

期末复习笔记

拓扑学摘要

作者: 白衣卿相

组织: 高树上的橙子呀

时间: January 28, 2020

版本: 1.0

目 录

In	Introduction		1	
1	拓扑	空间及其相关概念	2	
	1.1	拓扑、拓扑空间	2	
	1.2	拓扑的基与子基	3	
	1.3	度量空间	3	
	1.4	一些重要的拓扑概念	4	
2	连续映射,构造新空间			
	2.1	连续映射,同胚与拓扑性质	7	
	2.2	子空间	8	
	2.3	积空间	8	
	2.4	商空间	8	
3	可数性,可分性			
	3.1	第一可数性,第二可数性	9	
	3.2	可分空间, Lindelof 空间	9	
	3.3	T_0 , T_1 与 T_2 分离性	10	
4	紧致性,连通性 1			
	4.1	紧致性,*单点紧致化 1	11	
	4.2	紧致度量空间 1	11	
	4.3	* 几种紧致性与其间关系	12	
	4.4	连通性、连通分支	12	
	45	道路连通性 1	13	

关于《拓扑学摘要》的一点说明

Topology 是数学中一个重要的、基础的分支,起初它是几何学的一个分支,后发展为研究连续性现象的数学分支。拓扑学发展到近代形成了互相联系的几个分支,即一般拓扑学、代数拓扑学、微分拓扑学与几何拓扑学等多个分支。

本笔记是关于点集拓扑学的一些重要定义定理的摘要,其中还包含一些重要例题定 理的证明。

赶紧学习 拉开差距

第1章 拓扑空间及其相关概念

拓扑空间是对欧氏空间的一种推广,本章介绍拓扑空间的概念,给出与拓扑空间相 关的一些重要概念与性质。

1.1 拓扑、拓扑空间

定义 1.1. 拓扑空间

设 X 是非空集, 9 是集合 X 的一个子集族, 若满足:

- 1) $\emptyset, X \in \mathscr{T}$
- 2) 若 $G_1, G_2 \in \mathcal{T}$, 则 $G_1 \cap G_2 \in \mathcal{T}$
- 3)若 $\{G_{\lambda}|\lambda\in\Lambda\}\subset\mathcal{T}(\Lambda\neq\varnothing)$,则 $\bigcup_{\lambda\in\Lambda}G_{\lambda}\in\mathcal{T}$ 则称 \mathcal{T} 是集合X上的一个拓扑或拓扑结构, (X,\mathcal{T}) 称为拓扑空间,X称为拓扑空间, (X,\mathcal{T}) 的基础集, \mathcal{T} 的元素称为 (X,\mathcal{T}) 的个开集,X的元素、子集分别称为 (X,\mathcal{T}) 的点,点集。
- $\stackrel{ ext{$\widehat{\Sigma}$}}{ ext{$\widehat{\Sigma}$}}$ 集合 X 上的拓扑 (X,\mathcal{T}) 是集合 X 的一个子集族,对 (X,\mathcal{T}) 中有限个元素的交,任意个元素的并运算封闭。
 - 例 **1.1** 设 X 是非空集, $\mathcal{T} = \{\emptyset, X\}$,则 \mathcal{T} 是集合 X 上的拓扑,称为**平凡拓扑**,(X, \mathcal{T}) 称为**平凡拓扑空间**。
 - 例 1.2 设 X 是非空集, $\mathcal{I} = \mathcal{H}(X)$ (即 X 的所有子集组成的集族),则称 \mathcal{I} 是集合 X 上的离散拓扑, $(X,\mathcal{H}(X))$ 称为离散拓扑空间。

定义 1.2

设 \mathcal{I}_1 , \mathcal{I}_2 是集合 X 上的两个拓扑,若 \mathcal{I}_1 \subset \mathcal{I}_2 ,则称拓扑 \mathcal{I}_1 小于 (或粗于) \mathcal{I}_2 ,并称拓扑 \mathcal{I}_2 大于 (或细于) \mathcal{I}_1 。

🕏 注意 平凡拓扑是最粗拓扑,离散拓扑是最细拓扑。

为方便记忆,可以将"粗于"理解为"粗糙","细于"理解为"细腻"。

命题 1.1

已知 (X,\mathcal{T}) 是拓扑空间,D 是 X 的非空子集,记 $\mathcal{T}|D=\{G\cap D|G\in\mathcal{T}\}$,试证 $\mathcal{T}|D$ 是集合 D 上的拓扑。

