МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Качество и метрология программного обеспечения»

Тема: Построение операционной графовой модели программы (ОГМП) и расчет характеристик эффективности ее выполнения методом эквивалентных преобразований

Студент гр. 7304	 Субботин А.С
Преподаватель	 Ефремов М.А

Санкт-Петербург

Цель работы

Построение операционной графовой модели программы (ОГМП) и расчет характеристик эффективности ее выполнения методом эквивалентных преобразований.

Исходные данные

Вариант 17. Исходный код для задания был получен преобразованием исходного кода на Си из лабораторной работы №1 соответствующего варианта.

Ход работы

1. Для программы вычисления функции ошибок распределения Гаусса на Си из предыдущих работ (см. Приложение А) был построен управляющий граф. Результат представлен на Рисунке 1.

Рисунок 1 – Управляющий граф программы

2. Код программы был подготовлен к профилированию с использованием Sampler, код с пронумерованными строками представлен в Приложении Б. Результат профилирование представлен на Рисунке 2.

	 NN	 I				 г обработанного фай	 і́ла	
	1. NOMOD.CPP							
	Таблица с результатами измерений (используется 12 из 416 записей)							
Nex	 к.П	юз.	Пр	ием	 4.Поз.	Общее время (мкс)	Кол-во прох.	Среднее время (мкс)
1	:	40	1	:	46	53.64	1	53.64
1	:	46	1	:	62	246.40	1	246.40
1	:	46			57	14.25	1	14.25
	:	46			52	9.22	1	9.22
1	:	46	1	:	48	5.03	1	5.03
1	:	48	1	:	50	0.84	1	0.84
1	:	50	1	:	68	4.19	1	4.19
1	:	52	1	:	55	87.16	1	87.16
1	:	55	1	:	68	4.19	1	4.19
1	:	57	1	:	60	1240.38	1	1240.38
1	:	60	1	:	68	4.19	1	4.19
1	:	62	1	:	65	1535.39	1	1535.39
1	:	65	1	:	68	87.16	1	87.16
	:	68 68		:	46 70	5.03 1.68	3 1	1.68 1.68

Рисунок 2 – Результат профилирования программы

Суммарное время отдельных замеров – 3298.75 мкс

3. Расчет вероятностей и затрат ресурсов для дуг управляющего графа представлен в Таблице 1.

Дуги	Номера строк	Количество проходов	Время, мкс
1-2	40:46	1	53.64
2-3	46:48	1	5.03
3-10	48:50	1	0.84
10-7-8	50:68	1	4.19
8-2	68:46	3	1.68*3~5.03
2-4	46:52	1	9.22
4-11	52:55	1	87.16
11-7-8	55:68	1	4.19
2-5	46:57	1	14.25
5-12	57:60	1	1240.38
12-7-8	60:68	1	4.19
2-6	46:62	1	246.40
6-13	62:65	1	1535.39
13-7-8	65:68	1	87.16
8-9	68:70	1	1.68

Таблица 1 – Вероятности и затраты ресурсов для дуг управляющего графа Do..while:

Программа вошла в цикл 4 раза и вышла из него 1 раз, следовательно вероятность дуги t7-t1=0.75, а дуги t7-t13=0.25

If..else:

Вершина 3 - Программа посетила вершину 4 раза. <math>T/F = 1/3

Вершина 4 - Программа посетила вершину 3 раза. <math>T/F = 1/2

Вершина $5 - \Pi$ рограмма посетила вершину 2 раза. T/F = 1/1

4. С использованием полученных вероятностей и затрат ресурсов с помощью пакета CSA III был получен граф с нагруженными дугами. Результат представлен на рисунке 3.

Рисунок 3 – Граф с нагруженными дугами

Описание модели представлено в Приложении В.

Результат оценки программой (математическое ожидание и дисперсия) времени выполнения для всей программы представлен на Рисунке 4.

t0>t13: Objects::AMC::Link				
Name	Value			
name	t0>t13			
probability	1.0			
intensity	3278.15275			
deviation	10158718.5317028			

Рисунок 4 — Результат

Выводы

При выполнении лабораторной работы была построена операционная графовая модель программы из ЛР1, было оценено время выполнения программы с помощью профилировщика Sampler и методом эквивалентных преобразований с помощью пакета CSA III. Результаты сравнения этих характеристик показали, что метод эквивалентных преобразований даёт очень близкие результаты к результатам работы программы Sampler (разница менее одного процента свидетельствует об адекватности построенной модели).

