BC-1308 Biofísica

Aula 6 Potencial eletroquímico. Canais iônicos. Voltage-clamp. Patch-clamp

Jiří Borecký CCNH 2014

Potencial eletroquímico

A B		В
1M NaCl		+ + + + 0.1 M NaCl + +

- concentration force
 - electrical force

- 2 compartimentos separados por membrana permeável somente para Na⁺
- Potencial eletroquímico é soma de potencial padrão, potencial químico e potencial elétrico:

$$\tilde{\mu} = \mu_0 + \mu_{quim} + \mu_{el}$$

$$\mu_{quim} = RT \ln(c)$$

$$\mu_{el} = zFE$$

$$\tilde{\mu} = \mu_0 + RT \ln(c) + zFE$$

Potencial eletroquímico

Potencial eletroquímico e canais iônicos

Walther Hermann Nernst (25 Jun 1864 –18 Nov 1941)

ightharpoonup A diferença $ilde{\mu_B} - ilde{\mu_A}$ através da membrana, o $\Delta ilde{\mu}$ é definida como

$$\Delta \tilde{\mu} = RT \ln \left(\frac{c_B}{c_A} \right) + zF\Delta V_{(B-A)}$$

 $RT \ln |c_B/c_A|$ > Força de concentração $zF \Delta V$ > Força elétrica

ightharpoonupNo equilíbrio, o $\Delta \tilde{\mu}$ = 0, então

$$RT \ln \left(\frac{c_A}{c_B}\right) = zF \Delta V_{(B-A)}$$

➤ Rearranjando para a forma de equação de Nernst

$$\Delta V_{(B-A)} = \frac{RT}{zF} \ln \left(\frac{c_A}{c_B} \right)$$

Equação de Goldmann-Hodgkin-Katz

BC-1308 Biofísica

Potencial eletroquímico e canais iônicos

➤ A equação de Nernst é para um íon só. Independentemente, o David E. Goldman (EUA) e dois outros, Sir Alan Lloyd Hodgkin (inglês) and Sir Bernard Katz (judeu alemão) descobriram a equação que descreve o potencial de N cátions e M ânions:

$$E_{m} = \frac{RT}{F} \ln \left| \frac{\sum_{i}^{N} P_{M_{i}^{+}} [M_{i}^{+}]_{out} + \sum_{j}^{M} P_{A_{i}^{-}} [A_{i}^{-}]_{in}}{\sum_{i}^{N} P_{M_{i}^{+}} [M_{i}^{+}]_{in} + \sum_{j}^{M} P_{A_{i}^{-}} [A_{i}^{-}]_{out}} \right|$$

▶Para membrana biológica que separa conjunto de íons K⁺_x, Na⁺_{1-x}, Cl⁻

$$E_{m} = \frac{RT}{F} \ln \left(\frac{P_{K_{i}^{+}}[K_{i}^{+}]_{out} + P_{Na_{i}^{+}}[Na_{i}^{+}]_{out} + P_{Cl_{i}^{-}}[Cl_{i}^{-}]_{in}}{P_{K_{i}^{+}}[K_{i}^{+}]_{in} + P_{Na_{i}^{+}}[Na_{i}^{+}]_{in} + P_{Cl_{i}^{-}}[Cl_{i}^{-}]_{out}} \right)$$

ngsim.swf

Equação de Goldmann-Hodgkin-Katz

versidade Federal do ABC BC-1308 Biofísica

Potencial eletroquímico e canais iônicos

Existe ainda uma contribuição de transporte ativo das bombas iônicas eletrogênicas, como a Na⁺,K⁺-ATPase, que geram gradientes de íons. A equação de Goldmann-Hodgkin-Katz que considera estas bombas é

$$E_{m} = \frac{RT}{F} \ln \left| \frac{\sum_{i}^{N} P_{M_{i}^{+}} [M_{i}^{+}]_{out} + \sum_{j}^{M} P_{A_{i}^{-}} [A_{i}^{-}]_{in} + J_{bomba}}{\sum_{i}^{N} P_{M_{i}^{+}} [M_{i}^{+}]_{in} + \sum_{j}^{M} P_{A_{i}^{-}} [A_{i}^{-}]_{out}} \right|$$

- ➤Se inibir a Na⁺,K⁺-ATPase por ouabaina, o potencial de neurônio cai tipicamente 10-15 mV.
- A contribuição de bombas eletrogênicas varia muito célula a célula. Por exemplo, nos neutrófilos, o potencial é construído praticamente por estas bombas quando inibidas, o potencial cai até 0 mV.

