이수인원

교과목 포트폴리오 (EGY4021 에너지소자공정)

1. 교과목 수강인원

■공학

수업년도	수업학기	계열구분	수강인원	이수인원
2021	2	공학	8	8
2022	2	공학	7	7
2023	2	공학	12	12
2024	2	공학	16	16

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
			NI III			

No data have been found.

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
		Section 19				

No data have been found.

4. 성적부여현황(등급)

수업년도	수업학기	등급	인원	비율
2021	2	Α+	7	87.5
2021	2	A0	1	12.5
2022	2	Α+	7	100
2023	2	A+	9	75
2023	2	A0	1	8.33
2023	2	B+	2	16.67
2024	2	A+	11	68.75
2024	2	A0	5	31.25

5. 강의평가점수

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	2	92.56	93.8	92.33	100	
2024	1	91.5	93.79	91.1		
2023	1	91.47	93.45	91.13		
2023	2	91.8	93.15	91.56	96	
2022	2	90.98	92.48	90.7	100	

6. 강의평가 문항별 현황

		본인평 균 (가중 치적용)	OLTH		점수별 인원분포						
번호	평가문항		소속학과,대학평균과의 차이 (+초과,-:미달)		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다		
		5점 미만	학	과	대	학	· 1점	2점	그저	4점	5점
	교강사:	미만	차이	평균	차이	평균	- 1 111		3점	4심	5 2

No data have been found.

7. 개설학과 현황

학과	2025/2	2024/2	2023/2	2022/2	2021/2
에너지공학과	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)

8. 강좌유형별 현황

강좌유형	2021/2	2022/2	2023/2	2024/2	2025/2
일반	1강좌(8)	1강좌(7)	1강좌(12)	0강좌(0)	0강좌(0)
공동강의	0강좌(0)	0강좌(0)	0강좌(0)	1강좌(16)	0강좌(0)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정	서울 공과대학 에너지공학과	본 교과목에서는 에너지공학도에게 필요한 에너지 소자 제작 공정에 대한 전반적인 지식을 습득하고, 소자의 기본적인 개념부터 에너지 소자 제작의 기본 공장의 원리를 이해한다. 반도체 소자 제작의 단위공정 기술인 에피택시성장, 리소그래피, 산화 및 확산, 이온주입, 박막증착, 식각등과 관련한 장비기술(이론, 응용)을 공부한다. 또한 반도체 소자 및 공정기술을 활용한 에너지소자의 제작 기술을 학습하기 위하여 실습실험을 함께 병행하여 실제 공정에서 사용되는 기술을 습득할 수 있도록 하는 것이 본 교과목의 최종 목표이다.		
학부 2020 - 2023 교육과 정	서울 공과대학 에너지공학과	본 교과목에서는 에너지공학도에게 필요한 에너 지 소자 제작 공정에 대한 전반적인 지식을 습득 하고, 소자의 기본적인 개념부터 에너지 소자 제 작의 기본 공장의 원리를 이해한다. 반도체 소자 제작의 단위공정 기술인 에피택시성장, 리		

교육과정	관장학과	국문개요	영문개요	수업목표
		소그래피, 산화 및 확산, 이온주입, 박막증착, 식 각 등과 관련한 장비기술(이론, 응용)을 공부한 다. 또한 반도체 소자 및 공정기술을 활용한 에 너지 소자의 제작 기술을 학습하기 위하여 실습 실험을 함께 병행하여 실제 공정에서 사용되는 기술을 습득할 수 있도록 하는 것이 본 교과목의 최종 목표이다.		
학부 2016 - 2019 교육과 정		본 교과목에서는 에너지 소자 제작에 필요한 공정의 기본적인 이론 및 실제 공정 기술들을 배운다. 반도체 소자 제작의 단위공정 기술인 에피택시성장, 리소그래피, 산화 및 확산, 이온주입, 박막증착, 식각 등과 관련한 장비기술(이론, 응용)을 공부한다. 또한 반도체 소자 및 공정기술을활용한 에너지 소자의 제작 기술에 대하여 공부한다.		에너지공학도에게 필요한 에너지 소자 공정에 대한 전반적 인 지식을 습득하고, 소자의 기본적인 개 념부터 에너지 소자 제작의 기본 공정의 원리를 이해한다. 이론 수업에서는 에 너지소자 제작을 위 한 단위 공정의 기본 개념을 익힌다.

10. CQI 등록내역 No data have been found.