The time-scale of mixing in the surface mixed-layer from random-walk simulations

B. Fernández Castro* M. P. Lorenzo A. Fuentes E. Fernández M. Villamaña M. Gilcoto P. S. Franks J. L. Otero-Ferrer P. Chouciño X. A. Álvarez-Salgado B. Mouriño-Carballido

*bieitof@iim.csic.es

Universida_{de}Vigo

Does the *critical mixing*hypothesis (CMH) explain
seasonal phytoplankton growth in
the Ría de Vigo?

What is the *Critical mixing hypothesis* (CMH)?

Light controls phytoplankton growth

$$\frac{\partial P}{\partial t} = (\alpha I(z) - m_P)P$$
$$I(z) = I_0 \exp^{-kz}$$

What is the *Critical mixing hypothesis* (CMH)?

Light controls phytoplankton growth

$$\frac{\partial P}{\partial t} = (\alpha I(z) - m_P)P$$
$$I(z) = I_0 \exp^{-kz}$$

Critical depth hypothesis

(Sverdrup 1953)

Mixed layer depth controls light availability and phytoplankton growth

What is the *Critical mixing hypothesis* (CMH)?

Light controls phytoplankton growth

$$\frac{\partial P}{\partial t} = (\alpha I(z) - m_P)P$$
$$I(z) = I_0 \exp^{-kz}$$

Critical mixing hypothesis

(Huisman 1999)

The rate of turbulent diapycnal mixing (K_{ρ}) controls light availability and phytoplankton production

Due to methodological limitations to quantify K_{ρ} , the CMH has not been ever verified in the field

Due to methodological limitations to quantify K_{ρ} , the CMH has not been ever verified in the field

No problem, we have some...

The REMEDIOS project

52 weekly samplings
April 2017 - May 2018
Ría de Vigo
Central Station
(Depth ~ 40 m)
R/V Kraken

Biological variables

(at 10 m - 15% PAR):

- Chlorophyll-a
- ¹⁴C-Primary Production

Physical variables:

- Hydrography and PAR profiles
- Microstructure turbulence

The REMEDIOS project

52 weekly samplings April 2017 - May 2018 Ría de Vigo Central Station (Depth \sim 40 m) R/V Kraken

Turbulence Microstructure Profiler (MSS)

$$\mathcal{K}_{
ho}=0.2rac{arepsilon}{\mathit{N}^2}$$

Seasonal variability of phytoplankton growth and mixing

$$GR = \frac{PP}{chl \cdot r_{C:chl}}$$
 $r_{C:chl} = 50$

Large growth \iff Weak Mixing Small growth \iff Intense Mixing

This is consistent with the CMH, but...

Is phytoplankton growth variability driven by changes in light availability due to turbulent mixing?

Light availability: a Lagrangian approach

Random Walk Simulations

LA: $\langle I \rangle$ mean light along particle 24 h paths where $I = I_0 \exp^{-kz}$

I₀: surface irradiance from www.meteogalicia.galk: light attenuation coefficient from PAR profiles

Light availability: a Lagrangian approach

LA reduction due to turbulent mixing: $\sim 70\%$: Summer - Spring

20 — 40%: Fall – Early Winter ◆ → ◆ ■

Which is the effect of LA reduction driven by mixing on phytoplankton growth?

Which is the effect of LA reduction driven by mixing on phytoplankton growth?

0D Phyto-Zoo plankton model (Lévy, 2014) with 3 light forcings:

- Variable I_0 + No K_{ρ}
- \circ Variable I_0 + variable $K_{
 ho}$
- Constant I_0 + variable $K_{
 ho}$

LA and phytoplankton growth

Conclusions

Turbulent mixing reduces light availability, particularly during fall and early winter

Seasonal variability in phytoplankton growth is mainly driven by surface irradiance

Does the *critical mixing*hypothesis (CMH) explain
seasonal phytoplankton growth in
the Ría de Vigo?

Does the *critical mixing*hypothesis (CMH) explain
seasonal phytoplankton growth in
the Ría de Vigo?

No ...

Thanks for your attention!

This is a contribution to the REMEDIOS project (CTM 2016-75451-C2-1-R to B. Mouriño-Carballido) funded by Ministerio de Economía y Competitividad. B. Fernández Castro was supported by a Juan de La Cierva Formación fellowship (FJCI-641 2015-25712, Ministerio de Economía y Competitividad, Spanish Goverment).

The 0D plankton model

Phytoplankton:
$$\frac{\partial P}{\partial t} = P \cdot [\alpha I - m_p - g_z Z]$$

Zooplankton: $\frac{\partial Z}{\partial t} = Z \cdot [g_z P - \tau_z - m_z Z - (1 - a_z) g_z P]$

Parameters

Phytop. growth rate Phytop. mortality rate Zoop. max. grazing rate	$lpha m_p$ g_z	$3.66 \times 10^{-7} \text{ (s}^{-1} \text{ W}^{-1} \text{ m}^2\text{)}$ $5.8 \times 10^{-7} \text{ (s}^{-1}\text{)}$ $9.26^{-6} \text{ (s}^{-1}\text{)}$ $5.80 \times 10^{-7} \text{ (c}^{-1}\text{)}$
Zoop. excretion rate	$ au_{Z}$	$5.80 \times 10^{-7} \text{ (s}^{-1}\text{)}$
Zoop. mortality rate	m_z	$2.31 \times 10^{-6} \; (\text{s}^{-1} \; \text{mmol}^{-1} \; \text{m}^3)$
Assimilated food fraction	a_z	0.7