The turnbuckle is tightened until the tension in the cable AB equals 2.4 kN. Determine the vector expression for the tension T as a force acting on member AD. Also find the magnitude of the projection of T along the line AC.

Q2

The access door is held in the 30° open position by the chain AB. If the tension in the chain is 100 N, determine the projection of the tension force onto the diagonal axis CD of the door.

Q3

The shaft S exerts three force components on the die D. Find the magnitude and direction of the resultant force. Force \mathbf{F}_2 acts within the octant shown.

$$F_I = 400 \; \mathrm{N}$$

$$F_2 = 300 \text{ N}$$

$$F_3 = 200 \text{ N}$$

$$\alpha_2 = 60 \deg$$

$$\gamma_2 = 60 \deg$$

$$c = 3$$

$$d = 4$$

The positions of point A on the building and point B on the antenna have been measured relative to the electronic distance meter (EDM) at O. Determine the distance between A and B. Hint: Formulate a position vector directed from A to B; then determine its magnitude.

Q5

Determine the projected component of the force \mathbf{F} acting along the axis AB of the pipe.

The pipe wrench is activated by pulling on the cable segment with a horizantal force \mathbf{F} . Determine the moment M_A produced by the wrench on the pipe at θ .

Q7

The curved rod lies in the x-y plane and has radius r. If a force \mathbf{F} acts at its end as shown, determine the moment of this force about point O.

The force \mathbf{F} creates a moment about point O of \mathbf{M}_O . If the force passes through a point having the given x coordinate, determine the y and z coordinates of the point. Also, realizing that $M_O = Fd$, determine the perpendicular distance d from point O to the line of action of \mathbf{F} .

$$\mathbf{F} = \begin{pmatrix} 6 \\ 8 \\ 10 \end{pmatrix} \mathbf{N}$$

$$\mathbf{M_O} = \begin{pmatrix} -14 \\ 8 \\ 2 \end{pmatrix} \mathbf{N} \cdot \mathbf{m}$$

$$x = 1 \mathbf{m}$$

Q9

Determine the magnitude of the moment of the force F about the base line CA of the tripod.

The ends of the triangular plate are subjected to three couples. Determine the magnitude of the force \mathbf{F} so that the resultant couple moment is M clockwise.

Q11

If the resultant couple of the three couples acting on the triangular block is to be zero, determine the magnitude of forces \mathbf{F} and \mathbf{P} .

Replace the force and couple-moment system by an equivalent resultant force and couple moment at point P. Express the results in Cartesian vector form.

$$\mathbf{F} = \begin{pmatrix} 8 \\ 6 \\ 8 \end{pmatrix} \text{kN}$$

$$\mathbf{M} = \begin{pmatrix} -20 \\ -70 \\ 20 \end{pmatrix} \mathbf{kN} \cdot \mathbf{m}$$

$$a = 3 \text{ m}$$

$$b = 3 \text{ m}$$
 $e = 5 \text{ m}$

$$c = 4 \text{ m}$$
 $f = 6 \text{ m}$

Q13

Handle forces $\mathbf{F_1}$ and $\mathbf{F_2}$ are applied to the electric drill. Replace this system by an equivalent resultant force and couple moment acting at point O. Express the results in Cartesian vector form.

Given:

$$a = 0.15 \text{ m}$$

$$b = 0.25 \text{ m}$$

$$c = 0.3 \text{ m}$$

$$\mathbf{F_1} = \begin{pmatrix} 6 \\ -3 \\ -10 \end{pmatrix} \mathbf{N}$$

$$\mathbf{F_2} = \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix} \mathbf{N}$$

The building slab is subjected to four parallel column loadings. Determine the equivalent resultant force and specify its location (x, y) on the slab.

Q15

Replace the loading on the frame by a single resultant force. Specify where its line of action intersects member CD, measured from end C.

$$F_1 = 500 \text{ N}$$
 $a = 3 \text{ m}$
 $F_2 = 300 \text{ N}$ $b = 2 \text{ m}$
 $c = 1 \text{ m}$
 $d = 2 \text{ m}$
 $d = 2 \text{ m}$
 $d = 2 \text{ m}$
 $d = 3 \text{ m}$
 $d = 60 \text{ deg}$ $d = 3 \text{ m}$
 $d = 400 \text{ N} \cdot \text{m}$
 $d = 400 \text{ N} \cdot \text{m}$
 $d = 400 \text{ M} \cdot \text{m}$

Replace the distributed loading by an equivalent resultant force and specify where its line of action intersects member BC, measured from C.

Q17

The shelf supports the electric motor which has mass m_1 and mass center at G_m . The platform upon which it rests has mass m_2 and mass center at G_p . Assuming that a single bolt B holds the shelf up and the bracket bears against the smooth wall at A, determine this normal force at A and the horizontal and vertical components of reaction of the bolt B on the bracket.

Replace the loading by a single resultant force, and specify the location of the force on the beam measured from point *O*.

$$w = 6 \frac{\text{kN}}{\text{m}}$$

$$F = 15 \text{ kN}$$

$$M = 500 \text{ kN·m}$$

$$a = 7.5 \text{ m}$$

$$b = 4.5 \text{ m}$$

Q19

Determine the length b of the triangular load and its position a on the beam such that the equivalent resultant force is zero and the resultant couple moment is M clockwise.

$$w_1 = 4 \frac{\text{kN}}{\text{m}}$$
 $w_2 = 2.5 \frac{\text{kN}}{\text{m}}$ $w_2 = 8 \text{ kN} \cdot \text{m}$ $c = 9 \text{ m}$

Q20

Determine the equivalent resultant force and couple moment at point *O*.

$$a = 3 \text{ m}$$

$$w_O = 3 \frac{\text{kN}}{\text{m}}$$

$$w(x) = w_O \left(\frac{x}{a}\right)^2$$

Each cord can sustain a maximum tension T. Determine the largest weight of the sack that can be supported. Also, determine θ of cord DC for equilibrium.

Q22

The members of a truss are connected to the gusset plate. If the forces are concurrent at point O, determine the magnitudes of \mathbf{F} and \mathbf{T} for equilibrium.

