```
In [4]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.decomposition import PCA
   from sklearn.preprocessing import scale
```

In [7]: # Import Dataset
 wine=pd.read\_csv('wine.csv')
 wine

### Out[7]:

|     | Type | Alcohol | Malic | Ash  | Alcalinity | Magnesium | Phenols | Flavanoids | Nonflavanoids | Proar |
|-----|------|---------|-------|------|------------|-----------|---------|------------|---------------|-------|
| 0   | 1    | 14.23   | 1.71  | 2.43 | 15.6       | 127       | 2.80    | 3.06       | 0.28          | _     |
| 1   | 1    | 13.20   | 1.78  | 2.14 | 11.2       | 100       | 2.65    | 2.76       | 0.26          |       |
| 2   | 1    | 13.16   | 2.36  | 2.67 | 18.6       | 101       | 2.80    | 3.24       | 0.30          |       |
| 3   | 1    | 14.37   | 1.95  | 2.50 | 16.8       | 113       | 3.85    | 3.49       | 0.24          |       |
| 4   | 1    | 13.24   | 2.59  | 2.87 | 21.0       | 118       | 2.80    | 2.69       | 0.39          |       |
|     |      | •••     |       |      |            |           |         |            |               |       |
| 173 | 3    | 13.71   | 5.65  | 2.45 | 20.5       | 95        | 1.68    | 0.61       | 0.52          |       |
| 174 | 3    | 13.40   | 3.91  | 2.48 | 23.0       | 102       | 1.80    | 0.75       | 0.43          |       |
| 175 | 3    | 13.27   | 4.28  | 2.26 | 20.0       | 120       | 1.59    | 0.69       | 0.43          |       |
| 176 | 3    | 13.17   | 2.59  | 2.37 | 20.0       | 120       | 1.65    | 0.68       | 0.53          |       |
| 177 | 3    | 14.13   | 4.10  | 2.74 | 24.5       | 96        | 2.05    | 0.76       | 0.56          |       |
|     |      |         |       |      |            |           |         |            |               |       |

178 rows × 14 columns

In [9]: wine['Type'].value\_counts()

Out[9]: 2 71 1 59 3 48

Name: Type, dtype: int64

```
In [10]: wine2 = wine.iloc[:,1:]
wine2
```

## Out[10]:

|    |            | Alcohol | Malic | Ash  | Alcalinity | Magnesium | Phenols | Flavanoids | Nonflavanoids | Proanthocya |
|----|------------|---------|-------|------|------------|-----------|---------|------------|---------------|-------------|
|    | 0          | 14.23   | 1.71  | 2.43 | 15.6       | 127       | 2.80    | 3.06       | 0.28          |             |
|    | 1          | 13.20   | 1.78  | 2.14 | 11.2       | 100       | 2.65    | 2.76       | 0.26          |             |
|    | 2          | 13.16   | 2.36  | 2.67 | 18.6       | 101       | 2.80    | 3.24       | 0.30          |             |
|    | 3          | 14.37   | 1.95  | 2.50 | 16.8       | 113       | 3.85    | 3.49       | 0.24          |             |
|    | 4          | 13.24   | 2.59  | 2.87 | 21.0       | 118       | 2.80    | 2.69       | 0.39          |             |
|    |            |         |       |      |            |           |         |            |               |             |
| 17 | 73         | 13.71   | 5.65  | 2.45 | 20.5       | 95        | 1.68    | 0.61       | 0.52          |             |
| 17 | <b>'</b> 4 | 13.40   | 3.91  | 2.48 | 23.0       | 102       | 1.80    | 0.75       | 0.43          |             |
| 17 | <b>7</b> 5 | 13.27   | 4.28  | 2.26 | 20.0       | 120       | 1.59    | 0.69       | 0.43          |             |
| 17 | <b>'</b> 6 | 13.17   | 2.59  | 2.37 | 20.0       | 120       | 1.65    | 0.68       | 0.53          |             |
| 17 | 7          | 14.13   | 4.10  | 2.74 | 24.5       | 96        | 2.05    | 0.76       | 0.56          |             |
|    |            |         |       |      |            |           |         |            |               |             |

