International Journal of Automobile Engineering Research and Development (IJAuERD) ISSN(P): 2277-4785; ISSN(E): 2278-9413 Vol. 4, Issue 1, Feb 2014, 41-54 © TJPRC Pvt. Ltd.

ANALYSIS OF PERFORMANCE OF VARIOUS METAL CATALYSTS USED IN CATALYTIC CONVERTERS WITH MC-2 CONFIGURATION BY C.F.D. TECHNIQUES

K. S. UMESH¹, V. K. PRAVIN² & K. RAJAGOPAL³

¹Department of Mechanical Engineering, Thadomal Shahani Engineering College, Mumbai, Maharashtra, India ²Department of Mechanical Engineering, P.D.A. College of Engineering, Gulbarga, Karnataka, India ³Former Vice Chancellor, JNT University, Hyderabad, Andhra Pradesh, India

ABSTRACT

Catalytic converters are generally fitted in series with the exhaust pipe of almost all vehicles. These Catalytic converters helps in infiltration of harmful pollutants like hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx) from the exhaust gases released into atmosphere. They oxidize carbon monoxide (CO) to carbon dioxide (CO2), and reduce nitrogen oxides (NOx) into nitrogen and water vapors. Catalytic converters have become integral part of exhaust system of automobile ever since their first introduction in 1974. More than 96 percent of cars manufactured today are equipped with catalytic converters. Most of the catalytic converters use platinum, Palladium & Rhodium as catalyst to bring about oxidation costly and rarely available. The scarcity and high demand of present catalyst materials necessitate the need for finding out the alternatives. Catalytic converters are available in various designs. Among all other particulate filter materials, knitted steel wire mesh material is selected as filter materials in this paper. In our attempt to analyze filtration performance of catalytic converters working with alternative catalysts for the catalysis, we have chosen copper and Nickel as alternative catalysts for Platinum-Palladium due to similarity in their catalytic properties. Amongst various constituents of exhaust gas, CO and NO are most dangerous pollutants from Global warming point of view. Thus this particular work is concentrated on analyzing filtration efficiency for these two pollutants.

KEYWORDS: CFX, CATIA V5, Gambit 2.2, DETCHEM, Fluent 6.2, MC-2 Configuration, Porosity, Wash Coat Thickness, Relative A: F Ratio

INTRODUCTION

Conversion efficiency of a catalytic converter depends on various factors. It primarily depends upon properties of catalytic converters such as cross section, length, cell density, wall thickness, wash coat and coating. On the other hand the flow characteristics of the exhaust gas such as flow velocity, temperature, composition of raw emissions and flow distribution also influence the conversion efficiency of the catalytic converters.

Large amount of work has already taken place in this field. Andreassi et al. (Muthaiah et al., 2010) investigated about the role of channel cross-section shape on mass and heat transfer processes. The development of catalytic converter systems for automotive applications is, to a great extent, related to monolith catalyst support materials and design. They also studied improvements of converter channels fluid-dynamics aiming to enhance pollutant conversion in all the engine operating conditions. Rajadurai et al. (Kamble and Ingle, 2008) studied the effect of Knitted wire mesh substrates with different geometry and channels on the back pressure of catalytic converter. They considered primary requirements of exhaust after treatment systems of low back pressure, low system weight, better emission performance and lower cost. Combinations of these properties provide better engine performance and higher system value. Ekstrom and Andersson (Beardsley et al.1999) analyzed about the pressure drop behavior of catalytic converter for a number of different substrates,

suitable for high performance IC-engines, regarding cell density, wall thickness and coating. The data has been used to develop an empirical model for pressure drop in catalytic converters. An investigation has been carried out for reducing pollutants from a variable compression ratio, copper-coated spark ignition engine fitted with catalytic converter containing sponge iron catalyst run with gasohol by Narsimha et al. (Eberhard et al., 2005). Mohiuddin and Nurhafez (Jacobs et al., 2006) conducted an experiment to study the performance and conversion efficiencies of ceramic monolith three-way catalytic converters (TWCC) employed in automotive exhaust lines for the reduction of gasoline emissions. Muthaiah et al. (Lahousse et al., 2006) conducted an experimental test on a 10 hp, twin-cylinder, and four-stroke, direct injection and vertical diesel engine. At present, the wall flow ceramic substrate is used as filters which are expensive and also offer more back pressure resulting in more fuel consumption. Kulal et.al (2012) analyzed three different configurations of catalytic converters viz. MC-1, MC-2 and MC-3 for flow characters like velocity distribution & pressure drop to optimize the design for minimum particulate matter in the exhaust.

