Supply Chain Analysis with R

About Dataset

A DataSet of Supply Chains used by the company DataCo Global was used for the analysis. Dataset of Supply Chain , which allows the use of Machine Learning Algorithms and R Software. Areas of important registered activities : Provisioning , Production , Sales , Commercial Distribution. It also allows the correlation of Structured Data with Unstructured Data for knowledge generation.

Type Data : Structured Data : DataCoSupplyChainDataset.csv Unstructured Data : tokenized_access_logs.csv (Clickstream)

Types of Products: Clothing, Sports, and Electronic Supplies

Additionally it is attached in another file called DescriptionDataCoSupplyChain.csv, the description of each of the variables of the DataCoSupplyChainDatasetc.csv.c.csv.

Initial Exploration

We'll begin by loading the necessary libraries and examining the structure of the dataset to identify important variables and check for missing values.

What we need to know:

- Understand the overall structure of the data.
- Identify any missing values and address them.
- Explore basic statistical summaries of numeric and categorical variables.es.

```
In [1]: # Install necessary packages if not already installed
         install.packages(c("tidyverse", "skimr", "corrplot", "maps", "ggmap"))
         install.packages("gridExtra")
         install.packages("plotly")
         # Load libraries
         library(tidyverse) # For data manipulation and visualization
         library(skimr) # For quick summary statistics
         library(corrplot) # For correlation matrix
         library(scales) # Load scales package for number formatting
         library(plotly)
         options(repr.plot.width = 16, repr.plot.height = 12)
         options(warn=-1)
         Installing packages into '/usr/local/lib/R/site-library'
         (as 'lib' is unspecified)
         Installing package into '/usr/local/lib/R/site-library'
         (as 'lib' is unspecified)
         Installing package into '/usr/local/lib/R/site-library'
         (as 'lib' is unspecified)
         — Attaching core tidyverse packages —
                                                                              ---- tidyverse 2.0.0 ---

      ✓ dplyr
      1.1.4
      ✓ readr
      2.1.5

      ✓ forcats
      1.0.0
      ✓ stringr
      1.5.1

      ✓ ggplot2
      3.5.1
      ✓ tibble
      3.2.1

      ✓ lubridate
      1.9.3
      ✓ tidyr
      1.3.1

         √ purrr 1.0.2
         — Conflicts —
                                                                    ----- tidyverse conflicts() ---
         X dplyr::filter() masks stats::filter()
         X dplyr::lag() masks stats::lag()
         i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to
         become errors
         corrplot 0.95 loaded
         Attaching package: 'scales'
         The following object is masked from 'package:purrr':
             discard
         The following object is masked from 'package:readr':
             col factor
         Attaching package: 'plotly'
         The following object is masked from 'package:ggplot2':
             last plot
         The following object is masked from 'package:stats':
             filter
```

```
The following object is masked from 'package:graphics':

layout

The following object is masked from 'package:httr':

config
```

```
In [2]: FILL_COLOR <- "#1E3E62"
```

In [3]: # List all files in the directory
list.files("/kaggle/input/dataco-smart-supply-chain-for-big-data-analysis")

 $'Data CoSupply Chain Dataset.csv' \cdot 'Description Data CoSupply Chain.csv' \cdot 'tokenized_access_logs.csv' \cdot 'Description Data CoSupply Chain Dataset.csv' \cdot 'Description D$

In [4]: # Reading a CSV file from the directory
 data <- read.csv("/kaggle/input/dataco-smart-supply-chain-for-big-data-analysis/DataCoSu
 # View the first few rows of the data
 head(data)</pre>

	Type	Days.for.shippingreal.	Days.for.shipmentscheduled.	Benefit.per.order	Sales.per.customer	Delivery.
	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	
1	DEBIT	3	4	91.25	314.64	Ac sh
2	TRANSFER	5	4	-249.09	311.36	Late d
3	CASH	4	4	-247.78	309.72	Shipp
4	DEBIT	3	4	22.86	304.81	Ac sh
5	PAYMENT	2	4	134.21	298.25	Ac sh
6	TRANSFER	6	4	18.58	294.98	Sh cai

In [5]: tail(data)

	Туре	Days.for.shippingreal.	Days.for.shipmentscheduled.	Benefit.per.order	Sales.per.customer	De
	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	
180514	PAYMENT	3	4	119.99	299.99	
180515	CASH	4	4	40.00	399.98	
180516	DEBIT	3	2	-613.77	395.98	Lá

180517 TRANSFER	5	4	141.11	391.98 La
180518 PAYMENT	3	4	186.23	387.98
180519 PAYMENT	4	4	168.95	383.98

In [6]: glimpse(data)

\$ Product.Name

Rows: 180,519 Columns: 53 <chr> "DEBIT", "TRANSFER", "CASH", "DEBIT", "P... \$ Type \$ Days.for.shipping..real. <int> 3, 5, 4, 3, 2, 6, 2, 2, 3, 2, 6, 5, 4, 2... \$ Days.for.shipment..scheduled. <int> 4, 4, 4, 4, 4, 4, 1, 1, 2, 1, 2, 2, 2, 1... <dbl> 91.25, -249.09, -247.78, 22.86, 134.21, ... \$ Benefit.per.order \$ Sales.per.customer <dbl> 314.64, 311.36, 309.72, 304.81, 298.25, ... \$ Delivery.Status <chr> "Advance shipping", "Late delivery", "Sh... <int> 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1... \$ Late delivery risk \$ Category.Id <chr> "Sporting Goods", "Sporting Goods", "Spo... \$ Category.Name <chr> "Caguas", "Caguas", "San Jose", "Los Ang... \$ Customer.City <chr> "Puerto Rico", "Puerto Rico", "EE. UU.",... \$ Customer.Country <chr> "XXXXXXXXX", "XXXXXXXXX", "XXXXXXXXX", "... \$ Customer.Email <chr>> "Cally", "Irene", "Gillian", "Tana", "Or... \$ Customer.Fname <int> 20755, 19492, 19491, 19490, 19489, 19488... \$ Customer.Id \$ Customer.Lname <chr> "Holloway", "Luna", "Maldonado", "Tate", ... \$ Customer.Password <chr> "XXXXXXXXX", "XXXXXXXXX", "XXXXXXXXX", "... <chr> "Consumer", "Consumer", "Consumer", "Hom... \$ Customer.Segment <chr> "PR", "PR", "CA", "CA", "PR", "NY", "PR"... \$ Customer.State <chr> "5365 Noble Nectar Island", "2679 Rustic... \$ Customer.Street \$ Customer.Zipcode <int> 725, 725, 95125, 90027, 725, 14150, 725,... \$ Department.Id <chr> "Fitness", "Fitness", "Fitness", "Fitness... \$ Department.Name <dbl> 18.25145, 18.27945, 37.29223, 34.12595, ... \$ Latitude \$ Longitude <dbl> -66.03706, -66.03706, -121.88128, -118.2... <chr> "Pacific Asia", "Pacific Asia", "Pacific... \$ Market \$ Order.City <chr> "Bekasi", "Bikaner", "Bikaner", "Townsvi... \$ Order.Country <chr> "Indonesia", "India", "India", "Australi... <int> 20755, 19492, 19491, 19490, 19489, 19488... \$ Order.Customer.Id <chr> "1/31/2018 22:56", "1/13/2018 12:27", "1... \$ order.date..DateOrders. \$ Order.Id <int> 77202, 75939, 75938, 75937, 75936, 75935... <int> 1360, 1360, 1360, 1360, 1360, 1360... \$ Order.Item.Cardprod.Id <dbl> 13.11, 16.39, 18.03, 22.94, 29.50, 32.78... \$ Order.Item.Discount \$ Order.Item.Discount.Rate <dbl> 0.04, 0.05, 0.06, 0.07, 0.09, 0.10, 0.12... \$ Order.Item.Id <int> 180517, 179254, 179253, 179252, 179251, ... \$ Order.Item.Product.Price <dbl> 327.75, 327.75, 327.75, 327.75, 327.75, ... <db1> 0.29, -0.80, -0.80, 0.08, 0.45, 0.06, 0.... \$ Order.Item.Profit.Ratio \$ Order.Item.Quantity <dbl> 327.75, 327.75, 327.75, 327.75, 327.75, ... \$ Order.Item.Total <dbl> 314.64, 311.36, 309.72, 304.81, 298.25, ... \$ Order.Profit.Per.Order <dbl> 91.25, -249.09, -247.78, 22.86, 134.21, ... <chr> "Southeast Asia", "South Asia", "South A... \$ Order.Region <chr> "Java Occidental", "Rajast\xe1n", "Rajas... \$ Order.State <chr> "COMPLETE", "PENDING", "CLOSED", "COMPLE... \$ Order.Status \$ Order.Zipcode \$ Product.Card.Id <int> 1360, 1360, 1360, 1360, 1360, 1360, 1360... \$ Product.Category.Id \$ Product.Description <chr> "http://images.acmesports.sports/Smart+w... \$ Product.Image

