PRUEBAS DE CONOCIMIENTO CERO Y SUS APLICACIONES

JOSÉ LUIS CÁNOVAS SÁNCHEZ

Tutores LEANDRO MARÍN MUÑOZ ANTONIO JOSÉ PALLARÉS RUIZ

Facultad de Matemáticas Universidad de Murcia

RESUMEN

TODO

Short summary of the contents in -English- Spanish...a great guide by Kent Beck how to write good abstracts can be found here:

https://plg.uwaterloo.ca/~migod/research/beck00PSLA.html

ABSTRACT

1500 words of Introduction in English...

ÍNDICE GENERAL

1	INT	roducción 1
2	PRE	LIMINARES 3
	2.1	Preliminares de Álgebra 3
	2.2	Preliminares de Computación 5
	2.3	Preliminares de Probabilidad 10
	2.4	Preliminares de Grafos 10
3	RES	IDUOS CUADRÁTICOS 11
-	3.1	Primeras propiedades 11
	3.2	Símbolo de Legendre 12
	3.3	Símbolo de Kronecker-Jacobi 13
	3.4	El problema de residuosidad cuadrática 14
4	PRU	TEBAS DE CONOCIMIENTO CERO 15
·	4.1	Una pequeña historia 15
	4.2	Sistema de Prueba Interactivo 16
	4.3	Pruebas de conocimiento cero 18
		4.3.1 Pruebas de conocimiento cero perfectas 18
		4.3.2 Pruebas de conocimiento cero estadísticas 18
		4.3.3 Pruebas de conocimiento cero computacionales 18
	4.4	Protocolos de identificación basados en ZKP 18
5	APL	ICACIONES DE ZKP 19
6	IMP	LEMENTACIONES 21
A	pend	dix 23
A	CÓI	DIGO FUENTE 25
RT	RT TO	CDATÍA 27

ÍNDICE DE FIGURAS

Figura 1 Conjetura de las relaciones entre clases NP, co-NP, NPC, P. 9

ÍNDICE DE TABLAS

LISTINGS

Listing 1 A floating example (listings manual) 25

INTRODUCCIÓN

Para poder comprender los resultados de los siguientes capítulos necesitaremos recordar ciertas definiciones y propiedades de álgebra que se cursan durante el grado, e introducir otros preliminares de algoritmia que formalizan el estudio. No incluiremos demostraciones, pues son los conceptos básicos de donde partiremos para desarrollar el resto del trabajo, pero el lector que quiera conocerlas puede consultar las referencias en **TODO: cite**.

2.1 PRELIMINARES DE ÁLGEBRA

ARITMÉTICA ELEMENTAL

Definición 2.1. Un entero d se dice que es el **máximo común divisor** de dos enteros a y b si es el mayor entero que divide a ambos. Lo denotaremos d = mcd(a, b).

Euclides describió en su obra *Los Elementos* un método para calcular el mcd de dos enteros, que hoy en día se conoce como *Algoritmo de Euclides*. La propiedad que utiliza el algoritmo para calcular el mcd es la siguiente:

Proposición 2.2. Sean $a, b \in \mathbb{Z}$. Entonces, para todo $\alpha \in \mathbb{Z}$ se tiene:

$$mcd(a, b) = mcd(a, b - \alpha a) = mcd(a - \alpha b, b).$$

En particular, cuando $b \neq 0$ y la división entera de a entre b es a = bq + r, tenemos que mcd(a,b) = mcd(b,r).

Algoritmo 2.3 (Euclides). Encuentra el mcd de $a, b \in \mathbb{Z}$:

- 1. Inicializa $r_0 = a$ y $r_1 = b$.
- 2. Calcula las siguientes divisiones euclídeas

$$\begin{array}{rcl} r_0 & = & q_1r_1 + r_2 \\ r_1 & = & q_2r_2 + r_3 \\ & & \cdots \\ \\ r_{n-3} & = & q_{n-2}r_{n-2} + r_{n-1} \\ r_{n-2} & = & q_{n-1}r_{n-1} + r_n \end{array}$$

hasta que se obtenga un $r_n = 0$, con $r_{n-1} \neq 0$.

A partir del *Algoritmo de Euclides* se puede expresar d como una "combinación \mathbb{Z} -lineal" de \mathfrak{a} y b:

$$d = as + bt$$

conocida como la Identidad de Bézout.

El algoritmo se conoce como Algoritmo de Euclides extendido:

Algoritmo 2.4 (Euclides extendido). Encuentra el d = mcd de α , $b \in \mathbb{Z}$ y valores s, $t \in \mathbb{Z}$ tal que $d = \alpha s + bt$.

- 1. Inicializa $r_0 \leftarrow \alpha, r_1 \leftarrow b, s_0 \leftarrow 1, t_0 \leftarrow 0, s_1 \leftarrow 0, t_1 \leftarrow 1$ $i \leftarrow 1$
- 2. Mientras $r_i \neq 0$:

Calcule la división euclídea $r_{i-1} = q_i r_i + r_{i+1}$

$$s_{i+1} \leftarrow s_{i-1} - q_i s_i$$

$$t_{i+1} \leftarrow t_{i-1} - q_i t_i$$

$$i \leftarrow i+1$$

3.
$$d = r_{i-1}$$
 $s = s_{i-1}$ $t = t_{i-1}$

Observación. Los valores de s y t no tienen por qué ser únicos:

$$a(s-kb) + b(t+ka) = as - kba + bt + kba = as + bt = d$$

Utilizaremos la Identidad de Bézout para calcular los inversos en aritmética modular.

