Error-Correcting Codes in the Rank Metric With Applications to Cryptography

Dario Gjorgjevski¹ gjorgjevski.dario@students.finki.ukim.mk

Faculty of Computer Science and Engineering Ss. Cyril and Methodius University in Skopje

January 30, 2018

¹Mentored by prof. Simona Samardjiska

Contents

- Introduction
 - Crash Course in Cryptography
 - Going Post-Quantum
 - Code-Based Cryptography
- The GPT Cryptosystem
- 3 Decoding Random Codes in the Rank Metric
- Conclusion and Future Perspective

Past vs. Present

- In the past, cryptography was used to provide secure communication in an *ad-hoc manner*.
- rigorous theory in the late 20th century.

 Today, we have algorithms for secure communication in two settings

This picture changed radically with the development of a rich and

- Today, we have algorithms for secure communication in two settings: symmetric and asymmetric.
- We will quickly review both; however, the remainder of this thesis focuses entirely on algorithms for secure communication in the asymmetric setting.

The Symmetric Setting

- The message m is *encrypted* under the secret key k to obtain the *ciphertext* c.
- The ciphertext c is decrypted under the same key k.
- If the two parties could share the secret key securely, why could they not do the same with the message?

Figure: Secure communication in the symmetric setting.

The Asymmetric Setting

Cryptography in the asymmetric setting is called *public-key cryptography*. The RSA (Rivest et al.) cryptosystem is the most widely used and one of the first asymmetric cryptosystems:

- \bullet Encryption is done with the intended recipient's *public key*, $k_{\rm pub}$, known to everybody.
- $\ensuremath{\text{2}}$ Decryption is done with the $\ensuremath{\textit{private key}},\,k_{\text{priv}},$ known only to the recipient.

Real-world analogy

Think of a mailbox: encryption corresponds to leaving mail in a person's mailbox, decryption to the person opening the mailbox to retrieve it.

RSA Basics

RSA relies on the computational complexity of *integer factorization*.

Example (Integer factorization)

If you were asked to multiply

 $17627949842247424607 \times 15969639761398924673$

you would need several minutes with pen and paper to arrive at $281\,512\,008\,712\,700\,373\,730\,275\,954\,373\,439\,628\,511$. But, what if you were asked to find two integers, p and q, such that

 $p \times q = 281\,512\,008\,712\,700\,373\,730\,275\,954\,373\,439\,628\,511?$

Unfortunately, Shor published an algorithm that can factor integers efficiently and hence "break" RSA. The only drawback: it needs a quantum computer.

The McEliece Cryptosystem

- A cryptosystem from roughly the same time as RSA is believed to be hard even for quantum computers: the McEliece cryptosystem.
- \bullet It relies on the hardness of decoding random codes over \mathbb{F}_q in the Hamming metric.
- The problem was proven \mathcal{NP} -complete when q=2 by Berlekamp et al.; and in the general case by Barg.
- The best attacks against McEliece come from a family of algorithms called information set decoding (ISD).

Issues with McEliece

...and Fixing Them

- Unfortunately, McEliece requires a key size of roughly 192 kB to achieve 128-bit security against information set decoding
 very prohibitive for embedded devices.
- Gabidulin et al. proposed the GPT cryptosystem which uses errorcorrecting codes in the *rank metric*, as opposed to McEliece's Goppa codes which correct errors in the Hamming metric.
- GPT is believed to require much smaller keys in order to achieve the same security.

Cryptography and the Information Transmission Model

- The information transmission model comes from the landmark work of Shannon.
- It can be utilized for cryptographic purposes by means of errorcorrecting codes. McEliece is one of the most prominent examples of such code-based cryptography.
- We assume transmission to be error-free and add noise deliberately for encryption.

Figure: Transmitting information over a noisy channel.

