Planetary Mission Entry Vehicles Quick Reference Guide Version 3.0

This is Version 3.0 of the planetary mission entry vehicle document. Three new missions, Re-entry E Hayabusa, and ARD have been added to the previously published edition (Version 2.1). In addition, the Huygens mission has been significantly updated and some Apollo data corrected.

Due to the changing nature of planetary vehicles during the design, manufacture and mission phases, and to the variables involved in measurement and computation, please be aware that the data provided herein cannot be guaranteed. Contact Carol Davies at cdavies@mail.arc.nasa.gov to correct or update the current data, or to suggest other missions. All contacts are welcome.

Publication Planetary Mission Entry Vehicles Quick Reference Guide, Version 3.0 NASA/SP-2006-3401

Content Editor Carol Davies, ELORET Corporation

Production Editor Marla Arcadi, ELORET Corporation

Jay Nuez, University of California, Santa Cruz

Cover Graphics

Cover Photographs, Compliments of

ns, Computeris of Jet Propulsion Laboratory California Institute of Technology, Pasadena CA

and

Michael J. Taylor, Stardust Mission

Utah State University, Logan UT

Available from:

NASA Center for AeroSpace Information	National Technical Information Service
7121 Standard Drive	5285 Port Royal Road
Hanover MD 21076-1320	Springfield VA 22161
(301) 621-0390	(703) 487-4650

APPENDIX III: UNIT CONVERSION FACTORS

0.2048 lb/ft ² 0.06243 lb/ft ³ 0.9478x10 ⁻³ BTU 0.9478x10 ⁻³ BTU/s 0.88055 BTU/ft ² 0.88055 BTU/ft ² 1.01325x10 ⁵ Pa	11 11 11 11 11 11	1 kg/m ² 1 kg/m ³ 1 Joule 1 Watt = 1 J/s 1 J/cm ² 1 W/cm ²
0.9478x10 ⁻³ BTU/s	П	1 Watt = 1 J/s
0.9478x10 ⁻³ BTU	II	1 Joule
0.06243 lb/ft ³	II	1 kg/m^3
0.2048 lb/ft ²	II	$1 \mathrm{kg/m^2}$
2.20462 lb	II	1 kg
3280.8 ft/s	II	1 km/s
10.764 ft²	II	1 m^2
3.28084 ft	II	1 m
0.3937 in	II	1 cm

DEFINITIONSCONTINUED

$T_{rim} L/D$

The L/D where vehicle is statically stable. The vehicle will trim (restore) to trim angle of attack if variations occur.

Ballistic coefficient

The ratio of the product of drag coefficient $(C_{\mathbb{J}})$ and projected reference area (A) to mass (m), giving m/CA.

Stagnation heating rate

The maximum convective heat flux at the stagnation point. Depends on trajectory. The stagnation point is where the velocity to the surface adiabatically comes to zero. Location depends on angle of attack and deviation behind the shock. The stagnation point is often where the maximum heating rate occurs, but not always.

Integrated heat load

The convective heat flux integrated over flight time. The highest heat load is usually, but not always, at the stagnation point. The integrated heat load will vary over the vehicle surface.

Radiative heat flux at stagnation point

This is the heat flux radiated from the shock layer to the surface. It may or may not be a maximum at the stagnation point.

Peak heat stagnation pressure

The pressure at the time of maximum convective heat flux. This is not the peak pressure, which occurs later in the trajectory.

Material designation

This can be a material trade name, defined by the manufacturer (e.g., SLA-561V) or a generic designator applied to a class of materials (e.g., carbon phenolic). It provides little useful information about the material other than a broad description of its constituents.

Thickness

This is "as manufactured" thickness of the material, usually specified at the stagnation point. Useful for a TPS of uniform thickness; less useful for a "tailored" TPS. The "as manufactured" thickness includes the "nominal design thickness" to which additional thickness is added (margin) to accommodate uncertainties in the entry environment and/or material performance.

Resin material

This is the "organic matrix" (e.g., epoxy, silicone, phenolic) in an organic matrix composite wherein the matrix (glue) fills the voids and provides rigidity to the structural reinforcement (e.g., fibers, fabric, noneycomb). The organic resin will pyrolyze when heated, typically leaving a carbonaceous residue

Matrix material

Analogous to a resin material in primary function, the matrix is typically stable and will not pyrolyze when heated. Examples include inorganic ceramics (e.g., glass, alumina) in ceramic matrix composites and carbon in carbon-carbon composites.

TABLE OF CONTENTS

MISSION	LAUNC	AUNCH DATE	PAGE
FIRE II	May	May 1965	3
Apollo AS-201	Feb	1966	7
Apollo AS-202	Aug	1966	5
Apollo 4.	Nov	1967	9
Apollo 6	Apr	1968	
Reentry F.	Apr	1968	8
PAET	Jun	1971	6
Viking Lander 1	Aug	1975	10
Viking Lander 2	Sep	1975	
Pioneer-Venus: "North Probe"	Aug	1978	
Pioneer-Venus: "Night Probe".	Aug	1978	
Pioneer-Venus: "Day Probe"	Aug	1978	14
Pioneer-Venus: "Sounder Probe"	Aug	1978	15
Galileo	Oct	1989	16
OREX	Feb	1994	17
Pathfinder.	Dec	1996	18
MIRKA.	Oct	1997	19
Huygens	Oct	1997	20
ARD	Oct	1998	
Deep Space 2	Jan	1999	
Stardust	Jan	1999	
Genesis	Aug	2001	24
Hayabusa	May	2003	
Beagle 2.	lun	2003	26
Mars Exploration Rovers	Jun	2003	
Appendix I: List of Space Vehicles and Missions.	S		.29

~ ;	~	~
٠,	(,,	(,,
-		
- 1	- 1	
- 1		
:	:	
:		:
:	:	:
:	:	
- 1	- 1	
- 1	- 1	
:		
:	:	:
:	:	
:		
- 1	- 1	
:		:
:	:	
:		:
:	:	
:		
-		
- 1	- 1	
- 1	- 1	
:	:	
:	:	:
:		:
S		
П		
2		
SS	:	
=	:	:
⋝.	- 1	
Ξ.		
ਰ		1
딕	:	0
α	:	ፘ
S		ੂਫ
۳.	- 1	Щ
\simeq		n
Ч	:	0
e,		Si
	:	1
Ю	S	×
\approx	n	n
ã	0	0
~	Ξ.	\circ
+	Ξ.	
0	Ξ,	-Ξ
Ļ	G	Ţ
Ţ		_
_	_	. • •
٠.	$\ddot{-}$	\equiv
	Τ	Ι
×	.≥	\times
J	-
n	ū	ŭ
ě	ē	ē
ř	ď	ppendix III: Unit Conversion Factors.
Appendix I: List of Space Vehicles and Missions.	Appendix II: Definitions	4
Į	A	Ą

APPENDIX II: DEFINITIONS

Entry angle, γ

The angle between the local horizontal plane (orthogonal to the vector from the planet center to the vehicle) and the velocity vector of the vehicle, V, at a reference altitude, h. The entry angle can be inertial or relative, depending on entry velocity used. γ is negative when V, is below the horizontal plane, as in planetary entry.

Inertial entry velocity

The vehicle velocity at reference altitude, b, assuming a non-rotating planet.

Relative entry velocity

The inertial entry velocity amended by the component of the planet's rotation, assuming the atmosphere to be a solid body.

Velocity at peak heat

The velocity when the vehicle reaches the maximum convective heat flux at the stagnation point.

Control method

- (a) Ballistic: no control, subject to drag forces only, with passive stability about zero lift condition;
 - (b) Controlled Ballistic: active control to maintain zero lift; and
- (c) RCS: a set of small engines called the reaction control system (RCS) engines.

Center of gravity,

In the table, the value of X_{CG}/D is given, where D is the maximum diameter of the vehicle. On the diagram, the actual X_{CG} is shown. Most CG are not exactly on the centerline because of manufacturing tolerances, but generally the Y value wasn't given or it is so close that it doesn't show up in the diagram. The exceptions were Apollo command modules and the Viking landers, where the Y offset was deliberate to achieve the desired angles of attack.

Shone

All vehicles are spherically blunted cones, or spherical, or conical.

Nose radius

The radius of the spherical nose, or the capsule radius.

Base area

The base area projected along the centerline.

Vehicle mass

The total vehicle mass of the vehicle at entry, including TPS and payload. Generally, the vehicle mass at entry is the same as take-off mass minus any fuel used for maneuvering. However, the mass can change after leaving the orbiter but before entry. An example is the small probe of Pioneer Venus where the spin yo-yo was jettisoned before entry. The mass can also change during entry if the heat shield material ablates. An (extreme) example was the Galileo probe that lost about 26% of its entry mass to ablation.

TPS mass fraction

The proportion of TPS mass to vehicle mass at entry. Insulator may or may not be included.

Payload mass

The proportion of payload mass (scientific instruments and may include transmitters, batteries etc.) to vehicle mass.

