

CUSTOMER

CHURN

PREDICTION

CAPSTONE PROJECT

BY NANCY GUPTA

Problem Statement:

An E Commerce company or DT is facing a lot of competition in the current market and it has become a challenge to retain the existing customers in the current situation. Hence, the company wants to develop a model through which they can do churn prediction of the accounts and provide segmented offers to the potential churners. In this company, account churn is a major thing because 1 account can have multiple customers. hence by losing one account the company might be losing more than one customer. You have been assigned to develop a churn prediction model for this company and provide business recommendations on the campaign. Your campaign suggestion should be unique and be very clear on the campaign offer because your recommendation will go through the revenue assurance team. If they find that you are giving a lot of free (or subsidized) stuff thereby making a loss to the company; they are not going to approve your recommendation. Hence be very careful while providing campaign recommendation.

Executive Summary of the Problem:

In the highly competitive E-Commerce/DTH market, customer retention has become a major challenge. The company is experiencing significant account churn, which impacts multiple customers per account. This report presents a **churn prediction model** and **data-driven campaign recommendations** aimed at reducing churn while maintaining profitability. The proposed strategy ensures minimal financial risk while maximizing customer retention.

- Customer churn leads to revenue loss and increased customer acquisition costs.
- Each **churned account** can impact **multiple customers**.
- The company requires a predictive churn model to identify at-risk accounts
 before they leave.
- A targeted retention strategy must be implemented, ensuring cost-effectiveness while maximizing retention.

Data Report

This is how the first 5 rows of the dataset look like.

→ no. of rows: 11260 no. of columns: 19

There are 11260 rows and 19 columns in this Dataset.

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 11260 entries, 0 to 11259 Data columns (total 19 columns):

		-,.	
#	Column	Non-Null Count	Dtype
0	AccountID	11260 non-null	int64
1	Churn	11260 non-null	int64
2	Tenure	11158 non-null	object
3	City_Tier	11148 non-null	float64
4	CC_Contacted_LY	11158 non-null	float64
5	Payment	11151 non-null	object
6	Gender	11152 non-null	object
7	Service_Score	11162 non-null	float64
8	Account_user_count	11148 non-null	object
9	account_segment	11163 non-null	object
10	CC_Agent_Score	11144 non-null	float64
11	Marital_Status	11048 non-null	object
12	rev_per_month	11158 non-null	object
13	Complain_ly	10903 non-null	float64
14	rev_growth_yoy	11260 non-null	object
15	coupon_used_for_payment	11260 non-null	object
16	Day_Since_CC_connect	10903 non-null	object
17	cashback	10789 non-null	object
18	Login_device	11039 non-null	object
dtype	es: float64(5), int64(2),	object(12)	
	4 6 110		

memory usage: 1.6+ MB

- Out of the 19 columns of the Dataset there are 5 columns which are float type, 2 columns integer type and 12 columns are found to be object type.
- This clearly explains that there are anomalies and missing values in the dataset that needs to be treated.

3		0
	cashback	471
	Complain_ly	357
	Day_Since_CC_connect	357
	Login_device	221
	Marital_Status	212
	CC_Agent_Score	116
	Account_user_count	112
	City_Tier	112
	Payment	109
	Gender	108
	Tenure	102
	CC_Contacted_LY	102
	rev_per_month	102
	Service_Score	98
	account_segment	97
	Churn	0
	AccountID	0
	rev_growth_yoy	0
	coupon_used_for_payment	0
	dtype: int64	

The above picture gives us total number of null values or missing values each feature contains.

Number of duplicate rows = 259

- Further on we see the Dataset contains 259 duplicate rows that needs to be dropped.
- After dropping the duplicate rows, the number of rows in the dataset remains 11001 and the number of columns in the dataset remains 18.
- Our Target feature is the column "Churn" and out of 11001 accounts only 9149 accounts are active. 1852 accounts are already churned.
- The column "Tenure" has 116 '#' values and I have replaced the '#' values with 1 that is the maximum tenure value.
- ➤ Tier of Primary Customer's City has 3 types 1, 2 and 3.

