Elektronik 2

FS 24 Guido Keel (Michael Lehmann)

Autoren:

Authors

Version: 1.0.20240224

https://github.com/P4ntomime/elektronik-2

Inhaltsverzeichnis

1

Feldeffekt-Transistoren	2	1.3 MOS-FETs	2
1.1 FET-Typen und Symbole	2	1.4 Verstärkerschaltungen mit FETs	2
1.2 Sperrschicht-FET / Junction FET (JFET)	2	1.5 MOS-FET als Schalter	2

1 Feldeffekt-Transistoren

FET-Typen und Symbole

1.1.1 Anschlüsse eines FET

G Gate S Source D Drain В Bulk Kanal von Drain zu Source (Stromfluss), gesteuert von Gate (und Bulk)

1.2 Sperrschicht-FET / Junction FET (JFET)

1.2.1 Kennlinien

Ausgangskennlinien

1.2.2 Linearer Bereich (gesteuerter Widerstand)

- V_{GS} ändert Dicke der Raumladungszone (Kanal)
- n-Kanal JFET: Je negativer V_{GS} , desto weniger Strom fliesst bzw. desto enger der Kanal

$$I_{\scriptscriptstyle D} = rac{2 \cdot I_{\scriptscriptstyle DSS}}{V_{\scriptscriptstyle *}^2} \Big(V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle p} - rac{V_{\scriptscriptstyle DS}}{2} \Big) V_{\scriptscriptstyle DS}$$

1.2.3 Sättigungs-Bereich (Stromquelle)

- Für hohes V_{DS} wird leitender Kanal abgeschürt
- →Strom kann nicht weiter steigen (Stromquelle) - Übergang gest. Widerstand zu Stromquelle @ $V_{\scriptscriptstyle DSP}$
- $\Rightarrow V_{DSP} = V_{GS} V_p (V_p = \text{Pinch-Off-Spannung})$

$$I_{\scriptscriptstyle D} = rac{I_{\scriptscriptstyle DSS}}{V_{\scriptscriptstyle p}^2} \cdot (V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle p})^2$$

Verstärkungsmass Transkonduktanz:

$$g_{\scriptscriptstyle m} = \frac{2 \cdot I_{\scriptscriptstyle DSS}}{V^2} \cdot (V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle p}) = \frac{2}{|V_{\scriptscriptstyle -}|} \cdot \sqrt{I_{\scriptscriptstyle DSS} \cdot I_{\scriptscriptstyle D}} \qquad [g_{\scriptscriptstyle m}] = \mathrm{S}$$

1.3 MOS-FETs

1.3.1 Aufbau

- Länge des Transistors L
- Breite des Transistors
- N-Kanal FET: Drain und Source sind n-dotiert
- Kanal ist p-dotiert

1.3.2 Kennlinien

Ausgangskennlinien

1.3.3 Bereiche

- Sperrbereich: $V_{GS} < V_{TH}$
- Linearer (Widerstands-)Bereich / Anlaufbereich: $V_{\scriptscriptstyle GS} > V_{\scriptscriptstyle TH}$
- Sättigungsbereich (Stromquelle): $V_{\scriptscriptstyle DS} > V_{\scriptscriptstyle GS} V_{\scriptscriptstyle TH}$

Anlaufbereich (Linearer Bereich)

Sättigungsbereich (Stromquelle)

$$I_{\scriptscriptstyle D,lin} = \beta \cdot (V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle TH} - \frac{V_{\scriptscriptstyle DS}}{2}) \cdot V_{\scriptscriptstyle DS} \qquad \qquad I_{\scriptscriptstyle D,sat} = \frac{\beta}{2} \cdot (V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle TH})^2$$

$$I_{D,sat} = rac{eta}{2} \cdot (V_{GS} - V_{TH})^2$$

1.3.4 Kleinsignal-Ersatzschaltung

1.3.5 Temperaturabhängigkeit der Übrtragungskennlinie(n-Kanal FET)

Für den n-Kanal FET gilt:

- Threshold-Spannung V_{TH} sinkt mit 1-2 $\frac{\mu V}{K}$
- β sinkt mit steigender Temperatur
- Im Kompensationspunkt bleibt $I_{\scriptscriptstyle D}$ für fixes $v_{\scriptscriptstyle GS}$ konstant

1.4 Verstärkerschaltungen mit FETs

1.4.1 Source-Schaltung mit Lastwiderstand

Um den Arbeitspunkt der Schaltung zu bestimmen, wird die Lastgerade von R_L in das

Ausgangskennlinienfeld eingezeichnet

1.4.2 Push-Pull / Digitaler Inverter

- V_{in} geht auf NMOS und PMOS
- · Ermöglicht grössere Verstärkung

Für
$$V_{\scriptscriptstyle in} pprox rac{V_{DD}}{2}$$
 gilt:

$$A_{{\scriptscriptstyle V}{\scriptscriptstyle 0}} = -(g_{{\scriptscriptstyle m}{\scriptscriptstyle 1}} + g_{{\scriptscriptstyle m}{\scriptscriptstyle 2}}) \cdot (r_{{\scriptscriptstyle D}{\scriptscriptstyle S}{\scriptscriptstyle 1}}||r_{{\scriptscriptstyle D}{\scriptscriptstyle S}{\scriptscriptstyle 2}})$$

1.5 MOS-FET als Schalter

geschlossen: $R_{FET} = R_{DS(on)}$ offen: $R_{\scriptscriptstyle FET} = \infty$

1.5.1 Verlustleistung / Erwärmung

$$P_V = R_{DS} * I_{DS}^2 = 0$$
W

$$\Delta T = R_{th} \cdot P_V$$