cong \mathbb{U}(12)$? Jelaskan jawaban Anda.
- 4. Diberikan grup $\mathbb{U}(8)$ dengan $H_1 = \{[1]_8, [3]_8\}$ dan $H_2 = \{[1]_8, [7]_8\}$ adalah subgrup dari $\mathbb{U}(8)$. Tunjukkan bahwa $\mathbb{U}(8)$ adalah jumlah langsung (internal direct product) dari H_1 dan H_2 . Jelaskan!

Solusi:

- 1. Karena θ adalah homomorfisma, maka jelas memenuhi $\theta(a+b) = \theta(a) \circ \theta(b)$. Sehingga dari "sebiji" informasi diatas, bisa didapatkan
 - $\theta([2]_{24}) = \theta([1]_{24} + [1]_{24}) = \theta([1]_{24}) \circ \theta([1]_{24}) = \begin{pmatrix} 1 & 6 \end{pmatrix} \begin{pmatrix} 4 & 7 \end{pmatrix}$
 - $\theta([3]_{24}) = \theta([2]_{24} + [1]_{24}) = \theta([2]_{24}) \circ \theta([1]_{24}) = \begin{pmatrix} 1 & 7 & 6 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix}$
 - $\theta([4]_{24}) = \theta([3]_{24} + [1]_{24}) = \theta([3]_{24}) \circ \theta([1]_{24}) = (1)$

Dengan cara yang sama untuk semua elemen di \mathbb{Z}_{24} , bisa didapatkan relasi sebagai berikut

- $\theta([0]_{24}) = \theta([4]_{24}) = \theta([8]_{24}) = \theta([12]_{24}) = \theta([16]_{24}) = \theta([20]_{24}) = (1)$
- $\theta([1]_{24}) = \theta([5]_{24}) = \theta([9]_{24}) = \theta([13]_{24}) = \theta([17]_{24}) = \theta([21]_{24}) = (2 \ 3) (1 \ 4 \ 6 \ 7)$
- $\theta([2]_{24}) = \theta([6]_{24}) = \theta([10]_{24}) = \theta([14]_{24}) = \theta([18]_{24}) = \theta([22]_{24}) = (1 \quad 6) (4 \quad 7)$
- $\theta([3]_{24}) = \theta([7]_{24}) = \theta([11]_{24}) = \theta([15]_{24}) = \theta([19]_{24}) = \theta([23]_{24}) = \begin{pmatrix} 1 & 7 & 6 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix}$

Karena identitas grup S_8 adalah (1), maka $\ker(\theta) = \{[0]_{24}, [4]_{24}, [8]_{24}, [12]_{24}, [16]_{24}, [20]_{24}\}$. Kemudian dari informasi diatas dapat dilihat bahwa $\theta([10]_{24}) = \begin{pmatrix} 1 & 6 \end{pmatrix} \begin{pmatrix} 4 & 7 \end{pmatrix}$.

- 2. Karena G adalah grup siklik, maka $G = \langle a \rangle = \{e, a, a^2, \dots\}$ untuk suatu $a \in G$. Kemudian dengan menggunakan definisi grup faktor/kuasi, didapatkan elemen dari G/N adalah $\{N, N_a, N_{a^2}, N_{a^3}, \dots\}$. Lalu dapat ditinjau kembali bahwa $G/N = \langle N_a \rangle$ yang dimana N_a adalah generator untuk grup faktor G/N. Sehingga terbukti bahwa G/N adalah grup siklik.
- 3. (a) $\operatorname{Aut}(\mathbb{Z}_{12})$ adalah grup yang himpunannya adalah fungsi $\varphi: \mathbb{Z}_{12} \to \mathbb{Z}_{12}$ yang bersifat isotomorfik (bijektif dan homomorfik) dan operasinya terhadap kompsisi fungsi.
 - Dari contoh soal pada slide materi Prof. Subiono Nomor 2, trik yang diberikan secara tersirat adalah mencari bilangan asli apa saja yang relatif prima dengan 12^1 . Terdapat 4 bilangan yang relatif prima dengan 12, yaitu 1, 5, 7, dan 11. Sehingga defisikan fungsi isomorfisma φ sebagai berikut

 $^{^1 \}text{Untuk } \mathbb{Z}_n$ secara umum dicari bilangan apa saja yang relatif prima dengan n

- $\varphi_1(x) = [x]_{12}$
- $\varphi_5(x) = 5[x]_{12}$
- $\varphi_7(x) = 7[x]_{12}$
- $\varphi_{11}(x) = 11[x]_{12}$
- $\therefore \operatorname{Aut}(\mathbb{Z}_{12}) = \{\varphi_1, \varphi_5, \varphi_7, \varphi_{11}\}.$
- (b) Karena $|\operatorname{Aut}(\mathbb{Z}_{12})| = 4$ dan $|\mathbb{U}(12)| = 4$, maka kita buat spekulasi bahwa kedua grup saling isotomorfik. Cara menunjukkan keisomorfikan antara dua grup adalah dengan mencari suatu fungsi homomorfisma dan bijektif yang memetakan elemen satu grup $\operatorname{Aut}(\mathbb{Z}_{12})$ ke elemen grup $\mathbb{U}(12)$ atau sebaliknya.

Sebenarnya soal ini berhubungan dengan trik sebelumnya yaitu mencari bilangan yang relatif prima dengan 12, seperti halnya anggota dari $\mathbb{U}(12)$.

Jadi kita definisikan saja fungsi $\Theta: \operatorname{Aut}(\mathbb{Z}_{12}) \to \mathbb{U}(12)$ sebagai $\Theta(\varphi_i) = i$ untuk $i \in \mathbb{U}(12)$. Dengan demikian, Θ pastilah isomorfisma antara $\operatorname{Aut}(\mathbb{Z}_{12})$ dan $\mathbb{U}(12)^2$.

- \therefore Aut(\mathbb{Z}_{12}) \cong $\mathbb{U}(12)$.
- 4. Kita mulai dengan menuliskan ulang definisi dari hasil kali langsung dalam.

 ${f Definisi.}\ grup\ G\ adalah\ hasil\ kali\ langsung\ dalam\ dari\ H_1\ dan\ H_2\ jika\ memenuhi\ kondisi\ berikut$

- (1) H_1 dan H_2 adalah subgrup normal dari G.
- (2) $H_1 \cap H_2 = \{e\}.$
- (3) $G = H_1 H_2 = \{h_1 h_2 \mid h_1 \in H_1, h_2 \in H_2\}.$

Karena $\mathbb{U}(8)$ komutatif, maka subgrupnya pastilah normal. Jadi H_1 dan H_2 adalah subgrup normal dari $\mathbb{U}(8)$. Kemudian dengan mudah diperoleh bahwa $H_1 \cap H_2 = \{[1]_8\}$ yang merupakan identitas dari $\mathbb{U}(8)$. Selanjutnya tinjau

$$H_1H_2 = \{[1]_8 \cdot [1]_8, [1]_8 \cdot [7]_8, [3]_8 \cdot [1]_8, [3]_8 \cdot [7]_8\} = \{[1]_8, [7]_8, [3]_8, [5]_8\} = \mathbb{U}(8)$$

Sehingga $\mathbb{U}(8)$ adalah internal direct product dari H_1 dan H_2 .

 $^{^2 {\}rm Jika}$ mau dibuktikan keisomorfikan silahkan tambahin sendiri:D