Departamento de Análisis Matemático y Matemática Aplicada

Análisis de Variable Real - Grupo E - Curso 2020-21 Sucesiones de funciones I. Hoja 12.

215 Probar que la sucesión de funciones $\{f_n\}_{n=1}^{\infty}$ con $f_n(x) = \frac{x}{x+n}$ converge puntualmente a la función $f(x) \equiv 0$ en $A = [0, \infty)$. Probar además que la convergencia es uniforme en [0, a] para todo a > 0 pero no lo es en todo A.

Observación: Notar que no es lo mismo decir que una sucesión de funciones converge uniformemente en [0,a] para todo a>0 que decir que converge uniformemente en $[0,\infty)$.

- **216** Probar que la sucesión $f_n(x) = \frac{nx}{1 + n^2x^2}$ converge puntualmente en \mathbb{R} . Probar que la convergencia es uniforme en todo intervalo de la forma $[a, \infty)$ para todo a > 0 pero no lo es en todo $[0, \infty)$.
- **217** Calcula el límite puntual de la sucesión de funciones $f_n(x) = \frac{nx}{1+nx}$ en $[0,\infty)$ y estudia su convergencia uniforme. ¿Converge uniformemente en $[a,\infty)$ con a>0? ¿en [0,b] con b>0?, ¿en $[0,\infty)$?
- 218 Calcula el límite puntual de la sucesión de funciones $f_n(x) = \frac{x^n}{1+x^n}$ en $[0,\infty)$ y estudia su convergencia uniforme. ¿Converge uniformemente en [0,b] con 0 < b < 1? ¿en [0,1] ?, ¿en $[a,\infty)$ con a > 1?, ¿en $[1,\infty)$?
- **219** Probar que si una sucesión de funciones continuas $\{f_n\}$ converge uniformemente a una función f en I entonces si $\{x_n\} \subset I$ es una sucesión que converge a $x_0 \in I$ entonces $f_n(x_n) \to f(x_0)$. Dar un ejemplo que pruebe que si sustituimos convergencia uniforme por convergencia puntual entonces el resultado no es cierto.
- **220** Consideremos la sucesión de funciones $f_n(x) = \frac{x^n}{n}$ en [0,1]. Probar lo siguiente: i) f_n converge uniformente a una función f en [0,1]. Calcular esta f.

 - ii) f es diferenciable en [0,1] pero
 - iii) $f'_n(1)$ no converge a f'(1).
- **221** Sea $\{q_n\}_{n=1}^{\infty}$ un reordenamiento de los numeros racionales en [0,1]. Definimos la sucesión de funciones $\{f_n\}_{n=1}^{\infty}$ de la forma

$$f_n(x) = \begin{cases} 1, & \text{si } x = q_1, q_2, \dots, q_n \\ 0, & \text{si } x \in [0, 1] \setminus \{q_1, \dots, q_n\} \end{cases}$$

Probar que la sucesión de funciones es monotona creciente (es decir $f_n(x) \leq f_n(x)$ para cada $n \in \mathbb{N}$ y para cada $x \in [0,1]$), que $f_n \in \mathcal{R}[0,1]$ y $\int_0^1 f_n = 0$. Mostrar que la sucesión de funciones f_n converge puntualmente a la función de Dirichlet

$$f(x) = \begin{cases} 1, \text{ si } x \in \mathbb{Q} \cap [0, 1] \\ 0, \text{ si } x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

y que esta no es integrable Riemann.

- **222** i) Analizar la convergencia de la sucesión de funciones $g_n(x) = \cos(nx), x \in [0, 2\pi]$. Analizar el caracter oscilante de las funciones y ver que no converge a ninguna función puntualmente ni uniformemente.
- ii) Consideremos la sucesión de funciones $f_n(x) = \frac{\operatorname{sen}(nx)}{n}$ en $x \in [0, 2\pi]$. Probar que f_n converge uniformemente a una función, que es diferenciable pero la sucesión de las derivadas no converge (utilizar el apartado i)).

223 Probar que si $\{a_n\}_{n=0}^{\infty}$ es una sucesión de términos no nulos (o no nulos para $n \geq n_0$) que verifican $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$ entonces $\lim_{n \to +\infty} |a_n|^{1/n} = \rho$. Utilizar este resultado para probar que para una serie de potencias $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ con $a_n \neq 0$ para $n \geq n_0$ y $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$ entonces $R = 1/\rho$ es el radio de convergencia de la serie de potencias.

