Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration

He et al. CVPR 2019

Haein Choe

June 14, 2025

Pseudo Lab - On-Device AI: ON THE Air

Table of contents

1. Introduction

- 2. Methodology
- 3. Experiments
- 4. Conclusion

Introduction

Introduction

Introduction

- filter pruning directly discards the whole selected filters and leaves a model with regular structures.
- filter pruning is more preferred for accelerating the networks and decreasing the model size.
- However, recent practice performs filter pruning by following the "smaller-norm-less-important" criterion which relies on two prerequisites that are not always true.
- To solve this problem, the authors propose a novel filter pruning method to compress the CNN model regardless of those two requirements namely Filter Pruning via Geometric Median (FPGM).

Smaller-norm-less-important criterion

- in the **norm-based criterion**, only the filters with the largest norm are kept.
- the proposed method prunes the filters with redundant information in the network.

- Req 1 makes the searching space for $\mathcal T$ wide enough so that separating those filters needed to be pruned would be an easy task
- Req 2 means that filters with smaller norms are expected to make small contributions.
- The FPGM chooses filters with the most replaceable contribution rather than relatively less contribution.

Methodology

Preliminaries

Notation

- N_i , N_{i+1} : the number of input channels and the output channels for the i_{th} convolution layer.
- $\mathcal{F}_{i,j} \in \mathbb{R}^{N_i \times K \times K}$: j_{th} filters of the i_{th} layer.
- K: kernel size of the network.
- L: the number of layers.
- $\mathbf{W}^{(i)} \in \mathbb{R}^{N_{i+1} \times N_i \times K \times K}, 1 \leq i \leq L$: model parameter of the i_{th} layer.

Filter Pruning via Geometric Median

Geometric Median

Given a set of n points $a^{(1)}, \cdots, a^{(n)}$ with each $a^{(i)} \in \mathbb{R}^d$, The geometric median is a point x^* such that minimizes the sum of Euclidean distances to them. i.e,

$$x^* = \mathop{\arg\min}_{x \in \mathbb{R}^d} \mathit{f}(x) \quad \text{where } \mathit{f}(x) \stackrel{\text{def}}{=} \sum_{i \in \{1, \cdots, n\}} \|x - a^{(i)}\|_2 \tag{1}$$

• by (1), We use the **geometric median** to get the **common** information of all the filters within the single i_{th} layer. The geometric median x^{GM} becomes

$$x^{GM} = \arg\min_{x \in \mathbb{R}^{N_i \times K \times K}} \sum_{j' \in \{1, \dots, N_{i+1}\}} \|x - \mathcal{F}_{i,j'}\|_2$$
 (2)

· The filter(s) nearest to the geometric median x^{GM} \mathcal{F}_{i,j^*} is

$$\mathcal{F}_{i,j^*} = \underset{\mathcal{F}_{i,j'}}{\min} \|\mathcal{F}_{i,j'} - x^{GM}\|_2, \quad s.t \quad j' \in \{1, \cdots, N_{i+1}\} \quad (3)$$

 As geometric median is a non-trivial problem in computational geometry, the authors do not compute it directly, Instead, they find the filter which minimizes the summation of the distance with other filters:

$$\mathcal{F}_{i,x^*} = \arg\min_{x} \sum_{j' \in \{1, \dots, N_{i+1}\}} \|x - \mathcal{F}_{i,j'}\|_2 \stackrel{\text{def}}{=} \arg\min_{x} g(x)$$

$$s.t \quad x \in \{\mathcal{F}_{i,1}, \dots, \mathcal{F}_{i,N_{i+1}}\}$$

$$(4)$$

• Note that even if \mathcal{F}_{i,x^*} is not included in the calculation of the geometric median in (4), we obtain the same result.

$$g(x) = \sum_{j' \in [1, N_{i+1}]} \|x - \mathcal{F}_{i,j'}\|_2 \quad s.t \quad x \in \{\mathcal{F}_{i,1}, \cdots, \mathcal{F}_{i,N_{i+1}}\}$$
 (5)

$$= \sum_{j' \in [1, N_{i+1}], \mathcal{F}_{i,j'} \neq x} \|x - \mathcal{F}_{i,j'}\|_2 + \left[\underbrace{\|x - \mathcal{F}_{i,j'}\|_2}_{\mathcal{F}_{i,j'} = x} \right]_{\mathcal{F}_{i,j'} = x}^{0}$$
 (6)

$$=g'(x) \tag{7}$$

FPGM Algorithm

Algorithm 1 Algorithm Description of FPGM

Input: training data: **X**

- 1: Given: pruning rate P_i
- 2: Initialize: model parameter $\mathbf{W} = \{\mathbf{W}^{(i)}, 0 \leq i \leq L\}$
- 3: for epoch = 1; $epoch \le epoch_{max}$; epoch + + do
- 4: Update the model parameter ${f W}$ based on ${f X}$
- 5: **for** $i = 1; i \le L; i + + do$
- 6: Find $N_{i+1}P_i$ filters that satisfy Equation 4
- 7: Zeroize selected filters
- 8: end for
- 9: end for
- 10: Obtain the compact model \mathbf{W}^* from \mathbf{W}

