Theoretical Concepts and Important Terminologies in ML - I

Example 1: Learning the SICK Concept

Concept Instance Space (X)

X	T	BP	Sick (SK)	
<i>x</i> ₁	L	L	-	
<i>x</i> ₂	L	N	-	
<i>X</i> 3	L	Н	-	
<i>X</i> 4	Ν	L	-	
<i>X</i> 5	Ν	N	-	
<i>x</i> ₆	Ν	Н	-	
<i>X</i> 7	Н	L	-	
<i>X</i> 8	Н	N	-	
<i>X</i> 9	Н	Н	-	

Concept as a function

- The solution to any problem is a function that converts its inputs to corresponding outputs.
- A concept itself is merely a function, which we don't know yet.

Concept Space

X	Т	BP	Sick (SK)	
<i>x</i> ₁	L	L	0	
<i>x</i> ₂	L	N	0	
<i>X</i> 3	L	Н	1	
<i>X</i> 4	Ν	L	0	
<i>X</i> 5	N	N	0	
<i>x</i> ₆	Ν	Н	1	
<i>X</i> 7	Н	L	1	
<i>x</i> ₈	Н	N	1	
<i>X</i> 9	Н	Н	1	

Concept Space

- But there are a lot of other possibilities besides this one.
- The question is: how many total concepts can be generated out of this given situation.
- The answer is: 2^{IxI} Here 2^9 , since |X| = 9
- In short the true concept SICK is a function defined over the attributes T and BP, such that it gives a 0 or a 1 as output for each of the 9 instances xi belonging to Instance Space X

Concept Space

 In short the true concept SK is a function defined over the attributes T and BP, such that it gives a 0 or a 1 as output for each of the 9 instances xi belonging to Instance Space X

$c(x_3)$	$c(x_6)$	$c(x_9)$
$c(x_2)$	$c(x_5)$	$c(x_8)$
$c(x_1)$	$c(x_4)$	$c(x_7)$

Concept Space (C)

• Since we don't know the true concept yet, so there might be concepts which can produce 2⁹ different outputs, such as:

So, What is a Concept?

- Concept is nothing more than a function whose independent variables are the attributes, in this case T and BP
- Maybe the true concept is some complicated arrangement of conjunctions and disjunctions like:

```
C = < T = H AND BP = H

OR

T = N AND BP = H

OR

T = H AND BP = N >
```

Hypothesis Space (H)

- The learner has to apply some hypothesis, that introduces a search bias to reduce the size of the concept space
- This reduced concept space becomes the hypothesis space.
 For example, the most common bias is one that uses the AND relationship between the attributes.
- In other words, the hypothesis space uses the conjunctions (AND) of the attributes T and BP

i.e.
$$h = \langle T, BP \rangle$$

Hypothesis Space

- H denotes the hypothesis space
- Here it is the conjunction of attributes T and BP

```
If written in English, it would mean:

H = < t, bp >: IF "temperature" = t AND "Blood Pressure" = bp

Then

H = 1 Otherwise H = 0
```

 In other words, the function gives a 1 output for all conjunctions of T and BP, e.g., H and H, H and L, H and N, etc.

Hypothesis Space

• h = < H,H > : < temp,bp >

BP				
Н	0	0	1	
N	0	0	0	
L	0	0.	0	
	L	N	Н	Т