Macroeconomics

w. Josep Lluís Carrion-i-Silvestre Universitat de Barcelona

Complementary notes for the slides by Thor Donsby Noe *

October 17, 2018

^{*}Department of Economics, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark, (e-mail: jwz766@alumni.ku.dk)

Contents

1	1 Theoretical issues													3									
2	ARI	MA modelling																					3
	2.1	AR(p) process																					4
	2.2	MA(q) model.						•		•	•							•	•				4
3	•••																						4

"""

1 Theoretical issues

Convergence in distribution

$$\hat{\beta}_{OLS} \xrightarrow{d} N(\beta, V(\beta))$$
$$(\hat{\beta}_{OLS} - \beta) \xrightarrow{d} N(0, V(\beta))$$

$$\hat{\beta}_{OLS} = (x'x)^{-1}x'y$$
$$= \beta + (x'x)^{-1}x'u$$

Asymptotic independence

If independent, the joint probability equals the product of probabilities, i.e.

$$P(A \cap B) = P(A) * P(B)$$

2 ARIMA MODELLING

Univariate TS strategy

Not based on Economic Theory (reduced form modelling \rightarrow the past is informative about the present)

$$y_t = f(y_{t-1}, y_{t-2}, y_{t-3})$$

The performance in terms of **forecasting** is key!

If you want to learn about main drivers, you need to use other models.

1. Stationary time series:

Sometimes 1st difference is required to ensure stationarity.

2. Identification:

Specify the model that explains the behaviour the best

AR: Autoregressive model

MA: Moving Average model

ARMA: AutoRegressive Moving Average model

To initially decide between them, plot the

• **ACF**: The Simple Autocorrelation Function.

Check if there is persistence/memory:

$$\frac{Cov(x_t, x_{t+k})}{\sqrt{V(x_t)}\sqrt{V(x_{t+k})}}, \text{ for } k = 0, \pm 1, \pm 2, \cdots$$

Related to the asymptotic confidence interval

$$\left(\frac{-1.96}{\sqrt{(T)}}, \frac{1.96}{\sqrt{(T)}}\right)$$

or degrees of freedom corrected

$$\left(\frac{-1.96}{\sqrt{(T-k)}}, \frac{1.96}{\sqrt{(T-k)}}\right)$$

• **PACF:** The Partial Autocorrelation Function

e.g. The The 3rd partial autocorrelation coeffcient of the PACF, ϕ_{33} :

$$\tilde{x}_t = \phi 31 \tilde{x}_{t-1} + \phi 32 \tilde{x}_{t-2} + \phi 33 \tilde{x}_{t-3} + \varepsilon_t$$

- ightarrow Using both functions helps us to make an initial specification.
 - Helps us to decide on the number of lags.
 - Too many lags can cause multicolliniarity.

Better to choose an $f(t) \neq 0$ to test it.

3. Estimation

••

4. Validation

How well is the model specified?

•

• Residuals

Re-specify if not correctly validated (repeat step 2-4)

5. Forecasting

When model is valid, use it to forecast.

2.1 AR(p) process

Stationarity conditions for the AR model:

- The deterministic component f does not depend on t (rules out MA)
- 2. All roots of the autoregressive polynomial must, in module, be greater than one, e.g.

$$x_t = \phi_1 x_{t-1} + \varepsilon_t$$

$$\underbrace{(1 - \phi_1(L))}_{\text{AR polynomial}} x_{t-1} = \varepsilon_t, \quad L > 1 \text{ required!}$$

$$egin{aligned} V(x_t) &= V(\phi_1 x_{t-1}) + V(arepsilon_t) \ & \sigma_x^2 &= \phi_1^2 \sigma_x^2 + \ & \sigma_x^2 &= rac{1}{1-\sigma_1^2} \sigma_arepsilon^2$$
, requires $\sigma_1^2 < 1$

2.2 MA(q) model

If MA is invertible

$$\Rightarrow MA(q) \equiv AR(\infty)$$

$$\simeq AR(p), \quad p \text{ is large}$$

Use the $\hat{\epsilon}_t^0$ estimation algorithm.

3 ...