FINDING INSIGHTS ON DATA USING PAIRPLOT

IMPORTING LIBRARIES

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
%matplotlib inline
```

LOADING THE DATA INTO A DATAFRAME

```
In [2]: data = pd.read_csv('iris_dataset.csv')
```

GETTING TO KNOW ABOUT OUR DATA

```
In [3]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 105 entries, 0 to 104
        Data columns (total 5 columns):
             Column
                          Non-Null Count Dtype
        ---
                                           ----
         0
             sepal_length 105 non-null
                                          float64
         1
             sepal width 101 non-null
                                          float64
             petal_length 97 non-null
         2
                                          float64
         3
             petal_width 105 non-null
                                          float64
         4
                           105 non-null
                                          object
             species
        dtypes: float64(4), object(1)
        memory usage: 4.2+ KB
```

```
In [4]: data.shape
```

Out[4]: (105, 5)

```
In [5]: data.head()
```

Out[5]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.045070	2.508203	3.018024	1.164924	Iris-versicolor
1	6.325517	2.115481	4.542052	1.413651	Iris-versicolor
2	5.257497	3.814303	1.470660	0.395348	Iris-setosa
3	6.675168	3.201700	5.785461	2.362764	Iris-virginica
4	5.595237	2.678166	4.077750	1.369266	Iris-versicolor

In [6]: data.describe()

Out[6]:

	sepal_length	sepal_width	petal_length	petal_width
count	105.000000	101.000000	97.000000	105.000000
mean	5.858909	3.059083	3.812370	1.199708
std	0.861638	0.455116	1.793489	0.787193
min	4.344007	1.946010	1.033031	-0.072203
25%	5.159145	2.768688	1.545136	0.333494
50%	5.736104	3.049459	4.276817	1.331797
75%	6.435413	3.290318	5.094427	1.817211
max	7.795561	4.409565	6.768611	2.603123

PAIR PLOT : VISUALIZING THE DISTRIBUTION OF A VARIABLE BETWEEN MULTIPLE VARIABLES SEPARATELY

We plotted the distribuion of data of all the features in a pair plot and made use of the parameter called **"Hue"** to distinguish the data with the help of the dependent variable **"species"**.

Here, we have considered all the features from the above pair plot as there is a significant amount of relationship among them, which can be used in increasing the accuracy of the model.