Linear Algebraic Groups

Fiona Murnaghan

ABSTRACT. We give a summary, without proofs, of basic properties of linear algebraic groups, with particular emphasis on reductive algebraic groups.

1. Algebraic groups

Let K be an algebraically closed field. An $algebraic\ K$ - $group\ {\bf G}$ is an algebraic variety over K, and a group, such that the maps $\mu:{\bf G}\times{\bf G}\to{\bf G},\ \mu(x,y)=xy,$ and $\iota:{\bf G}\to{\bf G},\ \iota(x)=x^{-1},$ are morphisms of algebraic varieties. For convenience, in these notes, we will fix K and refer to an algebraic K-group as an algebraic group. If the variety ${\bf G}$ is affine, that is, ${\bf G}$ is an algebraic set (a Zariski-closed set) in K^n for some natural number n, we say that ${\bf G}$ is a $linear\ algebraic\ group$. If ${\bf G}$ and ${\bf G}'$ are algebraic groups, a map $\varphi:{\bf G}\to{\bf G}'$ is a $linear\ algebraic\ group$ if φ is a morphism of varieties and a group homomorphism. Similarly, φ is an $linear\ algebraic\ groups$ if φ is an isomorphism of varieties and a group isomorphism.

A closed subgroup of an algebraic group is an algebraic group. If \mathbf{H} is a closed subgroup of a linear algebraic group \mathbf{G} , then \mathbf{G}/\mathbf{H} can be made into a quasi-projective variety (a variety which is a locally closed subset of some projective space). If \mathbf{H} is normal in \mathbf{G} , then \mathbf{G}/\mathbf{H} (with the usual group structure) is a linear algebraic group.

Let $\varphi : \mathbf{G} \to \mathbf{G}'$ be a homomorphism of algebraic groups. Then the kernel of φ is a closed subgroup of \mathbf{G} and the image of φ is a closed subgroup of \mathbf{G} .

Let X be an affine algebraic variety over K, with affine algebra (coordinate ring) $K[X] = K[x_1, \ldots, x_n]/I$. If k is a subfield of K, we say that X is defined over k if the ideal I is generated by polynomials in $k[x_1, \ldots, x_n]$, that is, I is generated by $I_k := I \cap k[x_1, \ldots, x_n]$. In this case, the k-subalgebra $k[X] := k[x_1, \ldots, x_n]/I_k$ of K[X] is called a k-structure on X, and $K[X] = k[X] \otimes_k K$. If X and X' are algebraic varieties defined over k, a morphism $\varphi : X \to X'$ is defined over k (or is a k-morphism) if there is a homomorphism $\varphi^*_k : k[X'] \to k[X]$ such that the algebra homomorphism $\varphi^* : K[X'] \to K[X]$ defining φ is $\varphi^*_k \times id$. Equivalently, the coordinate functions of φ all have coefficients in k. The set $X(k) := X \cap k^n$ is called the K-rational points of X.

 $^{2000\} Mathematics\ Subject\ Classification.\ 20G15.$

If k is a subfield of K, we say that a linear algebraic group \mathbf{G} is defined over k (or is a k-group) if the variety \mathbf{G} is defined over k and the homomorphisms μ and ι are defined over k. Let $\varphi: \mathbf{G} \to \mathbf{G}'$ be a k-homomorphism of k-groups. Then the image of φ is defined over k but the kernel of φ might not be defined over k.

An algebraic variety X over K is irreducible if it cannot be expressed as the union of two proper closed subsets. Any algebraic variety X over K can be expressed as the union of finitely many irreducible closed subsets:

$$X = X_1 \cup X_2 \cup \cdots \cup X_r$$

where $X_i \not\subset X_j$ if $j \neq i$. This decomposition is unique and the X_i are the maximal irreducible subsets of X (relative to inclusion). The X_i are called the *irreducible components* of X.

Let G be an algebraic group. Then G has a unique irreducible component G^0 containing the identity element. The irreducible component G^0 is a closed normal subgroup of G. The cosets of G^0 in G are the irreducible components of G, and G^0 is the connected component of the identity in G. Also, if G is a closed subgroup of G of finite index in G, then G0. For a linear algebraic group, connectedness is equivalent to irreducibility. It is usual to refer to an irreducible algebraic group as a connected algebraic group.

If $\varphi : \mathbf{G} \to \mathbf{G}'$ is a homomorphism of algebraic groups, then $\varphi(\mathbf{G}^0) = \varphi(\mathbf{G})^0$. If k is a subfield of K and \mathbf{G} is defined over k, then \mathbf{G}^0 is defined over k.

The dimension of \mathbf{G} is the dimension of the variety \mathbf{G}^0 . That is, the dimension of \mathbf{G} is the transcendence degree of the field $K(\mathbf{G}^0)$ over K.

If **G** is a linear algebraic group, then **G** is isomorphic, as an algebraic group, to a closed subgroup of $\mathbf{GL}_n(K)$ for some natural number n.

EXAMPLE 1.1. $\mathbf{G} = K$, with $\mu(x, y) = x + y$ and $\iota(x) = -x$. The usual notation for this group is \mathbf{G}_a . It is connected and has dimension 1.

EXAMPLE 1.2. Let n be a positive integer and let $M_n(K)$ be the set of $n \times n$ matrices with entries in K. The general linear group $\mathbf{G} = \mathbf{GL}_n(K)$ is the group of matrices in $M_n(K)$ that have nonzero determinant. Note that \mathbf{G} can be identified with the closed subset $\{(g,x) \mid g \in M_n(K), x \in K, (\det g)x = 1\}$ of $K^{n^2} \times K = K^{n^2+1}$. Then $K[\mathbf{G}] = K[x_{ij}, 1 \le i, j \le n, \det(x_{ij})^{-1}]$. The dimension of $\mathbf{GL}_n(K)$ is n^2 , and it is connected. In the case n = 1, the usual notation for $\mathbf{GL}_1(K)$ is \mathbf{G}_m . The only connected algebraic groups of dimension 1 are \mathbf{G}_a and \mathbf{G}_m .

EXAMPLE 1.3. Let n be a positive integer and let I_n be the $n \times n$ identity matrix. The $2n \times 2n$ matrix $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ is invertible and satisfies ${}^tJ = -J$, where tJ denotes the transpose of J. The $2n \times 2n$ symplectic group $\mathbf{G} = \mathbf{Sp}_{2n}(K)$ is defined by $\{g \in M_{2n}(K) \mid {}^tgJg = J\}$.

2. Jordan decomposition in linear algebraic groups

Recall that a matrix $x \in M_n(K)$ is *semisimple* if x is diagonalizable: there is a $g \in \mathbf{GL}_n(K)$ such that gxg^{-1} is a diagonal matrix. Also, x is unipotent if $x - I_n$ is nilpotent: $(x - I_n)^k = 0$ for some natural number k. Given $x \in \mathbf{GL}_n(K)$, there exist elements x_s and x_u in $\mathbf{GL}_n(K)$ such that x_s is semisimple, x_u is unipotent, and $x = x_s x_u = x_u x_s$. Furthermore, x_s and x_u are uniquely determined.

Now suppose that **G** is a linear algebraic group. Choose n and an injective homomorphism $\varphi : \mathbf{G} \to \mathbf{GL}_n(K)$ of algebraic groups. If $g \in \mathbf{G}$, the semisimple

and unipotent parts $\varphi(g)_s$ and $\varphi(g)_u$ of $\varphi(g)$ lie in $\varphi(\mathbf{G})$, and the elements g_s and g_u such that $\varphi(g_s) = \varphi(g)_s$ and $\varphi(g_u) = \varphi(g)_u$ depend only on g and not on the choice of φ (or n). The elements g_s and g_u are called the semisimple and unipotent part of g, respectively. An element $g \in \mathbf{G}$ is semisimple if $g = g_s$ (and $g_u = 1$), and unipotent if $g = g_u$ (and $g_s = 1$).

