

STM32F302xx STM32F303xx

ARM Cortex-M4F 32b MCU+FPU, up to 256KB Flash+48KB SRAM 4 ADCs, 2 DACs, 7 comp, 4 PGA, timers, 2.0-3.6 V operation

Datasheet - production data

Features

- Core: ARM® 32-bit CortexTM-M4F CPU (72 MHz max), single-cycle multiplication and HW division, DSP instruction with FPU (floating-point unit) and MPU (memory protection unit).
- Operating conditions:
 - V_{DD}, V_{DDA} voltage range: 2.0 V to 3.6 V
- Memories
 - 128 to 256 Kbytes of Flash memory
 - Up to 40 Kbytes of SRAM on data bus with HW parity check
 - 8 Kbytes of SRAM on instruction bus with HW parity check (CCM)
- CRC calculation unit
- Reset and supply management
 - Power-on/Power down reset (POR/PDR)
 - Programmable voltage detector (PVD)
 - Low power modes: Sleep, Stop and Standby
 - VBAT supply for RTC and backup registers
- Clock management
 - 4 to 32 MHz crystal oscillator
 - 32 kHz oscillator for RTC with calibration
 - Internal 8 MHz RC with x 16 PLL option
 - Internal 40 kHz oscillator
- Up to 87 fast I/Os
 - All mappable on external interrupt vectors
 - Several 5 V-tolerant
- 12-channel DMA controller
- Up to four ADC 0.20 µS (up to 39 channels) with selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, separate analog supply from 2 to 3.6 V
- Up to two 12-bit DAC channels with analog supply from 2.4 to 3.6 V
- Seven fast rail-to-rail analog comparators with analog supply from 2 to 3.6 V
- Up to four operational amplifiers that can be used in PGA mode, all terminal accessible with analog supply from 2.4 to 3.6 V
- Support for up to 24 capacitive sensing keys supporting touchkey, linear and rotary touchsensors

- Up to 13 timers
 - One 32-bit timer and two 16-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
 - Up to two 16-bit 6-channel advanced-control timers, with up to 6 PWM channels, deadtime generation and emergency stop
 - One 16-bit timer with 2 IC/OCs, 1 OCN/PWM, deadtime generation and emergency stop
 - Two 16-bit timers with IC/OC/OCN/PWM, deadtime generation and emergency stop
 - Two watchdog timers (independent, window)
 - SysTick timer: 24-bit downcounter
 - Up to two 16-bit basic timers to drive the DAC
- Calendar RTC with Alarm, periodic wakeup from Stop/Standby
- Communication interfaces
 - CAN interface (2.0B Active)
 - Two I²C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP
 - Up to five USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control)
 - Up to three SPIs, two with multiplexed I²S interface, 4 to 16 programmable bit frame
 - USB 2.0 full speed interface
 - Infrared Transmitter
- Serial wire debug, JTAG, Cortex-M4F ETM
- 96-bit unique ID

Table 1. Device summary

Reference	Part number
STM32F302xx	STM32F302CB, STM32F302CC, STM32F302RB, STM32F302RC, STM32F302VB, STM32F302VC
STM32F303xx	STM32F303CB, STM32F303CC, STM32F303RB, STM32F303RC, STM32F303VB, STM32F303VC

Contents

1	Intro	duction .		8
2	Desc	ription		9
3	Func	tional ove	erview	. 13
	3.1	ARM [®] Co	ortex™-M4F core with embedded Flash and SRAM	. 13
	3.2	Memory p	protection unit	. 13
	3.3	Embedde	ed Flash memory	. 14
	3.4	Embedde	ed SRAM	. 14
	3.5	Boot mod	les	. 14
	3.6	CRC (cyc	clic redundancy check) calculation unit	. 14
	3.7	Power ma	anagement	. 14
			Power supply schemes	
		3.7.2 F	Power supply supervisor	15
		3.7.3	/oltage regulator	15
		3.7.4 L	Low-power modes	15
	3.8	Clocks an	nd startup	. 16
	3.9	GPIOs (g	eneral-purpose inputs/outputs)	. 18
	3.10	DMA (dire	ect memory access)	. 18
	3.11	Interrupts	and events	. 18
		3.11.1 N	Nested vectored interrupt controller (NVIC)	18
	3.12	Fast ADC	(analog-to-digital converter)	. 19
		3.12.1 T	Temperature sensor	19
		3.12.2 li	nternal voltage reference (V _{REFINT})	20
		3.12.3 \	/ _{BAT} battery voltage monitoring	20
		3.12.4	DPAMP reference voltage (VOPAMP)	20
	3.13	DAC (digi	tal-to-analog converter)	. 20
	3.14	Operation	nal amplifier	. 21
	3.15	Fast comp	parators	. 21
	3.16	Timers ar	nd watchdogs	. 21
		3.16.1 A	Advanced timers (TIM1, TIM8)	22
		3.16.2	General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)	23
		3.16.3 E	Basic timers (TIM6, TIM7)	23

		3.16.4	Independent watchdog	
		3.16.5	Window watchdog	
		3.16.6	SysTick timer	. 24
	3.17	Real-tin	ne clock (RTC) and backup registers	25
	3.18	I ² C bus		25
	3.19	Univers	al synchronous/asynchronous receiver transmitter (USART)	26
	3.20	Univers	al asynchronous receiver transmitter (UART)	27
	3.21	Serial p	eripheral interface (SPI)/Inter-integrated sound interfaces (I2S) .	27
	3.22	Controll	ler area network (CAN)	28
	3.23	Univers	al serial bus (USB)	28
	3.24	Infrared	Transmitter	28
	3.25	Touch s	sensing controller (TSC)	29
	3.26	Develop	oment support	31
		3.26.1	Serial wire JTAG debug port (SWJ-DP)	. 31
		3.26.2	Embedded trace macrocell™	. 31
4	Pinou	ıte and	pin description	32
•	1 11100	its and	pin description	5 2
5	Memo	ory map	pping	50
6	Electi	riaal ah	aracteristics	52
O				
	6.1		eter conditions	5.3
			MCC and a self-section of the	
		6.1.1	Minimum and maximum values	. 53
		6.1.1 6.1.2	Typical values	. 53 . 53
		6.1.1 6.1.2 6.1.3	Typical values	. 53 . 53 . 53
		6.1.1 6.1.2 6.1.3 6.1.4	Typical values	. 53 . 53 . 53 . 53
		6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	Typical values	. 53 . 53 . 53 . 53
		6.1.1 6.1.2 6.1.3 6.1.4	Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme	. 53 . 53 . 53 . 53 . 53
	6.2	6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	Typical values	. 53 . 53 . 53 . 53 . 54 . 54
	6.2 6.3	6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut	Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement e maximum ratings	. 53 . 53 . 53 . 53 . 54 . 54
		6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut	Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement	. 53 . 53 . 53 . 53 . 54 . 54 . 54
		6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut	Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement e maximum ratings ng conditions	. 53 . 53 . 53 . 53 . 54 . 54 . 56 . 58
		6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut Operation	Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement e maximum ratings ng conditions General operating conditions	. 53 . 53 . 53 . 53 . 54 . 54 . 56 . 58 . 58
		6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut Operation 6.3.1 6.3.2	Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement e maximum ratings ng conditions General operating conditions Operating conditions at power-up / power-down	. 53 . 53 . 53 . 53 . 54 . 54 . 56 . 58 . 59
		6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut Operation 6.3.1 6.3.2 6.3.3	Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement e maximum ratings ng conditions General operating conditions Operating conditions at power-up / power-down Embedded reset and power control block characteristics	. 53 . 53 . 53 . 53 . 54 . 54 . 56 . 58 . 58 . 59 . 61

		6.3.6	External clock source characteristics	70
		6.3.7	Internal clock source characteristics	76
		6.3.8	PLL characteristics	77
		6.3.9	Memory characteristics	79
		6.3.10	EMC characteristics	80
		6.3.11	Electrical sensitivity characteristics	81
		6.3.12	I/O current injection characteristics	82
		6.3.13	I/O port characteristics	84
		6.3.14	NRST pin characteristics	90
		6.3.15	Timer characteristics	91
		6.3.16	Communications interfaces	93
		6.3.17	ADC characteristics	102
		6.3.18	DAC electrical specifications	106
		6.3.19	Comparator characteristics	108
		6.3.20	Operational amplifer charateristics	110
		6.3.21	Temperature sensor characteristics	112
		6.3.22	V _{BAT} monitoring characteristics	112
7	Pack	cage cha	aracteristics	113
	7.1	Packag	ge mechanical data	113
	7.2	Therma	al characteristics	117
		7.2.1	Reference document	117
		7.2.2	Selecting the product temperature range	118
8	Part	number	ring	120
9	Revi	sion his	story	121

List of tables

Table 1.	Device summary	. 1
Table 2.	STM32F30x family device features and peripheral counts	
Table 3.	Temperature sensor calibration values	
Table 4.	Temperature sensor calibration values	
Table 5.	Timer feature comparison	
Table 6.	Comparison of I2C analog and digital filters	
Table 7.	STM32F30x I ² C implementation	
Table 8.	USART features	
Table 9.	STM32F30x SPI/I2S implementation	
Table 10.	Capacitive sensing GPIOs available on STM32F30x devices	
Table 11.	No. of capacitive sensing channels available on STM32F302xx/STM32F303xx devices .	30
Table 12.	Legend/abbreviations used in the pinout table	35
Table 13.	STM32F302xx/STM32F303xx pin definitions	
Table 14.	Alternate functions for port A	
Table 15.	Alternate functions for port B	
Table 16.	Alternate functions for port C	
Table 17.	Alternate functions for port D	
Table 18.	Alternate functions for port E	48
Table 19.	Alternate functions for port F	
Table 20.	STM32F30x memory map and peripheral register boundary	
	addresses	51
Table 21.	Voltage characteristics	
Table 22.	Current characteristics	57
Table 23.	Thermal characteristics	57
Table 24.	General operating conditions	58
Table 25.	Operating conditions at power-up / power-down	
Table 26.	Embedded reset and power control block characteristics	
Table 27.	Programmable voltage detector characteristics	
Table 28.	Embedded internal reference voltage	
Table 29.	Typical and maximum current consumption from V _{DD} supply at V _{DD} = 3.6 V	CO
Table 20	at $V_{DD} = 3.6 \text{ V}$	
Table 30.		
Table 31. Table 32.	Typical and maximum V _{DD} consumption in Stop and Standby modes	
Table 32.	Typical and maximum current consumption from V _{BAT} supply	
Table 33.	·	00
Table 34.	Typical current consumption in Run mode, code with data processing running from Flash	67
Table 35.	Typical current consumption in Sleep mode, code running from Flash or RAM	
Table 35.	High-speed external user clock characteristics	
Table 30.	Low-speed external user clock characteristics	
Table 37.	HSE oscillator characteristics	
Table 36.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	
Table 39.	HSI oscillator characteristics	
Table 40.	LSI oscillator characteristics	
Table 41.	Low-power mode wakeup timings	
Table 42.	PLL characteristics	
Table 43.	Flash memory characteristics	
Table 44.	Flash memory endurance and data retention	
. abio To.	- i idon inioniony origanation and data rotorition)	, ,

Table 46.	EMS characteristics	80
Table 47.	EMI characteristics	81
Table 48.	ESD absolute maximum ratings	81
Table 49.	Electrical sensitivities	82
Table 50.	I/O current injection susceptibility	83
Table 51.	I/O static characteristics	84
Table 52.	Output voltage characteristics	88
Table 53.	I/O AC characteristics	89
Table 54.	NRST pin characteristics	90
Table 55.	TIMx characteristics	
Table 56.	IWDG min/max timeout period at 40 kHz (LSI)	
Table 57.	WWDG min-max timeout value @72 MHz (PCLK)	92
Table 58.	I ² C characteristics	
Table 59.	I2C analog filter characteristics	
Table 60.	SPI characteristics	
Table 61.	I ² S characteristics	98
Table 62.	USB startup time	
Table 63.	USB DC electrical characteristics	
Table 64.	USB: Full-speed electrical characteristics	101
Table 65.	ADC characteristics	
Table 66.	Minimum sampling time to be respected for fast and slow channels	
Table 67.	ADC accuracy	
Table 68.	DAC characteristics	
Table 69.	Comparator characteristics	
Table 70.	Operational amplifier characteristics	
Table 71.	TS characteristics	
Table 72.	V _{BAT} monitoring characteristics	112
Table 73.	LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data	114
Table 74.	LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data	115
Table 75.	LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data	116
Table 76.	Package thermal characteristics	117
Table 77.	Ordering information scheme	120
Table 78.	Document revision history	121

List of figures

Figure 1.	STM32F302xx block diagram	1
Figure 2.	STM32F303xx block diagram	2
Figure 3.	Clock tree	7
Figure 4.	Infrared transmitter	
Figure 5.	STM32F302xx/STM32F303xx LQFP48 pinout	2
Figure 6.	STM32F302xx/STM32F303xx LQFP64 pinout	
Figure 7.	STM32F302xx/STM32F303xx LQFP100 pinout	1
Figure 8.	STM32F30x memory map50)
Figure 9.	Pin loading conditions53	3
Figure 10.	Pin input voltage	3
Figure 11.	Power supply scheme54	1
Figure 12.	Current consumption measurement scheme	1
Figure 13.	High-speed external clock source AC timing diagram7	ĺ
Figure 14.	Low-speed external clock source AC timing diagram72	2
Figure 15.	Typical application with an 8 MHz crystal	
Figure 16.	Typical application with a 32.768 kHz crystal	
Figure 17.	TC and TTa I/O input characteristics - CMOS port86	
Figure 18.	TC and TTa I/O input characteristics - TTL port	
Figure 19.	Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port	
Figure 20.	Five volt tolerant (FT and FTf) I/O input characteristics - TTL port87	7
Figure 21.	I/O AC characteristics definition	
Figure 22.	Recommended NRST pin protection	
Figure 23.	I ² C bus AC waveforms and measurement circuit	
Figure 24.	SPI timing diagram - slave mode and CPHA = 0	3
Figure 25.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾ 96	3
Figure 26.	SPI timing diagram - master mode ⁽¹⁾	7
Figure 27.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾ 99)
Figure 28.	I ² S master timing diagram (Philips protocol) ⁽¹⁾)
Figure 29.	USB timings: definition of data signal rise and fall time	
Figure 30.	ADC accuracy characteristics104	
Figure 31.	Typical connection diagram using the ADC105	
Figure 32.	12-bit buffered /non-buffered DAC	7
Figure 33.	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline	1
Figure 34.	Recommended footprint ⁽¹⁾	
Figure 35.	LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline	
Figure 36.	Recommended footprint ⁽¹⁾	5
Figure 37.	LQFP48 – 7 x 7mm, 48-pin low-profile quad flat	
	package outline	3
Figure 38.	Recommended footprint ⁽¹⁾	
Figure 39.	LOFP100 P _D max vs. T _A	1

57

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F30x microcontrollers.

This STM32F30x datasheet should be read in conjunction with the STM32F30x reference manual. The reference manual is available from the STMicroelectronics website www.st.com.

