单因子资产定价模型的实证检验

蒋志强

zqjiang.ecust@qq.com

实验内容

时间序列检验

- > 单资产检验
- ▶ 多资产检验: Wald, LR, LM

横截面检验

- > 排序法
- > Fama-MacBeth回归

CAPM的时间序列检验

CAPM模型是从理想的金融世界推导出来的,这个模型到底是否成立的呢?

市场模型: $r_i = \alpha_i + \beta_{im} r_m + \varepsilon_i$

CAPM模型: $r_i = \beta_{im} r_m + \varepsilon_i$

市场模型的 $\alpha_i = 0$ 等价于 CAPM成立

CAPM时间序列估计和检验的基本问题

- \triangleright 对于 N 个资产,CAPM 隐含着 $\alpha_i = 0$
- >考虑单个资产i , 在线性回归模型的假设

下可用 t 检验来检验市场模型:

 $\mathbf{H_0}$: $\alpha_i = \mathbf{0}$; $\mathbf{H_1}$: $\alpha_i \neq \mathbf{0}$

≻如果H₁成立,该资产存在超额回报率

(正的或者负的),有何意义?

单个资产CAPM检验步骤:

- 1. 用OLS估计市场模型,得到 α_i 的估计值
- 2. 计算 $\alpha_i = 0$ 的 t 检验统计量
- 3. 确定显著性水平,比较分位数或计算*p* 值,作出统计推断

假设观察到总体的T个样本,则时间序列回归方程为:

$$r_{it} = \hat{\alpha}_{it} + \hat{\beta}_{im}r_{mt} + e_{it}, \quad t = 1, \dots, T$$

最小二乘估计量为:

$$\hat{\beta}_{im} = \frac{\sum_{t=1}^{T} (r_{it} - \bar{r}_i)(r_{mt} - \bar{r}_m)}{\sum_{t=1}^{T} (r_{mt} - \bar{r}_m)^2} \qquad \bar{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_{it}$$

$$\hat{\alpha}_i = \bar{r}_i - \hat{\beta}_{im} \bar{r}_m \qquad \bar{r}_m = \frac{1}{T} \sum_{t=1}^{T} r_{mt}$$

CAPM的单资产检验,以贵州茅台为例。

数据

> 资产数据:2001-2018贵州茅台日度数据;

▶ 市场数据:2001-2018沪深300指数日度数据;

无风险利率:2001-2018无风险利率。

0data_Index_daily_price_2001-2018.csv

0data_stock_daily_price_2001-2018.csv

d	Α	В	C	D	E	F	G	Н	1	J	K	L
1	股票代码_Stkc	日期_Date	开盘价_Op	最高价_Hip	最低价_Lo	收盘价_CI	复权价1(元	复权价2(元	成交量_Tro	成交金额_	日无风险收	在率_DRfRet
2	600519	2001/8/27	34.51	37.78	32.85	35.55	35.55	11.4294	40631800	1.41E+09	0.000054	
3	600519	2001/8/28	34.99	37	34.61	36.86	36.86	11.8505	12964779	4.63E+08	0.000054	
4	600519	2001/8/29	36.98	37	36.1	36.38	36.38	11.6962	5325275	1.95E+08	0.000054	
5	600519	2001/8/30	36.28	37.51	36	37.1	37.1	11.9277	4801306	1.78E+08	0.000054	
6	600519	2001/8/31	37.15	37.62	36.8	37.01	37.01	11.8987	2323148	86231237	0.000054	
7	600519	2001/9/3	37.2	37.57	36.85	36.99	36.99	11.8923	2211209	82129438	0.000054	
8	600519	2001/9/4	37.01	38.08	36.88	37.46	37.46	12.0434	3700677	1.39E+08	0.000054	
9	600519	2001/9/5	37.61	37.92	37.21	37.44	37,44	12.037	2606695	97796243	0.000054	

OLS Regression Results

	=====		=====	======	=====	=======================================		
Dep. Variable:				у	R-sq	Jared:		0.257
Model:				OLS	Adj.	R-squared:		0.257
Method:		Leas	t Squ	ares	F-sta	atistic:		1152.
Date:		Mon, 15	Mar	2021	Prob	(F-statistic):		4.08e-217
Time:			08:4	3:42	Log-l	Likelihood:		8519.0
No. Observatio	ns:			3326	AIC:			-1.703e+04
Df Residuals:				3324	BIC:			-1.702e+04
Df Model:				1				
Covariance Type:			nonro	bust				
==========	=====	======	====	=====	=====	========	======	========
	coe	f std	err		t	P> t	[0.025	0.975]
const	0.001	1 0	.000	3	.256	0.001	0.000	0.002
x1	0.627	7 0	.018	33	.945	0.000	0.591	0.664
==========	=====	======	====	=====	=====	=========	======	========
Omnibus:			379	.574	Durb:	in-Watson:		1.833
Prob(Omnibus):			0	.000	Jarqu	∪e-Bera (JB):		1488.523
Skew:			0	.516	Prob	(JB):		0.00
Kurtosis:			6	.111	Cond	. No.		57.1

