РАБОТА № 1

СТРУКТУРА ПРОЦЕССОРА И СОСТАВ МИКРОКОМАНД

Цель работы: изучение процессора на уровне структурной схемы, ознакомление со структурой микрокоманд (МК) и порядком ввода данных, кодирование и выполнение МК.

1. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

По материалам разделов 2 и 3 изучить структуру процессора и основных блоков, структуру МК и функции ее полей. По материалам раздела 4 ознакомиться с порядком ввода микропрограмм (МП) и исходных данных.

Выполнить упражнения из раздела 5 по указанию преподавателя.

2. СТРУКТУРА ПРОЦЕССОРА

2.1. Состав процессора

В $(M\Pi)$ состав микропрограммируемого процессора входят операционный блок, блок микропрограммного управления (БМУ), оперативная память (RAM) и микропрограммная память (MPM). Он может использоваться для выполнения алгоритмов в форме микропрограмм, а также для эмуляции операций в заданной системе команд. В последнем случае для выполнения каждой команды вызывается соответствующая микропрограмма.

Структурная схема микропрограммируемого процессора в укрупненном виде приведена на рисунке. В овалах показаны названия полей микрокоманды, которые управляют тем или иным устройством МП.

Микропрограммная память содержит 64 микрокоманды по 64 бит с адресами 0-3F.

2.2. Оперативная память

Оперативная память (ОП) содержит 512 16-разрядных слов (1024 байта) с 16-ричными адресами 0-3FF. ОП связана с операционным блоком через регистр чтения RGR, регистр записи RGW и адресный регистр ARAM. Чтобы прочитать информацию из ОП, необходимо в ARAM записать адрес и «Чтение ОП» управляющий вход подать сигнал (поле микрокоманды). В результате в RGR будет помещен результат чтения ОП: RGR := RAM[ARAM]. Возможно чтение как слова, так и отдельно старшего или младшего байта. С выхода RGR возможны передачи в регистр команд RGK, на мультиплексор MS через шину DB, как код одного из операндов, и на шину Y для записи в регистровое запоминающее устройство (РЗУ).

Чтобы записать информацию в ОП, необходимо в адресный регистр ARAM записать адрес, а в регистр записи RGW занести данные для записи с шины Y и на управляющий вход ОП подать сигнал «Запись в ОП» (поле МЕМ).

2.3. Операционный блок

В операционный блок входят блок внутренней памяти, арифметикологический блок, блок рабочего регистра.

Блок внутренней памяти включает в себя регистровое запоминающее устройство (РЗУ), состоящее из шестнадцати 16-разрядных регистров, предназначенных для хранения операндов и результатов (названия регистров приведены в табл. 2), мультиплексоров адреса МХ1 и МХ2, регистры RGA и RGB.

Чтение РЗУ происходит одновременно по адресам A и B в регистры RGA и RGB соответственно. Запись происходит по адресу B. Адреса A и B поступают на РЗУ из одноименных полей микрокоманды или из полей reg1, reg2, r/m регистра команд RGK. Выбор источника адреса осуществляется схемами мультиплексоров адреса МХ1 и МХ2 под управлением полей МА и МВ микрокоманды.

Арифметико-логический блок включает в себя мультиплексоры операндов MR и MS, управляемые полем микрокоманды SRC, арифметико-

логическое устройство ALU, сдвигатель SDA и регистры флажков RFI и RFD. На входы ALU поступают данные R и S соответственно с мультиплексоров MR и MS, а также входной перенос CO, значения которого определяется полем микрокоманды CCX. Источниками операндов ALU для входа R являются RGA и CONST из соответствующего поля микрокоманды. Источниками операндов ALU для входа S являются RGB, RGR и RGQ. Сдвигатель SDA управляется полями микрокоманды SH и N.

Флажки формируются и хранятся только на время исполнения текущей микрокоманды в регистре флажков RFl. При необходимости они переписываются в регистр длительного хранения RFD. Обозначение флажков: N - знак минус (старший бит результата), Z - признак нуля, V - признак переполнения, С - перенос из старшего бита, М - признак переноса при выполнении операции умножения на два разряда, Р – признак паритета (нечетное число единиц в результате).

Блок рабочего регистра состоит, собственно, из рабочего регистра RGQ и сдвигателя CP. RGQ используется при умножении, делении, двойном сдвиге, а также как аккумулятор и один из источников операнда S. Запись в него производится с выхода ALU со сдвигом вправо, влево или без сдвига. Управляет сдвигателем CP поля SH и N.

2.4. Блок микропрограммного управления

В состав данного блока входят:

- схема управления последовательностью микрокоманд (УПМ);
- микропрограммная память (МРМ) емкостью 64 64-битных микрокоманд;
- регистр микрокоманд RGMK;
- схема формирования признака STOP.

Основная функция УПМ – формирование последовательности адресов микрокоманд и организация циклических вычислительных процессов. В схеме управления последовательностью микрокоманд можно выделить шесть основных блоков: мультиплексор адреса MUAD, счетчик микрокоманд

СМК, счетчик циклов RACT, аппаратный стек, схему управления следующим адресом УСА. Все элементы схемы имеют разрядность 16.

Мультиплексор адреса MUAD выбирает в качестве адреса содержимое СМК, стека или прямой выход с шины DA. Адрес на эту шину может поступить из поля CONST микрокоманды или с преобразователя начального адреса PA. Выход MUAD соединен с адресным входом микропрограммной памяти МРМ и входом СМК.

Счетчик микрокоманд СМК содержит адрес следующей микрокоманды.

Регистр счетчика циклов RACT используется для записи и хранения числа циклов, поступающего с шины DA.

В аппаратном стеке емкостью 2 слова хранятся адреса возврата из подпрограмм. Указатель вершины стека STP содержит адрес последнего занесенного в стек значения.

Схема управления следующим адресом (УСА) формирует этот адрес под управлением поля СНА. В состав УСА входят мультиплексор кода условия (МКУ) и инвертор кода условия (ИКУ). Мультиплексор МХ определяет какой регистр флажков RFI или RFD будет использоваться для формирования следующего адреса микрокоманды (бит F=1 в поле JFI). Мультиплексор кода условия (МКУ) в зависимости от поля СС выбирает флажок или флажки, которые формируют код условия Х. ИКУ инвертирует сигнал X, если бит I поля JFI равен 1. Далее в зависимости от сигнала X, признака безусловного перехода (бит J=1 в поле JFI) и инструкции УПМ (поле CHA) определяется что является источником следующего адреса микрокоманды.

3. СТРУКТУРА МИКРОКОМАНДЫ И ОПИСАНИЕ ПОЛЕЙ

Микрокоманда содержит 64 бит и включает в себя 17 полей. Структура микрокоманды представлена в табл. 1.

Поля A и B задают адреса регистров РЗУ. Табл. 2 задает соответствие между адресами РЗУ и регистрами микропроцессора 8086. В регистре Е хранится копия регистра команд RGK. Регистр F используется как рабочий

регистр RW. При работе в микропрограммном режиме регистры РЗУ могут использоваться произвольным образом.

Структура микрокоманды

Таблица 1

Поле	Α	В	MA	MB	MEM	SRC	SH	N	ALU
Бит	4	4	2	2	3	3	4	4	4
Def	0	0	0	0	0	1	0	0	6
Поле	CCX	F	DST	WM	JFI	CC	СНА	COI	NST
Поле Бит	CCX 2	F 1	DST 3	WM 2	JFI 3	CC 3	CHA 4		NST 6

Обозначения:

Поле - наименование поля микрокоманды;

Бит - число бит в поле;

Def - значение поля по умолчанию.

Выбор регистров РЗУ

Таблица 2

Поле А/В	Значение	Поле А/В	Значение
0	AX	8	CS
1	CX	9	SS
2	DX	A	DS
3	BX	В	ES
4	SP	С	IP
5	BP	D	PSW
6	SI	Е	RGK
7	DI	F	RW

Поля МА и МВ управляют выбором адресов РЗУ из микрокоманды или регистра команд RGK. По умолчанию MA=MB=0, что соответствует выбору адресов из микрокоманды. Значения полей МА и МВ приведены в табл. 3.

Управление адресом РЗУ

Таблица 3

Поле МА/МВ	0	1	2	3
Источник адреса	Поле А/В МК	reg1	reg2	r/m

Поле МЕМ управляет чтением и записью памяти. Оно состоит из трех бит. Первый бит - признак обращения к памяти, второй - определяет режим чтение/запись, третий - размер данных (байт или слово). Значения поля МЕМ приведены в табл. 4.

Управление памятью

Таблица 4

Поле МЕМ	Значение	Поле МЕМ	Значение
0	NOP	4	Чтение байта
1	NOP	5	Чтение слова
2	NOP	6	Запись байта
3	NOP	7	Запись слова

Поле SRC управляет выбором источников операндов. По умолчанию SRC=1, что соответствует выбору операндов из RGA и RGB. Значения поля SRC приведены в табл. 5.

Выбор источников операндов

Таблица 5

Поле SRC	0	1	2	3	4	5	6	7
Операнд R	0000	RGA	RGA	RGA	RGA*2	CONST	CONST	CONST
Операнд S	0000	RGB	RGQ	RGR	RGB	RGB	RGR	RGQ

Поле SH управляет работой сдвигателей SDA и CP. Поле N указывает количество разрядов, на которое надо сдвигать содержимое SDA и/или CP. По умолчанию SH=0 и N=0 - передача с выхода ALU на шину Y без сдвига. Значения поля SH приведены в табл. 6.

Управление сдвигателями Таблица 6

Поле SH	Операция
0	Без сдвига
1	АС АЛУ вправо
2	ЛС АЛУ вправо
3	АС АЛУ, RGQ вправо
4	ЛС АЛУ, RGQ вправо
5	ЛС RGQ вправо
6	RGQ←ALU
8	ЛС АЛУ влево
A	ЛС АЛУ, RGQ влево
Е	Расширение знака

Примечание:

- ЛС и АС логический и арифметический сдвиги соответственно.
- В операции «Расширение знака» все биты старшего байта (8-15) устанавливаются равными биту 7.

Поле ALU управляет операциями АЛУ. По умолчанию ALU=6, что означает сложение операнда R с входным переносом C0, определяемым полем CCX. Значения поля ALU приведены в табл. 7. Среди операций АЛУ интерес представляет операция умножения на 2 бита. Данная операция позволяет в два раза повысить скорость выполнения операции умножения по сравнению с обычным методом, основанным на анализе одного бита. Операция умножения на 2 бита имеет следующий алгоритм: анализируются 2 младших бита множителя, и в зависимости от них выполняются операции сложения и сдвига. Если биты равны 00, то происходит сдвиг множителя и суммы частичных произведений (СЧП) вправо на 2 бита. Если биты равны 01, то к СЧП прибавляется значение множимого и опять происходит сдвиг на 2 бита. Если биты равны 10, то происходит сложение СЧП с удвоенным множимым и сдвиг на два бита. Если биты равны 11, то из СЧП вычитается множимое и происходит перенос единицы в следующие два разряда.

Операции АЛУ										-	Таб	лиц	a 7
Поле	Опорония АЛУ	Флажки Поле Операция АЛУ			Поле Оправодно до Дом			жкі	1				
ALU	Операция АЛУ	N	Z	V	C	ALU	Onep	лация	АЛУ	N	Z	V	C
0	Ha всех выходах «0»	0	1	0	0	8	Умнож бита	ение і	на 2	+	+	+	+
1	S - R - 1 + C0	+	+	+	+	9	R	&	S	+	+	0	0
2	R - S - 1 + C0	+	+	+	+	A	R	&	S	+	+	0	0
3	R + S + C0	+	+	+	+	В	R	&	S	+	+	0	0
4	S + C0	+	+	+	+	С	R	V	S	+	+	0	0
5	S + C0	+	+	+	+	D	R	V	S	+	+	0	0
6	R + C0	+	+	+	+	E	R	\oplus	S	+	+	0	0
7	R + C0	+	+	+	+	F	R	\oplus	S	+	+	0	0

В модели это реализовано следующим образом: в регистр RGQ заносится множитель. В поле А заносится адрес РЗУ множимого, в поле В - адрес СЧП. В поле сдвигателя задается сдвиг на 2 бита. При правильном написании микропрограммы результат будет получен в RGQ (младшие цифры) и в

регистре СЧП (старшие цифры). Для реализации переноса введен специальный флажок М. Фактически происходит анализ не двух, а трех бит - двух младших бит множителя и флажка М.

Поле ССХ управляет входным переносом. По умолчанию значение ССХ=0. Значения поля ССХ приведены в табл. 8.

<u>Управление</u>	Управление входным переносом							
Поле ССХ	0	1	2	3				
CO	0	1	С	С				

Поле F - поле фиксации флажков. При значении F=1 текущее значение флажков заносится в RFD.

Поле DST управляет записью данных с выходов SDA и RGR в РЗУ по адресу В. По умолчанию DST=0 (без записи). Значения поля DST приведены в табл. 9, где RGRL и RGRH соответственно младший и старший байты RGR, а РЗУL и РЗУН - младший и старший байты адресуемого регистра РЗУ.

Управление записью в РЗУ Таблица 9 Поле DST 2 3 4 **RGRL** RGRH SDA Источник Без записи RGR Без записи РЗУ РЗУН РЗУL РЗУ Приемник

Поле WM управляет записью в память. Значения поля WM приведены в табл. 10.

Управл	Таблица 10			
Поле WM	0	3		
Источник	Без записи	SDA	SDA	RGB
Приемник	Без записи	RGW	ARAM	ARAM

Поле JFI участвует совместно с полем СС в формировании условий перехода. Старший бит J=1 - признак безусловного перехода, бит F указывает, что условие перехода определяется флажками из RFD, бит I означает инверсию формируемого условия. При JFI=101 происходит остановка работы и формирование признака STOP. По умолчанию JFI=0.

Поле СС управляет формированием условий перехода. Обозначения переходов соответствуют условным переходам МП і8086. Значения поля СС

приведены в табл. 11. Для переходов, помеченных звездочкой, устанавливается бит инверсии I в поле JFI.

Формирование условий Таблица 11 перехода

Поле СС	Вид перехода	Условие перехода
0	JP, JNP*	P=1
1	JZ, JNZ*	Z=1
2	JS, JNS*	N=1
3	JO, JNO*	V=1
4	JC, JNC*	C=1
5	JL, JNL*	$N \oplus V=1$
6	JLE, JNLE*	$Z \vee (N \oplus V)=1$
7	JBE, JNBE*	C∨Z=1

Поле СНА обеспечивает формирование адреса следующей микрокоманды и содержит набор инструкций схемы УПМ. Значения поля СНА приведены в таблице 12. По умолчанию СНА=7 (функция СОNТ - продолжить). Столбец Y таблицы соответствует адресу следующей микрокоманды, столбец X - значению проверяемого условия (X=1, если условие выполняется, X=0, если оно не выполняется).

Инструкции схемы УПМ

Таблица 12

Поле	Maronoman	X=0		7	K=1	RACT
CHA	Мнемоника	Y	Стек	Y	Стек	KACI
0	JZ	0	Очистка	0	Очистка	Хранение
1	CJS	СМК	Хранение	CONST	Загрузка	Хранение
2	JMAP	PA	Хранение	PA	Хранение	Хранение
3	CJP	СМК	Хранение	CONST	Хранение	Хранение
4	RPCT	СМК	Хранение	CONST	Хранение	Декремент
5	CRTN	СМК	Хранение	Стек	Выгрузка	Хранение
6	LDCT	СМК	Хранение	СМК	Хранение	Загрузка
7	CONT	СМК	Хранение	СМК	Хранение	Хранение
8-F	Резерв	-	-	-	-	-

Рассмотрим подробнее выполняемые инструкции:

JZ – управление передается МК с адресом 0, и происходит очистка стека путем установки STP в состояние 0.

CJS – условный переход к подпрограмме. При X=1 продвинутый адрес МК запоминается в стеке и происходит переход по адресу подпрограммы, заданному в поле CONST.

JMAP – переход по адресу из РА.

CJP – условный переход по адресу из поля CONST при X=1.

RPCT – повторение цикла (переход по счетчику). Если RACT не равен нулю, из него вычитается 1 и выполняется переход по адресу, расположенному в поле CONST. Если RACT=0, следующая микрокоманда выбирается в естественном порядке.

CRTN – условный возврат из подпрограммы. При X=1 происходит переход по адресу из стека и выполняется декремент STP.

LDCT – загрузка счетчика и продолжение. Из поля CONST в RACT загружаются адрес или число циклов.

CONT – продолжить выборку микрокоманд в естественном порядке. Этот код устанавливается по умолчанию.

Поле CONST содержит 16-битовую константу, подключаемую к шине DA операционного блока, или адрес перехода, подаваемый на шину DA блока микропрограммного управления. По умолчанию CONST=0.

4. ДИАЛОГ ПОЛЬЗОВАТЕЛЯ С МОДЕЛЬЮ

Приложение имеет имя MICRO и его ярлык находится на РАБОЧЕМ СТОЛЕ. При запуске приложения перед пользователем появляется основная форма, состоящая из двух страниц: «Работа» и «Данные». На странице «Работа» отображаются схема процессора и текущая микрокоманда. Страница имеет четыре кнопки: «Рестарт», «Продолжить», «Стоп», «Настройка».

При нажатии на кнопку «Рестарт» происходит сброс моделируемого процессора.

При нажатии на кнопку «Продолжить» в режиме МИКРОКОМАНДА происходит выполнение одной микрокоманды и остановка до следующего нажатия на эту кнопку. В режиме КОМАНДА происходит выполнение

микрокоманд, пока в текущей МК не будет признака конца команды. В режиме ABTOMAT после рестарта происходит выполнение микрокоманд, пока не будет признака STOP или не будет выполнена последняя МК.

Кнопка «СТОП» доступна только в режиме АВТОМАТ. При нажатии на эту кнопку происходит остановка выполнения МК до нажатия на кнопку «Продолжить».

Кнопка «Настройка» вызывает окно настройки, в котором задается задержка при выполнении микрокоманд в режиме АВТОМАТ.

Страница «Данные» содержит четыре подчиненные страницы: «Регистры», «Память», «Микропрограммная память», «Таблица преобразования адресов».

На каждой из этих страниц имеются кнопки «Сохранить» и «Загрузить». При нажатии на них открываются стандартные диалоги сохранения файла и загрузки файла.

Страница «Регистры» позволяет задавать и изменять содержимое регистровой памяти микропроцессора и изменять режим отладки. Страница «Регистры» содержит также кнопки «ОК» и «Отмена». При нажатии на кнопку «ОК» внесенные в регистры изменения передаются в схему, в противном случае изменения игнорируются.

Вкладка «Память» позволяет вводить в оперативную память данные по словам или побайтно, начиная с определенного адреса. В столбце указаны старшие цифры адреса ОП, а в строке – младшие. Причем информация может вводиться как в символьном, так и в цифровом виде. Что особенно важно при решении задач криптографического кодирования, когда необходимо работать с текстом.

«Микропрограммная Страница память» содержит структуру микропрограммной памяти в виде таблицы, где столбцы – поля микрокоманды, а строки – адреса микрокоманд. При первом обращении к микропрограммной В ней памяти занесены значения, которые используются по умолчанию. Если значение поля не соответствует значению по умолчанию, необходимо указатель «мыши» установить на требуемое поле и ввести нужное значение. При отладке микропрограммы можно вставлять и удалять микрокоманды. Для этого указатель мыши надо установить на микрокоманду и нажать правую кнопку мыши. При этом будет вызвано контекстное меню и Вам необходимо будет только выбрать нужное действие.

Страница «Таблица преобразования адресов» используется в качестве преобразователя начального адреса при эмуляции команд процессора Intel x86.

5. ПРИМЕРЫ

5.1. Составить и выполнить МК вычисления выражения (BX – CX) * $4 \to$ CX

5.2. Составить и выполнить МК логического умножения регистра СХ с константой равной Fh, и результат записать в ОП по адресу 120h:

 $(CX \& Fh) \rightarrow RAM[120h].$

МКО. В ARAM записать адрес 120h.

5.3.Прочитать слово из RAM по адресу 40h в регистр DX: RAM[40h] \rightarrow DX и вычислить выражение (DX+100h) / 8 \rightarrow DX

MK0	\mathbf{R}	ARAM	раписать	алрес 40h.
TATELO.	\mathbf{L}	MI/MI/I	Janutaib	

а	ъ	ma	mb	mem	src	sh	n	alu	ccx	f	dst	wm	jfí	СС	cha	const
0	0	0	0	0	5	0	0	6	0	0	0	2	0	0	7	0040

MK1. Чтение ОП. Запись в РЗУ (DX) из RGR слова.

а	ъ	ma	mb	mem	src	sh	n	alu	CCX	f	dst	wm	jfí	СС	cha	const
0	2	0	0	5	1	0	0	6	0	0	1	0	0	0	7	0
	DX			Чт ОП		$RGR \rightarrow P3Y(DX)$										

MK2. DX := (DX + 100h) / 8

a	ь	ma	mb	mem	src	sh	n	alu	ccx	f	dst	wm	jfi	cc	cha	const
0	2	0	0	0	5	1	3	3	0	0	4	0	5	0	4	0100

SDA:=ALU/8 R+S+C0

5.4. Умножить содержимое ВХ на 10.

Умножение на некоторую константу можно свести к операциям сложения, вычитания и сдвигов, если константу представить степенями числа 2. В данном случае BX * 10 = BX * (8 + 2) = (BX * 4 + BX) * 2

\mathbf{M}	MK0. $AX:=4*BX$															
а	ъ	ma	mb	mem	src	sh	n	alu	ccx	f	dst	wm	jfí	cc	cha	const
3	0	0	0	0	1	8	2	6	0	0	4	0	0	0	7	0000
М	$\mathbf{MK1}.\ \mathbf{BX} = (\mathbf{AX} + \mathbf{BX}) *2$															
а	ъ	ma	mb	mem	src	sh	n	alu	ccx	f	dst	wm	jfí	cc	cha	const
0	3	0	0	0	1	8	1	3	0	0	4	0	0	0	7	0000

6. ВАРИАНТЫ ЗАДАНИЙ

Написать и отладить микропрограммы, которые вычисляют следующие выражения:

- 1. $(AX BX) / 16 & [100h] + 31h \rightarrow [100h]$
- 2. $(DX \& F0h) * 2 + CX [80h] \rightarrow [80h]$
- 3. $(BX [200h]) \& F0h + AX * 16 \rightarrow [200h]$
- 4. $[300h] + (SI + 35h) / 2 AX \rightarrow AX$
- 5. ([160h] & F00h) + (DX 10h) \rightarrow [160h]
- 6. $(AX DX) / 32 + ([200h] v F0F0h) \rightarrow [200h]$
- 7. $(DX * 2 + 47h) \mod 2 (DI [130h])/8 \rightarrow DI$
- 8. $CX (not (AX \& FF0h) + [140h]) / 16 \rightarrow CX$
- 9. 32 * (DI & F0F0h) + [150h] − BX → BX
- 10. $(([160h] \& not(SI)) + DI) * 16 35h \rightarrow [160h]$

- 11. DX (FFh & not(CX) + [170h]) $/2 \rightarrow DX$
- 12. $(F000h \& DI) / 64 + [100h] SI \rightarrow SI$

<u>Примечание</u>. В квадратных скобках указан адрес ячейки ОП, в которой находится операнд.

7. СОДЕРЖАНИЕ ОТЧЕТА

Отчет состоит из следующих разделов:

- 1) цель работы;
- 2) структура микропрограммируемого процессора;
- 3) структура микрокоманды с описанием назначения ее полей;
- 4) микропрограмма выполнения заданного выражения;
- 5) исходные данные для тестирования;
- 6) трасса выполнения выражения, т.е. протокол (в виде таблицы) изменения состояний основных элементов модели, выводимых на экран в режиме МИКРОКОМАНДА;
- 7) проверка вычисления выражения вручную по микрокомандам.

8. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Опишите структуру микропрограммируемого процессора и назначение основных элементов.
- 2. Опишите структуру микрокоманды и функции ее полей.
- 3. Какие действия выполняются по МК, полностью сформированной из значений по умолчанию?
- 4. Как работать с оперативной памятью?
- 5. Что находится в СМК?
- 6. Что такое АЛУ? Как оно работает?
- 7. Зачем в микропроцессоре два регистра флажков?
- 8. Перечислите источники операндов для АЛУ
- 9. Что такое комбинационный сдвигатель и как он работает?
- 10. Каково назначение блока рабрчего регистра?