For information on the Cortex[™]-M4F core please refer to the Cortex[™]-M4F Technical Reference Manual, available from the www.arm.com website at the following address:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexm.m4/index.html

2 Description

The STM32F302xx/STM32F303xx family is based on the high-performance ARM® Cortex™-M4 32-bit RISC core operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash memory, up to 48 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

The devices offer up to four fast 12-bit ADCs (5 Msps), up to seven comparators, up to four operational amplifiers, up to two DAC channels, a low-power RTC, up to five general-purpose 16-bit timers, one general-purpose 32-bit timer, and two timers dedicated to motor control. They also feature standard and advanced communication interfaces: up to two I²Cs, up to three SPIs (two SPIs are with multiplexed full-duplex I2Ss on STM32F303xx devices), three USARTs, up to two UARTs CAN and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL.

The STM32F302xx/STM32F303xx family operates in the -40 to +85 $^{\circ}$ C and -40 to +105 $^{\circ}$ C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F302xx/STM32F303xx family offers devices in three packages ranging from 48 pins to 100 pins.

The set of included peripherals changes with the device chosen.

Table 2. STM32F30x family device features and peripheral counts

Peripheral			STM32F STM32F STM32F 302Cx 302Rx 302Vx		STM32F 303Cx		STM32F 303Rx		STM32F 303Vx				
Flash (Kbytes)		128	256	128	256	128	256	128	256	128	256	128	256
SRAM (Kby	ytes) on	24	32	24	32	24	32	32	40	32	40	32	40
	ytes) on bus (CCM: ed memory)						8						
	Advanced control			1 (16-	bit)					2 (1	6-bit)		
Timers	General purpose						(16-b (32 b						
	Basic			1 (16-	bit)					2 (1	6-bit)		
	SPI(I2S) ⁽¹⁾			3						3	(2)		
	I ² C						2						
Comm. interfaces	USART	3											
Interfaces	UART	2											
	CAN	1											
	USB						1						
	Normal I/Os (TC,TTa)	20		2	7	45		2	0	2	7	4	5
GPIOs	5 volts Tolerant I/Os (FT, Ftf)	1	7	2	25 42				17 25			42	
DMA chani	nels	12											
12-bit ADC	Ss	2						4					
12-bit DAC	channels	1						2					
Analog con	mparator	4						7					
Operationa	al amplifiers	2 4											
CPU freque	ency	72 MHz											
Operating	voltage					2.0	0 to 3.	6 V					
Operating temperatur	re		Ar	nbient o	perating Junctio	tempera on tempe					105 °C		
Packages		LQF	P48	LQF	P64	LQFP	100	LQF	P48	LQF	P64	LQFI	P100

In 128K and 256K Flash STM32F303xx devices the SPI interfaces can work in an exclusive way in either the SPI mode or the I²S audio mode.

Figure 1. STM32F302xx block diagram

1. AF: alternate function on I/O pins.

TPIU ETM Trace/Trig V_{DDIO} = 2 to 3.6 V TRADECLK Voltage reg. 3.3 V to 1.8V SWJTAG V_{SS} TRACED[0-3] as AF JTRST MPU/FPU Flash @V_{DDIO} FLASH 256 KB İbus JTDI JTCK/SWCLK JTMS/SWDAT 64 bits Supply POR ◀ Cortex M4 CPU Supervision NRESET POR /PDR CCM RAM JTDO As AF 8KB PVD SRAM NVIC @Vnn RC HS 8MHz @V_{DDIO} GP DMA1 RC LS XTAL OSC 4 -32 MHz OSC IN GP DMA2 OSC_OUT Ind. WDG32K ▶ AHBPCLK Standby interface → APBP1CLK $V_{BAT} = 1.65V \text{ to } 3.6V$ 12-bit ADC1 → APBP2CLK 12-bit ADC2 OSC32_IN OSC32_OUT AHB3 XTAL 32kHz clock → FCLK control → USARTCLK Backup Reg (64Byte) 12-bit ADC3 ANTI-TAMP → I2CCLK AWU ADC SAR 1/2/3/4 CLK 12-bit ADC4 Backup interface TIMER2 CRC 4 Channels, ETR as AF PA[15:0] GPIO PORT A (32-bit/PWM) TIMER 3 PB[15:0] GPIO PORT B > 4 Channels, ETR as AF TIMER 4 GPIO PORT C AHB2 PC[15:0] 4 Channels, ETR as AF PD[15:0] GPIO PORT D MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF SPI2/I2S GPIO PORT E PE[15:0] MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF 36 1 SPI3/I2S GPIO PORT F PF[7:0] USART2 RX, TX, CTS, RTS, as AF RX, TX, CTS, RTS, as AF APB1 USART3 XX Groups of 4 channels as AF RX, TX as AF UART4 AHB2 AHB2 UART5 > RX, TX as AF APB2 APB1 I2C1 SCL, SDA, SMBA as AF SCL, SDA, SMBA as AF 12C2 WinWATCHDOG bx CAN & CAN TX, CAN RX 512B SRAM XX AF USB SRAM 512B WKUP USB 2.0 FS 2 Channels,1 Comp TIMER 15 Channel, BRK as AF TIMER6 ► DAC1_CH1 as AF 1 Channel, 1 Comp Channel, BRK as AF TIMER 16 12bit DAC1 TIMER7 DAC1_CH2 as AF @V_{DDA} 1 Channel, 1 Comp Channel, BRK as AF TIMER 17 APB2 4 Channels, TIMER 1 / PWM 4 Comp channels. OpAmp1 >INxx / OUTxx ETR, BRK as AF INTERFACE OpAmp2 4 Channels INxx / OUTxx TIMER 8 / PWM 4 Comp channels ETR, BRK as AF SYSCFG CTL OpAmp3 INxx / OUTxx OnAmn4 MOSI, MISO, SCK,NSS as AF SPI1 @Vnna GP Comparator 7 RX, TX, CTS, RTS, GP Comparator...
GP Comparator 1 USART1 SmartCard as Al MS18960V4

Xx Ins. 7 OUTs as AF

STM32F303xx block diagram Figure 2.

1. AF: alternate function on I/O pins.

3 Functional overview

3.1 ARM[®] Cortex[™]-M4F core with embedded Flash and SRAM

The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32F302xx/STM32F303xx family is compatible with all ARM tools and software.

Figure 1 and *Figure 2* show the general block diagrams of the STM32F302xx/STM32F303xx family devices.

3.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

The Cortex-M4F processor is a high performance 32-bit processor designed for the microcontroller market. It offers significant benefits to developers, including:

- Outstanding processing performance combined with fast interrupt handling
- Enhanced system debug with extensive breakpoint and trace capabilities
- Efficient processor core, system and memories
- Ultralow power consumption with integrated sleep modes
- Platform security robustness with optional integrated memory protection unit (MPU)

With its embedded ARM core, the STM32F302xx/STM32F303xx devices are compatible with all ARM development tools and software.

3.3 Embedded Flash memory

All STM32F302xx/STM32F303xx devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).

3.4 Embedded SRAM

STM32F302xx/STM32F303xx devices feature up to 48 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running code from CCM, core coupled memory).

- 8 Kbytes of SRAM mapped on the instruction bus (Core Coupled Memory (CCM)), used to execute critical routines or to access data (parity check on all of CCM RAM).
- 40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM)

3.5 Boot modes

At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB(DFU).

3.6 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.7 Power management

3.7.1 Power supply schemes

- V_{SS} , V_{DD} = 2.0 to 3.6 V : external power supply for I/Os and the internal regulator. It is provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators operational amplifiers, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the DACs and operational amplifiers are used). The V_{DDA} voltage

level must be always greater or equal to the $V_{\mbox{\scriptsize DD}}$ voltage level and must be provided first

 V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.7.2 Power supply supervisor

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.7.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR), and power-down.

- The MR mode is used in the nominal regulation mode (Run)
- The LPR mode is used in Stop mode.
- The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The voltage regulator is always enabled after reset. It is disabled in Standby mode.

3.7.4 Low-power modes

The STM32F302xx/STM32F303xx supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- Sleep mode
 - In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
- Stop mode
 - Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC

and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD outpout, the USB wakeup on STM32F303xx devices, the RTC alarm, COMPx, I2Cx or U(S)ARTx.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.8 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

57

Figure 3. **Clock tree**

3.9 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.10 DMA (direct memory access)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose timers, DAC and ADC.

3.11 Interrupts and events

3.11.1 Nested vectored interrupt controller (NVIC)

The STM32F302xx/STM32F303xx devices embed a nested vectored interrupt controller (NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.12 Fast ADC (analog-to-digital converter)

Up to four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6 bit, are embedded in the STM32F302xx/STM32F303xx family devices. The ADCs have up to 39 external channels. Some of the external channels are shared between ADC1&2 and between ADC3&4, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADCs have also internal channels: Temperature sensor connected to ADC1 channel 16, $V_{BAT/2}$ connected to ADC1 channel 17, Voltage reference V_{REFINT} connected to the 4 ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4 channel 17.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold
- Single-shunt phase current reading techniques.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) and the advanced-control timers (TIM1 on all devices and TIM8 on STM32F303xx devices) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.12.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address					
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3.3 V	0x1FFF F7B8 - 0x1FFF F7B9					
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C V _{DDA} = 3.3 V	0x1FFF F7C2 - 0x1FFF F7C3					

Table 3. Temperature sensor calibration values

3.12.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN18 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Table 4. Temperature sensor calibration values

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 30 °C V _{DDA} = 3.3 V	0x1FFF F7BA - 0x1FFF F7BB

3.12.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN17. As the V_{BAT} voltage may be higher than V_{DDA} , and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.12.4 OPAMP reference voltage (VOPAMP)

Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4 channel 17.

3.13 DAC (digital-to-analog converter)

Up to two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- Up to two DAC output channels on STM32F303xx devices
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability on STM32F303xx devices
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions on STM32F303xx devices
- DMA capability (for each channel on STM32F303xx devices)
- External triggers for conversion

3.14 Operational amplifier

The STM32F302xx/STM32F303xx embeds up to four operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.

The operational amplifier features:

- 8 MHz GBP
- 0.5 mA output capability
- Rail-to-rail input/output
- In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.

3.15 Fast comparators

The STM32F302xx/STM32F303xx devices embed seven fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pin
- Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to *Table 28: Embedded internal reference voltage on page 61* for the value and precision of the internal reference voltage.

All comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined per pair into a window comparator

3.16 Timers and watchdogs

The STM32F302xx/STM32F303xx includes up to two advanced control timers, up to 6 general-purpose timers, two basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Table 5. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare Channels	Complementary outputs
Advanced	TIM1, TIM8 (on STM32F303xx devices only)	16-bit	Up, Down, Up/Down	Any integer between 1 and 65536	Yes	4	Yes
General- purpose	TIM2	32-bit	Up, Down, Up/Down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM3, TIM4	16-bit	Up, Down, Up/Down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7 (on STM32F303xx devices only)	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

3.16.1 Advanced timers (TIM1, TIM8)

The advanced-control timers (TIM1 on all devices and TIM8 on STM32F303xx devices) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIM timers (described in *Section 3.16.2* using the same architecture, so the advanced-control timers can work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

3.16.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)

There are up to six synchronizable general-purpose timers embedded in the STM32F302xx/STM32F303xx (see *Table 5* for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

TIM2, 3, and TIM4

These are full-featured general-purpose timers:

The counters can be frozen in debug mode.

- TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
- TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.

These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.

All have independent DMA request generation and support quadrature encoders.

TIM15, 16 and 17

These three timers general-purpose timers with mid-range features:

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM15 has 2 channels and 1 complementary channel
- TIM16 and TIM17 have 1 channel and 1 complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in debug mode.

3.16.3 Basic timers (TIM6, TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

3.16.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stopand Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.16.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.16.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

3.17 Real-time clock (RTC) and backup registers

The RTC and the 16 backup registers are supplied through a switch that takes power from either the V_{DD} supply when present or the V_{BAT} pin. The backup registers are sixteen 32-bit registers used to store 64 bytes of user application data when V_{DD} power is not present.

They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
- Two programmable alarms with wake up from Stopand Standby mode capability.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stopand Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.
- 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY capability.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32.

3.18 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

Analog filter Digital filter Pulse width of Programmable length from 1 to 15 ≥ 50 ns suppressed spikes I2C peripheral clocks 1. Extra filtering capability vs. **Benefits** Available in Stop mode standard requirements. 2. Stable length Disabled when Wakeup from Stop Variations depending on Drawbacks temperature, voltage, process mode is enabled

Table 6. Comparison of I2C analog and digital filters

In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.

The I2C interfaces can be served by the DMA controller.

Refer to *Table 7* for the features available in I2C1 and I2C2.

Table 7. STM32F30x I²C implementation

I2C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х
Independent clock	Х	Х
SMBus	Х	Х
Wakeup from STOP	Х	Х

^{1.} X = supported.

3.19 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32F302xx/STM32F303xx devices have three embedded universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).

The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.

They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller.

3.20 Universal asynchronous receiver transmitter (UART)

The STM32F302xx/STM32F303xx devices have 2 embedded universal asynchronous receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC, multiprocessor communication mode and single-wire half-duplex communication mode. The UART interfaces can be served by the DMA controller.

Refer to Table 8 for the features available in all U(S)ARTs interfaces

Table 8. USART features

USART modes/features ⁽¹⁾	USART1	USART2	USART3	USART4	USART5
Hardware flow control for modem	Х	Х	Х		
Continuous communication using DMA	Х	Х	Х	Х	Х
Multiprocessor communication	Х	Х	Х	Х	Х
Synchronous mode	Х	Х	Х		
Smartcard mode	Х	Х	Х		
Single-wire half-duplex communication	Х	Х	Х	Х	Х
IrDA SIR ENDEC block	Х	Х	Х	Х	Х
LIN mode	Х	Х	Х	Х	Х
Dual clock domain and wakeup from Stop mode	Х	Х	Х	Х	Х
Receiver timeout interrupt	Х	Х	Х	Х	Х
Modbus communication	Х	Х	Х	Х	Х
Auto baud rate detection	Х	Х	Х		
Driver Enable	Х	Х	Х		

^{1.} X = supported.

3.21 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.

Refer to Table 9 for the features available in SPI1, SPI2 and SPI3

SPI features ⁽¹⁾	SPI1	SPI2	SPI3
Hardware CRC calculation	Х	X	X
Rx/Tx FIFO	Х	Х	Х
NSS pulse mode	Х	Х	Х
I2S mode		Х	Х
TI mode	Х	Х	Х

Table 9. STM32F30x SPI/I2S implementation

3.22 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.23 Universal serial bus (USB)

The STM32F302xx/STM32F303xx medium and high density devices embed an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

3.24 Infrared Transmitter

The STM32F302xx/STM32F303xx devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.

TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

^{1.} X = supported.

