PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

Temporada Académica de Verano 2020 Profesor: Luis Zegarra (lzegarra@uc.cl) Ayudante: Odette Ríos (ovrios@uc.cl)

Calculo II - MAT1620

Ayudantia 4

Ejercicio 1

Determinar el radio y el intervalo de convergencia de las siguientes series de potencia:

a)
$$\sum_{n=1}^{\infty} \frac{n(x+1)^n}{4^n}$$

c)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2+1}$$

b)
$$\sum_{n=1}^{\infty} n! (2x-1)^n$$

d)
$$\sum_{n=1}^{\infty} \frac{x^n}{2n-1}$$

Ejercicio 2

Determinar la representación y el radio de convergencia de la serie:

a)
$$f(x) = \frac{x}{2x^2+1}$$

a)
$$f(x) = \frac{x}{2x^2+1}$$
 c) $f(x) = \int \frac{\arctan(x)}{x} dx$ e) $f(x) = \cos(\frac{x^2}{2})$

e)
$$f(x) = \cos\left(\frac{x^2}{2}\right)$$

b)
$$f(x) = \ln\left(\frac{1+x}{1-x}\right)$$
 d) $f(x) = \frac{3}{x^2 - x - 2}$

d)
$$f(x) = \frac{3}{x^2 - x - 2}$$

Ejercicio 3

Encontrar la serie de Taylor y Maclaurin:

a)
$$f(x) = \frac{x}{\sqrt{4+x^2}}$$

c)
$$f(x) = \ln x$$
, centrada en $a = 2$

b)
$$f(x) = \sin x$$
, centrada en $a = \pi/2$

Ejercicio 4

Resolver la integral

$$\int \frac{\sin(x)}{x^2} dx \qquad \qquad \int_0^{\frac{1}{2}} x^3 \arctan(x) dx$$

Ejercicio 5

Calcular la suma de $\sum_{n=1}^{\infty} \frac{(-1)^n \pi^{2n}}{3^{2n} (2n)!}$

Propuesto

Para todos los valores de $c \in \mathbb{R}$ determine el radio de convergencia de la serie de potencias $\sum_{n=0}^{\infty} (c^n - 1)x^n$