Álgebra lineal

Prof: Leonid Fridman

• Vector: Un vector en \mathbb{R}^n es una n-tupla de números reales

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [x_1 \ x_2 \ \cdots \ x_n]'$$

- Espacio lineal: Un conjunto no vacío L de elementos x, y, z, \ldots que satisface las siguientes condiciones:
 - 1. Dado x, $y \in L$ esta definido *univocamente* un tercer elemento $z \in L$, llamado suma de ellos y denotado por x + y
 - 1. Conmutatividad x + y = y + x
 - 2. Asociatividad x + (y + z) = (x + y) + z
 - 3. Existencia de cero x + 0 = x para todo $x \in L$
 - 4. Existencia de elemento opuesto para todo $x \in L$ existe un elemento -x tal que x + (-x) = 0

2. Para cualquier numero α y cualquier $x \in L$ esta definido $\alpha x \in L$ de manera que

1.
$$\alpha(\beta x) = (\alpha \beta) x$$

2. 1
$$x = x$$
.

3. Las operaciones de adición y multiplicación están relacionadas entre si mediante

1
$$(\alpha + \beta) x = \alpha x + \beta x$$
,

$$2. \ \alpha(x+y) = \alpha x + \alpha y.$$

Ejemplos:

- 1) La recta numérica.
- 2) Espacio vectorial de n dimensiones R^n
- 3) Funciones continuas sobre un segmento [a, b] $C_{[a, b]}$

• <u>Dependencia lineal</u>: El conjunto de vectores $\{x_1, x_2, \ldots, x_m\}$ es linealmente dependiente si

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \cdots + \alpha_m \mathbf{x}_m = \mathbf{0}$$

es cierta para una colección $\alpha_1, \alpha_2, \ldots, \alpha_m$ de números reales no todos cero. Si, por ejemplo, α_1 es distinta de cero, entonces

$$\mathbf{x}_1 = -\frac{1}{\alpha_1} [\alpha_2 \mathbf{x}_2 + \alpha_3 \mathbf{x}_3 + \dots + \alpha_m \mathbf{x}_m]$$

=: $\beta_2 \mathbf{x}_2 + \beta_3 \mathbf{x}_3 + \dots + \beta_m \mathbf{x}_m$

- <u>Dimensión</u>: La dimensión de un espacio es el número máximo de vectores linealmente independientes (i.e. en Rn hay maximo n vectores linealmente independientes).
- <u>Base</u>: Un conjunto de vectores linealmente independientes tal que cualquier vector en el espacio puede ser expresado como una combinación lineal del conjunto.

Si $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$ es una base, entonces $\mathbf{x} = \alpha_1 \mathbf{q}_1 + \alpha_2 \mathbf{q}_2 + \dots + \alpha_n \mathbf{q}_n$

Defina una matriz cuadrada de $n \times n \mathbf{Q} := [\mathbf{q}_1 \ \mathbf{q}_2 \ \cdots \ \mathbf{q}_n]$

entonces x puede ser expresado como

$$\mathbf{x} = \mathbf{Q} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} =: \mathbf{Q}\bar{\mathbf{x}}$$

donde $\bar{\mathbf{x}} = [\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n]'$ lo llamamos como la representación de \mathbf{x} con respecto a la base $\{\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n\}$.

Asociaremos a cada \mathbb{R}^n la siguiente base *ortonormal*

$$\mathbf{i}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{i}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \quad \cdots, \quad \mathbf{i}_{n-1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{i}_{n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

y con respecto a ella tenemos que

$$\mathbf{x} := \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{i}_1 + x_2 \mathbf{i}_2 + \dots + x_n \mathbf{i}_n = \mathbf{I}_n \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

donde I_n es la matriz identidad.

• <u>Subespacio o span</u>: el conjunto de todas las posibles combinaciones lineales de $\{x_1, x_2, \dots, x_k\}$

$$span\{x_1, x_2, \dots, x_k\} = \{x = \alpha_1 x_1 + \dots + \alpha_k x_k : \alpha_i \in R\}$$

• El <u>complemento ortogonal</u> S^{\perp} de un subspacio $S \subset C^n$ se define como $S^{\perp} = span\{x_{k+1}, x_{k+2}, \dots, x_n\}$

donde los vectores $x_{k+1}, x_{k+2}, \ldots, x_n$ son ortonormales.

