Uvod v geometrijsko topologijo

Teoretična vprašanja

R	Za poljubni različni točki T_4 prostora X obstaja zvezna funkcija $X \to \mathbb{R}$, ki ju loči.
R	Vsak absolutni ekstenzor za normalne prostore je povezan s potmi.
R	Če sta A in B retrakta prostora X , je tudi $A \cup B$ retrakt prostora X .
R	Zaprta zgornja hemisfera S^n_+ je retrakt sfere S^n .
R	Krožnica S^1 je retrakt prostora $\mathbb{R}^2 - \{a\}$ natanko tedaj, ko je $ a < 1$.
R	Če je $A \subset \mathbb{R}^n$ absolutni ekstenzor za razred normalnih prostorov, je A retrakt prostora \mathbb{R}^n .
R	Ne obstaja zvezna surjekcija $B^2 \to S^1$.
R	Če je S^0 retrakt prostora X , je X nepovezan.
R	Grupa z diskretno topologijo je vedno topološka grupa.
R	Vsak zaprt podprostor absolutnega ekstenzorja je absolutni ekstenzor.

Problemski nalogi

1. PROBLEM

Naj bo $X = A \cup B$, kjer sta A in B zaprti množici v X. Pokaži, da je prostor X normalen natanko tedaj, ko sta oba prostora A in B normalna.

2. PROBLEM

Naj bo $a \in [0, \infty)$. Za vsak $n \in \mathbb{N}$ naj bo

$$X_n = ([0,1] \times \{0\}) \cup (\{0\} \times [0,1]) \cup (\bigcup_{i=1}^n \{\frac{1}{i}\} \times [0,(1-\frac{1}{i})a+\frac{1}{i}]).$$

- **a**. Pokaži, da je za vsak $n \in \mathbb{N}$ prostor X_n absolutni ekstenzor za razred normalnih
- prostorov. **b.** Pokaži, da $X = \bigcup_{n=1}^{\infty} X_n$ absolutni ekstenzor za razred normalnih prostorov natanko tedaj, ko je a = 0.