AIEEE - 2002

Physics and Chemistry

1.	Which statement is incorrect? (a) all reversible cycles have same efficiency (b) reversible cycle has more efficiency than an irreversible one (c) Carnot cycle is a reversible one (d) Carnot cycle has the maximum efficiency in all cycles Length of a string tied to two rigid supports is 40 cm. Maximum length (wave length in cm) f a			
	stationary wave prod		· ·	
	(a) 20	(b) 80	(c) 40	(d)120
3.	The power factor of and an angular velo	_	esistance (R) and inductand	ce (L) co nected in series
	(a) R/ωL	(b) $R/(R^2 + \omega^2 L^2)^{1/2}$	(c) $\omega L/R$	(d) $R/(R^2-\omega^2L^2)^{1/2}$
4.	An astronomical tele	escope has a large apo	erture to	
	(a) reduce spherical	aberration	(b) have high resolut on	
	(c) increase span of observation (d) have low d spersion			
5.	The kinetic energy infinity is	needed to project a bo	ody of mass m from the ea	arth surface (radius R) to
	(a) mgR/2	(b) 2mgR	(c) mgR	(d) mgR/4
6.	If an ammeter is to b	e used in place of a v	ol me er, t en we must con	nect with the ammeter a
	(a) low resistance in	parallel	(b) high resistance in para	allel
	(c) high resistance i	n series	(d) low resistance in serie	es ·
7.	If in a circular coil A	of radius R, c rrent is	s flowing and in another co	il B of radius 2R a current
	2I is flowing, then the	e ratio of the magnetic	fields B_A and B_B , produced	d by them will be
	(a) 1	(b) 2	(c) 1/2	(d) 4
8.	If two mirrors are ke	pt at 60 to each other	, then the number of image	s formed by them is
	(a) 5	(b) 6	(c) 7	(d) 8
9.			pply has power dissipation For parallel to the same supply	•
	case is P_2 Then P_2	: P ₁ is		
	(a) 1	(b) 4	(c) 2	(d) 3
10.	If 13 6 eV energy is r	equired to ionize the h	ydrogen atom, then the ene	rgy required to remove an
	electron from $n = 2i$	S		
	(a) 10.2 eV	(b) 0 eV	(c) 3.4 eV	(d) 6.8 eV
11.	Tube A has both end	ds open while tube B h	as one end closed, otherw	ise they are identical. The
	ratio of fundamental	frequency of tube A a	nd B is	
	(a) 1:2	(b) 1:4	(c) 2:1	(d) 4:1
12.	A tuning fork arrang	ement (pair) produces	s 4 beats / sec with one for	rk of frquency 288 cps. A
	little wax is placed or unknown fork is	n the unknown fork an	d it then produces 2 beats /	sec. The frequency of the
	(a) 286 cps	(b) 292 cps	(c) 294 cps	(d) 288 cps

13.	3. A wave $y = a \sin(\omega t - kx)$ on a string meets with another wave producing a node at $x = 0$. Then			
	the equation of the	unknown wave is		
	(a) $y = a \sin(\omega t + kx)$	x)	(b) $y = -a \sin(\omega t + kx)$	
	(c) $y = a \sin(\omega t - kx)$	x)	(d) $y = -a \sin(\omega t - kx)$	
14.	On moving a charge	e of 20 coulombs by 2	cm, 2 J of work is done, the	en the potential difference
	between the points	is		
	(a) 0.1 V	()	(c) 2 V	(d) 0.5 V
15.	(a) curved path of e (b) they will move u	lectron and proton will ndeflected	nomenta enter perpendicular be same (ignoring the sen I than that of the proton	-
	(d) path of proton is	more curved	·	
16.	In a simple harmoni	c oscillator, at the mea	n position	
	(a) kinetic energy is	minimum, potential er	nergy is maximum	
	` '	potential energies are		
	` '	maximum, potential e		
	(d) both kinetic and	potential energies are	mınımum	
17.	Initial angular veloci	ity of a circular disc of r	mass M is ω Then two sm	all spheres of mass m are
	attached gently to divelocity of the disc?	*	oints on the edge of the dis	c. What is the final angular
	$\left(a\left(\frac{M+m}{M}\right)\omega_{1}\right)$	(b) $\left(\frac{M+m}{m}\right)\omega_1$	(c) $\left(\frac{M}{M+4m}\right)\omega_1$	(d) $\left(\frac{M}{M+2m}\right)\omega_1$
18.		city (in ms with which which which which with means with the with means with the with which with the w	ch a car driver must trave	rse a flat curve of radius
	(a) 60	(b) 30	(c) 15	(d) 25
19.	•	•	ed with water. The velocity	•
	_		e cylinder near its bottom is	
20.	(a) 10	(b) 20 onetant 800 N/m has a	(c) 25.5 an extension of 5 cm. The	(d) 5
20.	from 5 cm to 15 cm		an extension of 5 cm. The	work done is exteriding it
	(a) 16 J	(b) 8 J	(c) 32 J	(d) 24 J
21.	Two identical particl	es move towards each	other with velocity 2v and v	respectively. The velocity
	of centre of mass is	3		
	(a) v	(b) v/3	(c) v/2	(d) zero
22.		ed through a spring the		
	(a) expand	(b) compress	(c) remains same	(d) none of these
23.	<u> </u>	ly which raises its tem	•	(-I) to see a see
24		t (b) thermal capacity	(c) specific heat	(d) temperature gradient
24.	At absolute zero, Si (a) non metal	(b) metal	(c) insulator	(d) none of these
	(a) non motal	(S) motal	(S) ITIOGRAFOI	(d) Horie of triese

- 25. Electromagnetic waves are transverse in nature is evident by
 - (a) polarization
- (b) interference
- (c) reflection
- (d) diffraction
- 26. Wires 1 and 2 carrying currents i_1 and i_2 respectively are inclined at an angle θ to each other. What is the force on a small element dI of wire 2 at a distance of r from wire 1 (as shown in the figure) due to the magnetic field of wire 1?

(A) $\frac{\mu_0}{2\pi r}i_1i_2 dItan\theta$

(b) $\frac{\mu_0}{2\pi r}i_1i_2 dIsin\theta$

(c) $\frac{\mu_0}{2\pi r}i_1i_2$ dlcos θ

- (d) $\frac{\mu_0}{4\pi r}i_1i_2$ dIsin θ
- 27. At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound can emit
 - (i) electrons
- (ii) protons
- (iii) He2+

(iv) neutrons

The emission at instant can be

- (a) i, ii, iii
- (b) i, ii, iii, iv
- (c) iv

- (d) ii, iii
- 28. Sodium and copper have work functions 2.3 eV and 4 5 eV respectively. Then the ratio of the wave lengths is nearest to
 - (a) 1:2
- (b) 4:1
- (c) 2 1

- (d) 1:4
- 29. Formation of covalent bonds in compounds exhibi s
 - (a) wave nature of electron
- (b) particle nature of electron
- (c) both wave and particle nature of ele tron (d) none of these
- 30. A conducting square loop of side L and resistance R moves in its plane + with a uniform velocity v perpendicular o one of its sides. A magnetic + induction B constant in time an space, pointing perpendicular and into + the plane at the loop exists everywhere with half the loop outside the + field, as shown in figur The nduced emf is +

- (a) zero
- (b) RvB
- (c) VBL/R
- (d) VBL

- 31. Infra red radiation s detected by
 - (a) spectrometer
- (b) pyrometer
- (c) nanometer
- (d) photometer
- 32. If N_0 is the original mass of the substance of half- life period $t_{1/2} = 5$ years, then the amount of substance left after 15 years is
 - (a) $N_0/8$
- (b) $N_0/16$
- (c) $N_0/2$

- $(d)N_0/4$
- 33. By increasing the temperature, the specific resistance of a conductor and a semiconductor
 - (a) increases for both

- (b) decreases for both
- (c) increases, decreases
- (d) decreases, increases
- 34. If there are n capacitors in parallel connected to V volt source, then the energy stored is equal to
 - (a) CV
- (b) $\frac{1}{2}$ nCV²
- (c) CV²

- (d) $\frac{1}{2n}CV^2$
- 35. Which of the following is more closed to a black body?
 - (a) black board paint (b) green leaves
- (c) black holes
- (d) red roses

49.	If in the circuit, power	er dissipation is 150 W	/, then R is	^R^^^
	(a) 2Ω	(b) 6Ω		\sim
	(c) 5Ω	(d) 4Ω		15.7
	. ,	. ,	0	1 15 V
50.			strument are $\lambda_1 = 4000 \text{\AA}$	-
			(corresponding to λ_1 and	-
E 1	(a) 16:25	(b) 9 : 1	(c) 4:5	(d) 5:4
51.	(a) increase	a swing in sitting posit (b) decrease	ion, stands up, then the tim (c) remains same	ie period of the swing will
	` '	` '	ses if the child is short	
52.	` ,		n in the lift drops a ball inside th	ne lift The accel ration of the
<i>52.</i>	_		an standing stationary on the	
	(a) g, g	(b) g - a, g - a	•	(d a, q
53.	. ,	. , .	n an electrochemical cell de	(, ,
	(a) (It) ^{1/2}	(b) IT	(c) I/t	(d) l ² t
	(where t is the time	period, for which the c	current is passed)	
54.	At what temperature	e is the r.m.s. velocity	of a hydrogen molecule e	qual to that of an oxygen
	molecule at 47° C?			
	(a) 80 K	(b) - 73 K	(c) 3 K	(d) 20 K
55.	•	charged particle unde	rgoing a circular motion in a	a unitorm magnetic field is
	independent of its (a) speed	(b) mass	c) charge	(d) magnetic induction
56.	` ' '	` '	are eleased from top of an i	` '
			ximum acceleration down	
	(a) solid sphere	(b) hollow sphere	(c) ring	(d) all same
57.	In a transformer , nu	mber of tu ns in the p	rimary coil are 140 and tha	t in the secondary coil are
	•	•	nat in the secondary coil is	
EO	(a) 4 A	(b) 2 A	(c) 6 A	(d) 10 A
58.	(a) prevent radiation		ficiency because we canno (b) find ideal sources	OL CONTRACTOR OF THE CONTRACTO
	· / •	ero temperature	(d) eliminate friction	
59.	` '	•	ss M and radius R about its	diameter is
	(a) MR ² /2	(b) MR ²	(c) 2MR ²	(d) MR ² /4
60.	When orce F_1 , F_2 ,	F ₃ are acting on a p	article of mass m such tha	at F_2 and F_3 are mutually
	perpendicular, then	the particle remains	stationary. If the force F_1	is now removed then the
	acceleration of the p	particle is		
	() F ₁ /m	(b) F_2F_3/mF_1	(c) $(F_2 - F_3)/m$	(d) F_2/m
61.			magnitudes is 18 N and the	
			the magnitudes of the force	
	(a) 12 N, 6 N	• •	(c) 10 N, 8 N	(d) 16 N, 2 N
62.	•		u at the specific instant. T	ne ratio of the respective
		he two cars are stopp		(4) 1 . 10
	(a) 1:1	(b) 1:4	(c) 1:8	(d) 1:16

