Homework 5: Optimizing City Transport Routes Using Genetic Algorithms

Introduction

In this Homework, you will apply a Genetic Algorithm (GA) to optimize transportation routes in a fictional city. Your task is to design and implement a Genetic Algorithm to find the most efficient transport routes that connect various points of interest in a city while minimizing travel time and congestion.

Scenario and Data

You are given a set of locations in a fictional city, each representing a key point of interest like residential areas, business districts, schools, hospitals, and shopping centers. Your goal is to create routes that efficiently connect these locations.

Locations (Points of Interest)

Residential Area: R1, R2, R3Business District: B1, B2

Schools: \$1, \$2Hospital: H1

• Shopping Centers: SC1, SC2

Constraints

- Each route must connect at least one residential area to a different type of location.
- No route can exceed 10 units of distance.

Task

Develop a Genetic Algorithm to optimize the transport routes under the given constraints. Your GA should evolve solutions towards routes that connect more locations in less distance.

Genetic Algorithm Structure

- Representation (Chromosome): Represent a transport route as a chromosome, a sequence of locations (e.g., R1-B1-S1-H1).
- Initial Population: Randomly generate a set of routes adhering to the constraints.
- Fitness Function: Define a function that evaluates each route based on length and diversity of locations connected.
- Selection: Implement a method to select parent routes for breeding (e.g., tournament selection, roulette wheel selection).
- Crossover: Define a crossover method to produce new offspring (e.g., single-point, two-point).
- Mutation: Introduce random changes in the offspring to maintain diversity (e.g., swapping locations in a route).
- New Generation: Replace the old generation with the new generation of routes.
- Termination: Define a termination condition (e.g., number of generations, convergence criteria).

Requirements

- Algorithm Implementation: Implement the Genetic Algorithm as described.
- Optimization: Run the GA to optimize the transport routes.
- Documentation: Document your code, the algorithm's parameters, and the results.

Submission

Submit your code along with a description of your algorithm's design, the results it achieved, and your analysis of its performance.

Here's a code outline to help you get started:

- 1. Define Chromosome Structure:
 - Represent a transport route as a sequence of locations (e.g., R1-B1-S1-H1).
- 2. Initialize Population:
 - Randomly generate a set of routes adhering to the constraints.
- 3. Define Fitness Function:
 - Create a function to evaluate each route based on length and diversity of locations.
- 4. Selection Process:
- Implement a method to select parent routes for breeding (e.g., tournament or roulette wheel selection).
- 5. Crossover:
 - Define a crossover method to produce new offspring (e.g., single-point or two-point crossover).
- 6. Mutation:
- Introduce random changes in the offspring to maintain diversity (e.g., swapping locations in a route).
- 7. Create New Generation:
 - Replace the old generation with the new generation of routes.
- 8. Termination:
 - Define a termination condition (e.g., number of generations, convergence criteria).
- 9. Run the GA:
- Loop through the process of selection, crossover, mutation, and creating new generations until termination criteria are met.
- 10. Analyze and Document:
 - Analyze the performance of your GA and document the results.

Hints:

- Focus on how your fitness function evaluates the efficiency of routes.
- Experiment with different selection, crossover, and mutation strategies to see which yields the best results.
- Make sure your routes adhere to the specified constraints (e.g., connecting different types of locations, distance limits).
- Pay attention to how your algorithm converges to ensure it is effectively optimizing the routes.