1 Описание задачи

1.1 Часть 1

Функция для минимизации (1.1):

$$y = 4x_1x_2 + 7x_1^2 + 4x_2^2 + 6\sqrt{5}x_1 - 12\sqrt{5}x_2 + 51.$$
(1.1)

Базовая точка: $x \in [0, -\sqrt{5}]$.

1.2 Поиск точки минимума по теоритической формуле

Минимум функции достигается при условии:

$$\begin{cases} \frac{\partial f_1}{\partial x_1} = 0\\ \frac{\partial f_1}{\partial x_2} = 0\\ \frac{\partial^2 f_1}{\partial x_1^2} > 0\\ \frac{\partial^2 f_1}{\partial x_2^2} > 0 \end{cases}$$

$$\begin{cases}
4x_2 + 14x_1 + 6\sqrt{5} = 0 \\
4x_1 + 8x_2 + 6\sqrt{5}x_1 - 12\sqrt{12} = 0 \\
14 > 0 \\
8 > 0
\end{cases}$$

Таким образом: $X_{min}^T = \left(-\sqrt{5}, -2\sqrt{5}\right) \approx (-2.2261; -4.4721), f_{min}(X_{min}^T) = -24.00$

1.2.1 Лабораторная работа №5

В таблице 1.1 приведены результаты работы **метода минимизации по правильному симплексу**. Первоначальная длина ребра симплекса: a=0.5.

Таблица 1.1 — Результаты работы метода

$N_{\overline{0}}$	Заданная точность	Количество вычислений функции	X	f(X)
1	0.01	33	[-2.253903,	-23.997773
			4.489971]	
2	0.0001	60	[-2.234568,	-23.999984
			4.470636]	
3	0.000001	85	[-2.235949,	-24.000000
			4.472017]	

1.2.2 Лабораторная работа №6

В таблице 1.2 приведены результаты работы **метода минимизации по деформируе- мому симплексу**. Первоначальная длина ребра симплекса: a=0.5.

1.2.3 Лабораторная работа №7

В таблице 1.3 приведены результаты работы **метода случайного поиска с возвратом**. Количество итераций — 500.

Таблица 1.2 — Результаты работы метода

№	Заданная точность	Количество вычислений функции	X	f(X)
1	0.01	28	[-2.242463,	-23.990563
			4.523270]	
2	0.0001	39	[-2.234523,	-23.999844
			4.465409]	
3	0.000001	58	[-2.236333,	-23.999999
			4.471860]	

Таблица 1.3 — Результаты работы метода

№	Заданная точность	Количество вычислений функции	X	f(X)
1	0.01	191	[-2.232891,	-23.999895
			4.473895]	
2	0.0001	245	[-2.236072,	-24.000000
			4.472086]	
3	0.000001	339	[-2.236068,	-24.000000
			4.472136]	

1.2.4 Сводная таблица

В таблице представлены результаты работы рассмотренных методов для точности 0.000001.

Таблица 1.4 — Сводная таблица результатов работы методов

№	Метод	Количество вы-	X	f(X)
		числений функции		
1	правильный симплекс	85	[-2.235949,	-24.000000
			4.472017]	
2	деформируемый симплекс	58	0.[-2.236333	, -23.999999
			4.471860]	
3	случайного поиска с возвратом	316	[-2.236068,	-24.000000
			4.472136]	
5	fminsearch	155	[-2.236068,	-24.000000
			4.472136]	

1.3 Часть 2

Функция для минимизации (1.2):

$$y = x_2^3 + 2x_1x_2 + \frac{1}{\sqrt{x_1x_2}}. (1.2)$$

Базовая точка: X = (3,3).

Устранение разрыва функции производится путём замены аргумента, при выполнении условия $|x_i|<\varepsilon$, на константное значение ε , где $\varepsilon=1e-1$. При $x_1\times x_2<0$ значение функции устанавливается равным 45.

В таблице 1.5 представлены результаты работы рассмотренных методов для точности 0.01.

Таблица 1.5 — Сводная таблица результатов работы методов

№	Метод	Количество вы-	X	f(X)
		числений функции		
1	правильный симплекс	25	[2.794894,	2.384087
			0.143244]	
2	деформируемый симплекс	24	0.[2.465024,	2.38653
			0.166927]	
3	случайного поиска с возвратом	114	[1.615551,	2.395212
			0.235544]	
5	fminsearch	82	[3.970522,	2.382102
			0.100013]	

В таблице 1.6 представлены результаты работы рассмотренных методов для точности 0.0001.

Таблица 1.6 — Сводная таблица результатов работы методов

№	Метод	Количество вы-	X	f(X)
		числений функции		
1	правильный симплекс	37	[2.794894,	2.384087
			0.143244]	
2	деформируемый симплекс	30	0.[2.465024,	2.386538
			0.166927]	
3	случайного поиска с возвратом	559	[1.877914,	2.390224
			0.206477]	
5	fminsearch	143	[3.968544,	2.382102
			0.100000]	

В таблице 1.7 представлены результаты работы рассмотренных методов для точности 0.000001.

Таблица 1.7 — Сводная таблица результатов работы методов

№	Метод	Количество вы-	X	f(X)
		числений функции		
1	правильный симплекс	76	[2.801648,	2.383914
			0.140676]	
2	деформируемый симплекс	110	0.[[3.962550	, 2.382104
			0.100045]	
3	случайного поиска с возвратом	1704	[1.390272,	2.402598
			0.270747]	
5	fminsearch	207	[3.968503,	2.382102
			0.100000]	