1. Ядро и образ линейного оператора, их размерности.

1.1. Определение

Пусть А - линейный оператор векторного пространства V.

Образ: множество $\forall y \in V : \exists x \in V : A(x) = y$. Обозначение: *Im A*.

Ядро: множество $\forall x \in V : A(x) = 0$. Обозначение: Ker A.

1.2. Размерности Образа и Ядра

А - линейный оператор в век. пространстве размерности п.

Размерность образа соответствует рангу матрицы оператора (Размерность Im(A) = rk(A))

Размерность ядра соответствует дополнению ранга матрицы до п (Размерность Ker(A) = n - rk(A))

1.3. Доказательство подпространства

1.3.1. Образ

Пусть $y_1,y_2\in \mathit{Im}\, A$, t - произвольное вещественное число $\Rightarrow\exists x_1,x_2\in A: \begin{cases} A(x_1)=y_1\\ A(x_2)=y_2 \end{cases} \Rightarrow y_1+y_2=A(x_1)+A(x_2)=A(x_1+x_2)$ и $ty_1=tA(x_1)=A(tx_1)\Rightarrow y_1+y_2$ и ty - элементы образа \Rightarrow образ - подпространство.

1.3.2. Ядро

Пусть
$$x_1, x_2 \in \mathit{Ker}\, A$$
, t - произвольное вещественное число $\Rightarrow \begin{cases} A(x_1) = 0 \\ A(x_2) = 0 \end{cases} \Rightarrow A(x_1 + x_2) = A(x_1) + A(x_2) = 0 + 0 = 0, A(tx_1) = tA(x_1) = 0 \Rightarrow x_1 + x_2$ и tx - элементы ядра \Rightarrow ядро - подпространство.

1.4. Примеры

Образ проекции пространства на плоскость XOY – плоскость XOY, ядро этого оператора – все векторы, параллельные оси OZ.

Образ оператора дифференцирования на пространстве всех многочленов – это же пространство многочленов. Ядро этого оператора – константы.

2. Алгоритм Чуркина

2.1. Алгоритм

Имеется матрица оператора A размерности n. Составим матрицу B порядка n x 2n, где первые n столбцов занимает транспонированная матрица A, следующие n столбцов единичная матрица.

Элементарными преобразованиями приводим левую часть к ступенчатому виду.

Ненулевые строки левой части - базис образа оператора А.

Продолжение нулевых строк в правой части - базис ядра.

2.2. Обоснование

Строки A^T соответствуют значению оператора на базисе.

Записав значения и приведя к ступенчатому виду, получаем базис (базис Образа).

Левая часть матрицы В соответствует значению оператора на векторе, тогда как правая - координатной записи вектора.После преобразований закономерность сохраняется и в правой части: строки соответствующие нулевым строкам в левой являются базисом ядра. (Р.S. Вспомни определение ядра)

2.3. Пример

Пусть
$$A = \begin{pmatrix} 2 & 0 & 1 & -3 \\ 1 & 0 & 3 & -4 \\ -1 & 0 & 2 & -1 \\ 1 & 0 & 1 & -2 \end{pmatrix}$$
 По алгоритму:
$$\begin{pmatrix} 2 & -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 3 & 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & -4 & -1 & -2 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 перемещаем строку
$$\begin{pmatrix} 2 & -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 3 & 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & -4 & -1 & -2 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
 $l_3 \rightarrow l_3 + l_2 + l_1$ получаем
$$\begin{pmatrix} 2 & -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 3 & 2 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
 Тогда: $(2, -1, -1, 1), (1, 3, 2, 1)$ - базис образа, $(1, 0, 1, 1), (0, 1, 0, 0)$ -базис ядра.

