Borsuk-Wam Theoven
Thm (Borent-Ulam) # F: Sn - Rn continuous, 3x & Sn
3.t - f(x) = f(-x) $Mushahors$
n=2: take a body deflate and crample it, and lay it flat:
By the thing there are two points lying on top of another that were acionemically oppose (ampada)
2) Ht any given have there are two antipodal places on earth 8.t. the
Hemperature cond pressure are the same. Equivalent versors: (Bluta) $\forall f: S^n \rightarrow \mathbb{R}^n$ continuous $\exists x \in S^n \text{ s.t. } f(x) = f(-x)$
(BUMb) \(\f\ f\ : S^n \rightarrow \text{R" continuous s.t. } f(\text{-x}) = -f(\text{x}) \\ \(\text{VX} \in S^n \) (antipodal) \(\text{JX} \in S^n \) \(\text{SN} \) s.t. \(f(\text{X}) = 0 \). (\(\text{BUZa} \) \(\text{There is no contipodal mapping } f\ \text{S}^n \) \(-\text{\text{-1}} \) S^n \(\text{-1} \)
(BU2b) There is no continuous mapping f: B"->S" That is antipodal on the boundary, i.e.
$f(-x) = -f(x) \forall x \in S^{n} = \partial B^{n}$ (LS-c) For any cover $F_{1,1}$, F_{n+1} of the sphere S^{n} by $n+1$ closed sets, $\exists F_{i} : s, t : F_{i} : n(-F_{i}) \neq \emptyset$
(1-5-0) + cover U1, -, Un+1 of S' by 11+1 openses there is at leas one set containing a pair of composed

```
Proof.
(BULL) => (Bleda): g(x)=f(x)-f(-x) centipodal
                (B) ] X SL g(x) = 0 ( = f(x) - f(-x)
(BUB)=>(BUZa): If it exists, then it is now convadices (Bleets)
(BUZa) => CBULb): Assume 1:5°-oR" antipodal cont. no zevo,
               Then g(x) = \frac{f(x)}{11f(x)} contradicts Bleza
(BU26)=) (BU26): T: (X,,-,Xn+2) + (X,,-,Xn)
 is a honcomorphism between the lepper hemispher U of S"
 will B! Then an antipod F: Sn - o Sn-1 antipodal
 would yield to g: B"-+S"-1 antipodal on 2B"
 by a(x)=f(17-1(x))
(BUZa) => (BUZb) · For g: B" -> S"-1 as in (BUZb)
we define for f(x) = g(TT(x)) and f(-x) = -g(TT(x)) for x ∈ U
 F Sn- Sn-1 con unotes cent centrodal &
 (BU/a) => (LS-c) Fig. Find closed cover
we define f: Sn-oth by f(x):= (dist(x, F,),..., dist(x, Fn))
=> XESM (BULG) s.t. f(x)=f(-x)=y. If y; = 0 then XEF;
Otherwse X, -X & the
(LS-c) => CBUZa)
Result 3 a covering of Sn-1 by closed sets F1, Fn+1
 Sit no F; concaus contpodal pants. Then
if 3P: Sh = Sh-1 consported , f-1 (Fn), -, f-1 (Fn+1)
would contradict (LS-C)
(LS.C)=>(LS-a). Use the Each Yopen coner Un, _, Unn
I closed cover to, , , Frito s.L Fi CU;
 Ix choose Vx ngbh 31 Vx CU; for some i and use compareness.
```


Then the componeurs of Z we cycles and path. Moveour, the endpoints of the path Les on the botton on top copy of Sh (F=0 el Fo1) condare O of four g and the cycles don't reach the top or the bottom. HS + supposed to have no zero and g have two series, there must be a path of connecting n to s. But 2 is moreon under 12 so of much behave Symmetrically 9.
A Symmetric path from n to s deserbet exist mx. HppVcahion of the Borsuk-Wam theoven The Ham Sandwich theorem An -- , An CR' bounded measurable w/ too mesure M. Then Bhyperplane HCR"s.F. H divides Hi into Ait & Ai with m (Ait) = m(Ai) let's consoeur Sn-1 c Rn YpeS17 We consider the hyperplanes perpendicular to the vector between the origin and p we define the posine side of Such a hyperplane by the area pointed /? at by the vector OP. By the intermediate value thm, I a hyperplane to ESn-1 that bisects (There is a sphereplan 3 v. all An is on the personal see

one in between that cent An in half) => YpeSn-1 we have a hyperplane TTCp) that brecks An (Note that the place for pand - p is the seen w/opposic sees) We define P: Sn#1-0 Rn-1 by $F(p) = (\mu(A_n+), \dots, \mu(A_{n-1}))$ where Bu(A; t) is the volume of A; on the poshe side of M(p). Willout proof : t continuous By Borsuk-Wan theorem, 3pesnisi. A(p) = P(-p)But TI(p) and TI(p) are the same hyperplan WI opposite sides => $f(p) = (\mu(A_n^+), -, \mu(A_{n-n}^+))$ = (m(A, T) 1 - 1, m(A, T)) = f(p) regarding the plane 17 (p) Borsuk- Man (Winding number) F: SK-1 RKH-a-smo - {0} & smooth map s.t. + (-x) = - + (x) +xesk Then W2 (+,0)=1. Corollary: fas above, then f intersects every the through zero at least one. Foot Borsuk-Ulan Classic g SK-RK+1 PF: Define g(x) = (f(x),0) and take the Xk+1 axis for e