GRUPOS Y ANILLOS

CONGRUENCIAS

Definición 2.5. Sean a, b, $n \in \mathbb{Z}$, $n \neq 0$, diremos que a y b son **congruentes módulo** n, y lo escribiremos $a \equiv b \mod n$, si la diferencia a - b es múltiplo de n.

Cuando $a \equiv b \mod n$ decimos que b es un *residuo* de a *módulo* n.

Proposición 2.6. La relación de **congruencia módulo** n es una relación de equivalencia, es decir, es reflexiva, simétrica y transitiva.

Esto establece una relación de equivalencia en \mathbb{Z} , en la que la **clase** de un entero a módulo n es $\overline{a} = \{a + kn\}_{k \in \mathbb{Z}}$. Cuando no exista confusión, escribiremos la clase de equivalencia \overline{a} como a. El correspondiente conjunto cociente, de las *clases de resto módulo* n, es $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots \overline{n-1}\}$, y hereda la suma y producto de \mathbb{Z} convirtiéndose en un anillo conmutativo con neutros $\overline{0}$ para la suma y $\overline{1}$ para el producto.

Teorema 2.7. El anillo \mathbb{Z}_n es un cuerpo cuando n es un número primo.

Teorema 2.8 (Euler). *Si* x *es coprimo con*

Si tenemos ahora dos enteros a y b coprimos, es decir, mcd(a, b) = 1, usando el *algoritmo de Euclides extendido* podemos encontrar r y s de la *Identidad de Bézout* tales que:

$$as + bt = 1$$

Si a esta igualdad le aplicamos módulo b, obtenemos el inverso de a en \mathbb{Z}_b :

$$(as + bt) \mod b \equiv as \mod b \equiv 1 \mod b$$

 $\overline{as + bt} = \overline{as} = \overline{1}$

Así hemos demostrado el siguiente resultado:

Proposición 2.9. Si mcd(a, n) = 1, entonces el elemento inverso a^{-1} , $0 < a^{-1} < n$, existe $y \ aa^{-1} \equiv 1 \ mod \ n$.

2.2 PRELIMINARES DE COMPUTACIÓN

Teoría de complejidad algorítmica, problema de P NP, problema RSA de factorizar N, problemas de decisión, estadística usada en el estudio de los ZKP (ensembles), probabilistic computations, ...

La mayor parte está en los primeros capítulos de Fundamentals of Computer Security, y de sus referencias se podrá sacar más detallado.

En esta sección introducimos unos preliminares de complejidad computacional que nos permitirán entender de manera básica por qué se utilizan ciertos problemas matemáticos en la seguridad informática. Comencemos con unas definiciones:

Definición 2.10. Llamamos *problema* a la descripción general de una tarea que depende de unos parámetros. La *definición* de un problema consta de dos partes. La primera da el escenario del problema, describiendo los parámetros necesarios. La segunda parte indica una pregunta de la que se espera una respuesta o solución.

Ejemplo 2.11. Vamos a considerar el problema de multiplicar dos matrices. La definición del problema sería:

Nombre: Problema multiplicación de matrices.

Parámetros: Dos matrices A_1 y A_2 .

Pregunta: ¿Cuál es la matriz A tal que $A = A_1 \cdot A_2$?

Definición 2.12. Una *instancia* de un problema es el caso particular de un problema al que se le han dado valores a los parámetros.

Definición 2.13. Un *algoritmo* es una lista de instrucciones que para una instancia produce una respuesta correcta. Se dice que un algoritmo *resuelve* un problema si devuelve respuestas correctas para todas las instancias del problema.

Definición 2.14. Se llama *problema de decisión* a un problema cuya respuesta está en el conjunto $\mathcal{B} = \{ \text{Verdadero}, \text{Falso} \}$.

No todos los problemas son de decisión, pero en general es fácil transformarlos en un problema de decisión cambiando la *pregunta*, y los algoritmos que resuelven un problema de decisión suelen también ser fáciles de adaptar para el problema original.

Ejemplo 2.15. El problema del ejemplo anterior se puede transformar a un problema de decisión:

Nombre: Problema multiplicación de matrices.

Parámetros: Tres matrices A, A_1 y A_2 .

Pregunta: $\lambda A = A_1 \cdot A_2$?

Un algoritmo para solucionarlo puede primero comprobar las dimensiones de las matrices, y si no concuerdan con las de la multiplicación, puede responder Falso sin más operaciones, pero cuando las dimensiones concuerden, deberá realizar la multiplicación de A_1 por A_2 y luego comparar A con el producto obtenido.

