Lecture 10

Basic Dividers

Required Reading

Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design

Chapter 13, Basic Division Schemes

13.1, Shift/Subtract Division Algorithms

13.3, Restoring Hardware Dividers

13.4, Non-Restoring and Signed Division

Chapter 15 Variation in Dividers 15.6, Combined Multiply/Divide Units

Notation and Basic Equations

Notation

$$z_{2k-1}z_{2k-2} \dots z_2 z_1 z_0$$

$$d_{k-1}d_{k-2} \dots d_1 d_0$$

$$q_{k-1}q_{k-2} \dots q_1 q_0$$

s Remainder
$$(s = z - dq)$$

$$s_{k-1}s_{k-2} \dots s_1 s_0$$

Basic Equations of Division

$$z = dq + s$$

$$sign(s) = sign(z)$$

$$z > 0$$
 $z < 0$
 $0 \le s < |d|$ $-|d| < s \le 0$

Unsigned Integer Division Overflow

- Must check overflow because obviously the quotient q can also be 2k bits.
 - For example, if the divisor d is 1, then the quotient q is the dividend z, which is 2k bits

Condition for no overflow (i.e. q fits in k bits):

$$z = q d + s < (2^{k}-1) d + d = d 2^{k}$$

$$z = z_H 2^k + z_L < d 2^k$$

$$z_H < d$$

Sequential Integer Division Basic Equations

$$S^{(0)} = Z$$

$$s^{(j)} = 2 s^{(j-1)} - q_{k-j} (2^k d)$$
 for $j=1..k$

$$s^{(k)} = 2^k s$$

Sequential Integer Division Justification

$$\begin{split} s^{(1)} &= 2 \ z - q_{k-1} \ (2^k \ d) \\ s^{(2)} &= 2(2 \ z - q_{k-1} \ (2^k \ d)) - q_{k-2} \ (2^k \ d) \\ s^{(3)} &= 2(2(2 \ z - q_{k-1} \ (2^k \ d)) - q_{k-2} \ (2^k \ d)) - q_{k-3} \ (2^k \ d) \end{split}$$

.

$$\begin{split} s^{(k)} &= 2(\ldots 2(2(2\ z - q_{k\text{-}1}\ (2^k\ d)) - q_{k\text{-}2}\ (2^k\ d)) - q_{k\text{-}3}\ (2^k\ d) \ldots \\ &- q_0\ (2^k\ d) = \\ &= 2^k\ z - (2^k\ d)\ (q_{k\text{-}1}\ 2^{k\text{-}1} + q_{k\text{-}2}\ 2^{k\text{-}2} + q_{k\text{-}3}\ 2^{k\text{-}3} + \ldots + q_0 2^0) = \\ &= 2^k\ z - (2^k\ d)\ q = 2^k\ (z - d\ q) = 2^k\ s \end{split}$$

Fig. 13.2 Examples of sequential division with integer and fractional operands.

Int	eger division	Fractional division				
z 2 ⁴ d	01110101	z _{frac} .0111010 d _{frac} .1010				
$s^{(0)}$ $2s^{(0)}$ $-q_3 2^4 d$	0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0	$s^{(0)}$. 0 1 1 1 0 1 0 2 $s^{(0)}$ 0 . 1 1 1 0 1 0 1 - $q_{-1}d$. 1 0 1 0 { q_{-1} =1				
$s^{(1)}$ $2s^{(1)}$ $-q_2 2^4 d$	0100101 0100101 0000{q ₂ =0}	$s^{(1)}$. 0 1 0 0 1 0 1 2 $s^{(1)}$ 0 . 1 0 0 1 0 1 $-q_{-2}d$. 0 0 0 0 $\{q_{-2}=0\}$				
$s^{(2)}$ $2s^{(2)}$ $-q_1 2^4 d$	100101 100101 1010 {q ₁ =1}	$s^{(2)}$. 100101 2 $s^{(2)}$ 1.00101 - $q_{-3}d$. 1010 $\{q_{-3}=1\}$				
$s^{(3)}$ $2s^{(3)}$ $-q_0 2^4 d$	10001 10001 1010 {q ₀ =1}	$s^{(3)}$. 1000 1 2 $s^{(3)}$ 1.0001 - $q_{-1}d$. 1010 { q_{-4} =1				
s ⁽⁴⁾ s q	0111 0111 1011	$s^{(4)}$.0111 $s_{\rm frac}$ 0.0000011 $q_{\rm frac}$.1011				

