Introducción a indices

Clase 04

IIC 3413

Prof. Cristian Riveros

Métodos de acceso

Métodos de acceso

Procesador de consultas

considera las relaciones como "colección de records".

Administrador de almacenamiento provee al procesador de consultas con métodos para acceder estas colecciones de records.

Estos métodos son conocidos como métodos de acceso.

Evaluación de consulta y métodos de acceso

 $\begin{array}{lll} Q &=& SELECT & pName, \ mStadium, \ goals \\ &FROM & Players \ AS \ P, \ Matches \ AS \ M, \ Players_Matches \ AS \ PM \\ &WHERE & P.pId = PM.pId \ AND \ PM.mId = M.mId \ AND \\ &P.pYear \geq 1985 \end{array}$

Plan físico para evaluar Q:

Interfaz de acceso a relaciones

1. Create o Destroy

Crear o destruir el acceso.

2. Insert(record)

Insertar un nuevo record a la relación.

3. Delete(RID)

Eliminar un record dado su Record ID (RID).

4. **Get**(searchkey)

- Buscar un record dado una "llave de busquedad".
- El criterio de busqueda puede ser diverso (por valor, por rango, etc).
- En general, Get puede estar "sobrecargado".

5. Scan

Iterar sobre todos los records.

Ejemplo: Heapfile

- 1. Create o Destroy: crea un heap-file de la relación.
- 2. Insert(record): inserta un record al final del archivo.
- 3. Delete(RID): busca la página del record y la elimina.
- 4. **Get**(searchkey)
 - Busca en todas las páginas los records que satisface el searchkey.
- 5. Scan
 - Iterar sobre todas las páginas y sobre todos los records.

Ejemplo: Sortedfile

- 1. Create o Destroy: crea un sortedfile de la relación.
- 2. Insert(record): inserta un record en la posición que le corresponde.
- 3. Delete(RID): busca la página del record y la elimina.
- 4. **Get**(searchkey)
 - Busqueda binaria del record que satisface el searchkey.
- 5. Scan.
 - Iterar sobre todos las páginas y sobre todos los records.

¿qué es un índice?

Definición

Método de acceso que optimiza el acceso a los datos para una consulta o conjunto de consultas en particular.

Ejemplos

- Indice de un libro.
- Orden alfabético en un diccionario.
- Número de páginas de un libro.
- Secciones de un diario.

Algunos hechos importantes sobre un índice

- $1.\ \mathsf{Un}\ \mathsf{indice}\ \mathsf{optimiza}\ \mathsf{un}\ \mathsf{subconjunto}\ \mathsf{de}\ \mathsf{consultas}.$
- 2. Un índice optimiza ciertas consultas pero puede hacer otras más costosas.
- Es posible sacrificar espacio por tiempo, pero idealmente un índice debe ser mantenido en RAM.

¿qué consultas nos gustaría optimizar con índices?

Busqueda por valor (value query).

SELECT '

FROM table

WHERE attribute = 'value'

Busqueda por rango (range query).

SELECT

FROM table

WHERE attribute ≥ 'value'

Busqueda por match (pattern matching).

SELECT

FROM table

WHERE attribute LIKE 'patrón'

¿qué otra consulta nos gustaría optimizar?

Evaluación de la eficiencia de índices

Evaluación con respecto a:

- Tipo de acceso.
- Tiempo de acceso.
- Tiempo de inserción.
- Tiempo de eliminación.
- Sobrecarga de espacio.

¿qué parametro es el más importante?

Definición

```
Search key = parámetros de busqueda.
```

Index entry = valor o puntero

de la estructura interna de un índice

Data entry = record mismo, o dirección donde se almacena un record.

Para un search key k, un data entry puede ser:

- 1. Un record. (que satisface el search key k)
- 2. (k, RID).
- 3. (k, lista de RID).

¿cuáles son los search keys, index y data entries de este índice?

Ejemplos

INDEX

ALCOHOL CAN BE A GAS!

U.S. corn. 27, 27f, 31-32, 31f, 39-40 Agrocybe aegerita (mushroom), 314f Agral 18 Agrol Company, 17, 18 air conditioners cogenerators as, 445 heat pumps compared to, 218, 219 household codenerated, 445 ice block 447 air pollution, 34-35, 56 catalytic converters and, 379 coal and, 57-58 exhaust, 425 neat ethanol reducing, 350 small engine 421 stoichiometric ratios and, 379-380 two-stroke engines and, 425 wood smoke, 224, 339

forms of 437 generator using, 444 household power use of, 446-448 industrial-grade, 206 leakage of, 268 lighting with, 447 liquid, 210 off-road uses for, 196-197, 339-341, 444. 462 axygen content of, 347 phase separation of, 225-226 prálnie v. com. 42 proof requirement and, 196-197 reforming, 431 sources for, 119-180 storage of, 232, 268-274, 2687, 271f sugar, 136 vaporized, 66, 331f, 332-333, 418

¿cuáles son los search keys, index y data entries de este índice?

Ejemplos

Relación Players(ID, name, number), ordenado por ID:

232	Claudio Bravo	1
335	Gary Medel	17
481	Eugenio Mena	2
520	Mauricio Isla	4
555	Eduardo Vargas	11
630	Alexis Sanchez	7

¿cuáles son los search keys, index y data entries de este índice?

Definición

Clustered index =

 índice para el cual el orden de sus data entries es el mismo orden de los records en disco.

Unclustered index =

índice que NO es clustered.

Ejemplos

Índice sobre la relación Players(ID, name, number):

Suponiendo que la relación esta almacenada por orden de ID, ¿es este índice clustered o unclustered?

Ejemplos

Índice sobre la relación Players(ID, name, number):

¿es este índice **clustered** o **unclustered**? ¿qué tipo de **data entry** tiene este índice?

- En general, por cada relación
 es posible mantener un solo clustered index. (¿por que?)
- Unclustered index tiene data entries del tipo 2 o 3.
- Unclustered index son ineficientes cuando el output es numeroso.
 - · range queries.
- Usualmente, clustered y unclustered indexes son conocidos como:

```
{\it clustered index} \hspace{0.2in} = \hspace{0.2in} {\it indice primario}.
```

unclustered index = índice secundario.

Índices densos o dispersos

Definición

Los índices pueden ser:

Denso (dense) = un index entry por cada record de la relación.

Disperso (sparse) = no todos los records están mencionadas en los index entries.

Índices densos o dispersos

¿es este índice denso o disperso?

Índices densos o dispersos

Ejemplos

Índice sobre la relación Players(ID, name, number):

Bravo	-	<u></u>	232	Claudio Bravo	1
Isla			520	Mauricio Isla	4
Medel	-		335	Gary Medel	17
Mena	-		481	Eugenio Mena	2
Sanchez	-		630	Alexis Sanchez	7
Vargas	-	<u></u>	555	Eduardo Vargas	11

¿que ventaja puede tener este índice?

Resumen de la clasificación de indices

Clustered vs unclustered

- Clustered: el orden de sus data entries es el mismo que los records.
- Unclustered: data entries no mantienen el mismo orden de los datos.

Denso vs disperso

- Denso: un index entry por cada record.
- Disperso: no todos los records están mencionadas en los index entries.

Dos tipos de índices básicos

- Índices basados en árboles: uso del orden de los valores para organizar los records.
 - ISAM.
 - B+ trees.
- 2. Índices basados en hashing: uso de una distribución uniforme de los valores sobre distintos grupos.
 - Extendable Hashing.