Логика предикатов
 Деревья истинности

Математическая логика и теория алгоритмов

Алексей Романов

22 октября 2020 г.

ТЕИМ

- В логике предикатов естественно встаёт вопрос:
- Дана формула, тождественно истинна ли она?
- Что значит «Формула тождественно истинна»?

- В логике предикатов естественно встаёт вопрос:
- Дана формула, тождественно истинна ли она?
- Что значит «Формула тождественно истинна»?
 - Замкнутая: истинна на всех моделях её сигнатуры.

- В логике предикатов естественно встаёт вопрос:
- Дана формула, тождественно истинна ли она?
- Что значит «Формула тождественно истинна»?
 - Замкнутая: истинна на всех моделях её сигнатуры.
 - Со свободными переменными: можем навесить квантор всеобщности.

- В логике предикатов естественно встаёт вопрос:
- Дана формула, тождественно истинна ли она?
- Что значит «Формула тождественно истинна»?
 - Замкнутая: истинна на всех моделях её сигнатуры.
 - Со свободными переменными: можем навесить квантор всеобщности.
- Варианты: эквивалентны ли две формулы? Является ли формула теоремой данной теории (это сложнее!)?
- Как это можно проверить?
- Нельзя просто перечислить все модели:

- В логике предикатов естественно встаёт вопрос:
- Дана формула, тождественно истинна ли она?
- Что значит «Формула тождественно истинна»?
 - Замкнутая: истинна на всех моделях её сигнатуры.
 - Со свободными переменными: можем навесить квантор всеобщности.
- Варианты: эквивалентны ли две формулы? Является ли формула теоремой данной теории (это сложнее!)?
- Как это можно проверить?
- Нельзя просто перечислить все модели: их бесконечно (и даже несчётно) много!
- Можно расширить деревья истинности и натуральную дедукцию.
- Сегодня деревья истинности.

- Правила для $\land / \lor / \rightarrow / \lnot$ (типы α и β) сохраняются.
- Добавляются правила для формул с кванторами.
- Есть несколько способов, рассмотрим простейший.
- Добавляется бесконечное множество параметров a_1, a_2, \ldots , не зависящих от сигнатуры.
- Два новых типа формул:

- Правила для $\land / \lor / \rightarrow / \lnot$ (типы α и β) сохраняются.
- Добавляются правила для формул с кванторами.
- Есть несколько способов, рассмотрим простейший.
- Добавляется бесконечное множество параметров a_1, a_2, \ldots , не зависящих от сигнатуры.
- Два новых типа формул:

γ	$\gamma(t)$	δ	$\delta(t)$
$\forall v \ A(v) = 1$	A(t) = 1	$\forall v A(v) = 0$	A(t) = 0
$\exists v A(v) = 0$	A(t) = 0	$\exists v \ A(v) = 1$	A(t) = 1

• Правила для них:

- Правила для $\land / \lor / \rightarrow / \lnot$ (типы α и β) сохраняются.
- Добавляются правила для формул с кванторами.
- Есть несколько способов, рассмотрим простейший.
- Добавляется бесконечное множество параметров a_1, a_2, \ldots , не зависящих от сигнатуры.
- Два новых типа формул:

γ	$\gamma(t)$	δ	$\delta(t)$
$\forall v \ A(v) = 1$	A(t) = 1	$\forall v A(v) = 0$	A(t) = 0
$\exists v A(v) = 0$	A(t) = 0	$\exists v \ A(v) = 1$	A(t) = 1

• Правила для них:

t — замкнутый терм, можно раскрыть много раз

- Правила для $\land / \lor / \rightarrow / \lnot$ (типы α и β) сохраняются.
- Добавляются правила для формул с кванторами.
- Есть несколько способов, рассмотрим простейший.
- Добавляется бесконечное множество параметров a_1, a_2, \ldots , не зависящих от сигнатуры.
- Два новых типа формул:

γ	$\gamma(t)$	δ	$\delta(t)$
$\forall v \ A(v) = 1$	A(t) = 1	$\forall v A(v) = 0$	A(t) = 0
$\exists v \ A(v) = 0$	A(t) = 0	$\exists v \ A(v) = 1$	A(t) = 1

• Правила для них:

t — замкнутый терм, можно раскрыть много раз

а — новый (для ветви)параметр

3/23

- Смысл правила γ : утверждение, верное для всех объектов, верно в том числе для значения t.
- Смысл правила δ : мы даём название a тому объекту, существование которого утверждается.

- Смысл правила γ : утверждение, верное для всех объектов, верно в том числе для значения t.
- Смысл правила δ : мы даём название a тому объекту, существование которого утверждается.
- Обратите внимание, что $\forall x \ A(x) = 0$ читается как

- Смысл правила γ : утверждение, верное для всех объектов, верно в том числе для значения t.
- Смысл правила δ : мы даём название a тому объекту, существование которого утверждается.
- Обратите внимание, что $\forall x \ A(x) = 0$ читается как $(\forall x \ A(x)) = 0$, а не $\forall x \ (A(x) = 0)$.

- Смысл правила γ : утверждение, верное для всех объектов, верно в том числе для значения t.
- Смысл правила δ : мы даём название a тому объекту, существование которого утверждается.
- Обратите внимание, что $\forall x \ A(x) = 0$ читается как $(\forall x \ A(x)) = 0$, а не $\forall x \ (A(x) = 0)$.
- Замкнутый терм не содержит переменных. В случае без константных и функциональных символов это просто параметр.

