January 2023

REV	DATA	ZMIANY
0.1	13.01.2023	Wiktor Pantak (wpantak@agh.edu.pl)
0.2	14.01.2023	Wiktor Pantak (wpantak@agh.edu.pl)
0.3	18.01.2023	Wiktor Pantak (wpantak@agh.edu.pl)
0.4	22.01.2023	Wiktor Pantak (wpantak@agh.edu.pl)

Symboliczne Obliczanie Pochodnych Wyrażenia

Języki Programowania Obiektowego

Autor: Wiktor Pantak Akademia Górniczo-Hutnicza

Kraków 2023

Spis treści

Spis treści

1.	WSTĘP:	4
2.	PODSTAWOWE ZAŁOŻENIA PROJEKTU:	5
3.	FUNKCJONALNOŚĆ:	6
4.	ANALIZA PROBLEMU:	7
5.	PROJEKT TECHNICZNY:	9
6.	OPIS REALIZACJI:	11
7.	OPIS WYKONANYCH TESTÓW – LISTA BUGÓW, UZUPEŁNIEŃ, ITP.:	12
8.	PODRĘCZNIK UŻYTKOWNIKA:	13
9.	METODOLOGIA ROZWOJU I UTRZYMANIA SYSTEM:	15
10	RIRI IOCRAFIA	16

January 2023

Lista oznaczeń

CLI	Command-Line Interface
sin()	sinus
cos()	cosinus
tg()	tangens
x^n	x podniesione do potęgi n
ln()	logarytm naturalny
log _a ()	logarytm o podstawie a
UML	Unified Model Language

Tabela 1 Lista oznaczeń

Technical Report

Rev. 0.4

AGH University of Science and Technology

January 2023

1. Wstęp:

Dokument obejmuje opracowanie systemu symbolicznego obliczania pochodnych wyrażeń jednej zmiennej. Celem tego projektu jest umożliwienie użytkownikowi obliczenia podanych przez niego wyrażeń jednej zmiennej.

January 2023

2. Podstawowe założenia projektu:

- Wykorzystanie tablic matematycznych dotyczących pochodnych funkcji elementarnych.
- Komunikacja programu z użytkownikiem poprzez CLI.
- Opracowanie modułu wykonującego obliczenie pochodnej wyrażeń podanych przez użytkownika, gdzie niewiadomą jest "x".
- Wykorzystanie języka C++, do stworzenia programu.

January 2023

3. Funkcjonalność:

Przewidzianą funkcjonalnością programu jest obliczanie pochodnej wyrażenia z zmienną "x", podanej przez użytkownia w formie tekstu oraz wyświetlenie wyniku również w formie tesktowej w CLI. W późniejszych wersjach programu, planowane jest wprowadzenie obliczanie wartości pochodnej dla podanej przez użytkownika wartości argumentu.

4. Analiza problemu:

Załóżmy, że istnieje dana funkcja f(x) oraz argument x_0 , który jest określony w otoczeniu f(x). Oznaczenie pochodnej przyjmujemy jako:

Wtedy pochodną definiujemy jako granicę:

$$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Zwaną jako ilorazem różnicowym, czyli przyrostem wartości funkcji względem przyrostu argumentu funkcji. Można wykorzystać tą zależność do wyznaczenia współczynnika kierunkowego funkcji.

Przykładowe wyznaczenie pochodnej funkcji f(x)=x:

$$f'(x) = \lim_{h \to 0} \frac{x_0 + h - x_0}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

W celu wyliczenia pochodnych wyrażeń jednego argumentu (zmiennej) można wykorzystać wyznaczone wzory pochodnych funkcji elementarnych oraz podstawowe wzory zależności różniczkowanych funkcji.

Zakładając zatem f, g, h: $\mathbf{R} \rightarrow \mathbf{R}$ będą różniczkowalne na zbiorze otwartym U, gdzie c jest stałą, można wykorzystać wtedy podane wzory:

Funkcja	Pochodna	Uwagi
$f \pm g$	f' ± g'	
c·f	c·f'	
f∙g	$f' \cdot g + f \cdot g'$	
f·g·h	$f' \cdot g \cdot h + f \cdot g' \cdot h + f \cdot g \cdot h'$	
$\frac{f}{g}$	$\frac{f'\cdot g - f\cdot g'}{g^2}$	g(x)≠0
ln(f)	$\frac{f'}{f}$	
g(f)	g'(f)·f '	

Tabela 2 Podstawowe wzory.

