CS331 Neural Computing

AI and Neural Computing

- AI any techniques that make computers smart
- ML statistical methods that give computers the ability to learn
 - ML is a subset of AI
- Smart does not mean able to learn
 - Example of AI without ML rule-based chatbots, which are smart but have no ability to learn as they rely on a set of human-defined rules to respond to questions within a limited domain
- AI without ML is known as GOFAI (Good Old-Fashioned AI)
- Neural Computing brain-inspired ML methods that use neural networks to learn
 - A subset of ML
- NC applies a network of neurons to parse data, learns from it and uses the learnings to discover meaningful patterns for classification
 - Process of determining the network is called the learning rule
- GOFAI example: SHRDLU, an early NLP chatbot that uses pre-programmed, human-defined rules to answer
 questions intelligently to a limited extent. Receives its intelligence only from large amount of knowledge via human
 input
- ML but not NC example: Support Vector Machine (SVM), a data classification ML algorithm that uses statistical methods (not brain-inspired neural networks) to maximise a margin between 2 classes in training data. Uses a Kernel function to map samples to high-dimensional feature space.

Three Learning Paradigms

- Supervised Learning:
 - Given (x,y), learn a function to map $x \to y$
 - Train the model on labelled data to get better predictive accuracy
- Unsupervised Learning:
 - Given x, learn the underlying structure of x
 - Train the model on unlabelled data without any guidance
 - No correct answers
 - Clustering or association
- Reinforcement Learning:
 - Given a set of state-action pairs, maximise future rewards over many time steps
 - Agent learns to behave via feedback and interaction with environment to maximise rewards
 - Pavlovian Conditioning:
 - 1. Unconditioned stimulus unconditioned response
 - 2. Neutral stimulus no conditioned response
 - 3. Neutral and unconditioned stimulus together unconditioned response
 - 4. Neutral stimulus becomes conditioned stimulus associates with unconditioned stimulus so leads to conditioned response

Transfer Learning

- Deep learning approach in which a model that has been trained for one task is used as a starting point for a model that performs a similar task
- We take a pre-existing model, modify it slightly, and then retrain it on our data
- Usually much faster and easier than training a model from scratch
- Possible to achieve a higher model accuracy in a shorter time

Figure 1: transfer-learning

Benefits of Transfer Learning:

- Enables us to train models with less labelled data by reusing models that have been pretrained on large datasets
- Reduces training time and computing resources, as weights are not learned from scratch
- We can take advantage of good model architectures developed by the deep learning research community

Workflow:

- Load pretrained network
 - Early layers learned low-level features and last layers learned task-specific features
- Replace final layers
 - New layers will learn features specific to new dataset
- Train network on new dataset

Biological Neurons

- Central Nervous System (CNS) controls most functions of the body
 - It consists of two parts: the brain and the spinal cord
- A neuron is the basic functional unit of the nervous system
 - The brain contains 100 billion neurons
 - A neuron is also known as a nerve cell or a neural processing unit
- Neurons generate signals called action potentials, which allow them to transmit information over distances

Structure of a Neuron:

- Dendrite: receives signals from other neurons
- Soma: processes the information
- Axon: transmits the information to other neurons or muscles
- Synapse: point of connection to other neurons

Figure 2: bio-neuron

Dendrite:

- Tree-like structures that extend away from the cell body to receive messages from other neurons
- On the surface of dendrites, there are many small mushroom-shaped protrusions (called spines) that receive excitatory input from axons
- Once a signal is received by a dendrite, it travels to the soma

Soma:

- Cell body where the nucleus lies and where the neuron's DNA is housed
- Takes in all the information from the dendrites and puts them together in an area called the axon hillock
- The axon hillock controls the firing of the neuron
 - If the total strength of the signal exceeds the threshold limit of the axon hillock, the structure will fire a signal (known as action potential) down the axon

Axon:

- Tube-like nerve fibre that propagates the integrated signal from the cell body to specialised endings called axon terminals
- The larger the diameter of the axon, the faster it transmits information
- Some axons are covered with a fatty substance called myelin that acts as an insulator to protect the axons
 - Not all axons have a myelin covering
 - Myelin can be damaged by diseases
 - Myelinated axons transmit information faster

How a neuron works:

- Our sense organs interact with the outside world
- They relay visual and audio information to the neuron
- Neurons generate electrical signals called action potentials, which allows them to transmit information over distances
- The neuron may get activated only when its criteria is met (e.g. fire if the visuals are funny)
- There is a massively parallel interconnected network of neurons
 - Ensures that there is a division of work

- Each neuron performs a certain role or responds to a certain stimulus
- Some neurons may fire in response to the information, and in turn relay information to other neurons they are connected to

Three Classes of Neuron:

- Sensory:
 - Located in receptors (e.g. eye, ear, tongue)
 - Tell the brain what is happening outside the body, producing our senses
 - Receptor -> CNS
- Motor:
 - Located in the motor cortex and CNS
 - Allow the brain to control our muscle movements
 - CNS -> Effector
- Relay:
 - Located in the CNS
 - Allow sensory and motor neurons to communicate
 - CNS \rightarrow CNS

Action Potential and Synaptic Transmission

Cell Membrane Potential:

- The cell membrane is a double layer of lipids and proteins that separates the contents of the cell from the external environment
- There are different types of ions either side of the cell mostly potassium ions on the inside and sodium ions on the outside

Figure 3: cell-membrane

- A membrane potential is the difference in voltage when we place one electrode on the outside and the other on the inside of a cell membrane
 - Caused by the unequal distribution of ions on either side of the membrane
- When a neuron is not sending a signal, it is at rest
- A resting potential is the difference in voltage across the membrane when a neuron is at rest
 - In a typical resting potential, the inside of the neuron is more negative relative to the outside (typically -70mV)
- Leaky channels are always open, allowing the free passage of sodium and potassium ions across the membrane
- · Voltage-gated channels are only open at certain voltages, and are often closed at resting potential
- Why the resting potential is negative:
 - 1. There is a higher concentration of potassium ions inside the cell, creating a potassium ion gradient and allowing potassium ions to pass through potassium leaky channels easily. NB: there are also sodium leaky channels, but fewer sodium ions get in

2. There is a sodium-potassium pump that uses energy to move 3 sodium ions outside the neuron for every 2 potassium ions it allows in

Figure 4: cell-channels

Action Potential:

- An action potential is the rapid change in voltage across the membrane that occurs when a neuron sends information down an axon to reach the axon terminal
- Also known as a nerve impulse or spike
- Generated when a stimulus changes the membrane potential to the values of a threshold (-55mV)

Figure 5: action-potential-graph

- Obeys the 'all-or-none' principle: any subthreshold stimulus will cause nothing, while threshold and superthreshold stimuli will produce a full response of the excitable cell
- Polarised neurons:

- A neuron is polarised if the outside of the membrane is positive and the inside of the membrane is negative (what it is by default at resting potential)
- A neuron is hyperpolarised if the membrane potential becomes more negative than it is at resting potential
- A neuron is depolarised if the membrane potential becomes more positive than it is at resting potential
- Phases of action potential:

Figure 6: action-potential-stages

- 1. At resting potential, voltage-gated sodium and potassium channels are closed
- 2. Stimuli cause some voltage-gated sodium channels to open
- 3. With sodium channels open, depolarisation occurs. Sodium rapidly rushes into the cell and the voltage rockets to $30 \mathrm{mV}$
- 4. At this point, voltage-gated sodium channels are closed
- 5. Voltage-gated potassium channels now open, and repolarisation occurs as potassium ions rapidly rush out of the cell
- 6. The sodium and potassium pump restores the resting potential

Synapse:

- A junction between two nerve cells
- Most synapses are chemical the action potential is transmitted from the axon terminal to the target cell by chemical substances (known as neurotransmitters)
- If a neurotransmitter stimulates the target cell to an action, it is an excitatory neurotransmitter
- If a neurotransmitter inhibits the target cell, it is an inhibitory neurotransmitter
- When the presynaptic neuron is excited by an action potential, it causes the vesicles to release the neurotransmitters into the synaptic cleft (gap between two neurons)
 - Each vesicle contrains thousands of neurotransmitters
- Some neurotransmitters will bind to the postsynaptic cell's receptors and may cause an action to occur
- Four types of synaptic connection:
 - Axodendritic axon terminal links to a dendrite
 - Axoaxonal axon terminal links to the axon
 - Dendrodendritic dendrite links to a dendrite
 - Axosomatic axon terminal links to the soma

Neural Signal Processing:

1. Signals from neurons are collected by the dendrites

- 2. The soma aggregates the incoming signals
- 3. When sufficient input is generated, the neuron generates an action potential (i.e. it fires)
- 4. The action potential is transmitted along the axon to other neurons, or to structures outside the nervous system (e.g. muscles)
- 5. If sufficient input is not received (i.e. the threshold is not exceeded), the inputs quickly decay and no action potential is generated
- 6. Timing is important input signals must arrive together as strong inputs will generate more action potentials per unit time

