Интегралы и дифференциальные уравнения

Экзамен

2 семестр

GitHub: malyinik

Содержание

1	Сформулировать определение первообразной. Сформулировать свойства первообразной и неопределённого интеграла. Сформулировать и доказать теорему об интегрировании по частям для неопределённого интеграла.	
	грала	4
2	Разложение правильной рациональной дроби на простейшие. Интегри-	•
	рование простейших дробей	7
	2.1 Интегрирование простейших рациональных дробей	7
	$2.1.1 \frac{A}{x-a} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	$2.1.2 \frac{\overset{x-a}{A}}{(x-a)^k} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	$2.1.3 \frac{Mx+N}{x^2+px+q} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
3	Сформулировать свойства определенного интеграла	8
	3.1 Свойства определённого интеграла	8
	3.2 Доказать теорему о сохранении определенным интегралом знака подынте-	
	гральной функции	10
	3.3 Доказать теорему об оценке определенного интеграла	11
	3.4 Доказать теорему об оценке модуля определенного интеграла	11
	3.5 Доказать теорему о среднем для определенного интеграла	12
	3.6 Вывести формулу Ньютона-Лейбница	13
	3.7 Интегрирование периодических функций. Интегрирование четных и нечет-	
	ных функций на отрезке, симметричном относительно начала координат 3.8 Сформулировать и доказать теорему об интегрировании по частям для опре-	14
	делённого интеграла	15
4	Дать определение интеграла с переменным верхним пределом. Сформулировать и доказать теорему о производной от интеграла с переменным верхним пределом	
5	Дать геометрическую интерпретацию определенного интеграла. Сформулировать и доказать теорему об интегрировании подстановкой для определенного интеграла	
6	Сформулировать определение несобственного интеграла 1-го рода	18
	6.1 Сформулировать и доказать признак сходимости по неравенству для несоб-	4.0
	ственных интегралов 1-го рода	19
	6.2 Сформулировать и доказать предельный признак сравнения для несобствен-	20
	ных интегралов 1-го рода	20
	6.3 Сформулировать и доказать признак абсолютной сходимости для несобственных интегралов 1-го рода	21
7	Сформулировать определение несобственного интеграла 2-го рода и признаки сходимости таких интегралов	22
8	Фигура ограничена кривой $y = f(x) \geqslant 0$, прямыми $x = a, x = b$ и $y = 0 \ (a < b)$ Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры	

9	Фигура ограничена лучами $\varphi=\alpha, \varphi=\beta$ и кривой $r=f(\varphi)$. Здесь r и φ — полярные координаты точки, $0\leqslant \alpha<\beta\leqslant 2\pi$, где r и φ — полярные координаты точки. Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры	
10	Тело образовано вращением вокруг оси Ox криволинейной трапеции, ограниченной кривой $y=f(x)\geqslant 0$, прямыми $x=a,x=b$ и $y=0$ $(a< b)$. Вывести формулу для вычисления с помощью определенного интеграла объема тела вращения	
11	Кривая задана в декартовых координатах уравнением $y=f(x)$, где x и y — декартовые координаты точки, $a\leqslant x\leqslant b$. Вывести формулу для вычисления длины дуги этой кривой	
12	Кривая задана в полярных координатах уравнением $r=f(\varphi)\geqslant 0,$ где r и φ — полярные координаты точки, $\alpha\leqslant \varphi\leqslant \beta.$ Вывести формулу для вычисления длины дуги этой кривой	
13	Линейные дифференциальные уравнения первого порядка. Интегрирование линейных неоднородных дифференциальных уравнений первого порядка методом Бернулли (метод « $u\cdot v$ ») и методом Лагранжа (вариации произвольной постоянной)	28
14	Сформулировать теорему Коши о существовании и единственности решения дифференциального уравнения n-го порядка. Интегрирование дифференциальных уравнений n-го порядка, допускающих понижение порядка)- 31
15	Сформулировать теорему Коши о существовании и единственности решения линейного дифференциального уравнения n-го порядка. Доказать свойства частных решений линейного однородного дифференциального уравнения n-го порядка	34
16	Сформулировать определения линейно зависимой и линейно независимой систем функций 16.1 Сформулировать и доказать теорему о вронскиане линейно зависимых функ-	37
	ций	37 38
17	Сформулировать и доказать теорему о существовании фундаментальной системы решений линейного однородного дифференциального уравнения n-го порядка	39
18	Сформулировать и доказать теорему о структуре общего решения линейного однородного дифференциального уравнения n-го порядка	41
19	Вывести формулу Остроградского-Лиувилля для линейного дифференциального уравнения 2-го порядка	43

20	Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка при одном известном частном решении	44
21	Сформулировать и доказать теорему о структуре общего решения линейного неоднородного дифференциального уравнения n-го порядка	45
22	Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае кратных корней характеристического уравнения	47
23	Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае комплексных корней характеристического уравнения	48
24	Частное решение линейного неоднородного дифференциального уравнения с постоянными коэффициентами и правой частью специального вида (являющейся квазимногочленом). Сформулировать и доказать теорему о наложении частных решений	
2 5	Метод Лагранжа вариации произвольных постоянных для нахождения решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных	
	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных	
	решения линейного неоднородного дифференциального уравнения 2-го	51
	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных Дополнительные определения	51 53
	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных 3 Дополнительные определения 26.1 Неопределённый интеграл	51 53 53
	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных Дополнительные определения 26.1 Неопределённый интеграл 26.2 Правильные и неправильные рациональные дроби 26.2.1 Простейшие рациональные дроби 26.3 Определённый интеграл	51 53 53 53 53 54
	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных 3 Дополнительные определения 26.1 Неопределённый интеграл	51 53 53 53 53 54 55
	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных Дополнительные определения 26.1 Неопределённый интеграл 26.2 Правильные и неправильные рациональные дроби 26.2.1 Простейшие рациональные дроби 26.3 Определённый интеграл 26.4 Криволинейная трапеция 26.5 Абсолютная и условная сходимость	51 53 53 53 54 55 55
	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных 3. Дополнительные определения 26.1 Неопределённый интеграл 26.2 Правильные и неправильные рациональные дроби 26.2.1 Простейшие рациональные дроби 26.3 Определённый интеграл 26.4 Криволинейная трапеция 26.5 Абсолютная и условная сходимость 26.6 Уравнение Бернулли	51 53 53 53 54 55 55
	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных 3. Дополнительные определения 26.1 Неопределённый интеграл 26.2 Правильные и неправильные рациональные дроби 26.2.1 Простейшие рациональные дроби 26.3 Определённый интеграл 26.4 Криволинейная трапеция 26.5 Абсолютная и условная сходимость 26.6 Уравнение Бернулли 26.7 Общее и частное решения ДУ	51 53 53 53 53 54 55 55 55
	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных 3. Дополнительные определения 26.1 Неопределённый интеграл 26.2 Правильные и неправильные рациональные дроби 26.2.1 Простейшие рациональные дроби 26.3 Определённый интеграл 26.4 Криволинейная трапеция 26.5 Абсолютная и условная сходимость 26.6 Уравнение Бернулли 26.7 Общее и частное решения ДУ 26.8 Определитель Вронского (вронскиан) 26.9	51 53 53 53 54 55 55 55 56
26	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных 3. Дополнительные определения 26.1 Неопределённый интеграл 26.2 Правильные и неправильные рациональные дроби 26.2.1 Простейшие рациональные дроби 26.3 Определённый интеграл 26.4 Криволинейная трапеция 26.5 Абсолютная и условная сходимость 26.6 Уравнение Бернулли 26.7 Общее и частное решения ДУ	51 53 53 53 53 54 55 55 55
26 27	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных Дополнительные определения 26.1 Неопределённый интеграл 26.2 Правильные и неправильные рациональные дроби 26.2.1 Простейшие рациональные дроби 26.3 Определённый интеграл 26.4 Криволинейная трапеция 26.5 Абсолютная и условная сходимость 26.6 Уравнение Бернулли 26.7 Общее и частное решения ДУ 26.8 Определитель Вронского (вронскиан) 26.9 Характеристическое уравнение	51 53 53 53 54 55 55 56 56 57
26 27	решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных Дополнительные определения 26.1 Неопределённый интеграл 26.2 Правильные и неправильные рациональные дроби 26.2.1 Простейшие рациональные дроби 26.3 Определённый интеграл 26.4 Криволинейная трапеция 26.5 Абсолютная и условная сходимость 26.6 Уравнение Бернулли 26.7 Общее и частное решения ДУ 26.8 Определитель Вронского (вронскиан) 26.9 Характеристическое уравнение	51 53 53 53 54 55 55 55 56 56

1 Сформулировать определение первообразной. Сформулировать свойства первообразной и неопределённого интеграла. Сформулировать и доказать теорему об интегрировании по частям для неопределённого интеграла

Первообразная

Определение 1. Функция F(x) называется **первообразной** функции f(x) на интервале (a;b), если F(x) дифференцируема на (a;b) и $\forall x \in (a;b)$:

$$F'(x) = f(x)$$

Свойства первообразной

Свойство 1.

Если F(x) — первообразная функции f(x) на (a;b), то F(x)+C — первообразная функции f(x) на (a;b), где $\forall C-const.$

Свойство 2.

Если $\Phi(x)$ дифференцируема на (a;b) и $\forall x \in (a;b) \colon \Phi'(x) = 0$, то $\Phi(x) = const$, $\forall x \in (a;b)$.

Свойство 3 (Существование первообразной).

Любая непрерывная функция на (a;b) имеет множество первообразных на этом интервале, причём любые две из них отличаются друг от друга на константу.

$$\Phi(x),\ F(x)$$
 — первообразные функции $f(x)$ на $(a;b)$
$$\Phi(x) - F(x) = const$$

Свойства неопределённого интеграла

Свойство 1.

Производная от неопределённого интеграла равна подынтегральной функции.

$$\left| \left(\int f(x) \, dx \right)' = f(x) \right|$$

Свойство 2.

Дифференциал от неопределённого интеграла равен подынтегральному выражению.

$$d\left(\int f(x) dx\right) = f(x) dx$$

Свойство 3.

Неопределённый интеграл от дифференциала от некоторой функции равен сумме этой функции и константы.

$$\int d(F(x)) = F(x) + C, \quad \forall C - const$$

Свойство 4.

Константу можно выносить за знак неопределённого интеграла.

$$\int \lambda \cdot f(x) \, dx = \lambda \int f(x) \, dx, \quad \lambda \neq 0$$

Свойство 5.

Если функции $f_1(x)$ и $f_2(x)$ на (a;b) имеют первообразные $F_1(x)$ и $F_2(x)$ соответственно, то функция $\lambda_1 f_1(x) + \lambda_2 f_2(x)$, где $\lambda_1, \lambda_2 \in \mathbb{R}$, имеет первообразную на (a;b), причём $\lambda_1^2 + \lambda_2^2 > 0$:

$$\int \left(\lambda_1 f_1(x) + \lambda_2 f_2(x)\right) dx = \lambda_1 \int f_1(x) dx + \lambda_2 \int f_2(x) dx$$

Свойство 6 (Инвариантность формы интегрирования).

Если $\int f(x) dx = F(x) + C$, где C-const, то $\int f(u) du = F(u) + C$, где C-const, $u=\varphi(x)$ — непрерывно-дифференцируемая функция.

Теорема об интегрировании по частям

Теорема 1.

Пусть функции u = u(x) и v = v(x) непрерывно-дифференцируемые, тогда справедлива формула интегрирования по частям:

$$\int u \, dv = u \cdot v - \int v \, du$$

Доказательство.

Рассмотрим произведение $u \cdot v = u(x) \cdot v(x)$

Дифференциал:

$$d(u \cdot v) = u \cdot dv + v \cdot du$$

Выразим $u \cdot dv$:

$$u \cdot dv = d(u \cdot v) - v \cdot du$$

Интегрируем:

$$\int u \, dv = \int \left(d(uv) - v \, du \right)$$

По свойству неопределённого интеграла (5):

$$\int u \, dv = \int d(uv) - \int v \, du$$

По свойству неопределённого интеграла (3):

$$\int u \, dv = u \cdot v - \int v \, du$$

2 Разложение правильной рациональной дроби на простейшие. Интегрирование простейших дробей

Теорема 2 (О разложении правильной рациональной дроби на простейшие).

Любая правильная рациональная дробь $\frac{P(x)}{Q(x)}$, знаменатель которой можно разложить на множители:

$$Q(x) = (x - x_1)^{k_1} \cdot (x - x_2)^{k_2} \cdot \dots \cdot (x - x_n)^{k_n} \cdot (x^2 + p_1 x + q_1)^{s_1} \cdot \dots \cdot (x^2 + p_m x + q_m)^{s_m},$$

может быть представлена и при том единственным образом в виде суммы простейших рациональных дробей:

$$\frac{P(x)}{Q(x)} = \frac{A_1}{x - x_1} + \frac{B_1}{(x - x_1)^2} + \dots + \frac{C_1}{(x - x_1)^{k_1}} + \dots + \frac{A_n}{(x - x_n)} + \frac{B_n}{(x - x_n)^2} + \dots + \frac{C_n}{(x - x_n)^{k_n}} + \frac{M_1 x + N_1}{x^2 + p_1 x + q_1} + \dots + \frac{M_{s_1} x + N_{s_1}}{(x^2 + p_1 x + q_1)^{s_1}} + \dots + \frac{E_1 x + F_1}{x^2 + p_m x + q_m} + \dots + \frac{E_{s_m} x + F_{s_m}}{(x^2 + p_m x + q_m)^{s_m}}$$

$$\left. \begin{array}{l} A_1, \ B_1, \ \dots, \ C_1 \\ A_n, \ B_n, \ \dots, \ C_n \\ M_1, \ N_1, \ \dots, \ M_{s_1}, \ N_{s_1} \\ E_1, \ F_1, \ \dots, \ E_{s_m}, \ F_{s_m} \end{array} \right\} \in \mathbb{R} \qquad \begin{array}{l} x^2 + p_1 x + q_1 \\ \dots \\ x^2 + p_m x + q_m \end{array} \quad \text{ не имеют} \\ x^2 + p_m x + q_m \end{array}$$
 не имеют действительных корней $k_1, \ k_2, \ \dots, \ k_n, \ s_1, \ \dots, \ s_m \in \mathbb{N}$

2.1 Интегрирование простейших рациональных дробей

2.1.1 $\frac{A}{x-a}$

$$\int \frac{A}{x-a} dx = A \int \frac{dx}{x-a} = A \int \frac{d(x-a)}{x-a} = A \cdot \ln|x-a| + C, \quad \forall C - const$$

2.1.2
$$\frac{A}{(x-a)^k}$$

$$\int \frac{A}{(x-a)^k} dx = A \int \frac{dx}{(x-a)^k} = A \int \frac{d(x-a)}{(x-a)^k} = A \int (x-a)^{-k} d(x-a) = A \cdot \frac{(x-a)^{-k+1}}{-k+1} + C,$$

$$\forall C - const$$

2.1.3 $\frac{Mx+N}{x^2+px+q}$

$$D = p^2 - 4q < 0, \quad 4q - p^2 > 0, \quad \boxed{q - \frac{p^2}{4} > 0}$$
 (*)

$$\int \frac{Mx+N}{x^2+px+q} \, dx = \begin{vmatrix} x^2+px+q = x^2+2 \cdot \frac{p}{2}x + \frac{p^2}{4} - \frac{p^2}{4} + q = \\ = \left(x + \frac{p}{2}\right)^2 + \left(q - \frac{p^2}{4}\right) \xrightarrow{(*)} \left(x + \frac{p}{2}\right)^2 + b^2 \end{vmatrix} = \int \frac{Mx+N}{\left(x + \frac{p}{2}\right)^2 + b^2} \, dx = \\ = \left|x + \frac{p}{2} = t - x = t - \frac{p}{2} - dx = dt\right| = \int \frac{M\left(t - \frac{p}{2}\right) + N}{t^2 + b^2} \, dt = \\ = M \int \frac{t}{t^2 + b^2} \, dt + \left(N - \frac{p}{2}M\right) \int \frac{dt}{t^2 + b^2} = \\ = \frac{M}{2} \int \frac{d(t^2 + b^2)}{t^2 + b^2} + \left(N - \frac{p}{2}M\right) \frac{1}{b} \arctan \frac{t}{b} = \\ = \frac{M}{2} \ln|t^2 + b^2| + \frac{\left(N - \frac{p}{2}M\right)}{b} \arctan \frac{t}{b} + C = \\ = \frac{M}{2} \ln|x^2 + px + q| + \frac{\left(N - \frac{p}{2}M\right)}{\sqrt{q - \frac{p^2}{4}}} \arctan \frac{x + \frac{p}{2}}{\sqrt{q - \frac{p^2}{4}}} + C, \quad \forall C - const$$

3 Сформулировать свойства определенного интеграла

3.1 Свойства определённого интеграла

Теорема 3.

