ARE ALL HOMOGENOUS, I.E. ALL ELEMENTS ARE OF THE SAME TYPE

IS A COLLECTION OF ELEMENTS, WHICH CAN BE OF DIFFERENT TYPES INCLUDING LISTS

FALSE, I, "LIST", (3, FALSE, "SUBLIST"))

ARE ALL HOMOGENOUS, I.E. ALL ELEMENTS ARE OF THE SAME TYPE

IS A COLLECTION OF ELEMENTS, WHICH CAN BE OF DIFFERENT TYPES INCLUDING LISTS

(FALSE, I, "LIST", (3, FALSE, "SUBLIST"))
NUMERIC

ARE ALL HOMOGENOUS, I.E. ALL ELEMENTS ARE OF THE SAME TYPE

IS A COLLECTION OF ELEMENTS, WHICH CAN BE OF DIFFERENT TYPES INCLUDING LISTS

(FALSE, I, "LIST", (3, FALSE, "SUBLIST"))
NUMERIC

ARE ALL HOMOGENOUS, I.E. ALL ELEMENTS ARE OF THE SAME TYPE

IS A COLLECTION OF ELEMENTS, WHICH CAN BE OF DIFFERENT TYPES INCLUDING LISTS

LOGICAL CHARACTER LOGICAL CHARACTER (FALSE, "LIST") NUMERIC NUMERIC LIST WITHIN A LIST

A LIST IS A COLLECTION OF ELEMENTS, WHICH CAN BE OF DIFFERENT TYPES INCLUDING LISTS

```
family <- list("Mom","Dad", c("Kid1","Kid2","Kid3"),3,c(4,5,7))</pre>
```

THE LIST() FUNCTION CAN BE USED TO CREATE A LIST

```
names(family) <- c("Mother", "Father", "Kids", "no.Kids", "ages.of.Kids")</pre>
```

```
family[1]
$Mother
[1] "Mom"
family[[1]]
[1] "Mom"
family$Mother
[1] "Mom"
```

COMPONENTS OF A LIST CAN BE INDEXED USING [1, OR [[1], OR NAMES OF THE COMPONENTS

A LIST IS A COLLECTION OF ELEMENTS, WHICH CAN BE OF DIFFERENT TYPES INCLUDING LISTS

```
family <- list("Mom", "Dad", c("Kid1", "Kid2", "Kid3"), 3, c(4,5,7))
names(family) <- c("Mother", "Father", "Kids", "no.Kids", "ages.of.Kids")
family[1]

$Mother
[1] "Mom"

family[[1]]
[1] "Mom"

family$Mother
[1] "Mom"

L1 THE RESULT IS A LIST</pre>
```

A LIST WHICH CAN BE OF DIFFERENT TYPES INCLUDING LISTS

```
family <- list("Mom", "Dad", c("Kid1", "Kid2", "Kid3"), 3, c(4,5,7))
names(family) <- c("Mother", "Father", "Kids", "no.Kids", "ages.of.Kids")
family[1]
$Mother
[1] "Mom"
family[[1]]
[1] "Mom"

family$Mother
[1] "Mom
```

A PATAFRAME IS PATA ARRANGED IN ROWS AND COLUMNS

ROWS REPRESENT 1 UNIT OR 1 OBSERVATION

"A"			
"A"	20	Jan 1	100
"B"	54	Feb 3	340
"c"	36	Jan 20	700
"D"	32	Dec 14	650
"E"	45	Nov 18	321
"F"	22	May 10	789

A PATAFRAME IS LIKE A LIST (OF VECTORS OR OTHER LISTS)

COLUMNS REPRESENT VARIABLES

A PATAFRAME IS LIKE A LIST (OF VECTORS OR OTHER LISTS)

