Riemannian distances are locally equivalent

Bart Michels*

May 18, 2019

Version of April 8, 2020

Contents

1	Equivalence of norms	2
2	The radius of compactness	3
3	Equivalence of distances	5
4	Submanifolds	6
5	Covering maps	8

^{*}Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse, France. Email: michels@math.univ-paris13.fr

All manifolds and submanifolds are assumed to be smooth and connected.

1 Equivalence of norms

Proposition 1.1. Let V be an n-dimensional real vector space with norms $\|\cdot\|_1$ and $\|\cdot\|_2$. Let (e_i) be a basis of V. Then

$$||v||_1 \le \frac{n \cdot \max_i ||e_i||_1}{\min_{\|w\|_{\infty} = 1} ||w||_2} \cdot ||v||_2$$

for all $v \in V$, where the sup-norm is w.r.t. the basis (e_i) .

Proof. We have

$$\left\| \sum a_i e_i \right\|_1 \le n \cdot \max_i \|e_i\|_1 \cdot \left\| \sum a_i e_i \right\|_{\infty}$$

and

$$||v||_{2} = \left|\left|\frac{v}{||v||_{\infty}}\right|\right|_{2} \cdot ||v||_{\infty}$$

$$\geq \min_{||w||_{\infty} = 1} ||w||_{2} \cdot ||v||_{\infty}$$

where $\min_{\|w\|_{\infty}=1} \|w\|_2 > 0$ because the unit sphere for the norm $\|\cdot\|_{\infty}$ is compact (closed and bounded).

Proposition 1.2. Let M be a smooth manifold of dimension n and g_1, g_2 Riemannian metrics on M. Let $K \subset M$ be compact. Then there exist $c_1, c_2 > 0$ such that for all $x \in K$ and $v \in T_x M$ we have

$$c_1||v||_2 \le ||v||_1 \le c_2||v||_2$$
.

Proof. It suffices to prove that every $x \in M$ has a neighborhood U for which there exist $c_1, c_2 > 0$ such that the above inequalities hold for all $y \in U$, $v \in T_yM$. Fix $x \in M$ and let U_0 be a coordinate neighborhood of x, so that there exists a chart $\phi: U_0 \to V \subset \mathbb{R}^n$ and the partial derivatives $(\partial/\partial\phi_i)|_y$ form a smooth basis of T_yM for $y \in U_0$. Define the sup-norm $\|\cdot\|_{\infty}$ in T_yM w.r.t. this basis. Let $U \subset U_0$ be relatively compact in U_0 . Then by Proposition 1.1,

$$||v||_1 \le \frac{n \cdot \max_i ||(\partial/\partial \phi_i)|_y||_1}{\min_{\|w\|_\infty = 1} ||w||_2} ||v||_2$$

for $y \in U_0$, $v \in T_yM$, so we can take

$$c_2 = \frac{n \cdot \sup_{y \in U} \max_i \|(\partial/\partial \phi_i)|_y\|_1}{\inf_{y \in U} \min_{\|w\|_{\infty} = 1} \|w\|_2}.$$

The other inequality follows by symmetry.

2 The radius of compactness

This section introduces the notion of radius of compactness. This is not strictly necessary for the sequel, but it is a neat notion with some nice properties, and gives an excuse to review some standard facts from topology that will be used without reference in the next sections. When M is a metric space and $x \in M$, denote

$$\overline{B}(x,R) = \{ y \in M : d(x,y) \le R \}$$

for the closed ball of radius R centered at x.

Definition 2.1. Let M be a metric space and $x \in M$. Define the radius of compactness of x by

$$\mathrm{RC}(x) := \sup\{R \geq 0 : \overline{B}(x,R) \text{ is compact}\} \in [0,\infty].$$

Proposition 2.2. Let M be a metric space.

- 1. Either $RC(x) = \infty$ for all $x \in M$, or $|RC(y) RC(x)| \le d(x, y)$ for all $x, y \in M$.
- 2. RC is continuous for the order topology on $[0, \infty]$.
- Proof. 1. We show that $RC(y) \leq RC(x) + d(x, y)$ for all $x, y \in M$, from which both statements follow. (Here $\infty + a = \infty$ for all $a \in [0, \infty]$.) Suppose RC(y) > RC(x) + d(x, y). Then there exists a closed compact ball of radius strictly larger than RC(x) + d(x, y) centered at y. But this ball contains a ball of radius strictly larger than RC(x) centered at x. Contradiction.
 - 2. It is either constant and equal to ∞ , or real-valued and Lipschitz, hence continuous.

