Correlations for External Forced Convection

Geometry	Correlation	Conditions
Flat plate, laminar flow, constant wall temperature	$Nu_x = 0.332Re_x^{\frac{1}{2}}Pr^{\frac{1}{3}}$ $\overline{Nu_L} = 0.664Re_L^{\frac{1}{2}}Pr^{1/3}$ All the properties are evaluated at $T_f = (T_W + T_\infty)/2$	$Pr \ge 0.6$ $Re_x \le 5 \times 10^5$
Flat plate, laminar flow, constant heat flux	$Nu_x = 0.453 Re_x^{1/2} Pr^{1/3}$ $\overline{Nu_L} = 0.680 Re_L^{1/2} Pr^{1/3}$ All the properties are evaluated at $T_f = (T_W + T_\infty)/2$	$Pr \ge 0.6$ $Re_x \le 5 \times 10^5$
Flat plate, turbulent flow, constant wall temperature	$Nu_x = St Re_x Pr = 0.0296 Re_x^{4/5} Pr^{1/3}$ All the properties are evaluated at $T_f = (T_w + T_\infty)/2$	$0.6 \le Pr \le 60$ $5 \times 10^5 \le Re_x \le 10^8$
Flat plate, turbulent flow, constant heat flux	$Nu_x = 0.0308 Re_x^{4/5} Pr^{1/3}$ All the properties are evaluated at $T_f = (T_w + T_\infty)/2$	$5 \times 10^5 \le Re_x \le 10^8$ $0.6 \le Pr \le 60$
Cylinder in cross flow	$\overline{Nu_D} = \frac{\overline{h}D}{k} = C Re_D^m P r^{1/3}$ C &m are from Table 1 All the properties are evaluated at $T_f = (T_w + T_\infty)/2$	$Pr \ge 0.7$ $0.4 \le Re_D \le 10^6$
Sphere	$Nu_D = \frac{\overline{hD}}{k} = 2 + (0.4 \operatorname{Re}_p^{0.5} + 0.06 \operatorname{Re}_p^{0.66}) \operatorname{Pr}^{0.4} \left(\frac{\mu}{\mu_s}\right)^{0.55}$ All the properties except μ_s are evaluated at T_∞ $\mu_s = \operatorname{Surface viscosity}$	$0.71 \le \Pr \le 380$ $3.5 \le \operatorname{Re}_{p} \le 7.6 * 10^{-4}$ $1.0 \le \left(\frac{\mu}{\mu_{s}}\right) \le 3.2$
Bank of Tubes	$Nu_D = 1.13C_1 \text{ Re}_{D\text{max}}^{m} \text{ Pr}^{0.33}$ All properties except μ_S are evaluated at $T_f = (T_W + T_\infty)/2$. $C_1 \& m$ are in Table 2 For N<10, Nu is obtained by multiplying the Nu(N>10) by a correction factor as given in Table 3 $Re_{D\text{ max}}$ is the Reynolds number at the location of maximum velocity. See text for details.	$N_c \ge 10$ $2000 \le \text{Re}_{D\text{max}} \le 40000$ $\text{Pr} \ge 0.7$

Table 1

Re_D	C	m	
0.4-4	0.989	0.330	
4-40	0.911	0.385	
40-4000	0.683	0.466	
4000-40,000	0.193	0.618	
40,000-400,000	0.027	0.805	

Table 2

Conguration	$Re_{D,\max}$	C_1	m		
Aligned	10–10 ²	0.80	0.40		
Staggered	$10-10^2$	0.90	0.40		
Aligned	$10^2 - 10^3$	Approximate as a single			
Staggered	10^2-10^3	(isolated) cylinder			
Aligned	$10^3 - 2 \times 10^5$	0.27	0.63		
$(S_T/S_L > 0.7)^a$					
Staggered	$10^3 - 2 \times 10^5$	$0.35(S_T/S_L)^{1/5}$	0.60		
$(S_T/S_L < 2)$					
Staggered	$10^3 - 2 \times 10^5$	0.40	0.60		
$(S_T/S_L > 2)$					
Aligned	$2 \times 10^5 - 2 \times 10^6$	0.021	0.84		
Staggered	$2 \times 10^5 - 2 \times 10^6$	0.022	0.84		

^aFor $S_T/S_L < 0.7$, heat transfer is inefficient and aligned tubes should not be used.

Table 3

1	2	3	4	5	6	7	8	9
0.64	0.80	0.87	0.90	0.92	0.94	0.96	0.98	0.99
0.68	0.75	0.83	0.89	0.92	0.95	0.97	0.98	0.99