1. フローチャートとは

フローチャートは、「流れ図」とも呼ばれます。 プログラムを作成する場合、次のような手順で作業を進めます。

- 1) 処理内容を、フローチャートで記述します。
- 2) フローチャートに誤りが無いことを確認します。
- 3) フローチャートに従って、プログラムを作成します。
- ・プログラムが設計通りに動作している場合 プログラムの作成はここで終了です。
- ・作成したプログラムが設計通りに動作しない場合
- 4) 不具合が発生している箇所を探します。
- 5) 正しい動作となるように、フローチャートを訂正します。
- 6) フローチャートに従って、プログラムを作成します。以後、不具合が無くなるまで4~6の作業を繰り返します。

2. フローチャート記号

ここでは、よく利用する記号を紹介します。

2.1 端子

処理の開始と終了を示します。半円と長方形が合体した図形です。 図形内に、開始または終了を意味する言葉を記述します。

開始や終了の語句は任意です。しかし、適当ではなく互いにペアとなる語句を採用します。

例:メインルーチン:START~END、START~STOP など。

サブルーチン:開始~戻る、START~RETURN など。

2.2 処理

任意の処理内容を示します。長方形で表します。

図形内に、処理の内容を手短に記述します。

2.3 判断

指定した条件に従って判断を行い、処理の流れを切り替えます。菱形で表現します。 図形内に判断条件、図形外に判断結果の流れを記述します。

YES、NO の位置は任意ですが、できるだけ統一します。

2.4ループ端

繰り返しの処理(ループ)を表します 次のように、2種類の6角形を必ずペアで記述します。

繰り返しの動作は、適切なタイミングで終了しなければいけません。

この終了するためのタイミングを決める条件を、「終了条件」といいます。

終了条件が無い場合、処理は無限に繰り返します。

※終了条件は、ビジネス系の処理では通常は指定します。しかし、組込み系では指定しないことが 多くあります。

2.5 流れ線

処理の流れを表します。

矢印は、流れが左から右または下から上に流れる場合に付けます。

2.6 結合子

フローチャートが1枚の用紙に収まらない場合や、流れ線が交差する場合などに利用します。 記号内には英数字を利用し、繋がる相手と同じ英数字を記述します。

2.7 媒体

ハードディスク、プリンター、キーボード、ディスプレイなどを表します。

3. モジュール分割とフローチャート

複雑なプログラムをフローチャートで表現する場合、全ての部分を詳細に記述していたのでは、却って理解しづらくなります。

そこで、あるまとまった単位ごとに分割してフローチャートを記述します。この一つ一つをモジュールといいます。そして、モジュールに分割されたプログラムを実際に作成する場合は、このモジュールごとに分けて制作します。

副定義(サブルーチン)

終了

以上