Solution Sheet 1

Last modified November 18, 2019

Problem 1

$$H(X) = -\sum_{i=0}^{M} p_i \log p_i$$

$$H(Y) = -\sum_{i=0}^{M} q_i \log q_i$$

Rewriting and substituting the problem definition results in

$$\begin{split} \mathsf{H}(X) &= -\sum_{i=0}^{j-2} p_i \log \left(p_i \right) - p_{j-1} \log \left(p_{j-1} \right) - p_j \log \left(p_j \right) - \sum_{i=j+1}^{M} p_i \log \left(p_i \right), \\ \mathsf{H}(Y) &= -\sum_{i=0}^{j-2} p_i \log \left(p_i \right) - \frac{p_{j-1} + p_j}{2} \log \left(\frac{p_{j-1} + p_j}{2} \right) - \frac{p_{j-1} + p_j}{2} \log \left(\frac{p_{j-1} + p_j}{2} \right) - \sum_{i=j+1}^{M} p_i \log \left(p_i \right). \end{split}$$

Note that H(X) and H(Y) are identical except the terms outside of the sums.

Approach 1: Only the terms in H(X) and H(Y) that include p_i and p_{i-1} are of interest and we thus define

$$\begin{split} \tilde{\mathsf{H}}(X) &= -p_j \log \left(p_j \right) - p_{j-1} \log \left(p_{j-1} \right), \\ \tilde{\mathsf{H}}(Y) &= \left(-2 \right) \, \frac{p_{j-1} + p_j}{2} \log \left(\frac{p_{j-1} + p_j}{2} \right). \end{split}$$

Introduce $c = p_j + p_{j-1}$ and get

$$\begin{split} \tilde{\mathbf{H}}(X) &= -p_j \log \left(p_j \right) - \left(c - p_j \right) \log \left(c - p_j \right), \\ \tilde{\mathbf{H}}(Y) &= -c \log \left(\frac{c}{2} \right). \end{split}$$

Find the extremum of $\tilde{H}(X)$ by computing

$$\frac{\partial \tilde{\mathsf{H}}(X)}{\partial p_i} = -\log{(p_j)} + \log{(c - p_j)} = 0 \quad \Rightarrow \quad p_j = \frac{c}{2}.$$

Furthermore, $p_j = c/2$ is a maximum, which can be verified by

$$\left.\frac{\partial^2 \tilde{\mathsf{H}}(X)}{\partial p_j^2}\right|_{p_j=\frac{c}{2}} = \left.-\frac{1}{p_j} - \frac{1}{c-p_j}\right|_{p_j=\frac{c}{2}} = -\frac{4}{c} < 0.$$

Thus.

$$\max \tilde{\mathsf{H}}(X) = -\frac{c}{2}\log\left(\frac{c}{2}\right) - \left(c - \frac{c}{2}\right)\log\left(c - \frac{c}{2}\right) = -c\log\left(\frac{c}{2}\right).$$

Since $\max \tilde{\mathsf{H}}(X) = \tilde{\mathsf{H}}(Y)$, it follows that $\tilde{\mathsf{H}}(X) \leq \tilde{\mathsf{H}}(Y)$, and consequently

$$H(X) < H(Y)$$
.

Approach 2: Use the fact that

$$\ln x \le x - 1$$
,

and compute

$$\begin{split} \mathsf{H}(X) - \mathsf{H}(Y) &= -p_{j-1} \log(p_{j-1}) - p_{j} \log(p_{j}) + (p_{j-1} + p_{j}) \log \left(\frac{p_{j-1} + p_{j}}{2}\right) \\ &= p_{j-1} \log \left(\frac{p_{j-1} + p_{j}}{2p_{j-1}}\right) + p_{j} \log \left(\frac{p_{j-1} + p_{j}}{2p_{j}}\right) \\ &= \frac{1}{\ln 2} \left(p_{j-1} \ln \left(\frac{p_{j-1} + p_{j}}{2p_{j-1}}\right) + p_{j} \ln \left(\frac{p_{j-1} + p_{j}}{2p_{j}}\right)\right) \\ &\leq \frac{1}{\ln 2} \left(p_{j-1} \left(\frac{p_{j-1} + p_{j}}{2p_{j-1}} - 1\right) + p_{j} \left(\frac{p_{j-1} + p_{j}}{2p_{j}} - 1\right)\right) \\ &= \frac{1}{\ln 2} \left(\frac{p_{j-1} + p_{j}}{2} - p_{j-1} + \frac{p_{j-1} + p_{j}}{2} - p_{j}\right) \\ &= \frac{1}{\ln 2} (p_{j-1} + p_{j} - p_{j-1} - p_{j}) \\ &= 0. \end{split}$$