 \bullet Una matriz $A \in C^{m \times n}$ puede ser considerada como una $\underline{\text{transformación}}$ $\underline{\text{lineal}}$

$$A: \mathbb{C}^n \to \mathbb{C}^m$$

 \bullet El Kernel o espacio nulo de una transformación lineal $A:C^n\to C^m$ se define como

$$Ker A = N(a) := \{x \in C^n : Ax = 0\}$$

• La imagen o rango de una transformación lineal es

$$Im A = R(A) := \{ y \in C^m : y = Ax, x \in C^n \}$$

ullet La dimensión del subspacio KerA=N(a) se conoce como el <u>defecto</u> de la transformación A esto es

$$defA := dimKerA$$

ullet Producto interno: El producto interno de dos vectores $a,b\in C^{nx1}$ se denota como

$$(a,b) := a^*b = \langle a,b \rangle = \sum_{i=1}^n \bar{a}_i b_i$$

para el caso de a, b reales es equivalente

$$(a,b) := a^T b = \sum_{i=1}^n a_i b_i$$

• Norma de vectores: Cualquier función real de x , denotada por | |x||, es una norma si cumple las siguientes condiciones

1.
$$||\mathbf{x}|| \ge 0$$
 para todox: $\mathbf{y} ||\mathbf{x}|| = 0$ si y solo si $\mathbf{x} = \mathbf{0}$

$$2.||\alpha \mathbf{x}|| = |\alpha|||\mathbf{x}||$$
, para cualquier α .real.

3.
$$||\mathbf{x}_1 + \mathbf{x}_2|| \le ||\mathbf{x}_1|| + ||\mathbf{x}_2||$$
 para toda $\mathbf{x}_1 \ \mathbf{y} \ \mathbf{x}_2$.

Hay normas típicas como

$$||\mathbf{x}||_1 := \sum_{i=1}^n |x_i|$$
 $||\mathbf{x}||_2 := \sqrt{\mathbf{x}'\mathbf{x}} = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$ $||\mathbf{x}||_{\infty} := \max_i |x_i|$ (norma euclidiana)

- Vector normalizado: Si su norma euclidiana es 1. Es decir $\mathbf{x}'\mathbf{x} = 1$
- <u>Vectores ortogonales</u>: Dos vectores x₁ y x₂ son ortogonales si y solo si

$$\mathbf{x}_1'\mathbf{x}_2 = \mathbf{x}_2'\mathbf{x}_1 = 0.$$

Un conjunto de vectores \mathbf{x}_i , i = 1, 2, ..., m son ortonormales si

$$\mathbf{x}_i'\mathbf{x}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

• Algoritmo de Ortogonalización: Dado un conjunto de vectores linealmente independientes $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_m$

Algoritmo de Ortonormalización: Dado un conjunto de vectores e₁, e₂, ..., e_m
 linealmente independientes se puede obtener un conjunto
 ortonormal siguiendo el siguiente algoritmo:

$$\mathbf{u}_{1} := \mathbf{e}_{1}$$
 $\mathbf{q}_{1} := \mathbf{u}_{1}/||\mathbf{u}_{1}||$
 $\mathbf{u}_{2} := \mathbf{e}_{2} - (\mathbf{q}'_{1}\mathbf{e}_{2})\mathbf{q}_{1}$ $\mathbf{q}_{2} := \mathbf{u}_{2}/||\mathbf{u}_{2}||$
 \vdots
 $\mathbf{u}_{m} := \mathbf{e}_{m} - \sum_{k=1}^{m-1} (\mathbf{q}'_{k}\mathbf{e}_{m})\mathbf{q}_{k}$ $\mathbf{q}_{m} := \mathbf{u}_{m}/||\mathbf{u}_{m}||$

- 1. Normalizar e₁.
- 2. El vector $(\mathbf{q}_1'\mathbf{e}_2)\mathbf{q}_1$ es la proyección de \mathbf{e}_2 sobre \mathbf{q}_1 . Al substraerlo de \mathbf{e}_2 queda la parte vertical \mathbf{u}_2 y se normaliza.