Если функция y = f(x) интегрируема на отрезке [a;b], то имеет место равенство

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Теорема 4 (Аддитивность определённого интеграла).

Если функция y = f(x) интегрируема на каждом из отрезков [a; c], [c; b] (a < c < b), то она интегрируема на [a; b] и верно равенство

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Теорема 5.

Если C-const, то

$$\left| \int_{a}^{b} C \, dx = C \cdot (b - a) \right|$$

Теорема 6.

Если функции $f_1(x)$, $f_2(x)$ интегрируемы на [a;b], то их линейная комбинация

$$\lambda_1 f_1(x) + \lambda_2 f_2(x)$$
, где $\lambda_1, \lambda_2 \in \mathbb{R}$

интегрируема на [a;b] и верно равенство:

$$\int_{a}^{b} \left(\lambda_{1} f_{1}(x) + \lambda_{2} f_{2}(x) \right) dx = \lambda_{1} \int_{a}^{b} f_{1}(x) dx + \lambda_{2} \int_{a}^{b} f_{2}(x) dx$$

Следствие 6.1.

$$\int_{a}^{a} f(x) \, dx = 0$$

Теорема 7 (O сохранении определённым интегралом знака подынтегральной функции).

Если f(x) интегрируема и неотрицательна на [a;b], то

$$\int_{a}^{b} f(x) \, dx \geqslant 0$$

Теорема 8 (Об интегрировании неравенства).

Пусть функции f(x) и g(x) интегрируемы на [a;b] и $\forall x \in [a;b] \colon f(x) \geqslant g(x)$, то

$$\int_{a}^{b} f(x) \, dx \geqslant \int_{a}^{b} g(x) \, dx$$

Теорема 9 (Об оценке модуля определённого интеграла).

Если функция f(x) и |f(x)| интегрируемы на [a;b], то справедливо неравенство

$$\left| \left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} \left| f(x) \right| dx \right|$$

Теорема 10 (О среднем значении для определённого интеграла).

Если f(x) непрерывна на [a;b], то

$$\exists c \in [a;b] \colon f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx$$

Теорема 11 (Об оценке определённого интеграла).

Пусть функции f(x) и g(x) интегрируемы на [a;b] и $\forall x \in [a;b]$: $m \leqslant f(x) \leqslant M, \ g(x) \geqslant 0, m, \ M \in \mathbb{R}.$ Тогда

$$\boxed{m \int_a^b g(x) \, dx \leqslant \int_a^b f(x) \, g(x) \, dx \leqslant M \int_a^b g(x) \, dx}$$

Следствие 11.1. $g(x) \equiv 1, \ \forall x \in [a; b]$

$$m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a)$$

3.2 Доказать теорему о сохранении определенным интегралом знака подынтегральной функции

Теорема 7 (О сохранении определённым интегралом знака подынтегральной функции).

Если f(x) интегрируема и неотрицательна на [a;b], то

$$\left| \int_{a}^{b} f(x) \, dx \geqslant 0 \right|$$

Доказательство.

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i}$$

 Δx_i — длины отрезков разбиения $\Delta x_i > 0$ $f(\xi_i) \geqslant 0$ по условию

$$f(\xi_i) \cdot \Delta x_i \geqslant 0, \ i = \overline{i, n}$$

$$\sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i \geqslant 0 \quad \text{как сумма неотрицательных чисел}$$

$$\lim_{\lambda\to 0}\sum_{i=1}^n f(\xi_i)\cdot \Delta x_i\geqslant 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\phi y}{\phi y} \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o сохранении } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следствию из теоремы o coxpanentum } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следстви } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следстви } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следстви } \\ \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = 0 \quad \mbox{по следстви } \\ \frac{\partial x}{\partial x} = 0 \quad \mbox{по$$

$$\int_{a}^{b} f(x) \, dx \geqslant 0$$

3.3 Доказать теорему об оценке определенного интеграла

Теорема 11 (Об оценке определённого интеграла).

Пусть функции f(x) и g(x) интегрируемы на [a;b] и $\forall x \in [a;b] \colon m \leqslant f(x) \leqslant M, \ g(x) \geqslant 0, m, \ M \in \mathbb{R}.$ Тогда

$$\int_{a}^{b} g(x) dx \leqslant \int_{a}^{b} f(x) g(x) dx \leqslant M \int_{a}^{b} g(x) dx$$

Доказательство.

Так как $\forall x \in [a;b]$ верны неравенства

$$m \leqslant f(x) \leqslant M \quad | \cdot g(x)$$

 $g(x) \geqslant 0 \quad m, M \in \mathbb{R}$

$$m \cdot g(x) \leqslant f(x) \cdot g(x) \leqslant M \cdot g(x)$$

По теореме 8 и 6:

$$m \int_a^b g(x) \leqslant \int_a^b f(x) g(x) dx \leqslant M \int_a^b g(x) dx$$

3.4 Доказать теорему об оценке модуля определенного интеграла

Теорема 9 (Об оценке модуля определённого интеграла).

Если функция f(x) и |f(x)| интегрируемы на [a;b], то справедливо неравенство

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| dx$$

Доказательство.

 $\forall x \in [a;b]$ справедливо неравенство

$$-|f(x)| \leqslant f(x) \leqslant |f(x)|$$

По теореме 6 и 8:

$$-\int_{a}^{b} |f(x)| dx \leqslant \int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} |f(x)| dx$$

Сворачиваем двойное неравенство:

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| dx$$

3.5 Доказать теорему о среднем для определенного интеграла

Теорема 10 (О среднем значении для определённого интеграла). Если f(x) непрерывна на [a;b], то

$$\exists c \in [a;b] \colon f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx$$

Доказательство.

Так как функция y = f(x) непрерывна на [a;b], то по теореме $Be\~uepumpacca$ она достигает своего наибольшего и наименьшего значения.

To есть $\exists m, M \in \mathbb{R}, \ \forall x \in [a; b] : m \leqslant f(x) \leqslant M$

По теореме 8:

$$\int_{a}^{b} m \, dx \leqslant \int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} M \, dx$$

По теореме 6:

$$m \int_{a}^{b} dx \leqslant \int_{a}^{b} f(x) dx \leqslant M \int_{a}^{b} dx$$

По теореме 5:

$$m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a) \mid : (b-a)$$

Так как функция y = f(x) непрерывна на [a; b], то по теореме *Больцано-Коши* она принимает все свои значения между наибольшим и наименьшим значением.

$$m \leqslant \frac{1}{b-a} \int_a^b f(x) \, dx \leqslant M$$

По теореме *Больцано-Коши* $\exists c \in [a; b]$:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

3.6 Вывести формулу Ньютона-Лейбница

Теорема 12.

Пусть функция f(x) — непрерывна на [a;b]. Тогда

$$\left| \int_a^b f(x) \, dx = F(x) \right|_a^b = F(b) - F(a)$$

где F(x) — первообразная f(x).

Доказательство.

Пусть F(x) первообразная f(x) на [a;b]. По следствию из теоремы 16 I(x) — первообразная f(x) на [a;b].

По свойству первообразной (св.3):

$$I(x) - F(x) = C$$

$$I(x) = F(x) + C, \text{ где } C - const$$

$$\int_a^x f(t) \, dt = F(x) + C, \text{ где } C - const \tag{\lor}$$

 $\bullet \ x = a$:

$$\int_{a}^{a} f(t) dt = F(a) + C$$
$$0 = F(a) + C$$
$$C = -F(a)$$

C = -F(a) подставим в (\vee):

$$\int_{a}^{x} f(t) dt = F(x) - F(a)$$

 $\bullet \ x = b$:

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

3.7 Интегрирование периодических функций. Интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат

Теорема 13.

Пусть f(x) непрерывная периодическая функция с периодом T. Тогда

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx, \quad \forall a \in \mathbb{R}$$

Доказательство

$$\int_{a}^{a+T} f(x) \, dx = \int_{a}^{0} f(x) \, dx + \int_{0}^{T} f(x) \, dx + \int_{T}^{T+a} f(x) \, dx$$

$$\int_{T}^{T+a} f(x) \, dx = \begin{vmatrix} t = x - T, & x = t + T, & dx = dt \\ x_{\text{H}} = T, & t_{\text{H}} = 0 \\ x_{\text{B}} = T + a, & t_{\text{B}} = a \end{vmatrix} = \int_{0}^{a} f(t+T) \, dt \xrightarrow{\text{период.}} \int_{0}^{a} f(t) \, dt$$

$$\int_{a}^{a+T} f(x) \, dx = \int_{a}^{0} f(x) \, dx + \int_{0}^{T} f(x) \, dx + \int_{0}^{a} f(x) \, dx$$

$$\int_{a}^{a+T} f(x) \, dx = \int_{0}^{a} f(x) \, dx, \quad \forall x \in \mathbb{R}$$

Теорема 14.

Пусть функция y = f(x) непрерывна на [-a; a], где $a \in \mathbb{R}, \ a > 0$. Тогда

$$\int_{-a}^{a} f(x) \, dx = \begin{cases} 2 \int_{0}^{a} f(x) \, dx, & f - \text{чётная} \\ 0, & f - \text{нечётная} \end{cases}$$

Доказательство.

$$\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx \iff 0$$

$$\int_{-a}^{0} f(x) \, dx = \begin{vmatrix} x = -t, & dx = -dt \\ x_{\text{H}} = -a, & t_{\text{H}} = a \\ x_{\text{B}} = 0, & t_{\text{B}} = 0 \end{vmatrix} = \int_{a}^{0} f(-t) \, (-dt) = \int_{0}^{a} f(-t) \, dt = \int_{0}^{a} f(t) \, dt, f - \text{чётная}$$

$$= \begin{cases} \int_{0}^{a} f(t) \, dt, f - \text{чётная} \\ -\int_{0}^{a} f(t) \, dx, f - \text{чётная} \end{cases} = \begin{cases} 2 \int_{0}^{a} f(x) \, dx, f - \text{чётная} \\ 0, f - \text{нечётная} \end{cases}$$

3.8 Сформулировать и доказать теорему об интегрировании по частям для определённого интеграла

Теорема 15.

Пусть функции u=u(x) и v=v(x) непрерывно дифференцируемы на [a;b]. Тогда имеет место равенство

$$\left| \int_{a}^{b} u \, dv = uv \right|_{a}^{b} - \int_{a}^{b} v \, du$$

Доказательство.

Рассмотрим произведение функций $u \cdot v$.

Дифференцируем:

$$d(u \cdot v) = v du + u dv$$
$$u dv = d(uv) - v du$$

Интегрируем:

$$\int_{a}^{b} u \, dv = \int_{a}^{b} \left(d(uv) - v \, du \right) = \int_{a}^{b} d(uv) - \int_{a}^{b} v \, du = uv \bigg|_{a}^{b} - \int_{a}^{b} v \, du$$

4 Дать определение интеграла с переменным верхним пределом. Сформулировать и доказать теорему о производной от интеграла с переменным верхним пределом

Определение 2. Определённым интегралом с переменным верхним пределом интегрирования от непрерывной функции f(x) на [a;b] называется интегралвида

$$I(x) = \int_a^x f(t) dt$$
, где $x \in [a; b]$

Теорема 16 (О производной I(x)).

Если функция y = f(x) непрерывна на [a; b], то $\forall x \in [a; b]$ верно равенство

$$\boxed{\left(I(x)\right)' = \left(\int_a^x f(t) \, dt\right)' = f(x)}$$

Доказательство.

$$(I(x))' = \lim_{\Delta x \to 0} \frac{\Delta I(x)}{\Delta x} \stackrel{\text{T34}}{==} \lim_{\Delta x \to 0} \frac{f(c) \cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} f(c) \stackrel{*}{==} f(x)$$

*:
$$a$$
 при $\Delta x \to 0$ $x + \Delta x \to x$ $c \to x$

Следствие 16.1. Функция I(x) — первообразная функции f(x) на [a;b], так как по теореме 16 $\big(I(x)\big)'=f(x)$.

5 Дать геометрическую интерпретацию определенного интеграла. Сформулировать и доказать теорему об интегрировании подстановкой для определенного интеграла

Геометрический смысл

Определённый интеграл численно равен площади криволинейной трапеции.

$$S_{\text{\tiny Kp. Tp.}} = \int_a^b f(x) \, dx$$

Теорема об интегрировании подстановкой

Теорема 17.

Пусть

- 1. y = f(x) непрерывна на [a; b]
- 2. $x=\varphi(t)$ непрерывно дифференцируема при $t\in[t_1;t_2]$
- 3. при $t \in [t_1;t_2]$ значения функции $\varphi(t)$ не выходят за пределы [a;b]
- 4. $\varphi(t_1) = a$, $\varphi(t_2) = b$

Тогда
$$\int_a^b f(x) \, dx = \begin{vmatrix} x = \varphi(t), & x_{\scriptscriptstyle \mathrm{H}} = a, & t_{\scriptscriptstyle \mathrm{H}} = t_1 \\ dx = \varphi'(t) \, dt, & x_{\scriptscriptstyle \mathrm{B}} = b, & t_{\scriptscriptstyle \mathrm{B}} = t_2 \end{vmatrix} = \int_{t_1}^{t_2} f\big(\varphi(t)\big) \varphi'(t) \, dt$$

Доказательство.

