Basic Cryptography

Overview

- Symmetric cryptography
 - Cæsar cipher, Vigènere cipher, and one-time pad
 - DES, AES
- Public key (asymmetric) cryptography
 - RSA
 - Digital signatures

Symmetric Cryptography

Symmetric Cryptography

- Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called secret key cryptography
- Two basic types
 - Transposition ciphers
 - Substitution ciphers
 - Combinations are called product ciphers

Cæsar cipher

Cæsar cipher

- Earliest known substitution cipher
- By Julius Caesar
- First attested use in military affairs
- Replaces each letter by 3rd letter on
- example:
- meet me after the party
- PHHW PH DIWHU WKH SDUWB

Cæsar cipher

Formal form

- $\longrightarrow \mathcal{M} = \{ \text{ sequences of letters } \}$
- $\longrightarrow \mathcal{K} = \{i \mid i \text{ is an integer and } 0 \le i \le 25 \}$
- \blacksquare $\mathcal{E} = \{ E_k \mid k \in \mathcal{K} \text{ and for all letters } m, E_k(m) = (m + k) \text{ mod 26} \}$
- $\mathcal{D} = \{ D_k \mid k \in \mathcal{K} \text{ and for all letters } c, D_k(c) = (26 + c k) \mod 26 \}$
- $C = \mathcal{M}$

Caesar's Problem

- Key is too short
 - Can be found by exhaustive search
 - Statistical frequencies not concealed well
 - They look too much like regular English letters
- So make it longer
 - Multiple letters in key
 - Idea is to smooth the statistical frequencies to make cryptanalysis harder

Attacks

Attacks

- Opponent whose goal is to break cryptosystem is the adversary
 - Assume adversary knows algorithm used, but not key
- Three types of attacks:
 - ciphertext only: adversary has only ciphertext; goal is to find plaintext, possibly key
 - known plaintext: adversary has ciphertext, corresponding plaintext; goal is to find key
 - chosen plaintext: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key

Basis for Attacks

- Mathematical attacks
 - Based on analysis of underlying mathematics
- Statistical attacks
 - Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
 - Called models of the language
 - Examine ciphertext, correlate properties with the assumptions.

Character Frequencies

	а	0.07984	h	0.06384	n	0.06876	t	0.09058
	b	0.01511	i	0.07000	0	0.07691	U	0.02844
	C	0.02504	j	0.00131	р	0.01741	V	0.01056
	d	0.04260	k	0.00741	q	0.00107	W	0.02304
	е	0.12452	1	0.03961	r	0.05912	X	0.00159
	f	0.02262	m	0.02629	S	0.06333	У	0.02028
	g	0.02013					Z	0.00057

Substitution Cipher

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Caesar cipher)
 - Plaintext is HELLO WORLD
 - Change each letter to the third letter following it (x goes to A, Y to B, Z to C)
 - Key is 3, usually written as letter 'D'
 - Ciphertext is KHOOR ZRUOG

Vigènere Cipher

Vigènere Cipher

- Like Cæsar cipher, but use a phrase
- Example
 - Message
 THE BOY HAS THE BALL
 - ► Key VIG
 - Encipher using Cæsar cipher for each letter:

key VIGVIGVIGVIGV

plain THEBOYHASTHEBALL

cipher OPKWWECIYOPKWIRG

Relevant Parts of Tableau

- Tableau shown has relevant rows, columns only
- Example encipherments:
 - key V, letter T: follow V column down to T row (giving "O")
 - Key I, letter H: follow I column down to H row (giving "P")

Useful Terms

- period: length of key
 - In earlier example, period is 3
- tableau: table used to encipher and decipher
 - Vigènere cipher has key letters on top, plaintext letters on the left
- polyalphabetic: the key has several different letters
 - Cæsar cipher is monoalphabetic

Attacking the Cipher

- Approach
 - Establish period; call it n
 - Break message into n parts, each part being enciphered using the same key letter
 - Solve each part
 - ➤ You can leverage one part from another

