

SEQUENCE LISTING

<110> Bayer AG

<120> ATP binding cassette genes and proteins for diagnosis
and treatment of lipid disorders and inflammatory
diseases

<130> ATP binding cassette genes and protein

<140>

<141>

<150> 101706

<151> 1998-09-25

<160> 54

<170> PatentIn Ver. 2.0

<210> 1

<211> 6880

<212> DNA

<213> Human

<220>

<223> cDNA of ABCA1 (ABC1)

<400> 1

caaacatgtc agctgttact ggaagtggcc tggcctctat ttatcttcct gatcctgatc 60
tctgttcggc tgagctaccc acccttatgaa caacatgaat gccattttcc aaataaaagcc 120
atgccctctg caggaacact tccttgggtt caggggatta tctgtaatgc caacaacccc 180
tgtttccgtt acccgactcc tggggaggct cccggagttt ttggaaactt taacaaatcc 240
atttgtggctc gcctgttctc agatgctcg aggcttcttt tatacagcca gaaagacacc 300
agcatgaagg acatgcgcaa agttctgaga acattacagc agatcaagaa atccagctca 360
aacttgaagc ttcaagattt cctgggtggac aatgaaaacct tctctgggtt cctgtatcac 420
aacctctctc tcccaaagtc tactgtggac aagatgctga gggctgtatgt cattctccac 480
aaggtagttt tgcaaggcta ccagttacat ttgacaagtc tttgtcaatgg atcaaaatca 540
gaagagatga ttcaacttgg tgaccaagaa gtttctgagc tttgtggcctt accaagggag 600
aaactggctg cagcagagcg agtacttcgt tccaacatgg acatcctgaa gccaatcctg 660
agaacactaa actctacatc tcccttccccg agcaaggagc tggccgaagc cacaaaaaaca 720
ttgtgtcata gtcttgggac tctggcccag gagctgttca gcatgagaag ctggagtgac 780
atgcgacagg aggtgatgtt tctgaccaat gtgaacagct ccagctcctc cacccaaatc 840
taccaggctg tgtctcgat tgcgtgggg catccccagg gagggggggct gaagatcaag 900
tctctcaact ggtatgagga caacaactac aaaggccctt ttggaggc aa tggcaactgag 960
gaagatgctg aaaccttcta tgacaaactct acaactccctt actgcaatga tttgtatgaag 1020
aatttggagt ctatccctt ttcccgatt atctggaaag ctctgaagcc gctgctcgat 1080
ggaaagatcc tgtatacacc tgacactcca gccacaaggc aggtcatggc tgaggtgaac 1140
aagaccttcc aggaactggc tgcgttccat gatctggaaag gcatgtgggaa ggaactcagc 1200
cccaagatct ggaccttcat ggagaacagc caagaaatgg accttgcgg gatgctgttg 1260
gacagcaggc acaatgacca cttttggaa cagcagttgg atggcttaga ttggacagcc 1320
caagacatcg tggcgaaaaa ggccaagcac ccagaggatg tccagttccag taatggatct 1380
gtgtacaccc ggagagaagc ttcaacggc actaaccagg caatccggac cataatctcgc 1440
ttcatggagt gtgtcaaccc gaacaagcta gaaccatag caacagaagt ctggctcattc 1500
aacaagtcca tggagctgct ggatgagagg aagttctggg ctggattgt gttcaactgga 1560
attactccag gcagcattga gctgccccat catgtcaagt acaagatccg aatggacatt 1620
gacaatgtgg agaggacaaa taaaatcaag gatgggtact gggaccctgg tcctcgagct 1680

gaccctttg aggacatgcg gtacgtctgg gggggcttcg cctacttgca ggatgtggtg 1740
gagcaggcaa tcatacagggt gctgacgggc accgagaaga aaactggtgt ctatatgcaa 1800
cagatgccct atccctgtta cgttcatgtac atctttctgc ggggtatgag ccggtaatg 1860
ccccttca tgacgctggc ctggatttac tcagtggctg ttagtcatcaa gggcatcg 1920
tatgagaagg aggcacggct gaaagagacc atgcggatca tggggcttggaa caacagcatc 1980
ctctgggtta gctgggtcat tagtagcctc attccttcc ttgtgagcgc tggccctgcta 2040
gtgtcatcc tgaagttagg aaacactgtg ccctacagtg atccccagcgt ggtgtttgtc 2100
ttcctgtccg tggttgcgt ggtacaatc ctgcagtgtc tcctgatttag cacactttc 2160
tccagagcca acctggcagc agcctgtggg ggcatacatct acttcacgcgt gtacctgccc 2220
tacgtcctgt gtgtggcatg gcaggactac gtgggcttca cactcaagat ctgcgttagc 2280
ctgctgtctc ctgtggctt tgggttggc tgtgagtaact ttgccttgc tgaggaggcag 2340
ggcattggag tgcagtggaa caacactgtt gagagtcctg tggaggaaga tggcttcaat 2400
ctcaccactt cggctccat gatgctgtt gacacccccc tctatgggt gatgacccgt 2460
tacattgagg ctgtcttcc aggccagttac ggaattccca ggccctggta tttccttgc 2520
accaagtccct actgggttgg cgaggaaagt gatgagaaga gccaccctgg ttccaaccag 2580
aagagaatata cagaaatctg catggaggag gaaccacccc acttgaagct gggcgtgtcc 2640
attcagaacc tggtaaaaatg ctaccgagat gggatgaagg tggctgtcg tggcctggca 2700
ctgaatttt atgagggcca gatcacctcc ttccctggcc acaatggagc gggaaagacg 2760
accaccatgt caatcctgac cgggttgc ccccccaccc cgggcaccgc ctacatcctg 2820
ggaaaagaca ttgcctctga gatgagcacc atccggcaga acctgggggt ctgtccccag 2880
cataacgtgc tggttgcacat gctgactgtc gaagaacaca tctgggttcta tgcccgctt 2940
aaagggtctct ctgagaagca cgtgaaggcg gagatggagc agatggccct ggtatgttgg 3000
ttgccatcaa gcaagctgaa aagcaaaaaca agccagctgt caggtggaaat gcagagaaaag 3060
ctatctgtgg ccttggcctt tgcggggga tctaagggttgc tattctggaa tgaacccaca 3120
gctgggtgtgg acccttactc ccgcaggggaa atatgggagc tgctgtcgaa ataccgacaa 3180
ggccgcacca ttattctctc tacacaccac atggatgaag cggacgtccct gggggacagg 3240
attgccatca tctccatgg gaagctgtgc tgcgtggct cctccctgtt tctgaagaac 3300
cagctggaa caggctacta cctgacccctt gtcaagaaag atgtggaaatc ctccctcagt 3360
tcctgcagaa acagtagtag cactgtgtca tacctgaaaaa aggaggacag tggccctcag 3420
agcagttctg atgctggcct gggcagcgc catgagatgt acacgctgac catcgatgtc 3480
tctgctatct ccaacccatc caggaagcat gtgtctgaag cccggctggt ggaagacata 3540
gggcatgagc tgacctatgt gctgcataat gaagctgtca aggaggggagc ctttggaa 3600
ctcttcatg agattgtatga ccggctctca gacctggca tttctagttt tggcatctca 3660
gagacgaccc tggaaagaaat attcctcaag gtggccgaag agatgggggt ggtatgttag 3720
acctcagatg gtaccttgcc agcaagacga aacaggcggg cttcgggggaa caagcagagc 3780
tgtcttcgccc cggttactga agatgtatgt gctgatccaa atgattctga catagaccca 3840
gaatccagag agacagactt gctcagtggg atggatggca aagggtccta ccaggtgaaa 3900
ggctggaaac ttacacagca acagttgtg gccctttgtt ggaagagact gctaattgcc 3960
agacggagtc ggaaaggatt ttttgcgtcatttgc cagctgtgtt tgcgtcgatt 4020
gcccttgcgt tcagcctgtat cgtgccaccc tttggcaagt accccaccc ggaacttcag 4080
ccctggatgt acaacgaaca gtacacattt gtcagcaatg atgctctgtc ggacacggg 4140
accctggAAC tcttaaacgc cctcaccacca gaccctggct tcgggaccccg ctgtatggaa 4200
ggaaacccaa tcccagacac gccctgccag gcaggggagg aagagtggac cactgcccc 4260
gttccccaga ccatcatggc cctttccag aatgggaact ggacaatgca gaacccttca 4320
cctgcatgcc agttagcgtcg cggacaaaatc aagaagatgc tgcgtgtgt tccccccagg 4380
gcagggggc tgcctctcc acaaagaaaa caaaacactg cagatatcc tcaggacccgt 4440
acaggaagaa acatccggc ttatctgggt aagacgtatg tgcagatcat agccaaaagc 4500
ttaaaagaaca agatctgggtt gaatgagttt aggtatggcg gctttccctt ggggtgtcagt 4560
aataactcaag cacttcctcc gagtcaagaa gttaatgtatc ccaccaaaca aatgaagaaa 4620
caccctaaagc tggccaagga cagttctgca gatcgatttc tcaacagctt gggaaagattt 4680
atgacaggac tggacaccag aaataatgtc aaggtgtgtt tcaataacaa gggctggcat 4740
gcaatcagct ctccctgtaa tgcataacaaatccatc tccggggccaa cctgcaaaag 4800
ggagagaacc ctagccatta tggaaattact gcttcaatc atcccccttgc ttcaccaag 4860
cagcagctct cagagggtggc tccgatgacc acatcgtgg atgtccctgt gtccatctgt 4920
gtcatcttgc caatgtccctt cgtcccaatc agcttgcgt tattcctgtat ccaggagcgg 4980
gtcagcaaaag caaaacaccc tgcgttcatc agtggagtgaa agccgttcat ctactggctc 5040
tctaattttg tctggatat gtgcattac gttgtccctg ccacactggt cattatcatc 5100

ttcatctgct tccagcagaa gtcctatgtg tcctccacca atctgcctgt gctagccctt 5160
ctactttgc tgtatgggtg gtcaatcaca cctctcatgt acccagcctc ctttgttgc 5220
aagatccccca gcacagccta tgggtgctc accagcgtga acctcttcat tggcattaat 5280
ggcagcgtgg ccacctttgt gctggagctg ttcaccgaca ataagctgaa taatatcaat 5340
gatatcctga agtccgtgtt cttgatctt ccacatttt gcctgggacg agggctcatc 5400
gacatggtga aaaaccaggc aatggctgat gccctggaaa gggttgggaa gaatcgctt 5460
gtgtcaccat tatcttggga ctgggtggga cgaaacctct tcgccatggc cgtggaaagg 5520
gtggtgttct tcctcattac tttctgatc cagtacagat tcttcattcag gcccagacct 5580
gtaaatgcaa agctatctcc tctgaatgat gaagatgaag atgtgaggcg ggaaagacag 5640
agaattcttg atggtggagg ccagaatgac atcttagaaa tcaaggagtt gacgaagata 5700
tatagaagga agcggaaagcc tgctgttgac aggatttgcg tggcattcc tcctggtgag 5760
tgcttgggc tcctgggagt taatgggct ggaaatcat caacttcaa gatgttaaca 5820
ggagatacca ctgttaccag aggagatgct ttccttaaca gaaatagtat cttatcaa 5880
atccatgaag tacatcagaa catggctac tggcctcagt ttgatgccat cacagagctg 5940
ttgactggga gagaacacgt ggagttctt gccctttga gaggagtccc agagaaagaa 6000
gttggcaagg ttggtgagt ggcgattcgg aaactggcc tcgtgaagta tggagaaaaaa 6060
tatgctggta actatagtgg aggcaacaaa cgcaagctct ctacagccat ggcttgc 6120
ggcgccctc ctgtgggtt tctggatgaa cccaccacag gcatggatcc caaagcccg 6180
cggttctgt ggaatttgtc cctaagtgtt gtcaaggagg ggagatcagt agtgc 6240
tctcatagta tggagaatg tgaagcttt tgcacttagga tggcaatcat ggtcaatgg 6300
agtttcaggt gccttggcag tggccagcat ctaaaaaata ggtttgaga tggttataca 6360
atagttgtac gaatagcagg gtccaaacccg gacctgaagc ctgtccaggaa tttctttgg 6420
cttgcatttc ctggaaagtgt tccaaaagag aaacaccgga acatgctaca ataccagctt 6480
ccatcttcat tatcttctt ggcaggata ttcagcatcc tctccagag caaaaagcga 6540
ctccacatag aagactactc ttttctcag acaacactt accaagtatt tgtgaacttt 6600
gccaaggacc aaagtgtatga tgaccactta aaagacctct cattacacaa aaaccagaca 6660
gtagtggacg ttgcaggatct cacatctt ctacaggatg agaaagtgaa agaaagctat 6720
gtatgaagaa tcctgttcat acgggggtggc tggaaagtaaa gagggacttag actttcctt 6780
gcaccatgtg aagtgttgc gggaaagag ccagaagttt atgtggaaag aagtaaactg 6840
gatactgtac tgatactatt caatgcaatg caattcaatg 6880

<210> 2
<211> 2201
<212> PRT
<213> Human

<220>
<223> Peptide sequence of ABCA1 (ABC1)

<400> 2
Met Pro Ser Ala Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn
1 5 10 15
Ala Asn Asn Pro Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly
20 25 30
Val Val Gly Asn Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp
35 40 45
Ala Arg Arg Leu Leu Tyr Ser Gln Lys Asp Thr Ser Met Lys Asp
50 55 60
Met Arg Lys Val Leu Arg Thr Leu Gln Gln Ile Lys Lys Ser Ser Ser
65 70 75 80
Asn Leu Lys Leu Gln Asp Phe Leu Val Asp Asn Glu Thr Phe Ser Gly
85 90 95

Phe Leu Tyr His Asn Leu Ser Leu Pro Lys Ser Thr Val Asp Lys Met
100 105 110

Leu Arg Ala Asp Val Ile Leu His Lys Val Phe Leu Gln Gly Tyr Gln
115 120 125

Leu His Leu Thr Ser Leu Cys Asn Gly Ser Lys Ser Glu Glu Met Ile
130 135 140

Gln Leu Gly Asp Gln Glu Val Ser Glu Leu Cys Gly Leu Pro Arg Glu
145 150 155 160

Lys Leu Ala Ala Ala Glu Arg Val Leu Arg Ser Asn Met Asp Ile Leu
165 170 175

Lys Pro Ile Leu Arg Thr Leu Asn Ser Thr Ser Pro Phe Pro Ser Lys
180 185 190

Glu Leu Ala Glu Ala Thr Lys Thr Leu Leu His Ser Leu Gly Thr Leu
195 200 205

Ala Gln Glu Leu Phe Ser Met Arg Ser Trp Ser Asp Met Arg Gln Glu
210 215 220

Val Met Phe Leu Thr Asn Val Asn Ser Ser Ser Ser Thr Gln Ile
225 230 235 240

Tyr Gln Ala Val Ser Arg Ile Val Cys Gly His Pro Glu Gly Gly
245 250 255

Leu Lys Ile Lys Ser Leu Asn Trp Tyr Glu Asp Asn Asn Tyr Lys Ala
260 265 270

Leu Phe Gly Gly Asn Gly Thr Glu Glu Asp Ala Glu Thr Phe Tyr Asp
275 280 285

Asn Ser Thr Thr Pro Tyr Cys Asn Asp Leu Met Lys Asn Leu Glu Ser
290 295 300

Ser Pro Leu Ser Arg Ile Ile Trp Lys Ala Leu Lys Pro Leu Leu Val
305 310 315 320

Gly Lys Ile Leu Tyr Thr Pro Asp Thr Pro Ala Thr Arg Gln Val Met
325 330 335

Ala Glu Val Asn Lys Thr Phe Gln Glu Leu Ala Val Phe His Asp Leu
340 345 350

Glu Gly Met Trp Glu Glu Leu Ser Pro Lys Ile Trp Thr Phe Met Glu
355 360 365

Asn Ser Gln Glu Met Asp Leu Val Arg Met Leu Leu Asp Ser Arg Asp
370 375 380

Asn Asp His Phe Trp Glu Gln Gln Leu Asp Gly Leu Asp Trp Thr Ala
385 390 395 400

Gln Asp Ile Val Ala Phe Leu Ala Lys His Pro Glu Asp Val Gln Ser
405 410 415

Ser Asn Gly Ser Val Tyr Thr Trp Arg Glu Ala Phe Asn Glu Thr Asn
420 425 430

Gln Ala Ile Arg Thr Ile Ser Arg Phe Met Glu Cys Val Asn Leu Asn
435 440 445

Lys Leu Glu Pro Ile Ala Thr Glu Val Trp Leu Ile Asn Lys Ser Met
450 455 460

Glu Leu Leu Asp Glu Arg Lys Phe Trp Ala Gly Ile Val Phe Thr Gly
465 470 475 480

Ile Thr Pro Gly Ser Ile Glu Leu Pro His His Val Lys Tyr Lys Ile
485 490 495

Arg Met Asp Ile Asp Asn Val Glu Arg Thr Asn Lys Ile Lys Asp Gly
500 505 510

Tyr Trp Asp Pro Gly Pro Arg Ala Asp Pro Phe Glu Asp Met Arg Tyr
515 520 525

Val Trp Gly Gly Phe Ala Tyr Leu Gln Asp Val Val Glu Gln Ala Ile
530 535 540

Ile Arg Val Leu Thr Gly Thr Glu Lys Lys Thr Gly Val Tyr Met Gln
545 550 555 560

Gln Met Pro Tyr Pro Cys Tyr Val Asp Asp Ile Phe Leu Arg Val Met
565 570 575

Ser Arg Ser Met Pro Leu Phe Met Thr Leu Ala Trp Ile Tyr Ser Val
580 585 590

Ala Val Ile Ile Lys Gly Ile Val Tyr Glu Lys Glu Ala Arg Leu Lys
595 600 605

Glu Thr Met Arg Ile Met Gly Leu Asp Asn Ser Ile Leu Trp Phe Ser
610 615 620

Trp Phe Ile Ser Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu
625 630 635 640

Val Val Ile Leu Lys Leu Gly Asn Leu Leu Pro Tyr Ser Asp Pro Ser
645 650 655

Val Val Phe Val Phe Leu Ser Val Phe Ala Val Val Thr Ile Leu Gln
660 665 670

Cys Phe Leu Ile Ser Thr Leu Phe Ser Arg Ala Asn Leu Ala Ala Ala
675 680 685

Cys Gly Gly Ile Ile Tyr Phe Thr Leu Tyr Leu Pro Tyr Val Leu Cys
690 695 700

Val Ala Trp Gln Asp Tyr Val Gly Phe Thr Leu Lys Ile Phe Ala Ser
705 710 715 720

Leu Leu Ser Pro Val Ala Phe Gly Phe Gly Cys Glu Tyr Phe Ala Leu
725 730 735

Phe Glu Glu Gln Gly Ile Gly Val Gln Trp Asp Asn Leu Phe Glu Ser
740 745 750

Pro Val Glu Glu Asp Gly Phe Asn Leu Thr Thr Ser Val Ser Met Met
755 760 765

Leu Phe Asp Thr Phe Leu Tyr Gly Val Met Thr Trp Tyr Ile Glu Ala
770 775 780

Val Phe Pro Gly Gln Tyr Gly Ile Pro Arg Pro Trp Tyr Phe Pro Cys
785 790 795 800

Thr Lys Ser Tyr Trp Phe Gly Glu Glu Ser Asp Glu Lys Ser His Pro
805 810 815

Gly Ser Asn Gln Lys Arg Ile Ser Glu Ile Cys Met Glu Glu Glu Pro
820 825 830

Thr His Leu Lys Leu Gly Val Ser Ile Gln Asn Leu Val Lys Val Tyr
835 840 845

Arg Asp Gly Met Lys Val Ala Val Asp Gly Leu Ala Leu Asn Phe Tyr
850 855 860

Glu Gly Gln Ile Thr Ser Phe Leu Gly His Asn Gly Ala Gly Lys Thr
865 870 875 880

Thr Thr Met Ser Ile Leu Thr Gly Leu Phe Pro Pro Thr Ser Gly Thr
885 890 895

Ala Tyr Ile Leu Gly Lys Asp Ile Arg Ser Glu Met Ser Thr Ile Arg
900 905 910

Gln Asn Leu Gly Val Cys Pro Gln His Asn Val Leu Phe Asp Met Leu
915 920 925

Thr Val Glu Glu His Ile Trp Phe Tyr Ala Arg Leu Lys Gly Leu Ser
930 935 940

Glu Lys His Val Lys Ala Glu Met Glu Gln Met Ala Leu Asp Val Gly
945 950 955 960

Leu Pro Ser Ser Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly
965 970 975

