Page 1 of 12

Md. Minhazul Kabir

https://minhazulkabir.com

Email: mdminhazulkabir@gmail.com তথ্য ও যোগাযোগ প্রযুক্তি (একাদশ ও দ্বাদশ শ্রেণী)

তৃতীয় অধ্যায়(১ম অংশ): সংখ্যা পদ্ধতি Version: 4.0

বাইনারিঃ এর base 2. ডিজিট গুলো হচ্ছে 0, 1. একটা ডিজিট ঘরের সর্বোচ্চ মান 1 এর থেকে বেশী হতে পারবে না । অক্টালঃ এর base 8. ডিজিট গুলো হচ্ছে 0, 1, 2, 3, 4, 5, 6, 7. একটা ডিজিট ঘরের সর্বোচ্চ মান 7 এর থেকে বেশী হতে পারবে না ।

দশমিকঃ এর base 10. ডিজিট গুলো হচ্ছে 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. একটা ডিজিট ঘরের সর্বোচ্চ মান 9 এর থেকে বেশী হতে পারবে না ।

হেক্সাডেসিমেলঃ এর base 16. ডিজিট গুলো হচ্ছে 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. একটা ডিজিট ঘরের সর্বোচ্চ মান F এর থেকে বেশী হতে পারবে না।

Decimal (0-32) to Binary to Hex to Octal Chart

Decimal Base-10	Binary Base-2	Octal Base- 8	Hexadecimal Base-16	Decimal Base-10	Binary Base-2	Octal Base- 8	Hexadecimal Base-16
0	0	0	0	17	10001	21	11
1	1	1	1	18	10010	22	12
2	10	2	2	19	10011	23	13
3	11	3	3	20	10100	24	14
4	100	4	4	21	10101	25	15
5	101	5	5	22	10110	26	16
6	110	6	6	23	10111	27	17
7	111	7	7	24	11000	30	18
8	1000	10	8	25	11001	31	19
9	1001	11	9	26	11010	32	1A
10	1010	12	A	27	11011	33	1B
11	1011	13	В	28	11100	34	1C
12	1100	14	С	29	11101	35	1D
13	1101	15	D	30	11110	36	1E
14	1110	16	E	31	11111	37	1F
15	1111	17	F	32	100000	40	20
16	10000	20	10				

•	পূর্ণাংশ	(Integ	ger) 🗲				→	ভগ্নাং	শ (Fra	action))		
$MSB \longrightarrow$		2	0	1	4	•	7	2				- LSI	3
Most significa	nt bit	t			n	1			Le	east si	gnific	cant b	oit
(সবচেয়ে বেশি গু	রুত্বপূর্ণ	বিট)			K	adix p	oint		(স	বচেয়ে	কম গু	রুত্বপূর্ণ	িবিট)

দুশমিক সংখ্যা থেকে যেকোনো সংখ্যায় রূপান্তরের পদ্ধতিঃ

দশমিক থেকে বাইনারি, অক্টাল বা হেক্সাডেসিমেল সংখ্যায় রূপান্তরের জন্যে পুর্ণসংখ্যাকে তার base (বাইনারির জন্যে 2, অক্টালের জন্যে <u>8 এবং হেক্সাডেসিমেলের জন্যে 16)</u> দিয়ে ভাগ করতে হবে। এবং ভাগশেষকে সংরক্ষণ করতে হবে। <u>পরে সর্বনিচ থেকে সর্বউপরে যেতে</u> হবে (MSB)।

আর ভগাংশর ক্ষেত্রে তার base (বাইনারির জন্যে 2, অক্টালের জন্যে 8 এবং হেক্সাডেসিমেলের জন্যে 16) দিয়ে গুন করতে হবে। এবং তখন ভগাংশকে গুনের ফলে যে পুর্ণসংখ্যা পাওয়া যাবে তা সংরক্ষণ করতে হবে। প্রে সর্বউপর থেকে সর্বনিচ যেতে হবে (LSB)।

ভাজক (base)	ভাজ্য	
	ভাগফল/ভাজ্য	ভাগশেষ

Page 2 of 12

01. দশমিক সংখ্যাকে বাইনারি সংখ্যায় রূপান্তর (দশমিকের পরে ৫ ঘর পর্যন্ত করতে হবে):

 $(409.11)_{10} = (?)_2$

ভাজক ভাজ্য/ভাগফল	ভাগশেষ
2 409	
2 204	1 1
2 102	0
2 51	0
2 25	1
2 12	1
2 6	0
2 3	0
2 1	1
0	1

নিচ থেকে উপরের দিকে সাজিয়ে প্রাপ্ত বাইনারি সংখ্যা = $(110011001)_2$ সুতরাং, ফলাফল (409.11)10 = (110011001.000111.....)2

	পুৰ্ণাংশ	ভগ্নাংশ
		0.11 × 2
l	0	0.22
	_	× 2 0.44
	0	× 2
	0	0.88 × 2
	1	0.76 × 2
	1	0.52 × 2
\downarrow	1	0.04

উপর থেকে নিচের দিকে সাজিয়ে প্রাপ্ত বাইনারি সংখ্যা $I = (0.000111....)_2$

নিজে নিজে চেষ্টা করো ।

 $(33.1027)_{10} = (100001.00011010010010101001)_2$, $(37.875)_{10} = (100101.111)_2$, $(1027.57)_{10} = (10000000011.10010001111010111)_2$, $(110.409)_{10} = (1101110.0110)_2$

 $(110.409)_{10} = (1101110.011010001011010001)_2$

 $(320.320)_{10} = (101000000.01010001111010111)_2$, $(75.105)_{10} = (1001011.000110101110000101)_2$,

02. দশমিক সংখ্যাকে অক্টাল সংখ্যায় রূপান্তর (দশমিকের পরে ৫ ঘর পর্যন্ত করতে হবে):

 $(331027.409)_{10} = (?)_8$

ভাজক ভাজ্য/ভাগফল	ভাগশে	ষ
8 331027	•	
8 41378	3 1	
8 5172	2	
8 646	4	
8 80	6	
8 10	0	
8 1	2	
0	1	

