Esame di Ricerca Operativa del 30/06/14

	((Cognome))		(No	ome)		(Ce	orso di laurea)
Esercizio	1. Co	ompletare la	a seguent	e tabella	a considerando il	problema	a di progr	ammazione lin	eare:	
					$\begin{cases} \max & -9 \ x \\ -x_1 + 7 \ x_2 \\ -x_1 - 4 \ x_2 \\ x_1 + 5 \ x_2 \le \\ x_1 - x_2 \le \\ -x_2 \le 1 \\ x_1 + 4 \ x_2 \le \\ \end{cases}$	$ \begin{array}{c} 1 + x_2 \\ 2 \le 7 \\ 2 \le 7 \\ 3 \le 5 \end{array} $ $ \le 6 $				
	Base	e Soluzio	ne di bas	e				Ammissibile	Degenere	
	(1.0	1						(si/no)	(si/no)	
	{1, 2									
	$\{5, 6\}$									
Esercizio	2. Eff	fettuare du	e iterazio	ni dell'a	algoritmo del simp	olesso pri	male per	il problema de	ll'esercizio 1.	
		Base	x		y		Indice		apporti	Indic
1° iteraz	zione	{4,5}								
2° iteraz		[4,0]								
L'aon										
diverse que tonnellate	ualità: e di ma	bassa, med	lia e alta. sa, media	. Per co	one del marmo ha ontratto, l'industr qualità, rispettiva	ia deve i	fornire a	una ditta ester	na almeno 50,	38 e 55
diverse que tonnellate	ualità: e di ma	bassa, med rmo di bass lue diversi s	lia e alta. sa, media	. Per co le alta nti:	ontratto, l'industr	ia deve i mente. I produz	fornire a La seguen zione (ton	ına ditta ester te tabella ripo nellate/giorno	na almeno 50, rta le caratteri	38 e 55
diverse que tonnellate	ualità: e di ma	bassa, med rmo di bass lue diversi s	lia e alta sa, media stabilimer	. Per co le alta nti:	ontratto, l'industr qualità, rispettiva	ia deve i mente. I	fornire a La seguen	una ditta ester te tabella ripo:	na almeno 50, rta le caratteri	38 e 55
diverse que tonnellate	ualità: e di ma	bassa, med rmo di bass lue diversi s	lia e alta sa, media stabilimen ilimento	. Per co le alta nti:	ontratto, l'industr qualità, rispettiva giornaliero (euro)	produz	fornire a cLa seguenzione (ton media	una ditta ester te tabella ripo nellate/giorno alta	na almeno 50, rta le caratteri	38 e 55
diverse quationnellate produzion	ualità: e di ma ne nei d minare	bassa, med rmo di bass lue diversi s Stabi	lia e alta. sa, media stabilimento 1 2 mi di lavo	Per control e alta e al	ontratto, l'industr qualità, rispettiva giornaliero (euro)	produz bassa 5	fornire a seguen La seguen zione (ton media 3 2	na ditta ester te tabella ripor nellate/giorno alta 2	na almeno 50, rta le caratteri	38 e 55
diverse quationnellate produzion	ualità: e di ma ne nei d minare	bassa, med rmo di bass lue diversi s Stabi	lia e alta. sa, media stabilimento 1 2 mi di lavo	Per control e alta e al	ontratto, l'industr qualità, rispettiva giornaliero (euro) 380 440 necessari nei due	produz bassa 5 1 stabilim	fornire a La seguen zione (ton media 3 2 2) nenti per r	na ditta ester te tabella ripor nellate/giorno alta 2	na almeno 50, rta le caratteri	38 e 55
diverse quationnellate produzion	ualità: e di ma ne nei d minare	bassa, med rmo di bass lue diversi s Stabi	lia e alta. sa, media stabilimento 1 2 mi di lavo	Per control e alta e al	ontratto, l'industr qualità, rispettiva giornaliero (euro) 380 440	produz bassa 5 1 stabilim	fornire a La seguen zione (ton media 3 2 2) nenti per r	na ditta ester te tabella ripor nellate/giorno alta 2	na almeno 50, rta le caratteri	38 e 55
diverse quationnellate produzion Deterni variabili	ualità: e di ma ne nei d minare	bassa, med rmo di bass lue diversi s Stabi	lia e alta. sa, media stabilimento 1 2 mi di lavo	Per control e alta e al	ontratto, l'industr qualità, rispettiva giornaliero (euro) 380 440 necessari nei due	produz bassa 5 1 stabilim	fornire a La seguen zione (ton media 3 2 2) nenti per r	na ditta ester te tabella ripor nellate/giorno alta 2	na almeno 50, rta le caratteri	38 e 55

ub=

1b=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) $(1,4)$ $(2,5)$				
(4,3) $(4,6)$ $(6,7)$	(1,3)	x =		
(1,2) $(1,4)$ $(2,3)$				
(3,7) (5,7) (6,7)	(3,5)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (1,4) (2,3) (3,7) (4,6) (5,7)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 10 \ x_1 + 6 \ x_2 \\ 17 \ x_1 + 14 \ x_2 \ge 63 \\ 11 \ x_1 + 19 \ x_2 \ge 43 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 548 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	15	7	23	13	21	8	6
Volumi	20	60	342	177	32	298	94

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + (x_2 - 6)^2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1 - x_2^2 \le 0, x_1 - 5 \le 0}.$$

Soluzioni del sis	tema LKT		Massimo Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
	(0,0)						
	(0,)						
	(0,-10)						
$\left(5,\sqrt{5}\right)$							
$\left(5,-\sqrt{5}\right)$		_					

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -6 \ x_1^2 - 4 \ x_2^2 + 5 \ x_1 - 8 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (5,1), (-2,3), (-1,4) e (1,-4). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-\frac{4}{3}, \frac{11}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max & -9 \ x_1 + x_2 \\ -x_1 + 7 \ x_2 \le 7 \\ -x_1 - 4 \ x_2 \le 7 \\ x_1 + 5 \ x_2 \le 5 \\ x_1 - x_2 \le 5 \\ -x_2 \le 1 \\ x_1 + 4 \ x_2 \le 6 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (-7, 0)	SI	NO
{5, 6}	y = (0, 0, 0, 0, -37, -9)	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{4, 5\}$	(4, -1)	(0, 0, 0, -9, 8, 0)	4	18, 7	2
2° iterazione	$\{2, 5\}$	(-3, -1)	(0, 9, 0, 0, -37, 0)	5	1, 13	1

Esercizio 3. Vedi altro compito

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,4) (2,5)				
(4,3) $(4,6)$ $(6,7)$	(1,3)	x = (0, 11, -6, 0, 7, 0, 0, -14, 5, 0, 3)	NO	SI
(1,2) (1,4) (2,3)				
(3,7) (5,7) (6,7)	(3,5)	$\pi = (0, 8, 12, 7, 6, 11, 16)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) $(1,4)$ $(2,3)$ $(3,7)$ $(4,6)$ $(5,7)$	(1,3) (1,4) (2,3) (3,5) (3,7) (4,6)
Archi di U	(3,5)	
x	(0, 0, 5, 7, 0, 10, 0, 0, 2, 3, 0)	(0, 0, 5, 7, 0, 7, 3, 0, 2, 0, 0)
π	(0, 4, 8, 7, 2, 17, 12)	(0, 4, 8, 7, 14, 17, 12)
Arco entrante	(3,5)	(2,5)
ϑ^+,ϑ^-	4,3	11 , 7
Arco uscente	(5,7)	(2,3)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	2	iter 3		iter 4		iter 5		iter 6		iter 7		
	π	p	π	p	π	p	π	p	π	p	π	p	π	p	
nodo visitato	1		2		4	4		3		5		7		6	
nodo 2	4	1	4	1	4	1	4	1	4	1	4	1	4	1	
nodo 3	6	1	6	1	6	1	6	1	6	1	6	1	6	1	
nodo 4	4	1	4	1	4	1	4	1	4	1	4	1	4	1	
nodo 5	$+\infty$	-1	18	2	18	2	13	3	13	3	13	3	13	3	
nodo 6	$+\infty$	-1	$+\infty$	-1	23	4	23	4	23	4	23	4	23	4	
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	23	3	17	5	17	5	17	5	
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3, 4		3, 4	, 5	3, 5	, 6	5, 6	5, 7	6,	7	(3	())	

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	8	(0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0)	8
1 - 2 - 5 - 7	9	(9, 8, 0, 0, 9, 0, 8, 0, 0, 9, 0)	17
1 - 3 - 5 - 7	4	(9, 12, 0, 0, 9, 4, 8, 0, 0, 13, 0)	21
1 - 4 - 6 - 7	7	(9, 12, 7, 0, 9, 4, 8, 0, 7, 13, 7)	28

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases}
\min 10 x_1 + 6 x_2 \\
17 x_1 + 14 x_2 \ge 63 \\
11 x_1 + 19 x_2 \ge 43 \\
x_1 \ge 0 \\
x_2 \ge 0 \\
x_1, x_2 \in \mathbb{Z}
\end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(0, \frac{9}{2}\right)$ $v_I(P) = 27$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = (0,5)

c) Calcolare un taglio di Gomory.

$$r = 2$$
 $16 x_1 + 13 x_2 \ge 59$ $r = 4$ $11 x_1 + 9 x_2 \ge 41$

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 548 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	15	7	23	13	21	8	6
Volumi	20	60	342	177	32	298	94

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(1, 1, 0, 1, 1, 0, 1)$$

 $v_I(P) = 62$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(1, 1, \frac{259}{342}, 1, 1, 0, 0\right)$$
 $v_S(P) = 73$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

soluzione ottima = (1, 1, 1, 0, 1, 0, 1)

valore ottimo = 72

Esercizio 9. vedi altro compito

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -6 \ x_1^2 - 4 \ x_2^2 + 5 \ x_1 - 8 \ x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (5,1), (-2,3), (-1,4) e (1,-4). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-\frac{4}{3},\frac{11}{3}\right)$	(-1,1)	$\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$	$\left(\frac{49}{6}, \frac{49}{6}\right)$	$\frac{2}{49}$	$\frac{2}{49}$	(-1, 4)