Contents

- Introduction
- 2 The GPT Cryptosystem
 - Basic Concepts
 - Gabidulin Codes
 - Description of the GPT Cryptosystem
 - Overbeck's Attack and Loidreau's Reparation
- Oecoding Random Codes in the Rank Metric
- 4 Conclusion and Future Perspective

Linear Codes

Definition (Linear Code)

An [n,k]-code $\mathcal C$ over a finite field $\mathbb F$ is a k-dimensional subspace of the vector space $\mathbb F^n$. The elements of $\mathcal C$ are called codewords. $\mathcal C$ is an [n,k,d]-code if $d=\min\{\|\boldsymbol x-\boldsymbol y\|:\boldsymbol x,\boldsymbol y\in\mathcal C,\boldsymbol x\neq\boldsymbol y\}$ for some norm $\|\cdot\|$. d is called the $minimum\ distance$ of the code with respect to $\|\cdot\|$.

An [n, k, d]-code can correct an error e if and only if

$$\|e\| \le t =: \lfloor (d-1)/2 \rfloor.$$

t is called the *error-correcting capacity* of \mathcal{C} .

Generating and Utilizing Linear Codes

Definition (Generator Matrix)

A full-rank matrix $G \in \mathbb{F}^{k \times n}$ is said to be a *generator matrix* for the [n,k]-code $\mathcal C$ if its rows span $\mathcal C$ over $\mathbb F$. In other words, if

$$\mathcal{C} = \{ \boldsymbol{x}\boldsymbol{G} : \boldsymbol{x} \in \mathbb{F}^k \}.$$

 ${m G}$ defines an encoding map $f_{{m G}}\colon {\mathbb F}^k o {\mathbb F}^n$ given by ${m x} \mapsto {m x} {m G}.$

- $lackbox{1}{\bullet}$ A message $oldsymbol{x} \in \mathbb{F}^k$ is encoded as $oldsymbol{c} \coloneqq oldsymbol{x} oldsymbol{G} \in \mathbb{F}^n$.
- ② The codeword c is inflicted by additive noise e with $\|e\| \le t$, and received as y := c + e.
- $oldsymbol{9}$ y is decoded into x using an efficient decoding procedure for \mathcal{C} . (Decoding can of course be done without an efficient procedure, but will be computationally very demanding.)

The Rank Metric

Definition (Rank Norm)

Let $x\coloneqq \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}\in \mathbb{F}_{q^m}^n$ and $\{\beta_1,\dots,\beta_m\}$ be a basis of \mathbb{F}_{q^m} over \mathbb{F}_q . For all $i\in\{1,\dots,n\}$, we can write $x_i=\sum_{j=1}^m x_{i,j}\beta_j$ with $x_{i,j}\in\mathbb{F}_q$. The rank norm $\|\cdot\|_q$ is defined as

$$\|\boldsymbol{x}\|_q \coloneqq \operatorname{rank} \begin{bmatrix} x_{1,1} & \cdots & x_{1,m} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,m} \end{bmatrix}. \tag{1}$$

The rank norm of is independent of the choice of basis and induces a metric called the *rank metric* (or *rank distance*):

$$d_{R}(\boldsymbol{x} - \boldsymbol{y}) \coloneqq \|\boldsymbol{x} - \boldsymbol{y}\|_{a}.$$

Generating Gabidulin Codes

Gabidulin constructed a family of Maximum Rank Distance codes over \mathbb{F}_{q^m} of length $n \leq m$. For any $x \in \mathbb{F}_{q^m}$ and any $i \in \mathbb{Z}$, $x^{[i]} := x^{q^i}$. (The operation is applied component-wise to vectors and matrices.)

Definition (Gabidulin Code)

Let ${m g} \coloneqq \begin{bmatrix} g_1 & \cdots & g_n \end{bmatrix} \in \mathbb{F}_{q^m}^n$ with all g_i independent over \mathbb{F}_q . (This implies $n \le m$.) The *Gabidulin code* of dimension k, $\mathfrak{G}_k({m g})$, is generated by

$$m{G} \coloneqq egin{bmatrix} g_1^{[0]} & \cdots & g_n^{[0]} \\ \vdots & \ddots & \vdots \\ g_1^{[k-1]} & \cdots & g_n^{[k-1]} \end{bmatrix}.$$
 (2)

Gabidulin codes have d=n-k+1, hence errors of rank $t=\lfloor (n-k)/2 \rfloor$ can be corrected in time $\mathcal{O}(d^3+dn)$.

