

Motor Imagery BCI for Virtual Hand Control *อาจเปลี่ยนเป็นแขน**พิจารณา*

สิปปนนท์ สรณ์คุณแก้ว

โครงงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
ปริญญาวิศวกรรมศาสตร์บัณฑิต สาขาวิชาวิศวกรรมหุ่นยนต์และระบบอัตโนมัติ
สถาบันวิทยาการหุ่นยนต์ภาคสนาม
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ปีการศึกษา 2567

สารบัญ

บทที่ 1 บทนำ	3
1.1 ที่มา ความสำคัญ	3
1.2 ประโยคปัญหางานวิจัย (Problem Statement)	3
1.3 ผลผลิตและผลลัพธ์ (Outputs and Outcomes) ผลผลิต ผลลัพธ์	3 3 3
1.4 ความต้องการของระบบ (Requirements)	3
1.5 ขอบเขตของงานวิจัย (Scopes)	3
1.6 ข้อกำหนดของงานวิจัย (Assumptions)	3
1.7 ขั้นตอนการดำเนินงาน	4
บทที่ 2 ทฤษฎี/งานวิจัย/การศึกษาที่เกี่ยวข้อง	5
2.1[หัวข้อ] 2.1.1 [หัวข้อย่อย]	5
2.2[หัวข้อ]	6
บทที่ 3 ระเบียบวิธีวิจัย	7
3.1[หัวข้อ] 3.1.1 [หัวข้อย่อย]	7 7
3.2[หัวข้อ]	7
บทที่ 4 การทดลองและผลการทดลอง/วิจัย	9
4.1[หัวข้อ] 4.1.1 [หัวข้อย่อย]	10 10
4.2[หัวข้อ]	10
บทที่ 5 บทสรุป	11
5.1[หัวข้อ] 5.1.1 [หัวข้อย่อย]	11
5.2[หัวข้อ]	11
เอกสารอ้างอิง	12

บทที่ 1 บทนำ

1.1 ที่มา ความสำคัญ

ปัจจุบันมความก้าวหน้าทางเทคโนโลยีมากขึ้นโดยเทคโนโลยีหนึ่งที่น่าสนใจคือการทำ Brain-Computer Interface ซึ่งช่วยให้ สามารถที่จะส่งสัญญาณคลื่นสมองให้มีปฏิสัมพันธ์กับอุปกรณ์ภายนอกได้ และเทคโนโลยีนี้สามารถที่จะพัฒนาต่อยอดเพื่อ ช่วยเหลือผู้ป่วยที่ไม่สามารถขยับร่างกายได้สามารถที่จะควบคุมหรือมีปฏิสัมพันธ์กับสิ่งภายนอกได้ผ่านการถ่ายทอดคลื่น สมองจากเทคโนโลยี BCI

1.2 ประโยคปัญหางานวิจัย (Problem Statement)

ผู้ป่วยบริเวณทั่วโลกโดยส่วนใหญ่ที่เกิดจากโรคหรืออาการบาดเจ็บที่ทำให้ไม่สามารถขยับร่างกายช่วงแขนหรือขาได้ แต่ สมองของผู้ป่วยยังคงสามารถทำงานได้ตามปกติโดยจะนำสัญญาณคลื่นสมองของผู้ป่วยมาสร้างกระบวณการบางอย่างที่ ช่วยให้ผู้ป่วยสามารถได้โดยไม่พึ่งร่างกายในส่วนที่เสียหายจากโรคหรืออาการบาดเจ็บ

1.3 ผลผลิตและผลลัพธ์ (Outputs and Outcomes)

ผลผลิต

1. ระบบการเชื่อมต่อและควบคุมระหว่างอุปกรณ์ EEG และสั่งให้กำแบมือหุ่นยนต์ที่มีมอเตอร์เพียง 1 ตัว

ผลลัพธ์

1. สามารถช่วยให้ผู้ป่วยที่ไม่สามารถขยับได้มีปฏิสัมพันธ์ได้อีกครั้งผ่านการถ่ายทอดคลื่นสมอง

