

Algorithmen zur Visualisierung von Graphen Kräftebasierte Verfahren

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Tamara Mchedlidze · **Martin Nöllenburg** · Ignaz Rutter 08.01.2013

Ein Beispielgraph...

- Welche Eigenschaften haben wir?
- Welche Ästhetikkriterien sind sinnvoll?

Generisches Layoutproblem

Geg.: Graph G = (V, E)

Ges.: übersichtliche lesbare Zeichnung von G

Generisches Layoutproblem

Geg.: Graph G = (V, E)

Ges.: übersichtliche lesbare Zeichnung von G

Kriterien:

- adjazente Knoten nahe
- nicht-adjazente Knoten weiter entfernt
- Kanten kurz, geradlinig, ähnlich lang
- möglichst wenige Kantenkreuzungen
- Knoten gleichmäßig verteilt
- dichte Teilgraphen in gemeinsamem Bereich

Generisches Layoutproblem

Geg.: Graph G = (V, E)

Ges.: übersichtliche lesbare Zeichnung von G

Kriterien:

- adjazente Knoten nahe
- nicht-adjazente Knoten weiter entfernt
- Kanten kurz, geradlinig, ähnlich lang
- möglichst wenige Kantenkreuzungen
- Knoten gleichmäßig verteilt
- dichte Teilgraphen in gemeinsamem Bereich

Optimierungskriterien widersprechen sich zum Teil

Beispiel: feste Kantenlängen

Geg.: Graph G = (V, E), Soll-Längen $\ell(e)$ für alle $e \in E$

Ges.: Zeichnung von G, die die Kantenlängen realisiert

NP-schwer für

- Kantenlängen $\{1,2\}$ [Saxe, 1980]
- planare Zeichnung mit Einheitslängen [Eades, Wormald, '90]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ...

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades, '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades, '84]

Sogenannte **spring-embedder** Algorithmen, die nach diesem oder ähnlichen Prinzipien arbeiten, gehören zu den häufigst verwendeten Graphenzeichenmethoden in der Praxis.

rings move the system to a minimal energy state. Lades, on

Dr. Martin Nöllenburg · Algorithmen zur Visualisierung von Graphen

bre

Terminologie

$$\ell = \ell(e)$$

ldeallänge der Feder für Kante e

 $p_v = (x_v, y_v)$

Position von Knoten v

 $||p_u - p_v||$

Euklidischer Abstand zwischen u und v

 $\overrightarrow{p_up_v}$

Einheitsvektor von u nach v

Spring-Embedder (Eades, 1984)

Modell:

lacktriangle abstoßende Kraft zw. nicht adjazenten Knoten u und v

$$f_{\mathsf{rep}}(p_u, p_v) = \frac{c_{\mathsf{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_u p_v}$$

Spring-Embedder (Eades, 1984)

Modell:

ullet abstoßende Kraft zw. nicht adjazenten Knoten u und v

$$f_{\text{rep}}(p_u, p_v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_u p_v}$$

ullet anziehende Kraft zwischen adjazenten Knoten u und v

$$f_{\mathsf{spring}}(p_u, p_v) = c_{\mathsf{spring}} \cdot \log \frac{||p_u - p_v||}{\ell} \cdot \overrightarrow{p_v p_u}$$

Spring-Embedder (Eades, 1984)

Modell:

lacktriangle abstoßende Kraft zw. nicht adjazenten Knoten u und v

$$f_{\mathsf{rep}}(p_u, p_v) = \frac{c_{\mathsf{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_u p_v}$$

ullet anziehende Kraft zwischen adjazenten Knoten u und v

$$f_{\mathsf{spring}}(p_u, p_v) = c_{\mathsf{spring}} \cdot \log \frac{||p_u - p_v||}{\ell} \cdot \overrightarrow{p_v p_u}$$

ullet resultierender Verschiebungsvektor für Knoten v

$$F_v = \sum_{u:\{u,v\} \notin E} f_{rep}(p_u, p_v) + \sum_{u:\{u,v\} \in E} f_{spring}(p_u, p_v)$$

Kräftediagramm Spring-Embedder (Eades, 1984)

Algorithmus Spring-Embedder (Eades, 1984)

