Asymptotics and consistency

EC 421, Set 6

Luciana Etcheverry October 17, 2019

Prologue

Schedule

Last Time

Living with heteroskedasticity

Today

Asymptotics and consistency

This week

Our second assignment (Due 10/27)

Near-ish future

Midterm on 10/31

Welcome to asymptopia

Previously: We examined estimators (e.g., $\hat{\beta}_i$) and their properties using

- 1. The **mean** of the estimator's distribution: $m{E} \left[\hat{eta}_j \right] = ?$
- 2. The **variance** of the estimator's distribution: $\operatorname{Var}(\hat{\beta}_j) = ?$

which tell us about the **tendency of the estimator** if we took ∞ **samples**, each with **sample size** n.

This approach misses something.

Welcome to asymptopia

New question:

How does our estimator behave as our sample gets larger (as $n \to \infty$)?

This *new question* forms a new way to think about the properties of estimators: **asymptotic properties** (or large-sample properties).

A "good" estimator will become indistinguishable from the parameter it estimates when n is very large (close to ∞).

Probability limits

Just as the *expected value* helped us characterize **the finite-sample distribution of an estimator** with sample size n,

the *probability limit* helps us analyze **the asymptotic distribution of an estimator** (the distribution of the estimator as n gets "big"[†]).

[†] Here, "big" n means $n \to \infty$. That's really big data.

Probability limits

Let B_n be our estimator with sample size n.

Then the **probability limit** of B is α if

$$\lim_{n \to \infty} P(|B_n - \alpha| > \epsilon) = 0 \tag{1}$$

for any $\varepsilon > 0$.

The definition in (1) essentially says that as the sample size approaches infinity, the probability that B_n differs from α by more than a very small number (ϵ) is zero.

Practically: B's distribution collapses to a spike at α as n approaches ∞ .

Probability limits

Equivalent statements:

- The probability limit of B_n is α .
- plim $B = \alpha$
- B converges in probability to α .

Probability limits

Probability limits have some nice/important properties:

- $\operatorname{plim}(X \times Y) = \operatorname{plim}(X) \times \operatorname{plim}(Y)$
- $\operatorname{plim}(X + Y) = \operatorname{plim}(X) + \operatorname{plim}(Y)$
- $\operatorname{plim}(c) = c$, where c is a constant
- plim $\frac{X}{Y} = \frac{\text{plim}(X)}{\text{plim}(Y)}$
- $\operatorname{plim} f(X) = f \operatorname{plim}(X)$

Consistent estimators

We say that **an estimator is consistent** if

- 1. The estimator has a prob. limit (its distribution collapses to a spike).
- 2. This spike is **located at the parameter** the estimator predicts.

In other words...

An estimator is consistent if its asymptotic distribution collapses to a spike located at the estimated parameter.

In math: The estimator B is consistent for α if $p\lim B = \alpha$.

The estimator is inconsistent if $p\lim B \neq \alpha$.

Consistent estimators

Example: We want to estimate the population mean μ_x (where $X\sim$ Normal).

Let's compare the asymptotic distributions of two competing estimators:

- 1. The first observation: X_1
- 2. The sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- 3. Some other estimator: $\widetilde{X} = \frac{1}{n+1} \quad {n \atop i=1} \ x_i$

Note that (1) and (2) are unbiased, but (3) is biased.

Consistent estimators

To see which are unbiased/biased:

$$m{E}[X_1] = \mu_x$$

$$m{E}igl[\overline{X}igr] = m{E} \; rac{1}{n} \;\; egin{array}{ccc} & n & x_i & = rac{1}{n} & n & m{E}[x_i] & = rac{1}{n} & n & \mu_x & = \mu_x \end{array}$$

$$m{E}igg[\widetilde{X}igg] = m{E} \; rac{1}{n+1} \;\;\; egin{array}{ccc} & n & x_i & = rac{1}{n+1} & n & m{E}[x_i] = rac{n}{n+1}\mu_x \ \end{array}$$

Distributions of X_1 , \overline{X} , and \widetilde{X}

n=2

Distributions of X_1 , \overline{X} , and \widetilde{X}

Distributions of X_1 , \overline{X} , and \widetilde{X}

Distributions of X_1 , \overline{X} , and \widetilde{X}

Distributions of X_1 , \overline{X} , and \widetilde{X}

Distributions of X_1 , \overline{X} , and \widetilde{X}

Distributions of X_1 , \overline{X} , and \widetilde{X} n=500

Distributions of \overline{X}_1 , \overline{X} , and \widetilde{X} n=1000

The distributions of \widetilde{X} For n in $\{2, 5, 10, 50, 100, 500, 1000\}$

The takeaway?

