AlphaZero

Richard Diehl Martinez and David Golub

Background

Paper: Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

Published in: Nature, October 18 2017

Authors list: David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis Hassabis

Long-standing History of Al Agents in Board Games

IBM's DeepBlue vs. Kasparov, 1997

Go vs. Chess

Natural question: why did it take so long to get to superhuman in Go?

IBM's Deep Blue: superhuman chess player in 1997 why doesn't same approach work for go?

Deep Blue

brute-force minimax search

could look ahead between 12 and 40 plys (half-moves) parameterized value

function for the leaves

estimate: every additional ply yields 50-70 ELO points

Why did it take so long to get to superhuman for Go?

State space is significantly larger

Significantly better machine learning models (Neural Networks)

Significantly better hardware/compute

Algorithmic improvements over brute force search

AlphaGo Zero Starting from seratch

AlphaZero

Single Neural Network $f_{ heta}$ that takes in current state s, with two outputs:

$$v_{ heta}(s) \in [-1,1]$$
 : expected outcome of game (win, lose draw)

 $\vec{p}_{\theta}(s)$ Policy: probability distribution over actions from state s.

No need for RL! Directly do search to find a better action.

Training the Neural Network

Training the Neural Network

b Neural network training

Training Algorithm

High level idea: get training examples in the form $(s_t, \vec{\pi}_t, z_t)$ through self play

 s_t is the state, $\vec{\pi}_t$ is a probability distribution over actions, and z_t is the outcome of the game (win/lose).

Optimize:
$$l = \sum_t (v_{ heta}(s_t) - z_t)^2 - ec{\pi}_t \cdot \log(ec{p}_{ heta}(s_t))$$

AlphaZero Code in Python

```
def policyIterSP(game):
                                                                 # initialise random neural network
         nnet = initNNet()
         examples = []
         for i in range(numIters):
4
             for e in range(numEps):
                 examples += executeEpisode(game, nnet)
6
                                                                 # collect examples from this game
             new_nnet = trainNNet(examples)
             frac_win = pit(new_nnet, nnet)
                                                                 # compare new net with previous net
             if frac win > threshold:
10
                 nnet = new_nnet
                                                                 # replace with new net
         return nnet
12
```

Training Implementation

- Sensitive to hyperparameters and initial exploration probability: See https://dselsam.github.io/issues-with-alpha-zero/ for more info
- Synchronous stochastic gradient descent with mini-batches of size 4096 for stability

Parameter-server model:

- 5,000 first-generation TPUs to generate self-play games
- 64 first-generation TPUs for parameter updates

Monte-Carlo Tree Search

$$U_i = \frac{W_i}{N_i} + cP_i \sqrt{\frac{\ln N_p}{1 + N_i}}$$

AlphaZero: Elo Rating Over Training Time

AlphaZero: Elo Rating over Training Time

AlphaZero: Elo Rating Over Training Time

AlphaZero: Tournament between Al Programs

Game	White	Black	Win	Draw	Loss
Chess	AlphaZero Stockfish	Stockfish AlphaZero	25 3	25 47	0 0
Shogi	AlphaZero Elmo	Elmo AlphaZero	43 47	2 0	5 3
Go	AlphaZero AG0 3-day	AG0 3-day AlphaZero	31 29	_	19 21

AlphaZero: Openings Discovered by Self-Play (1/2)

A10: English Opening

25%
19%
12%
6%
0%
0:00
2:00
4:00
6:00
8:00
1...e5 g3 d5 cxd5 ②f6 & g2 ②xd5 ②f3

AlphaZero: Openings Discovered by Self-Play

Conclusion

AlphaZero: new SOTA algorithm for Go, Shogi Chess

Trained solely through self-play + Monte-Carlo Tree Search

Trained using maximum likelihood estimation (MLE) to predict policy and reward, without using reinforcement learning for updates!