Jordan decomposition.

- (1) If $g \in \mathbf{G}$, there exist elements g_s and g_u in \mathbf{G} such that $g = g_s g_u = g_u g_s$, g_s is semisimple, and g_u is unipotent. Furthermore, g_s and g_u are uniquely determined by the above conditions.
- (2) If k is a perfect subfield of K and G is a k-group, then $g \in \mathbf{G}(k)$ implies $g_s, g_u \in \mathbf{G}(k)$.

Jordan decompositions are preserved by homomorphisms of algebraic groups. Suppose that \mathbf{G} and \mathbf{G}' are linear algebraic groups and $\varphi: \mathbf{G} \to \mathbf{G}'$ is a homomorphism of linear algebraic groups. Let $g \in \mathbf{G}$. Then $\varphi(g)_s = \varphi(g_s)$ and $\varphi(g)_u = \varphi(g_u)$.

3. Lie algebras

Let \mathbf{G} be a linear algebraic group. The tangent bundle $T(\mathbf{G})$ of \mathbf{G} is the set $\operatorname{Hom}_{K-alg}(K[\mathbf{G}],K[t]/(t^2))$ of K-algebra homomorphisms from the affine algebra $K[\mathbf{G}]$ of \mathbf{G} to the algebra $K[t]/(t^2)$. If $g \in \mathbf{G}$, the evaluation map $f \mapsto f(g)$ from $K[\mathbf{G}]$ to K is a K-algebra isomorphism. This results in a bijection between \mathbf{G} and $\operatorname{Hom}_{K-alg}(K[\mathbf{G}],K)$. Composing elements of $T(\mathbf{G})$ with the map $a+bt+(t^2)\mapsto a$ from $K[t]/(t^2)$ to K results in a map from $T(\mathbf{G})$ to $\mathbf{G}=\operatorname{Hom}_{K-alg}(K[\mathbf{G}],K)$. The tangent space $T_1(\mathbf{G})$ of \mathbf{G} at the identity element 1 of \mathbf{G} is the fibre of $T(\mathbf{G})$ over 1. If $X \in T_1(\mathbf{G})$ and $f \in K[\mathbf{G}]$, then $X(f)=f(1)+t\,d_X(f)+(t^2)$ for some $d_X(f) \in K$. This defines a map $d_X: K[\mathbf{G}] \to K$ which satisfies:

$$d_X(f_1f_2) = d_X(f_1)f_2(1) + f_1(1)d_X(f_2), f_1, f_2 \in K[\mathbf{G}].$$

Let $\mu^*: K[\mathbf{G}] \to K[\mathbf{G}] \otimes_K K[\mathbf{G}]$ be the K-algebra homomorphism which corresponds to the multiplication map $\mu: \mathbf{G} \times \mathbf{G} \to \mathbf{G}$. Set $\delta_X = (1 \otimes d_X) \circ \mu^*$. The map $\delta_X: K[\mathbf{G}] \to K[\mathbf{G}]$ is a K-linear map and a derivation:

$$\delta_X(f_1 f_2) = \delta_X(f_1) f_2 + f_1 \delta_X(f_2), \qquad f_1, f_2 \in K[\mathbf{G}].$$

Furthermore, δ_X is left-invariant: $\ell_g \delta_X = \delta_X \ell_g$ for all $g \in \mathbf{G}$, where $(\ell_g f)(g') = f(g^{-1}g')$, $f \in K[\mathbf{G}]$. The map $X \mapsto \delta_X$ is a K-linear isomorphism of $T_1(\mathbf{G})$ onto the vector space of K-linear maps from $K[\mathbf{G}]$ to $K[\mathbf{G}]$ which are left-invariant derivations.

Let $\mathfrak{g} = T_1(\mathbf{G})$. Define $[X,Y] \in \mathfrak{g}$ by $\delta_{[X,Y]} = \delta_X \circ \delta_Y - \delta_Y \circ \delta_X$. Then \mathfrak{g} is a vector space over K and the map $[\cdot,\cdot]$ satisfies:

- (1) $[\cdot, \cdot]$ is linear in both variables
- (2) [X, X] = 0 for all $X \in \mathfrak{g}$
- (3) [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 for all $X, Y, X \in \mathfrak{g}$. (Jacobi identity)

Therefore \mathfrak{g} is a Lie algebra over K. We call it the Lie algebra of \mathbf{G} .

EXAMPLE 3.1. If $\mathbf{G} = \mathbf{GL}_n(K)$, then \mathfrak{g} is isomorphic to the Lie algebra $\mathfrak{gl}_n(K)$ which is $M_n(K)$ equipped with the Lie bracket $[X,Y] = XY - YX, X, Y \in M_n(K)$.

EXAMPLE 3.2. If $\mathbf{G} = \mathbf{Sp}_{2n}(K)$, then \mathfrak{g} is isomorphic to the Lie algebra $\{X \in M_{2n}(K) \mid {}^tXJ + JX = 0\}$, with bracket [X,Y] = XY - YX.

Let $\varphi: \mathbf{G} \to \mathbf{G}'$ be a homomorphism of linear algebraic groups. Composition with the algebra homomorphism $\varphi^*: K[\mathbf{G}'] \to K[\mathbf{G}]$ results in a map $T(\varphi): T(\mathbf{G}) \to T(\mathbf{G}')$. The differential $d\varphi$ of φ is the restriction $d\varphi = T(\varphi)|_{\mathfrak{g}}$ of $T(\varphi)$ to \mathfrak{g} . It is a K-linear map from \mathfrak{g} to \mathfrak{g}' , and satisfies

$$d\varphi([X,Y]) = [d\varphi(X), d\varphi(Y)], \qquad X, Y \in \mathfrak{g}.$$

That is, $d\varphi$ is a homomorphism of Lie algebras. If φ is bijective, then φ is an isomorphism if and only if $d\varphi$ is an isomorphism of Lie algebras. If K has characteristic zero, any bijective homomorphism of linear algebraic groups is an isomorphism.

If **H** is a closed subgroup of a linear algebraic group **G**, then (via the differential of inclusion) the Lie algebra \mathfrak{h} of **H** is isomorphic to a Lie subalgebra of \mathfrak{g} . And **H** is a normal subgroup of **G** if and only if \mathfrak{h} is an ideal in \mathfrak{g} ($[X,Y] \in \mathfrak{h}$ whenever $X \in \mathfrak{g}$ and $Y \in \mathfrak{h}$).

If $g \in \mathbf{G}$, then $\operatorname{Int}_g : \mathbf{G} \to \mathbf{G}$, $\operatorname{Int}_g = gg_0g^{-1}$, $g_0 \in \mathbf{G}$, is an isomorphism of algebraic groups, so $\operatorname{Ad} g := d(\operatorname{Int}_g) : \mathfrak{g} \to \mathfrak{g}$ is an isomorphism of Lie algebras. Note that $(\operatorname{Ad} g)^{-1} = \operatorname{Ad} g^{-1}$, $g \in \mathbf{G}$, and $\operatorname{Ad} (g_1g_2) = \operatorname{Ad} g_1 \circ \operatorname{Ad} g_2$, $g_1, g_2 \in \mathbf{G}$. The map $\operatorname{Ad} : \mathbf{G} \to \mathbf{GL}(\mathfrak{g})$ is a homomorphism of algebraic groups, called the adjoint representation of \mathbf{G} .

If **G** is a k-group, then its Lie algebra \mathfrak{g} has a natural k-structure $\mathfrak{g}(k)$, with $\mathfrak{g} \simeq K \otimes_k \mathfrak{g}(k)$. Also, Ad is defined over k.

