Geometric Aspects of Harmonic Analysis

Dr Diogo Oliveira e Silva

December 6, 2016

 $\mathbf{Q}\mathbf{1}$

$$\begin{array}{c} f:[a,b]\to\mathbb{R} \text{ integrable} \\ F(x)=\int_a^x f(t)\,\mathrm{d}t \end{array} \right] \underset{?}{\Rightarrow} F \text{ diff. (a.e. } x), \ F'=f$$

Q2 Conditions of F (on [a, b]) s.t.

- F'(x) exists a.e.
- F' integrable
- $\int_a^b F'(x) \, \mathrm{d}x = F(b) F(a)$

?

Q1 Differentiation of the integral

$$\frac{F(x+h)-F(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t) dt = \frac{1}{|I|} \int f = \operatorname{avg}_{I} f = {}_{I} f$$

I = (x, x + b), |I| Lebesgue measure of I.

Q1 equivalent to averaging problem: Given $f \in L^1(\mathbb{R}^d)$, is it true, that

$$\lim_{|B|\to 0,\ x\in B}=\frac{1}{|B|}\int_B f=f(x)\quad (x\text{-a.e.})?$$

 $B\subset\mathbb{R}^d$ open ball

Yes, if f continuous $\forall \varepsilon \exists \delta |x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon$. $x \in B$

$$|f(x) = \int | = |\int_{B} (f(y) - f(x)) \, \mathrm{d}y| < \varepsilon \tag{1}$$

provided B is an opeb ball of radius $<\frac{\delta}{2}$ containing x

Yes, if f is integrable (not so easy). Hardy, Littlewood (1D, rearrangements; later Wiener for d > 1). $f \in L^1(\mathbb{R}^d)$

$$(Mf)(x) := \sup_{x \in B} \frac{1}{|B|} \int_{B} |f|$$

uncentered HL maximal function

Theorem. Let f be integrable on \mathbb{R}^d . Then

- (i) Mf is measurable.
- (ii) $(Mf)(x) < \infty$ a.e. x

(iii)

$$\{x \in \mathbb{R}^d : (Mf)(x) > \alpha\} | < \frac{c}{\alpha} ||f||_{L^1(\mathbb{R}^d)} \ (\forall x > 0).$$
 (2)

 $c=c_d=3^d, independent of f, \alpha.$

 $f \neq f \in L^1 \Rightarrow Mf(x) \sim |x|^{-d}$ for large radius of x. So then $Mf \not\in L^1.$

$$M: \overset{L^1}{\overset{}_{L^1}} \xrightarrow{} \overset{L^1}{\overset{}_{L^1,\infty}}$$

Proof. (i) easy $E_{\alpha}=\{x\in\mathbb{R}^d:(Mf)(x)>\alpha\}$ is open $(\forall x>0)$ (because Mf is lower semicontinuous)

- (ii) $|\{x \in \mathbb{R}^d : (Mf)(x) = \infty\}| \subset |\{x \in \mathbb{R}^d : Mf(x) > \alpha\}|$, take $\alpha \to \infty$.
- (iii) follows from an elemantary version of Vitali covering

Lemma. Let $B=\{B_1,B_2,\ldots,B_N\}$ be a finite collection of open balls on \mathbb{R}^d . Then there exists a disjoint subcollection $B_{i_1},B_{i_2},\ldots,B_{i_k}$ of B such that

$$|\bigcup_{j=1}^n B_j| \leq 3^d \sum_{j=1}^k |B_{ij}|$$

Proof. (i) $B_{i_1} = \text{largest ball}$

- (ii) Delete B_{i_1} and its neighbors
- (iii) $B_{i_2} = \text{largest ball}$
- (iv) repeat...
 - Algorithm stops in at most N steps
 - output has desired properties:
 - disjointness is clear
 - size $B \cap B' \neq \emptyset$, $r_{B'} \leq r_B$. $B^* = \text{ball}$ with the same center as B but 3 times the radius. $\Rightarrow B' \subset B^*$. $|B^*| = 3^d |B|$

Back to (iii): Choose $\alpha > 0, E_{\alpha} = \{x \in \mathbb{R}^d : (Mf)(x) > \alpha\}.$ Fr each

$$x \in E_{\alpha} \exists B = B_x := \frac{1}{|B_x|} \int_{B_x} |f(y)| \, \mathrm{d}y > \alpha$$

equivalent

$$|B_x|<\alpha^{-1}\int_{B_x}|f(y)|\,\mathrm{d} y$$

Fix $K \ll E_{\alpha}$ compact subset covered by $\bigcup_{x \in K} B_x$, $K \subset \bigcup_{l=1} NB_l$

$$|K| \leq |\bigcup_{l=1}^N B_l| \leq \sup_{\text{Vitali}} 3^d \sum_{j=1}^k |B_{ij}| \leq \frac{3^d}{\alpha} \in_{j=1}^k \int_{B_{i_j}} |f()| \, \mathrm{d}y = \frac{3^d}{\alpha} \int_{\bigcup_{j=1}^k B_{i_j}} |f(y)| \, \mathrm{d}y \leq \frac{3^d}{\alpha} \|f\|_{L^1(\mathbb{R}^d)}$$

Since K was chosen arbitrary (cpt.), it follows that

$$|E_{\alpha}| \leq \frac{3^d}{\alpha} ||f||_{L^1}$$

Can interpolate between weak type L^1 -inequality and $L^{\infty} \to L^{\infty}$ (very easy).

Corollary (Lebesque differentiation theorem). Let $f \in L^1(\mathbb{R}^d)$ Then

$$\lim_{|B| \to 0, x \in B} f = f(x) \quad \text{x-a.e.}$$
 (3)

Proof.

$$E_\alpha = \{x \in \mathbb{R}^d : \limsup_{|B| \to 0, x \in B} | f_B f - f(x) > 2\alpha\}$$

ETS $|E_{\alpha}|=0 \ \forall \alpha>0$. Then $E=\bigcup_{n\in\mathbb{N}}E_{\frac{1}{n}}=0$ and (3) holds on $E^{\mathbb{C}}$. Fix $\alpha>0$, given $\varepsilon>0$ choose $g\in C_0^0(\mathbb{R}^d)$ s.t. $\|f-g\|_{L^1}<\varepsilon$. Already seen

$$\begin{split} \lim_{|B| \to 0, x \in B} & \int g = g(x) \ \forall x \\ & \int_B f - f(x) = \int_B (f - g) + \int_B g - g(x) + g(x) - f(x) \\ & F_\alpha = \{x : M(f - r)(x) > \alpha\} \\ & G_\alpha = \{x : |f(x) - g(x)| > \alpha\} \end{split}$$

 $E_{\alpha} \subset F_{\alpha} \cup G_{\alpha} \text{ since } u_1, u_2 > 0, \ u_1 + u_2 > 2\alpha \Rightarrow u_1 > \alpha \vee u_2 > \alpha.$

$$\begin{split} |G_{\alpha}| & \leq \frac{1}{\alpha} \|f - g\|_{L^{1}} \quad \text{(Chebyshew)} \\ |F_{\alpha}| & \leq \frac{c_{d}}{\alpha} \|f - g\|_{L^{1}} \quad \text{(weak type)} \\ |E_{\alpha}| & \leq |F_{\alpha}| + |G_{\alpha}| \leq (\frac{c_{d}}{\alpha} + \frac{1}{\alpha}) \|f - g\|_{L^{1}} \leq \frac{c'_{d}\varepsilon}{\alpha} \end{split}$$

Since $\varepsilon > 0$ was arbitrary $|E_{\alpha}| = 0$.

 $h \in L^1 \subset L^{1,\infty}$ by Chebyshew: $\infty > \|h\|_{l^1} = \int_{\mathbb{R}^d} |h(y)| \, \mathrm{d}y \ge \int_{h(y) > \alpha} |h(y)| \, \mathrm{d}y \ge \alpha |\{|h| > \alpha\}|.$ Would have been enough to replace $L^1(\mathbb{R}^d)$ by L^1_{loc} .

