Teoria dei Gruppi

ENUNCIATI

Nel seguito G indica un qualsiasi gruppo, viene indicata con e l'unità del gruppo. La notazione usata è quella moltiplicativa. $H \sqsubseteq G$ indica che H è sottogruppo di G (eventualmente coincidente). $H \lhd G$ indica che H è un sottogruppo normale di G.

- Due qualsiasi laterali destri di $H \sqsubseteq G$ in G (Ha e Hb) sono in corrispondenza biunivoca attraverso la funzione $ah \mapsto bh$
- ullet Esiste inoltre una corrispondenza biunivoca tra l'insieme dei laterali destri e quello dei laterali sinistri di uno stesso sottogruppo H
- (**Teorema di Lagrange**) G finito e $H \sqsubseteq G$, allora ord $H \mid$ ord G
- G finito, $a \in G$ allora ord $a \mid \text{ord } G \text{ e } a^{\text{ord } G} = e$
- (Ciclicità degli ordini primi) G finito con ordine primo (ord $G=p\in\mathbb{P}$), allora G è ciclico
- (Sottogruppo prodotto) $H, K \sqsubseteq G$. Allora $HK \sqsubseteq G \Leftrightarrow HK = KH$
- (Ordine del prodotto) $H, K \sqsubseteq G$ con H e K sottogruppi finiti. Supponiamo che $HK \sqsubseteq G$. Allora ord $(HK) = \frac{\text{ord } (H)\text{ord } (K)}{\text{ord } (H \cap K)}$
- (Definizione di sottogruppo normale) $N \lhd G \Leftrightarrow \forall x \in G \quad xHx^{-1} = H \Leftrightarrow \forall x \in G \quad xHx^{-1} \subseteq H \Leftrightarrow \forall x \in G \quad xH = Hx$
- (Gruppo quoziente) Se $N \lhd G$, allora anche G/N è un gruppo. Inoltre se G è finito, vale ord $(G/N) = \frac{\operatorname{ord}(G)}{\operatorname{ord}(N)}$
- (Proiezione al quoziente) $N \triangleleft G$. $\Phi: G \mapsto G/N$ definita da $\Phi(g) = Ng$ è un omomorfismo surgettivo.
- (Gruppi abeliani hanno tutti i sottogruppi normali) G abeliano. $N \sqsubseteq G \implies N \triangleleft G$.
- (Controimmagine di un normale è normale) $N' \triangleleft G'$, $\Phi : G \rightarrow G'$. Allora $\Phi^{-1}(N') \triangleleft G$.
- (Immagine di un normale con morfismo surgettivo è normale) $N \lhd G$, $\Phi: G \to G'$ omomorfismo sugettivo. Allora $\Phi(N) \lhd G'$.
- (Normalità del Ker) $\Phi: G \mapsto H$ omomorfismo surgettivo. $K = \operatorname{Ker} \Phi \implies K \lhd G$
- (L'immagine è un sottogruppo) $\Phi: G \to G'$ omomorfismo. Im $\Phi \sqsubseteq G'$ (ma NON è detto che sia normale)
- (Immagini inverse) $\Phi: G \mapsto H$ omomorfismo. Ker $\Phi = K \implies \Phi^{-1}\Phi(x) = Kx$
- (Primo teorema di Omomorfismo) $\Phi:G\mapsto H$ omomorfismo surgettivo con $K=\operatorname{Ker}\Phi.$ Allora $G/K\cong H$
- (Variante del Primo teorema di Omomorfismo) $f: G \mapsto G'$ omomorfismo surgettivo. $H \triangleleft G, H \sqsubseteq K, K = \operatorname{Ker} f$. Allora $\exists ! \phi: \frac{G}{H} \to G'$ non necessariamente iniettivo tale che $f = \phi \circ \pi_{\frac{G}{H}}$
- ("Inversi del teorema di Lagrange") Se G è ciclico, ord G=n si ha $\forall d \mid n \quad \exists ! H \sqsubseteq G$ t.c. ord H=d. Se G è abeliano, ord G=n si ha $\forall d \mid n \quad \exists H \sqsubseteq G$ t.c. ord H=d ma in generale non è unico.
- (Condizione equivalente al prodotto diretto) $G \equiv H \times K \Leftrightarrow \exists H, K \lhd G \text{ t.c. } H \cap K = (e), HK = G$
- (Teorema di Cauchy) Sia $p \in \mathbb{P}$ t.c. $p \mid \text{ord } G$. Esiste allora $a \neq e$ t.c. $a^p = e$
- (**Primo teorema di Sylow**) Sia $p \in \mathbb{P}$ t.c. $p^{\alpha} \mid \text{ord } G, p^{\alpha+1} \nmid \text{ord } G$. Allora G ha un sottogruppo di ordine p^{α} . Inoltre se G è abeliano tale sottogruppo è unico.

