SPRAWOZDANIE

Zajęcia: Analiza Procesów Uczenia Prowadzący: prof. dr hab. Vasyl Martsenyuk

Laboratorium 2

Data 17.03.2023 **Temat:** Procedura analitycznej hierarchizacji **Wariant 1**

Rafał Klinowski Informatyka II stopień, Stacjonarne, 1 semestr, Gr. a

1. Polecenie: Wariant 1

1. Podjąć decyzję o kupowaniu smartfonu Samsung z systemem Android 6, ośmiordzieniowym procesorem dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie smartfonu: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta smartfon. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM, pamięć wbudowana, aparat foto, cena. Komunikacja (wifi itp) nie ma znaczenia. Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl

2. Wprowadzane dane:

Dane dotyczące smartfonów zostały zaczerpnięte z pierwszego laboratorium. Ponadto, plik wejściowy AHP został utworzony ręcznie w środowisku Visual Studio Code na podstawie tabeli utworzonych w programie Microsoft Excel.

PAMIĘĆ RAM	Samsung Galaxy S23 Ul	tr Xiaomi 13	Motorola moto G22	Samsung Galaxy M33 5	Motorola edge 30 ne	OPPO Find N2 Flip	Motorola moto G82 5	Infinix SMART 6 HD	Xiaomi Redmi Note 11s	Samsung Galaxy S20 FE
Samsung Galaxy S23 Ultra	1	1	5	3	1	1	3	7	3	3
Xiaomi 13	1	1	5	3	1	1	3	7	3	3
Motorola moto G22	1/5	1/5	1	1/3	1/5	1/5	1/3	3	1/3	1/3
Samsung Galaxy M33 5G	1/3	1/3	3	1	1/3	1/3	1	5	1	1
Motorola edge 30 neo	1	1	5	3	1	1	3	7	3	3
OPPO Find N2 Flip	1	1	5	3	1	1	3	7	3	3
Motorola moto G82 5G	1/3	1/3	3	1	1/3	1/3	1	5	1	1
Infinix SMART 6 HD	1/7	1/7	1/3	1/5	1/7	1/7	1/5	1	1/5	1/5
Xiaomi Redmi Note 11s	1/3	1/3	3	1	1/3	1/3	1	5	1	1
Samsung Galaxy S20 FE 5G	1/3	1/3	3	1	1/3	1/3	1	5	1	1

Rysunek 1. Przykład tabeli – oceny są subiektywne.

Rysunek 2. Fragment pliku wejściowego AHP w Visual Studio Code.

3. Wykorzystane komendy:

Poniżej można znaleźć wszystkie wykorzystane komendy:

```
# Autor: Rafal Klinowski, wariant 1.
setwd("C:\\Users\\klino\\Pulpit\\Studia magisterskie\\APU\\Lab2")
# Zaladowanie danych
smartfony <- read.csv(file='smartfony.csv')</pre>
smartfony
# AHP z GitHuba
install.packages("devtools")
install.packages("githubinstall")
devtools::install_github("gluc/ahp", build_vignettes = TRUE)
library(ahp)
# Stworzenie drugiego datasetu z uwzglednieniem tylko istotnych parametrow
# Istotne parametry: wyswietlacz, pamiec RAM, pamiec wbudowana, aparat foto, cena.
smartfony_reduced <- smartfony[, c("nazwy", "pamiec_ram", "pamiec_wbudowana",
                     "aparat_foto", "cena")]
write.csv(smartfony reduced, file='smartfony reduced.csv')
# Zaladowanie przygotowanego pliku zawierajacego AHP
# file.show("plik.ahp")
ahpTree <- Load("plik2.ahp")</pre>
# Przeliczenie modelu
Calculate(ahpTree)
Visualize(ahpTree)
# Error in node$parent$priority[, node$name] : subscript out of bounds
```

4. Wynik działania:

Wyniki poleceń w konsoli można znaleźć w pliku "wyniki z konsoli.txt", link do repozytorium poniżej.

```
Error in node$parent$priority[, node$name] : subscript out of bounds
```

Zgodnie z poleceniem, link do repozytorium GitHub zawierający niezbędne pliki znajduje się tutaj: https://github.com/Stukeley/APU_Lab2

5. Implementacja w Python

Ponieważ implementacja w R nie powiodła się (patrz: <u>Wnioski</u>), analizę AHP przeprowadzono w języku Python przy pomocy biblioteki 'AHPy'. Całość kodu źródłowego wraz z wynikami można znaleźć w repozytorium: https://github.com/Stukeley/APU_Lab2

Rysunek 3. Fragment kodu odpowiedzialny za wagi poszczególnych kryteriów.

Rysunek 4. Fragment kodu odpowiedzialny za wartości par telefonów pod względem ceny, oraz utworzenie porównania AHP dla tego kryterium.

Wyniki:

Podsumowanie AHP

```
{'Infinix SMART 6 HD': 0.161, 'Samsung Galaxy S23 Ultra': 0.124, 'Motorola moto G22': 0.122, 'Xiaomi Redmi Note 11s': 0.122, 'Motorola edge 30 neo': 0.095, 'Motorola moto G82 5G': 0.083, 'Xiaomi 13': 0.083, 'OPPO Find N2 Flip': 0.082, 'Samsung Galaxy M33 5G': 0.078, 'Samsung Galaxy S20 FE 5G': 0.051}
```

Dla takich kryteriów i wag, najlepszym wyborem jest smartfon 'Infinix SMART 6 HD', a najgorszym – smartfon 'Samsung Galaxy S20 FE 5G'.

6. Wnioski

O ile sama metoda AHP nie jest zbyt skomplikowana i trudna do zrozumienia, o tyle implementacja w środowisku R stanowiła bardzo duże wyzwanie. Napotkane problemy to między innymi:

- Problemy z instalacją pakietu AHP (nie jest on już wspierany w repozytorium CRAN)
- Brak oficjalnej dokumentacji poszczególnych funkcji jak i ogólnie metody AHP
- Brak poradników i innych źródeł internetowych na temat AHP w R
- Wygasłe linki do źródeł internetowych znajdujące się w instrukcji laboratoryjnej
- Brak jednoznacznej konwencji dla pliku AHP (kilka różnych formatów)
- Niedokładnie opisane błędy podczas realizacji ćwiczenia (brak konkretnych komunikatów błędów)
- Interfejs graficzny zawarty w pakiecie AHP był trudny do uruchomienia i wymagał wiele dodatkowych pakietów, które nie były nigdzie opisane Implementacja AHP "na kartce" (bez wykorzystania żadnych technologii, a jedynie odpowiednich wzorów) lub w innym środowisku (np. Microsoft Excel), lub nawet przy pomocy innych bibliotek (np. 'AHPy' w Python) byłaby znacznie prostsza i bardziej intuicyjna.

Warto zauważyć, że oceny dotyczące poszczególnych par, jak i wagi pomiędzy konkretnymi kryteriami są ustawione subiektywnie – możliwa jest więc zupełnie inna ocena różniąca się wynikami.