机器学习 Machine Learning

(二) 概念学习

何劲松 中国科学技术大学

Machine Learning

10-701/15-781, Spring 2011

Carnegie Mellon University

Tom Mitchell

<u>Hor</u>	<u>ne</u> <u>Pec</u>	<u>Dectures</u>	<u>Recitations</u>	<u>Homeworks</u>	<u>Project</u>	Previous material
Date	Lecture	Торі	cs	Readin	gs and useful links	Handouts
Jan 11	Intro to ML Decision Trees <u>Slides</u> <u>video</u>	Machine learning examples Well defined machine learning Decision tree learning	g problem	Mitchell: Ch 3 Bishop: Ch 14.4 The Discipline of I	Machine Learning	
Jan 13	Decision Tree learning Review of Probability Annotated slides video	 The big picture Overfitting Random variables, probabilities 	es	Andrew Moore's E Bishop: Ch. 1 thru Bishop: Ch 2 thru		HW1 out Jan 14
Jan 18	Probability and Estimation Annotated slides video	Bayes rule MLE MAP		Andrew Moore's E Bishop: Ch. 1 thru Bishop: Ch 2 thru		
Jan 20	Naive Bayes <u>Annotated slides</u> <u>video</u>	Conditional independence Multinomial Naive Bayes		Mitchell: <u>Naive Ba</u>	yes and Logistic Regressio	n

	viuco			
Jan 20	Naive Bayes Annotated slides video	Conditional independence Multinomial Naive Bayes	Mitchell: Naive Bayes and Logistic Regression	
Jan 25	Gaussian Naive Bayes Slides Annotated Slides video	 Gaussian Bayes classifiers Document classification Brain image classification Form of decision surfaces 	Mitchell: <u>Naive Bayes and Logistic Regression</u>	HW1 due HW2 out
Jan 27	Logistic Regression Slides Annotated slides video	 Naive Bayes - the big picture Logistic Regression: Maximizing conditional likelihood Gradient ascent as a general learning/optimization method 	Mitchell: <u>Naive Bayes and Logistic Regression</u> Ng & Jordan: <u>On Discriminative and Generative Classifiers</u> , NIPS, 2001.	
Feb 1	Linear Regression Slides Annotated slides video	 Generative/Discriminative models minimizing squared error and maximizing data likelihood bias-variance decomposition regularization 		
Feb 3	Practical Issues	Feature selection Overfitting Bias-Variance tradeoff		
Feb 8	Graphical models 1 Annotated slides video	Bayes nets representing joint distributions with conditional independence assumptions	Bishop: Ch 8, through 8.2	HW3 out
Feb 15	Graphical models 2 slides video	 D-separation and Conditional Independence Inference Learning from fully observed data Learning from partially observed data 		
Feb 17	Graphical models 3 annotated slides video	• EM	EM and HMM tutorial J. Bilmes	

ı				1
Feb 22	Graphical models 4 annotated slides video	Mixture of Gaussians clustering Learning Bayes Net structure - Chow Liu	Intro. to Graphical Models, K. Murphy Graphical Models tutorial, M. Jordan	HW3 due HW4 out
Feb 24	Computational Learning Theory <u>annotated slides</u> <u>video</u>	PAC Learning	Mitchell: Ch. 7	
Mar 1	Midterm Review PAC learning slides midterm review slides video			HW4 due
Mar 3	Midterm Exam	in class open notes, open book, no internet		Midterm Solution
Mar 15	Computational Learning Theory <u>annotated slides</u> <u>video</u>	Mistake bounds Weighted Majority Algorithm	Mitchell: Ch. 7	
Mar 17	Semi-Supervised Learning slides: CoTraining NELL video	 CoTraining / Multi-view Learning Never ending learning (NELL) 	 Cotraining: Blum & Mitchell NELL: Carlson et al., 2010 	
Mar 22	Hidden Markov Models <u>annotated slides</u>	 Markov models HMM's and Bayes Nets Other probabilistic time series models 	Bishop Ch. 13	
Mar 24	Neural Networks slides video	 Non-linear regression Backpropagation and Gradient descent Learning hidden layer representations 	Mitchell Ch. 4 Bishop Ch. 5	Project proposals due
Mar 29	Learning Representations I <u>slides</u> <u>video</u>	Artificial neural networksPCA	Bishop Ch. 12 through 12.1 <u>A Tutorial on PCA</u> , J. Schlens <u>SVD and PCA</u> , Wall et al.	