LET'S CREATE A DATA FRAME TO REPRESENT SOME PLAYERS' SCORES

FIRST, WE CREATE 3 VECTORS TO REPRESENT THE VARIABLES

		120
Sachin	India	120
Dravid	India	108
McGrath	Aus	98
Warne	Aus	45
Jayawardane	Sri Lanka	115
Drone	India	May 10

```
playerNames <- c("Sachin", "Dravid", "Mcgrath", "Warne", "Jayawardane", "Dhoni")
teams <- c("India", "India", "Australia", "Australia", "Sri Lanka", "India")
scores <- c(120, 108, 98, 45, 115, 100)
```

A PATAFRAME IS LIKE A LIST (OF VECTORS OR OTHER LISTS)

```
playerNames <- c("Sachin", "Dravid", "Mcgrath", "Warne", "Jayawardane", "Dhoni")
teams <- c("India", "India", "Australia", "Australia", "Sri Lanka", "India")
scores <- c(120, 108, 98, 45, 115, 100)
```

cricInfo <- data.frame(playerNames, teams, scores)</pre>

playerNames <- c("Sachin", "Dravid", "Mcgrath", "Warne", "Jayawardane", "Dhoni")
teams <- c("India", "India", "Australia", "Australia", "Sri Lanka", "India")
scores <- c(120, 108, 98, 45, 115, 100)

cricInfo <- data.frame(playerNames, teams, scores) cricInfo</pre>

	playerNames	teams	scores
1	Sachin	India	120
2	Dravid	India	108
3	Mcgrath	Australia	98
4	Warne	Australia	45
5	Jayawardane	Sri Lanka	115
6	Dhoni	India	100

THE 3 VECTORS FORM THE COLUMNS OF THE PATA FRAME

```
teams <- c("India", "India", "Australia", "Australia", "Sri Lanka", "India")
scores <- c(120, 108, 98, 45, 115, 100)
cricInfo <- data.frame(playerNames, teams, scores)
cricInfo

nrow(cricInfo)
[1] 6</pre>
```

ncol(cricInfo)

[1] 3

playerNames <- c("Sachin", "Dravid", "Mcgrath", "Warne", "Jayawardane", "Dhoni")</pre>

```
playerNames
                   teams scores
       Sachin
                   India
                            120
       Dravid
                   India
                            108
                             98
      Mcgrath Australia
        Warne Australia
                             45
 Jayawardane Sri Lanka
                            115
        Dhoni
                  India
                            100
6
```

NROW() AND NCOL() WILL GIVE YOU THE NUMBER OF ROWS AND COLUMNS

```
names (cricInfo)
[1] "playerNames" "teams"
rownames (cricInfo)
[1] "1" "2" "3" "4" "5" "6"
```

```
playerNames
                     teams
                           scores
                               120
                     India
        Sachin
        pravid
2 Dravid "scores" Mcgrath Australia
                India
                               108
                                98
                                45
         Warne Australia
                               115
  Jayawardane Sri Lanka
         Dhoni
                    India
                               100
 6
```

NAMES() AND ROWNAMES() WILL GIVE YOU VECTORS CONTAINING THE COLUMN NAMES AND ROW NAMES

```
names(cricInfo)
[1] "playerNames" "teams"
rownames(cricInfo)
[1] "1" "2" "3" "4" "5" "6"
```


NAMES() AND ROWNAMES() WILL GIVE YOU VECTORS CONTAINING THE COLUMN NAMES AND ROW NAMES

WHAT HAPPENS IF THE VECTORS USED TO CREATE THE DATA FRAME ARE NOT OF EQUAL LENGTH?

THERE IS AN EXTRA ELEMENT IN SCORES

```
Error in data.frame(playerNames, teams, scores = c(scores,
20)): arguments imply(differing number of rows: 6, 7)
```

IF YOU HAVE A FILE WITH DATA ARRANGED IN ROWS AND COLUMNS, YOU CAN DIRECTLY READ IT INTO A DATA FRAME

u.user

-- Demographic information about the users; this is a tab separated list of user id | age | gender | occupation | zip code The user ids are the ones used in the u.data data set.