证明 由于 (X, \mathcal{I}) 是拓扑空间, 显然有 $\emptyset, X \in \mathcal{I}$

故 Ø = Ø \cap D $\in \mathcal{T}|D$

结合 $D \in X$ 的非空子集可知 $D = X \cap D \in \mathcal{P}|D$

又对于 $G_1, G_2 \in \mathcal{T}$ 有 $G_1 \cap G_2 \in \mathcal{T}$, 从而 $(G_1 \cap G_2) \cap D \in \mathcal{T}|D$

则对 $G_1 \cap D, G_2 \cap D \in \mathcal{T}|D$ 有 $(G_1 \cap D) \cap (G_2 \cap D) = (G_1 \cap G_2) \cap D \in \mathcal{T}|D$

同理可证,对于 $\{G_{\lambda} \cap D | \lambda \in \Lambda\} \subset \mathcal{T} | D(\Lambda \neq \emptyset)$ 有 $\bigcup_{\lambda \in \Lambda} (G_{\lambda} \cap D) \in \mathcal{T} | D(\Lambda \neq \emptyset)$ 由此可知 \mathcal{I} \mathcal{I} \mathcal{I} 是集合 \mathcal{I} 上的拓扑,证毕!

1.2 拓扑的基与子基

定义 1.3

设 (X, \mathcal{I}) 是拓扑空间, $\mathcal{B} \subset \mathcal{I}$, 若 \mathcal{I} 的元素都可以表示为 \mathcal{B} 中某些元素的并, 即对于 $G \in \mathcal{T}$, $\exists \mathcal{B}_G \subset \mathcal{B}$ 使得 $G = \cup B$, 则称 \mathcal{B} 是 \mathcal{T} (或为 (X,\mathcal{T})) 的拓扑 (基), 第中的元素称为基开集。

定理 1.1

设 (X,\mathcal{T}) 为拓扑空间, $\mathcal{B} \subset \mathcal{T}$, 则 \mathcal{B} 是拓扑 \mathcal{T} 的基的充要条件是 $\forall G \in \mathcal{T}$, $\forall X \in G, \exists \mathcal{B}_x \in \mathcal{B}, \ \text{def} \ x \in \mathcal{B}_x \subset G.$

证明 ⇒必要性

 $\forall G \in \mathcal{I}$,由于 \mathcal{B} 是 \mathcal{I} 的基

故 $G = \bigcup_{\lambda \in \Lambda} \mathbf{B}_{\lambda}$,其中 $\{B_{\lambda} \mid \lambda \in \Lambda\} \subset B$

于是 $\forall x \in G$, $\exists \lambda \in \Lambda$ 满足 $x \in \mathcal{B}_x \subset G$

⇒充分性

要证 \mathcal{B} 是 \mathcal{T} 的基,只需证 $\forall G \in \mathcal{T}$, $\exists \mathcal{B}_G \subset \mathcal{B}$ 满足 $G = \bigcup_{B \in \mathcal{B}_G} \mathbf{B}$

事实上, $G = \bigcup_{x \in G} \{x\}$,又 $\exists B_x \subset \mathcal{B} \perp x \in \mathcal{B}_x \subset G$

于是 $G = \bigcup_{x \in G} \{x\} \subset \bigcup_{x \in G} B_x \subset \bigcup_{x \in G} G = G \land G = \bigcup_{x \in G} B_x$ 记 $\{B_x \mid x \in G\} = \mathcal{B}_G \subset \mathcal{B}$,则有 $G = \bigcup_{B \in \mathcal{B}_G} B$,证毕!