Pochodne funkcji elementarnych, w podanej tabelce x jest zmienną, a wszystkie pozostały litery są stałymi:

Funkcja	Pochodna	Uwagi
С	0	
X	1	
X ⁿ	nx ⁿ⁻¹	
ax+b	a	
ax ² +bx+c	2ax+b	
ax ⁻¹	-ax ⁻²	x≠0
sin(x)	cos(x)	
cos(x)	-sin(x)	
tg(x)	$\frac{1}{\cos^2(x)}$	x≠π/2+kπ,k∈ Z
e ^x	e ^x	
a ^x	a ^x ln(a)	a>0
x ^x	$x^{x}(1+\ln(x))$	x>0
ln _a (x)	$\frac{1}{x}$	x>0
log _a (x)	$\frac{1}{(x \cdot \ln(a))}$	
l	I	1

Tabela 3 Pochodne funkcji elementarnych, które są planowane do zaimplementowania w programie.

Celem programu jest podzielenie podanego przez użytkownika wyrażenia na mniejsze części, aby móc wykorzystać wyżej podane pochodne wyrażeń podstawowych, a następnie wyświetlić otrzymany wynik. Dla podanego wyrażenia: " $2x^3 + \log_{10}(3x)$ " będziemy chcieli podzielić je na 2 wyrazy: " $2x^3$ " oraz " $\log_{10}(3x)$ " policzyć z nich pochodne, połączyć je i wyświetlić wynik: " $6x^2 + \frac{3}{(3x \cdot \ln(10))}$ ".

5. Projekt techniczny:

Schemat działania programu:

Rysunek 1 UML schematu działania programu.

Przy uruchomieniu programu, użytkownik zostanie poproszony o podanie wyrażenia. Jeżeli wyrażenie zostało wprowadzone poprawnie wykona się policzenie pochodnej, a następnie wyświetli się otrzymany wynik. W innym przypadku użytkownik zostanie poinformowany o błędzie w wprowadzonym wyrażeniu I zostanie zapytany, czy chce wprowadzić kolejne.

Relacja bibliotek i plików źródłowych:

Rysunek 2 UML zależności bibliotek oraz plików źródłowych.

Hierarchia klas:

Rysunek 3 UML hierarchi klas projektu.

Do klasy Ladder wysyła się poprzez getter wyrazenie z klasy zdanie, a zmienne divided oraz checkToDerivative z klasy Ladder do klasy derTable, gdzie fragmenty wyrażenia są różniczkowane. Wyrazenie jest uzupełniane w funkcji loop(), która jest zadeklarowana w main.h i opisana w pliku start.cpp .

January 2023

6. Opis realizacji:

Kod przygotowano w środowisku Microsoft Visual Studio Community 2022 ver. 17.4.4 oparty na języku C++20. Wykorzystano kompilator Microsoft® C/C++ ver. Kompilatora optymalizującego 19.33.31630 dla x64.

Program był testowany wykorzystując CLI MicrosoftPowerShell, na komputerze o parametrach:

- system: Windows 11 Home ver. 22H2
- processor: Intel Core i5-9300 CPU 2,40GHz
- 8GB RAM

Wykorzystano github jako system kontroli źródeł: https://github.com/piktorwa/JPO. Do budowy projektu wykorzystano CMake ver. 3.24.2 .