Evolution and Basics of ANNs

Evolution of ANNs:

- 1943 McCulloch-Pitts (MP) Neuron (Warren McCulloch and Walter Pitts):
 - Landmark paper in which the earliest neuron to mimic the brain was proposed
 - Inputs and outputs are 0/1
 - No ability to learn
- 1949 Organisation of Behaviour paper (Donald Hebb):
 - Father of neuropsychology and neural networks
 - Describes how the function of neurons contributes to psychological processes (e.g. learning)
 - Hebb proposed that when two neurons fire together the connection between them is strengthened and that the
 activity is one of the fundamental operations for learning and memory
 - Artificial neurons needed to be improved to account for this
- 1958 Perceptron (Frank Rosenblatt):
 - A learning method for a single-layer neural network that was inspired by biological principles
 - Outputs are still 0/1
- 1959 ADALINE and MADALINE (Bernard Widrow and Marcian Hoff):
 - ADALINE (Adaptive Linear Neuron) is a perceptron with improved learning rules
 - Can find optimal hyperplane rather than just a feasible one
 - MADALINE is a multi-layer network of ADALINE units
- 1969 Multilayer Perceptron (MLP) (Marvin Minsky and Seymour Papert):
 - Their book showed that the simple learning rule for the perceptron does not work for multiple layers
 - It could not learn a simple XOR function, leading to the first AI winter (decline of research in the 1970s)
- 1982 Hopfield Network (John Hopfield):
 - A special form of Recurrent Neural Networks (RNNs)
 - Provide an associative memory model with binary threshold nodes for understanding human memory
- 1986 Backpropagation (David Rumelhart, Geoffrey Hinton and Ronald Williams):
 - Created the backpropagation algorithm used to train an MLP, which addressed the XOR learning problems raised by Minsky
- 1989 CNN (Yann LeCun):
 - LeNet was the first Convolutional Neural Network (CNN), which was later widely deployed as a commercial document recognition system by major US banks
- 1997 LSTM (Sepp Hochreiter and Jurgen Schmidhuber):
 - Long-short term memory (LSTM) overcame the problem of RNNs forgetting information through layers (vanishing gradient problem)

Basic Structure of ANNs:

- Input layer, hidden layers, output layer
- When we say N-layer neural network, we do not count the input layer
- A neural network must have one input and one output layer, but can have 0 or many hidden layers
- A feedforward neural network is an ANN in which information only moves in one direction forward
 - There are no cycles or loops in the network
- A deep neural network (at least 3 hidden layers) identifies progressively more complex features through the network (hierarchy of features)

Convolutional Neural Network (CNN):

- Consists of a set of convolutions (filters capturing different levels of features in the image)
- Used heavily in computer vision
- Subsampling reduces dimensionality of a feature, reducing computational cost while capturing dominant features

Recurrent Neural Network (RNN):

- Feedback neural network output from one stage goes into the input for the next
- Good at processing temporal sequence data (NLP, speech recognition, time series analysis)

McCulloch-Pitts Neuron

- Accepts 0-1 inputs and produces a 0-1 output based on a certain threshold value which is user-specified
- Also known as a linear threshold gate model
- Sum: $z = x_1 + x_2 + ... + x_n$
 - No weights in an MP neuron
- Threshold: $y = \begin{cases} 1 & z \ge \theta \\ 0 & z < \theta \end{cases}$

Figure 7: mp-neuron

- Circle is like a soma
- \sum represents sum of x inputs
- θ represents threshold

ANN vs BNN:

- ANN:
 - Massively parallel
 - Fast (in nanoseconds)
 - -10^2 10^4 nodes (size depends on the application and network designer)
 - Has a limited fault tolerance capability
 - Stores information in continuous memory
- BNN:
 - Massively parallel
 - Slow (in milliseconds)
 - -10^{11} nodes and 10^{15} connections
 - Performance degrades even with partial damage
 - Stores information in synapses

Excitatory and Inhibitory Inputs:

- Each input is one of the following two types:
 - Excitatory inputs might fire the neuron when combined together they contribute to neuronal excitation
 - Inhibitory inputs have an absolute veto power over any excitatory inputs they impede neuronal excitation

Rojas Diagram:

- Node is divided into a white half and a black half
- The threshold θ is written on the white half
- For each inhibitory input, a small circle is drawn at the end of its edge

Rojas Diagram

Figure 8: rojas-diagram

Vector Representation:

• Let:
$$-\mathbf{1} = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}$$
$$-\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

• It follows that:

$$-\mathbf{1} \cdot \mathbf{x} = x_1 + x_2 + \dots x_n = z$$

• Heaviside Function:
$$-H_{\theta}(z) = \begin{cases} 1 & z \ge \theta \\ 0 & z < \theta \end{cases}$$

![heaviside-function](./images/heaviside-function.PNG) $-y = H_{\theta}(\mathbf{1} \cdot \mathbf{x})$

Emulating Logic Gates with an MP Neuron:

- NOT gate:
 - Set threshold $\theta = 0$
 - Set x as inhibitory
 - When x = 0, threshold met so y = 1

- When x = 1, inhibitory input means y = 0

• AND gate:

- For an *n*-input AND gate, set threshold $\theta = n$

- When $x_1 = x_2 = \dots = x_n = 1$, threshold is reached

• OR gate:

– For an *n*-input OR gate, set threshold $\theta = 1$

- When any input is 1, threshold is reached

- Graphical representation:

![or-mp-neuron](./images/or-mp-neuron.PNG)

Single-Layer Perceptron

Limitations of MP Neuron:

- Inputs and output are limited to binary values only
- All inputs are treated equally important
- A manual setting of θ is required

Perceptron:

• $z = w_1 x_1 + w_2 x_2 + \dots + w_n x_n$

- Each x_i and w_i is real-valued

•
$$y = \begin{cases} 1 & z \ge \theta \\ 0 & z < \theta \end{cases}$$

• Covers MP neuron as a special case when:

$$- \text{ All } x_i \in \{0, 1\}$$

$$-$$
 All $w_i = 1$

 $-\theta$ is set manually

• Can add bias $b = -\theta$

$$-z = w_1x_1 + w_2x_2 + \dots + w_nx_n + b$$

![rojas-diagram-bias](./images/rojas-diagram-bias.PNG)

- Heaviside function jumps at 0 rather than θ

Vector Representation:

- Let
$$\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$$

- Let $\mathbf{w} = \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix}$
- $y = H(\mathbf{w} \cdot \mathbf{x} + b)$

• Form 2:

- Let
$$\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n & b \end{bmatrix}^T$$

- Let $\mathbf{w} = \begin{bmatrix} w_1 & \dots & w_n & 1 \end{bmatrix}$
- $y = H(\mathbf{w} \cdot \mathbf{x})$

Multi-Layer Perceptron

• XOR is linearly inseparable

• Suppose we try and make a single-layer perceptron for it:

$$- w_1 \cdot 0 + w_2 \cdot 0 + b < 0$$

$$- w_1 \cdot 0 + w_2 \cdot 1 + b \ge 0$$

$$- w_1 \cdot 1 + w_2 \cdot 0 + b \ge 0$$

$$- w_1 \cdot 1 + w_2 \cdot 1 + b < 0$$

- We have that b < 0 and $w_2 + b \ge 0$, so to make the fourth inequality work it must be the case that $w_1 < 0$

- However, this contradicts the fact that $w_1 + b \ge 0$

- There is no solution for (w_1, w_2, b)
- Remedies for the XOR problem:
 - Replace the existing threshold function with a more powerful function
 - * E.g. piecewise function that returns 1 for $0.5 \le x_1 + x_2 \le 1.5$ and 0 otherwise
 - * Reduces number of nodes, but increases the computational cost for each node and the learning rule is unclear
 - Increase the number of layers in the perceptron

XOR using MLP:

- Minsky and Papert (1969) provided a solution to the XOR problem by combining three perceptron units using a hidden layer
- Note that $x_1 XORx_2 = (x_1 ORx_2) \cap (x_1 NANDx_2)$

![xor-graphically](./images/xor-graphically.PNG)

- We know how to make a single-layer perceptron for OR and NAND

![or-nand-perceptrons](./images/or-nand-perceptrons.PNG)

- Can combine them using an AND perceptron (since we want the intersection of the two areas)

![xor-perceptron](./images/xor-perceptron.PNG)