例 1.3 设 X 是非空集,记 $\mathcal{B} = \{\{x\} \mid x \in X\}$,则 \mathcal{B} 是集合 X 上离散拓扑的基。

1.3 度量空间

设 (X,ρ) 是度量空间,则集族 $\mathcal{B} = \{B(x,\varepsilon) | x \in X, \varepsilon > 0\}$ 是集合 X 上一个拓扑的 基,称这个拓扑为由集合 X 上的度量 ρ 诱导的拓扑,也称为度量拓扑,记作 \mathscr{T}_{o} 。

定义 1.4

设 (X,ρ) 是度量空间, $a \in X$, 对于给定的实数 $\epsilon > 0$, 称集合 $B_o(a,\varepsilon) =$ $\{x \in X \mid \rho(a,x) < \varepsilon\}$ 为以 a 为中心, ϵ 为半径的球形邻域或开球, 简称为点 a 的 球形邻域或开球。

例 1.4 设 X 是非空集,定义映射如下:

$$\rho_0: X \times X \to R, \ (x, y) \mapsto \begin{cases} 0, x = y \\ 1, x \neq y \end{cases}$$

易证 ρ_0 是 X 上的度量,称为 X 上的离散度量,称 (X, ρ_0) 为离散度量空间。

 $\stackrel{ extbf{?}}{ extbf{?}}$ 注意 在离散度量空间 (X, ρ_0) 中,对于 $a \in X$,a 的球形邻域为

$$B(a,\varepsilon) = \begin{cases} \{a\}, \varepsilon \leqslant 1 \\ X, \varepsilon > 1 \end{cases}$$

1.4 一些重要的拓扑概念

定义 1.5

设 (X,\mathcal{T}) 是拓扑空间, $a\in M\subset X$,若 $\exists G\in\mathcal{T}$ 满足 $a\in G\subset M$,则称集合M为点a的邻域,对于 $x\in X$,点x的所有领域构成的集族称为点x的邻域系,记作 \mathcal{N}_x 。

注意 一点的邻域不一定是开集,但开集一定是它每一点的领域,并称开集为它的点的开邻域。

定理 1.3

 (X,\mathcal{T}) 是拓扑空间,又设 $M\subset X$,则 M 是开集当且仅当 M 是它每一点的邻域,即 $G\in\mathcal{T}\Longleftrightarrow \forall x\in G,G\in\mathcal{N}_x$ 。

证明 ⇒必要性

设 M 是开集,则 $M \subset X$ 且 $M \in \mathcal{T}$

故 $\forall x \in M \subset X$, $\exists G = M \in \mathcal{T}$ 使得 $x \in G \subset M$

即M是它每一点的邻域

← 充分性

设 M ⊂ X 是它每一点的邻域

即 $\forall x \in M$, $\exists G_x \in \mathscr{T}$ 满足 $x \in G_x \subset M$

有 $M = \bigcup_{x \in M} \{x\} \subset \bigcup_{x \in M} G_x \in \mathcal{T}$

即 $M \in (X, \mathcal{I})$ 的开集,证毕!

定义 1.6

设 (X,\mathcal{T}) 是拓扑空间, $F \subset X$,若 $X - F \in \mathcal{T}$,则称 $F \to (X,\mathcal{T})$ 的闭集。

结论 设 (X,\mathcal{T}) 是拓扑空间,则 (X,\mathcal{T}) 的闭集有如下性质:

- 1) X,∅ 都是闭集
- 2) 有限个闭集的并是闭集
- 3) 任意个闭集的交是闭集

定义 1.7

设 (X,\mathcal{I}) 是拓扑空间, $A \subset X$

- 1) 设 $x \in X$, 若对于点 x 的任意邻域 M 有 $M \cap A \neq \emptyset$, 则称点 x 为集合 A 的附着点或闭包点。
- 2) 记 $\overline{A} = \{x \in X | x \in A$ 的附着点 $\}$,则称 \overline{A} 是集合A在 (X,\mathcal{T}) 中的闭包。

 $ilde{f v}$ 注意 $ar{A}$ 是包含 $ar{A}$ 的最小闭集, $ar{A}$ 是所有包含 $ar{A}$ 的闭包的交。

定理 1.4

设 (X,\mathcal{T}) 是拓扑空间, $A \subset X$,则 $A \neq (X,\mathcal{T})$ 的闭集当且仅当 $\overline{A} = A$

结论 设 (X,\mathcal{T}) 是拓扑空间, $A \times B$ 均为 X 的任意子集,则

- 1) $\overline{\varnothing} = \varnothing$, $\overline{X} = X$
- 2) $A \subset \overline{A}$
- 3) $\overline{A} = \overline{A}$
- 4) $\overline{A \cup B} = \overline{A} \cup \overline{B}$

