رمة (العلا	/ * #£01
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التّمرين الأول: (04 نقاط)
0.5	0,25	$N=6$ عدد النواتين C_6^{12} و C_6^{12} : النواة C_6^{12} : عدد البروتونات C_6^{12} عدد النوترونات C_6^{12}
	0,25	$N\!\!=\!\!8$ النواة $C\!\!=\!\!1$: عدد البروتونات $Z\!\!=\!\!6$ عدد النوترونات
0.25	0,25	2. تعريف النظائر:
0.25	0,23	(الاختلاف في A (الاختلاف في Z وتختلف في A (الاختلاف في العنصر الكيميائي تشترك في A
	0,25	.3
	0,25	$^{14}_{6}\text{C} o ^{14}_{7}\text{N} + ^{0}_{-1}\text{e}$ نواة الكربون14: معادلة التّفكك نواة الكربون14:
	r	. eta^- طبيعة الاشعاع المنبعث هو الاشعاع
		$^{12}_{6}$ C و $^{14}_{6}$ و $^{14}_{6}$ و $^{14}_{6}$ و $^{12}_{6}$
	0,25	$E_{\ell}\left({}_{Z}^{A}X\right) = \Delta m \cdot C^{2} = \left[Zm_{p} + (A - Z)m_{n} - m\left({}_{Z}^{A}X\right)\right]C^{2}$
	$2 \times 0, 25$	$E_{\ell} {14 \choose 6} = 0,10972 \times 931,5 = 102,2 MeV : {14 \choose 6} C :$ من أجل النواة
2.5	$2 \times 0,25$	$E_{\ell}\left(^{12}_{6}C\right)=0.09564 imes 931,5=89,1 MeV:^{12}_{6}C:$ من أجل النواة
	- , -	تحديد النواة الأكثر استقرارا:
	0,25	$\frac{E_{\ell}({}^{14}C)}{4} = 7.3 \text{MeV} / \text{nuc}$
	0,25	A
	0,20	$\frac{E_{\ell}\binom{12}{6}C}{A} = 7,42 MeV / nuc$
		$\frac{E_{\ell}\binom{^{14}C}{^{6}C}}{A} < \frac{E_{\ell}\binom{^{12}C}{^{6}C}}{A}$
	0,25	ومنه النواة $rac{12}{6}$ هي الأكثر استقرارا.
0.25	0.25	لاثقبير عن علاقة قانون التّناقص الاشعاعي بدلالة N_0 عدد الأنوية الابتدائية و λ ثابت λ
0.25	0,25	$N(t) = N_0 e^{-\lambda t}$:التّفكك الاشعاعي
0.5	0,25	$N\left(t ight)=N_{0}e^{-\lambda t}\Rightarrow t=-rac{t_{1/2}}{\ln2}\cdot\lnrac{N(t)}{N_{0}}$: تحدّید عمر العینة: 5.5
	0,25	t = 34986 ans ≈ 35000ans :ت ع:
		وهي نفسها المعلومة المعطاة في السند.

العلامة		/ t "Ét t \
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	التّمرين الثاني: (04 نقاط)
	0,23	1.1. تعريف المكثفة: عنصر كهربائي يتكون من لبوسين بينهما عازل.
	0,25	$u_{C}=rac{q\left(t ight)}{C}$ ، $q\left(t ight)=I\cdot t$: شحنة المكثفة $q\left(t ight)$ بدلالة I شدة التّيار $q\left(t ight)$
	0,25	$u_{_{C}}(t)=rac{I}{C}\cdot t$: التّعبير عن $u_{_{C}}(t)$ بدلالة C سعة المكثفة و
		3.1. باستغلال المنحنى البياني الشكل 2:
	0,25	1.3.1. المدلول الفيزيائي t_1 : اللحظة الموافقة لبلوغ التّوتر الأعظمي الذي تتحمله المكثفة أي
		شحن كلي للمكثفة.
