Randomness – Beyond Lebesgue Measure

Jan Reimann

Department of Mathematics University of California, Berkeley

November 16, 2006

Measures on Cantor Space

Outer measures from premeasures

Approximate sets from outside by open sets and weigh with a general measure function.

- ▶ A premeasure is a function $\rho: 2^{<\omega} \to \mathbb{R}_0^+ \cup \{\infty\}$.
- ▶ One can obtain an outer measure μ_{ρ} from ρ by letting

$$\mu_{\rho}(X) = \inf_{C \subseteq 2^{<\omega}} \left\{ \sum_{\sigma \in C} \rho(\sigma) : \bigcup_{\sigma \in C} U_{\sigma} \supseteq X \right\},\,$$

where U_{σ} is the basic open set induced by σ . (Set $\mu_{\rho}(\emptyset) = 0$.)

The resulting $\mu=\mu_\rho$ is a countably subadditive, monotone set function, an outer measure.

Measures on Cantor Space

Types of measures

Probability measures: based on a premeasure ρ which satisfies

- $ightharpoonup
 ho(\emptyset) = 1$ and

Hausdorff measures: based on a premeasure ρ which satisfies

- ▶ If $|\sigma| = |\tau|$, then $\rho(\sigma) = \rho(\tau)$.
- \triangleright $\rho(n)$ is nonincreasing.
- $ho(n) \rightarrow 0 \text{ as } n \rightarrow \infty.$
- ► For example: $\rho(\sigma) = 2^{-|\sigma|s}$, $s \ge 0$.

Measures on Cantor Space

Nullsets

The way we constructed outer measures, $\mu(A)=0$ is equivalent to the existence of a sequence $(W_n)_{n\in\omega}$, $W_n\subseteq 2^{<\omega}$, such that for all n,

$$A\subseteq \bigcup_{\sigma\in W_n} U_\sigma \quad \text{and} \quad \sum_{\sigma\in W_n} \rho(\sigma)\leqslant 2^{-n}.$$

Thus,

every nullset is contained in a G_{δ} nullset.

Effective G_{δ} sets

By requiring that the covering nullset is effectively G_{δ} , we obtain a notion of effective nullsets.

Definition

- A test relative to $z \in 2^{\omega}$ is a set $W \subseteq \mathbb{N} \times 2^{<\omega}$ which is c.e. in z.
- ▶ Given a natural number $n \ge 1$, an n-test is a test which is c.e. in $\emptyset^{(n-1)}$.
- A real x passes a test W if $x \notin \bigcap_n U(W_n)$, where $W_n = \{\sigma : (n, \sigma) \in W\}$.

Hence a real passes a test W if it is not in the G_{δ} -set represented by W.

Martin-Löf tests

To test for randomness, we want to ensure that W actually describes a nullset.

Definition

Suppose μ is a measure on 2^{ω} . A test W is correct for μ if for all n,

$$\sum_{\sigma\in W_n}\mu(U_\sigma)\leqslant 2^{-n}.$$

Any test which is correct for μ will be called a test for μ .

Accordant definitions for *n*-tests, arithmetical tests are straightforward.

Representation of measures

An effective test for randomness should have access to the measure it is testing for.

- ► Therefore, represent it by an infinite binary sequence.
- As a measure on 2^{ω} is completely determined by its values on the cylinder sets (i.e. by the underlying premeasure ρ), it seems reasonable to represent these values via approximation by rational intervals.

Definition

Given a premeasure ρ , define its rational representation r_{ρ} by letting, for all $\sigma \in 2^{<\omega}$, $q_1, q_2 \in \mathbb{Q}$,

$$\langle \sigma, q_1, q_2 \rangle \in r_{\rho} \iff q_1 < \rho(\sigma) < q_2.$$

Representation of measures

The condition $q_1 < \rho(\sigma) < q_2$ induces a subbasis for the weak topology on the space of probability measures.

More general, if a space X is Polish, so is the space M(X) of all probability measures on X (under the weak topology). Also, if X is compact metrizable, so is M(X) (Prokhorov metric).