The GPT Cryptosystem

System Parameters and Key Generation

System Parameters

- Choose $k, n, m \in \mathbb{N}$ such that $k < n \leq m$.
- Define the error-correcting capacity $t = \lfloor (n-k)/2 \rfloor$.
- Choose $l \in \mathbb{N}$ with $l \ll n$.

Key Generation

- \bullet Let ${m g} \in \mathbb{F}_{q^m}^n$ with $\|{m g}\|_q = n$ and let ${m G}$ be a generator of $\mathfrak{G}_k({m g}).$
- Let $S \in GL_k(\mathbb{F}_{q^m})$ and $P \in GL_{n+l}(\mathbb{F}_q)$. Note that P is an *isometry* in the rank metric: $\|xP\|_q = \|x\|_q$.
- Let $\pmb{X}_1 \in \mathbb{F}_{q^m}^{k imes l}$ and $\pmb{X}_2 \in \mathbb{F}_{q^m}^{k imes n}$ with $\mathrm{rank}\, \pmb{X}_2 < t.$
- Define the distortion transformation

$$\mathcal{D}(\boldsymbol{G})\coloneqq \boldsymbol{S}\begin{bmatrix}\boldsymbol{X}_1 & \boldsymbol{G}+\boldsymbol{X}_2\end{bmatrix}\boldsymbol{P}.$$

The GPT Cryptosystem

Public Key, Encryption, and Decryption

- ullet The public key consists of $G_{\mathsf{pub}} \coloneqq \mathcal{D}(G)$ and $t_{\mathsf{pub}} \coloneqq t \mathrm{rank}\, X_2.$
- $\bullet \ \, \text{To encrypt} \,\, \boldsymbol{x} \in \mathbb{F}_{q^m}^k \text{, choose} \,\, \boldsymbol{e} \in \mathbb{F}_{q^m}^n \,\, \text{with} \,\, \|\boldsymbol{x}\|_q \leq t_{\text{pub}} \,\, \text{and compute} \\ \, \boldsymbol{y} \coloneqq \boldsymbol{x} \boldsymbol{G}_{\text{pub}} + \boldsymbol{e}.$
- To decrypt $y \in \mathbb{F}_{q^m}^n$, apply the decoding procedure for $\mathfrak{G}_k(g)$ to the last n components of yP^{-1} to obtain xS, then multiply by S^{-1} . The math works out just nicely.

Common Form of the GPT Public Key

We simplified and generalized the following theorem due to Kshevetskiy.

Theorem (GPT Public Key)

Let G_{pub} be a public GPT generator, and define $\operatorname{rank} X_2 =: t_{X_2}$. Then, there exist $P^* \in \operatorname{GL}_{l+n}(\mathbb{F}_q)$, $X^* \in \mathbb{F}_{q^m}^{k \times (l+t_{X_2})}$, and G^* which generates an $[n-t_{X_2},k]$ -Gabidulin code $\mathfrak{G}_k(g^*)$ such that

$$G_{\mathsf{pub}} = S egin{bmatrix} X^* & G^* \end{bmatrix} P^*.$$

Furthermore, $\mathfrak{G}_k(\boldsymbol{g}^*)$ can correct more than t_{pub} errors.

Distinguishing Properties

Definition

For any $i\in\mathbb{N}$, let $\Lambda_i\colon\mathbb{F}_{q^m}^{k\times n}\to\mathbb{F}_{q^m}^{ik\times n}$ be the \mathbb{F}_q -linear operator defined as:

$$\varLambda_i(m{X}) \coloneqq egin{bmatrix} m{X}^{[0]} \\ \vdots \\ m{X}^{[i-1]} \end{bmatrix}.$$

For any code $\mathcal C$ generated by G, denote by $\Lambda_i(\mathcal C)$ the code generated by $\Lambda_i(G)$. It turns out that Λ_i can distinguish Gabidulin codes from random.