定义 1.8

设 (X,\mathcal{T}) 是拓扑空间, $A \subset X$

- 1) 设 $x \in X$, 若对于点 x 的任意邻域 M 有 $M \cap (A \{X\}) \neq \emptyset$, 则称点 x 为集合 A 的聚点或极限点, 也称为凝聚点。
- 2) 记 $A^d = \{x \in X | x \in A$ 的聚点 \ , 则称 A^d 是集合 A 在 (X, \mathcal{T}) 中的导集。

结论 设 (X, \mathcal{T}) 是拓扑空间, $A \subset X$, 有

- 1) $\overline{A} = A \cup A^d$
- 2) $A \in (X, \mathcal{T})$ 的闭集当且仅当 $A^d \subset A$
- 3) $\overline{\overline{A}} = \overline{A}$
- 4) $\overline{A \cup B} = \overline{A} \cup \overline{B}$

定义 1.9

设 (X,\mathcal{T}) 是拓扑空间, $A \subset X$,则

- 1) 设 $x \in X$, 若 A 是点 x 的邻域,则称点 x 为集合 A 的内点。

定理 1.5

设 (X,\mathcal{T}) 是拓扑空间, $A \subset X$,则

- 1) $A^{\circ} = \bigcup \{G \mid G \subset A, G \in \mathcal{T}\}$, 即 A 的内部 A° 是包含在 A 中的最大开集。
- 2) $A \in (X, \mathcal{T})$ 的开集当且仅当 $A = A^{\circ}$ 。

结论 设 (X, \mathcal{T}) 是拓扑空间, $A \setminus B$ 均为 X 的任意子集,则

- 1) $\varnothing^{\circ} = \varnothing$, $X^{\circ} = X$
- 2) $A^{\circ} \subset A$
- $(A^{\circ})^{\circ} = A^{\circ}$
- 4) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$

定义 1.10

设 (X,\mathcal{I}) 是拓扑空间, $A \subset X$,

- 1) 设 $x \in X$, 若对于点 x 的任意邻域 M 有 $M \cap A \neq \emptyset$, $M \cap A^c \neq \emptyset$, 则称点 x 是 集合 A 的边界点。
- 2) 记 $\partial A = \{x \in X \mid x \in A \text{ bid } x \in A \text{ bid$

结论 设 (X,\mathcal{T}) 是拓扑空间, $A \subset X$, 则

1)
$$\partial A = \overline{A} \cap \overline{A^c} = \partial (A^c) = \overline{A} - A^\circ$$

2)
$$\partial A \cap A^{\circ} = \emptyset$$

3)
$$\overline{A} = \partial A \cup A^{\circ} = \partial A \cup A$$

4)
$$A^{\circ} = A - \partial A = \overline{A} - \partial A$$

5)
$$X = A^{\circ} \cup \partial A \cup (A^{c})^{\circ}$$

定义 1.11

设 $<\xi_i>_{i\in N^+}$ 是拓扑空间 X 中的一个序列, $a\in X$,若对于点 a 的任意邻域 M, $\exists i_0\in N^+$,使得当 $i\in N^+$, $i>i_0$ 时,有 $\xi_i\in M$,则称序列 $<\xi_i>_{i\in N^+}$ 收敛于 a,并 称点 a 为序列 $<\xi_i>_{i\in N^+}$ 的极限。

至少有一个极限的序列、称为收敛序列。

注意 平凡空间中的任意序列都收敛,并且收敛于空间中的任一点。

拓扑空间中的收敛序列极限一般不唯一。

△ 练习 1.1 试证度量空间中的收敛序列极限必唯一。

证明 (反证) 设 $< \xi_i >_{i \in N^+}$ 是度量空间 (X, ρ) 中的收敛序列

有 $\lim_{i \to +\infty} \xi_i = a$, $\lim_{i \to +\infty} \xi_i = b$ 其中 $a \neq b$

取 $\varepsilon = \frac{1}{2}min\rho(x,y)$,其中 $x \neq y$ 且 $x,y \in X$

则 $\exists N_1 \in N^+$, $\forall i > N_1$ 有 $< \xi_i > \in B(a, \varepsilon)$, $\exists N_2 \in N^+$, $\forall i > N_2$ 有 $< \xi_i > \in B(b, \varepsilon)$

取 $N = max \{N_1, N_2\}$

于是 $\exists N \in N^+$, $\forall i > N$ 有 $< \xi_i > \in B(a, \varepsilon) \cap B(b, \varepsilon)$

而 $B(a,\varepsilon) \cap B(b,\varepsilon) = \emptyset$ 矛盾!

