

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехника и комплексная автоматизация» (РК)

КАФЕДРА «Системы автоматизированного проектирования» (РК6)

ОТЧЕТ ПО ПРЕДДИПЛОМНОЙ ПРАКТИКЕ

Студент	Максимов Дмитрий Михайлович			
	фамилия, имя, отчество			
Группа РК6-81Б				
Тип практики	<u>Преддипломная</u>			
Название предприятия	НИИ АПП МГТУ им. Н.Э.Баумана			
Студент	подпись, дата фамилия, п	и.о.		
Руководитель практики	<u>Соколов</u> подпись, дата фамилия, и			
Оценка отличн	10			

УТВЕРЖДЕНО Соколов А.П. 11:53, 29/5/20 Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Кафедра «Системы автоматизированного проектирования» (РК6)

ЗАДАНИЕ на прохождение преддипломной практики

на предприятии НИИ АПП МГТУ и	ім. Н.Э.Баумана		
Студент <u>Максимов Дмитрий Михай</u> (фамилия, имя	<u>ілович РК6-81</u> п, отчество; инициалы; индекс	руппы)	
Во время прохождения проектно-те	хнологической учебной п	рактик	и студент должен:
1. Провести анализ моделей и ме	стодов машинного обуче	ния дл	я анализа динамических
систем.			
2.			
3.			
Дата выдачи задания « <u>19</u> » <u> </u>	<u>мая</u> 20 <u>20</u> г.		
Руководитель практики от ка	федры Лобиц		/ <u>Соколов А.П.</u>
	(додинеь, дата)		(Фамилия И.О.)
Студент _	13 3000	/ _	<u>Максимов Д.М.</u>
	(подпись, дата)		(Фамилия И.О.)

СОДЕРЖАНИЕ

1. ОБЗОР ЛИТЕРАТУРЫ	BBE	дение	4
1.1. ДИНАМИЧЕСКИЕ СИСТЕМЫ			
		МАШИННОЕ ОБУЧЕНИЕ	
СПИСОК ЛИТЕРАТУРЫ.			

ВВЕДЕНИЕ

Динамические системы активно применяются как в фундаментальной, так и в прикладной математике, которая включает модели и методы во многих областях: физика, астрономия, биология, метрология, экономика и т.д. В прикладной математике в качестве динамической системы могут служить коробка с молекулами газа в физике, популяция видов в биологии, финансовый рынок в экономике или ветровые течения в метрологии. В фундаментальной математике динамическая система обычно представляется в виде системы дифференциальных уравнений.

По временной характеристике динамические системы разделяют на дискретные или каскады и на непрерывные или потоки. Например, можно ежегодно фиксировать количество людей населения и анализировать рост популяции из года в года, что будет примером дискретной динамической системы. В качестве непрерывной динамической системы можно представить линейный поток на торе.

Современные методы в области машинного обучения позволяют решить многие задачи, связанные с динамическими системами. С помощью такой модели машинного обучения, как рекуррентные нейронные сети, возможно создание математической модели каскадов, а также построение необходимого количества итераций каскада.

Отсутствие понимания того, как искусственный интеллект достигает результатов, является одной из причин низкого уровня доверия к современным технологиям искусственного интеллекта. Именно поэтому объяснение работы методов машинного обучения является одним из важнейших направлений в российской национальной стратегии развития искусственного интеллекта. [1]

1. ОБЗОР ЛИТЕРАТУРЫ

1.1.ДИНАМИЧЕСКИЕ СИСТЕМЫ

Общее представление динамической системы подробно описано в статье [2]. В статье динамическая система рассматривается как модель для описания и прогнозирования взаимодействия во времени между несколькими компонентами явления, которые рассматриваются как система. В статье указываются следующие компоненты динамической системы:

- Динамический компонент указывает, что время является неотъемлемым элементом модели. В динамических моделях время имеет основополагающее значение как для базовой структуры данных, так и для понимания того, как разворачивается процесс.
- Системный компонент предполагает, что исследовательские вопросы позиционируются участием нескольких взаимодействующих компонентов большего целого. В контексте динамической системы это себя означает, что взаимодействующие компоненты ведут быть упорядоченно, следуя правилам, которые ΜΟΓΥΤ идентифицированы и определены.
- Модельный компонент указывает, что динамические связи между компонентами системы представлены в виде формальных математических уравнений.