		:c التَّأكد من قيمة سعة المكثفة. $:c$
	0,25 0,25	$u_{\scriptscriptstyle C} = at 0 \le t \le t_{\scriptscriptstyle 1}$ معادلة البيان: $a = 10\mathrm{V}/s$
2.5	0,25	$u_c(t) = \frac{I}{C} \cdot t$ وبالمطابقة مع
	0,25	$\frac{I}{C} = 10 \rightarrow C = 1F$: نجد
		$t_{_{1}}$ عند اللحظة: $t_{_{1}}$
	$0,25\times2$	$E_c(t_1) = \frac{1}{2}c.u_c^2(t_1) = \frac{1}{2} \times 1 \times (2,7)^2 = 3,64 \text{ J}$
	0,25	2. رسم مخطط دارة التّقريغ: 1.2. رسم مخطط دارة التّقريغ:
1.5	0,25	$[RC] = \frac{[U]}{[I]} \frac{[I]}{[U]} [T] = [T]$.2.2 التّحليل البعدي: $[T] = [T] \frac{[U]}{[U]} [T]$ فالمقدار $[T] = [T]$ متجانس مع الزمن
	$0,25\times2$	$ au = 20 s$: بالاسقاط نجد $u_c(au) = 0.37 \times 2.7 = 1$ بالاسقاط نجد . 3.2
	$0,25\times2$	$R = \frac{\tau}{C} = 20\Omega$: R استنتاج قیمهٔ
		التّمرين الثالث: (06 نقاط)
	0,25	.1
3.5		1.1. المرجع المناسب لدراسة حركة الكرة: السطحي الأرضي.
	0,5	2.1. حركة الكرة بين A و B سقوط حر: الكرة تخضع الى ثقلها فقط (اهمال دافعة
		ارخميدس والاحتكاك مع الهواء أمام الثقل أي اهمال تأثير الهواء).

العلامة		عنام الاحلية (المحضوع الأمّار)	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)	
		$v_y(t)$ و $v_x(t)$ و الزمنيتين الزمنيتين للسرعة.3.1	
		$\begin{cases} v_x = \frac{dx}{dt} = v_0 (\cos \alpha) \\ v_y = \frac{dy}{dt} = -gt + v_0 (\sin \alpha) \end{cases}$	
	$0,5 \times 2$	$v_{y} = \frac{dy}{dt} = -gt + v_{0}(\sin \alpha)$	
	$0,25\times2$	$\cos lpha = rac{v_{0x}}{v_0} = 0.75 \Rightarrow lpha = 41.41^\circ$. $lpha = 41.41^\circ$. $lpha = 4.1$	
		:B زمن وصول الكرة الى الموضع:	
	0,25	$0 = -4.9t^2 + 8(\sin 41.41^\circ)t + 1,4$	
	$0,25\times2$	$-4.9t^2 + 5,29t + 1,4 = 0$	
	$0,25\times2$	$t_B = 1,3 s$	
	0,23 \ 2	$OB = x_B = v_0 (\cos \alpha) t_B = 7.8 m$: OB استنتاج المسافة الأفقية	
		 عبارة تسارع مركز عطالة الكرة: 	
	0,25×5	$\sum \overrightarrow{F}_{ext} = m\overrightarrow{a_G} \implies \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = m\overrightarrow{a_G}$: بتطبيق القانون الثاني لنيوتن على الكرة	
		بالإسقاط على المحور الموجه في نفس جهة الحركة ('xx')	
		$-f = ma_G \Rightarrow a_G = \frac{-f}{m}$	
2.5	0,25	$\overrightarrow{P}^{lag{\dagger}}$ حركة الكرة مستقيمة متغيرة (متباطئة) بانتظام.	
