XXI Математическая олимпиада "Шелковый путь" Март 2022 года

Внимание! Так как XXI Математическая олимпиада «Шелковый путь» проводится в Казахстане раньше, чем в других странах, мы Вас убедительно просим **не разглашать** эти задачи и не обсуждать их (особенно по Интернету) до 25 мая 2022 года.

Решения задач и схемы оценивания

Задача №1. В окружность ω вписан выпуклый четырехугольник ABCD. Лучи AB и DC пересекаются в точке K. На диагонали BD отмечена точка L так, что $\angle BAC = \angle DAL$. На отрезке KL отметили точку M так, что $CM \parallel BD$. Докажите, что прямая BM касается окружности ω . (Кунгожин M.)

Первое решение. Отметим на прямой AK точку N такую, что $MN \parallel AL$. Тогда точка K является центром гомотетии, переводящей треугольник CMN в подобный ему треугольник DLA, так как $\frac{CM}{DL} = \frac{NM}{AL} = \frac{KM}{KL}$ и $\angle CMN = \angle DLA$. Но, с другой стороны, треугольник DLA подобен треугольнику CBA, так как $\angle DAL = \angle BAC$ и $\angle ADL = \angle ACB$. Следовательно, $\angle (BN,BC) = \angle (MN,MC)$, то есть точки N,B,M,C лежат на одной окружности. Поэтому, $\angle CBM = \angle CNM = \angle CAB$. Из последнего равенства следует, что BM касается ω .

Теорема Паскаля. Точки A, B, C, D, E, F лежат (не обязательно в этом порядке) на одной окружности. Тогда точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой.

Вернемся к решению задачи. Пусть прямая AL пересекает ω во второй раз в точке E. Тогда точки M,~C,~E лежат на одной прямой, так как $\angle MCK = \angle LDC = \angle BAC = \angle DAE = \angle DCE$.

Обозначим через ℓ_b касательную прямую к ω в точке B. Применим теорему Паскаля для точек B, B_1, A, E, C, D (здесь точка B_1 совпадает с точкой B) и для пар прямых (BB_1, EC), (B_1A, CD), (AE, DB). Последние пары прямых определяют соответственно пары (ℓ_b, EC), (BA, CD), (AE, DB). Тогда по теореме Паскаля, на прямой, соединяющей точки $K = BA \cap CD, L = AE \cap DB$, лежит точка пересечения прямых ℓ_b и EC. Но так как $M = EC \cap KL$, то BM касается окружности ω .

Схема оценки.

1. Недоведенное счетное решение
(в координатах, в комплексных числах, в векторах, тригонометрическое, и т.д.): 0 баллов
2. Доказано подобие $\triangle ADL \sim \triangle ACB$ (с указанимем этих двух треугольников):
3. Доказано подобие $\triangle CMN \sim \triangle DLA$:
4. Доказано (с выводом), что точки N, B, M, C лежат на одной окружности:
5. Доказано, что точки M, C, E лежат на одной прямой:
Не суммируется с пунктом 2.
6. Применение т. Паскаля без никаких деталей (относительно того, к чему ее применять): 0 баллов
7. Теорема Паскаля применена к неправильной шестерке точек:

Задача №2. Даны два различных натуральных числа A и B. Докажите, что существует бесконечно много натуральных чисел, представимых и в виде $x_1^2 + Ay_1^2$ со взаимно простыми x_1 и y_1 , и в виде $x_2^2 + By_2^2$ со взаимно простыми x_2 и y_2 . (Голованов A.C.)

Решение. Не теряя общности, пусть A > B.

Возьмём произвольное простое p > 2 и подберём такие $x_1, x_2,$ что

$$x_1^2 + A(2p)^2 = x_2^2 + B(2p)^2,$$

то есть $x_2^2-x_1^2=4Cp^2$, где C=A-B. Этому уравнению удовлетворяют $x_1=Cp^2-1$ и $x_2=Cp^2+1$. Если полученные x_1 и x_2 нечётны, они взаимно просты с y=2p, и $x_1^2+Ay^2=x_2^2+By^2$. Если же они чётны, то $\frac{x_1}{2}$ и $\frac{x_2}{2}$ взаимно просты с p, и $\left(\frac{x_1}{2}\right)^2+Ap^2=\left(\frac{x_2}{2}\right)^2+Bp^2$.

Осталось заметить, что число, для которого таким образом получены два искомых представления, во всяком случае не меньше p^2 , и поэтому может быть сколь угодно большим.

Схема оценки.

