Recitation 10

Seung-hun Lee

Columbia University

Note on the final project

- Approach the TA's for advice: regression methods, data, or ideas
- Also, refer to my recitation notes for Diff-in-Diffs and Regression discontinuity methods - I explain how you can use it in a natural experiment context
- Data: Household surveys are the safe place to start but country level data could work depending on your idea
- But first, be clear about what kind of question you want to explore: are you looking for a correlation/causal relation? Are you trying to predict something?
- Who to look for (topic-wise) all three of us cover basic grounds in most topics, but for specialized stuff...
 - Me: Development/Public/Labor econ (applied microeconomics in general). If you are trying to study health-care markets in the US, I am the wrong person to ask

Experiments in Economics

Motivation

- You categorize some individuals under treatment group and controlled group and compare the differences across groups and times.
- You can do this in lab setting (randomized control trials) or find an exogenous event (natural experiments)
- They provide a conceptual benchmark for assessing observational studies and can solve many validity threats in regular regressions.
- Do note that they have a validity threat of their own

Potential Outcome Framework

Setup

- Start by assuming that the treatment effect is identical for everyone (constant treatment effect assumption)
- Let $Y_{i,t}$ be the **observed** outcome variable for individual i at time t
- X_{it} be the treatment variable: It is 1 if individual i is treated and 0 if otherwise.
- Let Y_{it}(0) denote a **potential** outcome if subject i is not treated at time t and Y_{it}(1) be the same if i is treated.
- Then Yit can be split into

$$Y_{it} = Y_{it}(1)X_{it} + Y_{it}(0)(1 - X_{it})$$

= $Y_{it}(0) + (Y_{it}(1) - Y_{it}(0))X_{it}$

Seung-hun Lee Recitation 10 4 / 12

Potential Outcome Framework

Two takeaways

- Fundamental problem of missing data: We can only observe at most one of $Y_{it}(1)$ and $Y_{it}(0)$, since individual i cannot be treated and untreated simultaneously at time t
 - For us to make statements about the treatment effect, we need to be sure about what the missing outcome looks like.
 - Perfect randomization, randomization conditional on observables, instrumental variables on treatment variable X_{ii}...
- Average treatment effect: Average treatment effect is defined as

$$ATE = E[Y_{it}(1) - Y_{it}(0)] = \frac{1}{N} \sum_{i=1}^{N} (Y_{it}(1) - Y_{it}(0))$$

which is obtained from the coefficient of the X_{it} variable of the regression

$$Y_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

Average Treatment Effect

Regressional form

- We will assume that the experiment is perfectly randomized
 - The treated individuals and controlled individuals are identical except for treatment status, or that $E[u_{it}|X_{it}] = 0$ for all possible X_{it} values.
- Derive the expected value of Y_{it} separately for the treated and controlled individuals. For the controlled $(X_{it} = 0$, so that $Y_{it} = Y_{it}(0)$:

$$E[Y_{it}|X_{it}=0]=E[Y_{it}(0)]=\beta_0$$

and for the treated, $(X_{it} = 1$, so that $Y_{it} = Y_{it}(1)$)

$$E[Y_{it}|X_{it}=1]=E[Y_{it}(1)]=\beta_0+\beta_1$$

Seung-hun Lee Recitation 10 6/12

Average Treatment Effect

Regressional form

• Then, the average treatment effect can be characterized as

$$ATE = E[Y_{it}(1) - Y_{it}(0)] = (\beta_0 + \beta_1) - \beta_0 = \beta_1$$

where subtraction among $E[Y_{it}|X_{it}=1]$ and $E[Y_{it}|X_{it}=0]$ is possible since we are assuming perfect randomization.

- Under perfect randomization, identifying the average treatment effect is equivalent to obtaining the β_1 coefficient through an OLS process.
- However this is possible in rare circumstances...

