程晨闻 东南大学电气工程学院

> 数据的表示

- 二进制
- 不同数据格式
- 进制变换
- BCD, ASCII, Unicode
- 〉小数的表示
 - 定点数
 - 浮点数

在计算机内部,数据都是以二进制的形式存储和运算的。

位 (bit)	字节 (byte)	字 (word)
存储数据的最小单位	计算机数据处理的 <mark>基本</mark> 单位	计算机进行数据 <mark>处理</mark> 时, 一次存取、加工和传送 的数据长度
0或1	1 byte = 8 bit	8位、16位、32位和64 位
二进制中的一个位	每个字节由8个二进制位组成	决定了计算机数据处理 的速度
每 增加一位 ,所能表示 的信息量就 增加一倍	一个字节可存放一个 ASCII码	字长越长,性能越好
要表示更多的信息,就 得把多个位组合成一个 整体	两个字节存放一个 汉字 国际码	衡量计算机性能的一个 重要标识

> 机器数

- 在计算机内部,任何信息都以二进制代码表示(即 0与1的组合来表示)。一个数在计算机中的表示形 式, 称为机器数。

> 真值

- 机器数所对应的原来的数值称为真值

> 原码

- 最高位代表符号(若为0,则代表正数,若为1,则 代表负数)
- 数值部分为真值的绝对值

> 反码

- 正数的反码不变
- 负数的反码是对应正数的原码取反

> 补码 (计算机中使用的编码)

- 正数的补码不变
- 负数的补码是其对应正数的反码+1

十进制	+73	-73	+127	-127	+0	-0
二进制(真值)	+1001001B	-1001001B	+1111111B	-1111111B	+0000000B	-0000000B
原码	01001001B	11001001B	01111111B	11111111B	000000B	10000000B
反码	01001001B	10110110B	01111111B	1000000B	0000000B	11111111B
补码	01001001B	10110111B	01111111B	10000001B	000000B	0000000B

> 十进制与二进制之间的转换

例如把52换算成二进制数, 计算结果如图:

2 :	52			 	 0
2	26			 	 0
2	13			 	 1
•	2 6	i .		 	 0
	2	3		 	 1
		1	- 	 	 1

例如要把-52换算成二进制:

- 1. 先取得52的二进制: 00110100
- 2.对所得到的二进制数取反: 11001011
- 3.将取反后的数值加一即可: 11001100

> 二进制与十六进制之间的转换

> 十进制和十六进制转换

> C语言中的写法

```
//合法的二进制
int a = 0b101; //换算成十进制为 5
int b = -0b110010; //换算成十进制为 -50
int c = 0B100001; //换算成十进制为 33
//合法的八进制数
int a = 015; //换算成十进制为 13
int b = -0101; //换算成十进制为 -65
int c = 0177777; //换算成十进制为 65535
//合法的十六进制
int a = 0X2A; //换算成十进制为 42
int b = -0XA0; //换算成十进制为 -160
int c = 0xfffff; //换算成十进制为 65535
```

- > 使用计算器进行数制转换
- > MODE
- > BASE-N
- ➤ SHIFT + DEC十进制
- ➤ SHIFT + HEX十六进制
- ➤ SHIFT + BIN二进制

> BCD (Binary-coded decimal) 码

- 常用8421 BCD码
- 压缩型BCD码
- Gray码(相邻的2个数只有一位不同)

自然二进制码与格雷码的对照表:

十进制数	自然二进制数	格雷码	十进制数	自然二进制数	格雷码
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

