

Big Data Algorithm Complexity

K V Subramaniam

Computer Science and Engineering

Overview of lecture

- Motivation Algorithm complexity
- Communication Cost Complexity Model
- 3 Way joins with the communication cost complexity
- Key parameters
- Similarity join analysis

Motivation – Algorithm Complexity

Why Study complexity?

- So far, we have looked at MapReduce algorithms
- However, for a particular problem, there could be many algorithms
- Which algorithm should we choose?
- This is why we study complexity of MapReduce
- We will actually study complexity of workflow systems
 - Generalization of MapReduce
 - Many important Big Data systems are workflow systems

Exercise

- Consider the following two problems
 - Matrix multiplication
 - Database query
- What would be the complexity of these algorithms when executing on a single node?
- What does complexity depend on?

Solution: Class Exercise

- Matrix multiplication
 - Expressed in terms of the bound on total #computations performed
- Database query
 - Complexity depends on disk read

Communication Cost Complexity

- Communication cost: size of input
- Why communication cost?
 - Algorithm tends to be linear in data
 - Network speed << CPU speed
 - Disk speed << CPU speed
 - Major time could be communication time

Communication Cost Complexity

- Why only input size?
 - Output is input to some other task
 - Final output is generally small by aggregation
 - Otherwise not human-readable

Natural Join: join R, S

- Mapper input complexity = r+s
 - Read data from disk
- Reducer input complexity = *r*+*s*
 - Network reads
- Total Complexity: O(r+s)

Exercise – Join complexity

- Consider three relations R, S and T
- How will you perform a join using map reduce across the three?
- Estimate the complexity

3-way Join: R, S, T

- 2 MapReduce phases
- Case 1: Join R,S and then join T
 - Input to Mapper 1: r
 - Input to Mapper 2: s
 - Input to Reducer 1: r+s
 - Let p be the probability of match between r,s
 - Input to Mapper 3: prs
 - Input to Mapper 4: t
 - Input to Reducer 2: *t+prs*
- Total Complexity: *O(r+s+t+prs)*

...3 Way Join R, S, T

• Case 1: Join *S,T* and then join *R*

- Input to Mapper 1: s
- Input to Mapper 2: t
- Input to Reducer 1: s+t
- Let q be the probability of match between s,t
- Input to Mapper 3: qst
- Input to Mapper 4: r
- Input to Reducer 2: r+qst
- Total Complexity: O(r+s+t+qst)
 - Depends upon join order
 - If p~q, first join could be whichever of rs, st, rt is the smallest

BIG DATA Wall Clock Time

- Can make communication cost very low by executing all tasks on single CPU
- However, program may run slowly
- Need to consider wall clock time
 - Time taken for entire job to finish
- Dividing jobs could increase communication but reduce wall clock tme
 - Need to trade off communication time, wall clock time

Parameters: Wall Clock Time vs Communication cost

- Reducer size q
 - Max # of values that can have the same key
 - Not the number of reducers
 - If q is small, there can be more reducers
 - Suppose the number of Map outputs is T
 - Max number of reducers = T/q
 - This will reduce the wall clock time
 - But increase the communication cost
- Replication rate r
 - r = (#key value pairs output by Mapper) / (# input records to Mapper)
 - Average communication cost from Map tasks to Reduce tasks

Wall Clock Example: Similarity Join Between Images

- Assume we have a database of 1 million images
- Each image is 1 MB
- Total DB size = 1 TB
- Assume there is a function s(x,y) which determines how similar two images x,y are
 - s(x,y) = s(y,x)
- Problem: output all pairs x,y such that s(x,y) > t

Naïve Algorithm for example

- Assume each image P_i has an index i
- Mapper
 - Reads in (i,P_i)
 - Generates all pairs ({i,j},{P_i,P_j})
- Reducer
 - Reads $(\{i,j\},\{P_i,P_i\})$
 - Computes $s(P_i, P_j)$

Exercise

• What is the

- Communication cost of the naïve algorithm?
- Parallelism of the naïve algorithm?

