

NCT6683D-LU Nuvoton eSIO

HARDWARE DATASHEET (External Architecture)

Date: May 14, 2013 Revision 0.7

TABLE OF CONTENTS -

1.	GE	NER.	AL DESCRIPTION	2						
2.	FE	ATUF	RES	3						
3.	PII	PIN LAYOUT								
	3.1	PIN	MULTIPLEXING	9						
4.	1IP	N DES	SCRIPTION	12						
	4.1	LPC	Interface	13						
	4.2	Mult	i-Mode Parallel Port	13						
	4.3	Seria	al Port Interface	14						
	4.4	KBC	Interface	15						
	4.5	CIR	Interface	16						
	4.6	Harc	dware Monitor Interface	16						
	4.7		Interface							
	4.8	PEC	I Interface	19						
	4.9	SB-	TSI Interface	19						
	4.10		anced Configuration & Power Interface							
	4.11		80 Message Display & LED Control							
	4.12		Bus Interface							
	4.13									
	4.14	AME	Power-On Sequence	21						
	4.15		RT80 to UART							
	4.16	IR		22						
	4.17	Crys	tal Oscillator Pins	22						
	4.18	•	pping Pins							
	4.19		er Pins							
	4.20	Gen	eral Purpose I/O Port	23						
	4.2		GPIO-0 Interface							
	4.2	0.2	GPIO-1 Interface	24						
	4.2	0.3	GPIO-2 Interface	24						
	4.2	0.4	GPIO-3 Interface	25						
	4.2	0.5	GPIO-4 Interface	25						
	4.2	0.6	GPIO-5 Interface							
	4.2	0.7	GPIO-6 Interface							
	4.2	8.0	GPIO-7 Interface							
		0.9	GPIO-8 Interface							
			GPIO-9 Interface							
			GPIO EN0 Interface							
			GPIO EN1 Interface							
	4.21		ug PORT Test							
	4.22		V							
	4.23		Power Fault							
	4.24		nal pull-up, pull-down pins							
5.			OGIC							
	5.1		safe ACPI Glue Logic							
	5.2		safe BKFD_CUT and LATCHED_BF_CUT							
~	5.3		safe 3VSBSW#							
Co	nfidenti	aı		May 14, 2013						

		il-safe PSON# Block Diagram	
		il-safe PWROK Block Diagram	
	5.6 Fa	il-safe AMD Power-On Sequence	38
		wer Fault	
	5.8 Fa	il-safe Intel DSW Function	
	5.8.1	Enter DSW State timing diagram	
	5.8.2	Exit DSW State timing diagram	
	5.8.3	Application Circuit	
6.	CONF	IGURATION REGISTER ACCESS PROTOCOL	46
	6.1 Co	onfiguration Sequence	48
	6.1.1	Enter the Extended Function Mode	
	6.1.2	Configure the Configuration Registers	
	6.1.3	Exit the Extended Function Mode	
	6.1.4	Software Programming Example	
7.		'ACE	
	7.1 Fe	atures Implemented by Firmware	52
	7.2 EC	Space Register Set	52
	7.2.1	Page Port0 – Base Address0 + 0	
	7.2.2	Index Port0 – Base Address0 + 1	
	7.2.3	Data Port0 – Base Address0 + 2	
	7.2.4	Host Interface Event Register0 – Base Address0 + 3	
	7.2.5	Page Port1 – Base Address0 + 4	
	7.2.6	Index Port1 – Base Address0 + 5	
	7.2.7	Data Port1 – Base Address0 + 6	
	7.2.8	Host Interface Event Register1 – Base Address0 + 7	
		perations on EC Space	
8.		OG INPUTS	
	8.1 Vo	Itages Over 2.048 V or Less Than 0 V	56
	8.2 Mo	onitor Temperature from Thermistor	56
	8.3 Mo	onitor Temperature from Thermal Diode (Voltage Mode)	57
	8.4 Mo	onitor Temperature from Thermal Diode (Current Mode)	57
9.	UART	PORT	58
	9.1.1	UART Control Register (UCR) (Read/Write)	58
	9.1.2	UART Status Register (USR) (Read/Write)	59
	9.1.3	Handshake Control Register (HCR) (Read/Write)	60
	9.1.4	Handshake Status Register (HSR) (Read/Write)	61
	9.1.5	UART FIFO Control Register (UFR) (Write only)	61
	9.1.6	Interrupt Status Register (ISR) (Read only)	
	9.1.7	Interrupt Control Register (ICR) (Read/Write)	
	9.1.8	Programmable Baud Generator (BLL/BHL) (Read/Write)	
	9.1.9	User-defined Register (UDR) (Read/Write)	
10.	PARA	LLEL PORT	65
	10.1 Pr	inter Interface Logic	65
	10.2 En	hanced Parallel Port (EPP)	
	10.2.1	Data Port (Data Swapper)	66
	10.2.2	Printer Status Buffer	
	10.2.3	Printer Control Latch and Printer Control Swapper	
	10.2.4	EPP Address Port	
Coi	nfidential		May 14, 2013

	10.2.5	EPP Data Port 0-3	68
	10.2.6	EPP Pin Descriptions	68
	10.2.7	EPP Operation	69
	10.3 Ext	ended Capabilities Parallel (ECP) Port	69
	10.3.1	ECP Register and Bit Map	70
	10.3.2	Data and ecpAFifo Port	71
	10.3.3	Device Status Register (DSR)	71
	10.3.4	Device Control Register (DCR)	
	10.3.5	CFIFO (Parallel Port Data FIFO) Mode = 010	
	10.3.6	ECPDFIFO (ECP Data FIFO) Mode = 011	
	10.3.7	TFIFO (Test FIFO Mode) Mode = 110	
	10.3.8	CNFGA (Configuration Register A) Mode = 111	
	10.3.9	CNFGB (Configuration Register B) Mode = 111	
	10.3.10	ECR (Extended Control Register) Mode = all	
	10.3.11	ECP Pin Descriptions	
	10.3.12	ECP Operation	
	10.3.13	FIFO Operation	
	10.3.14	DMA Transfers	
	10.3.15	Programmed I/O (NON-DMA) Mode	
11.		OARD CONTROLLER	
		put Buffer	
		ut Buffer	
		tus Register	
		mmands	
		dware GATEA20/Keyboard Reset Control Logic	
	11.5.1	KB Control Register (Logic Device 5, CR-F0)	
40	11.5.2	Port 92 Control Register (Default Value = 0x24)	
12.		R MANAGEMENT EVENT	
	•	stem Wakeup Control (SWC)	
	12.1.1	OVERVIEW	
	12.1.2	Function Description	
40	12.1.3	Registers	
13.		LIZED IRQ	
		rt Frame	
		0/Data Frame	
		p Frame	
14.		JMER INFRARED REMOTE (CIR)	
		Register Table	
15.		RAL PURPOSE I/O	
		IO Block Diagram	
	15.2 GP	IO Runtime Register	
	15.2.1	GPIO Group 0 Run timer register and control register (base+0)	
	15.2.2	GPIO Group 1 Run timer register and control register (base+1)	
	15.2.3	GPIO Group 2 Run timer register and control register (base+2)	
	15.2.4	GPIO Group 3 Run timer register and control register (base+3)	
	15.2.5	GPIO Group 4 Run timer register and control register (base+4)	
	15.2.6	GPIO Group 5 Run timer register and control register (base+5)	
C	15.2.7	GPIO Group 6 Run timer register and control register (base+6)	
Co	nfidential	III	May 14, 2013

	15	.2.8	GPIO Group 7 Run timer register and control register (base+7)	109
	15	.2.9	GPIO Group 8 Run timer register and control register (base+8)	109
	15	.2.10	GPIO Group 9 Run timer register and control register (base+9)	109
	15	.2.11	GPIO Enhance Group 0 Run timer register and control register (base+B)	109
	15	.2.12	GPIO Enhance Group 1 Run timer register and control register (base+C)	110
	15	.2.13	GPIO SLECTION register (base+D)	110
16.	10	N-CH	IP DEBUG SUPPORT INTERFACE (ODCS)	112
	16.1	Ove	rview	112
	16.2	Fun	ction Description	112
	16	.2.1	JTAG Interface	112
	16	.2.2	NRR access	113
	16	.2.3	NRR Description	114
17.	CC	ONFI	GURATION REGISTER	118
	17.1	Chi	o (Global) Control Register	118
	17.2	Log	ical Device 1 (Parallel Port)	140
	17.3	Log	ical Device 2 (UARTA)	142
	17.4	Log	ical Device 3 (UARTB, IR)	144
	17.5	Log	ical Device 5 (Keyboard Controller)	147
	17.6	Log	ical Device 6 (CIR)	149
	17.7	Log	ical Device 7 (GPIO0~GPIO7)	152
	17.8	Log	ical Device 8 (PORT80 UART)	160
	17.9	Log	ical Device 9 (GPIO8~9, GPIO0 Enhance, GPIO1 Enhance)	162
	17.10		Logical Device A (ACPI)	169
	17.11		Logical Device B (EC Space)	180
	17.12		Logical Device C (RTC Timer)	183
	17.13		Logical Device D (Deep Sleep, Power Fault)	187
	17.14		Logical Device E (TACHIN/PWMOUT Assignment)	193
18.	SF	PECIF	FICATIONS	197
	18.1	Abs	olute Maximum Ratings	197
	18.2	DC	CHARACTERISTICS	197
19.	AC	CHA	ARACTERISTICS	200
	19.1	Pov	ver On / Off Timing	200
	19.2	AC	Power Failure Resume Timing	201
	19.3	PEC	CI Timing	204
	19.4		Bus Timing	
	19.5	UAF	RT/Parallel Port	205
	19.6	Mod	dem Control Timing	206
	19.7	Para	allel Port Mode Parameters	207
	19	.7.1	Parallel Port Timing	207
	19	.7.2	EPP Data or Address Read Cycle Timing Parameters	208
	19	.7.3	EPP Data or Address Read Cycle (EPP Version 1.9)	209
	19	.7.4	EPP Data or Address Read Cycle (EPP Version 1.7)	
	19	.7.5	EPP Data or Address Write Cycle Timing Parameters	210
	19	.7.6	EPP Data or Address Write Cycle (EPP Version 1.9)	
		.7.7	EPP Data or Address Write Cycle (EPP Version 1.7)	
		.7.8	Parallel Port FIFO Timing Parameters	
	19	.7.9	Parallel FIFO Timing	213

NCT6683D-LU HW DATASHEET

	19.7.10	ECP Parallel Port Forward Timing Parameters	213
	19.7.11	ECP Parallel Port Forward Timing	214
	19.7.12	ECP Parallel Port Reverse Timing Parameters	214
	19.7.13	ECP Parallel Port Reverse Timing	214
	19.8 KB0	C Timing Parameters	215
	19.8.1	Writing Cycle Timing	216
	19.8.2	Read Cycle Timing	216
	19.8.3	Send Data to K/B	216
	19.8.4	Receive Data from K/B	217
	19.8.5	Input Clock	217
	19.8.6	Send Data to Mouse	217
	19.8.7	Receive Data from Mouse	217
	19.9 GPI	O Timing Parameters	
	19.9.1	GPIO Write Timing	218
20.	TOP M	ARKING SPECIFICATIONS	219
21.	ORDEF	RING INFORMATION	219
22.	PACKA	GE SPECIFICATION	220
23.	REVISI	ON HISTORY	221

1. GENERAL DESCRIPTION

NCT6683D-LU is a high performance 8 bit microcontrollers to execute MCS51 instruction set. A rich set of features and peripherals enable to match many specific applications, for example, PC mother board Super IO, Notebook/Netbook EC controller or consumer health monitor embedded controller.

The microcontroller includes memory pointer, interrupts, interfaces for serial communication, I2C and SPI interfaces, a timer system, I/O ports, power management unit, multiplication-division unit, watchdog timer and DMA controller. Integrated on-chip debugger is also available.

NCT6683D-LU provides flexible I/O control functions through a set of general purpose I/O (GPIO) ports. These GPIO port may serve as simple I/O ports or may be individually configured to provide alternative functions. The GPIO can be programmed to generate interrupt microcontroller. Also the GPIO can be programmed to generated flexible power-on sequence for different CPU and chipset.

NCT6683D-LU monitors several critical parameters in hardware, including power supply voltages, fan speeds, and temperatures. In terms of temperature monitoring, NCT6683D-LU adopts the Current Mode (dual current source) and thermistor sensor approach, as well as PECI (Platform Environment Control Interface) and AMD SB-TSI interface. NCT6683D-LU also supports the Smart Fan control system, including "SMART FANTM I and SMART FANTM III and SMART Tracking, which makes the system more stable and user-friendly.

NCT6683D-LU supports SMBus host/slave function. As a master, it could access multiple slave devices; as a slave, it could be accessed for reporting useful information.

NCT6683D-LU provides an USB host interface to connect to USB device. Different kinds of USB application could be implemented by firmware.

NCT6683D-LU provides two high-speed serial communication ports (UART), each of them includes a 16-byte send/receive FIFO, a programmable baud rate generator, complete modem-control capability, and a processor interrupt system. The UART supports legacy speeds up to 115.2K bps as well as even higher baud rates of 230K, 460K or 921K bps to support higher speed moderms.

NCT6683D-LU supports the PC-compatible printer port (SPP), the bi-directional printer port (BPP), the enhanced parallel port (EPP) and the extended capabilities port (ECP).

2. FEATURES

- 1 T XC8051
- 16K bytes of data RAM
- MCU runs on EXTERNAL serial program storage (NOR Flash with SPI interface) on the fly directly. Address space up to 16M bytes was supported.(23-bit addressing).
- MCU interrupt on various system events, to enable glue logic enhancements and customization
- Access to any of NCT6683D-LU registers to provide:
 - --- Control over the SIO pin selection.
 - --- Control over the configuration of any NCT6683D-LU function or devices.
 - --- Control and monitoring of any GPIO pin
- Peripherals
 - --- 2 serial ports
 - --- 3 timer counters
 - --- Internal watchdog timer
 - --- SMBus Interfaces used for:
 - Master : Temperature reading
 - Slave : Providing infrastructure for MCTP/PLDM and ASF-based manageability
 - Slave : Remote access to the device registers
 - --- SPI interfaces
 - code fetch of NCT6683D-LU execution
 - --- USB interface
- 14.318 MHz operation clock with crystal input (Xin / Xout)
- · Adjustable internal clock for various utilizations
- Flexible ISP (In-System-Program) Interfaces
 - --- LPC Bus
 - --- SPI (from KBMS pin)

System Hardware Management Support

- Digital Thermal interfaces
 - --- PECI 3.0 for Intel CPU thermal monitoring and support up to address 8 CPUs and 2 domains
 - --- SB-TSI 1.0/APML for AMD CPU thermal monitoring
 - --- SMBus devices.
- Local and remote Thermal measurement sensors
 - --- external Thermal Diode or Thermistor monitor interfaces
 - --- internal Thermal measurement diode
- Incorporates 8-bit analog-to-digital converter
 - --- Analog inputs filtering
 - --- Firmware-based digital filtering
 - --- Remote thermal sensing designed for typical precision of 1 °C.
 - --- 0.125 °C resolution.
- Fan Monitor and Control
 - --- Adaptive fan control algorithm
 - --- 8 PWM-based output fan controls
 - --- Up to 8 fan speed monitoring inputs with 12-bit resolution tachometers
 - --- Automatic temperature feedback control.
- Generates SMI on critical temperature events
- Voltage Monitoring

- --- Up to 10 VIN
- --- VSB, AVSB, VCC3
- --- VBAT

General Purpose I/O Ports

- GPIO pins can be used either by the MCU or by the host
- · All GPIO pins individually configured as input or output
- Programmable features for each output pin:
 - --- Drive type (open-drain, push-pull or TRI-STATE
 - --- TRI-STATE condition on detection of falling VDD3 for VSB3-powered pins driving VDD-supplied devices
- Programmable option for internal pull-up resistor on some input pin (some with internal pulldown resistor option)
- · Lock option for the configuration and data of each GPIO port
- 16 pins can generate MCU interrupt events for the internal microcontroller
- GPIO pins generate IRQ/SIOPME/SMI for wake-up events. Each GPIO has separate:
 - --- Enable control of event status routing to IRQ (For Each GPIO Input)
 - --- Enable control of event status routing to SIOPME (Only for GPIO Enhance port)
 - --- Polarity and edge/level selection
 - --- Optional de-bouncing

Diagnostics

- High current driver power indicator LED blinking
 - --- Dual Color Control
 - --- Fading Mode
- Support two ports for Port80-like message output. Each port supports two digits.
 - --- Directly drive 7-Segment LEDs
 - --- The decode port is configurable.
 - --- To save pin counts, it would be better to support 4 digits with same 7 data pins(LEDA~LEDG).
 - --- Through UART port

Fail-safe ACPI and Optional Firmware-Enhanced Features (Control through EC Space)

- ACPI power sequence controls and glue logics, such as RSMRST#, PSON#, PWROK0, RSTOUT0#, PSIN, PSOUT#, ATXPGD, SLP S3#, SLP S5#,
 - --- Main Power good / power OK signals ATXPGD and internal power sensing.
 - --- Power distribution control (for switching between Main and Standby regulators)
 - --- Main power supply turn on (PSON#)
 - --- Resume reset (Master Reset) according to the stand-by 3V
 - --- Reset button de-bouncer
 - --- Power Good out mechanism using ATXPGD and internal power sensing
 - --- Buffers PCI_RESET to generate 3 reset output signals
- · Power restoring policy when AC was recovered
- · Advanced watch dog timers
- Hardware Monitoring (including voltage sources, analog / digital / virtual temperature sources, and tachometers)
- Customizable handling about SKTOCC#, CASEOPEN# signals
 - --- Battery-backed CaseOpen Alert
- Facilities for modern digital sensor interface, such as PECI 3.0, DIMM temperature pushing back, DIMM Ambient Temperature writing back, Sandy Bridge PCH, SMBus sensors, and automatic polling engines ···
- Smart fan control algorithms such as Thermal Cruise, Speed Cruise, Smart Fan 3, Smart Fan 4, DTS1.0 and DTS2.0 Control, and Smart Tracking for both Duty/RPM control
- Front Panel Power LED with different blinking patterns and fading effect
- Port 80 Message Buffering with / without 7-segment LED driving
- Up to 5 CIR keys to wake up system from sleep state
- OEM SMBus Slave Interface to allow hardware control from SMBus master such as BMC
- Intel cTDP and LPM support

Power Management

- Supports ACPI Specification Revision 3.0, September 2004
- System Wake-Up Control (SWC)
 - --- VSB3-powered event detection and event-logic configuration
 - --- Optional routing of events to generate SIOPME
- · SIOPME on detection of:
 - --- Keyboard key strokes
 - --- Mouse movement and/or button click
 - --- Ring Indication RI on each of the two serial ports
 - --- General-Purpose Input Events from 16 GPIO pins
 - --- IRQs of the Keyboard and Mouse Controller
 - --- IRQs of the other internal modules
 - --- Optional routing of the SCI (SIOPME) to generate IRQ (SERIRQ)
 - --- Implements GPE1_BLK of the ACPI General Purpose
- Power status indications
- VBAT-powered indication of the Main power supply state before an AC power failure
- Extended Power and Wake-Up Control
- Complements chipset's ACPI controller
- Low Battery indication
- Advanced Power Saving Control

General

SMBus access into any of the device registers for data read and configuration

- LPC Bus Interface
 - --- Based on Intel's LPC Interface Specification Revision 1.1, August 2002
 - --- I/O, Memory and 8-bit Firmware Memory read and write cycles
 - --- Up to four 8-bit DMA channels and support LPC DMA
 - --- 15 IRQ routing options to serial IRQ
- Configuration Control
 - --- PnP Configuration Register structure
 - --- Compliant with PC2001 Specification Revision 1.0, 1999-2000
 - --- Pre-configurable Base Address of Super I/O Index-Data register pair (defaults to 0x2Eh/ 0x2Fh)
 - --- VSB3-powered pin multiplexing
- 5 V tolerance pins supported

LEGACY I/O Functions

- UARTx2
- Parallel port
- KBC
- Infrared

SIR

CIR – RLC (Running Length Code, could be used to parse RC5/RC6/QP protocols)

CIR Receiving - long distance mode (demodulated) and wide band (modulated)

CIR Emitting - 2 modulated emitting channel

Package

128-pin LQFP

Figure 2-1 NCT6683D-LU Variants Block Diagram

3. PIN LAYOUT

Figure 3-1 Pin Layout for NCT6683D-LU Variants

3.1 PIN MULTIPLEXING

n_2 Function_3 OVT# TACHPWM TACHPWM	Function_4
TACHPWM	
TACHPWM	
TACHPWM	
# TACHPWM	
3 TACHPWM	IRRX
B TACHPWM	IRTX
3# TACHPWM	
TACHPWM	
/_CTRL	
10	
SPI_WP#	
T# SPI_HOLD#	
# CIRRX	
# CIRWB	
# CIRTX2	
_	
_	
_	
_	
	TACHPWM TACHPW TACH

45	GPIO37	PD4	LED_C	
46	3VSB			
47	GPIO40	PD3	LED_D	
48	GPIO41	PD2	LED_E	
49	GPIO42	PD1	LED_F	
50	GPIO43	PD0	LED_G	
51	GPIO44	SLIN#	P1_DGL#	
52	GPIO45	INIT#	P1_DGL#	
53	GPIO46	ERR#	P1_DGH#	
54	GPIO47	AFD#	P1_DGH#	
55	GRN_LED	GPIO13	STB#	
56	MCLK	MCU_TDI	DB_SO	
57	MDAT	MCU_TDO	DB_SI	DB_TX
58	KCLK	MCU_TCK	DB_SCK	
59	KDAT	MCU_TMS	DB_SCE#	DB_RX
60	PSOUT#	GPEN03		
61	PSIN#	GPEN04		
62	VSS			
63	PSON# (Default by strapping)	AMD_PSON#	PGEN00	
64	SLP_S3#	GPEN01		
65	PME#	GPEN02		
66	XOUT			
67	XIN			
68	GPIO02	TACHPWM		
69	GPIO03	TACHPWM		
70	PAD_CAP			
71	RTC_XIN			
72	RTC_XOUT			
73	DPWROK	GPEN16		
74	3VSBSW# (Default by strapping)	BKFD_CUT	GPEN07	
75	GPIO63	MSCL0		
76	GPIO62	MSDA0		
77	RSTOUT2#	GPEN13	USB_LED	
78	RSTOUT1#	GPEN12		
79	RSTOUT0# (Default by strapping)	LATCHED_BKFD_CUT	GPEN11	
80	ATXPGD	GPEN10		
81	PWROK0 (Default by strapping)	AMD_PWROK0	GPEN14	
82	PWROK1 (Default by strapping)	AMD_PWROK1	GPEN15	
83	RESETCON#	GPEN05		
84	SLP_S5#	GPEN06		
85	3VSB			
86	GPIO75 (Default by strapping) GPIO76	VLDT_EN	TACHPWM	
87	(Default by strapping)	VCORE_EN	TACHPWM	

SUSWARN_SVDUAL GPIO91 SUSWARN_SVDUAL GPIO92		T			
91 SUSACK# GPIO92 92 SVDUAL 93 SUSWARN# GPIO90 94 VSS 95 GPIO70 TACHPWM CIRRX 96 GPIO05 UPDATE_BTN# 97 PCHVSB 98 GPIO71 TACHPWM CIRWB 99 VBAT 100 CASEOPEN# GPIO67 101 RSMRST# GPEN17 102 SKTOCC# GPIO77 103 GPIO04 104 GPIO07 105 VINO THRO V_COMPO 106 VINE THRE VLDT 107 VIN7 THR7 VDIMM 108 AVSB 109 VIN5 THR5 VCORE 110 VREF 111 TD2P VIN16 THR16 112 TD1P VIN15 THR15 113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP1 117 AGND 118 PWR_FAULT# AMDSIC 119 VTT 120 PECI AMDSID 121 SCK1 122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM 126 GPIOR2 127 GPIO82 TACHPWM 128 LED	89	SLP_SUS#	GPIO93		
92 5VDUAL 93 SUSWARN# GPIO90 94 VSS 95 GPIO70 TACHPWM CIRRX 96 GPIO05 UPDATE_BTN# 97 PCHVSB 98 GPIO71 TACHPWM CIRWB 99 VBAT 100 CASEOPEN# GPIO67 101 RSMRST# GPEN17 102 SKTOCC# GPIO77 103 GPIO04 104 GPIO07 105 VIN0 THR0 V_COMP0 106 VIN6 THR6 VLDT 107 VIN7 THR7 VDIMM 108 AVSB 109 VIN5 THR5 VCORE 110 VREF 111 TD2P VIN16 THR16 112 TD1P VIN15 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP1 116 VIN2 THR2 V_COMP1 117 AGND 118 PWR_FAULT# AMDSIC 119 PCI AMDSID 121 SCK1 122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO81 TACHPWM 126 GPIO81 TACHPWM 127 GPIO82 TACHPWM 128 USB_LED 127 GPIO82 TACHPWM 128 USB_LED 127 GPIO82 TACHPWM 128 USB_LED	90	SUSWARN_5VDUAL			
93 SUSWARN# GPIO90 94 VSS 95 GPIO70 TACHPWM CIRRX 96 GPIO05 UPDATE_BTN# 97 PCHVSB 98 GPIO71 TACHPWM CIRWB 99 VBAT 100 CASEOPEN# GPIO67 101 RSMRST# GPEN17 102 SKTOCC# GPIO77 103 GPIO04 104 GPIO07 105 VIN0 THR0 V_COMP0 106 VIN6 THR6 VLDT 107 VIN7 THR7 VDIMM 108 AVSB 109 VINS THR5 VCORE 110 VREF 111 TD2P VIN16 THR16 112 TD1P VIN15 THR15 113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND 118 PWR_FAULT# AMDSIC 119 VTT 120 PECI AMDSID 121 SCK1 122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM 126 GPIO81 TACHPWM 127 GPIO82 TACHPWM 128 GPIO81 TACHPWM 128 GPIO82 TACHPWM 128 GPIO82 TACHPWM 128 GPIO81 TACHPWM 128 GPIO82 TACHPWM 128 GPIO81 TACHPWM 129 GPIO81 TACHPWM 129 GPIO81 TACHPWM 120 GPIO81 TACHPWM 121 GRITALLE 127 GPIO82 TACHPWM 128 GPIO81 TACHPWM 128 GPIO81 TACHPWM 129 GPIO81 TACHPWM 129 GPIO81 TACHPWM 129 GPIO81 TACHPWM 125 GPIO81 TACHPWM 126 GPIO81 TACHPWM 127 GPIO82 TACHPWM 127 GPIO82 TACHPWM 127 GPIO82 TACHPWM 128 GPIO71 TACHPWM 128 GPIO71 TACHPWM 129 GPIO81 TACHPWM 129 GPIO81 TACHPWM 129 GPIO81 TACHPWM 129 GPIO81 TACHPWM 120 GPIO81 TACHPWM 121 GPIO81 TACHPWM 121 GPIO81 TACHPWM 122 GPIO81 TACHPWM 122 GPIO81 TACHPWM 122 GPIO81 TACHPWM 123 GPIO81 TACHPWM 124 GPIO72 TACHPWM 125 GPIO81 TACHPWM 125 GPIO81 TACHPWM 126 GPIO81 TACHPWM 127 GPIO81 TACHPWM 127 GPIO81 TACHPWM 128 GPIO81 TACHPWM 128 GPIO81 TACHPWM 129 GPIO81 TACHPWM 129 GPIO81 TACHPWM 129 GPIO81 TACHPWM 120 GPIO81 TACHPWM 120 GPIO81 TACHPWM 121 TACHPWM 121 TACHPWM 122 GPIO81 TACHPWM 123 TACHPWM 12	91	+	GPIO92		
94 VSS 95 GPIO70 TACHPWM CIRRX 96 GPIO05 UPDATE_BTN# 97 PCHVSB 98 GPIO71 TACHPWM CIRWB 99 VBAT 100 CASEOPEN# GPIO67 101 RSMRST# GPEN17 102 SKTOCC# GPIO77 103 GPIO04 104 GPIO07 105 VIN0 THR0 V_COMP0 106 VIN6 THR6 VLDT 107 VIN7 THR7 VDIMM 108 AVSB 109 VINS THR5 VCORE 110 VREF 111 TD2P VIN16 THR16 112 TD1P VIN15 THR15 113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND 118 PWR_FAULT# AMDSIC 119 YTT 120 PECI AMDSID 121 SCK1 122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM 126 GPIO81 TACHPWM 127 GPIO82 TACHPWM 127 GPIO82 126 GPIO81 TACHPWM 127 GPIO82 127 GPIO82 128 TACHPWM 108 UPDATE STRING 11 CIRRX 11 TACHPWM 11	92	+			
95	93		GPIO90		
96	94	VSS			
97 PCHVSB 98 GPIO71 TACHPWM CIRWB 99 VBAT 100 CASEOPEN# GPIO67 101 RSMRST# GPEN17 102 SKTOCC# GPIO77 103 GPIO04 104 GPIO07 105 VIN0 THR0 V_COMP0 106 VIN6 THR6 VLDT 107 VIN7 THR7 VDIMM 108 AVSB 109 VIN5 THR5 VCORE 110 VREF 111 TD2P VIN16 THR16 112 TD1P VIN15 THR15 113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP2 116 VIN3 THR3 V_COMP2 117 AGND 118 PWR_FAULT# AMDSIC 119 VTT 120 PECI AMDSID 121 SCK1 122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO82 110 USBPR_SW_CTRL	95	<u> </u>	TACHPWM	CIRRX	
98	96	GPIO05	UPDATE_BTN#		
99	97	PCHVSB			
100	98	GPIO71	TACHPWM	CIRWB	
101	99	VBAT			
102	100	CASEOPEN#	GPIO67		
103	101	RSMRST#	GPEN17		
104	102	SKTOCC#	GPIO77		
105	103	GPIO04			
THR6	104	GPIO07			
107 VIN7 THR7 VDIMM 108 AVSB 109 VIN5 THR5 VCORE 110 VREF 111 TD2P VIN16 THR16 112 TD1P VIN15 THR15 113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND 118 PWR_FAULT# AMDSIC 119 VTT 120 PECI AMDSID 121 SCK1 122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO81 TACHPWM USB_LED 126 GPIO82 TACHPWM USB_LED	105	VIN0	THR0	V_COMP0	
108 AVSB 109 VIN5 THR5 VCORE 110 VREF VIN16 THR16 111 TD2P VIN16 THR16 112 TD1P VIN15 THR15 113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND AMDSIC 118 PWR_FAULT# AMDSIC 119 VTT VT 120 PECI AMDSID 121 SCK1 V 122 SI1 V 123 SO1 TACHPWM 124 GPIO72 CIRTX1 TACHPWM 125 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	106	VIN6	THR6	VLDT	
109	107	VIN7	THR7	VDIMM	
110 VREF 111 TD2P VIN16 THR16 112 TD1P VIN15 THR15 113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND AMDSIC 118 PWR_FAULT# AMDSIC 119 VTT VT 120 PECI AMDSID 121 SCK1 SCK1 122 SI1 SO1 123 SO1 TACHPWM 124 GPIO72 CIRTX1 TACHPWM 125 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM USB_LED	108	AVSB			
111 TD2P VIN16 THR16 112 TD1P VIN15 THR15 113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND AMDSIC 118 PWR_FAULT# AMDSIC 119 VTT VTT 120 PECI AMDSID 121 SCK1 VSCK1 122 SI1 VSCK1 123 SO1 TACHPWM 124 GPIO72 CIRTX1 TACHPWM 125 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM USB_LED	109	VIN5	THR5	VCORE	
112 TD1P VIN15 THR15 113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND AMDSIC 118 PWR_FAULT# AMDSIC 119 VTT VT 120 PECI AMDSID 121 SCK1 SCK1 122 SI1 TACHPWM 123 SO1 TACHPWM 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM USB_LED	110	VREF			
113 TD0P VIN14 THR14 114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND AMDSIC 118 PWR_FAULT# AMDSIC 119 VTT VTT 120 PECI AMDSID 121 SCK1 SCK1 122 SI1 TACHPWM 123 SO1 TACHPWM 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	111	TD2P	VIN16	THR16	
114 VIN1 THR1 V_COMP1 115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND AMDSIC 118 PWR_FAULT# AMDSIC 119 VTT VTT 120 PECI AMDSID 121 SCK1 VIII 122 SI1 VIII 123 SO1 VIII 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM USB_LED	112	TD1P	VIN15	THR15	
115 VIN2 THR2 V_COMP2 116 VIN3 THR3 V_COMP3 117 AGND V_COMP3 118 PWR_FAULT# AMDSIC 119 VTT V_COMP3 119 VTT V_COMP3 119 VTT V_COMP3 120 PECI AMDSID 121 SCK1 V_COMP3 120 PECI AMDSID 121 SCK1 V_COMP3 122 SI1 V_COMP3 123 SCK1 V_COMP3 124 SCK1 TACHPWM 125 GPIO72 CIRTX1 TACHPWM 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	113	TD0P	VIN14	THR14	
116 VIN3 THR3 V_COMP3 117 AGND	114	VIN1	THR1	V_COMP1	
117 AGND 118 PWR_FAULT# AMDSIC 119 VTT	115	VIN2	THR2	V_COMP2	
118 PWR_FAULT# AMDSIC 119 VTT	116	VIN3	THR3	V_COMP3	
119 VTT 120 PECI AMDSID 121 SCK1 122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	117	AGND			
120 PECI AMDSID 121 SCK1 122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	118	PWR_FAULT#	AMDSIC		
121 SCK1 122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	119	VTT			
122 SI1 123 SO1 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	120	PECI	AMDSID		
123 SO1 TACHPWM 124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	121	SCK1			
124 GPIO72 CIRTX1 TACHPWM 125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM USB_LED	122	SI1			
125 GPIO73 TACHPWM CIRTX2 USBPR_SW_CTRL 126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	123	SO1			
126 GPIO81 TACHPWM USB_LED 127 GPIO82 TACHPWM	124	GPIO72	CIRTX1	TACHPWM	
127 GPIO82 TACHPWM	125	GPIO73	TACHPWM	CIRTX2	USBPR_SW_CTRL
	126	GPIO81	TACHPWM	USB_LED	
128 SCE1#	127	GPIO82	TACHPWM		
	128	SCE1#			

4. PIN DESCRIPTION

.

Note: Please refer to DC CHARACTERISTICS for details.