- The MLP solution for XOR is not unique
- In general, an MLP can represent any polygon unit
 - An equation $\frac{x}{a} + \frac{y}{b} 1 = 0$ has x-intercept a and y-intercept b
 - * Can use this to find perceptron to classify area above/below any line
 - * Multiply equation by -1 for area below line
 - * Combine areas using AND/OR for complex polygons
 - Lays the foundations for image recognition

Activation Functions

- An activation function is a mathematical function attached to each neuron that decides if a neuron should 'fire' or not
- It also helps normalise the output of each neuron

Linear:

- L(x) = cx
- L'(x) = c

Figure 9: linear-function-rojas-diagram

• Better than a step function since it outputs any real number, not just 0/1

- However, it is impossible to use gradient descent to train the model since the derivative of the function has no relation to the input x
- It will also make all of the layers of the network collapse into one because a linear combination of linear functions is still a linear function
- When c = 1, L is known as an identity activation function

Sigmoid:

• $\sigma(x) = \frac{1}{1 + e^{-x}}$

Figure 10: sigmoid

- An s-shaped function with a smooth gradient, unlike a step function with a 'jump' in output values
- Shows the probability of each data point being in a particular class
- Output values are normalised between 0 and 1, as opposed to a linear function whose output values have no bounds
- A big disadvantage is the vanishing gradient problem, where for large or small inputs there is almost no change to the prediction
 - Can result in the network refusing (or being too slow) to learn further
- Outputs are not zero-centred
- Computationally expensive, due to the presence of an exponential function
- The gradient of a sigmoid function satisfies $\sigma'(x) = \sigma(x)(1 \sigma(x))$
 - Provides a fast way to get numerical gradients
- Note that $\sigma(x)(1 \sigma(x)) \le \frac{(\sigma(x) + (1 \sigma(x)))^2}{4} = \frac{1}{4}$

 - Here, the gradient is equal to $\frac{1}{4}$ if $\sigma(x) = 1 \sigma(x)$, i.e. $\sigma(x) = \frac{1}{2}$ $\max \sigma'(x) = \frac{1}{4}$ implies the vanishing gradient problem because the size of the error is reduced by at least 75% per layer for backpropagation, limiting the ability to update weights

![sigmoid-gradient](./images/sigmoid-gradient.PNG)

Tanh:

• $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Figure 11: tanh

- Similar to sigmoid, but a zero-centred function that normalises the output to a range between -1 and 1
- Vanishing gradient still a problem, and also computationally expensive
- $\tanh(x) = 2\sigma(2x) 1$
 - Sigmoid is a rescaled version of tanh
- $\tanh'(x) = 1 \tanh^2(x)$
 - The maximum value of tanh'(x) is 1

![tanh-gradient](./images/tanh-gradient.PNG)

ReLu (Rectified Linear Unit):

• ReLU(x) =
$$\max(0, x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

Figure 12: relu

- A piecewise linear function, but globally a non-linea rfunction which has a derivative allowing for backpropagation
- Simple and easy to compute
- For positive inputs, no vanishing gradient as its derivative becomes 1
- Dying ReLU problem ReLU neurons become inactive and only output 0 for any input
- Not zero-centred
- Not differentiable at x = 0 as its slope is not 'smooth' at this point the left-hand slope is 0 whereas the right-hand slope is 1
- Typically, ReLU'(0) is defined to be either 0, 1 or $\frac{1}{2}$

Figure 13: relu-gradient

Leaky ReLU:

• LReLU(x) = $\max(\alpha x, x) = \begin{cases} x & x \ge 0 \\ \alpha x & x < 0 \end{cases}$ where α is a small constant

Figure 14: lrelu

– $\alpha \in (0,1)$ and is typically between 0.01 and 0.3

- No dying ReLU or vanishing gradient problems
- Simple and easy to compute
- Typically, LReLU'(0) is defined to be either $\alpha,\,1$ or $\frac{\alpha+1}{2}$

Figure 15: Lrelu-gradient

Exponential Linear Unit (ELU):

• ELU(x) =
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Figure 16: elu

- Smoother at x=0 than LReLU, and no dying ReLU or vanishing gradient problems for $x\geq 0$
- More computationally expensive than LReLU and ReLU

• ELU'(x) =
$$\begin{cases} 1 & x \ge 0 \\ \alpha e^x & x < 0 \end{cases}$$

Figure 17: elu-gradient

Softmax:

- $\bullet \quad y_i = \frac{e^{z_i}}{\sum_{j=1}^N e^{z_j}}$
- Often used for multiclass classification
- Takes as an input a vector \mathbf{z} of N real values and normalises it into a probability distribution \mathbf{y} of N probabilities proportional to the exponentials of the input values

- Uses exponentials instead of the actual values since it ensures that all entries are positive - Need a function that can map $(-\infty, \infty) \to (0, \infty)$ and is monotonically increasing
- When N=2, softmax reduces to sigmoid

Activation Functions Summary:

Activation Functions	Expressions	Graphs	Applications	Limitations
Binary Step (Heaviside)	$H(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$		Perceptron, Binary Classifier	No gradient
Linear	$L(x) = c \cdot x$	-	Linear Regression	 Unable to train Collapsed to one layer
Sigmoid	$\sigma(x) = \frac{1}{1 + e^{-x}}$		Logistic Regression	Vanishing gradientNot zero-centredCostly to compute
Tanh	$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$		RNN	 Vanishing gradient Costly to compute
ReLU	$ReLU(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$	-	MLP	Dying ReLUNot zero-centredIndifferentiable at 0
Leaky ReLU	$LReLU(x) = \begin{cases} x & x \ge 0\\ \alpha x & x < 0 \end{cases}$		MLP	 Not zero-centred Indifferentiable at 0 Need to learn α
ELU	$ELU(x) = \begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$		MLP	 Not zero-centred Need to learn α Costly to compute
Softmax	$y_i = \frac{e^{x_i}}{\sum_{j=1}^N e^{x_j}}$		Multiclass Classification	Output normalisation
Maxout	$M_k(x) = \max\{z_1, \dots, z_k\}$ with $z_i = w_i x + b_i$ $(i = 1, \dots, k)$		MLP	Costly to compute

Figure 18: activation-functions

Foward Propagation

- The input data are fed in the forward direction through the network
- Each hidden layer accepts input data, processes them as per the activation function, and passes to the successive layer
- Compute weighted sum z of inputs
- Apply activation function f to z to yield output a

Matrix Computation:

- Let \mathbf{x} be the input vector, \mathbf{W} be the network weights, \mathbf{b} be the bias vector and \mathbf{a} be the output vector
- z = Wx + b
- $\mathbf{a} = f(\mathbf{z})$
 - -f is an entrywise function
- Extension to deep neural networks: $-\mathbf{a}^{[1]} = f^{[1]}(\mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}) \\ -\mathbf{a}^{[2]} = f^{[2]}(\mathbf{W}^{[2]}\mathbf{a}^{[1]} + \mathbf{b}^{[2]})$

$$\begin{array}{l} -\ \mathbf{a}^{[3]} = f^{[3]}(\mathbf{W}^{[3]}\mathbf{a}^{[2]} + \mathbf{b}^{[3]}) \\ -\ \mathrm{In\ general},\ \mathbf{a}^{[k]} = f^{[k]}(\mathbf{W}^{[k]}\mathbf{a}^{[k-1]} + \mathbf{b}^{[k]}) \ \mathrm{and}\ \mathbf{a}^{[0]} = \mathbf{x} \end{array}$$

Vectorisation:

- Algorithm operates on a set of values (e.g. vectors and matrices) at a time rather than a single value
- \bullet Can vectorise computation of matrix multiplication by putting columns of input data one after the other, thus forward propagating multiple \mathbf{x} vectors at once

$$A^{[1]} = f^{[1]} \begin{bmatrix} W^{[1]} \cdot X \\ \end{bmatrix} + B^{[1]}$$

$$A^{[1]} = [a^{1} \quad a^{[1](2)} \quad a^{[1](3)}]$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{\chi}^{(1)} & \mathbf{\chi}^{(2)} & \mathbf{\chi}^{(3)} \end{bmatrix}$$

$$B^{[1]} = [b^{[1]} \quad b^{[1]} \quad b^{[1]}]$$

Figure 19: vectorisation-forward-prop

Loss Functions and Regularisation

- A loss function measures how much the predicted output \hat{y} differs from the target output y, evaluating how well a network models the dataset
- Used to guide the training process to find a set of parameters that reduce the error
- In general, loss function and cost function are synonymous and used interchangeably. There are slight differences:
 - A loss function is for a single training example, e.g. $L(\hat{y}, y) = |\hat{y} y|, (\hat{y}, y \in \mathbb{R})$
 - A cost function is the average of the loss function over the entire training dataset, e.g. $C(\hat{y}, y) = \frac{1}{n} \sum_{i=1}^{n} L(\hat{y}_i, y_i),$ $(\hat{y}, y \in \mathbb{R}^n)$
 - * Sometimes, a cost function may include an extra penalty (regularisation terms)