Equilíbrio de Donnan

Potencial eletroquímico e canais iônicos

Frederick George Donnan (6 Set 1870 – 16 Dec 1956)

- ➤ Membrana permeável para K⁺ e Cl⁻ mas impermeável para X⁻
 - Cloreto tende ir do B para A gradiente de concentração
 - Potássio acompanha o cloreto para manter eletroneutralidade

$\Delta \tilde{\mu_K} = RT \ln \bigg $	$\left(\frac{[K^+]_B}{[K^+]_A}\right)$	$+zF(V_B-V_A)$
$\Delta \tilde{\mu_{Cl}} = RT \ln$	$\frac{\left[Cl^{-}\right]_{B}}{\left[Cl^{-}\right]_{A}}$	$-zF(V_B-V_A)$

ightharpoonupNo equilíbrio, $\Delta \tilde{\mu}_{Cl} - \Delta \tilde{\mu}_{K} = 0$, então

Josiah Willard Gibbs
$$[K^+]_A [Cl^-]_A = [K^-]_B [Cl^-]_B$$

A	В	
$K^{+} = 0.1 + Z$	$K^{+} = 0.1 - Z$	
Cl -= Z	Cl ⁻ = 0.1 - Z	
X ⁻ = 0.1	X ⁻ = 0	

Equilíbrio de Donnan

Potencial eletroquímico e canais iônicos

Consequências elétricas:

- $[K^+]_{\Lambda} = 2 [K^+]_{R}$
- $2 [Cl^{-}]_{\Delta} = [Cl^{-}]_{R}$
- Usando eq. de Nernst, o ΔV = 18 mV

Consequências osmóticas:

- $[K^+]_A + [CI^-]_A = 1,25 ([K^+]_B + [CI^-]_B)$
- [X⁻]_△ >> [X⁻]_R
- Se a membrana for permeável para água, esta vai difundir de B para A
- Células de plantas têm parede rígida que permite formar alta pressão osmótica
- Células de animais bombeiam alguns íons para fora do citoplasma, como Na⁺; assim a Na⁺,K⁺-ATPase tem papel importante na regulação do volume celular.

A	В	
K ⁺ = 0.133M	K ⁺ = 0.066M	
Cl ⁻ = 0.033M	Cl ⁻ = 0.066M	
$X^- = 0.1 M$	X ⁻ = 0	

Transporte através da membrana

- ➤ Difusão simples
- Difusão facilitada
 - pelo seu gradiente
- ➤ Transporte iônico via ionóforo
- ▶ Canal iônico
 - pelo seu gradiente
 - fluxo controlado
- ➤ Transporte ativo primário
 - contra seu gradiente
 - acoplado à hidrolise de ATP
- Transporte ativo secundário
 - contra seu gradiente
 - acoplado à passagem de íon pelo gradiente dele

Potencial da membrana Bases iônicas

Potencial eletroquímico e canais iônicos

Membrana plasmática:

- permeável para K⁺, Cl⁻, HCO₃⁻ (canais iônicos respetivos são abertos)
- Impermeável para Na⁺, Ca²⁺, proteínas aniônicas (A⁻)

Concentração de íons				
Intracelular [mM]		Extracelular [mM]		
Na ⁺	12	Na ⁺	145	
K ⁺	155	K^+	4	
Ca ²⁺	0,0001	Ca^{2+}	2	
Cl-	4	C1-	120	
HCO ₃ -	8	HCO ₃ -	27	
proteínas (A-)	155	proteínas (A-)	0	

Potencial eletroquímico e canais iônicos

Gravação de flutuações de corrente através de 2 moléculas de canal de K⁺

Potencial eletroquímico e canais iônicos

➤ Canal de potássio disparado por voltagem de bactéria

- ➤Os quatro classes principais de canais de potássio:
 - Canal de potássio ativado por Ca abre-se em resposta a presença de íon de Ca ou outras moléculas sinalizadoras.
 - Canal de potássio retificado interiormente (inwardly rectifying) passa corrente (carga positiva) melhor para dentro da célula (como um diodo).
 - Canal de potássio de domínio de poros em tandem são constitutivamente abertos ou têm alta ativação basal, por exemplo os "canais de potássio de repouso" que estabelecem o potencial de membrana de neurônios. Quando abertos, permitem a passagem de K⁺ com velocidade comparável com sua difusão na água.
 - Canal de potássio disparado por voltagem (voltage-gated) são canais que abrem ou fecham em reposta às mudanças do potencial de membrana.