AOUT - Analog output pin
AIN - Analog input pin

 IN_{to3} - 3.3V TTL-level input pin

IN_{tsp3} - 3.3V TTL-level Schmitt-trigger input pin

$$\begin{split} \text{IN}_{\text{tp5}} & - \text{5V TTL-level input pin} \\ \text{IN}_{\text{gp5}} & - \text{5V GTL-level input pin} \end{split}$$

 ${\rm IN}_{\rm tdo5}$ - 5V TTL level input pin with internal pull-down resistor

IN_{tso5} - 5V TTL level Schmitt-trigger input pin

O_{12p3} - 3.3V output pin with 12-mA source-sink capability

OD_{12p3} - 3.3V open-drain output pin with 12-mA source-sink capability

O_{8p5} - 5V output pin with 8-mA source-sink capability

OD_{8p5} - 5V open-drain output pin with 8-mA source-sink capability

O_{12p5} - 5V output pin with 12-mA source-sink capability

OD_{12p5} - 5V open-drain output pin with 12-mA source-sink capability

O_{24p5} - 5V output pin with 24-mA source-sink capability

OD_{24p5} - 5V open-drain output pin with 24-mA source-sink capability

 I/O_{v3} - Bi-direction pin with source capability of 6 mA and sink capability of 1 mA

4.1 LPC Interface

SYMBOL	PIN	I/O	DESCRIPTION
PME#	65	OD _{12p5}	Generated PME event.
PCICLK	17	IN _{tp5}	PCI-clock 33-MHz input.
LDRQ#	18	O _{12p5}	Encoded DMA Request signal.
SERIRQ	19	$\begin{array}{c} {\sf IN}_{\sf tp3} \\ {\sf O}_{\sf 12p3} \\ {\sf OD}_{\sf 12p3} \end{array}$	Serialized IRQ input / output.
LAD[3:0]	20- 23	IN_{tp3} OD_{12p3}	These signal lines communicate address, control, and data information over the LPC bus between a host and a peripheral.
LFRAME#	25	IN _{tp3}	Indicates the start of a new cycle or the termination of a broken cycle.
LRESET#	26	IN _{tsp3}	Reset signal. It can be connected to the PCIRST# signal on the host.

4.2 Multi-Mode Parallel Port

SYMBOL	PIN	I/O	DESCRIPTION
SLCT	38	IN _{tsp5}	PRINTER MODE: An active-high input on this pin indicates that the printer is selected. See the description of the parallel port for the definition of this pin in ECP and EPP modes.
PE	PE 39 IN _{tsp5}		PRINTER MODE: An active-high input on this pin indicates that the printer has detected the end of the paper. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
BUSY	40	IN _{tsp5}	PRINTER MODE: An active-high input indicates that the printer is not ready to receive data. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
ACK#	41	IN _{tsp5}	PRINTER MODE: ACK# An active-low input on this pin indicates that the printer has received data and is ready to accept more data. See the descriptions of the parallel port for the definition of this pin in ECP and EPP modes.
ERR#	53	IN _{tsp5}	PRINTER MODE: ERR# An active-low input on this pin indicates that the printer has encountered an error condition. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
SLIN#	51	O _{24p5}	PRINTER MODE: SLIN# Output line for detection of printer selection. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.

SYMBOL PIN I/O DESCRIPTION		DESCRIPTION	
INIT#	52	O _{24p5}	PRINTER MODE: INIT# Output line for the printer initialization. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
AFD#	54	O _{24p5}	PRINTER MODE: AFD# An active-low output from this pin causes the printer to auto feed a line after a line is printed. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
STB#	55	O _{12p5}	PRINTER MODE: STB# An active-low output is used to latch the parallel data into the printer. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
PD0	50	IN _{tp5} O _{24p5}	PRINTER MODE: PD0 Parallel port data bus bit 0. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
PD1	49	IN _{tp5} O _{24p5}	PRINTER MODE: PD1 Parallel port data bus bit 1. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
PD2	48	IN _{tp5} O _{24p5}	PRINTER MODE: PD2 Parallel port data bus bit 2. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
PD3	47	IN _{tp5} O _{24p5}	PRINTER MODE: PD3 Parallel port data bus bit 3. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
PD4	45	IN _{tp5} O _{24p5}	PRINTER MODE: PD4 Parallel port data bus bit 4. See the description of the parallel port for the definition of this pin in ECP and EPP modes.
PD5	44	IN _{tp5} O _{24p5}	PRINTER MODE: PD5 Parallel port data bus bit 5. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
PD6	43	IN _{tp5} O _{24p5}	PRINTER MODE: PD6 Parallel port data bus bit 6. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
PD7	42	IN _{tp5} O _{24p5}	PRINTER MODE: PD7 Parallel port data bus bit 7. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.

4.3 Serial Port Interface

SYMBOL	PIN	I/O	DESCRIPTION
RIA#	36	IN _{tp5}	Ring Indicator. An active-low signal indicates that a ring signal is being received from the modem or the data set.
DCDA#	35	IN _{tp5}	Data Carrier Detection. An active-low signal indicates the modem or data set has detected a data carrier.
SOUTA	34	O _{12p5}	UART A Serial Output. This pin is used to transmit serial data out to the communication link.

SYMBOL	PIN	I/O	DESCRIPTION
SINA	33	IN _{tp5}	Serial Input. This pin is used to receive serial data through the communication link.
DTRA#	32	O _{12p5}	UART A Data Terminal Ready. An active-low signal informs the modem or data set that the controller is ready to communicate.
RTSA#	31	O _{12p5}	UART A Request To Send. An active-low signal informs the modem or data set that the controller is ready to send data.
DSRA#	30	IN _{tp5}	Data Set Ready. An active-low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
CTSA#	29	IN _{tp5}	Clear To Send. This is the modem-control input. The function of these pins can be tested by reading bit 4 of the handshake status register.
RIB#	14	IN _{tsp5}	Ring Indicator. An active-low signal indicates that a ring signal is being received from the modem or the data set.
DCDB#	13	IN _{tsp5}	Data Carrier Detection. An active-low signal indicates the modem or data set has detected a data carrier.
SOUTB	12	O _{12p5}	UART B Serial Output. This pin is used to transmit serial data out to the communication link.
SINB	11	IN _{tsp5}	Serial Input. This pin is used to receive serial data through the communication link.
DTRB#	10	O _{12p5}	UART B Data Terminal Ready. An active-low signal informs the modem or data set that the controller is ready to communicate.
RTSB#	9	O _{12p5}	UART B Request To Send. An active-low signal informs the modem or data set that the controller is ready to send data.
DSRB#	8	IN _{tsp5}	Data Set Ready. An active-low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
CTSB#	7	IN _{tsp5}	Clear To Send. This is the modem-control input. The function of these pins can be tested by reading bit 4 of the handshake status register.

4.4 KBC Interface

SYMBOL	PIN	I/O	DESCRIPTION
GA20	27	O _{12p5}	Gate A20 output. This pin is high after system reset. (KBC P21)
KBRST#	28	O _{12p5}	Keyboard reset. This pin is high after system reset. (KBC P20)
KCLK	58	IN_{tsp5} OD_{12p5}	Keyboard Clock.
KDAT	59	IN_{tsp5} OD_{12p5}	Keyboard Data.
MCLK	56	${\sf IN}_{\sf tsp5} \ {\sf OD}_{\sf 12p5}$	PS2 Mouse Clock.

SYMBOL	PIN	I/O	DESCRIPTION
MDAT	57	${\sf IN}_{\sf tsp5} \ {\sf OD}_{\sf 12p5}$	PS2 Mouse Data.

4.5 CIR Interface

SYMBOL	PIN	I/O	DESCRIPTION
CIRRX	29	IN _{tp5}	CIR input for long length
CIRRX	95	IN _{tsp5}	CIR input for long length
CIRTX1	31	O _{12p5}	CIR transmission output
CIRTX1	124	O _{12p5}	CIR transmission output
CIRTX2	32	O _{12p5}	CIR transmission output
CIRTX2	125	O _{12p5}	CIR transmission output
CIRWB	30	IN _{tp5}	CIR input for wide band.
CIRWB	98	IN _{tsp5}	CIR input for wide band.
CIRLED	37	O _{12p5} OD _{12p5}	Indicate CIR function is working. Nuvoton CIR driver support this function.

4.6 Hardware Monitor Interface

SYMBOL	PIN	I/O	DESCRIPTION
CASEOPEN#	100	IN_{tp5}	CASE OPEN detection. An active-low input from an external device when the case is open. This signal can be latched if pin VBAT is connected to the battery.
		, po	Pulling up a 2-M Ω resistor to VBAT is recommended if not in use.
SKTOCC#	102	IN_{tp5}	CPU socket occupied detection
VREF	110	AOUT	Reference Voltage
V_COMP3	116	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
V_COMP2	115	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
V_COMP1	114	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
V_COMP0	105	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
VIN16	111	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
VIN15	112	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
VIN14	113	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
VIN7	107	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
VIN6	106	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
VIN5	109	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
VIN3	116	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
VIN2	115	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)

SYMBOL	PIN	I/O	DESCRIPTION
VIN1	114	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
VIN0	105	AIN	Analog input for voltage measurement (Range: 0 to 2.048 V)
THR16	111	AIN	Thermistor Input
THR15	112	AIN	Thermistor Input
THR14	113	AIN	Thermistor Input
THR7	107	AIN	Thermistor Input
THR6	106	AIN	Thermistor Input
THR5	109	AIN	Thermistor Input
THR3	116	AIN	Thermistor Input
THR2	115	AIN	Thermistor Input
THR1	114	AIN	Thermistor Input
THR0	105	AIN	Thermistor Input
TP2P	111	AIN	The input of temperature sensor 2.
TD1P	112	AIN	The input of temperature sensor 1.
TD0P	113	AIN	The input of temperature sensor 0.
OVT#	2	OD _{12p5}	The output of over temperature Shutdown. This pin indicates the temperature is over the temperature limit.
SMI#	2	OD _{12p5}	System Management Interrupt channel output.
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	3	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	4	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
		IN_{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	7	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
		IN_{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	8	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	9	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	10	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
TACHPWM	11	IN _{tsp5}	0 to +3 V amplitude fan tachometer input

SYMBOL	PIN	I/O	DESCRIPTION
		O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	12	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	13	$\begin{array}{c} O_{12p5} \\ OD_{12p5} \end{array}$	PWM duty-cycle signal for fan speed control.
		IN_{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	14	$\begin{array}{c} O_{12p5} \\ OD_{12p5} \end{array}$	PWM duty-cycle signal for fan speed control.
		IN_{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	37	$\begin{array}{c} O_{12p5} \\ OD_{12p5} \end{array}$	PWM duty-cycle signal for fan speed control.
		IN_{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	68	$\begin{array}{c} O_{12p5} \\ OD_{12p5} \end{array}$	PWM duty-cycle signal for fan speed control.
	69	IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM		$O_{12p5} \\ OD_{12p5}$	PWM duty-cycle signal for fan speed control.
		IN_{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	86	$\begin{array}{c} O_{12p5} \\ OD_{12p5} \end{array}$	PWM duty-cycle signal for fan speed control.
		IN_{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	87	$\begin{array}{c} O_{12p5} \\ OD_{12p5} \end{array}$	PWM duty-cycle signal for fan speed control.
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	95	O_{12p5} OD_{12p5}	PWM duty-cycle signal for fan speed control.
		IN_{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	98	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	124	$\begin{array}{c} O_{12p5} \\ OD_{12p5} \end{array}$	PWM duty-cycle signal for fan speed control.
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	125	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.

SYMBOL	PIN	I/O	DESCRIPTION
		IN _{tsp5}	0 to +3 V amplitude fan tachometer input
TACHPWM	126	O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.
TACHPWM	127	IN _{tsp5}	0 to +3 V amplitude fan tachometer input
		O _{12p5} OD _{12p5}	PWM duty-cycle signal for fan speed control.

4.7 SPI Interface

SCE1#	128	O _{12p5}	Chip enable of MCU SPI interface 1. MCU fetches code from this port.
SCK1	121	O _{12p5}	Clock out of MCU SPI interface 1. MCU fetches code from this port.
SI1	122	IN_{tp5} O_{12p5}	Serial data in of MCU SPI interface 1. MCU fetches code from this port.
SO1	123	IN_{tp5} O_{12p5}	Serial data out of MCU SPI interface 1. MCU fetches code from this port.
SPI_HOLD#	28	IN_{tp5} O_{12p5}	SPI flash hold pin. MCU can fetch code in quad mode operation from this port.
SPI_WP#	27	IN _{tp5} O _{12p5}	SPI flash write protect pin. MCU can fetch code in quad mode operation from this port.

4.8 PECI Interface

SYMBOL	PIN	I/O	DESCRIPTION
PECI	120	I/O _{V3}	INTEL® CPU PECI interface. Connect to CPU.

4.9 SB-TSI Interface

SYMBOL	PIN	I/O	DESCRIPTION
AMDSIC	118	OD _{12p3}	AMD [®] SB-TSI clock input
AMDSID	120	IN_{tsp3} OD_{12p3}	AMD® SB-TSI data input / output

4.10 Advanced Configuration & Power Interface

SYMBOL	PIN	I/O	DESCRIPTION
PSIN#	61	IN _{tp5}	Panel Switch Input. This pin is active-low with an internal pulled-up resistor.
PSOUT#	60	OD _{12p5}	Panel Switch Output. This signal is used to wake-up the system from S3/S5 state.

SYMBOL	PIN	I/O	DESCRIPTION
RSMRST#	101	OD _{8p5}	Resume reset signal output.
SLP_S3#	64	IN_{tp5}	SLP_S3# input.
SLP_S5#	84	IN_{tp5}	SLP_S5# input.
ATXPGD	80	IN _{tsp5}	ATX power good signal.
PSON#	63	OD _{12p5}	Power supply on-off output.
PWROK0	81	OD _{8p5}	3VCC PWROK0 signal.
PWROK1	82	OD _{8p5}	3VCC PWROK1 signal.
DPWROK	73	OD _{8p5}	V3A signal output
RESETCON#	83	IN_{tsp5}	Connect to the reset button.
RSTOUT0#	79	OD_{24p5}	PCI Reset Buffer 0.
RSTOUT1#	78	OD _{24p5}	PCI Reset Buffer 1.
RSTOUT2#	77	OD _{24p5}	PCI Reset Buffer 2.
3VSBSW#	74	O _{12p5}	3V Switch Auxiliary Enable. Controls switching 3V standby supply. Active low.
BKFD_CUT	74	OD _{12p5}	Power distribution control (When switching between main and standby regulators) for system transition into and out of the S3 sleep state.
LATCHED_BK FD_CUT	79	O _{24p5}	Power distribution control (When switching between main and standby regulators) for system transition into and out of the S5 sleep state.

4.11 Port 80 Message Display & LED Control

SYMBOL	PIN	I/O	DESCRIPTION
P1_DGH#	53	O _{24p5}	Common cathode output of high nibble display on decoded Port 1 (ex.: 0x80h) message. Switching frequency is about 10 KHz.
P1_DGH#	54	O _{24p5}	Common cathode output of high nibble display on decoded Port 1 (ex.: 0x80h) message. Switching frequency is about 10 KHz.
P1_DGL#	51	O _{24p5}	Common cathode output of low nibble display on decoded Port 1 (ex.: 0x80h) message. Switching frequency is about 10 KHz.
P1_DGL#	52	O _{24p5}	Common cathode output of low nibble display on decoded Port 1 (ex.: 0x80h) message. Switching frequency is about 10 KHz.
P2_DGH#	41	O _{24p5}	Common cathode output of high nibble display on decoded Port 2 message. Switching frequency is about 10 KHz.
P2_DGH#	42	O _{24p5}	Common cathode output of high nibble display on decoded Port 2 message. Switching frequency is about 10 KHz.
P2_DGL#	39	O _{24p5}	Common cathode output of low nibble display on decoded Port 2 message. Switching frequency is about 10 KHz.

P2_DGL#	40	O _{24p5}	Common cathode output of low nibble display on decoded Port 2 message. Switching frequency is about 10 KHz.
LED_A	43		
LED_B	44		
LED_C	45		Anada autnuta far 7 Carment I ED
LED_D	47	O _{24p5}	Anode outputs for 7-Segment LED.
LED_E	48		
LED_F	49		
LED_G	50		
YLW_LED	38	OD _{12p5}	Yellow LED output control. This pin could indicate the power status.
GRN_LED	55	OD _{12p5}	Green LED output control. This pin could indicate the power status.

4.12 SMBus Interface

SYMBOL	PIN	I/O	DESCRIPTION
MSCL0	75	${\sf IN}_{\sf tsp5} \ {\sf OD}_{\sf 12p5}$	SMBus clock.
MSDA0	76	IN_{tsp5} OD_{12p5}	SMBus bi-directional Data.

4.13 USB

SYMBOL	PIN	I/O	DESCRIPTION
USB_D+	5	AOUT	USB PORT D-
USB_D-	6	AOUT	USB PORT D+
USBPR_SW_CTRL	15	O _{12p5}	USB power switch control
USBPR_SW_CTRL	125	O _{12p5}	USB power switch control
USB_LED	77	O _{24p5}	Lighting LED during BIOS updating
USB_LED	126	O _{12p5}	Lighting LED during BIOS updating

4.14 AMD Power-On Sequence

SYMBOL	PIN	I/O	DESCRIPTION
VCORE	109	AIN	Power sequence group B signal
VLDT	106	AIN	Power sequence group C signal
VDIMM	107	AIN	Memory power enable
VCORE_EN	87	OD _{12p5}	CPU Vcore power enable
VLDT_EN	86	OD _{12p5}	Hyper transport I/O power enable
AMD_PSON#	63	OD _{12p5}	Power supply on / off output to enable ATX

SYMBOL	PIN	I/O	DESCRIPTION
AMD_PWROK0	81	OD _{8p5}	AMD power on sequence ok signal
AMD_PWROK1	82	OD _{8p5}	AMD power on sequence ok signal

4.15 PORT80 to UART

SYMBOL	PIN	I/O	DESCRIPTION
SOUTA_P80	34	O _{12p5}	PORT80 serial output

4.16 IR

SYMBOL	PIN	I/O	DESCRIPTION
IRRX	11	IN _{tsp5}	IR Receiver input
IRTX	12	O _{12p5}	IR Transmitter output

4.17 Crystal Oscillator Pins

SYMBOL	PIN	DESCRIPTION
XIN	67	14.318MHz Crystal Oscillator input
XOUT	66	14.318MHz Crystal Oscillator output
RTC_XIN	71	32.768KHz RTC Timer Crystal Oscillator input
RTC_XOUT	72	32.768KHz RTC Timer Crystal Oscillator output

4.18 Strapping Pins

SYMBOL	PIN	DESCRIPTION
2E_4E_SEL	31	SIO I/O address selection (Strapped by LRESET#) 0: SIO I/O address is 2Eh/2Fh 1: SIO I/O address is 4Eh/4Fh
BKFD_EN	103	Pin74, Pin79 default function selection (Strapped by VSB power) 0: Pin74 → 3VSBSW#, Pin79 → RSTOUT0# 1: Pin74 → BKFD_CUT, Pin79 → LATCHED_BKFD_CUT
AMDPWR_EN	96	AMD Power Sequence Function (Strapped by VSB power) 0: Disable 1: Enable

SYMBOL	PIN	DESCRIPTION
DIS_HWACPI	104	ACPI default value setting (Strapped by VSB power) 0: Hardware ACPI could take over related signals 1: Hardware ACPI never take over related signals Output "0": Pin73, 79, 101 Output "z": Pin60, 63, 65, 74, 77, 78, 81, 82

4.19 Power Pins

SYMBOL	PIN	DESCRIPTION
3VSB	24, 46, 85	+3.3 V stand-by power supply for the digital circuits.
AVSB	108	+3.3 V stand-by power supply for the analog circuits.
VBAT	99	+3 V on-board battery for the digital circuits.
3VCC	1	+3.3 V power supply for driving 3 V on host interface.
AGND	117	Analog ground.
PAD_CAP	70	External Filter Capacitor 4.7u (for internal VSB 1.8V).
VTT	119	INTEL® CPU VTT power.
VSS	16, 62, 94	Ground.

4.20 General Purpose I/O Port

4.20.1 GPIO-0 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP00	3	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 0 bit 0.
GP01	4	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 0 bit 1.
GP02	68	IN _{tsp5} O _{12p5} OD _{12p5}	General-purpose I/O port 0 bit 2.
GP03	69	$\begin{array}{c} {\rm IN}_{\rm tsp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 0 bit 3.
GP04	103	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 0 bit 4.
GP05	96	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 0 bit 5.

SYMBOL	PIN	I/O	DESCRIPTION
GP07	104	IN_{tp5} O_{12p5} OD_{12p5}	General-purpose I/O port 0 bit 7.

4.20.2 GPIO-1 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP10	18	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 1 bit 0.
GP11	27	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 1 bit 1.
GP12	28	${ m IN}_{ m tp5}$ ${ m O}_{ m 12p5}$ ${ m OD}_{ m 12p5}$	General-purpose I/O port 1 bit 2.
GP13	55	$\begin{array}{c} {\rm IN}_{\rm tsp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 1 bit 3.

4.20.3 GPIO-2 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP20	29	IN _{tdp5} O _{12p5} OD _{12p5}	General-purpose I/O port 2 bit 0.
GP21	30	$\begin{array}{c} \text{IN}_{\text{tdp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 2 bit 1.
GP22	31	$\begin{array}{c} \text{IN}_{\text{tdp5}} \\ \text{O}_{12\text{p5}} \\ \text{OD}_{12\text{p5}} \end{array}$	General-purpose I/O port 2 bit 2.
GP23	32	$\begin{array}{c} \text{IN}_{\text{tdp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 2 bit 3.
GP24	33	$\begin{array}{c} \text{IN}_{\text{tdp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 2 bit 4.
GP25	34	$\begin{array}{c} \text{IN}_{\text{tdp5}} \\ \text{O}_{12\text{p5}} \\ \text{OD}_{12\text{p5}} \end{array}$	General-purpose I/O port 2 bit 5.

SYMBOL	PIN	I/O	DESCRIPTION
GP26	35	$\begin{array}{c} \text{IN}_{\text{tdp5}} \\ \text{O}_{12\text{p5}} \\ \text{OD}_{12\text{p5}} \end{array}$	General-purpose I/O port 2 bit 6.
GP27	36	$\begin{array}{c} \text{IN}_{\text{tdp5}} \\ \text{O}_{12\text{p5}} \\ \text{OD}_{12\text{p5}} \end{array}$	General-purpose I/O port 2 bit 7.

4.20.4 GPIO-3 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP30	38	$\begin{array}{c} {\sf IN}_{\sf tsp5} \\ {\sf O}_{\sf 12p5} \\ {\sf OD}_{\sf 12p5} \end{array}$	General-purpose I/O port 3 bit 0.
GP31	39	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{24p5}} \\ \text{OD}_{\text{24p5}} \end{array}$	General-purpose I/O port 3 bit 1.
GP32	40	${ m IN}_{ m tsp5}$ ${ m O}_{ m 24p5}$ ${ m OD}_{ m 24p5}$	General-purpose I/O port 3 bit 2.
GP33	41	${ m IN}_{ m tsp5}$ ${ m O}_{ m 24p5}$ ${ m OD}_{ m 24p5}$	General-purpose I/O port 3 bit 3.
GP34	42	${ m IN}_{ m tp5}$ ${ m O}_{ m 24p5}$ ${ m OD}_{ m 24p5}$	General-purpose I/O port 3 bit 4.
GP35	43	${ m IN}_{ m tp5}$ ${ m O}_{ m 24p5}$ ${ m OD}_{ m 24p5}$	General-purpose I/O port 3 bit 5.
GP36	44	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{24p5}} \\ {\rm OD_{24p5}} \end{array}$	General-purpose I/O port 3 bit 6.
GP37	45	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 24p5} \\ {\rm OD}_{\rm 24p5} \end{array}$	General-purpose I/O port 3 bit 7.

4.20.5 GPIO-4 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP40	47	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{24p5}} \\ \text{OD}_{\text{24p5}} \end{array}$	General-purpose I/O port 4 bit 0.

SYMBOL	PIN	I/O	DESCRIPTION
GP41	48	${\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 24p5} \\ {\rm OD}_{\rm 24p5}$	General-purpose I/O port 4 bit 1.
GP42	49	IN _{tp5} O _{24p5} OD _{24p5}	General-purpose I/O port 4 bit 2.
GP43	50	${ m IN}_{ m tp5}$ ${ m O}_{ m 24p5}$ ${ m OD}_{ m 24p5}$	General-purpose I/O port 4 bit 3.
GP44	51	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{24p5}} \\ \text{OD}_{\text{24p5}} \end{array}$	General-purpose I/O port 4 bit 4.
GP45	52	IN _{tsp5} O _{24p5} OD _{24p5}	General-purpose I/O port 4 bit 5.
GP46	53	IN _{tsp5} O _{24p5} OD _{24p5}	General-purpose I/O port 4 bit 6.
GP47	54	IN _{tsp5} O _{24p5} OD _{24p5}	General-purpose I/O port 4 bit 7.

4.20.6 GPIO-5 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP50	7	$\begin{array}{c} {\rm IN}_{\rm tsp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 5 bit 0.
GP51	8	$\begin{array}{c} {\rm IN}_{\rm tsp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 5 bit 1.
GP52	9	$\begin{array}{c} {\rm IN}_{\rm tsp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 5 bit 2.
GP53	10	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 5 bit 3.
GP54	11	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 5 bit 4.

SYMBOL	PIN	I/O	DESCRIPTION
GP55	12	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 5 bit 5.
GP56	13	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 5 bit 6.
GP57	14	IN _{tsp5} O _{12p5} OD _{12p5}	General-purpose I/O port 5 bit 7.

4.20.7 GPIO-6 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP62	76	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 6 bit 2.
GP63	75	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 6 bit 3.
GP67	100	$\begin{array}{c} IN_{tp5} \\ O_{8p5} \\ OD_{8p5} \end{array}$	General-purpose I/O port 6 bit 7.

4.20.8 GPIO-7 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP70	95	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{12\text{p5}} \\ \text{OD}_{12\text{p5}} \end{array}$	General-purpose I/O port 7 bit 0.
GP71	98	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{12\text{p5}} \\ \text{OD}_{12\text{p5}} \end{array}$	General-purpose I/O port 7 bit 1.
GP72	124	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{12\text{p5}} \\ \text{OD}_{12\text{p5}} \end{array}$	General-purpose I/O port 7 bit 2.
GP73	125	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{12\text{p5}} \\ \text{OD}_{12\text{p5}} \end{array}$	General-purpose I/O port 7 bit 3.
GP74	37	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{12\text{p5}} \\ \text{OD}_{12\text{p5}} \end{array}$	General-purpose I/O port 7 bit 4.

SYMBOL	PIN	I/O	DESCRIPTION
GP75	86	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 7 bit 5.
GP76	87	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 7 bit 6.
GP77	102	$\begin{array}{c} IN_{tp5} \\ O_{8p5} \\ OD_{8p5} \end{array}$	General-purpose I/O port 7 bit 7.

4.20.9 GPIO-8 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP80	15	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 8 bit 0.
GP81	126	$\begin{array}{c} {\rm IN}_{\rm tsp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 8 bit 1.
GP82	127	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port 8 bit 2.
GP85	2	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 8 bit 5.

4.20.1 GPIO-9 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GP90	93	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 9 bit 0.
GP91	90	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 9 bit 1.
GP92	91	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 9 bit 2.
GP93	89	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port 9 bit 3.

SYMBOL	PIN	I/O	DESCRIPTION
GP94	88	IN_{tp5} O_{12p5} OD_{12p5}	General-purpose I/O port 9 bit 4.

4.20.2 GPIO EN0 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GPEN00	63	IN_{tp5} O_{12p5} OD_{12p5}	General-purpose I/O port EN0 bit 0.
GPEN01	64	IN_{tp5} O_{12p5} OD_{12p5}	General-purpose I/O port EN0 bit 1.
GPEN02	65	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port EN0 bit 2.
GPEN03	60	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port EN0 bit 3.
GPEN04	61	$\begin{array}{c} {\sf IN}_{\sf tp5} \\ {\sf O}_{\sf 8p5} \\ {\sf OD}_{\sf 8p5} \end{array}$	General-purpose I/O port EN0 bit 4.
GPEN05	83	$\begin{array}{c} {\rm IN}_{\rm tsp5} \\ {\rm O}_{\rm 12p5} \\ {\rm OD}_{\rm 12p5} \end{array}$	General-purpose I/O port EN0 bit 5.
GPEN06	84	IN_{tp5} O_{12p5} OD_{12p5}	General-purpose I/O port EN0 bit 6.
GPEN07	74	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port EN0 bit 7.

4.20.3 GPIO EN1 Interface

SYMBOL	PIN	I/O	DESCRIPTION
GPEN10	80	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12p5}} \\ \text{OD}_{\text{12p5}} \end{array}$	General-purpose I/O port EN0 bit 0.
GPEN11	79	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 24p5} \\ {\rm OD}_{\rm 24p5} \end{array}$	General-purpose I/O port EN0 bit 1.

SYMBOL	PIN	I/O	DESCRIPTION
GPEN12	78	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{24p5}} \\ \text{OD}_{\text{24p5}} \end{array}$	General-purpose I/O port EN0 bit 2.
GPEN13	77	$\begin{array}{c} {\rm IN}_{\rm tp5} \\ {\rm O}_{\rm 24p5} \\ {\rm OD}_{\rm 24p5} \end{array}$	General-purpose I/O port EN0 bit 3.
GPEN14	81	$\begin{array}{c} {\sf IN}_{\sf tp5} \\ {\sf O}_{\sf 8p5} \\ {\sf OD}_{\sf 8p5} \end{array}$	General-purpose I/O port EN0 bit 4.
GPEN15	82	$\begin{array}{c} {\sf IN}_{\sf tp5} \\ {\sf O}_{\sf 8p5} \\ {\sf OD}_{\sf 8p5} \end{array}$	General-purpose I/O port EN0 bit 5.
GPEN16	73	$\begin{array}{c} IN_{tp5} \\ O_{8p5} \\ OD_{8p5} \end{array}$	General-purpose I/O port EN0 bit 6.
GPEN17	101	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{8p5}} \\ \text{OD}_{\text{8p5}} \end{array}$	General-purpose I/O port EN0 bit 7.

4.21 Debug PORT Test

SYMBOL	PIN	I/O	DESCRIPTION
DB_RX	59	IN _{tsp5}	Serial data into MCU UART RX
DB_TX	57	O _{12p5}	Serial data from MCU UART TX
DB_SCK	58	IN _{tsp5}	Patch signal SCK
DB_SI	57	IN _{tsp5}	Patch signal SI
DB_SO	56	O _{12p5}	Patch signal SO
DB_SCE#	59	IN_{tsp5}	Patch signal SCE#
MCU_TCK	58	IN _{tsp5}	Debug Port MCU JTAG clock
MCU_TMS	59	IN _{tsp5}	Debug Port MCU JTAG mode select
MCU_TDO	57	O _{12p5}	Debug Port MCU JTAG data out
MCU_TDI	56	IN _{tsp5}	Debug Port MCU JTAG data in

4.22 DSW

SYMBOL	PIN	I/O	DESCRIPTION
PCHVSB	97	AIN	PCHVSB function
SUSWARN#	93	IN_{tp5}	This pin connects to SUSWARN# in CPT PCH
5VDUAL	92	AIN	Analog input to monitor 5VDUAL voltate

SYMBOL	PIN	I/O	DESCRIPTION
SUSWARN_5VDUAL	90	OD _{12p5}	This pin links to external 5VDUAL control circuits
SUSACK#	91	OD _{12p5}	This pin connects to SUSACK# in CPT PCH
SLP_SUS#	89	IN _{tp5}	This pin connects to SLP_SUS# in CPT PCH
SLP_SUS_FET	88	OD _{12p5}	This pin connects to VSB power switch

4.23 Intel Power Fault

SYMBOL	PIN	I/O	DESCRIPTION
PWR_FAULT#	118	OD _{12p5}	Intel Power Fault output

4.24 Internal pull-up, pull-down pins

Signal	Pin(s)	Power well	Туре	Resistor	Note
GPIO					
GP20~GP27	29~36	3VSB	Pull-down	47.03K Ω	1

Note1. Programmable

5. GLUE LOGIC

5.1 Fail-safe ACPI Glue Logic

Table 5-1 Pin Description

SYMBOL	PIN	DESCRIPTION	
SLP_S5#	84	SLP_S5# input.	
RESETCON#	83	RESETCON# input signal. This pin has internal debounce circuit whose de-bounce time is at least 16 mS.	
PWROK0	81	This pin generates the PWROK signals while 3VCC is present.	
PWROK1	82	This pin generates the PWROK signals while 3VCC is present.	
DPWROK#	73	This pin generates the DPWROK# signals while 3VSB is present.	
ATXPGD	80	ATX power good input signal. It is connected to the PWROK signal from the power supply for PWROK/PWRGD generation. The default is enabled.	
RSMRST#	101	The RSMRST# signal is a reset output and is used at the VSB power on reset signal for the South Bridge. When the NCT6683D-LU detects the 3VSB voltagerises to "V1", it then starts a delay — "t1" before the rising edge of RSMRST# asserting. If the 3VSB voltage falls below "V2", the RSMRST# de-asserts immediately	

Figure 5-2 RSMRST# and DPWROK#

Figure 5-3 PWROK

Figure 5-4 RESETCON# and PWROK (Default Disable)

Figure 5-5 RSTOUTX# and LRESET#

TIMING	PARAMETER		MAX	UNIT
t1 Valid 3VSB to RSMRST# inactive		200	300	mS
tp Valid 3VSB to DPWROK# inactive		10	30	mS
tg 3VSB Glitch allowance			1	uS
td	td Falling 3VSB supply Delay		1	uS

TIMING	TIMING PARAMETER		MAX	UNIT
t2 Valid 3VCC to PWROK active		300	500	mS
t3 RESETCON# active to PWROK inactive		0	80	nS
t4 RESETCON# inactive to PWROK active		0	80	nS
t5 LRESET# active to RSTOUTx# active		0	80	nS
t6	LRESET# inactive to RSTOUTx# inactive	0	80	nS

DC PARAMETER		MIN	MAX	UNIT
V1 3VSB Valid Voltage		-	3.033	Volt
V2 3VSB Ineffective Voltage		2.882	-	Volt
V3 3VCC Valid Voltage		-	2.83	Volt
V4 3VCC Ineffective Voltage		2.68	-	Volt
Vg 3VSB drops by Power noise		2	-	Volt

Note: 1. The values above are the worst-case results of R&D simulation.

5.2 Fail-safe BKFD_CUT and LATCHED_BF_CUT

NCT6683D-LU supports BKFD_CUT and LATCHED_BF_CUT functions please refer the timing diagram below:

Figure 5-6 BKFD_CUT and LATCH_BKFD_CUT

BKFD_CUT (Backfeed_Cut) – When high, switches dual rails to standby power.

LATCH_BKFD_CUT (Latched_Backfeed_Cut) – When high, switches dual rails to standby power.

5.3 Fail-safe 3VSBSW#

Figure 5-7 3VSBSW#

TIMING	TIMING PARAMETER		MAX	UNIT
t7	t7 SLP_S3# active to 3VSBSW# active		10	mS
t8 3VCC active to 3VSBSW# inactive		120	190	mS
t9	SLP_S3# inactive to PSON# active	0	80	nS
t10	SLP_S3# active to PSON# inactive	15	45	mS
t11	SLP_S3# minimal Low Time	40	-	mS

5.4 Fail-safe PSON# Block Diagram

The PSON# function controls the main power on/off. The main power is turned on when PSON# is low. Please refer to the figure below.