63.	1 mole of a gas wit	h $\gamma = 7/5$ is mixed wi	th 1 mole of a gas with γ =	$5/3$, then the value of γ for
	the resulting mixture is			
	(a) 7/5	(b) 2/5	(c) 24/16	(d) 12/7
64.	If a charge q is place	ced at the centre of the	e line joining two equal cha	rges Q such that the system
	is in equilibrium the	en the value of q is		•
	(a) Q/2	(b) -Q/2	(c) Q/4	(d) -Q/4
65.	Capacitance (in F)	of a spherical conduc	ctor with radius 1 m is	
	(a) 1.1×10^{-10}	(b) 10 ⁻⁶	(c) 9×10^{-9}	(d) 10 ⁻³
66.	A light string pass	ing over a smooth lig	tht pulley connects two bloom	ocks of masses m, and m
	(vertically). If the a	cceleration of the syst	tem is g/8, then the ratio of	f the masses is
	(a) 8:1	(b) 9:7	(c) 4:3	(d) 5:3
67.	Two spheres of the	same material have r	adii 1 m and 4m and tempe	eratures 4000 K and 2000 K
	respectively. The ra	itio of the energy radia	ted per second by the first	sphe e to that by the second
	is			
	(a) 1:1	(b) 16:1	(c) 4:1	(d) 1:9
68.	Three identical blo	cks of masses m = 2l	kg are drawn by a forc	
	F = 10.2 N with an	acceleration of 0.6 ms	s ⁻² on a frictions surface	$C \longrightarrow B \longrightarrow A \longrightarrow F$
	then what is the ter	nsion (in N) in the strir	$^{\prime\prime}$	///////////////////////////////////////
	and C ?			
	(a) 9.2	(b) 7.8	(c) 4	(d) 9.8
69.	One end of a mass	sless rope, which pas	ses over a massless and	frictionless
				, •
	•		er end is free. Maximum to	
	the rope can bear i	is 360 N. With what va	ue of maximum safe acce	
	the rope can bear i ms ⁻²) can a man of	s 360 N. With what va	ue of maximum safe acce pe?	leration (in
	the rope can bear ims ⁻²) can a man of (a) 16	s 360 N. With what va 60 kg climb on the ro (b) 6	ue of maximum safe acce pe? (c) 4	leration (in (d) 8
70.	the rope can bear i ms ⁻²) can a man of (a) 16 A particle of mass	is 360 N. With what va 60 kg climb on the ro (b) 6 m moves al ng line	ue of maximum safe acce pe? (c) 4 PC with velocity v as show	leration (in (d) 8
70.	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angula	s 360 N. With what va 60 kg climb on the ro (b) 6	ue of maximum safe accepe? (c) 4 PC with velocity v as shown article about P?	leration (in (d) 8
70.	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angulation (a) mvL	is 360 N. With what va 60 kg climb on the ro (b) 6 m moves al ng line	ue of maximum safe acce pe? (c) 4 PC with velocity v as show article about P? (b) mvl	(d) 8
	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angulation (a) mvL (c) mvr	is 360 N. With what va 60 kg climb on the ro (b) 6 m moves al ng line r momen um of the pa	ue of maximum safe accepe? (c) 4 PC with velocity v as shown ticle about P? (b) mvl (d) zero	(d) 8
70. 71.	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angula (a) mvL (c) mvr Which of the f llow	is 360 N. With what va 60 kg climb on the ro (b) 6 m moves al ng line r momen um of the pa	ue of maximum safe accepe? (c) 4 PC with velocity v as shown ticle about P? (b) mvl (d) zero fibres ?	(d) 8
	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angula (a) mvL (c) mvr Which of the f llow (a) total internal ref	is 360 N. With what va 60 kg climb on the ro (b) 6 m moves al ng line r momen um of the pa	ue of maximum safe accepe? (c) 4 PC with velocity v as shown ticle about P? (b) mvl (d) zero	(d) 8
71.	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angula (a) mvL (c) mvr Which of the f llow (a) total internal ref (d) refraction	is 360 N. With what value 60 kg climb on the ro (b) 6 m moves al ng line r momen um of the part of the part of the part of the part of the flection (b) scattering	ue of maximum safe accepe? (c) 4 PC with velocity v as shown article about P? (b) mvl (d) zero fibres ? (c) diffraction	(d) 8
	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angular (a) mvL (c) mvr Which of the follow (a) total internal reformation The escape velocities	is 360 N. With what value 60 kg climb on the ro (b) 6 m moves all ng line remomen um of the part ong is used in optical flection (b) scattering ty of a body depends	ue of maximum safe accepe? (c) 4 PC with velocity v as shown article about P? (b) mvl (d) zero fibres ? (c) diffraction upon mass as	(d) 8 wn.
71. 72.	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angular (a) mvL (c) mvr Which of the follow (a) total internal reform (d) refraction The escape velocities (a) m ⁰	is 360 N. With what value 60 kg climb on the rough (b) 6 m moves along line remomen um of the part of the part of the part of a body depends (b) m ¹	tue of maximum safe accerpe? (c) 4 PC with velocity v as shown article about P? (b) mvl (d) zero fibres ? (c) diffraction upon mass as (c) m²	(d) 8
71.	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angular (a) mvL (c) mvr Which of the follow (a) total internal ref (d) refraction The escape velocities (a) m ⁰ Which of the follow	is 360 N. With what value 60 kg climb on the rough 60 kg climb on the rough 60 kg climb on the rough 60 kg climb and so and so are so and so are so a	tue of maximum safe accerpe? (c) 4 PC with velocity v as shown article about P? (b) mvl (d) zero fibres ? (c) diffraction upon mass as (c) m² gnetic waves?	(d) 8 vn. (d) m³
71. 72.	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angular (a) mvL (c) mvr Which of the follow (a) total internal reform (d) refraction The escape velocities (a) m ⁰	is 360 N. With what value 60 kg climb on the rough (b) 6 m moves along line remomen um of the part of the part of the part of a body depends (b) m ¹	tue of maximum safe accerpe? (c) 4 PC with velocity v as shown article about P? (b) mvl (d) zero fibres ? (c) diffraction upon mass as (c) m²	(d) 8 wn.
71. 72.	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angular (a) mvL (c) mvr Which of the follow (a) total internal refundation The escape velocities (a) m ⁰ Which of the follow (a) cosmic rays	is 360 N. With what value 60 kg climb on the rough 60 kg climb on the rough 60 kg climb on the rough 60 kg climb and so and so are so and so are so a	tue of maximum safe accepe? (c) 4 PC with velocity v as shown article about P? (b) mvl (d) zero fibres? (c) diffraction upon mass as (c) m² gnetic waves? (c) β-rays	(d) 8 vn. (d) m³
71. 72. 73	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angular (a) mvL (c) mvr Which of the follow (a) total internal refunding the escape velocities (a) mo Which of the follow (a) cosmic rays Identify the pair who	is 360 N. With what value 60 kg climb on the rough 60 kg climb on the rough 60 kg climb on the rough 60 kg climb on the part of the part o	tue of maximum safe accepe? (c) 4 PC with velocity v as shown article about P? (b) mvl (d) zero fibres? (c) diffraction upon mass as (c) m² gnetic waves? (c) β-rays	(d) 8 vn. (d) m³
71. 72. 73	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angular (a) mvL (c) mvr Which of the follow (a) total internal reference (d) refraction The escape velocities (a) m ⁰ Which of the follow (a) cosmic rays Identify the pair who (a) torque and wor If θ _i , is the inversion	is 360 N. With what value 60 kg climb on the rough 60 kg climb on the rough 60 kg climb on the rough 60 kg climb on the part of the part o	tue of maximum safe accerpe? (c) 4 PC with velocity v as shown article about P? (b) mvl (d) zero fibres? (c) diffraction upon mass as (c) m² gnetic waves? (c) β-rays equal rgy(c) force and stress	(d) 8 wn. (d) m ³ (d) X- rays
71.72.7374.	the rope can bear in ms ⁻²) can a man of (a) 16 A particle of mass What is the angular (a) mvL (c) mvr Which of the follow (a) total internal refunding (b) refraction The escape velocities (a) m ⁰ Which of the follow (a) cosmic rays Identify the pair who (a) torque and word of the follow (b) torque and word for the follow (c) torque and word for the follow (b) torque and word for the follow (c) torque and word for the follow (a) torque and word for the follow (b) torque and word for the follow (c) torque and word for the follow (d) torque and word for the follow (e) torque and word for the follow (figure and for the follow (figure and for the follow) torque and word for the follow (figure and for the follow) torque and word for the follow (figure and for the follow) torque and word for the follow (figure and for the follow) to the follow (figure and for the figure and for the follow) to the follow (figure and for the figure and for t	is 360 N. With what value 60 kg climb on the rough 60 kg climb on the rough 60 kg climb on the rough 60 kg climb on the part of the part o	tue of maximum safe accepe? (c) 4 PC with velocity v as shown ticle about P? (b) mvl (d) zero fibres? (c) diffraction upon mass as (c) m² gnetic waves? (c) β-rays equal egy(c) force and stress the neutral temperature, 0	(d) 8 Wn. (d) m³ (d) X- rays (d) force and work

76.	When H ₂ S is passe	d through Hg ₂ S we ge	t	
	(a) HgS	(b) HgS + Hg $_2$ S	(c) Hg ₂ S	(d) Hg_2S_2
77.	Alum helps in purify	ring water by		
	(a) forming Si comp	olex with clay particles		
	(b) sulphate part wh	nich combines with the	e dirt and removes it	
	(c) coagulating the	mud particles		
	(d) making mud wat			
78.	A square planar co	mplex is formed by hyl	oridisation of which atomic	orbitals?
	(a) s, p_x , p_y , d_{yz}	(b) $s, p_x, p_y, d_{x^2-y^2}$	(c) s, p_x, p_y, d_{z^2}	(d) s, p_y, p_z, d_y
79.	Polymer formation f	from monomers starts	by	
	(a) condensation re	action between monor	ners	
	(b) coordinate react	tion between monome	rs	
	(c) conversion of m	onomer to monomer id	ons by protons	
	(d) hydrolysis of mo	onomers		
80.	The type of isomeris	sm present in nitropen	tamine chromium (III) chlo	ride is
	(a) optical	(b) linkage	(c) ionization	(d) polymerisation
81.	Arrangement of (CF	$(H_3)_3 - C-, (CH_3)_2 - CH-, C$	$\mathrm{CH_3}$ - $\mathrm{CH_2}$ - when attached t	o benzyl or an unsaturated
		order of inductive effe		
	0 0	0 =	H_2 (b) $CH_3 - CH_2 - < (CH_3)$	_
	* =		$CH_2(d) (CH_3)_3 - C - < CH_3 - C$	CH_2 - $(CH_3)_2$ - CH -
82.		organo metallic compo		
	, , ,	. ,	(c) C - Br bond	. ,
83.		•	equeous solution. The solut	
	` '	•	(b) not a buffer solution v	·
	` ,	•	(d) a buffer solution with	pH > 7
84.		ooth Bro ste acid and		(1)
0.5	· · · · · · · · · · · · · · · · · · ·	(b) Na ₂ CO ₃	. ,	(d) OH ⁻¹
85.			$f Mg(OH)_2$ be x then its k_{sp}	
00	(a) $4x^3$	(b) 108x ⁵	(c) 27x ⁴	(d) 9x
86.			r reactions in terms of mola	, , ,
07	(a) sec ⁻¹ , Msec ⁻¹	, ,	(c) Msec ⁻¹ , sec ⁻¹	(d) M, sec ⁻¹
87.	= :	•	airs of Xe are respectively	(-I) O O 4
		(b) 1, 2, 3		(d) 3, 2, 1
88	n w ich of the follo	iwng species the intera	atomic bond angle is 109°2	28′ ?
	(a) NH_3 , $(BF_4)^{-1}$	(b) $(NH_4)^+$, BF_3	(c) NH ₃ , BF ₄	(d) $(NH_2)^{-1}$, BF_3
89.	For the reaction A -	$+2B \longrightarrow C$, rate is g	iven by $R = [A] [B]^2$ then the	ne order of the reaction is
	(a) 3	(b) 6	(c) 5	(d) 7
90.	RNA is different fro	m DNA because RNA	contains	
	(a) ribose sugar and	d thymine	(b) ribose sugar and urac	cil
	(c) deoxyribose sug	gar and thymine	(d) deoxyribose sugar ar	nd uracil

91.	. Which of the following are arranged in an increasing order of their bond strengths?			
	(a) $O_2^- < O_2^- < O_2^+ < O_2^{2-}$	(b) $O_2^{2-} < O_2^- < O_2^+$		
	(c) $O_2^- < O_2^{2-} < O_2 < O_2^+$	(d) $O_2^+ < O_2^- < O_2^- < O_2^{2-}$		
92.	If an endothermic reaction is non-spanta at its boiling point, then	aneous at freezing point of water and becomes feasil	ble	
	(a) ΔH is – ve, ΔS is + ve	(b) ΔH and ΔS both are + ve		
	(c) ΔH and ΔS both are – ve	(d) ΔH is + ve, ΔS is - ve		
93.	A heat engine absorbs heat Q_1 at temperative engine is $J(Q_1 + Q_2)$. This data	erature T_1 and heat Q_2 at temperature T_2 . W k done	by	
	 (a) violates 1st law of thermodynamics (c) violates 1st law of thermodynamics i (d) does not violate 1st law of thermodynamics 	_	/e	
94.	Most common oxidation states of Ce (c			
.	(a) +2, +3 (b) +2, +4	·		
95.	Arrange Ce ⁺³ , La ⁺³ , Pm ⁺³ and Yb ⁺³ in inc	reasing order of their ionic radii		
	(a) $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$	(b) $Ce^{+3} < Yb^{+3} < Pm^{+3} < La^{+3}$		
	(c) $Yb^{+3} < Pm^{+3} < La^{+3} < Ce^{+3}$	(d) $Pm^{+3} < La < Ce^{+3} < Yb^{+3}$		
96.	${\rm KO_2}$ (potassium super oxide) is used in	oxygen cylind rs n space and submarines because	e it	
	(a) absorbs CO ₂ and increases O ₂ cont			
	(c) absorbs CO ₂	(d) produces ozone.		
97.	A similarity between optical and geome			
	(a) each forms equal number of isomers	-		
	(b) If in a compound one is present her			
98.	(c) both are included in stereoi omerism. Which of the following does not show go			
30.	(a) 1, 2-dichloro - 1- pentene	(b) 1, 3 - dichloro - 2- pentene		
	(c) 1, 1- dichloro 1- pentene	(d) 1, 4 - dichloro - 2- pentene		
99.	•	not NCl ₅ while in case of phosphorous, PCl ₃ as well	as	
	PCI _s are possible. It is due to	5		
	(a) availab ity of vacant d orbitals in P b	out not in N		
	(b) lower electronegativity of P than N			
	(c) lower tendency of H - bond formation	n in P than N		
	(d) occurrence of P in solid while N in g	aseous state at room temperature		
100.	For an ideal gas, number of moles pe	er litre in terms of its pressure P, gas contant R a	ınd	
	temperature T is			
	(a) PT/R (b) PRT	(c) P/RT (d) RT/P		
101.	_	ungsten due to adsorption is the reaction of order		
100	(a) 0 (b) 1 The columbility of Ma(OLI) is S males (lite	(c) 2 (d) insufficient data	_	
102.	(a) $4S^3$ (b) $3S^4$	e. The solubility product under the same condition is (c) $4S^2$ (d) S^3	•	
	(6) 33	(u) 3	8)-	