Fractional Division

Unsigned Fractional Division

Integer vs. Fractional Division

For Integers:

$$z = q d + s \qquad \cdot 2^{-2k}$$

$$z 2^{-2k} = (q 2^{-k}) (d 2^{-k}) + s (2^{-2k})$$

For Fractions:

$$z_{frac} = q_{frac} d_{frac} + s_{frac}$$

where

$$z_{frac} = z 2^{-2k}$$
 $q_{frac} = q 2^{-k}$
 $d_{frac} = d 2^{-k}$ $s_{frac} = s 2^{-2k}$

Unsigned Fractional Division Overflow

Condition for no overflow:

$$z_{frac} < d_{frac}$$

Sequential Fractional Division Basic Equations

$$s^{(0)} = z_{frac}$$

$$s^{(j)} = 2 s^{(j-1)} - q_{-j} d_{frac}$$
 for $j=1..k$

$$2^k \cdot s_{frac} = s^{(k)}$$

$$s_{frac} = 2^{-k} \cdot s^{(k)}$$

Sequential Fractional Division Justification

$$\begin{split} s^{(1)} &= 2 \ z_{frac} - q_{-1} \ d_{frac} \\ s^{(2)} &= 2(2 \ z_{frac} - q_{-1} \ d_{frac}) - q_{-2} \ d_{frac} \\ s^{(3)} &= 2(2(2 \ z_{frac} - q_{-1} \ d_{frac}) - q_{-2} \ d_{frac}) - q_{-3} \ d_{frac} \end{split}$$

.

$$\begin{split} s^{(k)} &= 2(\ldots 2(2(2\ z_{frac}\ \text{-}\ q_{\text{-}1}\ d_{frac})\ \text{-}\ q_{\text{-}2}\ d_{frac})\ \text{-}\ q_{\text{-}3}\ d_{frac}\ \ldots \\ &\quad - \ q_{\text{-}k}\ d_{frac} = \\ &= 2^k\ z_{frac}\ \text{-}\ d_{frac}\ (q_{\text{-}1}\ 2^{k\text{-}1} + q_{\text{-}2}\ 2^{k\text{-}2} + q_{\text{-}3}\ 2^{k\text{-}3} + \ldots + q_{\text{-}k}2^0) = \\ &= 2^k\ z_{frac}\ \text{-}\ d_{frac}\ 2^k\ (q_{\text{-}1}\ 2^{\text{-}1} + q_{\text{-}2}\ 2^{\text{-}2} + q_{\text{-}3}\ 2^{\text{-}3} + \ldots + q_{\text{-}k}2^{\text{-}k}) = \\ &= 2^k\ z_{frac}\ \text{-}\ (2^k\ d_{frac})\ q_{frac} = 2^k\ (z_{frac}\ \text{-}\ d_{frac}\ q_{frac}) = 2^k\ s_{frac_s} \end{split}$$

Restoring Unsigned Integer Division

Restoring Unsigned Integer Division

$$s^{(0)} = z$$

$$for \ j = 1 \ to \ k$$

$$if \ 2 \ s^{(j-1)} - 2^k \ d > 0$$

$$q_{k-j} = 1$$

$$s^{(j)} = 2 \ s^{(j-1)} - 2^k \ d$$

$$else$$

$$q_{k-j} = 0$$

$$s^{(j)} = 2 \ s^{(j-1)}$$
end for

Fig. 13.6 Example of restoring unsigned division.