Classe	Subclasses	Função	Bloqueadores	Ativadores
Ativados por Ca 6T & 1P	Canal BK Canal SK	inibição após o estímulo elevação de Ca intracelular	apamina caribdotoxina	1-EBIO NS309 CyPPA
retificados interiormente	ROMK (Kir1.1)	Reciclagem e secreção de potássio em nefronos	Não selectivo: Ba ²⁺ , Cs ⁺	-
2T & 1P	Regulado por GPCR (Kir3.x)	Media o efeito inhibitório de muitos GPCRs	Antagonistas de GPCR - ifenprodila	Agonistas de GPCR
	sensível a ATP (Kir6.x)	Fechado quando [ATP] é alta para acionar a secreção de insulina	glibenclamida tolbutamida	diazóxido pinacidila
domínio de poros em tandem 4T & 2P	TWIK TRAAK TREK TASK	Contribuição a potencial de repouso	-	halotano
disparados por voltagem 6T & 1P	hERG (Kv11.1) KvLQT1 (Kv7.1)	Repolarização do potencial de ação; limitação de frequência dos potenciais de ação (disturbâncias causam disrritmia)	tetraetilamonio 4-aminopiridina dendrotoxinas (aluns tipos)	retigabina (Kv7)[6]

Canal de potássio Ca- e voltagemdependente

BC-1308 Biofísica

Canal de potássio retificado interiormente

Potencial eletroquímico e canais iônicos

Registro de corrente do homomultímero TuGIRK-A e heteromultímero TuGIRK-A/B em várias concentrações extracelulares de K⁺.

Murata Y et al. J. Biol. Chem. 2001;276:18529-18539

Canal de potássio retificado exteriormente

Potencial eletroquímico e canais iônicos

Caracterização de canais únicos de hTREK1 em patches inside-out.

Relação de corrente/voltagem de canais únicos obtidas pela medição de amplitude de correntes unitárias em potenciais variados em gradientes de [K⁺] simétrico e fisiológico.

Canal de sódio

Canal de cloreto

Potencial eletroquímico e canais iônicos

Canal de cloreto de receptor de **GABA**

Canais de cloreto de CFTR

Gadsby DC, Vergani P, Csanády L. (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature. Mar 23;440(7083):477-83

Canal de cálcio

Potencial eletroquímico e canais iônicos

Canal de cálcio disparado por voltagem é regulado por calmodulina

Canal de cálcio

Tipo	Disparado por	Proteína	Gene	Localização	Função
L	Voltagem alta	Cav1.1 Cav1.2 Cav1.3 Cav1.4	CACNA1S CACNA1C CACNA1D CACNA1F	Músculo esquelético, osso (osteoblastos), miócitos ventriculares, dendritos e troncos de dendritos de neurônios corticais	Contração de células de músculo liso e cardíaco. Responsáveis por potencial de ação prolongado em músculo cardíaco.
P Q	Voltagem alta	Cav2.1	CACNA1A	Neurônios de Purkinje neurônios no cerebelo / células granulosas do cerebelo	Liberação de neurotransmissores
N	Voltagem alta	Cav2.2	CACNA1B	Cérebro em geral	Liberação de neurotransmissores
R	Voltagem intermédia	Cav2.3	CACNA1E	células granulosas do cerebelo, outros neurônios	?
Т	Voltagem baixa	Cav3.1 Cav3.2 Cav3.3	CACNA1G CACNA1H CACNA1I	neurônios, células com atividade de marca- passo, osso (osteoblastos)	Ritmo regular do sino

Canal quimicamentecamente sensível

Canal mecano-sensível

Erwin Neher

Bert Sakmann

Potencial eletroquímico e canais iônicos

➤ Aparelho:

- microscópio invertido
- plataforma amortecida
- gaiola de Faraday
- micromanipuladores
- estimulador
- pré-amplificador com eletrodo e micropipeta
- amplificador
- osciloscópio
- sistema de análise

Potencial eletroquímico e canais iônicos

➤ Modos de patch-clamp:

- anexo à célula
- interior p/ fora
- célula inteira
- exterior p/ fora

Método de medir os potenciais da membrana - voltage-clamp

Potencial eletroquímico e canais iônicos

➤ Esquema de voltage-clamp:

- Eletrodo de voltagem mede o potencial
- Eletrodo de corrente aplica corrente que compensa a ΔV

BC-1308 Biofísica

Potencial eletroquímico e canais iônicos

➤ Painel frontal do aparelho usado para gravar os sinais de *voltage-clamp*

