Lattice-based Cryptography

Cryptography Course

<u>Prof. Daniele Venturi</u> Dipartimento di Informatica

Academic Year 2024/2025

The Quantum Threat

- An algorithm by Shor [Sho94] solves the factoring and discrete logarithm problems in **polynomial-time** on a **quantum** machine
 - The algorithm requires an ideal quantum Turing machine
 - Factoring a 1024-bit integer requires 2050 logical qubits and a quantum circuit with billions of quantum gates
 - Despite recent progress on quantum computation, current implementations can only factor tiny numbers (e.g., 15 and 21)
- Nevertheless, the NIST started in 2017 a process to solicit, evaluate, and standardize quantum-resistant cryptography
 - The selected algorithms were announced in 2022
 - Most of these algorithms are based on lattices

What's the Rush?

- Big quantum computers won't be available for many years
 - If ever...
 - Can't we just wait?
- Better safe than sorry
 - Harvesting attacks: Store today's keys/ciphertexts to break later
 - Rewrite history: Forge signatures for old keys
 - Deploying new cryptography at scale requires 10+ years

Lattices

What is a Lattice?

- Simply, a set of points in a high-dimensional space
 - Arranged periodically
- Formally, take n linearly independent vectors $(\boldsymbol{b}_1, ..., \boldsymbol{b}_n)$ in \mathbb{R}^n and consider all integer combinations

$$\mathcal{L} = \{a_1 \boldsymbol{b}_1 + \dots + a_n \boldsymbol{b}_n : a_1, \dots, a_n \in \mathbb{Z}\}$$

- We call $(\boldsymbol{b}_1, ..., \boldsymbol{b}_n)$ a basis
- The same lattice may have different equivalent basis
 - Even if base vectors are long, there are short vectors in the lattice

History

- Geometric objects with rich mathematical structure
- Considerable mathematical interest starting from Gauss (1801), Hermite (1850), and Minkowski (1896)

• Recently, many interesting applications (cryptanalysis, factoring rational polynomials, finding integer relations, ...)

Equivalent Bases

- Sometimes, we write $\mathcal{L}(\boldsymbol{B})$ where \boldsymbol{B} is the matrix whose columns are $(\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$
 - One can also define a lattice as a discrete additive subgroup of \mathbb{R}^n

Equivalent bases:

- Permute vectors (i.e., $\boldsymbol{b}_i \leftrightarrow \boldsymbol{b}_i$)
- Negate vectors (i.e., $\boldsymbol{b}_i \leftarrow (-\boldsymbol{b}_i)$)
- Add integer multiple of another vector (i.e., $\boldsymbol{b}_i \leftarrow \boldsymbol{b}_i + k \cdot \boldsymbol{b}_i$, $k \in \mathbb{Z}$)
- Theorem: Two bases ${\pmb B}_1$, ${\pmb B}_2$ are equivalent iff ${\pmb B}_1 = {\pmb B}_2 \cdot {\pmb U}$
 - *U* unimodular (i.e., integer matrix with $det(U) = \pm 1$)

Equivalent Bases

- Let $\boldsymbol{B}_1 = \boldsymbol{B}_2 \cdot \boldsymbol{U}$
 - If ${\pmb U}$ is unimodular, so is ${\pmb U}^{-1}$ and ${\pmb B}_2 = {\pmb B}_1 \cdot {\pmb U}^{-1}$
 - Hence, $\mathcal{L}(\pmb{B}_1)\subseteq\mathcal{L}(\pmb{B}_2)$ and $\mathcal{L}(\pmb{B}_2)\subseteq\mathcal{L}(\pmb{B}_1)$ or $\mathcal{L}(\pmb{B}_1)=\mathcal{L}(\pmb{B}_2)$
- Let $m{B}_1 = m{B}_2 \cdot m{W}$ and $m{B}_2 = m{B}_1 \cdot m{V}$ for integer matrices $m{V}$, $m{W}$
 - Hence, $\boldsymbol{B}_1 = \boldsymbol{B}_1 \cdot \boldsymbol{V} \cdot \boldsymbol{W}$ or $\boldsymbol{B}_1 \cdot (\boldsymbol{I} \boldsymbol{V} \cdot \boldsymbol{W}) = \boldsymbol{0}$
 - Since the vectors in ${m B}_1$ are linearly independent, ${m I} {m V} \cdot {m W} = {m 0}$
 - Thus, $\mathbf{V} \cdot \mathbf{W} = \mathbf{I}$ and $\det(\mathbf{V}) \cdot \det(\mathbf{W}) = \det(\mathbf{V} \cdot \mathbf{W}) = 1$
 - Since V, W are integer matrices $\det(V), \det(W) \in \mathbb{Z}$ and $\det(V) = \det(W) = \pm 1$

The Fundamental Region

- The fundamental region of a lattice corresponds to a periodic tiling of \mathbb{R}^n by copies of some body
 - For instance, [0,1) is a fundamental region of the integer lattice \mathbb{Z} , as every $x \in \mathbb{R}$ is in the unique translate [x] + [0,1)

 A lattice base yields a fundamental region called the fundamental parallelepiped

$$\mathcal{P}(\boldsymbol{B}) = \boldsymbol{B} \cdot [0,1)^n = \left\{ \sum_{i=1}^n c_i \cdot \boldsymbol{b}_i : c_i \in [0,1) \right\}$$

- Useful for measuring arbitrary points relative to a lattice
 - $\mathcal{P}(B)$ is half-open and $v + \mathcal{P}(B)$ for $v \in \mathcal{L}(B)$ forms a tiling of \mathbb{R}^n
 - For every $x \in \mathbb{R}^n$, there is a unique $v \in \mathcal{L}(B)$ s.t. $x \in (v + \mathcal{P}(B))$

Determinant

- The **determinant** of a lattice $\mathcal{L}(\mathbf{B})$ is $\det(\mathcal{L}) = |\det(\mathbf{B})|$
- ullet Note that this is well defined, as for every unilateral U

$$|\det(\mathbf{B} \cdot \mathbf{U})| = |\det(\mathbf{B}) \cdot \det(\mathbf{U})| = |\det(\mathbf{B})|$$

- The determinant corresponds to the volume of the fundamental parallelepiped
 - The determinant is the reciprocal of the density (i.e., big determinant means sparse lattice)
 - Moreover, the volume is the **same** for **every** fundamental region

Successive Minima

- Let $\lambda_1(\mathcal{L})$ be the length of the **shortest non-zero** vector in a lattice \mathcal{L}
 - Usually, in terms of the Euclidean norm
 - The shortest vector is **never unique**, as for every $v \in \mathcal{L}$ also $-v \in \mathcal{L}$
- More generally, $\lambda_k(\mathcal{L})$ denotes the radius of the ball containing k linearly independent vectors
 - For k = n the ball contains a basis of the entire space

Minkowski's Theorem

- Lemma (Blichfeld): For any lattice \mathcal{L} and set \mathcal{S} with $\operatorname{vol}(\mathcal{S}) > \det(\mathcal{L})$, \exists distinct $\mathbf{z}_1, \mathbf{z}_2 \in \mathcal{S}$ s.t. $\mathbf{z}_1 \mathbf{z}_2 \in \mathcal{L}$
- Consider $S_x = S \cap (x + \mathcal{P}(B))$ with $x \in \mathcal{L}(B)$
 - So, $S = \bigcup_{x \in \mathcal{L}(B)} S_x$ and $vol(S) = \sum_{x \in \mathcal{L}(B)} vol(S_x)$
 - For each $x \in \mathcal{L}(B)$, $S_x x = (S x) \cap \mathcal{P}(B) \subseteq \mathcal{P}(B)$
 - Then, $\operatorname{vol}(\mathcal{P}(B)) < \operatorname{vol}(\mathcal{S}) = \sum_{x \in \mathcal{L}(B)} \operatorname{vol}(\mathcal{S}_x) = \sum_{x \in \mathcal{L}(B)} \operatorname{vol}(\mathcal{S}_x x)$
- There are distinct $x, y \in \mathcal{L}(B)$ s.t. $(\mathcal{S}_x x) \cap (\mathcal{S}_y y) \neq \emptyset$
 - Take $z\in (\mathcal{S}_x-x)\cap (\mathcal{S}_y-y)$, so that $z_1=z+x\in \mathcal{S}_x\subseteq \mathcal{S}$ and $z_2=z+y\in \mathcal{S}_y\subseteq \mathcal{S}$
 - Hence, $\mathbf{z}_1 \mathbf{z}_2 = \mathbf{x} \mathbf{y} \in \mathcal{L}(\mathbf{B})$

Minkowski's Theorem

• Theorem (Minkowski): For any lattice \mathcal{L} and convex, zerosymmetric, set \mathcal{S} with $\operatorname{vol}(\mathcal{S}) > 2^n \det(\mathcal{L})$, there exists a nonzero lattice point in \mathcal{S}

- Let $S/2 = \{x: 2x \in S\}$ with $vol(S/2) = 2^{-n} \cdot vol(S) > det(\mathcal{L})$
- Take $z_1, z_2 \in S/2$; by Blichfeld $z_1 z_2 \in L$
- Now, $2\mathbf{z}_1$, $-2\mathbf{z}_2 \in \mathcal{S}$ and $\mathbf{z}_1 \mathbf{z}_2 = \frac{2\mathbf{z}_1 2\mathbf{z}_2}{2} \in \mathcal{S}$
- Corollary: For every \mathcal{L} , we have that $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$
 - Let $\ell = \min_{x \in \mathcal{L} \setminus \mathbf{0}} \|x\|_{\infty}$ and assume $\ell > \det(\mathcal{L})^{1/n}$
 - The hypercube $\mathcal{C} = \{x: ||x||_{\infty} < \ell\}$ is **convex**, **symmetric** and has volume $\operatorname{vol}(\mathcal{C}) = (2\ell)^n > 2^n \det(\mathcal{L})$

Hard Problems

- \mathbf{SVP}_{γ} : Given B, find vector in $\mathcal{L}(B)$ with length $\leq \gamma \cdot \lambda_1(\mathcal{L}(B))$
- GapSVP $_{\gamma}$: Given B, decide if $\lambda_1(\mathcal{L}(B))$ is ≤ 1 or $\geq \gamma$
- SIVP $_{\gamma}$: Given B, find n linearly independent vectors in $\mathcal{L}(B)$ with length $\leq \gamma \cdot \lambda_n(\mathcal{L}(B))$
- \mathbf{CVP}_{γ} : Given \boldsymbol{B} and \boldsymbol{v} , find a lattice point that is at most γ times farther than the closest lattice point
 - It is known that $\mathbf{SVP}_{\gamma} \leq \mathbf{CVP}_{\gamma}$
- ullet **BDD**: Find **closest** lattice point, given that $oldsymbol{v}$ is **already close**

General Hardness Results

- Exact algorithms take time 2^n
- Polynomial-time algorithm for gap $\gamma = 2^{n \log \log n / \log n}$
- No better quantum algorithm known
- NP hardness for gap $\gamma = n^{c/\log\log n}$
 - For cryptographic applications, we need $\gamma = \Omega(n)$
 - Not believed to be NP-hard for $\gamma = \sqrt{n}$

Small Integer Solution Problem

- Fix dimension n, and modulus q (e.g., $q \approx n^2$)
- Given random vectors $a_1, ..., a_m \in \mathbb{Z}_q^n$, find non-zero small $z_1, ..., z_m \in \mathbb{Z}$ such that

- Observations:
 - Trivial if the size of the z_i 's is **not restricted** (Gaussian elimination)
 - Equivalently, find non-zero short $z \in \mathbb{Z}^m$ s.t. $A \cdot z = 0 \in \mathbb{Z}_q^n$

SIS as a Lattice Problem

• Matrix $A = (a_1, ..., a_m) \in \mathbb{Z}_q^{n \times m}$ $\mathcal{L}^{\perp}(A) = \{ \mathbf{z} \in \mathbb{Z}^m : A \cdot \mathbf{z} = \mathbf{0} \}$

Find short ($||z|| \le \beta \ll q$) solutions for random A

• Theorem (Ajt96). For any *n*-dimensional lattice, it holds that:

$$\mathsf{GapSVP}_{\beta\sqrt{n}}$$
, $\mathsf{SIVP}_{\beta\sqrt{n}} \leq \mathsf{SIS}_{\beta}$

Learning with Errors [Reg05]

- Dimension n, modulus q > 2, noise distribution χ
- Find $s \in \mathbb{Z}_q^n$ given m noisy random inner product equations

- Trivial without noise
- Gaussian distribution over \mathbb{Z} , with std deviation $\geq \sqrt{n}$ and $\ll q$
 - Rate parameter $\alpha \ll 1$
- Need $\alpha q > \sqrt{n}$ for worst-case hardness and because there is an $\exp((\alpha q)^2)$ -time attack

Decisional LWE

- Distinguish the matrix A and the vector b from random (A, b)
 - Decisional LWE is equivalent to Search LWE

LWE as a Lattice Problem

• Matrix $\mathbf{A} = (\mathbf{a}_1, ..., \mathbf{a}_m) \in \mathbb{Z}_q^{n \times m}$ $\mathcal{L}(\mathbf{A}) = \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{z}^t = \mathbf{s}^t \cdot \mathbf{A} \}$

LWE is BDD on
$$\mathcal{L}(A)$$
: Given $b^{t} \approx z^{t} = s^{t} \cdot A$ find z

• Theorem (Reg05,Pei10). For any *n*-dimensional lattice, it holds that:

$$GapSVP_{\alpha n}$$
, $SIVP_{\alpha n} \leq LWE$

- Quantum reduction for broad parameters [Reg05]
- Classical reduction for restricted parameters (e.g., $q \approx 2^n$) [Pei10]

Hardness of LWE

More formally define the LWE distribution as

$$\mathbf{LWE}[n, m, q, \chi] = \left\{ (\mathbf{A}, \mathbf{b}) : \begin{array}{l} \mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}; \mathbf{s} \leftarrow \mathbb{Z}_q^n; \\ \mathbf{e} \leftarrow \chi^m; \mathbf{b}^{\mathsf{t}} = [\mathbf{s}^{\mathsf{t}} \cdot \mathbf{A} + \mathbf{e}^{\mathsf{t}}]_q \end{array} \right\}$$

