Praffullitt Jain 20171142 Vineeth Gandhi DSAA

Assignment 2

Problem 1

1.

>> q1_1

filter =

0.0352	0.0387	0.0399	0.0387	0.0352
0.0387	0.0425	0.0438	0.0425	0.0387
0.0399	0.0438	0.0452	0.0438	0.0399
0.0387	0.0425	0.0438	0.0425	0.0387
0.0352	0.0387	0.0399	0.0387	0.0352

a =

0.0352	0.0387	0.0399	0.0387	0.0352
0.0387	0.0425	0.0438	0.0425	0.0387
0.0399	0.0438	0.0452	0.0438	0.0399
0.0387	0.0425	0.0438	0.0425	0.0387
0.0352	0.0387	0.0399	0.0387	0.0352

4.

The median filter is the best choice for 'salt and pepper' noise.

Problem 2

PART A:

ceil((Width+2*Z -F+1)/S)*ceil((Height+2*Z -F+1)/S)*C

PART B:

F*F*C point-wise multiplications and F*F*C point-wise additions are done for obtaining a single value. Overall values obtained will be equal to the dimensions of the output of the convolution (same as above).

Total additions =

 $F^*F^*C^*$ ceil((Width+2*Z -F+1)/S) * ceil((Height+2*Z -F+1)/S) * C.

Total multiplications =

F*F*C* ceil((Width+2*Z -F+1)/S) * ceil((Height+2*Z -F+1)/S) *C.

Problem 4

I am using a function called fir1 which takes 3 arguments n, Wn and type.

Wn is the ratio of the maximum frequency or cutoff frequency to the sampling frequency of the signal.

FType is lowpass filter

And I am using filter function to apply the obtained filter to the noisy signal to filter it.

Problem 5

2D Discrete Fourier Transform-

Using dftmtx-

Using q5_dft-

2D Fast Fourier Transform-

- Using fft2
- Using q5_fft-

Implemented using recursion

```
>> q5
Elapsed time is 0.179456 seconds.
Elapsed time is 0.612550 seconds.
>>
```

Problem 6

img = imread('inp1.png');

// I(mxn)

x = fft2(img);

// x = Wm * I * Wn

x1 = fft2(x);

// x1 = Wm * (Wm * I * Wn) * Wn

The final image is flipped along both axes.

Problem 7

1.

