Choosing the Right Machine Learning Problem

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Canonical problems in ML

Classification, regression, clustering, dimensionality reduction

More specialized problem categories

Supervised vs. Unsupervised learning

Reinforcement vs. Supervised learning

Choosing the Right Machine Learning Problem

Classification

Regression

Clustering

reduction

Classify input data into categories

Regression

Clustering

Classification Use Cases

Predict categories

Email: spam or ham?

Stocks: Buy, sell or hold?

Images: Cat, dog or mouse?

Text: Positive, negative or neutral

sentiment?

Predict continuous numeric values

Clustering

Regression Use Cases

Given past stock data predict price tomorrow

Given characteristics of a car predict mileage

Given location and attributes of a home predict price

Classification

Regression

Clustering

Classification

Regression

Discover patterns and groupings in data

Clustering Use Cases

Document discovery - find all documents related to homicide cases

Social media ad targeting - find all users who are interested in sports

Classification

Regression

Clustering

Dimensionality Reduction Use Cases

Find latent drivers of stock movements

Pre-process data to build more robust machine learning models

Improve performance of models in training

Supervised Learning

Classification

Regression

Clustering

Unsupervised Learning

Classification

Regression

Clustering

Specialized Problem Categories

Recommendation Systems

Recommend products to users

Association Rules Detection

Detect transactions that occur together

Reinforcement Learning

Train agent to navigate an uncertain environment

Broad Solution Categories

Use-case

Image data

Complex textual data

Sequential or time series data

Linear x-variables

Twisted data (S-curves, Swiss Rolls)

Large numbers of x-variables

Problem

Convolutional Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

Linear and logistic regression, PCA

Manifold learning

Decision trees

Supervised and Unsupervised Learning

"What lies behind us and what lies ahead of us are tiny matters compared to what lives within us"

Henry David Thoreau

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Whales: Fish or Mammals?

ML-based Classifier

Training

Feed in a large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

"Traditional" ML-based Binary Classifier

"Traditional" ML-based Binary Classifier

"Traditional" ML-based Binary Classifier

$$y = f(x)$$

Supervised Machine Learning

Most machine learning algorithms seek to "learn" the function f that links the features and the labels

$$y = Wx + b$$

$$f(x) = Wx + b$$

Linear regression specifies, up-front, that the function f is linear

```
def doSomethingReallyComplicated(x1,x2...):
    ...
    ...
    return complicatedResult
```

f(x) = doSomethingReallyComplicated(x)

ML algorithms such as neural network can "learn" (reverse-engineer) pretty much anything given the right training data

Unsupervised Learning learns patterns in data without a labeled corpus

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Supervised Learning

Input variable x and output variable y

Learn the mapping function y = f(x)

Approximate the mapping function so for new values of x we can predict y

Use existing dataset to correct our mapping function approximation

Unsupervised Learning

Only have input data x - no output data

Model the underlying structure to learn more about data

Algorithms self discover the patterns and structure in the data

No Labelled Training Data

Why Look Within?

To be emotionally self-sufficient

To learn what values matter (to you)

Identify others who share them...

..and those who don't

Eliminate what does not matter

In general, to train yourself to

navigate the outside world

Why Look Within?

In Life

To be emotionally self-sufficient

To learn what values matter to you

Identify others who share them...

..and those who don't

Eliminate what does not matter

In general, to train yourself to navigate the outside world

In Machine Learning

To make unlabelled data self-sufficient

Latent factor analysis

Clustering

Anomaly detection

Quantization

Pre-training for supervised learning problems (classification, regression)

Unsupervised Learning Use-cases

ML Technique

To make unlabelled data self-sufficient

Latent factor analysis

Clustering

Anomaly detection

Quantization

Pre-training for supervised learning problems (classification, regression)

Use-case

Identify photos of a specific individual
Find common drivers of 200 stocks
Find relevant document in a corpus
Flag fraudulent credit card transactions
Compress true color (24 bit) to 8 bit
All of the above!

