
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Fri May 11 10:31:32 EDT 2007

Application No: 10581813 Version No: 1.1

Input Set:

Output Set:

Started: 2007-05-11 10:31:08.895 Finished: 2007-05-11 10:31:12.289

65

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 394 ms

Total Warnings: 45
Total Errors: 0
No. of SeqIDs Defined: 65

Actual SeqID Count:

ErrCode Error Description

W	213	Artificial or Unknown found in <213> in SEQ ID (1)
W	213	Artificial or Unknown found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (32)
W	213	Artificial or Unknown found in <213> in SEQ ID (33)
W	213	Artificial or Unknown found in <213> in SEQ ID (34)
W	213	Artificial or Unknown found in <213> in SEQ ID (35)
W	213	Artificial or Unknown found in <213> in SEQ ID (36)
W	213	Artificial or Unknown found in <213> in SEQ ID (37)
W	213	Artificial or Unknown found in <213> in SEQ ID (38)
W	213	Artificial or Unknown found in <213> in SEQ ID (39)
W	213	Artificial or Unknown found in <213> in SEQ ID (40) This error has occured more than 20 times, will not be displayed

SUBSTITUTE SEQUENCE LISTING

```
<110> CODA THERAPEUTICS LTD
<120> ANTISENSE COMPOUNDS TARGETED TO CONNEXINS AND METHODS
      OF USE THEREOF
<130> E3697-00044
<140> US10/581,813
<141> 2006-06-02
<150> PCT/IB04/004431
<151> 2004-12-03
<150> NZ 529936
<151> 2003-12-03
<160> 65
<170> PatentIn Ver. 3.3
<210> 1
<211> 30
<212> DNA
<213> artificial
<220>
<223> Description of Artificial Sequence: Synthetic ODN
      sequence
<400> 1
gtaattgcgg caagaagaat tgtttctgtc
<210> 2
<211> 30
<212> DNA
<213> artificial
<220>
<223> Description of Artificial Sequence: Synthetic ODN
      sequence
<400> 2
gtaattgcgg caggaggaat tgtttctgtc
                                                                   30
<210> 3
<211> 30
<212> DNA
<213> artificial
<220>
<223> Description of Artificial Sequence: Synthetic ODN
      sequence
```

<400> 3						
ggcaag	ggcaagagac accaaagaca ctaccagcat					
<210>	4					
<211>	27					
<212>	DNA					
<213>	artificial					
<220>						
<223>	Description of Artificial Sequence: Synthetic ODN					
	sequence					
<400>	4					
	gcaa tacctaacga acaaata	27				
coccyc	ageda edecedacya dedadea	_ ,				
<210>	5					
<211>						
<212>						
	artificial					
(210)	diciliciai					
<220>						
	Description of Artificial Sequence: Synthetic ODN					
\2237	sequence					
	sequence					
<400>	5					
	cettg gtgeteaace	20				
<210>	6					
<211>	20					
<212>	DNA					
	artificial					
<220>						
<223>	Description of Artificial Sequence: Synthetic ODN					
	sequence					
<400>	6					
ctgaaq	gtcga cttggcttgg	20				
<210>	7					
<211>	21					
<212>	DNA					
<213>	artificial					
<220>						
<223>	Description of Artificial Sequence: Synthetic ODN					
	sequence					
<400>	7					
(100)						

```
<211> 20
<212> DNA
<213> artificial
<220>
<223> Description of Artificial Sequence: Synthetic ODN
      sequence
<400> 8
ttgtccaggt gactccaagg
                                                                   20
<210> 9
<211> 25
<212> DNA
<213> artificial
<220>
<223> Description of Artificial Sequence: Synthetic ODN
      sequence
<400> 9
cgtccgagcc cagaaagatg aggtc
                                                                   25
<210> 10
<211> 19
<212> DNA
<213> artificial
<220>
<223> Description of Artificial Sequence: Synthetic ODN
      sequence
<400> 10
                                                                   19
agaggcgcac gtgagacac
<210> 11
<211> 19
<212> DNA
<213> artificial
<220>
<223> Description of Artificial Sequence: Synthetic ODN
      sequence
<400> 11
tgaagacaat gaagatgtt
                                                                   19
<210> 12
<211> 3088
<212> DNA
<213> Homo sapiens
<400> 12
```

