Séries et intégrales

Cours dynamique

Séries et intégrales

Cours dynamique

Sadik Boujaida CPGE Moulay Youssef

December 8, 2024

Website: $cpgeX^1$ ©2020–2024 You

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit CreativeCom $mons.org^2$

¹texbouja.github.io 2creativecommons.org/licenses/by-sa/4.0

Contents

1	Con	npléments sur les séries numériques	1
	1.1	Comparaison séries/intégrales	1
R	ack	Matter	

Chapter 1

Compléments sur les séries numériques

Compléments sur les séries numériques. Inclut des techniques hors-programmes des CPGE

1.1 Comparaison séries/intégrales

On considère une fonction continue par morceaux, décroissante et positive $f:[0,+\infty[\longrightarrow \mathbb{R}.$ Alors pour tout $m\in \mathbb{N}^*$

$$\int_{n}^{n+1} f(t) \, \mathrm{d} \, t \leqslant f(n) \leqslant \int_{n-1}^{n} f(t) \, \mathrm{d} \, t$$

La minoration est en fait valable pour tout $n \in \mathbb{N}$ alors que la majoration est valable pour tout $n \in \mathbb{N}^*$.

De ce fait on a le théorème suivant

Theorem 1.1.1 de comparaison séries/intégrales.

1.
$$\forall n \in \mathbb{N}^*, \ \int_0^{n+1} f(t) \, \mathrm{d} \, t \leqslant \sum_{k=0}^n f(k) \leqslant f(0) + \int_0^n f(t) \, \mathrm{d} \, t$$

2. la série $\sum f(n)$ converge si et seulement si l'intégrale $\int_0^{+\infty} f(t) dt$ converge et dans ce cas :

•
$$\int_0^{+\infty} f(t) \, \mathrm{d}t \leqslant \sum_{k=0}^{+\infty} f(k) \leqslant f(0) + \int_0^{+\infty} f(t) \, \mathrm{d}t$$

•
$$\forall n \in \mathbb{N}^* \int_{n+1}^{+\infty} f(t) \, \mathrm{d} \, t \leqslant \sum_{k=n+1}^{+\infty} f(k) \leqslant \int_{n}^{+\infty} f(t) \, \mathrm{d} \, t$$

• en particulier si
$$\int_{n}^{n+1} f(t)dt = o\left(\int_{n}^{+\infty} f(t)dt\right)$$
 alors $\sum_{k=n+1}^{+\infty} f(k) \sim \int_{n}^{+\infty} f(t)dt$

Remark 1.1.2 On peut replacer l'intervalle $[0, +\infty[$ par un intervalle de la forme $[p, +\infty[$ où p est un entier ≥ 0 lorsque la fonction f n'est pas définie sur

 $[0,+\infty[.$

Colophon

This book was authored in PreTeXt.