This paper deals with the study of fluid flow inside the catalytic converter and the study of temperature distribution and chemical reaction in catalytic converter. CATIA V5R-15 was used for geometric modeling of catalytic converter. Domain Discretisation was carried out in Gambit 2.2. Fluent 6.2 was used for carrying out analysis. Flow field in the catalytic converter is influenced by the flow resistance of the substrate for a given geometric configuration. As the mass flow rate increases, the pressure drop also increases. At lower temperature, the catalytic converter will be inactive. The heat release due to chemical reaction at lower temperature does not play a significant role.

The program DETCHEM_{CHANNEL} is used to solve the laminar time-independent boundary-layer equations of a fluid flow through a cylindrical channel. In comparison to the Navier-Stokes equations, the diffusion terms along the direction of convection are neglected. This model has been proven useful for higher flow velocities, as they are expected in this application. In case of a turbulent flow entering the single channel, the parabolic laminar flow profile will quickly be established due to the small channel diameter and low Reynolds number. This entrance effect is modeled by applying a uniform velocity profile at the entrance. If the physical conditions lead to a fully developed turbulent flow enhancing mixing, a plug-flow model may be used as turbulent model.

We have considered two chemical reactions. The oxidation reaction of CO and hydrocarbons and reduction reaction of NO were considered. The hydrocarbons were represented by propylene, which is easily oxidized hydrocarbon, constitute about 80% of the total hydrocarbons found in the typical exhaust gas. The chemical reactions are:

Oxidation of carbon monoxide

$$2CO+O_2 \rightarrow 2CO_2 \tag{1}$$

Oxidation of Hydro carbon

$$2C_3H_6+9O_2 \rightarrow 3CO_2+6H_2O$$
 (2)

• Reduction of Nitrous Oxide

$$CO+NO \rightarrow C02 + \frac{1}{2}N2 \tag{3}$$

The results obtained have been presented in tabular manner in order to make it easier to compare the models considered for the work.

MODEL DESCRIPTION

Figure 1: Catalytic Converter

For the simulations a commercially available three-way catalytic converter with a rectangular cross-section was assumed. The specifications of the substrate, the coating and the canning are listed in following tables:

Table 1: Model Description

Property	1 St Compartment	2 nd Compartment
Cell Density (Cells/ Inch ²)	144	324
Hydraulic Diameter (mm)	0.51	0.41
Uncoated Wall Thickness (mm)	8	6
Wash coat Thickness (µm)	20	20
Porosity (%)	57.7	50.8

Table 2: Models Considered for the Study

Model: 1	Model: 2	Model: 3
Substrate: Knitted Steel Wire	Substrate: Knitted Steel Wire	Substrate: Knitted Steel Wire
Coating: Copper (50gm/ft ³)	Coating: Nickel (50gm/ft ³)	Coating: Pt/Pd (50gm/ft ³)
Inlet Dimensions: 38 X 56 mm	Inlet Dimensions: 38 X 56 mm	Inlet Dimensions: 38 X 56 mm
Cross Section: 176 X 110 mm	Cross Section: 176 X 110 mm	Cross Section: 176 X 110 mm
Length of one Section: 153 mm	Length of one Section: 153 mm	Length of one Section: 153 mm

Figure 2: 3-D view of Catalytic Converter

Figure 3: Side View of Grid

Figure 4: 3-D View of Grid

Figure 5: Top View of Grid

Figure 6: 3-D View of Two Compartments

Figure 7: Assembled Compartment

Figure 8: Path of Exhaust Gas through Catalytic Converter

Figure 9: Meshed Model

MATHEMATICAL AND NUMERICAL MODEL

The numerical model for the simulation of the catalytic converter is based on the same assumptions as described before i.e., the time scale of the reactive flow through single channels of the catalytic converter is regarded to be much faster than the thermal response of the catalytic converters' solid core. Then fluctuations in the temperature can be neglected while calculating the fluid flow through a single channel. Thus, a time independent formulation is used to describe the gaseous flow in order to calculate heat source terms for a transient heat conduction equation for the solid.