		2.2. حساب المسافة BC التّي تقطعها الكرة على المحور الافقي:	
	$0,25\times2$	$v_C^2 - v_B^2 = 2a_G \cdot BC \Rightarrow BC = \frac{-v_B^2 \cdot m}{2f} = 1m$	
		عن كرة الهدف CD بعد الكرة عن كرة الهدف 3.2	
	0,25	$OD = OB + BC + CD \Rightarrow CD = OD - (OB + BC) = 10 cm$ $5 cm \le d \le 15 cm$	
	0,25	والهدف محقق.	
		التمرين التّجريبي: (06 نقاط)	
		1. كتابة المعادلتين النصفيتين لتفاعل الأكسدة والإرجاع:	
0.5	0,25	$H_2O_2(aq) + 2H_3O^+(aq) + 2\acute{e} = 4H_2O(l)$	
	0,25	$2\mathbf{I}^{-}(aq) = \mathbf{I}_{2}(aq) + 2\acute{\mathbf{e}}$	

العلامة			1	t "ĥti e come et	() 7 1 N/	-1:-		
مجموعة	مجزأة		()	لموضوع الأقرا	عس الإجابة (ا			
						للتفاعل:	2. جدول التّقدم	
		المعادلة	$H_2O_2(aq$	$+2I^{-}(aq)$	$+2H_3O^+(aa$	$q) = I_2(aq) +$	$4H_2O(l)$	
1		الحالة الابتدائي	c_2V_2	c_1V_1	7.	0	7.	
	$0,25\times3$	الحالة الانتقالية	c_2V_2-x	c_1V_1-2x	بو هر ه	х	بوفرة	
		الحالة النهائية		$c_1V_1-2x_{max}$		\mathcal{X}_{max}		
	0,25		$n_{I_2}(t) = x(t) :$	xة تقدم التّفاعل	د المتشكل بدلالا	ة مادة ثنائي اليو	التَّعبير عن كمي	
							.3	
	0,25					x_{max} الأعظمي الأعظمي		
	0,25 0,25	$c_2V_2-x_{max}$	$=0,1\times 0,1-3$	$,9\times10^{-4}=9,61$	$1 \times 10^{-3} mol \neq 0$	متفاعل المحد:	_	
	0,23						ومنه المتفاعل ا	
1 75					1	ة التَّركيز المولي 4-01 ـ 0-		
1.75	$0,25\times2$		c_1V_1 -	$2x_{max} = 0 \Longrightarrow c_1$	$=\frac{2x_{max}}{V_1}=\frac{2\times}{V_1}$	$\frac{3.9 \times 10^{-4}}{0.1} = 7.8$	$3\times10^{-3} mol \cdot L^{-1}$	
				لول المحضر:	 المذابة في المح	 ة يود البوتاسيوم	3.3. حساب كتا	
	0.252		$\frac{m}{}=c.\cdot V.=$	$\Rightarrow m = c \cdot V \cdot M$	$T = 7.8 \times 10^{-3} \times 10^{-3}$	$0.1 \times 166 = 0.12$	295g ≈ 130mg	
	$0,25\times2$		M	, 01 /1		سجلة على العلبة		
							"	
				: t =	-/ -	ب المولي للجملة		
	0,25	$t_{1/2} = 3min \Rightarrow 2t_{1/2} = 6min$ من البيان: 20 25 من البيان						
1.25	0,25		1	1	-·	$x(2t_{1/2}) = 29, 2$	5×10^{-2} mmol	
		$n_{(\mathrm{H_2O_2})}mmol$	$n_{(\Gamma)}mmol$	$n_{(I_2)}mmol$				
	$0,25\times3$	9,7	0,195	0,29				
	$0,25\times2$	$v(\mathbf{I}^{-}) = -$	$-\frac{dn(I^{-})}{dx} = 2\frac{dx}{dx}$	تقدم التّفاعل x:	میائی ⁻ I بدلالة	اختفاء النوع الكب	5. عبارة سرعة	
	0,23 \ 2		dt dt					
				:1	$t_1 = 9 min e$	ب اللحظتين 0=	حساب قيمتها في	
1				v(t=0)	$0 = 2 \left(\frac{4 \times 6,5 \times 10}{4 \times 6,5 \times 10} \right)$	$\left(\frac{0^{-2}-0}{1}\right) = 17,3\times 10^{-2}$	$0^{-2} mmol \cdot min^{-1}$	