Sets $E \subset \mathbb{R}^d$ measurable, $x \in \mathbb{R}^d$ (not necc. in E) x is a point of Lebesque density of E if

$$\lim_{|B|\to 0, x\in B}\frac{|B\cap E|}{B}=1$$

Corollary. Let $E \subset \mathbb{R}^d$ be measurable. Then

- (i) Almost every $x \in E$ is a point of Lebesque density of E.
- (ii) Almost every $x \notin E$ is not a point of Lebesque density.

Functions $f \in L^1_{loc}(\mathbb{R}^d)$.

$$Leb(f):=\{x\in\mathbb{R}^d: f(x)<\infty \text{ and } \lim_{|B|\to 0, x\in B} f_{\overline{B}} |f(y)-f(x)|\,\mathrm{d}y=0\}$$

f continuous at $\bar{x} \Rightarrow \bar{x} \in \text{Leb}(f) \Rightarrow f_B f \underset{|B| \to 0, x \in B}{\longrightarrow} f(\bar{x})$ (all the inverse implications are wrong)

Corollary. $f \in L^1_{loc}(\mathbb{R}^d) \Rightarrow \text{Almost every point belongs to Leb}(f)$.

(By checking the proof again?)

These things also works with other sets that "shrink regularly to x than balls". It gets worse however when one takes all parallel rectangles and even worse when arbitrarily oriented rectangles are allowed.

Q.2 Key: bounded varioation (BV) $F : [a, b] \to \mathbb{R}, P = \{a = t_0 < t_1 < ... < t_N = b\}$

$$V_F^P = \sum_{j=0}^N |F(t_j) - F(t_{j+1})|$$

is the variation of f over P. F is of bounded variation if

$$T_F(a,b) = T_F \sup_{\mathcal{D}} V_F^P < \infty$$

 $P \subset \tilde{P} \text{ partitions} \Rightarrow V_F^P \leq V_P^{\tilde{P}}$

Example. (i) f monotonic (increasing) and bounded, $|F| \leq M \Rightarrow F \in BV$

$$V_F^P = \sum_{j=1}^N |F(t_j)T = Nt_{j-1})| = F(b) - F(a) \le 2M$$

- (ii) F differentiable with F' bounded, $|F'| \leq M$, then by mean value theorem $f \in BV$. Or F LIpschitz
- (iii) $F \alpha$ -Hölder $(\alpha < 1)$ $6 \Longrightarrow F \in BV$. Take $F : [0,1] \to \mathbb{R}, \ x \mapsto d(x,C)^{\alpha}$, where C is the cantor set. 2^{n-1} intervals of length 3^{-n}

$$\alpha > \frac{\log 2}{\log 3} \Rightarrow \sum_{n=1}^{\infty} 2^{n-1} (3^{-n})^{\alpha} < \infty$$

• Total variation of F on [a, x] (where $a \le x \le b$) is

$$T_F(a,x) = \sup \sum_{j=0}^N |F(t_j) - F(t_{j-1})|$$

• Positive variation of F on [a, 1] is

$$P_{F}(a,x) = \sup \sum_{(+)} (F(t_{j}) - F(t_{j-1})) \quad \text{all } j: F(t_{j}) \geq F(t_{j-1})$$

• Negative variation of F on [a, 1] is

$$N_F(a,x) = \sup \sum_{(-)} -(F(t_j) - F(t_{j-1}))$$

Lemma. $f:[a,b]\to\mathbb{R}$. Then

(i)
$$F(x) = F(a) + P_E(a, x) - N_E(a, x)$$

(ii)
$$T_F(a, x) = PF(a, x) + N_F(a, x)$$

 $(\forall x \in [a, b])$

recall from measure theory: $f=f^+-f^-,\ |f|=f^++f^-$

$$\textit{Proof.} \quad \text{(i) given } \varepsilon > 0, \ \exists P = \{a = t_0 < t_1 < \ldots < t_N = x\}$$

$$|PVF - \sum_{(+)} (F(t_j) - F(t_{j-1}))| < \varepsilon$$

$$|N_F - \sum_{(-)} -(F(t_j) - F(t_{j-1})))| < \varepsilon$$

Also

$$F(x) - F(a) = \sum_{(+)} F(t_j) - F(t_{j-1}) - \sum_{(-)} - (F(t_j) - F(t_{j-1}))$$

Corollary. $F:[a,b]\to\mathbb{R}\in\mathrm{BV}$ iff F is the difference of two inclasing bounded functions

Theorem. $F:[a,b] \to \mathbb{R} \in BV \Rightarrow F$ differentiable a.e.

Wlog f mononotic increasing, "Wlog" f continuous

Lemma (of the rising sun). $G: \mathbb{R} \to \mathbb{R}$ continuous.

$$E = \{ x \in \mathbb{R} : \exists h = h_x > 0 \ G(x+h) > G(x) \}$$

Then

(i) E is open $(E = \bigcup_{n=1}^{\infty} (a_n, b_n))$

(ii) $g(a_n) = G(b_n)$, provided $b_n - a_n < \infty$.

Proof. Let (a_n,b_n) be a finite interval in the decomposition. $a_k \notin E$ then $g(a_k) \geq G(b_k)$. Assume $G(a_k) > G(b_k)$. $\exists c \in (a_k,b_k) \ g(c) = \frac{g(a_k) + g(b_k)}{2}$. Choose rightmost such c. $\exists d \in (c,b_k) \ G(d) > G(c)$. But then by continuity c could not have been chosen rightmost, contradiction.

Can replace \mathbb{R} by [a,b], but then only get for $a_0=a$ that $G(a_0)\leq G(b_0)$

Proof. of theorem

$$\begin{split} \Delta_h(F)(x) &= \frac{F(x+h) - F(x)}{h} \\ D^\pm(F)(x) &= \limsup_{h \to 0, h > <0} \Delta_h(F)(x) \\ D_\pm(F)(x) &= \liminf_{h \to 0, h > <0} \Delta_h(F)(x) \end{split}$$

Dini numbers. Upshot: They are all the same and finite. $D_- \leq D^-, \ D_+ \leq D^+$ clear. ETS

- (i) $D^+(F)(x) < \infty$ (a.e. x)
- (ii) $D^+(F)(x) \le D_-(F)(x)$ (a.e. x)
- (ii) is equivalent to $D^-(F)(x) \leq D_+(F)(x)$ by replacing F(x) by -F(-x) somewhere. Then $D^+ \leq D_- \leq D^- \leq D_+ \leq D^+ < \infty$.
 - (i) relacc: F increasing , bounded, continuous on [a, b]. Fix $\gamma > 0$,

$$E_{\gamma}:=\{x:D^+(F)(x)>\gamma\}$$

- E_{γ} is measurable
- Apply rising sun to $G(x) = F(x) \gamma x$

$$E_{\gamma} \subset E = \{x \in [a,b]: \exists h > 0 \ G(x+h) > G(x)\} = \bigcup_{k=1}^{\infty} (a_k,b_k)$$

The condition in the set is equivalent to

$$\begin{split} &\iff \exists h>0\ F(x+h)-\gamma x-\gamma h>F(x)-\gamma x\\ &\iff \exists h>0\ \frac{F(x+h)-F(x)}{h}>\gamma\\ &\iff D^+(F)(x)>\gamma \end{split}$$

 $G(a_k) \leq G(b_k) \iff F(a_k) - \gamma a_k \leq F(b_k) - \gamma b_k \iff \gamma(b_k - a_k) \leq F(b_k) = F(a_k).$ Therefore

$$|E_{\gamma}| \leq |E| \leq \sum_{k=1}^{\infty} (b_k - a_k) \leq \frac{1}{\gamma} \sum_{k=1}^{\infty} (F(b_k) - F(a_k)) = \frac{1}{\gamma} (F(b) - F(a))$$

Take $\gamma \to \infty$, done.