- Смысл правила γ : утверждение, верное для всех объектов, верно в том числе для значения t.
- Смысл правила δ : мы даём название a тому объекту, существование которого утверждается.
- Обратите внимание, что $\forall x \ A(x) = 0$ читается как $(\forall x \ A(x)) = 0$, а не $\forall x \ (A(x) = 0)$.
- Замкнутый терм не содержит переменных. В случае без константных и функциональных символов это просто параметр.
- γ -формулы не помечаются $\sqrt{}$ при раскрытии, чтобы показать, что они могут быть повторно раскрыты. Только использованным термом.
- Для δ -формул параметр можно указать рядом с \checkmark , чтобы легко увидеть использованные параметры.

• Первый пример: одно из правил де Моргана для кванторов, $\neg(\forall x\; P(x)) \to (\exists x\; \neg P(x)).$

1.
$$\neg(\forall x \ P(x)) \rightarrow (\exists x \ \neg P(x)) = 0$$
 Дано

• Первый пример: одно из правил де Моргана для кванторов, $\neg(\forall x\; P(x)) \to (\exists x\; \neg P(x)).$

1.
$$\neg(\forall x \ P(x)) \to (\exists x \ \neg P(x)) = 0 \ \checkmark$$
 Дано
2. $\neg(\forall x \ P(x)) = 1 \ \checkmark$ 1
3. $\exists x \ \neg P(x) = 0$ 1
4. $\forall x \ P(x) = 0$ 2

• Первый пример: одно из правил де Моргана для кванторов, $\neg(\forall x\; P(x)) \to (\exists x\; \neg P(x)).$

1.
$$\neg(\forall x \ P(x)) \to (\exists x \ \neg P(x)) = 0 \ \checkmark$$
 Дано
2. $\neg(\forall x \ P(x)) = 1 \ \checkmark$ 1
3. $\exists x \ \neg P(x) = 0$ 1
4. $\forall x \ P(x) = 0 \ \checkmark a_1$ 2
5. $P(a_1) = 0 \ \checkmark$ 4

• Первый пример: одно из правил де Моргана для кванторов, $\neg(\forall x\; P(x)) \to (\exists x\; \neg P(x)).$

1.
$$\neg(\forall x \ P(x)) \rightarrow (\exists x \ \neg P(x)) = 0 \ \checkmark$$
 Дано
2. $\neg(\forall x \ P(x)) = 1 \ \checkmark$ 1
3. $\exists x \ \neg P(x) = 0 \ \land a_1$ 1
4. $\forall x \ P(x) = 0 \ \checkmark a_1$ 2
5. $P(a_1) = 0 \ \checkmark$ 4
6. $\neg P(a_1) = 0 \ \checkmark$ 3
7. $P(a_1) = 1 \ \checkmark$ 6

• Дерево закрылось, значит формула $\neg(\forall x \; P(x)) \to (\exists x \; \neg P(x))$

• Первый пример: одно из правил де Моргана для кванторов, $\neg(\forall x\; P(x)) \to (\exists x\; \neg P(x)).$

1.
$$\neg(\forall x \ P(x)) \rightarrow (\exists x \ \neg P(x)) = 0 \ \checkmark$$
 Дано
2. $\neg(\forall x \ P(x)) = 1 \ \checkmark$ 1
3. $\exists x \ \neg P(x) = 0 \ \lor a_1$ 1
4. $\forall x \ P(x) = 0 \ \checkmark a_1$ 2
5. $P(a_1) = 0 \ \checkmark$ 4
6. $\neg P(a_1) = 0 \ \checkmark$ 3
7. $P(a_1) = 1 \ \checkmark$ 6

• Дерево закрылось, значит формула $\neg(\forall x\; P(x)) \to (\exists x\; \neg P(x))$ тождественно истинна.

- Заметьте, что если сначала раскрыли бы строку 3 с параметром a_1 , то в строке 4 пришлось бы использовать новый параметр a_2 .
- И противоречия не получится, пока не раскроем строку 3 с a_2 .

- Заметьте, что если сначала раскрыли бы строку 3 с параметром a_1 , то в строке 4 пришлось бы использовать новый параметр a_2 .
- И противоречия не получится, пока не раскроем строку 3 с a_2 .
- Также правила позволяют раскрыть строку 3 сколько угодно раз с разными параметрами и не дойти до строки 4.
- Тогда опять не получим противоречия.

- Заметьте, что если сначала раскрыли бы строку 3 с параметром a_1 , то в строке 4 пришлось бы использовать новый параметр a_2 .
- И противоречия не получится, пока не раскроем строку 3 с a_2 .
- Также правила позволяют раскрыть строку 3 сколько угодно раз с разными параметрами и не дойти до строки 4.
- Тогда опять не получим противоречия.
- Поэтому порядок раскрытия строк теперь важен для результата.

- Заметьте, что если сначала раскрыли бы строку 3 с параметром a_1 , то в строке 4 пришлось бы использовать новый параметр a_2 .
- И противоречия не получится, пока не раскроем строку 3 с a_2 .
- Также правила позволяют раскрыть строку 3 сколько угодно раз с разными параметрами и не дойти до строки 4.
- Тогда опять не получим противоречия.
- Поэтому порядок раскрытия строк теперь важен для результата.
- Сначала α и δ , потом β , потом γ .

