보행 취약 계층 보호 및 제설 사각지대 해소를 위한 열선 설치 입지 분석

Team. 정성

TABLE OF CONTENTS

01

문제 구상

- 문제 인식
- 아이디어 도출
- 서비스 요약 설명

02

데이터 현황

- 데이터 구성
- 시장 분석

03

구현 전략

- 팀빌딩
- 구현 방식
- 비즈니스모델

04

- 프로젝트성과
- 성장계획
- 향후 계획

TABLE OF CONTENTS

01

문제구상

- 문제 인식
- 아이디어 도출
- 서비스 요약 설명

02

데이터 현황

- 데이터 구성
- 시장 분석

03

구현 전략

- 팀빌딩
- 구현 방식
- 비즈니스모델

04

- 프로젝트성과
- 성장계획
- 향후계획

사호

자유로서 '도로 결빙' 44중 추돌사고…극심한 정체

송고시간 2025-01-14 09:19:49

빙판길 사고 잇따라…10여 명 사상

입력 2024.01.10 (21:36) 수정 2024.01.11 (10:30)

 $\langle \rangle$

34.9

오전 6시~10시 결빙 교통사고 구성비

 \bigcirc

3944 ^건

2019~2023 노면 결빙 교통사고

 \bigcirc

1.7

타 교통사고(1.4%) 대비 결빙 교통사고의 치사율(2.4%)

낙상 사고, 더 위험할 수 있다

낙상, 왜 위험할까?

가벼운 낙상도 반월상연골판 파열이나 손목 골절로 이어짐 추운 날씨엔 근육 경직과 혈관 수축으로 충격 흡수력이 감소

노년층, 왜 위험할까?

60대 이상 노년층은 관절과 뼈의 탄력·밀도 저하로 작은 충격에도 손상과 골절 위험이 크며, 방치 시 관절염과 만성 통증으로 악화

고령층, 더욱 위험할 수 있다

평균 연령 74세, 고령층 낙상 집중 발생

- 전체 낙상 환자의 80.3%가 70세 이상
- 44.6%는 통증·열상·골절 등 신체 손상 동반
- 야간시간대(23:00~06:59)에 39.5% 발생

광진구도 안전하지 않다

총 빙결 교통사고

2007~2023년까지 광진구 내 빙결/적설에 따른 사고 수 (사망, 중상, 경상, 부상신고 포함) 147

노약자 연관 빙결 교통사고

피해자가 65세 이상 또는 20세 이하이거나, 가해자가 65세 이상인 경우 24

제설차는?

국토부가 공식 유튜브 채널에 올린 '겨울철 도로 살얼음 ♥ 안전거리 확보와 서행운전으로 예방할 수 있어요!' 영상 활용 2024.11.29 (영상 출처=국토부) photo@newsis.com

- 제설차는 좁은 도로 폭과 주차 차량 밀집으로 이동이 어렵고, 눈을 치운 후의 처리 공간도 부족
- 작업 중 운전자의 시야 제한과 추월 사고 위험이 높아 안전 문제 야기
- 보행로·골목 등 접근이 불가능한 구역이 많고, 교통 혼잡과 장비 유지 문제로 인해 작업 효율도 크게 저하

그렇다면 제설제는?

14일 전국 곳곳서 '블랙아이스 교통사고' 잇따라 다리와 터널 출입구 위험…'염화칼슘 뿌린 길'도 위험

친환경 비싸다고… 싼 제설제 쓰고 '도로 복구' 되풀이

염화 칼슘(CaCl₂)이 콘크리트와 반응해 표면이 벗겨지고 내구성 감소 블랙아이스 형성을 돕는 제설제

제설제가 녹은 물이 도로에 남아 다시 얼면 블랙아이스 발생 염화 칼슘이 수분을 흡수해 도로가 지속적으로 <mark>습윤</mark>해져 더 잘 얼음

그렇다면 친환경 제설제는?

눈길 안전 위해 뿌리는 '제설제' 환경오염 유발...대안은 없나?

