Neural Network Training

Sargur Srihari

Topics

- Neural network parameters
- Probabilistic problem formulation
- Determining the error function
 - Regression
 - Binary classification
 - Multi-class classification
- Parameter optimization
- Local quadratic approximation
- Use of gradient optimization
- Gradient descent optimization

Neural Network parameters

 Linear models for regression and classification can be represented as

$$y(\boldsymbol{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_{j} \boldsymbol{\phi}_{j}(\boldsymbol{x})\right)$$

- which are linear combinations of basis functions $\phi_i(x)$
- In a neural network the basis functions $\phi_j(x)$ depend on parameters

inputs

During training allow these parameters to be adjusted along with the coefficients w_i

Network Training: Sum of squared errors

- Neural networks perform a transformation
 - vector x of input variables to vector y of output variables
 - For sigmoid activation function

$$y_k(\boldsymbol{x}, \boldsymbol{w}) = \sigma \left(\sum_{j=1}^M w_{kj}^{(2)} h \left(\sum_{i=1}^D w_{ji}^{(1)} x_i \right) \right) \qquad \begin{array}{c} D \text{ input variables} \\ M \text{ hidden units} \end{array}$$

- Where vector w consists of all weight and bias parameters
- To determine w, simple analogy with curve fitting
 - minimize sum-of-squared errors function
 - Given set of input vectors $\{x_n\}$, n=1,...,N and target vectors $\{t_n\}$ minimize the error function

$$E(oldsymbol{w}) = rac{1}{2} \sum_{n=1}^{N} \mid\mid oldsymbol{y}(oldsymbol{x}_n, oldsymbol{w}) - oldsymbol{t}_n \mid\mid^2$$

N training vectors

Consider a more general probabilistic interpretation

4

Probabilistic View: From activation function f determine Error Function E (as defined by likelihood function)

1. Regression

- f: activation function is identity $y(x,w) = w^T \phi(x) = \sum_{j=1}^m w_j \phi_j(x)$
- E: Sum-of-squares error/Maximum Likelihood $E(\mathbf{w}) = \frac{1}{9} \sum_{n=1}^{N} ||\mathbf{y}(\mathbf{x}_n, \mathbf{w}) \mathbf{t}_n||^2$

- 2. (Multiple Independent) Binary Classifications

 f: activation function is Logistic sigmoid $y(x, w) = \sigma(w^T \phi(x)) = \frac{1}{1 + \exp(-w^T \phi(x))}$
 - E: Cross-entropy error function $E(\mathbf{w}) = -\sum_{i=1}^{N} \{t_n \ln y_n + (1-t_n) \ln(1-y_n)\}$

3. Multiclass Classification

- $y_k(x, w) = \frac{\exp(w_k \phi(x))}{\sum_{j} \exp(w_j \phi(x))}$ • *f*: Softmax outputs
- *E*: Cross-entropy error function

$$E(\boldsymbol{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_k(\boldsymbol{x}_n, \boldsymbol{w})$$

1. Probabilistic View: Regression

Output is a single target variable t that can take any real value

Assuming t is Gaussian distributed with an x-dependent mean

$$p(t \mid \mathbf{x}, \mathbf{w}) = N(t \mid y(\mathbf{x}, \mathbf{w}), \boldsymbol{\beta}^{-1})$$

Likelihood function

$$p(t \mid x, w, \beta) = \prod_{n=1}^{N} N(t_n \mid y(x_n, w), \beta^{-1})$$

Taking negative logarithm, we get the negative log-likelihood

$$\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(\mathbf{x}_{n}, \mathbf{w}) - t_{n} \right\}^{2} - \frac{N}{2} \ln \beta + \frac{N}{2} \ln(2\pi)$$

• which can be used to learn parameters w and β

Regression Error Function

- Likelihood Function could be used to learn parameters w and β
 - Usually done in a Bayesian treatment
- In neural network literature minimizing error is used
 - They are equivalent here. Sum of squared errors is $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{y}(\mathbf{x}_{n}, \mathbf{w}) \mathbf{t}_{n} \right\}^{2}$
 - Its smallest value occurs when $\nabla E(\mathbf{w}) = 0$
- Since *E*(w) is non-convex:
 - Solution w_{ML} found using iterative optimization $w^{t+1} = w^t + \underline{\wedge} w^t$
 - Gradient descent (discussed later in this lecture))
 - Another solution is back-propagation
 - Since regression output is same as activation $y_k=a_k$, so

$$\frac{\partial E}{\partial a_k} = y_k - t_k \qquad a_k = \sum_{i=1}^M w_{ki}^{(2)} x_i + w_{k0}^{(2)} \text{ where } k = 1,..,K$$

