Chapter 4: The Simplex Method

(cp. Bertsimas & Tsitsiklis, Chapters 3.1, 3.2)

M. Skutella ADM I (winter 2019/20) 83

Linear Program in Standard Form

Throughout this chapter, we consider the following standard form problem:

minimize
$$c^T \cdot x$$

subject to $A \cdot x = b$
 $x \ge 0$

with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.

Basic Directions

Observation 4.1.

Let $B = (A_{B(1)}, \dots, A_{B(m)})$ be a basis matrix. The values of the basic variables $x_{B(1)}, \dots, x_{B(m)}$ in the system $A \cdot x = b$ are uniquely determined by the values of the non-basic variables.

Proof:
$$A \cdot x = b \iff B \cdot x_B + \sum_{j \neq B(1), \dots, B(m)} A_j \cdot x_j = b$$

$$\iff x_B = B^{-1} \cdot b - \sum_{j \neq B(1), \dots, B(m)} B^{-1} \cdot A_j \cdot x_j$$

Definition 4.2.

For fixed $j \neq B(1), \ldots, B(m)$, let $d \in \mathbb{R}^n$ be given by

$$d_j := 1, \quad d_B := -B^{-1} \cdot A_j, \quad \text{and} \quad d_{j'} := 0 \quad \text{for } j' \neq j, B(1), \dots, B(m).$$

Then $A \cdot (x + \theta d) = b$, for all $\theta \in \mathbb{R}$, and d is the jth basic direction.

M. Skutella ADM I (winter 2019/20)

Feasible Directions

Definition 4.3.

Let $P \subseteq \mathbb{R}^n$ a polyhedron. For $x \in P$ the vector $d \in \mathbb{R}^n \setminus \{0\}$ is a feasible direction at x if there is a $\theta > 0$ with $x + \theta d \in P$.

Example: Some feasible directions at several points of a polyhedron.

Basic Directions and Feasible Directions

Consider a basic feasible solution x.

Question: Is the jth basic directions d a feasible direction?

Case 1: If x is a non-degenerate feasible solution, then $x_B > 0$ and $x + \theta d \ge 0$ for $\theta > 0$ small enough. \longrightarrow answer is yes!

Case 2: If x is degenerate, the answer might be no! E. g., if $x_{B(i)} = 0$ and $d_{B(i)} < 0$, then $x + \theta d \ge 0$, for all $\theta > 0$.

Example: n = 5, m = 3, n - m = 2

- ► 1st basic direction at *y* is feasible
 - (basic variables x_2, x_4, x_5)
- ➤ 3rd basic direction at z is infeasible

(basic variables x_1, x_2, x_4)

M. Skutella

ADM I (winter 2019/20)

87

Reduced Cost Coefficients

Consider a basic solution x.

Question:

How does the cost change when moving along the jth basic direction d?

$$c^T \cdot (x + \theta d) = c^T \cdot x + \theta c^T \cdot d = c^T \cdot x + \theta \underbrace{(c_j - c_B^T \cdot B^{-1} \cdot A_j)}_{\overline{c}_i :=}$$

Definition 4.4.

For a given basis B and corresponding basic solution x, the reduced cost of variable x_j , j = 1, ..., n, is

$$\bar{c}_j := c_j - c_B^T \cdot B^{-1} \cdot A_j.$$

Observation 4.5.

The reduced cost of a basic variable $x_{B(i)}$ is zero.

Proof:
$$\bar{c}_{B(i)} = c_{B(i)} - c_B^T \cdot \underbrace{B^{-1} \cdot A_{B(i)}}_{= e_i} = c_{B(i)} - c_{B(i)} = 0$$

Optimality Criterion

Theorem 4.6.

Let x be a basic feasible solution and \bar{c} the vector of reduced costs.

- If $\bar{c} \geq 0$, then x is an optimal solution.
- **b** If x is an optimal solution and non-degenerate, then $\bar{c} \geq 0$.

Definition 4.7.

A basis matrix B is optimal if

$$B^{-1} \cdot b \geq 0$$
 and

$$\bar{c}^T = c^T - c_B^T \cdot B^{-1} \cdot A \ge 0.$$

Observation 4.8.

If B is an optimal basis, the associated basic solution x is feasible and optimal.