Jordan decomposition in the Lie algebra. We can define semisimple and nilpotent elements in $\mathfrak g$ in manner analogous to definitions of semisimple and unipotent elements in $\mathbf G$ (as $\mathfrak g$ is isomorphic to a Lie subalgebra of $\mathfrak g\mathfrak l_n(K)$ for some n). If $X \in \mathfrak g$, there exist unique elements X_s and $X_n \in \mathfrak g$ such that $X = X_s + X_n$, $[X_s, X_n] = 0$, X_s is semisimple, and X_n is nilpotent. If $\varphi : \mathbf G \to \mathbf G'$ is a homomorphism of algebraic groups, then $d\varphi(X)_s = d\varphi(X_s)$ and $d\varphi(X)_n = d\varphi(X_n)$ for all $X \in \mathfrak g$.

4. Tori

A torus is a linear algebraic group which is isomorphic to the direct product $\mathbf{G}_m^d = \mathbf{G}_m \times \cdots \times \mathbf{G}_m$ (d times), where d is a positive integer. A linear algebraic group \mathbf{G} is a torus if and only if \mathbf{G} is connected and abelian, and every element of \mathbf{G} is semisimple.

A character of a torus \mathbf{T} is a homomorphism of algebraic groups from \mathbf{T} to \mathbf{G}_m . The product of two characters of \mathbf{T} is a character of \mathbf{T} , the inverse of a character of \mathbf{T} is a character of \mathbf{T} , and characters of \mathbf{T} commute with each other, so the set $X(\mathbf{T})$ of characters of \mathbf{T} is an abelian group. A one-parameter subgroup of \mathbf{T} is a homomorphism of algebraic groups from \mathbf{G}_m to \mathbf{T} . The set $Y(\mathbf{T})$ of one-parameter subgroups is an abelian group. If $\mathbf{T} \simeq \mathbf{G}_m$, then $X(\mathbf{T}) = Y(\mathbf{T})$ is just the set of maps $x \mapsto x^r$, as r varies over \mathbb{Z} . In general, $\mathbf{T} \simeq \mathbf{G}_m^d$ for some positive integer d, so $X(\mathbf{T}) \simeq X(\mathbf{G}_m)^d \simeq \mathbb{Z}^d \simeq Y(\mathbf{T})$. We have a pairing

$$\langle \cdot, \cdot \rangle : X(\mathbf{T}) \times Y(\mathbf{T}) \to \mathbb{Z}$$

 $\langle \chi, \eta \rangle \mapsto r \text{ where } \chi \circ \eta(x) = x^r, \ x \in \mathbf{G}_m.$

Let k be a subfield of K. A torus \mathbf{T} is a k-torus if \mathbf{T} is defined over k. Let \mathbf{T} be a k-torus. Let $X(\mathbf{T})_k$ be the subgroup of $X(\mathbf{T})$ made up of those characters of \mathbf{T} which are defined over k. We say that \mathbf{T} is k-split (or splits over k) whenever $X(\mathbf{T})_k$ spans $k[\mathbf{T}]$, or, equivalently, whenever \mathbf{T} is k-isomorphic to $\mathbf{G}_m \times \cdots \times \mathbf{G}_m$ (d times, $d = \dim \mathbf{T}$). In this case, $\mathbf{T}(k) \simeq k^{\times} \times \cdots \times k^{\times}$. If $X(\mathbf{T})_k = 0$, then we say that \mathbf{T} is k-anisotropic. There exists a finite Galois extension of k over which \mathbf{T} splits. There exist unique tori \mathbf{T}_{spl} and \mathbf{T}_{an} of \mathbf{T} , both defined over k, such that $\mathbf{T} = \mathbf{T}_{spl}\mathbf{T}_{an}$, \mathbf{T}_{spl} is k-split and \mathbf{T}_{an} is k-anisotropic. Also, \mathbf{T}_{an} is the identity component of $\bigcap_{\chi \in X(\mathbf{T})_k} \ker \chi$.

EXAMPLE 4.1. Let **T** be the subgroup of $GL_n(K)$ consisting of diagonal matrices in $GL_n(K)$. Then **T** is a k-split k-torus for any subfield k of K.

EXAMPLE 4.2. Let **T** be the closed subgroup of $GL_2(\mathbb{C})$ defined by

$$\mathbf{T} = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{C}, \ a^2 + b^2 \neq 0 \right\}.$$

Then **T** is an \mathbb{R} -torus and is \mathbb{R} -anisotropic.

5. Reductive groups, root systems and root data—the absolute case

Let G be a linear algebraic group which contains at least one torus. Then the set of tori in G has maximal elements, relative to inclusion. Such maximal elements are called *maximal tori* of G. All of the maximal tori in G are conjugate. The *rank* of G is defined to be the dimension of a maximal torus in G.

Now suppose that \mathbf{G} is a linear algebraic group and \mathbf{T} is a torus in \mathbf{G} . Recall that the adjoint representation $\mathrm{Ad}: \mathbf{G} \to \mathbf{GL}(\mathfrak{g})$ is a homomorphism of algebraic groups. Therefore $\mathrm{Ad}(\mathbf{T})$ consists of commuting semisimple elements, and so is diagonalizable. Given $\alpha \in X(\mathbf{T})$, let $\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} \mid \mathrm{Ad}(t)X = \alpha(t)X, \ \forall t \in \mathbf{T}\}$. The nonzero $\alpha \in X(\mathbf{T})$ such that $\mathfrak{g}_{\alpha} \neq 0$ are the *roots* of \mathbf{G} relative to \mathbf{T} . The set of roots of \mathbf{G} relative to \mathbf{T} will be denoted by $\Phi(\mathbf{G}, \mathbf{T})$.

The centralizer $Z_{\mathbf{G}}(\mathbf{T})$ of \mathbf{T} in \mathbf{G} is the identity component of the normalizer $N_{\mathbf{G}}(\mathbf{T})$ of \mathbf{T} in \mathbf{G} . The Weyl group $W(\mathbf{G}, \mathbf{T})$ of \mathbf{T} in \mathbf{G} is the (finite) quotient $N_{\mathbf{G}}(\mathbf{T})/Z_{\mathbf{G}}(\mathbf{T})$. Because $W(\mathbf{G}, \mathbf{T})$ acts on \mathbf{T} , $W(\mathbf{G}, \mathbf{T})$ also acts on $X(\mathbf{T})$, and $W(\mathbf{G}, \mathbf{T})$ permutes the roots of \mathbf{T} in \mathbf{G} . Since any two maximal tori in \mathbf{G} are conjugate, their Weyl groups are isomorphic. The Weyl group of any maximal torus is referred to as the Weyl group of \mathbf{G} .

An algebraic group \mathbf{G} contains a unique maximal normal solvable subgroup, and this subgroup is closed. Its identity component is called the radical of \mathbf{G} , written $R(\mathbf{G})$. The set $R_u(\mathbf{G})$ of unipotent elements in $R(\mathbf{G})$ is a normal closed subgroup of \mathbf{G} , and is called the $unipotent \ radical$ of \mathbf{G} . If \mathbf{G} is a linear algebraic group such that the radical $R(\mathbf{G}^0)$ of \mathbf{G}^0 is trivial, then \mathbf{G} is semisimple. In fact, \mathbf{G} is semisimple if and only if \mathbf{G} has no nontrivial connected abelian normal subgroups. If $R_u(\mathbf{G}^0)$ is trivial, then \mathbf{G} is reductive. The $semisimple \ rank$ of \mathbf{G} is defined to be the rank of $\mathbf{G}/R(\mathbf{G})$, and the $reductive \ rank$ of \mathbf{G} is the rank of $\mathbf{G}/R_u(\mathbf{G})$.