从而假设不成立,证毕!

第2章 连续映射,构造新空间

2.1 连续映射, 同胚与拓扑性质

定义 2.1

设 (X,\mathcal{T}) , (Y,\mathcal{U}) 是两个拓扑空间, $f:X\longrightarrow Y$, 当映射 $f:X\longrightarrow Y$ 联系到拓扑空间时也记作

$$f:(X,\mathcal{T})\longrightarrow (Y,\mathcal{U})$$

称 f 为从 (X, \mathcal{T}) 到 (Y, \mathcal{U}) 的映射。

设 $a \in X$,若对于点 f(a) 在 (Y, \mathcal{U}) 中的任意邻域 W,存在点 a 在 (X, \mathcal{T}) 中的邻域 M,使得 $f(M) \subset W$,则称 f 在点 a 连续。若映射 f 在 X 的每一点都连续,则称 f 为从设 (X, \mathcal{T}) 到 (Y, \mathcal{W}) 的连续映射,简称映射。

定理 2.1

设映射 $f: X \longrightarrow Y$, $a \in X$, 则 f 在点 a 连续的充分必要条件是对于点 f(a) 在 (Y, \mathcal{U}) 中的任意邻域 W, $f^{-1}(W)$ 是点 a 在 (X, \mathcal{T}) 中的邻域。

定理 2.2

设 (X,\mathcal{T}) , (Y,\mathcal{U}) 是两个拓扑空间, $f:X \longrightarrow Y$,则下列定理等价

- 1) $f:(X,\mathcal{T}) \longrightarrow (Y,\mathcal{U})$ 是连续映射
- 2) 对于任意 $k \in \mathcal{U}$, $f^{-1}(K) \in \mathcal{T}$
- 3) 对于 (Y, \mathcal{U}) 的任意闭集 $H, f^{-1}(H)$ 是 (X, \mathcal{T}) 的闭集
- 4) 对于任意 $B \in \mathcal{B}$, $f^{-1}(B) \in \mathcal{T}$, 其中 \mathcal{B} 是拓扑 \mathcal{U} 的基
- 5) 对于任意 $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$
- 6) 对于任意 $B \subset Y$, $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$

结论 1) 常值映射是连续映射

- 2) 从任意空间到平凡空间的映射是连续映射
- 3) 从离散空间到任意空间的映射是连续映射
- 4) 任意拓扑空间上的恒同映射是连续映射

定义 2.2

设映射 $f:(X,\mathcal{T})\longrightarrow (Y,\mathcal{U})$ 是一一映射,且 f, f^{-1} 均为连续映射,则称 f 为同胚映射。若存在同胚映射 $f:(X,\mathcal{T})\longrightarrow (Y,\mathcal{U})$,则称 (X,\mathcal{T}) 与 (Y,\mathcal{U}) 同胚,记作 $(X,\mathcal{T})\cong (Y,\mathcal{U})$ 。

结论 设X, Y, Z都是拓扑空间,则

- 1) $X \cong X$
- 2) 若 $X \cong Y$ 则 $Y \cong X$
- 3) 若 $X \cong Y, Y \cong Z$ 则 $X \cong Z$
- 4) 恒同映射 $1_X: X \longrightarrow X$ 是同胚映射
- 5) 若 $f: X \longrightarrow Y$ 是同胚映射,则 $f^{-1}: Y \longrightarrow X$ 也是同胚映射
- 6) 若 $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$ 都是同胚映射, 则 $g \circ f: X \longrightarrow Z$ 也是同胚映射