Figure 4. Infrared transmitter

3.25 Touch sensing controller (TSC)

Capacitive sensing technology is able to detect the presence of a finger near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. The STM32F302xx/STM32F303xx devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Table 10. Capacitive sensing GPIOs available on STM32F30x devices

Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0
1	TSC_G1_IO2	PA1
'	TSC_G1_IO3	PA2
	TSC_G1_IO4	PA3
	TSC_G2_IO1	PA4
2	TSC_G2_IO2	PA5
۷	TSC_G2_IO3	PA6
	TSC_G2_IO4	PA7
	TSC_G3_IO1	PC5
3	TSC_G3_IO2	PB0
3	TSC_G3_IO3	PB1
	TSC_G3_IO4	PB2
	TSC_G4_IO1	PA9
4	TSC_G4_IO2	PA10
4	TSC_G4_IO3	PA13
	TSC_G4_IO4	PA14

Group	Capacitive sensing signal name	Pin name
	TSC_G5_IO1	PB3
5	TSC_G5_IO2	PB4
5	TSC_G5_IO3	PB6
	TSC_G5_IO4	PB7
	TSC_G6_IO1	PB11
6	TSC_G6_IO2	PB12
O	TSC_G6_IO3	PB13
	TSC_G6_IO4	PB14
	TSC_G7_IO1	PE2
7	TSC_G7_IO2	PE3
,	TSC_G7_IO3	PE4
	TSC_G7_IO4	PE5
8	TSC_G8_IO1	PD12
	TSC_G8_IO2	PD13
	TSC_G8_IO3	PD14
	TSC_G8_IO4	PD15

Table 11. No. of capacitive sensing channels available on STM32F302xx/STM32F303xx devices

Analog I/O group	Number of capacitive sensing channels					
Analog I/O group	STM32F30xVx	STM32F30xRx	STM32F30xCx			
G1	3	3	3			
G2	3	3	3			
G3	3	3	2			
G4	3	3	3			
G5	3	3	3			
G6	3	3	3			
G7	3	0	0			
G8	3	0	0			
Number of capacitive sensing channels	24	18	17			

3.26 Development support

3.26.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.26.2 Embedded trace macrocell™

The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F302xx/STM32F303xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

4 Pinouts and pin description

Figure 5. STM32F302xx/STM32F303xx LQFP48 pinout

Figure 6. STM32F302xx/STM32F303xx LQFP64 pinout

577

Figure 7. STM32F302xx/STM32F303xx LQFP100 pinout

Table 12. Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Definition		
Pin name Unless otherwise specified in brackets below the pin name, the pin fun during and after reset is the same as the actual pin name			·		
		S	Supply pin		
Pin	type	I Input only pin			
		I/O	Input / output pin		
		FT	5 V tolerant I/O		
		FTf 5 V tolerant I/O, FM+ capable			
I/O etr	ucture	TTa 3.3 V tolerant I/O directly connected to ADC			
1/0 511	ucture	TC Standard 3.3V I/O			
		B Dedicated BOOT0 pin			
		RST	RST Bidirectional reset pin with embedded weak pull-up resist		
Notes		Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset			
Pin functions	Alternate functions	Functions selected through GPIOx_AFR registers			
	Additional functions	Functions directly selected/enabled through peripheral registers			

Table 13. STM32F302xx/STM32F303xx pin definitions

Pi	n numb		Pin name				Pin functions	
LQF P100	LQF P64	LQF P48	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1			PE2	I/O	FT	(1)	TRACECK, TIM3_CH1, TSC_G7_IO1	
2			PE3	I/O	FT	(2)(1)	TRACED0, TIM3_CH2, TSC_G7_IO2	
3			PE4	I/O	FT	(1)	TRACED1, TIM3_CH3, TSC_G7_IO3	
4			PE5	I/O	FT	(1)	TRACED2, TIM3_CH4, TSC_G7_IO4	
5			PE6	I/O	FT	(1)	TRACED3	WKUP3, RTC_TAMP3
6	1	1	V_{BAT}	S			Backup pow	er supply
7	2	2	PC13	I/O	TC		TIM1_CH1N	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT
8	3	3	PC14 - OSC32_I N (PC14)	I/O	TC			OSC32_IN
9	4	4	PC15- OSC32_O UT (PC15)	I/O	TC			OSC32_OUT
10			PF9	I/O	FT	(1)	TIM15_CH1 SPI2_SCK	
11			PF10	I/O	FT	(1)	TIM15_CH2 SPI2_SCK	
12	5	5	PF0- OSC_IN (PF0)	I/O	FTf		TIM1_CH3N, I2C2_SDA	OSC_IN
13	6	6	PF1- OSC_OU T (PF1)	I/O	FTf		I2C2_SCL	OSC_OUT
14	7	7	NRST	I/O	RST		Device reset input / internal	reset output (active low)
15	8		PC0	I/O	TTa	(1)		ADC12_IN6, COMP7_INM ⁽³⁾
16	9		PC1	I/O	TTa	(1)		ADC12_IN7, COMP7_INP ⁽³⁾
17	10		PC2	I/O	TTa	(1)	COMP7_OUT ⁽³⁾	ADC12_IN8
18	11		PC3	I/O	TTa	(1)	TIM1_BKIN2	ADC12_IN9
19			PF2	I/O	TTa	(1)		ADC12_IN10
20	12	8	V _{SSA} / V _{REF-}	S			Analog ground/Negative reference voltage	
21			V _{REF+}	S		(1)	Positive reference voltage	
22			V_{DDA}	S		(1)	Analog power supply	
	13	9	V _{DDA} , V _{REF+}	S			Analog power supply/Positive reference voltage	

Table 13. STM32F302xx/STM32F303xx pin definitions (continued)

Pir	n numb	er	Pin name	e	ure		Pin fun	ctions
LQF P100	LQF P64	LQF P48	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
23	14	10	PA0	I/O	ТТа		USART2_CTS, TIM2_CH1_ETR, TIM8_BKIN ⁽³⁾ , TIM8_ETR ⁽³⁾ , TSC_G1_IO1, COMP1_OUT	ADC1_IN1, COMP1_INM, RTC_ TAMP2, WKUP1, COMP7_INP ⁽³⁾
24	15	11	PA1	I/O	TTa		USART2_RTS, TIM2_CH2, TSC_G1_IO2TIM15_CH1N ⁽³⁾	ADC1_IN2, COMP1_INP, OPAMP1_VINP, OPAMP3_VINP ⁽³⁾
25	16	12	PA2	I/O	TTa		USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3, COMP2_OUT	ADC1_IN3, COMP2_INM, AOP1_OUT
26	17	13	PA3	I/O	TTa		USART2_RX, TIM2_CH4, TIM15_CH2, TSC_G1_IO4,	ADC1_IN4, OPAMP1_VINP, COMP2_INP, OPAMP1_VINM
27	18		PF4	I/O	TTa	(1)	COMP1_OUT	ADC1_IN5
28	19		V_{DD_4}	S		(1)		
29	20	14	PA4	I/O	ТТа		SPI1_NSS, SPI3_NSS/I2S3_WS ⁽³⁾ , USART2_CK, TSC_G2_IO1, TIM3_CH2	ADC2_IN1, DAC1_OUT1, OPAMP4_VINP, COMP1_INM4, COMP2_INM4, COMP3_INM4, COMP4_INM4, COMP5_INM4, COMP6_INM4, COMP7_INM4
30	21	15	PA5	I/O	TTa		SPI1_SCK, TIM2_CH1_ETR, TSC_G2_IO2	ADC2_IN2, DAC1_OUT2 ⁽³⁾ , OPAMP1_VINP, OPAMP2_VINM, OPAMP3_VINP, COMP1_INM5, COMP2_INM5, COMP3_INM5, COMP4_INM5, COMP5_INM5, COMP6_INM5, COMP6_INM5,
31	22	16	PA6	1/0	TTa		SPI1_MISO, TIM3_CH1, TIM8_BKIN ⁽³⁾ , TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3	ADC2_IN3, AOP2_OUT
32	23	17	PA7	I/O	TTa		SPI1_MOSI, TIM3_CH2, TIM17_CH1, TIM1_CH1N, TIM8_CH1N, TSC_G2,_IO4, COMP2_OUT	ADC2_IN4, COMP2_IN, OPAMP2_VINP, OPAMP1_VINP
33	24		PC4	I/O	TTa	(1)	USART1_TX	ADC2_IN5

Table 13. STM32F302xx/STM32F303xx pin definitions (continued)

Pi	n numb	er	Pin name	e	ure		Pin fun	ctions
LQF P100	LQF P64	LQF P48	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
34	25		PC5	1/0	TTa	(1)	USART1_RX, TSC_G3_IO1	ADC2_IN11, OPAMP2_VINM, OPAMP1_VINM
35	26	18	PB0	I/O	TTa		TIM3_CH3, TIM1_CH2N, TIM8_CH2N ⁽³⁾ , TSC_G3_IO2	ADC3_IN12 ⁽³⁾ , COMP4_INP, OPAMP3_VINP ⁽³⁾ , OPAMP2_VINP
36	27	19	PB1	I/O	TTa		TIM3_CH4, TIM1_CH3N, TIM8_CH3N ⁽³⁾ , COMP4_OUT, TSC_G3_IO3	ADC3_IN1 ⁽³⁾ , AOP3_OUT
37	28	20	PB2	I/O	TTa		TSC_G3_IO4	ADC2_IN12, COMP4_INM, OPAMP3_VINM ⁽³⁾
38			PE7	I/O	TTa	(1)	TIM1_ETR	ADC3_IN13 ⁽³⁾ , COMP4_INP
39			PE8	I/O	TTa	(1)	TIM1_CH1N	COMP4_INM,ADC34_IN6 ⁽³⁾
40			PE9	I/O	TTa	(1)	TIM1_CH1	ADC3_IN2 ⁽³⁾
41			PE10	I/O	TTa	(1)	TIM1_CH2N	ADC3_IN14 ⁽³⁾
42			PE11	I/O	TTa	(1)	TIM1_CH2	ADC3_IN15 ⁽³⁾
43			PE12	I/O	TTa	(1)	TIM1_CH3N	ADC3_IN16 ⁽³⁾
44			PE13	I/O	TTa	(1)	TIM1_CH3	ADC3_IN3 ⁽³⁾
45			PE14	I/O	TTa	(1)	TIM1_CH4, TIM1_BKIN2	ADC4_IN1 ⁽³⁾
46			PE15	I/O	TTa	(1)	USART3_RX, TIM1_BKIN	ADC4_IN2 ⁽³⁾
47	29	21	PB10	I/O	TTa		USART3_TX, TIM2_CH3, TSC_SYNC	COMP5_INM ⁽³⁾ , OPAMP4_VINM ⁽³⁾ , OPAMP3_VINM ⁽³⁾
48	30	22	PB11	I/O	ТТа		USART3_RX, TIM2_CH4, TSC_G6_IO1	COMP6_INP, OPAMP4_VINP ⁽³⁾
49	31	23	VSS_2	S			Digital g	ground
50	32	24	VDD_2	S			Digital pow	
51	33	25	PB12	I/O	TTa		SPI2_NSS/I2S2_WS ⁽³⁾ , I2C2_SMBA, USART3_CK, TIM1_BKIN, TSC_G6_IO2	ADC4_IN3 ⁽³⁾ , COMP3_INM, AOP4_OUT,
52	34	26	PB13	I/O	TTa		SPI2_SCK/I2S2_CK ⁽³⁾ , USART3_CTS, TIM1_CH1N, TSC_G6_IO3	ADC3_IN5 ⁽³⁾ , COMP5_INP ⁽³⁾ , OPAMP4_VINP ⁽³⁾ , OPAMP3_VINP ⁽³⁾
53	35	27	PB14	I/O	ТТа		SPI2_MISO/I2S2ext_SD ⁽³⁾ , USART3_RTS, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4	COMP3_INP ⁽³⁾ , ADC4_IN4 ⁽³⁾ , OPAMP2_VINP
54	36	28	PB15	I/O	TTa		SPI2_MOSI/I2S2_SD ⁽³⁾ , TIM1_CH3N, TIM15_CH1N, TIM15_CH2	ADC4_IN5 ⁽³⁾ , RTC_REFIN, COMP6_INM

Table 13. STM32F302xx/STM32F303xx pin definitions (continued)

Pi	n numb	er	Pin name	ē	ure		Pin fund	ctions
LQF P100	LQF P64	LQF P48	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
55			PD8	I/O	TTa	(1)	USART3_TX	ADC4_IN12 ⁽³⁾ , OPAMP4_VINM ⁽³⁾
56			PD9	I/O	TTa	(1)	USART3_RX	ADC4_IN13 ⁽³⁾
57			PD10	I/O	TTa	(1)	USART3_CK	ADC34_IN7 ⁽³⁾ ,COMP6_INM
58			PD11	I/O	TTa	(1)	USART3_CTS	ADC34_IN8 ⁽³⁾ ,COMP6_INP, OPAMP4_VINP ⁽³⁾
59			PD12	I/O	TTa	(1)	USART3_RTS, TIM4_CH1, TSC_G8_IO1	ADC34_IN9 ⁽³⁾ , COMP5_INP ⁽³⁾
60			PD13	I/O	TTa	(1)	TIM4_CH2, TSC_G8_IO2	ADC34_IN10 ⁽³⁾ , COMP5_INM ⁽³⁾
61			PD14	I/O	TTa	(1)	TIM4_CH3, TSC_G8_IO3	COMP3_INP, ADC34_IN11 ⁽³⁾ , OPAMP2_VINP
62			PD15	I/O	TTa	(1)	SPI2_NSS, TIM4_CH4, TSC_G8_IO4	COMP3_INM
63	37		PC6	I/O	FT	(1)	I2S2_MCK ⁽³⁾ , COMP6_OUT ⁽³⁾ , TM8_CH1, TIM3_CH1	
64	38		PC7	I/O	FT	(1)	I2S3_MCK ⁽³⁾ , TIM8_CH2 ⁽³⁾ , TIM3_CH2, COMP5_OUT ⁽³⁾	
65	39		PC8	I/O	FT	(1)	TIM8_CH3 ⁽³⁾ , TIM3_CH3, COMP3_OUT	
66	40		PC9	I/O	FT	(1)	TIM8_CH4 ⁽³⁾ , TIM8_BKIN2 ⁽³⁾ , TIM3_CH4, I2S_CKIN ⁽³⁾	
67	41	29	PA8	I/O	FT		I2C2_SMBA, I2S2_MCK ⁽³⁾ , USART1_CK, TIM1_CH1, TIM4_ETR, MCO ⁽³⁾ , COMP3_OUT ⁽³⁾	
68	42	30	PA9	I/O	FTf		I2C2_SCL, I2S3_MCK ⁽³⁾ , USART1_TX, TIM1_CH2, TIM2_CH3, TIM15_BKIN, TSC_G4_IO1, COMP5_OUT ⁽³⁾	
69	43	31	PA10	I/O	FTf		I2C2_SDA, USART1_RX, TIM1_CH3, TIM2_CH4, TIM8_BKIN ⁽³⁾ , TIM17_BKIN, TSC_G4_IO2, COMP6_OUT	
70	44	32	PA11	I/O	FT		USART1_CTS, USBDM, CAN_RX, TIM1_CH1N, TIM1_CH4, TIM1_BKIN2, TIM4_CH1, COMP1_OUT	
71	45	33	PA12	I/O	FT		USART1_RTS, USBDP, CAN_TX, TIM1_CH2N, TIM1_ETR, TIM4_CH2, TIM16_CH1, COMP2_OUT	

Table 13. STM32F302xx/STM32F303xx pin definitions (continued)