Si $A = [a_1 \ a_2 \ \cdots \ a_m]$ es una matriz de $n \times m$, $m \le n$, y si todas sus columnas son ortonormales entonces

$$\mathbf{A}'\mathbf{A} = \begin{bmatrix} \mathbf{a}_1' \\ \mathbf{a}_2' \\ \vdots \\ \mathbf{a}_m' \end{bmatrix} [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_m] = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = \mathbf{I}_m$$

Transformaciones de similaridad

- Una matriz A de $n \times n$.
- Dos bases ortonormales para \mathcal{R}^n

$$\{i_1, i_2, \ldots, i_n\}$$
 $\{q_1, q_2, \ldots, q_n\}$

- La columna i de A tiene su representación con respecto a la base i es Ai
- La columna i de Atiene su representación con respecto a la base q es Aqi

La matriz A tiene una representación A con respecto a q

Transformaciones de similaridad

Ejemplo. Resuelva:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & -1 \\ -2 & 1 & 0 \\ 4 & 3 & 1 \end{bmatrix}$$

Transformaciones de similaridad

¿En donde se observan? Considere

$$Ax = y$$

Con respecto a la base $\{q_1, q_2, \ldots, q_n\}$ la ecuación se transforma en:

$$\tilde{\mathbf{A}}\tilde{\mathbf{x}}=\tilde{\mathbf{y}}$$

Los vectores están relacionados $\mathbf{x} = \mathbf{Q}\bar{\mathbf{x}}$ $\mathbf{y} = \mathbf{Q}\bar{\mathbf{y}}$ $\mathbf{Q} = [\mathbf{q}_1 \ \mathbf{q}_2 \ \cdots \ \mathbf{q}_n]$

Substituyendo en la primera ecuación

$$AQ\bar{x} = Q\bar{y}$$
 or $Q^{-1}AQ\bar{x} = \bar{y}$

Donde $\bar{A} = Q^{-1}AQ$ or $A = Q\bar{A}Q^{-1}$. Esta es una *transformación de similaridad* y \bar{A} y \bar{A} de dice que son *similares*.

¿De que se trata?

- Una matriz tiene distintas representaciones con respecto a distintas bases.
- Introduciremos una nueva base de tal forma que su representación sea diagonal o diagonal en bloque.

Conceptos:

- Eigenvalor de A: numero λ tal que existe un \mathbf{x} no cero que cumple $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$
- Eigenvector asociado a λ : Cualquier vector \mathbf{x} no cero que satisfaga $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$
- Polinomio característico: $\Delta(\lambda) = \det(\lambda \mathbf{I} \mathbf{A})$
- Matrices en forma compañera (companion form)

$$\begin{bmatrix} 1 & 0 & 0 & -\alpha_3 \\ 0 & 1 & 0 & -\alpha_2 \\ 0 & 0 & 1 & -\alpha_1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\alpha_4 & -\alpha_3 & -\alpha_2 & -\alpha_1 \end{bmatrix} \qquad \begin{bmatrix} -\alpha_1 & 1 & 0 & 0 \\ -\alpha_2 & 0 & 1 & 0 \\ -\alpha_3 & 0 & 0 & 1 \\ -\alpha_4 & 0 & 0 & 0 \end{bmatrix}$$

$$\Delta(\lambda) = \lambda^4 + \alpha_1 \lambda^3 + \alpha_2 \lambda^2 + \alpha_3 \lambda + \alpha_4$$

$$\begin{bmatrix} 0 & 0 & 0 & -\alpha_4 \\ 1 & 0 & 0 & -\alpha_3 \\ 0 & 1 & 0 & -\alpha_2 \\ 0 & 0 & 1 & -\alpha_1 \end{bmatrix} \qquad \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -\alpha_1 & 1 & 0 & 0 \\ -\alpha_2 & 0 & 1 & 0 \\ -\alpha_3 & 0 & 0 & 1 \\ -\alpha_4 & 0 & 0 & 0 \end{bmatrix}$$

$$\Delta(\lambda) = \lambda^4 + \alpha_1 \lambda^3 + \alpha_2 \lambda^2 + \alpha_3 \lambda + \alpha_4$$

Si todos los eigenvalores son distintos: $Aq_i = \lambda_i q_i$. El conjunto de eigenvectores $\{q_1, q_2, \ldots, q_n\}$ son linealmente independientes y pueden utilizarse como base.

