Алгоритмы и модели вычислений.

Задание 7: потоки

Сергей Володин, 272 гр.

задано 2014.03.27

Определения

(сю да будут ссылки) $(G(V,E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть \Leftrightarrow

- 1. $c(u, v) \ge 0$
- 2. $\forall (u,v) \in V^2 \hookrightarrow ((u,v) \in E \Leftrightarrow c(u,v) > 0)$

 $f\colon V^2 o \mathbb{Z}$ — поток в этой сети \Leftrightarrow

- 1. $\forall (u, v) \in V^2 \hookrightarrow (f(u, v) \leqslant c(u, v))$
- 2. $\forall (u,v) \in V^2 \hookrightarrow (f(u,v) = -f(v,u))$
- 3. $\forall u \in V^2 \setminus \{s, t\} \hookrightarrow f(u, V) = 0$

Упражнение 0

1. Пусть $(G(V, E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть. Пусть $(u, v) \notin E, (v, u) \notin E$. Тогда f(u, v) = f(v, u) = 0. $(u,v) \notin E \stackrel{2}{\Rightarrow} c(u,v) = 0. \ (v,u) \notin E \stackrel{2}{\Rightarrow} c(v,u) = 0. \ \text{Ho} \ -0 = -c(v,u) \stackrel{1}{\leqslant} -f(v,u) \stackrel{2}{\leqslant} f(u,v) \stackrel{1}{\leqslant} c(u,v) = 0, \ \text{откуда}$ f(u,v) = f(v,u) = 0

Упражнение 1

Пусть $(G(V, E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть. Фиксируем $u \notin \{s, t\}$. Пусть $L = \{v \in V | (v, u) \in E\}, R = \{v \in V | (v, u) \in E\}$ $V|(u,v) \in E\}$ — вершины, из которых (в которые, соответственно) есть ребра в фиксированную. Тогда f(L,u) = f(u,R). Найдем

$$0 \stackrel{3}{=} f(u,V) \equiv \sum_{v \in V} f(u,v) = \underbrace{\sum_{\substack{v \in V \\ (u,v) \in E \\ (v,u) \in E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ ($$

$$(u,v) \notin E, \ (v,u) \notin E \stackrel{1}{\Rightarrow} f(u,v) = 0,$$
 поэтому $S_4 = 0.$ Рассмотрим $S_1 = \sum_{\substack{v \in V \\ (u,v) \in E \\ (v,u) \in E}} f(u,v) \stackrel{2}{=} \sum_{\substack{v \in V \\ (u,v) \in E \\ (v,u) \in E}} (-f(v,u)) = -\sum_{\substack{v \in V \\ (u,v) \in E \\ (v,u) \in E}} f(v,u) = 1.$ Переобозначим вершины, получим $= -\sum_{\substack{u \in V \\ (v,u) \in E \\ (u,v) \in E}} f(u,v) = -S_1$, откуда $S_1 = 0$.

Рассмотрим
$$f(L,u) = \sum_{(v,u)\in E} f(v,u) = -\sum_{(v,u)\in E} f(u,v) = -(S_1+S_3) \stackrel{S_1=0}{\equiv} -S_3$$
 Рассмотрим $f(u,R) = \sum_{(u,v)\in E} f(u,v) = S_1 + S_2 \stackrel{S_1=0}{\equiv} S_2$. Из (*) получаем $0 \stackrel{S_1=0}{=} S_2 + S_3$, откуда $S_2 = -S_3$, и $f(L,u) = f(u,R)$

Упражнение 2

Пусть $(G(V,E),\,c\colon V^2\to\mathbb{N}\cup\{0\},s,t)$ — транспортная сеть. f — поток в ней.