United States CONTINUED Manned Missions

REMARKS	Orbital test	Orbital test	Earth orbit	Earth orbit	Earth orbit	Gemini 7 rendezvous	Gemini 6 rendezvous	Agena docking	ADTA rendezvous	Agena docking	Agena docking	Agena docking	Apollo re-entry test	Suborbital test	Suborbital test	Suborbital test	Saturn V test	Orbital test	Orbital test	Earth orbit	Lunar orbit	Earth orbital LM test	Lunar orbital LM test	Lunar landing	Lunar landing	Lunar landing abort	Lunar landing	Lunar landing	Lunar landing	Lunar landing
Target																					Moon		Moon	Moon	Moon	Moon	Moon	Moon	Moon	Moon
SPACECRAFT	Gemini 1	Gemini 2	Gemini 3	Gemini 4	Gemini 5	Gemini 6	Gemini 7	Gemini 8	Gemini 9	Gemini 10	Gemini 11	Gemini 12	Fire II	Apollo 1	Apollo 2	Apollo 3	Apollo 4	Apollo 5	Apollo 6	Apollo 7	Apollo 8	Apollo 9	Apollo 10	Apollo 11	Apollo 12	Apollo 13	Apollo 14	Apollo 15	Apollo 16	Apollo 17
DATE	04/08/64	01/19/65	03/23/65	99/60/90	08/21/65	12/15/65	12/04/65	03/16/66	99/80/90	07/18/66	09/12/66	11/11/66	05/22/65	02/26/66	99/50//0	08/25/66	11/09/67	01/22/68	04/04/68	10/11/68	12/21/68	03/03/69	05/18/69	07/16/69	11/14/69	04/11/70	01/31/71	07/26/71	04/16/72	02/07/72

MISSION: FIRE II PLANET: EARTH LAUNCH: MAY 22, 1965 ENTRY: MAY 22, 1965 спиу пешив спиноптени

Mission Description: Technology demonstrator for Anollo resentry boating annironment
A

Trajectory	tory	Geor	Geometry	Aero/thermal	hermal	SdL	So
Entry angle	-14.7°	Shape	66° sphere- cone	Trim L/D (specify trim α)	0 at 0°	Material designation	Beryllium (fore) Phenolic asbestos (aft)
Inertial entry velocity		Nose radius (3 parts)	.935 m .805 m .702 m	Ballistic coeff.	F(t)	Thickness	.3 cm (fore)
Relative entry velocity	11.35 km/s	Base area	.354 m ² .312 m ² .272 m ²	Stagnation heating rate	1140 W/cm²	Ablating? Ejected?	Fore: 3 ejected. Aft: ablating
Velocity at peak heat	10.0 km/s	Vehicle mass	86.5 kg	Integrated heat load		Resin mat. Matrix mat.	
Control method	Ballistic	TPS mass fraction, inc. insul.		Radiative heat flux	\sim 350 W/cm ² (.24 μ) implying \sim 650 total	Resin dens. Matrix dens.	
Center of Gravity, X_{CG}/D		Payload mass		PH stag. pressure	1.046 atm	Total material density	

INSTRUMENTATION:

12 offset radiometer thermocouples and one static pressure · Three forebody calorimeters, 11 forebody thermocouples, transformer on the afterbody

Notes:

- · This aerothermal flight test was to evaluate radiative heating for Apollo.
 - The reentry package consisted of three separate heat shield/ calorimeter combinations, therefore the mass and OML changed with time.

References:

- 1. Cauchon, D.L.: Radiative Heating Results from the Fire II Flight Experiment at a Re-entry Velocity of 11.4 km/s. NASA-TM-X-1402, Jul 1967.
- Cornette, E.S.: Forebody Temperatures and Calorimeter Heating Rates Measured during Project Fire II Re-entry at 11.35 km/s. NASA-TM-X-1305, Nov 1966.
 - Slocumb, T.H.: Project Fire Flight II Afterbody Temperatures and Pressures at 11.35 km/s. NASA-TM-X-1319, Dec 1966.
- Wright, M.; Loomis, M.; and Papadopoulos, P.: Aerothermal Analysis of the Project Fire II Afterbody Flow. AIAA-2001-3065, 35th Thermophysics Conference, Anaheim CA, Jun 2001.

MISSION: APOLLO AS-201 PLANET: EARTH

LAUNCH: FEB 26, 1966 ENTRY: FEB 26, 1966

First unmanned suborbital flight to test and the command and service modules the Saturn 1B launch vehicle, Mission Description:

UNMANNED PLANETARY PROBES

CONTINUED

TARGET

SPACECRAFT

DATE

REMARKS

		Germany	
12/10/74 01/15/76	Helios 1 Helios 2	Sun Sun	Solar orbit Solar orbit
		Japan	
01/18/85 08/19/85 02/04/94	Sakigake Suisei Orex	Comet	Halley flyby (3/1/86 - 4.3 mill. mi.) Halley flyby (3/8/86 - 93,600 mi.) Technology demonstrator
09/25/90	Muses A	Moon	Lunar orbit (1992)
07/04/98 05/09/03	Nozomi Hayabusa	Mars Asteroid	railed to reach Mars orbit (12/2003) To collect samples from Itokawa
		Europe	
07/20/85	Giotti	Comet	Halley flyby (3/14/86 - 400 mi.)
10/09/90	Ulysses	Jupiter	Jupiter flyby (1992) Solar polar orbit (1994)
26/60/60	Mirka		Technology demonstrator

Trajectory	tory	Geometry	netry	Aero/t	Aero/thermal	IL	TPS
Entry angle	-8.58° inertial, -9.03° relative	Shape	Capsule: 33° cone	Trim L/D (specify trim α)	-19.7° < α < 21.3°	Material designation	Avco 5026-39 HC
Inertial entry velocity		Nose radius	4.69 m, 3 m effective	Ballistic coeff.		Thickness	See note
Relative entry velocity	7.67 km/s	Base area	12.02 m²	Stagnation heating rate	186 W/cm² at peak	Ablating? Ejected?	No
Velocity at peak heat	5.73 km/s	Vehicle mass		Integrated heat load	7,600 J/cm²	Resin mat. Matrix mat.	Epoxy- novolac Quartz fiber +phenolic microballoon
Control method	No control: Rolled	TPS mass fraction, inc. insul.	13.7%	Radiative heat flux	0.00	Resin dens. Matrix density	244.6 kg/m³ 300 kg/m³
Center of Gravity, X_{CG}/D	.27	Payload mass	None	PH stag. pressure	0.85 atm	Total material density	Ablator: 544.6 kg/m³

INSTRUMENTATION:

• 36 pressure sensors all worked OK, 35 calorimeters worked initially

Notes:

- TPS thickness: Ablator = 4.32 cm, braised stainless steel substructure (PH 15-7 MO) = 5.08 cm
- Insulation: (TG-15,000) = 2.03 cm, aluminum honeycomb
 - (2014-T6 and 5052-H39) = 3.81 cm
- · Peak heating is not at stagnation point
 - · Manufacturer: AVCO Corp

Manned Missions United States

Suborbital test Chimp "Ham" Orbital test Suborbital flight Suborbital flight Orbital test

Carried by U.S.'s Cassini orbiter

Titan probe (Jan 2005)

Saturn

Titan Mars

Mars Express

06/02/03

Huygens

10/13/97

Carried Beagle 2

		MR-2	MA-2	MR-3 (Freedom 7)	MR-4 (Liberty Bell 7)	MA-4	MA-5	MA-6 (Friendship 7)	MA-7 (Aurora 7)	MA-8 (Sigma 7
Mercury Program:	12/19/60	01/31/61	02/21/61	05/03/61	07/21/61	09/13/61	11/29/61	02/20/62	05/24/62	10/03/62

Earth orbit Earth orbit Earth orbit

Chimp "Enos"

REFERENCES:

- 1. Lee, D.B.; Bertin, J.J.; and Goodrich, W.D.: Heat Transfer and Pressure Measurements Obtained During Apollo Orbital Entries. NASA-TN-D-6028, Oct 1970.
 - Proceedings of the 1967 Heat Transfer and Fluid Mechanics Institute, San Diego CA, Jun 1967, edited by P.A. Erb, R.B.; Greenshields, D.H.; Lee, D.B.; and Weston, K.C.: Aerothermodynamics-Apollo Experience. Libby; D.B. Olfe; and C.W. Van Atta, Stanford University Press, 1967.
 - 3. Lee, D.B.: Apollo Experience Report: Aerothermodynamics Evaluation. NASA-TN-6843, Jun 1972.

UNMANNED PLANETARY PROBES

Soviet Union/Russia continued

MISSION: APOLLO AS-202 PLANET: EARTH

LAUNCH: AUG 25, 1966 ENTRY: AUG 25, 1966

d subarbital Aight to Mission Description: ď

secona unmannea si the Saturn 1B launch ve	vecona unmannea suvorottat jugnt to test aturn 1B launch vehicle, and the command
Julias pur	solupom osumos pur
21/126 22/12	to sel circ mounts

Traje	Trajectory	95)	Geometry	Aero	Aero/thermal	L	TPS
Entry angle	-3.53° relative	Shape	Capsule: 33° cone	Trim L/D (specify trim α)	0.28° < L/D < 0.33° α=21° ±3	Material designation	Avco 5026-39 HC/G
Inertial entry velocity		Nose radius	4.69 m, 3 m effective	Ballistic coeff.		Thickness	See note
Relative entry velocity	8.29 km/s	Base area	12.02 m²	Stagnation heating rate	107 W/cm² at peak	Ablating? Ejected?	No
Velocity at peak heat	7.77 km/s	Vehicle mass		Integrated heat load	24,000 J/ cm²	Resin mat. Matrix mat.	Epoxy- novolac Quartz fiber +phenolic microballoon
Control	Roll modulation	TPS mass fraction, inc. insul.	13.7%	Radiative heat flux	0.00	Resin dens. Matrix density	244.6 kg/m³ 300 kg/m³
Center of Gravity, X_{CG}/D	.27	Payload mass	None	PH stag. pressure	0.11 atm	Total material density	Ablator: 544.6 kg/m³

INSTRUMENTATION:

• 36 pressure sensors all worked OK, 35 calorimeters worked initially

Notes:

- TPS thickness: Ablator = 4.32 cm, braised stainless steel substructure (PH 15-7 MO) = 5.08 cm
- Insulation: (TG-15,000) = 2.03 cm, aluminum honeycomb (2014-T6 and 5052-H39) = 3.81 cm
- · Manufacturer: AVCO Corp

References:

- Lee, D.B.; Bertin, J.J.; and Goodrich, W.D.: Heat Transfer and Pressure Measurements Obtained During Apollo Orbital Entries. NASA-TN-D-6028, Oct 1970.
 - Hillje, E.R.: Entry Flight Aerodynamics from Apollo Mission AS-202. NASA-TN-D-4185, Dec 1967. 5.
- Erb, R.B.; Greenshields, D.H.; Lee, D.B.; and Weston, K.C.: Aerothermodynamics-Apollo Experience. Proceedings of the 1967 Heat Transfer and Fluid Mechanics Institute, San Diego CA, Jun 1967, edited by P.A. Libby; D.B. Olfe; and C.W. Van Atta, Stanford University Press, 1967.
 - Crowder, R.S.; and Moote, J.D.: Apollo Entry Aerodynamics. Journal of Spacecraft and Rockets, Vol 6, No 3, Mar 1969.

