И. И. БОГДАНОВ Конспект подготовил Александр Васильев

ФИВТ МФТИ 2016

2 ФИВТ МФТИ

Оглавление

1	Группы и подгруппы			
	1.1	Основные понятия	3	
	1.2	Примеры групп	4	
	1.3	Смежные классы	4	
	1.4	Нормальные подгруппы	5	
	1.5	Сопряжение	6	
	1.6	Гомоморфизмы групп	6	
	1.7	Действие группы на множество	9	
2	Свойства групп			
	2.1	<i>p</i> -группы	14	
	2.2	Лемма Бернсайда	15	
	2.3	Прямое произведение групп	16	
	2.4	Коммутант	18	
	2.5	Разрешимые группы	20	
	2.6	Простые группы	22	
	2.7	Теоремы Силова	24	
3	Задание групп			
	3.1	Свободные группы	27	
	3.2	Соотношения	28	
4	Конечно порождённые абелевы группы			
	4.1	Конечно порождённые абелевы группы без кручения	31	
	4.2	Строение конечно порождённых абелевых групп	33	
5	Кольца и поля			
	5.1	Базовые понятия теории колец	38	
	5.2	Поле разложения многочлена	41	

Глава 1

Группы и подгруппы

1.1 Основные понятия

Определение 1.1. $\Gamma pynna$ — это непустое множество G с бинарной операцией \cdot , обладающей следующими свойствами:

- Ассоциативность: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Существование нейтрального элемента: $\exists e \in G : \forall a \in G \ ae = ea = a$
- Существование обратного элемента: $\forall a \in q \ \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e$

Обозначение — (G, \cdot) , если операция очевидна — просто G. Группа называется абелевой, если операция \cdot коммутативна $(a \cdot b = b \cdot a)$.

Замечание. Нейтральный и обратные элементы единственны.

Определение 1.2. Подгруппа H < G— это непустое подмножество $H \subseteq G$, замкнутое относительно операций: $\forall a,b \in H \ a \cdot b \in H, \ \forall a \in H \ a^{-1} \in H$.

3амечание. H — также группа, с той же операцией (ограниченной на H).

Определение 1.3. Порядок группы — число её элементов |G|. Порядок элемента группы $g \in G$ — это наименьшее $n \in \mathbb{N}$ такое, что $g^n = e$ (и ∞ , если такого n нет). Обозначение: |g| или ord g.

Определение 1.4. Если $M \subset G$, то *подгруппа*, *порождённая* M — это пересечение всех подгрупп, содержащих M. Также $\langle M \rangle = \{a_1 \dots a_n \mid a_i \in M \vee a_i^{-1} \in M\}$. Обозначение: $\langle M \rangle$. Если существует $g \in G$ такой, что $\langle g \rangle = G$, то группа G — $uu\kappa nuueckas$.

Пример.
$$\langle G \rangle$$
 = G , $\langle \varnothing \rangle$ = $\{e\}$.

3амечание. ord $g = |\langle g \rangle|$.

Определение 1.5. Биекция $\varphi: G \to H$, сохраняющая операцию ($\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$), называется изоморфизмом групп G и H. Если он существует, то G и H изоморфиы ($G \cong H$).

4 ФИВТ МФТИ

1.2 Примеры групп

1. $(\mathbb{Z}, +), (\mathbb{Z}_n, +)$ — единственные (с точностью до изоморфизма) циклические группы. Подгруппа циклической группы — также циклическая.

- 2. (F,+), (F^*,\cdot) , где F поле.
- 3. (V, +), где V линейное пространство.
- 4. S_n группа перестановок n элементов (т. е. биекций $\{1,\ldots,n\} \to \{1,\ldots,n\}$) относительно композиции. Перестановку можно записать в виде таблицы, или же в виде произведение независимых циклов (цикл $\pi = (a_1 \ldots a_k)$ это перестановка такая, что $\pi(a_i) = a_{i+1}$ для $i = 1,\ldots,k-1$ и $\pi(a_k) = a_1$, остальные элементы неподвижны). Кроме того, S_n порождается множеством всех транспозиций. Знак перестановки $\sigma \in S_n$ есть $(-1)^{\sigma} = \operatorname{sgn} \sigma = (-1)^{N(\sigma)}$, где $N(\sigma)$ число инверсий в σ (совпадает по чётности с количеством транспозиций в любом разложении σ).
- 5. $GL_n(F)$ группа невырожденных матриц над F относительно умножения.
- 6. GL(V), где V линейное пространство над F, обратимые преобразования V относительно композиции. $GL(V) \cong GL_{\dim V}(F)$.
- 7. Подгруппы этих групп, в частности:
 - $A_n < S_n$ подгруппа всех чётных перестановок.
 - $SL_n(F) < GL_n(F)$ подгруппа всех матриц с единичным определителем.
 - $O_n < GL_n(\mathbb{R})$ подгруппа всех ортогональных матриц.
 - $\mathbb{C}_n < \mathbb{C}^*$: $\mathbb{C}_n = \{z \in \mathbb{C} \mid z^n = 1\}, \ \mathbb{C}_n \cong \mathbb{Z}_n$.

1.3 Смежные классы

Определение 1.6. Пусть H < G, $g \in G$. Левый смежный класс элемента g по H — это gH, правый — Hg, где $AB = \{ab \mid a \in A, b \in B\}$ для $A, B \subset G$ (вместо одного элемента подразумевается множество из этого элемента). G/H — множество всех левых смежных классов по H, $H \setminus G$ — правых.

Замечание. Для любых $a,b \in G$ $aH \cap bH \neq \emptyset \Leftrightarrow b^{-1}a \in H \Leftrightarrow aH = bH \Leftrightarrow b \in aH$. Значит, левые (правые) смежные классы — разбиение G.

Утверждение 1.1. Пусть H < G. Тогда G/H равномощно $H \backslash G$.

Доказательство. Построим биекцию $\varphi: G/H \to H\backslash G: \varphi(gH) = Hg^{-1}$. Заметим, что $\varphi(gH) = Hg^{-1} = H^{-1}g^{-1} = (gH)^{-1}$, а тогда φ корректно определено и является отображением из G/H в $H\backslash G$. Биективность следует из существования $\varphi^{-1}: Hg \mapsto g^{-1}H$.

Теория групп 5

Замечание. Отображение $gH \mapsto Hg$ не всегда корректно определено.

Определение 1.7. Если H < G, то *индексом* H в G называется $|G:H| = |G/H| = |H \backslash G|$.

Теорема 1.1 (Лагранжа). Для конечной группи $|G| = |H| \cdot |G:H|$. Следствие. |H| делит |G|, и для любого $g \in G$ |g| делит |G|.

1.4 Нормальные подгруппы

Определение 1.8. Пусть H < G. H называется нормальной подгруппой в G ($H \triangleleft G$), если $\forall q \in G$ qH = Hq.

Замечание. Эквивалентно: $H = g^{-1}Hg$.

Примеры.

- 1. $G \triangleleft G$.
- $2. \{e\} \triangleleft G.$
- 3. Если G абелева, то все подгруппы нормальны.
- 4. $A_n \triangleleft S_n$. Действительно, если $\sigma \in A_n$, то $\sigma A_n = A_n = A_n \sigma$. Иначе, $\sigma A_n = S_n \setminus A_n = A_n \sigma$.
- 5. $\langle (12) \rangle \not A$ S_3 . $\langle (12) \rangle = \{ id, (12) \}$. $\langle (13) \langle (12) \rangle = \{ (13), (123) \}$, но $\langle (12) \rangle \langle (13) = \{ (13), (132) \}$.

Утверждение 1.2. Пусть H < G, |G : H| = 2. Тогда $H \triangleleft G$.

Доказательство. G разбивается на левые смежные классы по H, один из них — H = eH, а значит другой — $G \times H$. Аналогично, правые смежные классы — H и $G \times H$. Значит, если $g \in H$, то gH = Hg = H. Если же $g \in G \times H$, то $gH = G \times H = Hg$.

Утверждение 1.3. Пусть $H_1, H_2 \triangleleft G$. Тогда $H_1 \cap H_2 \triangleleft G$.

Доказательство. $H_1 \cap H_2 < G$ — тривиально. Проверим, что для произвольного $g \in G$ верно $g^{-1}(H_1 \cap H_2)g = H_1 \cap H_2$. $\forall h \in H_1 \cap H_2$ $g^{-1}hg \in H_1 \wedge g^{-1}hg \in H_2 \Rightarrow g^{-1}hg \in H_1 \cap H_2$. Мы показали, что $\forall g \in G$ $g^{-1}(H_1 \cap H_2)g \subseteq H_1 \cap H_2$. Этого достаточно: $g(H_1 \cap H_2)g^{-1} \subseteq H_1 \cap H_2 \Rightarrow H_1 \cap H_2 = g^{-1}g(H_1 \cap H_2)g^{-1}g \subseteq g^{-1}(H_1 \cap H_2)g$.

Замечание. Если H < G и $\forall g \in G \ g^{-1}Hg \subseteq H,$ то $\forall g \in G \ g^{-1}Hg = H.$

Утверждение 1.4. Пусть $H \triangleleft G$, $K \triangleleft G$. Тогда $HK = \{hk : h \in H, k \in K\} \triangleleft G$. Если $K \triangleleft G$, то и $HK \triangleleft G$.

Доказательство. Покажем, что HK = KH. Действительно, $HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$. Теперь покажем, что HK < G: (HK)(HK) = H(KH)K = HHKK = HK; $(HK)^{-1} = K^{-1}H^{-1} = KH = HK$.

Если же $K \triangleleft G$, то $\forall g \in G \ gHK = HgK = HKg \Rightarrow HK \triangleleft G$.

6 ФИВТ МФТИ

1.5 Сопряжение

Определение 1.9. Пусть G — группа, $g, x \in G$. Тогда элементом, conpяжеён-ным к g при помощи x, называется $g^x = x^{-1}gx$.

Пример. Две матрицы одного преобразования в различных базисах сопряжены в $GL_n(F)$, их сопрягает матрица перехода.

Утверждение 1.5.

1.
$$g^{xy} = (g^x)^y$$

2.
$$(g_1g_2)^x = g_1^x g_2^x$$

3.
$$(g^{-1})^x = (g^x)^{-1}$$

Доказательство.

1.
$$g^{xy} = y^{-1}x^{-1}gxy = y^{-1}g^xy = (g^x)^y$$
.

2.
$$g_1^x g_2^x = x^{-1} g_1 x x^{-1} g_2 x = x^{-1} g_1 g_2 x = (g_1 g_2)^x$$
.

3.
$$q^x(q^{-1})^x = (qq^{-1})^x = e^x = e \Rightarrow (q^x)^{-1} = (q^{-1})^x$$
.

Утверждение 1.6. Отношение сопряжённости — это отношение эквивалентности.

Доказательство.

- 1. Рефлексивность: $g = g^e$.
- 2. Симметричность: g^x сопряжён к g, то $g = (g^x)^{x^{-1}}$.
- 3. Транзитивность: $g_2 = g_1^x$, $g_3 = g_2^y$, то $g_3 = (g_1^x)^y = g_1^{xy}$.

Определение 1.10. Класс элемента g относительно этого отношения — κ ласс сопряжённости этого элемента g. Обозначение: g^G .

Утверждение 1.7. Пусть H < G. Тогда $H \triangleleft G \Leftrightarrow H$ есть объединение нескольких классов сопряжённости.

Доказательство. $H \triangleleft G \Leftrightarrow \forall g \in G \ H = g^{-1}Hg \Rightarrow$ вместе с любым элементом $h \in H, \ h^G \subseteq H \Rightarrow H = \bigcup_{h \in H} h^G.$

Наоборот, если
$$H=\bigcup_{\alpha\in A}g_{\alpha}^G$$
, то $g^{-1}Hg=\bigcup_{\alpha\in A}(g_{\alpha}^G)^g=\bigcup_{\alpha\in A}g_{\alpha}^G=H.$

Упражнение. Пусть $g_1, g_2 \in G$. Тогда $g_1^G \cdot g_2^G$ — объединение нескольких классов сопряжённости, но не обязательно одного.

1.6 Гомоморфизмы групп

Определение 1.11. Пусть G, H—группы. Отображение $\varphi: G \to H$ называется гомоморфизмом групп, если $\forall g_1, g_2 \in G \ \varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$. Образ гомоморфизма— это $\operatorname{Im} \varphi = \varphi(G) = \{\varphi(g) \mid g \in G\}$. Ядро гомоморфизма $\operatorname{Ker} \varphi = \varphi^{-1}(e_H)$. Гомоморфизм называется эпиморфизмом, если $\operatorname{Im} \varphi = H$, и мономорфизмом, если φ — инъекция.

Теория групп 7

Утверждение 1.8. Пусть $\varphi: G \to H$ — гомоморфизм. Тогда:

1.
$$\varphi(e_G) = e_H$$
.

2.
$$\varphi(g^{-1}) = \varphi(g)^{-1}$$
.

Доказательство.

1.
$$\varphi(e) = \varphi(e^2) = \varphi(e)\varphi(e) \Rightarrow e = \varphi(e)$$
.

2.
$$\varphi(g^{-1})\varphi(g) = \varphi(g^{-1}g) = \varphi(e) = e$$
.

Утверждение 1.9. Гомоморфизм $\varphi : G \to H$ является мономорфизмом $\Leftrightarrow \operatorname{Ker} \varphi = \{e\}.$

Доказательство. $\varphi(e) = e \Rightarrow e \in \text{Ker } \varphi$. Если φ — мономорфизм, то $\forall e \neq g \in G \ \varphi(g) \neq \varphi(e) \Rightarrow \text{Ker } \varphi = \{e\}$. Если $\exists g_1 \neq g_2 \colon \varphi(g_1) = \varphi(g_2) \Rightarrow \varphi(g_1^{-1}g_2) = \varphi(g_1)^{-1}\varphi(g_2) = e \Rightarrow e \neq g_1^{-1}g_2 \in \text{Ker } \varphi$.

Примеры.

- 1. $\varphi: G \to H$, $\varphi(g) = e$.
- 2. $\varphi: \mathbb{Z} \to \mathbb{Z}_n$, $\varphi(a) = a \pmod{n}$; Ker $\varphi = n\mathbb{Z}$.
- 3. $\varphi: GL_n(F) \to F^*, \ \varphi(A) = \det A; \ \operatorname{Ker} \varphi = SL_n.$
- 4. Изоморфизм является гомоморфизмом. В частности, существуют изоморфизмы группы на себя (автоморфизмы). Например, если $x \in G$, то $\varphi_x : g \mapsto g^x$ автоморфизм.

Утверждение 1.10. Пусть $\varphi: G \to H$ — гомоморфизм групп. Тогда $\operatorname{Im} \varphi < H$, $\operatorname{Ker} \varphi \lhd G$.

Доказательство. Если $h_1, h_2 \in \text{Im } \varphi$, то $h_i = \varphi(g_i)$. $g_i \in G \Rightarrow h_1 h_2 = \varphi(g_1 g_2) \in \text{Im } \varphi$, $h_1^{-1} = \varphi(g_1^{-1}) \in \text{Im } \varphi$. Значит, $\text{Im } \varphi < H$.

Если $g_1, g_2 \in \text{Ker } \varphi$, то $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2) = e$, $\varphi(g_1^{-1}) = e \Rightarrow g_1g_2, g_1^{-1} \in \text{Ker } \varphi \Rightarrow \text{Ker } \varphi < G$. Кроме того, $\varphi(x^{-1} \cdot \text{Ker } \varphi \cdot x) = \varphi(x)^{-1} \cdot \varphi(\text{Ker } \varphi) \cdot \varphi(x) = \varphi(x)^{-1}\varphi(x) = e \Rightarrow \forall x \in G \ x^{-1} \text{Ker } \varphi \cdot x \subseteq \text{Ker } \varphi \Rightarrow \text{Ker } \varphi \triangleleft G$.

Замечание. Если K < H, то $\varphi : K \to H$, $\varphi(k) = k$ — это гомоморфизм, $\operatorname{Im} \varphi = K$.

Пусть $K \triangleleft G$. Рассмотрим G/K — множество левых смежных классов по K. Если $aK, bK \in G/K$, то $aK \cdot bK = a(Kb)K = abKK = abK \in G/K$ (в силу нормальности).

Теорема 1.2. $(G/K,\cdot)$ – группа.

Доказательство. Ассоциативность следует из ассоциативности в G. Нейтральный элемент — это K = eK, обратный к aK — $a^{-1}K$.

Определение 1.12. Полученная группа — ϕ акторгруппа группы G по нормальной подгруппе K.

8 ФИВТ МФТИ

Теорема 1.3. Отображение $\pi: G \to G/K$, $\pi(g) = gK$, является эпиморфизмом, $\operatorname{Ker} \pi = K$.

