

VigiWheels Project Plan

Version 2.0 10/15/2023

Authors

Johann COURAND (courand [at] insa-toulouse.fr)

Axel PINEL (apinel [at] insa-toulouse.fr)

Eduardo GARNICA (garnica-aza [at] insa-toulouse.fr)

Raphael TESSIER (rtessier [at] insa-toulouse.fr)

Moad ELHADDAD (melhadda [at] insa-toulouse.fr)

Aishya COSTA (acosta [at] insa-toulouse.fr)

Aissatou SYLLA (asylla [at] insa-toulouse.fr)

Abstract

In an industrial environment, worker safety is of primary importance, and early detection of dangers is essential to prevent accidents. This paper aims to concisely plan the development of an autonomous safety vehicle designed to monitor industrial environments and read analog sensors in order to identify hazard thresholds and track environmental variables to minimize the risk of accidents, including fires, intrusions, and disruptions in the autonomous production chain.

The vehicle's autonomous capability allows it to move precisely in the environment, collecting data continuously by capturing images using image processing and machine learning techniques, analyzing the data in real time to detect any anomalies that could indicate potential damage while performing periodic inspections, as well as having a communication system that informs personnel in case of any danger.

In conclusion, the implementation of an autonomous vehicle for the monitoring and detection of danger thresholds is a significant and useful advance in industrial safety preventive maintenance. Its ability to detect damage early not only helps to prevent manual monitoring costs but mainly safeguards the physical integrity of employees.

Keywords

Autonomous car Monitoring Real-time monitoring

Smart patrol Automation Machine learning algorithm

Fire detection Industrial safety System integration

Manometer Control system Smart alarm system

Indoor security Data analysis Risk management

ROS Environmental sensors Intelligent security platform

Alert Predictive maintenance Supply chain analysis

Mapping Intelligent monitoring Quality control

Intruder detection Abnormal activity detection Production management

Production chain Driverless technology Real-time tracking and

locating system

Table of Contents

1. Executive summary	3
1.1. Product description	3
1.2. Stakeholders	3
1.2.1. Real stakeholders	3
1.2.2. Fictitious stakeholders	4
1.3. Features	5
1.4. Release vision	6
1.5. Operational requirements	7
1.6. Reusable features	9
1.7. Validation plan	9
2. Team	11
3. Milestones and deliverables	12
4. Project planning	13
4.1. First sprint planning	13
4.2. Product backlog	14
4.3. Schedule control	16
5. Risk management	17
5.1. Method	17
5.2. Risk and actions	17

1. Executive summary

1.1. Product description

Ensuring the security of your company's buildings is paramount. This includes conducting surveillance rounds, detecting potential fire incidents, and preventing unauthorized access. To meet these needs, we introduce VigiWheels, a compact autonomous vehicle designed to patrol your premises and perform various tasks to maintain the security of your facilities.

VigiWheels conducts intelligent rounds within your premises. It is equipped to detect specific abnormalities such as glass breakage and unusual sensor readings. If a window is broken or if a sensor reports an abnormal value, VigiWheels will promptly alert the staff and employees. In the event of a fire or detection of an intruder, it also sends out immediate alerts.

In today's world, security solutions are often decentralized, leading to high costs for security equipment. VigiWheels offers the perfect centralized solution for your company, available at any time and every day. No human intervention is necessary, ensuring a fast response in case of an emergency.

With VigiWheels, you can rest assured that your company's security is in good hands.

1.2. Stakeholders

1.2.1. Real stakeholders

Name	Position	Role	Contact information	Influence
Elodie Chanthery	Teacher	Coordinator	echanthe [at] insa-toulouse.fr	High
Sébastien Di Mercurio	Engineer	Coordinator/Equipments supplier	dimercur [at] insa-toulouse.fr	High
José Martin	Engineer	Equipements supplier	jmartin [at] insa-toulouse.fr	Medium
Guillaume Auriol	Teacher	Supervisor / Customer	sebastien.delautier [at] atos.net	High
Alexandre Huyghe	Engineer	Supervisor / Customer		High
Barbara Moore	Teacher	Advisor	bmoore [at] insa-toulouse.fr	Medium
Thibault Lesur	Teacher	Advisor	thibolesur [at] gmail.com	Medium

