PROJECT PART3:

QN1:

Considering Y as non-ordinal:

The new variable Y is added to the data set:

```
FAA$Y <- ifelse(FAA$distance < 1000,1,ifelse((FAA$distance>=1000 & FAA$distance<2500),2,3))
```

The distance variable is removed from the data set:

```
FAA <- subset( FAA, select = -distance )
```

As was seen the previous two projects the variables speed_air and speed_ground are highly correlated. Hence, the variable speed_air is removed from the model:

```
FAA <- subset(FAA, select = -speed air)
```

The NA values are omited and a multinomial model is fitted using the Y variable as the predicted variable and the rest as predictor variables:

```
FAA <- na.omit(FAA)
modl <- multinom(Y~.,FAA)
```

The step wise model selection algorithm based on AIC is used for the model Selection:

modl reduced <- step(modl)

	Df	AIC
<none></none>	10	420.6864
- pitch	8	421.5598
- height	8	544.6126
- aircraft	8	599.5388
- speed ground	8	1435.0477

It can be seen from the step wise model that the variables pitch, height, aircraft and speed_ground are useful in characterizing the multinomial Y variable.

The model is:

modl3 <- multinom(Y ~ pitch+height+aircraft+speed_ground, FAA_new) summary(modl3)

Coefficients:

(Intercept)	aircraftboeing	speed_ground	height	pitch
2 -21.67806	4.065194	0.2431976	0.1557486	-0.3987472
3 -135.02763	8.988756	1.2159693	0.3977880	0.9396833

Std. Errors:

(Intercept)	aircraftboeing	speed_ground	height	pitch
2 2.09113433	0.4340363	0.02026387.	0.01856171	0.2793028
3 0.03719281	0.8697689	0.02874032	0.04079031	0.7484298

Residual Deviance: 400.6864

AIC: 420.6864

A new data frame was created without the output variable:

FAA test <- subset(FAA new, select = -Y)

A misclassification table is created with the predicted values and the actual values:

xtabs(~predict(modl reduced) + FAA new\$Y)

Table 1: The misclassification table

The total misclassification rate is:

$$(31+38+6+5)/(207+31+38+400+6+5+94) = 0.102$$

Log-odds	Aircraft =	speed_ground	Height	Pitch
	boeing			
Log(Y=2/Y=1)	58.26	1.27	1.17	0.67
Log(Y=3/Y=1)	8006	3.37	1.49	2.56

Table 2: The log odds ratio

ggplot(FAA_new, aes(x=aircraft, fill=Y)) + geom_bar(position = 'dodge')

The plot shows the predicted Y value as a function of aircraft. The boeing aircraft has more proportion of Y=2,3 values compared to airbus.

From the above plot it is clear that as the speed_ground increases the proportion of Y=2,3 increases compared to Y=1.

ggplot(FAA_test, aes(x=height, y=Y1)) + geom_point()

There seems to be very little variation in Y values as the height changes.

ggplot(FAA_test, aes(x=pitch, y=Y1)) + geom_point()

The pitch does not seem to affect the landing distance much.

Conclusion:

- 1. The main variables that seem to affect the multinominal variable Y are:
- Aircraft
- Speed Ground
- Height
- Pitch
- 2. The aircraft and speed_ground have a greater influence on the multi-nominal variable Y than height and pitch.
- 3. The aircraft boeing has a higher proportion of the landing distance in the Y=2,3 category compared to airbus.
- 4. Speed ground seems to directly influence the landing distance. As the speed ground increases the proportional of the Y=2,3 landing increases.
- 5. The height and pitch seem to have marginal influence on the landing distance.
- 6. The log odds ratio is presented in the Table 2. It clearly follows the pattern which we predicted by the plots.