CAPM的多资产估计与检验

▶考虑N个资产,CAPM需联合检验

$$H_0$$
: $\alpha_1 = \alpha_2 =, ..., \alpha_N = 0$

>把单资产的回归方程写成矩阵形式

$$\begin{cases} \mathbf{r_t} = \mathbf{\alpha} + \mathbf{\beta} r_{mt} + \mathbf{\epsilon_t} \\ N*1 & N*1 \end{cases} \mathbf{r_{mt}} + \mathbf{\epsilon_t} \\ \mathbf{E}(\mathbf{\epsilon_t}) = \mathbf{0} & \mathbf{r_t} = (r_{it}, ..., r_{Nt})', t = 1, ..., T \\ \mathbf{E}(\mathbf{\epsilon_t} \mathbf{\epsilon_t}') = \sum_{N*N} & \mathbf{r_t} \sim iidN(\mathbf{\mu}, \mathbf{\Sigma}) \\ E(r_{mt}) = \mu_{m}, Var(r_{mt}) = \sigma_m^2 \\ Cov(r_{mt}, \mathbf{\epsilon_t}) = \mathbf{0} \end{cases}$$

检验方法

- ✓ 沃德 (Wald) 检验
- ✓ 似然比(LR)检验
- ✓ 拉格朗日乘子(LM)检验

模型 $M(\theta)$:极大似然函数为L,无限制模型的极大似然估计值 $\widehat{\theta}$,

限制条件 $r(\theta)=0$,限制模型的极大似然估计值 $\tilde{\theta}$

Wald:
$$r(\widehat{\theta}) \approx r(\widetilde{\theta}) \approx 0$$

LR:
$$L(\widehat{\theta}) - L(\widetilde{\theta}) \approx 0$$

LM:
$$\frac{\partial L(\widehat{\theta})}{\partial \widehat{\theta}} = \frac{\partial L(\widetilde{\theta})}{\partial \widetilde{\theta}} \approx 0$$

Wald Test 检验步骤

- > 利用最小二乘法估计模型参数 $\hat{\alpha},\hat{\beta},\hat{\Sigma}$
- ≻计算Wald检验统计量

$$W_{\chi^2} = T \left[1 + \frac{\hat{\mu}_m^2}{\hat{\sigma}_m^2} \right]^{-1} \hat{\alpha}^T \hat{\Sigma}^{-1} \hat{\alpha} \sim \chi_N^2$$

$$W_F = \frac{T - N - 1}{N} \left[1 + \frac{\hat{\mu}_m^2}{\hat{\sigma}_m^2} \right]^{-1} \hat{\alpha}^T \hat{\Sigma}^{-1} \hat{\alpha} \sim F(N, T - N - 1)$$

▶根据统计量计算 p-value (chi2cdf, fcdf)

$$\hat{\boldsymbol{\beta}} = \frac{\sum_{t=1}^{T} (\mathbf{r}_{t} - \hat{\boldsymbol{\mu}})(r_{mt} - \hat{\boldsymbol{\mu}}_{m})}{\sum_{t=1}^{T} (r_{mt} - \hat{\boldsymbol{\mu}}_{m})^{2}}$$

$$\hat{\boldsymbol{\alpha}} = \hat{\boldsymbol{\mu}} - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\mu}}_{m}$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{T} \left[\sum_{t=1}^{T} (\mathbf{r}_{t} - \boldsymbol{\alpha} - \boldsymbol{\beta}r_{mt})(\mathbf{r}_{t} - \boldsymbol{\alpha} - \boldsymbol{\beta}r_{mt})' \right]$$

LR Test 检验步骤

- \rightarrow 估计限制模型的参数 ($\alpha_i = 0$)
- >估计无限制模型的参数
- ≻构造统计量(|A|矩阵A的行列式)

$$S_{LR, \chi^2} = T \left(\log |\tilde{\Sigma}| - \log |\hat{\Sigma}| \right) \sim \chi_N^2$$