নিচ থেকে উপরের দিকে সাজিয়ে প্রাপ্ত অক্টাল সংখ্যা = (1206423)8

সুতরাং, ফলাফল (331027.409)10 = (1206423.3213207......)8

	পুৰ্ণাংশ	ভগ্নাংশ
		0.409
		× 8
ı	3	0.272
		× 8
	2	0.176
	2	× 8
	1	0.408
Ш	1	× 8
	3	0.264
	5	× 8
	2	0.112
	U	× 8
	0	0.896
$\ $	U	× 8
V	7	0.168

উপর থেকে নিচের দিকে সাজিয়ে প্রাপ্ত অক্টাল সংখ্যা $= (0.3213207....)_8$

নিজে নিজে চেষ্টা করো ।

$(33.1027)_{10} = (41.0644521405246230276)_8$,	$(37.875)_{10} = (45.7)_8$,
$(1027.57)_{10} = (2003.4436560507534121727)_8$	$(110.409)_{10} = (156.32132071260101422335)_8$,
$(320.320)_{10} = (500.2436560507534121727)_8$,	$(75.105)_{10} = (113.06560507534121727024)_8$

03. দশমিক সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রুপান্তর (দশমিকের পরে ৫ ঘর পর্যন্ত করতে হবে):

 $(320320.2019)_{10} = (?)_{16}$

নিচ থেকে উপরের দিকে সাজিয়ে প্রাপ্ত হেক্সাডেসিমেল সংখ্যা = $(4E340)_{16}$

সুতরাং, ফলাফল (320320.2019) $_{10}$ = (4E340.33AFB7E.....) $_{16}$

	পুর্ণাংশ	ভগ্নাংশ
		0.2019
		× 16
ıl	3	0.2304
		× 16
	3	0.6864
	3	× 16
	A	0.9824
	A	× 16
	F	0.7184
	Г	× 16
	В	0.4944
	Ь	× 16
	7	0.9104
	1	× 8
V	E	0.5664

টপর থেকে নিচের দিকে সাজিয়ে প্রাপ্ত হেক্সাডেসিমেল 1 সংখ্যা = $(0.33 AFB7E....)_{16}$

🕨 নিজে নিজে চেষ্টা করো ।

$(33.1027)_1$	$_{0} = (21.1A4A8C154C985F06F694)_{16}$,	$(37.875)_{10} = (25.E)_{16}$,
$(1027.57)_1$	$_{0} = (403.91EB851EB851EB851EB8)_{16}$,	$(110.409)_{10} = (6E.68B4395810624DD2F1AA)_{16}$
$(320.320)_1$	$_{0} = (140.51EB851EB851EB851EB8)_{16}$	$(75.105)_{10} = (4B.1AE147AE147AE147AE14)_{16}$

ংশ্যা নির্মান কর্মা থেকে দশমিক সংখ্যা রূপান্তরের পদ্ধতিঃ

বাইনারি, অক্টাল বা হেক্সাডেসিমেল সংখ্যা থেকে দশমিক সংখ্যায় রূপান্তরের জন্যে তার base <u>(বাইনারির জন্যে 2, অক্টালের জন্যে 8 এবং হেক্সাডেসিমেলের জন্যে 16)</u> দিয়ে প্রত্যেকটি ডিজিট গুন করতে হবে। Radix Point এর নিকটস্থ বামের ডিজিটের ঘাত বা পাওয়ার 0 ধরে বামে ক্রমান্ময়ে ধনাত্মক মান বৃদ্ধি পাবে ডানে ক্রমান্ময়ে ঋনাত্মক মান বৃদ্ধি পাবে। গুনফলকে যোগ করার মাধ্যমে সমতুল্য ডেসিমেল সংখ্যা পাওয়া যাবে।

অর্থাৎ, সুত্রটি হবে, (... abc•xyz ...)_{base} = + a×base² + b×base¹ + c×base⁰ + x×base⁻¹ + v×base⁻² + z×base⁻³ +

04. বাইনারি সংখ্যাকে দশমিক সংখ্যায় রুপান্তরঃ

$$\begin{array}{l} (110011001.000111)_2 = (?)_{10} \\ (110011001.000111)_2 = (1 \times 2^8) + (1 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + \\ (0 \times 2^1) + (1 \times 2^0) + (0 \times 2^{-1}) + (0 \times 2^{-2}) + (0 \times 2^{-3}) + (1 \times 2^{-4}) + (1 \times 2^{-5}) + \\ (1 \times 2^{-6}) \\ = 256 + 128 + 0 + 0 + 16 + 8 + 0 + 0 + 1 + 0 + 0 + 1 / 16 + 1 / 32 + 1 / 64 \\ = 409 + 0.109375 \\ = 409.109375 \end{array}$$

সুতরাং, ফলাফল $(110011001.000111)_2 = (409.109375)_{10}$

🕨 নিজে নিজে চেষ্টা করো ।

```
 \begin{array}{ll} (100001.00011010010010101001)_2 = (33.1027)_{10} \ , & (100101.111)_2 = (37.875)_{10} \ , \\ (10000000011.10010001111010111)_2 = (1027.57)_{10} \ , & (1101110.011010001011010001)_2 = (110.409)_{10} \ , \\ (101000000.01010001111010111)_2 = (320.320)_{10} \ , & (1001011.00011011110000101)_2 = (75.105)_{10} \ , \\ \end{array}
```

05. অক্টাল সংখ্যাকে দশমিক সংখ্যায় রুপান্তরঃ

```
\begin{array}{l} (1206423.3213207)_8 = (?)_{10} \\ (1206423.3213207)_8 &= (1\times8^6) + (2\times8^5) + (0\times8^4) + (6\times8^3) + (4\times8^2) + (2\times8^1) + (3\times8^0) + \\ &\quad (3\times8^{-1}) + (2\times8^{-2}) + (1\times8^{-3}) + (3\times8^{-4}) + (2\times8^{-5}) + (0\times8^{-6}) + (7\times8^{-7}) \\ &= 262144 + 65536 + 0 + 3072 + 256 + 16 + 3 + 0.375 + 0.03125 + \\ &\quad 0.001953125 + 0.000732421875 + 0.00006103515625 + 0 + \\ &\quad 0.0000033378 \\ &= 331027 + 0.40899991989135742188 \\ &= 331027.409 \end{array}
```