NOTACIONES ASINTÓTICAS

Se utilizan para estudiar cómo crece el tiempo de ejecución, la memoria usada o cualquier otro recurso, de un algoritmo dependiendo del tamaño de los datos de entrada. Nos interesa en particular una:

Definición 2.16. Sea $f: \mathbb{N} \to \mathbb{R}^+$. Definimos la notación *O grande* u *orden* de f al conjunto de funciones de \mathbb{N} a \mathbb{R}^+ acotadas superiormente por un múltiplo positivo de f a partir de cierto valor $n \in \mathbb{N}$:

$$O(f) = \{t : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N} : t(n) \leqslant c \cdot f(n) \quad \forall n \geqslant n_0 \}.$$

Para estudiar el tiempo de ejecución, $t : \mathbb{N} \to \mathbb{R}^+$ (el tiempo promedio, el caso más desfavorable, . . .), de un algoritmo, buscaremos una

función f que acote a t lo más de cerca posible. Para ello definimos la relación de orden:

Definición 2.17. Sean f, $g : \mathbb{N} \to \mathbb{R}^+$. Diremos que $O(f) \le O(g)$ si $\forall t \in O(f)$ se tiene que $t \in O(g)$, es decir, $O(f) \subseteq O(g)$.

Para acotar t buscaremos el menor O(f): $t \in O(f)$.

CLASES DE COMPLEJIDAD

Para estudiar los problemas de decisión los organizamos en clases de complejidad, según sus mejores algoritmos que los solucionan.

Definición 2.18. Se llama algoritmo de *tiempo de cálculo polinomial* al algoritmo cuya función de tiempo del caso más desfavorable es de orden $O(n^k)$, donde n es el tamaño de la entrada y k una constante. Cualquier algoritmo cuyo tiempo de ejecución no puede acotarse de esa manera se llama de *tiempo de cálculo exponencial*.

A veces se denominan *buenos* o *eficientes* a los algoritmos polinomiales, e *ineficientes* a los exponenciales. Sin embargo, hay casos particulares donde no ocurre. Lo más importante al tratar con algoritmos polinomiales es el grado del polinomio, k, que indica su orden de complejidad. Por ejemplo, consideremos un problema cuyo mejor algoritmo tarda n^{100} instrucciones, es de orden polinómico, pero prácticamente intratable a partir de n=2, y por otra parte, un problema que utilice $2^{0,00001n}$ instrucciones podría tratar casos hasta de $n=10^6$ sin dificultad. Por esto, en criptografía se debe considerar el caso promedio sobre el caso más desfavorable.

Definición 2.19. El conjunto de problemas de decisión que se pueden resolver en tiempo polinomial se llama clase **P**.

Definición 2.20. Se llama clase de complejidad **NP** al conjunto de problemas de decisión donde una respuesta que sea Verdadero se puede verificar en tiempo polinomial, dada cierta información extra, que llamaremos *certificado*.

Definición 2.21. Se llama clase de complejidad **co-NP** al conjunto de problemas de decisión donde una respuesta que sea Falso se puede verificar en tiempo polinomial, dado el correspondiente *certificado*.

Es inmediato que que $P \subseteq NP$ y $P \subseteq co-NP$.

Ejemplo 2.22 (Problema en **NP**). Consideremos el siguiente problema de decisión:

Nombre: Problema del entero compuesto.

Parámetros: Un entero positivo n.

Pregunta: ¿Es n compuesto? Es decir, ¿existen

enteros a, b > 1 tal que n = ab?

Comparación de órdenes: $O(1) \leqslant O(\ln n) \leqslant \\ O(\sqrt{n}) \leqslant O(n) \leqslant \\ O(n \ln n) \leqslant \\ O(n^c) \leqslant \\ O(n^{\ln n}) \leqslant \\ O(c^n) \leqslant O(n!) \leqslant \\ O(n^n), donde c > 1 \\ constante.$

El problema pertenece a **NP** porque se puede comprobar en tiempo polinomial que n es compuesto si nos dan su *certificado*, un divisor α de n, tal que $1 < \alpha < n$. Basta usar la división euclídea de n entre α y ver que el resto es 0. Sin embargo, aún no se conoce si pertenece a **P**.

Definición 2.23. Sean dos problemas de decisión $L_1, L_2 \in \mathbf{NP}$, con correspondientes conjuntos de instancias I_1 e I_2 . Sean I_1^+ e I_2^+ los subconjuntos de todas las instancias "Verdaderas" de I_1 e I_2 , respectivamente. Decimos que L_1 es *reducible en tiempo polinomial* a L_2 , $L_1 \leqslant_P L_2$, si existe una función $f: I_1 \Rightarrow I_2$ que cumple:

- 1. Es ejecutable en tiempo polinomial.
- 2. $x \in I_1^+ \Leftrightarrow f(x) \in I_2^+$.

De manera más informal, si $L_1 \leq_P L_2$, entonces L_2 es computacionalmente tan difícil como L_1 , o de otro modo, L_1 no es más difícil que L_2 .

Definición 2.24. Un problema de decisión L se dice que es **NP**-completo, o **NPC** si:

- (i) $L \in \mathbf{NP}$, y
- (ii) $L_1 \leqslant_P L \quad \forall L_1 \in \mathbf{NP}$.

Los problemas **NPC** son los más difíciles entre los **NP** en el sentido de que son al menos tan difíciles como el resto de problemas en **NP**. Veamos el problema **NPC** más característico:

Nombre: Problema de satisfacibilidad booleana (SAT).

Parámetros: Una colección finita C de expresiones booleanas

con variables y sin cuantificadores.

