

# Counting, Mathematical Induction and Discrete Probability Part-3





### Counting, Mathematical Induction and Discrete Probability Part-3

### Content:

- 1. Conditional Probability
- 2. Independent Variable
- 3. Bayes' Theorem

### **Conditional Probability**

The conditional probability of event B is the probability that the event take place given that you already have knowledge that event A has already taken place. The probability notation is given by P(B|A) which means the probability of B given A.

In this case where the two events A and B are independent where the event A does not affect the probability of event B then the conditional probability of the event event A is P(B).

However, if the two events A and B are not independent, the probability of intersection of A and B that is the probability of both the events occurring is denoted by:

P(A and B) = P(A)P(B|A).

This can help you to get the probability of P(B|A)which is obtained by

 $P(B|A) = P(A \cap B)/P(A)$ 

**Properties of Conditional Probability:** 

Property 1: If E and F are the events of the sample space say S , P(S|F) = P(F|F) =1

Property 2: If A and B are two events in a sample space S and F is an event of S such that





 $P(F) \neq 0$ ,  $P((AUB)|F) = P(A|F) + P(B|F) - P((A \cap B)|F)$ .

Property3: P(A' | B) = 1 - P(A|B)

Example: Given that E and Fare events such that

$$P(E) = 0.6, P(F) = 0.3 \text{ and } P(E \cap F) = 0.2$$

find P(E|F) and P (F|E).

Given: P (E)=0.6, P (F)=0.3, P (E ∩ F)=0.2

$$P(E|F) = \frac{P(E \cap F)}{P(E)} = \frac{0.2}{0.3} = \frac{2}{3}$$

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{0.2}{0.6} = \frac{1}{3}$$

Solution:

**Example:** If P (A)=0.8, P (B)=0.5 and P(B/A)=0.4, find

- (i) P(A∩B)
- (ii) P(A/B)
- (iii)P(A∪B)

### Solution:

(i) 
$$P(B/A) = \frac{P(A \cap B)}{P(A)} \Rightarrow 0.4 = \frac{P(A \cap B)}{0.8}$$

$$\therefore P(A \cap B) = 0.4 \times 0.8 = 0.32$$

(ii) 
$$P(A/B) = P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0.32}{0.5} = \frac{32}{50} = \frac{16}{25}$$

(iii) 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0.8 + 0.5 - 0.32 = 1.30 - 0.32 = 0.98$$

**Example:** Evaluate  $P(A \cup B)$  if 2P(A) = P(B) = 5/13 and P(A|B) = 2/5.

grade



### Solution:

Given:

$$2P(A) = P(B) = \frac{5}{13} \text{ and } P(A|B) = \frac{2}{5}.$$
∴ 
$$P(A) = \frac{5}{26}, P(B) = \frac{5}{13}$$

$$P(A \cap B) = P(A \mid B).P(B)$$

$$= \frac{2}{5} \times \frac{5}{13} = \frac{2}{13}$$
Now 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{5}{26} + \frac{5}{13} - \frac{2}{13} = \frac{11}{26}$$

**Example:** Determine P(E/F):

A coin is tossed three times, where

- (i) E: head on third toss F: heads on first two tosses.
  - (ii) E: at least two heads F: at most two heads
- (ii) E: at most two tails F: at least one tail

# Solution:

(i) E = Head occurs on third toss as {HHH, HTH, THH, TTH}

F : Heads on first two tosses = {HHH, HHT} E ∩ F = {HHH}

$$P(E \cap F) = \frac{1}{8}, P(F) = \frac{1}{4}$$

$$P(E/F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{8} \times 4 = \frac{1}{2}$$

$$P(A \cap F) = \frac{3}{8}, P(F) = \frac{7}{8},$$

$$P(E/F) = \frac{P(E \cap F)}{P(F)} = \frac{3}{8} \div \frac{7}{8} = \frac{3}{7}$$

$$E \cap F = \{HTT, THT, TTH, THH, HTH, HHT\}$$

$$P(E \cap F) = \frac{6}{8}, P(F) \frac{7}{8},$$

$$P(E/F) = \frac{P(E \cap F)}{P(F)} = \frac{6}{8} \div \frac{7}{8} = \frac{6}{7}$$

### www.gradeup.co



Example: Black and a red die are rolled.

