See back cover for an English translation of this cover

91164M

Te Mātauranga Matū, Kaupae 2, 2013

91164M Te whakaatu māramatanga ki te honohono, te hanganga, ngā āhuatanga me ngā huringa ngao

9.30 i te ata Rātū 19 Whiringa-ā-rangi 2013 Whiwhinga: Rima

Paetae	Paetae Kaiaka	Paetae Kairangi
Te whakaatu māramatanga ki te honohono, te hanganga, ngā āhuatanga me ngā huringa ngao.	Te whakaatu māramatanga hōhonu ki te honohono, te hanganga, ngā āhuatanga me ngā huringa ngao.	Te whakaatu māramatanga matawhānui ki te honohono, te hanganga, ngā āhuatanga me ngā huringa ngao.

Tirohia mehemea e ōrite ana te Tau Ākonga ā-Motu kei tō pepa whakauru ki te tau kei runga ake nei.

Me whakautu e koe ngā pātai KATOA kei roto i te pukapuka nei.

He taka pūmotu kua whakaritea ki te Pukaiti Rauemi L2-CHEMMR.

Ki te hiahia koe ki ētahi atu wāhi hei tuhituhi whakautu, whakamahia te (ngā) whārangi kei muri i te pukapuka nei, ka āta tohu ai i ngā tau pātai.

Tirohia mēnā kei roto nei ngā whārangi 2-23 e raupapa tika ana, ā, kāore hoki he whārangi wātea.

HOATU TE PUKAPUKA NEI KI TE KAIWHAKAHAERE HEI TE MUTUNGA O TE WHAKAMĀTAUTAU.

TAPEKE

Kia 60 meneti hei whakautu i ngā pātai o tēnei pukapuka.

MĀ TE KAIMĀKA ANAKE

PĀTAI TUATAHI

(a) Tāngia te hanganga a Lewis mō ia rāpoi ngota e whai ake nei.

Te Rāpoi Ngota	CH ₄	H ₂ O	N ₂
Hanganga a Lewis			

(b) Ka hono te pūtiwha me te pūtūtaewhetū ki ngā ngota haukōwhai e toru hei hanga i te BF_3 me te PF_3 . Engari, he rerekē te āhua me ngā koki honohono o ngā rāpoi ngota.

E whakaatu ana te tūtohi i raro i ngā hanganga Lewis mō te rāpoi ngota BF₃ me te PF₃.

Te Rāpoi Ngota	BF_3	PF ₃
Hanganga a Lewis	: Ë – B – Ë: I : <u>E</u> :	: Ë – Ë – Ë: " I " : E:

Whakamāramahia he aha i rerekē ai ngā āhua me ngā koki honohono o ēnei rāpoi ngota.

Me whakauru ki tō whakautu:

- ${\rm ng\bar{a}}$ ${\rm \bar{a}}$ hua o te ${\rm BF}_3$ me te ${\rm PF}_3$
- ngā āhuatanga e whakarite ai i te āhua o ia rāpoi ngota
- te koki honohono āwhiwhi i te BF₃ me te PF₃
- he parahautanga o ngā koki honohono i kōwhiria e koe mō ia rāpoi ngota.

You are advised to spend 60 minutes answering the questions in this booklet.

ASSESSOR'S USE ONLY

QUESTION ONE

(a) Draw the Lewis structure for each of the following molecules.

Molecule	CH ₄	H ₂ O	N ₂
Lewis structure			

(b) Boron and phosphorus both bond with three fluorine atoms to form BF₃ and PF₃. However, the molecules have different shapes and bond angles.

The following table shows the Lewis structures for the molecules BF₃ and PF₃.

Molecule	BF_3	PF ₃
Lewis structure	:Ë-B-Ë: : I :: :E:	: Ë – Ë – Ë : : I : : E :

Explain why these molecules have different shapes and bond angles.

In your answer include:

- the shapes of BF₃ and PF₃
- factors that determine the shape of each molecule
- the approximate bond angle in BF₃ and PF₃
- justification of your chosen bond angles for each molecule.

