Отчёт по лабораторной работе 8

Гебриал Ибрам Есам Зекри НПИ-01-18

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Теоретические сведения	8 8 8 11 13 13
4	Выводы	18

List of Tables

List of Figures

3.1	График изменения оборотных средств фирмы 1 и фирмы 2. По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безраз-	
3.2	мерное время)	15
	ординат значения $M_{1,2}$, по оси абсцисс значения $ heta=rac{t}{c_1}$ (безраз-	
	мерное время)	17

1 Цель работы

Посмотреть модель конкуренции двух фирм.

2 Задание

Вариант 42

Случай 1.

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. В рамках этой модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты не могут прямо вмешиваться в ситуацию на рынке и каким-либо способом влиять на потребителей. Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2,$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 Nq}$$
, $a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2 Nq}$, $b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2 Nq}$, $c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}$, $c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}$. Также введена нормировка $t=c_1\theta$.

Случай 2.

Рассмотрим модель, когда, помимо экономического фактора влияния, используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассмат-

риваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2,$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - (\frac{b}{c_1} + 0.00022)M_1M_2 - \frac{a_2}{c_1}M_2^2$$

г де
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 N q}$$
, $a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2 N q}$, $b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2 N q}$, $c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}$, $c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}$.

Также введена нормировка $t = c_1 \theta$.

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами: $M_{10}=4.5, M_{20}=6.5, p_c r=24, N=54, q=1, au_1=24, au_2=20, ilde p_1=7.4, ilde p_2=11.4.$

Замечание: Значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

N - число потребителей производимого продукта.

au - длительность производственного цикла.

p - рыночная цена товара.

 $ilde{p}$ - себестоимость продукта, то есть переменные издержки на производство единицы продукции.

q - максимальная потребность одного человека в продукте в единицу времени. $\theta = \frac{t}{c_1}$ - безразмерное время.

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

3 Выполнение лабораторной работы

3.1 Теоретические сведения

3.1.1 Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

Обозначим:

N - число потребителей производимого продукта.

S - доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

M - оборотные средства предприятия.

au - длительность производственного цикла.

p - рыночная цена товара. \tilde{p} - себестоимость продукта, то есть переменные издержки на производство единицы продукции.

 δ - доля оборотных средств, идущая на покрытие переменных издержек.

 κ - постоянные издержки, которые не зависят от количества выпускаемой про-

дукции.

q - максимальная потребность одного человека в продукте в единицу времени Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q=q-\kappa\frac{p}{S}=q(1-\frac{p}{p_{cr}})$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/\kappa$. Параметр κ – мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - \kappa$$

Уравнение для рыночной цены p представим в виде:

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}))$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0$$

равновесное значение цены p равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p}Nq})$$

Тогда уравнения динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau}(\frac{p}{p_{cr}}-1) - M^2(\frac{\delta}{\tau\tilde{p}})^2\frac{p_{cr}}{Nq} - \kappa$$

Это уравнение имеет два стационарных решения, соответствующих условию dM/dt=0

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}}\tilde{p}\frac{\tau}{\delta}), b = kNq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Получается, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы.

При b << a стационарные значения M равны

$$\widetilde{M_{+}} = Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}, \widetilde{M_{-}} = \kappa \tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p})}$$

Первое состояние \widetilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M}_- неустойчиво, так, что при $M<\widetilde{M}_-$ оборотные средства падают (dM/dt<0), то есть, фирма идет к банкротству.

По смыслу \widetilde{M}_{-} соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

3.1.2 Конкуренция двух фирм

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей какимлибо иным способом.) Уравнения динамики оборотных средств запишем в виде

$$\frac{dM_1}{dt}=-\frac{M_1}{\tau_1}-N_1q(1-\frac{p}{p_{cr}})p-\kappa_1$$

$$\frac{dM_2}{dt}=-\frac{M_2}{\tau_2}-N_2q(1-\frac{p}{p_{cr}})p-\kappa_2$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N_1 и N_2 – числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p. Тогда

$$\frac{dM_1}{dt} = -\frac{M_1}{\tau_1}(1-\frac{p}{\tilde{p}_1}) - \kappa_1$$

$$\frac{dM_2}{dt} = -\frac{M_2}{\tau_2}(1-\frac{p}{\tilde{p}_2}) - \kappa_2$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, имеем

$$\frac{dM_1}{dt} = c_1 M_1 - bM_1 M_2 - a_1 M_1^2 - \kappa_1$$

$$\frac{dM_2}{dt} = c_2 M_2 - bM_1 M_2 - a_2 M_2^2 - \kappa_2$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 Nq}, a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2 Nq}, b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2 Nq}, c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}, c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}.$$

Исследуем систему в случае, когда постоянные издержки (κ_1,κ_2) пренебрежимо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2,$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1 \, M_2$ будет отличаться.

