

【高速先生原创|学习笔记系列】实例解析说压降

作者: 刘为霞 一博科技高速先生团队成员

上次写压降的时候,有很多网友反馈说,希望看到有仿真实例分析。小编 是搜肠刮肚,想找一个比较独特的案例,终于翻箱底找出来了这个例子。那 就闲话不多说,进入正题。

案例情况: 需要仿真的电源为 54V,业务板输出槽位 16 个,每个输出电流是 27A,总电流 432A;电源输入槽位 12 个,输入电流为 36A。结构图如下所示。

拿到手一看,先在计算器上啪啪啪一顿按,16*27=12*36=432,嗯,没有错,输入输出电流相等,没有什么问题。只有一个电源,而且铺铜层数比较多,连接器过孔都比较大,应该是一个没有什么难度的仿真。当时,天真的小编,内心觉得是时候展示真正的技术了,应该马上就要走上人生巅峰了吧。

如何关注

于是打开仿真软件利操作猛如虎,设置好 VRM 和 SINK,并没有反馈信号,一切都是那么轻松惬意,轻轻按下运行键,坐等结果。

VRM Voltage Si	nk Voltage Discr	ete Current Other Cor	nponent Voltage Pow	er Loss Probes Measuren	nents Global Via Current	Global Via Current Density	Specific Via Currer		
Tolerance Unit	Tolerance Unit								
Sink Name	Model	Nominal Current (A)	Nominal Voltage (V)	Upper Tolerance(+%)	Lower Tolerance(-%)	Actual Voltage (V)	Margin (V)		
SINK16	Equal Current	27	54	3	3	53.9915	1.61146		
SINK15	Equal Current	27	54	3	3	53.9945	1.61451		
SINK14	Equal Current	27	54	3	3	53.997	1.61701		
SINK13	Equal Current	27	54	3	3	53.9974	1.61736		
SINK12	Equal Current	27	54	3	3	53.9974	1.61742		
SINK11	Equal Current	27	54	3	3	53.9975	1.61748		
SINK10	Equal Current	27	54	3	3	53.9974	1.61741		
SINK9	Equal Current	27	54	3	3	53.9975	1.61745		
SINK8	Equal Current	27	54	3	3	53.9974	1.61742		
SINK7	Equal Current	27	54	3	3	53.9975	1.61749		
SINK6	Equal Current	27	54	3	3	53.9974	1.61743		
SINK5	Equal Current	27	54	3	3	53.9973	1.61727		
SINK4	Equal Current	27	54	3	3	53.9963	1.61634		
SINK3	Equal Current	27	54	3	3	53.9901	1.61009		
SINK2	Equal Current	27	54	3	3	53.9847	1.60468		
SINK1	Equal Current	27	54	3	3	53.9813	1.60126		

接收端结果在意料之中,压降完全没有,可是看到输出的时候,傻眼了,这和说好的不一样,完全没有按照我设定的剧本走。输出电流应该是 36A,为什么会出现奇奇怪怪的一排数字。

VRM Voltage	Sink Voltag	e Discrete Current Other	Component Voltage Power Loss	Probes Measurements G	lobal Via Current Glob
VRM Name	∇	Output Nominal Voltage (V)	Output Tolerance (%)	Output Current (A)	Actual Current (A)
VRM12		54	0		57.0278
VRM11		54	0		32.9298
VRM10		54	0		27.6004
VRM9		54	0		27.7552
VRM8		54	0		26.8307
VRM7		54	0		27.4324
VRM6		54	0		26.525
VRM5		54	0		27.3647
VRM4		54	0		27.4346
VRM3		54	0		29.7254
VRM2		54	0		37.9869
VRM1		54	0		83.3873

这个就不得不说说压降仿真软件的算法问题,因为设定好了所有 VRM 都是54V,就相当于所有的 VRM 组成了一个整体的器件,每个 VRM 都相当于这个器件的一个输出 PIN,输出电压是相等的,那么按照上次说的,电流都是走阻抗比较小的路径,自然靠近两边用电器件比较多,电流需求比较大的地方,输出电流会大一些,于是 VRM12 和 VRM1 的输出电流比较大。结果也是符合电源传输特征的,但是这个结果和实际情况不一致,实际情况是每个 VRM 输出应该是 36A。

其实上面的仿真结果是没有考虑到,VRM12 的输出路径可能会经过 VRM1和 VRM2,这样一来的话,VRM1和 VRM2 应该和 VRM12 有压差,因为它们之间通过铜皮连接的,直流电阻是必然存在的,那么压差也是必然存在。不可能电压相等的时候,电流也相等,这意味着两个 VRM 之间不存在直流电阻。如果是SINK都在左边或者右边的话,可以比较方便的理解,如下图。VRM1的电流路径会经过 VRM2和 VRM3,由于直流电阻的存在,且同一个点不可能存在两个电压值,VRM2和 VRM3处的电压一定比 VRM1小。