103. How do we differentiate between Fe ³⁺ and Cr ³⁺ in group III?				
		•	(b) by increasing NH ₄ ⁺ ior	n concentration
	(c) by decreasing O	H ⁻ ion concentration	(d) both (b) and (c)	
104.	In a compound C, F	I and N atoms are pro	esent in 9 : 1 : 35 by wei	ght. Molecular weight of
	compound is 108. M	lolecular formula of co	mpound is	
	(a) $C_2H_6N_2$	(b) C_3H_4N	(c) $C_6H_8N_2$	(d) $C_9H_{12}N_3$
105.	The functional group	o, which is found in ami	ino acid is	
	(a) -COOH group	(b) - NH ₂ group	(c) - CH ₃ group	(d) both (a) and (b)
106.	Conductivity (unit Sie	emen's S) is directly pro	portional to area of the vess	sel and the concentration
	of the solution in it a	nd is inversely proport	ional to the length of the ve	essel then the unit of the
	constant of proportion	onality is		
	(a) Sm mol ⁻¹	(b) Sm ² mol ⁻¹	(c) S ⁻² m ² mol	(d) S ² m mol ²
107.	In a hydrogen atom,	if energy of an electr	on in ground state is 13.6	eV then that in the 2nd
	excited state is		-	
	(a) 1.51 eV	(b) 3.4 eV	(c) 6.04 eV	(d) 13.6 eV
108.		ng statements is true?		
	(a) HF is less polar t	han HBr		
	(b) absolutely pure v	vater does not contain	any ions	
	` ,		forces of attraction overcome	the forces of repulsion
	• ,	sference of electron to		•
109.	• •	ng compounds has wro	•	
	(a) $CH_3 - CH_2 - CH_3$	COO - CH ₂ CH -	- →ethyl butanoate	
	(b) CU CU CL	I CUO va moti	avl butanal	
		I_2 – CHO — \rightarrow 3 meth	iyi—butarrar	
	СН			
	(c) CH _a -CH-CH	–CH ——→2 - methy	rl-3-butanol	
		–CH ——→2 - methy		
	OH CH	3		
	O			
	(d) $CH_3 - CH - \ddot{C} -$	$\cdot CH_2 - CH_3 \longrightarrow 2 - i$	methyl-3-pentanone	
	T I CH₃	- •		
	•			
110.	CH ₃ CH ₂ COOH—red	$\xrightarrow{P} A \xrightarrow{\text{alc. KOH}} B. Wh$	at is B?	
	(a) CH ₂ CH ₂ COCI	(b) CH ₂ CH ₂ CHO	(c) CH ₂ = CHCOOH	(d) CICH,CH,COOH
111		ed by the electrolysis		(-, 2 - 2
	(a) bauxite	•	(c) alumina mixed with mo	olten crvolite
	(d) molten cryolite	(-,	(-)	,
112.	•	by leaching with a cya	anide is	
	(a) Mg	(b) Ag	(c) Cu	(d) Na
113	Value of gas constar	. , .	(-,	(-)
	•		(c) 8.3 J mol ⁻¹ K ⁻¹	(d) 83 erg mol ⁻¹ K ⁻¹
	(4) 01002 1110 4111	(5) 5.55. 54. 1115. 11	(5) 515 5 11157 11	(2) 33 319 1101 11

114.	Freezing point of an aqueous solution is (-0 is $K_b = 0.512$ °C, $K_f = 1.86$ °C, find the increase.		point of the same solution
	(a) 0.186 °C (b) 0.0512 °C		(d) 0.2372 °C
115.	EMF of a cell in terms of reduction potenta	` '	` '
	(a) $E = E_{left} - E_{right}$ (b) $E = E_{left} + E_{right}$	•	
116.	Uncertainity in position of a minute particle	<u> </u>	· ·
	in its velocity (in ms ⁻¹) ? (h = 6.6×10^{-34} J	• ,	,
	(a) 2.1×10^{-34} (b) 0.5×10^{-34}	,	(d) 0.5×10^{-23}
117.	Which of these will not react with acetylen	• •	(0) 0.0 % .0
	(a) NaOH (b) ammonical AgNC		(d) HCl
118	Change in volume of the system does not	· ·	` '
110	equilibria?	cator the named of mole	o in willon in the fellowing
	(a) $N_2(g) + O_2(g) = 2 NO(g)$	(b) PCL (a) ——— PCL	(a) + Cl (a)
	(c) $N_2(g) + O_2(g) = 2NH_3(g)$ (c) $N_2(g) + 3H_2(g) = 2NH_3(g)$	•	~ =
110	For the reactions, $(g) + G \Pi_2(g) = 2 \Pi \Pi_3(g)$	(u) 50 ₂ 01 ₂ (g)	$O_2(g) + O_2(g)$
115.	$C+O_2 \longrightarrow CO_2$; $\Delta H = -393J$		
	$2Zn + O_2 \longrightarrow 2ZnO$; $\Delta H = -412J$		
	(a) carbon can oxidise Zn	(b) oxidation of carbon is	not feasible
	(c) oxidation of Zn is not feasible	(d) Zn can oxidise carbor	
120	Which of the following ions has the maxim	• •	'
120.	(a) Mn ⁺² (b) Fe ⁺²	(c) Ti ⁺²	(d) Cr ⁺²
121	In which of the following species is the und	` '	()
121.	(a) CH ₃ COOH (b) CH ₃ CH ₂ OH		
122	Racemic mixture is formed by mix ng wo		(a) $O(1_2 - \underline{O}(1)) O(1_3)$
122.	(a) isomeric compounds	(b) chiral compounds	
	(c) meso compounds	(d) optical isomers	
123	The differential rate law for the eaction H ₂	` ' '	
120.			п
	(a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$	(b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{1}{2} \frac{d[H_2]}{dt}$	<u>'l</u>
	at at at	Gt Gt = Gt	
	(c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$	(d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} =$	
104		at at	aı
124.	Number of sigma bonds in P ₄ O ₁₀ is	(a) 17	(d) 16
105	(a) 6 (b) 7	(c) 17	(d) 16
125.	, , ,	(a) only Ayagadra'a law	(d) all of those
106	(a) only Boyle's law (b) only Charles' law		
126.	A metal M readily forms its sulphate MSO		
	becomes inert on heating. It forms an ins	soluble hydroxide wi(On) ₂	WITICH IS SOLUDIE III NAOH
	solution. Then M is	(a) Ca	(d) Do
	(a) Mg (b) Ba	(c) Ca	(d) Be
127.	If φ denotes reduction potential, then whic	h is true ?	
	(a) $E_{cell}^0 = \phi_{right} - \phi_{left}$ (b) $E_{cell}^0 = \phi_{left} + \phi_{right}$	(c) $E_{cell}^{0} = \phi_{left} - \phi_{right}$	(d) $E^{\scriptscriptstyle 0}_{\scriptscriptstyle cell} = -(\phi_{\scriptscriptstyle left} + \phi_{\scriptscriptstyle right})$

- 128. What is the product when acetylene reacts with hypochlorous acid?
 - (a) CH₂COCI
- (b) CICH₂CHO
- (c) Cl₂CHCHO
- (d) CICHCOOH

129. On vigorous oxidation by permanganate solution

 $(CH_3)_2C = CH - CH_2 - CHO$ gives

- OCOCH₃ COOH 130. The compound | is used as
 - (a) antiseptic
- (b) antibiotic
- (c) analgesic
- (d) pesticide
- 131. What will be the emf for the given cell $Pt \mid H_2(P_1) \mid H^+(q) \mid H_2(P_2) \mid Pt$

 - (a) $\frac{RT}{f} log \frac{P_1}{P_2}$ (b) $\frac{RT}{2f} log \frac{P_1}{P_2}$ (c) $\frac{RT}{f} log \frac{P_2}{P_2}$
- (d) none of these
- 132. When primary amine reacts with chlor orm i ethanoic KOH then the product is
 - (a) an isocyanide
- (b) an aldehyde
- (c) a cyanide
- (d) an alcohol
- 133. Which of the following reaction is possible at anode?
 - (a) $2Cr^{_{3+}} + 7H_{_2}O \rightarrow Cr_{_2}O_{_7}^{_2} + 14H^{_+}$ (b) $F_{_2} \rightarrow 2F^{_-}$
 - (c) $(1/2) O_2 + 2H^+ \rightarrow H_2O$
- (d) none of these
- 134. The reaction : $(CH_3)_3C Br \xrightarrow{H_2O} (CH_3)_3 C OH$
 - (a) elimination ea on

(b) substitution reaction

(c) free radical r action

- (d) displacement reaction
- 135. If half- fe o a substance is 5 yrs, then the total amount of substance left after 15 years, when in tial amount is 64 grams is
 - (a) 16 grams
- (b) 2 grams
- (c) 32 grams
- (d) 8 grams

- 136 Cyanide process is used for the extraction of
 - (a) barium
- (b) aluminium
- (c) boron
- (d) silver

- 137. Which is the correct order of ionic sizes?
 - (a) Ce > Sn > Yb > Lu (b) Sn > Ce > Lu > Yb (c) Lu > Yb > Sn > Ce (d) Sn > Yb > Ce > Lu(Atomic Number : Ce = 58, Sn = 50, Yb = 70 and Lu = 71)
- 138. With increase of temperature, which of these changes?
 - (a) molality

- (b) weight fraction of solute
- (c) fraction of solute present in water
- (d) mole fraction

139.	0. The integrated rate equation is $Rt = log C_0 - log C_t$. The straight line graph is obtained by plotting			
	(a) time vs log C _t	(b) $\frac{1}{\text{time}}$ vs C _t	(c) time vs C _t	(d) $\frac{1}{\text{time}} \text{vs } \frac{1}{C_t}$
140.		wing reactions, increa moles at equilibrium	se in the volume at consta	ant temperature does not
	(a) $2NH_3 \rightarrow N_2 + 3H_3$	H_2	(b) $C(g) + (1/2)O_2(g) \rightarrow 0$	CO(g)
	(c) $H_2(g) + O_2(g) -$	\rightarrow H ₂ O ₂ (g)	(d) none of these	
141.	When the sample of electrodes are	f copper with zinc impu	urity is to be purified by ele	ectrolysis, the app opriate
	cathode	anode	cathode	anode
	` ' .	pure copper	. ,	• • • • • • • • • • • • • • • • • • • •
140		impure sample	(d) pure copper	impure ample
142.	The most stable ion (a) [Fe(OH) _a] ³⁻		(c) [Fe(CN) ₆] ³⁻	(d) [Fe(H ₂ O) ₂]3+
143.	β - particle is emitte	-	(-) [- (- /6]	(-/ L - (2 - /6J
	-		(b) from outermost orbit	
	(c) conversion of ne	utron to proton	(d) β -particle is not emitt	ed
144.	1. In mixture A and B component show -ve deviation as			
	(a) $\Delta V_{mix} > 0$		(b) $\Delta H_{mix} < 0$	
	(c) A - B interaction	is weaker than A A a	and B - B interaction	
	` ,	is stronger than A - A		
145.	•	·	e of body by 1 K is called	(-I)
146	` , .	(b) thermal capacity	(c) water equivalent be crystals respectively, the	(d) none of these
140.		in the un t cell of their		en the number of atoms of
	(a) 4 and 2	(b) 9 and 14	(c) 14 and 9	(d) 2 and 4
147.	Number of atoms in	558.5 gram Fe (at.wt.	of Fe = 55.85 g mol^{-1}) is	
	(a) twice that in 60 g		(b) 6.023×10^{22}	
	(c) half that in 8g He		(d) $558.5 \times 6.023 \times 10^{23}$	
148.	•		and ultimately forms [Mn n each case respectively i	
	(a) 4, 3, 1, 5	(b) 1, 5, 3, 7	(c) 1, 3, 4, 5	(d) 3, 5, 7, 1
149		ng is a redox reaction		
	(a) NaCl+KNO ₃ —	NaNO ₃ + KCI	(b) $CaC_2O_4 + 2HCI \rightarrow$	CaCl ₂ + H ₂ C ₂ O ₄
	(c) $Mg(OH)_2 + 2NH$	$_{4}CI \rightarrow MgCl_{2} + 2NH_{4}C$	OH (d) Zn+2AgCN→2A	$Ag + Zn(CN)_2$
150.	For the reaction CC	$O(g) + (1/2)O_2(g) = CC$	$N_{2}(g), K_{p}/K_{c}$ is	
	(a) RT	(b) (RT) ⁻¹	(c) (RT) ^{-1/2}	(d) (RT) ^{1/2}

