МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра ИС

ОТЧЁТ

по практической работе № 6 по дисциплине «Статистический анализ» Тема: Кластерный анализ. Метод k-средних Вариант № 8

Студент гр. 9372	Иванов Р.С.
Преподаватель	 Сучков А.И.

Санкт-Петербург 2021

Цель работы.

Освоение основных понятий и некоторых методов кластерного анализа, в частности, метода k-means.

Основные теоретические положения.

Формулы для формирования интервального вариационного ряда:

 $k = [1 + \ln(n)]$ - количество интервалов, где n - объем выборки.

R = xmax - xmin - размах выборки

 $h = \frac{R}{k}$ - длина интервала

$$ilde{x}_i = rac{x_i - ar{x}_B}{\sigma_B}$$
— нормализация

Алгоритм k-means

Шаги алгоритма:

1. Начальный шаг: инициализация кластеров

Выбирается произвольное множество точек μ i, i=1,...,k, рассматриваемых как начальные центры кластеров: $\mu(0)_i = \mu_i$, i=1,...,k

2. Распределение векторов по кластерам

Шаг
$$t: \forall x_i \in X$$
, $i=1...n: x_i \in S_j \iff j = argmin_k \rho(x_i, \mu^{(t-1)_k})^2$

3. Пересчет центров кластеров

War t:
$$\forall I = 1,...,k : \mu^{(t)} = \frac{1}{|S_i|} \sum_{x \in S_i} x$$

- 4. Проверка условия останова:
 - \circ if $\exists i \in \overline{1,k} : \mu^{(t)}_i \neq \mu^{(t-1)}_i$ then
 - t=t+1:
 - goto 2;
 - o else
- stop

Постановка задачи.

Дано конечное множество из объектов, представленных двумя признаками (в качестве этого множества принимаем исходную двумерную выборку, сформированную ранее в практической работе №4). Выполнить разбиение исходного множества объектов на конечное число подмножеств (кластеров) с использованием метода k-means. Полученные результаты содержательно проинтерпретировать.

Выполнение работы.

Во время выполнения работы был написан код на языке Python, выполняющий поставленную задачу. Реализовано чтение и дальнейшая обработка данных из Price_Mileage.csv, одобренного преподавателем. Для этого была использована библиотека csv.

Пункт 1

Нормализовано множество точек из предыдущего раздела, на графике отображено полученное множество.

Пункт 2 Определена грубая верхняя оценка количества кластеров.

$$k = 1 + |\ln(115)| = 8$$

Реализован алгоритм k-means. Отображены полученные кластеры, выделен каждый кластер разным цветом, отмечены центроиды.

Рисунок 2 (K-means)

Реализован алгоритм kmedoids (для чётных вариантов). Отображены полученные кластеры, выделен каждый кластер разным цветом, отмечены центроиды.

Построен график для определения оптимального количества кластеров с помощью метода силуэтов.

Рисунок 4 (Метод силуэтов)

Красная линия на графике — это применение метода силуэтов для k-means, синяя — k-medoids. По графику можно сказать, что для обоих методов оптимальным количеством кластеров является k=7.

Были оценены методы разбиения с помощью получения суммарного внутрикластерного расстояния между точками. Были получены следующие величины:

K-means	K-medoids
21.94	35.31

По полученным данным можно сказать, что на данной выборке лучше работает алгоритм k-means. После его применение внутрикластерное расстояние меньше, чем при применении алгоритма k-medoids.

Пункт 7

Алгоритмы k-means и k-medoids очень похожи по своей реализации, единственное отличие отличается в том методе пересчёта центройдов, в одном случае это точка(не обязательно присутствующая в кластере) расстояние до которой минимально для каждого члена кластера, в другом обязательно лежащая в кластере точка.

Вывод.

В процессе выполнения практической работы были реализованы такие алгоритмы разбиения на кластеры, как k-means, k-medians. Выполнена верхняя оценка количества кластеров и оценка оптимального количества кластеров методом локтя. Заметили, что в алгоритмах k-means и k-medians первичные центроиды выбираются случайно из множества всех точек, таким образом, эти алгоритмы очень чувствительны к их выбору.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
import numpy as np
from openpyxl import Workbook
   centroid.append(temp_1 / len_cluster)
def all_ranges(s, clu, medoid):
```

```
clus.append([])
               distance.append(calc_distance(centers_new[j], point))
def k meds(meds, s):
```

```
clus[l].append(point)
           clu.append(cluster index(s, clus[1]))
def make plot(centers, sample, clusters):
   plt.show()
           sample.append([int(x), int(y)])
```

```
sy = math.sqrt(Dsy) * n / (n - 1)
X = [sample[i][0] for i in range(n)]
plt.scatter(x=X, y=Y, s=15)
ax.set xlabel('Price')
make_plot(U, sample, clusters)
```

```
def min rang(point, cens, sam):
                ze = calc distance(point, cens[i])
        b = all ranges(samp, clus[min rang(samp[i], centers, samp)], samp[i])
        samp[i].pop(2)
silhous means = []
    silhous_means.append(silhouette(means init, clusters1, sample))
    silhous meds.append(silhouette(meds init, clusters2, sample))
plt.plot(X, silhous means, color='red')
plt.show()
def ranges clusters(clus, centrs, samp):
```

```
qual_meds = ranges_clusters(clusters2, meds_init, sample)

make_plot(means_init, sample, clusters1)

make_plot(meds_init, sample, clusters2)

print(qual_mean)
print(qual_meds)
```