M. Skutella

ADM I (winter 2019/20)

80

Proof of Theorem 4.6

a) Let B be the basis corresponding to x and let $y \in P$. Then,

$$c^{T} \cdot y = c_{B}^{T} \cdot y_{B} + \sum_{j \neq B(1), \dots, B(m)} c_{j} y_{j}$$

$$= c_{B}^{T} \cdot \left(B^{-1} \cdot b - \sum_{j \neq B(1), \dots, B(m)} B^{-1} \cdot A_{j} y_{j}\right) + \sum_{j \neq B(1), \dots, B(m)} c_{j} y_{j}$$

$$= c_{B}^{T} \cdot \underbrace{B^{-1} \cdot b}_{=x_{B}} + \sum_{j \neq B(1), \dots, B(m)} \underbrace{\left(c_{j} - c_{B}^{T} \cdot B^{-1} \cdot A_{j}\right)}_{=\bar{c}_{j}} y_{j}$$

$$= \underbrace{c_{B}^{T} \cdot x_{B}}_{=c_{T}^{T} \cdot x_{B}} + \sum_{j \neq B(1), \dots, B(m)} \bar{c}_{j} y_{j} \ge c^{T} \cdot x$$

b) Assume by contradiction that $\bar{c}_j < 0$ for some $j \neq B(1), \ldots, B(m)$. Since x is non-degenerate, the jth basic direction is a feasible direction and the cost can thus be decreased as $\bar{c}_j < 0$.

Developement of the Simplex Method

Assumption (for now): only non-degenerate basic feasible solutions Let x be a basic feasible solution with $\bar{c}_j < 0$ for some $j \neq B(1), \ldots, B(m)$. Let d be the jth basic direction:

$$0 > \bar{c}_j = c^T \cdot d$$

It is desirable to go to $y := x + \theta^* d$ with $\theta^* := \max\{\theta \mid x + \theta d \in P\}$.

Question: How to determine θ^* ?

By construction of d, it holds that $A \cdot (x + \theta d) = b$ for all $\theta \in \mathbb{R}$, i.e.,

$$x + \theta d \in P$$
 \iff $x + \theta d > 0.$

Case 1: $d \ge 0 \implies x + \theta d \ge 0$ for all $\theta \ge 0 \implies \theta^* = \infty$ Thus, the LP is unbounded.

Case 2:
$$d_k < 0$$
 for some $k \implies \left(x_k + \theta \, d_k \ge 0 \iff \theta \le \frac{-x_k}{d_k}\right)$
Thus, $\theta^* = \min_{k: d_k < 0} \frac{-x_k}{d_k} = \min_{\substack{i=1,\dots,m \\ d_{B(i)} < 0}} \frac{-x_{B(i)}}{d_{B(i)}} > 0.$

M. Skutella

Developement of the Simplex Method (Cont.)

Assumption (for now): only non-degenerate basic feasible solutions

Let x be a basic feasible solution with $\bar{c}_j < 0$ for some $j \neq B(1), \ldots, B(m)$. Let d be the jth basic direction:

$$0 > \bar{c}_i = c^T \cdot d$$

It is desirable to go to $y := x + \theta^* \cdot d$ with $\theta^* := \max\{\theta \mid x + \theta \cdot d \in P\}$.

$$\theta^* = \min_{k: d_k < 0} \frac{-x_k}{d_k} = \min_{\substack{i=1,\dots,m \\ d_{B(i)} < 0}} \frac{-x_{B(i)}}{d_{B(i)}}$$

Let
$$\ell \in \{1, \ldots, m\}$$
 with $\theta^* = \frac{-x_{B(\ell)}}{d_{B(\ell)}}$, then $y_j = \theta^*$ and $y_{B(\ell)} = 0$.

 \implies x_j replaces $x_{B(\ell)}$ as a basic variable and we get a new basis matrix

$$\bar{B} = \left(A_{B(1)}, \dots, A_{B(\ell-1)}, \frac{A_j}{l}, A_{B(\ell+1)}, \dots, A_{B(m)}\right) = \left(A_{\bar{B}(1)}, \dots, A_{\bar{B}(m)}\right)$$

with
$$ar{B}(i) = egin{cases} B(i) & ext{if } i
eq \ell, \ j & ext{if } i = \ell. \end{cases}$$

92

Core of the Simplex Method

Theorem 4.9.

