

Técnicas de cálculo avanzado para la Física

Iván P. González - 2022

Descripción de la Asignatura

El estudiante integra el marco teórico de herramientas de cálculo integral y diferencial a nivel avanzado, que permitan la evaluación de problemas complejos provenientes de las distintas áreas de la física. Aplica las herramientas en contextos de física fundamental y física aplicada, para favorecer el desarrollo del pensamiento lógico-deductivo.

El estudiante desarrolla procedimientos para evaluar problemas en los que intervienen: Integrales univariables y multivariables; Ecuaciones diferenciales lineales y no lineales con condiciones iniciales.

En cuanto a los aspectos teóricos del curso, se presentarán dos herramientas matemáticas, el método de integración conocido como IBD (Integration by Differentation) y la técnica denominada MoB (Method of Brackets), un método de carácter heurístico el cual ha demostrado ser una herramienta muy útil para evaluar una amplia variedad de problemas del cálculo.

Requisitos de entrada

- Comprende integración multivariable y ecuaciones diferenciales.
- Comprende transformadas integrales: Laplace, Fourier, Mellin.

Contribución al perfil de egreso

- Aplicar conocimientos avanzados de las matemáticas para desempeño en las investigaciones.
- Extraer información de artículos escritos en idioma inglés.
- Desempeñarse de forma autónoma en sus actividades de investigación en su área disciplinar.

Resultados de Aprendizaje que se esperan lograr en esta asignatura.

- Identifica series de potencias y representaciones integrales de varias funciones especiales de la Física derivándolas fundamentalmente de ecuaciones diferenciales (problemas de Sturm-Liouville).
- Adquiere conocimientos del Método de Brackets (MoB), resolviendo problemas de integración uni/multivariable provenientes de la Mecánica Clásica, Electrodinámica, Mecánica Cuántica, Teoría Cuántica de Campos, Mecánica Estadística, etc.
- Adquiere conocimientos del método de Integración por Derivación (IBD) y de conceptos fundamentales de cálculo fraccional, aplicándolos en la evaluación de integrales provenientes de la Física fundamental y aplicada.
- **Resuelve** ecuaciones diferenciales lineales y no lineales en términos de series de potencias, **aplicando** el Método de Brackets (MoB), (problemas que dependan de condiciones iniciales).

Contenidos temáticos

Módulo I: Integración por derivación (IBD)

- Función Delta Dirac y función de Heaviside : Propiedades.
- Operadores diferenciales y funciones de operadores.
- IBD a partir de transformada de Fourier.
- IBD a partir de la transformada de Laplace.
- Introducción al cálculo fraccional y aplicación a IBD.

Módulo II : Funciones y representaciones en series de potencias

- Expansión en serie de Taylor/McLaurin de funciones.
- Radio de convergencia.
- Funciones elementales y expansión en serie de potencias.
- Función Gamma : Propiedades.
- Función Beta, función Psi, función de Lerch.
- Símbolos de Pochhammer : Propiedades.
- Función hipergeométrica generalizada : Condiciones de convergencia
- Representación hipergeométrica de funciones elementales.
- -Representación hipergeométrica de funciones especiales : Polinomios ortogonales, funciones de Bessel, etc
 - Función hipergeométrica bivariada : funciones de Kampé de Feriet, funciones de Lauricella.
 - Funciones más generales : G-Meijer, H de Fox, etc.

Módulo III: Método de Brackets (MoB)

- Deducción heurística de MoB.
- Concepto de brackets y sus propiedades.
- Expansión en serie de brackets de funciones.
- Integración definida a partir de la expansión en serie de brackets de la integral.
- Aplicabilidad de MoB, reglas heurísticas y teoremas.
- Teorema Maestro de Ramanujan y MoB.
- Integración multidimensional con MoB.
- Continuación analítica y no analítica de series de potencias con MoB.
- Extensión I de MoB: Representaciones nulas y divergentes de funciones.
- Extensión II de MoB: Integrales de contorno y propiedad continua/discreta de un bracket.
- Aplicaciones a Mecánica Cuántica, Mecánica Estadística, Teoría Cuántica de Campos, etc.
- Conexión IBD / MoB.

Módulo IV: Ecuaciones diferenciales con condiciones iniciales, MoB y series de potencias

- Ecuaciones diferenciales lineales ordinarias de orden **n** y método de serie de potencias.
- Transformada de Mellin y MoB.
- Resolución de EDO's mediante Transf. Mellin+MoB.
- Ecuaciones diferenciales ordinarias no lineales y resolución con Transf. Mellin+MoB:
- Péndulo simple.
- Partícula en fluido viscoso no lineal.
- Ecuación de Lotka-Volterra.
- Circuitos eléctricos no lineales.
- Ecuación de Sine-Gordon, etc.
- Sistemas de ecuaciones diferenciales ordinarias no lineales: Problema de los 3 cuerpos, ecuaciones de

Hodgkin-Huxley, etc.

