作业批改链接

https://web.ugreen.cloud/web/#/share/f192ba9bec4c458db b7d01ed3c582dc6 提取码: EWWL

Homework 2

Due 14:20, Tuesday @ Week 4

"Digital Fundamentals", 11th Edition

Chapter 3, Problems

2, 6, 12, 16, 20, 24, 26, 28

Make sure that the output diagram is aligned with the input diagram.

T2

2. A combination of inverters is shown in Figure 3–77. If a LOW is applied to point *A*, determine the net output at points *E* and *F*.

$$A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$$
 $B=1$, $C=0$, $D=1$, $E=0$, $F=1$

Output at $E=0$ and $F=1$

T6 followed by an inverter

6. The waveforms in Figure 3–79 are applied to points *A* and *B* of a 2-input AND gate followed by an inverter. Draw the output waveform.

T12

12. Repeat Problem 7 for a 3-input OR gate.

7. The input waveforms applied to a 3-input AND gate are as indicated in Figure 3–80. Show the output waveform in proper relation to the inputs with a timing diagram.

T16 followed by an inverter

16. Show the truth table for a system of a 3-input OR gate followed by an inverter.

Α	B	C	Output	
0	0	0	i i	
0	0	1	0	
0	١	0	0	
0	1	1	D	
1	0	O	0	
l	0	١	0	
1	1	0	0	
1	١	١	0	

T20 truth table

20. As you have learned, the two logic symbols shown in Figure 3–86 represent equivalent operations. The difference between the two is strictly from a functional viewpoint. For the NAND symbol, look for two HIGHs on the inputs to give a LOW output. For the negative-OR, look for at least one LOW on the inputs to give a HIGH on the output. Using these two functional viewpoints, show that each gate will produce the same output for the given inputs.

Λ	В	Ā	\overline{B}	\overline{AB}	$\overline{A} + \overline{B}$
()	0	1	1	1	1
()	1	1	0	1	1
1	()	0	1	1	1
1	1	0	0	0	0

$$X = \overline{AB}$$

$$X = \overline{AB}$$

$$X = \overline{AB}$$

T24 truth table

24. The NAND and the negative-OR symbols represent equivalent operations, but they are functionally different. For the NOR symbol, look for at least one HIGH on the inputs to give a LOW on the output. For the negative-AND, look for two LOWs on the inputs to give a HIGH output. Using these two functional points of view, show that both gates in Figure 3–88 will produce the same output for the given inputs.

T26

26. Repeat Problem 17 for an exclusive-OR gate.

17. For the set of input waveforms in Figure 3–83, determine the output for the gate shown and draw the timing diagram.

T28

28. Determine the output of an exclusive-NOR gate for the inputs shown in Figure 3–79 and draw a timing diagram.

FIGURE 3-79

