实验名称 用示波器观察动态磁滞回线 实验日期 2024 年 5 月 17 日

姓名 李灿辉 学号 2200017799 实验地点南楼 248

第一部分 数据记录与数据处理

1 观测样品1的动态磁滞回线

1.1 观测饱和磁滞回线

取

$$R_1 = 2\Omega \tag{1}$$

$$R_2 = 50k\Omega \tag{2}$$

$$C = 10.0\mu F \tag{3}$$

$$f = 100Hz \tag{4}$$

调节励磁电流至出现相对于原点对称的饱和磁滞回线,测量结果如下:

表 1: 磁滞回线数据测量表

n	U1(V)	H(A/m)	Uc(mV)	B(mT)
1	0.596	343.85	15.05	404.6
2	0.4	230.77	14.75	396.5
3	0.2	115.38	13.8	371.0
4	0.118	68.08	12.8	344.1
5	0	0.00	2.45	65.9
6	-0.012	-6.92	0	0.0
7	-0.0051	-29.42	-3.8	-102.2
8	-0.076	-43.85	-10.05	-270.2
9	-0.122	-70.38	-12.65	-340.1
10	-0.3	-173.08	-15.2	-408.6
11	-0.158	-91.15	-14.2	-381.7
12	-0.072	-41.54	-12.75	-342.7
13	0	0.00	-5.75	-154.6
14	0.034	19.62	0	0.0
15	0.062	35.77	5.2	139.8
16	0.162	93.46	10.3	276.9
17	0.2	115.38	13.25	356.2
18	0.4	230.77	14.55	391.1
19	0.596	343.85	15.05	404.6

姓名 李灿辉 学号 2200017799 实验地点 南楼 248

图 1: 磁滞回线

由以上测量结果我们可以得到:

$$H_c = 13.27A/m \tag{5}$$

$$B_m = 406.6mT \tag{6}$$

$$B_r = 110.25mT \tag{7}$$

1.2 观测不同频率饱和磁滞回线

表 2: 饱和磁化曲线特征量测量数据表

f/Hz	Um1/mV	Um2/mV	Ur1/mV	Ur2/mV	Uc1/mV	Uc2/mV	Br/mT	Hc/(A/m)
50	14.45	-14.5	4.24	-3.18	20.4	-20.6	99.73	11.83
100	15.05	-15.2	2.45	-5.75	34	-12	110.25	13.27
150	14.7	-14.5	4.15	-3.9	21.6	-21.8	108.20	12.52

由于示波器线宽和读数不确定度,经过计算得到测量数据大致有 $\pm 5\%$ 的不确定度,因此 B_r, H_m 都有 $\pm 5\%$ 的不确定度。即:

$$\sigma_{H_c} \approx 0.6A/m$$
 (8)

$$\sigma_{B_r} \approx 5mT$$
 (9)

对照不同频率的实验结果,知 B_r , H_m 在不同频率下近似不变。这是由于铁氧体具有低电阻率,涡流损耗较小,因此磁滞回线在高频率下形状变化不大

实验名称 用示波器观察动态磁滞回线 实验日期 2024 年 5 月 17 日

姓名 李灿辉 学号 2200017799 实验地点南楼 248

1.3 50Hz 时不同积分常量下的李萨如图

在本次实验中, 我们固定 $f=50Hz, R_1=2.0\Omega, I_m=0.2A$, 调节 R_2 使时间常数分别等于 0.01s, 0.1s, 0.5s, 观察其李萨如图形。图形如下:

图 2: t=0.5s

图 3: t=0.05s

图 4: t=0.01s

通过以上图片我们可以发现, 积分时间常量会影响李萨如图形的形状, 当积分常量为 0.01s 时示波器上的李萨如图形出现明显畸变。这是因为当积分常量较大时, 电容上的电压远小于总电压, 可以认为示波器上呈现的图像和真实的磁滞回线图像形状一样。而当积分常量和外磁场周期接近时, 不能直接用总电压代替电阻上的电压, 磁场和电压之间会存在一个相位差, 从而导致李萨如图形和磁滞回线的形状不同。由此我们可以知道, 改变积分常量, 实际上是改变了电压的相位和幅值, 从而改变了李萨如图形的形状。由于改变积分常量并不会对 B 和 H 造成影响, 因此改变积分常量不会影响真实的磁滞回线的形状。

实验名称 用示波器观察动态磁滞回线 实验日期 2024 年 5 月 17 日

姓名 李灿辉 学号 2200017799 实验地点南楼 248

2 测量样品1的动态磁化曲线

2.1 测量动态磁化曲线

在本次实验中,我们固定 $f=100Hz, R_1=2.0\Omega, I_m=0.2AR_2=50k\Omega$,调节输入电流强度,观察其动态磁化曲线。测量结果如下:

次数 n	$2\Delta U_{R_1}$ (mV)	H_m (A/m)	$2\Delta U_c$ (mV)	B_m (mT)	$\mu_m = \frac{B_m}{\mu_0 H_m}$
1	7.38	2.13	0.58	7.80	2914.07
2	11.50	3.32	0.88	11.83	2837.36
3	20.00	5.77	1.72	23.12	3188.80
4	29.50	8.51	2.62	35.22	3293.13
5	39.60	11.42	3.76	50.54	3520.64
6	59.80	17.25	6.16	82.80	3819.52
7	67.40	19.44	7.18	96.51	3949.97
8	79.20	22.85	8.54	114.78	3998.17
9	91.60	26.42	10.28	138.17	4161.28
10	99.40	28.67	11.20	150.54	4177.92
11	107.00	30.87	12.20	163.98	4227.71
12	117.80	33.98	13.50	181.45	4249.30
13	122.40	35.31	13.96	187.63	4228.95
14	133.80	38.60	15.48	208.06	4289.87
15	145.60	42.00	17.00	228.49	4329.29
16	155.50	44.86	18.00	241.94	4292.11
17	176.00	50.77	19.45	261.42	4097.66
18	187.00	53.94	20.50	275.54	4064.82
19	195.00	56.25	21.00	282.26	3993.13
20	226.00	65.19	22.60	303.76	3707.91
21	236.50	68.22	23.20	311.83	3637.36
22	269.00	77.60	24.60	330.64	3390.88
23	295.00	85.10	25.40	341.40	3192.57
24	348.50	100.53	26.45	355.51	2814.18
25	403.50	116.39	27.35	367.61	2513.29
26	456.50	131.68	27.80	373.66	2258.05
27	487.50	140.62	28.15	378.36	2141.08
28	489.00	141.06	28.15	378.36	2134.51
29	560.00	161.54	28.45	382.39	1883.75
30	775.00	223.56	29.60	397.85	1416.18
31	941.00	271.44	30.15	405.24	1188.03
32	1162.00	335.19	30.40	408.60	970.06

表 3: 动态磁化曲线测量数据 a

实验名称 用示波器观察动态磁滞回线 实验日期 2024 年 5 月 17 日

姓名 李灿辉 学号 2200017799 实验地点南楼 248

350.00 350.00 300.00 250.00 150.00 100.00 0.00 50.00 100.00 100.00 H_m(A/m)

图 5: 磁化曲线

2.2 磁导率曲线图

图 6: 磁导率曲线

振幅磁导率随着磁场强度上升先上升后下降,初始值在 3000 附近,最大值在磁场强度 40A/m 附近取得,大概在 5000 附近。

姓名 李灿辉 学号 2200017799 实验地点南楼 248

2.3 起始磁导率

取 $2\Delta U_{R_1} < 10mV$ 时的测量结果为本次试验得到的起始磁导率,其值为:

$$\mu_m = \frac{B_m}{\mu_0 H_m} = 2914.07 \tag{10}$$

3 观测不同频率下样品 2 磁滞回线变化规律

控制 $f=50Hz, R_1=2.0\Omega, U_m=0.4V, R_2=50k\Omega$, 从而保证 $H_m=400A/m$ 观察结果, 对照误差范围, 随

f/Hz $\Delta U_r/{
m mV}$ $\Delta U_m/\text{mV}$ $\Delta U_c/{\rm mV}$ B_m/mT B_r/mT $H_c/(A/m)$ 20 33.9 102 20.4 941.67 566.67 102.00 32.7 119.25 40 21.6 908.33 600.00 119.25 60 32.55 136.5 22.25 904.17 618.06 136.50

表 4: 不同频率下样品 2 磁滞回线特性参数

着频率变化, B_m 基本不变, B_r 和 H_c 随 f 增大明显增大。其原因是硅钢在高频下涡流损耗增大,因此磁滞回线图像中 B_r 和 H_c 随 f 增大明显增大

第二部分 思考题

1 铁磁材料的动态磁滞回线与静态磁滞回线在概念上有什么区别?铁磁材料 动态磁滞回线的形状和面积受哪些因素的影响?

1.1 概念差异

- 静态磁滞回线描述的是在准静态磁场变化下,材料内磁感应强度与外加磁场之间的关系,只依赖于材料本身的性质。
- 动态磁滞回线描述的是当磁场快速变化时,材料内磁感应强度随外加磁场变化的行为,与动态过程的具体 变化方式有关。

1.2 影响因素

铁磁材料动态磁滞回线的形状和面积的影响因素包括:

- 1. 频率:磁场变化的频率是影响动态磁滞回线最重要的因素之一,会影响变化过程中的涡流损耗等相关效应
- 2. 磁场强度的幅度:最大磁场强度的提高,会导致磁滞回线宽度高度和面积的提高
- 3. 材料特性:材料自身的磁化特性会影响磁滞回线的形状面积。
- 4. 温度:温度等外部环境参数会影响动态磁滞回线的磁化过程

2 铁氧体和硅钢材料的动态磁化特性各有什么特点?

- 1. 铁氧体通常表现出较窄的磁滞回线, 硅钢的磁滞回线通常较宽. 说明铁氧体在高频过程中的磁滞损耗更低。
- 2. 同等情况下,铁氧体的矫顽力和剩磁通常低于硅钢,说明铁氧体更容易被磁化和去磁化。
- 3. 铁氧体的饱和磁化水平较硅钢低,硅钢更适合需要更大磁通的场景。

3 本实验中, 电路参量应怎样设置才能保证 U_{R1} - U_C 所形成的李萨如图形正确反映材料动态磁滞回线的形状?

- 选择合适的信号源,使频率,波形和振幅在合适的范围内
- 设置适当的电路增益和相位,通过选取合理的电阻电容参数,保证积分常数大概在信号周期的几倍,并保证 各测量参数和待测量在合理的范围内,保证实验的精度和可行性。

4 实验中如何判断磁滞回线绕行方向?

先把交变磁场的频率调得较低(例如在 20Hz 以下), 通过肉眼或者摄像机就可以观察到示波器上磁滞回线的 绕行方向。