

Ćwiczenie 1

Algorytmy macierzowe

Autorzy: Gabriel Kaźmierczak Dariusz Piwowarski

Spis treści

1	Imp	olementacja mnożenia macierzy metodą rekurencyjną
	1.1	Pseudokod algorytmu rekurencyjnego
	1.2	Fragmenty kodu programu
2	Test	ty implementacji
	2.1	Procedura testowa
	2.2	Test poprawności działania algorytmu
	2.3	Pomiar czasu wykonania
	2.4	Pomiar ilości operacji zmiennoprzecinkowych
	2.5	Szacowana złożoność obliczeniowa

1 Implementacja mnożenia macierzy metodą rekurencyjną

1.1 Pseudokod algorytmu rekurencyjnego

Procedura $split(\mathbf{A})$:

- Wejście: Macierz kwadratowa A
- Jeśli przetwarzana macierz jest wymiaru 1x1:
 - Zwróć ${\bf A}$
- W przeciwnym przypadku:
 - Podziel macierz na ćwiartki \mathbf{A}_{11} , \mathbf{A}_{12} , \mathbf{A}_{21} , \mathbf{A}_{22}
 - Zwróć A_{11} , A_{12} , A_{21} , A_{22}

Procedura $binet(\mathbf{A}, \mathbf{B})$:

- Wejście: Macierze kwadratowe A, B
- Jeśli przetwarzane macierze są wymiaru 1x1:
 - Zwróć wynik $\mathbf{A}_{1,1} \cdot \mathbf{B}_{1,1}$
- W przeciwnym wypadku:
 - Wykonaj procedury $split(\mathbf{A})$ oraz $split(\mathbf{B})$
 - Wykonaj procedury binet(), a następnie zsumuj wyniki dla każdej z grup:
 - * $A_{11}, B_{11} \text{ oraz } A_{12}, B_{21}$
 - * $A_{11}, B_{12} \text{ oraz} A_{12}, B_{22}$
 - * $A_{21}, B_{11} \text{ oraz } A_{22}, B_{21}$
 - * $A_{21}, B_{12} \text{ oraz } A_{22}, B_{22}$
 - Połącz uzyskane macierze w nową macierz C
 - Zwróć C

Procedura $strassen(\mathbf{A}, \mathbf{B})$:

- Wejście: Macierze kwadratowe A, B
- Jeśli przetwarzane macierze są wymiaru 1x1:
 - Zwróć wynik $\mathbf{A}_{1,1} \cdot \mathbf{B}_{1,1}$
- W przeciwnym wypadku:
 - Wykonaj procedury $split(\mathbf{A})$ oraz $split(\mathbf{B})$
 - Wykonaj dodawanie oraz procedury strassen() dla każdej z grup:

$$* A_{11} + A_{22}, B_{11} + B_{22}$$

$$* A_{21} + A_{22}, B_{11}$$

*
$$A_{11}$$
, $B_{12} - B_{22}$

*
$$A_{22}$$
, $B_{21} - B_{11}$

$$* A_{11} + A_{12}, B_{22}$$

*
$$A_{21} - A_{11}$$
, $B_{11} + B_{12}$

*
$$A_{12} - A_{22}$$
, $B_{21} + B_{22}$

- Na uzyskane macierze $M_1...M_7$ wykonaj następujące operacje:

*
$$M_1 + M_4 - M_5 + M_7$$

*
$$M_3 + M_5$$

$$* M_2 + M_4$$

*
$$M_1 - M_2 + M_3 + M_6$$

- Połącz uzyskane macierze w nową macierz ${\bf C}$

1.2 Fragmenty kodu programu

```
def binet_with_count(A: np.ndarray, B: np.ndarray):
      if A.shape == (1, 1):
          return A * B, 1
      A11, A12, A21, A22 = split_matrix(A)
      B11, B12, B21, B22 = split_matrix(B)
      C11a, count1a = binet_with_count(A11, B11)
      C11b, count1b = binet_with_count(A12, B21)
      C12a, count2a = binet_with_count(A11, B12)
10
      C12b, count2b = binet_with_count(A12, B22)
      C21a, count3a = binet_with_count(A21, B11)
12
      C21b, count3b = binet_with_count(A22, B21)
13
      C22a, count4a = binet_with_count(A21, B12)
14
      C22b, count4b = binet_with_count(A22, B22)
      C1 = C11a + C11b
16
      C2 = C12a + C12b
17
      C3 = C21a + C21b
18
      C4 = C22a + C22b
19
      count = count1a + count1b + count2a + count2b + count3a + count3b +
     count4a + count4b + 4 * math.prod(A.shape)
22
      return np.vstack((np.hstack((C1, C2)), np.hstack((C3, C4)))), count
```

