13/01/23

Time Limit: 90 Minutes Total: 100 points

Name (Print):

- 1. Figure 1 shows a schematic of a hybrid power plant that combines a concentrated solar power plant and a nuclear reactor. The solar plant consists of a central tower and a field of mirrors that collect sun radiation. The nuclear reactor is a Pressurized Water Reactor (PWR). Both systems are connected by means of a thermal energy storage (TES) system. Some information of the plant is provided below:
 - Molten salt hot and cold temperatures: $860^{\circ}K$ and $550^{\circ}K$
 - Effective area of sun collection in the solar field $1000000m^2$
 - Molten salt heat capacity: 1490J/kgK
 - Electrical generator efficiency: $\eta_g = 93\%$
 - Turbine mechanical efficiency: $\eta_m = 92\%$
 - \bullet Nominal thermal nuclear power: 1500MW
 - Overall radiation to heat efficiency $\eta_{sun} = 55\%$
 - Primary circuit pressure: 150bar (check Table 1)
 - Primary circuit temperatures: $600^{\circ}K$ and $570^{\circ}K$
 - Secondary circuit pressure: 71bar (check Table 1)
 - At the exit of the SG you have pure saturated steam
 - The inlet SG enthalpy is: 147kJ/kg
 - The enthalpy at the turbine's outlet is: 1833kJ/kg

Figure 1: Scheme of the nuclear-solar hybrid thermal power plant.

Power systems 13/01/23

Table 1: Some	properties of	of water	at the	primary	and s	econdary	pressures
Table 1. Donie	proportion (or water	ar one	printer y	and b	CCCIICICITY	probbatos

Pressure	Sat. liq. enthalpy	Sat. vap. enthalpy	Liquid Cp	Sat. Temp.
150 bar	1610 kJ/kg	$2610 \; \mathrm{kJ/kg}$	8 kJ/kgK	615 K
71 bar	1272 kJ/kg	2771 kJ/kg	5 kJ/kgK	$559~\mathrm{K}$

- (a) (15 points) Roughly draw the T-S diagram for the three fluid circuits: Nuclear primary circuit, Steam generator circuit and the molten salts circuit. Indicate the isobaric and isoentropic processes.
- (b) (15 points) What are the mass flows in the primary and secondary circuit of the PWR?
- (c) (15 points) 'For the next 2 weeks, your company has predicted that the average daily solar radiation at the site will be $7kWh/m^2/day$. If you want to operate the plant continuously at the highest constant power, what will be the molten salt mass flow from the hot tank to the cold tank?'
- (d) (20 points) In these conditions, what will be the Rankine cycle efficiency? and the electrical power output of the plant?
- (e) (15 points) For 1 day (24h) of the proposed time period, Draw orientatively a plot with the evolution of: the massflow from the hot tank to the cold tank, the massflow from the cold tank to the hot tank and the hot tank volume.
- 2. (10 points) The nuclear core of the reactor is composed of 40t of UO_2 at an enrichment of 5%. During reload, the fuel is extracted from the reactor with an average fuel burn up of 70000MWd/tU. How many years has the fuel been in the reactor before its extraction to the spent fuel pool?
- 3. (10 points) Figure 2 shows the fission cross section spectrum for different nuclides. Use the figure to explain the most typical path a neutron follows in a PWR, (the one that leads to typical fission).

Figure 2: Fission cross section for different nuclides

Topic 2 Page 2 of 2