Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -1800.000 -2000.000 -2200.000 Radiell fart m/s -2400.000 -2600.000 -2800.000 -3000.000 -3200.000 -3400.000 ò 1000 2000 3000 4000

Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 8.00e+08.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er 10 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE B) stjerna fusjonerer hydrogen til helium i et skall rundt kjernen

STJERNE C) massen til stjerna er 8 solmasser og den fusjonerer hydro-

gen i kjernen

STJERNE D) Stjerna har en overflatetemperatur på 10000K. Radiusen er betydelig mindre enn solas radius

STJERNE E) det finnes hovedsaklig helium men også noe karbon i stjernas kjerne

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 3.404e+06 kg/m $\hat{3}$ og temperatur 24 millioner K.

Kjernen i stjerne B har massetet
thet 7.043e+06 kg/m3̂ og temperatur 18 millioner K.

Kjernen i stjerne C har massetet
thet 4.600e+06 kg/m $\hat{3}$ og temperatur 30

millioner K.

Kjernen i stjerne D har massetet
thet 3.148e+06 kg/m3̂ og temperatur 19 millioner K.

Kjernen i stjerne E har massetet
thet 7.172e+06 kg/m3̂ og temperatur 35 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 2: denne stjerna er nærmest oss

Påstand 3: denne stjerna er lengst vekk

Påstand 4: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure_B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figur E tilsynelatende størrelseklasse 15.45 1.60 1.50 1.40 Relativ fluks 1.20 1.10 1.00 21.24 21.14 21.16 21.18 21.20 21.22 21.26 21.12 21.28 Bølgelgende (cm)

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 2.004e+05 kg/m3̂ og temperatur 35.09 millioner K.

Kjernen i stjerne B har massetet
thet $4.240\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 33.98 millioner K.

Kjernen i stjerne C har massetet
thet $1.556\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 25.77

millioner K.

Kjernen i stjerne D har massetet
thet 1.652e+05 kg/m3̂ og temperatur 31.89 millioner K.

Kjernen i stjerne E har massetet
thet 3.712e+05 kg/m3̂ og temperatur 23.26 millioner K.

Filen~1O/1O.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.85 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Trondheim som ligger i en avstand av 600 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.63660 km/t.

Filen 3E.txt

Tog1 veier 28400.00000 kg og tog2 veier 47600.00000 kg.

Filen 4A.png

4.50 4.40 Tilsynelatende størrelsklasse m_V 4.30 4.20 4.10 4.00 3.90 3.80 10 50 20 30 ò 40 60 Observasjonstid (dager)

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 458 km/s.

Filen 4E.txt

Massen til gassklumpene er 7300000.00 kg.

Hastigheten til G1 i x-retning er 20400.00 km/s.

Hastigheten til G2 i x-retning er 28080.00 km/s.

Filen 4G.txt

Massen til stjerna er 30.50 solmasser og radien er 2.66 solradier.