# Cryptanalysis of Clyde and Shadow July 3rd, 2019

Horst Görtz Institut für IT Sicherheit, Ruhr-Universität Bochum Gregor Leander, and *Friedrich Wiemer* 



**RU**B

## Overview



- 1 Invariant Attacks Round Constants
- 2 Subspace Trails
- 3 Division Property
- 4 Results



## Main Idea: Invariant Subspaces





## Main Idea: Invariant Subspaces





#### Main Idea: Invariant Subspaces



## Invariant Subspace Attacks [Lea+11] (CRYPTO'11)

Let  $U \subseteq \mathbb{F}_2^n$ ,  $c, d \in U^{\perp}$ , and  $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ . Then U is an *invariant subspace* (IS) if and only if F(U+c) = U+d and all round keys in U+(c+d) are weak keys.

A Short History





**Proving Resistance** 

## Goal: Apply security argument from

C. Beierle, A. Canteaut, G. Leander, and Y. Rotella. "Proving Resistance Against Invariant Attacks: How to Choose the Round Constants". In: CRYPTO 2017, Part II. 2017. doi: 10.1007/978-3-319-63715-0\_22. iacr: 2017/463.

### What do we get from this?

Non-existence of invariants for both parts of the round function (S-box and linear layer)

#### Issues

- Other partitionings of the round function might allow invariants (Christof B. found examples)
- Not clear how to prove the general absence of invariant attacks (best we can currently prove)
- All known attacks exploit exactly this structure (splitting in S-box and linear layer)

Recap Security Argument (I)

#### Observation

- Invariants for the linear layer L and round key addition have to contain special linear structures.
- Denote by  $c_1, ..., c_t$  the round constant differences for rounds with the same round key.
- Then the linear structures of any invariant have to contain  $W_L(c_1,...,c_t)$ .

## Invariant Attacks Recap Security Argument (I)

#### Observation

- Invariants for the linear layer L and round key addition have to contain special linear structures.
- Denote by  $c_1, ..., c_t$  the round constant differences for rounds with the same round key.
- Then the linear structures of any invariant have to contain  $W_L(c_1,...,c_t)$ .

## The smallest L-invariant subspace

 $W_L(c_1,\dots,c_t)$  is the smallest L-invariant subspace of  $\mathbb{F}_2^n$  containing all  $c_i$ 

$$\Leftrightarrow \forall x \in W_L(c_1, \dots, c_t) : L(x) \in W_L(c_1, \dots, c_t)$$

## Invariant Attacks Recap Security Argument (I)

#### Observation

- Invariants for the linear layer L and round key addition have to contain special linear structures.
- Denote by  $c_1, ..., c_t$  the round constant differences for rounds with the same round key.
- Then the linear structures of any invariant have to contain  $W_L(c_1,...,c_t)$ .

## The smallest L-invariant subspace

 $W_L(c_1,\dots,c_t)$  is the smallest L-invariant subspace of  $\mathbb{F}_2^n$  containing all  $c_i$ 

$$\Leftrightarrow \forall x \in W_L(c_1, \dots, c_t) : L(x) \in W_L(c_1, \dots, c_t)$$

## The simple case

If  $W_L(c_1,\ldots,c_t)$  contains the whole  $\mathbb{F}_2^n$ , only trivial invariants for L and the round key addition are possible (constant 0 and 1 function).

## Invariant Attacks Recap Security Argument (II)

## Bounding the dimension of $W_L$ , [Bei+17, Theorem 1]

Given a linear layer L. Denote by  $Q_i$  its invariant factors. Then

$$\max_{c_1,\ldots,c_t\in\mathbb{F}_2^n}\dim W_L(c_1,\ldots,c_t)=\sum_{i=1}^t\deg Q_i.$$

## Bounding the dimension of $W_L$ , [Bei+17, Theorem 1]

Given a linear layer L. Denote by  $Q_i$  its invariant factors. Then

$$\max_{c_1,\ldots,c_t\in\mathbb{F}_2^n}\dim W_L(c_1,\ldots,c_t)=\sum_{i=1}^t\deg Q_i\;.$$

#### Application to Clyde

- Compute invariant factors of linear layer:
- This gives a first lower bound on the number of rounds:
- Find the important round constant differences:
- Due to its tweakey schedule, every tweakey equals the fourth next tweakey:  $TK_i = TK_{i+3}$ .
- After each step (two rounds), a tweakey is added.
- Ma need at least face recent constant differences leading at the recent constant additions, this