Output: The compact model and its parameters **W***

Using FPGM algorithm, A compact model $\{\mathbf{W}^{*(i)} \in \mathbb{R}^{N_{i+1}(1-P_i) \times N_i(1-P_{i-1}) \times K \times K}\}$ is obtained.

Experiments

Experimental Settings

- Dataset
 - CIFAR-10: 50,000 training images, 10,000 testing images, 10 classes.
 - ILSVRC-2012: 1.28M training images, 50k validation images, 1,000 classes.
- · Models:
 - VGGNet(single-branch network)
 - ResNet(multiple-branch network)
- Pretrained model and scratch model are compared.
- The Pruning rate at each layer is the same. $(P_i = P \quad \forall i \in \{1, \dots, L\}).$
- The authors use a mixture of FPGM and previous norm-based method to show that FPGM could serve as a supplement to pervious methods.

Single-Branch Network Pruning

Model \ Acc (%)	Baseline	Baseline Pruned FT w.o. FT 40 epochs		FT 160 epochs	
PFEC [21]	93.58 (±0.03)	77.45 (±0.03)	93.22 (±0.03)	93.28 (±0.07)	
Ours	93.58 (±0.03)	80.38 (±0.03)	93.24 (±0.01)	94.00 (±0.13)	

Table 3. Pruning pre-trained VGGNet on CIFAR-10. "w.o." means "without" and "FT" means "fine-tuning" the pruned model.

Model	SA	Baseline	Pruned From Scratch	FLOPs↓(%)
PFEC [21]	Y	$93.58 (\pm 0.03)$	93.31 (±0.02)	34.2
Ours	Y	$93.58 (\pm 0.03)$	93.54 (±0.08)	34.2
Ours	N	$93.58 (\pm 0.03)$	93.23 (±0.13)	35.9

Table 4. Pruning scratch VGGNet on CIFAR-10. "SA" means "sensitivity analysis". Without sensitivity analysis, FPGM can still achieve comparable performances comparing to [21]; after introducing sensitivity analysis, FPGM can surpass [21].

Multiple-Branch Network Pruning - CIFAR-10

Depth	Method	Fine-tune?	Baseline acc. (%)	Accelerated acc. (%)	Acc. ↓ (%)	FLOPs	FLOPs ↓(%)
20	SFP [15]	Х	92.20 (±0.18)	90.83 (±0.31)	1.37	2.43E7	42.2
	Ours (FPGM-only 30%)	×	92.20 (± 0.18)	$91.09 (\pm 0.10)$	1.11	2.43E7	42.2
	Ours (FPGM-only 40%)	×	92.20 (± 0.18)	$90.44 (\pm 0.20)$	1.76	1.87E7	54.0
	Ours (FPGM-mix 40%)	×	92.20 (±0.18)	90.62 (±0.17)	1.58	1.87E7	54.0
	MIL [5]	Х	92.33	90.74	1.59	4.70E7	31.2
	SFP [15]	×	92.63 (± 0.70)	$92.08 (\pm 0.08)$	0.55	4.03E7	41.5
32	Ours (FPGM-only 30%)	×	92.63 (±0.70)	$92.31 (\pm 0.30)$	0.32	4.03E7	41.5
	Ours (FPGM-only 40%)	×	92.63 (± 0.70)	91.93 (±0.03)	0.70	3.23E7	53.2
	Ours (FPGM-mix 40%)	×	92.63 (±0.70)	91.91 (±0.21)	0.72	3.23E7	53.2
	PFEC [21]	Х	93.04	91.31	1.75	9.09E7	27.6
56	CP [16]	×	92.80	90.90	1.90	_	50.0
	SFP [15]	×	93.59 (±0.58)	$92.26 (\pm 0.31)$	1.33	5.94E7	52.6
	Ours (FPGM-only 40%)	×	93.59 (±0.58)	92.93 (± 0.49)	0.66	5.94E7	52.6
	Ours (FPGM-mix 40%)	×	93.59 (±0.58)	$92.89 (\pm 0.32)$	0.70	5.94E7	52.6
	PFEC [21]		93.04	93.06	-0.02	9.09E7	27.6
	CP [16]	✓	92.80	91.80	1.00	-	50.0
	Ours (FPGM-only 40%)	/	93.59 (±0.58)	93.49 (± 0.13)	0.10	5.94E7	52.6
	Ours (FPGM-mix 40%)	✓	93.59 (±0.58)	93.26 (±0.03)	0.33	5.94E7	52.6
	MIL [5]	Х	93.63	93.44	0.19	-	34.2
110	PFEC [21]	×	93.53	92.94	0.61	1.55E8	38.6
	SFP [15]	×	93.68 (±0.32)	$93.38 (\pm 0.30)$	0.30	1.50E8	40.8
	Ours (FPGM-only 40%)	×	93.68 (±0.32)	$93.73 (\pm 0.23)$	-0.05	1.21E8	52.3
	Ours (FPGM-mix 40%)	×	93.68 (±0.32)	93.85 (± 0.11)	-0.17	1.21E8	52.3
	PFEC [21]		93.53	93.30	0.20	1.55E8	38.6
	NISP [39]	/	-	-	0.18	-	43.8
	Ours (FPGM-only 40%)	✓	93.68 (±0.32)	93.74 (±0.10)	-0.16	1.21E8	52.3

