Лабораторная работа 3.2.3. Резонанс токов.

Вязовцев Андрей, Б01-005

13.09.21

Цель работы: изучение параллельной цепи переменного тока, наблюдение резонанса токов.

В работе используются: лабораторный автотрансформатор (ЛАТР), разделительный понижающий трансформатор, ёмкость, дроссель с переменной индуктивностью, три амперметра, вольтметр, реостат, электронный осциллограф, омметр, мост переменного тока.

Экспериментальная установка:

Рис. 1. Схема установки

Напряжение от сети (220 В, 50 Γ ц) с помощью ЛАТРа через понижающий трансформатор Tр подаётся на параллельный контур c конденсатором и катушкой, индуктивность которой зависит от глубины погружения сердечника. Параллельно c контуром включён реостат r.

Для наблюдения за сдвигом фаз между полным током и напряжением на контуре используется осциллограф. При наличии сдвига фаз между этими величинами на экране виден эллипс, а при нулевом сдвиге фаз эллипс вырождается в прямую.

Ход работы:

- 1. Соберём схему проверим её корректность. Подключим к сети, выставим необходимые значения.
- 2. Посмотрим, при каких положениях сердечника ток I не превышает 0,5 А. Получаем: $l_{min}=35$ мм, $l_{max}=115$ мм
- 3. Возьмём постоянное напряжение $U=10~{\rm B}$ и снимем значения токов $I,~I_L$ и I_C в зависимости от координаты сердечника L:

L, cm	I, % 0,5 A	I_L , % 1 A	I_C , % 1 A
3	32	15	33
3.5	28	20	34
4	25	21	34
4.5	21	23	34
5	11	25	34
5.5	8	27	34
6	4	30	34
6.5	3	33	34
7	4	36	34
7.5	10	39	34
8	20	43	34
8.5	27	47	35
9	35	51	34
9.5	45	56	35
10	56	61	35
10.5	67	67	34
11	80	74	35
11.5	96	81	35

Построим график зависимостей токов от высоты сердечника:

Заметим, что эллипс вырождается в прямую при $I=15~{\rm mA}.$

- 4. Вернём систему в положение резонанса и измерим токи. Получили: $I=15~\mathrm{m}A,~I_L=I_C=0{,}33~A.$
- 5. Оценим добротность и активное сопротивление катушки: Q=22, $r_L=4$ Ом (значение измерено при 50 Γ ц).

Обработка результатов:

Найдём добротность Q и сопротивление при резонансе $R_{\rm pes}$:

Рис. 2. График I(L)

$$Q = \frac{I_{C-{\rm pe}_3}}{I_{{\rm pe}_3}} = \frac{I_{L-{\rm pe}_3}}{I_{{\rm pe}_3}} = 22 \pm 6$$

$$R_{{\rm pe}_3} = \frac{U_0}{I_{{\rm pe}_3}} = 667 \pm 200 \; {\rm Om}$$

6. Найдём индукцию $L_{\rm pes}$ через ёмкость конденсатора C и частоту $\omega_0=2\cdot\pi\cdot\nu_0$ ($\nu_0=50$ Γ ц), а также r_L через C и Q:

$$L_{
m pes} = rac{1}{\omega_0^2 \cdot C} pprox 0.08 \ \Gamma_{
m H}$$

$$r_L = \frac{1}{\omega_0 \cdot C \cdot Q} = 1.2 \pm 0.4$$
 Ом

7. Теперь рассчитаем $L_{
m pes}$ через напряжение и силу тока на катушке:

$$L_{\rm pes} = \frac{U_0}{2 \cdot \pi \cdot I_{L-{
m pes}}} \approx (9.0 \pm 0.3) \cdot 10^{-2} \ \Gamma_{
m H}$$