Pós-Prática Velocidade da Luz

Edmur C. Neto - 12558492 Rafael F. Gigante - 12610500

Instituto de Física de São Carlos Universidade de São Paulo

10/04/2024

- Galileu Galilei (séc. XVII): Experimento das duas lanternas separadas por uma grande distância;
- Resultados inconclusivos.

Galileu Galilei

Experimento das lanternas

- Ole Romer (1676): Observação das luas de Júpiter;
- ightharpoonup Obteve $c=2.20\times 10^5 km/s$.

Ole Romer

Eclipse da lua de Júpiter observada em diferentes épocas

- James Bradley (1729): Aberração da luz;
- ightharpoonup Obteve $c=3.01\times 10^5 km/s$

Fenômeno de aberração da luz

- > Hippolyte Fizeau (1849): Experimento da Roda Dentada;
- ightharpoonup Obteve $c=3.15\times 10^5 km/s$.

Hippolyte Fizeau

Experimento da roda dentada

- Léon Foucalt (1862): Experimento do espelho giratório;
- ightharpoonup Obteve $c=2.98\times 10^5 km/s$.

Léon Foucalt

Experimento do espelho giratório

- > Rosa&Drosey (1906): $(\mu_0\epsilon_0)^{-\frac{1}{2}}$, $c=2.99710\times 10^5 km/s$;
- > Albert Michelson (1878): espelho giratório, $c=2.99796\times 10^5 km/s$;
- **Essen&Gordon-Smith (1950):** cavidade ressonante, $c=2.99792\times 10^5 km/s$;
- > Froome (1958): interferometria com ondas de rádio, $c=2.99792\times 10^5 km/s$;
- > Evenson & Colab (1972): interferometria laser, $c=2.99792\times10^5 km/s$
- ightharpoonup Valor atualmente definido: c=299792.458~km/s

Importância da definição do valor da Velocidade da Luz:

- Determinação de unidades SI (m);
- Sistemas de Comunicação (Fibra óptica);
- Sistemas de Localização (GPS)

OBJETIVOS

- Experimento 1 (Espelho giratório):
 - Familiarizar-se com técnicas de alinhamento óptico;
 - Utilização do conjunto fotodetector-osciloscópio para determinar a velocidade de rotação do espelho giratório;
 - Determinar experimentalmente a velocidade da luz e comparar com o resultado esperado;

Diagrama da montagem experimental

Foto-montagem do experimento

Tempo de vôo do pulso (~ μs):

$$\omega t = \phi \Rightarrow t = \frac{\phi}{2\pi f}$$

Separação dos pulsos:

$$\Delta S = 2\phi R$$

Velocidade da luz:

$$v = \frac{2d}{t} \implies v = \frac{8\pi Rfd}{\Delta S}$$

Diagrama dos espelhos girantes

Resultados esperados

- ightharpoonup Espera-se obter que $\Delta S \propto f$;
- Análise dos dados experimentais:
 - 1. Determinar a velocidade da luz a partir de um gráfico de ΔS em função de f;
 - Determinar a velocidade da luz através de um histograma das velocidades obtidas com cada valor de ΔS e f.

$$c_0 = 2.988 \times 10^8 m/s$$

$$c_{ar} = 2.987 \times 10^8 m/s$$

OBJETIVOS

- Experimento 2 (Pulsos):
 - Familiarizar-se com técnicas de alinhamento óptico;
 - Utilização de um osciloscópio para medir o tempo gasto por um pulso para percorrer uma distância pré-estabelecida;
 - Determinar experimentalmente a velocidade da luz e comparar com o resultado esperado.

Diagramas da montagem experimental

Resultados esperados

Pulsos observados no osciloscópio

$$c_0 = 2.988 \times 10^8 m/s$$

Gráfico esperado, onde o coeficiente angular é a velocidade da luz

$$c_{ar} = 2.987 \times 10^8 m/s$$

OBJETIVOS

- Experimento 3 (Modulação temporal):
 - 1. Medir a diferença de fase $\Delta \varphi$ de um sinal periódico baixo em um pequeno caminho ΔS e determinar a velocidade da luz;
 - 2. Determinar a velocidade da luz e o índice de refração de diferentes meios: água, líquido orgânico e vidro.

