Mission 07, Start! Estructuras Discretas Semestre 2023-1 December 3, 2023

Tania Michelle Rubí Rojas

Nombre v número de cuent	Noml	ore v	número	de	cuenta:
--------------------------	------	-------	--------	----	---------

Notación y convenciones para el examen:

- $0 \in \mathbb{N}$
- gcd(a,b) hace referencia al máximo común divisor de dos números enteros $a \ v \ b$.
- [x] representa la clase de equivalencia de a.

- A/R representa el conjunto cociente de A bajo R.
- {0, 1, 00, 11, 101, 000, 010, 111, . . .} es el conjunto de todas las cadenas de ceros y unos
- 1. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - (a) Definimos la relación R sobre \mathbb{Z} como sigue:

$$xRy \Leftrightarrow \gcd(x,y) = 1$$

Entonces R es una relación de equivalencia.

ⓑ Sea (A, \preceq) un conjunto parcialmente ordenado. Sean X un conjunto diferente del vacío y $h: X \to A$ una función inyectiva. Definimos la relación R sobre X como sigue:

$$xRy \Leftrightarrow h(x) \leq h(y)$$

Entonces (X, R) es un conjunto parcialmente ordenado.

© Sea $A = \{1, 2, 3, 4, 5, 6\}$. Definimos la relación R sobre A como sigue:

$$\{(1,1), (6,5), (2,2), (5,6), (3,3), (6,4), (4,4), (4,6), (5,5), (5,4), (6,6), (4,5), (2,3), (3,2)\}$$

Entonces las clases de equivalencia de R son:

$$[1] = \{1\}$$
 $[2] = [3] = \{2, 3\}$ $[4] = [5] = [6] = \{4, 5, 6\}$

d Sea W el conjunto de todas las palabras en español. Definimos la relación R sobre W como sigue:

 $xRy \Leftrightarrow x$ tiene el mismo número de letras que y

Entonces R es una relación de equivalencia cuyo conjunto cociente es

$$A/R = \{\{\text{las palabras que tienen una letra}\},$$

 $\{\text{las palabras que tienen dos letras}\},$
 $\{\text{las palabras que tienen tres letras}\},$
 $\ldots\}$

2. Sea R una relación reflexiva y transitiva sobre un conjunto no vacío A. Definimos la relación S como sigue:

$$xSy \Leftrightarrow xRy y yRx$$

¿Cuál o cuáles de las siguientes expresiones son verdaderas?

- (a) Si wRz, wSa y zSb entonces aRb.
- \bigcirc S es un orden total.
- © Sea el conjunto cociente A/S. Definimos la relación binaria T sobre A/S de la siguiente manera:

$$[x]T[y] \Leftrightarrow xRy$$

Entonces (A/S, T) es un conjunto parcialmente ordenado.

- d S es una relación de equivalencia.
- (e) Ninguna de las anteriores.
- 3. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ Sea S el conjunto de todas las cadenas de ceros y unos cuya longitud es mayor o igual a tres. Definimos la relación R sobre S como sigue:

$$xRy \Leftrightarrow x$$
 tiene los primeros tres caracteres que y

Entonces la clase de equivalencia de 01010101 y 11111 es el conjunto de todas las cadenas que empiezan con 010 y 111, respectivamente.

 \bigcirc Definimos la relación R sobre \mathbb{R} como sigue:

$$R = \{(x,y) \mid |2x| = |2y|\}$$

donde $\lfloor 2x \rfloor$ se define como el mayor entero $i \in \mathbb{Z}$ tal que $i \leq x$. Entonces R es una relación de equivalencia y las clases de equivalencia de $\frac{1}{4}$ y $\frac{1}{2}$ son $\{x \in \mathbb{R} \mid 0 \leq x < \frac{1}{2}\}$ y $\{x \in \mathbb{R} \mid \frac{1}{2} \leq x < 1\}$, respectivamente.