 \rightarrow 根据统计量计算 *p*-value

限制模型
$$\tilde{\boldsymbol{\beta}} = \frac{\sum_{t=1}^{T} \mathbf{r_t} r_{mt}}{\sum_{t=1}^{T} r_{mt}^2}$$

$$\tilde{\Sigma} = \frac{1}{T} \sum_{t=1}^{T} (\mathbf{r_t} - \tilde{\boldsymbol{\beta}} r_{mt}) (\mathbf{r_t} - \tilde{\boldsymbol{\beta}} r_{mt})^{\mathrm{T}}$$

限制模型
$$\tilde{\boldsymbol{\beta}} = \frac{\sum_{t=1}^{T} \mathbf{r}_{t} r_{mt}}{\sum_{t=1}^{T} r_{mt}^{2}}$$

$$\tilde{\boldsymbol{\Sigma}} = \frac{1}{T} \sum_{t=1}^{T} \left(\mathbf{r}_{t} - \tilde{\boldsymbol{\beta}} r_{mt} \right) \left(\mathbf{r}_{t} - \tilde{\boldsymbol{\beta}} r_{mt} \right)^{T}$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{T} \sum_{t=1}^{T} \left(\mathbf{r}_{t} - \tilde{\boldsymbol{\beta}} r_{mt} \right) \left(\mathbf{r}_{t} - \tilde{\boldsymbol{\beta}} r_{mt} \right)^{T}$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{T} \left[\sum_{t=1}^{T} (\mathbf{r}_{t} - \boldsymbol{\alpha} - \boldsymbol{\beta} r_{mt}) (\mathbf{r}_{t} - \boldsymbol{\alpha} - \boldsymbol{\beta} r_{mt})' \right]$$

LM Test 检验步骤

- \succ 估计限制模型的参数 ($\alpha_i = 0$)
- > 计算无限制模型似然函数的得分向量和信息

▶构造统计量

$$S_{\text{LM}, \chi^2} = s(\alpha_i = 0, \tilde{\theta})^T \boldsymbol{I}^{-1}(\alpha_i = 0, \tilde{\theta}) s(\alpha_i = 0, \tilde{\theta}) \sim \chi_N^2$$

 \rightarrow 根据统计量计算 *p*-value

$$\tilde{\boldsymbol{\beta}} = \frac{\sum_{t=1}^{T} \mathbf{r_t} r_{mt}}{\sum_{t=1}^{T} r_{mt}^2}$$

$$\tilde{\Sigma} = \frac{1}{T} \sum_{t=1}^{T} \left(\mathbf{r_t} - \tilde{\boldsymbol{\beta}} r_{mt} \right) \left(\mathbf{r_t} - \tilde{\boldsymbol{\beta}} r_{mt} \right)^{\mathrm{T}}$$

$$\tilde{\boldsymbol{\beta}} = \frac{\sum_{t=1}^{T} \mathbf{r}_{t} r_{mt}}{\sum_{t=1}^{T} r_{mt}^{2}}$$

$$\tilde{\boldsymbol{\Sigma}} = \frac{1}{T} \sum_{t=1}^{T} (\mathbf{r}_{t} - \tilde{\boldsymbol{\beta}} r_{mt}) (\mathbf{r}_{t} - \tilde{\boldsymbol{\beta}} r_{mt})^{T}$$

$$s(\theta) = \begin{bmatrix} \frac{\partial \log L(\theta)}{\partial \alpha} \\ \frac{\partial \log L(\theta)}{\partial \beta} \end{bmatrix}, \quad \boldsymbol{I}(\theta) = \begin{bmatrix} -\frac{\partial^{2} \log L(\theta)}{\partial \alpha \partial \alpha} & -\frac{\partial^{2} \log L(\theta)}{\partial \alpha \partial \alpha} \\ -\frac{\partial^{2} \log L(\theta)}{\partial \beta \partial \alpha} & -\frac{\partial^{2} \log L(\theta)}{\partial \beta \partial \beta} \end{bmatrix}$$

