10-Day Light \rightarrow Medium Study Plan for LLM-Augmented Human-in-the-Loop MARL

Using ENSIA RL Lectures + Sutton & Barto + Hands-on Tasks

FYP focus: LLM-augmented MARL with human-in-the-loop instruction and explanations

Contents

1	How to Use This Plan	1
2	Day 1 — Reset & Tooling	4
3	$\mathbf{Day} \ \mathbf{2Bandits} \rightarrow \mathbf{MDPs} \rightarrow \mathbf{DP}$	4
4	Day 3 — Monte-Carlo (MC) Prediction & Control	4
5	Day 4 — TD Learning: SARSA, Q-learning, Expected SARSA	5
6	Day 5 — Planning + Learning: Dyna-Q	5
7	Day 6 — Function Approximation: Tabular \rightarrow Linear/NN	5
8	Day 7 — Advanced Deep RL (Policy Gradients, Actor-Critic, Off-Policy)	6
9	Day 8 — Multi-Agent RL (PettingZoo MPE; Independent Learners)	6
10	Day 9 — LLM Bridge I: Instruction \rightarrow Structured Goal Spec	6
11	Day 10 — LLM Bridge II: Explanations & Human Feedback Hook	7
12	Daily Checklist (Quick Reference)	8
13	Evaluation Metrics (to reuse in your FYP)	8
14	Notes on Scope Management	8
15	Appendix A: Tiny PPO Script (SB3)	8
16	Appendix B: Minimal PettingZoo Loop	9
17	Appendix C: Prompt Sketches (LLM Bridge)	9
18	(Optional) Further Reading Map	9

1 How to Use This Plan

Goal. In 10 days of light to medium intensity, refresh core RL (tabular \rightarrow deep), spin up a minimal **MARL** task, and build a usable **LLM bridge** for (i) translating human instructions into structured goals and (ii) generating agent explanations.

Daily cadence (3–5h). Each day includes: *Objectives, Read/Watch, ENSIA slides / S&B chapters, Hands-on*, and *Deliverable*. Keep deliverables tiny and reproducible.

Assumed local material. ENSIA PDFs in your repo:

- 1-Intro.pdf, 2-Bandits.pdf, 4-DP.pdf, 5-MC.pdf, 6-TD.pdf, 7-Dyna architecture.pdf, 8-Prediction with Approximation.pdf, 9-Control with Approximation.pdf, 11-Advanced RL1.pdf, 11-Advanced RL2.pdf
- SuttonBartoIPRLBook2ndEd.pdf (Sutton & Barto, RL: An Introduction, draft 2e)

Software/Hardware Setup (Fedora + RTX 3050Ti)

Use Conda, PyTorch (CUDA), Gymnasium, PettingZoo, Stable-Baselines3, and an LLM runtime (API or local).

```
Listing 1: One-time environment setup
```

```
# (1) Miniconda (if not installed)
\# Visit the official Miniconda page and install for Linux x86\_64, then:
conda create -n fyp-rl python=3.11 -y
conda activate fyp-rl
# (2) PyTorch (CUDA-enabled; adjust to your local CUDA compatibility)
pip install torch torchvision torchaudio --index-url https://download.
   pytorch.org/whl/cu118
# (3) Core RL stack
pip install gymnasium == 0.29.1 gymnasium [classic-control] == 0.29.1 \
            pettingzoo == 1.24.3 supersuit == 3.9.3 \
            stable-baselines3[extra] == 2.3.2
# (4) Plotting, utils
pip install numpy scipy matplotlib seaborn pandas tqdm
# (5) LLM bridge (choose one: API or local)
# API-based (example): openai (or other provider sdks)
pip install pydantic == 2.* langchain == 0.2.* langchain - community
# Local (optional): llama-cpp-python (CPU/GPU build) or use Ollama CLI
pip install llama-cpp-python
# Or install Ollama from official docs and run models locally
```

Repo Skeleton (create once)

Listing 2: Suggested repo layout

```
fyp-rl/
  baselines/
                       # Day 2
    bandits/
    dp/
                       # Day 2
                       # Day 3
    mc/
                       # Day 4
    td/
    dyna/
                       # Day 5
    deep/
                       # Days 6-7 (PPO/SAC)
  marl/
    mpe_simple_spread/ # Day 8
  llm_bridge/
    goal_schema/
                     # Day 9
    explain/
                       # Day 10
  experiments/
    day01_api_check.ipynb
    . . .
```

data/
README.md
requirements.txt

2 Day 1 — Reset & Tooling

Objectives. Refresh RL framing; ensure Gymnasium & PettingZoo loops run locally. Read/Watch.

- **S&B** Ch. 1: The RL Problem.
- ENSIA 1-Intro.pdf: presentation, course scope, basic definitions.

Hands-on.

- 1. Minimal Gymnasium loop: FrozenLake-v1 or CartPole-v1.
- 2. Minimal PettingZoo loop: MPE simple_v3 (reset, step random, render or log).

Deliverable. Notebook: experiments/day01_api_check.ipynb showing both loops running.

3 Day 2 — Bandits \rightarrow MDPs \rightarrow DP

Objectives. Move from stateless bandits to MDPs, then planning (policy/value iteration). **Read/Watch.**

- S&B Ch. 2 (Bandits), Ch. 3 (Finite MDPs), Ch. 4 (Dynamic Programming).
- ENSIA 2-Bandits.pdf, 4-DP.pdf.

Hands-on.

- 1. Implement ϵ -greedy k-armed bandit (stationary, non-stationary).
- 2. Implement Value Iteration on a tiny gridworld (e.g., 4x4) and plot V convergence.

Deliverables.

- baselines/bandits/bandit_egreedy.py
- baselines/dp/value_iteration.py + plot of $||V_{t+1} V_t||$ vs iterations.

4 Day 3 — Monte-Carlo (MC) Prediction & Control

Objectives. First model-free methods; connect returns to V/Q. Read/Watch.

- S&B Ch. 5 (Monte Carlo Methods).
- ENSIA 5-MC.pdf.

Hands-on.

- 1. First-visit MC prediction on a small episodic gridworld.
- 2. MC control with ϵ -greedy improvement; compare to DP policy.

Deliverables. baselines/mc/mc_prediction.py, mc_control.py + brief markdown comparing MC vs DP.

5 Day 4 — TD Learning: SARSA, Q-learning, Expected SARSA

Objectives. Core online TD control that you'll reuse as baselines. **Read/Watch.**

- S&B Ch. 6 (Temporal-Difference Learning).
- ENSIA 6-TD.pdf.

Hands-on.

- 1. Implement SARSA & Q-learning on CliffWalking-v1 under identical ϵ schedule.
- 2. (Optional) Expected SARSA on the same environment.

Deliverables. baselines/td/sarsa.py, q_learning.py, with a single chart of episode return (SARSA vs QL).

6 Day 5 — Planning + Learning: Dyna-Q

Objectives. Bridge model-free and model-based; improve sample efficiency. **Read/Watch.**

- S&B Ch. 8 (Planning & Learning with Tabular Methods).
- ENSIA 7-Dyna architecture.pdf.

Hands-on.

- 1. Add a simple model (dictionary of $(s, a) \to (r, s')$) to Q-learning.
- 2. Run planning updates per real step with $k \in \{0, 5, 20\}$ and compare steps-to-threshold-return.

Deliverable. baselines/dyna/dyna_q.py + plot: env steps to reach a fixed average return vs k.

7 Day 6 — Function Approximation: Tabular \rightarrow Linear/NN

Objectives. Understand approximation pitfalls (divergence), then use stable deep baselines. Read/Watch.

- S&B Ch. 9 (On-policy prediction/control with approximation overview).
- ENSIA 8-Prediction with Approximation.pdf, 9-Control with Approximation.pdf.

 Hands-on.
- 1. Train PPO on CartPole-v1 using Stable-Baselines3 (short run, default hyperparams).
- 2. Save learning curves and a short rollout video/gif.

Deliverables. baselines/deep/ppo_cartpole.py, curve image(s), and notes on batch size, γ , clip ratio.

8 Day 7 — Advanced Deep RL (Policy Gradients, Actor-Critic, Off-Policy)

Objectives. Compare algorithms and *choose one* baseline family for MARL (PPO is a good default).

Read/Watch.

- ENSIA 11-Advanced RL1.pdf, 11-Advanced RL2.pdf: REINFORCE \rightarrow TRPO \rightarrow PPO; DPG \rightarrow DDPG \rightarrow Tl A2C/ACKTR; SAC.
- S&B (Policy Gradient foundations; actor-critic intuition).

Hands-on.

- 1. Train PPO and SAC on LunarLander-v2 or BipedalWalker-v3 (short runs).
- 2. Compare stability, sensitivity to seeds; pick your "production" algo.

Deliverables. Two learning curves + a 5-line rationale for your choice (e.g., PPO for stability and simplicity).

9 Day 8 — Multi-Agent RL (PettingZoo MPE; Independent Learners)

Objectives. Stand up a toy MARL task you can later couple to the LLM bridge. Read/Watch.

- PettingZoo MPE docs (conceptual); review CTDE vs. independent learners (from slides).
 - Hands-on.
- 1. Wrap PettingZoo simple_spread_v3 for independent PPO agents (one policy per agent).
- 2. Verify reward shaping and reproducibility (fix seeds; log episode stats).

Deliverables. marl/mpe_simple_spread/train_independent_ppo.py + short eval video/gif.

10 Day 9 — LLM Bridge I: Instruction \rightarrow Structured Goal Spec

Objectives. Convert human text into JSON goals your MARL code can consume (without training any model).

Design. Define a strict schema and parse LLM output into it (pydantic/JSON). Keep it deterministic and testable.

Schema (example).

```
Listing 3: Pydantic schema for task/goals
```

```
from pydantic import BaseModel, Field
from typing import List, Optional
class Constraint(BaseModel):
    name: str
    value: float
    note: Optional[str] = None
class GoalSpec(BaseModel):
    task_name: str = "mpe_simple_spread"
                                           # e.g., "left", "north-west"
    target_zone: Optional[str] = None
    formation: Optional[str] = None
                                           # e.g., "line", "circle"
    max_steps: int = Field(200, ge=1, le=10000)
    priorities: List[str] = []
                                           # e.g., ["avoid_collisions",
       "minimize_distance"]
    constraints: List[Constraint] = []
```

Hands-on.

- 1. Write a prompt template that instructs the LLM to only emit JSON matching the schema.
- 2. Implement a small parser with validation (raise on schema mismatch).
- 3. Unit tests: 3 natural-language inputs \rightarrow validated JSON specs.

 $Deliverables. \ \verb|llm_bridge/goal_schema/parse_goals.py+tests/test_goal_schema.py. \\$

11 Day 10 — LLM Bridge II: Explanations & Human Feedback Hook

Objectives. Produce post-hoc rationales and support lightweight human corrections, then re-run the episode.

Explain() design. After each episode, summarize in ≤5 sentences: (i) goal restatement, (ii) key behaviors, (iii) rule adherence/violations, (iv) improvement hint.

Feedback hook. If user says "avoid collisions and stay left; budget=200", update the JSON spec (not network weights), re-run, then regenerate explanation.

Hands-on.

- 1. Add explain(policy_trace, goal_spec) function using a compact prompt and a small model.
- 2. Build a tiny loop: text instruction \to JSON \to run episode \to explanation \to user correction \to updated JSON \to re-run.

 $\textbf{Deliverables.} \ \texttt{llm_bridge/explain/explain.py} + demo \ notebook \ \texttt{experiments/day10_hitl_demo.ipyndemo}.$

12 Daily Checklist (Quick Reference)

Day	Deliverables (minimal)
1	Jupyter notebook with Gymnasium + PettingZoo sanity loops.
2	Bandit + Value Iteration scripts & convergence plot.
3	MC prediction/control scripts & brief comparison to DP.
4	SARSA & Q-learning on CliffWalking-v1 + return chart.
5	Dyna-Q script + sample-efficiency plot vs planning steps.
6	PPO on CartPole: learning curves, rollout video/gif.
7	PPO vs SAC curves + chosen baseline rationale.
8	Independent PPO on MPE simple_spread: training + eval gif.
9	Goal JSON parser & 3 unit tests.
10	HITL demo: instruction \rightarrow JSON \rightarrow run \rightarrow explanation \rightarrow correction \rightarrow
	improved run.

13 Evaluation Metrics (to reuse in your FYP)

Use consistent metrics across baselines and ablations.

- Task performance: episodic return, success rate, time-to-goal, collision count.
- Learning: sample efficiency (steps to reach threshold), variance over seeds.
- HITL quality: instruction-to-goal validity (JSON pass rate), explanation length and rule coverage, number of human corrections to achieve target behavior.
- Computational: wall-clock time per episode, VRAM, LLM latency.

14 Notes on Scope Management

- Choose **one** domain for the first demo (MPE is perfect). Add cyber-defense or search-and-rescue later.
- Prefer **prompt-level** guidance first (no fine-tuning). If needed, distill rules into a small policy later.
- Keep strict JSON for all LLM I/O. Fail fast on schema mismatches.

15 Appendix A: Tiny PPO Script (SB3)

16 Appendix B: Minimal PettingZoo Loop

```
Listing 5: Random loop over PettingZoo MPE simple_v3

from pettingzoo.mpe import simple_v3

import numpy as np

env = simple_v3.env(render_mode=None)
env.reset(seed=42)

for agent in env.agent_iter(max_iter=200):
    obs, reward, terminated, truncated, info = env.last()
    action = env.action_space(agent).sample() if not terminated else
    None
    env.step(action)
env.close()
```

17 Appendix C: Prompt Sketches (LLM Bridge)

$Instruction \rightarrow JSON (GoalSpec)$

```
System: You generate ONLY a JSON object that matches this schema:
{ "task_name": "mpe_simple_spread", "target_zone": "...", "formation": "...",
    "max_steps": <int>, "priorities": [strings], "constraints": [{"name": "...",
    "value": <float>, "note": "..." }] }
User: Focus on the left-most target, avoid collisions, use at most 200 steps.
```

Episode Explanation

System: Summarize the episode in <=5 sentences:

- Restate the goal and key constraints.
- Describe main behaviors and any violations (collisions, wrong zone).
- Give one actionable improvement hint.

18 (Optional) Further Reading Map

- Sutton & Barto (2e draft). Ch. 1–6 (tabular foundations), Ch. 8 (Dyna), Ch. 9–11 (approx & policy gradients).
- ENSIA slides. 1-Intro, 2-Bandits, 4-DP, 5-MC, 6-TD, 7-Dyna, 8,9-Approx, 11-Adv RL.
- LLM-agents inspiration (for literature review). Zero-shot planning with LLMs; ReAct-style reasoning+acting; Reflexion-style self-critique.

By Day 10 you will have: (i) a clean bandit→DP→MC/TD→Dyna→deep ladder, (ii) a runnable MARL toy task, (iii) an LLM bridge for goals & explanations with a small HITL loop.