Доказательство. $\pi(g_1g_2) = g_1g_2K = g_1K \cdot g_2K = \pi(g_1)\pi(g_2) \Rightarrow \pi$ — гомоморфизм. Любой $gK \in G/K$ есть $\pi(g) \Rightarrow \pi$ — эпиморфизм. $g \in \operatorname{Ker} \pi \Leftrightarrow \pi(g) = gK = K \Leftrightarrow g \in K$. Итак, $\operatorname{Ker} \pi = K$.

Определение 1.13. $\pi - ecmecmseнный$ эпиморфизм $G \to G/K$.

Теорема 1.4 (основная теорема о гомоморфизмах групп). Пусть $\varphi: G \to H$ — гомоморфизм групп, $\operatorname{Ker} \varphi = K$. Тогда $K \lhd G$ и $\operatorname{Im} \varphi \cong G/K$. Наоборот, если $K \lhd G$, то существует эпиморфизм групп $\pi: G \to G/K$, $\operatorname{Ker} \varphi = K$.

Доказательство. Осталось доказать изоморфность образу: $\operatorname{Im} \varphi \cong G/K$.

Определим $\psi: G/K \to \text{Im } \varphi$ так: $\psi(aK) = \varphi(aK) = \varphi(a)\varphi(K) = \varphi(a)$. Если $\varphi(a) \in \text{Im } \varphi$, то $\varphi(a) = \psi(aK) \Rightarrow \psi$ — сюрьекция. Если $\psi(aK) = \psi(bK)$, то $\varphi(a) = \varphi(b) \Rightarrow \varphi(a^{-1}b) = e \Rightarrow a^{-1}b \in \text{Ker } \varphi = K \Rightarrow b \in aK \Rightarrow bK = aK$. Итак, ψ —инъекция.

Теперь покажем что ψ сохраняет операции: $\psi(aK) \cdot \psi(bK) = \varphi(a)\varphi(b) = \varphi(ab) = \psi(abK) = \psi(aK \cdot bK)$. Значит, ψ — изоморфизм.

Замечание. Если $h \in \operatorname{Im} \varphi$, то $\psi^{-1}(h) = \varphi^{-1}(h)$.

Примеры.

- 1. $\varphi: \mathbb{Z} \to \mathbb{Z}_n$, $\varphi(a) = a \mod n$. Ker $\varphi = n\mathbb{Z}$, Im $\varphi = \mathbb{Z}_n \Rightarrow \mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$.
- 2. $\det: GL_n(F) \to F^*$. Im $\det = F^*$; Ker $\det = SL_n(F) \Rightarrow GL_n(F)/SL_n(F) \cong F^*$.

Упражнение. $S_n/A_n \cong ?$.

Теорема 1.5 (первая теорема об изоморфизме). Пусть $H \triangleleft G$, $K \triangleleft G$. Тогда:

- 1. HK = KH < G.
- 2. $K \cap H \triangleleft K$.
- 3. $HK/H \cong K/(H \cap K)$.

Доказательство. Первый пункт уже доказан. Второй и третий следуют из рассмотрения естественного эпиморфизма: $\pi: G \to G/H$. Тогда $\pi_{HK} := \pi\big|_{HK}$ и $\pi_K := \pi\big|_{K}$ —гомоморфизмы групп. $\operatorname{Im} \pi_{HK} = \pi(HK) = \pi(H)\pi(K) = \pi(K) = \operatorname{Im} \pi_{K}$. $\operatorname{Ker} \pi_{HK} = H$, $\operatorname{Ker} \pi_{K} = K \cap H$. Тогда $HK/H \cong \operatorname{Im} \pi_{HK} = \operatorname{Im} \pi_{K} \cong K/(H \cap K)$.

Замечание. Явный вид изоморфизма: $k(H\cap K)\in K/(H\cap K) \leftrightarrow kH\in HK/H$. Замечание. $K\cap H \vartriangleleft K$, поскольку $K\cap H=\operatorname{Ker}\pi_K$.

Пример. Пусть $G = S_4$, $H = V_4 = \{ id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \}$. Нетрудно поверить, что $V_4 \triangleleft S_4$ (V_4 называется четверной группой Клейна). Положим $K = S_3 < S_4$. $H \cap K = \{ id \}$. Это значит, что $\forall h_i \in H, k_i \in K$ $h_1k_1 = h_2k_2 \Rightarrow H \ni h_2^{-1}h_1 = k_2k_1^{-1} \in K \Rightarrow h_1 = h_2, k_1 = k_2$. Значит, $|HK| = |H| \cdot |K| = 24 \Rightarrow HK = S_4$. Применяя первую теорему об изоморфизме, имеем $S_4/V_4 = HK/H \cong K/H \cap K = S_3/\{id\} \cong S_3$.

Теорема 1.6 (Вторая теорема об изоморфизме, или теорема о соответствии). Пусть $G - \epsilon pynna$, $H \triangleleft G$, обозначим $\overline{G} \coloneqq G/H$. Тогда:

- 1. Для подгруппы K < G такой, что H < K, обозначим $\overline{K} \coloneqq K/H$. Тогда $\overline{K} < \overline{G}$.
- 2. Соответствие $K \leftrightarrow \overline{K}$ биекция между подгруппами в G, содержащими H, и подгруппами в \bar{G} .
- 3. Если H < K < G, то $K \triangleleft G \Leftrightarrow \overline{K} \triangleleft \overline{G}$, и в этом случае $G/K \cong \overline{G}/\overline{K}$.

Доказательство. Рассмотрим естественный эпиморфизм $\pi: G \to G/H$ ($\pi(g) = gH$). Тогда $\pi(K) = KH/H = K/H = \overline{K}$. Наоборот, если $L < \overline{G}$, то $H < \pi^{-1}(L) < G$ (если $a,b \in \pi^{-1}(L)$, то $ab,a^{-1} \in \pi^{-1}(L)$). При этом, $\pi(\pi^{-1}(L)) = L$, ибо π —сюрьекция; кроме того, для любой такой K < G

$$\pi^{-1}(\pi(K)) = \pi^{-1}(\overline{K}) = \bigcup_{kH \in \overline{K}} kH = \bigcup_{k \in K} kH = K.$$

Итак, π осуществляет требуемую биекцию $K \to \overline{K}$.

Если $K \triangleleft G$, то $g^{-1}Kg = K \Rightarrow \pi(g)^{-1}\pi(K)\pi(g) = \pi(K)$ для любого $g \in G$. Поскольку π — сюрьекция, $\pi(K) = \overline{K} \triangleleft \overline{G}$.

Пусть $\overline{K} \triangleleft \overline{G}$. Тогда существует естественный эпиморфизм $\pi' : \overline{G} \rightarrow \overline{G}/\overline{K}$. Рассмотрим $\pi' \circ \pi : G \rightarrow \overline{G}/\overline{K}$. Это — эпиморфизм, при этом $\operatorname{Ker}(\pi' \circ \pi) = \pi^{-1}(\pi'^{-1}(e)) = \pi^{-1}(\overline{K}) = K$. Значит, $\overline{G}/\overline{K} = \operatorname{Im}(\pi' \circ \pi) \cong G/\operatorname{Ker}(\pi' \circ \pi) = G/K$ по основной теореме о гомоморфизмах (и $K = \operatorname{Ker}(\pi' \circ \pi) \triangleleft G$).

Пример. Пусть $m, n \in \mathbb{N}$. Тогда $\mathbb{Z} \triangleright n\mathbb{Z} \triangleright mn\mathbb{Z}$ (и $\mathbb{Z} \triangleright mn\mathbb{Z}$). Значит, $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$, $\mathbb{Z}/mn\mathbb{Z} = \mathbb{Z}_{mn}$, а $n(\mathbb{Z}/mn\mathbb{Z}) = n\mathbb{Z}_{mn}$. Следовательно, $\mathbb{Z}_{mn}/n\mathbb{Z}_{mn} = (\mathbb{Z}/mn\mathbb{Z})/(n\mathbb{Z}/mn\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$. Как применить пункты 1 и 2? Все подгруппы \mathbb{Z} имеют вид $k\mathbb{Z}$, $k \in \mathbb{Z}$. Тогда все подгруппы $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ есть подгруппы вида $k\mathbb{Z}/n\mathbb{Z}$, где $n\mathbb{Z} < k\mathbb{Z}$ (т. е. $k \mid n$). Значит, подгруппы в \mathbb{Z}_n — это подгруппы вида $(n/k)\mathbb{Z}_n$, где $k \mid n$, т. е. $l\mathbb{Z}_n$, где $l \mid n$.

1.7 Действие группы на множество

Определение 1.14. Пусть G—группа, Ω —множество. Говорим, что определено ∂ ействие группы G на множестве Ω , если определено отображение $G \times \Omega \to \Omega$ (т. е. для любых $g \in G$, $\omega \in \Omega$ определён $g(\omega) \in \Omega$), удовлетворяющее следующим свойствам:

- 1. $(gh)(\omega) = g(h(\omega))$
- 2. $e(\omega) = \omega$

Определение 1.15. Действие группы G на множество Ω — это гомоморфизм $G \to S(\Omega)$, где $S(\Omega)$ — группа всех биекций множества Ω в себя.

Утверждение 1.11. Данные определения эквивалентны.

 \mathcal{A} оказательство. Пусть задано действие G на Ω по определению 1.14. Положим для $g \in G$ $I_g: \Omega \to \Omega$, $I_g(\omega) = g(\omega)$. Тогда $I_{gh}(\omega) = (gh)(\omega) = g(h(\omega)) = I_g \circ I_h(\omega)$, т. е. $I_{gh} = I_g \circ I_h$. Кроме того, $I_g \circ I_{g^{-1}} = I_e = I_{g^{-1}}I_g$, причём $I_e = \mathrm{id}$. Т. е. $I_{g^{-1}}$ — это обратное отображение к I_g , а значит I_g — биекция. Итак, $g \mapsto I_g$ — это требуемый гомоморфизм.

Наоборот, пусть $g \mapsto I_g$ — гомоморфизм $G \to S(\Omega)$, то положим $g(\omega) = I_g(\omega)$. Тогда $(gh)(\omega) = I_{gh}(\omega) = I_g \circ I_h(\omega) = g(h(\omega))$, т. е. первое свойство доказано. Кроме того, $I_e = id$, т. е. $e(\omega) = \omega$.

Определение 1.16. Пусть $\varphi: G \to S(\Omega)$ — действие группы на множестве. Тогда sdpom этого действия называется $\ker \varphi = \{g \in G \mid \forall \omega \in \Omega \mid g(\omega) = \omega\}$. Действие называется sdpom (или sdpdpemmenum), если sdpom сели sdpom

Примеры.

- 1. G = GL(V) действует на $V: \varphi \in GL(V), v \in V$, то $\varphi(v) = \varphi(v)$ (точно).
- 2. S_n действует на $\{1, ..., n\}$ тривиальным образом (точно).
- 3. Если G действует на Ω , то можно определить действие G на Ω^2 : $g((\omega_1, \omega_2)) = (g(\omega_1), g(\omega_2))$.
- 4. Рассмотрим группу O_2 всех преобразований плоскости, и в R^2 рассмотрим правильный n-угольник D_n с центром в O Тогда можно определить группу диэдра $D_n = \{ \varphi \in O_2 \mid \varphi(D_n) = D_n \}$. Тогда D_n действует на:
 - (a) Плоскость \mathbb{R}^2
 - (b) Вершины *п*-угольника
 - (c) Стороны n-угольника
 - (d) Множество точке n-угольника

Определение 1.17. Пусть G действует на Ω , $\omega \in \Omega$ Тогда орбитой элемента ω называется $G(\omega) = \{g(\omega) \mid g \in G\}$. Два элемента $\omega_1, \omega_2 \in \Omega$ эквивалентны относительно действия, если $\omega_2 \in G(\omega_1)$.

Утверждение 1.12. Определённое отношение является отношением эквивалентности, его классы — это орбиты действия.

Доказательство. $\omega_1 = e(\omega_1)$, т. е. отношение рефлексивно. Если $\omega_2 \in G(\omega_1)$, то $\omega_2 = g(\omega_1) \Rightarrow g^{-1}(\omega_2) = g^{-1}(g(\omega_1)) = e(\omega_1) = \omega_1 \Rightarrow \omega_1 \in G(\omega_2)$ — отношение симметрично. Если $\omega_2 = g_1(\omega_1)$, $\omega_3 = g_2(\omega_2)$, то $\omega_3 = g_2(g_1(\omega_1)) = (g_2 \circ g_1)(\omega_1)$ — транзитивность.

Наконец, $\{\omega' \mid \omega' \in G(\omega)\} = G(\omega)$.

Следствие. Ω разбивается на орбиты действия.

Определение 1.18. Действие называется *транзитивным*, если у него одна орбита, т. е. $\forall \omega, \omega' \in \Omega \ \exists g \in G: \ \omega' = g(\omega)$.

Пример. У действия GL(V) на V две орбиты: $\{0\}$ и $V \setminus \{0\}$.

Теория групп 11

Определение 1.19. Пусть G действует на Ω , $\omega \in \Omega$. Тогда $\mathrm{St}(\omega) = \{g \in G \mid g(\omega) = \omega\}$ называется *стабилизатором* (*стационарной подгруппой*) элемента ω .

Утверждение 1.13. $St(\omega) < G$

Доказательство. Если $g, h \in St(\omega)$, то $(gh)(\omega) = g(h(\omega)) = \omega \Rightarrow gh \in St(\omega)$. $g^{-1}(\omega) = g^{-1}(g(\omega)) = e(\omega) = \omega \Rightarrow g^{-1} \in St(\omega)$.

Утверждение 1.14. Пусть G действует на Ω , $\omega \in \Omega$, $\omega' \in G(\omega)$; пусть $\omega' = g'(\omega)$. Тогда $\{g \in G \mid \omega' = g(\omega)\} = g'St(\omega) = St(\omega')g'$

Доказательство. $\omega' = g(\omega) \Leftrightarrow g'^{-1}(\omega') = (g'^{-1}g)(\omega) \Leftrightarrow \omega = (g'^{-1}g)(\omega) \Leftrightarrow g'^{-1}g \in St(\omega) \Leftrightarrow g \in g'St(\omega)$. Наоборот, $\omega' = g(\omega) \Leftrightarrow \omega = g^{-1}(\omega') \Leftrightarrow g^{-1} \in g'^{-1}St(\omega') \Leftrightarrow g \in St(\omega')g'$.

Следствие. $St(\omega) = g'^{-1}St(\omega')g'$, т. е. стабилизаторы двух элементов одной орбиты сопряжены.

Следствие. $|G(\omega)| = |G:St(\omega)|$ (если $G(\omega)$ — конечна, то $|G(\omega)| = \frac{|G|}{|St(\omega)|}$).

Доказательство. Сопоставим любому $\omega' \in G(\omega)$ множество $\{g \in G \mid \omega' = g(\omega)\}$. Это множество — левый смежный класс по $St(\omega)$. Ясно, что разным элементам в $G(\omega)$ соответствуют разные смежные классы и любому смежному классу соответствует $\omega' \in G(\omega)$. Итак, мы придумали биекцию между $G(\omega)$ и $G/St(\omega)$.

Теорема 1.7 (формула орбит). Пусть группа G действует на множество $\Omega = \Omega_1 \sqcup \cdots \sqcup \Omega_k$, где $\Omega_i - o$ рбиты действия, пусть $\omega_i \in \Omega_i$. Тогда

$$|\Omega| = \sum_{i=1}^{k} |\Omega_i| = \sum_{i=1}^{k} |G : \operatorname{St}(\omega_i)|$$

1.7.1 Примеры действия группы

Действие на себя левыми сдвигами

 $\Omega = G, \ \forall g, \omega \in G \ g(\omega) = g \cdot \omega.$ Орбиты — вся G (т. е. действие транзитивно), ядро тривиально $(g \neq e \Rightarrow g\omega \neq \omega;$ такое действие называется csobodhum). $St(\omega) = e$. Это значит, что верна теорема Кэли:

Теорема 1.8 (Кэли). Пусть G — группа. Тогда в S(G) есть подгруппа $H \cong G$.

Доказательство. Действие левыми сдвигами определяет гомоморфизм φ : $G \to S(\Omega) = S(G)$, причём $\operatorname{Ker} \varphi = \{e\}$. Значит, φ — мономорфизм, $G \cong \operatorname{Im} \varphi < S(G)$.

Действие на смежные классы сдвигами

Пусть H < G. Тогда G действует левыми сдвигами на $\Omega = G/H$: $\forall g, x \in G$ g(xH) = gxH $(g_1(g_2(xH)) = g_1g_2xH = (g_1g_2)(xH)$. Орбита — G/H. Стабилизатор xH — это $\{g \mid gxH = xH\}$. Но $gxH = xH \Leftrightarrow gx \in xH \Leftrightarrow g \in xHx^{-1}$. Значит, ядро

12 ФИВТ МФТИ

действия есть

$$K = \bigcap_{x \in G} xHx^{-1} = \bigcap_{x \in G} \operatorname{St}(xH).$$

Утверждение 1.15. K — наибольшая по включению подгруппа в H, которая нормальна в G.

