Big Data Open Data

Danielo JEAN-LOUIS

Le Machine Learning c'est quoi ?

- Apprentissage automatique en français
- Abrégé ML
- Sous-branche de l'Intelligence Artificielle

- Concept pensé dans les années 50
- C'est la machine qui décide à partir d'algorithmes définis
- Nécessite un certain nombre de données (Big Data)

- Branche appliquée des statistiques
- Deep Learning
 - · Petit frère du ML
- NLP = Natural Langage Processing
 - · Branche à part du Machine Learning
- Intervient quand l'être humain montre ses limites

- Trois grandes catégories :
 - · Apprentissage supervisé
 - · Apprentissage non-supervisé
 - · Apprentissage par renforcement
- Reste relativement limité
 - · Puissance / Données

Source(s):

• https://larevueia.fr/apprentissage-par-renforcement/

Le soulèvement des machines, ce n'est pas pour demain

Machine Learning - Applications

- Voitures autonomes
- Recommandations (netflix, amazon...)
- Détection de fraudes
- Prédiction des prix de l'immobilier
- ...

Machine Learning – But

Prévoir les valeurs de sorties à partir d'attributs (features/colonnes) grâce à l'application d'un modèle choisi

En gros, le ML c'est utiliser la données pour répondre à des questions

Machine Learning - Étapes

- 1. Définition du problème à résoudre
- 2. Acquisition des données d'apprentissages et de tests
- 3. Analyser, explorer les données
- 4. Préparer et nettoyer les données
- 5. Choisir un modèle d'apprentissage
 - Savoir quel problème on cherche à résoudre
- 6. Visualiser les résultats, et ajuster ou modifier le modèle d'apprentissage
- 7. Tester en production

Machine Learning – Etapes – v.2

- 1. Acquérir les données
- 2. Préparer et nettoyer les données
- 3. Choisir un modèle d'apprentissage
 - Savoir quel problème on cherche à résoudre
- 4. Entraîner le modèle
- 5. Évaluation
- 6. Affiner ses hyper-paramètres
- 7. Prédiction (avec les vraies données)

Sources:

https://www.youtube.com/watch?v=nKW8Ndu7Mjw

Modèle

- Représentation simplifiée de la réalité
- Représentation mathématique de relation entre des données

Modèle

- Équation mathématique en résumé
- Performance par un score
 - · Pouvant être de plusieurs types
 - · Sujet à une interprétation qui lui est propre dépendamment des cas

Variables

- Influencent l'algorithme qui va être utilisé
- Peuvent être de plusieurs types
 - · Quantitatives (nombre)
 - · Qualitative (pas un nombre)

Source(s):

- https://openclassrooms.com/fr/courses/4525266-decrivez-et-nettoyez-votre-jeu-de-donnees/4725615-decouvrez-les-4-types-de-variables
- https://www.stat.berkeley.edu/~stark/SticiGui/Text/histograms.htm anglais

Variables

- Quantitatives (nombre):
 - Discrète : la valeur de la variable est finie. Ex : âge
 - Continue : la variable peut prendre une infinité de valeurs. Ex : temps

Variables

- Qualitatives (ou catégorielles) (pas un nombre) :
 - Ordinale : La variable peut-être ordonnée. Ex : 1^{er}, 2^{ème}...
 - Nominale : La variable ne peut pas être ordonnée. Ex : les couleurs
 - Dichotomiques : La valeur ne peut avoir que deux états. Ex : Vrai / Faux

Variables – Quantitative ou Qualitative?

(nombre ou texte)

Modèle d'une voiture Code postal État d'un interrupteur

Temps d'une course Nombre de questions Nombre de personnes dans le prochain test dans ce TP

Vitesse d'un véhicule Votre heure de réveil Température du jour

Variables – Quantitative ou Qualitative?

(nombre ou texte)

Modèle d'une voiture Qualitative Code postal

Qualitative

État d'un interrupteur

Qualitative

Temps d'une course

Quantitative

Nombre de questions dans le prochain test Quantitative Nombre de personnes dans ce TP Quantitative

Vitesse d'un véhicule

Quantitative

Votre heure de réveil

Quantitative

Température du jour Quantitative

Code postaux et numéro de téléphone

- Variables qualitatives malgré la présence de numéros
- Faire des opérations sur ces données n'a aucun sens

Variables – Quantitative ou Qualitative?

