Cauchy Project Stat5630 HW3

Yiyi Xu 9/18/2018

Part 1 Math Equation

$$L(\theta; x) = \prod_{i=1}^{n} f(x_i; \theta) \quad \theta \in \Omega$$

$$= \prod_{i=1}^{n} \frac{1}{\pi [1 + (x - \theta)^2]}$$

$$= (\frac{1}{\pi})^n \cdot \prod_{i=1}^{n} [1 + (x - \theta)^2]^{-1}$$

$$l(\theta) = \ln L(\theta; X)$$

$$= \ln((\frac{1}{\pi})^n \prod_{i=1}^n \frac{1}{[1 + (x_i - \theta)^2]})$$

$$= \ln((\frac{1}{\pi})^n) + \ln(\prod_{i=1}^n \frac{1}{[1 + (x_i - \theta)^2]})$$

$$= -n \ln(\pi) - \sum_{i=1}^n \ln([1 + (x_i - \theta)^2])$$

$$l'(\theta) = -\sum_{i=1}^{n} \frac{-2(x_i - \theta)}{1 + (x_i - \theta)^2}$$
$$= -2\sum_{i=1}^{n} \frac{\theta - x_i}{1 + (\theta - x_i)^2}$$

$$l''(\theta) = -2\sum_{i=1}^{n} \left(\frac{1}{1 + (x_i - \theta)^2} + \frac{(\theta - x_i)(-2)(\theta - x_i)}{(1 + (x - \theta)^2)^2}\right)$$
$$= -2\sum_{i=1}^{n} \frac{1 - (\theta - x_i)^2}{(1 + (\theta - x_i)^2)^2}$$

$$I(\theta) = -\int_{-\infty}^{\infty} -2 \sum_{i=1}^{n} \frac{1 - (\theta - x_i)^2}{(1 + (\theta - x_i)^2)^2} \frac{1}{\pi [1 + (x - \theta)^2]} dx$$

$$= \frac{2n}{\pi} \int_{-\infty}^{\infty} \frac{1 - (\theta - x)^2}{(1 + (\theta - x)^2)^3} dx$$

$$= \frac{2n}{\pi} \int_{-\infty}^{\infty} \frac{1 - x^2}{(1 + x^2)^3} dx$$

$$= \frac{2n}{\pi} \int_{-\infty}^{\infty} -\frac{1+x^2-2}{(1+x^2)^3} dx$$

$$= \frac{2n}{\pi} \int_{-\infty}^{\infty} -\frac{1}{(1+x^2)^2} + 2\frac{1}{(1+x^2)^3} dx$$

$$= \frac{2n}{\pi} \left[\frac{\arctan(x)}{4} + \frac{x^3+3x}{4x^4+8x^2+4} \right]_{-\infty}^{\infty}$$

$$= \frac{2n}{\pi} \frac{\pi}{4}$$

$$= \frac{n}{2}$$

Part 2 Figure for loglikelihood function against θ

From figure, we can see the loglikellihood function against θ reach the maximize when θ near 6.

```
set.seed(20180909)
X <- rcauchy(10, location = 5, scale =1)
n <- 10

l <- function(x, theta, n){
    - n*log(pi, base = exp(1)) - sum(log(1 + (theta - x)^2, base = exp(1)))
}

theta <- seq(0, 10, 0.1)
L <- numeric(0)
for (i in 1: length(theta)){
    L[i] <- l(X,theta[i],10)
}
sp=spline(theta,L,n=1000)
plot(sp,col="red",type="l",xlim=c(0,10),ylim=c(-55,-25),lwd=2,xlab="theta",ylab="l(theta)",sub="loglikehood function against theta",col.main="green",font.main=2)</pre>
```