(ii) see Stein-Shakarchi (vol 3)

Corollary. F increasing, continuous $\Rightarrow F'$ exists a.e., measurable, nonnegative and

$$\int_a^b F'(x)\,\mathrm{d}x \le F(b) - F(a).$$

Proof. Let

$$G_h(x) = \frac{F(x + \frac{1}{n}) - F(x)}{\frac{1}{h}}$$

By the theorem, $G_h(x) \to F'(x) \ (h \to 0)$ pointwise a.e. By Fatou

$$\int_{[a,b]} F' \leq \liminf_{n \to \infty} \int_a^b G_h(x) \, \mathrm{d}x = \liminf_{n \to \infty} f_b^{b + \frac{1}{n}} F(x) \, \mathrm{d}x - f_a^{a + \frac{1}{n}} F(x) \, \mathrm{d}x$$

Cannot do better than \leq : For the Devil's staircase the left hand side is 0 while the rightn hand side is 1.

Why is the sunrise Lemma a covering Lemma?

$$\begin{array}{l} f_+^* = \sup \frac{1}{h} \int_x^{x+h} |f(y)| \,\mathrm{d}y \\ E_\alpha^+ = \left\{x \in \mathbb{R} : f_+^*(x) > \alpha\right\} \end{array} \right\} |E_\alpha^+| = \frac{1}{\alpha} \int_{E^\pm} |f|$$

Why? Let

$$G(x) = \int_0^x |f(y)| \,\mathrm{d}y - \alpha x$$

$$x \in E_\alpha^+ \iff f_+^*(x) > \alpha \iff \exists h > 0 \ \frac{1}{h} \int_x^{x+h} |f(y)| \,\mathrm{d}y > \alpha \iff \exists h > 0 \ G(x+h) > G(x)$$

$$\{x \in \mathbb{R} : \exists h > 0 \ G(x+h) > G(x)\} = \bigcup_{k \in \mathbb{N}} (a_k, b_k), \quad G(a_k) = G(b_k)$$

$$|E_\alpha^+| = \sum_k (b_k - a_k) = \frac{1}{\alpha} \sum_k \int_{(a_k,b_k)} |f| = \frac{1}{\alpha} \int_{|\cdot|,(a_k,b_k)} |f| = \frac{1}{\alpha} \int_{|E_\alpha^\pm|} |f|.$$

Definition. $F:[a,b]\to\mathbb{R}$ is absolutely continuous if

$$\forall \varepsilon > 0 \exists \delta > 0 : \sum_{k \vdash 1}^N (B_k - a_k) < s$$

intervals $(a_k b_k)$ disjoint $(k = 1, ..., N) \Rightarrow$

$$\sum_{k=1}^N |F(b_k) - F(a_h)| < \varepsilon$$

Remark. (i) On a bounded Inetrval $I \subset \mathbb{R}$

$$C^1(I) \subset \operatorname{Lip}(I) \subset AC(I) \subset BV(I)$$

So they are diff. a.e.. All the inclusions are strict.

- (ii) abs cont \Rightarrow unif. con. \Rightarrow cont.
- (iii) $f \in L^1_{loc}(\mathbb{R})$ $F(x) = \int_0^x f(t) dt$ Then F is absolutely continuous. $(\forall \varepsilon \exists \delta | E| < \delta \Rightarrow \int_E |f| < \varepsilon)$ Upshot: AC functions are the ones which re diff a..e. and vrify FTC.

Theorem. $F \in AC(a,b) \Rightarrow F'$ exists a.e., F' = 0 a.e. $\Rightarrow F$ constant

- Existence of F' clear $\sqrt{}$
- F' = 0 a.e. $\Rightarrow F$ constant: refinement of Vitali

Definition. A collection $\mathcal{B} = \{B\}$ of (open) balls ön \mathbb{R}^d . is a *Vitali covering* of a set E if

$$\forall x \in E \forall \eta > 0 \exists B \in \mathcal{B} : x \in B, |B| < \eta$$

Lemma. $E \subset \mathbb{R}^d$ meas. $|E| < \infty$, \mathcal{B} Vitali covering of E, $\delta > 0$. Then there exist finitely many disjoint balls $B_1, ..., bvB_N \in \mathcal{B}$

$$\sum_{j=1}^{N} |B_j| \ge |E| - \delta$$

Recall elementary Vitali: $\mathcal{B}=\{B_1,...,B_N\}$ finite collection of pen balls in $\mathbb{R}^d\Rightarrow\exists$ disjoint subcollection $B_{i_1},...,B_{i_k}$ with

$$|\bigcup_{j=1}^B B_j| \leq 3^d \sum_{j=1}^k |B_{i_j}|$$

Proof of Lemma. wlog $\delta > |E|$. Vitali $\Rightarrow \exists$ disjoint subcollection $B_1,...,B_N \in \mathcal{B}$

$$\sum_{i=1}^{N_1} |B_i| \ge 3^{-d} \delta$$

Sequence of balls $B_1,...,B_N$. question: Is $\sum_{j=1} |B_j| \ge |E| - \delta$? Yes: done with $N = N_1$. No: work harder.

$$\sum_{j=1}^{N_1}|B_j|<|E|-\delta$$

$$E_2 = E \bigcup_{i=1}^{N_1} \bar{B}_j$$

$$|E_2| \geq |E| - \sum_{i=1}^{N_1} |B_j| > |E| - (|E| - \delta) = \delta$$

 $\mathcal B$ Vitali covering \Rightarrow balls in $\mathcal B$ disjoint frm $\bigcup_{i=1}^{N_1} \bar B_i$ still covers E_2 . Vitali $\Rightarrow \exists$ finite disjoint subcollection of these balls $B_{N_1+1},...,B_{N_2}$

$$\sum_{N_1 < j < N_2} |B_j| \geq 3^{-d} \delta.$$

After k steps, $B_1, ..., B_{N_1}, ..., B_{N_1}, ..., B_{N_k}$ with

$$\sum_{j=1}^{N_k} \ge h3^{-d}\delta \ge |E| - \delta$$

iff
$$k \ge 3^{d} \frac{|E| - \delta}{\delta}$$
, stop.

need to approximate with compact from inside somewhere and with open from outside somewhere else

Corollary. The balls can be arranged in such a way that

$$E\bigcup_{i=1}^{N} B_i| < 2\delta$$

Proof. Choose open $O \supset E : |O E| < \delta$. \mathcal{B} Vitali covering \Rightarrow wlog all balls in \mathcal{B} are contained in O.

$$(E\bigcup_{i=1}^N B_i) \cup \bigcup_{i=1}]NB_i \subset O.: |E\bigcup_{i=1}^N B_i| \leq |O| - \sum_{i=1}^N |B_i| \leq |E| + \delta - (|E| - \delta) = 2\delta$$

 $F \in AC$ Back to the real lin: Goal: F' = 0 a.e. $\Rightarrow F$ constant. ETS F(a) = F(b)

$$E = \{x \in (a, b) : F'(x) \text{ exists and } = 0\} \quad |E| = b - a\}$$

Fix $\varepsilon>0$. For $x\in E$, $\lim_{h\to 0}|\frac{F(x+h)-F(x)}{h}|=0$. $\forall \eta>0 \exists$ open interval $I=(a_x,b_x)\subset [a,b]$ containing x. $F(b_x)-F(a_x)|\leq \varepsilon(b_x-a_x)$ and $b_x-a_x<\eta$. The collection of these intervals (over all $\eta>0$) forms a Vitali covering of E. Lemma \Rightarrow Given $\delta>0$ can select finitely many, disjoint $I_j=(a_j,b_j)_{j=1}^N$ such that

$$\sum_{j=1}^N |I_j| \ge |E| - \delta = b - a - \delta$$

But

$$\begin{split} \sum_{j=1}^N |F(b_j)TF(a_j)| &\leq \varepsilon \sum_{j=1}^N (b_j - a_j) \leq \varepsilon (b-a) \\ [a,b] \ \bigcup_{j=1}^N I_j &= \bigcup_{k=1}^M [\alpha_k,\beta_k] \end{split}$$

with total length $\leq \delta$. .: $F \in AC$

$$\sum_{k=1}^M |F(\beta_k) - F(\alpha_k)| < \varepsilon$$

$$|F(b)-F(a)| \leq \sum |F(b_j)-F(a_j)| + \sum |F(\beta_k)-F(\alpha_k)| \leq \varepsilon(b-a) + \varepsilon,$$

done.

