Intervals, Transformations, and Slope Solution (version 139)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-6, -4) \cup (6, 9)$
Negative	$(-10, -6) \cup (-4, 6)$
Increasing	$(-7, -5) \cup (-3, 9)$
Decreasing	$(-10, -7) \cup (-5, -3)$
Domain	(-10,9)
Range	(-6,6)

Intervals, Transformations, and Slope Solution (version 139)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=79$ and $x_2=95$. Express your answer as a reduced fraction.

$$\frac{f(95) - f(79)}{95 - 79} = \frac{88 - 16}{95 - 79} = \frac{72}{16}$$

The greatest common factor of 72 and 16 is 8. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{9}{2}$$

2