The equations to be solved are:

Conservation of total mass

$$\frac{\partial(r\rho u)}{\partial z} + \frac{\partial(r\rho v)}{\partial r} = 0$$
(1)

Conservation of species mass

$$\frac{\partial (r\rho u Y_i)}{\partial z} + \frac{\partial (r\rho v Y_i)}{\partial r} = -\frac{\partial}{\partial r} (rj_i)$$
(2)

• Conservation of axial momentum

$$\frac{\partial(r\rho uu)}{\partial z} + \frac{\partial(r\rho vu)}{\partial r} = -r\frac{\partial p}{\partial z} + \frac{\partial}{\partial r}\left(\mu r\frac{\partial u}{\partial r}\right) \tag{3}$$

• Conservation of enthalpy

$$\frac{\partial (r\rho uh)}{\partial z} + \frac{\partial (r\rho vh)}{\partial r} = ru\frac{\partial p}{\partial z} + \frac{\partial}{\partial r} \left(\lambda r \frac{\partial T}{\partial r}\right) - \frac{\partial}{\partial r} \left(\sum_{i} rj_{i}h_{i}\right)$$
(4)

Despite the actual shape of the channels, a cylindrical model is used in order to reduce the numerical complexity. Catalytic reactions at the surface are taken into account in terms of the diffusive mean flux j_i at the gas phase wash coat interface in Equation 2.

$$j_{i,sunf} = \eta F_{cat/geo} M_i \dot{s}_i \tag{5}$$

$$\dot{s}_{i} = \sum_{k=1}^{K_{s}} v_{ik} k_{fk} \prod_{j=1}^{N_{g}+N_{s}} c_{j}^{v_{jk}}$$
(6)

$$k_{fk} = A_k T^{\beta_k} \exp\left[\frac{-E_{ak}}{RT}\right] f_k \left(\Theta_1, \dots, \Theta_{N_s}\right)$$
(7)

$$f_k(\Theta_1, \dots, \Theta_{N_s}) = \prod_{i=1}^{N_s} \Theta_i^{\mu_{ik}} \exp\left[\frac{\varepsilon_{ik}\Theta_i}{RT}\right]$$
(8)

The boundary-layer equations can be solved in a single sweep of integration along the axial direction by a method-of-lines procedure using an adaptive integration step size. The radial derivatives are discretized using a finite-volume method. The resulting differential-algebraic equation system is integrated using the semi-implicit extrapolation solver LIMEX.

Using this steady-state channel model, a transient simulation of the thermal behavior of the entire catalytic converter is performed by DETCHEM_{MONOLITH}. The solid's temperature field is described by a three-dimensional conservation equation:

$$\frac{\partial T_{monolith}}{\partial t} = \nabla^2 \left(\frac{\lambda T_{monolith}}{\rho c_p} \right) + \frac{q}{\rho c_p}$$
(9)

$$q = -\sigma \cdot 2\pi r \lambda \frac{\partial T_{gas}}{\partial r} \bigg|_{surface}$$
(10)

BOUNDARY CONDITIONS

The simulation and analysis was carried out at different exhaust temperatures ranging between 250 degree Celsius & 1000 degree Celsius. Also we considered 3-different A: F ratios:

Table2: A: F Ratio

Rich Mixture	Relative A:F ratio (λ_{OX}) 0.5
Nearly Stochiometric Mixture	Relative A:F ratio (λ_{OX}) 0.9
Lean Mixture	Relative A:F ratio (λ_{OX}) 1.5

Table3: Applied Boundary Conditions

Entity	Zone	Zone type
Mass Flow Inlet	Boundary	Inlet
Pressure Outlet	Boundary	Outlet
Boundary 1	Boundary	Wall-Reduction
Boundary 2	Boundary	Wall-Oxidation

RESULTS

The results obtained after the mathematical simulation are listed in following Tables:

Table 4: Conversion Efficiencies with Ni as Catalyst (λ_{OX} =0.9)

	EMISSION ($\lambda_{OX} = 0.9$)						
	Carl	on Monoxid	e(CO)	Nit	rogen Oxido	e(NO)	
Temperature	Mass Fraction at Inlet	Mass Fraction at Outlet	Conversion Efficiency	Mass Fraction at Inlet	Mass Fraction at Outlet	Conversion Efficiency	
250	0.0135	0.013	3.7037037	0.0015	0.00125	16.6666667	
325	0.0135	0.0118	12.5925926	0.0015	0.0013	13.3333333	
400	0.0135	0.01	25.9259259	0.0015	0.0008	46.6666667	
475	0.0135	0.0054	60	0.0015	0.000745	50.3333333	
550	0.0135	0.00487	63.9259259	0.0015	0.000921	38.6	
625	0.0135	0.00452	66.5185185	0.0015	0.000658	56.1333333	
700	0.0135	0.00444	67.1111111	0.0015	0.000624	58.4	
775	0.0135	0.00438	67.555556	0.0015	0.00068	54.6666667	
850	0.0135	0.00422	68.7407407	0.0015	0.000811	45.9333333	