One-Time Pad

One-Time Pad

- A Vigenère cipher with a random key at least as long as the message
 - Provably unbreakable
 - Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
 - Warning: keys must be random, or you can attack the cipher by trying to regenerate the key
 - Approximations, such as using pseudorandom number generators to generate keys, are not random

Transposition Cipher

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher)
 - Plaintext is HELLO WORLD
 - Rearrange as

HLOOL

ELWRD

■ Ciphertext is HLOOL ELWRD

Example

Arrange so the H and E are adjacent

ΗE

LL

OW

OR

LD

Read across, then down, to get original plaintext

Attacking the Cipher

- Anagramming
 - If 1-gram frequencies match English frequencies, but other *n*-gram frequencies do not, probably transposition
 - Rearrange letters to form n-grams with highest frequencies

Overview of the DES

- A block cipher:
 - Encrypts blocks of 64 bits using a 64 bit key
 - Outputs 64 bits of ciphertext
- A product cipher
 - Basic unit is the bit
 - Performs both substitution and transposition (permutation) on the bits
- Cipher consists of 16 rounds (iterations) each with a 48 bit round key generated from the user-supplied key

Structure of the DES

- Input is first permuted, then split into left half (L) and right half (R), each 32 bits
- R and round key run through function f
- R and L swapped
- After last round, L and R combined, permuted, forming DES output

Controversy

- Considered too weak
- Design decisions not public
 - S-boxes may have backdoors

Advanced Encryption Standard

- Competition announces in 1997 to select successor to DES
 - Successor needed to be available for use without payment (no royalties, etc.)
 - Successor must encipher 128-bit blocks with keys of lengths 128, 192, and 256
- Rijndael selected as successor to DES, called the Advanced Encryption Standard (AES

Overview of the AES

- A block cipher:
 - encrypts blocks of 128 bits using a 128, 192, or 256 bit key
 - outputs 128 bits of ciphertext
- A product cipher
 - basic unit is the bit
 - performs both substitution and transposition (permutation) on the bits
- Cipher consists of rounds (iterations) each with a round key generated from the user-supplied key
 - If 128 bit key, then 10 rounds
 - If 192 bit key, then 12 rounds
 - If 256 bit key, then 14 rounds

Structure of the AES: Encryption

- byte substitution
- shift rows
- mix columns
- add round key

Public Key Cryptography

Public Key Cryptography

- Two keys
 - Private key known only to individual
 - Public key available to anyone
 - Public key, private key inverses
- Idea
 - Confidentiality: encipher using public key, decipher using private key
 - Integrity/authentication: encipher using private key, decipher using public one

Requirements

- 1. It must be computationally easy to encipher or decipher a message given the appropriate key
- 2. It must be computationally infeasible to derive the private key from the public key
- 3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

RSA

RSA

- First described publicly in 1978
- RSA = "Rivest, Shamir, and Adleman"
- 2048 bit keys (at least)
- Exponentiation cipher
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer n

Algorithm

- Choose two large prime numbers p, q
 - Let n = pq; then $\phi(n) = (p-1)(q-1)$
 - Choose e < n such that e is relatively prime to $\phi(n)$.
 - Compute d such that ed mod $\phi(n) = 1$
- Public key: (e, n); private key: d
- ightharpoonup Encipher: $c = m^e \mod n$
- ightharpoonup Decipher: $m = c^d \mod n$

Example: Confidentiality

- Take p = 181, q = 1451, so n = 262631 and $\phi(n) = 261000$
- Alice chooses e = 154993, making d = 95857
- Bob wants to send Alice secret message PUPPIESARESMALL (152015 150804 180017 041812 001111); encipher using public key
 - \blacksquare 152015¹⁵⁴⁹⁹³ mod 262631 = 220160
 - 150804¹⁵⁴⁹⁹³ mod 262631 = 135824
 - \blacksquare 180017¹⁵⁴⁹⁹³ mod 262631 = 252355
 - 041812¹⁵⁴⁹⁹³ mod 262631 = 245799
 - 001111_{1,54993} mod 262631 = 070707
- Bob sends 220160 135824 252355 245799 070707
- Alice uses her private key to decipher it