MISSION: APOLLO 4
PLANET: EARTH

Launch: Nov 9, 1967 Entry: Nov 9, 1967 Mission Description: Test of Saturn V launch vehicle and overall re-entry operations

Trajectory		Geometry	ıetry	Aero/	Aero/thermal	L	TPS
-6.92° inertial, -7.13°		Shape	Capsule: 33° cone	Trim L/D (specify trim α)	0.37° < L/D < 0.44 24 < α < 28	Material designation	Avco 5026-39 HC/G
relative 11.14 km/s		Nose radius	4.69 m, 3 m effective	Ballistic coeff.	395.8 kg/m²	Thickness	See note
10.73 km/s	s/	Base area	12.02 m²	Stagnation heating rate	490 W/cm ² at peak	Ablating? Ejected?	No
10.25 km/s	s/s	Vehicle mass	5424.9 kg	Integrated heat load	43,000 J/cm ²	Resin mat. Matrix mat.	Epoxy- novolac Quartz fiber +phenolic
Roll modulation	uo	TPS mass fraction, inc. insul.	13.7%	Radiative heat flux	115-264 W/cm²	Resin dens. Matrix density	244.6 kg/m³ 300 kg/m³
.27		Payload mass	None	PH stag. pressure	0.35 atm	Total material density	Ablator: 544.6 kg/m³

Instrumentation:

• 17 pressure sensors all worked and 23 calorimeters worked initially. Radiometer functioned well.

Notes:

- \bullet TPS thickness: Ablator = 4.32 cm, braised stainless steel substructure (PH 15-7 MO) = 5.08 cm
- Insulation: (TG-15,000) = 2.03 cm, aluminum honeycomb
 - (2014-T6 and 5052-H39) = 3.81 cm
 - · Manufacturer: AVCO Corp

References:

- Hillje, E.R.; and Savage, R.: Status of Aerodynamic Characteristics of the Apollo Entry Configuration.
 AIAA-1968-1143, Entry Vehicle Systems and Technology Meeting, Williamsburg VA, Dec 1968.
 Hillje, E.R.: Entry Aerodynamics at Lunar Return Conditions Obtained from the Flight of Apollo 4 (AS-501).
 - Hillje, E.R.: Entry Aerodynamics at Lunar Return Conditions Obtained from the Flight of Apollo 4 (AS NASA-TN-D-5399, Oct 1969.
- 3. Reid, R.C, Jr; Rochelle, W.C.; and Milhoan, J.D.: Radiative Heating to the Apollo Command Module: Engineering Prediction and Flight Measurement. NASA-TM-X-58091, Apr 1972.

UNMANNED PLANETARY PROBES United States CONTINUED

Remarks	Fyby (7/29/99 - 15 mi.) Fyby (9/22/2001 - 1,340 mi.)	Mars orbit (Presumed destroyed 9/23/99)	Mars South Polar lander Carried Deep Space 2 probes (Presumed destroyed 12/3/99)	2 Mars surface penetrators (Presumed destroyed 12/3/99)	Sample return (1/15/06)	Mars orbit Solar wind sample return (9/8/04) Landed 01/03/04 Landed 01/24/04
TARGET	Asteroid Braille Comet Borrelly	Mars	Mars	Mars	Comet Wild 2	Mars Sun Mars Mars
SPACECRAFT	Deep Space 1 ———>	Mars Climate Orbiter ———>	Mars Polar Lander >	Deep Space 2 ———>	Stardust	Mars Odyssey Genesis MER Spirit MER Opportunity
DATE	10/24/98	12/11/98	01/03/99	01/03/99	02/07/99	04/07/01 08/08/01 06/10/03 07/07/03

Soviet Union/Russia

01/02/59	Luna 1	Moon	Missed the Moon
09/12/59	Luna 2	Moon	Lunar impact
0/04/59	Luna 3	Moon	Lunar flyby/farside photos
04/02/63	Luna 4	Moon	Lunar flyby
29/60/50	Luna 5	Moon	Crashed on the Moon
59/80/90	Luna 6	Moon	Missed the Moon
10/04/65	Luna 7	Moon	Crashed on the Moon
2/03/65	Luna 8	Moon	Crashed on the Moon
01/31/66	Luna 9	Moon	Lunar landing
03/31/66	Luna 10	Moon	Lunar orbit
08/24/66	Luna 11	Moon	Lunar orbit
10/22/66	Luna 12	Moon	Lunar orbit
12/21/66	Luna 13	Moon	Lunar landing
04/07/68	Luna 14	Moon	Lunar orbit
07/14/69	Luna 15	Moon	Crashed on the Moon
09/12/70	Luna 16	Moon	Lunar soil return
1/10/70	Luna 17	Moon	Lunokhod 1 lunar rover
09/02/71	Luna 18	Moon	Crashed on the Moon
09/28/71	Luna 19	Moon	Lunar orbit
02/14/72	Luna 20	Moon	Lunar soil return
01/08/73	Luna 21	Moon	Lunkhod 2 lunar rover
05/29/74	Luna 22	Moon	Lunar orbit
10/28/74	Luna 23	Moon	Lunar landing
92/80/80	Luna 24	Moon	Lunar soil return

UNMANNED PLANETARY PROBES

United States CONTINUED

DATE	SPACECRAFT	Target	REMARKS
08/20/75 09/09/75	Viking 1 Viking 2	Mars Mars	Mars orbit & landing (7/20/76) Mars orbit & landing (9/3/76)
08/12/77	ICE (ISEE-3)	Sun Comet Comet	Solar orbit Giacobini-Zinner flyby (9/11/85) Halley flyby (3/25/86)
09/03/77	Voyager 1 Voyager 2 Voyager 2 Voyager 2 Voyager 2	Jupiter Ju Saturn Satı Jupiter Ju Saturn Sa Uranus Ur	Jupiter flyby (3/5/79 - 174,000 mi.) Saturn flyby (11/12/80 - 77,000 mi.) Jupiter flyby (7/9/79 - 400,000 mi.) Saturn flyby (8/25/81 - 63,000 mi.) Uranus flyby (1/24/86 - 44,000 mi.) Neptune flyby (8/25/89 - 15,500 mi.)
05/20/78 08/08/78	Pioneer Venus 1 Pioneer Venus 2		Venus orbit radar mapper (12/4/78) Venus atmospheric probes (12/9/78)
05/04/89 10/18/89	Magellan Galileo 	Venus Ve Venus Asteroid Gaspa Asteroid Ida Jupiter	Venus orbit radar mapper (8/10/90) Venus flyby (2/10/90 - 10,000 mi.) Flyby (10/29/91 - 1,000 mi.) Flyby (8/28/93 - 2,400 mi.) Jupiter orbit/probe (12/7/95)
09/25/92	Mars Observer		Mars orbit (communications failure)
01/25/94	Clementine 1	Moon	Lunar orbit
02/17/96	Shoemaker NEAR	Asteroid Mathilde Asteroid Eros Asteroid Eros Asteroid Eros	Hyby (6/27/97) Hyby (12/23/98) Orbit (10/26/00) Touchdown (2/12/01)
11/07/96	Mars Global Surveyor	Mars	Mars orbit (9/11/97)
12/04/96	Mars Pathfinder	Mars	Sojourner Mars rover (7/4/97)
10/13/97	Cassini	Venus Venus Earth Jupiter Saturn Titan	Venus flyby (4/98) Venus flyby (6/24/99 - 323 mi.) Earth flyby (8/17/99 - 727 mi.) Jupiter flyby (12/30/00) Saturn orbit (6/3/04) Carried ESA's Huygens probe Touchdown (1/14/05)
			,

MISSION: APOLLO 6
PLANET: EARTH

Launch: Apr 4, 1968 Entry: Apr 4, 1968 Mission Description:
Final qualification test for launch vehicle and
command module for manned mission

Traje	Trajectory	Geo	Geometry	Aero/	Aero/thermal	L	TPS
Entry angle	-5.9° inertial	Shape	Capsule: 33° cone	Trim L/D (specify trim α)	0.35° < L/D < 0.4 24° < α < 28°	Material designation	Avco 5026-39 HC/G
Inertial entry velocity	10.00 km/s	Nose radius	4.69 m, 3 m effective	Ballistic coeff.	395.8 kg/m²	Thickness	See note
Relative entry velocity	9.60 km/s	Base area	12.02 m²	Stagnation heating rate	240 W/cm² at peak	Ablating? Ejected?	No
Velocity at peak heat	8.32 km/s	Vehicle mass	5424.9 kg	Integrated heat load	32,000 J/ cm²	Resin mat. Matrix mat.	Epoxy- novolac Quartz fiber +phenolic microballoon
Control method	Roll modulation	TPS mass fraction, inc. insul.	13.7%	Radiative heat flux	43 W/cm²	Resin dens. Matrix density	244.6 kg/m³ 300 kg/m³
Center of Gravity, X_{CG}/D	72.	Payload mass	None	PH stag. pressure	0.354 atm	Total material density	Ablator: 544.6 kg/m³

INSTRUMENTATION:

- \bullet TPS thickness: Ablator = 4.32 cm, braised stainless steel substructure (PH 15-7 MO) = 5.08 cm
- Insulation: (TG-15,000) = 2.03 cm, aluminum honeycomb (2014-T6 and 5052-H39) = 3.81 cm
- · Manufacturer: AVCO Corp

References:

- Hillje, E.R.; and Savage, R.: Status of Aerodynamic Characteristics of the Apollo Entry Configuration.
 AIAA-1968-1143, Entry Vehicle Systems and Technology Meeting, Williamsburg VA, Dec 1968.

