Linear Algebra-A

Assignments - Week 8

Supplementary Problem Set

1. Let $E = \{u_1, u_2, u_3\}$ and $F = \{b_1, b_2\}$, where

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, u_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

and
$$\boldsymbol{b}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\boldsymbol{b}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

For each of the following linear transformations $L: \mathbb{R}^3 \to \mathbb{R}^2$, find the matrix representing L with respect to the ordered bases E and F:

- (a) $L(x) = (x_3, x_1)^T$;
- (b) $L(x) = (x_1 + x_2, x_1 x_3)^T$;
- (c) $L(\mathbf{x}) = (2x_2, -x_1)^{\mathrm{T}}$.

2. Let $\mathbb{R}^{2\times 2}$ be the vector space of all 2×2 real matrices, and define

$$T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$$

by $T(\mathbf{A}) = \mathbf{A} + \mathbf{A}^{\mathrm{T}}$, where $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

- (a) Show that T is a linear transformation.
- (b) Find its matrix with respect to the basis $\left\{ \boldsymbol{b}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \boldsymbol{b}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \boldsymbol{b}_3 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \boldsymbol{b}_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}.$$

3. Let v_1, v_2, \dots, v_m be linearly independent vectors in \mathbb{R}^n (n > m), and

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{v}_1^T \\ \boldsymbol{v}_2^T \\ \vdots \\ \boldsymbol{v}_m^T \end{bmatrix}.$$

It follows that A is an $m \times n$ matrix with rank m.

Let $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{n-m}$ be a set of linearly independent vectors in \mathbf{R}^n satisfying $A\mathbf{w}_i = \mathbf{0}, \quad j = 1, 2, \dots, n - m$.

Show that the vectors $v_1, v_2, \dots, v_m, w_1, w_2, \dots, w_{n-m}$ are linearly independent. (Note: This is to say, the basis for the row space $C(A^T)$ and the basis for the nullspace N(A) together form a basis for \mathbb{R}^n .)

4. Let
$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 1 & -1 & 2 \\ 1 & -1 & -2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ -2 \\ -1 \\ 3 \end{bmatrix}$.

- a) Explain why Ax = b is inconsistent.
- b) Find the least squares solution to Ax = b.
- c) Split \boldsymbol{b} into a column space component \boldsymbol{b}_c and a left nullspace component \boldsymbol{b}_l , i.e., $\boldsymbol{b} = \boldsymbol{b}_c + \boldsymbol{b}_l$.
- 5. Let A be an $m \times n$ real matrix and A^T be its transpose. Show that the column spaces of A^TA and A^T are the same, i.e., $C(A^TA) = C(A^T)$.

(Note: This is a way to prove that for the least square method, the normal equation $A^T Ax = A^T b$ is always solvable. Another proof is by the properties of "Rank".)