SDN Controller Placement Optimization Mini-Project

Authors and Contributions

- Student 1: [Name] Student Number: [Number] Contribution: [X]%
- Student 2: [Name] Student Number: [Number] Contribution: [Y]%

Brief description of how work was divided between team members

Abstract

Concise summary of the optimization problem, methods implemented (GRASP, GA, ILP), key results, and main conclusions

1. Introduction

1.1 Problem Description

- Software Defined Network (SDN) controller placement problem
- Graph G = (N, A) with 200 nodes and 250 links
- Objective: Select n=12 switches to minimize average shortest path length from each switch to its closest SDN controller
- Constraint: Maximum shortest path length between any pair of controllers ≤ Cmax = 1000

1.2 Problem Formulation

- Mathematical formulation of the optimization problem
- Decision variables, objective function, and constraints
- Problem complexity and classification

1.3 Methodology Overview

 Brief introduction to the three approaches: GRASP, Genetic Algorithm, and Integer Linear Programming

2. Integer Linear Programming (ILP) Approach

2.1 Mathematical Model

- Complete ILP formulation with variables, objective function, and constraints
- Explanation of constraint modeling for the maximum distance requirement

2.2 Implementation Strategy

- MATLAB code structure for generating the LP file
- Integration with lpsolve solver
- Parameter settings and solver configuration

2.3 MATLAB Code Implementation

matlab

- % Include and explain the MATLAB code that generates the LP file
- % Code should be well-commented and structured

2.4 Results and Analysis

- Solution found by Ipsolve within 5-minute time limit
- Objective value achieved
- Running time analysis
- Solution quality assessment

3. GRASP (Greedy Randomized Adaptive Search Procedure)

3.1 Algorithm Design

- Construction phase: greedy randomized selection strategy
- Local search phase: neighborhood structures and improvement procedures
- Overall GRASP framework

3.2 Implementation Details

- Candidate list construction and selection criteria
- α parameter for controlling randomization level
- Local search operators and strategies
- Stopping criteria based on runtime limit

3.3 Parameter Tuning and Best Settings

- Testing methodology for parameter selection
- Analysis of different α values
- Local search strategy comparison
- Justification for chosen parameter settings

3.4 MATLAB Code Implementation

- % Include and explain the GRASP MATLAB implementation
- % Focus on key components: construction, local search, main loop

3.5 Advanced Strategies Beyond Standard GRASP

- [If implemented] Enhanced features such as:
 - Path relinking
 - · Memory mechanisms
 - Adaptive parameter control
 - Hybrid approaches

3.6 Experimental Results

- Results from 10 runs with 30-second time limit each
- Minimum, average, and maximum objective values
- Convergence analysis and performance consistency

4. Genetic Algorithm (GA)

4.1 Algorithm Design

- Chromosome representation for controller placement
- Population initialization strategy
- Selection mechanism
- Crossover and mutation operators
- Replacement strategy

4.2 Implementation Details

- Population size and generation management
- Fitness function design
- Constraint handling for Cmax requirement
- Stopping criteria implementation

4.3 Parameter Tuning and Best Settings

- Testing methodology for GA parameters
- Population size optimization
- Crossover and mutation rate analysis

- Selection pressure evaluation
- Justification for chosen parameter settings

4.4 MATLAB Code Implementation

matlab

- % Include and explain the GA MATLAB implementation
- % Cover key components: initialization, selection, crossover, mutation

4.5 Advanced Strategies Beyond Standard GA

- [If implemented] Enhanced features such as:
 - Multi-objective optimization
 - Island model or parallel GA
 - Adaptive genetic operators
 - Hybrid local search integration

4.6 Experimental Results

- Results from 10 runs with 30-second time limit each
- Minimum, average, and maximum objective values
- Population diversity analysis and convergence behavior

5. Comparative Analysis

5.1 Solution Quality Comparison

- Objective value comparison across all three methods
- Statistical analysis of metaheuristic results
- Gap analysis between heuristic and exact solutions

5.2 Runtime Performance Analysis

- Computational efficiency comparison
- Convergence speed analysis
- Scalability considerations

5.3 Robustness and Consistency

- Variance analysis for metaheuristic methods
- Reliability assessment across multiple runs
- Performance stability evaluation

5.4 Method Characteristics

- Strengths and weaknesses of each approach
- Suitability for different problem scenarios
- Implementation complexity comparison

6. Results Summary

6.1 Best Solutions Found

- Optimal/best controller placement configurations
- Objective values achieved by each method
- Constraint satisfaction verification

6.2 Performance Metrics Table

Method	Min Objective	Avg Objective	Max Objective	Best Runtime	Avg Runtime
ILP	[value]	N/A	N/A	[time]	[time]
GRASP	[value]	[value]	[value]	[time]	[time]
GA	[value]	[value]	[value]	[time]	[time]
GA	[value]	[value]	[value]	[time]	[time]

6.3 Statistical Analysis

- Confidence intervals for metaheuristic results
- Hypothesis testing for method comparison
- Performance distribution analysis

7. Conclusions and Future Work

7.1 Key Findings

- Main conclusions about method performance
- Problem-specific insights
- Practical implications for SDN controller placement

7.2 Method Recommendations

- Which method to use in different scenarios
- Trade-offs between solution quality and computational time
- Guidelines for parameter selection

7.3 Future Research Directions

- Potential improvements to the implemented methods
- Extensions to larger problem instances
- Integration with real SDN deployment scenarios

References

Academic references for algorithms, optimization techniques, and SDN-related work

Appendices

Appendix A: Complete MATLAB Code Listings

- Full ILP generation code
- Complete GRASP implementation
- Complete GA implementation
- Utility functions and helper code

Appendix B: Detailed Experimental Results

- Complete results tables from all runs
- Statistical analysis details
- Performance graphs and charts

Appendix C: Problem Instance Data

- Description of the network topology
- Node and link data structure
- Distance matrix characteristics