© Definimos la relación binaria R sobre \mathbb{Z} como sigue:

$$xRy \Leftrightarrow x \ y \ y$$
 tienen la misma paridad (par o impar)

Entonces R no es una relación de equivalencia.

d Sea $A = \{1, 2, 3, 4, 5\}$. Definimos la relación R sobre A como sigue:

$$R = \{(1,1), (1,3), (1,4), (2,2), (2,5), (3,1), (3,3), (3,4)$$

$$(4,1), (4,3), (4,4), (5,2), (5,5)\}$$

Entonces $\{1,3,4\}$ y $\{2,3,5\}$ son dos clases de equivalencia de R.

- 4. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ Si R es una relación de equivalencia sobre un conjunto finito no vacío A, entonces todas las clases de equivalencia de R tienen el mismo número de elementos.
 - ⓑ Sea A un conjunto. Definimos la relación binaria R sobre $\mathcal{P}(A)$ como sigue:

$$R = \{(X, Y) \mid X \text{ tiene la misma cardinalidad que } Y\}$$

Entonces R es de equivalencia

© Sea P el conjunto de todas las personas vivas. Definimos la relación R sobre P como sigue:

$$R = \{(p,q) \mid \text{ la edad de } p \text{ es menor que la edad de } q\}$$

Entonces R es un orden parcial.

- d En un conjunto parcialmente ordenado, un elemento maximal siempre es un elemento máximo.
- Ninguna de las anteriores.
- 5. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ Sea R una relación de equivalencia sobre un conjunto A. Sean $x, y \in A$. Entonces

$$[x] \neq [y] \Leftrightarrow (x,y) \notin R$$

- ⓑ Sean R y S relaciones sobre un conjunto A. Si R y S son relaciones de equivalencia, entonces $R \cap S$ también lo es.
- © Sea (A, \preceq) un orden total. Si A tiene un elemento maximal m, entonces m es un elemento máximo.
- d Sea R una relación binaria sobre un conjunto A. Si R es simétrica y antisimétrica, entonces R también es reflexiva.
- (e) Ninguna de las anteriores.
- 6. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - (a) Definimos la relación R sobre \mathbb{N}^2 como sigue:

$$((a,b),(c,d)) \in R \Leftrightarrow a+b=c+d$$

Entonces R no es una relación de equivalencia.

(b) Definimos la relación R sobre \mathbb{N}^2 como sigue:

$$(a,b)R(c,d) \Leftrightarrow b=d$$

Entonces R no es una relación de equivalencia.

- © Sean (A, \preceq) un orden parcial y $X \subseteq A$. Si X tiene dos elementos maximales distintos, entonces X no tiene máximo.
- d La relación vacía sobre \varnothing es una relación de equivalencia y un orden parcial.
- (e) Ninguna de las anteriores.

- 7. ¿Cuál o cuáles de las siguientes expresiones son **verdaderas**?
 - ⓐ Un conjunto parcialmente ordenado puede tener más de un elemento mínimo.
 - ⓑ Sea $A = \{1, 2, 3\}$. La partición $P = \{\{1, 2\}, \{3\}\}$ induce la siguiente relación de equivalencia sobre A:

$$R = \{(1,1), (1,2), (2,2), (2,1), (3,3)\}$$

- © La relación vacía sobre un conjunto no vacío A es siempre una relación de equivalencia.
- d Si R es una relación de equivalencia sobre un conjunto A, entonces $xRy \Leftrightarrow [x] = [y]$.
- Ninguna de las anteriores.
- 8. Sea (A, \preceq) un conjunto parcialmente ordenado cuyo diagrama de Hasse es el siguiente:

¿Cuál o cuáles de las siguientes expresiones son verdaderas?

