MYD-Fall 2020-Physics1-Lecture 1

General Physics 1

Istanbul Medipol University Fall 2020

Instructor: Asst. Prof. Merve Yüsra Doğan

Welcome and Introduction

Course Webpage

MS Teams

Google classroom, class code: 72jbrpy

Use Medipol email

Syllabus

Syllabus

- Instructor: Asst. Prof. Merve Yüsra Doğan, mydogan@medipol.edu.tr
- Office Hours: Monday, 13:00 14:00, Teams
- Textbook: Young & Freedman, University Physics with Modern Physics, 13th Edition

• Lecture: Monday 14:30 - 17:15

• Recitation:

• Laboratory: on MS Teams, a different class.

Syllabus - Teaching Assistants

TA email

Ömer Kartlı	okartli@st.medipol.edu.tr
Hakan Yücelten	hyucelten@st.medipol.edu.tr
Mehmet Emin Bayrak	mebayrak@st.medipol.edu.tr

hbulut@st.medipol.edu.tr

Syllabus - Calendar

Hilal Bulut

		Tentati	ive Calendar	
Month Day Chapter		Chapter	Subject	
October	. 5		Cancelled	
	12	- 1	Units, Physical Quantities and Vectors	
	19	2	Motion along a straight line	
	26	3	Motion in two or three dimensions	
November	2	4	Newton's Laws of Motion	
	9	- 5	Applying Newton's Laws	
	16	6	Work and Kinetic Energy	
	23	7	Potential Energy and Energy Conservation	
	30		Midterm Week	
December	.7	8	Momentum, Impulse and Collisions	
	14	9	Rotation of Rigid Bodies	
	21	10	Dynamics of Rotational Motion	
	28	11	Equilibrium and Elasticity	
January	- 4	14	Periodic Motion	
	11	12	Fluid Mechanics	
	18	13	Gravitation	
	25	15	Mochanical Waves	
February	1		Finals Week	

Syllabus - Grading

Quiz 30 %
 Midterm 30 %
 Final 40 %

Syllabus - Exams

- You will need to upload files for quiz and exams.
 Please do have an easy access method to scan and upload a pdf file. The easiest method is to have a scanning app on your smartphone.
 We may ask you to turn on your camera during any exam.
 We may ask you to turn on your camera during any exam.

- | Quize will be held during class. | Quizes will be held during class. | The quiz platform will vary as Quizevolved / MS Teams / Google Classroom to be announced during lecture. | Quiz weights may vary according to content. | Google Classroom to be announced during lecture. | Google Classroom to be announced during lecture. | Quiz weights may vary according to content. | Google Classroom to be announced during lecture. | Quiz weights may vary according to content. | Google Classroom to be announced during lecture. | Quize weights may vary according to content. | Google Classroom to be announced during lecture. | Quize weights may vary according to content. | Quize weights may vary according to content. | Google Classroom to be announced during lecture. | Quize weights may vary according to content. | Quize weights may vary according to content. | Google Classroom to be announced during lecture. | Quize weights may vary according to content. | Quize we

- The midterm day and final day will be set during midterm/finals week.
- Final will cover the entire course material.

Syllabus – Online Quiz

- http://quizevolved.com
- Join this class: ACCESS CODE: 11649953
- Write your name as it appears on your records when you sign up
- During lecture, I will give you an access code for the week's quiz

Syllabus - Homework

- Several problems will be assigned
- Homework will not be collected
- It is good practice to work on these problems to fully comprehend the subject matter.

Syllabus - Written Homework Format

- Guidelines to keep your work neat
- Important to develop good problem solving skills
- Organize your thoughts
- · Representative sketches
- Correct formulas
- Thought process

Syllabus - Recitation

- Problem solving sessions
- Recitations are biweekly. Time TBA
- \bullet Recitation weeks are highlighted in green in the calendar.
- Although recitations are not mandatory, it will be wise to attend them

Syllabus - Laboratory Information

- Labs will be online virtual labs
- You will be assigned a lab section/time.
- You must attend the section you are assigned.
- You cannot miss an experiment and make up in another section.
- · Any excuses need written approval.
- Your TAs are in full charge of the laboratory session
- You need to have a copy of the Lab Manual
- Bring the manual with you to every lab.
- I will post your section assignment on Google classroom/MS Teams