	0,25			L	3-0)		
	0,25			$v_{\Gamma}(t=9min)$	$=2\left(\frac{5,2-3,6}{9-0}\right)6$	$5,5\times10^{-2}=2,3\times1$	$10^{-2} mmol \cdot min^{-1}$	
0.5	0,5	ر. در ب	المماية المتفاعا	تناقص التّر اكرز	تاء، السرعة:		5 211 (121-11-6)	
0.3	0,5	رك.	المونية سندت	للانفض النز البير	تصور اسرت.	ي المسوون عن	الماريكاس المعرب	

العلامة		/ 15th a to the sta			
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)			
		الجزء الأول: (14نقطة)			
		التّمرين الأول: (04 نقاط)			
0.25	0,25	1. شرح الجملة الواردة في وسائل الإعلام:			
		نشاط اليود 131 المشع في المزارع قد تجاوز في بعض الأحيان القيمة المسموح بها (2000Bq) في			
		بعض النباتات بعشر مرات أو أكثر.			
		.2			
	0,25	$^{131}_{53}$ I \rightarrow $^{A}_{Z}$ Xe + $^{0}_{-1}$ e : معادلة التّفكك: 1.2			
	0,25	$\int 131 = A + 0 \rightarrow A = 131$			
	0,25	$\begin{cases} 53 = Z - 1 \rightarrow Z = 54 \end{cases}$			
		$^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}e$			
		عبارة $t_{\frac{1}{2}}$ بالاعتماد على قانون التّناقص الإِشعاعي:			
		$N(t) = N_0 \cdot e^{-\lambda t}$			
	$3 \times 0,25$	$\left\{N\left(t_{\frac{1}{2}}\right) = N_0 \cdot e^{-\lambda t_{\frac{1}{2}}}\right\}$			
2.5		$\frac{N_0}{2} = N_0 \cdot e^{-\lambda t_{1/2}}$			
		$ln2 = \lambda t_{\frac{1}{2}} \rightarrow \qquad t_{\frac{1}{2}} = \frac{ln2}{\lambda}$			
		نصف العمر $t_{1/2}$ لليود 131 المشع. 3.2. زمن نصف العمر والمشع.			
	0,25	$ln\frac{N}{N_0} = -\lambda t$ العبارة النظرية:			
	0,25	$ln\frac{N}{N_0}=at=-0,0866t$:العبارة البيانية			
	0,25	$\lambda = 0.0866~jours^{-1}$ ومنه:			
	0,25	$t_{\frac{1}{2}} = \frac{\ln 2}{0,0866} = 8 jours$			

العلامة		عنام الأمامة (الممضعة الثّاني)	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)	
	0,25	.3 عدد الأنوية N_0 لليود 131 المشع المتواجدة في عينة كتلتها N_0 من السبانخ. $\begin{cases} A_0 = \lambda \cdot N_0 \\ N_0 = \frac{A_0}{2} \end{cases}$	
	0,25	$N_0 = \frac{8000 \times 24 \times 3600}{0,0866} = 7,98 \times 10^9 \text{ Noyaux}$	
1.25		2.3. إيجاد أصغر مدة زمنية يجب انتظارها لتناول السبانخ.	
	0,25	$t = \frac{t_{1/2}}{\ln 2} \cdot \ln \left(\frac{A_0}{A} \right)$	
	0,25	$t = \frac{8}{\ln 2} \cdot \ln \left(\frac{8000}{2000} \right) = 16 jours$	
		3.3. تاريخ بداية الاستهلاك:	
	0,25	بعد انتظار مدة 16 يوم من تاريخ 11 مارس 2011 يمكن استهلاكه في اليوم الموالي والذي يوافق	
	0,23	التّاريخ: 28 مارس 2011.	
