# **PCT**

# 国 際 軍 番 局 特許協力条約に基づいて公開された国際出願

世界知的所有権機関



WO00/58777 (11) 国際公開番号 (51) 国際特許分類7 A1 G02F 1/133, G09G 3/36 (43) 国際公開日 2000年10月5日(05.10.00) (21) 国際出願番号 PCT/JP00/02066 (81) 指定国 JP, US 添付公開書類 2000年3月31日(31.03.00) (22) 国際出願日 国際調査報告書 (30) 優先権データ 1999年3月31日(31.03.99) JP 特願平11/94067 (71) 出願人(米国を除くすべての指定国について) セイコーエプソン株式会社 (SEIKO EPSON CORPORATION)[JP/JP] 〒163-0811 東京都新宿区西新宿2丁目4番1号 Tokyo, (JP) (72) 発明者;および **)5) 発明者/出願人(米国についてのみ)** 卢衡 誠(KATASE, Makoto)[JP/JP] 〒392-8502 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内 Nagano, (JP) (74) 代理人 井上 一, 外(INOUE, Hajime et al.) 〒167-0051 東京都杉並区荻窪5丁目26番13号 荻窪TMビル2階 Tokyo, (JP)

(54)Title: DRIVING METHOD FOR LIQUID CRYSTAL DEVICE AND LIQUID CRYSTAL DEVICE AND ELECTRONIC EQUIPMENT

(54)発明の名称 液晶装置の駆動方法並びに液晶装置及び電子機器

#### (57) Abstract

When a liquid crystal device using a simple matrix panel is subjected to 4-line, simultaneous selection driving at high duty  $n_1$ , it is driven at 7 levels, or tentials PV3, PV2, PV1, VC, MV1, MV2 and MV3, and at a bias ratio  $c_1 = (PV2-VC)/L/PV3$ . When the device is subjected to 4-line, simultaneous selection driving at low duty  $n_2$ , the operations of tertiary and quaternary step-up circuits (230), (232) are stopped and it is driven at 5 levels, or potentials PV2, PV1, VC, MV1 and MV2, and at a bias ratio  $c_2 = (PV2-VC)/L/PV2$ . The above shows that when a duty is changed, a relation  $n_1.c_1^2n_2.c_22l$  is satisfied, thus eliminating the need of a contrast adjustment for each duty change. Since a step-up multiple k of the tertiary step-up circuit (230) is represented by k = PV3/PV2,  $n_2 = n_1.(c_1/c_2)^2n_1.(1/k)^2$ .



単純マトリックスパネルを使用した液晶装置である。高デューティ $n_1$ で4ライン同時選択駆動するときには、電位PV3, PV2, PV1, VC, MV1, MV2, MV3の7レベルで駆動する。この時のパイアス比 $c_1$ = (PV2-VC) /L/PV3である。低デューティ $n_2$ で4ライン同時選択駆動するときには、3次,4次昇圧回路(230),(232)の動作を停止させ、PV2, PV1, VC, MV1, MV2の5レベルで駆動する。この時のパイアス比 $c_2$ = (PV2-VC) /L/PV2である。このようにデューティを変更する時には、 $n_1 \cdot c_1^2 = n_2 \cdot c_2^2$ の関係を満足させる。こうすると、デューティを変更する度にコントラスト調整をする必要はなくなる。3次昇圧回路(230)の昇圧倍数kは、k=PV3/PV2の関係にある。よって、 $n_2$ = $n_1 \cdot (c_1$ / $c_2$ )  $^2$ = $n_1 \cdot (1$ /k)  $^2$ となる。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ音長国連邦
AG アンティグア・パーブーダ
AG アンティグア・パーブーダ
AL アルバニア
AL アルバニア
AL アルバニア
AL オーストリア
AT オーストリア
AZ アセルバイジャン
BA ボズニア・ヘルツェゴピナ
BA ボズニア・ベルツェゴピナ
BB バルバドス
BE ベルギー
BB ブルガリア
BB ブルガリア
BB ブルガリア
BB ブルガリア
BB ブルガリア
BB ブラシル
BR ブラジル
CG カオデク
BR アラジル
CG カナダ
CF 中央アプリカ
CG カンボーー
LD インドネシア
CG カンボーー
LD インドネシア
CG コートジボアール
LD インドネシア
CG コートジボアール
LD インドネシア
CG コートジボアール
LD インドネシア
CG コートジボアール
LD インドネシア
CC コートジボアール
LD インドネシア
MM モーリターコ
LD インドネシア
MM モーリターコ
LD インドネシア
MM モーリターコ
MM モーリターコ
MM モーリターコ
MM モーリターコ
MM モーリクカン
MM モーリターコ
MM モーリクーコ
MM モーリクーコ
MM エーリカーコ

#### 明細書

### 液晶装置の駆動方法並びに液晶装置及び電子機器

#### [技術分野]

本発明は、単純マトリクッスパネルを使用した液晶装置の駆動方法に関する。本発明はさらに、液晶装置と、それを搭載したOA機器や計測機器等の電子機器とに関する。

#### [背景技術]

近年、単純マトリックスパネルを使用した液晶装置にあっては、電源電圧に応じて バイアス比を切り換える方法や、表示デューティを切り換えた際にバイアス比を切り 換える方法が使用されていた。表示デューティの切り換えは、例えば全画面表示から 部分表示に切り換える際に必要となる。

ここで、従来の液晶装置では、電源電圧を昇圧して液晶駆動電圧の中の最大電圧を 生成し、その最大電圧を抵抗分割回路を用いて分圧して、各種レベルの液晶駆動電圧 を生成していた。

表示デューティを変更する際には、動作マージンを最大にするためにバイアス比を切り換える必要がある。従来は、抵抗分割回路内の抵抗素子の抵抗値を可変としていた。このとき抵抗値を変化させると、抵抗分割回路に流れる電流が変化するので、各種液晶駆動電圧のレベルが変化する。従って、従来では表示デューティの切換時には、必ずコントラスト調整が必要である欠点をもっていた。

そこで、本発明は、表示デューティ切り換え時に、使用者によるコントラスト調整 を不要とする液晶装置の駆動方法並びに液晶装置及び電子機器を提供することを目 的とする。

本発明の他の目的は、部分表示に容易に切り換えることができ、しかも部分表示を 低消費電力にて実施できる液晶装置の駆動方法並びに液晶装置及び電子機器を提供 することを目的とする。 化二、连续控制。1、二、

#### [発明の開示]

本発明の一態様は、複数のコモン電極が形成された第1基板と、複数のセグメント電極が形成された第2基板と、前記第1,第2基板間に介在された液晶とを有し、前記複数のコモン電極及び前記複数のセグメント電極の各交点に形成される画素に、少なくともON電圧とOFF電圧とに変化する電圧を印加する液晶装置の駆動方法において、

第1のデューティ及び第1のバイアス比の条件下で駆動する第1駆動工程と、 第2のデューティ及び第2のバイアス比の条件下で駆動する第2駆動工程と、 を有し、

前記第1駆動工程にて前記ON電圧と前記OFF電圧との間の中間電圧が前記画素に印加された時に前記画素に加わる実効電圧と、前記第2駆動工程にて前記ON電圧と前記OFF電圧との間の中間電圧が前記画素に印加された時に前記画素に加わる実効電圧とが等しくなるように、前記第1,第2のデューティ及び前記第1,第2のバイアス比が設定されていることを特徴とする。

本発明の一態様によれば、表示デューティを変更した際に、ON電圧とOFF電圧の中心値がほぼ同一となるようにバイアス比も変化させている。これにより、デューティの変更の前後で中間濃度がほぼ一定に保たれるので、デューティを変更する度に使用者がコントラスト調整をする必要はなくなる。

本発明の一態様は、いわゆる 1 ライン選択駆動にもマルチライン駆動にも適用できる。

本発明の他の態様は、複数のコモン電極が形成された第1基板と、複数のセグメント電極が形成された第2基板と、前記第1,第2基板間に介在された液晶とを有する液晶装置の駆動方法において、

第1のデューティn,及び第1のバイアス比c,の条件下で駆動する第1駆動工程と、

第2のデューティn₂及び第2のバイアス比c₂の条件下で駆動する第2駆動工程と、

を有し、前記第 1, 第 2 のデューティ及び前記第 1, 第 2 のバイアス比が、 $n_1$   $c_1^2 = n_2 \cdot c_2^2$  の関係を満足するように設定されていることを特徴とする。