U.USER IS A FILE WITH SOME USER RELATED DATA

EXAMPLE 36: READING DATA FROM FILES U.USER IS A FILE WITH SOME USER RELATED DATA

```
u.user
```

```
-- Demographic information about the users; this is a tab
separated list of
user id | age | gender | occupation | zip code
The user ids are the ones used in the u.data data set.
```

THE COLUMN NAMES

NOTE: THESE ARE NOT INCLUDED IN THE FILE

EXAMPLE 36: READING DATA FROM FILES U.USER IS A FILE WITH SOME USER RELATED DATA

HERE IS WHAT THE PATA LOOKS LIKE IN A TEXT EPITOR

THE COLUMNS
ARE SEPARATED
BY "I"

```
user id | age | gender | occupation | zip code
     1|24|M|technician|85711
      2|53|F|other|94043
     3|23|M|writer|32067
     4|24|M|technician|43537
     5|33|F|other|15213
     6|42|M|executive|98101
      7|57|M|administrator|91344
     8|36|M|administrator|05201
     9|29|M|student|01002
     10 | 53 | M | lawyer | 90703
     11|39|F|other|30329
      121281Flother106/05
```

EXAMPLE 36: READING DATA FROM FILES U.USER IS A FILE WITH SOME USER RELATED DATA

u.user <- "/Users/swethakolalapudi/Downloads/ml-100k/u.user"

U.USER HOLDS THE FILE PATH

```
u.user <- "/Users/swethakolalapudi/Downloads/ml-100k/u.user"
```

```
header <- c("userId", "age", "gender", "occupation", "zipCode")
```

WE'LL SET UP A HEADER VARIABLE TO TELL THE DATA FRAME WHAT THE COLUMN NAMES ARE

```
header <- c("userId", "age", "gender", "occupation", "zipCode")
userInfo <- read.table(u.user, header = FALSE, sep =" | ",</pre>
```

quote = "\"', col.names = header)

u.user <- "/Users/swethakolalapudi/Downloads/ml-100k/u.user"

READ.TABLE() WILL READ THE DATA INTO A DATA FRAME

```
u.user <- "/Users/swethakolalapudi/Downloads/ml-100k/u.user"
header <- c("userId", "age", "gender", "occupation", "zipCode")</pre>
```

THE FILE TO READ FROM

THERE IS NO HEADER ROW IN THE FILE

u.user <- "/Users/swethakolalapudi/Downloads/ml-100k/u.user"

header <- c("userId", "age", "gender", "occupation", "zipCode")

THIS IS THE PEFAULT OPTION

u.user <- "/Users/swethakolalapudi/Downloads/ml-100k/u.user"

THERE COLUMNS ARE SEPARATED BY "I"

u.user <- "/Users/swethakolalapudi/Downloads/ml-100k/u.user"

header <- c("userId", "age", "gender", "occupation", "zipCode")

STRINGS ARE ENCLOSED IN "" OR "

TAKE THE COLUMN NAMES FROM THE HEADER VARIABLE

ONCE YOU'VE READ THE FILE YOU CAN CHECK IF EVERYTHING WENT AS PLANNED

head(userInfo, 10)

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

THIS WILL PRINT THE FIRST 10 ROWS OF THE DATA FRAME

head (userInfo, 10)

	•		~		
	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

USERINFO IS A PATAFRAME WITH SOME USER DEMOGRAPHIC DATA

YOU CAN INDEX A
DATAFRAME LIKE YOU
INDEX A MATRIX/ARRAY

						userId	age	gender	occupation	zipCode	
					1_	1	24	M	technician	85711	
110	OrTr	1 A	5	1 • 7	2	2	53	F	other	94043	
ub	CT TI	ifo[2			3	3	23	M	writer	32067	
					4	4	24	M	technician	43537	
	userId	age			5	5	33	F	other	15213	
2	2	53			6	6	42	M	executive	98101	
4	Z	J J			7	7	57	M	administrator	91344	
3	3	23			9	8	36	M	administrator	05201	
A					9	9	29	M	student	01002	
4	4	24			10	10	53	M	lawyer	90703	
5	5	33									