	2×0,25	التمرين الثاني: (04 نقاط)	
0.5		C. يتميز المولد المثالي بقوته المحركة الكهربائية وتتميز المكثفة بسعتها. 1	
0.25	0,25	2. ربط راسم الاهتزاز : ربط راسم الاهتزاز :	
0.75	3×0,25	3. عبارة شدة التّيار الكهربائي $i\left(t\right)$ بدلالة سعة المكثفة C والتّوتر الكهربائي بين طرفي المكثفة . $u_{C}\left(t\right)$. $ \begin{bmatrix} i\left(t\right)=\frac{dq}{dt} \\ q\left(t\right)=C\cdot u_{C}\left(t\right) \\ i\left(t\right)=C\cdot \frac{du_{C}}{dt} \end{bmatrix} $	

네	/ *1 ² *tl
مجزأة	عناصر الإجابة (الموضوع الثاني)
	. eta و eta .
	بتطبيق قانون جمع التوترات وقانون أوم:
	$\left[u_{R}\left(t\right)+u_{C}\left(t\right)=E\right]$
	$RC \cdot \frac{du_C}{dt} + u_C(t) = E$
$2 \times 0,25$	$\begin{cases} \frac{du_C}{dt} + \frac{1}{RC} \cdot u_C(t) = \frac{E}{RC} \end{cases}$
	$\frac{du_{C}}{dt} + \alpha \cdot u_{C}(t) = \beta$
$2 \times 0,25$	$\alpha = \frac{1}{RC}$; $\beta = \frac{E}{RC}$
	5. إيجاد قيمة كل من القوة المحركة الكهربائية للمولد وسعة المكثفة.
	من البيان:
0,25	$E = u_{C \max}$
0,25	$E = 9 \mathrm{V}$ سعة المكثفة C :
	au=0,6ms من البيان: $ au=0,6ms$
0,25	$ au = RC ightarrow C = rac{ au}{R}$
0,25	A
0,25	$C = \frac{0.6 \times 10^{-3}}{100} = 6 \times 10^{-6} \text{F} = 6 \mu\text{F}$
0,25	.6
	التّمرين الثالث: (06 نقاط)
	الفوج الأول:
0.25	1. تمثيل القوى الخارجية المؤثرة على مركز عطالة الكرية G أثناء سقوطها الشاقولي.
0,23	$m \stackrel{\downarrow}{lack} (A)$ الكُرية
	$\stackrel{m}{igoplus} \stackrel{(A)}{\overrightarrow{P}}$ الكُرية
	↓ z
	2×0,25 2×0,25 0,25 0,25 0,25 0,25

رمة	العا	عناصر الإجابة (الموضوع الثّاني)				
مجموعة	مجزأة	ىي)	اصر الإجابة (الموضوع التا			
		ىرية.	ي تحققها حركة مركز عطالة الك	2. المعادلة التّفاضلية للسرعة التّب		
	0,25	$\begin{cases} \sum \overrightarrow{F_{ext}} = m \cdot \overrightarrow{a_G} \\ \overrightarrow{P} = m \cdot \overrightarrow{a_G} \end{cases}$	الثاني لنيوتن على الكرية (A)	في المعلم الغاليلي نطبيق القانون		
1	0,25		$mg = m\frac{dv_z}{dt}$ $\frac{dv_z}{dt} = g$	وبالإسقاط على المحور (Oz) نج		
	0,25	رعة بانتظام.	الحركة مستقيمة متساا $rac{dv_z}{dt}=arepsilon$	$g = c^{te}$ استنتاج طبيعة الحركة:		
				h عساب الارتفاع. h		
0.5	0,25	Z	$(t) = \frac{1}{2}a \cdot t^2 + v_0 \cdot t + z_0$	من المعادلة الزمنية للمسافة		
			$h = \frac{1}{2} \times 9,80 \times (0,40)^2$			
	0,25		h = 0,784m			
		4. مناقشة الفرضية:				
0.25	0,25	التّسارع ثابت لا يتعلق بالكتلة وبالتّالي في الفراغ لكل الأجسام نفس حركة السقوط الشاقولي.				