SiA es la representación de Aen la base q entonces la primer columna de \mathbf{A} es la representación de $\mathbf{A}\mathbf{q}_1 = \lambda_1 \mathbf{q}_1$ con respecto a $\{\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n\}$ Así

$$\hat{\mathbf{A}}$$
 es la representación de $\mathbf{A}\mathbf{q}_1 = \lambda_1\mathbf{q}_1$ con respecto a $\{\mathbf{q}_1,\ \mathbf{q}_2,\ \dots,\ \mathbf{q}_n\}$ Así que
$$\mathbf{A}\mathbf{q}_1 = \lambda_1\mathbf{q}_1 = [\mathbf{q}_1\ \mathbf{q}_2\ \cdots\ \mathbf{q}_n]\begin{bmatrix} \lambda_1\\0\\\vdots\\0 \end{bmatrix}$$
 procediendo de la misma forma, obtenemos que
$$\hat{\mathbf{A}} = \begin{bmatrix} \lambda_1&0&0&\cdots&0\\0&\lambda_2&0&\cdots&0\\0&0&\lambda_3&\cdots&0\\\vdots&\vdots&\vdots&&\vdots\\0&0&0&\cdots&\lambda_n \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Ejemplo: Encuentre una matriz diagonal similar a

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

Eigenvalores repetidos. Entonces puede que no tenga representación diagonal. Sin embargo, tiene una representación con un bloque diagonal y con una forma triangular.

<u>Ejemplo</u>. Considere a \mathbf{A} una matriz de 4x4 con un eigenvalor λ de multiplicidad 4. Entonces \mathbf{A} solo tiene un eigenvector \mathbf{v} asociado a λy se necesitan 3 vectores mas L.I para formar una base para \mathcal{R}^4 . Los escogeremos de tal modo que

$$\begin{array}{ll} v_4 := v \\ v_3 := (A - \lambda I)v_4 = (A - \lambda I)v \\ v_2 := (A - \lambda I)v_3 = (A - \lambda I)^2v \\ v_1 := (A - \lambda I)v_2 = (A - \lambda I)^3v \end{array} \qquad \begin{array}{ll} \text{(cadena de} & (A - \lambda I)^nv = 0 \\ \text{eigenvectores} \\ \text{generalizados)} \\ (A - \lambda I)^{n-1}v \neq 0 \end{array}$$

que son linealmente independientes y que por lo tanto pueden ser usados para crear una base.

De estas ecuaciones se puede obtener

$$A\mathbf{v}_1 = \lambda \mathbf{v}_1$$

$$A\mathbf{v}_2 = \mathbf{v}_1 + \lambda \mathbf{v}_2$$

$$A\mathbf{v}_3' = \mathbf{v}_2 + \lambda \mathbf{v}_3$$

$$A\mathbf{v}_4 = \mathbf{v}_3 + \lambda \mathbf{v}_4$$

y por lo tanto la representación de A en la base $\{v_1, v_2, v_3, v_4\}$ es

$$\mathbf{J} := \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}$$

(matriz de Jordan o bloque de Jordan de orden 4)

Nulidad = 1

$$\hat{\mathbf{A}}_{1} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 1 & 0 & 0 \\ 0 & 0 & \lambda_{1} & 1 & 0 \\ 0 & 0 & 0 & \lambda_{1} & 0 \\ 0 & 0 & 0 & 0 & \lambda_{2} \end{bmatrix}$$

Nulidad = 2

$$\hat{\mathbf{A}}_{1} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 1 & 0 & 0 \\ 0 & 0 & \lambda_{1} & 1 & 0 \\ 0 & 0 & 0 & \lambda_{1} & 0 \\ 0 & 0 & 0 & \lambda_{2} \end{bmatrix} \qquad \qquad \hat{\mathbf{A}}_{2} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 1 & 0 & 0 \\ 0 & 0 & \lambda_{1} & 0 & 0 \\ 0 & 0 & 0 & \lambda_{1} & 0 \\ 0 & 0 & 0 & 0 & \lambda_{2} \end{bmatrix} \hat{\mathbf{A}}_{3} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 0 & 0 & 0 \\ 0 & 0 & \lambda_{1} & 1 & 0 \\ 0 & 0 & 0 & \lambda_{1} & 0 \\ 0 & 0 & 0 & \lambda_{2} \end{bmatrix}$$

Nulidad = 3

$$\hat{\mathbf{A}}_{4} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 0 & 0 & 0 \\ 0 & 0 & \lambda_{1} & 0 & 0 \\ 0 & 0 & 0 & \lambda_{1} & 0 \\ 0 & 0 & 0 & 0 & \lambda_{2} \end{bmatrix}$$
 una matriz no singular tal que la matriz
$$\hat{\mathbf{A}} = \mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}$$

Si λ_1 tiene multiplicidad 4 $y \lambda_2$ es un eigenvalor simple, entonces existe una matriz no singular Q

$$\hat{\mathbf{A}} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}$$

asume alguna de estas formas.

