Quase Primos Malucos

Nina é uma esperta garota que adora fazer contas. Recentemente Nina pensou em um joguinho muito interessante a qual chamou de Quase Primos Malucos.

A ideia do problema dos quase primos malucos que é um número **não** pode ser primo, no entanto todos os divisores (além de 1) devem ser maiores que 10 e devem haver mais de 10 divisores. Também é importante perceber que os divisores devem ser menores que a raiz quadrada do número quase primo maluco.

A brincadeira de Nina consiste em *falar* um número qualquer e a outra pessoa ter que responder o menor número *quase primo maluco* estritamente maior que o número dito.

Por exemplo:

Se Nina gritar 1, a resposta deve ser 508079, pois é o menor número maior que 1 que não é primo e possui ao menos 10 divisores maiores que 10, que são: 11 13 17 19 121 143 187 209 221 247 323. E o mesmo ocorre para todos os números entre 1 e 508079.

Para 600000 o menor quase primo maluco é 600457, com os divisores 11 13 17 19 143 169 187 209 221 247 323.

O Número 26741 não é um número quase primo maluco pois os seus divisores são 1 11 13 17 121 143 187 221 1573 2057 2431 e sua raiz quadrada é 163,5, logo todos os divisores maiores que 163 devem ser desconsiderados.

Nina percebeu que sua brincadeira é difícil, pois os números quase primos malucos são muito grandes. No entanto ela gostaria de saber de antemão vários números quase primos e pediu a sua ajuda para escrever um programa que seja capaz de responder as questões para ela.

Entrada

A primeira linha contém o inteiro T (1 \leq T \leq 1000), que representa a quantidade de casos de teste.

Cada uma das próximas T linhas contém um número n (1 \leq n \leq 10^9).

Saída

Para cada caso de teste, imprima uma linha contento o menor número quase primo maluco que seja estritamente maior que n.

TAREFA

Você já deve ter percebido que esse problema talvez seja melhor ser implementado utilizando threads. Mas tome Cuidado! Você deve imprimir a resposta na ordem relativa a entrada. Ou seja, a resposta nunca pode ser diferente da mostrada nos exemplos abaixo.

Uma proposta para resolver o problema com threads, segue em pseudo-código abaixo:

```
struct parametro_thread
 2
 3
      int n;
     int tid;
 4
 5
     int result;
    };
 7
    int main(void)
 8
 9
      leia(QUANTIDADE_DE_CASOS) //só para jogar fora mesmo
      while(1)
10
11
        if(leia(n)== EOF) break;
12
        struct parametro_thread PARAMETRO_A.n=n;
13
        cria_thread(calcule_sequaseprimo_maluco(PARAMETRO_A))
14
15
        if(leia(n)== EOF) break;
16
        struct parametro_thread PARAMETRO_B.n=n;
17
        cria_thread(calcule_sequaseprimo_maluco(PARAMETRO_B))
18
19
20
        espera_thread1();
        espera_thread2();
21
        imprime(PARAMETRO_A.result);
22
        imprime(PARAMETRO_B.result);
23
24
     }
25
26
    }
```

- o pseudo-código acima possui um problema quando a entrada é ímpar! Tome cuidado.
- o pseudo-código ilustrado acima é somente um exemplo e pode ser melhorado!
- Use no máximo 2 threads (além da principal) pois o juiz disponibilizará apenas 2 núcleos de processamento.

Exemplos

Exemplo de entrada

```
2
550794
```

6530430			

Exemplo de saída

```
600457
6533033
```

Exemplo de entrada

```
11
1
2
7
10
11
22
23
123
173
233
2393
```

Exemplo de saída

```
508079
508079
508079
508079
508079
508079
508079
508079
508079
508079
508079
508079
```

Exemplo de entrada

1	
	52
	550794
	6530430
	7664038
	8734648
	266286
	4628267

4850	
2069	
9584	
8975	
9483	
3299	
9411	
5364	
5927	
7637	
2579	
8693	
3630	
3733	
3146	
4130	
7840	
9081	
2514	
5931	
4393	
9520	
4097	
5262	
5961	
1718	
5908	
9440	
1461	
3550	
3854	
3477	
6455	
6397	
2375	
8372	
6423	
9007	
6176	
9153	
7312	
9091	
6308	
1991	
8900	
9976	

Exemplo de saída

-xemple de salda		
600457		
6533033		
7667803		
8735441		
508079		
4630769		
4858243		
2070107		
9587201		
8983871		
9484553		
3308987		
9412117		
5370079		
5931211		
7637641		
2582827		
8696129		
3638063		
508079		
3149003		
4132271		
7841977		
9081553		
2520947		
5933719		
508079		
9520159		
508079		
5262653		
5963243		
1733303		
5909189		
9442259		
1466641		
3555409		
508079		
3478387		
6455801		
6407731		
2379949		
8381087		
6424759		
9007603		

ĺ	6176797	
	9153287	
	7315627	
	9092369	
	6311591	
	1994707	
	8902333	
	9977147	

Exemplo de entrada

```
78
2
3
5
7
23
29
31
37
53
59
71
73
79
233
239
293
311
313
317
373
379
593
599
719
733
739
797
2333
2339
2393
2399
2939
3119
3137
```

Exemplo de saída

508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079		
508079 508079		
508079		
508079		
508079		
508079		
508079		

508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
508079	
600457	
600457	
726869	
775489	
775489	
775489	
775489	
2345057	
2404259	
2951897	
3736447	
5943223	
7395949	
7395949	
7395949	
	i

Author: Bruno Ribas, inspirado no problema 'Almost Prime Numbers' do Topcoder