

Shading II

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Continue discussion of shading
- Introduce modified Phong model
- Consider computation of required vectors

Ambient Light

- Ambient light is the result of multiple interactions between (large) light sources and the objects in the environment
- Amount and color depend on both the color of the light(s) and the material properties of the object
- Add k_a I_a to diffuse and specular terms

reflection coef intensity of ambient light

Distance Terms

- The light from a point source that reaches a surface is inversely proportional to the square of the distance between them
- We can add a factor of the form $1/(a + bd + cd^2)$ to the diffuse and specular terms

 The constant and linear terms soften the effect of the point source

Light Sources

- In the Phong Model, we add the results from each light source
- Each light source has separate diffuse, specular, and ambient terms to allow for maximum flexibility even though this form does not have a physical justification
- Separate red, green and blue components
- Hence, 9 coefficients for each point source

$$-I_{dr}$$
, I_{dg} , I_{db} , I_{sr} , I_{sg} , I_{sb} , I_{ar} , I_{ag} , I_{ab}

Material Properties

- Material properties match light source properties
 - Nine absorbtion coefficients
 - \bullet k_{dr} , k_{dg} , k_{db} , k_{sr} , k_{sg} , k_{sb} , k_{ar} , k_{ag} , k_{ab}
 - Shininess coefficient α

Adding up the Components

For each light source and each color component, the Phong model can be written (without the distance terms) as

 $I = k_d I_d I \cdot n + k_s I_s (\mathbf{v} \cdot \mathbf{r})^{\alpha} + k_a I_a \mathbf{r}$ For each color component we add contributions from all sources

Modified Phong Model

- The specular term in the Phong model is problematic because it requires the calculation of a new reflection vector and view vector for each vertex
- Blinn suggested an approximation using the halfway vector that is more efficient

The Halfway Vector

h is normalized vector halfway between I and v

$$\mathbf{h} = (\mathbf{l} + \mathbf{v}) / |\mathbf{l} + \mathbf{v}|$$

Using the halfway vector

- Replace $(\mathbf{v} \cdot \mathbf{r})^{\alpha}$ by $(\mathbf{n} \cdot \mathbf{h})^{\beta}$
- β is chosen to match shineness
- Note that halfway angle is half of angle between r and v if vectors are coplanar
- Resulting model is known as the modified Phong or Blinn lighting model
 - Specified in OpenGL standard

Example

Only differences in these teapots are the parameters in the modified Phong model

Computation of Vectors

- I and v are specified by the application
- Can computer r from I and n
- Problem is determining n
- For simple surfaces is can be determined but how we determine n differs depending on underlying representation of surface
- OpenGL leaves determination of normal to application
 - Exception for GLU quadrics and Bezier surfaces was deprecated

Computing Reflection Direction

- Angle of incidence = angle of reflection
- Normal, light direction and reflection direction are coplaner
- Want all three to be unit length

$$r = 2(l \bullet n)n - l$$

Plane Normals

- Equation of plane: ax+by+cz+d=0
- From Chapter 3 we know that plane is determined by three points p_0 , p_2 , p_3 or normal \mathbf{n} and p_0

Normal can be obtained by

$$\mathbf{n} = (p_2 - p_0) \times (p_1 - p_0)$$

Normal to Sphere

- Implicit function f(x,y,z)=0
- Normal given by gradient
- Sphere $f(\mathbf{p}) = \mathbf{p} \cdot \mathbf{p} 1$
- $\mathbf{n} = [\partial f/\partial x, \partial f/\partial y, \partial f/\partial z]^T = \mathbf{p}$

Parametric Form

For sphere

$$x=x(u,v)=\cos u \sin v$$

 $y=y(u,v)=\cos u \cos v$
 $z=z(u,v)=\sin u$

Tangent plane determined by vectors

$$\partial \mathbf{p}/\partial \mathbf{u} = [\partial \mathbf{x}/\partial \mathbf{u}, \, \partial \mathbf{y}/\partial \mathbf{u}, \, \partial \mathbf{z}/\partial \mathbf{u}] \mathbf{T}$$
$$\partial \mathbf{p}/\partial \mathbf{v} = [\partial \mathbf{x}/\partial \mathbf{v}, \, \partial \mathbf{y}/\partial \mathbf{v}, \, \partial \mathbf{z}/\partial \mathbf{v}] \mathbf{T}$$

Normal given by cross product

$$\mathbf{n} = \partial \mathbf{p}/\partial \mathbf{u} \times \partial \mathbf{p}/\partial \mathbf{v}$$

General Case

- We can compute parametric normals for other simple cases
 - Quadrics
 - Parameteric polynomial surfaces
 - Bezier surface patches (Chapter 10)