Quantum Algorithms

Hung-Wei Tseng

Recap: we can make the whole quantum circuit as a transition matrix

$$\begin{array}{lll} \text{qc} &=& \text{QuantumCircuit}(2) \ X | q_1 \rangle \otimes H | q_0 \rangle = (X \otimes H) | q_1 q_0 \rangle \\ \text{qc.h(0)} && X \otimes H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \\ \text{qc.draw()} && = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \times \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} & 1 \times \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \\ 1 \times \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} & 0 \times \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & H \\ H & 0 \end{bmatrix} \\ && \text{Unitary matrix} \end{array}$$

Recap: Quantum circuits

Measurements Ancilla

Recap: a state vector can be composed by two qubits

$$|ba\rangle = \begin{bmatrix} b_0 a_0 \\ b_0 a_1 \\ b_1 a_0 \\ b_1 a_1 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \qquad b_0 a_0 = \frac{1}{2} \qquad \frac{a_0}{a_1} = -1 \qquad a_0 = \frac{1}{\sqrt{2}}$$

$$b_0 a_1 = -\frac{1}{2} \qquad |a_0|^2 + |a_1|^2 = 1 \qquad a_1 = \frac{-1}{\sqrt{2}}$$

$$\begin{bmatrix} 1 \end{bmatrix} \qquad b_1 a_0 = -\frac{1}{2} \qquad \frac{b_0}{1} = -1$$

$$\frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \qquad b_1 a_0 = -\frac{1}{2} \qquad \frac{b_0}{b_1} = -1
b_1 a_1 = \frac{1}{2} \qquad |b_0|^2 + |b_1|^2 = 1$$

$$b_0 a_0 = \frac{1}{2}$$

$$b_0 a_1 = -\frac{1}{2}$$

$$b_1 a_0 = -\frac{1}{2}$$

$$b_1 a_1 = \frac{1}{2}$$

$$\frac{a_0}{a_1} = -1$$

$$|a_0|^2 + |a_1|^2 = 1$$

$$\frac{b_0}{b_1} = -1$$

$$|b_0|^2 + |b_1|^2 =$$

$$a_0 = \frac{1}{\sqrt{2}}$$

$$a_1 = \frac{-1}{\sqrt{2}}$$

$$b_0 = \frac{-1}{\sqrt{2}}$$

$$b_1 = \frac{1}{\sqrt{2}}$$

Recap: not all state vectors can be composed by two qubits

$$\begin{vmatrix} ba \rangle = \begin{vmatrix} b_0 a_0 \\ b_0 a_1 \\ b_1 a_0 \\ b_1 a_1 \end{vmatrix} = \begin{vmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{vmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$|ba\rangle = \begin{bmatrix} b_0 a_0 \\ b_0 a_1 \\ b_1 a_0 \\ b_1 a_1 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \qquad b_0 a_0 = \frac{1}{\sqrt{2}} \qquad \frac{a_0}{a_1} = \infty$$

$$b_0 a_1 = 0 \qquad b_1 a_0 = 0$$

$$b_1 a_0 = 0 \qquad b_1 a_1 = \frac{1}{\sqrt{2}}$$

$$b_1 a_1 = \frac{1}{\sqrt{2}}$$

This is not possible to be a product of two states!

Recap: entanglement

- The state is not a product of qubits
- Measuring one will tell us the state of the other and collapse its superposition — because the state cannot stand by itself
- Two or more quantum systems (or quantum particles) have a non-classical correlation, or shared quantum state, even if they are separated by a large distance.