• Parameters:

- $\alpha = 1/\text{poly}(n)$ or $\alpha = 2^{-n^{\epsilon}}$ (stronger assumption as α decreases)
- $m = \Theta(n \log q)$ or m = poly(n) (stronger assumption as m increases)
- $q = 2^{n^{\epsilon}}$ or q = poly(n) (stronger assumption as q increases)
- Noise distribution χ such that $\mathbb{P}[|e| > \alpha q : e \leftarrow \chi] \leq \text{negl}(n)$

Simple Properties

- Check a candidate solution $t \in \mathbb{Z}_q^n$
 - Test if all the elements in $b \langle t, a \rangle$ are small
 - If $t \neq s$, then $b \langle t, a \rangle = \langle s t, a \rangle + e$ is well-spread in \mathbb{Z}_q
- Shift the secret by any $r \in \mathbb{Z}_q^n$
 - Given $(a, b = \langle s, a \rangle + e)$, output $(a, b' = b + \langle r, a \rangle = \langle s + r, a \rangle + e)$
 - Using random r yields a random self-reduction
 - Amplification of success probabilities (i.e., non-negligible success probability for random $s \in \mathbb{Z}_q^n$ implies overwhelming success probability for every $s \in \mathbb{Z}_q^n$)
- Multiple secrets: $(a, b_1 = \langle s_1, a \rangle + e_1, ..., \langle s_t, a \rangle + e_t)$ indistinguishable from random $(a, b_1, ..., b_t)$

Search/Decision Equivalence

- Suppose we are given an oracle that **perfectly distinguishes** pairs $(a, b = \langle s, a \rangle + e)$ from random (a, b)
- To find s_1 , it suffices to **test** if $s_1 = 0$
 - Because we can shift s_1 by 0,1,...,q-1 (assuming $q=\operatorname{poly}(n)$)
 - Then we can do the same for $s_2, ..., s_n$
- The test: For each (a, b), choose random $r \in \mathbb{Z}_q$ and invoke the oracle on pairs (a' = a (r, 0, ..., 0), b)
- Note that $b = \langle s, a' \rangle + s_1 \cdot r + e$
 - If $s_1 = 0$, then $b = \langle s, a' \rangle + e$ and the oracle accepts
 - If $s_1 \neq 0$, then b is uniform (assuming q prime) and the oracle rejects

LWE with Short Secrets

- Theorem [M01,ACPS09]: LWE is no easier if the secret is drawn from the error distribution χ
 - Intuition: Finding e equivalent to finding s (i.e., $b^t e^t = s^t \cdot A$)
- Transformation from secret $s \in \mathbb{Z}_q^n$ to secret $\overline{e} \leftarrow \chi^n$
 - Draw samples to get $(\overline{A}, \overline{b}^t = s^t \cdot \overline{A} + \overline{e}^t)$ for square, invertible, \overline{A}
 - Transform each additional sample $(a, b = \langle s, a \rangle + e)$ to

$$a' = -\overline{A}^{-1} \cdot a, b' = b + \langle \overline{b}, a' \rangle = \langle \overline{e}, a' \rangle + e$$

• This maps uniform (a, b) to uniform (a', b'), and thus works for decision LWE too

LWE vs SIS

- SIS has many valid solutions, whereas LWE only has one
- LWE \leq SIS
 - Given z such that $A \cdot z = 0$ from an SIS oracle, compute $b^t \cdot z$
 - Now, $b^t \cdot z = e^t \cdot z$ is small in the LWE case, whereas $b^t \cdot z$ is well-spread in case b^t is uniformly random
- What about the other direction?
 - Not known in general
 - True under quantum reductions

Efficiency of LWE/SIS

• Getting one random-looking scalar $b_i \in \mathbb{Z}_q$ requires an n-dimensional inner product $\operatorname{mod} q$

- Can amortize each column a_i over many secrets s_j , but the latter still requires $\tilde{O}(n)$ work per scalar output
- Public keys are rather large, i.e.
 > n² time to encrypt/decrypt an n-bit message
- Can we do better?

Wishful Thinking...

$$s^{t} \star a^{t} + e^{t} = b^{t}$$

$$\in \mathbb{Z}_{a}^{d}$$

- Get d pseudorandom scalars from just one cheap product operation *
- Replace $\mathbb{Z}_q^{d imes d}$ chunks with \mathbb{Z}_q^d
- Main question: How to define the product \star so that (a, b) is pseudorandom
 - Requires care: coordinate-wise product insecure for small errors
- Answer: Let \star be multiplication in a polynomial ring, e.g. $\mathbb{Z}_a^d[X]/(X^d+1)$
 - Fast and practical with the FFT: $d \log d$ operations mod q
 - The same ring structure used in NTRU [HPS08]

LWE over Rings/Modules

- Let $R = \mathbb{Z}[X]/(X^d + 1)$ for d a power of 2 and $R_a = R/qR$
 - Elements of R_q are degree < d polynomials with coefficients $\operatorname{mod} q$
 - Operations over R_q are very efficient using FFT-like algorithms
- Search LWE: Find secret vector of polynomials s in R_a^k given

on a secret of dimension
$$n = d \cdot k$$

$$\bullet \quad \mathsf{LWE} : d = 1, k = n \\ \bullet \quad \mathsf{Ring-LWE} : d = n, k = 1 \\ \bullet \quad \mathsf{Module-LWE} : \mathsf{Interpolate}$$

$$\bullet \quad \mathsf{Decision \ LWE} : \mathsf{Distinguish} \ (a_i, b_i) \\ \mathsf{from \ uniform} \ (a_i, b_i) \ \mathsf{in} \ R_q^k \times R_q$$

- Each equation is d related equations on a secret of dimension $n = d \cdot k$

Hardness of Ring/Module-LWE

- Theorem [LPR10]: For any $R = \mathcal{O}_K$
 - R^k -GapSVP \leq search R^k -LWE \leq decision R^k -LWE
- Can we dequantize the worst-case/average-case reduction?
 - The classical GapSVP \leq LWE reduction is of little use: for the relevant factors, GapSVP for ideals (i.e., k=1) is easy
- How hard (or not) is GapSVP on ideal/module lattices?
 - For polynomial approximation no significant improvement versus general lattices (even for ideals)
 - For subexponential approximation we have better quantum algorithms for ideals, but not for k>1
- Reverse reductions? Seems not without increasing k...

Why Lattice-based Cryptography?

- Provable security
 - If scheme is **not secure**, one **can solve** hard mathematical problems
 - Not always happens in current implementations (e.g., RSA)
- Worst-case security
 - If scheme not secure, one can break every instance of lattice problems
 - Factoring and discrete log only guarantee average-case security
- Still unbroken by quantum algorithms
 - No progress over the last 50 years
 - But we don't know: see https://eprint.iacr.org/2024/555
- Efficiency
 - Mainly additions/multiplications, no modular exponentiations

Basic Cryptographic Applications

One-Way Functions

- Parameters $m, n, q \in \mathbb{Z}$, key $A \in \mathbb{Z}_q^{n \times m}$
- Input $\mathbf{x} \in \{0,1\}^m$, output $f_A(\mathbf{x}) = A \cdot \mathbf{x}$
- Theorem [Ajt96]: For $m > n \log q$, if SIVP is hard to approximate in the worst-case, then f_A is one-way
- Cryptanalysis: Given A, y, find x such that $y = A \cdot x$
 - Easy problem: find arbitrary u such that $y = A \cdot u$
 - All solutions $y = A \cdot x$ are of the form $t + \mathcal{L}^{\perp}(A)$
 - Requires to find small vector in $t + \mathcal{L}^{\perp}(A)$ or to find a lattice point $v \in \mathcal{L}^{\perp}(A)$ close to t (average-case instance of CVP w.r.t. $\mathcal{L}^{\perp}(A)$)

Collision-resistant Hash Functions

Collisions exists
inherently, but are
hard to find
efficiently

• Given $\mathbf{A} = (\mathbf{a}_1, ..., \mathbf{a}_m)$, define $\mathbf{h}_A : \{0,1\}^m \to \mathbb{Z}_q^n$

$$h_A(z_1,\ldots,z_m)=a_1\cdot z_1+\cdots+a_m\cdot z_m$$

- Set $m > n \log q$ in order to get **compression**
- A collision $a_1 \cdot z_1 + \dots + a_m \cdot z_m = a_1 \cdot z_1' + \dots + a_m \cdot z_m'$ yields $a_1 \cdot (z_1 z_1') + \dots + a_m \cdot (z_m z_m') = 0$, with $z_m z_m' \in \{-1, 0, 1\}$

Commitments

- Analogy: lock message in a box, give the box, keep the key
 - Later give the key to open the box
- Implementation:
 - Randomized function Com(x; r), where x is the message and r is the randomness
 - To open a commitment simply reveal (x, r)
- Security properties
 - Hiding: Com(x; r) reveals nothing on x
 - Binding: Can't open Com(x; r) to $x' \neq x$

Commitments

- Take two random SIS matrices A_1 , A_2
- The **message** is $\mathbf{x} \in \{0,1\}^m$ and the **randomness** is $\mathbf{r} \in \{0,1\}^m$
- Commitment: $\mathbf{Com}(\mathbf{x}; \mathbf{r}) = f_{A_1, A_2}(\mathbf{x}, \mathbf{r}) = A_1 \cdot \mathbf{x} + A_2 \cdot \mathbf{r}$
 - Hiding: $A_2 \cdot r = f_{A_2}(r)$ is statistically close to uniform over \mathbb{Z}_q^n , and thus x is information-theoretically hidden
 - Binding: Finding (x, r) and (x', r') such that Com(x; r) = Com(x'; r') directly contradicts the collision resistance of f_{A_1, A_2}

Leftover Hash Lemma

- Let \mathcal{H} be a family of **universal hash functions** with domain \mathcal{D} and image \mathcal{I} . Then, for $x \leftarrow_{\$} \mathcal{D}$, $h \leftarrow_{\$} \mathcal{H}$, and $u \leftarrow_{\$} \mathcal{I}$: $\mathbb{SD}\left(\left(h, h(x) \right); (h, u) \right) \leq 1/2 \cdot \sqrt{|\mathcal{I}|/|\mathcal{D}|}$
- Note that the function $h_A(r) = [A \cdot r]_q$ is universal
 - As $\forall r_1 \neq r_2$: $\mathbb{P}_A[h_A(r_1) = h_A(r_2)] = \mathbb{P}_A[A \cdot (r_1 r_2) = 0] = q^{-n}$
- Hence, for $r \leftarrow_{\$} \{0,1\}^m$, $A \leftarrow_{\$} \mathbb{Z}_q^{n \times m}$, and $u \leftarrow_{\$} \mathbb{Z}_q^n$, whenever $m=2+n\log q+2n$

$$\mathbb{SD}\left(\left(\mathbf{A}, [\mathbf{A} \cdot \mathbf{r}]_q\right); (\mathbf{A}, \mathbf{u})\right) \le 1/2 \cdot \sqrt{q^n/2^m} \le 2^{-n}$$

Pseudorandom Functions [GGM84]

• Family $\mathcal{F} = \{F_s: \{0,1\}^k \to \mathcal{D}\}$ s.t. querying F_s , for random s, is indistinguishable from querying random function U

 Countless applications: secret-key encryption, message authentication codes, secure identification, ...

Constructing PRFs

- Heuristically: AES, etc.
 - Fast, secure against known cryptanalytic attacks, not provably secure
- From any OWF [GGM84]:
 - For any length-doubling PRG $G(s) = (G_0, G_1)$, let

$$F_{S}(x_{1},\ldots,x_{k})=G_{x_{k}}(\cdots G_{x_{1}}(s)\cdots)$$

- Provably secure
- Inherently sequential (i.e., $\geq k$ iterations)
- From any synthesizer [NR95,NR97,NRR00]
 - Low depth: NC^1 , NC^2 or TC^0 (i.e., O(1) depth with threshold gates)
 - Provably secure

Synthetisers [NR95]

• A **deterministic** function $S: \mathcal{D} \times \mathcal{D} \to \mathcal{D}$ such that for any polynomial m, and for **uniform** $a_1, \dots, a_m, b_1, \dots, b_m \in \mathcal{D}$

$$\{S(a_i, b_j)\} \approx \{U_{i,j}\}$$

Uniform distribution

over $\mathcal{D}^{m \times m}$

	b_1	b_2	• • •
a_1	$S(a_1,b_1)$	$S(a_1,b_2)$	
a_2	$S(a_2,b_1)$	$S(a_2,b_2)$	
• • •			

	b_1	b_2	•••
a_1	$U_{1,1}$	$U_{1,2}$	
a_2	$U_{2,1}$	$U_{2,2}$	
• • •			

An almost length-squaring PRG with locality

 \approx

PRFs from Synthetisers [NR95]

- Base case: One-bit PRF $F_{S_0,S_1}(x) = S_x \in \mathcal{D}$
- Inductive step: Given a k-bit PRF family $\mathcal{F} = \{F_s: \{0,1\}^k \to \mathcal{D}\}$ define $F_{SI,SR}: \{0,1\}^{2k} \to \mathcal{D}$

$$F_{S_L,S_R}(x_L,x_R) = S(F_{S_L}(x_L),F_{S_R}(x_R))$$

$$S_{1,0}, S_{1,1} \longrightarrow S_{1,x_1}$$
 $S_{2,0}, S_{2,1} \longrightarrow S_{1,x_2}$
 $S_{3,0}, S_{3,1} \longrightarrow S_{1,x_2}$
 $S_{4,0}, S_{4,1} \longrightarrow S_{1,x_2}$
 $S_{1,x_2} \longrightarrow S_{1,x_2}$

• Security: Every query to $F_{SL}(x_L)$, $F_{SR}(x_R)$ defines pseudorandom inputs $a_1, \dots, a_m, b_1, \dots, b_m$ for the synthetiser

Synthetisers from LWE?