Unsupervised Learning Use-cases

What

How

To make unlabelled data self-sufficient

Latent factor analysis

Autoencoder

Autoencoder

Clustering

Clustering

Anomaly detection

Autoencoder

Quantization

Clustering

Pre-training for supervised learning problems (classification, regression)

All of the above!

Unsupervised Learning

Classification

Regression

Clustering

"If you ask the wrong question, you will never get the right answer"

Supervised and Unsupervised Learning

Neither supervised nor unsupervised learning will work in an **unknown** environment

Train decision makers to take actions to maximize rewards in an uncertain environment

Train decision makers to take actions to maximize rewards in an uncertain environment

Software decision makers i.e. programs or agents

Train decision makers to take actions to maximize rewards in an uncertain environment

The output of the program is a set of actions, rather than a set of predictions

Train decision makers to take actions to maximize rewards in an uncertain environment

The algorithm that determines these actions is called the **policy**

Train decision makers to take actions to maximize rewards in an uncertain environment

Those actions must be optimized to earn rewards (and avoid punishments)

Train decision makers to take actions to maximize rewards in an uncertain environment

Those rewards and punishments are externally imposed (by the environment)

Train decision makers to take actions to maximize rewards in an uncertain environment

The environment is complex, so the reward/ punishment for actions is usually not known in advance

Train decision makers to take actions to maximize rewards in an uncertain environment

The decision maker (program) needs to be trained to explore that uncertain environment - combining caution and courage

Train decision makers to take actions to maximize rewards in an uncertain environment

Agent - the decision maker in an environment

Observes the environment

Takes actions

Gets rewards

The policy determines the action

Policy is determined by exploring the environment using an algorithm

Reinforcement Learning Use Cases

Robotics: Self-navigating robots

Text mining: Generating summaries of text data

Healthcare: Optimizing medication dosing

Reinforcement vs. Supervised/Unsupervised

Reinforcement Learning

Objective: choose "best" actions

Environment is uncertain

Supervised/Unsupervised Learning

Objective: Predict, classify or simplify

Environment is known (x is known)

Reinforcement vs. Supervised/Unsupervised

Reinforcement Learning

Training involves exploring the environment

Wrong actions get punished, right actions get rewarded

Training process involves determining the "best" policy

Explicit dependency of rewards on previous actions

Supervised/Unsupervised Learning

Training involves finding patterns in data or is entirely absent

Loss of incorrect predictions used to train model

Training process involves fitting the "best" model

Individual points are independent of each other

Recommendation Systems

Recommendation Systems

Approaches to Recommendations

Content-based

Estimate rating using this user and this product alone

Collaborative

Employ information about other users, products too

Hybrid

Combine both contentbased and collaborative filtering

Approaches to Recommendations

Content-based

Estimate rating using this user and this product alone

Collaborative

Employ information about other users, products too

Hybrid

Combine both contentbased and collaborative filtering

Content-based Filtering

Individual Users **Products Personalized Views** Recommendations Personalized **Purchases** Recommendations

Content-based Filtering

Match product description to user profile Two significant drawbacks

- Requires accurate, rich product metadata
- Hard to extend across product types

Approaches to Recommendations

Content-based

Estimate rating using this user and this product alone

Collaborative

Employ information about other users, products too

Hybrid

Combine both contentbased and collaborative filtering

Users who agreed in the past will agree in the future, and that they will like similar kinds of items as they liked in the past

Users who agreed in the past will agree in the future, and that they will like similar kinds of items as they liked in the past

Users who agreed in the past will agree in the future, and that they will like similar kinds of items as they liked in the past

"People who buy X also buy Y"

Recommendation Systems

Estimate how a user would rate every product

Recommend the products to the user which have the highest estimated ratings

Summary

Canonical problems in ML

Classification, regression, clustering, dimensionality reduction

More specialized problem categories

Supervised vs. Unsupervised learning

Reinforcement vs. Supervised learning