Input: G=(V,E) zusammenhängender ungerichteter Graph mit Anfangslayout $p=(p_v)_{v\in V}$, Iterationszahl $K\in\mathbb{N}$, Schwellwert $\varepsilon>0$

Output: Layout p mit "niedriger innerer Anspannung"

$$t \leftarrow 1$$

while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do

foreach
$$v \in V$$
 do

$$F_v(t) \leftarrow \sum_{u:\{u,v\} \notin E} f_{rep}(p_u, p_v) + \sum_{u:\{u,v\} \in E} f_{spring}(p_u, p_v)$$

foreach $v \in V$ do

$$t \leftarrow t + 1$$

Algorithmus Spring-Embedder (Eades, 1984)

Input: G=(V,E) zusammenhängender ungerichteter Graph mit Anfangslayout $p=(p_v)_{v\in V}$, Iterationszahl $K\in\mathbb{N}$, Schwellwert $\varepsilon>0$

Output: Layout p mit "niedriger innerer Anspannung"

$$t \leftarrow 1$$

while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do

foreach $v \in V$ do

$$F_v(t) \leftarrow \sum_{u:\{u,v\} \notin E} f_{rep}(p_u, p_v) + \sum_{u:\{u,v\} \in E} f_{spring}(p_u, p_v)$$

foreach $v \in V$ do

 $t \leftarrow t + 1$

Demo

Algorithmus Spring-Embedder (Eades, 1984)

Input: G = (V, E) zusammenhängender ungerichteter Graph mit Anfangslayout $p = (p_v)_{v \in V}$,

Iterationszahl $K \in \mathbb{N}$, $\delta(t)$

Output: Layout p mit "niedri

$$t \leftarrow 1$$

while t < K and $\max_{v \in V} \| R$

foreach $v \in V$ do

$$\begin{bmatrix} F_v(t) \leftarrow \sum_{u:\{u,v\} \notin E} f_{v} \\ \sum_{u:\{u,v\} \in E} f_{spring}(p_u) \end{bmatrix}$$

$$\sum_{u:\{u,v\}\in E} f_{spring}(p_u)$$

foreach $v \in V$ do

$$p_v \leftarrow p_v + \delta(t) \cdot F_v(t)$$

$$t \leftarrow t + 1$$

Diskussion

Vorteile

- sehr einfacher Algorithmus
- gute Ergebnisse für kleine und mittel-große Graphen
- empirisch gute Wiedergabe von Symmetrien und Struktur

Diskussion

Vorteile

- sehr einfacher Algorithmus
- gute Ergebnisse für kleine und mittel-große Graphen
- empirisch gute Wiedergabe von Symmetrien und Struktur

Nachteile

- System am Ende möglicherweise nicht stabil
- lokale Minima
- lacksquare Zeitaufwand für f_{spring} in $\mathcal{O}(|E|)$ und für f_{rep} in $\mathcal{O}(|V|^2)$

Diskussion

Vorteile

- sehr einfacher Algorithmus
- gute Ergebnisse für kleine und mittel-große Graphen
- empirisch gute Wiedergabe von Symmetrien und Struktur

Nachteile

- System am Ende möglicherweise nicht stabil
- lokale Minima
- lacksquare Zeitaufwand für f_{spring} in $\mathcal{O}(|E|)$ und für f_{rep} in $\mathcal{O}(|V|^2)$

Einfluss

- Original-Paper von Peter Eades 1123-mal zitiert
- Basis für viele spätere Varianten

Variante: Fruchterman & Reingold (1991)

Modell:

ullet abstoßende Kraft zwischen **allen** Knotenpaaren u und v

$$f_{\mathsf{rep}}(p_u, p_v) = \frac{\ell^2}{||p_v - p_u||} \cdot \overrightarrow{p_u p_v}$$

Variante: Fruchterman & Reingold (1991)

Modell:

ullet abstoßende Kraft zwischen **allen** Knotenpaaren u und v

$$f_{\mathsf{rep}}(p_u, p_v) = \frac{\ell^2}{||p_v - p_u||} \cdot \overrightarrow{p_u p_v}$$

ullet anziehende Kraft zwischen adjazenten Knoten u und v

$$f_{\mathsf{attr}}(p_u, p_v) = \frac{||p_u - p_v||^2}{\ell} \cdot \overrightarrow{p_v p_u}$$

