

点阵/阵点

点阵+基元 📑 晶体结构

$$(m_2)(m_1) = A_{\alpha}$$

夹角为 $\alpha/2$ 的两镜面反映组合
= 绕两镜面交线旋转 α 角
 $m_1 = (m_2)(A_{\alpha})$
 A_{α} 旋转与铅垂面 m_2 反映组合 =
镜面反映 m_1 (与 m_2 成 $\alpha/2$ 角)

旋转与反映组合得到10个平面点群!!

0 0

mm

mm

m

mm

0 0

mm

mm

m

mm

P177页,表7-6

表 7-6 HM 符号的对称性方向

		每一位 HM 符号的对称性方向			
Bravais 系		第一位	第二位	· 第三位	
	新交				
=	短形_	平面中的旋转点	[10]	[6t;	
	正为		{[10]}	${[11]}$	
维	六角		\\ \begin{align*}{c & \text{1.0]} \\ \begin{align*}{c & \text{1.0]} \\ \begin{align*}{c & \text{1.0]} \\ \end{align*}	$ \begin{cases} \begin{bmatrix} 11 \\ 12 \end{bmatrix} \\ \begin{bmatrix} 12 \end{bmatrix} \end{cases} $	

• 围绕一点的对称操作的集合构成点群。共十个平面点群

```
• 点群 对称操作
```

•
$$m$$
 1, m_v

•
$$2mm$$
 1, 2, m_v , m_d

•
$$3m$$
 1, 3^+ , 3^- , m_v , m_v' , m_v''

•
$$4mm$$
 1; 4^+ ; 4^- ; 2; $m_v, m'_v \quad m_d, m'_d$

• 6
$$1, 6^+, 3^+, 2, 3^-, 6^-$$

• 6mm 1;
$$6^+$$
, 6^- ; 3^+ , 3^- ; 2; m_v , m'_v , m''_v ; m_d , m'_d , m''_d

五个平面点阵

平面制约点操作 \Rightarrow $n = 1, 2, 3, 4, 6 <math>\Rightarrow$ 10个平面点群点操作制约平移 \Rightarrow 5个平面点阵 \Rightarrow 4个平面晶系对照表2-2 P.36

点操作与平移的组合

二次轴与平移组合

$$(A_{\kappa}, \boldsymbol{\alpha}) = B_{\kappa}$$
$$(A_{\kappa}, \boldsymbol{\alpha} + \boldsymbol{b}) = C_{\kappa}$$
$$(A_{\kappa}, \boldsymbol{b}) = D_{\kappa}$$

点操作与平移的组合

四次轴与平移组合

$$(A_{\pi/2}, \boldsymbol{a}) = C_{\pi/2}$$

$$(A_{\pi}, \boldsymbol{a}) = B_{\pi}$$

$$(A_{\pi}, \boldsymbol{a} + \boldsymbol{b}) = C_{\pi}$$

$$(A_{-\pi/2}, \boldsymbol{b}) = C_{-\pi/2}$$

$$(A_{\bullet}, \boldsymbol{b}) = D_{\bullet}$$

三次轴与六次轴与平移组合 (P37-38)

点操作与平移的组合

点群2mm与平移组合

P36页,表2-2

表 2-2 5 个平面点阵和 4 个平面晶系

平面温系	点阵类型及其符号		点阵的点群	相协调的点群。	惯用晶胞形状
 斜交	斜交点阵	(mp)	2	1, 2	平行四边形, 4 ≠ 6, 7 任意
hat no	简单矩形点阵	(op)	2 m m	3	矩形,a≠b, r = 90°
矩形	c 心矩形点阵	(00)	2 m m	m, 2mm	
_ 正方	正方点阵	(tp)	4mm	4, 4mm	正方形, a = b, r = 90°
 六角	六角点阵	(hp)	6 m m	6, 6mm, 3, 3m	120° 菱形, a = b, r = 120°

17个平面群

平面群的推导: 把互相协调的点群与点阵组合

- (1) 即让点阵的阵点所代表的图象具有该点群的对称性
- (2) 或把点群中的m换成之g后的对称性

由(1)得 P1, P2, P3, P4, P6; P3m1, P31m; P4mm;

*P*6*mm*; *P*1*m*1, *C*1*m*1; *P*2*mm*, *C*2*mm*;

见图 2-11

(i)点操作与平移组合派生出新的点操作:

$$ig(A_{\pi/2},a) = C_{\pi/2} \ (A_{\pi},a+b) = C_{\pi} \ (A_{-\pi/2},b) = C_{-\pi/2}$$
 $\Rightarrow C$ 处有4次轴

(1) P3m1 与 P31m的加方位不同 $(m \perp a)$ $(m \perp a - b)$

由(2)得

点阵/阵点

点阵+基元 📑 晶体结构

平面群: P1

平面群: P2

平面群: P m

平面群: Pg

平面群: Cm

平面群: *P*2*gm* = *P*2*mg*

平面群: P4

平面群: C2mm

平面群: P3

平面群: P6

平面群: P6mm

平面群: P4mm

平面群: P4gm

平面群: P3m1

平面群: P31m

平面群: P3m1

平面群: P31m

平面群: P3 m1

P 42页

对称元素配 置 冬

对称操作:

 $(1) 1 \qquad (2) 3^{+} 0, 0 (3) 3^{-} 0, 0$

(4) $m \ x, \overline{x}$ (5) $m \ x, 2x$ (6) $m \ 2x, x$

等效位置 (一般) : (1) x,y (2) $\bar{y},x-y$ (3) $\bar{x}+y,\bar{x}$

(4) $\overline{y}, \overline{x}$ (5) $\overline{x} + y, y$ (6) x, x - y

特殊位置:

m. x, \overline{x}

x,2x $2\overline{x},\overline{x}$

(1)(4) (2)(6) (3)(5)

无对称单元:

 $0 \le x \le \frac{2}{3}$; $0 \le y \le \frac{2}{3}$; $x \le 2y$; $y \le \min(1 - x, 2x)$

顶点

0,0

2/3, 1/3 1/3, 2/3

第二章作业: 1 (P45页)