Apellido y Nombre: email:

nota	1	2	3	4	5

Lenguajes y Compiladores

Parcial 3

16/06/2011

- 1. a) Enúncie cada una de las siguientes propiedades:
 - (i) Regla η
 - (ii) Teorema de Sustitución
 - b) Para cada una de las propiedades anteriores, demuestre o refúte su validez en el cálculo lambda con evaluación normal. Para refutar presente un contraejemplo y calcule su semántica denotacional.
 - c) Decida la validez del Teorema de Sustitución enunciado en el punto (a) para el cálculo lambda con evaluación eager. Justifique su respuesta.
- 2. Se quiere extender el lenguaje aplicativo eager con el operador de exponenciación $e \uparrow e'$. Tenga en cuenta que cuando el exponente e' es negativo toda la expresión se considera errónea.
 - a) Agregue reglas de evaluación para este operador, de manera que no se evalúe la base si el exponente es negativo.
 - b) Defina la semántica denotacional para este operador.
- 3. (a) Sin calcular, dé el resultado de la semántica denotacional de
 - (P1) $(\mathbf{rec}(\lambda x.x))\mathbf{true}$
 - (P2) $\mathbf{rec}(\lambda x.\mathbf{true} \vee (x=0))$
 - (b) Evalúe cada uno de los programas de (a) (o sea calcule la semántica operacional).
- 4. a) Defina por reglas $e \Rightarrow_{IE} z$.
 - b) Pruebe que si e es un término del cálculo lambda, z es una forma canónica, y $e \Rightarrow_{IE} z$, entonces z es la primer forma canónica en la secuencia de reducción en orden eager de e.
- 5. (a) Exprese en el lenguaje natural las diferencias que encuentra en el significado de los siguientes programas Iswim:
 - (P1) $x := \mathbf{ref} \ 0; \ \mathbf{val} \ x := 1$
 - (P2) newvar $x := \mathbf{ref} \ 0$ in val x := 1
 - (b) Calcule la semántica denotacional de (P2).