Remark 2.3. A metric space is called *proper* or *ball-compact* when $RC(x) = \infty$ for one (hence every) $x \in M$. Equivalently, when its closed and bounded subsets are compact.

Proposition 2.4. Let M be a metric space and $K \subset M$ compact.

- 1. If M is locally compact, there exists R > 0 such that $\overline{B}(x,R)$ is compact for all $x \in K$.
- 2. If R is as above and r < R, then

$$\overline{B}(K,r) := \bigcup_{x \in K} \overline{B}(x,r)$$

is compact.

Proof. 1. Because K is compact, so is RC(K). Because M is locally compact, $0 \notin RC(K)$. Because RC(K) is closed, there exists R > 0 such that RC(x) > R for all $x \in K$.

2. We show that $\overline{B}(K,r)$ is complete and totally bounded. Complete: Let (x_n) be a Cauchy sequence in $\overline{B}(K,r)$. There exists $N \in \mathbb{N}$ such that $d(x_n, x_m) \leq R - r$ for all $m, n \geq N$. If $x \in K$ is such that $x_N \in \overline{B}(x,r)$, then the sequence (x_n) is eventually contained in the compact set $\overline{B}(x,R)$. In particular, (x_n) converges in $\overline{B}(x,R)$. Because $\overline{B}(K,r)$ is closed in M, the limit point lies in $\overline{B}(K,r)$.

Totally bounded: We can cover the compact set K by finitely many open balls of radius R-r, say centered at x_1, \ldots, x_N . Let $\epsilon > 0$. We can cover each of the compact balls $\overline{B}(x_i,R)$ by finitely many balls of radius ϵ . We have then covered all the balls $\overline{B}(x,r)$ for $x \in K$. Thus $\overline{B}(K,r)$ is totally bounded.

This leads us to define:

Definition 2.5. Let M be a metric space and $K \subset M$ compact. Define the radius of compactness

$$RC(K) := \sup\{R \ge 0 : \overline{B}(K,R) \text{ is compact}\} \in [0,\infty].$$

From Proposition 2.4 it follows that

$$RC(K) = \min_{x \in K} RC(x)$$
.

In general, the set $\overline{B}(K, RC(K))$ may or may not be compact:

Example 2.6. 1. Let $M \subset \mathbb{R}$ be an open interval and $x \in M$. Then $\overline{B}(x, RC(x))$ is not compact.

- 2. Let $M \subset \mathbb{R}^2$ consist of an open ball and one isolated point x. Then $\overline{B}(x, RC(x)) = \{x\}$ is compact.
- 3. Let $M \subset \mathbb{R}^2$ consist of the points (1/n,0) and (1/n,1) for $n \in \mathbb{N}_{>0}$, and the point (0,0). Let $K = M \cap \mathbb{R} \times \{0\}$. Then RC(0,0) = 1 and $\overline{B}(x,1)$ is compact for all $x \in K$, so that RC(K) = 1. We have that $\overline{B}(K,1)$ is totally bounded but not complete.
- 4. Let $M \subset \mathbb{R} \times \ell_{\infty}(\mathbb{R})$ (with the sup distance) consist of the points (1/n, 0) and $(1/n, e_n)$ for $n \in \mathbb{N}_{>0}$, and the point (0, 0). Here, e_n is the sequence with a 1 at position n and 0 elsewhere. Let $K = M \cap (\mathbb{R} \times \{0\})$. Then RC(0,0) = 1 and $\overline{B}(x,1)$ is compact for all $x \in K$, so that RC(K) = 1. We have that $\overline{B}(K,1)$ is complete but not totally bounded.
- 5. Take the product of the previous two examples, equipped with the supdistance. Then $\overline{B}(x,1)$ is compact for all $x \in K$ and RC(K) = 1. We have that $\overline{B}(K,1)$ is neither complete nor totally bounded.

We will not need this, but to be complete, we state a sufficient condition for $\overline{B}(x, RC(x))$ to be non-compact.

