

Algorithmen und Datenstrukturen

Wintersemester 2018/19 25. Vorlesung

Leichte Kreise in Graphen

Kürzeste Kreise

- Gewichteter und ungewichteter Fall
- Gerichteter und ungerichteter Fall

Z.B. für einen ungewichteter und ungerichteter Graphen G:

Für einen Knoten v liefert BFS(G, v) – bis zur ersten Nicht-Baumkante – einen kürzesten Kreis C_v durch v.

Der kürzeste der Kreise in der Menge $\{C_v \mid v \in V\}$ ist ein kürzester Kreis in G.

Laufzeit: O(VE)

Minimales durchschnittliches Kantengewicht

Sei G = (V, E) ein gerichteter Graph mit beliebigen Kantengewichten $w \colon E \to \mathbb{R}$. Sei n = |V|.

Für einen gerichteten Kreis $C = \langle e_1, e_2, \ldots, e_k \rangle$ sei

$$\mu(C) = \frac{1}{k} \sum_{i=1}^{k} w(e_i)$$

sein durchschnittliches Kantengewicht.

$$\mu^{\star} = \mu(C^{\star}) = \frac{3}{7}$$

Sei $\mathcal C$ die Menge aller gerichteter Kreise in $\mathcal G$ und

$$\mu^{\star} = \min_{C \in \mathcal{C}} \mu(C)$$

das minimale durchschnittliche Kantengewicht eines Kreises (minimum mean cycle weight).

Rohe Gewalt

Wir suchen also einen Kreis C^* mit $\mu(C^*) = \mu^*$, d.h. einen Kreis mit minimalem durchschnittlichem Kantengewicht.

```
\begin{aligned} & \text{MinMeanCycleBruteForce}(\text{DirectedWeightedGraph } G, w) \\ & \mu_{\min} = \infty \\ & \textbf{foreach } C = \langle e_1, e_2, \dots, e_k \rangle \in \mathcal{C} \textbf{ do} \\ & \left\lfloor \begin{array}{c} \mu = \frac{1}{k} \sum_{i=1}^k w(e_i) \\ \textbf{if } \mu < \mu_{\min} \textbf{ then} \\ & \left\lfloor \begin{array}{c} \mu_{\min} = \mu \\ C' = C \end{array} \right. \end{aligned}
```

Laufzeit? Mindestens exponentiell in |V| :-(höchstens exponentiell in |E|

Vorbereitungen

Wir nehmen an, dass G stark zusammenhängend ist, d.h. es gibt für jedes Knotenpaar (u, v) einen gerichteten u-v-Weg.

Ansonsten zerlegen wir G in seine starken Zusammenhangskomponenten (wie?*) und betrachten jede separat.

Sei s ein beliebiger Knoten von G.

Sei $\delta(s, v)$ das Gewicht eines kürzesten (leichtesten) s-v-Wegs.

Für k = 0, ..., n-1 sei $\delta_k(s, v)$ das Gewicht eines kürzesten s-v-Wegs, der aus $genau\ k$ Kanten besteht (sonst ∞).

^{*)} Im Prinzip durch ein oder zwei Tiefensuchen (siehe https://en.wikipedia.org/wiki/Strongly_connected_component)

Zeige: Falls $\mu^* = 0$, dann gilt:

- 1. G hat keinen Kreis mit negativem Gewicht und
- 2. $\delta(s, v) = \min_{0 \le k \le n-1} \delta_k(s, v)$ für jeden Knoten v.

Beweis.

1. Angenommen es gäbe einen Kreis C mit w(C) < 0.

$$\Rightarrow \mu(C) < 0 \Rightarrow \mu^* < 0$$

- 2. Betrachte s-v-Weg π mit k > n-1 Kanten.
 - $\Rightarrow \pi$ enthält Kreis C. Aber $w(C) \geq 0$. $\Rightarrow w(\pi \setminus C) \leq w(\pi)$
 - \Rightarrow Es gibt einen kürzesten s-v-Weg mit $\leq n-1$ Kanten.

Schritt II

Falls $\mu^* = 0$, dann gilt:

- G hat keinen Kreis mit negativem Gewicht und
- $-\delta(s,v) = \min_{0 \le k \le n-1} \delta_k(s,v)$ für jeden Knoten v. (*)

Zeige: Falls $\mu^* = 0$, dann gilt für jeden Knoten ν

$$\max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} \ge 0.$$

Beweis: Nach Def. von δ gilt: $\delta_n(s, v) \geq \delta(s, v)$

Wegen (*) gilt:
$$\delta(s, v) = \delta_k(s, v)$$
 für ein $k \in \{0, ..., n-1\}$

Also gilt
$$\delta_n(s, v) \geq \delta_k(s, v)$$
 für ein $k \in \{0, ..., n-1\}$

$$\Rightarrow \max_{0 \le k \le n-1} \delta_n(s, v) - \delta_k(s, v) \ge 0 \underset{n-k>0}{\Rightarrow} \operatorname{Beh}_{n-k>0}$$

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C. Sei x das Gewicht des Wegs von u nach v auf C.

Zeige: $\delta(s, v) = \delta(s, u) + x$.

Klar: $\delta(s, v) \leq \delta(s, u) + x$.

Aber warum kann es keinen kürzeren Weg von s nach v geben?

Angenommen, es gälte $\delta(s, v) < \delta(s, u) + x$.

Dann gäbe es einen Weg von s über v nach u der Länge...

$$\delta(s, v) - x < (\delta(s, u) + x) - x = \delta(s, u)$$
 zur Def. von δ .

Schritt IV

Falls $\mu^* = 0$, dann gilt für jeden Knoten ν

$$\max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} \ge 0.$$

Zeige:

Falls $\mu^* = 0$, dann gibt es einen Knoten ν auf dem Kreis C^* , so dass

$$\max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} = 0.$$

Schritt III

$$\Rightarrow \delta_n(s,v) = \delta(s,v).$$
 $n-i$ Kanten
 $(C^* \text{ wird } > 1 \text{ Mal durchlaufen!})$
 $\Rightarrow \delta_n(s,v) = \delta_k(s,v).$
Aber für welches k gilt $\delta_n(s,v) = \delta_k(s,v)$?

Falls $\mu^* = 0$, dann gilt für jeden Knoten ν

$$\max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} \ge 0.$$

Falls $\mu^* = 0$, dann gibt es einen Knoten v auf dem Kreis C^* , so dass

$$\max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} = 0.$$

Zeige:

Falls $\mu^{\star} = 0$, dann

$$\min_{v \in V} \max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} = 0.$$

Klar...

Falls $\mu^* = 0$, dann

$$\min_{v \in V} \max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} = 0.$$

Zeige:

Falls wir eine Konstante t zum Gewicht jeder Kante von G addieren, dann steigt μ^* um t.

Falls $\mu^* = 0$, dann

$$\min_{v \in V} \max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} = 0.$$

Zeige:

Falls wir eine Konstante t zum Gewicht jeder Kante von G addieren, dann steigt μ^* um t.

Zeige damit, dass

$$\mu^{\star} \stackrel{?}{=} \min_{v \in V} \max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k}.$$

Zeige: Steigt auch um t, wenn alle Gew. um t erhöht werden.

Falls $\mu^* = 0$, dann

$$\min_{v \in V} \max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} = 0.$$

Zeige:

Falls wir eine Konstante t zum Gewicht jeder Kante von G addieren, dann steigt μ^* um t. $+\frac{nt-kt}{n-k}=+t$

Zeige damit, dass

t, dass
$$\mu^* = \min_{v \in V} \max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k}.$$

Zeige: Steigt auch um t, wenn alle Gew. um t erhöht werden.

Falls
$$\mu^*=0$$
, dann
$$\min_{v\in V}\max_{0\leq k\leq n-1}\frac{\delta_n(s,v)-\delta_k(s,v)}{n-k}=0.$$
 \big|\((**)\)

Zeige:

Falls wir eine Konstante t zum Gewicht jeder Kante von G addieren, dann steigt μ^* um t.

Zeige damit, dass

$$\alpha(t) := \mu^* = \max_{v \in V} \max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k} =: \beta(t)$$

Zeige: Steigt auch um t, wenn alle Gew. um t erhöht werden.

Also: α und β sind *lineare* Fkt. in t mit $\alpha(-\mu^*) = \beta(-\mu^*)$ und Steigung $1 \Rightarrow \alpha \equiv \beta$.

Es gilt

$$\mu^* = \min_{v \in V} \max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k}.$$

[Karp, 1978]

Satz. Ein Kreis C^* mit kleinstem durchschnittlichen Kantengewicht $(\mu(C^*) = \mu^*)$ lässt sich in O(VE) Zeit berechnen.

Gib einen Algorithmus an, der μ^* in O(VE) Zeit berechnet:

- Setze $\delta_0(s,s)=0$ und, für $v\in V\setminus\{s\}$, setze $\delta_0(s,v)=\infty$.
- Für k = 1, ..., n-1 und $v \in V$, berechne in O(indeg v) Zeit $\delta_k(s, v) = \min_{uv \in E} \delta_{k-1}(s, u) + w(u, v)$.

Dies benötigt insg. O(VE) Zeit.

• Berechne μ^* nach (***) in $O(V^2)$ Zeit.