- Customers use 5 types of payment methods. Debit Card is used the most by the customers followed by Credit card. E-Wallet comes next followed by Cash on Delivery. UPI is least preferred by the customers.
- We have 6548 Male customers and 4345 Female customers in the account.
- > Satisfaction score given by customers of the account on service provided by company is majorly between 2 and 4. It is an average score which is not good for the company's reputation.
- Number of customers tagged with one account is majorly between 3 and 5.
- Account segmentation on the basis of spend has been done as Regular, Regular Plus, Super, Sper Plus and High-net-worth Individual (HNI). We see 4014 Regular plus accounts, 3961 Super accounts, 1615 HNI accounts, 803 Super Plus accounts and 511 Regular accounts.
- > Satisfaction score distribution figure given by customers of the account on customer care service provided by company is below.

CC_Agent_Score				
3.0	3270			
1.0	2261			
5.0	2126			
4.0	2064			
2.0	1164			

➤ The next picture is the count chart of Marital Status of the Customers.

Marital_Status

5710
3412
1668
7602
3042

> 3042 complains has been raised in the last 12 months.

Login_device

Mobile	7308
Computer	2933
Others	539

Customers mainly prefer Mobile to purchase the products, raise complaints and many more followed by computer.

> After dropping all the rows from the dataset that contains missing values now, we have

no. of rows: 8447 no. of columns: 18

Detailed Description of the cleaned Dataset

	count	mean	std	min	25%	50%	75%	max
Churn	8447.0	0.166213	0.372294	0.0	0.00	0.00	0.000	1.00
Tenure	8447.0	11.316444	13.949807	0.0	2.00	9.00	16.000	99.00
City_Tier	8447.0	1.656564	0.917293	1.0	1.00	1.00	3.000	3.00
CC_Contacted_LY	8447.0	17.919025	8.929066	4.0	11.00	16.00	23.000	132.00
Service_Score	8447.0	2.902451	0.727135	0.0	2.00	3.00	3.000	5.00
Account_user_count	8447.0	3.823369	1.200406	1.0	3.00	4.00	4.000	7.00
CC_Agent_Score	8447.0	3.047472	1.382974	1.0	2.00	3.00	4.000	5.00
rev_per_month	8447.0	6.575589	13.167177	1.0	3.00	5.00	7.000	140.00
Complain_ly	8447.0	0.283533	0.450739	0.0	0.00	0.00	1.000	1.00
rev_growth_yoy	8447.0	16.205162	3.764174	4.0	13.00	15.00	19.000	28.00
coupon_used_for_payment	8447.0	1.812715	2.005490	0.0	1.00	1.00	2.000	16.00
Day_Since_CC_connect	8447.0	4.659642	3.706566	0.0	2.00	3.00	8.000	47.00
cashback	8447.0	179.384497	49.631708	0.0	147.15	165.11	199.255	331.26

Exploratory Data Analysis

Univariate Analysis: Below are the histograms of all the numerical variables of the Dataset.

Below are the pie charts of all the categorical variables in the Dataset.

Insights

- From the above diagrams we find 68.5% of customers use mobile to login.
- > 73% of the account holders are Regular Plus and Super customers combined.
- ➤ 53% of the customers are married and 31.6% are Single.
- Customers use Debit card and Credit card mainly to make the payments.
- Percentage of Male customers are higher than Female Customers.

Bivariate Analysis:

Boxplot of all the numerical features of the Dataset.

Correlation matrix

Below are the crosstabs, scatter plots and Violin Plots of different features:

Insights

- In order to perform bivariate analysis, I have represented the features through scatterplot, boxplot, violin plot and crosstabs.
- If we check the boxplot of all numerical features, we find there are outliers present in the Dataset that needs to be treated.
- Service Score is majorly scattered between 2 and 4.
- Tenurity of the account, Day since CC Connect and Cashback are negatively correlated with Churn which is our target variable.
- > Day since CC connect and coupon used for payment has positive correlation.
- Gender and payment method do not seem to be the reason for affecting churning of the customers.
- > Regular Plus customers are more likely to leave the services or are in our high priority list.
- Customers who are Single, needs a special attention.
- ➤ Both Male and Female customers use Debit card and Credit card more than any other payment method for making the payments.
- ➤ We majorly have Regular Plus and Sper customers who are using the product and the services.
- > Super customers are a bit inclined towards E-wallet as their payment method.
- ➤ City Tier 1 customers are more likely to proceed with the payments in time and so they are our loyal customers followed by city tier 3. City Tier 2 customers need attention.
- Cashback for the customers range between 100 and 350. This needs to be managed.
- Customers have mainly rated 3 for the services provided by the company which is a very average score.
- The service score majorly ranges between 2 and 4.
- Customer care service rating of the company is also between 2 and 4 which is not a decent score.
- The monthly average revenue generated by the company is between 1 to 10k out of which majorly the revenue flow is in the 3k box.