- An estimator can be unbiased without being consistent (e.g., X_1).
- An estimator can be unbiased and consistent (e.g., \overline{X}).
- An estimator can be biased but consistent (e.g., \widetilde{X}).
- An estimator can be biased and inconsistent (e.g., $\overline{X} 50$).

Best-case scenario: The estimator is unbiased and consistent.

Why consistency (asymptotics)?

- 1. We cannot always find an unbiased estimator. In these situations, we generally (at least) want consistency.
- 2. Expected values can be hard/undefined. Probability limits are less constrained, e.g.,

$$E[g(X)h(Y)]$$
 vs. $plim(g(X)h(Y))$

3. Asymptotics help us move away from assuming the distribution of u_i .

Caution: As we saw, consistent estimators can be biased in small samples.

OLS has two very nice asymptotic properties:

- 1. Consistency
- 2. Asymptotic Normality

Let's prove #1 for OLS with simple, linear regression, i.e.,

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

Proof of consistency

First, recall our previous derivation of of $\hat{\beta}_1$,

$$\hat{eta}_1 = eta_1 + rac{-i \left| x_i - \overline{x}
ight| u_i}{\left| x_i - \overline{x}
ight|^2}$$

Now divide the numerator and denominator by 1/n

$$\hat{eta}_1 = eta_1 + rac{rac{1}{n} \quad _i \quad x_i - \overline{x} \quad u_i}{rac{1}{n} \quad _i \quad x_i - \overline{x} \quad ^2}$$

Proof of consistency

We actually want to know the probability limit of $\hat{\beta}_1$, so

$$ext{plim}\,\hat{eta}_1 = ext{plim} \;\;eta_1 + rac{rac{1}{n} \;\;_i \; x_i - \overline{x} \;\; u_i}{rac{1}{n} \;\;_i \; x_i - \overline{x} \;^2}$$

which, by the properties of probability limits, gives us

$$=eta_1+rac{ ext{plim} rac{1}{n} \quad_i \ x_i-\overline{x} \ u_i}{ ext{plim} \left(rac{1}{n} \quad_i \ x_i-\overline{x} \ ^2
ight)}$$

The numerator and denominator are, in fact, population quantities

$$egin{aligned} &= eta_1 + rac{\mathrm{Cov}(x,\,u)}{\mathrm{Var}(x)} \end{aligned}$$

Proof of consistency

So we have

$$\operatorname{plim} \hat{eta}_1 = eta_1 + rac{\operatorname{Cov}(x,\,u)}{\operatorname{Var}(x)}$$

By our assumption of exogeneity (plus the law of total expectation)

$$Cov(x, u) = 0$$

Combining these two equations yields

$$\operatorname{plim} \hat{eta}_1 = eta_1 + rac{0}{\operatorname{Var}(x)} = eta_1$$

so long as $Var(x) \neq 0$ (which we've assumed).

Asymptotic normality

Up to this point, we made a very specific assumption about the distribution of u_i —the u_i came from a normal distribution.

We can relax this assumption—allowing the u_i to come from any distribution (still assume exogeneity, independence, and homoskedasticity).

We will focus on the **asymptotic distribution** of our estimators (how they are distributed as n gets large), rather than their finite-sample distribution.

As n approaches ∞ , the distribution of the OLS estimator converges to a normal distribution.

Recap

With a more limited set of assumptions, OLS is **consistent** and is **asymptotically normally distributed**.

Current assumptions

- 1. Our data were **randomly sampled** from the population.
- 2. y_i is a **linear function** of its parameters and disturbance.
- 3. There is **no perfect collinearity** in our data.
- 4. The u_i have conditional mean of zero (**exogeneity**), $m{E}[u_i|X_i]=0$.
- 5. The u_i are homoskedastic with zero correlation between u_i and u_j .

Inconsistency?