Рассмотрим
$$A\stackrel{\text{def}}{=} \sum_{\substack{u\in V\\v\in V}} f(u,v)$$
. Переобозначим, получим $A=\sum_{\substack{v\in V\\u\in V}} f(v,u)\stackrel{2}{=} -\sum_{\substack{v\in V\\u\in V}} f(u,v)=-A$, откуда $A=0$

Но
$$A = \sum_{\substack{u = s \\ v \in V}} f(u,v) + \sum_{\substack{u = t \\ v \in V}} f(u,v) + \sum_{\substack{u = t \\ v \in V}} f(u,v).$$
 Рассмотрим $S_3 = \sum_{\substack{u \in V \setminus \{s,t\} \\ v \in V}} \sum_{\substack{v \in V \\ s \neq v}} f(u,v)$. По свойству 3 каждая подчеркнутая часть равна 0, и $S_3 = 0$ Рассмотрим $S_1 = \sum_{v \in V} f(s,v) \equiv |f|$

Рассмотрим
$$S_1 = \sum_{v \in V} f(s, v) = |f|$$

Рассмотрим
$$S_2 = \sum_{v \in V} f(t,v) \stackrel{2}{=} - \sum_{v \in V} f(v,t) = -f(V,t).$$
 Поскольку $0 = A = S_1 + S_2$, получаем $|f| = f(V,t)$

Поскольку
$$0 = A = S_1 + S_2$$
, получаем $|f| = f(V, t)$

Задача 1

Пусть $(G(V,E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть. f — поток в ней.

1. Пусть $X\subseteq V$. Рассмотрим $A\stackrel{\text{\tiny def}}{=} f(X,X)\equiv \sum\limits_{u\in \underline{X}} f(u,v)$. Переобозначим, получим

$$A = \sum_{\substack{v \in X \\ u \in X}} f(v, u) \stackrel{2}{=} - \sum_{\substack{v \in X \\ u \in X}} f(u, v) = -A,$$

откуда A=0

2. Пусть $X,Y\subseteq V$. Рассмотрим $f(X,Y)\equiv\sum\limits_{\substack{x\in X\\y\in V}}f(x,y)\stackrel{2}{=}-\sum\limits_{\substack{x\in X\\y\in V}}f(y,x)\equiv -f(Y,X)$

3. Пусть
$$X, Y, Z \subseteq V, X \cap Y = \emptyset$$
. Рассмотрим $f(X \cup Y, Z) \stackrel{(*)}{\equiv} \sum_{\substack{u \in X \cup Y \\ v \in Z}} f(u, v) = \sum_{\substack{u \in X \\ u \in Y \\ v \in Z}} f(u, v) + \sum_{\substack{u \in X \\ u \notin Y \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \notin Y \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \notin Y \\ v \in Z}} f(u, v) = \sum_{\substack{u \in X \\ u \notin Y \\ v \in Z}} f(u, v) + \sum_{\substack{u \in X \\ u \in X \\ v \in Z}} f(u, v) + \sum_{\substack{u \in X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \in X \\ u \in X \\ u \in X}}$

 $S_1=0,$ так как $u\in X\,\wedge\,u\in Y\Leftrightarrow u\in X\cap Y\Leftrightarrow u\in$

По определению,
$$f(X,Z) = \sum_{\substack{u \in X \\ u \in Y \\ v \in Z}} f(u,v) + \sum_{\substack{u \in X \\ u \notin Y \\ v \in Z}} f(u,v) \equiv S_1 + S_2 \stackrel{S_1=0}{=} S_2$$

По определению,
$$f(X,Z) = \sum_{\substack{u \in X \\ u \in Y \\ v \in Z}} f(u,v) + \sum_{\substack{u \in X \\ u \notin Y \\ v \in Z}} f(u,v) \equiv S_1 + S_2 \stackrel{S_1=0}{=} S_2$$
 По определению, $f(Y,Z) = \sum_{\substack{u \in Y \\ u \in X \\ v \in Z}} f(u,v) + \sum_{\substack{u \in Y \\ u \notin X \\ v \in Z}} f(u,v) \equiv S_1 + S_3 \stackrel{S_1=0}{=} S_3$

Тогда из (*) получаем $f(X \cup Y, Z) = S_2 + S_3 = f(X, Z) + f(Y, Z)$.

