Esercizi 1 – Funzioni e calcolo differenziale con una variabile

- 1) Il dominio naturale della funzione $f(x) = \ln(x^2 4x) + \ln(x 3)$ è:

- $\begin{bmatrix} a \end{bmatrix} (0,3) \cup (4,+\infty)$ $\begin{bmatrix} b \end{bmatrix} (4,+\infty)$ $\begin{bmatrix} c \end{bmatrix} (3,4)$ $\begin{bmatrix} d \end{bmatrix}$ nessuna delle precedenti
- 2) Sia f(x) = 2(1-x), definita sul dominio (0,1). L'insieme immagine di f(x) è:

- $\begin{bmatrix} a \end{bmatrix}$ (-2,0) $\begin{bmatrix} b \end{bmatrix}$ (0,1) $\begin{bmatrix} x \end{bmatrix}$ (0,2) $\begin{bmatrix} d \end{bmatrix}$ nessuna delle precedenti
- 3) Siano date le funzioni $f(x) = x^3 + \frac{10}{27}$, $g(x) = \frac{1}{x-1}$. Allora f(g(-2)) vale:

- $[a] 9 \qquad \qquad [\chi] \frac{1}{3} \qquad \qquad [c] -\frac{1}{3} \qquad \qquad [d] \frac{1}{9}$

- **4)** Sia $f(g(x)) = e^{7x-6}$. Allora:
- [a] f(x) = 7x 6, $g(x) = e^x$ [X] $f(x) = e^x$, g(x) = 7x 6
- [c] $f(x) = e^{7x}$, $g(x) = e^{-6}$ [d] $f(x) = e^{7x}$, g(x) = x 6
- 5) Sia $f(x) = -\frac{3}{4} \ln x$. Allora $f^{-1}(-9)$ vale:
- [a] $\ln(12)$ [b] $e^{-\frac{27}{4}}$ [x] e^{12}
- [d] 1
- **6)** Sia $f(x) = 2 \sqrt[3]{1 x}$. Allora $f^{-1}(x) =$

- $\begin{bmatrix} \times \end{bmatrix} 1 (2 x)^3$ $\begin{bmatrix} b \end{bmatrix} 2 (1 x)^3$ $\begin{bmatrix} c \end{bmatrix} 2 + (1 x)^3$ $\begin{bmatrix} d \end{bmatrix}$ nessuna delle precedenti
- 7) Quale tra le seguenti implicazioni è vera?
- [a] f invertibile \Rightarrow f strettamente monotona
- f strettamente monotona $\Rightarrow f$ invertibile
- [c] f strettamente crescente \Rightarrow f illimitata superiormente
- [d] f strettamente decrescente \Rightarrow f ammette minimo
- 8) Sia $f(x) = 13 \ln x$, definita sull'intervallo (1,13]. Quale tra le seguenti affermazioni è falsa?
- [a] f(x) è crescente [b] f(x) è limitata
- [c] f(x) ha massimo f(x) ha minimo

9) Se y = f(x) ha un punto di minimo in x = 6, quale tra le seguenti funzioni ha certamente un punto di massimo in x = 0?

[a] y = -6f(x) [b] y = -f(6x) [c] y = f(x+6) |x| y = -f(x+6)

- **10)** La funzione $f(x) = \begin{cases} -(x+1)^2 & \text{se } -10 \le x \le 0 \\ 4^{-x} & \text{se } 0 < x \le 10 \end{cases}$
- a ammette massimo e minimo
- [X] ammette minimo ma non massimo
- [c] ammette massimo ma non minimo
- [d] nessuna delle precedenti
- 11) La funzione $f(x) = \begin{cases} \sin x & \text{se } 0 \le x \le \pi \\ x^3 + 2 & \text{se } -\pi \le x < 0 \end{cases}$
- [a] ammette massimo e minimo
- [b] non ammette né minimo né massimo
- [c] ammette massimo ma non minimo
- | x | nessuna delle precedenti
- **12)** La funzione $f(x) = \begin{cases} x^2 + 3x + 2 & -2 \le x < 0 \\ -x^2 + 2x & 0 \le x \le 2 \end{cases}$
- |a| ha massimo e minimo
- ha minimo, ma non ha massimo
- [c] non ha né massimo né minimo, ma è limitata
- [d] ha massimo, ma non ha minimo
- **13)** Il massimo della funzione $f(x) = |e^x 1|$ sull'intervallo $\left(-\infty, \ln \frac{3}{2}\right]$ è: [a] 1 [b] $\ln 2$ [c] e [x] non esiste