Part 3 the Newton-Raphson method

```
11 <- function(x, theta, n){
    -2*sum((theta-x)/(1 + (theta - x)^2))
}

12 <- function(x,theta,n){
    -2*sum((1- (theta-x)^2)/(((1 + (theta - x)^2))^2))
}

Newton.Method <- function(y,f,f1){
    y0 <- y
    for(i in 1:100){
        y1 <- y0 - f(X,y0,10)/f1(X,y0,10)
        if(abs(y1-y0)<0.0001)
            break
        y0 <- y1
    }
    return(data.frame(init=y,root=y1,iter=i))
}</pre>
```

comment

From the Rood in Newton Method Table, when initial value eqauls from 20 to -10, there are only 6 numbers can reach the approximate root in 100 iterations, which are 10.5, 9.0, 6.5,6.0, 5.5 and 5.0. the approximate root is 5.6854 which is near $\theta = 5$ or $\theta = 6$. Therefore, we can get the result that Newton-Raphson Method is not

always converge to the root. The Newton-Raphson method workring for "local" convergence, so we have to start the initial value which close to the root. If we start the initial value near the root, then the Newton-Raphson Method can quickly reach the root in less ten loops. However, if we start initial value not near the root, the Newton-Raphson is not working.

Root in Newton Method

init	root	iter
20.0	2.108230e+01	100
19.5	2.108230e+01	100
19.0	2.108230e+01	100
18.5	2.108229e+01	100
18.0	-1.412740e+30	100
17.5	2.056366e+01	100
17.0	2.056366e+01	100
16.5	2.056366e+01	100
16.0	2.108229e+01	100
15.5	2.108230e+01	100
15.0	2.056366e+01	100
14.5	1.937743e+01	100
14.0	1.937744e+01	100
13.5	1.937744e+01	100
13.0	2.108230e+01	100
12.5	2.108229e+01	100
12.0	2.108230e+01	100
11.5	2.214539e+31	100
11.0	3.719780e+30	100
10.5	5.685422e+00	5
10.0	1.937744e+01	100
9.5	-4.379744e+30	100

	- , ,	
init	root	iter
9.0	5.685422e+00	6
8.5	1.937745e+01	100
8.0	2.056366e+01	100
7.5	-4.779444e+30	100
7.0	1.607987e+31	100
6.5	5.685422e+00	7
6.0	5.685422e+00	4
5.5	5.685422e+00	4
5.0	5.685422e+00	5
4.5	1.937745e+01	100
4.0	2.108229e+01	100
3.5	7.514786e+31	100
3.0	-5.998749e+30	100
2.5	-5.396788e+30	100
2.0	-5.759618e+30	100
1.5	-6.327195e+30	100
1.0	-6.961979e+30	100
0.5	-7.622912e+30	100
0.0	-8.294609e+30	100
-0.5	-8.970499e+30	100
-1.0	-9.647538e+30	100
-1.5	-1.032425e+31	100
-2.0	-1.099990e+31	100
-2.5	-1.167416e+31	100
-3.0	-1.234687e+31	100

init	root	iter
-3.5	-1.301799e+31	100
-4.0	-1.368755e+31	100
-4.5	-1.435559e+31	100
-5.0	-1.502218e+31	100
-5.5	-1.568739e+31	100
-6.0	-1.635130e+31	100
-6.5	-1.701398e+31	100
-7.0	-1.767550e+31	100
-7.5	-1.833592e+31	100
-8.0	-1.899532e+31	100
-8.5	-1.965374e+31	100
-9.0	-2.031124e+31	100
-9.5	-2.096788e+31	100
-10.0	-2.162370e+31	100

Part 4 Fixed Point Iterations

```
Fixed.Point <- function(x,f1,alpha){
    x0 <- x
    for(i in 1:1000){
        x1 <- alpha*f1(X,x0,10)+ x0
        if(abs(x1-x0)<0.0001)
            break
        x0 <- x1
    }
    return(data.frame(ini=x,root=x1,iter=i))
}</pre>
```

comment

By comparing the result of different α value, we can see that when α equals 1 and 0.64, no matter where the initial value start, the result always near the real root in 1000 iterations. However, none of them reach the real root. So the result is not accurate. But when $\alpha=0.25$, we can see all of the initial value reach the real root in less than

