Конспект по курсу В. Меласа «Дополнительные главы оптимального планирования эксперимента»

Собрано 14 января 2016 г. в 18:54

Содержание

1	Асимптотические свойства нелинейного метода наименьших квадратов 3			
2	Постановка задачи оптимального планирования для нелинейных моделей. Тео-			
	рема эквивалентности для локально оптимальных планов.	5		
3	Системы Чебышева. Два эквивалентных определения.			
4	Системы Чебышева. Метод проверки, основанный на последовательном диффе-			
	ренцировании. Примеры применения (экспоненциальные модели.)	8		
	4.1 Пример: Экспоненциальная регрессия	9		
	4.2 Пример: модель Михаэлина-Менте	9		
5	Расширенные системы Чебышева 9			
6	Неотрицательные многочлены с заданными нулями	12		
	6.1 Теорема о числе нулей	12		
	6.2 Неотрицательные многочлены с заданными нулями	13		
7	Теорема о числе опорных точек локально-оптимальных планов для Чебышев-			
,	ских систем	14		
8	Экспоненциальные модели с двумя параметрами. Построение локально-оптимал	LHLI		
U	планов	16		
9	Теорема о числе точек локально-оптимальном плане	18		
	200 P 0.1.10			
10	Основное уравнение функционального подхода. Теорема о неявной функции	18		
11	Теорем о единственности насыщенных локально D-оптимальных планов для экс			
	поненциальных моделей	19		
12	Дробно-рациональные модели	20		
13	3 Простейшие дробно-рациональные модели			
14	Вид определителя информационной матрицы	21		
15	Алгебраический подход	22		
16	Явное нахождение локально-оптимальных планов для дробно-рациональных мо-			
10	делей в виде суммы двух простейших моделей	22		
	16.1 Дифференцирование уравнения и его алгебраической формы	24		
	16.2 Явное нахождение локально-оптимальных планов	26		

17	Е-оптимальные планы		
	17.1 Or	пределение и статистический смысл	28
	17.2 Te	орема эквивалентности	29
	17.3 Te	орема о структуре матрицы из условия эквивалентности	30

1. Асимптотические свойства нелинейного метода наименьших квадратов

Изложение материала данного вопроса имеется в разделе 1.2 Учебного Пособия: «Локально Оптимлаьные Планы Эксперимента». Для данного вопроса необходимо понимать, как устроена нелинейная регрессионная модель (вопрос 2).

Устройство нелинейной модели и основные понятия. Заданы $N \in \mathbb{N}$ (объем выборки), $m \in \mathbb{N}$, $\Theta \in \mathbb{R}^m$ (неизвестный многомерный параметр), \mathcal{X} — некоторое множество¹. Пусть происходит «эксперимент», в котором наблюдаются (одномерные) «результаты эксперимента» $y_1, y_2, \ldots, y_N \in \mathbb{R}^1$. Рассмотрим отображение $\eta : \mathcal{X} \times \mathbb{R}^m \mapsto \mathbb{R}^1$. Аналитическое задание отображения η как функции двух аргументов нам известно.

Модель эксперимента задается следующим образом: для всех $j \in 1:N$

$$y_{i} = \eta(x_{i}, \Theta) + \varepsilon_{i}, \tag{1}$$

где $x_1, x_2, \ldots, x_N \in \mathcal{X}$ — «условия эксперимента», $\Theta = (\theta_1, \theta_2, \ldots, \theta_m)^{\mathrm{T}} \in \mathbb{R}^m$, а $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N$ — некоррелированные, центрированные, гомоскедастичные случайные величины, т.е. $\mathbb{E}\varepsilon_j = 0$ и $\mathbb{D}\varepsilon_j = \sigma^2$ для всех $j \in 1$: N.

Задача: оценить параметр Θ . Ясно, что задача является регрессионной, причем функция η является регрессией.

Нужно формально объяснить, что значит «нелинейная модель», то есть чем эта модель отличается от «линейной». Будем говорить, что параметр θ_j , где $j\in 1:m$, входит нелинейно в модель (1), если при фиксированном x

$$\frac{\partial \eta(x,\cdot)}{\partial \theta_i}(\theta_j)$$

существует и не является постоянной. Если же указанная функция является постоянной, то говорим, что параметр θ_j входит в модель линейно. Если есть хотя бы один параметр θ_j который входит в модель нелинейно, то модель (1) называют нелинейной. Регрессию η в таком случае тоже называют нелинейной (по параметрам).

Для того, чтобы определить неизвестный многомерный параметр Θ , нужно выбрать эксперементальные условия x_1, x_2, \dots, x_N и метод оценивания параметров. Определимся сначала с первым вопросом.

Определение 1. Любой набор из (не обязательно различных) N элементов множества \mathcal{X} будем называть точным планом эксперимента.

Определение 2. Пусть $n-\phi$ иксированное натуральное число. Приближенным планом эксперимента называют дискретную вероятностную³ меру, задаваемую таблицей

$$\xi = \{x_1, x_2, \dots, x_n; \mu_1, \mu_2, \dots, \mu_n\},\tag{2}$$

где x_i различные, $\mu_i > 0$ для всех i, а $\sum_{i=1}^n \mu_i = 1^4$.

Заметим, что все условия, наложенные на меру являются простыми (необременняющими) и естественными.

¹ В самом общем описании, никакие условия на это множество не накладываются.

 $^{^{2}}$ Естественно ε_{i} играют роль ошибок измерения, шума.

³то есть нормированную на единицу.

 $^{{}^{4}}$ Подразумевается, что $\xi(x_{i})=\mu_{i}$ для всех i

Выбор «наилучшего» плана является отдельной задачей. Пусть план фиксирован, тогда в качестве метода оценивания параметров рассмотрим (нелинейный) метод наименьших квадратов. Будем обозначать $\hat{\Theta}$ — решение экстремальной задачи МНК:

$$\sum_{j=1}^{N} (\eta(x_j, \Theta) - y_j)^2 \to \min_{\Theta \in \mathbb{R}^m}.$$

Оценки $\hat{\Theta}$ обладают хорошими асимптотическими свойствами.

Асимптотические свойства МНК-оценок. В данном разделе мы начинаем вводить ограничения на множества Ω и \mathcal{X} . Пусть Ω — ограниченное замкнутое множество в \mathbb{R}^m , \mathcal{X} — ограниченное замкнутое множество в \mathbb{R}^k , где $k \in \mathbb{N}$.

Пусть функция регрессии $\eta_{(x,\Theta)}$ нелинейна по параметрм и определена при всех $x \in \mathcal{X}$, $\Theta \in \Omega$. Через Θ_u будем обозначать истинное значение вектора параметров, т.е. такое значение Θ , при котором верна модель (1).

Под планом в дальнейшем всегда подразумеваем приближенный. Для дискретных мер $\xi = \{x_1, x_2, \dots, x_n; \mu_1, \mu_2, \dots, \mu_n\}$ используем стандартную запись (интеграл по мере, 2 курс):

$$\int_{\mathcal{X}} g(x) d\xi(x) = \sum_{i=1}^{n} g(x_i) \mu_i,$$

где g — произвольная функция, определенная на \mathcal{X}^5 . Введем предположения:

- 1. регрессия $\eta(x,\Theta)$ непрерывна на множестве $\mathcal{X} \times \Omega$;
- 2. имеется слабая сходимость распределений $\mathcal{L}(\xi_N) \Rightarrow \mathcal{L}(\xi)$, где ξ некоторый план, то есть для любой функции $g \in C(\mathcal{X})$ имеет место сходимость

$$\int_{\mathcal{X}} g(x) d\xi_N(x) = \int_{\mathcal{X}} g(x) d\xi(x);$$

3. для $\Theta, \overline{\Theta} \in \Omega$ величина

$$\int_{\mathcal{X}} \left(\eta(x, \Theta) - \eta(x, \overline{\Theta}) \right)^2 d\xi(x)$$

равна нулю только при $\Theta = \overline{\Theta}^{\scriptscriptstyle 6};$

- 4. Частные производные первого и второго порядка регрессии η по параметру существуют и непрерывны на $\mathcal{X} \times \Omega$, то есть $\eta \in \mathrm{C}^2_\Theta(\mathcal{X} \times \Omega)$.
- 5. Истинное значение параметра Θ_u является внутренней точкой $\Omega^{\scriptscriptstyle 7}$.
- 6. Матрица⁸

$$M(\xi, \Theta) = \int_{\mathcal{X}} f(x, \Theta) f^{\mathsf{T}}(x, \Theta) d\xi(x), \tag{3}$$

⁵На самом деле тут должна быть измеримость по мере, почему мы ее не требуем?

⁶тогда и только тогда, правда?

 $^{^{7}}$ то есть не принадлежит frac(Ω). Это существенно, так как множество Ω является замкнутым.

⁸Убедитесь, что понимаете, что это, действительно, матрица.

$$f(x,\Theta) = \left(\frac{\partial \eta(x,\Theta)}{\partial \theta_1}, \frac{\partial \eta(x,\Theta)}{\partial \theta_2}, \dots, \frac{\partial \eta(x,\Theta)}{\partial \theta_m}\right)^{\mathrm{T}}$$

не вырождена при $\Theta = \Theta_u$.

Теперь пусть

$$\xi_N = \{x_1, x_2, \dots, x_N; 1/N, 1/N, \dots 1/N\},\$$

где x_i — необязательно различные точки,

$$\hat{\Theta}_N = \underset{\Theta \in \Omega}{\arg \min} \sum_{i=1}^N (\eta(x_i, \Theta) - y_i)^2. \tag{4}$$

Теорема 1 (без доказательства). Если случайные ошибки $\{\varepsilon_i\}_{i=1}^N$ некоррелированы, одинаково распределены и являются центрированными и гомоскедастичными, результаты экспериментов описываются уравнением (1) и выполнены предположения 1–3, то последовательность МНК-оценок сильно состоятельна, т. е. при $N \to \infty$

$$\hat{\Theta}_N \to \Theta_n$$

с вероятностью 1, где $\hat{\Theta}_N$ определено формулой (4).

Если дополнительно выполняются предположения 4–6, то последовательность случайных векторов $\sqrt{N}(\hat{\Theta}_N - \Theta_u)$ имеет асимптотически нормальное распределение с нулевым вектором средних и ковариационной матрицей $\sigma^2 M^{-1}(\xi,\Theta_u)$.

Матрицу $M(\xi, \Theta_u)$ называют информационной матрицей для нелинейных по параметрам регрессионных моделей.

2. Постановка задачи оптимального планирования для нелинейных моделей. Теорема эквивалентности для локально оптимальных планов.

Пусть $N \in \mathbb{N}, y_1, ..., y_N \in \mathbb{R}, x_1, ..., x_N \in \mathbb{X}$, где \mathbb{X} некоторое множество, обычно \mathbb{R}^k , а $y_1, ..., y_N, x_1, ..., x_N$ — наши «наблюдения», которые мы будем называть результатами эксперимента.

Введем множество параметров Θ и предположим, что наблюдения описываются следующей моделью:

$$y_i = \eta(x_i, \theta) + \varepsilon_i, \tag{5}$$

где $\theta \in \Theta$ — параметр, значения которого мы и будем пытаться в дальнейшем оценить, а ε_i — случайный шум, про который мы предположим, что

$$E\varepsilon = 0$$
, $E\varepsilon^2 = \sigma^2$

Будем предполагать, что $\Theta \subset \mathbb{R}^m$.

