MA1521 CALCULUS FOR COMPUTING

Wang Fei

matwf@nus.edu.sg

Department of Mathematics Office: S17-06-16

Tel: 6516-2937

troduction	2
Contents	3
Assessment	4
hapter 0: Pre-Calculus	5
Sets	6
Functions	12
Absolute Value Function	14
Polynomials	15
Rational Functions	19
Algebraic Functions	20
Examples	21
Trigonometric Functions	26
Inverse Function	30
Inverse Trigonometric Functions	33
Exponential Functions	36
Examples	39
Graph Sketching	42
Three-Dimensional Space	
Complex Numbers	

Introduction 2 / 63

What will we learn in MA1521?

- Chapter 0: Pre-calculus
- Chapter 1: Limits and Continuity
- Chapter 2: Derivatives with Applications
- Chapter 3: Sequences and Series
- Chapter 4: Partial Derivatives
- Chapter 5: Optimization
- Chapter 6: Integrals with Applications
- Chapter 7: Ordinary Differential Equations

3/63

Workload and Assessment

- · Workload:
 - Lecture: 1.5×2 hours per week (week 1 to 13);

(Chinese New Year: 11 February);

Monday, Thursday 12:00 – 1:35pm, LT33.

- Tutorial: 1 hour per week (week 3 to 13);
- Notes and References:
 - o Lecture materials: Available in IVLE,
 - o Textbook: Thomas' Calculus 12th ed.
- Assessment:
 - Homework Assignments: $5\% \times 3 = 15\%$
 - Tutorial Participation: 5%
 - Mid-Term Test: 20%
 - o (11 March, 12:00 1:30pm, LT33)
 - Final Exam: 60% (02 May, afternoon)

Sets

- A set is a collection of objects.
- A set is usually denoted by capital letters A, B, C, \ldots
 - \circ The objects a, b, c, \ldots contained in set A are called the **elements** of A. We write

$$A = \{a, b, c, \ldots\}.$$

- \circ For example, $\{-1,1\}$, $\{2,3,5,7,11,13,17,19,\ldots\}$.
- We can also write a set using description:

$$A = \{x \mid \text{properties of } x\}.$$

 \circ For example, $\{x \mid x^2 = 1\}, \{x \mid x \text{ is a prime number}\}.$

6/63

Sets

- If a is an element of A, we write $a \in A$; If a is not an element of A, we write $a \notin A$.
 - \circ Example: $1 \in \{1, 2\}, 0 \notin \{1, 2\}.$
- If every element of set A is also an element of set B, we say A is a subset of B, denoted by $A \subseteq B$.

If A is not a subset of B, we write $A \nsubseteq B$.

- \circ Example: $\{1,2\} \subseteq \{1,2,3\}, \{0,1\} \not\subseteq \{1,2,3\}.$
- Two sets are equal if they have the same collection of elements, regardless of order. In other words, "A = B" \Leftrightarrow " $A \subseteq B \& B \subseteq A$ ".
 - o Examples:

 - $\{1,2,3\} = \{3,2,1\}.$ $\{x \mid x^2 = 1\} = \{1,-1\}.$

Operations on Sets

• Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\};$

• Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\};$

• Difference: $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}.$

8 / 63

Number System

- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of natural numbers.
- $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$: the set of integers.
 - $\circ \quad \mathbb{Z}^+ = \{1,2,3,\ldots\}; \quad \text{positive integers};$
 - \circ $\mathbb{Z}^- = \{-1, -2, -3, \ldots\}$: negative integers.
- $\mathbb{Q} = \{m/n \mid m, n \in \mathbb{Z}, n \neq 0\}$: rational numbers.
- R: the set of real numbers.
 - \circ There is a one-to-one correspondence between $\mathbb R$ and the points on the number line.

- \circ $a < b \Leftrightarrow a$ lies to the left of b on the number line.
- Ø: the empty set, the set containing no element.
- Similarly as \mathbb{Z}^+ and \mathbb{Z}^- , we use \mathbb{Q}^+ , \mathbb{Q}^- , \mathbb{R}^+ , \mathbb{R}^- .

Intervals

- Certain subsets of \mathbb{R} can be expressed as intervals.
 - Finite intervals: (Suppose a < b.)

• $(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}.$

10/63

Intervals

- Certain subsets of \mathbb{R} can be expressed as intervals.
 - o Infinite intervals:
 - $(a, \infty) = \{x \in \mathbb{R} \mid x > a\}.$
 - $[a, \infty) = \{x \in \mathbb{R} \mid x \ge a\}.$
 - $\bullet \quad (-\infty, a) = \{ x \in \mathbb{R} \mid x < a \}.$
 - $(-\infty, a] = \{x \in \mathbb{R} \mid x \le a\}.$

Functions

ullet Let X and Y be two sets.