Properties of a good loss function:

- Minimised (L=0) when $\hat{y}=y$
- Increases when the gap between \hat{y} and y increases
- Globally continuous and differentiable
- Convex

Types of loss function:

- Regression:
 - L1 loss (or absolute error, AE)
 - L2 loss (or squared error, SE)
- Classification:
 - Log loss (or cross-entropy)
 - Hinge loss

L1 Loss:

- Absolute difference between \hat{y} and y
- L1 Loss $L = |\hat{y} y|$
- Mean Absolute Error MAE = $\frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i y_i|$

Figure 20: 11-loss

- Advantages:
 - Very intuitive
 - Good prediction speed
- Disadvantages:
 - Not differentiable at $\hat{y} = y$
 - Gradient does not increase even if \hat{y} is far away from y

L2 Loss:

- Squared difference between \hat{y} and y
- L2 Loss $L = (\hat{y} y)^2$ Mean Squared Error MSE $= \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i y_i)^2$

Figure 21: 12-loss

- Advantages:
 - Very common loss function
 - Penalise large errors more strongly
 - Gradient increases when \hat{y} is far away from y
- Disadvantages:
 - Outliers in datasets will lead to extremely large errors

Norms:

- L1 and L2 losses owe their names to the L1 and L2 norm of a vector

- L1-norm: $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$ L2-norm: $||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ Lp-norm: $||\mathbf{x}||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^2}$ L ∞ -norm: $||\mathbf{x}||_\infty = \max_{1 \le i \le n} |x_i|$
- Norm Equivalence:
 - Two norms p and q are equivalent if there exists two constants c and C such that:
 - * $c \cdot ||\mathbf{x}||_q \le ||\mathbf{x}||_p \le C \cdot ||\mathbf{x}||_q$
 - L1 and L2 norms are equivalent since there exist $(c, C) = (1, \sqrt{n})$ such that $||\mathbf{x}||_2 \le ||\mathbf{x}||_1 \le \sqrt{n}||\mathbf{x}||_2$
 - Also both are equivalent with the L ∞ -norm since $||\mathbf{x}||_{\infty} \le ||\mathbf{x}||_2 \le \sqrt{n}||\mathbf{x}||_{\infty}$ and $||\mathbf{x}||_{\infty} \le ||\mathbf{x}||_1 \le \sqrt{n}||\mathbf{x}||_{\infty}$

L0-norm:

- Defined to be the number of non-zero entries in ${\bf x}$
- Useful when trying to find the sparsest solution to an undetermined set of equations
 - E.g. $\min L(\hat{\mathbf{y}}, \mathbf{y})$ s.t. $||\mathbf{w}||_0 = N$
- Limiting number of features to learn
 - Network learns too many details (even noise) from the training data
 - Will negatively impact its ability to generalise on new testing data ! [overfitting] (./images/overfitting.PNG)

Regularisation:

- Discourages learning more complex features by applying a penalty to the input parameters with the larger weights to avoid the risk of overfitting
- Constrains weight estimates towards zero
- NP-hard to set a L0-norm constraint
- L1 Regularisation (Lasso Regularisation): $\min_{w} L(\hat{\mathbf{y}}, \mathbf{y}) + \lambda ||\mathbf{w}||_1$
- L2 Regularisation (Ridge Regularisation): $\min L(\hat{\mathbf{y}}, \mathbf{y}) + \lambda ||\mathbf{w}||^2$
- L1 regularisation tends to generate sparser solutions:
 - L1 norm has corners it is very likely that the meeting point is at one of the corners

![l1-norm-graph](./images/l1-norm-graph.PNG)

- L2 norm has no corners - it is very unlikely that the meeting point is on ny of the axes ![l2-norm-graph](./images/l2-norm-graph.PNG)

Log/Cross Entropy Loss:

- Measures the accuracy of a classification model
- Compares the predicted output \hat{y} with the true class y and penalises the probability logarithmically based on how far it diverges from the true class
- Binary classification:

```
-L = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})
```

- Intuition behind it:
 - When y=1, if $\hat{y}=1$ we want L=0 and if $\hat{y}=0$ we want $L=\infty$
 - * Need to map $\hat{y} \in [0,1]$ to $L \in [\infty,0]$
 - * $\log x$ maps [0,1] to $[-\infty,0]$ so we can use $-\log x$

![log-loss-part-1](./images/log-loss-part-1.PNG)

- When y=0, if $\hat{y}=0$ we want L=0 and if $\hat{y}=1$ we want $L=\infty$
 - * Need to map $\hat{y} \in [0,1]$ to $L \in [0,\infty]$
 - * $-\log x$ maps [0,1] to $[\infty,0]$ not quite what we need
 - * We can use $-\log(1-x)$ to map [0,1] to $[0,\infty]$

![log-loss-part-1](./images/log-loss-part-1.PNG)

- When y=1, $L=-\log \hat{y}$ and when y=0, $L=-\log(1-\hat{y})$
- The final loss function is just the two added together: $L = -y \log \hat{y} (1-y) \log(1-\hat{y})$
- Multiclass log loss: $-L = \sum_{i=1}^{N} y_i \log \hat{y}_i \text{ with } \sum_{i=1}^{N} y_i = 1 \text{ and } \sum_{i=1}^{N} \hat{y}_i = 1$

Backpropagation

Gradient Descent:

- An iterative algorithm that finds a minimal value v of a function f near a given initial point x_0
- The key idea is taking repeated steps in the opposite direction in the gradient of f at the current point because this is the direction of steepest descent

$$-x_{t+1} = x_t - \alpha \nabla f(x_t)$$

- Learning rate $\alpha \in (0,1)$ is a configurable hyperparameter that controls how much we adjust the weights with respect to the loss gradient
- Our goal when training an NN: find $\min L(w, b)$ using gradient descent
 - $-w=w-\alpha L_w$
 - $-b = b \alpha L_b$

Dependency Graph:

- Represents how variables in an expression are dependent on each other
- Useful for visualising chain rules for partial derivatives of multivariate functions
- Each node is a variable in the expression

- Each edge denotes 'x affects y', carrying a value labelled as y_x (i.e. the partial derivative of y w.r.t. x)
- Example:

Figure 22: dependency-graph

- To compute a derivative z_x , multiply all the local partial derivatives together on each path between x and z and sum these products over all the paths between paths x and z
- Example $z = \sin(2x + y)e^{x-y}$. Compute z_x
 - Let a = 2x + y. Then $a_x = 2$ and $a_y = 1$
 - Let b = x y. Then $b_x = 1$ and $b_y = -1$
 - Let $c = \sin a$. Then $c_a = \cos a$
 - Let $d = e^b$. Then $d_b = e^b$
 - Now z = cd. $z_c = d$ and $z_d = c$

! [dependency-graph-example] (./images/dependency-graph-example.PNG)

 $-z_{x} = 2 \cdot \cos a \cdot d + 1 \cdot e^{b} \cdot c = 2 \cos(2x + y)e^{x - y} + e^{x - y} \sin(2x + y)$

Backpropagation:

- An effective way of training an NN, with the aim of minimising the cost function by adjusting the weights and biases of the network
- Level of adjustment is determined by the gradient of the cost function with respect to the weights and biases
- Gradient descent is applied with the gradient of the cost function
- Take a simple network:

Figure 23: backpropagation-example

Figure 24: backpropagation-example-dependency

$$\begin{split} &-z = wx + b, \ \hat{y} = \sigma_{sig}(z), \ L = -(y \log \hat{y} + (1-y) \log(1-\hat{y})) \\ &-z_w = x, \ z_b = 1 \\ &-\hat{y}_z = \hat{y}(1-\hat{y}) \\ &-L_{\hat{y}} = \frac{\hat{y} - y}{(1-\hat{y})\hat{y}} \\ &-L_w = \frac{\hat{y} - y}{(1-\hat{y})\hat{y}} \cdot \hat{y}(1-\hat{y}) \cdot x = (\hat{y} - y)x \\ &-L_b = \frac{\hat{y} - y}{(1-\hat{y})\hat{y}} \cdot \hat{y}(1-\hat{y}) \cdot 1 = \hat{y} - y \\ &-w = w - \alpha(\hat{y} - y)x \\ &-b = b - \alpha(\hat{y} - y) \end{split}$$

- Caching repeated paths:
 - Instead of just naively summing over the paths, it would be much more efficient to use caching by merging paths back together at every node
 - Consider the example below, where we want to compute $\nabla L = \begin{bmatrix} L_{w_1} \\ L_{w_2} \\ L_{w_3} \end{bmatrix}$:

Figure 25: caching-paths-example

- * Naive method:

 - $\begin{array}{l} \cdot \quad L_{w_1} = L_{y_1} \cdot y_{1_z} \cdot z_{w_1} + L_{y_2} \cdot y_{2_z} \cdot z_{w_1} + L_{y_3} \cdot y_{3_z} \cdot z_{w_1} \\ \cdot \quad L_{w_2} = L_{y_1} \cdot y_{1_z} \cdot z_{w_2} + L_{y_2} \cdot y_{2_z} \cdot z_{w_2} + L_{y_3} \cdot y_{3_z} \cdot z_{w_2} \\ \cdot \quad L_{w_3} = L_{y_1} \cdot y_{1_z} \cdot z_{w_3} + L_{y_2} \cdot y_{2_z} \cdot z_{w_3} + L_{y_3} \cdot y_{3_z} \cdot z_{w_3} \end{array}$
- * Cache method:
 - $\begin{array}{l} \cdot \ \ \, L_z = L_{y_1} \cdot y_{1_z} + L_{y_2} \cdot y_{2_z} + L_{y_3} \cdot y_{3_z} \\ \cdot \ \ \, L_{w_1} = L_z \cdot z_{w_1} \end{array}$

 - $L_{w_2} = L_z \cdot z_{w_2}$ $L_{w_3} = L_z \cdot z_{w_3}$

 - · Effectively caches the paths between z and L in the graph

Hopfield Networks

- Given an initial guess \mathbf{x}_0 as input, \mathbf{x}_0 is pulled towards the nearest stable fixed-point \mathbf{x}^* through iterations
 - $-\mathbf{x}_0$ is a noisy, corrupted pattern (partial knowledge)
 - $-\mathbf{x}_{k+1} = F(\mathbf{x}_k)$
 - $-\mathbf{x}_{\infty} = \mathbf{x}^*$ is a state memorised pattern (full stored knowledge)

Associative Memory:

- Involves encoding relationships between items
 - E.g. Pavlovian conditioning between a stimulus and a response
 - A Hopfield Network (HN) uses associative memory to associate an input to a full memorised image
- Associative Memory (aka Content Addressable Memory, CAM) is the ability to access an item by just knowing part of its content
 - There can be multiple fixed points in the HN
 - CAM retrieves a similar memorised pattern to the corrupted input, so that the corrupted input can be recognised and pulled to the closest fixed point

Bipolar and Binary Patterns:

- A pattern $(n \times n)$ pixels can be represented as a $n^2 \times 1$ vector **x**, requiring the state information of n^2 neurons
- Each element x_i denotes a state (activity) of neuron i
- For a discrete HN, each state x_i takes:
 - Bipolar values (1 or -1)
 - Binary values (1 or 0)

Architecture of HNs:

- A HN is a special form of RNN
- A single layer, fully connected auto associative network
- Neurons act as both input and output with a binary threshold
- An energy-based network (evolution decreases energy)
- Often used for pattern recognition
- The output of a neuron is the input (feedback) to other neurons but not the input to itself (no self-feedback)
- A HN is a complete graph G = (V, E)
 - A node $i \in V$ is a perceptron with a state $x_i \in \{-1, 1\}$ or $\{1, 0\}$
 - A pair $(i, j) \in E$ links a weight $W_{i,j}$ (connection stength)
 - An edge is traversed in both directions $(W_{i,j} = W_{j,i})$
 - No self-loops $(W_{i,i} = 0)$

Hebbian Learning Rule:

- Neurons that fire together wire together and neurons that fire out of sync fail to link
 - Simultaneous activation of neurons leads to increases in synaptic strength between neurons
 - If the states of neurons i and j are the same, this has a positive effect on the weight $W_{i,j}$

Weight Matrix:

- Given a single memorised pattern $\mathbf{x} = [x_1, x_2, ..., x_n]^T$ with each $x_i \in \{-1, 1\}$ a bipolar value, the weight matric \mathbf{W} for pattern \mathbf{x} is determined as follows:
 - $W_{i,j} = x_i x_j \ (i \neq j)$ with $W_{i,i} = 0$ In matrix form:
 - - * $\mathbf{W} = \mathbf{x} \cdot \mathbf{x}^T \mathbf{I}$ (zeroes out diagonals)
- For N bipolar memorised patterns $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}\}$ where each $\mathbf{x}^{(p)} = [x_1^{(p)}, x_2^{(p)}, ..., x_n^{(p)}]$ with $x_i^{(p)} \in \{-1, 1\}$ (p = 1, 2, ..., N, i = 1, 2, ..., n), the weight matrix **W** over all of these patterns is defined as:

-
$$W_{i,j} = \frac{1}{N} \sum_{p=1}^{N} x_i^{(p)} x_j^{(p)} \ (i \neq j)$$
 with $W_{i,i} = 0$
- In matrix form:
* $\mathbf{W} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{x}^{(p)} (\mathbf{x}^{(p)})^T - \mathbf{I}$

• For binary patterns
$$(x_i^{(p)} \in \{0,1\})$$
:
$$-W_{i,j} = \frac{1}{N} \sum_{p=1}^{N} (2x_i^{(p)} - 1)(2x_j^{(p)} - 1) \ (i \neq j) \text{ with } W_{i,i} = 0$$
- In matrix form:
$$* \mathbf{W} = \frac{1}{N} \sum_{p=1}^{N} (2\mathbf{x}^{(p)} - 1)(2\mathbf{x}^{(p)} - 1)^T - \mathbf{I}$$

*
$$\mathbf{W} = \frac{1}{N} \sum_{p=1}^{N} (2\mathbf{x}^{(p)} - 1)(2\mathbf{x}^{(p)} - 1)^T - \mathbf{I}$$

Updating Neuron State:

• When training a HN, we want all neurons to have stable states:

 $-\mathbf{s}(t+1) = F(\mathbf{W} \cdot \mathbf{s}(t))$

- For a bipolar HN, the neuronal activation function F is $F(x) = \operatorname{sgn}(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$
- In component form, the neuron state updating formula is: $s_i(t+1) = \operatorname{sgn}(\sum_{i=1}^n s_i)$

Stable Patterns:

- To make a memorised pattern \mathbf{x} an attractor to the HN, the condition for \mathbf{x} to be a stable state is $\mathbf{x} = \operatorname{sgn}(\mathbf{W} \cdot \mathbf{x})$
- A single memorised pattern is stable verify **x** is an attractor to a bipolar HN:
 - $s_i(t+1) = \operatorname{sgn}(\sum_{j=1}^n W_{i,j} \cdot s_j(t)) = \operatorname{sgn}(\sum_{j=1}^n W_{i,j} \cdot x_j)$ $= \operatorname{sgn}(\sum_{j \neq i} (x_i \cdot x_j) \cdot x_j)$ $= \operatorname{sgn}(\sum_{j \neq i} x_i \cdot (x_j \cdot x_j))$ $= \operatorname{sgn}(x_i \cdot \sum_{j \neq i} 1)$ $= \operatorname{sgn}(x_i \cdot (n-1))$
- As for multiple memorised patterns verify each $\mathbf{x}^{(q)}$ is an attractor to a bipolar HN:

 - s for multiple memorised patterns verify each $\mathbf{x}^{(q)}$ is an attractor to a bipe $-s_i(t+1) = \operatorname{sgn}(\sum_{j=1}^n W_{i,j} \cdot s_j(t)) = \operatorname{sgn}(\sum_{j=1}^n W_{i,j} \cdot x_j^{(q)})$ $= \operatorname{sgn}(\sum_{j \neq i} \frac{1}{N} \sum_{p=1}^N x_i^{(p)} \cdot x_j^{(p)} \cdot x_j^{(q)})$ $= \operatorname{sgn}(\sum_{j \neq i} \frac{1}{N} (x_i^{(q)} \cdot x_j^{(q)} \cdot x_j^{(q)}) + \sum_{j \neq i} \frac{1}{N} \sum_{p \neq q} x_i^{(p)} \cdot x_j^{(p)} \cdot x_j^{(q)})$ $\sum_{j \neq i} \frac{1}{N} (x_i^{(q)} \cdot x_j^{(q)} \cdot x_j^{(q)}) = \sum_{j \neq i} \frac{1}{N} (x_i^{(q)}) = \frac{1}{N} (x_i^{(q)}) \sum_{j \neq i} 1 = \frac{n-1}{N} x_i^{(q)}$ $\sum_{j \neq i} \frac{1}{N} \sum_{p \neq q} x_i^{(p)} \cdot x_j^{(p)} \cdot x_j^{(q)} = \frac{x_i^{(q)} \cdot x_i^{(q)}}{N} \sum_{j \neq i} \sum_{p \neq q} x_i^{(p)} \cdot x_j^{(p)} \cdot x_j^{(q)}$ $\operatorname{Therefore} s_i(t+1) = \operatorname{sgn}(\frac{n-1}{N} x_i^{(q)} + \frac{x_i^{(q)} \cdot x_i^{(q)}}{N} \sum_{j \neq i} \sum_{p \neq q} x_i^{(p)} \cdot x_j^{(p)} \cdot x_j^{(q)})$ $= x_i^{(q)} \cdot \operatorname{sgn}(\frac{n-1}{N} + \frac{x_i^{(q)}}{N} \sum_{j \neq i} \sum_{p \neq q} x_i^{(p)} \cdot x_j^{(p)} \cdot x_j^{(q)})$

