# 最適化

永持仁, 山下信雄, 原口和也

# 授業計画

前半:

非線形最適化

\*線形計画の関数を非線形関数に拡張

担当:山下

後半

組合せ最適化

\*線形計画の変数を整数に限定

担当:永持,原口

### 例年の成績評価

山下担当分:

情報学科学生: 定期テスト50点

経営管理学生: レポート25点,

定期テスト25点

#### 教科書(山下担当分)

福島雅夫,

「数理計画入門」,4章,朝倉書店,2011



# 数理最適化, 数理計画

#### [最適化問題]

ある条件をみたす候補の中から、ある目的にとって最適なものを見つける問題.

例: 最も安く(速く)東京に行く方法をみつける。

#### [数理最適化問題]

「ある条件」および「ある目的」を数式や関数を使って表された最適化問題.

#### [数理計画法]

数理計画問題の理論的性質を解明し、効率の良い解法を与 える方法論

# 問題解決と最適化

問題•課題



数理モデル

- 制御
- 通信
- 経営
- 人工知能
- etc



解決策

数理最適化など

 $\bigcirc$ 

データ



データ解析

数理最適化など

# 施設配置問題

各施設の容量と限界距離を条件に, 低コストで、小・中学校を統廃合する.



NTTデータ数理システムHPより

### 形状設計問題



#### N700系の設計

目的:トンネル出口での騒音の最小化

条件:全長,乗員数,etc



# 起動停止計画問題



/個の発電機のある期間(t =1,...,T)における

総発電コスト(燃料費+起動費)が最小となる

計画および発電量を決定する問題

決定変数

 $p_{it} \in \Re$ : 発電量

 $u_{it} \in \{0,1\}$ : 起動停止計画

(0:停止,1:運転)

定数

 $S_i$ : 起動費

 $D_t$ : 需要

 $R_t$ : 予備力

 $p_i^{\max}$ : 最大発電量

 $p_i^{\min}$ : 最小発電量

min  $\sum_{i=1}^{I} \sum_{t=1}^{T} \{u_{it} f_i(p_{it}) + \underbrace{u_{it} (1 - u_{i,t-1}) S_i}_{\text{kmp}} \}$ 

(二次関数) (時刻tで起動時のみ必要)

s.t.  $D_t = \sum_{i=1}^{I} p_{it}, \forall t$  需要を満たす

 $R_t \le \sum_{i=1}^{\infty} u_{it} (p_i^{\max} - p_{it}), \ \forall t$ 

 $u_{it}p_i^{\min} \le p_{it} \le u_{it}p_i^{\max}, \ \forall t, \forall i$ 

最小運転/停止時間制約, ∀i

一度停動したらしばらくは停転!

予備電力を確保

非線形な混合整数計画問題 (連続変数:/×T個, 0-1変数:/×T個) ⇒大規模になると 厳密に解くのは困難

# ポートフォリオ最適化

資産の数: n

ポートフォリオ:  $x = (x_1, ..., x_n)^{\top}$ 

目的:リスク $\sigma(x)$ の最小化

条件: 期待リターン R(x) の確保

min  $\sigma(x)$ s.t.  $R(x) \ge \overline{r}$   $x_i \ge 0, i = 1,...,n$  $\sum_{i=1}^{n} x_i = 1$ 



### 人工知能,機械学習

- クラス判別 サポートベクターマシン(座標降下法) ニューラルネットワーク(確率的勾配法)
- 予測(回帰関数)
  ガウス回帰
  サポートベクター回帰(座標降下法)
  ニューラルネットワーク(確率的勾配法)
- クラスタリング 混合モデル(EMアルゴリズム)