12

AIEEE - 2002

Mathematics

1.	If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and	$\beta^2 = 5\beta - 3$ then the equation having	α/β	and	β/α	as its roots is
• •		p = op o mon mo oquation naving	ω / ρ	ana	p / ω	40 110 10010 10

(a)
$$3x^2 - 19x + 3 = 0$$

(b)
$$3x^2 + 19x - 3 = 0$$

(c)
$$3x^2 - 19x - 3 = 0$$

(d)
$$x^2 - 5x + 3 = 0$$

2. If
$$y = (x + \sqrt{1 + x^2})^n$$
, then $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$ is

(b)
$$-n^2y$$

(d)
$$2x^2y$$

3. If 1,
$$\log_9 (3^{1-x} + 2)$$
, $\log_3 (4.3^x - 1)$ are in A.P. then x equals

(b)
$$1 + \log_3 4$$

solving the problem is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Probability that the problem is solved is

(a)
$$\frac{3}{4}$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{1}{3}$$

5. The period of
$$\sin^2 \theta$$
 is

(a)
$$\pi^{2}$$

(c)
$$2\pi$$

(d)
$$\pi/2$$

6. I, m, n are the pth, qth and rth term of a G P. all positive, then
$$\begin{vmatrix} log \ l & p & 1 \\ log m & q & 1 \\ log n & r & 1 \end{vmatrix}$$
 equals

$$(a) -1$$

7.
$$\lim_{x\to 0} \frac{\sqrt{1-\cos 2x}}{\sqrt{2}x} is$$

(d) does not exist

(a) isosceles and right angled

(b) isosceles but not right angled

(c) right angled but not isosceles

(d) neither right angled nor isoceles

9. In a class of 100 students there are 70 boys whose average marks in a subject are 75. If the average marks of the complete class is 72, then what is the average of the girls?

10.
$$\cot^{-1}(\sqrt{\cos\alpha}) = \tan^{-1}(\sqrt{\cos\alpha}) = x$$
, then $\sin x =$

(a)
$$tan^2 \left(\frac{\alpha}{2}\right)$$
 (b) $cot^2 \left(\frac{\alpha}{2}\right)$

(b)
$$\cot^2\left(\frac{\alpha}{2}\right)$$

(c)
$$tan\alpha$$

(d)
$$\cot\left(\frac{\alpha}{2}\right)$$

- The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3}=4\frac{d^3y}{dx^3}$ are
 - (a) $(1,\frac{2}{2})$
- (b) (3, 1)
- (c) (3, 3)
- (d)(1,2)
- A plane which passes through the point (3, 2, 0) and the line $\frac{x-4}{1} = \frac{y-7}{5} = \frac{z-4}{1}$ is
 - (a) x y + z = 1

- (b) x + y + z = 5 (c) x + 2y z = 1 (d) 2x y + z = 5
- The solution of the equation $\frac{d^2y}{dv^2} = e^{-2x}$

- (a) $\frac{e^{-2x}}{4}$ (b) $\frac{e^{-2x}}{4} + cx + d$ (c) $\frac{1}{4}e^{-2x} + cx^2 + d$ (d) $\frac{1}{4}e^{-4x} + cx + d$
- 14. $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{\frac{1}{x}}$
 - (a) e4
- (b) e^2
- (c) e

(d) 1

- 15. The domain of $\sin^{-1} [\log_3 (x/3)]$ is
 - (a) [1, 9]
- (b) [-1,9]
- (c) [-9, 1]
- (d) [-9, -1]

- The value of $2^{1/4}$, $4^{1/8}$, $8^{1/6} + \dots \infty$ is 16.
- (b) 2
- (c) 3/2

- (d) 4
- 17. Fifth term of a GP is 2, then the product of its 9 terms is
 - (a) 256
- (b) 512
- (c) 1024
- (d) none of these

- $\int_{0}^{10\pi} |\sin x| dx is$
- (c) 10

(d) 18

- 19. $I_n = \int_0^{\pi/4} \tan^n x \, dx$ hen $\lim_{n \to \infty} n[I_n + I_{n-2}]$ equals
 - (a) $\frac{1}{2}$
- (b) 1
- (c) ∞

(d) zero

- $\int\limits_{0}^{\sqrt{2}} [x^2] dx$ is
 - (a) $2 \sqrt{2}$
- (b) $2+\sqrt{2}$ (c) $\sqrt{2}-1$
- (d) $\sqrt{2} 2$

- 21. $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx \text{ is}$
 - (a) $\frac{\pi^2}{\prime}$
- (b) π^2
- (c) zero

(d) $\frac{\pi}{2}$

38.	The positive integer	just greater than (1+0	0.0001) ¹⁰⁰⁰⁰ is	
	(a) 4	(b) 5	(c) 2	(d) 3
39.	r and n are positive	e integers r > 1, n > 2	and coefficient of $(r + 2)^{th}$	$^{\circ}$ term and $^{\circ}$ term in the
	expansion of (1+x) ²¹	$^{\circ}$ are equal, then n equ	ıals	
	(a) 3r	(b) 3r + 1	(c) 2r	(d) 2r + 1
				. 1
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x + b
40.	If a > 0 discriminant	of ax2 + 2bx + c is -ve	e, then b c b	OX + C is
			ax+b bx+c	0
	(a) +ve	(b) $(ac - b^2) (ax^2 + 2b^2)$	0x + c) (c) -ve	(d) 0
41.	If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7}}}$	7+ having n radio	cal signs then by methods	of mathematical induciton
	which is true			
	(a) $a_n > 7 \forall n \ge 1$	(b) $a_n > 7 \forall n \ge 1$	(c) $a_n < 4 \forall n \ge 1$	(d) $a_n < 3 \forall n \ge 1$
42.	The sides of a triang	gle are 3x + 4y, 4x+37	$^{\prime}$ and 5x + 57 where x, y	0 then the triangle is
	(a) right angled	(b) obtuse angled	(c) equilateral	(d) none of these
43.	Locus of mid point of	of the portion between	the axes $f x \cos \alpha + y \sin \alpha$	$\alpha = p$ where p is constant
	is			
	4		1 1 2	1 1 1
	(a) $x^2 + y^2 = \frac{4}{p^2}$	(b) $x^2 + y^2 = 4p^2$	(c) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$	(d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$
44.	If the pair of lines ax	(² + 2hxy + by² + 2gx -	+ 2fy + c = 0 intersect on t	he y - axis then
		(b) $bg^2 \neq ch^2$		(d) none of these
45.	The point of lines re	presented by 3ax2+5x	$y + (a^2-2)y^2 = 0$ and perpe	ndicular to each other for
	(a) two values of a	(b) ∀ a	(c) for one value of a	(d) for no values of a
46.	If the chord $y = mx$	+ 1 of the circle x ² + y ²	2 = 1 subtends an angle of	measure 45° at the major
	segment of the cir I	e then value of m is		
	(a) $2 \pm \sqrt{2}$	(b) $-2 \pm \sqrt{2}$	(c) $-1 \pm \sqrt{2}$	(d) none of these
47.				$y^2 = 25$. The locus of any
	p int in the set is			,
	•	(b) $x^2 + y^2 \le 25$	(c) $x^2 + y^2 \ge 25$	(d) $3 \le x^2 + y^2 \le 9$
48			0, 0) and (1, 0) and touching	
	(1 1)	(1 –)	(3 1)	(1.3)
	(a) $\left \frac{1}{2}, \frac{1}{2} \right $	(b) $\left(\frac{1}{2}, -\sqrt{2}\right)$	(c) $\left \frac{3}{2}, \frac{1}{2} \right $	(d) $\left(\frac{1}{2}, \frac{3}{2}\right)$
40	/	,		()
49.	The equation of a ci	_	entre and passing through	equilateral triangle whose

(a) $x^2 + y^2 = 9a^2$ (b) $x^2 + y^2 = 16a^2$ (c) $x^2 + y^2 = 4a^2$ (d) $x^2 + y^2 = a^2$

50.	Two common tange	ents to the circle $x^2 + y$	$y^2 = 2a^2$ and parabola $y^2 = 3a^2$	8ax are
			$(c) x = \pm (y + a)$	
51.			(which are the ex-radii) the	
F0	• •	•	(c) a > b and b < c	(d) a < b and b > c
52.		ution of tan x + sec x =	- ,	(D)
53.	(a) 2 Which one is not pe	(b) 3	(c) 0	(d) 1
55.	•	((b) $\cos \sqrt{x} + \cos^2 x$	(a) aga 4y + tan²y	(d) 000 0x + 0in x
			(C) COS 4X + Idil X	(d) cos 2x + sin x
54.	$\lim_{n \to \infty} \frac{1^{p} + 2^{p} + 3^{p} + \dots}{n^{p+1}}$	is		
	(a)	(b) $\frac{1}{1-p}$	$(c) \frac{1}{1} - \frac{1}{1}$	(d) $\frac{1}{p+2}$
	•	•	ρ ρ .	F -
55.	$\lim_{x\to 0}\frac{\log x''-\lfloor x\rfloor}{[x]},n\in$	∈ N ([x] denotes greate	est integer less than or equ	ıal to x)
			(c) has value 1	(d) does not exist
56.	If $f(1) = 1$, $f'(1) = 2$,	then $\lim_{x\to 1} \frac{\sqrt{f(x)-1}}{\sqrt{x}-1}$ is		
	(a) 2	(b) 4	(c) 1	(d) 1/2
57.			nal and $= -x$ is irrational. The	nen
	. , . ,	us at every x, except x		
	(c) f(x) is continuou	uous at every x, excepus everywhere	$\mathbf{x} = 0$	
	(d) f(x) is discontinu	•		
58.	f(x) and g(x) are two	o differentiable funct o	ns on $[0, 2]$ such that $f''(x)$	-g''(x)=0
	f'(1) = 2a'(1) = 4f(2)	=3g(2)=9 h n f(x)	- g(x) at $x = 3/2$ is	
	(a) 0	(b) 2	(c) 10	(d) 5
59.	• •	(3) = (3) y) \forall x.y and f(5) =2, f	. ,	(a) c
00.	(a) 0	(b) 1	(c) 6	(d) 2
	• •	. ,	. ,	(.)
60.	The maximum d sta	ance from origin of a p	oint on the curve $x = a \sin x$	$t - b \sin \left(\frac{m}{b} \right)$
	y = a os t - b cos	$\left(\frac{at}{b}\right)$, both a, b > 0 is		,
		()	(c) $\sqrt{a^2 + b^2}$	(d) $\sqrt{a^2 - b^2}$
61.	If $2a + 3b + 6c = 0$	$(a,b,c \in R)$ then the q	uadratic equation ax2 + bx	+ c = 0 has
	(a) at least one root	t in [0, 1]	(b) at least one root in [2	, 3]
62.	(c) at least one root If $y = f(x)$ makes +		(d) none of these 0 unit on x and y axes an	d encloses an area of 3/4
	square unit with the	e axes then $\int_{0}^{2} xf'(x) dx$	is	
	(a) 3/2	(b) 1	(c) 5/4	(d) -3/4
	(4) 5/2	(6)	(3) 5/ 1	(u) -5/4