Variante: Fruchterman & Reingold (1991)

Modell:

ullet abstoßende Kraft zwischen **allen** Knotenpaaren u und v

$$f_{\mathsf{rep}}(p_u, p_v) = \frac{\ell^2}{||p_v - p_u||} \cdot \overrightarrow{p_u p_v}$$

ullet anziehende Kraft zwischen adjazenten Knoten u und v

$$f_{\mathsf{attr}}(p_u, p_v) = \frac{||p_u - p_v||^2}{\ell} \cdot \overrightarrow{p_v p_u}$$

ullet resultierende Federkraft zw. adjazenten Knoten u und v

$$f_{\mathsf{spring}}(p_u, p_v) = f_{\mathsf{rep}}(p_u, p_v) + f_{\mathsf{attr}}(p_u, p_v)$$

Kräftediagramm Fruchtermann & Reingold

Kräftediagramm Fruchtermann & Reingold

Massenträgheit

Gravitation

magnetische Richtungskraft

Ideen zur Modellierung?

Massenträgheit

definiere Knotenmasse
$$\Phi(v) = 1 + \deg(v)/2$$

setze $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\phi(v)$

Gravitation

magnetische Richtungskraft

Massenträgheit

definiere Knotenmasse
$$\Phi(v) = 1 + \deg(v)/2$$

setze $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\phi(v)$

Gravitation

definiere Schwerpunkt
$$p_{\mathsf{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$$
 $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\mathsf{bary}}}$

magnetische Richtungskraft

Massenträgheit

definiere Knotenmasse
$$\Phi(v) = 1 + \deg(v)/2$$

setze $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\phi(v)$

Gravitation

definiere Schwerpunkt
$$p_{\text{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$$

 $f_{\text{grav}}(p_v) = c_{\text{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\text{bary}}}$

magnetische Richtungskraft

- definiere Magnetfeld (z.B. vertikal und horizontal)
- projeziere Kanten auf nächste Richtung des Magnetfeldes
- definiere anziehende Kraft zu projezierten Knoten

Beschränkte Zeichenfläche

Führt F_v aus der Fläche R hinaus, kappe den Vektor geeignet am Rand von R.

Beschränkte Zeichenfläche

Führt F_v aus der Fläche R hinaus, kappe den Vektor geeignet am Rand von R.

Beschränkte Zeichenfläche

Führt F_v aus der Fläche R hinaus, kappe den Vektor geeignet am Rand von R.

Adaptive Verschiebung

 $F_v(t-1)$ speichere alten Verschiebevektor $F_v(t-1)$

Adaptive Verschiebung

• speichere alten Verschiebevektor $F_v(t-1)$

lokales Abkühlen

- $\cos(\alpha_v(t)) \approx 1$: gleiche Richtung
 - \rightarrow Temperatur erhöhen

Adaptive Verschiebung

• speichere alten Verschiebevektor $F_v(t-1)$

lokales Abkühlen

- $\cos(\alpha_v(t)) \approx 1$: gleiche Richtung \rightarrow Temperatur erhöhen
- $\cos(\alpha_v(t)) \approx -1$: Oszillation
 - → Temperatur verringern

Adaptive Verschiebung

• speichere alten Verschiebevektor $F_v(t-1)$

lokales Abkühlen

- $\cos(\alpha_v(t)) \approx 1$: gleiche Richtung \rightarrow Temperatur erhöhen
- $\cos(\alpha_v(t)) \approx -1$: Oszillation \rightarrow Temperatur verringern
- $\cos(\alpha_v(t)) \approx 0$: Rotation \rightarrow Rotationszähler updaten, Temperatur verringern

Vorteile

- weiterhin sehr einfacher Algorithmus
- ullet superlineare Kräfte o schnellere Konvergenz
- weitere Modifikationen verbessern Layoutqualität und führen zu schnellerer Konvergenz

Vorteile

- weiterhin sehr einfacher Algorithmus
- ullet superlineare Kräfte o schnellere Konvergenz
- weitere Modifikationen verbessern Layoutqualität und führen zu schnellerer Konvergenz

Nachteile

- Stabilität weiterhin nicht garantiert
- lokale Minima möglich
- quadratischer Zeitaufwand für abstoßende Kräfte