Pregunta: ¿Hay alguna asignación de las variables que

haga Verdadero a C?

Teorema 2.25 (Teorema de Cook (1971)). El problema de satisfacibilidad booleana es **NPC**.

O expresado de otra manera:

Teorema 2.26. Todo problema $Q \in NP$ se puede reducir en tiempo polinomial al problema de satisfacibilidad booleana.

$$\forall Q \in NP$$
, $Q \leq_P SAT$.

A día de hoy conocemos ciertas propiedades sobre las clases de equivalencia, pero quedan muchas cuestiones sin resolver:

Para conocer más sobre el problema y la demostración se puede consultar [2].

- Uno de los siete problemas del milenio, ightarrow P = NP?
- $\lambda NP = \text{co-NP}$?
- $\lambda P = NP \cap \text{co-NP}$?

La opinión de los expertos en base a ciertas evidencias es que la respuesta a las tres es NO, pero hasta que se encuentren demostraciones formales de cada una, quedarán en conjeturas. Y basándose en esas conjeturas es donde se apoya la seguridad informática.

Figura 1: Conjetura de las relaciones entre clases NP, co-NP, NPC, P.

Existen tres problemas que se conoce que pertenecen a **NP**, pero se desconoce a día de hoy si pertenecen a **P** o **NPC**: el isomorfismo de grafos, el logaritmo discreto y la factorización de enteros.

En los siguientes capítulos los estudiaremos como base de diferentes pruebas de conocimiento cero.

ALGORITMOS PROBABILÍSTICOS

Para intentar resolver la infactibilidad computacional de ciertos problemas, surge un modelo alternativo de computación que utiliza métodos probabilísticos. Estos métodos no pueden asegurar cotas superiores absolutas de tiempo, e incluso pueden devolver una respuesta errónea. Sin embargo, dadas unas cotas muy pequeñas de errores, en la práctica, ciertos métodos probabilísticos son más eficientes que los algoritmos conocidos, pues el tiempo de ejecución *esperado* del método, calculado probabilísticamente, es menor que el orden del algoritmo original.

Definición 2.27. Llamamos *algoritmo de Monte Carlo* a un algoritmo probabilístico que resuelve un problema de decisión, pero tiene un error ϵ de equivocarse.

Decimos que es *parcialmente* Verdadero si cuando se le da una instancia Verdadera nunca se equivoca, pero si la instancia es Falsa puede devolver Verdadero con probabilidad ϵ . De la misma manera, decimos que es *parcialmente* Falso si siempre resuelve correctamente instancias Falsas, pero puede cometer un error al resolver instancias Verdaderas.

Definición 2.28. Llamamos *algoritmo de Las Vegas* a un algoritmo probabilístico que resuelve un problema de decisión, pero o bien lo resuelve correctamente, o bien informa de error y termina sin resolver el problema con una probabilidad ϵ .

Ejemplo 2.29 (Test de primalidad). El problema de decisión

Nombre: Problema de primalidad (PRIM).

Parámetros: Un entero n.Pregunta: ¿Es n primo?

es un problema en $NP \cap co-NP$ (es el contrario del problema del entero compuesto), pero no se conoce ningún algoritmo que lo resuelva en tiempo polinómico, por ello no sabemos aún si pertenece a P.

Un algoritmo probabilístico basado en el Pequeño Teorema de Fermat, $a^{n-1} \equiv 1 \mod n$ si n es primo para cualquier $a \in \mathbb{Z}_n$, puede utilizarse para comprobar si n es primo.

Si n es primo, para todo a que se elija, se cumplirá $a^{n-1} \equiv 1 \mod n$, por lo que es un algoritmo de Monte Carlo parcialmente Verdadero, para una instancia Verdadera nunca se equivoca.

Sin embargo, si n es compuesto, pueden existir valores a que cumplan la propiedad. Por ejemplo, si n es un *número de Carmichael*, todo a coprimo con n cumple $a^{n-1} \equiv 1 \mod n$.

Este no es el test de primalidad más fuerte, existen otros mejorados, como el test de primalidad de Miller-Rabin, que asegura que a lo sumo da un falso positivo para $\frac{1}{4}$ de todos los enteros $\alpha, 0 < \alpha \leqslant p-1.$ Ejecutando el test un número k de veces, eligiendo aleatoriamente $\alpha \in \mathbb{Z}_n$, obtenemos una probabilidad de error de $\varepsilon = \frac{1}{4^k}$, lo que podría darnos en 50 iteraciones un algoritmo ejecutable en tiempo polinomial, con probabilidad de error, cuando n es compuesto, de 2^{-50} , algo que podemos estar dispuestos a asumir en la práctica.

2.3 PRELIMINARES DE PROBABILIDAD

2.4 PRELIMINARES DE GRAFOS

3

TODO: Párrafo de introducción al capítulo y referencias

Teoría de símbolos de Lebesgue, ..., residuos cuadráticos, cálculo de raíz discreta?

3.1 PRIMERAS PROPIEDADES

Definición 3.1. Sea $a \in \mathbb{Z}_n^*$. Se dice que a es un *residuo cuadrático* módulo n, o un *cuadrado* módulo n, si existe un $x \in \mathbb{Z}_n^*$ tal que $x^2 \equiv a \mod n$. Si no existe dicho x, entonces a se llama un *no-residuo cuadrático* módulo n.

