Chus 19

Definitie. Fie DCR, acB si Y=(Y1,..., Yn): D>

> R^n o functie care admite toate durivatele partiale in punctal a. Matricea

$$\frac{\partial Y_1}{\partial x_1}(a) \frac{\partial Y_1}{\partial x_2}(a) - \frac{\partial Y_1}{\partial x_n}(a)$$

$$\frac{\partial Y_2}{\partial x_1}(a) \frac{\partial Y_2}{\partial x_2}(a) - \frac{\partial Y_2}{\partial x_n}(a)$$

 $\frac{34n}{34n}$ (a) $\frac{34n}{3x}$ (a) $\frac{34n}{3x}$ (a)

numente matricea jacobiana (non matricea Jacobi) a lui I m a si se notiara en Jy (a). Determinantul acestei matrice se numente jacobianul lui I m a si se noteara en det Jy (a).

Jedemà (Jeorema de schimbere de variabilà-Varianta 1) Fie D, G douà multimi deschise din Rn, y:D>G un

differnorfism de clasa C¹ (i.l. Y bijectiva si Ψ, Ψ⁻¹ sunt de clasa C¹), A∈ J(Rⁿ) a.r. A = A C D si f: Y(A) -> R & functie integrabilà Riemann. Itunci functia (for) det Jus : A -> R este integrabilà Riemann si $\int_{A} (f \circ Y)(x) \cdot | dut \int_{Y}(x) | dx = \int_{Y(A)} f(y) dy.$

Definitie. O multime $A \subset \mathbb{R}^n$ se numerte neglijabi-là debergue daca $\forall E > 0$, $\exists (D_k)_{k > 0}$ à familie de duptanghiuri a. \hat{r} . $A \subset \mathring{U} \mathring{D}_k$ si $\overset{\sim}{\underset{k=0}{\sum}} nol(D_k) < E$.

Observatii. Mice submultime a unei multimi ne-glijabile Lebesque este, la rândul ei, neglijabilă Lebesque.

2) Dice multime cul mult numarabila este neglijabilà debesgue. 3) Vrice reuniume cel mult numarabilà

de multimi neglijabile Lebesque este neglijabila Lebesque. 4. Daca A∈ J(RM) și µ(A)=0, atunci + este neglijabila Lebesque.

Iterema (Iterema de schimbere de variabilà-Varianta 2). Fie D, G douà mulționi deschise din Rn en proprietatea cà Fr.D. este neglijabilià Lebergue, 4: D' > aun difermerfism de clasa Ct, A \ J(IR^n) aî. ACD is 3 M>O añ. + XEA, + ZER, owern ||dy(x)(z)|| \le M||z|| si fie f: Y/A) -> TR & functie integrabilà Riemann. Atunci functia (fog). det Jy: A -> R este integlabilà Riemann si $\int_{\Lambda} (f \circ y)(x) |dx = \int_{\Psi(A)} f(y) dy$

Ichimbari standard de variabilà pentru integrala dubla

1. Trecerea de la coordonate contezione la coordonate polare

Fie $A \in J(\mathbb{R}^2)$ si $f:A \to \mathbb{R}$ o funcție integrabilă

Riemann.

Fie d, BER (Putern avea d=B=0).

S. V. X = X + L COSO, LE [9,10), $O \in [0, 2\pi]$.

(x,y) EA (=) (h, +) EBC [0, N) x [0,27].

steren II f(x,y) dx dy = IIB & f(x+1 coso, B+1 sino) da do.

Kilmann.

Fie $\alpha_1\beta \in \mathbb{R}$ (Sutem avec $\alpha = \beta = 0$).

Fie a, b & (gm).

S.V. $\begin{cases} X = A + A \wedge COS + A \\ Y = B + b \wedge Sin + A \end{cases}$, $h \in [0, N), + \in [0, 2\pi].$

Scanned with CamScanner

(X,y) EA(=) (N, +) EBC[0, M) x [0,27].

them $\iint_A f(x,y) dx dy = \iint_B abr f(x+arcoso, p+brsino).$ Ando.

Exercitiu. Determinati Spydxdy, unde A=

 $= \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4, x \ge 0, y \ge 0\}.$

Solutie.

 $A = \{(x,y) \in \mathbb{R}^2 \mid x \in [92], 0 \le y \le [4-x^2].$

Fix $\alpha, \beta: [0,2] \rightarrow \mathbb{R}, \alpha(x) = 0, \beta(x) = \sqrt{4-x^2}$

2, B continue.