Met Gln Arg Lys Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys
980 985 990

Val Val Ile Leu Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg
995 1000 1005

Arg Gly Ile Trp Glu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile
1010 1015 1020

Ile Leu Ser Thr His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg
1025 1030 1035 1040

Ile Ala Ile Ile Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu
1045 1050 1055

Phe Leu Lys Asn Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys
1060 1065 1070

Lys Asp Val Glu Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr
1075 1080 1085

Val Ser Tyr Leu Lys Lys Glu Asp Ser Val Ser Gln Ser Ser Ser Asp
1090 1095 1100

Ala Gly Leu Gly Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val
1105 1110 1115 1120

Ser Ala Ile Ser Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu
1125 1130 1135

Val Glu Asp Ile Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Glu Ala
1140 1145 1150

Ala Lys Glu Gly Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg
1155 1160 1165

Leu Ser Asp Leu Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu
1170 1175 1180

Glu Glu Ile Phe Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu
1185 1190 1195 1200

Thr Ser Asp Gly Thr Leu Pro Ala Arg Arg Asn Arg Arg Ala Phe Gly
1205 1210 1215

Asp Lys Gln Ser Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp
1220 1225 1230

Pro Asn Asp Ser Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu
1235 1240 1245

Ser Gly Met Asp Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu
1250 1255 1260

Thr Gln Gln Gln Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala
1265 1270 1275 1280

Arg Arg Ser Arg Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val
1285 1290 1295

Phe Val Cys Ile Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly
1300 1305 1310

Lys Tyr Pro Ser Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr
1315 1320 1325

Thr Phe Val Ser Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu
1330 1335 1340

Leu Asn Ala Leu Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu
1345 1350 1355 1360

Gly Asn Pro Ile Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Trp
1365 1370 1375

Thr Thr Ala Pro Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly
1380 1385 1390

Asn Trp Thr Met Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp
1395 1400 1405

Lys Ile Lys Lys Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu
1410 1415 1420

Pro Pro Pro Gln Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu
1425 1430 1435 1440

Thr Gly Arg Asn Ile Ser Asp Tyr Leu Val Lys Thr Tyr Val Gln Ile
1445 1450 1455

Ile Ala Lys Ser Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr
1460 1465 1470

Gly Gly Phe Ser Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser
1475 1480 1485

Gln Glu Val Asn Asp Ala Thr Lys Gln Met Lys Lys His Leu Lys Leu
1490 1495 1500

Ala Lys Asp Ser Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe
1505 1510 1515 1520

Met Thr Gly Leu Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn
1525 1530 1535

Lys Gly Trp His Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala
1540 1545 1550

Ile Leu Arg Ala Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly
1555 1560 1565

Ile Thr Ala Phe Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser
1570 1575 1580

Glu Val Ala Pro Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys
1585 1590 1595 1600

Val Ile Phe Ala Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu
1605 1610 1615

Ile Gln Glu Arg Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly
1620 1625 1630

Val Lys Pro Val Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys
1635 1640 1645

Asn Tyr Val Val Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe
1650 1655 1660

Gln Gln Lys Ser Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu
1665 1670 1675 1680

Leu Leu Leu Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala
1685 1690 1695

Ser Phe Val Phe Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser
1700 1705 1710

Val Asn Leu Phe Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu
1715 1720 1725

Glu Leu Phe Thr Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys
1730 1735 1740

Ser Val Phe Leu Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile
1745 1750 1755 1760

Asp Met Val Lys Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly
1765 1770 1775

Glu Asn Arg Phe Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn
1780 1785 1790

Leu Phe Ala Met Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val
1795 1800 1805

Leu Ile Gln Tyr Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys
1810 1815 1820

Leu Ser Pro Leu Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln
1825 1830 1835 1840

Arg Ile Leu Asp Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu
1845 1850 1855

Leu Thr Lys Ile Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile
1860 1865 1870

Cys Val Gly Ile Pro Pro Gly Glu Cys Phe Gly Leu Leu Gly Val Asn
1875 1880 1885

Gly Ala Gly Lys Ser Ser Thr Phe Lys Met Leu Thr Gly Asp Thr Thr
1890 1895 1900

Val Thr Arg Gly Asp Ala Phe Leu Asn Arg Asn Ser Ile Leu Ser Asn
1905 1910 1915 1920

Ile His Glu Val His Gln Asn Met Gly Tyr Cys Pro Gln Phe Asp Ala
1925 1930 1935

Ile Thr Glu Leu Leu Thr Gly Arg Glu His Val Glu Phe Phe Ala Leu
1940 1945 1950

Leu Arg Gly Val Pro Glu Lys Glu Val Gly Lys Val Gly Glu Trp Ala
1955 1960 1965

Ile Arg Lys Leu Gly Leu Val Lys Tyr Gly Glu Lys Tyr Ala Gly Asn
1970 1975 1980

Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile
1985 1990 1995 2000

Gly Gly Pro Pro Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp
2005 2010 2015

Pro Lys Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys
2020 2025 2030

Glu Gly Arg Ser Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu
2035 2040 2045

Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys
2050 2055 2060

Leu Gly Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr
2065 2070 2075 2080

Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln
2085 2090 2095

Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Pro Lys Glu Lys His
2100 2105 2110

Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala
2115 2120 2125

Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu
2130 2135 2140

Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp Gln Val Phe Val Asn Phe
2145 2150 2155 2160

Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu Ser Leu His
2165 2170 2175

Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser Phe Leu Gln
2180 2185 2190

Asp Glu Lys Val Lys Glu Ser Tyr Val
2195 2200

<211> 1130

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB9

<400> 3

gccaatgnca cggtttcatc atggaactcc aggacggcta cagcacagag acaggggaga 60
aggcgcccc gctgtcaggt gcccagaagc agcgggtggc catggccng gctctggtc 120
ggaacccccc agtcctcatc ctggatgaag ccaccagcgc tttggatgcc gagagcagt 180
atctgatcca gcaggccatc catggcaacc tgtcagaagc acacggtaact catcatcg 240
caccggctga gcaccgtgga gcacgcgcac ctcattgtgg tgctggacaa gggccgcgt 300
gtgcagcagg gcacccacca gcagcttgct tgccccaggg cgggctttt cggcaagctn 360
gttgcagcgg cagatgtggg gttcaaggc cgcagacttc acagctggcc acaacgagcc 420
tgtagccaac gggtcacaag gcctgtatggg gggccctcc ttgcggcggt ggcagaggac 480
ccgggcctg cctggcagat gtgcccacgg aggttccag ctgccttacc gagcccaggc 540
ctgcagcact gaaagacgac ctgcccattgc ccatgatcac cgcttntgca atcttgc 600
tggccctgc cccatttcca gggcacttcc accccnnct gggggatgtc caagagcata 660
gtccctctcc cataccctc cagagaaggc gttccctgt cgggagggag acacggggaa 720
cgggattttc cgtctctccc ttttgcacgc tctgtgagtc tggccaggc gggtagggag 780
cgtggaggc atctgtctgc caattgccc ctgccaatct aagccagtct cactgtgacc 840
acacgaaacc tcaactgggg gagtgaggag ctggccaggt ctggaggggc ctcaggtgcc 900
cccagcccg caccctgtt tcgcccctcg tcaatcaacc cctggctggc agccgcctc 960
cccacacccg cccctgtgt ctgctgtctg gaggccacgt ggaccttcat gagatgcatt 1020
ctttctgtc tttgttggan gggatgtgc aaagcccagg atctggctt gccagaggtt 1080
gcaacatgtt gagagaaccc ggtcaataaa gtgtactacc tcttacccct 1130

<210> 4

<211> 1304

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA6

<400> 4

tcttagatga gaaacctgtt ataattgcca gctgtctaca caaagaatat gcaggccaga 60
agaaaagttt ctttcaaag aggaagaaga aaatagcgc aaaaatatc tctttctgt 120
ttcaagaagg taaaaattttt ggattgtctg gacccaatgg tgctggaaaa agttcatcta 180
ttagaatgtt atctggatc acaaagccaa ctgctggaga ggttggactt aaaggctgca 240
gttcagtttt gggccacctg ggttactgcc ctcaagagaa cgtgctgtgg cccatgctga 300
cggtgaggga acacctggag gtgtatgtc cggtaaggc gtcaggaaa gcggacgcga 360
ggctcgccat cgcaagatta gtgagtgctt tcaaactgca tgagcagctg aatgttcctg 420
tgcagaaattt aacagcagga atcacagagaa agttgtgtt tttgtctgagc ctcctggaa 480
actcacctgt tttgtctcg gatgaaccat ctacggcat aacccacag ggcagcagca 540
aatgttggca ggcaatccag gcagtcgtt aaaaacacaga gagaggtgtc ctcctgacca 600
cccataacctt ggctgaggcgc gaagccttgc gtgaccgtgt gcccacatcg gtgtctggaa 660
ggcttagatg cattggctcc atccaaacacc tgaaaaacaa acttggcaag gattacattc 720
tagagctaaa agtgaaggaa acgtctcaag tgactttgtt ccacactgag attctgaagc 780
ttttccaca ggctgcaggc caggaaaggat attcctctt gttaacctat aagctgcccc 840
gtggcagacg tttaccctt atcacagacc tttcacaat tagaaggcagt gaaagcataa 900
ctttaacctg gaagaataca gccttctcc agtgcacact gganaaggtn tccttanaac 960
cttccctaaan aacaggaagt taggaaattt tgaatgaaaa nnnacccccc cccctcattc 1020
aggttggacc taaaacctc aacacccatgtt atttttgtt gatctccttat aaaacttatg 1080
tttatgtaa taattaatag tatgtttaat tttaaagatc attaaaattt aacatcagg 1140
atattttgtt aatttagtta acaaatacat aaattttaaa attattctt ctctcaaaca 1200

taggggtgat agcaaacctg tgataaaggc aataaaaaat attagtaaag tcacccaaag 1260
agtcaaggcac tgggtattgt gaaaataaaa ctatataaac tt aa 1304

<210> 5
<211> 65
<212> PRT
<213> Human

<220>
<223> Partial peptide sequence of ABCG1 (ABC8)

<400> 5
Val Ser Phe Asp Thr Ile Pro Thr Tyr Leu Gln Trp Met Ser Tyr Ile
1 5 10 15

Ser Tyr Val Arg Tyr Gly Phe Glu Gly Val Ile Leu Ser Ile Tyr Gly
20 25 30

Leu Asp Arg Glu Asp Leu His Cys Asp Ile Asp Glu Thr Cys His Phe
35 40 45

Gln Lys Ser Glu Ala Ile Leu Arg Glu Leu Asp Val Glu Asn Ala Lys
50 55 60

Leu
65

<210> 6
<211> 4864
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC2 (MRP2)

<400> 6
atagaagagt cttcgttcca gacgcagtcc aggaatcatg ctggagaagt tctgcaactc 60
tacttttg aattcctcat tcctggacag tccggaggca gacctgccac tttgtttga 120
gcaaactgtt ctggtgtgga ttccccttggg cttcctatgg ctcctggccc cctggcagct 180
tctccacgtg tataaatcca ggaccaagag atcctctacc accaaactct atcttgctaa 240
gcaggtattc gttggtttcc ttcttattct agcagccata gagctggccc ttgtactcac 300
agaagactct ggacaagcca cagtcctgc tgttcgatat accaatccaa gcctctaccc 360
aggcacatgg ctcctgggtt tgctgatcca atacagcaga caatgggttg tacagaaaaaa 420
ctcctgggttc ctgtccctat tctggattct ctcgataactc tggacttccat tccaaatttca 480
gactctgatc cggacactct tacaggggtga caattctaat ctgcctact cctgcctgtt 540
cttcatctcc tacggattcc agatcctgat cctgatctt tcagcatttt cagaaaaataa 600
tgagtcatca aataatccat catccatagc ttcatcctg agtagcatta cctacagctg 660
gtatgacagc atcattotga aaggctacaa gcgtccctcg acactcgagg atgtctggga 720
agttgatgaa gagatgaaaa ccaagacatt agtggacaag ttggaaacgc acatgaagag 780
agagctgcag aaagccagggc gggcactcca gagacggcag gagaagagct cccagcagaa 840
ctctggagcc aggctgcctg gcttgaacaa gaatcagagt caaagccaaatg atgcccttgt 900
cctggaaatg gttgaaaaaaa aaaaaaagaa gtctgggacc aaaaaaagatg ttccaaaatc 960
ctgggtgatg aaggctctgt tcaaaaacttt ctacatggc ctccctgaaat cattcctact 1020
gaagcttagt aatgacatct tcacgtttgc gaggcctcag ctgctgaaat tgctgatctc 1080
cttgcaggat gaccgtgaca catattgtg gattggatat ctctgtgcaa tccttttatt 1140
cactgcggct ctcattcagt cttctgcct tcagtttat ttccaaactgt gttcaagct 1200

gggtgtaaaa gtacggacag ctatcatggc ttctgtatat aagaaggcat tgaccctatc 1260
caacttggcc aggaaggagt acaccgttg agaaaacagt aacctgatgt ctgtggatgc 1320
ccagaagctc atggatgtga ccaacttcat gcacatgctg tggtaagtg ttctacagat 1380
tgtcttatct atcttcttcc tatggagaga gttgggaccc tcagtccttag caggtgttgg 1440
ggtgatggtg cttgtaatcc caattaatgc gatactgtcc accaagagta agaccattca 1500
ggtcaaaaat atgaagaata aagacaaacg tttaaagatc atgaatgaga ttcttagtgg 1560
aatcaagatc ctgaaatatt ttgcctggga accttcattc agagaccaag tacaaaacct 1620
ccgaaagaaa gagctcaaga acctgtggc cttagtcaa ctacagtgtg tagtaatatt 1680
cgcttccag ttaactccag tcctgttac tgggtcaca ttctgttt atgtcctgg 1740
ggatagcaac aatattttgg atgcacaaa ggccttcacc tccattaccc tcttcaat 1800
cctgcgctt cccctgagca tgcttccat gatgatctcc tccatgctcc aggccagtgt 1860
ttccacagag cggctagaga agtacttggg agggatgac ttggacacat ctgccattcg 1920
acatagctgc aattttgaca aagccatgca gtttcttag gcctccttta cctggaaaca 1980
tgattcggaa gccacagtcc gagatgtgaa cctggacatt atggcaggcc aacttgcgtc 2040
tgtgataggc cctgtcggt ctggaaatcc tccttgata tcagccatgc tgggagaaat 2100
ggaaaatgtc cacgggcaca tcaccatcaa gggcaccact gcctatgtcc cacagcagtc 2160
ctggattcag aatggcacca taaaggacaa catcctttt ggaacagagt ttaatgaaaa 2220
gaggtaccag caagtactgg aggcctgtgc tctcctccca gacttggaaa tgctgcctgg 2280
aggagatttgc gctgagatttgg gagagaaggg tataaatctt agtgggggtc agaagcagcg 2340
gatcagcctg gccagagcta cttaccaaaa tttagacatc tatcttctag atgacccccct 2400
gtctgcgtg gatgctcatg tagggaaaaca tatttttaat aaggcttgg gccccatgg 2460
cctgttgaaa ggcaagactc gactcttgg tacacatagc atgcactttc ttctcaagt 2520
ggatgagatt gtagttctgg ggaatggAAC aattgttagag aaaggatccc acagtgcct 2580
cctggccaaa aaaggagagt ttgctaagaa tctgaagaca tttctaaagac atacaggccc 2640
tgaagaggaa gccacagtcc atgatggcag tgaagaagaa gcagatgact atgggctgat 2700
atccagtgtg gaagagatcc cccaagatgc agcctccata accatgagaa gagagaacag 2760
cttcgtcga acacttagcc gcagttctag gtccatggc aggcatctga agtcctcg 2820
aaactccttgc aaaaactcggaa atgtaatag cctgaaggaa gacgaagaac tagtggaaagg 2880
acaaaaaacta attaagaagg aattcataga aactggaaag gtgaagttct ccattacat 2940
ggagtaccta caagcaatag gattgtttc gatattcttcc atcatccttgc cgttgtgat 3000
gaattctgtg gcttttattt gatccaaacct ctggctcagt gcttggacca gtgactctaa 3060
aatcttcaat agcaccgact atccagcatc tcagagggac atgagagttt ggtctacgg 3120
agctctggaa tttagccaaag gtatattttgt gttcatagca catttctggaa gtgcctttgg 3180
tttcgtccat gcatcaaata tcttgacacaa gcaactgctg aacaatatcc ttcgagcacc 3240
tatgagattt tttgacacaa caccacacgg ccggattgtg aacagggtttt cccggcataat 3300
ttccacagtg gatgacacccc tgcctcagtc cttgogcagc tggattacat gttctctggg 3360
gataatcagc acccttgcata tgatctgcattt ggcactcct gtcctcaccat tcatcgat 3420
tcctcttggc attattttatg tatctgttca gatgttttgc ttgtcttacat cccggcagct 3480
gaggcgtctg gactctgtca ccaggcccc aatctactct cacttcagcg agaccgtatc 3540
aggtttgcga gttatccgtg cctttgagca ccagcagcga tttctgaaac acaatgaggt 3600
gaggattgac accaaccaga aatgtgttcc ttccctggatc acctccaaca ggtggcttgc 3660
aattcgctg gagctggttt ggaacctgac tgtctttt tcagccttgc tgatggat 3720
ttatagagat accctaagt gggacactgt tggctttgtt ctgtccaaatg cactcaat 3780
cacacaaacc ctgaactggc tggtgaggat gacatcagaa atagagacca acattgtggc 3840
tgttgagcga ataactgagt acacaaaatgg gggaaatgg gcaaccctggg tgactgataa 3900
gaggcctccg ccagattggc ccagcaaaagg caagatccag tttaacaactt accaagtgcg 3960
gtaccgacccctt gagctggatc tggcctcagc agggatcatc tggacatcg gtagcatgg 4020
gaagattggt gttggggca ggacaggagc tggaaagtca tccctcacaa actgccttcc 4080
cagaatcttac gaggctgccc gtggtcagat tatttttttgc ttgtctccat 4140
tgggctccac gacccctccgag agaagctgac catcatcccc caggacccca tcctttctc 4200
tggaaaggctg agatgaatc tcgaccctttt caacaactac tcagatgagg agattggaa 4260
ggcccttggag ctggctcacc tcaagtcttt tggccacgc ctgcaacttgc gtttacccca 4320
cgaaggtaca gaggctggtg gcaacctgag cataggccag aggcagctgc tggcctggg 4380
caggcgtctg ctccggaaat ccaagatccctt ggtcctggatc gaggccactg ctgcgggtgg 4440
tcttagagaca gacaacccat ttcagacgac catccaaac gatgtccccc actgcacagt 4500
gatcaccatc gcccacaggc tgcacaccat catggacatc gacaaggtaa ttgtctccat 4560
caacggaaag attatagatc gcccacaggc tgaagaactg ctacaaatcc ctggaccctt 4620

ttactttatg gctaaggaag ctggcattga gaatgtgaac agcacaaaat tctagcagaa 4680
ggcccccattgg gttagaaaag gactataaga ataatttctt atttaatttt attttttata 4740
aaatacagaa tacatacaaa agtgtgtata aaatgtacgt ttaaaaaaag gataagtcaa 4800
caccatgaa cctactaccc aggttaagaa aataaatgtc accaggtact tgaaaaaaaaa 4860
aaaaa 4864