Так как

- 1. y = f(x) непрерывна на [a; b], а
- 2. $x = \varphi(t)$ непрерывна на $[t_1; t_2]$,

то сложная $y = f(\varphi(t))$ непрерывна на $[t_1; t_2]$ по теореме о непрерывности сложной функции.

Так как y = f(x) непрерывна на [a; b], а функция $f(\varphi(t)) \cdot \varphi'(t)$ — непрерывна на $[t_1; t_2]$, то существует определённый и неопределённый интеграл от этих функций.

Пусть F(x) — первообразная функции f(x) на [a;b]. В силу инвариантности неопределённого интеграла $F(\varphi(t))$ — первообразная функции $f(\varphi(t))$ на $[t_1;t_2]$.

Тогда

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} \xrightarrow{\text{H-JI}} F(b) - F(a)$$

$$\int_{t_{1}}^{t_{2}} f(\varphi(t)) \varphi'(t) dt = F(\varphi(t)) \Big|_{t_{1}}^{t_{2}} \xrightarrow{\text{H-JI}} F(\varphi(t_{2})) - F(\varphi(t_{1})) = F(b) - F(a)$$

Замечание.

При замене переменной в определённом интеграле обратную замену не делают.

Нужно не забыть изменить пределы интегрирования.

6 Сформулировать определение несобственного интеграла 1-го рода

Пусть y = f(x) определена на $[a; +\infty)$, интегрируема на $[a; b] \subset [a; +\infty)$. Тогда определена функция

$$\Phi(b) = \int_{a}^{b} f(x) dx \text{ Ha } [a; +\infty)$$
(1)

как определённый интеграл с переменным верхним пределом интегрирования.

Определение 3. Предел функции $\Phi(b)$ при $b \to +\infty$ называется несобственным интегралом от функции f(x) по бесконечному промежутку $[a; +\infty)$ или **несобственным интегралом 1-го рода** и обозначается

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \Phi(b) = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$
 (2)

Если предел в правой части равенства (2) существует и конечен, то несобственный интеграл в левой части равенства (2) **сходится**.

Если предел в правой части равенства (2) не существует или равен ∞ , то несобственный интеграл в левой части равенства (2) **расходится**.

6.1Сформулировать и доказать признак сходимости по неравенству для несобственных интегралов 1-го рода

Теорема 18 (Признак сходимости по неравенству).

Пусть функции f(x) и g(x) интегрируемы на $[a;b] \subset [a;+\infty)$, причём

$$\forall x \geqslant a \colon 0 \leqslant f(x) \leqslant g(x)$$

Тогда:

- 1. Если $\int_a^{+\infty} g(x) dx$ сходится, то $\int_a^{+\infty} f(x) dx$ сходится
- 2. Если $\int_a^{+\infty} f(x) dx$ расходится, то $\int_a^{+\infty} g(x) dx$ расходится

Доказательство.

 $\int_a^{+\infty} g(x)\,dx$ — сходится \Rightarrow по определению несобственного интеграла 1-го рода

$$\int_{a}^{+\infty} g(x) \, dx = \lim_{b \to +\infty} \int_{a}^{b} g(x) \, dx = C \quad C - \text{ число}$$

Так как $\forall x \geqslant a : q(x) \geqslant 0$

$$\Phi(b) = \int_{a}^{b} g(x) \, dx \leqslant C, \quad b > a$$

По условию: $\forall x \geqslant a : 0 \leqslant f(x) \leqslant g(x)$

Интегрируем:

$$\int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} g(x) dx \leqslant C$$

Так как $f(x) \ge 0$, $\forall x \ge a$ и b > a, то функция

$$\Psi(b) = \int_a^b f(x) \, dx$$
 монотонно возрастает и ограничена сверху

 ${f y}$ тверждение: монотонная и ограниченная сверху функция при $x o +\infty$ имеет конечный предел.

По утверждению функция $\Psi(b)$ имеет конечный предел при $x \to +\infty$, то есть

$$\int_a^{+\infty} f(x) \, dx = \lim_{b \to +\infty} \Psi(b) = \lim_{b \to +\infty} \int_a^b f(x) \, dx \, - \, \text{конечный предел}$$

Доказательство (Метод от противного).

 \mathcal{L} ано: $\int_a^{+\infty} f(x) \, dx$ — расходится Предположим, что $\int_a^{+\infty} g(x) \, dx$ — сходится

Тогда по первой части теоремы:

$$\int_{a}^{+\infty} f(x) dx - \text{сходится}$$

А это противоречит условию теоремы $\Rightarrow \int_a^{+\infty} g(x) dx$ — расходится

6.2 Сформулировать и доказать предельный признак сравнения для несобственных интегралов 1-го рода

Теорема 19 (Предельный признак сходимости).

Пусть f(x) и g(x) интегрируемы на $[a;b] \subset [a;+\infty)$ и $\forall x \geqslant a \colon f(x) \geqslant 0, \ g(x) > 0$. Если существует конечный предел:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lambda > 0 \tag{3}$$

то $\int_a^{+\infty} f(x) dx$ и $\int_a^{+\infty} g(x) dx$ сходятся или расходятся одновременно.

Доказательство.

Из (3) \Rightarrow по определению предела:

$$\forall \varepsilon > 0, \ \exists M(\varepsilon) > 0 \colon \forall x > M \ \Rightarrow \left| \frac{f(x)}{g(x)} - \lambda \right| < \varepsilon$$

$$-\varepsilon < \frac{f(x)}{g(x)} - \lambda < \varepsilon$$

$$\lambda - \varepsilon < \frac{f(x)}{g(x)} < \lambda + \varepsilon$$

$$(\lambda - \varepsilon) \cdot g(x) < f(x) < (\lambda + \varepsilon) \cdot g(x) \quad \forall x > M$$
(*)

1 шаг Рассмотрим $f(x) < (\lambda + \varepsilon)g(x)$

Интегрируем:

$$\int_{a}^{+\infty} f(x) \, dx < (\lambda + \varepsilon) \int_{a}^{+\infty} g(x) \, dx$$

Число $(\lambda + \varepsilon)$ не влияет на сходимость/расходимость несобственного интеграла.

Пусть $\int_a^{+\infty} g(x) \, dx$ — сходится, тогда:

$$(\lambda + \varepsilon) \int_a^{+\infty} g(x) dx$$
 — сходится

По теореме 18 $\int_a^{+\infty} f(x) dx$ — сходится.

Пусть $\int_a^{+\infty} f(x) \, dx$ расходится, тогда по теореме 18

$$(\lambda + \varepsilon) \int_a^{+\infty} g(x) dx$$
 — расходится $\Rightarrow \int_a^{+\infty} g(x) dx$ — расходится

 $\boxed{2}$ шаг Рассмотрим $(\lambda - \varepsilon) \cdot g(x) < f(x)$

Интегрируем:

$$(\lambda - \varepsilon) \int_{a}^{+\infty} g(x) dx < \int_{a}^{+\infty} f(x) dx$$

 $(\lambda-\varepsilon)$ не влияет на сходимость/расходимость несобственного интеграла

Пусть $\int_{a}^{+\infty} f(x) dx$ — сходится, тогда по теореме 18

$$(\lambda - \varepsilon) \int_a^{+\infty} g(x) dx$$
 — сходится $\Rightarrow \int_a^{+\infty} g(x) dx$ — сходится

Пусть $(\lambda - \varepsilon) \int_a^{+\infty} g(x) \, dx$ — расходится, тогда $\int_a^{+\infty} g(x) \, dx$ — расходится

По теореме 18 $\int_a^{+\infty} f(x) dx$ расходится, тогда

$$\int_a^{+\infty} f(x) \, dx$$
 и $\int_a^{+\infty} g(x) \, dx$ сходятся и расходятся одновременно

6.3 Сформулировать и доказать признак абсолютной сходимости для несобственных интегралов 1-го рода

Теорема 20 (Признак абсолютной сходимости).

Пусть функция f(x) знакопеременна на $[a; +\infty)$. Если функции f(x) и |f(x)| интегрируемы на любом отрезке $[a; b] \subset [a; +\infty)$ и несобственный интеграл от функции |f(x)| по бесконечному промежутку $[a; +\infty)$ сходится, то сходится и несобственный интеграл от функции f(x) по $[a; +\infty)$, причём абсолютно.

Доказательство.

Так как $\forall x \in [a; +\infty)$ верно неравенство

$$-|f(x)| \leqslant f(x) \leqslant |f(x)| + |f(x)|$$
$$0 \leqslant f(x) + |f(x)| \leqslant 2|f(x)|$$

По условию $\int_a^{+\infty} |f(x)| dx$ сходится $\Rightarrow 2 \int_a^{+\infty} |f(x)| dx$ сходится.

По теореме 18 (признак сходимости по неравенству):

$$\int_{a}^{+\infty} (f(x) + |f(x)|) dx - \text{сходится}$$

Рассмотрим

$$\int_{a}^{+\infty} f(x) \, dx = \underbrace{\int_{a}^{+\infty} \left(f(x) + |f(x)| \right) dx}_{\text{CX-CSI IIO T18}} - \underbrace{\int_{a}^{+\infty} |f(x)| \, dx}_{\text{CX-CSI IIO VCJOBBHO}}$$

По определению сходящегося несобственного интеграла $\Rightarrow \int_a^{+\infty} f(x) dx$ сходится По определению абсолютной сходимости $\Rightarrow \int_a^{+\infty} f(x) dx$ сходится абсолютно (опр.26)

7 Сформулировать определение несобственного интеграла 2-го рода и признаки сходимости таких интегралов

Пусть функция f(x) определена на полуинтервале [a;b), а в точке x=b терпит разрыв 2-го рода. Предположим, что функция f(x) интегрируема на $[a;\eta]\subset [a;b)$. Тогда на [a;b) определена функция

$$\Phi(\eta) = \int_{a}^{\eta} f(x) \, dx \tag{1}$$

как интеграл с переменным верхним пределом.

Определение 4. Предел функции $\Phi(\eta)$ при $\eta \to b-$ называется несобственным интегралом от неограниченной функции f(x) на [a;b) или **несобственным интегралом** 2-го рода и обозначается

$$\int_{a}^{b} f(x) dx = \lim_{\eta \to b^{-}} \Phi(\eta) = \lim_{\eta \to b^{-}} \int_{a}^{\eta} f(x) dx$$
 (2)

Если предел в правой части равенства (2) существует и конечен, то несобственный интеграл от неограниченной функции f(x) по [a;b) сходится.

Если предел в правой части равенства (2) не существует или равен ∞ , то несобственный интеграл от неограниченной функции f(x) по [a;b) расходится.

Теорема 21 (Признак сходимости по неравенству).

Пусть функции f(x) и g(x) интегрируемы на \forall отрезке $[a;\eta]\subset [a;b)$, являются неотрицательными $\forall x\in [a;b)$ и в точке x=b терпят разрыв 2-го рода, причём выполнено неравенство $0\leqslant f(x)\leqslant g(x)$. Тогда

- 1. Если несобственный интеграл $\int_a^b g(x) \, dx$ сходится, то несобственный интеграл $\int_a^b f(x) \, dx$ сходится.
- 2. Если собственный интеграл $\int_a^b f(x) \, dx$ расходится, то несобственный интеграл $\int_a^b g(x) \, dx$ расходится.

Теорема 22 (Предельный признак сходимости).

Пусть функции f(x) и g(x) интегрируемы на \forall отрезке $[a;\eta]\subset [a;b)$, являются неотрицательными $\forall x\in [a;b)$ и в точке x=b терпят разрыв 2-го рода. Если существует конечный положительный предел

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lambda > 0$$

то $\int_a^b f(x) \, dx$ и $\int_a^b g(x) \, dx$ сходятся или расходятся одновременно.

Теорема 23 (Признак абсолютной сходимости).

Пусть функция f(x) знакопеременна на [a;b). Если f(x) и |f(x)| интегрируемы на $\forall [a;\eta] \subset [a;b)$ и несобственный интеграл от функции |f(x)| сходится по этому промежутку, то несобственный интеграл от функции f(x) сходится, причём абсолютно.

8 Фигура ограничена кривой $y = f(x) \geqslant 0$, прямыми x = a, x = b и y = 0 (a < b). Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры

Пусть функция y = f(x) непрерывна на [a;b] и $\forall x \in [a;b] \colon f(x) \geqslant 0$. Из геометрического смысла определённого интеграла:

$$S = \int_{a}^{b} f(x) \, dx \tag{1}$$

Этапы вывода формулы:

- 1. Разбиваем [a;b] точками $a = x_0 < x_1 < \ldots < x_i < \ldots < x_n = b$
- 2. $[x_{i-1};x_i],\ i=\overline{1,n}$ отрезки разбиения $\Delta x_i=x_i-x_{i-1}$ длины отрезков разбиения
- 3. $\forall \xi_i \in [x_{i-1}; x_i], \ i = \overline{1, n} \qquad f(\xi_i)$ Криволинейную трапецию с основанием Δx_i заменяем прямоугольником длины $f(\xi_i)$. Криволинейная трапеция с основанием [a; b] заменяется на ступенчатую фигуру.
- 4. $\lambda = \max_i \Delta x_i$ $\sum_{i=1}^n f(\xi_i) \cdot \Delta x_i \text{интегральная сумма}$

5.
$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi) \cdot \Delta x_i = \boxed{\int_a^b f(x) \, dx = S}$$

9 Фигура ограничена лучами $\varphi = \alpha, \varphi = \beta$ и кривой $r = f(\varphi)$. Здесь r и φ — полярные координаты точки, $0 \leqslant \alpha < \beta \leqslant 2\pi$, где r и φ — полярные координаты точки. Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры

Определение 5. Криволинейный сектор — это фигура, ограниченная лучами $\varphi = \alpha, \ \varphi = \beta$ и графиком непрерывной кривой $r = r(\varphi), \ \varphi \in [\alpha; \beta]$

Этапы вывода формулы:

- 1. Разбиваем сектор A_0OA_n лучами $\alpha = \varphi_0 < \varphi_1 < \ldots < \varphi_n = \beta$ на углы $\angle A_0OA_1$, $\angle A_1OA_2, \ldots, \angle A_{n-1}OA_n$ $\Delta \varphi_i = \varphi_i \varphi_{i-1}$ величина $\angle A_{i-1}OA_i$ в радианах $\lambda = \max_i \Delta \varphi_i, \ i = \overline{1,n}$
- 2. \forall выберем и проведём $\Psi_i, \, \Psi_i \in \angle A_{i-1}OA_i$ Находим $r = r(\Psi_i)$ $M_i(\Psi_i, \, r(\Psi_i)), \, M_i \in \angle A_{i-1}OA_i, \, M_i \in r = r(\varphi)$
- 3. Заменяем каждый i-ый криволинейный сектор на круговой сектор $R=r(\Psi_i),\ i=\overline{1,n}$ $S_i=\frac{1}{2}R^2\cdot\Delta\varphi_i$ площадь i-го кругового сектора $R=r(\Psi_i)$

$$\sum_{i=1}^{n} S_i = \sum_{i=1}^{n} \frac{1}{2} r^2(\Psi_i) \cdot \Delta \varphi_i = \frac{1}{2} \sum_{i=1}^{n} r^2(\Psi_i) \cdot \Delta \varphi_i$$

4. Вычисляем предел

$$\lim_{\lambda \to 0} \frac{1}{2} \sum_{i=1}^{n} r^2(\Psi_i) \cdot \Delta \varphi_i = \boxed{\frac{1}{2} \int_{\alpha}^{\beta} r^2 \, d\varphi = S}$$
(2)

10 Тело образовано вращением вокруг оси Ox криволинейной трапеции, ограниченной кривой $y = f(x) \geqslant 0$, прямыми $x = a, \ x = b$ и $y = 0 \ (a < b)$. Вывести формулу для вычисления с помощью определенного интеграла объема тела вращения

Пусть T — тело, S — площадь сечения тела плоскостью перпендикулярной Ox или площадь поперечного сечения.

