6

Orthogonality and Least Squares

6.7

Inner Product Spaces

- **Definition**An **inner product** on a vector space V is a function that, to each pair of vectors \mathbf{u} and \mathbf{v} in V, associates a real number $\langle u, v \rangle$ and satisfies the following axioms, for all \mathbf{u} , \mathbf{v} , \mathbf{w} in V and all scalars c:
- 1. $\langle u, v \rangle = \langle v, u \rangle$
- 2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$
- 4. $\langle u, u \rangle \ge 0$ and $\langle u, u \rangle = 0$ if and only u = 0
- A vector space with an inner product is called an inner product space.

Example 1Fix any two positive numbers—say, 4 and 5—and for vectors $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ and $\mathbf{v} = (v_1, v_2)$ in \mathbb{R}^2 , set

$$\langle \mathbf{u}, \mathbf{v} \rangle = 4u_1 v_1 + 5u_2 v_2 \tag{1}$$

- Show that equation (1) defines an inner product.
- Solution Certain Axiom 1 is satisfied, because $\langle u, v \rangle = 4u_1v_1 + 5u_2v_2 = 4u_1v_1 + 5u_2v_2 = \langle v, u \rangle$.

• If $w = (w_1, w_2)$, then

$$\langle u + v, w \rangle = 4(u_1+v_1)w_1 + 5(u_2+v_2)w_2$$

= $4u_1w_1 + 5u_2w_2 + 4v_1w_1 + 5v_2w_2$
= $\langle u, w \rangle + \langle v, w \rangle$

This verifies Axiom 2. For Axiom 3, compute

$$\langle cu, v \rangle = 4(cu_1)v_1 + 5(cu_2)v_2 = c(4u_1v_1 + 5u_2v_2) = c\langle u, v \rangle$$

- For Axiom 4, note that $\langle u, u \rangle = 4u_1^2 + 5u_2^2 \ge 0$, and $4u_1^2 + 5u_2^2 = 0$ only if $u_1 = u_2 = 0$, that is, if u = 0.
- Also, $\langle 0, 0 \rangle = 0$. So (1) defines an inner product on \mathbb{R}^2 .

LENGTHS, DISTANCES, AND ORTHOGONALITY

Let V be an inner product space, with the inner product denoted by $\langle u, v \rangle$. Just as in \mathbb{R}^n , we define the length, or norm, of a vector v to be the scalar

$$||v|| = \sqrt{(v, v)}$$

- Equivalently, $||v||^2 = \langle v, v \rangle$.
- A unit vector is one whose length is 1. The distance between u and v is ||u v||. Vectors u and v are orthogonal if $\langle u, v \rangle = 0$.

Given a vector v in an inner product space V and given a finite-dimensional subspace W, we may apply the Pythagorean Theorem to the orthogonal decomposition of v with respect to W and obtain

$$||v||^2 = ||proj_W v||^2 + ||v - proj_W v||^2$$

• See Fig 2 on the next slide. In particular, this shows that the norm of the projection of v onto W does not exceed the norm of v itself. This simple observation leads to the following important inequality.

FIGURE 2

The hypotenuse is the longest side.

• Theorem 16 The Cauchy-Schwarz Inequality: For all u, v in V,

$$|(u,v)| \le ||u|| ||v|| \tag{4}$$

- **Proof** If u = 0, then both sides of (4) are zero, and hence the inequality is true in this case.
- If $u \neq 0$, let W be the subspace spanned by u.
- Recall that ||cu|| = |c| ||u|| for any scalar c. Thus $||proj_W v|| = \left| \frac{\langle v, u \rangle}{\langle u, u \rangle} u \right| = \frac{|\langle v, u \rangle|}{|\langle u, u \rangle|} u = \frac{|\langle v, u \rangle|}{||u||^2} ||u|| = \frac{|\langle u, v \rangle|}{||u||}$
- Since $||proj_W v|| \le ||v||$, we have $\frac{|\langle u, v \rangle|}{||u||} \le ||v||$, which gives (4).

• Theorem 17 The Triangle Inequality: For all u, v in V,

$$||u + v|| \le ||u|| + ||v||$$

■ **Proof**
$$||u + v||^2 = \langle u + v, u + v \rangle = \langle u, v \rangle + 2\langle u, v \rangle + \langle v, v \rangle$$

 $\leq ||u||^2 + 2|\langle u, v \rangle| + ||v||^2$
 $\leq ||u||^2 + 2||u||||v|| + ||v||^2$
 $= (||u|| + ||v||)^2$

• The triangle inequality follows immediately by taking square roots of both sides.