GATE (ALL BRANCHES)

Engineering Mathematics

Differential Equation + Partial differential

By-Rahul Sir

Lecture No. 01

Reduced to Variable separable

Problems based on Variable Separable Method

Differential Equations of Differential Egin + type V Order and Degree V Solution of DE Solution of first order D.E V Solution of SECOND order D.E Solution of Counchy Enler Equi Partial Off Equit

Pw

A Equation Contains dependent Variable + Independent and with Its derivative is called Differential Equi $\frac{dy}{dx} = x^2y , \frac{d^2y}{dx^2} + w^2x = 0$ $\frac{d^22}{dt^2} + 5\frac{da}{dt} + 69 = 0$

dy + Py = Q dx P and B. Are function of x only Types of D.E.: If Single Dependent variable + Single Indeported to the Pordinary derivative variable to Dalo [Dadonary D.E.) x+5y=0

CASEO2: If Partial

Partial derivatures ARE Imus ved

Two or More

partial derivative

Classification of D.E (order And DEGREE) x3/2-x2-4=0 $\left(\frac{d^2y}{dx^2}\right)^{3/2} \left(\frac{dy}{dx}\right)^{\frac{1}{2}} - 4 = 0$ In Vier of algebra Rules.

Nx + x3/2 = 0 DEAREE -> both indes Remove The Radical $\left(\frac{d^{3}y}{dx^{2}}\right)^{3/2} - \left(\frac{dy}{dx}\right)^{3/2} - 4 = 0$ Power

DE4R

Square It

Solution of Refferential Equation:

First order Refferential Equation:

Degree - Anything

Mdx + Ndy = Where M and N function x, y only

M(x,y)dx+N(x,y)dy=0

M and N ARE functions of x, y

Solution of First order Efferential Egyn: general $\frac{dy}{dx} = f(x)$ or f(y) or $\frac{f(x)}{f(y)}$ or $f(x) \cdot f(y)$ or f(x)or f(2)-f(7)

02 X(x) Y(7) Where X(x) is a Function of x only Y (y) is a function of young

$$\frac{dy}{dx} = \chi(x) + \gamma(y), \chi(x) - \gamma(y)$$

first order DE

G=6.67 X10-11 N.M37 KEW Solution of Ist order D.E: X is a function of zarly SEprate The Variable solution of D.E C= arbitrary constant

#Q. A differential equation $\frac{di}{dt} - 2i = 0$ is applicable over -10 < t < 10.

If i(4) = 10, then i(-5) is ______.

$$\frac{di}{dt} - 2i = 0$$
 $i(4) = 10$ $i(-5) = \sqrt{100}$
First order.
DF

Solution of this D.E i(t) = 10e2t-8

$$i(-5) = 10e^{2x-5-8}$$
 $= 10e^{-18}$ Ang

STEP 06

STEP05

#Q. For the differential equation $\frac{dy}{dt} + 5y = 0$ with y(0) = 1, the general solution is

(c)
$$5e^{-5t}$$

(d)
$$e^{\sqrt{-5t}}$$

$$\frac{dy}{dt} + 5y = 0 \\ y = (-5) = 1$$

$$y = e^{-5} + e = Ae^{5}$$

$$1 = Ae^{0}$$

$$A = 1$$

#Q. If at every point of a certain curve, the slope of the tangent equals $\frac{-2x}{y}$, the curve is

Ellipse
$$\begin{cases} y \, dy = \int -2x \, dx \\ \frac{x^2 + y^2}{b^2} = 1 \end{cases} = \frac{y^2 + x^2}{a^2 + b^2} = C$$

#Q. The solution of the first order differential equation $\dot{x}(t) = -3 x(t)$, $x(0) = x_0$ is

(a)
$$x(t) = x_0 e^{-3t}$$

(b)
$$x(t) = x_0 e^{-3}$$

(c)
$$x(t) = x_0 e^{-t/3}$$

(d)
$$x(t) = x_0 e^{-t}$$

$$\chi(0) = \chi_0$$

$$\chi_0 = \Lambda_0 + 0$$

$$\Lambda = \chi_0$$

$$A=76$$
 $X(t)=76e^{-3t}$

$$\int_{\Lambda}^{\Delta \chi} = -3dt$$

$$= \int_{\Lambda}^{\Delta \chi} = -3t + C$$

$$= \chi = -3t + C$$

Biotransformation of an organic compound having concentration (x) can be #Q. modeled using an ordinary differential equation $\frac{dx}{dt} + kx^2 = 0$, where k is the reaction rate constant. If x = a at t = 0 then solution of the equation is

Do yourself.

(a)
$$x = a e^{-kt}$$

(a)
$$x = a e^{-kt}$$

(b) $\frac{1}{x} = \frac{1}{a} + kt$

b)
$$\frac{1}{x} = \frac{1}{a} + kt$$

(c)
$$x = a(1-e^{-kt})$$

(d)
$$x = a + kt$$

$$\frac{dx}{dt} = -K x^2$$
If $x = a$ at $t = 0$

The solution of $\frac{dy}{dx} = y^2$ with initial value y(0) = 1 is bounded in the interval is #Q.

$$y=\frac{1}{(1-x)}$$

and $y=\frac{1}{(1-x)}$

and $y=\frac{1}{(1-x)}$

and $y=\frac{1}{(1-x)}$

and $y=\frac{1}{(1-x)}$

(b)
$$-\alpha \leq x \leq 1$$
 Ay $1 - \infty \leq x \leq \infty$ $\frac{1}{2}$ Unbounded

(d)
$$-2 \le x \le 2$$
 C) $\pi / \pi < |$ Bounded.

D) Unbounded.

#Q. Match each differential equation in Group I to its family of solution curves from Group II. P(2) R(3) R(3) S(1)

P:	$\frac{dy}{dx} = \frac{y}{x}$	(1)	Circles
Q:	$\frac{dy}{dx} = \frac{-y}{x}$	(2)	Straight lines
R:	$\frac{dy}{dx} = \frac{x}{y}$	(3)	Hyperbolae
S:	$\frac{dy}{dx} = \frac{-x}{y}$		

Codes:

(b)
$$P-1$$
, $Q-3$, $R-2$, $S-1$

(c)
$$P-2$$
, $Q-1$, $R-3$, $S-3$

カス 元 ター 一九

lny = -lnx + ln lny = -ln(x) lny = -ln(x)

Xy=c) kyperhole

#Q. The solution of the differential equation $\frac{dy}{dx} - y^2 = 1$ satisfying the condition Separable

$$y(0) = 1 is$$

(a)
$$y = e^{x^2}$$

(b)
$$y = \sqrt{x}$$

$$(c) \quad y = \cot(x + \pi/4)$$

(d)
$$y = \tan(x + \pi/4)$$

$$tan - 1y = x + c$$
 $tan - 1y = x + c$
 $tan - 1y =$

Do yourse /

- #Q. The order and degree of a differential equation $\frac{d^3y}{dx^3} + 4\sqrt{\left(\frac{dy}{dx}\right)^3} + y^2 = 0$
 - are respectively

- (b) 2 and 3
- (c) 3 and 3
- (d) 3 and 1

#Q. The solution of the ordinary differential equation $\frac{dy}{dx}$ + 2y = 0 for the boundary

condition,
$$y = 5$$
 at $x = 1$ is

(b)
$$y = 2e^{-2x}$$

(c)
$$y = 10.95e^{-2x}$$