1.4 ความต้องการของระบบ (Requirements)

- 1. Input: ชุดข้อมูลคลื่นสมองที่เก็บในลักษณะ Based Trial paradigm โดยเน้นที่Flexion และ Extension ของแขน(offline)
- 2. Processing: bandpass filter, csp, svm, Lda
- 3. การแสดงผล

1.5 ขอบเขตของงานวิจัย (Scopes)

1. การทดลองเป็นการทดลองแบบ offline โดยใช้ชุดข้อมูลที่ถูกเก็บมาจาก https://ieee-dataport.org/documents/upper-limb-rehabilitation-motor-imagery-eeg-signals

1.6 ข้อกำหนดของงานวิจัย (Assumptions)

1.

2.

1.7 ขั้นตอนการดำเนินงาน

Basic pipeline

- Read data
 - o rename event label for concat
 - o combine into 1 datasets
 - o rename event label back
- Preprocessing
 - o Bandpass
 - DownSampling
 - o ICA or Autoreject or IClabel
 - o Epoching (6 class)
- Feature Extraction
 - o CSP //else
- Classification
 - o LDA SVM (linear) (6 class)
- Evaluation and visualization
 - o ERD ERS ploting each class Cz C3 C4 difference(6 Class)*
 - Confusion matrix*
 - O Topomap plot powerspectrum ERD* (each 6 class)

บทที่ 2 การทบทวนวรรณกรรม

2.1 A survey on robots controlled by motor imagery brain-computer

Brain-Computer Interface (BCI) เปรียบเสมือนการสร้างสะพานเชื่อมต่อแลกเปลี่ยนข้อมูลทำให้สมองสามารถ ตอบสนองกับสิ่งแวดล้อมภายนอกได้โดยปราศจากการใช้ระบบประสาทส่วนปลายและการขยับของร่างกาย [9]* Ref for impor โดย BCI จะทำหน้าที่ถอดรหัสสัญญาณคลื่นสมองและตีความเพื่อสร้างการเชื่อมต่อของสมองมนุษย์กับอุปกรณ์ ภายนอก โดยแบ่งเป็น 2 ประเภทตามแหล่งที่มาของสัญญาณได้แก่

- 1). Exogenous BCI อาศัยตัวแปรภายนอกให้ผู้ทดสอบต้องทำการตอบสนองต่อสิ่งเร้าเพื่อกระตุ้นให้สมองสร้าง รูปแบบของคลื่นสมองที่สามารถนำไปถอดรหัสได้ โดยมีรูปแบบเช่น SSVEP และ P300 ที่ใช้การกระพริบของแสงด้วย ความถี่เป็นต้น
- 2). Endogenous BCI การใช้กระบวณการทำงานของสมองโดยไม่ใช้สิ่งเร้า หรืออุปกรณ์ภายนอกโดยใช้การ จินตนาการถึงการเคลื่อนไหวของร่างกาย เช่น จินตนาการว่ากำลังกำมือ หลักการของ Endogenous BCI เรียกอีกชื่อหนึ่ง ว่า Active BCI (Motor Imagery) ประกอบไปด้วยขั้นตอนดังนี้

รูปที่ 1 ภาพรวมของการทำระบบควบคุม MI-BCI

2.1.1 Signal processing algorithms

ในขั้นตอนแรกเป็นการนำสัญญาณคลื่นสมองที่เก็บได้จาก Electroencephalography (EEG) มาประมวลผล สัญญาณเบื้องต้นเพื่อแยกข้อมูลและลดสัญญาณรบกวนจากภายนอก จากนั้นนำไปทำในกระบวนการดังต่อไปนี้

1). Feature Extractions

เป็นกระบวณการสำคัญในการแปลงสัญญาณที่ทำการ preprocessing แล้วให้เป็น Feature vectors และกำจัด ข้อมูลที่ไม่จำเป็นเน้นความสำคัญไปที่ข้อมูลเชิงความถี่ (Frequency Domain) และข้อมูลเชิงพื้นที่ (Spatial Information) โดยทั่วไปแล้วจะใช้วิธีดังนี้