Multivariate Analysis:

Below is the pairplot of all the features in the Dataset:

Insights

In order to go ahead with multivariate analysis, I have used Pairplot, 3D Scatter plot and Pivot Table.

- ➤ Tenurity of the account majorly lies between 0 to 20 months and is equally distributed among all the three City Tiers.
- ➤ Churning however is majorly seen in Tier1 and Tier 3 cities.
- > Tier 2 cities are not that active and needs special attention
- > Revenue growth percentage lies between 10 and 30 with respect to Tenurity of the account.
- ➤ All the customers of the account have contacted Customer care around 0 to 50 times in the last 12 months.
- Customer contacted customer care and complaints raised are directly proportional to each other.
- Male customers with Tenurity 33 to 66 months have revenue growth of 25%.
- Female customers on the other hand with Tenurity 33 to 66 months have revenue growth of only 14%.
- Revenue growth is 22% for High-Net-Worth Individuals but the service score is very poor. If not taken care the company might lose its HNI.
- After the Outliers Treatment, this is what the boxplot of the features of the Data looks like

- After Data processing the dataset now has 8447 rows and 18 columns. Out of these 8447 rows 7043 are active accounts and 1404 are already churned.
- Split the dataset into Training(70%) and Testing(30%) sets.

Different Models and its Performance Matrix:

Logistic Regression Model:

Confusion matrix and Classification Report on Train Dataset.

0.879566 [[4755 [538		86604				
٠		precision	recall	f1-score	support	
	0	0.90	0.96	0.93	4929	
	1	0.72	0.45	0.56	983	
acci	uracy			0.88	5912	
macro	o avg	0.81	0.71	0.74	5912	
weighte	d avg	0.87	0.88	0.87	5912	

> Confusion matrix and Classification Report on Test Dataset.

0.880078 [[2043 [233	89546 71] 188]]	35108			
		precision	recall	f1-score	support
	0	0.90	0.97	0.93	2114
	1	0.73	0.45	0.55	421
accu	racy			0.88	2535
macro	avg	0.81	0.71	0.74	2535
weighted	avg	0.87	0.88	0.87	2535

> AUC-ROC Curve on Train Dataset.

> AUC-ROC Curve on Test Dataset.

Linear Discriminant Analysis:

Confusion matrix and Classification Report on Train Dataset.

```
0.888700947225981
[[4800 129]
 [ 529 454]]
              precision
                           recall f1-score
                                               support
           0
                   0.90
                             0.97
                                        0.94
                                                  4929
           1
                   0.78
                             0.46
                                        0.58
                                                   983
                                       0.89
                                                  5912
    accuracy
   macro avg
                   0.84
                             0.72
                                        0.76
                                                  5912
weighted avg
                   0.88
                             0.89
                                       0.88
                                                  5912
```

Confusion matrix and Classification Report on Test Dataset.

0.88678 [[2054 [227	500986: 60] 194]]	1933			
		precision	recall	f1-score	support
	0	0.90	0.97	0.93	2114
	Ю	0.90	0.97	0.93	2114
	1	0.76	0.46	0.57	421
acc	uracy			0.89	2535
macr	o avg	0.83	0.72	0.75	2535
weighte	d avg	0.88	0.89	0.87	2535

> AUC-ROC Curve on Train Dataset.

> AUC-ROC Curve on Test Dataset.

Decision Tree Classifier - CART Model:

> Confusion matrix and Classification Report on Train Dataset.

1.0 [[4929 [0	0] 983]]				
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	4929
	1	1.00	1.00	1.00	983
accı	uracy			1.00	5912
macro	avg	1.00	1.00	1.00	5912
weighted	davg	1.00	1.00	1.00	5912

> Confusion matrix and Classification Report on Test Dataset.

0.929783 [[2016 [80	03747! 98] 341]]	53452			
		precision	recall	f1-score	support
	0	0.96	0.95	0.96	2114
	1	0.78	0.81	0.79	421
accu	racy			0.93	2535
macro	avg	0.87	0.88	0.88	2535
weighted	avg	0.93	0.93	0.93	2535

> AUC-ROC Curve on Train Dataset.

AUC-ROC Curve on Test Dataset.