ASSESSOR'S USE ONLY

MĀTE
KAIMĀKA
ANAKE
AIIAIL

(c) (i) E whakaaturia ana te hoahoa ahu-3 o te NH_3 i raro.

/	Ν,,,	
Η	N.	Н
• •	Н	

Porohitatia te kupu e whakaahua ana i te **pitoruatanga** o te rāpoi ngota NH_3 .

pitorua	pitokore	
Parahautia tō kōwhiringa.		

(c) (i) The 3-dimensional diagram of NH_3 is shown below.

ASSESSOR'S USE ONLY

	Ν,,	
Η	N.	Н
	Н	

Circle the word that describes the **polarity** of the molecule NH_3 .

	polar	non-polar
Justify your ch	hoice.	

(ii)

Ka hanga ngā pī ngā ngota o te pī M–X.	\bar{u} motu M me X i te p \bar{u} hui MX $_2$. He teitei ake te uara t \bar{u} rarotangahiko o \bar{u} motu X i ng \bar{u} ngota o te p \bar{u} motu M, n \bar{u} reira he pitorua ng \bar{u} hononga
	gā pūmotu M me X, ko ngā rāpoi ngota o te pūhui ka waihangatia he kore rānei.
Tuhia te (ngā) āl	hua o te rāpoi ngota ka tino taea rawa mēnā he:
Pitorua:	
Pitokore:	
Parahautia tō wł takirua pito (dip	nakautu me te tuhi hoahoa o ngā rāpoi ngota ka taea me te tapa i ngā oles).
Kāore e hiahiati	a kia tautuhia e koe ngā pūmotu o te M me te X.

Elements M and X form a compound MX₂. Atoms of element X have a higher (ii) ASSESSOR'S USE ONLY electronegativity value than atoms of element M, therefore the M–X bonds are polar. Depending on what elements M and X are, molecules of the compound formed will be polar or non-polar. State the most likely shape(s) of the molecule if it is: Polar: Non-polar: Justify your answer and draw diagrams of the possible molecules with dipoles labelled. You do not need to identify what elements M and X are.

PĀTAI TUARUA

MĀ TE KAIMĀKA ANAKE

(a)	Whakaotihia te tūtohi i raro mā te tuhi i te tūmomo matū, te tūmomo korakora, me te
	honohono (tōpana kume) i waenga i ngā korakora mō ia matū.

Matū	Tūmomo matū	Tūmomo korakora	Tōpana kume i waenga i ngā korakora
C(s) (matāpango)			
Cl ₂ (s) (haumāota)			
CuCl ₂ (s) (konukura pūhaumāota)			
Cu(s) (konukura)			

(b)	(i)	Whakamāramahia te take he haurehu te haumāota i te pāmahana ¹ rūma, engari he totoka te konukura pūhaumāota i te pāmahana rūma.		
		I tō whakautu, me kōrero koe mō ngā korakora me ngā tōpana kei waenga i ngā korakora i roto i ngā matū e rua .		

¹ paemahana

take he pai	kamahi i ō mōhiotanga ki te hanganga te konukura mō ngā waea hiko enga ko o te matāpango me te konukura.	a me te honohono, whakamāramahia te ri kaua te matāpango, ahakoa te pai o te

QUESTION TWO

ASSES	SOR'S
USE C	NLY

(a) Complete the table below by stating the type of substance, the type of particle, and the bonding (attractive forces) between the particles for each of the substances.

Substance	Type of substance	Type of particle	Attractive forces between particles
C(s) (graphite)			
Cl ₂ (s) (chlorine)			
CuCl ₂ (s) (copper chloride)			
Cu(s) (copper)			

(b)	(i)	Explain why chlorine is a gas at room temperature, but copper chloride is a solid at room temperature.
		In your answer, you should refer to the particles and the forces between the particles in both substances.

and c	g your knowledge of structure and bonding, explain why, although both graphite opper are good conductors of electricity, copper is suitable for electrical wires, but ite is not.

(c)	Ka hohe te haumāota ki te mewaro hei hanga mewaro haumāota me te hauwai pūhaumāota, e
	ai ki te whārite i raro.

$$\operatorname{CH}_4(g) + \operatorname{Cl}_2(g) \to \operatorname{CH}_3(\operatorname{Cl}(g) + \operatorname{HCl}(g)$$

Whakamahia ngā hāwera o te honohono e whai ake nei hei tātai i te $\Delta_{{}_{\rm r}}H^{\circ}$ mō tēnei tauhohenga.