Доказательство. $K \triangleleft G$, т. к. это — ядро действия. Наоборот, если $K' \triangleleft G$, $K' \triangleleft H$, то $\forall x \in G$ $K' = xK'x^{-1} \triangleleft xHx^{-1} \Rightarrow K' \triangleleft G$

Упражнение. Пусть H < G, |G:H| = n. Тогда существует $L \triangleleft G$ такая, что |G:L| |n!.

Аналогичные действия правыми сдвигами определяются так: $g(\omega) = \omega g^{-1}$. $g(h(\omega)) = \omega h^{-1} g^{-1} = \omega(gh)^{-1} = (gh)(\omega)$, $e(\omega) = \omega$.

Действие сопряжением на себя

 $\Omega = G, \ g(\omega) = \omega^{g^{-1}}.$ Проверка: $g(h(\omega)) = (\omega^{h^{-1}})^{g^{-1}} = \omega^{h^{-1}g^{-1}} = \omega^{(gh)^{-1}} = (gh)(\omega),$ $e(\omega) = \omega.$ Орбита $G(\omega) = \omega^G$ — класс сопряжённости, стабилизатор: $g\omega g^{-1} = \omega \Leftrightarrow g\omega = \omega g$, т. е. $\mathrm{St}(\omega) = \{g \in G \mid g\omega = \omega g\}$ — централизатор элемента ω , обозначается $C_G(\omega)$. Разумеется, $C_G(\omega)$ — наибольшая по включению подгруппа, все элементы которой перестановочны с ω . Ядро действия есть

$$\bigcap_{\omega \in G} C_G(\omega) = \{ g \in G \mid \forall \omega \in G \ g\omega = \omega g \} = Z(G).$$

Это множество называется центром группы.

Замечание. $Z(G) \triangleleft G$.

Утверждение 1.16. Если G- конечная группа, $\omega \in G$, то $|\omega^G| \mid \frac{|G|}{|\omega|}$. Доказательство.

$$|\omega^G| = |G(\omega)| = \frac{|G|}{|\operatorname{St}(\omega)|} = \frac{|G|}{|C_G(\omega)|}.$$

Однако, $\omega \in C_G(\omega) \Rightarrow \langle \omega \rangle < C_G(\omega) \Rightarrow |\omega| = |\langle \omega \rangle| \mid |C_G(\omega)|$. Значит, $|\omega^G| = \frac{|G|}{|C_G(\omega)|} \mid$ Равенство достигается, если $C_G(\omega)$ тривиален (степени ω).

Определение 1.20. *Автоморфизм* группы G – это изоморфизм $G \to G$. Множество всех автоморфизмов G обозначается $\mathrm{Aut}(G)$, это — группа относительно композиции.

Автоморфизм $\varphi \in \operatorname{Aut}(G)$ называется внутренним, если $\exists h \in G : \forall g \in G \ \varphi(g) = g^h$. Множество всех внутренних автоморфизмов обозначается через $\operatorname{Inn}(G)$.

Утверждение 1.17. Inn(G) < Aut(G). Более того, $Inn(G) \cong G/Z(G)$.

Доказательство. Рассмотрим действие G на себя сопряжениями. Это — гомоморфизм $I: G \to S(G)$, образ элемента $g \in G$ обозначим I_g . Тогда $\forall g \in G$ $I_g \in \operatorname{Aut}(G)$: $I_g(xy) = (xy)^{g^{-1}} = x^{g^{-1}}y^{g^{-1}} = I_g(x)I_g(y)$ (кроме того, I_g — биекция). Значит, $I: G \to \operatorname{Aut}(G) < S(G)$, $\operatorname{Inn}(G) = \operatorname{Im} I < \operatorname{Aut}(G)$, $\operatorname{Im} I \cong G/\operatorname{Ker} I = G/Z(G)$.

Упражнение. $Inn(G) \triangleleft Aut(G)$

Теория групп 13

Действие сопряжением на подгруппы

 Ω — множество подгрупп $G,\ g(H)=H^{g^{-1}}=gHg^{-1}< G.$ Орбита подгруппы H— все подгруппы, сопряжённые с H. Стабилизатор H $\mathrm{St}(H)=\{g\in G\mid gH=Hg\}=N_G(H)$ — нормализатор подгруппы $H.\ N_G(H)$ — наибольшая (по включению) подгруппа в G, в которой H нормальная.

Замечание. Количество подгрупп, сопряжённых с H есть $|G:N_G(H)|$.

Глава 2

Свойства групп

2.1 *p*-группы

Определение 2.1. Пусть p — простое число. Группа G называется p-группой, если $|G| = p^n, n \in \mathbb{N} \setminus \{0\}$.

Пример. Если |G| = p, то по теореме Лагранжа порядок $e \neq g \in G$ равен p, т. е. $|\langle g \rangle| = p = |G| \Rightarrow G = \langle g \rangle$. Значит, G циклическая и абелева.

Теорема 2.1. Пусть G - p-группа. Тогда $Z(G) \neq \{e\}$.

Доказательство. Рассмотрим действие G на себя сопряжением. Орбиты — классы сопряжённости, если $g \in Z(G)$, то $g^G = \{g\}$, иначе $g \notin Z(G) \Rightarrow 1 < |g^G| = |G : C_G(g)| = p^k$. k зависит от g, но $k \geqslant 1$. Выберем представителей g_i для каждого класса сопряжённости, $i \in \{1, \ldots, n\}$, тогда по формуле орбит:

$$p^{n} = |G| = \sum_{i=1}^{n} |g_{i}^{G}| = |Z(G)| + \sum_{|g_{i}^{G}| > 1} |G : C_{G}(g_{i})|.$$

Второе слагаемое — сумма нетривиальных степеней p, но тогда $p \mid |Z(G)| \Rightarrow |Z(G)| > 1$.

Теорема 2.2. Пусть G — не абелева группа. Тогда G/Z(G) — не циклическая.

Замечание. $Z(G) \triangleleft G \Rightarrow$ можем рассматривать факторгруппу. Условие неабелевости важно, так как иначе G = Z(G), и тогда G/Z(G) тривиальна, а потому циклична.

Доказательство. Пусть это не верно. Положим Z = Z(G), и $G/Z = \langle aZ \rangle$, $a \in G \Rightarrow$ все левые смежные классы имеют вид $a^k \cdot Z$, $k \in \mathbb{Z}$, т. к. G/Z циклична. Рассмотрим произвольные $g, h \in G$: $g = a^k x$, $h = a^l y$, $k, l \in \mathbb{Z}$, $x, y \in Z$. Но тогда $gh = a^k x a^l y = a^l y a^k x = hg$, ведь x и y коммутируют со всеми элементами. Значит, G абелева, противоречие.

Следствие. Если |G| = p^2 , где p-npocmoe, то G-aбелева.

Доказательство. G-p-группа $\Rightarrow Z(G) \neq \{e\}$, т. е. |Z(G)| = p или $|Z(G)| = p^2$. Во втором случае Z(G) = G, т. е. G — абелева. Если же |Z(G)| = p, то |G/Z(G)| = p $\Rightarrow G/Z(G)$ — циклическая, тогда G всё равно должна быть абелевой.

Теория групп 15

Пример. Рассмотрим в $GL_3(\mathbb{Z}_p)$ подгруппу $UT_3(\mathbb{Z}_p)$ унитреугольных матриц, т. к. матриц вида

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix},$$

это действительно подгруппа. $|UT_3(\mathbb{Z}_p)| = p^3$, и она не абелева, т. к.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Упражнение. Какой у $Z(UT_3(\mathbb{Z}_p))$ центр? $|Z(UT_3(\mathbb{Z}_p))| \in \{p, p^2\}.$

2.2 Лемма Бернсайда

Теорема 2.3. Пусть конечная группа G действует на Ω транзитивно. Определим для $g \in G$ $F(g) = |\{\omega \in \Omega \mid g(\omega) = \omega\}|$. Тогда

$$\sum_{g \in G} F(g) = |G|$$

Доказательство. Занумеруем $G = \{g_i\}_1^n$ и $\Omega = \{\omega_i\}_1^k$, обозначим

$$(i,j) = \begin{cases} 1, & \text{если } g_i(w_j) = w_j \\ 0, & \text{иначе} \end{cases},$$

тогда

$$F(g_i) = \sum_{j=1}^k (i, j),$$
$$\sum_{g \in G} F(g) = \sum_{i,j} (i, j).$$

Заметим, что

$$\sum_{i=1}^{n} (i, j) = |\operatorname{St}(w_j)| = \frac{|G|}{|G(w_j)|} = \frac{|G|}{|\Omega|},$$

а тогда сумма всех (i,j) — это $\frac{|G|}{|\Omega|} \cdot |\Omega| = |G|$.

Если G действует на Ω , то можем определить действие на Ω^2 : $g((\omega_1, \omega_2)) = (g(\omega_1), g(\omega_2))$.

Определение 2.2. Действие G на Ω называется 2-транзитивным, если действие G на Ω^2 транзитивно.

Упражнение. Если действие 2-транзитивно, то $\sum_{g \in G} F(G)^2 = 2|G|$.

Следствие (Лемма Бернсайда). Пусть конечная группа G действует на конечное Ω , обозначим за Ω/G множество орбит этого действия. Тогда

$$|\Omega/G| = \frac{1}{|G|} \sum_{g \in G} F(g).$$

Доказательство. Пусть $\Omega/G = \{\Omega_i\}_{i=1}^k$, тогда тем же действием G действует на Ω_i транзитивно. Обозначим $F_i(g) = |\{w \in \Omega_i \mid g(w) = w\}|$. Тогда по теореме $\sum_{g \in G} F_i(G) = |G|$, при этом $F(G) = \sum_{i=1}^k F_i(G)$, а тогда

$$\sum_{g \in G} F(g) = \sum_{i=1}^k \sum_{g \in G} F_i(g) = k \cdot |G| = |\Omega/G| \cdot |G|.$$

Пример. Пусть p— нечётное простое число, $k \in \mathbb{N}$. Нужно найти количество ожерелий из p бусин, которые могут иметь k разных цветов, повороты и перевороты отождествляются. Если бы они не отождествлялись, ответом было бы k^p . Обозначим множество фиксированных ожерелий за Ω , на него действует группа диэдра D_p , тогда искомое число— $|\Omega/D_p|$. Орбита—одно ожерелье с точностью до поворотов и переворотов. По лемме Бернсайда, достаточно найти F(g) для любого $g \in D_p$.

- 1. $g = e, F(g) = |\Omega| = k^p$.
- 2. g осевая симметрия, $F(g) = k^{(p+1)/2}$.
- 3. g нетривиальный поворот. Тогда он сохранит элемент только если все бусины имеют один цвет, т. к. p простое, т. е. F(g) = k.

Итого,
$$|\Omega/D_p| = \frac{1}{2p} (k^p + k^{(p+1)/2} \cdot p + k(p-1)).$$

2.3 Прямое произведение групп

Определение 2.3. Пусть G_1, G_2 — группы. Их (внешним) прямым произведением называется множество $G = G_1 \times G_2 = \{(g_1, g_2) \mid g_1 \in G_1, g_2 \in G_2\}$ с операцией $(g_1, g_2) \cdot (g_1', g_2') = (g_1 g_1', g_2 g_2')$.

Утверждение 2.1. Если G_1 , $G_2 - \epsilon pynnu$, то $G_1 \times G_2 - \epsilon pynna$.

Доказательство. Ассоциативность следует из ассоциативности G_1 и G_2 , нейтральным будет (e_1, e_2) а обратным к $(g_1, g_2) - (g_1^{-1}, g_2^{-1})$.

Утверждение 2.2. Для групп G_1 , G_2 , G_3 верно:

- 1. $G_1 \cong G_1 \times \{e\} \triangleleft G_1 \times G_2$
- 2. $G_1 \times G_2 \cong G_2 \times G_1$
- 3. $(G_1 \times G_2) \times G_3 \cong G_1 \times (G_2 \times G_3)$

Доказательство.

Теория групп 17

1. Очевидно, $G_1 \times \{e\} < G_1 \times G_2$. При этом,

$$(g'_1, g'_2)^{-1}(g_1, e)(g'_1, g'_2) = (g'_1^{-1}g_1g'_1, e) \in G_1 \times \{e\} \Rightarrow G_1 \times \{e\} \triangleleft G_1 \times G_2.$$

Изоморфизм же осуществляется отображением $\varphi: g \mapsto (g, e)$.

2. Изоморфизм осуществляется отображением $(g_1, g_2) \mapsto (g_2, g_1)$.

3. Изоморфизм —
$$((g_1, g_2), g_3) \mapsto (g_1, (g_2, g_3))$$
.

Замечание. Таким образом можно определить $G_1 \times \cdots \times G_k$. Более того, аналогично можно определить и прямое произведение бесконечного числа групп: $\prod_{\alpha \in I} G_{\alpha}$, где I — произвольное множество индексов.

Теорема 2.4. Пусть $A, B \triangleleft G$, AB = G, $A \cap B = \{e\}$. Тогда $G \cong A \times B$.

Доказательство. Покажем, что $\forall a \in A, b \in B$ ab = ba. Действительно, рассмотрим $aba^{-1}b^{-1}$: $aba^{-1} \in B$ и $ba^{-1}b^{-1} \in A$ из их нормальности, а тогда $aba^{-1}b^{-1} \in A \cap B = \{e\}$, т. е. $aba^{-1}b^{-1} = e \Rightarrow ab = ba$.

Построим отображение $\varphi: A \times B \to G$: $\varphi: (a,b) \mapsto ab$. Тогда $\varphi((a_1,b_1) \cdot (a_2,b_2)) = \varphi((a_1a_2,b_1b_2)) = a_1a_2b_1b_2 = a_1b_1a_2b_2 = \varphi((a_1,b_1)) \cdot \varphi((a_2,b_2)) \Rightarrow \varphi$ гомоморфизм. Т. к. AB = G, $\operatorname{Im} \varphi = AB = G$. Наконец, если $(a,b) \in \operatorname{Ker} \varphi$, то $ab = e \Rightarrow a = b^{-1} \in A \cap B = \{e\} \Rightarrow a = b = e \Rightarrow \operatorname{Ker} \varphi = \{(e,e)\}$. Значит, φ изоморфизм.

Определение 2.4. В ситуации, описанной в теореме, G является внутренним прямым произведением A и B.

3амечание. $G/A = AB/A \cong B/B \cap A = B/\{e\} \cong B$ по первой теореме об изоморфизме. Аналогично, G/B = A.

Утверждение 2.3. Пусть $G = A \times B - npямое произведение групп <math>A$ и B. Пусть $A_1 \triangleleft A$, $B_1 \triangleleft B$. Тогда $A_1 \times B_1 \triangleleft A \times B$, $npu \lor \ddot{e}_M (A \times B)/(A_1 \times B_1) = (A/A_1) \times (B/B_1)$.

Доказательство. Пусть $\overline{A} = A/A_1$, $\overline{B} = B/B_1$, и пусть $\pi_A : A \to \overline{A}$, $\pi_B : B \to \overline{B}$ — соответствующие канонические эпиморфизмы. Рассмотрим $\pi = \pi_A \times \pi_B : A \times B \to \overline{A} \times \overline{B}$, $\pi(a,b) = (\pi_A(a),\pi_B(b))$. Нетрудно видеть, что π — эпиморфизм групп. Кег $\pi = \operatorname{Ker} \pi_A \times \operatorname{Ker} \pi_B = A_1 \times B_1$. Итак, $\overline{A} \times \overline{B} = \operatorname{Im} \pi \cong (A \times B)/\operatorname{Ker} \pi = (A \times B)/(A_1 \times B_1)$ (и $A_1 \times B_1 = \operatorname{Ker} \pi \lhd G$).

В заключение, рассмотрим более общую ситуацию. Пусть $A \triangleleft G$, $B \triangleleft G$, причём AB = G, $A \cap B = \{e\}$. В этом случае, G называется полупрямым произведением A и $B \colon G = A \rtimes B$.

Примеры.

- 1. $S_n = A_n \times \langle (1,2) \rangle, \ n \geqslant 2.$ (но $S_n \not\equiv A_n \times \langle (1,2) \rangle$ при $n \geqslant 3$, ибо $Z(S_n) = \{e\}$).
- 2. $S_4 = V_4 \times S_3$.

Как описать полупрямые произведения групп? Пусть $G = A \times B$, $\forall b \in B \ bAb^{-1} = A$. Значит, группа B действует сопряжением на A, т. е. возникает гомоморфизм

 $\psi: B \to \operatorname{Aut} A$: $[\psi(b)](a) = bab^{-1} = a^{b^{-1}}$. Задание групп A, B и гомоморфизма ψ однозначно задаёт G. Действительно, для любого $g \in G$ существует единственное разложение $g = ab, \ a \in A, \ b \in B$. Умножение задаётся так:

$$(a_1,b_1)(a_2,b_2) = a_1b_1a_2b_2 = a_1(b_1a_2b_1^{-1})b_1b_2 = \underbrace{a_1}_{\in A}\underbrace{[\psi(b_1)](a_2)}_{\in A}\underbrace{b_1b_2}_{\in B}$$

Упражнение. Пусть A, B — группы, $\psi : B \to \operatorname{Aut} A$ — гомоморфизм. Тогда можно определить группу так: $G = A \times B$, $(a_1, b_1)(a_2, b_2) = (a_1 \cdot [\psi(b_1)](a_2), b_1b_2)$.