本発明の他の態様でも、表示デューティを $n_1$ から $n_2$ に変更した際に、ON電圧とOFF電圧の中心値がほぼ同一となるようにバイアス比を $c_1$ から $c_2$ に変化させている。この時の条件は、後述するRuckmongathan氏の式から、 $n_1 \cdot c_1^2 = n_2 \cdot c_2^2$ の関係を満足させればよいことが分かる。この本発明の他の態様もまた、いわゆる1ライン選択駆動とマルチライン駆動とに適用できる。

ここで、前記第1駆動工程では、前記セグメント電極に供給される最大信号電位を 昇圧して、前記コモン電極に供給される選択電位を生成する工程を有することができ る。この場合、前記第2駆動工程では、前記昇圧工程を停止し、前記セグメント電極 に供給される前記最大信号電位を、前記コモン電極に前記選択電位として供給する工程を有する。

このようにすれば、第2駆動工程にて昇圧動作を停止できるので、消費電力を低減できる。また、セグメント電極のための電位をコモン電極に供給すればよいので、他の液晶駆動電位を生成する必要もない。

前記第1駆動工程にて実施される前記昇圧工程での昇圧倍率をkとしたとき、 $n_2=n_1$ ・(1/k) <sup>2</sup>の関係が成立する。各駆動工程でのバイアス比 $n_1$ 、 $n_2$ と昇圧倍数kとの間に、 $c_1/c_2=1/k$ の関係が成立するからである。

本発明のさらに他の態様は、複数のコモン電極が形成された第1基板と、複数のセグメント電極が形成された第2基板と、前記第1,第2基板間に介在された液晶とを有し、前記複数のコモン電極及び前記複数のセグメント電極の各交点に形成される画素に、少なくともON電圧とOFF電圧とに変化する電圧を印加する液晶装置の駆動方法において、

第1のデューティ及び第1のバイアス比の条件下で駆動する第1駆動工程と、

第1のデューティより低い第2のデューティ及び第2のバイアス比の条件下で駆動する第2駆動工程と、

を有し、

前記第1駆動工程にて前記ON電圧が前記画素に印加された時に前記画素に加わ

る実効電圧が、前記第2駆動工程にて前記ON電圧が前記画素に印加された時に前記画素に加わる実効電圧以下であり、かつ、前記第1駆動工程にて前記OFF電圧が前記画素に印加された時に前記画素に加わる実効電圧が、前記第2駆動工程にて前記OFF電圧が前記画素に印加された時に前記画素に加わる実効電圧以上となるように、前記第1,第2のデューティ及び前記第1,第2のバイアス比が設定されていることを特徴とする。

本発明のさらに他の態様によれば、高デューティ(第1のデューティ)での駆動時のON電圧とOFF電圧の範囲を、低デューティ(第2のデューティ)での駆動時のON電圧とOFF電圧の範囲が包含するように、バイアス比が変化する組み合わせを選んでいる。こうすると、低デューティでの駆動時に得られるコントラストは、高デューティでの駆動時以上となる。よって、表示デューティを切り換えた際に、使用者がコントラスト調整をする作業を不要とすることができる。なお、この本発明のさらに他の態様もまた、いわゆる1ライン選択駆動とマルチライン駆動とに適用できる。

本発明のさらに他の態様に係る液晶装置は、複数のコモン電極が形成された第1基板と、複数のセグメント電極が形成された第2基板と、前記第1,第2基板間に介在された液晶とを有するパネルと、

前記複数のセグメント電極に電圧を供給するセグメントドライバと、

前記複数のコモン電極に電圧を供給するコモンドライバと、

前記セグメントドライバ及び前記コモンドライバに液晶駆動電圧を供給する電源 回路と、

を有し、

前記セグメントドライバは、第1のデューティ $n_1$ と第2のデューティ $n_2$ ( $n_2$ <  $n_1$ )とに可変する回路を有し、

前記電源回路は、前記第1のデューティ $n_1$ に設定された時に第1のバイアス比 $c_1$ に設定し、前記第2のデューティ $n_2$ に設定された時に第2のバイアス比 $c_2$ ( $c_2$ )に設定する回路を有し、

前記第1,第2のデューティ及び前記第1,第2のバイアス比が、 $n_1 \cdot c_1^2 = n_2 \cdot c_2^2$ の関係を満足するように設定されていることを特徴とする。

この液晶装置において、上述した本発明の他の態様に係る駆動方法を好適に実施することができる。

なお、前記コモンドライバと前記電源回路とを、1チップICに内蔵することができる。

本発明のさらに他の態様に係る電子機器は、上述の液晶装置を内蔵している。この電子機器の表示部として用いられる液晶装置では、通常動作モードでは高デューティでの駆動とし、待ち受けモードにてパネルの一部に部分表示する際には低デューティでの駆動とすることができる。特に、携帯電話機などでは、待ち受けモードではアイコン等を部分的に表示し、他のエリアは非表示エリアとすることで、消費電力を低減できる。本発明の電子機器としては、携帯電話機に限らず、低デューティでの駆動にて部分表示が必要となる機器全てに適用でき、特に消費電力を低減すべきモバイル機器に有効である。

# [図面の簡単な説明]

図1は、本発明の実施例1において、電圧平均化法を用いて高デューティで駆動する際のバイアス比を示す図である。

図2は、本発明の実施例1において、電圧平均化法を用いて低デューティで駆動する際のバイアス比を示す図である。

図3は、本発明の実施例1において、原理駆動法を用いて高デューティで駆動する際のバイアス比を示す図である。

図4は、本発明の実施例1において、原理駆動法を用いて低デューティで駆動する際のバイアス比を示す図である。

図5は、本発明の実施例2において、4ライン同時選択駆動法を用いて高デューティで駆動する際のバイアス比を示す図である。

図6は、本発明の実施例2において、4ライン同時選択駆動法を用いて低デューティで駆動する際のバイアス比を示す図である。

図7は、本発明の実施例3において、高デューティと低デューティとの各駆動時で の液晶パネルの動作点での電圧-輝度の関係を示す特性図である。 図8は、本発明の実施例4において、デューティを3種類に変更した各駆動時での 液晶パネルの動作点での電圧-輝度の関係を示す特性図である。

- 図9は、本発明の各実施例に用いられる液晶装置の概略説明図である。
- 図10は、電圧平均化法を用いた時の液晶駆動波形を示す波形図である。
- 図11は、原理駆動法を用いた時の液晶駆動波形を示す波形図である。
- 図12は、図9に示すセグメントドライバICの回路図である。
- 図13は、図9に示すコモンドライバICの回路図である。
- 図14は、図13に示すコモンドライバIC中の電源回路の説明図である。

# [発明を実施するための最良の形態]

以下本発明を図面に基づいて説明する。

(実施例装置の概要)

まず、後述する駆動方法を実施する液晶装置について説明する。

図9には、単純マトリックスパネル10が示されている。このパネル10は、コモン電極12が形成された第1基板(図示せず)と、セグメント電極14が形成された第2基板(図示せず)との間に、液晶(図示せず)が介在配置されて構成される。

図9にはさらに、コモン電極12を駆動するコモンドライバIC100と、セグメント電極14を駆動するセグメントドライバIC200と、セグメントドライバIC200に対してコマンド、データを出力するMPU300とが示されている。この液晶装置は例えば携帯電話に搭載され、通常動作モードではパネル10の全画面にフル表示し、待ち受けモード時にはパネル10の一部のみを部分表示する。従って、通常動作モードは高デューティの駆動となり、待ち受けモード時には低デューティの駆動となる。

ここで、単純マトリックスパネル10では複数のコモン電極12と複数のセグメント電極14との各交点にそれぞれ画素が形成される。このパネル10のコモン電極12、セグメント電極14へ供給される駆動波形として、従来より2種のものが知られている。その一つは、図10に示す電圧平均化法を用いた駆動波形であり、他の一つは図11に示す原理駆動法(APT法ともいう)を用いた駆動波形である。なお、図

10,図11において、太線はセグメント電極の駆動波形であり、細線はコモン電極の駆動波形である。図10,図11のいずれの駆動波形を用いても、各電極に印加される電圧の差電圧が液晶に印加されることになる。なお、両駆動法では、各電極に印加される絶対電位が変わるのみで、駆動される液晶には同じ電圧が印加される。