- \circ A function $f: X \to Y$ is a rule which assigns each element in X to a unique element in Y.
- If the function f assigns $x \in X$ to $y \in Y$, we say y is the **image** of x under f, denoted by y = f(x).

12/63

Functions

- Let $f: X \to Y$ be a function.
 - \circ X is the **domain** of f;
 - \circ Y is the **codomain** of f.

Unless otherwise stated, X and Y are always taken to be subsets of the set of real numbers \mathbb{R} .

- We make the following convention:
 - \circ If X is not stated, the domain of f is taken to be the largest possible set $(\subseteq \mathbb{R})$ on which f is defined.
 - \circ If Y is not stated, take $Y = \mathbb{R}$.
- The range is the set of images:
 - $\circ \quad \text{range of "} f: X \to Y" = \{f(x) \mid x \in X\}.$

By definition, the range is a subset of the codomain.

Absolute Value Function

- The absolute value function:
 - $\circ \quad f(x) = |x| = \left\{ \begin{array}{cc} x, & \text{if } x \geq 0, \\ -x, & \text{if } x < 0. \end{array} \right.$

- $\quad \text{o} \quad \text{Domain: } \mathbb{R}; \quad \text{Range: } \{x \in \mathbb{R} \mid x \geq 0\}.$
- \circ |x| represents the **distance** between x and O.
 - $|x| \le c \Leftrightarrow -c \le x \le c$;
 - $|x| < c \Leftrightarrow -c < x < c$.

14 / 63

Polynomials

• A polynomial is a function of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

- $\circ \quad a_0, a_1, \dots, a_n$ are the **coefficients** of P(x);
- \circ If $a_n \neq 0$, then $n = \deg P(x)$ is the degree of P(x).
 - A polynomial of degree 1 is a linear function.
 - A polynomial of degree 2 is a quadratic function.

Polynomials

• A polynomial is a function of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

- A polynomial of degree 3 is a cubic function.
- A polynomial of degree 4 is a quartic function.
- A polynomial of degree 5 is a quintic function.

16 / 63

Graphs of Polynomials

• Let $f(x) = (x - x_1)(x - x_2)$, where $x_1 < x_2$.

• Let $f(x) = (x - x_1)(x - x_2)(x - x_3)$, $x_1 < x_2 < x_3$.

Graphs of Polynomials

• $f(x) = (x - x_1) \cdots (x - x_n)$, where $x_1 < \cdots < x_n$.

18 / 63

Rational Functions

 $\bullet \ \ \, {\rm A} \ {\rm rational} \ {\rm function} \ R(x)$ is a function of the form

$$R(x) = \frac{P(x)}{Q(x)},$$

where P, Q are polynomials, $Q(\boldsymbol{x})$ is not identically zero.

 $\bullet \quad \text{Every polynomial is a rational function by letting } Q(x) = 1. \\$

Algebraic Functions

- An algebraic function is a function constructed from polynomials using algebraic operations:
 - o addition, subtraction, multiplication, division, taking roots, composite
 - $f(x) = \sqrt{x^2 + 1}, \quad g(x) = \frac{x^3 + 1}{x + 2} + (x 2)\sqrt[5]{x^3 1}$

20 / 63

Examples

- Find the domain of $f(x) = \frac{1}{x^4 16} + \frac{2}{x^4 + 16}$.
- For fraction, $\frac{P(x)}{Q(x)}$ is defined $\Leftrightarrow Q(x) \neq 0$.
 - $\circ \frac{1}{x^4 16}$:
 - $x^4 16 = (x^2 + 4)(x 2)(x + 2)$. $x^4 16 \neq 0 \Leftrightarrow x \neq \pm 2$.
 - $\circ \frac{1}{x^4 + 16}$:
 - $x^4 + 16 \ge 0 + 16 = 16 > 0$.
 - $x^4 + 16 \neq 0$ for all $x \in \mathbb{R}$.
 - Therefore, the domain of f is $\{x \in \mathbb{R} \mid x \neq \pm 2\}$.

•
$$f(x) = \sqrt{16 - x^2} + \frac{6}{\sqrt{(x+1)(x-2)(5-x)}}$$

- For square root function, $\sqrt{g(x)}$ is defined $\Leftrightarrow g(x) \geq 0$.
 - $\circ \quad \sqrt{16 x^2}$:
 - $16 x^2 = (4 x)(4 + x) = -(x 4)(x + 4)$.
 - $16 x^2 \ge 0 \Leftrightarrow (x 4)(x + 4) \le 0 \Leftrightarrow -4 \le x < 4$.
 - $\circ \quad \frac{6}{\sqrt{(x+1)(x-2)(5-x)}}$:
 - $(x+1)(x-2)(5-x) \ge 0$ and $\ne 0$ (i.e., > 0)
 - x < -1 or 2 < x < 5.

