Samir SAYAH Vincent LIU Guillaume NGUYEN Hala BEN ALI

Encadrant: Stef GRAILLAT

29 mai 2018

1 Introduction

Introduction

- 4 Algorithme de Newton
- 6 Conclusion

Motivations

De nos jours, la fiabilité des calculs est primordiale

Inconvénients de la représentation des nombres réels avec la norme IEEE 754

Pourquoi l'arithmétique d'intervalles?

- Prise en compte des incertitudes
- Calcul garanti

Motivations

De nos jours, la fiabilité des calculs est primordiale

Inconvénients de la représentation des nombres réels avec la norme IEEE 754

Pourquoi l'arithmétique d'intervalles?

- Prise en compte des incertitudes
- Calcul garanti

Notre but va être de proposer un format compressé permettant de stocker un intervalle dans un flottant

- 1 Introduction
- 2 Format de représentation
- 3 Opérations
- 4 Algorithme de Newton
- 5 Fonctions
- 6 Conclusion

Representation des nombres réels

Problème : Représenter l'ensemble $\mathbb R$ en machine

Representation des nombres réels

Problème : Représenter l'ensemble $\mathbb R$ en machine

Solution : Représenter l'ensemble fini $\mathbb F$ des nombres flottants

Conclusion

Representation des nombres réels

Problème : Représenter l'ensemble $\mathbb R$ en machine

Solution : Représenter l'ensemble fini $\mathbb F$ des nombres flottants

Norme IEEE 754

Soit $x \in \mathbb{F}$, alors :

$$x = (-1)^{Signe} \times 1, \underbrace{M_1 M_2 \dots M_n}_{Mantisse} \times 2^{exposant}$$

où $M_i = 0$ ou 1, donc la mantisse est une suite de 0 et de 1.

Exemple

Comment représenter le nombre décimal 8,625 en norme IEEE 754 et en simple précision?

Comment représenter le nombre décimal 8,625 en norme IEEE 754 et en simple précision?

■ $8,625 = 2^3 + 2^{-1} + 2^{-3}$. Donc: 8,625 en binaire vaut: $8,625_{10} = 1000,101_2$

Comment représenter le nombre décimal 8,625 en norme IEEE 754 et en simple précision?

- $8,625 = 2^3 + 2^{-1} + 2^{-3}$. Donc: 8,625 en binaire vaut: $8,625_{10} = 1000,101_2$
- 1000,101 en écriture scientifique vaut : 1,000101.2³.

Format de représentation

Exemple

Comment représenter le nombre décimal 8,625 en norme IEEE 754 et en simple précision?

- \bullet 8. 625 = $2^3 + 2^{-1} + 2^{-3}$. Donc: 8.625 en binaire vaut: $8.625_{10} = 1000, 101_{2}$
- 1000,101 en écriture scientifique vaut : 1,000101.2³.
- L'exposant décalé vaut : E = exposant + décalage = 3 + 127 = 130.(en simple précision, décalage = 127). E en binaire vaut : 10000010.

Exemple

Comment représenter le nombre décimal 8,625 en norme IEEE 754 et en simple précision?

- \bullet 8. 625 = $2^3 + 2^{-1} + 2^{-3}$. Donc: 8.625 en binaire vaut: $8.625_{10} = 1000, 101_{2}$
- 1000,101 en écriture scientifique vaut : 1,000101.2³.
- L'exposant décalé vaut : E = exposant + décalage = 3 + 127 = 130.(en simple précision, décalage = 127). E en binaire vaut : 10000010.

Signe	E	Mantisse
0	10000010	0001010000000000000000000

4 modes d'arrondis :

■ Vers $-\infty$

4 modes d'arrondis :

- Vers $-\infty$
- Vers $+\infty$

4 modes d'arrondis :

- Vers $-\infty$
- Vers $+\infty$
- Vers 0

Conclusion

L'ensemble des nombres flottants

4 modes d'arrondis :

- Vers $-\infty$
- Vers $+\infty$
- Vers 0
- Au plus près

Conclusion

L'ensemble des nombres flottants

4 modes d'arrondis :

