

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

льныи исследовательскии университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА 09.04.01/07 Интеллектуальные системы анализа, обработки и интерпретации больших данных

ОТЧЕТ

по лабораторной работе № 2

Название: Вы	ыявление логиеских зак	ономерностей по да	анным мониторинга
Дисциплина:	з Дистанционный мони	горинг сложных сис	стем и процессов
Студент	<u>ИУ6-12М</u> (Группа)	(Подпись, дата)	Д.С. Каткова (И.О. Фамилия)
Преподавате.	ЛЬ	(Подпись, дата)	Ю.А. Вишневская (И.О. Фамилия)

Цель работы — изучение способов выявления закономерностей в разнородных данных.

Задание. Необходимо проанализировать собранные данные, определить и закодировать информационные признаки, выбрать метод и выявить логические закономерности с его помощью:

- 1) найти закономерности группирования изображений лиц людей;
- 2) определить, чем лица разных классов отличаются друг от друга и что объединяет лица одного класса.

Исходные данные: имеется набор данных в виде изображений лиц людей, сгруппированных в два класса (рис. 1).

Рисунок 1 - Классы изображений лиц людей

Методы: ручной/визуальный метод.

Порядок выполнения работы:

Идентификационными признаками были выделены:

x1 (голова): круглая -1, овальная -0;

x2 (уши): оттопыренные – 1, прижатые – 0;

x3 (нос): круглый – 1, длинный – 0;

```
х4 (глаза): круглые – 1, узкие – 0;

х5 (лоб): с морщинами – 1, без морщин – 0;

х6 (складка): носогубная складка есть – 1, носогубной складки нет – 0;

х7 (губы): толстые – 1, тонкие – 0;

х8 (волосы): есть – 1, нет – 0;

х9 (усы): есть – 1, нет – 0;

х10 (борода): есть – 1, нет – 0;

х11 (очки): есть – 1, нет – 0;

х12 (родинка): родинка на щеке есть – 1, родинки на щеке нет – 0;

х13 (бабочка): есть – 1, нет – 0;

х14 (брови): подняты кверху – 1, опущены книзу – 0;

х15 (серьга): есть – 1, нет – 0;

х16 (трубка): курительная трубка есть – 1, нет – 0.

Была сформирована матрица признаков (рисунок 2).
```

N п/п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
X1	0	1	0	0	1	0	1	0	0	0	1	1	1	0	0	0
X2	1	0	0	1	1	0	1	0	0	1	1	0	1	1	1	1
Х3	0	1	0	1	0	1	0	1	1	1	1	1	0	1	0	1
X4	0	1	1	0	1	0	1	1	1	0	0	0	1	1	1	1
X5	1	0	1	0	0	1	0	0	0	0	1	1	1	0	0	0
X6	1	0	1	1	1	1	0	1	1	1	1	0	0	0	1	0
X7	0	1	0	1	0	1	0	1	0	1	0	1	1	1	1	1
X8	0	1	1	0	1	0	0	0	0	0	0	0	1	0	1	1
Х9	1	0	1	0	0	1	1	1	1	0	1	1	1	1	0	0
X10	1	1	0	1	1	0	1	1	1	1	1	0	0	0	1	0
X11	1	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1
X12	0	1	1	0	1	0	0	0	1	0	1	1	0	0	0	0
X13	1	0	1	0	0	1	1	1	1	1	0	0	1	0	1	1
X14	1	0	0	1	1	0	1	0	1	1	1	1	0	1	1	0
X15	0	1	0	1	1	1	1	1	0	1	0	1	0	1	0	1
X16	1	0	1	1	0	1	1	0	1	0	0	0	1	1	1	1

Рисунок 2 - Матрица бинарных признаков

Для решения данной задачи будет использовано дерево решений - это метод представления решающих правил в иерархической структуре, состоящей из элементов двух типов — узлов и листьев. Узлы представляют собой условия, основанные на значениях признаков, а ветви - возможные результаты проверки условий. Каждый лист дерева определяет решение для попавших в него примеров. Для дерева классификации это класс, ассоциированный с узлом.

Определим признак с наибольшей дискриминирующей силой. Результаты определения представлены на рисунке 3.

