

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Medieninformatik / Human-Computer Interaction

Grundlagen der Multimediatechnik

Audiokompression

14.01.2022, Prof. Dr. Enkelejda Kasneci

Termine und Themen

22.10.2021	Einführung						
29.10.2021	Menschliche Wahrnehmung – visuell, akustisch, haptisch,						
05.11.2021	Informationstheorie, Textcodierung und -komprimierung						
12.11.2021	Bildverbesserung						
19.11.2021	Bildanalyse						
26.11.2021	Grundlagen der Signalverarbeitung						
03.12.2021	Bildkomprimierung						
10.12.2021	Bildkomprimierung						
17.12.2022	Videokomprimierung Teil I						
14.01.2022	Videokomprimierung Teil 2 + Audiokomprimierung						
21.01.2022	Videoanalyse						
28.01.2022	Dynamic Time Warping						
04.02.2022	Gestenanalyse						
11.02.2022	FAQ mit den Tutoren						
17.02.2022	Klausur, 14-16 Uhr, N10+N11						

Audiokompression

- Audiodaten nur schwer korrelierbar
- Keine erkennbaren Muster
 - → Wörterbuch-Kompression nicht erfolgversprechend
- Datenwerte gleichverteilt
 - → Huffman-Kodierung nicht erfolgversprechend
- Domänenwandlung grundsätzlich machbar (DCT, FFT)
 - → aber zu viele Koeffizienten, Datei wird größer...
- Gesucht: Kodierung mit ähnlichen Eigenschaften wie DCT
 - Verteilung der "Energie" auf wenige Koeffizienten

Verlustbehaftete Audio-Kompressionsverfahren

- Verlustbehaftete Audiokompression
 - Basiert auf psychoakustischem Modell der Tonwahrnehmung
 - Wichtigster Effekt: Maskierte Bestandteile des Audio-Signals werden nicht kodiert
 - Bekanntester Standard: MPEG Audio Layer III (MP3)
 - Moving Picture Expert Group, Untergruppe MPEG/Audio

MPEG-Audiokompression und erzielbare Kompressionsfaktoren

Verfahren	Bandbreite in kBit/s	Kompressions- faktor	Mbyte für 1 min. Audio
Audio CD	1400	1:1	10,58
MPEG-1-Layer I	384	3,6:1	2,88
MPEG-1-Layer II	256	5,5:1	1,92
MPEG-1-Layer III	128	11:1	0,962
MPEG-1-Layer III	64	22:1	0,481
MPEG-1-Layer III	16	88:1	0,120

- Verschiedene Qualitätsparameter einstellbar:
 - CBR (Constant Bit Rate) bei variable Qualität
 - ABR (Average Bit Rate) bei begrenzte Bandbreite
 - VBR (Variable Bit Rate) bei konstanter Qualität

Audiokodierung: Anwendungsbeispiel MP3

- Zerlegung des Datenstroms in Frames
- Aufteilung des Frequenzbereichs in 32 Subbänder
 - Layer I: gleiche Breite (625 Hz), nur Frequenzmaskierung
 - Layer II: gleiche Breite, Betrachtung von drei Frames (Zeitmaskierung)
 - Layer III: variable Breite
- Lauteste Frequenzanteile verringern benötigte Auflösung
- Differenz zwischen linkem und rechtem Kanal
- Quantisierung gemäß psychoakustischem Modell
- Huffman-Kodierung

MP3: Subband-Kodierung

Annahme:

Unterschiedliche Wichtigkeit von Frequenzbereichen

- Isophone
- Maskierung
- → Anpassung von Auflösung, Quantisierung, Datenrate
- Beispiel Sprache
 - Bass-Bereich und Höhen nicht maßgeblich für Verständlichkeit
 - Mittenbereich (300Hz-1200Hz) wesentlich
 - → Zerlegung und Restaurierung des Signals über Vocoder
 - → Telefonie-Codecs
- Beispiel Musik
 - Zerlegung des Audiosignals in diskrete Frequenzbereiche
 - Bewertung der Frequenzbereiche anhand Isophone und Quantisierung gemäß psychoakustischem Modell
 - → Bestandteil der MP3-Kodierung

Menschliches Hörfeld: ca. 20-20.000 Hz bei 0 dB - 120 dB

Kodiere nur menschliche Signale im Hörfeld

... auch innerhalb des Hörfelds müssen nicht alle Signale kodiert werden.