- Задача №3. В бесконечной последовательности $\{\alpha\}$, $\{\alpha^2\}$, $\{\alpha^3\}$, ... встречается только конечное количество разных чисел. Докажите, что α целое. (Дробной частью числа x называется такое число $\{x\}$, что $\{x\} = x [x]$, где [x] это наибольшее целое число, не превосходящее x.) (Голованов A.C.)

Решение. *Шаг 1.* Предположим, что в последовательности всего встречается k-1 число. Для каждого натурального n среди чисел $\{\alpha^{nk}\}$, $\{\alpha^{nk+1}\}$, ..., $\{\alpha^{nk+k-1}\}$ найдутся два одинаковых. Таким образом, существует бесконечно много пар натуральных чисел i, j, 0 < i-j < k, для которых $\{\alpha^i\} = \{\alpha^j\}$, то есть $\alpha^j(\alpha^{i-j}-1)$ – целое число. Поскольку во всех таких парах i-j принимает конечное число значений, следовательно, хотя бы одно из этих значений принимается бесконечно много раз. Таким образом, нашлось некоторое m такое, что $\alpha^j(\alpha^m-1)$ целое для бесконечно многих j. Деля полученные числа друг на друга, находим, что их частные рациональны. Эти частные — степени α с натуральным показателем. Итак, α^l рационально для некоторого натурального l.

Шаг 2. Если α^l – не целое, а представляется несократимой дробью $\frac{a}{b}$ с натуральным знаменателем b>1, то $\{\alpha^{ln}\}$ – несократимая дробь со знаменателем b^n . Так как при всех натуральных n такие знаменатели различны, получаем противоречие с условием. Итак, α^l – целое число. Если при этом α иррационально, то числа вида $\alpha^{nl+1} = \alpha^{nl} \cdot \alpha$ при всех натуральных n иррациональны и имеют различные дробные части (ибо число $\alpha^{il+1} - \alpha^{jl+1} = \alpha(\alpha^{il} - \alpha^{jl})$, как произведение иррационального α и целого числа, отличного от 0, не может быть целым). Это тоже противоречит условию. Таким образом, α рационально. Как известно, при целом α^l отсюда следует, что α целое, что и требовалось.

Схема оценки.

- Задача $\mathbb{N}^{2}4$. В письменности используется 25-буквенный алфавит, а *словами* являются в точности все 17-буквенные последовательности. На полоске, склеенной в кольцо, написана последовательность из 5^{18} букв алфавита. Назовём слово *уникальным*, если из полоски можно вырезать участок, содержащий это слово, но нельзя вырезать два таких непересекающихся участка. Известно, что из полоски можно вырезать 5^{16} непересекающихся копий какого-то слова. Найдите наибольшее возможное количество уникальных слов. (Богданов U.)

Ответ. $2 \cdot 5^{17}$.

Решение. Пусть алфавит состоит из букв a_1, a_2, \ldots, a_{25} . Назовём *куском* участок полоски, содержащий ровно 17 букв (разные куски могут содержать одинаковые слова!). Кусок назовём *уникальным*, если слово, написанное на нём, уникально.

Построим сначала пример, в котором найдётся $N=2\cdot 5^{17}$ уникальных слов. Выберем слово $W=a_1a_2\ldots a_{17}$ — это будет слово, повторяющееся $k=5^{16}$ раз. Существует всего $25^8=k$ восьмибуквенных последовательностей, состоящих из букв $a_{18},a_{19},\ldots,a_{25}$; выпишем их всех на полоску в произвольном порядке, приписав после каждой слово W. Назовём 5^{16} участков полоски, содержащих выписанные восьмибуквенные последовательности, ϕ рагментами. Мы выписали $(8+17)k=5^{18}$ букв,

Ясно, что полученная полоска содержит k копий слова W. Покажем, что любой кусок, содержащий целиком некоторый фрагмент, уникален — более того, слово на нём не встречается на других кусках. Поскольку фрагмент может располагаться в таком куске на 10 различных позициях (начинаясь с первой, второй, . . . , или десятой буквы слова), таких уникальных слов получится как раз $10k = 10 \cdot 5^{16} = N$.

Рассмотрим произвольный кусок p и слово P, написанное на нём. У этого слова либо есть единственное непустое начало, являющееся концом W, либо такого начала нет — ровно в этом случае будем считать, что начало пустое. Обозначим длину этого начала через b. Аналогично определим конец слова P, являющийся началом W, и его длину e. Заметим, что эти начало и конец не перекрываются (в случае, когда $P \neq W$, иначе b = e = 17).