YOU CAN INDEX A DATAFRAME LIKE YOU INDEX A MATRIX/ARRAY

userInfo[2:5,1:2]

	userId	age
2	2	53
3	3	23
4	4	24
5	5	33

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

THE RESULT IS A DATA FRAME ALSO, WITH THE ROW NAMES AND COLUMN NAMES PRESERVED

A DATAFRAME IS LIKE A LIST (OF VECTORS OR OTHER LISTS)

YOU CAN ACCESS THE ELEMENTS OF THE LIST USING THEIR NAMES

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

EACH ELEMENT IS A COLUMN OF THE DATAFRAME

userInfo\$age[1:10]

THIS ACCESSES THE AGE COLUMN

UNLIKE THE PREVIOUS CASE, THE RESULT OF THIS INDEXING IS A VECTOR (NOT A DATAFRAME)

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

A DATAFRAME IS LIKE A LIST (OF VECTORS OR OTHER LISTS)

userInfo\$age[1:10]

[1] 24 53 23 24 33 42 57 36 29 53

THIS GETS US THE FIRST 10 ELEMENTS OF THAT VECTOR

	userId	age g	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

A PATAFRAME IS LIKE A LIST (OF VECTORS OR OTHER LISTS)

```
class(userInfo$gender)
[1] "factor"
```

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

WHEN YOU CREATE A DATAFRAME, COLUMNS WHICH CONTAIN STRINGS ARE AUTOMATICALLY TREATED AS FACTORS

I.E. THE COLUMN WILL BE AWARE OF THE DISTINCT SET OF STRING VALUES IT CONTAINS (LEVELS)

length(levels(userInfo\$occupation))

THE OCCUPATION COLUMN WHICH IS A FACTOR (SINCE IT CONTAINS STRINGS)

LET'S FIND THE DISTINCT NUMBER OF OCCUPATIONS IN THE DATASET

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

length(levels(userInfo\$occupation))

A VECTOR CONTAINING THE PISTINCT SET OF OCCUPATIONS

LET'S FIND THE DISTINCT NUMBER OF OCCUPATIONS IN THE DATASET

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

length levels (userInfo\$occupation))

[1]21

A VECTOR CONTAINING THE DISTINCT SET OF OCCUPATIONS

THE LENGTH OF THAT VECTOR

LET'S FIND THE DISTINCT NUMBER OF OCCUPATIONS IN THE DATASET

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

head(userInfo, 10)

	•		•		
	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

USERINFO IS A DATAFRAME WITH SOME USER DEMOGRAPHIC DATA

LIKE WITH AN SQL TABLE, YOU CAN PERFORM GROUPING WITH A DATA FRAME

LIKE WITH AN SQL TABLE, YOU CAN PERFORM GROUPING WITH A DATA FRAME

I.E. YOU CAN DIVIDE THE DATA INTO GROUPS AND THEN COUNT, SUM ETC THE VALUES

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
1	0 10	53	M	lawyer	90703

OBJECTIVE: WHAT IS THE AVERAGE AGE OF MALE VS FEMALE USERS?

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

aggregate (age ~ gender, userInfo, mean)

FROM THE DATA FRAME USERINFO

OBJECTIVE: WHAT IS THE AVERAGE AGE OF MALE VS FEMALE USERS?

FROM THE DATA FRAME USERINFO

userId	age	gender	occupation	zipCode
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213
6	42	M	executive	98101
7	57	M	administrator	91344
8	36	M	administrator	05201
9	29	M	student	01002
10	53	M	lawyer	90703
	1 2 3 4 5 6 7 8 9	1 24 2 53 3 23 4 24 5 33 6 42 7 57 8 36 9 29	2 53 F 3 23 M 4 24 M 5 33 F 6 42 M 7 57 M 8 36 M 9 29 M	1 24 M technician 2 53 F other 3 23 M writer 4 24 M technician 5 33 F other 6 42 M executive 7 57 M administrator 8 36 M administrator 9 29 M student

aggregate (age ~ gender, userInfo, mean)

TAKE EACH DISTINCT VALUE OF THE GENDER

OBJECTIVE: WHAT IS THE AVERAGE AGE OF MALE VS FEMALE USERS?

