Analyse complexe 2024-2025 Aide aux révisions : liste de résultats

Damien Mégy

12 avril 2025

Table des matières

I	Holomorphie	1
2	Fonctions analytiques 2.1 Séries formelles	1
3	Intégration curviligne, primitives holomorphes	2
4	Théorème et formule(s) de Cauchy 4.1 Étude locale des fonctions holomorphes	3
5	Séries de Laurent, singularités isolées, Résidus	4
	5.1 Séries de Laurent	4
	5.2 Singularités isolées	4
	5.3 Théorème des résidus	4
	5.4 Principe de l'argument et théorème de Rouché	5

1 Holomorphie

Proposition 1.1. Toute matrice $M \in M_2(\mathbb{R})$ est la somme d'une matrice \mathbb{C} -linéaire et d'une matrice \mathbb{C} -antilinéaire et cette décomposition est unique.

Proposition 1.2. Une matrice de similitude directe est soit nulle soit inversible, auquel cas son inverse est une similitude directe.

Proposition 1.3 (Conditions de Cauchy-Riemann). Une fonction $f: U \to \mathbb{C}$ est \mathbb{C} -dérivable en un point $z_0 \in U$ si et seulement si elle est différentiable en z_0 et de plus, sa différentielle en z_0 est une similitude directe.

Proposition 1.4. Toutes les règles de dérivation pour les opérateurs de Wirtinger.

2 Fonctions analytiques

2.1 Séries formelles

Proposition 2.1. Les inversibles de k[[t]] sont les éléments $\sum a_k T^k$ avec $a_0 \neq 0$.

2.2 Séries entières

Proposition 2.2. Soit $\sum a_n z^n$ une série entière. Son rayon de convergence est strictement positif ssi il existe C > 0 tel que $a_n = O(C^n)$.

Théorème 2.3 (Hadamard-Cauchy). Soit $\sum a_n z^n$ une série entière, et soit $\ell = \limsup \sqrt[n]{|a_n|} \in \mathbb{R}_+ \cup \{+\infty\}$. Alors le rayon de convergence de la série est $1/\ell \in \mathbb{R}_+ \cup \{+\infty\}$.

Proposition 2.4 (Convergence des produits de Cauchy). Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons R > 0 et R' > 0. Alors le produit de Cauchy $\sum c_n z^n$ des deux séries a un rayon de convergence $R' \ge \min(R, R')$.

Proposition 2.5. Soit $\sum a_n z^n$ une série entière non nulle de rayon R > 0 et f sa somme sur le disque D(0, R). Soit d l'indice du premier coefficient non nul de $\sum a_n z^n$. Alors, au voisinage de zéro, on a $f(z) \sim a_d z^d$.

Proposition 2.6. Soit $\sum a_n z^n$ une série entière de rayon R > 0 et f sa somme sur le disque D(0,R). Alors f est dérivable au sens complexe sur D(0,R) et sa dérivée complexe est la somme de la série entière $\sum (n+1)a_{n+1}z^n$ (qui est aussi de rayon R).

Théorème 2.7 (Zéros isolés pour les séries entières, à l'origine). Soit $\sum a_n z^n$ une série entière de rayon strictement positif et f sa somme. S'il existe une suite $(z_n)_{n\in\mathbb{N}}\in(\mathbb{C}^*)^{\mathbb{N}}$ convergeant vers zéro et telle que $\forall n\in\mathbb{N}, f(z_n)=0$, alors tous les a_n sont nuls.

Théorème 2.8 (Principe du maximum pour une série entière, en l'origine). Soit $\sum a_n z^n$ une série entière de rayon R > 0 et f sa somme sur le disque D(0,R). Si |f| admet un maximum local en zéro, alors f est constante.

Théorème 2.9 (Représentation intégrale des coefficients). Soit $\sum a_n z^n$ une série entière de rayon R > 0 et f sa somme sur le disque D(0,R). Soit $r \in]0,R[$. Alors, pour tout $n \in \mathbb{N}$, on a

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(re^{i\theta}\right) e^{-in\theta} d\theta.$$

Théorème 2.10 (de Liouville, énoncé pour les séries entières). Soit $\sum a_n z^n$ une série entière de rayon $+\infty$ et $f: \mathbb{C} \to \mathbb{C}$ sa somme. Si f est bornée, alors f est constante.

(Rappel de terminologie : f bornée veut par définition dire |f| bornée.)

2.3 Fonctions analytiques

Proposition 2.11. Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R>0 et f sa somme sur D(0,R). Alors f est analytique sur D(0,R).

