Euclidean Spaces

Ch.10

econMath.namun+2016sp@gmail.com

June 22, 2016

1 Points and Vectors in Euclidean Space

Objects in Euclidean Spaces

Objects in n-dimensional Euclidean Spaces

Dimension	Object	Representation
0	point	Ø
1	line	$x_1 \in \mathbb{R}^1$
2	plane	$(x_1, x_2) \in \mathbb{R}^2$
3	3d space	$(x_1, x_2, x_3) \in \mathbb{R}^3$
n	nd space	$(x_1,\cdots,x_n)\in\mathbb{R}^n$

2 Vectors

Vector

Definition 1 ((Euclidean) Vector, displacement). n-tuples of real numbers $\mathbf{x} = (x_1, x_2, \dots, x_n)$ are <u>(Euclidean) Vectors</u> that represents displacement in \mathbb{R}^n space (or Cartesian coordinate system)

Let coordination of $\mathbf{p} = (p_1, \dots, p_n)$, $\mathbf{q} = (q_1, \dots, q_n)$. Then the <u>displacement</u> from \mathbf{p} to \mathbf{q} is defined as $\overrightarrow{\mathbf{pq}} := (q_1 - p_1, \dots, q_n - p_n)$. In this definition, \mathbf{p} is an origin, and \mathbf{q} is a destination.

Note: Any vector $\mathbf{p}=(p_1,\cdots,p_n)$ can be interpreted as a location $((p_1,\cdots,p_n))$ or, dis-

placement with origin
$$\mathbf{0} := (0, \dots, 0)$$
 (more explicit notation: $\begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix}$)

3 The Algebra of Vectors

Addition and Subtraction

Let \mathbf{u}, \mathbf{v} be the vectors in \mathbb{R}^n space and $u_i, v_i \in \mathbb{R}^1$ be their *i*-th element.

Definition 2 (\pm of vectors).

$$(\mathbf{u} \pm \mathbf{v})_i := u_i \pm v_i \quad \forall i$$

or,

$$\mathbf{u} \pm \mathbf{v} := (u_1 \pm v_1, \cdots, u_n \pm v_n)$$

Geometrically, addition of vectors means a sequence of displacements.

Figure 1: Geometrical Meaning: Addition, Subtraction, and Scalar Multiplication

Scalar Multiplication

Let r, s be scalars (or real numbers). i.e., $r, s \in \mathbb{R}^1$.

Definition 3 (Scalar Multiplication).

$$(r\mathbf{u})_i := ru_i \quad \forall i$$

Geometrically, scalar multiplication means stretching or shrinking.

Algebraic Properties of Vector Operation

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (Commutative Law)
 $(r+s)\mathbf{u} = r\mathbf{u} + s\mathbf{u}$ (Destributive Law 1)
 $r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$ (Destributive Law 2)

In fact, any set of objects with a vector addition and scalar multiplication satisfying above laws is called <u>vector space</u> and <u>vector</u> is defined as the element of <u>vector space</u>. (Vector is defined by operations and their laws)

4 Length and Inner Product in \mathbb{R}^n

Length and Direction

Definition 4 (Length of Vector $||\overrightarrow{\mathbf{pq}}||$).

$$||\overrightarrow{pq}|| := \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

Theorem 1 (10.1).

$$||r\mathbf{v}|| = |r| \cdot ||\mathbf{v}|| \quad \forall r \in \mathbb{R} \land \forall \mathbf{v} \in \mathbb{R}^n$$

Any vector has two informations: (1) length, and (2) direction.

Definition 5 (Unit Vector (Direction of a vector)).

Unit vector of
$$\mathbf{v} := \frac{\mathbf{v}}{||\mathbf{v}||}$$

The Inner Product

Definition 6 (Euclidean Inner Product (or dot product)).

$$\mathbf{u} \bullet \mathbf{v} := \sum_{i}^{n} u_{i} v_{i} \in \mathbb{R}^{1}$$

Theorem 2 (10.2: Properties of Inner Product). 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

- 2. $\mathbf{u} \bullet (\mathbf{v} + \mathbf{w}) = u \bullet v + u \bullet w$
- 3. $\mathbf{u} \bullet (r\mathbf{v}) = r(\mathbf{u} \bullet \mathbf{v}) = (r\mathbf{u}) \bullet \mathbf{v}$
- 4. $\mathbf{u} \bullet \mathbf{u} \leq 0$
- 5. $\mathbf{u} \bullet \mathbf{u} = 0 \iff \mathbf{u} = \mathbf{0}$
- 6. $(u+v) \bullet (u+v) = u \bullet u + 2u \bullet v + v \bullet v$

Inner Product and Angle between Two Vectors

Theorem 3 (10.3). Let θ be the angle between \mathbf{u}, \mathbf{v} . Then,

$$\mathbf{u} \bullet \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos \theta$$

Theorem 4 (10.4). 1. θ is acute if $\mathbf{u} \bullet \mathbf{v} > 0$

- 2. θ is obtuse if $\mathbf{u} \bullet \mathbf{v} < 0$
- 3. θ is right if $\mathbf{u} \bullet \mathbf{v} = 0$

Theorem 5 (10.5: Triangle Inequality).

$$||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$$

$$\big|||\mathbf{u}||-||\mathbf{v}||\big|\leq ||\mathbf{u}-\mathbf{v}||$$

Norms

Definition 7 (Norms). Any operation (X) of a vector to a real number satisfying below three properties is norm. Length of vector is a norm.