## Application to Clyde

- Compute invariant factors of linear layer:  $4 \times (x^{32} + 1)$
- This gives a first lower bound on the number of rounds: 3 steps/6 rounds
- lacktriangle Find the important round constant differences: Set of RC differences D
- Due to its tweakey schedule, every tweakey equals the fourth next tweakey:  $TK_i = TK_{i+3}$ .
- After each step (two rounds), a tweakey is added.
- We need at least four round constant differences; looking at the round constant additions, this implies at least three steps (six rounds), so that  $W_L$  can achieve full dimension.
- In particular, the set of round constant differences, for the six steps Clyde uses, is:

$$D = D_{TK_0} \cup D_{TK_1} \cup D_{TK_2} \cup D_0$$

$$D_{TK_0} = \{0 + W(5), 0 + W(11), W(5) + W(11)\}$$

$$D_{TK_1} = \{W(1) + W(7)\}$$



## Main Idea: Subspace Trails





## Main Idea: Subspace Trails





### Main Idea: Subspace Trails



## Subspace Trail Cryptanalysis [GRR16] (FSE'16)

Let  $U_0, \ldots, U_r \subseteq \mathbb{F}_2^n$ , and  $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ . Then these form a subspace trail (ST),  $U_0 \xrightarrow{F} \cdots \xrightarrow{F} U_r$ , iff

$$\forall a \in U_i^{\perp} : \exists b \in U_{i+1}^{\perp} : \qquad F(U_i + a) \subseteq U_{i+1} + b$$

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

#### Lemma

Let  $U \xrightarrow{F} V$  be a ST. Then for all  $u \in U$  and all  $x: F(x) + F(x+u) \in V$ .

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

#### Lemma

Let  $U \xrightarrow{F} V$  be a ST. Then for all  $u \in U$  and all  $x: F(x) + F(x + u) \in V$ .



Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

#### Lemma

Let  $U \xrightarrow{F} V$  be a ST. Then for all  $u \in U$  and all  $x: F(x) + F(x + u) \in V$ .



Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

#### Lemma

Let  $U \xrightarrow{F} V$  be a ST. Then for all  $u \in U$  and all  $x: F(x) + F(x + u) \in V$ .



Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

#### Lemma

Let  $U \xrightarrow{F} V$  be a ST. Then for all  $u \in U$  and all  $x: F(x) + F(x+u) \in V$ .



#### Computing the subspace trail

■ To compute the next subspace, we have to compute the image of the derivatives.

## **Computing Subspace Trails Algorithm**

### Compute Subspace Trails

**Input:** A nonlinear, bijective function  $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$  and a subspace U. **Output:** The longest ST starting in U over F.

```
1 function Compute \operatorname{Trail}(F,U)

2 if \dim(U) = n then

3 return U

4 V \leftarrow \emptyset

5 for u_i basis vectors of U do

6 for enough x \in_{\mathbb{R}} \mathbb{F}_2^n do \triangleright e. g. n+20 x's are enough

7 V \leftarrow V \cup \Delta_{u_i}(F)(x) \triangleright \Delta_a(F)(x) := F(x) + F(x+a)

8 V \leftarrow \operatorname{span}(V)

9 return the subspace trail U \rightarrow \operatorname{Compute Trail}(F,V)
```

## Subspace Trails Proving Resistance



## Goal: Apply security argument from

G. Leander, C. Tezcan, and F. Wiemer. "Searching for Subspace Trails and Truncated Differentials". In: ToSC 2018.1 (2018). doi: 10.13154/tosc.v2018.i1.74-100.

### What do we get from this?

■ (Tight) upper bound on the length of any ST for an SPN construction

## Why is the Compute Trail algorithm not enough?

Exhaustively checking all possible starting points is to costly.

# **Subspace Trails**How to bound the length of any subspace trail



**RU**B

## Subspace Trails

How to bound the length of any subspace trail

#### Observation



## Algorithm Idea

Compute the subspace trails for any starting point  $W_{i,a} \in \mathcal{W}$ , with

$$W_{i,\alpha} := (\underbrace{0,\ldots,0}_{i-1},\alpha,0,\ldots,0)$$

## Complexity (Size of $\mathcal{W}$ )

For an S-box layer  $S: \mathbb{F}_2^{kn} \to \mathbb{F}_2^{kn}$  with k S-boxes, each n-bit:  $|\mathcal{W}| = k \cdot (2^n - 1)$ 