<210> 7
<211> 4646
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB1 (MDR1)

<400> 7
cctactctat tcagatattc tccagattcc taaagattag agatcatttc tcatttcct 60
aggagtactc acttcaggaa gcaaccagat aaaagagagg tgcaacggaa gccagaacat 120
tcctcctgga aattcaacct gttcgcagt ttctcgagga atcagcattc agtcaatccg 180
ggccgggagc agtcatctgt ggtgaggctg attggctggg caggaacagc gccggggcgt 240
gggctgagca cagcgcttcg ctctcttgc cacaggaagc ctgagctcat tcgagtagcg 300
gctcttccaa gctcaaagaa gcagaggccg ctgttcggtt cctttaggtc ttccactaa 360
agtcggagta tcttcttcca agatttcacg tcttggtggc cgttccaagg agcgcgaggt 420
cgggatggat cttgaagggg accgcaatgg aggagcaaag aagaagaact tttttaact 480
gaacaataaa agtggaaaaag ataagaaggaa aaagaaacca actgtcagtg tattttcaat 540
gtttcgctat tcaaattggc ttgacaagtt gtatatggt gttggaaactt tggctgccccat 600
catccatggg gctggacttc ctctcatgtat gctgggtttt ggagaaatga cagatatctt 660
tgcaaatgca ggaaatttag aagatctgtat gtc当地acatc actaatagaa gtgatata 720
tgatcaggg ttcttcatga atctggagga agacatgacc aggtatgcctt attttacag 780
tggaaattggt gctgggggtgc tgggtgctgc ttacatttcg gtttcattttt ggtgcctggc 840
agctggaaga caaatacaca aaatttagaaa acagttttt catgctataa tgc当地acagga 900
gataggctgg tttgatgtgc acgatgttgg ggagcttaac acccgactta cagatgtgt 960
ctctaagattt aatgaagttt ttgggtacaa aattggaaatg ttcttcagt caatggcaac 1020
attttcaact gggtttatag taggatttac acgtgggtgg aagctaaccc ttgtgatattt 1080
ggccatcagt cctgttcttg gactgtcagc tgctgtctgg gcaaagatac tatcttcatt 1140
tactgataaa gaactcttag cgtatgcaaa agctggagca gttagctgaag aggttggc 1200
agcaattaga actgtgattt cattggagg acaaaagaaa gaacttgaaa ggtacaacaa 1260
aaatttagaa gaagctaaaaa gaattggat aaagaaagctt attacagcca atatttctat 1320
aggtgctgt ttcctgtca tctatgcattt ttatgtctgg gc当地tctggt atgggaccac 1380
cttggccttc tcagggaaat attctattgg acaagtactc actgttattct tttctgtatt 1440
aattggggct ttagtgggg gacaggcatc tccaagcattt gaagcatttgg caaatgcaag 1500
aggagcagct tatgaaatct tcaagataat tgataataag ccaagtttgg acagtttcc 1560
gaagagtggg cacaaaccag ataataattaa gggaaatttgg gaatttc当地aa atgttcaattt 1620
cagttaccca tctcgaaaaag aagttaaatg cttgaaggcc ctgaaacctga aggtgcagag 1680
tggcagacg gtggccctgg ttggaaacag tggctgtggg aagagcataa cagtc当地ct 1740
gatgcagagg ctctatgacc ccacagaggg gatggctagt gttgatggac aggttatttt 1800
gaccataaaat gtaaggtttc tacggggaaat cattgggtgt gttagtggc aacctgtatt 1860
gtttgccacc acgatagctg aaaacattcg ctatggccgt gaaaatgtca ccatggatga 1920
gattgagaaa gctgtcaagg aagccaaatgc ctatgactttt atcatgaaac tgc当地tataa 1980
atttgacacc ctgggttggag agagaggggc ccagtttgatg ggtggggcaga agcagaggat 2040
cgccatttgcg cgtggccctgg ttgc当地accc caagatcctc ctgctggatg aggccacgtc 2100
agccttggac acagaaagcg aagcagtggt tcaggtggct ctggataagg ccagaaaaagg 2160
tcgaccacc attgtgatag ctcatcggtt gtctacagtt cgtatgtcg acgtcatcgc 2220
tgggttgcgt gatggagtc ttgtggagaa aggaaatcat gatgaactca tgaaagagaa 2280
aggcatttac ttcaaaacttg tcacaatgca gacagcagga aatgaagttt aatttagaaaa 2340
tgc当地ctgtat gatccaaaaa gtgaaattga tgc当地tggaa atgttcttcaa atgttcaag 2400
atccagtcata ataagaaaaa gatcaactcg taggagtgatc cgtggatcac aagccaaaga 2460
cagaaagctt agtaccaaag aggctctggaa tgaaagtata cctccagttt cctttggag 2520

gattatgaag ctaaattaa ctgaatggcc ttatTTGTT gttggTgtat tttgtgccat 2580
tataaatgga ggcctcaac cagcatttg aataatattt tcaaagatta taggggTTT 2640
tacaagaatt gatgatcctg aaacaaaacg acagaatagt aacttGTTT cactattgtt 2700
tctagccctt ggaattattt ctTTTattac atTTTcCTT caggGTTca cattGGcaa 2760
agctggagag atcctcacca agcggctccg atacatggTT ttccgatcca tgctcagaca 2820
ggatgtgagt tggTTgtat accctaaaaa caccactgga gcattgacta ccaggctcgc 2880
caatgatgct gctcaagtta aaggggctat aggttccagg cttgctgtaa ttacccagaa 2940
tatacgaaat cttggacag gaataattat atccttcATC tatggTTggc aactaacact 3000
gttactctta gcaattgtac ccatcattgc aatAGCAGGA gttgttGAA tgaaaatgtt 3060
gtctggacaa gcactgaaag ataAGAAAGA actagaaggt gctgggAAGA tcgctactga 3120
agaatagaa aacttcgaa ccgttGTTtC tttgactcAG gAGcAGAAGt ttGAACATAT 3180
gtatgctcag agtttgcagg taccatacag aaactcttG aggAAAGCAC acatcttgg 3240
aattacattt tcottcaccc aggcaatgtat gtatTTTCC tatgctggat gttccggTT 3300
tggagcctac ttggTggcac ataaaactcat gagctttgag gatgttctgt tagtattttc 3360
agctgttgc tttggTgCCA tggcCGTggg gcaagtcagt tcatttgctc ctgactatgc 3420
caaagccaaa atatcagcag cccacatcat catgatcattt gaaaaaACCC ctttGATTGA 3480
cagctacagc acggaaggcc taatGCCGAA cacattggaa ggAAATGTCA cattGGTGA 3540
agttgtattc aactatccc cccgaccggA catcccAGTG cttcAGGGAC tgAGCCTGGA 3600
ggtaagaag ggCCAGACGC tggCTCTGGT gggcAGCAGT ggCTGTGGGA agAGCACAGT 3660
ggTCAGCTC ctggAGCGGT tctacgaccc cttggcAGGG aaAGTGTGc ttGATGGCAA 3720
agaaataaaag cgactgaatg ttcaGTTGCT ccgAGCACAC ctggGcAtcG tGTCcCAGGA 3780
GCCCATCCTG tttGACTGCA gcattGCTGA gaacattGCC tatggAGACA acAGCCGGGT 3840
ggtgtcacag gaagAGATG TGAGGGCAGC AAAGGAGGCC AACATAcATG ctttCATGCA 3900
gtcaCTGCT aataaatata gcactaaAGT aggAGACAAA ggaACTcAGC tctCTGGTGG 3960
ccagaaacaa cgcattGCCA tagCTCGTGC ccttGTTAGA cagcCTcATA ttttGCTTT 4020
ggatgaaGCC acgtcAGCTC tggatacaga aagtGAAAAG gttGTCGAAG aAGCCCTGGA 4080
caaAGCCAGA gaaggCCGCA cctgcattgt gattGCTCAC cgcctGtCCA ccatocAGAA 4140
tgcagactta atagtGTTGTT tcAGAATGG cAGAGTCAG gAGCATGGCA cgcAtcAGCA 4200
gctGCTGGCA cagaaAGGCA tctatTTTC aatGGTCAGT gtcCAGGCTG gaACAAAGCG 4260
ccAGTGAAct ctGACTGTAT gagatGTTAA atactTTTA atatttGTTT agatATGACA 4320
tttattcaaa gttaaaAGCA aacacttACA gaattatGAA gaggtatCTG tttAACATTt 4380
cctcAGTCAA gttcAGAGTC ttCAAGAGACT tcGTAATTAA aggaACAGAG tgAGAGACAT 4440
catcaAGTGG agagAAATCA tagTTAAAC tgcATTATAA attttATAAC agaAttaAAAG 4500
tagattttAA aagataAAAT gtGTAATTt gtttatTTT toccatttGG actGTAactG 4560
actGCTTGC taaaAGATTA tagAAGTAGC AAAAGTATT gaaatGTTG cataAAAGTGT 4620
ctataataaa actaaacttt catgtg 4646

<210> 8
<211> 864
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCD2 (ALDR)

<400> 8
aaatggacca gatccggTgc tgctaaGAGG gctgcctGCC tggTggCTgc ggcataTgct 60
ctgaaaACCC tctatcccAT cattggcaag cgTTAAAGC aatctggCCA cggAAAGAAA 120
aaAGcAGcAG cttaccCTGc tgcAGAGAAC acAGAAATAC tgcattGcAc cgAGACCATT 180
tgtaaaaAC cttcgcCTGG agtGAATGCA gatttCTtCA aacAGCTACT agAACttCgg 240
aaaattttgt ttccAAAct tGtgaccACT gaaACAGGGT ggCTCTGCT gcACTCAGTg 300
gctctaAtct caAGAACCTT tctttCTtAtC tatgtggCTG gctGggatgg AAAAATCgtG 360
aaaAGcATTG tggAAAAGAA gcctcggACT ttcAtCATCA aAttaAtCAA gtggCttAtG 420
attGCCATCC ctgctacCTT cgtcaACAGT gcaAtAAAGT acctGGAAAtG caAAAtTggCT 480
ttggCCTCA gaACTCGCT AgtagACCAC gcctAtGAAA cctAtTTtAC aaAtCAGACT 540
tattataAAAG tGAtCAAtAT gGAtGGGAGG ctggcAAACC ctgACCAAtC tcttACGGAG 600
gatattatGA tGttCTCCCA atctgtggCT cacttGtAtt ccaAtCTGAc caAAACtAtt 660

ttagatgtaa tgctgaccc tcatacactc attcaaactg ctacatccag aggagcaagc 720
ccaattgggc ccaccctact agcaggactt gtgggtatg ccactgctaa agtgttaaaa 780
gcctgttctc ccaaatttgg caaactggtg gcagaggaag cacatagaaa aggctatttgc 840
cggtatgtgc actcgagaat tata 864

<210> 9
<211> 2750
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCD1 (ALDP)

<400> 9
gcggacggac ggcgcctggc ccccgggag gggcgccacc gggggaggag gaggaggaga 60
aggtagagag gaagagacgc cccctctgac cgagacctct caaggccctg acctcagggg 120
ccagggact gacaggacag gagagccaag ttccctccact tgggctgccg gaagaggccg 180
cgaccctgga gggccctgag cccaccgcac cagggggcccc agcaccaccc cggggcccta 240
aagcgacagt ctcaggggcc atcgcaaggt ttccagttgc cttagacaaca ggcccagggt 300
cagagcaaca atccctccag ccacctgcct caactgctgc cccaggcacc agccccagtc 360
cctacgcggc agccagccca ggtgacatgc cggtgcctc caggccccgg ccctggcggg 420
ggaacacgct gaagcgcacg gccgtgcctc tggccctcgc ggcctatgga gcccacaaaag 480
tctaccctt ggtgcggcag tgccctggcc cggccagggg tcttcaggcg cccgccccggg 540
agcccacgca ggaggccctcc ggggtcgccg cggccaaagc tggcatgaac cgggtattcc 600
tgcagcggct cctgtggctc ctgcggctgc tttcccccg ggtcctgtgc cgggagacgg 660
ggctgctggc cctgcactcg gccgccttgg tgagccgcac ttccctgtcg gtgtatgtgg 720
ccgcctgga cggaggctg gcccgcgtca tcgccccca ggacccgcgg gctttggct 780
ggcagctgct gcagtggctc ctcatcgccc tccctgctac cttcgtcaac agtgcctatcc 840
gttacctgga gggccaaactg gccctgttgt tccgcagccg tctggtgccc caccgcctacc 900
gcctctactt ctcccagcag acctactacc ggtcagcaa catggacggg cggcttcgca 960
accctgacca gtctctgacg gaggacgtgg tggccttgc ggcctctgtg gcccacctct 1020
actccaaacct gaccaagcca ctccctggacg tggctgtac ttccctacacc ctgcattcggg 1080
cgccccgctc ccgtggagcc ggcacagccct ggcctcggc catgcggccgc ctcgtgggtgt 1140
tcctcacggc caacgtgctg cggcccttct cggccaaagtt cggggagctg gtggcagagg 1200
aggcgccggc gaagggggag ctgcgtaca tgcactcgcg tgggtggcc aactcgagg 1260
agatcgccct ctatggggc catgagggtgg agctggccct gtcacagcgc tcctaccagg 1320
acctggccctc gcagatcaac ctcatccctc tggAACGCTC gtggtatgtt atgctggagc 1380
agttcctcat gaagtatgtg tggagcgcct cggccctgct catggtggct gtccccatca 1440
tcactgcccac tggctactca gagtcagatg cagaggccgt gaagaaggca gccttggaaa 1500
agaaggagga ggagctgggtg agcgagcgc cagaaggccct cactattgccc cgcaacctcc 1560
tgacagcggc tgcaagatgcc attgagcggc tcatgtcgct gtacaaggag gtgacggagc 1620
tggctggcta cacagccgg gtgcacgaga tggccaggat atttgaagat gttcagcgct 1680
gtcacttcaa gagggccagg gagctagagg acgctcaggc ggggtctggg accataggcc 1740
ggctctgggtg ccgtgtggag gggcccttgc agatccgagg ccaggtgggt gatgtggaaac 1800
aggggatcat ctgcgagaac atccccatcg tcacgcctc aggagagggt gtggtgccca 1860
gcctcaacat cagggtggag gaaggcatgc atctgtcat cacaggcccc aatggctgcg 1920
gcaagagctc cctgttccgg atccctgggtg ggctctggcc cacgtacggt ggtgtgtct 1980
acaagcccccc accccagcgc atgttctaca tcccgccagag gccctacatg tctgtgggt 2040
ccctgcgtga ccaggtgatc taccggact cagtggagga catgcaaagg aagggtact 2100
cgagcggcga cctggaaagcc atccctggacg tcgtgcaccc gcaccacatc ctgcagcggg 2160
aggagggttg ggaggctatg tggactggc aggacgtctt gtcgggtggc gagaagcaga 2220
aatcgccat ggcccgcatg ttctaccaca ggcccaagta cgcctctctg gatgaatgca 2280
ccagcggcgt gaggatcgac gtggaaaggca agatcttca ggcggccaa gacgcggcga 2340
ttggccctgtc ctccatcacc caccggccct ccctgtggaa ataccacaca cacttgctac 2400
agttcgatgg ggagggccggc tggaaagttcg agaagctggc ctcagctgcc cgcctgagcc 2460
tgacggagga gaagcagcgg ctggagcgc agctggccgg cattcccaag atgcagcggc 2520
gcctccagga gctctggccag atccctggccg aggccgtggc cccagcgcac gtggccggcac 2580

ctagccccca agggccctgggt ggcctccagg gtgcctccac ctgacacaac cgtccccggc 2640
ccctgccccg ccccccaagct cgatcacat gaaggagaca gcagcacca cccatgcacg 2700
caccggccc ctgcattgcct ggcccctcct cctagaaaac cttcccgcc 2750

<210> 10
<211> 5011
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC1 (MRP1)

<400> 10
ccaggcgccg ttgcggggcc ggccccggct ccctgcgccc cgcgcgcgc cgccgcccgc 60
ggccgcgcg cgcgcgcag cgctagcgcc agcagccggg cccgatcacc cgccgccccgg 120
tgcccgcgc cgcgcgcgc agcaaccggg cccgatcacc cgccgccccgg tgccccccgc 180
cgccccgcgc accggcatgg cgctccgggg ctctgcagc gccgatggct ccgaccggct 240
ctgggactgg aatgtcacgt ggaataccag caacccgcac ttcaccaagt gctttcagaa 300
cacggtectc gtgtgggtgc ctgttttta cctctggcc tgtttccct tctacttcct 360
ctatctctcc cgacatgacc gaggctacat tcagatgaca cctctcaaca aaacccaaaac 420
tgccttggga ttttgcgtgt ggatcgctg ctgggcagac ctcttctact ctttctggga 480
aagaagtcgg ggcattattcc tggcccccagt gtttctggc agcccaactc tcttgggcat 540
caccacgctg ctgtcacct tttaattca gctggagagg aggaagggag ttcaagtctc 600
aggatcatg ctcaacttct ggctggtagc cctagtgtgt gcccctagcca tcctgagatc 660
caaaattatg acagccttaa aagaggatgc ccaggtggac ctgtttcgtg acatcactt 720
ctacgtctac tttccctct tactcattca gctcgtcttgc tcctgtttct cagatcgctc 780
accctgttc tcggaaacca tccacgaccc taatccctgc ccagagtcca gcgccctt 840
cctgtcgagg atcaccttct ggtggatcac agggttggatt gtccggggct accgcgcagcc 900
cctggagggc agtgaccctct ggctttaaa caaggaggac acgtcggaac aagtctgtgcc 960
tgtttggta aagaactgga agaaggaatg cgccaaagact aggaagcagc cggtaaggt 1020
tgtgtactcc tccaaggatc ctgcccagcc gaaagagagt tccaagggtgg atgcgaatga 1080
ggaggtggag gctttgatcg tcaagtcccc acagaaggag tggAACCCCT ctctgtttaa 1140
ggtgttatac aagaccttgc ggcctactt cctcatgagc ttcttcttca aggccatcca 1200
cgacctgtatg atgtttccg ggcgcagat cttaaaggatg ctcatcaagt tcgtgaatga 1260
cacgaaggcc ccagactggc agggtactt ctacaccgtg ctgtcttttgc tcactgcctg 1320
cctgcagacc ctgcgtctgc accagtactt ccacatctgc ttgcgtctgt gcattgaggat 1380
caagaccgcgt gtcatgggg ctgtctatcg gaaggccctg gtatccatca attcagccag 1440
aaaatctcc acggtcgggg agattgtcaa cctcatgtct gtggacgctc agaggttcat 1500
ggacttggcc acgtacattt acatgatctg gtcagccccctt ctgcgaatgtca tccttgcct 1560
ctacctcttgc tggctgaatc tggcccttc ctgcgtggct ggagtggcg tgatgtct 1620
catgggtcccc gtcaatgtctg tgatggcgat gaagaccaag acgtatcagg tggcccacat 1680
gaagagcaaa gacaatcgga tcaagctgtat gaacgaaatt ctcaatggga tcaaagtgt 1740
aaagctttat gcctggggc tggcattcaa ggacaagggtg ctggccatca ggcaggagga 1800
gctgaaggtg ctgaagaatg ctgcctacat gtcagccgtg ggcacccatca cctgggtctg 1860
cacgccttt ctgggtggct tggcacatt tggctctac gtgaccattt acgagaacaa 1920
catcctggat gcccagacacg cttcgtgtc tttggcttgc ttcaacatcc tcgggtttcc 1980
cctgaacatt ctccccatgg tcatcagcag catcgatgc gcgaggtgtct ccctcaaaccg 2040
cctgaggatc ttctctctcc atgaggagct ggaacctgac agcatcgac gacggcctgt 2100
caaagacggc gggggcacga acagcatcac cgtgaggaat gccacattca cctggcccg 2160
gagcgaccct cccacactga atggcatcac tttccatcc cccgaagggtg ctttgggtggc 2220
cgtgggtggc caggtgggt gggaaagtc gtcctgtct tcagccctct tggctgagat 2280
ggacaaagtg gggggcacg tggctatcaa gggctccgtg gctatgtgc cacagcaggc 2340
ctggattcag aatgatttctc tccgagaaaa catcctttt ggtatgtcagc tggaggaacc 2400
atattacagg tccgtatac aggccgtgc cttccatcc gacctggaa tcctgcccag 2460
tggggatcgg acagagattg gcgagaaggcg cgtgaacctg tctggggcc agaagcagcg 2520
cgtgaggcctg gcccggccg tggactccaa cgctgacatt taccttctcg atgatcccct 2580
ctcagcagtg gatgcccattg tggaaaaca catctttgaa aatgtgatttgc gcccccaagg 2640