Pi	n numb		Pin name			otes	Pin fund	etions
LQF P100	LQF P64	LQF P48	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
72	46	34	PA13	I/O	FT		USART3_CTS, TIM4_CH3, TIM16_CH1N, TSC_G4_IO3, IR_OUT, SWDAT-JTMS	
73			PF6	I/O	FTf	(1)	I2C2_SCL, USART3_RTS, TIM4_CH4	
74	47	35	VSS_3	S			Grou	nd
75	48	36	VDD_3	S			Digital power	er supply
76	49	37	PA14	I/O	FTf		I2C1_SDA, USART2_TX, TIM8_CH2, TIM1_BKIN, TSC_G4_IO4, SWCLK-JTCK	
77	50	38	PA15	I/O	FTf		I2C1_SCL, SPI1_NSS, SPI3_NSS/I2S3_WS, JTDI, USART2_RX, TIM1_BKIN, TIM2_CH1_ETR, TIM8_CH1	
78	51		PC10	I/O	FT	(1)	SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, TIM8_CH1N	
79	52		PC11	I/O	FT	(1)	SPI3_MISO/I2S3ext_SD ⁽³⁾ , USART3_RX, UART4_RX, TIM8_CH2N ⁽³⁾	
80	53		PC12	I/O	FT	(1)	SPI3_MOSI/I2S3_SD ⁽³⁾ , USART3_CK, UART5_TX, TIM8_CH3N ⁽³⁾	
81			PD0	I/O	FT	(1)	CAN_RX	
82			PD1	I/O	FT	(1)	CAN_TX, TIM8_CH4, TIM8_BKIN2 ⁽³⁾	
83	54		PD2	I/O	FT	(1)	UART5_RX, TIM3_ETR, TIM8_BKIN ⁽³⁾	
84			PD3	I/O	FT	(1)	USART2_CTS, TIM2_CH1_ETR	
85			PD4	I/O	FT	(1)	USART2_RTS, TIM2_CH2	
86			PD5	I/O	FT	(1)	USART2_TX	
87			PD6	I/O	FT	(1)	USART2_RX, TIM2_CH4	
88			PD7	I/O	FT	(1)	USART2_CK, TIM2_CH3	
89	55	39	PB3	I/O	FT		SPI3_SCK/I2S3_CK ⁽³⁾ , SPI1_SCK, USART2_TX, TIM2_CH2, TIM3_ETR, TIM4_ETR, TIM8_CH1N ⁽³⁾ , TSC_G5_IO1, JTDO- TRACESWO	

Table 13. STM32F302xx/STM32F303xx pin definitions (continued)

Pi	n numb	er	Pin name	ø	ure		Pin func	tions			
LQF P100	LQF P64	LQF P48	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions			
90	56	40	PB4	I/O	FT		SPI3_MISO/I2S3ext_SD ⁽³⁾ , SPI1_MISO, USART2_RX, TIM3_CH1, TIM16_CH1, TIM17_BKIN, TIM8_CH2N ⁽³⁾ , TSC_G5_IO2, NJTRST				
91	57	41	PB5	I/O	FT		SPI3_MOSI, SPI1_MOSI, I2S3_SD, I2C1_SMBA, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM8_CH3N ⁽³⁾ , TIM17_CH1				
92	58	42	PB6	I/O	FTf		I2C1_SCL, USART1_TX, TIM16_CH1N, TIM4_CH1, TIM8_CH1 ⁽³⁾ , TSC_G5_IO3, TIM8_ETR, TIM8_BKIN2 ⁽³⁾				
93	59	43	PB7	I/O	FTf		I2C1_SDA, USART1_RX, TIM3_CH4, TIM4_CH2, TIM17_CH1N, TIM8_BKIN, TSC_G5_IO4				
94	60	44	BOOT0	I	В		Boot memory	/ selection			
95	61	45	PB8	I/O	FTf		I2C1_SCL, CAN_RX, TIM16_CH1, TIM4_CH3, TIM8_CH2 ⁽³⁾ , TIM1_BKIN, TSC_SYNC, COMP1_OUT				
96	62	46	PB9	I/O	FTf		I2C1_SDA, CAN_TX, TIM17_CH1, TIM4_CH4, TIM8_CH3 ⁽³⁾ , IR_OUT, COMP2_OUT				
97			PE0	I/O	FT	(1)	USART1_TX, TIM4_ETR, TIM16_CH1				
98			PE1	I/O	FT	(1)	USART1_RX, TIM17_CH1				
99	63	47	VSS_1	S			Grou	nd			
100	64	48	VDD_1	S			Digital power supply				

^{1.} When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must not be configured in analog mode.

^{2.} Function availability depends on the chosen device.

^{3.} On STM32F303xx devices only.

Tab	le 14.	Alternate	e functio	ns for p	ort A												
AF n°	Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
7	PA0		TIM2_ CH1_ ETR		TSC_ G1_IO1				USART2 _CTS	COMP1 _OUT	TIM8_ BKIN	TM8_ ETR					EVENT OUT
5	PA1		TIM2_ CH2		TSC_ G1_IO2				USART2 _RTS		TIM15_ CH1N						EVENT OUT
6	PA2		TIM2_ CH3		TSC_ G1_IO3				USART2 _TX	COMP2 _OUT	TIM15_ CH1						EVENT OUT
5	PA3		TIM2_ CH4		TSC_ G1_IO4				USART2 _RX		TIM15_ CH2						EVENT OUT
6	PA4			TIM3_ CH2	TSC_ G2_IO1		SPI1_ NSS	SPI3_ NSS/ I2S3_ WS	USART2 _CK								EVENT OUT
4	PA5		TIM2_ CH1_ ETR		TSC_ G2_IO2		SPI1_ SCK										EVENT OUT
8	PA6		TIM16_ CH1	TIM3_ CH1	TSC_ G2_IO3	TIM8_ BKIN	SPI1_ MISO	TIM1_ BKIN		COMP1 _OUT							EVENT OUT
8	PA7		TIM17_ CH1	TIM3_ CH2	TSC_ G2_IO4	TIM8_ CH1N	SPI1_ MOSI	TIM1_ CH1N		COMP2 _OUT							EVENT OUT
8	PA8	мсо				I2C2_ SMBA	I2S2_ MCK	TIM1_ CH1	USART1 _CK	COMP3 _OUT		TIM4_ ETR					EVENT OUT
9	PA9				TSC_ G4_IO1	I2C2_ SCL	I2S3_ MCK	TIM1_ CH2	USART1 _TX	COMP5 _OUT	TIM15_ BKIN	TIM2_ CH3					EVENT OUT
9	PA10		TIM17_ BKIN		TSC_ G4_IO2	I2C2_ SDA		TIM1_ CH3	USART1 _RX	COMP6 _OUT		TIM2_ CH4	TIM8_ BKIN				EVENT OUT
9	PA11							TIM1_ CH1N	USART1 _CTS	COMP1 _OUT	CAN_RX	TIM4_ CH1	TIM1_ CH4	TIM1_ BKIN2		USBDM	EVENT OUT

Table 14. Alternate functions for port A

AF n°	Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
9	PA12		TIM16_ CH1					TIM1_ CH2N	USART1 _RTS	COMP2 _OUT	CAN_TX	TIM4_ CH2	TIM1_ ETR			USBDP	EVENT OUT
7	PA13	JTMS- SWDAT	TIM16_ CH1N		TSC_ G4_IO3		IR-Out		USART3 _CTS			TIM4_ CH3					EVENT OUT
7	PA14	JTCK- SWCLK			TSC_ G4_IO4	I2C1_ SDA	TIM8_ CH2	TIM1_ BKIN	USART2 _TX								EVENT OUT
9	PA15	JTDI	TIM2_ CH1_ ETR	TIM8_ CH1		I2C1_ SCL	SPI1_ NSS	SPI3_ NSS/ I2S3_ WS	USART2 _RX		TIM1_ BKIN						EVENT

EVENT

OUT

Alternate functions for port B Table 15. Port & AF0 AF1 AF2 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF n° AF3 AF4 AF15 Pin Name TSC_ TIM3 TIM8 **EVENT** 5 TIM1 CH2N PB0 G3 1O2 СНЗ CH2N OUT TIM3 TSC_ TIM8 COMP4 **EVENT** 6 PB1 TIM1_CH3N G3 1O3 CH3N CH4 OUT OUT TSC_ **EVENT** 2 PB2 G3_IO4 OUT JTDO/ TIM2 TIM4 TSC_ TIM8 SPI1_ SPI3_SCK USART2 TIM3_ **EVENT** TRACE 10 PB3 CH2 G5 IO1 SCK ETR CH1N ETR OUT /I2S3 CK ΤX SWO TIM3 TSC_ TIM8 SPI1 SPI3_MISO/ USART2 TIM17_ **EVENT** TIM16 **NJTRST** 10 PB4 G5 IO2 MISO BKIN CH1 CH1 CH2N I2S3ext SD OUT RXSPI1_ SPI3_MOSI/ USART2 TIM16 TIM3 TIM8_ I2C1_ TIM17 **EVENT** PB5 MOSI CH1 CH2 CH3N SMBA 12S3 SD CK OUT **BKIN** USART1 TIM4 TSC_ TIM16 TIM8 TIM8 **EVENT** I2C1_SCL TIM8_CH1 PB6 CH1 G5_IO3 BKIN2 CH1N ETR OUT TX USART1_ TIM4_ TSC_ 12C1_ TIM8_ TIM3_ TIM17 **EVENT** PB7 CH2 G5_IO4 CH4 CH1N SDA BKIN RX OUT TIM4 TSC COMP1 **EVENT** TIM8 TIM1 TIM16 CAN_RX I2C1 SCL 10 PB8 СНЗ SYNC OUT CH2 CH1 BKIN OUT I2C1_ COMP2_ TIM17 TIM4 TIM8_ **EVENT** CAN_TX PB9 **IR-OUT** СНЗ CH4 SDA OUT CH1 OUT TSC_ USART3 **EVENT** TIM2 PB10 **SYNC** CH3 TX OUT TSC_ USART3 **EVENT** TIM2 PB11 G6_IO1 CH4 RX OUT

TIM1_

BKIN

SPI2 NSS/

12S2_WS

USART3_

CK

TSC_

G6_IO2

12C2_

SMBA

PB12

6

Table 15. Alternate functions for port B

AF n°	Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF12	AF15
5	PB13				TSC_ G6_IO3		SPI2_SCK/ I2S2_CK	TIM1_ CH1N	USART3_ CTS					EVENT OUT
6	PB14		TIM15_ CH1		TSC_ G6_IO4		SPI2_MISO/ I2S2ext_SD		USART3_ RTS					EVENT OUT
5	PB15		TIM15_ CH2	TIM15 _CH1N		TIM1_ CH3N	SPI2_MOSI/ I2S2_SD							EVENT OUT

Table 16. Alternate functions for port C

AF n°	Port & Pin Name	AF1	AF2	AF3	AF4	AF5	AF6	AF7
1	PC0	EVENTOUT						
1	PC1	EVENTOUT						
2	PC2	EVENTOUT		COMP7_OUT				
2	PC3	EVENTOUT					TIM1_BKIN2	
2	PC4	EVENTOUT						USART1_TX
3	PC5	EVENTOUT		TSC_G3_IO1				USART1_RX
5	PC6	EVENTOUT	TIM3_CH1		TIM8_CH1		I2S2_MCK	COMP6_OUT
5	PC7	EVENTOUT	TIM3_CH2		TIM8_CH2		I2S3_MCK	COMP5_OUT
4	PC8	EVENTOUT	TIM3_CH3		TIM8_CH3			COMP3_OUT
5	PC9	EVENTOUT	TIM3_CH4		TIM8_CH4	I2S_CKIN	TIM8_BKIN2	
5	PC10	EVENTOUT			TIM8_CH1N	UART4_TX	SPI3_SCK/I2S3_CK	USART3_TX
5	PC11	EVENTOUT			TIM8_CH2N	UART4_RX	SPI3_MISO/I2S3ext_SD	USART3_RX
5	PC12	EVENTOUT			TIM8_CH3N	UART5_TX	SPI3_MOSI/I2S3_SD	USART3_CK
	PC13				TIM1_CH1N			
	PC14							
	PC15							

Table 17. Alternate functions for port D

AF n°	Port & Pin Name	AF1	AF2	AF3	AF1	AF5	AF6	AF7
2	PD0	EVENTOUT						CAN_RX
4	PD1	EVENTOUT			TIM8_CH4		TIM8_BKIN2	CAN_TX
4	PD2	EVENTOUT	TIM3_ETR		TIM8_BKIN	UART5_RX		
3	PD3	EVENTOUT	TIM2_CH1_ETR					USART2_CTS
3	PD4	EVENTOUT	TIM2_CH2					USART2_RTS
2	PD5	EVENTOUT						USART2_TX
3	PD6	EVENTOUT	TIM2_CH4					USART2_RX
3	PD7	EVENTOUT	TIM2_CH3					USART2_CK
2	PD8	EVENTOUT						USART3_TX
2	PD9	EVENTOUT						USART3_RX
2	PD10	EVENTOUT						USART3_CK
2	PD11	EVENTOUT						USART3_CTS
4	PD12	EVENTOUT	TIM4_CH1	TSC_G8_IO1				USART3_RTS
3	PD13	EVENTOUT	TIM4_CH2	TSC_G8_IO2				
3	PD14	EVENTOUT	TIM4_CH3	TSC_G8_IO3				
4	PD15	EVENTOUT	TIM4_CH4	TSC_G8_IO4			SPI2_NSS	

Table 18.	Alternate functions for port E
-----------	--------------------------------

AF n°	Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF6	AF7
4	PE0		EVENTOUT	TIM4_ETR		TIM16_CH1		USART1_TX
3	PE1		EVENTOUT			TIM17_CH1		USART1_RX
4	PE2	TRACECK	EVENTOUT	TIM3_CH1	TSC_G7_IO1			
4	PE3	TRACED0	EVENTOUT	TIM3_CH2	TSC_G7_IO2			
4	PE4	TRACED1	EVENTOUT	TIM3_CH3	TSC_G7_IO3			
4	PE5	TRACED2	EVENTOUT	TIM3_CH4	TSC_G7_IO4			
2	PE6	TRACED3	EVENTOUT					
2	PE7		EVENTOUT	TIM1_ETR				
2	PE8		EVENTOUT	TIM1_CH1N				
2	PE9		EVENTOUT	TIM1_CH1				
2	PE10		EVENTOUT	TIM1_CH2N				
2	PE11		EVENTOUT	TIM1_CH2				
2	PE12		EVENTOUT	TIM1_CH3N				
2	PE13		EVENTOUT	TIM1_CH3				
3	PE14		EVENTOUT	TIM1_CH4			TIM1_BKIN2	
3	PE15		EVENTOUT	TIM1_BKIN				USART3_RX

Table 19. Alternate functions for port F

AF n°	Port & Pin Name	AF1	AF2	AF3	AF4	AF5	AF6	AF7
2	PF0				I2C2_SDA		TIM1_CH3N	
1	PF1				I2C2_SCL			
1	PF2	EVENTOUT						
2	PF4	EVENTOUT	COMP1_OUT					
4	PF6	EVENTOUT	TIM4_CH4		I2C2_SCL			USART3_RTS
3	PF9	EVENTOUT		TIM15_CH1		SPI2_SCK		
3	PF10	EVENTOUT		TIM15_CH2		SPI2_SCK		