- (Secondo teorema di Syolow) Sia G un gruppo finito. Allora tutti i p-Sylow sono coniugati.
- (Corollario) Dato un gruppo finito G, il numero dei p-Sylow di G è uguale a $i_G(N_G(P))$, dove P è un qualsiasi p-Sylow di G. In particolare, un p-Sylow P è normale sse non ci sono altri p-Sylow oltre a P
- (**Terzo teorema di Sylow**) Detto n_p il numero dei p-Sylow di un gruppo finito G, valgono $n_p \equiv 1 \pmod{p}$ e $n_p \mid \text{ord } G$.
- (Corrispondenza tra gruppi normali) Sia $\Phi: G \mapsto G'$ omomorfismo surgettivo. $K = \text{Ker }\Phi$. Dato $H' \sqsubseteq G'$ si definisca $H = \{x \in G \mid \Phi(x) \in H'\}$. Si ha che $H \sqsubseteq G$ t.c. $K \subseteq H$. Inoltre se $H' \lhd G'$ allora $H \lhd G$. L'associare H' ad H stabilisce una corrispondenza biunivoca dell'insieme di tutti i sottogruppi di G' sull'insieme di tutti i sottogruppi di G che contengono G
- (Secondo teorema di Omomorfismo) $\Phi: G \mapsto G'$ omomorfismo surgettivo, $K = \text{Ker } \Phi$. Si prenda ora $N' \lhd G'$ e sia $N = \{x \in G \mid \Phi(x) \in N'\}$. Allora $G/N \cong G'/N'$ oppure, in modo equivalente, $G/N \cong (G/K)/(N/K)$.
- (Il centro è un sottogruppo normale) $Z(G) \triangleleft G$, anzi è caratteristico.
- (Caratterizzazione degli automorfismi interni) Int $G \cong G/Z$ con Z = Z(G) centro di G. Inoltre Int $G \triangleleft \operatorname{Aut} G$.
- (**Teorema di Cayley**) Ogni gruppo è isomorfo ad un sottogruppo di S(X), per un opportuno X.
- (**Teorema X**) Se G è un gruppo, $H \sqsubseteq G$, X l'insieme di tutti i laterali destri di H in G, esiste un omomorfismo $\Phi: G \to S(X)$. Inoltre Ker Φ è il più grande sottogruppo normale di G contenuto in H.
- (Corollario dell'indice fattoriale) Se G è un gruppo finito e $H \neq G$ un sottogruppo di G tale che ord $G \nmid i_G(H)!$, allora H deve contenere un sottogruppo normale non banale di G. In particolare, G non può essere semplice.
- (Argomento di Frattini) Sia G un gruppo finito e $H \triangleleft G$; sia P un p-Sylow di H. Allora $G = HN_G(P)$.
- (Corollario) Dato un *p*-Sylow $P \sqsubseteq G$ vale $N_G(N_G(P)) = N_G(P)$.

PARTICOLARI TIPI DI GRUPPI

- (I gruppi ciclici sono abeliani) G ciclico $\implies G$ abeliano. (Segue dall'associatività dell'operazione di gruppo)
- (Ciclicità dei gruppi con ordine primo) G gruppo. ord $G=p\in\mathbb{P}\implies G$ è ciclico. (Basta usare Cauchy)
- (Esiste un unico gruppo ciclico di ogni ordine) G gruppo ciclico. ord $G = n \implies G \cong \mathbb{Z}_n$
- (Abelianità di Gruppo con quoziente sul centro ciclico) G gruppo. G/Z(G) ciclico $\implies G$ abeliano

CONTROESEMPI

• (Gruppo non abeliano con tutti i sottogruppi normali) $Q_8 = \{1, i, j, k, -1, -i, -j, -k\}$ con le regole di moltiplicazione tra quaternioni. ($i^2 = j^2 = k^2 = 1$, ij = k, ji = -k, ...)

Trucchi vari

- Il modo più utile di usare l'informazione MCD (a,b)=1 è tramite Bèzout: $\exists s,t$ t.c. as+bt=1, soprattutto se a e b sono ordini di gruppi.
- Se $N \triangleleft G$, $x^{i_G(N)} \in N$ (poiché i G(N) è l'ordine del gruppo quoziente G/N)
- Se $G^k \sqsubseteq G$, allora $G^k \triangleleft G$. (Segue banalmente da $ga^kg^{-1} = (gag^{-1})^k$)
- Se $H \sqsubseteq G$, ord $(H) > \frac{\text{ord } (G)}{2} \implies H = G$

