

1.

$$T(n) = n^2 \text{ since, } n^2 > n \log(n)$$

$$T(n) = 2^n \text{ since } 2^n > n^3 > n$$

2.

$$\begin{array}{lll} j = 0 & \leftarrow \text{constant time} \\ \text{for } i = 0 \text{ to n} & \leftarrow \text{n times} \\ & \text{while } j \leq 5 & \leftarrow \text{n x constant time} (\text{because the condition of the while loop is nt based on the input size}) \\ & & j = j + 1 & \leftarrow \text{n x constant time} (\text{because the condition of the while loop is nt based on the input size}) \end{array}$$

Total steps =
$$1+ n + 7n + 6n = 14n + 1$$

Therefor, $T(n) = n$

3.

	INSERTION-SORT(A)	Cost	Times
1	for j = 2 to A.length	c ₁	n
2	key = A[j]	C ₂	n-1
3	// Insert A[j] into the sorted // sequence A[1j-1]	0	n-1
4	i = j — 1	C ₄	n-1
5	While i > 0 and A[i] > key	c ₅	$\sum_{j=2}^{n} \mathbf{t}_{j}$
6	A[i+1] = A[i]	c ₆	$\sum_{j=2}^{n} (t_{j} - 1)$
7	i = i-1	c ₇	$\sum_{j=2}^{n} (t_{j} - 1)$
8	A[i+1] = key	c ₈	n-1

Let t_i be the number of times the while loop was executed for that value of i

From the above diagram we can conclude that the running time can be given as

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

By simplifying it for the best case and the worse case.

Best Case (Array is in sorted order)

The time complexity therefore is, $\Theta(n)$

•Worst Case (Array is in reverse sorted order)

-
$$T(n) \leftarrow cn^2 + dn + e$$

The time complexity therefore is, $\Theta(n^2)$

4.

1	2	3	4
3	4	1	2

1) A.length =
$$4$$

2)
$$i = 1$$

3)
$$A[j] > A[i] \leftarrow 4 > 3 T$$

4)
$$i = 2$$

3)
$$A[j] > A[i] \leftarrow 4>4 F$$

5)
$$Key = 4$$

6)
$$k = 0$$
 and j-i-1 = 0

8)
$$A[i] = A[2] = 4$$

3)
$$A[3] > A[1] \leftarrow 1 > 3 F$$

5)
$$key = A[3] = 1$$

6)
$$k = 0$$
 to j-i-1 =1

7)
$$A[j-k] = A[j-k-1] = A[3] = A[2],$$

 $A[3] = 4$

- 6) when k = 1 the loop doesn't execute
- 8) A[1]=1

1	2	3	4
1	3	4	2

3)
$$A[4] > A[1] \leftarrow 2 > 1 T$$

3)
$$A[4] > A[2] \leftarrow 2 > 3F$$

5)
$$key = A[4] = 2$$

6)
$$A[4-0] = A[4-0-1]$$

8)
$$A[2] = 2$$

1	2	3	4
1	2	3	4