Syllabus - Laboratory Information

- Lab Manual: Webpage
- Lab Orientation: In the lab, at the beginning of your first lab
- 6 Experiments, days and times TBA

Experiments

- 1. Motion Along a Straight Line
- 2. Projectile Motion
- 3. Hooke's Law
- 4. Conservation of Momentum
- 5. Rotational Motion
- 6. Simple Pendulum

What you must do this week

- Add class on Google Classroom
- Sign up on Quizevolved.com
- Get a copy of the Laboratory Manual

PHYSICS Intro

- · An experimental science
- Aims to understand the complex universe based on simple ideas
- Finds patterns that relate the phenomena of nature.
- Definition:

The science that deals with matter, energy, motion, and force

The scientific method

- Finds patterns that relate the phenomena of nature.
- · All sciences use

the scientific method

- 1. Observation
- 2. Question

- Hypothesis
 Prediction
 Test --> experiments
- Iterate
 Formulate a general rule

Physical laws

• The general rules or patterns arrived at are called

physical theories

· A very well established or widely used theory is called

a physical law or principle.

Fundamental quantities of physics

Some physical quantities are so fundamental that we can define them only by describing how to measure them.

- rundamental Quantities		Units
Length	meter	m
Mass	kilogran	n kg
• Time	second	s
Electric current	ampere	A
· Thermodynamic temperature	Kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	Cd

	• Some	Derived Quantities	Units
	• Spee	d	m/s
	(ratio	of a length by a time)	
	• Acce	eration	m/s ²
	(ratio	of a speed by a time)	
	• Force		kg·m/s
	(multi	plication of acceleration by m	nass)

SI Units: International System of Units (Système International d'Unités)

- Reference standard
- Such a standard defines a unit of the quantity
- A physical quantity is described by a number and a unit
- The 'INTERNATIONAL SYSTEM OF UNITS', abbreviated SI, defines the seven quantities and a physical standard for each (*UNIT*)
- Quantities of the same type can be compared against the same unit

Some SI derived quantities and units

Quantity	Units	Quantity	Units		
• area	m ²	frequency	Hertz	Н	1/s
 volume 	m ³	force	Newton	N	kg·m/s²
 mass density 	kg/m³	pressure	Pascal	Pa	kg / (m · s²)
 speed, velocity 	m/s	work, energy	Joule	J	kg·m²/s²
 angular velocity 	rad/s	power	Watt	w	kg·m²/s³
 acceleration 	m/s ²	quantity of electricity	Coulomb	С	A·s
 angular acceleration 	rad/s ²	potential difference	Volt	V	kg·m²/(A·s³
. Ideamaki dan dan da	m2/c				

The British System of Units

English Unit	SI Unit	Conversion
Mile	Kilometer	1 mile = 1.609 km
Foot	Meter	1 ft = 0.305 m
Inch	Centimeter	1 in = 2.54 cm
Pound	Grams	1 lb = 453.59 g
Ounce	Grams	1 oz = 28.35 g
Gallon	Liter	1 gallon = 3.79 l
Celsius	Kelvin	0º C = 273.15 K

Unit prefixes

		Offic prefixes						
Multiplication Factor	Prefix	Prefix Symbol						
10 ¹⁵	peta	P						
1012	tera	T						
10 ⁹	giga	G						
106	mega	M						
10 ³	kilo	k						
10 ²	hecto	h						
10 ¹	deka	da						
10-1	deci	d						
10 ⁻²	centi	с						
10 ⁻³	milli	m						
10 ⁻⁶	micro	μ						
10-9	nano	n						
10-12	pico	p						
10-15	femto	f						
1 1 1 1 1 1 1 1 1 1 1 1	013 013 015 016 016 016 017 029 039 049 049 049 049 049 049 049 04	013 peta 013 tera 0° giga 0° mega 0³ kilo 0² hecto 0¹ deka 0¹ deci 0² centi 0³ milli 0² nano 0²² pico						

Some size scales

image from Michigan Nanotechnology Institute

Unit consistency and calculating with units

- Physical quantities are represented by both a number and a unit
 Example: d represent a distance of 100 meters, d = 100 m
- An equation must always be dimensionally consistent.
- Example: How many minutes does it take to travel 50 km in a car traveling with constant speed at 100 km/hr?