• Domain: $\{x \in \mathbb{R} \mid -4 < x < -1 \text{ or } 2 < x < 4\}.$

22 / 63

Examples

• Solve the inequalities $-1 > -x^3 > -8$.

$$-x^3 > -8 \Leftrightarrow x^3 < 8 \Leftrightarrow \sqrt[3]{x^3} < \sqrt[3]{8} \Leftrightarrow x < 2$$

In general, we need to use polynomial factorization:

$$\circ \quad -1 > -x^3 \Leftrightarrow x^3 - 1 > 0.$$

•
$$x^3 - 1 = (x - 1)(x^2 + x + 1) > 0.$$

•
$$x - 1 - (x - 1)(x + x + 1) >$$

 $x^2 + x + 1 = (x + \frac{1}{2})^2 + \frac{3}{4} > 0.$
 $\therefore x^3 - 1 > 0 \Leftrightarrow x > 1.$

$$\therefore x^3 - 1 > 0 \Leftrightarrow x > 1.$$

$$\circ \quad -x^3 > -8 \Leftrightarrow x^3 - 8 < 0.$$

•
$$x^3 - 8 = (x - 2)(x^2 + 2x + 4) < 0.$$

 $x^2 + 2x + 4 = (x + 1)^2 + 3 > 0.$

$$\therefore x^3 - 8 < 0 \Leftrightarrow x < 2.$$

Therefore, 1 < x < 2.

• Solve $|x+2| \ge |2x-3|$.

$$|a| \ge |b| \Leftrightarrow a^2 \ge b^2 \Leftrightarrow a^2 - b^2 \ge 0$$

$$\Leftrightarrow (a - b)(a + b) \ge 0$$

$$|x + 2| \ge |2x - 3|$$

$$\Leftrightarrow [(x + 2) - (2x - 3)][(x + 2) + (2x - 3)] \ge 0$$

$$\Leftrightarrow (-x + 5)(3x - 1) \ge 0$$

$$\Leftrightarrow (x - 5)(3x - 1) \le 0$$

$$\Leftrightarrow \frac{1}{3} \le x \le 5.$$

24 / 63

Examples

• Solve the inequality $x \le \frac{3x}{x+2}$.

$$x \le \frac{3x}{x+2} \Leftrightarrow x - \frac{3x}{x+2} \le 0$$

$$\Leftrightarrow \frac{x(x+2) - 3x}{x+2} \le 0$$

$$\Leftrightarrow \frac{x(x-1)}{x+2} \le 0$$

$$\Leftrightarrow x(x-1)(x+2) \le 0 \text{ and } x+2 \ne 0.$$

$$\circ \quad x(x-1)(x+2) \le 0 \Leftrightarrow x \le -2 \text{ or } 0 \le x \le 1.$$

Hence, the answer is "x < -2 or $0 \le x \le 1$ ".

Trigonometric Functions

- The trigonometric functions
 - \circ sin x, cos x, tan x, cot x, sec x, csc x.

are the ratios of the sides of a right angle triangle.

26 / 63

Trigonometric Functions

- The trigonometric functions
 - \circ sin x, cos x, tan x, cot x, sec x, csc x.

are the ratios of the sides of a right angle triangle.

Trigonometric Functions

• Let P(x,y) be a point and let $|OP| = r = \sqrt{x^2 + y^2}$.

$$\circ \sin \theta = \frac{y}{r}; \qquad \cos \theta = \frac{x}{r}; \qquad \tan \theta = \frac{y}{x};$$

$$\circ \sin \theta = \frac{y}{r}; \qquad \cos \theta = \frac{x}{r}; \qquad \tan \theta = \frac{y}{x};$$

$$\circ \csc \theta = \frac{r}{y}; \qquad \sec \theta = \frac{r}{x}; \qquad \cot \theta = \frac{x}{y}.$$

28 / 63

Trigonometric Identities

• Identities on trigonometric functions:

$$\circ \sec^2 \theta - \tan^2 \theta = 1; \quad \csc^2 \theta - \cot^2 \theta = 1.$$

- Trigonometric functions of compounded angles:
 - $\circ \sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta;$
 - $\circ \quad \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta.$
- Double-angled formulas:
 - $\circ \sin 2\alpha = 2\sin \alpha \cos \alpha;$
 - $\circ \quad \cos 2\alpha = \cos^2 \alpha \sin^2 \alpha.$
- Periodicity:

$$\circ \sin(\alpha + 2\pi) = \sin \alpha; \quad \cos(\alpha + 2\pi) = \cos \alpha;$$

$$\circ \tan(\alpha + \pi) = \tan \alpha.$$

One to One Functions

- Consider the two functions $f(x) = \sqrt[3]{x}$ and g(x) = 1/x.
 - o Do they have any common property?