সুতরাং, ফলাফল (1206423.3213207)8 = (331027.409)10

🕨 নিজে নিজে চেষ্টা করো ।

```
 \begin{array}{ll} (41.0644521405246230276)_8 = (33.1027)_{10} \;, & (45.7)_8 = (37.875)_{10} \;, \\ (2003.4436560507534121727)_8 = (1027.57)_{10} \;, & (156.32132071260101422335)_8 = (110.409)_{10} \;, \\ (500.2436560507534121727)_8 = (320.320)_{10} \;, & (113.06560507534121727024)_8 = (75.105)_{10} \;, \\ \end{array}
```

06. হেক্সাডেসিমেল সংখ্যাকে দর্শমিক সংখ্যায় রুপান্তরঃ

```
\begin{array}{lll} (4E340.33AFB7E)_{16} = (?)_{10} \\ (4E340.33AFB7E)_{16} &= (4\times16^4) + (14\times16^3) + (3\times16^2) + (4\times16^1) + (0\times16^0) + (3\times16^{-1}) + \\ &= (4\times16^4) + (10\times16^{-3}) + (15\times16^{-4}) + (11\times16^{-5}) + (7\times16^{-6}) + (14\times16^{-7}) \\ &= 262144 + 57344 + 768 + 64 + 0 + 0.1875 + 0.01171875 + \\ &= 0.00244140625 + 0.0002288818359 + 0.00001049041748 + \\ &= 0.0000004172325134 + 0.00000005215406418 \\ &= 320320 + 0.20189999788999557495 \\ &= 320320.20189999788999557495 \\ &= 320320.2019 \end{array}
```

সুতরাং, ফলাফল $(4E340.33AFB7E)_{16} = (320320.2019)_{10}$

নিজে নিজে চেষ্টা করো ।

$(21.1A4A8C154C985F06F694)_{16} = (33.1027)_{10}$,	$(25.E)_{16} = (37.875)_{10}$,
$(403.91EB851EB851EB851EB8)_{16} = (1027.57)_{10}$,	$(6E.68B4395810624DD2F1AA)_{16} = (110.409)_{10}$
$(140.51EB851EB851EB851EB8)_{16} = (320.320)_{10}$,	$(4B.1AE147AE147AE147AE14)_{16} = (75.105)_{10}$,

❖ বাইনারি থেকে অক্টাল বা হেক্সাডেসিমালে রূপান্তরের পদ্ধতিঃ

বাইনারি সংখ্যা থেকে অক্টাল বা হেক্সাডেসিমেল সংখ্যায় রূপান্তরের জন্যে তার base (<u>অক্টাল বা 2^3 এর জন্যে 3 এবং হেক্সাডেসিমেল 2^4 এর জন্যে 4) এর উপরে ভিত্তি করে 8 করে 8 করে পরে সবচেয়ে নিকটস্থ বাম বা সবচেয়ে নিকটস্থ ভান থেকে 8 বা 4 টি করে করে জোড় করতে হবে। (Note: সর্ববামে তথা 8 বা সর্ব ভানে তথা 8 দের জন্যে জোড় করতে হবে। জোড়বদ্ধ সংখ্যাপুলোর মান (অক্টাল বা হেক্সাডেসিমেলে) প্রকাশ করতে হবে।</u>

07. বাইনারী সংখ্যাকে অক্টাল (2³) সংখ্যায় রুপান্তরঃ

 $(110011001.000111)_2 = (?)_8$ $(100101.111)_2 = (?)_8$

$(10000000011.10010001111010111)_2 = (10000000011.10010001111010111)_2 = (10000000011.100100011110101111)_2 = (10000000011.1001000111110101111)_2 = (10000000011.1001000111110101111)_2 = (100000000111110101111)_2 = (1000000000111110101111)_2 = (10000000000111110101111)_2 = (10000000000111110101111)_2 = (100000000000000111110101111)_2 = (100000000000000000000000000000000000$

বাইনারী	তিন সংখ্যা করে বিভাজন	অক্টাল সংখ্যা
110011001.000111	110 011 001 .000 111	(631.07)8
100101.111	100 101. 111	(45.7) ₈
10000000011.1001	010 000 000 011 .100 100 011 110 101 110	(2003.443656)8
0001111010111		

Page 5 of 12

🕨 নিজে নিজে চেষ্টা করো ।

 $\begin{array}{ll} (100001.00011010010010101001)_2 = (41.0644522)_8 \;, \\ (10000000011.10010001111010111)_2 = (2003.443656)_8 \;, \\ (101000000.01010001111010111)_2 = (500.243656)_8 \;, \\ (10101011.0001101101001011)_2 = (113.065605)_8 \end{array}$

08. বাইনারী সংখ্যাকে হেক্সাডেসিমেল (24) সংখ্যায় রুপান্তরঃ

 $(110011001.000111)_2 = (?)_{16}$

 $(100101.111)_2 = (?)_{16}$

 $(10000000011.10010001111010111)_2 = (?)_{16}$

বাইনারী	চার সংখ্যা করে বিভাজন	হেক্সাডেসিমাল
110011001.000111	0001 1001 1001 .0001 1100	(199.1C) ₁₆
100101.111	0010 0101 .1110	(25.E) ₁₆
1000000011.1001	0100 0000 0011 .1001 0001 1110 1011 1000	(403.91EB8) ₁₆
0001111010111		

নিজে নিজে চেষ্টা করো ।

 $\begin{array}{ll} (100001.00011010010010101001)_2 = (21.1A4A9)_{16} \,, & (100101.111)_2 = (25.E)_{16} \,, \\ (10000000011.10010001111010111)_2 = (403.91EB8)_{16} \,, & (1101110.0110100010111010001)_2 = (6E.68B44)_{16} \\ (101000000.01010001111010111)_2 = (140.51EB8)_{16} \,, & (1001011.00011011110000101)_2 = (4B.1AE14)_{16} \end{array}$

❖ অক্টাল বা হেক্সাডেসিমাল থেকে বাইনারিতে রূপান্তরের পদ্ধতিঃ

অক্টাল বা হেক্সাডেসিমেল সংখ্যা থেকে বাইনারিতে রূপান্তরের জন্যে অক্টাল সংখ্যার প্রতিটি ডিজিটের 3 ঘর বাইনারি মান বের করতে হবে এবং হেক্সাডেসিমেলের প্রতিটি ডিজিটের জন্য 4 ঘর বাইনারি মান বের করতে হবে । পরে, বাইনারি মান গুলোকে একত্রিত করতে হবে ।