2.4 Коммутант

Определение 2.5. Пусть G — группа, $x, y \in G$. Коммутатором этих элементов называется $[x, y] = xyx^{-1}y^{-1}$.

Утверждение 2.4. Для любых $x, y \in G$ верно:

- 1. $xy = yx \Leftrightarrow [x, y] = e$
- 2. xy = [x, y]yx
- 3. $[x,y]^{-1} = [y,x]$
- 4. $[x,y]^g = [x^g, y^g]$

Доказательство.

- 1. Следует из следующего свойства.
- 2. $[x,y] \cdot yx = xyx^{-1}y^{-1}yx = xy$.
- 3. $[x,y]^{-1} = yxy^{-1}x^{-1} = [y,x]$.
- 4. Следует из того, что сопряжение автоморфизм.

Замечание. Если $\varphi: G \to A$ — гомоморфизм в абелеву группу A, то $\varphi([x,y]) = [\varphi(x), \varphi(y)] = e$.

Определение 2.6. Пусть G — группа, тогда $G' = \langle \{[x,y] \mid x,y \in G\} \rangle$ называется коммутантом группы G.

Более общо: если K, H < G, то их взаимным коммутантом называется подгруппа $[K, H] = \langle \{[k, h] | k \in K, h \in H\} \rangle$. Таким образом, G' = [G, G].

3амечание. $\{[x,y] \mid x,y \in G\}$ не обязательно является подгруппой в G.

Упражнение. Привести соответствующий пример.

Утверждение 2.5. Пусть $\varphi: G \to H$ — гомоморфизм групп. Тогда $\varphi(G') < H'$. Более того, если φ — эпиморфизм, то $\varphi(G') = H'$.

Доказательство. Для любых x,y $\varphi([x,y]) = [\varphi(x),\varphi(y)] \in H'$. Значит, $\varphi(\{[x,y] \mid x,y \in G\}) \subseteq H' \Rightarrow \varphi(G') = \langle \{\varphi([x,y]) \mid x,y \in G\} \rangle \subseteq H'$. Если же φ — эпиморфизм, то $\forall a,b \in H \ \exists x,y \in G : \varphi(x) = a,\varphi(y) = b$. Тогда $[a,b] = \varphi([x,y]) \in \varphi(G') \Rightarrow H' \subseteq \varphi(G') \Rightarrow \varphi(G') = H'$.

Теория групп 19

Следствие. $K \triangleleft G \Rightarrow K' \triangleleft G$.

Доказательство. Пусть $g \in G$, $I_g \in \operatorname{Aut} G$, $I_g(x) = x^{g^{-1}}$. Тогда, т. к. $K \triangleleft G$, то $I_g(K) = K$, т. е. $I_g|_K : K \to K$ — автоморфизм группы K. Значит, $I_g(K') = K'$, т. е. $gK'g^{-1} = K' \Rightarrow K' \triangleleft G$.

Определение 2.7. G'' = (G')', по индукции, $G^{(n)} = (G^{(n-1)})'$. Подгруппа $G^{(n)}$ называется n-м коммутантом группы G.

Следствие. $G' \triangleleft G$; более того, $G^{(n)} \triangleleft G$.

Доказательство. Индукция по n. При n = 0, G < G. Шаг индукции — предыдущее следствие. ■

Теорема 2.5. Для группы G верно:

- 1. G/G' абелева группа.
- 2. Если G' < K < G, то $K \triangleleft G$.
- 3. Если $K \triangleleft G$, причём G/K абелева, то $G' \triangleleft K$.

3амечание. Это значит, что G' — наименьшая по включению нормальная подгруппа, факторгруппа по которой Абелева.

Доказательство.

- 1. Пусть $\pi: G \to G/G'$ канонический эпиморфизм, тогда $\forall x, y \in G \ [\pi(x), \pi(y)] = \pi([x,y]) = e \Rightarrow \pi(x)$ и $\pi(y)$ коммутируют. Поскольку π эпиморфизм, то G/G' абелева.
- 2. Рассмотрим $\pi(K) = K/G' < G/G'$. Поскольку G/G' абелева, то $K/G' \lhd G/G'$, и по второй теореме об изоморфизме $K \lhd G$.
- 3. Пусть G/K абелева. Рассмотрим канонический эпиморфизм $\pi': G \to G/K$. Тогда $\pi'([x,y]) = [\pi'(x),\pi'(y)] = e \Rightarrow [x,y] \in \operatorname{Ker} \pi' = K$ для произвольных $x,y \in G$. Значит, G' < K.

3 a мечание. Наоборот, если G' < K < G,
то $G/K \cong (G/G')/(K/G')$ — абелева.

Замечание. В конце доказательства мы, по сути, увидели, что для любого гомоморфизма $\varphi: G \to A$, где A — абелева, $\operatorname{Ker} \varphi > G'$.

Упражнение. Пусть $H \triangleleft G$, K = [G, H]. Тогда K — наименьшая подгруппа такая, что H/K < Z(G/K).

Определение 2.8. Пусть G — группа, $M \subseteq G$. Тогда нормальная подгруппа, порождённая множеством M, есть

$$\langle M \rangle_{\text{HOPM}} = \bigcap_{H \lhd G, M \subseteq H} H.$$

Утверждение 2.6. $\langle M \rangle_{nop_M} = \langle M^G \rangle$, $i\partial e M^G = \{ m^g \mid m \in M, g \in G \}$.

Доказательство. Если $H \triangleleft G$, $M \subseteq H$, то $M^G \subseteq H$. Значит, $\langle M^G \rangle = \bigcap_{H \triangleleft G, H \supseteq M^G} H \subseteq \bigcap_{H \triangleleft G, H \supseteq M} H = \langle M \rangle_{\text{норм}}$. Наоборот, $\langle M^G \rangle \triangleleft G$, т. к. $\forall g \in G \ \langle M^G \rangle^g = \langle M^G \rangle = \langle M^G \rangle$, поэтому $\langle M \rangle_{\text{норм}} \subseteq \langle M^G \rangle$.

Утверждение 2.7. Пусть $G = \langle M \rangle$. Тогда $G' = \langle \{[m_1, m_2] \mid m_1, m_2 \in M \} \rangle_{nopm}$. Доказательство. Обозначим правую часть равенства через H. Раз $G' \triangleleft G$ и $[m_1, m_2] \in G'$ для любых $m_1, m_2 \in M$, получаем H < G'.

Наоборот, рассмотрим G/H и канонический эпиморфизм $\pi: G \to G/H$; $[\pi(m_1), \pi(m_2)] = \pi([m_1, m_2]) = e$ для произвольных $m_1, m_2 \in M$. Итак, $G/H = \langle \pi(M) \rangle$, и любые два элемента из $\pi(M)$ коммутируют. Значит, G/H — абелева, откуда G' < H.

Значит,
$$G' = H$$
.

Упражнение. Приведите пример, когда $G' \neq \langle \{[m_1, m_2] \mid m_1, m_2 \in M\} \rangle$.

3амечание. Для группы G обе подгруппы Z(G) и G' показывают, насколько «далека» G от абелевой.

2.5 Разрешимые группы

Определение 2.9. Группа G называется pазрешимой, если существует такое $n \in \mathbb{N}$, что $G^{(n)} = \{e\}$.

Пример. $S_3' = A_3 = \langle (1\ 2\ 3) \rangle$, A_3 — абелева, а потому $A_3' = \{e\} = S_3^{(2)}$. Значит, S_3 — разрешима.

Замечание. Наименьшее n такое, что $G^{(n)} = \{e\}$, называется $\mathit{ступенью}$ разрешимости.

Теорема 2.6. Пусть $K \triangleleft G$. Тогда G разрешима $\Leftrightarrow K$ и G/K разрешимы. Доказательство.

- $\Rightarrow K < G \Rightarrow K^{(n)} < G^{(n)}$. Значит, K разрешимо. Пусть $\pi : G \to G/K$ канонический эпиморфизм. Тогда $(G/K)' = \pi(G')$, и по индукции $(G/K)^{(n)} = \pi(G^{(n)})$. Т. к. $G^{(n)} = \{e\}$ при некотором n, $(G/K)^{(n)} = \{K\} \Rightarrow G/K$ разрешима.
- \leftarrow Пусть $K^{(n)} = \{e\}, (G/K)^{(l)} = \{e\}.$ Тогда $\pi(G^{(l)}) = (G/K)^{(l)} = \{e\},$ т. е. $G^{(l)} < \text{Ker } \pi = K$. Значит, $G^{(l+n)} = (G^{(l)})^{(n)} < K^{(n)} = \{e\}.$

Следствие. Пусть $K_1, K_2 \triangleleft G$ — разрешимые (нормальные) подгруппы. Тогда $K_1 \cdot K_2 \triangleleft G$ также разрешима.

Доказательство. Заметим, что $K_1 \triangleleft K_1 \cdot K_2$; K_1 — разрешима по условию, $(K_1 \cdot K_2)/K_1 \cong K_2/(K_1 \cap K_2)$ (по первой теореме об изоморфизме) — также разрешима, т. к. разрешимы K_1 и K_2 (по теореме). Значит, $K_1 \cdot K_2$ также разрешима.

Следствие. В любой конечной группе G существует наибольшая по включению нормальная разрешимая подгруппа (это просто произведение всех нормальных разрешимых подгрупп).

Теорема 2.7. Пусть G — группа. Тогда равносильны следующие утверждения:

1. G — разрешима.

2. Существует цепочка подгрупп $G = G_0 > G_1 > \dots > G_k = \{e\}$ такая, что $G_i \triangleleft G \ u \ G_i / G_{i+1} - aбелева.$

3. Существует цепочка подгрупп $G = G_0 > G_1 > \dots > G_k = \{e\}$ такая, что $G_{i+1} \triangleleft G_i$ и G_i/G_{i+1} — абелева.

Доказательство.

- 1 ⇒ 2 Положим $G_i = G^{(i)}$. Т. к. G разрешима, $G^{(k)} = \{e\}$ при некотором k. Уже доказано, что $G^{(i)} \triangleleft G$ и $G^{(i)}/G^{(i+1)} = G^{(i)}/(G^{(i)})'$ абелева.
- $2 \Rightarrow 3$ Тривиально.
- $3 \Rightarrow 1$ Покажем, что $G^{(i)} < G_i$. При i = 0 это верно. Пусть $G^{(i)} < G_i$, тогда рассмотрим канонический эпиморфизм $\pi_i : G_i \to G_i/G_{i+1}$. $\pi_i(G^{(i)}) < G_i/G_{i+1}$, т. е. $\pi_i(G^{(i)})$ абелева группа. Это значит, что у гомоморфизма $\pi_i|_{G^{(i)}}$ ядро содержит $(G^{(i)})' = G^{(i+1)}$, т. е. $G^{(i+1)} < \operatorname{Ker} \pi_i \cap G^{(i)} < \operatorname{Ker} \pi_i = G_{i+1}$. Итак, $G^{(k)} < G_k = \{e\} \Rightarrow G^{(k)} = \{e\}$, т. е. G разрешима.

Замечание. Цепочка в (2) называется нормальным рядом подгрупп с абелевыми факторами. Цепочка в (3) называется субнормальным рядом подгрупп с абелевыми факторами.

Утверждение 2.8. Любая р-группа разрешима.

Доказательство. Пусть G-p-группа, $|G|=p^n$. Докажем, что G разрешима индукцией по n. При n=1 G — циклическая \Rightarrow абелева \Rightarrow $G'=\{e\}$. Пусть n>1. Положим $Z=Z(G)\neq\{e\}$. Если Z=G, то G абелева, а потому разрешима. Иначе $|Z|=p^k$, $|G/Z|=p^{n-k}$, где $1\leqslant k\leqslant n-1$. Значит, Z и G/Z разрешимы по предположению индукции, а по теореме разрешима и G.

Замечание. Из этого доказательства можно получить нормальный ряд подгрупп с абелевыми факторами. Положим $H_0 = \{e\}$, $H_1 = Z(G)$; $H_2 = \pi^{-1}(Z(G/H_1))$, где $\pi: G \to G/H_1$ — канонический эпиморфизм. Аналогично строятся H_3, \ldots, H_k . Тогда $\{e\} = H_0 < H_1 < \cdots < H_k = G$ — требуемый нормальный ряд.

Теорема 2.8. Пусть G - p-группа, $|G| = p^n$. Тогда для любого $0 \le k \le n-1$ $\exists H \lhd G: |H| = p^k$.

Доказательство. Индукция по k. Если k=0, то $H=\{e\}$. Пусть k>0. Обозначим $Z=Z(G)\neq\{e\}$. Если $e\neq g\in Z$, то ord $g=p^l$. Положим $h=g^{p^{l-1}}$; тогда ord h=p. Пусть $H=\langle h\rangle\Rightarrow |H|=p$. Более того, $H< Z\Rightarrow H\vartriangleleft G$. В группе G/H по предположению индукции найдётся нормальная подгруппа порядка p^{k-1} ; по второй теореме об изоморфизме эта подгруппа имеет вид K/H, где $H< K\vartriangleleft G$. Итак, $K\vartriangleleft G$ и $|K|=|K/H|\cdot |H|=p^{k-1}\cdot p=p^k$.

Замечание. Т. к. любая *p*-группа G разрешима, $G' \neq G$.

Упражнение. Докажите, что S_4 разрешима.

2.6 Простые группы

Определение 2.10. Группа G называется npocmoй, если в ней ровно две нормальных подгруппы: G и $\{e\}$.

Замечание. Группа из одного элемента не является простой.

Пусть G—произвольная группа, $G = G_0 \triangleright G_1 \triangleright ... \triangleright G_n = \{e\}$ —субнормальный ряд подгрупп $(G_i \neq G_{i+1})$. Если G_i/G_{i+1} —не простая, то существует нетривиальная $H/G_{i+1} \triangleleft G_i/G_{i+1}$, тогда H можно вставить между G_i и G_{i+1} , ибо $G_i \triangleright H \triangleright G_{i+1}$. Если эта процедура закончится (в частности, это так для всех конечных групп), то получим субнормальный ряд с простыми факторам.

3 aмечание. Полученный субнормальный ряд называется κ омпозиционным рядом группы G.

Для любых двух композиционных рядов группы G наборы факторов совпадают с точностью до перестановки и изоморфизма (теорема Жордана-Гёльдера).

Утверждение 2.9. Абелева группа проста $\Leftrightarrow G \cong \mathbb{Z}_p$ при простом p.

Доказательство. Пусть G — абелева простая группа, $e \neq g \in G$. Тогда $\langle g \rangle \triangleleft G \Rightarrow \langle g \rangle = G$. Значит, $G \cong \mathbb{Z}$ или $G \cong \mathbb{Z}_n$. Если $G \cong \mathbb{Z}$, то $\mathbb{Z} \triangleright 2\mathbb{Z} - G$ не проста. Пусть $G \cong \mathbb{Z}_n$ и n — составное, т. е. n = kl, k, l > 1. Тогда $\mathbb{Z}_n \triangleright k\mathbb{Z}_n \neq \mathbb{Z}_n \Rightarrow G$ непроста.

Если $G \cong \mathbb{Z}_p$, то $\forall H < G \ |H| \mid p$, т. е. |H| = p или |H| = 1, а значит H = G или $H = \{e\} - G$ проста.

Теорема 2.9. Группа A_5 проста.

Лемма 2.1. Пусть $H \triangleleft G$, |G:H| = 2, $h \in H$. Тогда, если $C_G(h) \neq C_H(h)$, то $h^H = h^G$. В противном случае $h^G = h^H \cup h_1^H$ и $|h^H| = |h_1^H|$ для некоторого $h_1 \in H^G$.

Доказательство. Напоминание: $C_G(h) = \{g \in G \mid hg = gh\}, |h^G| = |G : C_G(h)|.$

Пусть существует $g \in C_G(h) \setminus C_H(h) = C_G(h) \setminus H$. Тогда $G = H \cup gH = H \cup Hg$. Значит, $h^G = h^H \cup h^{gH} = h^H \cup (h^g)^H = h^H$, т. к. $g \in C_G(h)$.

Пусть $h^G = h^H$. Тогда $\forall g \in G \setminus H$ $h^g = h^x$, $x \in H \Rightarrow h^{gx^{-1}} = h \Rightarrow gx^{-1} \in C_G(h) \setminus H$. В этом случае $C_G(h) \neq C_H(h)$. Значит, если $C_G(h) = C_H(h)$, то $h^G \neq h^H$, но $h^G = h^H \cup (h^g)^H$, где $g \in G \setminus H$. Обозначим $h_1 = h^g \Rightarrow h^G = h^G \cup h_1^H$. Наконец, $h_1^H = h^{gH} = h^{Hg}$, тогда биекция между h^H и h_1^H задаётся очень просто: $h^H \ni x \mapsto x^g \in h^{Hg}$. Итак, $|h^H| = |h_1^H|$.