 $^{^{}o}$ Вспомните, откуда тут σ .

Определение 3. Будем говорить, что параметр θ_j входит в (5) нелинейным образом, если для фиксированного $x \in \mathbb{X}$ существует и не является постоянной функция

$$\phi_{j,x}(\theta) = \frac{\partial \eta(x,\theta)}{\theta_j}$$

Eсли $\phi_{j,x}(\theta) = const$, то θ_j входит в модель линейным образом.

Определение 4. Под точным планом эксперимента будем понимать N точек $x_1, ..., x_N \in \mathbb{X}$

Определение 5. Под приближенным планом эксперимента будем понимать $n \in \mathbb{N}$ пар (x_i, μ_i) , где

$$x_i \in \mathbb{X}, x_i \neq x_i, i \neq j,$$

$$\mu_i > 0, \sum_{i=1}^n \mu_i = 1,$$

Пусть N — доступное число «ресурсов» (кол-во экспериментов, которое можно провести). Тогда при использование приближенного плана рекомендуется в точке x_j провести $\mu_j N$ экспериментов. В итоге получится точный план, как работать с которым уже ясно.

Определение 6. При фиксированном плане для оценки θ будем использовать метод наименьших квадратов:

$$\hat{\theta} = \underset{\theta \in \Theta}{\arg\min} \sum_{j=1}^{N} \left(\eta(x_j, \theta) - y_j)^2 \right)$$

Наша задача — выбрать некоторым образом точки $x_1, ..., x_N$, чтобы МНК-оценка была в некотором смысле оптимальной.

Введем еще несколько обозначений:

Определение 7. Пусть ξ — дискретная вероятностная мера с носителем $x_1, ..., x_n$. Тогда

$$\int_{Y} g(x)d\xi(x) = \sum_{i=1}^{n} g(x_i)\xi_i$$

Определение 8. Пусть $f(x,\theta)^{\mathrm{T}} = \left(\frac{\partial \eta(x,\theta)}{\partial \theta_1}, ..., \frac{\partial \eta(x,\theta)}{\partial \theta_1}\right)$. Пусть $\theta^u - u$ стинной значение оцениваемого параметра. Тогда информационной матрицей будем называть

$$M(\xi, \theta_u) = \int_{\mathbb{R}} f(x, \theta) f(x, \theta)^{\mathrm{T}} d\xi(x)$$

Заметим, что $M(\xi,\theta_u)$ в случае, когда все параметры входят линейно, не зависит от θ_u и т.к. обратная к информационной матрице — «нижняя оценка» на дисперсию оцениваемого параметра (в многомерном случае под дисперсией понимается ковариационная матрица), то можно естественным образом ввести различные понятия оптимальности, опираясь на собственные числа информационной матрицы. Например, D-критерий предлагает выбирать планы, максимизирующие определитель информационной матрицы.

В нелинейном случае все сложнее. Информационная матрица зависит от «истинного» значения параметра, которое неизвестно. Предположим, что у нас есть некоторое приближение θ^0 «истинного» параметра. Тогда будем называть план, максимизирующий определитель матрицы $M(\xi,\theta^0)$ локально D-оптимальным.

Разложим η в ряд Тейлора в окресности $\theta^0 \in \Theta \subset \mathbb{R}^m$:

$$\eta(x,\theta) = \eta(x,\theta^0) + (\theta - \theta^0)^{\mathrm{T}} f(x,\theta^0) + r(x,\theta)$$

Введем следующие обозначения:

$$f(x)^{\mathrm{T}} = f(x, \theta^{0})^{\mathrm{T}} = \left(\frac{\partial \eta(x, \theta^{0})}{\partial \theta_{1}}, \dots, \frac{\partial \eta(x, \theta^{0})}{\partial \theta_{m}}\right)$$
$$M(\xi) = M(\xi, \theta^{0}) = \int_{\mathbb{X}} f(x)f(x)^{\mathrm{T}}d\xi(x)$$
$$d(x, \xi) = f(x)^{\mathrm{T}}M^{-1}(\xi)f(x)$$

Для данных обозначение будет верна следующая теорема:

Теорема 2 (Эквивалентности). План ξ^* является локально D-оптимальным для модели (5) тогда и только тогда, когда

$$m = \max_{x \in \mathbb{X}} d(x, \xi^*)$$

Кроме того,

$$\max_{x \in \mathbb{X}} d(x, \xi^*) = \inf_{\xi} \max_{x \in \mathbb{X}} d(x, \xi)$$

Функция $d(x, \xi^*)$ достигает максимального значение во всех точках любого локального D-оптимального плана. Информационные матрицы всех локально D-оптимального планов совпадают.

Доказательство. Без доказательства. Является переформулировкой теоремы Кифера-Вольфовица (которая видимо была раньше). \Box

3. Системы Чебышева. Два эквивалентных определения.

Определение 9 (Конструктивное). Пусть $u_0, ..., u_n$ — заданные непрерывные вещественные функции на [a,b]. Система называется системой функций Чебышева, если определители

$$U\left(\begin{array}{cccc} 0 & 1 & \dots & n \\ t_0 & t_1 & \dots & t_n \end{array}\right) = \det \left(\begin{array}{cccc} u_0(t_0) & \dots & u_0(t_n) \\ u_1(t_0) & \dots & u_1(t_n) \\ \dots & \dots & \dots \\ u_n(t_0) & \dots & u_n(t_n) \end{array}\right)$$

строго положительны для $\forall a \leq t_0 < t_1 < \ldots < t_n \leq b$. 10

Здесь нужно рассказать о (по всей видимости) естественности такой штуки через определитель Вандермонда, но я пока сам не понимаю.

Определение 10. Обобщенным многочленом называется функция $u(t) = \sum_{i=0}^{n} a_i u_i(t), a_i \in \mathbb{R}$.

Определение 11. Многочлен называется нетривиальным, если $\sum_{i=0}^{n} a_i^2 \neq 0$. **Придирка**: Это условие глядится странновато. На u_i задана упорядоченность или нет? Если да, значит обобщенные многочлены не просто так названы многочленами. У любого нормального многочлена есть степень! Тут она тоже должна быть, иначе термин обобщенный многочлен слишком натянут. А если есть степень, то разумно требовать, чтобы коэффициент при старшем члене был не 0.

 $^{^{10}}$ На самом деле, ничего ведь страшного, если все определители будут строго отрицательны? Это используется в теореме этого билета, обратите на это внимание.

¹¹Здесь не накладывается никаких дополнительных ограничений! Просто произвольная линейная комбинация.

Количество нулей обобщенного многочлена u обозначим Z(u).

Определение 12 (Аксиоматическое). Система вещественных, непрерывных функций $\{u_i\}_{i=0}^n$, определенных на отрезке [a,b] называется системой Чебышева если $Z(u) \leqslant n$ для любого нетривиального обобщенного многочлена u, построенного по этой системе.

Теорема 3. Пусть $\{u_i\}_{i=0}^n$ — система вещественных непрерывных функций, определенных на отрезке [a,b]. СУР:

- 1. Система $\{u_i\}_{i=0}^n$ с точностью до знака некоторых из u_i^{12} образует систему Чебышева 9.
- 2. Система $\{u_i\}_{i=0}^n$ образует систему Чебышева 12.

Доказательство. Пусть $a=(a_0,\dots,a_n)^{\rm T}\in\mathbb{R}^{n+1}$ такой, что $\sum_{i=1}^n a_i^2\neq 0$.. Рассмотрим обобщенный многочлен $u(t)=\sum_{i=0}^n a_i u_i(t)$. Для произвольного набора точек $\{t_i\}_{i=0}^n\subset [a,b]$ введем матрицу

$$\mathbf{U}(t_0, t_1, \dots, t_n) = \begin{pmatrix} u_0(t_0) & \dots & u_0(t_n) \\ u_1(t_0) & \dots & u_1(t_n) \\ \dots & \dots & \dots \\ u_n(t_0) & \dots & u_n(t_n) \end{pmatrix}.$$

- $1 \to 2$. Пусть $Z(u) \geqslant n+1$ и t_0,t_1,\ldots,t_n первые n+1 нулей многочлена u. Тогда $\mathbf{U}(t_0,t_1,\ldots,t_n)a=\mathbf{0}^{13}$, что противоречит невырожденности \mathbf{U} .
- $2 \to 1$. Пусть система $\{u_i\}_{i=0}^n$ не чебышевская в смысле определения 9. Тогда найдется такой набор точек t_0, t_1, \ldots, t_n , матрица $\mathbf{U} = \mathbf{U}(t_0, t_1, \ldots, t_n)$ и вектор $a = (a_0, a_1, \ldots, a_n)^\mathrm{T} \in \mathbb{R}^{n+1}$, что $\mathbf{U}a = \mathbf{0}$. То есть существует обобщенный многочлен, имеющий не менее n+1 нуля. Противоречие.

4. Системы Чебышева. Метод проверки, основанный на последовательном дифференцировании. Примеры применения (экспоненциальные модели.)

Пусть u_0, u_2, \dots, u_k — некоторая система функций. Мы хотим проверить, что она является Чебышевской. Рассмотрим следующий набор функций:

$$F_{00}(t) = u_0(t), \dots, F_{0k}(t) = u_n(t)$$

$$F_{11}(t) = \left(\frac{F_{01}}{F_{00}}\right)', \dots, F_{1k}(t) = \left(\frac{F_{0k}}{F_{00}}\right)'$$

$$F_{22}(t) = \left(\frac{F_{12}}{F_{11}}\right)', \dots, F_{2k}(t) = \left(\frac{F_{1k}}{F_{11}}\right)'$$

$$\dots$$

$$F_{kk} = \left(\frac{F_{k-1,k}}{F_{k-1,k-1}}\right)'$$

Теорема 4. Если существуют все функции F_{ij} и $F_{ii} > 0$, то система $u_0, ..., u_k$ является системой Чебышева.

¹²Наверное это нужно написать формально, но мне не приходят в голову изящные способы

¹³Здесь времененный шрифт.

Доказательство. Пусть это не так. Тогда $\exists u(t) = \sum_{i=0}^k a_i u_i$, обращающийся в 0 в k+1 точках. Не умаляя общности будем считать, что все $a_i \neq 0$. Тогда

$$f_0(t) = a_0 u_0(t) \left(1 + \frac{a_1}{a_0} \frac{u_1(t)}{u_0(t)} + \dots \frac{a_k}{a_0} \frac{u_k(t)}{u_0(t)} \right)$$

По условию, $u_0(t)>0$, а значит вторая скобка обращатся в 0 в k+1 точках. Вспоминаем теорему Ролля — между двумя корнями непрерывной функции есть корень ее производной. Отсюда следует, что функция $f_1(t)=\left(1+\frac{a_1}{a_0}\frac{u_1(t)}{u_0(t)}+\dots\frac{a_k}{a_0}\frac{u_k(t)}{u_0(t)}\right)'$ — обращется в ноль в k точках. Заметим, что количество слагаемых уменьшилось на 1. Итерируя процесс, получим последовательность функций $f_0(t), f_1(t), \dots, f_k(t)$. В $f_i(t)$ будет k-i+1 ненулевых слагаемых и k-i нулей. Таким образом, $f_k(t)=\alpha F_{kk}$, где α — некоторое ненулевое число, имеет хотя бы один

4.1. Пример: Экспоненциальная регрессия

ноль. Противоречие, т.к. по предположению $F_{kk}(t) > 0$

Пусть $\eta(t,\theta) = \sum_{i=1}^k b_i e^{\lambda_i t}, \ b_i \in \mathbb{R}, \ \lambda_i \in \mathbb{R}, \ \lambda_i \neq \lambda_j \ i \neq j.$ В данной модели параметрами являются b_i и λ_i . Рассмотрим систему функций $\left\{\frac{\partial \eta(t,\theta)}{\partial \lambda_i}, \frac{\partial \eta(t,\theta)}{\partial b_i}\right\}_{i=1}^k$. Оказывается, данная система является системой Чебышева. Для доказательства достаточно повторить рассуждение, легшее в основу доказательства прошлой теоремы (4) и воспользоваться тем, что $e^{\lambda t} > 0 \forall \lambda \in R$.