=======	==:	====	==	===	==	==	==	=	
z 2 ⁴ d –2 ⁴ d	0	0 1 1 0 0 1			0	1	0	1	No overflow, since: (0111) _{two} < (1010) _{two}
$s^{(0)}$ 2 $s^{(0)}$ + (-2^4d)	0 0 1	0 1 1 1 0 1			0	1	0	1	
$\begin{array}{c} s^{(1)} \\ 2s^{(1)} \\ +(-2^4d) \end{array}$	0 0 1	0 1 1 0 0 1	0 0 1	0 1 0	1	0	1	_	Positive, so set $q_3 = 1$
$s^{(2)}$ $s^{(2)}=2s^{(1)}$ $2s^{(2)}$ $+(-2^{4}d)$	1 0 1 1		1	1 1 0 0	0 0 1	1			Negative, so set $q_2 = 0$ and restore
$\begin{array}{c} s^{(3)} \\ 2s^{(3)} \\ +(-2^4d) \end{array}$	0 1 1		0 0 1	0 1 0	1			_	Positive, so set $q_1 = 1$
s ⁽⁴⁾ s q =======	0	0 1	1==	1	0	1	1 1 :==	1 1 :=	Positive, so set $q_0 = 1$

Fig. 13.5 Shift/subtract sequential restoring divider.

Non-Restoring Unsigned Integer Division

Non-Restoring Unsigned Integer Division

```
s^{(0)} = z
s^{(1)} = 2 s^{(0)} - 2^k d
for j = 2 to k
    if s^{(j-1)} \ge 0
        q_{k-(j-1)} = 1
          s^{(j)} = 2 s^{(j-1)} - 2^k d
    else
          q_{k-(j-1)} = 0
         s^{(j)} = 2 s^{(j-1)} + 2^k d
end for
if s^{(k)} \ge 0
    q_0 = 1
else
    q_0 = 0
    Correction step
```

Non-Restoring Unsigned Integer Division Correction step

$$s = 2^{-k} \cdot s^{(k)}$$

$$z = q d + s$$

$$z, q, d \ge 0$$
 $s < 0$

$$z = (q-1) d + (s+d)$$

$$z = q' d + s'$$

Example of nonrestoring unsigned division

======	==:	===	==:	==	===	===	==	==	=	
z 2 ⁴ d -2 ⁴ d	0	_	1 0 1	1 1 1	1 0 0	0	1	0	1	No overflow, since: (0111) _{two} < (1010) _{two}
$s^{(0)}$ 2 $s^{(0)}$ + (-2^4d)	0 0 1		1 1 1	1 1 1		0	1 0	_	1	Positive, so subtract
$s^{(1)}$ 2 $s^{(1)}$ + (-2^4d)	0 0 1			0 0 1	0 1 0	1 0	0	1		Positive, so set $q_3 = 1$ and subtract
s ⁽²⁾ 2s ⁽²⁾ +2 ⁴ d	1 1 0	1	-	1 1 1	_	0	1		_	Negative, so set $q_2 = 0$ and add
$s^{(3)}$ 2 $s^{(3)}$ + (-2^4d)	0 1 1		_	0 0 1	0 1 0	1			_	Positive, so set $q_1 = 1$ and subtract
s ⁽⁴⁾ s q	0	0	1	1	1	0	1 0	1	1 1 :=	Positive, so set $q_0 = 1$

Partial remainder variations for restoring and nonrestoring division

Example (0 1 1 1 0 1 0 1)_{two} / (1 0 1 0)_{two} (117)_{ten} / (10)_{ten}

Non-Restoring Unsigned Integer Division Justification

$$s^{(j-1) \ge 0}$$

2 $s^{(j-1)} - 2^k d < 0$
2 $(2 s^{(j-1)}) - 2^k d^{\ge 0}$

Restoring division

$s^{(j)} = 2 s^{(j-1)}$

$$s^{(j+1)} = 2 s^{(j)} - 2^k d =$$

= $4 s^{(j-1)} - 2^k d$

Non-Restoring division

$$s^{(j)} = 2 s^{(j-1)} - 2^k d$$

$$s^{(j+1)} = 2 s^{(j)} + 2^{k} d =$$

$$= 2 (2 s^{(j-1)} - 2^{k} d) + 2^{k} d =$$

$$= 4 s^{(j-1)} - 2^{k} d$$

Convergence of the Partial Quotient to *q*

Example

$$(0\ 1\ 1\ 1\ 0\ 1\ 0\ 1)_{two}$$
 / $(1\ 0\ 1\ 0)_{two}$

$$(117)_{\text{ten}}/(10)_{\text{ten}} = (11)_{\text{ten}} = (1011)_{\text{two}}$$

In restoring division, the partial quotient converges to *q* from below

In nonrestoring division, the partial quotient may overshoot *q*, but converges to it after some oscillations