The derived group \mathbf{G}_{der} of \mathbf{G} is a closed subgroup of \mathbf{G} , and is connected when \mathbf{G} is connected. Suppose that \mathbf{G} is connected and reductive. Then

- (1) \mathbf{G}_{der} is semisimple.
- (2) $R(\mathbf{G}) = Z(\mathbf{G})^0$, where $Z(\mathbf{G})$ is the centre of \mathbf{G} , and $R(\mathbf{G})$ is a torus.
- (3) $R(\mathbf{G}) \cap \mathbf{G}_{der}$ is finite, and $\mathbf{G} = R(\mathbf{G})\mathbf{G}_{der}$.

For the rest of this section, assume that \mathbf{G} is a connected reductive group. Let \mathbf{T} be a torus in \mathbf{G} . Then $Z_{\mathbf{G}}(\mathbf{T})$ is reductive. This fact is useful for inductive arguments. Now assume that \mathbf{T} is maximal. Let \mathfrak{t} be the Lie algebra of \mathbf{T} and let $\Phi = \Phi(\mathbf{G}, \mathbf{T})$. Then

- (1) $\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$ and $\dim \mathfrak{g}_{\alpha} = 1$ for all $\alpha \in \Phi$.
- (2) If $\alpha \in \Phi$, let $\mathbf{T}_{\alpha} = (\operatorname{Ker} \alpha)^{0}$. Then \mathbf{T}_{α} is a torus, of codimension one in \mathbf{T} .
- (3) If $\alpha \in \Phi$, let $\mathbf{Z}_{\alpha} = Z_{\mathbf{G}}(\mathbf{T}_{\alpha})$. Then \mathbf{Z}_{α} is a reductive group of semisimple rank 1, and the Lie algebra \mathfrak{z}_{α} of \mathbf{Z}_{α} satisfies $\mathfrak{z}_{\alpha} = \mathfrak{t} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$. The group \mathbf{G} is generated by the subgroups \mathbf{Z}_{α} , $\alpha \in \Phi$.
- (4) The centre $Z(\mathbf{G})$ of \mathbf{G} is equal to $\cap_{\alpha \in \Phi} \mathbf{T}_{\alpha}$.
- (5) If $\alpha \in \Phi$, there exists a unique connected **T**-stable (relative to conjugation by **T**) subgroup \mathbf{U}_{α} of **G** having Lie algebra \mathfrak{g}_{α} . Also, $\mathbf{U}_{\alpha} \subset \mathbf{Z}_{\alpha}$.
- (6) Let $n \in N_{\mathbf{G}}(\mathbf{T})$, and let w be the corresponding element of $W = W(\mathbf{G}, \mathbf{T})$. Then $n\mathbf{U}_{\alpha}n^{-1} = \mathbf{U}_{w(\alpha)}$ for all $\alpha \in \Phi$.
- (7) Let $\alpha \in \Phi$. Then there exists an isomorphism $\varepsilon_{\alpha} : \mathbf{G}_{a} \to \mathbf{U}_{\alpha}$ such that $t \varepsilon_{\alpha}(x) t^{-1} = \varepsilon_{\alpha}(\alpha(t)x), t \in \mathbf{T}, x \in \mathbf{G}_{a}$.
- (8) The groups \mathbf{U}_{α} , $\alpha \in \Phi$, together with \mathbf{T} , generate the group \mathbf{G} .

Let $\langle \Phi \rangle$ be the subgroup of $X(\mathbf{T})$ generated by Φ and let $V = \langle \Phi \rangle \otimes_{\mathbb{Z}} \mathbb{R}$. Then the set Φ is a subset of the vector space V and is a root system. In general an abstract root system in a finite dimensional real vector space V, is a subset Φ of V that satisfies the following axioms:

- **(R1):** Φ is finite, Φ spans V, and $0 \notin \Phi$.
- (R2): If $\alpha \in \Phi$, there exists a reflection s_{α} relative to α such that $s_{\alpha}(\Phi) \subset \Phi$. (A reflection relative to α is a linear transformation sending α to $-\alpha$ that restricts to the identity map on a subspace of codimension one).
- **(R3):** If $\alpha, \beta \in \Phi$, then $s_{\alpha}(\beta) \beta$ is an integer multiple of α .

A root system is *reduced* if it has the property that if $\alpha \in \Phi$, then $\pm \alpha$ are the only multiples of α which belong to Φ .

The rank of Φ is defined to be dim V. The abstract Weyl group $W(\Phi)$ is the subgroup of $\mathbf{GL}(V)$ generated by the set $\{s_{\alpha} \mid \alpha \in \Phi\}$.

If **T** is a maximal torus in **G**, then $\Phi = \Phi(\mathbf{G}, \mathbf{T})$ is a root system in $V = \langle \Phi \rangle \otimes_{\mathbb{Z}} \mathbb{R}$, and it is reduced. The rank of Φ is equal to the semisimple rank of **G**, and the abstract Weyl group $W(\Phi)$ is isomorphic to $W = W(\mathbf{G}, \mathbf{T})$.

A base of Φ is a subset $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$, $\ell = \operatorname{rank}(\Phi)$, such that Δ is a basis of V and each $\alpha \in \Phi$ is uniquely expressed in the form $\alpha = \sum_{i=1}^{\ell} c_i \alpha_i$, where the c_i 's are all integers, no two of which have different signs. The elements of Δ are called simple roots. The set of positive roots Φ^+ is the set of $\alpha \in \Phi$ such that the coefficients of the simple roots in the expression for α , as a linear combination of simple roots, are all nonnegative. Similarly, Φ^- consists of those $\alpha \in \Phi$ such that the coefficients are all nonpositive. Clearly Φ is the disjoint union of Φ^+ and Φ^- . Given $\alpha \in \Phi$, there exists a base containing α . Given a base Δ , the set $\{s_\alpha \mid \alpha \in \Delta\}$ generates $W = W(\Phi)$. The subgroups \mathbf{Z}_{α} , $\alpha \in \Delta$, generate \mathbf{G} . Equivalently, the subgroups \mathbf{U}_{α} , $\alpha \in \Delta$, and \mathbf{T} , generate \mathbf{G} .

There is an inner product (\cdot,\cdot) on V with respect to which each $w \in W$ is an orthogonal linear transformation. If $\alpha, \beta \in \Phi$, then $s_{\alpha}(\beta) = \beta - (2(\beta,\alpha)/(\alpha,\alpha))\alpha$. A Weyl chamber in V is a connected component in the complement of the union

of the hyperplanes orthogonal to the roots. The set of Weyl chambers in V and the set of bases of Φ correspond in a natural way, and W permutes each of them simply transitively.

If $\alpha \in \Phi$, there exists a unique $\alpha^{\vee} \in Y(\mathbf{T})$ such that $\langle \beta, \alpha^{\vee} \rangle = 2(\beta, \alpha)/(\alpha, \alpha)$ for all $\beta \in \Phi$. The set Φ^{\vee} of elements α^{\vee} (called co-roots) forms a root system in $\langle \Phi^{\vee} \rangle \otimes_{\mathbb{Z}} \mathbb{R}$, called the *dual* of Φ . The Weyl group $W(\Phi^{\vee})$ is isomorphic to $W(\Phi)$, via the map $s_{\alpha} \mapsto s_{\alpha^{\vee}}$.

A root system Φ is said to be *irreducible* if Φ cannot be expressed as the union of two mutually orthogonal proper subsets. In general, Φ can be partitioned uniquely into a union of irreducible root systems in subspaces of V. The group \mathbf{G} is *simple* (or *almost simple*) if \mathbf{G} contains no proper nontrivial closed connected normal subgroup. When \mathbf{G} is semisimple and connected, then \mathbf{G} is simple if and only if Φ is irreducible.