Exercise - Solution

What is the

- Communication cost of the naïve algorithm?
- Parallelism of the naïve algorithm?
- Algorithm doesn't work
 - Data to be transmitted = $1,000,000 \times 999,999 \times 1,000,000 \text{ bytes} = 10^{18}$
 - Communication cost is $\sim n^2$ where n is the number of images (extremely high)
 - However, potential parallelism is very high

The other extreme

- Do everything on one node
- Mapper
 - Reads in (i,P_i)
 - Generates all pairs ({i,j},{P_i,P_j})
- Reducer (runs on same node as mapper)
 - Reads $(\{i,j\},\{P_i,P_i\})$
 - Computes $s(P_i, P_j)$
- No communication cost
- Very low parallelism (wall clock time high)

BIG DATA Summary

Send one pair to each reducer

- High communication cost (bad)
- High parallelism (good)

Do everything on one node

- Low parallelism (bad)
- Low communication cost (good)

Can we get something in between?

Group-based algorithm

Overview

- Group images
- Read in two groups of images in a single reducer
- Store them in memory
- Compare all pairs from those groups
- Output results

Example: 100 Groups

- Suppose the groups are G0, ... G99
- Group G0 is sent to nodes 0, 1, ..., 98
 - Why?
- Group G0 has to be compared with 99 other groups
- Group G1 is sent to?
 - 0, 1, ..., 98
- Group G1 is sent to 0, 99, 100, ...196 (0+98 other nodes)
- Group G2 is sent to?
- Group G2 is sent to 1, 99, 197, 198, ... 293 (1, 99 +97 other nodes)
- Group G3 is sent to 2, 100, 197, 294, ...389 (2, 100, 197, +96 other nodes)

In General

- If there are *g* groups
- The number of images per group m=n/g
- Each group is sent to *g-1* servers
- Total number of messages = g(g-1)
- Total data = $mg(g-1) = n(g-1) \sim ng$
- Parallelism = no of nodes = $(g-1) + (g-2) + (g-3) + ... = g(g-1)/2 = O(g^2)$
- Another way = no of nodes = ${}^{n}C_{2} = g(g-1)/2$

Exercise

- Suppose we have groups of 100
 - How many groups are there?
 - How many nodes is each group sent to?
- What is the
 - Communication cost of the algorithm?
 - Parallelism of the algorithm?

...Group Based Algorithm...

- Naïve: approximately 1,000,000x1,000,000 images = 10^{12} images, parallelism = 10^{12}
- Example: group images into groups of 100
 - Communication cost: 1,000,000 images x 100 groups = 10⁸ images
 - Parallelism = 10^4
- Example: group images into groups of 1000
 - Communication cost = $1,000,000 \times 1000 = 10^9$ images
 - Parallelism = 10^6
- Trade-off: increasing group size
 - Increases communication complexity (more reads)
 - Reduces wall clock time (increases parallelism)

...Group Based Algorithm

- On next slide
- Note
 - Group-based algorithm is discussed in book as if mapper sends pictures to reducer
 - In previous slides, we have discussed as if reducer reads in pictures from disk
 - From communication cost complexity both are the same
 - Performance: probably better to read from disk

Group Based algorithm

Overview

- Group images
- Read in two groups of images in a single reducer
- Store them in memory
- Compare all pairs from those groups
- Output results
- Complexity
 - Communication cost ~ng where g is the number of groups
 - Can still get good parallelism

Grouping images..

- Group images into g groups
- Mapper
 - Input: (i,P_i)
 - Find u = group to which image i belongs
 - Output g-1 key-value pairs $(\{u,v\}, i,P_i)$ for all v != u
- Reducer:
 - There is one reducer for each unique key $\{u,v\}$
 - Use the input to store images for groups u,v
 - Compare all pairs of images in groups u,v
 - If *v=u+1*, then compare all pairs of images in group *u*

Actual Values

- If group size is 1000
- Need ~2GB to store 2000 images in memory
- Need ~500,000 reducers
- If we have a 10,000 node cluster
 - Can do computation in 50 passes
 - Speedup of 10,000

Summary

- There could be many MapReduce algorithms to implement a particular functionality
 - Matrix multiplication
 - Multi-way joins
- There are two factors to consider when selecting an algorithm
 - Communication complexity: volume of data that is input to the different phases of the algorithm
 - Wall clock time: Total elapsed time for algorithm
 - Depends upon parallelism
 - Frequently there is a trade-off between these factors
 - Group size

References

- Mining of Massive Datasets
 - Rajaraman et. Al.
 - Chapter 2.4-2.5

THANK YOU

K V Subramaniam, Usha Devi

Dept. of Computer Science and Engineering

subramaniamkv@pes.edu

ushadevibg@pes.edu