acaaaaaagc	ttttacgagg	tatcagcact	tttctttcat	tagggggaag	gcgtgaggaa	60
agtaccaaac	agcagcggag	ttttaaactt	taaatagaca	ggtctgagtg	cctgaacttg	120
ccttttcatt	ttacttcatc	ctccaaggag	ttcaatcact	tggcgtgact	tcactacttt	180
taagcaaaag	agtggtgccc	aggcaacatg	ggtgactgga	gcgccttagg	caaactcctt	240
gacaaggttc	aagcctactc	aactgctgga	gggaaggtgt	ggctgtcagt	acttttcatt	300
ttccgaatcc	tgctgctggg	gacagcggtt	gagtcagcct	ggggagatga	gcagtctgcc	360
tttcgttgta	acactcagca	acctggttgt	gaaaatgtct	gctatgacaa	gtctttccca	420
atctctcatg	tgcgcttctg	ggtcctgcag	atcatatttg	tgtctgtacc	cacactcttg	480
tacctggctc	atgtgttcta	tgtgatgcga	aaggaagaga	aactgaacaa	gaaagaggaa	540
gaactcaagg	ttgcccaaac	tgatggtgtc	aatgtggaca	tgcacttgaa	gcagattgag	600
ataaagaagt	tcaagtacgg	tattgaagag	catggtaagg	tgaaaatgcg	aggggggttg	660
ctgcgaacct	acatcatcag	tatcctcttc	aagtctatct	ttgaggtggc	cttcttgctg	720
atccagtggt	acatctatgg	attcagcttg	agtgctgttt	acacttgcaa	aagagatccc	780
tgcccacatc	aggtggactg	tttcctctct	cgccccacgg	agaaaaccat	cttcatcatc	840
ttcatgctgg	tggtgtcctt	ggtgtccctg	gccttgaata	tcattgaact	cttctatgtt	900
ttcttcaagg	gcgttaagga	tcgggttaag	ggaaagagcg	acccttacca	tgcgaccagt	960
ggtgcgctga	gccctgccaa	agactgtggg	tctcaaaaat	atgcttattt	caatggctgc	1020
tcctcaccaa	ccgctcccct	ctcgcctatg	tctcctcctg	ggtacaagct	ggttactggc	1080
gacagaaaca	attcttcttg	ccgcaattac	aacaagcaag	caagtgagca	aaactgggct	1140
aattacagtg	cagaacaaaa	tcgaatgggg	caggcgggaa	gcaccatctc	taactcccat	1200
gcacagcctt	ttgatttccc	cgatgataac	cagaattcta	aaaaactagc	tgctggacat	1260
gaattacagc	cactagccat	tgtggaccag	cgaccttcaa	gcagagccag	cagtcgtgcc	1320
agcagcagac	ctcggcctga	tgacctggag	atctagatac	aggcttgaaa	gcatcaagat	1380
tccactcaat	tgtggagaag	aaaaaaggtg	ctgtagaaag	tgcaccaggt	gttaattttg	1440
atccggtgga	ggtggtactc	aacagcctta	ttcatgaggc	ttagaaaaca	caaagacatt	1500
agaataccta	ggttcactgg	gggtgtatgg	ggtagatggg	tggagaggga	ggggataaga	1560
gaggtgcatg	ttggtattta	aagtagtgga	ttcaaagaac	ttagattata	aataagagtt	1620
ccattaggtg	atacatagat	aagggctttt	tctccccgca	aacaccccta	agaatggttc	1680
tgtgtatgtg	aatgagcggg	tggtaattgt	ggctaaatat	ttttgtttta	ccaagaaact	1740
gaaataattc	tggccaggaa	taaatacttc	ctgaacatct	taggtctttt	caacaagaaa	1800
aagacagagg	attgtcctta	agtccctgct	aaaacattcc	attgttaaaa	tttgcacttt	1860
gaaggtaagc	tttctaggcc	tgaccctcca	ggtgtcaatg	gacttgtgct	actatatttt	1920
tttattcttg	gtatcagttt	aaaattcaga	caaggcccac	agaataagat	tttccatgca	1980
tttgcaaata	cgtatattct	ttttccatcc	acttgcacaa	tatcattacc	atcacttttt	2040
catcattcct	cagctactac	tcacattcat	ttaatggttt	ctgtaaacat	ttttaagaca	2100
gttgggatgt	cacttaacat	tttttttt	tgagctaaag	tcagggaatc	aagccatgct	2160
taatatttaa	caatcactta	tatgtgtgtc	gaagagtttg	ttttgtttgt	catgtattgg	2220
tacaagcaga	tacagtataa	actcacaaac	acagatttga	aaataatgca	catatggtgt	2280
tcaaatttga	acctttctca	tggatttttg	tggtgtgggc	caatatggtg	tttacattat	2340
ataattcctg	ctgtggcaag	taaagcacac	ttttttttc	tcctaaaatg	tttttccctg	2400
tgtatcctat	tatggatact	ggttttgtta	attatgattc	tttattttct	ctccttttt	2460
taggatatag	cagtaatgct	attactgaaa	tgaatttcct	ttttctgaaa	tgtaatcatt	2520
gatgcttgaa	tgatagaatt	ttagtactgt	aaacaggctt	tagtcattaa	tgtgagagac	2580
ttagaaaaaa	tgcttagagt	ggactattaa	atgtgcctaa	atgaattttg	cagtaactgg	2640
tattcttggg	ttttcctact	taatacacag	taattcagaa	cttgtattct	attatgagtt	2700
tagcagtctt	ttggagtgac	cagcaacttt	gatgtttgca	ctaagatttt	atttggaatg	2760
caagagaggt	tgaaagagga	ttcagtagta	cacatacaac	taatttattt	gaactatatg	2820
ttgaagacat	ctaccagttt	ctccaaatgc	cttttttaaa	actcatcaca	gaagattggt	2880
gaaaatgctg	agtatgacac	ttttcttctt	gcatgcatgt	cagctacata	aacagttttg	2940
tacaatgaaa	attactaatt	tgtttgacat	tccatgttaa	actacggtca	tgttcagctt	3000
cattgcatgt	aatgtagacc	tagtccatca	gatcatgtgt	tctggagagt	gttctttatt	3060
caataaagtt	ttaatttagt	ataaacat				3088