Considering Y as ordinal:

The following model was built using the same data set:

 $model_ordinal < -vglm(Y \sim ., family = cumulative(parallel = TRUE), FAA_new2)$

Pearson residuals:

	Min	1Q	Median	3Q	Max
logitlink(P[Y<=1])	-53.129	-0.155085	-0.01871	0.09456	3.685
logitlink(P[Y<=2])	-5.282	0.001495	0.01161	0.07565	1.510

Coefficients:

	Estimate	Std.Error	z value	$\Pr(> z)$
(Intercept):1	19.669758	1.979850	9.935	<2e-16 ***
(Intercept):2	29.462780	2.436218	12.094	<2e-16 ***
aircraft	3.597667	0.345562	10.411	<2e-16 ***
duration	0.002570	0.002364	1.087	0.277
no_pasg	0.012722	0.015317	0.831	0.406
speed_ground	-0.276852	0.018940	-14.618	<2e-16 ***
height	-0.136033	0.015078	-9.022	<2e-16 ***
pitch	0.116946	0.236571	0.494	0.621

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[Y<=2])

Residual deviance: 492.6454 on 1554 degrees of freedom

Log-likelihood: -246.3227 on 1554 degrees of freedom

Number of Fisher scoring iterations: 8

The summary of the model was caculated:

Summary(model_ordinal)

Exponentiated coefficients:

aircraft duration no_pasg **speed_ground height** pitch **36.5129359** 1.0025731 1.0128038 **0.7581663 0.8728141** 1.1240585

From the above table it is clear that speed_ground, height and aircraft are the three significant variables used for building the model.

CONCLUSION:

The model is:

 $Pr(Y \le 1) = F(19.669758 + 3.597667 * aircraft - 0.27685 * speed_ground - 0.136033 * height)$

Pr(Y<=2)= F(29.462780+3.597667*aircraft-0.27685*speed_ground-0.136033*height)

Variable	Estimate	Std-Error
(Intercept):1	19.669758	1.979850
(Intercept):2	29.462780	2.436218
aircraft	3.597667	0.345562
speed_ground	-0.276852	0.018940
height	-0.136033	0.015078

The following conclusions can be drawn:

- 1. We have assumed the slopes to be equal meaning the predictor variables causes similar effects on the probabilities.
- 2. The variables that influence the probability of the ordinal multinomial variable Y are aircraft, speed_ground and height
- 3. Since the output model calculates the probability estimate, for a given observation we can calculate the calculate the probability if Y is 1,2 or 3.

QN2:

We can use poisson distribution to predict the number of passengers on board.

```
FAA_new <- subset(FAA, select = -speed_air)
FAA_new \saircraft <- ifelse(FAA_new \saircraft == "boeing",0,1)
FAA_new <- na.omit(FAA_new)
```

A modle was built using the glm function using family as poisson the cleaned data set

```
mdl no pasg <- glm(no pasg ~ ., family=poisson, FAA new)
```

The step function was used to get a simplified model:

```
modl_simp <- step(mdl_no_pasg)
summary(modl_simp)</pre>
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.095709 0.004616 887.2 <2e-16 ***
```

```
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 742.75 on 780 degrees of freedom Residual deviance: 742.75 on 780 degrees of freedom

AIC: 5374.8

The goodness of fit and dispersion factor was found for the model:

```
gof<-sum(residuals(modl_simp,type="pearson")^2) dp<-gof/modl_simp$df.res
```

The dispersion factor was found to be 0.94. The revised summary using the dispersion factor is found below:

```
summary(modl simp,dispersion=dp)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.095709 0.004482 913.7 <2e-16 ***
```

Signif. codes: 0 "*** 0.001 "** 0.01 " 0.05 ". 0.1 " 1

(Dispersion parameter for poisson family taken to be 0.9427883)

Null deviance: 742.75 on 780 degrees of freedom Residual deviance: 742.75 on 780 degrees of freedom

AIC: 5374.8

Number of Fisher Scoring iterations: 4

Conclusion:

It is found that No variable is predicting the number of passengers in the aircraft as is expected. It is solely dependent on the intercept.