This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2000年 4月21日

出 願 番 号 Application Number:

特願2000-120254

[ST. 10/C]:

[J P 2 0 0 0 - 1 2 0 2 5 4]

出 願 人
Applicant(s):

株式会社PFU

2003年 9月25日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 P990278

【提出日】 平成12年 4月21日

【あて先】 特許庁長官殿

【国際特許分類】 G03G 15/10

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】 中島 豊

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】 本悟

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】 市田 元治

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】 岡野 茂治

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】 竹田 靖一

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】 西川 禎

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

宮本 悟司

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

寺嶋 一志

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

坂井 聡

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

本川 浩永

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

杜 基雲

【特許出願人】

【識別番号】

000136136

【氏名又は名称】

株式会社ピーエフユー

【代理人】

【識別番号】

100074848

【弁理士】

【氏名又は名称】

森田 寛

【電話番号】

03-3807-1151

ページ: 3/E

【選任した代理人】

【識別番号】 100095072

【弁理士】

【氏名又は名称】 岡田 光由

【手数料の表示】

【予納台帳番号】

012564

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9708176

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

液体トナーを用いる液体現像電子写真装置

【特許請求の範囲】

【請求項1】 不揮発性を示す高粘度で高濃度の液体トナーを液体現像液として用いて、静電潜像の形成される画像支持体上に接触して液体現像液を供給し、かつ前記画像支持体との間に生成される電界に応じて、該液体現像液のトナー粒子を前記画像支持体に付着させてトナー画像を形成する現像部と、

前記画像支持体との間の電界に従って、該画像支持体上のトナー画像を転写するための中間転写部と、

中間転写部に転写されたトナー画像を、印刷媒体との接触部において加熱溶融して、印刷媒体に溶融転写するためのヒータを含む転写定着部とから成り、

前記現像部を、装置下側に配置して、液体トナーの漏れが発生しても、印刷媒体及び中間転写部を汚すことが無いように構成した、

液体トナーを用いる液体現像電子写真装置。

【請求項2】前記転写定着部を、装置上側に配置して、熱の装置外への排出を容易にすると共に、装置内への熱伝搬の防止を容易にするよう構成した請求項1に記載の液体トナーを用いる液体現像電子写真装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、不揮発性を示す高粘度で高濃度の液体トナーを用いる液体現像電子 写真装置に関する。

[0002]

【従来の技術】

感光体(感光ドラム)に静電潜像を生成し、それにトナーを付着させて、紙などに転写して定着する電子写真装置では、粉体トナーを用いる乾式のものが広く用いられている。

[0003]

しかし、粉体トナーは、トナーが飛散するという問題点があるとともに、トナ

-粒子が7~10μmと大きいことから解像度が悪いという問題点がある。

[0004]

そこで、高い解像度が必要となる場合には、液体トナーを用いる液体現像方式のものが用いられる。液体トナーは、トナー粒子が1μm程度と小さいとともに、帯電量が大きいことでトナー画像の乱れが起きにくく、高い解像度を実現できるからである。

[0005]

図5は、従来公知の液体現像方式の電子写真装置の全体構成を示している(例えば、特開平11-174852号公報参照)。図示の感光ドラム10は、帯電装置21により帯電させられた後、露光装置22によって露光されて、静電潜像が形成される。プリウエット装置23は、2.5cSt程度の粘度を持つシリコーンオイルを4~5μmの厚さで感光ドラム10の表面に塗布する。

[0006]

現像装置24は、イエロー/マゼンタ/シアン/ブラックに対応付けて設けられ、トナー粘度が400~400mPa·Sで、キャリア粘度が20cStを持つ、不揮発性を示す高粘度で高濃度の液体トナーを液体現像液として用いる。現像ローラは、感光体上のプリウエット液の膜との2層構造を維持するように前記感光体上に接触して液体現像液を供給し、かつ前記感光体との間に生成される電界に応じて、該液体現像液のトナー粒子を前記感光体に付着させる。

[0007]