Imagine we have a population whose true model is

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + u_i$$
 (2)

Recall₁: **Omitted-variable bias** occurs when we omit a variable in our linear regression model (e.g., leavining out x_2) such that

- 1. x_2 affects y, i.e., $\beta_2 \neq 0$.
- 2. Correlates with an included explanatory variable, i.e., $Cov(x_1, x_2) \neq 0$.

Inconsistency?

Imagine we have a population whose true model is

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + u_i$$
 (2)

Recall₂: We defined the **bias** of an estimator W for parameter θ

$$\operatorname{Bias}_{ heta}(W) = oldsymbol{E}[W] - heta$$

Inconsistency?

Imagine we have a population whose true model is

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i \tag{2}$$

We know that omitted-variable bias causes biased estimates.

Question: Do omitted variables also cause inconsistent estimates?

Answer: Find $\operatorname{plim} \hat{\beta}_1$ in a regression that omits x_2 .

Inconsistency?

Imagine we have a population whose true model is

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i \tag{2}$$

but we instead specify the model as

$$y_i = \beta_0 + \beta_1 x_{1i} + w_i \tag{3}$$

where $w_i=eta_2x_{2i}+u_i$. We estimate (3) via OLS

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{w}_i \tag{4}$$

Our question: Is $\hat{\beta}_1$ consistent for β_1 when we omit x_2 ?

$$\operatorname{plim}\left(\hat{\beta}_{1}\right)\stackrel{?}{=}\beta_{1}$$

Inconsistency?

Truth:
$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+u_i$$
 Specified: $y_i=eta_0+eta_1x_{1i}+w_i$

We already showed
$$\operatorname{plim} \hat{eta}_1 = eta_1 + \dfrac{\operatorname{Cov}(x_1,\,w)}{\operatorname{Var}(x_1)}$$

where w is the disturbance. Here, we know $w=\beta_2 x_2 + u$. Thus,

$$ext{plim}\,\hat{eta}_1 = eta_1 + rac{ ext{Cov}(x_1,\,eta_2x_2+u)}{ ext{Var}(x_1)}$$

Now, we make use of $\mathrm{Cov}(X,\,Y+Z)=\mathrm{Cov}(X,\,Y)+\mathrm{Cov}(X,\,Z)$

$$\operatorname{plim} \hat{eta}_1 = eta_1 + rac{\operatorname{Cov}(x_1,\,eta_2 x_2) + \operatorname{Cov}(x_1,\,u)}{\operatorname{Var}(x_1)}$$

Inconsistency?

$$\operatorname{plim} \hat{eta}_1 = eta_1 + rac{\operatorname{Cov}(x_1,\,eta_2 x_2) + \operatorname{Cov}(x_1,\,u)}{\operatorname{Var}(x_1)}$$

Now we use the fact that Cov(X, cY) = c Cov(X, Y) for a constant c.

$$\operatorname{plim} \hat{eta}_1 = eta_1 + rac{eta_2\operatorname{Cov}(x_1,\,x_2) + \operatorname{Cov}(x_1,\,u)}{\operatorname{Var}(x_1)}$$

As before, our exogeneity (conditional mean zero) assumption implies $\mathrm{Cov}(x_1,\,u)=0$, which gives us

$$\operatorname{plim} \hat{eta}_1 = eta_1 + rac{eta_2\operatorname{Cov}(x_1,\,x_2)}{\operatorname{Var}(x_1)}$$

Inconsistency?

Thus, we find that

$$ext{plim}\,\hat{eta}_1 = eta_1 + eta_2 rac{ ext{Cov}(x_1,\,x_2)}{ ext{Var}(x_1)}$$

In other words, an omitted variable will cause OLS to be inconsistent if **both** of the following statements are true:

- 1. The omitted variable **affects our outcome**, i.e., $\beta_2 \neq 0$.
- 2. The omitted variable correlates with included explanatory variables, *i.e.*, $Cov(x_1, x_2) \neq 0$.

If both of these statements are true, then the OLS estimate $\hat{\beta}_1$ will not converge to β_1 , even as n approaches ∞ .

Signing the bias

Sometimes we're stuck with omitted variable bias.[†]

$$ext{plim}\,\hat{eta}_1 = eta_1 + eta_2 rac{ ext{Cov}(x_1,\,x_2)}{ ext{Var}(x_1)}$$

When this happens, we can often at least know the direction of the inconsistency.

