

AIVCOVA

JM Galharret

Introduction

Modèle à penter constantes

Modèle généra

ANCOVA

JM Galharret ¹

¹UFR de Psychologie Université de Nantes

June 10, 2023

ANCOVA

JM Galharret

Introduction

Modèle à pente constantes

Modèle généra

Introduction

2 Modèle à pentes constantes

ANCOVA

JM Galharret

Introduction

Modèle à pent constantes

Modèle généra

Introduction

2 Modèle à pentes constantes

Introduction

ANCOVA

JM Galharret

Introduction

Modèle à pent

Modèle généra

On va considérer des modèles linéaires dans lesquels on aura des variables qualitatives et des variables quantitatives. Considérons les variables govact et negemot (qui sont liées d'après ce qui précède). On va se poser les questions suivantes :

- 1 Pour un niveau d'émotion négative identique vis à vis du réchauffement climatique, les hommes et les femmes ont ils un niveau moyen de soutien aux actions gouvernementales différent ?
- 2 L'effet du niveau d'émotion négative sur le soutien aux actions gouvernementales est-il le même pour les hommes et les femmes ?

ANCOVA

JM Galharret

Introduction

Modèle à pentes constantes

Modèle généra

1 Introduction

2 Modèle à pentes constantes

Régression avec des variables binaires

ANCOVA

JM Galharret

Modèle à pentes constantes

On veut par exemple écrire : $govact \sim negemot + sex$. On choisit les femmes comme modalité de référence (0) et on affecte la valeur 1 aux hommes. Le modèle de régression est alors :

$$govact = b_0 + \alpha negemot + b_1 \mathbb{1}_{sex=1}$$

	Ь	SE(b)	t	р
(Intercept)	2.810	0.110	25.516	0.000
negemot	0.511	0.026	19.918	0.000
$sex{=}1$	-0.085	0.078	-1.084	0.279

La différence de soutien aux actions gouvernementales entre les femmes et les hommes n'est pas significative (b = -0.085, t = -1.084, p = .279). Pour les femmes : govact = 2.810 + 0.551 negemot et pour les hommes : govact = 2.725 + 0.551 negemot.

JM Galharret

Introduction

Modèle à pentes constantes

Figure:

Régression avec des variables catégorielles

ANCOVA

JM Galharret

Introduction

Modèle à pentes constantes

Modèle généra

On veut par exemple écrire : $govact \sim negemot + partyid$. On choisit les sans parti comme modalité de référence (0).

Sujet	partyid	$\mathbb{1}_{partyid=2}$	$1_{partyid=3}$
1	2	1	0
2	1	0	0
3	1	0	0
4	1	0	0
10	3	0	1
11	2	1	0
18	3	0	1
19	1	0	0
20	3	0	1
21	2	1	0
22	1	0	0

Table: Codage de la variable partyid

Le modèle de régression est alors :

$$govact = b_0 + \alpha negemot + b_1 \mathbb{1}_{partvid=2} + b_2 \mathbb{1}_{partvid=3}$$

JM Galharret

Introductio

Modèle à pentes constantes

Modele genera

	Ь	SE(b)	t	р
(Intercept)	3.222	0.120	26.781	0.000
negemot	0.458	0.026	17.401	0.000
partyid=2	-0.291	0.097	-2.985	0.003
partyid=3	-0.608	0.093	-6.537	0.000

	Df	Sum Sq	Mean Sq	F	р
negemot	1	502.869	502.869	427.847	0.000
partyid	2	50.467	25.233	21.469	0.000
Residuals	811	953.206	1.175		

La différence de soutien aux actions gouvernementales selon l'adhésion à un parti est significative (F(2,811)=21.469, p<.001). On a les 3 équations suivantes :

$$\textit{govact} \quad = \quad 3.222 + 0.458 \textit{negemot}, \ \mathsf{partyid}{=}1$$

$$govact = 2.931 + 0.458$$
 $negemot$, partyid=2

$$govact = 2.614 + 0.458$$
 $negemot$, partyid=3

JM Galharret

Introduction

Modèle à pentes constantes

Modèle généra

Les droites correspondantes sont représentées ci-dessous. On considère que l'effet de negemot sur govact est le même quelle que soit la catégorie.