<chr> "Smart watch ", "Smart watch ", "Smart w...

```
In [7]: df = tibble(data)
```

In [8]: head(df)

Туре	Type Days.for.shippingreal. Days.for.shipmentschedule		Benefit.per.order	Sales.per.customer	Delivery.Stat
<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<ch< th=""></ch<>
DEBIT	3	4	91.25	314.64	Advar shippi
TRANSFER	5	4	-249.09	311.36	Late delive
CASH	4	4	-247.78	309.72	Shipping tir
DEBIT	3	4	22.86	304.81	Advar shippi
PAYMENT	2	4	134.21	298.25	Advar shippi
TRANSFER	6	4	18.58	294.98	Shippi cancel

In [9]: summary(df)

Type	Days.for.shippingreal.	Days.for.shipmentscheduled.
Length: 180519	Min. :0.000	Min. :0.000
Class :character	1st Qu.:2.000	1st Qu.:2.000
Mode :character	Median :3.000	Median :4.000
	Mean :3.498	Mean :2.932
	3rd Qu.:5.000	3rd Qu.:4.000
	Max. :6.000	Max. :4.000

Benefit.per.	.order Sale	s.per.customer	Delivery.Status	Late_delivery_risk
Min. :-427	74.98 Min	: 7.49	Length: 180519	Min. :0.0000
1st Qu.:	7.00 1st	Qu.: 104.38	Class :character	1st Qu.:0.0000
Median: 3	31.52 Med	an : 163.99	Mode :character	Median :1.0000
Mean : 2	21.98 Mean	: 183.11		Mean :0.5483
3rd Qu.: 6	64.80 3rd	Qu.: 247.40		3rd Qu.:1.0000
Max. : 91	11.80 Max	:1939.99		Max. :1.0000

Category.Id	Category.Name	Customer.City	Customer.Country
Min. : 2.00	Length: 180519	Length: 180519	Length: 180519
1st Qu.:18.00	Class :character	Class :character	Class :character
Median :29.00	Mode :character	Mode :character	Mode :character
M 21 0F			

Mean :31.85 3rd Qu::45.00 Max. :76.00

Customer.Email	Customer.Fname	Customer.Id	Customer.Lname
Length:180519	Length: 180519	Min. : 1	Length: 180519
Class :character	Class :character	1st Qu.: 3258	Class :character
Mode :character	Mode :character	Median : 6457	Mode :character
		Mean : 6691	

3rd Qu.: 9779 Max. :20757 Length:180519 Length:180519 Length:180519 Length:180519
Class:character Class:character Class:character Mode:character Mode:ch

```
Customer.Zipcode Department.Id Department.Name Latitude Min.: 603 Min.: 2.000 Length:180519 Min.:-33.94
1st Qu.: 725    1st Qu.: 4.000    Class: character    1st Qu.: 18.27

      Median :19380
      Median : 5.000
      Mode :character
      Median : 33.14

      Mean :35921
      Mean : 5.443
      Mean : 29.72

      3rd Qu.:78207
      3rd Qu.: 7.000
      3rd Qu.: 39.28

      Max. :99205
      Max. :12.000
      Max. : 48.78

NA's :3
Longitude Market Order.City Order.Country
Min. :-158.03 Length:180519 Length:180519 Length:180519
1st Qu.: -98.45 Class :character Class :character Class :character
Median: -76.85 Mode: character Mode: character Mode: character
Mean : -84.92
3rd Qu.: -66.37
Max. : 115.26
Order.Customer.Id order.date..DateOrders. Order.Id
Min. : 1 Length:180519 Min. : 1
1st Qu.: 3258 Class :character Median : 6457 Mode :character
                                                                              1st Qu.:18057
                                                                             Median :36140
Mean : 6691
                                                                               Mean :36222
3rd Qu.: 9779
                                                                                3rd Qu.:54144
Max. :20757
                                                                                Max. :77204
Order.Item.Cardprod.Id Order.Item.Discount Order.Item.Discount.Rate

      Min.
      : 19.0
      Min.
      : 0.00
      Min.
      : 0.0000

      1st Qu.:
      403.0
      1st Qu.:
      5.40
      1st Qu.:
      0.0400

      Median:
      627.0
      Median:
      14.00
      Median:
      0.1000

      Mean:
      692.5
      Mean:
      20.66
      Mean:
      0.1017

      3rd Qu.:
      1004.0
      3rd Qu.:
      29.99
      3rd Qu.:
      0.1600

      Max.:
      1363.0
      Max.:
      :500.00
      Max.:
      :0.2500

Order.Item.Id Order.Item.Product.Price Order.Item.Profit.Ratio
Min. : 1 Min. : 9.99 Min. :-2.7500

      1 st Qu: 45130
      1 st Qu: 50.00
      1 st Qu: 0.0800

      Median: 90260
      Median: 59.99
      Median: 0.2700

      Mean: 90260
      Mean: 141.23
      Mean: 0.1206

      3rd Qu: 135390
      3rd Qu: 199.99
      3rd Qu: 0.3600

      Max.: 180519
      Max.: 1999.99
      Max.: 0.5000

Order.Item.Quantity Sales Order.Item.Total Order.Profit.Per.Order

      Order.Item.Quantity
      Sales
      Order.Item.Total
      Order.Profit.Per.

      Min. :1.000
      Min. : 9.99
      Min. : 7.49
      Min. : -4274.98

      1st Qu:1.000
      1st Qu: 119.98
      1st Qu: 104.38
      1st Qu: 7.00

      Median :1.000
      Median : 199.92
      Median : 163.99
      Median : 31.52

      Mean :2.128
      Mean : 203.77
      Mean : 183.11
      Mean : 21.98

      3rd Qu:3.000
      3rd Qu: 299.95
      3rd Qu: 247.40
      3rd Qu: 64.80

      Max. :5.000
      Max. :1999.99
      Max. :1939.99
      Max. : 911.80

Order.Region Order.State Order.Status Order.Zipcode Length:180519 Length:180519 Min. : 1040
Mode :character Mode :character Median :59405
                                                                                                             Mean :55426
                                                                                                             3rd Qu.:90008
                                                                                                             Max. :99301
                                                                                                             NA's :155679
 Product.Card.Id Product.Category.Id Product.Description Product.Image
Min. : 19.0 Min. : 2.00 Mode:logical Length:180519
```