<400> 13

atgggcgact ggagctttct gggaagactc ttagaaaatg cacaggagca ctccacggtc 60 atcggcaagg tttggctgac cgtgctgttc atcttccgca tcttggtgct gggggccgcg 120 gcggaggacg tgtggggcga tgagcagtca gacttcacct gcaacaccca gcagccgggc 180 tgcgagaacg tctgctacga cagggccttc cccatctccc acatccgctt ctgggcgctg 240 cagateatet tegtgteeae geecaeeete atetaeetgg geeaegtget geaeategtg 300 cgcatggaag agaagaagaa agagagggag gaggaggagc agctgaagag agagagcccc 360 agccccaagg agccaccgca ggacaatccc tcgtcgcggg acgaccgcgg cagggtgcgc 420 atggccgggg cgctgctgcg gacctacgtc ttcaacatca tcttcaagac gctgttcgag 480 gtgggcttca tcgccggcca gtactttctg tacggcttcg agctgaagcc gctctaccgc 540 tgcgaccgct ggccctgccc caacacggtg gactgcttca tctccaggcc cacggagaag 600 accatcttca tcatcttcat gctggcggtg gcctgcgcgt ccctgctgct caacatgctg 660 gagatetace acetgggetg gaagaagete aageagggeg tgaceageeg eeteggeeeg 720 gacgcctccg aggccccgct ggggacagcc gatcccccgc ccctgccccc cagctcccgg 780 ccgcccgccg ttgccatcgg gttcccaccc tactatgcgc acaccgctgc gcccctggga 840 caggeeegeg eegtgggeta eeeeggggee eegeeaceag eegeggaett eaaactgeta 900 gccctgaccg aggcgcgcgg aaagggccag tccgccaagc tctacaacgg ccaccaccac 960 ctgctgatga ctgagcagaa ctgggccaac caggcggccg agcggcagcc cccggcgctc 1020 aaggettace eggeagegte caegeetgea geeceeagee eegteggeag eageteeeeg 1080 ccactcgcgc acgaggctga ggcgggcgcg gcgcccctgc tgctggatgg gagcggcagc 1140 agtctggagg ggagcgccct ggcagggacc cccgaggagg aggagcaggc cgtgaccacc 1200 gcggcccaga tgcaccagcc gcccttgccc ctcggagacc caggtcgggc cagcaaggcc 1260 1308 agcagggcca gcagcgggcg ggccagaccg gaggacttgg ccatctag