50 iterations. and for initial value near real value, the iteration even less than 10. So the accuracy of Fixed Point Iteration Method depends on the α

when alpha = 1

Root| alpha = 1

ini	root	iter
20.0	4.087057	1000
19.5	6.486114	1000
19.0	6.486114	1000
18.5	4.087057	1000
18.0	9.547862	1000
17.5	9.547862	1000
17.0	6.486114	1000
16.5	6.486114	1000
16.0	6.486114	1000
15.5	4.087057	1000
15.0	4.087057	1000
14.5	4.087057	1000
14.0	9.547862	1000
13.5	9.547862	1000
13.0	9.547862	1000
12.5	9.547862	1000
12.0	4.087057	1000
11.5	6.486114	1000
11.0	6.486114	1000
10.5	6.486114	1000
10.0	6.486114	1000

	- 5 5	
ini	root	iter
9.5	6.486114	1000
9.0	6.486114	1000
8.5	4.087057	1000
8.0	4.087057	1000
7.5	4.087057	1000
7.0	4.087057	1000
6.5	4.087057	1000
6.0	4.087057	1000
5.5	6.486114	1000
5.0	9.547862	1000
4.5	9.547862	1000
4.0	9.547862	1000
3.5	9.547862	1000
3.0	6.486114	1000
2.5	6.486114	1000
2.0	6.486114	1000
1.5	9.547862	1000
1.0	4.087057	1000
0.5	4.087057	1000
0.0	4.087057	1000
-0.5	9.547862	1000
-1.0	4.087057	1000
-1.5	6.486114	1000
-2.0	6.486114	1000
-2.5	4.087057	1000

ini	root	iter
-3.0	6.486114	1000
-3.5	9.547862	1000
-4.0	9.547862	1000
-4.5	6.486114	1000
-5.0	4.087057	1000
-5.5	4.087057	1000
-6.0	9.547862	1000
-6.5	6.486114	1000
-7.0	6.486114	1000
-7.5	4.087057	1000
-8.0	9.547862	1000
-8.5	6.486114	1000
-9.0	4.087057	1000
-9.5	9.547862	1000
-10.0	4.087057	1000

when alphs = 0.64

Root | alpha = 0.64

ini	root	iter
20.0	5.530510	1000
19.5	5.469104	1000
19.0	7.203068	1000
18.5	5.283310	1000
18.0	6.666568	1000
17.5	5.534426	1000

ini	root	iter
17.0	4.970207	1000
16.5	7.237981	1000
16.0	7.157251	1000
15.5	5.200588	1000
15.0	5.127932	1000
14.5	5.979331	1000
14.0	6.396968	1000
13.5	5.584397	1000
13.0	4.964483	1000
12.5	5.004767	1000
12.0	7.607196	1000
11.5	7.109859	1000
11.0	7.224372	1000
10.5	7.582125	1000
10.0	7.385700	1000
9.5	5.009080	1000
9.0	5.168213	1000
8.5	5.470551	1000
8.0	4.981700	1000
7.5	7.693043	1000
7.0	6.120372	1000
6.5	6.087529	1000
6.0	6.023024	1000
5.5	5.379770	1000
5.0	4.950335	1000

	- , ,	
ini	root	iter
4.5	5.986422	1000
4.0	4.978809	1000
3.5	5.494015	1000
3.0	5.576697	1000
2.5	7.134195	1000
2.0	5.203346	1000
1.5	5.994786	1000
1.0	7.240537	1000
0.5	6.057336	1000
0.0	7.574015	1000
-0.5	5.581029	1000
-1.0	5.176078	1000
-1.5	5.033793	1000
-2.0	7.244301	1000
-2.5	7.702770	1000
-3.0	5.104768	1000
-3.5	5.297792	1000
-4.0	5.532476	1000
-4.5	7.669443	1000
-5.0	5.140361	1000
-5.5	5.108395	1000
-6.0	5.019178	1000
-6.5	6.395664	1000
-7.0	6.389073	1000
-7.5	5.204264	1000

ini	root	iter
-8.0	6.470638	1000
-8.5	5.046818	1000
-9.0	5.181294	1000
-9.5	7.484446	1000
-10.0	5.203193	1000

when alpha = 0.25

Root| alpha =0.25

ini	root	iter
20.0	5.685404	41
19.5	5.685445	37
19.0	5.685412	35
18.5	5.685402	31
18.0	5.685435	28
17.5	5.685434	28
17.0	5.685412	27
16.5	5.685399	24
16.0	5.685442	23
15.5	5.685412	23
15.0	5.685448	21
14.5	5.685447	20
14.0	5.685412	20
13.5	5.685412	19
13.0	5.685432	17
12.5	5.685434	17