This yields various ways to represent a measure: Cauchy sequences, list of basic open balls it is contained in, etc.

Tests for Arbitrary Measures

Definition

Suppose ρ is a premeasure on 2^{ω} and $z \in 2^{\omega}$. A real is μ_{ρ} -z-random if it passes all $r_{\rho} \oplus$ z-tests which are correct for μ_{ρ} .

Hence, a real x is random with respect to an arbitrary measure μ_{ρ} if and only if it passes all tests which are enumerable in the representation r_{ρ} of the underlying premeasure ρ .

The Initial Question

Question

What is the logical/computability theoretic structure of random reals?

Making Reals Random

Image Measures

Let μ be a probabilty measure and $f:2^\omega\to 2^\omega$ be a continuous (Borel) function.

Define a new measure μ_f by setting

$$\mu_f(\sigma) = \mu(f^{-1}U_{\sigma})$$

Observation: If $\mu\{x\} = 0$ for all $x \in 2^{\omega}$, then, for

$$F(x) = \mu\{y: y <_{\mathbb{R}} x\},\$$

it holds that $\mu_F = \lambda$.

Making Reals Random

Randomness Conservation

Idea

If the transformation f is computable in z, then it should preserve randomness, i.e. it should map a μ -z-random real to a μ_f -z-random one.

Making Reals Random

Computable measures

Note: If μ is a computable measure, then an atom of μ is μ -random iff it is computable.

Theorem (Levin, Kautz)

If a real is noncomputable and random with respect to a computable probabilty measure, then it is Turing equivalent to a λ -random real.

Non-Trivial Randomness

The atomic case

Note that every real is trivially random with respect to some μ if it is an atom of μ .

We are interested in the case when a real is non-trivially random.

Theorem (Reimann and Slaman)

For any real x, the following are equivalent.

- (i) There exists (a representation of) a measure μ such that $\mu(\{x\}) = 0$ and x is 1-random for μ .
- (ii) x is not computable.

Non-Trivial Randomness

The atomic case

Features of the proof:

- Conservation of randomness:
- Randomness of cones:
 - ightharpoonup Kucera's coding argument shows that every degree above \emptyset' conatains a λ -random.
 - ▶ Relativize this using the Posner-Robinson Theorem.
 - Conclude that every non-recursive real x is Turing equivalent to some λ -z-random real for some real z.
- A basis theorem for relative randomness.

Randomness for Continuous Measures

In the proof there is no control over the measure that makes x random.

- Atoms cannot be avoided.
 - Uses a special (though natural) representation of $M(2^{\omega})$ as a particular Π_1^0 class.

Question

What if one admits only continuous probability measures?.

Randomness for Continuous Measures

Characterizing randomness for continuous measures

Theorem (Reimann and Slaman)

Let x be a real. For any $z \in 2^{\omega}$, the following are eqivalent.

- (i) x is truth-table equivalent to a λ -z-random real.
- (ii) x is random for a continuous (dyadic) measure recursive in z.
- (iii) There exists a functional Φ recursive in z which is an order-preserving homeomorphism of 2^ω such that $\Phi(x)$ is λ -z-random.

This is an effective version of the classical isomorphism theorem for continuous probability measures.

The Class NCR

Question

Which level of logical complexity guarantees continuous randomness?

Let NCR_n be the set of all reals which are not n-random relative to any continuous measure.

- Kjos-Hanssen and Montalban: Every member of a countable Π₁⁰ class is contained in NCR₁. (It follows that elements of NCR₁ can be found at arbitrary high levels of the hyperarithmetical hierarchy.)
- Reimann and Slaman: $NCR_1 \subseteq \Delta_1^1$ (by arguments tailored for n=1).

Example of higher order: Kleene's ① cannot be 3-random with respect to a continuous measure.

Upper Bounds for Continuous Randomness

In general, can we give a distinct bound on NCR_n like in the case n = 1?

- ▶ There is some evidence that NCR_n grows very quickly with n.
- Can we give an upper bound?

Theorem (Reimann and Slaman)

For all n, NCR_n is countable.

