MSP 430 Tutorial

Gabe Cohn

TI MSP 430

- Ultra-low-power!
- Widely used in low-power research
 - Power harvesting
 - Ultra-low-power sensor networks
- More complicated than AVR (Atmega)
- Not used much in industry (yet...)
- Very low cost evaluation/dev kits

MSP430 Eval/Dev Kits

MSP430 LaunchPad

eZ430

eZ430-Chronos

\$4.30

MSP430 Launch Pad Dev. Kit

- Very low cost!
- Simple MSP430
- USB programmer / debugger
- 1 PB-switch
- 2 LEDs (red and green)
- All I/O pins exposed
- Only \$4.30!

eZ430 Dev. Kit

- USB thumb-drive form-factor
- Simple MSP430
- USB programmer / debugger
- Removable target board
- All I/O pins exposed
- RF versions available (e.g. eZ430-RF2500)

eZ430-Chronos Dev. Kit

- Watch form-factor!
- Wireless programmer!
- USB programmer / debugger
- 3-axis accelerometer
- Barometric pressure sensor
- Temperature sensor
- Battery/Voltage sensor
- BlueRobin protocol (heart-rate)

Software Environment (IDE)

- IAR Embedded Workbench (IAR)
 - C/C++ compiler
 - simulator and debugger
 - Free version with 4 KB code size limit
 - easy to use and understand
- Code Composer Studio (CCS)
 - Eclipse
 - Free version with 16 KB code size limit
 - recommended for larger (RF) projects
 - complicated and buggy!

Create IAR Workspace and Project

Set Project Options

- Device: MSP430G2231
- Debugger Driver:FET Debugger

Program and Run the Code

Download and Run code on MSP 430

Contains all definitions for specific device

```
#include "msp430.h"
                                    /* include MSP430 definitions */
/* **** definitions **** */
#define LED TOGGLE CNT 0x7FFF /* loop cycles between LED toggles */
/* pinout */
#define LED1
              BIT0 /* LED1 is on P1.0 */
/** mainloop */
void main(void) {
                                  /* counter variable */
   unsigned int cnt;
   /* initialize system */
   WDTCTL = WDTPW | WDTHOLD; /* disable WDT */
   /* configure LED1 as a digital output */
   P1REN &= ~LED1:
                                  /* disable pull-up/down */
                                   /* configure as output */
   P1DIR |= LED1;
   /* run mainloop */
   cnt = 0;
                                  /* mainloop should never return */
   while (1) {
       if (cnt++ == LED TOGGLE CNT) {
           cnt = 0;
           P1OUT ^= LED1; /* toggle LED1 */
```

```
#include "msp430.h"
                                   /* include MSP430 definitions */
                    Constants
/* **** definitions **** */
#define LED TOGGLE CNT 0x7FFF /* loop cycles between LED toggles */
/* pinout */
#define LED1
                                   /* LED1 is on P1.0 */
                    BIT0
/** mainloop */
void main(void) {
   unsigned int cnt;
                                   /* counter variable */
   /* initialize system */
   WDTCTL = WDTPW | WDTHOLD; /* disable WDT */
   /* configure LED1 as a digital output */
   P1REN &= ~LED1:
                                   /* disable pull-up/down */
                                   /* configure as output */
   P1DIR |= LED1;
   /* run mainloop */
   cnt = 0;
                                   /* mainloop should never return */
   while (1) {
       if (cnt++ == LED TOGGLE CNT) {
           cnt = 0;
           P1OUT ^= LED1; /* toggle LED1 */
```

```
#include "msp430.h"
                                   /* include MSP430 definitions */
/* **** definitions **** */
#define LED TOGGLE CNT 0x7FFF /* loop cycles between LED toggles */
/* pinout */
#define LED1
              BIT0 /* LED1 is on P1.0 */
/** mainloop */
void main(void) {
   unsigned int cnt; Initialization /* counter variable */
   /* initialize system */
                                   /* disable WDT */
   WDTCTL = WDTPW | WDTHOLD;
   /* configure LED1 as a digital output */
   P1REN &= ~LED1;
                                   /* disable pull-up/down */
                                   /* configure as output */
   P1DIR |= LED1;
   /* run mainloop */
   cnt = 0;
                                    /* mainloop should never return */
   while (1) {
       if (cnt++ == LED TOGGLE CNT) {
           cnt = 0;
           P1OUT ^= LED1; /* toggle LED1 */
```

```
#include "msp430.h"
                                  /* include MSP430 definitions */
/* **** definitions **** */
#define LED TOGGLE CNT 0x7FFF /* loop cycles between LED toggles */
/* pinout */
#define LED1
              BIT0 /* LED1 is on P1.0 */
/** mainloop */
void main(void) {
   unsigned int cnt;
                                  /* counter variable */
   /* initialize system */
   WDTCTL = WDTPW | WDTHOLD; /* disable WDT */
   /* configure LED1 as a digital output */
   P1REN &= ~LED1;
                                  /* disable pull-up/down */
                                  /* configure as output */
   P1DIR |= LED1;
   /* run mainloop */ Mainloop – loops forever
   cnt = 0;
                                   /* mainloop should never return */
   while (1) {
       if (cnt++ == LED TOGGLE CNT) {
          cnt = 0;
          P1OUT ^= LED1; /* toggle LED1 */
```

