

Ancrage du sujet :

L'épicondylite

Prototype de la raquette piézoélectrique

Principe global

Comment fonctionne le système de réduction de vibrations à piézoélectricité dans une raquette ?

<u>Plan de l'étude :</u>

1) Modélisation des cordes par la corde de MELDE

(II) Compréhension du capteur piézoélectrique

III) Reproduction du système de réduction de vibrations

I) Modélisation des cordes par la corde de MELDE

A) Pourquoi souhaite-on modéliser le phénomène des cordes vibrantes par celui de la Corde de Melde ?

Cadre relativement similaire : ondes stationnaires

 Commodité des résultats de la corde de Melde

B) Vérification expérimentale

Protocole:

 Expérimentation à longueur constante

Expérimentation à masse constante

C) Résultats et conclusion

Modélisation réfutée pour les essais à longueur constante (120 cm)

Mesure du mode propre n=1

La modélisation semble valide pour les essais à masse constante (75 g)

Exploitation des courbes

Tendance en f = $K \frac{1}{L}$

Modèle de la corde de Melde : $f = \frac{nc}{2} \cdot \frac{1}{L}$

Vérification du modèle $f = \frac{nc}{2} \cdot \frac{1}{L}$

Courbe modèle et courbe corde de Tennis très proches (écarts expliqués par les incertitudes de mesure)

⇒Modélisation vérifiée pour les essais à masse constante (75 g)

Vérification de la linéarité de $f = K \times \frac{1}{L}$

13

A) Partie théorique

Principe du capteur

B) Mesure des vibrations sur la raquette

Choix du capteur permis par les ordres de grandeurs de fréquence mesurés précédemment

Amplificateur branché à la carte d'acquisition

Capteur piézoélectrique

C) Tests réalisés et résultats

Test avec capteur piézoélectrique posé sur la raquette

Test avec capteur scotché à la raquette qui est tenue dans la main

A) Principe de la raquette piézoélectrique

B) Reproduction du système

- Le signal « inversé » se superpose parfaitement
- Signal bruité (dû aux défauts du/capteur)
- Tentative de lissage (échec)

Problème de temps de réponse

C) Optimisation: système asservi

Critique et proposition d'amélioration de l'amortissement

Est-ce que la fabrication des raquettes en matériaux plus souples n'est pas suffisante?

Est-ce que le coût des nombreux composants en vaut la peine ?

Pourquoi cette raquette ne s'est pas commercialisée?

Merci de votre attention, ayez-vous des questions?

Annexes

Résultats corde de Melde

1	m en gramme	L en cm	fréquence fondamentale en Hz	m en gramme	L en cm	fréquence fondamentale en Hz	
2	25	120	8	25	120		7
3	50	120	10	50	120		8
4	75	120	12	75	120		9
5	100	120	14	100	120		9
6							
7	75	50	28	75	50		21
8	75	85	17	75	85		13
9	75	120	12	75	120		9
10	75	150	10	75	150		7

Corde en tissu

Corde de tennis (multi filament synthétique)

Programme python : tracés à masse et longueur constantes

```
import matplotlib.pyplot as plt
#m = 0.075 kg
L = [0.5,0.85,1.20,1.50]
f0_melde = [28,17,12,10]
f0_tennis = [21,13,9,7]

plt.plot(L,f0_melde)
plt.xlabel("Longueur du fil (en m)")
plt.ylabel("fréquence fondamentale corde (en Hz)")

plt.plot(L,f0_tennis)
plt.title("Tennis en vert Melde en bleu")

plt.show()
```

```
import matplotlib.pyplot as plt
#import numpy as n
#L = 1.20 m
m = [0.025,0.05,0.075,0.1]
f0_melde = [8,10,12,14]
f0_tennis = [7,8,9,9]

plt.plot(m,f0_melde)
plt.xlabel("masse au bout de la corde")
plt.ylabel("fréquence fondamentale corde (en Hz)")

plt.plot(m,f0_tennis)
plt.title("Tennis en vert Melde en bleu")

plt.show()
```