	Cauchy 110ject	J.1112 020
ini	root	iter
12.0	5.685412	17
11.5	5.685435	12
11.0	5.685447	15
10.5	5.685404	13
10.0	5.685440	14
9.5	5.685412	14
9.0	5.685440	10
8.5	5.685437	12
8.0	5.685412	12
7.5	5.685437	10
7.0	5.685439	10
6.5	5.685412	10
6.0	5.685439	8
5.5	5.685442	9
5.0	5.685432	9
4.5	5.685447	9
4.0	5.685412	11
3.5	5.685432	10
3.0	5.685406	9
2.5	5.685440	11
2.0	5.685446	11
1.5	5.685439	12
1.0	5.685437	11
0.5	5.685434	13
0.0	5.685447	14

	_	
ini	root	iter
-0.5	5.685396	14
-1.0	-1.0 5.685412	
-1.5	5.685437	16
-2.0	5.685432	17
-2.5	-2.5 5.685433	
-3.0	-3.0 5.685434	
-3.5	5.685432	20
-4.0	-4.0 5.685434	
-4.5	5.685447	22
-5.0	5.685445	21
-5.5	5.685412	26
-6.0	5.685432	26
-6.5	5.685447	27
-7.0	5.685412	30
-7.5	5.685444	30
-8.0	5.685412	33
-8.5	5.685412	34
-9.0	5.685439	35
-9.5	5.685435	37
-10.0	5.685448	38

part 5 fisher scoring

```
In <- 5
fisher.scoring <- function(x,f1,In){</pre>
  x0 <- x
  for(i in 1:1000){
    x1 < -x0 + f1(X,x0,10)/In
    if(abs(x1-x0)<0.0001)
      break
    x0 <- x1
  }
  return(x1)
}
Newton.Method2 <- function(y,f,f1){</pre>
   y0 <- y
   for(i in 1:100){
    y1 \leftarrow y0 - f(X,y0,10)/f1(X,y0,10)
    if(abs(y1-y0)<0.0001)
      break
    y0 <- y1
   return(data.frame(resultOfFisher=y,iter=i,root=y1))
}
```

Comment

Fisher Scoring and the Newton Method is the most faster and accturate way to find the root as no matter where the initial value start, it reach the root.

Root of Fisher Scoring and Newton method

resultOfFisher	iter	root
5.685424	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422
5.685428	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422
5.685417	1	5.685422
5.685422	1	5.685422

resultOfFisher	iter	root
5.685423	1	5.685422
5.685423	1	5.685422
5.685418	1	5.685422
5.685427	1	5.685422
5.685418	1	5.685422
5.685425	1	5.685422
5.685419	1	5.685422
5.685422	1	5.685422
5.685423	1	5.685422
5.685429	1	5.685422
5.685422	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422
5.685414	1	5.685422
5.685426	1	5.685422
5.685416	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422
5.685420	1	5.685422
5.685423	1	5.685422
5.685420	1	5.685422
5.685421	1	5.685422

resultOfFisher	iter	root
5.685421	1	5.685422
5.685420	1	5.685422
5.685420	1	5.685422
5.685423	1	5.685422
5.685415	1	5.685422
5.685426	1	5.685422
5.685420	1	5.685422
5.685420	1	5.685422
5.685421	1	5.685422
5.685420	1	5.685422
5.685420	1	5.685422
5.685418	1	5.685422
5.685420	1	5.685422
5.685423	1	5.685422
5.685420	1	5.685422
5.685422	1	5.685422
5.685420	1	5.685422
5.685423	1	5.685422
5.685419	1	5.685422
5.685421	1	5.685422
5.685423	1	5.685422
5.685419	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422
5.685423	1	5.685422

root	iter	resultOfFisher
5.685422	1	5.685423
5.685422	1	5.685416