 Lee, D.B.; and Goodrich, W.D.: The Aerothermodynamic Environment of the Apollo Command Module
- During Superorbital Entry. NASA-TN-D-6792, Apr 1972.

 3. Strouhal, G.; Curry, M.; and Janney, J.M.: Thermal Protection System Performance of the Apollo Command
- Module. AIAA/ASME 7th Structures and Materials Conference, Cocoa Beach FL, Apr 1966.
 Bartlett, E.P.; Nicolet, W.E.; Abbett, M.J.; and Moyer, C.B.: Improved Heat-Shield Design Procedures for Manned Entry Systems: Part 2. Application to Apollo: Final Report. NASA-CR-108689, Jun 1970.

Data Collected by: C. Park

30

Lunar orbital mapper

Moon

Lunar Prospector

01/06/98

MISSION: REENTRY F
PLANET: EARTH

Launch: Apr 27, 1968 Entry: MISSION DESCRIPTION: To measure turbulent heating rates and transition onset in a flight environment

	TPS	nation Rosetip: ATJ araphite Body:
254 cm coeff. ~50,000 T		
Stagnation 0.3772 m² heating 32 W/cm² rate	Material Nosetip: ATJ designation graphite Body: berryllium Thickness Be: 1.524 cm	
rate Integrated heat load		
	0° ballistic ~50,000 kg/m² 32 W/cm²	~50,000 kg/m² 32 W/cm²
	Trim LID (specify trim α) Ballistic coeff.	allistic eff.
		Shape
Nose radius Base area Vehicle mass fraction,		-20.78°
1/s //s		Entry angle

INSTRUMENTATION:

- Multiple thermocouples and pressure sensors at 21 stations on cone. 4 heat-flux gauges and 2 pressure gauges on base.
 - 3 thermocouples in nose-tip assembly

Notes:

- Nose-tip heating rate is not relevant for this flight, which was
 - designed to measure heating on a sharp cone.
- The nose tip was meant to ablate during entry.
 The beryllum heat shield melted about 40 seconds after entry.

References:

1. Wright, R.L.; and Zoby, E.V.: Flight Measurements of Boundary-Layer Transition on a 5 Degree Half-Angle Cone at a Free-Stream Mach Number of 20 (Reentry F). NASA-TM-X-2253, May 1971.

APPENDIX I LIST OF SPACE VEHICLES AND THEIR MISSIONS

Unmanned Planetary Probes United States

REMARKS	Lunar flyby Solar orbit Solar orbit Solar orbit Solar orbit Solar orbit Solar orbit Jupiter flyby (12/3/73 - 81,000 mi.) Jupiter flyby (12/2/74 - 26,600 mi.) Saturn flyby (9/1/79 - 13,000 mi.)	Lunar flyby Lunar impact Lunar flyby Lunar impact/photos Lunar impact/photos Lunar impact/photos	Venus flyby (12/14/65 - 22,000 mi.) Mars flyby (comm. failure) Mars flyby (7/14/65 - 6,100 mi.) Venus flyby (10/19/67 - 2,500 mi.) Mars flyby (7/31/69 - 2,100 mi.) Mars flyby (8/5/69 - 2,200 mi.) Mars flyby (2/5/74 - 3,600 mi.) Mercury flyby (3/29/74 - 460 mi.) Mercury flyby (3/16/75 - 2000 mi.)	Lunar landing Crashed on the Moon Lunar landing Crashed on the Moon Lunar landing Lunar landing Lunar landing Lunar landing	Lunar orbit Lunar orbit Lunar orbit Lunar orbit
TARGET	Moon Sun Sun Sun Sun Jupiter Jupiter Saturn	Moon Moon Moon Moon Moon Moon	Venus Mars Mars Venus Mars Mars Mars Mercury Mercury	Moon Moon Moon Moon Moon Moon	Moon Moon Moon Moon
SPACECRAFT	Pioneer 4 Pioneer 5 Pioneer 6 Pioneer 7 Pioneer 8 Pioneer 9 Pioneer 10 Pioneer 11	Ranger 3 Ranger 4 Ranger 5 Ranger 6 Ranger 7 Ranger 8	Mariner 2 Mariner 3 Mariner 4 Mariner 5 Mariner 6 Mariner 7 Mariner 9 Mariner 10 —	Surveyor 1 Surveyor 2 Surveyor 3 Surveyor 4 Surveyor 5 Surveyor 5 Surveyor 7 Lunar Orbiter 1	Lunar Orbiter 2 Lunar Orbiter 3 Lunar Orbiter 4 Lunar Orbiter 5
DATE	03/03/59 03/11/60 12/16/65 08/17/66 10/18/67 11/08/68 03/03/72	01/26/62 04/23/62 10/10/62 01/30/64 07/28/64 02/17/65	08/26/62 11/05/64 11/28/64 06/14/67 02/25/69 03/27/69 05/30/71 11/02/73	06/30/66 09/20/66 04/17/67 07/14/67 09/08/67 11/07/67 01/07/68	02/04/67 02/04/67 05/04/67 08/01/67

MISSION: PAET PLANET: EARTH

LAUNCH: JUN 2, 1971 ENTRY: JUN 2, 1971

Mission Description:

To test the capability to determine the composition of unknown atmospheres during high-speed entry

Shadowgraph of PAET Model in Ballistic Range Test

Trajectory	ctory	Geor	Geometry	Aero/1	Aero/thermal	II	TPS
Entry angle	Relative at 90 km: -40.8°	Shape	Blunt- nosed, 55° half-cone angle	Trim L/D (specify trim α)	0	Material designation	See note
Inertial entry velocity	6.60 km/s	Nose radius	0.46 m	Ballistic coeff.	69 kg/m ²	Thickness	Nose: 1-2.5 cm Conical frustrum: 0.76 cm
Relative entry velocity	6.56 km/s	Base area	.66 m²	Stagnation heating rate	(no ablation) Max: 174 W/cm ²	Ablating? Ejected?	Yes: frustrum No
Velocity at peak heat	5.6 km/s	Vehicle mass	62.1 kg	Integrated heat load	Stag. pt. 1450 J/cm ²	Resin mat. Matrix mat.	Silicone
Control method	Ballistic	TPS mass fraction, inc. insul.	Forebody: 13.7% Afterbody: 3.5%	Radiative heat flux	negligible	Resin dens. Matrix density	
Center of $Gravity$, X_{CG}/D	.202	Payload mass	14 kg	PH stag. pressure	.60 atm	Total material density	Beryllium: 1858 kg/m³ Ablator: 450 kg/m³

INSTRUMENTATION:

- Forebody: 2 beryllium heat transfer gauges, 2 heat shield plugs in the ablator and pressure gauge in beryllium cap
 - in the ablator and pressure gauge in beryllium cap
 Afterbody: Thermocouple in low-density ablator (SLA-220) located slightly aft of shoulder

Notes:

- Nose: Beryllium heatsink
- · Conical frustrum: ESA 3560 ablator

References:

- Vojvodich, N.S.: PAET Entry Heat Protection Experiment. Journal of Spacecraft and Rockets, Vol 10, No 3, Mar 1972, pp. 181-180
 - Mar 1973, pp 181-189.

 2. Seiff, A.; Reese, D.E.; Sommer, S.C.; Kirk, D.B.; Whiting, E.E; and Niemann, H.B.: PAET, An Entry Probe Experiment in Earth's Atmosphere. ICARUS, Vol 18, Apr 1973, pp 525-563.

