

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 9: AVL-BÄUME & TOPOLOGISCHES SORTIEREN

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 6. Dezember 2021

AVL-Bäume

Wir betrachten einen Baum t und bezeichnen die *Schlüssel* an den Knoten n mit s(n).

Wir betrachten einen Baum t und bezeichnen die *Schlüssel* an den Knoten n mit s(n).

Suchbaum:

Wir betrachten einen Baum t und bezeichnen die *Schlüssel* an den Knoten n mit s(n).

Suchbaum:

Die **Höhe** des Baumes bezeichnen wir mit h(t). Wir ordnen jedem Knoten n einen **Balancefaktor** b(n) zu:

$$b(n) \coloneqq h(R) - h(L)$$

1

Wir betrachten einen Baum t und bezeichnen die *Schlüssel* an den Knoten n mit s(n).

Suchbaum:

Die **Höhe** des Baumes bezeichnen wir mit h(t). Wir ordnen jedem Knoten n einen **Balancefaktor** b(n) zu:

$$b(n) \coloneqq h(R) - h(L)$$

AVL-Baum: Suchbaum mit $b(n) \in \{-1, 0, 1\}$

BALANCIEREN

- ► Einfügen eines neuen Schlüssels s
- ► Berechne Balancefaktoren auf dem Pfad von s zur Wurzel bis zum ersten Auftreten von ±2

BALANCIEREN

- Einfügen eines neuen Schlüssels s
- Berechne Balancefaktoren auf dem Pfad von s zur Wurzel bis zum ersten Auftreten von ±2
- Balancierungsalgorithmus:

Baum 1:

Baum 2:

Baum 3:

Baum 4:

ERINNERUNG: BÄUME

```
typedef struct node *tree;
struct node { int key; tree left, right; };
```


ERINNERUNG: BÄUME

```
typedef struct node *tree;
struct node { int key; tree left, right; };
```


- ► Verarbeitung eines Baumes: Einfachreferenzen (tree t)
- ► Veränderung eines Baumes: Doppelreferenzen (tree *tp)

ERINNERUNG: BÄUME

```
typedef struct node *tree;
struct node { int key; tree left, right; };
```


- Verarbeitung eines Baumes: Einfachreferenzen (tree t)
- ► Veränderung eines Baumes: Doppelreferenzen (tree *tp)

Topologisches Sortieren

- ► Sortierung von *Beziehungen* zwischen Objekten
- ► **Bsp.:** Ablauf eines Bauvorhabens

- Sortierung von Beziehungen zwischen Objekten
- Bsp.: Ablauf eines Bauvorhabens
 - ▶ Baugrube ausheben (1) vor Fundament gießen (2)
 - ⊳ Fundament gießen (2) vor Wände setzen (3)
 - ▷ ..
 - ▷ Elektrik im Bad (4) vor Fliesen (5)
 - ▶ Wohnzimmer tapezieren (6) vor streichen (7)
 - Wände streichen (5) und Fliesen (7) vor Möbel aufstellen(8)

- Sortierung von Beziehungen zwischen Objekten
- Bsp.: Ablauf eines Bauvorhabens
 - ▶ Baugrube ausheben (1) vor Fundament gießen (2)
 - ▶ Fundament gießen (2) vor Wände setzen (3)
 - ▷ ..
 - ▷ Elektrik im Bad (4) vor Fliesen (5)
 - ▶ Wohnzimmer tapezieren (6) vor streichen (7)
 - Wände streichen (5) und Fliesen (7) vor Möbel aufstellen(8)

- Sortierung von Beziehungen zwischen Objekten
- Bsp.: Ablauf eines Bauvorhabens
 - ▶ Baugrube ausheben (1) vor Fundament gießen (2)

 - ▷ ..
 - ▷ Elektrik im Bad (4) vor Fliesen (5)
 - ▶ Wohnzimmer tapezieren (6) vor streichen (7)
 - Wände streichen (5) und Fliesen (7) vor Möbel aufstellen(8)

► In welcher Reihenfolge kann ich die Tätigkeiten abarbeiten?

Gegeben sei ein gerichteter, azyklischer Graph G = (V, E). Eine **topologische Sortierung** von G ist eine *bijektive* Abbildung ord: $V \rightarrow \{1, \ldots, |V|\}$, sodass für alle $v, v' \in V$ mit $(v, v') \in E$ die Relation ord $(v) < \operatorname{ord}(v')$ gilt.

Gegeben sei ein gerichteter, azyklischer Graph G = (V, E). Eine **topologische Sortierung** von G ist eine *bijektive* Abbildung ord: $V \rightarrow \{1, \ldots, |V|\}$, sodass für alle $v, v' \in V$ mit $(v, v') \in E$ die Relation ord(v) < ord(v') gilt.

Algorithmus:

```
while ( Elemente übrig )
{
```

- ▶ wähle Element v ohne Vorgänger
- dekrementiere Anzahl der Vorgänger in den Nachfolgern von v
- ► füge *v* der Ausgabeliste hinzu
- ▶ lösche v aus G

Teil (a)

Teil (a)

Es gibt $4! \cdot 1! \cdot 3! = 24 \cdot 1 \cdot 6 = 144$ viele topologische Sortierungen.

Teil (b)

Es werden alle Möglichkeiten mit der 1 am Anfang gestrichen, d.h. im ersten Block gibt es nur noch 4! – 3! = 24 – 6 viele Möglichkeiten — insgesamt also

$$(4! - 3!) \cdot 1! \cdot 3! = 18 \cdot 1 \cdot 6 = 108$$
.

Teil (b)

Es werden alle Möglichkeiten mit der 1 am Anfang gestrichen, d.h. im ersten Block gibt es nur noch 4! - 3! = 24 - 6 viele Möglichkeiten — insgesamt also

$$(4! - 3!) \cdot 1! \cdot 3! = 18 \cdot 1 \cdot 6 = 108$$
.

Teil (c)