gatgctgaag aacaagacgc ggatcttggt cacgcacagc atgagctact tgccgcaggt 2700
 ggacgtcatc atcgcatga gtggcggcaa gatctctgag atgggctcct accaggagct 2760
 gctggctcga gacggccct tcgctgagtt cctgcgtacc tatgccagca cagagcagga 2820
 gcaggatgca gaggagaacg ggtcacggg cgtcagcgtt ccaggaaagg aagcaaagca 2880
 aatggagaat ggcatgctgg tgcacggacag tgcaggaaag caactgcaga gacagctcag 2940
 cagtcctcc tcctatagtg ggacatcag caggcaccac aacagcaccc cagaactgca 3000
 gaaagctgag gccaagaagg aggagacacgta gaagctgatg gaggctgaca aggccagac 3060
 agggcaggc aagcttccg tgcactggaa ctacatgaag gccatcgac tcttcatctc 3120
 ctccctcage atcttccttt tcatgtgtaa ccatgtgtcc ggcgtggctt ccaactattg 3180
 gctcagcctc tggactgatg accccatcgt caacggact caggagcaca cgaaagtccg 3240
 gctgagcgtc tatggagccc ttggcatttc acaaggatc gccgttggctt gctactccat 3300
 ggcgtgtcc atcgggggaa tcttggcttc cgcgtgtctg cacgtggacc tgctgcacag 3360
 catcctgcgg tcacccatga gcttcttga gcggaccccc agtggaaacc tggtaaccg 3420
 ctcttccaag gagctggaca cagtggactc catgatcccg gaggtcatca agatgttcat 3480
 gggctccctg ttcaacgtca ttggcgttgc catcggttatac ctgctggcca cgcccatcgc 3540
 cgcacatc atcccccccc ttggcctcat ctacttcttgc gtccagaggt tctacgtggc 3600
 ttctcccg cagctgaagc gcctcgagtc ggtcagccgc tccccgtctt attccctattt 3660
 caacgagacc ttgctgggg tcagcgtcat tcgagccttc gaggagcagg agcgttcat 3720
 ccaccagagt gacctgaagg tgacgagaa ccagaaggcc tattacccca gcatcgtggc 3780
 caacaggtgg ctggccgtgc ggctggagtg tggggcaac tgcatcggtt tggttgc 3840
 cctgtttcgt gtgatctcca ggcacagcct cagtgcgtgc ttggggggcc tctcagtgtc 3900
 ttactcattt caggtcacca cgtacttgaa ctggctgggtt cggatgtcat ctgaaatgga 3960
 aaccaacatc gtggccgtgg agaggctcaa ggagtattca gagactgaga aggaggcgcc 4020
 ctggcaaatc caggagacag ctccgccccag cagctggccc caggtgggcc gagtggaaatt 4080
 ccgaactac tgcctgcgt accgagagga cctggacttc gttctcaggc acatcaatgt 4140
 cacatcaat gggggagaaa aggtcggcat cgtggggcgg acgggagctg ggaagtgc 4200
 cctgaccctg ggcttatttc ggtcaacga gtctggccaa ggagagatca tcatcgatgg 4260
 catcaacatc gccaagatcg gcctgcacga cctccgcttc aagatcacca tcatccccca 4320
 ggaccctgtt ttgtttcgg gttccctccg aatgaacctg gaccattca gccagtaactc 4380
 ggtgaagaa gtctggacgt ccctggagct ggcccacctg aaggacttgc tgtagccct 4440
 tcctgacaag ctagaccatg aatgtgcaga aggccccggg aacctcgttgc tggggcagcg 4500
 ccagcttgc tgcctagccc gggccctgtt gaggaaagacg aagatccttgc tggttgc 4560
 ggcacggca gccgtggacc tgaaaacggg cgcacccatc cagtccacca tccggacaca 4620
 gttcgaggac tgcaccgtcc tcaccatcgc ccaccggctc aacaccatca tggactacac 4680
 aagggtgatc gtctggaca aaggagaaat ccaggagttac ggccgcggccat cggaccctcct 4740
 gcagcagaga ggtctttctt acagcatggc caaagacgccc ggcttgggtt gggcccccaga 4800
 gctggcatat ctggtcagaa ctgcaggggcc tatatgccag cgcccaggaa ggagtcgtt 4860
 cccctgttaa accaagcctc ccacactgaa accaaaacat aaaaaccaaa cccagacaac 4920
 caaaacatcat tcaaagcgc agccaccgccc atccggtccc ctgcctggaa ctggctgtga 4980
 agacccagga gagacagaga tgcgaaccac c 5011

<210> 11
 <211> 3924
 <212> DNA
 <213> Human

<220>
 <223> human cDNA of ABCB4 (MDR3)

<400> 11
 cctgccagac acgcgcgagg ttgcaggctg agatggatct tgaggcggca aagaacggaa 60
 cagcctggcg ccccacgagc gcggaggggcg actttgaact gggcatcagc agcaaaacaaa 120
 aaaggaaaaa aacgaagaca gtaaaaatga ttggagtatt aacattgttt cgatactccg 180
 attggcagga taaattgttt atgtcgctgg gtaccatcat ggcctatcgatc cacggatcag 240
 gtctccccct catgatgata gtatttggag agatgactga caaatggatc gatactgc 300
 gaaacttctc ctttccagtg aactttcct tgcgtgttgc caatccaggc aaaattctgg 360
 aagaagaaat gactagatc gcatattact actcaggatt ggtgtgttgc gttcttgc 420

ctgcctatat acaagtttca ttttggactt tggcagctgg tcgacagatc agggaaaatta 480
ggcagaagtt ttttcatgct attctacgc acggaaatagg atggtttgac atcaatgaca 540
ccactgaact caatacgcgg ctaacagatg acatctccaa aatcaatgtt ggaattgggt 600
acaagggttgg aatgttcttt caagcagtag ccacgtttt tgcccttgc atagtggtt 660
tcatcagagg atggaagctc acccttgtga taatggccat cagccctatt cttaggactct 720
ctgcagccgt ttgggcaaag atactctcg catttagtga caaagaacta gctgcttatg 780
aaaaagcagg cgccgtggca gaagaggctc tgggggcccatt caggactgtg atagcttcg 840
ggggccagaa caaagagctg gaaaggatc agaaacattt agaaaatgcc aaagagatgg 900
gaattaaaaa agtatttca gcaaaccattt ccattgggtat tgccttcctg ttaatataatg 960
catcatatgc actggccctt tggatggat ccactctagt catatcaaaa gaatataacta 1020
ttggaaatgc aatgacagtt ttttttcaat tcctaattgg agcttcagt gttggccagg 1080
ctgccccatg tattgtatgct tttgccaatg caagaggagc agcatatgtg atctttgata 1140
ttattgataa taatcctaaa attgacagtt tttcagagag aggacacaaa ccagacagca 1200
tcaaaggaa ttggagttc aatgatgtc acctttctt cccttcgat gctaacgtca 1260
agatcttgc aaaaagccaa ctgaagggtc agagtggca gacgggtggcc ctgggtggaa 1320
gtagtggctg tggaaagagc acaacggtcc agctgataca gaggctctat gaccctgtatg 1380
agggcacaat taacattgtat gggcaggata ttaggaactt taatgtaaac tatctgagg 1440
aaatcattgg tgggtgtgatc caggagccgg tgcgtttt caccacaatt gctgaaaata 1500
tttggatgg ccgtggaaat gtaaccatgg atgagataaa gaaagctgtc aaagaggcca 1560
acgcctatga gtttatcatg aaattaccac agaaatttga caccctgggtt ggagagagag 1620
gggcccagct gagtgggtgg cagaagcaga ggatcgccat tgcacgtgcc ctggttcga 1680
accccaagat cttctgtcg gatgaggcca cgtcagcatt ggacacagaa agtgaagctg 1740
aggtacaggc agctctggat aaggccagag aaggccggac caccattgtg atagcacacc 1800
gactgtctac ggtccgaaat gcagatgtca tcgctgggtt tgaggatgga gtaattgtgg 1860
agcaaggaag ccacagcgaa ctgatgaaga agaaggggt gtacttcaa cttgtcaaca 1920
tgcagacatc aggaagccag atccagtcg aagaatttga actaaatgtat gaaaaggctg 1980
ccactagaat gggcccaaattt ggctggaaat ctcgcctatt taggcattct actcagaaaa 2040
acctaaaaaa ttccaaaatg tgcagaaga gccttgatgt gaaaccgat gacttgaag 2100
caaatgtgcc accagtgtcc tttctgaagg tcctgaaact gaataaaaca gaatggccct 2160
actttgtcgt gggAACAGTA tgcgttgcattt ccaatggggg gcttcagccg gcattttcag 2220
tcatatttctc agagatcata ggcattttt gaccaggcga tgcacgtg aagcagcaga 2280
agtgcacat attctctttt attttcttat ttctggaaat tatttctttt tttactttt 2340
tccttcaggg tttcagctt gggAAAGCTG gcgagatcctt caccagaaga ctgcggtaa 2400
tggctttaa agcaatgtca agacaggaca tgcgtgggtt tgatgaccat aaaaacagta 2460
ctggtgact ttctacaaga cttgcacag atgctgccc agtccaaggaa gccacaggaa 2520
ccagggtggc tttaattgca cagaatatacg ctaaccttgg aactggattt atcatatcat 2580
ttatctacgg ttggcagttt accctattgc tattagcagt tggttccattt attgtgtgt 2640
caggaattgt tggaaatggaa ttgttggctg gaaatgccc aagagataaa aaagaactgg 2700
aagctgtgg aaagattgca acagaggca tagaaaaat taggacagtt gtgtctttga 2760
cccaggaaag aaaattgaa tcaatgtatg ttggaaaattt gtatggacct tacaggaatt 2820
ctgtgcagaa ggcacacatc tatggattt cttttagtat ctcacaagca ttatgtatt 2880
tttcctatgc cgggtgtttt cgattttgtg catatctcat tgcgttgcgat ctaggacatg 2940
tcagagatgt tattctgtgt tttctgcaat ttgttattttgg tgcagtggct ctaggacatg 3000
ccagttcatt tgctccagac tatgctaaag ctaagctgtc tgcagccac ttattcatgc 3060
tgtttggaaag acaacctctg attgacagct acagtgaaga ggggtgtaaag cctgataat 3120
ttgaaggaaa tataacattt aatgaagtcg tggcaacta tcccacccga gaaacgtgc 3180
cagtgcctca ggggtctgago ctggaggtga agaaaggcca gacactagcc ctggggggca 3240
gcagtggctg tggaaagagc acgggtgtcc agctctggg gcggttctac gacccttgg 3300
cggggacagt gcttcctcgat ggtcaagaag caaagaaaact caatgtccag tggctcagag 3360
ctcaactcgg aatctgtgtc caggagccat tccattttga ctgcacgtt gcccagaata 3420
ttgcctatgg agacaacagc cgggttgtat cacaggatga aattgtgtt gcaagccaaag 3480
ctgccaacat acatccttc atcgagacgt tacccttacaa atatgaaaca agagtgggg 3540
ataagggac tcaagctctca ggaggtcaaa aacagaggat tgctattgccc cgagccctca 3600
tcagacaacc tcaaatccctc ctgttggatg aagctacatc agctctggat actgaaagtg 3660
aaaaggttgc ccaagaagcc ctggacaaag ccagagaagg ccgcacactgc attgtgattt 3720
ctcaccgcct gtccaccatc cagaatgcag acttaatagt ggtgttgcg aatggggag 3780
tcaaggagca tggcagcgtatc cagcagctgc tggcacagaa aggcatctat tttcaatgg 3840

tcagtgtcca ggctgggaca cagaacttat gaactttgc tacagtatat tttaaaaata 3900
aattcaaatt attctaccca tttt 3924

<210> 12
<211> 1725
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB6

<400> 12
cctccctgtg gatccgggtg cagcagttca cgtctcgcg ggtggagctg ctcatcttct 60
cccacctgca cgagctctca ctgcgctggc acctggggcg cccgacaggg gaggtgctgc 120
ggatcgccga tcggggcaca tccagtgtca cagggctgtc cagctacctg gtgttcaatg 180
tcatccccac gctggccgac atcatcattt gcatcatcta cttcagcatg ttcttcaacg 240
cctggtttgg cctcatttgtt ttcctgtca tgagtctta cttcacccctg accattgtgg 300
tcactgagt gagaaccaag ttctgcgtg ctatgaacac acaggagaac gctacccggg 360
cacagcagt ggactctctg ctaaaacttcg agacgggtgaa gtattacaac gccgagagtt 420
acgaagtggg acgctatcga gaggccatca tcaaataatca gggtttggag tggaaagtctg 480
gcgccttactt ggttttacta aatcagaccc agaaccttggt gattgggctc gggctccctg 540
ccggctccct gctttgcgc a tactttgtca ctgagcagaa gctacaggtt ggggactatg 600
tgctctttgg cacctacatt atccagctgt acatgcccct caattgggtt ggcacctact 660
acaggatgat ccagaccaac ttcatgtaca tggagaacat gtttgacttg ctgaaagagg 720
agacagaagt gaaggacattt cctggagcag ggcccccctcg ctttcagaag ggccgtattt 780
agtttgagaa cgtgcacttc agtcatgtccg atgggggggaa gactctgcag gacgtgtctt 840
tcactgtgt gcttggacag acacttgcctt tgggtggggcc atctggggca gggaaagagca 900
caattttgcg cctgctgttt cgcttctacg acatcagctc tggctgcattc cgaatagatg 960
ggcaggacat ttcacaggtt acccaggcct ctctccggc tcacatttggaa gttgtcccc 1020
aagacactgt cctctttaat gacaccatcg ccgacaatat ccgttacggc cgtgtcacag 1080
ctggaaatga tgagggtggag gctgctgtc aggctgcagg catccatgtat gccattatgg 1140
ctttccctga agggtacagg acacagggtgg gcggaggggg actgaagctg agcggcgggg 1200
agaagcagcg cgtcgccatt gcccgcacca tcctcaaggc tccgggcattc attctgctgg 1260
atgaggcaac gtcagcgctg gatacatcta atgagagggc catccaggct tctctggcca 1320
aagtctgtgc caaccgcacc accatcgtag tggcacacag gctctcaact gtggtcaatg 1380
ctgaccagat cctcgtcattc aaggatggct gcatcggtt gaggggacgaa cacgaggctc 1440
tgttgtcccc aggtgggggt tatgtctgaca tgtggcagct gcagcaggaa caggaagaaaa 1500
cctctgaaga cactaaggct cagaccatgg aacgggtgaca aaagtttggc cacttccctc 1560
tcaaaagacta acccagaagg gaataagatg tgtctcctt ccctggctta tttcatcctg 1620
gtcttgggtt atgggtcttag ctatggtaag ggaaagggac ctttccgaaa aacatctttt 1680
ggggaaataa aaatgtggac tgtaaaaaaa aaaaaaaaaa aaaaa 1725

<210> 13
<211> 4776
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB11

<400> 13
gaatgtgaa aaccgagggtt ggaaaagggtt gtgaaacatt ttaactctcc acagtggagt 60
ccattatttc ctctggcttc ctcaaaattca tattcacagg gtcgttggct gtgggttgca 120
attaccatgt ctgactcagt aattcttcgaa agtataaaga aatttggaga ggagaatgat 180
ggtttgagt cagataaaatc atataataat gataagaaat caaggttaca agatgagaag 240
aaaggtgatg gcgttagagt tggcttctt caattgttc ggtttcttc atcaactgac 300
attggctga tggttgggg aagtttgtgt gcatttctcc atggaatagc ccagccaggc 360