 - $\begin{array}{l} = x_i^{(q)} \cdot \operatorname{sgn}(\epsilon_i) \text{ where } \epsilon_i = \frac{n-1}{N} + \frac{x_i^{(q)}}{N} \sum_{j \neq i} \sum_{p \neq q} x_i^{(p)} \cdot x_j^{(p)} \cdot x_j^{(q)} \\ \text{ The fixed point exists only if } \epsilon_i > 0 \text{ for all neurons } i \end{array}$

 - The probability of moving away from the stable pattern state is equal to the probability of finding a value $\epsilon_i \leq 0$ for all i

HN Energy:

- Energy is the capacity for the HN to evolve
- The network will evolve until it arrives at a local minimum in the energy contour
- The global energy E is the sum of many local contributions
 - Each local contribution is the product of one connection weight with the binary states of two neurons

 - $-E = -\sum_{j>i} \sum_{i=1}^{n} s_i W_{i,j} s_j = \frac{1}{2} \mathbf{s}^T \mathbf{W} \mathbf{s}$ * When **s** (the states of all neurons for output) agrees well with **Ws** (the states inputted to all neurons), E becomes the lowest
 - * Hebbian updating rule essentially reduces this energy by aligning neuron output states s with its incoming inputs Ws
- $\bullet\,$ Theorem: the energy E decreases each time a neuron state changes
 - Proof. When a neuron state s_i changes, $E^{new} E^{old} = -(\overset{\smile}{s_i^{new}} s_i^{old})(\sum_{i=1}^n W_{i,i}s_i)$

- Case 1. If $s_i^{new} > s_i^{old}$, $E^{new} E^{old}$ is the negative of two positives multiplied together, so $E^{new} < E^{old}$ Case 2. If $s_i^{new} < s_i^{old}$, $E^{new} E^{old}$ is the negative of two negatives multiplied together, so $E^{new} < E^{old}$

Recurrent Neural Networks

- A recurrent neural network (RNN) is a type of NN that processes sequential or time series data
- RNNs can use their internal state (memory) to process variable length sequences of inputs

Figure 26: rnn-simple

- Memory cell stores internal hidden state
- When input data is fed to hidden layers, it is memorised and fed back as an input in the next timestamp
- Each output y_i depends on all of the x_j 's before it

Elman Networks and Jordan Networks:

• Elman Network - feedback from internal state output to input

Figure 27: elman-network

• Jordan Network - feedback from network output to input

Figure 28: jordan-network

• Elman Network example:

 $\label{eq:Figure 29: elman-network-example} Figure \ 29: \ elman-network-example$

$$- a_t = \tanh(W_i \cdot x_t + W_h \cdot a_{t-1} + b_i)$$

$$- y_t = \sigma(W_o \cdot a_t + b_o)$$

• Jordan Network example:

Figure 30: jordan-network-example

```
-a_t = \tanh(W_i \cdot x_t + W_h \cdot y_{t-1} + b_i)
-y_t = \sigma(W_o \cdot a_t + b_o)
```

Advanced RNNs

LSTMs:

- Vanishing/exploding gradient problems often happen in an RNN
- Because of a multiplicative gradient that can be exponentially decreasing/increasing with respect to the number of layers, it is difficult for an RNN to capture long term dependencies
- Alleviating exploding gradient: $||\nabla L||_{clipped} = \min(C, ||\nabla L||)$
- An LSTM can be used to alleviate vanishing gradient
- We introduce three gates to a memeory cell to control temporal dependency:
 - Input gate (i) controls if data can enter the memory
 - Output gate (o) controls if data can be output from the memory
 - Forget gate (f) conrols if all previous data in the memory can be erased
- A memory cell at time t is associated with 3 gates (i_t, o_t, f_t)
 - For simplicity, we consider each (i_t, o_t, f_t) to take the binary value 0 or 1
 - In practice, the values of (i_t, o_t, f_t) are between 0 and 1, returned by the sigmoid function
- Input gate i:
 - -i=1: allow new data to be added into memory
 - -i=0: disallow new data to be added into memory
- Output gate o:
 - -o = 1: allow memory data to be sent to the hidden unit at the next time step
 - -o = 0: Disallow memory data to be sent to the hidden unit at the next time step
- Forget gate f:
 - f = 0: empty memory
 - f = 1: do not empty memory
- Let c_t be the memory state at time t, x_t be the input at time t and h_t be the hidden state output at time t. The LSTM equations are as follows:
 - $-a_t = \tanh(W_1x_t + W_2h_{t-1})$ where W_1 is the weighting from the current input and W_2 is the weighting from the hidden state output
 - $-c_t = f_t c_{t-1} + i_t a_t$
 - $-h_t = o_t \tanh(c_t)$
 - * c_t can be out of range (-1,1), so use tanh function to squeeze it into this range
 - Gates:

$$* f_t = \sigma(W_f * \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix})$$

$$* i_t = \sigma(W_i * \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix})$$

$$* o_t = \sigma(W_o * \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix})$$

- * * denotes Hadamard (element-wise) multiplication
- * Sigmoid layer takes h_{t-1} and x_t as inputs
- * The weight matrices W_f , W_i and W_o are initialised at random, and learned as the network trains [[t]] [lstm-overview](./images/lstm-overview.PNG)

Different Types of RNNs:

- The inputs and outputs of a RNN can vary in length
- Different types of RNN are used for different cases: one-to-one, one-to-many, many-to-one, many-to-many

Figure 31: rnn-different-types

- Many-to-one e.g. NLP sentiment analysis
- One-to-many e.g. music composition
- Many-to-many (|X| = |Y| > 1) e.g. named entity recognition (NER)
- Many-to-many $(|X| \neq |Y|)$ e.g. machine translation
 - Encoder RNN reads and encodes a variable-length source sentence into a fixed-length vector (context vector)
 - Decoder RNN then outputs a variable-length translation from the fixed-length encoded vector
- Attention:
 - The basic encoder-decoder encodes a whole input sentence, regardless of its length, into a fixed-length vector
 * Inefficient to deal with long sentences
 - The encoder-decoder with attention learns to align and translate jointly
 - * It allows RNNs to encode the input sentence into a sequence of vectors and chooses a subset of these vectors adaptively while decoding the translation

Basics of Graph Mining

Sparse and Dense Graphs:

- A graph G = (V, E) is:
 - Sparse if $|E| \approx O(|V|)$
 - Dense if $|E| \approx O(|V|^2)$

![sparse-dense-graphs](./images/sparse-dense-graphs.PNG)

- Let $d = \frac{|E|}{|V|}$ be the average degree of G. G is:
 - Sparse if $d \ll |V|$
 - Dense if $d \approx O(|V|)$

Graph Representations:

- For dense graphs:
 - Adjacency Matrix
 - Laplacian Matrix
- For sparse graphs:
 - Adjacency List
 - Coordinate List (COO)
- Laplacian Matrix:

$$-\mathbf{L} = (L_{i,j}) = \begin{cases} \deg(i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and there exists an edge } (i,j) \in E \end{cases}$$

$$\mathbf{L} = \mathbf{D} \quad \mathbf{A} \text{ where:}$$

- $-\mathbf{L} = \mathbf{D} \mathbf{A}$ where:
 - * **D** is a degree matrix (a diagonal matrix with $D_{i,i} = \deg(i)$)
 - * A is an adjacency matrix
- L is symmetric
- Each row and column sums to 0
- The sum of all diagonals is 2|E|
- 0 is the eigenvalue associated with the eigenvector of all 1s
 - * L is singular
- Kirchoff's Theorem: for a connected graph G, the number of spanning trees of G is the determinant of any cofactor of the Laplacian matrix ${f L}$
- Coordinate List (COO):
 - COO format stores a list of tuples in the form of (row_index, column_index, nonzero_value)
 - The entries are ideally sorted first by row index and then by column index to improve random access times
 - Good for incremental matrix construction
 - Each tuple contains the row and column index of a nonzero value in the adjacency matrix ![coo-format](./images/coo-format.PNG)

Google PageRank

- Motivation: what webpages are the most important?
- Webpages and hyperlinks represented as a graph

Degree Centrality:

- Degree Centrality (DC) is a local measure of the importance of a node
- DC of node i is defined by the sum of the incident edges on i:

$$-C(i) = \sum_{x \in V} A_{x,i}$$

- A node is important if it has a large number of neighbours
- Limitation: degree centrality cannot capture cascading effects
 - A node is important if it is pointed to by many important neighbours

PageRank:

- A ranking algorithm that rates the importance of a node recursively based on graph structures
- Basic intuition: a node is important if it is pointed to by many important nodes
 - Can be viewed as a 'vote' by all the other nodes about how important a node is
 - Also, the vote of a node that votes for everyone is less important with a small weight
- Simplified PageRank: $PR(v) = \sum_{x \in I(v)} \frac{PR(x)}{|O(x)|}$

- Where I(x) is the in-neighbour set of node x and O(x) is the out-neighbour set of node x
- Problems with simplified PageRank:
 - A node without in-neighbours would have 0 PageRank value what about the root of a tree?
 - In a graph with cycles, the cycles would accumulate PageRank values but never distribute PageRank values to other nodes

Refined PageRank Model:

- Simplified model: A random surfer keeps successively walking at random, never getting bored
- Refined model: A random surfer, with probability c, keeps successively walking at random, but with probability 1-c'gets bored' and randomly jumps to one of the |V| nodes
 - c is a user-specified damping factor between 0 and 1
- Refined PageRank: $PR(v) = c \sum_{x \in I(v)} \frac{PR(x)}{|O(x)|} + (1-c)\frac{1}{|V|}$

Matrix Form of PageRank:

- Finding PageRank value for each node doesn't work as well for large graphs
- $\mathbf{p} = c\mathbf{W}\mathbf{p} + \frac{1-c}{|V|}\mathbf{1}$

$$-W_{i,j} = \begin{cases} \frac{1}{|O(j)|} & \text{if } \exists (j,i) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$* \mathbf{W} = \text{col_norm}(\mathbf{A}^T) = (\text{row_norm}(\mathbf{A}))^T$$

![w-matrix-column-norms](./images/w-matrix-column-norms.PNG)

- * A matrix is column-stochastic if each column sums to 1 and each element is between 0 and 1
- * W is a column-stochastic matrix that describes the transition of a Markov chain
- * In terms of matrix operations: $\mathbf{W} = \mathbf{A}^T (\operatorname{diag}(\mathbf{d})^{-1}) = \mathbf{A}^T \mathbf{D}^{-1}$ where **d** is the out-degree vector of the

![w-matrix-operations](./images/w-matrix-operations.PNG)

- Goal: solve for **p**
- Method 1 fixed-point iteration:
 - $-\mathbf{p}_0 = \frac{1}{\|V\|} \mathbf{1}$ initial PageRank value for each node is equally important $\frac{1}{\|V\|}$
 - $-\mathbf{p}_k = c\mathbf{W}\mathbf{p}_{k-1} + \frac{1-c}{|V|}\mathbf{1}$ $-\operatorname{As} k \to \infty, \mathbf{p}_k \to \mathbf{p}$

 - When the random surfer keeps walking for a long time, the distribution of PageRank values in p does not change anymore - this distribution is called a stationary distribution
 - How many iterations k are required to achieve a desired accuracy?
 - * Given a desired accuracy ϵ , goal is to to find k such that $||\mathbf{p}_k \mathbf{p}||_1 \le \epsilon$

 - $$\begin{split} * & \mathbf{p}_k = c\mathbf{W}\mathbf{p}_{k-1} + \frac{1-c}{|V|}\mathbf{1} \ (1) \\ * & \mathbf{p} = c\mathbf{W}\mathbf{p} + \frac{1-c}{|V|}\mathbf{1} \ (2) \\ * & (1) \cdot \ (2) \colon \mathbf{p}_k \mathbf{p} = c\mathbf{W}(\mathbf{p}_{k-1} \mathbf{p}) \end{split}$$
 - $\mathbf{p}_{k-1} \mathbf{p} = c\mathbf{W}(\mathbf{p}_{k-2} \mathbf{p})$
 - $\mathbf{p}_{k-2} \mathbf{p} = c\mathbf{W}(\mathbf{p}_{k-3} \mathbf{p}) \dots$
 - $\cdot \ \mathbf{p}_2 \mathbf{p} = c\mathbf{W}(\mathbf{p}_1 \mathbf{p})$
 - $\begin{array}{l} \mathbf{P}_{2} & \mathbf{P}_{1} & \mathbf{P}_{1} & \mathbf{P}_{1} \\ \cdot & \mathbf{p}_{1} \mathbf{p} = c \mathbf{W}(\mathbf{p}_{0} \mathbf{p}) \\ * & \mathbf{p}_{k} \mathbf{p} = c \mathbf{W}(\mathbf{p}_{k-1} \mathbf{p}) = c^{2} \mathbf{W}^{2}(\mathbf{p}_{k-2} \mathbf{p}) = c^{3} \mathbf{W}^{3}(\mathbf{p}_{k-3} \mathbf{p}) = \dots = c^{k} \mathbf{W}^{k}(\mathbf{p}_{0} \mathbf{p}) \\ * & ||\mathbf{p}_{k} \mathbf{p}||_{1} = c^{k}||\mathbf{W}^{k}(\mathbf{p}_{0} \mathbf{p})||_{1} \le c^{k}(||\mathbf{W}||_{1})^{k}||\mathbf{p}_{0} \mathbf{p}||_{1} \\ & \leq c^{k} ||\mathbf{W}^{k}(\mathbf{p}_{0} \mathbf{p})||_{1} \le c^{k}||\mathbf{W}^{k}(\mathbf{p}_{0} \mathbf{p})||_{1} \le c^{k}||\mathbf{W}^{k}(\mathbf{p}_{$

 - * Since $||\mathbf{W}||_1 \le 1$ and $||\mathbf{p}_0 \mathbf{p}||_1 \le ||\mathbf{p}_0||_1 + ||\mathbf{p}||_1 \le 2$, $||\mathbf{p}_k \mathbf{p}||_1 \le 2c^k$
 - * $k \ge \log_c(\frac{\epsilon}{2})$
 - * To guarantee the desired accuracy ϵ , the number of iterations K required is $K = \lceil \log_2(\frac{\epsilon}{2}) \rceil + 1$
 - Complexity:
 - * Matrix-vector multiplication $\mathbf{y} = \mathbf{W} \mathbf{p}_{k-1}$ takes time O(|E|) and space O(|E| + |V|)* Vector addition and scaling $\mathbf{p}_k = c\mathbf{y} + \frac{1-c}{|V|}\mathbf{1}$ takes time O(|V|) and space O(|V|)

 - * Overall, for K iterations on a graph with |V| nodes and |E| edges, O(K(|E|+|V|)) time and O(|E|+|V|)space is required
- Method 2 matrix inversion:

$$-\mathbf{p} - c\mathbf{W}\mathbf{p} = \frac{1-c}{|V|}\mathbf{1}$$

$$\begin{array}{l} - \ (\mathbf{I} - c\mathbf{W})\mathbf{p} = \frac{1-c}{|V|}\mathbf{1} \\ - \ \mathbf{p} = \frac{1-c}{|V|}(\mathbf{I} - c\mathbf{W})^{-1}\mathbf{1} \end{array}$$

- * Computing this matrix inverse is costly, taking time $O(|V|^3)$ and space $O(|V|^2)$
- * Matrix-vector multiplication takes time $O(|V|^2)$ and space O(|V|)
- * Overall time and space required is $O(|V|^3)$ and $O(|V|^2)$ respectively
- * Method is slower than fixed-point iterations, but better when the exact result is needed
- * Real graphs are often sparse, with $|E| \ll |V|^2$

Graph-based Similarity Search

Jaccard Similarity:

- Basic intuition: two nodes are similar if they are pointed to by the same nodes
- $sim_J(a,b) = \frac{|I(a) \cap I(b)|}{|I(a) \cup I(b)|}$
- Properties of Jaccard similarity:
 - Reflexivity: $sim_J(a, a) = 1$
 - Symmetry: $sim_J(a, b) = sim_J(b, a)$
 - Boundedness: $sim_J(a, b) \in [0, 1]$
- Limitation 1: $sim_J(a, b) = 1$ whenever I(a) = I(b)
 - As long as two nodes have the same neighbour structure, Jaccard similarity would evaluate them as exactly similar regardless of how many neighbours they have in common
- Limitation 2: $sim_I(a,b) = 0$ if $I(a) \cap I(b) =$
 - If two nodes have no in-neighbours in common, Jaccard similarity would evaluate them as dissimilar
 - Even if they have a common grandparent

SimRank:

- Two nodes are similar if they are pointed to by similar nodes (global measure, considers multi-hops neighbours)
- Every node is most similar to itself