Table 4: Contd						
925	0.0135	0.00438	67.555556	0.0015	0.000701	53.2666667
1000	0.0135	0.00421	68.8148148	0.0015	0.000687	54.2

Table 5: Conversion Efficiencies with Cu as Catalyst (λ_{OX} =0.9)

	EMISSION ($\Lambda_{OX} = 0.9$)						
	Carl	Carbon Monoxide(CO)			Nitrogen Oxide(NO)		
Temperature	Mass Fraction at Inlet	Mass Fraction at Outlet	Conversion Efficiency	Mass Fraction at Inlet	Mass Fraction at Outlet	Conversion Efficiency	
250	0.0135	0.0128	5.1851852	0.0015	0.001	33.3333333	
325	0.0135	0.0098	27.407407	0.0015	0.00092	38.6666667	
400	0.0135	0.00912	32.444444	0.0015	0.000722	51.8666667	
475	0.0135	0.00721	46.592593	0.0015	0.000698	53.4666667	
550	0.0135	0.00521	61.407407	0.0015	0.000547	63.5333333	
625	0.0135	0.00412	69.481481	0.0015	0.000549	63.4	
700	0.0135	0.00385	71.481481	0.0015	0.000602	59.8666667	
775	0.0135	0.00341	74.740741	0.0015	0.000589	60.7333333	
850	0.0135	0.00322	76.148148	0.0015	0.000658	56.1333333	
925	0.0135	0.00344	74.518519	0.0015	0.000623	58.4666667	
1000	0.0135	0.00319	76.37037	0.0015	0.000621	58.6	

Table 6: Conversion Efficiencies with Pt/Pd as Catalyst (λ_{OX} =0.9)

	EMISSION ($\Lambda_{OX} = 0.9$)							
	Car	Carbon Monoxide(CO)			Nitrogen Oxide(NO)			
Temperature	Mass	Mass	Conversion	Mass	Mass	Conversion		
	Fraction	Fraction	Efficiency	Fraction	Fraction At	Efficiency		
	At Inlet	At Outlet	Efficiency	At Inlet	Outlet	Efficiency		
250	0.0135	0.011	18.518519	0.0015	0.00098	34.6666667		
325	0.0135	0.00965	28.518519	0.0015	0.00092	38.6666667		
400	0.0135	0.00898	33.481481	0.0015	0.000699	53.4		
475	0.0135	0.00684	49.333333	0.0015	0.000974	35.0666667		
550	0.0135	0.00547	59.481481	0.0015	0.000512	65.8666667		
625	0.0135	0.00398	70.518519	0.0015	0.000498	66.8		
700	0.0135	0.00341	74.740741	0.0015	0.0005	66.6666667		
775	0.0135	0.00307	77.259259	0.0015	0.00055	63.3333333		
850	0.0135	0.00238	82.37037	0.0015	0.0006	60		
925	0.0135	0.00192	85.777778	0.0015	0.000598	60.1333333		
1000	0.0135	0.00188	86.074074	0.0015	0.000598	60.1333333		

Figure 10: Conversion Efficiencies (CO) for Different Configurations vs Temperature in Degree Celsius

Figure 11: Conversion Efficiencies (NO) for Different Configurations vs Temperature in Degree Celsius

Table 7: Conversion Efficiencies with Ni as Catalyst (λ_{OX} =0.5)