4. Пусть $X,Y,Z\subseteq V,X\cap Y=\varnothing$. Тогда $f(Z,X\cup Y)\stackrel{2}{=}-f(X\cup Y,Z)\stackrel{3}{=}-(f(X,Z)+f(Y,Z)\equiv -f(X,Z)-f(Y,Z)\stackrel{2}{=}-f(X,Z)$ f(Z,X) + f(Z,Y)

Задача 2

Нет, не обязательно. Пример. Рассмотрим $(G(V, E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть. f — поток в ней:

Определим
$$V \supseteq X \stackrel{\text{def}}{=} \{s\}, \ Y \stackrel{\text{def}}{=} X$$
. Тогда $A = f(X,Y) \stackrel{X=Y}{=} f(X,X) \stackrel{1}{=} 0$. Рассмотрим $B = -f(V-X,Y) \equiv f(\{t\},\{s\}) = -\sum_{\substack{u \in \{t\} \\ v \in \{s\}}} f(u,v) \equiv -f(t,s) \stackrel{2}{=} f(s,t) = 1$

$$v \in \{s\}$$

Получаем $A=0 \neq 1=B$

Упражнение 3

Пусть $(G(V, E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть. f_1 и f_2 — потоки, для которых выполнено 3, 2 (заметим, что функция c не участвует в этой части определения).

Определим функцию $f\colon V^2\to\mathbb{R}$ как $f(u,v)\stackrel{\scriptscriptstyle\mathrm{def}}{=} f_1(u,v)+f_2(u,v)$. По определению, f — поток в данной транспортной сети \Leftrightarrow

3. 3. Фиксируем $u \in V$. Рассмотрим $f(u,V) = \sum_{v \in V} f(u,v) = \sum_{v \in V} \left[f_1(u,v) + f_2(u,v) \right] \equiv \sum_{v \in V} f_1(u,v) + \sum_{v \in V} f_2(u,v) \equiv \sum_{v \in V} f_1(u,v) = \sum_{v \in V} f_2(u,v) = \sum_{v \in V}$ $f_1(u,V)^{-0} + f_2(u,V)^{-0} = 0$ — выполнено всегда (зачеркнуто по свойству 3).

- 2. 2. Фиксируем $(u,v) \in V^2$. Рассмотрим $f(u,v) \equiv f_1(u,v) + f_2(u,v) \stackrel{2}{=} -f_1(v,u) f_2(v,u) \equiv -(f_1(v,u) + f_2(v,u)) = -f(v,u)$ выполнено всегда.
- 1. 1. Нужно: $\forall (u,v) \in V^2 \hookrightarrow f(u,v) \leqslant c(u,v)$. Поэтому третье свойство выполнено для $f \Leftrightarrow \forall (u,v) \in V^2 \hookrightarrow f_1(u,v) + f_2(u,v) \leqslant c(u,v)$.

Поэтому сумма потоков f_1+f_2 — поток \Leftrightarrow $\forall (u,v) \in V^2 \hookrightarrow f_1(u,v) + f_2(u,v) \leqslant c(u,v)$

Упражнение 4

Пусть $N = (G(V, E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть. Пусть f_1 — поток в ней. Пусть N' = (G'(u, v), c', s, t) — остаточная сеть для N и f_1 . Пусть найден увеличивающий путь в остаточной сети, т.е. последовательность вершин $s \equiv v_0 \to v_1 \to ... \to v_{k-1} \to v_k \equiv t$, такая, что $M \stackrel{\text{def}}{=} \min_{i \in \overline{0,k-1}} c'(v_i, v_{i+1}) > 0$. Считаем путь простым (если путь не простой, выкенем