Mar 31	Learning Representations II <u>slides</u> <u>video</u>	Deep belief networksICACCA	<u>Deep Belief Nets paper</u> , Hinton & Salakhutdinov <u>CCA Tutorial</u> , M. Borga	
Apr 5	Learning Representations III <u>slides</u> <u>video</u>	Fisher Linear Discriminant Latent Dirichlet Allocation Intro to Kernel Functions	Bishop Ch. 6.1 (required) Bishop Ch. 6.2, 6.3 (optional)	
Apr 7	Kernel Methods and SVM's slides video	Regression: Primal and Dual forms Kernels and Kernel Regression SVMs	Bishop Ch. 6.1 Bishop Ch. 7, through 7.1.2	
Apr 12	SVM's II <u>slides</u> <u>video</u>	 Maximizing the margin Noise and soft margin SVM's PAC learning and SVM's Hinge loss, log loss, 0-1 loss 	Bishop Ch. 7, through 7.1.2	Project midway report due
Apr 14		No CMU classes today		
Apr 19	Active Learning slides	Guest lecture: Dr. Burr Settles Uncertainty sampling Query by committee	Settles: <u>Active learning survey</u>	
Apr 21	ML in Computational Biology <u>slides</u> video	Guest lecture: Prof. Ziv Bar-Joseph		
Apr 26	Reinforcement Learning I slides	Markov Decision ProcessesValue IterationQ learning	Kaelbling et al.: <u>Reinforcement Learning: A Survey</u>	
Apr 28	Reinforcement Learning 2 <u>RL slides</u> <u>Final study guide</u> <u>video</u>	 Q learning in non-deterministic domains RL as model for learning in animals Final exam review 		

几个需要体会的名词:

- * 框架 (Frame)
- * 模型 (Model)
- * 算法 (Algorithm)

1.关于归纳学习

- * 归纳学习(Inductive Learning) 旨在从大量的经验数据中归纳抽取出一般的判定规则和模式。它是机器学习(符号智能)最核心最成熟的分支。
- * 归纳学习依赖于经验数据,因此又叫经验学习(Empirical Learning)。
- * 由于归纳学习依赖于数据间的相似性,所以也叫基于相似性学习(Similarity-based Learning)。
- * 归纳学习的三个基本论题: 1.计算复杂性, 2.概率逼近的正确性, 3.可理解性。