4.2. Пример: модель Михаэлина-Менте

 $\eta(t,\theta) = \frac{at}{t+b}$ на [a,b], a>0. Производные $\left\{\frac{\partial \theta}{\theta_i}\right\}$ также образуют систему Чебышева. Действительно,

$$\frac{\partial \eta}{a} = u_0(t) = \frac{t}{t+b}$$

$$\frac{\partial \eta}{b} = u_1(t) = \frac{-at}{(t+b)^2}$$

Пусть имеется $u(t) = \alpha_0 u_0(t) - \alpha_1 u_1(t)$. Вынесем $-u_1(t)$ за скобку и получим

$$u(t) = \frac{at}{(t+b)^2} \left(\alpha_0(t+b) + \alpha_1 \right)$$

Вспомним, что a > 0, а значит t > 0 и $\frac{at}{(t+b)^2} > 0$. Второе слагаемое — линейная функция, про которую мы и без дифференцирования знаем, что у нее имеется не более одного нуля.

5. Расширенные системы Чебышева

Основная цель данного вопроса — расширить определение систем Чебышева, таким образом, чтобы с помощью них можно было бы выразить некоторые простые условия, на входящие в эту систему функции.

Запишем на языке чебышевских систем простое условие строгого возрастания функции. Пусть задана система из двух функций: $u_0(t)=1,\,u_1(t)$ для $t\in[a,b]$. Условием того, что эта система будет чебышевской является следующее условие на определитель:

¹⁴я наверно не правильно распарсил имена, надо поправить

$$\begin{vmatrix} 1 & 1 \\ u_1(t_0) & u_1(t_1) \end{vmatrix} > 0,$$

для $a \le t_0 < t_1 \le b$.

Условие строго возрастания естественно ослабляется до нестрогой монотонности. С другой стороны, условие строгого возрастания естественно усиливается существованием строго возрастающей производной. Запишем эти два условия с точки зрения определителей. Условие нестрого возрастания:

$$\begin{vmatrix} 1 & 1 \\ u_1(t_0) & u_1(t_1) \end{vmatrix} \geqslant 0, \tag{6}$$

для $a \le t_1 < t_2 \le b$.

Условие строгой монотонности производной записывается следующим образом:

$$\begin{vmatrix} 1 & u_0'(t) \\ u_1(t) & u_1'(t) \end{vmatrix} = u_1'(t) > 0, \tag{7}$$

для $a \leq t \leq b$.

Перейдем к обобщению понятия системы Чебышева на произвольное количество функций так, чтобы оно описывало условие нестрогой монотонности функции и строгой монотонности производной.

Ясно, что (6) обобщается на произвольное количество функций:

Определение 13. Система вещественных, непрерывных функций $\{u_i\}_{i=1}^n$, заданных на отрезке [a,b], называется слабой системой Чебышева, если определители

$$U\left(\begin{array}{ccc} 0 & 1 & \dots & n \\ t_0 & t_1 & \dots & t_n \end{array}\right) = \det \left(\begin{array}{ccc} u_0(t_0) & \dots & u_0(t_n) \\ u_1(t_0) & \dots & u_1(t_n) \\ \dots & \dots & \dots \\ u_n(t_0) & \dots & u_n(t_n) \end{array}\right) \geqslant 0$$

 ∂ ля $a \le t_0 < t_1 < ... < t_n \le b$.

Посмотрим теперь на второе условие (7). Заметим, что это условие отличается от обычного определения системы Чебышева тем, что в нем допускается "совпадение точек" $t_i = t$. Точнее говоря, определители в 9 (и в 13) считаются в строго различных точках: $\{t_i\}_{i=0}^n$: $a \le t_0 < t_1 < \ldots < t_n \le b$, а в (7) определитель вычисляется в некоторой заданной точке $t \in [a,b]$. Таким образом, необходимо сконструировать такое обобщение стандартного определения 9, которое бы допускало равенство точек $\{t_i\}_{i=0}^n$.

В книге Карлина и Штаддена на страницах 16-18 приводится более общее изложение данного материала, я постарался сделать более элементарное.

Начнем с некоторого интуитивного понимания идеи. Для начала будем считать, что функции $\{u_i\}_{i=0}^n$ достаточное число раз дифференцируемы на интервале (a,b). Рассмотрим некоторый набор точек $\{t_i\}_{i=0}^n$ таких, что $t_0 \leqslant t_1 \leqslant \ldots \leqslant t_n$. Пусть теперь $t=t_i=t_{i+1}=\ldots=$

 $t_{i+q} \not \in \{a,b\}^{15}$, где $0 \leqslant i < i+q \leqslant n$. Рассмотрим (в данный момент равный 0^{16}) определитель:

$$\det \begin{pmatrix} u_0(t_0) & \dots & u_0(t_n) \\ u_1(t_0) & \dots & u_1(t_n) \\ \dots & \dots & \dots \\ u_n(t_0) & \dots & u_n(t_n) \end{pmatrix} =$$

$$\det \begin{pmatrix} u_0(t_0) & \dots & u_0(t_i) & u_0(t_{i+1}) & \dots & u_0(t_{i+q}) & u_0(t_{i+q+1}) & \dots & u_0(t_n) \\ u_1(t_0) & \dots & u_1(t_i) & u_1(t_{i+1}) & \dots & u_1(t_{i+q}) & u_1(t_{i+q+1}) & \dots & u_1(t_n) \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ u_n(t_0) & \dots & u_n(t_i) & u_n(t_{i+1}) & \dots & u_n(t_{i+q}) & u_n(t_{i+q+1}) & \dots & u_n(t_n) \end{pmatrix}$$

Заменим столбцы с i + 1 до i + q следующим образом:

$$\det \begin{pmatrix} u_0(t_0) & \dots & u_0(t) & u_0'(t) & \dots & u_0^{(q)}(t) & u_0(t_{i+q+1}) & \dots & u_0(t_n) \\ u_1(t_0) & \dots & u_1(t) & u_1'(t) & \dots & u_1^{(q)}(t) & u_1(t_{i+q+1}) & \dots & u_1(t_n) \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ u_n(t_0) & \dots & u_n(t) & u_n'(t) & \dots & u_n^{(q)}(t) & u_n(t_{i+q+1}) & \dots & u_n(t_n) \end{pmatrix}$$

Теперь должна быть понятна идея обобщения! Заменяем столбцы, с совпадающими точками на столбцы от соответствующих производных функций.

Перейдем теперь к строгому описанию. Пусть функции $\{u_i\}_{i=0}^n$, заданные на отрезке [a,b], непрерывно дифференцируемы p раз на интервале (a,b). Рассмотрим набор точек $t_0\leqslant t_1\leqslant\ldots\leqslant t_n\in[a,b]$ такой, что

$$t_0 = \ldots = t_{k_0} < t_{k_0+1} = \ldots = t_{k_1} < t_{k_1+1} = \ldots = t_{k_2} < \ldots < t_{k_{\ell-1}+1} = \ldots = t_{k_\ell} = t_n,$$

где $0 \leqslant \ell \leqslant n^{17}$ и $0 \leqslant k_0 < k_1 < \ldots < k_\ell \leqslant n^{18}$.

При этом дополнительно¹⁹

- 1. $k_{i+1} k_i \le p 1$ для всех i;
- 2. если $t_{k_0} = a$, то $k_0 = 0$;
- 3. если $t_{k_{\ell}} = b$, то $k_{\ell-1} = n-1$.

Рассмотрим определитель

А что будет, если все точки $\{t_i\}_{i=0}^n$ равны и n=p? Как называется такой определитель?

Определение 14. (Конструктивное) Система непрерывных функций $\{u_i\}_{i=0}^n$, заданных на отрезке [a,b], называется расширенной системой функций Чебышева порядка p, если функции $\{u_i\}_{i=0}^n$ непрерывно дифференцируемы p-1 раз и по всем наборам точек $\{t_i\}_{i=0}^n$, удовлетворяющим условиями сформулированным выше

$$U^{\star} \begin{pmatrix} 0 & 1 & \dots & n \\ t_0 & t_1 & \dots & t_n \end{pmatrix} > 0. \tag{9}$$

¹⁵Это чисто формальное условие. Зачем оно нужно?

¹6Почему?

¹⁷Чему соответствуют крайние случаи?

¹⁸Можно ли здесь допустить нестрогое неравенство?

¹⁹Все три условия являются формальными. Тем не менее убедитесь, что понимаете, откуда они берутся.

Если в Определении 8 взять p=n+1, то такую систему функций $\{u_i\}_{i=0}^n$ обычно называют расширенной системой Чебышева.

Как можно догадаться, есть и эквивалентное аксиоматическое определение расширенной Чебышевской системы.

Определение 15. (Аксиоматическое) Система непрерывных функций $\{u_i\}_{i=0}^n$, заданных на отрезке [a,b], называется расширенной системой функций Чебышева порядка p, если функции $\{u_i\}_{i=0}^n$ непрерывно дифференцируемы p-1 раз и произвольный обобщенный многочлен, построенный по системе $\{u_i\}_{i=0}^n$, имеет не более p нулей p учетом кратности.

Как и для обычных систем Чебышева нетрудно провести доказательство эквивалентности этих определений. Проводится это точно так же, как и в Вопросе 3. ²⁰

Тут еще идет кусок про теорему Элвинга, но я там ничего не понял. Видимо это и есть суть применения этого билета. Надо спросить В.Б. о том, что сюда еще нужно написать.

6. Неотрицательные многочлены с заданными нулями

6.1. Теорема о числе нулей

Определение 16. Пусть u — некоторая функция (непрерывная) на [a,b]. Тогда Z(u) — число нулей u на [a,b].

Определение 17. Ноль называется узловым, если

- Он совпадает с граничной точкой (либо а, либо b)
- Функция меняет знак, проходя через этот ноль

В противном случае ноль называется неузловым.

Определение 18. $\overline{Z(u)}$ — число нулей функции и, где неузловые нули засчитываются дважды.

Теорема 5. Если система функций $\left\{u_i\right\}_{i=0}^n$ - Чебышевская на [a,b], то для любого нетривиального многочлена $\overline{Z}(u) \leq n$.