Doc ID 023353 Rev 2

5 Memory mapping

Figure 8. STM32F30x memory map

Table 20. STM32F30x memory map and peripheral register boundary addresses

Bus	Boundary address	Size	Peripheral
	,,,	(bytes)	. onphora:
AHB3	0x5000 0400 - 0x5000 07FF	1 K	ADC3 - ADC4
7.1.20	0x5000 0000 - 0x5000 03FF	1 K	ADC1 - ADC2
	0x4800 1800 - 0x4FFF FFFF	~132 M	Reserved
	0x4800 1400 - 0x4800 17FF	1 K	GPIOF
	0x4800 1000 - 0x4800 13FF	1 K	GPIOE
AHB2	0x4800 0C00 - 0x4800 0FFF	1 K	GPIOD
ALIDZ	0x4800 0800 - 0x4800 0BFF	1 K	GPIOC
	0x4800 0400 - 0x4800 07FF	1 K	GPIOB
	0x4800 0000 - 0x4800 03FF	1 K	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 M	Reserved
	0x4002 4000 - 0x4002 43FF	1 K	TSC
	0x4002 3400 - 0x4002 3FFF	3 K	Reserved
	0x4002 3000 - 0x4002 33FF	1 K	CRC
	0x4002 2400 - 0x4002 2FFF	3 K	Reserved
ALIDA	0x4002 2000 - 0x4002 23FF	1 K	Flash interface
AHB1	0x4002 1400 - 0x4002 1FFF	3 K	Reserved
	0x4002 1000 - 0x4002 13FF	1 K	RCC
	0x4002 0800 - 0x4002 0FFF	2 K	Reserved
	0x4002 0400 - 0x4002 07FF	1 K	DMA2
	0x4002 0000 - 0x4002 03FF	1 K	DMA1
	0x4001 8000 - 0x4001 FFFF	32 K	Reserved
	0x4001 4C00 - 0x4001 7FFF	13 K	Reserved
	0x4001 4800 - 0x4001 4BFF	1 K	TIM17
	0x4001 4400 - 0x4001 47FF	1 K	TIM16
	0x4001 4000 - 0x4001 43FF	1 K	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 K	Reserved
ADDO	0x4001 3800 - 0x4001 3BFF	1 K	USART1
APB2	0x4001 3400 - 0x4001 37FF	1 K	TIM8
	0x4001 3000 - 0x4001 33FF	1 K	SPI1
	0x4001 2C00 - 0x4001 2FFF	1 K	TIM1
	0x4001 0800 - 0x4001 2BFF	9 K	Reserved
	0x4001 0400 - 0x4001 07FF	1 K	EXTI
	0x4001 0000 - 0x4001 03FF	1 K	SYSCFG + COMP + OPAMP

Table 20. STM32F30x memory map and peripheral register boundary addresses (continued)

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 8000 - 0x4000 FFFF	32 K	Reserved
	0x4000 7800 - 0x4000 7FFF	2 K	Reserved
	0x4000 7400 - 0x4000 77FF	1 K	DAC (dual)
	0x4000 7000 - 0x4000 73FF	1 K	PWR
	0x4000 6C00 - 0x4000 6FFF	1 K	Reserved
	0x4000 6800 - 0x4000 6BFF	1 K	Reserved
	0x4000 6400 - 0x4000 67FF	1 K	bxCAN
	0x4000 6000 - 0x4000 63FF	1 K	USB SRAM 512 bytes
	0x4000 5C00 - 0x4000 5FFF	1 K	USB device FS
	0x4000 5800 - 0x4000 5BFF	1 K	I2C2
	0x4000 5400 - 0x4000 57FF	1 K	I2C1
	0x4000 5000 - 0x4000 53FF	1 K	UART5
	0x4000 4C00 - 0x4000 4FFF	1 K	UART4
	0x4000 4800 - 0x4000 4BFF	1 K	USART3
APB1	0x4000 4400 - 0x4000 47FF	1 K	USART2
APDI	0x4000 4000 - 0x4000 43FF	1 K	I2S3ext
	0x4000 3C00 - 0x4000 3FFF	1 K	SPI3/I2S3
	0x4000 3800 - 0x4000 3BFF	1 K	SPI2/I2S2
	0x4000 3400 - 0x4000 37FF	1 K	I2S2ext
	0x4000 3000 - 0x4000 33FF	1 K	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 K	WWDG
	0x4000 2800 - 0x4000 2BFF	1 K	RTC
	0x4000 1800 - 0x4000 27FF	4 K	Reserved
	0x4000 1400 - 0x4000 17FF	1 K	TIM7
	0x4000 1000 - 0x4000 13FF	1 K	TIM6
	0x4000 0C00 - 0x4000 0FFF	1 K	Reserved
	0x4000 0800 - 0x4000 0BFF	1 K	TIM4
	0x4000 0400 - 0x4000 07FF	1 K	TIM3
	0x4000 0000 - 0x4000 03FF	1 K	TIM2

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 9.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.

Figure 9. Pin loading conditions

Figure 10. Pin input voltage

C = 50 pF

MCU pin

MS19210V1

MS19211V1

6.1.6 Power supply scheme

Figure 11. Power supply scheme

 Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins.

Caution:

Each power supply pair (V_{DD}/V_{SS} , V_{DDA}/V_{SSA} etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.1.7 Current consumption measurement

Figure 12. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 21: Voltage characteristics*, *Table 22: Current characteristics*, and *Table 23: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 21. Voltage characteristics⁽¹⁾

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	V_{DD} – V_{SS} External main supply voltage (including V_{DDA} , V_{BAT} and V_{DD})		4.0	
V_{DD} – V_{DDA}	Allowed voltage difference for V _{DD} > V _{DDA}		0.4	
	Input voltage on FT and FTf pins	V _{SS} - 0.3	V _{DD} + 4.0	V
V _{IN} ⁽²⁾	Input voltage on TTa pins	V _{SS} - 0.3	4.0	
	Input voltage on any other pin	V _{SS} - 0.3	4.0	
I∆V _{DDx} I	Variations between different V _{DD} power pins		50	mV
IV _{SSX} – V _{SS} I	V _{SSX} – V _{SS}		50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3.11: Electrical sensitivity characteristics		

All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

^{2.} V_{IN} maximum must always be respected. Refer to *Table 22: Current characteristics* for the maximum allowed injected current values.

Table 22. Current characteristics⁽¹⁾

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} and VDDSDx power lines (source) ⁽²⁾	TBD	
I _{VSS}	Total current out of V _{SS} and VSSSD ground lines (sink) ⁽²⁾	TBD	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	- 25	
21	Total output current sunk by sum of all IOs and control pins	75	m 1
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all IOs and control pins	75	mA mA
	Injected current on FT, FTf and B pins ⁽³⁾	-5/+0	
I _{INJ(PIN)}	Injected current on TC and RST pin ⁽⁴⁾	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
Σl _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

- 1. TBD stands for "to be defined".
- 2. All main power (V_{DD}, V_{DDA}) and ground $(V_{SS}, VSSSD)$ and $V_{SSA})$ pins must always be connected to the external power supply, in the permitted range.
- 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- 4. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 21: Voltage characteristics* for the maximum allowed input voltage values.
- A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 21: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 67*.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 23. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	150	°C

6.3 Operating conditions

6.3.1 General operating conditions

Table 24. General operating conditions⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency		0	72		
f _{PCLK1}	Internal APB1 clock frequency		0	36	MHz	
f _{PCLK2}	Internal APB2 clock frequency		0	72		
V _{DD}	Standard operating voltage		2	3.6	V	
V	Analog operating voltage (OPAMP and DAC not used)	Must have a potential equal	2	3.6	V	
V _{DDA}	Analog operating voltage (OPAMP and DAC used)	to or higher than V _{DD}	2.4	3.6	V	
V _{BAT}	Backup operating voltage		1.65	3.6	V	
	Power dissipation at T _A =	LQFP100		TBD		
P_{D}	85 °C for suffix 6 or T _A = 105 °C for suffix 7 ⁽²⁾	LQFP64		TBD	mW	
		LQFP48		TBD		
	Ambient temperature for 6	Maximum power dissipation	-40	85	°C	
TA	suffix version	Low power dissipation ⁽³⁾	-40	105	°C	
IA	Ambient temperature for 7	Maximum power dissipation	-40	105	°C	
	suffix version	Low power dissipation ⁽³⁾	-40	125	٠٠	
TJ	lunction tomporature range	6 suffix version	-40	105	°C	
IJ	Junction temperature range	7 suffix version	-40	125		

^{1.} TBD stands for "to be defined".

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see *Table 23: Thermal characteristics*).

^{3.} In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see *Table 23: Thermal characteristics*).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 25* are derived from tests performed under the ambient temperature condition summarized in *Table 24*.

Table 25. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate		0	∞	
t _{VDD}	V _{DD} fall time rate		20	∞	us/V
t _{VDDA}	V _{DDA} rise time rate		0	∞	μ5/ ν
	V _{DDA} fall time rate		20	∞	

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Table 26. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR/PDR} ⁽¹⁾	Power on/power down reset threshold	Falling edge	1.8 ⁽²⁾	1.88	1.96	٧
Y POR/PDR		Rising edge	1.84	1.92	2.0	٧
V _{PDRhyst} ⁽¹⁾	PDR hysteresis			40		mV
t _{RSTTEMPO} (3)	Reset temporization		1.5	2.5	4.5	ms

The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only V_{DD}.

Table 27. Programmable voltage detector characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V	PVD threshold 0	Rising edge	2.1	2.18	2.26	V
V _{PVD0}	F VD tillesiloid 0	Falling edge	2	2.08	2.16	V
V	PVD threshold 1	Rising edge	2.19	2.28	2.37	٧
V _{PVD1}	PVD threshold 1	Falling edge	2.09	2.18	2.27	٧
V	PVD threshold 2	Rising edge	2.28	2.38	2.48	V
V _{PVD2}		Falling edge	2.18	2.28	2.38	V
V	PVD threshold 3	Rising edge	2.38	2.48	2.58	٧
V _{PVD3}		Falling edge	2.28	2.38	2.48	V
V	PVD threshold 4	Rising edge	2.47	2.58	2.69	V
V_{PVD4}	PVD Inreshold 4	Falling edge	2.37	2.48	2.59	V

^{2.} The product behavior is guaranteed by design down to the minimum $V_{\mbox{\scriptsize POR/PDR}}$ value.

^{3.} Guaranteed by design, not tested in production

Table 27. Programmable voltage detector characteristics (continued)

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V	PVD threshold 5	Rising edge	2.57	2.68	2.79	V
V _{PVD5}	F VD tillesiloid 5	Falling edge	2.47	2.58	2.69	٧
V	PVD threshold 6	Rising edge	2.66	2.78	2.9	V
V _{PVD6}		Falling edge	2.56	2.68	2.8	V
V	PVD threshold 7	Rising edge	2.76	2.88	3	٧
V _{PVD7}		Falling edge	2.66	2.78	2.9	V
V _{PVDhyst} ⁽²⁾	PVD hysteresis			100		mV
IDD(PVD)	PVD current consumption			0.15	0.26	μΑ

^{1.} Data based on characterization results only, not tested in production.

^{2.} Guaranteed by design, not tested in production.

6.3.4 Embedded reference voltage

The parameters given in *Table 28* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Table 28. Embedded internal reference voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Internal reference voltage	-40 °C < T _A < +105 °C	1.16	1.2	1.25	V
V _{REFINT}	Internal reference voltage	-40 °C < T _A < +85 °C	1.16	1.2	1.24 ⁽¹⁾	V
T _{S_vrefint}	ADC sampling time when reading the internal reference voltage		2.2	-	-	μs
V _{RERINT}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV			10 ⁽²⁾	mV
T _{Coeff}	Temperature coefficient				100 ⁽²⁾	ppm/°C

^{1.} Data based on characterization results, not tested in production.

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 12: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK2} = f_{HCLK} and f_{PCLK1} = f_{HCLK/2}

The parameters given in *Table 29* to *Table 33* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24*.

^{2.} Guaranteed by design, not tested in production

Table 29. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V_{DD}

	at VDD	Conditions		All	periphe	erals en	abled	All	periphe	erals dis	abled	
Symbol	Parameter		f _{HCLK}	Time	М	ax @ T,	A ⁽¹⁾	Turn	M	Unit		
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
			72 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		External	48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		clock (HSE	32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Supply	bypass)	24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	current in Run mode,		8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	executing		1 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	from Flash		64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		Internal clock (HSI)	32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	mA
I _{DD}			72 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		External	48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		clock (HSE	32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Supply	bypass)	24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	current in		8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Run mode, executing from RAM		1 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	-
		Internal clock (HSI)	32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		(24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	

Table 29. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V (continued)

				All	periphe	erals en	abled	All	periphe	erals dis	abled	
Symbol	Parameter	Conditions	f _{HCLK}	Tun	Max @ T _A ⁽¹⁾			Тур	M	Unit		
				Тур	25 °C	85 °C	105 °C	тур	25 °C	85 °C	105 °C	
			72 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Supply current in	External clock (HSE bypass)	48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Sleep mode,		8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	mΛ
I _{DD}	executing		1 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	- mA
	from Flash or RAM		64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	OI TIAW		48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		Internal clock (HSI)	32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	

^{1.} Data based on characterization results, not tested in production unless otherwise specified.

Table 30. Typical and maximum current consumption from the V_{DDA} supply

					V _{DDA}	= 2.4 V			V _{DDA}	= 3.6 V		
Symbol	Parameter	Conditions (1)	f _{HCLK}	T	М	ax @ T _A	(2)	T	М	ax @ T _A	(2)	Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
			72 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		HSE	64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		bypass,	48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		PLL on	32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Cupply		24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Supply current in	HSE	8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Run mode, code	bypass, PLL off	1 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	executing		72 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	from Flash or RAM		64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		HSI clock, PLL on	48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		HSI clock, PLL off	8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
I _{DDA}		HSE bypass,	72 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	μΑ
			64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	-
			48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		PLL on	32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Supply		24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	current in	HSE	8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Sleep mode,	bypass, PLL off	1 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	code executing		72 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	from Flash or RAM		64 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	OI HAIVI	HSI clock, PLL on	48 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			32 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			24 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	•
		HSI clock, PLL off	8 MHz	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	

^{1.} Current consumption from the V_{DDA} supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, I_{DDA} is independent from the frequency.

^{2.} Data based on characterization results, not tested in production.

Table 31. Typical and maximum V_{DD} consumption in Stop and Standby modes

			$Typ \ @ V_DD \ (V_DD \text{=} V_DDA)$						Max			
Symbol	Parameter	Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
Supply current in	Regulator in run mode, all oscillators OFF	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD		
I _{DD}	Stop mode	Regulator in low-power mode, all oscillators OFF	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	μA
S	1- 1- 7	LSI ON and IWDG ON	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	current in Standby mode	LSI OFF and IWDG OFF	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	

Table 32. Typical and maximum V_{DDA} consumption in Stop and Standby modes

			DDA -		Тур @	V _{DD} (V _{DD} =	V _{DDA})			Max ⁽¹⁾		
Symbol	Parameter	Conditions		2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in Stop mode	NO	Regulator in run mode, all oscillators OFF	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		oring	Regulator in low-power mode, all oscillators OFF	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	Supply	Δ	LSI ON and IWDG ON	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
	current in Standby mode		LSI OFF and IWDG OFF	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
I _{DDA}	Supply	ш.	Regulator in run mode, all oscillators OFF	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	μА
) G	Regulator in low-power mode, all oscillators OFF	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
			LSI ON and IWDG ON	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		V _{DDA}	LSI OFF and IWDG OFF	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	

^{1.} Data based on characterization results, not tested in production.

