Semaine 1

Fondamentaux d'algèbre linéaire

Réductions de matrices

Objectif d'une reduction
Cas symétrique
Cas général : SVD

- Espaces vectoriels réels
- Applications linéaires
- Matrices

Semaine 2

- ▶ Produit scalaire, projections, interprétations géométriques
- ► Réductions de matrices

Réductions de matrices

Objectif d'une réduction

Réduction de matrices

Principe: Matrice quelconque \rightarrow produit de matrices simples, ex: matrices orthogonales, dilatations ...

Applications

- ▶ Inversion de matrice, résolution de système linéaire, solution moindres carrés.
- ► Analyse en composantes principales (ACP) : directions de « plus grande variance » d'un jeu de données.

Réductions de matrices

Objectif d'une réduction

Matrice diagonale, vecteurs propres, valeurs

propres▶ Une matrice carrée D est diagonale si tous ses coefficients sont nuls sauf les coefficients diagonaux

$$D = \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_n \end{pmatrix} \Leftrightarrow f(\mathbf{u}_i) = \sigma_i \mathbf{u}_i \text{ pour } f \leftrightarrow_{\mathcal{U}} M.$$

▶ On dit que **u**_i est **vecteur propre de** *f* associé à la **valeur** propre σ_i

Mines-Télécom

Réductions de matrices

Objectif d'une réduction

Cas symétrique

Cas général : SVD

SVD : Exemple d'application

Matrice/ application diagonalisable

- ▶ $f: \mathbb{R}^n \to \mathbb{R}^n$ est diagonalisable si $\exists \mathcal{U}: f(\mathbf{u}_i) = \sigma_i \mathbf{u}_i$
- ▶ M est **diagonalisable** si $f \leftrightarrow_e M$ l'est.
 - $\Leftrightarrow \exists P$, matrice de passage, telle que

$$D = P^{-1}MP$$
 diagonale.

▶ Colonnes de P : vecteurs propres de M et f .

M (ou f) est diagonalisable s'il existe une base de vecteurs propres pour M (ou f).

Réductions de matrices

Cas symétrique

Diagonalisation des matrices symétriques

▶ Une matrice (carrée) M est **symétrique** si $M^{\top} = M$.

Théorème

Toute matrice symétrique réelle est diagonalisable en base orthornormée

- « en base orthornormée » : avec une matrice de passage orthogonale.
- ▶ Autrement dit, si M est symétrique et [f] = M, il existe une base orthonormée \mathcal{U} , telle que $[f]_{ii}^u$ soit diagonale.
- ▶ ou encore : si *M* est symétrique, il existe une matrice orthogonale P et une matrice diagonale D telles que

$$M = PDP^{\top}$$
.

Réductions de matrices

Objectif d'une réductio

Cas symétrique

Cas général : SVD

SVD : Exemple d'application

Décomposition en valeurs singulières (SVD)

- ▶ But : avoir un résultat similaire pour une matrice *M* ni symétrique, ni carrée.
- ▶ Principe : Ecrire la matrice comme le produit de
 - ► Une matrice orthogonale
 - ► Une matrice « diagonale »
 - ▶ Une deuxième matrice orthogonale.

Réductions de matrices

Cas général : SVD

Soit $M \in \mathbb{R}^{n \times p}$. On peut trouver

- ▶ $U \in \mathbb{R}^{n \times n}$ et $V \in \mathbb{R}^{p \times p}$, orthogonales $(UU^T = 0, VV^T = 0)$
- une matrice 'diagonale' $\Sigma \in \mathbb{R}^{n \times p}$ de coefficients diagonaux positifs ou nuls,

telles que

$$M = U\Sigma V^{\top}$$

Cette décomposition est la SVD de M.

remarques :

matrice Σ 'diagonale' :

$$\Sigma = \begin{pmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_n \end{pmatrix} \quad 0 \quad) \text{ ou } \Sigma = \begin{pmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_p \\ \hline & 0 \end{pmatrix}$$

 \triangleright U et V ne sont pas uniques, mais les valeurs propres σ_i le sont (à l'ordre près)

Réductions de matrices

Objectif d'une réduction

Cas symétrique

Cas général : SVD

SVD · Evennle d'applic

SVD en pratique : avec Python

```
import numpy as np
from numpy import linalg
M = np.matrix([[1,2,3],[4,5,6]])
U, s, W =linalg.svd(M)
```

Complexité : $O(p n^2)$ opérations, si $p \ge n$.

