Finding the optimal detector

Optimal detector design using QCRB

Overview of this talk

- The overall objective is to create a holistic framework for the design of optimal linear quantum measurement devices
- In this talk I will give an introduction to how this can be achieved using quantum network synthesis and the quantum Cramér-Rao bound (QCRB)
- I will start by giving an overview of our model of a detector
- Then discuss how quantum systems can be realised from their input-output transfer matrices
- Then discuss how the QCRB can be used to evaluate the detector performance
- I will then give three examples with one, two, and three degrees of freedom

Our picture of a detector

We consider the detector as a "black-box" quantum filter

$$\hat{H}_{\rm int} = -\hat{F}h(t)$$

The signal is linearly coupled to an internal degree of freedom

Quantum Cramér-Rao Bound

Fundamental limit on variance of dispersive measurement

$$\sigma_{hh}^{\mathrm{QCRB}}(\Omega) = \frac{\hbar^2}{4S_{FF}(\Omega)}$$

More fluctuation in signal-coupled degree-of-freedom is better!

Fluctuation determined by transfer func. from input

$$S_{FF}(\Omega) = |G_{\text{input} \to F}(\Omega)|^2$$

Want to maximise over broadband

$$\mathcal{S} = \int_{-\infty}^{\infty} d\Omega |G_{\text{input} \to F}(\Omega)|^2$$

Transfer matrix to physical system

Quantum network synthesis framework:

infer quantum system directly from transfer matrix

https://arxiv.org/abs/2002.07644

Example for 1 degree of freedom

$$\begin{bmatrix} \hat{a}_{\text{out}}^{1}(\Omega) \\ \hat{a}_{\text{out}}^{2}(\Omega) \end{bmatrix} = \mathbf{G}_{q}(i\Omega) \begin{bmatrix} \hat{a}_{\text{in}}^{1}(\Omega) \\ \hat{a}_{\text{in}}^{2}(\Omega) \end{bmatrix}$$
(Quadrature picture)

$$\begin{bmatrix} \hat{a}_{\text{out}}^{1}(\Omega) \\ \hat{a}_{\text{out}}^{2}(\Omega) \end{bmatrix} = \mathbf{G}_{q}(i\Omega) \begin{bmatrix} \hat{a}_{\text{in}}^{1}(\Omega) \\ \hat{a}_{\text{in}}^{2}(\Omega) \end{bmatrix} \qquad \mathbf{G}_{q}(i\Omega) = \begin{bmatrix} \frac{\gamma + \sqrt{\gamma s_{0}} + i\Omega}{\gamma - \sqrt{\gamma s_{0}} - i\Omega} & 0 \\ 0 & \frac{\gamma - \sqrt{\gamma s_{0}} + i\Omega}{\gamma + \sqrt{\gamma s_{0}} - i\Omega} \end{bmatrix}$$

See my software (Simba): https://github.com/joebentley/simba

Physical realisability restriction

Naturally, there is a restriction on the transfer matrix

we musn't break quantum mechanics by not preserving the commutation relations:)

$$\mathbf{G}^{\dagger}(-i\Omega) J \mathbf{G}(i\Omega) = J$$
$$J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Implication?

System must be lossless with unity gain (or lossy noise channels must be added, see Caves' phase-insensitive amplifier model)

"Passive" systems

First consider systems that are diagonal in the sideband picture

$$\mathbf{G}(i\Omega) = \begin{bmatrix} G(i\Omega) & 0 \\ 0 & G^{\dagger}(-i\Omega) \end{bmatrix}$$

Example: active coupled-cavity

$$\mathbf{G}(i\Omega) = \frac{\Omega^2 - i\Omega\gamma_f + g^2 - \omega_s^2}{\Omega^2 + i\Omega\gamma_f + g^2 - \omega_s^2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

"Passive" systems

Get
$$S = \int_{-\infty}^{\infty} d\Omega |G_{\text{input} \to F}(\Omega)|^2 = \pi$$

For both F = 1, 2

This is the Mizuno limit: no broadband improvement

My unproven conjecture (TODO)

All physical realisations of transfer matrices that are diagonal in the sideband picture do not surpass the Mizuno limit

Diagonal in quadrature picture

What about systems that are diagonal in the sideband picture?