S = S(x) — непрерывная функция на [a;b]

1. Разбиваем отрезок [a;b] точками $a=x_0 < x_1 < \ldots < x_{i-1} < x_i < \ldots < x_n = b$ Отрезки разбиения $[x_{i-1};x_i]$ $\Delta x_i = x_i - x_{i-1} -$ длина отрезка разбиения

$$\Delta x_i = x_i - x_{i-1} -$$
длина отрезка разбиения $\lambda = \max_i \Delta x_i, \ i = \overline{1,n}$

2. Проводим плоскости

$$\begin{cases} x=x_0=a\\ \dots\\ x=x_{i-1}\\ x=x_i\\ \dots\\ x=x_n=b \end{cases}$$
— эти плоскости разбивают тело T на слои $x=x_n=b$

- 3. $\forall \xi_i \in [x_{i-1}; x_i], \ i = \overline{1, n}$ Проводим плоскость $x = \xi_i$. Находим $S(\xi_i)$. Каждый слой заменяем цилиндром с основанием $S(\xi_i)$ и высотой $\Delta x_i, \ i = \overline{1, n}$
- 4. $V_{\mathfrak{q}}=S(\xi_i)\cdot \Delta x_i$ объём i-го цилиндра $\sum_{i=1}^n S(\xi_i)\cdot \Delta x_i$ интегральная сумма
- 5. Вычисляем предел

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} S(\xi_i) \cdot \Delta x_i = \boxed{\int_a^b S(x) \, dx = V_T}$$
(3)

Рассмотрим криволинейную трапецию, ограниченную графиком непрерывной функции y = f(x), x = a, x = b и осью Ox. Пусть $\forall x \in [a;b] : f(x) \geqslant 0$

Поперечное сечение — круг

$$S_{\text{круга}} = \pi R^2 = (R = y) = \pi y^2$$

$$V_{Ox} = \pi \int_a^b y^2 \, dx \tag{4}$$

Пусть криволинейная трапеция ограничена графиками непрерывных функций $y_1=f_1(x)$ и $y_2=f_2(x)$, прямыми $x=a,\,x=b$

$$V_{Ox} = V_{Ox}^{1} - V_{Ox}^{2} = \pi \int_{a}^{b} y_{1}^{2} dx - \pi \int_{a}^{b} y_{2}^{2} dx = \left[\pi \int_{a}^{b} (y_{1}^{2} - y_{2}^{2}) dx = V_{Ox} \right]$$
 (5)

11 Кривая задана в декартовых координатах уравнением y = f(x), где x и y — декартовые координаты точки, $a \leqslant x \leqslant b$. Вывести формулу для вычисления длины дуги этой кривой

Пусть y=f(x) непрерывна на [a;b]. $M_0(x_0,y_0) \quad M(x,y)$ Δx — приращение $x \quad \Delta y$ — приращение y $x \to x + \Delta x$ $y \to y + \Delta y$ $M(x,y) \to M_1(x+\Delta x,y+\Delta y)$ $l_0 - \widehat{M_0M}$ — дуга кривой Δl — приращение дуги кривой $\Delta l = \widehat{MM_1}$ Найдём $l_x' = ?$ $l_x' = \lim_{\Delta x \to 0} \frac{\Delta l}{\Delta x}$ $\Delta M M_1 A \quad MA = \Delta x \quad A M_1 = \Delta y$ $MM_1^2 = \Delta x^2 + \Delta y^2 \quad |\cdot\Delta l^2| : \Delta l^2$ $\left(\frac{MM_1}{\Delta l}\right)^2 \cdot (\Delta l)^2 = \Delta x^2 + \Delta y^2 \quad |:\Delta x^2|$ $\left(\frac{MM_1}{\Delta l}\right)^2 \cdot \left(\frac{\Delta l}{\Delta x}\right)^2 = 1 + \left(\frac{\Delta y}{\Delta x}\right)^2$

Вычислим предел при $\Delta x \to 0$. Левая часть:

$$\lim_{\Delta x \to 0} \left(\frac{M M_1}{\Delta l}\right)^2 \cdot \left(\frac{\Delta l}{\Delta x}\right)^2 = \begin{vmatrix} \text{при } \Delta x \to 0 & M \to M_1 \\ \Delta l \to M M_1 & \text{дуга } \to \text{ хорде} \end{vmatrix} = \lim_{\Delta x \to 0} 1^2 \cdot \left(\frac{\Delta l}{\Delta x}\right)^2 = (l_x')^2$$

Правая часть:

$$\lim_{\Delta x \to 0} \left(1 + \left(\frac{\Delta y}{\Delta x} \right)^2 \right) = 1 + \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} \right)^2 = 1 + (y_x')^2$$

Получаем:

$$(l'_x)^2 = 1 + (y'_x)^2$$

$$l'_x = \sqrt{1 + (y'_x)^2} \quad | \cdot dx$$

$$l'_x dx = \sqrt{1 + (y'_x)^2} dx$$

$$dl = \sqrt{1 + (y'_x)^2} dx \qquad (\vee)$$

$$l = \int_{a}^{b} \sqrt{1 + (y_x')^2} \, dx$$
 (6)

12 Кривая задана в полярных координатах уравнением $r=f(\varphi)\geqslant 0$, где r и φ — полярные координаты точки, $\alpha\leqslant\varphi\leqslant\beta$. Вывести формулу для вычисления длины дуги этой кривой

$$(\vee) = dl = \sqrt{1 + (y_x')^2} \, dx = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \sqrt{\frac{(dx)^2 + (dy)^2}{(dx)^2}} \, dx = \sqrt{(dx)^2 + (dy)^2} = dl$$

$$(\vee \vee)$$

Пусть $r = r(\varphi)$ — непрерывная на $[\alpha; \beta]$ функция.

$$(\vee\vee) = dl = \sqrt{(dx)^2 + (dy)^2} \bigoplus x = r\cos\varphi \quad y = r\sin\varphi$$

$$dx = (r\cos\varphi)'_{\varphi} d\varphi = (r'\cos\varphi - r\sin\varphi) d\varphi$$

$$dy = (r\sin\varphi)'_{\varphi} d\varphi = (r'\sin\varphi + r\cos\varphi) d\varphi$$

$$(dx)^2 + (dy)^2 = \left[(r'\cos\varphi - r\sin\varphi)^2 + (r'\sin\varphi + r\cos\varphi)^2 \right] (d\varphi)^2 =$$

$$= \left[(r')^2 \cos^2\varphi - 2r'r\cos\varphi\sin\varphi + r^2\sin^2\varphi + \right] (d\varphi)^2 =$$

$$= \left[(r')^2 \sin^2\varphi + 2r'r\cos\varphi\sin\varphi + r^2\cos^2\varphi \right] (d\varphi)^2 =$$

$$= \left[(r')^2 (\cos^2\varphi + \sin^2\varphi) + r^2(\cos^2\varphi + \sin^2\varphi) \right] (d\varphi)^2 = \left[(r')^2 + r^2 \right] (d\varphi)^2$$

$$\bigoplus \sqrt{(r')^2 + r^2} d\varphi = dl$$

$$l = \int_{\alpha}^{\beta} \sqrt{(r')^2 + r^2} \, d\varphi$$
 (7)

Линейные дифференциальные уравнения первого по-13 рядка. Интегрирование линейных неоднородных дифференциальных уравнений первого порядка методом Бернулли (метод « $u \cdot v$ ») и методом Лагранжа (вариации произвольной постоянной)

Линейные ДУ 1-го порядка

Определение 6. Дифференциальным уравнением 1-го порядка называется уравнение, которое зависит от одной независимой переменной x, неизвестной функции y(x) и её производной:

F — известная функция 3-х переменных

Определение 7. ДУ 1-го порядка называется линейным, если неизвестная функция y(x) и её производная y' входят в уравнение в первой степени, не перемножаясь между

$$y' + p(x) \cdot y = f(x)$$

 $\boxed{y'+p(x)\cdot y=f(x)}$ $p(x),\ f(x)$ — непрерывны на $I\subset\mathbb{R}$

Метод Бернулли (метод подстановки)

Рассмотрим ЛНДУ:

$$y' + p(x) \cdot y = f(x)$$

p(x), f(x) — непрерывные функции $I \subset \mathbb{R}$.

Метод подстановки: $|y(x) = u(x) \cdot v(x)|$

Подставим $y(x) = u(x) \cdot v(x)$ в ЛНДУ:

$$u'(x) \cdot v(x) + u(x) \cdot v'(x) + p(x) \cdot u(x) \cdot v(x) = f(x)$$

$$v(x) \left(u'(x) + p(x) \cdot u(x) \right) + u(x) \cdot v'(x) = f(x)$$

$$v(x) \left(\underbrace{u'(x) + p(x) \cdot u(x)}_{0} \right) = f(x) - u(x) \cdot v'(x)$$

Так как одну неизвестную переменную y(x) заменили на две функции u(x) и v(x), то одну из этих двух функций можно выбрать так, как удобно. Произвольная постоянная будет учтена при нахождении второй неизвестной функции.

$$u'(x)+p(x)\cdot u(x)=0$$
 — ДУ с разделяющимися переменными
$$u'=-p(x)\cdot u$$

$$\frac{du}{dx}=-p(x)\cdot u \quad \Big| \ \cdot dx \ \Big| \ : u\neq 0$$

$$\frac{du}{u}=-p(x)\,dx$$

Интегрируем:

$$\begin{split} \int \frac{du}{u} &= -\int p(x) \, dx \\ \ln |u| &= -\int p(x) \, dx + C, \quad \forall C - const \\ e^{\ln |u|} &= e^{-\int p(x) dx + C}, \quad \forall C - const \\ |u| &= C_1 \cdot e^{-\int p(x) dx}, \quad \forall C_1 = e^C > 0 \\ u &= C_2 \cdot e^{-\int p(x) dx}, \quad C_2 = \pm C_1 \quad C_2 \neq 0 \end{split}$$

 $C_2=1$ для удобства вычислений

$$u = e^{-\int p(x)dx}$$

 $C_2 \neq 0$, так как u(x) = 0, y(x) = 0, а y(x) = 0 не является решением ЛНДУ. Конкретизировать данное решение можно, так имеется произвольный выбор по одной из переменных. Произвольная постоянная будет учтена при нахождении второй неизвестной функции.

$$v(x)\left(\underbrace{u'(x) + p(x) \cdot u(x)}_{0}\right) = f(x) - u(x) \cdot v'(x)$$

$$f(x) - u(x)v'(x) = 0$$

$$u(x) = e^{-\int p(x)dx}$$

$$f(x)-v'\cdot e^{-\int p(x)dx}=0-\text{ДУ c разделяющимися переменными}$$

$$v'\cdot e^{-\int p(x)dx}=f(x)$$

$$v'=f(x)\cdot e^{\int p(x)dx}$$

$$\frac{dv}{dx}=f(x)\cdot e^{\int p(x)dx}$$

$$dv=f(x)\cdot e^{\int p(x)dx}\,dx$$

Интегрируем:

$$\int dv = \int f(x) \cdot e^{\int p(x)dx} dx$$
$$v = \int f(x) \cdot e^{\int p(x)dx} dx + k, \quad \forall k - const$$

Подставим u(x) и v(x) в подстановку $y(x) = u(x) \cdot v(x)$:

$$y(x) = e^{-\int p(x)dx} \left(\int f(x) \cdot e^{\int p(x)dx} dx + k \right), \quad \forall k - const$$

Общее решение ЛНДУ:

$$y_{\text{oH}}(x) = e^{-\int p(x)dx} \left(\int f(x) \cdot e^{\int p(x)dx} \, dx + k \right), \quad \forall k - const$$

Метод Лагранжа (метод вариации произвольной постоянной)

Рассмотрим ЛНДУ 1-го порядка:

$$y' + p(x) \cdot y = f(x) - \Pi H Д У$$

p(x), f(x) — непрерывны на $I \subset \mathbb{R}$

1 этап Решение соответствующего ЛОДУ

$$y'+p(x)\cdot y=0$$
 ЛОДУ
$$y'=-p(x)\cdot y$$
 ДУ с разделяющимися переменными
$$\frac{dy}{dx}=-p(x)\cdot y \quad \Big| \cdot dx \ \Big| \ :y\neq 0$$

$$\frac{dy}{y}=-p(x)\,dx$$

Интегрируем:

$$\int \frac{dy}{y} = -\int p(x) dx$$

$$\ln |y| = -\int p(x) dx + C, \quad \forall C - const$$

$$e^{\ln |y|} = e^{-\int p(x)dx + C}, \quad \forall C - const$$

$$e^{\ln |y|} = e^{-\int p(x)dx} \cdot e^{C}, \quad \forall C - const$$

$$|y| = C_1 \cdot e^{-\int p(x)dx}, \quad \forall C_1 = e^{C} > 0$$

$$y = C_2 \cdot e^{-\int p(x)dx}, \quad C_2 = \pm C_1, \quad C_2 \neq 0$$

Особые решения: y = 0

$$(0)' + p(x) \cdot 0 = 0$$
$$0 = 0$$

y = 0 — особое решение

$$\begin{cases} y = C_2 \cdot e^{-\int p(x)dx} \\ y = 0 \end{cases} \quad C_2 \neq 0$$
$$y = k \cdot e^{-\int p(x)dx}, \quad \forall k - const$$

Общее решение ЛОДУ:

$$y_{oo} = k \cdot e^{-\int p(x)dx}, \quad \forall k - const$$

2 этап Предполагаемый вид решения ЛНДУ

$$y_{\text{oH}} = k(x) \cdot e^{-\int p(x)dx}$$

Представим предполагаемый вид решения ЛНДУ $y_{\text{он}}$ в ЛНДУ:

Интегрируем:

$$k(x) = \int f(x) \cdot e^{\int p(x)dx} \, dx + k, \quad k - const$$

Подставляем k(x) в предполагаемое решение ЛНДУ:

$$y_{\text{OH}} = k(x) \cdot e^{-\int p(x)dx} = e^{-\int p(x)dx} \left(\int f(x) \cdot e^{\int p(x)dx} dx + k \right), \ \forall k - const$$

14 Сформулировать теорему Коши о существовании и единственности решения дифференциального уравнения п-го порядка. Интегрирование дифференциальных уравнений п-го порядка, допускающих понижение порядка

Определение 8. ДУ п-го порядка называется уравнение вида:

$$F\left(x, y, y', \dots, y^{(n)}\right) = 0$$
(1)

F — известная функция от n+2 переменных

Определение 9. ДУ n-го порядка, разрешённым относительно старшей производной, называется уравнение вида:

$$y^{(n)} = f\left(x, y, y', \dots, y^{(n-1)}\right) \tag{2}$$

Определение 10. Задача Коши для ДУ n-го порядка заключается в отыскании решения ДУ (2), удовлетворяющего начальному условию:

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y_{10} \\ y''(x_0) = y_{20} \\ \dots \\ y^{(n-1)}(x_0) = y_{n \cdot 10} \end{cases}$$
(3)

Задача Коши = ДУ (2) + начальное условие (3)

Теорема 24 (О существовании и единственности решения ЗК для ДУ n-го порядка). Если функция $f(x, y, y', \ldots, y^{(n-1)})$ и её частные производные по переменным $y, y', \ldots, y^{(n-1)}$, то есть функции $f'_y(x, y, y', \ldots, y^{(n-1)}), f'_{y'}(x, y, y', \ldots, y^{(n-1)}), \ldots, f'_{y^{(n-1)}}(x, y, y', \ldots, y^{(n-1)})$, непрерывны в некоторой области $D \subset \mathbb{R}^{n+1}$, содержащей точку $M_0(x_0, y_0, y_{10}, y_{20}, \ldots, y_{n\cdot 10})$, то существует и при том единственное решение 3K(2), (3).