Naive Bayes Model:

➤ Confusion matrix and Classification Report on Train Dataset.

```
0.7763870094722598
[[3897 1032]
[ 290 693]]
              precision
                           recall f1-score
                                              support
           0
                   0.93
                             0.79
                                                 4929
                                       0.85
                   0.40
                             0.70
                                       0.51
                                                  983
           1
   accuracy
                                       0.78
                                                 5912
                   0.67
                             0.75
                                       0.68
                                                 5912
  macro avg
                   0.84
                             0.78
                                       0.80
                                                 5912
weighted avg
```

Confusion matrix and Classification Report on Test Dataset.

0.78698 [[1687 [113	427]	07101		·	
-		precision	recall	f1-score	support
	0	0.94	0.80	0.86	2114
	1	0.42	0.73	0.53	421
acc	uracy			0.79	2535
macr	o avg	0.68	0.76	0.70	2535
weighte	d avg	0.85	0.79	0.81	2535

> AUC-ROC Curve on Train Dataset.

> AUC-ROC Curve on Test Dataset.

KNN Model:

> Confusion matrix and Classification Report on Train Dataset.

0.92117 [[4812 [349		64547			
		precision	recall	f1-score	support
	0	0.93	0.98	0.95	4929
	1	0.84	0.64	0.73	983
acc	uracy			0.92	5912
macr	o avg	0.89	0.81	0.84	5912
weighte	d avg	0.92	0.92	0.92	5912

➤ Confusion matrix and Classification Report on Test Dataset.

0.874161 [[2029 [234	1735706 85] 187]]	91973			
		precision	recall	f1-score	support
	0	0.90	0.96	0.93	2114
	1	0.69	0.44	0.54	421
ассі	uracy			0.87	2535
macro	avg	0.79	0.70	0.73	2535
weighted	d avg	0.86	0.87	0.86	2535

> AUC-ROC Curve on Train Dataset.

> AUC-ROC Curve on Test Dataset.

Random Forest Model:

➤ Confusion matrix and Classification Report on Train Dataset.

1.0 [[4929 [0	0] 983]]	precision	recall	f1-score	support
	0	1.00	1.00	1.00	4929
	1	1.00	1.00	1.00	983
acc	uracy			1.00	5912
	o avg	1.00	1.00	1.00	5912
weighte	d avg	1.00	1.00	1.00	5912

➤ Confusion matrix and Classification Report on Test Dataset.

0.96213 [[2100 [82	017751 14] 339]]	47929			
		precision	recall	f1-score	support
	0	0.96	0.99	0.98	2114
	1	0.96	0.81	0.88	421
				0.00	2525
acc	uracy			0.96	2535
macr	o avg	0.96	0.90	0.93	2535
weighte	d avg	0.96	0.96	0.96	2535

> AUC-ROC Curve on Train Dataset.

> AUC-ROC Curve on Test Dataset.

Boosting Classifier Model using Gradient Boost:

> Confusion matrix and Classification Report on Train Dataset.

0.923545 [[4828 [351	33152: 101] 632]]	90933			
[22I	032]]				
		precision	recall	f1-score	support
	0	0.93	0.98	0.96	4929
	-				
	1	0.86	0.64	0.74	983
accu	ıracy			0.92	5912
macro	avσ	0.90	0.81	0.85	5912
	_	0.50	0.01	0.05	3311
weighted	lavg	0.92	0.92	0.92	5912

> Confusion matrix and Classification Report on Test Dataset.

0.9108483 [[2049 [161 3	12623 65] 260]]	27416			
		precision	recall	f1-score	support
	0	0.93	0.97	0.95	2114
	1	0.80	0.62	0.70	421
accui	racy			0.91	2535
macro	avg	0.86	0.79	0.82	2535
weighted	avg	0.91	0.91	0.91	2535

> AUC-ROC Curve on Train Dataset.

> AUC-ROC Curve on Test Dataset.

Key Findings:

- As we compare all the seven models build for this dataset, we find that the best performing model is Random Forest Model with 100% and 96% accuracy for Training and Testing Data respectively which is fairly the best followed by Decision Tree model with the model score 100% and 93% for Training and Testing Data respectively.
- ➤ The recall Values for both the models are same that is 100% and 81% for training and testing data, However the precision and the AUC score for Random Forest Model is slightly better than the Decision Tree Model. Hence, I choose to go with Random Forest model for our outcome in this Dataset.
- For Gradient Boost is also a good model with Accuracy 92% overall. The recall value and the precision value for the model is average. AUC score however is fairly good that is 95%.
- The other three models KNN model, LDA and Logistic Regression are average performing models to which we can apply SMOTE to check if their efficiency increases.
- ➤ Naive Bayes Model is the worst performing model for this Dataset.
- \triangleright Performed the Chi-Square test on all the features against the target variable. p-value (p): A small p-value (≤ 0.05) suggests a significant association between the feature and the target variable. Hence Gender (p-value 0.0) and Tenure (p-value 0.0) has significant association.
- Revenue growth percentage of the account (p-value 0.0) and Monthly average revenue generated by account (p-value 0.2) has significant association with churning of the customers.
- Service score(p-value 0.02) and coupon used for payment(p-value 0.08) also impacts our target variable significantly.