- Fourier Transformation รูปแบบ Fast หรือ Discreate
- ➤ Wavelet Transformation

- ➤ Auto-regression Model (AR)
- Common spatial pattern (CSP)
- > Independent component analysis Algorithm
- Principle component analysis

2). Classification methods

เป็นขั้นตอนการดึง Feature และแยกสัญญาณสมองให้สามารถเป็นคำสั่งควบคุมอุปกรณ์ต่าง ๆ ได้อย่างแม่นยำ โดยมีวิธีที่ใช้กันทั่วไปคือ การใช้ Machine Learning และ Deep Learning

	Linear Discriminant Analysis (LDA)
Machine	Support Vector Machine (SVM)
Learning	K-Nearest Neighbors (KNN)
	Random Forest (RF)
	Artificial Neural Network (ANN)
Deep	Convolutional Neural Networks (CNNs)
Learning	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LSTM)

ตารางที่ 1 ตารางแสดงผลตัวอย่าง Classification methods ที่ใช้

2.2 Controlling an Anatomical Robot hand Using the BCI based on Motor Imagery 2021

ประชากรของประเทศศรีลังกาโดย 7% พบมีความพิการของมือตามรายงานของ who ทางผู้จัดทำงานวิจัยจึงได้มีความ สนใจในการพัฒนาแบบจำลองหุ่นยนต์มือกลเพื่อให้ผู้พิการได้สามารถใช้งานมมือได้อีกครั้ง โดยอาศัยเทคโนโลยีอย่าง Brain-Computer Interface (BCI) เข้ามาช่วยให้ผู้พิการมีความสามารถในการควบคุมมือกลได้มากขึ้น โดยวิชา Brain-Computer Interface (BCI) เป็น

2.1.1 [หัวข้อย่อย]

- 1. เนื้อหา
- 2. เนื้อหา

บทที่ 3 ระเบียบวิธีวิจัย

3.1 Background Study

จากการศึกษางานวิจัยในส่วนของ Brain - Computer Interface (BCI) พบว่าเทคโนโลยี BCI นี้เป็นเทคโนโลยีที่มีความสามารถ ในการนำคลื่นสมองของมนุษย์มาใช้ในการประยุกต์เพื่อควบคุมบางสิ่งภายนอกอาทิเช่น การควบคุมรถเข็นผู้ป่วย* หรือ การควบคุมการสั่งการขยับของหุ่นยนต์* เป็นต้น โดยที่งานวิจัยจะมี2 ประเภทหลักคือ 1. การหาวิธีที่จะพัฒนาการดึง สัญญาณจากสมองนำมาวิเคราะห์ เช่น กระบวนการ ESI และ 2. การนำสัญญาณที่เก็บได้จากผู้ทดลองมาประยุกต์เพื่อให้ สามารถควบคุมบางสิ่งภายนอกร่างกายได้โดยที่ไม่ต้องขยับร่างกาย โดยจากทั้งงานวิจัย 2 แบบพบว่ารูปแบบของการทำ BCI นั้นมีรูปแบบหลัก ๆ ดังนี้ 1. SSVEP 2. P300 3. Motor Imagery โดยในงานวิจัยที่ผู้จัดทำสนใจนั้นจะเป็นในรูปแบบของการ นำสัญญาณสมองมาใช้ในการประยุกต์เพื่อควบคุมแขนกล โดยใช้ Motor Imagery ซึ่งเป็นการจินตนาการการขยับของ ร่างกายโดยใช้ความถี่ Mu (8 - 12 Hz) และ Beta (13 - 30 hz)

3.1.1 Analysis your study

- 1. เนื้อหา
- 2. เนื้อหา

3.2 Design your Solution

การสร้าง classifier เพื่อการตรวจจับการ Flexion และ Extension ของกล้ามเนื้อ สร้างการทดลองแบบ offline