178 rows × 13 columns

```
In [11]: wine2.shape
```

Out[11]: (178, 13)

## In [12]: wine2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 13 columns):

| #  | Column          | Non-Null Count | Dtype   |
|----|-----------------|----------------|---------|
|    |                 |                |         |
| 0  | Alcohol         | 178 non-null   | float64 |
| 1  | Malic           | 178 non-null   | float64 |
| 2  | Ash             | 178 non-null   | float64 |
| 3  | Alcalinity      | 178 non-null   | float64 |
| 4  | Magnesium       | 178 non-null   | int64   |
| 5  | Phenols         | 178 non-null   | float64 |
| 6  | Flavanoids      | 178 non-null   | float64 |
| 7  | Nonflavanoids   | 178 non-null   | float64 |
| 8  | Proanthocyanins | 178 non-null   | float64 |
| 9  | Color           | 178 non-null   | float64 |
| 10 | Hue             | 178 non-null   | float64 |
| 11 | Dilution        | 178 non-null   | float64 |
| 12 | Proline         | 178 non-null   | int64   |

dtypes: float64(11), int64(2)

memory usage: 18.2 KB

```
In [13]: # Converting data to numpy array
         wine_ary=wine2.values
         wine_ary
Out[13]: array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                 1.065e+03],
                [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                 1.050e+03],
                [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
                 1.185e+03],
                [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
                 8.350e+02],
                [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
                 8.400e+02],
                [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
                 5.600e+02]])
In [14]: # Normalizing the numerical data
         wine_norm=scale(wine_ary)
         wine norm
Out[14]: array([[ 1.51861254, -0.5622498 , 0.23205254, ..., 0.36217728,
                  1.84791957, 1.01300893],
                [0.24628963, -0.49941338, -0.82799632, ..., 0.40605066,
                  1.1134493 , 0.96524152],
                [0.19687903, 0.02123125, 1.10933436, ..., 0.31830389,
                  0.78858745, 1.39514818],
                [0.33275817, 1.74474449, -0.38935541, ..., -1.61212515,
                 -1.48544548, 0.28057537],
                [0.20923168, 0.22769377, 0.01273209, ..., -1.56825176,
                 -1.40069891, 0.29649784],
                [1.39508604, 1.58316512, 1.36520822, ..., -1.52437837,
                 -1.42894777, -0.59516041]])
```