Nulidad = 5

$$\hat{\mathbf{A}}_5 = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}$$

Una propiedad útil de las matrices con forma de Jordan es

$$(\mathbf{J} - \lambda \mathbf{I}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(\mathbf{J} - \lambda \mathbf{I})^k = \mathbf{0}$$
 for $k \ge 4$.

- Potencia de una matriz cuadrada: $A^k := AA \cdots A$ (k terms) $A^0 = I$
- Polinomios de matrices cuadradas: Polinomios como

$$f(A) = A^3 + 2A^2 - 6I$$
 or $f(A) = (A + 2I)(4A - 3I)$

SiA es diagonal por bloques $A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$ entonces

$$\mathbf{A}^k = \begin{bmatrix} \mathbf{A}_1^k & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2^k \end{bmatrix} \quad \text{and} \quad f(\mathbf{A}) = \begin{bmatrix} f(\mathbf{A}_1) & \mathbf{0} \\ \mathbf{0} & f(\mathbf{A}_2) \end{bmatrix}$$

• Considere la transformación de similaridad $\hat{\mathbf{A}} = \mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}$ como

$$A^{k} = (Q\hat{A}Q^{-1})(Q\hat{A}Q^{-1})\cdots(Q\hat{A}Q^{-1}) = Q\hat{A}^{k}Q^{-1}$$

se tiene $f(\mathbf{A}) = \mathbf{Q}f(\hat{\mathbf{A}})\mathbf{Q}^{-1}$ or $f(\hat{\mathbf{A}}) = \mathbf{Q}^{-1}f(\mathbf{A})\mathbf{Q}$

• Teorema de Cayley-Hamilton: Sea

$$\Delta(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^n + \alpha_1 \lambda^{n-1} + \dots + \alpha_{n-1} \lambda + \alpha_n$$

el polinomio característico de A. Entonces

$$\Delta(\mathbf{A}) = \mathbf{A}^n + \alpha_1 \mathbf{A}^{n-1} + \dots + \alpha_{n-1} \mathbf{A} + \alpha_n \mathbf{I} = \mathbf{0}$$

*Nota: A^n puede ser escrita como una combinacion lineal de $\{I, A, \ldots, A^{n-1}\}$

• <u>Teorema</u>: Dada una cierta $f(\lambda)$ y una matriz \mathbf{A} de $n \times n$ con polinomio característico

$$\Delta(\lambda) = \prod_{i=1}^{m} (\lambda - \lambda_i)^{n_i}$$

donde $n = \sum_{i=1}^{m} n_i$ Defina

$$h(\lambda) := \beta_0 + \beta_1 \lambda + \dots + \beta_{n-1} \lambda^{n-1}$$

que es un polinomio de gradon-1 con n coeficientes desconocidos. Estasn incógnitas serán resueltas a partir del siguiente conjunto de n ecuaciones

$$f^{(l)}(\lambda_i) = h^{(l)}(\lambda_i)$$
 for $l = 0, 1, ..., n_i - 1$ and $i = 1, 2, ..., m$
donde
$$f^{(l)}(\lambda_i) := \frac{d^l f(\lambda)}{d\lambda^l} \Big|_{\lambda = \lambda_i}$$

y $h^{(l)}(\lambda_i)$ es definido de forma similar. Entonces tenemos que

$$f(\mathbf{A}) = h(\mathbf{A})$$

 $y h(\lambda)$ se dice que equivale a $f(\lambda)$ sobre el espectro de A.

Ejemplo: Calcule A¹⁰⁰ con

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$$

Ejemplo: Calcule $e^{\mathbf{A}_{1}t}$ para

$$\mathbf{A}_1 = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

Ecuaciones algebraicas lineales

Son ecuaciones del tipo

$$Ax = y$$

Donde A y y son matrices reales dadas de tamaño $m \times n$, $m \times 1$ respectivamente y x es un vector de $n \times 1$ de incógnitas desconocidas.

m ecuaciones y n incógnitas

Algunos conceptos

- **Espacio expandido** por **A** (*range*): el conjunto de todas las posibles combinaciones lineales originadas por las columnas de **A**.
- Rango de A (rank): numero de columnas de A linealmente independientes. $rank(A) \leq min(m, n)$
- Vector nulo: x es un vector nulo si Ax = 0.
- Nulidad de A: numero de vectores nulos de A linealmente
 independientes
 Nullity (A) = number of columns of A rank (A)

