# Random Numbers a quick and dirty guide

#### Bartosz Kostrzewa

Institute of Physics Humboldt-Universität zu Berlin Supported in full by FNR AFR grant 2773315

> PhD Seminar 22nd January 2013





### Quiz

Which image is more random?



Figure: http://arachnoid.com/randomness/index.html

### Overview

Introduction

A simple PRNG

Measuring random number quality

Random number generators as dynamical systems

**RANLUX** 

"Bad" random numbers in tmLQCD

Conclusions

### Introduction

#### True random numbers

- + truly random
- not reproducible
- rare / slow
- possible physical bias (temperature etc.)

#### Pseudo-random numbers

- ► + reproducible
- + quasi-unlimited / fast
- possibly correlated

### Introduction

Pseudo-random numbers

### PRNG = Pseudo-random number generator

deterministic algorithm to produce numbers that "look random"

### Figures of merit

- period number of updates before the sequence repeats
  - depends on details of generator, can be calculated analytically for some
  - ▶ a typical  $N_f = 2$  QCD HMC simulation with mass preconditioning uses  $\sim 10^{13}$  random numbers per ensemble
- equidistribution
- statistical properties
- tests for specific applications



### A simple PRNG

Linear Congruential Generators

Recurrence relation

$$x_{i+1} = (ax_i + c) \mod m$$

### **Properties**

- need to choose a,c and m judiciously
- ▶ for c and m relatively prime, period = m
- typical periods in practice:  $2^{31(48)} 1 \sim 2 \times 10^{9(14)}$

#### Generalization

Use multiple recurrence relation:

$$x_{i+1} = (a_1x_{i-j_1} + a_2x_{i-j_2} + \ldots + a_nx_{i-j_n} + c) \mod m$$

Need multiple seed values  $\rightarrow$  correlation in seeds can persist to RNG! [2]

Correlations of random numbers

#### Pseudo-random numbers can be correlated:

- 1. between successive draws
- 2. between n-tuples of successive draws
- 3. between different random number chains
- 4. at different timescales

Equidistribution tests

What happens when you arrange sequences in vectors with n components?



Figure: left Lin.Con.Gen., right MersenneTwister, Helmut G. Katzgraber, arXiv:1005.4117v1



Other tests

#### Statistical

Deviations from expectation values can be computed analytically and results compared using  $\chi^2$  tests.

- tests involving the deviation from the expected mean and moments thereof
- binary-level tests
- n-tuple tests which count the occurrence of certain subsequences (pairs, triples, quadruples etc..)

These tests are not exhaustive and not necessarily indicative of performance in actual applications...

### Application-based

Calculations for well-known physical models (e.g. Ising) and comparison to theoretical expectations.

Calculation using multiple PRNGs and comparison.



So what makes a good generator?

### Depends on requirements but in general:

- 1. (astronomically) long period
- 2. equidistribution in as many dimensions as possible (or necessary)
- 3. no or known dependence of RNG quality on initial seed
- 4. no disconnected regions in "sequence-space":
  - related to 3: for any set of seeds  $\{x_0 \dots x_n\}$ , all possible sequences of length n will be visited
  - this is not true for many types of PRNGs
- 5. suitability for given application

Marsaglia-Zaman RCARRY generator

### recurrence relation

generate integers in  $0 \le x < b$ 

$$\delta_n = x_{n-s} - x_{n-r} - c_{n-1}$$

$$x_n = \begin{cases} \delta_n, & c_n = 0 & \text{if } \delta_n > 0 \\ \delta_n + b, & c_n = 1 & \text{if } \delta_n < 0 \end{cases}$$

### properties

- ▶ r and s are called "lags", c<sub>n</sub> is the "carry bit", indicates addition of "base" b
- Require r initial values to "seed" the RNG
- ▶ Recommended values r = 24,  $s = 10 \rightarrow \text{period} \sim 10^{171}$
- ► for any set of seeds, whole space of r-tuples is produced in whole period, but RNG fails certain short-length tests



Vector in r-dimensional unit hypercube

Normalised by b, we can interpret a subsequence of the RNG as a vector in the r-dimensional unit hypercube with lattice spacing 1/b.

$$\vec{v_n} = \frac{1}{b}(x_n, x_{n+1}, ..., x_{n+r-1})$$

Identifying the points 0 and 1 in each direction  $\rightarrow$  discrete hypertorus with lattice spacing 1/b.

RCARRY as a linear transformation



Ignoring the carry bit, we have a linear transformation of the torus:

$$x_n = (x_{n-s} - x_{n-r}) \mod b$$

Or in vectorial form:

$$\vec{v}(t+1) = L^r \vec{v}(t)$$

Using ergodic theory, can make precise notion of "decorrelation" as a measure of RNG quality.

