

Q&A

• IF THE WIDTH OF A TRANSISTOR INCREASES, THE CURRENT WILL

INCREASE DECREASE NOT CHANGE

IF THE LENGTH OF A TRANSISTOR INCREASES, THE CURRENT WILL

INCREASE DECREASE NOT CHANGE

IF THE SUPPLY VOLTAGE OF A CHIP INCREASES, THE MAXIMUM TRANSISTOR CURRENT WILL

INCREASE DECREASE NOT CHANGE

• IF THE WIDTH OF A TRANSISTOR INCREASES, ITS GATE CAPACITANCE WILL

INCREASE DECREASE NOT CHANGE

IF THE LENGTH OF A TRANSISTOR DECREASES, ITS GATE CAPACITANCE WILL

INCREASE DECREASE NOT CHANGE

• IF THE SUPPLY VOLTAGE OF A CHIP INCREASES, THE GATE CAPACITANCE OF EACH TRANSISTOR WILL P.K. Sherty, MSIS

INCREASE DECREASE NOT CHANGE

Q&A

IF THE WIDTH OF A TRANSISTOR INCREASES, THE CURRENT WILL

INCREASE DECREASE NOT CHANGE

IF THE LENGTH OF A TRANSISTOR INCREASES, THE CURRENT WILL

INCREASE DECREASE NOT CHANGE

IF THE SUPPLY VOLTAGE OF A CHIP INCREASES, THE MAXIMUM TRANSISTOR CURRENT WILL

INCREASE DECREASE NOT CHANGE

• IF THE WIDTH OF A TRANSISTOR INCREASES, ITS GATE CAPACITANCE WILL

INCREASE DECREASE NOT CHANGE

IF THE LENGTH OF A TRANSISTOR DECREASES, ITS GATE CAPACITANCE WILL

INCREASE DECREASE NOT CHANGE

• IF THE SUPPLY VOLTAGE OF A CHIP INCREASES, THE GATE CAPACITANCE OF EACH TRANSISTOR WILL P.K. Sherty, MSIS

INCREASE DECREASE NOT CHANGE

CMOS INVERTER DESIGN

Prashanth Kumar Shetty
 MSIS, Manipal

CMOS INVERTER

CMOS inverter makes use of both NMOS and PMOS transistors

NMOS

PMOS

OUTLINE

- ROBUSTNESS OF CMOS INVERTER THE STATIC BEHAVIOR
 - SWITCHING THRESHOLD
 - NOISE MARGINS
- PERFORMANCE OF CMOS INVERTER DYNAMIC BEHAVIOR
 - PROPAGATION DELAY
- POWER DISSIPATION
 - STATIC DISSIPATION
 - DYNAMIC DISSIPATION

CMOS CIRCUITS

CMOS INVERTER CIRCUIT

Choosing the P and N Transistor Sizes

Two principal objectives: Drive strength, Speed, Power, Noise margin

• To balance rise and fall drive strengths \Rightarrow Conductances should be made equal

$$\mu_n \approx K \mu_p$$
 where $K = 2.7$

$$\therefore W_p = K W_n$$

To make the gate as fast as possible

Theoretically, the P to N transistor ratio which gives the fastest delay is K^{0.5}

For an inverter, if K=2.7, this means a P:N transistor ratio of about 1.6

For inverters, a ratio of P=2N is commonly chosen as a compromise between PK fastest speed and balanced outputs.

CMOS INVERTER: DC ANALYSIS

- DC RESPONSE: V_{OUT} VS. V_{IN} FOR A GATE
- INVERTER
 - WHEN $V_{IN} = 0 \rightarrow V_{OUT} = V_{DD}$
 - WHEN $V_{IN} = V_{DD} \rightarrow V_{OUT} = 0$
 - IN BETWEEN, V_{OUT} DEPENDS ON TRANSISTOR CURRENT
 - BY KCL, MUST SETTLE SUCH THAT: I_{DSN} = |I_{DSP}|
 - WE CAN SOLVE EQUATIONS
 - GRAPHICAL SOLUTION GIVES VERY GOOD INSIGHT

TRANSISTORS OPERATION REGIONS

- CURRENT DEPENDS ON TRANSISTOR'S OPERATION REGION
- FOR WHAT V_{IN} AND V_{OUT} ARE NMOS AND PMOS IN
 - CUTOFF?
 - LINEAR?
 - SATURATION?

