Syntax Analysis Part II

Chapter 4

Bottom-Up Parsing

- LR methods (Left-to-right, Rightmost derivation)
 - SLR, Canonical LR, LALR
- Other special cases:
 - Shift-reduce parsing
 - Operator-precedence parsing

Operator-Precedence Parsing

- Special case of shift-reduce parsing
- We will not further discuss (you can skip textbook section 4.6)

Shift-Reduce Parsing

Handles

A handle is a substring of grammar symbols in a right-sentential form that matches a right-hand side of a production

```
a b b c d e
Grammar:
                            a <u>A b c d e</u>
S \rightarrow \mathbf{a} A B \mathbf{e}
                                                                         Handle
A \rightarrow A \mathbf{b} \mathbf{c} \mid \mathbf{b}
                            a A <u>d</u> <u>e</u>_
B \rightarrow \mathbf{d}
                            <u>a A B e</u> «
                                a b b c d e
                                a A b c d e
                                                            NOT a handle, because
                                a A A e
                                                          further reductions will fail
                                 ...?
                                                      (result is not a sentential form)
```

Stack Implementation of Shift-Reduce Parsing

Conflicts

- Shift-reduce and reduce-reduce conflicts are caused by
 - The limitations of the LR parsing method (even when the grammar is unambiguous)
 - Ambiguity of the grammar

Shift-Reduce Parsing: Shift-Reduce Conflicts

Shift-Reduce Parsing: Reduce-Reduce Conflicts

LR(*k*) Parsers: Use a DFA for Shift/Reduce Decisions

The states of the DFA are used to determine if a handle is on top of the stack

Grammar:

$$S \to C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{a}$$

	_	
State I_0 :	go	$to(I_0,\mathbf{a})$
$S \to {}^{\bullet}C$	>	State I_3 :
$C \rightarrow \bullet A B$		$A \rightarrow \mathbf{a}^{\bullet}$
$A \rightarrow \bullet a$		
	-	

Stack	Input	Action
\$ 0	aa\$	start in state 0
\$ <u>0</u>	<u>a</u> a\$	shift (and goto state 3)
\$ 0 a 3	a \$	reduce $A \rightarrow \mathbf{a}$ (goto 2)
\$ 0 A 2	a \$	shift (goto 5)
\$ 0 A 2 a 5	\$	reduce $B \rightarrow \mathbf{a}$ (goto 4)
\$ 0 A 2 B 4	\$	reduce $C \rightarrow AB$ (goto 1)
\$ 0 <i>C</i> 1	\$	$\operatorname{accept}(S \to C)$

The states of the DFA are used to determine if a handle is on top of the stack

Grammar:

$$S \to C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{a}$$

State I_0 :	g	$toto(I_0,A)$
$S \to {}^{\bullet}C$	->	State I_2 :
$C \rightarrow \bullet A B$		$C \rightarrow A \bullet B$
$A \rightarrow \bullet a$		$B \rightarrow \mathbf{a}$
	•	

Stack	Input	Action
\$ 0	aa\$	start in state 0
\$ 0	aa\$	shift (and goto state 3)
\$ <u>0</u> <u>a</u> 3	a \$	reduce $A \rightarrow \mathbf{a}$ (goto 2)
\$ 0 A 2	a \$	shift (goto 5)
\$ 0 A 2 a 5	\$	reduce $B \rightarrow \mathbf{a}$ (goto 4)
\$ 0 A 2 B 4	\$	reduce $C \rightarrow AB$ (goto 1)
\$ 0 <i>C</i> 1	\$	$\operatorname{accept}(S \to C)$
		• • •

The states of the DFA are used to determine if a handle is on top of the stack

Grammar: if $S \rightarrow C$ $C \rightarrow A B$ $A \rightarrow a$ $B \rightarrow a$

