

Overview

- Decimal Codes Binary Codes for Decimal Digits
- Binary Coded Decimal (BCD)
- BCD Arithmetic
- Alphanumeric Codes ASCII Character Codes
- Signed Unsigned Binary Numbers
- Signed Magnitude Representation
- 2's Complement Representation
- 1's Complement
- Subtraction using 2's Complement

DECIMAL CODES - Binary Codes for Decimal Digits

There are over 8,000 ways that you can write 10 elements using binary numbers of 4 bits. Some of the common codes are given in table.

Decimal	8,4,2,1	Excess3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Binary Coded Decimal (BCD)

- The BCD code is the 8,4,2,1 code.
- 8, 4, 2, and 1 are weights
- BCD is a weighted code
- This code is the simplest, most intuitive binary code for decimal digits and uses the same powers of 2 as a binary number, but only encodes the first ten values from 0 to 9.
- Example: 0110 (6) = 0110 (6)
- 1010(10) = 0001(1) + 0000(0)
- How many "invalid" code words are there?
- What are the "invalid" code words?

Warning: Conversion or Coding?

- Do <u>NOT</u> mix up <u>conversion</u> of a decimal number to a binary number with <u>coding</u> a decimal number with a BINARY CODE.
- $13_{10} = 1101_2$ (This is <u>conversion</u>)
- 13 \Leftrightarrow 0001 | 0011 (This is coding)

BCD Arithmetic

Given a BCD code, we use binary arithmetic to add the digits:

8	1000	Eight
<u>+5</u>	<u>+0101</u>	Plus 5
13	1101	is 13 (> 9)

Note that the result is MORE THAN 9, so must be represented by two digits!

To correct the digit, add 6:

BCD Addition Example

• Add 1897_{BCD} to 2905_{BCD} showing carries and digit corrections.

ALPHANUMERIC CODES - ASCII Character Codes

- American Standard Code for Information Interchange (ASCII)
- This code is a popular code used to represent information sent as characterbased data. It uses 7-bits to represent:
- The seven bits of the code are designated by B1 through B7, with B7 being the most significant bit.
- The most significant three bits of the code determine the column of the table and the least significant four bits the row of the table.
 - 94 Graphic printing characters.
 - 34 Non-printing characters
- Some non-printing characters are used for text format (e.g. BS = Backspace).
- Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

Contd...

• The letter A, for example, is represented in ASCII as 1000001 (column 100, row 0001).

American Standard Code for Information Interchange (ASCII)

	$B_7B_6B_5$							
$B_4B_3B_2B_1$	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	P		p
0001	SOH	DC1	!	1	Α	Q	a	q
0010	STX	DC2		2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	W
1000	BS	CAN	(8	H	X	h	X
1001	HT	\mathbf{EM})	9	I	Y	i	y
1010	LF	SUB	*	:	J	\mathbf{z}	j	Z
1011	VT	ESC	+	;	K]	k	{
1100	FF	FS	,	<	L	Ñ	1	Ì
1101	CR	GS	-	=	M	1	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	/	?	O		O	DE

PARITY BIT Error-Detection Codes

- To detect errors in data communication and processing, an additional bit is sometimes added to a binary code word to define its parity.
- A parity bit is the extra bit included to make the total number of 1s in the resulting code word either even or odd.
- Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has even parity if the number of 1's in the code word is even.
- A code word has odd parity if the number of 1's in the code word is odd.

4-Bit Parity Code Example • Fill in the even and odd parity bits:

Even Parity	Odd Parity
Message - Parity	Message ₋ Parity
000 _	000 _
001 _	001 _
010 _	010 _
011 _	011 _
100 _	100 _
101 _	101 _
110 _	110 _
111 _	111 _

• The codeword "1111" has even parity and the codeword "1110" has odd parity. Both can be used to represent 3-bit data.

Unsigned Binary Numbers

- Unsigned numbers don't have any sign, these can contain only magnitude of the number.
- Conventional Binary numbers
- Positive Binary numbers are unsigned.
- Examples:
 - 1101 = 13

1101 is the 4 bit unsigned magnitude of the decimal number 13.

10101 = 21

10101 is the 5 bit unsigned magnitude of the decimal number 21.

Range of unsigned binary number

 Range of unsigned binary number is from 0 to (2ⁿ-1)

• Therefore, range of 6 bit unsigned binary number is from 0 to (2^6-1) .

