الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

(P) والمستوي A(1;-1;2) نعتبر النقطة A(1;-1;2) والمستوي والمنتوي A(1;-1;2) والمستوي $\begin{cases} x+y-9=0 \\ y+z-4=0 \end{cases}$: والمستقيم والمستقيم (D) المعرف ب

- .(D) عين تمثيلا وسيطيا للمستقيم (D
- (P') الذي يشمل (P') ويوازي ((P') جد معادلة ديكارتية للمستوي
- A'(6;3;1) خيث A' في النقطة A' خيث A'(6;3;1) في النقطة A'
- . (D) عيّن تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل A ويوازي (A) ويقطع (A)

التمرين الثاني: (04 نقاط)

- و (v_n) متتالیتان معرفتان علی مجموعة الأعداد الطبیعیة (v_n) و u_n متتالیتان معرفتان علی مجموعة الأعداد الطبیعیة $u_n=\frac{u_n+2}{1-u_n}$ و $u_{n+1}=3-\frac{10}{u_n+4}$ ، $u_n=\frac{1}{4}$
 - $0 < u_n < 1$ ، n برهن بالتراجع أنّ: من أجل كل عدد طبيعي (أ $u_n < 1$) برّن أنّ المتتالية u_n متزايدة تماما ثم استنتج أنّها متقاربة.
 - n بين أنّ المتتالية v_n هندسية أساسها $\frac{5}{2}$ ثمّ عبّر عن حدّها العام v_n بدلالة (2 أ) بيّن أنّ المتتالية v_n
- $\lim_{n\to +\infty} u_n$ غيد النهاية $u_n=1-rac{3}{v_n+1}$ ، u_n عدد طبيعي عدد طبيعي أثبت أنّ: من أجل كل عدد طبيعي

الشعبة: علوم تجريبية / اختبار في مادة: الرياضيات / بكالوريا 2017

التمرين الثالث: (05 نقاط)

. $(z+2)(z^2-4z+8)=0$ المعادلة: \mathbb{C} المعادلة الأعداد المركبة (I

 $(O; \vec{u}, \vec{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس (II

 $z_C=-2$ و $z_B=\overline{z}_A$ ، $z_A=2-2i$ نعتبر النّقط B، A و B و التي لاحقاتها:

- اکتب کلا من z_A و z_B على الشکل الأسّى. (1
- ACD عين z_D لاحقة النّقطة D حتى تكون النّقطة B مركز ثقل المثلث (2
- $\operatorname{arg}\left(rac{z_B-z}{z_A-z}
 ight)=rac{\pi}{2}$ عيث (B) مجموعة النّقط (B) من المستوي ذات اللاحقة (B) تختلف عن (B) مجموعة النّقط (B) مجموعة (B) محموعة (B)
 - h ليكن h التحاكي الذي مركزه النقطة C ونسبته C مورة C بالتحاكي C عيّن طبيعة المجموعة C مع تحديد عناصرها المميزة.

التمرين الرابع: (07 نقاط)

 $f(x) = \frac{2}{3}x + \ln\left(\frac{x-1}{x+1}\right):$ بـ $D = \left]-\infty; -1\right[\bigcup \left]1; +\infty\right[$ عتبر الدالة العددية f المعرفة على D حيث $D = \left[-\infty; -1\right]$

 $(O; ec{i}, ec{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس الدالة (C_f)

- بيّن أنّ الدالة f فردية ثم فسّر ذلك بيانيا.
- $\lim_{x\to -\infty} f(x)$ و $\lim_{x\to +\infty} f(x)$ ، $\lim_{x\to -1} f(x)$ ، $\lim_{x\to -1} f(x)$: احسب النهایات التالیة و (2 التراتیب مقاربین موازبین لحامل محور التراتیب (C_f) یقبل مستقیمین مقاربین موازبین لحامل محور التراتیب

$$f'(x) = \frac{2}{3} \left(\frac{x^2 + 2}{x^2 - 1} \right)$$
 ، D من x من أَجِل كل x من أَجِل كل أَجِل كل أَجْل كل x من أَجِل كل أَجْل أ

- ب) استنتج اتجاه تغيّر الدالة f ثمّ شكّل جدول تغيراتها.
- . $1.8 < \alpha < 1.9$ حيث أنّ المعادلة f(x)=0 تقبل حلا وحيدا α حيث (4
- بيّن أنّ المستقيم (C_f) ذا المعادلة $y=\frac{2}{3}x$ مستقيم مقارب مائل للمنحنى (Δ) ثم أدرس وضعية المنحنى (Δ) بيّن أنّ المستقيم (Δ) بالنسبة إلى المستقيم (Δ)
 - (C_f) والمنحنى (Δ) والمنحنى (6
 - m وسيط حقيقي، ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد حلول المعادلة:

$$(2-3|m|)x + 3\ln\left(\frac{x-1}{x+1}\right) = 0$$

انتهى الموضوع الأول

الشعبة: علوم تجريبية / اختبار في مادة: الرياضيات / بكالوريا 2017

الموضوع الثانى

التمرين الأول: (04 نقاط)

. C(0;0;1) و B(0;2;0)، A(3;0;0) نعتبر النقط B(0;2;0)، نعتبر النقط المتعامد والمتجانس والمتجانس ($O;\vec{i},\vec{j},\vec{k}$) نعتبر

