

FIG. 1

[SEQ. ID NO: 3]

X-C-C-T-T-G-A-G-A-T-T-T-C-C-C-T-C
5' 3'

G-G-A-A-C-T-C-T-A-A-A-G-G-G-A-G-X
3' 5'
[SEQ. ID NO: 4]

X-C-C-T-T-G-A-G-A-T-T-T-C-C-C-T-C
G-G-A-A-C-T-C-T-A-A-A-G-G-G-A-G-X

FIG.2

FIG.3

T020300 - 2023-02-06 00

FIG. 4

FIG.5

FIG.6A

FIG.6C

FIG. 7

FIG. 8B

FIG. 8A

9 / 22

FIG.9A

FIG.9B

FIG.10

FIG. 11

FIG. 12AComplementary Target

[SEQ. ID NO:12]

1

3' T-C-G-T-A-C-C-C-A-G-C-T-A-T-C-C
 5' A-G-C-A-T-G-G-T-C-G-A-T-A-G-G-A-A-A-C-G-A-C-T-C-T-A-G-C-G-C

3

[SEQ. ID NO:14]

2

T-T-T-G-C-T-G-A-G-A-T-C-G-C-G

[SEQ. ID NO:13]

FIG. 12BProbes without Target1

3' T-C-G-T-A-C-C-C-A-G-C-T-A-T-C-C

2

T-T-T-G-C-T-G-A-G-A-T-C-G-C-G

4**FIG. 12C**Half Complementary Target1

3' T-C-G-T-A-C-C-C-A-G-C-T-A-T-C-C
 5' A-G-C-A-T-G-G-T-C-G-A-T-A-G-G-A-T-G-G-C-A-A-C-T-A-T-A-C-G-C

2

T-T-T-G-C-T-G-A-G-A-T-C-G-C-G

[SEQ. ID NO:15]

4**FIG. 12D**Target - 6 bp1

3' T-C-G-T-A-C-C-C-A-G-C-T-A-T-C-C
 5' G-T-C-G-A-T-A-G-G-A-A-A-C-G-A-C-T-C-T-A-G-C-G-C

2

T-T-T-G-C-T-G-A-G-A-T-C-G-C-G

5**FIG. 12E**One bp Mismatch1

3' T-C-G-T-A-C-C-C-A-G-C-T-A-T-C-C
 5' A-G-C-A-T-G-G-T-T-G-A-T-A-G-G-A-A-A-C-G-A-C-T-C-T-A-G-C-G-C

2

T-T-T-G-C-T-G-A-G-A-T-C-G-C-G

6

[SEQ. ID NO:17]

FIG. 12FTwo bp Mismatch1

3' T-C-G-T-A-C-C-C-A-G-C-T-A-T-C-C
 5' A-G-C-A-T-G-T-T-G-A-T-A-G-G-A-A-A-C-G-A-C-T-C-T-A-G-C-G-C

2

T-T-T-G-C-T-G-A-G-A-T-C-G-C-G

7

[SEQ. ID NO:18]

FIG.13A

FIG. 13B

FIG.14A

FIG.14B

FIG15AProbes with No Target

SEQ ID NO:19

SEQ ID NO:20

FIG15BHalf-Complementary Target3

SEQ ID NO:21

5' TAC-GAG-TTG-AGA-GAG-TGC-CCA-CAT 3'

FIG15CComplementary Target

Tm=53.5°C

4

SEQ ID NO:22

5' TAC-GAG-TTG-AGA-ATC-CTG-AAT-GCG 3'

FIG15DONE Base-Pair Mismatch at Probe Head

Tm=50.4°C

5

SEQ ID NO:23

5' TAC-GAG-TTG-AGA-ATC-CTG-AAT-GCT 3'

FIG15EONE Base-Pair Mismatch at Probe Tail

Tm=46.2°C

6

SEQ ID NO:24

5' TAC-GAG-TTG-AGA-CTC-CTG-AAT-GCG 3'

FIG15FONE Base Deletion

Tm=51.6°C

7

SEQ ID NO:25

5' TAC-GAG-TTG-AGA-ATC-CTG-AAT-GC□ 3'

FIG15GONE Base-Pair Insertion

Tm=50.2°C

8

SEQ ID NO:26

5' TAC-GAG-TTG-AGA-CAT-CCT-GAA-TGC-G 3'

FIG. 16A

24 Base Template

5' TAC-GAG-TTG-AGA-ATC-CTG-AAT-GCG 3'
—S-ATG-CTC-AAC-TCT TAG-GAC-TTA-CGC-S —
1
2

FIG. 16B

48 Base Template with Complementary 24 Base Filler

5' TAC-GAG-TTG-AGA-CCG-TTA-AGA-CGA-GGC-AAT-CAT-GCA-ATC-CTG-AAT-GCG 3'
—S-ATG-CTC-AAC-TCT GGC-AAT-TCT-GCT-CCG-TTA-GTA-CGT TAG-GAC-TTA-CGC-S —
1
2

FIG. 16C

72 Base Template with Complementary 48 Base Filler

5' TAC-GAG-TTG-AGA-CCG-TTA-AGA-CGA-GGC-AAT-CAT-GCA-TAT-AT—GGA-CGG-TTT-ACG-GAC-AAC-ATC-CTG-AAT-GCG 3'
—S-ATG-CTC-AAC-TCT GGC-AAT-TCT-GCT-CCG-TTA-GTA-CGT-ATA-TAA-CCT-GCG-AAA-TGC-CTG-TTG TAG-GAC-TTA-CGC-S —
1
2

FIG. 17A

FIG. 17B

FIG. 17C

FIG. 17D

FIG. 17E

FIG. 18

FIG. 19A

21 / 22

FIG. 19B

FIG.20A

FIG.20B

FIGURE 21

FIGURE 22

Fluorescent

Nanoparticle Probes

Target
Oligonucleotide

Fluorescent

Cross-linked Aggregates

Target
Oligonucleotide

The fluorescent nanoparticle probes
pass through the membrane

The fluorescent cross-linked aggregates
are retained by the membrane

Anthrax PCR Product

5' G GCG GAT GAG TCA GTA GTT AAG GAG GCT CAT AGA GAA GTA ATT AAT
3' C CGC CTA CTC AGT CAT CAA TTC CTC CGA GT A TCT CTT CAT TAA TTA

TCG TCA ACA GAG GGA TTA TTG TTA AAT ATT GAT AAG GAT ATA AGA AAA
AGC AGT TGT CTC CCT AAT AAC AAT TTA TAA CTA TTC CTA TAT TCT TTT

ATA TTA TCC AGG GTT ATA TTG TAG AAA TTG AAG ATA CTG AAG GGC TT 3'
TAT AAT AGG TCC CAA TAT AAC ATC TTT AAC TTC TAT GAC TTC CCG AA 5'

141 mer Anthrax PCR product

[SEQ ID NO:36]

3' CTC CCT AAT AAC AAT
[SEQ ID NO:37]

3' TTA TAA CTA TTC CTA
[SEQ ID NO:38]

Oligonucleotide-Nanoparticle Probes

Blocker Oligonucleotides

3' C CGC CTA CTC AGT CAT CAA TTC CTC CGA GT

[SEQ ID NO:39]

3' A TCT CTT CAT TAA TTA AGC AGT TGT

[SEQ ID NO:40]

3' TAT TCT TTT TAT AAT AGG TCC CAA TAT

[SEQ ID NO:41]

3' AAC ATC TTT AAC TTC TAT GAC TTC CCG AA

[SEQ ID NO:42]

FIGURE 23

Satellite Probe

Target
→

Detection Signal

FIGURE 24