The reduced irreducible root systems are those of type A_n , $n \ge 1$, B_n , $n \ge 1$, C_n , $n \ge 3$, D_n , $n \ge 4$, E_6 , E_7 , E_8 , E_4 , and E_2 . For each E_8 is one irreducible nonreduced root system, E_8 . (These root systems are described in many of the references). If E_8 is of type E_8 , the root system of E_8 is of type E_8 , if E_8 is of type E_8 , and of type E_8 and E_8 for E_8 is of type E_8 , if E_8 is of type E_8 , and of type E_8 and E_8 for E_8 is of type E_8 , if E_8 is of type E_8 , if E_8 is of type E_8 , and of type E_8 and E_8 for E_8 is of type E_8 .

The quadruple $\Psi(\mathbf{G}, \mathbf{T}) = (X, Y, \Phi, \Phi^{\vee}) = (X(\mathbf{T}), Y(\mathbf{T}), \Phi(\mathbf{G}, \mathbf{T}), \Phi^{\vee}(\mathbf{G}, \mathbf{T}))$ is a root datum. An abstract root datum is a quadruple $\Psi = (X, Y, \Phi, \Phi^{\vee})$, where X and Y are free abelian groups such that there exists a bilinear mapping $\langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$ inducing isomorphisms $X \simeq \operatorname{Hom}(Y, \mathbb{Z})$ and $Y \simeq \operatorname{Hom}(X, \mathbb{Z})$, and $\Phi \subset X$ and $\Phi^{\vee} \subset Y$ are finite subsets, and there exists a bijection $\alpha \mapsto \alpha^{\vee}$ of Φ onto Φ^{\vee} . The following two axioms must be satisfied:

```
(RD1): \langle \alpha, \alpha^{\vee} \rangle = 2

(RD2): If s_{\alpha} : X \to X and s_{\alpha^{\vee}} : Y \to Y are defined by s_{\alpha}(x) = x - \langle x, \alpha^{\vee} \rangle \alpha and s_{\alpha^{\vee}}(y) = y - \langle \alpha, y \rangle \alpha^{\vee}, then s_{\alpha}(\Phi) \subset \Phi and s_{\alpha^{\vee}}(\Phi^{\vee}) \subset \Phi^{\vee} (for all \alpha \in \Phi).
```

The axiom (RD2) may be replaced by the equivalent axiom:

(RD2'): If $\alpha \in \Phi$, then $s_{\alpha}(\Phi) \subset \Phi$, and the s_{α} , $\alpha \in \Phi$, generate a finite group.

If $\Phi \neq \emptyset$, then Φ is a root system in $V := \langle \Phi \rangle \otimes_{\mathbb{Z}} \mathbb{R}$, where $\langle \Phi \rangle$ is the subgroup of X generated by Φ . The set Φ^{\vee} is the dual of the root system Φ .

The quadruple $\Psi^{\vee} = (Y, X, \Phi^{\vee}, \Phi)$ is also a root datum, called the *dual* of Ψ . A root datum is *reduced* if it satisfies a third axiom

(RD3):
$$\alpha \in \Phi \Longrightarrow 2\alpha \notin \Phi$$
.

The root datum $\Psi(\mathbf{G}, \mathbf{T})$ is reduced.

An isomorphism of a root datum $\Psi = (X, Y, \Phi, \Phi^{\vee})$ onto a root datum $\Psi' = (X', Y', \Phi', \Phi'^{\vee})$ is a group isomorphism $f: X \to X'$ which induces a bijection of Φ onto Φ' and whose dual induces a bijection of Φ'^{\vee} onto Φ^{\vee} . If \mathbf{G}' is a linear algebraic group which is isomorphic to \mathbf{G} , and \mathbf{T}' is a maximal torus in \mathbf{G}' , then the root data $\Psi(\mathbf{G}, \mathbf{T})$ and $\Psi(\mathbf{G}', \mathbf{T}')$ are isomorphic.

If Ψ is a reduced root datum, there exists a connected reductive K-group \mathbf{G} and a maximal torus \mathbf{T} in \mathbf{G} such that $\Psi = \Psi(\mathbf{G}, \mathbf{T})$. The pair (\mathbf{G}, \mathbf{T}) is unique up to isomorphism.

6. Parabolic subgroups

Let G be a connected linear algebraic group. The set of connected closed solvable subgroups of G, ordered by inclusion, contains maximal elements. Such a maximal element is called a *Borel subgroup* of G. If G is a Borel subgroup, then G/G is a projective variety and any other Borel subgroup is conjugate to G. If G is a closed subgroup of G, then G/G is a projective variety if and only if G contains a Borel subgroup. Such a subgroup is called a *parabolic subgroup*. If G is G is G if G and G is G if G are parabolic subgroups containing a Borel subgroup G, and G and G are conjugate, then G is G and G is G are conjugate, then G is G is G and G is G are conjugate, then G is G and G is G are

Now assume that \mathbf{G} is a connected reductive linear algebraic group. Let \mathbf{T} be a maximal torus in \mathbf{G} . Then \mathbf{T} lies inside some Borel subgroup \mathbf{B} of \mathbf{G} . Let $\mathbf{U} = R_u(\mathbf{B})$ be the unipotent radical of \mathbf{B} . There exists a unique base Δ of $\Phi = \Phi(\mathbf{G}, \mathbf{T})$ such that \mathbf{U} is generated by the groups \mathbf{U}_{α} , $\alpha \in \Phi^+$, and $\mathbf{B} = \mathbf{T} \ltimes \mathbf{U}$. Conversely if Δ is a base of Φ , then the group generated by \mathbf{T} and by the groups \mathbf{U}_{α} , $\alpha \in \Phi^+$, is a Borel subgroup of \mathbf{G} . Hence the set of Borel subgroups of \mathbf{G} which contain \mathbf{T} is in one to one correspondence with the set of bases of Φ . The Weyl group W permutes the set of Borel subgroups containing \mathbf{T} simply transitively. The set of Borel subgroups containing \mathbf{T} generates \mathbf{G} .

The Bruhat decomposition. Let **B** be a Borel subgroup of **G**, and let **T** be a maximal torus of **G** contained in **B**. Then **G** is the disjoint union of the double cosets $\mathbf{B}w\mathbf{B}$, as w ranges over a set of representatives in $N_{\mathbf{G}}(\mathbf{T})$ of the Weyl group W (BwB = Bw'B if and only if w = w' in W).

Let G, G and G be as above. Let G be the base of G, corresponding to G. If G is a subset of G, let G be the subgroup of G generated by the subset G is a subgroup of G. Let G is a parabolic subgroup of G (containing G). A subgroup of G containing G is equal to G if G is considered and G if G is conjugate to G in and G if G is conjugate to G if and only if G is conjugate to G is conjugate to some subgroup is called standard if it contains G. Any parabolic subgroup G is conjugate to some standard parabolic subgroup.

