EEE 163 System Design Analysis

Lecture 2 – Engineering Materials

Dr Gavin Williams
Room F167, Mappin Building
g.williams@sheffield.ac.uk

Engineering Materials

- Useful properties
- Material families
- Property comparisons
- Manufacturing methods

Material Properties – Mechanical

Elasticity

Strength

Fracture toughness

Density

Materials Properties - Thermal

Max. operating temperature T_{max} (°C)

Thermal expansion coefficient α (ppm/°C)

Thermal conductivity k_{th} (W/m°C)

Heat capacity C_p (J/kg°C)

Materials Properties - Chemical

Fresh water

Salt water

Acids and alkalis

Organic solvents

Atmospheric oxidation/tarnishing

Ultra-violet radiation

Materials Properties - Electromagnetic

Electrical resistance R (Ω)

Dielectric response (ε_D)

Magnetic
'Hard' (permanent magnet)

- 'Soft'

Optical:
Absorption
Dispersion

Engineering Materials Families

Metal

gold, copper, alloys (steel, solder)

Ceramic

Porcelain, alumina

Polymer

plastic bags, rubber bands

Vitreous (glass)

windows, optical fibres

Hybrid (i.e. items from different families)

Natural structural materials e.g. bone = polymer + ceramic fibre-glass, foam

N.B. Not salts – generally too soluble

Metal - Structure

Ceramic - Structure

- Regular 3d crystal lattice with strong interatomic bonds:
 - Covalent (electron sharing)
- Oxide, nitride, carbide, etc...
- Single crystal
 - e.g. gemstone rare!
- Polycrystalline
 - e.g. rock common!
 - many grain boundaries

Glass - Structure

- Non-regular 3d lattice
- Covalent bonds, since these allow bond angle distortion
- Not ionic bonds, since these don't allow bond angle distortion
- 'Infinite' single crystal
 - no grain boundaries
 - good optical properties

Polymer - Structure

Long chain molecule with carbon backbone

Thermoplastic – only weak hydrogen bonds between the chains

Thermoset – strong covalent bond between the chains

Hybrid - Structure

Property comparison 1: Weight v. stiffness

N.B.Logarithmic scales!

Property comparison 2: Thermal conductivity v. expansion

Property comparison 3: Resistivity v. thermal conductivity

Property comparison 4: Metal prices v. conductivity and resistivity

10⁴ difference in price between metals!

The cheaper
metals will all
tarnish
(oxidise) in air,
hence poor

Metal shaping

- Casting
 - Molten metal
 - Complex shapes
- Rolling mill
 - Solid sheet
 - Followed by bending, stamping
- Extrusion
 - Wire
 - Uniform crosssection rod

Polymer shaping

Injection moulding

- thermoplastic:

liquid or granular precursor heat applied to melt material

- thermoset

liquid precursor

heat applied to initiate polymerisation and cross-linking

Ceramic shaping

- Very high melting point (T_m)
- Sintering
 - Load mould with ceramic powder
 - Apply heat (and pressure)
 - Diffusion of atoms between grains at T < T_m
 - grains fused together to form single object

Glass Shaping

Hybrid Shaping

Impregnation – e.g. silica-loaded epoxy

Weaving – e.g. fibre glass

Platting – e.g. cable

2-part moulding - e.g. IC package

Etc...

Materials Joining

- Adhesive
 - organic polymer
 - low service temperature
 - non-hermitic
- Welding
 - metal or alloy (solder)
 - hermitic
- Mechanical fasteners
 - nuts and bolts
 - crimps

Surface finishing

- Mold surface finish may be ok, but if not:
 - Precision machining
 - Grinding and polishing
 - Painting
 - Marking

Lecture 2 Summary

- Engineering materials have many different properties
- Choosing which material to use in a product will always involve compromise
- You will explore the use of these various materials in the laboratory classes

References:

eBook: 'Materials – Engineering, Science, Processing and Design' Ashby, Shercliff and Cebon, Elsevier.

Website: www.webelements.com