Theorem. $F \in AC(a,b)$. Then

(i) F' exists a.e. and is integrable

(ii)

$$F(x) - F(a) = \int_{a}^{x} F'(t) dt \quad (\forall a \le x \le b)$$

Conversely, if $f \in L^1(b)$, then there exists $F \in AC(a,b) : F' = f$ a.e..

 $Proof. \Rightarrow$

(i) seen last lecture.

(ii)

$$G(x) := \int_{a}^{x} F'(t) \, \mathrm{d}t$$

 $::G \in AC :: F - G \in AC$. Lebesque diff. $\Rightarrow G'(x) = F'(x)$ (a.e. x) :: (F - G)' = 0 a.e.. Therefore (F - G)(x) = (F - G)(a), F(x) - G(x) = F(a), equivalent to (*)

 \Leftarrow

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

AC
$$\sqrt{}$$
 Leb. diff $\Rightarrow F' = f$ a.e.

Next: Monotone functions which are not nec. continuous. Wlog. F increasing, bounded on [a, b].

$$F(x^-)F\lim_{y\to x,y< x}F(y)\quad F(x^+):=\dots$$

 $F(x^-) \le F(x) \le F(x^+)$, F cont. at x if $F(x^-) = F(x^+)$. Otherwise F has a jump discontinuity at x.

Obs: A (bounded) increasing function F on [a,b] has at most countable many jumps. There exists an injective map $\mathrm{Disc}(F) \to \mathbb{Q}$

 $\text{ .: } \operatorname{Disc}(F) = \{x_n\}_{n=1}^{\infty} \ \alpha_n = F(x_n^+) - F(x_n^-) = \text{jump of } F \text{ at } x_n. \ F(x_n^+) = F(x_n^-) + \alpha_n \\ F(x_n) = F(x_n^-) + \theta_n \alpha_n, \ \theta_n \in [0,1]. \ F(x) = \mu((-\infty,x]). \ \text{Corresponds to singular } + \text{ abs. cont } measures$

$$j_n(x) = \begin{cases} 0 & x < x_n \\ \phi_n & x = x_n \\ 1 & x > x_n \end{cases}$$

Jump function associated to F is

$$J_F(x) = \sum_{n=1}^{\infty} j_n(x)$$

$$\sum_{n=1}^\infty \alpha_n = \sum_{n=1}^\infty F(x_n^+) - F(x_n^-) \leq F(b) - F(a) < \infty$$

because F incr, and F bounded.

Lemma. F increasing, bounded on [a,b], $\mathrm{Disc}(F)=\{x_n\}_{n=1}^\infty$

- (i) $J_F(x)$ is discontinuous precisely at $\{x_n\}_{n=1}^{\infty}$, has a jump at x_n equal to that if F.
- (ii) Th function $F J_F$ is increasing and continuous.

Proof. (i) $x \neq x_n(\forall n) \Rightarrow \text{each } j_n \text{ is continuous at } x \Rightarrow J_F \text{ is continuous at } x \text{ because of uniform convergence. } x = x_N(\exists N) \Rightarrow J_F = \sum_{n=1}^N \alpha_n j_n(x) + \sum_{n>N} \alpha_n j_n(x).$ First sum has jump discontinuity x_N of size α_N

(ii) $F - J_F$ is continuous

$$F(x) - J_F(x) \leq F(y)TJ_F(y) \iff J_F(y) - J_F(y) \leq F(y) - F(x)$$

, where

$$J_F(y) = \sum_{x < x_n \leq y} \alpha_n = \sum_{x < x_n \leq y} F(x_n^+) - F(x_n^-) \leq F(y) - F(x)$$

Since $F = (F - J_F) + J_F$ ETS J_F is diff a.e.. This was essential step of

$$\mu = \mu_{AC} + \mu_S + \mu_{PP}$$

z(t)=(x(t),y(t)). curve $\gamma.$ $x,y:[a,b]\to\mathbb{R}$ continuous. γ rectifiable if length

$$L(\gamma) = \sup \sum_{j=1}^N |z(t_j) - z(t_{j-1})| < \infty$$

sup over all partitions $P = \{a = t_0 < t_1 <_< t_N = b\}$ of [a,b]

When is

$$L(\gamma) = \int_a^b |z'(t)| \, \mathrm{d}t?$$

Lemma. γ is rectifiable iff x, y are of bounded variation (and cont.).

see
$$F = x + iy$$

Assume γ rectifiable, let L(A, B) length of $\gamma(A, B)$, $(a \le A \le B \le b)$

- (i) $L(A,B) = T_F(A,B)$ (where F(t) = z(t))
- (ii) $L(A,C) + L(C,B) = L(A,B) \ (A \le C \le B)$
- (iii) $A \mapsto L(A, B)$ (fix B) is continuous

$$B \mapsto L(A, B)$$
 (fix A)

seen: $F \in BV(a, b)$, cont. $\Rightarrow T_F$ cont.

Warning: $[0,1] \ni t \mapsto (F(t),F(t))$, F Cantor. F cont. incr. F(0)=0, F(1)=1, F'=0 a.e.

Theorem. $z:[a,b]\to\mathbb{R}^2, t\mapsto (x(t),y(t))\sim curve\ \gamma.\ x,y\in AC(a,b).\ \Rightarrow\ \gamma\ rectifiable\ and$

$$L(\gamma) = \int_{a}^{b} |z'(t)| \, \mathrm{d}t$$

why? $F:[a,b]\to\mathbb{C}$ is $\mathrm{AC}(a,b)$

$$\Rightarrow T_F(a,b) = \int_a^b |F'(t)| dt.$$

$$\sum_{j=1}^N |F(t_j) - F(t_{j-1})| = \sum_{j=1}^N |\int_{t_{j-1}}^{t_j} F'(t) \, \mathrm{d}t| \leq \sum_{j=1}^N \int_{t_{j-1}}^{t_j} |F'(t)| \, \mathrm{d}t = \int_a^b |F'(t)| \, \mathrm{d}t$$

First inequality by FTC. For \geq , write F'=g+h, g step function, h small in L^1 G,H= def. integrals of g,h. Check $T_F\geq T_G,T_H,\,T_H$ small, $T_G\geq \int_a^b |g(t)|\,\mathrm{d}t.$

Minkowski content of a curve simple, simple closed, quasi-simple curves.

trace of γ : $\Gamma = \{z(t) \in \mathbb{R}^2 : t \in [a, b]\}$. Given $K \subseteq \mathbb{R}^2$ and $\delta > 0$ define

$$K^\delta = \{x \in \mathbb{R}^2: \, \mathrm{d}(x,K) < \delta\}$$

where $d(x, K) = \inf_{k \in K} d(x, k)$

Definition. The set K has (1D) Minkowski content if

$$\lim_{\delta \to 0} \frac{|K^{\delta}|}{2\delta}$$

exists (in \mathbb{R}), denoted M(K).

Theorem. Let $\Gamma = \{z(t) : a \leq t \leq b\}$ be (the trace of) a quasi-simple curve γ . Then Γ has Minkowski content iff γ is rectifiable (in which case $M(\Gamma) = L(\gamma)$).