Figure 5-8 PSON# Block Diagram

5.5 Fail-safe PWROK Block Diagram

The PWROK signal indicates the main power (VCC Power) is valid. Besides, valid PWROK signal also requires the following conditions, as shown in the figure below.

Figure 5-9 PWROK Block Diagram

5.6 Fail-safe AMD Power-On Sequence

The NCT6683D-LU supports new AMD power on sequence bace on ACPI power on sequence.

Figure 5-11 non level detect

When S0->S3 or S0->S5, we support two kinds of power off sequence. One is non_level detect: it means VCORE_EN will pull low as long as about 10~15ms after VLDT_EN pull low and PSON will pull high as long as about 10~15ms after VCORE_EN pull low. Two, level detect, means VCORE_EN will pull low depend on delay time and pre-power group VLDT_IN, and PSON will pull high depend on pre-power group (VDIMM_IN, ATXPGD), too. User can set LDA CRF7[0] to choose two condition and its default is "0" (level detect).

Timing Parameters

Parameter	Description	Min.	Тур.	Max.	Unit
ТО	Period of ATXPGD rises to 0.7V to VDIMM_EN assertion	10		15	ms
T1	Period of VDIMM rises to 0.7V to VCORE_EN assertion	10		15	ms
T2	Period of CPUVCORE rises to 0.7V to VLDT_EN assertion	10		15	ms
Т3	T3 Period of VLDT rises to 0.7V to 10 15 AMD_PWROK assertion		ms		
T4 Period of SLP_S3# deassertion to 10 50 AMD_PWROK deassertion		50	ms		
T5 Period of AMD_PWROK deassertion to VLDT_EN deassertion 10			15	ms	
T6 Period of VLDT_EN deassertion to VCORE_EN deassertion		10		15	ms
T7 Period of VCORE_EN deassertion to PSON# deassertion		10		15	ms
Т8	Period of VCORE_EN deassertion to VDIMM_EN deassertion	10		15	ms
Т9	Period of VDIMM_EN deassertion to PSON# deassertion	10		15	ms

VDDA: 2.5V (not controlled by SIO)

VDIMM: DDR 1.8V, DDR3 1.5V (not controlled by SIO)

VLDT: 1.2V

VCORE: 0.8V ~ 1.55V

To support AMD power on sequence , we add some Pinout as VLDT_EN $\,$, VCORE_EN $\,$, VLDT $\,$, VDIMM $\,^{\circ}$ The sequence is follow the figure above $\,^{\circ}$ CPU and NB must conform to the SPEC or else the SIO will suspend at the sequence $\,^{\circ}$

5.7 Power Fault

Figure 5-13 Power Fault (EN_PWRFAULT=0)

Figure 5-14 Power Fault (EN_PWRFAULT=1, ATXPGD=0, OV Detect)

Figure 5-15 Power Fault (EN_PWRFAULT=1, ATXPGD=1, OV/UV Detect)

5.8 Fail-safe Intel DSW Function

5.8.1 Enter DSW State timing diagram

5.8.2 Exit DSW State timing diagram

5.8.3 Application Circuit

The NCT6683D can not only provide SIO Deep S5/S3 function, but Intel DSW function. The application circuit should follow the guide below:

6. CONFIGURATION REGISTER ACCESS PROTOCOL

NCT6683D-LU uses a special protocol to access configuration registers to set up different types of configurations. NCT6683D-LU has a total of sixteen Logical Devices (from Logical Device 0 to Logical Device F with the exception of Logical Device 0, 4 and F for backward compatibility) corresponding to ten individual functions: Parallel Port (Logical Device 1), UART A (Logical Device 2), UARTB (Logical Device 3), Keyboard Controller (Logical Device 5), Consumer Infrared Remote (Logical Device 6), GPIO0~GPIO7 (Logical Device 7), PORT80 UART (Logical Device 8), GPIO8~9, GPIO0 Enhance, GPIO1 Enhance (Logical Device 9), ACPI (Logical Device A), EC Space (Logical Device B), RTC Timer (Logical Device C), Deep Sleep (Logical Device D), Fan Assign (Logical Device E).

It would require a large address space to access all of the logical device configuration registers if they were mapped into the normal PC address space. NCT6683D-LU, then, maps the entire configuration registers through two I/O addresses (2Eh/2Fh or 4Eh/4Fh) set by configuration register. The two I/O addresses act as an index/data pair to read or write data to the Super I/O. One must write an index to the first I/O address which points to the register and read or write to the second address which acts as a data register.

An extra level of security is added by only allowing data updates when the Super I/O is in a special mode, called the Extended Function Mode. This mode is entered by two successive writes of 87h data to the first I/O address. This special mode ensures no false data can corrupt the Super I/O configuration during a program runaway.

There are a set of global registers located at index 0h - 2Fh, containing information and configuration for the entire chip.

The method to access the control registers of the individual logical devices is straightforward. Simply write the desired logical device number into the global register 07h. Subsequent accesses with indexes of 30h or higher are directly to the logical device registers.

Figure 6-1 Structure of the Configuration Register

Table 6-1 Devices of I/O Base Address

LOGICAL DEVICE NUMBER	FUNCTION	I/O BASE ADDRESS	
0	Reserve	d	
1	Parallel Port	100h ~ FF8h	
2	UARTA	100h ~ FF8h	
3	UARTB	100h ~ FF8h	
4	Reserve	d	
5	Keyboard Controller	100h ~ FFFh	
6	CIR	100h ~ FF8h	
7	GPIO0~GPIO7	Reserved	
8	PORT80 UART	Reserved	
9	GPIO8~9, GPIO0 Enhance, GPIO1 Enhance	Reserved	
A ACPI R		Reserved	
В	EC Space (includes functions such as Hardware Monitor, CIR WAKE- UP, WDT, LED, ASF, PECI, TSI, SMBus Master,)	100h ~ FF8h	
С	C RTC Timer		
D	Deep Sleep, Power Fault Reserved		
E	Fan Assign	Reserved	
F	Reserved		

6.1 Configuration Sequence

Figure 6-2 Configuration Register

To program NCT6683D-LU configuration registers, the following configuration procedures must be in the followed sequence:

- (1). Enter the Extended Function Mode.
- (2). Configure the configuration registers.
- (3). Exit the Extended Function Mode.

6.1.1 Enter the Extended Function Mode

To place the chip into the Extended Function Mode, two successive writes of 0x87 must be applied to Extended Function Enable Registers (EFERs, i.e. 2Eh or 4Eh). Please see Global Register CR26 [Bit6].

6.1.2 Configure the Configuration Registers

The chip selects the Logical Device and activates the desired Logical Devices through Extended Function Index Register (EFIR) and Extended Function Data Register (EFDR). The EFIR is located at the same address as the EFER, and the EFDR is located at address (EFIR+1).

First, write the Logical Device Number (i.e. 0x07) to the EFIR and then write the number of the desired Logical Device to the EFDR. If accessing the Chip (Global) Control Registers, this step is not required.

Secondly, write the address of the desired configuration register within the Logical Device to the EFIR and then write (or read) the desired configuration register through the EFDR.

6.1.3 Exit the Extended Function Mode

To exit the Extended Function Mode, writing 0xAA to the EFER is required. Once the chip exits the Extended Function Mode, it is in the normal running mode and is ready to enter the configuration mode.

6.1.4 Software Programming Example

The following example is written in Intel 8086 assembly language. It assumes that the EFER is located at 2Eh, so the EFIR is located at 2Eh and the EFDR is located at 2Fh. If the HEFRAS (CR[26h] bit 6 showing the value of the strap pin at power on) is set, 2Eh can be directly replaced by 4Eh and 2Fh replaced by 4Fh.

This example programs the configuration register F0h (clock source) of logical device 1 (UART A) to the value of 3Ch (24MHz). First, one must enter the Extended Function Mode, then setting the Logical Device Number (Index 07h) to 01h. Then program index F0h to 3Ch. Finally, exit the Extended Function Mode.

```
; Enter the Extended Function Mode
;-----
MOV DX, 2EH
MOV
      AL, 87H
OUT
      DX, AL
OUT
      DX, AL
; Configure Logical Device 1, Configuration Register CRF0
MOV
      DX, 2EH
MOV
      AL, 07H
OUT
      DX, AL
                   ; point to Logical Device Number Reg.
      DX, 2FH
MOV
MOV
      AL, 01H
OUT
      DX, AL
                   ; select Logical Device 1
MOV
      DX, 2EH
MOV
      AL. F0H
OUT
      DX, AL
                   ; select CRF0
MOV
      DX, 2FH
MOV
      AL, 3CH
OUT
      DX, AL
                   ; update CRF0 with value 3CH
; Exit the Extended Function Mode
MOV
      DX, 2EH
MOV
      AL, AAH
OUT
      DX, AL
```


Table 6-2 Chip (Global) Control Registers

INDEX	R/W	DEFAULT VALUE	DESCRIPTION
07h	R/W	00h	Logical Device
10h	R/W	FFh	Device IRQ Type Selection
11h	R/W	FFh	Device IRQ Type Selection
13h	R/W	00h	Device IRQ Polarity Selection
14h	R/W	00h	Device IRQ Polarity Selection
15h	R/W	00h	Multi-function Pin Selection
1Ah	R/W	00h	Multi-function Pin Selection
1Bh	R/W	10	Multi-function Pin Selection
1Dh	R/W	00h	Test Mode
1E	R/W	00h	Multi-function Pin Selection
1F	R/W	00h	Multi-function Pin Selection
20h	Read Only	C7h	Chip ID, MSB
21h	Read Only	31h(3xh)	Chip ID, LSB
22h	R/W	00h	Device Power Down Option
23h	R/W	80h	Device Power Down Option
24h	R/W	E7h	Multi-function Pin Selection
25h	R/W	01h	Device Power Down Option
26h	R/W	00h	Global Option
27h	R/W	3Eh	Multi-function Pin Selection
28h	R/W	00h	Multi-function Pin Selection
29h	R/W	03h	Multi-function Pin Selection
2Ah	R/W	00h Multi-function Pin Selection	
2Bh	R/W	00h	Multi-function Pin Selection
2Ch	R/W	00h	Multi-function Pin Selection

INDEX	R/W	DEFAULT VALUE	DESCRIPTION
2Dh	R/W	00h	Multi-function Pin Selection
2Eh	R/W	00h	Reserved
2Fh	R/W	SSh	Reserved.

S: Strapping; x: chip version.

7. EC SPACE

7.1 Features Implemented by Firmware

- ACPI power sequence controls and glue logics, such as RSMRST#, PSON#, PWROK, RSTOUT, PSIN#, PSOUT#, ATXPGD, SLP_S3#, SLP_S5#, ...
 - --- Main Power good / power OK signals ATXPGD and internal power sensing.
 - --- Power distribution control (for switching between Main and Standby regulators)
 - --- Main power supply turn on (PSON#)
 - --- Resume reset (Master Reset) according to the stand-by 3V
 - --- Reset button de-bouncer
 - --- Power Good out mechanism using ATXPGD and internal power sensing
 - --- Buffers PCI_RESET to generate 3 reset output signals
- Power restoring policy when AC was recovered
- Advanced Deep Sleep Control logic to save more power during S3 / S5
 - --- Memory power switching support
 - --- Scheduling time slot to save more power when system sleeps
- Control logic to wake system up from normal / deep sleep state
- Advanced watch dog timers
- Hardware Monitoring (including voltage sources, analog / digital / virtual temperature sources, and tachometers)
- Customizable handling about SKTOCC#, CASEOPEN# signals
- Facilities for modern digital sensor interface, such as PECI 3.0, DIMM temperature pushing back, DIMM Ambient Temperature writing back, Sandy Bridge PCH, SMBus sensors, and automatic polling engines ...
- Smart fan control algorithms such as Thermal Cruise, Speed Cruise, Smart Fan 3, Smart Fan 4, DTS1.0 and DTS2.0 Control, and Smart Tracking for both Duty/RPM control
- Front Panel Power LED with different blinking patterns and fading effect
- Port 80 Message Buffering with / without 7-segment LED driving
- Up to 5 CIR keys to wake up system from sleep state
- OEM SMBus Slave Interface to allow hardware control from SMBus master such as BMC
- **.**..

7.2 EC Space Register Set

The EC Space accommodates several functions featured by firmware, such as health management related functions, watchdog timers, PECI / SMBus masters, ACPI controls...This space is accessible via LPC I/O transactions. The I/O space allocated for this module is system dependent. 8 IO ports should be allocated.

• There are two ports begin from this base address. The first port is for BIOS/ACPI accessing and the second port is for application software accessing. Each port has INDEX and PAGE register for DATA register indirect access. A protection lock was provided to make sure synchronous access on registers. If it is enabled by mcu, the two port's PAGE register can be written if its value or writing data is 0xFF; INDEX register can be written if PAGE register is not 0xFF and its value or writing data is 0xFF.

7.2.1 Page Port0 – Base Address0 + 0

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	PAGE0

7.2.2 Index Port0 - Base Address0 + 1

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: FFh

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	INDEX PORT0

7.2.3 Data Port0 - Base Address0 + 2

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	DATA0

7.2.4 Host Interface Event Register0 – Base Address0 + 3

Attribute: Read/Write Power Well: VSB Reset by: -Default: -Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Host Interface Event Register0

^{**:} it was mapped to EC Space register at Page 0, Index 28h, HIF_EVENT0

7.2.5 Page Port1 – Base Address0 + 4

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: FFh Size: 8 bits

BIT READ / WRITE DESCRIPTION	
------------------------------	--

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	PAGE1

7.2.6 Index Port1 - Base Address0 + 5

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	INDEX1

7.2.7 Data Port1 - Base Address0 + 6

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	DATA1

7.2.8 Host Interface Event Register1 – Base Address0 + 7

Attribute: Read/Write Power Well: VSB

Reset by: -Default : -Size: 8 bits

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Host Interface Event Register1

^{** :} it was mapped to EC Space register at Page 0, Index 29h, HIF_EVENT1

7.3 Operations on EC Space

Please refer to NCT6683D-LU EC Space Specification for details

8. ANALOG INPUTS

NOTICE: Interface for voltage, temperature, and fan speed monitoring were implemented and extended by firmware. About detailed implementation and interface registers for various hardware status monitoring such as PECI, PCH ..., please refer to NCT6683D Family EC Space Datasheet. Here only the base hardware and application circuit for analog voltage / temperature monitoring were introduced.

The analog inputs of the hardware monitor block connect to an 7-bit Analog to Digital Converter (ADC) and 4 internal signals connected to the power supplies (AVSB, VBAT, 3VSB and 3VCC, with gain stage to double voltage range detected. Reading values of them are manipulated to have same base unit, 16mV, by firmware). All inputs are limited to a maximum voltage of 2.048V due to an internal setting of 16mV LSB (128 steps x 16mV = 2.048V). All inputs to the ADC must limit the maximum voltage by using a voltage divider. The power supplies have internal resistors, while the external pins require outside limiting resistors as described below.

Figure 8-1 Analog Inputs and Application Circuit of the NCT6683D-LU

As illustrated in the figure above, other connections may require some external circuits. The rest of this section provides more information about voltages outside the range of the 7-bit ADC, CPU Vcore voltage detection, and temperature sensing.

8.1 Voltages Over 2.048 V or Less Than 0 V

Input voltages greater than 2.048 V should be reduced by an external resistor divider to keep the input voltages in the proper range. For example, input voltage V_0 (+12 V) should be reduced before it is connected to VIN0 according to the following equation:

$$VIN0 = V_0 \times \frac{R_2}{R_1 + R_2}$$

R1 and R2 can be set to 56 K Ω and 10 K Ω , respectively, to reduce V $_0$ from +12 V to less than 2.048 V.

All the internal inputs of the ADC, AVSB, VBAT, 3VSB and 3VCC utilize an integrated voltage divider with both resistors equal to $34K\Omega$, yielding a voltage one half of the power supply. Since one would expect a worst-case 10% variation or a 3.63V maximum voltage, the input to the ADC will be 1.815V, well within the maximum range.

$$V_{\mbox{\tiny in}} = \! VCC \! \times \! \frac{34 K\Omega}{34 K\Omega + 34 K\Omega} \cong \! 1.65 V$$
 , where VCC is set to 3.3V

Negative voltages are handled similarly, though the equation looks a little more complicated. For example, negative voltage V1 (-12V) can be reduced according to the following equation:

$$VIN1 = (V_1 - 2.048) \times \frac{R_4}{R_3 + R_4} + 2.048, where V_1 = -12$$

R3 and R4 can be set to 232 K Ω and 10 K Ω , respectively, to reduce negative input voltage V₁ from – 12 V to less than 2.048 V. Note that R4 is referenced to VREF, or 2.048V instead of 0V to allow for more dynamic range. This is simply good analog practice to yield the most precise measurements.

Both of these solutions are illustrated in the figure above.

8.2 Monitor Temperature from Thermistor

External thermistors should have a β value of 3435K and a resistance of 10 K Ω at 25°C. As illustrated in the schematic above, the thermistor is connected in series with a 10-K Ω resistor and then connects to VREF.

Figure 8-2 Monitoring Temperature from Thermistor

8.3 Monitor Temperature from Thermal Diode (Voltage Mode)

To monitor temperature of thermal diodes, the D- pins of thermal diodes are connected to AGND, and the D+ pins are connected to the temperature sensor pins (TD0P, TD1P, TD2P) of NCT6683D-LU. A 15-K Ω resistor is connected to VREF to supply the bias current for the diode, and a 2200-pF bypass capacitor is added to filter high-frequency noise.

Figure 8-3 Monitoring Temperature from Thermal Diode (Voltage Mode)

8.4 Monitor Temperature from Thermal Diode (Current Mode)

NCT6683D-LU can also sense the diode temperature through Current Mode and the circuit is shown in the following figure.

Figure 8-4 Monitoring Temperature from Thermal Diode (Current Mode)

To monitor temperature of thermal diodes through current mode operation, the D- pins of thermal diodes are connected to AGND and the D+ pins are connected to temperature sensor pins (TD0P, TD1P, TD2P) of NCT6683D-LU. A bypass capacitor with C=2200pF should be added to filter the high frequency noise.

9. UART PORT

9.1.1 UART Control Register (UCR) (Read/Write)

The UART Control Register defines and controls the protocol for asynchronous data communications, including data length, stop bit, parity, and baud rate selection.

BIT	7	6	5	4	3	2	1	0
NAME	BDLAB	SSE	PBFE	EPE	PBE	MSBE	DLS1	DLS0
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	BDLAB (Baud Rate Divisor Latch Access Bit). When this bit is set to logic 1, designers can access the divisor (in 16-bit binary format) from the divisor latches of the baud-rate generator during a read or write operation. When this bit is set to logic 0, the Receiver Buffer Register, the Transmitter Buffer Register, and the Interrupt Control Register can be accessed.
6	SSE (Set Silence Enable). A logic 1 forces the Serial Output (SOUT) to a silent state (a logical 0). Only IRTX is affected by this bit; the transmitter is not affected.
5	PBFE (Parity Bit Fixed Enable). When PBE and PBFE of UCR are both set to logic 1, (1) if EPE is logic 1, the parity bit is logical 0 when transmitting and checking; (2) if EPE is logic 0, the parity bit is logical 1 when transmitting and checking.
4	EPE (Even Parity Enable). When PBE is set to logic 1, this bit counts the number of logic 1's in the data word bits and determines the parity bit. When this bit is set to logic 1, the parity bit is set to logic 1 if an even number of logic 1's are sent or checked. When the bit is set to logic 0, the parity bit is logic 1, if an odd number of logic 1's are sent or checked.
3	PBE (Parity Bit Enable). When this bit is set to logic 1, the transmitter inserts a stop bit between the last data bit and the stop bit of the SOUT, and the receiver checks the parity bit in the same position.
2	 MSBE (Multiple Stop Bit Enable). Defines the number of stop bits in each serial character that is transmitted or received. (1) If MSBE is set to logic 0, one stop bit is sent and checked. (2) If MSBE is set to logic 1 and the data length is 5 bits, one-and-a-half stop bits are sent and checked. (3) If MSBE is set to logic 1 and the data length is 6, 7, or 8 bits, two stop bits are sent and checked.
1	DLS1 (Data Length Select Bit 1). Defines the number of data bits that are sent or checked in each serial character.
0	DLS0 (Data Length Select Bit 0). Defines the number of data bits that are sent or checked in each serial character.

DLS1	DLS0	DATA LENGTH
0	0	5 bits
0	1	6 bits
1	0	7 bits

DLS1	DLS0	DATA LENGTH
1	1	8 bits

The following table identifies the remaining UART registers. Each one is described separately in the following sections.

Table 9-1 Register Summary for UART

					Bit N	umber				
Register A	Address Base		0	1	2	3	4	5	6	7
+ 0 BDLAB = 0	Receiver Buffer Register (Read Only)	RBR	RX Data Bit 0	RX Data Bit 1	RX Data Bit 2	RX Data Bit 3	RX Data Bit 4	RX Data Bit 5	RX Data Bit 6	RX Data Bit 7
+ 0 BDLAB = 0	Transmitter Buffer Register (Write Only)	TBR	TX Data Bit 0	TX Data Bit 1	TX Data Bit 2	TX Data Bit 3	TX Data Bit 4	TX Data Bit 5	TX Data Bit 6	TX Data Bit 7
+ 1 BDLAB = 0	Interrupt Control Register	ICR	RBR Data Ready Interrupt Enable (ERDRI)	TBR Empty Interrupt Enable (ETBREI)	USR Interrupt Enable (EUSRI)	HSR Interrupt Enable (EHSRI)	0	0	0	0
+ 2	Interrupt Status Register (Read Only)	ISR	"0" if Interrupt Pending	Interrupt Status Bit (0)	Interrupt Status Bit (1)	Interrupt Status Bit (2)**	0	0	FIFOs Enabled **	FIFOs Enabled **
+ 2	UART FIFO Control Register (Write Only)	UFR	FIFO Enable	RCVR FIFO Reset	XMIT FIFO Reset	DMA Mode Select	Reserved	Reversed	RX Interrupt Active Level (LSB)	RX Interrupt Active Level (MSB)
+ 3	UART Control Register	UCR	Data Length Select Bit 0 (DLS0)	Data Length Select Bit 1 (DLS1)	Multiple Stop Bits Enable (MSBE)	Parity Bit Enable (PBE)	Even Parity Enable (EPE)	Parity Bit Fixed Enable PBFE)	Set Silence Enable (SSE)	Baudrate Divisor Latch Access Bit (BDLAB)
+ 4	Handshake Control Register	HCR	Data Terminal Ready (DTR)	Request to Send (RTS)	Loopback RI Input	IRQ Enable	Internal Loopback Enable	0	0	0
+ 5	UART Status Register	USR	RBR Data Ready (RDR)	Overrun Error (OER)	Parity Bit Error (PBER)	No Stop Bit Error (NSER)	Silent Byte Detected (SBD)	TBR Empty (TBRE)	TSR Empty (TSRE)	RX FIFO Error Indication (RFEI) **
+ 6	Handshake Status Register	HSR	CTS Toggling (TCTS)	DSR Toggling (TDSR)	RI Falling Edge (FERI)	DCD Toggling (TDCD)	Clear to Send (CTS)	Data Set Ready (DSR)	Ring Indicator (RI)	Data Carrier Detect (DCD)
+ 7	User Defined Register	UDR	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
+ 0 BDLAB = 1	Baudrate Divisor Latch Low	BLL	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
+ 1 BDLAB = 1	Baudrate Divisor Latch High	BHL	Bit 8	Bit 9	Bit 10	Bit 11	Bit 12	Bit 13	Bit 14	Bit 15

^{*:} Bit 0 is the least significant bit. The least significant bit is the first bit serially transmitted or received.
**: These bits are always 0 in 16450 Mode.

9.1.2 UART Status Register (USR) (Read/Write)

This 8-bit register provides information about the status of data transfer during communication.

BIT	7	6	5	4	3	2	1	0
NAME	RF EI	TSRE	TBRE	SBD	NSER	PBER	OER	RDR
DEFAULT	0	1	1	0	0	0	0	0

BIT	DESCRIPTION
7	RF EI (RX FIFO Error Indication). In 16450 mode, this bit is always set to logical 0. in 16550 mode, this bit is set to logical 1 when there is at least one parity-bit error and no stop0bit error or silent-byte detected in the FIFO. In 16550 mode, this bit is cleared to logical 0 by reading from the USR if there are no remaining errors left in the FIFO.
6	TSRE (Transmitter Shift Register Empty). In 16450 mode, this bit is set to logical 1 when TBR and TSR are both empty. In 16550 mode, it is set to logical 1 when the transmit FIFO and TSR are both empty. Otherwise, this bit is set to logical 0.
5	TBRE (Transmitter Buffer Register Empty). In 16450 mode, when a data character is transferred from TBR to TSR, this bit is set to logical 1. If ETREI of ICR is high, and interrupt is generated to notify the CPU to write next data. In 16550 mode, this bit is set to logical 1 when the transmit FIFO is empty. It is set to logical 0 when the CPU writes data into TBR or the FIFO.
4	SBD (Silent Byte Detected). This bit is set to logical 1 to indicate that received data are kept in silent state for the time it takes to receive a full word, which includes the start bit, data bits, parity bit, and stop bits. In 16550 mode, it indicates the same condition for the data on the top of the FIFO. When the CPU reads USR, it sets this bit to logical 0.
3	NSER (No Stop Bit Error). This bit is set to logical 1 to indicate that the received data have no stop bit. In 16550 mode, it indicates the same condition for the data on the top of the FIFO. When the CPU reads USR, it sets this bit to logical 0.
2	PBER (Parity Bit Error). This bit is set to logical 1 to indicate that the received data has the wrong parity bit. In 16550 mode, it indicates the same condition for the data on the top of the FIFO. When the CPU reads USR, it sets this bit to logical 0.
1	OER (Overrun Error). This bit is set to logical 1 to indicate that the received data have been overwritten by the next received data before they were read by the CPU. In 16550 mode, it indicates the same condition, instead of FIFO full. When the CPU reads USR, it sets this bit to logical 0.
0	RDR (RBR Data Ready). This bit is set to logical 1 to indicate that the received data are ready to be read by the CPU in the RBR or FIFO. When no data are left in the RBR or FIFO, the bit is set to logical 0.

9.1.3 Handshake Control Register (HCR) (Read/Write)

This register controls pins used with handshaking peripherals such as modems and also controls the diagnostic mode of the UART.

BIT	7 6 5		4	3	2	1	0	
NAME	RESERVED			INTERNAL LOOPBACK ENABLE	IRQ ENABLE	LOOPBACK RI INPUT	RTS	DTR
DEFAULT	0 0 0		0	0	0	0	0	

BIT	DESCRIPTION
7-5	Reserved.
4	Internal Loopback Enable. When this bit is set to logic 1, the UART enters diagnostic

	mode, as follows:
	(1) SOUT is forced to logic 1, and SIN is isolated from the communication link.
	(2) The modem output pins are set to their inactive state.
	(3) The modem input pins are isolated from the communication link and connect
	internally as DTR (bit 0 of HCR) \rightarrow DSR#, RTS (bit 1 of HCR) \rightarrow CTS#, Loopback
	RI input (bit 2 of HCR) \rightarrow RI# and IRQ enable (bit 3 of HCR) \rightarrow DCD#.
	Aside from the above connections, the UART operates normally. This method
	allows the CPU to test the UART in a convenient way.
3	IRQ Enable. The UART interrupt output is enabled by setting this bit to logic 1. In diagnostic mode, this bit is internally connected to the modem control input DCD#.
2	Loopback RI Input. This bit is only used in the diagnostic mode. In diagnostic mode, this bit is internally connected to the modem control input RI#.
1	RTS (Request to Send). This bit controls the RTS# output. The value of this bit is inverted and output to RTS#.
0	DTR (Data Terminal Ready). This bit controls the DTR# output. The value of this bit is inverted and output to DTR#.

9.1.4 Handshake Status Register (HSR) (Read/Write)

This register reflects the current state of four input pins used with handshake peripherals such as modems and records changes on these pins.

BIT	7	6	5	4	3	2	1	0
NAME	DCD	RI	DSR	CTS	TDCD	FERI	TDSR	TCTS
DEFAULT	NA	NA	NA	NA	NA	NA	NA	NA

BIT	DESCRIPTION
7	DCD (Data Carrier Detect). This bit is the inverse of the DCD# input and is equivalent to bit 3 of HCR in Loopback mode.
6	RI (Ring Indicator). This bit is the inverse of the RI# input and is equivalent to bit 2 of HCR in Loopback mode.
5	DSR (Data Set Ready). This bit is the inverse of the DSR# input and is equivalent to bit 0 of HCR in Loopback mode.
4	CTS (Clear to Send). This bit is the inverse of the CTS# input and is equivalent to bit 1 of HCR in Loopback mode.
3	TDCD (DCD# Toggling). This bit indicates that the state of the DCD# pin has changed after HSR is read by the CPU.
2	FERI (RI Falling Edge). This bit indicates that the RI# pin has changed from low to high after HSR is read by the CPU.
1	TDSR (DSR# Toggling). This bit indicates that the state of the DSR# pin has changed after HSR is read by the CPU.
0	TCTS (CTS# Toggling). This bit indicates that the state of the CTS# pin has changed after HSR is read by the CPU.

9.1.5 UART FIFO Control Register (UFR) (Write only)

This register is used to control the FIFO functions of the UART.

BIT	7	6	5	4	3	2	1	0
NAME	MSB	LSB	RESEF	RVED	DMA MODE SELECT	TRANSMITTER FIFO RESET	RECEIVER FIFO RESET	FIFO ENABLE
DEFAULT	0	0	NA	NA	0	0	0	0

BIT	DESCF	DESCRIPTION					
7	MSB (RX Interrupt Active Level).	These two bits are used to set the active level of the receiver FIFO interrupt. The active level is the number of bytes that					
6	LSB (RX Interrupt Active Level).	must be in the receiver FIFO to generate an interrupt.					
5-4	RESERVED.						
3	DMS MODE SELECT. When this bit is set to logic 1, DMA mode changes from mode 0 to mode 1 if UFR bit 0 = 1.						
2	TRANSMITTER FIFO RESET. Setting this bit to logic 1 resets the TX FIFO counter logic to its initial state. This bit is automatically cleared afterwards.						
1	RECEIVER FIFO RESET. Setting this bit to logic 1 resets the RX FIFO counter logic to its initial state. This bit is automatically cleared afterwards.						
0	FIFO ENABLE. This bit enables 16550 (FIFO) mode. This bit should be set to logic 1 before other UFR bits are programmed.						

BIT 7	BIT 6	RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)
0	0	01
0	1	04
1	0	08
1	1	14

9.1.6 Interrupt Status Register (ISR) (Read only)

This register reflects the UART interrupt status.

BIT	7	6	5	4	3	2	1	0
NAME	FIFOS E	NABLED	RESERVED		INTERRUPT STATUS BIT 2	INTERRUPT STATUS BIT 1	INTERRUPT STATUS BIT 0	0 IF INTERRUPT PENDING
DEFAULT	0	0	0	0	0	0	0	1

BIT	DESCRIPTION
7-6	FIFOS ENABLED. Set to logical 1 when UFR, bit 0 = 1.
5-4	RESERVED.
3	INTERRUPT STATUS BIT 2. In 16450 mode, this bit is logical 0. In 16550 mode, bits 3 and 2 are set to logical 1 when a time-out interrupt is pending. Please see the table

	below.				
2	INTERRUPT STATUS BIT 1.	These two bits identify the priority level of the pending interrupt, as shown in the table			
1	INTERRUPT STATUS BIT 0.	below.			
0	0 IF INTERRUPT PENDING. This bit is logic 1 if there is no interrupt pending. If one of the interrupt sources has occurred, this bit is set to logical 0.				

	ISR				INTERRUPT SET AND FUNCTION						
Bit 3	Bit 2	Bit 1	Bit 0	Interrupt priority	Interrupt Type	Interrupt Source	Clear Interrupt				
0	0	0	1	-	-	No Interrupt pending	-				
0	1	1	0	First	UART Receive Status	1. OER = 1 2. PBER = 1 3. NSER = 1 4. SBD = 1	Read USR				
0	1	0	0	Second	RBR Data Ready	RBR data ready FIFO interrupt active level reached	Read RBR Read RBR until FIFO data under active level				
1	1	0	0	Second	FIFO Data Timeout	Data present in RX FIFO for 4 characters period of time since last access of RX FIFO.	Read RBR				
0	0	1	0	Third	TBR Empty	TBR empty	Write data into TBR Read ISR (if priority is third)				
0	0	0	0	Fourth	Handshake status	1. TCTS = 1 2. TDSR = 1 3. FERI = 1 4. TDCD = 1	Read HSR				

^{**} Bit 3 of ISR is enabled when bit 0 of UFR is logical 1.

9.1.7 Interrupt Control Register (ICR) (Read/Write)

This 8-bit register enables and disables the five types of controller interrupts separately. A selected interrupt can be enabled by setting the appropriate bit to logical 1. The interrupt system can be totally disabled by setting bits 0 through 3 to logical 0.

BIT	7	6	5	4	3	2	1	0
NAME		RESE	RVED		EHSRI	EUSRI	ETBREI	ERDRI
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-4	RESERVED.
3	EHSRI (Handshake Status Interrupt Enable). Set this bit to logical 1 to enable the handshake status register interrupt.
2	EUSRI (UART Receive Status Interrupt Enable). Set this bit to logical 1 to enable the UART status register interrupt.
1	ETBREI (TBR Empty Interrupt Enable). Set this bit to logical 1 to enable the TBR empty interrupt.
0	ERDRI (RBR Data Ready Interrupt Enable). Set this bit to logical 1 to enable the RBR data ready interrupt.

9.1.8 Programmable Baud Generator (BLL/BHL) (Read/Write)

Two 8-bit registers, BLL and BHL, compose a programmable baud generator that uses 24 MHz to generate a 1.8461 MHz frequency and divide it by a divisor from 1 to $(2^{16}-1)$. The output frequency of the baud generator is the baud rate multiplied by 16, and this is the base frequency for the transmitter and receiver. The table below illustrates the use of the baud generator with a frequency of 1.8461 MHz. In high-speed UART mode (CR0C, bits 7 and 6), the programmable baud generator directly uses 24 MHz and the same divisor as the normal speed divisor. As a result, in high-speed mode, the data transmission rate can be as high as 1.5M bps.

	BAU	D RATE FROM	DIFFERENT PRE-DIVIC	DER
PRE-DIV: 13 1.8461M HZ	PRE- DIV:1.625 14.769M HZ	PRE-DIV: 1.0 24M HZ	DECIMAL DIVISOR USED TO GENERATE 16X CLOCK	ERROR PERCENTAGE
50	400	650	2304	**
75	600	975	1536	**
110	880	1430	1047	0.18%
134.5	1076	1478.5	857	0.099%
150	1200	1950	768	**
300	2400	3900	384	**
600	4800	7800	192	**
1200	9600	15600	96	**
1800	14400	23400	64	**
2000	16000	26000	58	0.53%
2400	19200	31200	48	**
3600	28800	46800	32	**
4800	38400	62400	24	**
7200	57600	93600	16	**
9600	76800	124800	12	**
19200	153600	249600	6	**
38400	307200	499200	3	**
57600	460800	748800	2	**
115200	921600	1497600	1	**

^{**} Unless specified, the error percentage for all of the baud rates is 0.16%.