FROM THE DATA FRAME USERINFO TAKE EACH DISTINCT VALUE OF THE GENDER

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

aggregate (age ~ gender, userInfo, mean)

gender age
1 F 33.81319
2 M 34.14925

AND COMPUTE THE MEAN OF THE AGE COLUMN

OBJECTIVE: WHAT IS THE AVERAGE AGE OF MALE VS FEMALE USERS IN EACH OCCUPATION?

```
occupation zipCode
   userId age gender
           24
                         technician
                                        85711
                                        94043
                               other
                                        32067
                              writer
                         technician
                                        43537
           33
                                        15213
                               other
                                        98101
                           executive
           57
                    M administrator
                                        91344
                                        05201
                    M administrator
                                        01002
           29
                             student
                    M
10
       10
                                        90703
                              lawyer
```

aggregate(age ~ gender + occupation,

userInfo, mean)

FROM THE DATA FRAME USERINFO

OBJECTIVE: WHAT IS THE AVERAGE AGE OF MALE VS FEMALE USERS IN EACH OCCUPATION?

FROM THE DATA FRAME USERINFO

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

aggregate (age ~ gender + occupation)

userInfo, mean)

TAKE EACH DISTINCT COMBINATION OF GENDER AND OCCUPATION

OBJECTIVE: WHAT IS THE AVERAGE AGE OF MALE VS FEMALE USERS IN EACH OCCUPATION?

FROM THE DATA FRAME USERINFO

TAKE EACH DISTINCT COMBINATION OF GENDER AND OCCUPATION

	userId	age	gender	occupation	zipCode
1	1	24	M	technician	85711
2	2	53	F	other	94043
3	3	23	M	writer	32067
4	4	24	M	technician	43537
5	5	33	F	other	15213
6	6	42	M	executive	98101
7	7	57	M	administrator	91344
8	8	36	M	administrator	05201
9	9	29	M	student	01002
10	10	53	M	lawyer	90703

gender		occupation	age
1	F	administrator	40.63889
2	M	administrator	37.16279
3	F	artist	30.30769
4	M	artist	32.33333
5	M	doctor	43.57143
6	F	educator	39.11538
7	M	educator	43.10145

AND COMPUTE THE MEAN OF THE AGE COLUMN

OBJECTIVE: FIND THE TOP 3 OCCUPATIONS OF THE USERS

FIRST FIND THE NUMBER OF USERS IN EACH OCCUPATION

```
userId age gender
                          occupation
                                     zipCode
           24
                          technician
                                        85711
            53
                                        94043
                               other
           23
                                        32067
                              writer
                                        43537
                         technician
            33
                                        15213
                               other
6
                                        98101
                           executive
            57
                    M administrator
                                        91344
8
                                        05201
                    M administrator
                                        01002
            29
                             student
                    M
                                        90703
10
       10
            53
                              lawyer
```

occupationCounts <- aggregate(userId ~ occupation), userInfo, length)

FOR EACH DISTINCT OCCUPATION,

OBJECTIVE: FIND THE TOP 3 OCCUPATIONS OF THE USERS

FIRST FIND THE NUMBER OF USERS IN EACH OCCUPATION

```
userId age gender
                          occupation
                                      zipCode
                          technician
            24
                                        85711
            53
                               other
                                        94043
                                        32067
                              writer
                                        43537
                          technician
            33
                                        15213
                               other
                                        98101
6
                           executive
            57
                    M administrator
                                        91344
8
                                        05201
                    M administrator
                                        01002
            29
                             student
                    M
                                        90703
10
                              lawyer
```

occupationCounts <- aggregate(userId) ~ occupation, userInfo, length)