Simultane Verdeckung:

 starkes (lautes) Signal verdeckt (maskiert) gleichzeitiges schwaches (leises) Signal

Temporäre Verdeckung:

- starkes Signal verdeckt schwaches Signal nicht nur zeitgleich, sondern wirkt ...
 - ... gewisse Zeit nach (bis 200 ms)
 - ... sogar einige Zeit vor (bis 50 ms, Ursache ist Trägheit des Hörvorganges)

Simultane Verdeckung:

 starkes (lautes) Signal verdeckt (maskiert) gleichzeitiges schwaches (leises) Signal

Temporäre Verdeckung:

 starkes Signal verdeckt schwaches Signal nicht nur zeitgleich, sondern wirkt nach bzw. sogar vor

MP3: Frequenzbänder und Polyphasen-Filterbank

- Teilung des Signals in 32 Subbänder
- Überführung in den Frequenzbereich
- Quantisierung nach entsprechenden Maskierungsmethoden
- 4. Reduktion der Information

- Polyphasenfilterbank erlaubt keine vollständige Rekonstruktion
 - (auch ohne Quantisierung)
- → verlustbehaftet

FFT zur Berechnung der Maskierungsschwelle

FFT = Fast Fourier Transformation

- Umsetzung des Amplitudensignals in Frequenzspektrum
 - Angewandt auf die Länge eines Frames (12 Samples)

Ergebnis:

- Aufteilung des Signals auf viele (Layer I 512, Layer II 1024) Frequenzanteile
- Weiterverarbeitung:
 - Berechnung der Kurve für die (frequenzabhängige) Maskierungsschwelle

Maskierungsschwelle

- Maskierungsschwellen aus dem psychoakustischen Modell werden mit tatsächlichem Signalpegel (pro Teilband) verglichen
 - Verdeckte Signalanteile werden nicht codiert!
- Es genügt bei teilweiser Maskierung eine geringere Bitauflösung
 - Nur "Differenz" oberhalb der Maskierungsschwelle wird wahrgenommen!

Maskierung: Beispiel

• Ergebnis nach der Analyse der ersten 16 Bänder:

Band	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Pegel (db)	0	8	12	10	6	2	10	60	35	20	15	2	3	5	3	1

- Annahme: Psychoakustisches Modell liefert, dass der Pegel in Band 8 (60 dB) zu folgender Maskierung der Nachbarbänder führt:
 - → Maskierung um 12 dB in Band 9
 - → Maskierung um 15 dB in Band 7
- Pegel in Band 7 ist 10 dB
 - → Weglassen!
- Pegel in Band 9 ist 35 dB
 - → kodieren
 - Wegen Maskierung 12 dB Ungenauigkeit (Rauschen) zulässig,
 d.h. mit zwei Bit weniger kodierbar

MP3: Hybrid-Filterbank (Polyphase + MDCT)

- MP3 spezifiziert zwei unterschiedliche Blocklängen für die MDCT
 - 18 Spektralpunkte oder 6 Spektralpunkte (Grundfrequenzen)
- Analyse der Maskierungseffekte unter Verwendung einer 1024-Punkte-FFT

Modifizierte Diskrete Cosinus Transformation MDCT (I)

DCT

- bei Audio Probleme mit Artefakten an Blockgrenzen
- Block = beliebiger Ausschnitt des Signals, wiederholt
- Modifizierte DCT (MDCT) (Princen, Johnson, Bradley 1987)
 - Überlappung der Cosinus-Funktionen um 50%
 - Vermeidung von Artefakten durch Blockgrenzen
 - Doppelte Signalanteile heben sich gegenseitig auf
 - → Time-Domain Aliasing Cancelation (TDAC)

Modifizierte Diskrete Cosinus Transformation MDCT (II)

- Modified DCT
 - Adaption der "Fenstergröße" an Signalverlauf möglich

Beispiel überlappender MDCT-Fenster mit unterschiedlicher Größe

- Bei MP3: MDCT wahlweise mit 12-Sample- und 36-Sample-Blöcken
 - 12 Samples → 6 Grundfrequenzen → 32 · 6 = 192 (3 Teilblöcke)
 Spektralkoeffizienten: gut für schnelle Änderungen (Transienten)
 - 36 Samples → 18 Grundfrequenzen → 32 · 18 = 576 Spektralkoeffizienten: **gute Frequenzauflösung** (wenn Signal relativ stationär)
 - Übergangsblöcke: long-to-short, short-to-long

Aufbau eines MPEG-Layer III Encoders

• MDCT teilt jedes Teilband nochmals in 18 feinere Bänder auf

MPEG-4 Advanced Audio Coding

- AAC = Advanced Audio Coding
 - Verbesserte Fassung des MPEG-2 Standards im aktuellen Video-/Audio-Standard MPEG-4
- MPEG-4 AAC
 - alle Vorteile von MPEG-2 AAC
 - Perceptual Noise Substitution: Rauschen-ähnliche Teile des Signals werden beim Dekodieren synthetisiert
 - Long Term Prediction: Verbesserte Prädiktionskodierung
 - "Baukasten" zur Konstruktion verschiedener Kompressionsverfahren (effiziente Sprachcodierung bis hin zu sehr hoher Musikqualität)
 - "Profile", d.h. feste Kombinationen der Bausteine, Beispiele:
 - Speech Audio Profile, Synthetic Audio Profile, High Quality Audio
 Profile, Low Delay Audio Profile, Mobile Audio Internetworking Profile