$$\mathbf{G}_q(i\Omega) = \begin{bmatrix} G_{11}(i\Omega) & 0 \\ 0 & G_{22}(i\Omega) \end{bmatrix}$$

Similar condition to before:

$$\mathbf{G}_q^{\dagger}(-i\Omega)\Theta\mathbf{G}_q(i\Omega) = \Theta$$

$$\Theta = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$$

Example: Quantum Expander

Mikhail et.al. Nature 2019

$$\mathbf{G}_{q}(i\Omega) = \begin{bmatrix} \frac{\Omega(\gamma - \chi) + i(\Omega^{2} - \omega_{s}^{2})}{\Omega(\gamma + \chi) - i(\Omega^{2} - \omega_{s}^{2})} & 0\\ 0 & \frac{\Omega(\gamma + \chi) + i(\Omega^{2} - \omega_{s}^{2})}{\Omega(\gamma - \chi) - i(\Omega^{2} - \omega_{s}^{2})} \end{bmatrix}$$

Quantum expander

Calculate S for both modes 1 and 2

For mode 1 phase quadrature

$$\mathcal{S} = \frac{2\pi\gamma}{\gamma+\chi} \qquad \text{Mizuno limited}$$

For mode 1 amplitude quadrature

$$\mathcal{S} = rac{2\pi\gamma}{|\gamma-\chi|}$$
 Diverges as $\chi \to \gamma$

So should couple signal to amplitude quadrature

(For mode 2 amplitude and phase swapped)

- More complicated third-order detector design
- Uses mechanically suspended mirror to implement bandwidth broadening

If we ignore mech. oscillator damping γ_m then we get

$$\mathbf{G}(i\Omega) = \frac{\Omega^2 - i\Omega\gamma_f + g^2 - \omega_s^2}{\Omega^2 + i\Omega\gamma_f + g^2 - \omega_s^2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

framework Only 2 degrees of freedom

Same as earlier slide

No broadband improvement

- So the 2x2 transfer matrix does not result in the bandwidth broadening
- The transfer function is second order so one of the 3 modes is missing, i.e. the mechanical damping γ_m cannot be ignored
- Instead have to consider full transfer matrix:

$$\begin{bmatrix} \hat{a}_{\text{out}}(\Omega) \\ \hat{a}_{\text{out}}^{\dagger}(-\Omega) \\ \hat{b}_{\text{th,out}}(\Omega) \\ \hat{b}_{\text{th,out}}^{\dagger}(-\Omega) \end{bmatrix} = \begin{bmatrix} A & 0 & 0 & -B \\ 0 & A & B & 0 \\ 0 & -B & C & 0 \\ B & 0 & 0 & C \end{bmatrix} \begin{bmatrix} \hat{a}_{\text{in}}(\Omega) \\ \hat{a}_{\text{in}}^{\dagger}(-\Omega) \\ \hat{b}_{\text{th,in}}(\Omega) \\ \hat{b}_{\text{th,in}}^{\dagger}(-\Omega) \end{bmatrix}$$

from 2dof tf matrix

expected from 3dof tf matrix (TODO)

The computation proves difficult with third-order MIMO transfer matrix

Coupled-cavity broadener design

Can use framework to broaden coupled cavity resonance

Would like to boost width of dip without sacrificing depth

How to realise the filter $G(i\Omega)$?

Coupled-cavity broadener realisation

The realisation is another coupled cavity but with an active element

Summary

- I described a novel method for realising quantum optical systems from their frequency-domain transfer matrices
- This method has wide-ranging implications for how future quantum measurement devices could be designed
- I have shown how the QCRB can be minimised for the resulting realisation to produce an optimal detector design
- I have applied this to investigate first & second order transfer matrices, recovering well-known designs
- I will apply this to a third order MIMO transfer matrix to recover the transmission-readout setup design

Supplementary slides

General second order TF (TODO)

Want to recover quantum expander from general second order transfer matrix with params α, β, γ

$$\mathbf{G}_{q}(s) = \frac{s^{2} + \alpha s + \beta}{s^{2} + \alpha s + \gamma}$$

Realizing classical systems

For classical systems it is easy to realize arbitrary
 state-space representations using integrators and feedback

$$\frac{dx(t)}{dt} = \begin{bmatrix} 2 & 5 \\ -2 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0.1 \end{bmatrix} u(t), \quad u(t)$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) + u(t),$$

 For quantum systems most state-space representations not physically possible

Need to conserve $[x_i, x_j]$

Current limits of our quantum realization techniques

Say we want to build quantum system with a *desired transfer* function or general behaviour...