State I_2 :	go	$to(I_2,\mathbf{a})$
$C \rightarrow A \cdot B$	>	State I ₅ :
$B \rightarrow \bullet \mathbf{a}$		$B \rightarrow \mathbf{a}^{\bullet}$

Stack	Input	Action
Stack	Input	Action
\$ 0	aa\$	start in state 0
\$ 0	aa\$	shift (and goto state 3)
\$ 0 a 3	a \$	reduce $A \rightarrow \mathbf{a}$ (goto 2)
\$ 0 A <u>2</u>	<u>a</u> \$	shift (goto 5)
\$ 0 A 2 a 5	\$	reduce $B \rightarrow \mathbf{a} \text{ (goto 4)}$
\$ 0 A 2 B 4	\$	reduce $C \rightarrow AB$ (goto 1)
\$ 0 <i>C</i> 1	\$	$\operatorname{accept} (S \to C)$

The states of the DFA are used to determine if a handle is on top of the stack

Grammar: $S \rightarrow C$ $C \rightarrow A B$

 $A \rightarrow \mathbf{a}$

 $B \rightarrow \mathbf{a}$

Stack	Input	Action
\$ 0	aa\$	start in state 0
\$ 0	aa\$	shift (and goto state 3)
\$ 0 a 3	a\$	reduce $A \rightarrow \mathbf{a}$ (goto 2)
\$ 0 A 2	a\$	shift (goto 5)
\$ 0 A <u>2</u> a 5	\$	reduce $B \rightarrow \mathbf{a}$ (goto 4)
\$ 0 A 2 B 4	\$	reduce $C \rightarrow AB$ (goto 1)
\$ 0 <i>C</i> 1	\$	accept $(S \to C)$

State I_2 :	$goto(I_2,B)$
$C \rightarrow A \cdot B$	\rightarrow State I_4 :
$B \rightarrow \bullet \mathbf{a}$	$C \rightarrow A B^{\bullet}$

The states of the DFA are used to determine if a handle is on top of the stack

Grammar:

$$S \rightarrow C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{a}$$

Stack	Input	Action
\$ 0	aa\$	start in state 0
\$ 0	aa\$	shift (and goto state 3)
\$ 0 a 3	a \$	reduce $A \rightarrow \mathbf{a}$ (goto 2)
\$ 0 A 2	a \$	shift (goto 5)
\$ 0 A 2 a 5	\$	reduce $B \rightarrow \mathbf{a} \text{ (goto 4)}$
1 \$ <u>0</u> <u>A</u> 2 <u>B</u> 4	\$	reduce $C \rightarrow AB$ (goto 1)
\$ 0 <i>C</i> 1	\$	$\operatorname{accept} (S \to C)$

State I_0 :	$goto(I_0,C)$	
$S \to {}^{\bullet}C$	\longrightarrow State I_1 :	
$C \rightarrow {}^{\bullet}A B$	$S \to C^{\bullet}$	
$A \rightarrow \bullet \mathbf{a}$		

The states of the DFA are used to determine if a handle is on top of the stack

Grammar:

$$S \rightarrow C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{a}$$

Stack	Input	Action
\$ 0	aa\$	start in state 0
\$ 0	aa\$	shift (and goto state 3)
\$ 0 a 3	a \$	reduce $A \rightarrow \mathbf{a}$ (goto 2)
\$ 0 A 2	a \$	shift (goto 5)
\$ 0 <i>A</i> 2 a 5	\$	reduce $B \rightarrow \mathbf{a} \text{ (goto 4)}$
\$ 0 A 2 B 4	\$	reduce $C \rightarrow AB$ (goto 1)
\$ 0 <i>C</i> <u>1</u>	<u>\$</u>	$\operatorname{accept}(S \to C)$
		• • •

State I_0 :	$goto(I_0,C)$	_
$S \to {}^{\bullet}C$	\rightarrow State I_1 :	
$C \rightarrow \bullet A B$	$S \to C^{\bullet}$	
$A \rightarrow \bullet \mathbf{a}$		