1.2.2. Fictitious stakeholders

Name	Role	Influence
Firm (Security Staff, Quality Manager, Employees)	User	High
Technology suppliers	Manufacturers	Medium
Government	Legislators	High
Insurance agencies	Insurers	High

1.3. Features

Priority	Name	Description	Categories
1	Indoor Car Navigation	Guide the car from point A to point B, all while maintaining the ability to track its position within the indoor environment	Indoor Navigation
		Sensors: LiDAR, inertial station	
2	Detecting and Avoiding Obstacles	Make the vehicle capable of spotting obstacles, recognizing them, and avoiding them Sensors: Ultrasonics, LiDAR, Camera	Obstacle detection
3	Instrument Reading	Enable the vehicle to read and, most importantly, interpret sensors along its path to ensure building safety Sensors: Camera	Data Processing and Analysis
3	Fire Detection	The GEI car must be able to detect a fire in a building throughout its patrol. This includes the ability to spot the presence of a developing fire or abnormal heat source and trigger appropriate safety measures, such as alerting the firefighters or activating an automatic system if necessary Sensors: Infrared, Humidity sensor	Security and Detection
3	User Communication	Send important information to control room technicians at a central monitoring facility and, most importantly, notify emergency services like firefighters and the police when necessary	Communication and Alert
4	Smart Patrol	Establish a default route trajectory for indoor navigation within a building, which includes mapping critical safety locations, such as fire risk zones and sensor placement, at specified times	Indoor Route Planning
5	Intruder Detection	Detection of potential intruders accessing the building without authorization along our route. Sensors: Camera, microphone	Security and Detection

1.4. Release vision

Sprint number	Feature		
1	Indoor Car Navigation: The car can move in a straight line.		
	Detecting and Avoiding Obstacles: To be capable of detecting a basic obstacle and		
	stopping the vehicle.		
	Instrument Reading: Prepare the data to train the AI model to recognize		
	manometers.		
	Fire detection: Find a solution to detect a fire starting, using an infrared sensor.		
	Develop the low-level driver and retrieve data from the sensor.		
2	Indoor Car Navigation: maneuver the car.		
	Detecting and Avoiding Obstacles: Be capable of moving again if the obstacle		
	disappears.		
	Instrument Reading: Do Image processing.		
3	Indoor Car Navigation: Localize the car		
	Indoor Car Navigation & Instrument Reading: Merge the two parts, meaning to		
	move the car while being able to read information on manometers.		
	<u>Communication:</u> Transfer all information (fire, manometer, intruder) to a distant		
	station.		
4 & 5	To be defined		

Operational requirements

Requirements	Identifiers	Objectives
To move forward in an indoor environment	[1A] Moving in a straight line	The vehicle must be able to move in a straight line over a specified speed with a maximum error of 5%.
To be able to take turn	[1B] Turn	The car can rotate with a maximum error of 5%
To locate the car [1C] Location		The car can be geolocated in a given range of 1 meter (using physical sensor place, inertial unit, indoor localisation)
To detect fixed obstacles	[2A] Fixed obstacles detection	The car is able to avoid fixed obstacles within its trajectory and stop . The obstacles are detected at about 30 cm
To detect moving obstacles (for example employees or pedestrians)	[2B] Moving obstacles detection	The car is able to stop when it detects moving obstacles until they disappear from its trajectory. The obstacles are detected at about 30cm .
To avoid obstacles	[2C] Avoiding obstacles	The car can determine the size and position of an obstacle and adapt his trajectory to avoid them.
To recognize a physical sensor	[3A] Physical sensor detection	The car can detect the presence of a sensor in is camera fov The car can detect a sensor around the range of 1 meter of its perimeter
To read a physical sensor	[3B] Physical sensor value extraction	The car can extract values from a physical sensor and analyze if they exceed the threshold The camera takes a scan of the reading with a precision of 0.5 bar
To detect start of fire as soon as possible	[4A] Fire detection	The car must be connect to the fire alarm system of the building The car should make a good detection 9/10 by using machine learning and computer vision technics The car should be able to alert staff immediately after detecting the first sign of fire in the building