Current methods

New method

Quick intro to state-space representation

Used to dealing with frequency-domain transfer functions

$$y(s) = G(s)u(s)$$

y outputs u inputs

Control theorists prefer time-domain state-space representation

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$${\mathcal Y}$$
 outputs ${\mathcal U}$ inputs

$$y(t) = Cx(t) + Du(t)$$

 \mathcal{X} internal system state

A system dynamics matrix B input coupling matrix

output coupling matrix D "Direct feed" matrix

(everything linear here)

State-space degeneracy

- (A, B, C, D) -> G(s) is many-to-one mapping
 - Many state-space reps, (even non-physical ones), correspond to one transfer function G(s)

- Therefore, actual (A, B, C, D) gives physical insight
 - bijection exist between (A, B, C, D) and full Hamiltonian for system

Finding the state-space rep for transfer func.

Identify desired transfer function (freq. domain)

Find a state-space representation (time domain)

Find the physically realizable one

Example: tuned cavity

$$G(i\omega) = \frac{i\omega - \gamma}{i\omega + \gamma} \,.$$

$$\dot{\vec{x}} = A\vec{x} + B\vec{u}$$

$$\vec{y} = C\vec{x} + D\vec{u}$$

No unique mapping from G to (A, B, C, D)!

Need to ensure that

$$d[x_i, x_j] = 0$$

Constrains (A, B, C, D)

Constraints on (A, B, C, D) for physical realizability

It can be shown that $d[x_i, x_i] = 0$ (quantum îto product)

implies that
$$AJ + JA^{\dagger} + BJB^{\dagger} = 0$$

$$JC^{\dagger} + BJD^{\dagger} = 0$$

if we use cavity mode operators (annihilation & creation)

$$x_i = a$$
, $x_j = a^{\dagger}$ and $[a, a^{\dagger}] = 1$

then
$$J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 J is "commutation matrix"

Example: unstable filter

- Unstable filter = optomechanical device w/ negative dispersion $\phi \propto -\Omega \tau$
- Can be used to broaden bandwidth of GW detector without sacrificing sensitivity

$$G(s) = \frac{s+2}{s-2}$$
 opp. sign to tuned cavity

Known physical realization: cavity coupled to mirror via off-resonant pump $\omega_0 + \omega_m$

Finding realizable statespace representation

Guess a state-space representation, not necessarily physical

$$\begin{bmatrix} \dot{a} \\ \dot{a}^{\dagger} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a \\ a^{\dagger} \end{bmatrix} + \begin{bmatrix} u \\ u^{\dagger} \end{bmatrix}$$
$$\begin{bmatrix} Y \\ Y^{\dagger} \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} a \\ a^{\dagger} \end{bmatrix} + \begin{bmatrix} u \\ u^{\dagger} \end{bmatrix}$$

Found using

"Controllable Canonical Form"

Transform matrices to obey

$$AJ + JA^{\dagger} + BJB^{\dagger} = 0$$
$$JC^{\dagger} + BJD^{\dagger} = 0$$

(I omitted details but it is easy to do)

$$\begin{bmatrix} \dot{a} \\ \dot{a}^{\dagger} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a \\ a^{\dagger} \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} u \\ u^{\dagger} \end{bmatrix}$$
$$\begin{bmatrix} Y \\ Y^{\dagger} \end{bmatrix} = 2 \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ a^{\dagger} \end{bmatrix} + \begin{bmatrix} u \\ u^{\dagger} \end{bmatrix}$$

Final steps

From this (A, B, C, D) can find (H, L)

linear coupling matrix

internal system Hamiltonian
(Usually) have a clear physical realization

For our state-space find $(\hbar = 1)$

H=0 (chose rotating frame w.r.t resonant freq.)

$$L = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} \implies H_{int} = \frac{\sqrt{\gamma_2}}{2} (ab + a^{\dagger}b^{\dagger}) \qquad \text{Same physics as unstable filter}$$

adiabatically eliminated high frequency auxiliary mode (e.g. mechanically suspended mirror)