63.	The area bounded to (a) 4 sq. units		e curves $y = \ln x$, $y = \ln x $, $y = \ln x $ and $y = \ln x $ is 6 sq. units (d) none of these							
64.	If $ \vec{a} = 4$, $ \vec{b} = 2$ an	= 4, $ \vec{b} $ = 2 and the angle between \vec{a} and \vec{b} is $\pi/6$ then $(\vec{a} \times \vec{b})^2$ = 2 is equal to								
	(a) 48	(b) 16	(c) ā	(d) none of these						
65.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors	such that $\left[\vec{a}\ \vec{b}\ \vec{c}\right] = 4$ th	en $\left[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}\right] =$							
	(a) 16	(b) 64	(c) 4	(d) 8						
66.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors	s such that $\vec{a} + \vec{b} + \vec{c} =$	b) 64 (c) 4 (d) 8 uch that $\vec{a}+\vec{b}+\vec{c}=0$ and $ \vec{a} =7, \vec{b} =5, \vec{c} =3$ then angle between b) 30° (c) 45° (d) 90° 3 thus what will be the value of a.b + b.c + c.a , g ven that $\vec{a}+\vec{b}+\vec{c}=0$ b) 50 (c) -25 (d) -50 en c) $3\lambda=2\mu$ (c) $\lambda=\mu$ (d) $\lambda+\mu=0$ +3 \hat{j} are two vectors and \vec{c} s a vector such that $\vec{c}=\vec{a}\times\vec{b}$ then							
	vector \vec{b} and \vec{c} is									
	(a) 60	(b) 30°	(c) 45°	(d) 90°						
67.	If $ a =5$, $ b =4$, $ c =3$ thus what will be the value of $ a.b+b.c+c.a $, $ g =4$									
	(a) 25	(b) 50	(c) - 25	(d) - 50						
68.	$3\lambda\vec{c}+2\mu(\vec{a}\times\vec{b})=0$	then	en							
	(a) $3\lambda + 2\mu = 0$	(b) $3\lambda = 2\mu$	(c) $\lambda = \mu$	(d) $\lambda + \mu = 0$						
69.	$\vec{a} = 3\hat{i} - 5\hat{j}$ and $\vec{b} =$	6î+3ĵ are two vect	ors and \vec{c} s a vector su							
	a : b : c	a : b : c								
	(a) $\sqrt{34} : \sqrt{45} : \sqrt{39}$	(b) $\sqrt{34}$: $\sqrt{45}$: 39	(c) 34 : 39 : 45	(d) 39:35:34						
70.	If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{c}$	\vec{a} then $\vec{a}+b+c=$								
	(a) abc	(b) -1	(c) 0	(d) 2						
71.	A and B are events	and B are events such that $P(A \cup B) = 3/4$, $P(A \cap B) = 1/4$, $P(\overline{A}) = 2/3$ then $P(\overline{A} \cap B)$ is								
70	(a) 5/12	(b) 3/8	(c) 5/8	(d) 1/4						
72.		die is tossed 5 times. Getting an odd number is considered a success. Then the variance of stribution o success is								
	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4						
73.	The d r of normal to $x + y = 3$ ar	the plane through (1, 0	0, 0) , (0, 1, 0) which makes	an angle $\pi/4$ with plane						
	(a) 1, $\sqrt{2}$,1	(b) 1, 1, $\sqrt{2}$	(c) 1, 1, 2	(d) $\sqrt{2}$, 1, 1						
74			ant whose direction is at rig	ght angles to the smaller						
	force is 12 N. The m (a) 13, 5	agnitude of the two fo (b) 12, 6	rces are (c) 14, 4	(d) 11, 7						
75.		of weight w can slide on smooth circular wire in a vertical plane. The bead is attached								
	by a light thread to the	light thread to the highest point of the wire and in equilibrium, the thread is taut and make								
	an angle θ with the vertical then tension of the thread and reaction of the wire on the bead are									
	(a) $T = w \cos \theta$ (c) $T = w$	$R = w \tan \theta$ $R = w \sin \theta$	(b) $T = 2w \cos \theta$ (d) $T = w \sin \theta$	$R = W$ $R = W \cot \theta$						

AIEEE - 2002

Physics and Chemistry Solutions

- 2. $\lambda_{\text{max}}/2 = 40 \Rightarrow \lambda_{\text{max}} = 80$
- 4. Large aperture increases the amount of light gathered by the telescope increasing the resolution.
- 5. $KE = \frac{1}{2}mv_{esc}^2 = \frac{1}{2}m(\sqrt{2gR})^2 = mgR$
- 6. A voltmeter is a high resistance galvanometer and is connected in parallel to circuit and ammeter is a low resistance galvanometer so if we connect high resistance in series with ammeter its resistance will be much high.
- 7. In coil A, B = $\frac{\mu_0}{4\pi} \frac{2\pi I}{R}$. $\therefore B\alpha \frac{I}{R}$; Hence, $\frac{B_1}{B_2} = \frac{I_1}{R_1}$. $\frac{R_2}{I_2} = \frac{2}{2} = 1$
- 8. No. of images, $n = (360/\theta) 1$. As $\theta = 60^{\circ}$ so n = 5
- 9. $P_1 = V^2/R$; $P_2 = \frac{V^2}{(R/2)} + \frac{V^2}{(R/2)} = 4\frac{V^2}{R} = 4P_1$
- 10. $E_n = -\frac{13.6}{n^2} \Rightarrow E_2 = -\frac{13.6}{2^2} = 3.4eV$
- 11. $\frac{\lambda_{A}}{\lambda_{B}} = \frac{1}{2} \Rightarrow \frac{n_{A}}{n_{B}} = \frac{2}{1}$ $A = \frac{\lambda_{A}}{\lambda_{A}} = 2L \qquad B = \frac{\lambda_{A}}{\lambda_{B}} = 4L$
- 12. The fact that placing wax dec eases the frequency of the unknown fork and also the beat frequency states that the unknown fork is of higher frequency.

$$n - 288 = 4 \implies n = 292 \text{ cps}$$

13. $y_1 + y_2 = a \sin(\omega t - kx) - a \sin(\omega t + kx)$

=
$$-2a\cos\omega t \times \sin kx \implies y_1 + y_2 = 0$$
 at $x = 0$

14. $W = qV \implies V_A - V_B = 2/20 = 0.1 V$

Here W is the work done in moving charge q from point A to B

- 15. r = mv / Bq is same for both
- 16. K.E s maximum and P.E minimum at mean position
- 17. Angular momentum = conserved

$$\frac{1}{2}MR^2\omega_{_1}=2mR^2\omega+\frac{1}{2}MR^2\omega \Rightarrow \omega=\frac{M\omega_{_1}}{M+4m}$$

- 18. The condition to avoid skidding, $v = \sqrt{\mu rg} = \sqrt{0.6 \times 150 \times 10} = 30 \text{ m/s}$
- 19. $v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20 \text{ m/s}$

20.
$$W = \int_{x_1}^{x_2} F dx = \int_{x_1}^{x_2} Kx dx = K \left[\frac{x^2}{2} \right]_{x_1}^{x_2} = \frac{K}{2} [x_2^2 - x_1^2] = \frac{800}{2} [(0.15)^2 - (0.05)^2] = 8J$$

- 21. Conserving Linear Momentum
- $2Mv_c = 2Mv Mv \implies v_c = v/2$ 22. It will compress due to the force of attraction between two
- It will compress due to the force of attraction between two adjacent coils carrying current in the same direction
- 24. Semiconductors are insulators at low temperature
- 27. Neutrons can't be deflected by a magnetic field

28.
$$hc/\lambda_0 = W_0$$
; $\frac{(\lambda_0)_1}{(\lambda_0)_2} = \frac{(W_0)_2}{(W_0)_1} = \frac{4.5}{2.3} = 2:1$

- 29. Covalent bond formation is best explained by orbital theory which uses wave phenomena
- 32. Amount left = $N_0/2^n = N_0/8$ (Here n = 15/5 = 3)
- 33. Use $R_t = R_0 \left(\frac{T}{273} \right)$
- 34. $E = \sum_{i=1}^{4} CV^2 = \frac{1}{2} nCV^2$
- 35. Black body also emits radiation whereas nothing escapes a black hole.
- 36. The given circuit clearly shows that the inductors are in parallel we have, $\frac{1}{L} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ or L = 1
- 37. As the velocity at the highest point reduces to zero. The K.E. of the ball also becomes zero.
- 38. As the ball moves down from height 'h' to ground the P.E at height 'h' is converted to K.E. at the ground (Applying Law of conservation of Energy)

Hence,
$$\frac{1}{2}m_{_A}v_{_A}^2=m_{_A}gh_{_A}$$
 or $v_{_A}=\sqrt{2gh_{_A}}$; Similarly, $v_{_B}=\sqrt{2gh}$ or $v_{_A}=v_{_B}$

39. Let the initial ve ocity of the body be v. Hence the final velocity = v/2

Applying v
$$u^2 - 2as \Rightarrow \left(\frac{v}{2}\right)^2 = v^2 - 2.a.3 \Rightarrow a = v^2 / 8$$

In II d case when the body comes to rest, final velocity = 0, initial velocity = $\frac{v}{2}$

Again,
$$(0)^2 = \left(\frac{v}{2}\right)^2 - 2.\frac{v^2}{8}.s$$
; or $s = 1cm$

So the extra penetration will be 1 cm

- 40. When gravitational force becomes zero so centripetal force on satellite becomes zero so satellite will escape its round orbit and becomes stationary.
- 41. The molecular kinetic energy increases, and so temperature increases.
- 43. Because thermal energy decreases, therefore mass should increase

44. Maximum in insulators and overlapping in metals

46.
$$E = (PE)_{final} - (PE)_{initial} = \frac{-GMm}{3R} + \frac{GMm}{R} = \frac{GMm}{6R}$$

47. Spring constant becomes n times for each piece. $T = 2\pi\sqrt{m/k}$

$$\frac{T_{_1}}{T_{_2}} = \frac{\sqrt{nK}}{K} \text{ or } T_{_2} = T / \sqrt{n}$$

48. The flux for both the charges exactly cancels the effect of each other

49.
$$W = \frac{V^2}{R_{not}}$$
; $150 = \frac{(15)^2}{R} + \frac{(15)^2}{2} \Rightarrow R = 6\Omega$

50. Resolving power
$$\alpha(1/\lambda)$$
. Hence, $\frac{(R.P)_1}{(R.P)_2} = \frac{\lambda_2}{\lambda_1} = \frac{5}{4}$

- 51. $T=2\pi\sqrt{I_{_{eff}}\,/\,8}\ \ \, ;\ \ \, I_{_{eff}}\ \ \, decreases\ \, when\ \, the\ \, child\ \, stands\ \, up.$
- 52. Man in the lift is in a non inertial frame so we have t take into account the pseudo acceleration
- 53. From Faradays law of electrolysis, $m \propto it$.

54.
$$v_{rms} \alpha \sqrt{T/m}$$
 ; $\sqrt{\frac{273+47}{32}} = \sqrt{\frac{T}{2}}$ or $T = 20K$

55. $T = 2\pi m/Bq$

57.
$$I_1N_1 = I_2N_2 \Rightarrow I_2 = \frac{4 \times 140}{280} = 2A$$

- 58. Absolute zero temperature is practically not reachable
- 60. Resultant of F₂ and F₃ s of magnitude F₁.

61. Use
$$\tan \alpha = \frac{P \sin \theta}{Q + P \cos \theta} \Rightarrow \tan \theta = \frac{P \sin \theta}{Q + P \cos \theta} = \infty$$
 $\therefore Q + P \cos \theta = 0 \Rightarrow P \cos \theta = -Q$

$$R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$$
 $R = \sqrt{P^2 + Q^2 - 2Q^2}$ or $R = \sqrt{P^2 - Q^2} = 12$

144 (P + Q) (P - Q) or P - Q =
$$144/18 = 8$$
 .: P = 13 N and Q = 5 N

62. Use $u^2 = 2as$. a is same for both cases

$$s = u^2/2a$$
; $s_2 = 16 u^2/2a = 16 s_1 \Rightarrow s_1 : s_2 = 1 : 16$

- 63. γ for resulting mixture should be in between 7/5 and 5/3
- 64. Apply the condition for equilibrium of each charge

65.
$$4\pi \in R = 1.1 \times 10^{-10}$$

66.
$$a = \frac{m_1 - m_2}{m_1 + m_2}g$$
; $\frac{1}{8} = \frac{m_1 - m_2}{m_1 + m_2} \Rightarrow m_1 : m_2 = 9:7$

- Energy radiated αR^2T^4 67.
- Apply Newton's second law 68.

$$F - T_{ab} = ma$$
; $T_{ab} - T_{bc} = ma$ $\therefore T_{bc} = 7.8 \text{ N}$

- 69. T - 60 g = 60 a; T = 3000 N; \therefore a = 4 ms⁻²
- 70. Zero, line of motion through the point P.
- $v_{acc} = \sqrt{2gR}$, where R is radius of the planet 72.

