Definition 0.1. If C is a linear [n, k]-code, its **weight enumerator** is defined to be the polynomial

$$W_C(z) = \sum_{i=0}^n A_i z^i$$

= $A_0 + A_1 z + \dots + A_n z^n$,

or simply,

$$W_C(z) = \sum_{\mathbf{x} \in C} z^{w(\mathbf{x})}.$$

Example: Let $C = \{000, 011, 101, 110\}$. Its dual code C^{\perp} is $\{000, 111\}$. The weight enumerators of C and C_{\perp} are

$$W_C(z) = 1 + 3z^2, \qquad W_{C^{\perp}}(z) = 1 + z^3$$

The motto behind finding weight enumerator of a code is that it enables us find the probabilty of undetected errors when the code is purely used for error-detection.

Also, the objective of this section will be to find weight enumerator of any binary linear code C to be obtained from the weight enumerator of its dual code C^{\perp} , as the enumerator of the latter is much easier to find in cases when n, k are both large, while n - k is relatively small. In order to reach this result, we will need the following lemmas.

Lemma 0.2. Let C be a binary linear [n,k]-code and \mathbf{y} is a fixed vector in V(n,2) and $\mathbf{y} \notin C^{\perp}$. Then $\mathbf{x} \cdot \mathbf{y}$ is equal to 0 and 1 equally often as \mathbf{x} runs over the codewords of C.

Proof. Let $A = \{ \mathbf{x} \in C \mid \mathbf{x}\mathbf{y} = 0 \}$ and $B = \{ \mathbf{x} \in C \mid \mathbf{x}\mathbf{y} = 1 \}$.

There exists $\mathbf{u} \in C$ such that $\mathbf{u} \cdot \mathbf{y} = 1$ as $\mathbf{y} \notin C^{\perp}$. Let $\mathbf{u} + A$ denote the set $\{\mathbf{u} + \mathbf{x} | \mathbf{x} \in A\}$. Then it follows that

$$\mathbf{u} + A \subseteq B$$
,

Similarly,

$$\mathbf{u} + B \subseteq A$$
.

Hence,

$$|A| = |\mathbf{u} + A| \le |B| = |\mathbf{u} + B| \le |A|.$$

Lemma 0.3. Let C be a binary [n, k]-code and let y be any element of V(n, 2). Then

$$\sum_{\mathbf{x} \in C} (-1)^{\mathbf{x} \cdot \mathbf{y}} = \begin{cases} 2^k & \text{if } \mathbf{y} \in C^{\perp} \\ 0 & \text{if } \mathbf{y} \notin C^{\perp} \end{cases}.$$

Proof. If $\mathbf{y} \in C^{\perp}$, then $\mathbf{x} \cdot \mathbf{y} = 0$ for all $\mathbf{x} \in C$, so the result follows. On the other hand, if $\mathbf{y} \notin C^{\perp}$, then by Lemma 0.2, $(-1)^{\mathbf{x} \cdot \mathbf{y}}$ is equal to 1 and -1 equally often.

Lemma 0.4. Let \mathbf{x} be a fixed vector in V(n,2) and z be an indeterminate. Then the following

$$\sum_{\mathbf{y} \in V(n,2)} z^{w(\mathbf{y})} (-1)^{\mathbf{x} \cdot \mathbf{y}} = (1-z)^{w(\mathbf{x})} (1+z)^{n-w(\mathbf{x})}.$$

Proof.

polynomial identity holds:

$$\sum_{\mathbf{y} \in V(n,2)} z^{w(\mathbf{y})} (-1)^{\mathbf{x} \cdot \mathbf{y}} = \sum_{y_1 = 0}^{1} \cdots \sum_{y_n = 0}^{1} \left(\prod_{i=1}^{n} z^{y_i} (-1)^{x_i y_i} \right)$$

$$= \prod_{i=1}^{n} \left(\sum_{j=0}^{1} z^{j} (-1)^{j x_i} \right)$$

$$= (1 - z)^{w(\mathbf{x})} (1 + z)^{n - w(\mathbf{x})},$$

1

since, $\sum_{i=0}^{1} z^{j} (-1)^{jx_{i}} = \begin{cases} 1+z & \text{if } x_{i} = 0\\ 1-z & \text{if } x_{i} = 1 \end{cases}.$

Theorem 0.5 (MacWilliams identity). If C is a binary [n,k]-code with dual code C^{\perp} , then

$$W_{C^{\perp}}(z) = \frac{1}{2^k} (1+z)^n W_C \left(\frac{1-z}{1+z}\right).$$

Proof. We will express

$$f(z) = \sum_{\mathbf{x} \in C} \left(\sum_{\mathbf{y} \in V(n,2)} z^{w(\mathbf{y})} (-1)^{\mathbf{x} \cdot \mathbf{y}} \right)$$

in two ways.