Honohono	Hāwera o te honohono /kJ mol ⁻¹
H-Cl	431
С–Н	414
C-Cl	324
Cl-Cl	242

(c)	Chlorine reacts with methane to form chloromethane and hydrogen chloride, as shown in the
	equation below.

ASSESSOR'S USE ONLY

$$\operatorname{CH}_4(g) + \operatorname{Cl}_2(g) \to \operatorname{CH}_3(\operatorname{Cl}(g) + \operatorname{HCl}(g)$$

Use the following bond enthalpies to calculate $\Delta_r H^\circ$ for this reaction.

Bond	Bond enthalpy /kJ mol ⁻¹
H-Cl	431
С-Н	414
C-Cl	324
Cl-Cl	242

CI-CI	242	

PĀTAI TUATORU

(a) Ka taea te whakaatu i te whakarewatanga o te haukini pākawa ota i roto i tētahi ipurau me te wai mā te whārite e whai ake:

$$NH_4NO_3(s) \rightarrow NH_4^+(aq) + NO_3^-(aq)$$
 $\Delta_r H^\circ = 25.1 \text{ kJ mol}^{-1}$

Porohitahia te kupu i raro e whakaahua tika ana i tēnei tukanga.

putawera

pauwera

Porohitatia te whakaahuatanga i raro e whakaahua tika ana i ngā mea ka kite koe i roto i te ipurau i te wā o tēnei tukanga.

mātao haere ake noho rite tonu mahana haere ake

Whakamāramahia ō kōwhiringa.

(b) He puna hira te kūhuka o te pūngao i roto i ā tātou kai. E whakaatu ana te whārite i raro i te ngingiha o te kūkuha hei hanga waro hāora rua² me te wai.

$$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(\ell)$$
 $\Delta_r H^\circ = -2820 \text{ kJ mol}^{-1}$

(i) Porohitatia te kupu i raro e whakaahua tika ana i tēnei tukanga.

putawera

Homai tētahi pūtake mō tō kōwhiringa.

pauwera

QUESTION THREE

(a) Dissolving ammonium nitrate in a beaker containing water can be represented by the following equation:

$$NH_4NO_3(s) \to NH_4^+(aq) + NO_3^-(aq)$$
 $\Delta_t H^\circ = 25.1 \text{ kJ mol}^{-1}$

Circle the term below that best describes this process.

exothermic

endothermic

Circle the description below that best describes what you would observe happening to the beaker during this process.

gets colder stays the same gets warmer

Explain your choices.

(b) Glucose is an important source of energy in our diet. The equation below shows the combustion of glucose to form carbon dioxide and water.

$$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(\ell)$$
 $\Delta_r H^\circ = -2820 \text{ kJ mol}^{-1}$

(i) Circle the term below that best describes this process.

exothermic

endothermic

Give a reason for your choice.

(ii)	Ko ngā wāhine e āhua korikori ana me whai 9800 kJ o te pūngao ia rā.
	Tātaihia te maha o ngā mol kūhuka hei whakarato i tēnei whakaritenga pūngao o ia ra.
(i)	He maha ngā hūhunu³ kawe me ngā kēne haurehu puni he pūwaro kei roto, C_4H_{10} . He haurehu te pūwaro i te pāmahana rūma, ā, ko tana ira koropupū he -0.5° C. Kei roto i ngā kēne haurehu te pūwaro haurehu me te pūwaro wē. I te whakamahinga o te pūwaro haurehu, ka whakaeto haere ētahi wē.
	Porohitahia te kupu i raro e whakaahua tika ana i tēnei tukanga.
	putawera pauwera
	Homai he pūtake mō tō kōwhiringa, ka whakamahi i ō mōhiotanga ki te hanganga me te honohono, me ngā panonitanga pūngao, hei whakamārama i ngā panonitanga i te wā whakaeto haere ana te wē.
(ii)	E whakaatu ana te whārite i raro i te ngingiha o te pūwaro.
	$C_4H_{10}(g) + 13/2 O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$
	Ina ngingiha te rahinga pūwaro 100 g, he 4960 kJ o te pūngao ka whakaputahia.
	Tātaihia te panoni hāwera ina ngingiha te 1 mol o te pūwaro. $M(C_4H_{10}) = 58.1 \text{ g mol}^{-1}.$
	(i)