- Hard to tell apart $(a_i, b_i = \langle a_i, s \rangle + e_i)$ from random (a, b)
- By a hybrid argument, the following are pseudorandom

$$A_i \in \mathbb{Z}_q^n, A_i \cdot S_1 + E_{1,1} \in \mathbb{Z}_q^{n \times n}, A_i \cdot S_2 + E_{2,1} \in \mathbb{Z}_q^{n \times n}, \dots$$

This suggests the following synthetiser from LWE

	$\boldsymbol{\mathcal{S}}_1$	S ₂	•••
A_1	$A_1 \cdot S_1 + E_{1,1}$	$A_1 \cdot S_2 + E_{1,2}$	
A_2	$A_2 \cdot S_1 + E_{2,1}$	$A_2 \cdot S_2 + E_{2,2}$	
• • •			

• But synthetisers must be deterministic!

Learning with Rounding [BPR12]

- Generate errors deterministically
 - Round \mathbb{Z}_q to a **sparse** subset \mathbb{Z}_p
 - For p < q, let $\lfloor x \rfloor_p = \lfloor (p/q) \cdot x \rfloor \mod p$

- The LWR problem: Tell apart $(a, b = [\langle a, s \rangle]_p) \in \mathbb{Z}_q \times \mathbb{Z}_p$ from random (a, b)
 - LWE conceals low-order bits by adding small random error
 - LWR just discards those bits instead
- LWE \leq LWR for $q \geq p \cdot n^{\omega(1)}$ (seems 2^n -hard for $q \geq p \cdot \sqrt{n}$)
 - Proof idea: w.h.p. $(a, \lfloor \langle a, s \rangle + e \rceil_p) \approx (a, \lfloor \langle a, s \rangle \rceil_p)$ and $(a, \lfloor U(\mathbb{Z}_q) \rceil_p) \approx (a, U(\mathbb{Z}_p))$ where $U(\mathbb{Z}_q)$ is uniform over \mathbb{Z}_q
 - Reduction with Improved parameters in [AKPW13]

Synthetiser-based PRF from LWR

- Synthetiser: $S: \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^{n \times n} \to \mathbb{Z}_p^{n \times n}$ is $S(A, S) = [A \cdot S]_p$
 - Note that the range \mathbb{Z}_p is **slightly smaller** than the domain \mathbb{Z}_q
- Construction of PRF with domain $\{0,1\}^k$ for $k=2^d$
 - Tower of power moduli $q_d > q_{d-1} > \cdots > q_0$
 - The secret key is 2k matrices $S_{i,b} \in \mathbb{Z}_{q_d}^{n \times n}$, for $i \in [k], b \in \{0,1\}$
 - Depth $d = \log k$ of LWR synthetisers

$$\left[\left[\left[S_{1,x_{1}}\cdot S_{2,x_{2}}\right]_{q_{2}}\cdot\left[S_{3,x_{3}}\cdot S_{4,x_{4}}\right]_{q_{2}}\right]_{q_{1}}\cdot\left[\left[S_{5,x_{5}}\cdot S_{6,x_{6}}\right]_{q_{2}}\cdot\left[S_{7,x_{7}}\cdot S_{8,x_{8}}\right]_{q_{2}}\right]_{q_{1}}\right]_{q_{0}}$$

• Each synthetiser is in NC^1 , and thus the PRF is in NC^2

Direct Construction

• Simple direct PRF construction from DDH [NR97,NRR00]:

$$F_{g,s_1,...,s_k}(x_1,...,x_k) = g^{\prod_i s_i^{x_i}}$$

- This can be implemented in $TC^0 \subseteq NC^0$ (albeit with huge circuit)
- Direct construction from LWE
 - Public moduli q > p
 - The secret key is **uniform** A and **short** S_1 , ..., S_k over \mathbb{Z}_q
 - The PRF evaluates a rounded subset-product function

$$F_{A,S_1,...,S_k}(x_1,...,x_k) = \left[A \cdot \prod_i S_i^{x_i}\right]_p$$

Proof Sketch

- Similar to the $LWE \leq LWR$ proof
- Thought experiment: answer queries with

$$\tilde{F}_{A,S_1,\dots,S_k}(x_1,\dots,x_k) = \left[(A \cdot S_1^{x_1} + x_1 \cdot E) \cdot S_2^{x_2} \cdot \dots \cdot S_k^{x_k} \right]_p$$

$$= \left[A \cdot \prod_{i=1}^k S_i^{x_i} + x_1 \cdot E \cdot \prod_{i=2}^k S_i^{x_i} \right]_p$$

- W.h.p. $\tilde{F}(x) = F(x)$ due to small error and rounding
- Using LWE replace $(A, A \cdot S_1 + E)$ with uniform (A_0, A_1)
 - New function $F(x) = [A_{x_1} \cdot S_2^{x_2} \cdot \dots \cdot S_k^{x_k}]_p$
 - Repeat for $S_2, ..., S_k$ to get $F'^{...'}(x) = [A_x]_p = U(x)$

NIST Standards

Falcon

Digital Signatures

- Syntax $\Pi = (KGen, Sign, Vrfy)$
 - **KGen** (1^{λ}) : Takes the **security parameter** $\lambda \in \mathbb{N}$, and outputs (vk, sk)
 - Sign (sk, μ) : Takes plaintext μ , and outputs a signature σ
 - **Vrfy** (vk, μ, σ) : Takes plaintext μ and signature σ , and outputs a bit
- Correctness: $\forall \lambda \in \mathbb{N}, \forall (vk, sk) \in \mathbf{KGen}(1^{\lambda}), \forall \mu$

$$\mathbb{P}[\mathbf{Vrfy}(vk, \mathbf{Sign}(sk, \mu)) = 1] = 1$$

Lattice Trapdoors

Recall: Lattice-based one-way functions

$$f_A(x) = A \cdot x \bmod q \in \mathbb{Z}_q^n$$

$$f_A(s, e) = s^t \cdot A + e^t \bmod q \in \mathbb{Z}_q^m$$
 (short x , surjective) (short e , injective)

- Task: Invert f_A
 - Find the unique s (or e) such that $f_A(s, e) = s^t \cdot A + e^t \mod q$
 - Given $u = f_A(x') = A \cdot x' \mod q$, sample random $x \leftarrow f_A^{-1}(u)$ with probability proportional to $\exp(-\|x\|^2/s^2)$
- How? Via a strong trapdoor for A (a short basis of $\mathcal{L}^{\perp}(A)$)
 - Deeply studied question [Babai86, Ajtai99, Klein 01, GPV 08, AP 09, P10]

A Different Kind of Trapdoor [MP12]

- Drawbacks of previous solutions
 - Generating A with short basis is complex and slow
 - Inversion algorithms trade-off quality (i.e., length of basis vectors which depends on the Gaussian std parameter s) for efficiency
- Alternative: The trapdoor is not a basis
 - But just as powerful
 - Simpler and faster
- Overview of method
 - Start with fixed, public, lattice defined by gadget matrix G which admits very fast, and parallel, algorithms for f_G^{-1}
 - Randomize G into A via nice unimodular transform (the trapdoor)
 - Reduce f_A^{-1} to f_G^{-1} plus some pre/post-processing

Step 1: The Gadget Matrix

- Let $q=2^k$ and take $\boldsymbol{g}=\begin{bmatrix}1&2&\dots&2^{k-1}\end{bmatrix}\in\mathbb{Z}_q^{1\times k}$
- To invert $f_{\boldsymbol{g}}: \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

$$f_g(s, e) = s \cdot g + e = [s + e_0 \quad 2s + e_1 \quad \cdots \quad 2^{k-1}s + e_{k-1}] \mod q$$

- Get Isb of s from $2^{k-1}s + e_{k-1}$, then repeat for the next bits of s
- Works when $e_{k-1} \in [-q/4, q/4)$
- To sample Gaussian preimage for $u = f_g(x) = \langle g, x \rangle$
 - For $i \in [0, k-1]$, choose $x_i \leftarrow (2\mathbb{Z} + u)$ and let $u \leftarrow (u x_i)/2 \in \mathbb{Z}$
 - E.g., k = 2: $x_0 \leftarrow (2z_0 + u)$, $u \leftarrow (u 2z_0 u)/2 = -z_0$, $x_1 \leftarrow (2z_1 z_0)$, $\langle g, x \rangle = 2z_0 + u + 2(2z_1 z_0) = u + 4z_1 = u \mod 4$

Step 1: The Gadget Matrix G

• Alternative view: The lattice $\mathcal{L}^{\perp}(g)$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 \\ -1 & 2 \\ & -1 & \ddots \\ & \ddots & 2 \\ & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \text{ with } \tilde{\mathbf{S}} = 2 \cdot \mathbf{I}_{k}$$

- The above inversion algorithms are special cases of the randomized nearest-plan algorithm [Bab86,Kle01,GPV08]
- Define $G = I_n \otimes g \in \mathbb{Z}^{n \times nk}$ (where \otimes is the **tensor** product)
 - Computing $f_{\it G}^{-1}$ reduces to n parallel calls to $f_{\it g}^{-1}$
 - Also applies to $H \cdot G$, for any invertible $H \in \mathbb{Z}_q^{n \times n}$

Step 2: Randomize G

- Define semi-random $[\overline{A}|G]$ for uniform $\overline{A} \in \mathbb{Z}_q^{n imes \overline{m}}$
 - It can be seen that inverting $f_{\overline{A}|G|}^{-1}$ reduces to inverting f_{G}^{-1} [CHKP10]
- Choose a short Gaussian $R \in \mathbb{Z}^{\overline{m} \times n \log q}$ and let

$$A = [\overline{A}|G] \cdot \begin{bmatrix} I & R \\ I \end{bmatrix} = [\overline{A}|G - \overline{A}R]$$

- A is uniform because, by the leftover hash lemma, $[\overline{A}|\overline{A}R]$ is statistically close to uniform when $\overline{m} \approx n \log q$
- Alternatively, $[I|\overline{A}|-\overline{A}\cdot R_1+R_2]$ is **pseudorandom** under the LWE assumption (in normal form)

A New Trapdoor Notion

- We constructed $A = [\overline{A}|G \overline{A}R]$
- Say that R is a **trapdoor** for A with $tag H \in \mathbb{Z}_q^{n \times n}$ (invertible) if

$$A \cdot \begin{bmatrix} R \\ I \end{bmatrix} = H \cdot G$$

- The quality of R is $s_1(R) = \max_{u:||u||=1} ||R \cdot u||$
- Fact: $s_1(R) \approx (\sqrt{\text{rows}} + \sqrt{\text{cols}}) \cdot r$ for Gaussian entries w/ std dev r
- Also R is a trapdoor for $A [0|H' \cdot G]$ with tag H H' [ABB10]
- Relating new and old trapdoors
 - Given basis S for $\mathcal{L}^{\perp}(G)$ and trapdoor R for A, one can **efficiently** construct basis S_A for $\mathcal{L}^{\perp}(G)$ where $\|\tilde{S}_A\| \leq (s_1(R) + 1) \cdot \|\tilde{S}\|$

Step 3: Reduce f_A^{-1} to f_G^{-1}

- Let R be a trapdoor for A with tag H = I: $A \cdot \begin{bmatrix} R \\ I \end{bmatrix} = G$
- Inverting LWE
 - Given $b^t = s^t \cdot A + e^t$, recover s from $b^t \cdot \begin{bmatrix} R \\ I \end{bmatrix} = s^t \cdot G + e^t \cdot \begin{bmatrix} R \\ I \end{bmatrix}$
 - Works if each entry of $e^t \cdot {R \brack I} \in [-q/4, q/4)$
- Inverting SIS
 - Given u, sample $z \leftarrow f_G^{-1}(u)$ and output $x = \begin{bmatrix} R \\ I \end{bmatrix} \cdot z \in f_A^{-1}(u)$
 - Indeed, $A \cdot x = G \cdot z = u$

Leaks about R!

$$\Sigma = \mathbb{E}_{x}[x \cdot x^{t}] = \mathbb{E}_{z}[R \cdot z \cdot z^{t} \cdot R^{t}] \approx R \cdot R^{t}$$

Step 3: Perturbation Method [P10]

To fix the covariance

$$\boldsymbol{u}^{\mathsf{t}} \cdot \boldsymbol{\Sigma}_2 \cdot \boldsymbol{u} = s^2 - \boldsymbol{u}^{\mathsf{t}} \cdot \boldsymbol{\Sigma}_1 \cdot \boldsymbol{u} > 0$$

- Generate **perturbation** vector p with covariance $s^2 \cdot I R \cdot R^t$
- Sample spherical z such that $G \cdot z = u A \cdot p$

• Output
$$x = p + \begin{bmatrix} R \\ I \end{bmatrix} \cdot z$$

$$A \cdot x = A \cdot p + A \cdot \begin{bmatrix} R \\ I \end{bmatrix} \cdot z = A \cdot p + G \cdot z = u$$

Falcon: Digital Signatures from SIS

- Generate uniform vk = A with trapdoor sk = T
- To sign μ , use T to sample $\sigma = x \in \mathbb{Z}^m$ such that $A \cdot x = H(\mu)$, where H is a public hash function
 - Recall that x is drawn from a Gaussian distribution, which reveals nothing about the trapdoor T
- To verify $(\mu, \sigma = x)$ under vk = A simply check $A \cdot x = H(\mu)$ and that x is sufficiently short
- Security: Forging a signature for a new message μ^* requires finding a short x^* such that $A \cdot x^* = H(\mu^*)$
 - This is equivalent to solving the SIS problem
 - ullet Signatures queries do not help because they reveal nothing about the trapdoor ${\it T}$

Crystals-Dilithium

Canonical Identification Schemes

- <u>Completeness</u>: The <u>honest</u> prover convinces the <u>honest</u> verifier (with all but a negligible probability)
- Passive Security: No (efficient) malicious prover knowing only pk can convince the honest verifier
 - Even in case the attacker knows many accepting transcripts corresponding to honest protocol executions

The Fiat-Shamir Transform

- Given a canonical ID scheme, we can derive a signature scheme as follows:
 - Alice obtains $\sigma=(\alpha,\gamma)$ from the **prover**, using the **secret key** sk and choosing $\beta=H(x,\alpha)$
 - Bob checks that (α, β, γ) is a valid transcript, with $\beta = H(x, \alpha)$

The Fiat-Shamir Transform

<u>Theorem [FS86].</u> If the ID scheme is passively secure, the signature derived via the Fiat-Shamir transform is UF-CMA

