Corso di Laurea in Informatica Algebra. a.a. 2023-24. Proff. P. Piazza e G. Viaggi Compito a casa del 03/11/2023

Esercizio 1. Sia $\phi: G \to G'$ un omomorfismo di gruppi.

1.1. Abbiamo visto che $\text{Im}\phi \equiv \phi(G)$ è un sottogruppo.

Verificare che se G è commutativo allora anche $\text{Im}\phi$ è commutativo.

1.2. Verificare che se $H \leq G$ allora $\phi(H) \leq G'$. Vi ricordo che $H \leq G$ è il simbolo che utilizziamo per enunciare che H è un sottogruppo di G.

1.3. Verificare che

$$\phi^{-1}(1_{G'}) = \{ g \in G \, | \, \phi(g) = 1_{G'} \}$$

è un sottogruppo. Esso è chiamato il **nucleo** di ϕ ed è denotato con il simbolo Ker ϕ (da kernel, che vuol dire nocciolo in Inglese).

Sia G un gruppo. Diremo che $g \in G$ ha ordine n se n è il **minimo** numero intero positivo tale che $g^n = 1_G$. Denotiamo tale numero con o(g). Dimostreremo, ma potete già utilizzarlo in questo compito, che se o(g) = n allora il sottogruppo generato da g,

$$\langle g \rangle := \{ g^t, t \in \mathbb{Z} \}$$

ha cardinalità n. Di fatto vederemo, ed è facile da dimostrare, che se g ha ordine n allora

$$\langle g \rangle = \{1_G, g, g^2, \dots, g^{n-1}\}\$$

e che questi elementi sono distinti. In particolare quindi: l'ordine del sottogruppo generato da un elemento g di ordine n è precisamente n. Se non esiste n tale che $g^n = 1_G$ allora diremo che g ha ordine infinito e scriveremo $o(g) = \infty$.

Esercizio 2. Determinare l'ordine di un qualsiasi $h \in (\mathbb{Z}, +)$.

Determinare l'ordine di $[1] \in \mathbb{Z}_n$

Abbiamo visto che se $H \leq \mathbb{Z}_n$ allora $H = H_d$ con n = kd per qualche ke

$$H_d = \{ [d], [2d], \dots, [(k-1)d], [0] \}$$

Determinare l'ordine di [d].

Determinare l'ordine di $[3] \in \mathbb{Z}_{15}$.

(Ovviamente siamo in notazione additiva.)

Esercizio 3. Sia $\phi: G \to G'$ un omomorfismo di gruppi. ϕ è detto un **isomorfismo** se è iniettivo e suriettivo.

Verificare che se ϕ è un isomorfismo, allora $o(g) = o(\phi(g)) \ \forall g \in G$.

Esercizio 4. Consideriamo il gruppo simmetrico S_3 di tutte le bigezioni dell'insieme $\{1, 2, 3\}$ in sé stesso. Utilizziamo la notazione

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ \tau(1) & \tau(2) & \tau(3) \end{array}\right)$$

per l'elemento $\tau \in S_3$. Il prodotto in S_3 è dato dalla composizione di bigezioni.

- **4.1** Scrivere tutti gli elementi di S_3 .
- **4.2** Scrivere la tabella moltiplicativa di S_3 ¹

 $^{^1\}mathrm{trovate}$ questa tabella sia in [C] che in [PC] ma non sarebbe molto istruttivo leggerla prima di aver risolto l'esercizio

- **4.3** Quali sono i possibili ordini degli elementi di S_3 ?
- **4.4** Determinare l'ordine di ogni elemento di S_3 .
- **4.5** Quali sono i possibili ordini dei sottogruppi di S_3 ?
- **4.6** Verificare che S_3 ha quattro sottogruppi ciclici: 3 di ordine 2 ed uno di ordine 3.
- 4.7 Verificare che

$$H = \{1, \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right)\}$$

è uno di tali sottogruppi e che $aH \neq Ha$ per a uguale a

$$a := \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)$$

Esercizio 5. Verificare che l'intersezione di 2 sottogruppi di un gruppo G è un sottogruppo. Estendere il risultato a l'intersezione di una famiglia arbitraria di sottogruppi in G.

Esercizio 6. Consideriamo il gruppo commutativo $(\mathbb{Z}, +)$ e siano H e K due suoi sottogruppi.

Sappiamo che $H=a\mathbb{Z}$ e $K=b\mathbb{Z}$ per opportuni $a,b\in\mathbb{N}$. Caratterizzare $H\cap K$ in termini del $\mathrm{mcm}(a,b)$.

Esercizio 7. Sia (G,\cdot) un gruppo e sia $g\in G$ un elemento di ordine finito. Sia n=o(g). Verificare che $g^m=1_G$ se e solo se n divide m.

Suggerimento: in una direzione è immediato. Nell'altra usare la divisione e la definizione di ordine di un elemento.

Verificare che se G è finito e |G| = n allora ogni suo elemento g ha ordine finito e o(g) divide n (utilizzare Lagrange).

Dedurne che se G è finito e |G| = n allora $\forall g \in G$ si ha $g^n = 1_G$.

Esercizio 8. Sappiamo che $(\mathcal{U}(\mathbb{Z}_8),\cdot)$ ha una struttura di gruppo di ordine 4 (perché utilizzando la funzione di Eulero si ha $\phi(8) = \phi(2^3) = 2^3 - 2^2 = 4$)). Scrivere la tabella moltiplicativa di questo gruppo. Vero o Falso: $(\mathcal{U}(\mathbb{Z}_8),\cdot)$ è isomorfo a \mathbb{Z}_4 .

Suggerimento: l'esercizio 3 può risultare utile.

Esercizio 9. Dimostrare che

- $(\mathbb{Z}, +)$ non è isomorfo a $(\mathbb{Q} \setminus \{0\}, \cdot)$. Suggerimento: l'esercizio 3 può nuovamente essere utile
- S_3 non è isomorfo a \mathbb{Z}_6

Esercizio 10. Sia (G,\cdot) un gruppo e ρ una relazione di equivalenza. Diremo che ρ è compatibile con \cdot se

$$g\rho g', \quad \gamma\rho\gamma' \quad \Rightarrow \quad (g\cdot\gamma) \ \rho \ (g'\cdot\gamma').$$

Dimostrare che se ρ è compatibile con · allora l'insieme delle classi di equivalenza G/ρ ha una naturale struttura di gruppo data da:

$$[g] \star [h] := [g \cdot h].$$

Dovete verificare che questa operazione è ben definita e che $(G/\rho,\star)$ è un gruppo.