Entrega 6 - GRAFOS

Enzo Giannotta

9 de junio de 2023

Entrega 5 - Viernes 16/05/2023

- **Ejercicio 0.1.** 1. Para todo $n \ge 2$, encuentre un grafo bipartito en 2n vértices tal que estos se pueden ordenar de modo que el algoritmo glotón use n colores en lugar de 2.
 - 2. Un grafo G con $\chi(G) = k$ es llamado k-crítico si $\chi(G \setminus \{v\}) < k$ para todo vértice $v \in G$. Determine los grafos 3-críticos.
- Solución. 1. Construiremos una familia de grafos bipartitos $\mathbf{B}_n, n \geqslant 2$ de 2n vértices con los vértices ordenados de cierta manera que el algoritmo glotón use n colores. Llamamos A_n, B_n a una partición de los vértices de manera que cada partición tiene sus vértices independientes, con $|A_n|=n=|B_n|$. Cuando n=2, consideramos $A_2=a_1,a_2,B_2=\{b_1,b_2\}$ y agregamos una arista para cada par a,b con $a\in A_2,b\in B_2$. Por último ordenamos, $v_1=a_1,v_2=b_1,v_3=a_2,v_4=b_2$. Luego el algorítmo glotón pinta a los vértices v_i con dos colores: 1,2,1,2. Notar que este orden hace que el algorítmo glotón pinte con 2 colores tanto A_2 como B_2 .

Supongamos ahora que hemos construido \mathbf{B}_n y ordenado sus vértices como v_1,\ldots,v_{2n} y más aún, que el algorítmo glotón pintó con n colores distintos A_n y lo mismo para B_n . Construimos \mathbf{B}_{n+1} agregando a \mathbf{B}_n dos vértices a_{n+1} y b_{n+1} , más específicamente: $A_{n+1}:=A_n\cup\{a_{n+1}\}$ y $B_{n+1}:=b_n\cup\{b_{n+1}\}$. Por último, agregamos aristas $a_{n+1}b$ para todo $b\in B_n$ y ab_{n+1} para todo $a\in A_n$. Ahora, ordenamos v_1,\ldots,v_{2n} como el orden de los vértices de \mathbf{B}_n y luego tomamos $v_{2n+1}:=a_{n+1},v_{2n+2}:=b_{n+1}$. Notar que este orden pinta cada conjunto de la partición A_{n+1},B_{n+1} con n+1 colores, en efecto, por hipótesis inductiva el algoritmo glotón pinta v_1,\ldots,v_{2n} de tal manera que A_n y B_n usan n colores, luego $v_{2n+1}=a_{n+1}$ lo pinta de color n+1 porque es adyacente a todos los vértices de B_n y análogamente para $v_{2n+2}=b_{n+1}$ (notar que b_{n+1} no es adyacente a a_{n+1}).

- 2. Veamos que los grafos 3-críticos son los ciclos impares. Claramente los ciclos impares son 3-coloreables y si sacamos cualquier vértice, tiene número cromático a lo más 2, por ser camino.
 - Recíprocamente, supongamos que G es un grafo 3-crítico. G tiene un ciclo impar porque si no sería bipartito, i.e. 2-coloreable. Más aún, todo vértice tiene que ser un vértice de este ciclo, de lo contrario quitarlo nos daría un grafo a lo más 2-coloreable, pero ese coloreo serviría para colorear un ciclo impar,

imposible. En otras palabras, G es un grafo generado por un ciclo impar C, veamos a su vez que G[C]=C. En efecto, si hubiera una cuerda xy de C en G, entonces la cuerda forma dos subciclos $C_1, C_2 \subsetneq G$ tales que $V(C_1) \cup V(C_2) = V(C)$ (ver la siguiente ilustración). Como C tiene orden impar, alguno de los subciclos C_1 o C_2 también tiene que tener orden impar, digamos C_1 ; con lo cual, $G\setminus\{w\}$ para cualquier $w\in V(G)\setminus V(C_1)$, no puede tener un 1,2-coloreo porque contiene un subciclo impar: C_1 , absurdo.

Figura 1: Ilustración de una cuerda xy en un grafo G generado por un ciclo impar.