ALGEBRAIC NUMBER THEORY EXAMPLE SHEET 1

1. Which of the following are algebraic numbers and which are algebraic integers:

$$23/7$$
, $\sqrt{-5}$, $\sqrt{2} + \sqrt{7}$, $\exp(2\pi i/5)$, $\cos(2\pi/7)$.

Write their minimal polynomials, conjugates, norms and traces.

- 2. Let $f(X) = X^3 2X 2$.
 - (i) Show that f is irreducible.
 - (ii) Let θ be a root of f. Find the minimal polynomial for $\theta+1$.
 - (iii) Find the minimal polynomial of θ^2 .

(Hint for (iii): You know that $\theta^3 - 2\theta = 2$. Now square both sides.)

- 3. Suppose d_1 , d_2 are non-square integers. Show $\mathbb{Q}(\sqrt{d_1}) = \mathbb{Q}(\sqrt{d_2})$ if and only if d_1/d_2 is a square of a rational number.
- 4. Use reduction modulo 5 to show that the polynomial $X^5 X + 1$ is irreducible.
- 5. Let p be a prime number. Write $f(X) = X^{p-1} + X^{p-2} + \cdots + 1$. Prove that f is irreducible.

(**Hint:** You know that $f(X) = (X^p - 1)/(X - 1)$. Now use Eisenstien to show that f(X + 1) is irreducible.)

- 6. You are given that the only integer solutions to the equation $u^3 2v^3 = 1$ are (u, v) = (1, 0) and (u, v) = (-1, -1). Use this fact to find the integer solutions to the Diophantine equation $x^2 1 = y^3$.
- 7. Show that $x^2 + 1 \not\equiv 0 \pmod{8}$ for all integers x. Deduce that if x, y are integers satisfying $x^2 + 1 = y^3$ then x is even and y is odd. Use the fact that $\mathbb{Z}[i]$ is a unique factorisation domain to solve this Diophantine equation.

(This is similar to the way we solved $4x^2-1=y^3$ in the lectures. You will need a similar lemma. Make sure you justify every step.)