MISSION: VIKING LANDER 1
PLANET: MARS

LAUNCH: AUG 20, 1975 ENTRY: JUL 20, 1976 MISSION DESCRIPTION:
To characterize the structure and composition of the atmosphere and surface of Mars

Trajectory	tory	Geometry	netry	Aero/thermal	nermal	TPS	S
Entry angle	Inertial –16.99°	Shape	70° sphere- cone	Trim L/D (specify trim α)	α=-11.1°	Material designation	SLA561-V
Inertial entry velocity	4.61 km/s	Nose radius	0.88 m	Ballistic coeff.	At peak heat flux: 63.0 kg/m²	Thickness	Variable: max 1.38 cm
Relative entry velocity	4.42 km/s	Base area	9.65 m ²	Stagnation heating rate	Peak: 21.02 W/cm^2	Ablating? Ejected?	Ablating
Velocity at peak heat	4.02 km/s	Vehicle mass	980 kg	Integrated heat load	$\sim 1100 \mathrm{\ J/cm}^2$	Resin mat. Matrix mat.	Resin
Control method, e.g. flap deflect.	3-axis RCS	TPS mass fraction, inc. insul.	2.8%	Radiative heat flux	0	Resin dens. Matrix dens.	185 kg/m³ 48 kg/m³
Center of $Gravity$, X_{CG}/D	.219 (Ref. 3)	Payload mass		PH stag. Pressure	.06 atm	Total material density	233 kg/m³

INSTRUMENTATION:

- The forebody aeroshell was not instrumented, but the wake enclosure (backshell) had thermocouples.
 - There was one pressure port off stagnation point and one on the base cover.
 - Temperature gauges were on the back face and on both back-shell frustums.
- Resin Material: silicone elastomer with glass microspheres and cork
 - Matrix material: fiberglass-phenolic honeycomb
 - RCS was used to maintain trim angle of attack

References:

- Inogoldby, R.N.; Michel, F.C.; Flaherry, T.M.; Dory, M.G.; Preston, B.; Villyard, K.W.; and Steele, R.D.:
 Entry Data Analysis of Viking Landers 1 and 2: Final Report. Martin-Marietta Co., TN-3770218,
 NASA-CR-159388, Nov 1976.
- Kirk, D.B.; Intrieri, P.F.; and Seiff, A.: Aerodynamic Behavior of the Viking Entry Vehicle: Ground Test and Flight Results. Journal of Spacecraft and Rockets, Vol 15, No 4, Jul-Aug 1978.
 - . Viking '75 Project, Aerodynamics Data Book. NAS1-9000, Martin-Marietta, Revision E, 1974.
- Cooley, C.G.: Viking 75 Project: Viking Lander System, Primary Mission Performance Report. NASA-CR-145148, Apr 1977.

Data Collected by: M. Tauber and G. Allen

10

MISSION: MARS EXPLORATION ROVERS "Spirit" and "Opportunity"

PLANET: MARS

Launch: Jun 10, 2003 & Jul 7, 2003 Entry: Jan 3, 2004 & Jan 24, 2004 MISSION DESCRIPTION:

To place two rovers (A and B) on Mars to conduct remote geological investigations including

search for past water activity

Trajectory	ory	Geor	Geometry	Aero/1	Aero/thermal	ΙL	TPS
Entry angle	-11.5° @ 125 km	Shape	70° sphere- cone	Trim L/D (specify trim α)	0	Material designation	SLA-561V (SLA-561S for backshell)
Inertial entry velocity		Nose radius	0.66 m	Ballistic coeff.	88 kg/m²	Thickness	1.57 cm
Relative entry velocity	5.55 km/s	Base area	5.52 m²	Stagnation heating rate	44 W/cm²	Ablating? Ejected?	Yes
Velocity at peak heat	4.93 km/s	Vehicle mass	836 kg	Integrated heat load	3687 J/cm ²	Resin mat. Matrix mat.	Resin
Control method	Ballistic	TPS mass fraction, inc. insul.	3.6% fore body; 2% back shell	Radiative heat flux	0~	Resin dens. Matrix density	
Center of Gravity, X _{Cd} /D	0.30	Payload mass		PH stag. pressure	0.06 atm	Total material density	256 kg/m³

INSTRUMENTATION:

VOTES:

.77 m

, 88B

- MER A and MER B are two separate missions, each carrying a rover to Mars. Data here are for MER B, the most severe entry environment.
- This mission uses an entry aeroshell similar to that of Pathfinder, however the enclosed rovers are larger than Sojourner and are self-contained.
- There are 3 TIRS (Transverse Impulse Rocket System) covers made of SIRCA spaced around the backshell.

—1.66 m

References:

- 1. Roncoli, R.B.; and Ludwinski, J.M.: Mission Design Overview for the Mars Exploration Rover Mission. AIAA-2002-4823, AIAA/AAAS Astrodynamics Specialist Conference and Exhibit, Monterey CA, Aug 2002.
- Szalai, C.; Chen Y.; Loomis, M.; and Hui, F.: Mars Exploration Rover TIRS Cover Thermal Protection System Design Verification. AIAA-2003-3767, 36th AIAA Thermophysics Conference, Orlando FL, Jun 2003.

PLANET: MARS

To develop a low-cost low-mass system for placing an exobiology science payload on Mars Mission Description:

Trajectory	ctory	Geometry	netry	Aero/thermal	hermal	TI	TPS
Entry angle	Inertial: -15.8°	Shape	60° sphere- cone	Trim L/D (specify trim α)	Ballistic (2º average)	Material designation	Norcoat- Liege (EADS)
Inertial entry velocity	5.63 km/s	Nose radius	0.417 m	Ballistic coeff.	At peak heat flux: 69.9 kg/m²	Thickness	8mm
Relative entry velocity	5.40 km/s	Base area	0.67 m ²	Stagnation heating rate	72.28 W/cm ²	Ablating? Ejected?	Yes Yes
Velocity at peak heat	Relative: 4.70 km/s	Vehicle mass	At entry: 68.46 kg	Integrated heat load	2449 J/cm²	Resin mat. Matrix mat.	Phenolic Cork
Control method	Ballistic	TPS mass fraction, inc. insul.	9.2% fore body; 15.2% back shell	Radiative heat flux	0.17 W/cm ²	Resin dens. Matrix density	
Center of Gravity, X _{CG} /D	0.26	Payload mass	11.4.kg (science) (33.2 kg landed)	PH stag. pressure	0.18 atm	Total material density	460 kg/m³

[NSTRUMENTATION:

No TPS instrumentation: axial accelerometers only

Notes:

- Image (all rights reserved Beagle 2) is an impression of Beagle 2 post separation from Mars Express.
 - Beagle 2 landed on Mars but did not make radio contact.

- 1. Burnell, S.; Liever P.; Smith, A.; and Parnaby, G.: Prediction of the Beagle 2 Static Aerodynamic Coefficients. Atmospheric Reentry Vehicles and Systems, Arcachon 2000.
 - Smith, A.; Parnaby, G.; Jones, T.V.; and Buttsworth, D.: Aerothermal Environment of the Beagle 2 Probe. Fourth European Symposium on Aerothermodynamics, Capua, Italy, Oct 2001.
- Liever, P.A.; Habchi, S.D.; Burnell, S.I.; and Lingard, J.S.: Computational Fluid Dyanamics Prediction of the Beagle 2 Aerodynamic Database. Journal of Spacecraft and Rockets, Vol 40, No 5, Sep-Oct 2003.

Data Collected by: A. Smith

MISSION: BEAGLE 2

LAUNCH: JUN 2, 2003

ENTRY: DEC 25, 2003

MISSION: VIKING LANDER 2 PLANET: MARS

LAUNCH: SEP 9, 1975 ENTRY: SEP 3, 1976 MISSION DESCRIPTION:

To characterize the structure and composition of the atmosphere and surface of Mars

Trajectory	ctory	Geon	Geometry	Aero/t	Aero/thermal	SdL	S
Entry angle	Inertial: (at 138 km) -17.08°	Shape	Blunt- nosed 70° half cone	Trim L/D (specify trim α)	0.18 at α=-11.3°	Material designation	SLA-56IV
Inertial entry velocity	4.74 km/s	Nose radius	0.88 m	Ballistic coeff.	63.6 kg/m²	Thickness	Variable: max 1.38 cm
Relative entry velocity	(at 244 km) 4.48 km/s	Base area	9.65 m²	Stagnation heating rate	(max) 21.4 W/cm ²	Ablating? Ejected?	Ablator- pyrolyzed Ejected:yes
Velocity at peak heat	4.0 km/s	Vehicle mass	981.5 kg	Integrated heat load (stag pt)	Approx. 1050 J/cm ²	Resin mat. Matrix mat.	See notes
Control method, e.g. flap deflect.	Active- reaction control	TPS mass fraction, inc. insul.	2.8%	Radiative heat flux	0	Resin dens. Matrix dens.	185.0 kg/m³ 48.0 kg/m³
Center of $Gravity$, X_{CG}/D	.219	Payload mass		PH stag. Pressure	0.063 atm	Total material density	

INSTRUMENTATION:

- · The forebody aeroshell was not instrumented, but the wake enclosure (backshell) had thermocouples.
- · There was one pressure port off stagnation point and one on the base cover.
 - ·Temperature gauges were on the back face and on both back-shell frustums.

- · Resin Material: silicone elastomer with glass microspheres and cork
 - · Matrix material: fiberglass-phenolic honeycomb
 - · RCS was used to maintain trim angle of attack

REFERENCES:

- 1. Inogoldby, R.N.; Michel, F.C.; Flaherty, T.M.; Doty, M.G.; Preston, B.; Villyard, K.W.; and Steele, R.D.: Entry Data Analysis of Viking Landers 1 and 2: Final Report. Martin-Marietta Co., TN-3770218, NASA-CR-159388, Nov 1976.
- Kirk, D.B.; Intrieri, P.F.; and Seiff, A.: Aerodynamic Behavior of the Viking Entry Vehicle: Ground Test and Flight Results. Journal of Spacecraft and Rockets, Vol 15, No 4, Jul-Aug 1978.
 - Viking '75 Project, Aerodynamics Data Book. NAS1-9000, Martin-Marietta, Revision E, 1974. £ .4
 - Cooley, C.G.: Viking 75 Project: Viking Lander System, Primary Mission Performance Report. NASA-CR-145148, Apr 1977.