Weitere Audiokompressionsverfahren

- Dolby AC-3 (Audio Code No. 3)
 - Prinzipiell sehr ähnlich zu den MPEG-Verfahren
 - MDCT mit Time-Domain Aliasing Cancellation (TDAC)
- ATRAC (Adaptive Transform Acoustic Encoding)
 - Sony-Verfahren, entwickelt für MiniDisc
 - Ebenfalls Aufteilung auf Teilbänder, MDCT, Skalierung
 - Hörbare Verzerrungen bei mehrfachem komprimieren/dekomprimieren
- Microsoft Windows Media Audio (WMA)
 - Nicht offengelegtes Verfahren mit recht hoher Kompression (CD-Qualität bei 64 kbit/s)

Free Lossless Audio Codec (FLAC)

- Freie, verlustfreie Audiokompression
- Fokus auf Streaming und Dekompression in Echtzeit
- Festkomma-Operation (vermeidet Rundungsfehler)
- Flexibel parametrisierbar
 - Auflösung (4-32 Bit)
 - Sample-Rate (1-655350Hz in 1Hz-Schritten)
 - Kanalanzahl (1-8)
 - Kanalgruppierung (Stereo, Surround) zur Interkanal-Korrelation
 - Rice-Parameter 0 ≤ M ≤ 16 → siehe nächste Folie

Free Lossless Audio Codec (FLAC)

- Kompression
 - Blocking (Blockbildung)
 - FLAC unterteilt die Daten jedes Kanals stets in Blöcke zu je 1000 bis 6000 Samples.
 - Inter-Channel Dekorrelation
 - Transformation der Links-Rechts-Kodierung in eine Mid-Side-Kodierung (mid = (left + right) / 2 und side = left - right)
 - Dynamische Auswahl des kleineren Frames.
 - Modellierung
 - Annäherung des Werteverlaufs eines Blocks
 - durch eine Polynomfunktion oder
 - mittels Linear Predictive Coding (Schätzung künftiger Werte über lineare Funktionen unter Verwendung eines Quellenfilters → Koeffizienten die Fehlersignal (Residual Energy) minimieren
 - Residual Coding
 - Das Fehlersignal (Unterschied zwischen dem tatsächlichen Signal und dem modellierten Signal) wird mittels Rice-Kodierung verlustfrei im Frame gespeichert
 - Lauflängencodierung für Blöcke mit identischen Samples (z.B. Stille)

Golomb/Rice-Kodierung

- Code-Variante für die effiziente Kodierung von Lauflängen
- Aufspaltung eines Eingabewerts N in zwei Teile q und r
- Rice-Code ist Untermenge des Golomb-Codes für $M = 2^k$
 - Rest $r = N \mod M \mod M = 2^k, k \in \mathbb{N}$ (= letzte k Binärstellen)
 - Quotient $q = \left| \frac{N}{M} \right| = N >> k$ (Rechts Shift um k Stellen)

Repräsentation einer Zahl durch

- r: Offset innerhalb des Behälters in verkürzter Binärkodierung (truncated binary coding)
- q: Position des Behälters (bin) in unärer Kodierung (unary coding)
- abschließendes Bit

Beispiel:

- Eingabe: $N = 10_{dezimal} = 1010_{binär}$, Rice-Kodierung mit k = 2
- $r = 10_{\text{binär}}, q = N >> 2 = 2 \rightarrow 11_{\text{unär}}, \text{ Ausgabe: } 10110_{\text{binär}}$

Golomb/Rice-Kodierung

- Einsatz als Quellenkodierung zur Prädiktion
 - r liegt typischerweise in geometrischer Verteilung vor, d.h. kleine r sind häufiger als große r
 - Golomb/Rice-Code approximiert Huffman-Code, jedoch ohne Notwendigkeit einer Tabelle
- Beispiel: Rice-Codes für verschiedene Codierungsparameter k

\boldsymbol{x}	binär	k = 0	k = 1	k = 2	k = 3
0	00000	0	0 0	00 0	000 0
1	00001	10	1 0	01 0	001 0
2	00010	110	0 10	10 0	010 0
3	00011	1110	1 10	11 0	011 0
4	00100	11110	0 110	00 10	100 0
5	00101	111110	1 110	01 10	101 0
6	00110	1111110	0 1110	10 10	110 0
7	00111	11111110	1 1110	11 10	111 0
8	01000	111111110	0 11110	00 110	000 10
9	01001	1111111110	1 11110	01 110	001 10
10	01010	11111111110	0 111110	10 110	010 10
:	:	:	:	:	:

Zusammenfassung

- Verlustbehaftete Audiokompression (z.B. MP3, AAC)
 - Psychoakustisches Modell ist fundamentaler Bestandteil
 - Aufteilung in Frequenzbänder
 - Analyse von Maskierungseffekten
 - MDCT weitverbreitet zur Frequenzbandzerlegung unter Vermeidung von Blockartefakten mit variabler Blocklänge
 - Einbringung von Verstärkungs- und Dämpfungsfaktoren zur Quantisierung
 - Huffman-Codierung der quantisierten Daten
- Verlustfreie Kompressionsverfahren (z.B. FLAC)
 - Approximation des Werteverlaufs eines Blocks und Speicherung des Differenzsignals zum Ursprungswert zur Fehlervermeidung