EXPOSURE DEVICE

Patent number:

JP62065326

Publication date:

1987-03-24

Inventor:

MORIUCHI NOBORU

Applicant:

HITACHI LTD

Classification:

- International:

H01L21/30; G03F7/20

- european:

Application number:

JP19850204214 19850918

Priority number(s):

Abstract of JP62065326

PURPOSE:To improve resolving power, dimension controlability and yield of members to be processed by a method wherein liquid with a refractive index almost equivalent to or slightly less than that of a lens is laid between the lens and a member to be processed or between the lens and a mask for exposing the member.

CONSTITUTION: The light emitted by another lens 15b of a lens system 15 for reducing in scale reaches a wafer 17 through the intermediary of water 18 to pattern-expose a resist on the surface of wafer 17. In order to immerse the space between the lens 15b and the wafer 17 for exposure, overall surface of wafer 17 is preliminarily immersed in water for exposure by step and repeat process due to the close contact between the lens 15b and the wafer 17 or the wafer 17 is successively scanned for exposure while supplying water for the exposed parts immediately before immersion-exposure. Besides, a chuck plate 19 is fixed on XY moving stage to arrange the wafer 17 on the specified position to be exposed.

Data supplied from the esp@cenet database - Worldwide

⑩ 公 開 特 許 公 報 (A)

昭62-65326

@Int_Cl_4

3

識別記号

庁内整理番号

母公開 昭和62年(1987)3月24日

H 01 L 21/30 G 03 F 7/20 Z-7376-5F 7124-2H

審査請求 未請求 発明の数 2 (全5頁)

公発明の名称 露光装置

②特 顧 昭60-204214

22出 類 昭60(1985)9月18日

昇 青梅市今井2326番地 株式会社日立製作所デバイス開発セ

ンタ内

⑪出 願 人 株式会社日立製作所

東京都千代田区神田駿河台4丁目6番地

砂代 理 人 弁理士 小川 勝男 外1名

明 相 物

発明の名称 露光装置

特許請求の範囲

- 1. 鄭光照明系からの光をマスク及びレンズを介して戦量台上に配置される被処理部材上に照射してパターン鮮光を行なうようにした露光装置において、前配レンズと被処理部材の間あるいは前記レンズと前記マスクの間に前配レンズの屈折率と略等しいか、あるいは前記レンズの屈折率よりやや小さい屈折率の液体を介在させて露光するようにしたことを特徴とする豑先装置。
- 2. 前記液体として水を用いてなる特許請求の範囲第1項記載の露光装置。
- 3. 算光照明系からの光をマスクを介して収配台上に配置される接処理部材上に照射してパターン 翼光を行なうようにした選光装置において、前記 収置台は被処理部材を所定温度に設定するための 加熱装置を備え、前記所定温度にてパターン質光 を行なうようにしたことを特徴とする質光装置。
- 4. 前記載置台は、前記被処理部材に対し潜脱自

在の真空吸着方式を用い、かつ前記加熱装置を有 するプレートチャックとこのプレートチャックが 取付けられ、移動自在なステージとからなる特許 請求の範囲第3項記載の餌光装置。

- 5. 前記加熱装置として、ヒータあるいは高温の 液体を循環させる装置を用いてなる特許請求の範 囲第3項又は第4項記載の露光装置。
- 6. 前配所定温度として約100℃を用いてなる 特許請求の範囲第3項ないし第5項のいずれかに 記載の露光装置。

発明の詳細な説明

〔技術分野〕

本発明は第光装置に関するものである。

〔背景技術〕

電光装置の解像度Rは、算光波長を入、光学系

の開口数 N. A. とすると、

3

$$R \propto \frac{\lambda}{N. A.} \qquad \cdots \cdots (1)$$

の関係があり、また光学系の開口数 N. A. は対物レンズの物点関鉄質の屈折率を n. 開口半角を e と すると、

従って、解像度 R を上げるには、(イ) A を小さく するか、(ロ) N. A. を大にする、即ち O を大にするか、 n を大にすればよい。

そとで、nを大にして、N.A.を大にし、解像度 Rを上げることが考えられる。

一方、レジストに着目して解像度や寸法制御性 の向上を図ることが考えられる。

即ち、漁常の露光装置内のウエハは宝融と同風 度に維持されている。しかし、この温度でも、 Ag: Se/Ge xSe 1-x 系レジスト(ネガ形レジスト)および漁常使用されているポジ形レジスト系 内では感光器のレジスト内での拡散が知られてお り、前者のレジストについてはコントラストエン

ほど高くなく解像度が十分でないことが判る。そ とで解像度を向上させるには選光部分5aへの感 光素の拡散の度合を大にしてやればよい。この対 策をどうすべきかが問題となっている。

また後者のボジ形レジスト系では第3図の如く ウエハ4裂面のボジ形レジスト6が定在波効果に より境界部分で波形に越光され、7で示す部分で は光が敷収されレジストが分解されている。しか し室温においても前述したように感光器の拡散が 起り、この定在波効果が低減された状態となって いるが、寸法制御性の点で不十分である。そこで 寸法制御性の向上を図るには、定在波効果のより 一層の低減を図ることが必要であり、その対策を とうすべきかが問題となっている。