A compactà ji AEJ(R2).

Fie f: A > R, f(x, y) = y.

f continua (deci fintegrabila Riemann).

Scanned with CamScanne

S.V. X = h cost, $h \in [g, p)$, $\theta \in [g, 2\pi]$.

$$(x,y) \in A \Leftrightarrow \begin{cases} x^2 + y^2 \leq 4 \\ x \geq 0 \end{cases} \Leftrightarrow \begin{cases} \lambda^2 \leq 4 \\ \lambda \leq 0 \end{cases} \Leftrightarrow \begin{cases} \lambda^2 \leq 4 \\ \lambda \leq 0 \end{cases} \Leftrightarrow \lambda \text{ in } \theta \geq 0 \end{cases} \Leftrightarrow \lambda \text{ in } \theta \geq 0 \end{cases}$$

$$(=) \begin{cases} \Lambda \in [Q2] \\ \Lambda \in [Q2] \end{cases} \qquad (=) \begin{cases} \Lambda \in [Q2] \\ \Lambda \in [Q2] \end{cases}$$

$$(=) \begin{cases} \Lambda \in [Q2] \\ \Lambda \in [Q2] \end{cases} \qquad (=) \begin{cases} \Lambda \in [Q2] \\ \Lambda \in [Q2] \end{cases}$$

Deci
$$B = [0,2] \times [0,\frac{\pi}{2}].$$

$$= \iint_{[0,2]\times[0,\frac{11}{2}]} \frac{\lambda \cdot \lambda \sin \theta}{d\lambda d\theta} = \iint_{0}^{2} \left(\int_{0}^{\frac{1}{2}} \lambda^{2} \sin \theta d\theta\right) d\lambda =$$

$$= \int_{0}^{2} h^{2} (-\cos \theta) \Big|_{\Phi=0}^{\Phi=\frac{\pi}{2}} dh = \int_{0}^{2} h^{2} (-\cos \frac{\pi}{2} + \cos \theta) dh =$$

$$= \int_0^2 \Lambda^2 (0+1) d\Lambda = \int_0^2 \Lambda^2 d\Lambda = \frac{\Lambda^3}{3} \Big|_{\Lambda=0}^{\Lambda=2} = \frac{8}{3} \cdot \square$$

Ichimbari standard de variabilă pentru integrala isla

1. Trecerea de la coordonate carterière la coordonate

sperice

Fie $A \in J(\mathbb{R}^3)$ și $f: A \to \mathbb{R}$ o funcție integrabilă Riemann.

Fie x, p, y \ R (Butern avea \ d= \beta=y=0).

S. V. $\mathcal{X} = \mathcal{A} + \lambda \cos \theta \sin \theta$ $\mathcal{Y} = \beta + \lambda \sin \theta \sin \theta$, $\lambda \in [0, \infty)$, $\theta \in [0, 2\pi]$, $\mathcal{Z} = \mathcal{Y} + \lambda \cos \theta$ $\forall \in [0, \pi]$.

 $(x,y,z) \in A \implies (h, \varphi, \varphi) \in C \subset [0,\infty) \times [0,2\pi] \times [0,\pi].$ Aven $\iiint_A f(x,y,z) dxdydz =$

= III rainy f(x+h coso siny, B+h sint siny, y+h cosy) drado

2. Trecerea de la coordonate conteriene la coordonate Merice generalizate

Fie $A \in \mathcal{J}(\mathbb{R}^3)$ $\hat{\mathcal{J}}$ $\hat{f}: A \to \mathbb{R}$ o functie integrabilă Riemann.

Fie d, B, J E R (Jutem avea d=B=J=0)

Fie a, b, c ∈ (0, 10).

S.V. $\begin{cases} \chi = \alpha + \alpha \Lambda \cos \alpha \sin \gamma \\ y = \beta + \beta \Lambda \sin \alpha \sin \gamma \end{cases}, \quad \lambda \in [0, \infty), \quad \theta \in [0, 2\pi], \quad \chi = \gamma + 2\Lambda \cos \gamma \end{cases}$

 $(x,y,z) \in A = (\Lambda, \theta, y) \in C \subset [0,\infty) \times [0,2\pi] \times [0,\pi].$

Aven III, f(x, y, Z) dxdydz =

= \(\text{abch} \text{abch} \text{platarcosominf, ptbramosinf, ptcress)} \\ \text{abch} \text{abod} \(\text{p} \).