- (ABC) بيّن أنّ النقط $B \cdot A$ و C تعيّن مستويا، ثمّ تحقّق أنّ: C = A + 3y + 6z 6 = 0 بيّن أنّ النقط $B \cdot A$ معادلة للمستوي
 - . O اكتب تمثيلا وسيطيا للمستقيم (Δ) العمودي على المستوي (ABC) والذي يشمل المبدأ (Δ)
 - (ABC) و (Δ) بقطة تقاطع (Δ) و (ABC)
 - . ABC عمودي على (AC)، ثمّ استنتج أنّ H هي نقطة تلاقي أعمدة المثلث (AC) بيّن أنّ (BH)

التمرين الثاني: (04 نقاط)

. $(O; \vec{i}, \vec{j})$ سنتوي منسوب إلى المعلم المتعامد والمتجانس

 $f(x) = \frac{3x-16}{x+11}$: كما يلي: [-4;1] كما الدالة المعرّفة على المجال

y=x وليكن (C_f) المنحنى الممثل لها، (Δ) المنحنى الممثل المنحنى

تحقّق أنّ الدالة f متزايدة تماما على المجال $\left[-4;1\right]$ ثم بيّن أنّ:

 $f\left(x\right)\in\left[-4;1\right]$ من أجل كل $x\in\left[-4;1\right]$ فإنّ

- . $u_{n+1}=f\left(u_{n}
 ight)$ ، n متتالية معرّفة بحدّها الأوّل $u_{0}=0$ ومن أجل كل عدد طبيعي (u_{n}) (II
- (الا يطلب حساب الحدود) انقل الشكل المقابل ثمّ مثّل على حامل محور الفواصل الحدود u_1 ، u_0 ، u_1 ، u_2 ، u_3 ، u_4 ، u_5 انقل الشكل المقابل ثمّ مثّل على حامل محور الفواصل الحدود u_1 ، u_2 ، u_3 ، u_4 ، u_5 ، u_5 ، u_5 ، u_6 ، u_7 ، u_8 ، u_8
 - $-4 < u_n \le 0$ ، n برهن بالتراجع أنّه من أجل كل عدد طبيعي (2 ثمّ بيّن أنّ المتتالية (u_n) متناقصة تماما.
 - . $v_n \times u_n = 1 4v_n$ ، n عدد طبيعي عدد (v_n) المعرّفة كما يلي: من أجل كل عدد طبيعي ($v_n \times u_n = 1 4v_n$) الثبت أنّ المتتالية (v_n) حسابية أساسها (v_n) ثم احسب المجموع (v_n) حيث أثبت أنّ المتتالية (v_n)

.
$$S = v_0 \times u_0 + v_1 \times u_1 + \dots + v_{2016} \times u_{2016}$$

الشعبة: علوم تجريبية / اختبار في مادة: الرياضيات / بكالوريا 2017

التمرين الثالث: (05 نقاط)

المستوي المركب منسوب إلى المعلم المتعامد والمتجانس ($\vec{O}, \vec{u}, \vec{v}$) .

أجب بصحيح أو خطأ مع التعليل في كل حالة مما يلي:

$$S = \left\{-\frac{1}{2} + i\right\}$$
 هي \mathbb{C} هي المجموعة حلول المعادلة $\left(\frac{z+1-i}{z-i}\right)^2 = 1$ هي (1

.
$$(z+2)\times(\overline{z}+2)=\left|z+2\right|^2$$
 ، z من أجل كل عدد مركب (2

.
$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3n} = 1$$
 ، n عدد طبیعي من أجل كل عدد طبیعي (3

 $\frac{\pi}{2}$ وزاویته S (4 التشابه المباشر الذي مرکزه النقطة Ω ذات اللاحقة S وزاویته S

 $\omega'(-2;-3)$ ونصف القطر 3 بالتشابه S هي الدائرة C' ذات المركز $\omega(0;1)$ ونصف القطر 3 ونصف القطر 9 .

 $Z = (\sin \alpha + i \cos \alpha) \times (\cos \alpha - i \sin \alpha)$ من أجل كل عدد حقيقي α : إذا كان α

. عدد صحیح
$$k$$
 خیث $rg(Z) = \frac{\pi}{2} - 2\alpha + 2k\pi$ فإنّ

التمرين الرابع: (07 نقاط)

 $f(x) = 2 - x^2 e^{1-x}$:نعتبر الدالة العددية f المعرفة على $\mathbb R$ كما يلي (I

. $(O; \vec{i}, \vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس وليكن (C_f)

 $\lim_{x \to \infty} f(x)$ وأعط تفسيرا هندسيا لهذه النتيجة ، ثمّ احسب النهاية وأعط تفسيرا هندسيا لهذه النتيجة ، ثمّ احسب النهاية وأعط تفسيرا

$$f'(x) = x(x-2)e^{1-x}$$
 ، $\mathbb R$ من x کل کل بیّن أنّه من أجل کل x من x

ب) ادرس اتجاه تغيّر الدالة f ثمّ شكّل جدول تغيراتها.

 $oldsymbol{C}$. المماس للمنحنى (C_f) عند النقطة ذات الفاصلة (T)

. $h(x) = 1 - xe^{1-x}$ نعتبر الدالة العددية h المعرفة على \mathbb{R} كما يلى: (II

. (T) بيّن أنّه من أجل كل x من \mathbb{R} فإن: $0 \geq 0$ ، ثمّ ادرس الوضع النسبي للمنحنى (C_f) والمماس (1).