- Remark: The original proof requires to model H as an ideal hash function (random oracle)
 - It is debatable in the community what such a proof means in practice
- Can we prove security in the plain model (i.e., no random oracles)?
 - Many impossibility results for general ID schemes
 - Possible for some classes of ID schemes assuming so-called correlation intractability

Sufficient Criteria for Passive Security

- One can show the following criteria are sufficient for achieving passive security:
 - Special soundness: Given any pk and two accepting transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for pk with $\beta \neq \beta'$, there is a polynomial-time algorithm outputting sk
 - HVZK: Honest proofs reveal nothing about the secret key sk

Proofs of Knowledge

- The special soundness property implies that any successful prover must essentially know the secret key
- In fact, any such prover can be used to extract the secret key:
 - Run the prover upon input pk in order to obtain a transcript (α, β, γ)
 - Rewind the prover after it already sent α and forward it another random challenge β' , which yields a transcript $(\alpha, \beta', \gamma')$
 - As long as $\beta \neq \beta'$, special soundness allows us to obtain sk
- The above can be formalized, but the proof requires some care
 - Because the transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ are correlated

Honest-Verifier Zero-Knowledge

- How do we formalize that a trascript reveals nothing on sk?
 - This is tricky: transcripts shall not reveal even **one bit** of sk
- Require that honest transcripts can be **efficiently simulated** given just pk (but not sk)
 - Whatever the verifier could compute via the protocol, he could have computed by talking to himself (i.e., by running the simulator)
- A canonical ID scheme is **perfect honest-verifier zero-knowledge** (HVZK) if \exists PPT \mathcal{S} such that:

$$(pk, sk, S(pk)) \equiv (pk, sk, \langle \mathcal{P}(pk, sk), \mathcal{V}(pk) \rangle)$$

Canonical ID Scheme from Discrete Log

- Special HVZK: Upon input pk = x, simulator \mathcal{S} outputs (α, β, γ) such that $\alpha = g^{\gamma}/x^{\beta}$ and $\beta, \gamma \leftarrow_{\$} \mathbb{Z}_q$
- Special soundness: Assume we are given two accepting transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for pk = x, with $\beta \neq \beta'$
 - This implies $g^{\gamma-\gamma\prime}=x^{\beta-\beta\prime}$
 - Thus, $w = (\gamma \gamma') \cdot (\beta \beta')^{-1}$ is the discrete logarithm of x

Let's Try the Same Idea using Lattices

- HVZK: Upon input pk = (A, t), simulator \mathcal{S} outputs (α, β, γ) such that $\alpha = A \cdot \gamma \beta \cdot t$ and $\beta \leftarrow_{\$} \mathbb{Z}_q, \gamma \leftarrow_{\$} \mathbb{Z}_q^m$
- Special soundness: Assume we are given two accepting transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for pk = (A, t), with $\beta \neq \beta'$
 - This implies $A \cdot (\gamma \gamma') = (\beta \beta') \cdot t$
 - Thus, $\mathbf{s} = (\mathbf{\gamma} \mathbf{\gamma}') \cdot (\beta \beta')^{-1}$ is the solution for $A \cdot \mathbf{s} = \mathbf{t}$

Many Problems...

- The challenge space is small
 - $q \approx 2^{12}$ for encryption
 - $q \approx 2^{30}$ for signatures
 - $q \approx 2^{32}$ for advanced applications
- ullet This means that a successful prover can just guess eta
- The vector s we extract is not guaranteed to be small
 - Recall that removing the requirement of s being small makes lattice problems trivial
- Solution: Choose small u, β and repeat the protocol in parallel

Modified Protocol (Take 1)

```
u_{1},...,u_{k} \leftarrow_{\$} \{0,1\}^{m}
\alpha_{j} = A \cdot u_{j}
\gamma_{j} = \beta_{j} \cdot s + u_{j}
(A, t), s
(\alpha_{1},...,\alpha_{k})
(\beta_{1},...,\beta_{k})
(\gamma_{1},...,\gamma_{k})
(\gamma_{1},...,\gamma_{k})
(\lambda, t), s
(A, t), s
```

- The verifier checks the above $\forall j=1,...,k$ and that the coefficients of each γ_i are small (i.e., in $\{0,1,2\}$)
- Special soundness: Given $A \cdot \gamma_j = \beta_j \cdot t + \alpha_j$ and $A \cdot \gamma'_j = \beta'_j \cdot t + \alpha_j$ with $\beta_j \neq \beta'_j$, extract $\mathbf{s} = (\gamma_j \gamma'_j) \cdot (\beta_j \beta'_j)^{-1}$
 - The elements of $\gamma_j \gamma_j'$ are in $\{-2, -1, 0, 1, 2\}$, and $\beta_j \beta_j'$ is in $\{-1, 1\}$, so s also lies in $\{-2, -1, 0, 1, 2\}$

Insecurity of the Protocol

- There are some caveats:
 - We extracted a slightly bigger secret
 - We need to **repeat** for k = 128 or k = 256 times
- Even worse, the protocol does not satisfy HVZK
 - Suppose that the challenge is $\beta = 1$

```
0?1?10?0?? \beta \cdot s = s has coefficients in \{0,1\} + 0?1?10?0?? u has coefficients in \{0,1\} = v coefficients
```


Possible Fix?

- Maybe we can sample u from a larger domain?
 - Suppose that the challenge is $\beta = 1$

```
0 ? ? 1 ? 0 ? ? ? \beta \cdot s = s has coefficients in \{0,1\} + 0 ? ? 5 ? 0 ? ? ? \mu has coefficients in \{0,1,2,3,4,5\} = \nu coefficients
```

- Whenever a γ coefficient is 0 or 6 we know that s is 0 or 1, but the other coefficients are **hidden** (i.e., they could be **equally** 0 or 1)
- So, s only effects the probability that a γ coefficient is 0 or 6

Possible Fix?

- Maybe we can sample u from a larger domain?
 - Suppose that the challenge is $\beta = 1$

```
0 ? ? 1 ? 0 ? ? ? \beta \cdot s = s has coefficients in \{0,1\} + 0 ? ? 5 ? 0 ? ? ? u has coefficients in \{0,1,2,3,4,5\} = v coefficients
```

- In other words, the coefficients 1,2,3,4,5 are equally likely to appear regardless of the secret key
- Natural idea: Send γ only when all the coefficients are in this range

In General...

- Suppose s has coefficients in $\{0,1,\ldots,a\}$ and that u has coefficients in $\{0,1,\ldots,b-1\}$
 - Here, b > a
- Then, for all $a \le i < b$, we have $\mathbb{P}[s + u = i] = 1/b$
 - Moreover, there are b-a such i's and thus 1-a/b probability of keeping the value s secret
- The probability that a γ coefficient is in $\{1, ..., b-1\}$ is 1-1/b
 - The probability that they all are is $(1 1/b)^m$
 - The probability that they all are for all $\gamma_1, ..., \gamma_k$ is $(1 1/b)^{mk}$
 - By setting b=mk, we get $(1-1/b)^{mk}\approx 1/e$

Modified Protocol (Take 2)

$$u_{1},...,u_{k} \leftarrow_{\$} \{0,...,mk\}^{m}$$

$$\alpha_{j} = A \cdot u_{j}$$

$$\gamma_{j} = \beta_{j} \cdot s + u_{j}$$

$$(A, t), s$$

$$(\alpha_{1},...,\alpha_{k})$$

$$(\beta_{1},...,\beta_{k})$$

$$(\gamma_{1},...,\gamma_{k})$$

$$(\lambda, t), s$$

$$(A, t), s$$

- The prover checks whether any of the coefficients contained in γ_i is 0 or mk+1
 - If it is, abort and restart the protocol
- The verifier checks the above $\forall j=1,\ldots,k$ and that the coefficients of each γ_i are small (i.e., in $\{0,\ldots,mk\}$)

Modified Protocol (Take 2)

$$u_{1}, \dots, u_{k} \leftarrow_{\$} \{0, \dots, mk\}^{m}$$

$$\alpha_{j} = A \cdot u_{j}$$

$$\gamma_{j} = \beta_{j} \cdot s + u_{j}$$

$$(A, t), s$$

$$(\alpha_{1}, \dots, \alpha_{k})$$

$$(\beta_{1}, \dots, \beta_{k})$$

$$(\gamma_{1}, \dots, \gamma_{k})$$

$$(\beta_{n}, \dots, \gamma_{k})$$

- Special soundness: Given $A \cdot \gamma_j = \beta_j \cdot t + \alpha_j$ and $A \cdot \gamma'_j = \beta'_j \cdot t + \alpha_j$ with $\beta_j \neq \beta'_j$, extract $s = (\gamma_j \gamma'_j) \cdot (\beta_j \beta'_j)^{-1}$ • The elements of $\gamma_j - \gamma'_j$ are in $\{-mk, ..., mk\}$, and $\beta_j - \beta'_j$ is in $\{-1,1\}$, so s also lies in $\{-mk, ..., mk\}$
- HVZK: Yes, as now γ_i never depends on s
 - Caveat: What is α_i in case of abort?

Modified Protocol (Take 3)

$$u_{1},...,u_{k} \leftarrow_{\$} \{0,...,mk\}^{m}$$

$$\alpha_{j} = A \cdot u_{j}$$

$$\gamma_{j} = \beta_{j} \cdot s + u_{j}$$

$$(A, t), s$$

$$\alpha = H(\alpha_{1},...,\alpha_{k})$$

$$\beta_{j} \leftarrow_{\$} \{0,1\}$$

$$\gamma_{j} = \beta_{j} \cdot t + \alpha_{j}$$

- The verifier checks the above $\forall j=1,\ldots,k$ and that the coefficients of each γ_i are small (i.e., in $\{0,\ldots,mk\}$)
- But now it also additionally checks that

$$\alpha = \mathbf{H}(\mathbf{A} \cdot \mathbf{\gamma}_1 - \beta_1 \cdot \mathbf{t}, \dots, \mathbf{A} \cdot \mathbf{\gamma}_k - \beta_k \cdot \mathbf{t})$$

• In case of abort, the HVZK simulator can still send a random α

In Practice

- The previous protocol still needs to be repeated in parallel k=128 or 256 times
 - And this is the best one can get for arbitrary lattices
- However:
 - The proof size for **one equation** is roughly the same as the proof size for **many equations** (amortization with **logarithmic** growth)
 - Working with **polynomial rings** instead of \mathbb{Z}_q allows for **one-shot** approximate proofs (i.e., the coefficients of s are small)
 - Using more complex techniques, one obtains almost one-shot exact proofs (i.e., the coefficients of s are in $\{0,1\}$)

Crystals-Kyber

Public-Key Encryption

- Proposed by Diffie and Hellman in their seminal paper [DH76]
- First realization by Rivest, Shamir and Adelman based on the hardness of factoring [RSA78]

Chosen-Plaintext Attack (CPA) Security

- The attacker cannot even guess a single bit of the plaintext
 - Remember that the messages are chosen by the adversary
 - CPA security implies hardness of recovering the message
 - CPA security implies hardness of recovering the secret key

Regev PKE [Reg05]

- Key Generation: pk = (A, b) and sk = s, where $b^t = s^t \cdot A + e^t$ and $s \in \mathbb{Z}_q^n$, $A \in \mathbb{Z}_q^{n \times m}$
- Encryption: The encryption of x w.r.t. pk is made of two parts
 - Ciphertext preamble $c_0 = A \cdot r$ for random $r \in \{0,1\}^m$
 - Ciphertext payload $c_1 = b^t \cdot r + x \cdot q/2$
 - Bob outputs $c_1 s^t \cdot c_0 \approx x \cdot q/2$
- Security: By LWE we can switch (A, b) with (A, b) for uniformly random b^{t}
 - By the **leftover hash lemma**, we can finally replace c_0 with uniformly random c_0 , so that c_1 hides x information theoretically

Dual Regev [GPV08]

- Key Generation: pk = (A, u) and sk = r, where $u = A \cdot r$ and $r \in \{0,1\}^m, A \in \mathbb{Z}_q^{n \times m}$
- Encryption: The encryption of x w.r.t. pk is made of two parts
 - Ciphertext preamble $c_0 = b^{\mathrm{t}} = s^{\mathrm{t}} \cdot A + e^{\mathrm{t}}$ for random $s \in \mathbb{Z}_q^n$
 - Ciphertext payload $c_1 = s^t \cdot u + e' + x \cdot q/2$
 - Bob outputs $c_1 c_0 \cdot r \approx x \cdot q/2$
- Security: By the leftover hash lemma, we can switch $oldsymbol{u}$ with uniformly random $oldsymbol{u}$
 - By LWE we can switch (c_0, c_1) with uniformly random (c_0, c_1)

Primal versus Dual

- Public key
 - Primal: pk is **pseudorandom** with **unique** sk
 - Dual: pk is statistically random with many possible sk
- Ciphertext
 - Primal: A fresh LWE sample with many possible coins
 - Dual: Multiple LWE samples with unique coins
- Security
 - Primal: Encrypting with uniform pk induces random ciphertext
 - Dual: By LWE can switch the ciphertext to random
- Efficiency: The matrix A can be shared by different users

Most Efficient [LP11]

- Key Generation: pk = (A, u) and sk = s, where $u^t = s^t \cdot A + e^t$ and $s \in \chi^n, A \in \mathbb{Z}_q^{n \times n}$
- Encryption: The encryption of x w.r.t. pk is made of two parts
 - Ciphertext preamble $c_0 = A \cdot r + e'$ for $r \in \chi^n$
 - Ciphertext payload $c_1 = \mathbf{u}^t \cdot \mathbf{r} + e' + x \cdot q/2$
 - Bob outputs $c_1 s^t \cdot c_0 \approx x \cdot q/2$
- Security: By LWE we can switch (A, u) with (A, u) for uniformly random u
 - This requires LWE with secrets from the error distribution
 - Next, we can replace (c_0, c_1) with uniformly random (c_0, c_1)

Chosen-Ciphertext Attack (CCA) Security

Eve

pk, sk, random b $m' = \mathbf{Dec}(sk, c')$ $c \leftarrow \mathbf{Enc}(pk, x_b)$

- The above notion captures a strong non-malleability guarantee
 - No attacker can **maul** a ciphertext c for message m into a ciphertext \tilde{c} for message \tilde{m} **related** to m
 - The gold standard for security of PKE in practice