Minimum value 0 (i.e., 000000) to maximum value 63 (i.e., 111111).

Signed Binary Numbers

- Contain both positive and negative binary numbers.
- The most significant bit is the Sign bit.
- The sign bit represents sign of binary number.
- Sign bit is:
 - 0 for numbers >= 0 (positive numbers)
 - 1 for numbers < 0 (negative numbers)
- Examples:
 - 010010 -> positive binary number
 - 101100 -> negative binary number

Range of signed binary number

- Range of n bit signed binary number is from $-2^{n-1}+1$ to $2^{n-1}-1$
- Range of 6 bit Sign-Magnitude form binary number is from (-2^5+1) to (2^5-1)
- Minimum value -31 (i.e., 1 11111) to maximum value +31 (i.e., 0 11111).
- Zero (0) has two representation, -0 (i.e., 1 00000) and +0 (i.e., 0 00000). This is also a drawback.

Signed Magnitude

 To represent negative integers, we need a notation for negative values.

• Example: Represent (+18)₁₀ (-18)₁₀ as Signed Binary Number

One's Complement of Binary Numbers

- Is obtained by Complementing each bit.
- Replace each 0 by 1 and vice versa.
- Example:
 - The 1's complement of 10110000 is: 01001111
- If you add a number and its 1's complement, the answer is all ones.

```
\begin{array}{c} 1\ 0\ 1\ 1\ 0\ 0\ 0\ 0\\ +\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 1\\ \hline \hline 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\\ \end{array}
```

Signed-1's-complement representation

• **Example:** Represent (-5)₁₀ as 1's-complement Signed Binary Number using 4-bits.

• Step#1: Write (-5)₁₀ as Signed Magnitude Number

Signed Magnitude: 1101:

• Step#2: Convert Into 1's-Complement leaving sign bit

(-5)₁₀ as 1's-complement Signed Binary Number : 1010

Two's Complement of Binary Numbers:

- Obtained in two steps:
 - Take one's complement of a number.
 - Add 1 to the answer of one's complement.
- Example: The two's complement of 1100101 is:
 - One complement: 0011010
 - Add one: 0011010 + 0000001 = 0011011
- Signed numbers are stored in computers mostly in two's complement form.

Signed-2's-complement representation

• **Example:** Represent (-5)₁₀ as 2's-complement Signed Binary Number using 4-bits.

• Step#1: Write (-5)₁₀ as Signed Magnitude Number

Signed Magnitude: 1101:

• Step#2: Takes 2's Complement, leaving Sign bit 2's-complement representation: 1011:

Signed Binary Numbers

Table 1.3 *Signed Binary Numbers*

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

Addition of Signed Binary Numbers

Subtraction of Signed Binary Numbers

- Arithmetic Subtraction
 - In 2's-complement form:
 - 1. Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including sign bit).
 - 2. A carry out of sign-bit position is discarded.

$$(\pm A) - (+B) = (\pm A) + (-B)$$
$$(\pm A) - (-B) = (\pm A) + (+B)$$

$$(-6) - (-13) \qquad (11111010 - 11110011)$$

• Example:

$$(11111010 + 00001101)$$

Subtraction by 1's Complements

- Subtraction of unsigned numbers can also be done by means of the (r-1)'s complement. Remember that the (r-1) 's complement is one less then the r's complement.
- Example: Subtract by using 1's complement.

(a)
$$X-Y=1010100-1000011$$

 $X=1010100$
1's complement of $Y=\pm 0111100$
Sum = 10010000
End-around carry = ± 1
Answer. $X-Y=0010001$

(b)
$$Y - X = 1000011 - 1010100$$

 $Y = 1000011$
1's complement of $X = \pm 0101011$
Sum = 1101110

There is no end carry, Therefore, the answer is Y - X = -(1)'s complement of 1101110 = -0010001.

Subtraction by 2's Complement

• Example: Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y; and (b) Y - X, by using 2's complement.

(a)
$$X = 1010100$$

 2 's complement of $Y = \pm 01111101$
 $Sum = 10010001$
Discard end carry $2^7 = \pm 10000000$
Answer. $X - Y = 0010001$

(b) Y = 10000112's complement of X = +0101100Sum = 1101111 There is no end carry. Therefore, the answer is Y - X = -(2)'s complement of 11011111 = -0010001.

Any Questions?