高等数学阶段测试题(五)

44. 2-		S Marine	1
姓名	班级	学号	1 1

一、选择题 (每题 3 分, 共 30 分)

- 1、函数 f(x,y) 在点 (x_0,y_0) 处连续是函数在该点可微分的(
- A 充分不必要条件
- B 必要不充分条件
- C 充分必要条件
- D 既不充分也不必要条件
- 2、设函数 $z = \arctan \frac{y}{x}$, 则 $x \frac{\partial z}{\partial y} y \frac{\partial z}{\partial r} = ($)

- 3. 设 $z = f(x^2 y^2, e^{xy})$ 可微,则 $\frac{\partial z}{\partial z} = ($
- A $2xf_1' + ye^{xy}f_2'$
- $B x^2 f_1' + y e^{xy} f_2'$
- $C 2yf_1' + e^{xy}f_2'$ $D 2yf_1' + xe^{xy}f_2'$
- 4. $Ef_x'(x_0, y_0) = 0$, $f_y'(x_0, y_0) = 0$, $Mf(x, y) TE(x_0, y_0)$

- C 不一定有极值
 - D 有极大值
- 5. $\partial u = x^2 2bxy + cy^2$, $\frac{\partial u}{\partial x} = 6$, $\frac{\partial u}{\partial y} = 0$, $\lim_{n \to \infty} \frac{\partial^2 u}{\partial y^2} = 0$

- 6、设函数 $z = 2x^2 3y^2$,则(
- A 函数在点(0,0)处取得极大值
- B 函数在点(0,0)处取得极小值
- C 点(0,0)不是函数的极值点
- D 点(0,0)是函数的极大值点或极小值点

- 7、设 $I_1 = \iint_D \ln(x+y) d\sigma$, $I_2 = \iint_D \left[\ln(x+y)\right]^2 d\sigma$, 其中 $D = \{(x,y) | 3 \le x \le 5, 0 \le y \le 1\}$, 则(

- 8、设D是由y=2x+3、 $y=x^2$ 所围成的闭区域,则二重积分 $\iint dxdy=($)

9、设区域
$$D = \left\{ (x,y) \middle| \frac{x^2}{9} + \frac{y^2}{4} \le 1 \right\}$$
,则三重积分 $\iint (x^2y + xy^2) dxdy = ($

D 1≤I≤4

- A 0≤1≤1 B 0≤1≤2 C -1≤1≤1 其空题(每题3分,共30分)
- 二元函数 $z = \ln(y^2 + x^2 3)$ 的定义域为
- 三元函数 $z = y \cos(x = 2y)$ 的全微分 $dz = \frac{1}{2}$
- 4、函数z = 4在(1,1)处的全微分 dz_(1,1) =_
- 5. 二元函数 $f(x,y) = x^2 + xy 2y^2$ 的驻点为_
- 6、积分区域 $D: x^2 + y^2 \le a^2(a > 0)$,且 $\iint dx dy = 9\pi$,则 $a = \underbrace{\hspace{1cm}}_{a = 0}:$
- 7、积分区域 $D: x^2 + y^2 = 2y$,则 $\iint_{\Sigma} xy^2 dx dy =$ ____:
- 8、设区域 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$,则 $\iint (4-x-y) d\sigma = ____:$
- 9、改变积分顺序 $\int_0^2 dx \int_{\frac{x}{2}}^{3-x} f(x,y) dy =$ ____
- 10. $\Re z = y^{\tau}$, $\lim \frac{\partial^2 z}{\partial x \partial y} =$

三、解答题(共60分)

1、设 $z = \tan(x+y) + \ln(x^2y)$, 計算 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$. (10 分)

2、設定= $\ln(e^x + v)$. 其中u = xy, $v = x^2 - y^2$, 计算 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. (10分)

3. 计第二重系分 $\iint_0 \frac{\sin y}{y} dx dy$,其中 D 是由直线 $y = \frac{\pi}{2}$, y = x 设地所围成的闭区域。X(0, f)

4、 计算二重积分 $\iint xy^2 d\sigma$, 其中 D 是由圆周 $x^2 + y^2 = 4$ D D 轴所围成的右半闭区域。 (10分)

5、求二元函数 $f(x,y) = x^2 - xy + y^2 - 3x$ 的极值。(10分)