09. অক্টাল সংখ্যাকে বাইনারী সংখ্যায় রুপান্তরঃ

 $(631.07)_8 = (?)_2$

 $(45.7)_8 = (?)_2$

 $(2003.443656)_8 = (?)_2$

(=0001110000)0	(*)2	
অক্টাল সংখ্যা	সমতুল্য তিন বিট বাইনারী মান	বাইনারী
(631.07)8	110 011 001 .000 111	(110011001.000111)2
$(45.7)_8$	100 101. 111	$(100101.111)_2$
(2003.443656)8	010 000 000 011 .100 100 011 110 101	(010000000011.100100
	110	$011110101110)_2$

নিজে নিজে চেষ্টা করো ।

10. হেক্সাডেসিমেল সংখ্যাকে বাইনারী সংখ্যায় রুপান্তরঃ

 $(199.1C)_{16} = (?)_2$

 $(25.E)_{16} = (?)_2$

 $(403.91EB8)_{16} = (?)_2$

(100.91000)16 (:)2							
হেক্সাডেসিমাল	সমতুল্য চার বিট বাইনারী মান	বাইনারী					
(199.1C) ₁₆	0001 1001 1001 .0001 1100	(110011001.00011100)2					
$(25.E)_{16}$	0010 0101 .1110	$(100101.1110)_2$					
(403.91EB8) ₁₆	0100 0000 0011 .1001 0001 1110 1011 1000	(10000000011.1001000 1111010111000) ₂					

> নিজে নিজে চেষ্টা করো ।

$(21.1A4A9)_{16} = (100001.00011010010010101001)_2$,	$(25.E)_{16} = (100101.111)_2$,
$(403.91EB8)_{16} = (10000000011.10010001111010111)_2$	$(6E.68B44)_{16} = (1101110.011010001011010001)_2$
$(140.51EB8)_{16} = (101000000.01010001111010111)_2$	$(4B.1AE14)_{16} = (1001011.000110101110000101)_2$

Page 6 of 12

❖ অক্টাল থেকে হেক্সাডেসিমাল বা হেক্সাডেসিমাল থেকে অক্টালে রূপান্তরিত করার পদ্ধতিঃ

অক্টাল থেকে হেক্সাডেসিমেল বা হেক্সাডেসিমেল থেকে অক্টালে রূপান্তর সরাসরি করা যায় না। সেক্ষেত্রে প্রথম ধাপে বাইনারিতে রূপান্তরিত করে নিতে হয়। Stage 01: প্রতিটি অক্টাল ডিজিটের সাপেক্ষে 3 টি বাইনারি ডিজিট পাওয়া যাবে। সেসব বাইনারি ডিজিটকে একব্রিত করতে হবে। পরে সে বাইনারি সংখ্যাকে যেভাবে হেক্সাডেসিমেলে রপান্তরিত করতে হয় সেভাবে করতে হবে। Stage 02: প্রতিটি হেক্সাডেসিমেলের ডিজিটের সাপেক্ষে 4 টি বাইনারি ডিজিট পাওয়া যাবে। সেসব বাইনারি ডিজিটকে একত্রিত করতে হবে। পরে সে বাইনারি সংখ্যাকে যেভাবে অক্টালে করতে হয় সেভাবে করতে হবে।

11. অক্টাল সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রুপান্তরঃ

$(631.07)_8 = (?)_{16}$	$(2003.443656)_8 = (?)_{16}$		
$(631.07)_8 = (6 3 1 0 7)_8$ = $(110 011 001 000 111)_2$	(2003.443656)8	= (2 0 0 3 . 4 4 3 6 5 6) ₈ = (010 000 000 011 . 100 100 011 110 101 110) ₈	
$ = (0001 1001 1001 . 0001 $ $ 1100)_2 $		= (0100 0000 0011 . 1001	
$= (1 \ 9 \ 9 \ 1 \ C)_{16}$		0001 1110 1011 1000)8	
$= (199.1C)_{16}$		= (4 0 3 . 9 1 E B 8) ₁₆	
(601.07) (100.10)		= (403.91EB8) ₁₆	
সুতরাং, (631.07) ₈ = (199.1C) ₁₆	সুতরাং, (2003.4436	56) ₈ = (403.91EB8) ₁₆	

নিজে নিজে চেষ্টা করো ।

$(41.0644522)_8 = (21.1A4A9)_{16}$,	$(45.7)_8 = (25.E)_{16}$,
$(2003.443656)_8 = (403.91EB8)_{16}$,	$(156.321321)_8 = (6E.68B44)_{16}$
$(500.243656)_8 = (140.51EB8)_{16}$,	$(113.065605)_8 = (4B.1AE14)_{16}$

12. হেক্সাডেসিমেল সংখ্যাকে অক্টাল সংখ্যায় রুপান্তরঃ

(199.1C) ₁₆ = (?) ₈	(403.91EB8) ₁₆ = (?) ₈		
$(199.1C)_{16} = (1 \ 9 \ 9 \ .1 \ C)_{16}$ = $(0001 \ 1001 \ 1001 \ .0001$	$(403.91EB8)_{16} = (4\ 0\ 3\ .\ 9\ 1\ E\ B\ 8)_{16}$ = $(0100\ 0000\ 0011\ .\ 1001\ 0001\ 1110\ 1011\ 1000)_8$		
= $(110 \ 011 \ 001 \ .000 \ 111)_2$ = $(6 \ 3 \ 1 \ .0 \ 7)_8$ = $(631.07)_8$	= $(010\ 000\ 000\ 011\ .\ 100\ 100\ 011\ 110\ 110$		
সুতরাং, (199.1C) ₁₆ = (631.07) ₈	সূত্রাং, (403.91EB8) ₁₆ = (2003.443656) ₈		

নিজে নিজে চেষ্টা করো ।

1 100(1 100(000) 1 0.11 1	
$(21.1A4A9)_{16} = (41.0644522)_8$,	$(25.E)_{16} = (45.7)_8$,
$(403.91EB8)_{16} = (2003.443656)_8$	$(6E.68B44)_{16} = (156.321321)_8$
$(140.51EB8)_{16} = (500.243656)_8$	$(4B.1AE14)_{16} = (113.065605)_8$