цикл, получится простой путь). Определим функцию $f_2(u,v) = \sum\limits_{i=0}^{k-1} \left\{ egin{array}{ll} M, & (v_i,v_{i+1}) = (u,v) \\ -M, & (v_i,v_{i+1}) = (v,u) \end{array} \right.$. Поскольку путь простой, то каждое (неориентированное) ребро встречается в нем только один раз. Значит, в сумме максимум один элемент ненулевой, и получаем $f_2(u,v) = \left\{ egin{array}{ll} M, & \exists i \colon (u,v) = (v_i,v_{i+1}) \\ -M, & \exists i \colon (v,u) = (v_i,v_{i+1}) \\ 0, & \text{иначе} \end{array} \right.$

$$1. \ f_2(u,v) = \left\{ \begin{array}{ll} M, & \exists i \colon (u,v) = (v_i,v_{i+1}) \\ -M, & \exists i \colon (v,u) = (v_i,v_{i+1}) \\ 0, & \text{иначе} \end{array} \right. = \left\{ \begin{array}{ll} -M, & \exists i \colon (v,u) = (v_i,v_{i+1}) \\ M, & \exists i \colon (u,v) = (v_i,v_{i+1}) \\ 0, & \text{иначe} \end{array} \right. = - \left\{ \begin{array}{ll} M, & \exists i \colon (v,u) = (v_i,v_{i+1}) \\ -M, & \exists i \colon (u,v) = (v_i,v_{i+1}) \\ 0, & \text{иначe} \end{array} \right. = \left. - f_2(v,u), \text{ поэтому для } f_2 \text{ и } N \text{ выполнено свойство } 2 \right.$$

- 2. Фиксируем $u \in V \setminus \{t, s\}$.
 - (а) Пусть u не входит в увеличивающий путь. Тогда $\forall v \in V \, \forall i \in \overline{0, k-1} \hookrightarrow (u,v) \neq (v_i,v_{i+1})$, значит, $f_2(u,v) = 0$, и $\sum_{v \in V} f_2(u,v) = 0$.
 - (b) Пусть u входит в увеличивающий путь. $u \neq s \land u \neq t$, поэтому u не первая, и не последняя вершина в пути. Значит, $\exists v_1, v_2 \colon (v_1, u), \ (u, v_2)$ смежные ребра из пути, и других ребер из пути, инцидентных u нет (путь простой). Тогда $\sum_{v \in V} f_2(u, v) = 0 + ... + 0 + f_2(u, v_1) + f_2(u, v_2) + 0 + ... + 0 = (-M) + M = 0$

Получаем для f_2 свойство 3

3.
$$f_2(u,v) = \begin{cases} M, & \exists i \colon (u,v) = (v_i,v_{i+1}) & (1) \\ -M, & \exists i \colon (v,u) = (v_i,v_{i+1}) & (2) \\ 0, & \text{иначе} & (3) \end{cases}$$

- (1). $\exists i \colon (u,v) = (v_i,v_{i+1}).$ $f_2(u,v) = M = \min_{j \in \overline{0,k-1}} c'(v_j,v_{j+1}) \leqslant c'(v_i,v_{i+1})$ (минимум меньше каждого)
- (2). $\exists i : (v, u) = (v_i, v_{i+1}).$ $f_2(u, v) = -M < 0 \leqslant c'(u, v)$ (пропускная способность $c' = c f_1$ неотрицательна, так как f_1 поток в N, откуда $f_1 \leqslant c$).
- (3). $f_2(u,v) = 0 \leqslant c'(u,v)$ (пропускная способность неотрицательна)

Получаем, что для f_2 выполнено свойство 1 для сети N'

Получаем, что f_2 — поток в N'. Докажем, что f_1+f_2 — поток в N. По это выполнено, если $\forall (u,v) \in V^2 \hookrightarrow f_1(u,v) + f_2(u,v) \leqslant c(u,v)$. Фиксируем $(u,v) \in V^2$. f_2 — поток в N', поэтому $f_2(u,v) \leqslant c'(u,v) \equiv c(u,v) - f_1(u,v)$, поэтому $f_1(u,v) + f_2(u,v) \leqslant f_1(u,v) + c(u,v) - f_1(u,v) \equiv c(u,v)$