Max⁽¹⁾ Typ @V_{BAT} = 1.8 V **Symbol Parameter Conditions** Unit = 1.65 \ T_A = 25 °C T_A = 105 °C $T_A =$ 2.4 2.7 3.3 = 3.6 85 °C LSE & RTC ON; "Xtal mode" lower driving TBD TBD TBD TBD TBD TBD TBD TBD **TBD** capability; Backup LSEDRV[1:0] = '00' domain μΑ I_{DD_VBAT} supply LSE & RTC ON; "Xtal current mode" higher driving TBD TBD TBD TBD TBD TBD TBD **TBD TBD** capability; LSEDRV[1:0] = '11'

Table 33. Typical and maximum current consumption from V_{BAT} supply

Typical current consumption

The MCU is placed under the following conditions:

- $V_{DD} = V_{DDA} = 3.3 \text{ V}$
- All I/O pins are in analog input configuration
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz)
- Prefetech is ON when the peripherals are enabled, otherwise it is OFF
- When the peripherals are enabled, $f_{APB1} = f_{AHB/2}$, $f_{APB2} = f_{AHB}$
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

^{1.} Data based on characterization results, not tested in production.

Table 34. Typical current consumption in Run mode, code with data processing running from Flash

				Ty	ур						
Symbol	Parameter	Conditions	f _{HCLK}	Peripherals enabled	Peripherals disabled	Unit					
			72 MHz	TBD	TBD						
			64 MHz	TBD	TBD	1					
			48 MHz	TBD	TBD	1					
			36 MHz	TBD	TBD	1					
			32 MHz	TBD	TBD	1					
	Supply current in Run mode from		24 MHz	TBD	TBD] _m ^					
I _{DD}	V _{DD} supply		16 MHz	TBD	TBD	mA					
			8 MHz	TBD	TBD						
			4 MHz	TBD	TBD						
		Running from HSE crystal clock 8 MHz,	2 MHz	TBD	TBD						
			1 MHz	TBD	TBD						
			500 kHz	TBD	TBD						
		code executing from	72 MHz	TBD	TBD						
		Flash	64 MHz	TBD	TBD						
			48 MHz	TBD	TBD	1					
			36 MHz	TBD	TBD	1					
			32 MHz	TBD	TBD	1					
I _{DDA} ⁽¹⁾	Supply current in Run mode from							24 MHz	TBD	TBD	Ī [
IDDA'''	V _{DDA} supply				16 MHz	TBD	TBD	μA			
	25/(113		8 MHz	TBD	TBD	1					
			4 MHz	TBD	TBD	1					
			2 MHz	TBD	TBD	1					
			1 MHz	TBD	TBD	1					
			500 kHz	TBD	TBD	1					

^{1.} V_{DDA} monitoring is off.

Table 35. Typical current consumption in Sleep mode, code running from Flash or RAM

Symbol		-		Ту	/p	
Symbol	Parameter	Conditions	f _{HCLK}	Peripherals enabled	Peripherals disabled	Unit
			72 MHz	TBD	TBD	
			64 MHz	TBD	TBD	
			48 MHz	TBD	TBD	
			36 MHz	TBD	TBD	
			32 MHz	TBD	TBD	
	Supply current in		24 MHz	TBD	TBD	
I _{DD}	Sleep mode from		16 MHz	TBD	TBD	mA
	V _{DD} supply		8 MHz	TBD	TBD	
			4 MHz	TBD	TBD	
			2 MHz	TBD	TBD	
		Running from HSE crystal clock 8 MHz,	1 MHz	TBD	TBD	
			500 kHz	TBD	TBD	
			125 kHz	TBD	TBD	
		code executing from	72 MHz	TBD	TBD	
		Flash or RAM	64 MHz	TBD	TBD	
			48 MHz	TBD	TBD	
			36 MHz	TBD	TBD	
			32 MHz	TBD	TBD	
	Supply current in		24 MHz	TBD	TBD	
I _{DDA} ⁽¹⁾	Run mode from		16 MHz	TBD	TBD	μΑ
	V _{DDA} supply		8 MHz	TBD	TBD	
			4 MHz	TBD	TBD	
			2 MHz	TBD	TBD	
			1 MHz	TBD	TBD	
			500 kHz	TBD	TBD	
			125 kHz	TBD	TBD]

^{1.} V_{DDA} monitoring is off

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 51: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously, the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: $C = C_{INT} + C_{EXT}$

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 21

6.3.6 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.13*. However, the recommended clock input waveform is shown in *Figure 13*.

Table 36. High-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}		V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}		0.3V _{DD}	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		15			ns
t _{r(HSE)}	OSC_IN rise or fall time ⁽¹⁾				20	115

^{1.} Guaranteed by design, not tested in production.

Figure 13. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.13*. However, the recommended clock input waveform is shown in *Figure 14*

Table 37. Low-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾			32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}		V_{DD}	>
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}		0.3V _{DD}	V
t _{w(LSEH)}	OSC32_IN high or low time ⁽¹⁾		450			ns
$\begin{array}{c} t_{r(\text{LSE})} \\ t_{f(\text{LSE})} \end{array}$	OSC32_IN rise or fall time ⁽¹⁾				50	110

^{1.} Guaranteed by design, not tested in production.

Figure 14. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 38*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 38.	HSE oscillator characteristics
IADIC JO.	

Symbol	Parameter	Parameter Conditions ⁽¹⁾		Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency		4	8	32	MHz
R_{F}	Feedback resistor			200		kΩ
		During startup ⁽³⁾			8.5	
		V _{DD} =3.3 V, Rm= 30Ω, CL=10 pF@8 MHz		0.4		
	HSE current consumption	V _{DD} =3.3 V, Rm= 45Ω, CL=10 pF@8 MHz		0.5		
I _{DD}		V _{DD} =3.3 V, Rm= 30Ω, CL=10 pF@32 MHz		0.8		mA
		V _{DD} =3.3 V, Rm= 30Ω, CL=10 pF@32 MHz		1		
		V _{DD} =3.3 V, Rm= 30Ω, CL=10 pF@32 MHz		1.5		
g _m	Oscillator transconductance	Startup	10			mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized		2		ms

- 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 2. Guaranteed by design, not tested in production.
- 3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time
- 4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 15*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Resonator with integrated capacitors c_{L1} fHSE OSC_IN Bias `8 MHz controlled resonator gain $R_{\text{EXT}}^{(1)}$ MS19876V1

Figure 15. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 39. LSE oscillator characteristics (f_{LSE} = 32.768 kHz)

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		LSEDRV[1:0]=00 lower driving capability		0.5	0.9	
	LSE current consumption	LSEDRV[1:0]=01 medium low driving capability			1	
I _{DD}	LSE current consumption	LSEDRV[1:0]=10 medium high driving capability			1.3	μA
		LSEDRV[1:0]=11 higher driving capability			1.6	
	Oscillator transconductance	LSEDRV[1:0]=00 lower driving capability	5			
<u> </u>		LSEDRV[1:0]=01 medium low driving capability	8			μ Α /V
9 _m		LSEDRV[1:0]=10 medium high driving capability	15			μΑνν
		LSEDRV[1:0]=11 higher driving capability	25			
t _{SU(LSE)} (3)	Startup time	V _{DD} is stabilized		2		S

Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

^{2.} Guaranteed by design, not tested in production.

^{3.} t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Figure 16. Typical application with a 32.768 kHz crystal

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.7 Internal clock source characteristics

The parameters given in *Table 40* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24*.

High-speed internal (HSI) RC oscillator

Table 40. HSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency		-	8		MHz
TRIM	HSI user trimming step		-	-	1 ⁽²⁾	%
DuCy _(HSI)	Duty cycle		45 ⁽²⁾	-	55 ⁽²⁾	%
	Accuracy of the HSI	T _A = -40 to 105 °C	-3.8 ⁽³⁾	-	4.6 ⁽³⁾	%
400		T _A = -10 to 85 °C	-2.9 ⁽³⁾	-	2.9 ⁽³⁾	%
ACC _{HSI}	oscillator (factory calibrated)	T _A = 0 to 70 °C	-1.3 ⁽³⁾	-	2.2 ⁽³⁾	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI)}	HSI oscillator startup time		1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DD(HSI)}	HSI oscillator power consumption		-	80	100 ⁽³⁾	μΑ

- 1. $V_{DDA} = 3.3 \text{ V}$, $T_A = -40 \text{ to } 105 \,^{\circ}\text{C}$ unless otherwise specified.
- 2. Guaranteed by design, not tested in production.
- 3. Data based on characterization results, not tested in production.

Low-speed internal (LSI) RC oscillator

Table 41. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time			85	μs
I _{DD(LSI)} ⁽²⁾	LSI oscillator power consumption		0.75	1.2	μΑ

^{1.} $V_{DDA} = 3.3 \text{ V}$, $T_A = -40 \text{ to } 105 \,^{\circ}\text{C}$ unless otherwise specified.

Wakeup time from low-power mode

The wakeup times given in *Table 42* are measured on a wakeup phase with a 8-MHz HSI RC oscillator. The event used to wake up the device depends from the current operating mode:

- Stop or sleep mode: the wakeup event is WFE
- The wakeup pin used in stop and sleep mode is PA0 and in standby mode is the PA1.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Table 42. Low-power mode wakeup timings

Symbol	Parameter	Typ @Vod				Max	Unit		
		Conditions	= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	IVIAX	Ollit
	t _{WUSTOP} Wakeup from Stop mode	Regulator in run mode	TBD	TBD	TBD	TBD	TBD	TBD	
¹ WUSTOP		Regulator in low power mode	TBD	TBD	TBD	TBD	TBD	TBD	116
t _{WUSTANDBY}	Wakeup from Standby mode		TBD	61	57	54	52	TBD	μs
t _{WUSLEEP}	Wakeup from Sleep mode		TBD	TBD	TBD	TBD	TBD	TBD	

6.3.8 PLL characteristics

The parameters given in *Table 43* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24*.

^{2.} Guaranteed by design, not tested in production.

Table 43. PLL characteristics

Cumbal	Parameter		Unit		
Symbol	Parameter	Min	Тур	Max	Oilit
f	PLL input clock ⁽¹⁾	1 ⁽²⁾		24 ⁽²⁾	MHz
f _{PLL_IN}	PLL input clock duty cycle	40 ⁽²⁾		60 ⁽²⁾	%
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾		72	MHz
t _{LOCK}	PLL lock time			200 ⁽²⁾	μs
Jitter	Cycle-to-cycle jitter			300 ⁽²⁾	ps

Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT}.

^{2.} Guaranteed by design, not tested in production.

6.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 $^{\circ}C$ unless otherwise specified.

Table 44. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	40	53.5	60	μs
t _{ERASE}	Page (1 KB) erase time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	20	-	40	ms
t _{ME}	Mass erase time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	20	-	40	ms
	Supply current	Write mode	-	-	10	mA
IDD	Supply current	Erase mode	-	-	12	mA

^{1.} Guaranteed by design, not tested in production.

Table 45. Flash memory endurance and data retention

Cymahal	Davamatav	O andiki ana	Value	l locia
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

^{1.} Data based on characterization results, not tested in production.

^{2.} Cycling performed over the whole temperature range.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 46*. They are based on the EMS levels and classes defined in application note AN1709.

Table 46. EMS characteristics

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T_{A} = +25 °C, f_{HCLK} = 72 MHz conforms to IEC 61000-4-2	TBD
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T_A = +25 °C, f_{HCLK} = 72 MHz conforms to IEC 61000-4-4	TBD

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Table 47. EMI characteristics

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol Farameter	Conditions	frequency band	8/72 MHz	Office	
		V _{DD} = 3.3 V, T _A = 25 °C, LQFP100 package compliant with IEC 61967-2	0.1 to 30 MHz	TBD	
	Pook lovel		30 to 130 MHz	TBD	dΒμV
S _{EMI} Peak level	reak level		130 MHz to 1GHz	TBD	
		01907-2	SAE EMI Level	TBD	-

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 48. ESD absolute maximum ratings⁽¹⁾

Symbol	Ratings	Conditions	Class	Maximum value ⁽²⁾	Unit
V _{ESD(HBM)}	l ~	T _A = +25 °C, conforming to JESD22-A114	2	TBD	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to JESD22-C101	II	TBD	V

- 1. TBD stands for "to be defined".
- 2. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 49. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T _A = +105 °C conforming to JESD78A	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 50

Table 50. I/O current injection susceptibility

		Functional s	usceptibility	
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0	- 0	NA	
	Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB2 with current injection on other pins from this group limited to $>$ -10 μ A and $<$ -50 μ A	- 5		
	Injected current on PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with current injection on other pins from this group limited to $>$ -10 μ A and $<$ -50 μ A	- 5		
I _{INJ}	Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB2, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with current injection on other pins from this group limited to > 10 μA and < 400 μA		+5	mA
	Injected current on any other FT, FTf pins with current injection on adjacent pins < -5 μA	- 5	NA	
	Injected current on any other TTa pins with current injection on adjacent pins < -5 μA	- 5	+5	
	Injected current on any other TC pins with current injection on adjacent pins < -5 μA	- 5	+5	

Note:

It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 51* are derived from tests performed under the conditions summarized in *Table 24*. All I/Os are CMOS and TTL compliant.

Table 51. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Standard I/O input low level voltage		-0.3	-	0.3V _{DD} +0.07	
V	TTa I/O input low level voltage		-0.3	-	0.3V _{DD} +0.07	
V _{IL}	FT and FTf ⁽¹⁾ I/O input low level voltage		-0.3	-	0.475V _{DD} -0.2	
	BOOT0 input low level voltage	0	-	0.3V _{DD} -0.3	v	
	Standard I/O input high level voltage		0.445V _{DD} +0.398	-	V _{DD} +0.3	V
V	TTa I/O input high level voltage		0.445V _{DD} +0.398	-	V _{DD} +0.3	
V _{IH}	FT and FTf ⁽¹⁾ I/O input high level voltage		0.5V _{DD} +0.2	-	5.5	
	BOOT0 input high level voltage		0.2V _{DD} +0.95	-	5.5	
	Standard I/O Schmitt trigger voltage hysteresis ⁽²⁾		200	-	-	
	TTa I/O Schmitt trigger voltage hysteresis ⁽²⁾		200	-	-	
V _{hys}	FT and FTf I/O Schmitt trigger voltage hysteresis ⁽²⁾		100	-	-	mV
	BOOT0 input Schmitt trigger voltage hysteresis ⁽²⁾		300	-	-	

Table 51. I/O static characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{SS} \le V_{IN} \le V_{DD}$ I/O TC, FT and FTf	-	-	±0.1	
		$\begin{aligned} &V_{SS} \leq V_{IN} \leq V_{DD} \\ &V \leq V_{DD} \leq V_{DDA} \leq 3.6 \ V \\ &I/O \ TTa \ used \ in \ digital \\ &mode \end{aligned}$	-	±0.1		
	(2)	V _{IN} = 5 V I/O FT and FTf	-	-	10	
l _{lkg}	Input leakage current (3)	$V_{IN}{=}~3.6~V, \\ V{\le}~V_{DD}{\le}~V_{IN} \\ V_{DDA}{=}~3.6~V \\ I/O~TTa~used~in~digital \\ mode$		1	μΑ	
		$\begin{aligned} &V_{SS} \leq V_{IN} \leq V_{DDA} \\ &V \leq V_{DD} \leq V_{DDA} \leq 3.6 \text{ V} \\ &\text{I/O TTa used in analog} \\ &\text{mode} \end{aligned}$	-	-	±0.2	
R _{PU}	Weak pull-up equivalent resistor ⁽⁴⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁴⁾	$V_{IN} = V_{DD}$	25	40	55	kΩ
C _{IO}	I/O pin capacitance		-	5	-	pF

^{1.} To sustain a voltage higher than V_{DD} +0.3 the internal pull-up/pull-down resistors must be disabled.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 17* and *Figure 18* for standard I/Os.

