Homework 6

1. Problem 19

a.) Approximate Jacobian with finite differences

J(1,1)	J(2,2)
-3.827471045703409e-01	1.07711999999716e+00

b.) Modified Newton Jacobian approximation

X1(2)	x2(2)
-3.732058376687573e-01	5.626232820955775e-02

2. Problem 20

a.)

J(1,2)	J(2,1)
-5.699987519708682e+00	-4.429176102630938e+00

b.) Implement modified newton method

```
function [x,res,niter] = newtonsys_approxJ_fdh(Ffun, ...
     xO, h, tol, nmax, varargin)
     niter = 1; err = tol + 1; x = x0;
     while err >= tol && niter < nmax
白
         J = approxJ_fdh(Ffun, x0, h, varargin{:});
         F = Ffun(x, varargin(:));
         delta = - J\F:
         x0 = x;
         x = x + delta;
         err = norm(delta);
         niter = niter + 1;
     end
     res = norm(Ffun(x, varargin{:}));
     if (niter==nmax && err> tol)
         fprintf([' Fails to converge within maximum ',...
              'number of iterations.\n',...
              'The iterate returned has relative ',...
              'residual %e\n'], res);
         err
     else
         fprintf(['The method converged at iteration ',...
              '%i with residual %e\n'], niter, res);
     end
     return
```

c.) Solve system of nonlinear equations from 20a

X1	-3.732058376695438e-01	
X2	5.626232820945344e-02	
Res	3.744555404993960e-12	
Niter	6	

3. Problem 21

a.) Implement Jacobian approximation for complex variable method

```
function J = approxJ_compl(fun, x, EPS, varargin)
    n = length(x);
    J = zeros(n, n);
%EPS = 2*eps;
for j = 1:n
    % form the approximate Jacobian
    e = zeros(n,1); e(j) = 1;
    J(:, j) = (1/EPS)*imag(fun(x + EPS*sqrt(-1)*e, varargin{:}));
end
```

b.)

Jf(1,2)	J(2,1)
-5.791364443706561e+00	-4.432905227626845e+00

c.) Implement newtonsys approxJ compl

22

method

```
function [x, res, niter] = newtonsys approxJ compl(Ffun, ...
         □ x0, EPS, tol, nmax, varargin)
           niter = 1; err = tol + 1; x = x0;
               while err >= tol && niter < nmax
                   J = approxJ compl(Ffun, x, EPS, varargin{:});
                   F = Ffun(x, varargin(:));
                   delta = - J\F;
                   x0 = x;
                   x = x + delta;
                   err = norm(delta);
                   niter = niter + 1;
               end
               res = norm(Ffun(x, varargin{:}));
               if (niter==nmax && err> tol)
                   fprintf([' Fails to converge within maximum ',...
                        'number of iterations.\n',...
                        'The iterate returned has relative ',...
                        'residual %e\n'], res);
                   err
               else
                    fprintf(['The method converged at iteration ',...
                        '%i with residual %e\n'], niter, res);
               function [x, res, niter, err, B]=broyden(Ffun, B0, ...
              □ x0, tol, nmax, varargin)
               B = B0;
               x = x0;
      d.)
               err = tol + 1;
                                                                          1
               niter = 0;
               F = Ffun(x, varargin(:));
              d while err >= tol && niter < nmax</p>
                    delta = -B\F;
                    x = x + delta;
                    F = Ffun(x, varargin(:));
                    B = B + F*delta'/(delta'*delta);
4. Problem
                    err = norm(delta):
                    niter = niter + 1;
               end
               res = norm(Ffun(x, varargin{:}));
      a.)
Implement
               if (niter==nmax && err> tol)
Broyden's
                    fprintf([' Fails to converge within maximum ',...
                        'number of iterations.\n',...
                        'The iterate returned has relative ',...
                        'residual %e\n'], res);
                    enn;
               else
                    fprintf(['The method converged at iteration ',...
                        '%i with residual %e\n'], niter, res);
               ∟ end
```

b.) Approximating x

K	x1(k)	x2(k)
1	-3.135967032377301e-01	3.555231731285171e-01
2	-2.393615167309388e-02	1.264580761861792e-01

c.) Use Bryoden to solve system

C.) Osc Bryoden to solve system	
X1	-3.667010034769886e-01
X2	5.612745145275295e-02
Res	1.600627259928237e-12
Err	2.745149447436020e-10
niter	6