Ejercicios de Estadística

Temas: Estadística Descriptiva

Titulaciones: Medicina

Alfredo Sánchez Alberca asalber@ceu.es http://aprendeconalf.es

En dos poblaciones de mujeres A y B se ha tomado una muestra y se ha medido el número de embarazos de cada mujer durante su vida fértil obteniéndo los siguientes resultados:

A	2	3	4	4	3	2	6	1	5	3	4	4	3	2	5	0
B	1	0	2	1	0	2	0	3	0	1	0	2	5	1	1	1

- 1. Construir los diagramas de caja de ambas muestras y compararlos.
- 2. ¿En qué muestra es más representativa la media? Justificar la respuesta.
- 3. Calcular el coeficiente de asimetría de ambas distribuciones. ¿Qué distribución es más asimétrica?
- 4. ¿Qué número de embarazos es relativamente mayor, 5 embarazos en la población A o 3 en la B?

Utilizar las siguientes sumas para los cálculos:

$$\sum_{i} a_{i} = 51, \sum_{i} a_{i}^{2} = 199, \sum_{i} (a_{i} - \bar{a})^{3} = -11.6016, \sum_{i} (a_{i} - \bar{a})^{4} = 217.9954,$$

$$\sum_{i} b_{i} = 20, \sum_{i} b_{i}^{2} = 52, \sum_{i} (b_{i} - \bar{b})^{3} = 49.5, \sum_{i} (b_{i} - \bar{b})^{4} = 220.3125.$$

En dos poblaciones de mujeres A y B se ha tomado una muestra y se ha medido el número de embarazos de cada mujer durante su vida fértil obteniéndo los siguientes

resultados:

A 2 3 4 4 3 2 6 1 5 3 4 4 3 2 5

A = 2	3	4	4	3	2	6	1	5	3	4	4	3	2	5	0
<i>B</i> 1	0	2	1	0	2	0	3	0	1	0	2	5	1	1	1

Datos

 $A \equiv \text{N\'umero de}$ embarazos una mujer de la población A

la población A $B \equiv \text{Número de}$ embarazos una mujer de
la población B

1. Construir los diagramas de caja de ambas muestras y compararlos.

Datos

 $A \equiv \text{N\'umero}$ de embarazos una mujer de la población A $B \equiv \text{N\'umero}$ de embarazos una mujer de la población B

A	F_{i}	В	F_{i}
0	0.0625	0	0.3125
1	0.125	1	0.6875
2	0.3125	2	0.875
3	0.5625	3	0.9375
4	0.8125	5	1
5	0.9375		
6	1		

¿En qué muestra es más representativa la media?
 Justificar la respuesta.

Datos

A = Número de embarazos una mujer de la población A $B \equiv N$ úmero de embarazos una mujer de la población B $\sum a_i = 51$ hijos $\sum a_i^2 = 199 \text{ hijos}^2$ $\sum (a_i - \bar{a})^3 = -11.6016 \text{ hijos}^3$ $\sum (a_i - \bar{a})^4 = 217.9954 \text{ hijos}^4$ $\sum b_i = 20$ hijos $\sum b_{i}^{2} = 52 \text{ hijos}^{2}$ $\sum (b_i - \bar{b})^3 = 49.5 \text{ hijos}^3$ $\sum (b_i - \bar{b})^4 = 220.3125 \text{ hijos}^4$

3. Calcular el coeficiente de asimetría de ambas distribuciones. ¿Qué distribución es más asimétrica?

Datos

A = Número de embarazosuna mujer de la población A $B \equiv N$ úmero de embarazos una mujer de la población B $\sum a_i = 51$ hijos $\sum a_i^2 = 199 \text{ hijos}^2$ $\sum (a_i - \bar{a})^3 = -11.6016 \text{ hijos}^3$ $\sum (a_i - \bar{a})^4 = 217.9954 \text{ hijos}^4$ $\sum b_i = 20$ hijos $\sum b_i^2 = 52 \text{ hijos}^2$ $\sum (b_i - \bar{b})^3 = 49.5 \text{ hijos}^3$ $\sum (b_i - \bar{b})^4 = 220.3125 \text{ hijos}^4$ $\bar{a} = 3.1875 \text{ hijos}$ $s_a = 1.5091 \text{ hijos}$ $\bar{b} = 1.25 \text{ hijos}$

 $s_h = 1.299 \text{ hijos}$

4. ¿Qué número de embarazos es relativamente mayor, 5 embarazos en la población A o 3 en la B?

Datos $A \equiv \text{Número de embarazos}$ una mujer de la población A $B \equiv \text{Número de embarazos}$ una mujer de la población B $\sum a_i = 51 \text{ hijos}$ $\sum a_i^2 = 199 \text{ hijos}^2$ $\sum (a_i - \bar{a})^3 = -11.6016 \text{ hijos}^3$

 $\sum (a_i - \bar{a})^4 = 217.9954 \text{ hijos}^4$

 $\sum (b_i - \bar{b})^3 = 49.5 \text{ hijos}^3$ $\sum (b_i - \bar{b})^4 = 220.3125 \text{ hijos}^4$

 $\sum_{i=1}^{\infty} b_i = 20 \text{ hijos}$ $\sum_{i=1}^{\infty} b_i^2 = 52 \text{ hijos}^2$

 $\bar{a}=3.1875$ hijos $s_a=1.5091$ hijos $\bar{b}=1.25$ hijos $s_b=1.299$ hijos