• Having found $oldsymbol{w}_{
m ML}$ the value of $oldsymbol{eta}_{
m ML}$ can also be found using

$$\frac{\ln \beta / 2\pi}{\beta} = \frac{1}{N} \sum_{n=1}^{N} \left\{ y(\mathbf{x}_{n}, \mathbf{w}_{ML}) - t_{n} \right\}^{2}$$

2. Binary Classification

- Single target variable t where t=1 denotes C₁ and t =0 denotes C₂
- Consider network with single output whose activation function is logistic sigmoid

$$y = \sigma(a) = \frac{1}{1 + \exp(-a)}$$

- so that $0 \le y(x, w) \le 1$
- Interpret $y(\mathbf{x}, \mathbf{w})$ as conditional probability $p(C_1|\mathbf{x})$
- Conditional distribution of targets given inputs

$$p(t \mid \boldsymbol{x}, \boldsymbol{w}) = y(\boldsymbol{x}, \boldsymbol{w})^{t} \left\{ 1 - y(\boldsymbol{x}, \boldsymbol{w}) \right\}^{1-t}$$

Binary Classification Error Function

 Error function is negative log-likelihood which in this case is a Cross-Entropy error function

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\}$$

- where y_n denotes $y(x_n, w)$
- Using cross-entropy error function instead of sum of squares leads to faster training and improved generalization

2. K Separate Binary Classifications

- Network has K outputs each with a logistic sigmoid activation function
- Associated with each output is a binary class label t_k

$$p(\mathbf{t} \mid \boldsymbol{x}, \boldsymbol{w}) = \prod_{k=1}^{K} y_k(\boldsymbol{x}, \boldsymbol{w})^{t_k} [1 - y_k(\boldsymbol{x}, \boldsymbol{w})]^{1 - t_k}$$

Taking negative logarithm of likelihood function

$$E(oldsymbol{w}) = -\sum_{ ext{n=1}}^{ ext{N}} \sum_{ ext{k=1}}^{ ext{K}} \{t_{nk} ext{ln} y_{nk} + (1 - t_{nk}) ext{ln} (1 - y_{nk})\}$$
 where y_{nk} denotes $y_k(oldsymbol{x}_{ ext{n}}, oldsymbol{w})$

3. Multiclass Classification

- Each input assigned to one of K classes
- Binary target variables have 1-of-K coding scheme

$$t_k \in \{0,1\}$$

- Network outputs are interpreted as $y_k(\mathbf{x}, \mathbf{w}) = p(t_k = 1 | \mathbf{x})$
- Leads to following error function

$$E(\boldsymbol{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_k(\boldsymbol{x}_n, \boldsymbol{w})$$

Output unit activation function is given by softmax

$$y_k(\boldsymbol{x}, \boldsymbol{w}) = \frac{\exp(a_k(\boldsymbol{x}, \boldsymbol{w}))}{\sum_j \exp(a_j(\boldsymbol{x}, \boldsymbol{w}))} \qquad y_k(\boldsymbol{x}, \boldsymbol{w}) = \frac{\exp(\boldsymbol{w}_k \phi(\boldsymbol{x}))}{\sum_j \exp(\boldsymbol{w}_j \phi(\boldsymbol{x}))}$$

11

Parameter Optimization

- Task: Find weight vector w which minimizes the chosen function E(w)
- Geometrical picture of error function
- Error function has a highly nonlinear
- dependence

Parameter Optimization: Geometrical View

E(w): surface sitting over weight space

- $w_{\scriptscriptstyle A}$ a local minimum
- $w_{
 m B}$ global minimum
- Need to find minimum
- At point $w_{\rm C}$ local gradient
 - is given by $\text{vector}\nabla E(\boldsymbol{w})$
 - points in direction of greatest rate of increase of E(w)
 - Negative gradient points to rate of greatest decrease

