CLAIMS

In the Claims:

1. (Currently Amended) A compound of formula

$$R_{10}$$
 R_{11}
 R_{10}
 R_{11}
 R_{10}
 R_{11}
 R_{10}
 R_{11}
 R_{12}
 R_{11}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

wherein

group A_1 -T- A_2 is a bond A_4 and A_2 are each independently of the other a bond or a C_4 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C_3 - C_8 cycloalkyl;

 A_3 is ethylene, propylene or butylene A_3 is a C_4 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C_3 - C_6 cycloalkyl;

Y is O, NR₇, S, SO or SO₂;

 X_1 and X_2 are each independently of the other fluorine, chlorine or bromine;

 $R_{1[[,,]]}$ and R_2 and R_3 are each independently of the other[[s]] H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, -(S=O)- C_1 - C_6 alkyl, -(SO)₂- C_1 - C_6 alkyl or C_1 - C_6 alkoxycarbonyl; the substituents R_3 being independent of one another when m is 2;

 R_3 is H;

Q is O, NR₅, S, SO or SO₂;

W is O, NR_5 , S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, $-C(=O)-NR_5-Or-NR_5-C(=O)-$;

D is CH-or N:

 R_4 is H, halogen, OH, SH, CN, nitro, C_4 - C_6 alkyl, C_4 - C_6 haloalkyl, C_4 - C_6 alkylcarbonyl, C_2 - C_6 -alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_4 - C_6 alkoxy, C_4 - C_6 haloalkenyloxy, C_3 - C_6 alkynyloxy, -(S=O)- C_4 - C_6 alkyl, -(SO) $_2$ - C_4 - C_6 alkyl, C_4 - C_6 alkoxycarbonyl or $N(R_6)_2$ wherein the two substituents R_6 are independent of one another; the substituents R_4 being independent of one another when R_6 is greater than 1;

 R_5 , R_6 and R_7 are each independently of the others H, C_4 - C_6 alkyl, C_4 - C_3 haloalkyl, C_4 - C_6 alkoxyalkyl, C_4 - C_6 alkylcarbonyl, C_4 - C_6 alkoxyalkyl, C_4 - C_6 alkylcarbonyl, C_4 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 - $C_$

k is 1, 2 or 3 when D is nitrogen; or is 1, 2, 3 or 4 when D is CH; m is 1-or 2;

 R_{10} is $\underline{CN, NO_2, -C(=NOR_{14})-R_{13}, -C(=O)-R_{15}, -C_1-C_6}$ alkyl-O- R_{16} , -NH-C(=O)-O- R_{17} or -CH(O- R_{18})₂ any radical which comprises from one to three hetero atoms selected from O, N and S; and which may be connected to R_{12} via a C_1 - C_6 alkylene bridge;

 R_{11} is H, C_1 - C_{12} alkyl, halogen, or <u>CN or -C(=O)- R_{15} any radical which comprises from one to three hetero atoms selected from O, N and S; or R_{11} together with R_{12} is a bond;</u>

or R_{10} and R_{11} , together with the carbon atom to which they are bonded, are a five- to seven-membered ring which optionally contains from one to three hetero atoms selected from O, N and S and which is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, OH, =O, SH, =S, =N-OH, =N-O-C₁-C₆alkyl, CN, nitro, C_1 -C₆alkyl, C_1 -C₆haloalkyl, C_1 -C₆alkylcarbonyl, C_2 -C₆alkenyl, C_2 -C₆haloalkenyl, C_2 -C₆alkynyl, C_1 -C₆alkoxy and C_1 -C₆haloalkoxy;

 R_{12} is H, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenoxy- C_1 - C_6 alkyl, CN, - $C(=O)C_1$ - C_{12} alkyl, unsubstituted heterocyclyl, heterocyclyl which is substituted by one to three substituents selected form the group consisting of OH, =O, SH, =S, halogen, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_1 - C_6 alkoxy and C_1 - C_6 haloalkoxy; or R_{12} together with R_{11} a bond; or is a C_2 - C_6 alkylene bridge which is connected to R_{10} ;