- o Every horizontal line cuts each graph at most once.
- \circ In other words, f and g never take on the same value twice (or more).
- This lends to the definition of one to one function.

30 / 63

One to One Functions

- ullet **Definition**. Let f be a function with domain D.
 - \circ f is said to be one to one if
 - for any $a, b \in D$, $a \neq b \Rightarrow f(a) \neq f(b)$.

Or equivalently, (" $P \Rightarrow Q$ " \Leftrightarrow "not $Q \Rightarrow$ not P"),

• for any $a, b \in D$, $f(a) = f(b) \Rightarrow a = b$.

In short, one to one means not many to one.

- Examples. $f(x) = \sqrt[3]{x}$ and g(x) = 1/x.
 - Suppose f(a) = f(b), i.e., $\sqrt[3]{a} = \sqrt[3]{b}$.
 - Then $(\sqrt[3]{a})^3 = (\sqrt[3]{b})^3$. That is, a = b.
 - \circ Suppose g(a) = g(b), i.e., 1/a = 1/b.
 - Then $(1/a)^{-1} = (1/b)^{-1}$. That is, a = b.

Inverse Functions

• $f(x) = \sqrt[3]{x}$ and $h(x) = x^3$ are the inverse operations of each other.

Definition. Let f be a one to one function with

 \circ domain A and range B.

Its inverse function f^{-1} is the function with

- \circ domain B and range A, and
- $\circ \quad f^{-1}(y) = x \Leftrightarrow y = f(x) \text{ for any } x \in A, y \in B.$

32 / 63

Inverse Sine Function

• Let $y = \sin x$. It is not one to one on \mathbb{R} .

- $\quad \text{ But we can restrict the domain on } [-\frac{\pi}{2},\frac{\pi}{2}].$ Then $\sin x$ is one to one on $[-\frac{\pi}{2},\frac{\pi}{2}]$, range =[-1,1].
- o The inverse sine function is
 - \sin^{-1} with domain [-1,1] and range $[-\frac{\pi}{2},\frac{\pi}{2}]$. $\sin^{-1}x=y\Leftrightarrow x=\sin y$.

Inverse Cosine Function

• Let $y = \cos x$. It is not one to one on \mathbb{R} .

But $\cos x$ is one to one on $[0, \pi]$, range = [-1, 1].

- o The inverse cosine function is
 - $\begin{array}{ll} \bullet & \cos^{-1} \text{ with domain } [-1,1] \text{ and range } [0,\pi]. \\ \bullet & \cos^{-1} x = y \Leftrightarrow x = \cos y. \end{array}$

34 / 63

Inverse Trigonometric Functions

- We have the following inverse trigonometric functions from the given domain to its range:
 - $\begin{array}{ll} \circ & \tan^{-1} x : \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}). \\ \circ & \cot^{-1} x : \mathbb{R} \to (0, \pi). \end{array}$

Exponential Functions

• Let a>0 and $a\neq 1$. Consider the exponential function $f(x)=a^x, x\in\mathbb{R}$.

- $\circ \quad a^x$ is one to one on \mathbb{R} , and its range is \mathbb{R}^+ .
- $\circ \quad \text{It admits an inverse function } \log_a:\mathbb{R}^+ \to \mathbb{R} :$
 - $y = \log_a x \Leftrightarrow x = a^y$.

36 / 63

Logarithmic Functions

• Let *e* denote the **Euler number**:

$$\circ \quad e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots = 2.71828 \dots$$

We call $\log_e x = \ln x$ the natural logarithm function.

Properties

- Exponential Functions: Let a > 0.
 - $a^0 = 1;$ $a^{-x} = 1/a^x;$
 - $a^x a^y = a^{x+y}; \quad (a^x)^y = a^{xy}.$
- Logarithmic Functions: Let a, x, y > 0 with $a \neq 1$.
 - $\circ \log_a x + \log_a y = \log_a xy;$
 - $\circ \log_a x \log_a y = \log_a(x/y);$
 - $\circ \log_a(x^b) = b \log_a x;$
 - $\circ \quad \log_b x = \frac{\log_a x}{\log_a b}, \text{ where } b > 0 \text{ and } b \neq 1.$
- Relations:
 - $\circ \quad a^{\log_a x} = x \text{ for all } x > 0 \text{ and } a > 0, a \neq 1.$
 - $\circ \quad \log_a(a^x) = x \text{ for all } a > 0 \text{, } a \neq 1.$

38 / 63

Examples

- Prove that $a^{\ln b} = b^{\ln a}$ for all a > 0 and b > 0.
 - \circ Let $X = a^{\ln b}$. Then
 - $\ln X = \ln(a^{\ln b}) = \ln b \cdot \ln a$.
 - \circ Let $Y = b^{\ln a}$. Then
 - $\ln Y = \ln(b^{\ln a}) = \ln a \cdot \ln b.$

So $\ln X = \ln Y$. It follows that

- $X = e^{\ln X} = e^{\ln Y} = Y$.
- \circ That is, $a^{\ln b} = b^{\ln a}$.