Important Features:

- ➤ Tenurity of the account, Monthly average cashback generated by account, Any Complaints raised by the account in last 12 months and the number of times all the customer of the account contacted customer care in the last 12 months are some of the most important features to be closely and deeply looking at.
- The Customers are definitely not very happy with the services provided by the company. It is the major concern and needs to be worked on in order to stop the customers from leaving the product and services.

Feature	Importance
Tenure	0.226162
cashback	0.086077
	0.070317
. = 7	0.066875
	0.066659
7	0.060849
	0.058058
	0.056902
_ 0 _	0.036386
coupon_used_for_payment	0.030066
City Tier	0.027358
Marital_Status_Single	0.027164
account_segment_Regular Plus	0.021976
Gender Male	0.021485
Service_Score	0.021064
Login_device_Mobile	0.021048
Payment_Credit Card	0.020393
Marital_Status_Married	0.018240
Payment_Debit Card	0.015217
account_segment_Super	0.015063
Payment_E wallet	0.013700
Payment_UPI	0.008319
account_segment_Super Plus	0.004080
account_segment_Regular	0.003608
Login_device_Others	0.002933
	cashback Complain_ly CC_Contacted_LY Day_Since_CC_connect rev_growth_yoy rev_per_month CC_Agent_Score Account_user_count coupon_used_for_payment City_Tier Marital_Status_Single account_segment_Regular Plus Gender_Male Service_Score Login_device_Mobile Payment_Credit Card Marital_Status_Married Payment_Debit Card account_segment_Super Payment_E wallet Payment_UPI account_segment_Super Plus account_segment_Regular

Recommendations:

- > By implementing this churn prediction model, the company can significantly reduce account churn without excessive financial risk.
- The structured approach ensures that high-value customers are retained, and low-value churners are not over-incentivized.
- We need to **segment customers** based on their churn risk and tailor retention offers **without excessive cost**.

- ➤ High Risk (Likely to Churn) customers with low engagement and frequent complaints like City Tier 3 customers and customers segmented at Super Plus and Regular Plus. We can offer them Retention Discount (10-15% off for the next 3 months) IF they commit to a longer subscription. Provide personalized support to resolve service issues. Increases commitment while reducing churn risk.
- Encouraging long-term commitment without giving away free services.
- ➤ Medium Risk (Uncertain) customers with reduced engagement like City Tier 2 Customers and customers segmented at HNI and Super Plus. We can offer them Personalized Upsell (Bundle upgrade at a discount for limited time e.g., extra channels for DTH, priority delivery for E-Commerce). Provide a personalized loyalty program. This Increases perceived value while ensuring revenue growth.
- Low Risk (Loyal Customers) with regular payments and high usage like City Tier 1 customers and the customers who fall under the Super category. We can offer them Exclusive Early Access or Rewards (early product access, priority support). Provide exclusive perks (e.g., faster deliveries, priority support). No discount, just added benefits to maintain loyalty.
- ➤ Discounts only for long-term commitments (e.g., 6-month lock-in).
- > Targeted offers based on predicted churn probability.
- Providing comprehensive self-service tools empowers customers to resolve issues independently, leading to increased satisfaction and reduced workload for agents.
- > Developing a robust knowledge base with FAQs, tutorials, and troubleshooting guides can significantly improve the customer experience.
- ➤ Enabling online account management for tasks like billing and service modifications enhances convenience.
- > Personalization fosters a stronger connection between the customer and the service provider.
- Utilizing customer data to tailor interactions and offers can enhance satisfaction and loyalty.
- Invest in Comprehensive Agent Trainings and Implement Quality Assurance Programs
- Training programs should cover product knowledge, communication skills, problem-solving techniques, and the use of customer service technologies. Continuous education keeps agents updated on new products and policies, enhancing their performance.