Zusammenfassung Lineare Algebra 1

Karlsruher Institut für Technologie Wintersemester 2023/2024

Niklas Rodenbüsch

1 Grundlagen

Abbildungen

Sei $f: A \to B$. Es gilt:

- f ist **injektiv**, wenn: $\forall a_1, a_2 \in A : f(a_1) = f(a_2) \Rightarrow a_1 = a_2$
- f ist **surjektiv**, wenn: $\forall b \in B \quad \exists a \in A : f(a) = b$
- f ist bijektiv, wenn f injektiv und surjektiv ist

Relationen

Sei $x, y, z \in M$ und R eine Relation:

- Reflexiv, wenn xRx
- Symmetrisch, wenn $xRy \Leftrightarrow yRx$
- Antisymmetrisch, wenn $xRy \wedge yRz \Rightarrow x = y$
- Transitiv, wenn $xRy \wedge yRz \Rightarrow xRz$
- Äquivalent, wenn R reflexiv, symmetrisch und transitiv ist.

Sei \sim eine Äquivalenzrelation auf M.

- $[x]_{\sim} = \{y \in M | x \sim y\}$ ist Äquivalenzklasse
- $M/\sim = \{[x]_{\sim} | x \in M\}$
- $\mathbb{Z}/n\mathbb{Z} = \{[0], [1], ..., [n-1]\}$

2 Lineare Gleichungssysteme

- Lösung eines LGS: Vektor $x=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}\in\mathbb{R}^n,$ der gleichzeitig alle Gleichungen erfüllt.
- Unendlich viele Lösungen, wenn bei Gauß-Umformung eine Nullzeile entsteht.
- LGS heißt homogen, wenn $x_1 = ... = x_n = 0$

3 Matrizen

3.1 Allgemein

- Sei $A \in \mathbb{R}^{m \times n}$ eine $(m \times n)$ -Matrix. Dann hat A m Zeilen und n Spalten.
- Quadratisch, wenn m = n
- Transponierte zu $A: A^T \in \mathbb{R}^{n \times m}$ mit $(A^T)_{i,j} = A_{j,i}$
- Sei $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n}$. Dann ist $C := A \cdot B \in \mathbb{R}^{m \times n}$ mit $C_{i,j} = \sum_{t=1}^{k} A_{i,t} \cdot B_{t,j}$ (A wird zeilenweise und B spaltenweise durchlaufen)
- Ein LGS kann als Matrix-Vektor-Produkt geschrieben werden.

3.2 Rechenregeln

•
$$(\lambda A)^T = \lambda A^T$$

$$\bullet \ (AB)^T = B^T A^T$$

$$\bullet \ (A+B)^T = A^T + B^T$$

$$\bullet \ (A^T)^T = A$$

3.3 Invertierbare Matrizen

- \bullet Sei R
 ein Ring. Eine Matrix $A\in R^{m\times m}$ heißt invertierbar, fall
s $\exists B\in R^{m\times m}:AB=BA=I_m$
- \bullet $\mathrm{GL}_m(R)$ ist die Menge der invertierbaren Matrizen aus $R^{m\times m}$
- Wenn $A \in \mathbb{R}^{m \times m}$ invertier bar ist, gilt:
 - $\Leftrightarrow A^T$ ist invertierbar
 - $\Leftrightarrow \ker(A) = \{0\}$
 - $\Leftrightarrow \operatorname{rg}(A) = m$
- Vorgehen: Mittels Gauß-Algorithmus $(A|I) \leadsto (I|X) \Longrightarrow X = A^{-1}$

3.4 Bild einer Matrix

Das Bild einer Matrix gibt an, welche Menge an Vektoren als Lösungen auftreten können. Das Bild einer linearen Abbildung $f: V \to W$ ist die Menge aller Vektoren in W, die von f getroffen werden.

3.5 Zeilenstufenform

Wenn eine Matrix die Form $\begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \end{pmatrix}$ hat, ist sie in Zeilenstufenform. Wenn sie die

Form
$$\begin{pmatrix} 1 & 0 & * & 0 \\ 0 & 1 & * & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 hat, ist sie in normierter Zeilenstufenform.

Eigenschaften der Zeilenstufenform

- Der Rang der Matrix ist die Anzahl der Stufen.
- Die Anzahl der Lösungen lässt sich wie folgt ablesen:
 - Keine Lösung: Wenn eine Zeile die Form $(0...0|b \neq 0)$ hat.
 - **Eine Lösung:** Wenn die Matrix in optimaler Form ist.
 - Mehrere Lösungen: Wenn die Matrix eine Zeile (0...0|0) hat.