NA's:180519

Class : character

1st Qu.: 403.0 1st Qu.:18.00

```
Median: 627.0 Median: 29.00
                                                       Mode :character
Mean : 692.5 Mean :31.85
3rd Qu.:1004.0 3rd Qu.:45.00
Max. :1363.0 Max. :76.00
Product.Name Product.Price Product.Status shipping.date..DateOrders. Length:180519 Min.: 9.99 Min.:0 Length:180519
Class :character 1st Qu.: 50.00 1st Qu.:0
                                                 Class :character
Mode :character Median : 59.99 Median :0
                                                 Mode :character
                 Mean : 141.23 Mean :0
                  3rd Qu.: 199.99 3rd Qu.:0
                  Max. :1999.99 Max. :0
Shipping.Mode
Length: 180519
Class : character
Mode :character
```

```
In [10]: # Total number of missing values in the dataset
         sum(is.na(df))
```

336201

```
In [11]: # Count missing values column-wise
         colSums(is.na(df))
```

Type: 0 Days.for.shipping..real.: 0 Days.for.shipment..scheduled.: 0 Benefit.per.order: 0 Sales.per.customer: 0 Delivery.Status: 0 Late_delivery_risk: 0 Category.Id: 0 Category.Name: 0 Customer.City: 0 Customer.Country: 0 Customer.Email: 0 Customer.Fname: 0 Customer.Id: 0 Customer.Lname: 0 Customer.Password: 0 Customer.Segment: 0 Customer.State: 0 Customer.Street: 0 Customer.Zipcode: 3 Department.Id: 0 Department.Name: 0 Latitude: 0 Longitude: 0 Market: 0 Order.City: 0 Order.Country: 0 Order.Customer.Id: 0 order.date..DateOrders.: 0 Order.Id: 0 Order.Item.Cardprod.Id: 0 Order.Item.Discount: 0 Order.Item.Discount.Rate: 0 Order.Item.Id: 0 Order.Item.Product.Price: 0 Order.Item.Profit.Ratio: 0 Order.Item.Quantity: 0 Sales: 0 Order.Item.Total: 0 Order.Profit.Per.Order: 0 Order.Region: 0 Order.State: 0 Order.Status: 0 Order.Zipcode: 155679 Product.Card.Id: 0 Product.Category.Id: 0 Product.Description: 180519 Product.Image: 0 Product.Name: 0 Product.Price: 0 Product.Status: 0 shipping.date..DateOrders.: 0 Shipping.Mode: 0

```
In [12]: print(sum(df$Order.Profit.Per.Order == df$Benefit.per.order))
        print(sum(df$Sales == df$Product.Price))
         print(sum(df$Order.Item.Product.Price == df$Product.Price))
         print(sum(df$Sales.per.customer == df$Order.Item.Total))
        print(sum(df$Sales.per.customer == df$Product.Price))
         # we can also use cor()
         cor(df$Order.Profit.Per.Order, df$Benefit.per.order)
         cor(df$Sales, df$Product.Price)
         [1] 180519
        [1] 99134
         [1] 180519
        [1] 180519
        [1] 5486
        1
        0.789948201311386
```

In [13]: # Remove useless columns

```
df <- df |>
select (-Customer. Email,
       -Customer.Password,
       -Product.Image,
       -Category.Id,
       -Customer.Fname,
       -Customer.Lname,
       -Customer.Zipcode,
       -Department.Id,
       -Order.Customer.Id,
       -Customer.Id,
       -Order.Id,
      -Order.Item.Cardprod.Id,
       -Order.Item.Id,
       -Order.Zipcode,
       -Product.Card.Id,
       -Product.Category.Id,
       -Product.Description,
       -Order.Item.Product.Price,
       -Order.Item.Total,
       -Benefit.per.order)
```

In [14]: glimpse(df)

```
Rows: 180,519
Columns: 33
                                <chr> "DEBIT", "TRANSFER", "CASH", "DEBIT", "P...
$ Type
                               <int> 3, 5, 4, 3, 2, 6, 2, 2, 3, 2, 6, 5, 4, 2...
$ Days.for.shipping..real.
$ Days.for.shipment..scheduled. <int> 4, 4, 4, 4, 4, 4, 1, 1, 2, 1, 2, 2, 2, 1...
                               <dbl> 314.64, 311.36, 309.72, 304.81, 298.25, ...
$ Sales.per.customer
$ Delivery.Status
                                <chr> "Advance shipping", "Late delivery", "Sh...
                                <int> 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1...
$ Late delivery risk
                                <chr> "Sporting Goods", "Sporting Goods", "Spo...
$ Category.Name
                               <chr> "Caguas", "Caguas", "San Jose", "Los Ang...
$ Customer.City
                               <chr> "Puerto Rico", "Puerto Rico", "EE. UU.",...
$ Customer.Country
                                <chr> "Consumer", "Consumer", "Consumer", "Hom...
$ Customer.Segment
                                <chr> "PR", "PR", "CA", "CA", "PR", "NY", "PR"...
$ Customer.State
                                <chr> "5365 Noble Nectar Island", "2679 Rustic...
$ Customer.Street
                                <chr> "Fitness", "Fitness", "Fitness", "Fitness...
$ Department.Name
                                <dbl> 18.25145, 18.27945, 37.29223, 34.12595, ...
$ Latitude
$ Longitude
                                <dbl> -66.03706, -66.03706, -121.88128, -118.2...
$ Market
                                <chr> "Pacific Asia", "Pacific Asia", "Pacific...
                                <chr> "Bekasi", "Bikaner", "Bikaner", "Townsvi...
$ Order.City
                                <chr> "Indonesia", "India", "India", "Australi...
$ Order.Country
                               <chr> "1/31/2018 22:56", "1/13/2018 12:27", "1...
$ order.date..DateOrders.
$ Order.Item.Discount
                                <dbl> 13.11, 16.39, 18.03, 22.94, 29.50, 32.78...
$ Order.Item.Discount.Rate
                                <dbl> 0.04, 0.05, 0.06, 0.07, 0.09, 0.10, 0.12...
                                <dbl> 0.29, -0.80, -0.80, 0.08, 0.45, 0.06, 0....
$ Order.Item.Profit.Ratio
$ Order.Item.Quantity
                                $ Sales
                                <dbl> 327.75, 327.75, 327.75, 327.75, 327.75, ...
                                <dbl> 91.25, -249.09, -247.78, 22.86, 134.21, ...
$ Order.Profit.Per.Order
                                <chr> "Southeast Asia", "South Asia", "South A...
$ Order.Region
$ Order.State
                                <chr> "Java Occidental", "Rajast\xe1n", "Rajas...
                                <chr> "COMPLETE", "PENDING", "CLOSED", "COMPLE...
$ Order.Status
                                <chr> "Smart watch ", "Smart watch ", "Smart w...
$ Product.Name
$ Product.Price
                                <dbl> 327.75, 327.75, 327.75, 327.75, 327.75, ...
$ Product.Status
                                <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
                               <chr> "2/3/2018 22:56", "1/18/2018 12:27", "1/...
$ shipping.date..DateOrders.
                                <chr> "Standard Class", "Standard Class", "Sta...
$ Shipping.Mode
```

In [15]: sum(is.na(df))

0

```
colSums(is.na(df))
```

Type: 0 Days.for.shipping..real.: 0 Days.for.shipment..scheduled.: 0 Sales.per.customer: 0

Delivery.Status: 0 Late_delivery_risk: 0 Category.Name: 0 Customer.City: 0 Customer.Country: 0

Customer.Segment: 0 Customer.State: 0 Customer.Street: 0 Department.Name: 0 Latitude: 0

Longitude: 0 Market: 0 Order.City: 0 Order.Country: 0 order.date..DateOrders.: 0 Order.Item.Discount: 0

Order.Item.Discount.Rate: 0 Order.Item.Profit.Ratio: 0 Order.Item.Quantity: 0 Sales: 0

Order.Profit.Per.Order: 0 Order.Region: 0 Order.State: 0 Order.Status: 0 Product.Name: 0 Product.Price:

0 Product.Status: 0 shipping.date..DateOrders.: 0 Shipping.Mode: 0

```
In [17]: # Identify duplicate
duplicates <- duplicated(df)

In [18]: # View duplicate
df[duplicates, ]</pre>
```

```
In [19]: # Count the number of duplicate
    sum(duplicates)
```

0

```
In [20]: # Removing duplicates if any
    df <- distinct(df)</pre>
```

Date transformation and calculate shipping duration

We'll convert **order.date..DateOrders**. and **shipping.date..DateOrders**. into a proper Date format and calculate the shipping duration (in days). Finally, we'll analyze the shipping duration to understand delivery trends.