. $-0.7 < \alpha < -0.6$ حيث α حيث f(x) = 0 تقبل حلاً وحيدا (2

. $[-1;+\infty[$ المجال على المجال (C_f) على المجال (3)

. $F(x) = 2x + (x^2 + 2x + 2)e^{1-x}$: کما یلی \mathbb{R} کما یلی F (4

 (C_f) تحقّق أنّ F دالة أصلية للدالة f على \mathbb{R} ، ثمّ احسب مساحة الحيّز المستوي المحدّد بالمنحنى x=0 . x=0 وحامل محور الفواصل والمستقيمين اللّذين معادلتيهما:

انتهى الموضوع الثاني

حل التمرس الاول:

تکافئ (D):
$$\begin{cases} x + y - 9 = 0 \\ y + z - 4 = 0 \end{cases}$$
 (1

$$(D)$$
: $\begin{cases} x = -y + 9 \\ y = -z + 4 \end{cases}$(*)

 $t \in \mathbb{R}$ مع z = t

$$(D)$$
: $\begin{cases} x = 9 - y....(1) \\ y = 4 - t....(2) / t \in \mathbb{R} \end{cases}$ إذا $(*)$ تكافئ $z = t$

$$(D)$$
: $\begin{cases} x = 5 + t \\ y = 4 - t \ /t \in \mathbb{R} \end{cases}$ نجد (1) في (2) نبويض $z = t$

2) المستويان (P) و (P') متوازيان هذت يكافئ أن شعاعاهما الناظميان متساويان

لدينا
$$n \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 لدينا $n \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ لدينا

فهو أيضا شعاع ناظمي للمستوي (P') نفرض M(x;y;z) نقطة كيفية من المستوي نفرض \overline{AM} و \overline{n} متعامدان

$$(P')$$
: $\overrightarrow{AM} \cdot \vec{n} = 0$ و منه

$$\overrightarrow{AM}$$
 $\begin{pmatrix} x-1\\y+1\\z-2 \end{pmatrix}$ لدبنا

$$(P'):1(x-1)-1(y+1)+1(z-2)=0$$
 إذا $(P'):x-y+z-4=0$

(3) نعوض مركبات التمثيل الوسيطي للمستقيم
$$(D)$$
 في المعادلة الديكارتية للمستوى (P') نجد:

$$(5+t)-(4-t)+t-4=0$$

t=1 إذا

نعوض قيمة t في التمثيل الوسيطي x = 6

$$\begin{cases} x = 0 \\ y = 3 \end{cases}$$
 is the integral in the integral $z = 1$

A'(6;3;1) هي (P') و (P') هي اذا نقطة P' بما أن المستقيم P' يشمل النقطة P' ويوازي P' فإنه محتوى في المستوي P' فإنه يقطع في النقطة و بما أنه يقطع P' فإنه يقطع المستقيم P' لأن المستوي P' يقطع المستقيم P'

إذا الشعاع \overline{AA} شعاع توجيه للمستقيم (Δ)

لتكن M(x;y;z) نقطة كيفية من المستقيم ΔM و ΔM و ΔM و مرتبطان خطيا

و منه یوجد عدد حقیقی k حیث

$$(\Delta): \overrightarrow{AM} = k \overrightarrow{AA'}$$

لدينا
$$\overline{AA'}$$
 $\begin{pmatrix} 5\\4\\-1 \end{pmatrix}$ إذا

$$(\Delta): \begin{cases} x-1=5k \\ y+1=4k / k \in \mathbb{R} \\ z-2=-k \end{cases}$$

ندرس إشارة العبارة $x^2 - x + 2$ لأن المقام موجب تماما

بعد حل المعادلة $x_1 = -x^2 - x + 2 = 0$ بإستخدام المميز $x_1 = 1$ نجد حلان متمايزان

$$x_2 = -2$$

X		-2	1	+∞
$-x^2-x+2$	-)	+ 0	_

 $-u_n^2 - u_n + 2$ فإن العبارة $0 < u_n < 1$ بما أن $0 < u_n < 1$ متزايدة تماما موجبة و منه المتتالية (u_n) متزايدة تماما (v_n) هندسية نثبت أن المتتالية (v_n) هندسية نثبت أن $v_{n+1} = v_n \cdot q$ مستقل عن $v_{n+1} = v_n \cdot q$

$$v_{n+1} = \frac{3 - \frac{10}{u_n + 4} + 2}{1 - 3 + \frac{10}{u_n + 4}} \cdot v_{n+1} = \frac{u_{n+1} + 2}{1 - u_{n+1}}$$

$$v_{n+1} = \frac{5(u_n + 2)}{2(1 - u_n)} \cdot v_{n+1} = \frac{\frac{5u_n + 10}{u_n + 4}}{\frac{-2u_n + 2}{u_n + 4}}$$

$$v_{n+1} = \frac{5}{2}v_n$$
 إذا
$$v_0 = \frac{u_0 + 2}{1 - u_0} = 3$$

إذا $\left(v_{n}\right)$ متتالية هندسة أساسها

 $v_0 = 3$ حدها الأول

$$v_n = 3 \cdot \left(\frac{5}{2}\right)^n$$
 | $\downarrow \downarrow v_n = v_0 \cdot q^n$

$$(\Delta): \begin{cases} x = 5k + 1 \\ y = 4k - 1 / k \in \mathbb{R} \\ z = -k + 2 \end{cases}$$

حل التمرس الثابي:

اً)لتكن فرضية التراجع P(n) حيث $n \ge 0$ من أجل $P(n): 0 < u_n < 1$

P(0) نتحقق من صحة-

 $P(0): 0 < u_0 < 1$

محققة $P(0):0<\frac{1}{4}<1$

p(n) -)نفرض أن P(n) صحيحة من أجل كل وP(n+1) نبرهن محة P(n+1) بمعنى نبرهن أن

 $0 < u_n < 1$

بإضافة 4 نجد 5 بإضافة 4

$$\frac{1}{5} < \frac{1}{4+u_n} < \frac{1}{4}$$
 بالمقلوب نجد

$$-\frac{1}{4} < -\frac{1}{4+u_n} < -\frac{1}{5}$$
 بالضرب في 1-نجد

$$-\frac{10}{4} < -\frac{10}{4+u} < -\frac{10}{2}$$
 بالضرب في 10 نجد

$$3 - \frac{5}{2} < 3 - \frac{10}{4 + u_n} < 3 - 2$$
 بإضافة 3 نجد

$$\frac{3}{2} < u_{n+1} < 1$$
 إذا

$$0 < u_{n+1} < 1$$
 إذا $0 < \frac{3}{2}$ و بما أن

و منه فرضية التراجع P(n) محققة من أجل كل

 $n \in \mathbb{N}$

$$u_{n+1} - u_n = 3 - \frac{10}{u_n + 4} - u_n$$
 (ب

$$u_{n+1} - u_n = \frac{-u_n^2 - u_n + 2}{u_n + 4}$$

$$z_R = \overline{z_A}$$

$$|z_B| = |z_A|$$
 إذا

$$\arg z_B = -\arg z_A = \frac{\pi}{4} + 2k\pi / k \in \mathbb{Z} \quad \mathbf{9}$$

$$z_{B} = 2\sqrt{2}e^{i\frac{\pi}{4}}$$
 و $z_{A} = 2\sqrt{2}e^{-i\frac{\pi}{4}}$ إذا

كافئ ACD يكافئ المثلث B يكافئ

$$z_B = \frac{z_A + z_C + z_D}{3}$$

$$z_D = 3z_B - z_A - z_C$$
 إذا

 $z_D = 6 + 8i$

كاللبدأ O ينتمي إلى المجموعة O) يكافئ

$$\arg\left(\frac{z_B - z_O}{z_A - z_O}\right) = \frac{\pi}{2}$$

$$\arg \frac{z_B}{z_A} = \arg z_B - \arg z_A = 2 \arg z_B = \frac{\pi}{2}$$

 (Γ) إذا المبدأ O ينتمي إلى المجموعة

مجموعة النقط (Γ) هي عبارة عن نصف

دائرة ذات القوس المباشر BA ماعدا

B و A النقطتين

رسم توضيحي:

 2 نسبته 2 نسبته 2 نسبته 2

يكافئ

$$h:(z'+2)=2(z+2)$$

$$v_n = \frac{u_n + 2}{1 - u_n} \left(\mathbf{y} \right)$$

$$v_n \left(1 - u_n \right) = u_n + 2$$

$$v_n - v_n \cdot u_n = u_n + 2$$

$$u_n(-1-v_n) = 2-v_n$$

$$u_n = \frac{2 - v_n}{-1 - v_n} = \frac{v_n - 2}{v_n + 1} = \frac{v_n + 1}{v_n + 1} - \frac{3}{v_n + 1} = 1 - \frac{3}{v_n + 1}$$

أساس المتتالية (v_n) أكبر من 1 و حدها الأول

موجب

$$\lim_{n\to+\infty}v_n=+\infty$$
 \downarrow

$$\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} 1 - \frac{3}{v_n+2} = 1$$
 each

حل التمرس الثالث:

$$\begin{cases} z+2=0 \\ 0 & \text{f} \\ z^2-4z+8=0 \end{cases}$$
 تكافئ $(z+2)(z^2-4z+8)=0$ (1

$$z = -2$$
 تكافئ $z + 2 = 0$

$$z^2 - 4z + 8 = 0$$

$$\Delta = (-4)^2 - 4(1)(8) = -16 = (4i)^2$$

$$z_1 = \frac{4-4i}{2} = 2-2i$$
 إذا

$$z_2 = \frac{4+4i}{2} = 2+2i$$

إذا مجموعة حلول المعادلة هي

$$S = \{2 - 2i; 2 + 2i; -2\}$$

$$|z_A| = \sqrt{2^2 + (-2)^2} = 2\sqrt{2}$$
 (1 (II)

$$\begin{cases}
\cos \theta_A = \frac{2}{2\sqrt{2}} = \frac{\sqrt{2}}{2} \\
\sin \theta_A = \frac{-2}{2\sqrt{2}} = \frac{-\sqrt{2}}{2}
\end{cases} \Rightarrow \theta_A = \frac{-\pi}{4} + 2k\pi / k \in \mathbb{Z}$$

$$h: z' = 2z + 2$$
 إذا

$$z_{A'} = 2z_A + 2 = 6 - 4i$$
 يكافئ $h(A) = A'$

$$z_{B'} = 2z_B + 2 = 6 + 4i$$
 يكافئ $h(B) = B'$

B'A' إذا (Γ') هي نصف دائرة ذات القوس المباشر (Γ') إذا نصف بما أن [AB] قطر لنصف الدائرة $r'=\frac{A'B'}{2}=\frac{|z_B-z_A|}{2}=4$ قطرها $z_{\omega'}=\frac{z_{A'}+z_{B'}}{2}=6$ ذات اللاحقة ω'

حل التمرس الرابع:

 D_f من x من أجل كل f من أجل كل f من الدالة

$$\begin{cases}
-x \in D_f \\
\mathcal{I} \\
f(-x) = -f(x)
\end{cases}$$

1 < x أو x < -1

-1>-x أو -x>1 نجد الضرب في 1-

 $-x \in D_f$ إذا

$$f\left(-x\right) = \frac{3}{2}\left(-x\right) + \ln\left(\frac{-x-1}{-x+1}\right)\left(-\frac{x-1}{-x+1}\right)$$

$$f(-x) = -\frac{3}{2}x + \ln\left(\frac{-(x+1)}{-(x-1)}\right)$$

$$\left(\ln\left(\frac{a}{b}\right) = -\ln\left(\frac{b}{a}\right)\right) f\left(-x\right) = -\frac{3}{2}x - \ln\left(\frac{x-1}{x+1}\right)$$

إذا الدالة f دالة فردية

التفسير البياني: بما أن الدالة f دالة فردية فإن منحناها البياني يقبل المبدأ كمركز تناظر

$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{2}{3} x + \ln\left(\frac{x-1}{x+1}\right) = -\infty \ (-\frac{1}{x+1})$$

$$\lim_{\substack{x \to 0 \ X \to 0}} \ln X = -\infty$$
 و $\lim_{\substack{x \to 1 \ x \to 1}} \frac{x-1}{x+1} = 0^+$ کُن

$$\lim_{\substack{x \to -1 \ x \to -1}} \frac{2}{3} x + \ln \left(\frac{x-1}{x+1} \right) = +\infty \left(-\frac{x-1}{x+1} \right)$$

$$\lim_{X \to +\infty} \ln X = +\infty \quad \lim_{x \to -1} \frac{x-1}{x+1} = +\infty \quad \text{كُنّن}$$

$$\lim_{x \to +\infty} \frac{2}{3} x + \ln\left(\frac{x-1}{x+1}\right) = +\infty \left(-\frac{x-1}{x+1}\right)$$

$$\lim_{X \to 1} \ln(X) = 0$$
 و $\lim_{X \to +\infty} \frac{x-1}{x+1} = 1$ و أ

$$\lim_{x \to +\infty} \frac{2}{3} x = +\infty$$

$$\lim_{x \to -\infty} \frac{2}{3} x + \ln\left(\frac{x-1}{x+1}\right) = -\infty \left(-\frac{x-1}{x+1}\right)$$

$$\lim_{X \to 1} \ln(X) = 0$$
 و $\lim_{x \to \infty} \frac{x-1}{x+1} = 1$ و

$$\lim_{x \to -\infty} \frac{2}{3} x = -\infty$$

بما أن $\lim_{\substack{x \to -1 \ x \to -1}} f(x) = +\infty$ الدالة

يقبل مستقيما مقاربا موازبا لمحور f

x=-1 التراتيب معادلته

بما أن $\lim_{\substack{x \to 0 \ \text{r} \to 1}} f(x) = -\infty$ الدالة

يقبل مستقيما مقاربا موازبا لمحور f

x=1 التراتيب معادلته

3)أ)الدالة f قابلة للإشتقاق على كل

مجال مفتوح من مجالات مجموعة تعريفها

و دالتها المشتقة:

$$f(x) - \frac{2}{3}x = \ln\left(\frac{x-1}{x+1}\right) (5)$$

$$\lim_{x \to +\infty} f(x) - \frac{2}{3}x = \lim_{x \to +\infty} \ln\left(\frac{x-1}{x+1}\right) = 0$$

$$\lim_{x \to +\infty} \ln(X) = 0 \quad \lim_{x \to +\infty} \frac{x-1}{x+1} = 1 \quad \text{if}$$

$$\lim_{x \to +\infty} f(x) - \frac{2}{3}x = \lim_{x \to +\infty} \ln\left(\frac{x-1}{x+1}\right) = 0$$

$$\lim_{x \to +\infty} \ln(X) = 0 \quad \lim_{x \to +\infty} \frac{x-1}{x+1} = 1 \quad \text{if}$$

$$\lim_{x \to +\infty} \ln(X) = 0 \quad \lim_{x \to +\infty} \frac{x-1}{x+1} = 1 \quad \text{if}$$

$$\lim_{x \to +\infty} (C_f) \quad \text{if} \quad \text{if}$$

$$\lim_{x \to +\infty} \ln(x) = 0 \quad \text{if}$$

$$\lim_{x \to +\infty} \ln(x$$

-)دراسة الوضعية:

$$\frac{x-1}{x+1} = 1$$
 تكافئ $\ln\left(\frac{x-1}{x+1}\right) = 0$

-1=1 و منه x-1=x+1 إذا

و منه المعادلة f(x) - y = 0 لا تقبل حلول

 (Δ) إذا المنحنى (C_f) لا يقطع المستقيم

$$x \in D_f$$
 مع $\frac{x-1}{x+1} > 1$ يكافئ $\ln\left(\frac{x-1}{x+1}\right) > 0$ إذا $0 < \frac{-2}{x+1} > 0$ و منه $0 < \frac{x-1}{x+1} - 1 > 0$

نحل المتراجحة $0 < \frac{-2}{r+1}$ عن طريق دراسة $\frac{-2}{x+1}$ إشارة العبارة

X	-8	-1	+∞
<i>x</i> +1	+		_

$$f'(x) = \frac{2}{3} + \frac{\left(\frac{x-1}{x+1}\right)}{\left(\frac{x-1}{x+1}\right)}$$
$$f'(x) = \frac{2}{3} + \frac{2}{(x+1)^2} \times \frac{(x+1)}{(x-1)} = \frac{2}{3} + \frac{2}{(x+1)(x-1)}$$
$$f'(x) = \frac{2(x^2-1)+6}{3(x^2-1)} = \frac{2(x^2+2)}{3(x^2-1)}$$