- Find the domain of $f(x) = \cos \ln(5-x) + \tan \sqrt{x-3}$.
 - $\circ \ln x$ is defined on positive numbers.
 - $\ln(5-x)$: $5-x>0 \Leftrightarrow x<5$.
 - \circ \sqrt{x} is defined on nonnegative numbers.
 - $\sqrt{x-3}$: $x-3 \ge 0 \Leftrightarrow x \ge 3$.
 - $\circ \quad \tan x = \frac{\sin x}{\cos x} \text{ is defined when } \cos x \neq 0.$
 - So $\sqrt{x-3} \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \pm \frac{7\pi}{2}, \dots$

$$\sqrt{x-3} < \sqrt{5-3} = \sqrt{2} \approx 1.414 < 1.57 \approx \frac{\pi}{2} < \frac{3\pi}{2} < \cdots$$

Hence, the domain is [3, 5).

40 / 63

Examples

- Find the domain of $f(x) = \frac{x^2 + x + 2}{\sqrt{x^2 5x + 6}} + \sqrt{2 \ln x}$.
 - $\circ \frac{x^2 + x + 2}{\sqrt{x^2 5x + 6}}$:

 - $x^2 5x + 6 \ge 0$ and $\ne 0$ (i.e., > 0). $x^2 5x + 6 = (x 2)(x 3) > 0 \Leftrightarrow x < 2$ or x > 3.
 - $\circ \sqrt{2-\ln x}$:
 - $\ln x$ is defined: x > 0.
 - $2 \ln x \ge 0 \Leftrightarrow \ln x \le 2 \Leftrightarrow x \le e^2$.

Hence, the domain is $(0,2) \cup (3,e^2]$.

Graph Sketching

- Given a function f(x).
 - $\circ \quad \text{Basic Transformation of Graphs:} \\$
 - f(x-k): k units to the right;
 - $\bullet \quad f(x+k) \hbox{:} \quad k \text{ units to the left;}$
 - f(x) + k: k units up;
 - $\bullet \quad f(x)-k{:}\quad k \text{ units down;}$
 - $\bullet \quad f(-x) \hbox{:} \quad \text{reflection about y-axis;}$
 - $\bullet \quad -f(x) \hbox{:} \quad \text{reflection about x-axis;}$
 - kf(x): scale along y-axis by k;
 - $\bullet \quad f(kx) \hbox{:} \quad \text{scale along x-axis by $1/k$.}$

42 / 63

Examples

• Sketch the graph of $y = -5 - \frac{4}{(x+1)^3}$

• Sketch the graph of $y = \ln(-x - 3) = \ln(-(x + 3))$.

44 / 63

 $y = \ln(-(x+3))$

Examples

• Sketch the graph of $y = 1 - 2e^{-x-2} = 1 - 2e^{-(x+2)}$.

Three-Dimensional Space

- The three-dimensional space is the set of points:
 - $\circ \quad \mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}.$
- Let $A(x_1, y_1, z_1)$ be a point and O(0, 0, 0) be the origin.
 - \circ The vector \overrightarrow{OA} is called the **position vector** of A.
 - \circ Its length is denoted by $|\overrightarrow{OA}| = \sqrt{x_1^2 + y_1^2 + z_1^2}$.

46 / 63

Three-Dimensional Space

- If $\mathbf{v} \neq \mathbf{0} (= (0,0,0))$, then $\mathbf{v} = |\mathbf{v}| \left(\frac{\mathbf{v}}{|\mathbf{v}|} \right)$.
- ullet Two vectors ${\bf u}$ and ${\bf v}$ are parallel if and only if
 - $\circ \ \ \mathbf{u} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{R}$, denoted by $\mathbf{u} \parallel \mathbf{v}$.
- Let $A(x_1,y_1,z_1)$ and $B(x_2,y_2,z_2)$ be points in \mathbb{R}^3 . Then

$$\circ \overrightarrow{AB} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}.$$

Without ambiguity, sometimes we may also write

$$\circ \overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

Lines in Three-Dimensional Space

- Consider the straight line L passing through points A, B.
 - \circ $\mathbf{u} = \overrightarrow{AB}$ is a direction vector.