What we need to know:

- How long does it take to ship an order?
- Explore any delay patterns in shipping compared to the scheduled time.

Summary:

- Date columns have been converted for analysis.
- Shipping duration is now calculated for further exploration.tion.

```
In [21]: # Convert date columns and calculate shipping duration
    df$order_date <- mdy_hms(df$order.date..DateOrders.)
    df$shipping_date <- mdy_hms(df$shipping.date..DateOrders.)

# Calculate shipping duration
    df$shipping_duration <- as.numeric(difftime(df$shipping_date, df$order_date, units = "da")</pre>
```

```
summary(df$shipping duration)
             Min.
                    1st Qu.
                               Median
                                          Mean
                                                   3rd Qu.
                                                               Max.
        -364.9667
                    2.0000
                               3.0000
                                          0.4836 5.0000
                                                              7.0000
In [23]: # Find rows with negative or NA shipping durations
         anomalies <- df %>% filter(is.na(shipping duration) | shipping duration < 0)
        print(anomalies)
         # A tibble: 1,490 \times 36
           Type
                    Days.for.shipping..real. Days.for.shipment..sch...¹ Sales.per.customer
           <chr>
                                        <int>
                                                                 <int>
         1 PAYMENT
                                            5
                                                                     2
                                                                                      87
         2 TRANSFER
                                                                                     200
         3 DEBIT
                                            3
                                                                                     123.
         4 DEBIT
                                            6
                                                                     4
                                                                                     197.
         5 PAYMENT
                                           5
                                                                     2
                                                                                     255.
         6 PAYMENT
                                           5
                                                                     2
                                                                                     192
         7 TRANSFER
                                           5
                                                                                     230.
                                                                     4
         8 DEBIT
                                           5
                                                                     4
                                                                                     118.
         9 DEBIT
                                           5
                                                                     4
                                                                                    117.
        10 DEBIT
                                                                     4
                                                                                    113.
        # i 1,480 more rows
        # i abbreviated name: ¹Days.for.shipment..scheduled.
         # i 32 more variables: Delivery.Status <chr>, Late delivery risk <int>,
            Category.Name <chr>, Customer.City <chr>, Customer.Country <chr>,
           Customer.Segment <chr>, Customer.State <chr>, Customer.Street <chr>,
         # Department.Name <chr>, Latitude <dbl>, Longitude <dbl>, Market <chr>,
         # Order.City <chr>, Order.Country <chr>, order.date..DateOrders. <chr>, ...
In [24]: # Load ggplot2 for visualization
         library(ggplot2)
         # Histogram of shipping duration
         ggplot(df, aes(x = shipping duration)) +
          geom histogram(binwidth = 1, fill = "blue", color = "black", alpha = 0.7) +
           labs(title = "Distribution of Shipping Duration", x = "Shipping Duration (days)", y =
          theme minimal()
         # Boxplot of shipping duration
         ggplot(df, aes(y = shipping duration)) +
          geom boxplot(fill = "orange", color = "black") +
          labs(title = "Boxplot of Shipping Duration", y = "Shipping Duration (days)") +
          theme minimal()
```

In [22]: # Summary statistics of shipping duration


```
In [25]: # Average shipping duration by region
    region_shipping <- df %>%
        group_by(Order.Region) %>%
        summarise(avg_shipping_duration = mean(shipping_duration, na.rm = TRUE))

print(region_shipping)

# Plot average shipping duration by region
ggplot(region_shipping, aes(x = reorder(Order.Region, avg_shipping_duration), y = avg_sh
        geom_bar(stat = "identity", fill = "purple", color = "black") +
        labs(title = "Average Shipping Duration by Region", x = "Region", y = "Average Shippin
        theme_minimal() +
        coord_flip()
```

A tibble: 23 \times 2

	Order.Region	avg_shipping_duration
	<chr></chr>	<dbl></dbl>
1	Canada	-3.92
2	Caribbean	3.53
3	Central Africa	-6.26
4	Central America	3.53
5	Central Asia	-3.86
6	East Africa	-4.78
7	East of USA	3.50
8	Eastern Asia	-6.12
9	Eastern Europe	-3.59
10	North Africa	-5.24

i 13 more rows Average Shipping Duration by Region

Explore Categorical Variables

We will analyze the distribution of important categorical variables like **Type**, **Delivery.Status**, and **Shipping.Mode** to understand the nature of the transactions and deliveries.

What we need to know:

- What types of transactions are most common?
- What are the most frequent delivery statuses and shipping modes?

Summary:

- Most transactions are of type "DEBIT".
- Delivery status is mostly in "Late delivery."
- "Standard Class" is the most common shipping mode.

Summarize and visualize the distribution of transaction types.

Analyze the most frequent delivery statuses.

```
# Summary of delivery status
In [28]:
         delivery status summary <- df %>%
          group by(Delivery.Status) %>%
          summarise(count = n()) %>%
          mutate(percentage = round((count / sum(count)) * 100, 2))
        print(delivery status summary)
         # Bar plot for delivery status
        ggplot(delivery status summary, aes(x = reorder(Delivery.Status, -count), y = count, fil
          geom bar(stat = "identity", show.legend = FALSE) +
          labs(title = "Distribution of Delivery Status", x = "Delivery Status", y = "Count") +
          theme minimal()
        \# A tibble: 4 \times 3
          Delivery.Status
                           count percentage
          <chr>
                            <int>
                                       <dbl>
        1 Advance shipping 41592
                                       23.0
        2 Late delivery
                            <u>98</u>977
                                       54.8
        3 Shipping canceled 7754
                                        4.3
        4 Shipping on time 32196
                                        17.8
```


Understand the most frequent shipping modes.

```
# Summary of shipping modes
In [29]:
        shipping mode summary <- data %>%
          group by (Shipping.Mode) %>%
          summarise(count = n()) %>%
          mutate(percentage = round((count / sum(count)) * 100, 2))
        print(shipping mode summary)
         # Bar plot for shipping modes
        ggplot(shipping mode summary, aes(x = reorder(Shipping.Mode, -count), y = count, fill =
          geom bar(stat = "identity", show.legend = FALSE) +
          labs(title = "Distribution of Shipping Modes", x = "Shipping Mode", y = "Count") +
          theme minimal()
        \# A tibble: 4 \times 3
          Shipping.Mode count percentage
          <chr>
                          <int>
                                     <dbl>
```


Summary Statistics for Numeric Columns

Next, we will generate summary statistics for numeric variables, such as Benefit.per.order, Sales.per.customer, and Order.Item.Discount.

We need to know:

- What are the ranges and typical values for these numeric variables?
- Are there any interesting patterns in the benefit per order and sales per costomer?

Summary:

Mean : 21.98

- Most benefits per order are positive, but there are outliers with negative benefits.
- Sales per customer vary widely, with some customers generating significantly higher sales.