<u>যোগের</u> পদ্ধতিঃ

❖ কোনো সংখ্যার যোগফলের মান তার baseএর সর্বোচ্চ মানের (বাইনারির জন্যে 1, অক্টালের জন্যে 7, ডেসিমেলের জন্যে 9, হেক্সাডেসিমেলের জন্যে F) চেয়ে বেশী হলে base (বাইনারির জন্যে 2, অক্টালের জন্যে 8, ডেসিমেলের জন্যে 10, হেক্সাডেসিমেলের জন্যে 16) দিয়ে যোগফলকে ভাগ দিতে হয়। **ভাগফলের মান হাতে থাকে** এবং ভাগশেষের মান বসাতে হয়। ভাগফল পরবর্তী সংখ্যার সাথে যোগ হয়।

$(110011001.1010)_2$	$(631.50)_8$
<u>+(1100110.1001)</u> ₂	+(146.44) ₈
(1000000000.0011)2	$(1000.14)_8$
(409.6250) ₁₀	(199.A) ₁₆
+(102.5625) ₁₀	+(66.9) ₁₆
$(512.1875)_{10}$	$(200.3)_{16}$

দশমিক যোগ:

- i. সর্বডানের চারটি 9 যোগ করলে হয় 36. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 6 (যা আমরা বসিয়ে দেই)
- ii. তারপরের ঘরের 9,9,9,7 আর হাতের 3 যোগ করলে পাওয়া যায় 37. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 7 (যা আমরা বসিয়ে দেই)
- iii. তারপরের ঘরের 9,9,6,9 আর হাতের 3 যোগ করলে পাওয়া যায় 36. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 6 (যা আমরা বসিয়ে দেই)
- iv. তারপরের ঘরের 9,8,8,9 আর হাতের 3 যোগ করলে পাওয়া যায় 37. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 7 (যা আমরা বসিয়ে দেই)
- v. তারপরের ঘরের 9,9,9,9 আর হাতের 3 যোগ করলে পাওয়া যায় 39. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 9 (যা আমরা বসিয়ে দেই)
- vi. হাতের 3 বসালে পাওয়া যায় 3

	9	9	9	9	9
	9	8	9	9	9
	9	8	6	9	9
 +	9	9	9	7	9
3	9	7	6	7	6

vi	v iv	iii	ii	i
----	------	-----	----	---

বাইনারি যোগ:

- i. সর্বডানের চারটি 1 যোগ করলে হয় 4. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 0 (যা আমরা বসিয়ে দেই)
- ii. তারপরের ঘরের 1,0,0,1 আর হাতের 2 যোগ করলে পাওয়া যায় 4. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 0 (যা আমরা বসিয়ে দেই)
- iii. তারপরের ঘরের 0,1,1,1 আর হাতের 2 যোগ করলে পাওয়া যায় 5. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 1 (যা আমরা বসিয়ে দেই)
- iv. তারপরের ঘরের 1,1,1,1 আর হাতের 2 যোগ করলে পাওয়া যায় 6. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 0 (যা আমরা বসিয়ে দেই)
- v. তারপরের ঘরের 1,1,1,1 আর হাতের 3 যোগ করলে পাওয়া যায় 7. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 1 (যা আমরা বসিয়ে দেই)
- vi. হাতের 3কে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 1 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 1 (যা আমরা বসিয়ে দেই)
- ${
 m vii.}$ হাতের 1 বসালে পাওয়া যায় 1

		1	1	0	1	1
		1	1	1	0	1
		1	1	1	0	1
	+	1	1	1	1	1
1	1	1	0	1	0	0

vii vi v	iv	iii	ii	i
----------	----	-----	----	---

অক্টাল যোগঃ

- i. সর্বডানের 5,3,7 যোগ করলে হয় 15. যাকে বেজ তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 1 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 7 (যা আমরা বসিয়ে দেই)
- ii. তারপরে দশমিকের পরের ঘরের 6,4,3 আর হাতের 1 যোগ করলে পাওয়া যায় 14. যাকে বেজ তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 1 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 6 (যা আমরা বসিয়ে দেই)
- iii. তারপরের ঘরের 6,4,6 আর হাতের 1 যোগ করলে পাওয়া যায় 17. যাকে বেজ তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 1 (যা আমরা বসিয়ে দেই)
- iv. তারপরের ঘরের 7,3,7 আর হাতের 2 যোগ করলে পাওয়া যায় 19. যাকে বেজ তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 3 (যা আমরা বসিয়ে দেই)

Page 8 of 12

- v. তারপরের ঘরের 6 আর হাতের 2 যোগ করলে পাওয়া যায় 8. যাকে বেজ তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 1 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 0 (যা আমরা বসিয়ে দেই)
- ${
 m vi.}$ হাতের 1 বসালে পাওয়া যায় 1

হেক্সাডেসিমেল যোগ:

- i. সর্বডানের তিনটি F যোগ করলে হয় 45. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 13(D) (যা আমরা বসিয়ে দেই)
- ii. তারপরে দশমিকের পরের ঘরের F,F,F আর হাতের 2 যোগ করলে পাওয়া যায় 47. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 15(F) (যা আমরা বসিয়ে দেই)
- iii. তারপরে দশমিকের পরের ঘরের F,F,F আর হাতের 2 যোগ করলে পাওয়া যায় 47. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 15(F) (যা আমরা বসিয়ে দেই)
- iv. তারপরে দশমিকের পরের ঘরের F,F,F আর হাতের 2 যোগ করলে পাওয়া যায় 47. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 15(F) (যা আমরা বসিয়ে দেই)
- v. তারপরে দশমিকের পরের ঘরের F,F,F আর হাতের 2 যোগ করলে পাওয়া যায় 47. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 15(F) (যা আমরা বসিয়ে দেই)
- ${
 m vi.}$ হাতের 2 বসালে পাওয়া যায় 2

vi	٧	iv	iii	ij	i

বিয়োগের পদ্ধতিঃ

া বিয়োজন থেকে বিয়োজ্য বিয়োগ করার সময়ে যদি বিয়োজনের একটি ডিজিটের মান তার অবস্থানে থাকা বিয়োজ্য ডিজিটের চেয়ে ছোট হয়। তখন বিয়োজনের সাথে সে সংখ্যার base (বাইনারির জন্যে 2, অক্টালের জন্যে 8, ডেসিমেলের জন্যে 10, হেক্সাডেসিমেলের জন্যে 16) যোগ করতে হয়। এবং হাতে 1 থাকে যা পরবর্তি অবস্থানে থাকা বিয়োজ্য সংখ্যার সাথে যোগ হয়।