ДУ, допускающие понижение порядка

1 тип

Уравнения вида

$$y^{(n)} = f(x)$$

Метод решения: п-кратное интегрирование

Пример.

$$y'' = \sin x$$

$$y' = \int \sin dx = -\cos x + C_1, \quad \forall C_1 - const$$

$$y = -\int \cos dx + C_1 \int dx + C_2, \quad \forall C_2 - const$$

$$y = -\sin x + C_1 x + C_2, \quad \forall C_1, C_2 - const$$

2 тип

Уравнения, которые не содержат переменную x, то есть

$$F\left(y,\,y',\,\ldots,\,y^{(n)}\right)=0$$

Замена:

$$y' = p(y)$$
$$y'' = p' \cdot y' = p' \cdot p$$

Для ДУ 2-го порядка: F(y, y', y'') = 0

Замена:

$$\begin{cases} y' = p(y) \\ y'' = p' \cdot p \end{cases}$$

$$\downarrow \downarrow$$

$$F(y, p, p' \cdot p) = 0$$
(*)

Замена (*) позволяет понизить порядок ДУ на единицу.

Пшаг Решаем ДУ $F(y,\,p,\,p'\cdot p)=0.$ Интегрируем. Находим функцию $p=\Psi(y,\,C_1),\,C_1-const.$

 $\fbox{2}$ шаг Обратная замена p=y'

 $\boxed{3 \text{ mar}} y' = \Psi(y, C_1), \forall C_1 - const$

Решаем ДУ 1-го порядка. Интегрируем:

$$y = \varphi(x, C_1, C_2)$$

3 тип

Уравнения, в которых в явном виде отсутствует y, то есть

$$F(x, y', y'', \dots, y^{(n)}) = 0$$

Замена:

$$\begin{cases} y' = p(x) \\ y'' = p' \end{cases}$$
 (*)

С помощью (*) понижаем порядок ДУ на единицу. Для ДУ 2-го порядка:

$$F(x, y', y'') = 0$$

Замена:

$$\begin{cases} y' = p(x) \\ y'' = p' \end{cases}$$

$$F(x, p, p') = 0$$
(*)

Тимг Решаем ДУ 1-го порядка F(x, p, p') = 0. Интегрируем. Находим функцию $p = \Psi(x, C_1), \ \forall C_1 - const$

2 шаг Обратная замена p=y'

 $\boxed{3 \ \text{шаг}} \ y' = \Psi(x,C_1) - ДУ$ 1-го порядка. Решаем ДУ 1-го порядка. Интегрируем. Находим $y = \varphi(x,\,C_1,\,C_2), \ \forall C_1,C_2-const$

15 Сформулировать теорему Коши о существовании и единственности решения линейного дифференциального уравнения n-го порядка. Доказать свойства частных решений линейного однородного дифференциального уравнения n-го порядка

Линейные ДУ высшего порядка

Определение 11. ДУ n-го порядка называется линейным, если неизвестная функция y(x) и её производные до n-го порядка включительно входят в уравнение в первой степени, не перемножаясь между собой.

$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$
(1)

 $p_1(x), \ \dots, \ p_n(x)$ — функции, заданные на некотором промежутке I.

 $p_1(x), \ldots, p_n(x)$ — коэффициенты

f(x) — функция, определена на промежутке I

f(x) — свободный член

Определение 12.

Если f(x) = 0, $\forall x \in I$, то ДУ (1) называется **линейным однородным** Д**У** (ЛОДУ).

$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0$$
(2)

(2) ЛОДУ п-го порядка

Если $f(x) \neq 0$ хотя бы для одного $x \in I$, то ДУ (1) называется **линейным неоднородным** Д**У** n-го порядка (ЛНДУ).

$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \ldots + p_{n-1}(x)y' + p_n(x)y = f(x)$$
(1)

(1) ЛНДУ п-го порядка

Определение 13. Задача Коши для линейного дифференциального уравнения n-го порядка заключается в отыскании решения ДУ (1), удовлетворяющего начальному условию:

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y_{10} \\ y''(x_0) = y_{20} \\ \dots \\ y^{(n-1)}(x_0) = y_{n \cdot 10} \end{cases}$$
 (3)

Задача Коши = $\Pi Y(1)$ + начальное условие (3)

Теорема 25 (О существовании и единственности решения 3K(1), (3)).

Если в ЛНДУ (1) функции $p_1(x)$, ..., $p_n(x)$, f(x) непрерывны на некотором промежутке I, то задача Коши для ЛНДУ (1) имеет единственное решение, удовлетворяющее начальному условию (3).

Свойства частных решений ЛОДУ п-го порядка

Теорема 26.

Множество частных решений ЛОДУ n-го порядка (2) с непрерывными функциями $p_1(x), \ldots, p_n(x)$ на промежутке I образует линейное пространство.

Доказательство.

Пусть y_1 и y_2 — частные решения ЛОДУ n-го порядка (2). Тогда:

$$+ \frac{y_1^{(n)} + p_1(x)y_1^{(n-1)} + \ldots + p_{n-1}(x)y_1' + p_n(x)y_1 = 0}{y_2^{(n)} + p_1(x)y_2^{(n-1)} + \ldots + p_{n-1}(x)y_2' + p_n(x)y_2 = 0}$$

Складываем уравнения:

$$(y_1^{(n)} + y_2^{(n)}) + p_1(x) (y_1^{(n-1)} + y_2^{(n-1)}) + \dots + p_{n-1}(x) (y_1' + y_2') + p_n(x) (y_1 + y_2) = 0$$

По свойству производной:

$$(y_1 + y_2)^{(n)} + p_1(x)(y_1 + y_2)^{(n-1)} + \ldots + p_{n-1}(x)(y_1 + y_2)' + p_n(x)(y_1 + y_2) = 0$$

Обозначим $y = y_1 + y_2$:

$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0$$

 $y = y_1 + y_2$ — частное решение ЛОДУ (2).

Пусть y_1 — частное решение ЛОДУ n-го порядка (2) Тогда:

$$y_1^{(n)} + p_1(x)y_1^{(n-1)} + p_2(x)y_1^{(n-2)} + \dots + p_{n-1}(x)y_1' + p_n(x)y_1 = 0 \quad \middle| \cdot C = const, \ C \neq 0$$

$$C \cdot y_1^{(n)} + C \cdot p_1(x)y_1^{(n-1)} + \dots + C \cdot p_{n-1}(x)y_1' + C \cdot p_n(x)y_1 = 0$$

$$(Cy_1)^{(n)} + p_1(x)(Cy_1)^{(n-1)} + \dots + p_{n-1}(x)(Cy_1)' + p_n(x)(Cy_1) = 0$$

Обозначим $y = Cy_1$, C - const, $C \neq 0$:

$$y^{(n)}+p_1(x)y^{(n-1)}+\ldots+p_{n-1}(x)y'+p_n(x)y=0$$

$$\Downarrow$$

$$y=C\cdot y_1, \text{ где } C-const, \ C\neq 0 \quad -\text{ решение ЛОДУ (2)}$$

По определению линейного пространства \Rightarrow частные решения ЛОДУ n-го порядка образуют линейное пространство.

Теорема 27.

Если y_1, \ldots, y_n — частные решения ЛОДУ (2), то их линейная комбинация, то есть $y = C_1 y_1 + \ldots + C_n y_n$, где $C_1, \ldots, C_n - const$, является решением ЛОДУ (2).

Доказательство.

Пусть y_1, \ldots, y_n — частные решения ЛОДУ (2).

$$+ \begin{vmatrix} y_1^{(n)} + p_1(x)y_1^{(n-1)} + \dots + p_{n-1}(x)y_1' + p_n(x)y_1 = 0 & | \cdot C_1 \\ y_2^{(n)} + p_1(x)y_2^{(n-1)} + \dots + p_{n-1}(x)y_2' + p_n(x)y_2 = 0 & | \cdot C_2 \\ \dots & \dots & \dots \\ y_n^{(n)} + p_1(x)y_n^{(n-1)} + \dots + p_{n-1}(x)y_n' + p_n(x)y_n = 0 & | \cdot C_n \end{vmatrix}$$

Умножим каждое уравнение на константу $C_1,\ C_2,\ \dots,\ C_n,$ где $C_i\neq 0,\ i=\overline{1,n}.$

$$\left(C_1 y_1^{(n)} + C_2 y_2^{(n)} + \ldots + C_n y_n^{(n)}\right) + p_1(x) \left(C_1 y_1^{(n-1)} + C_2 y_2^{(n-1)} + \ldots + C_n y_n^{(n-1)}\right) + \dots +
+ \dots +
+ p_{n-1}(x) \left(C_1 y_1' + C_2 y_2' + \ldots + C_n y_n'\right) +
+ p_n(x) \left(C_1 y_1 + C_2 y_2 + \ldots + C_n y_n\right) = 0$$

По свойству производной:

Обозначим $y' = C_1 y_1 + C_2 y_2 + \ldots + C_n y_n$:

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0$$

$$\downarrow$$

 $y = C_1 y_1 + C_2 y_2 + \ldots + C_n y_n$ — решение ЛОДУ n-го порядка

16 Сформулировать определения линейно зависимой и линейно независимой систем функций

Определение 14. Система функций $y_1(x), \ldots, y_n(x)$ называется линейно зависимой на некотором промежутке I, если их линейная комбинация равна нулю, то есть

$$C_1 y_1(x) + \ldots + C_n y_n = 0$$

при этом существует хотя бы один $C_i \neq 0$, $i = \overline{1, n}$, $C_1, \ldots, C_n - const$

Определение 15. Система функций $y_1(x), \ldots, y_n(x)$ называется линейно независимой на некотором промежутке I, если их линейная комбинация равна нулю, то есть

$$C_1 y_1(x) + \ldots + C_n y_n = 0$$

где все $C_i = 0, i = \overline{1,n}$

16.1 Сформулировать и доказать теорему о вронскиане линейно зависимых функций

Теорема 28 (О вронскиане линейно зависимых функций).

Если (n-1) раз дифференцируемые функции $y_1(x), \ldots, y_n(x)$ линейно зависимы на некотором промежутке I, то

$$W(x) = 0, \ \forall x \in I$$

Доказательство.

Так как $y_1(x), \ldots, y_n(x)$ линейно зависимы на I, то

$$\boxed{C_1 y_1(x), \ldots, C_n y_n(x) = 0} \qquad \exists C_i \neq 0, \ i = \overline{1, n}$$
 (*)

Продифференцируем (*) (n-1) раз:

$$\boxed{C_1 y_1'(x), \ldots, C_n y_n'(x) = 0} \qquad \exists C_i \neq 0, \ i = \overline{1, n}$$
 (**)

По определению линейной зависимости (опр.14) $\Rightarrow y_1'(x), \ldots, y_n'(x)$ — линейно зависимы

$$C_1 y_1^{(n-1)}(x), \dots, C_n y_n^{(n-1)}(x) = 0$$
 $\exists C_i \neq 0, i = \overline{1, n}$ $(***)$

По определению линейной зависимости $\Rightarrow y_1^{(n-1)}(x), \ldots, y_n^{(n-1)}(x)$ — линейно зависимы Составим систему из (*), (**) и (***):

$$\begin{cases}
C_1 y_1(x), \dots, C_n y_n(x) = 0 \\
C_1 y_1'(x), \dots, C_n y_n'(x) = 0 \\
\dots \\
C_1 y_1^{(n-1)}(x), \dots, C_n y_n^{(n-1)}(x) = 0
\end{cases}$$

Это однородная СЛАУ относительно C_1, \ldots, C_n . Определитель этой СЛАУ:

$$\begin{vmatrix} y_1(x) & \cdots & y_n(x) \\ y'_1(x) & \cdots & y'_n(x) \\ \vdots & \ddots & \ddots \\ y_1^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{vmatrix} = W(x)$$
 — это определитель Вронского

W(x) = 0, так как все строки определителя линейно зависимы.

Утверждение 1.

Если существует хотя бы одна точка $x_0 \in I$, $W(x_0) \neq 0$, то система функций $y_1(x), \ldots, y_n(x)$ линейно независима.

16.2 Сформулировать и доказать теорему о вронскиане системы линейно независимых частных решений линейного однородного дифференциального уравнения n-го порядка

Теорема 29 (О вронскиане линейно независимых частных решений ЛОДУ n-го порядка).

Если функции $y_1(x), \ldots, y_n(x)$ линейно независимы на некотором промежутке I и являются частными решениями ЛОДУ n-го порядка

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0$$

с непрерывными на промежутке I коэффициентами $p_1(x), \ldots, p_n(x)$, то

$$W(x) \neq 0, \ \forall x \in I$$

Доказательство (Метод от противного).

