

|          |  |  |  |     | Pri  | ntec | l Pa  | ge: 1 | of 2 | , |
|----------|--|--|--|-----|------|------|-------|-------|------|---|
|          |  |  |  | Sub | ject | Cod  | le: K | KOE   | 2093 | , |
| Roll No: |  |  |  |     |      |      |       |       |      |   |

## BTECH (SEM VIII) THEORY EXAMINATION 2023-24 DATA WAREHOUSING & DATA MINING

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

#### **SECTION A**

| 1.   | Attempt all questions in brief.                                                                                            | 2 x 10 = | = 20 |
|------|----------------------------------------------------------------------------------------------------------------------------|----------|------|
| Qno. | Question                                                                                                                   | Marks    | CO   |
| a.   | Define Data Warehousing.                                                                                                   | 2        | 1    |
| b.   | Discuss the Fact Constellation.                                                                                            | 2        | 1    |
| c.   | Explain Distributed DBMS implementation.                                                                                   | 2        | 2    |
| d.   | Define Warehousing Software.                                                                                               | 2        | 2    |
| e.   | Are all the patterns interesting?                                                                                          | 2        | 3    |
| f.   | Differentiate between binary symmetric attributes and asymmetric attributes.                                               | 2        | 3    |
| g.   | Find the mode of the following dataset: 12,13,34,32,21,29,40,11,39,23. What is the advantage of mode over mean and median? | 2        | 4    |
| h.   | Given two objects represented by the tuples (22, 2, 45, 10) and (20, 10,                                                   | 2        | 4    |
|      | 26, 2):                                                                                                                    |          |      |
|      | Compute the Manhattan distance between these two objects.                                                                  |          |      |
| i.   | What do you mean by Temporal Mining?                                                                                       | 2        | 5    |
| j.   | Discuss Data Visualization.                                                                                                | 2        | 5    |

# SECTION B

| 2. | Attempt any three of the following:                                         | $10 \times 3 =$ | 30 |
|----|-----------------------------------------------------------------------------|-----------------|----|
| a. | Write short notes on:                                                       | 10              | 1  |
|    | i. Steps of Knowledge Discovery in data                                     |                 |    |
|    | ii. Explain Snow Flakes in detail.                                          |                 |    |
| b. | Explain Market Basket Analysis.                                             | 10              | 2  |
| c. | Draw the box-and-whisker plot of the following dataset: 4.3, 5.1, 3.9,      | 10              | 3  |
|    | 4.5, 4.4, 4.9,5.0, 4.7, 4.1, 4.6, 4.4, 4.3, 4.8, 4.4, 4.2, 4.5, 4.4.        |                 |    |
| d. | Cluster the following dataset with points (2,4), (6,8), (1,2), (4,5), (3,5) | 10              | 4  |
|    | into two clusters using K-Means algorithm (using Euclidean distance         |                 |    |
|    | algorithm only).                                                            |                 |    |
| e. | Explain ROLAP, MOLAP and HOLAP in detail.                                   | 10              | 5  |

# **SECTION C**

| 3. | Attempt any one part of the following:                           | $10 \times 1 =$ | 10 |
|----|------------------------------------------------------------------|-----------------|----|
| a. | How mapping a 2D table into multidimensional data model? Explain | 10              | 1  |
|    | with suitable example.                                           |                 |    |
| b. | Write short notes on:                                            | 10              | 1  |
|    | i. Data Characterization and Data Discrimination                 |                 |    |
|    | ii.Snow Flakes in detail.                                        |                 |    |

| 4. | Attempt any one part of the following:                              | 10 x 1= | 10 |
|----|---------------------------------------------------------------------|---------|----|
| a. | Differentiate between:                                              | 10      | 2  |
|    | (i) Min-Max and Z-score Normalization with examples                 |         |    |
|    | (ii) Binary data variables and Nominal data variables with examples |         |    |
| b. | Explain the major components of Data Mining Architecture.           | 10      | 2  |



|          |  |  |  | Sub | ject | Cod | le: K | OE | 093 |
|----------|--|--|--|-----|------|-----|-------|----|-----|
| Roll No: |  |  |  |     |      |     |       |    |     |

### BTECH (SEM VIII) THEORY EXAMINATION 2023-24 DATA WAREHOUSING & DATA MINING

TIME: 3 HRS M.MARKS: 100

| 5  | Attempt any <i>one</i> part of the following: |
|----|-----------------------------------------------|
| J. | Attempt any one part of the following:        |

| 10  |   | 4 | 10  |
|-----|---|---|-----|
| -10 | V | - | -10 |
| 10  |   |   | 10  |

Printed Page: 2 of 2

| a. | Discu  | ss Decision tre    |            | 10        | 3             |                   |    |   |
|----|--------|--------------------|------------|-----------|---------------|-------------------|----|---|
| b. |        | •                  |            | •         |               | ım, student= yes, | 10 | 3 |
|    | credit | t rating = fair) ι | using Baye | s Theoren | 1.            |                   |    |   |
|    | RID    | age                | income     | student   | credit_rating | Class:            |    |   |
|    | KID    | age                | income     | student   | credit_rating | buys_computer     |    |   |
|    | 1      | youth              | high       | no        | fair          | no                |    |   |
|    | 2      | youth              | high       | no        | excellent     | no                |    |   |
|    | 3      | middle_aged        | high       | no        | fair          | yes               |    |   |
|    | 4      | senior             | medium     | no        | fair          | yes               |    |   |
|    | 5      | senior             | low        | yes       | fair          | yes               |    |   |
|    | 6      | senior             | low        | yes       | excellent     | no                |    |   |

6. Attempt any *one* part of the following:

| 1 | Λ | v | 1 | _ | 1 | O |
|---|---|---|---|---|---|---|
|   | u | х |   | _ |   | u |

| a. | Explain variou    | s types                                                                                        | of     | clustering | methods. | Discuss | any | one | 10 | 4 |
|----|-------------------|------------------------------------------------------------------------------------------------|--------|------------|----------|---------|-----|-----|----|---|
|    | partitioning clus | tering alg                                                                                     | goritl | hm.        | 000      |         |     |     |    |   |
| b. | Discuss DBSCA     | partitioning clustering algorithm.  Discuss DBSCAN clustering algorithm with suitable example. |        |            |          |         |     |     | 10 | 4 |

7. Attempt any *one* part of the following:

| 10 | ≪ ⊿ |      |   | 4 | ı |
|----|-----|------|---|---|---|
| 10 | X   | - 10 | = | ı |   |

| 7 • | Attempt any one part of the following.                   | 10 X 1 | 10 |
|-----|----------------------------------------------------------|--------|----|
| a.  | Differentiate between                                    | 10     | 5  |
|     | (a) OLAP and OLTP in detail.                             |        |    |
|     | (b) Slice and Dice operations with an example.           |        |    |
| b.  | Define Spatial Data? How mining of spatial data is done? | 10     | 5  |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     | Op.                                                      |        |    |
|     | 0,3                                                      |        |    |
|     | K                                                        |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     | 12:Jun:202.                                              |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     | ·                                                        |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |
|     |                                                          |        |    |