- Vers $-\infty$
- Vers $+\infty$
- Vers 0
- Au plus près

Problème: Erreur d'arrondis lors des calculs

Problème : Erreur d'arrondis lors des calculs impliquant des nombres flottants

Conclusion

Problème : Erreur d'arrondis lors des calculs impliquant des

nombres flottants

Solution: Manipuler des intervalles contenant ces nombres

Problème : Erreur d'arrondis lors des calculs impliquant des nombres flottants

Solution : Manipuler des intervalles contenant ces nombres II existe deux manières de représenter un intervalle :

Notation inf-sup : I = [a, b] = [c - r, c + r]

Problème : Erreur d'arrondis lors des calculs impliquant des nombres flottants

Solution : Manipuler des intervalles contenant ces nombres II existe deux manières de représenter un intervalle :

- Notation inf-sup : I = [a, b] = [c r, c + r]
- Notation Centre-Rayon : $I = \langle c, r \rangle$

Conclusion

L'arithmétique d'intervalles

Problème : Erreur d'arrondis lors des calculs impliquant des nombres flottants

Solution : Manipuler des intervalles contenant ces nombres II existe deux manières de représenter un intervalle :

- Notation inf-sup : I = [a, b] = [c r, c + r]
- Notation Centre-Rayon : $I = \langle c, r \rangle$

Inconvénient : Nécessite de devoir stocker deux nombres

Conclusion

La représentation FP-Intervalle

Avec le format FP_Interv, un flottant codé en binaire ne représentera plus un nombre mais un intervalle.

La représentation FP-Intervalle

Avec le format FP_Interv, un flottant codé en binaire ne représentera plus un nombre mais un intervalle. Exemple :

Intervalle	Signe	E	Mantisse m'
1	0	10000010	0001011 00000000000000000

Avec le format FP_Interv, un flottant codé en binaire ne représentera plus un nombre mais un intervalle. Exemple :

Intervalle	Signe	E	Mantisse m'
l	0	10000010	0001011 00000000000000000

Ce nombre code l'intervalle $I = <8.625, 2^{-4}>$, le dernier 1 indique la position du rayon qui vérifie la relation suivante :

$$r = 2^{exposant-position}$$

Avec le format FP_Interv, un flottant codé en binaire ne représentera plus un nombre mais un intervalle. Exemple :

Intervalle	Signe	E	Mantisse m'
I	0	10000010	0001011 00000000000000000

Ce nombre code l'intervalle $I = <8.625, 2^{-4}>$, le dernier 1 indique la position du rayon qui vérifie la relation suivante :

$$r = 2^{exposant-position}$$

Attention, ce nombre peut être également interprété comme un simple flottant codé sous la norme IEEE 754 avec I=8,6875.

- 3 Opérations
- 4 Algorithme de Newton
- 6 Conclusion

Problème: Comment additionner deux FP-Intervalles?

Problème: Comment additionner deux FP-Intervalles?

Théorème Addition

Soit
$$c_3 = \operatorname{arrondi}(c_1 + c_2)$$

 $|z_1 + z_2 - c_3| = |z_1 + z_2 - (c_1 + c_2) + (c_1 + c_2) - c_3|$
 $\leq |z_1 - c_1| + |z_2 - c_2| + |(c_1 + c_2) - c_3|$
 $\leq r_1 + r_2 + u.2^{\operatorname{exposant}(c_3)}$
 $\leq r_3$

Multiplication

Problème: Comment multiplier deux FP-Intervalles?

Multiplication

Problème: Comment multiplier deux FP-Intervalles?

Théorème Multiplication

Soit
$$c_3 = \operatorname{arrondi}(c_1 \times c_2)$$

 $|z_1 \times z_2 - c_3| = |z_1 \times z_2 - (c_1 \times c_2) + (c_1 \times c_2) - c_3|$
 $\leq |z_1 \times z_2 - (c_1 \times c_2)| + |(c_1 \times c_2) - c_3|$
 $\leq (|c_1| + r_1) \times r_2 + r_1 \times |c_2| + u \times 2^{\operatorname{exposant}(c_3)}$
 $\leq r_3$

- 1 Introduction
- 2 Format de représentation
- 3 Opérations
- 4 Algorithme de Newton
- 5 Fonctions
- 6 Conclusion

Algorithme de Newton par Intervalle

Problème : Approcher $\sqrt{2}$

Conclusion

Algorithme de Newton par Intervalle

Problème : Approcher $\sqrt{2}$

Solution : Adapter la méthode de Newton pour les intervalles

Conclusion

Problème : Approcher $\sqrt{2}$

Format de représentation

Solution : Adapter la méthode de Newton pour les intervalles

Algorithme de Newton

Soit $\tilde{x} \in X$ et $f(x) = x^2 - 2$

On définit :

$$N(\tilde{x},X) := \tilde{x} - \frac{\tilde{x}^2 - 2}{2 \times X}$$

Si $N(\tilde{x}, X) \subset X$, alors X contient une racine de f.

