

代数结构

Algebra Structures

内容提要

- 1. 运算及其性质
- 2. 代数系统
- 3. 群与子群
- 4. 阿贝尔群和循环群
- 5. 环与域
- 6. 格与布尔代数

内容提要

- 1. 运算及其性质
- 2. 代数系统
- 3. 群与子群
- 4. 阿贝尔群和循环群
- 5. 环与域
- 6. 格与布尔代数

1、运算及其性质

概念:

运算, 封闭的, 可交换的, 可结合的, 可分配的, 吸收律, 幂等的, 幺元, 零元, 逆元, 消去律

运算的定义

运算 对于集合 A, 若 f 是从 Aⁿ 到 A 的函数, 称 f 为集合 A 上的一个 n元 运算。

注: 函数f: $A^n \rightarrow B$, 若B \subseteq A, 称函数f在集合A上是封闭的。

运算实例:

- (1) 加法和乘法是N上的二元运算,但减法和除法不是。
- (2) 加法、减法和乘法都是Z上的二元运算,而除法不是。
- (3) 乘法和除法都是R*(非零实数)上的二元运算,而加法和减法不是。
- (4) 设 $M_n(R)$ 表示所有n 阶($n \ge 2$)实矩阵的集合,即

$$M_{n}(R) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in R, i, j = 1, 2, ..., n \right\}$$

则矩阵加法和乘法都是 $M_n(R)$ 上的二元运算。

(5) S为任意集合,则 \cup 、 \cap 、 \cup 、 \cup 为P(S)上二元运算。

运算的表示

1. 算符

可以用。,*,·,⊕,⊗,∆等符号表示二元或一元运算,称为算符。

2. 运算表:表示有穷集上的一元和二元运算

О	a_1 a_2	a_n
a_1	$a_1 \circ a_1 \ a_1 \circ a_2 \ \dots$	a_1 o a_n
a_2	$a_2 \circ a_1 \ a_2 \circ a_2 \ \dots$	a_2 o a_n
•	•••	
•	• • •	
a_n	$a_n \circ a_1 \ a_n \circ a_2 \dots$	$a_n \circ a_n$

二元运算的运算表

	oa_i
a_1	o <i>a</i> ₁
a_2	o a 2
•	-
•	-
•	-
a_n	oa_n

一元运算的运算表

运算表的实例

例:设 $S = P(\{a, b\})$,S上的 \oplus 和 ~运算的运算表如下。

\oplus	Ø	{a}		$\{a,b\}$
Ø	Ø	{a} Ø {a,b} } {b}	{ <i>b</i> }	$\{a,b\}$
{ <i>a</i> }	{ <i>a</i> }	Ø	$\{a.b\}$	{ b }
{ b }	{ b }	$\{a,b\}$	Ø	{ <i>a</i> }
$\{a,b\}$	a,b	} {b}	<i>{a}</i>	Ø

x	~x
Ø	$\{a,b\}$
{a}	{a}
{ b }	{ b }
$\{a,b\}$	Ø

运算的性质

运算的性质

交换律

已知〈A,*〉,若 \forall x, y \in A,有 x*y=y*x,称*在A上是可交换的。

例: 判断相应的运算是否满足交换律。

- (1) (Z, +) , (Z, -) , (Z, \times)
- (2) 设〈R, *>,*定义如下: a*b=a+b-ab

结合律

已知〈A,*〉,若 \forall x,y,z \in A,有 x*(y*z)=(x*y)*z,称*在A上是可结合的。

例: 判断相应的运算是否满足结合律。

- $(1) (Z, +) , (Z, -) , (Z, \times)$
- (2) 〈A, *〉, 若∀a, b∈A, 有a*b=b

幂等律

已知〈A,*〉,若 $\forall x \in A$, x*x=x, 则称满足幂等律。

例: S为集合,〈℘(S), ∪, ∩〉,则∪, ∩满足幂等律。

分配律

设〈A,*,
$$\triangle$$
〉,若 \forall x,y,z \in A有 x*(y \triangle z) = (x*y) \triangle (x*z) (y \triangle z)*x = (y*x) \triangle (z*x) 称运算*对运算 \triangle 是可分配的。

*	α	β
α	α	β
β	β	α

\triangle	α	β
α	α	α
β	α	β

例: 设 $A=\{\alpha, \beta\}$, 二元运算*, \triangle 定义如左。

问分配律成立否?

证明:

① 运算 \triangle 对*是可分配的。即: $x\triangle(y*z)=(x\triangle y)*(x\triangle z)$

当
$$x=\alpha$$
: $x\triangle(y*z) = \alpha$ $(x\triangle y)*(x\triangle z) = \alpha$ $(x\triangle y)*(x\triangle z) = y*z$ $(x\triangle y)*(x\triangle z) = y*z$

② 运算*对运算△不可分配。

反例:
$$\beta * (\alpha \triangle \beta) = \beta * \alpha = \beta$$
$$(\beta * \alpha) \triangle (\beta * \beta) = \beta \triangle \alpha = \alpha$$

*	α	β
α	α	β
β	β	α

\triangle	α	β
α	α	α
β	α	β

吸收律

设*, Δ是定义在集合A上的两个可交换二元运算, 若对∀x, y∈ A, 都有:

$$x*(x\Delta y) = x$$

 $X\Delta(X* y) = X$

则称运算*和Δ满足吸收律。

例: 幂集P(S)上的运算U和C满足吸收律。