•
$$s(a,b) = \begin{cases} 0 & \text{if } I(a) = 0 \text{ or } I(b) = 0 \\ \frac{C}{|I(a)||I(b)|} \sum_{x \in I(a)} \sum_{y \in I(b)} s(x,y) & \text{if } a \neq b \\ 1 & \text{if } a = b \end{cases}$$

- Computing a single-pair SimRank on a graph G = (V, E) requires $O(|E|^2)$ time and $O(|V|^2)$ space (may require all
- Measures how soon two surfers are expected to meet at the same node if they start at nodes a and b and walk the graph backwards
- Properties of SimRank: same as Jaccard
 - We prove that $s(a,b) \leq 1$ by constructing $s_k(*,*)$ and induction on k:

$$* \ s_0(a,b) = \begin{cases} 0 & \text{if } a \neq b \\ 1 & \text{if } a = b \end{cases}$$

$$* \ s_{k+1}(a,b) = \begin{cases} 0 & \text{if } I(a) = 0 \text{ or } I(b) = 0 \\ \frac{C}{|I(a)||I(b)|} \sum_{x \in I(a)} \sum_{y \in I(b)} s_k(x,y) & \text{if } a \neq b \\ 1 & \text{if } a = b \end{cases}$$

- * For k = 0, by definition $s_0(a, b) \leq 1$
- * Suppose that $s_k(a, b) \leq 1$ holds
- * When $a \neq b$, $s_{k+1}(a,b) = \frac{C}{|I(a)||I(b)|} \sum_{x \in I(a)} \sum_{y \in I(b)} s_k(x,y) \le \frac{C}{|I(a)||I(b)|} \sum_{x \in I(a)} \sum_{y \in I(b)} 1 \le \frac{C}{|I(a)||I(b)|}$ $|I(a)||I(b)| \le C \le 1$
- * When a = b, trivially $s_{k+1}(a, b) \leq 1$
- * By induction, $s_k(a,b) \leq 1$ holds for each k
- $*\ s(a,b) = \lim_{k\to\infty} s_k(a,b) \le 1$ Distance induced by PageRank:
 - Let d(x, y) = 1 s(x, y)
 - If d(x,y) is a distance metric, it must satisfy:

```
* d(x,y) = 0 \iff x = y (identity of indiscernible)
* d(x,y) = d(y,x) (symmetry)
* d(x,y) + d(y,z) > d(x,z) (triangle inequality)
```

Two Types of SimRank Search:

- Single-pair:
 - Given a graph G = (V, E) and one pair of nodes (a, b), compute s(a, b)
- All-pairs:
 - Given a graph G = (V, E), retrieve $|V|^2$ pairs of similarities $s(*, *) = \{s(x, y)\}_{x \in V, y \in V}$
 - Consider computing s(a, b) and s(a, d):
 - * When done in a naive way, the the SimRank of two nodes from the set $I(b) \cap I(d)$ will be computed twice
 - Define a partial sum function:
 - * Partial $_{I(a)}^{s_k}(j) = \sum_{i \in I(a)} s_k(i,j)$
 - * Aggregates SimRank similarities $s_k(*,j)$ over in-neighbour set I(a)
 - * $s_{k+1}(a,b) = \frac{C}{|I(a)||I(b)|} \sum_{j \in I(b)} \operatorname{Partial}_{I(a)}^{s_k}(j)$

 - * $s_{k+1}(a,d) = \frac{C}{|I(a)||I(d)|} \sum_{j \in I(d)} \text{Partial}_{I(a)}^{s_k}(j)$ * Once computed, the partial sum is memorised for later reuse to avoid duplicate computations

Matrix Form of SimRank:

- $\mathbf{S}_{a,b} = C \cdot \mathbf{Q}_{a,*}^T \cdot \mathbf{S} \cdot \mathbf{Q}_{*,b}$ where $S_{i,j}$ is the SimRank score between nodes i and j

$$\begin{array}{ll} -\ Q_{i,j} = \begin{cases} \frac{1}{|I(j)|} & \text{if } \exists (i,j) \in E \\ 0 & \text{otherwise} \end{cases} = \text{col_norm}(\mathbf{A}) \\ -\ \text{When } a = b, \text{ all diagonal elements of } \mathbf{S} \text{ are } 1. \ S_{a,a} = 1 \end{array}$$

![simrank-matrix](./images/simrank-matrix.PNG)

- $\mathbf{S} = \max(C \cdot \mathbf{Q}^T \mathbf{S} \mathbf{Q}, \mathbf{I})$
- All-pairs SimRank algorithm:
 - Get adjacency matrix A
 - Compute $\mathbf{Q} = \operatorname{col}_{\operatorname{norm}}(\mathbf{A})$
 - Initialise $S_0 = I$
 - Repeat until \mathbf{S}_k converges to \mathbf{S} :
 - * Compute $\mathbf{S}_{k+1} = \max(C \cdot \mathbf{Q}^T \mathbf{S}_k \mathbf{Q}, \mathbf{I})$
- How many iterations k are required to achieve a desired accuracy?
 - Given a desired accuracy $\epsilon > 0$, goal is to find k such that $|\mathbf{S}_k \mathbf{S}|_{\text{max}} \leq \epsilon$
 - $-\mathbf{S} = \max(C \cdot \mathbf{Q}^T \mathbf{S} \mathbf{Q}, \mathbf{I}) (1)$
 - $-\mathbf{S}_k = \max(C \cdot \mathbf{Q}^T \mathbf{S}_{k-1} \mathbf{Q}, \mathbf{I}), \mathbf{S}_0 = \mathbf{I} (2)$

$$-\mathbf{S}_{k} = \max(C \cdot \mathbf{Q}^{T} \mathbf{S}_{k-1} \mathbf{Q}, \mathbf{I}), \mathbf{S}_{0} = \mathbf{I} (2)$$

$$-(1) \cdot (2) : \mathbf{S} - \mathbf{S}_{k}$$

$$= C \cdot \mathbf{Q}^{T} (\mathbf{S} - \mathbf{S}_{k-1}) \mathbf{Q}$$

$$= C^{2} \cdot (\mathbf{Q}^{T})^{2} (\mathbf{S} - \mathbf{S}_{k-2}) \mathbf{Q}$$

$$= C^{3} \cdot (\mathbf{Q}^{T})^{3} (\mathbf{S} - \mathbf{S}_{k-2}) \mathbf{Q}$$

$$= \dots = C^{k} \cdot (\mathbf{Q}^{T})^{k} (\mathbf{S} - \mathbf{S}_{0}) \mathbf{Q}$$

$$-\mathbf{S} - \mathbf{S}_{0} = C\mathbf{Q}^{T} \mathbf{S} \mathbf{Q} - \operatorname{diag}(C\mathbf{Q}^{T} \mathbf{S} \mathbf{Q}) \leq C\mathbf{Q}^{T} \mathbf{S} \mathbf{Q} \leq C\mathbf{Q}^{T} \mathbf{1} \mathbf{Q} \leq C \cdot \mathbf{1} \mathbf{Q} \leq C \cdot \mathbf{1}$$

$$-(\mathbf{Q}^{T})^{k} (\mathbf{S} - \mathbf{S}_{0}) \mathbf{Q}^{k} \leq C \cdot (\mathbf{Q}^{T})^{k} \mathbf{1} \mathbf{Q}^{k} \leq C \cdot \mathbf{1} \cdot \mathbf{Q}^{k} \leq C \cdot \mathbf{1}$$

$$-C^{k} \cdot (\mathbf{Q}^{T})^{k} (\mathbf{S} - \mathbf{S}_{0}) \mathbf{Q} \leq C^{k} \cdot (C \cdot \mathbf{1}) = C^{k+1} \cdot \mathbf{1}$$

$$-||\mathbf{S} - \mathbf{S}_{k}||_{\max} \leq C^{k+1} \leq \epsilon$$

$$-|k| \cdot ||\log \epsilon|$$

$$-\mathbf{S} - \mathbf{S}_0 = C\mathbf{Q}^T\mathbf{S}\mathbf{Q} - \operatorname{diag}(C\mathbf{Q}^T\mathbf{S}\mathbf{Q}) \le C\mathbf{Q}^T\mathbf{S}\mathbf{Q} \le C\mathbf{Q}^T\mathbf{1}\mathbf{Q} \le C \cdot \mathbf{1}\mathbf{Q} \le C \cdot \mathbf{1}$$

$$-C^{k} \cdot (\mathbf{Q}^{T})^{k} (\mathbf{S} - \mathbf{S}_{0}) \mathbf{Q} \leq C^{k} \cdot (C \cdot \mathbf{1}) = C^{k+1} \cdot \mathbf{1}$$

 $-k \geq \lceil \log_c \epsilon \rceil$