В некоторых моделях динамических систем данные организованы по времени как последовательность повторных наблюдений данной переменной во времени, называемая данными временных рядов. В статье [3] рассматриваются модели временных рядов для представления развития системы. Статьи [4], [5] описывают динамические модели, где распределения времени отклика учитываются при формулировании и прогнозировании моделей (например, одновременное моделирование вероятности выбора и времени отклика выбора при прогнозировании вбора).

Описание основных элементов модели динамической системы подробно

представлено в статье [6]:

- состояние системы, которое представляет всю системную информацию в определенный момент времени;
- пространство состояний системы, которое представляет все возможные состояния системы, которые могут возникнуть;
- функция перехода состояния, которая описывает, как состояния системы изменяется со временем.

Значение и применение дискретных динамических систем описано в работе [7]. В данном источнике каскад — это динамическая система с дискретным временем, где временная переменная моделируется как дискретная, а временная задержка встроена в систему.

В работе [8] рассматриваются неавтономные динамические системы с дискретным временем. В центре внимания данной работы две формулировки дискретных по времени неавтономных динамических систем:

- двухпараметрические полугруппы;
- системы с косыми произведениями;

Основные концепции теории непрерывных динамических систем описано в источнике [9].

1.2. МАШИННОЕ ОБУЧЕНИЕ

В книге [10] описаны основы статистической теории машинного обучения, игр с предсказаниями и прогнозирования с применением экспертной стратегии. Также рассмотрены следующие алгоритмы:

- алгоритм взвешенного большинства:
- вероятностный алгоритм;
- алгоритм экспоненциального взвешивания;
- агрегирующий алгоритм Вовка;

Основные возможности применения и перспективы развития нейронных сетей описаны в статье [11]. Из основных направлений можно выделить:

- поиск информации;
- распознавание изображений;
- перевод;
- воспроизведение речи;

В статье [12] дана классификация нейронных сетей по структуре, количеству слоев, типу связей, структуре нейрона и т.д..

Проблема тренировки нейронной сети и алгоритм обратного распространения ошибки описаны в работе [13]. Основной проблемой тренировки является переобучение. Эта проблема возникает при долгом обучении сети на одних и тех же данных.

В книге [14] раскрыты основные математические принципы, лежащие в основе нейронных сетей и разобран пример нейросети, распознающей написанные от руки цифры.

Источник [15] иллюстрирует графические модели для описания распределения вероятностей, использующих Байесовский метод для распознавания образов и алгоритмы приближенного вывода ситуаций, в которых точные ответы получить невозможно.

Процесс тренировки генеративной сверточной нейронной сети для генерации изображений объектов по типу и цвету с интерполяцией рядов

изображений и заполнением «пустых мест» недостающими элементами разобран в работе [16].

В статье [17] представлены результаты аналитического исследования рекуррентных нейронных сетей (РНС) и их обобщающая классификация, выполненная с позиций динамических систем. В работе выделены основные динамические режимы работы РНС, а также определены наиболее перспективные направления в развитии методов обучения РНС с учетом выявленных достоинств и недостатков существующих подходов.

В источнике [18] описаны следующие виды РНС:

- Long Short-Term Memory (LSTM)— долгая краткосрочная память;
- Gated Recurrent Unit (GRU);

Также выделены преимущества каждой нейросети в соответствии с поставленной задачей.

В статье [19] разобраны способы решения проблемы в облачном центре обработки данных с помощью прогнозирования рабочей нагрузки. Модель прогнозирования рабочей нагрузки разработана с использованием сетей с кратковременной памятью (LSTM). Предложенная модель протестирована на трех эталонных наборах журналов веб-сервера.

Применение рекурсивных рекуррентных нейронных сетей для моделирования процесса декодирования и синтаксического разбора в статистическом машинном переводе предложено в работе [20].

Общие принципы методов обучения нейронных сетей приведены в статье [21].

В материалах [22], [23] подробно описаны основные концепции и методы в машинном обучении, в частности нейронных сетях.

Источники [24], [25] служат в качестве справочного для практической реализации методов машинного обучения.

