Problema 9.3.5.

Simplificați următoarele funcții booleene de patru variabile date prin valorile de 1, utilizând metoda lui Quine:

5. $f_5(1,1,1,1)=1$, $f_5(0,1,0,1)=1$, $f_5(0,1,1,1)=1$, $f_5(1,1,1,0)=1$, $f_5(1,1,0,0)=1$, $f_5(1,0,0,1)=1$, $f_5(0,0,0,1)=1$;

Tabel de Valori al functiei f5

Χı	XΣ	X3 >	(4	fs_	
X1 0 0 0	0	0		0	
0	0	0	0	~	m ₄
0	00	1	1	0	
0	0	1 1 1 1 1	_	0	
0	1	0	0	0	
0	1	0	1	7	m5
0	1	1	0	0	
0	1	1	1	1	mt
0	0	0	0	۲	mg
1	0	0	1	~	8 m f m
1	0	1	0	O	
1	0	1	1	0	
1	1	0	0	1	m12
1	1	0	1	0	
1	1	1	0	1	M14
1	1	1	1	1	715

Metoda analitică a lui Quine-Mc'Clusky

- se bazează pe completarea a două tabele ajutătoare
 - unul pentru factorizare, utilizat la calcularea mulţimii monoamelor maximale
 - · unul pentru identificarea mulțimii monoamelor centrale
- se aplică formei canonice disjunctive a funcției
- poate fi utilizată pentru oricâte variabile

FCD (forma canonica disjunctiva) este:

Deci

Sf ={(1.1.1.1),(0.1.0.1),(0.1.1.1),(1.1.1.0),(1.1.0.0),(1.0.0.0),(1.0.0.1),(0.0.0.1)}

Pasul 1 : Se ordoneaza multimea suport a functiei cu 4 variabile descrescator sau crescator (am ales crescator) dupa numarul de valori de 1 continut de fiecare cvadruplu

Sf ={(0,0,0,1),(1,0,0,0),(0,1,0,1),(1,1,0,0),(1,0,0,1),(0,1,1,1),(1,1,1,0),(1,1,1,1)}

Pasul 2 : Construirea primei tabele si factorizarea

Grup	X1 X2 X3 X4	
I	0001	mal mal
11	0 1 0 1 1 1 0 0 1 0 0 1	M5 1 12 1 19 19 19 19 19 19 19 19 19 19 19 19 1
III	0111	m7 1
IV	1111	m ₁₅ /
V = I + II	0 - 0 1 - 0 0 1 1 - 0 0 1 0 0 -	m1 V m5 m1 V m9 m8 V m12 m8 V m5
VI = II + III	01-1 11-0	m5 V m+ m12 V m14
VII = III + IV	-111 111-	m ₁₄ √ m ₁₅

Pasul 3: Identificarea monoamelor maximale

Identificarea monoamelor maximale

 Mulţimea monoamelor maximale este formată din toate monoamele corespunzătoare liniilor nebifate din tabel.

$$m_1 \vee m_5 = \max_{1=1}^{1} \overline{X_1} \overline{X_3} X_4$$
 $m_1 \vee m_3 = \max_{2=1}^{1} \overline{X_2} \overline{X_3} X_4$
 $m_8 \vee m_{12} = \max_{3=1}^{1} X_1 \overline{X_3} \overline{X_4}$
 $m_8 \vee m_3 = \max_{4=1}^{1} X_1 \overline{X_3} \overline{X_3}$
 $m_5 \vee m_4 = \max_{5=1}^{1} \overline{X_1} \overline{X_2} X_4$
 $m_{12} \vee m_{14} = \max_{6=1}^{1} \overline{X_1} \overline{X_2} X_4$
 $m_{12} \vee m_{14} = \max_{6=1}^{1} \overline{X_1} \overline{X_2} X_4$
 $m_{14} \vee m_{15} = \max_{7=1}^{1} \overline{X_1} \overline{X_2} X_4$
 $m_{14} \vee m_{15} = \max_{8=1}^{1} \overline{X_1} \overline{X_2} X_3$
 $m_{14} \vee m_{15} = \max_{8=1}^{1} \overline{X_1} \overline{X_2} X_3$
 $m_{14} \vee m_{15} = \max_{8=1}^{1} \overline{X_1} \overline{X_2} X_3$
 $m_{14} \vee m_{15} = \max_{8=1}^{1} \overline{X_1} \overline{X_2} X_3$