3.6 Ahnlichkeit von Matrizen

Seien $A, B \in K^{n \times n}$ quadratisch. A und B sind ähnlich wenn:

$$\exists S \in GL_n(K): B = SAS^{-1}$$

3.7 Äquivalenz von Matrizen

Seien $A, B \in K^{m \times n}$. A und B sind äquivalent, wenn:

$$\exists T \in GL_m(K), S \in GL_n(K) : B = TAS$$

A und B äquivalent $\Leftrightarrow \text{Rang}(A=) \text{Rang}(B)$

3.8 Spur einer Matrix

Sei $A \in K^{n \times n}$ eine quadratische Matrix. Die Spur ist definiert als:

$$\operatorname{tr}(A) = \operatorname{Spur}(A) = \sum_{i=1}^{n} a_{ii}$$

3

4 Algebraische Strukturen

Es sei M eine Menge und $a, b \in M$. Eine Verknüpfung ist eine Abbildung $*: M \times M \to M$ mit folgenden möglichen Eigenschaften:

- Assoziativität: (x * y) * z = x * (y * z)
- Kommutativität: x * y = y * x

4.1 Gruppen

Halbgruppen

Sei S eine Menge und * eine Verknüpfung. Eine Halbgruppe S, * erfüllen folgende Eigenschaften:

- 1. $*: S \times S \to S \quad (\forall a, b \in S : a * b \in S)$ (Abgeschlossenheit)
- 2. * ist assoziativ

Monoid

Eine Halbgruppe ist insbesondere ein Monoid, wenn zusätzlich gilt:

3.
$$\exists e \in S : \forall x \in S : x * e = e * x = x$$
 (Existenz eines neutralen Elements)

Gruppen

Ein Monoid ist insbesondere eine Gruppe, wenn zusätzlich gilt:

4.
$$\forall x \in S : \exists y =: x^{-1} \in S : x * y = y * x = e$$
 (Existenz des inversen Elements)

Abelsche Gruppe

Sei (G,*) eine Gruppe. Damit (G,*) eine abelsche Gruppe ist, muss zusätzlich gelten:

5. * ist **kommutativ**

Symmetrische Gruppe

- Symmetrische Gruppe $S(X) := (X^X, \circ)^{\times} = (\{f : X \to X | f \text{ bijektiv}\}, \circ)$
- Für $X = \{1, ..., n\} : S(n) := S(X) \quad (n \in \mathbb{N})$
- Permutationen $\sigma \in \mathcal{S}(n) : \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$

Untergruppen

Sei (G, *) eine Gruppe. Eine Gruppe (H, *) heißt **Untergruppe** von (G, *) wenn folgende Eigenschaften gelten:

- 1. $e_G \in H$
- $2. \ \forall g, h \in H : g * h \in H$
- 3. $\forall g \in H : g^{-1} \in H$

Homomorphismen

Homomorphismen sind strukturerhaltende Abbildungen. Seien $(G, *), (H, \bullet)$ Gruppen. Dann ist $f: G \to H \in \text{Hom}(G, H)$ ein Gruppenhomomorphismus, wenn gilt: $\forall x, y \in G: f(x * y) = f(x) \bullet f(y)$

Sei $h \in \text{Hom}(G, H)$, dann gelten folgende Eigenschaften:

- $h(e_G) = e_H$
- $h(g^{-1} = h(g)^{-1})$
- U ist UGR von $G \Rightarrow h(U)$ ist UGR von H
- h injektiv \Leftrightarrow Kern $h := h^{-1}(\{e_H\}) = \{e_G\}$

Sei $h \in \text{Hom}(G, H)$. Dann ist Kern(h) definiert als: Kern $h := h^{-1}(\{e_H\}) = \{g \in G : h(g) = e_H\}$

4.2 Ringe

Ein Ring $(R, +, \cdot)$ erfüllt die folgenden Eigenschaften:

- 1. (R, +) ist eine abelsche Gruppe (mit neutralem Element 0_R)
- 2. (R,\cdot) ist Monoid (mit neutralem Element 1_R)
- 3. Für alle $x, y, z \in R$ gelten die Distributivgesetze
- 4. R kommutativ : \Leftrightarrow · kommutativ
- 5. Nullteilerfrei, falls: $\forall a, b \in R : (a \cdot b = 0_R) \Rightarrow (a = 0_R \lor b = 0_R)$