Предположим, что $\exists x_0 \in I : W(x_0) \neq 0$

$$W(x_0) = \begin{vmatrix} y_1(x_0) & y_2(x_0) & \cdots & y_n(x_0) \\ y_1'(x_0) & y_2'(x_0) & \cdots & y_n'(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \cdots & y_n^{(n-1)}(x_0) \end{vmatrix} = 0$$

Построим СЛАУ по определителю

Данная СЛАУ имеет ненулевое решение, так как $W(x_0) = 0$ Рассмотрим функцию

$$y = C_1 y_1 + \ldots + C_n y_n$$

Так как y_1, \ldots, y_n — частные решения ЛОДУ n-го порядка, то по **Т.27**:

$$y = C_1 y_1 + \ldots + C_n y_n$$
 — решение ЛОДУ n-го порядка

Найдём $y(x_0)$:

$$y(x_0) = C_1 y_1(x_0) + \ldots + C_n y_n(x_0) = 0$$

Дифференцируем (n-1) раз функцию $y = C_1y_1 + \ldots + C_ny_n$:

$$y'(x_0) = C_1 y_1'(x_0) + \ldots + C_n y_n'(x_0) = 0$$

$$y''(x_0) = C_1 y_1''(x_0) + \ldots + C_n y_n''(x_0) = 0$$

$$y^{(n-1)}(x_0) = C_1 y_1^{(n-1)}(x_0) + \ldots + C_n y_n^{(n-1)}(x_0) = 0$$

Получили, что $y = C_1 y_1 + \ldots + C_n y_n$ — решение ЛОДУ n-го порядка (2), удовлетворяющее начальному условию:

$$\begin{cases} y(x_0) = 0 \\ y'(x_0) = 0 \\ \dots \\ y^{(n-1)}(x_0) = 0 \end{cases}$$

Но y = 0 – решение ЛОДУ (2), удовлетворяющее начальному условию (3) По теореме $\exists!$ решения задачи Коши для линейного дифференциального уравнения n-го nopsdka (T.25) \Rightarrow

$$y = C_1 y_1 + \ldots + C_n y_n = 0$$

при этом C_1, \ldots, C_n – ненулевые константы $\Rightarrow y_1, \ldots, y_n$ — линейно зависимы по определению линейной зависимости (**onp.14**). Это противоречит условию \Rightarrow предположение не является верным $\forall x \in I : W(x) \neq 0$

17 Сформулировать и доказать теорему о существовании фундаментальной системы решений линейного однородного дифференциального уравнения n-го порядка

Пусть дано ЛОДУ п-го порядка

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0$$
(1)

Определение 16. Фундаментальной системой решений Π ОДУ n-го порядка (1) называется любая система <u>линейно независимых</u> частных решений Π ОДУ n-го порядка.

Утверждение 2.

Если имеем ФСР на промежутке, то $W(x) \neq 0$ на этом промежутке.

$$\Phi$$
CP \rightarrow лин. нез. \rightarrow $W(x) \neq 0$

Теорема 30 (О существовании $\Phi CP \ \Pi O \angle Y \ n$ -го порядка).

Любое ЛОДУ n-го порядка (1) с непрерывными на промежутке I коэффициентами $p_1(x), \ldots, p_n(x)$ имеет ФСР, то есть систему из n линейно независимых функций.

Доказательство.

Рассмотрим ЛОДУ п-го порядка

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0$$

 $p_1(x), \ldots, p_n(x)$ — непрерывны на I.

Рассмотрим произвольный числовой определитель, отличный от нуля:

$$\begin{vmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1n} \\ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{n1} & \gamma_{n2} & \cdots & \gamma_{nn} \end{vmatrix} \neq 0 \qquad \gamma_{ij} \in \mathbb{R}, \ (ij) = \overline{1, n}$$

Возьмём $\forall x_0 \in I$ и сформулируем для ЛОДУ n-го порядка задачи Коши, причём начальное условие в точке x_0 для i-ой ЗК возьмём из i-го столбца определителя.

1 3K :

$$y^{(n)}+p_1(x)y^{(n-1)}+\ldots+p_{n-1}(x)y'+p_n(x)y=0$$
 — ДУ
$$\begin{cases} y(x_0)=\gamma_{11} \\ y'(x_0)=\gamma_{21} \\ \ldots \\ y^{(n-1)}(x_0)=\gamma_{n1} \end{cases}$$
 — начальное условие

По теореме о существовании и единственности решения (**T.24**) 1-ая задача Коши имеет единственное решение $y_1(x)$.

.....

n 3K |:

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0 - ДУ$$

$$\begin{cases} y(x_0) = \gamma_{1n} \\ y'(x_0) = \gamma_{2n} \\ \ldots & - \text{начальное условие} \end{cases}$$

$$y^{(n-1)}(x_0) = \gamma_{nn}$$

По теореме о существовании и единственности решения n-ая задача Коши имеет единственное решение $y_n(x)$.

Рассмотрим функции:

$$y_1$$
 — решение 1-ой ЗК y_2 — решение 2-ой ЗК y_n — решение n-ой ЗК

Определитель Вронского функций y_1, \ldots, y_n :

$$\begin{vmatrix} \gamma_1(x_0) & \gamma_2(x_0) & \cdots & \gamma_n(x_0) \\ \gamma_2'(x_0) & \gamma_2'(x_0) & \cdots & \gamma_n'(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_1^{(n-1)}(x_0) & \gamma_2^{(n-1)}(x_0) & \cdots & \gamma_n^{(n-1)}(x_0) \end{vmatrix} = \begin{vmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1n} \\ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{n1} & \gamma_{n2} & \cdots & \gamma_{nn} \end{vmatrix} \neq 0$$

По утверждению 1 (**c.38**): $\exists x_0 \in I : W(x_0) \neq 0 \Rightarrow y_1, \ldots, y_n$ — линейно независимы $\Rightarrow y_1, \ldots, y_n$ образуют ФСР.

18 Сформулировать и доказать теорему о структуре общего решения линейного однородного дифференциального уравнения n-го порядка

Теорема 31 (О структуре общего решения ЛОДУ n-го порядка). Общим решением ЛОДУ n-го порядка

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0$$
(1)

с непрерывными коэффициентами $p_1(x), \ldots, p_n(x)$ на промежутке I является линейная комбинация частных решений, входящих в ФСР.

$$y_{\text{oo}} = C_1 y_1 + \ldots + C_n y_n \tag{2}$$

«оо» — общее решение однородного уравнения

$$y_1, \ldots, y_n - \Phi$$
СР ЛОДУ (1), $C_1, \ldots, C_n - const$

Доказательство.

1) Покажем, что (2) решение ЛОДУ (1), но не общее. Для этого подставим (2) в (1):

$$(C_1y_1 + \ldots + C_ny_n)^{(n)} + p_1(x) (C_1y_1 + \ldots + C_ny_n)^{(n-1)} + + \ldots + + p_{n-1}(x) (C_1y_1 + \ldots + C_ny_n)' + + p_n(x) (C_1y_1 + \ldots + C_ny_n) = 0$$

Вычислим производные:

$$C_1 y_1^{(n)} + \ldots + C_n y_n^{(n)} + p_1(x) C_1 y_1^{(n-1)} + \ldots + p_1(x) C_n y_n^{(n-1)} + \ldots + + \ldots + + p_{n-1}(x) C_1 y_1' + \ldots + p_{n-1}(x) C_n y_n' + + p_n(x) C_1 y_1 + \ldots + p_n(x) C_n y_n = 0$$

Группируем:

$$C_{1}\left(y_{1}^{(n)}+p_{1}(x)y_{1}^{(n-1)}+\ldots+p_{n-1}(x)y_{1}'+p_{n}(x)y_{1}\right)+ + \ldots + + C_{n}\left(y_{n}^{(n)}+p_{1}(x)y_{n}^{(n-1)}+\ldots+p_{n-1}(x)y_{n}'+p_{n}(x)y_{n}\right) = 0$$

Так как y_1, \ldots, y_n — частные решения ЛОДУ (1), то:

$$C_1 \cdot 0 + \ldots + C_n \cdot 0 = 0$$

 $0 = 0 \implies (2)$ — решение (1)

2) Покажем, что (2) — это общее решение (1), то есть из него можно выделить единственное частное решение, удовлетворяющее начальному условию:

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y_{10} \\ y''(x_0) = y_{20} \quad x_0 \in I \\ \dots \\ y^{(n-1)}(x_0) = y_{n \cdot 10} \end{cases}$$
 (3)

Подставим (2) в (3):

$$\begin{cases} y(x_0) = C_1 y_1(x_0) + \ldots + C_n y_n(x_0) = y_0 \\ y'(x_0) = C_1 y_1'(x_0) + \ldots + C_n y_n'(x_0) = y_{10} \\ y''(x_0) = C_1 y_1''(x_0) + \ldots + C_n y_n''(x_0) = y_{20} \\ \ldots \\ y^{(n-1)}(x_0) = C_1 y_1^{(n-1)}(x_0) + \ldots + C_n y_n^{(n-1)}(x_0) = y_{n \cdot 10} \end{cases}$$

СЛАУ относительно C_1, \ldots, C_n . Определитель этой системы — это определитель Вронского.

$$W(x_0) = \begin{vmatrix} y_1(x_0) & y_2(x_0) & \cdots & y_n(x_0) \\ y'_1(x_0) & y'_2(x_0) & \cdots & y'_n(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x_0) \end{vmatrix}$$

так как y_1, \ldots, y_n ФСР $\Rightarrow y_1, \ldots, y_n$ линейно независимы $\Rightarrow W(x_0) \neq 0 \Rightarrow$ ранг расширенной матрицы СЛАУ совпадает с рангом основной матрицы \Rightarrow число неизвестных совпадает с числом уравнений \Rightarrow СЛАУ имеет единственное решение:

$$C_1^0, \ldots, C_n^0$$

В силу теоремы о существовании и единственности решения задачи Коши (Т.24):

$$y = C_1^0 y_1 + \ldots + C_n^0 y_n$$
 — единственное решение ЗК (1), (3)

То есть получилось из (2) выделить частное решение, удовлетворяющее начальному условию (3) \Rightarrow по определению общего решения (**onp.31**) (2) — общее решение ЛОДУ (2).

19 Вывести формулу Остроградского-Лиувилля для линейного дифференциального уравнения 2-го порядка

Рассмотрим ЛОДУ 2-го порядка

$$y'' + p_1(x)y' + p_2(x)y = 0 (1)$$

Пусть y_1 и y_2 — два частных решения ЛОДУ (1). Для y_1 и y_2 верны равенства:

$$\begin{cases} y_1'' + p_1(x)y_1' + p_2(x)y_1 = 0 \\ y_2'' + p_1(x)y_2' + p_2(x)y_2 = 0 \end{cases} \cdot (-y_2)$$
**

$$y_1 y_2'' - y_2 y_1'' + p_1(x) (y_1 y_2' - y_2 y_1') + p_2(x) (y_1 y_2 - y_1 y_2) = 0$$
 (2)

Введём обозначение:

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_1' y_2$$

$$(W(x))' = (y_1y_2' - y_2y_1')' = y_1'y_2' + y_1y_2'' - y_1''y_2 - y_1'y_2' = y_1y_2'' - y_1''y_2$$

(2) примет вид:

$$W'+p_1(x)\cdot W=0$$
 ДУ с разделяющимися переменными
$$W'=-p_1(x)\cdot W$$

$$\frac{dW}{dx}=-p_1(x)\cdot W \quad \Big| \ :W\neq 0 \quad \Big| \cdot dx$$

$$\frac{dW}{W}=-p_1(x)\, dx$$

$$\ln |W|=-\int p_1(x)\, dx+C, \ \forall C-const$$

$$e^{\ln |W|}=e^{-\int p_1(x)dx}\cdot e^C$$

$$|W|=e^{-\int p_1(x)dx}\cdot C_1, \ \forall C_1=e^C>0$$

$$W=C_2\cdot e^{-\int p_1(x)dx}, \ \forall C_2=\pm C_1\neq 0$$

W = 0 — особое решение

$$W=C_3\cdot e^{-\int p_1(x)dx},\ \forall C_3-const$$
 Формула Остроградского-Лиувилля

Замечание. Формула Остроградского-Лиувилля для ЛОДУ n-го порядка имеет тот же вид, что и для ЛОДУ 2-го порядка, где $p_1(x)$ — коэффициент при (n-1)-ой производной при условии, что коэффициент при n-ой производной равен 1.

Вывести формулу для общего решения линейного 20 однородного дифференциального уравнения второго порядка при одном известном частном решении

Пусть дано ЛОДУ 2-го порядка

$$y'' + p_1(x)y' + p_2(x)y = 0 (1)$$

 y_1 — частное решение ЛОДУ (1) дано по условию.

 $y_2 - ?$ — второе частное решение ЛОДУ (1) линейно независимо с y_1

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1' \neq 0$$

Рассмотрим:

$$\begin{split} \left(\frac{y_2}{y_1}\right)' &= \frac{y_1 y_2' - y_2 y_1'}{y_1^2} = \frac{W(x)}{y_1^2} \xrightarrow{\frac{\Phi. \text{ O-JI}}{2}} \frac{1}{y_1^2} \cdot C_3 \cdot e^{-\int p_1(x) dx} \\ \left(\frac{y_2}{y_1}\right)' &= \frac{1}{y_1^2} \cdot C_3 \cdot e^{-\int p_1(x) dx} \end{split}$$

Интегрируем:

$$\frac{y_2}{y_1} = C_3 \int \frac{1}{y_1^2} \cdot e^{-\int p_1(x)dx} dx + C_4$$
$$y_2 = y_1 \cdot \left(C_3 \int \frac{1}{y_1^2} \cdot e^{-\int p_1(x)dx} dx + C_4 \right)$$

 y_2 — частное решение $C_4=0$ $C_3=1$ Главное $C_3 \neq 0$, так как иначе y_1 и y_2 линейно зависимы.

$$y_2 = y_1 \int \frac{1}{y_1^2} \cdot e^{-\int p_1(x)dx} dx$$

По теореме о структуре общего решения ЛОДУ (**Т.31**):

$$y_{00} = C_1 y_1 + C_2 y_2$$

$$y_{00} = C_1 y_1 + C_2 y_1 \int \frac{1}{y_1^2} \cdot e^{-\int p_1(x) dx} dx$$

21 Сформулировать и доказать теорему о структуре общего решения линейного неоднородного дифференциального уравнения n-го порядка

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$
 ЛНДУ (1)

 $p_1(x), \ldots, p_n(x), f(x)$ — функции на I

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0$$
 ЛОДУ (2)

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y_{10} \\ \dots \\ y^{(n-1)}(x_0) = y_{n \cdot 10} \end{cases}$$
 начальное условие (3)

Теорема 32 (О структуре общего решения ЛНДУ).

Общее решение ЛНДУ (1) с непрерывными на промежутке I функциями $p_1(x), \ldots, p_n(x), f(x)$ равно сумме общего решения соответствующего ЛОДУ (2) и некоторого частного решения ЛНДУ (1).

$$y_{\text{oH}} = y_{\text{oo}} + y_{\text{чH}} \tag{4}$$

- «оо» общее решение однородного уравнения
- «чн» частное решение неоднородного уравнения

Доказательство.

