

Unidade IV

Noções de Probabilidade

Estatística Aplicada

Ana Maria Nogales Vasconcelos

Maria Teresa Leão Costa

No estudo de um fenômeno deve-se distinguir entre dois tipos de fenômenos:

- ✓ Determinísticos
- ✓ Aleatórios

A água vai ferver quando a temperatura chegar a....

Vai chover hoje a tarde?...

Tipos de Experimentos

- Experimentos Determinísticos:
 - Os experimentos em que podemos determinar os resultados nas diversas vezes que repetimos.
 - Conduzem sempre a um mesmo resultado em condições iniciais idênticas.

Exemplo:

 Ao aquecermos a água à pressão de 1,0 atm (1 atmosfera – valor da pressão atmosférica ao nível do mar), podemos prever antecipadamente que ela ferverá quando chegar à temperatura de 100° C.

Tipos de Experimentos

Experimentos Aleatórios:

- Os experimentos em que não podemos determinar os resultados nas diversas vezes que repetimos
- podem conduzir a diferentes resultados mesmo em condições iniciais idênticas.

Quanto é provável?

Condições climáticas do amanhã.

Universo do estudo (**população**) Hipóteses, conjeturas, ...

Resultados ou dados observados

Raciocínio dedutivo

Extraído de PEDRO A. BARBETTA – <u>Estatística Aplicada às Ciências Sociais 6ed.</u> Editora da UFSC, 2006.

Experiência Aleatória (ε)

- Uma EXPERIÊNCIA ALEATÓRIA é aquela em que não existe certeza quanto ao resultado. O fator ACASO está presente.
- Ela se caracteriza pela:
 - possibilidade de repetição indefinida, mantida as condições iniciais;
 - Impossibilidade de determinação do resultado, em uma particular repetição, antes de sua realização;
 - Capacidade de descrever o conjunto de todos os resultados possíveis da experiência.

Exemplos:

- 1. Lançamento de um dado equilibrado a fim de verificar o número de pontos da face voltada para cima.
- 2. Seleção de um aluno da turma, ao acaso, a fim de verificar o número de semestres na UnB.
- 3. Leitura da umidade diária.
- 4. Lançamento de duas moedas para verificar o resultado.
- 5. Seleção de um animal ao acaso da população em estudo e verificar se apresenta certa característica genética ou não.
- 6. Seleção de um indivíduo ao acaso a fim de determinar o tipo sanguíneo.

OBSERVAÇÃO:

 Ao escrever uma experiência aleatória devemos especificar não somente que operação deve ser realizada mas também o que deve ser observado.

Espaço Amostral (Ω)

A cada experiência aleatória (ε) se associa um **ESPAÇO AMOSTRAL**, Ω , que é o conjunto de todos os resultados possíveis na sua realização.

Exemplos:

1. ε: Lançamento de um dado equilibrado a fim de verificar o número de pontos da face voltada para cima.

Espaço Amostral (Ω)

lacklack A cada experiência aleatória (ϵ) se associa um **ESPAÇO AMOSTRAL**, Ω , que é o conjunto de todos os resultados possíveis na sua realização.

Exemplos:

1. ε: Lançamento de um dado equilibrado a fim de verificar o número de pontos da face voltada para cima.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

2. ε: Seleção de um aluno da turma, ao acaso, a fim de *verificar o* número de semestres na UnB.

$$\Omega = \{1, 2, 3, \dots, 24\}$$

3 ε : Leitura da umidade diária.

$$\Omega = \{0\%, ..., 15\%, ..., 100\%\}$$

4. ε : Lançamento de duas moedas para verificar o resultado.

$$\Omega = \{(ca, ca), (ca, co), (co, ca), (co, co)\}$$

5. ε: Seleção de um animal ao acaso da população em estudo e verificar se apresenta certa característica genética ou não.

 $\Omega = \{tem\ caracater ística\ gen \'etica, n\~ao\ tem\ a\ carc.\ gen \'etica\}$

Ou mais simplesmente,

$$\Omega = \{sim, n\tilde{a}o\}$$

6. ε: Seleção de um indivíduo ao acaso a fim de determinar o tipo sanguíneo.

$$\Omega = \{A, B, AB, O\}$$

Evento ou Acontecimento

- Notação: A,B,C,.... ou A₁, A₂, A₃,...
- lacktriangle Um **EVENTO** é um conjunto de resultados da experiência aleatória ε .
- lacktriangle Em termos de Teoria dos Conjuntos, é um subconjunto do espaço amostral Ω , isto é,

 $A \subset \Omega$, A é um evento.