gtgctactca tttttggcac aatgacagat gtttttattt actacgacgt tgagttacaa 420
gaactccaga ttcccaggaaa agcatgtgt aataacacca ttgttatggac taacagtcc 480
ctcaaccaga acatgacaaa tgaacacgt tgtgggttc tgaacatcga gagcgaaatg 540
atcaaatttg ccagttacta tgcttgcatt gctgtcgac tacttacac aggatatatt 600
caaatatgtcttgggtcat tgccgcagct cgtaaaaaatgag aaaattttac 660
tttaggagaa taatgagaat gaaaataggg tggtttgact gcaattcagt gggggagctg 720
aatacaagat tctctgtatga tattaataaa atcaatgatg ccatagctga ccaaatggcc 780
cttttcattc agcgcatgac ctcgaccatc tgtggttcc tggtggatt tttcaggggt 840
tgaaaactga ccttgggtat tatttctgtc agccctctca ttgggattgg agcagccacc 900
attggctctga gtgtgtccaa gtttacggac tatgagctga aggcttatgc caaagcaggg 960
gtggtggctg atgaagtcat ttcatcaatg agaacagtgg ctgcttttg tggtagaaaa 1020
agagaggttg aaaggtatga gaaaatctt gtgttcgccc agcgttgggg aattagaaaa 1080
ggaatagtga tgggattctt tactggattc gtgtgggtc tcatttttt gtgttatgca 1140
gtggccttctt ggtacggctc cacacttgcctt ctggatgaag gagaatatac accaggaacc 1200
cttgtccaga ttttccatg tgcatagta ggagctttaa atcttggcaa tgcctctcct 1260
tgtttggaaag ccttgcac ac tgacgtgc acagccacca gcattttga gacaatagac 1320
aggaaaccca tcattgactg catgtcagaa gatggttaca agttggatcg aatcaagggt 1380
gaaattgaat tccataatgt gaccttccat tattttccat gaccagagg gaagattcta 1440
aatgacctca acatggcat taaaccaggg gaaatgacag ctctggtagg acccagtgg 1500
gctggaaaaaa gtacagact gcaactcattt cagcgattct atgacccttg tgaaggaatg 1560
gtgaccgtgg atggccatga cattcgctc cttaacattc agtggcttag agatcagatt 1620
gggatagtgg agcaagagcc agttctgttc tctaccacca ttgcagaaaa tattcgctat 1680
ggcagagaag atgcaacaat ggaagacata gtccaaagctg ccaaggaggg caatgcctac 1740
aacttcatca tggacctgcc acagcaattt gacacccttgg ttggagaagg aggaggccag 1800
atgagtggtg gccagaaaca aagggttagt atgccttccat ccctcatccg aaatcccaag 1860
attctgtttt tggacatggc cacctcagct ctggacaatg agagtgaagc catggtgca 1920
gaagtgtca gtaagattca gcatgggcac acaatcattt cagttgctca tgccttgct 1980
acggtcagag ctgcagatac catcattggt tttgaacatg gcactgcagt ggaaagaggg 2040
accatgaaag aattactgga aaggaaagggt gtttacttca ctcttagtgc tttgcaagc 2100
cagggaaatc aagctcttaa tgaagaggac ataaaggatg caactgaaga tgacatgctt 2160
gcgaggacact ttagcagagg gagcttaccag gatagtttaa gggcttccat ccggcaacgc 2220
tccaagtctc agctttctta cctgggtgcac gaaaccttcat tagctgttg agatcataag 2280
tctacctatg aagaagatag aaaggacaag gacatttctg tgcaggaaga agttgaacct 2340
gcccccagtta ggaggattct gaaattcagt gctccagaat gcccctacat gctggtaggg 2400
tctgtgggtg cagctgtgaa cgggacagtc acacccttgc atgcctttt attcagccag 2460
attcttggga cttttcaat tcttgataaa gaggaacaaa ggtcacagat caatgggttg 2520
tgcttacttt ttgttagcaat ggctgtgttca tctctttca cccaaatttct acagggatatt 2580
gccttgcata aatctggga gctcctaaca aaaaggctac gtaaattttgg tttcagggca 2640
atgctggggc aagatattgc ctggtttgc gacccatgg atagccctgg agcattgaca 2700
acaagacttg ctacagatgc ttcccaagttt caagggctg ccggctctca gatcgggatg 2760
atagtcaatt ctttcaactt cgtcactgtg gccatgatca ttgccttctc cttagctgg 2820
aagctgagcc tggtagtctt gtgcttcttc cccttcttgg ctttattcagg agccacacag 2880
accaggatgt tgacaggatt tgcccttcga gataaggcagg ccctggagat ggtgggacag 2940
attacaaatg aagccctcag taacatccgc actgttgctg gaattggaaa ggagaggcgg 3000
ttcatttgcg cacttgagac tgtagctggag aagcccttca agacagccat tcagaaagcc 3060
aatatttacg gattctgtt tgccttgc cagtgcata tgtttattgc gaattctgtt 3120
tcctacagat atggaggtta cttaatctcc aatgaggggc tccatttcag ctatgtgttc 3180
agggtgatct ctgcagggtt actgagtgca acagcttttgc gaagagcctt ctcttacacc 3240
ccaagttatg caaaagctaa aatatcagct gcacgcctt ttcaactgtt ggaccgacaa 3300
cccccaatca gtgtatacaa tactgcaggat gaaaaatggg acaacttcca ggggaagatt 3360
gattttgttg attgttaatt tacatatcct tctcgacccgt actcgcaagt tctgaatgg 3420
ctctcagttt cgtttagtcc agggcagaca ctggcgtttgc ttgggagcag tggatgtggc 3480
aaaagcacta gcattcagct gttggAACGT ttctatgtatc ctgtatcaagg gaaggtgtatg 3540
atagatggtc atgacagcaa aaaagtaaat gtccagttcc tccgctcaaa cattggaaatt 3600
gtttcccagg aaccagtgtt gtttgcctgt agcataatgg acaatatcaa gtatggagac 3660
aacaccaaaag aaattccat gaaaagagtc atagcagctg caaaacagggc tcagctgcatt 3720
gattttgtca tgcactccc agagaaatat gaaaactaacg ttgggtccaa ggggtctcaa 3780

ctctctagag gggagaaaaca acgcattgct attgctcggg ccattgtacg agatcctaaa 3840
atcttgcata tagatgaagc cacttctgcc ttagacacag aaagtaaaaa gacggtcag 3900
gttgctctag acaaaggccag agagggtcg acctgcatt tcattgccc tcgcttgc 3960
accatccaga acgcggatat cattgtgtc atggcacagg gggtggtat tgaaaaggaa 4020
accatcgaa aactgtggc cccaaaaggaa gcctactaca aactagtca cactggatcc 4080
cccatcgat gacccaatgc aagaatctca gacacacatg acgcaccagt tacagggtt 4140
gttttaaag aaaaaaaca tcccagcacg agggattgct gggattgtt ttctttaaa 4200
gaagaatntn nntattttac ttttacnnnc ntttcctac atcgaatcc aanctaattt 4260
ctaattggcct tccataataa ttctgttata gatgtgtata cagaaaaatga aagaaactag 4320
ggtccatgtg agggaaaaacc caatgtcaag tggcagctca gccaccactc agtgcttc 4380
tgtcaggag ccagtctga ttaatatgtg ggaatttagt agacatcagg gagtaagtga 4440
cacttgaac tcctcaagga cagagaactg tcttcattt ttgaaccctc ggtgtacaca 4500
gaggcgggtc tgtaacaggc aatcaacaaa cgtttcttga gctagaccaa ggtcagattt 4560
gaaaagaaca gaaggactga agaccagctg tgtttcttaa ctaaattttgt cttaaagtg 4620
aaaccagctt cttcatctc taaggctaag gataggaaa gggtggatg ctctcangct 4680
gagggaggca naaaggaaa gtattancat gagcttcca nttagggctg ttgatttatg 4740
cttaacttc anantgagtg tagggtggtg anncta 4776

<210> 14
<211> 5838
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC5 (MRP5)

<400> 14
ccgggcagggt ggctcatgct cgggagcgtg gttgagcggc tggcgcgggt gtcctggagc 60
aggggcgcag gaattctgat gtgaaaactaa cagtctgtga gcccctggAAC ctccgctc 120
agaagatgaa ggatatcgac atagaaaaag agtataatcat ccccaagtcc gggtatagaa 180
gtgtgaggaa gagaaccaggc acttctggaa cgcacagaga ccgtgaagat tccaagttca 240
ggagaactcg accgttggaa tgccaagatg ccttggaaac agcagccccg gccgaggggcc 300
tctcttctga tgcctccatg cattctcagc tcagaatcct ggatgaggag catcccaagg 360
gaaagtacca tcatggcttg agtgcctgtca agccccatccg gactacttcc aaacaccaggc 420
accagggtggca caatgttggg cttttttctt gtatgacttt ttcgtggct tcttctctgg 480
cccggtggc ccacaagaag ggggagctct caatggaaaga cgtgtggct ctgtccaagc 540
acgagtcttc tgacgtgaac tgcaagaagac tagagagact gtggcaagaa gagctgaatg 600
aagttgggcc agacgtgtct tccctgcgaa gggttgtgtg gatcttctgc cgcaccaggc 660
tcatcctgtc catcgtgtgc ctgatgtatca cgcagctggc tggcttcagt ggaccaggct 720
tcatggtgaa acaccttctt gaggatacc aggcaacaga gtctaacctg cagtagact 780
tgttggtagt gctgggcctc ctccctgacgg aaatcgtgcg gtcttggctg cttgactga 840
cttggcatt gaattaccga accgggtgtcc gcttgcgggg ggcacatccta accatggcat 900
ttaagaagat ccttaagttt aagaacatta aagagaaaatc cctgggttag ctcataaca 960
tttgcctcaa cgtggcag agaatgtttt aggcaacaggc cgtggcagc ctgctggctg 1020
gaggaccgt tggccatc ttaggcatga ttataatgt aattattctg ggaccaacag 1080
gcttcctggg atcagctgtt ttatcctt tttaccaggc aatgatgttt gcatcacggc 1140
tcacagcata ttccaggaga aaatgcgtgg ccgcacggc tgaacgtgtc cagaagatga 1200
atgaagttct tacttacatt aaatttatca aaatgtatgc ctgggtcaaa gcattttctc 1260
agagtgttca aaaaatccgc gaggaggagc gtcggatatt ggaaaaagcc gggtacttcc 1320
agggtatcac tgggggtgtg gctcccattt tgggtggat tgccagcgtg gtgaccttct 1380
ctgttcatat gaccctggc ttgcattgtca cagcagcaca ggcttcaca gtgggtgacag 1440
tcttcaattc catgactttt gcttggaaag taacaccgtt ttcaagtttgc tccctctc 1500
aaggctcagt ggctgttgac agatthaaga gtttggttct aatgaaagag gttcacatga 1560
taaagaacaa accagccagt cctcacatca agatagagat gaaaaatgcc accttggcat 1620
gggactcctc ccactccagt atccagaact cgcggcaagct gaccccaaaa atgaaaaaaag 1680
acaagaggc ttccaggggc aagaaagaga aggtgaggca gtcgcagcgc actgagcatc 1740
aggcggtgtc ggcagagcag aaaggccacc tcctctggc cagtgacgag cggcccagtc 1800

ccgaaggagga agaaggcaag cacatccacc tggccaccc ggcgttacag aggacactgc 1860
acagcatcgatctggagatc caagagggtta aactggttgg aatctgcggc agtgtggaa 1920
gtggaaaaac ctctctcatt tcagccattt taggcagat gacgcttcta gagggcagca 1980
ttgcaatcag tggAACCTC gcTTATGTGG CCCAGCAGGC CTGGATCCTC AATGCTACTC 2040
tgagagacaa catcctgttt ggaaggaaat atgataga aagataacaac tctgtgctga 2100
acagctgtgcctgagggcct gacctggcca ttcttcccag cagcgacctg acggagattg 2160
gagagcgagg agccaaacctg agcggtgggc agcgccagag gatcagcctt gccgggcct 2220
tgtatagtga caggagcatc tacatcctgg acgacccctt cagtgcctt gatgccatg 2280
tggcaacca catcttaat atgtctatcc ggaaacatct caagtccaaag acagttctgt 2340
ttgttaccca ccagttacag tacctgggtt actgtatgaa atgtatcttc atgaaagagg 2400
gctgttattac ggaaagaggc acccatgagg aactgtatgaa tttaaatggt gactatgcta 2460
ccatTTTAA taacctgtt cttggagaga caccggcagt tgagatcaat tcaaaaaagg 2520
aaaccagtgg ttcacagaag aagtccaaag acaagggtcc taaaacagga tcagtaaaga 2580
agaaaaaaaggc agtaaagccca gaggaaaggc agcttgcata gctggaaagag aaaggcagg 2640
gttcagtgcc ctggtcagta tatgggtgtt acatccaggc tgctggggc cccttggcat 2700
tcctggttat tatggccctt ttcatgctga atgttaggcag caccgccttc agcacctgg 2760
ggtttagtta ctggatcaag caaggaagcg ggaacaccac tggactcga gggaaacgaga 2820
cctcggtgag tgacagcatg aaggacaatc ctcataatgca gtactatgcc agcatctacg 2880
ccctctccat ggcagtcatg ctgatcctga aagccattcg aggagttgtc tttgtcaagg 2940
gcacgctgctg agttccctcc cgctgcatg acgagctttt cccaaaggatc ttccaaagcc 3000
ctatgaagtt ttttgacacg acccccacag ggaggattct caacaggttt tccaaagaca 3060
tggatgaagt tgacgtgcgg ctggcgttcc aggccagat gttcatccag aacgttatcc 3120
tgggttctt ctgtgtggaa atgatcgcag gagtcttccc gtggttcctt gtggcagtgg 3180
ggccccctgt catcctctt tcagtcctgc acattgttcc cagggtcctt attcgggagc 3240
tgaagcgtct ggacaatatc acgcagtcac ctttccttc ccacatcactg tccagcatac 3300
agggccttgc caccatccac gcctacaata aaggccagga gtttctgcac agataccagg 3360
agctgctggat tgacaaccaa gtcctttt ttttgttac gtgtgcgtat cgggtggctgg 3420
ctgtgcggct ggacccatc agcatcgccc tcataccac cacggggctg atgatcggtc 3480
ttatgcacgg gcagattccc ccagctatg cgggtctgc catctttat gctgtccagt 3540
taacggggct gttccagttt acggtcagac tggcatctga gacagaagct cgattcacct 3600
cgggtggagag gatcaatcactacattaaaga ctctgtcctt ggaaggacact gccagaatta 3660
agaacaaggc tcctccctt gactggcccc aggaggggaga ggtgaccttt gagaacgcag 3720
agatgaggtt ccgagaaaac ctcccttgc tcctaaagaa agtataccctt acgatcaaac 3780
ctaaagagaa gattggcatt gtggggcggg caggatcagg gaagtccctcg ctggggatgg 3840
ccctcttccg tctggggat ttatctggag gctgcataa gattgtatgg gtgagaatca 3900
gtgatattgg ctttgcgcac ctccgaagca aactctctat cattcctcaa gagccgggtc 3960
tgttcagttt cactgtcaga tcaaattttt accccttcaa ccagtacact gaagaccaga 4020
tttgggatgc cttggagagg acacacatga aagaatgtat tgctcagcta cctctgaaac 4080
ttgaatctga agtgtatggg aatggggata acttctcagt gggggacgg cagctttgt 4140
gcatacgtag agccctgtc cggccactgtat agattctgtat tttagatgaa gcccacagctg 4200
ccatggacac agagacagac ttattgattt aagagaccat ccgagaagca tttgcagact 4260
gtaccatgtt gaccattgtcc catcgctgc acacggttt cggctccgtt aggattatgg 4320
tgctggccca gggacaggtt gttggatTTT acacccatc ggtccttctg tccaaacgaca 4380
gttcccgatt ctatgcctatg tttgctgtc cagagaacaa ggtcgctgtc aagggtgtac 4440
tcctccctgt tgacgaagtc tctttctttt agaggatgtc cattccctgc ctggggcggg 4500
ccctctatcg cgtccctcta ccggaaacctt gcctttctcg attttatctt tcgcacagca 4560
gttccggatt ggcttgcgtg tttcactttt agggagatgc atattttgtat tattgttattt 4620
attccatattt catgtaaaca aaatttagtt tttgttcttta attgcactct aaaaggttca 4680
ggaaacccgtt attataattt tttttttttt tttttttttt tttttttttt tttttttttt 4740
tctatataattt attctgtaca tagcctatat ttacagtggaa aatgtaaatgtt gtttattttt 4800
tattaaaata agcactgtgc taataacagt gcatatttcct ttctatcatt tttgtacagt 4860
ttgtctgtact agagatctgg ttttgcattt agactgtagg aagagtagca tttcattttt 4920
ctctagctgg tggtttacgg gtggcagggtt ttctgggtgt cccaaaggaaag acgtgtggca 4980
atagtggcc ctccgacacgc ccctctgcgc gcctcccccac agccgctcca ggggtggctg 5040
gagacgggtt ggccggctggaa gaccatgcag agcgccgtga gttctcagggtt ctcctgcctt 5100
ctgtcctgtt gtcacttact gtttctgtca ggagagcagc ggggcgaagg ccaggccctt 5160
tttactccc tccatcaaga atggggatca cagagacatt ctcctgcggcc ggggagttt 5220

tttcctgcct tcttctttt gctgttgtt ctaaacaaga atcagtctat ccacagagag 5280
tcccactgcc tcaggttcct atggctggcc actgcacaga gctctccagc tccaagacct 5340
gttggttcca agccctggag ccaactgctg cttnnntgagg tggcacttt tcatttgcc 5400
atccccacac ctccacagtt cagtggcagg gctcaggatt tcgtgggtct gtttcctt 5460
ctcacccgca ctcgtcgaca gtctctctc ctctctcccc tcaaagtctg caactttaag 5520
cagctcttgc taatcagtgt ctcacactgg cgtagaaagtt ttgtactgt aaagagacct 5580
accccagggtt gctgggtgct gtgtggttt gtgtgttccc gcaaaccccc tttgtgctgt 5640
ggggctggta gctcagggtt ggctggtcac tgctgtcattc agttgaatgg tcagcgttgc 5700
atgtcgtgac caactagaca ttctgtcgcc ttagcatgtt tgctgaacac cttgtggaag 5760
caaaaatctg aaaatgtgaa taaaattatt ttggattttt taaaaaaaaaaaaaaa 5820
aaaaaaaaaaa aaaaaaaaaa 5838

<210> 15
<211> 7323
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCA5

<400> 15
gccagaggcg ctcttaacgg cgtttatgtc ctttgcgtc tgaggggcct cagctctgac 60
caatctggtc ttctgtgtt cattagcatg ggcttcgtga gacagataca gctttgctc 120
tggaaagaact ggaccctgctg gaaaaggca aagattcgct ttgtgggttga actcgtgtgg 180
cctttatctt tatttctgtt ctgtatctgg ttaaggaatg ccaaccgcct ctacagccat 240
catgaatgcc atttcccaa caaggcgtatg ccctcagcag gaatgctgcc gtggctccag 300
gggatcttct gcaatgtgaa caatccctgt ttcaaaagcc ccaccccagg agaatctcct 360
ggaattgtgt caaactataa caactccatc ttggcaaggg tatatcgaga ttttcaagaa 420
ctcctcatga atgcaccaga gagccagcac cttggccgtt tttggacaga gctacacatc 480
ttgtcccaat tcatggacac cctccggact cacccggaga gaattgcagg aagaggaata 540
cgaataaggaa atatctgaa agatgaagaa acactgacac tatttctcat taaaaacatc 600
ggcctgtctg actcagtgtt ctaccttctg atcaactctc aagtccgtcc agagcagttc 660
gctcatggag tcccgacact ggcgctgaag gacatcgct gcagcggggc ctcctggag 720
cgcttcatca tcttcagcca gagacgcggg gcaaagacgg tgctgtatgc cctgtgtcc 780
ctctcccagg gcaccctaca gtggatagaa gacactctgt atgccaacgt ggacttctc 840
aagcttcccttcc gtgtgcttcc cacactccta gacagccgtt ctcaggtat caatctgaga 900
tcttggggag gaatattatc tgatatgtca ccaagaattc aagagtttccatccatcc 960
agtatgcagg acttgcgtg ggtgaccagg cccctcatgc agaatgggtt tccagagacc 1020
tttacaaagc tgatggcat cctgtctgac ctcctgtgtt gtcaccccgaa gggaggtggc 1080
tctcgggtgc tctccttcaa ctggatgaa gacaataact ataaggcctt tctggggatt 1140
gactccacaa ggaaggatcc tatctattct tatgacagaa gaacaacatc cttttgtaat 1200
gcattgatcc agagccttggaa gtcaaaatcct ttaaccaaaa tcgttggag ggcggcaaaag 1260
cctttgtga tggaaaaat cctgtacact cctgattcac ctgcagcacg aaggatactg 1320
aagaatgccca actcaacttt tgaagaactg gaacacgtt ggaagttggt caaaggctgg 1380
gaagaagtag ggccccagat ctggacttcc tttgacaaca gcacacagat gaacatgatc 1440
agagataccc tggggaaaccc aacagtaaaa gacttttga ataggcagct tggtaagaa 1500
ggtattactg ctgaagccat cctaaacttc ctctacaagg gcccctgggg aagccaggct 1560
gacgacatgg ccaacttcga ctggaggggac atatttaaca tcaactgatcg caccctccgc 1620
ctggtaatc aataccttggaa gtgttggtc ctggataagt ttgaaagcta caatgatgaa 1680
actcagctca cccaaacgtgc cctctctcta ctggaggaaa acatgttctg gcccggagt 1740
gtattccctg acatgtatcc ctggaccagc tctctaccac cccacgtgaa gtataagatc 1800
cgaatggaca tagacgtgtt ggagaaaacc aataagatta aagacaggta ttgggattct 1860
ggtcccagag ctgatccctg ggaagatttc cggtacatct gggggcgggtt tgccttatctg 1920
caggacatgg ttgaacacagg gatcacaagg agccaggtgc aggcggaggc tccagttgg 1980
atctacctcc agcagatgcc ctacccctgc ttctgtggacg attcttcat gatcatcctg 2040
aaccgctgtt tcccttatctt catggtctg gcatggatct actctgtctc catgactgtg 2100
aagagcatcg tcttggagaa ggagttgcga ctgaaggaga ctttgaaaaa tcaggggtgtc 2160