➤ ASCII码表

- 7位二进制编码。
- 表示字母、数字字符和控制字符

<u>D</u>	ec	Нх	Oct	Char	,	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ch	<u>r</u>	
	0	0	000	NUL	(null)	32	20	040	@#32;	Space	64	40	100	a#64;	0	96	60	140	4 #96 ;	8	
	1	1	001	SOH	(start of heading)	33	21	041	!	1	65	41	101	A	A	97	61	141	a	a	
	2	2	002	STX	(start of text)				" ;		66	42	102	B	В	98	62	142	& # 98;	b	
	3	3	003	ETX	(end of text)	35	23	043	a#35;	#	67	43	103	a#67;					a#99;		
	4	4	004	EOT	(end of transmission)	36	24	044	\$	ş	68	44	104	D	D				d		
	5	5	005	ENQ	(enquiry)	37	25	045	a#37;	*	ı			E					e		
	6	6	006	ACK	(acknowledge)				&		70	46	106	F	F	102	66	146	a#102;	f	
	7	7	007	BEL	(bell)	39	27	047	%#39;	1				G					g		
	8	8	010		(backspace)	ı			&# 4 0;					H					4 ;		
	9	9	011	TAB	(horizontal tab)	ı)					6#73;					i		
1	.0	A	012	LF	(NL line feed, new line)	ı			a#42;					a#74;					j		
1	.1		013		(vertical tab)	I			a#43;					K					k		
1	.2	С	014	FF	(NP form feed, new page)				,					L					l		
1			015		(carriage return)				a#45;					M					m		
1			016		(shift out)				a#46;					a#78;					n		
_			017		(shift in)				a#47;					a#79;					o		
					(data link escape)				a#48;					O;					@#112;	_	
					(device control 1)				«# 49 ;					Q					q		
					(device control 2)				a#50;					R					r		
					(device control 3)				3		ı			483 ;					s		
					(device control 4)	I			۵#52;					a#84;					t		
					(negative acknowledge)	ı			a#53;		ı			a#85;		1			u		
					(synchronous idle)				a#54;					V					v		
					(end of trans. block)				a#55;					a#87;					w		
					(cancel)				a#56;					X					x		
			031		(end of medium)	I			a#57;		I			a#89;					y		
					(substitute)	I			6#58;					Z					z		
					(escape)				6#59;					[_				{		
			034		(file separator)	ı			4#60;		ı			\							
			035		(group separator)	ı			=		ı]	_	ı			}		
100			036		(record separator)	I			>					^					~		
[蘇]	1 1	lF	037	US	(unit separator)	63	ЗF	077	16/\$26β;	?	95	5F	137	_	_	127	7F	177		DEL	
														_							SE

Source: www.LookupTables.com seu.edu.cn

> Unicode

- 16位编码
- 对世界上所有语言大部分字符进行编码
- https://unicode-table.com/en/#control-character

> 32位ARM C语言编程中所用的数据类型

数据类型	位数	范围 (有符号)	范围 (无符号)
char,int8_t,uint8_t	8	-128 – 127	0 – 255
short, int16_t, uint16_t	16	-32768 – 32767	0 – 65535
int, int32_t, uint32_t	32	-2^31 – 2^31-1	0 – 2^32 -1
long	32	-2^31 – 2^31-1	0 – 2^32 -1
Long long, int64_t, uint64_t	64	-2^63 - 2^63-1	0 - 2^64 -1
float	32	-3.403*10^38 - 3.4	103*10^38
Double, long double	64	-1.798*10^308 – 1	.798*10^308

〉小数的表示方法

- 直观的小数表示法
- □用10000表示10.000, 10001表示10.001
- □用10000表示100.00, 10001表示100.01
- **U**.....
- □表示方法自己定义,不统一,注意取值范围
- □加减运算,不受影响
- □乘除运算,受影响,需要设计额外的乘除法

- 定点数

· 约定数值的小数点固定在某一位置, 称为定点表示 法, 简称为定点数。

Qf: 称作 "Q 格式", Qn 表示 n 个小数字。

- 定点数

- ·相当于将一个小数放大2^n倍后存储;
- · 将乘除运算, 转换为移位运算;

32位各个定点Q格式表达的数据精度和范围:

Data Type		Range	Resolution/Precision
	Min	Max	
_iq30	-2	1.999 999 999	0.000 000 001
_iq29	-4	3.999 999 998	0.000 000 002
_iq28	-8	7.999 999 996	0.000 000 004
_iq27	-16	15.999 999 993	0.000 000 007
_iq26	-32	31.999 999 985	0.000 000 015
_iq25	-64	63.999 999 970	0.000 000 030
_iq24	-128	127.999 999 940	0.000 000 060
_iq23	-256	255.999 999 981	0.000 000 119
_iq22	-512	511.999 999 762	0.000 000 238
_iq21	-1024	1023.999 999 523	0.000 000 477
_iq20	-2048	2047.999 999 046	0.000 000 954
_iq19	-4096	4095.999 998 093	0.000 001 907
_iq18	-8192	8191.999 996 185	0.000 003 815
_iq17	-16384	16383.999 992 371	0.000 007 629
_iq16	-32768	32767.999 984 741	0.000 015 259
_iq15	-65536	65535.999 969 482	0.000 030 518
_iq14	-131072	131071.999 938 965	0.000 061 035
_iq13	-262144	262143.999 877 930	0.000 122 070

- 定点数

· 无论是什么Q格式,其实都是long类型。

```
typedef
                  _iq;
                            /* Fixed point data type: GLOBAL_Q format
          long
typedef
                  _iq30;
                            /* Fixed point data type: Q30 format
                                                                        */
          long
typedef
          long
                  _iq29;
                            /* Fixed point data type: Q29 format
                                                                        */
                            /* Fixed point data type: Q28 format
typedef
                  _iq28;
                                                                        */
          long
                            / Fixed point data type: Q27 format
typedef
          long
                  _iq27;
                                                                        */
typedef
                  _iq26;
                            /* Fixed point data type: Q26 format
          long
typedef
          long
                  _iq25;
                            /* Fixed point data type: Q25 format
                                                                        * /
                  _iq24;
                            /* Fixed point data type: Q24 format
typedef
                                                                        * /
          long
typedef
          long
                  _iq23;
                            /* Fixed point data type: Q23 format
                                                                        */
typedef
                  _iq22;
                            /* Fixed point data type: Q22 format
                                                                        * /
          long
typedef
                  _iq21;
                            /* Fixed point data type: Q21 format
                                                                        * /
          long
                            /* Fixed point data type: Q20 format
typedef
          long
                  _iq20;
                                                                        */
typedef
                  _iq19;
                            /* Fixed point data type: Q19 format
                                                                        * /
          long
                  _iq18;
                            /* Fixed point data type: Q18 format
typedef
          long
                                                                        * /
typedef
          long
                  _iq17;
                            /* Fixed point data type: Q17 format
                                                                        * /
typedef
                  _iq16;
                            /* Fixed point data type: Q16 format
                                                                        */
          long
typedef
                  _iq15;
                            /* Fixed point data type: Q15 format
                                                                        */
          long
typedef
          long
                  _iq14;
                            /* Fixed point data type: Q14 format
                                                                        */
typedef
          long
                  _iq13;
                            /* Fixed point data type: Q13 format
                                                                        */
typedef
                  _iq12;
                            /* Fixed point data type: Q12 format
                                                                        * /
          long
typedef
          long
                  _iq11;
                            /* Fixed point data type: Q11 format
                                                                         * /
typedef
          long
                  _iq10;
                            /* Fixed point data type: Q10 format
typedef
                  _iq9;
                            /* Fixed point data type: Q9 format
          long
                  _iq8;
                            /* Fixed point data type: Q8 format
typedef
          long
typedef
          long
                  _iq7;
                            /* Fixed point data type: Q7 format
typedef
          long
                  _iq6;
                            /* Fixed point data type: Q6 format
typedef
                  _iq5;
                            /* Fixed point data type: Q5 format
                                                                         */
          long
typedef
                            /* Fixed point data type: Q4 format
                                                                         * /
                  _iq4;
          long
typedef
          long
                  _iq3;
                            /* Fixed point data type: Q3 format
                                                                        * /
typedef
                  _iq2;
                            /* Fixed point data type: Q2 format
                                                                         * /
          long
                            /* Fixed point data type: Q1 format
typedef
                  _iq1;
          long
```