দশমিক বিয়োগ:

- i. সর্বডানের উপরের 0 ছোট নিচের 3 এর থেকে । তাই, 0 এর সাথে বেজ 10 যোগ করি । এখন 10 থেকে 3 বিয়োগ করলে পাই 7 . এবং হাতে থাকে 1
- ii. এরপর নিচের 7 এর সাথে হাতের 1 যোগ করলে পাই 8 . উপরের 3 ছোট নিচের 8 এর থেকে । তাই, 3 এর সাথে বেজ 10 যোগ করি । এখন 13 থেকে 8 বিয়োগ করলে পাই 5 . এবং হাতে থাকে 1
- iii. এরপর নিচের 8 এর সাথে হাতের 1 যোগ করলে পাই 9 . উপরের 0 ছোট নিচের 9 এর থেকে । তাই, 0 এর সাথে বেজ 10 যোগ করি । এখন 10 থেকে 9 বিয়োগ করলে পাই 1 . এবং হাতে থাকে 1
- iv. এরপর নিচের 2 এর সাথে হাতের 1 যোগ করলে পাই 3 . উপরের 8 বড় নিচের 3 এর থেকে । এখন 8 থেকে 3 বিয়োগ করলে পাই 5 . এবং হাতে কিছই থাকে না ।
- v. এরপর উপরের 1 ছোট নিচের 5 এর থেকে । তাই, 1 এর সাথে বেজ 10 যোগ করি । এখন 11 থেকে 5 বিয়োগ করলে পাই 6 . এবং হাতে থাকে 1
- vi. নিচের ফাঁকা / 0 এর সাথে 1 যোগ করলে পাই, 1 . এখন 1 থেকে 1 বিয়োগ করলে পাই 0 . এবং হাতে কিছুই থাকে না ।

1 1 8 0 3 0 - 5 2 8 7 3 6 5 1 5 7

বাইনারি বিয়োগ:

- i. সর্বডানের উপরের 0 ছোট নিচের 1 এর থেকে । তাই, 0 এর সাথে বেজ 2 যোগ করি । এখন 2 থেকে 1 বিয়োগ করলে পাই 1 . এবং হাতে থাকে 1
- ii. এরপর নিচের 1 এর সাথে হাতের 1 যোগ করলে পাই 2 . উপরের 1 ছোট নিচের 2 এর থেকে । তাই, 1 এর সাথে বেজ 2 যোগ করি । এখন 3 থেকে 2 বিয়োগ করলে পাই 1 . এবং হাতে থাকে 1
- iii. এরপর নিচের 1 এর সাথে হাতের 1 যোগ করলে পাই 2 . উপরের 0 ছোট নিচের 2 এর থেকে । তাই, 0 এর সাথে বেজ 2 যোগ করি । এখন 2 থেকে 2 বিয়োগ করলে পাই 0 . এবং হাতে থাকে 1
- iv. এরপর নিচের 1 এর সাথে হাতের 1 যোগ করলে পাই 2 . উপরের 0 ছোট নিচের 2 এর থেকে । তাই, 0 এর সাথে বেজ 2 যোগ করি । এখন 2 থেকে 2 বিয়োগ করলে পাই 0 . এবং হাতে থাকে 1
- ${f v}$. এরপর নিচের 1 এর সাথে হাতের 1 যোগ করলে পাই 2 . উপরের 1 ছোট নিচের 2 এর থেকে । তাই, 1 এর সাথে বেজ 2 যোগ করি । এখন 3 থেকে 2 বিয়োগ করলে পাই 1 . এবং হাতে থাকে 1
- vi. নিচের ফাঁকা/0 এর সাথে 1 যোগ করলে পাই, 1 . এখন 1 থেকে 1 বিয়োগ করলে পাই 0 . এবং হাতে কিছুই থাকে না ।

1 1 0 0 1 0 - 1 1 1 1 1 1 0 0 1 1

vi v iv iii ii i

অক্টাল বিয়োগঃ

- i. সর্বডানের উপরের 5 ছোট নিচের 7 এর থেকে । তাই, 5 এর সাথে বেজ 8 যোগ করি । এখন 13 থেকে 7 বিয়োগ করলে পাই 6 . এবং হাতে থাকে 1
- ii. এরপর নিচের 2 এর সাথে হাতের 1 যোগ করলে পাই 3 . উপরের 3 থেকে নিচের 3 বিয়োগ করলে পাই 0 . এবং হাতে কিছু থাকে না
- iii. এরপর উপরের 2 ছোট নিচের 3 এর থেকে । তাই, 2 এর সাথে বেজ 8 যোগ করি । এখন 10 থেকে 3 বিয়োগ করলে পাই 7 . এবং হাতে থাকে 1
- iv. এরপর নিচের 1 এর সাথে হাতের 1 যোগ করলে পাই 2 . এখন উপরের 7 থেকে 2 বিয়োগ করলে পাই 5 . এবং হাতে কিছুই থাকে না ।

	1	2	3	•	5
-	1	3	2		7
	5	7	0		6

iv	iii	ii	i

হেক্সাডেসিমেল বিয়োগঃ

- i. সর্বডানের উপরের 1 ছোট নিচের B এর থেকে । তাই, 1 এর সাথে বেজ 16 যোগ করি । এখন 17 থেকে 11 বিয়োগ করলে পাই 6 . এবং হাতে থাকে 1
- ii. এরপর নিচের D এর সাথে হাতের 1 যোগ করলে পাই 14 . উপরের 0 ছোট নিচের 14 এর থেকে । তাই, 0 এর সাথে বেজ 16 যোগ করি । এখন 16 থেকে 14 বিয়োগ করলে পাই 2 . এবং হাতে থাকে 1
- iii. এরপর নিচের C এর সাথে হাতের 1 যোগ করলে পাই 13 . উপরের A ছোট নিচের 13 এর থেকে । তাই, A এর সাথে বেজ 16 যোগ করি । এখন 26 থেকে 13 বিয়োগ করলে পাই 13 (D) . এবং হাতে থাকে 1
- iv. এরপর নিচের E এর সাথে হাতের 1 যোগ করলে পাই 15 . উপরের D ছোট নিচের 14 এর থেকে । তাই, D এর সাথে বেজ 16 যোগ করি । এখন 29 থেকে 15 বিয়োগ করলে পাই 14 (E) . এবং হাতে থাকে 1
- v. এরপর নিচের 9 এর সাথে হাতের 1 যোগ করলে পাই 10 . উপরের F থেকে 10 বিয়োগ করলে পাই 5 . এবং হাতে কিছুই থাকে না ।