- (a) Si $B = \{l, m\}$ entonces las cotas inferiores de B en A son $\{a, b, c, d, e, f, g, h, k\}$ y el ínfimo de B no existe.
- ⓑ Si $B = \{d\}$ entonces entonces las cotas superiores de B en A son $\{h, i, j, k, l, m\}$ y el supremo de B no existe.
- © Si $B = \{d, f, k\}$ entonces el supremo de B es k y las cotas superiores de B en A son $\{k, l, m\}$.
- (d) (A, \preceq) no tiene elemento mínimo y, si $B = \{d, f, k\}$, entonces supremo de B es k.
- (e) Ninguna de las anteriores.
- 9. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - (a) Un elemento máximo nunca puede ser un elemento maximal.
 - (b) Todos los elementos de un conjunto parcialmente ordenado son comparables.
 - (c) Todo orden total es una relación de equivalencia.
 - (d) Definimos la relación R sobre \mathbb{Z} como sigue:

$$xRy \Leftrightarrow 2$$
 divide a $x+y$

Entonces R es una relación de equivalencia cuyo conjunto cociente es $\mathbb{Z}/R = \{[0], [1]\}.$

- 10. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ Sea $A \subseteq \mathbb{R}$. Definimos la relación R sobre A^2 como sigue:

$$(a,b)R(c,d) \Leftrightarrow a \le c \ y \ b \ge d$$

Entonces R no es un orden parcial.

- b Sea A un conjunto no vacío. Sean R y S relaciones de equivalencia sobre A tales que inducen la misma partición en A. Entonces R = S.
- © Sean A un conjunto no vacío y $f:A\to A$ una función. Definimos la relación binaria R sobre A como sigue:

$$R = \{(x, y) \mid f(x) = f(y)\}\$$

Entonces R es una relación de equivalencia.

d Sea P el conjunto de todos los planetas. Definimos la relación R sobre $P \times \mathbb{Z}^+$ como sigue:

$$(x,y) \in R \Leftrightarrow x$$
 está a la posición y respecto al Sol

Entonces R es un orden parcial.

- (e) Ninguna de las anteriores.
- 11. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - a En un conjunto parcialmente ordenado pueden existir elementos maximales sin que necesariamente exista un elemento máximo.
 - ⓑ Sea $A \subseteq \mathbb{N}$. Definimos la relación R sobre A como sigue:

$$xRy \Leftrightarrow y = x^k$$
 para alguna $k \in \mathbb{N}$

Entonces (A, R) es un conjunto totalmente ordenado.

© Sea R una relación de equivalencia sobre un conjunto A. Sean $x, y \in A$. Entonces

$$x \in [y] \Leftrightarrow [x] \cap [y] \neq \emptyset$$

- d Sea (A, \preceq) un conjunto parcialmente ordenado. Si m es cota superior de $S \subseteq A$, entonces m es un elemento maximal de A.
- 12. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - (a) Un conjunto parcialmente ordenado puede tener más de un elemento máximo.
 - ⓑ Sean A un conjunto finito no vacío y (A, \preceq) un COPO. Entonces (A, \preceq) tiene al menos un elemento maximal y otro minimal.
 - © Sea R una relación reflexiva sobre un conjunto A. Entonces R es una relación de equivalencia si y sólo si el hecho de que $(x, y), (x, z) \in R$ implica que $(y, z) \in R$.
 - d Sea R una relación binaria sobre un conjunto infinito A. Si R es una relación de equivalencia, entonces R tiene una infinita cantidad de clases de equivalencia.
 - (e) Ninguna de las anteriores.

13. Sea (A, \preceq) un conjunto parcialmente ordenado cuyo diagrama de Hasse es el siguiente:

¿Cuál o cuáles de las siguientes expresiones son verdaderas?

- ⓐ El elemento maximal de A es h y A no tiene elemento minimal.
- ⓑ Si $B = \{a, b\}$, entonces B no tiene cota inferior en A y la cota superior de B en A es $\{h, f, d, g, e, c\}$.
- © Si $B = \{a, b\}$, entonces el supremo de B es c y el ínfimo de B no existe.
- d El elemento máximo de \overline{A} es h y \overline{A} no tiene elemento mínimo.
- (e) Ninguna de las anteriores.
- 14. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - (a) Definimos la relación R sobre \mathbb{Z}^+ como sigue:

$$xRy \Leftrightarrow \frac{y}{x} = 2^k \quad \text{con } k \in \{0, 1, 2, \ldots\}$$

Entonces R es una relación de equivalencia.