	To follow a given and complex path to patrol	[5A] Smart Patrol	Conduct a round within the GEI following a predefined route. Start from one of the exits and proceed towards the entrance of the GEI with a predefined order to detect pressure gauges, come to a stop, and identify fires
emergency is detected I		[6A] Emergency alert	Send a message to the user with the location of the emergency In the danger reports it is able to send the section of the route where it occurs without waiting the end of the patrol
	Distinguish between intruders and allowed persons	[7A] Intruders detection	Face recognition or pass reading (QR code) No misidentification between authorized and unauthorized person
	To identify suspect event	[7B] Abnormal event detection	Detection and report of any abnormal soundSmart

Reusable features 1.6.

- Project SIEC 2020, at first sight this one looks to be the most complete and organized version. They have ROS navigation packages, ultrasonic sensors functions and a Navigation Package.
- GProject Benny SIEC 2022 appears to be suitable to reuse for sending **GPS** coordinates
- Project Beth SIEC 2022 for Yolo (object detection)

1.7. Validation plan

Sprint 1	The car is capable of moving in a straight line from point A to point B and stopping in case of obstacles detection.
Sprint 2	The car must travel from point A to point B and locate itself along the path. And must be able to park in front of a pressure gauge to capture images without processing them.
Sprint 3	The car has a list of tasks to complete during its patrol, including checking the pressure gauge, as well as sensitive areas for fire and intrusion. It should be able to update and upgrade his position by using element along the path. No processing is done in the fire or intrusion-sensitive areas, but the car stops for 10 seconds in these areas. Regarding the pressure gauge, the car must be able to decode it and store the information.
Sprint 4	The car must not only accomplish the tasks of the previous sprints but also perform more processing. It should be able to trigger an emergency stop signal in case of high pressure or detect a flame, thus activating an alarm inside the vehicle.
Sprint 5	The car must not only accomplish the tasks of the previous sprints but also perform processing in intrusion-sensitive areas. Additionally, it should enhance its communication system with the environment, including sending real-time data to a control application or sending automatic messages to a phone number.

2. Team

Names	Skills	
Raphael	Software development, Jetson Nano, Yolo	
Aissatou	Machine learning and automation	
Aishya	Automation, Software development C/ C++/ Java/ Python	
Moad A,Software development TensorFlow, PyTorch, Yolo, C/C++,Python		
Johann	Software development ROS2 C/C++	
Eduardo	Software development System's control TinyML, TensorFlow, Roboflow, Yolo, Python, C/C++, Raspberry	
Axel Robotics; Low-level Software development		

3. Milestones and deliverables

Date	Event Description	
11/3	Deliver this document	
11/6	Sprint 0 presentation (Web page and git depository)	
11/14	Sprint 0 & Project plan feedback + plan for Sprint 1	
11/21	Sprint 1 presentation	
11/28	Sprint 1 feedback, written feedback + explanation of project (non-specialist language)	
12/5	Sprint 2 presentation	
12/19	Sprint 3 presentation	
1/16	Sprint 4 presentation	
1/30	Sprint 5 presentation (final release, final presentation, personal progress report)	
1/31	Session poster	

4. Project planning

First sprint planning 4.1.

In Sprint 1, we are going to start defining the basic functions in an uncomplicated scenario to have a solid start.

Team/S ubteam	Tasks	Description	Difficulty
Aishya	Moving the car	Moving in a straight line [1A] Movement with the console: Make sure that we can move in a straight line	
Aissatou		Autonomous movement: Velocity control/ Position control Test in open loop/ closed loop	4/5
Moad	Moad Dataset Eduardo manometer	Build image dataset for labeling [3A]	
Eduardo		Start image labeling for one class (manometre) Prepare the data to train an AI model to recognize manometers	4/5
Raphael	Detecting a basic	The car is able to avoid fixed obstacles within	2/5
	obstacle	its trajectory and stop . The obstacles are detected at about 30 cm [2A]	3/5
Axel		Which sensor can we use? Study the sensor's	
Johann	Fire detection	technology and specifications. Implement a low-level driver and process the sensor data to obtain the temperature of the area. [4A]	3/5