Сначала покажем, что (4) решение ЛНДУ (1), но не общее. Подставим (4) в (1):

$$(y_{\text{oo}} + y_{\text{чн}})^{(n)} + p_1(x)(y_{\text{oo}} + y_{\text{чн}})^{(n-1)} + \ldots + p_{n-1}(x)(y_{\text{oo}} + y_{\text{чн}})' + p_n(x)(y_{\text{oo}} + y_{\text{чн}}) = f$$

Вычислим производные:

$$y_{\text{oo}}^{(n)} + y_{\text{чн}}^{(n)} + p_1(x)y_{\text{oo}}^{(n-1)} + p_1(x)y_{\text{чн}}^{(n-1)} + \dots + p_{n-1}(x)y_{\text{oo}}' + p_{n-1}(x)y_{\text{чн}}' + p_n(x)y_{\text{oo}} + p_n(x)y_{\text{чн}} = f$$

 Γ руппируем y_{oo} , $y_{\text{чн}}$:

$$\underbrace{y_{\text{oo}}^{(n)} + p_1(x)y_{\text{oo}}^{(n-1)} + \ldots + p_{n-1}(x)y_{\text{oo}}' + p_n(x)y_{\text{oo}}}_{+ y_{\text{чн}}} + p_1(x)y_{\text{чн}}^{(n-1)} + \ldots + p_{n-1}(x)y_{\text{чн}}' + p_n(x)y_{\text{чн}} = f$$

Так как y_{oo} — общее решение ЛОДУ (2), $y_{\text{чн}}$ — частное решение ЛНДУ (1):

$$0+f=f \Rightarrow f=f \Rightarrow (4)$$
 — решение ЛНДУ (1)

По теореме о существовании и единственности решения задачи Коши (**T.25**) следует, что 3K(1), (3) имеет единственное решение.

Покажем, что (4) — общее решение. (4) перепишется в виде:

$$y_{\text{OH}} = C_1 y_1 + \dots + C_n y_n + y_{\text{HH}} \tag{4.1}$$

$$y_1, \ldots, y_n - \Phi$$
СР ЛОДУ (2) $C_1, \ldots, C_n - const$

Так как функции $p_1(x), \ldots, p_n(x), f(x)$ непрерывны на I, то по теореме *о существовании и единственности решения задачи Коши* $\Rightarrow \exists$ единственное решение задачи Коши (1), (3).

Остаётся показать, что (4.1) и его производная удовлетворяют начальному условию (3), то есть из начального условия (3) единственным образом можно выделить константы $C_1^0, \ldots C_n^0$, то есть можно выделить частное решение.

Для этого (4.1) дифференцируем (n-1) раз и подставляем в (3):

$$\begin{cases}
y_{\text{oH}}(x_0) = C_1 y_1(x_0) + \dots + C_n y_n(x_0) + y_{\text{чH}}(x_0) = y_0 \\
y'_{\text{oH}}(x_0) = C_1 y'_1(x_0) + \dots + C_n y'_n(x_0) + y'_{\text{чH}}(x_0) = y_{10} \\
\dots \\
y_{\text{oH}}^{(n-1)}(x_0) = C_1 y_1^{(n-1)}(x_0) + \dots + C_n y_n^{(n-1)}(x_0) + y_{\text{чH}}^{(n-1)}(x_0) = y_{n \cdot 10}
\end{cases}$$

$$\begin{cases}
C_1 y_1(x_0) + \dots + C_n y_n(x_0) = y_0 - y_{\text{чH}}(x_0) \\
C_1 y'_1(x_0) + \dots + C_n y'_n(x_0) = y_{10} - y'_{\text{чH}}(x_0) \\
\dots \\
C_1 y_1^{(n-1)}(x_0) + \dots + C_n y_n^{(n-1)}(x_0) = y_{n \cdot 10} - y_{\text{чH}}^{(n-1)}(x_0)
\end{cases}$$

$$(5)$$

(5) — это СЛАУ относительно C_1, \ldots, C_n .

Определитель СЛАУ (5) — это определитель Вронского:

$$W(x_0) = \begin{vmatrix} y_1(x_0) & y_2(x_0) & \cdots & y_n(x_0) \\ y'_1(x_0) & y'_2(x_0) & \cdots & y'_n(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \cdots & y_n^{(n-1)}(x_0) \end{vmatrix} \neq 0 \text{ т.к. } y_1, \ldots, y_n \text{ ФСР ЛОДУ (2)}$$

Так как $W(x_0) \neq 0$, то ранг расширенной матрицы равен рангу основной матрицы (число уравнений совпадает с числом неизвестных) \Rightarrow СЛАУ (5) имеет единственное решение C_1^0, \ldots, C_n^0 .

Тогда функция $y = C_1^0 y_1 + \ldots + C_n^0 y_n + y_{\text{чн}}$ — является частным решением ЗК (1), (3), удовлетворяющим начальному условию (3) \Rightarrow из решения (4.1) выделим частное решение $y = C_1^0 y_1 + \ldots + C_n^0 y_n + y_{\text{чн}} \Rightarrow$ по определению общего решения (**опр.31**) (4.1) или (4) — общее решение ЛНДУ (1).

22 Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае кратных корней характеристического уравнения

$$\begin{bmatrix} y'' + a_1 y' + a_2 y = 0 \end{bmatrix}$$
 $a_1, a_2 - const$ ЛОДУ (1) $\begin{bmatrix} k^2 + a_1 k + a_2 = 0 \end{bmatrix}$ характеристическое уравнение $D = a_1^2 - 4a_2$

 $D=0 \;\Rightarrow {\rm xapa}$ ктеристическое уравнение имеет два действительных равных между собой корня / один корень кратности два.

$$k_1 = k_2 = k \in \mathbb{R}$$
$$y_1 = e^{kx} \quad k = -\frac{a_1}{2}$$

Найдём y_2 — частное решение ЛОДУ (1) по известному частному решению y_1 , причём y_1 и y_2 линейно независимы:

$$y_{2} = y_{1} \int \frac{1}{y_{1}^{2}} \cdot e^{-\int p_{1}(x)dx} dx = \begin{vmatrix} p_{1}(x) = a_{1} - const \\ y_{1} = e^{kx}, \ k \in \mathbb{R} \end{vmatrix} = e^{kx} \int \frac{1}{e^{2kx}} \cdot e^{-\int a_{1}dx} = e^{-\frac{a_{1}}{2}x} \int \frac{1}{e^{-\frac{a_{1}}{2}x}} \cdot e^{-\frac{a_{1}}{2}x} dx = e^{-\frac{a_{1}}{2}x} \int dx = e^{-\frac{a_{1}}{2}x} x$$

$$y_1 = e^{-\frac{a_1}{2}x}$$
 $y_2 = xe^{-\frac{a_1}{2}x}$ два частных решения ЛОДУ (1)

Покажем, что y_1 и y_2 линейно независимы:

$$\begin{split} W(x) &= \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{-\frac{a_1}{2}x} & xe^{-\frac{a_1}{2}x} \\ -\frac{a_1}{2}e^{-\frac{a_1}{2}x} & e^{-\frac{a_1}{2}x} - \frac{a_1}{2}xe^{-\frac{a_1}{2}x} \end{vmatrix} = e^{-a_1x} - \frac{a_1}{2}xe^{-a_1x} + \frac{a_1}{2}xe^{-a_1x} = \\ &= e^{-a_1x} \neq 0, \ \forall x \in I \ \Rightarrow \ y_1, y_2 \ \text{лин. нез.} \ \Rightarrow \ \text{образуют } \Phi \text{CP} \end{split}$$

ФСР ЛОДУ (1):

$$\begin{cases} y_1 = e^{-\frac{a_1}{2}x} \\ y_2 = xe^{-\frac{a_1}{2}x} \end{cases}$$

По теореме о структуре общего решения ЛОДУ (**Т.31**):

$$y_{\text{oo}} = C_1 y_1 + C_2 y_2 = C_1 e^{-\frac{a_1}{2}x} + C_2 x e^{-\frac{a_1}{2}x}$$

23 Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае комплексных корней характеристического уравнения

$$y'' + a_1 y' + a_2 y = 0$$
 $a_1, a_2 - const$ ЛОДУ (1) $k^2 + a_1 k + a_2 = 0$ характеристическое уравнение $D = a_1^2 - 4a_2$

 $D < 0 \;\Rightarrow\;$ характеристическое уравнение имеет комплексные корни.

$$k_{1,2} = lpha \pm eta \cdot i$$
 i — мнимая единица, $\sqrt{-1} = i$

 α — действительная часть β — мнимая часть Формула Эйлера:

$$\begin{cases} e^{i\varphi} = \cos\varphi + i\sin\varphi \\ e^{-i\varphi} = \cos\varphi - i\sin\varphi \end{cases}$$

По корням характеристического уравнения находим частные решения $\Pi O \Pi V$ (1).

$$k_1 = \alpha + \beta i$$
:

$$y_1 = e^{k_1 x} = e^{(\alpha + \beta i)x} = e^{\alpha x} \cdot e^{\beta ix} = e^{\alpha x} (\cos \beta x + i \sin \beta x)$$

$$k_2 = \alpha - \beta i$$
:

$$y_2 = e^{k_2 x} = e^{(\alpha - \beta i)x} = e^{\alpha x} \cdot e^{-\beta ix} = e^{\alpha x} \left(\cos \beta x - i \sin \beta x\right)$$

Найдём действительные решения ЛОДУ (1). Составим линейные комбинации:

$$\widetilde{y_1} = \frac{y_1 + y_2}{2} = e^{\alpha x} \cos \beta x$$

$$\widetilde{y_2} = \frac{y_1 - y_2}{2i} = e^{\alpha x} \sin \beta x$$

Из свойств частных решений ЛОДУ следует (**c.35**), что $\widetilde{y_1}$ и $\widetilde{y_2}$ — тоже решения ЛОДУ (как линейная комбинация).

Покажем, что $\widetilde{y_1}$ и $\widetilde{y_2}$ линейно независимы:

$$W(x) = \begin{vmatrix} \widetilde{y_1} & \widetilde{y_2} \\ \widetilde{y_1}' & \widetilde{y_2}' \end{vmatrix} = \begin{vmatrix} e^{\alpha x} \cos \beta x & e^{\alpha x} \sin \beta x \\ \alpha e^{\alpha x} \cos \beta x - \beta e^{\alpha x} \sin \beta x & \alpha e^{\alpha x} \sin \beta x + \beta e^{\alpha x} \cos \beta x \end{vmatrix} =$$

$$= \underbrace{\alpha e^{2\alpha x} \cos \beta x \sin \beta x + \beta e^{2\alpha x} \cos^2 \beta x - \alpha e^{2\alpha x} \cos \beta x \sin \beta x + \beta e^{2\alpha x} \sin^2 \beta x}_{\text{T.K}} = e^{2\alpha x} \beta \cdot 1 \neq 0 \qquad \text{T.K} \quad e^{2\alpha x} \neq 0 \quad \forall x \in I$$

 $\beta \neq 0$, так как если $\beta = 0$, то $k_1 = k_2 = \alpha$ — действительные корни

$$\Rightarrow \widetilde{y_1} = e^{\alpha x} \cos \beta x$$
 $\Rightarrow \widetilde{y_2} = e^{\alpha x} \sin \beta x$ линейно независимы $\Rightarrow \Phi$ СР

По теореме о структуре решений ЛОДУ (**Т.31**):

$$y_{00} = C_1 y_1 + C_2 y_2 = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

24 Частное решение линейного неоднородного дифференциального уравнения с постоянными коэффициентами и правой частью специального вида (являющейся квазимногочленом). Сформулировать и доказать теорему о наложении частных решений

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$
 ЛНДУ (1)

 $p_1(x), \ldots, p_n(x), f(x)$ — функции на I

Теорема 33 (О суперпозиции (наложении) решений ЛНДУ п-го порядка). Если

 y_1 — решение ЛНДУ (1) с правой частью f_1 ,

 y_n — решение ЛНДУ (1) с правой частью f_n

то линейная комбинация

$$y = C_1 y_1 + \ldots + C_n y_n$$

является решением ЛНДУ (1) с правой частью

$$f = C_1 f_1 + \ldots + C_n f_n$$

Доказательство.

Так как

то верны равенства

$$\begin{cases} y_1^{(n)} + p_1(x)y_1^{(n-1)} + \dots + p_{n-1}(x)y_1' + p_n(x)y_1 = f_1 \\ \dots \\ y_n^{(n)} + p_1(x)y_n^{(n-1)} + \dots + p_{n-1}(x)y_n' + p_n(x)y_n = f_n \end{cases}$$
 (*)

Рассмотрим

$$y = C_1 y_1 + \ldots + C_n y_n \tag{\lor}$$

Подставим (\lor) в левую часть (1):

$$(C_1y_1 + \ldots + C_ny_n)^{(n)} + p_1(x)(C_1y_1 + \ldots + C_ny_n)^{(n-1)} + \ldots + p_{n-1}(x)(C_1y_1 + \ldots + C_ny_n)' + p_n(x)(C_1y_1 + \ldots + C_ny_n)$$

Вычислим производные:

$$C_1 y_1^{(n)} + \ldots + C_n y_n^{(n)} + p_1(x) C_1 y_1^{(n-1)} + \ldots + p_1(x) C_n y_n^{(n-1)} + \ldots + p_n(x) C_1 y_1' + \ldots + p_{n-1}(x) C_1 y_1' + \ldots + p_n(x) C_n y_n' + p_n(x) C_1 y_1 + \ldots + p_n(x) C_n y_n$$

Группируем y_1/y_n :

$$C_1 \underbrace{\left(y_1^{(n)} + p_1(x)y_1^{(n-1)} + \dots + p_{n-1}(x)y_1' + p_n(x)y_1\right)}_{f_1} + \dots + C_n \underbrace{\left(y_n^{(n)} + p_1(x)y_n^{(n-1)} + \dots + p_{n-1}(x)y_n' + p_n(x)y_n\right)}_{f_n} \stackrel{(*)}{=} C_1 f_1 + \dots + C_n f_n$$

Частное решение ЛНДУ

Рассмотрим ЛНДУ п-го порядка с постоянными коэффициентами

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f \quad \Pi H \coprod Y$$
 (1)

 $a_1 \ldots, a_n - const$

Соответствующее ЛОДУ:

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-1} y' + a_n y = 0$$
 ЛОДУ

 $a_1 \ldots, a_n - const$

Характеристическое уравнение:

$$k^{n} + a_{1}k^{n-1} + \ldots + a_{n-1}k + a_{n} = 0$$

 $k_1 \ldots, k_n$ — корни характеристического уравнения

ФСР ЛОДУ: $\{e^{k_1x}, \ldots, e^{k_nx}\}$

$$y_{00} = C_1 e^{k_1 x} + \ldots + C_n e^{k_n x}$$

где $C_1 \ldots, C_n - const$

Если правая часть ЛНДУ (1) представима специальным видом, то есть κ вазиполиномом, то по её виду можно найти некоторое частное решение ЛНДУ (1).

Суть метода: по виду функции f записывается предполагаемый вид частного решения $\overline{\Pi H Д Y}$ с неопределёнными коэффициентами. Затем это предполагаемое решение подставляем в $\overline{\Pi H Д Y}$ (1) и из полученного равенства находим неопределённые коэффициенты.