この現像液の現像ローラへの供給は、現像液塗布手段によって、トナー溜まりから薄く延ばしながら搬送していくことでおこなわれ、それによって、現像ローラに2~3μmの厚さのトナー層が形成される。この現像液塗布手段は、連接する複数の回転ローラから構成されて、供給される液体現像液を該回転ローラで引き延ばしつつ表面に塗布しながら搬送していき、現像ローラに当接する最終段の回転ローラの表面に塗布される液体現像液の膜を、現像ローラの当接面に塗布する。

[0008]

中間転写ローラ15は、約-800Vにバイアスされて、感光ドラム10との

間の電界に従って、感光ドラム10に付着されたトナーを、例えば、イエロー、マゼンタ、シアン、ブラックの順に転写する。加圧ローラ19は、加熱装置28により溶融された中間転写ドラム15のトナーを印刷媒体に定着させる。加熱装置28は、加圧ローラ19に接触する前の位置で、中間転写ドラム15の表面を部分的に加熱する。なお、図中、26は、残留トナーを掻き取るためのブレード、27は除電装置である。

[0009]

このように、液体現像方式の電子写真装置は、印刷媒体への転写定着のために、加熱装置28により中間転写体上のトナーを加熱して溶融させることが必要であるが、しかし、中間転写ドラム15上に転写する際には、トナーが溶融することにより転写不良が発生するのを防ぐために、むしろ冷却する必要がある。

[0010]

しかし、従来の液体現像方式の電子写真装置は、装置内の熱排出の観点から効率的には構成されていない。また、現像部で液体トナーが漏れた場合には、印刷 媒体を汚してしまうという問題もあった。

$[0\ 0\ 1\ 1]$

【発明が解決しようとする課題】

従って、本発明は、かかる問題点を解決して、中間転写体上のトナー画像を加熱溶融して印刷媒体に転写定着する液体現像方式の電子写真装置において、装置内の熱排出を効率よく行うと共に、液体トナーが漏れた場合にも印刷媒体を汚し難くすることを目的としている。

[0012]

【課題を解決するための手段】

本発明の液体トナーを用いる液体現像電子写真装置は、不揮発性を示す高粘度で高濃度の液体トナーを液体現像液として用いて、静電潜像の形成される画像支持体上に接触して液体現像液を供給し、かつ前記画像支持体との間に生成される電界に応じて、該液体現像液のトナー粒子を前記画像支持体に付着させてトナー画像を形成する現像部と、画像支持体との間の電界に従って、該画像支持体上のトナー画像を転写するための中間転写部と、中間転写部に転写されたトナー画像

を、印刷媒体との接触部において加熱溶融して、印刷媒体に溶融転写するための ヒータを含む転写定着部とから構成される。そして、本発明は、現像部を、装置 下側に配置して、液体トナーの漏れが発生しても、印刷媒体及び中間転写部を汚 すことが無いように構成したものである。

[0013]

また、本発明は、転写定着部を、装置上側に配置して、熱の装置外への排出を容易にすると共に、装置内への熱伝搬の防止を容易にするよう構成したものである。

[0014]

【発明の実施の形態】

以下、実施の形態に従って本発明を詳細に説明する。図1は、本発明を具体化する液体現像方式の電子写真装置の第一の構成例を示す図である。なお、本発明は、不揮発性を示す高粘度で高濃度の液体トナーを液体現像液として用いるものであるが、液体トナーは、液体キャリア(オイル)中に顔料などの固体粒子を分散させたものである。

[0015]

図示したように、本発明の液体現像電子写真装置は、装置の最下部に設けられる現像部と、その上の中間転写部と、装置最上部に位置する転写定着部とから構成される。現像部は、イエロー/マゼンタ/シアン/ブラックに対応付けて設けられる。それぞれ感光ドラム(感光体) $11\sim14$ が設けられ、かつこの感光ドラム $11\sim14$ を約700Vに帯電させるための帯電器が備えられる(図示せず)。矢印で示す露光は、帯電した感光ドラム $11\sim14$ を画像データに基づき、例えば、780nmの波長を持つレーザ光を使って行われる。これによって、感光ドラム $11\sim14$ 上に、露光部分の電位が約100Vとなる静電潜像が形成される。また、図示しない除電装置が設けられて、感光ドラム $11\sim14$ 上の残存電位を除電する。