Model of an LR Parser

LR Parsing (Driver)

Configuration (= LR parser state):

$$\underbrace{(s_0 X_1 s_1 X_2 s_2 \dots X_m s_m, a_i a_{i+1} \dots a_n \$)}_{stack}$$

If $action[s_m, a_i] = shift s$ then push a_i , push s, and advance input:

$$(s_0 X_1 s_1 X_2 s_2 \dots X_m s_m a_i s, a_{i+1} \dots a_n \$)$$

If $action[s_m, a_i] = \text{reduce } A \rightarrow \beta$ and $goto[s_{m-r}, A] = s$ with $r = |\beta|$ then pop 2r symbols, push A, and push s:

$$(s_0 X_1 s_1 X_2 s_2 \dots X_{m-r} s_{m-r} A s, a_i a_{i+1} \dots a_n \$)$$

If $action[s_m, a_i] = accept then stop$

If $action[s_m, a_i] = \text{error then}$ attempt recovery

Example LR Parse Table

				aci	tion				goto)
Grammar: sto	ate	id	+	*	()	\$	E	\overline{T}	\overline{F}
$1. E \rightarrow E + T$	0	s5			s4			1	2	3
$2. E \rightarrow T$	1		s6				acc			
$3. T \rightarrow T * F$	$\begin{vmatrix} 2 \end{vmatrix}$		r2	s7		r2	r2			
$4. T \rightarrow F$	3									
$5. F \rightarrow (E)$)		r4	r4		r4	r4			
$6. F \rightarrow id$	4	s 5			s4			8	2	3
	5		r6	r6		r6	r6			
	6,	<u>(\$5)</u>			s4				9	3
Shift & goto 5	7	s 5			s4					10
_	8		s6			s11				
D . 1 1	9	>	rl	s7		r1	r1			
Reduce by	10		r3	r3		r3	r3			
production #1	11		r5	r5		r5	r5			

Example LR Parsing

Grammar:

1.
$$E \rightarrow E + T$$

$$2. E \rightarrow T$$

$$3. T \rightarrow T * F$$

$$4. T \rightarrow F$$

$$5. F \rightarrow (E)$$

6.
$$F \rightarrow id$$

Stack	Input	Action
\$ 0	id*id+id\$	shift 5
\$ 0 id 5	*id+id\$	reduce 6 goto 3
\$ 0 F 3	*id+id\$	reduce 4 goto 2
\$ 0 T 2	*id+id\$	shift 7
\$ 0 T 2 * 7	id+id\$	shift 5
\$ 0 T 2 * 7 id 5	+id\$	reduce 6 goto 10
\$ 0 T 2 * 7 F 10	+id\$	reduce 3 goto 2
\$ 0 T 2	+id\$	reduce 2 goto 1
\$ 0 <i>E</i> 1	+id\$	shift 6
\$ 0 E 1 + 6	id\$	shift 5
\$ 0 E 1 + 6 id 5	\$	reduce 6 goto 3
\$0E1+6F3	\$	reduce 4 goto 9
\$ 0 <i>E</i> 1 + 6 <i>T</i> 9	\$	reduce 1 goto 1
\$ 0 <i>E</i> 1	\$	accept

SLR Grammars

- SLR (Simple LR): a simple extension of LR(0) shift-reduce parsing
- SLR eliminates some conflicts by populating the parsing table with reductions $A \rightarrow \alpha$ on symbols in FOLLOW(A)

SLR Parsing Table

- Reductions do not fill entire rows
- Otherwise the same as LR(0)

SLR Parsing

- An LR(0) state is a set of LR(0) items
- An LR(0) item is a production with a (dot) in the right-hand side
- Build the LR(0) DFA by
 - Closure operation to construct LR(0) items
 - Goto operation to determine transitions
- Construct the SLR parsing table from the DFA
- LR parser program uses the SLR parsing table to determine shift/reduce operations