Si $N(\tilde{x}, X) \cap X = \emptyset$ alors $f(x) \neq 0$ pour tout $x \in X$.

Algorithme de Newton par Intervalle

i	Itérations de Newton		Centre-Rayon
1	+1.011	× 2 ⁰	< 1.3750, 2 ⁻⁴ >
2	+1.0110100011 ×	2 ⁰	< 1.409, 2 ⁻¹¹ >
3	+1.0110101000001010001011111111101	× 2 ⁰	$< 1.41421, 2^{-31} >$
4	+1.0110101000001001111001100110011111111	× 2 ⁰	< 1.41421, 2 ⁻⁴⁸ >
5	+1.0110101000001001111001100110011111111	× 2 ⁰	$< 1.4142135, 2^{-52} >$

Algorithme de Newton par Intervalle

i	Itérations de Newton	Centre-Rayon
1	+1.011×2 ⁰	< 1.3750, 2 ⁻⁴ >
2	+1.0110100011×2 ⁰	< 1.409, 2 ⁻¹¹ >
3	$+1.0110101000001010001011111111101$ \times 2 ⁰	$< 1.41421, 2^{-31} >$
4	+1.0110101000001001111001100110011111111	$< 1.41421, 2^{-48} >$
5	+1.0110101000001001111001100110011111111	$< 1.4142135, 2^{-52} >$

 \implies Intervalle de longueur 2^{-52} contenant $\sqrt{2}$

Conclusion

i	Itérations de Newton	Centre-Rayon
1	+1.011×2 ⁰	< 1.3750, 2 ⁻⁴ >
2	+1.0110100011 × 2 ⁰	$< 1.409, 2^{-11} >$
3	$+1.0110101000001010001011111111101$ $ imes 2^{0}$	$< 1.41421, 2^{-31} >$
4	+1.0110101000001001111001100110011111111	$< 1.41421, 2^{-48} >$
5	+1.0110101000001001111001100110011111111	$< 1.4142135, 2^{-52} >$

- \implies Intervalle de longueur 2^{-52} contenant $\sqrt{2}$
- ⇒ Convergence Quadratique

- 4 Algorithme de Newton
- 5 Fonctions
- 6 Conclusion

Exponentielle

Problème :Soit I de type FP-Intervalle. Comment obtenir Exp(I)?

Problème :Soit I de type FP-Intervalle. Comment obtenir Exp(I)?

Solution:

$$I = < C, r >= \{z : C - r \le z \le C + r\}$$

$$I = [a, b] = [C - r, C + r]$$

$$K = exp(I) = < C_k, r_k >= \{z : exp(a) \le z \le exp(b)\}$$

$$C_k = \frac{\exp(a) + \exp(b)}{2}$$

$$r_k = \frac{\exp(a) - \exp(b)}{2} + u \times 2^{\exp(b)}$$

- 1 Introduction
- 2 Format de représentation
- 3 Opérations
- 4 Algorithme de Newton
- 5 Fonctions
- 6 Conclusion

Matrice d'intervalles : Méthode similaire au produit matriciel classique en reprenant les résultats obtenus précédemment de l'addition et de la multiplication de deux FP-Intervalle. Complexité en $O(n^3)$.

Matrice d'intervalles : Méthode similaire au produit matriciel classique en reprenant les résultats obtenus précédemment de l'addition et de la multiplication de deux FP-Intervalle. Complexité en $O(n^3)$.

Perspective

Utilisation de la bibliothèque CBLAS qui permet d'améliorer notre produit matriciel et le rendre plus performant

Merci pour votre attention!

Questions

Avez-vous des questions?

Notre projet est disponible sur :

https://gitlab.com/vinceliu/bibliIntervalleC

Conclusion