Ringhomomorphismus

Seien $(R, +_R, \cdot_R), (S, +_S, \cdot_S)$ Ringe. Ein Ringhomomorphismus $\Phi : R \to S$ erfüllt folgende Eigenschaften $(\forall x, y \in R)$:

- $\Phi(x +_R y) = \Phi(x) +_S \Phi(y)$
- $\Phi(x \cdot_R y) = \Phi(x) \cdot_S \Phi(y)$
- $\Phi(1_R) = 1_S$
- Kern $\Phi = \Phi^{-1}(\{0_S\})$

4.3 Körper

Ein Körper $(K,+,\cdot)$ erfüllt die folgenden Eigenschaften:

- 1. (K, +) ist eine abelsche Gruppe
- 2. $(K \setminus 0_K)$, · ist eine abelsche Gruppe
- 3. Für alle $x, y, z \in K$ gilt das Distributivgesetze

Restklassenkörper: $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}, p \in \mathbb{N}$ prim

Körperhomomorphismus

Seien $(K, +, \cdot)$ und $(L, +, \cdot)$ Körper. $\Phi: K \to L$ ist ein Körperhomomorphismus, wenn:

- $\Phi(x+y) = \Phi(x) + \Phi(y)$ und $\Phi(x \cdot y) = \Phi(x) \cdot \Phi(y)$ $(\forall x, y \in K)$
- $\Phi(1_K) = 1_L$

4.4 Polynomring

Sei R ein kommutativer Ring. Dann ist $p=a_nX^n+a_{n-1}X^{n-1}+\ldots+a_1X+a_0\in R[X]$ mit $a_i\in R$ und folgenden Eigenschaften:

- $\operatorname{Grad}(p) = n$ $(n = 0 \Rightarrow \operatorname{Grad}(p) = -\infty)$
- R[X] ist ein Ring (bzw. R-Algebra falls R ein Körper ist)
- Einsetzabbildung: $f \in R[X] \mapsto f : R \to R$ (Ersetzen von X durch ein Element aus R)

5 Vektorräume und lineare Abbildungen

5.1 Vektorräume

V ist ein K-Vektorraum, wenn folgende Eigenschaften erfüllt sind:

- \bullet K ist ein Körper
- (V, +) ist eine abelsche Gruppe
- $\cdot: K \times V \to V$ (Skalarmultiplikation)

Mit $u, v \in V$ und $\lambda, \mu \in K$ gelten folgende Rechenregeln:

- $1_K \cdot v = v$
- $\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$
- $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$
- $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$

Untervektorraum

Sei V ein K-VR und $U \subseteq V$ ein Untervektorraum von V. Dann ist U ein K-VR mit der selben Verknüpfung und Skalarmultiplikation wie V. U muss zusätzlich folgende Kriterien erfüllen:

- 1. $0 \in U$
- 2. $\forall v, w \in U : v + w \in U$
- 3. $\forall v \in U, \forall \lambda \in K : \lambda v \in U$

Kombination von UVR

Sei V ein K-Vektorraum und $U, W \subseteq V$.

- $U \cap W$ ist ein KK-VR
- $U \cup W$ ist i.d.R. **kein** K-VR
- $U + W := LH(U \cup W) = \{u + w | u \in U, w \in W\}$ ist ein K-VR

5.2 Lineare Abbildungen

Vektorraumhomomorphismen werden auch als lineare Abbildungen bezeichnet. Seien V, W K-Vektorräume, dann ist $\Phi: V \to W \in \operatorname{Hom}_K(V, W)$ eine K-lineare Abbildung, wenn folgende Eigenschaften gelten:

- 1. $\forall x, y \in V : \Phi(x+y) = \Phi(x) + \Phi(y)$
- 2. $\forall x \in V, \lambda \in K : \Phi(\lambda x) = \lambda \Phi(x)$

Des weiteren gilt:

- $\operatorname{Hom}_K(V,W)$ ist selbst ein Vektorraum
- $\operatorname{Kern}(\Phi) := \{ v \in V | \Phi(v) = 0 \} \Phi \text{ injektiv} \Longrightarrow \operatorname{Kern}(\Phi) = \{ 0 \}$

5.3 Lineare Hülle, Basis, Dimension, ...

Linearkombination

Sei V ein K-Vektorraum und M ein UVR von V. Seien $n \in \mathbb{N}, v_1, ..., v_n \in M, \lambda_1, ..., \lambda_n \in K$. Dann ist $\sum_{i=1}^n \lambda_i \cdot v_i \in V$ eine Linearkombination.