^{2.} Hysteresis voltage between Schmitt trigger switching levels. Data based on characterization, not tested in production.

^{3.} Leakage could be higher than max. if negative current is injected on adjacent pins.

Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

Figure 17. TC and TTa I/O input characteristics - CMOS port

Figure 18. TC and TTa I/O input characteristics - TTL port

Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port

Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 22*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 22*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 52* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*. All I/Os (FT, TTa and Tc unless otherwise specified) are CMOS and TTL compliant.

Table 52. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	
V _{OLFM+}	Output low level voltage for an FTf I/O pin in FM+ mode	I _{IO} = +20 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	

^{1.} The $I_{|O}$ current sunk by the device must always respect the absolute maximum rating specified in *Table 22* and the sum of $I_{|O}$ (I/O ports and control pins) must not exceed I_{VSS} .

4. Data based on characterization results, not tested in production.

^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

^{3.} The $I_{\rm IO}$ current sourced by the device must always respect the absolute maximum rating specified in *Table 22* and the sum of $I_{\rm IO}$ (I/O ports and control pins) must not exceed $I_{\rm VDD}$.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 21* and *Table 53*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Table 53. I/O AC characteristics⁽¹⁾

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		2	MHz	
x0	t _{f(IO)out}	Output high to low level fall time			125 ⁽³⁾	ns	
	t _{r(IO)out}	Output low to high level rise time	$-C_L = 50 \text{ pF, } V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		125 ⁽³⁾	115	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V		10	MHz	
01	t _{f(IO)out}	Output high to low level fall time	C _ F0 pE V 2 V to 2 6 V		25 ⁽³⁾	20	
	t _{r(IO)out}	Output low to high level rise time	$-C_L = 50 \text{ pF, } V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		25 ⁽³⁾	ns	
			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		50	MHz	
	f _{max(IO)} out	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V		30	MHz	
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V		20	MHz	
	t _{f(IO)out}		$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5 ⁽³⁾		
11			Output high to low level fall time	$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		8 ⁽³⁾)
			$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12 ⁽³⁾	ns	
			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5 ⁽³⁾	115	
	t _{r(IO)out}	Output low to high level rise time	$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		8 ⁽³⁾		
			$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12 ⁽³⁾		
	f _{max(IO)out}	Maximum frequency ⁽²⁾	TBD		TBD	MHz	
FM+ configuration	t _{f(IO)out}	Output high to low level fall time	TBD		TBD	20	
(4)	t _{r(IO)out}	Output low to high level rise time	TBD		TBD	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10		ns	

The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of GPIO Port configuration register.

^{2.} The maximum frequency is defined in *Figure 21*.

^{3.} Guaranteed by design, not tested in production.

^{4.} The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F30x reference manual RM0316 for a description of FM+ I/O mode configuration.

EXTERNAL $t_r(IO)$ out $t_r(I$

Figure 21. I/O AC characteristics definition

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 51*).

Unless otherwise specified, the parameters given in *Table 54* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Table 54. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.5		0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage		2		V _{DD} +0.5	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis			200		mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse				100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse		300			ns

^{1.} Guaranteed by design, not tested in production.

Figure 22. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 54. Otherwise the reset will not be taken into account by the device.

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

6.3.15 Timer characteristics

The parameters given in *Table 55* are guaranteed by design.

Refer to *Section 6.3.13: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 55. TIMx⁽¹⁾ characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
			1		t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 72 MHz	13.9		ns
,		f _{TIMxCLK} = 144MHz, x= 1.8	6.95		ns
			0	f _{TIMxCLK} /2	MHz
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
		f _{TIMxCLK} = 144MHz, x= 1.8	0	72	MHz
Res _{TIM}	Timer resolution	TIMx (except TIM2)		16	bit
I ICS I IM	Timer resolution	TIM2		32	Dit
tCOUNTER	16-bit counter clock period		1	65536	t _{TIMxCLK}
COUNTER	To-bit counter clock period	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
t _{MAX} COUNT	Maximum possible count			65536 × 65536	t _{TIMxCLK}
WIAX_COUNT	with 32-bit counter	f _{TIMxCLK} = 72 MHz			s

TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM6, TIM14, TIM15, TIM16 and TIM17 timers.

Table 56. IWDG min/max timeout period at 40 kHz (LSI) (1)

Prescaler divider	PR[2:0] bits	Min timeout (ms) RL[11:0]= 0x000	Max timeout (ms) RL[11:0]= 0xFFF
/4	0	0.1	409.6
/8	1	0.2	819.2
/16	2	0.4	1638.4
/32	3	0.8	3276.8
/64	4	1.6	6553.6
/128	5	3.2	13107.2
/256	7	6.4	26214.4

These timings are given for a 40 kHz clock but the microcontroller's internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 57. WWDG min-max timeout value @72 MHz (PCLK)

Prescaler	WDGTB	Min timeout value	Max timeout value
1	0	0.05687	3.6409
2	1	0.1137	7.2817
4	2	0.2275	14.564
8	3	0.4551	29.127

6.3.16 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 24*.

The I 2 C interface meets the requirements of the standard I 2 C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" opendrain. When configured as open-drain, the PMOS connected between the I/O pin and V $_{DD}$ is disabled, but is still present.

The I²C characteristics are described in *Table 58*. Refer also to *Section 6.3.13: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Table 58. I²C characteristics⁽¹⁾

Symbol	Parameter		Standard mode		Fast mode		le Plus	Unit
		Min	Max	Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock low time	4.7		1.3		0.5		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		0.26		μs
t _{su(SDA)}	SDA setup time	250		100		50		
t _{h(SDA)}	SDA data hold time	0(3)	3450 ⁽²⁾	0(3)	900 ⁽²⁾	0	450	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000		300		120	ns
t _{f(SDA)}	SDA and SCL fall time		300		300		120	
t _{h(STA)}	Start condition hold time	4.0		0.6		0.26		
t _{su(STA)}	Repeated Start condition setup time	4.7		0.6		0.26		μs
t _{su(STO)}	Stop condition setup time	4.0		0.6		0.26		μS
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7		1.3		0.5		μS
C _b	Capacitive load for each bus line		400		400		550	pF

The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when I2Cx_TIMING register is correctly programmed (Refer to reference manual). These characteristics are not tested in production.

Table 59. I2C analog filter characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{SP}	Pulse width of spikes that are suppressed by the analog filter	50	260	ns

^{1.} Guaranteed by design, not tested in production.

^{2.} The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

^{3.} The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 23. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

577

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 60* for SPI or in *Table 61* for I^2S are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 24*.

Refer to *Section 6.3.13: I/O port characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Table 60. SPI characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SPI clock frequency	Master mode	-	36	MHz
1/t _{c(SCK)}	SFI Clock frequency	Slave mode	-	36	IVII IZ
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	7.5	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4Tpclk		
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	2Tpclk		
t _{w(SCKH)} ⁽¹⁾	SCK high and low time	Master mode, f _{PCLK} = 36 MHz,	Tsck/2	Tsck/2	
t _{w(SCKL)} ⁽¹⁾	SCK flight and low time	presc = 2	-2	+3	
t _{su(MI)} (1)	Data input setup time	Master mode	4		
t _{su(SI)} ⁽¹⁾	Data input setup time	Slave mode	6		
t _{h(MI)} (1)	Data input hold time	Master mode	4		ns
t _{h(SI)} ⁽¹⁾	Data input noid time	Slave mode	1		
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 36 MHz	0	4Tpclk	
t _{dis(SO)} (1)(3)	Data output disable time	Slave mode	0	20	
t _{v(SO)} (1)	Data output valid time	Slave mode (after enable edge)	-	27	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	5	
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	12	-	
t _{h(MO)} ⁽¹⁾	Data output hold time	Master mode (after enable edge)	2	-	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode	25	75	%

^{1.} Data based on characterization results, not tested in production.

Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Figure 24. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Table 61. I²S characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CK}	I ² S clock frequency	Master data: 16 bits, audio freq=48K	1.496	1.503	MHz
1/t _{c(CK)}		Slave	0	12.288	
t _{r(CK)} t _{f(CK)}	I ² S clock rise and fall time	Capacitive load C _L = 30 pF		8	
t _{w(CKH)} (1)	I ² S clock high time	Master f _{PCLK} = 36 MHz,	331		
t _{w(CKL)} (1)	I ² S clock low time	audio frequency = 48 kHz	332		
t _{v(WS)} (1)	WS valid time	Master mode	4		ns
t _{h(WS)} (1)	WS hold time	Master mode	4		
t _{su(WS)} (1)	WS setup time	Slave mode	4		
t _{h(WS)} (1)	WS hold time	Slave mode	0		
Duty Cycle	I ² S slave input clock duty cycle	Slave mode	30	70	%
t _{su(SD_MR)} (1)	Data input setup time	Master receiver	9		
t _{su(SD_SR)} (1)	Data input setup time	Slave receiver	2		
t _{h(SD_MR)} (1)(2)	Data input hold time	Master receiver	0		
t _{h(SD_SR)} (1)(2)	Data input hold time	Slave receiver	0		
t _{v(SD_ST)} (1)(2)	Data output valid time	Slave transmitter (after enable edge)		29	ns
t _{h(SD_ST)} (1)	Data output hold time	Slave transmitter (after enable edge)	12		
t _{v(SD_MT)} (1)(2)	Data output valid time	Master transmitter (after enable edge)		3	
t _{h(SD_MT)} (1)	Data output hold time	Master transmitter (after enable edge)	2		

^{1.} Data based on design simulation and/or characterization results, not tested in production.

^{2.} Depends on f_{PCLK} . For example, if f_{PCLK} =8 MHz, then T_{PCLK} = 1/ f_{PLCLK} =125 ns.

Figure 27. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 28. I²S master timing diagram (Philips protocol)⁽¹⁾

- Data based on characterization results, not tested in production.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

USB characteristics

Table 62. USB startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

^{1.} Guaranteed by design, not tested in production.

Table 63. USB DC electrical characteristics

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit		
Input levels							
V _{DD}	USB operating voltage ⁽²⁾		3.0 ⁽³⁾	3.6	V		
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USBDP, USBDM)	0.2				
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	٧		
V _{SE} ⁽⁴⁾	Single ended receiver threshold		1.3	2.0			
Output le	vels						
V _{OL}	Static output level low	R_L of 1.5 k Ω to 3.6 $V^{(5)}$		0.3	V		
V _{OH}	Static output level high	R_L of 15 $k\Omega$ to $V_{SS}^{(5)}$	2.8	3.6	, v		

- 1. All the voltages are measured from the local ground potential.
- 2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.
- 3. The STM32F3xxx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V $V_{\rm DD}$ voltage range.
- 4. Guaranteed by design, not tested in production.
- 5. R_L is the load connected on the USB drivers

Figure 29. USB timings: definition of data signal rise and fall time

Table 64. USB: Full-speed electrical characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Driver charac	eteristics					
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	-	20	ns
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	-	20	ns
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	-	110	%
V _{CRS}	Output signal crossover voltage		1.3	-	2.0	٧
Output driver Impedance ⁽³⁾	Z _{DRV}	driving high and low	28	40	44	Ω

^{1.} Guaranteed by design, not tested in production.

CAN (controller area network) interface

Refer to *Section 6.3.13: I/O port characteristics* for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

^{3.} No external termination series resistors are required on USBDP (D+) and USBDM (D-), the matching impedance is already included in the embedded driver.

6.3.17 ADC characteristics

Unless otherwise specified, the parameters given in *Table 65* to *Table 67* are guaranteed by design.

Table 65. ADC characteristics

Symbol	Parameter	Conditions	Min Typ		Max	Unit
V_{DDA}	Analog supply voltage for ADC		2		3.6	٧
f _{ADC}	ADC clock frequency		0.14		72	MHz
		Resolution = 12 bits, Fast Channel	0.01		5.14	
f _S ⁽¹⁾		Resolution = 10 bits, Fast Channel	0.012		6	MSPS
'S` ′	Sampling rate	Resolution = 8 bits, Fast Channel	0.014		7.2	IVIOFO
		Resolution = 6 bits, Fast Channel	0.0175		9	
f _{TRIG} ⁽¹⁾	External trigger frequency	f _{ADC} = 72 MHz Resolution = 12 bits			5.14	MHz
		Resolution = 12 bits			14	1/f _{ADC}
V_{AIN}	Conversion voltage range		0		V_{DDA}	V
R _{AIN} ⁽¹⁾	External input impedance				100	kΩ
C _{ADC} ⁽¹⁾	Internal sample and hold capacitor			5		pF
t _{CAL} ⁽¹⁾	Calibration time	f _{ADC} = 72 MHz	1.5	56		μs
'CAL'	Calibration time		11	2		1/f _{ADC}
	Trigger conversion latency	CKMODE = 00	1.5	2	2.5	1/f _{ADC}
t _{latr} (1)	Regular and injected	CKMODE = 01			2	1/f _{ADC}
'latr` '	channels without conversion	CKMODE = 10			2.25	1/f _{ADC}
	abort	CKMODE = 11			2.125	1/f _{ADC}
		CKMODE = 00	2.5	3	3.5	1/f _{ADC}
	Trigger conversion latency	CKMODE = 01			3	1/f _{ADC}
t _{latrinj}	Injected channels aborting a regular conversion	CKMODE = 10			3.25	1/f _{ADC}
		CKMODE = 11			3.125	1/f _{ADC}
. (1)	Compling time	f _{ADC} = 72 MHz	0.021		8.35	μs
t _S ⁽¹⁾	Sampling time		1.5		601.5	1/f _{ADC}
TADCVREG _STUP ⁽¹⁾	ADC Voltage Regulator Start-up time				10	μs
	Total conversion time	f _{ADC} = 72 MHz Resolution = 12 bits	0.19		3.5	μs
t _{CONV} ⁽¹⁾	(including sampling time)	Resolution = 12 bits	14 to 252 (t _S for sampling + 12.5 for successive approximation)			1/f _{ADC}

^{1.} Data guaranteed by design

Table 66. Minimum sampling time to be respected for fast and slow channels

Resolution	R _{AIN}		sampling (ns)	Resolution	R _{AIN}	Minimum sampling time (ns)	
nesolution	(K Ohm)	Fast channels	Slow channels	nesolution	(K Ohm)	Fast channels	Slow channels
	0	12	17		0	7	11
	0.05	16	21		0.05	10	14
	0.1	20	25		0.1	13	16
	0.2	27	33		0.2	18	22
	0.5	52	58		0.5	35	38
12-bit	1	94	99	8-bit	1	63	66
	5	430	435		5	285	289
	10	849	854		10	563	567
	20	1690	1690		20	1120	1120
	50	4190	4200		50	2780	2790
	100	8350	8350		100	5550	5550
	0	9	14		0	5	8
	0.05	13	17		0.05	7	10
	0.1	16	21		0.1	9	12
	0.2	23	27		0.2	13	16
	0.5	43	48		0.5	26	28
10-bit	1	78	83	6-bit	1	47	49
	5	358	362		5	213	216
	10	706	710		10	421	423
	20	1400	1410		20	836	839
	50	3490	3490		50	2080	2080
	100	6950	6950		100	4150	4150

Table 67.	ADC accuracy ^{(1)(2) (3)}	
Symbol	Parameter	Test con
ET	Total unadjusted error	

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error		TBD	TBD	
EO	Offset error		TBD	TBD	
EG	Gain error	TBD	TBD	TBD	LSB
ED	Differential linearity error		TBD	TBD	
EL	Integral linearity error		TBD	TBD	
ENOB	Effective number of bits		±TBD	±TBD	bits
SINAD	Signal-to-noise and distorsion ratio	TBD	±TBD	±TBD	
SNR	Signal-to-noise ratio		±TBD	±TBD	dB
THD	Total harmonic distorsion		±TBD	±TBD	

- 1. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.13 does not affect the ADC accuracy.
- 3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.
- Data based on characterization results, not tested in production.