Diagramas da montagem experimental

- ightharpoonup Sinal emitido: $I = I_0 + \Delta I_0 cos(2\pi\nu t)$
- ightharpoonup Sinal recebido: $U = Acos(2\pi\nu t)$
- Afastando o emissor do receptor por ΔS geramos um atraso no sinal:

$$\Delta t = \frac{\Delta S}{c} \Rightarrow \Delta \varphi = 2\pi \nu \Delta t$$

$$U = A\cos(2\pi \nu t - \Delta \varphi)$$

Juntando as equações, obtemos:

$$c = \frac{\Delta S}{\Delta \varphi} 2\pi \nu$$

Sinal emissor e receptor atrasado por Δt

Misturamos dois sinais:

$$\nu = 60MHz$$

$$\nu' = 59.9MHz$$

$$U = A\cos(2\pi\nu t - \Delta\varphi)\cos(2\pi\nu' t)$$

Resulta em um sinal alto e um sinal baixo, filtramos apenas o sinal baixo:

$$U_1 = \frac{1}{2}A\cos(2\pi(\nu - \nu')t - \Delta\varphi)$$

$$\Delta \varphi = 2\pi \frac{\Delta t_1}{T_1} \Rightarrow \Delta t = \frac{\Delta t_1}{T_1 \nu} \Rightarrow c = \frac{\Delta S}{\Delta t_1} T_1 \nu$$

Esquema do equipamento modulador de frequência

> Tubo com água;

 Cilindro com líquidos orgânicos: etanol e glicerina;

Cilindro de acrílico;

$$c_n = \frac{c_0}{n} \implies t_n = \frac{d}{c_n}$$
 , $t_0 = \frac{d}{c_0}$

$$\Delta t = t_n - t_0 \implies c_n = \frac{c_0}{1 + \frac{\Delta t}{d}c_0}$$

$$n = 1 + \frac{\Delta t}{d}c_0$$

$$\Delta t = \frac{\Delta t_1}{T_1 \nu} \implies c_n = \frac{c_0}{1 + \frac{c_0}{d\nu} \frac{\Delta t_1}{T_1}}$$

$$n = 1 + \frac{c_0}{d\nu} \frac{\Delta t_1}{T_1}$$

Propagação da luz em diferentes meios

Resultados esperados

Exemplo de sinal para água

Exemplo de sinal para o acrílico

Valores da literatura: Água: n = 1.333

Etanol: n = 1.36

Glicerina: n =1.47

Acrílico: n = 1.5

Montagem experimental com os valores medidos

f(Hz)	σ f(Hz)	S ± 1 (mm)	
263.6	0.8	1.3	
328.4	0.7	1.1	
395.2	1	1.9	
457.9	0.6	2.3	
548	1	2.5	
631.5	0.2	3.2	
655.7	0.2	3.2	
749	2	3.3	
885.3	0.7	4.2	
899.5	0.0	4.5	
964.8	3.8	4.5	
1110	1	5.6	
1148	2	5.8	
1270	29	5.9	

$$d = (15.17 \pm 0.03)m$$
$$R = (4.8 \pm 0.01)m$$

$$v = \frac{8\pi R f d}{\Delta S}$$

Velocidade obtida:

$$v = (3.7 \pm 0.2) \times 10^8 m/s$$

 \succ Erro relativo ao valor da literatura: $~\epsilon=22.97\%$

 \succ Velocidade média obtida: $v = (3.9 \pm 1.6) \cdot 10^8 m/s$

 \succ Erro relativo ao valor da literatura: $~\epsilon=30.9\%$

Tempo Calc. ± 2.10 ⁻⁹ (s)	Tempo Osc. ± 2.10 ⁻⁹ (s)	σ Distância (m)	Distância (m)
0	0	0	0
0.000000046	0.00000046	0.02	14.97
0.000000066	0.000000066	0.02	20.064
0.000000090	0.000000090	0.03	25.81
0.000000146	0.000000110	0.04	30.84
0.000000129	0.00000136	0.05	36.94
	0.00000160	0.06	42.26

$$v = \frac{\Delta S}{\Delta t}$$

> Velocidades obtidas:

$$v_{osciloscópio} = (2.6 \pm 0.4) \cdot 10^8 (m/s)$$

$$v_{calculado} = (2.7 \pm 0.4) \cdot 10^8 (m/s)$$

> Erros relativos:

$$\epsilon_{osciloscópio} = 13.1\%$$

$$\epsilon_{calculado} = 8.5\%$$

v osc. (m/s) . 10 ⁸	σ v osc. (m/s) . 10 ⁸	٤ (%)	v calc. (m/s) . 10 ⁸	σ v calc. (m/s) . 10 ^a	٤ (%)
3.25	0.1	8.55	3.25	0.1	8.55
3.0	0.09	1.40	3.04	0.09	1.40
2.87	0.07	4.34	2.87	0.7	4.34
2.8	0.05	6.48	2.11	0.3	29.54
2.72	0.04	9.40	2.86	0.5	4.48
2.64	0.04	11.90			