Ecuaciones algebraicas lineales

Teorema sobre existencia de solución

1. La solución x existe para Ax = y si y solo si y pertenece al espacio expandido por A, o equivalentemente:

$$\rho(\mathbf{A}) = \rho([\mathbf{A} \ \mathbf{y}])$$

donde [A y] es una matriz de $m \times (n + 1)$. Esta condición quiere decir que y se puede construir a través de una combinación lineal de los vectores L.I deA.

2. Dada \mathbf{A} , una solución \mathbf{x} existe para $\mathbf{A}\mathbf{x} = \mathbf{y}$ para toda \mathbf{y} si y solo si \mathbf{A} tiene rango m (rango fila completo).

Ecuaciones algebraicas lineales

Parametrización de todas las soluciones:

Dada una matriz \mathbf{A} de $m \times n$ y un vector \mathbf{y} de $m \times 1$. Sea \mathbf{X}_p una solución particular para $\mathbf{A}\mathbf{x} = \mathbf{y}$ y $k := n - \rho(\mathbf{A})$ la nulidad de \mathbf{A} . Si \mathbf{A} tiene rango n (rango completo) entonces la solución \mathbf{x}_p es única.

Si k > 0, entonces para cada real α_i , i = 1, 2, ..., k, el vector

$$\mathbf{x} = \mathbf{x}_p + \alpha_1 \mathbf{n}_1 + \dots + \alpha_k \mathbf{n}_k$$

es una solución para $\mathbf{A}\mathbf{x} = \mathbf{y}$ donde $\{\mathbf{n}_1, \ldots, \mathbf{n}_k\}$ es la base para el espacio nulo de \mathbf{A} .

Ecuación de Lyapunov

Ecuación de Lyapunov:

A
$$n \times n$$
 M $n \times m$

$$AM + MB = C$$

$$\mathbf{B} \ m \times m \quad \mathbf{C} \ n \times m$$

Esta ecuación puede ser escrita como un conjunto de ecuaciones algebraicas lineales, si por ejemplo n=3, m=2

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \\ m_{31} & m_{32} \end{bmatrix} + \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \\ m_{31} & m_{32} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} + b_{11} & a_{12} & a_{13} & b_{21} & 0 & 0 \\ a_{21} & a_{22} + b_{11} & a_{23} & 0 & b_{21} & 0 \\ a_{31} & a_{32} & a_{33} + b_{11} & 0 & 0 & b_{21} \\ b_{12} & 0 & 0 & a_{11} + b_{22} & a_{12} & a_{13} \\ 0 & b_{12} & 0 & a_{21} & a_{22} + b_{22} & a_{23} \\ 0 & 0 & b_{12} & a_{31} & a_{32} & a_{33} + b_{22} \end{bmatrix} \begin{bmatrix} m_{11} \\ m_{21} \\ m_{31} \\ m_{12} \\ m_{22} \\ m_{32} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{12} \\ c_{22} \\ c_{32} \end{bmatrix}$$

Ecuación de Lyapunov

Defina $\mathcal{A}(\mathbf{M}) := \mathbf{A}\mathbf{M} + \mathbf{M}\mathbf{B}$, entonces la ecuación de Lyapunov $\mathcal{A}(\mathbf{M}) = \mathbf{C}$ mapea un espacio lineal nm-dimensional en si mismo.

Un escalar η es un eigenvalor de \mathcal{A} si existe una \mathbf{M} no cero tal que

$$\mathcal{A}(\mathbf{M}) = \eta \mathbf{M}$$

Como \mathcal{A} puede considerarse una matriz cuadrada de orden nm, tiene nm eigenvalores η_k para k = 1, 2, ..., nm. Resulta que

$$\eta_k = \lambda_i + \mu_j$$
 for $i = 1, 2, ..., n$; $j = 1, 2, ..., m$

donde λ_i son los eigenvalores de \mathbf{A} y $\iota \mu_j$ son los eigenvalores de \mathbf{B} . Es decir, los eigenvalores de \mathbf{A} son todas las posibles sumas de los eigenvalores de \mathbf{A} y \mathbf{B} . Esto es debido a que si $\mathbf{A}\mathbf{u} = \lambda_i\mathbf{u}$ y $\mathbf{v}\mathbf{B} = \mathbf{v}\mu_j$ (eigenvector izquierdo) entonces

$$\mathcal{A}(\mathbf{u}\mathbf{v}) = \mathbf{A}\mathbf{u}\mathbf{v} + \mathbf{u}\mathbf{v}\mathbf{B} = \lambda_i\mathbf{u}\mathbf{v} + \mathbf{u}\mathbf{v}\mu_j = (\lambda_i + \mu_j)\mathbf{u}\mathbf{v}$$

