Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Курсовой проект по курсу «Методы, средства и технологии мультимедиа»

Студент: К.О. Вахрамян

Преподаватель: Б. В. Вишняков

Группа: М8О-406Б

Дата: Оценка:

Подпись:

1 Веведение

Задача:

Выбрать задачу (классификация или регрессия), датасет и метрику качества. Выбранные данные необходимо визуализировать и проанализировать. После этого выполнить препроцессинг. Затем реализовать алгоритм линейной регрессии, проверить качество обучения, сравнить с моделью из sklearn.

Описание данных:

Датасет представляет из себя информацию об автомобилях марки Mercedes-Benz, реализуемых на вторичном рынке в Великобритании. Содержит следующие признаки:

- Модель автомобиля
- Год выпуска
- Цена на вторичном рынке
- Тип КПП
- Пробег
- Тип топлива
- Налог
- Расход топлива
- Объем двигателя

Вариант:

Линейная регрессия. Будем предсказывать цену автомобиля на основании остальных признаков.

2 Описание

Линейная регрессия - это модель зависимости переменной y от переменных x с линейной функцией зависимости.

$$a(x) = \omega_0 + \sum_{i=1}^{d} \omega_i x_i$$

Параметрами модели являются веса или коэффициенты ω_j . Вес ω_0 - свободный коэффициент или сдвиг.

Вход модели - объект с вектром x

$$a(x) = \omega_o + \langle \omega, x \rangle$$

a(x) - оценка значения y

Чаще всего линейную регрессию обучают с использованием MSE.

$$\frac{1}{l} \sum_{i=1}^{l} (\langle \omega, x_i \rangle - y_i)^2 \to min$$

Получаем задачу оптимизации. Аналитическое решение:

$$\omega = (X^T X)^{-1} X^T y$$

Однако обращение матриц - сложная операция $(O(n^3))$, более того X^TX может быть вырожденной или плохообусловленной. Эту задачу можно решить численно.

Метод градиентного спуска:

В основе метода - свойство антиградиента, он указыват в сторону наискорейшего убывания функции в данной точке.

Пусть $\omega^{(0)}$ - веса при инициализации. Тогда градиентный спуск имеет вид:

$$\omega^{(k)} = \omega^{(k-1)} - \eta \nabla Q(w^{(k-1)}) = \omega^{(k-1)} - \frac{2}{l} \langle X, \omega^{(k-1)} - y \rangle$$

Регуляризация:

Градиентный спуск очень общий метод обучения. Модель может переобучиться (качество на новых данных существенно хуже). Можно заметить, что при переобучении модели получаются очень большие коэффициенты при признаках. Будем штрафовать за слишком большую норму весов. Такой подход называется регуляризацией.

$$Q_{\alpha}(\omega) = Q(\omega) + \alpha R(\omega)$$

Регуляризатор для L_2 нормы:

$$R(\omega) = \|\omega\|_2^2 = \sum_{i=1}^d \omega_i^2$$

Итеративный процесс для градиентного спуска с регуляризацией имеет вид:

$$\omega^{(k)} = \omega^{(k-1)} - \frac{2}{l} \langle X, \omega^{(k-1)} - y \rangle + 2\omega^{(k-1)}$$

3 Ход работы

Загружаем датасет: (13119, 9)

	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
0	SLK	2005	5200	Automatic	63000	Petrol	325	32.1	1.8
1	S Class	2017	34948	Automatic	27000	Hybrid	20	61.4	2.1
2	SL CLASS	2016	49948	Automatic	6200	Petrol	555	28.0	5.5
3	G Class	2016	61948	Automatic	16000	Petrol	325	30.4	4.0
4	G Class	2016	73948	Automatic	4000	Petrol	325	30.1	4.0

Посмотрим на статистические данные:

	year	price	mileage	tax	mpg	engineSize
count	13119.000000	13119.000000	13119.000000	13119.000000	13119.000000	13119.000000
mean	2017.296288	24698.596920	21949.559037	129.972178	55.155843	2.071530
std	2.224709	11842.675542	21176.512267	65.260286	15.220082	0.572426
min	1970.000000	650.000000	1.000000	0.000000	1.100000	0.000000
25%	2016.000000	17450.000000	6097.500000	125.000000	45.600000	1.800000
50%	2018.000000	22480.000000	15189.000000	145.000000	56.500000	2.000000
75%	2019.000000	28980.000000	31779.500000	145.000000	64.200000	2.100000
max	2020.000000	159999.000000	259000.000000	580.000000	217.300000	6.200000

Распределение числа автомобилей от типа топлива:

Большинство машин используют дизельное топливо.