If we initialize the state as $|\Phi^+\rangle$

$$|\Phi^{+}\rangle = \sqrt{\frac{1}{2}}(|0\rangle + |1\rangle) \quad 01 \rightarrow |\Psi^{+}\rangle = \sqrt{\frac{1}{2}}(|01\rangle + |10\rangle)$$

$$|\Phi^{+}\rangle = \sqrt{\frac{1}{2}}(|0\rangle + |1\rangle) \quad 10 \rightarrow |\Phi^{-}\rangle = \sqrt{\frac{1}{2}}(|00\rangle - |11\rangle)$$

$$|\Phi^{+}\rangle = \sqrt{\frac{1}{2}}(|0\rangle + |1\rangle) \quad 11 \rightarrow |\Psi^{-}\rangle = \sqrt{\frac{1}{2}}(|10\rangle - |01\rangle)$$

The new implementation

8

The Deutsch-Jozsa Algorithm

The Deutsch-Jozsa Problem

 Given a hidden Boolean function f, which takes as input a string of bits, and returns either 0 or 1, that is:

$$f(\{x_0, x_1, x_2, \dots\}) \to 0 \text{ or } 1$$
, where $x_n \text{ is } 0 \text{ or } 1$

- The given Boolean function is that it is guaranteed to either be balanced or constant
 - A constant function returns all 0s or all 1s for any input
 - A balanced function returns 0s for exactly half of all inputs and 1s for the other half
- Our task is to determine whether the given function is balanced or constant

The classical solution

- Let's start by choosing two numbers and test their outputs
 - if $f(0,0,0,...) \rightarrow 0$ and $f(1,0,0,...) \rightarrow 1$, then we know the given one is a balanced one!
 - What if $f(0,0,0,...) \rightarrow 0$ and $f(1,0,0,...) \rightarrow 0$? We have to try one more run...
- The worst case will need to go through exactly half of the input space + 1, that is $2^{n-1} + 1$, numbers
- The classical solution is therefore

Recap: we can make the whole quantum circuit as a transition matrix

Recap: Quantum circuits

Measurements Ancilla

Let's revisit CNOT gate, again

What's CNOT

• Flip the state of q_0 if q_1 is set

$$q_1q_0
angle$$
 q_0 if q_1 is so q_0q_0 q_1q_0 q

Or can we say it's swapping the amplitudes of | 10 > and | 11 >

What's CNOT

• Flip the state of q_1 if q_0 is set

$$\begin{array}{c} q_1 q_0 \\ |00\rangle \rightarrow |00\rangle \\ |01\rangle \rightarrow |11\rangle \\ |10\rangle \rightarrow |10\rangle \\ |11\rangle \rightarrow |01\rangle \end{array}$$

Or can we say it's swapping the amplitudes of | 01 > and | 11 >

1-bit half adder

A	В	carry	result
Ο	O	Ο	0
O	1	Ο	1
1	O	0	1
1	1	1	0

Let's look into this circuit

control:
$$q_{\theta}$$

$$CNOT |-1\rangle = -|-1\rangle$$

target:
$$q_1 - X - H$$

$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$=\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix} \otimes \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

$$=\frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \quad q_{\theta} \text{ is changed!}$$

$$q_{\theta} \text{ is changed!}$$

$$q_{\theta} \text{ is not changed!}$$

-1 goes to q_{θ} !

Phase kickback

Let's look into this circuit

control:
$$q_0 - H$$

target: $q_1 - H - X$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$CNOT | + + \rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

$$= | + + \rangle$$

Let's look into another circuit. $|+\rangle = \sqrt{\frac{1}{2}} \begin{vmatrix} 1 \\ 1 \end{vmatrix}$

 $= \frac{1}{2}(|00\rangle - |01\rangle - |10\rangle + |11\rangle) = |--\rangle$

control:
$$q_{0} - H$$

target: $q_{1} - X - H$

$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= (NOT | -+ \rangle = \frac{1}{2} (|00\rangle - |01\rangle - |10\rangle + |11\rangle)$$

$$= |---\rangle CNOT | -+-\rangle$$

Phase kickback

- Kickback is where the eigenvalue added by a gate to a qubit is 'kicked back' into a different qubit via a controlled operation.
 - For example, we saw that performing an X-gate on a $|-\rangle$ qubit gives it the phase -1
 - When our control qubit is in either |0> or |1>, this phase affects the whole state, however it is a global phase and has no observable effects

$$\begin{aligned} \mathsf{CNOT} | -0 \rangle &= | - \rangle \otimes | 0 \rangle \\ &= | -0 \rangle \\ \mathsf{CNOT} | -1 \rangle &= X | - \rangle \otimes | 1 \rangle \\ &= - | - \rangle \otimes | 1 \rangle \\ &= - | -1 \rangle \end{aligned}$$