<210> 14 <211> 1601 <212> DNA

<213> Homo sapiens

<400> 14

ctccggccat cgtccccacc tccacctggg ccgcccgcga ggcagcggac ggaggccggg 60 agccatgggt gactggggct tcctggagaa gttgctggac caggtccgag agcactcgac 120 cgtggtgggt aagatctggc tgacggtgct cttcatcttc cgcatcctca tcctgggcct 180 ggccggcgag tcagtgtggg gtgacgagca gtcagatttc gagtgtaaca cggcccagcc 240 aggetgeace aacgtetget atgaceagge ettececate teceacatee getactgggt 300 gctgcagttc ctcttcgtca gcacacccac cctggtctac ctgggccatg tcatttacct 360 gtctcggcga gaagagcggc tggcgcagaa ggagggggag ctgcgggcac tgccggccaa 420 ggacccacag gtggagcggg cgctggccgg catagagctt cagatggcca agatctcggt 480 ggcagaagat ggtcgcctgc gcattccgcg agcactgatg ggcacctatg tcgccagtgt 540 gctctgcaag agtgtgctag aggcaggctt cctctatggc cagtggcgcc tgtacggctg 600 gaccatggag cccgtgtttg tgtgccagcg agcaccctgc ccctacctcg tggactgctt 660 tgtctctcgc cccacggaga agaccatctt catcatcttc atgttggtgg ttggactcat 720 ctccctggtg cttaacctgc tggagttggt gcacctgctg tgtcgctgcc tcagccgggg 780 gatgagggca cggcaaggcc aagacgcacc cccgacccag ggcacctcct cagaccctta 840 cacggaccag ggtcttcttc tacctccccg tggccagggg ccctcatccc caccatgccc 900 cacctacaat gggctctcat ccagtgagca gaactgggcc aacctgacca cagaggagag 960 gctggcgtct tccaggcccc ctctcttcct ggacccaccc cctcagaatg gccaaaaacc 1020 cccaagtcgt cccagcagct ctgcttctaa gaagcagtat gtatagaggc ctgtggctta 1080 tgtcacccaa cagaggggtc ctgagaagtc tggctgcctg ggatgccccc tgcccctcc 1140 tggaaggctc tgcagagatg actgggctgg ggaagcagat gcttgctggc catggagcct 1200 cattgcaagt tgttcttgaa cacctgaggc cttcctgtgg cccaccaggc actacggctt 1260 cctctccaga tgtgctttgc ctgagcacag acagtcagca tggaatgctc ttggccaagg 1320 gtactggggc cctctggcct tttgcagctg atccagagga acccagagcc aacttacccc 1380 aacctcaccc tatggaacag tcacctgtgc gcaggttgtc ctcaaaccct ctcctcacag 1440