2.2 子空间

定义 2.3

设 (X,\mathcal{T}) 是拓扑空间,D 是 X 的非空子集,记 $\mathcal{T}|D = \{G \cap D | G \in \mathcal{T}\}$,则 $\mathcal{T}|D$ 是 D 上的拓扑,称为 \mathcal{T} 在 D 上的子空间拓扑或相对拓扑,拓扑空间 $(D,\mathcal{T}|D)$ 称为 拓扑空间 (X,\mathcal{T}) 的子空间,子空间 $(D,\mathcal{T}|D)$ 的开集(或闭集)称为相对开集(或闭集)。

定理 2.3

设 (X,\mathcal{T}) 是拓扑空间, $(Y,\mathcal{T}|Y)$ 是其子空间, 则

- 1) 若 $\{B_{\lambda}|\lambda\in\Lambda\}$ 是拓扑 \mathcal{T} 的基(或子基),则 $\{Y\cap B_{\lambda}|\lambda\in\Lambda\}$ 是拓扑 $\mathcal{T}|Y$ 的基(或子基)。
- 2) 设 $H \subset Y$, 则 H 是子空间 $(Y, \mathcal{D}|Y)$ 的闭集当且仅当存在 (X, \mathcal{D}) 的闭集 F 使得 $H = F \cap Y$

证明 由闭集的定义可知,H 是 $(Y, \mathcal{D}|Y)$ 的闭集当且仅当 Y-H 是 $(Y, \mathcal{D}|Y)$ 的开集 而这等价于 $\exists G \in \mathcal{D}$ 满足 $Y-H=Y\cap G$

即有 $H = Y - (Y \cap G) = Y \cap (Y \cap G)^c = Y \cap (Y^c \cup G^c) = Y \cap G^c = Y \cap (X - G)$ 于是、取 F = X - G 即有命题成立!

3) 设 $a \in M \subset Y$,则 M 是点 a 在子空间 $(Y, \mathcal{D}|Y)$ 中的邻域当且仅当存在点 a 在 (X, \mathcal{D}) 中的邻域 W,使得 $M = W \cap Y$

2.3 积空间

2.4 商空间

第3章 可数性,可分性

3.1 第一可数性, 第二可数性

定义 3.1

设 (X,\mathcal{T}) 是拓扑空间, $x \in X$, N_x 是点 x 的邻域系, $\mathcal{B}_x \subset N_x$ 。若 $\forall M \in N_x$, $\exists B \in \mathcal{B}_x$ 满足 $B \subset M$, 则称 \mathcal{B}_x 是点 x 的邻域基或局部基。

若对于任意 $x \in X$,存在点x的一个可数邻域基,即存在点x的可数个邻域组成的邻域基,则称 (X,\mathcal{D}) 具有第一可数性,也称 (X,\mathcal{D}) 是第一可数空间。

定义 3.2

设拓扑空间 (X,\mathcal{T}) 具有一个可数基,即存在一个由可数个开集组成的基,则称 (X,\mathcal{T}) 具有第二可数性,也称 (X,\mathcal{T}) 是第二可数空间。

- 平凡拓扑空间、离散拓扑空间、度量空间都是第一可数空间。
- 拓扑空间的第一可数性、第二可数性都是拓扑性质。

定理 3.1

第二可数空间是第一可数空间。

证明 设 (X, \mathcal{I}) 是第二可数空间,则 \mathcal{I} 有一个可数基 \mathcal{I}

 $\forall x \in X$, 记 $\mathcal{B}_x = \{B \subset \mathcal{B} | x \in B\}$, 易知 \mathcal{B}_x 是点 x 的邻域基

又 38 是可数族

故 38 的子集 38, 亦为可数族

从而 \mathcal{D}_x 是点 x 的可数邻域基

于是 (X, \mathcal{I}) 是第一可数空间,即第二可数空间是第一可数空间。

例题 3.1 设 X 是第一可数空间且 X 是可数集,证明: X 是第二可数空间。

3.2 可分空间, Lindelof 空间

定义 3.3

设 (X,\mathcal{T}) 是拓扑空间, $D \subset X$,若 X 的每一个点都是 D 的附着点,即 $\overline{D} = X$,则 称 D 是拓扑空间 X 的稠密子集。