Докажем, что $f_1 + f_2$ — поток в исходной сети N после этой итерации $\Phi\Phi$: алгоритм добавляет к $f_1(v_i, v_{i+1})$ величину M, вычитает из $f_1(v_{i+1}, v_i)$ M. Рассмотрим разность $(f_1 + f_2) - f_1 = f_2$, которая как равна этой величине (M в случае (v_i, v_{i+1}) в пути, -M в случае (v_{i+1}, v_i) в пути, 0 иначе) \blacksquare

(каноническое) Задача 28

(каноническое) Задача 29

(Кормен)

0/H

0/H

Рассмотрим транспортную сеть:

u

v

0/1

Сеть

s

- 1. На каждом шаге алгоритм выбирает увеличивающий путь.
- 2. Пусть на первом шаге выбран увеличивающий путь $s \to u \to v \to t$ величины 1. После первой итерации исходная сеть и остаточная сеть:

Сеть

Остаточная сеть

3. Пусть на втором шаге выбран увеличивающий путь $s \to v \to u \to t$ величины 1. После второй итерации исходная сеть и остаточная сеть:

Сеть

Остаточная сеть

- 4. Остаточная сеть после второй итерации содержит остаточную сеть для входной сети при H-1, поэтому при таком выборе путей будет совершено 2H итераций (максимальный поток равен 2H).
- 5. Размер входа $f(H) = \Theta(\log H)$ (описание сети константа), время $T(H) = \Omega(H)$ (по количеству итераций), откуда

$$\forall c \geqslant \hookrightarrow \lim_{H \to \infty} \frac{T(H)}{f^c(H)} \geqslant \lim_{H \to \infty} \frac{C_1 \cdot H}{C_2^c \log^c H} = \lim_{H \to \infty} c_3 \frac{H}{\log^c H} = +\infty \Rightarrow T(H) \neq \operatorname{poly}(f(H)).$$

То есть, время работы неполиномиально по длине битовой записи входа.

(каноническое) Задача 30

Пусть G(V, E) — двудольный граф с долями L и R. Считаем, что $E \subseteq L \times R$ (только слева направо). Задача: найти максимальное по мощности $E_0 \subseteq E$, такое что любые два ребра из E_0 не смежны, то есть, каждая вершина $v \in V$ инцидентна не более, чем одному ребру из E'. Определим G'(V', E'):

$$V' = V \cup \{s, t\}. E' = (\bigcup_{l \in L} \{(s, l)\}) \cup E \cup (\bigcup_{r \in R} \{(r, t)\}).$$

Задададим все пропускные способности $c(u,v) = \begin{cases} 1, & (u,v) \in E' \\ 0, & (u,v) \notin E' \end{cases}$. Тогда $N \stackrel{\text{def}}{=} (G',c,s,t)$ — транспортная сеть.

Обозначим a = |L|, b = |R|. Поясняющая картинка:

- 1. Пусть f поток в N. Тогда |f| задает некоторое паросочетание E_0 , причем $|f| = |E_0|$
 - (a) Вершина s соединена только с вершинами из L. Фиксируем одну $l \in L$. Предположим, что f(s,l) < 0. Тогда (2) f(l,s) > 0. Но c(l,s) = 0, так как так как $(l,s) \notin E'$. Получаем противоречие (1): f(l,s) > 0 = c(l,s). Значит, $f(s,l) \ge 0$, т.е. $f(s,l) \in \{0,1\}$.
 - (b) Обозначим $L_0 = \{l \in L | f(s,l) = 1\}$. Тогда $f(s,L) = |L_0|$, так как $c(\cdot,\cdot) \in \{0,1\}$. s инцидентна только вершинам из L, поэтому для остальных вершин $v \notin L$ по 1 имеем f(s,v) = 0. Значит, $f(s,V) = |L_0|$. Аналогично получаем $f(r,t) \geqslant 0$, обозначим $R_0 = \{r \in R | f(r,t) = 1\}$, и $f(R,t) \equiv f(V,t) = |R_0|$. Но по f(s,V) = f(V,t), откуда $|L_0| = |R_0|$.
 - (c) Фиксируем $l \in L$. Пусть $l \in L_0$. Тогда $\exists ! r \in R \colon f(l,r) = 1$:
 - і. Фиксируем $r \in R$. Пусть f(l,r) < 0. Тогда f(r,l) > 0. Но $(r,l) \notin E \subseteq L \times R$, откуда c(r,l) = 0 < f(r,l) противоречие (1)
 - іі. (∃) Пусть иначе. Тогда $\forall r \in R \hookrightarrow f(l,r) \leqslant 0$. Из 1(с)і получаем, что f(l,r) = 0. Тогда f(l,R) = 0. Но l и t не смежны, поэтому (свойство 1) $f(l,V\setminus \{s\}) = 0$. Получим $0\stackrel{3}{=} f(l,V) \stackrel{3}{=} f(l,s) + f(l,V\setminus \{s\})$. Первое слагаемое равно -1, так как f(s,l) = 1 ($l \in L_0$), второе равно нулю, получаем 0 = -1 противоречие \blacksquare
 - ііі. (!) Пусть иначе. Поскольку $\forall r \in R \hookrightarrow f(l,r) \geqslant 0$ (1(c)i), найдем $0 \stackrel{3}{=} f(l,V) \stackrel{3}{=} \underbrace{f(l,s)}_{=-1} + \underbrace{f(l,t)}^0 + \underbrace{f(l,t)}^0$
 - (d) Пусть $l \in L_0$, $r \in R$: f(l,r) > 0. Тогда $r \in R_0$. Пусть иначе. Тогда f(r,t) = 0 (ребра (t,r) нет в E'). Получаем $f(r,V) = f(r,l) + f(r,t) = -1 \neq 0$ противоречие с 3.
 - (e) Пусть $r \in R_0$. Тогда $\exists l \in L$: f(l,r) = 1. Пусть иначе. r смежна (возможно) только с вершинами из L, поэтому $f(r,V) = \underbrace{f(r,t)}_{-1} + \underbrace{f(r,t)}_{-1}^{0} = 1$ противоречие. По 1d эта существующая $l \in L_0$.
 - (f) Построена функция $E_0: L_0 \to R_0$. Действительно, для каждой $l \in L$ найдена единственная (1c) вершина $r \in R_0$ (1d). По 1е эта функция сюръективная (все значения достигаются), и по 1b она биекция ($|R_0| = |L_0|$). Значит, E_0 паросочетание \blacksquare
 - (g) Было доказано (1b), что $|L_0| = |R_0| = f(s, V) \equiv |f|$, откуда мощность паросочетания равна величине потока
- 2. Пусть $E_0 \subseteq E \subseteq L \times R$ паросочетание. Тогда существует поток f в N, причем $|f| = |E_0|$
 - (а) Определим
 - $f(E_0) = 1$ (для каждой пары)
 - $f(s, L_0) = 1$, где $L_0 = \{l \in L | \exists r \in R : (l, r) \in E_0 \}$
 - $f(R_0,t)=1$, где $R_0=\{r\in R\big|\exists l\in L\colon (l,r)\in E_0\}$
 - $f(E_0^T) = -1 \ (E_0^T = \{(r, l) | (l, r) \in E_0\})$
 - $f(L_0, s) = -1$
 - $f(t, R_0) = -1$