Let $I \subset \Delta$. The set Φ_I of $\alpha \in \Phi$ such that α is an integral linear combination of elements of I forms a root system, with Weyl group W_I . The set of roots $\Phi(\mathbf{P}_I, \mathbf{T})$ of \mathbf{P}_I relative to \mathbf{T} is equal to $\Phi^+ \cup (\Phi^- \cap \Phi_I)$. Let $\mathbf{N}_I = R_u(\mathbf{P}_I)$. Then \mathbf{N}_I is a \mathbf{T} -stable subgroup of $\mathbf{U} = \mathbf{B}_u$, and is generated by those \mathbf{U}_α which are contained in \mathbf{N}_I , that is, by those \mathbf{U}_α such that $\alpha \in \Phi^+$ and $\alpha \notin \Phi_I$. Let $\mathbf{T}_I = (\cap_{\alpha \in I} \mathrm{Ker} \, \alpha)^0$, and let $\mathbf{M}_I = Z_{\mathbf{G}}(\mathbf{T}_I)$. The set Φ_I coincides with the set of roots in Φ which are trivial on \mathbf{T}_I . The group \mathbf{M}_I is reductive and is generated by \mathbf{T} and by the set of \mathbf{U}_α , $\alpha \in \Phi_I$, \mathbf{T}_I is the identity component of the centre of \mathbf{M}_I , and $\Phi(\mathbf{M}_I, \mathbf{T}) = \Phi_I$. The Lie algebra of \mathbf{M}_I is equal to $\mathbf{t} \oplus \bigoplus_{\alpha \in \Phi_I} \mathbf{g}_\alpha$ (here \mathbf{t} is the Lie algebra of \mathbf{T}). The group \mathbf{M}_I normalizes \mathbf{N}_I and $\mathbf{P}_I = \mathbf{M}_I \ltimes \mathbf{N}_I$. A Levi factor (or Levi component) of \mathbf{P}_I is a reductive group \mathbf{M} such that $\mathbf{P}_I = \mathbf{M} \ltimes \mathbf{N}_I$, and the decomposition $\mathbf{P}_I = \mathbf{M} \ltimes \mathbf{N}_I$ is called a Levi decomposition of \mathbf{P}_I . If \mathbf{M} is a Levi factor of \mathbf{P}_I , then there exists $n \in \mathbf{N}_I$ such that $\mathbf{M} = n\mathbf{M}_I n^{-1}$. It is possible for \mathbf{M}_I and \mathbf{M}_J to be conjugate for distinct subsets I and J of Δ . More generally, if \mathbf{P} is any parabolic subgroup of \mathbf{G} , \mathbf{P} has Levi decompositions (which we can obtain via

conjugation from Levi decompositions of a standard parabolic subgroup to which **P** is conjugate).

Note that if \mathbf{P} is a proper parabolic subgroup of \mathbf{G} , then the semisimple rank of a Levi factor of \mathbf{P} is strictly less than the semisimple rank of \mathbf{G} . This fact is often used in inductive arguments.

7. Reductive groups - relative theory

Let k be a subfield of K. Throughout this section, we assume that G is a connected reductive k-group. Then G has a maximal torus which is defined over k. We say that G is k-split if G has a maximal torus T which is k-split. If G is k-split and T is such a torus, then each U_{α} , $\alpha \in \Phi(G,T)$, is defined over k, and the associated isomorphism $\varepsilon_{\alpha} : G_{\alpha} \to U_{\alpha}$ can be taken to be defined over k. If G contains no k-split tori, then G is said to be k-anisotropic. There exists a finite separable extension of k over which G splits.

Suppose that G and G' are connected reductive k-split k-groups which are isomorphic. Then G and G' are k-isomorphic.

The centralizer $Z_{\mathbf{G}}(\mathbf{T})$ of a k-torus \mathbf{T} in \mathbf{G} is reductive and defined over k, and if \mathbf{T} is k-split, $Z_{\mathbf{G}}(\mathbf{T})$ is the Levi factor of a parabolic k-subgroup of \mathbf{G} . (Here, we say a closed subgroup \mathbf{H} of \mathbf{G} is a k-subgroup of \mathbf{G} if \mathbf{H} is a k-group). Any k-torus in \mathbf{G} is contained in some maximal torus which is defined over k. If k is infinite, then $\mathbf{G}(k)$ is Zariski dense in \mathbf{G} .

The maximal k-split tori of \mathbf{G} are all conjugate under $\mathbf{G}(k)$. Let \mathbf{S} be a maximal k-split torus in \mathbf{G} . The k-rank of \mathbf{G} is the dimension of \mathbf{S} . The semisimple k-rank of \mathbf{G} is the k-rank of $\mathbf{G}/R(\mathbf{G})$. The finite group ${}_kW = N_{\mathbf{G}}(\mathbf{S})/Z_{\mathbf{G}}(\mathbf{S})$ is called the k-Weyl group. The set ${}_k\Phi = \Phi(\mathbf{G},\mathbf{S})$ of roots of \mathbf{G} relative to \mathbf{S} is called the k-roots of \mathbf{G} . The k-roots form an abstract root system, which is not necessarily reduced, with Weyl group isomorphic to ${}_kW$. The rank of ${}_k\Phi$ is equal to the semisimple k-rank of \mathbf{G} .

A Borel subgroup **B** of **G** might not be defined over k. We say that **G** is k-quasisplit if **G** has a Borel subgroup that is defined over k. If **P** is a parabolic k-subgroup of **G**, then $R_u(\mathbf{P})$ is defined over k. A Levi factor **M** of a parabolic k-subgroup is called a Levi k-factor of **P** if **M** is a k-group. Any two Levi k-factors of **P** are conjugate by a unique element of $R_u(\mathbf{P})(k)$. If two parabolic k-subgroups of **G** are conjugate by an element of **G** then they are conjugate by an element of **G**(k). The group **G** contains a proper parabolic k-subgroup if and only if **G** contains a noncentral k-split torus, that is, if the semisimple k-rank of **G** is positive. The results described in this section give no information in the case where **G** has semisimple k-rank zero.

Let \mathbf{P}_0 be a minimal element of the set of parabolic k-subgroups of \mathbf{G} (such an element exists, since the set is nonempty, as it contains \mathbf{G}). Any minimal parabolic k-subgroup of \mathbf{G} is conjugate to \mathbf{P}_0 by an element of $\mathbf{G}(k)$. The group \mathbf{P}_0 contains a maximal k-split torus \mathbf{S} of \mathbf{G} , and $Z_{\mathbf{G}}(\mathbf{S})$ is a k-Levi factor of \mathbf{P}_0 . The semisimple k-rank of $Z_{\mathbf{G}}(\mathbf{S})$ is zero. Because $N_{\mathbf{G}}(\mathbf{S}) = N_{\mathbf{G}}(\mathbf{S})(k) \cdot Z_{\mathbf{G}}(\mathbf{S})$, $\mathbf{G}(k)$ contains representatives for all elements of kW. The group kW acts simply transitively on the set of minimal parabolic k-subgroups containing $Z_{\mathbf{G}}(\mathbf{S})$.

Let $Lie(Z_{\mathbf{G}}(\mathbf{S}))$ be the Lie algebra of $Z_{\mathbf{G}}(\mathbf{S})$. Then

$$\mathfrak{g} = \operatorname{Lie}(Z_{\mathbf{G}}(\mathbf{S})) \oplus \bigoplus_{\alpha \in_k \Phi} \mathfrak{g}_{\alpha}.$$

If $\alpha \in {}_k\Phi$ and $2\alpha \notin {}_k\Phi$, then \mathfrak{g}_{α} is a subalgebra of \mathfrak{g} . If α and $2\alpha \in {}_k\Phi$, then $\mathfrak{g}_{\alpha} + \mathfrak{g}_{2\alpha}$ is a subalgebra of \mathfrak{g} . For each $\alpha \in {}_k\Phi$, set

$$\mathfrak{g}_{(\alpha)} = \begin{cases} \mathfrak{g}_{\alpha}, & \text{if } 2\alpha \notin {}_{k}\Phi \\ \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}, & \text{if } 2\alpha \in {}_{k}\Phi. \end{cases}$$

There exists a unique closed connected unipotent k-subgroup $\mathbf{U}_{(\alpha)}$ of \mathbf{G} which is normalized by $Z_{\mathbf{G}}(\mathbf{S})$ and has Lie algebra $\mathfrak{g}_{(\alpha)}$.

