1. 以下是有关虚拟存储管理机制中地址转换的叙述,其中错误的是(B)。 A. 地址转换是指把逻辑地址转换为物理地址 B. 通常逻辑地址的位数比物理地址的位数少 C. 地址转换过程中会发现是否"缺页" D. MMU 在地址转换过程中要访问页表项 2. 下列命中组合情况中,一次访存过程中不可能发生的是(D)。 A. TLB 命中、cache 命中、Page 命中 B. TLB 未命中、cache 命中、Page 命中 C. TLB 未命中、cache 未命中、Page 命中 D. TLB 未命中、cache 命中、Page 未命中 3. 以下是有关虚拟存储管理机制中页表的叙述,其中错误的是(D)。 A. 系统中每个进程有一个页表 B. 页表中每个表项与一个虚页对应 C. 每个页表项中都包含装入位(有效位) D. 所有进程都可以访问页表 4. 以下是有关缺页处理的叙述,其中错误的是(B)。 A. 若对应页表项中的有效位为 0,则发生缺页 B. 缺页是一种外部中断,需要调用操作系统提供的中断服务程序来处理 C. 缺页处理过程中需根据页表中给出的磁盘地址去读磁盘数据 D. 缺页处理完后要重新执行发生缺页的指令 5. 以下是有关段式存储管理的叙述,其中错误的是(D)。 A. 段是逻辑结构上相对独立的程序块,因此段是可变长的 B. 按程序中实际的段来分配主存,所以分配后的存储块是可变长的 C. 每个段表项必须记录对应段在主存的起始位置和段的长度 D. 分段方式对低级语言程序员和编译器来说是透明的 6. 以下是有关快表的叙述,其中错误的是(C)。 A. 快表的英文缩写是 TLB B. 快表中存放的是当前进程的常用页表项 C. 在快表中命中时,在L1 cache 中一定命中 D. 快表是一种高速缓存,一定在 CPU 中 7. 以下给出的事件中, 无需异常处理程序进行处理的是(B)。 A. 缺页故障 B. cache 缺失 C. 地址越界 D. 除数为0

简答题:

1. 假定一个分页虚拟存储系统的虚拟地址为 40 位,物理地址为 36 位,页大小为 16KB,按字节编址。若页表中有有效位、存储保护位、修改位、使用位,共占 4 位,磁盘地址不在页表中,则该存储系统中每个进程的页表大小为多少?如果按计算出来的实际大小构建页表,则会出现什么问题?

答:

因为每页大小有 16KB,所以虚拟页数为 2⁴⁰B/16KB=2⁽⁴⁰⁻¹⁴⁾=2²⁶ 页。物理页面和虚拟页面大小相等,所以物理页号的位数为 36-14=22 位。每个页表项包括有效位、保护位、修改位、使用位、物理页号等,所以其位数至少为 4+22=26。为了简化对页表项的访问,每个页表项取 32 位。因此,每个进程的页表大小为 2²⁶×32b=256MB。如果按实际计算出的页表大小构建页表,则构建出的页表会因为过大而导致页表无法一次装入内存。

2. 假定一个计算机系统中有一个 TLB 和一个 L1 data cache。该系统按字节编址,虚拟地址 16 位,物理地址 12 位;页大小为 128B, TLB 为 4 路组相联,共有 16 个页表项; L1 data cache 采用直接映射方式,块大小为 4B,共 16 行。在系统运行到某一时刻时,TLB、页表和 L1 data cache 中的部分内容(用十六进制表示)如图 6.8 所示。

组号 标记 页框号 有效位 标记 页框号 有效位 标记 页框号 有效位 标记 页框号 有效位

0	03	-	0	09	1D	1	00	_	0	07	10	1
1	13	2D	1	02	-	0	04	_	0	0A	_	0
2	02	1	0	08	1	0	06	_	0	03	1	0
3	07	1	0	63	12	1	0A	34	1	72	1	0

(a) TLB (4路组相联): 4组、16个页表项

虚页号 页框号 有效位 行索引 标记 有效位 字节 3 字节 2 字节 1 字节 0

000	08	1
001	03	1
002	14	1
003	02	1
004	_	0
005	16	1
006	_	0
007	07	1
008	13	1
009	17	1
00A	09	1
00B	_	0
		,

0	19	1	12	56	C9	AC
1	_	0	_	_	-	_
2	1B	1	03	45	12	CD
3	_	0	_	_	-	-
4	32	1	23	34	C2	2A
5	0D	1	46	67	23	3D
6	_	0	_	_	-	-
7	10	1	12	54	65	DC
8	24	1	23	62	12	3A
9	-	0	_	_	-	-
A	2D	1	43	62	23	C3
В	_	0	_	_	_	_

00C	19	1
00D	_	0
00E	11	1
00F	0D	1

C	12	1	76	83	21	35
D	16	1	A3	F4	23	11
Е	33	1	2D	4A	45	55
F	_	0	_	_	-	-

(b) 部分页表: (开始 16 项)

(c) L1 data cache: 直接映射, 共 16 行, 块大小

为 4B

图 6.8 题 28 中的 TLB、页表和 cache 部分内容

请回答下列问题:

- (1) 虚拟地址中哪几位表示虚拟页号? 哪几位表示页内偏移量? 虚拟页号中哪几位表示 TLB 标记? 哪几位表示 TLB 索引?
- (2) 物理地址中哪几位表示物理页号?哪几位表示页内偏移量?主存物理地址如何划分成标记字段、行索引字段和块内地址字段?
 - (3) CPU 从地址 067AH 中取出的值为多少?说明 CPU 读取地址 067AH 中内容的过程。

答:

- (1) 16 位虚拟地址中低 7 位为页内偏移量,高 9 位为虚页号;虚页号中高 7 位为 TLB 标记,低 2 位为 TLB 组索引。
- (2) 12 位物理地址中低 7 位为页内偏移量,高 5 位为物理页号;12 位物理地址中,低 2 位为块内地址,中间 4 位为 cache 行索引,高 6 位为标记。
- (3) 地址 067AH=0000 0110 0111 1010B,所以,虚页号为 000001100B,映射到 TLB 的第 0 组,将 0000011B=03H 与 TLB 第 0 组的 4 个标记比较,虽然和其中一个相等,但对应的 有效位为 0,其余都不等,所以 TLB 缺失,需要访问主存中的慢表。直接查看 000001100B =00CH 处的页表项,有效位为 1,取出物理页号 19H=11001B,和页内偏移 1111010B 拼接 成物理地址 110011 1110 10B。根据中间 4 位 1110 直接找到 cache 第 14 行(即第 E 行),其有效位为 1,且标记为 33H=110011B,正好等于物理地址高 6 位,故 cache 命中。最后根据物理地址最低两位 10,取出字节 2 中的内容 4AH=010010100B。