Digital Signature

Digital Signature

 Construct that authenticates origin, contents of message in a manner provable to a disinterested third party (a "judge")

Sender cannot deny having sent message (service is "nonrepudiation")

Public Key Digital Signatures

- Basically, Alice enciphers the message, or its cryptographic hash, with her private key
- In case of dispute or question of origin or whether changes have been made, a judge can use Alice's public key to verify the message came from Alice and has not been changed since being signed

Example

- Alice chooses e = 154993, making d = 95857
- Alice wants to send Bob the message PUPPIESARESMALL in such a way that Bob knows it comes from her and nothing was changed during the transmission
- Encipher using private key:
 - \blacksquare 152015⁹⁵⁸⁵⁷ mod 262631 = 072798
 - \blacksquare 150804⁹⁵⁸⁵⁷ mod 262631 = 259757
 - \blacksquare 180017⁹⁵⁸⁵⁷ mod 262631 = 256449
 - \bullet 041812⁹⁵⁸⁵⁷ mod 262631 = 089234
 - ightharpoonup 001111195857 mod 262631 = 037974
- Alice sends 072798 259757 256449 089234 037974
- Bob receives, uses Alice's public key to decipher it

Encryption and Digital Signature

Example: Both (Sending)

- Alice chooses e = 154993, making d = 95857, n = 262631
- Same n as for Alice; Bob chooses e = 45593, making d = 235457
- Alice wants to send PUPPIESARESMALL (152015 150804 180017 041812 001111) confidentially and authenticated
- Encipher:
 - \blacksquare (152015⁹⁵⁸⁵⁷ mod 262631)⁴⁵⁵⁹³ mod 262631 = 249123
 - \blacksquare (150804⁹⁵⁸⁵⁷ mod 262631) ⁴⁵⁵⁹³ mod 262631 = 166008
 - \blacksquare (180017⁹⁵⁸⁵⁷ mod 262631) ⁴⁵⁵⁹³ mod 262631 = 146608
 - \bullet (041812⁹⁵⁸⁵⁷ mod 262631) ⁴⁵⁵⁹³ mod 262631 = 092311
 - \bullet (001111195857 mod 262631) 45593 mod 262631 = 096768
- So Alice sends 249123 166008 146608 092311 096768

Example: Both (Receiving)

- Bob receives 249123 166008 146608 092311 096768
- Decipher:
 - \blacksquare (249123²³⁵⁴⁵⁷ mod 262631)¹⁵⁴⁹⁹³ mod 262631 = 152012
 - \blacksquare (166008²³⁵⁴⁵⁷ mod 262631) ¹⁵⁴⁹⁹³ mod 262631 = 150804
 - \blacksquare (146608²³⁵⁴⁵⁷ mod 262631) ¹⁵⁴⁹⁹³ mod 262631 = 180017
 - \bullet (092311²³⁵⁴⁵⁷ mod 262631)¹⁵⁴⁹⁹³ mod 262631 = 041812
 - \blacksquare (096768²³⁵⁴⁵⁷ mod 262631) ¹⁵⁴⁹⁹³ mod 262631 = 001111
- So Alice sent him 152015 150804 180017 041812 001111
 - Which translates to PUP PIE SAR ESM ALL or PUPPIESARESMALL

Key Points

Key Points

- Two main types of cryptosystems: symmetric and public key
- Symmetric key cryptosystems encipher and decipher using the same key
- Public key cryptosystems encipher and decipher using different keys
 - RSA, computationally infeasible to derive one from the other
- Digital signatures provide integrity of origin and content
 Much easier with public key cryptosystems than with classical cryptosystems