tccaaatgcag tgattttgt tacctgggtc ctggacagct tctccatcat gtcgatgagc 2220
atcttcctcc tgacgatatt catcatgcat gtaagaatcc tacattacag cgaccattc 2280
atccttcc ttgttctgtt ggcttctcc actgccacca tcattgtgt ctttctgtc 2340
agcacctct tctccaaggc cagtctggca gcagcctgta gtgggtgtcat ctatttcacc 2400
ctctacactc cacacatcct gtgcttcgc tggcaggacc gcatgaccgc tgagctgaag 2460
aaggctgtga gcttactgtc tccgggtggca tttggatttg gcactgagta cctggttcgc 2520
tttgaagagc aaggcctggg gctgcagtgg agcaacatcg ggaacagtcc cacgaaagg 2580
gacaattca gcttcctgtc gtccatgcat atgatgtcc ttgtatgtc tgcgttatggc 2640
ttacttcgtt ggtaccttga tcaggtgttt ccaggagact atggaacccc acttccttgg 2700
tactttcttc tacaagagtc gtattggctt ggcgggtgaag ggtgttcaac cagagaagaa 2760
agagccctgg aaaagaccga gcccttaaca gaggaaacgg aggatccaga gcaccaggaa 2820
ggaatacacg actccttctt tgaacgtgag catccagggt gggttctgg ggtatgcgtg 2880
aagaatctgg taaagatttt tgagccctcc ggccggccag ctgtggaccg tctgaacatc 2940
accttctacg agaaccagat caccgcattc ctggggcaca atggagctgg gaaaaccacc 3000
accttgtcca tcctgacggg tctgttgcca ccaacctctg ggactgtgt cgttggggg 3060
aggacattg aaaccaggct ggtatgcgtc cggcagagcc ttggcatgtg tccacagcac 3120
aacatctgt tccaccaccc cacgggtggc gggcgttgc tggatgttcc ccagctgaaa 3180
ggaaaagtccc aggaggaggc ccagctggag atggaagcca tggatgttcc cacaggcctc 3240
caccacaagc ggaatgaaga ggttcaggac ctatcagggt gcatgcagag aaagctgtcg 3300
gttgcatttgc cctttgtggg agatgccaag gtgggtgattt tggacgaaacc cacctctggg 3360
gtggaccctt actcgagacg ctaaatctgg gatctgtcc tgaagtatcg ctcaggcaga 3420
accatcatca tgcactca ccacatggac gaggccgacc tccttggggg ccgcattgcc 3480
atcattgccc agggaaaggct ctactgtca ggcacccccc tcttcctgaa gaactgtttt 3540
ggcacaggct tgcacttaac ctgggtgcgc aagatgaaaa acatccagag ccaaaggaaa 3600
ggcagtgagg ggacctgcag ctgctcgct aagggtttct ccaccacgtg tccagccac 3660
gtcgatgacc taactccaga acaagtcctg gatggggatg taaatgagct gatggatgt 3720
gttctccacc atgttccaga ggcaaaagctg gtggagtgc tggatgttcc acttatcttc 3780
cttctccaa ataagaactt caagcacaga gcatatgccca gcctttcag agagctggag 3840
gagacgctgg ctgaccttgg tctcagcgt tttggattt ctgacactcc cctggaaagag 3900
attttctga aggtcacgga ggattctgtat tcaggaccc tggatgttcc tggcgctc 3960
cagaaaagag aaaacgtcaa cccccgacac ccctgttgg gtcccagaga gaaggctgga 4020
cagacacccc aggactccaa tgcgttgc tggccggc cggctgtca cccagaggc 4080
cagcctcccc cagagccaga gtgcccaggc ccgcgttgc acacggggac acagctggc 4140
ctccagcatg tgcaggcgct gtcggatcaag agattccaaac acaccatccg cagccacaag 4200
gacttcctgg cgcagatcgt gtcggcgct acctttgtt tttggctct gatgtttct 4260
atttgttatcc ctccctttgg cgaataacccc gctttgaccc ttccacccctg gatatatggg 4320
cagcagtaca ctttcttcag catggatgaa ccaggcgttgc agcagttcac ggtacttgca 4380
gacgtctcc tgaataagcc aggcttggc aaccgtgc tgaaggaagg gtggcttccg 4440
gagtaacccct gtggcaactc aacacccctgg aagactcctt ctgtgtcccc aaacatcacc 4500
cagctgttcc agaagcagaa atggacacag gtcacccctt caccatcctg caggtgcage 4560
accagggaga agtcacccat gtcggcagag tggccggagg gtggccgggg cttccggccc 4620
ccccagagaa cacagcgcac cacggaaatt ctacaagacc tgcggacac gaacatctcc 4680
gacttctgg taaaaacgtt tccgtctt ataagaagca gcttaaagag caaattctgg 4740
gtcaatgaac agaggatgtt aggaatttcc attggaggaa agctcccagt cgtccccatc 4800
acggggaaag cacttgggg ttttaatggc gacccctggc ggatcatgaa tgcgtgggg 4860
ggccctatca cttagagggc ctctaaagaa atacctgtt tccttaaaca tctagaaact 4920
gaagacaaca ttaagggtgtt gtttataac aaaggctggc atgcccgggt cagctttctc 4980
aatgtggccc acaacccat cttacgggccc agcctgccta aggacaggag ccccgaggag 5040
tatggatca cgcgttccat tagccacccctg aacctgtacca aggacgttgc ctcagagatt 5100
acagtgttgc ccaacttcgtt ggtatgttgc gttgttgc tccatgtcc 5160
ttcgcccttgc ccagctttgtt ctttatttg atccaggagc gggtaacaa atccaaggcac 5220
ctccagtttgc tcaatgttgc gagccccacc acctactggg tgaccaactt cctctgggac 5280
atcgtgttgc attccgttgc tgcgtggctg gtgggtggca tcattcatgg gtttcagaag 5340
aaagcctaca cttctccaga aaacccctt gcccggggcactgttgc tgcgttatgg 5400
tggcggtca ttccatgtat gtaaccctggca tccttctgtt ttgtatgtccc cagcacagcc 5460
tatgtggctt tatcttgc taatctgttc atcggcatca acagcgttgc tattaccttc 5520
atcttggaaat tatttgagaa taaccggacg ctgttcagggt tcaacggcgt gctgaggaag 5580

ctgctcattg tcttccccca cttctgcctg ggccggggcc tcattgacct tgcactgagc 5640
caggctgtga cagatgtcta tgcggcggtt ggtgaggagc actctgc当地 tccgttccac 5700
tgggacctga ttggaaagaa cctgtttgcc atgggtgtgg aagggggtggt gtacttc当地 5760
ctgaccctgc tggccagcg ccacttcttc ctctccaaat ggattgccga gcccactaag 5820
gagcccattg ttgatgaaga tgatgtatgt gctgaagaaa gacaaagaat tattacttgt 5880
ggaaataaaa ctgacatctt aaggctacat gaactaaccg agatttatcc gggcacctcc 5940
agcccagcag tggacaggct gtgtgtcgga gttccccc当地 gagagtgc当地 tggccctcc 6000
ggagtgaatg gtgc当地 ccaaaccaca ttcaagatgc tcactggggca acacacagt 6060
acccctcaggatg atgccc当地 agcaggcaag agtatttaa ccaatatttc tgaagtccat 6120
caaaatatgg gctactgtcc tcagtttgat gcaatcgatg agctgctcac aggacgagaa 6180
catcttacc tttatgcccg gcttc当地 gaggttgc当地 taccacggag aaaaatcga aaagggttgc 6240
aactggagta ttaagagcct gggcctgact gtctacgccc actgc当地 tggcacgtac 6300
agtgggggca acaagcggaa actctccaca gccatcgac tcattggctg cccaccgctg 6360
gtgctgctgg atgagccac cacaggatg gacccccc当地 caccgc当地 gctgtggaa 6420
gtcatcgta gc当地 catcgatc当地 agaaggggagg gctgtgtcc tc当地 catccca cagcatggaa 6480
gaatgtgagg cactgtgtac cccgctggcc atcatggtaa agggcgc当地 tc当地 atgtatg 6540
ggcaccattc agcatctcaa gtccaaattt ggagatggct atatcgctcac aatgaagatc 6600
aaatccccga aggacgaccc gcttc当地 tgc当地 ctgaaaccctg tggagc当地 ct当地 ccagggg 6660
aacttccc当地 gagtgtgc当地 gagggagagg cactacaaca tgctcc当地 ccaggctcc 6720
tcctc当地 tggc当地 gaggttgc当地 ctccagctc ct当地 ctccca acaaggacag cctgctc当地 6780
gaggagact cagtc当地 caca gaccacactg gaccaggctg ttgttaaattt tgctaaacag 6840
cagactgaaa gtc当地 tgc当地 cc当地 ctgc当地 cctc当地 gagctg ctggagccag tc当地 aagcc 6900
caggactgat ct当地 tccacacc gtc当地 ttc当地 ct gcaaggccaa aggaactctg ggc当地 agctgga 6960
ggc当地 caggag gctgtgccc当地 tatggctc当地 caaatggact ggccagcgta aatgacccca 7020
ctgc当地 cagc当地 aaacaacac acgaggagca tgc当地 cagc当地 atc当地 gagatg gtctt当地 caga 7080
agggaaaccga aactgacttgc当地 ctc当地 accctgatg gtgaaacccaa acaaatacaa 7140
aatcccttctc cagacccca gactagaaac cccggccat cccactagca gctt当地 ggcc 7200
ccatattgct ctc当地 attc当地 gca gatctgc当地 ttttctgc当地 gttt当地 ctgtgtgt 7260
tgtgtgtgat tttcatggaa aaataaaatg caaatgc当地 catcacaaaaa aaaaaaaaaa 7320
aaa 7323

<210> 16
<211> 2930
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCG1 (ABC8)

<400> 16
gaattccggc ttcttc当地 aaatgtctg atggccgctt tctcggtc当地 caccgc当地 60
aatgc当地 agca gttactctgc agagatgacg gagccaaatg cggtgtgtgt ct当地 ggat 120
gagggtgtgt ccagcaacat ggaggccact gagacggacc tgctgaaatgg acatctgaaa 180
aaatgtatgata ataaccctc当地 ggaaggccca gcttctcc local cttgc当地 ctcc当地 gagggcagct 240
gtgaaacattg aattc当地 gagga ctttcclocal tccggtc当地 aaggaccctg gtggaggaag 300
aaaggatatac agaccctc当地 gaaaggaaat tccggaaatg tcaatagtgg tgagggtgt 360
gccattatgg gtc当地 tccgg ggc当地 gggaaatg tccacgctg tgaacatcc local ggctggatac 420
aggagagacgg gcatgaaagg ggc当地 gtccctc当地 atcaacggcc tgccccggcc cctgc当地 ctgc当地 480
ttccggaaagg tgc当地 ctgc当地 catcatgc当地 gatgacatgc tgc当地 cc当地 tctactgtg 540
caggaggccca tgatgggtc当地 ggc当地 acatgc当地 aagcttccagg agaaggatgaa aggccagaagg 600
gaaatggtca aggagatact gacagcgctg ggcttgc当地 ttc当地 gcc当地 caccgc当地 660
gggaggctgt cagggtgtca ggc当地 agcgcc local ctggccatcg cgctggagct ggtgaaacaac 720
cctccagtc当地 tggccatcg tggccatcc local acagcgcc local ctgcttcc 780
gtggctc当地 tc当地 tgatgaaagg gtc当地 gctca gggggctgct ccatcattt caccatcc 840
cagcccaagcg ccaaacttcc ctagctgttc gaccagctt acgtccctgag tcaaggacaa 900
tgtgtgttcc gggggaaaatg ctgcaatctt gtc当地 cc当地 attt tgagggtt gggctgaaac 960
tgc当地 cc当地 accacaaccc agcagattt gtc当地 atggagg ttgc当地 atccgg cgagta 1020

<210> 17
<211> 400
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 17

```

gagatcctga ggctttccc ccaggctgct cagcagggaaa ggttctcctc cctgatggtc 60
tataagttgc ctgttgagga tgtgcaccc ttatcacagg ctttcttcaa attagagata 120
gttaaacaga gtttcaccc ggaggagttac agcctctcac agtctaccct ggagcagggtt 180
ttcctggagc tctccaagga gcaggagctg ggtgatcttg aagaggactt tgatccctcg 240
gtgaagtggaa aactcctccct gcaggaagag cctttaaagct ccaaataccca tatatcttc 300
ttaatcctgt tgactctttt aaagataata ttttatagcc ttaatatgcc ttatatcaga 360
ggtggtacaa aatgcatttg aaactcatgc aataattatc 400

```

<210> 18
<211> 235
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 18
tttcagttg catgtataac caagaaatcg aattgtttc cggttcttat gggaaattgtt 60
agcaatgc(cc) ttattgaaat tttaacttc acagagctt a(t)c(aa)tgg(g) gagcacctt 120
tttttcgtg atgacatagt gctggatctt ggttttatag atgggtccat atttttgtt 180
ttgatcacaa actgcattt ctc(t)tatatt ggcataagca gcatcagtga ttatt 235

<210> 19
<211> 636
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC4 (MRP4)

<400> 19
atggataagt ttataactagt gttggcacat ggcggcatgt atagatatac taggaggacc 60
tagttgtatt ctgttatga aaaagcgtcc ctggta(t)ac aataagtctt tcgtgaaagg 120
agttaatcc taacaacaac tcaggaaagt atttgaaaa gaataactgga taaggaaaaa 180
cctgcagcta ctcc(t)gtat ttc(a)agacat tgcctacaag tggttgggtg ggtctctgt 240
gctgtggccg tgattcc(t)tg gatcgcaata cccttgg(t)c cccttggaa(c)at ttttcatt 300
tttcttcggc gatattttt ggaaacgtca agagatgtga agcgcctgga atctacaagt 360
gagatggaa actcgggtt g(t)ata(g)acat gctagctagt ttccattt(g)at gccataaatt 420
acagagaccc cctgaaattc ggcagactct gtcttccaga atttctctaa cattaggtaa 480
ttgaacgtat tggccattt(g)at catttgt gtcctt(g)a gcatgtggaa ttgatagcct 540
gcaacgtgt a(c)tttgcatt tggataaagg aaggagtgaa ggcataatgg ggagtaatat 600
tctacaggaa tgcagcact gtaagacag ggactc 636

<210> 20
<211> 2911
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCA8 (ABC-new)

<400> 20
cgggngagca cgtctggttc tatgggcggc tgaagggtct gagtccgct gtagtggcc 60
ccgacgacca ccgtctgctg caggatgtgg ggctggctc caagcagat gtgcagactc 120
gccacctctc tgg(t)ggatg caacggaa(g) tgcctggc cattgcctt gtggcggct 180
cccaagttgt tattcctggac gaccc(t)acgg ctggcg(t)ga tcctgcttc cgcccggt 240
tttggagct gctgctaaa taccgagaag gtcgcacgct gatcctctcc acccaccacc 300
tggatgggc agagctgctg ggagaccgtg tggctgtgg ggcagggtgc cgcttgc 360
gctgtggctc cccactctc ctgcgcgtc acctgggtc cgctactac ctgacgctgg 420
tgaaggcccg cctgc(cc)ctg accaccaatg agaaggctga cactgacatg gaggcagtg 480
tggacaccag gcaggaaaag aagaatggca gccaggcag cagagtccgc actccctc 540
tgctggccct ggtacacgac tgggtgccc gggcaccgct ggtggaggag ctgcccacacg 600
agctgggtct ggtgctgccc tacacgggtg cccatgacgg cagcttcgccc acactttcc 660
gagagctaga cacgcggctg gcccggctga ggctactgg ctacgggatc tccgacacca 720
gcctcgagga gatcttctg aagg(t)gg(t)gg aggagtgtgc tgcggacaca gatatggagg 780
atggcagctg cgggcagcac ctatgcacag gcattgtgg cctagacgtt accctgcggc 840
tcaagatgcc gccacaggag acagcgctgg agaacggggaa accagctggg tcagccccag 900
agactgacca gggctctggg ccacacgccc tggggccgggt acagggtctgg gcaactgaccc 960
gccagcagct ccaggccctg cttctcaagc gctttctgtc tggccggccgc agccggccg 1020
gcctgttgc cccatgtcgtg ctgcctgccc tctttgtggg cctggccctc gtgttgc 1080
tcatcggtcc tccttgcggg cactaccgg ctctgcggct cagtcacacc atgtacggtg 1140
tcaggtgtc cttcttcagt gaggacgccc cagggggaccc tggacgtgccc cggctgctcg 1200

aggcgctgct gcaggaggca ggactggagg agccccagt gcagcatgc tcccacaggt 1260
tctcggcacc agaagtccct gctgaagtgg ccaaggctt ggccagtggc aactggaccc 1320
cagagtctcc atccccagcc tgccagtgtt gcccggcc tgccggcgc ctgctgccc 1380
actgcccggc tgcagcttgtt ggtccccctc cgccccaggc agtgcacggc tctgggaaag 1440
tggttcagaa cctgacaggc cgaacacctg ctgacttcct ggtcaagacc taccggcgcc 1500
tggtgccca gggcctgaag actaagaagt gggtaatga gtcaggtac ggaggcttct 1560
cgctgggggg ccgagaccca ggcctgcctt cgggccaaga gttggggcgc tcagtggagg 1620
agttgtgggc gtcgtctgat cccctgcctt gccccggcct cgaccgtgtc ctgaaaaacc 1680
tcacagcctg ggctcacagc ctggacgctc aggacagtct caagatctgg ttcaacaaca 1740
aaggtggca ctccatgttgc gcctttgtca accgagccag caacgcaatc ctccgtgctc 1800
acctgcccccc agggccggcc cggcagcccc acagcatcac cacactcaac cacccttga 1860
acctcaccaa ggagcagctg tttgaggctg cattgatggc ctccctcggtg gacgtcctcg 1920
tctccatctg tgggtcttt gccatgttgc ttgtccggc cagtttactt cttgtcctca 1980
ttgaggagcg agtcacccga gccaaggcacc tgcagctcat gggggggcctg tccccccaccc 2040
tctactggct tggcaacttt ctctggaca tggtaacta cttgttgcca gcatgcatacg 2100
tgggtctcat ctttctggcc ttccagcaga gggcatatgt ggccccctggc aacctgcctg 2160
ctctcctgct gttgtacta ctgtatggct ggtcgatcac accgctcatg taccctggct 2220
ccttcttctt ctccgtgccc agcacagccct atgtgggtct cacctgcata aacctcttta 2280
ttggcatcaa tggaaagcatg gccacctttg tgcttgagct cttctctgtat cagaagctgc 2340
aggaggttag cccgatctt aacacaggctt tccttatctt ccccccactt tgcttggggc 2400
gggggcttat tgacatgttgc cggaaaccagg ccatggctga tgccttttag cgcttggggag 2460
acaggcagtt ccagtacccc ctgcgtggg aggtgggtgg caagaacctc ttggccatgg 2520
tgatacaggg gccccctttc ctctcttca cactactgtc gacgcacccgaa agccaaactcc 2580
tgccacagcc cagggtgagg tctctgccc acctggaga ggaggacgag gatgtagccc 2640
gtgaacggga ggggggtggc caaggagcca cccagggggta tgggtgggt ctgaggaact 2700
tgaccaaggt ataccgtggg cagaggatgc cagctgttgc cccgtgtgc ctggggattc 2760
ccccctggta agtgtttgg gtcgtgggt gtgaacggag cagggaaagac gtccacgttt 2820
cgcatggta cgggggacac attggccacg aggcccggagg ctgtgtggc aggccacagc 2880
ggggccggga acccagtgtc cgcacctcna g 2911