Vorteile

- weiterhin sehr einfacher Algorithmus
- ullet superlineare Kräfte o schnellere Konvergenz
- weitere Modifikationen verbessern Layoutqualität und führen zu schnellerer Konvergenz

Nachteile

- Stabilität weiterhin nicht garantiert
- lokale Minima möglich
- quadratischer Zeitaufwand für abstoßende Kräfte

Einfluss

 Variante von Fruchterman und Reingold wohl populärste kräftebasierte Methode (1927-mal zitiert)

Vorteile

- weiterhin sehr einfacher Algorithmus
- ullet superlineare Kräfte o schnellere Konvergenz
- weitere Modifikationen verbessern Layoutqualität und führen zu schnellerer Konvergenz

Nachteile

Stabilität weiterhin nicht garantiert

Wie könnte man das verringern?

- lokale Minima möglich
- quadratischer Zeitaufwand für abstoßende Kräfte

Einfluss

 Variante von Fruchterman und Reingold wohl populärste kräftebasierte Methode (1927-mal zitiert)

zerlege Ebene in Gitterzellen

- zerlege Ebene in Gitterzellen
- betrachte abstoßende Kräfte nur zu Knoten in Nachbarzellen

- zerlege Ebene in Gitterzellen
- betrachte abstoßende Kräfte nur zu Knoten in Nachbarzellen
- und nur falls kleiner als Maximalabstand $d_{
 m max}$

- zerlege Ebene in Gitterzellen
- betrachte abstoßende Kräfte nur zu Knoten in Nachbarzellen
- und nur falls kleiner als Maximalabstand $d_{
 m max}$

Diskussion

- sinnvolle Idee zur Laufzeitverbesserung
- worst-case kein Vorteil
- Qualitätsverlust (z.B. Oszillation um d_{max})

 r_0

QT

•			$lacksquare$ R_7
R_5			
	•	R_8	R_9
	R_6 •		
R_{10}	\bullet R_{11}		
R_{12}			
•			•

Eigenschaften Quad-Tree

- Höhe $h \le \log \frac{s_{\mathsf{init}}}{d_{\mathsf{min}}} + \frac{3}{2}$ Zeit-/Speicherbedarf O(hn)
- komprimierter Quadtree in $O(n \log n)$ berechenbar
- $h \in O(\log n)$ bei gleichmäßiger Verteilung der Knoten

Multilevel-Algorithmus für große Graphen

Motivation

- klassischer Spring-Embedder für große Graphen zu langsam
- Schwachstelle zufällige Initialisierung der Knotenpositionen

Multilevel-Algorithmus für große Graphen

Motivation

- klassischer Spring-Embedder für große Graphen zu langsam
- Schwachstelle zufällige Initialisierung der Knotenpositionen

GRIP – Graph dRawing with Intelligent Placement

(Gajer, Kobourov, 2004)

Ansatz

- Top-Down Vergröberung des Graphen
- Bottom-Up Berechnung des Layouts
- sinnvolles Hinzufügen neuer Knoten
- kräftebasierte Verfeinerung

GRIP Algorithmus

Input: Graph G = (V, E)

 $\mathcal{V} \leftarrow \mathsf{Filtrierung} \ V = V_0 \supset V_1 \supset \cdots \supset V_k$ for i = k to 0 do

foreach $v \in V_i \setminus V_{i+1}$ do

berechne Nachbarschaften von \boldsymbol{v} berechne initiale Position von \boldsymbol{v}

 $\begin{array}{c|c} \textbf{for } j=1 \textbf{ to rounds do} \\ & \textbf{foreach } v \in V_i \textbf{ do} \\ & \textbf{kräftebasierte Relaxierung} \end{array}$

INITIAL PLACEMENT

MIS-Filtrierung

Maximal Independent Set (MIS) Filtrierung

Sequenz von Knotenteilmengen

$$V = V_0 \supset V_1 \supset \cdots \supset V_k \supset \emptyset$$

- V_i ist (inklusions-)maximale Knotenmenge
- Abstand in G zwischen Knoten in V_i ist $\geq 2^{i-1}+1$
- gute Balance zwischen Tiefe und Größe der Level

