Lec 13. Coreference(동일지시어) Resolution

- 1. What is Coreference Resolution?
- : Identify all mentions that refer to the same entity in the world eg. Vanaja -> her, she, herself, she, she, she Akhila -> Akila's/ Prajwal-> Akila's son/ Akash -> a tree?
- : split antecedence
- 2. Applications of coreference resolution
- : full text undertanding
- : Machine translation -> languages have different feautures for gender, number, dropped pronoun ..
- : Dialogue Systems
- : Two steps -> 1. Detect the mentions(can be nested) 2. Cluster the mentions
- 3. Mention Detection
- : Mention: A span of text referring to some entity
- : 3 kinds of mentions -> 1. Pronouns 2. Named entities 3. Noun phrases
- : 1. Pronoun: Use a part-of-speech-tagger
- : 2. Named entities: Use a Named Entity Recognigion system
- : 3. Noun phrases: Use a parser(especially a constituency parser)
- : Not so simple -> Marking all pronouns, named entities, and NPs as mentions over-generates mentions
- : How to deal with these bad mentions? -> training a classifier to filter out spurious mentions, keep all mentions as "candidate mentions".
- : Avoding a traditional pipeline system -> we could instead train a classifier specifically for mention detection instead of using a POS tagger, NER system, and parser.
- : Or we can not even try to do mention detection explicitly: we can build a model that begins with all pans and jointly does mention-detection and coreference resolution end-to-end in one model

- 4. Some Linguistics: Types of Reference
- : Coreference is when two mentions refer to the same entity in the world.
- : A different-but-related linguistic concept is anaphora: when a term refers to another term(antecedent) -> the interpretation of the anaphor is some way determined by the interpretation of the antecedent
- : Anaphor vs. Coreference -> Barack Obama = Obama vs. he
- : Not all anaphoric relations are coreferential
- : Not all noun phrases have reference
- : bridging anaphora
- : Usually the antecedent comes before the anaphor, but not always.
- : As we progress through an article, or dialogue, or webpage, we build up a discourse model, and we interpret new sentence/utterances with respect to our model of what's come before.

:Four kinds of coreference models -> rule-based/Mention pair/Mention Ranking/Clustering

5. Rule-Based

- : Traditional pronominal anaphora resolution -> Hobb's naive algorithm
 - 1. Begin at the NP immediately dominating the pronoun
 - 2. Go up tree to first NP or S. Call this X, and the path p.
 - 3. Traverse all branches below X to the left of p, left-to-right, breadth-first. Propose as antecedent any NP that has a NP or S between it and X
 - 4. If X is the highest S in the sentence, traverse the parse trees of the previous sentences in the order of recency. Traverse each tree left-to-right, breadth first. When an NP is encountered, propose as antecedent. If X not the highest node, go to step 5.
 - 5. From node X, go up the tree to the first NP or S. Call it X, and the path p.
 - If X is an NP and the path p to X came from a non-head phrase of X (a specifier or adjunct, such as a possessive, PP, apposition, or relative clause), propose X as antecedent

(The original said "did not pass through the N' that X immediately dominates", but the Penn Treebank grammar lacks N' nodes....)

- 7. Traverse all branches below X to the left of the path, in a left-to-right, breadth first manner. Propose any NP encountered as the antecedent
- 8. If X is an S node, traverse all branches of X to the right of the path but do not go below any NP or S encountered. Propose any NP as the antecedent.
- 9. Go to step 4

:Knowledge-based Pronominal Coreference

- She poured water from the pitcher into the cup until it was full.
- She poured water from the pitcher into the cup until it was empty.
- The city council refused the women a permit because they feared violence.
- The city council refused the women a permit because they advocated violence.
 - Winograd (1972)
- · These are called Winograd Schema
 - · Recently proposed as an alternative to the Turing test
- 6. Mention-pair and mention-ranking models
- : Mention-pair -> train a binary classifier that assigns every pair of mentions a probability of being coreferent
 - N mentions in a document
 - $y_{ij} = 1$ if mentions m_i and m_j are coreferent, -1 if otherwise
 - Just train with regular cross-entropy loss (looks a bit different because it is binary classification)

- : Mention Ranking-> assign each mention its highest scoring candidate antecedent according to the model.
- : Dummy NA mention allows model to decline linking the current mention to anything.

->

- : How do we compute the probabilities?
- -> Neural Coref Model -> standard feed-forward neural network
- Input layer: word embeddings and a few categorical features

- -> Embeddings: previous
- 7. Interlude: ConvNets for language
- : Main CNN/ConvNet idea: what if we compute vectors for every possible word subsequence of a certain length?

What is a convolution anyway?

- 1d discrete convolution definition: $(f*g)[n] = \sum_{m=-M}^M f[n-m]g[m].$
- · Convolution is classically used to extract features from images
 - · Models position-invariant identification
 - Go to cs231n!
- 2d example →
- Yellow color and red numbers show filter (=kernel) weights
- · Green shows input
- · Pink shows output

Convolved Feature S

-> regardless of whether phrases is grammatical

A 1D convolution for text

	_	~	_	_
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3

t,d,r	(-1.0)	(0.0)	0.50
d,r,t	-0.5	0.5	0.38
r,t,k	-3.6	-2.6	0.93
t,k,g	-0.2	0.8	0.31
k,g,o	0.3	1.3	0.21

Apply a filter (or kernel) of size 3

-3	2	1	3
-3	1	2	-1
1	-1	1	1

+ bia	is 1
\rightarrow	non-linearity
	Stanfor

1D convolution for text with padding

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6
t,d,r	-1.0
d,r,t	-0.5
r,t,k	-3.6
t,k,g	-0.2
k,g,o	0.3
g,o,Ø	-0.5

Apply a filter (or kernel) of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

- 8. Current state-of-the-the-art neural coreference systems
- : Mention ranking model, improvements over simple feed-forward NN
- -> Use an LSTM, attention, do mention detection and coreference end-to-end

: End-to-end Model

: BERT-based coref: Now has the best results!