

Intelligent Robot Motion Lab

FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors

Nathaniel Simon Allen Z. Ren Alexander Piqué David Snyder Daphne Barretto Marcus Hultmark Anirudha Majumdar

submitted to ICRA2023

Motivation

Multirotor UAVs must be able to operate in extreme wind conditions. Modern multirotor UAVs do not directly sense wind due to limitations in the available sensors.

Hypothesis: Sensing wind *directly* will improve performance in wind.

FlowDrone: A UAV with MAST (top right --- an omnidirectional flow sensor) and wind-aware control.

Background

Conventional anemometry techniques (e.g. pitot-static tubes, hot-wires, ultrasonic) are too slow, insensitive, or bulky for omnidirectional flow sensing.

Custom sensors show promise, but limited accuracy or unreported bandwidth:

- Whisker-like [Tagliabue et al. '20]
- Pressure-based [Yeo et al. '15], [Bruschi et al. '16], [Prudden et al. '17]

Wind Sensing

In prior work [Simon et al. '22], we develop MAST (MEMS Anemometry Sensing Tower), a lightweight, fast, and accurate omnidirectional flow sensor.

MAST is comprised of five pentagonally-arranged MEMS hot-wire sensing elements.

A neural network sensor model produces the wind estimate with accuracy:

Estimate	Average Error	95% Confidence
Angle (0°-360°)	1.6°	5.0°
Speed (0.0-5.0 m/s)	0.14 m/s	0.36 m/s

System Overview

FlowDrone runs the sensor model and wind-aware residual-based controller with onboard computation and sensing.

Wind-Aware Control

We train the residual-based policy using Soft Actor Critic [Haarnoja et al. '18] in gym-pybullet-drones [Panerati et al. '21], simulating drag forces [Craig et al. '20] based on gust profiles measured in-flight. The UAV's task is to hover at [0,0,1] m.

Results

We compare the performance of the following

- Wind-Aware Residual-Based Controller
 ("wind-aware"). (As in the previous figure.)
- Wind-Unaware Residual-Based Controller ("wind-unaware"). Same architecture as wind-aware but trained without access to a wind estimate.
- PX4 Attitude Controller ("baseline"). Opensource PX4 Autopilot for attitude control. We conducted 10 flights for each controller in controlled gust conditions. The average performance of each controller is:

Results cont.

Evaluation metrics for all 30 flights with standard deviations in parentheses:

	Wind-aware	Wind-unaware	Baseline
(m)	0.441 (0.064)	0.582 (0.094)	0.780 (0.142)
n ²)	0.035 (0.006)	0.079 (0.013)	0.057 (0.016)
m)	0.538 (0.072)	0.773 (0.100)	0.962 (0.222)
	n ²)	(m) 0.441 (0.064) 0.035 (0.006)	0.035 (0.006) 0.079 (0.013)

For each metric, wind-aware outperforms the others. Plotting all flight trajectories:

These results demonstrate a significant improvement with wind-aware control and the benefit of direct wind measurement.

Future Work

- Varying wind direction in simulation and during evaluation.
- Outdoor testing in real winds.
- On-line learning to fine-tune the windaware controller in hardware.