4.2. Product backlog

Priority	Name	Description	Feature
1	Follow a predefined trajectory	The towing car is able to follow a predefined trajectory	Car Navigation in an Indoor Environment
2	Identify if an obstacle is fixed or mobile	The car identifies whether an obstacle is fixed or mobile	Detecting obstacles and stopping
3	Detect a small obstacle (<30cm) and stop	The vehicle can detect a small obstacle (<30cm, fixed or moving) and stops as long as the obstacle is not removed	Detecting obstacles and stopping
4	Location	The car can be geolocated in a given range of 1 meter (using physical sensor place, inertial unit, indoor localisation)	Car Navigation in an Indoor Environment
5	Physical sensor detection	The car can detect the presence of a sensor in is camera field of view The car can detect a sensor around the range of 1 meter of its perimeter	Instrument Reading
6	Physical sensor value extraction	The car can extract values from a physical sensor and analyze if they exceed the threshold The camera takes a scan of the reading with a precision of 0.5 bar	Instrument Reading
7	Emergency alert	Send a message to the user with the location of the emergency. In the danger reports it is able to send the section of the route where it occurs	User Communication

8	Periodic patrol report	Send a rapport periodically to the user	Smart patrol
		The car sends a status report every minute of the trip if nothing exceptional happens, if it detects any danger it increases the notification frequency to 10 seconds.	
9	Transmit GPS position	The car sends it position when an alert is detected	Smart patrol
10	Smart Patrol	Establish a default route trajectory for indoor navigation within a building, which includes mapping critical safety locations, such as fire risk zones and sensor placement, at specified times	User Communication
11	Detect if a person is an intruder or not	The car is able to differentiate intruders and employees.	Intruder Detection
12	Abnormal event detection	Detection and report of any abnormal sound	Intruder Detection

4.3. Schedule control

The agile methodology provides us with a structured approach to break down our work into smaller, meaningful segments, ensuring that each part delivers value at every stage. Rather than attempting to complete and deliver everything in a single, massive effort, we will adopt an incremental approach, building and incorporating necessary functionalities step by step. This simplicity will be a fundamental driver for ensuring the accuracy of our work.

Our tasks have been divided into 13 distinct demonstrations (please refer to section 1.7), each of which encompasses functional and valuable user requirements. To gauge our progress and maintain adherence to our timeline, we will adhere to the agile methodology's standards. As it is rightly stated, "Working software is the primary measure of progress." Consequently, we will evaluate each new function (each story point) individually, addressing any issues that may arise during testing. Functions that align with the specified requirements will be integrated into the system, followed by a comprehensive system-wide evaluation.

To facilitate our agile project management, we will organize teams to handle various tasks efficiently.

5. Risk management

5.1. Method

Our project is built on a foundation of proactive risk management. We prioritize regular communication and thorough analysis of potential challenges. By implementing robust contingency planning and consistently monitoring our progress, we ensure adaptability and resilience in the face of uncertainties. Through ongoing collaboration and vigilant assessment, we maintain a dynamic approach to risk mitigation, safeguarding the project's success and upholding our commitment to user standards.

5.2. Risk and actions

Risks	Actions	Criticality
Team issues (miscommunication, knowledge centralization, sick-leave)	Ensure comprehensive documentation of project activities and promote regular knowledge sharing among team members. Encourage clear communication and comprehension among all team members.	High
Component shortage	Maintain a supply of spare parts to mitigate potential delays caused by component shortages.	High
Lack of components	Implement proactive measures such as early ordering to prevent delays due to insufficient components.	High
Modules incompatibility	Utilize effective version control systems like GitHub and integrate ROS to streamline module compatibility issues.	Moderate
Lack of skills	Strategically allocate project tasks based on team members' expertise & motivation and arrange necessary training sessions with tutors / teachers	Moderate
Pandemic	Establish a flexible work arrangement that allows for remote work in case of unforeseen circumstances such as a pandemic.	Low
Budget	Thoroughly estimate project costs and maintain a vigilant approach towards budget management throughout the project lifecycle.	Low
Misunderstanding of user requirements	Conduct regular and thorough user weekly feedback sessions and integrate user requirements at each project stage. Implement user-centered design principles to ensure alignment with user expectations.	Moderate