AI1072: Machine learning, exercise sheet 4

Preparations (on paper)

Compute the following derivatives!

- Compute the following of a) $\frac{\partial}{\partial x_3} \sum_{i=1}^5 x_i$ b) $\frac{\partial}{\partial x_6} \sum_{i=1}^5 x_i$ c) $\frac{\partial}{\partial x_3} \sum_{i=1}^5 (2x_i 5)^2$ d) $\frac{\partial}{\partial x_3} \sum_{i=1}^5 (x_i^2 5x_i)^2$ e) $\frac{\partial}{\partial x_3} \cos(x_3)x_3$ f) $\frac{\partial}{\partial x_3} \cos(x_3)x_4$ g) $\frac{\partial}{\partial x_3} \cos(\exp(x_3))$

Vector-vector chain rule 2

Given the function $\vec{g}(\vec{x})$ with $g_i(\vec{x}) = 2x_i$, and $f(\vec{x}) = ||\vec{x}||^2$: compute the partial derivative $\frac{\partial f(g(\vec{x}))}{\partial x_1}$!

3 Vector-vector chain rule

Given the function $\vec{y}(\vec{x}) = \vec{S}(\vec{x})$ and $\mathcal{L}(\vec{y}) = -\sum_i t_i \ln(y_i)$: compute the partial derivative $\frac{\partial \mathcal{L}(\vec{y}(\vec{x}))}{\partial x_1}$! \vec{S} is the softmax function, what does this remind you of??

4 Gradient descent (on paper)

Consider the function $f(\vec{x}) = x_1^2 + 2x_2^2$. Assuming a starting point of $\vec{x}_0 = [1, 3]$ and a step size of $\epsilon = 0.1$: perform 3 steps of gradient descent, that is, compute the values of x_1 , x_2 , x_3 , x_4 , and x_5 by iteration.

5 Gradient descent (on the computer)

Write a program that performs N steps of gradient descent for f in Python, with starting point and steps sizes that are constants and which can be changed easily. Implement the function f(x) and its gradient grad f(x) as functions that take a single 1D numpy array x as argument and return the function value as a scalar, or the gradient as an 1D array. After each iteration, display the current value of \vec{x} !