```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler, LabelEncoder
import datetime
```

pip install pandas numpy matplotlib seaborn scikit-learn

```
Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (1.5.3)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.25.2)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.7.1)
Requirement already satisfied: seaborn in /usr/local/lib/python3.10/dist-packages (0.13.1)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.2.2)
Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.4)
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.2.
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.4
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (23.2)
Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (9.4.0)
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.1.
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.4
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.3.2
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->p
```

df_train=pd.read_csv('train.csv')
df_test=pd.read_csv('test.csv')

df train.head()

plac	city	state_ab	state	STATEID	COUNTYID	SUMLEVEL	BLOCKID	UID	
Hamilto	Hamilton	NY	New York	36	53	140	NaN	267822	0
Roselar	South Bend	IN	Indiana	18	141	140	NaN	246444	1
Danvil	Danville	IN	Indiana	18	63	140	NaN	245683	2
Guaynak	San Juan	PR	Puerto Rico	72	127	140	NaN	279653	3
Manhatta Ci	Manhattan	KS	Kansas	20	161	140	NaN	247218	4

5 rows × 80 columns

df_test.head()

	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	
0	255504	NaN	140	163	26	Michigan	MI	Detroit	De F
1	252676	NaN	140	1	23	Maine	ME	Auburn	,
2	276314	NaN	140	15	42	Pennsylvania	PA	Pine City	М
3	248614	NaN	140	231	21	Kentucky	KY	Monticello	Моі
4	286865	NaN	140	355	48	Texas	TX	Corpus Christi	

5 rows × 80 columns

```
df_train.shape
```

(27321, 80)

df_test.shape

(11709, 80)

len(set(df_train['UID']).intersection(set(df_test['UID'])))

123

df_train.dtypes

UID int64
BLOCKID float64
SUMLEVEL int64
COUNTYID int64
STATEID int64
...
pct_own float64
married float64
married_snp float64
separated float64
divorced float64
Length: 80, dtype: object

df_train.dtypes.value_counts().plot(kind='bar')

df_train.describe(include='0')

	state	state_ab	city	place	type	primary
count	27321	27321	27321	27321	27321	27321
unique	52	52	6916	9912	6	1
top	California	CA	Chicago	New York City	City	tract
freq	2926	2926	294	490	15237	27321

#This flag will help us split the data back later
df_train['split']= 'Train'
df_test['split']= 'Test'

df_combined=df_train.append(df_test, ignore_index=True)
df_combined.head()

<ipython-input-15-bb661d45caa3>:1: FutureWarning: The frame.append method is depreca
df_combined=df_train.append(df_test, ignore_index=True)

plac	city	state_ab	state	STATEID	COUNTYID	SUMLEVEL	BLOCKID	UID	
Hamilto	Hamilton	NY	New York	36	53	140	NaN	267822	0
Roselar	South Bend	IN	Indiana	18	141	140	NaN	246444	1
Danvil	Danville	IN	Indiana	18	63	140	NaN	245683	2
Guaynat	San Juan	PR	Puerto Rico	72	127	140	NaN	279653	3
Manhatta Ci	Manhattan	KS	Kansas	20	161	140	NaN	247218	4

5 rows × 81 columns

df_combined.tail()

city	state_ab	state	STATEID	COUNTYID	SUMLEVEL	BLOCKID	UID	
Lakeland	FL	Florida	12	105	140	NaN	238088	39025
Chicago	IL	Illinois	17	31	140	NaN	242811	39026
Lawrence	MA	Massachusetts	25	9	140	NaN	250127	39027
Carrol	IA	Iowa	19	27	140	NaN	241096	39028
Austir	TX	Texas	48	453	140	NaN	287763	39029

5 rows × 81 columns

df_combined.isna().sum()

```
UID
BLOCKID
            39030
SUMLEVEL
             0
COUNTYID
                0
               0
STATEID
married
             275
               275
married_snp
               275
separated
divorced
              275
split
               0
Length: 81, dtype: int64
```

Fill rate of the variables -> (1- missing %)
1-df_combined.isna().sum()/len(df_combined)

```
UID 1.000000
BLOCKID 0.000000
SUMLEVEL 1.000000
COUNTYID 1.000000
STATEID 1.000000
...
married 0.992954
married_snp 0.992954
separated 0.992954
divorced 0.992954
split 1.000000
Length: 81, dtype: float64
```