Finding w where $E(\mathbf{w})$ is smallest

Small step from w to w+ δ w leads to

change in error function

$$\delta E \approx \delta \mathbf{w}^T \nabla E(\mathbf{w})$$

Minimum of E(w) will occur when

$$\nabla E(\mathbf{w}) = 0$$

 Points at which gradient vanishes are stationary points: minima, maxima, saddle

Complex surface

No hope of finding analytical solution to equation

$$\nabla E(\mathbf{w}) = 0$$

Iterative Numerical Procedure for Minima

• Since there is no analytical solution choose initial $\mathbf{w}^{(0)}$ and update it using

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$$

where τ is the iteration step

• Different algorithms involve different choices weight vector update $\Delta w^{(\tau)}$

- Weight vector update $\Delta w^{(\tau)}$ is usually based on gradient $\nabla E(\mathbf{w})$ evaluated at weight vector $\mathbf{w}^{(\tau+1)}$
- To understand importance of gradient information consider Taylor's series expansion of error function

Leads to local quadratic approximation

Discussion Overview

Preliminary concepts for Backpropagation

- 1 Local quadratic approximation
 - Provides insight into optimization problem
 - $O(W^3)$ where W is dimensionality of w
 - Based on Taylor's series: f(x) is approximated

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$

- 2 Use of gradient information
 - Leads to significant improvements in speed of locating minima of error function
 - Backpropagation is $O(W^2)$
- 3 Gradient descent optimization
 - Simplest approach of using gradient information

16

Definitions of Gradient and Hessian

First derivative of a scalar function $E(\mathbf{w})$ with respect to a vector $\mathbf{w} = [w_1, w_2]^T$ is a vector called the *Gradient* of $E(\mathbf{w})$

$$\nabla E(\mathbf{w}) = \frac{d}{d\mathbf{w}} E(\mathbf{w}) = \begin{bmatrix} \frac{\partial E}{\partial w_1} \\ \frac{\partial E}{\partial w_2} \end{bmatrix}$$
 If there are M elements in the vector then Gradient is a M x 1 vector

Second derivative of E(w) is a matrix called the *Hessian*

$$H = \nabla \nabla E(\mathbf{w}) = \frac{d^2}{d\mathbf{w}^2} E(\mathbf{w}) = \begin{bmatrix} \frac{\partial^2 E}{\partial w_1^2} & \frac{\partial^2 E}{\partial w_1 \partial w_2} \\ \frac{\partial^2 E}{\partial w_2 \partial w_1} & \frac{\partial^2 E}{\partial w_2^2} \end{bmatrix} \quad \text{Hessian is a matrix with} \quad M^2 \text{ elements}$$

1. Local Quadratic Optimization

• Taylor's Series Expansion of $E(\mathbf{w})$ around some point $\hat{\mathbf{w}}$ in weight space (with cubic and higher terms omitted)

$$E(\mathbf{w}) \cong E(\hat{\mathbf{w}}) + (\mathbf{w} - \hat{\mathbf{w}})^T \mathbf{b} + \frac{1}{2} (\mathbf{w} - \hat{\mathbf{w}})^T H(\mathbf{w} - \hat{\mathbf{w}})$$
 where b is the gradient of E evaluated at $\hat{\mathbf{w}}$ b $\equiv \nabla E \mid_{\mathbf{w} = \hat{\mathbf{w}}}$

- b is a vector of W elements

 H is the Hessian matrix $\mathbf{H} = \nabla \nabla \mathbf{E}$ with elements $(\mathbf{H})_{ij} = \frac{\partial E}{\partial w_i \partial w_j}$
 - H is a W x W matrix
- Consider local quadratic approximation around \mathbf{w}^* , a minimum of the error function

$$E(\mathbf{w}) \cong E(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T H(\mathbf{w} - \mathbf{w}^*)$$

- where H is evaluated at w* and the linear term vanishes
- Let us interpret this geometrically
 - Consider eigen value equation for the Hessian matrix $Hu_i = \lambda_i u_i$
 - where the eigen vectors \mathbf{u}_i are orthonormal $u_i^T u_i = \delta_{ij}$
 - Expand (w-w*) as a linear combination the eigenvectors $w w^* = \sum_i \alpha_i u_i$

