UFPB - CCEN - Departamento de Matemática

Séries & EDO - 08.2 Prof. MPMatos

Exame N. 1 Sequências & Séries Numéricas

Gabarito

01. (2,0 pontos) Falso (F) ou verdadeiro (V). Justifique as afirmativas falsas.

- (a) Se $\lim n^2 a_n = 1$, então $\lim a_n = 0$.
- (b) Se $\sum a_n$ e $\sum b_n$ são séries de termos positivos convergentes, então $\sum a_n b_n$ converge.
- (c) Se $\sum a_n$ converge, então $\sum \sqrt{n}a_n$ converge.
- (d) Se (a_n) é divergente e (b_n) é limitada, então (a_nb_n) diverge.
- (e) A sequência (a_n) definida pela recorrência: $a_1 = 1$ e $a_{n+1} = 1 a_n$ é convergente. Solução:
 - (a) Verdadeiro. Temos

$$a_n = \underbrace{\left(1/n^2\right)}_{\substack{\downarrow \\ 0}} \underbrace{\left(n^2 a_n\right)}_{\substack{\downarrow \\ 0}} \longrightarrow 0$$

(b) Verdadeiro. Denote por S_n e R_n as n-ésimas soma de $\sum a_n$ e $\sum b_n$, respectivamente. Se U_n é a n-ésma soma de $\sum a_n b_n$, então:

$$0 \le U_n \le S_n R_n,$$

de onde resulta que a sequência (U_n) – e consequentemente a série $\sum a_n b_n$ – converge.

- (c) Falso. Considere $a_n = (-1)^n / \sqrt{n}$.
- (d) Falso. Considere $a_n = (-1)^n$ (divergente) e $b_n = 1/n$ (limitada). A sequência $a_n b_n$ converge para zero.
- (e) Falso. A sequência a_n é na verdade $1,0,1,0,1,0,\ldots$ que é divergente (a subsequência par e impar convergem para valores distintos).
- **02.** Assinale a alternativa correta.

- 1) Se $a_n = \frac{2}{3n-4}$, então o valor de $\sup a_n + 2\inf a_n$ é igual a:
 - (a) 3 (b) -3 (c) 1 (d) -1.
- 2) As séries $\sum_{n=1}^{\infty} {\rm sen}^2 \left(1/n \right)$ e $\sum_{n=1}^{\infty} n \, {\rm sen} \left(1/n \right)$ são respectivamente:
 - (a) Convergente e Convergente
 - (b) Convergente e Divergente
 - (c) Divergente e Divergente
 - (d) Divergente e Convergente.
- 3) Se S_n é a *n*-ésima soma parcial da série $\sum_{n=1}^{\infty} a_n$ de termos positivos, então:
 - (a) $\sum_{n=1}^{\infty} a_n$ é convergente se $\{S_n\}$ for monótona;
 - (b) $\sum_{n=1}^{\infty} a_n$ é sempre convergente;
 - (c) $\sum_{n=1}^{\infty} a_n$ é divergente quando $\lim_{n\to\infty} S_n \neq 0$;
 - (d) $\sum_{n=1}^{\infty} a_n$ é convergente se $\{S_n\}$ for limitada.
- 4) Com respeito à série $\sum_{n=1}^{\infty} \frac{(-1)^p}{n^p}$ pode-se afirmar que:
 - (a) Ela converge absolutamente seja qual for o valor de p;
 - (b) Ela converge condicionalmente seja qual for o valor de p;
 - (c) Ela converge absolutamente se p > 1;
 - (d) Ela converge condicionalmente se $p \leq 1$.
- 5) Se 0 < x < 1, o valor da soma da série $\sum_{n=1}^{\infty} nx^n$ é:

- (a) $\frac{x}{1-x}$ (b) $\frac{1}{1-x}$ (c) x $(d) \frac{x}{(1-x)^2}$.
- **03.** (2,0 pontos) Complete os espaços:
 - (a) Se (a_n) é uma seqüência monótona e limitada, então (a_n) é convergente.
 - (b) Se $\lim \sqrt{n} \ a_n = \infty$, então a série $\sum a_n$ é divergente.
 - (c) A série geométrica $\sum_{n=1}^{\infty} (1-x)^{n-1}$ converge para 1/x, se 0 < x < 2.
 - (d) Se $\lim |a_{n+1}/a_n| < 1$, então a série $\sum a_n$ é absolutamente convergente.

