Rebuttal for ICML'25 Submission #3922

Submission #3922 Authors

March 31, 2025

Table 1: The RMSE result on correlation prediction of $|\psi_{\rm HB}\rangle$ with varied N and $n_{\rm sft}$. M is fixed to 64. ResXXX-a-b-cxd-e represents neural network MLP (CNN) that composed of d+3 in the order a-,b-, d layers of c-, and e-width fully connected (convolutional) layers with residual connection. The best results are highlighted in **boldface** while the second-best results are distinguished in <u>underlined</u>.

Methods		N = 48			N = 63			N = 100			N = 127		
Methods	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	
CS	0.21113			0.21257			0.21399			0.21447			
ResMLP-128x2	0.08282	0.07752	0.06616	0.12055	0.08776	0.07086	0.10848	0.08158	0.07405	0.10091	0.10083	0.08245	
ResMLP-128x3	0.06214	0.04853	0.04494	0.07256	0.05506	0.04467	0.07740	0.06496	0.07098	0.08535	0.08280	0.08691	
ResMLP-128x4	0.05428	0.03825	0.03524	0.06463	0.04435	0.03833	0.07532	0.05952	0.06010	0.07971	0.09173	0.08608	
ResMLP-128x5	0.07228	0.04721	0.03764	0.07308	0.05957	0.05091	0.08046	0.07146	0.07174	0.08408	0.08650	0.08458	
ResCNN-32-64	0.07160	0.04723	0.03795	0.07176	0.04066	0.03042	0.06549	0.04566	0.03464	0.06468	0.03189	0.07404	
ResCNN-32-64-128	0.08089	0.03422	0.03435	0.09003	0.03401	0.03159	0.07603	0.03245	0.03295	0.08420	0.03179	0.03025	
ResCNN-32-64-128x2	0.06484	0.04899	0.03456	0.06621	0.03608	0.03100	0.06436	0.03425	0.02808	0.07441	0.03196	0.05221	
ResCNN-32-64-128x2-64	0.17049	0.15600	0.16109	0.18302	0.13459	0.14636	0.13584	0.14809	0.11732	0.17961	0.09261	0.12525	
LLM4QPE-T	0.05189	0.03368	0.03197	0.06111	0.03364	0.02863	0.05050	0.03227	0.02726	0.05079	0.03184	0.02634	
RBFK	0.05452	0.04176	0.04101	0.04726	0.03829	0.03922	0.04096	0.03299	0.03282	0.03850	0.03115	0.03086	
Lasso	0.04221	0.02636	0.02489	0.04856	0.02791	0.02326	0.04219	0.02602	0.02646	0.04137	0.03292	0.02083	
Ridge	0.04247	0.02884	0.02475	0.04216	0.02816	0.02402	0.04191	0.02711	0.02251	0.04110	0.02620	0.02161	

Table 2: The RMSE result on correlation prediction of $|\psi_{\text{TFIM}}\rangle$ with varied N and n_{sft} . M is fixed to 64. ResXXX-a-b-cxd-e represents neural network MLP (CNN) that composed of d+3 in the order a-,b-, d layers of c-, and e-width fully connected (convolutional) layers with residual connection. The best results are highlighted in **boldface** while the second-best results are distinguished in <u>underlined</u>.

Methods		N = 48			N = 63			N = 100			N = 127		
Methods	$n_{ m sft}=20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	
CS	0.20924			0.20990			0.21092			0.21180			
ResMLP-128x2	0.07899	0.06371	0.05524	0.07986	0.05279	0.04283	0.08293	0.05303	0.04630	0.07908	0.05006	0.04333	
ResMLP-128x3	0.06080	0.05664	0.06074	0.06514	0.06928	0.06914	0.06301	0.06358	0.07317	0.06324	0.06510	0.07327	
ResMLP-128x4	0.05912	0.05794	0.05980	0.05899	0.05705	0.06163	0.05678	0.05628	0.06977	0.05535	0.06496	0.07197	
ResMLP-128x5	0.07422	0.06545	0.05739	0.07341	0.06921	0.069215	0.06648	0.06556	0.07044	0.06941	0.07222	0.06867	
ResCNN-32-64	0.12845	0.15039	0.08935	0.12227	0.16686	0.10315	0.10084	0.08879	0.05177	0.10495	0.08535	0.04647	
ResCNN-32-64-128	0.13545	0.17135	0.12004	0.12545	0.17026	0.11778	0.11433	0.11267	0.05027	0.13312	0.03562	0.05347	
ResCNN-32-64-128x2	0.13624	0.17178	0.12015	0.12608	0.17103	0.13809	0.12221	0.11046	0.06586	0.13757	0.10498	0.05556	
ResCNN-32-64-128x2-64	0.13719	0.16750	0.14122	0.13184	0.16034	0.14158	0.12356	0.14996	0.11282	0.11823	0.03601	0.03785	
LLM4QPE-T	0.05088	0.03493	0.03006	0.05252	0.03566	0.03082	0.05217	0.03476	0.03012	0.05259	0.03641	0.03084	
Lasso	0.04624	0.03219	0.02812	0.04633	0.03930	0.02859	0.04073	0.03256	0.02899	0.04583	0.03283	0.02932	
Ridge	0.04473	0.03173	0.02807	0.04561	0.03226	0.02839	0.04598	0.03277	0.02883	0.04570	0.03285	0.02911	

Table 3: The RMSE results on correlation prediction of $|\psi_{\rm HB}\rangle$ with varied N. Training set and testing set are both have 10^4 samples, with noise-free labels $(M \to \infty)$. The best results are highlighted in **boldface**.