3.3 Design your Experiment

Read data

- -rename event label for concat
- -combine into 1 datasets
- -rename event label back

Preprocessing

- -Bandpass
- -DownSampling
- -ICA or Autoreject or IClabel
- -Epoching (6 class)

Feature Extraction

-CSP //else

Classification

-LDA SVM (linear) (6 class)

Evaluation and visualization

- -ERD ERS ploting each class Cz C3 C4 difference(6 Class)*
- -Confusion matrix*
- -Topomap plot powerspectrum ERD* (each 6 class)

3.4 Benchmark your solution

เปรียบเทียบ process กับงานวิจัยที่ใช้การคุมมือหุ่นยต์

3.5 Analysis your result

[เนื้อหา -

3.6 Prove your solution

[เนื้อหา] -

บทที่ 4 การทดลองและผลการทดลอง/วิจัย

Motor Imagery BCI for Virtual Hand Control เริ่มการทดลองทำการ process ของ MI BCI ในรูปแบบของ offline data โดย ใช้ชุดข้อมูลจาก https://ieee-dataport.org/documents/upper-limb-rehabilitation-motor-imagery-eeg-signals
มีวัตถุประสงค์ดังนี้

- เพื่อศึกษากระบวนการทำงานของ MI BCI ที่ใช้กันโดยทั่วไป
- เพื่อศึกษาพื้นฐานของ pipeline และการตีความของข้อมูลที่ได้ระหว่างกระบวนการทำงาน รายละเอียดของชุดข้อมูลที่นำมาใช้ในการศึกษา:

ผู้ทดลองจำนวน 6 คน มีช่วงอายุระหว่าง 23 ถึง 28 ปี และมีเพศชายจำนวน 3 คน และเพศหญิงจำนวน 3 คน ลักษณะของการเคลื่อนไหวที่ใช้ในการจินตนาการมีจำนวน 6 คลาสดังนี้

- 1. Shoulder abduction
- 2. Shoulder adduction
- 3. Elbow flexion
- 4. Elbow extension
- 5. Forearm supination
- 6. Forearm pronation

อุปกรณ์ที่ใช้: Open BCI CytonDaisy 16-Channel Biosensing Board และ EEG Placement 10-20 electrode system การเก็บข้อมูล:

- ชุดข้อมูลนี้ได้มีการทำ Notch filer 50 Hz เพื่อตัดสัญญาณรบกวนจากสายไฟเรียบร้อยแล้ว
- มีความถี่ในการเก็บข้อมูล (Sampling rate) อยู่ที่ 500 Hz
- มีการใช้ 8th order Chebyshev bandpass filter ที่ 0.01 200hz

หมายเหตุ: มีการเขียน Class ในรูปแบบของ Event code ดังตารางด้านล่าง

Class	Event Code
Shoulder abduction	Shoulder abduction
Shoulder adduction	Shoulder adduction
Elbow flexion	Elbow flexion
Elbow extension	Elbow extension
Forearm supination	Forearm supination
Forearm pronation	Forearm pronation

ตารางที่ ตารางแสดง Event Code

*โดยที่ในช่วงแรกจะทำการใช้ข้อมูลที่เก็บได้จำนวน 1800 Epochs ของผู้ทดลอง 1 คนก่อน จากนั้นเมื่อเข้าใจการตีความและ กระบวนการมากขึ้นจะเริ่มทำการรวมข้อมูลทั้ง 6 คนมาด้วยกันเพื่อทำตามกระบวณการเดิมอีกครั้ง

4.1[หัวข้อ]

[เนื้อหา]

4.1.1 [หัวข้อย่อย]

- 1. เนื้อหา
- 2. เนื้อหา

4.2[หัวข้อ]

[เนื้อหา]

บทที่ 5 บทสรุป

[เนื้อหา]

5.1[หัวข้อ]

[เนื้อหา]

5.1.1 [หัวข้อย่อย]

- 1. เนื้อหา
- 2. เนื้อหา

5.2[หัวข้อ]

[เนื้อหา]

เอกสารอ้างอิง