Feuille d'exercices n. 2:

Fonctions complexes.

Exercice 1 Décrire l'image des sous-ensembles $S_j\subset\mathbb{C}$ indiqués ci-dessous par les fonctions f suivantes :

- (a) f(z) = 1/z, $S_1 = \{z \neq 0 : |z| < 1\}$ et $S_2 = \{z \neq 0 : |z| > 1\}$;
- (b) $f(z) = 1/\bar{z}$, $S_1 = \{z \neq 0 : |z| < 1\}$ et $S_2 = \{z \neq 0 : |z| > 1\}$;
- (c) $f(z) = e^z$, $S_1 = \{z = x + iy : x \le 1, \ 0 \le y \le \pi\}$ et $S_2 = \{z = x + iy : 0 \le y \le \pi\}$;
- (d) $f(z) = e^z$, S_1 = une droite horizontale, S_2 = une droite verticale, S_3 = une droite passant par l'origine.

Exercice 2 Montrer que, pour tout $z, w \in \mathbb{C}$, l'on a les égalités suivantes :

- (a) $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$;
- (b) $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$.

Exercice 3 (a) Déterminer la partie réelle et la partie imaginaire des fonctions suivantes : $\sin(z)$, $\sinh(z)$, $\cos(z)$, $\cosh(z)$;

(b) A l'aide de (a) déterminer les sous-ensembles de \mathbb{C} où les fonction $\sin(z)$, $\sinh(z)$, $\cos(z)$, et $\cosh(z)$ prennent : (i) des valeurs réelles ; (ii) des valeurs imaginaires pures.

Exercice 4 Déterminer les zéros des fonctions suivantes : (a) $1 + e^z$; (b) $1 + i - e^z$.

Exercice 5 Un nombre complexe $p \in \mathbb{C}$ est appelé $p\acute{e}riode$ d'une fonction $f: U \subset \mathbb{C} \to \mathbb{C}$ si f(z+p)=f(z), pour tout $z \in U$. Nous avons vu en cours que pour tout $k \in \mathbb{Z}$, les nombres $p=2ik\pi$ sont des périodes de la fonction exp complexe. Montrer qu'il n'y en a pas d'autres.

Exercice 6 Si $z \in \mathbb{C} \setminus \{0\}$, écrivons $z = re^{i\theta}$, avec r > 0 et $\theta \in]-\pi,\pi]$. Le réel $\theta \in]-\pi,\pi]$ est appelé détermination principale de l'argument de z. Rappelons que la détermination principale du logarithme complexe de z s'écrit alors comme il suit

$$\log(z) = \ln(r) + i\theta.$$

Soient $z_1, z_2 \in \mathbb{C} \setminus \{0\}$.

(a) Montrer que

$$\log(z_1 z_2) = \log(z_1) + \log(z_2) + 2i\pi n$$

pour un certain entier n (dépendant de z_1 et z_2).

(b) Vérifier que $\log(z_1 z_2) \neq \log(z_1) + \log(z_2)$ pour $z_1 = z_2 = -1 + i$ et pour $z_1 = -1, z_2 = i$.

Exercice 7 Soient $b, z \in \mathbb{C}$ avec $b \neq 0$. Définissons la fonction *puissance de base b* de la manière suivante :

$$b^z := \exp(z \log(b)),$$

où log est une détermination du logarithme au voisinage de b. Calculer toutes les valeurs possibles de i^i .