Доказательство. Пусть $(Z)(u) \ge n+1$ для некоторого нетривиального u. Обозначим различные нули u через t_1,\ldots,t_k . Добавим для первого неузлового нуля точки $t_i-\varepsilon,t_i+\varepsilon$, а для остальных неузловых нулей точки $t_i-\varepsilon$. Выбрав ε достаточно маленьким, можно получить, что все точки будут содержаться в [a,b]. Пусть у нас было m_1 узловых и m_2 неузловых нулей. Тогда после проделанной операции мы получили $m_1+2m_2+1\ge n+2$ точек $(m_1+2m_2\ge n+1)$. Переобозначим получившиеся точки за s_i и возьмем первые n+2 из них. Не умаляя общности, можем считать, что $u(s_i)\ge 0$ для четных $i,u(s_i)\le 0$ для нечетных i^{21} . Отсюда получаем, что следующий определитель равен 0 (т.к. первая стручка — линейная комбинация следующих):

$$\begin{vmatrix} u(s_0) & u(s_1) & \dots & u(s_{n+1}) \\ u_0(s_0) & u_0(s_1) & \dots & u_0(s_{n+1}) \\ \dots & \dots & \dots & \dots \\ u_n(s_0) & u_n(s_1) & \dots & u_n(s_{n+1}) \end{vmatrix} = 0$$
(10)

²⁰Поручить кому-то набрать это аккуратно.

 $^{^{21}}$ Проверьте это. Достаточно нарисовать рисунок и все станет ясно.

Далее $\{u_i\}$ — система Чебышева, а значит

$$\begin{vmatrix} u_0(t_0) & u_0(s_1) & \dots & u_0(t_n) \\ \dots & \dots & \dots & \dots \\ u_n(t_0) & u_n(t_1) & \dots & u_n(t_n) \end{vmatrix} > 0$$

для любых $t_0 < t_1 < \ldots < t_n$. Поэтому, разложив определитель (10) по первой сточке, получим²², что

$$\sum_{i=0}^{n+1} \alpha_i u(s_i) = 0,$$

где α_i строго чередуются в знаке. Кроме того, $u(s_i)$ совпадают по знаку с α_i . Таким образом, суммируются неотрицательные слагаемые. Значит $\forall i \ u(s_i) = 0$. Получили противоречие с одним из определений системы Чебышева(12)

Теорема 6. Обратно, если для любого нетривиального многочлена u(t) верно, что $\overline{Z}(u) \leq n$, то система является Чебышевской

Доказательство. Следует из второго определения чебышевской системы²³ 12:

$$Z(u) \leq \overline{Z}(u) \leq n$$

6.2. Неотрицательные многочлены с заданными нулями

Задача: построить неотрицательный многочлен, имеющий нули в точках $t_1 < t_2 < \ldots < t_k$. Многочлен неотрицательный, поэтому все внутренние нули должны быть неузловыми. Введем функцию ω :

$$\omega(t) = \begin{cases} \omega(a) = 1 \\ \omega(b) = 1 \\ \omega(t_i) = 2, i \in (a,b) \end{cases}$$

Теорема 7. Пусть t_1, \ldots, t_k — различные и такие, что $\sum_{i=1}^k \omega(t_i) \le n$. Пусть $\{u_i\}_{i=0}^n$ — чебышевская. Тогда $\exists u(t)$, который обращается в ноль в этих и только этих точках, за исключением случая, когда n=2m и одна из точек совпадает с граничной точкой 2^{24}

В книжке было дополнительное условие, кажется без него док-во ломается...

Доказательство. Докажем для n=2m+1 и $a < t_1 < \ldots < t_k < b^{25}$. Построим последовательность точек $\{s_i\}_{i=0}^{2m+1}$ следующим образом: добавим к t_1,\ldots,t_k произвольные точки t_{k+1},\ldots,t_m такие, что $t_{k+1} < \ldots < t_m < b$, а затем добавим точки $t_1 + \varepsilon, t_2 + \varepsilon$ и точку a. Получим 2m+1 точки:

$$s_0 = a, s_1 = t_1 < s_2 = t_1 + \varepsilon < s_3 = t_2 < \dots < s_{2m+1} = t_m + \varepsilon$$

 $^{^{22}}$ как мы все помним, при разложение определителя знаки перед минорами чередуются, а сами миноры у нас положительны

 $^{^{23}}Z(u)$ ведь количество нулей многочлена

 $^{^{24}}$ Исключение получается по следующей простой причине: до этого мы доказали теорему о том, что число нулей $\overline{Z} \leq n$. Если n=2m, и одна точка совпадает с граничной, то k < m и 2k+1 < 2m, а значит возможна ситуация, что во второй граничной точке также будет ноль.

²⁵Остальные случаи получаются аналогично с небольшими модификациями.

Теперь рассмотрим многочлен

$$u_{\varepsilon}(t) = U \begin{pmatrix} 0 & 1 & \dots & 2m & 2m+1 \\ s_0 & s_1 & \dots & s_{2m} & t \end{pmatrix}^{26}$$

Заметим, что по свойству определителя $u_{\varepsilon}(t)$ обращется в ноль в точках s_0, s_1, \ldots, s_{2m} . Кроме того, $\{u_i\}$ — система Чебышева, поэтому других нулей быть не может, а также каждый нуль является узловым (из теоремы (5)). Теперь, если $t>s_{2m+1}$, то из первого определения системы Чебышева (9) следует, что $u_{\varepsilon}(t)>0$. Следовательно $U_{\varepsilon}(t)$ на промежутках $[t_i,t_i+\varepsilon]$ будет меньше нуля, а на оставшихся — больше. Раскроем определитель по последнему столбцу и получим:

$$u_{\varepsilon}(t) = \sum_{i=0}^{2m} a_i(\varepsilon) u_i(t)$$

Можно считать, что $\sum a_i^2=1$ (если не так – нормируем). Тогда определим предельный многочлен $\overline{u}(t)=\lim_{\varepsilon\to 0}u_{\varepsilon}(t)$. Теперь, у предельного многочлена нули в точках t_1,\dots,t_k стали узловыми, а значит данные точки являются всеми возможными нулями данного многочлена (опять же, по теореме (5)). Полученный многочлен имеет «лишний» ноль — в точке a. Чтобы от него избавиться, повторим построение, взяв вместо точку b вместо точки a и получим $\tilde{u}(t)$. Тогда решением нашей задачи будет многочлен $u(t)=\overline{u}(t)+\tilde{u}(t)$

7. Теорема о числе опорных точек локально-оптимальных планов для Чебышевских систем

Пусть у нас есть некоторая система Чебышева $\{u_i(t)\}_{i=0}^p$ на отрезке [a,b]. Рассмотрим множество всех возможных (непрерывных) планов Ξ , определенной следующим образом²⁷:

$$\Xi_k = \left\{ \begin{pmatrix} t_1 & \dots & t_k \\ v_1 & \dots & v_k \end{pmatrix} \right\} \tag{11}$$

$$\Xi = \bigcup \Xi_k \tag{12}$$

Вспоминаем, что информационная матрица плана выглядит следующим образом:

$$M(\xi) = \int f(t)f(t)^{\mathrm{T}}d\xi(t)$$
, где $\xi \in \Xi$.

При этом f — это частные производные функции $\eta(t,\theta)$ по θ . Достаточно часто эти производные образуют систему Чебышева, а это сильно упрощает жизнь и позволяет получать различные хорошие аналитические результаты. Собственно матрица $M(\xi)$ является вектором в $\mathbb{R}^{\frac{m(m+1)}{2}}$, а ее элементы имеют вид:

$$M_{ij} = \int u_{ij}(t)d\xi(t), \, \xi \in \Xi.$$

Существует такое n, что любую $M(\xi)$ можно представать, как

$$M(\xi) = \int u d\xi(t), \, \xi \in \bigcup_{i=1}^n \Xi_i, \,\, \mathrm{гдe}\,\, u = (u_0, \ldots, u_p)$$

Докажем этот факт.

²⁶Здесь написан определитель матрицы (смотри определение (9))

 $^{^{27}}$ При изучении Чебышевских систем мы предполагаем, что регрессия зависит только от одного признака, поэтому вместо x мы будем обозначать его за t

Определение 19. Моментным пространством \mathcal{M}_{p+1} по отношению к $\{u_i\}_{i=0}^p$ называется множество

$$\mathcal{M}_{p+1} = \{ \lambda c, c = (c_0, ..., c_p) \in \mathbb{R}^{p+1}, \lambda \in \mathbb{R}_+ \mid c_i = \int u_i(t) d\xi(t), \xi \in \Xi \}$$

Сечение этого конуса $\lambda = 1$ — это в точности всевозможные информационные матрицы планов.

Докажем, что любой элемент $\mathcal M$ представим как выпуклая комбинация из p+2 точек кривой C_{p+1}

$$_{p+1} = \{ \gamma_t = (u_0(t), ..., u_p(t)) \mid a \le t \le b \}.$$

Для этого нам нужно еще несколько обозначений.

Пусть \mathcal{C} — наименьший выпуклый конус, содержащий кривую C_{p+1} . Рассмотрим множество Γ :

$$\Gamma=\{\gamma=(\gamma_0,...,\gamma_p), \gamma_i=\sum_{j=0}^{p+2}\lambda_ju_i(t_j)\}, \ \text{где}$$

$$\lambda_i\geq 0, \ a\leq t_i\leq b$$

Это множество совпадает с \mathcal{C} . То, что $\Gamma \subset \mathcal{C}$ очевидно. Обратное утверждение следует из следующей теоремы:

Теорема 8 (Каратеодори). Пусть $\mathcal{V} \subset R^k$ — ограниченное замкнутое множество. Тогда любой элемент его выпуклой оболочки может быть представлен в виде линейной комбинации не более, чем k+1 элементов этого множества.

Докажем теперь, что $C=\mathcal{M}_{p+1}$. По построению ясно, что $C\subset\mathcal{M}_{p+1}$. Пусть теперь некоторый $\tilde{c}\in\mathcal{M}_{p+1}$, но $\tilde{c}\notin C$. C является выпуклым замкнутым²⁸ конусом, поэтому по теоремам отделимости существует гиперплоскость, строго отделяющая \tilde{c} от C, т.е. существует такой вектор a и $d\in\mathbb{R}$, что

$$\sum a_i \tilde{c}_i + d < 0 \tag{13}$$

$$\sum a_i \gamma_i + d \ge 0 \forall j \in \mathcal{C} \tag{14}$$

Из того, что γ_i можно брать любым будет верно, что

$$\sum a_i \lambda u_i(t) + d \ge 0 \forall t \in [a, b]$$
 (15)

Из последнего неравенства следует, что $d \geq 0$, иначе при $\lambda = 0$ неравенство будет неверным. Теперь рассмотрим σ , задающий \tilde{c} (т.е. $\tilde{c} = \int u(t) d\sigma(t)$). Пусть $\lambda = \int d\sigma(t) > 0$. Тогда с одной стороны

$$\sum a_i \tilde{c}_i + d = \int \sum a_i u_i d\sigma(t) + d < 0$$

С другой, проинтегрировав (15) и поделив на λ мы получим противоречие.

Теперь докажем теорему, которая, видимо, и имелась в виду в билете.

Определение 20. Индексом точки $c \in \mathcal{M}_{p+1}$ называется такое минимальное k, что c представима в виде выпуклой комбинации элементов $_{p+1}$:

$$c = \sum_{i=1}^{k} \lambda_i u(t_i) \tag{16}$$

При этом точки a и b считаются за половину, a точки из (a,b) за единицу.

 $^{^{28}}$ Это вообще-то как-то не очевидно, а мы не доказывали. В книге Карлина используются неизвестные мне теоремы для док-ва...