## **PCA Implementation**

```
-4.51563395e-01, 5.40810414e-01, -6.62386309e-02],
[ 2.20946492e+00, 3.33392887e-01, -2.02645737e+00, ...,
    -1.42657306e-01, 3.88237741e-01, 3.63650247e-03],
[ 2.51674015e+00, -1.03115130e+00, 9.82818670e-01, ...,
    -2.86672847e-01, 5.83573183e-04, 2.17165104e-02],
    ...,
[ -2.67783946e+00, -2.76089913e+00, -9.40941877e-01, ...,
    5.12492025e-01, 6.98766451e-01, 7.20776948e-02],
[ -2.38701709e+00, -2.29734668e+00, -5.50696197e-01, ...,
    2.99821968e-01, 3.39820654e-01, -2.18657605e-02],
[ -3.20875816e+00, -2.76891957e+00, 1.01391366e+00, ...,
    -2.29964331e-01, -1.88787963e-01, -3.23964720e-01]])
```

```
In [16]: # PCA Components matrix or covariance Matrix
         pca.components
Out[16]: array([[ 0.1443294 , -0.24518758, -0.00205106, -0.23932041, 0.14199204,
                  0.39466085, 0.4229343, -0.2985331, 0.31342949, -0.0886167,
                  0.29671456, 0.37616741, 0.28675223,
                [-0.48365155, -0.22493093, -0.31606881, 0.0105905, -0.299634
                 -0.06503951, 0.00335981, -0.02877949, -0.03930172, -0.52999567,
                  0.27923515, 0.16449619, -0.36490283],
                [-0.20738262, 0.08901289, 0.6262239, 0.61208035, 0.13075693,
                  0.14617896, 0.1506819, 0.17036816, 0.14945431, -0.13730621,
                  0.08522192, 0.16600459, -0.12674592],
                [-0.0178563 , 0.53689028, -0.21417556, 0.06085941, -0.35179658,
                  0.19806835, 0.15229479, -0.20330102, 0.39905653, 0.06592568,
                 -0.42777141, 0.18412074, -0.23207086],
                [-0.26566365, 0.03521363, -0.14302547, 0.06610294, 0.72704851,
                 -0.14931841, -0.10902584, -0.50070298, 0.13685982, -0.07643678,
                 -0.17361452, -0.10116099, -0.1578688 ],
                [-0.21353865, -0.53681385, -0.15447466, 0.10082451, -0.03814394,
                  0.0841223 , 0.01892002, 0.25859401, 0.53379539, 0.41864414,
                 -0.10598274, -0.26585107, -0.11972557],
                [-0.05639636, 0.42052391, -0.14917061, -0.28696914, 0.3228833 ,
                 -0.02792498, -0.06068521, 0.59544729, 0.37213935, -0.22771214,
                  0.23207564, -0.0447637, 0.0768045],
                [-0.39613926, -0.06582674, 0.17026002, -0.42797018, 0.15636143,
                  0.40593409, 0.18724536, 0.23328465, -0.36822675, 0.03379692,
                 -0.43662362, 0.07810789, -0.12002267],
                [ 0.50861912, -0.07528304, -0.30769445,  0.20044931,  0.27140257,
                  0.28603452, 0.04957849, 0.19550132, -0.20914487, 0.05621752,
                  0.08582839, 0.1372269, -0.57578611],
                [ 0.21160473, -0.30907994, -0.02712539, 0.05279942, 0.06787022,
                 -0.32013135, -0.16315051, 0.21553507, 0.1341839, -0.29077518,
                 -0.52239889, 0.52370587, 0.162116 ],
                [-0.22591696, 0.07648554, -0.49869142, 0.47931378, 0.07128891,
                  0.30434119, -0.02569409, 0.11689586, -0.23736257, 0.0318388,
                 -0.04821201, 0.0464233, 0.53926983],
                [-0.26628645, 0.12169604, -0.04962237, -0.05574287, 0.06222011,
                 -0.30388245, -0.04289883, 0.04235219, -0.09555303, 0.60422163,
                  0.259214 , 0.60095872 , -0.07940162 ,
                [ 0.01496997, 0.02596375, -0.14121803, 0.09168285, 0.05677422,
                 -0.46390791, 0.83225706, 0.11403985, -0.11691707, -0.0119928,
                 -0.08988884, -0.15671813, 0.01444734]])
In [17]: | # The amount of variance that each PCA has
         var=pca.explained variance ratio
         var
Out[17]: array([0.36198848, 0.1920749 , 0.11123631, 0.0706903 , 0.06563294,
                0.04935823, 0.04238679, 0.02680749, 0.02222153, 0.01930019,
```

0.01736836, 0.01298233, 0.00795215])

```
In [18]: # Cummulative variance of each PCA
var1=np.cumsum(np.round(var,4)*100)
var1
```

Out[18]: array([ 36.2 , 55.41, 66.53, 73.6 , 80.16, 85.1 , 89.34, 92.02, 94.24, 96.17, 97.91, 99.21, 100.01])

In [13]: # Variance plot for PCA components obtained
plt.plot(var1,color='magenta')

Out[13]: [<matplotlib.lines.Line2D at 0x28af191f3d0>]



