POLYNOMIALS P3

(5-6 MARK)

BASIC

ADVANCED

WITH COMPLEX

NUMBERS

POLY NOM, IALS. MANY TERM

 $\rho(x) = 2x^2 + 6x + 1$

 $P(1) = 2(1)^{2} + 6(1) + 1 =$

LONG Division

Q. Find remainder when $P(x) = 2x^4 - 6x^2 + 5$ is divided by z-3.

 $2x^3 + 6x^2 + 12x + 36$

 $\chi - 3$ $2\chi^4 + 0\chi^3 - 6\chi^2 + 0\chi + 5$

Q= inner first outer first.

 $2x^9-6x^3$

 $\frac{2x^4}{x} = 2x^3$

 $6x^3-6x^2+6x+5$

 $-6x^3 \mp 18x^2$

 $6x^3 = 6x^2$

REMAINDER THEOREM

If
$$p(x)$$
 is divided by $(x-a)$ then the remainder is $p(a)$.

$$x-a = 0$$
 $x = a$

Q: Find remainder when
$$P(x) = 2x^4 - 6x^2 + 5$$

is divided by $x - 3$.

$$\rho(x) = 2x^4 - 6x^2 + 5 \iff \div \qquad x - 3$$

$$P(3) = 2(3)^4 - 6(3)^2 + 5$$
 $x - 3 = 0$
 $x = 3$

$$P(3) = 113$$
 (Remainder).

FACTOR THEOREM	
	4 is factor 12
If $(x-a)$ is a factor of $p(x)$,	·
If $(x-a)$ is a factor of $p(x)$, $x-a=0$	7/N
x = a	_3
then $p(a) = 0$	4 12
Remainder = 0	-12
$Q. p(x) = 2x^3 - ax + 3$	For a factor
has a factor (x-2). Finda.	Rem = 0
2	
P(2) = 0 (remainder) $x = 2$	
$\chi = 2$	
$2(2)^{3} - \mathcal{O}(2) + 3 = 0$	
16 - 2a + 3 = 0	
za = 19	
a = 9.5	

3 The polynomial $x^3 - 2x + a$, where a is a constant, is denoted by p(x). It is given that (x + 2) is a factor of p(x).

[2]

(i) Find the value of a.

$$p(x) = x^3 - 2x + a$$
 factor: $x + 2$

$$p(-2) = 0$$
 $x + 2 = 0$

$$0 = (-2)^3 - 2(-2) + a$$
 $x = -2$

$$0 = -8 + 4 + a$$

$$a = 4$$

© UCLES 2007

9709/03/O/N/07

$$p(x) = x^4 + 3x^2 + a$$

$$\chi^2 - \chi + 2$$

$$\chi^2 + \chi + 2 \qquad \chi + 0 \chi^3 + 3 \chi^2 + 0 \chi + \alpha$$

$$\frac{7 \pm x^3 \pm 2x}{-x^3 + x^2 \pm x^3 \pm x^2}$$

$$-x^{3} + x^{2} + 0x + 0$$

$$2x^{2} + 2x + 0$$

 $2x^{2} + 2x + 9$

$$0 = 2x^2 = 2$$

$$a-4$$

Since x2+x+2 is factor, Remainder should be zero

$$a-4=0$$

Other factor =
$$\chi^2 - \chi + 2$$

- The polynomial $ax^3 + bx^2 + 5x 2$, where a and b are constants, is denoted by p(x). It is given that (2x 1) is a factor of p(x) and that when p(x) is divided by (x 2) the remainder is 12.
 - (i) Find the values of a and b.

[5]

(ii) When a and b have these values, find the quadratic factor of p(x).

[2]

© UCLES 2011

9709/33/M/J/11

$$\rho(x) = \alpha x^3 + bx^2 + 5x - 2$$

factor:
$$2x-1$$

$$2x-1=0$$

$$x=\frac{1}{2}$$

Divisor:
$$x-2$$
Remainder: $|2|$

$$x-2=0$$

$$x=2$$

 $\rho(2) = 12$

$$0 = \alpha \left(\frac{1}{2}\right)^3 + b\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) - 2$$

 $P(\frac{1}{2}) = 0$

$$12 = a(2)^{3} + b(2)^{2} + 5(2) - 2$$

$$\frac{a+b}{8}+\frac{5}{4}=2=0$$

$$12 = 8a + 4b + 10 - 2$$

 $4 = 8a + 4b$

$$a + 2b + 20 - 16 = 0$$

$$a + 2b = -4$$

$$\alpha = -2b - 4$$

$$2(-2b-4)+b=1$$

-4b-8+b=1

$$-3b = 9$$

$$\alpha = -2(-3) - 4$$

(ii)
$$\rho(x) = 2x^3 - 3x^2 + 5x - 2$$
 Factor: $2x - 1$

Max = 3

 $2x^3 - 3x^2 + 5x - 2 \equiv (2x - 1)(x + 1) + c$

max power	Constants	x term or Middle
		22 term Torm
$2x^3 = 2ax^3$	-2 = -1	$-3x^2 = 2bx^2 - 0x^2$
2 = 2a		-3 = 2b - a
$\alpha = 1$	c=2	-3 = 2b - 1
-2 = 2b		
		b=-1

$$(2x-1)(\alpha x^{2} + bx+c)$$

 $a=1, b=-1, c=2$
 $(2x-1)(x^{2}-x+2)$

$$\frac{Q}{P(x)} = 8x^3 + 6x^2 - 3x - 1 \quad \text{has factor } (x+1)$$
Factorize $p(x)$ completely.

$$8x^3 + 6x^2 - 3x - 1 = (x + 1)(ax^2 + bx + c)$$

Max Constant Mid Term
$$(x - term)$$

$$8x^3 = ax^3 -1 = 1c -3x = cx + bx$$

$$-3 = c + b$$

$$a = 8$$

$$c = -1$$

$$-3 = -1 + b$$

$$b = -2$$

$$P(x) = (x+1)(8x^{2}-2x-1)$$

$$(x+1)[8x^{2}-4x+2x-1]$$

$$(x+1)[4x(2x-1)+1(2x-1)]$$

$$P(x) = (x+1)(4x+1)(2x-1)$$