- \triangleright s est une array unidimensionelle (la diagonale de Σ).
- ightharpoonup
 igh

$$M = U\Sigma W$$

pour reconstruire M

```
S=np.zeros( (2,3),dtype='float')
S[:2 , :2] = np.diag(s)
S=np.matrix(S)
M_recons= U * S * W
```


8/14

Réductions de matrices

Cas général : SVD

SVD: interprétation « application linéaire »

- ▶ Soit f linéaire, $f \sim_{(\mathbf{e})_n,(\mathbf{e})_n} M$.
- ▶ Existence de la SVD \Leftrightarrow existence de \mathcal{U}, \mathcal{V} , orthonormales, telles que

$$f \sim_{\mathcal{U},\mathcal{V}} \Sigma$$
.

 \mathcal{U} : colonnes de \mathcal{U} : \mathcal{V} : colonnes de \mathcal{V} :

Vecteurs, valeurs singulières

$$f(\mathbf{v}_i) = \sigma_i \, \mathbf{u}_i, \quad i \leq \min(n, p)$$

 \mathbf{u}_i : vecteurs singuliers à gauche,

 \mathbf{v}_i : vecteurs singuliers à gauche,

 σ_i : valeurs singulières.

- ightharpoonup si p > n, $f(v_i) = 0$ pour i > n;
 - ▶ Im $f \subset Vect(u_1, \ldots, u_n)$.

Réductions de matrices

Cas général : SVD

SVD: interpretation « matrices »

$$M = U\Sigma V^{\top} \Leftrightarrow MV = \Sigma U$$

$$\Leftrightarrow MV_i = \sigma_i U_i , i \leq \min(n, p)$$

 $(V_i, U_i : colonnes de V et U.)$

- $ightharpoonup V_i \ll \text{vecteurs singuliers à droite } > \text{de } M$
- ▶ U_i « vecteurs singuliers à gauche »de M
- $\triangleright \sigma_i$: valeurs singulières.

$$M = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_n \\ \mathbf{u}_n \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ \ddots & \\ 0 & \sigma_n \end{pmatrix} \begin{pmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_p^\top \end{pmatrix}$$

10/14

Réductions de matrices

Objectif d'une réduction

Cas symétrique

Cas général : SVD

SVD : Exemple d'application

Application : solution de moindres carrés

Problème de stat : trouver $X^* = \arg\min_{X \in \mathbb{R}^p} \|MX - Y\|^2$.

- ▶ Supposons $M \in \mathbb{R}^{n \times p}$, n < p.
- ➤ X* vérifie

$$M^{\top}MX^* = M^{\top}Y$$
 cf :cours de stat

Solution si $M^{\top}M$ **non inversible?** (rang $r \leq n$)

Ne pas calculer directement $M^{\top}M$ puis inverser (NaN) : utiliser la SVD de M!

Réductions de matrices

Objectif d'une réduction

Cas symétrique

Cas général : SVD

SVD : Exemple d'application

Solution: pseudo-inverse et SVD

déf : pseudo-inverse de M : La matrice M^{\dagger} telle que, $\forall Y$,

le vecteur
$$\hat{X} = M^{\dagger} Y$$
 soit

- ▶ solution de min $_X \|MX Y\|^2$
- ▶ de plus faible norme euclidienne parmi les solutions.

Existence, unicité : admis.

$$M^{\dagger}$$
 se calcule avec la SVD : $M^{\dagger} = V \Sigma^{\dagger} U^{\top}$

οù

Réductions de matrices

Objectif d'une réduction

Cas symétrique

Cas général : SVE

SVD : Exemple d'application

Moindres carrés : conclusion

Solution choisie :
$$X^* = \mathbf{V} \mathbf{\Sigma}^{\dagger} \mathbf{U} Y$$
 $(= \hat{X})$

- \blacktriangleright Existe même si $M^{\top}M$ non inversible!
- ▶ Stable si $M^{\top}M$ inversible mais avec très petites valeurs propres (colonnes 'presque' colinéaires).
- ▶ Coût numérique : la décomposition U, Σ, V^{\top} .

Conclusion du cours

Fondamentaux d'algèbre linéaire

Réductions de matrices

Objectif d'une réduction

Cas symétriqu

Cas général : SVE

SVD : Exemple d'application

Après ce cours - et du travail personnel, vous devriez pouvoir aborder sereinement :

- les statistiques dans le modèle linéaire
- Les techniques de classifications basées sur la séparation par des hyper-plans (perceptron, SVM)
- ▶ la réduction de dimension (PCA)