2.归纳学习的分支

3.学习数据

Iris数据集是常用的分类实验数据集,由Fisher收集整理。Iris也称鸢尾花卉数据集,是一种多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa, Versicolour, Virginica)三个种类中的哪一类。

```
Sources:
 (a) Creator: R.A. Fisher
 (b) Donor: Michael Marshall
 (c) Date: July, 1988
                               11
Attribute Information:
 1. sepal length in cm
 2. sepal width in cm
 3. petal length in cm
                               21
 4. petal width in cm
                               23
 5. class:
                               24
                               25
    -- Iris Setosa
                               26
    -- Iris Versicolour
                               28
    -- Iris Virginica
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2, Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2, Iris-setosa
```

```
51 7.0,3.2,4.7,1.4, Iris-versicolor
5.1,3.5,1.4,0.2,Iris-setosa
                                                                        101
                                                                              6.3,3.3,6.0,2.5, Iris-virginica
4.9,3.0,1.4,0.2, Iris-setosa
                                     6.4,3.2,4.5,1.5, Iris-versicolor
                                                                        102
                                                                              5.8,2.7,5.1,1.9, Iris-virginica
                                     6.9,3.1,4.9,1.5, Iris-versicolor
4.7,3.2,1.3,0.2,Iris-setosa
                                                                              7.1,3.0,5.9,2.1, Iris-virginica
                                     5.5,2.3,4.0,1.3, Iris-versicolor
                                                                              6.3,2.9,5.6,1.8, Iris-virginica
4.6,3.1,1.5,0.2,Iris-setosa
                                                                        104
                                     6.5,2.8,4.6,1.5, Iris-versicolor
                                                                              6.5,3.0,5.8,2.2, Iris-virginica
5.0,3.6,1.4,0.2,Iris-setosa
                                                                        105
                                     5.7,2.8,4.5,1.3, Iris-versicolor
5.4,3.9,1.7,0.4,Iris-setosa
                                                                              7.6,3.0,6.6,2.1, Iris-virginica
4.6,3.4,1.4,0.3, Iris-setosa
                                     6.3,3.3,4.7,1.6, Iris-versicolor
                                                                              4.9,2.5,4.5,1.7, Iris-virginica
                                     4.9,2.4,3.3,1.0, Iris-versicolor
5.0,3.4,1.5,0.2,Iris-setosa
                                                                              7.3,2.9,6.3,1.8, Iris-virginica
                                     6.6,2.9,4.6,1.3, Iris-versicolor
4.4,2.9,1.4,0.2,Iris-setosa
                                                                        109
                                                                              6.7,2.5,5.8,1.8, Iris-virginica
                                60
                                     5.2,2.7,3.9,1.4, Iris-versicolor
4.9,3.1,1.5,0.1,Iris-setosa
                                                                        110
                                                                              7.2,3.6,6.1,2.5,Iris-virginica
5.4,3.7,1.5,0.2,Iris-setosa
                                     5.0,2.0,3.5,1.0, Iris-versicolor
                                                                        111
                                                                              6.5,3.2,5.1,2.0, Iris-virginica
                                     5.9,3.0,4.2,1.5, Iris-versicolor
                                                                        112
4.8,3.4,1.6,0.2, Iris-setosa
                                                                              6.4,2.7,5.3,1.9, Iris-virginica
                                     6.0,2.2,4.0,1.0, Iris-versicolor
                                                                        113
4.8,3.0,1.4,0.1,Iris-setosa
                                                                              6.8,3.0,5.5,2.1, Iris-virginica
4.3,3.0,1.1,0.1,Iris-setosa
                                64
                                     6.1,2.9,4.7,1.4, Iris-versicolor
                                                                        114
                                                                              5.7,2.5,5.0,2.0, Iris-virginica
                                     5.6,2.9,3.6,1.3, Iris-versicolor
5.8,4.0,1.2,0.2,Iris-setosa
                                                                              5.8,2.8,5.1,2.4, Iris-virginica
                                     6.7,3.1,4.4,1.4, Iris-versicolor
5.7,4.4,1.5,0.4,Iris-setosa
                                                                        116
                                                                              6.4,3.2,5.3,2.3, Iris-virginica
                                67
                                     5.6,3.0,4.5,1.5, Iris-versicolor
5.4,3.9,1.3,0.4,Iris-setosa
                                                                              6.5,3.0,5.5,1.8, Iris-virginica
                                68
                                     5.8,2.7,4.1,1.0, Iris-versicolor
5.1,3.5,1.4,0.3,Iris-setosa
                                                                        118
                                                                              7.7,3.8,6.7,2.2, Iris-virginica
5.7,3.8,1.7,0.3, Iris-setosa
                                     6.2,2.2,4.5,1.5, Iris-versicolor
                                                                              7.7,2.6,6.9,2.3, Iris-virginica
                                     5.6,2.5,3.9,1.1, Iris-versicolor
5.1,3.8,1.5,0.3,Iris-setosa
                                                                              6.0,2.2,5.0,1.5, Iris-virginica
                                71
                                     5.9,3.2,4.8,1.8, Iris-versicolor
5.4,3.4,1.7,0.2, Iris-setosa
                                                                              6.9,3.2,5.7,2.3, Iris-virginica
                                     6.1,2.8,4.0,1.3, Iris-versicolor
                                                                        122
5.1,3.7,1.5,0.4,Iris-setosa
                                                                              5.6,2.8,4.9,2.0, Iris-virginica
4.6,3.6,1.0,0.2, Iris-setosa
                                     6.3,2.5,4.9,1.5, Iris-versicolor
                                                                              7.7,2.8,6.7,2.0, Iris-virginica