Como \mathbf{u} y \mathbf{v} no son cero tampoco lo es la matriz $\mathbf{u}\mathbf{v}$. Entonces $(\lambda_i + \mu_j)$ es un eigenvalor de \mathbf{A} .

Ecuación de Lyapunov

Si no existeni o j tales que $\lambda_i + \mu_j = 0$., la ecuación de Lyapunov es no singular y para cada \mathbf{C} existe solo una \mathbf{M} que satisface la ecuación.

Nota: Si los eigenvalores de **A** y **B** son negativas ecuación de Lyapunov siempre tiene solución única.

Formulas útil

$$\det(\mathbf{I}_{m} + \mathbf{A}\mathbf{B}) = \det(\mathbf{I}_{n} + \mathbf{B}\mathbf{A})$$

$$\mathbf{N} = \begin{bmatrix} \mathbf{I}_{m} & \mathbf{A} \\ \mathbf{0} & \mathbf{I}_{n} \end{bmatrix} \quad \mathbf{Q} = \begin{bmatrix} \mathbf{I}_{m} & \mathbf{0} \\ -\mathbf{B} & \mathbf{I}_{n} \end{bmatrix} \quad \mathbf{P} = \begin{bmatrix} \mathbf{I}_{m} & -\mathbf{A} \\ \mathbf{B} & \mathbf{I}_{n} \end{bmatrix}$$

$$\mathbf{N}\mathbf{P} = \begin{bmatrix} \mathbf{I}_{m} + \mathbf{A}\mathbf{B} & \mathbf{0} \\ \mathbf{B} & \mathbf{I}_{n} \end{bmatrix} \quad \mathbf{Q}\mathbf{P} = \begin{bmatrix} \mathbf{I}_{m} & -\mathbf{A} \\ \mathbf{0} & \mathbf{I}_{n} + \mathbf{B}\mathbf{A} \end{bmatrix}$$

$$\det(\mathbf{N}\mathbf{P}) = \det(\mathbf{I}_{m} + \mathbf{A}\mathbf{B}) \quad \det(\mathbf{Q}\mathbf{P}) = \det(\mathbf{I}_{n} + \mathbf{B}\mathbf{A})$$

$$\det(\mathbf{N}\mathbf{P}) = \det(\mathbf{N}\det(\mathbf{P}) = \det(\mathbf{P}) \quad \det(\mathbf{Q}\mathbf{P}) = \det(\mathbf{P})$$

Nota:

$$s^n \det(s\mathbf{I}_m - \mathbf{A}\mathbf{B}) = s^m \det(s\mathbf{I}_n - \mathbf{B}\mathbf{A})$$
 $n = m$ $\det(s\mathbf{I}_n - \mathbf{A}\mathbf{B}) = \det(s\mathbf{I}_n - \mathbf{B}\mathbf{A})$

Formas Cuadráticas

- <u>Matriz simétrica</u>: Una matriz tal que $\mathbf{M}' = \mathbf{M}$. Tienen dos propiedades importantes de recordar:
 - ✓ Todos los eigenvalores de una matriz simetrica son reales. $(x^*Mx)^* = x^*M^*x = x^*M'x = x^*Mx$
 - ✓ Toda matriz simétrica se puede diagonalizar. Es decir, existe una Q no singular tal que

$$\mathbf{M} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$$

donde **D** es una matriz diagonal con los eigenvalores reales de **M** en su diagonal.

- Formas Cuadrática: Una función escalar $\mathbf{x}'\mathbf{M}\mathbf{x}$ donde $\mathbf{M}' = \mathbf{M}$ y \mathbf{x} es un vector real de $n \times 1$.
- <u>Matriz Ortogonal</u>: A es ortogonal si todas sus columnas son ortonormales.
 Obviamente A es no singular y cumple

$$AA' = AA^{-1} = I = A'A$$

Formas Cuadraticas

<u>Teorema</u>: Para cada matriz real simétrica M existe una matriz ortogonal Q tal que

$$M = QDQ'$$
 or $D = Q'MQ$

donde **D** es una matriz diagonal con los eigenvalores de **M** (todos reales) sobre su diagonal.