如何关注

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

通过上面的分析知道,每个 VRM 的输入电压应该不一致,可以在设置多相 VRM 时,设置平均输出电流就好,结果如下。这种情况下的仿真结果应该会比上一种情况更恶劣。

					ts Global Via Current Glob
VRM Name	∇	Output Nominal Voltage (V)	Output Tolerance (%)	Output Current (A)	Actual Current (A)
VRM12		53.9941	0		36
VRM11		53.9971	0		36
VRM10		53.9993	O		36
VRM9		54.0003	0		36
VRM8		54.0005	0		36
VRM7		53.9996	0		36
VRM6		53.9979	0		36
VRM5		53.995	0		36
VRM4		53.9913	0		36
VRM3		53.9866	0		36
VRM2		53.981	0		36
VRM1		53.9743	0		36
			29		

Tolerance Unit % ▼								
Sink Name	Model	Nominal Current (A)	Nominal Voltage (V)	Upper Tolerance(+%)	Lower Tolerance(-%)	Actual Voltage (V)	Margin (V	
SINK16	Equal Current	27	54	3	3	53.9862 🗸	1.6062	
SINK15	Equal Current	27	54	3	3	53.9892 🗸	1.6092	
SINK14	Equal Current	27	54	3	3	53.9929 🗸	1.6129	
SINK13	Equal Current	27	54	3	3	53.9955 🗸	1.6154	
SINK12	Equal Current	27	54	3	3	53.997 🗸	1.6170	
SINK11	Equal Current	27	54	3	3	53.9977 🗸	1.6176	
SINK10	Equal Current	27	54	3	3	53.9971 🗸	1.6170	
SINK9	Equal Current	27	54	3	3	53.9957 🗸	1.6157	
SINK8	Equal Current	27	54	3	3	53.9932 🗸	1.6131	
SINK7	Equal Current	27	54	3	3	53.9898 🗸	1.6097	
SINK6	Equal Current	27	54	3	3	53.9853 🗸	1.6053	
SINK5	Equal Current	27	54	3	3	53.98 🗸	1.5999	
SINK4	Equal Current	27	54	3	3	53.9736 🗸	1.5935	
SINK3	Equal Current	27	54	3	3	53.966 🗸	1.5859	
SINK2	Equal Current	27	54	3	3	53.9607 🗸	1.5806	
SINK1	Equal Current	27	54	3	3	53.9572 🗸	1.5772	

案例讲完了,那么问题来了:如果大家遇到 100A 以上的大电流电源,有哪些设计主要事项呢?

【关于一博】

如何关注

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

深圳市一博科技股份有限公司(简称一博科技)成立于 2003 年 3 月,专注于高速 PCB 设计、PCB 制板、SMT 焊接加工和供应链服务。我司在中国、美国、日本设立研发机构,全球研发工程师 600 余人。

一博旗下 PCB 板厂位于深圳松岗,采用来自日本、德国等一流加工设备,TPS 精益生产管理以及品质管控体系的引入,致力为广大客户提供高品质、高多层的制板服务。

一博旗下 PCBA 总厂位于深圳,并在上海、成都、长沙设立分厂,厂房面积 23000 平米,现有 30 条 SMT 产线,配备全新进口富士 XPF、NXT3、AIMEX III、全自动锡膏印刷机、十温区回流炉、波峰焊等高端设备,并配有 AOI、XRAY、SPI、智能首件测试仪、全自动分板机、BGA 返修台、三防漆等设备,专注研发打样、中小批量的 SMT 贴片、组装等服务。作为国内 SMT 快件厂商,48 小时准交率超过 95%。常备一万余种 YAGEO、MURATA、AVX、KEMET 等全系列阻容以及常用电感、磁珠、连接器、晶振、二三极管,并提供全 BOM 元器件服务。

PCB 设计、制板、贴片、物料一站式硬件创新平台,缩短客户研发周期,方便省心。

EDADOC, Your Best Partner.

【关于高速先生】

高速先生由深圳市一博科技有限公司 R&D 技术研究部创办,用浅显易懂的方式讲述高速设计,成立至今保持每周发布两篇原创技术文章,已和大家分享了百余篇呕心沥血之作,深受业内专业人士欢迎,是中国高速电路第一自媒体品牌。

高速先生微信公众号

历届所有技术文章 持续更新中

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

