Submission details

Deadline HA1: 26 November 2023, 23:59 Deadline HA2: 07 December 2023, 23:59 Deadline HA3: 17 December 2023, 23:59

You have one honey-day. The honey-day allows you to postpone one of the three deadlines by 24 hours.

1 HA-1

1. Consider the following joint distribution of X and Y:

	X = -1	X = 0	X = 1
Y = 0	0.1	0.2	0.3
Y = 1	0.2	0.1	0.1

- (a) Find explicitely $\sigma(X)$, $\sigma(Y)$, $\sigma(X \cdot Y)$, $\sigma(X^2)$, $\sigma(2X + 3)$.
- (b) Home many elements are there in $\sigma(X,Y)$, $\sigma(X+Y)$, $\sigma(X,Y,X+Y)$?
- 2. More σ -algebra questions :)
 - (a) You observe the result of 10 independent coin tosses. How many elements the corresponding σ -algebra contains?
 - (b) Prove that a finite σ -algebra can contain only 2^k elements.
 - (c) Is union of two σ -algebras always a σ -algebra? Prove your statement.
 - (d) Is intersection of two σ -algebras always a σ -algebra? Prove your statement.
- 3. Is it true that for any two σ -algebras \mathcal{F} and \mathcal{H} and for any random variable Y

$$E(E(Y \mid \mathcal{F}) \mid \mathcal{H}) = E(Y \mid \mathcal{F} \cap \mathcal{H})?$$

Prove the statement or provide a counter-example.

- 4. I throw a fair die until the first six appears. Let's denote the total number of throws by X and the number of odd integers thrown by Y.
 - (a) Find $\mathbb{P}(Y = y \mid X)$, $\mathbb{E}(Y \mid X)$, $\mathbb{Var}(Y \mid X)$;
 - (b) Find $E(X \mid Y)$.
- 5. I throw 100 coins. Let's denote by X the number of coins that show «heads». I throw these X coins once again, leaving other coins as they are. Let's denote by Y the number of coins that show «heads» now.

Find
$$\mathbb{P}(Y = y \mid X)$$
, $\mathbb{E}(Y \mid X)$, $\mathbb{V}(Y \mid X)$, $\mathbb{E}(Y)$, $\mathbb{E}(Y)$, $\mathbb{V}(Y)$.

6. Random variables X and Y have joint normal distribution with zero means and covariance matrix

$$\begin{pmatrix} 4 & -1 \\ -1 & 9 \end{pmatrix}.$$

- (a) Find $\mathrm{E}(Y|X)$, $\mathrm{Var}(Y|X)$, $\mathrm{E}(XY|X)$ and $\mathrm{Var}(XY|X)$.
- (b) Using standard normal cumulative distribution function find $\mathbb{P}(YX>2021|X)$.

2 HA-2

- 1. The random variables Z_1 , Z_2 , ... are independent and identically distributed with $\mathbb{P}(Z_n=1)=0.7$ and $\mathbb{P}(Z_n=-1)=0.3$. Consider the cumulative sum process, $S_n=Z_1+\ldots+Z_n$ with $S_0=0$.
 - (a) Find all values of a such that $\exp(aS_n)$ is a martingale.
 - (b) If possible find the constants α and β such that $Y_n = S_n^2 + \alpha S_n + \beta n$ is a martingale.
- 2. The random variables $Z_1, Z_2, ...$ are independent and identically distributed with $\mathbb{P}(Z_n = +1) = 0.1, \mathbb{P}(Z_n = -1) = 0.1$ and $\mathbb{P}(Z_n = 0) = 0.8$. Consider the cumulative sum process, $S_n = Z_1 + ... + Z_n$ with $S_0 = 0$. Let τ be the first moment when $S_n = 10$ or $S_n = -20$.
 - (a) Is S_n a martingale?
 - (b) Find $\mathbb{P}(S_{\tau} = 10)$.
 - (c) If possible find the non-random function a_n such that $Y_n = S_n^2 + a_n$ is a martingale.
 - (d) Find $E(\tau)$.
- 3. Let (W_t) be a standard Wiener process.
 - (a) Find $E(\sin(\alpha W_t))$.
 - (b) Find $E(\exp(\alpha W_t))$.
 - (c) Find $E(\cos(\alpha W_t))$.

