Artificial Intelligence (CS571)

Assignment – 1: Implementation of Expectation Maximization Algorithm

(Read all the instructions carefully and adhere to them.)

Date: 6th Aug 2018

Assume there are two coins C_1 and C_2 .

- 1. P = probability of choosing coin C₁
- 2. P_1 = probability of head from C_1
- 3. P_2 = probability of head from C_2

Choose P (say 0.7), P₁ (say 0.6), P₂ (say 0.3). Read these as input variables.

- 1. Generate data i.e. data based on the values given. Understanding the properties of random number generator such that probability of choosing C_1 is 0.7
- 2. Generate another random number so that head is produced with probability 0.6 (for C_1) and 0.3 (for C_2)
- 3. Estimate P, P₁ and P₂ by Expectation Maximization (EM) Algorithm
 - a. Initialize P, P₁ and P₂
 - b. E steps

$$E(z_i) = (P.P_1^{x_i}.(1-P_1)^{1-x_i}) / (P.P_1^{x_i}.(1-P_1)^{1-x_i} + P.P_2^{x_i}.(1-P_2)^{1-x_i})$$

c. M steps

i.
$$P = (\sum_{i=1}^{N} E(z_i)) / N$$

ii. $P_1 = (\sum_{i=1}^{N} x_i. E(z_i)) / (\sum_{i=1}^{N} E(z_i))$
iii. $P_2 = M - (\sum_{i=1}^{N} x_i. E(z_i)) / N - (\sum_{i=1}^{N} E(z_i))$

d. Repeat steps b and c until convergence or termination criteria.

Indicator variable $z_i = 1$, if C_1 is chosen else 0.

Hidden variable $x_i = 1$, if head else 0

Note:

- 1. You may choose any programming language for the implementation, however, *Python* is recommended.
- 2. Assignment has to be done in group of maximum three members.