Constructing SLR Parsing Tables

- 1. Augment the grammar with $S' \rightarrow S$
- 2. Construct the set $C=\{I_0,I_1,\ldots,I_n\}$ of LR(0) items
- 3. If $[A \rightarrow \alpha \bullet a\beta] \in I_i$ and $goto(I_i,a)=I_j$ then set action[i,a]=shift j
- 4. If $[A \rightarrow \alpha \bullet] \in I_i$ then set action[i,a]=reduce $A \rightarrow \alpha$ for all $a \in FOLLOW(A)$ (apply only if $A \neq S$ ')
- 5. If $[S' \rightarrow S^{\bullet}]$ is in I_i then set action[i,\$]=accept
- 6. If $goto(I_i,A)=I_j$ then set goto[i,A]=j
- 7. Repeat 3-6 until no more entries added
- 8. The initial state i is the I_i holding item $[S' \rightarrow \bullet S]$

LR(0) Items of a Grammar

- An *LR*(0) *item* of a grammar *G* is a production of *G* with a at some position of the right-hand side
- Thus, a production

$$A \rightarrow X Y Z$$

has four items:

$$[A \rightarrow \bullet X Y Z]$$

$$[A \rightarrow X \bullet YZ]$$

$$[A \rightarrow X Y \bullet Z]$$

$$[A \rightarrow X Y Z \bullet]$$

• Note that production $A \to \varepsilon$ has one item $[A \to \bullet]$

Constructing the set of LR(0) Items of a Grammar

- 1. The grammar is augmented with a new start symbol S' and production $S' \rightarrow S$
- 2. Initially, set $C = closure(\{[S' \rightarrow \bullet S]\})$ (this is the start state of the DFA)
- 3. For each set of items $I \in C$ and each grammar symbol $X \in (N \cup T)$ such that $goto(I,X) \notin C$ and $goto(I,X) \neq \emptyset$, add the set of items goto(I,X) to C
- 4. Repeat 3 until no more sets can be added to C

The Closure Operation for LR(0) Items

- 1. Start with closure(I) = I
- 2. If $[A \rightarrow \alpha \bullet B\beta] \in closure(I)$ then for each production $B \rightarrow \gamma$ in the grammar, add the item $[B \rightarrow \bullet \gamma]$ to I if not already in I
- 3. Repeat 2 until no new items can be added

The Closure Operation (Example)

$$closure(\{[E' \to \bullet E]\}) = \{ [E' \to \bullet E] \} \{ [E \to \bullet E + T] \} \{ [E \to \bullet T]$$

 $F \rightarrow (E)$

 $F \rightarrow id$

The Goto Operation for LR(0) Items

- 1. For each item $[A \rightarrow \alpha \bullet X\beta] \in I$, add the set of items $closure(\{[A \rightarrow \alpha X \bullet \beta]\})$ to goto(I,X) if not already there
- 2. Repeat step 1 until no more items can be added to goto(I,X)
- 3. Intuitively, goto(I,X) is the set of items that are valid for the viable prefix γX when I is the set of items that are valid for γ

The Goto Operation (Example 1)

```
Suppose I = \{ [E' \rightarrow \bullet E] \}
                                                           Then goto(I,E)
                                                           = closure(\{[E' \rightarrow E \bullet, E \rightarrow E \bullet + T]\})
                          [E \rightarrow \bullet E + T]
                          [E \rightarrow \bullet T]
                                                = \{ [E' \rightarrow E \bullet] \}
                          [T \rightarrow \bullet T * F]
                                                                  [E \rightarrow E \bullet + T]
                          [T \rightarrow \bullet F]
                          [F \rightarrow \bullet (E)]
                          [F \rightarrow \bullet id]
                                                                                                Grammar:
                                                                                                E \rightarrow E + T \mid T
                                                                                                T \rightarrow T * F \mid F
                                                                                               F \rightarrow (E)
                                                                                                F \rightarrow id
```