# (実施例1)

単純マトリクスパネル10の1画素に印加される電圧の実効電圧は、Ruckmongatha n氏により見いだされた次式で表される。

n:駆動デューティ

L:同時選択数

c:バイアス比

V:選択電圧

$$RMS = \frac{\sqrt{LV^2}}{\sqrt{n}} \sqrt{nc^2 \pm 2c + 1} \qquad \cdots (1)$$

ルートの記号の中の2cの項に土の符号があるが、ONしている画素では+2cとなり、OFFしている画素では-2cとなる。この式の原理については文献Ruckmong athan, T.N., &#34A GENERALIZED ADDRESSING TECHNIQUE FOR RMS RESPONDING MATRIX LCDS&#34 1988 INTERNATIONAL DISPLAY RESEARCH CONFERENCE, p.80-85に詳しく説明されているので、ここでは省略する。

(1) 式に、同時選択数としてL=1を代入すると次式となる。

RMS(L = 1) = 
$$\frac{V}{\sqrt{n}} \sqrt{nc^2 \pm 2c + 1}$$
 ...(2)

(2) 式は、上述したや電圧平均化法(川上方式)や原理駆動法(APT法)を用いた1ライン選択駆動時の実効電圧を表している。

ここで、例えば携帯電話に用いられる液晶装置での表示モードとして、図9に示すパネル10の全画面(例えば100ライン)を駆動する通常動作モードと、図9に示すパネル10の一部例えば1~25ラインのみにアイコンなどを表示する待ち受けモードとがある。待ち受けモードでは、26~100ラインまでは非表示エリアとなる。このため、通常動作モードが高デューティ駆動となるのに対して、待ち受けモードでは低デューティ駆動となる。

図1は、図10に示す電圧平均化法を用い、かつ高デューティで駆動した時の電源のバイアス比を示す図である。図2は、同様に低デューティで駆動した時の電源のバイアス比を示す図である。一方、図11に示す原理駆動 (APT法) を用いた時の電源のバイアス比は、図3、図4に示す通りとなり、図3は高デューティで駆動した時、図4は低デューティで駆動した時のそれぞれの電源のバイアス比を示している。

式(1)中のバイアス比は、1画素に依存する単位信号電圧振幅の半値と、選択電圧振幅の半値との比を意味している。図1~図4に示す1ライン選択駆動ので信号電圧振幅の半値S(L=1)は、L=1であるので、単位信号電圧振幅そのものであり次式で現される。

$$S(L=1) = L \cdot c \cdot V = c \cdot V \qquad \dots (3)$$

ここで、図1及び図3に示す高デューティでの駆動時でのコモン電圧振幅を符号± Vnで示し、図2及び図4に示す低デューティでの駆動時でのコモン電圧振幅を符号 ±V1で示している。また、図1~図4において、1ライン選択駆動時のセグメント 電圧の振幅の半値をそれぞれ符号Sで示している。

また、式(2)中のバイアス比 c は、1 ライン選択駆動時には、(セグメント電圧の振幅の半値)/(コモン電圧振幅の半値)で示される比率を意味する。図 1 及び図 3 に示す高デューティでの駆動時では、バイアス比  $c_{H}=S/V_{H}$ となり、図 2 及び図 4 に示す低デューティでの駆動時では、バイアス比  $c_{L}=S/V_{L}$ となる。

なお、式(1)はマルチライン選択駆動にも適用されるが、これについては後述する。

次に、図1及び図3に示す高デューティ駆動の時のデューティn<sub>11</sub>と、バイアス比 c<sub>1</sub>と、選択電圧V<sub>1</sub>を、式(2)に代入することで次式が得られる。

RMS(L=1, 
$$n_H$$
) =  $\frac{V_H}{\sqrt{n_H}} \sqrt{n_H \cdot (c_H)^2 \pm 2c_H + 1}$  ...(4)

同様に、図2及び図4に示す低デューティ駆動の時のデューティn<sub>1</sub>と、バイアス比c<sub>1</sub>と、選択電圧V<sub>1</sub>を、式(2)に代入することで次式が得られる。

RMS(L = 1, 
$$n_L$$
) =  $\frac{V_L}{\sqrt{n_L}} \sqrt{n_L \cdot (c_L)^2 \pm 2c_L + 1}$  ...(5)

さらに、式(3)を高デューティ駆動、低デーティ駆動時の符号を用いて表すと、

次式の通りとなる。

$$S(L = 1, n_H) = c_H \cdot V_H \cdots (6)$$
  
 $S(L = 1, n_L) = c_L \cdot V_L \cdots (7)$ 

ここで、ON電圧とOFF電圧の中間電圧を考える。この場合、 $\pm 2 c_1 と \pm 2 c_1$  の項をそれぞれ式(4)、式(5)から取り去ることができ、次式が得られる。

RMS<sub>MID</sub> (L = 1, n<sub>H</sub>) = 
$$\frac{V_H}{\sqrt{n_H}} \sqrt{n_H \cdot (c_H)^2 + 1}$$
 ...(8)  
RMS<sub>MID</sub> (L = 1, n<sub>L</sub>) =  $\frac{V_L}{\sqrt{n_L}} \sqrt{n_L \cdot (c_L)^2 + 1}$  ...(9)

ここで、高デューティ駆動時でも低デューティ駆動時でも、ON電圧とOFF電圧の中間での実効電圧のそれぞれの中間電圧RMS $_{\text{Min}}$ は等しくする必要がある。このため、式(8)=式(9)が成立し、その式に式(6)、式(7)の関係を代入して次式が得られる。

$$\frac{S}{c_{H}\sqrt{n_{H}}}\sqrt{n_{H}\cdot(c_{H})^{2}+1} = \frac{S}{c_{L}\sqrt{n_{L}}}\sqrt{n_{L}\cdot(c_{L})^{2}+1} \cdots (10)$$

この式(10)の両辺を二乗して整理すると、次式が得られる。

$$c_1^2 \cdot n_1 = c_H^2 \cdot n_H \cdots (11)$$

この式(11)から、次のことが言える。すなわち、表示デューティ(nl,nm)と バイアス比(cl,cm)の2乗の積が変化しないように表示デューティとバイアス比の 関係を保てば(n・c²=一定)、画素に印加されるON電圧とOFF電圧の中間値 は変化しない。

例えば100ライン表示する場合であって(n<sub>H</sub>=100)、バイアス比 c<sub>H</sub>=1/10で駆動し、この後外部信号により10ラインのみ部分表示(n<sub>L</sub>=10)をバイアス比 c<sub>L</sub>=0.316・・(10の平方根分の1)で行う。こうすると、表示デューティを変えて部分表示をした際に、中間調の表示は一定となるから、使用者がコントラスト調整をする必要がなくなる。

#### (実施例2)

図5は、式(1)の同時選択数L=4としたマルチライン選択駆動の場合における 高デューティ時の電源のバイアス比を示す図である。図6は、図5と同じマルチライン選択駆動の場合において、部分表示する際の低デューティ時の電源のバイアス比を 示す図である。

式 (1) に同時選択数としてL=4を代入すると次式となる。なお、同時選択数Lは4以外の数でもかまわないが、一例としてL=4とした。

RMS(L = 4) = 
$$\frac{2 \cdot V}{\sqrt{n}} \sqrt{nc^2 \pm 2c + 1}$$
 ...(12)

式(12)は、4ライン同時選択駆動方法の実効電圧を表している。4ライン同時選択駆動方法では信号電圧は、図5に示す5レベル(PV2, PV1, VC, MV1, MV2)が必要とされる。信号電圧振幅S(L=4)は、図5に示すPV2-VC間, VC-MV2間の各電圧を示す。バイアス比cは、1画素に依存する単位信号電圧振幅の半値と、選択電圧振幅との比を意味しているので、信号電圧振幅S(L=4)は次式で現される。

$$S(L=4) = L \cdot c \cdot V = 4 \cdot c \cdot V \qquad \cdots (13)$$

ここで、式 (4) ~ (7) を得た場合と同様にして、高デューティn 、低デューティn などを式 (12) 、式 (13) にそれぞれ代入すると、下記の式 (14 ~ (17) が得られる。

RMS(L = 4, n<sub>H</sub>) = 
$$\frac{2 \cdot V_H}{\sqrt{n_H}} \sqrt{n_H \cdot (c_H)^2 \pm 2c_H + 1}$$
 ...(14)  
RMS(L = 4, n<sub>L</sub>) =  $\frac{2 \cdot V_L}{\sqrt{n_L}} \sqrt{n_L \cdot (c_L)^2 \pm 2c_L + 1}$  ...(15)  
S(L = 4, n<sub>H</sub>) =  $4 \cdot c_H \cdot V_H$  ...(16)  
S(L = 4, n<sub>L</sub>) =  $4 \cdot c_L \cdot V_L$  ...(17)