Fujisaki-Okamoto Transform

- The FO transform [FO99,FO13] turns passively (IND-CPA) secure
 PKE schemes into actively (IND-CCA) secure ones
 - The transformation requires two hash functions (random oracles)
 - The obtained scheme is better understood as a key encapsulation mechanism (KEM)

• We can combine a **KEM** with an **SKE** scheme to get a **PKE** scheme

One-Wayness of PKE

$$pk, sk$$

$$m^* \leftarrow \mathcal{M}$$

$$c^* \leftarrow \mathbf{Enc}(pk, m^*)$$

- OW-CPA: PKE makes it hard to guess the message
 - The message is uniformly random and unknown to the attacker
- OW-PCA: As before but now the attacker can query a plaintext-checking oracle which allows to check if $\mathbf{Dec}(sk,c) = m$

Modularization of the FO Transform

- We can view FO as the concatenation of two transforms U o T
 - The first transformation takes care of derandomization and allows to go from IND-CPA to OW-PCA
 - The second transformation takes care of hashing and allows to go from OW-PCA to IND-CCA

Transformation T: From IND-CPA to OW-PCA

- Encryption becomes **deterministic** (the **randomness** is G(m))
- Decryption re-encrypts m' using randomness $\mathbf{G}(m')$ and outputs m' if and only if it obtains c
- Theorem [HKK17]: Assuming (Enc, Dec) is IND-CPA (OW-CPA), (Enc', Dec') is OW-PCA

Transformation U: From OW-PCA to IND-CCA

- Encapsulation outputs $k = \mathbf{H}(c, m)$ and c
- Decapsulation obtains $m' = \mathbf{Dec}(sk, c)$ and outputs m'
 - Here, m' could be \perp (explicit rejection)
- Theorem [HKK17]: Assuming (Enc', Dec') is OW-PCA, (Encaps, Decaps) is IND-CCA

Advanced Cryptographic Applications

Identity-Based Encryption

- Postulated by Shamir in 1984 [Sha84]
 - Avoids the need of certificates
 - Introduces the so-called key escrow problem
- First realization by Boneh and Franklin in 2001 [BF01]

Selective Security of IBE

- Every selectively secure IBE is also fully secure with an exponential loss in the parameters
 - Also, general transformations are known

Warm-up Construction [CHKP10]

- Public parameters: $mpk = (A_0, A_1^0, A_1^1, A_2^0, A_2^1, u)$
 - Assume, for simplicity, |ID| = 2
- Master secret key: Trapdoor for A_0
 - Secret key for identity ID=01: Short vector s s.t. $F_{01}\cdot s=u \mod q$, where $F_{01}=[A_0|A_1^0|A_2^1]$
 - Note: A trapdoor for A_0 implies a trapdoor for F_{01}
- Encryption: Dual Regev encryption of x w.r.t. matrix F_{01}
 - The ciphertext is $c_0^t = r^t \cdot F_{01} + e^t$ and $c_1 = r^t \cdot u + e' + x \cdot q/2$
 - Bob outputs $c_1 c_0^t \cdot s \approx x \cdot q/2$

Simulation

- Assume the **challenge** identity is $ID^* = 11$
 - The reduction can't know the secret key for ID*
- Choose A_0 , A_1^1 , A_2^1 uniformly at random, but sample A_1^0 , A_2^0 with the corresponding trapdoors
- The reduction can derive trapdoors for $F_{00} = [A_0|A_1^0|A_2^0]$, $F_{01} = [A_0|A_1^0|A_2^1]$, and $F_{10} = [A_0|A_1^1|A_2^0]$ but not for $F_{11} = [A_0|A_1^1|A_2^1]$
 - This allows the reduction to simulate key extraction queries while embedding the LWE challenge in the simulation

A More Efficient Construction [ABB10]

- Public parameters: $mpk = (A_0, A_1, G, u)$
- Master secret key: Trapdoor for A_0
 - Secret key for identity ID: Short vector s s.t. $F_{ID} \cdot s = u \mod q$, where $F_{ID} = [A_0|A_1 + ID \cdot G]$
 - As before, a trapdoor for A_0 implies a trapdoor for F_{ID}
- Encryption: Dual Regev encryption of x w.r.t. matrix F_{ID}
 - The ciphertext is $c_0^t = r^t \cdot F_{ID} + e^t$ and $c_1 = r^t \cdot u + e' + x \cdot q/2$
 - Bob outputs $c_1 c_0^t \cdot s = r^t \cdot u + e' + x \cdot q/2 r^t \cdot F_{ID} \cdot s + e^t \cdot s = r^t \cdot u + e' + x \cdot q/2 r^t \cdot u + e^t \cdot s \approx x \cdot q/2$

Simulation Revisited

- Assume the **challenge** identity is ID^*
 - The reduction can't know the secret key for ID*
- The reduction does **not** know a trapdoor for A_0 , but it knows a trapdoor for the gadget matrix G
- Let $A_1 = [A_0 \cdot R ID^* \cdot G]$, where R is random and low-norm
 - This is **indistinguishable** from the real A_1
- Note that $\mathbf{F}_{ID} = [\mathbf{A}_0 | \mathbf{A}_0 \cdot \mathbf{R} + (ID ID^*) \cdot \mathbf{G}]$
 - Using the technique of [MP12], we can derive a trapdoor for ${\it F}_{ID}$ given a trapdoor for ${\it A}_0$
 - This allows to **simulate** key extraction queries for all $ID \neq ID^*$
 - The LWE challenge can be embedded as before

Inner-product Encryption [KSW08]

- Decryption reveals x if and only if $\langle a, b \rangle = 0$
 - Here, we can also be interested in attributes privacy
- Can be used to obtain predicate encryption for polynomial evaluation, CNFs/DNFs of bounded degree, and fuzzy IBE

Generalizing to Inner Products [AFV11]

- Public parameters: $mpk = (A, A_1, ..., A_k, G, u)$
- Master secret key: Trapdoor for A
 - Secret key for b: Short vector s_b s.t. $F_b \cdot s_b = u \mod q$, where $F_b = [A | \sum_i b_i \cdot A_i]$
- Encryption: Dual Regev encryption of x w.r.t. matrix A
 - The ciphertext is $c_0^t = r^t \cdot A + e^t$, $c' = r^t \cdot u + e' + x \cdot q/2$, and $c_i^t = r^t \cdot (A_i + a_i \cdot G) + e_i^t$ (so it indeed hides a)
 - Bob sets $c_b = \sum_i b_i \cdot c_i = r^t \cdot (\sum_i b_i \cdot A_i + \sum_i a_i \cdot b_i \cdot G) + \sum_i b_i \cdot e_i$ which equals $r^t \cdot \sum_i b_i \cdot A_i + \sum_i b_i \cdot e_i$
 - Hence, $[c_0|c_b] \approx r^t \cdot [A|\sum_i b_i \cdot A_i]$ is a dual Regev ciphertext
 - Bob outputs $c' c_0^t \cdot s_b c_b^t \cdot s_b \approx x \cdot q/2$

Attribute-based Encryption [SW04]

- Decryption reveals x if and only if f(a) = 0
 - Here, we are not interested in attributes privacy
- Plenty of applications for privacy-preserving data mining and in cryptography for big data

Handling Multiplications [BGG+14]

- Let $c_1^t = r^t \cdot (A_1 + a_1 \cdot G) + e_1^t$ and $c_2^t = r^t \cdot (A_2 + a_2 \cdot G) + e_2^t$
- Want: $c_{12}^{t} = r^{t} \cdot (A_{12} + a_{1} \cdot a_{2} \cdot G) + e_{12}^{t}$
 - Compute $(A_1 + a_1 \cdot G) \cdot G^{-1}(-A_2) = A_1 \cdot G^{-1}(-A_2) a_1 \cdot A_2$
 - Compute $(A_2 + a_2 \cdot G) \cdot a_1 = a_1 \cdot A_2 + a_1 \cdot a_2 \cdot G$
 - The difference is $A_{12} + a_1 \cdot a_2 \cdot G$
- So, we let $c_{12}^{t} = c_{1}^{t} \cdot G^{-1}(-A_{2}) + c_{2}^{t} \cdot a_{1}$
 - $G^{-1}(-A_2)$ and a_1 are small and do not effect noise
 - As usual, additionally let $c_0^t = r^t \cdot A + e^t$, $c' = r^t \cdot u + e' + x \cdot q/2$
 - If $a_1 \cdot a_2 = 0$, then $[c_0 | c_{12}] \approx r^t \cdot [A | A_{12}]$
 - The secret key is a short vector s_{12} s.t. $[A|A_{12}] \cdot s_{12} = u \mod q$
 - Bob outputs $c' c_0^t \cdot s_{12} c_{12}^t \cdot s_{12} \approx x \cdot q/2$

Computing over Encrypted Data

- Can we have a (public-key) encryption scheme which allows to run computations over encrypted data?
- Question dating back to the late 70s
 - Ron Rivest and "privacy homomorphisms"
- Partial solutions known
 - E.g., RSA and Elgamal enjoy limited forms of homomorphism
- First solution by Craig Gentry after 30 years
 - The "Swiss Army knife of cryptography"

Motivation: Outsourcing of Computation

- Email, web search, navigation, social networking, ...
- What about private x?

Outsourcing of Computation - Privately

Wish: Homomorphic **evaluation** function:

Eval: pk, f, $\text{Enc}(pk, x) \rightarrow \text{Enc}(pk, f(x))$

Fully-Homomorphic Encryption (FHE)

Correctness:

$$\mathbf{Dec}(sk, y) = f(x)$$

Privacy:

 $\mathbf{Enc}(pk, x) \approx \mathbf{Enc}(pk, 0^{|x|})$

FHE = Correctness \forall efficient f = Correctness for universal set

Levelled FHE: **Bounded** depth *f*

- NAND
- (+,×) over a ring

A Paradox (and its Resolution)

$$f(x_{1}, x_{2}, x_{3}) = \begin{cases} x_{2} \text{ if } x_{1} = 0 \\ x_{3} \text{ if } x_{1} = 1 \end{cases}$$

$$c_{2} = \text{Enc}(pk, x_{2})$$

$$c_{3} = \text{Enc}(pk, x_{3})$$

$$Eval(pk, f, (c_{1}, c_{2}, c_{3}))$$
AH! So $x_{1} = 0$

- But remember that encryption is randomized!
- Output of Eval will look as a fresh and random ciphertext

Syntax of FHE

- More formally: $\Pi = (KGen, Enc, Dec, Eval)$
 - **KGen** $(1^{\lambda}, 1^{\tau})$: Takes the security parameter $\lambda \in \mathbb{N}$ and another parameter $\tau \in \mathbb{N}$, and outputs (pk, sk)
 - **Enc**(pk, x): Takes a plaintext bit x, and outputs a ciphertext c
 - **Dec**(sk, c): Takes a ciphertext c, and outputs a bit x
 - **Eval** (pk, Γ, \vec{c}) : Takes $\vec{c} = (c_1, ..., c_t)$, and outputs another vector \vec{c}'
- Correctness: Let $C = \{C_{\tau}\}_{{\tau} \in \mathbb{N}}$. Then Π is correct for C if $\forall \lambda, \tau \in \mathbb{N}$, $\forall (pk, sk) \in \mathbf{KGen}(1^{\lambda}, 1^{\tau})$:

 $\forall x \in \{0,1\}: \mathbb{P}[\mathbf{Dec}(sk, \mathbf{Enc}(pk, x)) = x] = 1$

 $\forall \Gamma \in C_{\tau}, \forall \vec{x} \in \{0,1\}^t : \mathbb{P}[\mathbf{Dec}(sk, \mathbf{Eval}(pk, \Gamma, \mathbf{Enc}(pk, \vec{x}))) = \Gamma(\vec{x})] = 1$

Degrees of Homorphism

- Fully-Homomorphic Encryption: Correctness holds for C such that C_1 already contains all Boolean circuits
 - ullet No need to consider the additional parameter au
- <u>Somewhat/Levelled Homomorphic encryption</u>: Correctness holds for the family C such that for all $\tau \in \mathbb{N}$ the set C_{τ} contains all Boolean circuits with depth τ
- Additively Homomorphic Encryption: Correctness holds for C such that C_1 contains all Boolean circuits with only XOR gates
 - No need to consider the additional parameter au

Trivial FHE?

- Let (KGen, Enc, Dec) be any PKE scheme
- Define the following fully-homomorphic PKE (KGen, Enc, Eval', Dec'):
 - Eval' $(pk, \Gamma, c) = (\Gamma, c)$
 - $\mathbf{Dec'}(sk, c) = \Gamma(\mathbf{Dec}(sk, c))$

Wish: Complexity of decryption much less than running the circuit from scratch

Strong Homomorphism

- The simplest (and strongest) requirement is to ask that fresh and evaluated ciphertexts look the same
- We say that Π is **strongly homomorphic** for $C = \{C_{\tau}\}_{{\tau} \in \mathbb{N}}$, if for all ${\tau} \in \mathbb{N}$, every ${\Gamma} \in C_{\tau}$ and $\vec{x} \in \{0,1\}^t$, it holds

$$\mathbf{Fresh}_{\Pi,\vec{x}}(\lambda) = \left\{ (pk, \vec{c}, \vec{c}') : \begin{array}{c} (pk, sk) \leftarrow_{\$} \mathbf{KGen}(1^{\lambda}, 1^{\tau}) \\ \vec{c} \leftarrow_{\$} \mathbf{Enc}(pk, \vec{x}), \vec{c}' \leftarrow_{\$} \mathbf{Enc}(pk, \Gamma(\vec{x})) \end{array} \right\}$$

$$\approx_S$$
 or \approx_C

$$\mathbf{Eval}_{\Pi,\vec{x}}(\lambda) = \left\{ (pk, \vec{c}, \vec{c}') : \begin{array}{c} (pk, sk) \leftarrow_{\$} \mathbf{KGen}(1^{\lambda}, 1^{\tau}) \\ \vec{c} \leftarrow_{\$} \mathbf{Enc}(pk, \vec{x}), \vec{c}' \leftarrow_{\$} \mathbf{Eval}(pk, \Gamma, \vec{c}) \end{array} \right\}$$

Strong Homomorphism

- Assume the class C contains some $C_{ au^*}$ which includes AND and XOR (or NAND) gates
- Then we can evaluate every circuit by repeatedly evaluating each gate on the outputs of preceedings gates
 - By strong homomorphism, the output distribution when evaluating any Γ is at most $negl(\lambda) \cdot size(\Gamma)$ far from that of a fresh encryption of the output
- Hence, we have obtained a strongly fully-homomorphic PKE!