- Заметьте, что если сначала раскрыли бы строку 3 с параметром a_1 , то в строке 4 пришлось бы использовать новый параметр a_2 .
- И противоречия не получится, пока не раскроем строку 3 с a_2 .
- Также правила позволяют раскрыть строку 3 сколько угодно раз с разными параметрами и не дойти до строки 4.
- Тогда опять не получим противоречия.
- Поэтому порядок раскрытия строк теперь важен для результата.
- Сначала α и δ , потом β , потом γ .
- Это не единственно возможный, но достаточно простой.

• Ещё пример: $\forall x \; P(x) \land Q(x) \vdash (\forall x \; P(x)) \land (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет?

1. $\forall x \ P(x) \land Q(x) = 1$ Дано

2. $(\forall x \ P(x)) \land (\forall x \ Q(x)) = 0$ Дано

• Ещё пример: $\forall x \; P(x) \land Q(x) \vdash (\forall x \; P(x)) \land (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет?

1. $\forall x \ P(x) \land Q(x) = 1$ Дано

2. $(\forall x \; P(x)) \land (\forall x \; Q(x)) = 0 \; \checkmark$ Дано

3. $\forall x \ P(x) = 0 \quad \forall x \ Q(x) = 0$ 2

4.

• Ещё пример: $\forall x \; P(x) \land Q(x) \vdash (\forall x \; P(x)) \land (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет? 1. $\forall x \; P(x) \land Q(x) = 1$ Дано 2. $(\forall x \; P(x)) \land (\forall x \; Q(x)) = 0 \checkmark$ Дано 3. $\forall x \; P(x) = 0 \checkmark a_1 \forall x \; Q(x) = 0 \checkmark a_1$ 2

 $P(a_1) = 0 \checkmark Q(a_1) = 0 \checkmark$

• Ещё пример: $\forall x \; P(x) \land Q(x) \vdash (\forall x \; P(x)) \land (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет?

- В строке 3 можем использовать a_1 в обеих ветвях.
- Когда раскрываем строку 1, под ней две открытые ветви, результат пишем в обе.

• Ещё пример: $\forall x \; P(x) \land Q(x) \vdash (\forall x \; P(x)) \land (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет?

- Дерево закрылось, значит секвенция
- В строке 3 можем использовать a_1 в обеих ветвях.
- Когда раскрываем строку 1, под ней две открытые ветви, результат пишем в обе.

• Ещё пример: $\forall x \; P(x) \land Q(x) \vdash (\forall x \; P(x)) \land (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет?

- Дерево закрылось, значит секвенция тождественно истинна.
- В строке 3 можем использовать a_1 в обеих ветвях.
- Когда раскрываем строку 1, под ней две открытые ветви, результат пишем в обе.

• $\forall x \; P(x) \lor Q(x) \vdash (\forall x \; P(x)) \lor (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет?

1. $\forall x \ P(x) \lor Q(x) = 1$ Дано

2. $(\forall x P(x)) \lor (\forall x Q(x)) = 0$ Дано

• $\forall x \; P(x) \lor Q(x) \vdash (\forall x \; P(x)) \lor (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет?

1.
$$\forall x \ P(x) \lor Q(x) = 1$$
 Дано

2.
$$(\forall x \; P(x)) \lor (\forall x \; Q(x)) = 0 \; \checkmark$$
 Дано

$$\exists. \qquad \forall x \ P(x) = 0 \qquad 2$$

$$4. \qquad \forall x \ Q(x) = 0 \qquad 2$$

• $\forall x \; P(x) \lor Q(x) \vdash (\forall x \; P(x)) \lor (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет?

1.
$$\forall x \ P(x) \lor Q(x) = 1$$
 Дано
2. $(\forall x \ P(x)) \lor (\forall x \ Q(x)) = 0 \lor$ Дано
3. $\forall x \ P(x) = 0 \lor a_1$ 2
4. $\forall x \ Q(x) = 0 \lor a_2$ 2
5. $P(a_1) = 0 \lor$ 3
6. $Q(a_2) = 0 \lor$ 4

• $\forall x \; P(x) \lor Q(x) \vdash (\forall x \; P(x)) \lor (\forall x \; Q(x)).$ Как думаете, тождественно истинна или нет?

• $\forall x P(x) \lor Q(x) \vdash (\forall x P(x)) \lor (\forall x Q(x)).$ Как думаете, тождественно истинна или нет? 1. $\forall x \ P(x) \lor Q(x) = 1 \setminus a_1$ Дано 2. $(\forall x P(x)) \lor (\forall x Q(x)) = 0 \checkmark$ Дано 3. $\forall x P(x) = 0 \sqrt{a_1}$ 4. $\forall x \ Q(x) = 0 \ \sqrt{a_2}$ 3 5. $P(a_1) = 0 \ \checkmark$ 6. $Q(a_2) = 0 \ \checkmark$ 7. $P(a_1) \lor Q(a_1) = 1 \checkmark$ $P(a_1) = 1 \checkmark Q(a_1) = 1 \checkmark 7$ (ветвь закончена?) 8.

