Statistical VS Neural Approach

Modeling Semantic Plausibility

Swift Swans 2.
Nina Vikhrova, Mattalika Intarahom, Martin Wolf

Contents

- 1. Overview
- 2. Data analysis
- 3. Models
 - 3.1. Perceptron
 - 3.2. RoBERTa
- 4. Results
- 5. Conclusion
- 6. References

Overview – Roadmap

How does the performance change between statistical and neural approaches?

Overview – Datasets

PAP

How plausible is an SVO combination?

scandal hurts department

implausible			plausible	
1	2	3	4	5

17	28	216	216
tr	ain	dev	test

ADEPT

How does plausibility change with an additional adjective?

The effect of (additional) sleeping is rejuvenation.

impossible			necessarily true	
1	2	3	4	5

Label distribution (adept)

- Huge class imbalance
- 'Equally likely' most often

Fewest examples in the positive direction
 (more likely & necessarily true)

Label distribution (pap)

- More balanced
- Skew towards labels 4 & 5

- 3 out of 4 times are plausible

$Sentiment\ analysis\ (adept)\ {\scriptstyle \text{(model: cardiffnlp/twitter-roberta-base-sentiment)}}$

- Modifier adds stronger sentiment
- Most changes from neutral to pos/neg
- Some changes from pos/neg to neutral
- Extreme changes rare

Occurrence analysis (pap)

- Frequently occurring verbs have more often label 1 than label 0

Occurrence analysis (pap)

- Overview
of the most
frequent
verbs for each
label

Topic analysis (pap)

- BERTopic
- Some topics plausible
- Because of the short text examples, topic modelling is generally hard

Models – Perceptron

Models – Perceptron

	PAP	ADEPT
Embedding size	100	100
Max Epochs:	1000	1000
Early stopping:	False	True
Stop Criteria:	loss > previous_loss - tol	loss > previous_loss - tol

Models – Roberta

text-classification

Models – RoBERTa

	PAP	ADEPT
<pre>Initial Accuracy: (no fine-tuning)</pre>	(dev) 0.13	(val) 0.12
Epochs:	5	3
Training Rate:	$2\mathrm{e}^{-5}$	$3\mathrm{e}^{ ext{-}5}$
Final Accuracy:	0.407	0.698

Results adept

	RoBERTa	Perceptron (sent2)	Perceptron (both)
Micro F1	0.694	0.650	0.517
Macro F1	0.367	0.256	0.211
ROC-AUC	0.604	0.535	0.514

Results pap

	RoBERTa	Perceptron	Perceptron (binary)
Micro F1	0.430	0.185	0.722
Macro F1	0.357	0.152	0.585
ROC-AUC	0.583	0.503	0.583

Conclusion

- All models are skewed towards the most-occurring class

Adept Micro F1	0	1	2	3	4
RoBERTa	0.429	0.315	0.820	0.273	0
Perceptron (sent2)	0.2	0.188	0.793	0.102	0

- Seeing the whole sentence helps both approaches
- Statistical method performs worse but not by as much as expected
- Perceptron best on binary classification

Future work:

- Pre-trained word2vec for Perceptron
- Augmentation of training data to balance classes
- Find better fine-tuning hyperparameters
- LORA approaches

References

Emami Ali, Porada Ian, Olteanu Alexandra, Suleman Kaheer, Trischler Adam, Cheung Jackie Chi Kit. *ADEPT: An Adjective-Dependent Plausibility Task.* Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Online: Association for Computational Linguistics, VIII 2021. 7117–7128.

Eichel Annerose, Schulte im Walde Sabine. A Dataset for Physical and Abstract Plausibility and Sources of Human Disagreement. Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII). Toronto, Canada: Association for Computational Linguistics, VII 2023. 31–45.

Links to models used:

 $Sentiment\ analysis:\ \underline{https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment}$

Topic modeling: https://maartengr.github.io/BERTopic/

 $Perceptron: \underline{https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html} \\$

RoBERTa: https://huggingface.co/docs/transformers/model_doc/roberta