ここで、実施例 1 と同様に、ON電圧とOFF電圧の中間電圧を考える。すなわち、 $\pm 2$   $c_1$  と  $\pm 2$   $c_1$  の各項をそれぞれ、式(1 4)、式(1 5)から取り去り、次式が得られる。

$$RMS_{MID}(L = 4, n_{H}) = \frac{2 \cdot V_{H}}{\sqrt{n_{H}}} \sqrt{n_{H} \cdot (c_{H})^{2} + 1} \qquad \dots (18)$$

$$RMS_{MID}(L = 4, n_{L}) = \frac{2 \cdot V_{L}}{\sqrt{n_{L}}} \sqrt{n_{L} \cdot (c_{L})^{2} + 1} \qquad \dots (19)$$

上述の通り、実効電圧のそれぞれの中間電圧RMSmioが等しくなるためには、式(18)=式(19)が成立し、その式に式(16)、式(17)の関係を代入すると、次式が得られる。

$$\frac{S}{c_{H}\sqrt{n_{H}}}\sqrt{n_{H}\cdot(c_{H})^{2}+1} = \frac{S}{c_{L}\sqrt{n_{L}}}\sqrt{n_{L}\cdot(c_{L})^{2}+1} \cdots (20)$$

この式(2)の両辺を二乗して整理すると、次式が得られる。

$$c_L^2 \cdot n_L = c_H^2 \cdot n_H \cdots (21)$$

例えば、同時選択数L=10として100ライン表示 ( $n_H=100$ ) でパイアス 比 $c_H=1/10$ で駆動し、この後10ライン表示の部分表示 ( $n_L=10$ ) でパイアス 比 $c_L=0$ .  $316 \cdot \cdot \cdot (10$ の平方根分の1) で行う。こうすると、マルチライン選択駆動の場合であっても、表示デューティを変えて部分表示をした際に、使用者 がコントラスト調整をすることが不要となる。

#### (実施例3)

実施例1,2は、ON電圧とOFF電圧の中間値のみを考慮したが、実際にはON電圧とOFF電圧の比(以下動作マージンという)も変動する。そこで、ON電圧、OFF電圧をも考慮して条件設定する方法を、この実施例3にて説明する。

式 (1) を、 $S=L\cdot c\cdot V$ を考慮して変形すると、次式が得られる。

$$RMS = \frac{S}{c \cdot \sqrt{n} \cdot \sqrt{L}} \sqrt{nc^2 \pm 2c + 1} \qquad \cdots (22)$$

ここで、図7に示すように、バイアス比 $c_1$ ,表示デューティ $n_1$ にてON電圧を液晶に印加した時の実効電圧をRMS (ON1) とし、OFF電圧を液晶に印加した時の実効電圧をRMS (OFF1) とする。同様に、バイアス比 $c_2$ ,表示デューティ $n_2$ でON電圧を液晶に印加した時の実効電圧をRMS (ON2) とし、OFF電圧を液晶に印加した時の実効電圧をRMS (ON2) とし、OFF電圧を液晶に印加した時の実効電圧をRMS (OFF2) とする。

図7は、液晶パネルの電圧-輝度の関係を示した特性図である。輝度については、 実際はnitやカンデラ等の単位がつくが、図7では省略し無次元数で示している。 図7では、電圧が増すと輝度が上がる例で示しているが、電圧が上がると輝度が下が る液晶パネルにも本発明を適用できることは言うまでもない。

図7に示す特性を有する液晶パネルは、実効電圧が2.0 V以上となると液晶が反

応し、輝度が上昇していく。そして、実効電圧が2.4 Vで輝度は飽和に達している。ここで、バイアス比 $c_1$ 、表示デューティ $n_1$ での駆動では、60対30のコントラスト(コントラスト比=2)が得られている。従って、RMS (ON1)  $\leq$  RMS (ON2) で、かつ、RMS (OFF1)  $\geq$  RMS (OFF2) の2つの関係を保てば、バイアス比 $c_2$ 、表示デューティ $n_2$ の部分表示切り換え後には、コントラスト比=2以上の得ることができる。

以上の内容を、具体的に式を用いて説明する。

図7に示すそれぞれの実効電圧RMS (ON1)、RMS (ON2)、RMS (OFF1)、RMS (OFF2) は次式の通りとなる。

RMS(ON1) = 
$$\frac{S}{c_1 \cdot \sqrt{n_1} \cdot \sqrt{L}} \sqrt{n_1 c_1^2 + 2c_1 + 1}$$
 ...(23)  
RMS(OFF1) =  $\frac{S}{c_1 \cdot \sqrt{n_1} \cdot \sqrt{L}} \sqrt{n_1 c_1^2 - 2c_1 + 1}$  ...(24)  
RMS(ON2) =  $\frac{S}{c_2 \cdot \sqrt{n_2} \cdot \sqrt{L}} \sqrt{n_2 c_2^2 + 2c_2 + 1}$  ...(25)  
RMS(OFF2) =  $\frac{S}{c_2 \cdot \sqrt{n_2} \cdot \sqrt{L}} \sqrt{n_2 c_2^2 - 2c_2 + 1}$  ...(26)

ここで、ON電圧相互に等しい実効電圧であるとすれば、式(23)=式(24) となり、次式が成立する。

$$\frac{1}{c_1 \cdot \sqrt{n_1}} \sqrt{n_1 c_1^2 + 2c_1 + 1} = \frac{1}{c_2 \cdot \sqrt{n_2}} \sqrt{n_2 c_2^2 + 2c_2 + 1} \qquad \cdots (27)$$

また、OFF電圧相互に等しい実効電圧であるとすれば、式(25)=式(26) となり、次式が成立する。

$$\frac{1}{c_1 \cdot \sqrt{n_1}} \sqrt{n_1 c_1^2 - 2c_1 + 1} = \frac{1}{c_2 \cdot \sqrt{n_2}} \sqrt{n_2 c_2^2 - 2c_2 + 1} \cdots (28)$$

式 (27)、式 (28) から、同時選択数Lは消去されているので、1ライン選択 駆動でもL (L≥2) ライン同時選択駆動でも、全く同じに扱えることになる。

式 (27) を整理すると、ON電圧同士が一致する条件は次式の通りとなる。

$$\frac{n_2}{n_1} = \frac{c_1^2 \cdot (+2c_2 + 1)}{c_2^2 \cdot (+2c_1 + 1)} \qquad \cdots (29)$$

一例として、バイアス比が $c_1 = 1/8$ ,  $c_2 = 1/4$ と変化させる際には、デューティ $n_1$ ,  $n_2$ の関係は式(29)は次式の通りとなる。

$$\frac{n_2}{n_1} = \frac{\left(\frac{1}{8}\right)^2 \cdot \left(2\frac{1}{4} + 1\right)}{\left(\frac{1}{4}\right)^2 \cdot \left(2\frac{1}{8} + 1\right)} = 0.3 \qquad \dots (30)$$

つまり、上記の通りバイアス比が定められた場合には、30%のデューティ比とすればよい。例えば、 $n_1=100$ ならば、 $n_2=30$ となる。

同様にして、式(28)を整理すると、OFF電圧同士が一致する条件は次式の通りとなる。

$$\frac{n_2}{n_1} = \frac{c_1^2 \cdot (-2c_2 + 1)}{c_2^2 \cdot (-2c_1 + 1)} \cdots (31)$$

一例として、 $c_1=1/8$ ,  $c_2=1/4$ を式(31)に代入すると、次式が得られる。

$$\frac{n_2}{n_1} = \frac{\left(\frac{1}{8}\right)^2 \cdot \left(-2\frac{1}{4} + 1\right)}{\left(\frac{1}{4}\right)^2 \cdot \left(-2\frac{1}{8} + 1\right)} = \frac{\left(\frac{1}{8}\right)^2 \cdot \left(\frac{2}{4}\right)}{\left(\frac{1}{4}\right)^2 \cdot \left(\frac{3}{4}\right)} = \frac{1}{6} = 0.166 \qquad \dots (32)$$

つまり、上記の通りバイアス比が定められた場合には、17%のデューティ比とすればよい。こうして、表示デューティn1=100, バイアス比が $c_1=1/8$ の駆動から、バイアス比 $c_2=1/4$  と変化させる際には、表示デューティ $n_2$ を30~17の範囲で設定すれば、コントラスト調整を要せずに、切り換え前のコントラスト以上を確保することができる。

