Основни математически концепции

Работа с бройни системи, координатна система и квадратно уравнение

Софтуерен университет

https://softuni.bg

Съдържание

- 1. Бройни системи
 - Видове бройни системи
 - Непозиционна
 - Позиционна
 - Десетична, двоична, осмична, шестнадесетична бройна система
 - Преобразувания между бройни системи
- 2. Координатна система
- 3. Квадратно уравнение

Имате въпроси?

sli.do

#math-fund

Какво представляват бройните системи?

- Начин за записване на числата чрез краен набор от цифри
- Всяка бройна система има:
 - Азбука: символите, които се използват при представянето на числата в дадена бройна система
 - Основа: число, равно на броя различни цифри, използвани от системата за записване на числата в нея (например: 2, 8, 10, 16)

Видове бройни системи

Бройните системи са два вида:

Пример: римска и гръцка бройна система

Позиционни

 Пример: двоична, десетична, осмична, шестнадесетична бройна система

Непозиционни бройни системи

- \blacksquare I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000
- IX = 9, VI = 6, MMD=2500, III = 3, XI = 11

• Гръцка бройна система:

- I = 1, $\Gamma = 5$, $\Delta = 10$, H = 100, X = 1000, M = 10000
- $\Gamma\Delta = 50$, $\Gamma H = 500$, $\Gamma X = 5000$, $\Gamma M = 50000$

Позиционни бройни системи

 Позицията на цифрите има значение за стойността на числото

- Десетична
- Двоична
- Осмична
- Шестнадесетична

Decimal (base = 10)	Binary Hexadecim (base = 2) (base = 16	
30	111110	1E
45	101101	2D
60	111100	3C

Десетична бройна система

- числата записани в нея са подредени по степените на **числото 10**
- използват се цифрите: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- примери:

$$6091_{(10)} = (6 \times 10^{3}) + (0 \times 10^{2}) + (9 \times 10^{1}) + (1 \times 10^{0})$$

$$62435_{(10)} = (6 \times 10^{4}) + (2 \times 10^{3}) + (4 \times 10^{2}) + (3 \times 10^{1}) + (5 \times 10^{0})$$

$$984_{(10)} = (9 \times 10^{2}) + (8 \times 10^{1}) + (4 \times 10^{0})$$

Двоична бройна система

- числата записани в нея са подредени по степените на **числото 2**
- използват се цифрите: 0 и 1
- примери:

$$10101_{(2)} = (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$1101_{(2)} = (1 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

Осмична бройна система

- числата записани в нея са подредени по степените на числото 8
- използват се цифрите: 0, 1, 2, 3, 4, 5, 6, 7
- примери:

$$15364_{(8)} = (1 \times 8^4) + (5 \times 8^3) + (3 \times 8^2) + (6 \times 8^1) + (4 \times 8^0)$$

$$4561_{(8)} = (4 \times 8^3) + (5 \times 8^2) + (6 \times 8^1) + (1 \times 8^0)$$

Шестнадесетична бройна система

- числата записани в нея са подредени по степените на числото 16
- използват се цифрите от 0 до 9 и буквите от А до F: 0,
 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- примери:

Преобразувания между бройни системи

- Съществуват следните видове преобразувания:
 - от двоична в десетична бройна система
 - от шестнадесетична в десетична бройна система
 - от двоична в шестнадесетична бройна система
 - от десетична в шестнадесетична бройна система
 - от десетична в двоична бройна система
 - от шестнадесетична в двоична бройна система

Преобразуване в десетична бройна система

• от двоична бройна система

$$100101_{(2)} =$$
= $(1 \times 2^{5}) + (0 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0}) =$
= $32 + 0 + 0 + 4 + 1 = 37_{(10)}$