BlockID is completly missing or Null in both train and test data. So we will drop BLOCKID feature. df_combined.drop(columns =['BLOCKID'], axis=1, inplace=True)

df_combined.isna().sum()/len(df_combined)*100

```
UID
             0.000000
SUMLEVEL
            0.000000
COUNTYID
            0.000000
STATEID
            0.000000
state
             0.000000
married 0.704586
married_snp 0.704586
separated 0.704586 divorced 0.704586
divorced
             0.704586
split
             0.000000
Length: 80, dtype: float64
```

```
# Missing value greater than zero
col_check=df_combined.isna().sum().to_frame().reset_index()
null_col=col_check[col_check[0]>0]['index'].tolist()
null col
     ['rent_mean',
      'rent_median',
      'rent_stdev',
      'rent_sample_weight',
      'rent_samples',
      'rent_gt_10',
      'rent_gt_15'
      'rent_gt_20',
      'rent_gt_25',
      'rent_gt_30',
      'rent_gt_35',
      'rent_gt_40',
      'rent_gt_50',
      'hi_mean',
      'hi_median'
      'hi_stdev',
      'hi_sample_weight',
      'hi_samples',
      'family_mean'
      'family median',
      'family_stdev',
      'family_sample_weight',
      'family_samples',
      'hc_mortgage_mean'
      'hc_mortgage_median',
      'hc_mortgage_stdev',
      'hc_mortgage_sample_weight',
      'hc_mortgage_samples',
      'hc_mean',
      'hc median',
      'hc_stdev',
      'hc_samples',
      'hc_sample_weight',
      'home_equity_second_mortgage',
      'second_mortgage',
      'home_equity',
      'debt',
      'second_mortgage_cdf',
      'home_equity_cdf',
      'debt_cdf',
      'hs_degree'
      'hs_degree_male',
      'hs_degree_female',
      'male_age_mean',
      'male_age_median',
      'male_age_stdev',
      'male_age_sample_weight',
      'male_age_samples',
      'female_age_mean',
      'female_age_median',
      'female_age_stdev',
      'female_age_sample_weight',
      'female_age_samples',
      'pct_own',
      'married',
      'married_snp',
      'separated',
      'divorced'l
#If the feature have less than 8 unique value then I am consdering as categorical else it will be continuous
for i in null_col:
    print(i)
    if df_combined[i].nunique()>8:
                                         #Continuous data
        df_combined[i].fillna(df_combined[i].median(),inplace=True)
                                                                          #Bcz median is not impacted by outlier
    else:df_combined[i].fillna(df_combined[i].mode()[0],inplace=True) #Categorical data
     rent_mean
     rent_median
     rent_stdev
     rent_sample_weight
     rent samples
```

```
rent_gt_10
     rent_gt_15
     rent_gt_20
     rent_gt_25
     rent_gt_30
     rent_gt_35
     rent_gt_40
     rent_gt_50
     hi_mean
     hi median
     hi_stdev
     hi_sample_weight
     hi_samples
     family_mean
     family_median
     {\tt family\_stdev}
     family_sample_weight
     family_samples
     hc_mortgage_mean
     {\tt hc\_mortgage\_median}
     hc_mortgage_stdev
     hc_mortgage_sample_weight
     hc_mortgage_samples
     hc_mean
     hc_median
     hc_stdev
     hc_samples
     hc_sample_weight
     home_equity_second_mortgage
     second_mortgage
     home_equity
     debt
     second_mortgage_cdf
     home_equity_cdf
     debt_cdf
     hs_degree
     hs_degree_male
     hs_degree_female
     male_age_mean
     male_age_median
     {\tt male\_age\_stdev}
     male_age_sample_weight
     male_age_samples
     female_age_mean
     female_age_median
     female_age_stdev
     female_age_sample_weight
     female_age_samples
     pct_own
     married
     married_snp
     separated
     divorced
df_combined.isna().sum()/len(df_combined)*100
     UID
                    0.0
     SUMLEVEL
                   0.0
     COUNTYID
                   0.0
     STATEID
                    0.0
     state
                    0.0
     married
                   0.0
     married_snp 0.0
                    0.0
     separated
     divorced
                    0.0
     split
                    0.0
     Length: 80, dtype: float64
df_combined.shape
     (39030, 80)
# Drop duplicate observations
df_combined.drop_duplicates(inplace=True)
df_combined.shape
```

