Pontifícia Universidade Católica de Minas Gerais

Arquitetura de Computadores I – ACI Guia 05 Teoremas DeMorgan

Luana Campos Takeishi

712171

Experiência 1: (Logisim / Álgebra Booleana)

Para os circuitos abaixo, você deverá utilizar o Logisim para o levantamento da tabela verdade e comprovação do teorema de DeMorgan. Utilize Portas NAND e NOR. Acrescente ao relatório a simplificação algébrica das equações geradas e comprove a tabela verdade.

a) a NAND $a = \overline{a}$

a	Y
0	1
1	0

b) a NOR a = a

a	Y
0	0
1	1

c) (a NAND b) NAND (a NAND b) = a*b

a	b	Y
0	0	0
0	1	0
1	0	0
1	1	1

d) (a NOR b) NOR (a NOR b) = a+b

a	b	Y
0	0	0
0	1	1
1	0	1
1	1	1

e) (a NAND a) NAND (b NAND b) = a+b

a	b	Y
0	0	0
0	1	1
1	0	1
1	1	1

f) (a NOR a) NOR (b NOR b) = a*b

a	b	Y
0	0	0
0	1	0
1	0	0
1	1	1

g) ((a NAND a) NAND (b NAND b)) NAND ((a NAND a) NAND (b NAND b)) = $\bar{a}*\bar{b}$

a	b	Y
0	0	1
0	1	0
1	0	0
1	1	0

h) ((a NOR a) NOR (b NOR b)) NOR ((a NOR a) NOR (b NOR b)) = $\bar{a} + \bar{b}$

a	b	Y
0	0	1
0	1	1
1	0	1
1	1	0

а	b	С	Υ	W
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Y

0

Função:

i)
$$(a + b) * c = \frac{ }{aabbcaabbc} = a*c + b*c$$

a	b	с	w
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

b	С	Y_
0	0	0
0	1	0
1	0	0
1	1	1
0	0	0
0	1	1
1	0	0
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Experiência 2: (Montagem / Logisim / Álgebra Booleana)

Para os circuitos a seguir, você deverá utilizar portas NAND para as respectivas montagens. Antes de iniciar verifique se todas as 4 portas do chip que você estará utilizando estão funcionais.

Circuito 1:

- a) Obtenha a tabela verdade e a expressão lógica correspondente.
- b) Faça a conversão do circuito para portas NAND (2 entradas) e simplifique para o menor número de portas possível.
- c) Monte o circuito no simulador e no módulo de montagens e comprove a sua análise.
- d) Qual circuito utilizou a menor quantidade de portas ?
- e) Qual circuito utilizou a menor quantidade de chips?

A	В	C	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

a) Tabela verdade + Expressão lógica: $S = \overline{((A + B) + (B + \overline{C}))}$

Α	В	C	S
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Circuito simplificado: $\overline{A}*\overline{B}$

C/AB	00	01	11	10
0	1	0	0	0
1	1	0	0	0

b) Circuito com portas NAND simplificado:

c) Montagem Logisim dos dois circuitos:

d) O circuito B (portas NAND) utilizou menor quantidade de portas. Circuito A-5 portas; Circuito B-4 portas. No entanto, se considerássemos o circuito simplificado $\overline{A}*\overline{B}$, este usaria menos porta lógicas, apenas 3.

e) O circuito B utilizaria menos chips, apenas um chip de portas lógicas NAND (que contém 4 portas), já o circuito A utilizaria 3 chips, um com portas OR, um com portas AND e outro com portas NOT. Ainda que considerássemos o circuito simplificado $\overline{A}*\overline{B}$, este usaria um chip a mais que o de portas NAND.

Circuito 2:

- a) Obtenha a tabela verdade e a expressão lógica correspondente.
- b) Monte o circuito no simulador e no módulo de montagens com as portas NAND e comprove a sua tabela verdade.
- c) Faça a conversão do circuito para portas básicas (not, and e or de 2 entradas) e simplifíque para o menor número de portas possível.
- d) Qual circuito utilizou a menor quantidade de portas?
- e) Qual circuito utilizou a menor quantidade de chips?

а	b	Х
0	0	
0	1	
1	0	
1	1	

a) Tabela verdade + Expressão lógica:

$$X = ((a \text{ NAND b}) \text{ NAND b}) \text{ NAND } ((a \text{ NAND b}) \text{ NAND } a)$$

$$X = \overline{\left(\overline{\left(a * \overline{\left(a * b\right)}\right)} * \overline{\left(b * \overline{\left(a * b\right)}\right)}\right)}$$

a	b	X
0	0	0
0	1	1
1	0	1
1	1	0

Circuito simplificado: $X = (\bar{a} * b) + (a * \bar{b})$

b) Circuito no Logisim:

c) Conversão do circuito em NOT, AND e OR:

- d) Menor quantidade de portas: O circuito de portas NAND utilizou menor quantidade de portas. Circuito NAND 4 portas; Circuito portas básicas 5 portas.
- e) Menor quantidade de chips: O circuito NAND utilizaria menos chips, apenas um chip de portas lógicas NAND (que contém 4 portas), já o circuito de portas básicas utilizaria 3 chips, um com portas OR, um com portas AND e outro com portas NOT.