HW2 - But We Make It Up in Volume

Emulie Chhor

30/12/2022

uval <- read.csv("~/Documents/OneDrive/Bac-Maths-Info/Winter2022/CMU_36_402_UndergraduateAdvancedDataAn
kable(names(uval))</pre>

 $\frac{\mathbf{x}}{\text{country}}$ year gdp growth underval

kable(summary(uval))

country	year	gdp	growth	underval
Length:1301 Class :character Mode :character NA NA	Min. :1955 1st Qu.:1970 Median :1985 Mean :1982 3rd Qu.:1995 Max. :2000	Min.: 285.1 1st Qu.: 1624.4 Median: 4336.6 Mean: 7404.6 3rd Qu.:10488.5 Max.: 62203.7	Min. :-0.283416 1st Qu.: 0.002264 Median : 0.018976 Mean : 0.017246 3rd Qu.: 0.033947 Max. : 0.256314	Min. :-1.9333614 1st Qu.:-0.2281424 Median :-0.0007638 Mean :-0.0009684 3rd Qu.: 0.2393331 Max. : 1.3580288

Question 1 -

model1 <- lm(growth~underval + log(gdp), data = uval)
kable(summary(model1)\$coefficients)</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-0.0352453	0.0066496	-5.300375	0.0000001
underval	0.0047639	0.0021791	2.186141	0.0289834
$\log(\mathrm{gdp})$	0.0062971	0.0007905	7.965909	0.0000000

Q1a)

We see that the coefficient for log(gdp) is 0.00629 with p-value of 0, which means that the log(gdp) is statistically significant. Since we say that for every increase in log(gdp), we expect the country to grow by a factor of 0.00629, the coefficient doesn't support the idea of "catching-up"

Q1b)

The coefficient for underval is 0.0047 with p-value of $0.02 < \alpha = 0.05$, which means that underval is statistically significant. We say that for every increase of the index of under-valuation, we expect the country to grow by 0.0047%, which means that the data does support the under-valuing idea.

Question 2 -

Q2a)

kable(summary(model2)\$coefficients[2:3, 1:2])

	Estimate	Std. Error
$\frac{\text{underval}}{\log(\text{gdp})}$	0.0136094 0.0289246	$0.0028977 \\ 0.0031672$

Q2b)

Since we only have 10 different values for year 5 years apart, we would rather consider the covariate year as a discrete value. This means that we would have a distinct slope for the 10 years value rather than for every yearly increment.

Q2c)

```
years.coeff <- summary(model2)$coefficients[182:190, 1]
years.values <- sort(unique(uval$year))[2:10]
plot(years.values, years.coeff, xlab = "Years", ylab = "Coefficients")</pre>
```


Q2d)

The second model doesn't support the idea of catching up because, again, the log(gdp) coefficient is positive and statistically significant, which suggest that for every log(gdp) increase, the country grows by 0.0289 %. However, the model is in accord with the undervalue idea since the underval coefficient is positive and is statistically significant ($pvalue < \alpha = 0.05$)

Question 3 -

Q3a)

summary(model1)\$r.squared

[1] 0.04855196

summary(model1)\$adj.r.squared

[1] 0.04708594

summary(model2)\$r.squared

[1] 0.4292363

summary(model2)\$adj.r.squared

[1] 0.3321397

The R-squared value can be used to compare models, as it give the proportion of variance in the response variable explained by the model. Therefore, since the R-squared value (and adjusted) are both bigger in the second model, we say that the second model is the better fit.

Q3b)

Q3c)