Firstly, by Lemma 0.4,

$$f(z) = \sum_{\mathbf{x} \in C} (1 - z)^{w(\mathbf{x})} (1 + z)^{(n - w(\mathbf{x}))}$$
$$= (1 + z)^n \sum_{\mathbf{x} \in C} \left(\frac{1 - z}{1 + z}\right)^{w(\mathbf{x})}$$
$$= (1 + z)^n W_C \left(\frac{1 - z}{1 + z}\right)$$

Secondly, reversing the order of summation gives

$$f(z) = \sum_{\mathbf{y} \in V(n,2)} z^{w(\mathbf{y})} \left(\sum_{\mathbf{x} \in C} (-1)^{\mathbf{x} \cdot \mathbf{y}} \right)$$

$$= \sum_{\mathbf{y} \in C^{\perp}} z^{w(\mathbf{y})} 2^{k}$$

$$= 2^{k} W_{C^{\perp}}(z)$$
(by Lemma 0.3)

Equating these two results gives the expression in theorem.

More useful form of Theorem 0.5 is when the C and the C^{\perp} are interchanged, (corresponding change in k also).

Example: If we have $C = \{000, 011, 101, 110\}$ and $C^{\perp} = \{000, 111\}$ as in earlier example, we have $W_{C^{\perp}}(z) = 1 + z^3$.

By theorem 0.5, we get

$$W_C = \frac{1}{2}(1+z)^3 W_{C^{\perp}} \left(\frac{1-z}{1+z}\right) = \frac{1}{2}[(1+z)^3 + (1-z)^3]$$
$$= 1+3z^2,$$

The idea of finding W_C with the help of $W_{C^{\perp}}$ using Theorem 0.5 works really well in the case of binary Hamming code $\operatorname{Ham}(r,2)$ because hamming codes have large number of codewords even for small values of r, so directly calculating W_C is not feasible. Now, we will see why finding $W_{C^{\perp}}$ first is much more easier in this case.

Theorem 0.6. Let C be the binary Hamming code $\operatorname{Ham}(r,2)$. Then every non-zero codeword of C^{\perp} has weight 2^{r-1} .

Proof. Let

$$H = \begin{bmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \vdots \\ \mathbf{h}_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1n} \\ h_{21} & h_{22} & \cdots & h_{2n} \\ \vdots & \vdots & & \vdots \\ h_{r1} & h_{r2} & \cdots & h_{rn} \end{bmatrix}$$

be the parity-check matrix of C where \mathbf{h}_i are the rows. Let a non-zero codeword $\mathbf{c} = \sum_{i=1}^r \lambda_i \mathbf{h}_i$ of C^{\perp} . Since C is a Hamming code, columns of H are precisely the non-zero vectors of V(r,2), so number of zero coordinates $(n_0(\mathbf{c}))$ are equal to non-zero elements of the set

$$X = \left\{ x_1 x_2 \cdots x_r \in V(r,2) \mid \sum_{i=1}^r r \lambda_i x_i = 0 \right\}$$

i.e. $n_0(\mathbf{c}) = |X| - 1$. Now X is a r - 1-dimensional subspace of V(r, 2) (we can view it as a dual code of a code of 1-dimension).

So, $n_0(\mathbf{c}) = 2^{r-1} - 1$, which is independent of \mathbf{c} . Therfore,

$$w(\mathbf{c}) = n - n_0(\mathbf{c}) = 2^r - 1 - (2^{r-1} - 1)$$

= 2^{r-1}

The combined result of theorems 0.5 and 0.6 gives the weight enumerator of binary $\operatorname{Ham}(r,2)$, of length $n=2^r-1$, as

$$\frac{1}{2^r}[(1+z)^n + n(1-z^2)^{(n-1)/2}(1-z)].$$

Also, the probability of undetected errors in a binary [n, k]-code C given by Theorem ??, becomes

$$P_{\text{undetec}}(C) = (1-p)^n \left[W_C \left(\frac{p}{1-p} \right) - 1 \right]$$

or by using Theorem 0.5,

$$P_{\rm undetec}(C) = \frac{1}{2^{n-k}} [W_{C^{\perp}}(1-2p) - (1-p)^n].$$