

Lucrare Individuală

- 1. Codurile neponderate
- 2. Codurile Alfanumerice
- 3. Standartul IEE 754

Realizat de Raevschi Grigore TI-231

Analiza și sinteza dispozitivelor numerice (ASDN) - UTM 2024

Professor: Turcan Ana

Codurile neponderate

Codificare presupune realizarea unei schimbări a formei de exprimare a informației, altfel spus o translatare de limbaj.

Codurile neponderate sunt coduri binare în care fiecare cifră binară nu are o pondere specifică. Acestea sunt utilizate frecvent în diverse aplicații datorită proprietăților lor unice.

Dintre codurile neponderate, cele mai utilizate sunt codul Exces 3 și codul Gray. Codul Exces 3 se obține din cuvântul de cod 8421 al cifrei zecimale respective la care se adaugă 3 (0011 în binar). Codul Gray are proprietatea de adiacență, în sensul că trecerea de la o cifră zecimală la următoarea se face prin modificarea unui singur bit din cuvântul de cod.

Aceste coduri sunt esențiale în diverse domenii ale electronicii și informaticii datorită avantajelor lor specifice în anumite aplicații.

Coduri zecimal-binare

	CODURI ZECIMAL-BINARE										
Numere în zecimal		Coduri p	onderate		Coduri neponderate						
		2421	4221	7421	Exces3		2 din5	8421 cu			
	8421					Gray		bit de			
								paritate			
								impară			
0	0000	0000	0000	0000	0011	0000	00011	10000			
1	0001	0001	0001	0001	0100	0001	00101	00001			
2	0010	0010	0010	0010	0101	0011	00110	00010			
3	0011	0011	0011	0011	0110	0010	01001	10011			
4	0100	0100	0100	0100	0111	0110	01010	00100			
5	0101	1011	1001	0101	1000	0111	01100	10101			
6	0110	1100	1100	0110	1001	0101	10001	1 0110			
7	0111	1101	1101	0111	1010	0100	10010	00111			
8	1000	1110	1110	1001	1011	1100	10100	01000			
9	1001	1111	1111	1010	1100	1101	11000	1 1001			

Codul EXCES 3

Codul EXCES 3 se obține din cuvântul de cod 8421, al cifrei zecimale respective, la care se adună 0011, adică 3 în binar.

EXEMPLU: Reprezentarea cifrei 8 în cod EXCES 3

Cifra 8 în codul 8421 are valoarea 1000 Pentru reprezentarea în codul EXCES 3 se adună 1000 + 0011 = 1011 Valoarea cifrei 8 în codul EXCES 3 este 1011 Utilizând codul EXCES 3, se poate face distincție între lipsa unei informații înscrise într-un registru sau locație de memorie și înscrierea valorii zero. (0000 reprezintă lipsa unei informații, iar zero este codificat prin 0011)

Codul 2 din 5

Acest cod se utilizează pentru reprezentarea numerelor zecimale printr-un grup de 5 biți din care numai doi biți sunt semnificativi (au valorile egale cu 1). În acest fel se realizează o unicitate a reprezentării, deoarece din cele 32 numere posibile cu 5 biți numai 10 satisfac condiția 2 din 5.

Acest cod creează posibilitatea detectării erorilor multiple la transmiterea informației.

Codul 8421 cu bit de paritate.

Acest cod este un cod detector de erori. Codul conține un bit suplimentar numit bit de paritate care este primul bit din stânga numărului reprezentat în acest cod. Codul se obține din codul 8421 prin adăugarea unui bit de paritate în fața codului 8421 care reprezintă un anumit număr. Bitul de paritate se poate alege astfel încât numărul total al biților cu valoare 1, în exprimarea numărului, să fie par respectiv impar. Acest cod se utilizează pentru verificarea transmiterii corecte a informației

Codul GRAY

Codul Gray este un cod digital care acceptă modificarea unui singur bit din cuvântul de cod, la trecerea dintre două cuvinte de cod succesive (trecerea de la o cifră zecimală la următoarea cifră zecimală). Această proprietate face ca acest cod să fie utilizat la dispozitivele de codare circulare (diverse traductoare unghiulare de poziție). Codul gray se obține din codul 8421. Codul Gray are proprietatea de adiacență, adică trecerea de la o cifră zecimală la următoarea sau precedenta necesită modificarea unui singur bit din cuvântul de cod. Codul Gray este util pentru mărimile care cresc sau descresc succesiv.

Codurile Alfanumerice

Codurile alfanumerice conţin cifre, litere şi semne speciale care se numesc caractere. Cel mai utilizat cod alfanumeric este codul ASCII (The American Standard Code for Information Interchange – codul american standardizat pentru schimbul de informaţii) Codul ASCII utilizează 7 biţi pentru a codifica 128 de caractere diferite. Codul ASCII conţine litere mari, litere mici, cifre, sisteme de punctuaţie şi diverse caractere de comandă care nu se tipăresc.

Codul ASCII

EXEMPLE de reprezentare în ASCII a caracterelor:

C – 100 0011 (coloana 100 linia 0011)

& - 010 0110 (coloana 010 linia 0110)

9 - 011 1001 (coloana 011 linia 1001).

	b ₆ b₄ b₅										
b ₃ b ₂ b ₁ b ₀	000	001	010	011	100	101	110	111			
0000	NULL	DLE		0	@	Р	,	р			
0001	SOH	DC1	!	1	Α	Q	а	q			
0010	STX	DC2	"	2	В	R	b	r			
0011	ETX	DC3	#	3	С	S	С	s			
0100	EOT	DC4	\$	4	D	Т	d	t			
0101	ENQ	NAK	%	5	Е	U	е	u			
0110	ACK	SYN	&	6	F	V	f	V			
0111	BEL	ETB	•	7	G	W	g	w			
1000	BS	CAN	(8	Н	X	h	X			
1001	HT	EM)	9	1	Y	i	У			
1010	LF	SUB	*	:	J	Z	j	Z			
1011	VT	ESC	+	;	K]	k	{			
1100	FF	FS	,	<	L	1	1	1			
1101	CR	GS	-	=	М]	m	}			
1110	SO	RS		>	N	۸	n	~			
1111	SI	US	/	?	0	_	0	DEL			

Standardul IEEE 754

Standardul IEEE 754 este un standard tehnic pentru aritmetica în virgulă mobilă, stabilit initial în 1985 de către Institutul Inginerilor Electrotehnici și Electroniști (IEEE). Acesta specifică formatele și metodele pentru aritmetica în virgulă mobilă în sistemele de calcul. Reprezentarea cea mai des folosită este cea cu virgula plutitoare (floating-point). Această reprezentare se aseamănă mult cu notatia stiințifică a numerelor. De exemplu, 148.554 poate fi reprezentat ca 1.48554×10^2 . Virgula plutitoare rezolvă unele probleme de reprezentare. Virgula fixă are o fereastră fixă de reprezentare, ceea ce împiedică de a reprezenta numere foarte mari sau foarte mici. De asemenea, virgula fixă tinde să piardă din precizie când două numere mari sunt împărțite. Viteza cu care un calculator efectuează calcule în virgulă mobilă este o măsură a performantei în multe domenii de aplicatii. Aceasta se măsoară în megaFLOPS (milioane de operațiuni în virgulă mobilă pe secundă) sau gigaFLOPS. Avantajul reprezentării în virgulă mobilă față de cea în virgulă fixă este gama mai largă de valori reprezentate.