Приложение А. Код программы вычисления функции ошибок распределения Гаусса на Си

```
1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <math.h>
4.
5. double erf(double x) {
                            = 1.7724538;
   const double sqrtpi
6.
      double t2 = 0.66666667;
double t3 = 0.66666667;
7.
     double t3
8.
                        = 0.07619048;
      double t4
9.
                        = 0.01693122;
10.
     double t5
     double t6
                        = 3.078403E-3;
11.
     double t7
                        = 4.736005E-4;
12.
      double t8
                        = 6.314673E-5;
13.
                        = 7.429027E-6;
      double t9
14.
     double t10
                        = 7.820028E-7;
15.
    double t11
                        = 7.447646E-8;
16.
                        = 6.476214E-9;
17.
     double t12
18.
   double x2, sum;
x2 = x*x;
19.
20.
21. sum = t5+x2*(t6+x2*(t7+x2*(t8+x2*(t9+x2*(t10+x2*(t11+x2*t12))))));
22.
     return (2.0*exp(-x2)/sqrtpi*(x*(1+x2*(t2+x2*(t3+x2*(t4+x2*sum))))));
23.
24.
      }
25.
26. double erfc(double x) {
27.
     const double sqrtpi = 1.7724538;
28.
           double x2, v, sum;
29.
           x2 = x*x;
30.
           v = 1/(2*x2);
31.
           sum=v/(1+8*v/(1+9*v/(1+10*v/(1+11*v/(1+12*v)))));
32.
           sum=v/(1+3*v/(1+4*v/(1+5*v/(1+6*v/(1+7*sum)))));
33.
            return (1.0/(\exp(x2)*x*sqrtpi*(1+v/(1+2*sum))));
34. }
35.
36. int main()
37. {
38.
            double x,er,ec;
39.
           bool done;
40.
           x = 2.0;
41.
           done = false;
42.
            do{
43.
                if(x<0){
44.
                   done = true;
45.
             else if (x == 0)
                       er = 0;
46.
47.
                  ec = 1;
48.
                   else if (x < 1.5)
49.
                  er = erf(x);
50.
                  ec = 1 - er;
51.
              }else{
52.
                  ec = erfc(x);
53.
                  er = 1-ec;
54.
                  }
55.
             x = x - 1;
56.
57.
           }while (done == false);
58.
59.
            return 0;
60.
        }
```

Приложение Б. Текст программы для профилирования

```
1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <math.h>
4. #include "SAMPLER.H"
5. typedef enum { false, true } bool;
7. double erf(double x) {
8. const double sqrtpi = 1.7724538;
      double t2 = 0.66666667;
     double t3
                       = 0.66666667;
10.
     double t4
                       = 0.07619048;
11.
     double t5
                       = 0.01693122;
12.
                       = 3.078403E-3;
13.
     double t6
14.
     double t7
                       = 4.736005E-4;
15.
     double t8
                       = 6.314673E-5;
16.
     double t9
                       = 7.429027E-6;
17.
     double t10
                       = 7.820028E-7;
18.
     double t11
                       = 7.447646E-8;
19.
     double t12
                       = 6.476214E-9;
20.
     double x2, sum;
21.
     x2 = x*x;
22.
     sum = t5+x2*(t6+x2*(t7+x2*(t8+x2*(t9+x2*(t10+x2*(t11+x2*t12))))));
23.
     return (2.0*exp(-x2)/sqrtpi*(x*(1+x2*(t2+x2*(t3+x2*(t4+x2*sum))))));
24.
25.
26.
       }
27.
28.
       double erfc(double x) {
          const double sqrtpi = 1.7724538;
29.
30.
           double x2, v, sum;
31.
           x2 = x*x;
32.
           v = 1/(2*x2);
33.
           sum=v/(1+8*v/(1+9*v/(1+10*v/(1+11*v/(1+12*v)))));
34.
           sum=v/(1+3*v/(1+4*v/(1+5*v/(1+6*v/(1+7*sum)))));
35.
           return (1.0/(\exp(x2)*x*sqrtpi*(1+v/(1+2*sum))));
      }
36.
37.
   int main()
{
38.
39.
40.
           SAMPLE;
41.
          double x,er,ec;
          bool done;
42.
43.
          x = 2.0;
44.
           done = false;
45.
          do{
46.
                   SAMPLE;
47.
               if(x<0){}
48.
                        SAMPLE;
49.
                   done = true;
50.
                        SAMPLE;
51.
               else if (x == 0) {
52.
                        SAMPLE;
53.
                   er = 0;
54.
                   ec = 1;
55.
                        SAMPLE;
56.
               else if (x < 1.5)
57.
                        SAMPLE;
58.
                   er = erf(x);
59.
                   ec = 1 - er;
60.
                        SAMPLE;
61.
             }else{
```

```
62.
                         SAMPLE;
63.
                  ec = erfc(x);
64.
                  er = 1-ec;
65.
                    SAMPLE;
               }
66.
             x = x - 1;
SAMPLE:
67.
               SAMPLE;
68.
69.
            }while (done == false);
70.
71.
72. }
           SAMPLE;
return 0;
```