Let \mathbf{P}_0 be as above. Then there exists a unique base ${}_k\Delta$ of ${}_k\Phi$ such that $R_u(\mathbf{P}_0)$ is generated by the groups $\mathbf{U}_{(\alpha)}$, $\alpha \in {}_k\Phi^+$. The set of standard parabolic k-subgroups of \mathbf{G} corresponds bijectively with the set of subsets of ${}_k\Phi$. Fix $I \subset {}_k\Delta$. Let $\mathbf{S}_I = (\cap_{\alpha \in I} \cap \operatorname{Ker} \alpha)^0$ and let ${}_k\Phi_I$ be the set of $\alpha \in {}_k\Phi$ which are integral linear combinations of the roots in I. Let ${}_kW_I$ be the subgroup of ${}_kW$ generated by the reflections s_α , $\alpha \in I$. The parabolic k-subgroup of \mathbf{G} corresponding to I is $\mathbf{P}_I = \mathbf{P}_0 \cdot {}_kW_I \cdot \mathbf{P}_0$. The unipotent radical of \mathbf{P}_I is equal to \mathbf{N}_I , the subgroup of \mathbf{G} generated by the groups $\mathbf{U}_{(\alpha)}$, as α ranges over the elements of ${}_k\Phi^+$ which are not in ${}_k\Phi_I$. The k-subgroup $\mathbf{M}_I := Z_{\mathbf{G}}(\mathbf{S}_I)$ is a Levi k-factor of \mathbf{P}_I , $\Phi(\mathbf{M}_I, \mathbf{S}) = {}_k\Phi_I$, and ${}_kW_I = {}_kW(\mathbf{M}_I, \mathbf{S})$.

A parabolic k-subgroup of G is conjugate to exactly one P_I , and it is conjugate to P_I by an element of G(k).

Relative Bruhat decomposition. Let $\mathbf{U}_0 = R_u(\mathbf{P}_0)$. Then $\mathbf{G}(k) = \mathbf{U}_0(k) \cdot N_{\mathbf{G}}(\mathbf{S})(k) \cdot \mathbf{U}_0(k)$, and $\mathbf{G}(k)$ is the disjoint union of the sets $\mathbf{P}_0(k)w\mathbf{P}_0(k)$, as w ranges over a set of representatives for elements of $_kW$ in $N_{\mathbf{G}}(\mathbf{S})(k)$.

A parabolic subgroup of $\mathbf{G}(k)$ is a subgroup of the form $\mathbf{P}(k)$, where \mathbf{P} is a parabolic k-subgroup of \mathbf{G} . A subgroup of $\mathbf{G}(k)$ which contains $\mathbf{P}_0(k)$ is equal to $\mathbf{P}_I(k)$ for some $I \subset {}_k\Delta$. If $I \subset {}_k\Delta$, choosing representatives for ${}_kW_I$ in $N_{\mathbf{G}}(\mathbf{S})(k)$, we have $\mathbf{P}_I(k) = \mathbf{P}_0(k) \cdot {}_kW_I \cdot \mathbf{P}_0(k)$. The group $\mathbf{P}_I(k)$ is equal to its own normalizer in $\mathbf{G}(k)$. The Levi decomposition $\mathbf{P}_I = \mathbf{M}_I \ltimes \mathbf{N}_I$ carries over to the k-rational points: $\mathbf{P}_I(k) = \mathbf{M}_I(k) \ltimes \mathbf{N}_I(k)$. If $I, J \subset {}_k\Delta$ and $g \in \mathbf{G}(k)$, then $g\mathbf{P}_J(k)g^{-1} \subset \mathbf{P}_I(k)$ if and only if $J \subset I$ and $g \in \mathbf{P}_I(k)$.

8. Examples

EXAMPLE 8.1. $\mathbf{G} = \mathbf{GL}_n(K), n \geq 2.$

The group $\mathbf{T} = \{ \operatorname{diag}(t_1, t_2, \dots, t_n) \mid t_i \in K^{\times} \}$ is a maximal torus in \mathbf{G} . For $1 \leq i \leq n$, let $\ell_i = (0, 0, \dots, 0, 1, 0, \dots, 0) \in \mathbf{Z}^n$, with the 1 occurring in the *i*th coordinate. The map $\sum_{i=1}^n k_i \ell_i \mapsto \chi_{\sum_{i=1}^n k_i \ell_i}$, where

$$\chi_{\sum_{i=1}^{n} k_i \ell_i}$$
 (diag (t_1, \dots, t_n)) = $t_1^{k_1} \dots t_n^{k_n}$,

is an isomorphism from \mathbf{Z}^n to $X(\mathbf{T})$. If $\mu_{\sum\limits_{i=1}^n k_i \ell_i}(t) = \mathrm{diag}\ (t^{k_1}, \cdots, t^{k_n}),\ t \in$

 K^{\times} , then the map $\sum_{i=1}^{n} k_i \ell_i \mapsto \mu_{\sum_{i=1}^{n} k_i \ell_i}$ is an isomorphism from \mathbf{Z}^n to $Y(\mathbf{T})$. Also,

 $\langle \chi_{\sum k_i \ell_i}, \mu_{\sum \ell_i e_i} \rangle = \sum_{i=1}^n k_i \ell_i$. The root system $\Phi = \Phi(\mathbf{G}, \mathbf{T}) = \{ \chi_{\ell_i - \ell_j} \mid 1 \le i \ne j \le n \}$.

For $1 \leq i \neq j \leq n$, let $E_{ij} \in M_n(K) = \mathfrak{g}$ be the matrix having a 1 in the ij^{th} entry, and zeros elsewhere. If $\alpha = \chi_{\ell_i - \ell_j}$, $i \neq j$, then \mathfrak{g}_{α} is spanned by E_{ij} , and

 $\mathbf{U}_{\alpha} = \{I_n + tE_{ij} \mid t \in K\}$. The reflection s_{α} permutes ℓ_i and ℓ_j , and fixes all ℓ_k with $k \notin \{i, j\}$. The co-root α^{\vee} is $\mu_{\ell_i - \ell_j}$ The Weyl group W is isomorphic to the symmetric group S_n . The root system $\Phi \simeq \Phi^{\vee}$ is of type A_{n-1} .

The set $\Delta := \{ \chi_{\ell_i - \ell_{i+1}} \mid 1 \leq i \leq n-1 \}$ is a base of Φ . The corresponding Borel subgroup **B** is the subgroup of **G** consisting of upper triangular matrices.

If $I \subset \Delta$, there exists a partition (n_1, n_2, \dots, n_r) of n $(n_i$ a positive integer, $1 \leq i \leq r, n_1 + n_2 + \dots + n_r = n)$, such that

$$\mathbf{T}_{I} = \{ \operatorname{diag}(\underbrace{a_{1}, \dots, a_{1}}_{n_{1} \text{ times}}, \underbrace{a_{2}, \dots, a_{2}}_{n_{2} \text{ times}}, \dots, \underbrace{a_{r}, \dots, a_{r}}_{n_{r} \text{ times}}) \mid a_{1}, a_{2}, \dots, a_{r} \in K^{\times} \}$$

The group $\mathbf{M}_I := \mathbf{Z}_{\mathbf{G}}(\mathbf{T}_I)$ is isomorphic to $\mathbf{GL}_{n_1}(K) \times \mathbf{GL}_{n_2}(K) \times \cdots \times \mathbf{GL}_{n_r}(K)$, \mathbf{N}_I consists of matrices of the form

$$\begin{bmatrix} I_{n_1} & * & * & * \\ & I_{n_2} & * & \vdots \\ 0 & & \ddots & * \\ & & & I_{n_r} \end{bmatrix},$$

and $\mathbf{P}_I = \mathbf{M}_I \ltimes \mathbf{N}_I$.

EXAMPLE 8.2. $\mathbf{G} = \mathbf{Sp}_4(K)$ (the 4×4 symplectic group). Let

$$J = \begin{bmatrix} 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & -1 & 0 & 0\\ -1 & 0 & 0 & 0 \end{bmatrix}$$

Then $G = \{ g \in GL_4(K) \mid {}^t gJg = J \}$ and $g = \{ X \in M_4(K) \mid {}^t XJ + JX = 0 \}.$

The group $\mathbf{T} := \{ \text{diag } (a, b, b^{-1}, a^{-1}) \mid a, b \in K^{\times} \}$ is a maximal torus in \mathbf{G} and $X(\mathbf{T}) \simeq \mathbf{Z} \times \mathbf{Z}$, via $\chi_{(i,j)} \leftrightarrow (i,j)$, where $\chi_{(i,j)}(\text{diag } (a, b, b^{-1}, a^{-1})) = a^i b^j$. And $Y(\mathbf{T}) \simeq \mathbf{Z} \times \mathbf{Z}$, via $\mu_{(i,j)} \leftrightarrow (i,j)$, where $\mu_{(i,j)}(t) = (\text{diag } (t^i, t^j, t^{-j}, t^{-i})$. Note that $\langle \chi_{(i,j)}, \mu_{(k,\ell)} \rangle = ki + j\ell$.