Upper Mink: content.

$$\limsup_{\delta \to 0^+} \frac{|K^\delta|}{2\delta} =: M^*(K)$$

lower

$$\liminf_{\delta \to 0^+} \frac{|K^\delta|}{2\delta} =: M_*(K).$$

Proposition. $T = \{z(t) : a \leq t \leq b\}$ quasi simple. If $M_*(\Gamma) < \infty$, then γ is rectifiable and $L(\gamma) \leq M_*(\Gamma).$

Proposition. $\Gamma = \{z(t) : a \le t \le b\}$ rectifiable γ . Then $M^*(\Gamma) \le L(\gamma)$.

Proof of Prop. 1, for simple curves. Obs: $\Gamma = \{z(t) : a \le t \le b\}$ any curve. $\Delta = |z(b) - z(a)|$.

Take any partition P of [a,b). $L_P = \sum_{j=1}^N |z(t_j) - z(t_{j-1})|$. Given $\varepsilon > 0, \exists N$ proper closed subintervals $I_j = [a_j, b_j] \subset (t_{j-1}, t_j)$:

$$\sum_{j=1}^N |z(b_j) - z(a_j)| \le L_P - \varepsilon$$

 $I_1,...,I_N \text{ disjoint} \Rightarrow \Gamma_1,...,\Gamma_N \text{ disjoint because } \Gamma \text{ is simple.} \Leftrightarrow \Gamma_1^\delta,...,\Gamma_N^\delta \text{ disjoint, provided } \delta > 0$ small enough.

$$\bigcup_{j=1}^N \Gamma_j^\delta \subset \Gamma^\delta$$

$$|\Gamma^\delta| \geq \sum_{i=1}^N |\Gamma_j^\delta| \geq 2\delta \sum_{i=1}^N |z(t_j) - z(t_{j-1})| \geq 2\delta(L_p - \varepsilon)$$

Isoperimetric inequality (soft) $\gamma:[a,b]\to\mathbb{R}^2,\ \gamma\in C^1(a,b):\gamma'(s)\neq 0 \forall s,\ \gamma(a)=\gamma(b).$ Arclength parametrization: $\gamma:[0,L]\to\mathbb{R}^2,\ |\gamma'(s)|=1 \forall s.$

Theorem. $\Gamma \subset \mathbb{R}^2$ simple colsed C^2 curve of length L. A area of the region enclosed by Γ .

$$A = \frac{1}{2} |\int_{\Gamma} > (x \, \mathrm{d}y - y \, \mathrm{d}x)| = \frac{1}{2} |\int_{0}^{L} (x(s)y'(s) - x'(s)y(s)) \, \mathrm{d}s.$$

Then $4\pi A \leq L^2$. Equality iff Γ is a circle.

Proof. wlog (rescale) $L = 2\pi$.: WTS $A \le \pi$, equality iff Γ is a circle of radius 1. $\gamma : [0, 2\pi] \to \mathbb{R}^2, \ s \mapsto \gamma(s) = (x(s), y(s))$ arclength par. $x'(s)^2 + y'(s)^2 = 1 \forall s$.:

$$\frac{1}{2\pi} \int_0^{2\pi} (x'(s)^2 + y'(s)^2) \, \mathrm{d}s = 1$$

 Γ closed $\Rightarrow x(s), y(s)$ 2η -periodic.

$$x'(s) = \sum_n a_n ine^{ins}$$

$$y'(s) = \sum_n b_n ine^{ins}$$

 $Parseval \Rightarrow$

$$\sum_{n \in \mathbb{Z}} n^2 (|a_n|^2 + |b_n|^2) = 1$$

$$A = \frac{1}{2} \int_0^{2\pi} (x(s)y'(s) - x'(s)y(s)) \, \mathrm{d}s | = \pi | \sum_{n \in \mathbb{Z}} n(a_n \bar{b}_n - b_n \bar{a}_n) |$$

by bilinear Parseval

$$\begin{split} |a_n\overline{b}_n-b_n\overline{a}_n| &\leq 2|a_n||b_n| \leq |a_n|^2 + |b_n|^2 \\ A &\leq \pi \sum_{n \in \mathbb{Z}} n^2(|a_n|^2 + |b_n|^2) \leq \pi \end{split}$$

Cases of equality: $A = \pi \Rightarrow$

$$x(s) = a_{-1}e^{-is} + a_0 + a_1e^{is}$$

$$y(s) = b_{-1}e^{-is} + b_0 + b_1e^{is}$$

 $\begin{array}{l} x,y \text{ real-valued} \Rightarrow a_1 = \bar{a}_{-1}, \ b_1 = \bar{b}_{-1}. \ (**) \Rightarrow 2(|a_1|^2 + |b_1|^2) = 1. \\ (***) \Rightarrow \end{array}$

$$|a_1|=|b_1|=\frac{1}{2}.:\quad a_1=\frac{1}{2}e^{i\alpha}\quad b_1=\frac{1}{2}e^{i\beta}\quad (\alpha,\beta\in\mathbb{R})$$

$$1 = 2|a_1\bar{b}_1 - \bar{a}_1b_1| = \sin(\alpha - \beta)|.: \quad \alpha - \beta = \frac{k\pi}{2} \pmod{k}$$

$$x(s) = a_0 + \cos(s + \alpha)$$

$$y(s) = b_0 \pm \sin(s + \alpha)$$

 \pm dep. on parity of $\frac{k-1}{2}$.

13

Isoperimetric inequality (hard) $\Omega \subset \mathbb{R}^2$ bounded, open, $\partial \Omega = \bar{\Omega} - \Omega =: \Gamma$ rectifiable curve (not nec. simple) with length $l(\Gamma)$.

Theorem.

$$4\pi |\Omega| < l(\Omega)^2$$

Proof. inner:

$$\Omega^{\delta}_{-} = \{ x \in \mathbb{R}^2 : d(x, \mathbb{R}^2 \ \Omega) \ge \delta \}$$

outer:

$$\begin{split} \Omega_+^\delta &= \{x \in \mathbb{R}^2: \, \mathrm{d}(x,\bar{\Omega}) < \delta\} \\ \Gamma^\delta &= \{x: \, \mathrm{d}(x,\Gamma) < \delta\} \\ \Omega_+^\delta &= \Omega^\delta \, \dot{\cup} \Gamma >^\delta \end{split}$$

 $A,B\subset\mathbb{R}^d,\ A+B=\{a+b:a\in A,b\in B\}$ Note: $\Omega+B_\delta\subset\Omega_+^\delta,\ \Omega_-^\delta+B_\delta\subset\Omega.$ Brunn-Minkowski: $A,B\subset\mathbb{R}^2$ meas., A+Bmeas.

$$|A+B|^{\frac{1}{2}} \ge |A|^{\frac{1}{2}} + |B|^{\frac{1}{2}}$$

$$\begin{split} |\Omega_{-}^{\delta}| &\geq (|\Omega|^{\frac{1}{2}} + |B_{\delta}|^{\frac{1}{2}})^{2} \geq |\Omega| + 2|\Omega|^{\frac{1}{2}} \underbrace{|B_{\delta}|^{\frac{1}{2}}}_{=(\pi\delta^{2})^{\frac{1}{2}}} \\ |\Omega| &\geq (|\Omega_{-}^{\delta}|^{\frac{1}{2}} + |B_{\delta}|^{\frac{1}{2}})^{2} \geq |\Omega_{-}^{\delta}| + 2|\Omega_{-}^{\delta}|^{\frac{1}{2}}|B_{\delta}|^{\frac{1}{2}} \\ |\Gamma^{\delta}| &\geq |\Omega| + 2|\Omega|^{\frac{1}{2}}\sqrt{\pi} - |\Omega| + |\Omega_{-}^{\delta}|^{\frac{1}{2}}\sqrt{\pi} \\ & \lim\sup_{\delta \to 0^{+}} \frac{|\Gamma^{\delta}|}{2\delta} \geq 2|\Omega|^{\frac{1}{2}}\sqrt{\pi} \\ 4\pi|\Omega| &\leq M^{*}(\Gamma)^{2} \leq l(\Gamma)^{2} \end{split}$$

Note, that only in the very last inequality did we use the rectifiability of Γ .

