Variétés différentielles

Cavazzoni Christophe

 $2024\mbox{-}2025$ - Institut Champollion

Table des matières

Introduction

Dans ce projet d'étude, on cherche à généraliser le calcul différentiel usuel dans \mathbb{R}^n sur des objets plus généraux, espaces courbes, qui ne seront pas des espaces vectoriels simples. En particulier, on cherche à définir le concept de **varitété différentielle**, qui est la formalisation mathématique de ce types d'espaces.

Le projet suivra la progression suivante:

- Tout d'abord nous définirons le concept de variété topologique puis différentielle ainsi leurs propriétés, une partie spécifique sera dédiée à la construction d'espace courbes qui possèdent un "bord".
- Nous préseterons ensuite quelques exemples de tels objets.
- Par la suite nous chercherons à construire une **structure différentielle** sur ces objets, ce qui reviendra à définir la notion **d'espace tangent** en un point de l'objet et à étudier ses propriétés.
- Ensuite, nous pourrons définir le concept de **forme différentielle** sur un variété qui sera l'objet fondamental qui nous servivra à généraliser la théorie de l'intégration.
- Enfin, aprés avoir définit l'intégrale de tels objets, on pourra alors montrer le **théorème de Stokes**, généralisation du théorème fondamental de l'analyse à toute variété à bord orientée et compacte.

Variétés

Dans toute la suite, on considère un espace topologique séparé M.

2.1 Cartes locales

On apelle **carte locale** de M un couple (U, ϕ) tel que:

- U soit un **ouvert** de M.
- ϕ soit un **homéomorphisme** de $U \longrightarrow \phi(U) \subseteq \mathbb{R}^n$ pour un n convenable.

On dira alors que l'application ϕ^{-1} paramétrise U, et que les **coordonées locales** des points de U sont leurs images par ϕ .

2.2 Compatibilité des cartes

On considère deux cartes $(U_i, \phi_i), (U_j, \phi_j)$ deux cartes locales qui s'intersectent, alors on dit que ces deux cartes sont **compatibles** si et seulement si l'application de changement de carte suivante est un **homéomorphisme**:

$$\phi_{ij} = \phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \longrightarrow \phi_j(U_i \cap U_j)$$

L'application ϕ_{ij} est apellée application de changement de cartes, on peut la représenter comme ci-dessous:

Figure 2.1: Exemple de deux cartes

2.3 Atlas et variétés

On apelle alors atlas de M une famille $\mathcal{A} = (U_i, \phi_i)_{i \in I}$ de cartes locales qui recouvrent M et qui sont compatibles. En outre on définit:

- Si ϕ_{ij} est un homéomorphisme, on dit que l'atlas est topologique et que M est une variété topologique.
- Si ϕ_{ij} est différentiable, on dit que l'atlas est différentiel et que M est une variété différentielle.
- Si ϕ_{ij} est de classe \mathcal{C}^k , on dit que l'atlas est de classe \mathcal{C}^k et que M est une variété de classe \mathcal{C}^k .

Dans le cas particulier $k=\infty$, on dira usuellement que l'atlas et la variété sont **lisses**.

2.4 Topologie d'une variété

De manière générale, on définit les propriétés topologiques d'une variété par ses propriétés en tant qu'espace topologique, donc naturellement:

- \bullet On dira alors que M est **compacte** si l'espace topologique sous-jaçent l'est.
- ullet On dira alors que M est **connexe** si l'espace topologique sous-jaçent l'est.
- \bullet On peut donc parler d'intérieur, d'adhérence d'une partie de M, etc ...
- ...

Variétés à bord

On veut alors pouvoir relaxer cette définition pour prendre en compte une catégorie plus large d'espaces topologiques, en particulier si on considère le disque ouvert D^1 , c'est trivialement¹ une variété, mais le disque fermé $adh(D^1)$ ne l'est pas. La différence fondamentale étant qu'un ouvert qui contient un point du bord du disque fermé n'est pas homéomorphe à un ouvert de \mathbb{R}^2 Mais à un ouvert du demi-plan $\mathbb{R} \times \mathbb{R}_+$.

3.1 Bord du demi-espace \mathbb{R}^n_+

On note $\mathbb{R}^n_+ := \{x \in \mathbb{R}^n \; ; \; x_n \geq 0\}$. Cet espace sera notre prototype de partie avec un bord, en effet si on considère cet espace en tant que partie de \mathbb{R}^n , son bord est bien défini:

$$\partial \mathbb{R}^n_+ := \mathbb{R}^n_+ \setminus \operatorname{int}(\mathbb{R}^n_+) = \{ x \in \mathbb{R}^n ; \ x_n = 0 \}$$

Par exemple dans le cas de \mathbb{R}^2_+ , on a:

Figure 3.1: Le demi plan \mathbb{R}^2_+ et son bord

3.2 Variété à bord

On donne élargit alors notre définition d'une variété, qui sera notre définition générale pour la suite. On se donne une variété M muni de son atlas $(U_i, \phi_i)_{i \in I}$ et on rajoute la contrainte suivante sur les cartes:

$$\forall i \in I ; \phi_i : U_i \longmapsto V_i \text{ avec } V_i \text{ un ouvert de } \mathbb{R}^n_{\perp}$$

Ceci nous permet de définir le bord d'une variété par:

$$\partial M := \{ x \in M : \forall (U_i, \phi_i) \in \mathcal{A} : x \in U_i \implies \phi_i(x) \in \partial \mathbb{R}^n_+ \}$$

Alors on peut montrer que c'est bien une généralisation du concept de variété, en effet si une variété définie de la sorte n'a pas de bords, ie si $\partial M = \emptyset$, alors on peut construire un atlas au sens du chapitre 2.