NCR_n is Countable

Main Features of the Proof

- Show that the complement of NCR_n contains an upper Turing cone.
 - Show that the complement of NCR_n contains a Turing invariant and cofinal Borel set. We can use the set of all y that are Turing equivalent to some $z \oplus R$, where R is (n+1)-random relative to z.
 - ▶ Use Martin's result on Borel Turing sets to infer that the complement of NCR_n contains a cone.
- ▶ Go on to show that the elements of NCR_n are definable at a rather low level of the constructible universe.
 - ▶ $NCR_n \subseteq L_{\beta_n}$, where β_n is the least ordinal such that

 $L_{\beta_n} \vDash \mathsf{ZFC}^- + \mathsf{there} \ \mathsf{exist} \ \mathit{n} \ \mathsf{many} \ \mathsf{iterates} \ \mathsf{of} \ \mathsf{the} \ \mathsf{power} \ \mathsf{set} \ \mathsf{of} \ \omega,$

where ZFC^- is $\mathsf{Zermelo}\text{-}\mathsf{Fraenkel}$ set theory without the Power Set Axiom.

NCR_n is Countable

Is the metamathematics necessary?

Question

Do we need to use metamathematical methods to prove the countability of NCR_n ?

We make fundamental use of Borel determinacy; this suggests to analyze the metamathematics in this context.

Borel Determinacy and Iterates of the Power Set

Friedman's result

The necessity of iterates of the power set is known from a result by Friedman.

- Martin's proof of Borel determinacy starts with a description of a Borel game and produces a winning strategy for one of the players.
- The more complicated the game is in the Borel hierarchy, the more iterates of the power set of the continuum are used in producing the strategy.

Theorem (Friedman)

ZFC⁻ \nvdash All Σ_5^0 -games on countable trees are determined.

Martin later improved this to Σ_{4}^{0} .

Borel Determinacy and Iterates of the Power Set

Friedman's result

Inductively one can infer from Friedman's result that in order to prove full Borel determinacy, a result about sets of reals, one needs infinitely many iterates of the power set of the continuum.

- ▶ The proof works by showing that there is a model of ZFC⁻ for which Σ_4^0 -determinacy does not hold.
- ► This model is L_{β_0} .

NCR and Iterates of the Power Set

We can work along similar lines to obtain a result concerning the countability of NCR_n .

Theorem

For every k, the statement

For every n, NCR_n is countable.

cannot be proven in

 ZFC^- + there exists k many iterates of the power set of ω .

- ► The proof (for k=0) shows that there is an n such that NCR_n is cofinal in the Turing degrees of L_{β_0} . Hence, NCR_n is not countable in L_{β_0} .
- ► The witnesses for NCR_n are master codes of models L_{α} for certain $\alpha < \beta_0$.

Hausdorff Measures

Question

What is the computability theoretic relation between randomness for Hausdorff measures and randomness for (continuous) probability measures?

We denote Hausdorff premeasures by h, and the corresponding measure by \mathcal{H}^h .

Hausdorff Measures

Hausdorff measures and algorithmic entropy

Hausdorff randomness can be interpreted as a degree of incompressibility.

Theorem

Let h be a computable Hausdorff premeasure. A real x is \mathbb{H}^h -random if and only if there exists a constant c such that for all n,

$$K(x \upharpoonright_n) \geqslant -\log h(n) - c.$$

K denotes the prefix-free Kolmogorov complexity.

Hausdorff Measures

Hausdorff measures and computable measures

Theorem

For every computable dimension function h there is a real x such that x is \mathcal{H}^h -random but not random with respect to any computable measure.

Proof: Join a 1-generic and a λ -random real with appropriate density.

Hausdorff Measures and Randomness

Non-extractibility results

Theorem (Kjos-Hanssen, Merkle, and Stephan; R. and Slaman)

There exists computable, unbounded, nondecreasing function h and a real x such that for all h,

$$K(x \upharpoonright_n) \geqslant h(n) \tag{*}$$

and x does not compute a Martin-Löf random real.