また、予めデューティ比が定められる場合には、下記のようにしてバイアス比を設定することができる。例えば、デューティを $n_1$ =100から $n_2$ =50 と変化させる場合を考える。この際、デューティ $n_1$ =100の時のバイアス比が $c_1$ =1/10であるとする。この場合に、ON電圧同士が一致する条件は、次の2次方程式にて示される。

$$\frac{50}{100} = \frac{\left(\frac{1}{10}\right)^2 \cdot (+2c_2 + 1)}{c_2^2 \cdot \left(+2\frac{1}{10} + 1\right)} \qquad \cdots (33)$$

式 (33)を解くと、c2=0.146837が得られる。

一方、OFF電圧同士が一致する条件は、次の2次方程式で示される。

$$\frac{50}{100} = \frac{\left(\frac{1}{10}\right)^2 \cdot (-2c_2 + 1)}{c_2^2 \cdot \left(-2\frac{1}{10} + 1\right)} \qquad \cdots (34)$$

式(34)を解くと、c2=0.135078が得られる。

こうして、表示デューティ $n_1$ =100,バイアス比が $c_1$ =1/10での駆動から、デューティを $n_2$ =50に変化させる際には、バイアス比 $c_2$ を0.146837 $\sim$ 0.135078の範囲で設定すれば、コントラスト調整を要せずに切り換え前のコントラスト以上を確保できる。

#### (実施例4)

実施例3では、2種の表示デューティの間で表示駆動を切り換える場合を説明したが、3種以上のデューティの中から任意の2種の表示デューティを採用し、その時のバイアス比条件を設定する場合について、以下に説明する。この場合も、実施例3と同様に設定すれば、使用者がコントラスト調整をする作業を不要とすることができる。

図8では、図7に示す実効電圧RMS (ON1), RMS (OFF1), RMS (ON2), RMS (OFF2) に加えて、バイアス比 c 3,表示デューティ n 3の時のON電圧の実効電圧RMS (ON3) と、OFF電圧の実効電圧RMS (OFF3) が示されている。

実施例3にて求められた条件とは、RMS (ON1) ≦RMS (ON2) でかつ、 RMS (OFF1) ≧RMS (OFF2) である。

同様にして、バイアス比  $c_1$ ,表示デューティ $n_1$ での表示と、バイアス比  $c_3$ ,表示デューティ $n_3$ での表示との間に要求される条件は、RMS (ON1)  $\leq$  RMS (ON 3) でかつ、RMS (OFF 1)  $\geq$  RMS (OFF 3) である。

同じく、バイアス比  $c_2$ ,表示デューティ  $n_2$ での表示と、バイアス比  $c_3$ ,表示デューティ  $n_3$ での表示との間に要求される条件は、RMS (ON 2)  $\leq$  RMS (ON 3) でかつ、RMS (OFF 2)  $\geq$  RMS (OFF 3) となる。

このように、3種以上のデューティの中の任意の2つの関係を上記の通り設定しておけば、使用者がコントラスト調整をする作業を不要とすることができる。

#### (実施例5)

この実施例5では、図9に示すセグメントドライバIC100及びコモンドライバIC200の詳細について説明しながら、デューティを切り換えて駆動する方法について説明する。

図12には、セグメントドライバIC100が示されている。図12において、このIC100の入出力回路として、MPUインターフェース102、入出力バッファ104及び出力バッファ106が設けられている。この入出力回路102,104,106に接続された内部バス110には、バスホールダ112、コマンドデコーダ114、ステータス回路116、発振回路118及びタイミング発生回路120が接続されている。

MPU300からの通常動作モードまたは待ち受けモードを指示するコマンド内容は、MPUインターフェース102のA0端子への信号がLOWとなった後に、入出力バッファ104に入力される8ビットデータが、コマンドデコーダ114にてデコードされる。表示デューティは、発振回路118からの基準クロックを表示タイミング発生回路120にてカウントすることで設定される。

従って、表示タイミング発生回路120は、内部バス110を介して入力される指令に基づき、通常動作モードでは高デューティを設定し、待ち受けモードでは低デューティを設定する。表示タイミング発生回路120にて設定されたデューティなどに従って、表示データRAM130からの表示データの読み出しが実施される。なお、特に低デューティの時には、発振回路118からの基本クロックの周波数を下げて、低消費電力にて駆動することも可能である。

表示データを読み出すために、表示データRAM130にはページアドレスデコーダ132、カラムアドレスデコーダ134が設けられ、表示データRAM130の読み出しアドレスが指定される。ページアドレスデコーダ132にはLCD表示アドレス制御回路140が、カラムデコーダ134にはカラムデコーダ142がそれぞれ接続されている。なお、ページアドレスデコーダ132に接続されたMPUページアドレス制御回路144は、図9に示すMPU300の指令に基づき表示データRAM130の内容をリード、ライトする際に使用される。

表示データRAM130に対して、MPU300の指令に基いて、I/Oバッファ

136を介してデータがリード、ライトされる。リード、ライト時のページアドレス は、ページアドレスレジスタ146によって指定される。

表示データRAM130から読み出された表示データは、表示データラッチ回路150にてラッチされ、デコード回路152にてデコードされ、液晶駆動回路154を介して、図9のセグメント電極14に供給される。なお、このセグメントドライバIC100では、同時選択数L=4とするマルチライン選択駆動法を実施しているので、セグメント電極14に供給される電位は、通常駆動モード時にあっては、図5に示すPV1、PV2、VC、MV1、MV2の5レベルである。待ち受けモード時の供給電位については後述する。

次に、図9に示すコモンドライバ200について、図13を参照して説明する。

図13に示すコモンドライバIC200は、コモン駆動回路210と電源回路220とを内蔵している。コモン駆動回路210には、双方向シフトレジスタ212と、その出力をデコードするデコード回路214と、デコード結果に従って図9のコモン電極12に電圧を供給する液晶駆動回路216とを有する。双方向シフトレジスタ212は、画面の上下いずれかからも走査可能とするものである。このスキャン方向は、MPU300からのスキャン方向のコマンドをセグメントドライバIC100を介して入力するシフト方向制御回路218からの出力によって制御される。

電源回路 2 2 0 は、電源電位 V D D 、 V S S か ら、図 5 に示す 7 レベルの電位 P V 3 、 P V 2 、 P V 1 、 V C 、 M V 1 、 M V 2 、 M V 3 を生成するものである。このために、図 1 3 に示す電源回路 2 2 0 内には、1 次昇圧補助回路 2 2 2 、1 次昇圧回路 2 2 4 、電子ボリューム 2 2 6 、2 次昇圧回路 2 2 8 、3 次及び 4 次昇圧回路 2 3 0 、2 3 2 が設けられている。これら 1 次~ 4 次昇圧回路はチャージポンプにて構成される。また、各昇圧回路での昇圧タイミングを発生するために、基本タイミング発生回路 2 3 4 、第 1 ~第 3 の昇圧タイミング発生回路 2 3 6 、2 3 8 、2 4 0 が設けられている。この電源回路 2 2 0 にはさらに、電位発生回路 2 4 2 、電位切換回路 2 4 4 及び放電回路 2 4 6 が設けられている。電位発生回路 2 4 2 は、2 次昇圧回路 2 2 8 からの電位 P V 2 、 M V 2 を降圧して、電位 P V 1 、 M V 1 を発生するものである。電位切換回路 2 4 4 は、端子 P V 3 、 M V 3 より出力される電位を切り換えるもので

ある。この電位切換回路244は、通常動作モード時にあっては3次、4次昇圧回路230,232からの電位MV3,PV3を出力し、待ち受けモード時にあっては、2次昇圧回路2からの出力に基づいて電位PV2,MV2を出力する。待ち受けモードは、MPU300からのコマンドによって指定される。詳しくは、その待ち受けモードのコマンドは、図12に示すセグメントドライバIC100の出力バッファ106より出力され、図13に示すコモンドライバIC200のパワーセーブ端子(/PSAVE)の論理が例えばHIGHとなることで設定される。このパワーセーブ端子からの信号は、第3の昇圧タイミング発生回路240にも入力される。そして、この待ち受けモード時にあっては、第3の昇圧タイミング発生回路240からの信号に基づいて、3次、4次昇圧回路230,232の動作は停止される。