Proposition 2.7. Let M be a locally compact metric space such that for all $x \in M$ and R, r > 0 we have

$$\overline{B}(x,R+r) = \overline{B}(\overline{B}(x,R),r)$$

(E.g. when M is a complete Riemannian manifold with its Riemannian distance.) Let $x \in M$ and $K \subset M$ compact.

- 1. If $\overline{B}(x, RC(x))$ is compact, then $RC(x) = \infty$.
- 2. If $\overline{B}(K, RC(K))$ is compact, then $RC(K) = \infty$.

Proof. 1. Suppose $RC(x) < \infty$ and B(x, RC(x)) is compact. By Proposition 2.4, there exists r > 0 such that

$$\overline{B}(\overline{B}(x, RC(x)), r) = \overline{B}(x, RC(x) + r)$$

is compact. This contradicts the maximality of RC(x).

2. Because $RC(K) = \min_{x \in K} RC(x)$, there exists $x \in K$ such that $\overline{B}(x, RC(x))$ is compact. By the first part, we have $RC(K) = \infty$.

3 Equivalence of distances

Proposition 3.1. Let M be a smooth manifold of dimension n and g_1, g_2 Riemannian metrics on M. Let $K \subset M$ be compact. Then there exist $c_1, c_2 > 0$ such that for all $x_1, x_2 \in K$ we have

$$c_1d_2(x_1,x_2) < d_1(x_1,x_2) < c_2d_2(x_1,x_2)$$
.

Proof. We show the right inequality; the left follows by symmetry. By Proposition 2.4, there exists r>0 such that $K'=\overline{B}_2(K,r)$ is compact. First note that for points with $d_2(x_1,x_2)\geq r$ we can take

$$c_2 = \max_{x_1, x_2 \in K} d_1(x_1, x_2)/r$$
.

We may thus assume that $d_2(x_1, x_2) \leq r$. Let $0 < \epsilon \leq r$ and $\gamma : [0, 1] \to M$ be a piecewise smooth regular curve joining x_1 and x_2 , with length₂ $(\gamma) \leq d_2(x_1, x_2) + \epsilon \leq 2r$. Then the image of γ must lie in K'. Let c'_2 be the constant from Proposition 1.2, applied to the compact set K'. Then

$$\operatorname{length}_{1}(\gamma) = \int_{0}^{1} \|\gamma'(t)\|_{1} dt$$

$$\leq c_{2}' \int_{0}^{1} \|\gamma'(t)\|_{2} dt$$

$$= c_{2}' \cdot \operatorname{length}_{2}(\gamma),$$

so that $d_1(x_1, x_2) \le c_2'(d_2(x_1, x_2) + \epsilon)$. Taking $\epsilon > 0$ arbitrarily small, it follows that $d_1(x_1, x_2) \le c_2' d_2(x_1, x_2)$. We can thus take

$$c_2 = \max(c'_2, \max_{x_1, x_2 \in K} d_1(x_1, x_2)/r)$$
.

Proposition 3.2. Let M be a smooth manifold of dimension n and g_1, g_2 Riemannian metrics on M. Let $K \subset M$ be compact and $S \subset M$ nonempty. Then there exist $c_1, c_2 > 0$ such that for all $x \in K$ we have

$$c_1 d_2(x, S) \le d_1(x, S) \le c_2 d_2(x, S)$$
.

Proof. Again, we limit ourselves to the left inequality. Let r>0 be such that $K'=\overline{B}_2(K,2r)$ is compact. For points with $d_2(x,S)\geq r$, we can take $c_2=\max_{x\in K}d_1(x,S)/r$. Take $x\in K$ with $d_2(x,S)\leq r$. Let $0<\epsilon\leq r$ and let $s\in S$ such that $d_2(x,s)\leq d_2(x,S)+\epsilon\leq 2r$. Then $s\in K'$. Let c_2' be the constant from Proposition 3.1 applied to the compact set K'. Then

$$d_1(x,S) \le d_1(x,s) \le c_2' d_2(x,s) \le c_2' (d_2(x,S) + \epsilon).$$

Taking $\epsilon > 0$ arbitrarily small, the conclusion follows with

$$c_2 = \max(c_2', \max_{x \in K} d_1(x, S)/r). \qquad \Box$$

Remark 3.3. The proofs of Proposition 3.1 and 3.2 simplify when we assume that d_1 and d_2 are complete: by Hopf–Rinow, the compactness of K then implies the compactness of $\overline{B}_2(K,r)$ for all $r \geq 0$.