In [19]: # Final Dataframe
final\_df=pd.concat([wine['Type'],pd.DataFrame(wine\_pca[:,0:3],columns=['PC1','PC2
final\_df

### Out[19]:

|     | Type | PC1       | PC2               | PC3               |  |  |
|-----|------|-----------|-------------------|-------------------|--|--|
| 0   | 1    | 3.316751  | -1.443463         | -0.165739         |  |  |
| 1   | 1    | 2.209465  | 0.333393          | <b>-</b> 2.026457 |  |  |
| 2   | 1    | 2.516740  | -1.031151         | 0.982819          |  |  |
| 3   | 1    | 3.757066  | <b>-</b> 2.756372 | -0.176192         |  |  |
| 4   | 1    | 1.008908  | -0.869831         | 2.026688          |  |  |
|     |      |           |                   |                   |  |  |
| 173 | 3    | -3.370524 | -2.216289         | -0.342570         |  |  |
| 174 | 3    | -2.601956 | -1.757229         | 0.207581          |  |  |
| 175 | 3    | -2.677839 | -2.760899         | -0.940942         |  |  |
| 176 | 3    | -2.387017 | -2.297347         | -0.550696         |  |  |
| 177 | 3    | -3.208758 | -2.768920         | 1.013914          |  |  |

178 rows × 4 columns

```
In [20]: # Visualization of PCAs
fig=plt.figure(figsize=(16,12))
sns.scatterplot(data=final_df)
```

## Out[20]: <AxesSubplot:>



# **Checking with other Clustering Algorithms**

1. Hierarchical Clustering

```
In [21]: # Import Libraries
    import scipy.cluster.hierarchy as sch
    from sklearn.cluster import AgglomerativeClustering
    from sklearn.preprocessing import normalize
```

```
In [22]: # As we already have normalized data, create Dendrograms
    plt.figure(figsize=(10,8))
    dendrogram=sch.dendrogram(sch.linkage(wine_norm,'complete'))
```



```
In [23]: # Create Clusters (y)
hclusters=AgglomerativeClustering(n_clusters=3,affinity='euclidean',linkage='ward
hclusters

Out[23]: AgglomerativeClustering(n_clusters=3)

In [24]: y=pd.DataFrame(hclusters.fit_predict(wine_norm),columns=['clustersid'])
y['clustersid'].value_counts()
Out[24]: 2 64
0 58
```

Name: clustersid, dtype: int64

```
In [25]: # Adding clusters to dataset
wine3=wine.copy()
wine3['clustersid']=hclusters.labels_
wine3
```

#### Out[25]:

|     | Type | Alcohol | Malic | Ash  | Alcalinity | Magnesium | Phenols | Flavanoids | Nonflavanoids | Proar |
|-----|------|---------|-------|------|------------|-----------|---------|------------|---------------|-------|
| 0   | 1    | 14.23   | 1.71  | 2.43 | 15.6       | 127       | 2.80    | 3.06       | 0.28          |       |
| 1   | 1    | 13.20   | 1.78  | 2.14 | 11.2       | 100       | 2.65    | 2.76       | 0.26          |       |
| 2   | 1    | 13.16   | 2.36  | 2.67 | 18.6       | 101       | 2.80    | 3.24       | 0.30          |       |
| 3   | 1    | 14.37   | 1.95  | 2.50 | 16.8       | 113       | 3.85    | 3.49       | 0.24          |       |
| 4   | 1    | 13.24   | 2.59  | 2.87 | 21.0       | 118       | 2.80    | 2.69       | 0.39          |       |
|     |      | •••     |       |      |            |           |         |            |               |       |
| 173 | 3    | 13.71   | 5.65  | 2.45 | 20.5       | 95        | 1.68    | 0.61       | 0.52          |       |
| 174 | 3    | 13.40   | 3.91  | 2.48 | 23.0       | 102       | 1.80    | 0.75       | 0.43          |       |
| 175 | 3    | 13.27   | 4.28  | 2.26 | 20.0       | 120       | 1.59    | 0.69       | 0.43          |       |
| 176 | 3    | 13.17   | 2.59  | 2.37 | 20.0       | 120       | 1.65    | 0.68       | 0.53          |       |
| 177 | 3    | 14.13   | 4.10  | 2.74 | 24.5       | 96        | 2.05    | 0.76       | 0.56          |       |
|     |      |         |       |      |            |           |         |            |               |       |