$$\textit{duration} = \left(50\,\text{km}\right) \left(\frac{\text{hr}}{100\text{km}}\right) \left(\frac{60\,\text{min}}{\text{hr}}\right)$$

 $duration = 30 \min$

Unit consistency and calculating with units

• Example: Speed limit on the highway is 65 mph. What is this in meters per second?

$$65 \text{ mph} = \left(\frac{65 \text{ miles}}{\text{hour}}\right) \left(\frac{1.609 \text{ km}}{\text{miles}}\right) \left(\frac{1000 \text{ m}}{\text{km}}\right) \left(\frac{\text{hour}}{60 \text{ min}}\right) \left(\frac{\text{min}}{60 \text{ s}}\right)$$

$$65 \text{ mph} = 29.05 \text{ m/s}$$

• Don't write:
$$65 \text{ mph} = \frac{65 \times 1.609 \times 1000}{60 \times 60} \text{ m/s}$$

· Always include unit conversions in your calculations

Scientific notation and significant figures

- In scientific notation, the number is represented with a single digit before decimals, multplied by a power of 10.
- Example:
- 572000000 = 5.72 × 108

0.0000408 = 4.08 × 10⁻⁵
 (digit term) (exponential term)

- Significant figures of a number are digits that carry meaning contributing to its measurement resolution:
 - 0.00045 (two significant figures) becomes 4.5×10^{-4} 0.00452500 (six significant figures) becomes 4.52500 × 10⁻³.

 - 1300 to four significant figures is written as 1.300×10^3
 - 1300 to two significant figures is written as $1.3\times10^3\,$

Scalars and vectors

- A scalar quantity can be described by a single number (magnitude).
- A vector quantity has both a magnitude and a direction in space.
- A vector quantity is represented with an arrow over it: \vec{A} .

• The magnitude of \vec{A} is written as \vec{A} or $|\vec{A}|$.

Vectors

• head, tail, magnitude, direction

same direction same magnitude P2 opposite direction same magnitude

Vector addition: two vectors

Option 1: Add by placing them head to tail

Option 2: Add by drawing a parallelogram

Vector addition

· Adding two parallel vectors

• Adding two antiparallel vectors

Vector addition: multiple vectors

- Add with head-to-tail method in any order
- Finding $\vec{C} + \vec{A} + \vec{B}$

Put them head to tail in any order Algebraically, add one by one $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{D}$ $\vec{B} + \vec{C} = \vec{E}$

 $\overrightarrow{D} + \overrightarrow{C} = \overrightarrow{R}$

 $\stackrel{\rightarrow}{A} + \stackrel{\rightarrow}{E} = \stackrel{\rightarrow}{R}$

Graphically, draw the resultant vector from the first tail to the last head.

Vector subtraction

Multiplying a vector by a scalar

- When a vector \overrightarrow{A} is multiplied by a scalar c, the product $c\overrightarrow{A}$ has magnitude |c|A.
- If c is positive, only the magnitude of $\overrightarrow{\textbf{A}}$ changes.

• If c is negative, the magnitude changes, and the direction of \overrightarrow{A} is reversed $\stackrel{\overrightarrow{A}}{=} \times (-3)$

Vector components

- Consider a two-dimensional coordinate system and the vector \overrightarrow{A} placed with its the tail at the origin
- Projecting \overrightarrow{A} onto the axes gives its component vectors
- \vec{A} is the sum of its component vectors \vec{A}_x and \vec{A}_y

Vector components

 Components are found using trigonometry

$$A_{x} = A\cos\theta$$

$$A_y = A\sin\theta$$

 θ is measured from the +x-axis toward the +y-axis.