とのように、レジストについては、解像度の向 上や寸法制御性の向上対策が問題となっている。

以上から、萬光装置の解像度Rの向上、レジスト に滑目した場合の解像度及び寸法制御性の向上を図 ることは、まずます敬細化していくLSIの歩留の 向上を図るうえできわめて重要な課題となっている。 パンスメント(contrast enhancement)効果が、後者のレジストについては定在波効果の低減という効果が、夫々知られている。なおAg,Se/GexSe_{1-X}系でAgの拡散によりコントラストエンパンスメントを行なうととについてはR.G. Vodinsky and L.T. Kemever, "Ge-Se based resist system for submicron VLSI Application, "SPIE vol 394, (1983)に記載されている。

先ず、前者のAg, Se/Ge_xSe_{1-x} 系レジストについていえば、第2図(a)で示すようにマスク1(マスク基板2にパターン3を形成してなるもの)に露光照明系からの光が照射されると、ウェハ4 装面のAg, Se/Ge_xSe_{1-x} 系レジスト5(ネガ形レジスト)では、室温において移光された部分5a(斜線で示す部分)へ矢印で示すように周囲から感光器の拡散が起り、現像液に不容化する。この場合のレジスト位置×に対する光強度は適常 同図(b)に示す如くなり、これに対したレジストの 反応度は同図(c)のイの如く立上った特性がみられる。この特性では立上り立下り部分の段塔がそれ

(発明の目的)

本発明の目的は、解像度や寸法制御性の向上を 図り、もって被処理部材の歩留の向上を図るよう にした鄭光装置を提供することにある。

本発明の前記ならびにそのほかの目的と新規な 特徴は、本明細書の記述および忝付図面からあき らかになるであろう。

(発明の概要)

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下記のとおりである。

すなわち、縮小投影第光装置において、縮小レンズ系のレンズとウェハ面との間に、レンズの屈 折率よりやや小さい屈折率の液体たとえば水を介 在させて鮮光を行なうことにより高い解像度を得 るようにし、もって被処理部材であるウェハの歩 留の向上を図るようにしたものである。

また部光装置において、パターン館光されるウエハが配置される載置台に、ウエハを所定温度に 加熱設定するための加熱装置を内蔵させ、鶴光し ながらウェハ表面に形成したレジスト内の感光器 の拡散を十分に図るようにし、レジストについて の解像度の向上や寸法制御性の向上を図り、もっ て被処理部材であるウェハの歩留の向上を図るよ うにしたものである。

〔吳施例1〕

3

第1図は本発明による護光装置の一実施例を示し、特に縮小投影算光装置の場合を示している。 ここでは被処理部材としてウェハに適用した場合 を例にとり、以下本発明を説明する。

することができるように構成されており、XY移動ステージ20の移動によりウエハ17を露光すべき所定位置に合せることができる。

このように構成された銀光接置においては、解像度を上げるために(2)式の屈折率 n を大きくするようにしている。媒質の屈折率 n としては液浸の原理よりレンズ 1 5 b の屈折率と略同等か、それよりやや小さい屈折率と略同等か、あるいはそれをりもやや小さい屈折率を商液体、ここでは水 1 8 を P やかさい 屈折率 4 / 3) は空気 7 間に水 1 8 を f 在 2 とにより 光学系、即は に水 1 8 を f 在 2 とにより 光学系、 に が で さ 、 に が の は を で な な と に な の 関係を で ま る ら ここ の か で さ る ら の の し を 図ることが で き る 。

〔突施例2〕

本発明の第2実施例について第1図を用いて説 明する。第1図における水18による液費を用い 従って縮小レンズ系15の他方のレンズ15bか ら射出される光は、水18を介してウエハ17上 に達する。そしてウエハ17表面のレジストがパ ターン第光されることになる。ここでレンズ15b とウエハ17間に水18を浸して露光するために は、レンズ15bとウエハ17間がきわめて接近 しているので、ウエハ17級面全体に予め水を浸 してからステップアンドリピート方式でウエハ17 全体を露光してもよいし、またはウエハ17上を 膜次スキャンして次々囂光していく箇所毎に、そ の都度露光前にその露光しようとする部分(チッ プを4個ずつ貫光するなら、放当する4つのチェ プ分)のウエハ17上に水を盛りながら液浸露光 を行なってもよい。19はウエハ17が配置され るチャックプレート(ウエハチャック)であって、 このチャックプレート19は真空吸着方式を用い て、ウエハ17を所定位置に吸着保持するもので ある。このチャックブレート19はXY移動ステ ージ20に取付けられている。このXY移動ステ ージ20は水平方向(X-Y方向)に自由に移動

ずに、チャックブレート19は、更にウェハ17 従って表面のレジストを所定温度たとえば約100℃ に加熱設定するための加熱装置を内蔵する構成と する。この所定温度はレジストの種類に合せて選 択される。通常は100℃前後が選択される。

