Example: Ship Lines

Bow

Stern

Interpolation and Approximation

A set of six control points approximated with piecewise continuous polynomial sections.

A set of six control points interpolated with piecewise continuous polynomial sections.

Continuity Conditions

 To ensure a smooth transition from one section of a piecewise parametric spline to the next, can impose various continuity conditions at the connection points

Parametric continuity

- Matching the parametric derivatives of adjoining curve sections at their common boundary
- Geometric continuity
 - Geometric smoothness independent of parametrization
 - parametric continuity is sufficient, but not necessary, for geometric smoothness

Parametric Continuity

- Zero-order parametric continuity
 - C^0 -continuity
 - Means simply that the curves meet
- First-order parametric continuity
 - C1-continuity
 - The first derivatives of two adjoining curve functions are equal
- Second-order parametric continuity
 - C^2 -continuity
 - Both the first and the second derivatives of two adjoining curve functions are equal

Geometric Continuity

- Zero-order geometric continuity
 - Equivalent to G^0 -continuity
- First-order geometric continuity
 - G^1 continuity
 - The tangent directions at the ends of two adjoining curves are equal, but their magnitudes can be different
- Second-order geometric continuity
 - G²-continuity
 - Both the tangent directions and curvatures at the ends of two adjoining curves are equal

303

Continuity at Join Points

- · Discontinuous: physical separation
- Parametric Continuity
 - Positional (C⁰): no physical separation
 - C¹: C⁰ and matching first derivatives
 - C²: C¹ and matching second derivatives
- Geometric Continuity
 - Positional (G⁰) = C⁰
 - Tangential (G¹): G⁰ and tangents are proportional, point in same direction, but magnitudes may differ
 - Curvature (G²): G¹ and tangent lengths are the same and rate of length change is the same

Basis Functions

- A linear space of cubic polynomials
 - Monomial basis (t^3, t^2, t^1, t^0)

$$x(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0$$

- The coefficients \mathcal{Q}_i do not give tangible geometric meaning

Natural Cubic Splines

- Is it possible to achieve higher continuity?
 - $-C^{n-1}$ -continuity can be achieved from splines of degree n
- Motivated by loftman's spline
 - Long narrow strip of wood or plastic
 - Shaped by lead weights (called ducks)

Natural Cubic Splines

- One have 4n unknowns
 - n Bezier curve segments (4 control points per each segment)
- One have (4n-2) equations
 - 2n equations for end point interpolation
 - (n-1) equations for tangential continuity
 - (n-1) equations for second derivative continuity
- Two more equations are required!

Natural Cubic Splines

Natural spline boundary condition

$$x''(t_0) = x''(t_n) = 0$$

Closed boundary condition

$$x'(t_0) = x'(t_n)$$
 and $x''(t_0) = x''(t_n)$

- High-continuity, but no local controllability
 B-spline Properties
- Convex hull
- Affine invariance
- Variation diminishing
- continuity

NURBS

- Non-uniform Rational B-splines
 - Non-uniform knot spacing
 - Rational polynomial
 - A polynomial divided by a polynomial
 - Can represent conics (circles, ellipses, and hyperbolics)
 - Invariant under projective transformation

Note

- Uniform B-spline is a special case of non-uniform B-spline
- Non-rational B-spline is a special case of rational B-spline

Subdivision in Action

A Bug's Life

Subdivision in Action

Geri's Game

What are basis functions?

- One need flexible method for constructing a function f(t) that can track local curvature.
- One pick a system of K basis functions $\varphi_k(t)$, and call this the basis for f(t).
- One express f(t) as a weighted sum of these basis functions:

$$f(t) = a_1 \varphi_1(t) + a_2 \varphi_2(t) + ... + a_K \varphi_K(t)$$

The coefficients a_1, \ldots, a_K determine the shape of the function.

What do want from basis functions?

- Fast computation of individual basis functions.
- Flexible: can exhibit the required curvature where needed, but also be nearly linear when appropriate.
- Fast computation of coefficients a_k : possible if matrices of values are diagonal, banded or sparse.
- Differentiable as required: make lots of use of derivatives in functional data analysis.
- Constrained as required, such as periodicity, positivity, monotonicity, asymptotes and etc.

What are some commonly used basis functions?

- Powers: 1, t, t^2 , and so on. They are the basis functions for polynomials. These are not very flexible, and are used only for simple problems.
- Fourier series: 1, $sin(\omega t)$, $cos(\omega t)$, $sin(2\omega t)$, cos(2ωt), and so on for a fixed known frequency ω . These are used for periodic functions.
- Spline functions: These have now more or less replaced polynomials for non-periodic problems. Mostly expanded in Engineering NM field.

Quadratic Spline Graph

Quadratic Spline Graph

Natural Cubic Spline Interpolation

SPLINE OF DEGREE k = 3

- The domain of S is an interval [a,b].
- S, S', S" are all continuous functions on [a,b].
- There are points t_i (the knots of S) such that $a = t_0 < t_1 < ... t_n = b$ and such that S is a polynomial of degree at most k on each subinterval $[t_i, t_{i+1}]$.

X	t_0	t ₁	 t _n
У	y_0	y ₁	 y _n

t_i are knots

Natural Cubic Spline Interpolation

$$S(x) = \begin{cases} S_0(x), & x \in [x_0, x_1] \\ S_1(x), & x \in [x_1, x_2] \\ & \dots \\ S_{n-1}(x), & x \in [x_{n-1}, x_n] \end{cases}$$

 $S_i(x)$ is a cubic polynomial that will be used on the subinterval $[x_i, x_{i+1}]$.

Natural Cubic Spline Interpolation

- $S_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$
 - 4 Coefficients with n subintervals = 4n equations
 - There are 4_{n-2} conditions
 - Interpolation conditions
 - Continuity conditions
 - Natural Conditions

$$-S''(x_0) = 0$$

$$-S''(x_n)=0$$

Summary

- Polynomial interpolation
 - Lagrange polynomial
- Spline interpolation
 - Piecewise polynomial
 - Knot sequence
 - Continuity across knots
 - Natural spline (C^2 -continuity)
 - Catmull-Rom spline (C¹ -continuity)
 - Basis function
 - Bezier
 - B-spline