- (a) Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.
- (b) Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

Solution:

(a) 
$$n(S) = 6 \times 6 = 36$$

Let A represent obtaining a sum greater than 9 and B represents black die resulted in a 5. A= {46,64,55,36,63,45,54,65,56,66}

$$n(A) = 10 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{10}{216}$$

$$B = \{51, 52, 53, 54, 55, 56\} \Rightarrow n(B) = 6$$

$$P(B) = \frac{6}{216},$$

$$A \cap B = \{55, 56\} \Rightarrow n(A \cap B) = 2$$

$$P(A\cap B)=\frac{2}{216},$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{2}{216}}{\frac{6}{216}} = \frac{2}{6} = \frac{1}{3}.$$

(b) Let A denotes the sum is 8

$$\therefore A = \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$$

B = Red die results in a number less than 4 either first or second die is red.

$$B = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6), (1, 6),$$

$$(2,1)$$
  $(2,2)$   $(2,3)$ ,  $(2,4)$ ,  $(2,5)$ ,  $(2,6)$ ,  $(3,1)$ ,

$$A \cap B = \{(2,6),(3,5)\}$$

$$P(A \cap B) = \frac{2}{36} = \frac{1}{18}, P(B) = \frac{18}{36} = \frac{1}{2}$$

Hence 
$$P(A | B) = \frac{P(AB)}{P(B)} = \frac{1}{9}$$
.





### www.gradeup.co



### Independent Events:

Those events that when occurs does not affect any other event. Like if a coin is flipped in the air and the outcome is head. If you flip the coin again, the outcome is a tail. In both the cases, the occurrence of each event is independent of each other. If the probability of an outcome of an event say A is not affected by the probability of occurrence of another event B, it is said that A and B are two independent events.

### In Interdependent event

$$P(A \cap B) = P(A) \times P(B)$$

**Example:** If, P(A) = 3/5 and P(B) = 1/5 find  $P(A \cap B)$  if A and B are independent events.

### Solution:

A and B are independent if P (A  $\cap$  B)

$$= P(A) \times P(B) = \frac{3}{5} \times \frac{1}{5} = \frac{3}{25}$$

**Example:** Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.

### Solution:

Number of exhaustive cases = 52

Number of black cards = 26

One black card may be drawn in 26 ways

Probability of getting a black card,

$$P(A) = \frac{26}{52} = \frac{1}{2}$$

After drawing one card, number of cards left

After drawing a black card number of black cards left = 25

Probability of getting both the black cards,

. 
$$P(A)P(B/A) = \frac{1}{2} \times \frac{25}{51} = \frac{25}{102}$$





**Example:** A fair coin and an unbiased die are tossed. Let A be the event 'head appears on the coin' and B be the event '3 on the die'. Check whether A and B are independent events or not

### Solution:

When a coin is thrown, head or tail will occur

Probability of getting head  $P(A) = \frac{1}{2}$ 

When a die is tossed 1,2,3,4, 5, 6 one of them will appear

∴ Probabillity of getting 3 = P(B) = <sup>1</sup>/<sub>6</sub>

When a die and coin is tosses, total number of cases are

H1,H2,H3,H4,H5,H6

T1,T2,T3,T4,T5,T6

Head and 3 will occur only in 1 way

 $\therefore$  Probability of getting head and  $3 = \frac{1}{12}$ 

i.e., 
$$P(A \cap B) = \frac{1}{12}$$
,  $P(A) \times P(B) = \frac{1}{12} \times \frac{1}{6} = \frac{1}{12}$ 

- $\therefore P(A \cap B) = P(A) \times P(B)$
- ⇒ Events A and B are independent.

Example: Given that the events A and B are such that  $P(A) = 1/2, P(A \cup B) = 3/5$  and P(B) = p. Find p if they are

- (i) mutually exclusive
- (ii) independent.

Sol. Let  $P(A \cap B) = x$ , Now  $P(A) = \frac{1}{2}$ ,  $P(A \cup B) = \frac{3}{5}$ ,  $P(B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

$$\therefore \frac{3}{5} = \frac{1}{2} + p - x$$

or 
$$\mathbf{p} - \mathbf{x} = \frac{3}{5} - \frac{1}{2} = \frac{6 - 5}{10} = \frac{1}{10}$$

- (i) When events A and B are mutually exclusive x=0, p=1/10
- (ii) Whent events A and B are independent  $P(A \cap B) = P(A) \times P(B)$

$$\mathbf{x} = \frac{1}{2} \times \mathbf{p}$$
 ...(ii

Also  $p - x = \frac{1}{10}$  from (i), subtracting value of

$$x = \frac{p}{2} \text{ in } p - x = \frac{1}{10}$$
, we get

$$p - \frac{p}{2} = \frac{1}{10} \implies \frac{p}{2} = \frac{1}{10} \implies p = \frac{1}{5}$$





**Example:** Let A and B independent events P(A) = 0.3 and P(B) = 0.4. Find

- (i) P(A∩B)
- (ii) P(A∪B)
- (iii) P (A | B)
- (iv) P(B | A)

### Solution:

$$P(A) = 0.3,$$

$$P(B) = 0.4$$

A and B are independent events

(i) 
$$\therefore$$
 P (A\cap B) = P (A). P (B) = 0.3 x 0.4 = 0.12.