Compactness

- The following weaker property is often sufficient
- We say that Π is **compact** if there is a **fixed polynomial bound** $B(\cdot)$ such that for all $\lambda, \tau \in \mathbb{N}$, any circuit Γ with t-bit inputs and 1-bit output, and all $\vec{x} \in \{0,1\}^t$:

$$\mathbb{P}\left[|c'| \leq B(\lambda): \frac{(pk, sk) \leftarrow_{\$} \mathbf{KGen}(1^{\lambda}, 1^{\tau})}{\vec{c} \leftarrow_{\$} \mathbf{Enc}(pk, \vec{x}), c' \leftarrow_{\$} \mathbf{Eval}(pk, \Gamma, \vec{c})}\right] = 1$$

- Note that B does not depend on au
 - An even weaker condition (dubbed weak compactness) is to have $B(\lambda, \tau)$, but still say $B(\lambda, \tau) = \text{poly}(\lambda) \cdot o(\log |C_{\tau}|)$

Secret-Key versus Public-Key FHE

- There is also a secret-key variant of FHE
 - Just set $pk = \varepsilon$, and have both **Enc**, **Dec** take only sk as input, whereas **Eval** takes only Γ , c
- Simple transform from SK-FHE to PK-FHE: Given $\Pi = (\mathbf{KGen}, \mathbf{Enc}, \mathbf{Dec}, \mathbf{Eval})$ let $\Pi' = (\mathbf{KGen}', \mathbf{Enc}', \mathbf{Dec}, \mathbf{Eval})$
 - **KGen**' runs **KGen** and lets $pk = (c_0, c_1)$ where $c_0 \leftarrow_{\$} \mathbf{Enc}(sk, 0)$ and $c_1 \leftarrow_{\$} \mathbf{Enc}(sk, 1)$
 - **Enc**'(pk, x) outputs **Eval** (Γ_{id}, c_x) where Γ_{id} represents the identity
 - If Π is strongly homomorphic, the output of \mathbf{Enc}' is statistically close to that of $\mathbf{Enc}(sk,x)$
 - Both strong homomorphism and semantic security are preserved!

The Gentry-Sahai-Waters FHE Scheme

- In what follows we will present the FHE scheme due to:
 - C. Gentry, A. Sahai, B. Waters: "Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based." CRYPTO 2013
- Based on the Learning with Errors (LWE) assumption
- Only achieves levelled homomorphism
 - But can be bootstrapped to full homomorphism using a trick by Gentry (under additional assumptions)
- Plaintext space will be $\mathbb{Z}_q = [-q/2, q/2)$, for a large prime q
 - For simplicity let us write $[a]_q$ for $a \mod q$

Eigenvectors Method (Basic Idea)

- Let C_1 and C_2 be matrices for eigenvector \vec{s} , and eigenvalues x_1, x_2 (i.e., $\vec{s} \times C_i = x_i \cdot \vec{s}$)
 - $C_1 + C_2$ has eigenvalue $x_1 + x_2$ w.r.t. \vec{s}
 - $C_1 \times C_2$ has eigenvalue $x_1 \cdot x_2$ w.r.t. \vec{s}
- Idea: Let C be the ciphertext, \vec{s} be the secret key and x be the plaintext (say over \mathbb{Z}_q)
 - Homomorphism for addition/multiplication
 - But insecure: Easy to compute eigenvalues

Approximate Eigenvectors (1/2)

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
 - Decryption works as long as $\|\vec{e}\|_{\infty} \ll q$

$$\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1$$
 $\vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2$ $\|\vec{e}_1\|_{\infty} \ll q$ $\|\vec{e}_2\|_{\infty} \ll q$

• Goal: Define homomorphic operations

$$C_{\text{add}} = C_1 + C_2:$$

$$\vec{s} \times (C_1 + C_2) = \vec{s} \times C_1 + \vec{s} \times C_2$$

$$= x_1 \cdot \vec{s} + \vec{e}_1 + x_2 \cdot \vec{s} + \vec{e}_2$$

$$= (x_1 + x_2) \cdot \vec{s} + (\vec{e}_1 + \vec{e}_2)$$

Noise **grows** a little!

Approximate Eigenvectors (2/2)

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
 - Decryption works as long as $\|\vec{e}\|_{\infty} \ll q$

$$\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1$$
 $\vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2$ $\|\vec{e}_1\|_{\infty} \ll q$ $\|\vec{e}_2\|_{\infty} \ll q$

Goal: Define homomorphic operations

$$C_{\text{mult}} = C_1 \times C_2$$
:
 $\vec{s} \times (C_1 \times C_2) = (x_1 \cdot \vec{s} + \vec{e}_1) \times C_2$
 $= x_1 \cdot (x_2 \cdot \vec{s} + \vec{e}_2) + \vec{e}_1 \times C_2$
 $= x_1 \cdot x_2 \cdot \vec{s} + (x_1 \cdot \vec{e}_2 + \vec{e}_1 \times C_2)$
Noise grows!
Needs to be small!

116

Shrinking Gadgets

Write entries in C using binary decomposition; e.g.

$$C = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix} \pmod{8} \xrightarrow{\text{yields}} \text{bits}(C) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \pmod{8}$$

• Reverse operation:

$$C = G \times G^{-1}(C) = \begin{bmatrix} 2^{N-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \end{bmatrix} \times \text{bits}(C)$$

$$\Rightarrow \vec{s} \times C = \vec{s} \times G \times G^{-1}(C)$$

LWE – Rearranging Notation

Regev PKE — Pictorially

The GSW Scheme

Dec(
$$\vec{s}$$
, C) = \vec{s} × C × $G^{-1}((0, ..., 0, -\lfloor q/2 \rfloor))$
= \vec{e} × $G^{-1}(...)$ + $x \cdot \vec{s}$ × G × $G^{-1}((0, ..., 0, -\lfloor q/2 \rfloor))$
= \vec{e} × $G^{-1}(...)$ + $\lfloor q/2 \rfloor \cdot x = z$

Output: $0 \Leftrightarrow |z| < q/4$

The GSW Scheme – Homomorphism

Invariant:
$$\vec{s} \times C = \vec{e} + x \cdot \vec{s} \times G$$

$$C_{\text{mult}} = C_1 \times G^{-1}(C_2)$$

$$\vec{s} \times C_{1} \times G^{-1}(C_{2}) = (\vec{e}_{1} + x_{1} \cdot \vec{s} \times G) \cdot G^{-1}(C_{2})$$

$$= \vec{e}_{1} \times G^{-1}(C_{2}) + x_{1} \cdot \vec{s} \times G \times G^{-1}(C_{2})$$

$$= \vec{e}_{1} \times G^{-1}(C_{2}) + x_{1} \cdot \vec{s} \times C_{2}$$

$$= \vec{e}_{1} \times G^{-1}(C_{2}) + x_{1} \cdot (\vec{e}_{2} + x_{2} \cdot \vec{s} \times G)$$

$$= (\vec{e}_{1} \times G^{-1}(C_{2}) + x_{1} \cdot \vec{e}_{2}) + x_{1}x_{2} \cdot \vec{s} \times G$$

$$= \vec{e}_{\text{mult}} + x_{1}x_{2} \cdot \vec{s} \times G$$

$$\|\vec{e}_{\text{mult}}\|_{\infty} \le N \cdot \|\vec{e}_1\|_{\infty} + \|\vec{e}_2\|_{\infty} \le (N+1) \cdot \max\{\|\vec{e}_1\|, \|\vec{e}_2\|\}$$

The GSW Scheme – Correctness

$$\|\vec{e}_{\text{out}}\|_{\infty} \le (N+1)^{\tau+1} m \cdot \alpha q$$

Correctness:

$$n \cdot m \cdot (N+1)^{\tau+1} < q/4$$

$$\|\vec{e}_{i+1}\|_{\infty} \le (N+1)\|\vec{e}_{i}\|_{\infty}$$

$$\|\vec{e}_{\rm in}\|_{\infty} \le m \cdot n = m \cdot \alpha q$$

The GSW Scheme – Semantic Security

- Similar as in the proof of Regev PKE
- Using LWE we move to a **mental experiment** with $A \leftarrow_{\$} \mathbb{Z}_q^{n \times m}$
- Hence, by the **leftover hash lemma**, with $m = \Theta(n \log q)$, the statistical distance between $(A, A \times \vec{r})$ and uniform is negligible
 - By a **hybrid argument** over the columns of R, it follows that the statistical distance between $(A, A \times R)$ and uniform is also negligible
 - Thus, the ciphertext statistically hides the plaintext

The GSW Scheme – Parameters

- Correctness requires $n \cdot m \cdot (N+1)^{\tau+1} < q/4$
- Security requires $m = \Theta(n \log q)$, e.g. $m \ge 1 + 2n(2 + \log q)$
- Hardness of LWE requires $q \le 2^{n^{\epsilon}}$ for $\epsilon < 1$
 - Substituting we get $q > (2n \log q)^{\tau+3}$
 - And thus $n^\epsilon > (\tau+3)(\log n + \log\log q + 1)$ which for large τ,n yields $n^\epsilon > 2\tau \log n$
 - So we set $n=\max(\lambda, \left\lceil 4\tau/\epsilon \log \tau^{1/\epsilon} \right\rceil)$, $q=\left\lceil 2^{n^\epsilon} \right\rceil$, $m=O(n^{1+\epsilon})$, and $\alpha=n/q=n\cdot 2^{-n^\epsilon}$
- Hence, the size of ciphertexts is polynomial in λ , τ thus yielding a weakly-compact FHE

Increasing the Homomorphic Capacity

- The only way to increase the homomorphic capacity of GSW is to pick larger parameters
- This dependence can be broken using a trick by Gentry
- Main idea: Do a few operations, then switch keys

How to Switch Keys

Decryption circuit

Dual view

$$\mathbf{Eval}_{pk'}(D_c, aux) = \mathbf{Eval}_{pk'}(D_c, \mathbf{Enc}_{pk'}(sk))$$

$$= \mathbf{Enc}_{pk'}(D_c(sk))$$

$$= \mathbf{Enc}_{pk'}(x)$$

Bootstrappable Encryption

- Let $W_{\Pi}(\lambda, \tau)$ be the set of all **fresh** and **evaluated** ciphertexts w.r.t. circuits class C_{τ}
 - For all possible keys and all possible inputs to the circuit
- Given $c_1, c_2 \in W_{\Pi}(\lambda, \tau)$, let $D_{c_1, c_2}^*(sk)$ be the **augmented** decryption circuit, defined by

$$D_{c_1,c_2}^*(sk) = NAND(D_{c_1}(sk), D_{c_2}(sk))$$

- We say that Π is **bootstrappable** if its homomorphic capacity includes all the augmented decryption circuits
 - I.e., $\exists \tau$ s.t. $\forall \lambda \in \mathbb{N}$, $c_1, c_2 \in W_{\Pi}(\lambda, \tau(\lambda))$, we have $D_{c_1, c_2}^* \in C_{\tau(\lambda)}$

Bootstrapping Theorem

Theorem. Any bootstrappable homomorphic encryption scheme can be transformed into a compact somewhat homomorphic encryption scheme

- One can show that the GSW scheme is bootstrappable
- Let Π be the bootstrappable scheme; construct Π' as follows:
 - **KGen**' $(1^{\lambda}, 1^{d})$: For each $i \in [0, d]$, run $(pk_{i}, sk_{i}) \leftarrow_{\$}$ **KGen** $(1^{\lambda}, 1^{\tau})$ and $\vec{c}_{i}^{*} \leftarrow_{\$}$ **Enc** (pk_{i+1}, sk_{i}) , and output $sk' = (sk_{0}, ..., sk_{d})$, $pk' = (pk_{0}, \vec{c}_{1}^{*}, ..., \vec{c}_{d-1}^{*}, pk_{d})$
 - Enc'(pk', x): Return (0, c) where $c \leftarrow_{\$} \text{Enc}(pk_0, x)$
 - $\mathbf{Dec}'(sk',c')$: Return $\mathbf{Dec}(sk_i,c)$ where c'=(i,c)

Bootstrapping Theorem

- **Eval**' (pk', Γ, \vec{c}) : Go over the circuit in topological order from inputs to outputs; for every gate at level i with inputs $(i-1, c_1)$ and $(i-1, c_2)$, run $c' \leftarrow_{\$} \mathbf{Eval}(pk_i, D^*_{c_1, c_2}, \vec{c}^*_{i-1})$ and use (i, c') as the gate output
- To prove correctness, we proceed by induction
 - The auxiliary ciphertexts \vec{c}_{i-1}^* , and fresh ciphertexts are correct
 - Assume that at level i two ciphertexts $c_1, c_2 \in W_{\Pi}(\lambda, \tau)$ are correct
 - Let $c' \leftarrow_{\$} \mathbf{Eval}(pk_i, D^*_{c_1, c_2}, \vec{c}^*_{i-1})$; as Π is bootstrappable:

$$\mathbf{Dec}(sk_i, c') = D_{c_1, c_2}^*(sk_{i-1})$$

$$= NAND(D_{c_1}(sk_{i-1}), D_{c_2}(sk_{i-1})) = NAND(x_1, x_2)$$

• Moreover, $c' \in W_{\Pi}(\lambda, \tau)$

Bootstrapping Theorem

- To prove semantic security, we use a hybrid argument
- In hybrid $\mathbf{H}_k(\lambda, b)$ we modify key generation by picking all ciphertexts \vec{c}_i^* such that $i \geq k$ as fresh encryptions of 0
 - Note that $\mathbf{H}_d(\lambda, b)$ is just the semantic security game for Π'
 - By semantic security of Π , $\mathbf{H}_k(\lambda, b) \approx_c \mathbf{H}_{k-1}(\lambda, b)$ for each $k \in [0, d]$ and $b \in \{0,1\}$
 - Finally, $\mathbf{H}_0(\lambda,b)$ never uses sk_0 , and thus by semantic security of Π no PPT adversary can distinguish between $\mathbf{H}_0(\lambda,0)$ and $\mathbf{H}_0(\lambda,1)$ with better than negligible probability