Доказательство теоремы. Пусть $H \triangleleft A_5$, $H \neq \{e\}$. Тогда H есть объединение нескольких классов сопряжённости в A_5 . Пусть $\sigma = (a_1 \dots a_k) \in S_n$. Тогда $\sigma^{\tau^{-1}} = \tau \sigma \tau^{-1} = (\tau(a_1) \dots \tau(a_k))$.

Значит, классы сопряжённости (и их мощности) элементов A_5 в S_5 и в A_5 таковы:

Теория групп 23

в S_5	в А ₅
$e^{S_5} = \{e\}$	{e} = 1
$(1\ 2\ 3)^{S_5} = \{(i\ j\ k)\}$	$(45) \in C_{S_5}((123)) \setminus A_5,$
	то есть $ (1\ 2\ 3)^{A_5} = \{(i\ j\ k)\} = 20$
$((1\ 2)(3\ 4))^{S_5} = \{(i\ j)(k\ l)\}$	$(34) \in C_{S_5}((12)(34)) \setminus A_5,$
	то есть $ ((1\ 2)(3\ 4))^{A_5} $ =
	$ \{(i \ j)(k \ l)\} = 15$
$(1\ 2\ 3\ 4\ 5)^{S_5} = \{(i\ j\ k\ l\ m)\}$	$ 24 + A_5 = 60 \Rightarrow$ два класса:
	$ (1 \ 2 \ 3 \ 4 \ 5)^{A_5} = 12, (1 \ 2 \ 3 \ 5 \ 4)^{A_5} =$
	12

Из тех чисел 1,20,15,12,12 нельзя составить нетривиальную сумму, делящую $|A_5|=60$ и содержащую 1. Значит, раз $|H|\mid 60$ и $e\in H, |H|=60$ и $H=A_5$.

Теорема 2.10. При $n \geqslant 5$ группа A_n проста.

Замечание. $A_4 \triangleright V_4$.

Доказательство. Уже знаем: $A_n = \langle \{(i \ j \ k)\} \rangle$, A_n действует на $\{1, \ldots, n\}$ и $\operatorname{St}(i) \cong A_{n-1}$.

Индукция по $n \ge 5$, база уже доказана. Пусть теперь $n \ge 6$, $\{e\} \ne H \triangleleft A_n$.

Докажем, что существует нетривиальная перестановка $e \neq \sigma \in H$ такая, что $\exists i : \sigma \in \operatorname{St}(i)$. Рассмотрим $e \neq \tau \in H$. Б. о. о. $\tau = (1 \ 2 \dots) \dots$ — разложение τ в произведение независимых циклов. $\tau \in A_n \Rightarrow \tau$ нетривиально переставляет хотя бы 3 элемента. Значит, $\exists k : \tau(k) \notin \{1,2,k\}$ (возможно, $k \in \{1,2\}$). Пусть $\tau(k) = l$. Наконец, пусть $p, q \notin \{1,2,k,l\}$, $p \neq q$, $p, q \in \{1,\dots,n\}$. Обозначим $\tau_1 = \tau^{(l,p,q)}$, тогда $\tau_1(1) = 2$, $\tau_1(k) = q$. Значит, $(\tau_1\tau^{-1})(2) = 2$, $(\tau_1\tau^{-1})(l) = q \neq l$, т. е. $e \neq \tau_1\tau^{-1} \in H \cap \operatorname{St}(2)$.

Пусть $e \neq \sigma \in H \cap \operatorname{St}(n)$. Тогда $H \cap \operatorname{St}(n) \triangleleft \operatorname{St}(n) \cong A_{n-1}$. Значит, $H \cap \operatorname{St}(n) = \operatorname{St}(n)$ по предположению индукции. В частности, $(1\ 2\ 3)^{A_n} \in H \Rightarrow (1\ 2\ 3)^{A_n} \subseteq H$, но $(1\ 2\ 3)^{A_n} = \{(i\ j\ k)\}$. Т. о. $H > \langle (1\ 2\ 3)^{A_n} \rangle = A_n$.

3амечание. A_5 — неабелева простая группа наименьшего возможного порядка.

3амечание. Пусть F — поле. Тогда простой является группа

$$PSL_N(F) = SL_n(F)/Z(SL_N(F)),$$

где $Z(SL_n(F)) = \{\lambda E \mid \lambda \in F, \lambda^n = 1\}$, если

- a) $n \ge 3$
- б) n = 2 и $|F| \ge 4$.

Упражнение. $PSL_2(F_2) \cong S_3$, $PSL_2(F_3) \cong A_4$, $PSL_2(F_4) \cong PSL_2(F_5) \cong A_5$. **Теорема 2.11.** Группа SO_3 проста, где $SO_3 = O_3 \cap SL_3(\mathbb{R})$.

Замечание. SO_3 — группа вращений трёхмерного евклидового пространства. Действительно, если $A \in SO_3$, то у A есть с. з. 1 и A реализует вращение вокруг соответствующего собственного вектора.

Доказательство. Как выглядят классы сопряжённости в SO_3 ? Пусть $g,h \in SO_3$, и пусть h— вращение вокруг l на угол α . Тогда ghg^{-1} — вращение на угол α вокруг g(l), поскольку $h(x) = y \Rightarrow ghg^{-1}(gx) = g(y)$. Значит, h^{SO_3} состоит из всех вращений на угол α . Пусть $\{e\} \neq H \triangleleft SO_3$. Пусть $e \neq h \in H$ — пусть это вращение на α относительно l. Тогда в H содержатся все вращения на α . Пусть $l(\varphi)$ — прямая, образующая угол φ с l, $x(\varphi)$ — вращение вокруг $l(\varphi)$ на α . Тогда $x(\varphi) \in H$ (считаем, что $x(\varphi)$ непрерывно меняется при изменении φ). Положим $y(\varphi) = h(x(\varphi))^{-1}$. Тогда y(0) = id, а $y(\varphi)$ — вращение на некоторый угол $\beta(\varphi)$, $\beta(0) = 0$. $\beta(\varphi)$ — также непрерывная функция аргумента φ (β выражается через $tr y(\varphi)$), β — не тождественный ноль. Значит, значения $\beta(\varphi)$ заметают некоторый интервал $[0,\alpha_0]$, $\alpha_0 > 0$, т. к. $y(\varphi) \in H$, в H лежат все вращения на углы $\gamma \in [0,\alpha_0] \Rightarrow$ в H лежат все вращения

3амечание. SO_n проста при n = 3 и $n \ge 5$.

2.7 Теоремы Силова

Пусть |G| = n, $k \mid n$. В таком случае необязательно существует H < G, |H| = k. Например, в группе A_4 нет $H < A_4$: |H| = 6. Иначе бы $|A_4 : H| = 2 \Rightarrow H \triangleleft A_4$, но классы сопряженности в A_4 имеют порядки 1, 3, 4, 4, и из этих порядков не составить 6.

Определение 2.11. Пусть G — конечная группа, $|G| = n = p^k s$, где p — простое, $k \geqslant 1, \ p \nmid s$. Тогда $\mathit{силовской}\ p$ - $\mathit{nodepynnoй}\ \mathsf{B}\ G$ называется подгруппа H < G такая, что $|H| = p^k$.

Теорема 2.12 (1-я теорема Силова). В любой конечной группе $G, p \mid n = |G|$, существует силовская p-подгруппа.

Теорема 2.13 (2-я теорема Силова). Любая p-подгруппа группы G содержится в некоторой силовской p-подгруппе. Более того, все силовские p-подгруппы в G сопряжены.

Теорема 2.14 (3-я теорема Силова). Пусть N_p — количество словских рподгрупп в G. Тогда $N_p \equiv 1 \mod p$.

Замечание. Во-первых, из второй теоремы следует, что все силовские p-подгруппы в G изоморфны. Во-вторых, уже известно, что в группе порядка p^k есть подгруппы любого порядка p^l , $l \leq k$. Значит, и в G есть такие (но они не обязательно изоморфны).

Доказательство 2-й теоремы при условии 1-й. Пусть P — силовская p-подгруппа в $G,\ H$ — некоторая p-подгруппа в $G,\ |H|=p^t$. Рассмотрим действие группы H на $\Omega=G/P$ левыми сдвигами: h(gP)=hgP. Пусть $\Omega=\Omega_1\sqcup\Omega_2\sqcup\cdots\sqcup\Omega_m$ — разбиение на орбиты. Тогда для любого i выбрав $\omega_i\in\Omega_i\ |\Omega_i|=|H:\operatorname{St}(\omega_i)|=p^{\alpha_i},$ $\alpha_i\in\mathbb{Z}_+$. Значит, по формуле орбит $s=\frac{n}{p^k}=|\Omega|=p^{\alpha_1}+\cdots+p^{\alpha_m}$. Поскольку $p\nmid s$, существует $\alpha_i=0$, т. е. $\Omega_i=\{gP\},\ g\in G$. Но $P_1=gPg^{-1}< G$ — подгруппа, сопряженная с P. Итак, $H\cdot P_1=P_1\Rightarrow H\subseteq P_1\Rightarrow H< P_1,\ |P_1|=p^k$. Наконец, если H —

силовская p-подгруппа, то $H < gPg^{-1}, \ |H| = |gPg^{-1}| \Rightarrow H = gPg^{-1},$ т. е. H и P сопряжены.

Доказательство 3-й (и 1-й) теоремы. Пусть $\Omega = \{M \subseteq G \mid |M| = p^k\}$, G действует на Ω левыми сдвигами: $g(M) = gM \in \Omega$. Пусть $M \in \Omega$, $H = \operatorname{St}(M)$. Это значит, что для любого $h \in H$ $hM = M \Rightarrow HM = M$. Но $HM = \bigcup_{m \in M} Hm$, т. е. M есть объединение правых смежных классов по H, откуда $|H| \mid |M| = p^k \Rightarrow |H| = p^t$, $t \in \mathbb{Z}$, а тогда $|G(M)| = |G:H| = sp^{k-t}$.

Заметим: если H — силовская p-подгруппа, то M = HM = Hm, $m \in M$. Наоборот, если K — произвольная силовская подгруппа, то для множества M = Kg имеем $KM = M \Rightarrow K < \mathrm{St}(M) \Rightarrow K = \mathrm{St}(M)$. Итого: любая силовская p-подгруппа K < G является стабилизатором ровно для |G:K| = s подмножеств — своих правых смежных классов. В то же время, любой правый смежный класс силовской p-подгруппы будет левым для некоторой (возможно, другой) силовской p-подгруппы, а его орбита — всеми её левыми смежными классами.

Применим формулу орбит: если $\Omega = \Omega_1 \sqcup \cdots \sqcup \Omega_m$ — разбиение Ω на орбиты, то

$$C_n^{p^k} = |\Omega| = \sum_{i=1}^m |\Omega_i| = \sum_{i=1}^m s \cdot p^{k-t_i},$$

где среди чисел t_i есть ровно N_p чисел, равных k; для остальных же слагаемые будут кратны p. Значит,

$$C_n^{p^k} \equiv N_p \cdot s \pmod{p},$$

т. е. $N_p \mod p$ зависит только лишь от n, а не от того, какую группу порядка n мы выбрали.

Например, если $G = \mathbb{Z}_n$, то в ней ровно одна подгруппа порядка $p^k \Rightarrow N_p \equiv 1 \pmod p$ для любой G, |G| = n.

Упражнение. Пусть $0 \le l \le k$, и пусть $N_p(l)$ — количество подгрупп порядка p^l в группе G. Тогда $N_p(l) \equiv 1 \pmod{p}$.

Утверждение 2.10. Пусть p < q - npостые числа. Тогда любая группа G, |G| = pq, разрешима.

Доказательство. Пусть Q — силовская q-подгруппа в G, |Q| = q. Все силовские q-подгруппы сопряжены с ней, и их количество есть $N_q \equiv 1 \mod q$. Если $N_q = 1$, то $g^{-1}Qg = Q$ для любого $g \in G \Rightarrow Q \triangleleft G$, |G/Q| = p, т. е. Q и G/Q — циклические $\Rightarrow G$ — разрешима. Иначе в любой силовской q-подгруппе найдётся q-1 элементов порядка q, и все они различны $\Rightarrow |G| \geqslant N_q \cdot (q-1) \geqslant (q+1)(q-1) > pq$ — противоречие. ■

Теорема 2.15. Пусть G — конечная группа, p_1, \ldots, p_k — все различные простые делители n = |G|, а P_1, \ldots, P_k — соответствующие силовские подгруппы в G. Тогда:

1.
$$P_i \triangleleft G \Leftrightarrow N_{p_i} = 1$$

2.
$$G = P_1 \times \cdots \times P_k \Leftrightarrow \forall i \ P_i \triangleleft G$$

Доказательство.

26 ФИВТ МФТИ

1. Если N_{p_i} = 1, то P_i — единственная силовская p_i -подгруппа, а тогда $\forall g \in G$ gP_ig^{-1} = $P_i \Rightarrow P_i \triangleleft G$. Наоборот, если $P_i \triangleleft G$, то по второй теореме Силова любая силовская p_i -подгруппа сопряжена с P_i , т. к. совпадает с P_i . Значит, N_{p_i} = 1.

2. Если $G = P_1 \times \cdots \times P_k$, то $P_i \triangleleft G$. Наоборот, если $P_i \triangleleft G$, докажем индукцией по t, что $P_1 \cdot \cdots \cdot P_t = P_1 \times \cdots \times P_t$. При t = 1 — доказывать нечего. Пусть $P_1 \cdots P_{t-1} = P_1 \times \cdots \times P_{t-1}$, тогда $|P_1 \dots P_{t-1}|$ делится только на p_1, \dots, p_{t-1} , а $|P_t|$ делится лишь на p_t . Отсюда $|P_1 \dots P_{t-1} \cap P_t|$ делит $GCD(|P_1 \dots P_{t-1}|, |P_t|) \Rightarrow P_1 \dots P_{t-1} \cap P_t = \{e\}$. Итак, $P_1 \dots P_{t-1}, P_t \triangleleft P_1 \dots P_t$, $P_1 \dots P_{t-1} \cap P_t = \{e\}$, $P_1 \dots P_{t-1} \cdot P_t = P_1 \dots P_t \Rightarrow P_1 \dots P_t = (P_1 \dots P_{t-1}) \times P_t = P_1 \times \cdots \times P_t$.

Следствие. Любая конечная абелева группа— прямое произведение своих силовских подгрупп.

Глава 3

Задание групп

Как задать группу \mathbb{Z}_n — циклическую группу из n элементов? Можно сказать, что она порождается одним элементом порядка n, а образующие и соотношения позволят записать это как $\mathbb{Z}_n \cong \langle a \mid a^n = e \rangle$.

3.1 Свободные группы

Определение 3.1. Пусть $F_n = \langle f_1, \dots, f_n \rangle$ — группа. Она называется *свободной со свободными порожедающими* f_1, \dots, f_n , если выполняется универсальное свойство: для любой группы G и любых $g_1, \dots, g_n \in G$ существует гомоморфизм $\varphi: F_n \to G$ такой, что $\varphi(f_i) = g_i, \ i = 1, \dots, n$.

3амечание. Такой гомоморфизм φ единственен.

Замечание. Если $G = (g_1, \ldots, g_n)$, то φ сюрьективен, т. е. $G \cong F_n / \operatorname{Ker} \varphi$.

Пусть f_1, \ldots, f_n-n различных символов. Выберем алфавит $A=\{f_1, \ldots, f_n, f_1^{-1}, \ldots, f_n^{-1}\}$. Теперь пусть F_n —множество всех слов в алфавите A (включая пустое слово Λ), в которые не входят подслова вида $f_i^{-1}f_i$ и $f_if_i^{-1}$.

Пример. При
$$n=1$$
 эти слова будут иметь вид Λ , $\underbrace{f_1 f_1 \dots f_1}_k$ и $\underbrace{f_1^{-1} \dots f_1^{-1}}_k$.

Пример. При n=2 $f_1f_2f_2f_1^{-1} \in F_n$, а $f_1f_2f_2^{-1} \notin F_n$.

Введём операцию: если $w_1, w_2 \in F_n$, то $w_1 \cdot w_2$ есть их конкатенация в которой осуществим «сокращения» взаимнообратных букв на стыке слов, тогда $w_1 \cdot w_2 \in F_n$.

Пример. $(f_1f_2f_3)\cdot(f_3^{-1}f_2^{-1}f_1)=f_1f_1.$

Теорема 3.1. (F_n, \cdot) — свободная группа со свободными образующими f_1, \dots, f_n . Доказательство. Для начала, покажем, что (F_n, \cdot) — группа.