• $\forall x \ P(x) \lor Q(x) \vdash (\forall x \ P(x)) \lor (\forall x \ Q(x)).$ Как думаете, тождественно истинна или нет? 1. $\forall x \ P(x) \lor Q(x) = 1 \ \backslash a_1, a_2$ Дано 2. $(\forall x \ P(x)) \lor (\forall x \ Q(x)) = 0 \checkmark$ Дано 3. $\forall x \ P(x) = 0 \checkmark a_1$ 2

4.
$$\forall x \ Q(x) = 0 \ \sqrt{a_2}$$
 2
5. $P(a_1) = 0 \ \sqrt{3}$

6.
$$Q(a_2) = 0 \checkmark$$
 4

7.
$$P(a_1) \lor Q(a_1) = 1 \checkmark$$
 1

8.
$$P(a_1) = 1 \checkmark Q(a_1) = 1 \checkmark 7$$

9.
$$\times P(a_2) \vee Q(a_2) = 1$$
 1

Дерево не закрылось!

• $\forall x P(x) \lor Q(x) \vdash (\forall x P(x)) \lor (\forall x Q(x)).$ Как думаете, тождественно истинна или нет? 1. $\forall x P(x) \lor Q(x) = 1 \setminus a_1, a_2$ Дано 2. $(\forall x P(x)) \lor (\forall x Q(x)) = 0 \checkmark$ Дано 3. $\forall x P(x) = 0 \sqrt{a_1}$ 4. $\forall x \ Q(x) = 0 \ \sqrt{a_2}$ 2 5. $P(a_1) = 0 \ \checkmark$ 6. $Q(a_2) = 0 \ \checkmark$ 4 7. $P(a_1) \lor Q(a_1) = 1 \checkmark$ $P(a_1) = 1 \checkmark Q(a_1) = 1 \checkmark$ 8. \times $P(a_2) \vee Q(a_2) = 1 \checkmark$ 9. $P(a_2) = 1 \checkmark Q(a_2) = 1 \checkmark$ 10. 9 6.10

8/23

- Получили открытую ветвь, в которой:
 - все α -, β -, δ и \neg -формулы раскрыты;
 - все γ -формулы раскрыты со всеми параметрами (и хотя бы с одним).
- Такая ветвь называется законченной.

- Получили открытую ветвь, в которой:
 - все α -, β -, δ и \neg -формулы раскрыты;
 - все γ -формулы раскрыты со всеми параметрами (и хотя бы с одним).
- Такая ветвь называется законченной.
- В нашем случае атомы в ней $P(a_1)=0$, $Q(a_2)=0$, $Q(a_1)=1$, $P(a_2)=1$.
- По ним строим модель. В ней два объекта, которые так и обозначим: a_1 и a_2 .

- Получили открытую ветвь, в которой:
 - все α -, β -, δ и \neg -формулы раскрыты;
 - все γ -формулы раскрыты со всеми параметрами (и хотя бы с одним).
- Такая ветвь называется законченной.
- В нашем случае атомы в ней $P(a_1)=0$, $Q(a_2)=0$, $Q(a_1)=1$, $P(a_2)=1$.
- По ним строим модель. В ней два объекта, которые так и обозначим: a_1 и a_2 .

X	a_1	a_2
P(x)	0	1
Q(x)	1	0

- Получили открытую ветвь, в которой:
 - все α -, β -, δ и \neg -формулы раскрыты;
 - все γ -формулы раскрыты со всеми параметрами (и хотя бы с одним).
- Такая ветвь называется законченной.
- В нашем случае атомы в ней $P(a_1)=0$, $Q(a_2)=0$, $Q(a_1)=1$, $P(a_2)=1$.
- По ним строим модель. В ней два объекта, которые так и обозначим: a_1 и a_2 .

X	a_1	a_2
P(x)	0	1
Q(x)	1	0

• Что делать, если бы в ветви не было атома с $P(a_1)$ (например)?

- Получили открытую ветвь, в которой:
 - все α -, β -, δ и \neg -формулы раскрыты;
 - все γ -формулы раскрыты со всеми параметрами (и хотя бы с одним).
- Такая ветвь называется законченной.
- В нашем случае атомы в ней $P(a_1)=0$, $Q(a_2)=0$, $Q(a_1)=1$, $P(a_2)=1$.
- По ним строим модель. В ней два объекта, которые так и обозначим: a_1 и a_2 .

X	a_1	a_2
P(x)	0	1
Q(x)	1	0

- Что делать, если бы в ветви не было атома с $P(a_1)$ (например)?
- Можем поставить туда любое значение.

- Получили открытую ветвь, в которой:
 - все α -, β -, δ и \neg -формулы раскрыты;
 - все γ -формулы раскрыты со всеми параметрами (и хотя бы с одним).
- Такая ветвь называется законченной.
- В нашем случае атомы в ней $P(a_1)=0$, $Q(a_2)=0$, $Q(a_1)=1$, $P(a_2)=1$.
- По ним строим модель. В ней два объекта, которые так и обозначим: a_1 и a_2 .

X	a_1	a ₂
P(x)	0	1
Q(x)	1	0

- Что делать, если бы в ветви не было атома с $P(a_1)$ (например)?
- Можем поставить туда любое значение.
- Снова видим, что x, связанные разными кванторами, по сути разные переменные (строки 5-6).

• $\forall x \exists y \ P(x,y) \vdash \exists y \forall x \ P(x,y)$. Как думаете, тождественно истинна или нет?

- 1. $\forall x \exists y \ P(x,y) = 1$ Дано
- 2. $\exists y \forall x \ P(x,y) = 0$ Дано

• $\forall x \exists y \ P(x,y) \vdash \exists y \forall x \ P(x,y).$

Как думаете, тождественно истинна или нет?
1.
$$\forall x \exists y \ P(x,y) = 1 \ a_1$$
 Дано

2.
$$\exists y \forall x \ P(x,y) = 0$$
 Дано

3.
$$\exists y \ P(a_1, y) = 1 \ \checkmark a_2$$
 1

4.
$$P(a_1, a_2) = 1 \checkmark$$
 3

• $\forall x \exists y \ P(x,y) \vdash \exists y \forall x \ P(x,y)$.