	EMISSION ($\Lambda_{\rm ox} = 0.5$)						
	Car	bon Monoxid	de(CO)	Ni	trogen Oxide	e(NO)	
Temperature	Mass	Mass	Conversion	Mass	Mass	Conversion	
	Fraction	Fraction	0 0 1 1 1 1 1 1 1 1 1 1	Fraction	Fraction	00111011011	
	at Inlet	at Outlet	Efficiency	at Inlet	at Outlet	Efficiency	
250	0.0135	0.0132	2.2222222	0.0015	0.00136	9.33333333	
325	0.0135	0.0113	16.2962963	0.0015	0.001	33.3333333	
400	0.0135	0.00847	37.2592593	0.0015	0.000741	50.6	
475	0.0135	0.00812	39.8518519	0.0015	0.000694	53.7333333	
550	0.0135	0.00715	47.037037	0.0015	0.000542	63.8666667	
625	0.0135	0.00701	48.0740741	0.0015	0.000246	83.6	
700	0.0135	0.00697	48.3703704	0.0015	0.000221	85.2666667	
775	0.0135	0.00651	51.7777778	0.0015	0.000164	89.0666667	
850	0.0135	0.00628	53.4814815	0.0015	0.0002	86.6666667	
925	0.0135	0.00594	56	0.0015	0.000191	87.2666667	
1000	0.0135	0.00503	62.7407407	0.0015	0.000187	87.5333333	

Table 8: Conversion Efficiencies with Cu as Catalyst $(\lambda_{OX}$ =0.5)

	EMISSION ($\Lambda_{\rm ox} = 0.5$)						
	Carl	Carbon Monoxide(CO)			Nitrogen Oxide(NO)		
Temperature	Mass Fraction	Mass Fraction	Conversion Efficiency	Mass Fraction at	Mass Fraction	Conversion Efficiency	
	at Inlet	at Outlet	Efficiency	Inlet	at Outlet	Efficiency	
250	0.0135	0.0128	5.1851852	0.0015	0.001	33.3333333	
325	0.0135	0.00993	26.444444	0.0015	0.001	33.3333333	
400	0.0135	0.00721	46.592593	0.0015	0.000589	60.7333333	
475	0.0135	0.00714	47.111111	0.0015	0.000501	66.6	
550	0.0135	0.00602	55.407407	0.0015	0.000395	73.6666667	
625	0.0135	0.00598	55.703704	0.0015	0.000358	76.1333333	
700	0.0135	0.00549	59.333333	0.0015	0.000326	78.2666667	
775	0.0135	0.00584	56.740741	0.0015	0.000186	87.6	
850	0.0135	0.00549	59.333333	0.0015	0.000201	86.6	
925	0.0135	0.00523	61.259259	0.0015	0.000126	91.6	
1000	0.0135	0.00504	62.666667	0.0015	0.000126	91.6	

			EMISSION	$ION (\lambda_{OX} = 0.5)$			
	Carl	on Monoxi	de(CO)	Nitrogen Oxide(NO)			
Temperature	Mass	Mass	Conversion	Mass	Mass	Conversion	
	Fraction	Fraction	Efficiency	Fraction	Fraction	Efficiency	
	at Inlet	at Outlet	Efficiency	at Inlet	at Outlet	Efficiency	
250	0.0135	0.0135	0	0.0015	0.00098	34.6666667	
325	0.0135	0.00984	27.111111	0.0015	0.00098	34.6666667	
400	0.0135	0.00698	48.296296	0.0015	0.000547	63.5333333	
475	0.0135	0.00694	48.592593	0.0015	0.000487	67.5333333	
550	0.0135	0.00597	55.777778	0.0015	0.000396	73.6	
625	0.0135	0.00542	59.851852	0.0015	0.000314	79.0666667	
700	0.0135	0.00497	63.185185	0.0015	0.000212	85.8666667	
775	0.0135	0.0051	62.22222	0.0015	0.000184	87.7333333	
850	0.0135	0.00498	63.111111	0.0015	0.000182	87.8666667	
925	0.0135	0.00487	63.925926	0.0015	0.000128	91.4666667	
1000	0.0135	0.00476	64.740741	0.0015	0.000122	91.8666667	

Table 9: Conversion Efficiencies with Pt-Pd as Catalyst (λ_{OX} =0.5)

Figure 12: Conversion Efficiencies (CO) for Different Configurations vs Temperature in Degree Celsius

Figure 13: Conversion Efficiencies (NO) for Different Configurations vs Temperature in Degree Celsius

Table 10: Conversion Efficiencies with Ni as Catalyst (λ_{OX} =1.5)