(38838, 80)

```
\label{localization} $$ top_2500_loc=df_train['second_mortgage']<0.50) \& $$ (df_train['pct_own']>0.10) ].sort_values(by='second_mortgage', ascending=False).head(2500) $$ $$ (df_train['pct_own']>0.10) ].sort_values(by='second_mortgage', ascending=False).head(2500) $$ (df_train['pct_own']>0.10) ].sort_values(by='second_mortgage', ascending=False).head(2500) $$ (df_train['pct_own']>0.10) ].$$ (df_train['pct_own']>0.10) ].sort_values(by='second_mortgage', ascending=False).head(2500) $$ (df_train['pct_own']>0.10) ].$$ (df_train['pct_own']>
```

top_2500_loc=top_2500_loc[['state','city','state_ab','place','lat','lng']]
top_2500_loc.head()

	state	city	state_ab	place	lat	lng
11980	Massachusetts	Worcester	MA	Worcester City	42.254262	-71.800347
26018	New York	Corona	NY	Harbor Hills	40.751809	-73.853582
7829	Maryland	Glen Burnie	MD	Glen Burnie	39.127273	-76.635265
2077	Florida	Tampa	FL	Egypt Lake-leto	28.029063	-82.495395
1701	Illinois	Chicago	IL	Lincolnwood	41.967289	-87.652434

!pip install geopandas
import warnings
warnings.filterwarnings('ignore')

Requirement already satisfied: geopandas in /usr/local/lib/python3.10/dist-packages (0.13.2) Requirement already satisfied: fiona>=1.8.19 in /usr/local/lib/python3.10/dist-packages (from geopandas) (1.9.5) Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from geopandas) (23.2) Requirement already satisfied: pandas>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from geopandas) (1.5.3) Requirement already satisfied: pyproj>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from geopandas) (3.6.1) Requirement already satisfied: shapely>=1.7.1 in /usr/local/lib/python3.10/dist-packages (from geopandas) (2.0.2) Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8.19->geopa Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8.19->geopandas) Requirement already satisfied: click~=8.0 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8.19->geopanda Requirement already satisfied: click-plugins>=1.0 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8.19-> Requirement already satisfied: cligj>=0.5 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8.19->geopanda Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8.19->geopandas) (1.1 Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8.19->geopanda Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1 Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.0->geopan Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.0->geopa

import geopandas as gpd
gdf = gpd.GeoDataFrame(top_2500_loc, geometry=gpd.points_from_xy(x=top_2500_loc.lng, y=top_2500_loc.lat))
gdf

	state	city	state_ab	place	lat	lng	geome
11980	Massachusetts	Worcester	MA	Worcester City	42.254262	-71.800347	PC (-71.80 42.25
26018	New York	Corona	NY	Harbor Hills	40.751809	-73.853582	PC (-73.85 40.75
7829	Maryland	Glen Burnie	MD	Glen Burnie	39.127273	-76.635265	PC (-76.63 39.12
2077	Florida	Tampa	FL	Egypt Lake- leto	28.029063	-82.495395	PC (-82.49 28.029
1701	Illinois	Chicago	IL	Lincolnwood	41.967289	-87.652434	PC (-87.65 41.96
4							

#Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage
df_combined['bad_debt'] = df_combined['second_mortgage'] + df_combined['home_equity'] - df_combined['home_equity_secon
df_combined.head()

	UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type
0	267822	140	53	36	New York	NY	Hamilton	Hamilton	City
1	246444	140	141	18	Indiana	IN	South Bend	Roseland	City
2	245683	140	63	18	Indiana	IN	Danville	Danville	City
3	279653	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban
4	247218	140	161	20	Kansas	KS	Manhattan	Manhattan City	City