$M \to \infty$	N=8	N = 10	N = 12	N = 16	N = 25	N = 31
Ridge	0.00367	0.00444	0.00566	0.00636	0.00599	0.00579
ResMLP-128x4	0.03961	0.03677	0.03460	0.03129	0.02769	0.02625
ResCNN-32-64-128x2	0.02056	0.03710	0.03432	0.03050	0.02582	0.02381
LLM4QPE-F	0.04666	0.04385	0.03969	0.03728	0.03083	0.02951

Table 4: The RMSE results on correlation prediction of $|\psi_{\rm HB}\rangle$ with varied training size n. System size N=8. The number of testing set is fix to 2×10^4 . Labels are noise-free $(M\to\infty)$. The best results are highlighted in **boldface**.

$M \to \infty$	# Params	$n = 10^2$	$n = 10^{3}$	$n = 10^4$	$n = 10^5$
Ridge	< 0.01M	0.00780	0.00528	0.00367	0.00660
ResMLP-128x4	0.09M	0.04219	0.04172	0.03961	0.03956
ResCNN-32-64-128x2	1.14M	0.01987	0.02078	0.02056	0.02054
LLM4QPE-F	9.89M	0.03966	0.04304	0.04916	0.04659

Table 5: The RMSE results of LLM4QPE-F on correlation prediction of N-qubit $|\psi_{\rm HB}\rangle$, with embedding $M_{\rm emb}$ random measurement outcomes. Training set and testing set are both have 10^4 samples, with noise-free labels $(M \to \infty)$.

	N=8	N = 10	N = 12	N = 16	N = 25	N = 31
$M_{\rm emb} = 1$	0.04666	0.04385	0.04126	0.03728	0.03083	0.03125
$M_{\rm emb} = 8$	0.04746	0.04926	0.03969	0.03984	0.03408	0.02951
$M_{\rm emb} = 64$	0.04795	0.04791	0.04785	0.04043	0.03637	0.03524
$M_{ m emb} = 512$	0.04913	0.04521	0.04506	0.03905	0.03406	0.03268

Table 6: The RMSE results of LLM4QPE-F on correlation prediction of N-qubit $|\psi_{\rm HB}\rangle$, with embedding $M_{\rm emb}$ real measurement outcomes over the finetuning phase. testing size is set to 200. M is fixed to 512.

		N = 63			N = 100		N = 127			
	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	
$M_{\rm emb} = 1$	0.02555	0.02104	0.02019	0.02307	0.01872	0.01760	0.02239	0.01739	0.01635	
$M_{\rm emb} = 8$	0.02556	0.02106	0.02019	0.02309	0.01873	0.01760	0.02242	0.01739	0.01635	
$M_{\rm emb} = 64$	0.02556	0.02104	0.02019	0.02309	0.01872	0.01759	0.02239	0.01739	0.01636	
$M_{\rm emb} = 512$	0.02560	0.02104	0.02019	0.02309	0.01872	0.01759	0.02240	0.01740	0.01635	

Table 7: The RMSE results of Ridge on predicting correlation of N-qubit $|\psi_{\rm HB}\rangle$ and $|\psi_{\rm TFIM}\rangle$. The input dimension d is both fixed to 20. Regularization of Ridge is set to $\lambda=1$.

D-++			N = 63				N = 100				N = 127				
Dataset	n = 20	n = 40	n = 60	n = 80	n = 100	n = 20	n = 40	n = 60	n = 80	n = 100	n = 20	n = 40	n = 60	n = 80	n = 100
HB	0.09998	0.10555	0.09941	0.09322	0.08782	0.10015	0.10395	0.09867	0.09278	0.08692	0.09964	0.10491	0.09898	0.09241	0.08680
TFIM	0.10185	0.10333	0.09845	0.09189	0.08565	0.10093	0.10436	0.09847	0.09193	0.08824	0.10148	0.10372	0.10106	0.09426	0.08716

Figure 1: **Logarithmically** scaling behavior of label fidelity with **exponentially** increased measurement snapshots in dataset generation.

Figure 2: A case of comparison between Ridge and baseline (CS) on predicting C_{ij} with a 48-qubit $|\psi_{\rm HB}\rangle$. We take one Hamiltonian sample as an example, the left is the exact ground truth, the middle is the estimation by CS, and the right is the estimation by Ridge, where RMSE is 0.15411 and 0.02183, respectively.