ASTR/ATOC 5540 name: Baylee Bordwell

Problem Set 9: Dedalus and doubly-diffusive convection (a 2-D PDE)

- 0. Through dangers untold and hardships unnumbered...installed.
- 1. And it works! (as long as its own version of matplotlib is not used...)

2. These are travelling waves, as the following images show.

- The implementation of the equations of thermosolutal convection are detailed in Table 1.
 - The role of equations like $dz(w) w_z = 0$ are to keep the problem first order. As the x differentiation is essentially just a scalar multiplication, it is not necessary to do this for the x-derivatives, but for z-derivatives this simplifies the problem.
 - The equations are correctly implemented.
 - The boundary conditions are ([bottom,top]): $S = [1,0], T = [1,0], u = [0,0], w = [0,0], \frac{\partial w}{\partial x}|_{\text{bottom}} \neq 0, P(\text{bottom}) = 0, \frac{\partial P}{\partial x}|_{\text{bottom}} = 0$
- 4. See Table 2. In equations.py, the linear terms are all grouped on the left-hand side of the equation, and the non-linear terms are all on the right.
- 5. T is destabilizing, while S is stabilizing. To change their relative roles I would set their boundary conditions to [0, 1], rather than [1, 0].

ASTR/ATOC 5540 name: Baylee Bordwell

Equation	Implementation	
(1)	$1/\Pr * dt(w) - (dx(dx(w)) + dz(w_z)) - Ra_T * T + Ra_S * S + dz(P) = -1/\Pr * (u * dx(w) + w * w_z)$	
	$1/\Pr*dt(u) - (dx(dx(u)) + dz(u_z)) + dx(P) = -1/\Pr*(u*dx(u) + w*u_z)$	
(2)	$dx(u) + w_z = 0$	
(3)	$dt(T) - (dx(dx(T)) + dz(T_z)) = -u*dx(T) - w*T_z$	
(4)	$dt(S) - Lewis*(dx(dx(S)) + dz(S_z)) = -u*dx(S) - w*S_z$	
Implementation of	Translation (in words)	
(1)	$\frac{1}{Pr}\frac{\partial w}{\partial t} - \nabla^2 w \hat{z} - (Ra_T T - Ra_S S)\hat{z} + \frac{\partial P}{\partial z} = -\frac{1}{Pr}\mathbf{u} \cdot \nabla w \qquad \qquad \hat{z} \text{ component of (1)}$	
	velocity current (in z), diffusion of velocity, buoyancy/sinking, pressure flux, advection of velocity	
	$\frac{1}{P_T} \frac{\partial u}{\partial t} - \nabla^2 u \hat{x} + \frac{\partial P}{\partial x} = -\frac{1}{P_T} \mathbf{u} \cdot \nabla u \qquad \qquad \hat{x} \text{ component of (1)}$	
	velocity current (in x), diffusion of velocity, pressure flux, advection of velocity	
(2)	$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0$ the gradient of u, which = 0	
	outward flux of velocity is 0	
(3)	$\frac{\partial T}{\partial t} - \nabla^2 T = -\mathbf{u} \cdot \nabla T$ (I condensed the Laplacians and gradients in all of thesebut I think that still IDs each term ok)	
	temperature current, temperature diffusion, temperature advection	
(4)	$rac{\partial S}{\partial t} - au abla^2 S = - \mathbf{u} \cdot abla S$	
	solute current, solute diffusion, solute advection	

Table 1: Translation of equations of thermosolutal convection from TS.py code.

Equation	Linear	Nonlinear
(1)	$\frac{1}{Pr}\frac{\partial \mathbf{u}}{\partial t}, \nabla^2 \mathbf{u}, (Ra_TT - Ra_SS)\hat{z}, \nabla P$	$\mathbf{u}\cdot\nabla\mathbf{u}$
	$1/Pr*dt(w)$, $dx(dx(w))$, $dz(w_z)$, $-Ra_T*T$, Ra_S*S , $dz(P)$	$-1/Pr*u*dx(w)$, $-1/Pr*w*w_z$
	$1/Pr*dt(u)$, $dx(dx(u))$, $dz(u_z)$, $dx(P)$	$-1/Pr*u*dx(u)$, $-1/Pr*w*u_z$
(2)	$ abla \cdot \mathbf{u}$	-
	dx(u), w_z	-
(3)	$rac{\partial T}{\partial t}, abla^2 T$	$\mathbf{u}\cdot\nabla T$
	$dt(T)$, $dx(dx(T))$, $dz(T_z)$	$-u*dx(T)$, $-w*T_z$
(4)	$rac{\partial S}{\partial t}, au abla^2 S$	$\mathbf{u}\cdot\nabla S$
	$dt(S)$, $dx(dx(S))$, $dz(S_z)$	$-u*dx(S)$, $-w*S_z$

Table 2: The linear and nonlinear breakdown of the equations in both raw and implemented form.

Code used in this assignment:

```
#!bash
python3 TS.py
python3 plot_results_parallel.py TS slices 1 1 10
```