환경 영향성

환경 영향성에 대한 평가 기준 미흡 잔여물이 바람·차량에 날리며 미세먼지 유발 가능

그래서 우리는 열선에 주목한다!

- 기준, 2~3cm의 눈이 내릴 경우 하루 제설 비용은 약 3억 원 (300m 도로당 하루 약 11만 원에 해당)
- 반면, 열선을 300m 구간에 설치하는 비용은 약 1억 6천만 원결빙기(12월~2월) 동안 유지비는 구간에 따라약 200만 원에서 1,500만 원 수준
- 5년간(90일 × 5년) 매년 10cm의 눈이 내리는 상황을 가정할 때, 열선 설치는 장기적으로 제설 비용 대비 효율적인 대안

TABLE OF CONTENTS

01

문제 구상

- 문제 인식
- 아이디어 도출
- 서비스 요약 설명

02

데이터 현황

- 데이터 구성
- 시장 분석

03

구현 전략

- 팀빌딩
- 구현 방식
- 비즈니스모델

04

- 프로젝트성과
- 성장계획
- 향후 계획

TABLE OF CONTENTS

01

문제 구상

- 문제 인식
- 아이디어 도출
- 서비스 요약 설명

02

데이터 현황

- 데이터 구성
- 시장 분석

03

구현 전략

- 팀빌딩
- 구현 방식
- 비즈니스 모델

04

- 프로젝트성과
- 성장계획
- 향후 계획

데이터 구성

기상 환경

기온, 강수량, 강설량, 습도, 풍속, 노면온도, 이슬점온도

출처: 기상청 API허브

유동 인구 및 교통량

광진구 유동인구, 광진구 시간대별 교통량 등

> 출처: 광진구청 서울열린데이터광장

도로 물리적 특성

도로경사도, 곡률, 폭, 해발고도, 그늘진 음영 구간 등

출처:국토지리정보원

보행 취약 계층

어린이 보호 구역, 편의 시설 위치, 결빙 사고 발생

> 출처: 도로교통공단 공공데이터포털

GIS 기반 공간

기존 열선 도로 설치 현황

출처: 광진구청

프로젝트 시장 분석

2014년부터 도로 열선 설치 수 꾸준히 증가

서울시 도로열선 설치 건수는 2014년 1건에서 2023년 183건으로 약 180배 이상 증가하며, 눈·빙판길 사고 예방을 위한 인프라 확장 추세

열선에 대한 설치 필요성과 효과성 증가

겨울철 보행자 안전, 차량 미끄럼 사고 예방 등 열선 설치의 필요성이 사회 전반에 인식되며, 지자체 및 민간 수요 확대로 이어짐

프로젝트 시장 분석

정부/지자체 정책

스마트시티 안전 시설 투자 확대, 고령화 보호 도시 설계, 국토부 생활권 주요교차로 개선 사업 등

제설 대응 한계 인식

인력과 차량 중심 제설의 한계를 극복하기 위해 자동화 및 사전 대응 시스템 필요

프로젝트 SWOT 분석

16

Strength

- 1. Data-Driven
- 2. 정책적 명분확고
- 3. 기존제설 한계 보완
- 4. ICT 기술과의 연계

S

IF

Weakness

- 1. 고비용설치
- 2. 유지보수 부담
- 3. 기술 표준화 부족

Į

Opportunity

- 1. 겨울철 안전 대응 수요 증가
- 2. Al 기반도시 관리확대
- 3. 보행자 중심 정책 강화

0

4

Threat

- 1. 예산 확보의 불확실성
- 2. 기후/지역별 수요 격차

Τ

TABLE OF CONTENTS

01

문제 구상

- 문제 인식
- 아이디어 도출
- 서비스 요약 설명

02

데이터 현황

- 데이터 구성
- 시장 분석

03

구현 전략

- 팀빌딩
- 구현 방식
- 비즈니스모델

04

- 프로젝트성과
- 성장계획
- 향후 계획

TABLE OF CONTENTS

01

문제 구상

- 문제 인식
- 아이디어 도출
- 서비스 요약 설명

02

데이터 현황

- 데이터 구성
- 시장 분석

03

구현 전략

- 팀빌딩
- 구현 방식
- 비즈니스 모델

04

- 프로젝트성과
- 성장계획
- 향후 계획

Team 정성 팀 빌딩

김기훈

데이터 수집 데이터 시각화 DB 구축 데이터 파이프라인

노준석

데이터 수집 데이터 시각화 프론트 및 백엔드 클라우드 관리

오정우

데이터 수집 알고리즘 모델 설계 디자인 및 프론트

오현서 (팀장)

