Techniques Multimédias

Acquisition et numérisation de l'information multimédia

October 2, 2015

Houcemeddine HERMASSI

houcemeddine.hermassi@enit.rnu.tn

École Nationale d'Ingénieurs de Carthage ENI-CAR Université Carthage Tunisie

Plan de cour

Acquisition et numérisataion du son Acquisition du son Numérisation du son

Acquisition et numérisataion des images Acquisition des images Numérisation des images

Acquisition du son

Caractérisation d'un son

Définition

Comme tout phénomne vibratoire, le son peut être analysé comme un signal qui varie dans le temps. Deux caractéristiques essentielles sont **l'amplitude** et la **fréquence**.

Amplitude

S'appele aussi **intensité** ou volume sonore, c'est l'expression de la pression de l'air qui se mesure en **décibels (dB)**. 0 dB correspond au minimum que l'oreille humaine puisse percevoir (seuil d'audibilité)

Fréquence

Exprimée en **Hertz (Hz)**, est le nombre de répétition d'une période par seconde. Plus elle est élevée et plus le son paraitra aigu , à l'inverse, il paraitra grave .

Le spectre de fréquence entendu par l'oreille humaine n'est pas infini, il s'tend environ de 20 Hz à 20 KHz

Acquisition du son

Capture de son analogique

Lorsqu'on capte un son à partir d'un microphone, ce dernier transforme l'énergie mécanique (la pression de l'air exercée sur sa membrane), en une variation de tension électrique continue.

Capture de son numérique

Le signal électrique est capturé à partir du micro, il est converti en une suite de nombre, on parle alors de **numérisation du signal**. C'est la carte son qui s'en charge, elle contient des entrées (convertisseurs analogique vers numérique) et des sorties (convertisseurs numérique vers analogique).

Numéristaion d'un son

Son analogique vs Son numérique

Définition

Un signal analogique est un ensemble continu dinformations alors que Un signal numérique est un ensemble discret (c'est-à-dire discontinu) dinformations.

La conversion analogique numérique AN se fait en 3 étapes:

Numéristaion d'un son

Etapes de numérisation

Echantillonnage

Pour numériser un signal, il faut le découper en **échantillons** (samples en anglais) de durée égale T_e . La fréquence d'échantillonnage correspond au nombre d'échantillons par seconde et s'exprime en Hz : $F_e = \frac{1}{T_e}$

Théorème de Shannon

Pour numériser convenablement un signal, il faut que la fréquence d'échantillonnage soit **au moins deux fois supérieure** à la fréquence du signal à numériser.

Type de support de sons	F _E choisie
CD audio	44,1 kHz
DVD	48 kHz
Téléphonie	8 kHz
Radio numérique	22,5 kHz

Numéristaion d'un son

Etapes de numérisation

Quantification

Lors de la numérisation, il faut également **discrétiser les valeurs de lamplitude du signal**. La quantification consiste, pour chaque échantillon, à lui associer une valeur damplitude. Cette valeur de l'amplitude **s'exprime en bit** et l'action de transformer la valeur numérique de l'amplitude en **valeur binaire** s'appelle **le codage**.

La qualité du son dépend du pas de quatification, donc, de la résolution binaire:

Type de support de sons	Quantification choisie
CD audio	16 bits
DVD	24 bits
Téléphonie	8 bits
Radio numérique	8 bits

Numéristaion d'un son

Pramaètres de qualité

Taille d'un enregistrement son

Le nombre N d'octets (ensemble de 8 bits) nécessaires pour d'ecrire numériquement une minute de son est:

$$N = F \times (Q/8) \times 60 \times n$$

- F: fréquence échantillonnage en Hz
- Q : quantification en bits
- n: nombre de voies (si le son est stéréo, n= 2; en mono : n = 1)
- N s'exprime en octet

⇒ Plus la fréquence d'echantillonnage et la quantification sont grandes, meilleure sera la numérisation et la quantité d'informations est plus élevée.

Acquisition des images

La perception visuelle

- La fonction de l'oeil est de recevoir et de transformer les vibrations électromagnétiques de la lumière en influx nerveux qui sont transmis au cerveau.
- La cornée : principale lentille de l'oeil
- Le cristallin : lentille auxiliaire
- L'iris : diaphragme de l'oeil
- La pupille: trou au centre de l'iris permettant de faire passer les rayons lumineux vers la rétine.
- La rétine : c'est la couche sensible à la lumière grâce aux photorécepteurs.
 - ► Les bâtonnets (130 millions) très grande sensibilité à la lumière -> vision de nuit
 - Les cônes (5 à 7 millions) sensibilité aux couleurs, pas à la lumiere -> vision de jour

Acquisition des images La perception visuelle

- Système très complexe
- Grande capacité à interpréter
- Grande capacité à « inventer » (information manquante)
- Parfois pris en défaut

Acquisition des images

Le domaine de visibilité

- ▶ Domaine du visible (0.4-0.8 micrometre) : ce que voit l'oeil
- ▶ Domaine infrarouge (0.8-103 micrometres) : proche-moyen-thermique
- ► Domaine micro-ondes (1-102mm) : radar

Acquisition des images capture image

- Passage du monde 3D (ou 4D) vers image 2D
- ► Stéréoscopie = Passage inverse :
 - ▶ deux images ⇒ 3D
- ⇒ Nécessité de modéliser le passage

Acquisition des images

13 28

- Aberration chromatique (effet prisme)
 - ► Franges colorées-Image floue

- Distorsion
 - Altération géométrique

 Images floue sur les bords ou au centre

Source: Kingslake (1992).

