Combinatorics, 2018 Fall, USTC Homework 13

- The due is on Thursday, Dec. 27.
- Please sign your name and student number.
- Please solve as many problems as you can.
- 1. (1) A fixed point of a permutation π is an integer i such that $\pi(i) = i$. Let X_{π} be the number of fixed points of permutation π . What is the expectation $E[X_{\pi}]$ for a random permutation π uniformly chosen from the set S_n ?
 - (2) We toss a fair 0-1 coin n times. What is the expected number of runs? Here, a run is a maximal set of consecutive tosses with the same result. For example, the sequence 0001111100 has 3 runs.
- 2. Prove that if there is a real $p \in [0,1]$ such that

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{t} (1-p)^{\binom{t}{2}} < 1,$$

then Ramsey number R(k,t) > n. Using this to show that $R(4,t) \ge C \cdot (\frac{t}{\ln t})^{3/2}$ for some constant C > 0.

3. Let $k \geqslant 4$ be an integer and $\mathcal{F} \subset \binom{X}{k}$ be a k-uniform family. Prove that if $|\mathcal{F}| < \frac{4^{k-1}}{3^k}$, then there is a coloring of elements

of X with four colors such that in any set of \mathcal{F} , all four colors are presented.

- 4. A family of pairs of sets $\mathcal{F} = \{(A_i, B_i)\}_{i=1}^h$ is called a (k, l)system if $|A_i| = k$, $|B_i| = l$ for $i \in [h]$, and $A_i \cap B_j = \emptyset$ iff i = j.

 Give a probabilistic proof of $|\mathcal{F}| \leqslant \binom{k+l}{k}$.
- 5. Use probabilistic method to prove EKR Theorem, *i.e.* if \mathcal{F} is a k-uniform intersecting family over [n], $n \geq 2k$, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$.