关于决定数据分析师薪资水平的各要素的分析

---以上海地区为例 by 蒋超迪

内容

- 1 项目概述
- 2 数据的爬取(从智联招聘)
- 3 总体特征 (data summary)
- 4 建模, 预测及可视化分析
- 5 小结

项目概述

首先我用python写了一个网页爬虫爬取了智联招聘上的带有"数据分析"关键字的职位,以及与之相关的各项数据(包括薪水,工作经验等等)。以爬取的数据作为训练集(train set),用了多种监督学习模型进行建模(用R完成)来预测在沪的数据分析的期望工资。

并且测试和比较了各种模型的预测误差水平。同时,我为了更好地展示结果, 进行了大量的可视化处理。

数据分析的基本流程:

数据的爬取(数据获取)

智联招聘上显示的带有"数据分析"关键字的信息:

职位名称	反馈率	公司名称	职位月薪
型 数据分析		上海中智项目外包咨询服务有限公司	面议
□ 运营数据分析		北京字节跳动科技有限公司	10001-15000
□ 数据分析员 (财务)	100%	南极电商(上海)有限公司	6001-8000
□ 联通 <mark>数据分析</mark> 专员	100%	上海启彧企业管理咨询有限公司	4001-6000
□ NO. 405 数据分析产品经理	96%	上海KT人才服务有限公司	20001-30000
数据分析师(派驻非洲加纳)	89%	大连飞鹿贸易有限公司	10001-15000
□ 数据分析员	82%	上海杨普申通快递有限公司	2001-4000
□ 数据分析	81%	驴妈妈旅游网	4001-6000
数据分析经理	75%	上海南柏文化传播有限公司	10001-15000
□ 运营 <mark>数据分析</mark> 师	73%	驴妈妈旅游网	10000-20000

选中其中一项:

运营数据分析(职位编号: 10001241)

北京字节跳动科技有限公司

职位月薪: 10001-15000元/月 Ⅲ 工作地点: 上海 发布日期: 2017-01-21 工作性质: 全职 工作经验: 3-5年 最低学历: 大专

招聘人数: 2人 职位类别: 网络运营专员/助理

职位描述

公司介绍

🛕 举报 🊖 收藏

岗位职责:

- 1、监控各类数据,分析比对数据变动;
- 2、定期分析各维度数据,提炼核心要点并制定建议;
- 3、了解各位广告产品特点及对应售卖情况,建议较优产品组合;
- 4、定期输出优秀案例及行业投放通案,指导广告主/代理商更好投放广告。

任职要求:

1、2年以上数据分析经验,互联网广告相关行业者优先;

这里面有我比较感兴趣的信息,包括响应变量"职位月薪",预测变量"最低学历"等等。在"职位描述"栏,罗列了用人单位的各项招聘要求。对其中的一些关键字进行提取和给分,比如出现"数学"字样,就给该职位的math变量一处分数1,否则给分数0.这些变量按大类分,大致可分为专业类(数学,金融等)/office技能类/统计软件类/开发语言类/大数据技能等等。

爬取方式具体见代码

Data summary

爬得的数据,通过python的pymysql模块被我存贮在了本地的mysql数据库里。用R的数据库接口DBI对该数据进行提取,并进行了一系列的清洗。

清洗后的数据 (一部分):

company <chr></chr>	salary <db></db>	exp <int></int>	degree <chr></chr>	location <chr></chr>	postdate <chr></chr>
上海上有资产管理有限公司	7001	2	本科	上海	2017-01-12
中国电信集团号百信息服务	12501	2	本科	上海	2017-01-11
人人公司(Renren Inc.)	5001	0	本科	上海	2017-01-13
智易(上海)汽车技术咨询有限	7001	2	本科	上海-浦东	2017-01-13
上海诺亚金融服务有限公司	9001	0	硕士	上海-杨浦区	2017-01-13
东方财富信息股份有限公司	0	0	不限	上海-徐汇区	2017-01-13
上海恒寿堂健康食品股份有	4500	0	不限	上海	2017-01-13
上海驰驭信息咨询有限公司	5500	1	本科	上海-嘉定区	2017-01-13
浙江核新同花顺网络信息股	22500	4	本科	杭州	2017-01-13
上海连图信息科技有限公司	5001	0	大专	杭州-西湖区	2017-01-13
爱奇艺(www.iqiyi.com)	9001	2	本科	上海	2017-01-13
迅付信息科技有限公司	2750	0	本科	上海-徐汇区	2017-01-13
瑞庭网络技术(上海)有限	12501	2	本科	上海	2017-01-13
迪亚天天(上海)管理咨询服务	5500	0	不限	上海	2017-01-13
上海找钢网信息科技股份有	32500	8	本科	上海-杨浦区	2017-01-13