[0016]

現像ローラは、約400V~600Vのような所定の電圧にバイアスされて、 感光ドラム11~14との間の電界に従って、正に帯電しているそのトナーを感 光ドラム $11\sim14$ に供給する。これによって、約100 Vに帯電される感光ドラム $11\sim14$ 上の露光部分にトナーを付着させて、感光ドラム $11\sim14$ 上の静電潜像を現像し、画像を形成する。トナー供給ローラは、各色トナー毎に10 又は複数のローラから構成されて、トナー粘度が $100\sim400$ のm Pa·Sで、キャリア粘度が $20\sim500$ cSt、好適には100 cSt を持つ液体トナーを、トナー溜まりから薄く延ばしながら搬送していくことで現像ローラ上に所定の層厚(例えば、 $4\sim10~\mu$ m)で液体トナーを塗布する。

$[0\ 0\ 1\ 7]$

第一中間転写体としての中間転写ローラ15は、約-800Vにバイアスされて、各感光ドラム11~14との間の電界に従って、感光ドラム11~14に付着されたトナーを転写する。この中間転写ローラ15は、先ず最初に、第一の感光ドラム11に付着される例えばイエローのトナーを転写し、続いて、第三の感光ドラム12に付着される例えばマゼンタのトナーを転写し、続いて、第三の感光ドラム13に付着される例えばシアンのトナーを転写し、最後に、第四の感光ドラム14に付着される例えばブラックのトナーを転写することになる。このように、第一~第四の感光ドラム11~14上に現像された4色のトナー画像は、順次中間転写ローラ15上に重ね合わされて、カラー画像が形成される。4色重ね合わされる間に、中間転写ローラ15を4回転させることもできるが、1回転のみで可能である。クリーニングブレードは、第二中間転写体に転写後の適切なタイミングで中間転写ローラ15に接触して、その上に残存するトナーやプリウエット液を取り除く。

[0018]

その後さらに、第二中間転写体としてのベルト構成の中間転写ベルト16上に、4色カラー画像は静電的に転写され、キャリア除去部でキャリア液体が除去された後、転写されたトナー画像は印刷媒体との接触部において加熱溶融され、印刷媒体に溶融転写される。中間転写ベルト16上に液体トナーで形成された画像にはキャリア液体が含まれており、複数のローラから構成されるように例示したキャリア除去部では、このキャリアオイル分が除去される。中間転写ベルト16上のトナー画像は、ヒートローラ18によって加熱溶融されると共に、該ヒート

ローラ18と協働するヒータ内蔵の加圧ローラ19によって、印刷媒体に転写定 着させられる。

[0019]

転写定着部は、前述の加圧ローラ19、及び複数の搬送ローラと、その上に巻き掛けられた静電ベルト、及び前述の中間転写ベルト16から構成される。静電ベルトは、印刷媒体を静電気力により吸着して、搬送する。ヒートローラ18及びヒータ内蔵の加圧ローラ19による加熱は、中間転写ベルト16上のトナー画像を溶融させて、キャリア除去効率を改善すると共に、印刷媒体への転写定着を行うためである。そして、このように加熱された中間転写ベルト16は、転写定着後に、冷却する必要がある。これは、例えば、中間転写ベルト16を巻き掛けたローラ(冷却ローラ)を冷却することにより行うことができる。冷却を行うのは、中間転写ローラ15から中間転写ベルト16にトナーが転写されるときに、トナーが溶融してしまうことにより、転写不良が発生するのを防止すると共に、中間転写ローラ15に熱が伝達するのを防止するためである。

[0020]

このように、中間転写ベルト16は加熱して、その上のトナー画像を溶融した後、中間転写ローラ15との接触部に到達する前に冷却する必要がある。図示の液体現像電子写真装置は、装置最上部に、多量の熱を発生する転写定着部を備えたために、装置内の熱排出を効率よく行うことができ、それによって、また、中間転写ベルト16の冷却を効率化することが可能となる。

