- 1. Explain the problem of exploding and vanishing gradients.
- 2. Why the sigmoid activation function is unable to prevent the vanishing gradient problem. Why is Relu activation function helpful towards mitigating the vanishing gradient problem.
- 3. Why are non zero-centered activation functions a problem in backpropagation?
- 4. Give the intuition behind input gate (selective read), forget gate (selective forget), and output gate (selective forget) in LSTMs.
- 5. The typical LSTM network architecture is shown below:

(In concatenating h_{t-1} + x_t , treat h_{t-1} as the prefix and x_t as the suffix) Given:

$$\sigma(x) = \frac{1}{1 + e^{-x}}; \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$x_t =$	0.77	$h_{t-1} =$	0.98	$C_{t-1} =$	0.57
	0.46		0.41		0.30
	0.21				

$W_f =$	0.36	0.71	0.24	0.81	0.39
	0.67	0.35	0.05	0.26	0.31

W_i	0.58	0.22	0.61	0.90	0.32
=	0.18	0.44	0.83	0.46	0.33

$W_c =$	0.61	0.16	0.82	0.53	0.21
	0.22	0.50	0.97	0.53	0.34

W_o	0.37	0.28	0.10	0.34	0.42
=	0.53	0.35	0.83	0.36	0.71

Compute f_t , i_t , \widetilde{C}_t , o_t , C_t , h_t