1.

Eigenfunctions for a rigid dumbbell rotating about its center have a ϕ dependence of the form $\psi(\phi) = Ae^{im\phi}$, where m is a quantum number and A is a constant. Which of the following values of A will properly normalize the eigenfunction?

- (A) $\sqrt{2\pi}$
- (B) 2π
- (C) $(2\pi)^2$
- (D) $\frac{1}{\sqrt{2\pi}}$
- $(E) \ \frac{1}{2\pi}$

2.

Which of the following is an eigenfunction of the linear momentum operator $-i\hbar \frac{\partial}{\partial x}$ with a positive eigenvalue $\hbar k$; i.e., an eigenfunction that describes a particle that is moving in free space in the direction of positive x with a precise value of linear momentum?

(A) $\cos kx$ (B) $\sin kx$ (C) e^{-ikx} (D) e^{ikx} (E) e^{-kx}

3.

A system containing two identical particles is described by a wave function of the form

$$\psi = \frac{1}{\sqrt{2}} \left[\psi_{\alpha}(x_1) \, \psi_{\beta}(x_2) + \psi_{\beta}(x_1) \, \psi_{\alpha}(x_2) \right]$$

where x_1 and x_2 represent the spatial coordinates of the particles and α and β represent all the quantum numbers, including spin, of the states that they occupy. The particles might be

- (A) electrons
- (B) positrons
- (C) protons
- (D) neutrons
- (E) deuterons

4.

The wave function of a particle is $e^{i(kx-\omega t)}$, where x is distance, t is time, and k and ω are positive real numbers. The x-component of the momentum of the particle is

- (A) 0
- (B) ħω
- (C) ħk
- (D) $\frac{\hbar\omega}{c}$
- (E) $\frac{\hbar k}{\omega}$

5

A system is known to be in the normalized state described by the wave function

$$\psi(\theta,\,\varphi) = \frac{1}{\sqrt{30}} \left(5 Y_4^3 + Y_6^3 - 2 Y_6^0\right),\,$$

where the $Y\varrho^m(\theta, \varphi)$ are the spherical harmonics. The probability of finding the system in a state with azimuthal orbital quantum number m=3 is

- (A) 0
- (B) $\frac{1}{15}$
- (C) $\frac{1}{6}$
- (D) $\frac{1}{3}$
- (E) $\frac{13}{15}$

An attractive, one-dimensional square well has depth V_0 as shown above. Which of the following best shows a possible wave function for a bound state?

Questions 51-53

A particle of mass m is confined to an infinitely deep square-well potential:

$$V(x) = \infty, x \le 0, x \ge a$$

 $V(x) = 0, 0 < x < a$.

The normalized eigenfunctions, labeled by the quantu

number
$$n$$
, are $\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$.

- 51. For any state n, the expectation value of the momentum of the particle is
 - (A) 0
 - (B) $\frac{\hbar n\pi}{a}$
 - (C) $\frac{2\hbar n\pi}{a}$
 - (D) $\frac{\hbar n\pi}{a} (\cos n\pi 1)$
 - (E) $\frac{-i\hbar n\pi}{a}(\cos n\pi 1)$
- 52. The eigenfunctions satisfy the condition $\int_0^a \psi_n *(x) \psi_{\mathcal{Q}}(x) dx = \delta_n \varrho, \, \delta_n \varrho = 1 \text{ if } n = \varrho,$ otherwise $\delta_n \varrho = 0$. This is a statement that the eigenfunctions are
 - (A) solutions to the Schrödinger equation
 - (B) orthonormal
 - (C) bounded
 - (D) linearly dependent
 - (E) symmetric
- 53. A measurement of energy E will <u>always</u> satisfy which of the following relationships?

$$(A) E \le \frac{\pi^2 \hbar^2}{8ma^2}$$

(B)
$$E \geq \frac{\pi^2 \hbar^2}{2ma^2}$$

$$(C) E = \frac{\pi^2 \hbar^2}{8ma^2}$$

$$(D) E = \frac{n^2 \pi^2 \hbar^2}{8ma^2}$$

$$(E) E = \frac{\pi^2 \hbar^2}{2ma^2}$$

The configuration of three electrons ls2p3p has which of the following as the value of its maximum possible total angular momentum quantum number?

- (A) $\frac{7}{2}$
- (B) 3
- (C) $\frac{5}{2}$
- (D) 2
- (E) $\frac{3}{2}$

11

The energy levels for the one-dimensional harmonic oscillator are $hv\left(n+\frac{1}{2}\right)$, n=0,1,2... How will the energy levels for the potential shown in the graph above differ from those for the harmonic oscillator?

- (A) The term $\frac{1}{2}$ will be changed to $\frac{3}{2}$.
- (B) The energy of each level will be doubled.
- (C) The energy of each level will be halved.
- (D) Only those for even values of n will be present.
- (E) Only those for odd values of n will be present.

12

A diatomic molecule is initially in the state $\Psi(\Theta, \Phi) = (5Y_1^{1} + 3Y_5^{1} + 2Y_5^{-1})/(38)^{1/2}$, where Y_{ℓ}^{m} is a spherical harmonic. If measurements are made of the total angular momentum quantum number ℓ and of the azimuthal angular momentum quantum number m, what is the probability of obtaining the result $\ell = 5$?

- (A) 36/1444
- (B) 9/38
- (C) 13/38
- (D) 5/(38)1/2
- (E) 34/38

The wave function for a particle constrained to move in one dimension is shown in the graph above $(\Psi = 0 \text{ for } x \le 0 \text{ and } x \ge 5)$. What is the probability that the particle would be found between x = 2 and x = 4?

- (A) 17/64
- (B) 25/64
- (C) 5/8
- (D) $\sqrt{5/8}$
- (E) 13/16