[0021]

さらに、図示の液体現像電子写真装置は、液体トナーを扱う現像部を装置最下 部に設けたために、仮に液体トナーが漏れたとしても、印刷媒体を汚し難い配置 となっている。

[0022]

図2は、本発明を具体化する液体現像方式の電子写真装置の第二の構成例を示す図である。図1を参照して説明した第一の構成例との大きな相違は、前述の第一及び第二の中間転写体に代えて、唯一の中間転写体として、中間転写ベルト16を用いたことである。

[0023]

図示の液体現像電子写真装置は、装置の最下部に設けられる現像部と、その上の中間転写部と、装置最上部に位置する転写定着部とから構成される。現像部は、図1の構成と基本的には同じであり、イエロー/マゼンタ/シアン/ブラックに対応付けて設けられ、それぞれ感光ドラム(感光体)11~14が設けられ、かつこの感光ドラム11~14を帯電させるための帯電器、露光装置、及び除電装置が設けられている。

[0024]

中間転写体は、中間転写ベルト16より構成されている。中間転写ベルト16は、約-800Vにバイアスされて、各感光ドラム11~14との間の電界に従って、感光ドラム11~14に付着されたトナーを転写する。この中間転写ベルト16は、例えば、先ず最初に、第一の感光ドラム11に付着されるイエローのトナーを転写し、その後、第二のトナーであるマゼンタの転写部に至り、第二の感光ドラム12に付着されたマゼンタのトナーを転写し、続いて、第三の感光ドラム13に付着されるシアンのトナーの転写をし、最後に、第四の感光ドラム14に付着されるブラックのトナーの転写をすることになる。このように、第一~第四の感光ドラム11~14上に現像された4色のトナー画像は、中間転写ベルト16を1回転させることにより、順次中間転写ベルト16上に重ね合わされて、カラー画像が形成される。

[0025]

その後、4色カラー画像はキャリア除去部でキャリア液体が除去される。キャリア液体の除去の際には加熱することが望ましく、キャリア液体が除去された後、印刷媒体との接触部において加熱溶融され、印刷媒体に溶融転写される。中間転写ベルト16上に液体トナーで形成された画像にはキャリア液体が含まれており、複数のローラから構成されるように例示したキャリア除去部では、このキャリアオイル分が除去される。中間転写ベルト16上のトナー画像は、ヒートローラ18によって加熱溶融されると共に、該ヒートローラ18と協働するヒータ内蔵の加圧ローラ19によって、印刷媒体に転写定着させられる。転写定着部は、前述の中間転写ベルト16、ヒートローラ18、及び加圧ローラ19から構成さ

れる。

[0026]

図1に示した装置と同じく、中間転写ベルト16は、加熱及び冷却サイクルを繰り返す必要がある。図2に示した液体現像電子写真装置は、図1の装置と同様に、装置最上部に、多量の熱を発生する転写定着部を備えたために、装置内の熱排出を効率よく行うことができ、それによって、また、中間転写ベルト16の冷却を効率化することが可能となる。さらに、同様に、液体トナーを扱う現像部を装置最下部に設けたために、仮に液体トナーが漏れたとしても、印刷媒体を汚し難い配置となっている。

[0027]

図3は、本発明を具体化する液体現像方式の電子写真装置の第三の構成例を示す図である。図2を参照して説明した第二の構成例との大きな相違は、前述の中間転写ベルトに代えて、中間転写体として、中間転写ローラ15を用いたことである。

[0028]

図示の液体現像電子写真装置は、装置の最下部に設けられる現像部と、その上の中間転写部と、装置最上部に位置する転写定着部とから構成される。現像部は、図1及び図2の構成と基本的には同じであり、イエロー/マゼンタ/シアン/ブラックに対応付けて設けられ、それぞれ感光ドラム(感光体)11~14が設けられ、かつこの感光ドラム11~14を帯電させるための帯電器、露光装置、及び除電装置がそれぞれ設けられている。

[0029]

