5.1 Phénomènes discrets

5.1.1 Suites géométriques

Définition 1.5.

Soit q un nombre réel strictement positif.

Une suite (u_n) est une suite géométrique si et seulement si, pour tout entier naturel n,

$$u_{n+1} = qu_n$$

▶ Note 1.5.

- q est appelée la raison de la suite géométrique (u_n) .
- $u_{n+1} = qu_n$ s'appelle la relation de récurrence de la suite géométrique.

Exemple 1.5.

La suite (u_n) définie par $u_0 = 3$ et pour tout entier naturel n, $u_{n+1} = 7$, $1u_n$. Cette suite (u_n) est géométrique de premier terme $u_0 = 3$ et de raison q = 7, 1.

Propriété 1.5.

La suite (u_n) est géométrique de premier terme u_0 et de raison q si et seulement si on a $u_n = u_0 \times q^n$.

▶ Note 2.5.

L'égalité $u_n = u_0 \times q^n$ s'appelle l'expression explicite de la suite géométrique (u_n) .

Exemple 2.5.

Soit la suite (u_n) la suite géométrique de raison q = 0, 4 et de premier terme $u_0 = 300$. Déterminer l'expression récurrente de la suite (u_n) puis son expression explicite.

Illustration.

5.1.2 Représentation graphique

Définition 2.5.

Une suite géométrique se représente par un nuage de points de coordonnées $(n; u_n)$. Une suite géométrique a une croissance ou décroissance exponentielle.

5.2 Phénomènes continus

5.2.1 Fonctions $x : \longmapsto a^x$

Définition 3.5.

Soit a un réel strictement positif.

La fonction f définie sur $[0; +\infty[$ par $f(x) = a^x$ est appelée fonction exponentielle de base a. Cette fonction est le prolongement à tout nombre x positif de la suite géométrique (u_n) , de premier terme u_0 et de raison a définie pour tout entier naturel n par $u_n = a^n$.

▶ Note 3.5.

Pour tout réel a > 0 et tout réel x > 0 on a $a^x > 0$.

Exemple 3.5.

La fonction f définie sur $[0; +\infty[$ par $f(x) = 3, 14^x$ est la fonction exponentielle de base _____

5.2.2 Propriétés algébriques

Propriétés.

- Pour tout réel a strictement positif, $a^0 = 1$.
- Pour tous réels x et y:

$$a^x \times a^y = a^{\dots} \tag{5.1}$$

$$\frac{a^x}{a^y} = a^{\dots} (5.2)$$

$$(a^x)^y = a^{\dots} (5.3)$$

Exemple 4.5.

Dans chaque cas, écrire le résultat sous la forme $4, 2^x$ où x est un nombre réel.

1.
$$4, 2^{2,1} \times 4, 2^{5,9}$$

$$2. \ \frac{4,2^{5,2}}{4,2^{3,3}}$$

3.
$$(4,2^{3,1})^{10}$$

5.2.3 Représentation graphique

Propriété 2.5.

Soit a un réel strictement positif.

On peut représenter la courbe représentative de la fonction f définie sur $[0; +\infty[$ par $f(x) = a^x$ à l'aide d'une calculatrice voire d'un logiciel de géométrie dynamique.

 $Exemple\ 5.5.$

5.2.4 Racine n – ième d'un nombre réel positif

Propriété 3.5.

Soit a un réel strictement positif et n un entier naturel non nul.

L'équation $b^n=a$ d'inconnue b, admet une solution unique positive : $b=a^{\frac{1}{n}}$. $a^{\frac{1}{n}}$ s'appelle la a et on la note aussi :

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

Exemple 6.5.

Résoudre dans $[0\,;\,+\infty[$ les équations suivantes :

1.
$$x^3 = 50$$

2.
$$x^6 = 64$$

3.
$$x^{10} = 11$$