How close to h(n) = n can h be? (The Dimension Problem)

Hausdorff Measures and Randomness

Non-extractibility results - strong reducibilities

Theorem (Reimann and Nies)

For each rational r, $0 \leqslant r \leqslant 1$, there is a real $x \leqslant_{wtt} \emptyset'$ such that

$$\liminf_n \frac{K(x \upharpoonright_n)}{n} = r \quad \text{ and } \quad (\forall z \leqslant_{\mathsf{wtt}} x) \ \liminf_n \frac{K(z \upharpoonright_n)}{n} \leqslant r.$$

Theorem

For every rational s and every real x such that x is \mathbb{H}^s -random, there exists a probability measure μ such that x is μ -random and for some c>0

$$\mu(U_{\sigma}) \leqslant c2^{-|\sigma|s}$$
 for all $\sigma \in 2^{\omega}$. (*)

Here \mathcal{H}^s denotes the Hausdorff measure based on the premeasure $2^{-|\sigma|s}$.

Pulling back measure effectively

Assume that Φ and Ψ are Turing functionals such that

$$\Psi(x) = R$$
 and $\Phi(R) = x$,

where R is λ -random.

Let
$$\mathsf{Pre}(\sigma) := \{ \tau \in 2^\omega : \ \Phi(\tau) \ \supseteq \ \sigma \ \& \ \Psi(\sigma) \sqsubseteq \tau \}.$$

To define a measure μ with respect to which x is random, we satisfy two requirements:

- (1) $\mathsf{Pre}(\sigma) := \{ \tau \in 2^{\omega} : \Phi(\tau) \supseteq \sigma \& \Psi(\sigma) \sqsubseteq \tau \}.$
- (2) $\lambda(U_{\mathsf{Pre}(\sigma)}) \leqslant \mu(U_{\sigma}) \leqslant \lambda(U_{\Psi(\sigma)})$

The configurations given by (2) induce a Π_1^0 class P of probability measures (with respect to a certain Cauchy representation).

A basis theorem for relative randomness

We want to show that for some $\mu \in P$, x is μ -random.

Note that if (V_n) were a μ -test covering x, then $\Phi^{-1}(V_n)$ would be a λ - r_{μ} -test covering R.

So, what we need to show is that R is λ - r_{μ} -random for some $\mu \in M$.

Theorem (indep. by Downey, Hirschfeldt, Miller, and Nies)

If $B \subseteq 2^{\omega}$ is nonempty and Π_1^0 , then, for every R which is λ -random there is $z \in B$ such that R is λ -z-random.

The proof is essentially a compactness argument.

Constructing measures

Construct an effectively closed set of measures.

- Work along a computable tree $T \subseteq 2^{<\omega}$ whose infinite paths are \mathcal{H}^s -random.
- ▶ Define sequence of uniformly computable measures $\{\mu^n\}$. Each μ^n can be seen as an approximation to a final μ , knowing only the paths of T up to length n.
- ▶ For $n \in \mathbb{N}$, define μ_n^n such that for all $\sigma \in 2^n$

$$\mu_n^n \upharpoonright U_{\sigma} = \begin{cases} 2^{(1-s)n} \, \lambda \upharpoonright U_{\sigma}, & \text{if } \sigma \in T, \\ 0, & \text{if } \sigma \notin T. \end{cases}$$

Constructing measures

Modify μ_n^n downward to ensure (*) at all levels $\leqslant n$. Define μ_{n-1}^n by requiring that

$$\mu_{n-k-1}^{n}\!\upharpoonright_{U_{\sigma}}=\!\gamma(\sigma)\mu_{n-k}^{n}\!\upharpoonright_{U_{\sigma}}$$

where $\gamma(\sigma) = \min\{1, 2^{-(n-k-1)s}(\mu_{n-k}^n U_{\sigma})^{-1}\}.$

- We stop as soon as $[T] \subseteq U_{\sigma}$ for some $\sigma \in 2^{k_0}$ and define $\mu^n = \mu^n_{k_0}$. k_0 can be determined effectively and μ^n is a computable measure, as the μ^n_m are.
- Finally, note that every real is computable in a λ -random real. (Gacs, Kucera)
- ► Combine the Gacs-reduction with the basis theorem to obtain the desired continuous probability measure.