5 rows × 81 columns

```
import matplotlib.pyplot as plt
labels = 'Debt', 'Bad_debt'
sizes = [df_combined['debt'].mean()*100, df_combined['bad_debt'].mean()*100]
colors = [ 'lightskyblue','red']
explode = (0.1, 0) # explode 1st slice

#Plot
plt.pie(sizes,explode=explode,labels=labels, colors=colors,
autopct='%1.1f%%', shadow=True, startangle=140)

plt.axis('equal')
plt.show()
```


df_combined['good_debt']=df_combined['debt']-df_combined['bad_debt']
df_combined.head()

	UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type
0	267822	140	53	36	New York	NY	Hamilton	Hamilton	City
1	246444	140	141	18	Indiana	IN	South Bend	Roseland	City
2	245683	140	63	18	Indiana	IN	Danville	Danville	City
3	279653	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban
4	247218	140	161	20	Kansas	KS	Manhattan	Manhattan City	City

5 rows × 82 columns

df combined.columns

```
Index(['UID', 'SUMLEVEL', 'COUNTYID', 'STATEID', 'state', 'state_ab', 'city',
    'place', 'type', 'primary', 'zip_code', 'area_code', 'lat', 'lng',
    'ALand', 'AWater', 'pop', 'male_pop', 'female_pop', 'rent_mean',
    'rent_median', 'rent_stdev', 'rent_sample_weight', 'rent_samples',
    'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30',
    'rent_gt_35', 'rent_gt_40', 'rent_gt_50', 'universe_samples',
    'used_samples', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight',
    'hi_samples', 'family_mean', 'family_median', 'family_stdev',
    'family_sample_weight', 'family_samples', 'hc_mortgage_mean',
    'hc_mortgage_median', 'hc_mortgage_stdev', 'hc_mortgage_sample_weight',
    'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples',
    'hc_sample_weight', 'home_equity_second_mortgage', 'second_mortgage',
    'home_equity', 'debt', 'second_mortgage_cdf', 'home_equity_cdf',
    'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs_degree_female',
    'male_age_mean', 'male_age_median', 'male_age_stdev',
    'male_age_mean', 'male_age_samples', 'female_age_mean',
    'female_age_median', 'female_age_sample', 'female_age_mean',
    'female_age_median', 'female_age_sample', 'married_snp', 'separated',
    'divorced', 'split', 'bad_debt', 'good_debt'],
    dtype='object')
all_cities = df_combined[['home_equity','second_mortgage','bad_debt', 'good_debt']]
all_cities.plot.box(figsize=(12,8),grid=True)
plt.title('All Cities')
plt.show()
```



```
hamilton = df_combined[df_combined['city']=='Hamilton']
hamilton = hamilton[['home_equity','second_mortgage','bad_debt', 'good_debt']]
hamilton.plot.box(figsize=(12,8),grid=True)
plt.title('Hamilton')
plt.show()
```



```
Manhattan = df_combined[df_combined['city']=='Manhattan']
Manhattan = Manhattan[['home_equity','second_mortgage','bad_debt', 'good_debt']]
Manhattan.plot.box(figsize=(12,8),grid=True)
plt.title('Manhattan')
plt.show()
```



```
import seaborn as sns
plt.figure(figsize=(15,10))

plt.subplot(2,3,1)
sns.distplot(df_train['family_mean'])
plt.title('Family Income')
plt.subplot(2,3,2)
sns.distplot(df_train['hi_mean'])
plt.title('Household Income')
plt.subplot(2,3,3)
sns.distplot(df_train['family_mean']-df_train['hi_mean'])
plt.title('Remaining income distribution chart')
plt.show()
```


df_combined['population_density'] = df_combined['pop']/df_combined['ALand']

df_combined.head()

	UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type
(267822	140	53	36	New York	NY	Hamilton	Hamilton	City
1	246444	140	141	18	Indiana	IN	South Bend	Roseland	City
2	245683	140	63	18	Indiana	IN	Danville	Danville	City
3	279653	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban
4	247218	140	161	20	Kansas	KS	Manhattan	Manhattan City	City

5 rows × 83 columns

df_combined.head()

	UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type
0	267822	140	53	36	New York	NY	Hamilton	Hamilton	City
1	246444	140	141	18	Indiana	IN	South Bend	Roseland	City
2	245683	140	63	18	Indiana	IN	Danville	Danville	City
3	279653	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban
4	247218	140	161	20	Kansas	KS	Manhattan	Manhattan City	City