Mean : 183.11 Mean : 20.66

```
Max. : 911.80
                               Max. :1939.99 Max. :500.00
In [31]: library(gridExtra)
         # Selecting the numeric columns from the dataset
         numeric vars <- data %>%
          select(Days.for.shipping..real., Days.for.shipment..scheduled., Benefit.per.order,
                  Sales.per.customer, Order.Item.Discount, Order.Item.Discount.Rate,
                  Order.Item.Product.Price, Order.Item.Profit.Ratio, Order.Item.Quantity,
                 Sales, Order.Item.Total, Order.Profit.Per.Order)
         # Create a list to store histogram plots
        hist plots <- list()</pre>
         # Loop through numeric variables and create histograms
         for (var in colnames(numeric vars)) {
          hist plots[[var]] <- ggplot(data, aes string(x = var)) +
             geom density(fill = FILL COLOR, alpha = 0.8) +
            labs(x = var,
                 y = "Count") +
             theme minimal (base size = 14) +
             theme(plot.title = element text(hjust = 0.5, face = "bold", size = 16),
                  axis.title.x = element text(face = "bold"),
                  axis.title.y = element text(face = "bold"),
                  axis.text = element text(color = "black"))
         # Arrange histograms side by side
         grid.arrange(grobs = hist plots, ncol = 2) # Change ncol to adjust the number of column
        Attaching package: 'gridExtra'
        The following object is masked from 'package:dplyr':
            combine
```

3rd Qu.: 64.80 3rd Qu.: 247.40 3rd Qu.: 29.99

Exploring Correlations Between Numeric Variables

We will explore the correlations between numeric variables to identify relationships. This will help understand how variables such as Benefit.per.order and Sales.per.customer are related.

```
In [32]: # Select numeric columns
   numeric_cols <- df %>%
   select_if(is.numeric)

# compute the correlation matrix
   cor_matrix <- cor(numeric_cols, use="complete.obs")

# plot the correlation matrix
   corrplot(cor_matrix,method ="color", type = "upper", t1.cex = 0.8)</pre>
```


Lets Q/A some business questions

1. Which category has the most frequent late deliveries?

• Answer: Cleats, Men's footwear, Women's Apparel etc.. has the most frequent late deliveries.

1. Which countries have the highest average sales per customer?

```
In [34]: # Summarizing average sales by country
sales_by_country <- df %>%
    group_by(Customer.Country) %>%
    summarise(avg_sales = mean(Sales.per.customer, na.rm = TRUE))

# Plotting the data with a heatmap effect
ggplot(sales_by_country, aes(x = reorder(Customer.Country, -avg_sales), y = avg_sales, f
    geom_bar(stat = "identity") +
    geom_text(aes(label = round(avg_sales, 2)), vjust = -0.5) +
    labs(title = "Average Sales per Customer by Country", y = "Average Sales", x = "Custom
    scale_fill_gradient(low = "#AEC6CF", high = "#1E3E62") + # Heatmap effect with gradie
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    theme_minimal() +
    theme(legend.position = "none")
```


Answer: I think there is one country EE. UU. EE UU is the Spanish acronym for Estados Unidos or
United States and Puerto Rico is a Caribbean island and unincorporated U.S. territory with a
landscape of mountains,. Spanish often doubles the letters to indicate a plural acronym. And they
almost equal.

Customer Country

EE, UU.

Customer Analysis

Customer analysis is a critical component in understanding business performance and making informed decisions. It involves examining customer behavior, segmentation, profitability, and preferences.

1. Which customer segment contributes the most to profit?

Puerto Rico

```
In [35]: # Create the customer_profit dataframe
    customer_profit <- df %>%
        group_by(Customer.Segment) %>%
        summarise(total_profit = sum(Order.Profit.Per.Order, na.rm = TRUE))

# Plot with a heatmap effect using a gradient
ggplot(customer_profit, aes(x = Customer.Segment, y = total_profit, fill = total_profit)
        geom_bar(stat = "identity") +
        geom_text(aes(label = paste("$", round(total_profit, 2), sep='')), vjust = -0.5) +
        labs(title = "Total Profit by Customer Segment", y = "Total Profit", x = "Customer Seg
        scale_fill_gradient(low = "#AEC6CF", high = "#1E3E62") + # Heatmap effect with gradie
        theme_minimal()
```


• Answer: the most customer seg contributes to profit is **Consumer**.

1. Average sales per customer in each segment?

```
In [36]: ## Summarizing average sales by customer segment
segment_sales <- df %>%
    group_by(Customer.Segment) %>%
    summarise(avg_sales = mean(Sales.per.customer, na.rm = TRUE))

# Plotting the data with a heatmap effect
ggplot(segment_sales, aes(x = Customer.Segment, y = avg_sales, fill = avg_sales)) +
    geom_bar(stat = "identity") +
    geom_text(aes(label = round(avg_sales, 2)), vjust = -0.5) +
    labs(title = "Average Sales per Customer by Segment", y = "", x = "") +
    scale_fill_gradient(low = "#AEC6CF", high = "#1E3E62") + # Heatmap effect with gradie
    theme_minimal() +
    theme(axis.text.x = element_text(hjust = 1, size = 15)) +
    theme(legend.position = "none")
```


Geographic Analysis of Customers

Customers' geographical distribution can be analyzed by their location attributes like city, state, or country.

1. Which states have the highest sales per customer?

```
In [37]: # Step 1: Create a conversion table for state abbreviations and full names
         state abbreviations <- data.frame(</pre>
          state = tolower(c(state.name, "puerto rico")), # Add "Puerto Rico" to U.S. state name
          abb = c(state.abb, "PR") # Add "PR" abbreviation for Puerto Rico
         # Step 2: Summarizing average sales per customer by state
         # Merge the conversion table with your data to get full state names
        state sales <- df %>%
          left join(state abbreviations, by = c("Customer.State" = "abb")) %>% # Convert abbrev
          group by(state) %>% # Group by the full state name now
          summarise(avg sales = mean(Sales.per.customer, na.rm = TRUE)) %>%
          arrange(desc(avg sales)) # Order states by average sales
         # Step 3: Create a lollipop chart
         ggplot(state sales, aes(x = reorder(state, avg sales), y = avg sales)) +
          geom segment (aes (x = reorder(state, avg sales), xend = reorder(state, avg sales),
                           y = 0, yend = avg sales), color = "gray") + # Lollipop stick
          geom point(color = FILL COLOR, size = 4) + # Lollipop circle
          geom_text(aes(label = round(avg_sales, 2)), hjust = -0.3, size = 3) + # Add text label
          labs(title = "Average Sales per Customer by State", y = "Average Sales", x = "State")
          coord flip() + # Flip the chart for better readability
```

```
theme_minimal() +
theme(
  axis.text.y = element_text(size = 8),  # Adjust y-axis text size for readability
  axis.title.x = element_text(size = 10, face = "bold"),  # Bold x-axis title
  axis.title.y = element_text(size = 10, face = "bold"),  # Bold y-axis title
  plot.title = element_text(size = 12, face = "bold", hjust = 0.5)  # Title centered a
)
```


• Answer: **Alabama** state is the highest sales per customer.

Customer Retention and Delivery Performance

Analyze how late delivery risk impacts customer segments or geographic areas. This is essential for improving service quality and customer satisfaction..

1. Which customer segments have the highest late delivery risk?

```
In [38]: # Calculate average late delivery risk by customer segment
segment_late_risk <- df %>%
    group_by(Customer.Segment) %>%
    summarise(late_risk = mean(Late_delivery_risk, na.rm = TRUE)) %>%
    ungroup()

# Plotting the average late delivery risk with a heatmap effect
ggplot(segment_late_risk, aes(x = Customer.Segment, y = late_risk, fill = late_risk)) +
    geom_bar(stat = "identity") +
    geom_text(aes(label = scales::percent(late risk, accuracy = 0.01)), vjust = -0.5) + #
```

```
labs(title = "Late Delivery Risk by Customer Segment",
    y = "Average Late Risk (%)", # Updated y-axis label
    x = "") +
scale_y_continuous(labels = scales::percent) + # Formatting y-axis as percentage
scale_fill_gradient(low = "#AEC6CF", high = "#1E3E62") + # Heatmap effect with gradie
theme_minimal() +
theme(axis.text.x = element_text(hjust = 1, size = 15)) +
theme(
   legend.position = "none"
)
```


• Answer: **home office** have the highest late delivery risk.