Circular Security

- The above scheme is compact, but not fully homomorphic, as we need a pair of keys for each level in the circuit
- A natural idea is to use a single pair (pk, sk) and include in pk' a ciphertext $\vec{c}^* \leftarrow_{\$} \mathbf{Enc}(pk, sk)$
 - Correctness still holds for this variant, but the reduction to semantic security breaks
- Workaround: Assume circular security
 - I.e., $\mathbf{Enc}(pk,0) \approx_c \mathbf{Enc}(pk,1)$ even given $\vec{c}^* \leftarrow_{\$} \mathbf{Enc}(pk,sk)$
 - GSW is conjectured to have this property, but no proof of this fact is currently known

Fully-Homomorphic Commitments

- Let $\pmb{A} \in \mathbb{Z}_q^{n \times w}$ and $\pmb{C} = \pmb{A} \cdot \pmb{R} + x \cdot \pmb{G}$ for $\pmb{R} \in \mathbb{Z}^{w \times m}$ and $x \in \mathbb{Z}_q$
 - Think of C as a commitment to x w.r.t. A under randomness R
- Homomorphic operations:

$$G - C_1 = A(-R_1) + (1 - x_1) \cdot G$$

$$C_+ = C_1 + C_2 = A \cdot (R_1 + R_2) + (x_1 + x_2) \cdot G$$

$$C_\times = C_1 \cdot G^{-1}[C_2]$$

$$= A \cdot (R_1 \cdot G^{-1}[C_2]) + x_1 G \cdot G^{-1}[A \cdot R_2 + x_2 \cdot G])$$

$$A \cdot (R_1 \cdot G^{-1}[C_2] + x_1 \cdot R_2) + x_1 x_2 G$$

• Can be extended to vectors $x \in \mathbb{Z}_q^L$ $C = A \cdot R + x^{\mathrm{t}} \otimes G$

Proof Systems

$$L = \{x: \exists \zeta, \mathcal{V}(x, \zeta) = 1\}$$

Proof \(\zeta \)

Accept/Reject

- A proof system π for **membership** in L is an algorithm $\mathcal V$ s.t.
 - Completeness: For all $x \in L$, then $\exists \zeta$ for which $\mathcal{V}(x,\zeta) = 1$
 - Soundness: For all $x \notin L$, then $\forall \zeta$ we have $\mathcal{V}(x,\zeta) = 0$
- Note the fact that a proof exists might not be efficiently verifiable
 - I.e., we would like the verifier to run in polynomial time

NP Proof Systems

$$L = \{x: \exists \zeta, \mathcal{V}(x, \zeta) = 1\}$$

Proof ζ

Accept/Reject

- An NP proof system π for membership in L is an algorithm $\mathcal V$ s.t.
 - Completeness: For all $x \in L$, then $\exists \zeta$ for which $\mathcal{V}(x,\zeta) = 1$
 - Soundness: For all $x \notin L$, then $\forall \zeta$ we have $\mathcal{V}(x,\zeta) = 0$
 - Efficiency: For all x, we have that $\mathcal{V}(x,\zeta)$ halts after $\operatorname{poly}(|x|)$ steps
- Note the running time is measured in terms of |x|
 - Necessarily, $|\zeta| = \text{poly}(|x|)$

Examples

- Boolean satisfiability: $SAT = \{\phi(\cdot): \exists w \in \{0,1\}^{\lambda}, \phi(w) = 1\}$
 - Complete: Every $L \in NP$ reduces to SAT
 - Unstructured: Decidable in time $e^{O(\lambda)}$
- Linear equations: $LIN = \{(A, b): \exists w, A \cdot w = b\}$
 - Structured: Decidable in time $O(\lambda^{2.373}) = \text{poly}(\lambda)$
- Quadratic residuosity: $QR_n = \{x: \exists w, x \equiv w^2 \bmod n\}$
 - Structured: QR_n is a subgroup of \mathbb{Z}_n^*
 - Yet, when $n=p\cdot q$ with $|p|=|q|=\lambda$ finding square roots is equivalent to factoring the modulus (time $e^{\tilde{O}(\lambda^{1/3})}$ on average)

The Class P

- $L \in P$ if there is a **polynomial-time** \mathcal{A} such that $L = \{x : \mathcal{A}(x) = 1\}$
 - $L \in BPP$: \mathcal{A} is PPT and errs with probability $\leq 1/3$
- $L \in coNP$ if and only if its complement $\overline{L} \in NP$

Proving Non-Membership

- How can we prove non-membership?
 - Showing $\phi \notin SAT$ requires to check that $\forall i \in [2^{\lambda}], \phi(w_i) = 0$
 - Showing $x \notin QR_n$ requires to check that $\forall i \in [\varphi(n)], x \not\equiv w_i^2 \mod n$
- So, a naive proof is exponentially large
- We can avoid this if we allow the proof to use
 - Randomness (tolerate "error")
 - Interaction (add a computationally unbounded "prover")
 - S. Goldwasser, S. Micali, C. Rackoff. "The Knowledge Complexity of Interactive Proof-Systems." STOC 1985

Interactive Proof for $\overline{QR_n}$

$$b'(z) = \begin{cases} 0 \text{ if } z \in QR_n \\ 1 \text{ if } z \notin QR_n \end{cases}$$

Completeness:

• We have $x \notin QR_n \Rightarrow y^2 \in QR_n \land xy^2 \notin QR_n$

Soundness:

- We have $x \in QR_n \Rightarrow y^2 \in QR_n \land xy^2 \in QR_n$
- Hence, all even **unbounded** provers \mathcal{P}^* succeed w.p. 1/2

Interactive Proof Systems

- An interactive proof system π for L consists of a PPT $\mathcal V$ and an unbounded $\mathcal P$ such that
 - Completeness: For all $x \in L$, then $\mathbb{P}[\langle \mathcal{P}, \mathcal{V}(x) \rangle = 1] \ge 2/3$
 - Soundness: For all $x \notin L$, for all \mathcal{P}^* , then $\mathbb{P}[\langle \mathcal{P}^*, \mathcal{V}(x) \rangle = 1] \leq 1/3$
- Completeness and soundness can be bounded by any $c, s: \mathbb{N} \to [0,1]$ as long as
 - $c(|x|) \ge 1/2 + 1/\text{poly}(|x|)$ and $s(|x|) \le 1/2 1/\text{poly}(|x|)$
 - So, poly(|x|) repetitions yield $s(|x|) c(|x|) \ge 1 2^{-\text{poly}(|x|)}$
 - The class NP has c(|x|) = 1 and s(|x|) = 0, whereas the class BPP requires no interaction

The Power of IP

- We have shown that $\overline{QR_n} \in IP$
 - NP proof for $\overline{QR_n}$ not self-evident
 - This suggests that maybe $NP \subseteq IP$
 - Turns out that $\overline{SAT} \in IP$, and thus $coNP \subseteq IP$
 - In fact, $P^{\#P} \subseteq IP = PSPACE$

140

What Does a Proof Reveal?

• Consider the following **non-interactive** proof for QR_n

- Generating ζ requires exponential time
- Verifying the proof requires $O(\lambda^2)$ time
- The verifier got something for free from seeing ζ
 - ullet Recall that finding w is equivalent to factoring the modulus n

How to Define Zero-Knowledge?

- Intuitively, we might want that
 - The verifier does not learn w
 - The verifier does not learn any symbol of w
 - The verifier does not learn any information about w
 - The verifier does not learn anything (beyond $x \in L$)
- When does the verifier learn something?
 - If at the end of the protocol he can compute something he could not compute without running the protocol
- Zero-knowledge: Whatever can be computed while running the protocol could have been computed without doing so

Honest-Verifier Zero-Knowledge

- Hence, we must require that $\forall x \in L$ the verifier's view can be efficiently simulated given just x (but not w)
 - In other words, the verifier learns whether $x \in L$ but **nothing more**
 - Whatever he could compute via the protocol he could have computed by talking to himself (i.e., by running the simulator)
- An interactive proof system $\pi = (\mathcal{P}, \mathcal{V})$ for L is **perfect honest-verifier zero-knowledge** (HVZK) if \exists PPT \mathcal{S} such that $\forall x \in L$:

$$\mathcal{S}(x) \equiv \langle \mathcal{P}(x, w), \mathcal{V}(x) \rangle$$

Sanity check: Previous proof is not HVZK

Perfect Zero-Knowledge

• An interactive proof system $\pi = (\mathcal{P}, \mathcal{V})$ for L is **perfect zero-knowledge** (PZK) if \forall PPT \mathcal{V}^* \exists PPT \mathcal{S} s.t. $\forall x \in L, \forall z \in \{0,1\}^*$:

$$\mathcal{S}^{\mathcal{V}^*}(x,z) \equiv \langle \mathcal{P}(x,w), \mathcal{V}^*(x,z) \rangle$$

- This is also known as black-box zero-knowledge
- Simulator runs in time poly(|x|), but sometimes we will consider also simulation in **expected polynomial time**
- Auxiliary input captures context
 - Other protocol executions
 - A-priori information (in particular about w)

Can SAT be Proved in ZK?

- Why should we care?
 - Because it is an NP-complete language
 - If $SAT \in NP$, then every $L \in NP$ is provable in zero-knowledge

Theorem: If $SAT \in PZK$, then the polynomial-time hierarchy collapses to the second level

- Natural idea: Relax the definition of zero-knowledge
 - <u>Statistical zero-knowledge (SZK)</u>: Simulator's output statistically close to the verifier's view (above theorem even holds for SZK)
 - Computational zero-knowledge (CZK): Simulator's output computationally close to the verifier's view (recall $\lambda = |x|$)

NP is in CZK

One can show the following fundamental result:

Theorem: If **OWFs exist**, then $NP \subseteq CZK$.

- In fact, we will show that $HAM \subseteq CZK$, where HAM is the language of all graphs with an Hamiltonian cycle
 - This problem is NP complete

Zero-Knowledge for NP from FHE

$$(pk, sk) \leftarrow_{\$} \mathbf{KGen}(1^{\lambda})$$

$$\vec{c} \leftarrow_{\$} \mathbf{Enc}(pk, \vec{w})$$

$$d = \mathbf{Dec}(sk, c')$$

$$x, w$$

$$pk, \vec{c}$$

$$c'$$

$$x, w$$

 $c' \leftarrow_{\$} \mathbf{Eval}(pk, \Gamma_{R,x}, \vec{c})$

- Let $L \in NP$ with relation R
 - This means $L = \{x: \exists w \text{ s. t. } R(x, w) = 1\}$
 - Consider the circuit $\Gamma_{R,x}(w) = R(x,w)$
- The above protocol is not sound!
 - Can you say why?

Adding Soundness

$$(pk, sk) \leftarrow_{\$} \mathbf{KGen}(1^{\lambda})$$

 $\vec{c} \leftarrow_{\$} \mathbf{Enc}(pk, \vec{w})$
 $d = \mathbf{Dec}(sk, c')$

- Now soundness follows by the fact that, for $x \notin L$, both ciphertexts will be encryptions of zero
 - Since those are indistinguishable, Alice can cheat with probability 1/2
- However, we need to ensure that pk, \vec{c} are well formed
 - Alice generates pk_1 , pk_2 and Bob asks her to "open" one at random
 - With the other key Alice encrypts \vec{w}_1, \vec{w}_2 s.t. $\vec{w}_1 \oplus \vec{w}_2 = \vec{w}$, and Bob asks her to "open" one of the encryptions at random

Adding Zero-Knowledge

- The previous protocol is only honest-verifier zero-knowledge
 - In fact, malicious Bob could send to Alice the first ciphertext in the vector \vec{c} , so that d reveals the first bit of w
- This can be fixed using commitments
 - Namely, Alice sends a commitment to d
 - Hence, Bob must reveal his randomness in order to prove he run the computation as needed
 - ullet Finally, Alice opens the commitment revealing d

Non-Interactive Proofs

- So far, we have seen how to obtain zero-knowledge proofs relying on randomness and interaction
- Can we remove interaction?
 - I.e., Alice sends a single message ζ to Bob to prove that $x \in L$
- As we shall see, non-interactive zero-knowledge (NIZK) proofs have exciting applications
 - E.g., post a proof on a website, or on a blockchain

A Negative Result

Theorem: If L admits a NIZK proof $(\mathcal{P}, \mathcal{V})$, then $L \in BPP$.

- Consider the following PPT machine deciding L:
 - Given x, run the simulator to obtain $\zeta \leftarrow_{\$} S(x)$
 - Output the same as $\mathcal{V}(x,\zeta)$
- Completeness: If $x \in L$, the zero-knowledge property implies that a simulated proof should be accepting
- Soundness: If $x \notin L$, the verifier \mathcal{V} rejects all proofs with high probability (in particular a simulated proof)

Common Reference String Model

- Main idea: Assume a trusted setup
 - Typically a common reference string (CRS) accessible to all parties
 - Sometimes just a uniformly random string
 - Need a trusted party to generate the CRS in a reliable manner
- Formally, a non-interactive proof system is a tuple $(\mathcal{G}, \mathcal{P}, \mathcal{V})$
 - $\mathcal{G}(1^{\lambda})$: Outputs a CRS ω
 - $\mathcal{P}(\omega, x, w)$: Outputs a proof ζ
 - $\mathcal{V}(\omega, x, \zeta)$: Outputs a decision bit

Properties of NIZKs

• Completeness: $\forall x \in L$,

$$\mathbb{P}\big[\mathcal{V}(\omega,x,\zeta)=1:\omega\leftarrow_{\$}\mathcal{G}\big(1^{\lambda}\big),\zeta\leftarrow_{\$}\mathcal{P}(\omega,x,w)\big]=1$$

• Soundness: $\forall x \notin L, \forall \mathcal{P}^*$,

$$\mathbb{P}\big[\mathcal{V}(\omega, x, \zeta) = 1: \omega \leftarrow_{\$} \mathcal{G}\big(1^{\lambda}\big), \zeta \leftarrow_{\$} \mathcal{P}^{*}(\omega, x)\big] \in \operatorname{negl}(\lambda)$$

• Zero-Knowledge: $\exists PPT S = (S_0, S_1) \text{ s.t. } \forall x \in L$,

$$\{\omega, \mathcal{S}_1(\tau, x) : (\omega, \tau) \leftarrow_{\$} \mathcal{S}_0(1^{\lambda})\} \approx_c \{\omega, \mathcal{P}(\omega, x, w) : \omega \leftarrow_{\$} \mathcal{G}(1^{\lambda})\}$$

But Do NIZKs Exist?