Note: Pre-Divisor is determined by CRF0 of UART A and B.

9.1.9 User-defined Register (UDR) (Read/Write)

This is a temporary register that can be accessed and defined by the user.

10. PARALLEL PORT

10.1 Printer Interface Logic

The NCT6683D-LU parallel port can be attached to devices that accept eight bits of parallel data at standard TTL level. The NCT6683D-LU supports the IBM XT/AT compatible parallel port (SPP), the bi-directional parallel port (BPP), the Enhanced Parallel Port (EPP), and the Extended Capabilities Parallel Port (ECP).

The following tables show the pin definitions for different modes of the parallel port.

Table 10-1 Pin Descriptions for SPP, EPP, and ECP Modes

HOST CONNECTOR	PIN ATTRIBUTE	SPP	EPP	ECP
1	0	Nstb	nWrite	nSTB, HostClk ²
2-9	I/O	PD<7:0>	PD<7:0>	PD<7:0>
10	I	nACK	Intr	nACK, PeriphClk ²
11	I	BUSY	nWait	BUSY, PeriphAck ²
12	I	PE	PE	PEerror, nAckReverse ²
13	I	SLCT	Select	SLCT, Xflag ²
14	0	Nafd	nDStrb	nAFD, HostAck ²
15	I	nERR	nError	nFault ¹ , nPeriphRequest ²
16	0	Ninit	nlnit	nINIT ¹ , nReverseRqst ²
17	0	nSLIN	nAStrb	nSLIN ¹ , ECPMode ²

Notes:

n<name > : Active Low1. Compatible Mode2. High Speed Mode

3. For more information, please refer to the IEEE 1284 standard.

HOST CONNECTOR	PIN ATTRIBUTE	SPP
1	0	nSTB
2	I/O	PD0
3	I/O	PD1
4	I/O	PD2
5	I/O	PD3
6	I/O	PD4
7	I/O	PD5
8	I/O	PD6
9	I/O	PD7
10	1	nACK
11	1	BUSY
12	1	PE
13	1	SLCT
14	0	nAFD
15	1	nERR
16	0	nINIT

HOST CONNECTOR	PIN ATTRIBUTE	SPP	
17	0	nSLIN	

10.2 Enhanced Parallel Port (EPP)

The following table lists the registers used in the EPP mode and identifies the bit map of the parallel port and EPP registers. Some of the registers are used in other modes as well.

Table 10-2 EPP Register Addresses

A2	A1	A0	REGISTER	NOTE
0	0	0	Data pot (R/W)	1
0	0	1	Printer status buffer (Read)	1
0	1	0	Printer control latch (Write)	1
0	1	0	Printer control swapper (Read)	1
0	1	1	EPP address port (R/W)	2
1	0	0	EPP data port 0 (R/W)	2
1	0	1	EPP data port 1 (R/W)	2
1	1	0	EPP data port 2 (R/W)	2
1	1	1	EPP data port 2 (R/W)	2

Notes:

- 1. These registers are available in all modes.
- 2. These registers are available only in EPP mode.

Table 10-3 Address and Bit Map for SPP and EPP Modes

REGISTER	7	6	5	4	3	2	1	0
Data Port (R/W)	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Status Buffer (Read)	BUSY#	ACK#	PE	SLCT	ERROR#	1	1	TMOUT
Control Swapper (Read)	1	1	1	IRQEN	SLIN	INIT#	AUTOFD#	STROBE#
Control Latch (Write)	1	1	DIR	IRQ	SLIN	INIT#	AUTOFD#	STROBE#
EPP Address Port (R/W)	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
EPP Data Port 0 (R/W)	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
EPP Data Port 1 (R/W)	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
EPP Data Port 2 (R/W)	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
EPP Data Port 3 (R/W)	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

Each register (or pair of registers, in some cases) is discussed below.

10.2.1 Data Port (Data Swapper)

The CPU reads the contents of the printer's data latch by reading the data port.

10.2.2 Printer Status Buffer

The CPU reads the printer status by reading the printer status buffer. The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	BUSY#	ACK#	PE	SLCT	ERROR#	RESERVED		TMOUT
DEFAULT	NA	NA	NA	NA	NA	1	1	0

BIT	DESCRIPTION
7	BUSY#. This signal is active during data entry, when the printer is off-line during printing, when the print head is changing position, or during an error state. When this signal is active, the printer is busy and cannot accept data.
6	ACK#. This bit represents the current state of the printer's ACK# signal. A logical 0 means the printer has received a character and is ready to accept another. Normally, this signal is active for approximately 5 μs before BUSY# stops.
5	PE. A logical 1 means the printer has detected the end of paper.
4	SLCT. A logical 1 means the printer is selected.
3	ERROR#. A logical 0 means the printer has encountered an error condition.
2-1	RESERVED.
0	TMOUT. This bit is only valid in EPP mode. A logical 1 indicates that a 10-μs time-out has occurred on the EPP bus; a logical 0 means hat no time-out error has occurred. Writing a logical 1 to this bit clears the time-out status bit; writing a logical 0 has no effect.

10.2.3 Printer Control Latch and Printer Control Swapper

The CPU reads the contents of the printer control latch by reading the printer control swapper. The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	RESERVED		DIR	IRQ ENABLE	SLCT IN	INIT#	AUTO FD	STROBE
DEFAULT	1	1	NA	0	NA	NA	NA	NA

BIT	DESCRIPTION
7-6	RESERVED. These two bits are always read as logical 1 and can be written.
5	DIR (Direction Control Bit). When this bit is logical 1, the parallel port is in the input mode (read). When it is logical 0, the parallel port is in the output mode (write). This bit can be read and written. In SPP mode, this bit is invalid and fixed at zero.
4	IRQ ENABLE. A logical 1 allows an interrupt to occur when ACK# changes from low to high.
3	SLCT IN. a logical 1 selects the printer.
2	INIT#. A logical 0 starts the printer (50 microsecond pulse, minimum).
1	AUTO FD. A logical 1 causes the printer to line-feed after a line is printed.
0	STROBE. A logical 1 generates an active-high pulse for a minimum of $0.5~\mu s$ to clock data into the printer. Valid data must be presented for a minimum of $0.5~\mu s$ before and after the strobe pulse.

The address port is available only in EPP mode. Bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

The contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write operation. The leading edge of IOW# causes an EPP address write cycle to be performed, and the trailing edge of IOW# latches the data for the duration of the EPP write cycle.

PD0-PD7 ports are read during a read operation. The leading edge of IOR# causes an EPP address read cycle to be performed and the data to be output to the host CPU.

10.2.5 EPP Data Port 0-3

These four registers are available only in EPP mode. The bit definitions for each data port are the same and as follows:

BIT	7	6	5	4	3	2	1	0
NAME	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

When any EPP data port is accessed, the contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write operation. The leading edge of IOW# causes an EPP data write cycle to be performed, and the trailing edge of IOW# latches the data for the duration of the EPP write cycle.

During a read operation, ports PD0-PD7 are read, and the leading edge of IOR# causes an EPP read cycle to be performed and the data to be output to the host CPU.

10.2.6 EPP Pin Descriptions

EPP NAME	TYPE	EPP DESCRIPTION
NWrite	0	Denotes read or write operation for address or data.
PD<0:7>	I/O	Bi-directional EPP address and data bus.
Intr	I	Used by peripheral device to interrupt the host.
NWait	I	Inactivated to acknowledge that data transfer is complete. Activated to indicate that the device is ready for the next transfer.
PE	I	Paper end; same as SPP mode.
Select	I	Printer-select status; same as SPP mode.
NDStrb	0	This signal is active low. It denotes a data read or write operation.
Nerror	I	Error; same as SPP mode.
Ninits	0	This signal is active low. When it is active, the EPP device is reset to its initial operating mode.
NAStrb	0	This signal is active low. It denotes an address read or write operation.

10.2.7 EPP Operation

When EPP mode is selected, the PDx bus is in standard or bi-directional mode when no EPP read, write, or address cycle is being executed. In this situation, all output signals are set by the SPP Control Port and the direction is controlled by DIR of the Control Port.

A watchdog timer is required to prevent system lockup. The timer indicates that more than 10 μ S have elapsed from the start of the EPP cycle to the time WAIT# is deasserted. The current EPP cycle is aborted when a time-out occurs. The time-out condition is indicated in status bit 0.

The EPP operates on a two-phase cycle. First, the host selects the register within the device for subsequent operations. Second, the host performs a series of read and/or write byte operations to the selected register. Four operations are supported on the EPP: Address Write, Data Write, Address Read, and Data Read. All operations on the EPP device are performed asynchronously.

10.2.7.1. EPP Version 1.9 Operation

The EPP read/write operation can be completed under the following conditions:

- a. If nWait is active low, the read cycle (nWrite inactive high, nDStrb/nAStrb active low) or write cycle (nWrite active low, nDStrb/nAStrb active low) starts, proceeds normally, and is completed when nWait goes inactive high.
- b. If nWait is inactive high, the read/write cycle cannot start. It must wait until nWait changes to active low, at which time it starts as described above.

10.2.7.2. EPP Version 1.7 Operation

The EPP read/write cycle can start without checking whether nWait is active or inactive. Once the read/write cycle starts, however, it does not finish until nWait changes from active low to inactive high.

10.3 Extended Capabilities Parallel (ECP) Port

This port is software- and hardware-compatible with existing parallel ports, so the NCT6683D-LU parallel port may be used in standard printer mode if ECP is not required. It provides an automatic high burst-bandwidth channel that supports DMA for ECP in both the forward (host-to-peripheral) and reverse (peripheral-to-host) directions.

Small FIFOs are used in both forward and reverse directions to improve the maximum bandwidth requirement. The size of the FIFO is 16 bytes. The ECP port supports an automatic handshake for the standard parallel port to improve compatibility mode transfer speed.

The ECP port hardware supports run-length-encoded (RLE) decompression. Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates how many times the next byte is to be repeated. RLE compression is required; the hardware support is optional.

For more information about the ECP Protocol, refer to the Extended Capabilities Port Protocol and ISA Interface Standard.

The NCT6683D-LU ECP supports the following modes.

Table 10-4 ECP Mode Description

MODE	DESCRIPTION

MODE	DESCRIPTION
000	SPP mode
001	PS/2 Parallel Port mode
010	Parallel Port Data FIFO mode
011	ECP Parallel Port mode
100	EPP mode (If this option is enabled in the CRF0h to select ECP/EPP mode)
101	Reserved
110	Test mode
111	Configuration mode

The mode selection bits are bits 7-5 of the Extended Control Register.

10.3.1 ECP Register and Bit Map

The next two tables list the registers used in ECP mode and provide a bit map of the parallel port and ECP registers.

NAME **ADDRESS** I/O **ECP MODES FUNCTION** R/W data Base+000h 000-001 Data Register ecpAFifo Base+000h R/W 011 ECP FIFO (Address) Base+001h R ΑII dsr Status Register dcr Base+002h R/W ΑII Control Register cFifo Base+400h R/W 010 Parallel Port Data FIFO ecpDFifo Base+400h R/W 011 ECP FIFO (DATA) R/W tFifo Base+400h 110 Test FIFO cnfgA Base+400h R 111 Configuration Register A cnfgB Base+401h R/W 111 Configuration Register B Base+402h R/W ΑII **Extended Control Register** ecr

Table 10-5 ECP Register Addresses

Note: The base addresses are specified by CR60 and 61, which are determined by configuration register or hardware setting.

Table 10-6 Bit Map of the ECP Registers

	D7	D6	D5	D4	D3	D2	D1	D0	NOTE
Data	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	
ecpAFifo	Addr/RLE	Address or	RLE field						2
Dsr	nBusy	nAck	PError	Select	nFault	1	1	1	1
Dcr	1	1	Directio	ackIntEn	SelectIn	nInit	Autofd	strobe	1
cFifo	Parallel Port	Parallel Port Data FIFO							
ecpFifo	ECP Data FI	FO							2
tFifo	Test FIFO								2
cnfgA	0	0	0	1	0	0	0	0	
cnfgB	compress	intrValue	1	1	1	1	1	1	
Ecr	MODE		•	nErrIntrEn	dmaEn	serviceIntr	full	empty	

Notes:

- 1. These registers are available in all modes.
- 2. All FIFOs use one common 16-byte FIFO.

Each register (or pair of registers, in some cases) is discussed below.

10.3.2 Data and ecpAFifo Port

Modes 000 (SPP) and 001 (PS/2) (Data Port)

During a write operation, the Data Register latches the contents of the data bus on the rising edge of the input, and the contents of this register are output to PD0-PD7. During a read operation, ports PD0-PD7 are read and output to the host. The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

Mode 011 (ECP FIFO-Address/RLE)

A data byte written to this address is placed in the FIFO and tagged as an ECP Address/RLE. The hardware at the ECP port transmits this byte to the peripheral automatically. This operation is defined only for the forward direction. The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	Address/RLE			А	ddress or RL	.E		

10.3.3 Device Status Register (DSR)

These bits are logical 0 during a read of the Printer Status Register. The bits of this status register are defined as follows:

BIT	7	6	5	4	3	2	1	0
NAME	nBusy	nAck	PError	Select	nFault	1	1	1

BIT	DESCRIPTION
7	nBusy. This bit reflects the complement of the Busy input.
6	nAck. This bit reflects the nAck input.
5	PError. This bit reflects the PError input.
4	Select. This bit reflects the Select input.
3	nFault. This bit reflects the nFault input.
2-0	These three bits are not implemented and are always logical 1 during a read.

10.3.4 Device Control Register (DCR)

The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	Rese	erved	Director	ackInEn	SelectIn	nlnit	Autofd	Strobe
DEFAULT	1	1	NA	NA	NA	NA	NA	NA

BIT	DESCRIPTION
7-6	Reserved. These two bits are always read as logical 1 and cannot be written.
5	 Director. If the mode is 000 or 010, this bit has no effect and the direction is always out. In other modes, 0: The parallel port is in the output mode. 1: The parallel port is in the input mode.
4	ackInEn (Interrupt Request Enable). When this bit is set to logical 1, it enables interrupt requests from the parallel port to the CPU on the low-to-high transition on ACK#.
3	SelectIn. This bit is inverted and output to the SLIN# output. 0: The printer is not selected. 1: The printer is selected.
2	nInit. This bit is output to the INIT# output.
1	Autofd. This bit is inverted and output to the AFD# output.
0	Strobe. This bit is inverted and output to the STB# output.

10.3.5 CFIFO (Parallel Port Data FIFO) Mode = 010

This mode is defined only for the forward direction. Bytes written or DMAed to this FIFO are transmitted by a hardware handshake to the peripheral using the standard parallel port protocol. Transfers to the FIFO are byte-aligned.

10.3.6 ECPDFIFO (ECP Data FIFO) Mode = 011

When the direction bit is 0, bytes written or DMAed to this FIFO are transmitted by a hardware handshake to the peripheral using the ECP parallel port protocol. Transfers to the FIFO are byte-aligned.

When the direction bit is 1, data bytes from the peripheral are read via automatic hardware handshake from ECP into this FIFO. Reads or DMAs from the FIFO return bytes of ECP data to the system.

10.3.7 TFIFO (Test FIFO Mode) Mode = 110

Data bytes may be read, written, or DMAed to or from the system to this FIFO in any direction. Data in the tFIFO is not transmitted to the parallel port lines. However, data in the tFIFO may be displayed on the parallel port data lines.

10.3.8 CNFGA (Configuration Register A) Mode = 111

This register is a read-only register. When it is read, 10H is returned. This indicates that this is an 8-bit implementation.

10.3.9 CNFGB (Configuration Register B) Mode = 111

The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	COMPRESS	intrVALUE	IRQx2	IRQx1	IRQx0		RESERVED	
DEFAULT	0	0	0	0	0	1	1	1

BIT	DESCRIPTION							
7	Compress. This bit is read-only. It is logical 0 during a read, which means that this chip does not support hardware RLE compression.							
6	intrValue. Re	turns the value on the	ISA IRQ line to determine possible conflicts.					
	IDO O	Reflects the IRQ res	source assigned for ECP port.					
5	IRQx2.	cnfgB[5:3]	IRQ resource					
		000	Reflects other IRQ resources selected by PnP register (default)					
		001	IRQ7					
		010	IRQ9					
4	IRQx1.	011	IRQ10					
		100	IRQ11					
		101	IRQ14					
		110	IRQ15					
		111	IRQ5					
3	IRQx0.							
2-0	Reserved. These three bits are logical 1 during a read and can be written.							

10.3.10ECR (Extended Control Register) Mode = all

This register controls the extended ECP parallel port functions. The bit definitions are follows:

BIT	7	6	5	4	3	2	1	0
NAME		MODE		nErrIntrEn	dmaEn	ServiceIntr	Full	Empty
DEFAULT	0	0	0	1	0	1	0	1

BIT	DESCRIPTION
-----	-------------

BIT		DESCRIPTION						
	Mode. Re	ead/Write. These bits select the mode.						
	000	Standard Parallel Port (SPP) mode. The FIFO is reset in this mode.						
	001	PS/2 Parallel Port mode. This is the same as SPP mode except that direction may be used to tri-state the data lines. Furthermore, reading the data register returns the value on the data lines, not the value in the data register.						
	010	Parallel Port FIFO mode. This is the same as SPP mode except that bytes are written or DMAed to the FIFO. FIFO data are automatically transmitted using the standard parallel port protocol. This mode is useful only when direction is 0.						
7-5	D11 ECP Parallel Port Mode. When the direction is 0 (forward direction), byte placed into the ecpDFifo and bytes written to the ecpAFifo are placed in single FIFO and automatically transmitted to the peripheral using the EC Protocol. When the direction is 1 (reverse direction), bytes are moved from the ECP parallel port and packed into bytes in the ecpDFifo.							
	100	EPP Mode. EPP mode is activated if the EPP mode is selected.						
	101	Reserved.						
	Test Mode. The FIFO may be written and read in this mode, but the data not transmitted on the parallel port.							
	111	Configuration Mode. The confgA and confgB registers are accessible at 0x400 and 0x401 in this mode.						
4	 nErrIntren. Read/Write (Valid only in ECP Mode) 0: Enables the interrupt generated on the falling edge of nFault. This prevents interrupts from being lost in the time between the read of the ECR and the write of the ECR. 1: Disables the interrupt generated on the asserting edge of nFault. 							
3	dmaEn. Read/Write. 0: Disable DMA unconditionally. 1: Enable DMA.							
2	 serviceIntr. Read/Write. 0: Enable one of the following cases of interrupts. When one of the serviced interrupts occurs, this bit is set to logical 1 by the hardware. This bit must be rest to logical 0 to reenable the interrupts. (a) dmaEn = 1: During DMA, this bit is set to logical 1 when terminal count is reached. (b) dmaEn = 0, direction = 0: This bit is set to logical 1 whenever there are writeIntr threshold or more bytes free in the FIFO. (c) dmaEn = 0, direction = 1: This bit is set to logical 1 whenever there are readIntr threshold or more valid bytes to be read from the FIFO. 1: Disable DMA and all of the service interrupts. Writing a logical 1 to this bit does not cause an interrupt. 							
1	Full. Read Only. 0: The FIFO has at least one free byte. 1: The FIFO is completely full; it cannot accept another byte.							
0	Empty. Read Only. 0: The FIFO contains at least one byte of data. 1: The FIFO is completely empty.							

10.3.11ECP Pin Descriptions

NAME	TYPE	DESCRIPTION
NStrobe (HostClk)	0	This pin loads data or address into the slave on its asserting edge during write operations. This signal handshakes with Busy.
PD<7:0>	I/O	These signals contain address, data or RLE data.
nAck (PeriphClk)	-	This signal indicates valid data driven by the peripheral when asserted. This signal handshakes with nAutoFd in reverse.
Busy (PeriphAck)	I	This signal deasserts to indicate that the peripheral can accept data. In the reverse direction, it indicates whether the data lines contain ECP command information or data. Normal data are transferred when Busy (PeriphAck) is high, and an 8-bit command is transferred when it is low.
PError (nAckReverse)	I	This signal is used to acknowledge a change in the direction of the transfer (asserted = forward). The peripheral drives this signal low to acknowledge nReverseRequest. The host relies upon nAckReverse to determine when it is permitted to drive the data bus.
Select (Xflag)	l	Indicates printer on-line.
NautoFd (HostAck)	0	Requests a byte of data from the peripheral when it is asserted. In the forward direction, this signal indicates whether the data lines contain ECP address or data. Normal data are transferred when nAutoFd (HostAck) is high, and an 8-bit command is transferred when it is low.
nFault (nPeriphReuqest)	ı	Generates an error interrupt when it is asserted. This signal is valid only in the forward direction. The peripheral is permitted (but not required) to drive this pin low to request a reverse transfer during ECP mode.
nInit (nReverseRequest)	0	This signal sets the transfer direction (asserted = reverse, deasserted = forward). This pin is driven low to place the channel in the reverse direction.
nSelectIn (ECPMode)	0	This signal is always deasserted in ECP mode.

10.3.12ECP Operation

The host must negotiate on the parallel port to determine if the peripheral supports the ECP protocol before ECP operation. After negotiation, it is necessary to initialize some of the port bits.

- (a) Set direction = 0, enabling the drivers.
- (b) Set strobe = 0, causing the nStrobe signal to default to the deasserted state.
- (c) Set autoFd = 0, causing the nAutoFd signal to default to the deasserted state.
- (d) Set mode = 011 (ECP Mode)

ECP address/RLE bytes or data bytes may be sent automatically by writing the ecpAFifo or ecpDFifo, respectively.

10.3.12.1. Mode Switching

The software must handle P1284 negotiation and all operations prior to a data transfer in SPP or PS/2 modes (000 or 001). The hardware provides an automatic control line handshake, moving data between the FIFO and the ECP port, only in the data transfer phase (mode 011 or 010).

If the port is in mode 000 or 001, it may switch to any other mode. If the port is not in mode 000 or 001, it can only be switched into mode 000 or 001. The direction can only be changed in mode 001.

In extended forward mode, the software should wait for the FIFO to be empty before switching back to mode 000 or 001. In ECP reverse mode, the software should wait for all the data to be read from the FIFO before changing back to mode 000 or 001.

10.3.12.2. Command/Data

ECP mode allows the transfer of normal 8-bit data or 8-bit commands. In the forward direction, normal data are transferred when HostAck is high, and an 8-bit command is transferred when HostAck is low. The most significant bits of the command indicate whether it is a run-length count (for compression) or a channel address.

In the reverse direction, normal data are transferred when PeriphAck is high, and an 8-bit command is transferred when PeriphAck is low. The most significant bit of the command is always zero.

10.3.12.3. Data Compression

The NCT6683D-LU hardware supports RLE decompression and can transfer compressed data to a peripheral. Odd (RLE) compression is not supported in the hardware, however. In order to transfer data in ECP mode, the compression count is written to ecpAFifo and the data byte is written to ecpDFifo.

10.3.13FIFO Operation

The FIFO threshold is set in CR5. All data transferred to or from the parallel port can proceed in DMA or Programmed I/O (non-DMA) mode, as indicated by the selected mode. The FIFO is used in Parallel Port FIFO mode or ECP Parallel Port Mode. After a reset, the FIFO is disabled.

10.3.14DMA Transfers

DMA transfers are always to or from the ecpDFifo, tFifo, or CFifo. DMA uses the standard PC DMA services. The ECP requests DMA transfers from the host by activating the PDRQ pin. The DMA empties or fills the FIFO using the appropriate direction and mode. When the terminal count in the DMA controller is reached, an interrupt is generated, and serviceIntr is asserted, which will disable the DMA.

10.3.15Programmed I/O (NON-DMA) Mode

The ECP and parallel port FIFOs can also be operated using interrupt-driven, programmed I/O. Programmed I/O transfers are

- 1. To the ecpDFifo at 400H and ecpAFifo at 000H
- 2. From the ecpDFifo located at 400H
- 3. To / from the tFifo at 400H.

The host must set dmaEn and serviceIntr to 0 and also must set the direction and state accordingly in the programmed I/O transfers.

The ECP requests programmed I/O transfers from the host by activating the IRQ pin. The programmed I/O empties or fills the FIFO using the appropriate direction and mode.

11. KEYBOARD CONTROLLER

The NCT6683D-LU KBC (8042 with licensed KB BIOS) circuit is designed to provide the functions needed to interface a CPU with a keyboard and/or a PS/2 mouse and can be used with IBM®-compatible personal computers or PS/2-based systems. The controller receives serial data from the keyboard or PS/2 mouse, checks the parity of the data, and presents the data to the system as a byte of data in its output buffer. Then, the controller asserts an interrupt to the system when data are placed in its output buffer. The keyboard and PS/2 mouse are required to acknowledge all data transmissions. No transmission should be sent to the keyboard or PS/2 mouse until an acknowledgement is received for the previous data byte.

Figure 11-1 Keyboard and Mouse Interface

11.1 Output Buffer

The output buffer is an 8-bit, read-only register at I/O address 60H (Default, PnP programmable I/O address LD5-CR60 and LD5-CR61). The keyboard controller uses the output buffer to send the scan code (from the keyboard) and required command bytes to the system. The output buffer can only be read when the output buffer full bit in the register (in the status register) is logical 1.

11.2 Input Buffer

The input buffer is an 8-bit, write-only register at I/O address 60h or 64h (Default, PnP programmable I/O address LD5-CR60, LD5-CR61, LD5-CR62, and LD5-CR63). Writing to address 60h sets a flag to indicate a data write; writing to address 64h sets a flag to indicate a command write. Data written to I/O address 60h is sent to the keyboard (unless the keyboard controller is expecting a data byte) through the controller's input buffer only if the input buffer full bit (in the status register) is logical 0.

11.3 Status Register

The status register is an 8-bit, read-only register at I/O address 64h (Default, PnP programmable I/O address LD5-CR62 and LD5-CR63) that holds information about the status of the keyboard controller and interface. It may be read at any time.

Table 11-1 Bit Map of Status Register

BIT	BUT FUNCTION	DESCRIPTION
0	Output Buffer Full	0: Output buffer empty 1: Output buffer full
1	Input Buffer Full	0: Input buffer empty 1: Input buffer full
2	System Flag	This bit may be set to 0 or 1 by writing to the system flag bit in the command byte of the keyboard controller. It defaults to 0 after a power-on reset.
3	Command/Data	0: Data byte 1: Command byte
4	Inhibit Switch	0: Keyboard is inhibited 1: Keyboard is not inhibited
5	Auxiliary Device Output Buffer	O: Auxiliary device output buffer empty 1: Auxiliary device output buffer full
6	General Purpose Time- out	0: No time-out error 1: Time-out error
7	Parity Error	0: Odd parity 1: Even parity (error)

11.4 Commands

Table 11-2 KBC Command Sets

COMMAND	FUNCTION					
20h	Read Command Byte of Keyboard Controller					
60h	Write Command Byte of Keyboard Controller					
	BIT BIT DEFINITION					
	7 Reserved					
	6 IBM Keyboard Translate Mode					
	5 Disable Auxiliary Device					
	4 Disable Keyboard					
	3 Reserve					
	2 System Flag					
	1 Enable Auxiliary Interrupt					
	0 Enable Keyboard Interrupt					
A4h	Test Password					
	Returns 0Fah if Password is loaded					
	Returns 0F1h if Password is not loaded					
A5h	Load Password					
	Load Password until a logical 0 is received from the system					

COMMAND	FUNCTION					
A6h	Enable Password					
	Enable the checking of keystrokes for a match with the password					
A7h	Disable Auxiliary Device Interface					
A8h	Enable Auxiliary Device Interface					
A9h	Interface Test					
	BIT BIT DEFINITION					
	00 No Error Detected					
	01 Auxiliary Device "Clock" line is stuck low					
	02 Auxiliary Device "Clock" line is stuck high					
	03 Auxiliary Device "Data" line is stuck low					
	04 Auxiliary Device "Data" line is stuck low					
AAh	Self-test					
	Returns 055h if self-test succeeds					
ABh	Interface Test					
	BIT BIT DEFINITION					
	00 No Error Detected					
	01 Keyboard "Clock" line is stuck low					
	02 Keyboard "Clock" line is stuck high					
	03 Keyboard "Data" line is stuck low					
	04 Keyboard "Data" line is stuck high					
ADh	Disable Keyboard Interface					
AEh	Enable Keyboard Interface					
C0h	Read Input Port (P1) and send data to the system					
C1h	Continuously puts the lower four bits of Port1 into the STATUS register					
C2h	Continuously puts the upper four bits of Port1 into the STATUS register					
D0h	Send Port 2 value to the system					
D1h	Only set / reset GateA20 line based on system data bit 1					
D2h	Send data back to the system as if it came from the Keyboard					
D3h	Send data back to the system as if it came from Auxiliary Device					
D4h	Output next received byte of data from system to Auxiliary Device					
E0h	Reports the status of the test inputs					
FXh	Pulse only RC (the reset line) low for 6µs if the Command byte is even					

11.5 Hardware GATEA20/Keyboard Reset Control Logic

The KBC includes hardware control logic to speed-up GATEA20 and KBRESET. This control logic is controlled by LD5-CRF0 as follows:

11.5.1 KB Control Register (Logic Device 5, CR-F0)

BIT 7 6 5 4 3 2 1 (

NAME	KCLKS1	KCLKS0	RESERVED			P92EN	HGA20	HKBRST#
DEFAULT	1	0	0	0	0	0	0	0

BIT	DESCR	RIPTION				
7	KCLKS1.	Select the KBC clock rate. Bits 7 6 0 0: Reserved.				
6	KCLKS0.	0 1: Reserved. 1 0: KBC clock input is 12 MHz. 1 1: Reserved.				
5-3	RESERVED.					
2	P92EN (Port 92 Enable). 1: Enables Port 92 to control GATEA20 and KBRESET. 0: Disables Port 92 functions.					
1	HGA20 (Hardware GATEA 20). 1: Selects hardware GATE A20 control logic to control GATE A20 signal. 0: Disables GATEA20 control logic functions.					
0	HKBRST# (Hardware Keyboard Reset). 1: Selects hardware KB RESET control logic to control KBRESET signal. 0: Disables hardware KB RESET control logic function.					

When the KBC receives data that follows a "D1" command, the hardware control logic sets or clears GATE A20 according to received data bit 1. Similarly, the hardware control logic sets or clears KBRESET depending on received data bit 0. When the KBC receives an "FE" command, the KBRESET is pulse low for 6 μ s (Min.) with a 14 μ s (Min.) delay.

GATE A20 and KBRESET are controlled by either software or hardware logic, and they are mutually exclusive. Then, GATE A20 and KBRESET are merged with Port92 when the P92EN bit is set.

11.5.2 Port 92 Control Register (Default Value = 0x24)

BIT	7	6	5	4	3	2	1	0
NAME	RES. (0)		RES. (1)	RES	5. (0)	RES. (1)	SGA20	PLKBRST#
DEFAULT	0	0	1	0	0	1	0	0

BIT	DESCRIPTION		
7-6	RES. (0)		
5	RES. (1)		
4-3	RES. (0)		
2	RES. (1)		
	SGA20 (Special GATE A20 Control)		
1	1: Drives GATE A20 signal to high.		
	0: Drives GATE A20 signal to low.		

	PLKBRST# (Pulled-low KBRESET). A logical 1 on this bit causes KBRESET to drive low
0	for 6 μS(Min.) with a 14 μS(Min.) delay. Before issuing another keyboard-reset command,
	the bit must be cleared.

12. POWER MANAGEMENT EVENT

The PME# signal is connected to the South Bridge and is used to wake up the system from S1 \sim S5 sleeping states.

Four registers in the NCT6683D-LU are associated with the PME function. The four registers are divided into PME status registers and PME interrupt registers of <u>wake-up events</u> Note. 1.

- 1) The PME status registers of wake-up event:
 - At ACPI interface base address +0, +1, +2, and +3h register
 - Each wake-up event has its own status
 - The PME status should be cleared by writing a "1" before enabling its corresponding bit in the PME interrupt registers
- 2) The PME interrupt registers of wake-up event:
 - At ACPI interface base address +4, +5, +6, and +7h register
 - Each wake-up event can be enabled / disabled individually to generate a PME# signal

Note.1 PME wake-up events that the NCT6683D-LU supports include:

- Mouse IRQ event*
- Keyboard IRQ event*
- Printer IRQ event
- Floppy IRQ event
- UART A/B IRQ event
- CIR IRQ event*
- Hardware Monitor / EC Space IRQ event
- RIB (UARTB Ring Indicator) event

Note.2 All the events above support waking system from S1 state. Events with the "*" mark could also support S3 and S5 states if MCU firmware is customized for this.

12.1 System Wakeup Control (SWC)

12.1.1 OVERVIEW

The SWC function block receives external events from system and internal events from internal functional modules. Based on these events, the SWC generates power management event (PME)/system control interrupt (SCI) and system management interrupt (SMI). These signals can also be directed to serial IRQ or MCU interrupt event.

The SWC receives the following external events:

• 16 genera purpose I/O enhance port (GPEN00 – GPEN07, GPEN10 – GPEN17).

The SWC receives the following internal events:

- PRT, UARTA, UARTB, KBC, CIR, GPIO, HM and EC port0/1/2 functional block interrupt events.
- HM SCI event.
- MCU general purpose events.

Figure 12-1 SWC Block Connection

The SWC outputs SWC_SCI, SWC_SMI and SWC_PSOUT signal.

- SWC_SCI is connected to PME# function pin and it can generate SCI/PME event to system.
 It can be route to serial IRQ and MCU module to generate interrupt event if its related register enabled.
- SWC_PSOUT is connected to MCU module and it can generate interrupt event to MCU. It informs MCU to generate PSOUT event.
- SWC_SMI is connected to SMI#/OVT# function pin and it can generate SMI#/OVT# event to system. It can be route to serial IRQ channel 2 and MCU module to generate interrupt event if its related register enabled.

Figure 12-2 SWC signal routing path

12.1.2 Function Description

The SWC function is based on *ACPI Specification Revision3.0 September2, 2004* general-purpose event register blocks. The SWC has an EVENT register group, EVENT_EN/EVENT_STS, to support 16 external events and 16 internal events.

NCT6683D-LU supports two system wakeup signals, PSOUT# and PME#. Each wakeup event input can only be routed to one of them by SCI_PSOUT_ROUTE. System can access two different register groups GPE_EN/GPE_STS and PSOUT_EN/PSOUT_STS in order to separate PSOUT and GPE events.

Figure 12-3 SWC registers block diagram

12.1.2.1. External Events

The SWC function receives 16 external GPEN (GPEN17-10, GPEN07-00) inputs as level high active event. Each GPEN function pin has its programmable parity and de-bounces time. After setting GPEN function pin multiplex, parity and de-bounces time, write 1 to its status bit to clear its status event.

12.1.2.2. Internal Events

The SWC function receives 3 kinds of internal event, internal device's IRQ, HM SCI and MCU general purpose event.