- 1. $X(\mathbf{u}) \geq 0 \wedge X(\mathbf{u}) = 0$ only when $\mathbf{u} = \mathbf{0}$
- 2. $X(r\mathbf{u}) = |r|X(\mathbf{u})$
- 3. $X(\mathbf{u} + \mathbf{v}) \le X(\mathbf{u}) + X(\mathbf{v})$

Norm is set of distance measures between two vectors.

5 Lines and Planes

1D,2D Objects in \mathbb{R}^n Spaces

Lines:One dimensional objects in \mathbb{R}^n Spaces

x representing a line passing $\overline{\mathbf{x_0}}$ with direction $\overline{\mathbf{v}}$ is:

$$\mathbf{x} = \overline{\mathbf{x_0}} + t\overline{\mathbf{v}} \quad \forall t \in \mathbb{R}$$

(Parametric Representation)

x representing a line passing $\overline{\mathbf{x_0}}, \overline{\mathbf{x_1}}$ is:

$$\mathbf{x} = (1 - t)\overline{\mathbf{x_0}} + t\overline{\mathbf{x_1}} \quad \forall t \in \mathbb{R}$$

(Parametric Representation)

Planes: Two dimensional objects in \mathbb{R}^n Spaces

x representing a plane passing $\overline{x_0}$ with direction $\overline{v_1}$ and $\overline{v_2}$ is:

$$\mathbf{x} = \overline{\mathbf{x_0}} + t_1 \overline{\mathbf{v_1}} + t_2 \overline{\mathbf{v_2}} \quad \forall t_i \in \mathbb{R}$$

(Parametric Representation)

x representing a plane containing $\overline{\mathbf{x_0}}, \overline{\mathbf{x_1}}, \overline{\mathbf{x_2}}$ is:

$$\mathbf{x} = (1 - t_1 - t_2)\overline{\mathbf{x_0}} + t_1\overline{\mathbf{x_1}} + t_2\overline{\mathbf{x_2}} \quad \forall t_i \in \mathbb{R}$$

(Parametric Representation)

Nonparametric Equations

Definition 8 (Normal Vector). A <u>normal vector</u> $\bar{\mathbf{n}}$ of a n-dimensional object \mathbf{X} is a vector which is perpendicular to any vectors in the object. Suppose \mathbf{x} , $\bar{\mathbf{p}}$ are location vectors in the object. Then,

$$\bar{\mathbf{n}} \bullet (\mathbf{x} - \bar{\mathbf{p}}) = 0 \quad \forall \mathbf{x}, \mathbf{p} \in \mathbf{X}$$

Finding Normal Vector

1. For linearly independent vectors $\mathbf{u_i}$, solve below systems of equations satisfying

$$\mathbf{n} \bullet \mathbf{u_i} = 0 \quad \forall i$$

2. $\mathbf{n} = \mathbf{u} \times \mathbf{v}$ (Only for \mathbb{R}^3 space)

$$\mathbf{u} \times \mathbf{v} := \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$$

Hyperplanes

Definition 9 (Hyperplane). $\mathbf{x} \in \mathbb{R}^{n-1}$ object in \mathbb{R}^n space is a <u>hyperplane</u> with normal vector $\bar{\mathbf{a}}$ if:

$$\bar{a}_1 x_1 + \bar{a}_2 x_2 + \cdots \bar{a}_n x_n = \bar{d}$$

or,

$$\bar{\mathbf{a}} \bullet \mathbf{x} = \bar{d}$$

6 Economic Applications

Budget Constraint

Definition 10 (Commodity Bundle, Price Vector, Budget Set). Let $x_i \geq 0$ be the quantity of ith commodity.

$$\mathbf{x} := (x_1, \dots, x_n), \quad x_i \ge 0 \quad \forall i$$
 (Commodity Bundle)

Let $p_i \geq 0$ be the price of ith commodity.

$$\mathbf{p} := (p_1, \cdots, p_n), \quad p_i \ge 0 \quad \forall i$$
 (Price Vector)

Then budget set \mathbf{x} can be defined with given budget \bar{I} :

$$\bar{\mathbf{p}} \bullet \mathbf{x} \le \bar{I}$$
 (Budget Constraint)