<210> 21
<211> 100
<212> DNA
<213> Human

<220>
<223> human Intron-Sequence of ABCA8 (ABC-new)

<400> 21
ctcctgcccac agtttagtgag gtctatggag aggggtggcag gggccaagga cctactttaa 60
gccacagat attctgtccc caggcccagg gtgagggtctc 100

<210> 22
<211> 15
<212> DNA
<213> Human

<400> 22
tgccgaccga gaaag 15

<210> 23
<211> 372
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 23
atcgccgata tctccccttc gggctgcggc aagagcacct tcctgaaagt gctgccggg 60
ttctatgccc tggacaccgg gcgcgtcagg atcaacggcc aggcgatgcg gcattcggt 120
ttgcgcgtcgt accgcacagag cgtggcctat gtcacggccc acgacgagat catgccggg 180
acgtgtatcg agaacatcct gatggacagc gacccgctgg acggcacggg tttgcagagc 240
tgtgtcgagc aggccgggtt gctggaaagc atcctgaaac tgagcaatgg cttcaatacc 300
ttgctcgac ccatggcgt gcaattgtcc tcgggcccaga agcaacgcct gttgatcgcc 360
cgggtcgac gc 372

<210> 24
<211> 281
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 24
aaaaccaaag attctcctgg agttttctct aaactgggtg ttctccttag gagagttgac 60
aagaaacttg gtgagaaata agctggcagt gattacgcgt ctccctcaga atctgatcat 120
gggttggtc ctccctttct tcgttctgcg ggtccgaagc aatgtgctaa aggggtctat 180
ccaggaccgc gtaggtctcc ttaccagtt tgtggcgcc accccgtaca caggcatgct 240
gaacgctgtg aatctgttc ccgtctgcg agctgtcagc a 281

<210> 25
<211> 2258
<212> DNA
<213> Human

<220>
<223> human cDNA of Huwhite2

<400> 25
atggccgtga cgctggagga cggggcggaa cccccctgtgc tgaccacgca cctgaagaag 60
gtggagaacc acatcaactga agcccagcgc ttctcccacc tgcccaagcg ctcagccgtg 120
gacatcgagt tcgtggagct gtcctattcc gtgcgggagg ggccctgctg gcgaaaaagg 180
ggttataaga cccttctcaa gtgcctctca ggtaaattct gccgcggga gctgattggc 240
atcatgggcc cctcaggggc tggcaagtct acattcatga acatcttggc aggatacagg 300
gagtctggaa tgaagggca gatcctgggtt aatggaaaggc cacgggagct gaggaccttc 360
cgcaagatgt cctgctacat catgcaagat gacatgctgc tgccgcacct cacgggtttg 420
gaagccatga tggctctgc taacctgaat cttactgaga atcccgatgt gaaaaacgat 480
ctcgtgacag agatcctgac ggcactggc ctgatgtcgt gctcccacac gaggacagcc 540
ctgctctctg gcgggcagag gaagcgtctg gccatcccc tggagctggt caacaacccg 600
cctgtcatgt tctttagtga gcccaccagt ggtctggata ggcctcttg tttccaagtg 660
gtgtccctca tgaagtccct ggcacagggg ggcgttacca tcatctgcac catccaccag 720
cccagtgcac agctcttga gatgtttgac aagctctaca tcctgagcca gggtcagtgc 780
atcttcaaag gcgtggtcac caacctgatc ccctatctaa agggactcgg cttgcattgc 840
cccacctacc acaacccggc tgacttcagt gagtgggggt ctgtgcctc tggcgagtt 900
ggacacctga accccatgtt gttcagggtt gtgcagaatg ggctgtgcgc tatggctgag 960
aagaagagca gcccgtgagaa gaacgaggc cctgccccat gcccctcttgc tcctccggaa 1020
gtggatccca ttgaaagcca caccttgcc accagcaccc tcacacagtt ctgcattcctc 1080
ttcaagagga ctttcctgtc catcctcagg gacacgggtcc tgacccaccc acgggtcatg 1140
tcccacgtgg ttattggcgt gtcatggc ctcctctacc tgcatattgg cgacgatgcc 1200
agcaagggtct tcaacaacac cggctgcctc ttcttctcca tgctgttcct catgttcgcc 1260
gcctctatgc caactgtgct caccttcccc tttagagatgg cggcttcat gagggagcac 1320
ctcaactact ggtacagcct caaagcgtat tacctggcca agaccatggc tgacgtgccc 1380

tttcaggtgg tgcgtccggc ggtctactgc agcattgtgt actggatgaa cggccagccc 1440
gctgagacca gccgcttcct gctttctca gcccggcca cggccaccgc cttggggcc 1500
caatcttgg ggctgtgtat cgagactgtc tccaaactccc tacagggtggc cactttgtg 1560
ggcccaggtta cgcgcattttc tgcctcttg ttctccggct tctttgttag cttcaagacc 1620
atccccactt acctgtcaatg gagctcttat cttcttatg tcaggtatgg ctttgagggt 1680
gtgatccgtatcgatctatgg catggagcga ggagacactga catgtttaga ggaacgctgc 1740
ccgttccggg agccacagag catcctccga ggcgtggatg tggaggatgc caagctctac 1800
atggacttcc tggctctggg catcttcttc ctgcctgc ggctgctggc ctacccgtg 1860
ctgcgttacc gggtaagtc agagagatag aggcttgcgc cagcctgtac cccagccct 1920
gcagcaggaa gcccccaagtc ccagccctt gggactgttt tanctctata cacttggca 1980
ctggttcctg gcggggctat cctctcctcc cttggctctt ccacaggctg gctgtcggac 2040
tgcgtccca gcctgggctc tggagtggg ggctccaacc ctccccacta tgcccaggag 2100
tctcccaag ttgatccggt tttagcttc ctcctactc tctccaacac ctgcatgcaa 2160
agactactgg gaggctgtg ctccttctt gcccattggca ccctcccttg ctgtctgcct 2220
gggagcccta ggctcttat gggccactt acaactga 2258

<210> 26
<211> 820
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 26
tttaaggatt tcagccttc cattccgtca ggatctgtca cggcactggc tggcccaagt 60
ggttctggca aatcaacagt gcttcactc ctgctgaggt tgcgtacgacc tgcttctgga 120
actattagtc ttgatggca tgacaatccg tcagctaaac ccagtgtgt gctgagatcc 180
aaaattggga cagtcaatgtca ggaacccatt ttgtttctt gctctattgc tgagaacatt 240
gcttatggc gtgatgaccc ttcctctgtg accgctgagg aaatccagag agtggctgaa 300
gtggccaatg cagtggcttc tccggaaattt cccccaaggt tcaacactgt ggttggagaa 360
aagggtgttc tcctctcagg tggcgagaaa cagcggattt cgattggcc tgctctgcta 420
aagaatccca aaattcttct ccttagatgaa gcaaccaggatc cgctggatgc cgaaaatgag 480
taccttgttc aagaagctct agatcgccctg atggatggaa gaacgggtt agttattgcc 540
catagcctgt ccaccattaa gaatgctaat atgggtgtt ttcttgacca agaaaaattt 600
actgaatatg gaaaacatga agagctgtt tcaaaaccaa atggatata cagaaaacta 660
atgaacaaac aaagttttat tttagcataa ggaagcaatt actggtaaac aatatgagac 720
tttaatgcaa aacagtgtt cggaaaaaaa ctcagagact atgaaataca taaaccat 780
atcaagttat ttgaaaaata cctatTTT ccaaagtgtg 820

<210> 27
<211> 575
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 27
gctctccaca cagagatttt gaagctttt ccacaggctg cttggcagga aagatattcc 60
tcttaatgg cgtataagtt acctgtggag gatgtccacc ctctatctcg ggccttttc 120
aagtttaggg cgtatcaaca gaccttcaac ctggaggaat acagcctctc tcaggctacc 180
ttggagcagg tattctttaga actctgtaaa gagcaggagc tggaaatgt tgatgataaa 240
attgatacaa cagttgaatg gaaacttctc ccacaggaag accctaaaaa tgaagaacct 300
cctaacattc aatttttagt cctactacat ttttagttt cataattctt caagaatgtt 360
tcctttact tcagttaca aaagaaaaca tttataaaac attcaataat gattacagtt 420
ttcattttta aaaatttagg atgaagggaa caagggaaata tagggaaaag tagtagacaa 480

aattaacaaa atcagacatg ttattcatcc ccaacatggg tctattttgt gctaaaaat 540
aatttaaaaa tcataacaata ttagggttgc tatcg 575

<210> 28
<211> 300
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 28
gtgaaagatg tgcaaccctt agcccaagct ttcttcaaatt tagagaaggtaaaacagagc 60
tttgaccttag aggagtacag cctctcacag tctaccctgg agcagggttt cctggagctc 120
tccaaggagc aggagctggg tgatttttag gaggattttg atccctcagt gaagtggaaag 180
ctcccccggc aggaagagcc taaaaacccc aaattctgtt ttccctgttta aaccctgttgc 240
ttttttaaa tacattttt ttatagcag caatgttcta ttttagaaaa ctatattata 300

<210> 29
<211> 2719
<212> DNA
<213> Human

<220>

<220>
<223> human cDNA of ABCG2

<400> 29
tttaggaacg caccgtgcac atgcttggtg gtcttggtaa gtggaaactg ctgctttaga 60
gttgttgg aaggtcggg tgactcatcc caacatttac atcctaattt gttaaagcgc 120
tgctccgag cgacgcacatc ctgagatctt gaggcttgg ttaagaccga gctctattaa 180
gctaaaaga taaaaactctt ccagatgtct tccagtaatg tcgaagttttt tatccctgt 240
tcacaaggaa acaccaatgg ctcccccgac acagtttcca atgacctgaa ggcattttact 300
gaaggagctg tggtaagttt tcataacatc tgctatcgag taaaactgaa gagtggcttt 360
ctaccttgc gaaaaccagt tgagaaaagaa atattatcga atatcaatgg gatcatgaaa 420
cctggctctca acgccatcctt gggacccaca ggtggaggca aatcttcgtt attagatgtc 480
ttagctgcaa ggaaagatcc aagtggattt tctggagatg ttctgataaa tggagcaccg 540
cgacctgcca atttcaaatg taattcaggt tacgtggtagt aagatgtgt tggatgggc 600
actctgacgg tgagagaaaaa ctacagttc tcagcagctc ttccggcttgc aacaactatg 660
acgaatcatg aaaaaaacga acggatttac agggcattt aagagttgg tctggataaa 720
gtggcagact ccaagggtgg aactcagttt atccgtggtg tggatggagg agaaagaaaa 780
aggacttagta taggaatgg gcttatcaact gatccttcca tcttgcctt ggatgaggct 840
acaactggct tagactcaag cacagcaaat gctgtccctt tgctccctgaa aaggatgtct 900
aagcaggac gaaacatcat cttctccattt catcagcctc gatattccat tttcaagttg 960
tttgcatagcc tcaccttattt ggctcagga agacttatgt tccacgggc tgctcaggag 1020
gccttggat actttgaatc agctggttt cactgtggg cctataataa ccctgcagac 1080
ttcttcttgg acatcattaa tggagattcc actgtgtgg cattaaacag agaagaagac 1140
tttaaagcca cagagatcat agaccccttcc aaggcaggata agccactcat agaaaaattt 1200
gcggagattt atgtcaactc ctcccttctac aaagagacaa aagctgaattt acatcaactt 1260
tccgggggtt agaagaagaa gaagatcaca gtcttcaagg agatcagcta caccacctcc 1320
ttctgtcatc aactcagatg ggttccaag cggttccatttca aaaacttgc gggtaatccc 1380
caggcctcta tagctcagat cattgtcaca gtcgtactgg gactgggtt aggtgccatt 1440
tactttgggc taaaaatga ttctactggaa atccagaaca gagctgggtt tctcttcc 1500
ctgacgacca accagtgtttt cagcagtgtt tcagccgtgg aactctttgtt ggttagagaag 1560
aagctctca tacatgaata catcagcggaa tactacagag tgcgtatcttta ttcccttggaa 1620
aaactgttattt ctgattttt acccatgagg atgttaccaa gtattatatt tacctgtata 1680

gtgtacttca tgtaggatt gaagccaaag gcagatgcct tttcgttat gatgttacc 1740
cttatgatgg tggcttattc agccagttcc atggcaactgg ccatagcagc aggtcagagt 1800
gtgtttctg tagcaacact tctcatgacc atctgttttg tgtttatgat gatTTTCA 1860
ggtcgttgg tcaatctcac aaccattgca tcttgctgt catggcttca gtacttcagc 1920
attccacgat atggatttac ggcttgcag cataatgaat tttgggaca aaacttctgc 1980
ccaggactca atgcaacagg aaacaatcct tgtaactatg caacatgtac tggcgaagaa 2040
tatttggtaa agcagggcat cgatctctca ccctggggct tggaaagaaa tcacgtggcc 2100
ttgcttgc tattttttt tttcctcaca attgccttacc tggaaattgtt atttcttaaa 2160
aaatattctt aaatttcccc ttaattcagt atgatttac ctcacataaa aaagaagcac 2220
tttgcattgaa gtattcaatc aagttttttt gttgtttct gttcccttgc catcacactg 2280
ttgcacagca gcaattgttt taaagagata catttttaga aatcacaaca aactgaatta 2340
aacatgaaag aacccaagac atcatgttac gcattttttt taatctcctc agacagtaac 2400
catgggaag aaatctggc taatttatta atctaaaaaa ggagaattga attctggaaa 2460
ctctgacaa gttattactg tctctggcat ttgtttctc atctttaaaaa tgaataggtt 2520
ggttagtagc ctttcagttt taatacttta tggatgttgc gtttgcattt attaatata 2580
tgacaaatgt attaatgcta tactggaaat gtaaaattga aaatatgtt gaaaaaaagat 2640
tctgtcttat aggtaaaaaa aagccaccgg tggatggaaa aaaatcttt tgataagcac 2700
attaaagtttta atagaactt 2719

<210> 30
<211> 6491
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCA3 (ABC3)

<400> 30
ccggccggc gcccaggctc ggtgctggag agtcatgcct gtgagccctg ggcacccct 60
gatgtcctgc gaggtcacgg tggccaaa cctcagggtt gcccgtcccc actccagagg 120
ctctcaggcc ccaccccgga gcccctgtg cggagccgcc tccctctggc cagttcccc 180
gtagtcctga agggagacct gctgtgttgc gcctcttgc ggacccagcc atgagtgtgg 240
agctgagcaa ctgaacctga aactcttca ctgtgagtc agggaggctt tccgcacatg 300
aaggacgctg agcgggaagg actcctctct gcctgcagtt gtggcgttgc gaccagcacc 360
aggggctctc tagactgccc ctctccatc gcctccctg cctctccagg acagagcagc 420
cacgtctgca cacctcgccc tctttacact cagtttcag agcacgttcc tcctatttcc 480
tgcgggttgc agcgcctact tgaacttact cagaccaccc acttctctag cagcactggg 540
cgtcccttc agcaagacga tggctgttgc caggcagctg ggcgccttcc tctggaaagaa 600
ctacaccctg cagaagcgga aggtccttgtt gacggcttgc gaactcttcc tgccatttgt 660
gtttcctggg atcctcatct ggctccgtt gaagatttcg tcggaaaatg tgcccaacgc 720
caccatctac ccggccagt ccatccagga gtcgccttgc ttcttcaccc tccctccgccc 780
aggagacacc tggagacttgc cctacatccc ttcttcaccc gacgctgcca agaccgtcac 840
tgagacagtgc cgccaggcac ttgtatcaa catgcgagtg cgccgttttcc cctccggagaa 900
ggacttttag gactacatta ggtacgacaa ctgctcgatcc agcgtgttgc ccggcggtt 960
cttcgagcac cccttcaacc acagcaagga gcccctggcc ctggcggtga aatatcacct 1020
acggttcaatc tacacacggaa gaaattacat gtggacccaa acaggcttcc ttttcttgaa 1080
agagacagaa ggctggcaca ctactccct tttcccgctt ttcccaaaacc caggaccaag 1140
ggaactaaca tccctgtatg gggagaacc tgggtacatc cgggaaggct tcctggccgt 1200
gcagcatgtt gttggaccggg ccatcatggaa gtaccatgcc gatgcccggca cacggccagct 1260
gttccagaga ctgacggtga ccatcaagag gttcccgatcc cccgggttca tcgcagaccc 1320
cttcctcgatg gccatccagt accagctgcc cctgctgttgc ctgctcagct tcacccatcac 1380
cgccgtcacc attgcccgtt ctgtcgatc ggagaaggaa aggaggctga aggagatcat 1440
gcccgtatgtt gggctcagca gtcggcttgc ctggagtttgc ttgttccctt tttttttttt 1500
cttcctccctc atcgccgcct ctttcatgac cctgcttgc tggatgttgc tggatgttgc 1560
tgttagccgtt ctgtcccgca gggccccc cctgggttgc gtcgttgc tggatgttgc 1620
catctctacc atcttccttca gtttcatggt cagcaccatcc ttccatggaa ccaacatggc 1680
agcaggcttc ggaggcttcc tctacttctt cacctacatc ccctacttcc tcgtggcccc 1740