Algorithm

5

## Generic Subspace Trail Search

```
Input: A linear layer matrix M : \mathbb{F}_2^{n \cdot k \times n \cdot k}, and an S-box S : \mathbb{F}_2^n \to \mathbb{F}_2^n.
```

**Output:** A bound on the length of all STs over  $F = M \circ S^k$ .

- 1 **function** Generic Subspace Trail Length(M, S)
- 2 empty list L
- for possible initial subspaces represented by  $W_{i,\alpha} \in \mathcal{W}$  do
- 4 L.append(Compute Trail( $S^k \circ M, \{W_{i,\alpha}\}$ ))

- $\triangleright$  Overall  $k \cdot (2^n 1)$  iterations
- $\triangleright S^k$  denotes the S-box layer

**return** max  $\{len(t) \mid t \in L\}$ 

## Overall Complexity

| Algorithm  | Compute Trail         | Generic Subspace Trail Length | Overall                  |
|------------|-----------------------|-------------------------------|--------------------------|
| Complexity | $\mathcal{O}(k^2n^2)$ | $\mathcal{O}(k2^n)$           | $\mathcal{O}(k^3n^22^n)$ |

# **Division Property**

## **Division Property**



### Goal: Apply security argument from

Z. Xiang, W. Zhang, Z. Bao, and D. Lin. "Applying MILP Method to Searching Integral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers". In: ASIACRYPT 2016, Part I. 2016. doi: 10.1007/978-3-662-53887-6\_24. iacr: 2016/857.

#### What do we get from this?

bla

## Approach

Model division trail propagations as MILP, find solutions for this over increasing number of rounds.

## Results

## RUB

## **Results**

Thanks for your attention!

| Number of rounds for which a distinguisher exist |                 |                   |  |
|--------------------------------------------------|-----------------|-------------------|--|
| Cipher                                           | Subspace Trails | Division Property |  |
| Clyde                                            | 2 (+1)          | 8                 |  |
| Shadow                                           | 4 (+1)          | not yet testet    |  |

## Future Work/Cryptanalysis

■ Cryptagraph [HV18]



## References I



- [Lea+11] G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. "A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack". In: CRYPTO 2011. 2011. doi: 10.1007/978-3-642-22792-9\_12.
- [LMR15] G. Leander, B. Minaud, and S. Rønjom. "A Generic Approach to Invariant Subspace Attacks: Cryptanalysis of Robin, iSCREAM and Zorro". In: EUROCRYPT 2015, Part I. 2015. doi: 10.1007/978-3-662-46800-5\_11.
- [GRR16] L. Grassi, C. Rechberger, and S. Rønjom. "Subspace Trail Cryptanalysis and its Applications to AES". In: ToSC 2016.2 (2016). doi: 10.13154/tosc.v2016.i2.192-225.
- [Guo+16] J. Guo, J. Jean, I. Nikolic, K. Qiao, Y. Sasaki, and S. M. Sim. "Invariant Subspace Attack Against Midori64 and The Resistance Criteria for S-box Designs". In: ToSC 2016.1 (2016). doi: 10.13154/tosc.v2016.i1.33-56.
- [TLS16] Y. Todo, G. Leander, and Y. Sasaki. "Nonlinear Invariant Attack Practical Attack on Full SCREAM, iSCREAM, and Midori64". In: ASIACRYPT 2016, Part II. 2016. doi: 10.1007/978-3-662-53890-6\_1.
- [Xia+16] Z. Xiang, W. Zhang, Z. Bao, and D. Lin. "Applying MILP Method to Searching Integral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers". In: ASIACRYPT 2016, Part J. 2016. doi: 10.1007/978-3-662-53887-6\_24.iacr: 2016/857.
- [Bei+17] C. Beierle, A. Canteaut, G. Leander, and Y. Rotella. "Proving Resistance Against Invariant Attacks: How to Choose the Round Constants". In: CRYPTO 2017, Part II. 2017. doi: 10.1007/978-3-319-63715-0\_22. iacr: 2017/463.
- [HV18] M. Hall-Andersen and P. S. Vejre. "Generating Graphs Packed with Paths". In: ToSC 2018.3 (2018). doi: 10.13154/tosc.v2018.i3.265-289.
- [LTW18] G. Leander, C. Tezcan, and F. Wiemer. "Searching for Subspace Trails and Truncated Differentials". In: ToSC 2018.1 (2018). doi: 10.13154/tosc.v2018.i1.74-100.