224 Calcular el intervalo de convergencia de las siguientes series de potencias y decidir el comportamiento de la serie en los extremos del intervalo:

a)
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n} x^n$$
, b) $\sum_{n=0}^{\infty} n x^n$, c) $\sum_{n=1}^{\infty} \frac{2^n}{n^2} (x-1)^n$, d) $\sum_{n=0}^{\infty} \frac{3^n}{n!} x^n$, e) $\sum_{n=0}^{\infty} (-1)^n (2x)^n$

225 Supongamos que las sucesiones de números reales $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ verifican $\sum_{n=0}^{\infty} |a_n| < \infty$, $\sum_{n=1}^{\infty} |b_n| < \infty$. Probar que la serie de funciones

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

converge uniformemente a una función que llamaremos f(x), es decir:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

Probar que $f(x+2\pi)=f(x)$ para todo $x\in\mathbb{R}$.

Integrando la serie de funciones, deducir que se tiene que $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x)$. También, multiplicando por $\operatorname{sen}(kx)$ y por $\operatorname{cos}(kx)$ probar que se tiene $a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \operatorname{cos}(kx) dx$, $b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \operatorname{sen}(kx) dx$

226 La función Logaritmo. Una vez definida la función exponencial, $E: \mathbb{R} \to \mathbb{R}$ que la denotaremos por E(x) o e^x y teniendo en cuenta que es estrictamente creciente en \mathbb{R} y su rango es $(0, \infty)$, se define la función Logaritmo como la función inversa de E. Por tanto $L: (0, \infty) \to \mathbb{R}$ y satisface: $(L \circ E)(x) = x \ \forall x \in \mathbb{R}$ y $(E \circ L)(y) = y \ \forall y \in (0, \infty)$. Probar lo siguiente:

- i) La función $L:(0,\infty)\to\mathbb{R}$ es estrictamente creciente y es biyectiva.
- ii) La función L es derivable y la derivada satisface L'(x) = 1/x para todo x > 0.

Además se satisface lo siguiente:

iii)
$$L(1) = 0, L(e) = 1$$

iv)
$$L(x^r) = rL(x)$$
 para todo $r \in \mathbb{Q}$ y $x > 0$

v)
$$\lim_{x\to 0^+} L(x) = -\infty$$
 y $\lim_{x\to +\infty} f(x) = +\infty$.

A la función L(x) la denotaremos por $\ln(x)$ ó $\log(x)$.

227 La función potencia α de un número. Dado $\alpha \in \mathbb{R}$ y x > 0 se define x^{α} como:

$$x^{\alpha} := e^{\alpha \ln(x)}$$

Se pide

i) Probar que si $\alpha = \frac{m}{n} \in \mathbb{Q}$, entonces la definición coincide con la definición standard obtenida en termino de potencias y raices enteras. Es decir $x^{m/n} = (x^m)^{1/n}$

Probar además que si $\alpha, \beta \in \mathbb{R}, x, y \in (0, \infty)$ entocnes se tiene:

- ii) $1^{\alpha} = 1$
- iii) $x^{\alpha} > 0$
- iv) $(xy)^{\alpha} = x^{\alpha}y^{\alpha}$, $(x/y)^{\alpha} = x^{\alpha}/y^{\alpha}$
- v) $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$, $(x^{\alpha})^{\beta} = x^{\alpha\beta} = (x^{\beta})^{\alpha}$, $x^{-\alpha} = 1/x^{\alpha}$
- vi) Si $\alpha < \beta$ entonces $x^{\alpha} < x^{\beta}$ para todo x > 1.
- vii) La función $x \to x^{\alpha}$ es una función continua, derivable y su derivada es: $Dx^{\alpha} = \alpha x^{\alpha-1}$, para x > 0.
- viii) Se tiene $\ln(x^{\alpha}) = \alpha \ln(x)$ para todo $\alpha \in \mathbb{R}$ y todo x > 0.

(En particular esto generaliza el apartado iv) del problema anterior).

228 Si a > 0, $a \neq 1$, la función **logaritmo en base a** se define como

$$\log_a(x) := \frac{\ln(x)}{\ln(a)}, \quad x > 0$$

Probar que se tiene:

- i) $a^{\log_a(x)} = x$ para todo x > 0
- ii) $\log_a(a^y) = y$ para todo $y \in \mathbb{R}$.
- iii) $D\log_a(x) = \frac{1}{x\ln(a)}$
- iv) $\log_a(xy) = \log_a(x) + \log_a(y)$
- v) Si además b>0 $b\neq 1,$ entonces $\log_a(x)=\frac{\ln(b)}{\ln(a)}\log_b(x)$