Cexercitiu. Determinati III V x2+y2+22 dxdydz,

unde $A = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \leq 1\}$.

Volutie.

Fie B=4(x,y) + R2 | x2+ y2 < 1].

 $B = \{(x,y) \in \mathbb{R}^2 \mid x \in [-1,1], -\sqrt{1-x^2} \leq y \leq \sqrt{1-x^2} \}.$

Fie x, B: [-1,1] > R, x(x) = -V1-x², B(x) = V1-x².

2) & continue

B compacta si BEJ(R2).

 $A = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in B, -\sqrt{1-x^2-y^2} \le z \le \sqrt{1-x^2-y^2} \}.$

Fie $Y, Y: B \rightarrow \mathbb{R}, Y(x,y) = -\sqrt{1-x^2-y^2}, Y(x,y) = \sqrt{1-x^2-y^2}.$ Y, Y = continue

A compacta și $AEJ(R^3)$.

Fie $f: A \rightarrow \mathbb{R}$, $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$. f continua.

S. V.
$$\begin{cases} \mathcal{X} = \Lambda \cos \theta \sin \theta \\ y = \Lambda \sin \theta \sin \theta \end{cases}, \quad \Lambda \in [0, \infty), \quad \theta \in [0, 2\pi],$$

$$\mathcal{Z} = \Lambda \cos \theta \qquad \qquad \forall \in [0, \pi].$$

$$(x,y,z)\in A \iff x^2+y^2+z^2 \leq 1 \iff x^2\leq 1$$

Deci
$$C = [0,1] \times [0,2\pi] \times [0,\pi]$$
.

=
$$\iint \Lambda^2 \sin \Psi \sqrt{\Lambda^2} d\Lambda d\Phi d\Psi = [0,1] \times [0,2\pi] \times [0,\pi]$$

$$=\int_0^1 \left(\int_0^{2\pi} \left(\int_0^{\pi} h^3 \sin 4 dy\right) dx\right) dx =$$

$$= \int_{0}^{1} \left(\int_{0}^{2\pi} -\lambda^{3} \cos \theta \right) \left| \frac{\varphi = \pi}{\varphi = 0} \right| d\phi d\lambda = \int_{0}^{1} \left(\int_{0}^{2\pi} -\lambda^{3} (-1-1) d\phi \right) d\lambda =$$

$$= \int_{0}^{1} 2\lambda^{3} \Phi \Big|_{\Phi=0}^{\Phi=2\pi} d\lambda = 4\pi \int_{0}^{1} \lambda^{3} d\lambda = 4\pi \cdot \frac{1}{4} = \pi. \quad \Box$$

Toderna (Criterial his Lebesque de integrabilitate Riemann
Fie $A \in J(\mathbb{R}^n)$ si $f:A \to \mathbb{R}$ o functie marginità. Sunt echivalente:
1) f integrabilà Riemann 2) De este neglijabilà Lebergue, unde Df={**EA f mu
e continuà în x}.
Cercitiu. Fie f: [0,1]x[2,3] -> R,
$f(x,y) = \begin{cases} 2x + 3y \\ 1 \end{cases}$ $(x,y) \in ([0,1] \times [2,3]) \setminus \{(0,2)\}$ Aratoti cà f este integrabilà Riemann.
Solutie. [0,1]×[2,3] € J(R²).
f(x,y) = 2x+3y =2x+3y < 2+9=11+(x,y) \(\in \lambda \) \(\in \
=> f marginita.
De C [(0,2)] neglijabila Lebesgue > De neglijabila Lebesgue
Deci f este integrabilà Riemann. D

Scanned with CamScanner

Fie $A \in J(\mathbb{R}^n)$, $f: A \to \mathbb{R}$ o functie marginita ju $f: A = (Ai)_{i=1,m} \in A$ descompunere Jordan a lui A. Consideram $Mi = \sup\{f(x) \mid x \in Ai\} + i = \overline{1,m}$, $f: A \to \mathbb{R}$ o functie marginita ju f: A = Ai A =

Definitie. 1) $S_{A}(f) = \sum_{i=1}^{m} M_{i} \mu(A_{i})$ re numerte suma Darboux suprioară asociată funcției f și descompunerii st.

2) $f(f) = \sum_{i=1}^{\infty} m_i \mu(A_i)$ se numeste suma Darboux inferiorià associatà functiei f si descompunerii f.

