Prof. Bürgisser, Dr. Ramponi

Exercise sheet 6

In the following exercises, whenever it makes sense, we encourage using a computer algebra system, such as Macaulay2, to help with the computations.

Exercise 1

Let k be a field and $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$. Show that

$$J = \langle y_1 - f_1, \dots, y_r - f_r \rangle$$

is a prime ideal of the polynomial ring $k[x_1, \ldots, x_n, y_1, \ldots, y_r]$.

Exercise 2

Let I_1, \ldots, I_N be ideals in $k[x_1, \ldots, x_n]$. Consider the ideal

$$J = y_1 I_1 + \dots + y_N I_N + \langle 1 - y_1 - \dots - y_N \rangle$$

in the polynomial ring $k[x_1, \ldots, x_n, y_1, \ldots, y_N]$. Show the following identity

$$I_1 \cap \ldots \cap I_N = J \cap k[x_1, \ldots, x_N].$$

Exercise 3

Given the polynomials $f_1 = x^2 + y^2$, $f_2 = x^3y - xy^3$, $f_3 = x^2y^2$ in $\mathbb{Q}[x,y]$ and

$$g = x^8 + 2x^6y^2 - x^5y^3 + 2x^4y^4 + x^3y^5 + 2x^2y^6 + y^8$$

find $h \in \mathbb{Q}[u, v, w]$ such that $g = h(f_1, f_2, f_3)$.

Exercise 4

In $\mathbb{Q}[x,y,z]$ with Grlex ordering, consider the ideal

$$I = \langle xy - y^2, x^3 - z^2 \rangle.$$

For each of the following polynomials, determine if $f \in I$ and compute the division with respect to a Groebner basis $\{g_i\}$ of I, i.e. determine explicitly the expression

$$f = \sum_{i} q_i g_i + r.$$

- $f = -4x^2y^2z^2 + y^6 + 3z^5$
- $f = x^4y 2xy^2z + 3z^3 x$
- $f = 2y^8 4y^5z^2 + x^6 + 2y^2z^4 2x^3z^2 + z^4$

Exercise 5

In the affine space \mathbb{A}^3 over \mathbb{F}_{101} , consider the surface S defined by

$$S = \{(x, y, z) \in \mathbb{A}^3 : x^3 + y^3 + z^3 - 1 = 0\}$$

and the $curve\ C$ defined by the equations

$$xy^2 = 1$$

$$y^2 - x^4 = 0$$

$$x^2 - y^3 = 0.$$

Describe the intersection $S \cap C$.

Exercise 6

Find the solutions of the following system of equations in $\mathbb{C}[x,y,z]$

$$x^2 + y^2 + z^2 = 1$$

$$x^2 + z^2 = y$$

x = z.

Exercise 7

Over $k = \mathbb{F}_{101}$, find the local optima of the function $f = x^3 + 2xyz - z^2$ subject to the constraint $x^2 + y^2 + z^2 = 1$.

(Hint: use the method of Lagrange multipliers and solve algebraically)

Exercise 8

In the affine space \mathbb{A}^3 over \mathbb{C} , consider the curve C described parametrically by

$$x = t^4$$
$$y = t^3$$
$$z = t^2$$

where $t \in \mathbb{C}$. Determine $f, g \in \mathbb{C}[x, y, z]$ such that C = V(f, g). Can you find the ideal defined by C as a variety, i.e. the ideal $I(C) = \{f \in \mathbb{C}[x, y, z] : f(x, y, z) = 0 \text{ for all } (x, y, z) \in C\}$?

Exercise 9

In \mathbb{R}^3 , consider two lines ℓ, ℓ' given parametrically as $\ell = \{p_t : t \in \mathbb{R}\}$ and $\ell' = \{p_t' : t \in \mathbb{R}\}$ where $p_t = (t, 0, 1)$ and $p_t' = (0, 1, t)$. Consider the surface S formed by taking the *union* of all lines joining pairs of points on the two lines,

$$S = \bigcup_{t \in \mathbb{R}} L_t$$

where $L_t = \langle p_t, p_t' \rangle$ denotes the line joining p_t and p_t' .

1. Show that S can be described parametrically, as

$$x = ut$$

$$y = 1 - u$$

$$z = t + u(1 - t).$$

where $t, u \in \mathbb{R}$.

- 2. Find a polynomial $f \in \mathbb{R}[x, y, z]$ such that $S \subset V(f)$.
- 3. Can you show S = V(f)?

Exercise 10

Suppose we have numbers a, b, c which satisfy

$$a + b + c = 3$$

 $a^{2} + b^{2} + c^{2} = 5$
 $a^{3} + b^{3} + c^{3} = 7$.

Prove that $a^4 + b^4 + c^4 = 9$ and $a^5 + b^5 + c^5 \neq 11$. Can you compute $a^5 + b^5 + c^5$?