El conjunto de todos los residuos cuadráticos módulo n de \mathbb{Z}_n^* los denotaremos como Q_n o bien como $\mathbb{Z}_n^{Q^+}$. Al conjunto de los noresiduos cuadráticos lo denotamos como $\overline{Q_n}$.

Observación. Por definición $0 \notin \mathbb{Z}_n^*$, y por tanto $0 \notin \mathbb{Q}_n$ y $0 \notin \overline{\mathbb{Q}_n}$.

Definición 3.2. Sea $a \in Q_n$. Si $x \in \mathbb{Z}_n^*$ satisface $x^2 \equiv a \mod n$, entonces x se llama *raíz cuadrada* módulo n de a.

Proposición 3.3. Sea p un primo impar. Se cumple que $|Q_p| = \frac{p-1}{2} y$ $|\overline{Q_p}| = \frac{p-1}{2}$, es decir, la mitad de los elementos de \mathbb{Z}_p^* son residuos cuadráticos, y la otra mitad no-residuos cuadráticos.

Demostración. Sea $\alpha \in \mathbb{Z}_p^*$ un generador de \mathbb{Z}_p^* . Un elemento $a \in \mathbb{Z}_p^*$ es un residuo cuadrático módulo p sii $a \equiv \alpha^i \mod p$ donde i es un entero par. Como p es primo, $\varphi(p) = p - 1 = |\mathbb{Z}_p^*|$, que es un entero par, p de ahí se sigue el enunciado.

Ejemplo 3.4. Para p=13 tenemos que $\alpha=6$ es un generador de \mathbb{Z}_{13}^* . Las potencias de α módulo 13 son:

i	1	2	3	4	5	6	7	8	9	10	11	12
6 ⁱ mod 13	6	10	8	9	2	12	7	3	5	4	11	1

Lo que nos da $Q_{13} = \{1, 3, 4, 9, 10, 12\}$ y $\overline{Q_{13}} = \{2, 5, 6, 7, 8, 11\}$.

Proposición 3.5. Sea n un producto de dos primos impares p y q, n = pq. Entonces $a \in \mathbb{Z}_p^*$ es un residuo cuadrático módulo n, $a \in Q_n$ si y solo si $a \in Q_p$ y $a \in Q_q$. Se sigue que $|Q_n| = |Q_p| \cdot |Q_q| = \frac{(p-1)(q-1)}{4}$, y por tanto $\overline{|Q_n|} = |\mathbb{Z}_n^*| - |Q_n| = \frac{3(p-1)(q-1)}{4}$.

Demostración. Si a es un residuo cuadrático módulo n = pq, $a \equiv x^2 \mod n$, es inmediato que en módulos p y q se cumple $a \equiv x^2 \mod p$, $a \equiv x^2 \mod q$.

Si tenemos que a es un residuo cuadrático módulo p, a $\equiv x_p^2 \mod p$, y también módulo q, $a \equiv x_q^2 \mod q$, por el Teorema Chino de los Restos existe un x tal que:

 $x \equiv x_p \mod p$

 $x \equiv x_q \mod q$

De modo que, elevando al cuadrado:

$$x^2 \equiv x_p^2 \equiv a \mod p$$

$$x^2 \equiv x_q^2 \equiv a \mod q$$

 $x^2 \equiv x_p^2 \equiv a \mod p$ $x^2 \equiv x_q^2 \equiv a \mod q$ Por lo que $x^2 \equiv a \mod n$.

SÍMBOLO DE LEGENDRE

Para identificar los residuos cuadráticos disponemos de una herramienta muy útil:

Definición 3.6. Dados un primo impar p y un entero a, se define el símbolo de Lebesgue $\left(\frac{a}{p}\right)$ como

$$\left(\frac{a}{p}\right) = \begin{cases}
0, & \text{si } a \equiv 0 \mod p \\
1, & \text{si } a \in Q_p \\
-1, & \text{si } a \in \overline{Q_p}
\end{cases}$$

Veamos ahora algunas propiedades del símbolo de Legendre:

Teorema 3.7 (Criterio de Euler). *Sea* p *un primo impar. Sea* $a \not\equiv 0 \mod p$. **Entonces:**

$$a^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \bmod p$$

Demostración. Observemos primero que las raíces de 1 módulo p son 1 y -1 mod p. También que por el Teorema de Euler, $\mathfrak{a}^{\varphi(\mathfrak{p})} \equiv \mathfrak{a}^{\mathfrak{p}-1} \equiv$

. De este modo, tenemos que $a^{\frac{p-1}{2}} \equiv 16 - 1 \mod p$.

Ahora demostrar el teorema es equivalente a demostrar que $a^{(p-1)/2} \equiv$ 1 mod p sii a es un residuo cuadrático.

Supongamos que a es un residuo cuadrático módulo p. Sea x tal que $x^2 \equiv a \mod p$. Entonces, $a^{\frac{p-1}{2}} \equiv x^{(p-1)} \equiv 1 \mod p$, de nuevo por el Teorema de Euler.

Sea ahora $a^{\frac{p-1}{2}} \equiv 1 \mod p$.

