

Hybrid System

Team Members : Ashar Alam, Mahshid Khodadad, 류준일, 류현준, 박지환, 조인준, 최지훈, 최호열

Advisory Professor : 김형수 교수님

Advisory TA : 정문경 TA

Why Hybrid?

Contents

- **1. System Definition**
- 2. Problems
- 3. Subsystems
- a. ROS
- b. Vision
- c. Pick-Up
- d. Motor Control
- e. Vibration Reduction
- f. Heat Transfer

4. Further..?

System Definition

Pick up a certain ball

And

Drop it at a certain place

ROS : Integrating all the systems and Transfer signals from one subsystem to another

Open CV : Detect the ball's location and Make precise signal

Solidworks : Precisely and Costeffectively design the system

Labview : Elaborately control thesystem

Problems

Should do the task Energy Efficiently All task should be done in 5 minutes

Work should be done **Precisely**

ROS

//Get Ball Process//

Car move to closest ball (keep certain distance from the ball) Lidar on

```
If ( correct coordinate ) {
    Lidar off
}
Else {
    repeat "mapping process"
}
camera on run "Pick up"
```

Vision

Detect Balls

Draw Map

Calculate Path

Reduce Error by Periodically Re-calculating Path

Pick-Up

Ball-retrieving mechanism	blade	stamp	catcher	vacuum suction
ability to securely get the ball(not getting lost)	0	0	Δ	0
easy to produce	0	0	Δ	Х
volume	Х	Х	Δ	Δ
complexity of source code	0	Δ	Δ	0
mechanical energy needed	0	Δ	Δ	0
creativity	0	Δ	\triangle	Δ

Stamp Gripper

Requires too HIGH accuracy!

Blade Gripper

Rolling Machine – Idea storming Youtube.com

Blade Gripper

Assumption

- 1. Ball is rigid.
- 2. Frictional coefficient between ball and blade and blade and floor are same.
- 3. Blade and Ball contacts on one point only.

Result

- 1. We need at least **5.35N** to push the ball.
- 2. Given Motor's stall sorque is 3.1N*M
- 3. We can meet design consideration by using **Aluminum** as blade material

Motor Control

FORWARD

Using Independent motor control for each wheel

Car direction

Vibration Reduction

Using Independent axle suspension system

Heat Transfer

Further...?

- 1. Make efficient algorithm, collaborate mapping and tracking
- 2. Test integration of vision and motor
- 3. Consider using lidar for detection
- 4. Consider vibration Camera position

Appendix

Heat transfer analysis

Use a fan 92x92x20mm fan, maximum air flow is $1.331m^3$ /min and input power is 3W.

First I calculate heat emission of battery due to fan. We don't know specs of battery just think it a typical Li-ion battery. In the paper, when battery makes 18.5W (43A, $0.1m\Omega$), emitted $9560.5W/m^3$ of heat. Our fan needs 3W and battery is $0.003m^3$, our battery will emit 4.8W of heat.

Assume that air passes the battery space with constant speed and car goes with average velocity of 3m/s.

Velocity of air through battery space, $V = 3m/s + 1.331m^3/60s/\pi(0.046)^2m^2 = 6.34m/s$.

Assume that surfaces of battery (10x15x20 cm is flat and calculate heat transfer of 3 plate (ignore front, back and bottom surface.)

Think as a plate, assume $T_{\infty}=20^{\circ}\text{C}$, $T_{s}=60^{\circ}\text{C}$. $T_f = 40$ °C, $\rho = 1.165 \, kg/m^3$, Pr = 0.706, $k = 27.35 \, mw/m \cdot K$, $v = 16.92 * 10^{-6} m^2/s$

$$Re_L = V_{\infty} \cdot \frac{L}{v} = 7.494 \cdot 10^4$$
, laminar flow
$$\overline{Nu} = \overline{h} \cdot \frac{L}{k} = 0.664 Re^{\frac{1}{2}} Pr^{\frac{1}{3}} = 161.86$$

$$\overline{h} = 22.13 \text{W/m}^2 \cdot K$$

$$\dot{Q} = \overline{h}A(T_s - T_{\infty}), A = 0.02 \cdot 2 + 0.03 = 0.07$$

$$\therefore \dot{Q} = 62.0 \text{W(maximum heat transfer rate of fan}$$

 $\therefore \dot{Q} = 62.0 \text{W(maximum heat transfer rate of fan)}$

$$\Sigma \dot{Q} = 57.2$$
W by fan