Proposition 2.12. Une fonction analytique sur U est holomorphe sur U.

Théorème 2.13 (Zéros isolés pour les fonctions analytiques). Soit $U \subseteq \mathbb{C}$ un ouvert connexe et f une fonction analytique non identiquement nulle sur U. Alors les zéros de f sont isolés.

Théorème 2.14 (Zéros isolés pour les fonctions analytiques). Soit $U \subseteq \mathbb{C}$ un ouvert connexe, $f: U \to \mathbb{C}$ analytique et $Z := f^{-1}(\{0\})$ l'ensemble des zéros de f. Si Z admet un point d'accumulation dans U, alors f est identiquement nulle sur U.

3 Intégration curviligne, primitives holomorphes

Proposition 3.1. Soit U un ouvert de \mathbb{C} , $f \in \mathscr{C}^0(U,\mathbb{C})$, $\gamma : [0,1] \to U$ un chemin de U de classe \mathscr{C}^1 et γ^{opp} son chemin opposé. Alors

$$\int_{\gamma^{opp}} f(z)dz = -\int_{\gamma} f(z)dz.$$

Proposition 3.2 (Invariance par reparamétrage croissant). Soit U un ouvert de \mathbb{C} , $f \in \mathscr{C}^0(U,\mathbb{C})$, $\gamma : [0,1] \to U$ un chemin de U de classe \mathscr{C}^1 et $\phi : [0,1] \to [01]$ une bijection croissante de classe \mathscr{C}^1 . Alors

$$\int_{\gamma \circ \phi} f(z) dz = \int_{\gamma} f(z) dz.$$

Proposition 3.3 (Inégalité triangulaire). Soit U un ouvert de \mathbb{C} , $f \in \mathscr{C}^0(U,\mathbb{C})$ et $\gamma : [0,1] \to U$ un chemin de U de classe \mathscr{C}^1 . Alors :

 $\left| \int_{\gamma} f(z) dz \right| \leq \int_{0}^{1} \left| f(\gamma(t)) \gamma'(t) \right| dt.$

Proposition 3.4 (Inégalité triangulaire, forme simplifiée, majoration brutale de |f|). Soit U un ouvert de \mathbb{C} , $f \in \mathscr{C}^0(U,\mathbb{C})$ et γ un chemin de U de classe \mathscr{C}^1_{pm} . Alors :

$$\left| \int_{\gamma} f(z) dz \right| \le \log(\gamma) \max_{z \in \text{supp } \gamma} |f(z)|.$$

Proposition 3.5. Soit $U \subseteq \mathbb{C}$ un ouvert, $f: U \to \mathbb{C}$ et $\gamma: [0,1] \to U$ un chemin \mathscr{C}^1_{pm} dans U. Si f possède une primitive holomorphe F sur U, alors

$$\int_{\gamma} f(z)dz = F(\gamma(1)) - F(\gamma(0)).$$

4 Théorème et formule(s) de Cauchy

Théorème 4.1 (Lemme de Goursat). Soit U un ouvert de \mathbb{C} , $f \in \mathcal{O}(U)$ et $T \subset U$ un triangle (enveloppe convexe de trois points non alignés), dont le bord est muni de son orientation canonique. Alors $\int_{\partial T} f(z) dz = 0$.

Proposition 4.2. Soit $U \subseteq \mathbb{C} *$ un ouvert étoilé et $f \in \mathcal{O}(U)$. Alors f possède des primitives holomorphes sur U

Théorème 4.3 (Théorème intégral de Cauchy). Soit $U \subset \mathbb{C}$ un ouvert, $f \in \mathcal{O}(U)$, et $K \subseteq U$ un compact à bord \mathscr{C}^1 par morceaux, dont le bord est muni de son orientation canonique. Alors, $\int_{\partial K} f(z) dz = 0$.

Théorème 4.4 (Formule de Cauchy). Soit $U \subset \mathbb{C}$ un ouvert, $f \in \mathcal{O}(U)$, et $K \subseteq U$ un compact à bord \mathscr{C}^1 par morceaux, dont le bord est muni de son orientation canonique. Soit $a \in K^{\circ}$. Alors :

$$f(a) = \frac{1}{2i\pi} \int_{\partial K} \frac{f(z)}{z - a} dz.$$

Théorème 4.5. Les fonctions holomorphes sont analytiques. De plus, si $f \in \mathcal{O}(U)$ et $z_0 \in U$, le rayon de convergence du DSE de f en z_0 a un rayon supérieur ou égal à dist (z_0, U^c) .