Tomamos g un generador de \mathbb{Z}_p^* , de modo que $\mathfrak{a} \equiv \mathfrak{g}^r \mod \mathfrak{p}$. Sustituyendo: $g^{r\frac{p-1}{2}} \equiv 1 \mod p$, y como g tiene orden p-1, queda

 $g^{\frac{r}{2}}\equiv 1\, \text{mod}\, p$, de donde deducimos que necesariamente r es un entero par, r=2s.

Construimos $x \equiv g^s \mod p$, que cumple: $x^2 \equiv g^{2s} \equiv g^r \equiv a \mod p$, de modo que a es un residuo cuadrático módulo p.

,

Proposición 3.8 (Propiedad multiplicativa del símbolo de Lebesgue). *Sean a y b enteros coprimos con p, un primo impar. Entonces:*

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right).$$

En particular, el producto de dos no-residuos cuadráticos es un residuo cuadrático.

Demostración. Utilizando el Criterio de Euler:

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = a^{(p-1)/2} \cdot b^{(p-1)/2} = (ab)^{(p-1)/2} = \left(\frac{ab}{p}\right)$$

Teorema 3.9 (Ley de reciprocidad cuadrática). *Sean* p y q *primos impares distintos, se cumple:*

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}.$$

O de otro modo:

$$\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right) & \text{Si} \quad p \equiv 1 \, \text{mod} \, 4 \quad \text{\'o} \quad q \equiv 1 \, \text{mod} \, 4 \\ -\left(\frac{q}{p}\right) & \text{Si} \quad p \equiv q \equiv 3 \, \text{mod} \, 4 \end{cases} .$$

3.3 SÍMBOLO DE KRONECKER-JACOBI

El símbolo de Legendre está definido para módulos un primo impar p. Ahora vamos a ver una generalización del concepto para cualquier módulo N .

Definición 3.10. Sean a, $N \in \mathbb{Z}$, con $N = p_1p_2 \cdots p_r$, donde los p_i son primos, no necesariamente distintos, incluyendo el 2 y el -1 para el signo.

Definimos el Símbolo de Kronecker-Jacobi $\left(\frac{a}{N}\right)$ como

$$\left(\frac{\alpha}{N}\right) = \prod_{i=1}^r \left(\frac{\alpha}{p_i}\right)$$

donde $\left(\frac{\alpha}{p_i}\right)$ es el Símbolo de Legendre para los $p_i>2$, y para los casos p=2 y p=-1 definimos:

$$\left(\frac{\alpha}{2}\right) = \begin{cases} 0, & \text{si a es par.} \\ (-1)^{(\alpha^2-1)/8}, & \text{si a es impar.} \end{cases}$$

y

$$\left(\frac{\alpha}{2}\right) = \begin{cases} 1, & \text{si } \alpha \geqslant 0\\ -1, & \text{si } \alpha < 0. \end{cases}$$

Observación. A diferencia del Símbolo de Legendre, el Símbolo de Jacobi $\left(\frac{\alpha}{N}\right)$ no indica si α es un residuo cuadrático módulo N. Es cierto que si $\alpha \in Q_N$, su Símbolo de Jacobi será $\left(\frac{\alpha}{N}\right)=1$, pero el contrario no se cumple.

Igual que antes, veamos algunas propiedades del Símbolo de Jacobi:

Teorema 3.11. Propiedades del Símbolo de Jacobi:

- (i) $\left(\frac{a}{N}\right) = 0$ si y sólo si mcd(a, N) = 1.
- (ii) Para cada a, b y c enteros, tenemos:

$$\left(\frac{ab}{c}\right) = \left(\frac{a}{c}\right)\left(\frac{b}{c}\right), \quad \left(\frac{a}{bc}\right) = \left(\frac{a}{b}\right)\left(\frac{a}{c}\right) \quad \text{si bc} \neq 0.$$

- (iii) Fijado N>0, el símbolo $\left(\frac{\alpha}{N}\right)$ es periódico en α con periodo N si $N\not\equiv 2\bmod 4$, en otro caso, es periódico con periodo 4N.
- (iv) Fijado $\alpha \neq 0$, el símbolo $\left(\frac{\alpha}{N}\right)$ es periódico en N con periodo $|\alpha|$ si $\alpha \equiv 0$ ó $1 \mod 4$, en otro caso, es periódico con periodo $4|\alpha|$.
- (v) Las fórmulas del Teorema 3.9 se siguen verificando si p y q son enteros impares positivos, ya no necesitan ser primos.

3.4 EL PROBLEMA DE RESIDUOSIDAD CUADRÁTICA

Indicar el problema, que es NP y que se puede reducir al de encontrar la factorización de N

PRUEBAS DE CONOCIMIENTO CERO

Las pruebas de conocimiento cero, con siglas ZKP del inglés Zero-Knowledge Proofs, permiten demostrar la veracidad de una declaración, sin revelar nada más de ella. En las ZKP intervienen dos partes, el Prover y el Verifier, o probador y verificador. El prover asegura que una declaración es cierta, y el verifier quiere convencerse de ello a través de una interacción con el prover, de modo que al final de la misma, o bien acaba convencido de que la declaración es cierta, o bien descubre, con una alta probabilidad, que el prover mentía.