Теорема 9. $\tilde{c} \in \mathcal{M}_{p+1}$ является граничной точкой тогда и только тогда, когда $I(\tilde{c}) < \frac{p+1}{2}$. Кроме того, граничная точка \tilde{c} допускает единственное представление

$$\tilde{c} = \sum_{i=1}^{k} \lambda_i u(t_i), \ \text{rde } k \leq \frac{p+2}{2}, \lambda_i > 0$$

Я так и не понял, зачем мы рассматриваем конус (разве что из-за того, что так написано в книжке про чебышевские системы.) Теоремы отделимости работают и для выпуклых множеств, теорема Каратеодори сформулирована для выпуклой оболочки. Информационные матрицы для планов экспериментов также используют вероятностную меру. И вообще не уверен, что написанный текст соответствует вопросу...

8. Экспоненциальные модели с двумя параметрами. Построение локально-оптимальных планов

Кусок про экспоненциальные модели есть в сборнике (Пененко и т.д.), но несколько с тем форматом, что был у нас на лекциях

На протяжении нескольких следующих вопросов мы будем изучать экспоненциальную модель с двумя параметрами. Пусть $y = \eta(x, \theta) + \varepsilon$, где

$$\eta(x,\theta) = \sum_{i=1}^{k} a_i e^{0\lambda_i x}, x \in \mathbb{R}_+, k \in \mathbb{N}$$

$$M(\xi) = \sum_{i=1}^{n} w_i f(x_i) f(x_i)^{\mathrm{T}}$$

$$\xi_{opt} = \arg\max_{\xi} \det M(\xi)$$

Заметим, что в локально-оптимальном плане должно быть по крайнем мере 2k точек (иначе ранг матрицы будет меньше 2k и определитель будет нулем).

Как мы покажем позже, функции f образуют систему Чебышева, поэтому есть и верхняя граница на количество точек в оптимальном плане $-\frac{2k(2k+1)}{2}+1$ (Кажется, для систем Чебышева верхняя граница на самом деле $[\frac{2k(2k+1)/2+1}{2}]$, но мы это внятно не доказали. Мы получили теорему про I(c), которая дает верхнюю границу для граничных точек (по модулю того, что у нас был конус, а нужно его сечение, но с этим можно бороться). Определитель матрицы будет гармонической функцией 29 , поэтому максимум у него на границе (вспоминаем матфизику), так что для D-оптимальных планов нам доказывать что-то про внутренность действительно не надо)

Для поиска локальных D-оптимальных планов мы будем пользоваться теоремой эквивалентности 30 :

Теорема 10. Пусть M — информационная матрица для параметра $\theta \in \Theta \subset \mathbb{R}^m$. Пусть $d(x,\theta) = f(x)^T M^{-1} f(x) = D(f(x)^T \hat{\theta})^{31}$

Эквивалентно:

• $\xi^* - D$ -оптимальный план (у нас локально)

²⁹там всякие попарные произведения, они после оператора лапласса умрут

 $^{^{30}}$ Мы ее формулировали до этого, но пусть будет еще раз

 $^{{}^{31}}D(f(x)^{\mathrm{T}}\hat{\theta}) = E(f^{\mathrm{T}}\hat{\theta} - f^{\mathrm{T}}\theta)^{2} = f^{\mathrm{T}}E(\hat{\theta} - \theta)(\hat{\theta} - \theta)^{\mathrm{T}}f = f^{\mathrm{T}}D_{\hat{\theta}}f = cf^{\mathrm{T}}M^{-1}f, D_{\hat{\theta}} = \frac{\sigma^{2}}{n}M^{-1}f$

- $\xi^* G$ -оптимальный план $\xi^* = \arg\min_{\xi} \max x d(x, \theta, \xi)$ (минимизирует максимальную дисперсию предсказаний)
- $\max_{x} d(x,\xi^*) = m$

B опорных точках D-оптимального плана $d(x, \xi^*)$ принимает свое максимальное значение

Нам будут интересны специальные типы планов:

Определение 21. План, число точек в котором совпадает с числом параметров, называется насыщенным

Для экспоненциальных моделей в большинстве случаев оптимальные планы являются насыщенными. Для дробно-рациональной модели, которую мы будем рассматривать в дальнейшем, все локально D-оптимальные планы будут насыщенными. Отметим важный факт о насыщенных планах:

Теорема 11. Для насыщенных *D*-оптимальных планов все весовые коэффициенты одинаковы.

Доказательство.

$$M(\xi) = \sum_{i=1}^{m} w_i f(x_i) f(x_i)^{\mathrm{T}} = FW F^{\mathrm{T}}$$

$$\det M(\xi) = \prod_{i=1}^{m} w_i \det F F^{\mathrm{T}}$$

Видно, что w_i и F можно максимизировать по отдельности. Берем логарифм, вспоминаем правило множителей Лагранжа и получаем, что $w_i = \frac{1}{m}^{32}$.

Замечание 1. Утверждается, что такой план еще и единственный, но откуда это берется не ясно.

Теперь отметим еще один полезный факт, связанный с экспоненциальной регрессией:

$$\det(M(\xi, a, \lambda)) = C(a) \det \widetilde{M(\xi, \lambda)}$$

Таким образом, оптимальный план не зависит от вектора a и можно при поиске плана считать, что $a_i=1^{33}$

Для экспоненциальных систем производные будут образовывать систему Чебышева. Производные (с точностью до знака):

$$f_i(x) = e^{-\lambda_i x}, f_{2i} = x e^{-\lambda_i x}$$

Из них получаем множество функций $\{e^{-2\lambda_i x}, e^{-(\lambda_i + \lambda_j)x}, xe^{-(\lambda_i + \lambda_j)x}, x^2e^{-2\lambda_i x}\}$ Этот факт мы доказывали в 4 вопросе.

Перейдем к построению локально-оптимальных планов. Начнем с k=1. Тогда

$$\eta(x,\theta) = e^{-\lambda_1 x}$$

$$f_1 = e^{-\lambda_1 x}$$

$$f_2 = -xe^{-\lambda_1 x}$$

³²можно и через неравенства между средним геометрическим и средним арифметическим доказать

 $^{^{33}}$ Но нельзя считать, что у нас k параметров, у нас их все равно 2k, просто при максимизации мы можем считать $a_i = 1$, т.к. они на выбор точек плана не влияют.

Теорема 12. При k = 1 существует единственный D-оптимальный план

$$\xi = \begin{pmatrix} 0 & \frac{1}{\lambda_1} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Доказательство. По теорем эквивалентности $d(x,\xi) \leq 2$.

$$F^{\mathrm{T}} = \begin{pmatrix} f_{1}(x_{1}) & f_{1}(x_{2}) \\ f_{2}(x_{1}) & f_{2}(x_{2}) \end{pmatrix}$$

$$W = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$$

$$\xi = \begin{pmatrix} 0 & \frac{1}{\lambda_1} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

тут надо дописать п простых строчек по обращению матрицы и вычислению d. У d получим, что при x=0 достигается 2, значит 0 — точка плана по теореме эквивалентности. Вторую точку можно будет найти, продифференцировав определитель.

Теорема 13. При k=2 существует единственный D-оптимальный план. Кроме того, этот план будет насыщенным.

Доказательство. ТООО: Тут еще больше вычислений и начинают использоваться системы Чебышева □

9. Теорема о числе точек локально-оптимальном плане

Для k=1,2 мы явно построили локально-оптимальные планы. Для $k\geq 3$ верна следующая теорема ³⁴:

Теорема 14. При $k \geq 3$ с число точек в оптимальном плане не превосходит $\frac{k(k+1)}{2} + 1$.

Доказательство. Кажется это следствие теоремы Каратеодори и не отличается от 7 вопроса.

10. Основное уравнение функционального подхода. Теорема о неявной функции

Начнем с теоремы о неявной функции.

Теорема 15. Пусть задана функция $q(\tau,z): \mathbb{R}^{s+k} \to \mathbb{R}$ и пусть q — непрерывно-дифференцируема в окрестности $U \subset \mathbb{R}^{s+k}$. Пусть в точке (τ^0, z^0) выполнено:

1.
$$q(\tau^0, z^0) = 0$$

2. det
$$J \neq 0$$
, $\partial e J = \frac{\partial q}{\partial z_i}|_{(\tau^0, z^0)}$

 $^{^{34}}$ Мы же вроде получили, что для чебышевских систем мы получили, что точек в предельном плане будет $\leq \frac{p+1}{2}$, где p- количество функций в чебышевской системе. Почему тут такой слабый результат.

Тогда в некоторой окрестности $W \subset U$ q задает неявную функцию, т.е. существует u единственна такая $\tau = \tau(z)$, что $q(\tau, z) = 0 \Leftrightarrow \tau = \tau(z)$.

Более того, если q — вещественно-аналитическая 35 , то и $\tau(z)$ также будет вещественно-аналитической функцией 36 .

Эти теорема нам интересно для решения следующей задачи. Как обычно, хочется найти такой план ξ , что $M(\xi,\theta)$ будет в некотором смысле большой матрицей. Мы под «большой» в данном разделе будем понимать D-оптимальной:

$$\xi = \arg\max_{\xi} \det M(\xi, \theta) \tag{17}$$

Не умаляя общности будем считать, что все параметры у нас входят нелинейно 37 . Кроме того, введем еще несколько упрощений:

- 1. Пусть мы ищем насыщенные план (т.е. количество точке в нем совпадает с кол-вом параметров, а значит у них у всех веса одинаковы). Тогда план задается с помощью m элементов $x_1, ..., x_m$ множества $\mathbb X$.
- 2. Будем считать, что $\mathbb{X} \subset \mathbb{R}^k$ и любой оптимальный план является внутренней точкой \mathbb{X} (хотим написать достаточное условие минимума).

Тогда для решение задачи (17) при фиксированом θ можно взять производные и приравнять их к нулю³⁸

$$g_i(\xi,\theta) = \frac{\partial}{\partial \xi_i} \det M(\xi,\theta) = 0$$
 (18)

Получаем уравнение:

$$g(\xi, \theta) = 0$$

решениями которого являются $\xi = \xi(\theta)$ — локально D-оптимальные планы. Это уравнение будем называть основным уравнением функционального подхода. Если же сделанные нами предположения не верны, то для получения основного уравнения требуется Если не делать предположений о том, что решения — внутренние точки и планы насыщенные, то для получения основного уравнения требуется использовать множители Лагранжа³⁹

11. Теорем о единственности насыщенных локально D-оптимальны планов для экспоненциальных моделей

Будем, как и раньше, считать, что $\lambda_1 > \lambda_2 > \ldots > \lambda_k, x_1 < x_2 < \ldots < x_{2k}.$

Теорема 16. Оптимальная план-функция осуществует и определена единственным образом. Первая точка плана x_1 находится в нуле, поэтому ее можно рассматривать как функцию $\tau \lambda: S \to [0,\infty)^{2k-1}$. Кроме того, координатные функции являются аналитическими и строго убывают по каждому λ_j . План $\tau(\lambda)$ является насыщенным D-оптимальным при любом фиксированном $\lambda: \lambda_1 > \lambda_2 \ldots > \lambda_k$.

³⁵ т.е. в окрестности любой точки расскладывается в ряд Тейлора (сходящийся)

 $^{^{36}}$ Если быть более точным, то гладкость au(z) совпадает с гладкостью q

³⁷Можно показать, что определитель не зависит от линейно-входящих параметров (смотри пособие)

³⁸Получим необходимое условие максимума. Хорошо бы еще проверить, что якобиан будет отрицательноопределен, да и производные мы можем брать, но кого это волнует...

