

Реализация алгоритма поиска путей с контекстно-свободными ограничениями для графовой базы данных Neo4j

Автор: Анна Сергеевна Власова, группа 16.Б10 Научный руководитель: доцент, к.ф.-м.н. С.В. Григорьев Рецензент: программист ООО "ИнтеллиДжей Лабс" Р.Ш. Азимов

Санкт-Петербургский государственный университет Кафедра системного программирования

Введение

- Графовые базы данных
 - Одной из самых распространенных является Neo4j
 - Для запросов поддерживаются только регулярные грамматики
- Поиск путей в графах с контекстно-свободными ограничениями
 - ▶ КС грамматика $\mathbb{G} = (S, \Sigma, N, P)$
 - ▶ Ориентированный граф $G = (V, E, T), T \subseteq \Sigma, E \subseteq V \times T \times V$
 - lacktriangle Задача: найти такие пути, что конкатенация меток их ребер лежит в $L(\mathbb{G})$

Область применения

- Анализ RDF данных
- Статический анализ кода
 - Межпроцедурный анализ указателей
 - Анализ алиасов
 - Анализ типов
- Биоинформатика
 - Анализ геномных последовательностей
- Сегментация графов в задаче происхождения данных

Существующие решения задачи КС-запросов

- Матричные алгоритмы
 - Высокая производительность
 - ▶ Большой расход памяти
 - ▶ Решают только задачу достижимости
- Парсер-комбинаторы для КС-запросов
 - ▶ Интегрирован с Neo4j (Meerkat)
 - Низкая производительность на больших графах
- Решения, основанные на алгоритмах синтаксического анализа
 - Generalized LL
 - Generalized LR

Библиотека Iguana

- Реализация GLL с оптимизациями
- Высокая производительность
- Реализована на Java
- Удобно интегрировать с Neo4j

Постановка задачи

Целью работы является реализация поддержки запросов с контекстно-свободными ограничениями для графовой базы данных Neo4j

Задачи:

- Модифицировать библиотеку Iguana для поддержки входных данных, представленных в виде графа
- Интегрировать расширенную версию Iguana с графовой базой данных Neo4j
- Провести экспериментальное исследование

Обобщенный LL-алгоритм (GLL)

- Поддерживает любые контекстно-свободные грамматики
- Состояние синтаксического анализа описывается дескриптором:
 - ▶ Позиция во входной строке
 - ightharpoonup Слот позиция в грамматике, например, $S := A \cdot b$
 - Стек
 - ▶ Представление результата разбора
- Для обработки всех состояний дескрипторы хранятся в очереди
- Строит сжатое представление леса разбора
- Обобщается с линейного входа на графы

Модификация Iguana: входные данные

• Строка — линейный граф

• Но у графа есть отличия

Модификация Iguana

- Ветвления
 - ▶ Порождение нескольких состояний из текущего
- Циклы
 - ▶ Переиспользование вычисленных результатов

Архитектура Iguana после модификаций

Рис.: Диаграмма основных классов

Интеграция с Neo4j

- Используется Java API
- Создается встроенная база данных

Рис.: Диаграмма классов, представляющих входные данные

Экспериментальное исследование

• Графы:

- ► Enzyme (15 тыс. вершин, 47 тыс. ребер) белковые последовательности
- ▶ Geospecies (225 тыс. вершин, 1.6 млн ребер) иерархия видов животных

• Грамматики

▶ Same generation query — поиск всех видов на том же уровне иерархии (одно поколение) Грамматика $S ::= aSb \mid \varepsilon$ задает слова вида a^nb^n

Экспериментальное исследование: Enzyme

Рис.: Сравнение производительности на двух различных запросах

Результаты

- Библиотека Iguana расширена для поддержки входных данных, представленных как в виде графа, так и строк
- Расширенная версия Iguana интегрирована с графовой базой данных Neo4j
- Проведено экспериментальное исследование и сравнение с Meerkat

Экспериментальное исследование: Geospecies

Рис.: Сравнение производительности на двух различных запросах