



### **«Human-Centered Data Science»**

# Exercise 4

Lars Sipos

Human-Centered Computing, Institute of Computer Science Freie Universität Berlin

17.05.2022





## After lecture Get-together at Luise

### Possible times:

- » 02.06.22
- » 09.06.22
- » 23.06.22

Let's vote!







## Previously: Assignment 1 Review

Get together in your group

#### What to consider:

- » Go through the tasks and discuss how you solved them
- » Are there any open questions?
- » Was there anything that particularly caught your eye?

After you reviewed each other, at your group's name to the done.txt file in:

https://github.com/FUB-HCC/hcds-summer-2022/tree/main/assignments/A1\_R1\_WarmUp/done.txt







### Assignment 2 - Peer-review

Assigned groups will review each other

After you checked that the other group has actively done the assignment:

- » Add the other group to the *done.txt* file https://github.com/FUB-HCC/hcds-summer-2022/tree/main/assignments/A2\_Data/done.txt
- » Sign with your group name, e.g. group 1 (reviewed by group 6)

We will now decide the groups...





### Assignment 2 - Peer-review

Get together in your group and meet up with your partner group

#### What to consider:

- » Go through the tasks and discuss how you solved them
- » Are there any open questions?
- » Was there anything that particularly caught your eye?

Don't forget to update the done.txt file!





# Assignment 2 Insights







# Assignment 2 Insights ctd.







### «Human-Centered Data Science»

# Assignment 3

### Reproducibility

https://github.com/FUB-HCC/hcds-summer-2022/wiki/04\_exercise\_A3





## What should you consider in your data science practice?

### 1. Support using your data

Make your collected data freely available by considering the principles of FAIR data.

### 2. Support sharing your research

License your data/scripts/software.

### 3. Support understanding your research

Prepare your methods and the entire process of data analysis as reproducible as possible and provide relevant documentation.









Kitzes, J., Turek, D., & Deniz, F. (Eds.). (2018). The Practice of Reproducible Research: Case Studies and Lessons from the Data-Intensive Sciences. Oakland, CA: University of California Press.









- ✓ Where is your data coming from?
- ✓ What licenses apply to the collected data?
- √ Who collected your data?

Formulating a Question

- ✓ What client-side tools/environments were used to collect your data?
- ✓ If your data is a sample, what were the parameters?
- √ What features are described in your data?
- ✓ Is a local copy of your source data available?
- Selecting Are there known errors, inconsistencies, or incompleteness in your Model source data?









- ✓ What tools/libraries/environments were used in the processing of your Fordata?
- ✓ What sub-sampling, filtering, aggregation, or transformation steps were performed?
  Data Collection
- ✓ What order were processing steps performed in?
- ✓ Why were these processing steps performed?
- ✓ How were errors, inconsistencies, or incompletes discovered, and how were they addressed?
  Feature
  Engineering
- ✓ Did your data processing involve any manual (i.e. non-programmatic)

Selecting and the Data Analysis and Evaluating the Training Model Are you making incremental datasets available?

✓ Are you making a final processed dataset available?









- ✓ What are the goals of your analysis?
- ✓ What is the nature of your analysis?
- ✓ What assumptions about your data are required for your analysis?
- ✓ What tools/libraries/environments were used in the analysis of your data?

  ✓ What tools/libraries/environments were used in the analysis of your data?

  ✓ Wrangling Data
- ✓ What order were analysis steps performed in?
- ✓ Why and how was each analytical step performed?
- ✓ Are you making samples, demos, or test sets available?
- Selecting and Evaluat of How are the results of your analysis presented?

  Model
  - ✓ Are you making a final analyzed dataset available?







### Three Key Practices for your Reproducible Workflow

- 1. Clearly separate, label, and document all data, files, and operations that occur on data and files.
- 2. Document all operations fully, automating them as much as possible, and avoiding manual intervention in the workflow when feasible.
- 3. Design a workflow as a sequence of small steps that are glued together, with intermediate outputs from one step feeding into the next step as inputs.





### Next Time

you will have ...

- 1. actively participated in the lecture
- 2. worked on the third programming assignment

### Have fun!