Customer Profitability

Understanding how much profit each customer generates is essential to focus on high-value customers.

1. Find Top 10 customer cities by total profit?

```
In [39]: # Create a palette based on the base color #1E3E62
base_color <- "#1E3E62"
palette <- colorRampPalette(c(base_color, "#AEC6CF", "#D9EAD3", "#FFE599", "#B6D7A8"))(1

# Create the top_customers dataframe
top_customers <- df %>%
    group_by(Customer.City) %>%
    summarise(total_profit = sum(Order.Profit.Per.Order, na.rm = TRUE)) %>%
```

```
arrange(desc(total_profit)) %>%
head(10)

# Plot with a heatmap effect using a gradient
ggplot(top_customers, aes(x = reorder(Customer.City, -total_profit), y = total_profit, f
   geom_bar(stat = "identity") +
   geom_text(aes(label = round(total_profit, 2)), vjust = -0.5) +
   labs(title = "Top 10 Customer Cities by Total Profit", y = "", x = "") +
   scale_fill_gradient(low = "#AEC6CF", high = base_color) + # Heatmap effect with gradi
   theme_minimal() +
   theme(axis.text.x = element_text(hjust = 0.5, size = 14))
```


Product Analysis

Product analysis helps businesses understand the performance of their products and identify opportunities for improvement or expansion.

1. Find Top 10 Categories by Profit.

```
In [40]: options(repr.plot.width = 20, repr.plot.height = 12)

# Summarize profit by category and limit to top 10
category_profit <- df %>%
    group_by(Category.Name) %>%
    summarize(Total_Profit = sum(Order.Profit.Per.Order, na.rm = TRUE)) %>%
    arrange(desc(Total_Profit)) %>%
    head(10) # Limit to top 10
```


1. Find Top 10 Products by Sales.

```
In [41]: options(repr.plot.width = 18, repr.plot.height = 12)
         # Summarize total sales by product and limit to top 10
         product sales <- df %>%
          group by (Product.Name) %>%
          summarize(Total Sales = sum(Sales, na.rm = TRUE)) %>%
          arrange(desc(Total Sales)) %>%
          head(10) # Limit to top 10
         # Plot top 10 products by sales with numbers inside bars
         ggplot(product sales, aes(x = reorder(Product.Name, Total Sales), y = Total Sales)) +
          geom_bar(stat = "identity", fill = FILL COLOR) + # Custom color
          geom text(aes(label = scales::dollar(Total Sales, prefix = "$", accuracy = 1)), hjust
          coord flip() +
          theme minimal(base size = 15) + # Modern theme
          labs(title = "Top 10 Products by Sales",
               x = "",
                y = "") +
           theme(plot.title = element text(hjust = 0.5, face = "bold", size = 20),
                 axis.title.x = element text(face = "bold"),
```


1. Find Total Profit by Customer City.

```
In [42]: library(leaflet)
         library(htmltools)
         # Step 1: Prepare the customer location data
         location data <- df %>%
           select(Customer.City, Customer.Country, Latitude, Longitude, Order.Profit.Per.Order) %
          group by (Customer.City, Customer.Country, Latitude, Longitude) %>%
          summarize(Total Profit = sum(Order.Profit.Per.Order, na.rm = TRUE)) %>%
           ungroup()
         # Step 2: Create a color palette based on profit bins
         mybins <- quantile(location data$Total Profit, probs = seq(0, 1, by = 0.2), na.rm = TRUE
         mypalette <- colorBin(palette = "YlOrBr", domain = location data$Total Profit, na.color
         # Step 3: Prepare the text for tooltips
         mytext <- paste0(</pre>
          "<strong>City: </strong>", location data$Customer.City, "<br/>",
           "<strong>Country: </strong>", location data$Customer.Country, "<br/>",
          "<strong>Total Profit: </strong>$", round(location data$Total Profit, 2)
         ) %>% lapply(htmltools::HTML)
         # Step 4: Create the leaflet map
         interactive map <- leaflet(location data) %>%
           addTiles() %>%
           setView(lat = mean(location data$Latitude, na.rm = TRUE),
                   lng = mean(location data$Longitude, na.rm = TRUE),
                   zoom = 2) %>%
           addProviderTiles("Esri.WorldImagery") %>%
```

```
addCircleMarkers(~Longitude, ~Latitude,
    fillColor = ~mypalette(Total_Profit), fillOpacity = 0.7, color = "white", radius = 8
    label = mytext,
    labelOptions = labelOptions(
        style = list("font-weight" = "normal", padding = "3px 8px"),
        textsize = "13px", direction = "auto"
    )
) %>%
    addLegend(
    pal = mypalette, values = ~Total_Profit,
        opacity = 0.9, title = "Total Profit",
        position = "bottomright"
)

# Step 5: Display the interactive map
interactive_map
```

```
`summarise()` has grouped output by 'Customer.City', 'Customer.Country', 'Latitude'. You can override using the `.groups` argument.
```

1. Find Top 10 Products by Quantity Ordered.

```
In [43]: # Group by Product Name and calculate total quantity
        top products <- df %>%
         group by (Product.Name) %>%
          summarise(Total.Quantity = sum(Order.Item.Quantity, na.rm = TRUE)) %>% # Handle NA va
          arrange(desc(Total.Quantity)) %>%
          slice head(n = 10) # Use slice head() instead of head() for consistency with dplyr sy
         # Create a bar plot using ggplot2
        ggplot(top products, aes(x = reorder(Product.Name, Total.Quantity), y = Total.Quantity))
          geom bar(stat = "identity", fill = FILL COLOR) + # Bar color
          geom text(aes(label = Total.Quantity), hjust = -0.1, size = 5, color = "black") + # A
          coord flip() + # Flip coordinates for better readability
          labs(
            title = "Top 10 Products by Quantity Ordered",
           x = "Product Name",
            y = "Total Quantity Ordered"
          ) +
```

```
theme_minimal() +
theme(
  plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), # Center-align ti
  axis.text.y = element_text(size = 10), # Adjust y-axis text size
  axis.text.x = element_text(size = 10), # Adjust x-axis text size
  axis.title = element_text(size = 12) # Adjust axis title size
)
```


1. Find Top 10 Products with Highest Late Delivery Risk.

```
In [44]: # Define fill color for the bar plot
         FILL COLOR <- "firebrick"
         # Group by Product Name and calculate late delivery statistics
         top risk products <- df %>%
          group by (Product.Name) %>%
          summarise(
            Total.Orders = n(),
            Late.Orders = sum(Late delivery risk, na.rm = TRUE) # Handle potential NA values in
          mutate(Percent.Late.Risk = (Late.Orders / Total.Orders) * 100) %>%
          arrange(desc(Percent.Late.Risk)) %>%
          slice head(n = 10) # Select top 10 products
         # Visualize the top products with late delivery risk percentages
         ggplot(top risk products, aes(x = reorder(Product.Name, Percent.Late.Risk), y = Percent.
          geom bar(stat = "identity", fill = FILL COLOR, width = 0.7) + # Add width for better
          geom text (
            aes(label = paste0(round(Percent.Late.Risk, 1), "%")),
            hjust = -0.2, size = 5, color = "black"
          ) + # Show percentage labels outside the bars
          coord flip() + # Flip coordinates for better readability
          labs(
            title = "Top 10 Products with Highest Late Delivery Risk",
```

```
x = "Product Name",
y = "Late Delivery Risk (%)"
) +
theme_minimal() +
theme(
  plot.title = element_text(hjust = 0.5, face = "bold", size = 16),
  axis.title.x = element_text(size = 12, face = "bold"),
  axis.title.y = element_text(size = 12, face = "bold"),
  axis.text = element_text(size = 10),
  plot.margin = unit(c(1, 1, 1, 1), "cm") # Ensure enough margin for labels
)
```


