

Cell3 Target Data Analysis Guidelines

This guide provides instructions for bioinformaticians on batch processing data files following sequencing of libraries prepared using Nonacus' Cell3 Target NGS kit and subsequent de-multiplexing using Illumina's bcl2fastq tool.

Bcl2fastq De-multiplexing

Input requirements

- 1. Illumina bcl2fastq software (BCL) Base Call Files to Fastq conversion software http://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastqconversion-software.html
- 2. Basecalls directory
- 3. Samplesheet.csv ensure there are no N's present in the sample sheet (examples provided on request)
- 4. Check RunInfo.xml to ensure the correct number of cycles have been performed for the indexes
 - a. i7 = 17 cycles
 - b. $i_5 = 8$ cycles

Expected file outputs per sample

- 1. Read 1 fastq file (R1)
- 2. Read 2 fastq file (R₃)
- 3. fastq file containing information on a per fragment molecular tag (R2)
- 4. Index 1 and 2 fastq files (these are not required)

Procedural steps

- 1. Open a command terminal
- 2. Move into the basecalls directory of the data to be de-multiplexed
- 3. Run the following bcl2fastq command bcl2fastq --create-fastq-for-index-reads --mask-short-adapter-reads o --use-basesmask Y*,18Y9,18,Y* --no-lane-splitting (optional)
 - * replace with the number of cycles performed for read 1 and 2

NonacusTools a Consensus BAM File Preparation Tool

NonacusTools automates the preparation of consensus bam files utilising open source tools. The following is a list of tools used and steps implemented within the script.

Step No.	Step Name	Tool	Version	Input Files	Output Files	Additional Settings	Extra Files
1	Alignment	bwa mem	0.7.13	R1/R3	.sam	-M -t 16	GRCh38.fasta.gz
2	Annotate BAM with UMI	fgbio AnnotateBamWithUmis	0.4.0	.bam / I1.fastq	fgtagbam	-f I1.fastq	
3	Sort bam by queryname	fgbio SortBam	0.4.0	fgtagbam	fgsortbam	-s queryname	
4	Reset mate information	fgbio SetMateInformation	0.4.0	fgsortbam	setmatebam		
5	Group read by UMI	fgbio GroupReadsByUmi	0.4.0	setmatebam	histogram.txt fggroupbam	-f family_size_histogram.txt -s adjacency	
6	Consensus read build	fgbio CallMolecularConsensusReads	0.4.0	fggroupbam	fgconbam	-M 2	
7	Covert Consensus to Fastq	PICARD SamtoFastq	2.2.2	fgconbam	con_R1.fastq / con_R2.fastq	FASTQ=con_R1.fastq SECOND_END_FASTQ=con_R2.fastq VALIDATION_STRINGENCY=LENIENT	
8	Align consensus bam	bwa mem	0.7.13	con_R1.fastq / con_R2.fastq	consam		GRCh38.fasta.gz
9	Sort consensus bam	PICARD SortSam	2.2.2	consam	consensusbam	SORT_ORDER=coordinate	GRCh38.fasta.gz
10	Index consensus bam	samtools index	1.3.1	consensusba m	consensusbai		

NonacusTools Usage

- Contact nonacus support for a copy of NonacusTools.tar.gz (5.4Gb) the download includes the GRCh38 reference bundle
- 2. Unzip the file using tar

tar -xvzf file.tar.gz -C path/to/where/to/save/tool

- 3. cd (what does cd mean?) into the NonacusTools directory
- 4. Create a tab delineated text file or batch file in the below format and store in the same folder as the fastq files you want to process

R1_file_name R2_file_name ID

5. Run the following command including the full file path to the batch file and specify the number of cores to assign to the processing through option -t

Python consensus.py -i full/path/to/batch_file.txt -t 24

- 6. The output will be a file for each sample containing the following files:
 - a. Final Consensus fileName.bam + Final Consensus fileName.bai
 - b. Tag_fileName.bam + Tag_fileName.bai UMI placed in RX tag
 - Stats_fileName.txt contains information relating to the family size, count and fraction