[†] You will often hear the term "omitted-variable bias" when we're actually talking about inconsistency (rather than bias).

Signing the bias

Begin with

$$ext{plim}\,\hat{eta}_1 = eta_1 + eta_2 rac{ ext{Cov}(x_1,\,x_2)}{ ext{Var}(x_1)}$$

We know $\mathrm{Var}(x_1)>0$. Suppose $\beta_2>0$ and $\mathrm{Cov}(x_1,\,x_2)>0$. Then

$$\operatorname{plim} \hat{\beta}_1 = \beta_1 + (+) \frac{(+)}{(+)} \implies \operatorname{plim} \hat{\beta}_1 > \beta_1$$

∴ In this case, OLS is **biased upward** (estimates are too large).

$$egin{aligned} \operatorname{Cov}(x_1,\,x_2) > 0 & \operatorname{Cov}(x_1,\,x_2) < 0 \ eta_2 > 0 & \operatorname{Upward} \ eta_2 < 0 & \end{aligned}$$

Signing the bias

Begin with

$$ext{plim}\,\hat{eta}_1 = eta_1 + eta_2 rac{ ext{Cov}(x_1,\,x_2)}{ ext{Var}(x_1)}$$

We know $\mathrm{Var}(x_1)>0$. Suppose $\beta_2<0$ and $\mathrm{Cov}(x_1,\,x_2)>0$. Then

$$\operatorname{plim} \hat{\beta}_1 = \beta_1 + (-)\frac{(+)}{(+)} \implies \operatorname{plim} \hat{\beta}_1 < \beta_1$$

∴ In this case, OLS is **biased downward** (estimates are too small).

$$egin{aligned} \operatorname{Cov}(x_1,\,x_2) &> 0 & \operatorname{Cov}(x_1,\,x_2) &< 0 \ eta_2 &> 0 & \operatorname{Upward} \ eta_2 &< 0 & \operatorname{Downward} \end{aligned}$$

Signing the bias

Begin with

$$ext{plim}\,\hat{eta}_1 = eta_1 + eta_2 rac{ ext{Cov}(x_1,\,x_2)}{ ext{Var}(x_1)}$$

We know $\mathrm{Var}(x_1)>0$. Suppose $\beta_2>0$ and $\mathrm{Cov}(x_1,\,x_2)<0$. Then

$$\operatorname{plim} \hat{\beta}_1 = \beta_1 + (+) \frac{(-)}{(+)} \implies \operatorname{plim} \hat{\beta}_1 < \beta_1$$

∴ In this case, OLS is **biased downward** (estimates are too small).

$$egin{aligned} \operatorname{Cov}(x_1,\,x_2) &> 0 & \operatorname{Cov}(x_1,\,x_2) &< 0 \ eta_2 &> 0 & \operatorname{Upward} & \operatorname{Downward} \ eta_2 &< 0 & \operatorname{Downward} \end{aligned}$$

Signing the bias

Begin with

$$ext{plim}\,\hat{eta}_1 = eta_1 + eta_2 rac{ ext{Cov}(x_1,\,x_2)}{ ext{Var}(x_1)}$$

We know $\mathrm{Var}(x_1)>0$. Suppose $\beta_2<0$ and $\mathrm{Cov}(x_1,\,x_2)<0$. Then

$$\operatorname{plim} \hat{\beta}_1 = \beta_1 + (-)\frac{(-)}{(+)} \implies \operatorname{plim} \hat{\beta}_1 > \beta_1$$

∴ In this case, OLS is **biased upward** (estimates are too large).

$$egin{aligned} \operatorname{Cov}(x_1,\,x_2) &> 0 & \operatorname{Cov}(x_1,\,x_2) &< 0 \ eta_2 &> 0 & \operatorname{Upward} & \operatorname{Downward} \ eta_2 &< 0 & \operatorname{Downward} & \operatorname{Upward} \end{aligned}$$

Signing the bias

Thus, in cases where we have a sense of

- 1. the sign of $\mathrm{Cov}(x_1,\,x_2)$
- 2. the sign of β_2

we know in which direction inconsistency pushes our estimates.