Hint: you may solve this with or without Ito's lemma, that's up to you.

- 4. Let (W_t) be a standard Wiener process and $Y_t = W_t^3 + t^2 W_t^2$.
 - (a) Find $E(Y_t)$ and $Var(Y_t)$.
 - (b) Is Y_t a martingale?
 - (c) Find $E(Y_t \mid W_s)$ for $t \geq s$.
- 5. The processes (X_t) and (Y_t) are independent Wiener processes adapted to the filtration (\mathcal{F}_t) . The process $Z_t = aX_t + 0.3Y_t$ with a > 0 is also a Wiener process.
 - (a) Find the value of a.
 - (b) Find the correlation $Corr(Z_t, X_t)$.
 - (c) Find $E(Z_3 \mid X_2)$ and $Var(Z_3 \mid X_2)$.
 - (d) Find $E(Z_3 \mid \mathcal{F}_2)$ and $Var(Z_3 \mid \mathcal{F}_2)$.
- 6. Let $Y_t = W_t + 4t$ and consider the process $M_t = \exp(\alpha W_t \alpha^2 t/2)$. The moment τ is the first moment when Y_t hits 10.
 - (a) Check that M_t is a martingale.
 - (b) Find f(t) such that $M_t = f(t) \exp(\alpha Y_t)$.
 - (c) Using Doob's theorem for M_t find $E(\exp(-(4\alpha + \alpha^2/2)\tau))$.
 - (d) Find $E(\exp(-s\tau))$ for $s \ge 0$.
 - (e) Find $E(\tau)$.

Hint: you may believe without penalty that Doob's theorem can be applied in this case.

3 HA-3

- 1. Consider the process $dX_t = W_t^4 dW_t + W_t^6 dt$ with $X_0 = 2024$.
 - (a) Find $E(X_t)$.
 - (b) Find dY_t for $Y_t = X_t^2$.
 - (c) (bonus point) Find $E(Y_t)$ and $Var(X_t)$.
- 2. Consider the process $C_t = W_t^3 + 2W_t^2 5W_t^3 \cdot t$.
 - (a) Find dC_t .
 - (b) Is C_t a martingale?
 - (c) Find the covariance $\operatorname{Cov}\left(C_t, \int_0^t W_u^2 dW_u\right)$.
- 3. Solve the stochatic differential equation

$$dY_t = -Y_t dt + dW_t, \ Y_0 = 1$$

If you are have no clues you may try a substitution $Z_t = f(t)Y_t$. Do not forget that the final answer may contain integrals that can't be calculated explicitly. It's ok.

4. Solve the stochatic differential equation

$$dY_t = Y_t dt + (t^3 + 4Y_t) dW_t, Y_0 = 1$$

If you are have no clues you may try to represent the process Y_t as $Y_t = A_t B_t$, where A_t is the solution of the equation $dA_t = A_t dt + 4A_t dW_t$.

5. Consider the framework of Black and Scholes model: S_t is the share price. Derive the current price of two European type assets, X_0 and Y_0 .

Future payoffs are given by:

- (a) $X_T = (S_T K)^3$ where T and K are fixed in the contract.
- (b) $Y_T = S_T^{-2}$ where T is fixed in the contract.
- 6. Consider the framework of Black and Scholes model with stochastic exchange rate. Now S_t is the share price in dollars with $dS_t = \mu S_t dt + \sigma S_t dW_{1t}$. The exchange rate X_t (price of one dollar in euros) is driven by the equation $dX_t = \alpha X_t dt + \beta X_t dW_{2t}$.

The Wiener processes W_{1t} and W_{2t} are independent, in particular that means $dW_{1t}dW_{2t}=0$.

The risk free interest rate in euros is r.

The european type option pays you $ln(S_tX_t)$ in euros at fixed time T.

Find the price of this option in euros at time t=0, write your answer in terms of the share price in euros.