데이터수집 알고리즘 분석 DB 구축 백엔드

선정 지역 필터링 방식

1차 필터링

2차 필터링

3차 필터링

추가 조건

X 좌표

- 제설차의 진입 불가 지역
- 결빙 관련 교통 사고 이력
- 음영지역
- 노인, 어린이 보호 구역 등

결빙 판단 알고리즘 구현 방식

응결에 의한 결빙

강수에 의한 결빙

적설에 의한 결빙 걸빙 상태 지속

풍속에 의한 결빙

- 상대습도
- 대기온도
- 노면온도
- 이슬점

- 강수량
- 시간조건
- 대기온도
- 노면온도

■ 적설량

- 지속시간
- 대기온도
- 노면온도

- 노면온도
- 이슬점
- 풍속

■ 상대습도: 65%이상

■ 대기온도: 5도이하

■ 노면온도: 0도이하

- 강수량: 시간당 1mm 이상
- 시간조건: 강수후 3시간 이내에 대기 온도와 노면 온도가 0도 이하로 하강 시
- 적설량: 0mm 이상

- 지속 시간: 결빙 상태가
 4시간 이상 지속되고,
 그 동안 노면 온도가
 계속 0도 이하로 유지 시
- 노면온도: 0도이하
- 풍속: 2m/s 이상

응결에 의한 결빙

기준 조건

- 1. 상대습도: 65% 이상일 때
- 2. 노면 온도와 이슬점 온도의 차: 5°C 이하일 때
- 3. 대기온도: 5°C 이하일 때
- 4. 노면 온도: 노면 온도가 0°C 이하일 때 결빙

강수에 의한 결빙

기준 조건

- 1. 강수량: 시간당 1mm 이상의 강수가 관측될 경우
- 2.시간: 강수후 3시간이내에 대기온도,

노면온도가모두 0°C 이하로 하강하면 결빙

적설에 의한 결빙

기준 조건

1. 적설량: 눈이 내린 경우(강설량이 0mm보다 큰 경우)

결빙 상태 지속

기준 조건

1.지속시간: 결빙상태가 4시간이상지속되고,

그동안노면온도가 0°C 이하로 유지되는 경우

2. 추가조건: 대기온도 0°C 이하인 경우

풍속에 의한 결빙

기준 조건

1. 노면 온도: 0°C 이하

2. 온도차: 노면 온도와 이슬점 온도차 0.5°C 미만

3. 풍속: 2m/s 이상

결빙 판단 알고리즘 기반 1차 필터링

- 1. 겨울철에 해당하는 2023, 2024년 12, 1, 2월 총 여섯 달의 기상청 API 자료 수집
- 2. 결빙 알고리즘 적용 후 광진구 지역 중 결빙 발생 확률이 높은 상위 50% 지역 선정 후 시각화

유동 인구 기반 2차 필터링

- 1. 2023, 2024, <u>광진구의 유동인구</u> 데이터셋에서 결빙에 관련된 겨울철 12, 1, 2월 총 여섯 달 선정
- 2. 여섯 달의 총 유동인구 수의 합에서 유동인구가 가장 많은 지역부터 상위 50% 지역 선별 후 시각화

지형 경사도 기반 3차 필터링

- 1.국토지리정보원 DEM 데이터 기반 광진구 내 100m 격자별 최대 경사도를 산출
- 2. 향후 상위 50%의 가파른 지역을 추출하여 시각화 예정