³ rorerore

(ii)	Females who are moderately active need 9800 kJ of energy per day.	ASS US	
	Calculate the number of moles of glucose that would provide this daily energy requirement.		
c) (i)	Many portable BBQ and camping gas canisters contain butane, C_4H_{10} . Butane is a gas at room temperature, and has a boiling point of $-0.5^{\circ}C$. The gas canisters contain both gas and liquid butane. As the gaseous butane is used, some of the liquid evaporates.		
	Circle the term below that best describes this process.		
	exothermic endothermic		
	Give a reason for your choice, and use your knowledge of structure and bonding, and energy changes, to explain the changes occurring as the liquid evaporates.		
(ii)	The equation below shows the combustion of butane. $C_4H_{10}(g) + 13/2 O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$		
	When 100 g of butane undergoes combustion, 4960 kJ of energy is released.		
	Calculate the enthalpy change when 1 mole of butane undergoes combustion. $M(C_4H_{10}) = 58.1 \text{ g mol}^{-1}$.		

Ka hohe te rino \bar{o} kai Fe_3O_4 me te Fe_2O_3 ki te konumohe, e ai ki te whakaaturanga i raro.				
$3\text{Fe}_3\text{O}_4(s) + 8\text{Al}(s) \rightarrow 4\text{Al}_2\text{O}_3(s) + 9\text{Fe}(s)$ $\Delta_r H \text{SDgr} = -3348 \text{ kJ mol}^{-1}$				
$\operatorname{Fe_2O_3}(s) + 2\operatorname{Al}(s) \rightarrow \operatorname{Al_2O_3}(s) + 2\operatorname{Fe}(s)$ $\Delta_r H \operatorname{SDgr} = -851 \text{ kJ mol}^{-1}$				
Parahautia ko tēhea te rino ōkai, Fe ₃ O ₄ , Fe ₂ O ₃ rānei he nui ake te whakaputa pūngao wera ina hangaia he rino 2.00 kg i te wā e hohe ana ki te konumohe.				
Me whakauru ki tō whakautu ngā tātaitanga o te pūngao wera ka whakaputahia mō te papatipu o te rino ka hangaia.				
$M(\text{Fe}) = 55.9 \text{ g mol}^{-1}.$				

Pl :::	F- O 1 F- O		1.
	Fe_3O_4 and Fe_2O_3 react with alumi		Į.
	$+ 8Al(s) \rightarrow 4Al_2O_3(s) + 9Fe(s)$		
$Fe_2O_3(s) +$	$2Al(s) \rightarrow Al_2O_3(s) + 2Fe(s)$	$\Delta_{r}H^{\circ} = -851 \text{ kJ mol}^{-1}$	
Justify which irons formed during	on oxide, Fe_3O_4 or Fe_2O_3 , will proge the reaction with aluminium.	duce more heat energy when 2.00 kg o	of iron
Your answer sho ron formed.	ould include calculations of the hea	at energy produced for the given mass	of
M(Fe) = 53	5.9 g mol ⁻¹ .		
			—
			_

		He puka anō mēnā ka hiahiatia.	
TAU PĀTAI		Tuhia te (ngā) tau pātai mēnā e hāngai ana.	

		Extra paper if required.	
QUESTION NUMBER		Write the question number(s) if applicable.	
NUMBER	l		

English translation of the wording on the front cover

Level 2 Chemistry, 2013

91164 Demonstrate understanding of bonding, structure, properties and energy changes

9.30 am Tuesday 19 November 2013 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of bonding, structure, properties and energy changes.	Demonstrate in-depth understanding of bonding, structure, properties and energy changes.	Demonstrate comprehensive understanding of bonding, structure, properties and energy changes.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L2–CHEMR.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–23 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.