Task 3 : Calculation of square of a domain by Monter Carlo method

Show my data From Worksheet3

Equation of domains' boundaries:

$$D_1: |x|^{2.1} + |y+0.5|^{2.1} = 2$$

$$D_2: |x-1.6|^{2.1} + |y-0.5|^{2.1} = 1.0$$

$$D_3: |x-0.5|^{2.6} + |y|^{2.6} = 1$$

Domain D—the union of domains D1, D2, D3

Solution

We can find R , $R=[-1.3910656192458295, 2.6]\times[-1.8910656192458295, 1.5]$, square S=13.533965405578599

After calculation, the following conclusions are drawn:

Accuracy of the square S_0 for different sample size (confidence probability 90%)

N	S_0	accuracy of $p(\epsilon)$	abs.accuracy of S_0	rel.accuracy of S_0
10	10.8271723 2	0.08348413	1.129871330	10.4355%
25	10.2858137 1	0.060192	0.814636446	7.92%
60	8.79707751 4	0.04846070	0.655865493	7.4555%
150	8.4812849 87	0.03151895	0.426576316	5.0296%
	8.2218839	0.01967161	0.266234881	3.2381%

400	84			
100 0	8.81061147 9	0.01185469	0.160441023	1.821%

The relative accuracy of the square S_0 equals 1.821%, so this value enough for the task. As the absolute accuracy for N=1000, and confidence probability 90% equals 0.160441023, true value of the S_0 belongs to

$$(8.810611479-0.160441023, 8.810611479+0.160441023)=(8.65017, 8.97105)$$
 with probability $0.90.\ S_0<8.65017$ or $S_0>8.97105$ with probability $1-0.90=0.1.$

The dependence of the relative accuracy of the square S_0 on sample size is shown in Figure below

The relative accuracy of the square S_0 as a function of sample size $N. \,$