Let $\alpha = \chi_{(1,-1)}$ and $\beta = \chi_{(0,2)}$. Then

$$\Phi = \{ \pm \alpha, \pm \beta, \pm (\alpha + \beta), \pm (2\alpha + \beta) \},$$

 $\Delta := \{\alpha, \beta\}$ is a base of $\Phi = \Phi(\mathbf{G}, \mathbf{T})$, and

$$\begin{split} &\mathfrak{g}_{\alpha} = \operatorname{Span}_{K}(E_{12} - E_{34}), \quad \mathfrak{g}_{-\alpha} = \operatorname{Span}_{K}(E_{21} - E_{43}) \quad \mathfrak{g}_{\beta} = \operatorname{Span}_{K}E_{23} \\ &\mathfrak{g}_{\alpha+\beta} = \operatorname{Span}_{K}(E_{13} + E_{24}), \quad \mathfrak{g}_{2\alpha+\beta} = \operatorname{Span}_{K}E_{14}, \quad \text{etc.} \end{split}$$

Identifying α and β with (1,-1) and $(0,2) \in \mathbf{Z} \times \mathbf{Z}$, respectively, we have $s_{\alpha}(1,-1) = (-1, 1) = -\alpha$ and $s_{\alpha}(1, 1) = (1, 1)$. The corresponding element of $W = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$ is represented by the matrix

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

We also have $s_{\beta}(0,2) = (0,-2) = -\beta$ and $s_{\beta}(1,0) = (1,0)$. The corresponding element of $W = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$ is represented by the matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

The Weyl group $W = W(\Phi)$ is equal to $\{1, s_{\alpha}, s_{\beta}, s_{\alpha}s_{\beta}, s_{\beta}s_{\alpha}, s_{\beta}s_{\alpha}s_{\beta}, s_{\alpha}s_{\beta}s_{\alpha}, (s_{\beta}s_{\alpha})^2\}$ which is isomorphic to the dihedral group of order 8.

The dual root system Φ^{\vee} is described by

$$\Phi^{\vee} = \{ \pm \alpha^{\vee}, \pm \beta^{\vee}, \pm (\alpha + \beta)^{\vee}, \pm (2\alpha + \beta)^{\vee} \}$$
$$\alpha^{\vee} = (1, -1) \quad (\alpha + \beta)^{\vee} = (1, 1)$$
$$\beta^{\vee} = (0, 1) \quad (2\alpha + \beta)^{\vee} = (1, 0)$$

The root system Φ is of type C_2 and Φ^{\vee} is of type B_2 , isomorphic to C_2 .

REMARK 8.3. If n > 2 the root system of $\mathbf{Sp}_{2n}(K)$ is of type C_n , and the dual is of type B_n , and B_n and C_n are not isomorphic.

The Borel subgroup of G which corresponds to Δ is the subgroup B of upper triangular matrices in G. Apart from G and B, there are two standard parabolic subgroups, P_{α} and P_{β} , attached to the subsets $\{\alpha\}$ and $\{\beta\}$ of Δ , respectively. It is easy to check that

$$\mathbf{T}_{\alpha} = (\operatorname{Ker} \alpha)^{\circ} = \{\operatorname{diag} (a, a, a^{-1} a^{-1}) \mid a \in K^{\times}\}$$

$$\mathbf{M}_{\alpha} = \mathbf{Z}_{\mathbf{G}}(\mathbf{T}_{\alpha}) = \left\{ \begin{bmatrix} A & 0 \\ 0 & \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & t_{A^{-1}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{bmatrix} \mid A \in \mathbf{GL}_{2}(K) \right\}$$

$$\mathbf{N}_{\alpha} = \left\{ \begin{bmatrix} I_{2} & B \\ 0 & I_{2} \end{bmatrix} \mid B \in M_{2}(K), \ ^{t}B = B \right\}$$

$$\mathbf{T}_{\beta} = (\operatorname{Ker} \beta)^{\circ} = \{\operatorname{diag} (a, 1, 1, a^{-1}) \mid a \in K^{\times}\}$$

$$\mathbf{M}_{\beta} = \mathbf{Z}_{\mathbf{G}}(\mathbf{T}_{\beta}) = \left\{ \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & c_{11} & c_{12} & 0 \\ 0 & c_{21} & c_{22} & 0 \\ 0 & 0 & 0 & d^{-1} \end{bmatrix} \mid d \in K^{\times}, c_{11}c_{22} - c_{12}c_{21} = 1 \right\} \simeq \mathbf{SL}_{2}(K) \times K^{\times}$$

$$\mathbf{N}_{\beta} = \left\{ \begin{bmatrix} 1 & x & y & z \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & -x \\ 0 & 0 & 0 & 1 \end{bmatrix} \mid x, y, z \in K \right\}$$

9. Comments on references

For the basic theory of linear algebraic groups, see [B1], [H] and [Sp2], as well as the survey article [B2]. For information on reductive groups defined over non algebraically closed fields, the main reference is [BoT1] and [BoT2]. Some material appears in [B1], and there is a survey of rationality properties at the end of [Sp2]. See also the survey article [Sp1]. For the classification of semisimple algebraic groups, see [Sa] and [T2]. For information on reductive groups over local nonarchimedean fields, see [BrT1], [BrT2], and the article [T1]. Adeles and algebraic groups are discussed in [W].

References

- [B1] A. Borel, Linear algebraic groups, Second Enlarged Edition, Graduate Texts in Mathematics, 126, Springer-Verlag, New York 1991.
- [B2] A. Borel, Linear algebraic groups, in Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. 9, (1966), 3–19.
- [BoT1] A. Borel and J. Tits, Groupes réductifs, Publ. Math. I.H.E.S. 27 (1965), 55-151.
- [BoT2] A. Borel and J. Tits, Compléments à larticle: Groupes réductifs, Publ. Math. I.H.E.S. 41 (1972), 253–276.
- [B] N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1968, Chapters IV, V, VI.
- [BrT1] F. Bruhat and J. Tits, Groupes réductifs sur un corps local I, Données radicielles valuées, Publ. Math. IHES 41, (1972), 5–251.
- [BrT2] F. Bruhat and J. Tits, Groupes réductifs sur un corps local II, Schémas en groupes. Existence d'une donnée radicielle valuée, Publ. Math. IHES 60 (1984), 197–376.
- [H] J.E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, Springer-Verlag, New York, 1975.
- [Sa] Satake, Classification theory of semisimple algebraic groups, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York 1971.
- [Sp1] T.A. Springer, Reductive groups, in Automorphic Forms, Representations, and L-functions, Proc. Symp. Pure Math. 33, (1979), part 1, 3–27.
- [Sp2] T.A. Springer, Linear algebraic groups, Birkhauser, Boston, 1981.
- [T1] J. Tits, Reductive groups over local fields, Proc. Symp. Pure Math. 33 (1979), part 1, 29–69.
- [T2] J. Tits, Classification of algebraic semisimple groups, Proc. Symp. Pure Math. 9 (1966), 33-62.
- [W] A. Weil, Adeles and algebraic groups, Insitute for Advanced Study, Princeton, N.J., 1961.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, CANADA M5S 3G3 E-mail address: fiona@math.toronto.edu