- **14)** Sull'intervallo $(-4\pi, 4\pi)$, la funzione $f(x) = |\sin x|$
- [x] ammette massimo e minimo
- [b] ammette minimo ma non massimo
- [c] non ammette né massimo né minimo
- [d] nessuna delle precedenti

- **15)** Data $f(x) = 30\sqrt[3]{x^2} 5x 12$, la sua derivata è f'(x) =

- $\begin{bmatrix} a \end{bmatrix}$ $30\sqrt[3]{2x} 5$ $\begin{bmatrix} b \end{bmatrix}$ 20x 5 $\begin{bmatrix} x \end{bmatrix}$ $\frac{20}{\sqrt[3]{x}} 5$ $\begin{bmatrix} d \end{bmatrix}$ nessuna delle precedenti
- **16**) Data $f(x) = \sin(x^2) \ln(x^2 + 1)$, la sua derivata è $f'(x) = \sin(x^2) \ln(x^2 + 1)$
- $[a] \cos(x^2) \frac{1}{x^2 + 1}$ $[x] 2x \left[\cos(x^2) \frac{1}{x^2 + 1}\right]$
- $[c]\cos(2x)-\frac{1}{2x}$
- [d] nessuna delle precedenti
- **17)** Data $f(x) = x \ln^3(x^2 + 1)$, la sua derivata è f'(x) =
- $\left[\times \right] \ln^2(x^2 + 1) \left[\ln(x^2 + 1) + \frac{6x^2}{x^2 + 1} \right] \qquad \left[b \right] 6x \frac{\ln^2(x^2 + 1)}{x^2 + 1}$

 $[c] 6x \ln(x^2 + 1)$

- [d] nessuna delle precedenti
- 18) Sia data la funzione $f(x) = 3x^2 \ln x$. L'equazione della retta tangente al grafico di f(x) nel punto di ascissa 1 è:
- [a] $y = 3x \ln 3$ [b] $y = x \ln 3$ [x] y = 3x 3 [d] y = x 3

- 19) Sia data la funzione $f(x) = axe^{-bx}$, in cui a, b sono parametri positivi. Allora l'ascissa del punto stazionario di *f*:
- [x] dipende da b, ma non dipende da a [b] dipende da a, ma non dipende da b
- $\begin{bmatrix} c \end{bmatrix}$ dipende sia da a che da b
- [d] non dipende né da a né da b
- **20)** La funzione $f(x) = 27x x^3$ è strettamente crescente in:
- $\begin{bmatrix} a \end{bmatrix} (-\infty, +\infty)$ $\begin{bmatrix} b \\ c \end{bmatrix} (-3, +3)$ $\begin{bmatrix} c \end{bmatrix} (-\infty, -3)$
- [d] nessuna delle precedenti
- **21**) La funzione $f(x) = \ln[(1-x)^4]$ è decrescente in:
- $[a] (-\infty,1) \cup (1,+\infty)$
- $\lceil \chi \rceil (-\infty, 1) \qquad [c] (1, +\infty)$

[d] nessuna delle precedenti

22) La funzione $f(x) = \ln \frac{3-x}{x}$

[a] è invertibile, perché è strettamente crescente

[b] non è invertibile

[x] è invertibile, perché è strettamente decrescente

[d] è invertibile, ma non è monotona

23) Se $x_0 \in \mathbf{R}$ è un punto di massimo della funzione $f: \mathbf{R} \to \mathbf{R}$, allora:

[x] $f(x) \le f(x_0) \quad \forall x \in \mathbf{R}$

[b] $f(x) < f(x_0) \quad \forall x \in \mathbf{R}$

[c] $f'(x_0) = 0$

[d] nessuna delle precedenti

24) La funzione $f(x) = xe^x$ ha:

[a] un punto di massimo

[X] un punto di minimo

[c] né massimi né minimi

[d] nessuna delle precedenti

25) La funzione $f(x) = \frac{e^x}{1 + e^x}$ ha:

[a] un punto di massimo

[b] un punto di minimo

[x] né massimi né minimi

[d] nessuna delle precedenti