Example 3.4. 1. Let G be a real Lie group with a Riemannian distance and $U \subset \mathfrak{g} = T_e G$ such that $\exp : U \to G$ is a diffeomorphism on its image. Equip \mathfrak{g} with a norm. Then for $K \subset U$ compact and $X, Y \in K$,

$$d_G(e^X, e^Y) \simeq ||X - Y||,$$

by Proposition 3.1 applied to the metric on G and the pushforward of a Euclidean metric on \mathfrak{g} by exp.

2. Let M, N be smooth manifolds and equip M, N and $M \times N$ with Riemannian metrics $g_M, g_N, g_{M \times N}$. Let $K \subset M \times N$ be compact. Then for $(x_M, x_N), (y_M, y_N) \in K$,

$$d_{M\times N}(x,y) \simeq d_M(x_M,y_M) + d_N(x_N,y_N),$$

by Proposition 3.1 applied to the metric $g_{M\times N}$ and $g_M\times g_N$.

4 Submanifolds

Lemma 4.1. Let $M \subset \mathbb{R}^n$ be a smooth submanifold, equipped with a Riemannian metric g. Consider the Euclidean norm $\|\cdot\|$ on \mathbb{R}^n . Let $K \subset M$ be compact. Then

$$d_q(x,y) \asymp_K ||x-y||$$

for $x, y \in K$.

Proof. One estimate is immediate: Consider the restriction $g_{\text{Eucl}}|_{M}$ of the Euclidean metric. We have

$$d_{g_{\text{Eucl}}|_{M}}(x,y) \ge d_{g_{\text{Eucl}}}(x,y) = ||x-y||$$

and Proposition 3.1 implies $d_g(x,y) \approx d_{q_{\text{Eucl}}|_M}(x,y)$. Hence

$$d_q(x,y) \gg ||x-y||$$

We now prove the reverse estimate. Let $m = \dim M$. Every $x \in M$ has an open neighborhood U for which there exists an open set $V \subset \mathbb{R}^n$ and a diffeomorphism $\phi: V \to W \subset \mathbb{R}^n$ such that $V \cap M = U$ and $\phi(U) = W \cap (\mathbb{R}^m \times \{0\})$. We may assume that $\phi(U)$ is convex. We may choose an open neighborhood $U' \subset U$ of x, relatively compact in U and such that for $y, z \in U'$ there exists a geodesic of length $d_g(y,z)$ contained in U. We may assume that the convex closure of U' in \mathbb{R}^n is contained in V and relatively compact in V. Among those U' we may extract a finite cover of K. By the Lebesgue covering lemma, there exists $\delta > 0$ such that when $x,y \in K$ with $d_g(x,y) \leq \delta$, there exists an open set U' of the cover such that $x,y \in U'$. We restrict our attention to $x,y \in K$ with $d_g(x,y) \leq \delta$. For the other points, we may take the implicit constant

$$\max_{\substack{x,y \in K \\ d_g(x,y) \ge \delta}} \frac{d_g(x,y)}{\|x - y\|}.$$

Now take ϕ and $U' \subset U$ as above with $x, y \in U'$. Consider the pushforward $\phi_*(g|_U)$ and the Euclidean metric $g_{\text{Eucl}|_{\phi(U)}}$ on $\phi(U)$. By Proposition 3.1 applied to the relatively compact set $\phi(U') \subset \phi(U)$,

$$d_g(x,y) = d_{g|_U}(x,y)$$

$$= d_{\phi_*(g|_U)}(\phi(x),\phi(y))$$

$$\approx d_{\text{Eucl}|_{\phi(U)}}(\phi(x),\phi(y))$$

$$= \|\phi(x) - \phi(y)\|$$

because $\phi(U)$ is convex. By the mean value theorem, there exists $z \in [x, y]$ such that $\|\phi(x) - \phi(y)\| \le |(\nabla \phi)(z) \cdot (x - y)|$. Let L be the convex closure of U' in \mathbb{R}^n . Then $z \in L$. By assumption, L is relatively compact in V, so that

$$\begin{aligned} d_g(x,y) &\asymp \|\phi(x) - \phi(y)\| \\ &\leq \left(\sup_{z \in L} \|(\nabla \phi)(z)\|\right) \cdot \|x - y\| \,. \end{aligned}$$

Because there are only finitely many choices of (ϕ, U, U') to be considered, this settles the estimate when $d_g(x, y) \leq \delta$.