- 1. Нейтральный элемент Λ : $\Lambda \cdot w = w \cdot \Lambda = w$
- 2. Если $w = f_{i_1}^{\varepsilon_1} \cdot \dots \cdot f_{i_k}^{\varepsilon_k}$, то $w^{-1} = f_{i_k}^{-\varepsilon_k} \cdot \dots \cdot f_{i_1}^{-\varepsilon_1} \in F_n$, а $w \cdot w^{-1} = \Lambda = w^{-1} \cdot w$.
- 3. Пусть $a, b, c \in F_n$. Пусть при перемножении $a \cdot b$ сокращается $p \cdot p^{-1}$, а при перемножении $b \cdot c q \cdot q^{-1}$.

Пусть в слове b подслова p^{-1} и q не пересекаются, и между ними есть хотя бы один символ. Тогда $b = p^{-1}b'q$, a = a'p, $c = q^{-1}c'$, и $b' \neq \Lambda$ (тут используется просто конкатенация). Значит, $ab = a'p \cdot p^{-1}b'q = a'b'q$, $b \cdot c = p^{-1}b'c'$, $(a \cdot b) \cdot c = a'b'q \cdot q^{-1}c' = a'b'c' = a'p \cdot p^{-1}b'c' = a \cdot (b \cdot c)$.

Пусть теперь p^{-1} и q пересекаются или $b=p^{-1}q$, тогда b=rb's, $p^{-1}=rb'$, q=b's (возможно, b' пусто). В этом случае $a=a'b'^{-1}r^{-1}$, $c=s^{-1}b'^{-1}c'$. Тогда $a\cdot b=a'b'^{-1}r^{-1}\cdot rb's=a's$, $b\cdot c=rc'$; $(a\cdot b)\cdot c=a's\cdot s^{-1}b'^{-1}c'=a'\cdot b'^{-1}c'$, а $a\cdot (b\cdot c)=a'b'^{-1}r^{-1}\cdot rc'=a'b'^{-1}\cdot c'$. Если $b'\neq \Lambda$, дальше сокращений не будет, т. к. $a'b'^{-1},b'^{-1}c'\in F_n$ как фрагменты слов без сокращений, и тогда оба слова есть $a'b'^{-1}c'$. Если же $b'=\Lambda$, оба слова равны $a'\cdot c'$.

Теперь докажем свободность. Ясно, что $F_n = \langle f_1, \ldots, f_n \rangle$. Далее, если $g_1, \ldots, g_n \in G$ определим $\varphi: F_n \to G$, $\varphi(\Lambda) = e$, $\varphi(f_{i_1}^{\varepsilon_1} \ldots f_{i_k}^{\varepsilon_k}) = g_{i_1}^{\varepsilon_1} \ldots g_{i_k}^{\varepsilon_k}$. Тогда, если $w_1, w_2 \in F_n$, имеем $\varphi(w_1) \cdot \varphi(w_2) = w_1(g_1, \ldots, g_n) \cdot w_2(g_1, \ldots, g_n) = \varphi(w_1 \cdot w_2)$ (здесь скобки обозначают подстановку вместо f_1, \ldots, f_n). Тогда φ — требуемый гомоморфизм ($\varphi(f_i) = g_i$).

Замечание. Аналогичным образом строится и свободная группа с множеством свободных образующих произвольной мощности.

Утверждение 3.1. Пусть F_n и $G_n - \partial$ ве свободные группы с n свободными образующими каждая. Тогда $F_n \cong G_n$ (и существует изоморфизм, переводящий свободные образующие в свободные образующие).

Доказательство. Пусть f_1, \ldots, f_n — свободные образующие в F_n, g_1, \ldots, g_n — в группе G. Тогда существуют гомоморфизмы $\varphi: F_n \to G_n$ и $\psi: G_n \to F_n$, при том $\varphi(f_i) = g_i, \ \psi(g_i) = f_i$. Их композиция— гомоморфизм $\varphi \circ \psi: G_n \to G_n$, при этом $\varphi \circ \psi(g_i) = g_i$, а тогда $\varphi \circ \psi = id_{G_n}$ (т. к. $G_n = \langle g_1, \ldots, g_n \rangle$). Аналогично, $\psi \circ \varphi = id_{F_n} \Rightarrow \varphi, \ \psi$ — изоморфизмы.

 $Замечание. \ F_1 = \langle f_1 \rangle \cong \mathbb{Z}.$

Утверждение 3.2. Для $n \ge 2$ F_n — не абелева.

Доказательство. Существует G такая, что $\exists g_1, g_2 \in G$: $g_1g_2 \neq g_2g_1$. С другой стороны, существует $\varphi: F_n \to G$, $\varphi(f_1) = g_1$ и $\varphi(f_2) = g_2$, а значит $\varphi(f_1f_2) = g_1g_2 \neq g_2g_1 = \varphi(f_2f_1)$, тогда $f_1f_2 \neq f_2f_1$, т. е. F_n —не абелева.

Упражнение. Пусть $G = SL_2(\mathbb{Z}[x])$, тогда

$$F_2 \cong \langle \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \rangle < G.$$

3.2 Соотношения

Определение 3.2. Пусть $G = \langle g_1, \dots, g_n \rangle$ — группа, $F_n = \langle f_1, \dots, f_n \rangle_{\text{своб}}$ — свободная группа, а $w_1, \dots, w_k \in F_n$. Обозначим через $w_i(g_1, \dots, g_n)$ слово, полученное заменой f_i на g_i и f_i^{-1} на g_i^{-1} . Пусть $K = \langle w_1, \dots, w_k \rangle_{\text{норм}}$, $\varphi : F_n \to G$ —

гомоморфизм, $\varphi(f_i) = g_i$. Тогда G задана образующими g_1, \ldots, g_n c соотношениями $w_i(g_1, \ldots, g_n) = e$, если $\operatorname{Ker} \varphi = K$. Обозначение:

$$G = (g_1, \ldots, g_n \mid w_1(g_1, \ldots, g_n) = e, \ldots, w_k(g_1, \ldots, g_n) = e).$$

Замечание. $G = \operatorname{Im} \varphi \cong F_n/K$. Наоборот, если $G = F_n/K$, $g_i = f_i K$, то

$$G = (g_1, \dots, g_n \mid w_1(g_1, \dots, g_n) = e, \dots, w_k(g_1, \dots, g_n) = e).$$

3амечание. Вопрос о том, тривиальна ли G (или равны ли в G два элемента), алгоритмически не разрешим.

Теорема 3.2 (универсальное свойство группы, заданной образующими и соотношениями). Пусть $G = \langle g_1, \ldots, g_n \mid w_i(g_1, \ldots, g_n) = e \rangle$. Пусть $H - \operatorname{группа}$, $h_1, \ldots, h_n \in H$ и $w_i(h_1, \ldots, h_n) = e$. Тогда существует гомоморфизм $\theta : G \to H$, $\theta(g_i) = h_i$.

Доказательство. Пусть $\varphi: F_n \to G$, $\varphi(f_i) = g_i; \psi: F_n \to H$, $\psi(f_i) = h_i$. Пусть $K = \operatorname{Ker} \varphi = \langle w_1, \dots, w_k \rangle_{\text{норм}}$, пусть $L = \operatorname{Ker} \psi$. Тогда $K, L \lhd F_n$. Более того,

$$w_i \in L \Rightarrow L > \langle w_1, \dots, w_k \rangle_{\text{HODM}} = K.$$

Значит, $\operatorname{Im} \psi \cong F_n/L \cong (F_n/K)/(L/K) \cong G/G_1$, где $G_1 \triangleleft G$, по второй теореме об изоморфизме, и при этом изоморфизме элементы g_iG_1 соответствуют элементам h_i . Значит, канонический эпиморфизм $\pi: G \to G/G_1 \cong \operatorname{Im} \psi$ — это требуемый гомоморфизм.

Пример. $G = \langle a,b \mid a^2 = b^2 = (ab)^2 = e \rangle$. Пусть $g \in G$. Тогда $g = a^{i_1}b^{j_1}a^{i_2}\dots$, $i_k, j_k \in \mathbb{Z}$. Можно считать, что $i_k, j_k \in \{0,1\}$. Значит, $g = aba\dots$ или $g = baba\dots$. Наконец, abab = e, длина произведения, можно считать, меньше четырёх: $abab = e = baba = b(abab)b^{-1}$. Итак, элементы нашей группы — только e, a, b, ab, ba, aba, bab. Далее, $aba = (abab)b^{-1} = b^{-1} = b$ и $bab = a, ab = (abab)b^{-1}a^{-1} = ba$. Итого, $G = \{e, a, b, ab\}$ (не факт, что они различны). Почему не меньше? Рассмотрим $H = \mathbb{Z}_2 \times \mathbb{Z}_2, \ a' = (1,0), \ b' = (0,1)$. Тогда $a'^2 = b'^2 = (a'b')^2 = e$ — все соотношения выполнены. По универсальному свойству существует $\varphi : G \to H, \ \varphi(a) = a', \ \varphi(b) = b'$, при этом $\operatorname{Im} \varphi = \langle \varphi(a), \varphi(b) \rangle = \langle a', b' \rangle = H$. Итак, $|\operatorname{Im} \varphi| = 4 \Rightarrow |G| \geqslant 4$. Значит, $|G| = 4 \Rightarrow \varphi$ — изоморфизм. Итак, $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Замечание. Можно было бы построить группу H иначе: $H = \{e, a, b, ab\}$ и вычислить таблицу умножения: например, $a \cdot ab = b$, $ab \cdot a = aba = b$.

Пример. Рассмотрим группу кватернионов:

$$Q_8 = \langle a, b \mid a^4 = e, a^2 = b^2, bab^{-1} = a^{-1} \rangle$$

 $(a^2=b^2)$ значит то же, что и $a^2b^{-2}=e$). В этом случае можем любой элемент записать как $h=a^{i_1}b^{j_1}\ldots,\ i_k\in\{0,1,2\}$ и $j_k\in\{0,1\}$ (ибо $a^2=b^2$). Итак, $g=a^{i_1}ba^{i_2}b\ldots$ Если элементов b хотя бы два, можно воспользоваться $ba=a^{-1}b=a^3b$. Отсюда $ba^kb=a^{3k}b^2=a^{3k+2}$. Итого, $g=a^i$ или $g=a^{i_1}ba^{i_2}=a^jb$. Итак, $|Q_8|\leqslant 8$.

30 ФИВТ МФТИ

Рассмотрим группу $M_{2\times 2}(\mathbb{C})$ и её элементы $A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Тогда $A^2 = -E = B^2$, $A^4 = E$, $BA = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} = A^{-1}B$. Значит, существует гомоморфизм $\varphi : Q_8 \to M_{2\times 2}(\mathbb{C})$, для которого $\varphi(a) = A$, $\varphi(b) = B$ и, следовательно, $|Q_8| \ge |\operatorname{Im} \varphi| \ge 8$: $\operatorname{Im} \varphi > \langle A \rangle$, $\operatorname{Im} \varphi \ni B \notin \langle A \rangle$.

Итак, $|\operatorname{Im} \varphi| = 8 = |Q_8|$, и $Q_8 \cong \operatorname{Im} \varphi = \langle A, B \rangle$.

Глава 4

Конечно порождённые абелевы группы

Во время работы с абелевыми группами мы считаем, что операция—это *+, а вместо a^n пишем na.

Мы уже встречали следующие абелевы группы:

- 1. Циклические: \mathbb{Z} или \mathbb{Z}_n (и изоморфные им).
- 2. $\mathbb{Z}^{l} \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$ также конечно порождена (она порождена k+l элементами вида $(0, \dots, 0, 1, 0, \dots, 0)$).

Наша цель — доказать, что все конечно порождённые абелевы группы изоморфны таким.

Замечание. Если GCD(n,k) = 1, то $\mathbb{Z}_n \times \mathbb{Z}_k \cong \mathbb{Z}_{nk}$. Действительно, элемент $(1,1) \in \mathbb{Z}_n \times \mathbb{Z}_k$ имеет порядок $nk \Rightarrow \mathbb{Z}_n \times \mathbb{Z}_k = \langle (1,1) \rangle \cong \mathbb{Z}_{nk}$. Значит, наше представление не единственно.

Замечание. Условие конечно порождённости существенно. Например, группа (\mathbb{Q} , +) не представима в выписанном виде. Более того, она неразложима в нетривиальное прямое произведение, т. к. в ней нет двух нетривиальных подгрупп, пересекающихся по $\{0\}$.

4.1 Конечно порождённые абелевы группы без кручения

Определение 4.1. Пусть A — абелева группа. Её nepuoduческой частью (или <math>кручением) называется

$$T(A) = \{ a \in A \mid \operatorname{ord} a < \infty \}.$$

Группа A называется абелевой группой без кручения, если $T(A) = \{0\}$.

Утверждение 4.1. Если A- абелева группа, то T(A) < A.

Доказательство. $0 \in T(A) \Rightarrow T(A) \neq \emptyset$. Если $a, b \in T(A)$, то $\exists n, k \in \mathbb{N}$: na = kb = 0. Тогда $n \cdot (-a) = -na = 0 \Rightarrow -a \in T(A)$ и $nk(a+b) = nka + nkb = k \cdot 0 + n \cdot 0 = 0 \Rightarrow a+b \in T(A)$. Значит, T(A) < A.

Замечание. Периодическая часть неабелевой группы не обязательно подгруппа. Скажем, в O_2 все осевые симметрии имеют порядок 2, но их произведение может быть поворотом бесконечного порядка.

Пусть A — конечно порождённая абелева группа без кручения.

Определение 4.2. Пусть $a_1, \ldots, a_n \in A$. Система элементов a_1, \ldots, a_n называется $nesaeucumo\check{u}$, если

$$\forall k_1, \dots, k_n \in \mathbb{Z} \ \sum_{i=1}^n k_i a_i = 0 \Rightarrow k_1 = \dots = k_n = 0.$$

Эта система называется *базисом* группы A, если она независима и $\langle a_1, \ldots, a_n \rangle = A$.

Замечание. Если a_1, \ldots, a_n — базис в A, то $\forall b \in A \ \exists ! k_1, \ldots, k_n \in \mathbb{Z}$: $b = \sum_{i=1}^n k_i a_i$ Лемма 4.1. Пусть $A = \langle a_1, \ldots, a_n \rangle$, $u \ b_1, \ldots, b_k \in A$, k > n. Тогда система b_1, \ldots, b_k — зависима.

Доказательство. Поскольку $b_i \in \langle a_1, \dots, a_n \rangle$, $(b_1, \dots, b_k) = (a_1, \dots, a_n)S$, где $S \in M_{n \times k}[\mathbb{Z}] \subseteq M_{n \times k}[\mathbb{Q}]$. Так как k > n, столбцы S линейно зависимы над Q, т. е. существует $0 \neq x' \in M_{k \times 1}[\mathbb{Q}]$ такой, что Sx' = 0. Домножив x' на произведение знаменателей элементов из x', получим $x \in M_{k \times 1}[\mathbb{Z}]$. Значит, $(b_1, \dots, b_k)x = (a_1, \dots, a_n)Sx = 0$. Т. к. $x \neq 0$, (b_1, \dots, b_k) —зависимы.

Теорема 4.1. Пусть A — конечно порождённая абелева группа без кручения, тогда в A есть базис. Более того, любые два базиса в A равномощны.

Доказательство. Предположим противное. Тогда любая порождающая группу система зависима. Из всех конечных порождающих систем выберем систему из наименьшего числа элементов a_1, \ldots, a_n . Пусть s_1, \ldots, s_n — коэффициенты зависимости: $\sum_{i=1}^n s_i a_i = 0$, не все s_i — нули. Из всех таких систем $a_1, \ldots, a_n, s_1, \ldots, s_n$ выберем такую, в которой $0 \neq |s_1|$ минимален.

- 1. Можно считать, что $s_1 > 0$ (иначе домножим s_i на -1).
- 2. Если $s_1 = 1$, то $a_1 + \sum_{i=2}^n s_i a_i = 0 \Rightarrow a_1 = -\sum_{i=2}^n s_i a_i \Rightarrow A = \langle a_2, \dots, a_n \rangle$, противоречие.
- 3. $s_1 > 1$. Пусть $s_1 \nmid s_i$ при некотором $i \ge 2$. Тогда $s_i = qs_1 + r, \ q \in \mathbb{Z}, \ r \in \mathbb{N}$ и $0 < r < s_1$. Значит, $0 = \sum_{j=1}^n s_j a_j = s_1 a_1 + (qs_1 + r) a_i + \sum_{2 \le j \le n, j \ne i} s_j a_j = s_1 (a_1 + qa_i) + ra_i + \sum_{2 \le j \le n, j \ne i} s_j a_j$. Заметим, что $A = \langle a_1 + qa_i, a_2, \dots, a_n \rangle$, т. к. $a_1 = (a_1 + qa_i) qa_i$. Для новой системы порождающих есть зависимость, в которой встречается коэффициент $0 \ne |r| < |s_1|$ противоречие с выбором системы.
- 4. Итак, $s_1 > 1$, $s_1 \mid s_i$. Тогда $0 = \sum_{i=1}^n s_i a_i = s_1 \left(\sum_{i=1}^n \frac{s_i}{s_1} a_i \right) \Rightarrow \sum_{i=1}^n \frac{s_i}{s_1} a_i \in T(A) \Rightarrow \sum_{i=1}^n \frac{s_i}{s_1} a_i = 0 \Rightarrow a_1 = -\sum_{i=2}^n \frac{s_i}{s_1} a_i$. Противоречие.

