# Some Discrete Probability Distributions – part 1

School of Computing, Gachon Univ.

Joon Yoo





#### Introduction

- Often, the observations generated by different statistical experiments have the same general type of behavior.
- Consequently, discrete random variables associated with these experiments can be described by essentially the same probability distribution and therefore can be represented by a single formula.



#### So !!

- If you have an in-depth understand of some probability distributions, you can use them to describe many of the discrete random variables encountered in practice.
- In fact, one needs only a handful of important probability distributions to describe lots of real-life random phenomena encountered in practice.
  - For instance, in a study involving testing the effectiveness of a new drug, the number of cured patients among all the patients who use the drug approximately follows a binomial distribution.



## 5.2 Binomial and Multinomial Distributions



#### Question

- Suppose a fair coin is tossed 10 times. Let X denote the number of heads in this 10 tosses. What is the probability distribution of the random variable X?
  - (즉, 10번 시행 중 몇 개의 head (=성공) 횟수 X의 확률분포?)



#### Question 2

Suppose a fair coin is tossed 10 times. If the number of heads in this 10 trials is 2. What is the probability of showing the head at 11-th toss?



## Introduction: Bernoulli\* distribution

- An experiment often consists of <u>repeated trials</u>, each with two possible outcomes that may be labeled <u>success</u> or <u>failure</u>.
  - (instead of success & failure, many types of two outputs can be used; e.g., Yes / No, 0 / 1, T / F, or etc.)
- In such the experiment, each trial is called a Bernoulli trial.
- The process is referred to as a Bernoulli process.



## **Bernoulli Process**

- Strictly speaking, the Bernoulli process must possess the following properties:
  - 1. The experiment consists of n repeated trials.
  - 2. Each trial results in an outcome that may be classified as a success or a failure.
  - 3. The probability of success, denoted by p, remains constant from trial to trial.
  - 4. The repeated trials are <u>independent</u>.



## Example

- The experiment consists of repeated trials. We flip a coin 2 times.
- Each trial can result in just two possible outcomes heads or tails.
- The probability of success is constant 0.5 on every trial.
- The trials are independent; that is, getting heads on one trial does not affect whether we get heads on other trials



#### Bernoulli RV

- Property
  - Expectation

$$E[X] = 1 \cdot P\{X = 1\} + 0 \cdot P\{X = 0\} = p$$

Variance

$$\sigma^{2} = E(X^{2}) - E(X)^{2} = p (1-p)$$

$$\mathbf{\hat{\Gamma}}$$

$$E(X^{2}) = 0^{2} \times f(0) + 1^{2} \times f(1) = p$$



### Example

- Coin toss (success with p=1/4)
  - X=1 for success (Head) and X=0 for failure (Tail)
  - Find pmf

$$p(x) = \begin{cases} 3/4 & , x = 0 \\ 1/4 & , x = 1 \end{cases}$$

$$E[X]=p=1/4$$

$$Var(X)=p(1-p)=3/4 \times 1/4=3/16$$



#### Example

- Consider the set of Bernoulli trials where three items are selected at random from a manufacturing process, inspected, and classified as defective or non-defective.
- A defective item is designated a success. The number of successes is a random variable X assuming integral values from 0 through 3. The eight possible outcomes and the corresponding values of X are

| Outcome          | NNN | NDN | NND | DNN | NDD | DND | DDN | DDD |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| $\boldsymbol{x}$ | 0   | 1   | 1   | 1   | 2   | 2   | 2   | 3   |

Since the items are selected independently and we assume that the process produces 25% defectives, we have

$$P(NDN) = P(N)P(D)P(N) = \left(\frac{3}{4}\right)\left(\frac{1}{4}\right)\left(\frac{3}{4}\right) = \frac{9}{64}.$$

Distribution of X = ? 
$$x = 0$$
 1 2 3  $f(x) = \frac{27}{64} = \frac{27}{64} = \frac{9}{64} = \frac{1}{64}$ 

**Binomial RV!** 



## Binomial (이항) RV

- Extension of Bernoulli RV
  - Suppose that n independent Bernoulli trials are performed
    - X = the number of success that occur in the n trials



Q: What is the probability P(X=x)?



#### **Binomial RV & distribution**

Binomial random variable X



- The number of X of successes in n Bernoulli trials is called a binomial random variable.
- Binomial distribution b(x; n; p) or b(x; p)
  - The probability distribution of this discrete random variable X is called the binomial distribution, and its values will denoted by b(x; n; p)
    - since they depend on the number of trials, n, and the probability of a success on a given trial, p.



