

Affinity Propagation na prática

≡ Ciclo	Ciclo 08: Outros algoritmos Clusterização
# Aula	68
Created	@June 27, 2023 1:22 PM
☑ Done	
☑ Ready	

Objetivo da Aula:

☐ Affinit	y Pro	pagation
-----------	-------	----------

- ☐ Treinamento o algoritmo Affinity Propagation
- Próxima aula

Conteúdo:

▼ 1. Affinity Propagation

```
from matplotlib import pyplot as plt
from sklearn import datasets as dt
from sklearn import cluster as c
# dataset
from matplotlib import pyplot as plt
from sklearn import datasets as dt
from sklearn import cluster as c
# dataset
X = np.array( [
   [3, 4, 3, 2, 1],
   [4, 3, 5, 1, 1],
   [3, 5, 3, 3, 3],
   [2, 1, 3, 3, 2],
   [1, 1, 3, 2, 3]
])
# training model
model = c.AffinityPropagation()
model.fit( X )
# clustering data
labels = model.predict( X )
```

```
print( labels )
```


2. Treinamento o algoritmo Affinity Propagation

```
from matplotlib import pyplot as plt
from sklearn import datasets as dt
from sklearn import cluster as c
# dataset
X, _ = dt.make_blobs( n_samples=300, centers=4,
                     cluster_std=0.60,
                     random_state=0 )
# show dataset
plt.scatter(X[:,0], X[:,1], alpha=0.7, edgecolors='b')
# training model
model = c.AffinityPropagation( preference=-50)
model.fit( X )
# clustering data
labels = model.predict( X )
# show clusters
fig = plt.figure()
plt.title( 'Clustering' )
\verb|plt.scatter(X[:,0], X[:,1], c=| labels, cmap='rainbow', alpha=0.7, edgecolors='b')| \\
```

▼ 3. Próxima aula

Os parâmetros do Affinity Propagation