- Internal device's IRQ: SWC function receives 13 internal device's IRQ as event input. UARTA, UARTB, KBC, MOUSE, CIR, GPIO, HM and EC PORT0/12 IRQ are level high active event. PRT IRQ signal is edge high-active event.
- HM SCI and MCU general purpose event: They are generated by firmware operation. It includes KBC/Mouse wakeup, CIR wakeup, PSIN, UARTA/B RI#, GPIO input event or others firmware wakeup event.

12.1.2.3. Waken up by Keyboard events

To enable the keyboard Wake-Up function, corresponding function in EC Space register should be initialized by BIOS first, and then BIOS should set "KBC IRQ GPE enable" (and "KBC IRQ PSOUT enable", if the wakeup signal was to be routed to PSOUT), and clear the corresponding status flags (write 1 to corresponding bit locations).

There are two keyboard events can be used for the wake-up

- 1) Any key Set bit 0 at Logical Device A, CR[E0h] to "1" (Default).
- 2) Specific keys (Password) Set bit 0 at Logical Device A, CR[E0h] to "0".

Three sets of specific key combinations are stored at Logical Device A. CR[E1h] is an index register to indicate which byte of key code storage $(0x00h \sim 0x0Eh, 0x30h \sim 0x3Eh, 0x40h \sim 0x4Eh)$ is going to be read or written through CR[E2h]. According to IBM 101/102 keyboard specification, a complete key code contains a 1-byte make code and a 2-byte break code. For example, the make code of "0" is 0x45h, and the corresponding break code is 0xF0h, 0x45h.

The approach to implement Keyboard Password Wake-Up Function is to fill key codes into the password storage. Assume that we want to set "012" as the password. The storage should be filled as below. Please note that index $0x09h \sim 0x0Eh$ must be filled as 0x00h since the password has only three numbers.

12.1.2.4. Waken up by Mouse events

To enable the keyboard Wake-Up function, corresponding function in EC Space register should be initialized by BIOS first, and then BIOS should set "MOUSE IRQ GPE enable" (and "MOUSE IRQ PSOUT enable", if the wakeup signal was to be routed to PSOUT), and clear the corresponding status flags (write 1 to corresponding bit locations).

The following specific mouse events can be used for the wake-up:

- Any button clicked or any movement
- One click of the left or the right button
- One click of the left button
- One click of the right button
- Two clicks of the left button
- Two clicks of the right button.

Three control bits (ENMDAT_UP, MSRKEY, MSXKEY) define the combinations of the mouse wake-up events. Please see the following table for the details.

MSXKEY ENMDAT UP MSRKEY (LOGICAL (LOGICAL DEVICE A, (LOGICAL DEVICE WAKE-UP EVENT DEVICE A. CR[E6H], BIT 7) A, CR[E0H], BIT 4) CR[E0H], BIT 1) Any button clicked or any 1 Х 1 movement. One click of the left or right 1 0 Х button.

Table 12-1 Definitions of Mouse Wake-Up Events

ENMDAT_UP (LOGICAL DEVICE A, CR[E6H], BIT 7)	MSRKEY (LOGICAL DEVICE A, CR[E0H], BIT 4)	MSXKEY (LOGICAL DEVICE A, CR[E0H], BIT 1)	WAKE-UP EVENT
0	0	1	One click of the left button.
0	1	1	One click of the right button.
0	0	0	Two clicks of the left button.
0	1	0	Two clicks of the right button.

12.1.3 Registers

NOTICE:

- 1. GPEN, EC Ports, and MCU general purpose events are internal resources of MCU. Almost all of these registers are controlled by MCU. Please follow programming guide when implementing functions covered in this chapter (e.g. wake up system from sleep state by keyboard) .
- 2. All XXX Status registers were active only when corresponding XXX Enable registers were enabled.

12.1.3.1. General Purpose Event Status 0 – Base Address + 0

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	RW1C	GPEN07 GPE status
6	RW1C	GPEN06 GPE status
5	RW1C	GPEN05 GPE status
4	RW1C	GPEN04 GPE status
3	RW1C	GPEN03 GPE status
2	RW1C	GPEN02 GPE status
1	RW1C	GPEN01 GPE status
0	RW1C	GPEN00 GPE status

12.1.3.2. General Purpose Event Status 1 – Base Address + 1

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

BIT	READ / WRITE	DESCRIPTION	
7	RW1C	GPEN17 GPE status	

BIT	READ / WRITE	DESCRIPTION
6	RW1C	GPEN16 GPE status
5	RW1C	GPEN15 GPE status
4	RW1C	GPEN14 GPE status
3	RW1C	GPEN13 GPE status
2	RW1C	GPEN12 GPE status
1	RW1C	GPEN11 GPE status
0	RW1C	GPEN10 GPE status

12.1.3.3. General Purpose Event Status 2 – Base Address + 2

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7	RW1C	GPIO IRQ GPE status. Controlled by EC	
6	RW1C	CIR IRQ GPE status	
5	RW1C	MOUSE IRQ GPE status	
4	RW1C	KBC IRQ GPE status	
3	RW1C	UARTB IRQ GPE status	
2	RW1C	UARTA IRQ GPE status	
1	RW1C	PRT IRQ positive-edge GPE status	
0	Reserved		

12.1.3.4. General Purpose Event Status 3 – Base Address + 3

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

BIT	READ / WRITE	DESCRIPTION
7	RW1C	MCU general purpose event 0 GPE status
6	RW1C	HM SCI GPE status
5	RW1C	EC PORT2 IRQ GPE status
4	RW1C	EC PORT1 IRQ GPE status
3	RW1C	EC PORT0 IRQ1 GPE status
2	RW1C	EC PORT0 IRQ0 GPE status
1	RW1C	HM IRQ GPE status

BIT	READ / WRITE	DESCRIPTION	
0	RW1C	MCU general purpose event 1 GPE status	

12.1.3.5. General Purpose Event Enable 0 – Base Address + 4

Attribute: RW Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	GPEN07 GPE enable
6	R/W	GPEN06 GPE enable
5	R/W	GPEN05 GPE enable
4	R/W	GPEN04 GPE enable
3	R/W	GPEN03 GPE enable
2	R/W	GPEN02 GPE enable
1	R/W	GPEN01 GPE enable
0	R/W	GPEN00 GPE enable

12.1.3.6. General Purpose Event Enable 1 – Base Address + 5

Attribute: RW Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION			
7	R/W	GPEN17 GPE enable			
6	R/W	GPEN16 GPE enable			
5	R/W	GPEN15 GPE enable			
4	R/W	GPEN14 GPE enable			
3	R/W	GPEN13 GPE enable			
2	R/W	GPEN12 GPE enable			
1	R/W	GPEN11 GPE enable			
0	R/W	GPEN10 GPE enable			

12.1.3.7. General Purpose Event Enable 2 – Base Address + 6

Attribute: RW Power Well: VSB Reset by: RSMRST #

BIT	READ / WRITE	DESCRIPTION
7	R/W	GPIO IRQ GPE enable. Controlled by EC
6	R/W	CIR IRQ GPE enable
5	R/W	MOUSE IRQ GPE enable
4	R/W	KBC IRQ GPE enable
3	R/W	UARTB IRQ GPE enable
2	R/W	UARTA IRQ GPE enable
1	R/W	PRT IRQ positive-edge GPE enable
0	Reserved	

12.1.3.8. General Purpose Event Enable 3 – Base Address + 7

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	RW1C	MCU general purpose event 0 GPE enable
6	RW1C	HM SCI GPE enable
5	RW1C	EC PORT2 IRQ GPE enable
4	RW1C	EC PORT1 IRQ GPE enable
3	RW1C	EC PORT0 IRQ1 GPE enable
2	RW1C	EC PORT0 IRQ0 GPE enable
1	RW1C	HM IRQ GPE enable
0	RW1C	MCU general purpose event 1 GPE enable

12.1.3.9. PSOUT Status 0 – Base Address + 8

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

BIT	READ / WRITE	DESCRIPTION
7	RW1C	GPEN07 PSOUT status
6	RW1C	GPEN06 PSOUT status
5	RW1C	GPEN05 PSOUT status
4	RW1C	GPEN04 PSOUT status
3	RW1C	GPEN03 PSOUT status
2	RW1C	GPEN02 PSOUT status

BIT	READ / WRITE	DESCRIPTION
1	RW1C	GPEN01 PSOUT status
0	RW1C	GPEN00 PSOUT status

12.1.3.10. PSOUT Status 1 - Base Address + 9

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	RW1C	GPEN17 PSOUT status
6	RW1C	GPEN16 PSOUT status
5	RW1C	GPEN15 PSOUT status
4	RW1C	GPEN14 PSOUT status
3	RW1C	GPEN13 PSOUT status
2	RW1C	GPEN12 PSOUT status
1	RW1C	GPEN11 PSOUT status
0	RW1C	GPEN10 PSOUT status

12.1.3.11. PSOUT Status 2 – Base Address + 10

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	RW1C	GPIO IRQ PSOUT status. Controlled by EC
6	RW1C	CIR IRQ PSOUT status
5	RW1C	MOUSE IRQ PSOUT status
4	RW1C	KBC IRQ PSOUT status
3	RW1C	UARTB IRQ PSOUT status
2	RW1C	UARTA IRQ PSOUT status
1	RW1C	PRT IRQ positive-edge PSOUT status
0	Reserved	

12.1.3.12. PSOUT Status 3 - Base Address + 11

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	RW1C	MCU general purpose event 0 PSOUT status
6	RW1C	HM SCI PSOUT status
5	RW1C	EC PORT2 IRQ PSOUT status
4	RW1C	EC PORT1 IRQ PSOUT status
3	RW1C	EC PORT0 IRQ1 PSOUT status
2	RW1C	EC PORT0 IRQ0 PSOUT status
1	RW1C	HM IRQ PSOUT status
0	RW1C	MCU general purpose event 1 PSOUT status

12.1.3.13. **PSOUT Enable 0 – Base Address + 12**

Attribute: RW Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	GPEN07 PSOUT enable
6	R/W	GPEN06 PSOUT enable
5	R/W	GPEN05 PSOUT enable
4	R/W	GPEN04 PSOUT enable
3	R/W	GPEN03 PSOUT enable
2	R/W	GPEN02 PSOUT enable
1	R/W	GPEN01 PSOUT enable
0	R/W	GPEN00 PSOUT enable

12.1.3.14. PSOUT Enable 1 – Base Address + 13

Attribute: RW Power Well: VSB Reset by: RSMRST #

BIT	READ / WRITE	DESCRIPTION
7	R/W	GPEN17 PSOUT enable
6	R/W	GPEN16 PSOUT enable
5	R/W	GPEN15 PSOUT enable
4	R/W	GPEN14 PSOUT enable
3	R/W	GPEN13 PSOUT enable

BIT	READ / WRITE	DESCRIPTION
2	R/W	GPEN12 PSOUT enable
1	R/W	GPEN11 PSOUT enable
0	R/W	GPEN10 PSOUT enable

12.1.3.15. PSOUT Enable 2 – Base Address + 14

Attribute: RW Power Well: VSB Reset by: RSMRST #

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	GPIO IRQ PSOUT enable. Controlled by EC
6	R/W	CIR IRQ PSOUT enable
5	R/W	MOUSE IRQ PSOUT enable
4	R/W	KBC IRQ PSOUT enable
3	R/W	UARTB IRQ PSOUT enable
2	R/W	UARTA IRQ PSOUT enable
1	R/W	PRT IRQ positive-edge PSOUT enable
0	Reserved	

12.1.3.16. **PSOUT Enable 3 – Base Address + 15**

Attribute: RW1C Power Well: VSB Reset by: RSMRST #

BIT	READ / WRITE	DESCRIPTION
7	RW1C	MCU general purpose event 0 PSOUT enable
6	RW1C	HM SCI PSOUT enable
5	RW1C	EC PORT2 IRQ PSOUT enable
4	RW1C	EC PORT1 IRQ PSOUT enable
3	RW1C	EC PORT0 IRQ1 PSOUT enable
2	RW1C	EC PORT0 IRQ0 PSOUT enable
1	RW1C	HM IRQ PSOUT enable
0	RW1C	MCU general purpose event 1 PSOUT enable

13. SERIALIZED IRQ

The NCT6683D-LU supports a serialized IRQ scheme. This allows a signal line to be used to report the parallel interrupt requests. Since more than one device may need to share the signal serial SERIRQ signal, an open drain signal scheme is employed. The clock source is the PCI clock. The serialized interrupt is transferred on the SERIRQ signal, one cycle consisting of three frames types: the Start Frame, the IRQ/Data Frame, and the Stop Frame.

13.1 Start Frame

There are two modes of operation for the SERIRQ Start Frame: Quiet mode and Continuous mode.

In the Quiet mode, the NCT6683D-LU drives the SERIRQ signal active low for one clock, and then tristates it. This brings all the state machines of the NCT6683D-LU from idle to active states. The host controller (the South Bridge) then takes over driving SERIRQ signal low in the next clock and continues driving the SERIRQ low for programmable 3 to 7 clock periods. This makes the total number of clocks low 4 to 8 clock periods. After these clocks, the host controller drives the SERIRQ high for one clock and then tri-states it.

In the Continuous mode, the START Frame can only be initiated by the host controller to update the information of the IRQ/Data Frame. The host controller drives the SERIRQ signal low for 4 to 8 clock periods. Upon a reset, the SERIRQ signal is defaulted to the Continuous mode for the host controller to initiate the first Start Frame.

Please see the diagram below for more details.

Start Frame Timing with source sampled a low pulse on IRQ1.

Figure 13-1 Start Frame Timing with Source Sampled A Low Pulse on IRQ1

H=Host Control SL=Slave Control R=Recovery T=Turn-around S=Sample Note:

- 1. 1. The Start Frame pulse can be 4-8 clocks wide.
- The first clock of Start Frame is driven low by the NCT6683D-LU because IRQ1 of the NCT6683D-LU needs an interrupt request. Then the host takes over and continues to pull the SERIRQ low.

13.2 IRQ/Data Frame

Once the Start Frame has been initiated, the NCT6683D-LU must start counting frames based on the rising edge of the start pulse. Each IRQ/Data Frame has three clocks: the Sample phase, the Recovery phase, and the Turn-around phase.

During the Sample phase, the NCT6683D-LU drives SERIRQ low if the corresponding IRQ is active. If the corresponding IRQ is inactive, then SERIRQ must be left tri-stated. During the Recovery phase, the NCT6683D-LU device drives the SERIRQ high. During the Turn-around phase, the NCT6683D-LU device leaves the SERIRQ tri-stated. The NCT6683D-LU starts to drive the SERIRQ line from the beginning of "IRQ0 FRAME" based on the rising edge of PCICLK.

The IRQ/Data Frame has a specific numeral order, as shown in Table 13.1.

Table 13-1 SERIRQ Sampling Periods

	SERIRQ SAMPLING PERIODS							
IRQ/DATA FRAME	SIGNAL SAMPLED	# OF CLOCKS PAST START	EMPLOYED BY					
1	IRQ0	2	Reserved					
2	IRQ1	5	Keyboard					
3	SMI#	8	H/W Monitor & SMI					
4	IRQ3	11	UART B					
5	IRQ4	14	UART A					
6	IRQ5	17	1					
7	IRQ6	20	-					
8	IRQ7	23	LPT					
9	IRQ8	26	-					
10	IRQ9	29	ı					
11	IRQ10	32	-					
12	IRQ11	35	1					
13	IRQ12	38	Mouse					
14	IRQ13	41	Reserved					
15	IRQ14	44	ı					
16	IRQ15	47	-					
17	IOCHCK#	50	-					
18	INTA#	53	-					
19	INTB#	56	-					
20	INTC#	59	-					
21	INTD#	62	-					
32:22	Unassigned	95	-					

13.3 Stop Frame

After all IRQ/Data Frames have completed, the host controller will terminates SERIRQ with a Stop frame. Only the host controller can initiate the Stop Frame by driving SERIRQ low for 2 or 3 clocks. If the Stop Frame is low for 2 clocks, the Sample mode of next SERIRQ cycle's Sample mode is the Quiet mode. If the Stop Frame is low for 3 clocks, the Sample mode of next SERIRQ cycle is the Continuous mode.

Please see the diagram below for more details.

Stop Frame Timing with Host Using 17 SERIRQ sampling period.

Figure 13-2 Stop Frame Timing with Host Using 17 SERIRQ Sampling Period

H=Host Control R=Recovery T=Turn-around S=Sample I= Idle. Note:

- 1. There may be none, one or more Idle states during the Stop Frame.
- 2. The Start Frame pulse of next SERIRQ cycle <u>may</u> or may not start immediately after the turn-around clock of the Stop Frame.

14. CONSUMER INFRARED REMOTE (CIR)

NOTICE: Wakeup-related functions by CIR were implemented in EC Space. Please refer to NCT6683D Family EC Space Datasheet about this topic.

Regarding the receiving of IR Block, the hardware uses the sampling rates of 1us, 25us, 50us and 100us to calculate the widths of H Level and L Level. The results are saved/stored in 32*8 RX FIFO. The max widths of H Level and L Level will be determined by Sample Limit Count Register. During the receiving, the hardware will reflect the FIFO status in RX FIFO Status Register. In addition, the hardware also generates status, such as Data Ready, Trigger Level Reach, FIFO Overrun and FIFO underrun, in RC Status Register.

As for the transmission, the user has to set up the Carrier frequency and the transmission mode first and then writes the widths of H Level and L Level via TX FIFO. The hardware will add Carrier to H Level according to the transmission mode.

14.1 CIR Register Table

Table 14-1 CIR Register Table

-										
				RC	Block					
ExtAddr	Name	7	6	6 5 4 3 2 1						
base+0	IRCON	loopback_en	WIREN	TXEN	RXEN	WRXINV	RXINV	Sample Per	riod Select	
base+1	IRSTS	RDR	RTR	PE	RFO	TE	TTR	TFU	GH	
base+2	IREN	RDR	RTR	PE	RFO	TE	TTR	TFU	GH	
base+3	RXFCONT		RXFIFO Count							
base+4	СР	MODE							Carrier Prescalar	
base+5	CC		Carrier Period							
base+6	SLCH			(Sample Limit (Count High Byte				
base+7	SLCL			;	Sample Limit	Count Low Byte				
base+8	FIFOCON	TXFIFOCLR	R	Tx Trig	ger Level	RXFIFOCLR	R	Rx Trigge	er Level	
base+9	IRFIFOSTS	IR_Pending	RX_GS	RX_FTA	RX_Empty	RX_Full	TX_FTA	TX_Empty	TX_Full	
base+A	SRXFIFO				Sample	RX FIFO				
base+B	TXFCONT				TX FIF	O Count				
base+C	STXFIFO		Sample TX FIFO							
base+D	FCCH	Frame Carrier Count High Byte								
base+E	FCCL		•	F	rame Carrier	Count Low Byte)			
base+F	IRFSM	R		Decoder FS	SM	R		Encoder FSM	1	

14.1.1.1. IR Configuration Register – Base Address + 0

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	WIREN	TXEN	RXEN	WRXINV	RXINV	Sample Period Select	
DEFAULT	0	0	0	0	0	1	0	0

BIT	DESCRIPTION
7	Reserved
6	Wide-band IR Enable
5	TX Enable
	1: Transmission Enable. After confirming that FIFO is not empty, the transmission starts (the hardware will wait until TX FIFO data are written). If TX Enable is set to 0 during the transmission, the transmission stops when the transmission of FIFO data is completed.
	0: Transmission Disable.
4	RX Enable
3	Wide-band IR Rx Invert Enable
	0: Dongle Carrier ON is high, OFF (Idle) is low.
	1: Dongle Carrier ON is low, OFF (Idle) is high.
2	IR Rx Invert Enable
	0: Dongle Carrier ON is high, OFF (Idle) is low.
	1: Dongle Carrier ON is low, OFF (Idle) is high.
1-0	Sample Period Select
	00:1us, 01: 25us, 10: 50us, 11: 100us
	Note: In the 1us mode, the pulse mode will not function due to the IR regulations.

14.1.1.2. IR Status Register – Base Address + 1

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
Name	RDR	RTR	PE	RFO	TE	TTR	TFU	GH
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	RX Data Ready (Writing 1 will clear the bit).
6	RX FIFO Trigger Level Reach (Writing 1 will clear the bit).
5	Packet End (Writing 1 will clear the bit).
4	RX FIFO Overrun (Overrun and Data Ready will be simultaneously generated. Writing 1 will clear the bit).
3	TX FIFO Empty (Writing 1 will clear the bit).
2	TX FIFO Trigger Level Reach (Writing 1 will clear the bit).
1	TX FIFO Underrun (Writing 1 will clear the bit).
0	Min Length Detected (Writing 1 will clear the bit)
	1: The IR Data length received is shorter than the default value.
	0: The IR Data length received is longer than the default value.

14.1.1.3. IR Interrupt Configuration Register – Base Address + 2

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	RDR	RTR	PE	RFO	TE	TTR	TFU	GH
DEFAULT	0	0	0	0	0	0	0	0

1: Enable interrupt; 0: Disable interrupt

BIT	DESCRIPTION
7	RX Data Ready
6	RX FIFO Trigger Level Reach
5	Packet End
4	RX FIFO Overrun (Overrun and Data Ready will be simultaneously generated).
3	TX FIFO Empty
2	TX FIFO Trigger Level Reach
1	TX FIFO Underrun
0	Min Length Detected

Note. When an Interrupt occurs, it only can be cleared by writing IR Status Register to 1.

14.1.1.4. RX FIFO Count- Base Address + 5

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		FIFO Count						
DEFAULT	0	0	0	0	0	0	0	0

1: Enable; 0: Disable

BIT	DESCRIPTION
7-0	RX FIFO Count

14.1.1.5. IR TX Carrier Prescalar Configuration Register (CP) – Base Address + 4

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Mode		Reserved						
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7	Mode

	0 : DC Mode
	1 : Pulse Mode
6-1	Reserved.
0	Carrier Prescalar (CP). This bit is set for the Prescalar value of the IR TX carrier frequency.

14.1.1.6. IR TX Carrier Period Configuration Register (CC) – Base Address + 5

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Carrier Period (CC)							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	This byte is set for IR TX carrier period. The actual carrier period will be: Period = 2 * (2 ^ (CP*2)) * (CC+1) / (System Clock), where the frequency = 1 / period, and System Clock = 24MHz. Setting CP and CC to 0 will cause stop the device to from use using anyno carrier at all (that is, no light modulation, just constant on and off periods). The period count value CC can be any number from 0 to 255.

14.1.1.7. IR RX Sample Limited Count High Byte Register (RCLCH) – Base Address + 6

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		Sample Limited Count High Byte						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	This byte is defined as the high byte of the limited count in the IR RX mode.

14.1.1.8. IR RX Sample Limited Count Low Byte Register (RCLCL) – Base Address + 7

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Sample Limited Count low Byte							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	This byte is defined as the low byte of the limited count in the IR RX mode.

Note. (RCLCH, RCLCL) is defined as 16 bits value of the limited count in the IR RX mode. When the RX date length reaches the limited count, Packet End status will appear.

Version: 0.7

14.1.1.9. IR FIFO Configuration Register (FIFOCON) – Base Address + 8

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	TXFIFOCLR	Reserved	TX Trigger Level		RXFIFOCLR	Reserved	RX Trigg	jer Level
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	TX FIFO Cleared.
6	Reserved.
5-4	TX Trigger Level
	Bits
	5 4
	0 0: 31
	0 1: 24
	1 0: 16
	1 1: 8
3	RX FIFO Cleared.
2	Reserved.
1-0	RX Trigger Level
	Bits
	10
	0 0: 1
	0 1: 8
	1 0: 16
	1 1: 24

14.1.1.10. IR Sample RX FIFO Status Register – Base Address + 9

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	IR_Pending	RX_GS	RX_FTA	RX_Empty	RX_Full	TX_FTA	TX_Empty	TX_Full
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	IR Pending
	1: No Interrupt
	0: Interrupt issue
6	Minimum Length Detect Status. This bit will be cleared when Packet End appears.
5	RX FIFO Trigger Level Active.
4	RX FIFO Empty Flag.

BIT	DESCRIPTION
3	RX FIFO Full Flag.
2	TX FIFO Trigger Level Active.
1	TX FIFO Empty Flag.
0	TX FIFO Full Flag.

14.1.1.11. IR Sample RX FIFO Register – Base Address + A

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Voltage Level			Sa	mple RX FI	FO		

BIT	DESCRIPTION
7	Voltage Level
	0: Low, 1: High
6-0	RX data length (Unit : Sample Period)
	Note:
	1. 0x80 is Packet End. The hardware enters the Idle state after checking Rx Channel.
	2. When 0x00 represents the glitch packet, it means pulses shorter than 3/4 sample period are received.
	3. Pulses that are shorter than 1/4 sample periods will be ignored automatically.

14.1.1.12. TX FIFO Count- Base Address + B

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		TX FIFO Count							
DEFAULT	0	0	0	0	0	0	0	0	

1: Enable; 0: Disable

BIT	DESCRIPTION
7-0	TX FIFO Count

14.1.1.13. IR Sample TX FIFO Register – Base Address + C

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Voltage Level			Sa	ımple TX FII	FO		

BIT	DESCRIPTION
7	Voltage Level
	0: Low, 1: High
6-0	TX data length (Unit : Sample Period)

14.1.1.14. IR Carrier Count High Byte Register – Base Address + D

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			(Carrier Cou	nt High Byte)		

BIT	DESCRIPTION
7-0	Carrier Count High Byte. This byte records the total amount of the total rising edges until time-out event appears.

14.1.1.15. IR Carrier Count Low Byte Register – Base Address + E

Attribute: Read Only Size: 8 bits

_	NAME	,		J	Carrier Cou	B		'	U
	BIT	7	6	5	4	3	2	1	0

BIT	DESCRIPTION
7-0	Carrier Count Low Byte. This byte records the total amount of the the rising edges until time-out event appears.

After a time-out of reception on the learning receiver, this response is sent to tell the host the carrier frequency of the previous sample. The Carrier Count High Byte (ch) and Carrier Count Low Byte (cl) specify the cycle counts of cycles of the carrier. Carrier counts can also be thought ofregarded as the number of leading edges in the previous sample.

This is used toe calculation of the calculate carrier frequency is as followsfollowed:

lastCarrierCount(decimal) = ch*256+cl;

Thus,

Carrier frequency = (lastCarrierCount) / (irPacketOnDuration);

The **irPacketOnDuration** value is the total amount of time that the envelope of the signal was is high. The IR receiver should keep track of the time that of the high envelope is high and return it using this response.

This response is unsolicited. It is returned by the receiver when IR arrives but is never explicitly requested.

14.1.1.16. IR FSM Status Register (IRFSM) – Base Address + F

Attribute: Read Only

SIZE.	0 มเธ							
BIT	7	6	5	4	3	2	1	0

NAME	Reserved		ecoder FSI	И	Reserved	E	ncoder FSI	И
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION				
7	Reserved.				
6	Decoder over status				
5	Decoder continuing status				
4	Decoder wait H status 1: idle, 0: RX busy				
3	Reserved.				
2	Encoder Idle Status. 1: idle, 0: TX busy				
1	Encoder Read Status				
0	Encoder Level Output Status				

14.1.1.17. IR Minimum Length Register – Base Address + F

Attribute: Write Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Min Length Register							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION					
7-0	Min Length Register. Set up the shortest expected length of each carrier on the RX receiver (Unit: Sample Clock).					

15. GENERAL PURPOSE I/O

NOTICE: Some GPIO pin functions were configured when related SW functions of EC Space were enabled. For such situations BIOS or application programs should not alter these setting to avoid abnormal function of underlying firmware. Please refer to EC Space Specification before going to change any configuration setting of GPIO pins.

GPIO Register can be programmed by LPC or 8051. LPC write to the register has two ways: through Logic Device 7, CRE0 ~ CRF0. Another way is through base address write.

For mcu write to GPIO register, the address bit $7 \sim$ bit4 represent GPIO Group Selection, and bit3 \sim bit0 represent different GPIO control register or run time register.

acpi gpio mcu cs & (acpi gpio mcu addr[7:0] = 8'h0x) : Select GPIO GROUP0

acpi_gpio_mcu_cs & (acpi_gpio_mcu_addr[7:0] = 8'h1x) : Select GPIO_GROUP1

15.1 GPIO Block Diagram

GPIO0 ~ GPIO9 Groups block diagram:

GPIOEN0 & GPIOEN1 Group block diagram:

GPIO Alternate Function block diagram:

The GPIO output can switch to BEEP function, PCIRST_OUT buffer function, and ACPI OUT function when GPO functions active. The Polarity and output type selections will also affect the output behavior.

NOTICE: When GPIO was configured to output data, please notice when GPIO data registers were read, it is the realistic pin DC status instead of wanted output state reflected by these registers. That means if external loading is heavy, the data read might not be the same as state wanted.

15.2 GPIO Runtime Register

The base address of the Address Port and Data Port is specified in registers CR[60h] and CR[61h] of Logical Device 7, the GPIO device. CR[60h] is the high byte, and CR[61h] is the low byte.

	GPIO Block								
BaseAddr	Name	7	6	5	4	3	2	1	0
Base+0	GPIO0		GPIO G	aroup 0 R	un timer r	egister ar	nd control	register	
Base+1	GPIO1		GPIO G	aroup 1 R	un timer r	egister ar	nd control	register	
Base+2	GPIO2		GPIO G	Group 2 R	un timer r	egister ar	nd control	register	
Base+3	GPIO3		GPIO G	Group 3 R	un timer r	egister ar	nd control	register	
Base+4	GPIO4		GPIO Group 4 Run timer register and control register						
Base+5	GPIO5		GPIO G	aroup 5 R	un timer r	egister ar	nd control	register	
Base+6	GPIO6		GPIO G	aroup 6 R	un timer r	egister ar	nd control	register	
Base+7	GPIO7		GPIO G	Group 7 R	un timer r	egister ar	nd control	register	
Base+8	GPIO8		GPIO G	aroup 8 R	un timer r	egister ar	nd control	register	
Base+9	GPIO9		GPIO G	aroup 9 R	un timer r	egister ar	nd control	register	
Base+A			Reserved						
Base+B	GPIOEN0	GF	GPIO Enhance Group 0 Run timer register and control register						
Base+C	GPIOEN1	GF	PIO Enhar	nce Group	1 Run tii	mer regist	er and co	ntrol regis	ster
Base+D	GPSEL					GPIO Cor	ntrol Regi	ster Selec	tion

Base+E	Reserved.
Base+F	Reserved.

15.2.1 GPIO Group 0 Run timer register and control register (base+0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		GPIO Group 0 Run timer register and control register							
DEFAULT									

BIT	DESCRIPTION
7-0	GPIO Group 0 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.2 GPIO Group 1 Run timer register and control register (base+1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		GPIO Group 1 Run timer register and control register								
DEFAULT		Rese	rved							

BIT	DESCRIPTION
7-0	GPIO Group 1 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.3 GPIO Group 2 Run timer register and control register (base+2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		GPIO Group 2 Run timer register and control register							
DEFAULT									

BIT	DESCRIPTION
7-0	GPIO Group 2 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.4 GPIO Group 3 Run timer register and control register (base+3)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		GPIO Group 3 Run timer register and control register							
DEFAULT									

BIT	DESCRIPTION
7-0	GPIO Group 3 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.5 GPIO Group 4 Run timer register and control register (base+4)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		GPIO Group 4 Run timer register and control register							
DEFAULT									

BIT	DESCRIPTION
7-0	GPIO Group 4 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.6 GPIO Group 5 Run timer register and control register (base+5)

Attribute: Read/Write Size: 8 bits

 BIT
 7
 6
 5
 4
 3
 2
 1
 0

 NAME
 GPIO Group 5 Run timer register and control register

 DEFAULT
 Image: Control of the properties of the prope

BIT	DESCRIPTION
7-0	GPIO Group 5 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.7 GPIO Group 6 Run timer register and control register (base+6)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		GPIO Group 6 Run timer register and control register						
DEFAULT								

BIT	DESCRIPTION	
Confidentio	108 	May 14, 2013 Version: 0.7

BIT	DESCRIPTION
7-0	GPIO Group 6 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.8 GPIO Group 7 Run timer register and control register (base+7)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	GPIO Group 7 Run timer register and control register							
DEFAULT	Reserved							

BIT	DESCRIPTION
7-0	GPIO Group 7 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.9 GPIO Group 8 Run timer register and control register (base+8)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	GPIO Group 8 Run timer register and control register							
DEFAULT	Reserved					Reserved		

BIT	DESCRIPTION
7-0	GPIO Group 8 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.10 GPIO Group 9 Run timer register and control register (base+9)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	GPIO Group 9 Run timer register and control register							
DEFAULT	Reserved							

BIT	DESCRIPTION
7-0	GPIO Group 9 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.11 GPIO Enhance Group 0 Run timer register and control register (base+B)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		GPIO Enhance Group 0 Run timer register and control register						
DEFAULT								

BIT	DESCRIPTION
7-0	GPIO Enhance Group 0 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.12 GPIO Enhance Group 1 Run timer register and control register (base+C)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		GPIO Enhance Group 1 Run timer register and control register						
DEFAULT								

BIT	DESCRIPTION
7-0	GPIO Enhance Group 1 Run timer register and control register. This register reflects, for both read and write, the register current selected by the GPSEL register (base+D).

15.2.13 GPIO SLECTION register (base+D)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		GPIO Selection register						
DEFAULT		Reserved.			0	0	0	0

BIT	DESCRIPTION
7-0	Selects the control register or run-time register to be configured.

GPSEL	Reflect Register
	GPIO Group x Data Register:
4'h0	For output ports, the respective bits can be read/written and produced to pins.
4110	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.
4'h1	GPIO Group Interrupt Enable
4'h2	GPIO Status Register
	GPIO I/O Control Register
4'h3	1 – Input
	0 – Output

	GPIO Inversion Control Register				
4'h4	1 – Inversion				
	0 – No Inversion				
	GPIO PP/OD Control Register				
4'h5	1 – Push-Pull				
	0 – Open-Drain				
	GPIO Interrupt Type0 Register				
4'h6	00h: Status field is trigger by falling edge.				
4110	10h: Status field is trigger by rising edge.				
	x1h: Status field is trigger by both edge.				
4'h7	GPIO Output Data Reflection Register				
4'h8	GPIO Internal pull down Control Register				
	GPIO Reset Source Control Register				
	00 : PCI RST#				
4'h9	01 : PWROK				
	10 : MCU Reset (Software Reset)				
	11 : RSMRST#				
4'hA	Reserved.				
	GPIO De-bounce Clock Option (Only GPEN0 and GPEN1 valid)				
4'hB	0: De-bounce clock base on 1KHz.				
	1: De-bounce clock base on 1MHz.				
4'hC	GPIO De-bounce Type 0 (Only GPEN0 and GPEN1 valid)				
	GPIO De-bounce Type 1 (Only GPEN0 and GPEN1 valid)				
	{ GP_De_bounce_typ0, GP_De_bounce_typ1}				
4'hD	00: No De-bounce.				
15	01: De-bounce high.				
	10: De-bounce low.				
	11: De-bounce high and low.				
4'hE	GPIO De-bounce Time Option 0 (Only GPEN0 and GPEN1 valid)				
	GPIO De-bounce Time Option 1 (Only GPEN0 and GPEN1 valid)				
	{ GP_De_bounce_time_opt0, GP_De_bounce_time_opt1}				
4'hF	00: De-Bounce 4 ms / 4us				
	01: De-Bounce 16 ms / 16us				
	10: De-Bounce 32 ms / 32us				
	11: De-Bounce 64 ms / 64us				

16. ON-CHIP DEBUG SUPPORT INTERFACE (ODCS)

16.1 Overview

The OCDS function allows user to read/write memory and stop/run/step MCU core unit. Most of the registers are accessible according to the way described in the NEXUS 5001 standard. All registers are accessible through the IEEE1149.1 port independently of the state of the MCU.