Multiple-Branch Network Pruning - ILSVRC-2012

Depth	Method	Fine- tune?	Baseline top-1 acc.(%)	Accelerated top-1 acc.(%)	Baseline top-5 acc.(%)	Accelerated top-5 acc.(%)	Top-1 acc. ↓(%)	Top-5 acc. ↓(%)	FLOPs↓(%)
18	MIL [5]	X	69.98	66.33	89.24	86.94	3.65	2.30	34.6
	SFP [15]	×	70.28	67.10	89.63	87.78	3.18	1.85	41.8
	Ours (FPGM-only 30%)	×	70.28	67.78	89.63	88.01	2.50	1.62	41.8
	Ours (FPGM-mix 30%)	×	70.28	67.81	89.63	88.11	2.47	1.52	41.8
	Ours (FPGM-only 30%)		70.28	68.34	89.63	88.53	1.94	1.10	41.8
	Ours (FPGM-mix 30%)	/	70.28	68.41	89.63	88.48	1.87	1.15	41.8
	SFP [15]	Х	73.92	71.83	91.62	90.33	2.09	1.29	41.1
	Ours (FPGM-only 30%)	X	73.92	71.79	91.62	90.70	2.13	0.92	41.1
34	Ours (FPGM-mix 30%)	X	73.92	72.11	91.62	90.69	1.81	0.93	41.1
34	PFEC [21]		73.23	72.17			1.06		24.2
	Ours (FPGM-only 30%)	1	73.92	72.54	91.62	91.13	1.38	0.49	41.1
	Ours (FPGM-mix 30%)	/	73.92	72.63	91.62	91.08	1.29	0.54	41.1
	SFP [15]	Х	76.15	74.61	92.87	92.06	1.54	0.81	41.8
	Ours (FPGM-only 30%)	×	76.15	75.03	92.87	92.40	1.12	0.47	42.2
	Ours (FPGM-mix 30%)	×	76.15	74.94	92.87	92.39	1.21	0.48	42.2
	Ours (FPGM-only 40%)	×	76.15	74.13	92.87	91.94	2.02	0.93	53.5
	ThiNet [25]		72.88	72.04	91.14	90.67	0.84	0.47	36.7
50	SFP [15]	/	76.15	62.14	92.87	84.60	14.01	8.27	41.8
	NISP [39]	1	-	-	-	-	0.89	-	44.0
	CP [16]	/	-	-	92.20	90.80	-	1.40	50.0
	Ours (FPGM-only 30%)	/	76.15	75.59	92.87	92.63	0.56	0.24	42.2
	Ours (FPGM-mix 30%)	✓	76.15	75.50	92.87	92.63	0.65	0.21	42.2
	Ours (FPGM-only 40%)	✓	76.15	74.83	92.87	92.32	1.32	0.55	53.5
101	Rethinking [38]	/	77.37	75.27	-	_	2.10	-	47.0
	Ours (FPGM-only 30%)	/	77.37	77.32	93.56	93.56	0.05	0.00	42.2

Conclusion

Conclusion

- this paper elaborates on the underlying requirements for norm-based criterion and points out their limitations.
- FPGM prunes the most replaceable filters containing redundant information, which can still achieve good performances when norm-based criterion fails;
- FPGM considers the mutual relations between filters. Thanks to this, FPGM achieves the SOTA performance in several benchmaerks.