Graficamente,

Ω

- **Evento Certo: Ω**
- **Evento Impossível:** Ø
 - É o conjunto sem elementos.
- **Evento Elementar:**
 - evento constituído por um único resultado do espaço amostral

Exemplos:

- 1. ε: Lançamento de um dado equilibrado a fim de verificar o número de pontos da face voltada para cima.
- 2.

```
\Omega = \{1, 2, 3, 4, 5, 6\} \longrightarrow \text{ evento certo}
A = \{\text{sair a face 5}\} \longrightarrow \text{ evento elementar}
B = \{\text{sair a face 7}\} \longrightarrow \text{ evento impossível}
```


Evento Interseção:

- Sejam A e B dois eventos.
- O EVENTO INTERSEÇÃO é o evento que ocorre quando A ocorre e B ocorre, isto é, quando A e B ocorrem simultaneamente $(A \cap B)$

Exemplos:

1. ε: Lançamento de um dado equilibrado a fim de verificar o número de pontos da face voltada para cima.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
B= {sair a face maior ou igual a 3}={3,4,5,6}
C = {sair a face impar}={1,3,5}

1. O evento interseção $\mathbf{B} \cap \mathbf{C} = \{3,5\} = (sair face impar \ge 3)$

Evento União:

- Sejam A e B dois eventos.
- O EVENTO UNIÃO é o evento que ocorre quando A ocorre ou B ocorre ou ambos ocorrem. $(A \cup B)$

Exemplos:

1. ε: Lançamento de um dado equilibrado a fim de verificar o número de pontos da face voltada para cima.

```
2. \Omega = \{1, 2, 3, 4, 5, 6\}
B= {sair a face maior ou igual a 3}={3,4,5,6}
C = {sair a face impar}={1,3,5}
D = {sair a face 2}={2}
```

O evento união $\mathbf{B} \cup \mathbf{C} = \{1.3,4,5,6\} = (sair face impar ou face \ge 3\}$

Já o evento união $\textbf{\textit{C}} \cup \textbf{\textit{D}} = \{2,3,4.5,6\} = \{sair\ face\ 2\ ou\ face\ \geq 3\}$

Eventos Mutuamente Exclusivos:

- Sejam A e B dois eventos.
- A e B são EVENTOS MUTUAMENTE EXCLUSIVOS se, e somente se, $A \cap B = \phi$, isto é , não puderem ocorrer juntos.

Exemplos:

1. ε: Lançamento de um dado equilibrado a fim de verificar o número de pontos da face voltada para cima.

2.
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

B= {sair a face maior ou igual a 3}={3,4,5,6}
C = {sair a face impar}={1,3,5}
D = {sair a face 2}={2}

Os eventos $C \in D$ são mutuamente exclusivos pois $C \cap D = \emptyset$.

Já os eventos $\textbf{\textit{B}}$ e $\textbf{\textit{C}}$ $N\tilde{A}O$ $s\tilde{a}o$ mutuamente exclusivos pois $\textbf{\textit{B}} \cap \textbf{\textit{C}} = \{3,5\} \neq \emptyset$

Eventos Complementares:

- Sejam A e B dois eventos.
- Dizemos que A e B são EVENTOS COMPLEMENTARES se, e somente se:
 - i. $A \cap B = \phi$, isto é , são mutuamente exclusivos;
 - ii. $A \cup B = \Omega$.
- Neste caso, dizemos que B é o complementar de A e designamos por \bar{A} .

Exemplos:

- 1. ε: Lançamento de um dado equilibrado a fim de verificar o número de pontos da face voltada para cima.
- 2. $\Omega = \{1, 2, 3, 4, 5, 6\}$ $C = \{\text{sair a face impar}\} = \{1, 3, 5\}$ $D = \{\text{sair a face 2}\} = \{2\}$ $E = \{\text{sair face par}\} = \{2, 4, 6\}$

Os eventos Ce E são complementares pois $C \cap E = \emptyset$ e $C \cup E = \Omega$.

Já os eventos união C e D NÃO são complementares pois apesar de $C \cap D = \emptyset$, entretanto $CUD = \{1,2,3,5\} \neq \Omega$.

Probabilidade

♦ DEFINIÇÃO CLÁSSICA:

■ Seja A um evento. *A PROBABILIDADE* de um evento A, designada *P*(*A*) é definida como:

$$P(A) = \frac{\text{número de casos favoráveis a ocorrência de A}}{\text{número de casos possíveis}}$$

 Só é válida se todos os resultados possíveis têm a mesma chance de ocorrer (EXPERIÊNCIA ALEATÓRIA UNIFORME).

Exemplos:

1. ε: Lançamento de um dado equilibrado a fim de *verificar o número de pontos da face voltada para cima*.

2.
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

B= {sair a face maior ou igual a 3}={3,4,5,6}
C = {sair a face impar}={1,3,5}
D = {sair a face 2}={2}

$$P(D) = \frac{1}{6}$$
 $P(B) = \frac{4}{6}$
 $P(C) = \frac{3}{6}$

♦ FREQUÊNCIA RELATIVA:

Sejam

 ε : experiência aleatória repetida n vezes

Ω: espaço amostral associado a ε

e um evento A.