Brunn-Minkowski ineq. (\mathbb{R}^d) $A, b \subset \mathbb{R}^d$ measurable. $A + B = \{a + b : a \in A, b \in B\}$. $\lambda A = \{\lambda a : a \in A\} \ (\lambda > 0).$

Q.: Can |A + B| be controlled in terms of |A|, |B|? No! There exist sets A, B |A| = |B| = 0with |A+B|>0. Example $[0,1]\times[0,1]$. Another example $A=B=C\subset[0,1]$ Cantor set. Then A + B = [0, 2].

Q.: Can $|A+B|^{\alpha} \geq c_{\alpha}(|A|^{\alpha}+|B|^{\alpha})$ hold? (for some $\alpha>0$ with $c_{\alpha}<\infty$, indep of A,B) Best possible $c_{\alpha} = 1$.

What about α ? Convex sets play a role. A = convex, $B = \lambda A$. $|B| = |\lambda A| = \lambda^d |A|$. $|A+B|=|A+\lambda A|=|(1+\lambda)A|=(1+\lambda)^d|A|$ because A is convex.

 $\begin{array}{l} (\lambda_1 A + \lambda_2 A = (\lambda_1 + \lambda_2) A \text{ iff } A \text{ is convex.}) \\ |A + B|^{\alpha} \geq |A|^{\alpha} + |B|^{\alpha} \text{ iff } (1 + \lambda)^{d\alpha} \geq 1 + \lambda^{d\alpha} \Rightarrow \alpha \geq \frac{1}{d}. \end{array}$

 $(a+b)^{\gamma} \ge a^{\gamma} + b^{\gamma} \forall a, b \ge 0, \ \gamma \ge 1.$

Candidate inequality:

$$|A + B|^{\frac{1}{d}} \ge |A|^{\frac{1}{d}} + |B|^{\frac{1}{d}}$$

(BM)

A, B measurable $6 \Longrightarrow A + B$ measurable. Take $[0, 1] \times$ nonmeasurable.

(i) $A, B \text{ closed} \Rightarrow A + B \text{ measurable}$

- (ii) $A, B \text{ compact} \Rightarrow A + B \text{ compact}$
- (iii) $A, B \text{ open} \Rightarrow A + B \text{ open}$

Theorem. (BM) holds if A, B, A + B measurable.

- (i) A, B rectangles with sidelengths $\{a_j\}_{j=1}^{\infty}, \{b_j\}_{j=1}^{\infty}$
- (ii) A, B unions of fifinely many rectangles with disjoint interiors.
- (iii) A, B open sets of finite measure
- (iv) A, B compact
- (v) A, B, A + B measurable.

Proof. (i) (BM) becomes

$$\prod_{j=1}^d (a_j + b_j)^{\frac{1}{d}} \geq \prod_{j=1}^d a_j^{\frac{1}{d}} + \prod_{j=1}^d b_j^{\frac{1}{d}}$$

 $a_j\to \lambda_l a_j,\ b_j\to \lambda_j b_j.$ Both sides are multiplied by $(\lambda_1\lambda_2...\lambda_d)^{\frac{1}{d}}\colon$ wglog can assume $a_j+b_j=1\forall j$ (Choose $\lambda_j=a_j+b_j)$

AMGM:

$$\begin{split} \prod_{j=1}^d a_j^{\frac{1}{d}} & \leq \frac{1}{d} \sum_{j_1}^d a_j \\ \prod_{j=1}^d b_j^{\frac{1}{d}} & \leq \frac{1}{d} \sum_{j_1}^d b_j \\ \prod a_j^{\frac{1}{d}} + \prod b_j^{\frac{1}{d}} & \leq \frac{1}{d} \sum_{j=1}^d (a_j + b_j) = 1 \end{split}$$

(ii) Induction on n= numeber of rectangles in A and B. Choose pair of disjoint rectangles R_1,R_2 in A. Can rotate s.t. R_1 and R_2 are separated by hyperplane $\{x_j=0\}$. R_1 lies in $A_+=A\cap\{x_j\geq 0\},\ A_I=A\cap\{x_j\leq 0\}.$

Rem.: Both A_+,A_- contain at leas one less rectangle than $A,\,A=A_+\subset A_-$ and $A_B\cap A_-$ has measure zero.

Now: translate B s.t. B_{-} and B_{+} satisfy

$$\frac{|B_{\pm}|}{|B|} = \frac{|A_{\pm}|}{|A|}$$

 $(A_+ + B_+) \cup (A_- + B_-) \subset A + B$ Number of rectangles in A_+ and B_+ , number of rectangles in A_- and B_- is < n.

$$\begin{split} |A+B| &\geq |A_{+}+B_{-}| + |A_{-}B+_{-}| \geq (|A_{+}|^{\frac{1}{d}} + |B_{+}|^{\frac{1}{d}})^{d} + (|A_{-}|^{\frac{1}{d}} + |B_{-}|^{\frac{1}{d}})^{d} \\ &= (|A_{+}|(1 + (\frac{|B_{+}|}{|A_{+}|})^{\frac{1}{d}})^{d} + |A_{-}|(1 + (\frac{|B_{-}|}{|A_{-}|})^{\frac{1}{d}})^{d} = (|A_{+}| + |A_{-}|)(1 + (\frac{|B|}{|A|})^{\frac{1}{d}})^{d} \\ &= (|A|^{\frac{1}{d}} + |B|^{\frac{1}{d}})^{d}. \end{split}$$

(iii) Open sets of finite measure A,B. $\forall \varepsilon > 0 \exists A_{\varepsilon}, B_{\varepsilon}$ finet unions of parallel rectangles with disjoint interiors. $A_{\varepsilon} \subset A, B_{\alpha} \subset B, |A| \leq |A_{\varepsilon}| + \varepsilon, |B| \leq |B_{\varepsilon}| + \varepsilon.$

$$|A+B| \ge |A_{\varepsilon}+B_{\varepsilon}| \ge (|A_{\varepsilon}|^{\frac{1}{d}}+|B_{\varepsilon}|^{\frac{1}{d}})^{d} \ge ((|A|-\varepsilon)^{\frac{1}{d}}+(|B|-\varepsilon)^{\frac{1}{d}})^{d}$$
. Let $\varepsilon \to 0^+$, done.

- (iv) A, B compact. Let $A^{\varepsilon} = \{x : d(x, A) < \varepsilon\}$. $A + B \subset A^{\varepsilon} + B^{\varepsilon} \subset (A + B)^{2\varepsilon}$
- (v) A, B, A + B measurable: usi inner regularity of Lebesque measure.

Remark. A,B open sets of finite positive measure. Equality in (BM) iff A,B convex and similar. $\exists \delta > 0 \exists h \in \mathbb{R}^d: A = \delta B + h \ (A \text{ convex iff } \lambda_i A + \lambda_2 A = (\lambda_1 + \lambda_2) A)$

Consequences for isoperimetric inequality $A \subset \mathbb{R}^d$ bounded open with smooth boundary. $(\partial A, B \subset \mathbb{R}^d \text{ ball } |B| = |A|)$

$$|\partial A| = \lim_{\varepsilon \to 0^+} \frac{|A + \varepsilon B| - |A|}{\varepsilon}$$

Isoper ineq.: $|\partial A| \ge |\partial B|$.

Proof.

$$\frac{|A+\varepsilon B|-|A|}{\varepsilon} \geq \frac{(|A|^{\frac{1}{d}}+|\varepsilon B|^{\frac{1}{d}})^d-|A|}{\varepsilon} = \frac{(1+\varepsilon)^d-1}{\varepsilon}|B| \to d|B| = |\partial B|$$

for $\varepsilon \to 0$.

