ECE2 Mathématiques

HEC 2005

Petits exercices à utiliser en cas de besoin.

La forme de l'oral a changé depuis, ils ne sont pas tellement caractéristiques dans leur forme mais intéressants sur le fond

Questions avec préparation.

1. À tout triplet de nombres réels (a, b, c), on associe la matrice

$$M(a,b,c) = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{pmatrix}$$

- a) Une telle matrice M(a, b, c) est-elle diagonalisable?
- b) Calculer $(M(a,b,c)-I)^n$ pour tout n entier naturel non nul
- c) Déterminer M^n en fonction de I, M et M^2 pour $n \in \mathbb{N}$ puis pour $n \in \mathbb{Z}$
- **2.** a) La matrice $A = \begin{pmatrix} 13 & -9 & 45 \\ -3 & 3 & -11 \\ -3 & 2 & -10 \end{pmatrix}$, est -elle diagonalisable?
 - b) Déterminer P inversible telle que $P^{-1}AP = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & 0 & b \end{pmatrix} = T$
- 3. Soit t un nombre réel et A(t) la matrice :

$$A(t) = \begin{pmatrix} 1-t & -t & 0\\ -t & 1-t & 0\\ -t & t & 1-2t \end{pmatrix}$$

On note \mathcal{M} l'ensemble de ces matrices quand t décrit \mathbb{R} .

- a) Montrer que \mathcal{M} est stable par produit matricielle.
- **b)** Déterminer les valeurs de t pour lesquelles A(t) est inversible . Montrer que $A(t)^{-1}$ appartient encore à \mathcal{M}
- c) résoudre l'équation $X^2 = A\left(\frac{-3}{2}\right)$ d'inconnue X appartenant à \mathcal{M}
- d) Soit C = A(-1). déterminer C^n pour tout entier naturel nque)
- 4. Étudier la fonction

$$f: x \to \int_x^{2x} \frac{1}{\sqrt{t^4 + t^2 + 1}} dt$$

Ensemble de définition, continuité, dérivée, graphe.

5. Pour tout $n \in \mathbb{N}^*$ on pose :

$$I_n = \int_0^1 \frac{1}{(1+x)(1+\frac{x}{2})\cdots(1+\frac{x}{n})} dx$$

Étudier la suite $(I_n)_{n\in\mathbb{N}^*}$, montrer que

$$I_n \leqslant \int_0^1 \frac{dx}{1 + x \ln(n)} dx$$

et déterminer la limite de la suite $(I_n)_{n\in\mathbb{N}}$.

ECE2 Mathématiques

6. Soit a un réel strictement positif. On se propose de déterminer les fonctions f trois fois dérivables sur un intervalle [0, 2a] à valeurs réelles et telles que

$$\forall x \in [0, 2a], \frac{f(x)}{2} = f\left(\frac{x}{2}\right) + f\left(a - \frac{x}{2}\right)$$

Montrer qu'il existe $c \in [0, a]$ tel que $f''(c) = \max_{t \in [0, 2a]} (f''(t))$ et prouver que $f''(c) = f''\left(\frac{c}{2}\right)$ Déterminer alors les solutions f.

- 7. On se donne n variables aléatoires mutuellement indépendantes $(U_i)_{1 \leqslant i \leqslant n}$ de même loi de Bernoulli de paramètre $p \in]0, 1.[$
 - a) Déterminer l'espérance et la variance de la variable aléatoire $Y = \sum_{i=1}^{n} U_i$.
 - b) On suppose que $n \ge 4$. calculer , pour chaque entier $k \in \mathbb{N}$ la probabilité de l'événement [Y = k] conditionné par l'événement $[U_2 = 0] \cap [U_4 = 1]$.
 - c) Calculer , pour chaque entier $k\in\mathbb{N},$ la probabilité de l'événement [Y=k] conditionné à l'événement [Y>0]
- 8. Soit X une variable aléatoire définie sur un espace probabilité (Ω, A, \mathbb{P}) et à valeurs dans \mathbb{N} . Pour tout ω de Ω , on pose $Y(\omega) = \frac{X(\omega)}{2}$ si $X(\omega)$ est pair et $Y(\omega) = \frac{1-X(\omega)}{2}$ sinon.
 - a) Déterminer [Y=0] et, pour chaque $k \in \mathbb{Z}$, [Y=k].
 - b) Soit $p \in [0,1[$. On suppose que la loi de X est donnée par :

$$\forall k \in \mathbb{N}, \ \mathbb{P}(X = k) = p(1 - p)^k$$

Déterminer alors la loi de Y ainsi que son espérance mathématique.

9. Dénombrement.

Une urne contient des boules numérotées de 1 à n. On effectue des tirages avec remise tant que les numéros obtenus forment une suite strictement décroissante.

- a) Déterminer la loi de la variable aléatoire X représentant le nombre de tirages effectués.
- b) Déterminer son espérance mathématique et la limite de cette espérance quand $n \to +\infty$. On pourra utiliser sans démonstration la formule suivante :

si X admet une espérance alors $\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(X > k)$.

Question sans préparation

1. Extrema de

$$f(x,y) = x^{2} + y^{2} - (x - y)^{2}$$

2. Montrer que la famille $(p_{i,j})_{(i,j)\in\mathbb{Z}^2}$ définie par

$$p_{1,1} = p_{-1,1} = \frac{1}{32}$$

$$p_{-1,-1} = p_{1,-1} = p_{1,0} = p_{0,1} = \frac{3}{32}$$

$$p_{-1,0} = p_{0,-1} = \frac{5}{32}$$

$$p_{0,0} = \frac{8}{32}$$

et $p_{i,j} = 0$ sinon, peut être considérée comme la loi d'un couple (X, Y). Étudier l'indépendance de X et de Y; de X^2 et de Y^2 . = . . . ECE2 Mathématiques

3. On considère la fonction définie par

$$f(x) = (x-1)^{1/(x-2)}$$

Quel est l'ensemble de définition de f? Quelle valeur attribuer à f(2) pour prolonger f en une fonction continue en x = 2? Tracer l'allure du graphe de f au voisinage de x = 2.

4. On considère trois variables aléatoires mutuellement indépendantes U, V, et W suivant des lois de Poisson de paramêtre respectifs α, β et γ .

On pose X = U + V et Y = V + W. Calculer Cov(X, Y).

 ${\it 5.}$ Soit ${\it X}$ une variable aléatoire suivant une loi uniforme sur [0,1]. Déterminer les fonctions de répartitions et les espérances mathématiques des variables aléatoires

$$Y = \inf(X, 1 - X), \quad Z = \sup(X, 1 - X) \text{ et } R = \frac{Y}{Z}$$

6. Une matrice $N \in \mathcal{M}_n(\mathbb{R})$ est dite nilpotente s'il existe ne puissance $p \in \mathbb{N}^*$ telle que $N^p = 0$. À quelle condition une matrice nilpotente est-elle diagonalisable?