Théorème 4.6. Soit f une fonction holomorphe sur U. Alors f' est holomorphe sur U.

Théorème 4.7 (de Morera). Soit U un ouvert de \mathbb{C} et $f \in \mathscr{C}^0(U,\mathbb{C})$ telle que pour tout triangle $T \subset U$, on ait $\int_{\partial T} f(z) dz = 0$. Alors, f est holomorphe.

Théorème 4.8 (Formule de la moyenne). Soit $U \subseteq \mathbb{C}$ un ouvert, $f \in \mathcal{O}(U)$ et $z_0 \in U$. Pour tout r > 0 tel que $\overline{\mathbb{D}(z_0, r)} \subseteq U$, on a :

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

Théorème 4.9 (Formules de Cauchy d'ordre supérieur). Soit $U \subseteq \mathbb{C}$ un ouvert et $f \in \mathcal{O}(U)$. Soit $K \subseteq U$ un compact à bords C^1 par morceaux et $z \in K^{\circ}$. Alors, pour tout $n \ge 0$:

$$\frac{f^{(n)}(z)}{n!} = \frac{1}{2i\pi} \int_{\partial K} \frac{f(w)}{(w-z)^{n+1}} dw$$

Corollaire 4.10 (Inégalités de Cauchy pour cercles centrés). Soit $U \subseteq \mathbb{C}$ un ouvert, $f \in \mathcal{O}(U)$ et $\overline{\mathbb{D}(z,r)}$ un disque fermé inclus dans U. Alors, pour tout $n \ge 0$:

$$\left| f^{(n)}(z) \right| \le \frac{n!}{r^n} \max_{w \in \mathscr{C}(z,r)} |f(w)|$$

Théorème 4.11 (de Liouville). Soit f une fonction holomorphe sur \mathbb{C} . Si f est bornée, alors f est constante.

Théorème 4.12 (Principe du maximum). Soit $U \subseteq \mathbb{C}$ un ouvert et $f \in \mathcal{O}(U)$. Si |f| admet un maximum local en un point z_0 , alors f est constante sur la composante connexe de de U contenant z_0 .

Corollaire 4.13 (du principe du maximum). Soit $U \subseteq \mathbb{C}$ un ouvert, $f \in \mathcal{O}(U)$ et $K \subseteq U$ un compact. Alors $\max_K |f| = \max_{\partial K} |f|$.

Théorème 4.14 (Lemme de Schwarz). Soit $\mathbb D$ le disque unité, et $f:\mathbb D\to\mathbb D$ une fonction holomorphe telle que f(0)=0.

4.1 Étude locale des fonctions holomorphes

Théorème 4.15 (Inversion locale pour les fonctions holomorphes). Soit $U \subseteq \mathbb{C}$ un ouvert, $f \in \mathcal{O}(U)$ et $z_0 \in U$ un point tel que $f'(z_0) \neq 0$. Alors il existe un ouvert V contenant z_0 tel que W := f(V) soit ouvert et que $f|_V$ soit un biholomorphisme de V sur W.

Proposition 4.16 (Étude aux points critiques des fonctions holomorphes). Soit U un ouvert connexe de \mathbb{C} , $f \in \mathcal{O}(U)$ une fonction non constante, $z_0 \in U$ et $d = \min\{d \in \mathbb{N}^*, f^{(d)}(z_0) \neq 0\}$. Alors il existe un voisinage ouvert $V \subseteq U$ de z_0 , un voisinage ouvert W de 0 et un biholomorphisme $\phi: V \to W$ tel que :

$$\forall z \in V, f(z) - f(z_0) = \phi(z)^d.$$

Théorème 4.17 (de l'application ouverte pour les fonctions holomorphes). Soit U un ouvert connexe et $f \in \mathcal{O}(U)$ non constante. Alors, f est ouverte.

5 Séries de Laurent, singularités isolées, Résidus

5.1 Séries de Laurent

Théorème 5.1 (Développement en série de Laurent des fonctions holomorphes sur une couronne). Une fonction holomorphe sur une couronne $A(z_0,R,R')$ est développable en série de Laurent $\sum_{n\in\mathbb{Z}}a_n(z-z_0)^n$ sur cette couronne et pour tout $n\in\mathbb{Z}$ et $r\in]R,R'[$, on a :

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(re^{i\theta}\right) e^{-in\theta} d\theta.$$

5.2 Singularités isolées

Proposition 5.2. Soit z_0 une singularités isolée d'une fonction holomorphe f. Soit $\sum_{n\in\mathbb{Z}}a_n(z-z_0)^n$ le développement en série de Laurent de f sur un disque épointé $\mathbb{D}(z_0,\epsilon)^*$. Alors, z_0 est une singularité effaçable ssi $\forall n < 0, a_n = 0$.