Average Treatment Effect: No constant treatment effects

Approach

- Define $\beta_{1i} = Y_{it}(1) Y_{it}(0)$ and let $\beta_1 = E[\beta_{1i}]$.
- The potential outcome framework can be formally written as

$$Y_{i} = Y_{i}(1)X_{i} + Y_{i}(0)(1 - X_{i})$$

$$= Y_{i}(0) + (Y_{i}(1) - Y_{i}(0))X_{i}$$

$$= E[Y_{i}(0)] + (Y_{i}(1) - Y_{i}(0))X_{i} + Y_{i}(0) - E[Y_{i}(0)]$$

$$= \beta_{0} + \beta_{1i}X_{i} + u_{i}$$

Furthermore,

$$Y_i = \beta_0 + \beta_1 X_i + \underbrace{(\beta_{1i} - \beta_1) X_i + u_i}_{=v_i}$$

Seung-hun Lee Recitation 10 8 / 12

Average Treatment Effect: No constant treatment effects

Approach

• As long as we have perfect randomization, even $E[v_i|X_i] = 0$ will hold.

$$E[v_{i}|X_{i}] = E[(\beta_{1i} - \beta_{1})X_{i} + u_{i}|X_{i}]$$

$$= E[(\beta_{1i} - \beta_{1})X_{i}|X_{i}] + E[u_{i}|X_{i}]$$

$$= E[(\beta_{1i} - \beta_{1})|X_{i}]X_{i} + E[u_{i}|X_{i}]$$

$$= 0$$

 With perfect randomization, OLS gives an unbiased estimate of the average treatment effect, whether we assume constant treatment effects or not.

Seung-hun Lee Recitation 10 9 / 12

Validity Threats

Validity threats

- We cannot automatically subtract $E[Y_{it}|X_{it}=1]$ and $E[Y_{it}|X_{it}=0]$ under **imperfect randomization**.
- If the attrition rate is nonrandom if it differs by a treatment status we end up with a biased estimate of the treatment effect.
- In terms of experimental procedure, failure to comply to experiment protocol and other experimental effects that rises through peculiar behaviors of the experimental and the experiment subject could also serve as a validity threat.
- Constant treatment effect assumption that we have imposed on ourselves may not be accurate.
- There are external validity threats when the sample is not representative, is not replicable in other settings, and the results may have general equilibrium effects.

Seung-hun Lee Recitation 10 10 / 12

Validity Threats

Addressing validity threats

- If the treated and the controlled differ in some observed characteristics, we can simply include control variables Z_{it}
 - This gives us ATE conditional on observables and identify treatment effects for people with different treatment effects
- Instrumental variable approach: If there exists a Z_{it} variable that influences the treatment status X_{it} and uncorrelated with u_{it} , we can use Z_{it} to instrument X_{it} and run 2SLS regression
 - The predicted value of X_{it} : The probability of being treated.
 - 2SLS estimates the causal effect for those whose value of X_{it} is influenced by Z_{it} , putting more weight on those more likely to be treated.
 - This effectively identifies the treatment effect 'localized' for those more likely to be treated
 - We call this localized average treatment effect (LATE).

Seung-hun Lee Recitation 10 11 / 12

IV in treatment effects

Regression

• Let Z_{it} be an instrument for X_{it} and apply 2SLS method in this manner

$$X_{it} = \pi_0 + \pi_{1i}Z_{it} + e_{it}$$
 (First stage)
 $Y_{it} = \beta_0 + \beta_{1i}X_{it} + u_{it}$ (Equation of interst)

- Obtain $\hat{X}_{it} = \hat{\pi_0} + \hat{\pi}_{1i} X_{it}$ the predicted probability of being treated.
- Put \hat{X}_{it} in place of X_{it} in the equation of interest.
- If β_{1i} , π_{1i} are independent of (u_{it}, v_{it}, Z_{it}) , $E(\pi_{1i}) \neq 0$, then

$$\hat{\beta}_1 \xrightarrow{p} \frac{E(\beta_{1i}\pi_{1i})}{E(\pi_{1i})}$$
 (Refer to appendix 13.2)

• Ultimately, $\hat{\beta}_1$ can be written as

$$\hat{\beta}_1 \stackrel{p}{\rightarrow} E[\beta_{1i}] + \frac{cov(\beta_{1i}, \pi_{1i})}{E(\pi_{1i})} = \beta_1 + \frac{cov(\beta_{1i}, \pi_{1i})}{E(\pi_{1i})}$$

 Treatment effect is large for individuals for whom the effect of the instrument is large.

Seung-hun Lee Recitation 10 12 / 12