NMOS AND PMOS OPERATION

	Relationships between voltages for the three regions of operation of a CMOS inverter			
	Cutoff	Linear	Saturated	
nMOS	$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$	
	$V_{\rm in} < V_{tn}$	$V_{\rm in} > V_{tn}$	$V_{\rm in} > V_{tn}$	
		$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$	
		$V_{ m out}$ < $V_{ m in}$ - V_{tn}	$V_{\rm out} > V_{\rm in} - V_{tn}$	
	$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$	
pMOS	$V_{\rm in} > V_{tp} + V_{DD}$	$V_{\rm in}$ < V_{tp} + V_{DD}	$V_{\rm in} < V_{tp} + V_{DD}$	
		$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$	
P.K. She	etty, MSIS	$V_{\rm out} > V_{\rm in} - V_{tp}$	$V_{\rm out} < V_{\rm in} - V_{tp}$	

$$V_{GSN} = V_{IN}$$
 $V_{DSN} = V_{OUT}$

$$V_{GSP} = V_{IN} - V_{DD}$$

 $V_{DSP} = V_{OUT} - V_{DD}$

GRAPHICAL DERIVATION OF THE INVERTER DC RESPONSE: I-V CHARACTERISTICS

- MAKE PMOS WIDER THAN NMOS SUCH THAT $B_N = B_P$
- FOR SIMPLICITY LET'S ASSUME $V_{TN} = -V_{TP}$

P.K. Shetty, MSIS

GRAPHICAL DERIVATION OF THE INVERTER DC RESPONSE:

I_{DS} vs. V_{out}, V_{in}

• LOAD LINE ANALYSIS:

FOR A GIVEN VIN:

- PLOT IDSN, IDSP VS. VOUT
- Vout MUST BE WHERE |CURRENTS| ARE EQUAL

GRAPHICAL DERIVATION OF THE INVERTER DC RESPONSE: LOAD LINE ANALYSIS

GRAPHICAL DERIVATION OF THE INVERTER DC RESPONSE: LOAD LINE ANALYSIS

•
$$V_{IN} = 0.2V_{DD}$$

GRAPHICAL DERIVATION OF THE INVERTER DC RESPONSE: LOAD LINE ANALYSIS

•
$$V_{IN} = 0.4V_{DD}$$

GRAPHICAL DERIVATION OF THE INVERTER DC RESPONSE: LOAD LINE ANALYSIS

•
$$V_{IN} = 0.6V_{DD}$$

GRAPHICAL DERIVATION OF THE INVERTER DC RESPONSE: LOAD LINE ANALYSIS

•
$$V_{IN} = 0.8 V_{DD}$$

GRAPHICAL DERIVATION OF THE INVERTER DC RESPONSE: LOAD LINE ANALYSIS

•
$$V_{IN} = V_{DD}$$

DC TRANSFER CURVE

TRANSCRIBE POINTS ONTO VIN VS. VOUT PLOT

Ideal transistors are only in region C for $V_{in} = \frac{V_{DD}}{Z}$ and the DC curve slope in C is -00.

The crossover point where Vin=Vont is called input threshold.

P.K. Shetty, MSIS

Relationships between voltages for the three regions of operation of a CMOS inverter

	Cutoff	Linear	Saturated
nMOS	$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
	$V_{\rm in} < V_{tn}$	$V_{\rm in} > V_{tn}$	$V_{\rm in} > V_{tn}$
		$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$
		$V_{ m out}$ < $V_{ m in}$ - V_{tn}	$V_{\rm out} > V_{\rm in} - V_{tn}$
pMOS	$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
	$V_{\rm in} > V_{tp} + V_{DD}$	$V_{\rm in}$ < V_{tp} + V_{DD}	$V_{\rm in} < V_{tp} + V_{DD}$
		$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$
		$V_{\rm out} > V_{\rm in} - V_{tp}$	$V_{ m out}$ < $V_{ m in}$ – V_{tp}

Summary of CMOS inverter operation				
Region	Condition	p-device	n-device	Output
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\text{out}} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\mathrm{in}} \le V_{DD} - \left V_{tp} \right $	saturated	linear	$V_{\rm out} < V_{DD}/2$
E	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

DC TRANSFER CURVE: OPERATING REGIONS

A CMOS inverter

	Summary of CMOS inverter operation				
Region	Condition	p-device	n-device	Output	
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\text{out}} = V_{DD}$	
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$	
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply	
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - \left V_{tp} \right $	saturated	linear	$V_{\rm out}$ < $V_{DD}/2$	
E	$V_{\rm in}$ > V_{DD} - $ V_{tp} $	cutoff	linear	$V_{\rm out}$ = 0	

Inverter Voltage Transfer Curve

Inverter Threshold, V_{INV}

In Region C, both the transistors are in saturation region. That is equivalent to two current sources are in series which is an unstable condition.

$$V_{\text{in}} = \frac{V_{DD} + V_{tp} + V_{tn} \sqrt{\frac{\beta_n}{\beta_p}}}{1 + \sqrt{\frac{\beta_n}{\beta_p}}}$$

In this point, $V_{in} = V_{out}$ and actual state transition takes place at this point. Hence this is also called as Inverter Threshold, V_{inv} .

