

CLOUD COMPUTING CONCEPTS with Indranil Gupta (Indy)

MEMBERSHIP

Lecture D

WHICH IS THE BEST FAILURE DETECTOR?

FAILURE DETECTOR PROPERTIES ...

- Completeness
- Accuracy
- Speed
 - Time to first detection of a failure
- Scale
 - Equal Load on each member
 - Network Message Load

FAILURE DETECTOR PROPERTIES ...

- Completeness
- Accuracy
- Speed
 - Time to first detection of a failure
- Scale
 - Equal Load on each member
 - Network Message Load

Guarantee always

Probabillity PM(T)

T time units

FAILURE DETECTOR PROPERTIES ...

Completeness

Guarantee always

Accuracy

Probabillity PM(T)

Speed

T time units

• Time to first detection of a failure

Scale

N*L Compare this across protocols

- Equal Load on each member
- Network Message Load

ALL-TO-ALL HEARTBEATING

ALL-TO-ALL HEARTBEATING

Array of
Heartbeat seq. *I*for member subset

Every tg units

=gossip period,

send O(N) gossip

message

WHAT'S THE BEST/OPTIMAL WE CAN DO?

• Worst case load L* as a function of T, PM(T), N Independent Message Loss probability p_{ml}

$$L^* = \frac{\log(PM(T))}{\log(p_{\perp})} \cdot \frac{1}{T}$$
 (try to work out the proof)

WHAT'S THE BEST/OPTIMAL WE CAN DO?

- Optimal L is independent of N (!)
- All-to-all and gossip-based: sub-optimal
 - L=O(N/T)
 - try to achieve simultaneous detection at *all* processes
 - fail to distinguish Failure Detection and Dissemination components

Key:

- Separate the two components
- Use a non heartbeat-based Failure Detection Component

NEXT

• Is there a better failure detector?