	C1	C2
X1	3	3
X2	4	6
X3	4	6
X4	5	5
X5	3	3
X 6	6	4
X7	4	6
X8	3	3
X9	5	5
X10	6	4
X11	6	4
X12	3	3
X13	5	5
X14	4	6
X15	6	4
X16	5	5

Рисунок 3 — Признаки с наибольшей дискриминирующей силой Таким образом, максимальной и одинаковой силой обладают признаки X2, X3, X6, X7, X10, X11, X14, X15.

В качестве первого признака выбирается — X7. Описание результатов с данными, соответствующими ветви X7=0, приведены на рисунке 4.

N п/п	1	3	5	7	9	11	C 1	C2
X1	0	0	1	1	0	1	2	1
X2	1	0	1	1	0	1	3	1
X3	0	0	0	0	1	1	0	2
X4	0	1	1	1	1	0	3	1
X5	1	1	0	0	0	1	2	1
X6	1	1	1	0	1	1	3	2
X8	0	1	1	0	0	0	2	0
X9	1	1	0	1	1	1	3	2
X10	1	0	1	1	1	1	3	2
X11	1	1	0	0	0	0	2	0
X12	0	1	1	0	1	1	2	2
X13	1	1	0	1	1	0	3	1
X14	1	0	1	1	1	1	3	2
X15	0	0	1	1	0	0	2	0
X16	1	1	0	1	1	0	3	1

Рисунок 4 – Данные, соответствующие ветви X7=0

Под ветвь X7=0 попадают лица с номерами 1, 3, 5, 7, 9, 11. Далее в качестве признака выбирается — X3=1 (рисунок 5).

N п/п	9	11
X1	0	1
X2	0	1
X4	1	0
X5	0	1
X6	1	1
X8	0	0
X9	1	1
X10	1	1
X11	0	0
X12	1	1
X13	1	0
X14	1	1
X15	0	0
X16	1	0

Рисунок 5 — Данные, соответствующие ветви X3=1 Под ветвь X7=0 и X3=1 подходят лица с номерами 9 и 11 (класс 2). Данные, соответствующие ветви X10=0, показаны на рисунке 6.

N п/п	1	3	5	7
X 1	0	0	1	1
X2	1	0	1	1
X4	0	1	1	1
X5	1	1	0	0
X6	1	1	1	0
X8	0	1	1	0
X9	1	1	0	1
X10	1	0	1	1
X11	1	1	0	0
X12	0	1	1	0
X13	1	1	0	1
X14	1	0	1	1
X15	0	0	1	1
X16	1	1	0	1

Рисунок 6 — Данные, соответствующие ветви X3=0 Под ветвь X7=0 и X3=0 подходят лица с номерами 1, 3, 5, 7 (класс 1).

Аналогично рассмотрим ветвь X7=1. Описание результатов с данными, соответствующими ветви X7=1, приведены на рисунке 7.

N п/п	2	4	6	8	10	12	13	14	15	16	C1	C2
X1	1	0	0	0	0	1	1	0	0	0	1	2
X2	0	1	0	0	1	0	1	1	1	1	1	5
Х3	1	1	1	1	1	1	0	1	0	1	4	4
X4	1	0	0	1	0	0	1	1	1	1	2	4
X5	0	0	1	0	0	1	1	0	0	0	1	2
X6	0	1	1	1	1	0	0	0	1	0	3	2
X8	1	0	0	0	0	0	1	0	1	1	1	3
X9	0	0	1	1	0	1	1	1	0	0	2	3
X10	1	1	0	1	1	0	0	0	1	0	3	2
X11	1	1	1	1	1	1	0	1	0	1	4	4
X12	1	0	0	0	0	1	0	0	0	0	1	1
X13	0	0	1	1	1	0	1	0	1	1	2	4
X14	0	1	0	0	1	1	0	1	1	0	1	4
X15	1	1	1	1	1	1	0	1	0	1	4	4
X16	0	1	1	0	0	0	1	1	1	1	2	4

Рисунок 7 — Данные, соответствующие ветви X7=1 Под ветвь X7=1 попадают лица с номерами 2, 4, 6, 8, 10, 12, 13, 14, 15,

Далее в качестве признака выбирается – X2=0 (рисунок 8).

16.