Direction of bias

$$egin{aligned} \operatorname{Cov}(x_1,\,x_2) &> 0 & \operatorname{Cov}(x_1,\,x_2) &< 0 \ eta_2 &> 0 & \operatorname{Upward} & \operatorname{Downward} \ eta_2 &< 0 & \operatorname{Downward} & \operatorname{Upward} \end{aligned}$$

Measurement error in our explanatory variables presents another case in which OLS is inconsistent.

Consider the population model: $y_i = \beta_0 + \beta_1 z_i + u_i$

- We want to observe z_i but cannot.
- Instead, we *measure* the variable x_i , which is z_i plus some error (noise):

$$x_i = z_i + \omega_i$$

• Assume $m{E}[\omega_i]=0$, $\mathrm{Var}(\omega_i)=\sigma_\omega^2$, and ω is independent of z and u.

OLS regression of y and x will produce inconsistent estimates for β_1 .

Proof

$$egin{aligned} y_i &= eta_0 + eta_1 z_i + u_i \ &= eta_0 + eta_1 \left(x_i - \omega_i
ight) + u_i \ &= eta_0 + eta_1 x_i + \left(u_i - eta_1 \omega_i
ight) \ &= eta_0 + eta_1 x_i + arepsilon_i \end{aligned}$$

where $arepsilon_i = u_i - eta_1 \omega_i$

What happens when we estimate $y_i = \hat{eta}_0 + \hat{eta}_1 x_i + e_i$?

$$\operatorname{plim} \hat{eta}_1 = eta_1 + rac{\operatorname{Cov}(x,\,arepsilon)}{\operatorname{Var}(x)}$$

We will derive the numerator and denominator separately...

Proof

The covariance of our noisy variable x and the disturbance ε .

$$egin{aligned} \operatorname{Cov}(x,\,arepsilon) &= \operatorname{Cov}([z+\omega]\,,\,[u-eta_1\omega]) \ &= \operatorname{Cov}(z,\,u) - eta_1\operatorname{Cov}(z,\,\omega) + \operatorname{Cov}(\omega,\,u) - eta_1\operatorname{Var}(\omega) \ &= 0 + 0 + 0 - eta_1\sigma_\omega^2 \ &= -eta_1\sigma_\omega^2 \end{aligned}$$

Proof

Now for the denominator, Var(x).

$$egin{aligned} ext{Var}(x) &= ext{Var}(z+\omega) \ &= ext{Var}(z) + ext{Var}(\omega) + 2 \operatorname{Cov}(z,\,\omega) \ &= \sigma_z^2 + \sigma_\omega^2 \end{aligned}$$

Proof

Putting the numerator and denominator back together,

$$egin{aligned} ext{plim} \, \hat{eta}_1 &= eta_1 + rac{ ext{Cov}(x,\,arepsilon)}{ ext{Var}(x)} \ &= eta_1 + rac{-eta_1 \sigma_\omega^2}{\sigma_z^2 + \sigma_\omega^2} \ &= eta_1 - eta_1 rac{\sigma_\omega^2}{\sigma_z^2 + \sigma_\omega^2} \ &= eta_1 rac{\sigma_z^2 + \sigma_\omega^2}{\sigma_z^2 + \sigma_\omega^2} - eta_1 rac{\sigma_\omega^2}{\sigma_z^2 + \sigma_\omega^2} \ &= eta_1 rac{\sigma_z^2}{\sigma_z^2 + \sigma_\omega^2} \end{aligned}$$

Summary

$$\therefore ext{ plim } \hat{eta}_1 = eta_1 rac{\sigma_z^2}{\sigma_z^2 + \sigma_\omega^2}.$$

What does this equation tell us?

Measurement error in our explanatory variables biases the coefficient estimates toward zero.

- This type of bias/inconsistency is often called attenuation bias.
- If the measurement error correlates with the explanatory variables, we have bigger problems with inconsistency/bias.

Summary

What about **measurement in the outcome variable**?

It doesn't really matter—it just increases our standard errors.

It's everywhere

General cases

- 1. We cannot perfectly observe a variable.
- 2. We use one variable as a *proxy* for another.

Specific examples

- GDP
- Population
- Crime/police statistics
- Air quality
- Health data
- Proxy ability with test scores