 D_f على العبارة المقام على الخارة المقام على العبارة المقام على العبارة ال

 $]-\infty;-1[$ الدالة f متزايدة تماما على المجال fو متزايدة تماما أيضا على المجال]∞+, [

$$f(1,9) \approx 0.09 \cdot f(1,8) \approx -0.05$$
 (4 الدالة f مستمرة و رتيبة على المجال $f(1,8) \times f(1,9) < 0$ الدالة $f(1,8) \times f(1,9) < 0$ المتوسطة المعادلة $f(x) = 0$ تقبل حلا وحيدا $f(x) = 0$ عيث $f(x) = 0$

نقاط تقاطع المستقيمات
$$(\Delta_m)$$
 ذو المعادلة $y=|m|x$ مع منحنی الدالة x و بما أن الوسيط مضروب في المتغير x فهذه المناقشة تعتبر مناقشة بيانية دورانية

-)إيجاد النقطة الثابتة التي تشمها جميع المستقيمات (Δ_m)

y = 0 ومنه y - |m|x = 0 إذا y = |m|x

y = 0

-)شرح الطريقة: بما أن معامل توجيه المستقيمات (Δ_m) موجب إذا فإن المستقيمات (Δ_m) تقع فوق محور الفواصل x>0 لما x>0

إذا نأخذ بعين الإعتبار محور الفواصل و المستقيم المقارب الماثل فقط و نرسم بينهما مستقيم كيفي و فوقهما مستقيم كيفي آخر

إذا لما
$$\ln\left(\frac{x-1}{x+1}\right) > 0$$
 العبارة $x \in]-\infty; -1[$ المنحنى C_f فوق المستقيم (C_f فوق المستقيم $x \in D_f$ مع $\frac{x-1}{x+1} < 1$ يكافئ $\ln\left(\frac{x-1}{x+1}\right) < 0$ إذا $\frac{-2}{x+1} < 0$ و منه $0 > \frac{x-1}{x+1} - 1 < 0$

نحل المتراجحة $0 > \frac{-2}{x+1}$ عن طريق دراسة إشارة العبارة $\frac{-2}{x+1}$

إذا حسب الجدول السابق

للبارة ($x\in \left(]-1;+\infty \left[\bigcap D_f\right]$) العبارة المتقيم المستقيم المستقيم

 (Δ)

(6

$$(2-3|m|)x+3\ln\left(\frac{x-1}{x+1}\right)=0$$
 (7

f(x) = |m|x بعد الحساب و التبسيط نجد

إذا عدد حلول المعادلة

عدد
$$(2-3|m|)x+3\ln\left(\frac{x-1}{x+1}\right)=0$$

حلان متمايزان

لا تقبل
$$\frac{2}{3} \le m$$
 أو $m \le \frac{2}{3} \le m$ المعادلة لا تقبل

حلول في 🏿

الموقع الأول للرياضيات www.mathbookdz.com

$$\vec{n}$$
 $\begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}$ الشعاع ناظمي للمستوي إذا الشعاع المستوي إذا الشعاع

 (Δ) شعاع توجيه للمستقيم M(x;y;z) لتكن للستقيم

إذا الشعاعان $ec{n}$ و \overrightarrow{OM} مرتبطان Δ

 (Δ) : $\overrightarrow{OM} = k\overrightarrow{n}/k \in \mathbb{R}$ خيطيا إذا

$$(\Delta): \begin{cases} x = 2k \\ y = 3k / k \in \mathbb{R} \end{cases}$$
 ومنه $z = 6k$

(Δ) لتعيين نقطة تقاطع المستقيم (Δ) و المستوي (Δ) نعوض مركبات التمثيل الوسيطي في المعادلة الديكارتية للمستوي (Δ)

$$k = \frac{6}{49}$$
 فنجد

نعوض k في التمثيل الوسيطي للمستقيم $H\left(\frac{12}{49}; \frac{18}{49}; \frac{36}{49}\right)$ فنجد

 $\overrightarrow{BH} \cdot \overrightarrow{AC} = 0$ یعامد (AC) یعامد (BH) (4

$$\overrightarrow{BH} \begin{pmatrix} \frac{12}{49} \\ \frac{80}{49} \\ \frac{36}{49} \end{pmatrix}$$

$$\overrightarrow{BH} \cdot \overrightarrow{AC} = \frac{12}{49} \cdot (-3) + \frac{80}{49} \cdot 0 + \frac{36}{49} \cdot 1 = 0$$
 إذا

$$\overrightarrow{CH} \begin{pmatrix} \frac{12}{49} \\ \frac{18}{49} \\ \frac{13}{49} \end{pmatrix}$$

النقاط C, B, A تعين مستويا يكافئ الشعاعان (1

و \overrightarrow{AC} غير مرتبطان خطيا \overrightarrow{AC}

$$\overrightarrow{AC} \begin{pmatrix} -3\\0\\1 \end{pmatrix}$$
, $\overrightarrow{AB} \begin{pmatrix} -3\\2\\0 \end{pmatrix}$