Hence escape velocity is independent of m

- 73. β - rays are the beam of fast moving electrons
- 74. Both have the dimension M¹L²T⁻²
- 80. The nitro group can attach to metal through nitrogen as (-NO₂) or through oxygen as nitrito (-ONO)
- CH₃ group has + I effect, as number of CH₃ group increases, the inductive effect increases. 81.
- 82. Bond between C of organic molecule and metal atom.
- 84. (HSO₄)⁻ can accept and donate a proton

$$(\mathsf{HSO_4})^{\scriptscriptstyle{-}} + \mathsf{H}^{\scriptscriptstyle{+}} \, \rightarrow \, \mathsf{H_2SO_4}$$

$$(HSO_4)^- - H^+ \rightarrow SO_4^{-2-}$$

85.
$$Mg(OH)_2 \rightarrow [Mg^{2+}] + 2[OH^{-}]$$

$$K_{sp} = [Mg] [OH]^2 = [x] [2x]^2 = x . 4x^2 = 4x^3$$

- $K = (mol L^{-1})^{1-n} sec^{-1}, n = 0,1$ 86.
- 3 Ione pairs 87. XeF₂ sp³ d

$$XeF_4$$
 sp^3d^2 2 lone pairs XeF_6 sp^3d^3 1 lone pair

- 89. Order is the sum of the power of the concentrations terms in rate law expression.
- According to bond order values the given order is the answer. Bond order values are 91.

+1, +1
$$\frac{1}{2}$$
, +2 and + 2 $\frac{1}{2}$, higher bond order means stronger bond.

92. ΔH +ve at low temperature and ΔS +ve at low temperature shows that reaction is non spontaneous

At high tem erature (boiling point) becomes feasible

- S me mechanical energy is always converted (lost) to other forms of energy. 93.
- 95. According to their positions in the periods, these values are in the order:

$$Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$$

This is due to lanthanide contraction

$$_{7}N = 1s^{2} \ 2s^{2}3p^{3}$$
 ; $_{15}P = 1s^{2}2s^{2}2p^{6}3s^{2}3p^{3}$

In phosphorous the 3d - orbitals are available,

100. PV = nRT (number of moles =
$$n/V$$
) $\therefore n/V = P/RT$

- 103. NH₄⁺ ions are increased to suppress release of OH⁻ ions, hence solubility product of Fe(OH)₃ is attained. Colour of precipitate is different.
- 104. According to molecular weight given
- 107. 2nd excited state will be the 3rd energy level

$$E_n = \frac{13.6}{n^2} eV \text{ or } E = \frac{13.6}{9} eV = 1.51 eV$$

- 110. $CH_3CH_2COOH \xrightarrow{Cl_2 \atop red P} CH_3CHCICOOH \xrightarrow{alc. KOH \atop -HCI} CH_2 = CHCOOH \atop Acrylic acid.$
- 111. Alumina is mixed with cryolite which acts as an electrolyte
- 112. Silver ore forms a soluble complex with NaCN from which silver is precipitated using scrap zinc.

$$Ag_2S + 2NaCN \rightarrow Na[Ag(CN)_2] \xrightarrow{Zn} Na_2[Zn(CN)_4] + Ag \downarrow Sod. argento - cyanide (soluble)$$

$$114. \quad \Delta T_b = K_b \times \frac{W_B}{M_B \times W_A} \times 1000 \; ; \\ \Delta T_f = K_f \frac{W_B}{M_B \times W_A} \times 1000 \; ; \\ \frac{\Delta T_b}{\Delta T_f} = \frac{K_b}{K_f} = \frac{\Delta T_b}{-0.186} = \frac{0.512}{1.86} = 0.0512^{\circ} C_b = 0.0012^{\circ} C_b = 0.0012^{\circ}$$

- 115. E_{cell} = Reduction potential of cathode (right) reduction potential of anode (left) = E_{right} E_{left}
- 116. $\Delta x.\Delta v = \frac{h}{2\pi m}$
- 117. Acetylene reacts with the other three as

$$CH \equiv CNa \xleftarrow{Na}_{iiq. NH_3} CH \equiv CH \xrightarrow{+HCI} CH_2 \xrightarrow{HCI} CH_3$$

$$\downarrow [AgNO_3 + NH OH] CH I CHCI_2$$

$$AgC \equiv CAg + NH_4NO_3$$
white ppt

- 118. In this reaction the ratio of umber of moles of reactants to products is same i.e. 2 : 2, hence change in volume will not alte the number of moles.
- 119. Δ H negative shows that the reaction is spontaneous. Higher value for Zn shows that the reaction is more feasib e
- 120. Mn²⁺ has the maximum number of unpaired electrons (5) and therefore has maximum moment.
- 121. In mol cules (a), (c) and (d), the carbon atom has a multiple bond, only (b) has sp³ hybridisation

124.
$$\begin{array}{c|c}
O \\
P \\
O \\
O \\
P \\
O
\end{array}$$

126. Beryllium shows anomalous properties due to its small size

127.
$$E_{cell} = E_{right (cathode)} - E_{left (anode)}$$

128.
$$CH \equiv CH + \xrightarrow{HOCI} \stackrel{CHOH}{\longrightarrow} \begin{bmatrix} CH(OH)_2 \\ | \\ CHCI \end{bmatrix} \xrightarrow{HOCI} \xrightarrow{HOCI} \begin{bmatrix} CH(OH)_2 \\ | \\ CHCI_2 \end{bmatrix} \xrightarrow{-H_2O} \stackrel{CHO}{\longrightarrow} \begin{bmatrix} CHO\\ | \\ CHCI_2 \end{bmatrix}$$
dichloroacetaldehyde

129. Aldehydic group gets oxidised to carboxylic group Double bond breaks and carbon gets oxidised to carboxylic group

130 The E⁰ of cell will be zero

132.
$$C_2H_5NH_2 + CHCI_3 + 3KOH \rightarrow C_2H_5N \equiv C + 3KCI + 3HCI$$

Ethyl isocyanide

135. After every 5 years amount is becoming half.

$$\therefore 64g \xrightarrow{5yrs} 32g \xrightarrow{5yrs} 16g \xrightarrow{5yrs} 8g$$

after 15 years.

136. Forms a soluble complex which is precipitated with zinc

138. Volume increases with rise in temperature.

141. Pure metal always deposits at cathode

142. A more basic ligand forms stable bond with metal ion, Cl is most basic amongst all

143.
$$_{0}$$
 $n^{1} \rightarrow_{+1} p^{1} + _{-1} e^{0}$

144. $[\Delta H_{mix} < 0]$ 146. BCC - points are at corners and one in the centre of the unit cell

Number of atoms per unit cell = $8 \times \frac{1}{8} + 1 = 2$

FCC - points are at the corners and also centre of the six faces of each cell

Number of atoms per unit cell = $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$

147. Fe (no. of moles) =
$$\frac{558.5}{55.85}$$
 = 10 moles

C (no. of moles) = 60/2 = 5 moles.

148.
$$Mn_2^{+3}O_3 \leftarrow (KMnO_4)^{-e^-} (MnO_4)^{-1}$$
 $-5e^ -3e^ Mn^{2+}$
 $-3e^-$

149. The oxidation states show a change only in reaction (d)

$$\overset{\circ}{Z}$$
n+ w $\overset{+1}{A}$ gCN \longrightarrow 2A $\overset{\circ}{g}$ + $\overset{+2}{Z}$ n(CN)₂

150.
$$K_p = K_c (RT)^{\Delta n}; \Delta n = 1 - \left(1 + \frac{1}{2}\right) = 1 - \frac{3}{2} = -\frac{1}{2}$$

$$\therefore \frac{K_p}{K_c} = (RT)^{-1/2}$$

AIEEE - 2002

Mathematics Solution

We have $\alpha^2 = 5\alpha - 3$ 1.

$$\Rightarrow \alpha^2 - 5\alpha + 3 = 0 \Rightarrow \alpha = \frac{5 \pm \sqrt{13}}{2} \text{ . Similarly, } \beta^2 = 5\beta - 3 \Rightarrow \alpha = \frac{5 \pm \sqrt{13}}{2}$$

$$\therefore \alpha = \frac{5 + \sqrt{13}}{2}$$
 and $\beta = \frac{5 - \sqrt{13}}{2}$ or vice - versa

$$\alpha^2 + \beta^2 = \frac{50 + 26}{4} = 19 \& \alpha\beta = \frac{1}{4}(25 - 13) = 3$$

Thus, the equation having $\frac{\alpha}{\beta} \& \frac{\beta}{\alpha}$ as its roots is

$$x^2 - x \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) + \frac{\alpha\beta}{\alpha\beta} = 0 \Rightarrow x^2 - x \left(\frac{\alpha^2 + \beta^2}{\alpha\beta}\right) + 1 = 0 \quad \text{or} \quad 3x^2 - 19x \quad 1 = 0$$

 $v = (x + \sqrt{1 + x^2})^n$ 2.

$$\frac{dy}{dx} = n(x + \sqrt{1 + x^2})^{n-1} \left(1 + \frac{1}{2}(1 + x^2)^{-1/2}.2x\right); \\ \frac{dy}{dx} = n(x + \sqrt{1 + x^2})^{n-1} \frac{(\sqrt{1 + x^2} + x)}{\sqrt{1 + x^2}} = \frac{n(\sqrt{1 + x^2} + x)^n}{\sqrt{1 + x^2}}$$

or
$$\sqrt{1+x^2} \frac{dy}{dx} = ny$$
 or $\sqrt{1+x^2} y_1 = ny$ $\left(y = \frac{dy}{dx} \right)$. Squaring, $(1+x^2)y_1^2 = n^2y^2$

Differentiating,
$$(1+x^2) 2y_1y_2 + y^2 \cdot 2x \quad n^2 \cdot 2yy_1$$
 (Here, $y_2 = \frac{d^2y}{dx^2}$) or $(1+x^2)y_2 + xy_1 = x^2y_1$

1, $\log_9 (3^{1-x} + 2)$, $\log_3 (4.3 - 1)$ are in A.P. 3.

$$\Rightarrow$$
 2 $\log_9 (3^{1-x} + 2) = 1 + \log_3 (.3^x - 1)$

$$\log_3 (3^{1-x} + 2) = \log_3 3 + \log_3 (4.3^{x} - 1)$$

$$\log_3 (3^{1-x} + 2) = \log_3 [3(4.3^{x} - 1)]$$

$$3^{1-x} + 2 = 3(4.3 - 1) \text{ (put } 3^{x} = \text{t)}$$

$$\log_3 (3^{1-x}+2) = \log_3 [3(4.3^x - 1)]$$

$$3^{1-x} + 2 = 3(4.3 1) (put 3^x = t)$$

$$\frac{3}{t} + 2 = 12t - 3 \text{ or } 12t^2 - 5t - 3 = 0$$

Hence
$$t = -\frac{1}{3}, \frac{3}{4} \Rightarrow 3^x = \frac{3}{4} \Rightarrow x = \log_3\left(\frac{3}{4}\right)$$
 or $x = \log_3 3 - \log_3 4 \Rightarrow x = 1 - \log_3 4$

4.
$$P(E_1) = \frac{1}{2}$$
, $P(E_2) = \frac{1}{3}$ and $P(E_3) = \frac{1}{4}$; $P(E_1 \cup E_2 \cup E_3) = 1 - P(\overline{E}_1)P(\overline{E}_2)P(\overline{E}_3)$

$$= 1 - \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{4}\right) = 1 - \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = \frac{3}{4}$$

5.
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}; \text{Period} = \frac{2\pi}{2} = \pi$$

6.
$$\begin{split} I &= AR^{p-1} \Longrightarrow log \ I = log \ A + (p-1) \ log \ R \\ &= AR^{q-1} \Longrightarrow log \ m = log \ A + (q-1) \ log \ R \\ &= AR^{r-1} \Longrightarrow log \ n = log \ A + (r-1) \ log \ R \\ &= Now, \end{split}$$

$$\begin{vmatrix} logI & p & 1 \\ logm & q & 1 \\ logn & r & 1 \end{vmatrix} = \begin{vmatrix} logA + (p-1)logR & p & 1 \\ logA + (q-1)logR & q & 1 \\ logA + (q-1)logR & r & 1 \end{vmatrix} = 0$$

$$7. \qquad \underset{x \to 0}{\text{Lim}} \frac{\sqrt{1-\cos 2x}}{\sqrt{2}x} \Rightarrow \underset{x \to 0}{\text{Lim}} \frac{\sqrt{1-(1-2\sin^2 x)}}{\sqrt{2}x} \; ; \\ \underset{x \to 0}{\text{Lim}} \frac{\sqrt{2\sin^2 x}}{\sqrt{2}x} \Rightarrow \underset{x \to 0}{\text{Lim}} \frac{|\sin x|}{x}$$

the function does not exist or LHS ≠ RHS

8.
$$AB = \sqrt{(4+1)^2 + (0+1)^2} = \sqrt{26}$$
; $BC = \sqrt{(3+1)^2 + (5+1)^2} = \sqrt{52}$

CA =
$$\sqrt{(4-3)^2 + (0-5)^2} = \sqrt{26}$$
; So, in isosceles triangle AB = CA

