DOCKET NO.: PUAM-0258 PATENT

Application No.: 10/676,391

Office Action Dated: October 17, 2006

Amendments to the Specification:

In the Abstract, at page 156, please delete the text under "Abstract" and replace with the following:

A glycopeptide of the formula A_1 - A_2 - A_3 - A_4 - A_5 - A_6 - A_7 , in which each dash represents a covalent bond; wherein the group A_1 -comprises a modified or unmodified a amino acid residue, alkyl, aryl, aralkyl, alkanoyl, aralkanoyl, heterocyclic, heterocyclic carbonyl, heterocyclic alkyl-carbonyl, alkylsulfonyl, (arylsulfonyl, guanidinyl, carbamoyl, or xanthyl; where each of the groups A_2 to A_7 comprises a modified or unmodified amino acid residue, whereby (i) the group A_1 is linked to an amino group on the group A_2 , (ii) each of the groups A_2 , A_4 and A_6 bears an aromatic side chain, which aromatic side chains are cross-linked together by two or more covalent bonds, and (iii) the group A_7 bears a terminal carboxyl, ester, amide, or N-substituted amide group;

and wherein one or more of A_1 to A_7 is linked via a glycosidic bond to one or more glycosidic groups each having one or more sugar residues, at least one of the sugar residues bearing one or more substituents of the formula YXR, $N^*(R_1)=CR_2R_3$, $N=PR_1R_2R_3$, $N^*R_1R_2R_3$ or $P^*R_1R_2R_3$ in which Y is a single bond, O, NR_1 or S; the group X is O, NR_1 , S, SO_2 , C(O)O, C(O)S, C(S)O, C(S)S, $C(NR_1)O$, $C(O)NR_1$, or halo (in which case Y and R are absent).

A chemical library comprising a plurality of the glycopeptides of the invention.

A method of preparing a glycopeptide by glycosylation of an aglycone derived from a glycopeptide antibiotic.

A method of preparing a glycopeptide by preparing a pseudoaglycone from a glycopeptide antibiotic and glycosylating the pseudoaglycone.

Methods for preparing a glycopeptide are disclosed. The methods comprise the steps of selecting a protected glycopeptide of the formula A_1 - A_2 - A_3 - A_4 - A_5 - A_6 - A_7 , wherein the groups A_1 to A_7 comprise the heptapeptide structure of naturally occurring vancomycin; at

DOCKET NO.: PUAM-0258 **PATENT**

Application No.: 10/676,391

Office Action Dated: October 17, 2006

least A₄ is linked to a glycosidic group which has a hexose residue linked to A₄; and the protected glycopeptide has no free amino or carboxyl groups and has a free primary hydroxyl group only at the 6-position of said hexose residue. The protected glycopeptide is contacted with a compound of the formula ArSO₂G where Ar is an aryl group and G is a leaving group under conditions effective to allow reaction of said free primary hydroxyl group to form a glycopeptide sulfonate ester; and the glycopeptide sulfonate ester is contacted with a nucleophile under conditions effective to allow displacement of a sulfonate group to produce a substituted glycopeptide.