Chapter 2: Evaluative Feedback

- **Evaluating** actions vs. **instructing** by giving correct actions
- ☐ Pure evaluative feedback depends totally on the action taken.

 Pure instructive feedback depends not at all on the action taken.
- ☐ Supervised learning is instructive; optimization is evaluative
- **☐** Associative vs. Nonassociative:
 - Associative: inputs mapped to outputs; learn the best output
 for each input
 - Nonassociative: "learn" (find) one best output
- \square *n*-armed bandit (at least how we treat it) is:
 - Nonassociative
 - Evaluative feedback

The *n*-Armed Bandit Problem

- \square Choose repeatedly from one of n actions; each choice is called a **play**
- \square After each play a_t , you get a reward r_t , where

$$E\langle r_t \mid a_t \rangle = Q^*(a_t)$$

These are unknown **action values**Distribution of r_t depends only on a_t

☐ Objective is to maximize the reward in the long term, e.g., over 1000 plays

To solve the *n*-armed bandit problem, you must **explore** a variety of actions and the **exploit** the best of them

The Exploration/Exploitation Dilemma

□ Suppose you form estimates

$$Q_t(a) \approx Q^*(a)$$

action value estimates

 \square The **greedy** action at t is

$$a_t^* = \arg \max_a Q_t(a)$$
 $a_t = a_t^* \Rightarrow \text{exploitation}$
 $a_t \neq a_t^* \Rightarrow \text{exploration}$

- ☐ You can't exploit all the time; you can't explore all the time
- ☐ You can never stop exploring; but you should always reduce exploring

Action-Value Methods

☐ Methods that adapt action-value estimates and nothing else, e.g.: suppose by the *t*-th play, action a had been chosen k_a times, producing rewards $r_1, r_2, ..., r_{k_a}$, then

$$Q_t(a) = \frac{r_1 + r_2 + \cdots r_{k_a}}{k_a}$$

"sample average"

$$\square \lim_{k_a \to \infty} Q_t(a) = Q^*(a)$$

ε-Greedy Action Selection

☐ Greedy action selection:

$$a_t = a_t^* = \arg\max_a Q_t(a)$$

 \square ϵ -Greedy:

$$a_t = \begin{cases} a_t^* & \text{with probability } 1 - \varepsilon \\ \text{random action with probability } \varepsilon \end{cases}$$

... the simplest way to try to balance exploration and exploitation

10-Armed Testbed

- \square n = 10 possible actions
- \square Each $Q^*(a)$ is chosen randomly from a normal distribution: $\eta(0,1)$
- \square each r_t is also normal: $\eta(Q^*(a_t),1)$
- **□** 1000 plays
- repeat the whole thing 2000 times and average the results

ε-Greedy Methods on the 10-Armed Testbed

Softmax Action Selection

- ☐ Softmax action selection methods grade action probs. by estimated values.
- ☐ The most common softmax uses a Gibbs, or Boltzmann, distribution:

Choose action a on play t with probability

$$\frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^n e^{Q_t(b)/\tau}},$$

where τ is the

"computational temperature"

Binary Bandit Tasks

Suppose you have just **two** actions: $a_t = 1$ or $a_t = 2$ and just **two** rewards: $r_t = success$ or $r_t = failure$

Then you might infer a **target** or **desired action**:

$$d_t = \begin{cases} a_t & \text{if success} \\ \text{the other action} & \text{if failure} \end{cases}$$

and then always play the action that was most often the target

Call this the **supervised algorithm**It works fine on deterministic tasks...

Contingency Space

The space of all possible binary bandit tasks:

Linear Learning Automata

Let
$$\pi_t(a) = \Pr\{a_t = a\}$$
 be the only adapted parameter

 L_{R-I} (Linear, reward - inaction)

On success: $\pi_{t+1}(a_t) = \pi_t(a_t) + \alpha(1 - \pi_t(a_t))$ $0 < \alpha < 1$ (the other action probs. are adjusted to still sum to 1)

On failure: no change

L_{R-P} (Linear, reward - penalty)

On success:
$$\pi_{t+1}(a_t) = \pi_t(a_t) + \alpha(1 - \pi_t(a_t))$$
 $0 < \alpha < 1$ (the other action probs. are adjusted to still sum to 1)

On failure:
$$\pi_{t+1}(a_t) = \pi_t(a_t) + \alpha(0 - \pi_t(a_t))$$
 $0 < \alpha < 1$

For two actions, a stochastic, incremental version of the supervised algorithm

Performance on Binary Bandit Tasks A and B

Incremental Implementation

Recall the sample average estimation method:

The average of the first k rewards is (dropping the dependence on a):

$$Q_k = \frac{r_1 + r_2 + \cdots r_k}{k}$$

Can we do this incrementally (without storing all the rewards)?

We could keep a running sum and count, or, equivalently:

$$Q_{k+1} = Q_k + \frac{1}{k+1} [r_{k+1} - Q_k]$$

This is a common form for update rules:

NewEstimate = OldEstimate + StepSize[Target - OldEstimate]

Tracking a Nonstationary Problem

Choosing Q_k to be a sample average is appropriate in a stationary problem,

i.e., when none of the $Q^*(a)$ change over time,

But not in a nonstationary problem.

Better in the nonstationary case is:

$$Q_{k+1} = Q_k + \alpha [r_{k+1} - Q_k]$$

for *constant* α , $0 < \alpha \le 1$

$$= (1 - \alpha)^{k} Q_{0} + \sum_{i=1}^{k} \alpha (1 - \alpha)^{k-i} r_{i}$$

exponential, recency-weighted average

Optimistic Initial Values

- \square All methods so far depend on $Q_0(a)$, i.e., they are **biased**.
- □ Suppose instead we initialize the action values **optimistically**,

i.e., on the 10-armed testbed, use $Q_0(a) = 5$ for all a

Reinforcement Comparison

- \square Compare rewards to a reference reward, \overline{r}_t , e.g., an average of observed rewards
- \square Strengthen or weaken the action taken depending on $r_t \overline{r}_t$
- \square Let $p_t(a)$ denote the **preference** for action a
- ☐ Preferences determine action probabilities, e.g., by Gibbs distribution:

$$\pi_{t}(a) = \Pr\{a_{t} = a\} = \frac{e^{p_{t}(a)}}{\sum_{b=1}^{n} e^{p_{t}(b)}}$$

☐ Then:

$$p_{t+1}(a_t) = p_t(a) + [r_t - \overline{r_t}]$$
 and $\overline{r_{t+1}} = \overline{r_t} + \alpha[r_t - \overline{r_t}]$

Performance of a Reinforcement Comparison Method

Pursuit Methods

- ☐ Maintain both action-value estimates and action preferences
- ☐ Always "pursue" the greedy action, i.e., make the greedy action more likely to be selected
- \square After the *t*-th play, update the action values to get Q_{t+1}
- ☐ Then:

$$\pi_{t+1}(a_{t+1}^*) = \pi_t(a_{t+1}^*) + \beta \Big[1 - \pi_t(a_{t+1}^*) \Big]$$

and the probs. of the other actions decremented to maintain the sum of 1

Performance of a Pursuit Method

Associative Search

Imagine switching bandits at each play

Conclusions

- ☐ These are all very simple methods
 - but they are complicated enough—we will build on them
- ☐ Ideas for improvements:
 - estimating uncertainties . . . interval estimation
 - approximating Bayes optimal solutions
 - Gittens indices
- ☐ The full RL problem offers some ideas for solution . . .