Осталось показать, что любые два базиса равномощны. Пусть (a_1, \ldots, a_n) и (b_1, \ldots, b_k) базисы в A. Тогда каждая из этих систем порождает A и, по лемме, $k \le n \le k \Rightarrow k = n$.

Замечание. Пусть a_1, \ldots, a_n и b_1, \ldots, b_n — два базиса в A. Тогда $(a_1, \ldots, a_n) = (b_1, \ldots, b_n)S$ и $(b_1, \ldots, b_n) = (a_1, \ldots, a_n)T$, $S, T \in M_{n \times n}[\mathbb{Z}]$. Значит, $(a_1, \ldots, a_n) = (a_1, \ldots, a_n)TS$. Т. к. выражение через базис единственно, $TS = E \Rightarrow \det T \cdot \det S = 1$, а поскольку их определители также целочисленны, $\det S = \det T = \pm 1$. Наоборот, если a_1, \ldots, a_n — базис, $S \in M_{n \times n}[\mathbb{Z}]$, $\det S = \pm 1$, то $(a_1, \ldots, a_n)S$ — тоже базис, т. к. $S^{-1} \in M_{n \times n}[\mathbb{Z}]$ по формуле Крамера.

3амечание. В условиях нашей теоремы если a_1, \ldots, a_n — базис в A, то

$$A = \langle a_1, \dots, a_n \rangle = \langle a_1 \rangle \times \dots \times \langle a_n \rangle \cong \mathbb{Z} \times \dots \times \mathbb{Z} = \mathbb{Z}^n$$

Определение 4.3. Пусть $A = \langle a_1, \dots, a_k \rangle$ — абелева группа. A называется свободной абелевой группой со свободными порождающими a_1, \dots, a_k , если для любой абелевой группы B и элементов $b_1, \dots, b_k \in B$ существует гомоморфизм $\varphi: A \to B$ такой, что $\varphi(a_i) = b_i, i = 1, \dots, k$.

Замечание. Две свободные абелевы группы с одним и тем же количеством порождающих изоморфны— аналогично обычным.

3амечание. В качестве свободной абелевой группы с k порождающими можно взять

$$A = \langle a_1, \dots, a_k \mid [a_i, a_j] = e, 1 \le i < j \le k \rangle = F_k / \langle [f_i, f_j] \mid 1 \le i < j \le k \rangle_{\text{HODM}} = F_k / F_k$$

Теорема 4.2. Свободная абелева группа с k свободными порождающими — это \mathbb{Z}^k (с точностью до изоморфизма).

Доказательство. Пусть $A = \mathbb{Z}^k$, положим $a_i = (0, \dots, 0, 1, 0, \dots, 0)$. Тогда $A = \langle a_1, \dots, a_k \rangle$, т. к. $(x_1, \dots, x_k) = \sum_{i=1}^k x_i a_i$. Кроме того, для любой абелевой группы B и для любых $b_1, \dots, b_k \in B$ можно определить $\varphi((x_1, \dots, x_k)) = \sum_{i=1}^k x_i b_i$. Тогда $\varphi: A \to B$ — гомоморфизм, и $\varphi(a_i) = b_i$.

4.2 Строение конечно порождённых абелевых групп

Следствие. Пусть $A = \langle a_1, \dots, a_k \rangle$ — конечно порождённая абелева группа. Тогда существует $B \triangleleft \mathbb{Z}^k$ такая, что $A \cong \mathbb{Z}^k/B$.

Доказательство. Пусть c_1, \ldots, c_k — свободные порождающие группы \mathbb{Z}_k . Тогда существует гомоморфизм $\varphi : \mathbb{Z}^k \to A$ такой, что $\varphi(c_i) = a_i$. Значит, $\operatorname{Im} \varphi = \langle \varphi(c_1), \ldots, \varphi(c_k) \rangle = A$. Если $B = \operatorname{Ker} \varphi$, то $A \cong \mathbb{Z}^k/B$ по основной теореме о гомоморфизмах.

Итак, для описания конечно порождённых абелевых групп полезно исследовать подгруппы в \mathbb{Z}^k .

Теорема 4.3. Пусть A-cвободная абелева группа, B < A. Тогда B-mакже свободная абелева группа; причём в A и B существуют базисы a_1, \ldots, a_k и b_1, \ldots, b_l такие, что $k \geqslant l$, $b_i = m_i a_i$, $m_i \in \mathbb{N}$, и $m_1 \mid m_2 \mid \cdots \mid m_l$.

Доказательство. Пусть $A \cong \mathbb{Z}^k$. Индукция по k.

База Если k = 1, то $A \cong \mathbb{Z}$, а $B \cong n\mathbb{Z}$, $n \in \mathbb{Z}_+$. Тогда можно положить $a_1 = 1$ и $b_1 = n$ (если n > 0) или l = 0 (если n = 0).

Переход Пусть k > 1. Если B = 0, то утверждение верно (при l = 0). Пусть теперь $B \neq 0$. Для любого базиса a_1, \ldots, a_n в A и для любого $b \in B \setminus \{0\}$ существуют целые n_i такие, что $b = \sum_{i=1}^k n_i a_i$. Выберем базис (a_1, \ldots, a_k) в A и $0 \neq b_1 \in B$ так, что $n_1 > 0$ и n_1 —наименьшее возможное.

1. Пусть $n_1 \nmid n_i$ при некотором $i \geqslant 2$. Тогда $n_i = qn_1 + r, \ q \in \mathbb{Z}, \ 0 < r \leqslant n_1 - 1$. Тогда

$$b_1 = n_1 a_1 + n_i a_i + \sum_{j \ge 2, j \ne i} n_j a_j = n_1 (a_1 + q a_i) + r a_i + \sum_{j \ge 2, j \ne i} n_j a_j.$$

Значит, в базисе $(a_1+qa_i,a_2,\ldots,a_k)$ разложение b_1 содержит коэффициент $r< n_1$ —противоречие с выбором. Значит, $n_1\mid n_i,\ i\geqslant 2$. Положим $a_1'=\sum_{i=1}^n\frac{n_i}{n_1}a_i=a_1+\sum_{i\geqslant 2}\frac{n_i}{n_1}a_i$. Тогда (a_1',a_2,\ldots,a_k) —базис в A, причём $b_1=n_1a_1'$. Дальше будем считать, что $a_1'=a_1$.

- 2. Пусть $b \in B$, $b = \sum_{i=1}^k d_i a_i$. Предположим, что $n_1 \nmid d_1$, $d_1 = qn_1 + r$, o < r < n. Значит, $b qb_1 = \sum_{i=1}^k (d_i qn_i)a_i = ra_1 + \sum_{i=2}^k (d_i qn_i)a_i$. Итак, в разложении элемента $b qb_1 \in B$ по базису (a_1, \ldots, a_k) есть коэффициент с $r < n_1 1$ противоречит с выбором b_1 . Т. к. $b_1 = n_1a_1$, то $a_2 = n_3 = \cdots = n_k = 0$. Предположим, что $a_1 \nmid d_i$ при некотором $a_1 \nmid d_i$ Положим $a_1 \mid d_i \mid d$
- 3. Заметим, что $A = \langle a_1, \dots, a_k \rangle = \langle a_1 \rangle \oplus \langle a_2, \dots, a_k \rangle$. Обозначим $A^* = \langle a_2, \dots, a_k \rangle$ и положим $B^* = B \cap A^*$, тогда $B = \langle b_1 \rangle \oplus B^*$. Действительно, $\forall b \in B$ $b = \sum_{i=1}^k d_i a_i$, и $n_1 \mid d_i$. Тогда $b = d_1 a_1 + \sum_{i=2}^k d_i a_i = d_1 a_1 + b^*$, где $d_1 a_1 = \frac{d_1}{n_1} b_1$, а $b^* = b \frac{d_1}{n_1} b_1 \in B$, и $b^* \in A^* \Rightarrow b^* \in B^*$. Итак, $\langle b_1 \rangle + B^* = B$. Кроме того, $\langle b_1 \rangle \cap B^* \subseteq \langle a_1 \rangle \cap A^* = 0$. Значит, эта сумма прямая. Применим предположение индукции к $B^* < A^*$. Получим согласованные базисы (a'_2, \dots, a'_k) в A^* и (b_2, \dots, b_l) в B^* такие, что $b_i = m_i a'_i$, $m_2 \mid \dots \mid m_l$. Тогда $A = \langle a_1 \rangle \oplus \langle a'_2, \dots, a'_k \rangle \Rightarrow (a_1, a'_2, \dots, a'_k)$ базис в A. $B = \langle b_1 \rangle \oplus \langle b_2, \dots, b_l \rangle$, причём (b_2, \dots, b_l) базис в B^* , а тогда (b_1, \dots, b_l) базис в B. Осталось выяснить, что $n_1 \mid m_2$.

Это так, поскольку $B < n_1 A \Rightarrow$ коэффициенты разложения b_2 по базису a_1, a_2', \dots, a_k' делятся на n_1 , т. е. $n_1 \mid m_2$.

Следствие. Пусть C — конечно порождённая абелева группа. Тогда

$$C \cong \mathbb{Z}^t \times \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_l},$$

 $ede\ t\geqslant 0\ u\ m_i$ — натуральные числа, $m_i>1$, причём $m_1\mid m_2\mid \cdots \mid m_l$.

Доказательство. Как мы знаем, $C \cong A/B$, где A — свободная абелева группа и B < A. Выберем в A и B согласованные базисы (из теоремы). Тогда $A = \langle a_1 \rangle \times \cdots \times \langle a_k \rangle$, и $B = \langle b_1 \rangle \times \cdots \times \langle b_l \rangle$, при этом $\langle b_i \rangle < \langle a_i \rangle$. Значит,

$$A/B \cong \langle a_1 \rangle / \langle b_1 \rangle \times \cdots \times \langle a_l \rangle / \langle b_l \rangle \times \langle a_{l+1} \rangle \times \cdots \times \langle a_k \rangle \cong \mathbb{Z} / m_1 \mathbb{Z} \times \cdots \times \mathbb{Z} / m_l \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z} \cong \mathbb{Z}^{k-l} \times \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_l}.$$

Наконец, если $m_i = 1$, то $\mathbb{Z}_{m_i} = \{0\}$ и этот сомножитель можно выкинуть.

Следствие. Пусть C — конечно порждённая абелева группа. Тогда

$$C \cong \mathbb{Z}^t \times \mathbb{Z}_{p_1^{\alpha_1}} \times \dots \times \mathbb{Z}_{p_s^{\alpha_s}} \tag{*}$$

 $rde\ p_1,\ldots,p_s-npocmule\ (нe\ oбязательно\ paзличные),\ a\ \alpha_i\in\mathbb{N}.$

 \mathcal{A} оказательство. Если $m_i = p_1^{\alpha_1} \dots p_d^{\alpha_d}$, то $\mathbb{Z}_{m_i} \cong \mathbb{Z}_{p_1^{\alpha_1}} \times \dots \times \mathbb{Z}_{p_d^{\alpha_d}}$. Осталось применить это к каждому сомножителю вида \mathbb{Z}_{m_i} .

Следующая цель — доказать единственность такого разложения (точнее, единственность набора из t и системы $(p_1^{\alpha_1}, \ldots, p_s^{\alpha_s})$ — с точностью до перестановки).

Утверждение 4.2. Пусть C — группа вида (*). Тогда $T(C) = \{0\}^t \times \mathbb{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p_s^{\alpha_s}} \ u \ C/T(C) \cong \mathbb{Z}^t$.

Доказательство. Пусть $x \in C$, $x = (x_1, \dots, x_t, y_1, \dots, y_s)$. Если $x_i \neq 0$, то ord $x = \infty$, ибо $\forall n \in \mathbb{Z}_+$ $nx_i \neq 0$. Если $x_1 = \dots = x_t = 0$, то $p_1^{\alpha_1} \dots p_s^{\alpha_s} x = 0$. Итак, T(C) охарактеризован.

Тогда
$$C/T(C) \cong (\mathbb{Z}/\{0\})^t \times \mathbb{Z}_{p_1}^{\alpha_1}/\mathbb{Z}_{p_1}^{\alpha_1} \times \cdots \times \mathbb{Z}_{p_s}^{\alpha_s}/\mathbb{Z}_{p_s}^{\alpha_s} \cong \mathbb{Z}^t$$
.

Теорема 4.4. Пусть F- поле, а $G < F^*$, $|F| < \infty$. Тогда G- циклическая. В частности, если $|F| < \infty$, то F^*- циклическая.

Доказательство. Поскольку $|G| < \infty$, G — конечно порождённая абелева группа $\Rightarrow G \cong \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$, где $1 < m_1 \mid m_2 \mid \cdots \mid m_k$. Тогда $\forall g \in G \ g^{m_k} = 1$, т. е. все элементы G — это корни уравнения $x^{m_k} - 1 = 0 \Rightarrow$ их не более m_k , т. е. $|G| \leq m_k$. Значит, k = 1 и $G \cong \mathbb{Z}_{m_k}$. ■

4.2.1 Единственность представления

Пусть

$$\begin{split} A &= \mathbb{Z}^t \times \mathbb{Z}_{p_1^{\alpha_1}} \times \dots \times \mathbb{Z}_{p_s^{\alpha_s}}, \\ B &= \mathbb{Z}^u \times \mathbb{Z}_{q_1^{\beta_1}} \times \dots \times \mathbb{Z}_{q_r^{\beta_r}}, \end{split}$$

 $p_i,\ q_i$ — простые. Пусть $A\cong B$, тогда хотим доказать, что $t=u,\ r=s$ и наборы $(p_1^{\alpha_1},\dots,p_s^{\alpha_s})$ и $(q_1^{\beta_1},\dots,q_r^{\beta_r})$ совпадают с точностью до перестановки.

Следствие. $T(A) \cong T(B), t = u.$

Доказательство. Первое утверждение очевидно. Для второго: $\mathbb{Z}^t \cong A/T(A) \cong B/T(B) \cong \mathbb{Z}^u$. Итак, в этой группе существует базис из t и u элементов $\Rightarrow t = u$.

В дальнейшем можно считать, что A = T(A), B = T(B) (т. e. t = u = 0).

Утверждение 4.3. Пусть $A = \mathbb{Z}_{p^{\alpha_1}} \times \mathbb{Z}_{p^{\alpha_2}} \times \dots \mathbb{Z}_{p_2^{\alpha_k}} \times \mathbb{Z}_{p_2^{\gamma_2}} \times \dots \times \mathbb{Z}_{p_l^{\gamma_l}}$, где p_2, \dots, p_l отличны от p. Тогда (единственная) силовская p-подгруппа в A есть $P_p = \mathbb{Z}_{p^{\alpha_1}} \times \dots \mathbb{Z}_{p^{\alpha_k}} \times \{0\}^{l-1}$.

Доказательство. Ясно, что $P_p < A$. $|A| = p^{\alpha_1 + \dots + \alpha_k} \cdot \prod_{i=2}^l p_i^{\gamma_i}$, а $|P_p| = p^{\alpha_1 + \dots + \alpha_k}$. Значит, P_p — силовская p-подгруппа. Наконец, $P_p \triangleleft A \Rightarrow N_p = 1$.

Следствие. Достаточно доказать совпадение наборов $(p_i^{\alpha_i})$ и $(q_j^{\beta_j})$ для случая $p_1 = \cdots = p_s = q_1 = \cdots = q_r$.

Утверждение 4.4. Пусть $A = \mathbb{Z}_{p^{\alpha_1}} \times \dots \mathbb{Z}_{p^{\alpha_s}}, B = \mathbb{Z}_{p^{\beta_1}} \times \dots \mathbb{Z}_{p^{\beta_r}}.$ Тогда, если $A \cong B$, то наборы $(\alpha_1, \dots, \alpha_s)$ и $(\beta_1, \dots, \beta_r)$ совпадают (с точностью до перестановки).

Доказательство. Индукция по |A|. Если |A| = p, то $A \cong B \cong \mathbb{Z}_p$.

Пусть |A| > p. Тогда рассмотрим $pA = p\mathbb{Z}_{p^{\alpha_1}} \times \cdots \times p\mathbb{Z}_{p^{\alpha_s}} \cong \mathbb{Z}_{p^{\alpha_1-1}} \times \cdots \times \mathbb{Z}_{p^{\alpha_s-1}}$ и $pB = p\mathbb{Z}_{p^{\beta_1-1}} \times \cdots \times p\mathbb{Z}_{p^{\beta_r-1}}$. Тогда, т. к. $pA \cong pB$, |pA| = |pB|. Но $|pA| = \frac{|A|}{p^s}$ и $|pB| = \frac{|B|}{p^r}$. Итак, s = r.