This can then be written as the two separable qubit states:

$$CNOT | -+ \rangle = | - \rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$
$$= | -- \rangle$$

An overview of Deutsch-Jozsa Algorithm

- Initialize n + 1 qubits
- Transform these qubits into Hadamard basis: making each qubit 50%-50% of being 0 or 1
- Encode the given function as an unitary matrix (i.e., oracle)
- Return the qubits for measurements
- Measure the qubits to obtain the solution

An overview of Deutsch-Jozsa Algorithm

- Initialize n + 1 qubits
- Transform these qubits into Hadamard basis: making each qubit 50%-50% of being 0 or 1

$$|\psi_1 = \sum_{x \in \{0,1\}^n} H|x\rangle = \sum_{x \in \{0,1\}^n} \frac{1}{\sqrt{2^{n+1}}} |x\rangle (|0\rangle - |1\rangle)$$

• Encode the given function as an unitary matrix (i.e., oracle)

$$U_f|\psi_1\rangle = |\psi_2| = \sum_{x \in \{0,1\}^n} \frac{1}{\sqrt{2^{n+1}}} (-1)^{f(x)} |x\rangle (|0\rangle - |1\rangle)$$

- Return the qubits for measurements
- Measure the qubits to obtain the solution

$$|\psi_3\rangle = \frac{1}{2^n} \sum_{x=0}^{2^n-1} (-1)^{f(x)} \left[\sum_{y=0}^{2^n-1} (-1)^{x \cdot y} |y\rangle \right]$$

$$= \frac{1}{2^n} \sum_{y=0}^{2^n-1} \left[\sum_{x=0}^{2^n-1} (-1)^{f(x)} (-1)^{x \cdot y} \right] |y\rangle$$

Why this works

• Constant: When the oracle is constant, it has no effect (up to a global phase) on the input qubits, and the quantum states before and after querying the oracle are the same. Since the H-gate is its own inverse, in $|\psi_3\rangle$ we reverse $|\psi_1\rangle$ to obtain the initial quantum state of $|\psi_1\rangle$ in the first register.

$$H^{\otimes n} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2^n}} \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \quad \xrightarrow{\text{after } U_f} \quad H^{\otimes n} \frac{1}{\sqrt{2^n}} \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• Balanced: After creating $|\psi_1$, our input register is an equal superposition of all the states in the computational basis. When the oracle is balanced, phase kickback adds a negative phase to exactly half these states

$$U_{f} \frac{1}{\sqrt{2^{n}}} \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2^{n}}} \begin{bmatrix} -1 \\ 1 \\ -1 \\ \vdots \\ 1 \end{bmatrix}$$

An example of the algorithm

$$f(0,0) = 0$$
 $f(0,1) = 1$
 $f(1,0) = 1$
 $f(1,1) = 0$

Create the oracle

Create the oracle for Deutsch-Jozsa algorithm

Constant

- if f(x) = 0, then apply the *I* gate to the qubit in register 2.
- if f(x) = 1, then apply the X gate to the qubit in register 2.

Balanced

Many solutions. One is performing a CNOT for each qubit in register
 1, with the qubit in register 2 as the target.

Announcement

- Assignments will be reduced from 4 to 2
 - You may consider them as take-home midterm and final
 - Assignment 1 release on 2/11, due 2/18
 - Assignment 2 release on 3/4, due 3/11
- No lectures on 2/13, 3/4, and 3/6