- In the random oracle model:
 - A. Fiat, A. Shamir. "How to Prove Yourself: Practical Solutions to Identification and Signatures Problems." CRYPTO 1986
- Assuming Factoring
 - U. Feige, D. Lapidot, A. Shamir. "Multiple Non-Interactive Zero-Knowledge Proofs based on a Single Random String." FOCS 1990
- In bilinear groups:
 - J. Groth, A. Sahai. "Efficient Non-Interactive Proof Systems for Bilinear Groups." SIAM Journal of Computing 41(5), 2012
- Assuming LWE
 - C. Peikert, S. Shiehian. "Non-Interactive Zero-Knowledge for NP from (Plain) LWE."

The Fiat-Shamir Transform

- Given public-coin 3-round protocol $(\mathcal{P}, \mathcal{V})$ we define its FS-collapse $(\mathcal{P}_{FS}, \mathcal{V}_{FS})$ as depicted above
 - \mathcal{P}_{FS} obtains α , γ from \mathcal{P} , using $\beta = H(x, \alpha)$
 - \mathcal{V}_{FS} checks that \mathcal{V} accepts (α, β, γ) , with $\beta = H(x, \alpha)$

The Fiat-Shamir Transform

Theorem: Assuming $(\mathcal{P}, \mathcal{V})$ is a 3-round public-coin argument for L with negligible soundness and HVZK, its FS-collapse $(\mathcal{P}_{FS}, \mathcal{V}_{FS})$ is a NIZK argument for L in the ROM

- Remark: Arguments versus proofs
 - An argument has only computational (rather than statistical) soundness
- Actually, the FS-collapse is even a NIZK-PoK in the ROM
 - S. Faust, G. A. Marson, M. Kholweiss, D. Venturi. "On the Non-Malleability of the Fiat-Shamir Transform." Indocrypt 2012

- Suppose $\exists x \notin L$ and some \mathcal{P}_{FS}^* producing an accepting proof
 - Assume \mathcal{P}_{FS}^* makes $p \in \text{poly}(\lambda)$ queries to the RO, and makes \mathcal{V}_{FS} accept with probability $\epsilon(\lambda)$
 - We will construct \mathcal{P}^* breaking soundness w.p. $\operatorname{poly}(\epsilon, 1/p)$
- We rely on the following useful fact:
 - Let **X**, **Y** be correlated random variables such that $\mathbb{P}[E(X,Y)] \ge \epsilon$ where E is some event
 - Then for at least an $\epsilon/2$ fraction of x's, $\mathbb{P}[E(x, Y)] \ge \epsilon/2$
 - Assume not, and call good an x for which the statement holds

 $\mathbb{P}[E(\mathbf{X}, \mathbf{Y})] = \mathbb{P}[\mathbf{Good}] \cdot \mathbb{P}[E(\mathbf{X}, \mathbf{Y}) | \mathbf{Good}] + \mathbb{P}[\mathbf{Bad}] \cdot \mathbb{P}[E(\mathbf{X}, \mathbf{Y}) | \mathbf{Bad}] < \epsilon/2 \cdot 1 + 1 \cdot \epsilon/2$

- Let (α, γ) be the proof output by \mathcal{P}_{FS}^*
- Denote by $(q_1, ..., q_p)$ the RO queries asked by \mathcal{P}_{FS}^*
 - Each query is a pair (x_i, α_i)
 - Wlog. assume all queries are **distinct** and $\exists i^* \in [p]$ s. t. $q_{i^*} = (\alpha, x)$

Forking Lemma. For an $\epsilon/2p$ fraction of $(q_1, ..., q_{i^*})$ it holds that \mathcal{P}_{FS}^* wins w.p. $\epsilon/2p$ conditioned on $\mathbf{q}_{i^*} = (\alpha, x)$ and $\mathbf{q}_i = q_i$ ($\forall i \leq i^*$)

- Proof: $\exists i^*$ s.t. \mathcal{P}_{FS}^* wins w.p. ϵ/p conditioned on $\mathbf{q}_{i^*} = (\alpha, x)$
 - As otherwise \mathcal{P}_{FS}^* does not have advantage $\geq \epsilon$
 - The statement then follows directly by the useful fact

- The prover \mathcal{P}^* acts as follows
 - Run $\mathcal{P}_{\mathrm{FS}}^*$ and answer all RO queries q_i with $i < i^*$ at random
 - Upon input the query q_{i^*} with $\alpha \in q_{i^*}$, forward α to $\mathcal V$ and receive β
 - Use eta as the answer to RO query q_{i^*}
 - Upon (α', γ) , hope that $\alpha' = \alpha$

- By the **forking lemma**, we get that w.p. $\epsilon/2p$ over the choice of $(\mathbf{q}_1, \dots, \mathbf{q}_{i^*})$, \mathcal{P}_{FS}^* wins w.p. $\epsilon/2p$ conditioned on $\alpha' = \alpha$
- Hence:

$$\mathbb{P}[\mathcal{P}^* \text{ wins}] \ge \left(\frac{\epsilon}{2p}\right)^2$$

- Since this is non-negligible, then soundness follows
- It remains to prove zero-knowledge
 - But we did not yet defined what zero-knowledge in the ROM means
 - Typically, the simulator is allowed to program the random oracle

- Let \mathcal{S} be the HVZK simulator for the public-coin protocol
- The NIZK simulator S_{FS} :
 - Answer RO query $q_i = (\alpha_i, x_i)$ with random β_i
 - Upon input $x \in L$, run $(\alpha, \beta, \gamma) \leftarrow_{\$} S(x)$ and program $H(x, \alpha) = \beta$
 - Abort if (x, α) was previously queried to the RO
- Non-triviality: Need that α is unpredictable!

On Adaptive Soundness

- Our definition of soundness for NIZKs is non-adaptive
 - In particular, the choice of $x \notin L$ cannot depend on the CRS
 - One can show that the Fiat-Shamir transform actually achieves adaptive soundness
- Note that the FS-collapse defines $\beta = H(x, \alpha)$, i.e. we hash both the **statement** x and the **commitment** α
 - Sometimes, a variant where $\beta = H(\alpha)$ is also used
 - However, this might not be adaptively sound leading to actual attacks in some applications
 - D. Bernhard, O. Pereira, B. Warinschi. "How not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios." ASIACRYPT 2012

Generalization to Multi-Round Protocols

- The FS transform can be generalized to constant-round publiccoin arguments
 - The prover \mathcal{P}_{FS} hashes the **current view** $(x, \alpha_1, ..., \alpha_{i-1})$ in order to obtain the i-th message β_i from the verifier \mathcal{V}
 - A non-interactive proof now consists of $\zeta=(\alpha_1,\ldots,\alpha_n)$
- This is also known to be tight
 - There exists a non-constant-round public-coin argument for which the FS-collapse is not sound (even in the ROM)
 - Consider any constant-round public-coin argument with constant soundness, and amplify soundness by sequential repetition
 - This yields negligible soundness in non-constant rounds
 - But the reduction does not yield negligible soundness anymore

Fiat-Shamir without Random Oracles?

- Natural question: Can we instantiate the random oracle using an explicit hash family?
 - Understand which properties of a random oracle are necessary for proving security of the Fiat-Shamir transform in the CRS model
- Unfortunately, this is not possible for all 3-round public-coin proofs/arguments
 - S. Goldwasser, Y. T. Kalai. "On the (in)security of the Fiat-Shamir paradigm." FOCS 2003
 - N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, Y. T. Kalai, A. Lopez-Alt,
 D. Wichs. "Why Fiat-Shamir for Proofs Lacks a Proof." TCC 2013
 - Still possible for some specific class of protocols

Correlation Intractability

- Let $\mathcal{H} = \{h: \{0,1\}^s \rightarrow \{0,1\}^t\}$ be a family of hash functions
 - Consider any relation $R \subseteq \{0,1\}^s \times \{0,1\}^t$
- We say that \mathcal{H} is R-correlation-intractable if for all PPT \mathcal{A} :

$$\mathbb{P}[(x,h(x)) \in R : h \leftarrow_{\$} \mathcal{H}; x \leftarrow_{\$} \mathcal{A}(h)] \in \operatorname{negl}(\lambda)$$

• A relation R is said to be ρ -sparse, if $\forall x \in \{0,1\}^s$:

$$\mathbb{P}[(x,y) \in R: y \leftarrow_{\$} \{0,1\}^t] \le \rho(\lambda)$$

• Moreover, the relation R is sparse if $\rho(\lambda) \in \text{negl}(\lambda)$

Fiat-Shamir via Correlation Intractability

Theorem: Assuming $\pi = (\mathcal{P}, \mathcal{V})$ is a 3-round public-coin proof for L with soundness and HVZK, its FS-collapse $(\mathcal{P}_{FS}, \mathcal{V}_{FS})$ using a CI hash family \mathcal{H} is a NIZK argument for L

Consider the relation:

$$R_{L,\pi} = \{((\alpha, x), \beta) : \exists \gamma \text{ s. t. } x \notin L \land \mathcal{V}(x, (\alpha, \beta, \gamma)) = 1\}$$

- It is not hard to show that **statistical soundness** (with negligible soundness error) implies that R_{π} is **sparse**
- But a cheating \mathcal{P}_{FS}^* finds α^* s.t. $((x, \alpha^*), h(x, \alpha^*)) \in R_{L,\pi}$, violating CI

Fiat-Shamir via Correlation Intractability

- ullet Zero-knowledge additionally requires that ${\mathcal H}$ is programmable
 - Call \mathcal{H} 1-universal if for all $x \in \{0,1\}^s$, $y \in \{0,1\}^t$, the probability over the choice of $h \in \mathcal{H}$ that h(x) = y equals 2^{-t}
 - \mathcal{H} is **programmable** if it is 1-universal and further there exists an **efficient** algorithm $\mathbf{Samp}(1^{\lambda}, x, y)$ that samples from the conditional distribution $h \leftarrow_{\$} \mathcal{H}$ such that h(x) = y
- We can assume programmability wlog.
 - Sample $h \leftarrow_{\$} \mathcal{H}$ and a random string $u \leftarrow_{\$} \{0,1\}^t$
 - Output $h(x) \oplus u$
 - Algorithm $\mathbf{Samp}(1^{\lambda}, x, y)$ picks $h \leftarrow_{\$} \mathcal{H}$ and outputs $(h, h(x) \oplus y)$

Fiat-Shamir via Correlation Intractability

- Assuming obfuscation:
 - Y. T. Kalai, G. N. Rothblum, R. D. Rothblum. "From Obfuscation to the security of Fiat-Shamir for Proofs." CRYPTO 17
- Assuming optimal KDM-secure encryption:
 - R. Canetti, Y. Chen, L. Reyzin, R. D. Rothblum. "Fiat-Shamir and CI from Strong KDM-Secure Encryption" EUROCRYPT 18
- Assuming circularly secure FHE:
 - R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Rothblum, D. Wichs. "Fiat-Shamir: From Theory to Practice." STOC 19
- Assuming (plain) LWE:
 - C.Peikert, S. Shiehian. "Noninteractive Zero Knowledge from (Plain) Learning With Errors." CRYPTO 19

Questions?

Cryptography Course

<u>Prof. Daniele Venturi</u> Dipartimento di Informatica

Academic Year 2024/2025

References

- [Ajt96] Miklós Ajtai: Generating hard instances of lattice problems (extended abstract). STOC 1996
- [ACPS09] Benny Applebaum, David Cash, Chris Peikert, Amit Sahai: Fast cryptographic primitives and circularsecure encryption based on hard learning problems. CRYPTO 2009
- [GGM84] Oded Goldreich, Shafi Goldwasser, Silvio Micali: How to construct random functions (extended abstract). FOCS 1984
- [Mic01] Daniele Micciancio: Improving lattice based cryptosystems using the Hermite normal form. CaLC 2001
- [NR95] Moni Naor, Omer Reingold: Synthesizers and their application to the parallel construction of psuedorandom functions. FOCS 1995
- [NR97] Moni Naor, Omer Reingold: Number-theoretic constructions of efficient pseudo-random functions. FOCS 1997
- [Pei10] Chris Peikert: An efficient and parallel Gaussian sampler for lattices. CRYPTO 2010
- [Reg05] Oded Regev: On lattices, learning with errors, random linear codes, and cryptography. STOC 2005
- [Sho94] Peter W. Shor: Algorithms for quantum computation: discrete logarithms and factoring. FOCS 1994
- [NRR00] Moni Naor, Omer Reingold, Alon Rosen: Pseudo-random functions and factoring (extended abstract). STOC 2000
- [BPR12] Abhishek Banerjee, Chris Peikert, Alon Rosen: *Pseudorandom functions and lattices*. EUROCRYPT 2012

References

- [AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, Daniel Wichs: Learning with rounding, revisited New reduction, properties and applications. CRYPTO 2013
- [Bab86] László Babai: On Lovász' lattice reduction and the nearest lattice point problem. Comb. 6(1) 1986
- [Ajt99] Miklós Ajtai: Generating hard instances of the short basis problem. ICALP 1999
- [GPV08] Craig Gentry, Chris Peikert, Vinod Vaikuntanathan: Trapdoors for hard lattices and new cryptographic constructions. STOC 2008
- [P10] Chris Peikert: An Efficient and Parallel Gaussian Sampler for Lattices. CRYPTO 2010
- [AP09] Joël Alwen, Chris Peikert: Generating shorter bases for hard random lattices. STACS 2009
- [MP12] Daniele Micciancio, Chris Peikert: *Trapdoors for lattices: simpler, tighter, faster, smaller*. EUROCRYPT 2012
- [Kle01] Philip N. Klein: Finding the closest lattice vector when it's unusually close. SODA 2000
- [CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, Chris Peikert: *Bonsai trees, or how to delegate a lattice basis*. EUROCRYPT 2010