For right angled triangle $BC^2 = AB^2 + AC^2$

So, here BC =
$$\sqrt{52}$$
 or BC² = 52 or $(\sqrt{26})^2 + (\sqrt{26})^2 = 52$

So, given triangle is right angled and also isosceles

9. Total student = 100; for 70 stds $75 \times 70 = 5250 \Rightarrow 7200 - 5250 = 1950$

Average of girls =
$$\frac{1950}{30}$$
 = 65

10.
$$\cot^{-1}(\sqrt{\cos\alpha}) - \tan^{-1}(\sqrt{\cos\alpha}) = x$$

$$tan^{-1}\left(\frac{1}{\sqrt{\cos\alpha}}\right) - tan^{-1}(\sqrt{\cos\alpha}) = x \Rightarrow tan^{-1}\frac{\frac{1}{\sqrt{\cos\alpha}} - \sqrt{\cos\alpha}}{1 + \frac{1}{\sqrt{\cos\alpha}}.\sqrt{\cos\alpha}} = x$$

$$\Rightarrow \tan^{-1}\frac{1-\cos\alpha}{2\sqrt{\cos\alpha}} = x \Rightarrow \tan x = \frac{1-\cos\alpha}{2\sqrt{\cos\alpha}} \text{ OR } \cot x = \frac{2\sqrt{\cos\alpha}}{1-\cos\alpha} \text{ or } \csc x = \frac{1+\cos\alpha}{1-\cos\alpha}$$

$$\sin x = \frac{1 - \cos \alpha}{1 + \cos \alpha} = \frac{1 - (1 - 2\sin^2 \alpha/2)}{1 + 2\cos^2 \alpha/2 - 1}$$
 or $\sin x = \tan^2 \frac{\alpha}{2}$

12.
$$\frac{x-4}{5} = \frac{y-7}{5} = \frac{z-4}{4}$$
(i)

$$a(x-4) + b(y-7) + c(z-4) = 0 \dots (ii)$$

L ne passing through point (3, 2, 0)

$$a + 5x + 4c + 0$$
 (iii)

Solving the equation we get by equation (ii)

$$x - y + z = 1$$

13.
$$\frac{d^2y}{dx^2} = e^{-2x}$$
; $\frac{dy}{dx} = \frac{e^{-2x}}{-2} + c$; $y = \frac{e^{-2x}}{4} + cx + d$

14.
$$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{\frac{1}{x}} = \lim_{x \to \infty} \left(\frac{1 + \frac{5}{x} + \frac{3}{x^2}}{1 + \frac{1}{x} + \frac{3}{x^2}} \right)^{\frac{1}{x}} = 1$$

15.
$$f(x) = \sin^{-1}\left(\log_3\left(\frac{x}{3}\right)\right)$$
 exists if

$$-1 \le \log_3\left(\frac{x}{3}\right) \le 1 \iff 3^{-1} \le \frac{x}{3} \le 3^1 \iff 1 \le x \le 9 \text{ or } x \in [1, 9]$$

17.
$$ar^4 = 2$$

 $a \times ar \times ar^2 \times ar^3 \times ar^4 \times ar^5 \times ar^6 \times ar^7 \times ar^8$
 $= a^9 r^{36} = (ar^4)^9 = 2^9 = 512$

18.
$$\int_{0}^{10\pi} |\sin x| \, dx = 10 \left[\int_{0}^{\pi/2} \sin x \, dx + \int_{\pi/2}^{\pi} \sin x \, dx \right]$$
$$= 10 \times [\cos x]_{0}^{\pi/2} + [\cos x]_{\pi/2}^{\pi} ; \quad 10[1+1] = 10 \times 2 = 20$$

19.
$$\int_{0}^{\pi/4} \tan^{n} x(1 + \tan^{2} x) dx = \int_{0}^{\pi/4} \tan^{n} x \sec^{2} x dx = \int_{0}^{1} t^{n} dt \text{ whe e } t = \tan x$$

$$I_{n} + I_{n+2} = \frac{1}{n+1}; \Rightarrow \lim_{x \to \infty} n[I_{n} + I_{n+2}] = \lim_{x \to \infty} n. \frac{1}{n-1} = \frac{n}{n-1} = \frac{n}{n\left(1 + \frac{1}{n}\right)} = 1$$

20.
$$\int_{1}^{0} [x^{2}] dx + \int_{1}^{\sqrt{2}} [x^{2}] dx = 0 + \int_{1}^{\sqrt{2}} dx = \sqrt{2} - 1$$

21.
$$\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx = \int_{-\pi}^{\pi} \frac{2x}{+\cos^2 x} + 2 \int_{-\pi}^{\pi} \frac{x \sin x}{1+\cos^2 x}$$

$$= 0 + 4 \int_{0}^{\pi} \frac{x \sin x dx}{1 + \cos^{2} x} I = 4 \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^{2}(\pi - x)}$$

$$I = 4\int_0^\pi \frac{(\pi - x)sinx}{1 + cos^2 x} \Rightarrow I = 4\pi\int_0^\pi \frac{sinx}{1 + cos^2 x} - 4\pi\int \frac{x sinx}{1 + cos^2 x} \Rightarrow 2I = 4\pi\int_0^\pi \frac{sinx}{1 + cos^2 x} dx$$

put cos = t and solve it.

22. We have,
$$\lim_{x\to 2} \frac{xf(2)-2f(x)}{x-2} \left(\frac{0}{0}\right) = \lim_{x\to 2} f(2)-2f'(x) = f(2)-2f'(2) = 4-2\times 4 = -4$$

23. Let
$$|z| = |\omega| = r$$
 $\therefore z = re^{i\theta}$, $\omega = re^{i\phi}$ where $\theta + \phi = \pi$ $\therefore \overline{\omega} = re^{-i\phi}$

$$\therefore z = re^{i(\pi-\phi)} = re^{i\pi}.e^{-i\phi} = -re^{-i\phi} = -\overline{\omega}$$

24. Given
$$|z-4| < |z-2|$$
 Let $z = x + iy$
 $\Rightarrow |(x-4) + iy)| < |(x-2) + iy| \Rightarrow (x-4)^2 + y^2 < (x-2)^2 + y^2$
 $\Rightarrow x^2 - 8x + 16 < x^2 - 4x + 4 \Rightarrow 12 < 4x \Rightarrow x > 3 \Rightarrow Re(z) > 3$

r = common ratio of G.P.; Then G.P. is a, ar, ar²

Given
$$s_{\infty} = 20 \Rightarrow \frac{a}{1-r} = 20 \Rightarrow a = 20(1-r)$$
(i)

Also
$$a^2 + a^2r^2 + a^2r^4 + \dots to \infty = 100 \Rightarrow \frac{a^2}{1 - r^2} = 100 \Rightarrow a^2 = 100(1 - r)(1 + r) \dots (ii)$$

From (i), $a^2 = 400 (1-r)^2$; From (ii) and (iii), we get 100 (1-r)(1+r) = 400 (1-r)²

$$\Rightarrow$$
 1 + r = 4 - 4r \Rightarrow 5r = 3 \Rightarrow r = 3/5

27.
$$1^3 - 2^3 + 3^3 - 4^3 + \dots + 9^3$$

= $1^3 + 3^3 + 5^3 + \dots + 9^3 - (2^3 + 4^3 + \dots + 8^3)$

=
$$S_1 - S_2$$

For S_1 , $t_n = (2n - 1)^3 = 8n^3 - 12n^2 + 6n - 1$

$$S_1 = \Sigma t_n = 8\Sigma n^3 - 12\Sigma n^2 + 6\Sigma n - \Sigma 1$$

$$=\;\frac{8n^2(n+1)^2}{4}-\frac{12n(n+1)(2n+1)}{6}+\frac{6n(n+1)}{2}-n$$

Here n = 5. Hence S_1 = 2 \times 25 \times 36 - 2 \times 5 \times 6 \times 11 + 3 \times 30 - 5

For
$$S_2$$
, $t_n = 8n^3$; $S_2 = \Sigma t_n = 8\Sigma n^3 = \frac{8n^2(n+1)^2}{4} = 2 \times 16 \times 25 = 00$. (for $n = 4$)

∴ Required sum = 1225 - 800 = 425.

28. Let α, β and γ, δ are the roots of the equations

$$x^2 + ax + b = 0$$
 and $x^2 + bx + a = 0$ $\therefore \alpha + \beta$ -a, $\beta = b$ and $y + \delta = -b$, $y\delta = a$

Given
$$\alpha - \beta = y - \delta \Rightarrow (\alpha - \beta)^2 = (y - \delta)^2 \Rightarrow (\alpha + \beta)^2 \quad 4\alpha\beta = (y + \delta)^2 - 4y\delta$$

$$\Rightarrow a^2 - 4b = b^2 - 4a \Rightarrow (a^2 - b^2) + 4(a - b) = 0 \Rightarrow a + b + 4 = 0 \quad (: a \neq b)$$

30.
$$p + q = -p$$
 and $pq = q \Rightarrow q(p-1) = 0 \Rightarrow q = 0$ or $p = 1$

If
$$q = 0$$
, then $p = 0$. i.e. $p = q$ \therefore $p = 1$ and $q = -2$

31.
$$ab+bc+ca=\frac{(a+b+c)^2-1}{2}$$
 1

- 32. Required number of numbers = $5 \times 6 \times 6 \times 4 = 36 \times 20 = 720$
- 33. Required number of numbers = $3 \times 5 \times 5 \times 5 = 375$
- 34. Required numbers are 5! + 5! 4! = 216
- 35. Required sum = $(2 + 4 + 6 + \dots + 100) + (5 + 10 + 15 + \dots + 100) (10 + 20 + \dots + 100)$ = 2550 + 1050 - 530 = 3050

36. We have
$$t_{p_+} = {}^{p_+q}C_p x^p$$
 and $t_{q_+1} = {}^{p_+q}C_q x^q$ ${}^{p_+q}C_p = {}^{p_+q}C_q$.

37. We have
$$2^n = 4096 = 2^{12} \Rightarrow n = 12$$
; So middle term = t_7 ; $t_7 = t_{6+1} = {}^{12}C_6 = \frac{12!}{6! \, 6!} = 924$

39.
$$t_{r+2} = {}^{2n}C_{r+1} \quad x^{r+1}$$
; $t_{3r} = {}^{2n}C_{3r-1} \quad x^{3r-1}$
Given ${}^{2n}C_{r+1} = {}^{2n}C_{3r-1} \implies {}^{2n}C_{2n-(r+1)} = {}^{2n}C_{3r-1} \implies 2n-r-1 = 3r-1 \implies 2n = 4r$

40. We have
$$\begin{vmatrix} a & b & ax+b \\ b & c & bx+c \\ ax+b & bx+c & 0 \end{vmatrix}$$
 By $R_3 \to R_3 - (xR_1 + R_2) = \begin{vmatrix} a & b & ax+b \\ b & c & bx+c \\ 0 & 0 & -(ax^2 + 2bx + x) \end{vmatrix}$
= $(ax^2 + 2bx + c) (b^2 - ac) = (+) (-) = -ve$

41.
$$a_1 = \sqrt{7} < 7$$
. Let $a_m < 7$. Then $a_m + 1 = \sqrt{7 + a_m} \Rightarrow a_{m+1}^2 = 7 + a_m < 7 + 7 < 14$
 $\Rightarrow a_{m+1} < \sqrt{14} < 7$; So $a_n < 7 \ \forall \ n \ \therefore a_n > 3$

43. Equation of AB is
$$x\cos\alpha + y\sin\alpha = p \Rightarrow \frac{x\cos\alpha}{p} + \frac{y\sin\alpha}{p} = 1 \Rightarrow \frac{x}{p/\cos\alpha} + \frac{y}{p/\sin\alpha} = 1$$

So co-ordinates of A and B are $\left(\frac{p}{\cos\alpha},0\right)$ and $\left(0,\frac{p}{\sin\alpha}\right)$; So coordinates of mid point of AB are

$$\left(\frac{p}{2\cos\alpha}, \frac{p}{2\sin\alpha}\right) = (x_1, y_1) \text{ (let) } ; \ x_1 = \frac{p}{2\cos\alpha} \& \ y_1 = \frac{p}{2\sin\alpha};$$

$$\Rightarrow \cos\alpha = p/2x_1 \text{ and } \sin\alpha = p/2y_1; \cos^2\alpha + \sin^2\alpha = 1 \Rightarrow \frac{p^2}{4} \left(\frac{1}{x_1^2} + \frac{1}{y_1^2}\right) = 1$$

Locus of (x_1, y_1) is $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$.

