## B04901056 電機三 張承洋

1.  $\begin{aligned}
\chi(x,x') &= (x'x')^{\frac{3}{2}} - \phi(x)^{\frac{3}{2}} \phi(x') \\
\chi &= (x'x)^{\frac{3}{2}} \cdot \chi^{\frac{3}{2}} \left(x'x'\right)^{\frac{3}{2}} + 2x(x'x')^{\frac{3}{2}} + 2x(x'x')^{\frac{3}{2}} \left(x'x'\right)^{\frac{3}{2}} \left(x'x'\right$ 

2.











3.(a)





image chosen: image\_0048.jpg image\_0007.jpg image\_0034.jpg image\_0035.jpg image\_0012.jpg





根據上面的結果,我預估 hard sum 的表現會是最好的,因為 hard sum 明顯的 凸顯出不同的 interest point 對於一張圖的重要性,比較適合應用在分類的問 題上。

Train -10 Accuracy:

| # of interest points | # of k-means<br>clusters | Hard-sum | Soft-sum | Soft-max |
|----------------------|--------------------------|----------|----------|----------|
| 50                   | 50                       | 0.414    | 0.458    | 0.472    |
| 50                   | 100                      | 0.414    | 0.452    | 0.432    |
| 150                  | 50                       | 0.566    | 0.532    | 0.466    |
| 150                  | 100                      | 0.534    | 0.538    | 0.488    |
| 300                  | 50                       | 0.596    | 0.56     | 0.53     |
| 300                  | 100                      | 0.616    | 0.572    | 0.532    |

## Train -100 Accuracy:

| # of interest points | # of k-means<br>clusters | Hard-sum | Soft-sum | Soft-max |
|----------------------|--------------------------|----------|----------|----------|
| 50                   | 50                       | 0.514    | 0.544    | 0.542    |
| 50                   | 100                      | 0.55     | 0.56     | 0.536    |
| 150                  | 50                       | 0.636    | 0.62     | 0.572    |
| 150                  | 100                      | 0.632    | 0.631    | 0.632    |
| 300                  | 50                       | 0.706    | 0.696    | 0.656    |
| 300                  | 100                      | 0.71     | 0.704    | 0.686    |

根據上面的結果,與我的預測相同的是,hard sum 在 interest point 數量相對多的條件下確實是有最好的表現(略優於 soft-sum),但在 interest point 數量少的條件下,soft-sum 的表現擇優於 hard-sum,我推測是因為當 interest point 少的時候,如果還去刻意區分 interest point 的重要性給予不同的權重,可能會捨棄掉一些重要的資訊導致準確率下降,而 soft-sum 則藉由保留這些資訊獲得優勢。

另外,soft-max 的表現跟其他兩種 Bow 的方式有些落差,但在 training data 數量大的情況下,差距變小,推測只要將 training data 數量繼續增加,根據 soft-max 區分不同 interest point 重要性的能力,準確率應該能有所提升。