N п/п	2	6	8	12	C 1	C2
X 1	1	0	0	1	1	1
X3	1	1	1	1	3	1
X4	1	0	1	0	2	0
X5	0	1	0	1	1	1
X6	0	1	1	0	2	0
X8	1	0	0	0	1	0
X9	0	1	1	1	2	1
X10	1	0	1	0	2	0
X11	1	1	1	1	3	1
X12	1	0	0	1	1	1
X13	0	1	1	0	2	0
X14	0	0	0	1	0	1
X15	1	1	1	1	3	1
X16	0	1	0	0	1	0

Рисунок 8 — Данные, соответствующие ветви X2=0 Под ветвь X7=1 и X2=0 подходят лица с номерами 2, 6, 8, 12. Далее в качестве признака выбирается — X14=0 (рисунок 9).

N п/п	2	6	8
X1	1	0	0
X3	1	1	1
X4	1	0	1
X5	0	1	0
X6	0	1	1
X8	1	0	0
X9	0	1	1
X10	1	0	1
X11	1	1	1
X12	1	0	0
X13	0	1	1
X15	1	1	1
X16	0	1	0

Рисунок 10 — Данные, соответствующие ветви X14=0 Под ветвь X7=1, X2=0 и X14=0 подходят лица с номерами 2, 6, 8 (класс 1).

Данные, соответствующие ветви X14=1, показаны на рисунке 9.

Ν п/п	12
X 1	1
X3	1
X4	0
X 5	1
X 6	0
X8	0
X9	1
X10	0
X11	1
X12	1
X13	0
X15	1
X16	0

Рисунок 10 — Данные, соответствующие ветви X2=0 Под ветвь X7=1, X2=0 и X14=1 подходит лицо с номером 12 (класс 2). Далее в качестве признака выбирается X2=1 (рисунок 11).

N п/п	4	10	13	14	15	16	C 1	C2
X1	0	0	1	0	0	0	0	1
X3	1	1	0	1	0	1	1	3
X4	0	0	1	1	1	1	0	4
X5	0	0	1	0	0	0	0	1
X6	1	1	0	0	1	0	1	2
X8	0	0	1	0	1	1	0	3
X9	0	0	1	1	0	0	0	2
X10	1	1	0	0	1	0	1	2
X11	1	1	0	1	0	1	1	3
X12	0	0	0	0	0	0	0	0
X13	0	1	1	0	1	1	0	4
X14	1	1	0	1	1	0	1	3
X15	1	1	0	1	0	1	1	3
X16	1	0	1	1	1	1	1	4

Рисунок 11 — Данные, соответствующие ветви X2=1 Под ветвь X7=1 и X2=1 подходят лица с номерами 4, 10, 13, 14, 15, 16. Данные, соответствующие ветви X4=1, показаны на рисунке 12.

N п/п	13	14	15	16
X1	1	0	0	0
X3	0	1	0	1
X4	1	1	1	1
X5	1	0	0	0
X6	0	0	1	0
X8	1	0	1	1
X9	1	1	0	0
X10	0	0	1	0
X11	0	1	0	1
X12	0	0	0	0
X13	1	0	1	1
X14	0	1	1	0
X15	0	1	0	1
X16	1	1	1	1

Рисунок 12 – Данные, соответствующие ветви X4=1

Под ветвь X7=1, X2=1 и X4=1 подходят лица с номерами 13, 14, 15, 16 (класс 2).

Данные, соответствующие ветви X4=0, показаны на рисунке 13.

N п/п	4	10	C 1	C2
X1	0	0	0	0
X3	1	1	1	1
X4	0	0	0	0
X5	0	0	0	0
X 6	1	1	1	1
X8	0	0	0	0
X9	0	0	0	0
X10	1	1	1	1
X11	1	1	1	1
X12	0	0	0	0
X13	0	1	0	1
X14	1	1	1	1
X15	1	1	1	1
X16	1	0	1	0

Рисунок 13 – Данные, соответствующие ветви X4=0

Далее под ветвь X7=1, X2=1, X4=1 и X13=0 подходит лицо с номером 4 (класс 1). А под ветвь X7=1, X2=1, X4=1 и X13=1 подходит лицо с номером 10 (класс 2).

Таким образом, было получено дерево решений. Дерево решений представлено на рисунке 14.

Рисунок 14 – Дерево решений

Из дерева решений видно, что для разделения лиц на классы необходимо 7 параметров:

- 1) губы;
- 2) Hoc;
- 3) уши;
- 4) брови;
- 5) глаза;
- 6) бабочка.