• от шестнадесетична бройна система

$$C1A_{(16)} = (C \times 16^2) + (1 \times 16^1) + (A \times 16^0) =$$

= $12 \times 256 + 1 \times 16 + 10 \times 1 =$
= $3072 + 16 + 10 = 3098_{(10)}$

Преобразуване в двоична бройна система

• от десетична бройна система

$$47_{(10)} = 101111_{(2)}$$

47 : 2 = 23	\rightarrow	остатък 1	1
23 : 2 = 11	\rightarrow	остатък 1	
11 : 2 = 5	->	остатък 1	
5:2=2	\rightarrow	остатък 1	
2:2=1	->	остатък 0	
1:2=0	->	остатък 1	

• от шестнадесетична бройна система

0	0000	8	1000		
1	0001	9	1001		
2	0010	Α	1010		
3	0011	В	1011		
4	0100	c	1100		
5	01 01	D	1101		
6	0110	E	1110		
7	0111	F	1111		

Преобразуване в шестнадесетична бройна система

• от десетична бройна система

• от двоична бройна система

1110 0011 1010 0101
$$_{(2)} = E3A5_{(16)}$$

E 3 A 5

0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	01 01	D	1101
6	0110	E	1110
7	0111	F	1111

Координатна система

Какво е координатна система?

• Система в геометрията

 Най-широко разпространената координатна система е декартовата координатна система или още наричана правоъгълна координатна система

Декартова координатна система (ДКС)

- Състои се от две взаимноперпендикулярни прави (оси), които се пресичат в точка О
- Хоризонталната ос се нарича абсциса и се означава с Ох
- Вертикалната ос се нарича ордината и се означава с Оу

- Има два вида ДКС:
 - 1. двумерна
 - 2. тримерна

Координати на точка в ДКС

- Положението на всяка точка се определя чрез две координати х и у
- Нека разгледаме точка А със следното положение:

Точката А е с координати: А(8; 6)

Квадранти в ДКС

I-ви квадрант: x > 0 y > 0

II-ри квадрант: x < 0 y > 0

III-ти квадрант: x < 0 y < 0

IV-ти квадрант: x > 0 y < 0

Квадратно уравнение

Квадратно уравнение

• Уравнение от втора степен, което има следния вид:

$$ax^2 + bx + c = 0$$

- В уравнението **a, b, c** са коефициенти
- Коефициентът а е различен от 0
- Всяко квадратно уравнение може да има 0, 1 или 2 реални корена

Решаване чрез дискриминанта

1. Намира се дискриминантата по следната формула:

$$D = b^2 - 4ac$$

- 2. Проверява се получената дискриминанта
 - при **D < 0** => уравнението **няма** реални корени
 - при D = 0 = > уравнението има **един** реален корен, който се намира по формулата: x = -b / 2a
 - при **D > 0** => уравнението има **два** реални корена, които се

Решаване чрез формули на Виет

• Ако $\mathbf{x_1}$ и $\mathbf{x_2}$ са корени на квадратното уравнение $\mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} = \mathbf{0}$, където \mathbf{a} е различно от 0, то:

$$x_1 + x_2 = -b/a$$

$$x_1x_2 = c/a$$

- Ако $\mathbf{x}_1 \mathbf{x}_2 < \mathbf{0}$ => корените са с различни знаци
- Ако $x_1 x_2 > 0$ => корените са с еднакви знаци

Какво научихме днес?

- Бройните системи са начин за записване на числа
- Бройните системи са два вида:
 - Позиционни
 - Непозиционни
- Преобразуване на числа от една бройна система в друга
- Координатна система определя положението на точка или геометричен обект в пространството
- Решаване на квадратно уравнение чрез дискриминанта или формули на Виет

Въпроси?

Kids

Лиценз

- Този курс (презентации, примери, демонстрационен код, упражнения, домашни, видео и други активи) представлява защитено авторско съдържание
- Нерегламентирано копиране, разпространение или използване е незаконно
- © СофтУни https://softuni.org
- © Софтуерен университет https://softuni.bg

Обучения в Софтуерен университет (СофтУни)

- Софтуерен университет качествено образование, професия и работа за софтуерни инженери
 - softuni.bg
- Фондация "Софтуерен университет"
 - softuni.foundation
- Софтуерен университет @ Facebook
 - facebook.com/SoftwareUniversity
- Дискусионни форуми на СофтУни
 - forum.softuni.bg