$$\overrightarrow{A} = \overrightarrow{A_x} + \overrightarrow{A_y}$$

$$|A_x|_x^2 + |A_y|_y^2 =$$

Finding vector components

• Ex 1.6 : Find x- and y- components of $\overrightarrow{\textbf{D}}$

$$\left| \overrightarrow{D} \right| = 3.00 \,\mathrm{m}$$
 $\alpha = 45^{\circ}$

Finding vector components

• Ex 1.6 : Find x- and y- components of \vec{D}

$$|\overrightarrow{D}| = 3.00 \,\mathrm{m}$$
 $\alpha = 45^{\circ}$

$$D_x = D\cos\theta = (3.00 \, m)(\cos(-45^\circ)) = 2.1 \, m$$

$$D_y = D\sin\theta = (3.00 \, m)(\sin(-45^\circ)) = -2.1 \, m$$

Vector components

Similarly, we can find the magnitude and direction of a vector from its components

$$A = \sqrt{\underline{A_x^2 + \underline{A_y^2}}}$$

$$\tan \theta = \frac{A_y}{A_x}$$

$$\left|\overrightarrow{A}\right| = \left(\left|\overrightarrow{A}_{x}\right|^{2} + \left|\overrightarrow{A}_{y}\right|^{2}\right)$$

Calculating with components

· The sum of two or more vectors can be calculated using

components
$$R_x = A_x + B_x$$

$$R_y = A_y + B_y$$

· more generally,

$$R_x = A_x + B_x + C_x + D_x + \dots$$

$$R_y = A_y + B_y + C_y + D_y + \dots$$

$$\overrightarrow{A} = A_{x} \overrightarrow{x} + A_{y} \overrightarrow{y}$$

$$+ \overrightarrow{B} = B_{x} \overrightarrow{x} + B_{y} \overrightarrow{y}$$

$$\overrightarrow{R} = (A_{x} \cdot B_{y}) \overrightarrow{x} + (A_{y} + B_{y}) \overrightarrow{y}$$

$$\overrightarrow{R} = R_{y} \overrightarrow{x} + R_{y} \overrightarrow{y}$$

$$1 R I = (R_{x}^{2} + R_{y}^{2})$$

$$tan \theta = R_{y} , \theta = arctan \frac{R_{y}}{R_{x}}$$

$$\overrightarrow{A} = A_{V} \widehat{Y} + A_{Y} \widehat{Y}$$

$$\overrightarrow{B} = B_{X} + B_{Y}$$

$$\overrightarrow{C} = C_{V} + C_{Y}$$

$$\overrightarrow{D} = D_{X} + D_{Y}$$

$$\overrightarrow{R} = (A_{Y} + B_{Y} + (A_{Y} + D_{Y}) \widehat{Y}$$

$$\overrightarrow{R} = (A_{Y} + B_{Y} + (A_{Y} + D_{Y}) \widehat{Y}$$

$$\overrightarrow{R} = (A_{Y} + B_{Y} + (A_{Y} + D_{Y}) \widehat{Y}$$

$$\overrightarrow{R} = (A_{Y} + B_{Y} + (A_{Y} + D_{Y}) \widehat{Y}$$

$$\overrightarrow{R} = (A_{Y} + B_{Y} + (A_{Y} + D_{Y}) \widehat{Y}$$

$$\overrightarrow{R} = (A_{Y} + B_{Y} + (A_{Y} + D_{Y}) \widehat{Y}$$

$$\overrightarrow{R} = (A_{Y} + B_{Y} + (A_{Y} + D_{Y}) \widehat{Y}$$

$$\overrightarrow{R} = (A_{Y} + B_{Y} + (A_{Y} + D_{Y}) \widehat{Y}$$

Calculating with components

• Ex 1.7: Find R and $\boldsymbol{\theta}$ for the given configuration

$$\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{B} \cdot \vec{A} \cdot \vec{B} \cdot$$

$$A_{x} = (72.4) \cos 58^{\circ}$$

$$A_{y} = (72.4) \sin 58^{\circ}$$

$$\begin{cases} \hat{B} : |\hat{B}| = 57.3 \text{m} \quad \beta = 36^{\circ} + 180^{\circ} = 216^{\circ} \\ \hat{B} \times = (57.3) \cos(216^{\circ}) \\ \hat{B} \times = (57.3) \sin 216^{\circ} \end{cases}$$