Pasul 4: Identificarea monoamelor centrale

monoame maximale mintermi	max1	max2	max3	max4	max5	max6	max7	max8
m ₁	*	*						
m 8			*	*				
m_5	*				*			
M ₁₂			*			*		
Mg		*		*				
m7					*		*	
_{ጣላ} ት						*		¥
m ₁₅							*	*

 $m_1 \vee m_5 = max_1 = \overline{x_1} \overline{x_3} x_4$ $m_1 \vee m_5 = max_2 = \overline{x_2} \overline{x_3} x_4$ $m_8 \vee m_{12} = max_3 = x_1 \overline{x_3} \overline{x_4}$ $m_8 \vee m_5 = max_4 = x_1 \overline{x_2} \overline{x_3}$ $m_5 \vee m_4 = max_5 = \overline{x_1} \overline{x_2} x_4$ $m_1 \vee m_{14} = max_6 = x_1 x_2 x_4$ $m_1 \vee m_{15} = max_7 = x_2 x_3 x_4$ $m_1 \vee m_{15} = max_8 = x_1 x_2 x_4$ $m_1 \vee m_{15} = max_8 = x_1 x_2 x_4$

Pastul 5: Identificarea formelor simplificate

Se observa ca nu exista nicio steluta unica pe linia sa, deci C(f5) = Ø

Este cazul al treilea al algoritmului de simplificare. Se vor cauta cele mai simple solutii, adica se vor alege monoame maximale astfel incat intersectia liniilor avand stelute comune cu coloanele monoamelor maximale selectate sa fie cat mai mica si numarul monoamelor maximale alese sa fie, de asemenea, cat mai mic, iar reuninea acestor linii sa fie egala cu multimea tuturor liniilor tabelului.

O forma simplificata este:

monoams maximals mintermi	max1	max2	max3	max4	max5	max6	max7	max8
m ₁	(*)	*						
m 8			*	(#)				
m ₅	*				*			
M12			*			*		
Mg		*		(A)				
m ₇					*		8	
M14						(*)		*
m ₁₅							*	*

 $m_1 \vee m_5 = m\alpha X_1 = \overline{X_1} \overline{X_3} X_4$ $m_1 \vee m_5 = m\alpha X_2 = \overline{X_2} \overline{X_3} X_4$ $m_8 \vee m_1 = m\alpha X_3 = X_1 \overline{X_3} \overline{X_4}$ $m_8 \vee m_2 = m\alpha X_4 = X_1 \overline{X_2} \overline{X_3}$ $m_5 \vee m_4 = m\alpha X_5 = \overline{X_1} \overline{X_2} \overline{X_4}$ $m_1 \vee m_1 = m\alpha X_6 = X_1 \overline{X_2} \overline{X_4}$ $m_1 \vee m_1 = m\alpha X_6 = X_1 \overline{X_2} \overline{X_4}$ $m_1 \vee m_1 = m\alpha X_6 = X_1 \overline{X_2} \overline{X_4}$ $m_1 \vee m_1 = m\alpha X_6 = X_1 \overline{X_2} \overline{X_4}$ $m_1 \vee m_1 = m\alpha X_6 = X_1 \overline{X_2} \overline{X_4}$ $m_1 \vee m_1 = m\alpha X_6 = X_1 \overline{X_2} \overline{X_4}$ $m_1 \vee m_1 = m\alpha X_6 = X_1 \overline{X_2} \overline{X_4}$

O alta forma simplificata este

monoamo maximalo mintormi	max1	max2	max3	max4	max5	max6	max7	max8
m1	*	(*)						
m 8			*	*				
m_5	*				(1)			
m ₁₂			(*)		7	*		
mg		(*)		*				
m7		,			*		*	_
M14						*		¥
M ₁₅							*	*

m1 v m5 = max1= x1 X3 X4 m, V m, = max = \(\overline{\chi_2} \overline{\chi_3} \overline{\chi_4} mg V m12=max3= X1 X3 X4 mg vmg=max4=x1 x2 x3 $m_5 \vee m_1 = max_5 = \overline{\chi}_1 \chi_1 \chi_1 \chi_4$ $m_{12} \vee m_{14} = max_{c} = x_{1} x_{2} \overline{x_{4}}$ m_t m15=max = X2X3X4 M141 M15= WXX = X1 X2 X3

h2(x1, X2, X3, X4)=max2 V max3 V max5 V max8 h2(x1, X2, X3, X4)= \overline{X2} \overline{X3} \overline{X4} \overline{X3} \overline{X4} \overline{X1} \overline{X2} \overline{X2} \overline{X3} \overline{X4} \overline{X3} \overline{X4} \overline{X1} \overline{X2} \overline{X4} \overli