UNIVERSITY OF LAUSANNE

Quantitative Portfolio Risk Analysis System: A Framework for Market Regime Detection and Risk Assessment in Semiconductor Equities

by

Lucas Kemper, Antonio Schoeffel

The work is the responsibility of the author, in no way does it engage the responsibility of the University, nor of the supervising Professor.

HEC - School of Business

December 2023

Declaration of Authorship

I, NAME, declare that this thesis titled, 'TITLE' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while I worked for XYZ.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
_			
Date:			

UNIVERSITY OF LAUSANNE

Abstract

HEC - School of Business

Master of Science in Finance

by Lucas Kemper, Antonio Schoeffel

This research presents a comprehensive quantitative framework for analyzing portfolio risk in the semiconductor sector, with particular emphasis on regime detection methodologies and Monte Carlo simulations incorporating heavy-tailed distributions. The system implements sophisticated statistical approaches for risk assessment, including Value at Risk (VaR) and Expected Shortfall (ES) calculations, while accounting for regime-dependent volatility dynamics.

Current implementation status includes working data pipeline, Monte Carlo simulation, and regime detection components, with risk analysis under active development and planned improvements for visualization.

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor.

Executive Summary

The executive summary should go here. Write about 2 pages. . .

Part I

Statistical Foundations and Methodology

Introduction

1.1 Introduction

TEXT

Theoretical Framework

Data and Implementation

Part II

Empirical Analysis

Market Regime Analysis

Risk Management Results

Monte Carlo Validation

Conclusion

Implementation Status

8.1 Project Components

Component	Status	Notes
Data Pipeline	Complete	Core functionality implemented
Monte Carlo	Complete	Module works as expected
Visualization	In Progress	Planned improvements
Signals	Pending	Development not started
Risk Analysis	In Progress	Under active development
Regime Detection	Complete	Core algorithms implemented

Table 8.1: Current Implementation Status (as of v0.3)

Bibliography

Tables 12

Tables

	PML2				
	T=25		T = 100		
True parameters	a = 1	b = 1	a=1	b = 1	
Mean	0.996	0.915	0.994	0.956	
STD	0.567	0.249	0.401	0.177	
\min	0.001	0.001	0.001	0.331	
max	4.464	2.206	2.848	1.619	
RMSE	0.567	0.263	0.401	0.182	
	 QGPML2				
	T=25		T = 100		
True parameters	a = 1	b = 1	a=1	b = 1	
Mean	0.997	0.917	0.998	0.957	
STD	0.552	0.247	0.393	0.176	
\min	0.001	0.001	0.001	0.330	
max	3.880	2.200	2.543	1.641	
Δ RMSE (%)	2.606	0.937	2.193	0.728	

Table 4: This Table reports the results of the QGPML2 simulation described in model (1). The true parameters are a=1, and b=1. The RMSE is defined as $\left(\frac{1}{M}\sum_{j=1}^{M}(\hat{\theta}^{(j)}-\theta)^2\right)^{1/2}$, where $\theta=a$ or b. Here, the superscript $j=1,\cdots,M$ denotes a simulation. We took M=30'000. By Δ RMSE (%) we denote the percentage gain in the MSE if one uses QGPML2 instead of PML2.

Figures 13

Figures

Figure 8.1: This figure represents the skewness-kurtosis domain for which a density exists (the domain is symmetric with respect to the horizontal axis). The circles represent those points for which we computed the parameters α and β . The symbol + represents those points for which the distance between the original skewness and kurtosis and the recomputed skewness and kurtosis (after evaluation of the α and β) is larger than 10^{-5} .