SMALL "NORTH PROBE"

LAUNCH: AUG 8, 1978

A 60° N day entry to map atmosphere, including characterizing wind and turbulence

Trajectory	ctory	Geo	Geometry	Aero/	Aero/thermal	L	TPS
Entry angle	-68.7° at 200 km	Shape	Blunt-nosed, 45° half- cone angle	Trim L/D (specify trim α)	0	Material designation	Carbon- phenolic
Inertial entry velocity	11.54 km/s	Nose radius	0.19 m	Ballistic coeff.	190 kg/m²	Thickness	1.2 cm at stagnation point
Relative entry velocity	Same	Base area	0.46 m²	Stagnation heating rate	7200 W/cm ²	Ablating? Ejected?	Yes No
Velocity at peak heat	10.50 km/s	Vehicle mass	91 kg	Integrated heat load	At stag. pt. 11,700 J/cm ²	Resin mat. Matrix mat.	89.8% Carbon 2.8% Hydrogen 6.9% Oxygen
Control method	Ballistic	TPS mass fraction, inc. insul.	12.9%	Radiative heat flux	@ max heat 3400 W/cm²	Resin dens. Matrix density	
Center of $Gravity, X_{CG}/D$	0.40	Payload mass	3.60 kg	PH stag. pressure	6.40 atm	Total material density	1490 kg/m³

INSTRUMENTATION:

• Thermocouples: one at 17° off stagnation point (0.41 cm below heat-shield surface); another on conical frustrum ahead of shoulder (0.30 cm below heat-shield surface) at s/R_=2.2

Notes:

· Heating rates and loads are probably for non-ablating conditions.

References:

- 1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: Pioneer-Venus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis MO, Sep 1975.
 - 3. Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003. 2. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.

Data Collected by: M. Tauber and G. Allen

MISSION: PIONEER-VENUS

PLANET: VENUS

Mission Description: ENTRY: DEC 9, 1978

PLANET: EARTH RETURN MISSION: HAYABUSA

LAUNCH: MAY 9, 2003 ENTRY: JUN 2007 MISSION DESCRIPTION:

To collect samples from asteroid Itokawa (1998SF36) and return to Earth

Trajectory	tory	Geometry	etry	Aero/thermal	nermal	SdL	S
Entry angle	-13.8°	Shape	45° sphere- cone	Trim L/D (specify trim α)	0	Material designation	Carbon- phenolic
Inertial entry velocity	11.7 km/s	Nose radius	.202 m	Ballistic coeff.	113.5 kg/m³	Thickness	3.0 cm
Relative entry velocity	11.3 km/s	Base area	.128 m²	Stagnation heating rate	1500 W/cm ²	Ablating? Ejected?	Yes Yes
Velocity at peak heat	10.2 km/s	Vehicle mass	16.27 kg	Integrated heat load	$32,000 \mathrm{J/cm^2}$	Resin mat. Matrix mat.	
Control method	none	TPS mass fraction, inc. insul.	43%	Radiative heat flux	300 W/cm ²	Resin dens. Matrix density	
Center of Gravity, X_{CG}/D	0.28	Payload mass	1.04 kg	PH stag. pressure	0.61 atm	Total material density	1400 kg/m³

INSTRUMENTATION:

• A one-axis accelerometer for parachute deployment.

Notes:

· The mission name was changed from MUSES-C

REFERENCES:

1. Ishii, N.; Hiraki, K.; Yamada, T.; Inatani, Y.; and Honda, M.: System Description and Reentry Operation Scenario of MUSES-C Reentry Capsule. Institute of Space and Astronautical Science Report, SP No 17, edited by Y. Inatani, Mar 2003, pp 389-400.

MISSION: GENESIS
PLANET: EARTH RETURN

LAUNCH: AUG 8, 2001 ENTRY: SEP 8, 2004 Mission Description: To collect solar wind particles and return to Earth

Fore: Carbon-Aft: SLA-Partially carbon e cm ŝ Resin dens. Matrix designation Matrix mat. Resin mat. Thickness Ablating? Ejected? Material material density density Total 16,600 J/cm² 700 W/cm² 80 kg/m^3 30 W/cm² 0 Stagnation Integrated Radiative heat flux heat load Trim L/D heating (specify trim α) Ballistic PH stag. pressure coeff.rate blunt cone 1.78 m^2 $210 \, \mathrm{kg}$ 59.81° .43 m ~18% Base area TPS mass inc. insul. fraction, Payload Vehicle Nose radius Shapemass mass aero-ballistic Spin-stabilized 11.0 km/s 10.8 km/s 9.2 km/s .33 စို Entry angle Velocity at peak heat Center of Gravity, velocity Relative Inertial velocity Control method X_{CG}/D entry entry

[NSTRUMENTATION:

Thermosensitive paint strips

Notes:

- The capsule crashed violently into the desert after failing to deploy the drag devices.
- Despite this mishap, many of the collectors remained intact and most of the mission goals should be accomplished.

References:

- Lo, M.W.; Williams, B.G.; Bollman, E.; Han, D.; Hahn, Y.; Bell, J.L.; Hirst, E.A.; Corwin, R.A., Hong, P.E.; and Howell, K.C.: Genesis Mission Design. AIAA-1998-4468, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston MA, Aug 1998.
 Cheatwood, F. M.; Merski, N. R.; Riley, C.J.; and Mitcheltree, R.A.: Aerothermodynamic Environment
 - Cheatwood, F. M.; Merski, N. R.; Riley, C.J.; and Mitcheltree, R.A.: Aerothermodynamic Environment
 Definition for the Genesis Sample Return Capsule. AIAA-2001-2889, 35th AIAA Thermophysics Conference,
 Anaheim CA, Jun 2001.

Data Collected by: W. Willcockson and R. Bennett

MISSION: PIONEER-VENUS SMALL "NIGHT PROBE" PLANET: VENUS

LAUNCH: AUG 8, 1978 ENTRY: DEC 9, 1978 Mission Description:

To map the atmosphere, including temperature and pressure, from a night side entry

Trajectory	ctory	Ge	Geometry	Aero	Aero/thermal	,	TPS
Entry angle	-41.5° at 200 km	Shape	Blunt-nosed, 45° half- cone angle	Trim L/D (specify trim α)	0	Material designation	Carbon- phenolic
Inertial entry velocity	11.54 km/s	Nose radius	0.19 m	Ballistic coeff.	190 kg/m²	Thickness	1.2 cm at stagnation point
Relative entry velocity	Same	Base area	0.46 m²	Stagnation heating rate	5500 W/cm²	Ablating? Ejected?	Yes No
Velocity at peak heat	10.40 km/s	Vehicle mass	91 kg	Integrated heat load	At stag. pt. 12,500 J/cm ²	Resin mat. Matrix mat.	89.8% Carbon 2.8% Hydrogen 6.9% Oxygen
Control method	Ballistic	TPS mass fraction, inc. insul.	12.9%	Radiative heat flux	2300 W/cm ²	Resin dens. Matrix density	
Center of $Gravity$, X_{CG}/D	0.40	Payload mass	3.60 kg	PH stag. pressure	6.30 atm	Total material density	1490 kg/m³

INSTRUMENTATION:

• Thermocouples: one at 17° off stagnation point (0.41 cm below heat-shield surface); another on conical frustrum ahead of shoulder (0.30 cm below heat-shield surface) at $s/R_n = 2.2$

Notes:

• Heating rates and loads are probably for non-ablating conditions.

REFERENCES:

- 1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: Pioneer-Venus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis MO, Sep 1975.
 - 2. Pioneer-Venus Large and Small Probe Databook, Bendix, NASZ-830Q, Jun 1976.
- 3. Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.

SMALL "DAY PROBE"

PLANET: VENUS

LAUNCH: AUG 8, 1978

ENTRY: DEC 9, 1978

To map the atmosphere, including radiative energy, Mission Description: from a day side entry

Traje	Trajectory	ЭЭ	Geometry	Aero	Aero/thermal	L	TPS
Entry angle	-25.4° at 200 km	Shape	Blunt-nosed, 45° half- cone angle	Trim L/D (specify trim α)	0	Material designation	Carbon- phenolic
Inertial entry velocity	11.54 km/s	Nose radius	0.19 m	Ballistic coeff.	190 kg/m²	Thickness	1.2 cm at stagnation point
Relative entry velocity	Same	Base area	0.46 m²	Stagnation heating rate	3900 W/cm ²	Ablating? Ejected?	Yes No
Velocity at peak heat	10.40 km/s	Vehicle mass	91 kg	Integrated heat load	At stag. pt. 14,000 J/cm ²	Resin mat. Matrix mat.	89.8% Carbon 2.8% Hydrogen 6.9% Oxygen
Control method	Ballistic	TPS mass fraction, inc. insul.	12.9%	Radiative heat flux	1300 W/cm²	Resin dens. Matrix density	
Center of $Gravity$, X_{CG}/D	0.40	Payload mass	3.60 kg	PH stag. pressure	4.20 atm	Total material density	1490 kg/m³

INSTRUMENTATION:

• Thermocouples: one at 17° off stagnation point (0.41 cm below heat-shield surface); another on conical frustrum ahead of shoulder (0.30 cm below heat-shield surface) at s/R₌=2.2

Notes:

· Heating rates and loads are probably for non-ablating conditions.

References:

- 1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: Pioneer-Venus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis MO, Sep 1975.
 - Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.
- 3. Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.