Как думаете, тождественно истинна или нет?

- 1. $\forall x \exists y \ P(x,y) = 1 \setminus a_1$ Дано
- 2. $\exists y \forall x \ P(x,y) = 0 \ \backslash a_2$ Дано
- 3. $\exists y \ P(a_1, y) = 1 \ \checkmark a_2$ 1
- 4. $P(a_1, a_2) = 1 \checkmark 3$
- 5. $\forall x P(x, a_2) = 0 \checkmark a_3$ 2
- 6. $P(a_3, a_2) = 0 \checkmark$ 5 (ветвь закончена?)

• $\forall x \exists y \ P(x,y) \vdash \exists y \forall x \ P(x,y)$.

Как думаете, тождественно истинна или нет?

1.
$$\forall x \exists y \ P(x,y) = 1 \ \exists_1, a_3, \dots$$
 Дано
2. $\exists y \forall x \ P(x,y) = 0 \ \exists_2, \dots$ Дано
3. $\exists y \ P(a_1,y) = 1 \ \checkmark \ a_2$ 1
4. $P(a_1,a_2) = 1 \ \checkmark$ 3
5. $\forall x \ P(x,a_2) = 0 \ \checkmark \ a_3$ 2
6. $P(a_3,a_2) = 0 \ \checkmark$ 5
7. $\exists y \ P(a_3,y) = 1 \ \checkmark \ a_4$ 1
8. ...

• $\forall x \exists y \ P(x,y) \vdash \exists y \forall x \ P(x,y)$.

Как думаете, тождественно истинна или нет?

```
1. \forall x \exists y \ P(x,y) = 1 \ \exists_1, a_3, \dots Дано

2. \exists y \forall x \ P(x,y) = 0 \ \exists_2, \dots Дано

3. \exists y \ P(a_1,y) = 1 \ \checkmark \ a_2 1

4. P(a_1,a_2) = 1 \ \checkmark 3

5. \forall x \ P(x,a_2) = 0 \ \checkmark \ a_3 2

6. P(a_3,a_2) = 0 \ \checkmark 5

7. \exists y \ P(a_3,y) = 1 \ \checkmark \ a_4 1

8. ...
```

- На этот раз ситуация сложнее предыдущей.
- Противоречия нет, но и законченной ветви (в смысле прошлого слайда) тоже.
- По крайней мере после любого конечного числа шагов.

• $\forall x \exists y \ P(x,y) \vdash \exists y \forall x \ P(x,y)$.

Как думаете, тождественно истинна или нет?

1.
$$\forall x \exists y \ P(x,y) = 1 \setminus a_1, a_3, \dots$$
 Дано
2. $\exists y \forall x \ P(x,y) = 0 \setminus a_2, \dots$ Дано

3.
$$\exists y \ \forall x \ r(x,y) = 0 \ \forall a_2, \dots$$
 And $\exists y \ P(a_1,y) = 1 \ \forall a_2$

4.
$$P(a_1, a_2) = 1 \checkmark$$
 3

5.
$$\forall x \ P(x, a_2) = 0 \ \sqrt{a_3}$$
 2

6.
$$P(a_3, a_2) = 0 \checkmark$$
 5

7.
$$\exists y \ P(a_3, y) = 1 \ \sqrt{a_4}$$
 1

- На этот раз ситуация сложнее предыдущей.
- Противоречия нет, но и законченной ветви (в смысле прошлого слайда) тоже.
- По крайней мере после любого конечного числа шагов.
- Наверное, легко *увидеть*, что противоречия так и не получим, но как это *доказать*?

10/23

• В нашей ветви видны некоторые значения предиката:

x y	a_1	a ₂	a ₃	a_4	
a_1	?	1	?	?	
a_2	?	?	?	?	
a_3	?	0	?	1	
a_4	?	?	?	?	

- Как в терминах этой таблицы выглядят:
 - $\forall x \exists y \ P(x,y) = 1$?

• В нашей ветви видны некоторые значения предиката:

x y	a_1	a ₂	a ₃	a_4	
a_1	?	1	?	?	
a_2	?	?	?	?	
a_3	?	0	?	1	
a_4	?	?	?	?	

- Как в терминах этой таблицы выглядят:
 - $\forall x \exists y \ P(x,y) = 1$? В каждой строке есть 1.

• В нашей ветви видны некоторые значения предиката:

x y	a_1	a ₂	a ₃	a_4	
a_1	?	1	?	?	
a_2	?	?	?	?	
a_3	?	0	?	1	
a_4	?	?	?	?	

- Как в терминах этой таблицы выглядят:
 - $\forall x \exists y \ P(x,y) = 1$? В каждой строке есть 1.
 - $\exists y \forall x \ P(x,y) = 0$?

 В нашей ветви видны некоторые значения предиката:

x y	a_1	a ₂	a ₃	a_4	
a_1	?	1	?	?	
a_2	?	?	?	?	
a_3	?	0	?	1	
a_4	?	?	?	?	