Random walkers and decorrelation

### average distance of random walkers

Introduce distance function on hypertorus. d(v, w)

$$d(v, w) = \max_{k} (\min \{|v_k - w_k|, 1 - |v_k - w_k|\})$$

- Sample pairs of trajectories v(t) and w(t). Initial separation = 1/b.
- Compute average distance

$$\delta(t) = \langle d(v(t), w(t)) \rangle.$$

#### Random walkers and decorrelation

Observe exponential divergence  $\sim e^t$ . At around t=16, reach a plateau of 12/25, the average distance between randomly chosen points on the hypertorus. Exponential divergence indicative of chaos on large timescales from a linear system  $\rightarrow$  RCARRY is chaotic.



#### Continuum limit and Lyapunov exponent

In the continuum limit  $1/b \to 0$  it can be shown that the evolution is invertible and volume preserving. Defining a distance vector:

$$ec{u}(t) = (ec{w}(t) - ec{v}(t)) \mod ec{1}$$

It is clear that:

$$\vec{u}(t+1) = L^r \vec{u}(t)$$

Further, the exponential growth of  $\|\vec{u}(t)\|$  is determined by the largest eigenvalue of L. The exponent of the fastest-growing separation is termed the Lyapunov exponent:

$$\|\vec{u}(t)\| \propto e^{\nu t}$$

$$\nu = r \ln |\lambda_{\text{max}}| = 1.01027..$$

RCARRY is a discretized version of a linear dynamical system which shows chaotic behaviour on large timescales but strong correlation on short timescales.

#### **RANLUX**

Principles



Two trajectories decorrelate completely after 17 applications of  $L^r$ .

→ generate long sequences using RCARRY and drop 200 to 400 numbers between draws (luxury level). Depending on number of dropped sequences, can guarantee complete decorrelation in the sense discussed before.

#### **RANLUX**

#### **Properties**

### (Very?) Good

- in the sense of dynamical systems "demonstrably good decorrelation"
- notion of average distance at sufficient luxury level ensures that different seed values produce truly independent sequences
- passes all statistical tests with sufficient luxury level

### Possibly bad

- because sequences are dropped, possibility of violating idea that for any set of seeds all sequences of r-tuples are sampled
  - maybe not important: in practice sample only tiny portion of period anyway, 10<sup>169</sup> still a very large number, possibly all r-tuples still contained
- what about n-tuples with n > r? (a pseudo-spinor, for example...)

## "Bad" random numbers in tmLQCD Weak PRNG vs. RANLUX



Figure: 3-tuples from RANDU generator highly correlated (15 planes), H. G. Katzgraber, arXiv:1005.4117v1

Figure:  $N_f = 6$ , degenerate,  $4^4$ , different RNGs



RNG state wrongly set with PHMC (1/3)



Figure:  $N_f = 2 + 1 + 1$ , 8<sup>4</sup> volume, 100k trajectories



RNG state wrongly set with PHMC (2/3)

Bug caused by switching from parallel to sequential mode and back without reseeding of parallel generators. Process 0 and n-1 left in same state, all others reproduce random numbers already used in sequential step. (for instance,  $v_1^{(1)}$  would be equivalent to  $v_2$ )



Figure: Sequential (left) and parallel RNG modes in MPI-parallel simulation.

RNG state wrongly set with PHMC (3/3)



Figure:  $N_f = 2 + 1 + 1$ ,  $8^4$  volume, 5k trajectories  $\rightarrow$  effect difficult to see for some pairs of points (f.ex. passing from 16 to 32 processes)

Several MPI processes in same RNG state



Figure:  $N_f = 8$ , degenerate, 100k traj.,  $8^4$  volume, two or more processes with same random seed in parallel RNG mode

### Conclusions

#### **Simulations**

- Make at least one test calculation with multiple PRNGs
- Use well-tested RNGs in their reference implementation if possible
- Repeat one test calculation at least with 2 seeds
- Choose and record a different seed for every simulation
- Perform regular high-statistics tests of your codebase

### **Analysis**

► For stochastic sources adjust your seeds! (Note: this is currently not possible with tmLQCD...)



### References

- 1. H.G. Katzgraber, Random Numbers in Scientific Computing: An Introduction, arXiv:1005.4117v1
- I. Vattulainen, K. Kankaala, J. Saarinen, T. Ala-Nissila, A Comparative Study of Some Pseudorandom Number Generators, Computer Physics Communications, Volume 86, Issue 3, 1 May 1995, Pages 209–226
- 3. I. Vattulainen, Framework for testing random numbers in parallel calculations, Phys. Rev. E, Vol. 59, No. 6, June 1999
- M. Luescher, A Portable High-Quality Random Number Generator for Lattice Field Theory Simulations, Computer Physics Communications, Volume 79, Issue 1, February 1994, Pages 100–110
- 5. Wikipedia articles: ergodic theory, ergodicity, dynamical systems, mixing (mathematics), accessed Jan. 15th, 2013