Therefore,

$$H(X) \leq H(Y)$$
.

Problem 2

1. The expected value is given by

$$\mu_N = \mathbb{E}_N[N] = \sum_{n=1}^{\infty} np(1-p)^{n-1}$$

$$= -p \sum_{n=1}^{\infty} \frac{\partial}{\partial p} (1-p)^n$$

$$= -p \frac{\partial}{\partial p} \left(\sum_{n=0}^{\infty} (1-p)^n - 1 \right)$$

$$= -p \frac{\partial}{\partial p} \left(\frac{1}{1 - (1-p)} - 1 \right) = \frac{1}{p}$$

2. The entropy is given by

$$\begin{split} \mathsf{H}(N) &= \mathbb{E}_N[-\log(P_N(N))] = -\sum_{n=1}^\infty p(1-p)^{n-1} \log(p(1-p)^{n-1}) \\ &= -\sum_{n=1}^\infty p(1-p)^{n-1} \left(\log(p) + (n-1)\log(1-p)\right) \\ &= -p\log(p) \sum_{n=1}^\infty (1-p)^{n-1} - p\log(1-p) \sum_{n=1}^\infty (n-1)(1-p)^{n-1} \\ &= -p\log(p) \sum_{n=0}^\infty (1-p)^n - p\log(1-p) \sum_{n=0}^\infty (n)(1-p)^n \\ &= -\frac{p\log(p)}{p} - \frac{p(1-p)\log(1-p)}{p^2} \\ &= \frac{1}{p} \left(-p\log(p) - (1-p)\log(1-p)\right) = \mu_N \cdot \mathsf{H_b}(p) \end{split}$$

Problem 3

1. A prefix-free code is always uniquely decodable because for every finite sequence one can start decoding at the beginning of the sequence and read as many symbols as necessary to obtain a valid codeword. As

no codeword is the prefix of another codeword, this always results in one unique sequence of codewords. Prefix-free codes are also called instantaneously decodable codes.

- 2. a) This is a block code (all codewords have the same length) where none of the codewords are identical, and therefore the code is prefix-free.
 - b) prefix-free
 - c) not prefix-free, since 0 is a prefix of 01. However, the code is uniquely decodable.
 - d) not prefix-free, since 1 is a prefix of 101. However, the code is uniquely decodable.
 - e) This code is neither prefix-free, nor uniquely decodable. For example, 01 has two different interpretations.
- 3. a) $2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-5} = 1$, therefore a code exists, and can be visualized with the help of the following tree

- b) $2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-4} + 2^{-5} = 33/32 > 1$, therefore a code does not exist
- c) $2^{-2} + 2^{-2} + 2^{-2} + 2^{-3} + 2^{-4} = 15/16 < 1$, therefore a code exists, and can be visualized with the help of the following tree

Problem 4

1. Let \mathcal{A} = "second ball is red" and \mathcal{B} = "first ball is labeled \mathcal{B} ". We have

$$Pr(\mathcal{A}) = 1/4 + 1/10 + 1/20 = 2/5$$

$$\Pr(\mathcal{B}) = 1/2$$

$$\Pr(\mathcal{A} \cap \mathcal{B}) = 1/4$$

Therefore,
$$\Pr(\mathcal{B}|\mathcal{A}) = (1/4)/(2/5) = 5/8$$
.