<210> 15 <211> 2574 <212> DNA <213> Homo sapiens

<400> 15

gcaaaaagcg tgggcagttg gagaagaagc agccagagtg tgaagaagcc cacggaagga 60 aagtccaggg aggaggaaaa gaagcagaag ttttggcatc tgttccctgg ctgtgccaag 120 atgggcgatt ggagcttcct gggaaatttc ctggaggaag tacacaagca ctcgaccgtg 180 gtaggcaagg tetggeteae tgteetette atatteegta tgetegtget gggeaeaget 240 gctgagtctt cctgggggga tgagcaggct gatttccggt gtgatacgat tcagcctggc 300 tgccagaatg tctgctacga ccaggctttc cccatctccc acattcgcta ctgggtgctg 360 cagatcatct tcgtctccac gccctctctg gtgtacatgg gccacgccat gcacactgtg 420 cgcatgcagg agaagcgcaa gctacgggag gccgagaggg ccaaagaggt ccggggctct 480 ggctcttacg agtacccggt ggcagagaag gcagaactgt cctgctggga ggaagggaat 540 ggaaggattg ccctccaggg cactctgctc aacacctatg tgtgcagcat cctgatccgc 600 accaccatgg aggtgggctt cattgtgggc cagtacttca tctacggaat cttcctgacc 660 accetgeatg tetgeegeag gagteeetgt eeceaeeegg teaactgtta egtateeegg 720 cccacagaga agaatgtett cattgtettt atgetggetg tggetgeact gteecteete 780 cttagcctgg ctgaactcta ccacctgggc tggaagaaga tcagacagcg atttgtcaaa 840 ccgcggcagc acatggctaa gtgccagctt tctggcccct ctgtgggcat agtccagagc 900 tgcacaccac cccccgactt taatcagtgc ctggagaatg gccctggggg aaaattcttc 960 aatcccttca gcaataatat ggcctcccaa caaaacacag acaacctggt caccgagcaa 1020 gtacgaggtc aggagcagac tcctggggaa ggtttcatcc aggttcgtta tggccagaag 1080 cctgaggtgc ccaatggagt ctcaccaggt caccgccttc cccatggcta tcatagtgac 1140 aagcgacgtc ttagtaaggc cagcagcaag gcaaggtcag atgacctatc agtgtgaccc 1200 tcctttatgg gaggatcagg accaggtggg aacaaaggag gctcagagaa gaaagacgtg 1260 tcccttctga actgatgctt tctcactgtc atcactgctt ggctcctttg agccccgggt 1320 ctcaatgacg ttgctcatta attctagaaa ctataaccag ggctctggga tagtaagaga 1380 ggtgacaacc cacccagact gcagttccct ccccaccctc tacccagtat acgaagcctt 1440 tcagattact catgaaacag ggtagaggga aagaagggaa gcatggcaaa agctggcctg 1500 gaagggatag ccagagggat agaatgactc tctctctaca taccagcagc ataccaaatg 1560 cqttctctaa qttcctacct ccttqacctq atcaccctcc ctcctccaaq qaaqaqctca 1620 aagttcccag ccaatagaca gcatgaatca aggaacttgc attatatgtg ctcttgaatc 1680 tqttqtctcc atqqaccatt cctcqqaqta qtqqtqaqat qqccttqqqt tqcccttqqc 1740 ttctcctccc tctactcagc cttaaaaagg gcttcttgga actttaccag cagcctcagc 1800 tttacaaatg ccttggtatg tacctctggc aaatgcccca ccttggtgat gttgcaacct 1860 ttccttctgc tagggtgtac acctagcctg tgcaggtgtc agccctgcta gggagtcact 1920 gtacacacaa actctactgg aattcctgcc aacatctgtc accctgcagc tcctttacag 1980 ttcaatccaa tgatagaaac catcccttcc ctttctccct tggctgttca cccagccatt 2040 ccctgaaggc cttaccaaca ggaatatcca agaagctgtt gtcccctctc gaaccctgac 2100 cagatcatca gccactgagg ccagtggaat ttccccaggc cttgttaaaa caaagaaagc 2160 attgtacctc tcagattccc cttgtggaaa aaaaaattct gctgtgaaga tgaaaataaa 2220 aatggagaga aaacactgga aaactatttt cccctcctat ttacttcctt tgctgactgc 2280 caacttagtg ccaagaggag gtgtgatgac agctatggag gcccccagat ctctctcc 2340 tggaggcttt agcagggca aggaaatagt aggggaatct ccagctctct tggcagggcc 2400 tttatttaaa gagcgcagag attcctatgt ctccctagtg cccctaatga gactgccaag 2460 tgggggctgt agaaaagcct tgccttcccc agggattggc ctggtctctg tattcactgg 2520 2574 atccataatg ggttgctgtt gttttggatg aaggtaaacg atgcttggaa ttgg

<211> 1191 <212> DNA <213> Homo sapiens

<400> 16

atgagttgga gctttctgac tcgcctgcta gaggagattc acaaccattc cacatttgtg 60 gggaagatct ggctcactgt tctgattgtc ttccggatcg tccttacagc tgtaggagga 120 gaatccatct attacgatga gcaaagcaaa tttgtgtgca acacagaaca gccgggctgt 180 gagaatgtct gttatgatgc gtttgcacct ctctcccatg tacgcttctg ggtgttccag 240 atcatcctgg tggcaactcc ctctgtgatg tacctgggct atgctatcca caagattgcc 300 aaaatggagc acggtgaagc agacaagaag gcagctcgga gcaagcccta tgcaatgcgc 360 tggaaacaac accgggctct ggaagaaacg gaggaggaca acgaagagga tcctatgatg 420 tatccagaga tggagttaga aagtgataag gaaaataaag agcagagcca acccaaacct 480 aagcatgatg gccgacgacg gattcgggaa gatgggctca tgaaaatcta tgtgctgcag 540 ttgctggcaa ggaccgtgtt tgaggtgggt tttctgatag ggcagtattt tctgtatggc 600 ttccaagtcc acccgtttta tgtgtgcagc agacttcctt gtcctcataa gatagactgc 660 tttatttcta gacccactga aaagaccatc ttccttctga taatgtatgg tgttacaggc 720 ctttgcctct tgcttaacat ttgggagatg cttcatttag ggtttgggac cattcgagac 780 tcactaaaca gtaaaaggag ggaacttgag gatccgggtg cttataatta tcctttcact 840 tggaatacac catctgctcc ccctggctat aacattgctg tcaaaccaga tcaaatccag 900 tacaccgaac tgtccaatgc taagatcgcc tacaagcaaa acaaggccaa cacagcccag 960 gaacagcagt atggcagcca tgaggagaac ctcccagctg acctggaggc tctgcagcgg 1020 gagatcagga tggctcagga acgcttggat ctggcagttc aggcctacag tcaccaaaac 1080 aaccctcatg gtccccggga gaagaaggcc aaagtggggt ccaaagctgg gtccaacaaa 1140 1191 agcactgcca gtagcaaatc aggggatggg aagaactctg tctggattta a