Figure 15-1 JTAG I/O Shifter Register

16.2 Function Description

16.2.1 JTAG Interface

NCT6683D-LU has 4 IEEE1149.1 required pin.

- Test Clock Input (MCU_TCK) provides clock for JTAG port.
- Test Data Input (MCU_TDI) provides for serial movement of data into JTAG port. It is sampled by NCT6683D-LU on the rising edge of MCU_TCK.
- Test Data Output (MCU_TDO) provides for serial movement of data out of JTAG port. It is driven by NCT6683D-LU on the falling edge of MCU_TCK.
- Test Mode Select Input (MCU_TMS) provides access to the JTAG TAP state machine. It is sampled by NCT6683D-LU on the rising edge of MCU_TCK.

The IEEE149.1 TRST function pin is connected to internal VSB power-on reset. After power-on reset, it has to insert 2 dummy clocks to MCU_TCK pin to release reset condition. It is recommend that forces MCU_TMS high and inserts 7 clocks to MCU_TCK to insure TAP state keeping in TEST_LOGIC_RESET state.

Figure 15-2 JTAG TAP State Machine

JTAG port can read/write register when TAP is in SHIFT_DR/SHIFT_IR state. MCU_TDI and MCU_TDO shifts in/out LSB bit first when data read/write.

Figure 15-3 JTAG Port Shift Register

Instruction Code	Function Name	Data Register	Туре
0001	IDCODE	32-bit ID value = 1050_5538h	RO
1010	OCDSMEMACC	Memory data read/write access	R/W
1011	NEXUS-ENABLE	NRR registers	per register
others	BYPASS	BYPASS register	R/W

NCT6683D-LU JTAG function supports 4 instructions as followed.

16.2.2 NRR access

When the "NEXUS-ENABLE" instruction is being decoded by the JTAG controller, the JTAG allows communications to NRRs. Each NRR is referenced by a unique register address index. All communication with the Nexus controller is performed via the SELECT_DR_SCAN path. The Nexus controller will default to a register select state when enabled. Accessing an NRR requires two passes through the SELECT-DR_SCAN path, one pass to select the NRR and the second pass to read or write the NRR data. The first pass through the SELECT-DR_SCAN path is used to enter an 8-bit Nexus command consisting of a read/write control bit in the LSB followed by a 7-bit NRR address, as illustrated in Figure15-4. When a NRR is read, the register value is loaded into JTAG shifter register during CAPTURE_DR state. When a NRR is written, the value is loaded from JTAG shifter register during UPDATE DR state.

BIT 7-1	ВП 0
7-bit NRR address	0 = Write 1 = Read

Figure 15-4 Nexus Command Field

Figure 15-5 NEXU Controller State Machine

16.2.3 NRR Description

There are 45 NRRs in NCT6683D-LU. It supports five major functions to monitor/debug program.

- Monitor accumulator/program counter value.
- Execute single instruction from user/debug program.
- Read/Write external program/data memory.
- Software breakpoint. Code: 0xA5
- Hardware breakpoint

NCT6683D-LU supports 8 hardware breakpoints. Each hardware breakpoint function has 5 NRRs to monitor internal memory, external data memory and program memory operation.

16.2.3.1. OCDSCTL Register - NRR Address = 40h

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h Size: 11 bits

BIT	READ / WRITE	DESCRIPTION	
10	RO	Software breakpoint status = 0 software breakpoint didn't occur. = 1 software breakpoint occurred.	
9	RO	Reserved.	
8	R/W	Debugger program selector 1	
7	RO	Reserved.	
6	R/W	Peripheral clock enable = 1 Disable all module clock but MCU (it will cause system crash) = 0 normal operation	

BIT	READ / WRITE	DESCRIPTION		
5	R/W	MCU reset.		
4	R/W	OCDS enable. = 1 OCDS enable. = 0 OCDS disable. The MCU will not stop at breakpoint. 0xA5 instruction is executed like NOP. MCU reset is ignored.		
3	RO	Debug acknowledge = 1 The MCU is stopped at the breakpoint or debug request. = 0 The MCU is executing instruction.		
2	R/W	Debug request It causes MCU enter debug mode when debug acknowledge active.		
1	R/W	Debug step It causes MCU to execute single instruction when it set to 1. This bit is automatically cleared by hardware after instruction executed. This bit has to be set after debug request. Debug step and debug request can't be set simultaneously.		
0	R/W	Debugger program selector 0 select1 select0 = 00		

16.2.3.2. OCDSACC Register – NRR Address = 41h

Attribute: Read Only Power Well: VSB Reset by: RSMRST#

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7-0	RO	MCU accumulator register	

16.2.3.3. OCDSPC Register – NRR Address = 42h

Attribute: Read Only Power Well: VSB Reset by: RSMRST#

Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
15-0	RO	MCU program counter register

16.2.3.4. OCDSINSTR Register – NRR Address = 43h

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 000000h Size: 24 bits

BIT	READ / WRITE	DESCRIPTION	
23-0	R/W	BIT23-BIT16 BIT15-BIT8 BIT7-BIT0	debug instruction byte0 debug instruction byte1 debug instruction byte2

16.2.3.5. OCDSMAC Register – NRR Address = 44h

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
2	R/W	Memory read = 1 memory read operation when OCDSMEMACC = 1 = 0 no operation	
1	R/W	Memory write = 1 memory write operation when OCDSMEMACC = 1 = 0 no operation	
0	R/W	Memory selection = 1 data memory = 0 program memory	

16.2.3.6. OCDSBPDn Register – NRR Address = 46h + n*4

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Data value

16.2.3.7. OCDSBPDMn Register – NRR Address = 47h + n*4

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Data mask value

16.2.3.8. OCDSBPAn Register – NRR Address = 48h + n*4

Attribute: Read/Write

Power Well: VSB Reset by: RSMRST# Default: 000000h Size: 23 bits

BIT	READ / WRITE	DESCRIPTION
22-0	R/W	Address start value

16.2.3.9. OCDSBPAMn Register – NRR Address = 49h + n*4

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 000000h Size: 23 bits

BIT	READ / WRITE	DESCRIPTION
22-0	R/W	Address end value

16.2.3.10. OCDSBPCn Register – NRR Address = 50h + n*4

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7-5	R/W	Trace mode = 000 breakpoint function = others NA.	
4	R/W	Data memory select = 1 internal memory = 0 external memory	
3	R/W	Program stopped at breakpoint = 1 active = 0 inactive	
2	R/W	Memory select = 1 program memory = 0 data memory	
1	R/W	Read select = 1 read accesses are monitored for breakpoint = 0 read accesses are not monitored for breakpoint.	
0	R/W	Write select = 1 write accesses are monitored for breakpoint = 0 write accesses are not monitored for breakpoint.	

17. CONFIGURATION REGISTER

17.1 Chip (Global) Control Register

CR 07h. Logical Device Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Logical Device Number.

CR 10h. Device IRQ TYPE Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: FFh

BIT	READ / WRITE	DESCRIPTION
7	R/W	Sharing SPI IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
6	R/W	PRT IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
5	R/W	UARTA IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
4	R/W	UARTB IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
3	R/W	KBC IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
2	R/W	MOUSE IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
1	R/W	CIR IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.

BIT	READ / WRITE	DESCRIPTION
0	R/W	GPIO IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.

Note1: Before accessing CR1D [Bit3] must be set to logic 1.

CR 11h. Device IRQ TYPE Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: FFh

BIT	READ / WRITE	DESCRIPTION
		HM IRQ TYPE SELECT (note1.)
7	R/W	0: Edge.
		1: Level.
6-2	Reserved	
		SMI IRQ TYPE SELECT (note1.)
1	R/W	0: Edge.
		1: Level.
		SCI IRQ TYPE SELECT (note1.)
0	R/W	0: Edge.
		1: Level.

Note1: Before accessing CR1D [Bit3] must be set to logic 1.

CR 13h. Device IRQ Polarity Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	IRQ Channel<15:8> Polarity (note1.) 0: High. 1: Low.

Note1: Before accessing CR1D [Bit3] must be set to logic 1.

CR 14h. Device IRQ Polarity Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	IRQ Channel<7:0> Polarity (note1.) 0: High. 1: Low.

Note1: Before accessing CR1D [Bit3] must be set to logic 1.

CR 15h. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE		DESCRIPTION	
		Pin69 function selection		
		CR15 [Bit3-2]	Pin69	
7-6	R/W	00	GPIO03	
		01	tri-state	
		1x	TACHPWM	
		Pin68 function selection		
		CR15 [Bit3-2]	Pin68	
5-4	R/W	00	GPIO02	
		01	tri-state	
		1x	TACHPWM	
		Pin4 function selection		_
		CR15 [Bit3-2]	Pin4	
3-2	R/W	00	GPIO01	
		01	UPDATE_BTN#	
		1x	TACHPWM	
		Pin3 function selection		
		CR15 [Bit1-0]	Pin3	
1-0	R/W	00	GPIO00	
		01	USBIF_SW_CTRL	
		1x	TACHPWM	

CR 1Ah. Multi-function Pin Selection

BIT	READ / WRITE	DESCRIPTION

BIT	READ / WRITE		DESCRIPTION	
		Pin15 function selection		
7	R/W	CR1A [Bit7]	Pin15	
/	H / VV	0	GPIO80	
		1	USBPR_SW_CTRL	
6-5	Reserved			
		Pin37 function selection		
	R/W	CR1A [Bit4-3]	Pin37	
4-3		00	GPIO74	
		01	reserved	
		1x	TACHPWM	
		Pin125 function selection	ı	
		CR1A [Bit2-0]	Pin125	
	R/W	000	GPIO73	
2-0		001	CIRTX2	
		010	USBPR_SW_CTRL	
		011	tri-state	
		1xx	TACHPWM	

CR 1Bh. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 10h

BIT	READ / WRITE	DESCRIPTION		
		Pin91 function selection		
		CR1B [Bit7]	FORCE_ACPI_EN	Pin91
7	R/W	0	0	SUSACK#
		0	1	tri-state
		1	X	GPIO92
	R/W	Pin90 function selection		
		CR1B [Bit6]	FORCE_ACPI_EN	Pin90
6		0	0	SUSWARN_5VDUAL
		0	1	tri-state
		1	X	GPIO91
		Pin93 function selection		_
5	R/W	CR1B [Bit5]	Pin93	
5		0	SUSWARN#	
		1	GPIO90	

BIT	READ / WRITE	DESCRIPTION		
		Pin34 function selection		
		CR1B [Bit3]	CR24 [Bit2-1]	Pin34
		1	XX	SOUTA_P80
3	R/W	0	00	SOUTA
		0	01	GPIO25
		0	10	reserved
		0	11	GPIO25
2	R/W	Hardware PME Enable E 0: Disable PME 1: Enable PME	Sit	
		Pin65 function selection		
		CR1B [Bit1-0]	DIS_HWACPI	Pin65
		00	0	PME# (HW)
1-0	R/W	00	1	tri-state
		01	Х	PME# (SW)
		10	X	GPEN02
		11	X	tri-state

CR 1Dh. TEST Mode Register (TEST MODE.)

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3	R/W	IRQ TYPE Control Bit (TEST MODE) 0 : Disable 1 : Enable
2-0	Reserved	

CR 1Eh. Multi-function Pin Selection

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

BIT	READ / WRITE	DESCRIPTION		
		Pin95 function selection		
		CR1E [Bit7-6]	Pin95	
7-6	R/W	00	GPIO70	
		01	CIRRX	
		1x	TACHPWM	
		Pin98 function selection		
		CR1E [Bit5-4]	Pin98	
5-4	R/W	00	GPIO71	
		01	CIRWB	
		1x	TACHPWM	
		Pin124 function selection		
		CR1E [Bit3-2]	Pin124	
3-2	R/W	00	GPIO72	
		01	CIRTX1	
		1x	TACHPWM	
1-0	Reserved			

CR 1Fh. Multi-function Pin Selection

BIT	READ / WRITE	DESCRIPTION		
		Pin127 function selection	1	
		CR1F [Bit7-6]	Pin127	
7-6	R/W	00	GPIO82	
		01	Tri-state	
		1x	TACHPWM	
		Pin126 function selection	1	
		CR1F [Bit5-4]	Pin126	
5-4	R/W	00	GPIO81	
		01	USB_LED	
		1x	TACHPWM	

BIT	READ / WRITE	DESCRIPTION		
		Pin86 function selection		
		CR1F [Bit3-2]	AMDPWR_EN	Pin86
2.0	R/W	00	0	GPIO75
3-2	□ □ / VV	00	1	VLDT_EN
		01	X	GPIO75
		1x	X	TACHPWM
		Pin87 function selection		
		CR1F [Bit1-0]	AMDPWR_EN	Pin87
1-0	D / W	00	0	GPIO76
1-0	R/W	00	1	VCORE_EN
		01	X	GPIO76
		1x	X	TACHPWM

CR 20h. Chip ID (High Byte)

Attribute: Read Only Power Well: VSB Reset by: None Default: B7h

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only	Chip ID number = B7h

CR 21h. Chip ID (Low Byte)

Attribute: Read Only Power Well: VSB Reset by: None Default: 32h

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only	Chip ID number = 32h

CR 22h. Device Power down Option

BIT	READ / WRITE		DESCRIPTION
7	R/W	KBC Power Down.	0: Powered down. 1: Not powered down.
6	Reserved		
5	R/W	UARTB Power Down.	0: Powered down. 1: Not powered down.
4	R/W	UARTA Power Down.	0: Powered down. 1: Not powered down.

BIT	READ / WRITE		DESCRIPTION
3	R/W	PRT Power Down.	0: Powered down. 1: Not powered down.
2	R/W	CIR Power Down.	0: Powered down. 1: Not powered down.
1-0	Reserved		

CR 23h. Device Power down Option

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 80h

BIT	READ / WRITE	DESCRIPTION	
7	R/W	PORT80 to UART Power Down. 0: Powered down. 1: Not powered down.	
6	R/W	ACPI Power Down. 0: Powered down. 1: Not powered down.	
5	Reserved		
4	R/W	GPIO0 Power Down. 0: Powered down. 1: Not powered down.	
3	R/W	GPIO1 Power Down. 0: Powered down. 1: Not powered down.	
2	R/W	GPIO2 Power Down. 0: Powered down. 1: Not powered down.	
1	R/W	GPIO3 Power Down. 0: Powered down. 1: Not powered down.	
0	R/W	GPIO4 Power Down. 0: Powered down. 1: Not powered down.	

CR 24h. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: E7h

BIT	READ / WRITE		DESCRIPTION	
		Pin18 function selection		
7	R/W	CR24 [Bit7]	Pin18	
/	n / v v	0	GPIO10	
		1	LDRQ#	

BIT	READ / WRITE		DESCRIPTION	
		Pin27 function selection		
		CR24 [Bit6-5]	Pin27	
		00	GA20	
		01	SPI_WP#	
0.5	D //W	1x	GPIO11	
6-5	R/W	Pin28 function selection		
		CR24 [Bit6-5]	Pin28	
		00	KBRST#	
Ì		01	SPI_HOLD#	
		1x	GPIO12	
4-3	Reserved			
		Pin29 function selection		_
		CR24 [Bit2-1]	Pin29	
		00	CTSA#	
		01	CIRRX	
		10	CIRRX	
		11	GPIO20	
		Pin30 function selection		,
		CR24 [Bit2-1]	Pin30	
2-1	R/W	00	DSRA#	
2-1	117 🗸	01	CIRWB	
		10	CIRWB	
		11	GPIO21	
		Pin31 function selection		
		CR24 [Bit2-1]	Pin31	
		00	RTSA#	
		01	CIRTX1	
		10	CIRTX1	
		11	GPIO22	

BIT	READ / WRITE		DESCRIPTION	
		Pin32 function selection		
		CR24 [Bit2-1]	Pin32	
		00	DTRA#	
		01	CIRTX2	
		10	CIRTX2	
		11	GPIO23	
		Pin33function selection		
		CR24 [Bit2-1]	Pin33	
		00	SINA	
		01	GP24	
		10	MCU_RXD	
		11	GP24	
		Pin34 function selection		
		CR1B [Bit3]	CR24 [Bit2-1]	Pin34
		1	XX	SOUTA_P80
2-1	R/W	0	00	SOUTA
		0	01	GPIO25
		0	10	MCU_TXD
		0	11	GPIO25
		Pin35 function selection		_
		CR24 [Bit2-1]	Pin35	
		00	DCDA#	
		01	GPIO26	
		10	GPIO26	
		11	GPIO26	
		Pin36 function selection		_
		CR24 [Bit2-1]	Pin36	
		00	RIA#	
		01	GPIO27	
		10	GPIO27	
		11	GPIO27	
0	R/W	-	_	isters have default values. registers have no default

CR 25h. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB *Confidential*

Reset by: RSMRST# Default : 01h

BIT	READ / WRITE		DESCRIPTION	
7	R/W	GPIO5 Power Down.	0: Powered down. 1: No	t powered down.
6	R/W	GPIO6 Power Down.	0: Powered down. 1: No	t powered down.
5	R/W	GPIO7 Power Down.	0: Powered down. 1: No	t powered down.
4	R/W	GPIO8 Power Down.	0: Powered down. 1: No	t powered down.
3	R/W	GPIO9 Power Down.	0: Powered down. 1: No	t powered down.
2	R/W	GPIOEN0 Power Down.	0: Powered down. 1: No	t powered down.
1	R/W	GPIOEN1 Power Down.	0: Powered down. 1: No	t powered down.
		Pin38 function selection		
		CR27 [Bit7]	CR25 [Bit0]	Pin38
		1	х	SLCT
		0	0	GPIO30
0	D /W	0	1	YLW_LED
U	R/W	Pin55 function selection		
		CR27 [Bit7]	CR25 [Bit0]	Pin55
		1	Х	STB#
		0	0	GPIO13
		0	1	GRN_LED

CR 26h. Global Option Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE		DESCRIPTION	
		Pin102 function selection	1	
7	R/W	CR29 [Bit0]	Pin102	
/	M / VV	0	GPIO77	
		1	SKTOCC#	
6	R/W	HEFRAS => = 0 Write 87h to local = 1 Write 87h to local		
5-3	Reserved			
2	R/W	register (base address +	2) bit 4 is effective when lacy mode for IRQ and	DRQ selection. Then DCR

BIT	READ / WRITE	DESCRIPTION
1	R/W	DSUALGRQ => = 0 Enable UART A legacy mode for IRQ selection. Then HCR register (base address + 4) bit 3 is effective when selecting IRQ.
		= 1 Disable UART A legacy mode for IRQ selection. Then HCR register (base address + 4) bit 3 is not effective when selecting IRQ.
		DSUBLGRQ =>
0	R/W	= 0 Enable UART B legacy mode for IRQ selection. Then HCR register (base address + 4) bit 3 is effective when selecting IRQ.
		= 1 Disable UART B legacy mode for IRQ selection. Then HCR register (base address + 4) bit 3 is not effective when selecting IRQ.

CR 27h. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 3Eh

BIT	READ / WRITE		DESCRIPTION	
		Pin38 function selection		
		CR27 [Bit7]	CR25 [Bit0]	Pin38
		1	Х	SLCT
		0	0	GPIO30
		0	1	YLW_LED
		Pin39 function selection		_
		CR27 [Bit7-6]	Pin39	
		1x	PE	
		01	P2_DGL#	
7-6	R/W	00	GPIO31	
7-0		Pin40 function selection		_
		CR27 [Bit7-6]	Pin40	
		1x	BUSY	
		01	P2_DGL#	
		00	GPIO32	
		Pin41 function selection		_
		CR27 [Bit7-6]	Pin41	
		1x	ACK#	
		01	P2_DGH#	
		00	GPIO33	

		Dis 40 for all	
		Pin42 function selection	Di 40
		CR27 [Bit7-6]	Pin42
		1x	PD7
		01	P2_DGH#
		00	GPIO34
		Pin43 function selection	
		CR27 [Bit7-6]	Pin43
		1x	PD6
		01	LED_A
		00	GPIO35
		Pin44 function selection	
		CR27 [Bit7-6]	Pin44
		1x	PD5
		01	LED_B
		00	GPIO36
	Pin45 function selection		
		CR27 [Bit7-6]	Pin45
7-6	R/W	1x	PD4
		01	LED_C
		00	 GPIO37
		Pin47 function selection	
		CR27 [Bit7-6]	Pin47
		1x	PD3
		01	LED_D
		00	 GPIO40
		Pin48 function selection	-:
		CR27 [Bit7-6]	Pin48
		1x	PD2
		01	LED_E
		00	GPIO41
		Pin49 function selection	G
		CR27 [Bit7-6]	Pin49
		1x	PD1
		01	LED_F
		00	GPIO42

		Pin50 function selection		
		CR27 [Bit7-6]	Pin50	
		1x	PD0	
		01	LED_G	
		00	GPIO43	
		Pin51 function selection	GI 1040	
		CR27 [Bit7-6]	Pin51	
		1x	SLIN#	
		01	P1_DGL#	
		00	GPIO44	
		Pin52 function selection	ar io i i	
		CR27 [Bit7-6]	Pin52	
		1x	INIT#	
		01	P1_DGL#	
		00	GPIO45	
7-6	R/W	Pin53 function selection	GI 10 10	
		CR27 [Bit7-6]	Pin53	
		1x	ERR#	
		01	P1_DGH#	
		00	GPIO46	
		Pin54 function selection		
		CR27 [Bit7-6]	Pin54	
		1x	AFD#	
		01	P1_DGH#	
		00	GPIO47	
		Pin55 function selection		
		CR27 [Bit7]	CR25 [Bit0]	Pin55
		1	X	STB#
		0	0	GPIO13
		0	1	GRN_LED
		Pin64 function selection		
_	R/W	CR27 [Bit5]	Pin64	
5		0	GPEN01	
		1	SLP_S3#	
		Pin61 function selection		
	D //W	CR27 [Bit4]	Pin61	
4	R/W	0	GPEN04	
		1	PSIN#	

		Pin83 function selection		
		CR27 [Bit3]	Pin83	
3	R/W	0	GPEN05	
		1	RESETCON#	
		Pin84 function selection		
2	R/W	CR27 [Bit2]	Pin84	
2	H / VV	0	GPEN06	
		1	SLP_S5#	
		Pin80 function selection		
1	R/W	CR27 [Bit1]	Pin80	
I	H / VV	0	GPEN10	
		1	ATXPGD	
		Pin120 function selection		_
		CR27 [Bit0]	Pin120	
		0	PECI	
0	R/W	1	AMDSID	
U	Π / ۷۷	Pin118 function selection		
		CR27 [Bit0]	Pin118	
		0	PWR_FAULT#	
		1	AMDSIC	

CR 28h. Multi-function Pin Selection

BIT	READ / WRITE	DESCRIPTION					
	Pin63 function selection						
		CR28 [Bit7-6]	DIS_HWACPI	AMDPWR_EN	Pin63		
		00	0	0	PSON#(HW)		
7-6	D / W	00	0	1	AMD_PSOUT#(HW)		
7-0	6 R/W	00	1	х	tri-state		
		01	х	х	PSON#(SW)		
		10	х	х	GPEN00		
		11	х	х	tri-state		

BIT	READ / WRITE	DESCRIPTION					
		Pin60 function selection					
		CR28 [Bit5-4]	DIS_HWACPI	Pin60			
		00	0	PSOUT#(HW)			
5-4	R/W	00	1	tri-state			
		01	Х	PSOUT#(SW)			
		10	Х	GPEN03			
		11	Х	tri-state			
3	Reserved						
2-0	R/W	PRTMODS2 ~ 0 => Bits 2 1 0 = 0 x x Parallel Port Mode. = 1 x x Reserved.					

CR 29h. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMSRT#

Default: 03h

BIT	READ / WRITE		DESCRIPTION					
		Pin89 function sele	Pin89 function selection					
7	R/W	CR29 [Bit7]		Pin89				
	n / vv	0		SLP_SUS	#			
		1		GPIO93				
		Pin74 function sele	Pin74 function selection					
		CR29 [Bit6-5]	DIS_HWACPI		BKFD_EN		Pin74	
		00		0	()	3VSBSW#(HW)	
6-5	R/W	00		0			BKFD_CUT	
0-3	n / vv	00		1	>	(tri-state	
		01		X	>	(3VSBSW#(SW)	
		10		X	>	(BKFD_CUT(SW)	
		11		X	>	(GPEN07	
4	Reserved							

BIT	READ / WRITE	DESCRIPTION				
		Pin76 function selection				
		CR29 [Bit3]	Pin76			
		0	GPIO62			
3	R/W	1	MSDA0			
3	n / vv	Pin75 function selection				
		CR29 [Bit3]	Pin75			
		0	GPIO63			
		1	MSCL0			
2	Reserved					
		Pin2 function selection				
1	R/W	CR29 [Bit1]	Pin2			
'	n / vv	0	OVT# / SMI#			
		1	GPIO85			
		Pin100 function selection				
0	D R/W	CR29 [Bit0]	Pin100			
U	Π / VV	0	GPIO66			
		1	CASEOPEN#			

CR 2Ah. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION					
		Pin88 function selection	in88 function selection				
	CR2A [Bit7] FORCE_ACPI_EN Pin88						
7	R/W	0	0	SLP_SUS_FET			
		0 1 tri-state					
	1 x C						

BIT	READ / WRITE	DESCRIPTION				
		Pin7 function selection				
		CR2A [Bit6]	CR2C [Bit1-0]	Pin7		
		1	XX	CTSB#		
		0	00	GPIO50		
		0	01	tri-state		
		0	1x	TACHPWM		
		Pin8 function selection				
		CR2A [Bit6]	CR2C [Bit3-2]	Pin8		
		1	xx	DSRB#		
		0	00	GPIO51		
		0	01	tri-state		
		0	1x	TACHPWM		
		Pin9 function selection				
		CR2A [Bit6]	CR2C [Bit5-4]	Pin9		
		1	XX	RTSB#		
		0	00	GPIO52		
		0	01	tri-state		
6	R/W	0	1x	TACHPWM		
	11 / VV	Pin10 function selection				
		CR2A [Bit6]	CR2C [Bit7-6]	Pin10		
		1	xx	DTRB#		
		0	00	GPIO53		
		0	01	tri-state		
		0	1x	TACHPWM		
		Pin11 function selection				
		CR2A [Bit6]	CR2D [Bit1-0]	Pin11		
		1	xx	SINB		
		0	00	GPIO54		
		0	01	IRRX		
		0	1x	TACHPWM		
		Pin12 function selection	<u>, </u>	1		
		CR2A [Bit6]	CR2D [Bit3-2]	Pin12		
		1	XX	SOUTB		
		0	00	GPIO55		
		0	01	IRTX		
		0	1x	TACHPWM		

BIT	READ / WRITE	DESCRIPTION					
		Pin13 fun	Pin13 function selection				
		CR2A [Bit6]			CR2D [Bit5-4]		Pin13
			1		XX		DCDB#
			0		00		GPIO56
			0		01		tri-state
6	R/W		0		1x		TACHPWM
0	□	Pin14 fun	ction selec	ction			
		CF	R2A [Bit6]		CR2D [Bit7-6]	Pin14
			1		XX		RIB#
			0		00		GPIO57
			0		01		tri-state
			0		1x		TACHPWM
		Pin79 fun	ction selec	ction			
		CR2A [Bit5- 4]	[Bit5-		BKFD_EN		Pin79
		00	0		0	RSTOUT0#(HW)	
5-4	R/W	00	()	1	LAT	CHED_BKFD_CUT(HW)
		00		1	Х	output low	
		01	2	x	Х		RSTOUT0#(SW)
		10		X	Х	LATCHED_BKFD_CUT(SW	
		11	2	X	Х	GPEN11	
		Pin78 fun	ction selec	ction			
		CR2A	[Bit3-2]	DIS_	DIS_HWACPI		Pin78
		(00		0		RSTOUT1#(HW)
3-2	R/W	(00		1		tri-state
		()1		X		RSTOUT1#(SW)
			10		X		tri-state
		11			x GPEN12		
			ction selec	1		1	
			CR2A [Bit1-0]		HWACPI		Pin77
			00		0		RSTOUT2#(HW)
1-0	R/W		00		1	1	tri-state
)1		Х	1	RSTOUT2#(SW)
			10		Х		USB_LED
		-	l1		Х		GPEN13

CR 2Bh. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION				
		Pin81 function s	election			
		CR2B [Bit7-6]	DIS_F	HWACPI	AMDPWR_EN	Pin81
		00		0	0	PWROK0(HW)
7-6	D /W	00		0	1	AMD_PWROK0(HW)
7-6	R/W	00		1	х	tri-state
		01		х	х	PWROK0(SW)
		10		х	х	GPEN14
		11		Х	Х	tri-state
		Pin82 function s	election			
		CR2B [Bit5- 4]	DIS_H\	WACPI	AMDPWR_EN	Pin82
		00	()	0	PWROK1(HW)
5-4	R/W	00	()	1	AMD_PWROK1(HW)
		00	1		х	tri-state
		01	>	<	х	PWROK1(SW)
		10	>	<	х	GPEN15
		11	>	<	х	tri-state
		Pin73 function s	election			
		CR2B [Bit	3-2]	DIS_HWACPI		Pin73
		00		0		DPWROK(HW)
3-2	R/W	00		1		output low
		01			Х	DPWROK(SW)
		10		Х		GPEN16
		11			Х	tri-state
		Pin101 function	selection	<u> </u>	1	
		CR2B [Bit	1-0]	DIS_	HWACPI	Pin101
		00			0	RSMRST#(HW)
1-0	R/W	00			1	output low
		01			Х	RSMRST#(SW)
		10			Х	GPEN17
		11			Х	tri-state

CR 2Ch. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB

Reset by: RSMRST# Default : 00h

BIT	READ / WRITE	DESCRIPTION					
		Pin10 function selection	Pin10 function selection				
		CR2A [Bit6]	CR2C [Bit7-6]	Pin10			
7-6	R/W	1	XX	DTRB#			
7-0	n / vv	0	00	GPIO53			
		0	01	tri-state			
		0	1x	TACHPWM			
		Pin9 function selection					
		CR2A [Bit6]	CR2C [Bit5-4]	Pin9			
5-4	R/W	1	XX	RTSB#			
3-4	11 / VV	0	00	GPIO52			
		0	01	tri-state			
		0	1x	TACHPWM			
		Pin8 function selection					
		CR2A [Bit6]	CR2C [Bit3-2]	Pin8			
3-2	R/W	1	XX	DSRB#			
3-2	117 VV	0	00	GPIO51			
		0	01	tri-state			
		0	1x	TACHPWM			
		Pin7 function selection					
		CR2A [Bit6]	CR2C [Bit1-0]	Pin7			
1-0	R/W	1	XX	CTSB#			
1-0	11, 44	0	00	GPIO50			
		0	01	tri-state			
		0	1x	TACHPWM			

CR 2Dh. Multi-function Pin Selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

BIT	READ / WRITE	DESCRIPTION		
7-6	R/W	Pin14 function selection		
		CR2A [Bit6]	CR2D [Bit7-6]	Pin14
		1	XX	RIB#
		0	00	GPIO57
		0	01	tri-state
		0	1x	TACHPWM
5-4	R/W	Pin13 function selection		
		CR2A [Bit6]	CR2D [Bit5-4]	Pin13
		1	XX	DCDB#
		0	00	GPIO56
		0	01	tri-state
		0	1x	TACHPWM
3-2	R/W	Pin12 function selection		
		CR2A [Bit6]	CR2D [Bit3-2]	Pin12
		1	XX	SOUTB
		0	00	GPIO55
		0	01	IRTX
		0	1x	TACHPWM
1-0	R/W	Pin11 function selection		
		CR2A [Bit6]	CR2D [Bit1-0]	Pin11
		1	XX	SINB
		0	00	GPIO54
		0	01	IRRX
		0	1x	TACHPWM

CR 2Fh. Strapping Function Result

BIT	READ / WRITE	DESCRIPTION
7-3	Reserved	
2	R/W	DIS_HWACPI Strapping result reading
1	R/W	AMDPWR_EN Strapping result reading
0	R/W	BKFD_EN Strapping result reading

17.2 Logical Device 1 (Parallel Port)

CR 30h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved	
0	R/W	The logical device is inactive. The logical device is active.

CR 60h, 61h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select PRT I/O base address. <100h: FFCh> on 4 bytes boundary (EPP not supported) or <100h: FF8h> on 8 bytes boundary (all modes supported, EPP is only available when the base address is on 8 byte boundary).

CR 70h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	These bits select IRQ resource for PRT.

CR 74h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-3	Reserved	
2-0	R/W	These bits select DRQ resource for PRT. 000: DMA0. 001: DMA1. 010: DMA2. 011: DMA3. 1xx: No DMA active.

CR F0h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 3Fh

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6-3	R/W	ECP FIFO Threshold.
2-0	R/W	Parallel Port Mode selection (CR28 bit2 PRTMODS2 = 0). Bits 2 1 0 0 0 0: Standard and Bi-direction (SPP) mode. 0 0 1: EPP - 1.9 and SPP mode. 0 1 0: ECP mode. 0 1 1: ECP and EPP - 1.9 mode. 1 0 0: Printer Mode. 1 0 1: EPP - 1.7 and SPP mode. 1 1 0: Reserved. 1 1 1: ECP and EPP - 1.7 mode.

17.3 Logical Device 2 (UARTA)

CR 30h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved	
0	R/W	The logical device is inactive. The logical device is active.

CR 60h, 61h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select Serial Port 1 I/O base address <100h: FF8h> on 8 bytes boundary.

CR 70h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	These bits select IRQ resource for Serial Port 1.

CR F0h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: Delay RXCLK for 5 ns for LG issue. 1: No delay of 5 ns for RXCLK.
6	R/W	0: IRQ is the level mode. 1: IRQ is the pulse mode for IRQ sharing function.
5	R/W	Using the original RX FIFO Error Indication signal (USR bit 7). Using new RX FIFO Error Indication signal to solve some issues.

BIT	READ / WRITE	DESCRIPTION
4-2	Reserved	
1-0	R/W	Bits 1 0 0 0: UART A clock source is 1.8462 MHz (24 MHz / 13). 0 1: UART A clock source is 2 MHz (24 MHz / 12). 1 0: UART A clock source is 24 MHz (24 MHz / 1). 1 1: UART A clock source is 14.769MHz (24Mhz / 1.625)

17.4 Logical Device 3 (UARTB, IR)

Logical Device 3 (UARTB, IR)

CR 30h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved	
0	R/W	O: The logical device is inactive. 1: The logical device is active.

CR 60h, 61h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select Serial Port 2 I/O base address <100h: FF8h> on eight-byte boundary.