Acquisition des images Les capteurs

Il existe deux grandes familles:

- ► Argentique (pellicules)
- ► Numériques (CCD)

Les capteurs CCD:

- ► Ensemble de sites photo-sensibles
- ► Transformation photons -> électrons
- Les sites sont sensibles sur le visible + proche IR
- Pour plusieurs couleurs sur un même site, deux possibilités :
 - Mosaïque
 - ► Tri-capteur

Définition

Un pixel est l'unité indivisible permettant de **coder** l'information relative à la luminosité en une certaine position.

En niveau de gris

- les pixels sont généralement carrés
- pixel vient de « picture element »
- La taille du pixel

Système de voisinage

 $V = \{V(s) / s \in S\}$ est un système de voisinage si

- ▶ s \(\neq \(\text{V(s)} \)
- ▶ $s \in V(t) \Leftrightarrow t \in V(s)$

Exemples:

4-connexité

Image numérique

Une image est un **tableau de pixels**: si le nombre de lignes vaut **nl** et le nombre de colonnes vaut **nc**:

Un pixel est donc composé de:

- ▶ De coordonnées (i, j) permettant de le situer
- ▶ D'une valeur v = p(i,j) représentant sa couleur

Image numérique Représentation

La résolution est donnée par le nombre de pixels $nl \times nc$

La résolution correspond à la finesse de la descirtion spatiale de l'image (taille du pixel)

Image numérique L'image comme une fonction

On peut voir l'image comme une fonction u et donc une surface:

$$u:I\times J\to V$$

$$(i,j) \rightarrow p(i,j)$$

A un point on associe une valeur d'intensité

En discret $I=\{0,...,nl-1\}$ et, par exemple $V=\{0,...,255\}$ $I=\{0,...,l\}$

En continu $J=\{0,...,l\}$ et: V=[0,1]

L'avantage d'une telle représentation continue vient de la possiblité de dériver...

Image numérique

Image numérique Intensité: L'image en couleur

Un image couleur est représentée comme la superposition de 3 images N&B

Numérisation des images

Processus de numéristaion

Nature de l'image

- L'image est physiquement continue
- Les images numériques sont à précision finie

⇒ nécessité de passer du continu au discret

Etapes de numéristaion

- Échantillonnage
 - ▶ ⇒ résolution spatiale (taille du pixel)
- Quantification
 - ▶ ⇒ résolution spectrale (niveau de gris)

Occupation physique

- Le nombre de niveaux disponibles dépend de la taille allouée à chaque pixel
- ► En général :
 - ► N&B: 1 octet / pixel = 8 bits = 256 niveaux
 - ► Couleur: 1 octet / couleur = 3 octets / pixel = 24 bits = 16 777 216 niveaux
 - ► Caméra numérique : 12 bits / pixel = 4096 niveaux

Exemple : occupation physique pour des images de 4096×4096 :

- ▶ 1 bits : 2 Mo soit 325 par CD
- ▶ 8 bits : 16 Mo soit 40 par CD
- ► 16 bits : 32 Mo soit 20 par CD

Quantification et qualité

- La quantification est liée au rapport signal / bruit
- ► Elle devrait dépendre
 - de la scène
 - de l'observateur
 - du bruit
- Sur-quantification = perte de place
- Sous-quantification = perte de données

Lena 4 niveaux (2 bits)

Lena 256 niveaux (8 bits)

Lena 2 niveaux (1 bit)

Numérisation des images

Echantillonnage

Principe

- ► Image : cas 2D
- ► Modélisée par le peigne de Dirac

Numérisation des images Echantillonnage

Sous-Echantillonnage

Diverses méthodes :

- Décimation
- Moyenne
- ▶ Gaussienne

Gaussienne

Numérisation des images

Echantillonnage

Sur-Echantillonnage

Diverses méthodes :

- réplication de pixel
- bilinéaire
- bicubique

Bilinéaire

Interpolation linéaire entre les 4 voisins:

fr(x,y)=dy1(dx1.f(x1,y1)+dx2.f(x2,y1))+dy2(dx1.f(x1,y2)+dx2.f(x2,y2))

- ► + Relativement rapide
- Images floues

Numérisation des images

Echantillonnage

Sur-Echantillonnage

Diverses méthodes:

- réplication de pixel
- bilinéaire
- bicubique

Bicubique

Polynôme de degré 3 approchant le sinus cardinal sur 16 voisins: $P=-d(1-d)^2P0+(1-2d^2+d3)P1+(d(1+d-d^2))P2-d^2(1-d)P3$

- + Peu flou
- ► Plus lent que les précédents

Merci pour votre attention!