Если кусок не содержит фрагмента, то $\max\{b,e\}>9$. Если наш кусок содержит фрагмент, то b+e=9 и $0 \le b, e \le 9$. Итак, кусок p содержит фрагмент ровно тогда, когда $\max\{b,e\}\leqslant 9$, и при этом положение в нём фрагмента (а значит, и положение такого куска на полоске) восстанавливается однозначно. Значит, любой такой кусок уникален, и построенный пример подходит.

Осталось доказать, что уникальных слов не может быть больше, чем N. Пронумеруем позиции на полоске последовательно числами $1,2,\ldots,5^{18}$ (нумерация циклическая по модулю 5^{18}). Пусть p_i — кусок, начинающийся с позиции i, а P_i — слово на нём. Пусть n_1,\ldots,n_k — позиции такие, что куски $p_{n_1},\,p_{n_2},\ldots,\,p_{n_k}$ попарно не перекрываются и содержат одно и то же слово W из условия. Эти куски, очевидно, не уникальны.

При $i=1,2,\ldots,8$ назовём последователем i-го ранга кусок вида p_{n_s+i} , а предшественником i-го ранга — кусок вида p_{n_s-i} , где $1 \le s \le k$. Все определённые куски различны, причём все последователи одного ранга не перекрываются, то же верно для предшественников. Мы покажем, что $cpedu \ 8 \cdot 5^{16}$ последователей всех рангов не более 5^{16} уникальных кусков; из симметрии, то же будет выполняться и для предшественников. Из этого будет следовать, что есть не менее $5^{16} + 7 \cdot 5^{16} + 7 \cdot 5^{16} = 3 \cdot 5^{17}$ неуникальных кусков, откуда и следует требуемая оценка.

Итак, осталось доказать выделенное утверждение про последователей. В каждом последователе p_{n_s+i} ранга i выделим его x cocm — конец длины i (он состоит ровно из букв, не вошедших в p_{n_s}). Докажем индукцией по $m=0,1,\ldots,8$, что для любой (8-m)-буквенной последовательности U, уникальных последователей, хвосты которых начинаются с последовательности U, не больше, чем 25^m . Тогда при m=8 получим, что всего уникальных последователей не более, чем $25^8=k$, что и требовалось.

База при m=0 очевидна: если последователь с 8-буквенным хвостом U уникален, то такой последователь лишь один. Докажем переход. Если нет уникального последователя, хвост которого — это U, то все хвосты уникальных последователей, начинающимися на U, на самом деле начинаются на некоторую последовательность Ua_j . При каждом из 25 возможных значений j таких уникальных последователей не больше, чем 25^{m-1} по предположению индукции, поэтому всего их не больше $25 \cdot 25^{m-1} = 25^m$, что и требовалось.

Наконец, если есть уникальный последователь P_{n_s+8-m} , хвост которого есть U, то такой последователь единственен. Поэтому все последователи бо́льших рангов, хвосты которых начинаются на U, соответствуют той же копии p_{n_s} слова W. Поэтому всего таких уникальных последователей не больше $m+1\leqslant 25^m$, что, опять же, и требовалось. Утверждение, а вместе с ним и оценка, доказаны.

Замечание. Более коротко (но и более идейно!) выделенное курсивом утверждение можно доказать так. Назовём хвост T уникального последователя *минимальным*, если никакое его начало не является хвостом уникального последователя. В частности, никакой минимальный хвост не является началом другого минимального хвоста.

Для каждого минимального хвоста T выпишем все 8-буквенные последовательности, начинающиеся на T; если длина T равна d, то мы выписали 25^{8-d} последовательностей. Никакая последовательность не выписана дважды; значит, если есть всего M минимальных хвостов длин d_1, \ldots, d_M , то

$$\sum_{i=1}^{M} 25^{8-d_i} \leqslant 25^8.$$

С другой стороны, каждый хвост уникального последователя начинается с минимального хвоста. Для минимального хвоста T длины d таких последователей может быть лишь 9-d — по одному для каждой длины хвоста. Значит, общее количество уникальных последователей не превосходит

$$\sum_{i=1}^{M} (9 - d_i) \leqslant \sum_{i=1}^{M} 25^{8 - d_i} \leqslant 25^8,$$

поскольку $9-d\leqslant 25^{8-d}$ при всех $d=1,2,\dots,8.$

Схема оценки.

1. Пример с $2 \cdot 5^{17}$ уникальными словами:	. 2 балла
2. Доказательство корректности примера:	1 балл
3. Доказательство того, что ответ не больше $2 \cdot 5^{17}$:	4 балла
4. Формулировка выделенного курсивом утверждения:	1 балл
5. Баллы за 3. и 4. не складываются.	