Tarih: 29/05/2024 **Saat :** 16.00 – 17.20

ADI SOYADI:

ÖĞRENCİ NO:

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DİFERENSİYEL DENKLEMLER DERSİ YILSONU SINAVI

	SORU 4	TOPLAM
	-	

AÇIKLAMA: Sınav süresi 80 dakikadır. Sorular eşit puanlıdır. İşlem yapılmadan verilen cevaplar dikkate alınmayacaktır.. Başarılar dileriz.

1. $x^3 \frac{dy}{dx} = y(3y - x^2)$ denkleminin genel çözümünü bulunuz.

$$y = \frac{x^2}{cx^2+1}$$

- 2. Karakteristik denklemi $r^3(r^2+9)^2(r^2-4r+29)=0$ olan sabit katsayılı lineer homojen olmayan denkleme ilişkin sağ taraftaki fonksiyon $f(x)=3x+4+3\cos 3x+xe^{2x}\sin 5x$ şeklindedir. Buna göre,
- a) Bu denkleme ilişkin homojen kısma ait y_h çözümünü elde ediniz. (15)

b) Belirsiz katsayılar yöntemi yardımıyla y_p özel çözümünün nasıl seçilmesi gerektiğini belirtiniz. (Katsayıları bulmaya çalışmayınız.) (10)

$$y_p = \chi^3 (Ax+B) + \chi^2 (C CoJ3x+Dsih3x)$$

$$+ \chi e^{2x} [(Ex+F) Sih5x+ (Gx+H) CoJ5x]$$

3.
$$(1-x^2)y'' + xy' + 2y = 0$$
 denklemi veriliyor. Buna göre

a) Denklemin aykırı nokta(ları) varsa hangi tiptendir? (5)

$$(-x) = 0 \Rightarrow x = \pm 1 \qquad \text{Ay } \text{Interval of the property of th$$

b) Denklemin
$$x = 0$$
 noktası komşuluğundaki çözümünü kuvvet serileri yardımıyla elde ediniz. (20)
$$y = \sum_{n=0}^{\infty} a_n x^n \qquad y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2}$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2$$

$$\frac{1}{n=0} = \frac{1}{n=1} = \frac{1}$$

$$2a_{1}+2a_{0}=0$$

$$a_{n+1}=\frac{n^{2}+2n-2}{(n+1)(n+1)}a_{1} n^{2}, 1$$

$$3a_1 + 6a_3 = 0$$
 $a_1 = -\frac{1}{2}a_1$
 $a_2 = -\frac{1}{2}a_2$
 $a_4 = -\frac{1}{6}a_2$

$$a_5 = \frac{1}{20} a_3 = -\frac{1}{40} a_1 - -\frac{1}{40} a_1$$

$$y = a_0 + a_1 x + a_0 x^2 - \frac{1}{2} a_1 x + \frac{1}{6} a_0 x^2 - \frac{1}{40} a_1 x + \frac{1}{6} a_0 x$$

$$y = a_0(1-x^2+\frac{1}{6}x^4-1)+a_1(x-\frac{1}{2}x^2-\frac{1}{40}x^4-1)$$

4.
$$y'' + y = e^{-2x} \sin x$$
$$y(0) = y'(0) = 0$$

Probleminin çözümünü Laplace dönüşümü yardımıyla bulunuz.

$$L\{y(x)\} = Y(s)$$

$$L\left\{y^{(n)}\right\} = s^{n}Y(s) - s^{n-1}y(0) - s^{n-2}y'(0) - \dots - y^{(n-1)}(0)$$

$$L\{f(x)\} = F(s) \Rightarrow L\{e^{ax} f(x)\} = F(s-a)$$

$$\Rightarrow (s^{2}+1) \forall (s) = \frac{1}{s^{2}+4s+5} \Rightarrow \forall (s) = \frac{1}{(s^{2}+1)(s^{2}+4s+5)}$$

$$y(x) = L^{-1} \left\{ \frac{1}{(s^2 + 4s + 5)} \right\}$$

$$\frac{1}{(S^{2}+1)(S^{2}+4J+5)} = \frac{AS+B}{S^{2}+1} + \frac{CS+D}{S^{2}+4J+5}$$

$$A = -\frac{1}{8}$$

$$B = \frac{1}{8}$$

$$C = \frac{1}{8}$$

$$D = \frac{3}{8}$$

$$A = -\frac{1}{8}$$

$$B = \frac{1}{8}$$

$$C = \frac{1}{8}$$

$$D = \frac{3}{8}$$

$$y(x) = L^{-1} \left\{ \frac{-\frac{1}{8}S}{S^{\frac{1}{2}+1}} + \frac{\frac{1}{8}S + \frac{3}{8}}{S^{\frac{1}{2}+1}} \right\}$$

$$= -\frac{1}{8} \begin{bmatrix} s + 1 \\ s - 1 \end{bmatrix} + \frac{1}{8} \begin{bmatrix} s + 1 \\ s - 1 \end{bmatrix} + \frac{1}{8} \begin{bmatrix} s + 2 \\ s - 1 \end{bmatrix} + \frac{1}{8} \begin{bmatrix} s - 1 \\ s - 2x \end{bmatrix} + \frac{1}{8} \begin{bmatrix} s - 1 \\ s - 2x \end{bmatrix}$$

$$\Rightarrow y(x) = -\frac{1}{8} \cos x + \frac{1}{8} \sin x + \frac{1}{8} e^{-2x} \cos x + \frac{1}{8} e^{-2x} \sin x$$