1. Find the most shipping duration of products.

```
# Define the color for the bars
In [45]:
         FILL COLOR <- "steelblue"
         # Filter data for valid shipping durations
         filtered df <- df %>%
           filter(shipping duration >= 0) # Exclude negative durations, if any
         # Calculate the average shipping duration by product
         top shipping duration <- filtered df %>%
          group by (Product.Name) %>%
          summarise(Avg.Shipping.Duration = mean(shipping duration, na.rm = TRUE)) %>% # Handle
          arrange (desc (Avg. Shipping. Duration)) %>% # Sort by highest average shipping duration
          slice head(n = 10) # Select the top 10 products
         # Visualize the average shipping duration for the top products
         ggplot(top shipping duration, aes(x = reorder(Product.Name, Avg.Shipping.Duration), y =
          geom bar(stat = "identity", fill = FILL COLOR, width = 0.7) + # Adjust bar width
            aes(label = round(Avg.Shipping.Duration, 1)),
            hjust = -0.2, size = 5, color = "black"
```

```
) + # Add average shipping duration as labels
coord_flip() + # Flip coordinates for better readability
labs(
   title = "Average Shipping Duration (Days) for Top 10 Products",
   x = "Product Name",
   y = "Average Shipping Duration (Days)"
) +
theme_minimal() +
theme(
   plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
   axis.title.x = element_text(size = 12),
   axis.title.y = element_text(size = 12),
   axis.text.y = element_text(size = 10),
   axis.text.x = element_text(size = 10),
   plot.margin = unit(c(1, 1, 1, 1), "cm") # Ensure proper margins
)
```


1. Find the Distribution of Sales by Product Status.

```
In [46]: # Boxplot of Sales by Product Status
ggplot(df, aes(x = Product.Status, y = Sales)) +
    geom_boxplot(fill = "lightblue", outlier.color = "red", outlier.shape = 16, outlier.si

# Add median labels with improved alignment
stat_summary(
    fun = median,
    geom = "text",
    aes(label = paste("Median:", round(..y.., 2))),
    position = position_nudge(x = 0.25),
    size = 6,
    color = "#FF6600",
    fontface = "bold"
) +
```

```
# Add mean labels for each box
stat summary(
 fun = mean,
  geom = "text",
 aes(label = paste("Mean:", round(..y.., 2))),
 position = position nudge (x = -0.25),
 size = 6,
  color = "#A04747",
 fontface = "bold"
) +
# Add whisker labels (min and max values)
stat summary(
 fun.min = min,
 fun.max = max,
 geom = "text",
 aes(label = round(..y.., 2)),
 position = position nudge(x = 0.35),
 size = 5,
 color = "blue",
 fontface = "italic"
# Titles and labels
 title = "Distribution of Sales by Product Status",
 subtitle = "Median, Mean, and Range Indicated",
 x = "Product Status",
  y = "Sales"
# Enhanced theme for better visualization
theme minimal (base size = 16) +
theme (
 plot.title = element text(face = "bold", size = 20, hjust = 0.5),
 plot.subtitle = element text(size = 14, hjust = 0.5),
 axis.title.x = element text(face = "bold", size = 14),
 axis.title.y = element text(face = "bold", size = 14),
 axis.text.x = element text(size = 12, angle = 45, hjust = 1),
 axis.text.y = element text(size = 12),
 plot.margin = unit(c(1, 1, 1, 1), "cm")
```


Order Regions Analysis

we can explore various questions related to order regions (Order.Region), profit, sales, and delivery risk.

1. Find Sales and Profit by Region.

```
In [47]: region_summary <- df %>%
    group_by(Order.Region) %>%
    summarise(
        Total_Sales = sum(Sales, na.rm = TRUE),
        Avg_Profit_Per_Order = mean(Order.Profit.Per.Order, na.rm = TRUE),
        Total_Late_Delivery_Risk = sum(Late_delivery_risk, na.rm = TRUE)
)

# View the summary table
region_summary
```

A tibble: 23×4

Order.Region	Total_Sales	Avg_Profit_Per_Order	Total_Late_Delivery_Risk
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>
Canada	186861.0	24.92253	468
Caribbean	1651019.3	20.65709	4415
Central Africa	327263.0	19.94470	972
Central America	5665712.1	21.74735	15518
Central Asia	109839.9	23.59002	306
East Africa	376234.9	23.30871	1036

East of USA	1371112.0	22.59773	3849
Eastern Asia	1486401.3	20.24286	3955
Eastern Europe	774266.6	20.33598	2182
North Africa	634752.2	19.98758	1762
Northern Europe	2155830.6	23.84095	5292
Oceania	2016654.2	19.85396	5482
South America	2960881.4	22.44087	8111
South Asia	1553680.9	21.43370	4350
South of USA	785783.9	21.78365	2256
Southeast Asia	1932495.6	22.15566	5297
Southern Africa	228251.6	26.64309	617
Southern Europe	2047918.8	24.47558	5129
US Center	1151355.8	22.26843	3252
West Africa	727951.2	21.65321	1953
West Asia	1174671.8	19.77291	3322
West of USA	1571416.0	20.63564	4313
Western Europe	5894380.8	23.07153	15140

```
In [48]: # Bar Plot for Total Sales by Region
         ggplot(region summary, aes(x = reorder(Order.Region, -Total Sales), y = Total Sales, fil
          geom bar(stat = "identity", width = 0.7) +
          geom text(aes(label = label number(scale = 1e-6, suffix = "M")(Total Sales)),
                     vjust = -0.5, size = 4.5, color = "black") +
          scale fill gradient(low = "#AEC6CF", high = "#FF5733") + # Gradient color for sales
          scale_y_continuous(labels = label number(scale = 1e-6, suffix = "M")) +
          labs(
            title = "Total Sales by Region",
            x = "",
            y = "Total Sales (in Millions)"
          theme minimal (base size = 14) +
          theme (
            plot.title = element text(hjust = 0.5, face = "bold", size = 16),
            axis.text.x = element text(angle = 45, hjust = 1, size = 12),
            axis.text.y = element text(size = 12),
            legend.position = "none"
         # Boxplot for Profit Distribution by Region
         ggplot(df, aes(x = reorder(Order.Region, Order.Profit.Per.Order, FUN = median),
                       y = Order.Profit.Per.Order, fill = Order.Region)) +
          geom boxplot(outlier.colour = "red", outlier.shape = 16, outlier.size = 2) +
          scale fill brewer(palette = "Set3") + # Use a better color palette
          labs(
            title = "Profit Distribution by Region",
            x = "Region",
            y = "Profit Per Order"
          theme minimal(base size = 14) +
            plot.title = element text(hjust = 0.5, face = "bold", size = 16),
            axis.text.x = element text(angle = 45, hjust = 1, size = 12),
```



```
In [49]: # Grouping the data by region and calculating positive and negative profits
        profit summary <- df %>%
          group by (Order.Region) %>%
          summarise(
             Positive Profit = sum(Order.Profit.Per.Order[Order.Profit.Per.Order > 0], na.rm = TR
            Negative Profit = sum(Order.Profit.Per.Order[Order.Profit.Per.Order < 0], na.rm = TR
         # Reshaping the data for plotting
         profit long <- profit summary %>%
          pivot longer (cols = c (Positive Profit, Negative Profit), names to = "Profit Type", val
         # Creating the interactive bar plot
         library(plotly)
         fig <- plot ly(profit long, x = \sim Order.Region, y = \sim Amount, color = \sim Profit Type, type =
                        text = ~Amount, textposition = 'auto') %>%
          layout (
            title = 'Positive and Negative Profits by Region',
             xaxis = list(title = 'Region', tickangle = -45),
            yaxis = list(title = 'Profit Amount'),
            barmode = 'stack', # Stacked bars for clear comparison
             showlegend = TRUE
         # Display the interactive plot
         fiq
```