Продолжение на следующей странице

 $\alpha \in \mathbb{R}, \ P_n(x)$ — многочлен степени n с определёнными коэффициентами

$$y_{\text{\tiny ЧH}} = e^{\alpha x} \cdot Q_n(x) \cdot x^r$$

 $\alpha \in \mathbb{R}, \ Q_n(x)$ — многочлен степени n с неопределёнными коэффициентами. r — кратность (сколько раз α является действительным корнем характеристического уравнения)

$$\begin{array}{l} \alpha = k_1 \ \Rightarrow \ r = 1 \\ \alpha = k_1 = k_2 \ \Rightarrow \ r = 2 \\ \alpha \neq k_i, \ i = \overline{1, n} \ \Rightarrow \ r = 0 \end{array}$$

 $\alpha, \beta \in \mathbb{R}, P_n(x), Q_m(x)$ — многочлены степеней n и m соответственно с определёнными коэффициентами

$$y_{\text{\tiny ЧН}} = e^{\alpha x} \cdot \left(M_s(x) \cos \beta(x) + N_s(x) \sin \beta x \right) \cdot x^r$$

 $\alpha, \beta \in \mathbb{R}, M_s(x), N_s(x)$ — многочлены степени s с неопределёнными коэффициентами, $s = \max\{n, m\}$

r — кратность (сколько раз $\alpha \pm \beta i$ является корнем характеристического уравнения)

$$\alpha \pm \beta i = k_{1,2} \Rightarrow r = 1$$

$$\alpha \pm \beta i = k_{1,2} = k_{3,4} \Rightarrow r = 2$$

$$\alpha \pm \beta i \neq k_i, i = \overline{1, n} \Rightarrow r = 0$$

25 Метод Лагранжа вариации произвольных постоянных для нахождения решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных

Рассмотрим ЛНДУ 2-го порядка

$$y'' + p_1(x)y' + p_2(x)y = f(x)$$
(1)

$$y'' + p_1(x)y' + p_2(x)y = 0$$
 ЛОДУ (2)

 $p_1(x), \ldots, p_n(x)$ — функции.

Пусть y_1 и y_2 — это ФСР ЛОДУ (2). Тогда по теореме о структуре общего решения ЛОДУ (**Т.31**):

$$y_{00} = \underbrace{C_1 y_1 + C_2 y_2}_{\Phi CP \text{ JOJY}} \qquad C_1, C_2 - \forall const$$

Метод Лагранжа: предполагаемый вид решения ЛНДУ (1):

$$y_{\text{oh}} = C_1(x)y_1 + C_2(x)y_2 \tag{3}$$

 $C_1(x), C_2(x)$ — некоторые функции. Вычислим:

$$y'_{\text{oH}} = C'_1 y_1 + C_1 y'_1 + C'_2 y_2 + C_2 y'_2 = \underbrace{C'_1 y_1 + C'_2 y_2}_{\circ} + C_1 y'_1 + C_2 y'_2$$

Первое дополнительное условие Лагранжа:

$$C_1' y_1 + C_2' y_2 = 0$$

$$y'_{\text{OH}} = C_1 y'_1 + C_2 y'_2 y''_{\text{OH}} = C'_1 y'_1 + C_1 y''_1 + C'_2 y'_2 + C_2 y''_2$$

 $y_{\text{он}}, y'_{\text{он}}, y''_{\text{он}}$ в (1):

$$C_1'y_1' + C_1y_1'' + C_2'y_2' + C_2y_2'' + p_1(x) \cdot (C_1y_1' + C_2y_2') + p_2(x)(C_1y_1 + C_2y_2) = f$$

Группируем:

$$C_1'y_1' + C_2'y_2' + C_1\underbrace{\left(y_1'' + p_1(x)y_1' + p_2(x)y_1\right)}_{0} + C_2\underbrace{\left(y_2'' + p_1(x)y_2' + p_2(x)y_2\right)}_{0} = f$$

Так как y_1, y_2 — решения ЛОДУ (2), то

Второе условие Лагранжа:

$$C_1'y_1' + C_2'y_2' = f$$

Предполагаемое решение (3) будет являться решением ЛНДУ (1), если функции $C_1(x)$ и $C_2(x)$ удовлетворяют условиям:

$$\begin{cases} C_1'y_1 + C_2y_2 = 0 \ C_1'y_1' + C_2'y_2' = f \end{cases}$$
 — система варьируемых переменных

Определяем из системы варьируемых переменных $C_1'(x)$ и $C_2'(x)$.

$$C_1'(x) = \varphi(x)$$
 $C_2'(x) = \Psi(x)$

Интегрируем:

$$C_1(x) = \int \varphi(x) dx + k_1, \quad \forall k_1 - const$$

$$C_2(x) = \int \Psi(x) dx + k_2, \quad \forall k_2 - const$$

Подставляем $C_1(x)$, $C_2(x)$ в (3):

$$y_{\text{oH}} = C_1(x)y_1 + C_2(x)y_2 = \left(\int \varphi(x) \, dx + k_1\right)y_1 + \left(\int \Psi(x) \, dx + k_2\right)y_2 = \underbrace{k_1y_1 + k_2y_2}_{y_{\text{oo}}} + \underbrace{y_1 \int \varphi(x) \, dx + y_2 \int \Psi(x) \, dx}_{y_{\text{TH}}}$$

Система варьируемых переменных имеет единственное решение, так как определитель — это определитель Вронского.

$$W(x)=egin{array}{c|c} y_1 & y_2 \ y_1' & y_2' \ \end{array}
eq 0$$
 т.к. y_1 и y_2 ФСР ЛОДУ

26 Дополнительные определения

26.1 Неопределённый интеграл

Определение 17. Множество первообразных функции f(x) на (a;b) называется **неопределённым интегралом**.

$$\int f(x) dx = F(x) + C \tag{4}$$

∫ — знак интеграла

f(x) — подынтегральная функция

f(x) dx — подынтегральное выражение

x — переменная

F(x) + C — множество первообразных

C — произвольная константа

Определение 18. Интегрирование — нахождение неопределённого интеграла.

26.2 Правильные и неправильные рациональные дроби

Определение 19. Дробно-рациональной функцией или рациональной дробью называется функция, равная частному от деления двух многочленов.

$$\frac{P_m(x)}{Q_n(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \ldots + b_1 x + b_0},$$

$$a_m, a_{m-1}, \ldots, a_1, a_0, b_n, b_{n-1}, \ldots, b_1, b_0 - const$$

где $P_m(x), \ Q_n(x)$ — многочлены степени m и n соответственно.

Определение 20. Рациональная дробь называется **правильной**, если степень числителя меньше степени знаменателя, то есть m < n.

Определение 21. Рациональная дробь называется **неправильной**, если степень числителя не меньше степени знаменателя, то есть $m \ge n$.

26.2.1 Простейшие рациональные дроби

1.
$$\frac{A}{x-a}$$
 2. $\frac{A}{(x-a)^k}$ 3. $\frac{Mx+N}{x^2+px+q}$ 4. $\frac{Mx+N}{(x^2+px+q)^k}$

где $A, a, M, N, p, q - const, K \in \mathbb{N}, k \geqslant 2$ $x^2 + px + q$ не имеет действительных корней.

26.3 Определённый интеграл

Пусть функция y = f(x) определена на [a; b].

Определение 22. Множество точек $a = x_0 < x_1 < \ldots < x_i < \ldots < x_n = b$ называется разбиением отрезка [a; b], при этом отрезки $[x_{i-1}; x_i]$ называются отрезками разбиения.

$$i=1,\dots,n$$
 $i=\overline{1,n}$ $\Delta x_i=x_i-x_{i-1}$ — длина i -го отрезка разбиения $i=\overline{1,n}$ $\lambda=\max_i \Delta x_i$ — диаметр разбиения

Рассмотрим произвольное разбиение [a;b]. В каждом из отрезков разбиения $[x_{i-1};x_i]$ выберем точку ξ_i , $i=\overline{1,n}$. Составим сумму

$$S_n = \sum_{i=1}^n f(\xi_i) \cdot \Delta x_i$$
 (5)

(5) — интегральная сумма для функции y = f(x) на [a; b].

Определение 23. Определённым интегралом от функции y = f(x) на [a;b] называется конечный предел интегральной суммы (5), когда число отрезков разбиения растёт, а их длины стремятся к нулю.

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i}$$
(6)

Предел (6) не зависит от способа разбиения отрезка [a;b] и выбора точек $\xi_i,\ \overline{1,n}.$

f(x) — подынтегральная функция

f(x) dx — подынтегральное выражение

∫^b — знак определённого интеграла

 \ddot{a} — нижний предел интегрирования

b — верхний предел интегрирования

Определение 24. Функция y = f(x) называется **интегрируемой** на [a; b], если существует конечный предел интегральной суммы (5) на [a; b].

26.4 Криволинейная трапеция

Определение 25. Криволинейной трапецией называется фигура, ограниченная графиком функции y = f(x), отрезком [a;b] на Ox, прямыми x = a и x = b параллельными оси Oy.

26.5 Абсолютная и условная сходимость

Определение 26. Если наряду с несобственным интегралом от функции f(x) по бесконечному промежутку $[a; +\infty)$ сходится и несобственный интеграл от функции |f(x)| по этому же промежутку, то первый несобственный интеграл называется сходящимся абсолютно.

Определение 27. Если несобственный интеграл от функции f(x) по бесконечному промежутку $[a;+\infty)$ сходится, а несобственный интеграл от функции |f(x)| по этому же промежутку расходится, то первый несобственный интеграл называется сходящимся условно.

несобственный интеграл от
$$f(x)$$
 сходится условно $=$ $\begin{bmatrix} \text{несобственный интеграл} \\ \text{от } f(x) \text{ сходится} \end{bmatrix} + \begin{bmatrix} \text{несобственный интеграл} \\ \text{от } |f(x)| \text{ расходится} \end{bmatrix}$

26.6 Уравнение Бернулли

Определение 28. ДУ 1-го порядка называется **уравнением Бернулли**, если оно имеет вид:

$$\boxed{y'+p(x)\cdot y=y^m\cdot f(x)}\qquad m\neq 0,\ m\neq 1$$
 $m=0 \Rightarrow$ уравнение Бернулли \longrightarrow ЛНДУ $m=1 \Rightarrow$ уравнение Бернулли \longrightarrow ЛОДУ

 $p(x),\ f(x)$ — непрерывны на $I\subset \mathbb{R}$

26.7 Общее и частное решения ДУ

Определение 29. Общим решением ДУ 2-го порядка называется функция $y = \varphi(x, C_1, C_2)$, удовлетворяющая условиям:

- 1. $y = \varphi(x, C_1, C_2)$ решение ДУ (2) при любых C_1 , $C_2 const.$
- 2. Какого бы ни было начальное условие (3), можно найти такие C_1^0, C_2^0 , что функция $y = \varphi(x, C_1^0, C_2^0)$ будет удовлетворять начальному условию (3).

Определение 30. Частным решением ДУ 2-го порядка называется любая функция $y=arphi(x,C_1^0,C_2^0)$, полученная из общего решения при конкретных значениях C_1^0 и

Определение 31. Общим решением ДУ п-го порядка называется функция $y = \varphi(x, \, C_1, \, C_2, \, \dots, \, C_n)$ удовлетворяющая условиям:

- 1. $y = \varphi(x, C_1, C_2, \dots, C_n)$ решение ДУ n-го порядка при любых C_1, C_2, \dots, C_n const.
- 2. Какого бы ни было начальное условие (3), можно найти такие $C_1^0, C_2^0, \ldots, C_n^0$, что функция $y=arphi(x,\,C_1^0,\,C_2^0,\,\ldots,\,C_n^0)$ будет удовлетворять начальным условиям

Определение 32. Частным решением ДУ п-го порядка называется функция $y=\varphi(x,\,C_1^0,\,C_2^0,\,\ldots,\,C_n^0)$, полученная из общего решения $y=\varphi(x,\,C_1,\,C_2,\,\ldots,\,C_n)$ при конкретных значениях $C_1^0,\,C_2^0,\,\ldots,\,C_n^0$.

26.8 Определитель Вронского (вронскиан)

Определение 33. Определителем Вронского (вронскианом) системы (n-1) раз дифференцируемых функций $y_1(x), \ldots, y_n(x)$ называется определитель вида:

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y'_1(x) & y'_2(x) & \cdots & y'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{vmatrix}$$

26.9Характеристическое уравнение

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-1} y' + a_n y = 0$$
 (1)

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-1} y' + a_n y = 0$$

$$k^n + a_1 k^{n-1} + \ldots + a_{n-1} k + a_n = 0$$
(2)

Определение 34. Уравнение (2) называется характеристическим уравнением. Характеристическое уравнение — это алгебраическое уравнение/полином/многочлен, полученный из ДУ (1) путём замены n-ой производной неизвестной функции y на n-ую степень величины k, а сама функция y заменена на единицу.

27 Дополнительные теоремы

Теорема 34 (Непрерывность I(x)). Если функция f(x) на [a;b] непрерывна, то $I(x) = \int_a^x f(t) \, dt$ — непрерывна на [a;b].

Теорема 35 (Существование определённого интеграла). Если функция y = f(x) непрерывна на [a;b], то она на этом отрезке интегрируема.

28 Дополнительные материалы

28.1 Таблица основных интегралов

Таблица 1: Таблица основных интегралов

$$\begin{aligned} &1. \int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \ \forall C - const & 11. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C \\ &2. \int dx = x + C & 12. \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{a-x}{a+x} \right| + C \\ &3. \int \frac{dx}{x} = \ln |x| + C & 13. \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \\ &4. \int e^x \, dx = e^x + C & 14. \int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C \\ &5. \int a^x \, dx = \frac{a^x}{\ln a} + C & 15. \int \sinh x \, dx = \cosh x + C \\ &6. \int \sin x \, dx = -\cos x + C & 16. \int \cosh x \, dx = \sinh x + C \\ &7. \int \cos x \, dx = \sin x + C & 17. \int \frac{dx}{\cosh^2 x} = \sinh x + C \\ &8. \int \frac{dx}{\cos^2 x} = \lg x + C & 18. \int \frac{dx}{\sinh^2 x} = -\coth x + C \\ &9. \int \frac{dx}{\sin^2 x} = -\cot x + C & 19. \int \frac{dx}{\sin x} = \ln \left| \lg \frac{x}{2} \right| + C \\ &10. \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C & 20. \int \frac{dx}{\cos x} = \ln \left| \lg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \end{aligned}$$

28.2 Интегралы для сравнения. Эталоны, интегралы Дирихле

$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \begin{cases} \text{сходится при } \alpha > 1 \\ \text{расходится при } \alpha \leqslant 1 \end{cases}$$

$$\int_{0}^{b} \frac{dx}{x^{\alpha}} = \begin{cases} \text{сходится } \alpha < 1 \\ \text{расходится } \alpha \geqslant 1 \end{cases}$$

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} = \begin{cases} \text{сходится } \alpha < 1 \\ \text{расходится } \alpha \geqslant 1 \end{cases}$$

$$\int_{a}^{b} \frac{dx}{(b-x)^{\alpha}} = \begin{cases} \text{сходится} & \alpha < 1\\ \text{расходится} & \alpha \geqslant 1 \end{cases}$$