3) $\int_A f(x_1,...,x_n) dx_1...dx_n =$

= inf \(\int_{\text{f}} \) | it descompunere Jordan a lui A) se mumeste integrala Darboux superioarà associatà functiei f.

4) \int_A f(\forall_1,..., \forall_n) d\forall_1... d\forall_n =

= sup \(\frac{1}{2} \) | A descompunere Jordan a lui A} se numeste \(\frac{integrala}{2} \) Darboux inferioară asociatà funcției f.

Observatii.	1) $\Lambda_{\mathcal{A}}(f) \leq S_{\mathcal{A}}(f)$
	1) $A(f) \leq S_{\mathcal{A}}(f)$ 2) $S_{\mathcal{A}}(f(x_1,,x_n)dx_1dx_n \leq S_{\mathcal{A}}(f(x_1,,x_n)dx_1dx_n)$

Teoremà (Briteriul lui Darboux de integrabilitate Riemann). Umatoarde afirmații sunt echivalente:

1) f e integrabilia Riemann, 2) $\int_{A} f(x_1,...,x_n) dx_1...dx_n = \int_{A} f(x_1,...,x_n) dx_1...dx_n$

(-caz în case aven $\int_A f(x_1,...,x_n) dx_1...dx_n =$

 $= \int_{A} f(x_{1},...,x_{n}) dx_{1}...dx_{n} = \int_{A} f(x_{1},...,x_{n}) dx_{1}...dx_{n}.$

3) + E>O, F Ite & descompunere Jordan a hii A a. 2.

Ste (f) - 1 te (f) < E.

4) $\forall \varepsilon > 0$, $\exists \varepsilon > 0$ a.r. $\forall \mathcal{A}$ descompunere Jordan a lui \mathcal{A} , $|\mathcal{A}| < \mathcal{E}$, aven $\mathcal{S}_{\mathcal{A}}(\mathcal{A}) - \mathcal{S}_{\mathcal{A}}(\mathcal{A}) < \varepsilon$.

Exercitin. Fie $A \in \mathcal{J}(\mathbb{R}^2)$, M(A) > 0, M(A)

setuminati II, f(x,y) dxdy, II, f(x,y) dx dy si precisati dacă f e integra-Loutie. Fie A= (Ai) = Tm CJ (R2) & descompunere Josolan a lui A.

$$S_{t}(f) = \sum_{i=1}^{m} Mi\mu(Ai) = \sum_{i=1}^{m} Mi\mu(Ai).$$

$${}^{\Lambda}\mathcal{A}(f) = \sum_{i=1}^{m} \min_{\mu(A_i)} \mu(A_i) = \sum_{i=1}^{m} \min_{\mu(A_i)} \mu(A_i).$$

 $\mu(Hi)>0 \Rightarrow \mu_*(Ai)>0 \Rightarrow \exists D \in \mathcal{D}(\mathbb{R}^n), vol(D)>0 \text{ a.c.}$ $D \subset Ai(1)$

Fie $B=\{(x,y)\in A\mid x,y\in Q\}$ in $C=\{(x,y)\in A\mid x\notin Q \text{ som }y\notin Q\}$.

bonform relativi (1), + i \(\frac{1}{2}\),...,m} a.a. \(\mu(\mu_i) > 0\),
avem Ai NB \(\psi\) \(\psi\) Ai NC \(\psi\), \(\delai\) \(\psi\) \(\psi\)...,m] \(\alpha\)...,m] \(\alpha\).

$$\mu(ti)>0$$
, arum $mi=0$ si $Mi=1$.
Aradar $S_{t}(t)=\sum_{i=1}^{m}1$, $\mu(ti)=\sum_{i=1}^{m}\mu(ti)=\mu(ti)$ sie $\mu(ti)>0$

 $A_{t}(f) = \sum_{i=1}^{\infty} 0. \mu(A_{i}) = \sum_{i=1}^{\infty} 0. \mu(A_{i}) = 0.$ $\mu(A_{i}) > 0$

Jun summere $\iint_A f(x,y) dx dy = \inf \{ S_A(f) | ft decompunere \}$ Josdan a lui A = $\mu(A)$ $\mu(A)$ $\mu(A)$ $\mu(A)$ $\mu(A)$ $\mu(A)$ = $= \sup_A \{ A_A(f) | ft descompunere Jordan a lui <math>A$ = 0. $\iint_A f(x,y) dx dy \neq \iint_A f(x,y) dx dy \Rightarrow f$ $\mu(A)$ $\mu(A)$

Scanned with CamScanner

là Riemann.