- Как в терминах этой таблицы выглядят:
 - $\forall x \exists y \ P(x,y) = 1$? В каждой строке есть 1.
 - $\exists y \forall x \ P(x,y) = 0$? Нет столбца, где все 1. Помните, что это $(\exists y \forall x \ P(x,y)) = 0$, а не $\exists y \forall x \ (P(x,y) = 0)$!

• Видно, что расставить 0 и 1 на место ? произвольно нельзя, но вот вариант:

x y	a_1	a ₂	a ₃	a_4	
a_1	0	1	0	0	
a_2	0	0	1	0	
a ₃	0	0	0	1	
a_4	0	0	0	0	

• Видно, что расставить 0 и 1 на место ? произвольно нельзя, но вот вариант:

_					
x y	a_1	a ₂	a ₃	a_4	
a_1	0	1	0	0	
a_2	0	0	1	0	
a_3	0	0	0	1	
a_4	0	0	0	0	

- Мы нашли бесконечный контрпример для этой секвенции, а есть ли конечный? Напомню условия:
- В каждой строке есть 1; нет столбца, где все 1.

• Видно, что расставить 0 и 1 на место ? произвольно нельзя, но вот вариант:

_					
x y	a_1	a ₂	a ₃	a_4	
a_1	0	1	0	0	
a_2	0	0	1	0	
a_3	0	0	0	1	
a_4	0	0	0	0	

- Мы нашли бесконечный контрпример для этой секвенции, а есть ли конечный? Напомню условия:
- В каждой строке есть 1; нет столбца, где все 1.
- Конечно, есть. Например:

x y	a_1	a_2
a_1	1	0
a_2	0	1

Теорема о корректности

- Теорема: если для A = 0 есть закрытое дерево истинности, то A тождественно истинна.
- Общий ход доказательства тот же, что для логики высказываний. Напомню:

Теорема о корректности

- Теорема: если для A = 0 есть закрытое дерево истинности, то A тождественно истинна.
- Общий ход доказательства тот же, что для логики высказываний. Напомню:
- Доказательство от противного. Если A не тождественно истинна, то A=0 выполнимо.
- Значит, в исходном дереве единственная ветвь выполнима.
- Лемма: если в дереве есть выполнимая ветвь, после применения правил такая ветвь тоже есть.
- Значит, сколько не применяем правила к исходному дереву, на каждом шаге есть выполнимая ветвь.
- Закрытая ветвь не может быть выполнима, значит, на каждом шаге есть открытая ветвь.
- Значит, дерево не может быть закрыто.

Теорема о корректности

- Теорема: если для A = 0 есть закрытое дерево истинности, то A тождественно истинна.
- Общий ход доказательства тот же, что для логики высказываний. Напомню:
- Доказательство от противного. Если A не тождественно истинна, то A=0 выполнимо.
- Значит, в исходном дереве единственная ветвь выполнима.
- Лемма: если в дереве есть выполнимая ветвь, после применения правил такая ветвь тоже есть.
- Значит, сколько не применяем правила к исходному дереву, на каждом шаге есть выполнимая ветвь.
- Закрытая ветвь не может быть выполнима, значит, на каждом шаге есть открытая ветвь.
- Значит, дерево не может быть закрыто.
- Остаётся только доказать основную лемму для правил γ и δ .

- Ветвь $\mathcal B$ выполнима, т.е. есть модель M, в которой все уравнения из $\mathcal B$ истинны. Параметры имеют значения в этой модели, как константы.
- Случай γ с термом t: Рассмотрим $\forall v\ A(v)=1$. По предположению, она истинна в M. Значит, A(t)=1 тоже истинно в M. Для $\exists v\ A(v)=0$ аналогично.

- Ветвь $\mathcal B$ выполнима, т.е. есть модель M, в которой все уравнения из $\mathcal B$ истинны. Параметры имеют значения в этой модели, как константы.
- Случай γ с термом t: Рассмотрим $\forall v \ A(v) = 1$. По предположению, она истинна в M. Значит, A(t) = 1 тоже истинно в M. Для $\exists v \ A(v) = 0$ аналогично.
- Случай δ с параметром a_i : Рассмотрим $\exists v\ A(v)=1$. По предположению, она истинна в M. Значит, есть $e\in \bar{M}$, для которого A(e)=1

- Ветвь $\mathcal B$ выполнима, т.е. есть модель M, в которой все уравнения из $\mathcal B$ истинны. Параметры имеют значения в этой модели, как константы.
- Случай γ с термом t: Рассмотрим $\forall v \ A(v) = 1$. По предположению, она истинна в M. Значит, A(t) = 1 тоже истинно в M. Для $\exists v \ A(v) = 0$ аналогично.
- Случай δ с параметром a_i : Рассмотрим $\exists v \ A(v) = 1$. По предположению, она истинна в M. Значит, есть $e \in \bar{M}$, для которого A(e) = 1 (строго говоря, $\sigma_{v \mapsto e}(A(v)) = 1$).
- Зададим M', которая отличается от M только тем, что параметр a_i имеет значение e. Тогда в M':
 - $A(a_i) = A(e) = 1;$
 - остальные уравнения из ${\mathcal B}$ истинны, так как

- Ветвь $\mathcal B$ выполнима, т.е. есть модель M, в которой все уравнения из $\mathcal B$ истинны. Параметры имеют значения в этой модели, как константы.
- Случай γ с термом t: Рассмотрим $\forall v \ A(v) = 1$. По предположению, она истинна в M. Значит, A(t) = 1 тоже истинно в M. Для $\exists v \ A(v) = 0$ аналогично.
- Случай δ с параметром a_i : Рассмотрим $\exists v \ A(v) = 1$. По предположению, она истинна в M. Значит, есть $e \in \bar{M}$, для которого A(e) = 1 (строго говоря, $\sigma_{v \mapsto e}(A(v)) = 1$).
- Зададим M', которая отличается от M только тем, что параметр a_i имеет значение e. Тогда в M':
 - $A(a_i) = A(e) = 1;$
 - остальные уравнения из $\mathcal B$ истинны, так как не содержат a_i .

