Classwork 7 Abstract Algebra Math 320

Stephen Giang, Austin Kovalcheck Ana Estrada, Soleil Leuregans

Problem 1: Determine if the following polynomials are irreducible. Justify your answers.

(a)
$$x^6 + 30x^5 - 15x^3 + 6x - 120$$

By Eisenstein's Criterion, 3 is a prime that does not divide the coefficient to x^6 , but does divide all other coefficients. As well, $3^2 = 9$, does not divide the constant term -120, thus (a) is irreducible.

(b)
$$7x^3 - 36x^2 - x + 11$$

We can test reducibility with the Rational Root Test, and by having no roots, proves it is irreducible by corollary 4.19.

$$\frac{r}{s} = \pm 1, \pm 11, \pm 7, \pm \frac{11}{7}. \text{ Let } f(x) = 7x^3 - 36x^2 - x + 11$$

$$f(1) = -19 \qquad f(-1) = -31$$

$$f(11) = 4961 \qquad f(-11) = -13651$$

$$f(7) = 641 \qquad f(-7) = -4147$$

$$f\left(\frac{11}{7}\right) = \frac{-2563}{49} \qquad f\left(\frac{11}{7}\right) = \frac{-5071}{49}$$

Because there does not exist $f(\frac{r}{s}) = 0$, (b) is irreducible.

(c)
$$x^4 + 14x^3 + 9x^2 - x + 3$$

We can test reducibility with the Rational Root Test, and by having roots, proves it is reducible by corollary 4.19.

Notice if we let $f(x) = x^4 + 14x^3 + 9x^2 - x + 3$, f(-1) = 0, thus -1 is a root. Thus we can write f(x) = (x+1)g(x), for some g(x). Thus (c) is reducible.

1

Problem 2: Use Eisenstein's Criterion to show that $f(x) = x^4 + 1$ is irreducible in $\mathbb{Q}[x]$ by replacing x with x + 1. You may assume the following fact: If g(x) = f(x + 1) is irreducible, then so is f(x).

Notice g(x) = f(x+1):

$$(x+1)^4 + 1 = x^4 + 4x^3 + 6x^2 + 4x + 2$$

By Eisenstein's Criterion, 2 is a prime that does not divide the coefficient to x^4 , but does divide all other coefficients. As well, $2^2 = 4$, does not divide the constant term 2, thus f(x) is irreducible.

Problem 3: Prove that $x^3 + nx + 2$ is irreducible over $\mathbb{Q}[x]$ for all integers $n \neq 1, -3, -5$.

We can test reducibility with the Rational Root Test, and by having no roots, proves it is irreducible by corollary 4.19.

$$\frac{r}{s} = \pm 1, \pm 2.$$
 Let $f(x) = x^3 + nx + 2$

$$f(1) = n + 3$$
 $f(-1) = -(n - 1)$
 $f(2) = 2(n + 5)$ $f(-2) = -2(n + 3)$

Because for $n \neq 1, -3, -5$, we can see that there does not exists an x, such that f(x) = 0, thus (3) is irreducible.