- Complex system
- Making decision (Modeling)
 - Allocation
 - Assignment
 - Scheduling
- How to make the wise decisions? (Solving)
 - Deterministic or stochastic?
 - Objective(s)
 - Constraints
- Berth Allocation Problem (BAP)

Definition

Berth allocation problem aims to determine berthing time and position of each containership that will arrive at a container terminal during a planning period for optimizing an objective.

Factors being considered

- Number of available berths
- Length, arrival time and departure time of each containership
- Locations and amount of containers for unloading and loading of each containership

Objectives:

- □ Distance: minimize shore to yard distances for all containers
- □ Time: minimize departure delay of all containerships

Decision: berthing position; berthing time

Input Parameters

Input Parameters

L: Length of total berth sections (straight line)

l: Number of vessels

 p_i : Best berth location of vessel i

 a_i : Expected arrival time of vessel i

 b_i : Ship operational time required for vessel i

 d_i : Requested departure time of vessel i

 l_i : length of vessel i

- c_{li} : Additional travel (per one grid-width) cost for delivering containers to vessel i resulting from non-optimal berthing locations.
- c_{2i} : Penalty cost (per one grid-length of time) of vessel i resulting from a delayed departure past the requested due time.

Decision Variables

- $\triangleright x_i$: Berth location of vessel i
- $\triangleright y_i$: Berthing time of vessel i
- They aim to express the position relation between any two vessels in the berth-time space:

Lecture 2: Solving LP Models

$$z_{ij}^{x} = \begin{cases} 1, & \text{if vessel } i \text{ located to the left-hand side of vessel } j \\ 0, & \text{otherwise} \end{cases}$$
 $x_{i} + l_{i} < x_{j}$

$$z_{ij}^{y} = \begin{cases} 1, & \text{if vessel } i \text{ located below vessel } j \\ 0, & \text{otherwise} \end{cases}$$

$$i=1,2,...,l; j=1,2,...,l,$$

 $y_i + b_i < y_i$

Objective function

$$\min f(x, y, z) = \sum_{i=1}^{l} \left\{ c_{1i} | x_i - p_i | + c_{2i} (y_i + b_i - d_i)^+ \right\}$$

$$\text{Note: } [x]^+ = \max(0, x)$$

Constraints

$$x_i + l_i \le L, i = 1, 2, ..., l$$

The rightmost end of vessel *i* is restricted by the length of the total berth sections

$$x_i + l_i \le x_j + M(1 - z_{ij}^x), i = 1, \dots, l; j = 1, \dots, l; i \ne j$$

Vessel i is located to the left-hand side of vessel j

$$y_i + b_i \le y_j + M(1 - z_{ij}^y), i = 1, \dots, l; j = 1, \dots, l; i \ne j$$

Departure time of vessel i is not later than the berthing time of vessel j

Constraints

$$Z_{ij}^{x} + Z_{ji}^{x} + Z_{ij}^{y} + Z_{ji}^{y} \ge 1, i = 1, \dots, l; j = 1, \dots, l, i < j$$

It excludes the case: $z_{ij}^x + z_{ji}^x + z_{ij}^y + z_{ji}^y = 0$ in which case the rectangles representing schedules for vessels i and j overlap with each other

$$y_i \ge a_i, i = 1, \dots, l$$

A vessel cannot berth before it arrives

$$x_i \ge 0, i = 1, \dots, l$$
 Non-negativity

$$z_{ij}^{x}, z_{ij}^{y} = 0, 1, i = 1, \dots, l; j = 1, \dots, l; i \neq j$$
 0-1 constraints

Mixed Integer Nonlinear Programming Model

$$\min f(x, y, z) = \sum_{i=1}^{l} \left\{ c_{1i} | x_i - p_i | + c_{2i} \left(y_i + b_i - d_i \right)^+ \right\}$$
subject to
$$x_i + l_i \le L, i = 1, 2, \dots, L$$

$$x_i + l_i \le x_j + M \left(1 - z_{ij}^x \right), i = 1, \dots, l; j = 1, \dots, l; i \ne j$$

$$y_i + b_i \le y_j + M \left(1 - z_{ij}^y \right), i = 1, \dots, l; j = 1, \dots, l; i \ne j$$

$$z_{ij}^x + z_{ji}^x + z_{ij}^y + z_{ji}^y \ge 1, i = 1, \dots, l; j = 1, \dots, l, i < j$$

$$y_i \ge a_i, i = 1, \dots, l$$

$$x_i \ge 0, i = 1, \dots, l$$

$$z_{ij}^x, z_{ij}^y = 0, 1, i = 1, \dots, l; j = 1, \dots, l; i \ne j$$

- Homework
 - Create a test instance by randomly generating the input parameters
 - Develop a mixed integer linear programming model
 - Solve the model by PuLP/CPLEX/Gurobi
 - Present the solution and conduct analysis

Reference

Optimization with PuLP: https://coin-or.github.io/pulp/index.html

- Main Topics
 - The Optimisation Process
 - Optimisation Concepts
 - Basic Python Coding
 - Installing PuLP at Home
 - Amply
 - README
- Case Studies
 - o A Blending Problem
 - A Set Partitioning Problem
 - o A Sudoku Problem formulated as an LP
 - A Transportation Problem
 - A Two Stage Production Planning Problem

- User Guides
 - How to configure a solver in PuLP
 - How to warm-start a solver
 - Elastic Constraints
 - How to export models in PuLP
 - How to debug most errors during solving
- PuLP Internal Documentation
 - o pulp.constants
 - o pulp : Pulp classes
 - pulp.apis Interface to Solvers
- Plugins
 - orloge: OR logs parser
 - pytups: smart dictionaries and tuple lists