Velocidades obtidas:

$$v_{osciloscópio} = (2.89 \pm 0.07) \cdot 10^8 m/s$$

$$v_{calculado} = (2.83 \pm 0.08) \cdot 10^8 m/s$$

> Erros relativos

$$\epsilon_{osciloscópio} = 3.69\%$$

$$\epsilon_{calculado} = 5.68\%$$

Cálculo da velocidade por meio da expressão:

$$v = \frac{\Delta S}{\Delta t_1} \cdot T_1 \nu$$

> Utilizando $\nu = 60MHz$

$$\Delta S = (0.55 \pm 0.01)m$$

$$\Delta t_1 = (0.07 \pm 0.01) \mu s$$

$$T_1 = (10.1 \pm 0.2) \mu s$$

$$v = (3.7 \pm 0.5) \cdot 10^8 (m/s)$$

$$\Delta S = (0.66 \pm 0.01)m$$

$$\Delta t_1 = (0.89 \pm 0.01) \mu s$$

$$T_1 = (10.0 \pm 0.2) \mu s$$

$$v = (4.4 \pm 0.5) \cdot 10^8 (m/s)$$

Cálculo da velocidade no meio, a partir da expressão:

$$v_n = \frac{v_0}{1 + \frac{v_0}{d \cdot \nu} \cdot \frac{\Delta t_1}{T_1}}$$

Cálculo dos índices de refração por meio da expressão:

$$n = 1 + \frac{v_0}{d \cdot \nu} \cdot \frac{\Delta t_1}{T_1}$$

➤ Líquido 1

$$d = (0.05 \pm 0.01)m$$

$$\Delta t_1 = (0.13 \pm 0.01) \mu s$$

$$T_1 = (9.8 \pm 0.2) \mu s$$

$$v_1 = (1.3 \pm 0.6) \cdot 10^8 (m/s)$$

$$n_1 = 2.3 \pm 1.2$$

➤ Sólido 1

$$d = (0.05 \pm 0.01)m$$

$$\Delta t_1 = (0.10 \pm 0.01) \mu s$$

$$T_1 = (9.8 \pm 0.2) \mu s$$

$$v_3 = (1.5 \pm 0.8) \cdot 10^8 (m/s)$$

$$n_3 = 2 \pm 1.2$$

➤ Sólido 2

$$d = (0.05 \pm 0.01)m$$

$$\Delta t_1 = (0.07 \pm 0.01) \mu s$$

$$T_1 = (10.3 \pm 0.2) \mu s$$

$$v_4 = (1.8 \pm 0.9) \cdot 10^8 (m/s)$$

$$n_4 = 1.68 \pm 1.3$$

Material	Δt ₁ (10^-6 s)	T ₁ (10^-6 s)	n	cn (10^8 m/s)
Líquido 1	0.13 ± 0.01	9.8 ± 0.2	2.3 ± 1.2	1.3 ± 0.6
Líquido 2	0.14 ± 0.01	10.0 ± 0.2	2.4 ± 1	1.2 ± 0.6
Sólido 1	0.10 ± 0.01	9.8 ± 0.2	2 ± 1.2	1.5 ± 0.8
Sólido 2	0.07 ± 0.01	10.3 ± 0.2	1.7 ± 1.3	1.8 ± 0.9

Comparação entre experimentos

Cespelho (10^8 m/s)	Cpulsos (10^8 m/s)	c _{mod} (10^8 m/s)	cmateriais (10^8 m/s)
3.7 ± 0.2	2.60 ± 0.39	3.7 ± 0.5	1.3 ± 0.5
3.9 ± 1.6	2.74 ± 0.43	4.4 ± 0.5	1.2 ± 0.6
1.0	2.89 ± 0.07	•	1.5 ± 0.8
	2.83 ± 0.08	j	1.8 ± 0.9

