EE24BTECH11007 - Arnav Makarand Yadnopavit

Ouestion:

Draw a triangle ABC in which AB=5 cm, BC=6 cm and \angle ABC = 60°. Then construct a triangle whose sides are $\frac{5}{7}$ times the corresponding sides of \triangle ABC.

Solution:

Symbol	Description	Value
а	length of side BC	6 cm
b	length of side CA	b
С	length of side AB	5 cm
a_0	length of side BC of	a_0
	second triangle	
b_0	length of side CA of	b_0
	second triangle	
c_0	length of side AB of	c_0
	second triangle	
$\angle B$	angle at vertex B	60°

TABLE 0: Given Values

Using cosine rule

$$\cos(\angle B) = \frac{a^2 + c^2 - b^2}{2ac} \tag{0.1}$$

$$\implies b = \sqrt{31} \tag{0.2}$$

As sides of second triangle are $\frac{5}{7}$ times the corresponding sides of $\triangle ABC$.

$$a_0 = \frac{30}{7}cm (0.3)$$

$$b_0 = \frac{25}{7}cm (0.4)$$

$$c_0 = \frac{5\sqrt{31}}{7}cm\tag{0.5}$$

1

Fig. 0.1: Plot of $\triangle A'BC'$ and $\triangle ABC$