- Extensión de MoB a la resolución de sistemas de ecuaciones integrales e integro-diferenciales.

Metodología de enseñanza y aprendizaje.

- Clases teóricas expositivas centradas en los conceptos fundamentales, poniendo énfasis en el saber hacer
- Desarrollo de actividades de aplicación basadas en problemas, para que los estudiantes analicen una situación en particular de los conceptos tratados y se debatan los resultados obtenidos analíticamente, comparándolos con los obtenidos computacionalmente o con otros métodos analíticos convencionales, si los hubiese.
- **Desafíos a los estudiantes:** Se fomentará y guiará al estudiante en la ampliación de los contenidos tratados en la asignatura, a través de bibliografía específica que permita la obtención de conocimientos útiles en asignaturas futuras o para el desarrollo de proyectos de interés personal.

Evaluación y calificación de la asignatura.

El curso contempla evaluaciones de carácter sumativo. Se evaluará, durante cada módulo, los niveles de aprendizajes considerando lo siguiente:

1) Certámen de Cátedra

- Es una prueba escrita donde se evalúa la **comprensión de los aspectos teórico-conceptuales** y el formalismo presentado, mediante preguntas conceptuales y casos particulares sencillos.
- Otra parte valorará la capacidad de aplicación del formalismo, mediante la resolución de problemas, así como la capacidad crítica respecto a los resultados obtenidos.
- En ambas partes se valorarán una correcta argumentación.
- 2) Tareas: Evalúan periódicamente el avance del estudiante a través de trabajo individual y/o grupal.
- 3) Proyecto final: El estudiante presenta proyecto asociado a un **problema de interés personal**, el cual deberá **resolver con las herramientas conceptuales** entregadas en esta asignatura. El objetivo de este trabajo es favorecer el desarrollo del estudiante como futuro investigador.

Requisitos de aprobación y calificación

Instrumento de evaluación	N°	%
Certámenes de cátedra	2	40%
Tareas	6	30%
Proyecto final	1	30%

C=Nota promedio de certámenes de cátedra

T=Nota promedio de tareas

P=Nota de proyecto final

Nota final = 0.4*C + 0.3*T + 0.3*P

Recursos para el aprendizaje.

Bibliografía: Material Guía	- Arfken G., Weber H., Harris F., Mathematical Methods for
iviateriai Guia	Physicists, Academic Press, 7th edition, 2012.
	- Boas, M.L., Mathematical Methods in the Physical Sciences,
	Wiley International Edition, 3th edition, 2005.
Material Complementaria	
Material Complementario	 Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Eds.), NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.
	Apuntes y artículos científicos entregados en clases:
	- Gonzalez I., Moll V., Definite integrals by the method of brackets.
	Part 1. Adv. Appl. Math., 2010, 45:50–73.
	- Gonzalez I., Moll V., Straub A., The method of brackets. Part 2:
	Examples and applications. In: Amdeberhan T., Medina L., Moll
	V.H. (Eds.),Gems in Experimental Mathematics, 2010, vol. 517 of
	Contemporary Mathematics, 157–172. American Mathematical Society, 2010.
	 Kempf A, Jackson D M and Morales A H 2014 New dirac delta function based methods with applications to perturbative expansions in quantum field theory <i>J. Phys. A: Math. Theor.</i> 47 415204.
	 Kempf A, Jackson D M and Morales A H 2015 How to (path-) integrate by differentiating J. Phys.:Conf. Ser. 626 012015.
	- Ding J, Eugene T and Achim K, Integration by differentiation: new proofs, methods and examples, J. Phys. A: Math. Theor. 50 (2017) 235201 (25pp).
	 Gonzalez I., Schmidt I., Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation. Nuclear Physics B, 2007, 769:124–173.
	 I. Gonzalez , K. Kohl , L. Jiu , V. H. Moll, An extension of the Method of Brackets. Part 1. Open Mathematics Volume 15 (2017), Issue 1, 11811211. (arXiv:1707.08942).
	- Gonzalez, I., Jiu, L. & Moll, V. (2020). An extension of the method of brackets. Part 2. Open Mathematics, 18(1), 983-995. https://doi.org/10.1515/math-2020-0062.
	 1.I. Gonzalez, I. Kondrashuk, V.H. Moll and L. Recabarren, Mellin-Barnes integrals and the method of brackets, Eur. Phys. J. C (2022) 82:28. (arXiv:2108.09421).