 $\underline{R_{13} \text{ is } C_1\text{-}C_{12}\text{alkyl}, \ C_1\text{-}C_6\text{haloalkyl}, \ C_3\text{-}C_6\text{cycloalkyl}, \ C_1\text{-}C_6\text{alkoxy}, \ C_1\text{-}C_3\text{haloalkoxy}, \ C_1\text{-}C_6\text{-}}}{\text{alkylamino}, \ C_2\text{-}C_6\text{alkenyl}, \ C_2\text{-}C_6\text{alkynyl}, \ C_2\text{-}C_6\text{haloalkenyl}, \ C_2\text{-}C_6\text{haloalkynyl}; \ \text{or } \ R_{13}\text{ together with }}{\text{R}_{11}\text{ is a } \ C_1\text{-}C_6\text{alkylene bridge}; \ \text{or } \ R_{13}\text{ together with } \ R_{12}\text{ a } \ C_3\text{-}C_6\text{alkylene bridge}; \ \text{preferably}}$ $\underline{\text{wherein } \ R_{13}\text{ is } \ C_1\text{-}C_{12}\text{alkyl}, \ C_1\text{-}C_6\text{haloalkyl}, \ C_3\text{-}C_6\text{cycloalkyl}, \ C_2\text{-}C_6\text{alkenyl}, \ C_2\text{-}C_6\text{alkynyl},}}{\text{C}_2\text{-}C_6\text{haloalkynyl};}$

R₁₄ is H, C₁-C₆alkyl, C₃-C₆cycloalkyl-C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

 R_{15} is H, OH, C_1 - C_{12} alkyl, C_1 - C_6 alkoxy, C_1 - C_{12} haloalkyl, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 haloalkenyloxy, -N(R_{18})₂, C_3 - C_6 cycloalkyl, aryl, aryloxy, benzyloxy or heterocyclyl; or R_{15} together with R_{12} is an C_1 - C_6 alkylene bridge; and

 $\underline{R_{16} \text{ is H, C}_{1}\text{-}C_{6}\text{alkyl, C}_{1}\text{-}C_{6}\text{haloalkyl, C}_{3}\text{-}C_{6}\text{alkenyl, C}_{3}\text{-}C_{6}\text{haloalkenyl, C}_{3}\text{-}C_{6}\text{alkyl, C}_{1}\text{-}C_{6}\text{alkyl, C}_{1}\text{-}C_{6}\text{alkyl$

 $\underline{C_1-C_6alkoxy-C_1-C_6alkoxy-C_1-C_6alkyl},\ C_1-C_6haloalkoxy-C_1-C_6alkoxy-C_1-C_6alkyl},\ C_3-C_6alkyl,\ C_3-C_6alkyl,\$

 $\underline{R_{17} \text{ is H, C}_{1}\text{-}C_{6}\text{alkyl, C}_{1}\text{-}C_{6}\text{haloalkyl, C}_{3}\text{-}C_{6}\text{alkenyl, C}_{3}\text{-}C_{6}\text{haloalkenyl, C}_{3}\text{-}C_{6}\text{alkyl, C}_{1}\text{-}C_{6}\text{alkyl, C}_{1}\text{-}C_{6}\text{alkyl$

the two substituents R_{18} are each independently of the other C_1 - C_{12} alkyl or benzyl or together are a C_2 - C_6 alkylene bridge;

or[[and]], where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form.

- 2. (Original) A compound of formula (I) according to claim 1 in free form.
- 3. (Original) A compound of formula (I) according claim 2, wherein X_1 and X_2 are chlorine or bromine.
- 4. (Cancelled).
- 5. (Currently Amended) A compound of formula (I) according claim $\underline{1}[[4]]$, wherein A_3 is propylene.
- 6. (Original) A compound of formula (I) according to claim 1, wherein R_{11} and R_{12} together are a bond.
- 7. (Original) A pesticidal composition which comprises as active ingredient at least one compound of formula (I) according to claim 1 in free form or in agrochemically acceptable salt form, and at least one adjuvant.
- 8. (Original) A method of controlling pests, which comprises applying a pesticidal composition as described in claim 7 to the pests or to the locus thereof.
- 9. (New) A compound of formula (I) according to claim 1, wherein Y is oxygen.

10. (New) A compound of formula (I) according to claim 1, wherein R_1 and R_2 are bromine or chlorine.