図13に示す電源回路220の動作を、図14を参照して説明する。電源電位VDD, VSSを一次昇圧回路224にて昇圧し、その昇圧された電位を電子ボリューム226にて適正な電位VCに調整する。他の電位PV3, PV2, PV1, MV1, MV2, MV3は、この電位VCを基準として生成されるので、電子ボリューム226にて電位VCを調整することで、コントラスト、輝度調整が可能となる。ただし、一旦コントラスト調整が済んでいれば、先に説明した通り、デューティを変更して駆動する度に電子ボリューム226を操作してコントラストを調整することは不要である。

次に、2次昇圧回路228は、電位VCと電源電位VSSとの間の電圧を昇圧して、電位PV2を生成する。なお、電位MV2としては電源電位VSSが用いられる。

電位発生回路242は、電位VCと電位MV2間の電圧を降圧して、電位MV1を 生成し、また、電位PV2と電位VC間の電圧を降圧して、電位PV1を生成する。 本実施例では、電位設定回路242は1/2降圧回路で構成している。

3次昇圧回路230は、電位PV2と電位MV2間の電圧を昇圧して、電位MV3 を生成する。4次昇圧回路232は、電位MV3と電位VC間の電圧を昇圧して、電位PV3を生成する。

以上により、通常動作モードでの4ライン同時選択駆動時に必要な、図5に示す電 位PV3, PV2, PV1, VC, MV1, MV2, MV3の7レベルを全て生成で きる。

ここで、上述した通り、通常動作モードでのコントラストは、図13及び図14に示す電子ボリューム226を操作して一度調整しておけば良い。このとき、バイアス比は一定(すなわち、1次~4次昇圧倍率は固定)のままでコントラスト調整を容易に実施できる。従来は、PV3を変動させ、抵抗分割回路によって任意の電位レベルを生成していたが、抵抗分割回路に直流電流が流れて消費電力が増大することに加え、バイアス比も変動してしまう欠点があった。本実施例ではこれらの従来の欠点を改善できる。

さらには、従来は電位VC=VDDに設定していた。しかし、電位VCとして 3 V 程度必要となると、電源電位VDDを上げるしかなく、低電圧化に反してしまう。本 実施例では、電位VDDを昇圧して電位VCを生成しているので、電源電圧VDDの 低電圧化が図れる。

次に、待ち受けモード時の駆動について説明する。待ち受けモード駆動法の一つとして、図5に示す通常モード時のバイアス比に代えて、図6に示すバイアス比となるように、電位PV3, MV3を変更すればよい。このためには、図13及び図14に示す3次昇圧回路230及び4次昇圧回路232での昇圧倍率を変更すればよい。

図13に示すコモンドライバIC200内の電源回路220では、昇圧倍率を変更 する代わりに、他の方法を用いて待ち受けモード時でのバイアス比を変更している。

すなわち、待ち受けモードでは、コモン電位PV3, MV3を生成する3次、4次 昇圧回路230,232での動作を停止させている。電位切換回路244では、この コモン電位PV3, MV3の代わりに、セグメント電位PV2, MV2をコモン電極 12に供給している。そのために、図13に示す切換回路244は、パワーセーブ信 号により待ち受けモードが設定された時に、図13に示すPV3, MV3端子より電 位PV2, MV2を出力するように切り換えている。

従って、通常動作モードでは7レベル駆動であったのに対して、待ち受けモードでは電位PV3, MV3を除いた5レベル駆動となる。

ここで、式(21)を変形すると、次式が得られる。

$$n_2 = n_1 \cdot (c_1/c_2)^2 \cdots (35)$$

ここで、バイアス比  $c_1$  = (PV2-VC) / L/PV3 である。一方、バイアス比  $c_2$  = (PV2-VC) / L/PV2 である。従って、式 (35) 中の  $(c_1/c_2)$  は結局、通常動作モード時のコモン電圧 PV3 と、待ち受け動作モード時のコモン電圧 PV2 との比率 PV2 / PV3 (MV2 / MV3 と同じ)となる。ここで、比率 (MV2 / MV3) は、図 14 に示すように 3 次昇圧回路 230 での 3 次昇圧倍率 k となる。よって、式 (35) 中の  $(c_1/c_2)$  は、1/k に等しい。従って、式 (35) は、3 次昇圧倍率 k を用いると、次式の通りとなる。

$$n_2 = n_1 \cdot (1/K)^2 \qquad \cdots (36)$$

式 (35) 中の ( $c_1/c_2$ )、すなわち式 (36) 中の 3次昇圧倍率 k を 2 または 3 としたとき、通常動作モードでのデューティ $n_1$ と待ち受け動作モードでのデューティ $n_2$ との関係は、下記の表 1 の通りとなる。

表]

|             |               | , <del> ,</del> |
|-------------|---------------|-----------------|
| 通常動作デューティロュ | 待受動作デューティ n 2 | 待受動作デューティ n 2   |
|             | (3次昇圧倍率=2)    | (3次昇圧倍率=3)      |
| 8 0         | 2 0           | 9 (8)           |
| 1 0 0       | 25 (24)       | 11 (12)         |
| 1 2 0       | 30 (32)       | 13 (12)         |
| 1 4 0       | 35 (36)       | 1 6             |
| 160         | 4 0           | 18 (16)         |

()の値は最も近い4の倍数値を示す。

但し、マルチライン選択駆動法でのn<sub>1</sub>, n<sub>2</sub>は、同時選択数Lの整数倍という制限があるので本実施例では最も近い4の倍数値を採用することになる。

このように、3次昇圧倍率と通常動作デューティ $n_1$ とが定められれば、待ち受け動作時の表示デューティ $n_2$ は一義的に決定される。この表示デューティ $n_2$ で駆動すれば、コントラスト調整は不要となる。

#### 請求の範囲

1. 複数のコモン電極が形成された第1基板と、複数のセグメント電極が形成された 第2基板と、前記第1,第2基板間に介在された液晶とを有し、前記複数のコモン電 極及び前記複数のセグメント電極の各交点に形成される画素に、少なくともON電圧 とOFF電圧とに変化する電圧を印加する液晶装置の駆動方法において、

第1のデューティ及び第1のバイアス比の条件下で駆動する第1駆動工程と、 第2のデューティ及び第2のバイアス比の条件下で駆動する第2駆動工程と、 を有し、

前記第1駆動工程にて前記ON電圧と前記OFF電圧との間の中間電圧が前記画素に印加された時に前記画素に加わる実効電圧と、前記第2駆動工程にて前記ON電圧と前記OFF電圧との間の中間電圧が前記画素に印加された時に前記画素に加わる実効電圧とが等しくなるように、前記第1,第2のデューティ及び前記第1,第2のバイアス比が設定されていることを特徴とする液晶装置の駆動方法。

# 2.請求項1において、

前記第1,第2の駆動工程の各々では、1本の前記コモン電極を順次選択すること を特徴とする液晶装置の駆動方法。

- 3. 請求項1において、
- 前記第1,第2の駆動工程の各々では、2本以上の前記コモン電極を同時に選択することを特徴とする液晶装置の駆動方法。
- 4. 複数のコモン電極が形成された第1基板と、複数のセグメント電極が形成された 第2基板と、前記第1,第2基板間に介在された液晶とを有し、前記複数のコモン電 極及び前記複数のセグメント電極の各交点に形成される画素に、少なくともON電圧 とOFF電圧とに変化する電圧を印加する液晶装置の駆動方法において、

第1のデューティn,及び第1のバイアス比c,の条件下で駆動する第1駆動工程と、

第2のデューティn₂及び第2のバイアス比c₂の条件下で駆動する第2駆動工程と、

を有し、前記第1,第2のデューティ及び前記第1,第2のバイアス比が、 $n_1$ ・ $c_1^2 = n_2 \cdot c_2^2$ の関係を満足するように設定されていることを特徴とする液晶装置の駆動方法。

# 5. 請求項3において、

前記第1,第2の駆動工程の各々では、1本の前記コモン電極を順次選択すること を特徴とする液晶装置の駆動方法。

#### 6. 請求項3において、

前記第1,第2の駆動工程の各々では、2本以上の前記コモン電極を同時に選択することを特徴とする液晶装置の駆動方法。

### 7. 請求項6において、

前記第1駆動工程では、前記セグメント電極に供給される最大信号電位を昇圧して、 前記コモン電極に供給される選択電位を生成する工程を有し、

前記第2駆動工程では、前記昇圧工程を停止し、前記セグメント電極に供給される 前記最大信号電位を、前記コモン電極に前記選択電位として供給する工程を有するこ とを特徴とする液晶装置の駆動方法。