## **Binomial Distribution**

- A Bernoulli trial can result in <u>a success with probability p</u> and <u>a failure with probability q = 1 − p</u>.
- Then, the probability distribution (p.m.f.) of the binomial random variable X, the number of successes in n independent trials, is

$$b(x; n, p) = \binom{n}{x} p^x q^{n-x}, \quad x = 0, 1, 2, \dots, n.$$



#### Example

 The probability that a certain kind of component will survive a shock test is 3/4.
 Find the probability that exactly 2 of the next 4 components tested survive.

#### Solution

• Let X be the number of components that survives in the next 4 tested components and assuming that the tests are independent and  $p = \frac{3}{4}$  for each of the 4 tests, we obtain

$$X \sim \text{Bin}(4, 3/4)$$

$$b\left(2;4,\frac{3}{4}\right) = P(X=2) = {4 \choose 2} \left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right)^2 = \frac{27}{128}.$$

$$b(x; n, p) = \binom{n}{x} p^x q^{n-x}, \quad x = 0, 1, 2, \dots, n.$$



#### Where does the Name "*Binomial*" Come From? \*°/ \*○/ \*\*\*

$$(p+q)^n = \binom{n}{0} q^n + \binom{n}{1} pq^{(n-1)} + \binom{n}{2} p^2 q^{(n-2)} + \cdots + \binom{n}{n} p^n$$

$$= b(0; n, p) + b(1; n, p) + b(2; n, p) + \cdots + b(n; n, p)$$

$$= \sum_{x=0}^n b(x; n, p)$$

$$= 1 \quad \text{(when } p+q=1\text{)}.$$

$$\stackrel{=n}{\text{He}} p^2 q^{(n-2)} + \cdots + \binom{n}{n} p^n$$

$$= \sum_{x=0}^n b(x; n, p)$$

$$\stackrel{=n}{\text{He}} p^2 p^2 q^{(n-2)} + \cdots + \binom{n}{n} p^n$$

 Frequently, we are interested in problems where it is necessary to find P (X < r ) or P (a ≤ X ≤ b ). Binomial sums</li>

$$B(r;n,p) = \sum_{n=0}^{r} b(x;n,p)$$
 (see Table A.1)



#### Example 5.2

The probability that a patient recovers from a rare blood disease is 0.4. If 15 people are known to have contracted this disease, what is the probability that

- (a) at least 10 survive,
- (b) from 3 to 8 survive, and
- (c) exactly 5 survive?

(use Table A.1)



- Solution: (use Table A.1)
  - Let X be the number of people that survive.
    - $X \sim Bin(15; 0.4)$ . (a) at least 10 survive,

      - (b) from 3 to 8 survive, and
      - (c) exactly 5 survive?

(a) 
$$P(X \ge 10) = 1 - P(X < 10) = 1 - \sum_{x=0}^{9} b(x; 15, 0.4) = 1 - 0.9662$$
  
= 0.0338

(b) 
$$P(3 \le X \le 8) = \sum_{x=3}^{8} b(x; 15, 0.4) = \sum_{x=0}^{8} b(x; 15, 0.4) - \sum_{x=0}^{2} b(x; 15, 0.4)$$
  
=  $0.9050 - 0.0271 = 0.8779$ 

(c) 
$$P(X = 5) = b(5; 15, 0.4) = \sum_{x=0}^{5} b(x; 15, 0.4) - \sum_{x=0}^{4} b(x; 15, 0.4)$$
$$= 0.4032 - 0.2173 = 0.1859$$