                                     6.1,2.8,4.7,1.2, Iris-versicolor
5.1,3.3,1.7,0.5,Iris-setosa
                                                                              6.3,2.7,4.9,1.8,Iris-virginica
                                     6.4,2.9,4.3,1.3, Iris-versicolor
4.8,3.4,1.9,0.2,Iris-setosa
                                                                              6.7,3.3,5.7,2.1, Iris-virginica
5.0,3.0,1.6,0.2,Iris-setosa
                                     6.6,3.0,4.4,1.4, Iris-versicolor
                                                                              7.2,3.2,6.0,1.8,Iris-virginica
5.0,3.4,1.6,0.4,Iris-setosa
                                     6.8,2.8,4.8,1.4, Iris-versicolor
                                                                              6.2,2.8,4.8,1.8, Iris-virginica
                                     6.7,3.0,5.0,1.7, Iris-versicolor
                                                                              6.1,3.0,4.9,1.8, Iris-virginica
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
                                     6.0,2.9,4.5,1.5,Iris-versicolor
                                                                              6.4,2.8,5.6,2.1, Iris-virginica
4.7,3.2,1.6,0.2,Iris-setosa
                                     5.7,2.6,3.5,1.0, Iris-versicolor
                                                                              7.2,3.0,5.8,1.6,Iris-virginica
4.8,3.1,1.6,0.2, Iris-setosa
                                     5.5,2.4,3.8,1.1, Iris-versicolor
                                                                             7.4,2.8,6.1,1.9, Iris-virginica
                                     5.5,2.4,3.7,1.0, Iris-versicolor
                                                                              7.9,3.8,6.4,2.0, Iris-virginica
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
                                83
                                     5.8,2.7,3.9,1.2, Iris-versicolor
                                                                        133
                                                                              6.4,2.8,5.6,2.2, Iris-virginica
                                     6.0,2.7,5.1,1.6,Iris-versicolor
                                                                        134
                                                                              6.3,2.8,5.1,1.5, Iris-virginica
5.5,4.2,1.4,0.2,Iris-setosa
                                     5.4,3.0,4.5,1.5, Iris-versicolor
                                                                              6.1,2.6,5.6,1.4, Iris-virginica
4.9,3.1,1.5,0.1,Iris-setosa
                                     6.0,3.4,4.5,1.6,Iris-versicolor
                                                                        136
                                                                              7.7,3.0,6.1,2.3, Iris-virginica
5.0,3.2,1.2,0.2,Iris-setosa
                                87
                                     6.7,3.1,4.7,1.5, Iris-versicolor
                                                                        137
                                                                              6.3,3.4,5.6,2.4, Iris-virginica
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
                                     6.3,2.3,4.4,1.3, Iris-versicolor
                                                                        138
                                                                              6.4,3.1,5.5,1.8, Iris-virginica
                                     5.6,3.0,4.1,1.3, Iris-versicolor
                                                                              6.0,3.0,4.8,1.8, Iris-virginica
4.4,3.0,1.3,0.2,Iris-setosa
                                     5.5,2.5,4.0,1.3, Iris-versicolor
                                                                              6.9,3.1,5.4,2.1, Iris-virginica
5.1,3.4,1.5,0.2, Iris-setosa
                                     5.5,2.6,4.4,1.2, Iris-versicolor
                                                                        141
                                                                              6.7,3.1,5.6,2.4, Iris-virginica
5.0,3.5,1.3,0.3,Iris-setosa
                                     6.1,3.0,4.6,1.4, Iris-versicolor
                                                                              6.9,3.1,5.1,2.3, Iris-virginica
4.5,2.3,1.3,0.3, Iris-setosa
                                     5.8,2.6,4.0,1.2, Iris-versicolor
                                                                        143
                                                                              5.8,2.7,5.1,1.9, Iris-virginica
4.4,3.2,1.3,0.2, Iris-setosa
                                94
                                                                        144
                                     5.0,2.3,3.3,1.0, Iris-versicolor
                                                                              6.8,3.2,5.9,2.3, Iris-virginica
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
                                     5.6,2.7,4.2,1.3, Iris-versicolor
                                                                        145
                                                                              6.7,3.3,5.7,2.5, Iris-virginica
                                     5.7,3.0,4.2,1.2, Iris-versicolor
                                                                              6.7,3.0,5.2,2.3, Iris-virginica
4.8,3.0,1.4,0.3, Iris-setosa
                                97
                                     5.7,2.9,4.2,1.3, Iris-versicolor
                                                                        147
                                                                              6.3,2.5,5.0,1.9, Iris-virginica
5.1,3.8,1.6,0.2, Iris-setosa
                                98
                                     6.2,2.9,4.3,1.3, Iris-versicolor
                                                                        148
                                                                              6.5,3.0,5.2,2.0, Iris-virginica
4.6,3.2,1.4,0.2, Iris-setosa
                                     5.1,2.5,3.0,1.1, Iris-versicolor
                                                                        149
                                                                              6.2,3.4,5.4,2.3, Iris-virginica
5.3,3.7,1.5,0.2, Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
                                     5.7,2.8,4.1,1.3, Iris-versicolor
                                                                              5.9,3.0,5.1,1.8, Iris-virginica
```