Figure 30. ADC accuracy characteristics

Figure 31. Typical connection diagram using the ADC

- 1. Refer to Table 65 for the values of RAIN.
- 2. C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 11*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.18 DAC electrical specifications

Table 68. DAC characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage for DAC ON	2.4		3.6	٧	
R _{LOAD} ⁽¹⁾	Resistive load with buffer ON	5			kΩ	
R _O ⁽¹⁾	Impedance output with buffer OFF			15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 $M\Omega$
C _{LOAD} ⁽¹⁾	Capacitive load			50		Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2			•	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at V _{DDA} = 3.6 V
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON			V _{DDA} – 0.2	٧	and (0x155) and (0xEAB) at $V_{DDA} = 3.6 \text{ V}$ 2.4 V
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF		0.5		mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF			V _{DDA} – 1LSB	٧	excursion of the DAC.
la a c	DAC DC current consumption in quiescent			380	μΑ	With no load, middle code (0x800) on the input
I _{DDA}	mode (Standby mode)			480	μΑ	With no load, worst code (0xF1C) on the input
DNL ⁽²⁾	Differential non linearity Difference between two			±0.5	LSB	Given for a 10-bit input code
	consecutive code-1LSB)			±2	LSB	Given for a 12-bit input code
	Integral non linearity			±1	LSB	Given for a 10-bit input code
INL ⁽²⁾	(difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)			±4	LSB	Given for a 12-bit input code
	Offset error			±10	mV	Given for a 12-bit input code
Offset ⁽²⁾	(difference between measured value at Code			±3	LSB	Given for a 10-bit input code at V _{DDA} = 3.6 V
	(0x800) and the ideal value = $V_{DDA}/2$)			±12	LSB	Given for a 12-bit input code at V _{DDA} = 3.6 V
Gain error ⁽²⁾	Gain error			±0.5	%	Given for a 12-bit input code

Table 68. DAC characteristics (continued)

Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{SETTLING} ⁽²⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB		3	4	μs	$C_{LOAD} \leq 50$ pF, $R_{LOAD} \geq 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)			1	MS/s	$C_{LOAD} \leq 50$ pF, $R_{LOAD} \geq 5 \text{ k}\Omega$
t _{WAKEUP} (2)	Wakeup time from off state (Setting the ENx bit in the DAC Control register)		6.5	10	μs	$C_{LOAD} \leq~50$ pF, $R_{LOAD} \geq 5$ k Ω input code between lowest and highest possible ones.
PSRR+ (1)	Power supply rejection ratio (to V _{DDA}) (static DC measurement		-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

- 1. Guaranteed by design, not tested in production.
- 2. Data based on characterization results, not tested in production.

Figure 32. 12-bit buffered /non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Comparator characteristics

Table 69. Comparator characteristics

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage			2		3.6	
V _{IN}	Comparator input voltage range			0		V_{DDA}	V
V _{BG}	Scaler input voltage				1.2		
V _{SC}	Scaler offset voltage				±5	±10	mV
t _{S_SC}	Scaler startup time from power down					0.1	ms
t _{START}	Comparator startup time	Startup time to reach pr specification	opagation delay			60	μs
		Ultra-low power mode			2	4.5	
	Propagation delay for	Low power mode			0.7	1.5	μs
	200 mV step with 100 mV	Medium power mode			0.3	0.6	
	overdrive	High speed mode	$V_{DDA} \ge 2.7 \text{ V}$		50	100	ns
t _D		Tilgit speed filode	$V_{DDA} < 2.7 V$		100	240	113
טי		Ultra-low power mode			2	7	
	Propagation delay for full	Low power mode			0.7	2.1	μs
	range step with 100 mV	Medium power mode			0.3	1.2	
	overdrive	High speed mode	$V_{DDA} \ge 2.7 \text{ V}$		90	180	ns
		Triigit speed tilode	$V_{DDA} < 2.7 V$		110	300	113
V _{offset}	Comparator offset error				±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient				18		μV/° C
		Ultra-low power mode			1.2	1.5	
 	COMP current	Low power mode			3	5	
I _{DD(COMP)}	consumption	Medium power mode			10	15	μA
		High speed mode			75	100	

Table 69. Comparator characteristics (continued)

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
		No hysteresis (COMPxHYST[1:0]=00)			0		
		Low byotoroois	High speed mode	3		13	
		Low hysteresis (COMPxHYST[1:0]=01)	All other power modes	5	8	10	
V_{hys}	Comparator hysteresis	Medium hysteresis (COMPxHYST[1:0]=10)	High speed mode	7		26	mV
			All other power modes	9	15	19	
		High bystorosis	High speed mode	18		49	
			All other power modes	19	31	40	

^{1.} Data based on characterization results, not tested in production.

6.3.20 Operational amplifer charateristics

Table 70. Operational amplifier characteristics⁽¹⁾

Symbol	Param	Parameter		Min	Тур	Max	Unit	
V_{DDA}	Analog supply voltag	е		2.4		3.6	V	
CMIR	Common mode input	t range		0		V_{DDA}	V	
		Maximum	25°C, No Load on output.			4		
M	Input offset voltage	calibration range	All voltage/Temp.			6	mV	
VI _{OFFSET}	input onset voltage	After offset calibration	25°C, No Load on output.			1.6	IIIV	
		Calibration	All voltage/Temp.			3		
ΔVI _{OFFSET}	Input offset voltage d	lrift			5		μV/°C	
I _{LOAD}	Drive current					500	μΑ	
IDDOPAMP			No load, quiescent mode		690	1450	μА	
CMRR	Common mode rejection ratio				90		dB	
PSRR	Power supply rejection ratio		DC	73	117		dB	
GBW	Bandwidth				8.2		MHz	
SR	Slew rate				4.7		V/µs	
R _{LOAD}	Resistive load			4			kΩ	
C _{LOAD}	Capacitive load					50	pF	
VOH _{SAT}			$R_{load} = min, Input$ at V_{DDA} .			100		
VOLISAT	High saturation voltage	y c	$R_{load} = 20K$, Input at V_{DDA} .			20	mV	
VOL	Low acturation voltage	20	Rload = min, input at 0V			100	IIIV	
VOLSAT	VOL _{SAT} Low saturation voltage		Rload = 20K, in at 0V.	Rload = 20K, input at 0V.			20	
φm	Phase margin				62		o	
t _{OFFTRIM}	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy					2	ms	
[†] WAKEUP	Wake up time from OFF state.		$\begin{aligned} &C_{LOAD} \leq 50 \text{ pf,} \\ &R_{LOAD} \geq 4 \text{ k}\Omega, \\ &\text{Follower} \\ &\text{configuration} \end{aligned}$		2.8	5	μs	

Table 70. Operational amplifier characteristics⁽¹⁾

Symbol	Parameter	Condition	Min	Тур	Max	Unit
				2		
PGA gain	Non inverting gain value			4		
	Non inverting gain value	8	8			
				16		
PGA gain error	PGA gain error		-1%		1%	

^{1.} Data guaranteed by design.

6.3.21 Temperature sensor characteristics

Table 71. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature		±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} (1)	Startup time	4		10	μs
T _{S_temp} ⁽¹⁾⁽²⁾	ADC sampling time when reading the temperature			1	μs

^{1.} Guaranteed by design, not tested in production.

6.3.22 V_{BAT} monitoring characteristics

Table 72. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	2	-	
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽¹⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1mV accuracy		-	-	μs

^{1.} Guaranteed by design, not tested in production.

^{2.} Shortest sampling time can be determined in the application by multiple iterations.

^{2.} Shortest sampling time can be determined in the application by multiple iterations.

7 Package characteristics

7.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Figure 33. LQFP100, 14 x 14 mm, 100-pin low-profile Figure 34. Recommended footprint⁽¹⁾⁽²⁾ quad flat package outline⁽¹⁾

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 73. LQPF100 - 14 x 14 mm, 100-pin low-profile quad flat package mechanical data

Compleal	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α			1.60			0.063
A1	0.05		0.15	0.002		0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09		0.2	0.0035		0.0079
D	15.80	16.00	16.2	0.622	0.6299	0.6378
D1	13.80	14.00	14.2	0.5433	0.5512	0.5591
D3		12.00			0.4724	
E	15.80	16.00	16.2	0.622	0.6299	0.6378
E1	13.80	14.00	14.2	0.5433	0.5512	0.5591
E3		12.00			0.4724	
е		0.50			0.0197	
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1		1.00			0.0394	
k	0°	3.5°	7°	0.0°	3.5°	7.0°
ccc		0.08		0.0031		

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 35. LQFP64 – 10 x 10 mm, 64 pin low-profile quad Figure 36. Recommended flat package outline⁽¹⁾ footprint⁽¹⁾⁽²⁾

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 74. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data

Obl		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α			1.60			0.0630
A1	0.05		0.15	0.0020		0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09		0.20	0.0035		0.0079
D		12.00			0.4724	
D1		10.00			0.3937	
Е		12.00			0.4724	
E1		10.00			0.3937	
е		0.50			0.0197	
θ	0°	3.5°	7°	0°	3.5°	7°
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1		1.00			0.0394	
1			Number of pins	s	•	•
N			(64		

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 37. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat Figure 38. Recommended package outline⁽¹⁾ footprint⁽¹⁾⁽²⁾

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 75. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data

Combal		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090		0.200	0.0035		0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3		5.500			0.2165	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3		5.500			0.2165	
е		0.500			0.0197	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1		1.000			0.0394	
k	0°	3.5°	7°	0°	3.5°	7°
ccc		0.080	•		0.0031	•

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

7.2 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_{J} \max = T_{A} \max + (P_{D} \max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- ullet Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O} \max = \sum (V_{OL} \times I_{OL}) + \sum ((V_{DD} - V_{OH}) \times I_{OH}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 76. Package thermal characteristics

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP 100 - 14 × 14 mm / 0.5 mm pitch	41	
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 10 × 10 mm / 0.5 mm pitch	45	°C/W
	Thermal resistance junction-ambient LQFP 48 - 7 × 7 mm / 0.5 mm pitch	55	

7.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

7.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 77: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F302xx/STM32F303xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: high-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), $I_{DDmax} = 50$ mA, $V_{DD} = 3.5$ V, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8$ mA, $V_{OL} = 0.4$ V and maximum 8 I/Os used at the same time in output mode at low level with $I_{OL} = 20$ mA, $V_{OL} = 1.3$ V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table 76* T_{Jmax} is calculated as follows:

For LQFP100, TBD °C/W

 $T_{Jmax} = 82 \, ^{\circ}\text{C} + (45 \, ^{\circ}\text{C/W} \times 447 \, \text{mW}) = 82 \, ^{\circ}\text{C} + 20.1 \, ^{\circ}\text{C} = 102.1 \, ^{\circ}\text{C}$

This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 77: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 115 °C (measured according to JESD51-2),

 I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OI} = 8 mA, V_{OI} = 0.4 V

 $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: P_{INTmax} = 70 mW and P_{IOmax} = 64 mW:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Using the values obtained in Table 76 T_{Jmax} is calculated as follows:

For LQFP100, 46 °C/W

$$T_{Jmax} = 115 \, ^{\circ}C + (46 \, ^{\circ}C/W \times 134 \, mW) = 115 \, ^{\circ}C + 6.2 \, ^{\circ}C = 121.2 \, ^{\circ}C$$

This is within the range of the suffix 7 version parts ($-40 < T_J < 125$ °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 77: Ordering information scheme*).

8 Part numbering

Table 77. Ordering information scheme

-- programmed parts

TR = tape and reel

9 Revision history

Table 78. Document revision history

Date	Revision	Changes
22-Jun-2012	1	Initial release
07-Sep-2012	2	Modified Features on cover page. Modified Table 2: STM32F30x family device features and peripheral counts Added clock tree to Section 3.8: Clocks and startup Added Table 7: STM32F30x I2C implementation Added Table 8: USART features Added Table 9: STM32F30x SPI/I2S implementation Modified Table 10: Capacitive sensing GPIOs available on STM32F30x devices Modified Figure 5, Figure 6 and Figure 7: STM32F302xx/STM32F303xx LOFP100 pinout Modified Table 13: STM32F302xx/STM32F303xx pin definitions Modified Figure 11: Power supply scheme Modified Table 21: Voltage characteristics Modified Table 22: Current characteristics Modified Table 25: Operating conditions at power-up / power-down Added footnote to Table 30: Typical and maximum current consumption from the VDDA supply Added footnote to Table 34 and Table 35: Typical current consumption in Sleep mode, code running from Flash or RAM Removed table "Switching output I/O current consumption" and table "Peripheral current consumption" Added note under Figure 16: Typical application with a 32.768 kHz crystal Updated Table 40: HSI oscillator characteristics Updated Wakeup time from low-power mode and Table 42: Low-power mode wakeup timings Updated Table 49: Electrical sensitivities Updated Table 50: I/O current injection susceptibility Updated Table 52: Output voltage characteristics Updated Table 54: NRST pin characteristics Updated Table 60: SPI characteristics Updated Table 60: SPI characteristics Updated Table 60: SPI characteristics
07-Sep-2012	2	Modified Table 25: Operating conditions at power-up / power-dow Added footnote to Table 30: Typical and maximum current consum from the VDDA supply Added footnote to Table 34 and Table 35: Typical current consum in Sleep mode, code running from Flash or RAM Removed table "Switching output I/O current consumption" and ta "Peripheral current consumption" Added note under Figure 16: Typical application with a 32.768 kH crystal Updated Table 40: HSI oscillator characteristics Updated Wakeup time from low-power mode and Table 42: Low-pmode wakeup timings Updated Table 44: Flash memory characteristics Updated Table 49: Electrical sensitivities Updated Table 50: I/O current injection susceptibility Updated Table 51: I/O static characteristics Updated Table 52: Output voltage characteristics Updated Table 54: NRST pin characteristics Updated Table 60: SPI characteristics

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