FIND THE NUMBER OF USER IDS

OBJECTIVE: FIND THE TOP 3 OCCUPATIONS OF THE USERS

FIRST FIND THE NUMBER OF USERS IN EACH OCCUPATION

occupationCounts <- aggregate(userId ~ occupation, userInfo, length)

OCCUPATIONCOUNTS IS A PATAFRAME

	occupation	useria
1	administrator	79
2	artist	28
3	doctor	7
4	educator	95
5	engineer	67
6	entertainment	18
7	executive	32
8	healthcare	16
9	homemaker	7

YOU CAN SORT IT BY THE #USERIDS COLUMN

head(occupationCounts[order(occupationCounts\$userId,) decreasing = TRUE),],3)

OBJECTIVE: FIND THE TOP 3 OCCUPATIONS OF THE USERS

FIRST FIND THE NUMBER OF USERS IN EACH OCCUPATION

occupationCounts <- aggregate(userId ~ occupation, userInfo, length)

OCCUPATIONCOUNTS IS A PATAFRAME

YOU CAN SORT IT BY THE #USERIDS COLUMN

head(occupationCounts[order(occupationCounts\$userId, decreasing = TRUE),],3)

IN DESCENDING ORDER

occupation userId

artist

doctor

educator

engineer

executive

homemaker

healthcare

79

28

95

18

32

16

administrator

entertainment

OBJECTIVE: FIND THE TOP 3 OCCUPATIONS OF THE USERS

FIRST FIND THE NUMBER OF USERS IN EACH OCCUPATION

```
occupationCounts <- aggregate(userId ~ occupation, userInfo, length)
```

head() ccupationCounts[order(occupationCounts\$userId, decreasing = TRUE),],3)

PRINT THE TOP 3 ROWS

occupation userId

19	student	196
14	other	105
4	educator	95

WHEN YOU SORT A
DATAFRAME, THE ROW
NAMES ARE ALSO SORTED

WE HAVE 2 DATA FRAMES WITH CUSTOMER RELATED DATA

```
df1 <- data.frame(custId = 1:3, custName = c("Vitthal", "Janani", "Navdeep"))
df2 <- data.frame(custId = 1:3, custAge = c(36,36,26))</pre>
```

PF1

custId custName

1 Vitthal

2 2 Janani

3 Navdeep

PF2

custId custAge

1 1 36

2 2 36

3 3 26

EXAMPLE 39: MERGING DATA FRAMES DF1 DF2

```
      custId custName
      custId custAge

      1
      1
      1
      36

      2
      2
      2
      36

      3
      3
      Navdeep
      3
      3
      26
```

df3 <- merge(df1, df2, (by="custId")

MERGE WILL COMBINE THE 2 DATA FRAMES BY MATCHING THE ROWS BASED ON THE SPECIFIED COLUMN

EXAMPLE 39: MERGING DATA FRAMES DF1 DF2

```
      custId custName
      custId custAge

      1
      1 Vitthal
      1 1 36

      2
      2 2 36

      3
      Navdeep
      3 3 26
```

df3 <- merge(df1, df2, by="custId")</pre>

```
custId custName custAge
1 Vitthal 36
2 Janani 36
3 Navdeep 26
```

```
df3 <- merge(df1, df2, by="custId")
```

THIS IS PRETTY SIMILAR TO A JOIN IN SQL OR A LOOKUP IN EXCEL

```
df3 <- merge(df1, df2, by="custId")
```

YOU CAN SPECIFY MULTIPLE COLUMNS TO MERGE ON

df3 <- merge(df1, df2, by="custId")

IF YOU DON'T SPECIFY THE BY, IT WILL MERGE BASED THE COLUMN NAMES WHICH ARE COMMON

```
df3 <- merge(df1, df2, by="custId")
```

```
df3 <- merge(df1, df2, by.x="custId",by.y="custId")
```

YOU CAN SPECIFY THE COLUMNS TO MATCH FROM EACH DATA FRAME SEPARATELY