Приложение B. XML файл для CSA III

```
<model type = "Objects::AMC::Model" name = "lab4">
     <node type = "Objects::AMC::Top" name = "t0"></node>
     <node type = "Objects::AMC::Top" name = "t1"></node>
     <node type = "Objects::AMC::Top" name = "t2"></node>
     <node type = "Objects::AMC::Top" name = "t3"></node>
     <node type = "Objects::AMC::Top" name = "t4"></node>
     <node type = "Objects::AMC::Top" name = "t5"></node>
     <node type = "Objects::AMC::Top" name = "t6"></node>
     <node type = "Objects::AMC::Top" name = "t7"></node>
     <node type = "Objects::AMC::Top" name = "t9"></node>
     <node type = "Objects::AMC::Top" name = "t10"></node>
     <node type = "Objects::AMC::Top" name = "t11"></node>
     <node type = "Objects::AMC::Top" name = "t12"></node>
     <node type = "Objects::AMC::Top" name = "t13"></node>
     <link type = "Objects::AMC::Link" name = "t0-->t1" probability = "1.0"
intensity = "53.64" deviation = "0.0" source = "t0" dest = "t1"></link>
     <link type = "Objects::AMC::Link" name = "t1-->t2" probability = "1.0"
intensity = "5.03" deviation = "0.0" source = "t1" dest = "t2"></link>
     <link type = "Objects::AMC::Link" name = "t2-->t3" probability = "0.75"
intensity = "9.22" deviation = "0.0" source = "t2" dest = "t3"></link>
     <link type = "Objects::AMC::Link" name = "t3-->t4" probability = "0.67"
intensity = "14.25" deviation = "0.0" source = "t3" dest = "t4"></link>
     <link type = "Objects::AMC::Link" name = "t4-->t5" probability = "0.5"
intensity = "246.3" deviation = "0.0" source = "t4" dest = "t5"></link>
     <link type = "Objects::AMC::Link" name = "t6-->t7" probability = "1.0"
intensity = "4.19" deviation = "0.0" source = "t6" dest = "t7"></link>
     <link type = "Objects::AMC::Link" name = "t2-->t9" probability = "0.25"
intensity = "0.84" deviation = "0.0" source = "t2" dest = "t9"></link>
     <link type = "Objects::AMC::Link" name = "t3-->t10" probability = "0.33"
intensity = "87.16" deviation = "0.0" source = "t3" dest = "t10"></link>
     <link type = "Objects::AMC::Link" name = "t4-->t11" probability = "0.5"
intensity = "1240.68" deviation = "0.0" source = "t4" dest = "t11"></link>
     <link type = "Objects::AMC::Link" name = "t5-->t12" probability = "1.0"
intensity = "1535.39" deviation = "0.0" source = "t5" dest = "t12"></link>
     <link type = "Objects::AMC::Link" name = "t9-->t6" probability = "1.0"
intensity = "0.0" deviation = "0.0" source = "t9" dest = "t6"></link>
     <link type = "Objects::AMC::Link" name = "t10-->t6" probability = "1.0"
intensity = "0.0" deviation = "0.0" source = "t10" dest = "t6"></link>
     <link type = "Objects::AMC::Link" name = "t11-->t6" probability = "1.0"
intensity = "0.0" deviation = "0.0" source = "t11" dest = "t6"></link>
```