**Table A.1** (continued) Binomial Probability Sums  $\sum_{x=0}^{r} b(x; n, p)$ 

|                  |                  | p      |        |        |        |        |        |        |        |        |        |
|------------------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $\boldsymbol{n}$ | $\boldsymbol{r}$ | 0.10   | 0.20   | 0.25   | 0.30   | 0.40   | 0.50   | 0.60   | 0.70   | 0.80   | 0.90   |
| 15               | 0                | 0.2059 | 0.0352 | 0.0134 | 0.0047 | 0.0005 | 0.0000 |        |        |        |        |
|                  | 1                | 0.5490 | 0.1671 | 0.0802 | 0.0353 | 0.0052 | 0.0005 | 0.0000 |        |        |        |
|                  | <b>2</b>         | 0.8159 | 0.3980 | 0.2361 | 0.1268 | 0.0271 | 0.0037 | 0.0003 | 0.0000 |        |        |
|                  | 3                | 0.9444 | 0.6482 | 0.4613 | 0.2969 | 0.0905 | 0.0176 | 0.0019 | 0.0001 |        |        |
|                  | 4                | 0.9873 | 0.8358 | 0.6865 | 0.5155 | 0.2173 | 0.0592 | 0.0093 | 0.0007 | 0.0000 |        |
|                  | 5                | 0.9978 | 0.9389 | 0.8516 | 0.7216 | 0.4032 | 0.1509 | 0.0338 | 0.0037 | 0.0001 |        |
|                  | 6                | 0.9997 | 0.9819 | 0.9434 | 0.8689 | 0.6098 | 0.3036 | 0.0950 | 0.0152 | 0.0008 |        |
|                  | 7                | 1.0000 | 0.9958 | 0.9827 | 0.9500 | 0.7869 | 0.5000 | 0.2131 | 0.0500 | 0.0042 | 0.0000 |
|                  | 8                |        | 0.9992 | 0.9958 | 0.9848 | 0.9050 | 0.6964 | 0.3902 | 0.1311 | 0.0181 | 0.0003 |
|                  | 9                |        | 0.9999 | 0.9992 | 0.9963 | 0.9662 | 0.8491 | 0.5968 | 0.2784 | 0.0611 | 0.0022 |
|                  | 10               |        | 1.0000 | 0.9999 | 0.9993 | 0.9907 | 0.9408 | 0.7827 | 0.4845 | 0.1642 | 0.0127 |
|                  | 11               |        |        | 1.0000 | 0.9999 | 0.9981 | 0.9824 | 0.9095 | 0.7031 | 0.3518 | 0.0556 |
|                  | 12               |        |        |        | 1.0000 | 0.9997 | 0.9963 | 0.9729 | 0.8732 | 0.6020 | 0.1841 |
|                  | 13               |        |        |        |        | 1.0000 | 0.9995 | 0.9948 | 0.9647 | 0.8329 | 0.4510 |
|                  | 14               |        |        |        |        |        | 1.0000 | 0.9995 | 0.9953 | 0.9648 | 0.7941 |
|                  | 15               |        |        |        |        |        |        | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 16               | 0                | 0.1853 | 0.0281 | 0.0100 | 0.0033 | 0.0003 | 0.0000 |        |        |        |        |
|                  | 1                | 0.5147 | 0.1407 | 0.0635 | 0.0261 | 0.0033 | 0.0003 | 0.0000 |        |        |        |
|                  | <b>2</b>         | 0.7892 | 0.3518 | 0.1971 | 0.0994 | 0.0183 | 0.0021 | 0.0001 |        |        |        |
|                  | 3                | 0.9316 | 0.5981 | 0.4050 | 0.2459 | 0.0651 | 0.0106 | 0.0009 | 0.0000 |        |        |
|                  | 4                | 0.9830 | 0.7982 | 0.6302 | 0.4499 | 0.1666 | 0.0384 | 0.0049 | 0.0003 |        |        |
|                  | 5                | 0.9967 | 0.9183 | 0.8103 | 0.6598 | 0.3288 | 0.1051 | 0.0191 | 0.0016 | 0.0000 |        |
|                  | 6                | 0.9995 | 0.9733 | 0.9204 | 0.8247 | 0.5272 | 0.2272 | 0.0583 | 0.0071 | 0.0002 |        |
|                  | 7                | 0.9999 | 0.9930 | 0.9729 | 0.9256 | 0.7161 | 0.4018 | 0.1423 | 0.0257 | 0.0015 | 0.0000 |
|                  | 8                | 1.0000 | 0.9985 | 0.9925 | 0.9743 | 0.8577 | 0.5982 | 0.2839 | 0.0744 | 0.0070 | 0.0001 |
|                  | 9                |        | 0.9998 | 0.9984 | 0.9929 | 0.9417 | 0.7728 | 0.4728 | 0.1753 | 0.0267 | 0.0005 |
|                  | 10               |        | 1.0000 | 0.9997 | 0.9984 | 0.9809 | 0.8949 | 0.6712 | 0.3402 | 0.0817 | 0.0033 |
|                  | 11               |        |        | 1.0000 | 0.9997 | 0.9951 | 0.9616 | 0.8334 | 0.5501 | 0.2018 | 0.0170 |
|                  | 12               |        |        |        | 1.0000 | 0.9991 | 0.9894 | 0.9349 | 0.7541 | 0.4019 | 0.0684 |
|                  | 13               |        |        |        |        | 0.9999 | 0.9979 | 0.9817 | 0.9006 | 0.6482 | 0.2108 |
|                  | <b>14</b>        |        |        |        |        | 1.0000 | 0.9997 | 0.9967 | 0.9739 | 0.8593 | 0.4853 |
|                  | <b>15</b>        |        |        |        |        |        | 1.0000 | 0.9997 | 0.9967 | 0.9719 | 0.8147 |
|                  | 16               |        |        |        |        |        |        | 1.0000 | 1.0000 | 1.0000 | 1.0000 |