F D A 0 1
- 9 E C D B
5 E D 2 6

v iv iii ii i

BCD:

Binary Coded Decimal প্রতিটি দশমিক ডিজিটের সমতুল্য 4টি বাইনারি মান । $(14)_{10}$ এর সমকক্ষ BCD কোড $(0001\ 0100)_{BCD}$ এবং বাইনারি সংখ্যা $(1110)_2$ । সেজন্য বাইনারি থেকে BCD তে বেশী বিট লাগে ।

https://minhazulkabir.com

Page 10 of 12

- **1 এর পরিপূরকঃ** কোনো বাইনারি সংখ্যার 0 এর স্থলে 1 এবং 1 এর স্থলে 0 বসিয়ে যে বাইনারি সংখ্যা গঠন করা হয় তাকে 1 এর পরিপূরক সংখ্যা বলা হয় । **যেমনঃ** 110101 এর 1 এর পরিপূরক হলো 001010.
- 2 এর পরিপূরকঃ কোনো বাইনারি সংখ্যার 1 এর পরিপূরকের সাথে 1 যোগ করলে যে বাইনারি সংখ্যা গঠন হয় তাকে, 2 এর পরিপূরক সংখ্যা বলে । যেমনঃ

0	0	1	1	0	1	0	1	আসল বাইনারি সংখ্যা
\downarrow								
1	1	0	0	1	0	1	0	1 এর পরিপূরক মান
						+	1	
1	1	0	0	1	0	1	1	2 এর পরিপূরক মান

2 এর পরিপুরক করার পদ্ধতিঃ

- 1) দুইটা সংখ্যার ধনাত্মক বাইনারি মান বের করে, তাদেরকে ৮/১৬ বিট রেজিস্টারে নিতে হবে ।
- 2) শুপুমাত্র যে সংখ্যার মান ঋণাত্মক, শুপুমাত্র তাকেই 2 এর পরিপূরক বের করতে হবে ।
- 3) সর্বশেষ প্রাপ্ত বাইনারি দুইটা সংখ্যা যোগ করতে হবে । প্রাপ্ত যোগফলই নির্ণেয় উত্তর ।
- 4) যোগফল ধনাত্মক হলে, তা হতে সরাসরি দশমিক মান বের করা যাবে । কিন্তু, যোগফল ঋণাত্মক হলে তাকে পুনরায় 2 এর পরিপূরক করে দশমিক মান বের করা যাবে ।

Note: ৮ বিট রেজিস্টারের ১ম বিট 0 হলে ধনাত্মক আর ১ম বিট 1 হলে ঋণাত্মক হিসেবে বিবেচিত হয়।

1	1	1	1	1	0	0	0		0	0	0	0	1	0	0	0
এইখা	এইখানে. ১ম বিট এর মান 1 সেজন্য এটার মান ঋণাত্মক হবে।					চ হবে।	এইখা	ন, ১ম	বিট এ	র মান	0 সে	জন্য এ	টার মা	ন ধনা		

এইখানে, ১ম বিট এর মান 1 সেজন্য এটার মান ঋণাত্মক হবে ৮ বিটের ১ম বিট চিহ্ন বিট বাকি ৭টা বিটে মান থাকে।

■ 2 এর পরিপূরক ব্যবহার করে (15)₁₀ থেকে (8)₁₀ বিয়োগ।

(15) - (8) অর্থাৎ (15) + (-8) নির্ণয় করতে হবে।
$$(+15)_{10}$$
 এর বাইনারি = $\begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}_2$

সুতরাং যোগফলঃ

Carry বিট 1 এখানে বিবেচনা করা হবে না । এখানে, sign বিট 0 তথা ধনাত্মক । তাই, একে পুনরায় আর পরিপূরক করা লাগবে না । সুতরাং, নির্ণেয় যোগফল, $(15) + (-8) = (00000111)_2$ বা $(+7)_{10}$

■ 2 এর পরিপুরক ব্যবহার করে (8)₁₀ থেকে (15)₁₀ বিয়োগ।

(8) - (15) অর্থাৎ (8) + (-15) নির্ণয় করতে হবে ।
 (+8)
$$_{10}$$
 এর বাইনারি = (0 0 0 0 1 0 0 0) $_2$
 (+15) $_{10}$ এর বাইনারি = (0 0 0 0 1 1 1 1) $_2$

এখন,

সুতরাং যোগফলঃ

সুতরাং, নির্ণেয় যোগফল, $(8) + (-15) = (111111001)_2$ বা $(-7)_{10}$

Note: যদি পুরিপুরকে যোগফল ১২৭ অপেক্ষা বেশী হয় তখন ৮ বিট বেজিস্টারের বদলে ১৬ বিট রেজিস্টার ব্যবহার করতে হবে ।

যোগফল বের করো।	বিয়োগফল বের করো	পরিপূরক করো	মাথা খাটাওঃ
(101011) ₂ (EBCA) ₁₆ (5422) ₈ +(97421) ₁₀	(98239823) ₁₀ -(BABA) ₁₆	64 থেকে (-63) বিয়োগ	$(30213)_4 = (?)_{10}$ $(93582)_{10} = (?)_6$

গুরুত্বপুর্ণ বিষয়ঃ

জ্ঞানমূলক(সংজ্ঞা লিখা):

পজিশনাল সংখ্যা পদ্ধতি, সংখ্যা পদ্ধতির বেজ/ভিত্তি, সংখ্যা পদ্ধতি, বাইনারি সংখ্যা পদ্ধতি, বিট, ডিজিট/অংক, Radix point, চিহ্ন যুক্ত সংখ্যা, ক্যারি বিট, কোড, Unicode, BCD code, ASCII, প্যারিটি বিট ।