- 2. Since $Pr(\mathcal{B}|\mathcal{A}) \neq Pr(\mathcal{B})$, these two events are not independent.
- 3. Let \mathcal{C} = "first ball is labeled \mathcal{C} ". We have

$$Pr(\mathcal{C}) = 1/4$$

$$\Pr(\mathcal{A} \cap \mathcal{C}) = 1/10$$

Therefore, $\Pr(A \cap C) = \Pr(A) \cdot \Pr(C) = 1/10$ and the two events are independent.

Problem 5

	\boldsymbol{x}	$P_X(x)$	$(P_X(x))^2$	$-\log_2(P_X(x))$		
1.	0	0.1	0.01	3.32		
	1	0.2	0.04	2.32		
	2	0.7	0.49	0.515		

$$\mathbb{E}[X] = \sum_{x} x P_X(x) = 1.6$$

$$\mathbb{E}[P_X(X)] = \sum_{x} P_X(x) P_X(x) = 0.54$$

$$\mathbb{E}[-\log_2(P_X(X))] = 1.157$$

Only the expected value changes to $\mathbb{E}[X] = 2.6$.

2. We have

$$\mathbb{E}_{Y}[\mathbb{E}_{X}[X|Y]] = \sum_{y} \mathbb{E}_{X}[X|Y = y] \cdot P_{Y}(y)$$

$$= \sum_{y} \sum_{x} x \cdot P_{X|Y}(x|y) \cdot P_{Y}(y)$$

$$= \sum_{y} \sum_{x} x \cdot \frac{P_{X,Y}(x,y)}{P_{Y}(y)} \cdot P_{Y}(y)$$

$$= \sum_{x} x \sum_{y} P_{X,Y}(x,y)$$

$$= \sum_{x} x P_{X}(x) = \mathbb{E}_{X}[X]$$

Problem 6

1.
$$P_X(0) = 8/27$$
, $P_X(1) = 12/27$, $P_X(2) = 6/27$, $P_X(3) = 1/27$

		X = 0	X = 1	X=2	X = 3	$\sum (\cdot) = P_Y(y)$
2.	Y = 0	8/27	8/27	2/27	0	2/3
	Y = 1	0	4/27	4/27	1/27	1/3
	$\sum(\cdot) = P_X(x)$	8/27	12/27	6/27	1/27	

3.
$$\mathbb{E}_X[X] = 0.8/27 + 1.12/27 + 2.6/27 + 3.1/27 = 1$$

$$\mathbb{E}_Y[Y] = 0 \cdot 2/3 + 1 \cdot 1/3 = 1/3$$

$$\mathbb{E}_{P_{X,Y}}[XY] = 1 \cdot 4/27 + 2 \cdot 4/27 + 3 \cdot 1/27 = 15/27$$

$$\mathbb{E}_{P_{X,Y}}[(X - \mathbb{E}_X[X])(Y - \mathbb{E}_Y[Y])] = 15/27 - 1/3 = 2/9$$

Therefore, X and Y are correlated.

4. $\Pr(N \leq n) = \sum_{i=0}^{n} P_N(i)$, where $P_N(i) = 1/3 \cdot (2/3)^i$. Therefore

$$\Pr(N \le n) = \sum_{i=0}^{n} 1/3 \cdot (2/3)^{i} = 1/3 \cdot \frac{(2/3)^{n+1} - 1}{2/3 - 1} = 1 - (2/3)^{n+1}$$

Problem 7

- 1. $Y \sim \mathcal{N}(0, 1)$
- 2. They are not correlated since $\mathbb{E}_{P_{X,Y}}[XY] = \mathbb{E}_Z[Z] \cdot \mathbb{E}_X[|X|^2] = 0 \cdot \mathbb{E}_X[|X|^2] = 0$.

- 3. $\Pr(|X| \ge 1) = 2\Pr(X \ge 1) = 2Q(1)$ $\Pr(|Y| \ge 1) = 2\Pr(Y \ge 1) = 2Q(1)$
- 4. $\Pr(|X| \ge 1, |Y| \ge 1) = \Pr(X \ge 1) = 2Q(1)$
- 5. No, since $\Pr(|X| \ge 1, |Y| \ge 1) \ne \Pr(X \ge 1) \cdot \Pr(X \ge 1)$