> 使用IQMath库进行运算

Function Name	IQ Format	Execution Cycles	Accuracy (in bits)	Program Memory (words)	Input format	Output format	Remarks
			Trigonometr	ic Functions			•
IQNasin	1-29	154		82 words	IQN	IQN	Note A
IQNsin	1-29	46	30 bits	49 words	IQN	IQN	
IQNsinPU	1-30	40	30 bits	41 words	IQN	IQN	
IQNacos	1-29	170		93 words	IQN	IQN	Note A
IQNcos	1-29	44	30 bits	47 words	IQN	IQN	
IQNcosPU	1-30	38	29 bits	39 words	IQN	IQN	
IQNatan2	1-29	109	26 bits	123 words	IQN	IQN	
IQNatan2PU	1-29	117	27 bits	136 words	IQN	IQN	
IQatan	1-29	109	25 bits	123 words	IQN	IQN	
			Mathematic	al Functions			•
IQNexp	1-29	190		61 words	IQN	IQN	Note A
IQNsqrt	1-30	63	29 bits	66 words	IQN	IQN	
IQNisqrt	1-30	64	29 bits	69 words	IQN	IQN	
IQNmag	1-30	86	29 bits	96 words	IQN	IQN	
			Arithmetic	Functions			
IQNmpy	1-30	~ 6	32 bits	NA	IQN*IQN	IQN	INTRINSIC
IQNrmpy	1-30	17	32 bits	13 words	IQN*IQN	IQN	
IQNrsmpy	1-30	21	32 bits	21 words	IQN*IQN	IQN	
IQNmpyl32	1-30	~ 4	32 bits	NA	IQN*long	IQN	C-MACRO
IQNmpyl32int	1-30	22	32 bits	16 words	IQN*long	long	
IQNmpyl32frac	1-30	24	32 bits	20 words	IQN*long	IQN	
IQNmpyIQX		~ 7	32 bits	NA	IQN*IQN	IQN	INTRINSIC
IQNdiv	1-30	63	28 bits	71 words	IQN/IQN	IQN	

18/21

〉小数的表示方法

- 浮点数
 - · 小数点位置可以任意浮动,称为浮点表示法,简称 为浮点数;
 - ・符号位+指数+尾数。

float的规格化表示为: $\pm 1.f imes 2^{E-127}$, 其中 , f是尾数 , E是指数。

31					23																			0
±		8位排	旨数E				尾	数f:	规格	化形	式的数	隆数位	为固	定	勺1,	可以	头省	略,	所以	能表	示24	4位		
	指数E =	真值 +	- 偏移	值								尾数	_ 7	古佔	/ 店	zαı								
	偏移值 =	= 127										产级	- 3	₹Щ	\ J.K	11-1/								

比如十进制数123.125,其二进制表示为:1111011.001,规格化表示为: 1.111011001×2^6 也就是 $1.111011001 \times 2^{133-127}$,f= 111011001,E= 133 = 10000101,图示如下:

+	Е	= 6	+ 1	127	= 1	33									尾数	ų: 1	1101	100	1 (,	后面	à⊦03	ēJ23	位)							
0 1	0	0	0	0	1	0	1	1	1	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- ・浮点数使用方便
- ・运算非常复杂
- · 需要特殊的浮点运算单元,一般只有高端 CPU中才会有,成本较高,而且智能处理加 法、减法和乘法
- ・ 其他<mark>数学计算</mark>,比如除法,开方,三角函数 等,则计算更加复杂耗时
- · 定点数与浮点数之间相互转换, 也消耗计算 时间

> 作业

- 1. 冯·诺伊曼计算机的基本设计思想是什么?哈佛结构的计算机,与冯·诺 伊曼计算机相比,有哪些优缺点?
- 2. 什么是总线,总线通常有哪3组信号?各组信号的作用是什么?
- 3. 1) 计算机的字长是什么含义? 2) 简述处理器中的流水线技术。
- 4. 将下列十六进制无符号整数, 转换为十进制真值。
- 1) 0FFH
- 2) 0H
- 3) 5EH

- 4) EFH
- 5. 如果上题中的十六进制数为8位有符号整数,请将其转换位十进制真值
- 6. 将下列十进制数转换为压缩BCD码

- 2) 24
- 3) 68

- 4) 99
- 7. 将下列二级制补码表示的有符号整数转换为十进制真值
- 1) 0000 0000b
- 2) 0111 1111b 3) 1000 0001b 4) 1100 0111b