

For a numerical solution, truncate 170 to 0 < t < tmax, and discretize [0, tmax] into N subintervals with mesh points

0=to < t, < ... < t_N=t max.

Aim to approximate y(t) by a set of N+1 real numbers

uo, u, ..., un such that un ~ y(tn).

How to choose [un]?

They should satisfy a discrete approximation of the IVP.

'rie're going to strdy "finite difference" methods.

Forward Euler Method:

Replace y'(tn) by Unti-Un ha=tati-ta, (Motivation:
y'(ta) & y(ta+ha)-y(ta)

and replace f(ta, y(ta)) by f(ta, ua), giving:

when ha is small

It I un = yo

Unti = un + ha f(ta, ua) and

Explicit be rause until doesn't appear inside f.

So given un we have a famula for until.

Bachward Eder Method;

Like FE, but replace f(tn, y(tn))by f(tn+1, un+1) instead of f(tn, un):

BE \ un = yo

"Implicit" because to find unt (from un we have to solve a nonlinear equation g(un+1)=0,

where $[g(u):=u-un-hn\ f(tn+1, u)]$.

- can use e.g. bisection, fixed point methods,

Newton, secont, chord,...

General "one-step method":

$$\begin{cases}
u_0 = y_0 \\
v_{n+1} = v_n + h_n & I(t_n, v_n, v_{n+1}, h_n), \quad n \ge 0 \\
v_{n+1} = v_n + h_n & I(t_n, v_n, v_{n+1}, h_n), \quad n \ge 0
\end{cases}$$
where I is an "increment function".

$$FE : I(t_n, v_n, v_{n+1}, h_n) = f(t_n, v_n) \qquad t_{n+1} = t_n + h_n$$

$$SE : II = \frac{1}{2} (f(t_n, v_n) + f(t_{n+1}, v_{n+1}))$$

$$(N : II) = \frac{1}{2} (f(t_n, v_n) + f(t_{n+1}, v_{n+1}))$$

Questions we'll investigate:

Does un -> y(&n) as h_-so? ("convergence")

(For fixed tomax, \(\frac{1}{h_n} \) is a measure of constational cost)

(If so, how fast? (O(h_n)? O(h_n)?)

(Is un "stable" to perturbations (e.g. rounding errors)

both as h_-so and as tomax -so.

```
What can we say about "well-posedness" of the problem? The when does a unique solution y(t) exist?

Theorem (Picard) (see Sili | Mayers):

Suppose f: D \to \mathbb{R} is continuous on D = [0, t_{max}] \times [y_0 - c, y_0 + c]

for some t_{max} > 0 and c > 0 and d > 0 a
```

Note: result is "stronger" than that proved in Analysis t, which just provided well-powdness on "some" interval $t \in (-s, s)$, without telling is what s is.

Remark: (f f(t,y) is differentiable w.c.t. y and $\frac{\partial f}{\partial y}$ is bornhed in D, then ($\frac{\partial f}{\partial y}$ holds with $L = \max_{\{t,y\} \in D} \left| \frac{\partial f}{\partial y} (t,y) \right|$ by MVT, (Chech!)

Examples: y'(t) = 3y - 3t, t > 0 LINEAR! y(0) = 1Here |f(t,y) - f(t,w)| = 3|v - w| so ($\frac{\partial f}{\partial y}$ holds with $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial y}$ is uniquely defined on $\frac{\partial f}{\partial y}$. Exactsola: $\frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} =$

Now
$$f(t,y) = y^{1/3}$$

Now $f(t,y) = y^{1/3}$

In $f(t,y) = y^{1/3}$

So Picord doesn't apply!

In fact uniqueness fails for this problem.

Constant faction zero.

There are $f(t,y) = y^{1/3}$

There are $f(t,y) = y^{1/3$

Now $f(t_1y) = 1 + y^2$, so $|f(t_1y) - f(t_1y)| = |v^2 - w^2| = |v + w||v - w| \leq L|v - w|$ for L = 2c.

Also $f(t_1y) = 1 + y^2$, so $|f(t_1y) - f(t_1y)| = |v^2 - w^2| = |v + w||v - w| \leq L|v - w|$ for L = 2c.

Also $f(t_1y) = 1 + y^2$, so $|f(t_1y) - f(t_1y)| = |v^2 - w^2| = |v + w||v - w| \leq L|v - w|$ for L = 2c.

Also $f(t_1y) = 1 + y^2$, so $|f(t_1y) - f(t_1y)| = |v^2 - w^2| = |v + w||v - w| \leq L|v - w|$ for L = 2c.

Also $f(t_1y) = 1 + y^2$, so $|f(t_1y) - f(t_1y)| = |v^2 - w| \leq L|v - w|$ for L = 2c.

Also $f(t_1y) = 1 + y^2$, so $leg (1y) = |v^2 - w| = |v - w| \leq L|v - w| \leq L|v - w| \leq L|v - w| = |v - w| =$