		الفوج الثاني:				
		1. تمثيل أشعة القوى الخارجية المطبقة على مركز عطالة الكرية (B) في اللحظات: $t_0=0$ ؛				
				t_6 $t_1 = 0.16s$		
		$t_0 = 0$	$t_1 = 0.16s$	t 6		
0.75	3×0,25	$igoplus_{(A)}^{igoplus_{igoplus_{(A)}}} igoplus_{(A)}^{igoplus_{(A)}}$ الكُرية $igoplus_{(A)}$	\overrightarrow{f} $\overrightarrow{\Pi}$ (B) الكُرية	\overrightarrow{f} $\overrightarrow{\Pi}$ (B) الكُرية		
		$P > \Pi$	$P > \Pi + f$	$P = \Pi + f$		

رمة	العا	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
0.75	0,25 0,25 0,25	وبالإسقاط على المحور (C) المعادلة التّفاضلية التّي تحققها سرعة الكرية (C) المعادلة التّفاضلية التّي تحققها سرعة الكرية (C) (D) الكرية (D) الكرية (D) الكرية (D)
		3. حساب القيمة النظرية a_{th} لتسارع مركز العطالة للكرية a_{th} عند اللحظة $t=0$ والتّحقق أنَّ قيمة $t=0$ تتوافق مع القيمة التّجريبية للتسارع $a_{\rm exp}$ في اللحظة. $t=0$
		لما $0=0$ فإنَّ $v_z(0)=0$ ومنه:
	0,25	$a_{th} = g \left(1 - \frac{\rho_{air} \cdot V_s}{m} \right)$
1.25	0,25	$a_{th} = 9.80 \left(1 - \frac{1.3 \times 2.57 \times 10^{-6}}{6.0 \times 10^{-3}} \right) = 9.79 \text{m} \cdot \text{s}^{-2}$
		$t=0$. في اللحظة $a_{ m exp}$ في اللحظة القيمة التّجريبية للتسارع
	0,25	$a_{\rm exp} = \frac{\Delta v_z}{\Delta t}$
	0,25	$a_{\text{exp}} = \frac{(0.313 \times 5 - 0)}{(0.16 - 0)} = 9.78 \text{m} \cdot \text{s}^{-2}$
	0,25	$a_{_{th}}pprox a_{_{ ext{exp}}}$. أي $a_{_{ ext{exp}}}$ أي $a_{_{ ext{exp}}}$ مما سبق قيمة $a_{_{th}}$ تتوافق مع قيمة $a_{_{ ext{exp}}}$
		4. قيمة معامل الاحتكاك k اعتمادا على المعادلة التّفاضلية والبيان.