 \bigcirc Sea S el conjunto de todas las cadenas de ceros y unos. Definimos la relación R sobre S como sigue:

 $xRy \Leftrightarrow x$ tiene la misma cantidad de ceros que y

Entonces R es una relación de equivalencia.

© Sea $A = \{a, b\}$. Entonces todas las posibles relaciones de equivalencia sobre A son

$$R_1 = \{(a, a), (b, b)\}\$$

$$R_2 = \{(a, a), (a, b), (b, b), (b, a)\}\$$

Además, las particiones que inducen son $\{\{a\},\{b\}\}\$ y $\{\{a,b\}\}\$, respectivamente.

- d Sea R una relación binaria sobre un conjunto A. Si R es simétrica y transitiva, entonces R debe ser reflexiva.
- Ninguna de las anteriores.

- 15. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ Sea R una relación binaria sobre un conjunto A. Si R es un orden parcial y $B \subseteq A$, entonces $R \cap B^2$ es un orden parcial sobre B.
 - ⑤ Sea R una relación de equivalencia definida sobre un conjunto A. Entonces $R = \{(x, x) \mid x \in A\}$ si y sólo si para toda $x \in A$ sucede que $[x] = \{x\}$
 - © Sean R y S dos relaciones binarias sobre un conjunto A tal que S está definida como sigue:

$$S = \{(x, y) \mid (x, z) \in R \text{ y } (z, y) \in R \text{ para alguna } z \in A\}$$

Si R es una relación de equivalencia, entonces S también lo es.

- d Sea R una relación reflexiva y transitiva sobre un conjunto A. Entonces $R \cap R^{-1}$ es una relación de equivalencia sobre A.
- Ninguna de las anteriores.
- 16. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ No existe una relación binaria R sobre un conjunto A tal que R sea reflexiva, simétrica, transitiva y antisimétrica al mismo tiempo.
 - ⓑ Supongamos que R es una relación binaria de orden parcial sobre un conjunto A y que $B \subseteq A$. Entonces R también es un orden parcial sobre B.
 - © Si R y S son relaciones de equivalencia sobre un conjunto A, entonces $R \cup S$ también es una relación de equivalencia.
 - d Sea P el conjunto de todas las personas vivas. Definimos la relación R sobre P como sigue:

$$(x,y) \in R \Leftrightarrow x \text{ es al menos tan alto como } y$$

Entonces R es una relación de equivalencia.

17. Sea (A, \preceq) un conjunto parcialmente ordenado cuyo diagrama de Hasse es el siguiente:

¿Cuál o cuáles de las siguientes expresiones son verdaderas?

- ⓑ Si $B = \{2, 3, 6, 9\}$ entonces los elementos minimales de (A, \preceq) son $\{2, 3\}$ y B no tiene cota inferior en A.
- © Si $B = \{2, 3, 6, 9\}$ entonces el ínfimo de B es 1.
- d Si $B = \{2, 3, 6, 9\}$ entonces B no tiene elemento máximo ni mínimo y la cota superior de B en A es 8.
- Ninguna de las anteriores.

18. Sea (A, \preceq) un conjunto parcialmente ordenado cuyo diagrama de Hasse es el siguiente:

 $\ensuremath{\mathcal{C}}$ uál o cuáles de las siguientes expresiones son $\mathbf{verdaderas}?$

- ⓐ El único elemento minimal de A es 12, lo que implica que éste es el elemento mínimo de A. Por otro lado, los elementos maximales de A son $\{1, 5, 8\}$.
- ⓑ Es cierto que $7 \leq 12$ y $12 \leq 7$.
- © El conjunto A no tiene supremo, pero su ínfimo es el elemento 12.
- d A no tiene elemento máximo ni mínimo.
- (e) Ninguna de las anteriores.