- Qualitative :
 - · Je suis rapide et je suis grand
- Quantitative :
 - · Je cours 100 m en 13.42s et je mesure 180 cm

Apprentissage supervisé

Les données sont libellées

(Une) Orange

Scikit learn

- Implémenté dans jupyter notebook et colaboratory
- Permet d'utiliser des algorithmes (supervisés ou non) de machine learning
- Contient des jeux de données par défaut pour tester
 - · Fleur d'iris : autre classique de la datascience

Source(s):

• https://scikit-learn.org

Apprentissage supervisé

- Deux types :
 - Classification
 - · Régression
- A besoin d'exemples pour s'entraîner
 - · Un être humain doit intervenir au début

Source(s):

• http://www.vincentlemaire-labs.fr/cours/2.1-ApprentissageSupervise.pdf

Apprentissage supervisé - Dataset

Year	Liquid fuel	Solid fuel	Gas fuel	Cement production	Gas flaring
2010	3,107	3,812	1,696	446	67
2011	3,134	4,055	1,756	494	64
2012	3,200	4,106	1,783	519	65
2013	3,220	4,126	1,806	554	68
2014	3,280	4,117	1,823	568	68

Entrées

Sorties

Source(s):

• http://www.vincentlemaire-labs.fr/cours/2.1-ApprentissageSupervise.pdf

Apprentissage supervisé – Préparation

- Phase permettant de dégager des features (caractéristiques/dimensions/paramètres)
- Corriger les erreurs potentielles du dataset
 - · Phase de nettoyage
- Se poser les bonnes questions
 - · Un problème bien posé est à moitié résolu

- S'utilise pour les valeurs qualitatives ou quantitatives
 - · Exemple : classement d'images
- Classes binaires ou multiples
- Exemple d'algorithmes (liste non-exhaustive) :
 - · Régression logistique (Logistic Regression)
 - · k plus proches voisins (K-Nearest Neighbor)
 - · Forêt d'arbres décisionnels (Random Forest)
 - Boosting de gradient (Gradient boosting)

Source(s):

- https://moncoachdata.com/blog/modeles-de-machine-learning-expliques
- https://larevueia.fr/algorithme-du-plus-proche-voisin/
- https://datascience.eu/fr/apprentissage-automatique/gradient-boosting-ce-que-vous-devez-savoir/

Les captchas sont des moyens communautaires de classifier (et libeller) des données

Chien ou bagel?

Il est important de montrer plusieurs exemples pour entraîner le modèle

Source(s):

• https://twitter.com/teenybiscuit/status/707004279324696577

Apprentissage supervisé - Régression

- S'utilise pour les valeurs qualitatives
- Prédit les valeurs de sorties à partir des valeurs d'entrées (features)
 - · Exemple : prix de l'immobilier
- Exemple d'algorithmes (liste non-exhaustive) :
 - · Régression linéaire (Simple / Multiple Linear Regression)
 - · Lasso Régression
 - · Boosting de gradient (Gradient boosting)

Source(s):

https://fr.wikipedia.org/wiki/R%C3%A9gression_lin%C3%A9aire

Apprentissage supervisé - Régression

Prix habitation (€)	Surface (m²)
150 000	68
178 000	75

Source(s):

• https://fr.wikipedia.org/wiki/R%C3%A9gression_lin%C3%A9aire

Apprentissage supervisé – Régression *l* Classification

Apprentissage supervisé – Attention au overfitting

- Surapprentissage en français
- Apparaît plus en Régression
- Important d'avoir des données disparates
- Multiplier les tests

Source(s):

[•] https://fr.wikipedia.org/wiki/Surapprentissage

https://larevueia.fr/7-methodes-pour-eviter-loverfitting/

Apprentissage supervisé - Validation

- Ne pas oublier de tester son modèle
- 80/20 Loi de Pareto
 - ~ 80 % des données servent à l'entraînement du modèle
 - · ~ 20 % servent de test
- Test de notre modèle sur des données jamais vues

Source(s):

• https://fr.wikipedia.org/wiki/Loi_de_Pareto

Apprentissage non-supervisé

- Le contenu n'est pas libellé, l'algorithme va trouver lui-même les similarités, les liens
 - Exemple :

 https://cs.stanford.edu/people/karpathy/cnn
 embed/cnn_embed_6k.jpg
- Découvrir une tendance
 - Tendance peut changer en fonction de l'algorithme utilisé

- https://datascientest.com/apprentissage-non-supervise
- https://dataanalyticspost.com/Lexique/apprentissage-non-supervise/
- http://www.vincentlemaire-labs.fr/cours/2.2-ApprentissageNonSupervise.pdf

Apprentissage non-supervisé

- Exemples d'applications :
 - · Génération d'images
 - · Détection de fraudes
 - Création d'articles

Source(s):

• https://thispersondoesnotexist.com/

Apprentissage non-supervisé

- Exemple de types de familles d'algorithmes :
 - · Groupement (clustering)
 - Association
 - Compréhension par contexte
- Attention : méthode dangereuse

- https://datascientest.com/apprentissage-non-supervise
- https://dataanalyticspost.com/Lexique/apprentissage-non-supervise/
- http://www.vincentlemaire-labs.fr/cours/2.2-ApprentissageNonSupervise.pdf