		$\frac{dv_z}{dt} + \frac{k}{m}v_z\left(t\right) = g\left(1 - \frac{\rho_{air} \cdot V_s}{m}\right)$
	0.25	$\left(\frac{k}{v}, -a\left(1-\frac{\rho_{air}\cdot V_s}{s}\right)\right)$
1	0,25 0,25	$\left\{egin{align*} & rac{k}{m}v_{\ell im}=g\left(1-rac{ ho_{air}\cdot V_s}{m} ight) \ & k=rac{m\cdot g}{v_s}\left(1-rac{ ho_{air}\cdot V_s}{m} ight) \end{array} ight.$: في النظام الدائم $v_z=v_{\ell im}$: $rac{dv_z}{dt}=0$ في النظام الدائم
	0,25	$k = \frac{m \cdot g}{v_{\ell im}} \left(1 - \frac{\rho_{cir} \cdot V_s}{m} \right) $ dt
	0,25	$k = \frac{6,0 \times 10^{-3} \times 9,8}{0,313 \times 5} \left(1 - \frac{1,3 \times 2,57 \times 10^{-6}}{6,0 \times 10^{-3}} \right) = 3,75 \times 10^{-2} kg \cdot s^{-1}$

العلامة				اممضمع الثّان /	いるいい しん	alic	
مجموعة	مجزأة		عناصر الإجابة (الموضوع الثّاني)				
			ں.	ن الى سطح الأرض	وصول الكريتير	زمني بين لحظتي	5. تفسير الفارق الز
0.25	0,25	اتجة عن تأثير	ع هو القوى الن	لمن نفس الارتفاع	ني أثناء السقوم	وجود الفارق الزم	_ السبب في
						جملة .	الموائع في ال
						(06 نقاط)	التّمرين التّجريبي:
							.1
						تّجريبي:	1.1. البروتوكول الد
							الأدوات والمواد:
		خلاط	ج الساعة – م	يب 0,1 <i>g</i> – زجاج	ميزان رقمي بتقر	ارية 200 <i>mL</i> – م	- حوجلة عيا
	0,25					, - قمع زجاجي.	مغناطيسي
	0,23			$\cdot (C$ فيتامين)	س الأسكوربيك	– مسحوق لحمض	 ماء مقطر
							خطوات العمل:
		حساب الكتلة m لحمض الأسكوربيك الواجب استعمالها لتحضير المحلول.					
				$m = c \cdot V \cdot M$ $m = 1.42 \times 10^{-2} \text{ s}$	×0.2×176=0) 5 σ	
		لأسكورينك.	ر من حمض ا			_	- باستعمال الجفنة
3					-		- باستعمال القمع
3	0,25						وبعد الانحلال الكاه
				•		.	2.1. معادلة التّفاعل
	0,25		$C_6H_8O_8$	$\mathbf{G}_{6}(s) + \mathbf{H}_{2}\mathbf{O}(l) =$		_	2.1 کی ایکا عر
				2 ()			_ الثنائيتان حمض
	0,25			H_3O^+	**	$C_6H_8O_6/C_6H$	
						<u></u>	3.1. جدول لتقدم ال
		1 1 - 2 1	nt.1	CHO (r) + H O(1) =	$C_6H_7O_6(aq)+1$	H O ⁺ (aa)
		التّفاعل		C ₆ H ₈ O ₆ (S	, , ,		$\frac{H_3O^{\circ}(aq)}{aq}$
	0,5	حالة الجملة	التَّقدم 0	17		كمية المادة 0	0
	ŕ	حالة ابتدائية	<i>x</i>	cV	بوفرة	<i>x</i>	x
		حالة انتقالية		$cV - x$ $cV - x_f$	بوفرة		x_f
		حالة نهائية	X_f	$\begin{bmatrix} c v - x_f \end{bmatrix}$	بوفرة	X_f	N f

رمة	العا	مناقلا الأمامة الأقادي
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		$\tau_f = \frac{x_f}{x_{\text{max}}} = \frac{10^{-pH}}{c}$
	0,25	$\tau_f = \frac{10^{-3}}{1.42 \times 10^{-2}} = 7,04 \times 10^{-2}$
	0,25	$1,42 \times 10^{-2}$
		بما أن $ au_f < 1$ فالتّفاعل غير تام.
		$k_a = \frac{ au_f}{10^{pH} \cdot (1- au_f)}$: عبارة ثابت الحموضة K_a للثنائية حمض/أساس تعطى بـ : 4.1
	0,25	$k_a = \frac{\left[C_6 H_7 O_6^-\right]_f \times \left[H_3 O^+\right]_f}{\left[C_6 H_8 O_6\right]_f}$
	0,25	$= \frac{\left[H_3 O^+\right]_f \times \tau_f \cdot c}{c\left(1 - \tau_f\right)} = \frac{\tau_f}{10^{pH}\left(1 - \tau_f\right)}$
		الثنائية حمض/أساس: pK_a للثنائية حمض/أساس:
	0,25	$pK_a = -log(ka)$
		$pK_{a} = -log\left(\frac{\tau_{f}}{10^{pH}\left(1 - \tau_{f}\right)}\right)$
	0,25	$pK_a = -log\left(\frac{7,04 \times 10^{-2}}{10^3 \left(1 - 7,04 \times 10^{-2}\right)}\right) = 4,12$
		.2
	0,5	سحاحة مدرجة1.2 التّركيب التّجريبي الخاص بعملية المعايرة: محلول ثيركيريتات الصوديوم
		حامل
3		محلول ثنائي اليود ح
		$S_2 O_3^{2-}$ معادلة تفاعل المعايرة الحادث بين ثنائي اليود I_2 و شوارد ثيوكبريتات.