- Example 5.3
  - A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%.
  - (a) The inspector randomly picks 20 items from a shipment. What is the probability that there will be at least one defective item among these 20?
  - (a) Denote by X the number of defective devices among the 20. Then X follows a b(x; 20, 0.03) distribution. Hence,

$$P(X \ge 1) = 1 - P(X = 0) = 1 - b(0; 20, 0.03)$$
$$= 1 - (0.03)^{0} (1 - 0.03)^{20 - 0} = 0.4562.$$

$$b(x; n, p) = \binom{n}{x} p^x q^{n-x}, \quad x = 0, 1, 2, \dots, n.$$



#### Example 5.3

- (b) Suppose that the retailer receives 10 shipments in a month and the inspector randomly tests 20 devices per shipment. What is the probability that there will be exactly 3 shipments each containing at least one defective device among the 20 that are selected and tested from the shipment?
- (b) In this case, each shipment can either contain at least one defective item or not. Hence, testing of each shipment can be viewed as a Bernoulli trial with p = 0.4562 from part (a). Assuming independence from shipment to shipment and denoting by Y the number of shipments containing at least one defective item, Y follows another binomial distribution b(y; 10, 0.4562). Therefore,

$$P(Y=3) = {10 \choose 3} 0.4562^3 (1 - 0.4562)^7 = 0.1602.$$



## **Mean, Variance** of b(x; n, p)

Theorem 5.1

The mean and variance of the binomial distribution b(x; n, p) are  $\mu = np$  and  $\sigma^2 = npq$ .



#### Proof

- Property
  - Binomial RV X = sum of Bernoulli RVs Xi

$$X = \sum_{i=1}^{n} X_i \quad \text{where} \quad X_i = \begin{cases} 1 & \text{if the } i \text{th trial is a success} \\ 0 & \text{otherwise} \end{cases}$$

- Expectation
  - \* Using the independence of X<sub>i</sub>  $E[X] = \sum_{i=1}^{n} E[X_i]$   $E[X_i] = P\{X_i = 1\} = p$   $Var(X_i) = E[X_i^2] p^2$  = p(1-p)

$$= np$$

$$E[X_i] = P\{X_i = 1\} = p$$

$$Var(X_i) = E[X_i^2] - p^2$$

$$= p(1 - p)$$

Variance

$$Var(X) = \sum_{i=1}^{n} Var(X_i)$$
 since the  $X_i$  are independent
$$= np(1-p) = npq$$



 Probability function for a binomial random variable with n = 20 and p = 0.5.





## Example

- The color of one's eyes is determined by **a single pair of genes**, with the gene for **brown eyes being dominant** over the one for blue eyes.
- When two people mate, the resulting offspring receives one randomly chosen gene from each of its parents' gene pair. If the eldest child of a pair of brown-eyed parents has blue eyes, what is the probability that exactly two of the four other children (none of whom is a twin) of this couple also have blue eyes?



Probability that it receives the blue-eyed gene  $\frac{1}{2}$ , from both parents  $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 

? ? 
$$\binom{4}{2}(1/4)^2(3/4)^2 = 27/128$$

$$b(x; n, p) = \binom{n}{x} p^x q^{n-x}, \quad x = 0, 1, 2, \dots, n.$$

## Areas of Application of Binomial Distribution

- An industrial engineer is keenly interested in the "proportion defective" in an industrial process. Often, quality control measures and sampling schemes for processes are based on the binomial distribution.
- This distribution applies to any industrial situation where an outcome of a process is dichotomous (양분된) and the results of the process are independent, with the probability of success being constant from trial to trial.
- The binomial distribution is also used extensively for medical and military applications. In both fields, a success or failure result is important. For example, "cure" or "no cure" is important in pharmaceutical work, and "hit" or "miss" is often the interpretation of the result of firing a guided missile.