- (e) O Critério de Leibniz é aplicado com sucesso às séries do tipo $\sum (-1)^n b_n$, $b_n > 0$, sendo (b_n) uma seqüência monótona decrescente e convergindo para zero.
- **04.** (2,0 pontos) Considere a sequência $a_n = \frac{n}{(n+1)!}$.
 - (a) Mostre por indução que $a_1 + a_2 + \dots + a_n = 1 \frac{1}{(n+1)!}, \ \forall n \in \mathbb{N}.$
 - (b) Calcule o valor da soma infinita $\sum_{n=3}^{\infty} \frac{n}{(n+1)!}$.

Solução:

(a) Passo 1: Para n=1 a sentença é: $a_1=1-\frac{1}{2!}$ que é claramente verdadeira.

Passo 2: Suponhamos que $a_1 + a_2 + \cdots + a_n = 1 - \frac{1}{(n+1)!}$ e mostremos que

$$a_1 + a_2 + \dots + a_n + a_{n+1} = 1 - \frac{1}{(n+2)!}$$

De fato:

$$\underbrace{a_1 + a_2 + \dots + a_n}_{} + a_{n+1} = \underbrace{1 - \frac{1}{(n+1)!}}_{} + \underbrace{\frac{n+1}{(n+2)!}}_{} = 1 - \left[\frac{n+1-1}{(n+2)!}\right]$$
$$= 1 - \frac{1}{(n+2)!}.$$

(b) No ítem (a) mostramos que $S_n = a_1 + a_2 + \cdots + a_n = 1 - \frac{1}{(n+1)!}$ e, sendo assim:

$$\sum_{n=3}^{\infty} \frac{n}{(n+1)!} = -a_1 - a_2 + \sum_{n=1}^{\infty} \frac{n}{(n+1)!} = -\frac{1}{2} - \frac{2}{6} + \lim S_n = \boxed{1/6}$$

- 05. (2,0 pontos) Use o critério especificado e investigue a convergência das séries:
 - (a) $\sum_{n=1}^{\infty} \frac{3n}{\sqrt[3]{n^3+1}}$ (Critério da Comparação)
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 3}$ (Critério de Leibniz)
 - (c) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ (Critério da Razão)
 - (d) $\sum_{n=1}^{\infty} \ln \left(\frac{3n}{2n+1} \right)$ (Critério do *n*-ésimo Termo)

Solução:

(a)
$$a_n = \frac{3n}{\sqrt[3]{n^3 + 1}} \ge \frac{3n}{\sqrt[3]{n^3 + 26n^3}} = \frac{3n}{\sqrt[3]{27n^3}} = 1 = b_n$$
. Como a série de prova $\sum b_n$ é divergente, então $\sum a_n$ diverge.

(b) Seja
$$b_n = \frac{n}{n^2 + 3}$$
. Então:

- $b_n > 0, \ \forall n ;$
- $b_n = \frac{n}{n^2 (1 + 3/n^2)} = \frac{1}{n (1 + 3/n^2)} \longrightarrow 0$, quando $n \to \infty$;
- (b_n) é decrescente, para n > 3. De fato, a função extensão $f(x) = \frac{x}{x^2 + 3}$ tem derivada $f'(x) = \frac{-x+3}{(x^2+3)^2} < 0$, para x > 3 e, portanto, (b_n) decresce a partir de n = 3.

Pelo Critério de Leibniz, a série alternada $\sum_{n=1}^{\infty} \left(-1\right)^n b_n$ é convergente.

(c)
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{(n+1)^{n+1}} \times \frac{n^n}{n!} \right| = \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = \lim_{n \to \infty} \frac{1}{(1+1/n)^n} = \frac{1}{e} < 1.$$

Pelo Critério da Razão a série $\sum a_n$ converge absolutamente.

(d)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \ln\left(\frac{3n}{2n+1}\right) = \ln(3/2) \neq 0$$
 e, sendo assim, a série $\sum a_n$ é divergente.