СПИСОК ЛИТЕРАТУРЫ

- 1.Указ президента Российской Федерации о развитии искусственного интеллекта в Российской Федерации №490 от 10 октября 2019 года.
- 2. Matthew, IRWIN Dynamic Systems Modeling / IRWIN Matthew, Wang Zheng. Ohio: The Ohio State University, 2017. 322 c..
- 3. Groshek Media, instability, and democracy: Examining the Grangercaused relationships of 122 countries from 1946 to 2003. / Groshek, J. // Journal of Communication,. 2011. № 61. C. 1161-1182.
- 4. Busemeyer Cognitive modeling / Busemeyer, R. J, Diederich, A.. : Thousand Oaks, CA: SAGE, 2009. 228 c..
- 5. Wang Bridging media processing and selective exposure: A dynamic motivational model of media choices and choice response time. / Wang, Z. // Communication Research. 2014. № 41. C. 1064-1087.
- 6. Busemeyer Dynamic systems: Mathematics / Busemeyer, R. J. : Hoboken: NJ: John Wiley & Sons, 2005. 300 c..
- 7. Mark, M. M. Mathematical Modeling / M. M. Mark. 3. Berlin:, 2003. 312 c..
- 8. Kloeden, P. E. Dicrete-Time Nonautonomous Dynamical Systems / P. E. Kloeden, C. Potzsche, M. Rasmussen. 2. London:, 2007. 444 c..
- 9. Pinheiro, D. Notes on Continuous-time Dynamical Systems / D. Pinheiro. 2. Lisboa Portugal : Universidade T´ecnica de Lisboa, 2011. 39 c..
- 10. Вьюгин, В. В. Математические основы машинного обучения и прогнозирования / В. В. Вьюгин. Москва: МЦНМО, 2018. 384 с..
- 11. Фаустова, К. И. НЕЙРОННЫЕ СЕТИ: ПРИМЕНЕНИЕ СЕГОДНЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ / К. И. Фаустова. // Территория науки. 2017. № 1. С. 1-5.
- 12. Горбачевская, Е. Н. КЛАССИФИКАЦИЯ НЕЙРОННЫХ СЕТЕЙ / Е. Н. Горбачевская. // Вестник Волжского университета им. В.Н. Татищева. 2012. № 1. С. 1-6.
 - 13. Michael, Nielsen Neural Networks and Deep Learning / Nielsen Michael //

- Neural Networks and Deep Learning : [сайт]. URL: http://neuralnetworksanddeeplearning.com/ (дата обращения: 28.01.2020).
- 14. Tariq, Rashid Make Your Own Neural Network. / Rashid Tariq. 1. Ensk: CreateSpace Independent Publishing Platform, 2016. 222 c..
- 15. Christopher, M. B. Pattern Recognition and Machine Learning / M. B. Christopher. 1. Singapore: Springer Science+Business Media, LLC, 2006. 758 c..
- 16. Горбачевская, Е. H. Learning to Generate Chairs, Tables and Cars with Convolutional Networks / Е. H. Горбачевская. // IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE . 2017. № 1. С. 1-14.
- 17. Бендерская, Е. Н. Рекуррентная нейронная сеть как динамическая система и подходы к ее обучению / Е. Н. Бендерская, К. В. Никитин. // Научнотехнические ведомости СПбГПУ. 2013. № 4. С. 29-40.
- 18. Будыльский Д. В. GRU и LSTM: современные рекуррентные нейронные сети // Молодой ученый. 2015. №15. С. 51-54.
- 19. Kumar, J. Long Short Term Memory Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model For Cloud Datacenters / J. Kumar, R. Goomer. // Procedia Computer Science. 2018. № 125. C. 676-682.
- 20. Андросова, Е. Е. ПРИМЕНЕНИЕ РЕКУРСИВНЫХ РЕКУРРЕНТНЫХ НЕЙРОННЫХ СЕТЕЙ / Е. Е. Андросова. // Новые информационные технологии в автоматизированных системах. 2016. № 1. С. 1-8.
- 21. Васенков, Д. В. Методы обучение искусственных нейронных сетей / Д. В. Васенков. // Компьютерные инструменты в образовании. 2007. № 1. С. 20-29.
- 22. Ian Goodfellow. Deep Learning / Ian Goodfellow, Yoshua Bengio, Aaron Courville // Massachusetts Institute of Technology, MIT, 2016, 781 p. URL: http://www.deeplearningbook.org/
- 23. Воронцов К. В. Машинное обучение. Видеолекции, Школа анализа данных от Яндекс URL: https://yandexdataschool.ru/edu-process/courses/machine-

learning

- 24. Aurelien Geron. Hands-On Machine Learning with Scikit-Learn and TensorFlow / Aurelien Geron // O'Reilly Media, 2017, 797 c.
- 25. Jake Vander Plas. Python Data Science Handbook / Jake Vander Plas // O'Reilly Media, 2017, 548 c.