³⁹а если быть еще более точным, то теорему Куна-Такера https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions

⁴⁰смотри вопрос про основное функциональное уравнение

12. Дробно-рациональные модели

TODO: Разбить на вопросы и дописать

13. Простейшие дробно-рациональные модели

Рассмотрим дробно-рациональные модели:

$$\eta(x,\theta) = \frac{P(x)}{Q(x)} = \frac{\sum_{i=0}^{d_2} p_i x^i}{\sum_{i=0}^{d_1-1} q_i x^i + x^{d_1}}$$
(19)

Параметр $\theta = (p_0,...,p_{d_2},q_0,...,q_{d_1-1} \subset \Theta.$ Для корректности этой модели нам требуется ввести несколько ограничений:

- 1. При всех $\theta \in \Theta$ дробь (19) не сократима.
- 2. Знаменатель дроби не обращается в ноль на множестве значений x. Будем считать, что $x \in [0,d]$.
- 3. $d_2 \ge d_1 1$

Приведем несколько примеров:

Пример 1.

$$\eta(x,\theta) = \frac{\theta_1}{x + \theta_2} = \frac{a}{x + b}$$

$$f_1(x) = \frac{\partial}{\partial a} \eta(x,\theta) = \frac{1}{x + b}$$

$$f_2(x) = \frac{\partial}{\partial b} \eta(x,\theta) = -\frac{a}{(x + b)^2} \sim \frac{1}{(x + b)^2}$$
(20)

Предположим, что число точек в плане совпадает с числом параметров (n=m). Значит все веса одинаковы и нам достаточно искать точки x_1 и x_2 такие, что $\det M(\xi)^2$ будет максимален.

$$\det\begin{pmatrix} \frac{1}{x_1+b} & \frac{1}{(x_1+b)^2} \\ \frac{1}{x_2+b} & \frac{1}{(x_2+b)^2} \end{pmatrix} = \frac{1}{(x_1+b)^2} \frac{1}{(x_2+b)^2} \begin{pmatrix} x_1+b & 1 \\ x_2+b & 1 \end{pmatrix}$$

$$\det \dots \sim \frac{x_2-x_1}{(x_1+b)^2(x_2+b)^2} (x_1 > x_2)$$
(21)

 \sim в последнем равенстве означает, что нам достаточно максимизировать данное выражение (мы предполагаем, что $x_1 < x_2$). Пусть $x_1 \neq 0$. Тогда сдвинув на x_1 x_2 и x_1 числитель не поменяется, а знаменатель уменьшится. Значит $x_1 = 0$. Остается решить тривиальную задачу одномерной максимизации и получить, что $x_2 = b$. Отлично, оптимальный план найден.

⁴¹надеюсь все с этим могут справиться. Можно чуть упростить жизнь, взяв логарифмы.

Пример 2. Приведем еще один пример — модель Михаэлиса-Ментена. Правда эта модель не входит в класс дробно-рациональных.

$$\eta(x) = \frac{\theta_1 x}{x + \theta_2} = \frac{ax}{x + b}$$

$$f_1(x) = \frac{\partial}{\partial a} \eta = \frac{x}{x + b}$$

$$f_2(x) = \frac{\partial}{\partial b} \eta \sim \frac{x}{(x + b)^2}$$
(22)

Опять интересуемся максимизацией определителя 42:

$$\det F = \begin{pmatrix} \frac{x_1}{x_1 + b} & \frac{x_1}{(x_1 + b)^2} \\ \frac{x_2}{x_2 + b} & \frac{x_2}{(x_2 + b)^2} \end{pmatrix}$$
 (23)

$$\det \dots = \frac{x_1 x_2}{(x_1 + b)^2 (x_2 + b)^2} \begin{pmatrix} x_1 + b & 1 \\ x_2 + b & 1 \end{pmatrix}$$
 (24)

$$\det \dots = \frac{(x_2 - x_1)x_1x_2}{(x_1 + b)^2(x_2 + b)^2}$$
 (25)

Берем производную по x_2 , получаем, что $x_2=d$ (по x_2 функция будет возрастать). Теперь ищем максимум:

$$\frac{(d-x_1)x_1d}{(x_1+b)^2(d+b)^2} \tag{26}$$

Решение:

$$x = \frac{bd}{2b + d}$$

14. Вид определителя информационной матрицы

$$f_i(x) = \frac{x^{i-1}}{Q(x)}, i = 1...d_2$$
 (27)

$$f_j(x) = \frac{x^{i-1}}{O(x)^2} P(x), j = 1...(d_1 - 1)$$
(28)

Пусть $F = (f_1, ..., f_{2k})^{\mathrm{T}}$. Тогда

Теорема 17.

$$\det F = \frac{\prod_{i,j} (x_j - x_i)}{\prod_i Q^2(x_i)}$$
 (29)

Доказательство. Умножаем i-ую строчку на $Q^2(x_i)$. После этого медитируем над матрицей и видим, что через второй блок столбцов можно будет убрать $Q(x_i)$ в первом блоке и получить определитель Вандермонда⁴³

Дальше есть более подробный факт для частного случая.

⁴² возможно с точностью до знака

⁴³ может быть придется долго медитировать:)

15. Алгебраический подход

16. Явное нахождение локально-оптимальных планов для дробнорациональных моделей в виде суммы двух простейших моделей

Разбить на 2 билета, если получится

Теперь мы несколько упростим себе задачу. Пусть $\eta(x,\theta)$ имеет специальный вид:

$$\eta(x,\theta) = \sum_{i=1}^{k} \frac{\theta_{2i-1}}{x + \theta_{2i}}, x \in [c,d]$$
(30)

При этом выполнено $c < \theta_{2i}, i = 1...k$. Не умаляя общности, после перепарамметризации можем считать, что c = 0. Для этой модели мы хотим построить локально D-оптимальные планы.

Как мы уже выясняли, D-оптимальные планы не зависят от линейно-входящих параметров, поэтому их можно после линеаризации брать какими угодно. Мы выберем их равными -1 (чтобы дроби были положительны). Теперь как и до этого положим:

$$f_{2i-1}(x) = \frac{\partial \eta(x, \theta)}{\partial \theta_{2i-1}} = \frac{1}{x + \theta_{2i-1}}, i = 1...k$$
$$f_{2i}(x) = \frac{\partial \eta(x, \theta)}{\partial \theta_{2i}} = \frac{1}{(x + \theta_{2i})^2}, i = 1...k$$

В введенных обозначения справедлива следующая теорема:

Теорема 18. Для модели (30) при k=2 на интервале [0,d] любой локально D-оптимальный план имеет четыре опорные точки и одинаковые весовые коэффициенты. Для любых фиксированных $\theta_1...\theta_{2k}$ такой план определяется единственным образом. Кроме того, для достаточно больших интервалов, а именно при

$$d \ge \frac{\sqrt{\theta_2 \theta_4}}{2} \left(-\frac{\lambda}{2} - 1 + \sqrt{(\lambda/2 + 1)^2 - 4} \right),$$

где $\lambda = -(\theta_2 + \theta_4 + 3) - \sqrt{(\theta_2 + \theta_4 + 3)^2 + 24}$ опорные точки плана равны:

$$x_1 = 0, x_{2,4} = \frac{\sqrt{\theta_2 \theta_4}}{2} \left(-\lambda/2 - 1 \pm \sqrt{(\lambda/2 + 1)^2 - 4} \right)$$
$$x_3 = \sqrt{\theta_2 \theta_4}$$

Для доказательства данной теоремы нам потребуются промежуточные результаты. Часть из этих результатов — куски предыдущих вопросов.

Теорема 19. Для дробно-рациональной модели вида (30) для любого k число опорных точек ло-кально D-оптимального плана равно числу оцениваемых параметров модели (2k).

Доказательство. Пусть

$$\xi = \begin{pmatrix} x_1 & \dots & x_n \\ w_1 & \dots & w_n \end{pmatrix}$$

является локально D-оптимальным планом для модели (30). Как обычно считаем, что точки пронумерованы в порядке возрастания. Тогда по теореме эквивалентности:

$$f(x)^{\mathrm{T}} M^{-1}(\xi) f(x) \le 2k, x \in [0, d]$$

$$f(x_i)^{\mathrm{T}} M^{-1}(\xi) f(x_i) = 2k$$
(31)

Обозначим $g(x) = f(x)^{\mathrm{T}} M^{-1}(\xi) f(x) Q^{4}(x) - 2kQ^{4}(x)$, где

$$Q(x) = \prod (x + \theta_{2i})$$

Ясно⁴⁴, что g(x) является многочленом степени 4k. В точках x_i , i=2,...,2k-1 у этого многочлена нули второй кратности (т.к. g(x) всегда одного знака по построению), а в x_1 и x_n нули хотя бы первой кратности. Далее, как не раз замечали, $n \geq 2k$, иначе $\det M(\xi) = 0$. Пусть $n \geq 2k+1$. В таком случае у g(x) с учетом кратности по крайне мере 2(2k-1)+2=4k нуля. Далее если $x_n=d$ и d — нуль кратности один, то $g(d+\varepsilon)>0$ в некоторой окрестности точки d, а при $x\Rightarrow \infty$ $g(x)\sim -2kx^{4k}$, а значит существует x_{n+1} $g(x_{n+1})=0$. Значит у g(x) с учетом кратности не менее 4k+1 нулей. Следовательно g тождественный ноль. Противоречие (по теореме эквивалентности Крамера-Вольда максимум достигается только на точках плана).

Следствием теоремы (19) является то, что у оптимального плана все веса одинаковы (мы это уже выясняли) и задачи максимизации сводится к поиску максимума ($\det F$)².

Тут будет примерно тоже самое, что было в небольшом куске про определитель до этого. Рассмотрим матрицу $G=\{\frac{1}{x_i+b_i}\}_{i,j=1}^{2k}.$

Теорема 20. Для любых вещественных $x_1, ..., x_{2k}, b_1, ..., b_{2k}$

$$\det G = \frac{\prod\limits_{j>i} (x_j - x_i) \prod\limits_{j>i} (b_j - b_i)}{\prod\limits_{i} \prod\limits_{i} (x_i + b_j)}$$

Доказательство. Умножим i-ую строчку на $\prod_{j=1}^{2k} (x_i + b_j)$.

$$G_{1} = (\prod_{i=1}^{2k} \prod_{j=1}^{2k} (x_{i} + b_{j})) \det G$$

$$G_{1} = \det \left(\prod_{j \neq 1} (x_{i} - b_{j}), \dots, \prod_{j \neq 2k} (x_{i} - b_{j}) \right)_{i=1}^{2k}$$
(32)

Вычтем первый столбце из остальных и получим

$$G_1 = \det \left(\prod_{j \neq 1} (x_i - b_j), \prod_{j \neq 1, 2} (x_i - b_j)(b_2 - b_1) \dots, \prod_{j \neq 1, 2k} (x_i - b_j)(b_{2k} - b_1) \right)_{i=1}^{2k}$$

вынесем $(b_j - b_1)$ из всех столбцов столбцов и повторим операцию, вычитая второй столбец из третьего и т.д. Получим:

$$G_1 = \prod_{j>i} (b_j - b_i) \det \left(\prod (j \neq 1)(x_i - b_j), \prod_{i \neq 1,2} (x_i - b_j), \dots, 1 \right)$$

 $^{^{44}}$ проверяется прямым вычислением — $f_i(x)$ является дробью вида $\frac{1}{(x+\theta)^{1\text{ or }2}}$

Далее у нас каждый столбец — почти x^{j} , но с некоторыми плохими коэффициентами. Приводим его линейными преобразованиями к стандартному:

$$G_1 - \prod_{i>i} (b_j - b_i) \det(x_i^{2k-1}, x_i^{2k-2}, ..., x_i, 1)$$

Получаем определитель Вандермонда, что и требовалось.

