\$ 2.1 - Matrix operations + Determinants & I'm not following the book here.

Recall: Matrix mult.

Given
$$T: \mathbb{R}^m \supset \mathbb{R}^n$$
, $T(\overrightarrow{x}) = A\overrightarrow{x}$ (=> $A = n \times m$)
 $5: \mathbb{R}^k \longrightarrow \mathbb{R}^m$, $5(\overrightarrow{x}) = B\overrightarrow{x}$, (=> $B = m \times k$)

then the composition transformation ToS: IRK -> IRN is given by
$$(T \circ 5)(X) = (AB)\hat{x}$$
L' matrix multiplication!

(AB) = (nxm)(mxk)=nxk o

3 AB=0
$$\neq$$
 A=0 or B=0 in general.

Def: If A is a square matrix, matrix $A^{k} = A \cdot A \cdot \cdots A^{k} \quad \text{matrix}$ $k \cdot \text{times}$ $\text{Note: } A^{o} \stackrel{\text{def}}{=} I_{n} = n \times n \text{ identity}$

Properties: ① $(A^{T})^{T} = A$ ② $(A+B)^{T} = A^{T}+B^{T}$ ③ $(rA)^{T} = rA^{T}$, $r \in \mathbb{R}$ scalar
④ $(AB)^{T} = B^{T}A^{T} \leftarrow \text{not a typo}$

Determinants: linear, obv Recall: Olf T(x) = Ax is Atrans, from 12 7 12, then A= nxn matrix & 3 T maps "parallelograms" to "paralle lograms." 1 The vectors $\vec{e}_1, \dots, \vec{e}_n$ (cols of In=nxn identity) form the "unit cube" in 127.

Q' what is the volume of the "parallelogram" THAT in terms of the unit cube? T spanned by T(E,),..., T(En)

Ans: Determinants, conly valid for square matrices!

The goal will be to write the parallelogram) = #. (hypervolume of T(parallelogram) = #. (hypervolume) of parallelogram)

but to find "#", we need to compute determinants.

The method we'll talk about in this class is called cofactor expansion.

Fact: The determinant of a 2x2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the number det (A) = ad-bc

Exidet
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$$

$$\det \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = 1$$

$$\det \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = -2$$

· For square matrices larger than 2x2, we do cofactor expansion along the first row.

Ex:
$$(1)$$
 (2) (3) $= \mathbb{H}(1) \text{ det} \begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix}$ matrix remaining after deleting 1's row \$\pm\$ col $= \mathbb{H}(1) \text{ det} \begin{pmatrix} 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ matrix remaining after $= \mathbb{H}(2) \text{ det} \begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix}$ matrix remaining after $= \mathbb{H}(2) \text{ det} \begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix}$ matrix remaining after deleting 2's row \$\pm\$ col $= \mathbb{H}(3) \text{ det} \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$ after deleting 3's row \$\pm\$ col $= \mathbb{H}(3) \text{ det} \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$ after deleting 3's row \$\pm\$ col $= \mathbb{H}(3) \text{ det} \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$

Alternating

=
$$(45-48)$$
 - 2 $(36-42)$ + 3 $(32-35)$

= (-3) - 2 (-6) + 3 (-3)

= -3 + 12 - 9 = \bigcirc

• Can use any row/column as long as we get our coefficients correct:

$$\frac{Ex'}{det}$$
 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$

Hint: Pick row col w most zeros; (col 1 or row 3 here)

Hint: Pick row col w most zeros; (col 1 or row 3 here)

Hint: Pick row col w most zeros; (col 1 or row 3 here)

Hint: Pick row col w most zeros; (col 1 or row 3 here)

Hint: Pick row col w most zeros; (col 1 or row 3 here)

Hint: Pick row col w most zeros; (col 1 or row 3 here)

Hint: Pick row col w most zeros; (col 1 or row 3 here)

$$= 2 \text{ det} \left(\begin{array}{c} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{array} \right)$$
 $= 1 \text{ det} \left(\begin{array}{c} 1 & 2 & 3 \\ 5 & 1 & 2 \end{array} \right)$
 $= 2 \text{ det} \left(\begin{array}{c} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{array} \right)$
 $= 2 \text{ det} \left(\begin{array}{c} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{array} \right)$
 $= 2 \text{ det} \left(\begin{array}{c} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{array} \right)$
 $= 2 \text{ det} \left(\begin{array}{c} 2 & 4 \\ 1 & 3 \end{array} \right) + 1 \text{ det} \left(\begin{array}{c} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{array} \right)$
 $= -13 + 9 - 2 \left(-2 + 1 \right)$
 $= -13 + 9 - 2 \left(-2 + 1 \right)$
 $= -13 + 9 - 2 \left(-1 \right)$
 $= -13 + 9 - 2 \left(-1 \right)$

Interpretation: Given a 4D parallel epiped/in 1124 & 7:1124->1124 s.t. $T(\vec{x}) = A\vec{x}$, the Avolume of T(S) is