5 rows × 84 columns

sns.histplot(df_combined['population_density'], bins=50)

<Axes: xlabel='population_density', ylabel='Count'>


```
plt.figure(figsize=(15,10))
plt.subplot(2,2,1)
sns.distplot(df_combined['median_age'])
plt.title('Median Age')
plt.subplot(2,2,2)
sns.boxplot(df_combined['median_age'])
plt.title('Population Density')
plt.show()
```


df_combined['pop_bins']=pd.cut(df_combined['pop'],bins=5,labels=['very low','low','medium','high','very high'])
df_combined['pop_bins'].value_counts()

very low 38472 low 348 medium 12 high 5 very high 1

Name: pop_bins, dtype: int64

df_combined.groupby(by='pop_bins')[['married','separated','divorced']].count()

married separated divorced

pop_bins			
very low	38472	38472	38472
low	348	348	348
medium	12	12	12
high	5	5	5
very high	1	1	1

df_combined.groupby(by='pop_bins')[['married','separated','divorced']].agg(["mean", "median"])

	married		separated		divorced	
	mean	median	mean	median	mean	median
pop_bins						
very low	0.507647	0.526210	0.019163	0.013580	0.100263	0.094965
low	0.589247	0.601815	0.014929	0.010255	0.075192	0.069340
medium	0.617047	0.605765	0.011203	0.007745	0.071870	0.069090
high	0.570438	0.614130	0.010398	0.005520	0.050514	0.056690
very high	0.734740	0.734740	0.004050	0.004050	0.030360	0.030360

```
plt.figure(figsize=(12,8))
pop_bin_married=df_combined.groupby(by='pop_bins')[['married','separated','divorced']].agg(["mean"])
pop_bin_married.plot(figsize=(12,8))
plt.legend(loc='best')
plt.show()
```

<Figure size 1200x800 with 0 Axes>

df_combined.groupby(by='pop_bins')[['married','divorced', 'separated']].plot.box(figsize=(12,8),grid='True')
plt.show()

rent_state_mean.head()

Name: mean, dtype: float64

0.013360285332548792

nlt figure/figsize=(12 8))

sum(df_combined['rent_mean'])/sum(df_combined['family_mean'])

```
mean
         state
      Alabama
                 765.872557
       Alaska
                1190.093590
      Arizona
                1084.462392
                716.544987
     Arkansas
     California 1465.019694
income_state_mean=df_combined.groupby(by='state')['family_mean'].agg(["mean"])
income_state_mean.head()
                       mean
         state
      Alabama
               65311.510962
       Alaska
                91911.137520
               73020.627940
      Arizona
     Arkansas 64234.705963
     California 87599.537172
rent_perc_of_income=rent_state_mean['mean']/income_state_mean['mean']*100
rent_perc_of_income.head(10)
     state
     Alabama
                          1.172646
     Alaska
                            1.294831
                           1.485145
     Arizona
                           1.115511
     Arkansas
                          1.672406
     California
                           1.362639
     Colorado
     Connecticut
                            1.272709
     Delaware
                            1.311538
     District of Columbia 1.357102
     Florida
                            1.576506
```

rent_state_mean = df_combined.groupby(by='state')['rent_mean'].agg(["mean"])

https://colab.research.google.com/drive/1XpviqBU79FSKF5LvnNvSGz65gUaRzCSw#scrollTo=uhpBlgn8Jse8&printMode=true

train = df_combined[df_combined['split'] == 'Train']
test = df_combined[df_combined['split'] == 'Test']

train.head()

type	place	city	state_ab	state	STATEID	COUNTYID	SUMLEVEL	UID	
City	Hamilton	Hamilton	NY	New York	36	53	140	267822	0
City	Roseland	South Bend	IN	Indiana	18	141	140	246444	1
City	Danville	Danville	IN	Indiana	18	63	140	245683	2
Urban	Guaynabo	San Juan	PR	Puerto Rico	72	127	140	279653	3
City	Manhattan City	Manhattan	KS	Kansas	20	161	140	247218	4

5 rows × 85 columns

test.head()