Let ${\bf a}, {\bf b}$ be the position vectors of A, B, respectively. Let ${\bf r}$ be the position vector of $C \in L$.

$$\circ$$
 $(\mathbf{r} - \mathbf{a}) \parallel (\mathbf{b} - \mathbf{a}) \Rightarrow (\mathbf{r} - \mathbf{a}) = \lambda(\mathbf{b} - \mathbf{a}), \lambda \in \mathbb{R}.$

Therefore, L can be represented by

$$\circ$$
 $\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}), \lambda \in \mathbb{R}.$

48 / 63

Scalar Products

- Let $\mathbf{u} = x_1 \mathbf{i} + y_1 \mathbf{j} + z_1 \mathbf{k}$ and $\mathbf{v} = x_2 \mathbf{i} + y_2 \mathbf{j} + z_2 \mathbf{k}$.
 - o Their scalar product is defined by
 - $\mathbf{u} \bullet \mathbf{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$.
 - o Geometric meaning:
 - $\mathbf{u} \bullet \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$, θ is the angle between \mathbf{u}, \mathbf{v} .
- Properties:
 - $\circ \quad \mathbf{u} \bullet \mathbf{v} = \mathbf{v} \bullet \mathbf{u};$
 - $\circ \quad \mathbf{u} \bullet (\mathbf{v} + \mathbf{w}) = \mathbf{u} \bullet \mathbf{v} + \mathbf{u} \bullet \mathbf{w};$
 - $\circ \quad \lambda(\mathbf{u} \bullet \mathbf{v}) = (\lambda \mathbf{u}) \bullet \mathbf{v} = (\mathbf{u}) \bullet (\lambda \mathbf{v});$
 - $\circ \quad \mathbf{u} \bullet \mathbf{u} = |\mathbf{u}|^2;$
 - \circ $\mathbf{u} \bullet \mathbf{v} = 0 \Leftrightarrow \mathbf{u} \perp \mathbf{v}$ (\mathbf{u} and \mathbf{v} are perpendicular).

Planes in Three-Dimensional Space

- Let Π be a plane containing point A with position vector \mathbf{u} , and let \mathbf{n} be a **normal vector** of Π (i.e., $\mathbf{n} \perp \Pi$).
 - \circ Let r be the position vector of any point P.

$$P \in \Pi \Leftrightarrow \overrightarrow{AP} \perp \mathbf{n}$$

 $\Leftrightarrow (\mathbf{r} - \mathbf{u}) \bullet \mathbf{n} = 0$
 $\Leftrightarrow \mathbf{r} \bullet \mathbf{n} = \mathbf{u} \bullet \mathbf{n}.$

o Therefore, the equation of Π is given by $\mathbf{r} \bullet \mathbf{n} = \mathbf{u} \bullet \mathbf{n}$.

50/63

Vector Products

- Let $\mathbf{u} = x_1 \mathbf{i} + y_1 \mathbf{j} + z_1 \mathbf{k}$ and $\mathbf{v} = x_2 \mathbf{i} + y_2 \mathbf{j} + z_2 \mathbf{k}$.
 - Their vector product is defined by

$$\begin{aligned} \mathbf{u}\times\mathbf{v} &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}; \quad \text{equivalently, it equals} \\ (y_1z_2 - y_2z_1)\mathbf{i} + (z_1x_2 - z_2x_1)\mathbf{j} + (x_1y_2 - x_2y_1)\mathbf{k}. \end{aligned}$$

- o Geometric meaning:
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} , and its direction is given by the right-hand rule.
 - $|\mathbf{u} \times \mathbf{v}|$ represents the area of the parallelogram formed by \mathbf{u} and \mathbf{v} :
 - $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$, θ : angle between \mathbf{u}, \mathbf{v} .

Vector Products

- Properties of vector products:
 - $\circ \quad \mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u};$
 - \circ $\mathbf{i} \times \mathbf{j} = \mathbf{k}$; $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$;
 - $\circ \quad \mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w};$
 - $\circ \quad \lambda(\mathbf{u} \times \mathbf{v}) = (\lambda \mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (\lambda \mathbf{v});$
 - $\circ \quad \mathbf{u} \times \mathbf{v} = \mathbf{0} \Leftrightarrow \mathbf{u} \parallel \mathbf{v};$
 - $\circ \quad (\mathbf{u} \times \mathbf{v}) \bullet \mathbf{w} = (\mathbf{v} \times \mathbf{w}) \bullet \mathbf{u} = (\mathbf{w} \times \mathbf{u}) \bullet \mathbf{v}.$
- Applications of vector products:
 - \circ Suppose vectors ${\bf u}$ and ${\bf v}$ are non-parallel vectors which are parallel to a plane Π .
 - A normal vector of Π is given by $\mathbf{u} \times \mathbf{v}$.

