

CHEAT SHEET

Linear Algebra

Add two vectors	$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$
Subtract two vectors	$\mathbf{u} - \mathbf{v} = (u_1 - v_1, u_2 - v_2)$
Multiply a vector by a constant	$c\mathbf{v} = (c\mathbf{v}_1, c\mathbf{v}_2)$
Calculate the norm	$ \mathbf{v} = \sqrt{v_1^2 + v_2^2}$
Calculate the dot product	$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2$
Dot product (geometric formula)	$\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} \cdot \cos \theta$
Defining a line with the dot product	$\mathbf{w} \cdot \mathbf{x} = b$
Distance between a point and a line (Case 1)	For a point P and line given by $\mathbf{w} \cdot \mathbf{x} = b$, the distance is $d = \frac{\mathbf{w} \cdot \mathbf{p}}{ \mathbf{w} } - \frac{b}{ \mathbf{w} }$.
Distance between a point and a line (Case 2)	If $b=0$, the distance is simplified to $d=rac{{f w}\cdot{f p}}{ {f w} }.$