Gabidulin vs. Random

Lemma

Let ${m g} \in \mathbb{F}_{q^m}^n$ with $\|{m g}\|_q = n.$ For $i \in \mathbb{N}$ such that $i \leq n-k-1$,

$$\varLambda_i(\mathfrak{G}_k(\boldsymbol{g}))=\mathfrak{G}_{k+i}(\boldsymbol{g}).$$

On the other hand, if ${m G}$ is a randomly-drawn matrix, we obtain something quite different. Overbeck formulated a successful attack against GPT using these properties.

Lemma

If $\mathcal{C} \subset \mathbb{F}_{q^m}^n$ is a code generated by a random matrix $G \in \mathbb{F}_{q^m}^{k imes n}$,

$$\dim \Lambda_i(\mathcal{C}) = \min\{n, (i+1)k\}$$

with high probability.

Reparation by Loidreau

Crucial to the structural attack against GPT are:

- \bullet The distinguishing properties of $\mathfrak{G}_k(\boldsymbol{g})$ under $\varLambda_i.$
- \bullet The invariance of ${\pmb P}\in {\rm GL}_{n+l}(\mathbb{F}_q)$ under the Frobenius automorphism: ${\pmb P}^{[i]}={\pmb P}.$

Loidreau tackled these issues by

- $\textbf{0} \ \ \mathsf{Letting} \ \boldsymbol{P} \in \mathsf{GL}_{n+l}(\mathcal{W}) \text{, where } \mathcal{W} \text{ is a } \lambda \text{-dimensional subspace of } \mathbb{F}_q^m.$
- ② Using ${m P}^{-1}$ to scramble and ${m P}$ to unscramble instead of the other way around.

This has the effect of resisting the structural attack at the cost of reducing the error-correcting capacity by a factor of λ .

No Structural Exploits

Our best attacks against this reparation are *generic*. The state-of-the-art comes from Gaborit et al.; we will formulate and assess an ISD-inspired algorithm in the rank metric.

Contents

- Introduction
- 2 The GPT Cryptosystem
- 3 Decoding Random Codes in the Rank Metric
 - State-of-the-Art
 - Information Set Decoding
- 4 Conclusion and Future Perspective

Support-Trapping Algorithm by Gaborit et al.

- $\bullet \text{ supp}(e) \coloneqq \text{subspace } \mathcal{E} \text{ which contains each } e_i.$
- Assume $\|e\|_q \leq w \implies \mathcal{E}$ is w.l.o.g. w-dimensional.
- ullet However, we may need to guess $\mathcal{E}'>\mathcal{E}$ to be able to solve for e.
- ullet Gaborit et al. showed how to retrieve e in time $\mathcal{O}(q^{w\lceil mk/n \rceil})$ by:
 - **1** Taking \mathcal{E}' to be of dimension $\lceil (n-k)m/n \rceil$; and
 - ② Writing each e_i in \mathcal{E}' and solving the resulting linear system.

An ISD-Inspired Variation

Instead of guessing a superspace of \mathcal{E} , we will—analogously to ISD algorithms in the Hamming metric—guess a subspace that is "near-orthogonal" to \mathcal{E} .

Intuition Behind ISD in the Rank Metric

Instead of guessing a superspace of $\mathcal{E},$ we guess $\mathcal{V} \leq \mathbb{F}_q^m$ that is

- lacktriangle "Near-orthogonal" to \mathcal{E} ; and
- 2 Allows us to solve for each e_i .