52 / 63

Examples

- Find the equation of the line L passing through points (-2, -1, 0) and (3, 2, -3).
 - \circ A direction vector of L is given by
 - (3,2,-3)-(-2,-1,0)=(5,3,-3).
 - \circ Any point on L can be written as
 - $(-2, -1, 0) + \lambda(5, 3, -3), \lambda \in \mathbb{R}.$
 - \circ Therefore, the equation of L is
 - $\mathbf{r} = (-2 + 5\lambda)\mathbf{i} + (-1 + 3\lambda)\mathbf{j} 3\lambda\mathbf{k}$.
- Remark. Note that the representation is not unique.
 - \circ $(3,2,3) + \lambda(5,3,-3), \lambda \in \mathbb{R}$, is also a solution.

- Find the equation of the plane Π , if
 - $\circ \quad \Pi$ contains (2,2,2), and
 - $\circ \quad \Pi$ is perpendicular to $3\mathbf{i} + \mathbf{j} 2\mathbf{k}$.
- Solution.
 - A normal vector: $3\mathbf{i} + \mathbf{j} 2\mathbf{k}$; A point in Π : (2, 2, 2).
 - \circ Therefore, the equation of Π is:
 - (x, y, z) (3, 1, -2) = (2, 2, 2) (3, 1, -2).

That is,

• 3x + y - 2z = 4.

54 / 63

Examples

- Find the equation of the plane Π , if
 - Π contains (2,2,2) and the line $\mathbf{r}=\mathbf{i}-2\mathbf{j}+3\mathbf{k}+\lambda(3\mathbf{i}+\mathbf{j}-2\mathbf{k}), \lambda\in\mathbb{R}.$
- Solution.
 - \circ In order to get a normal vector to Π , we need two vectors parallel to Π :
 - One is given by $(3, 1, -2) \| \Pi$;
 - Let $\lambda = 0$ in the line. $(1, -2, 3) \in \Pi$.

$$\circ$$
 $(2,2,2)-(1,-2,3)=(1,4,-1) \parallel \Pi.$

- Normal vector: $(3, 1, -2) \times (1, 4, -1) = (7, 1, 11)$.
- \circ Equation of Π :
 - (x, y, z) (7, 1, 11) = (2, 2, 2) (7, 1, 11);
 - That is, 7x + y + 11z = 38.

- Find the equation of the plane Π , if Π contains lines
 - $\circ L_1: \mathbf{r} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k} + \lambda_1(3\mathbf{i} + \mathbf{j} 2\mathbf{k}), \lambda_1 \in \mathbb{R}$, and
 - $\circ L_2: \mathbf{r} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k} + \lambda_2(\mathbf{i} + 3\mathbf{k}), \lambda_2 \in \mathbb{R}.$
- Solution.
 - \circ (3,1,-2) and (1,0,3) are vectors parallel to Π .
 - \circ Normal vector to Π :
 - $(3,1,-2) \times (1,0,3) = (3,-11,-1).$
 - Let $\lambda_1 = 0$ in L_1 (or $\lambda_2 = 0$ in L_2).
 - (1, -2, 3) is a point in Π .
 - \circ Equation of Π is given by
 - (x, y, z) (3, -11, -1) = (1, -2, 3) (3, -11, -1)
 - That is, 3x 11y z = 22.

56 / 63

Examples

- Let $\mathbf{u} = \mathbf{i} 2\mathbf{j} + 2\mathbf{k}$. Find the unit vector \mathbf{v} such that
 - o **u v** has the largest possible value;
 - o u v has the smallest possible value.
- Solution.
 - Recall: $\mathbf{u} \bullet \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$, θ : angle between \mathbf{u}, \mathbf{v} .
 - \circ |**u**| is given (= 3); and |**v**| = 1.
 - \bullet $\mathbf{u} \bullet \mathbf{v}$ is the largest $\Leftrightarrow \cos \theta = 1 \Leftrightarrow \theta = 0$.
 - v is parallel to u of the same direction.
 - $\mathbf{v} = \mathbf{u}/|\mathbf{u}| = \frac{1}{3}\mathbf{i} \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$.
 - \bullet $\mathbf{u} \bullet \mathbf{v}$ is the smallest $\Leftrightarrow \cos \theta = -1 \Leftrightarrow \theta = \pi$.
 - v is parallel to u of the opposite direction.
 - $\mathbf{v} = -\mathbf{u}/|\mathbf{u}| = -\frac{1}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} \frac{2}{3}\mathbf{k}$.