Lineare Hülle

Sei V ein K-Vektorraum und M ein UVR von V. Die lineare Hülle ist die Menge aller Linearkombinationen aus M. Die lineare Hülle ist definiert als:

$$LH(M) := \{ \sum_{i=1}^{n} \lambda_i \cdot v_i | n \in \mathbb{N}_0, v_i \in M, \lambda_i \in K \}$$

LH(M) ist der kleinste Untervektorraum, der M enthält.

M heißt Erzeugendensystem von $\mathrm{LH}(M)$.

$$K^p = LH(\lbrace v_1, ..., v_p \rbrace) \Leftrightarrow Rang((v_1|...|v_p)) = p$$

Basis

Sei V ein K-Vektorraum. Ein UVR $U\subseteq V$ ist eine Basis von V, wenn folgende Eigenschaften gelten:

- 1. V = LH(U)
- 2. Jedes $u \in U$ ist linear unabhängig

Lineare Unabhängigkeit

Sei V ein K-Vektorraum und $M=\{m_1,...,m_m\}\subseteq V$. M ist linear unabhängig, wenn gilt: $\sum_{i=1}^n \lambda_i m_i = 0 \Leftrightarrow \forall i: \lambda_i = 0 \quad (\lambda_i \in K)$

Dimension

Sei V ein K-Vektorraum, $U, W \subseteq V$ und B eine Basis von V. Dann gilt für die Dimension:

- $\dim(V) = |B|$
- $\dim(U) \leq \dim(V)$
- $\dim(U) = \dim(V) \Leftrightarrow U = V$
- Die Dimension ist abhängig vom Körper des Vektorraums.
- $\dim(U+W) = \dim(U) + \dim(W) \dim(U \cap W)$
- W ist Komplement von $U \Leftrightarrow \dim(U) + \dim(W) = \dim(V)$

Isomorphismen von Basen

Seien V, WK-Vektorräume und $\Phi \in \text{Hom}(V, W)$. Dann gilt:

- $M \subseteq V$ Erzeugendensystem von V, Φ surjektiv $\Rightarrow \Phi(M)$ Erzeugendensystem
- $L \subseteq V$ linear Unabhängigkeit, Φ injektiv $\Rightarrow \Phi(L)$ linear unabhängig
- $B \subseteq V$ Basis von V, Φ bijektiv $\Rightarrow \Phi(B)$ Basis von W

5.4 Rechentechniken

lineare Unabhänigkeit, Dimension, Basis

Option 1: Spalten

Löse LGS $\lambda_1 v_1 + \cdots + \lambda_m v_m = 0$

$$\begin{pmatrix} v_1 & \dots & v_m \, \middle| \, 0 \end{pmatrix} \leadsto \mathsf{GNF}$$

Option 2: Zeilen

Gauß macht Linearkombinationen

$$\begin{pmatrix} v_1^\top \\ \vdots \\ v_m^\top \end{pmatrix} \leadsto \mathsf{GNF}$$

linear unabhänig \iff Rang = m

Dimension = Rang

Basis: Vektoren mit 1en in jew. GNF Spalte **Basis**: Zeilen $\neq 0$

Extra: besonders einfache Basis

Extra: lin. Abhängigkeiten unter Vektoren Ext

5.5 Faktorraum/Quotientenraum

Sei V ein K-Vektorraum, U ein UVR von V und \sim eine Äquivalenzrelation. Dann ist ein Faktorraum V/U definiert duch:

- $V/U := V/\sim$ (Menge der Äquivalenzklassen von \sim)
- V/U ist ein K-VR mit $[v] + [w] := [v + w], \lambda [v] := [\lambda v]$

5.6 Rang eines Homomorphismus

Sei $\Phi \in \text{Hom}(V, W)$. Dann ist der Rang von Φ definiert als:

$$rg(\Phi) := dim(Bild(\Phi))$$

Und es gilt:

$$\dim V = \operatorname{rg}(\Phi) + \dim(\operatorname{Kern}(\Phi)) = \dim(\operatorname{Bild}(\Phi)) + \dim(\operatorname{Kern}(\Phi))$$

5.7 Lineare Fortsetzung

Seien V, WK-Vektorräume und B eine Basis von V. Dann ist $\Phi \in \text{Hom}(V, W)$ eindeutig definiert durch $\Phi|_B$.