Proposition 4.2. Let M be a Riemannian manifold and N a submanifold, equipped with a Riemannian metric. Let $K \subset N$ be compact. Then

$$d_N(x,y) \approx d_M(x,y)$$

for $x, y \in K$.

Proof. We will reduce to Lemma 4.1 using charts of M. Call g_M and g_N the metrics of M and N. Then one estimate follows from Proposition 3.1:

$$d_M(x,y) \le d_{g_M|_N}(x,y)$$

\times d_N(x,y).

We now prove the other estimate. As in the proof of Proposition 3.1, the case of points at M-distance bounded away from 0 is immediate. We may thus suppose x and y lie in one of finitely many compact sets $L \subset N$ contained in an open subset $U \subset M$ that is diffeomorphic to an open subset of \mathbb{R}^m . We may also assume that L is small enough so that the M-distance and N-distance between points of L are realized within U. Call the diffeomorphism ϕ . By Lemma 4.1 applied to the submanifold $\phi(U \cap N) \subset \mathbb{R}^m$ with the pushforward metric $(\phi|_{U \cap N})_*(g_N|_U)$ and the compact subset $\phi(L) \subset \phi(U \cap N)$,

$$d_N(x, y) = d_{U \cap N}(x, y)$$

= $d_{\phi(U \cap N)}(\phi(x), \phi(y))$
 $\approx \|\phi(x) - \phi(y)\|.$

By Lemma 4.1 applied to the (codimension 0) submanifold $\phi(U) \subset \mathbb{R}^n$, the metric $g_{\text{Eucl}}|_{\phi(U)}$ and the compact subset $\phi(L)$,

$$\|\phi(x) - \phi(y)\| \simeq d_{\operatorname{Eucl}_{\phi(U)}}(\phi(x), \phi(y)).$$

By Proposition 3.1 applied to the manifold $\phi(U)$, the Euclidean metric and the pushforward ϕ_*g_M , and the compact set $\phi(L)$,

$$d_{M}(x,y) = d_{U}(x,y)$$

$$= d_{\phi(U)}(\phi(x), \phi(y))$$

$$\approx d_{\text{Eucl}|_{\phi(U)}}(\phi(x), \phi(y)),$$

which completes the proof.

5 Covering maps

Proposition 5.1. Let $f: M \to N$ be a smooth map between Riemannian manifolds. Let $K \subset M$ be compact. Then

$$d_N(f(x), f(y)) \ll_K d_M(x, y)$$

for $x, y \in K$.

Proof. Similar to the proof of Proposition 3.1, using Proposition 1.2 together with the fact that the differential Df increases norms of tangent vectors locally by at most a constant.

Proposition 5.2. Let $p: M \to N$ be a local diffeomorphism between smooth Riemannian manifolds. Let $K \subset M$ be compact and $x, y \in p(K)$. Let $L \supset K$ be a compact neighborhood of K. Let $\sigma: p(K) \to K$ be an arbitrary section of p. Then

$$d_N(x,y) \asymp_{K,L} \min_{i,j} d_M(p|_L^{-1}(x), p|_L^{-1}(y)) \asymp_{K,L} \min_{i} d_M(\sigma(x), p|_L^{-1}(y))$$

for $x, y \in p(K)$.

Proof. Denote $p|_L^{-1}(x) = \{x_0, \dots, x_n\}$ and $p|_L^{-1}(y) = \{y_0, \dots, y_m\}$, with $\sigma(x) = x_0 \in K$. The estimate

$$d_N(x,y) \ll \min_{i,j} d_M(x_i, y_j)$$

follows from Proposition 5.1, for which we don't need to assume that L is a neighborhood of K. We trivially have

$$\min_{i,j} d_M(x_i, y_j) \le \min_j d_M(x_0, y_j).$$

It remains to show that

$$\min_{j} d_M(x_0, y_j) \ll_{K,L} d_N(x, y).$$

Cover L by finitely many open sets $(U_i)_{i\in I}$ on which p is injective. When $d_N(x,y)\geq r>0$ we may take as implicit constant the maximum of the upper semi-continuous function

$$(x,y) \mapsto r^{-1} \cdot \max_{\substack{i \in I \\ x \in p(U_i)}} \min_{\substack{j \\ y \in p(U_j)}} d_M \left(p|_{U_i}^{-1}(x), p|_{U_j}^{-1}(y) \right)$$

on the compact set $\{(x,y) \in p(K) \times p(K) : d_N(x,y) \geq r\}$. Here again we do not use that L is a neighborhood of K.