Assume that

- \mathcal{V} is ζ -dimensional.
- $m{P} \in \mathbb{F}_q^{\zeta imes m}$ projects from \mathbb{F}_q^m to \mathcal{V} .
- $\tilde{\mathcal{V}}$ is a p-dimensional subspace of \mathcal{V} , for a parameter $p \in \{0, \dots, \zeta\}$.
- $\bullet \ \langle \tilde{\pmb{v}}_1, \dots, \tilde{\pmb{v}}_p \rangle \text{ is a basis for } \tilde{\mathcal{V}}.$

Description of the Algorithm

Key ISD Equation

$$\{ \widetilde{\boldsymbol{P}(y_i - (\boldsymbol{x}\boldsymbol{G})_i)} = \sum_{j=1}^p \gamma_{i,j} \widetilde{\boldsymbol{v}}_j : i \in \{1, \dots, n\} \}$$
 (3)

is a linear system over \mathbb{F}_q in ζn equations and mk+np unknowns $\implies \zeta = \lceil mk/n \rceil + p$.

Now:

- ② Solve for x in (3).
- **1** If $\|y xG\|_q \le w$, then we have a successful iteration. Otherwise, try a new \mathcal{V} along with all p-dimensional $\tilde{\mathcal{V}}$'s.

Complexity Analysis of the Algorithm

Setting Up the Stage

Informally, we need the

- ullet Probability that "w-p dimensions" of $\mathrm{supp}(oldsymbol{e})$ come from $\mathcal{V}^\perp.$
- \bullet Probability that "p dimensions" of $\operatorname{supp}(\boldsymbol{e})$ come from $\tilde{\mathcal{V}}.$
- \bullet The cost of iterating through all $p\text{-dimensional }\tilde{\mathcal{V}}\text{'s}.$

(We can ignore the cost of solving for $oldsymbol{x}$ as it is a simple linear system.)

A Counting Argument

In order to evaluate the two probabilities, we:

- Count all "good" choices; and
- ② Divide that number by the total number of choices for supp(e).

q-Binomial Coefficients

Counting Vector Spaces

Definition (q-Binomial Coefficient)

The q-binomial coefficient (also called Gaussian binomial coefficient) is defined by

$$\begin{bmatrix} m \\ r \end{bmatrix}_q = \begin{cases} \frac{(1-q^m)(1-q^{m-1})\cdots(1-q^{m-r+1})}{(1-q)(1-q^2)\cdots(1-q^r)} & r \leq m \\ 0 & r > m. \end{cases}$$

Furthermore, it satisfies

$$\begin{bmatrix} m \\ r \end{bmatrix}_q \in \Theta(q^{r(m-r)}).$$

The q-binomial coefficient counts the number of r-dimensional subspaces of an m-dimensional vector space over \mathbb{F}_q .

Complexity Analysis of the Algorithm

Final Results

We can see that the probability of a successful iteration is

$$\begin{bmatrix} \zeta \\ p \end{bmatrix}_q \begin{bmatrix} m - \zeta \\ w - p \end{bmatrix}_q \begin{bmatrix} m \\ w \end{bmatrix}_q^{-1},$$

while the cost of iterating through all $\tilde{\mathcal{V}}$'s is

$$\begin{bmatrix} \zeta \\ p \end{bmatrix}_q$$
 .

This gives an average complexity of

$$\begin{bmatrix} m-\zeta \\ w-p \end{bmatrix}_q^{-1} \begin{bmatrix} m \\ w \end{bmatrix}_q \in \Theta(q^{w\zeta+p(p+m-\zeta)}).$$

 $m>\zeta \implies$ minimized when p=0 and becomes the same as in the support-trapping algorithm:

$$\Theta(q^{w\lceil mk/n\rceil}).$$

Contents

- Introduction
- 2 The GPT Cryptosystem
- 3 Decoding Random Codes in the Rank Metric
- 4 Conclusion and Future Perspective

Closing Thoughts

We:

- Presented a simpler and more general common form of the GPT public key.
- Formulated a "framework" similar to Lee–Brickell's ISD algorithm in the Hamming metric that already achieves state-of-the-art performance.

We hope to:

- Provide an implementation of the algorithm in SAGEMATH.
- Adapt improvements in the spirit of Stern and Dumer to the rank metric. In the Hamming metric, such improvements allow ISD to work in time $\mathcal{O}(2^{n/20})$.

Thank you for your attention.