程定43

4.0)
$$y = 1 + \frac{2x}{1 - x + x^2}$$

 $= 1 + 2x + \frac{-2x^3 + 2x^2}{1 - x + x^2}$
 $= 1 + 2x + 2x^2 + \frac{-2x^4}{1 - x + x^2}$
 $= 1 + 2x + 2x^2 - 2x^4 + \frac{-2x^5 + 2x^6}{1 - x + x^2}$
 $= 1 + 2x + 2x^2 - 2x^4 + 0(x^4)$

上下次数景上的错求

4.(6)
$$y = \frac{x-2}{x^2-4x} = \frac{x-2}{(x-2)^2-4}$$

$$= -\frac{t}{4} + \frac{t^3/4}{t^2-4}$$

$$= -\frac{t}{4} - \frac{t^3}{16} + \frac{t^5/16}{t^2-4}$$

$$= -\frac{t}{4} - \frac{t^3}{16} - \frac{t^5}{64} - \frac{t^{2n-1}}{4^n} + O(t^{2n})$$

$$\therefore y = -\frac{x^{-2}}{4} - \frac{(x-2)^3}{16} - \cdots - \frac{(x-2)^{2n-1}}{4^n} + O(t^{2n})$$

 $O((\chi-2)^{2n})$

$$\frac{\left(n(1+X) = X - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + \frac{x^{n}}{n} + 0(X^{n})\right)}{\left(n(1-X) = -X - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \dots + \frac{x^{n}}{n} + 0(X^{n})\right)}$$

$$\frac{1}{2} \cdot y = \frac{1}{2} \left(n^{(1+X)} - \frac{1}{2} \left(n^{(1-X)} - \frac{1}{2$$

$$\frac{19}{2} e^{x} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{1!} + 0(x^{n})$$

$$-\frac{1}{x^{2}} E_{x=0} = 0 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{1!} + 0(x^{n})$$

$$\lim_{x \to 0} \frac{e^{-x^{2}}}{x^{n}} = \lim_{x \to 0} \frac{-n \cdot x^{n}}{e^{x^{2}}}$$

$$= \frac{n}{2} \cdot \lim_{x \to 0} \frac{x^{n-2}}{e^{x^{2}}} = \frac{n}{2} \cdot \frac{n^{-2} \lim_{x \to 0} \frac{x^{n-4}}{e^{x^{2}}}}$$

$$= \frac{n}{2} \cdot \lim_{x \to 0} \frac{x^{n-2}}{e^{x^{2}}} = \frac{n}{2} \cdot \frac{n^{-2} \lim_{x \to 0} \frac{x^{n-4}}{e^{x^{2}}}}$$

5.(1)
$$[n(1+\frac{1}{x}) = \frac{1}{x} - \frac{1}{2x^2} + 0(\frac{1}{x^2})]$$

 $[im[x-x^2]n(\mu = 1)]$
 $[x - x^2(\frac{1}{x} - \frac{1}{2x^2} + 0(x^2)]$

$$\frac{x\rightarrow\infty}{=\lim_{X\rightarrow\infty}[X-X+\frac{1}{2}+0(1)]}$$

$$=\frac{1}{2}$$

(2)
$$\cos x = |-\frac{\lambda}{2} + \frac{\lambda^{\frac{1}{4}}}{24} + O(\chi^{\frac{4}{4}})$$

Sinx = $\chi + O(\chi)$
 $\sin \chi = \chi^{\frac{1}{4}} + O(\chi^{\frac{4}{4}})$
 $\cos \chi = \chi^{\frac{1}{4}} + O(\chi^{\frac{4}{4}})$
 $\cos \chi = \chi^{\frac{1}{4}} + O(\chi^{\frac{4}{4}})$
 $\cot \chi = |+\chi^{\frac{1}{4}} + \chi^{\frac{1}{4}} + O(\chi^{\frac{4}{4}})|$
 $\cot \chi = |+\chi^{\frac{1}{4}} + O(\chi^{\frac{4}{4}})|$
 $\cot \chi = |+\chi^{\frac{4}{4}} + O$

11. i没ナ(xo) =-1.