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2,$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.00022) M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

3.2 Выполнение работы

Нам в задании дано:

$$M_{1_0}=4.5, M_{2_0}=6.5, p_cr=24, N=54, q=1, \tau_1=24, \tau_2=20, \tilde{p}_1=7.4, \tilde{p}_2=11.4.$$

3.2.1 Случай 1: Построение графиков изменения оборотных средств фирм при влиянии только экономического фактора

Математическая модель для этого случая имеет вид

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2,$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Код программы

a2=p cr/(tau2*tau2*p2*p2*N*q);

р_cr=24;//крическая стоимость продукта
tau1=24;//длительность производственного цикла фирма 1
p1=7.4;//себестоимость прдукта у фирмы 1
tau2=20;//длительность производственного цикла фирма 2
p2=11.4;//себестоимость прдукта у фирмы 2
N=54;//число потребителей производимого продукта.
q =1;// максимальная потребность одного человека
в продукте в единицу времени
a1=p_cr/(tau1*tau1*p1*p1*N*q);

```
b=p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
c1=(p_cr-p1)/(tau1*p1);
c2=(p_cr-p2)/(tau2*p2);

function dx=syst(t,x)
dx(1)=(c1/c1)*x(1)-(a1/c1)*x(1)*x(1)-(b/c1)*x(1)*x(2);
dx(2)=(c2/c1)*x(2)-(a2/c1)*x(2)*x(2)-(b/c1)*x(1)*x(2);
endfunction

t0=0;
x0=[4.5;6.5];
t=[0:0.01:30];
y=ode(x0,t0,t,syst);
n=size(y,"c");
plot(t,y);
```

Построил график изменения оборотных средств фирм для первого случая (рис. 3.1):

Figure 3.1: График изменения оборотных средств фирмы 1 и фирмы 2. По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безразмерное время).

По графику видно, что рост оборотных средств предприятий идет независимо друг от друга. В математической модели этот факт отражается в коэффициенте, стоящим перед членом M_1M_2 : в рассматриваемой задаче он одинаковый в обоих уравнениях $(\frac{b}{c_1})$. Это было обозначено в условиях задачи.

Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

3.2.2 Случай 2: Построение графиков изменения оборотных средств фирм при влиянии помимо экономического фактора еще и еще и социально-психологических факторов

Математическая модель для этого случая имеет вид

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2,$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.00022) M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Код программы

```
p cr=24;//крическая стоимость продукта
tau1=24;//длительность производственного цикла фирма 1
р1=7.4;//себестоимость прдукта у фирмы 1
tau2=20;//длительность производственного цикла фирма 2
р2=11.4;//себестоимость прдукта у фирмы 2
N=54;//число потребителей производимого продукта.
q =1;// максимальная потребность одного
человека в продукте в единицу времени
a1=p cr/(tau1*tau1*p1*p1*N*g);
a2=p cr/(tau2*tau2*p2*p2*N*g);
b=p cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
c1=(p cr-p1)/(tau1*p1);
c2=(p cr-p2)/(tau2*p2);
function dx=syst(t,x)
dx(1)=(c1/c1)*x(1)-(a1/c1)*x(1)*x(1)-(b/c1)*x(1)*x(2);
dx(2)=(c2/c1)*x(2)-(a2/c1)*x(2)*x(2)-((b/c1)+0.00022)*x(1)*x(2);
endfunction
t0=0;
x0=[4.5;6.5];
t=[0:0.01:30];
y=ode(x0,t0,t,syst);
n=size(y,"c");
plot(t,y);
```

Построил график изменения оборотных средств фирм для второго случая (рис. 3.2):

Figure 3.2: График изменения оборотных средств фирмы 1 и фирмы 2. По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безразмерное время).

По графику видно, что первая фирма, несмотря на начальный рост,достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на этом уровне.

4 Выводы

Рассмотрел модель конкуренции двух фирм.