Las pruebas de conocimiento cero surgen a partir de los sistemas de pruebas interactivas, que forman una parte importante de la teoría de complejidad computacional, y pidiendo la propiedad de *conocimiento cero* obtenemos el subconjunto de sistemas interactivos que conforman las pruebas de conocimiento cero.

Las referencias para este capítulo se pueden encontrar en

4.1 UNA PEQUEÑA HISTORIA

Antes de estudiar formalmente las ZKP, vamos a ver un ejemplo que se publicó originalmente como un cuento sobre la cueva de Alí Babá [3], pero que aquí adaptamos para resumirlo.

Imaginemos una cueva donde el camino se bifurca y al final de cada pasillo se juntan ambos caminos formando una especie de anillo. En el punto en que se unen dentro de la cueva, hay una puerta con un código secreto que permite abrirla desde ambos lados, para cruzar al otro pasillo.

Peggy conoce la clave secreta y quiere probarlo a su amigo Víctor, pero sin tener que revelársela. Peggy y Víctor quedan en la entrada de la cueva con unos *walkie-talkies*, de modo que Víctor esperará fuera y Peggy entrará a la cueva y tomará uno de los pasillos, que llamaremos A y B, sin decirle cuál a Víctor.

Al llegar a la puerta, avisa a Víctor para que entre a la cueva y espere en la bifurcación, donde Víctor, para intentar verificar que Peggy conoce la clave, le indicará por qué pasillo quiere que vuelva, el A o el B.

Si Peggy realmente conoce la clave, podrá volver a la bifurcación por el pasillo solicitado, abriendo, si es preciso, la puerta. En caso de que no conociera la clave, al entrar tenía una probabilidad del 50 % de adivinar qué pasillo pediría Víctor.

La cueva [1]. Peggy entra por A o B al azar. Víctor espera fuera.

La cueva. Víctor elige al azar por dónde quiere que regrese Peggy.

La cueva. Peggy vuelve por el camino pedido.

Víctor no se queda contento con una sola prueba, así que la repiten hasta que se convence. Si lo repitieran, por ejemplo, 20 veces, Peggy tendría solo una probabilidad de 2^{-20} , prácticamente nula, de acertar todas las veces y engañar a Víctor.

Eva, curiosa de qué hacían Víctor y Peggy en la cueva, **e**spía a Víctor durante todo el proceso. Eva no sabe si Peggy y Víctor han acordado previamente qué pasillo pedir por el *walkie-talkie*, y sólo Víctor está seguro de que los estaba eligiendo al azar, por eso, Eva no puede estar segura de si Peggy conoce la clave secreta, o bien estaban simulando todo para engañarla por cotilla.

4.2 SISTEMA DE PRUEBA INTERACTIVO

Un sistema de prueba interactivo es un concepto de la teoría computacional que modela el intercambio de un número finito de mensajes entre dos partes, el probador P y el verificador V, con el objetivo de que P demuestre a V que una instancia de un problema de decisión es Verdadera. V tiene una capacidad de cómputo limitada, a lo sumo un algoritmo probabilístico de tiempo de cómputo polinomial. P es computacionalmente todopoderoso. Al final del intercambio de mensajes, o bien V acepta que la instancia es Verdadera, o bien la rechaza por ser Falsa.

Definición 4.1. Se dice que un problema de decisión Q, no necesariamente en **NP**, tiene un *sistema de prueba interactivo* si tiene un protocolo de interacción polinomialmente acotado en número de mensajes que cumple:

- Completitud Para toda instancia q Verdadera, del problema Q, V acepta q como Verdadera.
- Robustez Para cada instancia q Falsa, ningún P, incluso si no sigue el protocolo, puede convencer a V de que q es Verdadera, excepto con una pequeña probabilidad.

En resumen, si la instancia del problema Q que P quiere demostrar es Verdadera, el protocolo siempre funciona, no hay falsos negativos, pero si la instancia es Falsa, hay una pequeña probabilidad de que V la acepte como Verdadera, pueden haber falsos positivos una probabilidad casi despreciable.

Un P o un V que no siguen el protocolo e intentan romper estas propiedades, los llamaremos un P o V *tramposos*.

Definición 4.2. Denominamos clase de problemas **IP** (Interactivos en tiempo Polinomial) al conjunto de problemas de decisión para los que existe un sistema de prueba interactivo.

Proposición 4.3. $NP \subset IP$.

Demostración. Sea Q un problema NP. Definimos el siguiente protocolo:

- 1. P resuelve la instancia del problema gracias a su capacidad de cómputo ilimitada y genera el certificado para V, que existe para cualquier instancia Verdadera por $Q \in NP$.
- 2. V recibe y puede verificar el certificado en tiempo polinomial. Si es válido, V acepta como Verdadera la instancia. Si no, rechaza y devuelve que es Falsa.

El protocolo es completo y robusto, con probabilidad nula de falso positivo, pues si la instancia es Falsa, ningún P, honesto o tramposo, puede generar un certificado que no existe.

PRUEBA INTERACTIVA PARA EL PROBLEMA QR

Vamos a ver una prueba interactiva para demostrar que un entero x con Símbolo de Jacobi 1 respecto a n, $x \in \mathbb{Z}_n^Q$, es un residuo cuadrático, $x \in \mathbb{Z}_n^{Q+}$.