GRUPPI CICLICI

- $H, K \sqsubseteq G$, ord (H) = a, ord (K) = b. Se MCD (a, b) = 1, allora $H \cap K = (e)$. Infatti $H \cap K \sqsubseteq H$, $H \cap K \sqsubseteq K \implies \text{ord } (H \cap K) \mid \text{ord } (H \cap K) \mid \text{ord } (K) \implies \text{ord } (H \cap K) = 1$.
- Se $H \cap K = (e)$ e $H, K \sqsubseteq G$ con G abeliano si ha: Siano $h \in H, k \in K$, ord (h) = r, ord (k) = s. Allora ord (hk) = mcm (r,s). (Infatti $(hk)^{\text{mcm } (r,s)} = h^{\text{mcm } (r,s)} k^{\text{mcm } (r,s)} = ee = e$. Inoltre supponiano $\exists t < \text{mcm } (r,s)$ t.c. $(hk)^t = e$ Allora $h^t k^t = e \implies h^t = k^{-t} \in H \cap K \implies h^t = k^{-t} = e \implies r \mid t,s \mid t \implies \text{mcm } (r,s) \mid t$)

Caratteristiche di S_n

- S_n NON è abeliano per $n \ge 3$. Infatti (12) e (13) non commutano
- Il centro di S_n è banale per $n \geq 3$. Per questo motivo S_n NON è nilpotente per $n \geq 3$
- S_n è generato dalle permutazioni (i1),(i2),...,(in), qualsiasi sia i=1,...,n
- In S_n tutti i k-cicli sono coniugati
- Un automorfismo di S_n che manda trasposizioni in trasposizioni è interno (basta vedere dove vengono mandati i generatori): per $n \geq 7$ ciò effettivamente avviene (si esamini il centralizzante di una trasposizione), quindi ogni automorfismo di S_n è interno
- Per $n \neq 4$, l'unico sottogruppo normale proprio di S_n è A_n , il sottogruppo delle permutazioni pari (per n=4 si veda la sezione dedicata)

Caratteristiche di A_n

- A_n contiene tutti i 3-cicli di S_n
- A_n è generato da (ij1),(ij2),...,(ijn) per $n \ge 3$, qualsiasi siano i, j = 1, ..., n
- In A_n tutti i k-cicli sono coniugati per k = 1, ..., n-2
- Se un sottogruppo normale di A_n contiene un 3-ciclo allora coincide con A_n
- Ogni sottogruppo normale di A_n , per $n \ge 5$, contiene un 3-ciclo: quindi A_n è semplice
- Data una classe di coniugio di S_n di permutazioni pari, ci sono due possibilità per una classe di coniugio di A_n : o la classe di coniugio è uguale a una singola classe di coniugio di A_n o questa si spezza in due classi in A_n . In particolare dato $g \in A_n$ la classe di g in S_n non si spezza se $C_{S_n}(g) \nsubseteq A_n$. Equivalentemente non si spezza se esiste una permutazione dispari che commuta con g. Equivalentemente non si spezza se la decomposizione in cicli disgiunti di g contiene un ciclo pari o due cicli della stessa lunghezza.

LAYOUT COMPLETO DI S_4

 S_4 è il gruppo delle permutazioni di quattro elementi. A_4 è il gruppo delle permutazioni pari. V_4 è il gruppo dei prodotti di 2-cicli disgiunti ($\mathbb{Z}_2 \times \mathbb{Z}_2 \cong V_4 = \{(), (12)(34), (13)(24), (14)(23)\}$). D_8 è il gruppo diedrale di ordine otto.

 S_4 contiene le seguenti permutazioni:

- 1 identità: ()
- 6 2-cicli: (12), (13), (14), (23), (24), (34)
- 3 prodotti di 2-cicli: (12)(34), (13)(24), (14)(23)
- 8 3-cicli: (123), (124), (132), (134), (142), (143), (234), (243)
- 6 4-cicli: (1234), (1243), (1324), (1342), (1423), (1432)

Altre caratteristiche di S_4 :

- Abbiamo che S_4 è risolubile considerando la catena $(e) \subseteq V_4 \subseteq A_4 \subseteq S_4$
- $A_4 \triangleleft S_4$ (Poiché ha indice 2)
- $V_4 \triangleleft S_4$ (conti)
- $S_4 \cong V_4 \rtimes \operatorname{Aut}(V_4) \cong V_4 \rtimes S_3$
- $D_8 \sqsubseteq S_4$ (prendendo $D_8 = \{(), (1234), (13)(24), (1432), (12)(34), (14)(23), (13)(24)\})$