نفرض أن الشعاعان \overrightarrow{AB} و \overrightarrow{AB} مرتبطان خطيا

 $\overrightarrow{AB} = k\overrightarrow{AC}$ إذا يوجد عدد حقيقي k حيث

$$\begin{cases}
-3 = -3k \\
2 = 0
\end{cases}$$
 إذا $2 = 0$

إذا الشعاعان \overrightarrow{AB} و \overrightarrow{AC} غير مرتبطان خطيا و

منه النقاط C,B,A ت تعين مستويا

معادلة (ABC): ax+by+cz+d=0 معادلة

المستوي (ABC) إذا $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ المستوي المستوي

$$\left\{ egin{aligned} \overrightarrow{AC} \cdot \overrightarrow{n} &= 0 \\ \overrightarrow{AB} \cdot \overrightarrow{n} &= 0 \end{aligned} \right.$$
 ومنه $\left\{ egin{aligned} -3a + 2b &= 0 \\ -3a + c &= 0 \end{aligned} \right.$ إذا

c = 6، b = 3 نجد a = 2

بتعويض إحداثيات النقطة A في معادلة المستوي

$$d = -6$$
 نجد

$$(ABC)$$
: $2x+3y+6z-6=0$ إذا

2)المستقيم (Δ) عمودي على المستوي

(ABC) إذا شعاع توجيه المستقيم هو

 $\overrightarrow{CH} \cdot \overrightarrow{AB}$ نحسب

$$\overrightarrow{CH} \cdot \overrightarrow{AB} = \frac{12}{49} \cdot (-3) + \frac{18}{49} \cdot (2) + \frac{13}{49} \cdot 0 = 0$$

إذا (CH) يعامد (AB) ومنه (CH) عمود لـ

و بما أن النقطة
$$H$$
 تنتمي لكلا العمودين (AB)

فهي نقطة تقاطع الأعمدة

حل التمرس الثابي:

ا) الدالة f قابلة للإشتقاق على [-4;1] و دالتها المشتقة

$$f'(x) = \frac{49}{(x+11)^2}$$

اذا الدالة متزايدة تماما $(x+11)^2 > 0$ و 49 > 0

على [-4;1]

$$f(-4) \le f(x) \le f(1)$$
 اِذَا كَانِ $-4 \le x \le 1$

$$\frac{-13}{12} \le 1$$
 إذا $-4 \le f(x) \le \frac{-13}{12}$

 $-4 \le f(x) \le 1$ إذا

(1(II

التخمين: المتتالية (u_n) متناقصة و متقاربة

كا لتكن فرضية التراجع P(n) حيث (2

$$P(n):-4 < u_n \le 0$$

$$P(0)$$
 نتحقق من صحة (-

$$P(0):-4 < u_0 \le 0$$

$$P(0):-4<0\leq 0$$

محققة

$$P(n+1)$$
 نفرض صحة $P(n)$ و نبرهن صحة (-

$$4 < u_{n+1} \le 0$$
 بمعنی نبرهن أن

الجال متزایدة على المجال
$$-4 < u_n \le 0$$

$$f\left(-4\right) < f\left(u_{n}\right) < f\left(0\right)$$

$$\frac{-16}{11} \le 0$$
 و بما أن $-4 < u_{n+1} \le \frac{-16}{11}$

$$-4 < u_{n+1} \le 0$$
 إذا

 $-4 < u_n \le 0$ و منه حسب فرضية التراجع فإن

إثبات أن
$$(u_n)$$
 متناقصة تماما -)

$$u_{n+1} - u_n = \frac{3u_n - 16}{u + 11} - u_n$$

$$u_{n+1} - u_n = \frac{-u_n^2 - 8u_n - 16}{u_n + 11}$$

و منه المقام موجب $-4 < u_n$ باذا $-4 < u_n$

إذا البسط
$$-u_n 2 - 8u_n - 16 = -(u_n + 4)^2$$

سالب

ومنه المتتالية (u_n) متناقصة تماما

$$v_n \times (u_n + 4) = 1$$
 إذا $v_n \times u_n = 1 - 4v_n$ (3)

 $v_n = \frac{1}{u_n + 4}$ e ais

لإثبات أن (v_n) متتالية هندسية نثبت أن

n عدد حقیقي مستقل عن $v_{n+1}-v_n=r$

$$v_{n+1} - v_n = \frac{1}{u_{n+1} + 4} - \frac{1}{u_n + 4}$$
$$v_{n+1} - v_n = \frac{1}{3u_n - 16} - \frac{1}{u_n + 4}$$

$$v_{n+1} - v_n = \frac{u_n + 11}{7(u_n + 4)} - \frac{1}{u_n + 4}$$

$$v_{n+1} - v_n = \frac{u_n + 11}{7(u_n + 4)} - \frac{7}{7(u_n + 4)}$$

$$v_{n+1} - v_n = \frac{1}{7}$$

$$v_0 = \frac{1}{u_0 + 4} = \frac{1}{4}$$

إذا (v_n) متتالية هندسية أساسها $r = \frac{1}{7}$ و حدها

$$v_0 = \frac{1}{4}$$
 الأول

-)حساب المجموع

 $S = v_0 \times u_0 + v_1 \times u_1 + \dots + v_{2016} \times u_{2016}$

$$S = 1 - 4v_0 + 1 - 4v_1 + \dots + 1 - 4v_{2016}$$

$$S = \underbrace{1+1+\ldots+1}_{2016-0+1} - 4(v_0 + v_1 + \ldots + v_{2016})$$

$$S = 2017 - 4 \left(\frac{(2017)(v_0 + v_{2016})}{2} \right)$$

$$S = 2017 - 4 \left(\frac{(2017)\left(\frac{1}{4} + \frac{1}{4} + 2016\left(\frac{1}{7}\right)\right)}{2} \right)$$

بعد التبسيط و الحساب نجد:

$$S = 72612$$

حل التمرس الثالث:

1)بما أن i تعدم المقام إذا فهي قيمة

ممنوعة و لا تعتبر حلا و منه الإجابة خاطئة

$$(z+2)\times(\overline{z}+2)=(z+2)\times(\overline{z+2})$$
 (2

 $\overline{z'}$ مع z' مع أي مع تنا نضرب عددا بمرافقه

$$z' \times \overline{z'} = |z'|^2$$
 و نعلم أن

$$(z+2)\times(\overline{z}+2)=|z+2|^2$$
 إذا

3)نحسب طويلة و عمدة العدد

$$a = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$|a| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$\theta_a = \frac{\pi}{3} + 2k\pi / k \in \mathbb{Z}$$
 إذ $\begin{cases} \cos \theta_a = \frac{1}{2} \\ \sin \theta_a = \frac{\sqrt{3}}{2} \end{cases}$

بتطبيق دستور موافر نجد

$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3n} = \cos \pi n + i\sin \pi n$$

و $\cos n\pi = 1$ من أجل الأعداد $\sin n\pi = 0$

الزوجية أو $\cos n\pi = -1$ من أجل الأعداد

الفردية

إذا
$$1=1$$
 إذا كان n زوجي أو $\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{3n}=1$

يذا كان
$$n$$
 فردي $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3n} = -1$

و منه الإجابة خاطئة

$$S:(z'-1)=3e^{i\frac{\pi}{2}}(z-1)$$
 (4

$$S: z' = 3iz + 1 - 3i$$
 إذا

إذا الدالة f متزايدة تماما على المجال

 $[2;+\infty[$

$$f(0)=2$$

$$f(2) = 2 - \frac{4}{e}$$

х	-∞	0	2		+∞
f'(x)	+	0	-	•	+
f(x)	+8	1 ² \	<u></u>	- 4/	2

$$(T): y = f'(1)(x-1) + f(1)$$
 (3

$$f'(1) = -1$$

$$f(1)=1$$
 e

$$(T)$$
: $y = -x + 2$ إذا

اا)الدالة h قابلة لh للإشتقاق على \mathbb{R} و

دالتها المشتقة:

$$h'(x) = (x-1)e^{1-x}$$

$$x=1$$
 يكافئ $h'(x)=0$

إذا

X	1		
h'(x)	-) +	

الله الله
$$h(1) = 0$$
 قيمة حدية صغرى للداله $h(1) = 0$

$$x \in \mathbb{R}$$
 من أجل كل $h(x) \ge 0$

$$r' = 3r = 9$$
 فإن $r = 3$

S صورة ω بالتحويل ω'

$$z_{\omega'} = 3i(i) + 1 - 3i = -2 - 3i$$
 إذ

$$\omega(-2;-3)$$
 و منه

إذا الإجابة صحيحة

$$z = (\sin \alpha + i \cos \alpha)(\cos \alpha - i \sin \alpha)$$
(5)

$$z = \left(\cos\left(\frac{\pi}{2} - \alpha\right) + i\sin\left(\frac{\pi}{2} - \alpha\right)\right) \left(\cos\left(-\alpha\right) + i\sin\left(-\alpha\right)\right)$$

$$z = \left(\cos\left(\frac{\pi}{2} - 2\alpha\right) + i\sin\left(\frac{\pi}{2} - 2\alpha\right)\right)$$

إذا الإجابة صحيحة

حل التمرس الرابع:

$$\lim_{x \to +\infty} f(x) = 2 \left(-\left(1\right) \right)$$

$$\lim_{x\to +\infty} x^2 e^{1-x} = \lim_{x\to +\infty} \frac{x^2}{e^x} e = 0$$
 لأن

$$\lim_{x \to -\infty} f(x) = -\infty \left(-\frac{1}{2} \right)$$

$$\lim_{x \to -\infty} x^2 e^{1-x} = \lim_{x \to -\infty} \frac{x^2}{e^x} e = +\infty$$
 کُن

أ)أ)الدالة f قابلة للإشتقاق على \mathbb{R} و دالتها f

المشتقة

$$f'(x) = -2xe^{1-x} + e^{1-x}x^2 = x(x-2)e^{1-x}$$

$$x(x-2)$$
 ب) $e^{1-x} > 0$ إذا إشارة $f'(x)$ من إشارة

х	_∞ () 2	2 +∞
x(x-2)	+) –) +

 $]-\infty;0]$ إذا الدالة f متزايدة تماما على المجال

[0;2] إذا الدالة f متناقصة تماما على المجال

-)الوضع النسبي:

$$f(x) - y = x(1 - xe^{1-x}) = xh(x)$$

$$x$$
 إذا إشارة $f(x)-y$ من إشارة

إذا لما
$$x \in]-\infty;0[$$
 المنحنى تحت المماس

لما
$$x=0$$
 المنحنى يقطع المماس

لما x=1 المنحنى يكون مماسي مع المماس

لماس المنحنى فوق المماس
$$x \in]0;1[\ \cup\]1;+\infty[$$

$$f(-0,7) \approx -0.68$$
, $f(-0,6) \approx 0.21(2$

الدالة f مستمرة و رتيبة على المجال

إذا
$$f\left(-0,7\right) \times f\left(-0,6\right) < 0$$
 و]-0,7;-0,6

حسب مبرهنة القيم المتوسطة المعادلة

تقبل حلا وحيدا
$$\alpha$$
 حيث $f(x)=0$

$$-0.7 < \alpha < -0.6$$

(3

 \mathbb{R} والدالة F قابلة للإشتقاق على F'(x) = f(x) دالتها المشتقة f(x) = f(x) إذا F(x) = f(x) دالة أصلية للدالة f(x) = f(x) دالة أصلية f(x) = f(x) دالة أصلية f(x) = f(x)

الموقع الأول للرياضيات
www.mathbookdz.com