

Network theory: 2 Liubov Tupikina, Marc Santolini (CRI)

Today

- 1. Network science: new concepts
- 2. Notebook Hands-on: Python and Gephi Break
- 3. Questions & Answers
- 4. Projects discussions and Reversed classrooms

If you have questions?

http://networksciencebook.com/

https://www.barabasilab.com

http://networkrepository.com/graph-vis.php

http://www.complexity-explorables.org/explorables/neighbors/

https://snap.stanford.edu/data

What is the network itself?

- components: nodes, vertices
- interactions: links, edges
- system: network, graph (N,L)

How to describe a network?

Barabasi book on network science

How to describe importance of nodes?

How to describe importance of nodes?

Network measures: How to describe a network?

How to describe a network?

Degree of node A is the number of nodes adjacent with the node A. Plotting degree distribution for a network can give important insight on its properties.

How to describe a real network?

What is degree distribution of larger network? (Liuba -hands on session) How to visualise a network in a nice way? (Marc - visualisation)

http://networkrepository.com/soc-karate.php

Detwork Data Statistics	
Nodes	34
Edges	78
Density	0.139037
Maximum degree	17
Minimum degree	1
Average degree	4
Assortativity	-0.475613
Number of triangles	135
Average number of triangles	3
Maximum number of triangles	18
Average clustering coefficient	0.570638
Fraction of closed triangles	0.255682
Maximum k-core	5
Lower bound of Maximum Clique	5

Scale-free networks (lecture 1)

Scale-free networks (lecture 1)

Cytoscape software alternative to Gephi for biological networks Barabasi book

[&]quot;Scale free networks can be found in many places"... at the same time "Be careful with power-laws"

Network measures: clustering

Network measures: clustering

$$C_i = rac{|\{e_{jk}: v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i-1)}$$

Network measures: betweenness centrality

Additional notions:

Paths in a network Shortest paths Random walks on a network

Network measures: betweenness centrality

Additional notions:

Paths in a network Shortest paths Random walks on a network

$$g(v) = \sum_{s
eq v
eq t} rac{\sigma_{st}(v)}{\sigma_{st}}$$

Network measures: closseness centrality

Main idea:

the more central a node is, the closer it is to all other nodes

Network measures Which is what?

For your projects: How to analyze networks with network measures?

Network	Nodes	Links	Directed / Undirected	N	L	(Κ)
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.34
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile-Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorships	Undirected	23,133	93,437	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Papers	Citations	Directed	449,673	4,689,479	10.43

For your projects: How to find interesting questions?

Classical example Euler (1736): Research question:

The problem was to devise a walk through the city that would cross each of those bridges once and only once.

Data analysis or algorithm of solution:

Representation of the path and problem as a graph and proof that it is impossible.

Conclussions:

•••

Hands-on part

Python Gephi

Q&A Group discussions Projects and reversed classrooms

Hands-on part

Idea:

Each group gets one projects

Internet and WWW:

Data collected in 1999. Ref: Albert, R., Jeong, H., & Barabasi, A. L. (1999). Internet: Diameter of the world-wide web. Nature, 401(6749), 130-131

Citation network:

Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007)

Neural networks:

Classes of small-world networks L. A. N. Amaral (2000)

Ecological network

Ecological networks Montoya Sole (2000)

Transportational networks

Barthelemy (2011)

Additional slides: Random networks

Erdos-Renyi random network

Erdos-Renyi networks

G(N,p), N number of nodes p is probability to have link between nodes

Watts-Strogarz small-world model