45.
$$3a + a^2 - 2 = 0 \implies a^2 + 3a - 2 = 0 \implies a = \frac{-3 \pm \sqrt{9 + 8}}{2} = \frac{-\pm \sqrt{1}}{2}$$

46. Equation of circles
$$x^2 + y^2 = 1 = (1)^2$$

 $\Rightarrow x^2 + y^2 = (y - mx)^2 \Rightarrow x^2 = m^2x^2 - 2 mxy \Rightarrow x^2 (1-m^2) + 2 mxy = 0$

$$\tan 45 = \pm \frac{2\sqrt{m^2 - 0}}{1 - m^2} = \frac{\pm 2m}{1 - m^2} \Rightarrow 1 - m^2 \quad \pm 2m \Rightarrow m^2 \pm 2m - 1 = 0$$

$$\Rightarrow m = \frac{-2 \pm \sqrt{4+4}}{2} = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2}$$

47. Let (h, k) be the centre of a y such circle. Equation of such circle is
$$(x - h)^2 + (y - k)^2 = 3^2$$
. Since (h, k) lies on $x^2 + y^2 = 25$ $\therefore h^2 + k^2 = 25$. $x^2 + y^2 - (2xh + 2yk) + 25$ 9; Locus of (h, k) is $x^2 + y^2 = 16$, which clearly satisfies (a).

In
$$\triangle ABD$$
, $AB^2 = AD^2 + BD^2$;

$$\Rightarrow x^2 = 9a$$
 $(x^2/4)$ where AB= BC= AC = x. $\frac{3}{4}x^2 = 9a^2 \Rightarrow x^2 = 12a^2$

In
$$\triangle OBD$$
, $OB^2 = OD^2 + BD^2$

$$\Rightarrow r^{2} = (3a - r)^{2} + \frac{x^{2}}{4} \Rightarrow r^{2} = 9a^{2} - 6ar + r^{2} + 3a^{2}; \Rightarrow 6ar = 12a^{2} \Rightarrow r = 2a^{2}$$

So equation of circle is
$$x^2 + y^2 = 4a^2$$

$$y = mx + \frac{2a}{m}$$
 (i)

If (i) is a tangent to the circle,
$$x^2 + y^2 = 2a^2$$
 then,

$$\sqrt{2}a = \pm \frac{2a}{m\sqrt{m^2 + 1}}$$

$$\Rightarrow$$
 m² (1 + m²) = 2 \Rightarrow (m² + 2) (m² - 1) = 0; \Rightarrow m = ±1

So from (i), $y = \pm (x + 2a)$

51.
$$r_1 > r_2 > r_3 \Rightarrow \frac{\Delta}{s-a} > \frac{\Delta}{s-b} > \frac{\Delta}{s-c} \Rightarrow s-a < s-b < s-c \Rightarrow -a < -b < -c \Rightarrow a > b > c$$

52. The given equation is
$$\tan x + \sec x = 2\cos x \implies \sin x + 1 = 2\cos^2 x$$

$$\Rightarrow \sin x + 1 = 2(1-\sin^2 x) \implies 2\sin^2 x + \sin x - 1 = 0$$

$$\Rightarrow (2\sin x - 1)(\sin x + 1) = 0 \implies \sin x = \frac{1}{2}, -1 \implies x = 30^{\circ}, 150^{\circ}, 270^{\circ}.$$

54. We have
$$\lim_{n\to\infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$$
; $\lim_{n\to\infty} \sum_{r=1}^n \frac{r^p}{n^p \cdot n} = \int_0^1 x^p dx = \left[\frac{x^{p+1}}{p+1}\right]_0^1 = \frac{1}{p+1}$

55. Since $\lim_{x\to 0} [x]$ does not exist, hence the required limit does not exist

56.
$$\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$$
 $\left(\frac{0}{0}\right)$ form

Using L' Hospital's rule
$$\lim_{x\to\infty} \frac{\frac{1}{2\sqrt{f(x)}}f'(x)}{1/2\sqrt{x}} = \frac{f'(1)}{\sqrt{f(1)}} = \frac{2}{1} = 2$$

58. :
$$f''(x) - g''(x) = 0$$

Integrating,
$$f'(x) - g'(x) = c \implies f'(1) - g'(1) = c \implies 4 - 2 = c \implies c = 2$$

$$\therefore$$
 f'(x)-g'(x) = 2; Integrating, f(x)-g(x) = 2 + c₁

$$\Rightarrow$$
 f(2) - g(2) = 4 + c₁ \Rightarrow 9 - 3 = 4 + c₁ \Rightarrow c₁ = 2 \therefore f(x) - g(x) = 2x + 2

At
$$x = 3/2$$
, $f(x) - g(x) = 3 + 2 = 5$

59.
$$f(x + y) = f(x) \times f(y)$$

Differentiate with respect to x, reating y as constant

$$f'(x + y) = f(x) f(y)$$

Putting
$$x = 0$$
 and $y = x$ we get $f'(x) = f'(0)$ $f(x)$; \Rightarrow $f'(5) = 3f(5) = 3 \times 2 = 6$

60 Distance of origin from
$$(x, y) = \sqrt{x^2 + y^2}$$

$$= \sqrt{a^2 + b^2 - 2ab\, cos \left(t - \frac{at}{b}\right)} = \sqrt{a^2 + b^2 - 2ab} \quad \left[\because max.\, cos \left(t - \frac{at}{b}\right) = 1\right] = a - b$$

61. Let
$$f(x) = \frac{ax^3}{3} + \frac{bx^2}{2} + cx \Rightarrow f(0) = 0$$
 and $f(1) = \frac{a}{3} + \frac{b}{2} + c = \frac{2a + 3b + 6c}{6} = 0$

Also f(x) is continuous and differentiable in [0,1] and [0, 1[. So by Rolle's theorem, f'(x) = 0. i.e. $ax^2 + bx + c = 0$ has at least one root in [0, 1]

62. We have
$$\int_{0}^{2} f(x) dx = \frac{3}{4}$$
; Now, $\int_{0}^{2} x f'(x) dx = x \int_{0}^{2} f'(x) dx - \int_{0}^{2} f(x) dx$
= $[xf(x)]_{0}^{2} - \frac{3}{4} = 2f(2) - \frac{3}{4} = 0 - \frac{3}{4}$ (: $f(2) = 0$) = $-\frac{3}{4}$

64. We have,
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \frac{\pi}{6} = 4 \times 2 \times \frac{\sqrt{3}}{2} = 4\sqrt{3}$$
.

Now,
$$(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = a^2b^2 \implies (\vec{a} \times \vec{b})^2 + 48 = 16 \times 4 \implies (\vec{a} \times \vec{b})^2 = 16$$

65. We have,
$$[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] = (\vec{a} \times \vec{b}) \cdot \{ \vec{b} \times \vec{c} \ (\vec{c} \times \vec{a}) \}$$

=
$$(\vec{a} \times \vec{b})$$
. $\{(\vec{m}.\vec{a}) \vec{c} - (\vec{m}.\vec{c})\vec{a}\}$ (where $\vec{m} = \vec{b} \times \vec{c}$)

$$= \{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \cdot \{\vec{a} \cdot (\vec{b} \times \vec{c})\} = [\vec{a}\vec{b}\vec{c}]^2 = 4^2 = 16$$

66.
$$\vec{a} + \vec{b} + \vec{c} = 0 \Rightarrow \vec{b} + \vec{c} = -\vec{a} \Rightarrow (\vec{b} + \vec{c})^2 = (\vec{a})^2 = 5^2 + 3^2 + 2\vec{b}\vec{c} = 7^2$$

$$\Rightarrow 2|\vec{b}||\vec{c}|\cos\theta = 49 - 34 = 15 \Rightarrow 2 \times 5 \times 3\cos\theta = 15 \Rightarrow \cos\theta = 1/2 \Rightarrow \theta = \frac{\pi}{3} = 60^{\circ}$$

67. We have,
$$\vec{a} + \vec{b} + \vec{c} = \vec{0} \Rightarrow (\vec{a} + \vec{b} + \vec{c})^2 = 0$$

$$\Rightarrow |\,\vec{a}\,|^2 \, + |\,\vec{b}\,|^2 \, + |\,\vec{c}\,|^2 \, + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0 \\ \Rightarrow 25 + 16 + 9 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$$

69. We have
$$\vec{a} \times \vec{b} = 39\vec{k} = \vec{c}$$

Also
$$|\vec{a}| = \sqrt{34}$$
, $|\vec{b}| = \sqrt{45}$, $|\vec{c}| = 39$: $|\vec{a}| : |\vec{b}| : |\vec{c}| = \sqrt{34} : \sqrt{45} : 39$

71.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow \frac{3}{4} = 1 - P(\overline{A}) + P(B) - \frac{1}{4}$$

$$\Rightarrow 1 = 1 - \frac{2}{3} + P(B) \Rightarrow P(B) = \frac{2}{3}; \quad \text{Now}, P(\overline{A} \cap B) = P(B) - P(A \cap B) = \frac{2}{3} - \frac{1}{4} = \frac{5}{12}$$

72. The event follows binomial distribution with
$$n = 5$$
, $p = 3/6 = 1/2$ $q = 1 - p = 1/2$ \therefore Variance $npq = 5/4$

$$a(x - 1) + by + cz = 0 \dots (i)$$

- a + b = 0
$$\Rightarrow$$
 b = a; Also, $\cos 45^{\circ} = \frac{a - a}{\sqrt{2(2a^{2} + c^{2})}}$

$$\Rightarrow$$
 2a = $\sqrt{2a^2 + c^2}$ \Rightarrow 2a² = c c = $\sqrt{2}$ a

So. d.r. of normal are a $a\sqrt{2}a$ i.e 1,1, $\sqrt{2}$

74. Let two forces be P and Q. Given
$$P + Q = 18$$
 and $P\hat{a} + Q\hat{b} = 12\hat{c} \Rightarrow P\hat{a} - 12\hat{c} = \overline{Q}\hat{b}$

$$\Rightarrow P^2 + 144 = Q = (18 - P)^2; \Rightarrow P^2 + 144 = 324 - 36P + P^2$$

$$\Rightarrow$$
 36P = 180 \Rightarrow P = 5 and Q = 13

(where a and \vec{b} are unit vectors along P and Q).

KEY FOR AIEEE - 2002 PAPER

PHY	SICS &	40.	С	81.	b	122.	d	12.	а	53.	b	
CHE	MISTRY	41.	а	82.	b	123.	d	13.	b	54.	a	
1.	а	42.	b	83.	а	124.	d	14.	d	 55.	d	
2.	b	43.	а	84.	а	125.	d	15.	а	 56.	a	
3.	b	44.	С	85.	а	126.	d	16.	b	57.	b	
4.	b	45.	a	86.	а	127.	а	17.	b	 58.	d	
5.	С	46.	d	87.	d	128.	С	18.	d	 59.	С	
6.	С	47.	b	88.	а	129.	b	19.	b	60.	a	
7.	а	48.	b	89.	а	130.	С	20.	С	61.	а	
8.	а	49.	b	90.	b	131.	d	21.	b	62.	d	
9.	b	50.	d	91.	b	132.	а	22.	С	63.	а	
10.	С	51.	b	92.	b	133.	а	23.	b	64.	b	
11.	С	52.	С	93.	а	134.	b	24.	С	65.	а	
12.	b	53.	b	94.	С	135.	d	25.	b	66.	а	
13.	b	54.	d	95.	а	136.	d	26.	С	67.	а	
14.	a	55.	а	96.	а	137.	а	27.	а	68.	b	
15.	а	56.	d	97.	С	138.	С	28.	а	69.	b	
16.	С	57.	b	98.	С	139.	а	29.	С	70.	С	
17.	С	58.	С	99.	а	140	d	30.	а	71.	а	
18.	b	59.	b	100.	С	141.	d	31.	а	72.	d	
19.	b	60.	a	101.	а	142	b	32.	d	73.	b	
20.	b	61.	b	102.	а	143.	С	33.	С	74.	а	
21.	С	62.	d	103.		144.	b	34.	d	75.	а	
22.	b	63.	С	10 .	С	145.	b	35.	b			
23.	b	64.	d	105	d	146.	d	36.	а			
24.	С	65.	a	106.	b	147.	а	37.	С			
25.	а	66.	b	107.	а	148.	С	38.	С			
26.	С	67.	а	108.	С	149.	d	39.	С			
27.	a	68.	b	109.	С	150.	С	40.	С			
28.	С	69	С	110.	С	MATH	IEMATI	CS 41.	b			
29.	а	70.	d	111.	С	1.	а	42.	а			
30	d	71.	а	112.	b	2.	а	43.	d			
31	b	72.	а	113.	С	3.	С	44.	а			
32.	а	73.	С	114.	b	4.	а	45.	а			
33.	С	74.	а	115.	С	5.	b	46.	С			
34	b	75.	С	116.	С	6.	d	47.	a			
35.	а	76.	С	117.	а	7.	а	48.	b			
36.	d	77.	С	118.	а	8.	а	49.	С			
<u>37.</u>	С	78.	b	119.	d	9.	b	50.	b			
38.	b	79.	а	120.	а	10.	а	51.	a			
39.	а	80.	b	121.	b	11.	С	52.	b			