Berechnung MIS-Filtrierung

Algorithmus

- inkrementelles Vorgehen: gegeben V_i berechne V_{i+1}
- lacktriangle wähle zufälliges Element v in V_i
- ullet entferne alle Elemente aus V_i mit Distanz $\leq 2^i$ zu v
- dazu BFS von v mit Suchtiefe 2^i
- wiederhole bis keine weiteren Knoten in V_i verbleiben

Berechnung MIS-Filtrierung

Algorithmus

- inkrementelles Vorgehen: gegeben V_i berechne V_{i+1}
- lacktriangle wähle zufälliges Element v in V_i
- entferne alle Elemente aus V_i mit Distanz $\leq 2^i$ zu v
- dazu BFS von v mit Suchtiefe 2^i
- wiederhole bis keine weiteren Knoten in V_i verbleiben

Tiefe der Filtrierung

- für letztes Level k gilt $2^k > \text{diam}(G)$
- Tiefe also $O(\log \operatorname{diam}(G))$

Level-basierte Knotenplatzierung

Phase 1

• bestimme für jeden Knoten $v \in V_i \setminus V_{i-1}$ optimale Position bzgl. der drei nächsten Knoten aus $V_{i-1} \ (\to BFS)$

Phase 2

• führe kräftebasierte Verfeinerung durch, wobei Kräfte nur lokal zu einer konstanten Anzahl nächster Nachbarn in V_i berechnet werden

Level-basierte Knotenplatzierung

Phase 1

• bestimme für jeden Knoten $v \in V_i \setminus V_{i-1}$ optimale Position bzgl. der drei nächsten Knoten aus $V_{i-1} \ (\to BFS)$

Phase 2

• führe kräftebasierte Verfeinerung durch, wobei Kräfte nur lokal zu einer konstanten Anzahl nächster Nachbarn in V_i berechnet werden

Eigenschaften GRIP

- intelligente schrittweise Berechnung eines guten Startlayouts durch MIS-Vergröberung
- deutlich schnellere Konvergenz
- Graphen mit > 10.000 Knoten in wenigen Sekunden (2004)

Aktuelle Beispiele

Lombardi-Spring-Embedder (Chernobelskiy et al. 2012)

- Kanten sind Kreisbögen
- ullet optimale Winkelauflösung $2\pi/\deg(v)$ in jedem Knoten v
- zusätzliche Rotations- und Tangentialkräfte

Aktuelle Beispiele

Lombardi-Spring-Embedder (Chernobelskiy et al. 2012)

- Kanten sind Kreisbögen
- ullet optimale Winkelauflösung $2\pi/\deg(v)$ in jedem Knoten v
- zusätzliche Rotations- und Tangentialkräfte

Linienpläne mit Bézierkurven (Fink et al. 2013)

- modelliere Kantenfolgen als Bézierkurve
- Kräfte auf Graph-Knoten und Kontroll-Knoten

wenige Wendepunkte

wenige Kontrollpunkte

Aktuelle Beispiele

Lombardi-Spring-Embedder (Chernobelskiy et al. 2012)

- Kanten sind Kreisbögen
- ullet optimale Winkelauflösung $2\pi/\deg(v)$ in jedem Knoten v
- zusätzliche Rotations- und Tangentialkräfte

Realistische Knotengrößen (Gansner, North 1998)

Abstoßung berücksichtigt Knotengrößen

Zusammenfassung

Kräftebasierte Verfahren sind

- leicht verständlich und implementierbar
- keinerlei Anforderungen an Eingabegraph
- je nach Graph (klein & dünn) erstaunlich gute Layouts (Symmetrien, Clusterung, ...)
- leicht adaptierbar und konfigurierbar
- robust
- skalierbar

Zusammenfassung

Kräftebasierte Verfahren sind

- leicht verständlich und implementierbar
- keinerlei Anforderungen an Eingabegraph
- je nach Graph (klein & dünn) erstaunlich gute Layouts (Symmetrien, Clusterung, ...)
- leicht adaptierbar und konfigurierbar
- robust
- skalierbar

Aber...

- keine Qualitäts- und Laufzeitgarantien
- ullet schlechtes Startlayout ightarrow langsame Konvergenz
- evtl. langsam für große Graphen
- oft fine-tuning durch Experten nötig

Gallerie

© Davis & Hu