ナ(x) =ナ(xo)+ナ(xo)(x-xo)+ナ(z)(x-xo) (3)
ナ(1)=ナ(xo)+ナ(xo)(1-xo)+ナ(z)(1-xo) ナ(xo)+ナ(xo)(1-xo)+ナ(z)(1-xo) ナ(xo)+ナ(xo)(1-xo)+ナ(z)(1-xo) -

 $f(0) = f(X_0) + f'(X_0)(-X_0) + \frac{f''[3]2}{2}(X_0)^2$ $f'(X_0) = f'(X_0) + \frac{X_0^2}{2} - f''(X_0) + \frac{(1-X_0)^2}{2}$

· f'(32) X= f'(31)((-X0)2

20=-1+ + 1/3,)(1-X2)

0=-1+ 1/132)(10)2

 $\frac{1}{1} \frac{1}{3} \frac{1}{3} = \frac{2}{(1-X_0)^2} + \frac{1}{3} \frac{3}{3} = \frac{2}{(X_0)^2}$ $\frac{1}{3} \frac{1}{3} + \frac{1}{3} \frac{3}{3} = \frac{1}{(X_0)^2} + \frac{1}{(X_0)^2} > 8$

由导函数达布定理.

ヨヨモ(乳、乳) 5大 ナ(ヨ)= ナ(乳)+ナ(シ) 28 シ正学 习是更与.1

 $\int_{-1}^{1} (3+4x) dx = \frac{7}{4}x7/2 - \frac{1}{4} \cdot 1/2$ = 6

 $(4) \int_{0}^{1} (\sqrt{2x-x^{2}} - x) dx$ $= \int_{0}^{1} (\sqrt{2x-x^{2}}) dx - \int_{0}^{1} x dx$

1.原式= = - =

订正: 4.3的 4.(9)

	ネトシェ lim t ⁿ = 0
$\frac{12}{5}9(x)=e^{-\frac{1}{x^2}}$	t-> 00 et2
为X + O目 + , + (x) = x3 · e-x2	う原式=M. M≤lim +1 et2 et2
但9(x)在X=0处不连续放	
$f(0) = \lim_{x \to 0} \frac{1}{x} = \lim_{x \to 0} \frac{e^{-x^2}}{x} = 0$ $(t \to \infty) \cdot R \cdot f(0) = \lim_{t \to \infty} \frac{t}{e^{t^2}} = 0$	InN=nInt-t2. t>nat,
$(t \rightarrow \infty)$. R) $f(0) = \lim_{t \to \infty} \frac{t}{e^{t^2}} = 0$	lnN < n (lnt-t)=n(-t-lnt
以下上新言. X +0月1,	lim -t-Int=- lim(t+Int)
f(x)=Pn(文)·e-本.其中,Pn为	$\lim_{t\to +\infty} -t - \ln t = -\lim_{t\to +\infty} t + \ln t$ $t \to +\infty = -\lim_{t\to +\infty} (\ln e^{t} + \ln t) = -\infty$
多项式·可知, N=1日引新	₹-s+∞
言成立,假设 N=K时成立,	.'. ln ^N →-∞ N→0
$f_{(x)}^{(k+1)} = P_n(x) \cdot (-x^2) e^{-x^2}$	20×M <n :="" lim="" m="0<br">+→∞</n>
$+ P_n(\frac{1}{X}) \cdot \frac{2}{X^3} e^{-\frac{1}{X^2}}$	t→∞
取Pn+1 (u)=2 U3Pn(U)-U2Pn	(u)
ADT	
$f_{(5)} = \lim_{x \to 0} \frac{x - 0}{f_{(x)}(x) - f_{(0)}(x)} = 0$	
$f_{(0)}^{(n)} = \lim_{x \to 0} \frac{f_{(n+1)}^{(n+1)} - f_{(0)}^{(n+1)}}{x - 0} = \lim_{x \to 0} \frac{\frac{1}{x} p_{(n+1)}}{e}$	-1) (\(\frac{\text{\text{X}}{\text{\text{Y}}}}\)_{=0}
J(0) X-0 X-0 E	χ ^τ
······································	
$f(x) = O(X^n)$	

