1.	A geometric series has first term $a = 360$ and common ratio $r = \frac{7}{8}$	
	Giving your answers to 3 significant figures where appropriate, find	
	(a) the 20th term of the series,	(2)
	(b) the sum of the first 20 terms of the series,	(2)
	(c) the sum to infinity of the series.	(2)

2.	The first three terms of a geometric series are	
	18, 12 and <i>p</i>	
	respectively, where p is a constant.	
	Find	
	(a) the value of the common ratio of the series,	(1)
	(b) the value of p ,	(1)
	(c) the sum of the first 15 terms of the series, giving your answer to 3 decimal place	es. (2)

A geometric series has first term a and common ratio $r = \frac{3}{4}$	
The sum of the first 4 terms of this series is 175	
(a) Show that $a = 64$	(2)
(b) Find the sum to infinity of the series.	(2)
(c) Find the difference between the 9th and 10th terms of the series. Give your answer to 3 decimal places.	(3)
Give your answer to 3 decimal places.	(3)
	(0)

that	ompany predicts a yearly profit of £120 000 in the year 2013. The company pre- the yearly profit will rise each year by 5%. The predicted yearly profit for	
geo	metric sequence with common ratio 1.05	
(a)	Show that the predicted profit in the year 2016 is £138 915	
		(1)
(b)	Find the first year in which the yearly predicted profit exceeds £200 000	
		(5)
(c)	Find the total predicted profit for the years 2013 to 2023 inclusive, giving your ar	iswei
	to the nearest pound.	(3)
		(3)

5.	In this question you should show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	A company made a profit of £20 000 in its first year of trading, Year 1	
	A model for future trading predicts that the yearly profit will increase by 8% each year, so that the yearly profits will form a geometric sequence.	
	According to the model,	
	(a) show that the profit for Year 3 will be £23328	(1)
	(b) find the first year when the yearly profit will exceed £65000	(3)
	(c) find the total profit for the first 20 years of trading, giving your answer to the	
	nearest £1000	(2)

6.	(i)	All the terms of a geometric series are positive. The sum of the first two terms is and the sum to infinity is 162	s 34
		Find	
		(a) the common ratio,	(4)
		(b) the first term.	(2)
	(ii)	A different geometric series has a first term of 42 and a common ratio of $\frac{6}{7}$.	
		Find the smallest value of n for which the sum of the first n terms of the series exceeds 290	
			(4)

	e first three terms of a geometric series are $4p$, $(3p + 15)$ and $(5p + 20)$ respectively ere p is a positive constant.
(a)	Show that $11p^2 - 10p - 225 = 0$
(u)	(4
(1.)	
(b)	Hence show that $p = 5$ (2)
(c)	Find the common ratio of this series.
	(2
(d)	Find the sum of the first ten terms of the series, giving your answer to the neares
	integer. (3
	(e

For this series, find (a) the common ratio, (b) the first term, (c) the sum to infinity, (2)	For this series, find (a) the common ratio, (b) the first term, (c) (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000.	 (b) the first term, (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceed 1000. 	account and third towns of a account is social and 100 and 144 magnest	:1
 (a) the common ratio, (b) the first term, (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000. 	 (a) the common ratio, (b) the first term, (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000. 	 (a) the common ratio, (b) the first term, (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceed 1000. 		ivery.
 (b) the first term, (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000. 	 (b) the first term, (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000. 	 (b) the first term, (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceed 1000. 	his series, find	
 (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000. 	 (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000. 	 (c) the sum to infinity, (d) the smallest value of n for which the sum of the first n terms of the series exceed 1000. 	the common ratio,	(2)
(d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000.	(d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000.	(d) the smallest value of n for which the sum of the first n terms of the series exceed 1000.	the first term,	(2)
(d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000.	(d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000.	(d) the smallest value of <i>n</i> for which the sum of the first <i>n</i> terms of the series exceed 1000.	the sum to infinity,	(2)
				(4)

The first term of a geometric series is 20 and the common ratio is $\frac{7}{8}$	
The sum to infinity of the series is S_{∞}	
(a) Find the value of S_{∞}	(2)
The sum to N terms of the series is S_N	
(b) Find, to 1 decimal place, the value of S_{12}	(2)
(c) Find the smallest value of N , for which	
$S_{\infty}-S_N < 0.5$	(4)

10. The first three terms of a geometric sequence are	
7k-5, 5k-7, 2k+10	
where k is a constant.	
(a) Show that $11k^2 - 130k + 99 = 0$	(4)
Given that k is not an integer,	
(b) show that $k = \frac{9}{11}$	(2)
For this value of k ,	
(c) (i) evaluate the fourth term of the sequence, giving your answer as an exact	fraction,
(ii) evaluate the sum of the first ten terms of the sequence.	(6)

11		
A geo	ometric series is $a + ar + ar^2 +$	
(a) F	Prove that the sum of the first n terms of this series is given by	
	$S_n = \frac{a(1-r^n)}{1-r}$	
	1-r	(4)
	hird and fifth terms of a geometric series are 5.4 and 1.944 respectively and all in the series are positive.	the
For th	nis series find,	
(b) t	he common ratio,	
(*)		(2)
(c) t	he first term,	
		(2)
(d) t	he sum to infinity.	(3)
		(3)

12. The first three terms of a geometric sequence are	
3k+4 $12-3k$ $k+16$	
where k is a constant.	
(a) Show that k satisfies the equation	
$3k^2 - 62k + 40 = 0$	(2)
Given that the sequence converges,	(-)
(b) (i) find the value of k , giving a reason for your answer,	
(ii) find the value of S_{∞}	(5)

13. In a geometric series the common ratio is r and sum to n terms is S_n				
Given				
	$S_{\infty} = \frac{8}{7} \times S_6$			
show that $r = \pm \frac{1}{\sqrt{k}}$, where k is an integer	r to be found.			
\sqrt{k}		(4)		

14.	. In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	A geometric series has common ratio r and first term a .	
	Given $r \neq 1$ and $a \neq 0$	
	(a) prove that	
	$S_n = \frac{a(1-r^n)}{1-r}$	(4)
	Given also that S_{10} is four times S_5	(4)
	(b) find the exact value of r .	(4)

15.	In this question you must show all stages of your working.						
	Solutions relying on calculator technology are not acceptable.						
	Given that the first three terms of a geometric series are						
	$12\cos\theta$ $5+2\sin\theta$ and $6\tan\theta$						
	(a) show that						
	$4\sin^2\theta - 52\sin\theta + 25 = 0$						
		(3)					
	Given that θ is an obtuse angle measured in radians,						
	(b) solve the equation in part (a) to find the exact value of $\boldsymbol{\theta}$	(2)					
		(2)					
	(c) show that the sum to infinity of the series can be expressed in the form						
	$k(1-\sqrt{3})$						
	where k is a constant to be found.	(5)					
		(5)					