Discussion 10

Today:

- Project comments

-Kernels (note on tf-idf at last page)

(check DNN related seminar at EEB Nov 29)
(confirm)

Project

- 1. Groups be sure the workload is adequate
- 2. Used methods & techniques: at least 50% from

EE 660

- non-trivial feature extraction or preprocessing
- obvious' DNN problem
- Recommender systems

3.	Data	hand	ing
			-n

- . EDA must be done on separate pre-training set histogram, heat maps etc
 - . Remember to keep test set untouched till the end.
 - . CV vs. validation
- If D'huge expremember CV will take a lot of time
- 4. Few rejected proposals : resubmit and e-mail

5. Final report			~_	
Be sure to s	ummarize i	nain fina	lings, an	2
clearly state	problem and	goals,		
they to analyze	results and	e try to	justify	choices
	1007	0		
	-11~			
	~ /I ~			

Kernels (Murphy 14)

In SVM, Kernels "naturally" appear. Let's get a more general view:

.What is a Kernel?

Kernel functions are usually seen as a measure of similarity between vectors. In this case; for x, x2 EX

K(x, x2) ER

. Some examples: (Murphy 14.2)

a) Gaussian Kernel $K(x_1, x_2) = \exp(-1)(x_1 - x_2)^T Z(x_1 - x_2)$

b) If
$$Z$$
 is diagonal
$$K(x_1, x_2) = \exp\left(-\frac{1}{2} \frac{Z(x_{1,j} - x_{2,j})}{\sigma_j^2}\right)$$

For comparing documents
. Cosine sima similarity
$K(X_1, X_2) = X_3^T X_2$
11x3112 11X2/12
Xi is a bag of words vector
. Term frequency inverse document frequency
(TF-IDF) i is the document; i is the word
tf(xi) = log(1+xij) (not unique definition)
idf (i) = log N (f) at and of
J+ ZI(xij >0) document
i=J /

Lindicator function

. Kernelized Feature Vector
p(x) = [K(x, m) K(x, m)]
$K(x, \mu_{\kappa})$
Mx are centroids
How to choose ux?
· Low dimensional input space: create "tiles" in
input space 1 1 . Mr.

Find clusters.

Main cons: still have to choose K

clustering is unsupervised, might not yield good

results

. Make each x_i a prototype $\phi(x) = [K(x, x_s)...K(x, x_N)]$

D'=N=) now we need sparsity-promoting method. Most common & -> LIVM