Распределение числа автомобилей от типа КПП:

Большинство машин с автоматической и полуавтоматической КПП.

- 1 | Semi-Auto 6848
- 2 Automatic 4825
- 3 | Manual 1444
- 4 | Other 2
- 5 Name: transmission, dtype: int64

Постмотрим на распределение моделий автоболией.

Самые популярные - C,A,E Class.

Также визуализируем распределение года выпуска автомобилей.

Посмотрим на зависимость цены автомобиля от года выпуска.

Видим, что в среднем, чем новее машина тем дороже. Однако, если идти по временному ряду назад, то выбросы становятся все больше. Это обусловленно тем, что за такой большой период сложно сохранить автомобиль и, чем лучше у него состояние, тем он дороже.

Зависимость цены от пробега при данной КПП:

Чем меньше пробег, тем машина дороже. Также механическая КПП показатель бо-

лее низкой цены, а полуавтоматическая - более высокой.

Препроцессинг:

Заменим категориальные признаки бинарными:

```
1 || df_expanded = pd.get_dummies(df)
```

Разделим данные на обучающую и тестовую выборки.

```
1 || X = df_expanded.drop(columns=['price'])
2 || y = df_expanded['price']
3 || X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state =42)
```

Нормализуем данные:

Метрика:

Метрика R2 принимает значения от 0 до 1, чем ближе значение коэффициента к 1, тем сильнее модель соответствует данным. Эта метрика наиболее наглядна. Кроме того, используется в реализации линейной регрессии в sklearn.

Реализация линейной регрессии:

```
1 | class myLinearRegression:
     def __init__(self, lr=0.05, max_iter = 10000):
 2
 3
       self.max_iter = max_iter
 4
       self.lr = lr
5
       self.w = np.array([])
 6
       self.firstRun = True
 7
8
     def fit(self, X, y):
9
       X = X.to_numpy()
10
       y = y.to_numpy()
11
       X = np.hstack((np.full((X.shape[0], 1), 1), X))
12
13
       if self.firstRun:
```

```
self.w = np.random.rand(X.shape[1])
14
15
         self.firstRun = False;
16
       m = X.shape[0]
17
       for i in range(self.max_iter):
18
19
         y_pred = np.dot(X, self.w)
20
         diff = y_pred - y
21
         grad = 2 / m * np.dot(X.T, diff)
22
         self.w -= self.lr * grad
23
       return self
24
25
     def predict(self, X):
26
       X = X.to_numpy()
27
       X = np.hstack((np.full((X.shape[0], 1), 1),X))
28
       return np.dot(X, self.w)
29
30
     def score(self, X, y):
31
       y = y.to_numpy()
32
       y_pred = self.predict(X)
33
       return R2(y, y_pred)
```

Результаты:

Лучших оценок удалось достичь благодарю тому, что категориальные признаки я преобразовал в бинарные. В 4 лабораторной было отображение:

```
1 || fuel = {'Petrol':0, 'Hybrid':1, 'Diesel':2, 'Other':3}
2 || df = df.replace({'fuelType' : fuel})
3 || transmission = {'Automatic':0, 'Manual':1, 'Semi-Auto':2, 'Other':3}
4 || df = df.replace({'transmission':transmission})
```

Это не совсем верно, т.к. увеличивает вес тем или иным объектам без определенной причины.

4 Выводы

Линейная регрессия - простой, но мощный механизм для аппроксимации линейных зависимостей. Модель является предшественником нелинейных методов, которые используют для обучения нейронных сетей. В ходе курсового проекта удалось улучшить реализацию модели, добавить регуляризацию, и добиться лучших оценок.