The Goto Operation (Example 2)

```
Suppose I = \{ [E' \to E \bullet], [E \to E \bullet + T] \}

Then goto(I,+) = closure(\{[E \to E + \bullet T]\}) = \{ [E \to E + \bullet T] \}

[T \to \bullet T * F]

[F \to \bullet (E)]

Grammar:
```

 $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E)$ $F \rightarrow id$

Example SLR Grammar and LR(0) Items

Augmented $I_0 = closure(\{[C' \rightarrow \bullet C]\})$ grammar: $I_1 = goto(I_0, C) = closure(\{[C' \rightarrow C^{\bullet}]\})$ 1. $C' \rightarrow C$ 2. $C \rightarrow A B$ State I_4 : $goto(I_0,C)$ $3. A \rightarrow a$ $4. B \rightarrow a$ $goto(I_2,B)$ State I_0 : State I_2 : start $goto(I_2,\mathbf{a})$ State *I*₅: $goto(I_0,\mathbf{a})$ State I_3 :

Example SLR Parsing Table

State I_0 : $C' \to {}^{\bullet}C$ $C \to {}^{\bullet}A \ B$ $A \to {}^{\bullet}\mathbf{a}$

start

State I_1 : $C' \to C^{\bullet}$

State I_2 : $C \rightarrow A \cdot B$

 $B \rightarrow {}^{\bullet}a$

State I_3 :

 $A \rightarrow \mathbf{a}^{\bullet}$

State I_4 :

 $C \rightarrow A B^{\bullet}$

State I_5 :

 $B \rightarrow a^{\bullet}$

<i></i>	a	\$	C	\boldsymbol{A}	В
0	s3		1	2	
1		acc			
2	s5 r3				4
3	r3				
4		r2			
5		r4			

Grammar:

1.
$$C' \rightarrow C$$

2.
$$C \rightarrow A B$$

$$3. A \rightarrow \mathbf{a}$$

$$4. B \rightarrow a$$

SLR and Ambiguity

- Every SLR grammar is unambiguous, but **not** every unambiguous grammar is SLR
- Consider for example the unambiguous grammar

$$S \rightarrow L = R \mid R$$

$$L \rightarrow * R \mid \mathbf{id}$$

$$R \rightarrow L$$

LR(1) Grammars

- SLR too simple
- LR(1) parsing uses lookahead to avoid unnecessary conflicts in parsing table
- LR(1) item = LR(0) item + lookahead

LR(0) item: LR(1) item:
$$[A \rightarrow \alpha \bullet \beta] \qquad [A \rightarrow \alpha \bullet \beta, a]$$

SLR Versus LR(1)

- Split the SLR states by adding LR(1) lookahead
- Unambiguous grammar

1.
$$S \rightarrow L = R$$

- $2. \qquad \mid R$
- 3. $L \rightarrow R$
- 4. | **id**
- 5. $R \rightarrow L$

Should not reduce on =, because no right-sentential form begins with R=

LR(1) Items

- An LR(1) item $[A \rightarrow \alpha \bullet \beta, a]$ contains a *lookahead* terminal a, meaning α already on top of the stack, expect to see βa
- For items of the form $[A \rightarrow \alpha \bullet, a]$ the lookahead a is used to reduce $A \rightarrow \alpha$ only if the next input is a
- For items of the form $[A \rightarrow \alpha \bullet \beta, a]$ with $\beta \neq \epsilon$ the lookahead has no effect

The Closure Operation for LR(1) Items

- 1. Start with closure(I) = I
- 2. If $[A \rightarrow \alpha \bullet B\beta, a] \in closure(I)$ then for each production $B \rightarrow \gamma$ in the grammar and each terminal $b \in FIRST(\beta a)$, add the item $[B \rightarrow \bullet \gamma, b]$ to I if not already in I
- 3. Repeat 2 until no new items can be added