Fragment 1: Metoda binet with count implementujaca algorytm Bineta

```
def strassen_with_count(A: np.ndarray, B: np.ndarray):
      if A.shape == (1, 1):
          return A * B, 1
      A11, A12, A21, A22 = split_matrix(A)
      B11, B12, B21, B22 = split_matrix(B)
      M1, count1 = strassen_with_count(A11 + A22, B11 + B22)
      M2, count2 = strassen_with_count(A21 + A22, B11)
      M3, count3 = strassen_with_count(A11, B12 - B22)
      M4, count4 = strassen_with_count(A22, B21 - B11)
11
      M5, count5 = strassen_with_count(A11 + A12, B22)
12
      M6, count6 = strassen_with_count(A21 - A11, B11 + B12)
13
      M7, count7 = strassen_with_count(A12 - A22, B21 + B22)
14
      count = count1 + count2 + count3 + count4 + count5 + count6 + count7 +
      18 * math.prod(A.shape)
17
      return np.vstack((np.hstack((M1 + M4 - M5 + M7, M3 + M5)), np.hstack((
18
     M2 + M4, M1 - M2 + M3 + M6))), count
```

Fragment 2: Metoda strassen with count implementujaca algorytm Strassena

```
def split_matrix(M: np.ndarray):
    n = M.shape[0] // 2
    return M[:n, :n], M[:n, n:], M[n:, :n], M[n:, n:]
```

Fragment 3: Metoda split matrix dzieląca macierz

```
def test_for_random_2_to_power_k(k, with_count=False):
      n = 2 ** k
      A = np.random.rand(n, n)
      B = np.random.rand(n, n)
      if with_count:
          C, count = binet_with_count(A, B)
          return count
      else:
10
          start = perf_counter_ns()
11
          C = binet(A, B)
12
          return perf_counter_ns() - start
13
14
if __name__ == '__main__':
      max_k=9
16
      x = np.arange(1, max_k + 1)
17
      y1 = [test_for_random_2_to_power_k(k) for k in x]
18
      y2 = [test_for_random_2_to_power_k(k, with_count=True) for k in x]
```

Fragment 4: Fragment skryptu testującego implementacje

2 Testy implementacji

2.1 Procedura testowa

Dla każdego z implementowanych algorytmów wykonano test poprawności działania algorytmu na przykładowych macierzach 4x4, a następnie przeprowadzono pomiar wykonanych operacji zmiennoprzecinkowych i czasu wykonania w zależności od rozmiaru macierzy. Wyniki testów zostały zebrane i przedstawione na załączonych wykresach.

2.2 Test poprawności działania algorytmu

W celu zbadania poprawności działania algorytmów porównaliśmy wyniki uzyskane w wyniku mnożenia dwóch macierzy 4x4 przy pomocy naszej implementacji z wynikiem uzyskanym w programie MATLAB.

Rysunek 1: Wynik uzyskany z programu MATLAB

Rysunek 2: Wynik uzyskany przy użyciu implementacji algorytmu Bineta

Rysunek 3: Wynik uzyskany przy użyciu implementacji algorytmu Strassena

2.3 Pomiar czasu wykonania

Do pomiaru czasu wykonania programu wykorzystano metodę $perf_counter_ns()$ z pakietu time ze standardowej biblioteki języka Python, która pozwala na pomiar czasu z dokładnością do nanosekund w oparciu o systemowy zegar wysokiej precyzji. Na poniższym wykresie przedstawiono zależność czasu wykonania od rozmiaru macierzy. Ze względu na wysoki czas wymagany do przeprowadzenia obliczeń, testy wykonano dla macierzy o rozmiarach od 2x2 do 2^9x2^9 .

Rysunek 4: Pomiar czasu wykonania

2.4 Pomiar ilości operacji zmiennoprzecinkowych

Zaimplementowane przez nas metody strassen_with_count() oraz binet_with_count() po zakończeniu działania zwracają liczbę wykonanych operacji zmiennoprzecinkowych. Wyniki zostały przedstawione na poniższym wykresie.

Rysunek 5: Pomiar ilości operacji zmiennoprzecinkowych

Analizując uzyskane dane możemy zauważyć, że pomimo większej ilości operacji, algorytm Strassena wymaga mniej czasu celem uzyskania wyniku dzięki mniejszej ilości rekurencyjnych wywołań (7 zamiast 8).

2.5 Szacowana złożoność obliczeniowa

Na podstawie uzyskanych danych ilości operacji zmiennoprzecinkowych, dokonaliśmy oszacowania złożoności obliczeniowej algorytmów Strassena oraz Bineta. Użyliśmy do tego funkcji curve_fit() z bliblioteki scipy dokładnie z modułu scipy.optimize.

Rysunek 6: Ocena złożoności poprzez dopasowanie krzywej

Jak widać na wykresie dopasowane krzywe to:

- 4.92 $x^{3.002}$ dla algorytmu Bineta, co zgadza się z teoretyczną złożonością $O(n^3)$
- 23.779 $x^{2.814}$ dla algorytmu Strassena, co również odpowiada złożoności $O(n^{2.81})$ wyznaczonej teoretycznie.

Opis i wyznaczenie teoretycznej złożoności: https://pl.wikipedia.org/wiki/Algorytm Strassena

Podsumowując, oszacowana na podstawie wyników złożoność naszej implementacji algorytmów, zgadza się ze złożonością teoretyczną, co świadczy o poprawności implementacji.