Notes on "Combinatorics" by Bollobas

hisanobu-nakamura

Contents

1 Chapter 2 Representing Sets

1

1 Chapter 2 Representing Sets

Theorem 1

Let $\mathcal{F} = \{A_1, A_2, \dots, A_n\}$ be a set system on X = [n]. Then there is an element $x \in X$ such that $A_1 - \{x\}, A_2 - \{x\}, \dots, A_n - \{x\}$ are all distinct. The set system $\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \dots, \{n\}\}$ shows that such en x need not exist if $|\mathcal{F}| = n + 1$.

Proof1.

Set $\mathcal{D} = \{D \subset X : |\mathcal{F}_{\mathcal{D}}| \geq |D| + 1\}$, where $\mathcal{F}_{\mathcal{D}} = \{D \cap A_i : i \in \mathcal{F}\}$. If $A_1, A_2 \in \mathcal{F}$ and $d \in A_1 \triangle A_2$ then $\{d\} \in \mathcal{D}$ so $\mathcal{D} \neq \emptyset$. Let D be a maximal set in \mathcal{D} . Then $|D| \leq n - 2$??) and $|\mathcal{F}_{\mathcal{D}}| \leq n - 1$ (so, in fact $|\mathcal{F}_{\mathcal{D}}| = n - 1$)

What about the case $D = \{1, 2, ..., n-1\}$ $\mathcal{F} = \{\{1\}, \{2\}, ..., \{n-1\}, \{n\}\}$, where we have |D| = n-1 and $|\mathcal{F}_{\mathcal{D}}| = n$?

When $D = \{1, 2, ..., n\}$ $\mathcal{F} = \{\{1\}, \{2\}, ..., \{n-1\}, \{n\}\},$