3.学习数据(符号)

Balloon databases

Attribute Information: (Classes Inflated T or F)

Color yellow, purple size large, small act stretch, dip age adult, child inflated T. F

YELLOW, SMALL, STRETCH, ADULT, T YELLOW, SMALL, STRETCH, CHILD, T YELLOW, SMALL, DIP, ADULT, T YELLOW, SMALL, DIP, CHILD, T YELLOW, SMALL, STRETCH, ADULT, T YELLOW, SMALL, STRETCH, CHILD, T YELLOW, SMALL, DIP, ADULT, T YELLOW, SMALL, DIP, CHILD, T YELLOW, LARGE, STRETCH, ADULT, F YELLOW, LARGE, STRETCH, CHILD, F YELLOW, LARGE, DIP, ADULT, F YELLOW, LARGE, DIP, CHILD, F PURPLE, SMALL, STRETCH, ADULT, F PURPLE, SMALL, STRETCH, CHILD, F PURPLE, SMALL, DIP, ADULT, F PURPLE, SMALL, DIP, CHILD, F PURPLE, LARGE, STRETCH, ADULT, F PURPLE, LARGE, STRETCH, CHILD, F PURPLE, LARGE, DIP, ADULT, F PURPLE, LARGE, DIP, CHILD, F

YELLOW, SMALL, STRETCH, ADULT, T YELLOW, SMALL, STRETCH, CHILD, T YELLOW, SMALL, DIP, ADULT, T YELLOW, SMALL, DIP, CHILD, T YELLOW, LARGE, STRETCH, ADULT, T YELLOW, LARGE, STRETCH, CHILD, F YELLOW, LARGE, DIP, ADULT, F YELLOW, LARGE, DIP, CHILD, F PURPLE, SMALL, STRETCH, ADULT, T PURPLE, SMALL, STRETCH, CHILD, F PURPLE, SMALL, DIP, ADULT, F PURPLE, SMALL, DIP, CHILD, F PURPLE, LARGE, STRETCH, ADULT, T PURPLE, LARGE, STRETCH, CHILD, F PURPLE, LARGE, DIP, ADULT, F PURPLE, LARGE, DIP, CHILD, F