Data Collected by: M. Tauber and G. Allen

MISSION: PIONEER-VENUS

PLANET: EARTH RETURN MISSION: STARDUST

ENTRY: JAN 15, 2006 LAUNCH: FEB 7, 1999

Mission Description:

To collect comet material from Wild 2 and return to Earth

Trajectory	ctory	Geor	Geometry	Aero/t	Aero/thermal	ΙĮ	TPS
Entry angle	-8.2° ± 0.08° @ 125 km	Shape	Blunt- nosed 60° half- angle cone	Trim L/D (specify trim α)	0	Material designation	PICA-15
Inertial entry velocity	12.8 km/s @ 125 km	Nose radius	0.23 m initial	Ballistic coeff (Ablated).	60.0 kg/m ² 60.4 kg/m ²	Thickness	5.82 cm
Relative entry velocity	12.6 km/s @ 125 km	Base area (Ablated)	0.52 m ² 0.50 m ²	Stagnation heating rate	(non- ablating) 1200 W/cm²	Ablating? Ejected?	Yes No
Velocity at peak heat	11.1 km/s	Vehicle mass	45.8 kg	Integrated heat load	36,000 J/cm ²	Resin mat. Matrix mat.	Phenolic Carbon fiber
Control method	Ballistic	TPS mass fraction, inc. insul.	22%	Radiative heat flux	130 W/cm^2	Resin dens. Matrix density	109 kg/m³ 160 kg/m³
Center of Gravity, X_{CC}/D	.35	Payload mass		PH stag. pressure	0.275 atm	Total material density	250 kg/m³ approx.

INSTRUMENTATION:

Notes:

· The Stardust capsule made a successful return to Earth on Jan 15, 2006.

REFERENCES:

- 1. Olynick, D.; Chen, Y.K.; and Tauber, M.E.: Aerothermodynamics of the Stardust Sample Return Capsule. Journal of Spacecraft and Rockets, Vol 36, No 3, May-Jun 1999, pp 442-462.
- 2. Mitcheltree, R.A.; Wilmoth, R.G.; Cheatwood, F.M.; Brauckmann, G.J.; and Greene, F.A.: Aerodynamics of Stardust Sample Return Capsule. AIAA-1997-2304, 15th Applied Aerodynamics Conference, Atlanta GA, Jun 1997.

MISSION: DEEP SPACE 2 PLANET: MARS

LAUNCH: JAN 3, 1999 ENTRY: DEC 3, 1999

To penetrate the Martian surface with two small probes Mission Description:

Sirca-SPLIT Not ejected ~ 1 cm TPS designation Matrix mat. Resin dens. Thickness Resin mat. Ablating? Ejected? Material naterial Matrix density density Total 8712 J/cm^2 194 W/cm² 36.2 kg/m^2 Aero/thermal Stagnation Radiative heat flux Integrated heat load Trim L/D PH stag. (specify Ballistic heating pressure trim α) coeff. rate 45° spherespherical .0875 m $.096 \text{ m}^2$ $3.67 \,\mathrm{kg}$ Geometry cone, aft TPS mass fraction, Base area inc. insul. Payload Vehicle Nose radius Shape mass mass 5.94 km/s at 128 km inertial -13.25° 6.9 km/s Ballistic Trajectory 2, Relative entry Inertial entry Velocity at Entry angle peak heat Center of velocity velocity method Gravity, Control X_{CG}/D

INSTRUMENTATION:

• The DS-2 aeroshells were on the failed Mars Polar Lander.

Notes:

· They were to be jettisoned 5 minutes before the lander entered the Martian atmosphere. No signals from the probes were received.

.275 m

MISSION: PIONEER-VENUS LARGE PROBE "SOUNDER" PLANET: VENUS

LAUNCH: AUG 8, 1978 ENTRY: DEC 9, 1978 Mission Description:

This probe contained 7 experiments, including one to measure the atmospheric composition

Traje	Trajectory	оэ	Geometry	Aero/	Aero/thermal	L	TPS
Entry angle	-32.4° at 200 km	Shape	Blunt-nosed, 45° half- cone angle	Trim L/D (specify trim α)	0	Material designation	Carbon- phenolic
Inertial entry velocity	11.54 km/s	Nose radius	0.36 m	Ballistic coeff.	188 kg/m²	Thickness	1.60 cm at stagnation point
Relative entry velocity	Same	Base area	1.59 m².	Stagnation heating rate	4500 W/cm ²	Ablating? Ejected?	Yes Yes
Velocity at peak heat	10.50 km/s	Vehicle mass	316.48 kg	Integrated heat load	At stag. pt. 12,400 J/cm ²	Resin mat. Matrix mat.	89.8% Carbon 2.8% Hydrogen 6.9% Oxygen
Control method	Ballistic	TPS mass fraction, inc. insul.	Forebody: 8.83% Aft cover: 1.52%	Radiative heat flux	2400 W/cm ²	Resin dens. Matrix density	
Center of $Gravity$, X_{CO}/D	0.40	Payload mass	Science instr. 29.15 kg (9.2%)	PH stag. pressure	5.30 atm	Total material density	1490 kg/m³

INSTRUMENTATION:

· Thermocouples: one at the stagnation point (0.41 cm below heat-shield surface); another on conical frustrum ahead of shoulder (0.30 cm below heat-shield surface) at s/R $_{\rm n} = 2.2$

Notes:

· Heating rates and loads are probably for non-ablating conditions.

References:

- 1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: Pioneer-Venus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis MO, Sep 1975. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.

1. Mitcheltree, R.A.; DiFulvio, M.; Horvath, T.J.; and Braun, R.D.: Aerothermal Heating Predictions for Mars

References:

Microprobe. AIAA-1998-0170, 36th Acrospace Sciences Meeting, Reno NV, Jan 1998.

Data Collected by: M. Murbach and M. Tauber

Pioneer-Venus Large and Small Probe Databook, Bendix, NASL-830(3, Jun 1970.
 Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.

MISSION: GALILEO PLANET: JUPITER

LAUNCH: OCT 18, 1989 ENTRY: DEC 7, 1995 Mission Description:

1450 kg/m³ 14.6 cm at stagnation Carbon-phenolic Phenolic Carbon Yes Yes **TPS** Material designation Resin mat. Matrix mat. Resin dens. Matrix Thickness Ablating? Ejected? material density density **Total** $200,000 \, \mathrm{J/cm^2}$ with ablation 256 kg/m^2 Aero/thermal ablation) 7.3 atm 17,000 W/cm² 17,000 W/cm² (with (stag point) Stagnation Integrated heat load Peak Heat Radiative Trim L/D (at entry) heat flux Ballistic (specify pressure heating trim α) coeff. stag. rate Forebody: 45.4% Afterbody: half-cone At entry: 335 kg Science 8.3% $1.26 \, \mathrm{m}^2$ Geometry nosed, 44.86° .222 m angle 2% TPS mass fraction, inc. insul. Base area (at entry) Payload Vehicle(initial) Shape radius mass -6.64°, Rel: -8.5°, 59.92 km/s 47.37 km/s @ 450 km 39.0 km/s .344? see note Ballistic Inertial: Trajectory Relative entry Inertial entry Entry angle Velocity at peak heat (relative) Center of velocity Gravity, velocity method Control X_{CG}/D

[NSTRUMENTATION:

- · Forebody TPS: ablation recession gauges
- · Afterbody TPS: thermocouples in the nylon phenolic

Notes:

· Reported CG estimates varied widely.

REFERENCES:

- 1. Givens, J.; Nolte, L.; and Pochettino, L.: Galileo Atmospheric Entry Probe System: Design, Development and Test. AIAA-1983-0098, 21st Aerosciences Meeting, Jan 1983.
 - Milos, F.; Chen, Y.K.; Squire, T.; and Brewer, R.: Analysis of Galileo Probe Hear Shield Ablation and Temperature Data. AIAA-1997-2480, 32nd Thermophysics Conference, Atlanta GA, Jun 1997.
- Milos, F.: Galileo Probe Heat Shield Ablation Experiment. AIAA Journal of Spacecraft and Rockets, Vol 34, No 6, Nov-Dec 1997.

Data Collected by: M. Tauber

16

To descend into the Jovian atmosphere, collect atmospheric data and relay to the orbiter

"Atmospheric Reentry Demonstrator" PLANET: EARTH MISSION: ARD

LAUNCH: OCT 21, 1998

ENTRY: OCT 21, 1998

To undertake a complete space flight cycle for ESA, with emphasis on reentry technologies Mission Description:

Trajectory	tory	Geon	Geometry	Aero/	Aero/thermal	[L	TPS
Entry angle	-2.6°	Shape	Apollo-like capsule, 33° cone	Trim L/D (specify trim α)	-21.2°	Material designation	Fore: Aleastrasil tiles. Aft: Norcoat 622-50F1 (See note)
Inertial entry velocity	8.01 km/s	Nose radius	3.36 m	Ballistic coeff.	403 kg/m ²	Thickness	Norcoat: 19mm Aleastrasil 40-65 mm
Relative entry velocity	7.54 km/s	Base area	6.15 m ²	Stagnation heating rate	Max recorded temp. was 950-1050°C	Ablating? Ejected?	Yes, but low
Velocity at peak heat		Vehicle mass	2715 kg (inc. 1017 kg front heat shield)	Integrated heat load	Designed for 17,700 J/cm ²	Resin mat. Matrix mat.	
Control method	RCS: 7 thrusters	TPS mass fraction, inc. insul.	23% (626 kg TPS)	Radiative heat flux	Max design 110 W/cm²	Resin dens. Matrix density	
Center of $Gravity$, X_{CG}/D	.256	Payload mass	No payload	PH stag. pressure	.22 atm	Total material density	Norcoat: 0.47 Aleastrasil: 1.65

INSTRUMENTATION:

- The capsule afterbody was instrumented with 7 surface pressure sensors,
 - 2 thermal plugs with 2 thermocouples each on the back cover, and 4 surface-mounted copper calorimeters on the cylindrical section.
- The front cone contained 18 pressure sensors, 14 thermal plugs with 3 or 5 TC each.