Теперь получим формулу для определителя F.

Теорема 21.

$$\det F = \frac{\prod_{j>i} (\theta_{2i} - \theta_{2j}) \prod_{j>i} (x_j - x_i)}{\prod_{i} \prod_{j} (x_i + \theta_{2j})^2}$$
(33)

Доказательство.

$$\frac{1}{(x+\theta_{2i})^2} = \lim_{\delta \to 0} \frac{1}{\delta} \left(\frac{1}{x+\theta_{2i}+\delta} - \frac{1}{x+\theta_{2i}} \right)$$

$$\det F = \det \left(\frac{1}{x_i+\theta_2}, \frac{1}{(x_i\theta_2)^2}, \dots, \frac{1}{x_i+\theta_{2k}}, \frac{1}{(x_i+\theta_{2k})^2} \right)_{i=1}^{2k}$$

$$\det F = \lim_{\delta \to 0} \frac{1}{\delta^k} \det \left(\frac{1}{x_i+\theta_2}, \frac{1}{x+\theta_{2i}+\delta} - \frac{1}{x+\theta_{2i}}, \dots \right)_{i=1}^{2k}$$

$$\det F = \lim_{\delta \to 0} \frac{1}{\delta^k} \det \left(\frac{1}{x_i+\theta_2}, \frac{1}{x+\theta_{2i}+\delta} - \frac{1}{x+\theta_{2i}}, \dots \right)_{i=1}^{2k}$$

Складываем соседние столбцы, применяем прошлую теорему и получаем требуемое.

16.1. Дифференцирование уравнения и его алгебраической формы

Теорема 22. Пусть $0 \le x_1 < ... < x_k$ — опорные точки локально D-оптимального плана для модели (30). Тогда $x_1 = 0$.

Доказательство. Рассмотрим формулу (33). Если из всех x_i вычесть некоторое $\delta \in (0, x_1)$, то числитель не изменится, а знаменатель уменьшится. Значит $x_1 = 0$, т.к. мы ищем оптимальный план, а если $x_1 > 0$, то определитель можно увеличить.

Итого, задачу поиска оптимального плана мы свели к поиску максимума следующей функции 45 :

$$\frac{\prod\limits_{j>i}(x_j - x_i)\prod\limits_j x_i}{\prod\limits_i \prod\limits_j (x_i + \theta_{2j})^2}$$
(34)

Обозначим многочлен $\prod_{i=2}^{2k} \psi(x-x_i)$ за $\psi(x)$, а коэффициенты многочлена будем обозначать за ψ_0,\dots,ψ_{2k-1} :

$$\psi(x) = \sum_{i=0}^{2k-2} \psi_i x^{2k-i-1}, \, \psi_0 = 1$$

 $^{^{45}}$ здесь на один x_i меньше

Пусть в оптимальном плане $x_{2k} < d^{46}$. По необходимому условию экстремума частные производные функции (34) обращаются в ноль на оптимальном плане:

$$\frac{1}{x_i} + \sum_{i \neq j} \frac{1}{x_j - x_i} - 2\frac{Q'(x_i)}{Q(x_i)} = 0$$

где $Q(x) = \prod (x + \theta_{2i})$

Воспользуемся следующим равенством 47:

$$\frac{1}{2} \sum_{j \neq i} \frac{1}{x_i - x_j} = \frac{\psi''(x)}{\psi'(x)} |_{x = x_i}$$

Умножим предпоследнее неравенство на $\Psi'(x)xQ(x)$ и получим:

$$h(x) = \Psi''(x)xO(x) + 2\Psi'(x)(O(x) - 2xO'(x))$$

Многочлен h(x) обращатся в ноль в точках $x_2...x_{2k}$. Следовательно, этот многочлен имеет вид $\psi(x)\lambda(x)$. Его нули содержат нули $\psi(x)$, а т.к. это многочлен, то оставшиеся нули содержатся в многочлене $\lambda(x)$, имеющем вид:

$$\lambda(x) = \sum_{i=0}^{k-1} \lambda_i x^i$$

Степень h(x) легко считается: (2k-4)+k+1=3k-3, 3k-3-(2k-2)=k-1. В итоге получили уравнение:

$$\psi''(x)xQ(x) + 2\psi'(x)(Q(x) - xQ'(x)) = \lambda(x)\psi(x)$$
(35)

Теорема 23. Пусть $\phi(x) = (x^n, x^{n-1}, ..., 1)^T$. Существует матрица A_1 такая, что

$$\phi(x)^{\mathrm{T}} A_1 = (\phi'(x))^{\mathrm{T}} \tag{36}$$

Доказательство.

$$\sum a_{ij}x^{n+1-i} = (n+1-j)x^{n-j}, j = 1...n$$

Значит $a_{i,i-1} = n + 2 - i$ для i = 2...n + 1, а остальные $a_{i,i} = 0$.

Теорема 24. Пусть $\phi(x) = (x^n, x^{n-1}, ..., 1)^T$. Существует матрица A_1 такая, что

$$\phi(x)^{T} A_{2} = (\phi''(x))^{T}$$
(37)

Доказательство. Аналогично предыдущему

Теперь пусть $\lambda(x) = \sum_{i=0}^{s} \lambda_i x^{s-i}$, $\widetilde{\phi}(x) = (x^{s+n}, ..., 1)^{\mathrm{T}}$. Тогда существует такая C_{λ} , что

$$\widetilde{\phi}(x)^{\mathrm{T}}C_{\lambda} = \lambda(x)\phi(x)^{\mathrm{T}}$$
, где

$$\phi(x) = (x^n, x^{n-1}, ..., 1)^T$$

Доказывается аналогично леммам и получается, что:

$$C_{\lambda} = \sum_{i=0}^{s} \lambda_{i} E_{i}$$
, где

 $^{^{46}}$ случай $x_{2k}=d$ рассматривается аналогично

⁴⁷интересно, получается ли оно каким-нибудь естественным образом...

$$E_0^{\mathrm{T}} = (I_{n+1}O_{s}), E_{s}^{\mathrm{T}} = (0_1I_{n+1})_{s-1}, ..., E_{s}^{\mathrm{T}} = (0_sI_{n+1})$$

После введенных обозначений (35) можно записать в форме:

$$\phi(x)^{\mathrm{T}} A \psi = \phi^{\mathrm{T}} C_{i} \psi \tag{38}$$

где
$$\phi(x)^{\mathrm{T}} = (x^{n+k-1}, \dots, 1)$$
, а $\lambda(x) = \sum_{i=0}^{k-1} \lambda_i x^{k-i-1}$.

В случае k=2 и достаточно больших d это уравнение удается решить в явном виде. Этим мы и займемся в следующем разделе.

16.2. Явное нахождение локально-оптимальных планов...

Рассмотрим модель (30) при k=2. Мы свели задачу к нахождению максимума функции

$$\frac{\prod\limits_{2 \le i < j \le 4} (x_j - x_i) \prod\limits_{i=2}^4 x_i}{\prod\limits_{i=2}^{2k} Q^2(x_i)}$$
(39)

где

$$Q(x) = (x + \theta_2)(x + \theta_4) = x^2 + ax + b$$
$$a = \theta_2 + \theta_4, b = \theta_2\theta_4$$

Обозначим $\tilde{x} = \frac{x}{\sqrt{b}}, \, \tilde{a} = \frac{a}{\sqrt{b}}.$ Тогда

$$O(\tilde{x}) = b(\tilde{x} + \tilde{a}\tilde{x} + 1)$$

Заметим, что после замены $x \to \tilde{x}$ b сокращается. Следовательно можно считать, что b=1 и опускать знак волны. В таком случае уравнение (35) принимает вид:

$$(6x+2\psi_1)x(x^2+ax+1)+2(3x^2+2\psi_1x+\psi_2)(-3x^2-ax+1)=(\lambda_0x+\lambda_1)(x^2+\psi_1x^2+\psi_2x+\psi_3) \ \ (40)$$

После приведения членов в левой части получаем следующую (матричную запись):

$$(x^{4} x^{3} x^{2} x 1) \begin{pmatrix} -12 & 0 & 0 & 0 \\ 0 & -10 & 0 & 0 \\ 12 & -2a & -6 & 0 \\ 0 & 6 & -2a & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ \psi_{1} \\ \psi_{2} \\ \psi_{3} \end{pmatrix}$$
 (41)

В правой части:

$$\lambda(x)\psi(x) = (x^4 \ x^3 \ x^2 \ x \ 1)C_{\lambda}\psi$$
, где

$$C_{\lambda} = \lambda_{0} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \lambda_{1} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(42)

Приравняв коэффициенты при x^4 получаем, что $\lambda_0 = -12$ Остается уравнение на λ_1 . Перенеся (в матричном виде) все слагаемые в одну часть получаем уравнение

$$(A-\lambda_0 E_0-\lambda_1 E_1)\psi=0$$

В матрице первая строчка равна нулю, поэтому вычеркнув ее уравенение сводится к

$$\det(B - \lambda I) = 0$$

$$B - \lambda I = \begin{pmatrix} -\lambda & -2 & 0 & 0\\ 12 & -2a - \lambda & 6 & 0\\ 0 & 6 & -2a - \lambda & 12\\ 0 & 0 & 2 & -\lambda \end{pmatrix}$$

Определитель равен⁴⁸:

$$\det(B - \lambda I) = \det\begin{pmatrix} -\lambda & -2 \\ 12 & -2a - \lambda \end{pmatrix} \det\begin{pmatrix} -2a - \lambda & 12 \\ 2 & -\lambda \end{pmatrix} - \det\begin{pmatrix} -\lambda & 0 \\ 12 & 6 \end{pmatrix} \det\begin{pmatrix} 6 & 12 \\ 0 & -\lambda \end{pmatrix} = (\lambda(2a + \lambda) - 24)^2 - 36\lambda^2$$
(43)

Получили уравнение и возможные решения:

$$(\lambda^2 - (2a - 6)\lambda - 24)(\lambda^2 + (2a + 6) - 24) = 0$$

$$\lambda = -(a + 3) \pm \sqrt{(a + 3)^2 + 24}$$

$$\lambda = -(a - 3) \pm \sqrt{(a - 3)^2 + 23}$$
(44)

Далее вектор ψ является решением

$$\begin{pmatrix}
0 & 2 & 0 & 0 \\
12 & -2a & 6 & 0 \\
0 & 6 & -2a & 12 \\
0 & 0 & 2 & 0
\end{pmatrix}
\begin{pmatrix}
1 \\ \psi_1 \\ \psi_2 \\ \psi_3
\end{pmatrix} = \lambda_1 \begin{pmatrix}
1 \\ \psi_1 \\ \psi_2 \\ \psi_3
\end{pmatrix}$$
(45)

При этом ψ задает многочлен с положительными корнями, за счет чего получаем, что $\psi_1 < 0$ $\psi_2 > 0$, $\psi_3 < 0$.

$$\psi_1 = -x_2 - x_3 - x_4$$

$$\psi_2 = x_2 x_3 + x_3 x_4 x_2 x_4$$

$$\psi_3 = -x_2 x_3 x_4$$

Смотрим на уравнение (45) и получаем:

$$2\psi_1 = \lambda_1 \Rightarrow \psi_1 = \frac{\lambda_1}{2}$$

$$12 - 2a\psi_1 + 6\psi_2 = \lambda_1\psi_1 \Rightarrow$$

$$12 - a\lambda_1 + 6\psi_2 = \frac{\lambda_1^2}{2}$$

$$\lambda_1^2 + 2a\lambda_1 - 12\psi_2 - 24 = 0$$

Далее

$$\lambda_1^2 - (2a \pm 6)\lambda_1 - 24 = 0$$

Вычитаем из из предыдущего, пользуемся тем, что $\psi_2 < 0$ и получаем:

$$\lambda_1 < 0$$

 $^{^{48}}$ интересно, что это за способ вычисления определителя...

$$\psi_2 = -\frac{\lambda_1}{2}$$

Далее последнее уравнение дает

$$2\psi_2 = \lambda_1 \psi_3$$

$$\psi_3 = -1$$

Теперь пользуемся тем, что $\lambda_1 < 0$ и $\sqrt{(a+3)^2 + 21} > |a+3|$ получаем, что единственное возможно решение для λ_1 :

$$\lambda_1 = -(a+3) - \sqrt{(a+3)^2 + 24}$$

Следовательно:

$$\psi(x) = x^3 + \frac{\lambda_1}{2}x^2 - \frac{\lambda_1}{2} - 1 = (x - 1)\left(x^2 + x(1 + \frac{\lambda_1}{2}) + 1\right)$$

Корни последнего уравнения — точки оптимального плана. Решив его получаем, что

$$x_3 = 1$$

$$x_{4,2} = \frac{1}{2} \left(-\left(1 + \frac{\lambda_1}{2}\right) \pm \sqrt{\left(1 + \frac{\lambda_1}{2}\right)^2 - 4} \right)$$

Теорема доказана.