If
$$V_{tn} = V_{tn} = V_{tn}$$

V_{inv} vs. β_n/β_p

- If $\beta_p/\beta_n \neq 1$, switching point will move from $V_{DD}/2 \Rightarrow$ skewed gate
- If $B_p > \beta_n \Rightarrow$ High skewed inverter
- If $\beta_p < \beta_n \Rightarrow$ Low skewed inverter

P.K. Shetty, MSIS

Simulation using Cadence Virtuoso

Noise margin

- is the amount of noise that a CMOS circuit could withstand without compromising the operation of circuit
- does make sure that any signal which is logic '1' with finite noise added to it, is still recognized as logic '1' & not logic '0'
- is a parameter closely related to the input-output voltage characteristics
- allows us to determine the allowable noise voltage on the input of a gate so that the output will not be affected

- Noise margin is specified in terms of 2 parameters:
 - LOW Noise Margin, NM_L
 - HIGH Noise Margin, NM_H

$$NM_{L} = |V_{ILmax} - V_{OLmax}|$$

 $NM_{H} = |V_{OHmin} - V_{IHmin}|$

To optimize both noise margins NM_L and NM_H generally it is desirable to have $V_{IH} = V_{IL}$ & this to be a value that is midway in the logic swing, that is $V_{DD}/2$.

Or,
$$V_{inv,th} = V_{DD}/2$$

For our Inverter,

$$NM_L = |V_{ILmax} - OV|$$

$$NM_H = |V_{DD} - V_{IHmin}|$$

Noise Margin Calculation

- Calculate V_{INV}
- Calculate $A_V(V_{INV})$
- Calculate NM_L and NM_H

Calculate V_{INV}

$$V_{ ext{INV}} = rac{V_{DD} + V_{tp} + V_{tn} \sqrt{rac{eta_{ ext{n}}}{eta_{ ext{p}}}}}{1 + \sqrt{rac{eta_{ ext{n}}}{eta_{ ext{p}}}}}$$

If
$$V_{tn} = -V_{tp}$$
 and $\beta_n = \beta_p$, then, $V_{INV} = V_{DD}/2$

Calculate $A_V(V_{INV})$

Small Signal Model

Noise Margin Calculation

$$V_{IL} = V_{INV} - \frac{V_{DD} - V_{INV}}{\left|A_{v}\right|}$$

$$NM_L = V_{IL} - V_{OL} = V_{IL} = V_{\text{INV}} - \frac{V_{DD} - V_{\text{INV}}}{\left|A_v\right|}$$

• Noise-margin high, NM_H:

$$\mathbf{V_{IH}} = \mathbf{V_{INV}} \left(1 + \frac{1}{|\mathbf{A_v}|} \right)$$

$$\mathbf{NM_{H}} = \mathbf{V_{OH}} - \mathbf{V_{IH}} = \mathbf{V_{DD}} - \mathbf{V_{INV}} \left(1 + \frac{1}{|\mathbf{A_{v}}|} \right)$$

P.K. Shetty, MSIS

STANDARD SIMPLE GATES

CMOS schematics of:

- NOR Gate
- NAND Gate

2- INPUT NOR GATE

$F = \overline{A \cdot B}$

2- INPUT NAND GATE

COMPOUND CMOS GATES

Design CMOS logic gates for the following functions:

1.
$$F = (A.B + C.D)'$$

2.
$$F = ((A+B+C).D)'$$

3.
$$Z = (((A.B) + C).D)'$$

4.
$$Z = ((A.B) + C.(A+B))$$

$$F = \overline{(A.B + C.D)}$$

COMPOUND CMOS GATES

- Can a compound gate be arbitrarily complex?
 - NO, propagation delay is a strong function of fan-in:

$$t_p = a_0 \cdot FO + a_1 \cdot FI + a_2 \cdot (FI)^2$$

- FO \Rightarrow Fan-out, number of loads connected to the gate:
 - 2 gate capacitances per FO + interconnect
- Fl ⇒ Fan-in, Number of inputs in the gate:
 - Quadratic dependency on FI due to:
 - Resistance increase
 - Capacitance increase
- Avoid large FI gates (Typically FI ≤ 4)