tcggtacaac tggatgactc tgagccagaa gctctgctcc tgcctcctgt ctaatgtcgc 1800
catggcaatg ggagcccagc tcattggaa atttgaggcg aaaggcatgg gcatccagtg 1860
gcgagacctc ctgagtcctcg tcaacgtgga cgacgacttc tgcttcggc aggtgctgg 1920
gatgctgctg ctggactctg tgctctatgg cctggtgacc tggtacatgg aggccgtctt 1980
cccagggcag ttccggcgtgc ctcagccctg gtacttcttc atcatgccct cctattggg 2040
tggaaagcca agggcggtt cagggaaagga ggaagaagac agtgaccccg agaaagcact 2100
cagaaacgag tactttgaag ccgagccaga ggacctgggt gcggggatca agatcaagca 2160
cctgtccaag gtgttcaggg tggaaataa ggacagggcg gccgtcagag acctgaacct 2220
caacctgtac gaggacaga tcaccgtcct gctgggccc aacggtgccg ggaagaccac 2280
caccctctcc atgctcacag gtctttcc ccccaccagt ggacgggcat acatcagcgg 2340
gtatgaaatt tcccaggaca tggttcagat ccgaaagac ctggcctgt gccccagca 2400
cgacatcctg tttgacaact tgacagtgcg agagcacctt tatttctacg cccagctgaa 2460
gggcctgtca cgtcagaagt gccctgaaga agtcaagcag atgctgcaca tcacggcct 2520
ggaggacaag tggactcac ggagccgtt cctgagcggg ggcattggc gcaagctctc 2580
catccgcattc gcccctcatcg caggctccaa ggtgctgata ctggacgagc ccacccggg 2640
catggacgccc atctccagga gggccatctg ggttcttctt cagggcaga aaagtgaccg 2700
caccatcgtg ctgaccaccc acttcatgga cgaggctgac ctgctggag accgcacatcgc 2760
catcatggcc aaggggggac tgcagtgcgt cgggtcctcg ctgttccctca agcagaaata 2820
cggtgccggc tattcacatga cgctggtaa ggagccgcac tgcaacccgg aagacatctc 2880
ccagctggtc caccacacg tgcccaacgc cacgctggag agcagcgctg gggccgagct 2940
gtcttcatc cttcccaagag agagcacgca caggtttaa ggtcttttctt ctaaactgga 3000
gaagaagcag aaagagctgg gcattgccc ctttggggca tccatcacca ccatggagga 3060
agtcttcctt cgggtcggga agctggtaa cagcagtatg gacatccagg ccatccagct 3120
ccctgcctcg cagtaccacg acgagaggcg cgccagcgac tggcgtgtgg acagcaacct 3180
ctgtggggcc atggacccctt ccgacggcat tggacccctc atcgaggagg agcgcacccgc 3240
tgtcaagctc aacactgggc tcgcctgca ctgcccacaa ttctggggca tggcgtgtgg 3300
gaaggccgca tacagctggc gcgagtttgc aatggtggc gcacaggtcc tggcgtgtgg 3360
gacctgcgtc accctggccc tcctggccat caactactcc tcggagctct tcgacgaccc 3420
catgctgagg ctgaccttgg gcgagtttgc cagaaccgtc gtgccttctt cagttccgg 3480
gacctcccgat ctgggtcagc agctgtcaga gcatctgaaa gacgcactgc aggctgaggg 3540
acaggagccc cgcgagggtc tgggtgaccc ggaggatgc ttgatcttca gggcttctgt 3600
ggagggggggc ggcttaatg agcggtgcct tggcgtgtgg ctttcagag atgtgggaga 3660
gcgcacgggtc gtcaacgcct tggcgtgtgg ctttcagag atgtgggaga 3720
ggccgtcgtg gacaacccctc tggcgtgtgg gctcaccgcct ccattgtgg 3780
ctccaacttc ccccaaaaaa ggagcgcctt gcaggctgccc aaggaccagt ttaacgaggg 3840
ccggaaaggga ttgcacattt ccctcaaccc tggcgtgtgg ctttcacgcac 3900
gttctccatc ctggcgttca gcgaggggc cgtgcaggcc aagcatgtgc agtttgtgag 3960
tggagtccac gtggccagtt tctggctctc tggcgtgtgg tggcgtgtgg 4020
catccccagt ctgctgtgc tgggtgtgtt taaggccttc gacgtgcgtg ctttcacgc 4080
ggacggccac atggctgaca ccctgtgtct gctcctgtcc tacggctggg ccatcatccc 4140
cctcatgtac ctgatgaact tcttcttctt gggggccggcc actgcctaca cgaggctgac 4200
catcttcaac atccctgtcag gcatcgccac cttcctgtatg gtcaccatca tggcgtgtgg 4260
agctgtaaaa ctggaaagaac tttccaaaac cctggatcac tggcgtgtgg tggcgtgtgg 4320
ccactgtctg gggatggcag tcaagtttctt ctttcagatgc tggcgtgtgg 4380
cacccctcc gagggtcgccg cccactactg caagaaatat aacatccagt accaggagaa 4440
cttctatgcc tggagcgcctt cgggggtcggtt cgggttgcgtt gctccatgg ccccttcagg 4500
gtgcgcctac ctcatccgtc tcttcctcat cggatcac ctgcttcaga gactcagggg 4560
catccctctgc gcccctccggaa ggaggccggac actgcacagaa ttatacaccctt gatgcctgt 4620
gcttccttag gaccaagatg tagcggacga gaggaccgc atccctggccc ccagccggaa 4680
ctccctgtcc cacacacccctc tgattatcaa ggagctctcc aagggtgtacg agcagcggtt 4740
gcccctccgt gccgtggaca ggctctccct cgggtgcgtt aaaggggagt gcttcggcct 4800
gctgggcttc aatggagccg ggaagaccac gactttcaaa atgctgcaccc gggagggag 4860
cctcacttctt gggatgcctt tggcgtgtgg tggcgtgtgg tggcgtgtgg 4920
gcggcagccg atcggtactt gcccgcgtt tggcgtgtgg tggcgtgtgg 4980
ggagatgctg tggcgtgtgg tggcgtgtgg tggcgtgtgg 5040
cgtggagaac actctgcggg gctgtgtgtt ggagccacat gccaacaagc tggcgtgtgg 5100
gtacagtgggtt ggttacacaac ggaagctgag caccggcatac gcccgtatcg gagagcctgc 5160

tgcatcttc ctggacgagc cgtccactgg catggacccc gtggcccgcc gcctgctttg 5220
 ggacaccgtg gcacgagccc gagagtctgg caaggccatc atcatcacct cccacagcat 5280
 ggaggagtgt gaggccctgt gcacccggct ggccatcatg gtgcaggggc agttaaagtg 5340
 cctggcagc ccccagcacc tcaagagcaa gttcggcagc ggctactccc tgccggccaa 5400
 ggtcagagt gaaggccaac aggaggcgct ggaggagttc aaggcctcg tggacctgac 5460
 cttccaggc agcgtcctgg aagatgagca ccaaggcatg gtccattacc acctgccgg 5520
 ccgtaccc tcgtggcga aggtttcgg tattctggag aaagccaagg aaaagtacgg 5580
 cgtggacgac tactccgtga gccagatctc gctggAACAG gtcttcctga gcttcgccc 5640
 cctgcagccg cccaccgcag aggagggcg atgagggtg gcccgtgtc cgccatcagg 5700
 cagggacagg acgggcaagc aggcccattt acatccctc tctcttcaag ttatctcat 5760
 ccttatttt taatcacttt ttcttatgtat gatatgaaa aattcaaggc agtatgcaca 5820
 gaatggacga gtgcagccca gcctcatgc ccaggatcag catgcgcata tccatgtctg 5880
 catactctgg agttcacttt cccagagctg gggcaggccg ggcagtctgc gggcaagctc 5940
 cgggtctct gggtgagag ctgacccagg aagggtctca gtgagctgg gggttgaatt 6000
 tctccaggca ctccctggag agaggacca gtgacttgc caagttaca cacgacacta 6060
 atctccccgt gggaggaagc gggaaGCCAG ccaggttcaa ctgttagcgg gccccaggc 6120
 cgcaggaaat ggaccatgca gatcactgtc agtggaggaa agtgcgtac tgtgattagg 6180
 tgctgggtc tttagcgtcca ggcgcagcccg ggggcattctt ggaggctctg ctcccttagg 6240
 gcatggtagt caccgogaag cgggcaccc tcccacagca ttccttagaa gcagccggca 6300
 cagggggaa ggtggccagg ctgcagaacag tctctgtttc cagcactgaa ccctoaggaa 6360
 gtcggccccc ccaggacacg cagggaccac cctaagggtt gggtgctgt ctcaaggaca 6420
 cattgaatac gttgtgacca tccagaaaaat aaatgtcgg gggacacaaa aaaaaaaaaa 6480
 aaaaaaaaaa a 6491

<210> 31
 <211> 2923
 <212> DNA
 <213> Human

<220>
 <223> human genomic DNA of 5'-UTR of ABCG1

<400> 31
 ttgcctgggtt gatcctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
 catgcccagt ctttctgcag ggtcccattt gggtaaccc ttcatttc tccatgtga 120
 accaggccag gcccattcagg gtttggcaac cccctgtatgc agtgggtgtt gcccgtgtac 180
 aggagcaagc ctgcagctgc tggggggcca tgcagagaca gcctgcaga ggggagacca 240
 cctggggagg ccagagccgt ggagacagca agagaccagg ggctgaggac agagtagtac 300
 aggtctttgg tcccaagtatg cctgaaacca ctgcactccg aacctttctg tacttagctt 360
 aagccagttt gatttctgt ctttacaac caagacccctt gataggaatg gggtcctgtg 420
 ctacgctact gttggcttct ttcccgatcg ggcgtggag gggaaacacag cagtgactac 480
 agtgggatgc ttactcgggtt ctgggcattgc tagaaagtgc ttgcctatgcc ttatttccca 540
 cgtggggggg attttgaccc cacctgtaca gacagataag tgaggaccct tttcacctta 600
 tcctgcaaca gaaaatccag cagccaaagc caacaaggcc ccagcatagc atcttccctc 660
 tctgacttca tcctcacgtt ccacacacca tccccctggc cattcccgac agcccagtaa 720
 gcaactgcctc acacttccag ttccggacca gccaggatgg ccaggctgg tggggccat 780
 ccaccggctg aagccaattt cctattctcg agctgaaggt gaatcaatcc cgcataaatac 840
 ttccggcaga gaactngggt ggggggtaga agagggggaa tgtcttagaa gaaattctgg 900
 ggcacattcc tggaaagttag gaggatggat attggacaga aattatgtca ttgcaggcac 960
 cctcaacttc cctggccaca tggacagttc ctccccggct gtgttccngn cctccctctg 1020
 tgctccaggc cctgtctgtt cctggagcga gatgggtccc agggctggcc accagtcccc 1080
 atctccagcc atcaggactt ttctctctg tttttggcg taaaacacntc cctagtttg 1140
 tggatctgaa tccttccc aacacactca agctttgtcg ggcctccctg cagtgtatgt 1200
 ttaaggcacc acacagccctc caaggccctgg caccggggca gtggccaccc ggtaaacaca 1260
 gcagtcagat ttccctcattt cagccaagtg taaaatcaag gtaatggatc tacnctttt 1320
 ttttntttt ttttccaggg ggntnnntttt tttttgagac ggagtctcac tctgtcancc 1380
 ccggctctggc gtgcagtggc tcaatctcg tccanctggc aagctccgccc tcccaaggttc 1440

atgccattct cctgcctcag cctacatagt agctggact acaggtgccc gccaccacac 1500
ctagctaatt ttttgtattt ttagtagaga cggggttca tcatgttagc caggatggtc 1560
tcgatctccct gacctcccaa atgggtggg ttacaggtgt gagccactgc gccccgctgg 1620
atgactcttg agacaacacc attcagacaa aggcaaggcc tcccacttaa actcataacc 1680
gtgtctcctt tctctccttc gatttgagcg gctgaattt gttacagtca tctgacactgt 1740
gggtgtgaag tccacctgcc tggcataaaa agctgtgcct ccttcttagg tgaggagaaa 1800
gagagagacc tggctcatct gaggtgtggt tgggaggggg gacccaggtg tgctggaaat 1860
aaaaaagaaat gcattcctgt tttcgtccc aacatgcaaa caactgaaca aaagcattag 1920
ggcctgagac tgggagtaaa gaattccttgc tcaccatgga taccagggaa tggcccccact 1980
tatataaat aagggcttta gagatgctgg accatctgat attccagct ggggcccacat 2040
gggagtgtgc cctgggtgtta ttccctatac agttccatga acatggctct ggaaacacact 2100
ctgtctgcag aaaatgaggc ttttctttt ttgttcgggg gtgaacagag ggcagaggcc 2160
tggcatctt cactcagcac cccttgcataa cccagactt agcaccatgg ctggcgcaca 2220
gcaatgtcac atgtgtgagt gcacacgatg cctcactgccc aggggtcacc ccacaccgg 2280
gctgttgggg gcgttggagt gtttatctct tcttttagtccc tcaagctcct acctggcaga 2340
gagctgccc acaccgtcgg ggtgggggtgg gcgggaaagg aagaagcagc agcaagaaag 2400
aagccccctg gcccctcactc tccctccctg gacgccccctt cttcgacccc atcacacagc 2460
cgcttggagcc ttggagnccag tggatttccg agcctggaa ccccccggcgt ctgtcccggt 2520
gtcccccgca gcctcaccnn cgtgctggcc cagccccccgc gagttcggga cccgggggttt 2580
ccgggggtggc aggggggttcc catgcccctt gcgaggcctc ggctcggggc gctcccgaa 2640
cctgcacttc aggggtcctg gtccggccccc cccagcagga gcaaaaacaag agcacgcgc 2700
cctggccggcc cgcccccccccttgggtggcc gccaatcgccg cgctcggggc ggggtcgggc 2760
gcgctggaac cagagccgga gccggatccc agccggagcc caagcgcagc ccgcaccccg 2820
cgcagcggct gagccgggag ccagcgcagc ctcggccccc cagctcaagc ctgcgtcccg 2880
ccggccggcc cgcacggccgc cggccggccccc cccggggcat ggc 2923

<210> 32

<211> 13

<212> DNA

<213> Human

<220>

<223> human DNA of 5'-end of ABCG1 cDNA

<400> 32

ccggggcatg gcc

13

<210> 33

<211> 24

<212> DNA

<213> Human

<220>

<223> Primer

<400> 33

cgtcagcaacttgcgtatgg cctg

24

<210> 34

<211> 21

<212> DNA

<213> Human

<220>

<223> Primer

<400> 34

tctctgctat ctccaaacctc a	21
<210> 35	
<211> 23	
<212> DNA	
<213> Human	
<220>	
<223> Primer	
<400> 35	
caaacatgtc agctgttact gga	23
<210> 36	
<211> 23	
<212> DNA	
<213> Human	
<220>	
<223> Primer	
<400> 36	
tagccttgca aaaataacctt ctg	23
<210> 37	
<211> 25	
<212> DNA	
<213> Human	
<220>	
<223> Primer	
<400> 37	
gttggaaaga ttctctatac acctg	25
<210> 38	
<211> 24	
<212> DNA	
<213> Human	
<220>	
<223> Primer	
<400> 38	
cgtcagcact ctgatgatgg cctg	24
<210> 39	
<211> 21	
<212> DNA	
<213> Human	
<220>	
<223> Primer	
<400> 39	
tctctgctat ctccaaacctc a	21

<210> 40
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 40
acgtcttcac caggtaatct gaa 23

<210> 41
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 41
ctatctgtgt catctttgcg atg 23

<210> 42
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 42
cgcttcctcc tatagatctt ggt 23

<210> 43
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 43
aagagagcat gtggagttct ttg 23

<210> 44
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 44
ccctgtaatg gaattgtgtt ctc 23

<210> 45
<211> 23

<212> DNA
<213> Human

<220>
<223> Primer

<400> 45
aaccttctct gggttcctgt atc 23

<210> 46
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 46
agttcctgga aggtcttggtt cac 23

<210> 47
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 47
gctgaccctt ttgaggacat gcg 23

<210> 48
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 48
ataggtcagc tcatgcccta tgt 23

<210> 49
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 49
gctgcctcct ccacaaagaa aac 23

<210> 50
<211> 24
<212> DNA
<213> Human

<220>
<223> Primer

<400> 50
gctttgtga cccgctcctg gatc 24

<210> 51
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 51
gaggccagaa tgacatctta gaa 23

<210> 52
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 52
cttgacaaca cttagggcac aat 23

<210> 53
<211> 15
<212> PRT
<213> Human

<220>
<223> amino acid residues 613-628 of ABCG1

<400> 53
Arg Glu Asp Leu His Cys Asp Ile Asp Glu Thr Cys His Phe Gln
1 5 10 15

<210> 54
<211> 2923
<212> DNA
<213> Human

<220>
<223> human genomic DNA of 5'-UTR of ABCG1

<400> 54
ttgcctgggtt gatcctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
catgcccaagt ctttctgcag ggtcccattg gggtaaacct ttcatttca tcccatgtga 120
accaggccag gccccatcagg gttggcaac cccctgatgc agtgggttgct gccaggtgac 180
aggagcaagc ctgcagctgc tggggggcca tgcagagaca gcctgccaga ggggagacca 240
cctggggagg ccagagccgt ggagacagca agagaccagg ggctgaggac agagtagtac 300
aggctttgg tcccaagtgt cctgaaaacca ctgcactccg aacctttctg tacttagctt 360

aagccagttg gagtttctgt cctttacaac caagagcctt gataggaatg gggtcctgtg 420
ctacgctact gttggcttct ttcccgcatcg ggcgctggag gggAACACAG cagtgactac 480
agtgggatgc ttactcggtg ctgggcatgc tagaaagtgc ttgccatgcc ttatttcccc 540
cgtgggtggg atttgaccc cacctgtaca gacagataag tgaggaccct tttcacctta 600
tcctgcaaca gaaaatccag cagccaaAGC caacaaggGC ccagcatAGC atcttccctc 660
tctgacttca tcctcactcg ccacacacca tccccctggc cattcccAGC agcccAGTAA 720
gcactgcctc acacttccag ttccggacca gccaggatgg ccaggctgg tggggccat 780
ccaccggctg aagccaattt cctattctcg agctgaaggt gaatcaatcc cgcataaATC 840
ttcgggcaga gaactnGGGT gggggtaga agaggggaa tgtctagaag gaaattctgg 900
ggcacattcc tggAAAGTgag gaggatggat attggacaga aattatgtca ttgcaggcac 960
cctcacttgc cctggccaca tggacagttc ctccccggct gtgttccng cctccctctcg 1020
tgctccaggg cctgtctgtt cctggagcga gatgggtccc agggtggc accagttccc 1080
atctccagcc atcaggact ttctctctg tgTTTGGCG taaacacntc cctagtttg 1140
tggatctgaa tcctcttccc aacacactca agctttgctg ggcctccctg cagtgtatgt 1200
ttaaggcacc acacagcctc caaggcctgg cacCCGGGCA gtggccacct ggtAAACACA 1260
gcagtcagat ttccctcattt cagccaagtg taaaatcaag gtaatggatc tacnctttt 1320
tttttnntt ttttccaggg ggntnnnttt tttttgagac ggagtctcac tctgtcancc 1380
ccggtctgga gtgcagtggc tcaatctcg ctcancgtgc aagctccgc tcccaGGGTTc 1440
atgccattct cctgcctcag cctacatagt agctggact acagggtGCC gccaccacac 1500
ctagctaatt ttttgtattt ttagtagaga cggggttca tcatgttag caggatggtc 1560
tcgatctcct gacccctcaa agtgggtggg ttacaggtgt gagccactgc gcccggctgg 1620
atgactcttgc agacaacacc attcagacaa aggcaaggcc toccacttaa actcataacc 1680
gtgtctcctt tctctccttc gatttgagcg gctgaatttg gttacagtca tctgacctgt 1740
gggtgtgaag tccacctgcc tggcataaaa agctgtgcct cctttctagg tgaggagaaa 1800
gagagagacc tggctcatct gaggtgtgg tgggaggGGG gacccaggtg tgctggaaat 1860
aaaaagaaat gcattcctgt tttcgtccc aacatgcAAA caactgaaca aaagcattag 1920
ggcctgagac tgggagtaaa gaattccttg tcaccatgg taccagggaa tggccccact 1980
tatataataat aagggcttta gagatgtgg accatctgat attccagcct ggggcccacat 2040
gggagtgtgc cctgggttta ttccctatac agttccatga acatggctct ggaaacacct 2100
ctgtctgcag aaaatgaggc ttttctttt ttgttccggg gtGAACAGAG ggcagaggcc 2160
tggcatctt cactcagcac ccctttgtaa cccagcactt agcaccatgg ctggcgcaca 2220
gcaatgtcac atgtgtgagt gcacacgatg cctcaactgc aggggtcacc ccacaccgg 2280
gctgggggg gcgttggagt gtttatctct tcttttagtcc tcaagctcct acctggcaga 2340
gagtcGCCAc acaccgtcgg ggtgggggtgg gcgggaaggg aagaagcagc agcaagaaag 2400
aagccccctg gccctcaactc tccctccctg gacgccccct cttcgacccc atcacacagc 2460
cgcttggcc ttggagnncag tggatttccg agcctggaa ccccccggcgt ctgtcccggt 2520
gtccccccgca gcctcaccnn cgtgtggcc cagccccccgc gagttcggga cccggggTTT 2580
ccgggggtggc aggggggttcc catggccctc gcgaggccctc ggctcgggccc gctcccgaa 2640
cctgcacttc aggggtcctg gtccggccccc cccagcagga gcaaaacaag agcacgcga 2700
cctgcccggcc cggccggccccc cttgggtggc gccaatcgcg cgctcggggc ggggtcgggc 2760
gcgttggaaac cagagccgga gccggatccc agccggagcc caagcgcagc ccgcacccccc 2820
cgcaGGGCT gaggccggag ccagcgcagc ctcggccccg cagctcaagc ctcgtccccg 2880
ccggccggcc cgcaGGGCGC cggccggccccc cccggggcat ggc 2923