Cộng dãy chia hết

File dữ liệu vào: GCDARR.INP File kết quả: GCDARR.OUT

Hạn chế thời gian: 1s Hạn chế bộ nhớ: 512M

Cho một dãy số nguyên dương a gồm n phần tử. Bạn cần chỉ ra có tồn tại số nguyên dương x sao cho gcd(a_i + x, a_j + x) = 1 với mọi 1≤i<j≤n. Bài toán gồm nhiều test case mỗi trường hợp bạn cần trả ra "YES" hoặc "NO" tương ứng với việc tồn tại x hay không.

116.

Đầu vào:

Dòng đầu chứa t (1≤t≤100) số lượng test case. Với mỗi test case:

Dòng đầu chứa $2 \le N \le 100$, số lượng phần tử.

Dòng tiếp theo chứa N số a1, a2, ..., a_N (1≤ai≤10^18).

Đầu ra:

Đưa ra "YES" hoặc "NO" cho từng trường hợp.

Ví dụ:

Đầu vào	W 21	Đầu ra
2 3 5 7 10 3 3 3 4		YES NO

Chấm điểm:

- 25% số điểm có N ≤ 10, ai≤1000
- 25% số điểm có ai ≤ 10^9
- 50% số điểm không có ràng buộc gì thêm

Điền số

File dữ liệu vào: FillEx.INP

File kết quả: FillEx.OUT Hạn chế thời gian: 1s Hạn chế bộ nhớ: 512M

Biểu thức với ? là giá trị cần điền. Biểu thức có thể được mở rộng như sau:

- ? là một biểu thức
- Nếu A và B là biểu thức thì min(A,B) hoặc max(A,B) cũng là một biểu thức.

Cho một biểu thức gồm N giá trị cần điền. Bạn phải điền biểu thức bằng các giá trị từ 1 tới N. Mỗi số được dùng đúng một lần duy nhất. Hỏi có bao nhiêu giá trị khác nhau từ biểu thức cho trước.

Đầu vào:

Chứa xâu biểu thức

Đầu ra:

Số lượng giá trị khác nhau từ biểu thức

Ví dụ:

Đầu vào	Đầu ra	
max(?,min(?,?))	2	
min(min(?,?),min(?,?))	1	
min(max(?,?),min(?,max(?,?)))	3	

Đường đi số học

File dữ liệu vào: PathNum.INP File kết quả: PathNum.OUT Hạn chế thời gian: 3s

Hạn chế bộ nhớ: 512M

Cho một đồ thị gồm n đỉnh, mỗi đỉnh có trọng số nguyên dương a_i. (a_i, a_j) là cạnh của đồ thị khi vào chỉ khi gcd(a_i, a_j) > 1. Đề bài cho 2 đỉnh s, t (với trọng số tương ứng là a_s và a_t), bạn cần tìm và in ra số lượng đỉnh trên đường đi ngắn nhất từ s tới t.

Đầu vào:

Dòng đầu chứa $2 \le N \le 3 * 10^5$, số lượng đỉnh. Dòng tiếp theo chứa N số a1, a2, ..., a_N (1 \le ai \le 3 * 10 5).

Đầu ra:

Nếu không có đường đi ghi ra -1. Ngược lại, in ra đường đi ngắn nhất.

Ví dụ:

Đầu vào	Đầu ra
7 7 14 9 6 8 15 31 5 6	3 01/109
7 7 14 9 6 8 15 31 5 5	
7 7 14 9 6 8 15 31 5 7	2-1

Chấm điểm:

- 25% số điểm có N ≤ 100
- 25% số điểm có N ≤ 1000
- 50% số điểm không có ràng buộc gì thêm