CAPM的多资产检验,以贵州茅台、五粮液、 山西汾酒、酒鬼酒、古井贡酒、泸州老窖为例。 数据

- 资产数据:2001-2018 贵州茅台、五粮液、山西汾酒、 酒鬼酒、古井贡酒、泸州老窖日度数据;
- ▶ 市场数据: 2001-2018 沪深300指数日度数据;
- ➤ 无风险利率: 2001-2018 无风险利率。
 - 0data_5stocks_daily_price_2001-2010.csv
 - 0data_5stocks_daily_price_2011-2015.csv
 - 0data_5stocks_daily_price_2015-2018.csv
 - 0data_Index_daily_price_2001-2018.csv
 - 0data_stock_daily_price_2001-2018.csv


```
Wald Test1, Wald Test2, LR Test, LM Test
10.48369, 1.74291, 10.46408, 10.44452
0.10571, 0.10711, 0.10642, 0.10714
```

- · 联合检验不能拒绝原假设,因此,检验股票 不存在超额回报率。
- · 结论:多资产联合检验支持CAPM

〉惯性效应:过去表现好的股票(赢家)

会继续表现好,过去表现差的股票

(输家)会需继续表现差

▶ 反转效应:过去表现好的股票会表现

差,过去表现差的股票会表现好

如何实证检验?排序法!

启发:

- 1. 构建赢家组合和输家股票组合
- 2. 计算赢家组合和输家组合的平均收益率
- 3. 对两个组合收益率进行差异性检验

排序法步骤:

- 1. t 时刻 构建投资组合
- > 计算前N个月的累积收益率
- > 将股票累积收益率排序、分组构造投资组合
- 2. t 时刻 持有投资组合
- > 计算持有投资组合M个月的累积收益率

排序法步骤:

 $3. t \rightarrow t+1$,重新分组构造投资组合,计算组合收益率(重复1, 2步)

因此, 在t = 1, 2, ..., T, 可有:

赢家组合收益率序列: $\{R_1^H, R_2^H, R_3^H, ..., R_T^H\}$

输家组合收益率序列: $\{R_1^L, R_2^L, R_3^L, ..., R_T^L\}$

计算高低β组合的平均收益率

$$\bar{R}^{H} = \frac{1}{T} \left[R_{1}^{H} + R_{2}^{H} + R_{3}^{H} + \dots + R_{T}^{H} \right]$$

$$\bar{R}^{L} = \frac{1}{T} \left[R_{1}^{L} + R_{2}^{L} + R_{3}^{L} + \dots + R_{T}^{L} \right]$$

排序法步骤:

4. 计算 t 统计量

零假设: $H_0: \bar{R}^H - \bar{R}^L = 0$

$$t = \frac{\bar{R}^H - \bar{R}^L}{S_{\bar{R}^H - \bar{R}^L}} \sim \mathcal{N}(0, 1)$$

$$s_{\bar{R}^H - \bar{R}^L} = \sqrt{\frac{s_H^2}{T} + \frac{s_L^2}{T}}, \quad s_i = \sqrt{\frac{\sum_{t=1}^T (R_t^i - \bar{R}^i)^2}{T - 1}}, \quad i = H, L$$

若赢家和输家的平均收益率没有显著区别,不存在动量和反转效应。

惯性:赢家收益大于输家收益;反转:赢家收益小于输家收益

数据:1990-2009,上海股市

表 3-4 基于过去收益率构造的五分位投资组合的平均收益率

历史收益率	五分位	持有期							
历文权量华	11.37.17	1 个月	3 个月	6个月	12 个月				
轩	家 01	2. 108%	5. 623%	12. 229%	25.960%				
erico S.	Q2	2. 083%	5. 960%	12. 675%	27. 267%				
1 个月	Q3	1.791%	5. 629%	12. 435%	27. 395%				
1-1-71	Q4	1. 393%	4. 993%	11.619%	27. 141%				
前	赢家 Q5	0. 833%	3, 745%	9. 620%	24. 901%				
action of	Q5 - Q1	-1.275%	-1.877%	- 2. 609%	-1.058%				

存在反转效应!!!

数据:1990-2009,上海股市

表 3-5

基于过去收益率 (跳过1个月) 构造的

五分位投资组合的平均收益率

EE oh olle 36 shr	TAR	持有期							
历史收益率	五分位	1个月	3 个月	6个月	12 个月				
辅	家 🛭	1. 841%	5. 038%	11.315%	25. 927%				
with It.	Q2	1. 795%	5. 513%	12.001%	26. 869%				
1.68	Q3	1. 649%	5. 369%	12. 219%	27. 044%				
1 个月	Q4	1.606%	5. 098%	11.744%	27. 152%				
赢	家 Q5	1. 130%	4. 096%	10. 267%	25. 013%				
With Ed.	Q5 - Q1	-0.711%	-0.942%	-1.049%	-0.914%				

反转效应虽然减弱,但是依然存在!!!