5.8 Basiswechsel

Basisdarstellung

Sei V ein K-Vektorraum und $B = (b_1, ..., b_n)$ eine geordnete Basis von V.

- $\sum_{i=1}^{n} \lambda_{i} b_{i} = v \in V$ (Basiseinstellung eindeutig)
- Isomorphismus $(\cdot)_B: V \to K^n, v \mapsto (\lambda_1, ..., \lambda_n)$ (auch rückwärts)

Abbildungsmatrix

Es gilt:

$$\forall \Phi \in \operatorname{Hom}(K^n, K^m) \exists A \in K^{m \times n} : \quad \Phi(v) = A \cdot v \quad (v \in K^n)$$

Erweiterung: Seien V, W K-Vektorräume mit $B = (b_1, ..., b_n)$ Basis von V und $C = (c_1, ..., c_n)$ Basis von W. Dann gilt:

$$\forall \Phi \in \operatorname{Hom}(V, W) \exists M_{CB}(\Phi) \in K^{m \times n} : (\Phi(v))_C = M_{CB}(\Phi) \cdot (v)_B \quad (v \in V)$$

Basiswechsel

Sei V ein K-Vektorraum mit Basis $\mathsf{B}=(b_1,...,b_n)$ und $\mathsf{C}=(c_1,...,c_n)$. Basiswechsel von B nach C $((v)_B \leadsto (v)_C)$:

$$(v)_C = M_{CB}(id_V) \cdot (v)_B \quad (v \in V)$$

Seien V, W, T K-Vektorräume mit je $\mathsf{B}, \mathsf{C}, \mathsf{D}$ geordneten Basen. Seien $\Phi \in \mathrm{Hom}(V, W)$ und $\Psi \in \mathrm{Hom}(W, T)$. Es gilt:

$$M_{FB}(\Psi \circ \Phi) = M_{DF}(\Psi) \cdot M_{CB}(\Psi)$$

Sei Φ bijektiv, dann gilt:

$$M_{BC}(\Phi^{-1}) = M_{CB}(\Phi)^{-1}$$

Bestimmen der Basiswechselmatrix

Sei $V = K^n$ und E die Standardbasis. Dann gilt:

$$M_{CB}(id) = M_{CE}(id) \cdot M_{EB}(id) = M_{EC}(id)^{-1} \cdot M_{EB}(id)$$
 mit $M_{EX}(id) = (x_1|...|x_n)$

5.9 Affine Räume

Affiner Unterraum

Affine Unterräume sind verschobene Vektorräume. Sei U ein UVR und $p \in \mathbb{R}^n$:

$$R = p + U := \{p + x | x \in U\}$$

Affine Kombinationen

Seien $n \in \mathbb{N}, v_1, ..., v_n \in \mathbb{R}^n, \lambda_1, ..., \lambda_n \in \mathbb{R}$ dann ist $\sum_{i=1}^n \lambda_i v_i \in V$ mit $\sum_{i=1}^n \lambda_i = 1$ eine Affinkombination.

6 Endomorphismen

6.1 Algebren

Sei K ein Körper. $(A, +, \bullet, \cdot)$ ist eine Algebra, wenn sie folgende Eigenschaften erfüllt:

- 1. $(A, +, \cdot)$ ist ein K-Vektorraum
- 2. $(A, +, \bullet)$ ist ein Ring
- 3. $(\lambda \cdot a) \bullet b = a \bullet (\lambda \cdot b) = \lambda \cdot (a \bullet b) \quad (\forall \in K, a, b \in A)$

6.2 Determinante von Matrizen

Seien $M, N \in K^{n \times n}$. Dann gilt:

- $\det(M^T) = \det(M)$
- $M \in \mathrm{GL}_n(K)(M \text{ invertierbar}) \Leftrightarrow \det(M) \neq 0$
- $\det(M \cdot N) = \det M \cdot \det N$
- $\det(\lambda M) = \lambda^n \cdot \det(M)$
- $\det A^{-1} = \frac{1}{\det(A)}$

$$\bullet \det \begin{pmatrix} a_1 & \dots & * \\ 0 & \ddots & * \\ 0 & 0 & a_n \end{pmatrix} = a_1 \cdot \dots \cdot a_n$$