CR 70h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	These bits select IRQ resource for Serial Port 2

CR F0h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: Delay RXCLK for 5 ns for LG issue. 1: No delay of 5 ns for RXCLK.
6	R/W	0: IRQ is the level mode. 1: IRQ is the pulse mode for IRQ sharing function.

BIT	READ / WRITE	DESCRIPTION
5	R/W	Using the original RX FIFO Error Indication signal (USR bit 7). Using new RX FIFO Error Indication signal to solve some issues.
4-2	Reserved	
1-0	R/W	Bits 1 0 0 0: UART B clock source is 1.8462 MHz (24 MHz / 13). 0 1: UART B clock source is 2 MHz (24 MHz / 12). 1 0: UART B clock source is 24 MHz (24 MHz / 1). 1 1: UART B clock source is 14.769 MHz (24 MHz / 1.625).

CR F1h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6	R/W	IRLOCSEL => IR I/O pins' location selection. 0: reserved. 1: Through IRRX / IRTX.
5-3	R/W	IRMODE => IR function mode selection. See the table below.
2	R/W	IR half / full duplex function selection. 0: IR function is Full Duplex. 1: IR function is Half Duplex.
1	R/W	O: IRTX pin of IR function in normal condition. I: Inverse IRTX pin of IR function.
0	R/W	0: IRRX pin of IR function in normal condition. 1: Inverse IRRX pin of IR function.

IR MODE	IR FUNCTION	IRTX	IRRX
00X	Disable	Tri-state	High
010*	IrDA	Active pulse 1.6 μS	Demodulation into SINB/IRRX
011*	IrDA	Active pulse 3/16 bit time	Demodulation into SINB/IRRX
100	ASK-IR	Inverting IRTX/SOUTB pin	Routed to SINB/IRRX
101	ASK-IR	Inverting IRTX/SOUTB & 500 KHZ clock	Routed to SINB/IRRX
110	ASK-IR	Inverting IRTX/SOUTB	Demodulation into SINB/IRRX

IR MODE	IR FUNCTION	IRTX	IRRX
111*	ASK-IR	Inverting IRTX/SOUTB & 500 KHZ clock	Demodulation into SINB/IRRX

Note: The notation is normal mode in the IR function.

17.5 Logical Device 5 (Keyboard Controller)

CR 30h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Defau	lt:	00h

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved	
0	R/W	The logical device is inactive. The logical device is active.

CR 60h, 61h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select the first KBC I/O base address <100h: FFFh> on 1-byte boundary.

CR 62h, 63h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select the second KBC I/O base address <100h: FFFh> on 1 byte boundary.

CR 70h.

Attribute: Read/Write Power Well: VCC Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	These bits select IRQ resource for KINT. (Keyboard interrupt)

CR 72h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	These bits select IRQ resource for MINT. (PS/2 Mouse interrupt)

CR F0h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 83h

BIT	READ / WRITE	DESCRIPTION
7-6	R/W	KBC clock rate selection Bits 7 6 0 0: Reserved 0 1: Reserved 1 0: 12MHz 1 1: Reserved
5-3	Reserved	
2	R/W	0: Port 92 disabled. 1: Port 92 enabled.
1	R/W	0: Gate A20 software control. 1: Gate A20 hardware speed up.
0	R/W	0: KBRST# software control. 1: KBRST# hardware speed up.

17.6 Logical Device 6 (CIR)

NOTICE: CR30h of Logic Device 6 does not affect CIR receiving function of MCU.

CR 30h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved	
0	R/W	0: CIR Interface is inactive. 1: CIR Interface is active.

CR 60h, 61h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select CIR Interface I/O base address <100h: FF8h> on 1 byte boundary.

CR 70h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	These bits select IRQ resource for CIR.

CR F0h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 08h

BIT	READ / WRITE	DESCRIPTION
7	R/W	CIR TX1 Enbale 0: Disable CIR TX1 1: Enable CIR TX1

BIT	READ / WRITE	DESCRIPTION
6	R/W	CIR TX2 Enable 0: Disable CIR TX2 1: Enable CIR TX2
5-4	Reserved	The state of the s
3	R/W	CIR wide band filter select 0: Low-pass filter 1: Band-pass filter
2-1	R/W	Timeout margin selection of CIR wide band band-pass filter 00: 200% recording carrier period 01: 100% recording carrier period 10: 50% recording carrier period 11: 25% recording carrier period
0	R/W	Carrier recording mode CIR wide band band-pass filter 0: Second carrier 1: Every carrier

CR F1h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 09h

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved	
5-0	R/W	Highest input period of CIR wide band band-pass filter (unit : us)

CR F2h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 32h

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved	
5-0	R/W	Lowest input period of CIR wide band band-pass filter (unit : us)

CR F3h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved	

BIT	READ / WRITE	DESCRIPTION
5-0	R/W	Recording carrier period of CIR wide band band-pass filter (unit : us)

17.7 Logical Device 7 (GPIO0~GPIO7)

NOTICE:

- 1. All GPIO pin functions should always be customized by firmware. BIOS / Driver should not touch all configuration registers here and related IO ports unless firmware opens them.
- 2. Under any situations, CR30h should always be controlled by EC and never be opened for BIOS / Drivers!!

CR 30h. GPIO Device Enable Register

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	GPIO Group 7 Access Option. (Controlled by EC) 0: Only mcu can access GPIO Group 7 1: Only LPC can access GPIO Group 7
6	R/W	GPIO Group 6 Access Option. (Controlled by EC) 0: Only mcu can access GPIO Group 6 1: Only LPC can access GPIO Group 6
5	R/W	GPIO Group 5 Access Option. (Controlled by EC) 0: Only mcu can access GPIO Group 5 1: Only LPC can access GPIO Group 5
4	R/W	GPIO Group 4 Access Option. (Controlled by EC) 0: Only mcu can access GPIO Group 4 1: Only LPC can access GPIO Group 4
3	R/W	GPIO Group 3 Access Option. (Controlled by EC) 0: Only mcu can access GPIO Group 3 1: Only LPC can access GPIO Group 3
2	R/W	GPIO Group 2 Access Option. (Controlled by EC) 0: Only mcu can access GPIO Group 2 1: Only LPC can access GPIO Group 2
1	R/W	GPIO Group 1 Access Option. (Controlled by EC) 0: Only mcu can access GPIO Group 1 1: Only LPC can access GPIO Group 1
0	R/W	GPIO Group 0 Access Option. (Controlled by EC) 0: Only mcu can access GPIO Group 0 1: Only LPC can access GPIO Group 0

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7~0	R/W	These two registers select GPIO runtime Interface I/O base address <100h: FF0h> on 16 byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7~4	Reserved.	
3~0	R/W	These bits select IRQ resource for GPIO. (Controlled by EC)

CR E0h. GPIO Data Register

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Data Register. This register reflects, for both read and write, the register current selected by the GPSEL register.
		For output ports, the respective bits can be read/ written and produced to pins. The reading data is reflecting to pin status. (Only GPIOA Group is reflecting to data registers.)
		For input ports, the respective bits can be read only from pins. Write accesses will be ignored. (Please see note1.)

CR E1h. Interrupt Enable Register

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Data Register. This register reflects, for both read and write, the register current selected by the GPSEL register. 0: Disable 1: Enable (Please see note1.)

CR E2h. GPIO Status Register

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W1C	GPIO Status Register. This register reflects, for both read and write, the register current selected by the GPSEL register. (Please see note1.)

CR E3h. GPIO I/O Control Register

Location: Address E3h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: FFh (Only GPIO Enhance Group1 default vaule is F0h)

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Output Enable Register. This register reflects, for both read and write, the register current selected by the GPSEL register. 0: Output mode 1: Input mode (Please see note1.)

CR E4h. GPIO Inversion Control Register

Location: Address E4h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default : 00h Size: 8 bits

BIT READ / WRITE DESCRIPTION

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Inversion Control Register. This register reflects, for both read and write, the register current selected by the GPSEL register. 0: No inversion. 1: Inversion input/output. (Please see note1.)

CR E5h. GPIO PP/OD Control Register

Location: Address E5h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Output Type Register. This register reflects, for both read and write, the register current selected by the GPSEL register. 0: Open-Drain 1: Push-Pull (Please see note1.)

CR E6h. GPIO Interrupt Type Control Register

Location: Address E6h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: 03h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-2		Reserved.
1-0	R/W	GPIO Interrupt Type0 Control Register. This register reflects, for both read and write, the register current selected by the GPSEL register. 00h: Status field is trigger by falling edge. 01h: Status field is trigger by rising edge. 10h: Status field is trigger by both edge. 11h: Any trigger (Please see note1.)

CR E7h. GPIO Output Data Reflection Register

Location: Address E7h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: 00h

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R	GPIO Output Data Reflection Register. This register reflects, the register current selected by the (GPSEL+8'h0) register.

CR E8h. GPIO Interrupt pull down Control Register (Only GP2 are valid)

Location: Address E8h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Interrupt pull down Control Register. This register reflects, for both read and write, the register current selected by the GPSEL register. 0: Disable internal pull down 1: Enable internal pull down GP2 → internal pull down

CR E9h. GPIO Reset Source Type Control Register

Location: Address E9h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 03h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-2	R/W	Reserved.
1-0	R/W	GPIO Reset Source Type Control Register. This register reflects, for both read and write, the register current selected by the GPSEL register. 00 : PCI RST# 01 : PWROK 10 : MCU Reset (Software Reset) 11 : RSMRST# (Please see note1.)

CR EBh. GPIO De-Bounce Clock Option Register

Location: Address EBh Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h Size: 8 bits

BIT READ / WRITE DESCRIPTION

 Confidential
 156
 May 14, 2013

 - Version: 0.7

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO De-Bounce Clock Option. This register reflects, for both read and write, the register current selected by the GPSEL register. (Only for GPIO Enhance Group) 0: De-bounce clock is 1MHz. 0: De-bounce clock is 1KHz. PS. The CREB[7:0] correspond to GPIOENX port [0:7].

CR ECh. GPIO De-Bounce Type 0 Register

Location: Address ECh Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO De-Bounce Type 0 Register. This register reflects, for both read and write, the register current selected by the GPSEL register. (Only for GPIO Enhance Group)

CR EDh. GPIO De-Bounce Type 1 Register

Location: Address EDh Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO De-Bounce Type 1 Register. This register reflects, for both read and write, the register current selected by the GPSEL register. { De-Bounce Type 0, De-Bounce Type 1} 00: No De-bounce. 01: De-bounce high. (form low to high) 10: De-bounce low. (form high to low) 11: De-bounce high and low. (Only for GPIO Enhance Group)

CR EEh. GPIO De-Bounce Time Control 0 Register

Location: Address EEh Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO De-Bounce Time Control 0 Register. This register reflects, for both read and write, the register current selected by the GPSEL register. (Only for GPIO Enhance Group)

CR EFh. GPIO De-Bounce Time Control 1 Register

Location: Address EFh Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO De-Bounce Time Control 1 Register. This register reflects, for both read and write, the register current selected by the GPSEL register. { De-Bounce Time Control 0, De-Bounce Time Control 1} 00: De-Bounce 4 ms 01: De-Bounce 16 ms 10: De-Bounce 32 ms 11: De-Bounce 64 ms (Only for GPIO Enhance Group)

CR F0h. GPIO Group Selection Register

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	GPIO Group Selection. 4'h0: GPIO Group0 4'h1: GPIO Group1 4'hC: GPIO Enhance Group 1

CR F1h. GPIO Software Reset Register

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 01h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved.	
0	R/W0C	Write 0 to clear GPIO register.

Note1. Not all the GPIO group has completed full-functions control register set.

GPIO Group	Notification	
GPIO Group 0	Only bit 7 to bit 4, bit1, bit0 vaild	
GPIO Group 1	Only bit 3 to bit 0 valid.	
GPIO Group 7	Only bit 6 to bit 0 valid.	
GPIO Group 8	Only bit 5 to bit 0 valid.	

17.8 Logical Device 8 (PORT80 UART) CR E0h. PORT80 UART Control Register

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 80h

BIT	READ / WRITE	DESCRIPTION
7	R/W	TxEN (Transmit enable)
6-5	Reserved	
4	R/W	PARE (Parity enable)
3	R/W	PARS (Parity Selection) 0: odd parity 1: even parity
2	R/W	STPS (Stop bit length selecion) 0: 1 stop bit 1: 2 stop bits
1	R/W	CHAS (Character length selection) 0: 8 bits 1: 7bits
0	R/W	P80_data_mux 0: UART data is from P80 1: UART data is from P81

CR E1h. PORT80 UART Status Register

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved	
1	R	TD (Transmit done status) When UART finish transmit, it would be 1 and auto clear by hardware
0	R	TBF (Transmit buffer full flag) 0: UART is idle 1: UART is transmitting

CR E2h. PORT80 UART Baud Rate Generator High Byte

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	BRGL (Baud rate generator high byte)

CR E3h. PORT80 UART Baud Rate Generator Low Byte

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 10h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	BRGL (Baud rate generator low byte) Baud Rate = 2MHz / ({BRGH, BRGL} + 1)

CR E4h. PORT80 UART Transmit Buffer

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	UARTBUF (UART Transmit buffer)

17.9 Logical Device 9 (GPIO8~9, GPIO0 Enhance, GPIO1 Enhance)

NOTICE:

1. All GPIO pin functions should always be customized by firmware. BIOS $\!\!\!/$ Driver should not touch all configuration registers here.

CR 30h. GPIO Device Enable Register

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: Varies per bit

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-5	Reserved.	
4	R/W	GPIO Enhance Group 1 Access Option. 0: Only mcu can access GPIO Enhance Group 1 1: Only LPC can access GPIO Enhance Group 1
3	R/W	GPIO Enhance Group 0 Access Option. 0: Only mcu can access GPIO Enhance Group 0 1: Only LPC can access GPIO Enhance Group 0
2-1	Reserved	
1	R/W	GPIO Group 9 Access Option. 0: Only mcu can access GPIO Group 9 1: Only LPC can access GPIO Group 9
0	R/W	GPIO Group 8 Access Option. 0: Only mcu can access GPIO Group 8 1: Only LPC can access GPIO Group 8

CR E0h. GPIO1 Alternate Function Selection Register

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	GPIO Group 1 port 3 to port 0 alternate function selection Bit0

CR E1h. GPIO1 Alternate Function Selection Register

Location: Address E1h Attribute: Read/Write

Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	GPIO Group 1 port 3 to port 0 alternate function selection Bit1

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
7-0	R/W	GPIO Group 1 port 3 to port 0 alternate function {alternate_sel_bit0, alternate_sel_bit1} 00: GPIO 01: BEEP 10: LRESET# 11: ACPI_OUT Others: GPIO

CR E2h. GPIO2 Alternate Function Selection Register

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 2 port 7 to port 0 alternate function selection Bit0

CR E3h. GPIO2 Alternate Function Selection Register

Location: Address E3h Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 2 port 7 to port 0 alternate function selection Bit1

BIT	READ / WRITE	DESCRIPTION	

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 2 port 7 to port 0 alternate function {alternate_sel_bit0, alternate_sel_bit1} 00: GPIO 01: BEEP 10: LRESET# 11: ACPI_OUT Others: GPIO

CR E4h. GPIO3 Alternate Function Selection Register

Location: Address E4h Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 3 port 7 to port 0 alternate function selection Bit0

CR E5h. GPIO3 Alternate Function Selection Register

Location: Address E5h Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 3 port 7 to port 0 alternate function selection Bit1

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 3 port 7 to port 0 alternate function {alternate_sel_bit0, alternate_sel_bit1} 00: GPIO 01: BEEP 10: LRESET# 11: ACPI_OUT Others: GPIO

CR E6h. GPIO4 Alternate Function Selection Register

Location: Address E6h Attribute: Read/Write Power Well: VSB Reset by: RSMRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 4 port 7 to port 0 alternate function selection Bit0

CR E7h. GPIO4 Alternate Function Selection Register

Location: Address E7h Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 4 port 7 to port 0 alternate function selection Bit1

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 4 port 7 to port 0 alternate function {alternate_sel_bit0, alternate_sel_bit1} 00: GPIO 01: BEEP 10: LRESET# 11: ACPI_OUT Others: GPIO

CR E8h. GPIO5 Alternate Function Selection Register

Location: Address E8h Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 5 port 7 to port 0 alternate function selection Bit0

CR E9h. GPIO5 Alternate Function Selection Register

Location: Address E9h Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 5 port 7 to port 0 alternate function selection Bit1

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 5 port 7 to port 0 alternate function {alternate_sel_bit0, alternate_sel_bit1} 00: GPIO 01: BEEP 10: LRESET# 11: ACPI_OUT Others: GPIO

CR EAh. GPIO6 Alternate Function Selection Register

Location: Address EAh Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 6 port 7 to port 0 alternate function selection Bit0

CR EBh. GPIO6 Alternate Function Selection Register

Location: Address EBh Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 6 port 7 to port 0 alternate function selection Bit1

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO Group 6 port 7 to port 0 alternate function {alternate_sel_bit0, alternate_sel_bit1} 00: GPIO 01: BEEP 10: LRESET# 11: ACPI_OUT Others: GPIO

CR ECh. GPIO7 Alternate Function Selection Register

Location: Address ECh Attribute: Read/Write Power Well: VSB

Reset by: RSMRST Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6-0	R/W	GPIO Group 7 port 6 to port 0 alternate function selection Bit0

CR EDh. GPIO7 Alternate Function Selection Register

Location: Address EDh Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6-0	R/W	GPIO Group 7 port 6 to port 0 alternate function selection Bit1

BIT	READ / WRITE DESCRIPTION		
7	Reserved		
6-0	R/W	GPIO Group 7 port 6 to port 0 alternate function {alternate_sel_bit0, alternate_sel_bit1} 00: GPIO 01: BEEP 10: LRESET# 11: ACPI_OUT Others: GPIO	

CR EEh. GPIO8 Alternate Function Selection Register

Location: Address EEh Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved	
5-0	R/W	GPIO Group 8 port 5 to port 0 alternate function selection Bit0

CR EFh. GPIO8 Alternate Function Selection Register

Location: Address EFh Attribute: Read/Write

Power Well: VSB Reset by: RSMRST Default: 00h Size: 8 bits

BIT	READ / WRITE DESCRIPTION	
7-6	Reserved	
5-0	R/W	GPIO Group 8 port 5 to port 0 alternate function selection Bit1

BIT	READ / WRITE DESCRIPTION		
7-6	Reserved		
5-0	R/W	GPIO Group 8 port 5 to port 0 alternate function {alternate_sel_bit0, alternate_sel_bit1} 00: GPIO 01: BEEP 10: LRESET# 11: ACPI_OUT Others: GPIO	

17.10 Logical Device A (ACPI)

NOTICE: Logic Device A is to control the SWC logic. The ACPI building blocks for MCU is not affected by registers of this logic device.

CR 30h.

Attribute: Read/Write Power Well: VRTC Reset by: LRESET# Default: 00h

BIT	READ / WRITE DESCRIPTION		
7-1	Reserved		
0	R / W 0: ACPI(SWC) Interface is inactive. 1: ACPI(SWC) Interface is active.		

CR 60h, 61h.

Attribute: Read/Write Power Well: VRTC Reset by: LRESET# Default: 00h, 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select ACPI(SWC) Interface I/O base address <100h: FF8h> on 1 byte boundary.

CR 70h.

Attribute: Read/Write Power Well: VRTC Reset by: LRESET# Default: 00h

BIT	READ / WRITE DESCRIPTION	
7-4	Reserved	
3-0	R / W These bits select IRQ resource for ACPI(SWC).	

CR E0h.

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 01h

BIT	READ / WRITE	DESCRIPTION
7-5	Reserved	

BIT	READ / WRITE		DESCRIPTION				
			ne the com	binations o	6[7]; MSRKEY, CRE0[4]; MSXKEY, of the mouse wake-up events. Please s.		
		ENMDAT_UP	MSRKEY	MSXKEY	Wake-up event		
		1	Х	1	Any button clicked or any movement.		
4	R/W	1	х	0	One click of left or right button.		
		0	0	1	One click of the left button.		
		0	1	1	One click of the right button.		
		0	0	0	Two clicks of the left button.		
		0	1	0	Two clicks of the right button.		
3	R/W	DIS_PSIN => Disable the panel switch input to turn on the system power supply. 0: PSIN is wire-AND and connected to PSOUT# 1: PSIN is blocked and cannot affect PSOUT#					
2	R/W	Keyboard / Mouse swap enable 0: Normal mode. 1: Keyboard / Mouse ports are swapped.					
1	R/W	MSXKEY => Three keys (ENMDAT_UP, CRE6[7]; MSRKEY, CRE0[4]; MSXKEY, CRE0[1]) define the combinations of the mouse wake-up events. Please check out the table in CRE0[4] for the detailed.					
0	R/W	KBXKEY => 0: Only the pre-determined key combination in sequence can wake up the system. 1: Any character received from the keyboard can wake up the system.					

CR E1h. KBC Wake-Up Index Register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Keyboard wake-up index register. This is the index register of CRE2, which is the access window for the keyboard's pre-determined key key-combination characters. The first set of wake-up keys is in of $0x00-0x0E$, the second set $0x30-0x3E$, and the third set $0x40-0x4E$. Incoming key combinations can be read through $0x10-0x1E$.

CR E2h. KBC Wake-Up Data Register

Attribute: Read/Write

Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION		
7-0	R/W	Keyboard wake-up data register. This is the data register for the keyboard's pre-determined keycombination characters, which is indexed by CRE1.		

CR E3h.

Attribute: Read/Write Power Well: VRTC Reset by: LRESET# Default: 00h

BIT	READ / WRITE DESCRIPTION	
7-1	Reserved	
0	R / W 0: Disable KB, MS interrupt of the KBC password event. 1: Enable KB, MS interrupt of the KBC password event.	

CR E4h.

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	Enable Mouse wake-up 0: Disable mouse wake-up function via PSOUT# 1: Enable mouse wake-up function via PSOUT#
6	R/W	Enable KBC wake-up 0: Disable Keyboard wake-up function via PSOUT# 1: Enable Keyboard wake-up function via PSOUT#
5	R/W	Enable GPIO wake-up 0: Disable GPIO wake-up function via PSOUT# 1: Enable GPIO wake-up function via PSOUT#
4	R/W	Enable CIR wake-up 0: Disable CIR wake-up function via PSOUT# 1: Enable CIR wake-up function via PSOUT#
3	R/W	Keyboard wake-up options. 0: Password or sequence hot keys programmed in the registers. 1: Any key.
2-0	Reserved	

CR E6h.

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	ENMDAT => Three keys (ENMDAT_UP, CRE6[7]; MSRKEY, CRE0[4]; MSXKEY, CRE0[1]) define the combinations of the mouse wake-up events. Please see the table in CRE0, bit 4 for the details.
6-0	Reserved	

CR E7h.

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: EFh

BIT	READ / WRITE	DESCRIPTION
7	R/W	ENKD3 => Enable the third set of keyboard wake-up key combination. Its values are accessed through keyboard wake-up index register (CRE1) and keyboard wake-up data register (CRE2) at the index from 40h to 4eh. 0: Disable the third set of the key combinations. 1: Enable the third set of the key combinations.
6	R/W	ENKD2 => Enable the second set of keyboard wake-up key combination. Its values are accessed through keyboard wake-up index register (CRE1) and keyboard wake-up data register (CRE2) at the index from 30h to 3eh. 0: Disable the second set of the key combinations. 1: Enable the second set of the key combinations.
5	R/W	ENWIN98KEY => Enable Win98 keyboard dedicated key to wake-up system via PSOUT# when keyboard wake-up function is enabled. 0: Disable Win98 keyboard wake-up. 1: Enable Win98 keyboard wake-up.
4	R/W	EN_ONPSOUT Disable/Enable to issue a 0.5s delay PSOUT# level when system returns from power loss state and is supposed to be on as described in CRE4[6:5], logic device A. (for SiS & VIA chipsets) 0: Disable. 1: Enable.
3-0	Reserved	

CR E8h. CASEOPEN# Event Status

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 80h

BIT READ / WRITE DESCRIPTION	/ WRITE DESCRIPTION
------------------------------	---------------------

BIT	READ / WRITE	DESCRIPTION
		CASEOPEN# Status
7	R/W1C	1: caseopen event happeded.
		0: caseopen event doesn't happen.
		SKTOCC# Status
6	R/W1C	1: sktocc event happeded.
		0: sktocc event doesn't happen.
5-0	Reserved	

CR EAh.

Attribute: Read/Write Power Well: VRTC

Reset by: PWROK(Bit3), RSMRST#(Bit2-0)

Default: 2Eh

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3	R/W	PWROK_TRIG_L => 0: PWROK keep low or from high to low immediately 1: PWROK work normally.
2-0	R/W	PWROK_DEL => Set the delay time when rising from 3VCC to PWROK 000: 300 ~ 600mS 001: 330 ~ 670mS 010: 390 ~ 730mS 011: 520 ~ 860mS 100: 200 ~ 300mS 101: 230 ~ 370mS 110: 290 ~ 430mS 111: 420 ~ 560mS

CR EBh.

Attribute: Read/Write Power Well: VRTC

Reset by: Battery reset, PWROK(Bit4), LRESET#(Bit2)

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	Reserved	

BIT	READ / WRITE	DESCRIPTION
6-5	R/W	Power-loss control Note (These two bits will determine the system turn on or off after AC resume, from G3 to S5 state.) 0 0: Always turn off. 0 1: Always turn on. (PSON# will active when S3# is high.) 1 0: Pre-state. (System turns On or Off which depends on the state before the power loss. 1 1: User defined mode for power loss last-state. (The last-state flag is located on "CREC, bito.")
4	R/W	3VSBSW# enable bit 0: Disable 1: Enable
3	Reserved	
2	R/W	Enable the hunting mode for wake-up events set in CRE4. This bit is cleared when any wake-up event is captured. (Note. This bit is use for KB and MS to generate PSOUT# while VCC valid, for example, wake-up from S1 to S0 via PSOUT#.) 0: Disable.(Default) 1: Enable.
1-0	Reserved	

CR ECh.

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 01h

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved	
0	R/W	Power-loss Last State Flag 0: ON 1: OFF

CR F0h. SCI# / PSOUT# route selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO ENHANCE 0 GROUP 0: gpioen0 group can generate SCI# 1: gpioen0 group can generate PSOUT#

CR F1h. SCI# / PSOUT# route selection

Attribute: Read/Write Power Well: VSB

Reset by: RSMRST# Default : 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO ENHANCE 1 GROUP 0: gpioen1 group can generate SCI# 1: gpioen1 group can generate PSOUT#

CR F2h. SCI# / PSOUT# route selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION
		GPIO_IRQ. (Controlled by EC):
7	R/W	0: gpio_irq can generate SCI#
		1: gpio_irq can generate PSOUT#
		CIR_IRQ:
6	R/W	0: cir_irq can generate SCI#
		1: cir_irq can generate PSOUT#
		MOUSE_IRQ:
5	R/W	0: mouse_irq can generate SCI#
		1: mouse_irq can generate PSOUT#
		KEYBOARD_IRQ:
4	R/W	0: keyboard_irq can generate SCI#
		1: keyboard_irq can generate PSOUT#
		UARTB_IRQ:
3	R/W	0: UARTB_irq can generate SCI#
		1: UARTB_irq can generate PSOUT#
		UARTA_IRQ:
2	R/W	0: UARTA_irq can generate SCI#
		1: UARTA_irq can generate PSOUT#
		PRT_IRQ:
1	R/W	0: PRT_irq can generate SCI#
		1: PRT_irq can generate PSOUT#
0	Reserved	

CR F3h. SCI# / PSOUT# route selection

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

BIT	READ / WRITE	DESCRIPTION
		MCU_GPIO_OUT: (test mode)
7	R/W	0: MCU_GPIO_OUT can generate SCI#
		1: MCU_GPIO_OUT can generate PSOUT#
		HM_SCI:
6	R/W	0: HM_SCI can generate SCI#
		1: HM_SCI can generate PSOUT#
		ECIF2
5	R/W	0: ecif2 can generate SCI#
		1: ecif2 can generate PSOUT#
		ECIF 1:
4	R/W	0: ecif1 can generate SCI#
		1: ecif1 can generate PSOUT#
		ECIF 01:
3	R/W	0: ecif01 can generate SCI#
		1: ecif01 can generate PSOUT#
		ECIF00:
2	R/W	0: ecif00 can generate SCI#
		1: ecif00 can generate PSOUT#
		HM_IRQ:
1	R/W	0: hm_irq can generate SCI#
		1: hm_irq can generate PSOUT#
0	Reserved	

CR F4h. SCI# configuration

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 0Dh

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3	R/W	SCI Output Mode (SCI_PSMD): 0: Level mode
		1: Pulse mode
2	R/W	SCI_OD: 0: SCI is push-pull signal 1: SCI is open-drain signal.
1	Reserved	
0	R/W	SCI_INV: 0: Normal operation 1: Inverse SCI signal

CR F5h. SMI# configuration

Attribute: Read/Write

Power Well: VSB Reset by: RSMRST# Default: 0Dh

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3	R/W	SMI Output Mode (SMI_PSMD) 0: SMI level mode 1: SMI pulse mose enable
2	R/W	SMI_OD: 0: SMI is push-pull signal 1: SMI is open-drain signal
1	R/W	SMI_IRQ_EN: 0: Disable SMI to SIRQ path. 1: SMI routes to SIRQ channel 2
0	R/W	SMI_INV: 0: Normal operation 1: Inverse SMI signal

CR F6h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 01h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3	R/W	Block SLP_S3# to PSON# 0: Disable 1: Enable
2	R/W	RESETCON# signal to control PWROK 0: Disable 1: Enable
1	R/W	ATXPGD signal to control PWROK 0: Enable 1: Disable
0	R/W	Route to PWROK source selection 0: PSON# 1: SLP_S3#

CR F7h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved	
1	R/W	Mask WDTO to affect PWROK 0: Mask enable 1: Mask disable
0	R/W	LV_DETECT_L 0: AMD power sequence detect level and time delay 1: AMD power sequence non detect level but time delay

CR F9h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-5	Reserved	
4	R/W1C	PME status of the Mouse IRQ event Write 1 to clear this status
3	R/W1C	PME status of the KBC IRQ event Write 1 to clear this status
2	R/W1C	PME status of the PRT IRQ event Write 1 to clear this status
1	R/W1C	PME status of the URA IRQ event Write 1 to clear this status
0	R/W1C	PME status of the URB IRQ event Write 1 to clear this status

CR FAh.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3	R/W1C	PME status of the HM IRQ event Write 1 to clear this status
2	R/W1C	PME status of the WDTO IRQ event Write 1 to clear this status
1	R/W1C	PME status of the RIA IRQ event Write 1 to clear this status
0	R/W1C	PME status of the RIB IRQ event Write 1 to clear this status

CR FBh.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	Disable PME interrupt of the HDM IRQ event Enable PME interrupt of the HDM IRQ event
6	R/W	Disable PME interrupt of the RIB IRQ event Enable PME interrupt of the RIB IRQ event
5	R/W	Disable PME interrupt of the RIA IRQ event Enable PME interrupt of the RIA IRQ event
4	R/W	Disable PME interrupt of the URB IRQ event Enable PME interrupt of the URB IRQ event
3	R/W	Disable PME interrupt of the URA IRQ event Enable PME interrupt of the URA IRQ event
2	R/W	Disable PME interrupt of the PRT IRQ event Enable PME interrupt of the PRT IRQ event
1	R/W	Disable PME interrupt of the KBC IRQ event Enable PME interrupt of the KBC IRQ event
0	R/W	Disable PME interrupt of the Mouse IRQ event Enable PME interrupt of the Mouse IRQ event

CR FCh.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved	
1	R/W	Disable PME interrupt of the GPIO IRQ event Enable PME interrupt of the GPIO IRQ event
0	R/W	Disable PME interrupt of the WDTO IRQ event Enable PME interrupt of the WDTO IRQ event

17.11 Logical Device B (EC Space)

CR 30h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved	
0	R/W	0: EC Space interface is inactive. 1: EC Space interface is active.

CR 60h, 61h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select the EC Space interface base address <100h : FF8h> aligned to an eight-byte boundary.

CR 70h.

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	These bits select the IRQ resource for EC Space.(MCU to Host Interrupt)

CR E0h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

 BIT
 READ / WRITE
 DESCRIPTION

 7
 Reserved

 6
 R / W
 Beep Function Enable 0: Disable 1: Enable

 5-4
 Reserved

BIT	READ / WRITE	DESCRIPTION
3	R/W	Disconnect 8042 KBC from 4 PS2 pins (DISCON_KBCPINS) 0: The 4 PS2 pins were connected to KBC when VCC arrived 1: The 4 PS2 pins kept NOT tied to KBC when VCC arrived Notes: 1. With this bit cleared (as 0), when function of the 4 PS2 pins was switched to functions other than PS2 by external debug daughter board, they won't be tied to KBC any more when VCC arrives. 2. With this bit cleared (as 0), once KBC took over the 4 PS2 pins after VCC arrives, the only way to break this connection before exiting S0 state is to set this bit as 1, by LPC or MCU FW. External debug daughter board cannot help under this situation.
2-0	Reserved	

CR E3h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	Switch Reg Enable 1 When SBI_CFG_EN = 0 0: the connection of switch 1 is controlled by ATXPGD (ATXPGD is low, switch 1 is dis-connected. ATXPGD is high, switch 1 is connected) 1: the connection of switch 1 is controlled by Switch Control 1 When SBI_CFG_EN = 1 0: the connection of switch 1 is controlled by Switch Control 1 1: the connection of switch 1 is controlled by ATXPGD (ATXPGD is low, switch 1 is dis-connected. ATXPGD is high, switch 1 is connected)
6	R/W	Switch Control 1 0: switch 1 is always dis-connected. 1: switch 1 is alywas connected.