# 8. 請求項7において、

前記第1駆動工程にて実施される前記昇圧工程での昇圧倍率をkとしたとき、 $n_2=n_1\cdot(1/k)^2$ の関係が成立していることを特徴とする液晶装置の駆動方法。 9. 複数のコモン電極が形成された第1基板と、複数のセグメント電極が形成された第2基板と、前記第1,第2基板間に介在された液晶とを有し、前記複数のコモン電極及び前記複数のセグメント電極の各交点に形成される画素に、少なくともON電圧とOFF電圧とに変化する電圧を印加する液晶装置の駆動方法において、

第1のデューティ及び第1のバイアス比の条件下で駆動する第1駆動工程と、

第1のデューティより低い第2のデューティ及び第2のバイアス比の条件下で駆動する第2駆動工程と、

#### を有し、

前記第1駆動工程にて前記ON電圧が前記画素に印加された時に前記画素に加わる事効電圧が、前記第2駆動工程にて前記ON電圧が前記画素に印加された時に前記

画素に加わる実効電圧以下であり、かつ、前記第1駆動工程にて前記OFF電圧が前記画素に印加された時に前記画素に加わる実効電圧が、前記第2駆動工程にて前記OFF電圧が前記画素に印加された時に前記画素に加わる実効電圧以上となるように、前記第1,第2のデューティ及び前記第1,第2のバイアス比が設定されていることを特徴とする液晶装置の駆動方法。

10.請求項9において、

前記第1,第2の駆動工程の各々では、1本の前記コモン電極を順次選択すること を特徴とする液晶装置の駆動方法。

11. 請求項9において、

前記第1,第2の駆動工程の各々では、2本以上の前記コモン電極を同時に選択することを特徴とする液晶装置の駆動方法。

12. 複数のコモン電極が形成された第1基板と、複数のセグメント電極が形成された第2基板と、前記第1,第2基板間に介在された液晶とを有するパネルと、

前記複数のセグメント電極に電圧を供給するセグメントドライバと、

前記複数のコモン電極に電圧を供給するコモンドライバと、

前記セグメントドライバ及び前記コモンドライバに液晶駆動電圧を供給する電源 回路と、

を有し、

前記セグメントドライバは、第1のデューティn」と第2のデューティn2(n2<n1)とに可変する回路を有し、

前記電源回路は、前記第1のデューティ $n_1$ に設定された時に第1のバイアス比 $c_1$ に設定し、前記第2のデューティ $n_2$ に設定された時に第2のバイアス比 $c_2$ ( $c_2$ > $c_1$ ) に設定する回路を有し、

前記第1,第2のデューティ及び前記第1,第2のバイアス比が、 $n_1 \cdot c_1^2 = n_2 \cdot c_2^2$ の関係を満足するように設定されていることを特徴とする液晶装置。

13.請求項12において、

前記コモンドライバは、1本の前記コモン電極を順次選択することを特徴とする液 晶装置。 14. 請求項12において、

前記コモンドライバは、2本以上の前記コモン電極を同時に選択することを特徴と する液晶装置。

15. 請求項14において、

前記電源回路は、前記セグメント電極に供給される最大信号電位を昇圧して、前記コモン電極に供給される選択電位を生成する昇圧回路と、

前記第1のデューティn」に設定された時に前記昇圧回路を動作させ、前記第2の デューティn2に設定された時に前記昇圧回路を停止させる昇圧タイミング回路と、

前記第2のデューティn2に設定された時に、前記前記セグメント電極に供給される前記最大信号電位を、前記コモン電極に前記選択電位として切り換えて供給する電位切換回路と、

を有することを特徴とする液晶装置。

16. 請求項15において、

前記昇圧回路での昇圧倍率をkとしたとき、 $n_2=n_1$ ・(1/k)  $^2$ の関係が成立していることを特徴とする液晶装置。

17. 請求項12乃至16のいずれかにおいて、

前記コモンドライバと前記電源回路とが1チップICに内蔵されていることを特徴とする液晶装置。

18.請求項12乃至17に記載の液晶装置を有することを特徴とする電子機器。

1 / 12:

FIG. 1



FIG. 2



FIG. 3



FIG. 4



FIG. 5



FIG. 6



FIG.7



FIG.8



FIG. 9



FIG.10



FIG.11



FIG. 12



.11 / 12

FIG. 13





# INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/02066

|              | IFICATION OF SUBJECT MATTER                                                                                                                                                                                                              |                                                                                  |                        |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------|--|--|
| Int.         |                                                                                                                                                                                                                                          |                                                                                  |                        |  |  |
|              | G09G 3/36                                                                                                                                                                                                                                |                                                                                  |                        |  |  |
| According to | International Patent Classification (IPC) or to both nati                                                                                                                                                                                | onal classification and IPC                                                      |                        |  |  |
|              | S SEARCHED                                                                                                                                                                                                                               |                                                                                  |                        |  |  |
|              | ocumentation searched (classification system followed by                                                                                                                                                                                 | y classification symbols)                                                        |                        |  |  |
| Int.         | Cl' G02F 1/133 545                                                                                                                                                                                                                       | · ····                                                                           |                        |  |  |
|              | G09G 3/36                                                                                                                                                                                                                                |                                                                                  |                        |  |  |
| <u></u>      |                                                                                                                                                                                                                                          | ·                                                                                |                        |  |  |
| Documentati  | ion searched other than minimum documentation to the                                                                                                                                                                                     | extent that such documents are included in                                       | in the fields searched |  |  |
| Jits         | uyo Shinan Koho 1926-2000<br>i Jitsuyo Shinan Koho 1971-1995                                                                                                                                                                             |                                                                                  |                        |  |  |
| 1            |                                                                                                                                                                                                                                          |                                                                                  |                        |  |  |
| Electronic d | ata base consulted during the international search (name                                                                                                                                                                                 | of data base and, where practicable, sear                                        | rch terms used)        |  |  |
| 1            | •                                                                                                                                                                                                                                        |                                                                                  | -                      |  |  |
|              | •                                                                                                                                                                                                                                        | ·                                                                                |                        |  |  |
|              |                                                                                                                                                                                                                                          |                                                                                  |                        |  |  |
| C. DOCUI     | MENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                          |                                                                                  | <u> </u>               |  |  |
| Category*    | Citation of document, with indication, where app                                                                                                                                                                                         | propriate, of the relevant passages                                              | Relevant to claim No.  |  |  |
| X            | JP, 8-234704, A (Rohm Co., Ltd.                                                                                                                                                                                                          |                                                                                  | 1,2                    |  |  |
| X<br>Y       | 13 September, 1996 (13.09.96),                                                                                                                                                                                                           |                                                                                  | 3                      |  |  |
| A            | page 2, right column, line 48 to p                                                                                                                                                                                                       | age 3, left column, line                                                         | 4-18                   |  |  |
| 1            | 1; page 3, right column, lines                                                                                                                                                                                                           | ع-50 (Family: none)                                                              |                        |  |  |
| . <b>Y</b>   | JP, 63-304294, A (Matsushita Ele                                                                                                                                                                                                         | ectric Ind. Co. Ltd.)                                                            | 3                      |  |  |
| A            | 12 December, 1988 (12.12.88),                                                                                                                                                                                                            |                                                                                  | 4-18                   |  |  |
| 1            | page 2, upper left column, line                                                                                                                                                                                                          | 9 to page 2, upper                                                               |                        |  |  |
|              | right column, line 4; page 3, up                                                                                                                                                                                                         | oper right column, line                                                          | •                      |  |  |
|              | 7 to page 3, lower left column, (Family: none)                                                                                                                                                                                           | Time wirig. I                                                                    | •                      |  |  |
|              |                                                                                                                                                                                                                                          | 1                                                                                |                        |  |  |
| A            | EP, 443248, A (SEIKO EPSON CORP                                                                                                                                                                                                          | ORATION),                                                                        | 1-18                   |  |  |
|              | 28 August, 1991 (28.08.91),                                                                                                                                                                                                              |                                                                                  |                        |  |  |
|              | page 2, lines 26 to 35<br>& JP, 3-20714, A & US, 50937                                                                                                                                                                                   | 36. A                                                                            |                        |  |  |
| 1            | CE, 3-20/14  A CO, 5095                                                                                                                                                                                                                  |                                                                                  |                        |  |  |
| i            |                                                                                                                                                                                                                                          |                                                                                  |                        |  |  |
|              |                                                                                                                                                                                                                                          | l                                                                                |                        |  |  |
| · .          |                                                                                                                                                                                                                                          |                                                                                  | ٠.                     |  |  |
|              |                                                                                                                                                                                                                                          | , . l                                                                            |                        |  |  |
| <del>-</del> | <u></u>                                                                                                                                                                                                                                  |                                                                                  | 1                      |  |  |
| Furth        | Further documents are listed in the continuation of Box C. See patent family annex.                                                                                                                                                      |                                                                                  |                        |  |  |
| • Specia     | • Special categories of cited documents:  "T" later document published after the international filing date or                                                                                                                            |                                                                                  |                        |  |  |
| "A" docum    | "A" document defining the general state of the art which is not priority date and not in contrict with the application but cited to considered to be of particular relevance understand the principle or theory underlying the invention |                                                                                  |                        |  |  |
| "E" carlier  | "E" carlier document but published on or after the international filing document of particular relevance; the claimed invention cannot be                                                                                                |                                                                                  |                        |  |  |
| "L" docum    | "L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone                                                                                                                               |                                                                                  |                        |  |  |
| cited t      | to establish the publication date of another citation or other                                                                                                                                                                           | "Y" document of particular relevance; the considered to involve an inventive ste |                        |  |  |
| "O" docun    | il reason (as specified)<br>nent referring to an oral disclosure, use, exhibition or other                                                                                                                                               | combined with one or more other such                                             | documents, such        |  |  |
| means        | 1                                                                                                                                                                                                                                        | combination being obvious to a person document member of the same patent         | n skilled in the art   |  |  |
|              | nent published prior to the international filing date but later<br>he priority date claimed                                                                                                                                              | occurrent member of the same patent                                              | ·                      |  |  |
| Date of the  | actual completion of the international search                                                                                                                                                                                            | Date of mailing of the international sear                                        |                        |  |  |
| 13           | April, 2000 (13.04.00)                                                                                                                                                                                                                   | 25 April, 2000 (25.0                                                             |                        |  |  |
|              | . i                                                                                                                                                                                                                                      |                                                                                  |                        |  |  |
| Name and     | mailing address of the ISA/                                                                                                                                                                                                              | Authorized officer                                                               |                        |  |  |
| Jap          | anese Patent Office                                                                                                                                                                                                                      |                                                                                  |                        |  |  |
| · I          |                                                                                                                                                                                                                                          | Telephone No.                                                                    | ٠.                     |  |  |
| Facsimile ?  | No.                                                                                                                                                                                                                                      | Telephone No.                                                                    | •                      |  |  |

