Аленникова Бориса Степанькова Кирилла Кондратовича Артема Березко Ивана Костюкевич Полины

Студентов группы №4

Задание №2

Напишите алгоритм «Защиты от съезда» с 4 датчиками цвета (стр.90-93) в TRIK Studio для платформы EV3, создайте соответствующее поле для тестирования.

3. Выполните задания 1-8 (стр.94-95);

Далее в зависимости от коэффициента робот проехал данные линии за следующий промежуток времени:

k	Время выполнения (с)			
	Линия 1	Линия 2	Линия 3	Линия 4
1,5	5,890	6,140	6,880	6,860
2	5,930	5,980	6,950	6,950
2,5	5,950	6,220	7,040	6,760

Выводы и рекомендации:

На прямых линиях лучше выбирать меньший коэффициент, чтобы робот совершал меньше осцилляций, а на сильно изогнутых дугах предпочтительно выбирать более высокие коэффициенты для предотвращения съезда с линии (едет медленно, но надежно).

Датчики ближе к линии:

В этом случае робот совершает резкие колебательные движения при прохождении линии. Близкое расположение датчиков к линии позволяет им более точно определить положение робота относительно линии.

Датчики дальше от линии:

В этом случае робот может иметь больше трудностей в определении точного положения линии. Робот едет, опираясь на значение "одного" датчика при поворотах.

Датчики дальше от оси колес:

В этом случае робот может иметь тенденцию делать более широкие повороты при обнаружении линии.

Датчики ближе к оси колес:

В этом случае робот может иметь большие трудности на резких поворотах линии. Робот не смог пройти последнюю линию и застрял.

Задний привод:

Робот может легче изменять направление движения и поворачиваться с более малым радиусом поворота. Однако совершает странные повороты, а затем возвращает свое прежнее положение. Также обеспечена более высокая скорость движения по сравнению с передним приводом.

4. Нарисуйте трассу в TRIK Studio (стр.96);

5. Решите задачу для обнаружения перекрестка и остановки на нём (стр.99);

6. Решите задачу для подсчета перекрестков (стр.102);

7. Решите задачу для проезда штрих-области (стр.111);

8. Решите задачу для начала движения и остановки на конкретной полоске (стр.113);

9. Реализуйте алгоритм проезда инверсии (стр.117);

10. Решите задачу для проезда траектории (стр.123);

11. Реализуйте алгоритм объезда препятствия (стр.128);

12. Реализуйте алгоритм (стр.133);

13. Решите задачу для проезда траектории (стр.135).