17. Е-оптимальные планы

17.1. Определение и статистический смысл

Пусть $M(\xi)$ — информационная матрица плана.

Определение 22. Будем говорить, что план ξ является E-оптимальным, если

$$\xi = \underset{\lambda_{\min}(M(\xi))}{\arg\min}, \ \epsilon \partial e$$

 $\lambda_{\min}(M(\xi))$ — минимальное собственное число $M(\xi)$.

Статистический смысл этого критерия состоит в минимизации дисперсии следующего выражения:

$$D(\langle p, \theta \rangle)$$
, где $p \in \mathbb{R}^m$, $||p||_2 = 1$
$$D(\langle p, \theta \rangle) = p^{\mathrm{T}} M^{-1}(\xi) p$$

Из последней формулы видно⁴⁹, что максимум этого выражения достигается на первом собственном векторе, а сам максимум равен первому собственному числу. Собственные числа $\frac{1}{\lambda_i}$ матрицы M^{-1} совпадают с обратными к λ_i — собственным числам матрицы M. Из такого представления следует, что E-оптимальность означает минимизацию максимальной длины оси доверительного эллипсоида для МНК-оценки⁵⁰.

что сюда еще надо?

 $^{^{49}}$ вспоминаем линейную алгебру и то, что M^{-1} является положительно-определенной матрицой

 $^{^{50}}$ Эта ось, как все помнят, совпадает с направлением первого собственного вектора матрицы D(heta).

17.2. Теорема эквивалентности

Определение 23. Обозначим класс неотрицательно-определенных симметричных матриц с единичным следом за A.

$$\mathbb{A} = \{A | A \text{ p.s.d.}, \text{tr } A = 1\}$$

Теорема 25. Пусть $f(x) = (f_1(x), \, ..., \, f_n(x)^{\mathrm{T}}, \, x \in \mathbb{X}$ является непрерывной функцией. Тогда:

1. План ξ^* является E-оптимальным тогда и только тогда, когда

$$\exists A^* \in \mathbb{A} \max_{x \in \mathbb{X}} f(x)^{\mathsf{T}} A f(x) \le \lambda_{\min}(M(\xi^*))$$

2.

$$f(x_i^*)^{\mathrm{T}} A^* f(x_i^*) = \lambda_{\min}(M(\xi^*)), \ \epsilon \partial e$$

для i=1...n x_i^* являются опорными точками E-оптимального плана.

3.

$$\min_{A} \max_{x \in \mathbb{X}} f(x)^{\mathrm{T}} A f(x) = \max_{\xi} \lambda_{\min} M(\xi)$$

Эта теорема является следствием общей теоремы о минимаксе.

Теорема 26 (фон-Неймана о минимаксе). Пусть f(x,y), $x \in \Omega_1$, $y \in \Omega_2$. f(x,y) выпукла по x, вогнута по y. Ω_1 , Ω_2 выпуклые и хотя бы одно компактно, f непрерывна. Тогда

$$\min_{x \in \Omega_1} \max_{y \in \Omega_2} f(x, y) = \max_{y \in \Omega_2} \min_{x \in \Omega_1} f(x, y)$$

Далее перепишем задачу на поиск минимального собственного числа информационной матрицы плана:

$$\lambda_{\min}(M) = \min_{||p||=1} p^{\mathrm{T}} M p$$

Пусть p_i — ортонормированный базис. Тогда

$$p\sum \sqrt{\alpha_i}p_i$$

$$\sum_{i} \alpha_{i} = 1$$

Отсюда

$$\min_{||p||=1} p^{\mathrm{T}} M p = \sum_{i=1}^{m} \alpha_{i} p_{i}^{\mathrm{T}} M p_{i}$$

$$\operatorname{tr}(M \sum_{i=1}^{m} \alpha_{i} p_{i}^{\mathrm{T}}) = \operatorname{tr} M A$$
(46)

где $A = \sum_{i=1}^{m} \alpha_i p_i p_i^{\mathrm{T}}$. tr A = 1. Таким образом в старых обозначениях:

$$\lambda_{\min}(M) = \min_{A \in \mathbb{A}} \operatorname{tr} MA$$

Теперь объединим предыдущее разложение и теорему об минимаксе:

$$\lambda_{\min} M(\xi) = \min_{\|p\|=1} p^{\mathrm{T}} M(\xi) p = \min_{A \in \mathbb{A}} \operatorname{tr} AM$$

Нам интересна E-оптимальность и поэтому промаксимизируем по всем планам. Пусть $\mathbb{M} = \{M(\xi)\}$ — множество информационных матриц планов (оно выпуклое и компактное). Таким образом 51 :

$$\max_{\xi} \min_{A} \operatorname{tr} AM = \max_{A} M \in \mathbb{M} \min_{A \in \mathbb{A}} = \min_{A \in \mathbb{A}} \max_{A} \operatorname{tr} AM = \min_{A} \max_{\xi} \operatorname{tr} A \sum_{A} f(x_{i}) f(x_{i})^{\mathsf{T}} w_{i} = \min_{A} \max_{x} f(x)^{\mathsf{T}} A f(x)$$

$$(47)$$

Выкладка про то, что из минимакса следует эквивалетность:

$$\min_{A} \max_{X} \leq f^{\mathrm{T}} A^* f \leq \lambda_{\min} M(\xi) \leq \max_{\xi} \lambda_{\min} M(\xi)$$

Последнее и первое по теореме о минимаксе равны.

$$\eta(x,\theta) = \alpha_0 + \sum_{i=1}^k \alpha_i \sin(x) + \beta_i \cos(x) + \varepsilon$$

Параметры входят линейно и $f(x) = (1, \sin x, \cos x, ..., \sin kx, \cos kx)^{\mathrm{T}}$, где $x \in [0, 2\pi]$.

Теорема 27. Е-оптимальным планом для тригонометрической модели является

$$\xi^* = \left\{ \frac{2\pi(i-1)}{n}, i = 1...n \right\}$$

с весами $\frac{1}{n}$, где $n \geq 2k+1$. Матрица $M(\xi) = \mathrm{diag}(1, \frac{1}{2}, ..., \frac{1}{2})$

Доказательство. Рассмотрим $A^* = \operatorname{diag}(0, \frac{1}{2k}, \dots, \frac{1}{2k})$

$$f^{\mathrm{T}}A^*f = \sum_{j=1}^k \left(\frac{\sin^2 jx + \cos^2 jx}{2k}\right) = k\frac{1}{2k} = \frac{1}{2}$$

Следовательно $\max_x f(x)^{\mathrm{T}} A^* f(x) = \frac{1}{2}$. Отсюда по теорем эквивалентности $M(\xi) = \mathrm{diag}(1, \frac{1}{2}, \dots, \frac{1}{2})$ является матрицей оптимального плана.

Оптимальный план будет в точках $\{\frac{2\pi(i-1)}{n}\}$. как это выводится не ясно, но то, что результат будет тем, что надо кажется достаточно известный факт.. Как, кажется, можно доказать: берем какую-то из сумм вида $\sum w_k \sin \frac{2\pi(i-1)s}{n} \cos \frac{2\pi(j-1)s}{n}$. Если все веса одинаковы, то после какой-то перегруппировки тут будет сумма a и -a. Для диагонали, наоборот, будет сумма $\sin^2(x) + \cos^2(x)$ которые будут давать 1. Но это надо аккуратно проверять.

Замечание 2. Е-оптимальный план не обязательно единственный.

17.3. Теорема о структуре матрицы из условия эквивалентности.

Теорема 28. В условия теоремы эквивалентности:

$$A^* = \sum_{i=1}^s \alpha_i p_i p_i^{\mathrm{T}}$$

где $p_1, ..., p_s$ — ортонормированный базис, $\alpha_i > 0, \sum \alpha_i = 1$. s равно кратности минимального собственного числа.

 $^{^{51}}$ Мы воспользовались тем, что tr AB является линейной выпокло-вогнутой фнукцией. Кроме того при переходе от max tr $A\sum f(x_i)f(x_i)^{\mathrm{T}}w_i$ использовалось то, что максимум выпуклой сумма положительных слагаемых не превосходит максимального из них

Доказательство. A^* — неотрицательно-определенная матрица. Следовательно существует ортонормированный базис из собственных векторов. Выберем его так, что первые s векторов соответствуют минимальному собственному числу M. Тогда для любого p:

$$p = \sum \alpha_{i} p_{i}$$

$$A^{*} = \sum \alpha_{i} p_{i} p_{i}^{T} = \sum_{i=1}^{s} \alpha_{i} p_{i} p_{i}^{T} + \sum_{i=s+1}^{m} \alpha_{i} p_{i} p_{i}^{T}$$

$$\max_{x} f(x)^{T} A^{*} f(x) = \max_{x} \operatorname{tr} \sum_{i} \alpha_{i} p_{i}^{T} f(x) f(x)^{T} p_{i}$$

$$= \max_{\xi} \operatorname{tr} AM(\xi) = \max_{\xi} \operatorname{tr} \sum \alpha_{i} p_{i}^{T} M p_{i}$$

$$\operatorname{tr} \sum \alpha_{i} p_{i}^{T} M p_{i} = \operatorname{tr} \sum \alpha_{i} \lambda_{i}$$

$$(48)$$

Смотрим на последние два равенство. В последнем мы воспользовались тем, что p_i собственные вектора M. Далее т.к. a_i задают выпуклую комбинацию, то минимум достигается, если не нулевые α_i будут только среди тех коэффициентов, которые стоят передем минимальным собственным числом, что нам и требовалось.

Замечание 3. Рассмотрим частный случай s = 1. Тогда $A = pp^{T}$.

$$\max_{x} f(x) p p^{\mathsf{T}} f(x) \le \lambda_{\min}$$

Что тоже самое, что

$$\max_{x} (p^{\mathrm{T}} f(x))^2 \le \lambda_{\min}$$