비즈니스 모델 주요 요소

Value Proposition 가치 제안

- 안전 강화
- 도로 결빙 사고율 감소
- 시민 안전 향상
- 비용 절감
- 사회/경제적 비용 절감
- Data-driven
- 모델 기반 최적 열선 입지 선정
- 유지 보수 및 추가 투자 결정 지원

Channel

채널

- 정부 및 공공 입찰
- 지방자치단체 및 공공기관의 안전 및 도시 인프라 개선 사업 참여
- 파트너십 및 민관 협력
- 민간 건설사, 기술 기업, 연구 기관과의 협업을 통한 솔루션 공동 개발

Revenue Stream

수익

- 프로젝트 계약 및 공공 입찰
- 정부 및 공공기관과의 계약을 통한 설치 및 유지보수 사업 수익
- 민관 협력 연구 및 R&D 지원금
- 스마트 시티, 도로 안전 관련 연구 프로젝트에 참여해 정부 및 민간 투자 지원

Customer Segment 고객

- 지자체
- 도시 안전 관리 및 겨울철 도로 관리 예산을 운용하는 행정 기관
- 민간 건설 및 인프라 기업
- 도로 제설 기술 및 열선 설치를 도입하여 관련 프로젝트 진행 기업
- 스마트 시티 솔루션 제공업체
- IoT, GIS 등을 활용한 도시 관리 및 인프라 개선에 관심있는 기업

TABLE OF CONTENTS

01

문제 구상

- 문제 인식
- 아이디어 도출
- 서비스 요약 설명

02

데이터 현황

- 데이터 구성
- 시장 분석

03

구현 전략

- 팀빌딩
- 구현 방식
- 비즈니스 모델

04

- 프로젝트성과
- 성장계획
- 향후 계획

TABLE OF CONTENTS

01

문제 구상

- 문제 인식
- 아이디어 도출
- 서비스 요약 설명

02

데이터 현황

- 데이터 구성
- 시장 분석

03

구현 전략

- 팀빌딩
- 구현 방식
- 비즈니스 모델

04

- 프로젝트 성과
- 성장계획
- 향후 계획

프로젝트 성과

열선 설치 후 사고 감소율

25% 60%

실제로 열선을 깔 경우 교통 소통률 25% 향상

사고율은 60% 감소

도로	도로 제설 효율 및 안정성 향상												
구분	10년 기준 총 비용	주요 특징											
염화 칼슘	121억 + α	매년 비용 증발 환경 복구비 발생											
도로 열선	19억 (초기 15억 + 유지비 4억)	초기 투자 후, 유지비만 부담 사회적 비용 절감											

프로젝트 성장 계획

스마트 열선 관리 시스템

실시간 모니터링 및 제어 시스템 구축

IoT 센서 연동, 통합 관제 센터

취약 시설 우선 설치

보행자 보호 기능 수행

노인복지관, 학교 등의 취약 시설 입지에 우선 설치

민관 협력 모델 구축

민관 협력

주민신고시스템이나앱을 통해 열선작동상태 및 피드백수집

공모전 수행 계획

분류	항목	3	월			5월				
		4	5	1	2	3	4	5	1	2
지획 및 설계 요구사항 분석 기획서 작성 의정 수립 및 작업 분배 데이터 수집	프로젝트 주제 선정									
	요구사항 분석									
	기획서 작성									
분석	데이터 수집									
	데이터 전처리									
	데이터 모델링									
	데이터 시각화 및 의견 도출									

프로젝트 수행 계획

분류	항목	3%		4월					5월					6월					7월					8월
		4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1
기획 및 설계	프로젝트 주제 선정																							
	요구사항 분석																							
	기획서 작성 및 피드백 수집																							
	일정 수립 및 작업 분배																							
	데이터 수집																							
	데이터 전처리																							
분석	데이터 모델링																							
	데이터 시각화 및 의견 도출																							
개발	디자인 설계																							
	구현																							
	단위 테스트 및 디버깅																							
	시스템 테스트 및 배포																							

Q&A