Théorème 5.3 (Théorème d'extension de Riemann). Soit z_0 une singularité isolée d'une fonction holomorphe f. Si |f| est bornée au voisinage de z_0 , alors la singularité est effaçable, autrement dit f se prolonge holomorphiquement en z_0 .

Proposition 5.4 (Comportement au voisinage d'un pôle). Soit f une fonction holomorphe admettant un pôle d'ordre d en z_0 . Au voisinage de z_0 , on a $f(z) \sim a_{-d}z^{-d}$.

Théorème 5.5 (Casoratti-Weiestrass). Soit $z_0 \in U$ une singularité essentielle d'une fonction holomorphe $f \in \mathcal{O}(U \setminus \{z_0\})$. Alors, pour tout voisinage W de z_0 contenu dans U, l'image par f de $W \setminus \{z_0\}$ est dense dans \mathbb{C} .

Proposition 5.6. Soit U un ouvert, $Z \subset U$ un fermé constitué de points isolés et f fonction holomorphe sur $U \setminus Z$. Alors il y a équivalence entre :

- Pour tout $z_0 \in Z$, z_0 n'est pas une singularité essentielle de f.
- Au voisinage de tout $z_0 \in Z$, f s'écrit comme le quotient g/h de deux fonctions holomorphes (définies sur un voisinage de z_0).

5.3 Théorème des résidus

Théorème 5.7 (des résidus). Soit $U \subset \mathbb{C}$ un ouvert, $Z \subset U$ une partie discrète, $K \subset U$ un compact à bords \mathscr{C}^1 par morceaux avec $Z \cap \partial K = \emptyset$, et f une fonction holomorphe sur $U \setminus Z$. Alors :

$$\int_{\partial K} f(z) dz = 2i\pi \sum_{\alpha \in K \cap Z} \text{R\'es}_{\alpha}(f).$$

5.4 Principe de l'argument et théorème de Rouché

Théorème 5.8 (Principe de l'argument). Soit $U \subseteq \mathbb{C}$ un ouvert, f une fonction méromorphe à zéros isolés 1 sur U et $D = \sum_a m_a$ son diviseur. Si $K \subset U$ est un compact à bord \mathscr{C}^1 par morceaux, dont le bord ne contient aucun zéro ni pôle de f, alors :

$$\frac{1}{2i\pi} \int_{\partial K} \frac{f'(z)}{f(z)} dz = \sum_{a \in K} m_a.$$

Théorème 5.9 (Théorème de Rouché). Soit $U \subset \mathbb{C}$ un ouvert, $f, g \in \mathcal{O}(U)$ et $K \subset U$ un compact. Si |f-g| < |f| sur ∂K , alors f et g ont même nombre de zéros dans K, comptés avec multiplicités.

Corollaire 5.10 (Localisation des racines des polynômes : version effective). Soit $P = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ un polynôme de degré $n/\ge 1$. Soit $R = 2\max_{0\le k\le n-1}|a_k|^{\frac{1}{n-k}}$. Alors P admet n racines dans le disque $\mathbb{D}(0,R)$, comptées avec multiplicités.

Dans toute la suite du paragraphe, U est un ouvert de \mathbb{C} , $(f_n)_n$ est une suite de fonctions holomorphes convergeant uniformément sur tout compact vers une fonction f holomorphe 2 .

Pour simplifier l'énoncé des résultats, on suppose de plus *U* connexe.

Lemme 5.11. Soit $K \subset U$ un compact. Si f ne s'annule pas sur ∂K , alors pour n grand, f_n ne s'annule pas non plus sur ∂K et f et f_n ont même nombre de zéros dans K° , comptés avec multiplicités.

Proposition 5.12. Si les fonctions f_n ne s'annulent pas dans U, alors soit f ne s'annule pas sur U, soit f est identiquement nulle.

Proposition 5.13. Si les fonctions f_n sont injectives, alors soit f est injective, soit f est constante.

^{1.} Hypothèse rajoutée pour éviter que f soit identiquement nulle sur une composante connexe de U. Demander que les zéros soient isolés permet de dire que f admet un diviseur.

^{2.} L'holomorphie résulte automatiquement du théorème de Morera, mais nous n'avons pas vu ce théorème en cours.