En particulier, on peut remarquer que \mathbb{R}^n_+ lui-même est bien une variété à bord ce qui est bien cohérent ...

¹Comme graphe d'une fonction constante définie sur un ouvert.

Exemples de variétés

Dans ce chapitre, on présente quelques exemples simples de variétés différentielles, leurs atlas et quelques unes de leurs propriétés.

- 4.1 Le cercle S^1
- 4.2 La sphere S^2
- 4.3 Plan projectif $\mathbb{R}P^2$?

Espaces tangents

On aimerait alors pouvoir généraliser la notion **d'espace tangent** à une courbe, surface ... lisse de \mathbb{R}^n à des variétés abstraites comme définies dans les deux premiers chapitres. Pour ce faire, il est fondamental de comprendre que les variétés ainsi définies ne sont **pas** des objets de \mathbb{R}^k et donc on doit définir cette notion purement intrinséquement, via l'atlas notamment.

5.1 Courbe sur une variété

On définit la notion de **courbe paramétrée** sur une variété M par la donnée d'une application $\gamma: I \longmapsto M$ par exemple si on considère la sphère unité $\mathbb{S}^2 \backslash N$ paramétrée par l'inverse de la projection stéréographique qu'on notera S(u, v), alors l'application suivante est une courbe sur la sphère:

$$\gamma: t \in]0; 1[\longrightarrow S(2t^3, t^2)$$

5.2 Vecteur tangent

On se donne une courbe $\gamma: I \to M$ dérivable et un réel $t_0 \in I$, alors on veut définir le **vecteur tangent** à la courbe γ au point $x = \gamma(t_0)$, pour ceci on utilise les cartes, en effet on dire que $u \in \mathbb{R}^n$ est tangent à la courbe en x si et seulement si:

$$\forall (U_i, \phi_i) \in \mathcal{A} \; ; \; x \in U_i \implies u \sim (\phi_i \circ \gamma)'(t_0)$$

Le problème étant que ceci dépends de la carte car si le vecteur tangent à la courbe est unique, sa **représentation** (ou encore ses **coordonées**) dans les cartes ne l'est pas (elle varie avec $d\phi_{ij}$) donc ça marche pas ... Impossible de définir uniquement le vecteur tangent à une courbe ?!

5.3 Courbes tangentes

On fixe un point $x \in M$ et on veut maintenant définir un espace vectoriel associé à ce point, qui correspondrait aux vecteurs tangents à la variété en ce point. Pour ceci, on définit une relation d'équivalence sur les courbes sur M, en particulier, pour deux courbes paramétrées γ_1, γ_2 sur M telles que $\gamma_1(t_0) = \gamma_2(t_0) = x$. Alors on définit:

$$\gamma_1 \sim \gamma_2 \iff \forall (U_i, \phi_i) \in \mathcal{A} \; ; \; x \in U_i \implies (\phi_i \circ \gamma_1)'(t_0) = (\phi_i \circ \gamma_2)'(t_0)$$

On remarque tout d'abord que les hypothèse peuvent être affaiblies, en effet si la propriété est vraie pour une carte (U_i, ϕ_i) , alors par changement de carte on a que: ?

On obtient donc la définition suivante:

$$\gamma_1 \sim \gamma_2 \iff \exists (U, \phi) \in \mathcal{A} \; ; \; x \in U \text{ et } (\phi \circ \gamma_1)'(t_0) = (\phi \circ \gamma_2)'(t_0)$$

C'est bien une relation d'équivalence sur l'ensemble des courbes de M qui passent par x, on appelle une classe d'équivalence pour cette relation **vecteur tangent** à la courbe en x et l'ensemble quotient est donc l'ensemble des vecteurs tangents ou plus formellement l'espace tangent au point x définit par:

$$TM_x := \{ [\gamma] \in \mathcal{F}(I, \mathbb{R}) ; \}$$

Il faut maintenant montrer:

- \bullet Que c'est bien un e.v (sous-ev ? Le neutre ?) de dimension n.
- Définir la différentielle d'une application de $M \longmapsto N.$
- Montrer que celle ci est bien définie sur les espaces tangents.
- Propriétés algèbriques, règle de la chaine etc...

Algèbre extérieure dans \mathbb{R}^n

Algèbre extérieure sur une variété

Dérivée extérieure

Exactitude & Fermeture

Intégration

Théorème de Stokes

Applications

Conclusion