Machine Learning

Chapter 4 지도 학습(Supervised Learning)

垂

- 데이터 스케일링의 필요성을 이해 할 수 있다.
- 다양한 스케일링 방법을 알 수 있다.
- 선형회귀 모델을 이해하고 사용 할 수 있다.
- 회귀 모델의 평가방법을 알 수 있다.

사무실(캠페이터 스케일 링 (Data scaling)

데이터 스케일링(Data scaling) 정의

데이터 스케일링 (Data

scaling) 특성(Feature)들의 범위(range)를 정규화 해주는 작업

 특성마다 다른 범위를 가지는 경우 머신러닝 모델들이 제대로 학습되지 않을 가능성이 있다.

(KNN, SVM, Neural network 모델, Clustering 모델 등)

시력	7
0.2	178
1.0	156
0.5	168
0.3	188
0.6	149

시력과 키를 함께 학습시킬 경우 키의 범위가 크기때문에 거리 값을 기반으로 학습 할 때 영향을 많이 준다.

데이터 스케일링(Data scaling) 장점

장점

- 특성들을 비교 분석하기 쉽게 만들어 준다.
- Linear Model, Neural network Model 등에서 학습의 안정성과 속도를 개선시킨다.
- 하지만 특성에 따라 원래 범위를 유지하는게 좋을 경우는 scaling을 하지 않아도 된다.

데이터 스케일링(Data scaling) 종류

데이터 스케일링(Data scaling) 종류

StandardScaler

- 변수의 평균,표준편차를 이용해 정규분포 형태로 변환 (평균 0, 분산 1)
- 이상치(Outlier)에 민감하게 영향을 받는다.

RobustScaler

- 변수의 사분위수를 이용해 변환
- 이상치(Outlier)가 있는 데이터 변환시 사용 할 수 있다.

MinMaxScaler

- 변수의 Max 값, Min 값을 이용해 변환 (0 ~ 1 사이 값으로 변환)
- 이상치(Outlier)에 민감하게 영향을 받는다.

Normalizer

- · 특성 벡터의 길이가 1이 되도록 조정 (행마다 정규화 진행)
- · 특성 벡터의 길이는 상관 없고 데이터의 방향(각도)만 중요할 때 사용.

데이터 스케일링(Data scaling) 주의점

주의점

- 훈련세트와 테스트세트에 같은 변환을 적용해야 한다.
- 예를 들어 StandardScaler의 경우 훈련세트의 평균과 표준편차를 이용해 훈련세트를 변환하고, 테스트세트의 평균과 표준편차를 이용 해 테스트세트를 변환하면 잘못된 결과가 나온다.

