Sui numeri binari quadrati

Troncana F.

Introduzione

Qualche tempo fa, Matilde mi ha presentato un'interessante congettura:

Proposizione 0.1: Calabri I

Gli unici numeri della forma $a_0 + 10a_1 + 100a_2 + ...$ con $a_i \in \{0, 1\}$ che sono quadrati perfetti sono della forma 10^{2k} per qualche $k \in \mathbb{N}$.

Dopo un infruttuoso attacco a forza di congurenze modulari, ho deciso di utilizzare tecniche a me più familiari, ovvero provare a ragionare in termini di polinomi. Stabiliamo un pochino di linguaggio:

Definizione 0.1: Numeri e polinomi binari

Un numero binario in base β , o numero β -binario, è un numero della forma

$$\sum_{i=0}^{n} a_i \beta^i \qquad \text{con } a_i \in \{0, 1\}$$

Analogamente, un *polinomio binario* è un polinomio della forma

$$\sum_{i=0}^{n} a_i x^i \qquad \text{con } a_i \in \{0, 1\}$$

Definiremo 2[x] l'insieme dei polinomi binari nella variabile x.

Possiamo vedere che quindi la congettura di Matilde riguarda i numeri 10-binari; procediamo a dimostrare il

Teorema 0.1: Teorema del treno per polinomi

Sia $p \in \mathbb{N}[x]$ di grado d tale che $p^2 \in \mathbf{2}[x]$. Allora $p = x^d$ se $d \ge 0$, altrimenti p = 0.

Dimostrazione

I casi $d \in \{-\infty, 0\}$ sono banali, assumiamo $d \ge 1$ e scriviamo per esteso $p \in p^2$:

$$p = \sum_{i=0}^{d} a_i x^i$$
, $p^2 = \sum_{k=0}^{2d} b_k x^k$ dove $b_k = \sum_{i=0}^{k} a_i a_{k-i}$ e $\forall j > d, a_j = 0$

Dimostriamo prima che $p \in \mathbf{2}[x]$ (lemma della locomotiva) e successivamente che $p = x^d$ (lemma della ferrovia):

- Dato che abbiamo assunto la binarietà di p^2 , per ogni k bisogna avere $b_k \in \{0,1\}$, dunque deve esistere al più un i tale che $a_i a_{k-i} > 0$, poichè altrimenti b_k sarebbe maggiore di 1; inoltre, dato che l'unico caso in cui il prodotto di due numeri naturali è uguale a 1 è quello in cui questi sono entrambi uno, deve valere $a_i = a_{k-i} = 1$, dunque per ogni j deve valere $a_j \in \{0,1\}$ e dunque $p \in \mathbf{2}[x]$.
- Per l'unicità di i vista nel punto precedente, deve valere anche i = k i, ovvero k = 2i e quindi b_k può essere uguale a 1 soltanto per k pari. Scriviamo quindi

$$p^2 = \sum_{k=0}^{d} b_{2k} x^{2k}$$
 con $b_{2k} = \sum_{i=0}^{2k} a_i a_{2k-i}$

1

Notiamo che abbiamo "gratis" $b_{2d}=1$ e $b_0=a_0^2$ e supponiamo per assurdo che per un qualche 0 < h < d si abbia $b_{2h}=1$; questo significherebbe che $a_h=1$ e che quindi $b_{d+h} \neq 0$, e in particolare

$$b_{d+h} = \sum_{i=0}^{d+h} a_i a_{d+h-i} = \underbrace{\sum_{i=0}^{h-1} a_i a_{d+h-i}}_{=0} + \underbrace{\sum_{i=h+1}^{d-1} a_i a_{d+h-i}}_{\geq 0} + \underbrace{\sum_{i=d+1}^{d+h+1} a_i a_{d+h-i}}_{\geq 0} \geq 2$$

assurdo per ipotesi di binarietà di p^2 , dunque dobbiamo concludere che $b_{2h}=0$ per ogni 0 < h < d e perciò $p^2=x^{2d}+a_0$, ma dato che $x^{2d}+1$ è irriducibile in $\mathbb{R}[x]$ chiaramente lo è anche in $\mathbb{N}[x]$ e ovviamente in $\mathbf{2}[x]$ e quindi $a_0=0$.

Prima di essere certi di averlo dimostrato per i numeri, ci serve il seguente lemma:

Lemma 0.1: Corrispondenza biunivoca tra polinomi binari e numeri β -binari

Sia $\beta \in \mathbb{N}_{>2}$, sia $V_{\beta} : \mathbb{N}[x] \to \mathbb{N}$ l'omomorfismo di semianelli che manda p in $p(\beta)$. Allora:

- 1. La restrizione $V_{\beta}:\mathbf{2}[x]\to B_{\beta}$ è una mappa biettiva di insiemi.
- 2. Un $n \in B_{\beta}$ è un quadrato in \mathbb{N} se e solo se $p = V_{\beta}^{-1}(n)$ è un quadrato in $\mathbb{N}[x]$

Dimostrazione

1. Il seguente diagramma commuta in **Set**:

Dato che la restrizione di V_{β} è uguale alla composizione di due biezioni (la scrittura in base β e la sostituzione del simbolo β col simbolo x), è una biezione.

2. Assumiamo che $p=q^2$, allora banalmente $n=p(\beta)=q^2(\beta)=(q(\beta))^2$. Ora assumiamo che $n=p(\beta)=m^2$. Scriviamo p

$$p = \sum_{i=0}^{d} a_i x^i$$

Corollario 0.1: Teorema del treno per numeri β -binari

Sia p un quadrato perfetto β -binario.

Allora p è della forma β^{2n} per qualche $n \in \mathbb{N}$ oppure p = 0.

Dimostrazione

Scriviamo p in base β , vediamo le sue cifre come coefficienti di un polinomio $p(x) \in \mathbf{2}[x]$ e applichiamo il teorema del treno per polinomi, ottenendo che $p(x) = x^{2n}$ per qualche $n \in \mathbb{N}$ oppure $p(x) \equiv 0$. Valutiamo $p(\beta)$ per ottenere $p = \beta^{2n}$ oppure p = 0.

Corollario 0.2: Calabri I

Gli unici numeri della forma $a_0 + 10a_1 + 100a_2 + \dots$ con $a_i \in \{0, 1\}$ che sono quadrati perfetti sono della forma 10^{2k} per qualche $k \in \mathbb{N}$.

${\bf Dimostrazione}$

Applichiamo il teorema del treno per numeri $\beta\text{-binari}$ nel caso $\beta=10.$