Un ordinateur n'a pas de morale

- Elle exécute sans réfléchir aux conséquences
- Peut conduire à des dérives. Exemples :
 - · Chambre d'écho (problème de fixation)
 - · Le recrutement chez Amazon
- Nécessite une validation humaine (devrait)
- RGPD

- https://fr.wikipedia.org/wiki/R%C3%A8glement_g%C3%A9n%C3%A9ral_sur_la_protection_des_donn%C3%A9es_
- https://larevueia.fr/les-5-plus-gros-fails-de-lintelligence-artificielle/
- https://larevueia.fr/le-machine-learning-pour-les-systemes-de-recommandations
- https://www.youtube.com/watch?v=DKvV1S3B4Uc

Apprentissage non-supervisé - Groupement

- Cherche à définir des groupes homogènes (infinis)
 - · Exemple : Type d'acheteurs
- Nécessite une intervention humaine en aval
- Exemple algorithme :
 - · K-moyennes (K-means)

Apprentissage non-supervisé - Groupement

L'algorithme a groupé les images tout seul

Apprentissage non-supervisé - Association

- Cherche à découvrir des associations entre éléments
 - · Exemple : Contenu d'un caddie de supermarché
- Nécessite une intervention humaine en aval
 - · Exemple : revoir l'agencement d'un magasin
- Exemple algorithme :
 - · APriori (K-means)

Sources:

• https://fr.wikipedia.org/wiki/Algorithme_APriori

Apprentissage non-supervisé - Association

Apprentissage non-supervisé – Association Corrélation != Causalité

- Ne pas se fier aveuglément aux résultats du modèle
- Une corrélation trouvée n'est pas forcément une causalité

- http://www.tylervigen.com/spurious-correlations Anglais
- https://www.lemonde.fr/les-decodeurs/article/2019/01/02/correlation-ou-causalite-brillez-en-societe-avec-notre-generateur-aleatoire-de-comparaisons-absurdes_5404286_4355770.html

En résumé – Panorama des applications

Sources):

• https://en.wikipedia.org/wiki/Data_mining - anglais

En résumé – Types d'apprentissages

Supervisé → Effectuer une tâche

Non-supervisé → Découvrir quelque chose

En résumé – Panorama des algorithmes

- https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html anglais
- https://docs.microsoft.com/fr-fr/azure/machine-learning/algorithm-cheat-sheet anglais
- https://www.datacorner.fr/ml-memento/

Troisième type d'apprentissage

Renforcement → Apprentissage par essais et l'ordinateur découvre la bonne solution

Souvent utilisé pour apprendre à l'ordinateur à joueur. Exemple : AlphaGo

Troisième type d'apprentissage

Renforcement → Apprentissage par essais et l'ordinateur découvre la bonne solution

Souvent utilisé pour apprendre à l'ordinateur à joueur. Exemple : AlphaGo

Deep Learning

- Sous-domaine du machine learning
 - · Plus complexe que ce dernier
- Cherche à s'approcher du fonctionnement du cerveau humain
 - Exemple : traitement de l'information par nos yeux

https://storage.googleapis.com/gweb-news-initiative-training.appspot.com/upload/GNI_Training_JournalismAI_IntroductiontoMac hineLearning.pdf

⁻ Anglais

Reconnaissance d'images		Grouper des clients		Google Translate				
Supervisé		Non-Supervisé		Les deux !				
Kinect Supervisé		FaceID Supervisé			Voitures autonomes Les deux !			
Alexa Les deux !	Recommendation Netflix Non supervisé		Préc	diction du salaire Supervisé				
Détection de SPAM Supervisé		Suggestion d'achat Non supervisé		ciseaux	Les gauchers achètent des ciseaux pour gauchers Non supervisé			
Mes chances de								

survivre le 14 avril

1912

Source(s):

• https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BodyPartRecognition.pdf - Anglais

Le Royal Mail Ship Titanic

<u>Titanic</u>

- Mis en service le 10 avril 1912
- Heurte un iceberg le 14 avril 1912
- Entre 1 490 et 1 520 personnes trouvent la mort
- "Hello world" du Machine Learning... supervisé

Kaggle

- Site gratuit nécessitant une inscription
- Concours de data-scientifiques
- Propose un nombre conséquent de jeux de données réalisés par la communauté
- Propose une interface proche de Google Colab pour expérimenter

Source(s):

https://www.kaggle.com/

matplotlib

- Bibliothèque Python permettant la gestion de graphiques
- Intégrée à Jupyter et Google Colab
- Pas très élégant à la base → utilisation de seaborn

Pratiquons! - Titanic

Pré-requis :

- Avoir la ressource ressources/titanic
- Lien: https://downgit.github.io/#/home?url=https://github.com/DanYellow/cours/tree/main/big-data-s4/travaux-pratiques/numero-6/resources

Questions?