MSP 430 vs. Arduino Code

Constant Definitions

```
void main(void) {
    unsigned int cnt;
                                        /* counter variable */
    /* initialize system */
    WDTCTL = WDTPW | WDTHOLD:
                                        /* disable WDT */
   /* configure LED1 as a digital output */
    P1REN &= ~LED1:
                                        /* disable pull-up/down */
                                        /* configure as output */
    P1DIR |= LED1;
   /* run mainloop */
    cnt = 0:
                                        /* mainloop should never return */
    while (1) {
       if (cnt++ == LED TOGGLE CNT) {
           cnt = 0;
            P1OUT ^= LED1;
                                        /* toggle LED1 */
```

```
/* constants */
#define BLINK DELAY
                                // number of milliseconds between LED toggles
/* pin definitions */
#define LED 13
                               // LED is on pin 13
/* initialization code */
void setup() {
                               // set LED pin as an output
    pinMode(LED, OUTPUT);
/* mainloop - runs forever */
void loop() {
    digitalWrite(LED, HIGH);
                               // turn LED on
    delay(BLINK DELAY);
                               // wait before turning it off
    digitalWrite(LED, LOW);
                               // turn LED off
    delay(BLINK DELAY);
                               // wait before turning it back on
                                // now return to the top of the loop
```

MSP 430 vs. Arduino Code

Initialization Code (run once at startup)

```
#include "msp430.h"
                                        /* include MSP430 definitions */
/* **** definitions **** */
#define LED TOGGLE CNT 0x7FFF
                                        /* loop cycles between LED toggles */
/* pinout */
#define LED1
                                        /* LED1 is on P1.0 */
/** mainloop */
void main(void) {
    unsigned int cnt;
                                        /* counter variable */
    /* initialize system */
    WDTCTL = WDTPW | WDTHOLD:
                                        /* disable WDT */
    /* configure LED1 as a digital output */
    P1REN &= ~LED1:
                                        /* disable pull-up/down */
                                        /* configure as output */
    P1DIR |= LED1;
    /* run mainloop */
    cnt = 0:
                                         / * mainioop should never return
        if (cnt++ == LED TOGGLE CNT) {
            cnt = 0;
            P1OUT ^= LED1;
                                        /* toggle LED1 */
```

```
/* constants */
#define BLINK DELAY
                               // number of milliseconds between LED toggles
/* pin definitions */
#define LED 13
                               // LED is on pin 13
/* initialization code */
void setup() {
    pinMode(LED, OUTPUT);
                                // set LED pin as an output
/* mainloop - runs forever */
void loop() {
    digitalWrite(LED, HIGH);
                               // turn LED on
    delay(BLINK DELAY);
                               // wait before turning it off
    digitalWrite(LED, LOW);
                               // turn LED off
    delay(BLINK DELAY);
                               // wait before turning it back on
                                // now return to the top of the loop
```

MSP 430 vs. Arduino Code

Mainloop (runs in a loop forever)

```
#include "msp430.h"
                                        /* include MSP430 definitions */
/* **** definitions **** */
#define LED TOGGLE CNT 0x7FFF
                                        /* loop cycles between LED toggles */
/* pinout */
#define LED1
                                        /* LED1 is on P1.0 */
/** mainloop */
void main(void) {
    unsigned int cnt;
                                        /* counter variable */
    /* initialize system */
    WDTCTL = WDTPW | WDTHOLD;
                                        /* disable WDT */
   /* configure LED1 as a digital output */
    P1REN &= ~LED1:
                                        /* disable pull-up/down */
                                        /* configure as output */
    P1DIR |= LED1;
    /* run mainloop */
                                        /* mainloop should never return */
    while (1) {
        if (cnt++ == LED TOGGLE CNT) {
            cnt = 0;
            P1OUT ^= LED1;
                                        /* toggle LED1 */
```

```
/* constants */
#define BLINK DELAY
                               // number of milliseconds between LED toggles
/* pin definitions */
#define LED 13
                               // LED is on pin 13
/* initialization code */
void setup() {
    pinMode(LED, OUTPUT);
                               // set LED pin as an output
/* mainloop - runs forever */
void loop() {
    digitalWrite(LED, HIGH);
                               // turn LED on
    delay(BLINK DELAY);
                               // wait before turning it off
    digitalWrite(LED, LOW);
                               // turn LED off
    delay(BLINK DELAY);
                               // wait before turning it back on
                               // now return to the top of the loop
```

IAR Compiler Syntax

Must include msp430.h#include <msp430.h>

To specify an interrupt routine:
 #pragma vector=WDT_VECTOR
 interrupt void WDT ISR(void)

To enable global interrupts:
 enable interrupt();

MSP 430 LaunchPad Demos

Hello World

Blinks an LED

Interrupts

Toggles one LED using timer interrupts and toggles other LED using user interrupts (when user presses a switch)

PWM

LED brightness changes continuously using PWM

ADC

Periodically samples voltage across light sensor and outputs brightness level using LEDs

Capacitive Sensing

Senses capacitance using Al foil and outputs user proximity on LED

Code Available at: www.gabeacohn.com/teaching/micro

MSP430 LaunchPad ADC Demo

 Need to connect photo-resistor between P1.1 and P1.2

Capacitive Sensing Demo

- Capacitive Sensing in under \$5!
- Parts:
 - MSP430 LaunchPad
 - $-1 M\Omega$ resistor
 - 47 pF ceramic capacitor
 - sheet of aluminum foil
 - 1 alligator clip
 - code:

http://blog.hodgepig.org/2010/09/16/launchpadcapacitive-sensing/