7. Opis wykonanych testów – lista bugów, uzupełnień, itp.:

Funkcja	Uwagi
zdanie::checkWyrazenie()	Poprawnie usuwa spacje z wyrażenia oraz ujednolica liczby zmienno przecinkowe (zamienia przecinki na kropki). Poprawnie sprawdza ilość nawiasów, nie sprawdza czy nawiasy są podane w odpowiedniej kolejności.
zdanie::simplify()	Poprawnie wymnaża 2 liczby oddzielone znakiem mnożenia "*" oraz zmienną "x". Wprowadzono sumę oraz odejmowanie dwóch liczb obok siebie – nie testowane. Nie wprowadzono dzielenia dwóch liczb.
Ladder::dividing()	Wprowadzono rozdzielanie sumy, różnicy oraz iloczynu pochodnych. Nie wprowadzono rozdzielania ilorazu,ln() oraz funkcji złożonych. Nie przeprowadzono żadnych testów w celu sprawdzenia poprawności zaimplementowanych rozwiązań
Ladder::makeString()	Wprowadzono sumowanie vector <string> do string, aby następnie zwrócić stworzoną zmienną typu string, jako wynik wyliczonej pochodnej. Nie wykonano testów.</string>
derTable::derivativeIt()	Stworzono funkcję. Nie wprowadzono żadnej funkcji elementarnej, przez co nie możliwe jest policzenie żadnej pochodnej wprowadzonej przez użytkownika.

Tabela 4 Stworzone funkcje w projekcie wraz z uwagami.

8. Podręcznik użytkownika:

Sposób wpisywania danych:

Funkcja	CLI	Uwagi
+	+	
-	-	
•	*	
÷	1	
potęga	۸	
,	•	Można stosować zamiennie przecinka i kropki, gdyż program podmienia wszystkie przecinki na kropki.
С	liczba z przedziału 0<=c<=9	
X	X	
X ⁿ	x^n	
ax+b	ax+b	Można wykorzystać znak mnożenia *.
ax²+bx+c	ax^2+bx+c	Można wykorzystać znak mnożenia *.
ax ⁻¹	ax^(-1)	Można wykorzystać znak mnożenia *.
sin(x)	sin(x)	
cos(x)	cos(x)	
tg(x)	tg(x)	
e ^x	e^x	
a ^x	a^x	
x ^x	x^x	
ln(x)	ln(x)	
$\log_a(x)$	loga(x)	

Tabela 5 Schemat wpisywania wyrażeń porzez CLI.

Technical Report

AGH University of Science and Technology

January 2023

Po uruchomieniu programu, użytkownik zostanie poproszony o podanie wyrażenia, następnie jeżeli wyrażenie zostało podane poprawnie, zostanie policzona pochodna i wyświetlona. Przykładowe wyrażenie wpisane w CLI, według składni podanej w tabelce 5:

"
$$3x^2 + \sin(x) + \cos(x^2 + \ln(x))$$
"

Kolejnym krokiem programu będzie zapytanie uzytkownika, czy chce podać nowe wyrażenie: Czy chcesz podac nowe wyrazenie? (t/n)

Jeżeli użytkownik wpisze n, program zamknie się po 1 sekundzie. W przypadku wpisania jakiekokolwiek innego znaku, będzie wyświetlona prośba o podanie nowego wyrażenia, a następnie będzie wykonana operacja opisana w pierszym akapicie tego punktu.

January 2023

9. Metodologia rozwoju i utrzymania system:

Głównym celem rozwoju i utrzymania systemu jest dokończenie programu, aby osiągnąć cel postawiony na samym początku projektu, czyli obliczanie pochodnej wyrażenia jednej zmiennej. Następnym krokiem może być rozszerzenie projektu o wyliczanie wartości pochodnej wyrażenia dla argumentu podanego przez użytkownika.

W kolejnych rozszerzeniach można stworzyć obliczanie pochodnych wielu zmiennych lub wykorzystać otrzymany już kod w stworzeniu systemu obliczania pochodnych cząstkowych.

January 2023

10. Bibliografia:

- 1. Cyganek B.: Introduction to programming with C++ for engineers, Wiley, 2021.
- 2. https://pl.wikisource.org/wiki/Tablica_pochodnych
- **3.** https://www.cs.csustan.edu/~john/Classes/Previous
 Semesters/CS3100 DataStructures/2003 04 Fall/Asg04/DiffAsg.html
- 4. https://www.geeksforgeeks.org/
- 5. https://cplusplus.com/
- 6. https://www.matemaks.pl/pochodne.html