若拓扑空间 X 有一个可数稠密子集,则称 X 具有可分性,也称 X 是可分空间。

- 实数空间、第二可数空间都是可分空间。
- 基础集为不可数集的离散空间不是可分空间。
- 可分的度量空间是第二可数空间。

• n 维欧式空间是可分空间,从而是第二可数空间也是第一可数空间。

定义 3.4

设 (X,\mathcal{S}) 是拓扑空间,若集合X的每一个开覆盖都有一个可数子覆盖,则称 (X,\mathcal{S}) 为 Lindelof 空间,也称 (X,\mathcal{S}) 具有 Lindelof 性质。

- 第二可数空间是 Lindel of 空间。
- Lindelof 空间是第二可数空间。

结论 拓扑空间的 Lindelof 性质是拓扑性质。

3.3 *T*₀, *T*₁ 与 *T*₂ 分离性

定义 3.5

设 X 是拓扑空间,

- 若对于任意 $x,y \in X$, $x \neq y$, 存在点 x 的邻域 M_x 使得 $y \notin M_x$, 或存在点 y 的邻域 M_y 使得 $x \notin M_y$, 则称拓扑空间 X 满足 T_0 分离公理。
- 若对于任意 $x,y \in X$, $x \neq y$, 存在点 x 的邻域 M_x 与点 y 的邻域 M_y 使得 $y \notin M_x$ 且 $x \notin M_y$, 则称拓扑空间 X 满足 T_1 分离公理。
- 若对于任意 $x,y \in X$, $x \neq y$, 存在点 x 的邻域 M_x 与点 y 的邻域 M_y 使得 $M_x \cap M_y = \emptyset$, 则称拓扑空间 X 满足 T_2 分离公理。

注意 满足 T_i 分离公理的拓扑空间称为 T_i 空间,也称拓扑空间具有 T_i 分离性,其中 $i=0,1,2,\ T_2$ 空间又被称为 Hausdorff 空间。

 T_2 空间是 T_1 空间, T_1 空间是 T_0 空间。

例题 3.2 度量空间是 T_2 空间, 特别地, n 维欧氏空间是 T_2 空间。

证明 设 (X, ρ) 是度量空间

对于 $x, y \in X$, $x \neq y$, 记 $\rho(x, y) = \varepsilon > 0$ 则 $B(x, \frac{\varepsilon}{2}) \cap B(y, \frac{\varepsilon}{2}) = \emptyset$ 故 (X, ρ) 是 T_2 空间

定理 3.2

设 X 是拓扑空间,则 X 是 T_0 空间当且仅当对任意 $x,y \in X$, $x \neq y$ 有 $\overline{\{x\}} \neq \overline{\{y\}}$

- 拓扑空间是 T₁ 空间的充分必要条件是它的单点集是闭集。
- 拓扑空间的 T_i 分离性 (i = 0,1,2) 是遗传性质、拓扑性质、可积性质。

第4章 紧致性,连通性

4.1 紧致性, *单点紧致化

定义 4.1

设X 是拓扑空间,若X 的任意开覆盖都有有限子覆盖,则称X 为紧致空间。又设 $A \subset X$,若A 作为拓扑空间X 的子空间是紧致空间,则称A 为X 的紧致子集。

定理 4.1

设 (X,\mathcal{T}) 是拓扑空间, $\emptyset \neq A \subset X$, 则 $A \neq (X,\mathcal{T})$ 的紧致子集当且仅当 A 在 (X,\mathcal{T}) 中的任意开覆盖都有有限子覆盖。

- 实数空间不是紧致空间。
- 实数空间的子集 [0,1] 是紧致空间。
- T_0 空间的紧致子集是闭集。

定理 4.2

设 X, Y 都是拓扑空间, $f: X \longrightarrow Y$ 是连续映射。若 A 是拓扑空间 X 的紧致子集,则 f(A) 是拓扑空间 Y 的紧致子集。

命题 4.1

紧致空间的(非空)闭集是紧致子集。

证明 设X是紧致空间,F是X的非空闭集

则对于 F 在拓扑空间 X 中的任意开覆盖 Ω , $\Omega \cup \{X - F\}$ 是 X 的开覆盖 又 X 是紧致空间

故有有限子覆盖,设为 $\{G_i|i=1,2,m\}$ ∪ $\{X-F\}$

从而 $\{G_i|i=1,2,m\}$ 是 F 在拓扑空间 X 中任意开覆盖 Ω 的有限子覆盖

于是F是拓扑空间X的紧致子集

4.2 紧致度量空间

定义 4.2

设 (X,ρ) 是度量空间, $A \subset X$, 若存在正数 l, 使得 $\forall x,y \in A$, 有 $\rho(x,y) < l$, 则称 $A \to (X,\rho)$ 的有界集。特别地, 若 X 是有界的, 则称度量空间 (X,ρ) 为有界的。