中間転写体は、中間転写ローラ15より構成されている。中間転写ローラ15は、約-800Vにバイアスされて、各感光ドラム11~14との間の電界に従って、感光ドラム11~14に付着されたトナーを転写する。この中間転写ローラ15は、例えば、先ず最初に、第一の感光ドラム11に付着されるイエローのトナーを転写し、その後、第二のトナーであるマゼンタの転写部に至り、第二の感光ドラム12に付着されたマゼンタのトナーを転写し、続いて、第三の感光ドラム13に付着されるシアンのトナーの転写をし、最後に、第四の感光ドラム1

4に付着されるブラックのトナーの転写をすることになる。このように、第一〜 第四の感光ドラム11〜14上に現像された4色のトナー画像は、中間転写ロー ラ15を1回転させることにより、順次中間転写ローラ15上に重ね合わされて 、カラー画像が形成される。

[0030]

その後さらに、4色カラー画像はキャリア除去部でキャリア液体が除去された後、印刷媒体との接触部において、中間転写ローラ15内部にあって適切なタイミングでオンされるヒータ、及びヒータ内蔵の加圧ローラ19によって加熱溶融され、印刷媒体に溶融転写される。図示の装置は、その後に、印刷媒体を2つのヒートローラによって加圧することによりトナー画像が定着される。このように、大きな熱を発生する定着部を、転写部とは分離したために、転写部では発生する熱を低く抑えることができる。

[0031]

中間転写ローラ15上に液体トナーで形成された画像にはキャリア液体が含まれており、3つのローラから構成されるように例示したキャリア除去部では、このキャリアオイル分が除去される。図示した3つのローラのうちの少なくとも最初のローラは、ヒートローラによって構成し、キャリア除去中に加熱するようにしている。また、中間転写ローラ15上の残留トナーを除去するために、適切なタイミングで接触するクリーニング用のローラ及びブレードが設けられる。中間転写ローラ15上のトナー画像は、ヒータ内蔵の加圧ローラ19によって加熱溶融されると共に、2つのヒートローラを用いてトナー画像が定着される。

[0032]

図1及び図2に示した装置と同じく、図3に示した液体現像電子写真装置は、 装置最上部に、多量の熱を発生する転写定着部を備えたために、装置内の熱排出 を効率よく行うことができ、それによって、また、中間転写ローラ15の加熱後 の冷却を効率化することが可能となる。さらに、同様に、液体トナーを扱う現像 部を装置最下部に設けたために、仮に液体トナーが漏れたとしても、印刷媒体を 汚し難い配置となっている。

[0033]

図4は、本発明を具体化する液体現像方式の電子写真装置の第四の構成例を示す図である。この構成の特徴は、4つの色のトナー画像に対して、1つのみの感光ドラム10を共通に用いたことと、第一の中間転写体として中間転写ローラ15を、そして、第二の中間転写体として中間転写ベルト16を用いたことにある。

[0034]

図示の液体現像電子写真装置は、装置の最下部に設けられる現像部と、その上の中間転写部と、装置最上部に位置する転写定着部とから構成される。現像部は、イエロー/マゼンタ/シアン/ブラックに対応付けて設けられる点では、前述の構成と同じであるが、感光ドラム(感光体)10は、4色に対して共通に設けられている。それ故、感光ドラム10を帯電させるための帯電器、露光装置、及び除電装置も4色共通である。その動作は前述の例と同じであるので、詳細な説明は省略する。

[0035]

中間転写ローラ15は、約-800Vにバイアスされて、感光ドラム10との間の電界に従って、感光ドラム10に付着されたトナーを、イエロー、マゼンタ、シアン、ブラックの順に1色づつ転写して、中間転写ローラ15の上で4色のトナー画像が重ね合わされる。中間転写ローラ15上に重ね合わされた4色トナー画像が、第二の中間転写体としての中間転写ベルト16に転写され、そして、さらに、転写定着される動作については、図1の装置に関して説明したとおりであるので、詳細な説明は省略する。

[0036]