Better: $A \subset \mathbb{R}^d$ has finite perimeter (\iff $1_A \in \mathrm{BV}(U),\ U \subset \mathbb{R}^d$ bdd open)

$$\frac{\mathcal{H}^{d-1}(\partial A)}{|A|^{\frac{d-1}{d}}} \geq \frac{\mathcal{H}^{d-1}(S^{d-1})}{|B^d(0,1)|^{\frac{d-1}{d}}}$$

Hausdorff measure Q: How does a set replicate under scaling? $E \to nE = E_1 \cup ... \cup E_m$ disjoint congruent copies of E. Examples: line $m=n^1$, square $m=n^2$, cube $m=n^3$, Cantor set $3C=C_1 \cup C_2$ $2=3^{\alpha} \iff \alpha=\frac{\log 3}{\log 2}$

 $\#(\varepsilon)$ =least # of segments that arise from such poygonal lines. Γ rectifiable iff $\#(\varepsilon) \sim \varepsilon^{-1}$ as $\varepsilon \to 0^+$. If $\#(\varepsilon) \sim \varepsilon^{-\alpha}$ ($\alpha > 1$) In this case, say " Γ has dim α ". Snowflake has $\alpha = \frac{\log 4}{\log 3} > 1$. Upshot: $E \alpha > 1$. $m_{\alpha}(E) = \alpha$ -dimensional mass of E among sets of "dimension" α .

- $\alpha > \dim(E) \Rightarrow m_{\alpha}(E) = 0$
- $\alpha < \dim(E) \Rightarrow m_{\alpha}(E) = \infty$
- $\alpha = \dim(E)$ interesting

R. Gardener Bulletin AMS more about Brunn-Minkowski, geometrically, including more proofs, e.g. with induction of the dimension.

Hausdorff measure $E \subset \mathbb{R}^d$ any subset.

$$m_{\alpha}^*(E) := \lim_{\delta \to 0^+} \underbrace{\inf\{\sum_k (\operatorname{diam} F_k)^{\alpha} : E \subset \bigcup_{k=1}^{\infty} F_k \operatorname{diam}(F_k) \leq \Delta\}}_{H_{\alpha}^{\delta}(E)}$$

exterior/outer α -dim Hausdorff measure.

Remark. $H_{\alpha}^{\delta}(E) \leq H_{\alpha}^{\delta}(E) \leq m_{\alpha}^{*}(E) (\forall \delta > 0)$. $H_{\alpha}^{\delta}(E)$ increases when δ ecreases. $:m_{\alpha}^{*}(E) = \lim_{\delta \to 0^{+}} H_{\alpha}^{\delta}(E)$ exists

Remark. Coverings must be by sets of arb. small measure. (If we allowed the δ to be arbitrary then two parallel lines would get the same 1d-measure as one of them.)

Remark (Skaling). "The measure of a set should scale like its dimension". E.g.: $\Gamma \subset \mathbb{R}^d$ smoot cureve of length L sim $\lambda\Gamma$ has length λL . $Q \subset \mathbb{R}^d$ cube sum λQ has measure $\lambda^d|Q|$. |F| scaled by $\lambda \Rightarrow$ (diamF) $^{\alpha}$ scaled by λ^{α}

Properties

- (i) $E_1 \subset E_2 \Rightarrow m_{\alpha}^*(E_1) \leq m_{\alpha}^*(E_2)$
- (ii) $\{E_j\} \subset \mathbb{R}^d$ countable family of sets $\Rightarrow m_\alpha^*(\bigcup_{j=1}^\infty E_j) \leq \sum_{j=1}^\infty m_\alpha^*(E_j)$
- $\text{(iii) (Finite additility) inf}_{x\in E_1,y\in E_1}\left|x-y\right| = \,\mathrm{d}(E_1,E_2) > 0 \Rightarrow m_\alpha^*(E_1\cup E_2) = m_\alpha^*(E_1) + m_\alpha^*(E_2)$

Proof. ETS \geq . Fix $0 < \varepsilon < \operatorname{d}(E_1, E_2)$. Given any cover of $E_1 \cup E_2$ with sets F_1, F_1 ... of diam $\leq \delta < \varepsilon$, let $F_j' = F_j \cap E_1$, $F_j'' = F_j \cap E_2$.

$$\sum (\operatorname{diam}_j F_j')^\alpha + \sum_j (\operatorname{diam} F_j'')^\alpha \leq \sum_k \operatorname{diam} (F_k)^\alpha$$

Take inf over all covers, let $\delta \to 0^+$, done.

 m_{α}^* satisfies all properties of a Caratheodory outer measure $:m_{\alpha}^*$ is a countabley additive maisure when restricted to Borel sets, call it $m_{\alpha} = \alpha$ -dim Hausdorff measure.

(iv) $\{E_i\}$ countable family of disjoint Borel sets \Rightarrow

$$m_{\alpha}(\dot{\bigcup}_{j=1}^{\infty}E_{j})=\sum_{i=1}^{\infty}m_{\alpha}(E_{j})$$

(v) Hausdorff masure is invariant under translation and rotations. It scales like:

$$m_{\alpha}(\lambda E) = \lambda^{\alpha} m_{\alpha}(E)$$

- (vi) $m_0(E) = \#E$, $m_1(E) = |E|$ (=1D LEbesgue measure of E), $E \subset \mathbb{R}$ Borel.
- (vii) $E \subset \mathbb{R}^d$ Borel, $m_{\alpha}(E) \simeq |E|$

Proof. (i) Isodiametric inequality: $|E| \leq v_d (\frac{\text{diam}E}{2})^d$, v_d volume of the unit ball in \mathbb{R}^d . Prove first for sets E = -E and then something hard.

(ii) Covering argument: Given $\varepsilon, \delta > 0$, there exists a covering of E by balls $\{B_j\}$: $\operatorname{diam} B_j < \delta, \ \sum_i |B_j| \le |E| + \varepsilon$

$$H_d^\delta(E) \leq \sum_j (\operatorname{diam} B_j)^d = c_d \sum_j |B_j| \leq c_d (|E| + \varepsilon),$$

let $\delta, \varepsilon \to 0^+$, get one of the inequalities.

(viii) if $m_{\alpha}^*(E) < \infty$ and $\beta > \alpha$, then $m_{\beta}^*(E) = 0$. If $m_{\alpha}^*(E) > 0$ and $\beta < \alpha$, then $m_{\beta}^(E) = \infty$.

Proof.
$$\operatorname{diam} F < \delta, \beta > \alpha \Rightarrow (\operatorname{diam} F)^{\beta} = (\operatorname{diam} F)^{\beta-\alpha} (\operatorname{diam} F)^{\alpha} < \delta^{\beta-\alpha} (\operatorname{diam} F)^{\alpha}$$

Consequence: Given $E \subset \mathbb{R}^d$ Borel, $\exists ! \alpha$ such that

$$m_{\beta}(E) = \begin{cases} \infty & \beta < \alpha \\ 0\beta > \alpha \end{cases}$$

 $\alpha = \sup\{\beta: m_\beta(E) = \infty\} = \inf\{\beta: m_\beta(E) = 0\} := \text{Hausdorff dimension of } E = \dim E$

At the critical value $\alpha = \dim E \ 0 \le m_{\alpha}(E) \le \infty$. If E is bounded and the enequalities are strict, we say that E has strict Hausdorff dimension α .

Theorem. The Cantor set $C \subset [0,1)$ has strict Hausdorff dimensios $\frac{\log 2}{\log 3}$.