$$B_{x} = (57.3) \cos(216)$$
 $B_{y} = (57.3) \sin 216$

Calculating with components

• Ex 1.7: Find R and $\boldsymbol{\theta}$ for the given configuration

$$R_x = A_x + B_x + C_x$$

$$R_y = A_y + B_y + C_y$$

$$R = \sqrt{R_x^2 + R_y^2}$$
$$\theta = \arctan \frac{R_y}{R_x}$$

$$A_c = (72.4 \, m)(\cos 58) = 38.37 \, m$$

 $B_c = (57.3 \, m)(\cos 216) = -46.36 \, m$
 $C_c = (17.8 \, m)(\cos 270) = 0$
 $R_c = -7.99 \, m$

$$\Theta = \arctan \frac{1}{R_s}$$

 $A_s = (72.4 \text{ m})(\sin 58) = 61.4 \text{ m}$
 $B_s = (57.3 \text{ m})(\sin 216) = -33.68 \text{ m}$
 $C_s = (17.8 \text{ m})(\sin 270) = -17.8 \text{ m}$
 $R_s = 9.92 \text{ m}$

$$R = \sqrt{(-7.99 \, m)^2 + (9.92 \, m)^2} = 12.7 \, m$$

$$\theta = \arctan \frac{9.92 \, m}{7.99 \, m} = -51^{\circ}$$

$$R = R_{x} + R_{y}$$

$$R_{x} = A_{x} + B_{x} + C_{x}$$

$$R_{y} = A_{y} + B_{y} + C_{y}$$

$$|R| = (R_{x}^{2} + R_{y}^{2})$$

$$\theta = \arctan \frac{R_{y}}{R_{y}}$$

Unit vectors

• A unit vector has a magnitude of 1 with no units.

Any vector can be expressed in terms of its components as $\overrightarrow{A} = A_{\overrightarrow{i}} \hat{j} + A_{\overrightarrow{i}} \hat{j} + A_{\overrightarrow{i}} \hat{k}$

s
$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

such as
$$displacement$$
, $\vec{D} = (20\hat{j} - 40\hat{j} + 60\hat{k}) m$

Products of vectors

- Two types of products of vectors:
 - Dot product
 - Cross product

The dot product (scalar product)

- For perpendicular vectors, $\phi = 90^{\circ}$, $\cos \phi = 0$; $\overrightarrow{A} \bullet \overrightarrow{B} = 0$
- $\phi = 0^{\circ}$, $\cos \phi = 1$; $\overrightarrow{A} \bullet \overrightarrow{B} = (A)(B)$ · For parallel vectors,

The dot product in components

$$\vec{A} \bullet \vec{B} = \left(\vec{A}_{j} \vec{j} + \vec{A}_{j} \vec{j} + \vec{A}_{k} \vec{k} \right) \bullet \left(\vec{B}_{j} \vec{i} + \vec{B}_{j} \vec{j} + \vec{B}_{k} \vec{k} \right)$$

$$\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = (1)(1)\cos 0^{\circ} = 1 \leftarrow \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = (1)(1)\cos 90^{\circ} = 0 = 0$$

$$\overline{A} \qquad \overline{B}$$

$$\left(A_{x}\hat{i} + A_{y}\hat{j} + A_{y}\hat{k}\right) \cdot \left(B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}\right)$$

$$\left(A_{x}\hat{i} + A_{y}\hat{j} + A_{y}\hat{k}\right) \cdot \left(A_{x}\hat{i} \cdot B_{y}\hat{j} + A_{y}\hat{j} \cdot B_{y}\hat{j} \cdot \cdots\right)$$

$$\vec{A} \cdot \vec{B} = (\vec{A} \cdot \vec{A} + \vec{A}_{x}) + (\vec{A}_{x}) \cdot (\vec{B}_{x}) + (\vec{B}_{y}) + ($$

$$(A_{x}\hat{i}+A_{y}\hat{j}+A_{y}\hat{k}) \cdot (B_{x}\hat{i}+B_{y}\hat{j}+B_{y}\hat{j}+B_{y}\hat{j}+A_{y}\hat{j}\cdot B_{y}\hat{j} \cdot A_{y}\hat{j}\cdot A_{y}\hat{j}\cdot B_{y}\hat{j} \cdot A_{y}\hat{j}\cdot A_{y}\hat{j}\cdot$$