Error Function Approximation by a Quadratic

Error Functions

- Linear Regression $y(x,w) = w^T \phi(x) = \sum_{j=1}^{m} w_j \phi_j(x)$ $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}$
- Binary Classification $y(x,w) = \sigma(w^T \phi(x)) = \frac{1}{1 + \exp(-w^T \phi(x))}$

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\}$$

Multiclass Classification $y_k(x,w) = \frac{\exp(w_k \phi(x))}{\sum_i \exp(w_i \phi(x))}$

$$E(w) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_k(x_n, w)$$

Approximated by quadratic $E(\mathbf{w}) \cong E(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T H(\mathbf{w} - \mathbf{w}^*)$

Where $H = \nabla \nabla \vec{E}$ is a $W \times W$ matrix

Whose contours of constant error are ellipses

with axes aligned with eigen vectors u, of H whose

lengths are inversely proportional to sq roots of eigenvalues

Neighborhood of a minimum w*

- w-w* is a coordinate transformation
 - Origin is translated to w*
 - Axes rotated to align with eigenvectors of Hessian

Error function can be written as

$$E(\mathbf{w}) = E(\mathbf{w}^*) + \frac{1}{2} \sum_{i} \lambda_i \alpha_i^2$$

• Matrix $H = \nabla \nabla E$ is positive definite iff

$$v^T H v > 0$$
 for all v

- Since eigenvectors form a complete set $v = \sum_{i} c_i \mathbf{u}_i$
- Then an arbitrary vector v can be written as $v^T H v = \sum_i c_i^2 \lambda_i^2$
- The stationary point w* will be a minimum if the Hessian matrix is positive definite (or all its eigenvalues are positive)

Condition for a point w* to be a minimum

 For a one-dimensional weight space, a stationary point w* will be minimum if

$$\left. \frac{\partial^2 E}{\partial w^2} \right|_{w^*} > 0$$

- Corresponding result in D dimensions is that the Hessian matrix evaluated at w^* is positive definite
 - A matrix H is positive definite iff $v^THv > 0$ for all v

Complexity of Quadratic Approximation

$$E(\mathbf{w}) \cong E(\hat{\mathbf{w}}) + (\mathbf{w} - \hat{\mathbf{w}})^T \mathbf{b} + \frac{1}{2} (\mathbf{w} - \hat{\mathbf{w}})^T H(\mathbf{w} - \hat{\mathbf{w}})$$

where b is the gradient of E evaluated at $\hat{\mathbf{w}}$

• b is a vector of W elements $b = \nabla E |_{w = \hat{w}}$

H is the Hessian matrix

with elements

- H is a $W \times W$ matrix $H = \nabla \nabla E$
- Error surface is specified by b and H
- They contain total of W(W+3)/2 independent elements
 - *W* is total number of adaptive parameters in network
- Minimum depends on $O(W^2)$ parameters
- Need to perform $O(W^2)$ function evaluations, each requiring O(W) steps.
- Computational effort needed is O(W³)
- W in a 10 x 10 x 10 network needs 100+100=200 weights which means 8 million steps

2. Use of Gradient Information

- Gradient of error function can be evaluated efficiently using back-propagation
 - Use of gradient information can lead to significant improvements in speed with which minimum of error function can be located
- In quadratic approximation to error function
 - Computational effort needed is O(W³)
- By using gradient information minimum can be found in $O(W^2)$ steps
 - 4,000 steps for 10 x 10 x 10 network with 200 weights

3. Gradient Descent Optimization

- Simplest approach to using gradient information
- Take a small step in the direction of the negative gradient

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

- η is the learning rate
- There are batch and on-line versions

Summary

- Neural network parameters have many parameters
 - can be determined analogous to linear regression parameters

Srihari

- Probabilistic formulation leads to appropriate error functions for linear regression, binary and multi-class classification
- Parameter optimization can be viewed as minimizing error function in weight space
- At the minimum Hessian is positive definite

- Local quadratic optimization needs $O(W^3)$ steps
- Using gradient information more efficient $O(W^2)$ algorithm can be designed