## **Multinomial Experiment**

- The binomial experiment becomes a multinomial experiment if we let each trial have more than 2 possible outcomes.
- Examples
  - The classification of a manufactured product as being light, heavy, or acceptable
  - The recording of accidents at a certain intersection according to the day of the week



 The drawing of a card from a deck with replacement is also a multinomial experiment if the 4 suits are the outcomes of interest.





## **Multinomial Experiment**

In general, if a given trial can result in any one of k possible outcomes E<sub>1</sub>, E<sub>2</sub>, ..., E<sub>k</sub> with probabilities p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>k</sub>, then the multinomial distribution will give the probability that E<sub>1</sub> occurs x<sub>1</sub> times, E<sub>2</sub> occurs x<sub>2</sub> times, ..., and E<sub>k</sub> occurs x<sub>k</sub> times in n independent trials, where

$$x_1 + x_2 + \dots + x_k = n.$$

We shall denote this joint probability distribution by

$$f(x_1, x_2, \ldots, x_k; p_1, p_2, \ldots, p_k, n).$$

Clearly,  $p_1 + p_2 + \cdots + p_k = 1$ , since the result of each trial must be one of the k possible outcomes.



### Multinomial Experiment (cont.)

The total number of orders yielding similar outcomes for the *n* trials is equal to the number of partitions of *n* items into *k* groups with x<sub>1</sub> in the first group; x<sub>2</sub> in the second group, ...; and x<sub>k</sub> in the *k*-th group. This can be done in

$$\binom{n}{x_1, x_2, \dots, x_k} = \frac{n!}{x_1! x_2! \cdots x_k!}$$
 ways



#### **Multinomial Distribution**

If a given trial can result in the k outcomes  $E_1, E_2, \ldots, E_k$  with probabilities  $p_1, p_2, \ldots, p_k$ , then the probability distribution of the random variables  $X_1, X_2, \ldots, X_k$ , representing the number of occurrences for  $E_1, E_2, \ldots, E_k$  in n independent trials, is

$$f(x_1, x_2, \dots, x_k; p_1, p_2, \dots, p_k, n) = \binom{n}{x_1, x_2, \dots, x_k} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k},$$
 with 
$$\sum_{i=1}^k x_i = n \text{ and } \sum_{i=1}^k p_i = 1.$$



#### Example

According to a genetics theory (유전이론), a certain cross of guinea pigs will result in red, black, and white offspring in the ration 8:4:4. Find the probability that among 8 offspring 5 will be red, 2 black, and 1 white.

#### Solution

Let X<sub>1</sub>, X<sub>2</sub>, and X<sub>3</sub> represent the number of offspring in red, black, and white, respectively.

 $(X1, X2, X3) \sim Multinomial(8/16, 4/16, 4/16, 8)$ 

$$P(X_1 = 5, X_2 = 2, X_3 = 1) = {8 \choose 5, 2, 1} \left(\frac{8}{16}\right)^5 \left(\frac{4}{16}\right)^2 \left(\frac{4}{16}\right)^1.$$



$$f(x_1, x_2, \dots, x_k; p_1, p_2, \dots, p_k, n) = \binom{n}{x_1, x_2, \dots, x_k} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$

#### Example 5.7

The complexity of arrivals and departures of planes at an airport is such that computer simulation is often used to model the "ideal" conditions. For a certain airport with three runways, it is known that in the ideal setting the following are the probabilities that the individual runways are accessed by a randomly arriving commercial jet:

Runway 1:  $p_1 = 2/9$ ,

Runway 2:  $p_2 = 1/6$ ,

Runway 3:  $p_3 = 11/18$ .

What is the probability that 6 randomly arriving airplanes are distributed in the following fashion?

Runway 1: 2 airplanes,

Runway 2: 1 airplane,

Runway 3: 3 airplanes



#### Solution

Using the multinomial distribution, we have

$$f\left(2,1,3;\frac{2}{9},\frac{1}{6},\frac{11}{18},6\right) = {6 \choose 2,1,3} \left(\frac{2}{9}\right)^2 \left(\frac{1}{6}\right)^1 \left(\frac{11}{18}\right)^3$$
$$= \frac{6!}{2! \ 1! \ 3!} \cdot \frac{2^2}{9^2} \cdot \frac{1}{6} \cdot \frac{11^3}{18^3} = 0.1127.$$

$$f(x_1, x_2, \dots, x_k; p_1, p_2, \dots, p_k, n) = \binom{n}{x_1, x_2, \dots, x_k} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$



## End of slide