Considerando que:

 $n_A =$ frequência absoluta do evento A (n'umero de vezes que A ocorreu)

DEFINIÇÃO:

$$f_A = \frac{n_A}{n}$$
 \rightarrow frequência relativa do evento A
 (proporção de ocorrência de A)

PROPRIEDADES:

- i. $0 \le f_A \le 1$.
- *ii.* $f_A = 1 \Leftrightarrow \mathbf{A}$ ocorreu em todas as \mathbf{n} repetições.
- *iii.* $f_A = 0 \Leftrightarrow A$ não ocorreu nas **n** repetições.
- iv. Se \boldsymbol{A} e \boldsymbol{B} forem eventos MUTUAMENTE EXCLUSIVOS, e se $f_{A \cup B} =$ frequência relativa do evento $A \cup B$

então

$$|f_{A\cup B}|=|f_A|+|f_B|$$

Exemplos:

- 1. ε: Lançamento de uma moeda equilibrada a fim de *verificar a face voltada para cima*.
- 2. $\Omega = \{cara, coroa\}$ Repetir esta experiência aleatória n vezes.

Seja o evento $A=\{sair\ cara\}$.

Considerando que:

 $n_A = n$ úmero de vezes que ocorreu cara nos n lançamentos.

temos que:

 $f_A = \frac{n_A}{n}$ \rightarrow frequência relativa de ocorrência de cara (proporção de ocorrência de cara)

São conhecidos alguns resultados históricos relacionados com a experiência do lançamento da moeda:

- Buffon, cientista francês (1707 1788) lançou uma moeda 4 040 vezes, tendo obtido 2 048 caras, ou seja uma frequência relativa para a saída de cara de 0.5069;
- por volta de 1900, o estatístico inglês Karl Pearson lançou uma moeda 24 000 vezes. Obteve 12 012 caras, ou seja, 0.5005 para a frequência relativa da saída de cara;
- durante a 2ª guerra mundial, enquanto prisioneiro dos alemães, o matemático inglês John Kerrich lançou uma moeda 10 000 vezes, tendo obtido 5 067 caras, ou seja uma frequência relativa de 0.5067 para a saída de cara.

\neg		7
•	•	J
_		
_	•	_

nº lançamentos	nº caras obtidas	f_A
100	49	0,490
500	253	0,506
1 000	495	0,495
2 000	993	0,4965
3 000	1 510	0,5033

Axiomas

Sejam ε uma experiência aleatória e Ω seu espaço amostral A cada evento A ($A \subset \Omega$) associa-se um número real P(A), probabilidade do evento A, que satisfaz as seguintes propriedades:

$$i 0 \le P(A) \le 1.$$

ii.
$$P(\Omega) = 1$$
.

iii. Se $\textbf{\textit{A}}$ e $\textbf{\textit{B}}$ forem eventos $\textbf{\textit{mutuamente exclusivos}}$, isto é, $A \cap B = \emptyset$, então

$$P(A \cup B) = P(A) + P(B)$$

Resultados Importantes (Teoremas):

TEOREMA 1:

Sejam A e \bar{A} dois eventos, onde \bar{A} é o complemento de A, então:

$$P(A) + P(\bar{A}) = 1$$
 ou $P(\bar{A}) = 1 - P(A)$

Seja Ø o evento impossível, Então:

$$P(\emptyset) = 0.$$

* TEOREMA 3

Seja A e B são eventos tais que. A \subset B, então:

$$P(A) \leq P(B)$$
.

* TEOREMA 4

Seja A e B são dois eventos quaisquer, $A \subset \Omega$, $B \subset \Omega$ tem-se:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Vamos praticar?

Considere que 300 pessoas estão participando de um concurso, 100 da escola A e 200 da escola B. A pergunta mais difícil foi respondida por apenas 110 dos candidatos, 60 dos quais da escola B.

Escola	Questão + Difícil		T
	Acertou	Errou	Total
Α	60	40	100
В	50	150	200
Total	110	189	300

Um candidato foi selecionado ao acaso e entrevistado.

- 1) Qual a probabilidade do candidato selecionado ter acertado a questão mais difícil?
- 2) Qual a probabilidade do candidato ter errado a questão mais difícil?
- 3) Qual a probabilidade do candidato selecionado ser da escola B?
- 4) Qual a probabilidade do candidato selecionado ter acertado a questão mais difícil e ser da escola B?
- 5) Qual a probabilidade do candidato selecionado ter acertado a questão mais difícil ou ser da escola B?
- 6) Qual a probabilidade do candidato selecionado ter acertado a questão mais difícil se você sabe que ele é da escola B?

Escola	Questão + Difícil		Total
	Acertou	Errou	Total
Α	60	40	100
В	50	150	200
Total	110	189	300