Réalisez une application de recommandation de contenu

Liens

GitHub: https://github.com/AnodeGrindYo/OC_IA_PO9.git

Application Web: https://agrecommends.azurewebsites.net

Sommaire

- 1. Contexte
- 2. Présentation du jeu de données
- 3. Modélisation
- 4. Architecture serverless
- 5. Déploiement
- 6. Architecture cible
- 7. Conclusion

Contexte

- My Content est une start-up qui veut encourager la lecture en recommandant des contenus pertinents pour ses utilisateurs.
- Construction d'un premier MVP qui prendra la forme d'une application : une solution de recommandation d'articles et de livres à des particuliers.

Objectifs

- Utilisation d'un jeu de données disponible en ligne pour développer le MVP. (intéractions des utilisateurs avec les articles)
- Entraînement, tests et comparaison de plusieurs modèles de recommandation
- Architecture serverless.

Présentation du jeu de données

- Provient de Globo.com, contient les fichiers suivants :
 - o articles_metadata.csv : informations sur les articles publiés
 - articles_embeddings.pickle : embedding de tous les articles (représentation vectorielle)
 - o clicks_sample.csv : échantillon des intéractions des sessions des utilisateurs
 - o /clicks : intéractions des sessions des utilisateurs (un fichier par heure)

- **364 047** articles
- **2 988 181** clics
- 322 897 utilisateurs
- 250 features d'embedding du contenu des articles

Modélisation

2 approches :

Content-Based :

Basé sur les préférences de l'utilisateur et recommande des articles similaires aux articles qu'il a déjà lus.

- + Pas besoin de données sur les autres utilisateurs
- Peut capturer les intérêts spécifiques d'un utilisateur

 Dépend du nombre d'articles lus par l'utilisateur, et ne peut deviner d'autres intérêts de l'utilisateur

Collaborative-Filtering :

Basé sur les préférences des autres utilisateurs ayant lus les mêmes articles, en recommandant des articles lus par les autres utilisateurs aux préférences communes.

- + Peut permettre à l'utilisateur de découvrir de nouveaux intérêts
- + Pas de connaissance sur le domaine requise (ici les articles), embedding automatiquement appris
- Difficulté à recommander les nouveaux éléments, car peu ou pas d'intéraction avec ceux ci

Modélisation : Content-Based

- Utilise le calcul du **cosinus** entre les articles lus par l'utilisateur et les autres articles, projetés via leurs features de la matrice d'embedding dans un espace vectoriel (de dimension 250).
- La prédiction du modèle retourne les n plus proches articles par rapport aux articles déjà lus.

ACP:

- Permet d'alléger le fichier d'embedding pour son utilisation dans le cloud
- On passe de 250 features à 70, en conservant une variance de 0.977.
- Résultats similaires par rapport à l'utilisation de l'embeddings original

Modélisation: Collaborative-Filtering:

Benchmark de différents modèles (SVD, SVDpp, SlopeOne, NMF...)

	test_rmse	test_mae	fit_time	test_time
Algorithm				
NMF	0.003752	0.001119	28.937999	4.921168
CoClustering	0.003765	0.001128	45.746334	2.191500
BaselineOnly	0.003435	0.001391	3.512999	1.803000
SVDpp	0.003804	0.001489	16.660834	13.544000
SlopeOne	0.003673	0.001573	2.584334	4.942999
SVD	0.005112	0.001670	12.457150	5.390833
NormalPredictor	0.004463	0.002452	1.590500	1.788333

- Utilisation du modèle NMF de la librairie Surprise qui prend en entrée des données avec 3 colonnes :
 - ID de l'utilisateur
 - o ID de l'article
 - rating

Modélisation: Collaborative-Filtering:

Fine Tuning:

 Recherche les meilleurs paramètres par validation croisée. (GridSearchCV)

Entraînement avec les meilleurs paramètres et la totalité du jeu de données.

Recommandations:

La prédiction retourne un score compris entre 0 et 1 pour chaque article à partir d'un identifiant utilisateur, puis on retourne les n scores les plus élevés.

Architecture serverless

Fonctionnalités Azure utilisées :

Blob Storage

Azure Function

Azure App

Déploiement

Stockage sur Azure Blob:

- Modèle entraîné
- Embeddings avec ACP
- Dataframe contenant les clics pour chaque utilisateur

Déploiement sur Azure Function:

- Azure Function est la partie serverless. Notre fonction effectue la recommandation pour un utilisateur en utilisant les ressources stockées sur Azure Blob Storage.
- Cette fonction peut être utilisée via un appel API.

Déploiement

Démo d'Azure Function :

Fonction accessible à l'adresse suivante : https://recommander.azurewebsites.net/api/getRecommandation

<u>Déploiement sur Azure App:</u>

- Partie UI déployée en tant qu'application flask sur Azure App.
- L'application effectue l'appel à Azure Function via une requête API, en utilisant les données saisis par l'utilisateur, puis affiche le résultat.

Déploiement

<u>Démo d'Azure App:</u>

Application web accessible à l'adresse suivante : https://agrecommends.azurewebsites.net

Architecture cible

Permet de prendre en compte :

- les nouveaux utilisateurs
- les nouveaux articles.

Conclusion

Améliorations possibles :

- Modèle hybride utilisant à la fois le Content-Based et le Collaborative Filtering
- Mise en place de l'architecture cible, avec une nouvelle fonction Azure qui permettra de :
 - O détecter un changement dans les données,
 - O ré-entraîner le modèle
 - O stockage des nouvelles données et du modèle sur Azure Blob.
- Amélioration de l'interface utilisateur