YELLOW.SMALL.STRETCH.ADULT.T YELLOW.SMALL.STRETCH.ADULT.T YELLOW, SMALL, STRETCH, CHILD, F YELLOW.SMALL.DIP.ADULT.F YELLOW.SMALL.DIP.CHILD.F YELLOW, LARGE, STRETCH, ADULT, T YELLOW.LARGE.STRETCH.ADULT.T YELLOW, LARGE, STRETCH, CHILD, F YELLOW, LARGE, DIP, ADULT, F YELLOW.LARGE.DIP.CHILD.F PURPLE, SMALL, STRETCH, ADULT, T PURPLE, SMALL, STRETCH, ADULT, T PURPLE.SMALL.STRETCH.CHILD.F PURPLE, SMALL, DIP, ADULT, F PURPLE, SMALL, DIP, CHILD, F PURPLE.LARGE.STRETCH.ADULT.T PURPLE, LARGE, STRETCH, ADULT, T PURPLE, LARGE, STRETCH, CHILD, F PURPLE.LARGE.DIP.ADULT.F PURPLE, LARGE, DIP, CHILD, F

YELLOW.SMALL.STRETCH.ADULT.T YELLOW, SMALL, STRETCH, CHILD, T YELLOW, SMALL, DIP, ADULT, T YELLOW.SMALL.DIP.CHILD.F YELLOW.SMALL.DIP.CHILD.F YELLOW, LARGE, STRETCH, ADULT, T YELLOW, LARGE, STRETCH, CHILD, T YELLOW, LARGE, DIP, ADULT, T YELLOW, LARGE, DIP, CHILD, F YELLOW.LARGE.DIP.CHILD.F PURPLE, SMALL, STRETCH, ADULT, T PURPLE, SMALL, STRETCH, CHILD, T PURPLE.SMALL.DIP.ADULT.T PURPLE, SMALL, DIP, CHILD, F PURPLE, SMALL, DIP, CHILD, F PURPLE.LARGE.STRETCH.ADULT.T PURPLE, LARGE, STRETCH, CHILD, T PURPLE, LARGE, DIP, ADULT, T PURPLE.LARGE.DIP.CHILD.F PURPLE.LARGE.DIP.CHILD.F

3.学习数据

是否适合 打高尔夫球问题:

利用这14条例子(样本),找出合适的规律(或规则)!

属性	属性	属性	属性	类别
Outlook	Temperature	Humidity	Windy	Play?
Sunny	85 (hot)	85 (high)	False	Don't Play
Sunny	80 (hot)	90 (high)	True	Don't Play
Overcast	83 (hot)	78 (normal)	False	Play
Rain	70 (mild)	96 (high)	False	Play
Rain	68 (cool)	80 (normal)	False	Play
Rain	65 (cool)	70 (normal)	True	Don't Play
Overcast	64 (cool)	65 (normal)	True	Play
Sunny	72 (mild)	95 (high)	False	Don't Play
Sunny	69 (cool)	70 (normal)	False	Play
Rain	75 (mild)	81 (high)	False	Play
Sunny	75 (mild)	70 (normal)	True	Play
Overcast	72 (mild)	90 (high)	True	Play
Overcast	81 (hot)	75 (normal)	False	Play
Rain	71 (mild)	81 (high)	True	Don't Play

4. 决策树及最优决策树

5. ID3/C4.5决策树算法

@符号主义智能: Symbolism @归纳学习: Inductive Learning

J. Ross Quinlan

Info(Y, N) =
$$-\left(\frac{9}{14}\log\frac{9}{14} + \frac{5}{14}\log\frac{5}{14}\right) = 0.940$$

(2) 在当前窗口下查看并计算每个属性的熵。

E(Outlook) =
$$\frac{5}{14}$$
Info(sunny) + $\frac{4}{14}$ Info(overcast) + $\frac{5}{14}$ Info(rain)
= $\frac{5}{14} \times 0.971 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.971 = 0.694$