По данной схеме можно сформулировать следующие правила:

- 1) ЕСЛИ {(губы тонкие) и (нос круглый)} ТО (Класс 1).
- 2) ЕСЛИ {(губы тонкие) и (нос длинный)} ТО (Класс 2).
- 3) ЕСЛИ {(губы толстые) и (уши прижатые) и (брови опущены к низу)} ТО (Класс 1).
- 4) ЕСЛИ {(губы толстые) и (уши прижатые) и (брови подняты кверху)} ТО (Класс 2).
- 5) ЕСЛИ {(губы толстые) и (уши оттопыренные) и (глаза узкие) и (бабочки нет)} ТО (Класс 1).
- 6) ЕСЛИ {(губы толстые) и (уши оттопыренные) и (глаза узкие) и (бабочка есть)} ТО (Класс 2).
- 7) ЕСЛИ {(губы толстые) и (уши оттопыренные) и (глаза круглые)} ТО (Класс 2).

Вывод: в результате данной лабораторной работы был проведен системный анализ данных, изучены различные способы выявления закономерностей в данных и реализован один из них.

Контрольные вопросы

1. Что понимается под закономерностями в данных? Приведите примеры типовых закономерностей.

Под закономерностью в данных понимается взаимосвязь данных между собой. Пример: определить, какой товар предложить пользователю на основе просмотренных товаров.

2. Поясните основные подходы выявления и анализа закономерностей внутри данных.

- Кластерный анализ: метод, позволяющий разбивать данные на группы (кластеры) схожих объектов на основе их характеристик.
- Факторный анализ: метод, который помогает выделить основные факторы, влияющие на данные, и установить зависимости между ними.
- Ассоциативный анализ: метод, позволяющий находить связи между различными атрибутами данных и исследовать их влияние друг на друга.
- Машинное обучение: метод, который использует алгоритмы для изучения больших объемов данных и нахождения скрытых закономерностей.
- Регрессионный анализ: метод, используемый для выявления зависимости между независимыми и зависимыми переменными в данных.
- Методы искусственного интеллекта, такие как нейронные сети или генетические алгоритмы.
- Алгоритмы обнаружения аномалий, которые используются для выявления необычных или неожиданных паттернов в данных.
- Техники визуализации данных, которые позволяют исследовать данные в графическом формате и выявлять скрытые закономерности.

3. Укажите и поясните основные статистические методы для выявления закономерностей в данных.

- регрессионный, дисперсионный и корреляционный анализ;
- методы анализа в конкретной предметной области, базирующиеся на эмпирических моделях;

- нейросетевые алгоритмы, идея которых основана на аналогии с функционированием нервной ткани и заключается в том, что исходные параметры рассматриваются как сигналы, преобразующиеся в соответствии с имеющимися связями между «нейронами», а в качестве ответа, являющегося результатом анализа, рассматривается отклик всей сети на исходные данные;
 - деревья решений;
 - кластерные модели;
- алгоритмы ограниченного перебора, вычисляющие частоты комбинаций простых логических событий в подгруппах данных.

4. Укажите интеллектуальные методы, применяемые для анализа больших данных.

- машинное обучение;
- дата майнинг;
- нейросети;
- имитационные модели;
- предикативный и статистический анализ.

5. С какой целью проводится кодирование информационных признаков?

Чтобы можно было представить информацию в формате матрицы 0 и 1, и использовать её для математической обработки с помощью машинного обучения посредством написания кода. Или для простого более наглядного, упорядоченного представления информации.

6. Как можно определить логические закономерности в данных?

Полученную информацию можно представить графически, использовать графы или закодировать и отсортировать в таблице. После чего либо ручным анализом (например деревья), либо с помощью компьютерных программ, выявляющим закономерности в закодированной информации.

7. С какой целью проводится предварительная обработка данных при мониторинге? Что она включает?

Предварительная обработка данных проводится для повышения качества данных. Она включает:

- очистку данных, которая направлена на повышение качества данных за счет присваивания пропущенных значений и удаления выбросов;
- сокращение объема данных, которое уменьшает объем данных и,
 следовательно, снижает связанные с ними вычислительные мощности;
- масштабирование данных направлено на преобразование исходных данных в аналогичные диапазоны для прогнозирования;
- преобразование, целью которого является организация исходных данных в подходящие форматы для различных алгоритмов анализа данных;
- разделение, которое делит весь набор данных на различные подмножества для более глубокого анализа.