- Teorema: Una matriz simétrica \mathbf{M} de $n \times n$ es **definida positiva** si y solo si una de las siguientes condiciones se cumple
 - 1. Cada eigenvalor de **M** es positivo (cero o positivo).
 - 2. Todos los menores principales de M son positivos (cero o positivos).
 - 3. Existe una matriz N no singular de $n \times n$ (o de $m \times n$) tal que M = N'N.

Propiedades: Para todo x no cero

- a) M > 0 si x'Mx > 0 (definida positiva)
- b) $M \ge 0$ si $x'Mx \ge 0$ (semidefinida positiva)

Descomposición en Valores Singulares

Sea \mathbf{H} una matriz real. Defina $\mathbf{M} := \mathbf{H}'\mathbf{H}$. Claramente \mathbf{M} es una matriz simetrica semidefinida positiva y de dimension $n \times n$. Entonces todos los eigenvalores de \mathbf{M} son reales y no negativos (cero o positivos). Sea r el número de eigenvalores positivos. Entonces los eigenvalores de $\mathbf{M} := \mathbf{H}'\mathbf{H}$ pueden ser acomodados como

$$\lambda_1^2 \ge \lambda_2^2 \ge \cdots \lambda_r^2 > 0 = \lambda_{r+1} = \cdots = \lambda_n$$

 $Sea\bar{n} := min(m, n)$. Al conjunto

$$\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r > 0 = \lambda_{r+1} = \cdots = \lambda_{\bar{n}}$$

se le conoce como los *valores singulares* de **H**.

Descomposición en Valores Singulares

<u>Teorema</u>: Toda matriz $|\mathbf{H}|$ de $m \times n$ puede ser transformada en la forma

$$H = RSQ'$$

Con $\mathbf{R}'\mathbf{R} = \mathbf{R}\mathbf{R}' = \mathbf{I}_m$, $\mathbf{Q}'\mathbf{Q} = \mathbf{Q}\mathbf{Q}' = \mathbf{I}_n$ y \mathbf{S} siendo de $m \times n$ con los valores singulares de \mathbf{H} sobre la diagonal

¿Por qué? Las columnas de ${\bf Q}$ son eigenvectores ortonormalizados de ${\bf H}'{\bf H}$ y las columas de ${\bf R}$ son eigenvectores ortonormalizados de ${\bf H}'{\bf H}$. Una vez que ${\bf R}$, ${\bf S}$ y ${\bf Q}$ son computados, el rango de ${\bf H}$ es igual al número de valores singulares no cero. Si el rango de ${\bf H}$ es r, las primeras r columnas de ${\bf R}$ son una base ortonormal para el espacio rango de ${\bf H}$. Las ultimas (n-r) columnas de ${\bf Q}$ son una base ortonormal para el espacio nulo (o kernel) de ${\bf H}$.

Normas de Matrices

La norma de A puede ser definida

$$||\mathbf{A}|| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{||\mathbf{A}\mathbf{x}||}{||\mathbf{x}||} = \sup_{||\mathbf{x}|| = 1} ||\mathbf{A}\mathbf{x}||$$

Esta norma es definida a través de la norma de **x** y por ello es llamada norma inducida. Para distintas ||**x**||, se tienen distintas ||**A**||. Por ejemplo, si la norma-1 es usada, entonces

$$||\mathbf{A}||_1 = \max_j \left(\sum_{i=1}^m |a_{ij}|\right) = \text{largest column absolute sum}$$

donde a_{ij} es el ij -elemento de ${f A}$. Si la norma euclidiana $|||{f x}||_2$ es usada

 $||A||_2$ = largest singular value of $A = (largest eigenvalue of <math>A'A)^{1/2}$

O si la norma infinito $||\mathbf{x}||_{\infty}$ es usada, entonces

$$||\mathbf{A}||_{\infty} = \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right) = \text{largest row absolute sum}$$

Normas de Matrices

Propiedades:

$$||Ax|| \le ||A|| ||x||.$$

 $||A + B|| \le ||A|| + ||B||$
 $||AB|| \le ||A|| ||B||$