1. Find the total late delivery risk by region.

```
In [50]: # Summarize the total late delivery risk by region
    region_summary <- df %>%
        group_by(Order.Region) %>%
        summarise(Total_Late_Delivery_Risk = sum(Late_delivery_risk, na.rm = TRUE))

# Calculate the total late delivery risk for all regions
    total_risk <- sum(region_summary$Total_Late_Delivery_Risk)</pre>
```

```
# Calculate percentage late delivery risk for each region
region summary <- region summary %>%
 mutate(Percentage Late Delivery Risk = (Total Late Delivery Risk / total risk) * 100)
# Visualize the Late Delivery Risk by Region
ggplot(region summary, aes(x = reorder(Order.Region, -Percentage Late Delivery Risk),
                            y = Percentage Late Delivery Risk,
                            fill = Percentage Late Delivery Risk)) +
 geom bar(stat = "identity") +
 geom text(aes(label = label percent(accuracy = 0.1)(Percentage Late Delivery Risk / 10
           hjust = 0.5, vjust = -1.8, size = 4.5, color = "black") + # Add percentage
 scale fill gradient(low = "#AEC6CF", high = "darkorange") + # Color gradient for bett
 scale y continuous(labels = label percent(scale = 1)) + # Format the y-axis as percent
 theme minimal() +
 labs(title = "Total Late Delivery Risk by Region",
      x = "Region",
      y = "Late Delivery Risk (%)") +
 theme(axis.text.x = element text(angle = 45, hjust = 0)) # Rotate x-axis labels for b
```


Additional Analysis

1. Find the Distribution of Sales by Delivery Status.

1. Find Distribution of Sales by Delivery Status and Department.

1. Find Profit Ratio per Department Name.

```
In [53]: # Calculate the mean Profit Ratio per Department
department_profit_ratio <- df %>%
    group_by(Department.Name) %>%
    summarise(profit_ratio = mean(Order.Item.Profit.Ratio, na.rm = TRUE)) # Calculate mea

# Create a bar plot for Profit Ratio per Department
ggplot(department_profit_ratio, aes(x = reorder(Department.Name, -profit_ratio), y = pro
    geom_bar(stat = "identity") + # Create a bar for each department
    labs(title = "Profit Ratio per Department", x = "Department Name", y = "Profit Ratio")
    theme_minimal() + # Use a minimal theme for better visuals
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for b
```


Key Insights and Metrics

1. Transaction Types Distribution:

- **CASH**: 10.9% of transactions (19,616).
- **DEBIT**: 38.4% of transactions (69,295).
- **PAYMENT**: 23.1% of transactions (41,725).
- **TRANSFER**: 27.6% of transactions (49,883).
- **Conclusion**: DEBIT transactions are the most common, accounting for nearly 40%, while CASH transactions have the lowest representation.
- **Recommendation**: Focus on optimizing DEBIT transactions by improving customer experiences such as seamless payments and loyalty programs for frequent users.

2. **Delivery Status Analysis**:

- Late Delivery: 54.8% of transactions (98,977) dominate delivery statuses.
- **Advance Shipping**: 23% of transactions (41,592).
- **Shipping Canceled**: 4.3% of transactions (7,754).
- **Shipping on Time**: 17.8% of transactions (32,196).
- **Conclusion**: Late deliveries account for over half of all deliveries, significantly impacting customer satisfaction.
- **Recommendation**: Address late delivery issues by enhancing supply chain efficiency and real-time delivery tracking to improve customer satisfaction.

3. Shipping Modes Distribution:

- **Standard Class**: Most frequently used (59.7% of transactions, 107,752).
- **Second Class**: 19.5% of transactions (35,216).

- **First Class**: 15.4% of transactions (27,814).
- **Same Day**: Least frequent (5.39%, 9,737).
- **Conclusion**: Standard Class is the dominant shipping mode, with Same Day being underutilized.
- **Recommendation**: Increase incentives for premium shipping modes like Same Day to reduce late delivery risks and attract time-sensitive customers.

4. Late Delivery by Category:

- **Top Categories with Late Deliveries**: Cleats (13,496), Men's Footwear (12,121), Women's Apparel (11,478).
- **Conclusion**: Fashion and footwear items face the highest late delivery risks.
- **Recommendation**: Optimize inventory and logistics for these high-risk categories by leveraging predictive demand forecasting and enhancing supplier coordination.

5. Countries with the Highest Average Sales per Customer:

- **Estados Unidos (EE. UU.)**: Average sales of \$183.03.
- **Puerto Rico**: Average sales of \$183.23.
- **Conclusion**: Both EE. UU. and Puerto Rico exhibit high average sales, suggesting strong customer engagement in these regions.
- **Recommendation**: Allocate resources to strengthen customer relationships in these countries through tailored campaigns and exclusive offers.

6. Customer Segment Contribution to Profit:

- **Highest Contributor**: Consumer segment (\$2,073,487.67 in profit).
- **Conclusion**: Consumer customers significantly drive profitability.
- **Recommendation**: Expand personalized marketing strategies and loyalty programs for this segment to maintain and grow profitability.

7. Average Sales per Customer by Segment:

Consumer: \$183.57.Corporate: \$183.08.Home Office: \$181.82.

- **Conclusion**: Consumer customers yield the highest average sales, with Home Office customers slightly lagging.
- **Recommendation**: Focus on boosting sales from Home Office customers through targeted discounts and specialized offerings.

8. States with the Highest Sales per Customer:

- **Top State**: Alabama (\$222.55 per customer).
- **Conclusion**: Alabama demonstrates the highest customer spending, likely due to higher purchasing power or demand for specific products.
- **Recommendation**: Explore similar opportunities in other high-potential states and replicate successful strategies from Alabama.

9. Customer Segments with the Highest Late Delivery Risk:

- **Highest Risk Segment**: Home Office (55.07%).
- **Conclusion**: Home Office customers face the highest late delivery risk, which could negatively impact retention.
- **Recommendation**: Prioritize improving delivery reliability for Home Office custill address inefficiencies, improve customer satisfaction, and increase profitability.

Conclusions

- **Performance Gaps**: Late deliveries are a critical issue, affecting over 50% of shipments and the Home Office segment disproportionately.
- **Transaction Insights**: DEBIT transactions and Standard Class shipping dominate the business but may require better support to enhance user satisfaction.
- **Regional Focus**: Estados Unidos, Puerto Rico, and Alabama emerge as higrforming regions/states in terms of sales per customer.

Recommendations

1. Improve Delivery Performance:

- Enhance supply chain processes to reduce late deliveries.
- Offer delivery guarantees or compensation for delayed shipments to rebuild trust.

2. Leverage Profitable Customer Segments:

- Prioritize personalized experiences for Consumer and Corporate segments to maximize revenue.
- Increase engagement with high-sales regions such as EE. UU. and Puerto Rico.

3. Adopt Data-Driven Marketing:

- Use insights from transaction types, shipping modes, and delivery statuses to design targeted campaigns.
- Focus on converting low-performing segments like Home Office into high-value customers.

4. Optimize Shipping Modes:

- Offer discounts or incentives for Same Day and First Class shipping to encourage premium options.
- Invest in logistics infrastructure to support faster delivery modes.

5. Focus on High-Risk Categories:

• Use predictive analytics to ensure timely inventory replenishmenps will address inefficiencies, improve customer satisfaction, and increase profitability.

Connect & Follow

If you found my project insightful, I'd love to connect! I'm passionate about creating impactful data-driven solutions like this one to drive success. Follow me for more updates on my projects and insights. Let's collaborate and grow together!

Data Scientist | Data Analyst | SEO Analyst

• Linkedin: https://www.linkedin.com/in/kant-ai/

• Portfolio: https://genrix.netlify.app/

• GitHub: https://github.com/genrix-ai