The dot product in components

• Ex 1.11: Find the angle between the vectors $\vec{A} = (2.00\hat{i} + 3.00\hat{j} + 1.00\hat{k}) \quad and \quad \vec{B} = (-4.00\hat{i} + 2.00\hat{j} - 1.00\hat{k})$

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

$$AB \cos \theta = A_x B_x + A_y B_y + A_z B_z$$

$$AB \cos \theta = \left[(2)(-9) + (3)(2) + (1)(-1) \right] = -3$$

$$\cos \theta = \frac{-3}{|A|/B|} = \frac{-3}{|Y|/(21)} \Rightarrow \theta = \arcsin \theta$$

$$|A| = (2^{2} + 3^{2} + 1^{2}) = (14)$$

$$|B| = (-4)^{2} + 2^{2} + (-1)^{2} = (21)$$

The dot product in components

• Ex 1.11: Find the angle between the vectors $\vec{A} = (2.00\hat{i} + 3.00\hat{j} + 1.00\hat{k})$ and $\vec{B} = (-4.00\hat{i} + 2.00\hat{j} - 1.00\hat{k})$

$$\overrightarrow{A} = (2.007 + 3.00) + 1.00k$$
 and $\overrightarrow{B} = (-4.007 + 2.00) - 1.00k$

$$\overrightarrow{A} \bullet \overrightarrow{B} = A(B\cos\phi) \implies \phi = \arccos\frac{\overrightarrow{A} \bullet \overrightarrow{B}}{AB} = \arccos\frac{-3}{\sqrt{14}\sqrt{21}} = 100^{\circ}$$

$$\overrightarrow{A} \bullet \overrightarrow{B} = A_x B_x + A_x B_y + A_z B_z = (2)(-4) + (3)(2) + (1)(-1) = -3$$

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2} = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14}$$

$$B = \sqrt{B_x^2 + B_y^2 + B_z^2} = \sqrt{(-4)^2 + 2^2 + (-1)^2} = \sqrt{21}$$

New Section 1 Page 17

The cross product (vector product)

$$\vec{C} = \vec{A} \times \vec{B}$$

 $\left| \overrightarrow{C} \right| = \left| \overrightarrow{A} \times \overrightarrow{B} \right| = AB \sin \phi$

 \longrightarrow • Direction of \vec{c} is determined by the right hand rule

 \rightarrow • Magnitude of \vec{c} corresponds to the area of the parallelogram

direction middle finger

ara= (2) = ABin)

axb=c

Properties of the cross product

$$\overrightarrow{A} \times \overrightarrow{B} = -\overrightarrow{B} \times \overrightarrow{A}$$

• For perpendicular vectors, $\theta = 90^{\circ}$, $\sin \theta = 1$; $\stackrel{\rightarrow}{A} \times \stackrel{\rightarrow}{B} = AB$

• For parallel vectors, $\theta=0^{\circ}, \ \sin\theta=0; \ \stackrel{\rightarrow}{A}\times\stackrel{\rightarrow}{B}=0$

$$\left(\stackrel{\rightarrow}{A} + \stackrel{\rightarrow}{B} \right) \times \stackrel{\rightarrow}{C} \; = \; \left(\stackrel{\rightarrow}{A} \times \stackrel{\rightarrow}{C} \; \right) + \; \left(\stackrel{\rightarrow}{B} \times \stackrel{\rightarrow}{C} \; \right)$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ A_x & A_y & A_z \\ B_z & B_z & B_z \end{vmatrix}$$

Properties of the cross product

$$\vec{a} \times \vec{b} = \underbrace{(a_x b_y - a_x b_y) \cdot \vec{i}}_{} + \underbrace{(a_x b_x - a_x b_x) \cdot \vec{j}}_{} + \underbrace{(a_x b_y - a_y b_x) \cdot \vec{k}}_{}$$

The right hand rule

The cross product

- Ex 1.12: Magnitudes of \overrightarrow{A} and \overrightarrow{B} shown in figure are 6 and 4 units respectively. Find their cross product \overrightarrow{C} .
- Magnitude :

$$\begin{vmatrix} \overrightarrow{C} \\ | - | \overrightarrow{A} \times \overrightarrow{B} | = AB \sin \phi = (6)(4) \sin 30^\circ = 12$$

• Direction: using right hand rule,

 \hat{k}