

Data Wrangling Project

ALX-T Data Analyst Nanodegree Program

Elaborated by: Ferdawes Haouala

Title: Wrangle Report (project 2)

Date: 06/09/2022

Table of content

7. Introduction: What is the project

- 2. Methodology & steps
 - 2.1. Gathering data
 - 2.2. Assessing data
 - 2.3. Cleaning data
 - 2.4. Storing data
 - 2.5 Analyzing and visualizing
 - 2.6 Deriving insights
- 3. Challenges and limitations

1. Introduction: What is the project

- Aim: Gather, assess and clean data to create trustworthy analysis
- How: Using the data of "WeRateDog" (Twitter user) and collecting additional data using various method:

Name of the data set	Content
image_predictions.TSV	3 predictions along with their confidence interval and a boolean test
twitter_archive_enhanced.csv	Twitter data of the account "WeRateDog"
tweet_json.txt	Additional twitter data (retweet and favorite count)

- Additional resources:

- Names of tables:

Original name of the file	Name of the table in jupyter notebook	Copy of the data set for cleaning
<pre>image_predictions. TSV</pre>	prediction	clean_prediction
twitter_archive_en hanced.csv	ratings	clean_ratings

tweet_json.txt	twitter_data	clean_twitter_data
----------------	--------------	--------------------

New names of tables To solve tidiness issues :
Clean_twitter_data+clean_rating = twitter_data_dog table
clean_prediction+clean_rating = dog_table

2. Methodology & steps

2.1. Gathering data:

Steps:

Name of the data set	Method used to gather data
image_predictions.TSV	downloaded programmatically using the Requests library through a link provided
twitter_archive_enhanced.csv	Read it using pandas read method
tweet_json.txt	Using Twitter API I saved the data in a TXT file then I open it using JSON method. Then, I dropped columns that are not demanded.

For API there are hidden steps like applying for Twitter API to have elevated access.

2.2. Assessing data:

From visual and programmatic assessment these issues where found:

> Tidiness issues:

- 1. doggo floffer pupper poppo columns should be all in one column called race_dog
- 2. In time stamps we have 2 variable date and time : should be seperated
- 3. Add (race_dog, name) columns from ratings table to pediction table which will be dog table
- 4. Add ('retweet_count', 'favorite_count'and 'retweeted') columns from clean_twitter_data table to ratings table which will be twitter_data_dog table

> Quality issues:

1. Missing data in twitter_data table (but I can not solve this issue)

In ratings table missing data : in name column in doggo,floofer,pupper,puppo columns

- 2. p1_dog , p2_dog & p3_dog columns are of type object instead of boolean
- 3. wrong dog names
- 4. wrong denominators
- 5. wrong data types in:

retweeted_status_id, retweeted_status_user_id, in_reply_to_status_id, in_reply_to_user_id : are floats

timestamp,retweeted_status_timestamp : are objects (string)

- 6. Some tweets are not original they are retweets (duplicated data)
- 7. in ratings & prediction tables:

tweet_id is integer

8. In the twitter data table the name of the 'id_str' column should be replaced to 'tweet_id' like in other tables

2.3. Cleaning data:

I used define, code and test methodology to structure the cleaning steps.

Issues	Method used in cleaning	Explanation
Deleting retweets	.isna()	 Leaving the rows that have null values in "retweeted_status_i d" Deleting columns relevant to retweets in ratings table
Create a column for the race of the dog	Concatenate (+) .replace()	 Concatenating the values of doggo, floofer, pupper and puppo column in a new list. Replacing the values with the correct names Adding that list as a column in the ratings table.
Creating date and time columns from timestamp column	.str.extract()	 Extracting the date and time using a regular expression Creating the date and time columns with the values

		extracted.
Changing data types	.astype() .fillna()	In case there are nan values
Renaming id_str column to tweet_id	.rename()	
Create dog_table and twitter_data_dog table	.merge() .drop()	Merginfg dg Dropping irrelevent columns
Deleting tweet not having images	.notna()	Leaving only rows having values in img_url column
Replacing wrong name/denominator values	.str.replace() .loc[]	

2.4. Storing data:

Using .to_csv() method

Name of data frame	Name of the CSV file
twitter_data_dog	twitter_archive_master
dog_table	dog_infos_from_twitter

2.5. Analyzing and visualizing:

The results will be presented in "act_report"

2.6. Deriving insights:

The results will be presented in "act_report"

3. Challenges and limitations

I couldn't find the missing values for:

- expanded_urls column
- name column

- doggo, floofer, pupper, puppo columns
- twitter_data and prediction tables in comparaison to ratings table