Complex Numbers

- Let $i = \sqrt{-1}$. The set of **complex numbers** is
 - $\circ \quad \mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}.$
- Let z=a+bi be a complex number, $a,b\in\mathbb{R}$.
 - \circ a is the **real part** of z, denoted by $\operatorname{Re} z$;
 - $\circ \quad b$ is the imaginary part of z, denoted by ${\rm Im}\,z$.
 - \circ a-bi is the **conjugate** of z, denoted by z^* .
 - $\circ \sqrt{a^2 + b^2}$ is the **modulus** of z, denoted by |z|.
- A complex number $z=a+bi,\,a,b\in\mathbb{R}$, can be identified as a point $(a,b)\in\mathbb{R}^2$.

58 / 63

Complex Numbers

- Let z = a + bi, $a, b \in \mathbb{R}$.
 - The angle $\theta \in (-\pi, \pi]$ between z and the real axis is called the argument of z, denoted by $\arg z$.

- $\circ \quad \text{Then } a = |z| \cos \theta \text{ and } b = |z| \sin \theta.$
- $\circ z = |z|(\cos \theta + i \sin \theta)$ is the polar form of z.
- o Euler's formula:
 - $e^{i\theta} = \cos\theta + i\sin\theta$.

Arithmetic Operations on $\mathbb C$

Addition and Subtraction:

$$\circ$$
 $(a+bi) \pm (c+di) = (a \pm c) + (b \pm d)i.$

- Multiplication:
 - $\circ (a+bi)(c+di) = (ac-bd) + (ad+bc)i.$
 - \circ Polar form: $z_1=|z_1|e^{i\alpha}$ and $z_2=|z_2|e^{i\beta}$;
 - $z_1 z_2 = |z_1| |z_2| e^{i(\alpha+\beta)}$.
 - \circ In particular, let z = a + bi, $a, b \in \mathbb{R}$.
 - $zz^* = (a+bi)(a-bi) = a^2 + b^2 = |z|^2$.
 - o De Moivre's theorem:
 - $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta, n \in \mathbb{Z}.$

60 / 63

Arithmetic Operations on ${\Bbb C}$

• Division:

$$\circ \quad \frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di}$$

$$\begin{array}{l} \bullet \quad \text{Multiply numerator and denominator by } (c+di)^*. \\ \bullet \quad \frac{a+bi}{c+di} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}. \end{array}$$

 \circ Polar form: $z_1=|z_1|e^{i\alpha}$ and $z_2=|z_2|e^{i\beta}$;

$$\bullet \quad \frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\alpha - \beta)}.$$

• **Example**. Evaluate $\frac{1+2i}{3+4i}$.

$$\circ \quad \frac{1+2i}{3+4i} = \frac{1+2i}{3+4i} \cdot \frac{3-4i}{3-4i} = \frac{11+2i}{25}.$$

- Evaluate $\left(\frac{1}{-\sqrt{2}+\sqrt{2}i}\right)^{2011}$.
 - \circ Let $z = -\sqrt{2} + \sqrt{2}i$. Then $|z| = \sqrt{2+2} = 2$.

- $\circ \arg z = \frac{3\pi}{4}. \quad z = 2e^{i\frac{3\pi}{4}}.$
- $\begin{array}{ll} \circ & \text{LHS} = \left(\frac{1}{z}\right)^{2011} = 2^{-2011}e^{-2011 \times \frac{3\pi}{4}i} \\ & = 2^{-2011}e^{-(1508\pi i + \frac{\pi i}{4})} = 2^{-2011}e^{-\frac{\pi i}{4}} \\ & = 2^{-2011} \cdot \frac{1-i}{\sqrt{2}} \\ & = \frac{1}{2^{2011}\sqrt{2}} \frac{1}{2^{2011}\sqrt{2}}i. \end{array}$

62 / 63

Examples

• Prove that for any θ with $\theta \neq \pm \pi, \pm 3\pi, \pm 5\pi, \dots$

$$\circ \quad \frac{1 + \cos \theta + i \sin \theta}{1 + \cos \theta - i \sin \theta} = \cos \theta + i \sin \theta.$$

- Proof.
 - $(1 + \cos \theta i \sin \theta)(\cos \theta + i \sin \theta)$ $= \cos \theta + \cos^2 \theta i \sin \theta \cos \theta + i \sin \theta + i \cos \theta \sin \theta + \sin^2 \theta$ $= 1 + \cos \theta + i \sin \theta.$

Alternative Proof.

- $\circ \quad \mathsf{Let} \ z = \cos \theta + i \sin \theta.$
 - The identity becomes $\frac{1+z}{1+z^*}=z$, where |z|=1.
 - Apply the multiplication:

$$\circ \ \ (1+z^*)z=z+z^*z=z+|z|^2=z+1.$$