(ii) 
$$P(A \cup B) = P(A) + P(B) - P(A).P(B)$$

$$= 0.3 + 0.4 - 0.3 \times 0.4 = 0.7 - 0.12 = 0.58.$$

(iii) 
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A).P(B)}{P(B)} = 0.3$$

(iv) 
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A).P(B)}{P(A)} = 0.4$$



# Bayes' Theorem:

Bayes, is a mathematical formula for determining <u>conditional probability</u>. Conditional probability is the likelihood of an outcome occurring, based on a previous outcome occurring. Bayes' theorem provides a way to revise existing predictions or theories (update probabilities) given new or additional evidence. In finance, Bayes' theorem can be used to rate the <u>risk</u> of lending money to potential borrowers.

Bayes' theorem is also called Bayes' Rule or Bayes' Law and is the foundation of the field of Bayesian statistics.

### **KEY TAKEAWAYS**

 Bayes' theorem allows you to update predicted probabilities of an event by incorporating new information.









• It is often employed in finance in updating risk evaluation.

**Bayes' theorem.** Let  $A_1$ ,  $A_2$ , ...,  $A_n$  be a set of mutually exclusive events that together form the sample space S. Let B be any event from the same sample space, such that P(B) > 0. Then,

$$P(A_k | B) = \frac{P(A_k \cap B)}{[P(A_1 \cap B) + P(A_2 \cap B) + ... + P(A_n \cap B)]}$$

Note: Invoking the fact that  $P(A_k \cap B) = P(A_k)P(B \mid A_k)$ , Baye's theorem can also be expressed as

$$P(A_{k} \mid B) = \frac{P(A_{k}) P(B \mid A_{k})}{[P(A_{1}) P(B \mid A_{1}) + P(A_{2}) P(B \mid A_{2}) + ... + P(A_{n}) P(B \mid A_{n})]}$$

**Example:** A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

## Solution:

Let A be the event that ball drawn is red and let E1 and E2 be the events that the ball drawn is from the first bag and second bag

respectively. 
$$P(E1) = \frac{1}{2}$$
,  $P(E2) = \frac{1}{2}$ .

P (A|E 1) = Probability of drawing a red ball from bag

$$I = \frac{4}{8} = \frac{1}{2}$$
P (A|E<sub>2</sub>) = Probability of drawing a red ball from bag

Therefore by Bayes' theorem

 $P(E_1|A) = Probability that the red ball drawn is from bag I$ 

$$= \frac{P(E_1)P(A \mid E_1)}{P(E_1)P(A \mid E_1) + P(E_2)P(A \mid E_2)}$$

$$= \frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{4}} = \frac{2}{3}$$





**Example:** Of the students In a college, it is known that 60% reside In hostel and 40% are day scholars (not residing In hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student Is chosen at random from the college and he has an A- grade what Is the probability that the student is a hostlier?

### Solution:

Let E1, E2 and A represents the following:

E1 = students residing in the hostel, E2 day scholars (not residing in the hostel) and A = students who attain grade A

Now 
$$P(E_1) = \frac{60}{100}, P(E_2) = \frac{40}{100}$$
  
 $P(A | E_1) = \frac{30}{100}, P(A | E_2) = \frac{20}{100}$ 

Now by Bayes' theorem

$$P(E_1|A) = \frac{P(E_1)P(A|E_1)}{P(E_1)P(A|E_1) + P(E_2)P(A|E_2)}$$

$$= \frac{\frac{60}{100} \times \frac{30}{100}}{\frac{60}{100} \times \frac{30}{100} + \frac{40}{100} \times \frac{20}{100}} = \frac{9}{13}$$

Example: In answering a question on a multiple choice test, a student either knows the answer or 3 guesses. Let 3/4 be the probability that he knows the answer and 1/4 be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability 1/4 .What is the probability that the student knows the answer given that he answered it correctly?

Solution:



### www.gradeup.co



Let the event E1 = student knows the answer , E2 = He gusses the answer

$$P(E1) = \frac{3}{4}, P(E2) = \frac{1}{4}$$

Let A is the event that answer is correct, if the student knows the answer

$$\therefore P(A/E_1)=1$$

If he guesses the answer

$$\therefore P(A/E_2) = \frac{1}{4}$$

... Probability that a student knows the answer given that answer is correct is,

$$P(E_1/A)$$

$$= \frac{P(E_1) P(A/E_1)}{P(E_1) P(A/E_1) + P(E_2) P(A/E_2)}$$

$$=\frac{\frac{3}{4}\times 1}{\frac{3}{4}\times 1+\frac{1}{4}\times \frac{1}{4}}=\frac{\frac{3}{4}}{\frac{13}{16}}=\frac{3}{4}\times \frac{16}{13}=\frac{12}{13}$$

# gradeup



# Gradeup UGC NET Super Superscription

# Features:

- 1. 7+ Structured Courses for UGC NET Exam
- 2. 200+ Mock Tests for UGC NET & MHSET Exams
- 3. Separate Batches in Hindi & English
- 4. Mock Tests are available in Hindi & English
- 5. Available on Mobile & Desktop

Gradeup Super Subscription, Enroll Now