DITTIVE TO THE DE TO

ANCOVA

JM Galharret

Introduction

Modèle à pente constantes

Modèle général

Introduction

2 Modèle à pentes constantes

Retour sur le modèle à variable binaire

ANCOVA

JM Galharret

Introduction

Modèle à pente

Modèle général

Le modèle général permet à la fois une réaction moyenne selon le sexe mais aussi un effet différent de negemot sur govact selon le sexe. On parle dans ce cas d'un modèle à interaction

$$govact = b_0 + b_1 \mathbb{1}_{sex=1} + (\alpha_0 + \alpha_1 \mathbb{1}_{sex=1}) negemot$$

Table: ANCOVA - govact

Cases	Sum of Squares	df	Mean Square	F	р
negemot	471.04	1	471.042	394.03	< .001
sex	32.86	1	32.855	27.48	< .001
negemot * sex	32.71	1	32.706	27.36	< .001
Residual	969.52	811	1.195		

JM Galharret

Introduction

Modèle à pente constantes

Modèle général

D'après la table précédente il y a donc une différence significative au niveau du soutien aux actions du gouvernement (F(1,811)=27.48,p<.001). Il y a également une interaction significative entre les émotions négatives et le sexe (F(1,811)=27.36,p<.001), ce qui signifie qu'entre les hommes et les femmes l'effet des réactions négatives sur le soutien au gouvernement n'est pas le même : pour un homme une réaction négative induira un plus fort soutien aux actions gouvernementales que pour une femme (b=0.265,t=5.231,p<.001)

Table: Coefficients

Model		Ь	SE(b)	t	р
1	(Intercept)	3.337		22.556	< .001
	sex	-1.029	0.196	-5.242	< .001
	negemot	0.370	0.037	10.013	< .001
	negemot * sex $=1$	0.265	0.051	5.231	< .001

JM Galharret

Introduction

Modèle à pente constantes

Modèle général

Pour les femmes on a : govact = 3.337 + 0.370 negemot et pour les hommes govact = 2.308 + 0.635 negemot

Différentes étapes dans la modélisation

ANCOVA

JM Galharret

Introduction

Modèle à pente

Modèle général

On a estimé les deux modèles suivants : es

$$\mathcal{M}$$
: govact = $b_0 + b_1 \mathbb{1}_{sex=1} + \alpha negemot$

$$\mathcal{M}'$$
: govact = $b_0 + b_1 \mathbb{1}_{sex=1} + (\alpha_0 + \alpha_1 \mathbb{1}_{sex=1})$ negemot

Dans \mathcal{M} , b_1 n'est pas significatif alors qu'il l'est dans \mathcal{M}' . Ceci peut paraître contradictoire cela vient du fait qu'on a contraint les pentes à être constantes. Dans la pratique il faut dans un premier temps tester \mathcal{M}' (le modèle le plus général) puis si le terme d'interaction n'est pas significatif on teste \mathcal{M} .

Interaction avec une variable catégorielle

ANCOVA

JM Galharret

Introduction

Modèle à pente constantes

Modèle général

Si on veut tester l'interaction avec partyid on va tester le modèle :

$$\textit{govact} = b_0 + b_1 \mathbb{1}_{\textit{partyid}=2} + b_2 \mathbb{1}_{\textit{partyid}=3} + (\alpha_0 + \alpha_1 \mathbb{1}_{\textit{partyid}=2} + \alpha_2 \mathbb{1}_{\textit{partyid}=3}) \textit{negemot}$$

Conclure d'après le tableau ci-dessous :

Table: ANCOVA - govact

Cases	Sum of Squares	df	Mean Square	F	р
negemot	331.27	1	331.272	288.34	< .001
partyid	52.84	2	26.420	23.00	< .001
negemot * partyid	23.76	2	11.882	10.34	< .001
Residual	929.44	809	1.149		

JM Galharret

Introduction

Modèle à pente constantes

Modèle général

Ecrire les équations correspondantes au trois types d'appartenance à un parti politique.

	Ь	SE(b)	t	р
(Intercept)	3.708	0.185	20.088	0.000
negemot	0.337	0.044	7.718	0.000
partyid=2	-0.587	0.274	-2.141	0.033
partyid=3	-1.509	0.230	-6.570	0.000
negemot:partyid=2	0.069	0.067	1.023	0.307
negemot:partyid=3	0.266	0.060	4.394	0.000

JM Galharret

Introduction

Modèle à pente

Modèle général

Pour quelle appartenance peut on penser que le fait d'avoir une émotion négative induit un plus grand soutien aux actions gouvernementales ?