定理5.1.4 改正在后 即当f(x)有有限个间断点时 f(x)在[a,b]上有界,且只有有限 记为bi,bz bn 则 个不连续点则于ER[a,b]. flxx在[a,b,],[b,,b2]··[bn,b]上 可积识) 九x)在[a,b]上可积 假设+在[a,b]上仅-个间断 点 x=b.则 f在[a.b]上有界. 改亚几后 ltull M (QEXED).取 CE(a,b) st b-(2 4M 羽起 5.1.2题 別JE([a,c]. 別JER[a,c] 由Jix) ≤ g(x). 故y y [a,b]的 方割 T: Q=Xo<Xi<Xz<··<Xn=b 则 $\exists [a,c]$ 的一个方割: Sup tixiesup gixi/z 手手戶斤有 TiO=XOCXICX=CXn=C.st U(ナ,T.) -L(ナ,T.) くき XL<X<Xin, i < N/1且 ieN*) 现考虑[a,b]的分割元 同样 inf fix) # inf 9(x) (\ XE(Xi,Xi+1), ZEN-1AZEN*) Q=X=2x,2x2 -- LXn=2xn=(2b, Sup{tix) | C=X=b} - inf(tix) | C=X=b} 由极限保存性. 可欠0 T→0日寸, L(j.T)=U(j.T) < 2 M 于是 L(9,T)=U(9,T) 即 $0 \le U(f, T_2) - L(f, T_2)$ $\leq [U(f,T_1)-L(f,T_1)]+2M\cdot\frac{\xi}{4M}$ $L(f,T) \leq L(g,T) \cup (f,T) \leq U(g,T)$ < = + = = E $-1/\int_a^b f(x) dx \leq \int_a^b g(x) dx$ 1. f e[a.b] 反之并不成立

4. 4E70, 3IT1 < 8,	上有界; If(x)1 < M(Q < X < b)
$U(f,T) - L(f,T) \ge d^2 \varepsilon$	∀E>0,取(E(a,b)且
故 U(+,T)-L(+,T)	b-(2 = = ; f + ([a,(]
= $\sum_{i=1}^{n} Sup(\frac{1}{f(1)}, -\frac{1}{f(3)})(X_{i}, -X_{i-1})$	···feR[a,c] ·· 日方割:
i=1 1,36 [Xi-1, Xi]	$T_i: Q=X_0 < X_1 < X_2 < \cdots < X_n = C$
= $\frac{1}{2}$ Sup $\frac{f(3)-f(7)}{f(9)f(3)}$ ($\frac{1}{2}$) $= \frac{1}{2}$ Sup $\frac{f(3)-f(7)}{f(9)f(3)}$ ($\frac{1}{2}$) $= \frac{1}{2}$	st U(t,Ti)-L(t,Ti)2=
d2 (U(f,T)-L(f,T)) < €	∃[a.b]间方到: T: a= Xo < Xi
故得证	2 < Xn + < Xn = C < b
	$\mathbb{R}_{1} \circ \leq \cup (f,T) - L(f,T) =$
(b) F(x)可积.	U (f, T,)- L(f, T,) + sup f(x)(b-c)
∀ X1, X2 E[a,b]. X, 7 X2.	$-\inf f(x)(b-c) \leq \bigcup \{f, T_i\} - L(f, T_i)$
_	$-\inf_{x\in[c,b]} f(x)(b-c) \leq \bigcup_{x\in[c,b]} f(f,T_x) - L(f,T_x)$
$f_1 F(x_1) - f(x_2) = Supt(x_1) - xe(a_1,x_1)$	$\angle \frac{\varepsilon}{2} + 2M \cdot \frac{\varepsilon}{4M+1} \angle \varepsilon$
Suptixi >0 XELQ,,xi,j [a, Xi]: F(x) 韩周不成	·fer[a,b]
由定理 5.1.5. f(x) ER[a,b]	_
改正: 定理5.1.4:	
不好没f在[a,b]上仅有	
一个间胀点, b. 于在[a,b]	

改正:习是更与.1.2	由包任意性。
女を20,3E,0(3H	$\int_{\alpha}^{b} f(x) dx \leq \int_{\alpha}^{b} g(x) dx$
割T: Q=XoZX,Z·ZXn=b.	
171と8、时, 43i E[Xin, Xi]有	
$\int_{a}^{b} f(x) dx - \epsilon < \sum_{i=1}^{n} f(3i)(Xi - Xi - 1)$	
< Jab fixidx + &;	
ヨ Sz, [a,b]分割 T:Q=Xo∠X,<…	
∠ Xn=b, 171∠Sz目t, Y3ie	
[X½-1, X½]	
$\int_{a}^{b} g(x) dx - \xi < \sum_{i=1}^{n} g(3i) \cdot (X_{i} - X_{i-1})$	
< 10 9(x) dx + E	
任取[a,b]-方割:	
T: Q=X0ZX1Z ZXn=b	
T < min { S., Sz} . R)	
$\int_{a}^{b} f(x) dx - 2 < \sum_{i=1}^{n} f(3i)(x_{i-1}^{i-1})$	
= = 9(32)(X2-X1-1)	
:. Satwax - & < Sag(x) dx+&	
$\int_{\alpha}^{b} f(x) dx - \int_{\alpha}^{b} g(x) dx \leq 2\varepsilon$	
如果latixidx-lag(x)dx=m>	0
刚与 &任意,性矛盾	