Nombre: Problema QR.

Parámetros:Un entero N compuesto, y el entero $x \in \mathbb{Z}_N^Q$.Pregunta:¿Es x un residuo cuadrático, $x \in \mathbb{Z}_N^{Q+}$?

Una instancia Verdadera del problema es un x residuo cuadrático módulo N. Una prueba interactiva para demostrar que x es residuo cuadrático es la siguiente:

Algoritmo 4.4 (Prueba interactiva para QR).

Datos comunes: Una instancia (x, N) del Problema QR. n es el tamaño de la instancia.

Protocolo: Sea t(n) un polinomio en n. P y V repiten t(n) veces los siguientes pasos.

- 1. $P \to V$: $u \in_R \mathbb{Z}_N^{Q+}$ (P elige aleatoriamente u en \mathbb{Z}_N^{Q+}).
- 2. $V \to P$: $b \in_R \{0, 1\}$.
- 3. P \rightarrow V : w, una raíz cuadrada módulo N aleatoria, de x si b = 0, o bien de $x \cdot u$ si b = 1.

4. V comprueba si:

$$w^{2} \stackrel{?}{=} \begin{cases} u \mod N, & \text{si } b = 0\\ xu \mod N, & \text{si } b = 1. \end{cases}$$

Si la comparación falla, V termina en rechazo, la instancia es Falsa. En caso contrario, vuelve al paso 1.

Tras t(n) rondas, V termina y acepta la instancia como Verdadera, x es un residuo cuadrático módulo N.

Teorema 4.5. El problema QR tiene un sistema de prueba interactiva.

Demostración. El protocolo se ejecuta t(n) veces, un número de iteraciones polinomialmente asociado al tamaño n de la entrada, por lo que hay un número finito de mensajes que V, computacionalmente limitado, puede llevar a cabo.

Queda ver que el protocolo anterior es completo y robusto.

La prueba es *completa*, pues para cualquier instancia Verdadera de QR, $x \in \mathbb{Z}_N^{Q+}$, V acepta la prueba de P. En cada iteración, como P es computacionalmente todopoderoso, puede calcular w, una raíz cuadrada módulo N de x o xu, según el valor de b, ambos en \mathbb{Z}_N^{Q+} .

Para una instancia Falsa, $x \in \mathbb{Z}_N^{Q^-}$, cuando V envíe b = 1, si P sigue el protocolo u será un residuo cuadrático, pero $x \cdot u$ es un no-residuo cuadrático módulo N, por lo que no podrá calcular w por mucho poder computacional ilimitado que tenga. Un P tramposo podría intentar engañar a V en el caso b = 1 eligiendo u tal que xu es un residuo cuadrático, pero entonces u es un no-residuo cuadrático y fallaría la prueba si b = 0.

Una vez P se compromete con un u, residuo cuadrático o no, la probabilidad de que V lo rechace en esa iteración es 12, según elija b = 0 ó 1. Como el protocolo se ejecuta t(n) veces, la probabilidad de que un P tramposo pueda engañara V en todos es de $2^{-t(n)}$. Vemos entonces que el protocolo cumple la propiedad de *robustez*.

4.3 PRUEBAS DE CONOCIMIENTO CERO

- 4.3.1 Pruebas de conocimiento cero perfectas
- 4.3.2 Pruebas de conocimiento cero estadísticas
- 4.3.3 Pruebas de conocimiento cero computacionales

4.4 PROTOCOLOS DE IDENTIFICACIÓN BASADOS EN ZKP

APLICACIONES DE ZKP

?

Aplicación de ZKP en los certificados de Idemix. Analizar cómo realizan pruebas de AND, OR, etc.

6

IMPLEMENTACIONES

Implementaciones de símbolos, raíz discreta, ZKPs, ...

APPENDIX

Listing 1: A floating example (listings manual)

```
for i:=maxint downto 0 do
begin
{ do nothing }
end;
```

BIBLIOGRAFÍA

- [1] Adrián Sánchez Martínez. La cueva. Imagen.
- [2] David S. Johnson Michael R. Garey. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. First Edition. Series of Books in the Mathematical Sciences. W. H. Freeman, 1979. ISBN: 0716710455,9780716710455. URL: http://gen.lib.rus.ec/book/index.php?md5=77F747B4A3CC87AAF94F6A9EA1CBC1CF.
- [3] Louis C.; Berson Thomas A. Quisquater Jean-Jacques; Guillou. "How to Explain Zero-Knowledge Protocols to Your Children". En: *Advances in Cryptology CRYPTO '89* (1990). Proceedings 435: 628-631. http://pages.cs.wisc.edu/~mkowalcz/628.pdf.

27

DECLARACIÓN DE ORIGINALIDAD

Yo, José Luis Cánovas Sánchez, autor del TFG PRUEBAS DE CONOCIMIENTO CERO Y SUS APLICACIONES, bajo la tutela de los profesores Leandro Marín Muñoz y Antonio José Pallarés Ruiz, declaro que el trabajo que presento es original, en el sentido de que ha puesto el mayor empeño en citar debidamente todas las fuentes utilizadas.

Murcia, Junio 2017	
	José Luis Cánovas Sánchez