<210> 17 <211> 1362 <212> DNA <213> Homo sapiens

<400> 17

agcgccaaga gagaaagagc acatatttct ccgtgggaca ctccttgtat tggtgggtga 60 gaaatgggcg actggagttt cctggggaac atcttggagg aggtgaatga gcactccacc 120 gtcatcggca gagtctggct caccgtgctt ttcatcttcc ggatcctcat ccttggcacg 180 gccgcagagt tcgtgtgggg ggatgagcaa tccgacttcg tgtgcaacac ccagcagcct 240 ggctgcgaga acgtctgcta cgacgaggcc tttcccatct cccacattcg cctctgggtg 300 ctgcagatca tcttcgtctc caccccgtcc ctgatgtacg tggggcacgc ggtgcactac 360 gtccgcatgg aggagaagcg caaaagccgc gacgaggagc tgggccagca ggcggggact 420 aacggcggcc cggaccaggg cagcgtcaag aagagcagcg gcagcaaagg cactaagaag 480 ttccggctgg aggggaccct gctgaggacc tacatctgcc acatcatctt caagaccctc 540 tttgaagtgg gcttcatcgt gggccactac ttcctgtacg ggttccggat cctgcctctg 600 taccgctgca gccggtggcc ctgccccaat gtggtggact gcttcgtgtc ccggcccacg 660 gagaaaacca tetteateet gtteatgttg tetgtggeet etgtgteeet atteeteaac 720 gtgatggagt tgagccacct gggcctgaag gggatccggt ctgccttgaa gaggcctgta 780 gagcagcccc tgggggagat tcctgagaaa tccctccact ccattgctgt ctcctccatc 840 cagaaagcca agggctatca gcttctagaa gaagagaaaa tcgtttccca ctatttcccc 900 ttgaccgagg ttgggatggt ggagaccagc ccactgcctg ccaagccttt caatcagttc 960 gaggagaaga tcagcacagg acccctgggg gacttgtccc ggggctacca agagacactg 1020 ccttcctacg ctcaggtggg ggcacaagaa gtggagggcg aggggccgcc tgcagaggag 1080 ggagccgaac ccgaggtggg agagaagaag gaggaagcag agaggctgac cacggaggag 1140 caggagaagg tggccgtgcc agagggggag aaagtagaga cccccggagt ggataaggag 1200 ggtgaaaaag aagagccgca gtcggagaag gtgtcaaagc aagggctgcc agctgagaag 1260 acaccttcac tctgtccaga gctgacaaca gatgatgcca gacccctgag caggctaagc 1320 1362 aaagccagca gccgagccag gtcagacgat ctaaccgtat ga

```
<210> 18
<211> 966
<212> DNA
<213> Homo sapiens
```

<400> 18

atgagggaat ggaccatctt ggagaggctg ctagaaggccg cggtgcagca gcactccact 60 atgatcggaa ggatcctgtt gactgtggtg gtgatcttcc ggatcctcat tgtggccatt 120 gtgggggaga cggtgtacga tgatgagcag accatgtttg tgtgcaacac cctgcagccc 180 ggctgtaacc aggcctgcta tgaccgggcc ttcccatct cccacatacg ttactgggtc 240 ttccagatca taatggtgtg tacccccagt ctttgcttca tcacctactc tgtgcaccag 300 tccgccaagc agcgagaacg ccgctactct acagtcttcc tagccctgga cagagaccc 360 cctgagtcca taggaggtcc tggaggaact gggggtgggg gcagtggtgg gggcaaacga 420 gaagataaga agttgcaaaa tgctattgt aatggggtgc tgcagaacac agagaacacc 480 agtaaggaga cagagccaga ttgttagag gttaaggag tgactccaca cccatcaggt 540 ct