Gruppi diedrali D_n

- (Presentazione) $D_n = \{s, r \mid s^2 = r^n = e, srs^{-1} = r^{-1}\}$
- (Moltiplicazione) $r^i s^j \cdot r^a s^b = r^{i+(-1)^j a} s^{j+b}$
- (Sottogruppi di D_n) Si hanno i seguenti sottogruppi: Se $m \mid n$ si ha $C_m = \{r^{\frac{n}{m}}\} \triangleleft D_n$, $D_m = \{r^{\frac{n}{m}}, sr^k\}$ con $k = 0, 1, \ldots, \frac{n}{m} 1$
- (Classi di coniugio di D_n , n pari) Sono $\{e\}$, $\{r^k,r^{-k}\}$ $\forall k \in \{1,\ldots,\frac{n}{2}\}$, $\{s,sr^2,\ldots,sr^{\frac{n}{2}}\}$, $\{sr,sr^3,\ldots,sr^{\frac{n}{2}-1}\}$
- (Classi di coniugio di D_n , n dispari) Sono $\{e\}$, $\{r^k, r^{-k}\}$ $\forall k \in \{1, \dots, \frac{n-1}{2}\}$, $\{s, sr, sr^2, \dots, sr^{n-1}\}$
- (Sottogruppi Normali di D_n) $C_m \triangleleft D_n$, Se n dispari allora nessun altro (tranne quelli banali), se n pari si hanno i due sottogruppi $D_{\frac{n}{2}} \triangleleft D_n$
- (Sottogruppi Abeliani di D_n) Tutti i C_m e i D_1, D_2

AUTOMORFISMI DI GRUPPI CLASSICI

- Aut $(D_n) \cong \operatorname{Aff}(C_n)$
- Aut $(Q_8) \cong S_4$, Int $(Q_8) \cong Q_8/Z(Q_8) \cong V_4$, Out $(Q_8) = \text{Aut } (Q_8)/\text{Int } (Q_8) \cong S_4/V_4 \cong S_3$
- Aut $(C_p) \cong C_p^*$, Aut $(C_p^n) \cong \operatorname{GL}_n(\mathbb{F}_p)$, con p primo

- Aut $(C_n) \cong C_n^*$, con $n \in \mathbb{N}^+$
- Aut $(\mathbb{Q}) \cong \mathbb{Q}^*$
- Aut $(V_4) \cong \operatorname{Aut}(C_2^2) \cong \operatorname{GL}_2(\mathbb{F}_2) \cong S_3$

TRUCCHI PER ESERCIZI CON AUTOMORFISMI

- Gli automorfismi conservano gli ordini degli elementi, in particolare tutti i gruppi definiti in maniera "intrinseca" usando solo proprietà di ordine sono caratteristici e.g. "< {elementi di ordine 2} >" è caratteristico.
- Se $H \times \{e\}$ e $\{e\} \times K$ sono caratteristici in $H \times K$ allora Aut $(H \times K) = \text{Aut } (H) \times \text{Aut } (K)$
- Int $G \cong G/Z$ con Z = Z(G) centro di G.
- Int $G \triangleleft$ Aut G, può essere utile per esprimere Aut (G) come prodotto semidiretto di due sottogruppi (uno normale è gratis).
- Sia α automorfismo di G e $x \in G$, allora $C_G(\alpha(x)) = \alpha(C_G(x))$. Può essere utile e.g. per capire come sono fatti gli Aut $(S_3 \times S_3)$.
- $Z(G \times K) = Z(G) \times Z(K)$
- $C_{G \times K}((x,y)) = C_G(x) \times C_K(y)$

ELENCO DEI GRUPPI DI ORDINE PICCOLO

Ordine	Gruppi Abeliani	Gruppi Non Abeliani
1	C_1	
2	C_2	
3	C_3	
4	C_4 , $C_2 imes C_2$	
5	C_5	
6	C_6	S_3
7	C_7	
8	C_8 , $C_4 \times C_2$, $C_2 \times C_2 \times C_2$	D_4 , Q_8
9	C_9 , $C_3 imes C_3$	
10	C_{10}	D_5

Teoria degli Anelli

DEFINIZIONI

- (Ideale primo in un anello commutativo) Se A è un anello, allora si dice che l'ideale P di A è primo se: $P \subseteq A$ e se $a, b \in A$ t.c. $ab \in P \implies a \in P$ oppure $b \in P$
- (Ideale massimale)

Proprietà degli ideali primi

- \bullet Un ideale I dell'anello commutativo A è primo se e solo se l'anello quoziente $\frac{A}{I}$ è un dominio di integrità
- Un ideale I di un anello A è primo se e solo se $A \setminus I$ è chiuso rispetto alla moltiplicazione
- In un anello commutativo unitario ogni ideale massimale è anche un ideale primo
- (Lemma di Krull) Ogni anello commutativo unitario ha almeno un ideale massimale (si può dimostrare usando il lemma di Zorn)
- Un anello commutativo è un dominio di integrità se e solo se $\{0\}$ è un ideale primo
- La controimmagine di un ideale primo attraverso un omomorfismo di anelli è un ideale primo