	EMISSION ($\Lambda_{ox} = 1.5$)					
	Carbon Monoxide(CO)			Nitrogen Oxide(NO)		
Temperature	Mass Fraction at Inlet	Mass Fraction at Outlet	Conversion Efficiency	Mass Fraction at Inlet	Mass Fraction at Outlet	Conversion Efficiency
250	0.0135	0.013	3.7037037	0.0015	0.001	33.3333333
325	0.0135	0.00984	27.1111111	0.0015	0.00077	48.6666667

Table 10: Contd						
400	0.0135	0.00751	44.3703704	0.0015	0.00068	54.6666667
475	0.0135	0.00394	70.8148148	0.0015	0.00067	55.3333333
550	0.0135	0.00375	72.222222	0.0015	0.00063	58
625	0.0135	0.00351	74	0.0015	0.00061	59.3333333
700	0.0135	0.00356	73.6296296	0.0015	0.00059	60.6666667
775	0.0135	0.00303	77.555556	0.0015	0.000574	61.7333333
850	0.0135	0.00254	81.1851852	0.0015	0.000555	63
925	0.0135	0.00249	81.555556	0.0015	0.000532	64.5333333
1000	0.0135	0.00198	85.3333333	0.0015	0.000517	65.5333333

Table 11: Conversion Efficiencies with Cu as Catalyst (λ_{OX} =1.5)

	EMISSION ($\Lambda_{\rm ox} = 1.5$)					
Temperature	Carbon Monoxide(CO)			Nitrogen Oxide(NO)		
	Mass Fraction at Inlet	Mass Fraction at Outlet	Conversion Efficiency	Mass Fraction at Inlet	Mass Fraction at Outlet	Conversion Efficiency
250	0.0135	0.0128	5.1851852	0.0015	0.001	33.3333333
325	0.0135	0.00976	27.703704	0.0015	0.000698	53.4666667
400	0.0135	0.00802	40.592593	0.0015	0.000621	58.6
475	0.0135	0.00403	70.148148	0.0015	0.000489	67.4
550	0.0135	0.00395	70.740741	0.0015	0.000486	67.6
625	0.0135	0.00371	72.518519	0.0015	0.000654	56.4
700	0.0135	0.00298	77.925926	0.0015	0.000628	58.1333333
775	0.0135	0.00224	83.407407	0.0015	0.00058	61.3333333
850	0.0135	0.00192	85.777778	0.0015	0.000721	51.9333333
925	0.0135	0.00189	86	0.0015	0.000584	61.0666667
1000	0.0135	0.00177	86.888889	0.0015	0.000571	61.9333333

Table 12: Conversion Efficiencies with Pt-Pd as Catalyst (λ_{OX} =1.5)

	EMISSION ($\lambda_{OX} = 1.5$)					
Temperature	Carbon Monoxide(CO)			Nitrogen Oxide(NO)		
	Mass	Mass	Conversion Efficiency	Mass	Mass	Conversion Efficiency
	Fraction	Fraction at		Fraction	Fraction at	
	at Inlet	Outlet		at Inlet	Outlet	
250	0.0135	0.01	25.925926	0.0015	0.000982	34.5333333
325	0.0135	0.00941	30.296296	0.0015	0.000687	54.2
400	0.0135	0.00754	44.148148	0.0015	0.000598	60.1333333
475	0.0135	0.00421	68.814815	0.0015	0.000487	67.5333333
550	0.0135	0.00368	72.740741	0.0015	0.000454	69.7333333
625	0.0135	0.00355	73.703704	0.0015	0.0005	66.6666667
700	0.0135	0.00254	81.185185	0.0015	0.000498	66.8
775	0.0135	0.00198	85.333333	0.0015	0.000498	66.8
850	0.0135	0.00159	88.222222	0.0015	0.000496	66.9333333
925	0.0135	0.00154	88.592593	0.0015	0.000494	67.0666667
1000	0.0135	0.00152	88.740741	0.0015	0.000487	67.5333333

Figure 14: Conversion Efficiencies (CO) for Different Configurations vs Temperature in Degree Celsius

Figure 15: Conversion Efficiencies (NO) for Different Configurations vs Temperature in Degree Celsius

CONCLUSIONS

- The conversion efficiency of catalytic converter using Cu as catalyst is lesser than catalytic converter with Pt/Pd as catalyst but higher than catalytic converter using Ni as catalyst.
- Usually conversion efficiency is higher for NO_x when A: F ratio is rich
- Usually conversion efficiency is higher for CO when A: F ratio is lean
- Form all the plots it can be concluded that activation temperatures for Cu, Ni, & Pt/Pd as a catalyst are around 380,410 & 350 degree Celsius approximately. Thus copper can serve as better alternative catalyst than Nickel due to lower activation temperature & better conversion efficiency over range of exhaust temperature.