The Goto Operation for LR(1) Items

- 1. For each item $[A \rightarrow \alpha \bullet X\beta, a] \in I$, add the set of items $closure(\{[A \rightarrow \alpha X \bullet \beta, a]\})$ to goto(I,X) if not already there
- 2. Repeat step 1 until no more items can be added to goto(I,X)

Constructing the set of LR(1) Items of a Grammar

- 1. Augment the grammar with a new start symbol S' and production $S' \rightarrow S$
- 2. Initially, set $C = closure(\{[S' \rightarrow \bullet S, \$]\})$ (this is the start state of the DFA)
- 3. For each set of items $I \in C$ and each grammar symbol $X \in (N \cup T)$ such that $goto(I,X) \notin C$ and $goto(I,X) \neq \emptyset$, add the set of items goto(I,X) to C
- 4. Repeat 3 until no more sets can be added to C

Example Grammar and LR(1) Items

• Unambiguous LR(1) grammar:

$$S \rightarrow L = R$$

$$\mid R$$

$$L \rightarrow R$$

$$\mid id$$

$$R \rightarrow L$$

- Augment with $S' \to S$
- LR(1) items (next slide)

Constructing Canonical LR(1) Parsing Tables

- 1. Augment the grammar with $S' \rightarrow S$
- 2. Construct the set $C=\{I_0,I_1,\ldots,I_n\}$ of LR(1) items
- 3. If $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$ and $goto(I_i,a)=I_j$ then set action[i,a]=shift j
- 4. If $[A \rightarrow \alpha \bullet, a] \in I_i$ then set action[i,a]=reduce $A \rightarrow \alpha$ (apply only if $A \neq S$ ')
- 5. If $[S' \rightarrow S^{\bullet}, \$]$ is in I_i then set action[i,\$] = accept
- 6. If $goto(I_i,A)=I_j$ then set goto[i,A]=j
- 7. Repeat 3-6 until no more entries added
- 8. The initial state *i* is the I_i holding item $[S' \rightarrow \bullet S, \$]$

Example LR(1) Parsing Table

Grammar:				
1.	$S' \rightarrow S$			
2.	$S \to L = R$			
3.	$S \to R$			
4.	$L \rightarrow R$			
5.	$L \rightarrow \mathbf{id}$			
6.	$R \to L$			

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2 3			s6	r6			
3				r3			
4	s5	s4				8	7
5			r5	r5			
6	s12	s11				10	4
7			r4	r4			
8			r6	r6			
9				r2			
10				r6			
11	s12	s11				10	13
12				r5			
13				r4			

LALR(1) Grammars

- LR(1) parsing tables have many states
- LALR(1) parsing (Look-Ahead LR) combines LR(1) states to reduce table size
- Less powerful than LR(1)
 - Will not introduce shift-reduce conflicts, because shifts do not use lookaheads
 - May introduce reduce-reduce conflicts, but seldom do so for grammars of programming languages

Constructing LALR(1) Parsing Tables

- 1. Construct sets of LR(1) items
- 2. Combine LR(1) sets with sets of items that share the same first part

$$I_{4}: [L \rightarrow * \bullet R, \\ [R \rightarrow \bullet L, \\ [L \rightarrow \bullet * R, \\ [L \rightarrow \bullet * \mathbf{id},] =]$$

$$I_{11}: [L \rightarrow * \bullet R, \\ [R \rightarrow \bullet L, \\ [R \rightarrow \bullet L, \\ [L \rightarrow \bullet * R, \\ [L \rightarrow \bullet * R, \\ [L \rightarrow \bullet * \mathbf{id},] =]$$

$$I_{12}: [L \rightarrow * \bullet R, \\ [R \rightarrow \bullet L, \\ [L \rightarrow \bullet * R, \\ [L \rightarrow \bullet * \mathbf{id},] =]$$

