EDIT DISTANCE

THEORY & APPLICATIONS OF NLP WOA7013

SPELLING ERRORS DETECTION & CORRECTION

non-word error detection: detecting spelling errors which result in non-words (e.g. *tomrrow* for *tomorrow*).

isolated-word error correction: correcting spelling errors which result in non-words, e.g. correcting *tomrrow* to *tomorrow*, but looking only at the word in isolation.

context-dependent error detection and correction: Using the context to help detect and correct spelling errors even if they accidentally result in an actual word (real-word errors). This REAL-WORD ERRORS can happen from typographical errors (insertion, deletion, transposition) which accidently produce a real word (e.g. there for three), or because the writer substituted the wrong spelling of a homophones (e.g. piece for peace).

INTRODUCTION

How similar are 2 strings?

- Spell Checker/Correction
 - ∘ The user typed "markt". Which is closest?
 - ∘ mark
 - make
 - market
- Computational Biology
 - Align 2 sequences of nucleotides

AGGCTATCACCTGACC

TAGCTATCAGCACCGC

Resulting alignment

-AGGCTATCACCTGACC--

TAG-CTATCAC--GACCGC

REAL APPLICATION

Searching keywords via the net: usually by "malysia", we mean "malaysia"

MINIMUM EDIT DISTANCE

Edit distance, also known as **Levenshtein distance** or **Evolutionary distance**.

The min edit distance between 2 strings is the min number of editing operations needed to transform one string into another.

 \circ Given 2 strings, s_1 and s_2 , the minimum number of operations/edits to change from one string to another.

Operations/edits are typically character-level:

- ∘ Deletion (d)
- ∘ Insertion (i)
- Substitution (s)

It is the most common measure to expose the dissimilarity between two strings (Levenshtein 1966; Navarro & Raffinot 2002).

∘ To find the distance btw 2 words:

The operations involved

The transformation list from intention to execution:

intention

ntention - delete i

etention - substitute *n* by *e*

exention - substitute t by x

exenution - insert u

execution - substitute *n* by *c*

We can assign a particular cost/weight to each of these operations.

- ∘ If each operation has cost of 1
 - Distance between these is 5
- ∘ If substitutions cost 2
 - Distance between them is 8

Determine the minimum edit distance between these 2 strings:

- 1. don and dog = ?
- 2. cat and act = ?
- 3. cat and dog = ?

HOW TO FIND A MIN EDIT DISTANCE

Searching for a path (sequence of edit) from the start string to the final string:

- Initial state: the word we're transforming
- ∘ Operators: *D*, *I*, *S*
- o Goal state: the word we're trying
 to get to
- o Path cost: what we want to minimize: the number of edits

The space of all edit sequences is huge.

- Lots of possible sequences wind up at the same state
 - We don't have to keep track all of them
 - Just the shortest path to each of those revisited states.

For two strings

- ∘ X of length *n*
- ∘ Y of length *m*

We define D(i,j)

- \circ the edit distance between X[1..i] and Y[1..j]
 - \circ i.e., the first i characters of X and the first j characters of Y
- \circ The edit distance between X and Y is thus D(n,m)

The base cases for edit distance function:

1.
$$D(0,0) = 0$$

$$2.$$
 $D(1,0) = 1$

3.
$$D(i, 0) = i$$

4.
$$D(0,j) = j$$

$$s_1=0$$
 character and $s_2=0$. Thus, no operations involved

$$s_1=1$$
 character and $s_2=0$. Thus, only 1 operation involved

$$s_1=i$$
 character and $s_2=0$. Thus, i operations involved

$$s_1 = 0$$
 character and $s_2 = j$. Thus, j operations involved

COMPUTING MIN EDIT DISTANCE

Dynamic programming: A tabular computation of D(n,m)

Solving problems by combining solutions to subproblems.

Bottom-up

- \circ We compute D(i,j) for small i,j
- \circ And compute larger D(i,j) based on previously computed smaller values
- \circ i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

MIN EDIT DISTANCE ALGORITHM

Initialization

$$D(i,0) = i$$

$$D(0,j) = j$$

Recurrence Relation

For each
$$i = 1 \dots m$$

For each
$$j = 1 \dots n$$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ \emptyset; & \text{if } X(i) = Y(j) \end{cases}$$
 substitution

Termination

$$D(m,n)$$
 is the distance

THE EDIT DISTANCE TABLE

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

N	9										
0	8										
I	7										
Т	6										
N	5				cD(i-1 i	\					
Е	4		_ D(<i>i,j</i>) :	= min	$ \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + $						
Т	3				D(i-1,j	-1) +	2; if $S_1(i) \neq S_2(j)$ 0; if $S_1(i) = S_2(j)$				
N	2		_				0, 11 5	$[(1) - 3_2]$			
I	1										
#	0	1	2	3	4	5	6	7	8	9	
	#	Е	X	Е	С	U	Т	I	0	N	

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