- · Aleastril: silica fibers with phenolic resin; Norcoat: cork powder and phenolic resin.
- ·4 experimental Ceramic Matrix Composite (CMC) tiles and samples of Flexible External Insulation (FEI)

- 1. The Atmospheric Reentry Demonstrator. ESA publication BR-138, Oct 1998.
- Johnston, J.A.; Weiland, M.; Schramm, J.M.; Hannemann, K.; and Longo, J.: Aerothermodynamics of the ARD: Postflight Numerics and Shock-Tunnel Experiments. AIAA-2002-0407, 40th Aerospace Sciences Meeting, Reno NV, Jan 2002.
- Tran, P.; and Soler, J.: Atmospheric Reentry Demonstrator Post Flight Analysis: Aerothermal Environment. Proceedings of the 2nd Intl Symposium on Atmospheric Reentry Vehicles, Arcachon, France, Mar 2001.

A moon of Saturn PLANET: TITAN

LAUNCH: OCT 15, 1997 ENTRY: JAN 14, 2005

To explore the atmosphere of Titan Mission Description:

MISSION: HUYGENS

Traje	Trajectory	Geometry	ıetry	Aero/	Aero/thermal	II	TPS
angle	-65.4° relative -65.5° inertial	Shape	60° sphere- cone	Trim L/D (specify trim α)	0	Material designation	Fore: AQ60 Aft: Prosial
<i>u u</i>	6.0 km/s at 1270 km	Nose radius	1.25 m	Ballistic coeff.	34.5-37.5 kg/m²	Thickness	17.4 mm at stag; 18.2 mm on flank
y 'e	6.0 km/s	Base area	5.73 m ²	Stagnation heating rate	50 W/cm²	Ablating? Ejected?	Yes Yes
ty at eat	~5.1 km/s	Vehicle mass	318 kg	Integrated heat load	~40 kJ/cm²	Resin mat. Matrix mat.	Phenolic Silica fiber
lo l	Ballistic	TPS mass fraction, inc. insul.	Forebody: 25% Aft: 5.1%	Radiative heat flux	15-45 W/cm²	Resin dens. Matrix density	

entry velocity Relative

entry velocity

Inertial

Velocity at peak heat

Entry angle

INSTRUMENTATION:

- No aeroheating data
- · A mass spectrometer for atmospheric composition was deployed after the heat shield was ejected.

Notes:

- · Huygens is a European Space Agency probe that was carried by the Cassini Saturn Orbiter.
- · AQ60 silica fibers reinforced by phenolic resin

REFERENCES:

- 1. Jones, J.C.; and Giovagnoli, F.: Huygens: Science, Payload and Mission. A. Wilson, editor, ESA-SP-1177, Aug 1997.
- Baillion, M.; and Pallegoix, J.F.: Huygens Probe Aerothermodynamics. Aerospatiale Espace and Defense copyrighted document, AIAA-1997-2476, 32nd Thermophysics Conference, Adanta GA, Jun 1997.
- Bouilly, J.M.; and Guerrier, D.: Entry Testing of AQ60 for Huygens. Presented at the First ESA/ESTEC Workshop on Thermal Protection Systems, Noordwidjk, The Netherlands, May 1993.
- Calibration Study for Huygens Entry Aeroheating. AIAA-2006-0382, 44th Aerospace Sciences Meeting. Wright, M.J.; Olejniczak, J.; Walpot, L.; Raynaud, E.; Magin, T.; Callaut, L.; and Hollis, B.: A Code Reno NV, Jan 2006.

Data Collected by: J. Olejniczak

PLANET: EARTH MISSION: OREX

LAUNCH: FEB 4, 1994 ENTRY: FEB 4, 1994

Mission Description:

To collect information on the design of a re-entry vehicle to support Japanese unmanned space shuttle HOPE

Traje	Trajectory	Сеог	Geometry	Aero/t	Aero/thermal	SdL	S
Entry angle	Relative -3.17°	Shape	50° sphere- cone	Trim L/D (specify trim α)	0	Material designation	Si Coated C-C for nose Ceramic tile
Inertial entry velocity	7.8 km/s	Nose radius	1.35 m	Ballistic coeff.	56 kg/m²	Thickness	4 cm
Relative entry velocity	7.43 km/s	Base area	9.08 m²	Stagnation heating rate	51 W/cm ²	Ablating? Ejected?	No No
Velocity at peak heat	6.4 km/s	Vehicle mass	761 kg at entry	Integrated heat load		Resin mat. Matrix mat.	
Control method	RCS	TPS mass fraction, inc. insul.		Radiative heat flux		Resin dens. Matrix density	
Center of $Gravity$ X_{CG}/D	.254	Payload mass		PH stag. Pressure	.078 atm	Total material density	1800 kg/m³

INSTRUMENTATION:

 280 kg/m^3

material

.1 atm

PH stag. pressure

4 kg

Payload mass

Center of

method

Contro

Gravity,

 X_{CG}/D

Total

density

· Wall catalycity measurement, electrostatic probe, and heat shield temperature sensors

Notes:

• RCS was used to maintain a trim angle of attack of zero

REFERENCES:

- 1. Yamamoto, Y.; and Yoshioka, M.: CFD and FEM Coupling Analysis of OREX Aerothermodynamic Flight Data. AIAA-1995-2087, 30th Thermophysics Conference, San Diego CA, Jun 1995.
- Gupta, R.N.; Moss, J.M.; and Price, J.M.: Assessment of Thermochemical Nonequilibrium and Slip Effects for Orbital Reentry Experiment (OREX). AIAA-1996-1859, 31st Thermophyscis Conference, New Orleans LA, Jun 1996.

MISSION: PATHFINDER "SOJOURNER"

PLANET: MARS

LAUNCH: DEC 4, 1996 ENTRY: JUL 4, 1997

Mission Description:

To demonstrate a simple, low-cost system for placing a science payload on the surface of Mars

Trajectory	tory	Geometry	etry	Aero/thermal	ermal	SdL	S
Entry angle	Inertial -14.06°	Shape	70° sphere- cone	Trim L/D (specify trim α)	Ballistic (0° average)	Material designation	SLA-561V (SLA-561S-backshell)
Inertial entry velocity	7.26 km/s	Nose radius	0.66 m	Ballistic coeff.	At peak heat flux: 62.3 kg/m²	Thickness	1.9 cm
Relative entry velocity	7.48 km/s	Base area	5.52 m²	Stagnation heating rate	105.87 $\mathrm{W/cm}^2$	Ablating? Ejected?	Ablating
Velocity at peak heat	Relative: 6.61 km/s	Vehicle mass	At entry: 585.3 kg	Integrated heat load	3864.5 J/cm ²	Resin mat. Matrix mat.	Resin
Control method	Ballistic	TPS mass fraction, inc. insul.	6.2% fore body; 2% back shell	Radiative heat flux	5.26 W/cm ²	Resin dens. Matrix density	
Center of $Gravity$, X_{CG}/D	.27	Payload mass		PH stag. pressure	.19 atm	Total material density	256.45 kg/m ³

INSTRUMENTATION:

· TPS instrumented with thermocouples only

Notes:

Spin stabilized

References:

- 1. Spencer, D.A.; Blanchard, R.C.; Braun, R.D.; Kallemeyn, P.H.; and Thurman, S.W.: Mars Pathfinder Entry, Descent, and Landing Reconstruction. Journal of Spacecraft and Rockets, Vol 36, No 3, May-Jun 1999.
 - 2. Milos, F.S.; Chen, Y.K.; Congdon, W.M.; and Thornton, J.M.: Mars Pathfinder Entry Temperature Data, Aerothermal Heating, and Heatshield Material Response. Journal of Spacecraft and Rockets, Vol 36, No 3, May-Jun 1999.

Data Collected by: G. Allen

18

MISSION: MIRKA PLANET: EARTH

ENTRY: OCT 23, 1997 LAUNCH: OCT 9, 1997

Mission Description:

To qualify a re-entry heat-shield concept

with scientific and engineering experiments conducted by German researchers

Trajectory	ctory	Geor	Geometry	Aero/t	Aero/thermal	L	TPS
Entry angle	Retative: -2.51 °	Shape	Spherical 1 m diameter	Trim L/D (specify trim α)	0	Material designation	CFRP with SPA, and a fiber ceramic cover (see note)
Inertial entry velocity	Separation velocity: 7.3 km/s	Nose radius	.5 m	Ballistic coeff.	214 kg/m³	Thickness	Front: 3 cm Back: 2 cm
Relative entry Velocity	7.6 km/s @ 120 km	Base area	.785 m²	Stagnation heating rate	Peak: 120 W/cm²	Ablating? Ejected?	Yes No
Velocity at peak heat	6.51 km/s	Vehicle mass	154 kg	Integrated heat load	12,000 J/cm ²	Resin mat. Matrix mat.	
Control method	Ballistic	TPS mass fraction, inc. insul.	36%	Radiative heat flux		Resin dens. Matrix density	
Center of Gravity, X_{CG}/D	.4584, (y:0002 z: .0002)	Payload mass		PH stag. pressure	.178 atm	Total material density	Virg. Ablator: 550 kg/m³

INSTRUMENTATION:

RAFLEX (pressure, temperature & heat flux sensors) and PYREX • 3 acceleration sensors, 3 angular rate sensors, 24 thermocouples, (pyrometric temperature measurements)

- · CFRP: Carbon Fiber Reinforced Plastics
- · SPA: Surface Protected Ablator
- · This was the first successful Western European re-entry mission.

References:

- 1. Schmitt, G.; Pfeuffer, H.; Kasper, R.; Kleppe, F.; Burkhardt, J.; and Schöttle, U.M.: The MIRKA
- Re-entry Mission. IAF-98-V2.07, 49th Intl Astronautical Congress, Melbourne, Australia, Sep-Oct 1998. Schmitt, G.; and Kasper, R.: MIRKA Micro Re-entry Capsule. IAF-94-V2.532, 45th Intl Astronautical Congress, Jerusalem, Israel, Oct 1994.