E(Temperature) =
$$\frac{4}{14}$$
Info(hot) + $\frac{6}{14}$ Info(mild) + $\frac{4}{14}$ Info(cool)
= $\frac{4}{14}$ Info(2,2) + $\frac{6}{14}$ Info(2,4) + $\frac{4}{14}$ Info(1,3) = 0.911

$$E(Humidity) = \frac{6}{14}Info(high) + \frac{8}{14}Info(normal) = 0.789$$

$$E(Windy) = \frac{8}{14}Info(false) + \frac{6}{14}Info(true) = 0.892$$

(3) 对每个数据子集递归调用(2),直到每个窗口下的数据都为同一类别,结束。

Outlook	Temper.	Humidity	Windy	Play?
Overcast	hot	normal	False	Yes
Overcast	cool	normal	True	Yes
Overcast	mild	high	True	Yes
Overcast	hot	normal	False	Yes

	Outlook	Temper	. Humidit	y Windy	Play?
	Sunny	hot	high	False	No
	Sunny	hot	high	True	No
	Sunny	mild	high	False	No
	Sunny	cool	normal	False	Yes
	Sunny	mild	normal	True	Yes
	-			DI O	
ok	Temp	e Humio	dity Windy	Play?	
y	cool	norma	l False	Yes	Hum
ıy	mild	norma	I True	Yes	1
					00/
		23900		A	<=80/
ο .	Tempe r.	Humidity	Windy P	ay?	normal
	hot	high	False	No	NO
	hot	high		No	NO
	mild	high		No	
		0	,,,,,,		
	13	列如规!	则:		

Rain

Rain

cool

mild

normal

high

False

False

Yes

Yes

If <Outlook=sunny> and <Humidity=high> then <Yes>

- (1)以上为ID3算法采用的决策树属性选择策略,即,熵最小准则。
 - (2) 第2种属性选择策略: 熵增益最大。例如,

Gain(Outlook) = I(Y,N) - E(Outlook) = 0.940 - 0.694 = 0.246; Gain(Temperature) = 0.029; Gain(Humidity) = 0.151; Gain(Windy) = 0.048

(3) 第3种属性选择策略: 熵增益率最大。即,

GainRatio(D, T) =
$$\frac{Gain(D, T)}{SplitInfo(D, T)}$$

例如,

SplitInfo(Outlook, T) =
$$-\frac{5}{14}log_2\left(\frac{5}{14}\right) - \frac{4}{14}log_2\left(\frac{4}{14}\right) - \frac{5}{14}log_2\left(\frac{5}{14}\right) = 1.577$$

GainRatio(Outlook, T) =
$$\frac{0.246}{1.577}$$
 = 0.156

6. 关于ID3/C4.5的扩展议题(讨论)

- * 当Ti的样本数目不多(很少)时,熵度量不可靠, 可使用其它的概率方法度量。
- * 最小决策树准则是不可靠的。(Occam's Razor 是可疑的)。这一结论初见于1992年,此后有了Boosting, Bagging, SVM等方法。
- *决策树与规则集,树的修剪。
- * 连续数值的归纳问题,混合数据学习问题。
- * 增量学习问题(Incremental Learning, e.g., ID4, ID5)。

7.动态聚类与概念聚类

* [动态聚类]

- * Step 1.已知观察事件(例子) $E=\{e_1, e_2, e_3, \ldots, e_r\}$,K是指定类别数。
- * Step 2. 从E中选K个种子, $\widetilde{e_1},\ldots,\widetilde{e_K}$ 。
- * Step 3. 对 E 中 所 有 其 它 事 件 e_i 求 j 使 dis(e_i , $\widetilde{e_i}$)=minimum ,其中dis为欧氏距离,并把 e_i 归入第j类。
- * Step 4. 重新选择K个种子 $\widetilde{e_1}$,, $\widetilde{e_K}$ 使 $\widetilde{e_i}$ 距离第j类的几何中心最近。
- * Step 5. 若条件满足,则结束;否则转Step 3。

动态聚类示意 (K=2)

- * [概念聚类]
- * 修改[动态聚类]第3步。将欧氏距离计算修改为 求概念 $R_i = cover(e_i|S \{\tilde{e}_i\})$ 。
- * 当然,这里面用到了覆盖算法AQ。也可以用决策树完成,因为决策树也是规则集。