- 度量空间的紧致子集是有界闭集。
- n 维欧氏空间的非空子集是紧致子集当且仅当它是有界闭集。

4.3 * 几种紧致性与其间关系

4.4 连通性、连通分支

定义 4.3

设(X, 9)是拓扑空间

- 若存在两个非空开集 G 和 K 使得 $G \cup K = X$, $G \cap K = \emptyset$, 则称 (X, \mathcal{T}) 为非连通空间, 否则称为联通空间。
- 设 $A \subset X$, 若 $(A, \mathcal{D}|A)$ 是连通空间,则称 $A 为(X, \mathcal{D})$ 的连通子集。

定理 4.3

设X是拓扑空间,则X是连通空间当且仅当X不能表示为两个非空隔离子集的并。

定理 4.4

设 X 是拓扑空间,则下列条件等价

- · X 是连通空间。
- X 中不存在既开又闭的非空真子集,或者说 X 中恰好有两个开闭集 X 与 \varnothing 。
- 若 $f: X \longrightarrow S^{\circ}$ 是连续映射,则 f 为常值映射。其中 $S^{\circ} = \{-1,1\}$ 为实数空间 R 的子空间,称为 0 维球面,且为离散空间。

定理 4.5

设 $f:(X,\mathcal{T})\longrightarrow (Y,\mathcal{U})$ 是连续映射, $A\subset X$, 若 A 是 (X,\mathcal{T}) 的连通子集,则 f(A) 是 (Y,\mathcal{U}) 的连通子集。

홫 注意

- 1) 平凡空间是连通空间。
- 2) Sierpinski 空间是连通空间。
- 3) 至少包含两个点的离散拓扑空间是非连通空间。
- 4) 拓扑空间的连通性是拓扑性质、可积性质, 不是遗传性质。
- 5) n 维欧氏空间是连通空间。

定理 4.6

设 X 是拓扑空间,则

- 2) 拓扑空间 X 的任意两个不同的连通分支不相交。
- 3) 拓扑空间 X 是若干个连通分支的并。

 \sim

定义 4.4

设 X 为拓扑空间, $C \subset X$, 若 C 满足:

- 1) C 是拓扑空间 X 的连通子集
- 2) C 不是拓扑空间 X 的任意连通子集的真子集
- 则称C为拓扑空间X的一个连通分支或极大连通子集。

定理 4.7

拓扑空间的每个连通分支都是闭集。

က

4.5 道路连通性

定义 4.5

设 X 为拓扑空间,I = [0,1] 为实数 R 的子空间,若 $\omega: I \longrightarrow X$ 是连续映射,则称 ω 为 X 中的一条道路或路径, ω (0) 与 ω (1) 分别称为道路 ω 的起点与终点,也称 为连接 ω (0) 与 ω (0) 的一条道路,或称为从 ω (0) 到 ω (1) 的一条道路。

定义 4.6

设X为拓扑空间,若 $\forall x,y \in X$,存在X中从x到y的一条道路,则称X为道路连通空间。又设 $A \subset X$,若A作为拓扑空间的子空间是道路连通空间,则称A为X的道路连通子集。

- 平凡空间是道路连通空间。
- n 维欧氏空间是道路连通空间。

证明 对于n维欧氏空间,任取 $x,y \in R^n$ 定义映射 $\omega: I \longrightarrow X$,对于 $t \in I$ 有 $\omega(t) = (1-t)x + ty$ 则 ω 为连续映射,即 ω 是 R^n 中连接x 与y 的一条道路 故 R^n 是道路连通空间,证毕!

- 道路连通空间是连通空间。
- 拓扑空间的道路连通性是拓扑性质、可积性质。

定理 4.8

设 $f: X \longrightarrow Y$ 是连续映射,又设 A 是拓扑空间 X 的道路连通子集,则 f(A) 是拓扑空间 Y 的道路连通子集。

 \heartsuit