Problema 1.6 Un număr natural se numește superb dacă este multiplul numărului divizorilor săi (spre exemplu 12 este superb deoarece are 6 divizori și 12 este multiplu al lui 6).

- a) Determinați cel mai mare număr superb de două cifre.
- b) Demonstrați că nu există numere superbe care să aibă ultima cifră 3.

Soluție a) $99 = 3^2 \cdot 11$. 99 are 6 divizori și $6 \nmid 99$.

 $98 = 2 \cdot 7^2$. 98 are 6 divizori și $6 \nmid 98$.

97 = 97. 97 are 2 divizori și $2 \nmid 97$.

 $96 = 2^5 \cdot 3$. 96 are 12 divizori și 12 | 96.

b) Fie X un număr natural cu $u(X)=3\ (u(X)$ - ultima cifră a lui X).

Cum un număr impar nu poate fi multiplul unui număr par deducem că X nu este superb. ... 1p

Problema 2.6 Determinați numerele naturale nenule a și b pentru care $\frac{a+1}{b}$ și $\frac{b+2}{a}$ sunt simultan numere naturale.

Soluţie $\frac{a+1}{b}$ număr natural nenul implică $b \mid a+1$, de unde $b \le a+1$ şi de aici $b+2 \le a+3$.

 $\operatorname{Acum} \frac{b+2}{a} \leq \frac{a+3}{a} = 1 + \frac{3}{a} \leq 4. \operatorname{Cum} \frac{b+2}{a} \text{ este număr natural nenul rezultă } \frac{b+2}{a} \in \{1,2,3,4\}.$

Dacă $\frac{b+2}{a}=1$, atunci din b+2=a rezultă b=a-2. Atunci $\frac{a+1}{b}$ număr natural nenul implică $\frac{a+1}{a-2}=1+\frac{3}{a-2}$ număr natural nenul, de unde $a\in\{3,5\}$. Obținem soluțiile a=3,b=1 și a=5,b=3.

Dacă $\frac{b+2}{a}=2$, atunci din b+2=2a rezultă b=2a-2. Atunci $\frac{a+1}{b}$ este număr natural nenul, sau $\frac{2a+2}{2a-2}=1+\frac{4}{2a-2}$ este număr natural par, de unde $a\in\{2,3\}$. Obținem soluția a=3,b=4; varianta a=2,b=2 nu verifică condițiile inițiale.

Dacă $\frac{b+2}{a}=3$, atunci din b+2=3a rezultă b=3a-2. Atunci $\frac{a+1}{b}$ este număr natural nenul, sau $\frac{3a+3}{3a-2}=1+\frac{5}{3a-2}$ este număr natural, de unde $a\in\{1\}$. Obținem soluția a=1,b=1.

Problema 3.6. Fie ABC un triunghi dreptunghic în A. Bisectoarea unghiului ACB intersectează latura AB în punctul D și perpendiculara în B pe BC în punctul E. Notăm cu F simetricul lui E față de B și cu P intersecția dreptelor DF și BC. Demonstrați că $EP \perp CF$.

Soluție

 $\hat{I}n \triangle BEC, m(\triangleleft CEB) = 180^{\circ} - m(\triangleleft EBC) - m(\triangleleft ECB) = 90^{\circ} - m(\triangleleft ECB)$ $\hat{\text{In}} \triangle ADC, m(\triangleleft ADC) = 180^{\circ} - m(\triangleleft DAC) - m(\triangleleft ACD) = 90^{\circ} - m(\triangleleft ACD)$ Cum $m(\triangleleft ACD) = m(\triangleleft ECB)$, rezultă $\triangleleft ADC \equiv \triangleleft CEB$ (1) 3p $\mathrm{Dar} \vartriangleleft ADC \equiv \vartriangleleft EDB. \ \mathrm{De} \ \mathrm{aici} \ \mathrm{\dot{s}i} \ \mathrm{din} \ (1) \ \mathrm{rezult\check{a}} \ [BD] \equiv [BE]. \ \mathrm{Cum} \ [BE] \equiv [BF] \ \mathrm{deducem} \ \mathrm{c\check{a}}$ În $\triangle CEF$, CB și FD înălțimi implică P ortocentrul. În concluzie, EP este înălțime, adică

Problema 4.6 Fie a, b numere naturale nenule pentru care există p număr prim cu proprietatea că [a, a + p] = [b, b + p]. Arătați că a = b.

Am notat [x, y] cel mai mic multiplu comun al numerelor naturale $x \neq y$.

Soluţie Din $(x,y) \cdot [x,y] = xy$ deducem $[xy] = \frac{xy}{(xy)}$. Am notat (x,y) cel mai mare divizor comun

pentru x şi y. Cu aceasta egalitatea din enunţ devine $\frac{a(a+p)}{(a,a+p)} = \frac{b(b+p)}{(b,b+p)}$. (1)1p

Notăm $d_1 = (a, a + p) \in \{1, p\}$ și $d_2 = (b, b + p) \in \{1, p\}$.

Dacă $d_1 = d_2$ relația (1) conduce la a(a+p) = b(b+p), de unde a = b.

Presupunând $a \neq b$ putem avea a < b. Atunci a + p < b + p, de unde deducem a(a + p) < b(b + p); contradicție. Dacă a > b, atunci a + p > b + p, de unde deducem a(a + p) > b(b + p); contradicție. 2p

Dacă
$$d_1 = 1$$
 şi $d_2 = p$ relația (1) devine $a(a+p) = \frac{b(b+p)}{p}$ sau $pa(a+p) = b(b+p)$. (2)
Din $d_1 = 1$ deducem că $p \nmid a$ şi $p \nmid a + p$, iar din $d_2 = p$ deducem că $p \mid b$ sau $b = px$, cu x număr

natural.

Cu aceasta, relația (2) devine $pa(a+p) = p^2x(x+1)$ sau a(a+p) = px(x+1), de unde deducem că $p \mid a(a+p)$ și cum p este număr prim rezultă $p \mid a$; contradicție.

Aceasta arată că situația $d_1 = 1$ și $d_2 = p$ nu este posibilă.