Digital Logic Design

BSCS Fall 2022

Assignment # 1

Submission Deadline: Tuesday, 20 June, 2023 (During Lecture)

- 1. Add the following: (364)₈ and (646)₈ in octal system without converting to decimal.
- 2. Multiply (650)₈ and (210)₈ without converting to decimal.
- 3. Represent decimal 215 in (a) binary; (b) octal; (c) hexadecimal;
- 4. Perform subtraction $(110100)_2 (10101)_2$
- 5. What is the largest binary number that can be expressed with 12 bits? What is the equivalent decimal and hexadecimal?
- 6. Convert the following binary number to a hexadecimal number. Without converting into decimal number (1100111)₂ = (?)₁₆
- 7. Convert the following octal number to a binary number. Without converting into a decimal number. $(746)_2 = (?)_2$
- 8. Compute the results following operations.
 - i. $(111)_2 + (1011)_2 = (?)_2$
 - ii. $(1100)_2 (1011)_2 = (?)_2$
 - iii. $(7DE)_{16} (4FF)_{16} = (?)_{16}$
 - iv. $(47)_8 + (74)_8 = (?)_8$
- 9. Add and multiply the following numbers without converting them to decimals.
 - a) Binary numbers 1011 and 101.
 - b) Hexadecimal numbers 2E and 34.
- 10. Express the following numbers in decimal:
 - a) (10110.0101)₂
 - b) (16.5)₁₆
 - c) $(26.24)_8$
 - d) (DADA.B)₁₆
 - e) (1010.1101)₂

Note: This assignment should be handwritten on A4 pages, with a printed cover page stating students' names and Roll Numbers, etc.