Zhengdong Zhang

Homework - Week 1 Exercises

Email: zhengz@uoregon.edu ID: 952091294 Course: MATH 616 - Real Analysis Term: Fall 2025

Instructor: Professor Weiyong He Due Date: Oct 8th, 2025

Exercise 1.2

The Cantor set \mathcal{C} can also be described in terms of ternary expansions.

(a) Every number in [0, 1] has a ternary expansion

$$x = \sum_{k=1}^{\infty} a_k 3^{-k}$$
, where $a_k = 0, 1, 2$

Note that this decomposition is not unique since, for example,

$$\frac{1}{3} = \sum_{k=2}^{\infty} \frac{2}{3^k}.$$

Prove that $x \in C$ if and only if x has a representation as above where every a_k is either 0 or 2.

(b) The Cantor-Lebesgue function is defined on C by

$$F(x) = \sum_{k=1}^{\infty} \frac{b_k}{2^k}$$
, if $x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$, where $b_k = \frac{a_k}{2}$.

In this definition, we choose the expansion of x in which $a_k = 0$ or 2. Show that F is well-defined and continuous on C, and moreover, F(0) = 0 as well as F(1) = 1.

- (c) Prove that $F: \mathcal{C} \to [0,1]$ is surjective, that is, for every $y \in [0,1]$, there exists $x \in \mathcal{C}$ such that F(x) = y.
- (d) One can also extend F to be a continuous function on [0,1] as follows. Note that if (a,b) is an open interval of the complement of C, then F(a) = F(b). Hence, we may define F to have the constant value F(a) in that interval.

Solution:

Exercise 1.5

Suppose E is a given set, and \mathcal{O}_n is the open set:

$$\mathcal{O}_n = \left\{ x : d(x, E) < \frac{1}{n} \right\}.$$

Show:

- (a) If E is compact, then $m(E) = \lim_{n \to \infty} < \frac{1}{n}$.
- (b) However, the conclusion in (a) may be false for E closed and unbounded; or E open and bounded.

Solution:

Exercise 1.6

Using translations and dilations, prove the following: Let B be a ball in \mathbb{R}^d of radius r. Then $m(B) = v_d r^d$, where $v_d = m(B_1)$, and B_1 is the unit ball.

$$B_1 = \{x \in \mathbb{R}^d : |x| < 1\}.$$

Solution:

Exercise 1.9

Give an example of an open set Θ with the following property: the boundary of the closure of Θ has positive Lebesgue measure.

Solution:

Exercise 1.10

Let \hat{C} denote a Canton-like set, in particular $m(\hat{C}) > 0$. Let F_1 denote a piecewise linear and continuous function on [0,1], with $F_1 = 1$ in the complement of the first interval removed in the construction of \hat{C} , $F_1 = 0$ at the center of this interval, and $0 \le F_1(x) \le 1$ for all x. Similarly, construct $F_2 = 1$ in the complement of the intervals in stage two of the construction of \hat{C} , with $F_2 = 0$ at the center of these intervals, and $0 \le F_2 \le 1$. Continuing this way, let $f_n = F_1 \cdot F_2 \cdots F_n$. Prove the following:

- (a) For all $n \ge 1$ and all $x \in [0,1]$, one has $0 \le f_n(x) \le 1$ and $f_n(x) \ge f_{n+1}(x)$. Therefore, $f_n(x)$ converges to a limit as $n \to \infty$ which we denote by f(x).
- (b) The function is discontinuous at every point of \hat{C} .

Solution:

Exercise 1.13

The following deals with G_{δ} and F_{σ} sets.

- (a) Show that a closed set is a G_{δ} and an open set an F_{σ} .
- (b) Give an example of an F_{σ} which is not a G_{δ} .

(c) Give an example of a Borel set which is not a G_{δ} nor an F_{σ} .

Solution: