Visual Intelligence: Lung Cancer Histopathological Classification

Lorenzo Mioso March 2025

Introduction & Problem Statement

- Dataset: Lung cancer histopathological images (3 classes):
 - Adenocarcinoma
 - Squamous cell carcinoma
 - Benign tissue
- Classification Task: Binary classification (adenocarcinoma vs benign tissue)
- Challenge: Distinguishing subtle tissue patterns and cellular structures

Project Goals

- Compare traditional CNN vs ScatNet approaches (in particular for feature extraction)
- Achieve high accuracy with interpretable results
- Apply explainable AI techniques to validate model decisions, in particular:
 - Attribution analysis with guided backpropagation
 - Filter analysis to understand learned patterns

Data Preprocessing & Setup

- Dataset Organization:
 - K-fold cross-validation with 10 folds
 - Class distributions already balanced
 - Image size kept at 768×768 pixels
 - Grayscale conversion for analysis

Key Finding

Using grayscale images for analysis because with only color images, the model achieved high accuracy by learning *color distributions*

Preprocessing Pipeline

- Image *normalization* and *standardization* for each fold
- The dataset already includes augmentation, but I added some more:
 - Random rotations
 - Random flips
 - Color jittering
 - Random cropping
 - Gaussian noise

CNN Model Architecture

- Efficient Feature Extraction Design:
 - Similar to ResNet architecture without skip connections
 - Three progressive convolutional blocks (16→16→24 filters)
 - ullet First convolutional layer with $11{ imes}11$ kernel
 - Strategic dimensionality reduction via max pooling
 - Batch normalization for improved training stability
 - ReLU activations for non-linear patterns

Key Findings

- Achieves exceptional classification accuracy despite minimal parameters
- First layer filters may not appear visually interpretable with small learning rates

CNN Basic Building Blocks

CNN Architecture Details

```
CNNImageClassifier(
  (features): Sequential(
    (0): Conv2d(1, 16, kernel_size=(11, 11), stride=(2, 2))
    (1): BatchNorm2d(16)
    (2): ReLU()
    (3): MaxPool2d(kernel_size=2, stride=2)
    . . .
  (classifier): FeatureClassifier(
    (fc1): Linear(384, 16)
    (bn): BatchNorm1d(16)
    (relu): ReLU()
    (do): Dropout(p=0.5)
    (fc2): Linear(16, 2)
```

- Total parameters: 14,090
- Model size: 52.58MB
- Efficient architecture with minimal parameters

ScatNet Model Architecture

```
ScatNetImageClassifier(
  (scattering): Scattering2D()
  (global_pool): AdaptiveAvgPool2d(4, 4)
  (classifier): FeatureClassifier(
     (fc1): Linear(3472, 16)
     ...
  )
)
```

• Wavelet-based feature extraction:

- J=3 scale parameter for wavelet decomposition
- L=8 orientations, M=2 scattering order
- Translation, rotation, and scaling invariant

Key Finding

Requires **more complex classifier** layer for good performance

CNN Learning Curves Analysis

- Rapid convergence within 15 epochs
- Consistent performance across folds
- Limited overfitting due to effective regularization
- Final validation accuracy around 99%

ScatNet Learning Curves Analysis

- Slower convergence but fewer epochs needed
- More complex classifier needed
- Greater performance variation across folds

Performance Results & Analysis

Metric	CNN	ScatNet
Mean Accuracy	$99.26\% \pm 0.72\%$	$92.99\% \pm 1.59\%$
Mean F1 Score	$99.27\% \pm 0.72\%$	$92.83\% \pm 1.70\%$
Accuracy Range	97.70% - 99.90%	89.10% - 95.10%
Training Speed	Faster	Slower

Key Performance Findings

- CNN significantly outperforms ScatNet (by 6.27%)
- K-fold validation confirms robust performance
- CNN shows less variance between folds
- CNN achieves convergence in fewer epochs

CNN Performance Summary

Performance Range:

• Accuracy: 98.00% - 99.90% across all folds

• F1 Score: 98.01% - 99.90% across all folds

• Most consistent fold: Fold 9 (99.90% accuracy)

• All folds achieved >97.70% accuracy

Overall Statistics:

• Mean Accuracy: 99.26%

• Mean F1 Score: 99.27%

• Standard Deviation: 0.72%

ScatNet Performance Summary

Performance Range:

 \bullet Accuracy: 89.10% - 95.10% across all folds

• F1 Score: **88.68%** - **95.06%** across all folds

• Best performing fold: **Fold 6** (95.10% accuracy)

• Worst performing fold: Fold 1 (89.10% accuracy)

Overall Statistics:

• Mean Accuracy: 92.99%

• Mean F1 Score: 92.83%

• Standard Deviation: 1.59%

CNN Filter Analysis

Detected Filter Patterns:

- Diagonal/Vertical Strips: Detect edges, gaps, and transitions between textures
- Circular Points: Identify spots, blobs, and localized features
- Two-Part Filters: Capture gradients and contrast changes

• Filter Implications:

- Learning localized and structured features
- Capturing directional patterns and contrast
- Detecting orientation-dependent structures

ScatNet Filter Analysis

- Pre-defined wavelet transforms (not learned)
- Scale and rotation invariant features
- Lower discriminative power despite theoretical advantages
- Fixed mathematical representation limits adaptability
- Data augmentation impact: less significant

CNN Attribution Analysis

- Visualizes regions most influential for classification
- Guided backpropagation significantly reduces noise compared to regular backpropagation
- Higher resolution feature attribution with clearer patterns
- Captum implementation shows similar patterns despite different color scaling
- Strong correlation with pathological markers across all methods

ScatNet Attribution Analysis

- Minimal differences between guided and regular backpropagation
- Limited impact of guided backprop due to ReLU only in classifier
- Non-recognizable patterns in guided backprop visualization
- Attribution shows diffuse, less interpretable regions
- Less coherent with pathological indicators

Key Insights

- Color features are not crucial for lung cancer histopathology classification
- Learned features (CNN), in this scenario, are more effective than pre-defined features (ScatNet)
- CNN are harder to train but yield better performance

Thank you for your attention

Lorenzo Mioso