BIT	READ / WRITE	DESCRIPTION
		Switch Reg Enable 2
		When SBI_CFG_EN = 0
		0: the connection of switch 2 is controlled by ATXPGD
		(ATXPGD is low, switch 2 is dis-connected. ATXPGD is high, switch 2 is connected)
5	R/W	1: the connection of switch 2 is controlled by Switch Control 2
		When SBI_CFG_EN = 1
		0: the connection of switch 2 is controlled by Switch Control 2
		1: the connection of switch 2 is controlled by ATXPGD
		(ATXPGD is low, switch 2 is dis-connected. ATXPGD is high, switch 2 is connected)
		Switch Control 2
4	R/W	0: switch 2 is always dis-connected.
		1: switch 2 is alywas connected.
		Switch Reg Enable 3
		When SBI_CFG_EN = 0
		0: the connection of switch 3 is controlled by ATXPGD
		(ATXPGD is low, switch 3 is dis-connected. ATXPGD is high, switch 3 is connected)
3	R/W	1: the connection of switch 3 is controlled by Switch Control 3
		When SBI_CFG_EN = 1
		0: the connection of switch 3 is controlled by Switch Control 3
		1: the connection of switch 3 is controlled by ATXPGD
		(ATXPGD is low, switch 3 is dis-connected. ATXPGD is high, switch 3 is connected)
		Switch Control 3
2	R/W	0: switch 3 is always dis-connected.
		1: switch 3 is alywas connected.
1-0	Reserved	

17.12 Logical Device C (RTC Timer) CR 30h. RTC Timer configuration register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved	
5	R/W	Issue wakeup event to PME 0: Disable 1: Enable
4	R/W	Issue wakeup event to PSOUT 0: Disable 1: Enable
3	R/W	RTC power down configuration register when AC LOSS 0: Not powered down. 1: Powered down.
2	R/W	Daylight saving time configuration register 0: Disable 1: Enable
1	R/W	24-hour or 12-hour selection 0: In 24-hour mode (HOUR[5:0] = 00 ~ 23) 1: In 12-hour mode (HOUR[4:0] = 01 ~ 12). PM toggles every 12hours.
0	R/W	RTC Function configuration register 0: Disable 1: Enable

CR E0h. Second of RTC

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6-0	R/W	Second of RTC (SECOND = 00 ~ 59)

CR E1h. Minute of RTC

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION	
Confidential		183 	May 14, 2013 Version: 0.7

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6-0	R/W	Minute of RTC (MINUTE = 00 ~ 59)

CR E2h. Hour of RTC

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved	
5-0	R/W	Hour of RTC 24-hour mode HOUR[5:0] = 00 ~ 23 12-hour mode HOUR[4:0] = 01 ~12 HOUR[5] = 0 => AM HOUR[5] = 1 => PM

CR E3h. Enumeration of day in the month

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved	
5-0	R/W	Enumeration of day in the month (DAY = 01 ~ 31)

CR E4h. Days of the week

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-3	Reserved	
2-0	R/W	Days of the week (WEEKDAY = 0 ~ 6) 0 => Sunday; 1 => Monday; 6 => Saturday;

CR E5h. Month of RTC

Attribute: Read/Write Power Well: VRTC

Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-5	Reserved	
4-0	R/W	Month of RTC (MONTH = 01 ~ 12) 01 => January; 02 => February; 12 => December;

CR E6h. Year of RTC

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Year of RTC (YEAR = 00 ~ 99)

CR E7h. Alarm of weekday

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	Enable Alarm of weekday Disabe Alarm of weekday
6-3	Reserved	
2-0	R/W	Alarm of weekday (0 ~ 6)

CR E8h. Alarm of hour

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: Enable Alarm of hour 1: Disabe Alarm of hour
6	Reserved	
5-0	R/W	Alarm of hour (00 ~ 23 or 01 ~ 12)

CR E9h. Alarm of minute

Attribute: Read/Write

Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	Enable Alarm of minute Disabe Alarm of minute
6-0	R/W	Alarm of minute (00 ~ 59)

CR EAh. Interrupt Enable Bits

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved	
0	R/W	Interrupt enable of time alarm. 0: Disable 1: Enable

CR EBh. Interrupt flags

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved	
0	R/W	The flag of time alarm. This bit can be cleared to 0 by writing 1 to it.

17.13 Logical Device D (Deep Sleep, Power Fault)

CR 30h. Deep Sleep configuration register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 20h

BIT	READ / WRITE	DESCRIPTION
7	R/W	DIS_SLPSUS_PULLUP (test mode) 0: Enable SLP_SUS# internal pull-up. 1: Disable SLP_SUS# internal pull-up.
6	R/W	RSMRST# Detect Source Select for Deep Sleep Mode. 0: RSMRST# detected source from PSOUT# voltage. 1: RSMRST# detected source from PCHVSB voltage. Note. Set to 0, if Deep S5 is enabled. Set to 1, if DSW is enabled.
5	R/W	Deep_s3_opt 0: When enter Deep S3 state, the SUS_WARN_5VDUAL will keep low. 1: When enter Deep S3 state, the SUS_WARN_5VDUAL will follow DSW sequence.
4	R/W	dsw_wake_opt (test mode) 0: The PSOUT# will assert until SLPS3# high when deep s5 wakeup event happened. 1: The PSOUT# will assert until RSMRST_L high and SLP_SUS_L high when deep s5 wakeup event happened. PS. This bit only active when PCH_DSW_EN & (Deep S5 Enable Deep S3 Enable)
3	R/W	PCH DSW Enable 0: If PCH disable DSW function. 1: if PCH enable DSW function. (SLP_SUS# affects RSMRST#)
2-0	Reserved	

CR E3h. SUSACK Counter Register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 6Eh

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	SUSACK Counter Register. When system exit DSW State, 5VDUAL will wait a delay time to pull up. Default is 220ms. Example:Reg = 0 -> Delay = 0~1ms Reg = 1 -> Delay = 1~3ms Reg = 2 -> Delay = 3~5ms

CR E4h. Deep S5 Front Panel Green & Yellow LED control register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6-4	R/W	Deep S5_YLW_BLK_FREQ bits (This function affects by LDB CRE6 Bit 5) 000: High-Z. (The output type of YLW_LED is open-drain.) (Default) 001: YLW_LED outputs 0.0625Hz. 010: YLW_LED outputs 0.125Hz. 011: YLW_LED outputs 0.25Hz. 100: YLW_LED outputs 0.5Hz 101: YLW_LED outputs 1Hz. 110: YLW_LED outputs 2Hz. 111: YLW_LED outputs low.
3	Reserved	
2-0	R/W	Deep S5_GRN_BLK_FREQ bits (This function affects by LDB CRE6 Bit 4) 000: High-Z. (The output type of YLW_LED is open-drain.) (Default) 001: GRN_LED outputs 0.0625Hz. 010: GRN_LED outputs 0.125Hz. 011: GRN_LED outputs 0.25Hz. 100: GRN_LED outputs 0.5Hz 101: GRN_LED outputs 1Hz. 110: GRN_LED outputs 2Hz. 111: GRN_LED outputs low.

CR E5h. Deep S3 Front Panel Green & Yellow LED control register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6-4	R/W	Deep S3_YLW_BLK_FREQ bits (This function affects by LDB CRE6 Bit 7) 000: High-Z. (The output type of YLW_LED is open-drain.) (Default) 001: YLW_LED outputs 0.0625Hz. 010: YLW_LED outputs 0.125Hz. 011: YLW_LED outputs 0.25Hz. 100: YLW_LED outputs 0.5Hz 101: YLW_LED outputs 1Hz. 110: YLW_LED outputs 2Hz. 111: YLW_LED outputs low.

BIT	READ / WRITE	DESCRIPTION
3	Reserved	
2-0	R/W	Deep S3_GRN_BLK_FREQ bits (This function affects by LDB CRE6 Bit 6) 000: High-Z. (The output type of YLW_LED is open-drain.) (Default) 001: GRN_LED outputs 0.0625Hz. 010: GRN_LED outputs 0.125Hz. 011: GRN_LED outputs 0.25Hz. 100: GRN_LED outputs 0.5Hz 101: GRN_LED outputs 1Hz. 110: GRN_LED outputs 2Hz. 111: GRN_LED outputs low.

CR E6h. Deep Sleep LED Enable register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R/W	Deep S3_YLW_BLK_FREQ: 0: Depend on setting of CRF2h, bit7-4. 1: Always output high.
6	R/W	Deep S3_GRN_BLK_FREQ: 0: Depend on setting of CRF2h, bit3-0. 1: Always output high.
5	R/W	Deep S5_YLW_BLK_FREQ: 0: Depend on setting of CRF6h, bit7-4. 1: Always output high.
4	R/W	Deep S5_GRN_BLK_FREQ: 0: Depend on setting of CRF2h, bit3-0. 1: Always output high.
3-0	Reserved	

CR E7h. Front Panel Yellow & Green LED control register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 88h

BIT	READ / WRITE	DESCRIPTION
7	R/W	YLW_LED_RST# (Default =1) 0: YLW_BLK_FREQ will be set to "0000" (High-Z) when into S3~S5 state. 1: YLW_BLK_FREQ will be kept when into S3~S5 state.
6	R/W	YLW_LED_POL 0: YLW_LED output is active low. (Default) 1: YLW_LED output is active high.
5	R/W	GRN_LED_RST# (Default= 0) 0: GRN_BLK_FREQ will be set to "0000" (High-Z) when into S3~S5 state. 1: GRN_BLK_FREQ will be kept when into S3~S5 state.

BIT	READ / WRITE	DESCRIPTION
4	R/W	GRN_LED_POL 0: GRN_LED output is active low. (Default) 1: GRN_LED output is active high.
3	R/W	AUTO_EN (Powered by VSB, RSMRST# reset, default = 1) 0: GRN_LED and YLW_LED are controlled by GRN_ LED_ RST, GRN_BLK_FREQ and YLW_LED_RST, YLW_BLK_FREQ bits. 1: GRN_LED and YLW_LED are controlled by "SLP_S5#" and "SLP_S3#".
2-0	Reserved	

CR E8h. Front Panel Yellow & Green LED control register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 77h

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6-4	R/W	YLW_BLK_FREQ bits (The reset depends on bit6,YLW_LED_RST#) 000: High-Z. (The output type of YLW_LED is open-drain.) 001: YLW_LED outputs 0.0625Hz. 010: YLW_LED outputs 0.125Hz. 011: YLW_LED outputs 0.25Hz. 100: YLW_LED outputs 0.5Hz 101: YLW_LED outputs 1Hz. 110: YLW_LED outputs 2Hz. 111: YLW_LED outputs low. (Default)
3	Reserved	
2-0	R/W	GRN_BLK_FREQ bits (The reset depends on bit6, GRN_LED_RST#) 000: High-Z. (The output type of YLW_LED is open-drain.) 001: GRN_LED outputs 0.0625Hz. 010: GRN_LED outputs 0.125Hz. 011: GRN_LED outputs 0.25Hz. 100: GRN_LED outputs 0.5Hz 101: GRN_LED outputs 1Hz. 110: GRN_LED outputs 2Hz. 111: GRN_LED outputs low. (Default)

CR F0h. Power Fault Control Register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 70h

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

BIT	READ / WRITE	DESCRIPTION
7	R/W	V_COMP3 Detect Enable 0: Disable 1: Enable
6	R/W	V_COMP2 Detect Enable 0: Disable 1: Enable
5	R/W	V_COMP1 Detect Enable 0: Disable 1: Enable
4	R/W	V_COMP0 Detect Enable 0: Disable 1: Enable
3-2	Reserved	
1	R/W	Power Fault Status. Write 1 Clear.
0	R/W	Power Fault Enable 0: Disable 1: Enable

CR F1h. Power Fault Voltage Setting Register

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: AAh

BIT	READ / WRITE	DESCRIPTION
7-6	R/W	V_COMP3 high / low limit voltage setting 00: UV -10%, OV +9.8% 01: UV -15%, OV +14.8% 10: UV -19.9%, OV +19.8% 11: UV -24.9%, OV + 24.1%
5-4	R/W	V_COMP2 high / low limit voltage setting 00: UV -10%, OV +9.8% 01: UV -15%, OV +14.8% 10: UV -19.9%, OV +19.8% 11: UV -24.9%, OV + 24.1%
3-2	R/W	V_COMP1 high / low limit voltage setting 00: UV -10%, OV +9.8% 01: UV -15%, OV +14.8% 10: UV -19.9%, OV +19.8% 11: UV -24.9%, OV + 24.1%

BIT	READ / WRITE	DESCRIPTION
1-0	R/W	V_COMP0 high / low limit voltage setting 00: UV -10%, OV +9.8% 01: UV -15%, OV +14.8% 10: UV -19.9%, OV +19.8% 11: UV -24.9%, OV + 24.1%

17.14 Logical Device E (TACHIN/PWMOUT Assignment)

CR E0h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	R/W	Pin4 TACHPWM1 assign (same as LDE CRE0 Bit3-0)
3-0	R/W	Pin3 TACHPWM0 assign 0000: PWMOUT0 0001: PWMOUT1 0010: PWMOUT2 0011: PWMOUT3 0100: PWMOUT4 0101: PWMOUT5 0110: PWMOUT6 0111: PWMOUT7 1000: TACHIN0 1001: TACHIN1 1010: TACHIN2 1011: TACHIN3 1100: TACHIN4 1101: TACHIN5 1110: TACHIN6 1111: TACHIN7

CR E1h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	R/W	Pin69 TACHPWM4 assign (same as LDE CRE0 Bit3-0)
3-0	R/W	Pin68 TACHPWM5 assign (same as LDE CRE0 Bit3-0)

CR E2h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	R/W	Pin98 TACHPWM5 assign (same as LDE CRE0 Bit3-0)
3-0	R/W	Pin95 TACHPWM4 assign (same as LDE CRE0 Bit3-0)

CR E3h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	R/W	Pin125 TACHPWM7 assign (same as LDE CRE0 Bit3-0)
3-0	R/W	Pin124 TACHPWM6 assign (same as LDE CRE0 Bit3-0)

CR E4h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	R/W	Pin126 TACHPWM9 assign (same as LDE CRE0 Bit3-0)
3-0	R/W	Pin37 TACHPWM8 assign (same as LDE CRE0 Bit3-0)

CR E5h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved	
3-0	R/W	Pin127 TACHPWM10 assign (same as LDE CRE0 Bit3-0)

CR E6h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7-0	Reserved	

CR E7h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION		
7-4	R/W	Pin87 TACHPWM15 assign		
		(same as LDE CRE0 Bit3-0)		
3-0	R/W	Pin86 TACHPWM14 assign (same as LDE CRE0 Bit3-0)		

CR E8h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION		
7-4	R/W	Pin8 TACHPWM17 assign (same as LDE CRE0 Bit3-0)		
3-0	R/W	Pin7 TACHPWM16 assign (same as LDE CRE0 Bit3-0)		

CR E9h.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION		
7-4	R/W	Pin10 TACHPWM19 assign (same as LDE CRE0 Bit3-0)		
3-0	R/W	Pin9 TACHPWM18 assign (same as LDE CRE0 Bit3-0)		

CR EAh.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 00h

BIT	READ / WRITE	DESCRIPTION		
7-4	R/W	Pin12 TACHPWM21 assign (same as LDE CRE0 Bit3-0)		
3-0	R/W	Pin11 TACHPWM20 assign (same as LDE CRE0 Bit3-0)		

CR EBh.

Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 00h

BIT	READ / WRITE	DESCRIPTION		
7-4	R/W	Pin14 TACHPWM23 assign		
7-4		(same as LDE CRE0 Bit3-0)		
3-0	R/W	Pin13 TACHPWM22 assign		
3-0	□ / VV	(same as LDE CRE0 Bit3-0)		

18. SPECIFICATIONS

18.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	RATING	UNIT
3VCC	Power Supply Voltage (3.3V)	-0.3 to 3.6	V
VI	Input Voltage	-0.3 to 3VCC+0.3	V
VI	Input Voltage (5V tolerance)	-0.3 to 5.5	V
VBAT	RTC Battery Voltage VBAT	2.2 to 4.0	V
TA	Operating Temperature	0 to +70	℃
TSTG	Storage Temperature	-55 to +150	∞

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

18.2 DC CHARACTERISTICS

 $(T_A = 0 \,{}^{\circ}\!\text{C to } 70 \,{}^{\circ}\!\text{C}, \ V_{DD} = 3.3 \text{V} \pm 5 \%, \ V_{SS} = 0 \text{V})$

PARAMETER	SYM	MIN	TYP	MAX.	UNIT	CONDITIONS
RTC Battery Quiescent Current				2.4	μΑ	VBAT = 2.5 V
ACPI Stand-by Power Supply Quiescent Current	IVSB			2.0	mA	VSB = 3.3 V, All ACPI pins are not connected.
VCC Quiescent Current	Ivcc			35	mA	VSB = 3.3 V VCC (AVCC)= 3.3 V LRESET = High IOCLK = 48MHz CASEOPEN Pull-Up to VBAT
Vtt Quiescent Current	IVTT			1	mA	VSB = 3.3 V VCC (AVCC)= 3.3 V VTT = 1.2V LRESET = High IOCLK = 48MHz CASEOPEN Pull-Up to VBAT
AIN – Analog input						1
AOUT – Analog output						

PARAMETER	SYM	MIN	ТҮР	MAX.	UNIT	CONDITIONS
IN _{tp3} – 3.3V TTL-level input pin	O I IVI	IVIIIA		III/A/X.	Oitii	CONDITIONS
Input Low Voltage	VIL			0.8	V	
Input High Voltage	VIH	2.0		0.0	V	
Input High Leakage	ILIH	2.0		+10		VIN = 3.3V
					μΑ	
Input Low Leakage	ILIL			-10	μΑ	VIN = 0 V
IN _{tsp3} – 3.3V TTL-level, Schmitt-trigger in		1			l ,,	1 1 2 2 2 2 1
Input Low Threshold Voltage	Vt-	0.5	0.8	1.1	V	VCC = 3.3 V
Input High Threshold Voltage	Vt+	1.6	2.0	2.4	V	VCC = 3.3 V
Hystersis	VTH	0.5	1.2		V	VCC = 3.3 V
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3 V
Input Low Leakage	İLIL			-10	μΑ	VIN = 0 V
IN _{tp5} – 5V TTL-level input pin	T	T	1		1	T
Input Low Voltage	VIL			8.0	V	
Input High Voltage	VIH	2.0			V	
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3V
Input Low Leakage	ILIL			-10	μΑ	VIN = 0 V
IN _{gp5} – 5V TTL-level input pin						
Input Low Voltage	VIL		0.72		V	
Input High Voltage	VIH		0.72		V	
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3V
Input Low Leakage	ILIL			-10	μΑ	VIN = 0 V
IN _{tdp5} – 5V TTL-level input pin with inter	nal pull-	down resis	tor		•	
Input Low Voltage	VIL			0.8	V	
Input High Voltage	VIH	2.0			V	
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3V
Input Low Leakage	ILIL			-10	μΑ	VIN = 0 V
IN _{tsp5} – 5V TTL-level, Schmitt-trigger inp	ut pin		ı		ı	
Input Low Threshold Voltage	Vt-	0.5	0.8	1.1	V	Vcc = 3.3 V
Input High Threshold Voltage	V _{t+}	1.6	2.0	2.4	V	Vcc = 3.3 V
Hystersis	VTH	0.5	1.2		V	VCC = 3.3 V
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3 V
Input Low Leakage	ILIL			-10	μΑ	VIN = 0 V
O _{8p3} – 3.3V Output pin with 8mA source	-sink ca	pability	•		•	•
Output Low Voltage	Vol			0.4	V	IOL = 8 mA
Output High Voltage	Vон	2.4			V	IOH = -8 mA

PARAMETER	SYM	MIN	ТҮР	MAX.	UNIT	СО	NDITIONS	
OD8p3 – 3.3V Open-drain output pin with 8mA sink capability								
Output Low Voltage	Vol			0.4	V	IOL	= 8 mA	
O _{8p5} – 5V Output pin with 8mA source-s	O _{8p5} – 5V Output pin with 8mA source-sink capability							
Output Low Voltage	Vol			0.4	V	loL	= 8 mA	
Output High Voltage	Vон	2.4			V	ЮН	= -8 mA	
OD _{8p5} – 5V Open-drain output pin with 8	3mA sin	k capability						
Output Low Voltage	Vol			0.4	V	IOL	= 8 mA	
O _{12p5} – 5V Output pin with 12mA source	e-sink ca	apability						
Output Low Voltage	Vol			0.4	V	loL	= 12 mA	
Output High Voltage	Vон	2.4			V	ЮН	= -12 mA	
$OD_{12p5}-5V\ Open\hbox{-drain output pin with}$	12mA s	ink capabili	ty					
Output Low Voltage	Vol			0.4	V	IOL:	= 12 mA	
O _{24p5} – 5V Output pin with 24mA source	e-sink ca	apability						
Output Low Voltage	Vol			0.4	V	loL	= 24 mA	
Output High Voltage	Vон	2.4			V IOH = -24 m		= -24 mA	
$OD_{24p5} - 5V$ Open-drain output pin with	24mA s	ink capabili	ty					
Output Low Voltage	Vol			0.4	٧	loL	= 24 mA	
I/O_{V3} – Bi-direction pin with source capa PECI	bility of	6 mA and s	ink ca	pability	of 1 n	nA for	INTEL [®]	
Input Low Voltage	V_{IL}	0.275*V _{tt}		0.5*V _{tt}		V		
Input High Voltage	V _{IH}	0.55*V _{tt}		0.725*V _{tt} V				
Output Low Voltage	V _{OL}			0.25*V _{tt} V				
Output High Voltage	V _{OH}	0.75*V _{tt}				V		
Hysterisis	V _{Hys}	0.1*V _{tt}				V		

19. AC CHARACTERISTICS

19.1 Power On / Off Timing

	T1	T2	Т3	T4
IDEAL TIMING	48ms~66ms	Over 64ms at least	< 10ns	15ms~32ms

19.2 AC Power Failure Resume Timing

(1) Logical Device A, CR [EBh] bits [6:5] =00 means "OFF" state ("OFF" means the system is always turned off after the AC power loss recovered.)

(2) Logical Device A, CR [EBh] bits [6:5]=01 means "ON" state. ("ON" means the system is always turned on after AC power loss recovered.)

** What's the definition of former state at AC power failure?

The previous state is "ON"
 VCC falls to 2.6V and SLP_S3# keeps at VIH 2.0V

2) The previous state is "OFF" VCC fall to 2.6V and SLP_S3# keeps at VIL 0.8V

To ensure that VCC does not fall faster than VSB in various ATX Power Supplies, the NCT6683D adds the option of "user define mode" for the pre-defined state before AC power failure. BIOS can set the pre-defined state for the system to be "On" or "Off". According to this setting, the system chooses the state after the AC power recovery.

Please refer to the descriptions of bit 6~5 of CR EBh and bit 4 of CR ECh in Logical Device A.

CR EBh

BIT	READ/WRITE	DESCRIPTION
6~5	R/W	Power-loss control bits => (VBAT) 0 0: System always turns off when it returns from power-loss state. 0 1: System always turns on when it returns from power-loss state. 1 0: System turns off / on when it returns from power-loss state depending on the state before the power loss. 1 1: User defines the resuming state before power loss.(refer to Logic Device A, CRE6[4])

CR ECh

BIT	READ/WRITE	DESCRIPTION
0	R/W	Power-loss Last State Flag. 0: ON 1: OFF

19.3 PECI Timing

SYMBOL		MIN	ТҮР	MAX	UNITS
	Client	0.495		500	// C
t _{BIT}	Originator	0.495		250	μ s
	t _{H1}	0.6	3/4	0.8	× t _{BIT}
	t _{H0}	0.2	1/4	0.4	Хtыт

19.4 SMBus Timing

19.5 UART/Parallel Port

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
Delay from Stop to Set Interrupt	TSINT		9/16		Baud Rate
Delay from IOR Reset Interrupt	TRINT		9	1000	nS
Delay from Initial IRQ Reset to Transmit Start	TIRS		1/16	8/16	Baud Rate
Delay from to Reset interrupt	THR			175	nS
Delay from Initial IOW to interrupt	Tsı		9/16	16/16	Baud Rate
Delay from Stop to Set Interrupt	Тѕті			8/16	Baud Rate
Delay from IOR to Reset Interrupt	TIR		8	250	nS
Delay from IOR to Output	Tmwo		6	200	nS
Set Interrupt Delay from Modem Input	Тѕім		18	250	nS
Reset Interrupt Delay from IOR	TRIM		9	250	nS
Baud Divisor	N	100 pF Loading		2 ¹⁶ -1	

UART Transmitter Timing

19.6 Modem Control Timing

MODEM Control Timing

19.7 Parallel Port Mode Parameters

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT
PD0-7, INDEX, STROBE, AUTOFD Delay from IOW	t1			100	nS
IRQ Delay from ACK, nFAULT	t2			60	nS
IRQ Delay from IOW	t3			105	nS
IRQ Active Low in ECP and EPP Modes	t4	200		300	nS
ERROR Active to IRQ Active	t5			105	nS
PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT
PD0-7, INDEX, STROBE, AUTOFD Delay from IOW	t1			100	nS
IRQ Delay from ACK, nFAULT	t2			60	nS
IRQ Delay from IOW	t3			105	nS
IRQ Active Low in ECP and EPP Modes	t4	200		300	nS
ERROR Active to IRQ Active	t5			105	nS

19.7.1 Parallel Port Timing

19.7.2 EPP Data or Address Read Cycle Timing Parameters

PARAMETER	SYM.	MIN.	MAX.	UNIT
WAIT Asserted to WRITE Deasserted	t14	0	185	nS
Deasserted to WRITE Modified	t15	60	190	nS
WAIT Asserted to PD Hi-Z	t17	60	180	nS
Command Asserted to PD Valid	t18	0		nS
Command Deasserted to PD Hi-Z	t19	0		nS
WAIT Deasserted to PD Drive	t20	60	190	nS
WRITE Deasserted to Command	t21	1		nS
PBDIR Set to Command	t22	0	20	nS
PD Hi-Z to Command Asserted	t23	0	30	nS
Asserted to Command Asserted	t24	0	195	nS
WAIT Deasserted to Command Deasserted	t25	60	180	nS
Time out	t26	10	12	nS
PD Valid to WAIT Deasserted	t27	0		nS
PD Hi-Z to WAIT Deasserted	t28	0		μS
PARAMETER	SYM.	MIN.	MAX.	UNIT
Ax Valid to IOR Asserted	t1	40		nS
IOCHRDY Deasserted to IOR Deasserted	t2	0		nS
IOR Deasserted to Ax Valid	t3	10	10	nS
IOR Deasserted to IOW or IOR Asserted	t4	40		
IOR Asserted to IOCHRDY Asserted	t5	0	24	nS
PD Valid to SD Valid	t6	0	75	nS
IOR Deasserted to SD Hi-Z (Hold Time)	t7	0	40	μS
SD Valid to IOCHRDY Deasserted	t8	0	85	nS
WAIT Deasserted to IOCHRDY Deasserted	t9	60	160	nS
PD Hi-Z to PDBIR Set	t10	0		nS
WRITE Deasserted to IOR Asserted	t13	0		nS
WAIT Asserted to WRITE Deasserted	t14	0	185	nS
Deasserted to WRITE Modified	t15	60	190	nS
IOR Asserted to PD Hi-Z	t16	0	50	nS
WAIT Asserted to PD Hi-Z	t17	60	180	nS
Command Asserted to PD Valid	t18	0		nS
Command Deasserted to PD Hi-Z	t19	0		nS
WAIT Deasserted to PD Drive	t20	60	190	nS

PARAMETER	SYM.	MIN.	MAX.	UNIT
WRITE Deasserted to Command	t21	1		nS
PBDIR Set to Command	t22	0	20	nS
PD Hi-Z to Command Asserted	t23	0	30	nS
Asserted to Command Asserted	t24	0	195	nS
WAIT Deasserted to Command Deasserted	t25	60	180	nS
Time out	t26	10	12	nS
PD Valid to WAIT Deasserted	t27	0		nS
PD Hi-Z to WAIT Deasserted	t28	0		μS

19.7.3 EPP Data or Address Read Cycle (EPP Version 1.9)

EPP Data or Address Read Cycle (EPP Version 1.9)

19.7.4 EPP Data or Address Read Cycle (EPP Version 1.7)

EPP Data or Address Read Cycle (EPP Version 1.7)

19.7.5 EPP Data or Address Write Cycle Timing Parameters

PARAMETER	SYM.	MIN.	MAX.	UNIT
PBDIR Low to WRITE Asserted	t10	0		nS
WAIT Asserted to WRITE Asserted	t11	60	185	nS
WAIT Asserted to WRITE Change	t12	60	185	nS
WAIT Asserted to PD Invalid	t14	0		nS
PD Invalid to Command Asserted	t15	10		nS
WAIT Asserted to Command Asserted	t17	60	210	nS
WAIT Deasserted to Command Deasserted	t18	60	190	nS
Command Asserted to WAIT Deasserted	t19	0	10	μS
Time out	t20	10	12	μS
Command Deasserted to WAIT Asserted	t21	0		nS
PARAMETER	SYM.	MIN.	MAX.	UNIT
Ax Valid to IOW Asserted	t1	40		nS
SD Valid to Asserted	t2	10		nS
IOW Deasserted to Ax Invalid	t3	10		nS
WAIT Deasserted to IOCHRDY Deasserted	t4	0		nS
Command Asserted to WAIT Deasserted	t5	10		nS

PARAMETER	SYM.	MIN.	MAX.	UNIT
IOW Deasserted to IOW or IOR Asserted	t6	40		nS
IOCHRDY Deasserted to IOW Deasserted	t7	0	24	nS
WAIT Asserted to Command Asserted	t8	60	160	nS
IOW Asserted to WAIT Asserted	t9	0	70	nS
PBDIR Low to WRITE Asserted	t10	0		nS
WAIT Asserted to WRITE Asserted	t11	60	185	nS
WAIT Asserted to WRITE Change	t12	60	185	nS
IOW Asserted to PD Valid	t13	0	50	nS
WAIT Asserted to PD Invalid	t14	0		nS
PD Invalid to Command Asserted	t15	10		nS
IOW to Command Asserted	t16	5	35	nS
WAIT Asserted to Command Asserted	t17	60	210	nS
WAIT Deasserted to Command Deasserted	t18	60	190	nS
Command Asserted to WAIT Deasserted	t19	0	10	μS
Time out	t20	10	12	μS
Command Deasserted to WAIT Asserted	t21	0		nS
IOW Deasserted to WRITE Deasserted and PD invalid	t22	0		nS
WRITE to Command Asserted	t16	5	35	nS

19.7.6 EPP Data or Address Write Cycle (EPP Version 1.9)

EPP Data or Address Write Cycle (EPP Version 1.9)

19.7.7 EPP Data or Address Write Cycle (EPP Version 1.7)

EPP Data or Address Write Cycle (EPP Version 1.7)

19.7.8 Parallel Port FIFO Timing Parameters

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
DATA Valid to nSTROBE Active	t1	600		nS
nSTROBE Active Pulse Width	t2	600		nS
DATA Hold from nSTROBE Inactive	t3	450		nS
BUSY Inactive to PD Inactive	t4	80		nS
BUSY Inactive to nSTROBE Active	t5	680		nS
nSTROBE Active to BUSY Active	t6		500	nS

19.7.9 Parallel FIFO Timing

19.7.10 ECP Parallel Port Forward Timing Parameters

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
nAUTOFD Valid to nSTROBE Asserted	t1	0	60	nS
PD Valid to nSTROBE Asserted	t2	0	60	nS
BUSY Deasserted to nAUTOFD Changed	t3	80	180	nS
BUSY Deasserted to PD Changed	t4	80	180	nS
nSTROBE Deasserted to BUSY Deasserted	t5	0		nS
BUSY Deasserted to nSTROBE Asserted	t6	80	200	nS
nSTROBE Asserted to BUSY Asserted	t7	0		nS
BUSY Asserted to nSTROBE Deasserted	t8	80	180	nS

19.7.11 ECP Parallel Port Forward Timing

19.7.12 ECP Parallel Port Reverse Timing Parameters

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
PD Valid to nACK Asserted	t1	0		nS
nAUTOFD Deasserted to PD Changed	t2	0		nS
nAUTOFD Asserted to nACK Asserted	t3	0		nS
nAUTOFD Deasserted to nACK Deasserted	t4	0		nS
nACK Deasserted to nAUTOFD Asserted	t5	80	200	nS
PD Changed to nAUTOFD Deasserted	t6	80	200	nS

19.7.13 ECP Parallel Port Reverse Timing

19.8 KBC Timing Parameters

NO.	DESCRIPTION	MIN.	MAX.	UNIT
T1	Address Setup Time from WRB	0		nS
T2	Address Setup Time from RDB	0		nS
Т3	WRB Strobe Width	20		nS
T4	RDB Strobe Width	20		nS
T5	Address Hold Time from WRB	0		nS
T6	Address Hold Time from RDB	0		nS
T7	Data Setup Time	50		nS
Т8	Data Hold Time	0		nS
Т9	Gate Delay Time from WRB	10	30	nS
T10	RDB to Drive Data Delay		40	nS
T11	RDB to Floating Data Delay	0	20	nS
T12	Data Valid After Clock Falling (SEND)		4	μS
T13	K/B Clock Period	20		μS
T14	K/B Clock Pulse Width	10		μS
T15	Data Valid Before Clock Falling (RECEIVE)	4		μS
T16	K/B ACK After Finish Receiving	20		μS
T19	Transmit Timeout		2	mS
T20	Data Valid Hold Time	0		μS
T21	Input Clock Period (6–16 Mhz)	63	167	nS
T22	Duration of CLK inactive	30	50	μS
T23	Duration of CLK active	30	50	μS
T24	Time from inactive CLK transition, used to time when the auxiliary device sample DATA	5	25	μS
T25	Time of inhibit mode	100	300	μS
T26	Time from rising edge of CLK to DATA transition	5	T28-5	μS
T27	Duration of CLK inactive	30	50	μS
T28	Duration of CLK active	30	50	μS
T29	Time from DATA transition to falling edge of CLK	5	25	μS

19.8.1 Writing Cycle Timing

19.8.2 Read Cycle Timing

19.8.3 Send Data to K/B

19.8.4 Receive Data from K/B

19.8.5 Input Clock

19.8.6 Send Data to Mouse

19.8.7 Receive Data from Mouse

19.9 GPIO Timing Parameters

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
t _{WGO}	Write data to GPIO update		300(Note 1)	ns

Note: Refer to Microprocessor Interface Timing for Read Timing

19.9.1 GPIO Write Timing

20. TOP MARKING SPECIFICATIONS

NCT6683D-LU

E902B006

010G9AFA

1st line: Nuvoton logo

2nd line: part number: NCT6683D-LU

3rd line: wafer production series lot number: E902B006

4th line: tracking code 010G9AFA

010: packages made in 2010, week 10

G: assembly house ID; G means GR, A means ASE, etc.

9: code version; 9 means code 009

A: IC revision; A means version A; B means version B, and C means version C

FA: Nuvoton internal use.

21. ORDERING INFORMATION

PART NUMBER	PACKAGE TYPE	PRODUCTION FLOW
NCT6683D-LU	128Pin LQFP	Commercial, 0°C to +70°C

22. PACKAGE SPECIFICATION

COTROL DIMENSIONS ARE IN MILLIMETERS.

COTTOE DIMETOIONO TINE IN IMPERIMETERS.						
SYMBOL	MILLIMETER			INCH		
SIMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
А	_	_	1.60	_	_	0.063
A1	0.05	_	0.15	0.002	_	0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
HD	16.00 BSC.			0.630 BSC.		
D	14.00 BSC.			0.551 BSC.		
HE	16.00 BSC.			0.630 BSC.		
Е	14.00 BSC.			0.551 BSC.		
b	0.13	0.16	0.23	0.005	0.006	0.009
е	0.40 BSC.			0.016 BSC.		
θ	0,	3.5*	7*	0.	3.5°	7*
С	0.09	_	0.20	0.004	_	0.008
L	0.45	0.60	0.75	0.018	0.024	0.030
L ₁	1.00 REF			0.039 REF		
у	-	-	0.1	-	-	0.004

128-pin (LQFP)

23. REVISION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
0.5	05/11/2012	N.A.	Draft version
0.6	16/11/2012	2,3,7	Add USB function description
0.7	14/05/2013	3	Update PWM output description

Important Notice

Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.