Trig Cheat Sheet

Definition of the Trig Functions

Right triangle definition

For this definition we assume that

$$0 < \theta < \frac{\pi}{2}$$
 or $0^{\circ} < \theta < 90^{\circ}$.

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} \qquad \csc \theta = \frac{\text{hypotenuse}}{\text{opposite}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} \qquad \sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} \qquad \cot \theta = \frac{\text{adjacent}}{\text{opposite}}$$

Unit circle definition

For this definition θ is any angle.

$$\sin \theta = \frac{y}{1} = y \qquad \csc \theta = \frac{1}{y}$$

$$\cos \theta = \frac{x}{1} = x \qquad \sec \theta = \frac{1}{1}$$

$$\cos\theta = \frac{x}{1} = x \quad \sec\theta = \frac{1}{x}$$

$$\tan \theta = \frac{y}{x}$$
 $\cot \theta = \frac{x}{y}$

Facts and Properties

Domain

The domain is all the values of θ that can be plugged into the function.

$$\sin \theta$$
, θ can be any angle

$$\cos \theta$$
, θ can be any angle

$$\tan \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, \dots$

$$\csc\theta$$
, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2, \dots$

$$\sec \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, \dots$

$$\cot \theta$$
, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2, \dots$

Range

The range is all possible values to get out of the function.

$$-1 \le \sin \theta \le 1$$
 $\csc \theta \ge 1$ and $\csc \theta \le -1$
 $-1 \le \cos \theta \le 1$ $\sec \theta \ge 1$ and $\sec \theta \le -1$
 $-\infty < \tan \theta < \infty$ $-\infty < \cot \theta < \infty$

Period

The period of a function is the number, T, such that $f(\theta + T) = f(\theta)$. So, if ω is a fixed number and θ is any angle we have the following periods.

$$\sin(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cos(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\tan(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

$$\csc(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\sec(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cot(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

Formulas and Identities

Tangent and Cotangent Identities

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Reciprocal Identities

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sin\theta = \frac{1}{\csc\theta}$$

$$\sec\theta = \frac{1}{\cos\theta}$$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\tan\theta = \frac{1}{\cot\theta}$$

Pythagorean Identities

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Even/Odd Formulas

$$\sin(-\theta) = -\sin\theta$$

$$\csc(-\theta) = -\csc\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\sec(-\theta) = \sec\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\cot(-\theta) = -\cot\theta$$

Periodic Formulas

If *n* is an integer.

$$\sin(\theta + 2\pi n) = \sin\theta \quad \csc(\theta + 2\pi n) = \csc\theta$$

$$\cos(\theta + 2\pi n) = \cos\theta \quad \sec(\theta + 2\pi n) = \sec\theta$$

$$\tan(\theta + \pi n) = \tan\theta \quad \cot(\theta + \pi n) = \cot\theta$$

Double Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$
$$= 2\cos^2 \theta - 1$$

$$=1-2\sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

Degrees to Radians Formulas

If x is an angle in degrees and t is an angle in radians then

$$\frac{\pi}{180} = \frac{t}{x}$$
 \Rightarrow $t = \frac{\pi x}{180}$ and $x = \frac{180t}{\pi}$ $\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$ $\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$

Half Angle Formulas

$$\sin^2\theta = \frac{1}{2} \left(1 - \cos(2\theta) \right)$$

$$\cos^2\theta = \frac{1}{2} (1 + \cos(2\theta))$$

$$\tan^2\theta = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}$$

Sum and Difference Formulas

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

Product to Sum Formulas

$$\sin \alpha \sin \beta = \frac{1}{2} \left[\cos (\alpha - \beta) - \cos (\alpha + \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha - \beta) + \cos (\alpha + \beta) \right]$$

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin (\alpha + \beta) - \sin (\alpha - \beta) \right]$$

Sum to Product Formulas

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2} \right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$

$$\cos \alpha - \cos \beta = -2\sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Cofunction Formulas

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
 $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$
 $\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad \cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

Unit Circle

For any ordered pair on the unit circle (x, y): $\cos \theta = x$ and $\sin \theta = y$

Example

$$\cos\left(\frac{5\pi}{3}\right) = \frac{1}{2} \qquad \sin\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

Inverse Trig Functions

Definition

$$y = \sin^{-1} x$$
 is equivalent to $x = \sin y$
 $y = \cos^{-1} x$ is equivalent to $x = \cos y$
 $y = \tan^{-1} x$ is equivalent to $x = \tan y$

Domain and Range

Domain unc	0	
Function	Domain	Range
$y = \sin^{-1} x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \cos^{-1} x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = \tan^{-1} x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

Inverse Properties

$$\cos(\cos^{-1}(x)) = x \qquad \cos^{-1}(\cos(\theta)) = \theta$$
$$\sin(\sin^{-1}(x)) = x \qquad \sin^{-1}(\sin(\theta)) = \theta$$
$$\tan(\tan^{-1}(x)) = x \qquad \tan^{-1}(\tan(\theta)) = \theta$$

Alternate Notation

$$\sin^{-1} x = \arcsin x$$

 $\cos^{-1} x = \arccos x$
 $\tan^{-1} x = \arctan x$

Law of Sines, Cosines and Tangents

b

Law of Sines

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

Law of Cosines

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$
$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

Mollweide's Formula

$$\frac{a+b}{c} = \frac{\cos\frac{1}{2}(\alpha-\beta)}{\sin\frac{1}{2}\gamma}$$

Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\tan\frac{1}{2}(\alpha+\beta)}$$
$$\frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(\beta-\gamma)}{\tan\frac{1}{2}(\beta+\gamma)}$$
$$\frac{a-c}{a+c} = \frac{\tan\frac{1}{2}(\alpha-\gamma)}{\tan\frac{1}{2}(\alpha+\gamma)}$$