- f(u,v) = 0 в остальных случаях
- (b) Тогда $\forall (u,v) \in E' \hookrightarrow f(u,v) = -f(v,u)$
- (c) Единицы добавлены только на существующих ребрах, поэтому $f(u,v) \leqslant c(u,v)$
- (d) E_0 паросочетание, поэтому функция $E_0\colon L_0 \to R_0$ биекция.
- (e) Рассмотрим $l \in L \setminus L_0$. Получаем, что (рассматриваем только существующие ребра) $f(l,V) = f(l,s)^{-0} + f(l,R)^{-0} = 0$
- (f) Рассмотрим $l \in L$. Получаем, что (рассматриваем только существующие ребра) $f(l,V) = \underbrace{f(l,s)}_{=-1} + \underbrace{f(l,R)}_{=1} = 0$. f(l,R) = 1, так как E_0 биекция.
- (g) Аналогично для $r \in R$: $\forall r \in R \hookrightarrow f(r, V) = 0$
- (h) Получаем свойство 3
- (i) Получаем, что f поток в N
- (j) Найдем $|f| = f(s, V) = f(s, L) = f(s, L_0) = |L_0| = |E_0| \blacksquare$

Алгоритм: По G(V, E) строим сеть N (конструкция выше), ищем максимальный поток f, по нему построим паросочетание E_0 (см. 1).

Оно будет максимально. Пусть иначе. Тогда по большему паросочетанию $E_0'\colon |E_0'|>|E_0|$ найдем поток f', такой что $f'=|E_0'|$ (см. 2). Получим $|f'|\stackrel{2}{=}|E_0'|>|E_0|\stackrel{1}{=}|f|$, т.е. f — не максимальный поток — противоречие.

(каноническое) Задача 31.1

- 1. Пусть заданы $n \in \mathbb{N}, \{\alpha_i\}_{i=1}^n, \{\beta_i\}_{i=1}^n, \{\gamma_{ij}\}_{i,j=1}^n, \forall i \in \overline{1,n} \hookrightarrow \gamma_{ii} = 0$. Построим сеть (G(V,E),c,s,t):
 - (a) $V \stackrel{\text{def}}{=} \{V_i\}_{i=1}^n \cup \{s, t\}$
 - (b) $c(s, V_i) \stackrel{\text{def}}{=} \beta_i$
 - (c) $c(V_i, t) \stackrel{\text{def}}{=} \alpha_i$
 - (d) $c(V_i, V_i) \stackrel{\text{def}}{=} \gamma_{ij}$

минимизировать.

(e) c(u, v) = 0 в остальных случаях

Определим $E = \{(u, v) \in E | c(u, v) > 0\}.$

- 2. Рассмотрим некоторый разрез $S, T = V \setminus S.$ $s \in S, t \in T.$ Пусть $X = S \cap \{V_i\}_{i=1}^n, Y \stackrel{\text{def}}{=} \{V_i\}_{i=1}^n \setminus X.$ Тогда величина разреза $c(S,T) = \sum\limits_{\substack{u \in S \\ v \in T}} c(u,v) = \sum\limits_{y \in Y} c(s,y) + \sum\limits_{x \in X} c(x,t) + \sum\limits_{\substack{x \in X \\ y \in Y}} c(x,y) = \sum\limits_{V_i \in X} \alpha_i + \sum\limits_{V_i \in X} \beta_i + \sum\limits_{V_i \in X} \gamma_{ij}.$ Обозначим $A \stackrel{\text{def}}{=} \{i | V_i \in X\},$ $B \stackrel{\text{def}}{=} \{j | V_j \in Y\}.$ Тогда $c(S,T) = \sum\limits_{i \in A} \alpha_i + \sum\limits_{j \in B} \beta_j + \sum\limits_{\substack{i \in A \\ i \in B}} \gamma_{ij} = g(A,B),$ где g(A,B) функция из условия, которую нужно
- 3. Фиксируем $A, B: A \cap B = \emptyset, A \cup B = \overline{1, n}$ распределение программ. Заметим, что тогда $S = \{s\} \cup V_A, T = \{t\} \cup V_B$ разрез. Тогда (предыдущее рассуждение) для него верно равенство c(S, T) = g(A, B).
- 4. Алгоритм: строим сеть по входу $(n, \alpha_i, \beta_i, \gamma_{ij})$, ищем минимальный разрез, по нему строим ответ. Пусть найденный ответ не минимальный. Тогда существует лучшее распределение, значит, существует меньший разрез противоречие.