		$I_{2}(aq) + 2e^{-} = 2I^{-}(aq)$ المعادلة النصفية للإرجاع:
	0,5	$2S_2O_3^{2-}(aq) = S_4O_6^{2-}(aq) + 2e^-$ المعادلة النصفية للأكسدة:
		$I_2(aq) + 2S_2O_3^{2-}(aq) = 2I^-(aq) + S_4O_6^{2-}(aq)$ عادلة تفاعل المعايرة الحادث:

العلامة		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
		3.2. ايجاد كمية مادة ثنائي اليود المتفاعلة مع حمض الأسكوربيك، واستنتاج كمية مادة حمض
		الأسكوربيك n_1 الموجودة في $10mL$ من عصير البرتقال.
		$n(I_2) = n_0(I_2) - n'(I_2)$ مع حمض الأسكوربيك: $n(I_2) = n_0(I_2) - n'(I_2)$ مع حمض
		$:n_{0}\left(\operatorname{I}_{2} ight)$ حساب كمية المادة الابتدائية - حساب كمية المادة الابتدائية - حساب
		$n_0(I_2) = c_2 \cdot V_2$
	0,25	$n_0(I_2) = 5.3 \times 10^{-3} \times 10 \times 10^{-3} = 5.3 \times 10^{-5} \text{ mol}$
		حساب كمية المادة المتبقية (I_2) : عند التّكافؤ:
		$\frac{n'(\mathbf{I}_2)}{1} = \frac{n(\mathbf{S}_2 \mathbf{O}_3^{2-})}{2}$
		$n'(\mathbf{I}_2) = \frac{c \cdot V_E}{2}$
	0,25	$n'(I_2) = \frac{5 \times 10^{-3} \times 8,7 \times 10^{-3}}{2} = 2,175 \times 10^{-5} mol$
		$n(I_2) = 5.3 \times 10^{-5} - 2.175 \times 10^{-5} = 3.125 \times 10^{-5} mol$
	0,25	استنتاج كمية مادة حمض الأسكوربيك n_1 الموجودة في $10m$ من عصير البرتقال:
	0,28	من معادلة التّفاعل الحادث في المرحلة الأولى:
		$C_6H_8O_6(aq) + I_2(aq) = C_6H_6O_6(aq) + 2I^-(aq) + 2H^+(aq)$
	2×0,25	$n_1 = n(I_2) = 3{,}125 \times 10^{-5} mol$: نستنتج أن
		4.2. ايجاد كتلة حمض الأسكوربيك في البرتقالة المدروسة.
		- كمية مادة حمض الأوسكوربيك الموجودة في 82mL
		$n = \frac{n_1 \cdot 82}{10}$
	0,25	$\frac{m}{M} = \frac{n_1 \cdot 82}{10}$
		172
	0,25	$m = \frac{n_1 \cdot 82}{10} \cdot M$
	3,25	$m = \frac{3,125 \times 10^{-5} \times 82}{10} \times 176 = 0,0451g = 45,1mg$
		5.2. كتلة البرتقال الواجب تناولها والتّي تعادل قرص فيتامين C1000.
	0,25	$ \begin{array}{ccc} 170g & \rightarrow & 45,1mg \\ m & \rightarrow & 1000mg \end{array} \} \rightarrow m \approx 3,8kg $