Determinante berechnen

$$0. \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

- 1. Solange wie möglich mit Gauß vereinfachen (Ziel: Dreiecksmatrix oder Zeile/Spalte mit vielen Nullen)
- 2. Wenn nicht weiter möglich, nach passender Zeile/Spalte entwickeln

Adjunkte

Sei $M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ eine quadratische Matrix. Die Adjunkte adj(M) von M bestimmt man nach dem folgenden Schema:

$$adj(M) = \begin{pmatrix} \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} & -\det \begin{pmatrix} d & f \\ g & i \end{pmatrix} & \det \begin{pmatrix} d & e \\ g & h \end{pmatrix} \\ -\det \begin{pmatrix} b & c \\ h & i \end{pmatrix} & \det \begin{pmatrix} a & c \\ g & i \end{pmatrix} & -\det \begin{pmatrix} a & b \\ g & h \end{pmatrix} \\ \det \begin{pmatrix} b & c \\ e & f \end{pmatrix} & -\det \begin{pmatrix} a & c \\ d & f \end{pmatrix} & \det \begin{pmatrix} a & b \\ d & e \end{pmatrix} \end{pmatrix}^{T}$$

Cramersche Regel

Die Cramersche Regel kann zur Berechnung von inversen Matrizen verwendet werden.

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$$

6.3 Endomorphismen

Seien V ein K-Vektorraum, B und C eine Basis von V und $\Phi \in \text{Hom}(V, V)$. Dann ist die Determinante des Endomorphismus:

$$\det(\Phi) := \det D_{BB}(\Phi) = \det D_{CC}(\Phi)$$

Sei zusätzlich U ein Untervektorraum von V. Dann gilt:

$$U$$
 ist Φ -invariant $\Leftrightarrow \Phi(U) \subseteq U$

6.4 Eigenwerte, Eigenvektoren und Eigenräume

Sei $\Phi \in \text{Hom}(V, V)$. Dann ist:

- $v \in V \setminus \{0\}$ Eigenvektor von $\Phi \Leftrightarrow \Phi(v) = \lambda v \quad (\lambda \in K)$
- $\lambda \in K$ heißt Eigenwert von $\Phi \iff \exists$ Eigenvektor v mit $\Phi(v) = \lambda v$
- Eigenraum $\operatorname{Eig}(\Phi, \lambda)$ ist die Menge aller Eigenvektoren zum Eigenwert λ (und 0) $\operatorname{Eig}(\Phi, \lambda) = \operatorname{Kern}(\Phi \lambda \cdot \operatorname{Id}_V)$
- Spektrum $\operatorname{Spec}(\Phi)$ ist die Menge aller Eigenwerte
- Eigenvektoren zu unterschiedlichen Eigenwerten sind linear unabhängig

6.5 Charakteristisches Polynom

Sei $\Phi \in \text{Hom}(V, V)$ und B eine Basis von V. Das charakteristische Polynom wird zum einfachen Bestimmen von Eigenwerten verwendet.

$$CP_{\Phi}(X) := \det(XI_n - D_{BB}(\Phi))$$

Unabhängig von der gewählten Basis B gilt:

$$CP_{\Phi}(\lambda) = 0 \Leftrightarrow \lambda \text{ Eigenwert von } \Phi$$

6.6 Diagonalisierbarkeit

Sei $\Phi \in \text{Hom}(V, V)$ diagonalisierbar. Dann gilt:

- \exists Basis B sodass $D_{BB}(\Phi)$ in Diagonal form (falls $\dim V < \infty$)
- V hat eine Basis aus Eigenvektoren von Φ
- V ist Summe der Eigenräume
- Charakteristisches Polynom zerfällt in Linearfaktoren und geometrische und algebraische Vielfachheiten stimmen überein.

Vielfachheiten

Sei $\Phi \in \text{Hom}(V, V), \lambda \in \text{Spec}(\Phi)$. Dann sind Vielfachheiten wie folgt definiert:

- Geometrisch: $\mu_q(\Phi, \lambda) := \dim(\text{Eig}(\Phi, \lambda))$
- Algebraisch: $\mu_a(\Phi, \lambda) := \text{Häufigkeit der Nullstelle } \lambda \text{ in } CP_{\Phi}(X)$