3. Проверка линейного оператора на вырожденность и невырожденность и невырожденность

- 3.1. Невырожденная матрица оператора
- 3.2. Оператор вырожденный, если $\exists \ x_1, x_2 : A(x_1) = A(x_2) = y$. Тогда невозможно однозначно определить обратный оператор от у
- 3.3. Оператор невырожденный только тогда, когда ядро состоит только из нулевого элемента

Оператор невырожденный \Rightarrow ядро не может состоять больше чем из одного элемента (пункт 2) \Rightarrow ядро состоит только из 0.

Ядро состоит из
$$0 \Rightarrow A(x_1) = A(x_2)$$
 будет:

$$A(x_1) - A(x_2) = 0 \Rightarrow A(x_1 - x_2) = 0 \Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = x_2$$

Совпадение значений оператора на двух элемента \Rightarrow совпадают элементы \Rightarrow возможно корректное определение обратного оператора.

3.4. Геометрические соображения

Пример:

Вырождена ли симметрия относительно плоскости? Легко заметить, что двойная симметрия вернёт точку в исходное положение. Таким образом обратный к симметрии - это сама симметрия, а значит она невырождена.

2

3.5. Примеры

1.
$$A(x) = a * x$$
, где $a \in R$.

Ядро состоит только из нулевого элемента тогда и только тогда, когда $a \neq 0.$

Если a=0, оператор вырожден, поскольку прообраз 0 неоднозначно определён.

2.
$$A(x)=(x,e)e$$
, при этом $|e|=1$

Оператор вырожден, поскольку ядро состоит не только из 0.

4. Собственные числа

4.1. Определение

Число λ называется собственным числом оператора L, если существует такой ненулевой вектор x, что $L(x)=\lambda x$. При этом вектор x называется собственным вектором оператора L, отвечающим собственному числу λ .

4.2. Вычисление

4.2.1. Геометрический

Пример: Найти с.ч. и с.в. проекции пространства на плоскость XOY.

Найдём все векторы \parallel своей проекции - это все вектора $\parallel XOY$ (проекция равна вектору) и все вектора перпендикулярные плоскости (проекция равна нулю). \Rightarrow

$$\lambda_1=1, X_{\lambda_1}=\left(egin{array}{c} x \ y \ 0 \end{array}
ight); \lambda_2=0, X_{\lambda_2}=\left(egin{array}{c} 0 \ 0 \ z \end{array}
ight)$$
, где $x,y,z\in R$.

4.2.2. Аналитический

Пример: Найти с.ч. и с.в. оператора дифференцирования на множестве всех многочленов.

Рассмотрим $p'(x) = \lambda p(x)$. Если $\lambda \neq 0$, то степени правой и левой частей не совпадут. Если $\lambda = 0$, то p(x) - константа.

Ответ: $\lambda = 0, X_{\lambda} = C = const.$

4.2.3. С помощью матрицы

Пусть оператор задан матрицей $\Rightarrow A(x) = Ax \Rightarrow$

$$Ax = \lambda x \Leftrightarrow Ax - \lambda x = 0 \Leftrightarrow Ax - \lambda Ex = 0 \Leftrightarrow (A - \lambda E)x = 0$$

 λ - с.ч. только тогда, когда система уравнений на координаты х $(A-\lambda E)x=0$ имеет ненулевое решение.

Выполняется только тогда, когда определитель $(A - \lambda E)$ равен 0.

Алгоритм:

- 1. Найти корни уравнения $det(A \lambda E) = 0$
- 2. Для каждого из корней решить СЛУ $(A \lambda E)x = 0$. Решения будут задавать координаты множества с.в., соответствующих с.ч. (может иметь размерность 1 и более)

4.3. Диагонализуемость

Если удаётся найти базис из с.в. для линейного оператора, то его матрица в этом базисе будет диагональна, а на диагонали будут с.ч.

Пусть матрица диагональна, значит элементы диагонали обозначим через λ_k из условия $A(e_k) = \lambda_k e_k$ получим, что по определению все элементы базиса - с.в. данного линейного оператора.

Итог: матрица линейного оператора диагонализуема тогда только тогда, когда для этого линейного оператора найдётся базис из собственных векторов.