Let x be a non-degenerate basic feasible solution, $j \neq B(1), \ldots, B(m)$ with $\bar{c}_j < 0$, d the jth basic direction, and $\theta^* := \max\{\theta \mid x + \theta \ d \in P\} < \infty$.

$$\text{a} \ \theta^* = \min_{\stackrel{i=1,\ldots,m}{d_{B(i)}<0}} \frac{-x_{B(i)}}{d_{B(i)}} = \frac{-x_{B(\ell)}}{d_{B(\ell)}} \quad \text{ for some } \ell \in \{1,\ldots,m\}.$$

Let $\bar{B}(i) := B(i)$ for $i \neq \ell$ and $\bar{B}(\ell) := j$.

- $A_{\bar{B}(1)}, \ldots, A_{\bar{B}(m)}$ are linearly independent and \bar{B} is a basis matrix.
- $y := x + \theta^* d$ is a basic feasible solution associated with \bar{B} and $c^T \cdot y < c^T \cdot x$.

Proof: ...

M. Skutella

ADM I (winter 2019/20

01

An Iteration of the Simplex Method

Given: basis $B = (A_{B(1)}, \dots, A_{B(m)})$, correspond. basic feasible solution x

- Let $\bar{c}^T := c^T c_B^T \cdot B^{-1} \cdot A$. If $\bar{c} \ge 0$, then STOP; else choose j with $\bar{c}_i < 0$.
- Let $u := B^{-1} \cdot A_i$. If $u \le 0$, then STOP (optimal cost is $-\infty$).
- $\text{III} \ \text{Let} \ \theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell} \quad \text{ for some } \ell \in \{1,\ldots,m\}.$
- Form new basis by replacing $A_{B(\ell)}$ with A_j ; corresponding basic feasible solution y is given by

$$y_i := \theta^*$$
 and $y_{B(i)} = x_{B(i)} - \theta^* u_i$ for $i \neq \ell$.

Remark: We say that the nonbasic variable x_j enters the basis and the basic variable $x_{B(\ell)}$ leaves the basis.

Correctness of the Simplex Method

Theorem 4.10.

If every basic feasible solution is non-degenerate, the simplex method terminates after finitely many iterations in one of the following two states:

- we have an optimal basis B and an associated basic feasible solution x which is optimal;
- b we have a vector d satisfying $A \cdot d = 0$, $d \ge 0$, and $c^T \cdot d < 0$; the optimal cost is $-\infty$.

Proof sketch: The simplex method makes progress in every iteration. Since there are only finitely many different basic feasible solutions, it stops after a finite number of iterations.

M. Skutella

ADM I (winter 2019/20

91

Simplex Method for Degenerate Problems

- An iteration of the simplex method can also be applied if x is a degenerate basic feasible solution.
- In this case it might happen that $\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell} = 0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)} = -u_\ell < 0$.
- ► Thus, $y = x + \theta^* d = x$ and the current basic feasible solution does not change.
- ▶ But replacing $A_{B(\ell)}$ with A_j still yields a new basis with associated basic feasible solution y = x.

Remark: Even if θ^* is positive, more than one of the original basic variables may become zero at the new point $x + \theta^* d$. Since only one of them leaves the basis, the new basic feasible solution y may be degenerate.

Example

M. Skutella ADM I (winter 2019/20) 97

Pivot Selection

Question: How to choose j with $\bar{c}_j < 0$ and ℓ with $\frac{x_{B(\ell)}}{u_\ell} = \min_{i:u_i>0} \frac{x_{B(i)}}{u_i}$ if several possible choices exist?

Attention: Choice of j is critical for overall behavior of simplex method.

Three popular choices are:

- ▶ smallest subscript rule: choose smallest j with $\bar{c}_j < 0$. (very simple; no need to compute entire vector \bar{c} ; usually leads to many iterations)
- ▶ steepest descent rule: choose j such that $\bar{c}_j < 0$ is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose j such that $\theta^* \bar{c}_j$ is minimal. (computationally expensive; used for large problems; usually leads to very few iterations)