更にここでは図示していないが、加熱装置としては、ヒータ(たとえば抵抗ヒータなど)や高温 の液体を循環させてなる装置などが用いられ、露 光中所定温度が維持されるように構成されている。 所定温度に保つべく一定制御される構成でもよい。

ウエハ17を室直よりも高い温度で、ととでは 約100℃で第1図装置により第光を行なう。

先ず、レジストがAg: Se/GexSe1-x系レジストである場合においては、高温(約100℃)で露光することにより、レジスト内の感光器の拡散を一層促進させることができ、ウエハ17表面の算光部分のレジストの反応度は第2図(c)で示すロの如くなり、露光された部分と、露光されない部分との段差がきわめて大となる。これは露光部分5aでの感光器の拡散が十分に行なわれたこと

を示している。このようにコントラストエンハン スメント効果の増大により解像度を一層上げるこ とができ、ゥエハ即ちLSIの歩留の向上をより 一層図ることができる。

次にレジストとしてポジ形レジストを用いた場合 について説明する。この場合には前述した如く定在 波効果が顕著に現われるので、本発明では高温(約 100℃)で製光を行なうことにより、この定在波効 果を著しく低波させるようにしている。即ち、高厚 で闖光を行なうと、レジスト中で分解。未分解の感 光書の拡散を着しく促進させることができ、しかも このような拡散をさせながら貫光を行なうことがで きるので、第3図の第光部分6aでは分解,未分解 の感光器が通り合い、ぼかされたような状態となる。 との結果レジスト6の算光された部分と解光されな い部分との境界部分では境界面が点線へ,ニで示す 如く直観的となり定在波効果を着しく低減させると とができる。従ってレジストパターンひいてはデパ イスパターンの寸法制御性の向上が図られ、もって 被処理部材としてのウェハ、即ちLSIの歩留の向

以上本発明者によってなされた発明を実施例にもとづき具体的に説明したが、本発明は上配実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。たとえば、実施例1においては、レンズ15bとウェハ17間に液体を介押させた場合であるが、レンズ15aとマスクとしてのレテクル14間に液体を介揮させてもよい。第1図では筒状部材16内に液体を充填してやればよい。筒状部材16の如きものが配設されていない露光装置では、筒状部材16と同様の部材を通宜用いればよい。

また実施例2では高温で露光しているが、露光 後ウエハ17全体をチャックブレート19に内蔵 された加熱装置により一挙に高温熱処理(所定温 度で)をしてもよいし、また露光装置とは別に設 けた加熱装置により高温処理をしてもよい。これ らの場合も前述したと同様の作用効果を奏ずる。 しかし実施例2の方が、工程の短縮が図られ、ス ルーブットの肉上が図られる。

夏に本発明は実施例1と実施例2とを併用した

上を図ることができる。

〔効 果〕

- (1) 液浸の原理を用いて光学系の関口数 N. A. を大きくすることにより高い解像度が得られ、被処理部材(たとえばLSIウェハ)の歩留の向上を図ることができる。
- (2) 高温処理を施す(高温で露光するか、製光後高温処理を施す)ととによりレジスト内での感光 書の拡散を著しく促進させることができ、コントラストエンハンスメント効果の増大を図ることができ、従って解像度を著しく上げることができ、もって被処理部材(たとえばLSIゥエハ)の歩留の向上を図ることができる。
- (3) 高温処理を施す(高温で露光するか、露光後高温処理を施す)ことによりレジスト内での感光 芸の拡散を着しく促進させることができ、定在波 効果を著しく低減させることができ、従って寸法 制御性の向上を着しく図ることができ、もって被 処理部材 (たとえばLSIゥェハ)の歩留の向上を図ることができる。

第光装置、即ち実施例1の液浸と実施例2の加熱 装置内蔵のチャックプレート19とを併用した製 光装置、たとえば縮小投影翼光装置を用いてもよ い。この場合、特にネガ形レジストの場合にはよ り高い解像度を得ることができ、またポジ形レジ ストの場合には解像度及び寸法制御性の向上とを 図ることができる。

〔利用分野〕

以上の説明では主として本発明者によってなされた発明をその背景となった利用分野である被処理部材としてのウェハのパターン選光に適用した場合について説明したが、それに限定されるものではなく、たとえばレチクルなどのパターン形成のための露光全紋に適用できる。本発明は被処理部材として、少なくとも算光を必要とされるものには適用できる。

図面の簡単な説明

第1 図は本発明による質光装置の一実施例を示 す簡略構成図、

第2図(a)~(c)および第3図は本発明を説明する

特開昭62-65326 (5)

ための図である。

11…水似ランプ、12…製光レンズ、13… 臨光照明系、14…レテクル、15… 縮小レンズ 系、15 a , 15 b …レンズ、16… 簡状部材、 17…ウエハ、18…水、19…チャックブレート、20…XY移動ステージ。

代理人 弁理士 小川 勝 男

第 2 図