Signed Integer Division

Signed Integer Division

Examples of Signed Integer Division

Examples of division with signed operands

$$z = 5$$
 $d = 3$ \Rightarrow $q = 1$ $s = 2$
 $z = 5$ $d = -3$ \Rightarrow $q = -1$ $s = 2$
 $z = -5$ $d = 3$ \Rightarrow $q = -1$ $s = -2$
 $z = -5$ $d = -3$ \Rightarrow $q = 1$ $s = -2$

Magnitudes of q and s are unaffected by input signs Signs of q and s are derivable from signs of z and d

Non-Restoring Signed Integer Division

Non-Restoring Signed Integer Division

$$\begin{split} s^{(0)} &= z \\ \textbf{for} \quad j = 1 \text{ to } k \\ \textbf{if} \quad sign(s^{(j-1)}) == sign(d) \\ q_{k-j} &= 1 \\ s^{(j)} &= 2 \ s^{(j-1)} - 2^k \ d = 2 \ s^{(j-1)} - q_{k-j} \ (2^k \ d) \\ \textbf{else} \\ q_{k-j} &= -1 \\ s^{(j)} &= 2 \ s^{(j-1)} + 2^k \ d = 2 \ s^{(j-1)} - q_{k-j} \ (2^k \ d) \\ \textbf{end for} \\ q &= BSD_2 \text{'s_comp_conversion}(q) \\ Correction_step \end{split}$$

Non-Restoring Signed Integer Division Correction step

$$s = 2^{-k} \cdot s^{(k)}$$

$$z = q d + s$$

$$sign(s) = sign(z)$$

$$z = (q-1) d + (s+d)$$

 $z = q' d + s'$

$$z = (q+1) d + (s-d)$$

 $z = q'' d + s''$

Example of nonrestoring signed division

$ \begin{array}{c} z \\ 2^4 d \\ -2^4 d \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$s^{(0)}$ $2s^{(0)}$ $+2^4d$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$sign(s^{(0)}) \neq sign(d),$ so set $q_3 = 1$ and add
$ \begin{array}{c} s^{(1)} \\ 2s^{(1)} \\ +(-2^4 d) \end{array} $	1 1101 001 1 1010 01 0 0111	$sign(s^{(1)}) = sign(d),$ so set $q_2 = 1$ and subtract
$ \begin{array}{c} s^{(2)} \\ 2s^{(2)} \\ +2^4 d \end{array} $	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$sign(s^{(2)}) \neq sign(d),$ so set $q_1 = -1$ and add
$ \begin{array}{c} s^{(3)} \\ 2s^{(3)} \\ +(-2^4 d) \end{array} $	1 1011 1 1 0111 0 0111	$sign(s^{(3)}) = sign(d),$ so set $q_0 = 1$ and subtract
$S^{(4)} + (-2^4d)$	1 1110 0 0111	$sign(s^{(4)}) \neq sign(z)$, so perform corrective subtraction
s (4) s q ======	0 0 1 0 1 0 1 0 1 -1 1-1 1	$p = 0 \ 1 \ 0 \ 1$ Shift, compl MSB 1 1 0 1 1 Add 1 to correct 1 1 0 0 Check: $33/(-7) = -4$

BSD → 2's Complement Conversion

$$q = (q_{k-1} \ q_{k-2} \dots q_1 \ q_0)_{BSD} =$$

$$= (\overline{p_{k-1}} \ p_{k-2} \dots p_1 \ p_0 \ 1)_{2' \text{ s complement}}$$

where

q_i	p _i
-1	0
1	1

Example:

$$q_{2' \text{ scomp}}$$
 $0 \ 0 \ 1 \ 1 \ 1 \ = 0 \ 1 \ 1 \ 1$

no overflow if
$$p_{k-2} = \overline{p_{k-1}}$$
 $(q_{k-1} \neq q_{k-2})$ ₃₄

Nonrestoring Hardware Divider

Multiply/Divide Unit

Multiply-Divide Unit

The control unit proceeds through necessary steps for multiplication or division (including using the appropriate shift direction)

The slight speed penalty owing to a more complex control unit is insignificant

Fig. 15.9 Sequential radix-2 multiply/divide unit.