図1~図3に示した装置と同じく、図4に示した液体現像電子写真装置は、装置最上部に、多量の熱を発生する転写定着部を備えたために、装置内の熱排出を効率よく行うことができ、それによって、また、中間転写ローラ15の冷却を効率化することが可能となる。さらに、同様に、液体トナーを扱う現像部を装置最下部に設けたために、仮に液体トナーが漏れたとしても、印刷媒体を汚し難い配置となっている。

[0037]

【発明の効果】

本発明は、現像部を、装置下側に配置したことにより、液体トナーの漏れなどが発生したとしても、印刷媒体及び中間転写ローラ、中間転写ベルトやそれに付随する装置を汚すことが無く、また、漏れに対する処置を容易な方法で実現できるという効果がある。

[0038]

また、本発明は、転写定着部を、装置上側に配置したことにより、熱の装置外への排出を容易にすると共に、装置内への熱伝搬の防止を容易にすることができる。

【図面の簡単な説明】

【図1】

本発明を具体化する液体現像方式の電子写真装置の第一の構成例を示す図である。

図2】

本発明を具体化する液体現像方式の電子写真装置の第二の構成例を示す図である。

【図3】

本発明を具体化する液体現像方式の電子写真装置の第三の構成例を示す図である。

【図4】

本発明を具体化する液体現像方式の電子写真装置の第四の構成例を示す図である。

【図5】

従来公知の液体現像方式の電子写真装置の全体構成を示す図である。

【符号の説明】

- 10 感光ドラム
- 11 第一の感光ドラム
- 12 第二の感光ドラム
- 13 第三の感光ドラム

- 14 第四の感光ドラム
- 15 中間転写ローラ
- 16 中間転写ベルト
- 18 ヒートローラ
- 19 加圧ローラ
- 21 帯電装置
- 22 露光装置
- 23 プリウエット装置
- 24 現像装置
- 26 ブレード
- 27 除電装置
- 28 加熱装置

【書類名】

図面

[図1]

【図2】

【図3】

【図4】

【図5】

ページ: 1/E

【書類名】 要約書

【要約】

【課題】 本発明は、中間転写体上のトナー画像を加熱溶融して印刷媒体に転写 定着する液体現像方式の電子写真装置において、装置内の熱排出を効率よく行う と共に、液体トナーが漏れた場合にも印刷媒体を汚し難くすることを目的として いる。

【解決手段】 本発明の液体トナーを用いる液体現像電子写真装置は、現像部を、装置下側に配置して、液体トナーの漏れが発生しても、印刷媒体及び中間転写部を汚すことが無いように構成したものである。また、本発明は、転写定着部を、装置上側に配置して、熱の装置外への排出を容易にすると共に、装置内への熱伝搬の防止を容易にするよう構成したものである。

【選択図】 図1

【書類名】

手続補正書

【提出日】

平成12年 9月 4日

【あて先】

特許庁長官 殿

【事件の表示】

【出願番号】

特願2000-120254

【補正をする者】

【識別番号】

000136136

【氏名又は名称】 株式会社ピーエフユー

【代理人】

【識別番号】

100074848

森田

【弁理士】

【氏名又は名称】

寛

【手続補正 1】

【補正対象書類名】 特許願

【補正対象項目名】 発明者

【補正方法】

変更

【補正の内容】

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

中島 豊

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

本 悟

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

市田 元治

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

岡野 茂治

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

竹田 靖一

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

西川 禎

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

宮本 悟司

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

寺嶋 一志

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

坂井 聡

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

本川 浩永

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

杜 基雲

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

稲本 彰彦

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

上杉 茂紀

【発明者】

ページ: 4/E

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

高畠 昌尚

【発明者】

【住所又は居所】 石川県河北郡宇ノ気町字宇野気ヌ98番地の2 株式会

社ピーエフユー内

【氏名】

本江 雅信

【プルーフの要否】 要

特願2000-120254

出願人履歴情報

識別番号

[000136136]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所 氏 名 石川県河北郡宇ノ気町字宇野気ヌ98番地の2

株式会社ピーエフユー

2. 変更年月日

2003年 4月 7日

[変更理由]

名称変更

住 所

石川県河北郡宇ノ気町字宇野気ヌ98番地の2

氏 名 株式会社PFU

•