Значит, все уравнения новой ветви истинны в M'.

Множества и лемма Хинтикки

- Перейдём к теореме о полноте.
- Для упрощения ограничимся случаем, когда в сигнатуре есть только предикатные символы, нет константных и функциональных.

Множества и лемма Хинтикки

- Перейдём к теореме о полноте.
- Для упрощения ограничимся случаем, когда в сигнатуре есть только предикатные символы, нет константных и функциональных.
- Множество уравнений Н множество Хинтикки, если есть множество параметров U такое, что
 - 1. $P(a_{i_1},\ldots,a_{i_k})=1\notin H\vee P(a_{i_1},\ldots,a_{i_k})=0\notin H$ для любого предикатного символа P и параметров a_{i_1},\ldots,a_{i_k} из U.
 - 2. $\alpha \in H \Rightarrow \alpha_1 \in H \land \alpha_2 \in H$.
 - 3. $\beta \in H \Rightarrow \beta_1 \in H \lor \beta_2 \in H$.
 - 4. $\gamma \in H \Rightarrow \forall a_i \in U \ \gamma(a_i) \in H$.
 - 5. $\delta \in H \Rightarrow \exists a_i \in U \ \delta(a_i) \in H$.

Множества и лемма Хинтикки

- Перейдём к теореме о полноте.
- Для упрощения ограничимся случаем, когда в сигнатуре есть только предикатные символы, нет константных и функциональных.
- Множество уравнений Н множество Хинтикки, если есть множество параметров U такое, что
 - 1. $P(a_{i_1},\ldots,a_{i_k})=1\notin H\vee P(a_{i_1},\ldots,a_{i_k})=0\notin H$ для любого предикатного символа P и параметров a_{i_1},\ldots,a_{i_k} из U.
 - 2. $\alpha \in H \Rightarrow \alpha_1 \in H \land \alpha_2 \in H$.
 - 3. $\beta \in H \Rightarrow \beta_1 \in H \lor \beta_2 \in H$.
 - 4. $\gamma \in H \Rightarrow \forall a_i \in U \ \gamma(a_i) \in H$.
 - 5. $\delta \in H \Rightarrow \exists a_i \in U \ \delta(a_i) \in H$.
- Лемма Хинтикки для логики первого порядка: любое множество Хинтикки имеет модель, носителем которой является U.

• Как и для логики высказываний, задаём

$$P^M(a_{i_1},\dots,a_{i_k})=\left\{egin{array}{ll} 1,\ ext{если}\ P(a_{i_1},\dots,a_{i_k})=1\in H\ 0,\ ext{если}\ P(a_{i_1},\dots,a_{i_k})=0\in H\ 0\ ext{иначе} \end{array}
ight.$$

• Атомарные уравнения из H истинны в M по определению.

$$P^M(a_{i_1},\dots,a_{i_k})=\left\{egin{array}{ll} 1,\ ext{если }P(a_{i_1},\dots,a_{i_k})=1\in H\ 0,\ ext{если }P(a_{i_1},\dots,a_{i_k})=0\in H\ 0\ ext{иначе} \end{array}
ight.$$

- Атомарные уравнения из H истинны в M по определению.
- Индукцией по сложности покажем, что все остальные тоже.
- α и β как в логике высказываний.

$$P^{ extsf{M}}(a_{i_1},\ldots,a_{i_k})=\left\{egin{array}{ll} 1,\ ext{ecли}\ P(a_{i_1},\ldots,a_{i_k})=1\in H\ 0,\ ext{ecли}\ P(a_{i_1},\ldots,a_{i_k})=0\in H\ 0\ ext{иначе} \end{array}
ight.$$

- Атомарные уравнения из H истинны в M по определению.
- Индукцией по сложности покажем, что все остальные тоже.
- α и β как в логике высказываний.
- Пусть $\gamma \in H$ имеет вид $\forall v \ A(v) = 1$. Тогда все $A(a_i) = 1 \in H$. Их сложность меньше, и они истинны в M по предположению индукции. Значит, $\forall v \ A(v) = 1$ истинно в M.

$$P^M(a_{i_1},\dots,a_{i_k})=\left\{egin{array}{ll} 1,\ ext{если}\ P(a_{i_1},\dots,a_{i_k})=1\in H\ 0,\ ext{если}\ P(a_{i_1},\dots,a_{i_k})=0\in H\ 0\ ext{иначе} \end{array}
ight.$$

- Атомарные уравнения из H истинны в M по определению.
- Индукцией по сложности покажем, что все остальные тоже.
- α и β как в логике высказываний.
- Пусть $\gamma \in H$ имеет вид $\forall v \ A(v) = 1$. Тогда все $A(a_i) = 1 \in H$. Их сложность меньше, и они истинны в M по предположению индукции. Значит, $\forall v \ A(v) = 1$ истинно в M.
- Для $\exists v \ A(v) = 0$ аналогично.