অনুধাবনমূলক (ব্যাখ্যা করবে) ব্যাখ্যা মূলকঃ

পজিশনাল সংখ্যা পদ্ধতি কয়েকটি বৈশিষ্ট্যের উপরে নির্ভর করে, 9+7=10 কিভাবে সম্ভব, 5+3=10 কিভাবে সম্ভব, কম্পিউটার পরিচালনায় বাইনারি সংখ্যা পদ্ধতি খুব গুরুত্বপূর্ণ, ৩/৫ ভিত্তিক সংখ্যা পদ্ধতি বলতে কি বুঝ? 5E কোন ধরণের সংখ্যা, দশমিক সংখ্যা কম্পিউটার সরাসরি গ্রহন করতে পারে না, BCD code কোনো সংখ্যা পদ্ধতি নয়, (11)10 কে পজিশনাল সংখ্যা বলা হয় কেনো, অক্টাল/হেক্সাডেসিমেল সংখ্যা পদ্ধতি ৩/৪ বিটের কোড, ASCII একটি আলফানিউমেরিক কোড (বহুল ব্যবহৃত ৮ বিটের কোড), (14)10 এর বাইনারি অপেক্ষা BCD রুপান্তরে তুলনামুলক বেশী বিট লাগে, চিহ্নযুক্ত সংখ্যা বলতে কি বুঝ, পরিপূরকঃ বিয়োগের কাজ যোগের মাধ্যমে করা, পার্থক্য যোগের মাধ্যমে নির্ণয় । ২ এর পরিপূরক ডিজিটাল বর্তনিকে সরল করে । ২ এর পরিপূরক শুধুমাত্র চিহ্নের পরিবর্তন করে, ক্যারি বিট বাদ দিতে হয় কেন ? ইউনিকোড বাংলা/অন্যান্য ভাষা বুঝতে পারে, পৃথিবীর সব মাতৃভাষার বর্ণকে ইউনিকোড (প্রায় সকল ভাষাকে সমন্বিত করার কোড) কম্পিউটারের বর্ণে পরিবর্তিত করেছে ।

প্রযোগ ও উচ্চতর দক্ষতাঃ

- বাইনারি (২), অক্টাল (৮), ডেসিমেল (১০), হেক্সাডেসিমেল (১৬) পারস্পরিক রূপান্তর ।
- 🗲 বাইনারি (২), অক্টাল (৮), ডেসিমেল (১০), হেক্সাডেসিমেল (১৬) যোগ এবং বিয়োগ ।
- পরিপূরক করার জন্যে অবশ্যই বাইনারিতে রূপান্তর করতে হবে । ৮/১৬ বিট রেজিস্টারে সে বাইনারি সংখ্যাকে নিয়ে কাজ করতে হবে ।

পুনশ্চঃ

ত্র নোটে কিছু ভুল থাকতে পারে । তুমি যদি এই নোটে যদি কোনো ভুল পেয়ে থাকো কিংবা যদি তোমার মনে হয় কোনো টপিক যুক্ত করলে ভালো হবে । তাহলে, তুমি তোমার মতামত পাঠাতে পারো mdminhazulkabir@gmail.com ঠিকানায় । মেইলের বিষয় বস্তু Number System লিখতে ভুলো না যেনো !

Page 12 of 12

সমস্যাঃ পেঁয়াজের দাম বাড়ার সুযোগে আড়ৎদার মি. মওলা তার পূর্বের কেনা $(27)_{10}$ টাকা কেজি দরের পেঁয়াজের সর্বমোট $(765)_8$ কেজি পেঁয়াজ অবৈধভাবে মজুদ করে কৃত্রিম সংকট তৈরি করে প্রতি কেজি $(1101110)_2$ টাকা দরে বিক্রি করেছিল । মজুদকৃত পেঁয়াজের এক তৃতীয়াংশ বিক্রির পরে বিষয়টি জানতে পেরে ভ্রাম্যমান আদালত তার মজুদকৃত বাকী পেঁয়াজ বাজেয়াপ্ত করেন এবং মি. মওলা কে $(61A8)_{16}$ টাকা জরিমানা করলেন।

গ. উদ্দিপকের আলোকে মি. মওলার কতটুকু পরিমাপ পেঁয়াজ বাজেয়াপ্ত করা হয়েছে –হেক্সাডেসিমেল সিস্টেমে প্রকাশ কর। ঘ. জরিমানা করার কারণে মি. মওলার লাভ নাকি লস হয়েছে ? এবং কত? বিশ্লেষণ কর।

সমাধানঃ

গ) মোট পেঁয়াজের পরিমাণ (765)₈ কেজি । (765)₈ কে দশমিকে রূপান্তর করে পাই ।

$$(765)_8 = 7x8^2 + 6x8^1 + 5x8^0$$
$$= 7x64 + 6x8 + 5x1$$
$$= 448 + 48 + 5$$
$$= 501$$

(334)₁₀ কে Hexadecimal এ প্রকাশ করে পাই (334)₁₀ = (14E)₁₆

ঘ) মি. মওলার প্রতি কেজি পেঁয়াজের মুল্য (1101110)₂ টাকা ।

$$(1101110)_2 = (1 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)$$

$$= 64 + 32 + 0 + 8 + 4 + 2 + 0$$

$$= (110)_{10}$$

প্রতি কেজি পেঁয়াজের বিক্রি মুল্য 110 টাকা ।

পেঁয়াজের সর্বমোট $(765)_8$ কেজি বা $(501)_{10}$ কেজি ।

মওলার জরিমানার পরিমাণ = $(61A8)_{16}$

$$(61A8)_{16} = (6 \times 16^{3}) + (1 \times 16^{2}) + (10 \times 16^{1}) + (8 \times 16^{0})$$

$$= 24576 + 256 + 160 + 8$$

$$= (25000)_{10}$$

মওলার জরিমানার পরিমাণ (25000)10

```
পেঁয়াজ ক্রয় = 501 x 27 টাকা = 13527 টাকা ।
পেঁয়াজ বিক্রি = 501/3 x 110 টাকা = 18370 টাকা ।
বিক্রি করে লাভ = 18370- 13527 টাকা = 4843 টাকা ।
জরিমানার পরে লস = (4843-25000) টাকা = -20157 টাকা ।
জরিমানা করার কারণে মি. মওলার 20157 টাকা লস হয়েছে ।
```