Республиканская олимпиада по математике, 2014 год, 10 класс

- **1.** Действительные числа $a,\ b,\ c,\ d$ удовлетворяют следующим условиям: i) $a\neq b,\ b\neq c,\ c\neq d,\ d\neq a;$ ii) $\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-d\right)^2}+\frac{1}{\left(d-a\right)^2}=1.$ Найдите минимум выражения $a^2+b^2+c^2+d^2.$ (Сатылханов К.)
- **2.** Дан треугольник ABC, около которого описана окружность ω . Точки D и D_1 , лежащие на прямой AC, симметричны друг другу относительно середины AC. Пусть BD и BD_1 во второй раз пересекают ω в точках E и E_1 , соответственно. Докажите, что все такие прямые EE_1 проходят через фиксированную точку плоскости.
- **3.** Существуют ли натуральные числа a и b такие, что для каждого натурального n числа $a^n + n^b$ и $b^n + n^a$ взаимно просты? (Сатылханов K.)
- **4.** Из доски $2^n \times 2^n$ $(n \ge 3)$ вырезали одну клетку. Докажите, что оставшуюся часть доски можно покрыть без наложений уголками из 3-х клеток по крайней мере $3^{4^{n-3}}$ различными способами. (Д. Елиусизов)
- **5.** Около неравнобедренного треугольника ABC описана окружность ω , точка M середина AC. Касательная к ω в точке B пересекает прямую AC в точке N, а прямая BM повторно пересекает ω в точке L. Пусть точка P симметрична точке L относительно M. Окружность, описанная около треугольника BPN, повторно пересекает прямую AN в точке Q. Докажите, что $\angle ABP = \angle QBC$. (M. Кунгожин)
- **6.** Докажите, что для любого натурального n на отрезке $[n-4\sqrt{n},\ n+4\sqrt{n}]$ найдется число, представимое в виде $x^3+y^3,$ где x и y неотрицательные целые числа. (А. Васильев)