Кроме того, к pA и pB можно применить предположение индукции, получив, что наборы $(\alpha_1 - 1, \dots, \alpha_s - 1)$ и $(\beta_1 - 1, \dots, \beta_r - 1)$ совпадают с точностью до перестановки и, возможно, выкидывания нулей из этих наборов (случай $\alpha_i - 1 = 0$ соответствует тривиальному сомножителю \mathbb{Z}_{p^0} , который можно выкинуть). Но, так как s = r, нулей в них одинаковое количество \Rightarrow он совпадают с точностью до перестановки, а значит, совпадают и наборы $(\alpha_1, \dots, \alpha_s)$ и $(\beta_1, \dots, \beta_r)$.

Если $pA = \{0\}$, то $\alpha_1 = \cdots = \alpha_s = \beta_1 = \cdots = \beta_r = 1$, и утверждение также верно.

Теорема 4.5. Пусть A — конечно порождённая абелева группа. Тогда

$$A = \mathbb{Z}^t \times \mathbb{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p_s^{\alpha_s}},$$

где $t \ge 0$, $s \ge 0$, p_i — простые числа, $\alpha_i \ge 1$. В любых таких представлениях группы A совпадают значения t, а также наборы $(p_1^{\alpha_1}, \ldots, p_s^{\alpha_s})$ (c точностью до перестановки).

Замечание. Таких разложений может быть много.

- 1. В группе \mathbb{Z}^t существует много базисов, любой базис a_1, \ldots, a_t даёт прямое разложение $\mathbb{Z}^t = \langle a_1 \rangle \times \cdots \times \langle a_t \rangle$.
- 2. В группе $\mathbb{Z}_p \times \mathbb{Z}_p$ можно выбрать любые два элемента a и b, так что $a \notin \langle b \rangle$, $b \notin \langle a \rangle$ (тогда $a, b \neq 0$). В таком случае, $|\langle a, b \rangle| = p^2$, т. е. $\langle a, b \rangle = \mathbb{Z}_p \times \mathbb{Z}_p = \langle a \rangle \times \langle b \rangle$. По сути, \mathbb{Z}_p^2 это двумерное пространство над полем \mathbb{Z}_p , а (a, b) базис в нём.
- 3. Пусть $A = \mathbb{Z} \times \mathbb{Z}_2$. Выберем a = (1,1) и b = (0,1). Тогда $\langle a \rangle \cong \mathbb{Z}$, $\langle b \rangle \cong \mathbb{Z}_2$, и $A = \langle a \rangle \times \langle b \rangle$. («канонический» выбор это (1,0), (0,1)).

Упражнение. Мы доказали, что любая конечно порождённая группа A есть $A \cong \mathbb{Z}^t \times \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$, где $t \geqslant 0, \, k \geqslant 0, \, m_i > 1$ и $m_1 \mid m_2 \mid \cdots \mid m_k$. Докажите, что и в этом представлении все параметры восстанавливаются однозначно.

3амечание. Ещё одно следствие из теоремы о существовании согласованных базисов. Пусть $A = \mathbb{Z}^k$, B — подгруппа в A, порождённая столбцами некоторой

матрицы $M = (m_{ij}) \in M_{k \times n}(\mathbb{Z})$. Тогда в A и B существуют согласованные базисы (a_1, \ldots, a_k) и (b_1, \ldots, b_l) такие, что $b_i = d_i a_i, d_1 \mid d_2 \mid \cdots \mid d_l$.

Замена базиса в A соответствует умножению M на матрицу перехода $S \in M_{k \times k}(\mathbb{Z})$, $\det S = \pm 1$. Можно показать, что переход к $(b_1, \ldots, b_l, 0, \ldots, 0)$ также можно осуществить с помощью матрицы перехода $T \in M_{n \times n}(\mathbb{Z})$, $\det T = \pm 1$. таким образом,

$$SMT = Diag(d_1, d_2, ..., d_l, 0, ...).$$

Полученная матрица называется *смитовой нормальной формой* матрицы M. В этом случае $A/B = \mathbb{Z}_{d_1} \times \cdots \times \mathbb{Z}_{d_l} \times \mathbb{Z}^{k-l}$, где d_1, \ldots, d_l определяются однозначно. Таким образом, смитова нормальная форма матрицы M единственна.

Упражнение. Восполните пробелы.

Упражнение. $d_i = GCD$ (миноры матрицы M порядка i).

Глава 5

Кольца и поля

5.1 Базовые понятия теории колец

Определение 5.1. Кольцо — это множество с двумя операциями $(R, +, \cdot)$, для которых выполняются следующие свойства:

- 1. (R, +) абелева группа
- 2. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. $a \cdot (b+c) = a \cdot b + a \cdot c$ и $(a+b) \cdot c = a \cdot c + b \cdot c$

Кольцо коммутативно, если $\forall a, b \in R \ a \cdot b = b \cdot a$.

Кольцо — c единицей, если $\exists 1 \in R$: $\forall a \in R \ 1 \cdot a = a \cdot 1 = a$.

Определение 5.2. Кольцо с единицей называется *алгеброй* на полем F, если $F \subseteq R$ и $\forall a \in R \ \forall f \in F \ af = fa$. В этом случае R — линейное пространство над F. Pазмерность алгебры — размерность этого линейного пространства.

Примеры.

- 1. Любое поле F алгебра над F (а также над простым подполем \mathbb{Q} или \mathbb{Z}_p).
- 2. F[x] алгебра над F.
- 3. $M_{m \times m}(F)$ некоммутативная алгебра над F (отождествляем элементы $\lambda \in F$ со скалярными матрицами λE).

Определение 5.3. Пусть R, S — кольца. Отображение $\varphi : R \to S$, если

$$\forall a, b \in R \ \varphi(a+b) = \varphi(a) + \varphi(b), \varphi(ab) = \varphi(a)\varphi(b)$$

Замечание. φ — гомоморфизм абелевых групп (R, +) и (S, +). В частности, $\varphi(0) = 0$ и $\varphi(-a) = -\varphi(a)$.

Определение 5.4. Пусть $\varphi: R \to S$ — гомоморфизм колец. Образ $\operatorname{Im} \varphi = \varphi(R)$, его ядро $\operatorname{Ker} \varphi = \varphi^{-1}(0)$.

3амечание. $\operatorname{Im} \varphi$ — подкольцо в S.

Определение 5.5. Пусть $\emptyset \neq I \subseteq R$. I называется udeanom кольца R (запись: $I \triangleleft R$), если I—подгруппа в (R, +) и $\forall a \in R \ aI \subseteq I \supseteq Ia$.

Утверждение 5.1. Пусть $\varphi:R\to S$ — гомоморфизм колец, тогда $\operatorname{Ker}\varphi\lhd R.$

Доказательство. Т. к. φ — гомоморфизм колец, то φ — гомоморфизм аддитивных групп этих колец, т. е. $\operatorname{Ker} \varphi < (R, +)$. Пусть теперь $b \in \operatorname{Ker} \varphi$, $a \in R$. Тогда $\varphi(ab) = \varphi(a)\varphi(b) = \varphi(a)\cdot 0 = 0$, т. е. $ab \in \operatorname{Ker} \varphi \Rightarrow a \cdot \operatorname{Ker} \varphi \subseteq \operatorname{Ker} \varphi$. Аналогично, $(\operatorname{Ker} \varphi) \cdot a \subseteq \operatorname{Ker} \varphi$.

Пусть R — кольцо, $I \triangleleft R$. Тогда (R/I, +) — группа. Определим на R/I умножение:

$$(a+I)\cdot(b+I)=ab+I.$$

Замечание. Произведение множеств a + I и b + I— не обязательно ab + I!

Упражнение.
$$(a+I)(b+I) \subseteq ab+I$$

Проверим корректность умножения. Пусть b+I=b'+I ($\Leftrightarrow b-b'\in I$). Значит, $a(b-b')=ab-ab'\in I\Rightarrow ab+I=ab'+I$. Итак, от выбора представителя b в b+I произведение не зависит. Аналогично, оно не зависит от выбора представителя в a+I.

Теорема 5.1. Пусть $I \triangleleft R$. Тогда $(R/I, +, \cdot)$ — кольцо. При этом существует канонический эпиморфизм колец $\pi : R \to R/I$, $\pi(a) = a + I$.

Доказательство. Все аксиомы кольца проверяются рутинным образом. Например, дистрибутивность:

$$(a+I) \cdot ((b+I) + (c+I)) = (a+I) \cdot ((b+c) + I) = a(b+c) + I = (ab+ac) + I =$$
$$= (ab+I) + (ac+I) = (a+I) \cdot (b+I) + (a+I) \cdot (c+I).$$

Аналогично, проверка того, что π — эпиморфизм, рутинна.

Определение 5.6. Кольцо $(R/I, +, \cdot)$, описанное выше, называется фактор-кольцом R по идеалу I.

Теорема 5.2 (основная теорема о гомоморфизмах колец). Пусть $\varphi: R \to S$ — гомоморфизм колец. Тогда $\operatorname{Ker} \varphi \triangleleft R$, $\operatorname{Im} \varphi$ — подкольцо в S и при этом

$$\operatorname{Im} \varphi \cong R/\operatorname{Ker} \varphi$$
.

Доказательство. φ —это также гомоморфизм аддитивных групп, поэтому $\operatorname{Im} \varphi \cong R/\operatorname{Ker} \varphi$ как абелевы группы. Этот изоморфизм задаётся $\psi: \operatorname{Im} \varphi \to R/\operatorname{Ker} \varphi, \ \psi(x) = \varphi^{-1}(x).$

Теперь осталось проверить, что ψ сохраняет умножение. Пусть $x = \varphi(a)$, $y = \varphi(b)$. Тогда $xy = \varphi(ab) \Rightarrow \psi(x) = a+I$, $\psi(y) = b+I$ и $\psi(xy) = ab+I = (a+I)(b+I)$, что и требовалось.

Замечание. Существуют аналоги первой и второй теоремы об изоморфизмах.

Определение 5.7. Пусть R- кольцо, $I \triangleleft R.$ Тогда I называется максимальным идеалом, если

1. $I \neq R$.

40 ФИВТ МФТИ

2. Если $J \triangleleft R$ и $I \subseteq J$, то J = I или J = R.

Утверждение 5.2. Пусть R — коммутативное кольцо c единицей, I — максимальный идеал в R. Тогда R/I — поле.

Доказательство. R/I — кольцо, при этом $R \neq I \Rightarrow R/I$ состоит более чем из одного элемента. Заметим: $1 \neq I$ (иначе $I \supseteq RI \supseteq R \cdot 1 = R$). Значит, $1 + I \neq I$ — единица кольца R/I.

Осталось проверить: любой $a+I \in R/I \setminus \{I\}$ обратим. Пусть J=I+aR. Тогда $J \triangleleft R, \ I \subseteq J$ и $a \in J \setminus I$. Значит, $J \neq I \Rightarrow J = R$. Значит, $1 \in J$, т. е. 1 = x + ab, $x \in I, b \in R$. Тогда

$$(a+I) \cdot (b+I) = ab + I = ab + x + I = 1 + I.$$

Значит, a + I обратим.

Замечание. Для коммутативных колец без единицы утверждение также верно.

Замечание. Для некоммутативных колец утверждение неверно; более того, ненулевые элементы факторкольца не обязательно обратимы. Например, в $M_{n\times n}(F)$ нет нетривиальных идеалов $\Rightarrow 0 \triangleleft M_{n\times n}(F)$ — максимален!

Определение 5.8. Пусть $a_1, \ldots, a_n \in R$. Тогда идеал, *порождённый* этими элементами это

$$(a_1,\ldots a_n)=\bigcap_{I\vartriangleleft R,a_i\in I}I.$$

Идеал называется главным, если он порождён одним элементом.

3амечание. Если R — коммутативное кольцо с единицей, то

$$(a_1,\ldots,a_n)=a_1R+\cdots+a_nR.$$

Упражнение. Опишите (a_1, \ldots, a_n) в некоммутативном кольце (с единицей).

Теорема 5.3. Пусть F- поле, R=F[x], $I \triangleleft R$. Тогда

- 1. I главный (т. е. $I = (f), f \in R$).
- 2. I максимален $\Leftrightarrow f$ неприводим (над F).

Доказательство. Если I=0, то I=(0). Пусть $I\neq 0$ и пусть f — ненулевой многочлен наименьшей степени, лежащий в I. Тогда $(f)\subseteq I$. Пусть $g\in I$, тогда g=qf+r, где $q,r\in R$, $\deg r<\deg f$. Заметим, что $r=g-qf\in I\Rightarrow r=0$ (иначе, это противоречит выбору f). Значит, $g=qf\in (f)\Rightarrow I\subseteq (f)$. Итак, (f)=I.

Если f — приводим, то $f = f_1 f_2$, $0 < \deg f_i < \deg f \Rightarrow f_1, f_2 \notin I$. Значит, $(f_1) \supseteq I$ и $R \neq (f_1) \neq I \Rightarrow I$ не максимален. Наоборот, пусть f неприводим, $J \triangleleft R$, $I \subseteq J$. Тогда J = (g), $g \in R$. Так как $f \in J$, $g \mid f$, т. е. $\deg g = 0$ или $g = \alpha f$, $\alpha \in F^*$. В первом случае J = (g) = (1) = R, во втором — J = (g) = (f) = I. Итак, I максимален.

Следствие. Если $f \in F[x]$ неприводим, то F[x]/(f) – none.

5.2 Поле разложения многочлена

Определение 5.9. Пусть $R \subseteq S$ —коммутативные кольца, $s \in S$. Тогда R[s]—подкольцо в s, порождённое R и s, т. е. пересечение всех подколец в S, содержащих R и s; при этом,

$$R[s] = \left\{ \sum_{i=0}^{n} r_i s^i \mid r_i \in R \right\}.$$

Пусть $F \subseteq K$ и F — поле, $a \in K$. Тогда F(a) — подполе в K, порождённое F и a, т. е. F(a) — это пересечение всех подполей K' в K, что $F \subseteq F$, $a \in K'$. Если K = F(a), то K называется расширением поля F элементом a.

Утверждение 5.3. Пусть F - nоле, $f \in F[x] - н$ еприводимый многочлен. Тогда существует расширение K = F(a), где $a - \kappa$ орень многочлена f. Более того, все такие расширения изоморфны, и они изоморфны F[x]/(f). При этом, K = F(a) = F[a].

Доказательство. Положим K = F[x]/(f) — поле. Для любого $b \in F$ отождествим b + (f) с b.

Упражнение. Все элементы b + (f) различны.

Пусть a = x + (f). Тогда $f(a) = f(x) + (f) = (f) \Rightarrow a$ — корень многочлена f в K. Кроме того, разумеется, K = F[a] = F(a). Итак, одно расширение построено, K = F[a].

Пусть L = F(c) — произвольное расширение поля F элементом таким, что f(c) = 0. Построим гомоморфизм $\varphi : F[x] \to L$, $\varphi(g) = g(c)$. Тогда $\operatorname{Im} \varphi \cong F[x]/\operatorname{Ker} \varphi$, при этом $f \in \operatorname{Ker} \varphi \Rightarrow (f) \subseteq \operatorname{Ker} \varphi$, и (f) — максимален. Значит, $\operatorname{Ker} \varphi = F[x]$ или $\operatorname{Ker} \varphi = (f)$. Первый случай невозможен, ибо $\varphi(1) = 1 \neq 0$, т. е. $1 \notin \operatorname{Ker} \varphi$. Итак, $\operatorname{Ker} \varphi = (f) \Rightarrow \operatorname{Im} \varphi \cong F[x]/(f) = K$. Значит, $\operatorname{Im} \varphi = \operatorname{Inode} BL$, содержащее $F = \varphi(F)$ и $c = \varphi(x)$. Значит, $\operatorname{Im} \varphi \supseteq F(c) = L \Rightarrow \operatorname{Im} \varphi = L \cong K$ (при этом изоморфизме элементу c соответствует x + (f)).

Следствие. Пусть $f \in F[x]$, $\deg f > 0$. Тогда существует поле $K \supseteq F$ такое, что многочлен f раскладывается над K на линейные множители.

Доказательство. Индукция по $\deg f$, база при $\deg f = 1$ тривиальна: K = F. Пусть теперь $\deg f > 1$, для многочленов меньших степеней это верно и f_1 — неприводимый делитель многочлена f. Тогда существует расширение L = F[a], где a— корень f_1 . Значит, над полем L многочлен f раскладывается как f(x) = (x - a)g(x). Осталось применить предположение индукции к полю L и многочлену g(x).

Определение 5.10. Пусть $f \in F[x]$, $\deg f > 0$. Полем разложения многочлена f над F называется поле $K \supseteq F$ такое, что

- 1. Над K f раскладывается на линейные множители.
- $2. \ K$ порождено корнями f и исходным полем.

Упражнение. Поле разложения многочлена f существует и единственно с точностью до изоморфизма.

Упражнение. Пусть p — простое число, тогда любое поле из p^n элементов есть поле разложения x^p – x над \mathbb{Z}_p . Кроме того, это поле разложения действительно содержит ровно p^n элементов.