Model evaluation

Introduction to SDMs: theory and practice in R
Sapienza University, Rome
9-11 June, 2021

Jamie M. Kass

Postdoctoral Scholar

Okinawa Institute of Science and Technology Graduate University (OIST)

• data is messy in varying degrees

- data is messy in varying degrees
- models that are too complex can overpredict data

- data is messy in varying degrees
- models that are too complex can overpredict data
- models that are too simple can underpredict data

- data is messy in varying degrees
- models that are too complex can overpredict data
- models that are too simple can underpredict data
- we need a model in-between

What creates model complexity?

• the number of predictor variables used to fit the model

• the shapes of the modeled responses

• the presence of variable interactions

$$r = a + b1 * b2$$

How do we tell how well the model fits?

• model evaluation: measures of model performance on different data sets

• many metrics exist, and it can get confusing

• interpreting the results of model evaluation is also not straightforward

• key questions: is the model overfit (too complex) or underfit (too simple)?

How do we control complexity?

• exhaustive model selection for standard regression models

 machine learning algorithms have tuning parameters to penalize complexity

• Examples are Maxent, random forest, boosted regression trees, neural networks, lasso regression

What does a model evaluation tell us?

• model performance on the data used to build the model

• model performance on new data

- ecological realism for:
 - relationships with predictor variables
 - spatial predictions

Popular SDM evaluation metrics

metric	threshold	range	high or low?	CV	caveats	R packages
AUC	independent	0-1	+	yes	cannot use to compare diff spp or extents	dismo, ENMeval, SDMtune, ROCR
pROC	independent	AUC ratio	+	yes	user-set acceptable level of omission error (e = 100% for AUC)	pROC, kuenm, ntbox
Continuous Boyce Index	independent	-1 - 1	+	yes		ecospat, ENMeval
omission rate	dependent	0-1	-	yes		dismo, ENMeval
TSS	dependent	-1 - 1	+	yes	cannot use to compare diff spp or extents	SDMtune
kappa	dependent	-1 - 1	+	yes	cannot use to compare diff spp or extents	dismo
AICc	independent	relative	-	no	cannot evaluate transferability	ENMeval, SDMtune

Model evaluation strategy

• each model should be able to accurately predict the input data

• but can each model also accurately predict new data?

• if we have independent data, we can evaluate each model on it

• if not, we can evaluate each model on subsets of itself

Data for modeling: terminology

used to fit the model

used to evaluate the model

1. Split the data into *k* groups (a.k.a. subsets, partitions)

2. Train the model on *k* - 1 subsets

3. Evaluate the model on subset *k* (calculate an evaluation statistic)

4. Repeat for all *k*

4. Repeat for all *k*

4. Repeat for all *k*

5. Take summary statistics (mean, sd, etc.) on the subset evaluations

Finally, compare the model evaluations to determine the parameter settings for optimal complexity

Model tuning

• we can implement cross validation on a suite of models with varying complexity

• each model will have associated performance metrics

• we can then conduct model selection to choose an "optimal" model

Example: Giant Anteater

- downloaded from GBIF with R package spoce
- initially, n = 400
- after processing (geographic and spatial filtering), n = 155

How to evaluate models when tuning?

• we could ask how well each model predicts the input data (training data)

How to evaluate models when tuning?

• we could ask how well each model predicts independent data

How to evaluate models when tuning?

• we could ask how well each model predicts holdout data on average (testing data)

Ideal data subset for cross validation

- even number of records across subsets
 - not always feasible when number of records is low

- even sampling across environment
 - not always feasible when records are absent from certain environments
 - not desirable when the goal is extrapolation

Purpose of cross validation evaluation

• ability to predict the conditions in your data (interpolation)

• ability to transfer to new conditions (extrapolation)

• need to ask yourself: what do you want your model to do?

• then subset your data to make the model evaluations rate this ability

Data for model transfer: terminology

Block vs. non-block subsetting

- block subsetting: partitioning the data with some underlying structure
- usually results in lower performance than random CV
- leads to better evaluations of transferability
- with most block subsets, cross validation should include background data as well

Dependence structure	Parametric solution	Blocking	Blocking illustration
Spatial	Spatial models (e.g.CAR, INLA, GWR)	Spatial	
Temporal	Time-series models (e.g.ARIMA)	Temporal	
Grouping	Mixed effect models (e.g. GLMM)	Group	
Hierarchical / Phylogenetic	Phylogenetic models (e.g. PGLS)	Hierarchical	

Radosavljevic & Anderson 2014

Ways to subset: leave-one-out (jackknife)

Ways to subset: random

Χ

Ways to subset: balanced spatial block

Ways to subset: random spatial blocks

Comments on subsetting techniques

- leave-one-out (jackknife) best for low-data species
- block subsetting should extend to background data
- block subsetting usually results in less optimistic evaluation (i.e., more realistic)
- spatial checkerboard is likely to have more even sampling across environments than random
- some techniques do not ensure even sampling of occurrences
- blocking can force model extrapolation

ENMeval 2.0.0

- new structure for adding other algorithms
- customizable model settings and performance metrics
- metadata generation (rangeModelMetadata)
- null models to quantify significance and effect sizes
- new visualization tools (ggplot2) for mapping partitions and showing environmental differences between them

ENMeval 2.0: Redesigned for customizable and reproducible modeling of species' niches and distributions

Conclusions

- cross validation can help provide estimates of model evaluation with "independent" data
- many ways to subset data (check out *ENMeval*^{1,2} and *blockCV*³)
- block subsetting has several advantages to random, and becomes very important when models are transferred⁴
- choose subsets based on analysis goals (interpolation or extrapolation)

- 1. Muscarella et al. 2014
- 2. Kass et al. 2021
- 3. Valavi et al. 2018
- 4. Roberts et al. 2017