REFERENCES

- 1. PL.S. Muthaiah, Dr. M. Senthil Kumar, Dr. S. Sendilvelan "CFD Analysis of catalytic converter to reduce particulate matter and achieve limited back pressure in diesel engine" Global journal of researches in engineering A: Classification(FOR) 091304,091399, Vol.10 Issue 5 (Ver1.0) October 2010.
- 2. P.R.Kamble and S.S. Ingle "Copper Plate Catalytic Converter: An Emission Control Technique" SAE Number 2008-28-0104.
- 3. M.B. Beardsley et al., (1999). "Thermal Barrier Coatings for Low Emission", High Efficiency Diesel Engine Applications" SAE Technical Paper 1999-01-2255.

- 4. Eberhard Jacob, Rheinhard Lammermann, Andreas Pappenherimer, and Diether Rothe "Exhaust Gas After treatment System for Euro 4" Heavy Duty Engines MTZ 6/2005.
- 5. Jacobs, T., Chatterjee, S., Conway, R., Walker, A., Kramer, J. And Mueller- Haas, K. "Development of a Partial Filter Technology for Hdd Retrofit" Sae Technical Paper 2006-01-0213.
- C. Lahousse, B. Kern, H. Hadrane and L. Faillon "Backpressure Characteristics of Modern Three-way Catalysts, Benefit on Engine Performance" SAE Paper No. 2006-01-1062, 2006 SAE World Congress, Detroit, Michigan, April 3-6,
- 7. 2006.Zbigniew Zmudka, Adam Ciesiolkiewicz "Comprehensive approach to the work of Catalysts in Engine exhaust system", Journal of KONES I.C. Engine, Vol. 11, pp. 368-375
- 8. A. K. M. Mohiuddin and Muhammad Nurhafez "Experimental analysis and comparison of performance characteristics of catalytic converters including simulation" International Journal of Mechanical and Materials Engineering (IJMME), Vol. 2 (2007), No. 1, 1-7
- 9. He, L.; Yu, X.-M.; Li, G.-L.; Xu, N. 2012. Dynamic Response of a Three-Way Catalytic Converter, Energy Procedia, Volume 17 Part A, pp. 547-554, ISSN 1876-6102.
- 10. V. K. Pravin, K.S. Umesh, K. Rajagopal, P.H. Veena "Numerical Investigation of Various Models of Catalytic Converters in Diesel Engine to Reduce Particulate Matter and Achieve Limited Back Pressure" International Journal of Fluids Engineering. ISSN 0974-3138 Volume 4, Number 2 (2012), pp. 75-88.
- 11. K. S. Umesh, V. K. Pravin, , K. Rajagopal, P. H. Veena "Optimum solution of catalytic converter with filtration efficiency of trap system by developing limited backpressure in diesel engine" International Research Journal of Engineering Science, Technology and Innovation (IRJESTI) Vol. 1(6) pp. 152-160, September 2012
- 12. Robert H. Perry and Don W. Green "Perry's Chemical Engineering Handbook", Seventh edition, Mc Graw Hill International Editions, Chemical Engineering Series, 1997

NOTATIONS

- ci concentration
- cp specific heat
- fk dependency function
- hi enthalpy of species i
- h enthalpy of the mixture
- p pressure
- q heat source term
- ji diffusive flux including surface flux
- kfk reaction rate
- r radial spatial coordinate
- A face area

- Ak pre-exponential factor
- Eak activation energy
- Fcat/geo ratio of catalytic to geometric surface area
- Ks number of surface reactions
- Mi molar Mass
- Ng number of gas-phase species
- Ns number of surface species
- R gas constant
- T temperature
- λ_{OX} Relative A:F ratio
- T time
- u axial velocity
- v radial velocity
- w normal velocity
- w mean normal velocity
- Yi mass fraction of species i
- z axial spatial coordinate
- βk temperature exponent
- sik coverage dependent change of activation energy
- $\bullet \quad \eta \qquad \text{washcoat effectiveness factor}$
- λ thermal conductivity
- γ uniformity index
- μ viscosity
- µik coverage dependent change of reaction order
- vik stoichiometric coefficients
- ρ density
- σ channel density
- Θi surface coverage