

课程 > Unit 6: Further topi... > Lec. 12: Sums of in... > 18. Exercise: Correl...

18. Exercise: Correlation properties

Exercise: Correlation properties

6/6 points (graded)

As in the preceding example, let Z, V, and W be independent random variables with mean 0 and variance 1, and let X=Z+V and Y=Z+W. We have found that $\rho(X,Y)=1/2$.

a) It follows that:

$$\rho(X, -Y) =$$
 -1/2
Answer: -0.5

b) Suppose that X and Y are measured in dollars. Let X' and Y' be the same random variables, but measured in cents, so that X'=100X and Y'=100Y. Then,

$$\rho(X',Y') = \boxed{1/2}$$
Answer: 0.5

c) Suppose now that $ilde{X}=3Z+3V+3$ and $ilde{Y}=-2Z-2W$. Then

$$ho(ilde{X}, ilde{Y}) =$$
 -1/2 $ightharpoonup$ Answer: -0.5

d) Suppose now that the variance of $oldsymbol{Z}$ is replaced by a very large number. Then

$$ho(X,Y)$$
 is close to $ho(X,Y)$

e) Alternatively, suppose that the variance of $oldsymbol{Z}$ is close to zero. Then

$$ho(X,Y)$$
 is close to 0 $ightharpoonup$ Answer: 0

Solution:

We saw that a linear transformation $x \mapsto ax + b$ of a random variable does not change the value of the correlation coefficient, except for a possible sign change if the coefficient a is negative. Note that in the case of $\rho(-X, -Y)$, we have two sign changes, hence no sign change.

For the last two parts, if Z has a very large variance, then the terms V and W become insignificant, and $\rho(X,Y)\approx \rho(Z,Z)=1$. And if Z has very small variance, then X and Y are approximately independent, so that $\rho(-X,-Y)\approx 0$. (These conclusions can also be justified by an exact calculation.)

提交

You have used 2 of 3 attempts

1 Answers are displayed within the problem

讨论

Topic: Unit 6 / Lec. 12 / 18. Exercise: Correlation properties

© All Rights Reserved