

ATMA RAM SANATAN DHARM COLLEGE

Course Title: Discrete Mathematical Structure

Practical

Submitted To:

Lokesh Kumar Shrivastav Sir

Faculty Of Computer Science

Submitted By:

Name: Sudeep Kumar Singh

Roll No.: 22/28021

Course: B.Sc. Computer Science Hons.

1. Plotting and fitting of Binomial distribution and graphical representation of probabilities.

Formula Used =BINOM.DIST(B3,\$G\$2,A3, FALSE)	Binomial distribution
---	-----------------------

Here, B3, G2 and A3 contain number of success, trials and A3 probability of success respectively.

3. Plotting and fitting of Poisson distribution and graphical representation of probabilities.

	=POISSON.DIST(A3,\$G\$4,FALSE)	Poisson distribution
Formula Used		
	=AVERAGE(A2:A26)	Mean

Here, A3:A26 contains the data (i.e. from 31 to 24). G4 contains mean and A3 is the first data (i.e. 31).

7. Plotting and fitting of Normal distribution and graphical representation of probabilities.

	=NORM.DIST(A5,\$D\$5,\$D\$6,TRUE)	Normal distribution
Formula Used	=AVERAGE(A5:A25)	Mean
	=STDEV(A5:A25)	Standard Deviation

Here, A5:A25 contains the data (i.e. from 9.206343 to 9.276345).

D5 contains mean and D6 has standard deviation.

8. Calculation of cumulative distribution functions for Exponential and Normal distribution.

Calculation of cumulative distribution functions for Exponential and Normal distribution.			
Solution			
For Exponential distribution			λ = 0.5
			x = 2
Cumulative distributive	Cumulative distributive function 0.632120559		
For Normal distribution			σ = 1
		$\mu = 0$	
			x = 1
Cumulative distributive	function	0.841344	746
			Evnonontial
	=EXPO	N.DIST(E4, E3, TRUE)	Exponential distribution
Formula Used			GIBUIUGU
	=NORN	1.DIST(E10,E9,E8,TRUE)	Normal Distribution

Here, E4, E3 contain the x and λ respectively. E8, E9, E10 contain σ , μ and x respectively.

9. Application problems based on the Binomial distribution.

Application problems based on the Binomial distribution.				
		report that they generate a profit in their first year. polity that exactly seven will generate a profit in their first year.		
Number of trials	10			
Probability of success	0.8			
probability that exactly seven will generate a profit in their first year 0.20133				

Formula Used	=BINOM.DIST(7,B7,B8,FALSE)	Binomial distribution

Here, B7 & B8 contain no. of trials and probability of success respectively.

10. Application problems based on the Poisson distribution.

Here, A8 contains means of the data.

11. Application problems based on the Normal distribution.

Application problems based on the Normal distribution.						
The IQ scores of college students are normally distributed with an average IQ of 100 and a standard deviation of 15.						
What is the probability that a randomly selected college student has an IQ of 120 or higher? What is the probability that a randomly selected college student has an IQ of 85 or lower? 0.158655254						
Solution	Solution					
Mean	Mean Standard deviation					
100	15					

Formula Used	=1-NORMDIST(120, \$A\$9, \$B\$9, TRUE)	Normal
Formula Used	=NORMDIST(85, \$A\$9, \$B\$9, TRUE)	distribution

Here, A9 and B9 contain means and standard deviation of the data respectively.

12. Presentation of bivariate data through scatter-plot diagrams and calculations of covariance.

Here, B5:B14 and C5:C14 contain the X and Y column data respectively.

13. Calculation of Karl Pearson's correlation coefficients.

	<u>Calculation</u>	of Karl Pearson's correlation coefficients.	
X	Υ		
1	2		
2	4		
3	8		
5	8		
5	10		
	earson	0.918558654	
Correleatio	n coefficient		

Formula Used = PEARSON(A4:A8,B4:B8) | Karl Pearson Correlation Coefficient

Here, A4:A8 & B4:B8 contains the respective X & Y data.

14. To find the correlation coefficient for a bivariate frequency distribution.

To find the correlation coefficient for a bivariate frequency distribution.					
Soil temp	Soil temperature (xi , in 0 C) and germination interval (yi , in days) were observed for winter wheat at 10 localities:				
Х	Υ				
12.5	10				
5	26				
3	41				
5	29	Correlation coefficient for a bivariate frequency distribution.			
6.5	27				
6	19				
4	18				
7	20	-0.762788528			
5.5	28	-0.762788528			
4	4 33				
Formu	Formula Used =CORREL(A6:A15,B6:B15) Correlation Coefficient				

Here, A6:A15 & B6:B15 contains the respective X & Y data.

- 15. Generating Random numbers from discrete (Bernoulli, Binomial, Poisson) distributions.
- 16. Generating Random numbers from continuous (Normal, Uniform) distributions.

Generating Random numbers from discre	te (Bernoul	li, Binomial, P	oisson) dist	ributions.
Discrete	Distribution	ıs		
1 Bernoulli Distribution		1	0	0
2 Bionomial Distribution		6	7	4
3 Poisson Distribution		0.319430419	2.07E-07	3.7144E-05
Generating Random numbers from co	ntinuous (N	<u>Iormal, Unifor</u>	m) distribu	tions.
Continuou	s Distributio	ons		
4 Normal Distribution		0.03720173	0.049802	0.041701
5 Uniform Distribution		3	10	7
				11'

	$=IF(RAND() \le 5, 1, 0)$		Bernoulli
	$-\operatorname{Ir}(\operatorname{KAND}() \le 3, 1, 0)$		distribution
	=BINOM.INV(10,0.5,RAND())	Random	Binomial
Formula	-BINOWI.IN V (10,0.3,RAIND())	number	distribution
Used	=POISSON.DIST(1,RAND(),FALSE)	generation	Poisson distribution
	=NORM.DIST(RAND(),5,3,FALSE)	using	Normal distribution
	DOUND(1 + (10 - 1 + 1) *DAND() - 0)		Uniform
	=ROUND(1 + (10 - 1 + 1)*RAND(), 0)		distribution