为了方便比较,我也爬取了杭州地区的数据,可以看到上海的数据分析职位的平均月薪要比杭州高2000左右。

地区	数量	平均工资
<chr></chr>	<int></int>	<db1></db1>
杭州	506	6714
上海	1723	8697

两地区数据分析职位月薪的密度分布图

之后的分析将只使用上海地区的数据!

月薪与工作经验及学历的关系

可以看到在上海,数据分析师的薪水和工作经验呈现明显的正相关。同时,工资与学历也有明显的正相关。另外,从回归线的走势来看,薪水和,学历与工作经验的交互项也有关系(工作经验大的地方,工资随学历的变化更明显)

建模及预测

首先我们使用OLS方法,选取所有的预测变量来拟合模型,一部分结果如下(按系数的大小,即变量对工资的影响力排列)

coef <chr></chr>	Estimate <dbl></dbl>	Pr(> t)
(Intercept)	7561.3	1.79€-38
spark	3642.1	3.52e-03
degree硕士	1954.9	1.05e-02
sql	1608.2	5.56e-06
exp	1182.8	2.21e-44
bigdata	876.3	2.23e-02
sas	764.2	8.77e-02
finance	713.4	3.77е-02
r	697.9	2.90e-02
hive	648.2	5.18e-01
math	626.9	6.88e-02
python	588.0	2.35e-01
information	583.2	6.50e-01
dataminning	563.6	5.73e-02
hadoop	268.2	8.01e-01
monitoring	-26.0	9.63e-01

可以看到用最小二乘法拟合模型,spark/硕士/sql技能以及经验(exp)对薪水影响较大(比如在控制其它变量不变的情况下,有spark技能可以多获得3642元/月),而且它们所对应的P值(Pr一栏)均显示这些变量都是统计有意的。

用OLS进行拟合,往往会伴随过度拟合(overfitting)的问题。毕竟我们的目的不是减少trainerror(训练模型时的误差),而是test-error即模型应用在新数据集上的误差。

其中的一种改良方法是交叉验证,即把训练数集分成k份,把其中的k-1份数据作为训练模型,并在剩下的一份中验证误差。在此基础上,用全子集回归的方法来进行变量的选择。

在使用交叉验证基础上的含各变量数的模型的平均误差

可以看到带有25个变量的 模型的误差最小,但是和其 它模型的差距不显著。

应用一个标准差(one standard-error rule)原则(离最小值一个标准差以内),选择其中11个模型作为候选(黑色实线的左侧)

含各变量数的模型的Cp统计量(越小越好)

varible	est imat es
<chr></chr>	<dbl></dbl>
(Intercept)	7057
hive	3238
degree硕士	2188
r	1250
exp	1231
sas	1199
finance	959
bigdata	873
math	607
dataminning	<i>517</i>
stata	0
communication	-384
excel	-721
ppt	-724
spss	-914
office	-1052
degree大专	-1695
customerbehavic	-2450

在11个候选模型中,变量个数为17的Cp统计量最小。另外结合奥姆剃刀原则,在模型表现差不多的情况下,尽量选择变量数较少的模型,所以我选择了变量数为17的模型。各变量对工资的影响效果见右图。

可见, Hive技能/硕士/R语言/经验/sas的影响比较大。

Ridge/Lasso 回归

另外一种改良过度拟合的方法就是Ridge回归。

OLS方法用最小二乘法让RSS (Residual sum of squares) 最小。在此基础上,Ridge regression加上了一个penalty项来控制变量,以减轻Overfitting问题。