Programme python: modèle

```
import matplotlib.pyplot as plt
#m = 0.075 \text{ kg}
L = [0.5, 0.85, 1.20, 1.50]
f0_melde = [28,17,12,10]
f0 tennis = [21,13,9,7]
L modele = [(1/0.5)*19.18/2, (1/0.85)*19.18/2, (1/1.20)*19.18/2, (1/1.50)*19.18/2]
plt.plot(L,f0 melde)
plt.xlabel("Longueur du fil (en m)")
plt.ylabel("fréquence fondamentale corde (en Hz)")
plt.plot(L,f0_tennis)
plt.plot(L,L modele)
plt.grid()
plt.title("Tennis en vert Melde en bleu
                                              Modèle en orange")
plt.show()
```

But : comparer la courbe expérimentale de la corde de tennis avec le modèle

Masse linéique et célérité

- $\mu_{Tennis} = 2.10^{-3} kg.m^{-1}$ (mesure sur la corde de Tennis)
- $\mu_{Melde} = 1.2.10^{-3} kg.m^{-1}$ (mesure sur la corde de Melde)
- $c_{Tennis} = 19.18 \text{ m.s}^{-1}$
- $c_{Melde} = 24.76 \text{ m.s}^{-1}$

Test avec capteur non fixé sur la raquette

Programme réduction de vibrations

```
def separation(nom fichier,n):
    fichier = open(nom_fichier,'r')
    fichier.readline()
    T = [ ]
    V = [
    for i in range (n):
        ligne = fichier.readline()
        ligne = ligne.replace(",",".")
        ligne = ligne.replace("'","")
        ligne = ligne.strip()
        ligne = ligne.split(';')
        T.append(float(ligne[0]))
        V.append(float(ligne[1]))
    return T,V
def inversion (temps, tension,n):
    inv = [ ]
    for i in range (n):
        inv.append(-(float(tension[i])))
    plt.plot(temps,inv,'r')
    plt.plot(temps, tension, 'b')
    plt.grid()
    plt.show()
    return inv, temps
```


La fonction separation prend en paramètre un fichier csv ainsi que le nombre de valeurs relevé et renvoie deux listes T le temps (en s) et V la tension (en V)

Création et remplissage de la liste inv, l'opposé de la liste V

Fonction lissage et moyenne

```
□ def moyenne (V):
        count = 0
        somme = 0
        for k in V:
            count+=1
           somme += k
•
        return somme/count
 □ def lissage(V,T,p):
       L_lisse = []
        Temps = []
       for k in range(p,len(V)-p):
• 🖃
           L valeur = []
• =
           for i in range(k-p,k+p):
                L_valeur.append(V[i])
           L lisse.append(moyenne(L valeur))
• 🖯
        for k in range(0+p,len(T)-p):
•
           Temps.append(T[k]/500)
       return L lisse, Temps
 ☐ def tracé (tension, tensioninv, temps):
       plt.plot(temps,inv,'r')
       plt.plot(temps, tension, 'b')
       plt.grid()
       plt.show()

    T,V = separation('Test raquette tenue et piezo colle.csv',500)

   inv, T = inversion(T,V,500)
   Llisse, T1 = lissage(V,T,5)
   Llisseinv,T1 = lissage(inv,T,5)
   tracé(Llisse,Llisseinv,T1)
```

Programme permettant de lisser la courbe afin de limiter le bruit

Sources des images

- Diapo 1: https://sportfoy.com/2021/02/16/mens-tennis-greats-of-this-generation/
- Diapo 2 : https://www.alamyimages.fr/photos-images/%C3%A9picondylite.html
- Diapo 10 Capteur piézoélectrique : https://si.blaisepascal.fr/1t-les-capteurs/
- Diapo 10 Cordage: https://engineering.purdue.edu/MSE/aboutus/gotmaterials/Sports/ruh.html
- Diapo 13 Raquette: https://patentimages.com/patent-image/us8449410-1-figure-1/
- Diapo 13 Cordage: https://patentimages.storage.googleapis.com/91/cb/7c/b9491b7d6d2e9a/EP2937117B1.pdf