178 rows × 15 columns

In [27]: import scipy.cluster.hierarchy as sch
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import normalize

```
In [37]: wine3_norm=scale(wine_ary)
wine3_norm
```

In [38]: plt.figure(figsize=(10,8))
 dendrogram=sch.dendrogram(sch.linkage(wine3\_norm,'complete'))



### 2. K-Means Clustering

```
In [29]: # Import Libraries
from sklearn.cluster import KMeans
```

```
In [30]: # As we already have normalized data
# Use Elbow Graph to find optimum number of clusters (K value) from K values rar
# The K-means algorithm aims to choose centroids that minimise the inertia, or wi
# random state can be anything from 0 to 42, but the same number to be used every
```

```
In [31]: # within-cluster sum-of-squares criterion
wcss=[]
for i in range (1,6):
    kmeans=KMeans(n_clusters=i,random_state=2)
    kmeans.fit(wine_norm)
    wcss.append(kmeans.inertia_)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\cluster\\_kmeans.py:881: User Warning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environ ment variable OMP\_NUM\_THREADS=1.

```
warnings.warn(
```

```
In [32]: # Plot K values range vs WCSS to get Elbow graph for choosing K (no. of clusters)
plt.plot(range(1,6),wcss)
plt.title('Elbow Graph')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```



## **Build Cluster algorithm using K=3**

```
In [33]: # Cluster algorithm using K=3
clusters3=KMeans(3,random_state=30).fit(wine_norm)
clusters3
```

Out[33]: KMeans(n\_clusters=3, random\_state=30)

```
2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2,
            2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0,
            0, 0])
In [35]: # Assign clusters to the data set
       wine4=wine.copy()
       wine4['clusters3id']=clusters3.labels
       wine4
Out[35]:
           Type Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids Nonflavanoids Proar
                14.23
                     1.71 2.43
                               15.6
                                            2.80
                                                    3.06
         0
                                       127
                                                             0.28
         1
             1
                13.20
                     1.78 2.14
                               11.2
                                       100
                                            2.65
                                                    2.76
                                                             0.26
         2
                13.16
                     2.36 2.67
                               18.6
                                       101
                                            2.80
                                                    3.24
                                                             0.30
         3
                14.37
                     1.95 2.50
                               16.8
                                       113
                                            3.85
                                                    3.49
                                                             0.24
             1
         4
             1
                13.24
                     2.59 2.87
                               21.0
                                       118
                                            2.80
                                                    2.69
                                                             0.39
                                        ...
       173
             3
                13.71
                     5.65 2.45
                               20.5
                                            1.68
                                                    0.61
                                                             0.52
                                       95
       174
             3
                13.40
                     3.91 2.48
                               23.0
                                       102
                                            1.80
                                                    0.75
                                                             0.43
       175
             3
                13.27
                     4.28 2.26
                               20.0
                                       120
                                            1.59
                                                    0.69
                                                             0.43
       176
                                            1.65
                                                             0.53
             3
                13.17
                     2.59 2.37
                               20.0
                                       120
                                                    0.68
                                            2.05
                                                    0.76
                                                             0.56
       177
             3
                14.13
                     4.10 2.74
                               24.5
                                       96
       178 rows × 15 columns
In [36]: wine4['clusters3id'].value counts()
Out[36]: 2
          65
          62
       1
          51
       Name: clusters3id, dtype: int64
In [ ]:
```

In [34]: clusters3.labels