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Lasso regression 与 Ridge regression类似,不过它的penalty项略有不同,可以起到变量选择的效果

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

注:用交叉验证法来决定系数 lambda的值

Ridge回归的各变量的系数

varible	estimates
(Intercept)	7585
spark	3323
degree硕士	1820
sql	1498
exp	1112
bigdata	785
sas	779
hive	724
finance	704
r	683
information	630
math	613
dataminning	553
hadoop	552
python	546
monitoring	3
analysis	-58
computer	-222
statistics	-445
communicat	-452
java	-470
degree不限	-478
spss	-701
ppt	-763
office	-81 <i>4</i>
excel	-1037
degree大专	-1733
customerbel	-1992
degree中专	-2002

Lasso回归的各变量的系数

varible	estimates
(Intercept)	7213
spark	<i>3535</i>
degree硕士	1478
sql	1426
exp	1161
finance	598
hadoop	<i>557</i>
hive	499
sas	455
r	453
math	435
bigdata	424
python	345
dataminning	279
statistics	-39
spss	-69
communication	-171
customerbeh	-402
degree中专	-496
ppt	-533
office	-540
excel	-1035
degree大专	-1554

正如我前面提到的那样,lasso回归有很大的机会让一部分变量的系数变为零,所以它的非零系数的变量要少于Ridge回归。

不论是Ridge还是 Lasso回归,spark/硕士 /sq1/exp都是比较中要 的因素,这些结果大致 与前面的OLS方法类似。

决策树

由于我的数据集的特殊性(大多数变量都只有两个值,0和1),所以使用线性的拟合方法很难获得很好的预测效果(秩缺乏)。

然后,我用决策树方法进行拟合。决策树把数据分成若干个区域,每个区域的预测值为所在区域的数据的平均值决定。

应用了决策树之后的树状模型图

变量的位置越高,说明该变量在减少RSS的重要性越大。

如果我想得到红圈所显示的工资,那么我的 显示的工资,那么我的 经验可以小于3年,但 是必须要会Hadoop。

改良决策树的一些方法

Tree pruning:俗称修枝。在决策数的基础上,增加一个控制变量数的penalty项(类似前面的ridge/lasso regression)。

Bagging:使用bootstrap方法,通俗讲就是用很多棵树(比如5000棵)进行拟合。

Random forest: 在bagging的基础上,缩减变量的数量进行拟合。可以使用交叉验证法来确定投入模型的变量个数。

Boosting:用极少数量的变量进行逐次拟合,在更新前一次拟合的残差的基础上进行新的拟合。可以使用交叉验证发来确定后拟合模型的系数1ambda。

各种模型的拟合效果的比较

为了验证各种模型的拟合效果,我又一次爬取了智联招聘。把各个模型应用在新的数据集(新数据,703个数据)上,比较各个模型的预测误差(test error)。

model <fctr></fctr>	mean.error <dbl></dbl>
random forest	1059
boostes tree	1725
decision tree	2068
lm	2087
regsubset	2126
prunned tree	2130
lasso	4319
ridge	4529

可以看到各种决策树方法的拟合效果较好,尤其是随机森林,平均误差只有1059元/月。考虑到数据分析师的工资的范围比较大,这可以说是一个非常好的预测。

各种模型的预测工资与实际工资的比较

可以看到各个模型包括随机森林在工资比较高的位置,误差都比较大(虚线的坡度为45度,离它越远意味着误差越大,反之亦然)。意味着模型还有可改进的余地:

- 1增加新的预测变量。
- 2按工资大小进行分段地建模。

小结

1 由于数据集的特殊性, OLS及它的各种改进方法的拟合效果不佳。而随机森林的拟合效果较为出色。

2 我用随机森林预测了一些自己的期望工资,结果约为11400。结合各个模型的变量系数,如果我想提高自己的薪水,增加自己的经验,学习一些spark/Hadoop等大数据技能会比较关键。

3 尽管随机森林的预测效果不错,但仍然有改进的空间。可能我在下一次预测的时候需要加入新的变量,并对高薪水的数据进行另外地拟合。