国際出願番号 PCT/JP00/02066

|                                                       |                                                                                                                       | •                                       | ]                         | EDVENIA 3                                                  | . 0 . / , 1                                     | 00702000                                                                         |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|
| A. 発明の原                                               | 属する分野の分類(国際                                                                                                           | 特許分類(IPC)                               | )                         |                                                            |                                                 |                                                                                  |
| ٠.                                                    | Int. Cl7                                                                                                              | G02F 1,                                 |                           | 545                                                        |                                                 |                                                                                  |
| B. 調査を行                                               |                                                                                                                       |                                         |                           |                                                            |                                                 |                                                                                  |
|                                                       | <b>曼小限資料(国際特許分</b>                                                                                                    | 類 (IPC))                                |                           |                                                            |                                                 |                                                                                  |
|                                                       | Int. Cl7                                                                                                              | G02F 1,<br>G09G 3,                      |                           | 5 4 5                                                      | •                                               |                                                                                  |
| 最小限資料以外                                               | トの資料で調査を行った                                                                                                           | <u></u><br>分野に含まれるもの                    | )                         |                                                            |                                                 |                                                                                  |
|                                                       | 日本国実用新案公報<br>日本国公開実用新案                                                                                                |                                         | 26-20<br>71-19            | •                                                          |                                                 |                                                                                  |
| 国際調査で使用                                               | <b>用した電子データベース</b>                                                                                                    | <b>(データベースの名</b>                        | 称、調査に                     | 使用した用語                                                     | ) ·                                             | •                                                                                |
|                                                       | ÷                                                                                                                     |                                         |                           |                                                            |                                                 |                                                                                  |
|                                                       | 5と認められる文献                                                                                                             | ٥                                       |                           |                                                            |                                                 |                                                                                  |
| 引用文献の<br>カテゴリー*                                       | 引用文献名 及び                                                                                                              | 一部の箇所が関連す                               | るときは、                     | その関連する                                                     | 箇所の表示                                           | 関連する 請求の範囲の番号                                                                    |
| X<br>Y<br>A                                           | JP, 8-23<br>1996 (13.<br>第1行, 同頁右欄                                                                                    | ,                                       | 第2頁右                      | 欄第48行                                                      |                                                 |                                                                                  |
| Y<br>A                                                | JP, 63-3<br>2.12月.19<br>〜同頁右上欄第4<br>1図(ファミリー                                                                          | 行,第3頁右上                                 | 2.88                      | ),第2頁                                                      | 左上欄第9                                           | •                                                                                |
| Α                                                     | EP, 4432                                                                                                              | 48, A (SE                               | IKO                       | EPSON                                                      | CORP                                            | 0 1-18                                                                           |
| X C欄の続                                                | きにも文献が列挙されて                                                                                                           | いる。                                     |                           | パテントファ                                                     | アミリーに関す                                         | る別紙を容照。                                                                          |
| もの<br>「E」国際出<br>以後に<br>「L」優先権<br>日若し<br>文献(<br>「O」ロ頭に | のカテゴリー<br>車のある文献ではなく、<br>顔日前の出願または特割<br>公表されたもの<br>主張に疑義を提起する文<br>くは他の特別な理由を研<br>理由を付す)<br>よる開示、使用、展示等<br>顔日前で、かつ優先権の | であるが、国際出版<br>一献又は他の文献の多<br>は立するために引用する。 | 頁日<br>「X」<br>を行<br>ける 「Y」 | 国際出願日又 て出願と矛盾 論の理解のた 特に関連のあ が 規性又あ 特に関連のあ は 大の文献との よって 進歩性 | するものではかめに引用するで<br>る文献であって<br>進歩性がないる<br>る文献であって | なく、発明の原理又は<br>もの<br>て、当該文献のみで発明<br>と考えられるもの<br>て、当該文献と他の1<br>いて自明である組合せ<br>いれるもの |
| 国際調査を完                                                | 了した日 13.                                                                                                              | 04.00                                   | 国際創                       | 電査報告の発送                                                    | 25.0                                            | 04.00                                                                            |
| 日本                                                    | の名称及びあて先<br>国特許庁(I S A / J F<br>郵便番号100-891                                                                           | 5                                       |                           | 審査官(権限<br>吉 野                                              | 公夫                                              | 2X 810                                                                           |
| 東京                                                    | 都千代田区霞が関三丁目                                                                                                           | 4番3号                                    | 電話者                       | F号 03-3                                                    | 581-110                                         | 01 内線・3293                                                                       |

国際出願番号 PCT/JP00/02066

| 開連する                                                                    | C (続き) 関連すると認められる文献<br>川用文献の |                                                      |              |                   |  |
|-------------------------------------------------------------------------|------------------------------|------------------------------------------------------|--------------|-------------------|--|
| RATION), 28. 8月. 1991 (28. 08. 91), 第<br>2頁第26-35行 & JP. 3-20714 A & US | カテゴリー*                       | THE PROPERTY OF COMMENT                              | 、その関連する箇所の表示 | 関連する 請求の範囲の番号     |  |
|                                                                         |                              | RATION) , 28. 8月. 1991 (2<br>  2頁第26-35行 & JP. 3-202 | 28 08 01) 44 | PINAL PROPERTY HE |  |
|                                                                         |                              |                                                      |              |                   |  |
|                                                                         |                              |                                                      |              |                   |  |
|                                                                         |                              |                                                      |              |                   |  |
|                                                                         | ·                            |                                                      |              |                   |  |
|                                                                         |                              |                                                      |              |                   |  |
|                                                                         |                              |                                                      |              | 1 ( )             |  |
|                                                                         |                              |                                                      |              |                   |  |
|                                                                         |                              |                                                      |              |                   |  |
|                                                                         |                              |                                                      |              |                   |  |
|                                                                         |                              |                                                      |              |                   |  |
|                                                                         |                              |                                                      |              |                   |  |
|                                                                         |                              |                                                      |              |                   |  |