$$I_{13}: [L \rightarrow \bullet * \mathbf{id},]$$

$$I_{14}: [L \rightarrow * \bullet \mathbf{id},]$$

$$I_{15}: [L \rightarrow \bullet * \mathbf{id},]$$

$$I_{17}: [L \rightarrow \bullet * \mathbf{id},]$$

$$I_{18}: [L \rightarrow \bullet * \mathbf{id},]$$

$$I_{19}: [L \rightarrow \bullet$$

Example LALR(1) Grammar

• Unambiguous LR(1) grammar:

$$S \rightarrow L = R$$

$$\mid R$$

$$L \rightarrow R$$

$$\mid id$$

$$R \rightarrow L$$

- Augment with $S' \to S$
- LALR(1) items (next slide)

\$] $[S \rightarrow R^{\bullet}]$ I_4 : $[L \rightarrow * \bullet R,$ $=/\$] goto(I_4,R)=I_7$ =/\$] goto $(I_{\Delta},L)=I_{\alpha}$ $[R \rightarrow \bullet L,$ $[L \rightarrow \bullet *R]$ =/\$] goto(I_{4} ,*)= I_{4} I_5 : $[L \rightarrow \bullet id,$ $=/\$] goto(I_4,id)=I_5$

 $[R \rightarrow L^{\bullet}]$

Example LALR(1) Parsing Table

Grammar:

$$1. S' \rightarrow S$$

$$2. S \rightarrow L = R$$

$$3. S \rightarrow R$$

$$4. L \rightarrow R$$

$$5. L \rightarrow id$$

$$6. R \rightarrow L$$

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2 3			s6	r6			
3				r3			
4	s5	s4				9	7
5			r5	r5			
6	s5	s4				9	8
7			r4	r4			
8				r2			
9			r6	r6			

LL, SLR, LR, LALR Summary

- LL parse tables computed using FIRST/FOLLOW
 - Nonterminals \times terminals \rightarrow productions
 - Computed using FIRST/FOLLOW
- LR parsing tables computed using closure/goto
 - LR states \times terminals \rightarrow shift/reduce actions
 - LR states \times nonterminals \rightarrow goto state transitions
- A grammar is
 - LL(1) if its LL(1) parse table has no conflicts
 - SLR if its SLR parse table has no conflicts
 - LALR(1) if its LALR(1) parse table has no conflicts
 - -LR(1) if its LR(1) parse table has no conflicts

LL, SLR, LR, LALR Grammars

Dealing with Ambiguous Grammars

1.
$$S' \rightarrow E$$

$$2. E \rightarrow E + E$$

$$3. E \rightarrow id$$

	id	+	\$	E
0	s2			1
1		s3	acc	
2		r3	r3	
3	s2			4
4		s3/r2	r2	

Shift/reduce conflict: action[4,+] = shift 4

 $action[4,+] = reduce E \rightarrow E + E$

When shifting on +: yields right associativity id+(id+id)

When reducing on +: yields left associativity (id+id)+id

Using Associativity and Precedence to Resolve Conflicts

- Left-associative operators: reduce
- Right-associative operators: shift
- Operator of higher precedence on stack: reduce
- Operator of lower precedence on stack: shift

Error Detection in LR Parsing

- Canonical LR parser uses full LR(1) parse tables and will never make a single reduction before recognizing the error when a syntax error occurs on the input
- SLR and LALR may still reduce when a syntax error occurs on the input, but will never shift the erroneous input symbol

Error Recovery in LR Parsing

• Panic mode

- Pop until state with a goto on a nonterminal A is found,
 (where A represents a major programming construct), push A
- Discard input symbols until one is found in the FOLLOW set of A

Phrase-level recovery

- Implement error routines for every error entry in table

• Error productions

- Pop until state has error production, then shift on stack
- Discard input until symbol is encountered that allows parsing to continue