

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

7435775880

FURTHER MATHEMATICS

9231/11

Paper 1 Further Pure Mathematics 1

May/June 2020

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

1 Let *a* be a positive constant.

(a) Sketch the curve with equation $y = \frac{ax}{x+7}$. [2]

(b) Sketch the curve with equation $y = \left| \frac{ax}{x+7} \right|$ and find the set of values of x for which $\left| \frac{ax}{x+7} \right| > \frac{a}{2}$.

[4]
•••••
ran.

(a)	Find	d a cubic equation whose roots are α^2 , β^2 , γ^2 .]
(b)	It is	given that $\alpha^2 + \beta^2 + \gamma^2 = 2(\alpha + \beta + \gamma)$.	
	(i)	Find the value of p .	1

			• • • • • • • • • • • • • • • • • • • •		
				•••••	
•••••					
•••••					
,	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
3: 1.1 1 C					
	. 3 . 63 . 3				
find the value of	$\alpha^3 + \beta^3 + \gamma^3$.				[2
find the value of	$\alpha^3 + \beta^3 + \gamma^3$.				[2
and the value of	$(\alpha^3 + \beta^3 + \gamma^3)$.				[2
and the value of	$\sum \alpha^3 + \beta^3 + \gamma^3.$				[2
nd the value of	$(\alpha^3 + \beta^3 + \gamma^3)$				[2
nd the value of	$(\alpha^3 + \beta^3 + \gamma^3)$				[2
d the value of	$\sum \alpha^3 + \beta^3 + \gamma^3.$				[2
nd the value of	$\sum \alpha^3 + \beta^3 + \gamma^3.$				[2
d the value of	$\sum \alpha^3 + \beta^3 + \gamma^3.$				
nd the value of	$\alpha^3 + \beta^3 + \gamma^3$.				
nd the value of	$\alpha^3 + \beta^3 + \gamma^3$.				
nd the value of	$\alpha^3 + \beta^3 + \gamma^3$.				
nd the value of	$\alpha^3 + \beta^3 + \gamma^3$.				
nd the value of	$(\alpha^3 + \beta^3 + \gamma^3)$.				

	e curve C has equation $y = \frac{x^2}{2x+1}$.	
(a)	Find the equations of the asymptotes of <i>C</i> .	[3
		•••••
(b)	Find the coordinates of the stationary points on C .	[3
(b)	Find the coordinates of the stationary points on <i>C</i> .	[3
(b)	Find the coordinates of the stationary points on <i>C</i> .	[3
(b)	Find the coordinates of the stationary points on <i>C</i> .	
(b)		

(c) Sketch *C*. [3]

4 (a) By first expressing $\frac{1}{r^2-1}$ in partial fractions, show that

$$\sum_{r=2}^{n} \frac{1}{r^2 - 1} = \frac{3}{4} - \frac{an + b}{2n(n+1)},$$

where <i>a</i> and <i>b</i> are integers to be found.	[5]

Deduce the value of $\sum_{r=2}^{\infty} \frac{1}{r^r}$	$\frac{1}{r^2-1}.$			[
			 	•••••
			 	•••••
			 	•••••
	2n			
Find the limit, as $n \to \infty$,	of $\sum_{r=n+1}^{\infty} \frac{n}{r^2 - 1}$	- 1.		
Find the limit, as $n \to \infty$,	of $\sum_{r=n+1}^{\infty} \frac{n}{r^2 - 1}$	- 1.	 	
Find the limit, as $n \to \infty$,	of $\sum_{r=n+1}^{\infty} \frac{n}{r^2 - 1}$	-1 ⁻ .	 	
Find the limit, as $n \to \infty$,	of $\sum_{r=n+1}^{\infty} \frac{n}{r^2 - 1}$	-1·		
Find the limit, as $n \to \infty$,	of $\sum_{r=n+1}^{\infty} \frac{n}{r^2 - n}$	- 1 ·		
Find the limit, as $n \to \infty$,	of $\sum_{r=n+1}^{\infty} \frac{n}{r^2 - r^2}$	-1·		
Find the limit, as $n \to \infty$,	of $\sum_{r=n+1}^{\infty} \frac{n}{r^2 - 1}$	-1·		
Find the limit, as $n \to \infty$,	of $\sum_{r=n+1}^{\infty} \frac{n}{r^2 - r^2}$	-1		
Find the limit, as $n \to \infty$,				

The lines l_1 and l_2 have equations $\mathbf{r} = 3\mathbf{i} + 3\mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} + 4\mathbf{k})$ and $\mathbf{r} = 3\mathbf{i} - 5\mathbf{j} - 6\mathbf{k} + \mu(5\mathbf{j} + 6\mathbf{k})$

	Find the shortest distance between l_1 and l_2 .
•	
•	

The plane Π contains l_1 and is parallel to the vector $\mathbf{i} + \mathbf{k}$. **(b)** Find the equation of Π , giving your answer in the form ax + by + cz = d. [4] (c) Find the acute angle between l_2 and Π . [3]

	The transformation in the <i>x-y</i> plane represented by A^{-1} transforms a trian triangle of area $d \text{cm}^2$.	
	Find the value of d .	
(b)	Prove by mathematical induction that, for all positive integers n ,	
(~)	$\mathbf{A}^n = \begin{pmatrix} 2^n & 0 \\ 2^n - 1 & 1 \end{pmatrix}.$	
	(2"-1 1)	
		•••••

$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 33 & 0 \end{pmatrix}.$	
Find the value of n .	

- 7 The curve C_1 has polar equation $r = \theta \cos \theta$, for $0 \le \theta \le \frac{1}{2}\pi$.
 - (a) The point on C_1 furthest from the line $\theta = \frac{1}{2}\pi$ is denoted by P. Show that, at P,

 $2\theta \tan \theta - 1 = 0$

• • • • • • • • • • • • • • • • • • • •				
		$0 \le \theta \le \frac{1}{2}\pi$. The cur	eves C_1 and C_2	intersect at
nd the polar coordinates of	of Q , giving your a	answers in exact form	1.	
	enoted by <i>O</i> , and at another of the polar coordinates o	enoted by O , and at another point Q . In the polar coordinates of Q , giving your a	Five C_2 has polar equation $r = \theta \sin \theta$, for $0 \le \theta \le \frac{1}{2}\pi$. The cure noted by O , and at another point Q . Indeed the polar coordinates of Q , giving your answers in exact form	The curves C_2 has polar equation $r=\theta\sin\theta$, for $0\leqslant\theta\leqslant\frac{1}{2}\pi$. The curves C_1 and C_2 enoted by O , and at another point Q . In the polar coordinates of Q , giving your answers in exact form.

(c)	Sketch C_1 and C_2 on the same diagram.	[3]
(d)	Find, in terms of π , the area of the region bounded by the arc OQ of C_1 and the arc OQ of C_2	. [7]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.					
•••••			•••••		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.