$$P^{ extsf{M}}(a_{i_1},\ldots,a_{i_k})=\left\{egin{array}{ll} 1,\ ext{ecли}\ P(a_{i_1},\ldots,a_{i_k})=1\in H\ 0,\ ext{ecли}\ P(a_{i_1},\ldots,a_{i_k})=0\in H\ 0\ ext{uhave} \end{array}
ight.$$

- Атомарные уравнения из H истинны в M по определению.
- Индукцией по сложности покажем, что все остальные тоже.
- α и β как в логике высказываний.
- Пусть $\gamma \in H$ имеет вид $\forall v \ A(v) = 1$. Тогда все $A(a_i) = 1 \in H$. Их сложность меньше, и они истинны в M по предположению индукции. Значит, $\forall v \ A(v) = 1$ истинно в M.
- Для $\exists v \ A(v) = 0$ аналогично.
- Для δ тоже разбираем отдельно $\exists v \ A(v) = 1$ и $\forall v \ A(v) = 0$.

Систематические деревья

- В отличие от логики высказываний, порядок раскрытия уравнений в логике предикатов важен.
- То есть может оказаться, что в зависимости от этого порядка ветвь закроется или нет.
- Нужен способ гарантировать, что если противоречие есть, мы его найдём
- А если нет, то получим множество Хинтикки.
- Этот способ систематические деревья.

Систематические деревья

- В отличие от логики высказываний, порядок раскрытия уравнений в логике предикатов важен.
- То есть может оказаться, что в зависимости от этого порядка ветвь закроется или нет.
- Нужен способ гарантировать, что если противоречие есть, мы его найдём
- А если нет, то получим множество Хинтикки.
- Этот способ систематические деревья.
- На каждом шаге раскрываем самое верхнее нераскрытое уравнение. Если их несколько на одном уровне, то левое из них.
- Уравнения типа γ раскрываем сначала с параметром a_1 , и добавляем под $\gamma(a_1)$ ещё одну копию γ .
- Когда до неё дойдём, раскроем с a_2 и добавим ещё копии. . .

Систематические деревья (2)

- Систематическое дерево закончено в любом из следующих случаев:
 - 1. оно закрыто;
 - 2. в нём не осталось неразобранных уравнений;
 - 3. оно бесконечно.
- Открытая ветвь в законченном систематическом дереве является множеством Хинтикки.
- Доказательство: если ветвь конечна, это следует сразу из определения.
- А если она бесконечна, то в систематической процедуре было сделано бесконечно много шагов.
- Так как число уравнений на каждом уровне конечно, то все уравнения до любого фиксированного уровня п будут разобраны за конечное число шагов.
- Значит, все уравнения бесконечной ветви разобраны. В том числе типа γ со всеми параметрами.

Теорема о полноте

• Теорема: если A тождественно истинна, то законченное систематическое дерево истинности для A=0 закрыто.

Теорема о полноте

- Теорема: если A тождественно истинна, то законченное систематическое дерево истинности для A=0 закрыто.
- Доказательство: если оно открыто, то его открытая ветвь множество Хинтикки, содержащее A=0.
- По лемме Хинтикки эта ветвь имеет модель.
- В этой модели A = 0.
- Значит, А не тождественно истинна.

Счётные модели

- Существенно, что построенная модель для множества Хинтикки конечна или *счётна*, то есть её элементы можно перенумеровать $\{a_1, a_2, \ldots\}$. 1
- Пусть формула *A* выполнима (то есть имеет какую-то модель).
- Тогда ¬А не тождественно истинна.
- Значит, систематическое дерево для $\neg A = 0$ или для A = 1 не может быть закрыто.
- Значит, А имеет конечную или счётную модель.

 $^{^{1}}$ Больше о счётных и несчётных множествах в следующем разделе.

Теорема Лёвенгейма-Сколема

- Можно рассматривать деревья не для одного уравнения, а для множества, в том числе счётного.
- Позже увидим, что любое бесконечное множество уравнений логики предикатов счётно.
- Если множество счётное, то мы не можем начать с ветви, содержащей все уравнения.
- Вместо этого разрешаем кроме обычных правил расширения дерева добавлять уравнения из множества в конец открытой ветви.
- В построении систематического дерева будет изменение: после шага n добавим в конец всех открытых ветвей уравнение A_n .
- Доказательства выше работают по-прежнему.
- Получается теорема Лёвенгейма-Сколема: если счётное множество уравнений выполнимо, то оно выполнимо в конечной или счётной модели.

Теорема о компактности

- С другой стороны, если систематическое дерево для бесконечного множества уравнений закроется, то это случится после конечного количества шагов.
- При этом может быть использовано только конечное число уравнений исходного множества.
- Теорема о компактности: если множество уравнений невыполнимо, то у него есть конечное невыполнимое подмножество.

Последние замечания

- Есть варианты правил деревьев, которые позволят найти конечный контрпример в последнем примере, но их сложнее объяснить и понять.
- Краткое изложение в английской Википедии.

Последние замечания

- Есть варианты правил деревьев, которые позволят найти конечный контрпример в последнем примере, но их сложнее объяснить и понять.
- Краткое изложение в английской Википедии.
- Пока мы не можем это доказать, но логика предикатов неразрешима: нет алгоритма, который для любой формулы скажет, тождественно истинна ли она.
- Значит, в любой системе доказательств надо что-то придумывать (для некоторых формул), чисто механических действий недостаточно.