Because L is a neighborhood of K, we may cover cover K by finitely many open sets $V_i \subset L$ that are relatively compact in an open set $W_i \subset M$ on which p is injective. We may assume that each V_i is small enough so that the distances between points of $p(V_i)$ are realized in $p(W_i)$. There exists r > 0 such that for every $a \in K$ there exists $V_i \ni a$ with $B_N(p(a), r) \subset p(V_i)$. Indeed, if some $p(V_i)$ equals N, this is trivial. Otherwise, we may take r to be the minimum of the continuous positive function

$$a \mapsto \max_{i} d_N(p(a), N - p(V_i))$$

on the compact set K. As remarked earlier, we may now assume that

$$d_N(x,y) < r$$
.

Let $V_i \ni x_0$ be such that $B_N(x,r) \subset p(V_i)$. Then $y \in p(V_i)$. By Proposition 5.1 applied to the smooth map $p|_{W_i}^{-1}$ and the relatively compact subset $p(V_i) \subset p(W_i)$, we have

$$d_N(x,y) = d_{p(W_i)}(x,y)$$

$$\gg d_M(x_0, p|_{W_i}^{-1}(y))$$

$$\geq \min_j d_M(x_0, y_j)$$

because $p|_{W_i}^{-1}(y) \in V_i \subset L$.

Proposition 5.3. Let $p: M \to N$ be a finite degree smooth covering map between smooth Riemannian manifolds. Let $K \subset N$ be compact. Then

$$d_N(x,y) \simeq_K d_M(p^{-1}(x), p^{-1}(y))$$

for $x, y \in K$.

Proof. By applying Proposition 5.2 to the compact set $K' = p^{-1}(K)$ and any compact neighborhood $L \supset K'$.

Example 5.4. 1. With the notations of Proposition 5.2, let $M = \mathbb{R}$, $N = \mathbb{R}/\mathbb{Z}$ and $K = L = [0,1] \subset M$. The projection $p: M \to N$ is a covering map but it is not true that

$$d_N(x,y) \asymp \min_{i,j} d_M(x_i,y_j)$$

when $x, y \in p(K)$. For example when x = p(0) and $y \to p(1)^-$. So we cannot omit the condition that L is a neighborhood of K.

2. Let $M = \mathbb{R}$, $N = \mathbb{R}/\mathbb{Z}$, K = [0, 0.99] and L = [-0.5, 1]. Let x = p(0), $x_0 = 1 \in L - K$ and $y \to p(0)^+$. Then it is not true that

$$d_N(x,y) \asymp \min_j d_M(x_0,y_j)$$
.

So we cannot omit the condition that $\sigma(x) \in K$.

3. With the same notations, let $M = N = \mathbb{C}$ and $p(z) = z^2$. Then p is open; it is a ramified covering map. But it is not true that

$$d_N(0, p(z)) \simeq \min(d_M(0, z), d_M(0, -z))$$

as $z \to 0$: the LHS is $\approx |z|^2$, the RHS is $\approx |z|$. We cannot omit the condition that p is everywhere a local diffeomorphism.

4. Equip $GL_2(\mathbb{R})$, $SL_2(\mathbb{R})$ and $PSL_2(\mathbb{R})$ with Riemannian metrics and $M_2(\mathbb{R})$ with a matrix norm. Then for $K \subset SL_2(\mathbb{R})$ compact and $x, y \in K$ we have

$$d_{\mathrm{PSL}_2}(x,y) \approx \min(d_{\mathrm{SL}_2}(x,y), d_{\mathrm{SL}_2}(x,-y))$$

$$\approx \min(d_{\mathrm{GL}_2}(x,y), d_{\mathrm{GL}_2}(x,-y))$$

$$\approx \min(\|x-y\|, \|x+y\|),$$

by respectively Proposition 5.3 and two times Proposition 4.2.