ETS: $0 < m_{\alpha}(C) \le 1$

Proof. $m_{\alpha}(C) \leq 1$: $C = \bigcap C_k$ where each C_k is a finite union of 2^k inetrvals of length 3^{-k} .. Given $\delta > 0$ coose k large enough tuch tht $3^{-k} < \delta$. C_k covers C and Consists of 2^k intervals of diameter $3^{-k} < \delta$. $H_{\alpha}^{\delta}(C) \leq 2^k (3^{-k})^{\alpha} = 1$, let $\delta \to 0^+$, done. $m_{\alpha}(C) > 0$:

Lemma. $E \in d$ compact, $f : E \to \mathbb{R}$ γ -Hölder,

$$|f(x)-f(y)| \leq m|x-y|^{\gamma} \quad (\forall x,y \in E) \quad 0 < \gamma \leq 1$$

Then

- (i) $m_{\beta}(f(E)) \leq M^{\beta} m_{\alpha}(E)$ if $\beta = \frac{\alpha}{\gamma}$.
- (ii) $\dim f(E) \leq \frac{1}{\gamma}\dim(E)$

Proof. $\{F_k\}$ countable family of sets that overs $E:\{f(F_k\cap E)\}$ covers f(E). diam $f(F_k\cap E)\leq M(\operatorname{diam} F_k)^{\gamma}$.

$$\sum_k (\operatorname{diam} f(E \aleph F_k))^{\frac{\alpha}{\gamma}} \leq M^{\frac{\alpha}{\gamma}} \sum_k (\operatorname{diam} F_k)^{\alpha},$$

done. and 1 implies 2.

Lemma. The Cantor-Lebesgue function $F: C \to [0,1]$ is $\gamma = \frac{\log 2}{\log 3}$ -Hölder.

 $\textit{Proof. } \text{Goal: } |F(x) - F(y)| \leq c|x - y|^{\gamma} \ \forall x,y \in C.$

 $F_n \text{ increases at most } 2^{-n} \text{ on an interval of length } 3^{-n}. \text{ } \therefore \text{ slope } \leq (\frac{3}{2})^n \text{ } \therefore |F_n(x) - F_n(y)| \leq (\frac{3}{2})^n |x - y|. \text{ } |F_n(x) - F(x)| \leq 2^{-n}. \text{ Given } x,y \text{ chose } n \text{: } 3^n |x - y| \sim 1, \text{ } 3^\gamma = 2.$

$$|F(x) - F(y)| \leq |F_n(x) - F_n(y)| + |F_n(x) - F(x)| + |F_n(y) - F(y)| \leq (\frac{3}{2})^n |x - y| + 2 \cdot 2^{-n} \leq c 2^{-n} = c (3^{-n})^{\gamma} \leq c' |x - y|^{\gamma} + (c' + 1)^{-n} |x - y| + (c' + 1)^{-n} |x - y$$

Apply LEmma 1 with $E=C,\ f=F,\ \gamma=\frac{\log 2}{\log 3}\Rightarrow 1=m_1([0,1])\leq Mm_{\alpha}(C),\ \dim C=\frac{\log 2}{\log 3}$

Rectifiable curves

Theorem. $\gamma:[a,b]\to\mathbb{R}^d$ continuous and simple. Then γ is rectifiable iff $\Gamma=\{\gamma(t):a\leq t\leq b\}$ has strict Hausdorff dimension equal to 1. $m_1(\Gamma)=l(\gamma)$.

Proof. \Rightarrow : Let γ be rectifiable of length L. Consider acrlength parametrization $\tilde{\gamma}$. $\Gamma = \{\tilde{\gamma}(s) : 0 \leq s \leq L\}$.

$$|\tilde{\gamma}(s_1) - \tilde{\gamma}(s_2)| \le |s_1 - s_2|$$

By Lemma 1 (i) $m_1(\Gamma) \leq L$. Wh $m_1(\Gamma) \geq L$?

$$\Gamma_i = \{ \gamma(t) : t_i \le t \le t_{i+1} \}$$

$$\Gamma = \bigcup_{j=1}^{N-1} \Gamma_j \quad m_1(\Gamma) = \sum_{j=0}^{N-1} m_1(\Gamma_j)$$

Claim: $m_1(\Gamma_j) \geq l_j := |\gamma(t_j) - \gamma(t_{j+1})|$

Proof.
$$\pi: \mathbb{R}^2 \infty \mathbb{R}$$
 $(x,y) \mapsto x$ Lipschitz, $\pi(\Gamma_j) \subset [0,l_j]$ Lemma 1 (i) implies the claim.

$$\div m_1(\Gamma) \geq \sum m_1(\Gamma_j) \geq \sum l_j, \ L := \sup_p \sum l_j \div m_1(\Gamma) \geq L, \ \text{done}. \ \ \Box$$

Geometric aspects of harm ana. 10.11.16 #7 . (1
Radon transforms
R(f)(+, y)= Spen f. where
C. Ind ID tER. TESO-1CRd
Pty = 3x Rd: Xoy = t3 hyperplane inner pr.
Psiv, 5=0.
Pty equipped with material (d-1)-dim. Leb. measure, denoted by Md-1 (coincides with (d-1)-Hausdorff measure)
Remarks [] $f \in C_0(\mathbb{R}^d) =)$ f integrable an every P_{tiy} = $p(f)(f_{tiy})$ defined for every (f_{tiy}) . ($p(f)$ count. f ch. of (f_{tiy}) epoly $p(f)$ in f
(ii) f=L1(Rd) => f may fail to be measurable integrable On Same Pt, & (-) R(fl(Hx) not defined.)
(iii) $f = \chi_{E}$ (ECIRd mb.) => $R(f)(t, \chi) = m_{d-1}(E_{t,\chi})$ $E_{t,\chi} = E_{f} P_{E,\chi}$ if $E_{t,\chi}$ measurable. Look instead at maximal Radon transform:
R*(f)(g)=Sup R(f)(tip)].
-> Want to study LP-mapping properties of R in order to study regularity of subsets of Rd.

Thu. $1 \in C^{2}(\mathbb{R}^{d}), n \geq 3$: $\int_{S^{d-n}} \mathcal{R}^*(f)(x) d\sigma_y \leq C \left(\|f\|_{C^2(\mathbb{R}^d)} + \|f\|_{L^2(\mathbb{R}^d)} \right).$ til. I beeds Rem. i) necessary conditions: ·) feL1: f(x) = (1+1x1d-1)-1 e (2/L1) (Rd) ifd>3 f is not integrale in any plane PEIT. ·) fel?: fε(x)= (|x|+ε)-d+δ if |x|=1, δ∈(91) fixed. Let E-sot to see that (*) fails if 11.11/2 On the RHS is not there (->f EL2 gives (ocal confrd.) Key: Interplay between Radon and Fourier transform. + + LEIR dal variable. Fourier transform: R(f)(l, r)= for R(f)(t, r) e-2 milt dt Lemma 1 fe Co (Rd), y ESd-1: R(f)(1, y) = f(18). Proof & (18)= IRd f(x) e-271 ix-lloldx = 500 (Spd-nf(u,t)du) e-zmilt dt. = 500 (Spf)e-zmilt dt. Choose coordinates X=(u,t), t= x. J= x, ER, N= (x1, --, Xd-1) € Rd-1.

ES (July 15(1)12/1/1/2 dx) 12/5B · (Jul 1/1-d+1 de) 1/2 < 00 if -d+1x-1 (=) d≥3. V => first estimate.

1F(t)-F(tz) = 500 F(1) (e2111th - e2411tz) d1 - Sulsa 3 = Cx A Ha-tzlax - eix Lipschike) + Sulan } = 1tn-tz/ \ Sulan 1\(\alpha(\lambda) 1 \lambda \lam < (SIF(X)12/1/2-1/1) NZ - () MI-q+1+2x d1) roo it ox = { for \$z 3. Proof of Thm. For each yesd-1, (ef F(F)=RG)(Gy) = $SQP |F(f)| = \mathcal{R}^*(f)(\gamma)$. Let $A(X) = \sup_{x \in \mathbb{R}} |\hat{F}(x)|, B(X) = \int_{-\infty}^{\infty} |\hat{F}(x)|^2 ||x||^{d-1} dx$ Lemma 3 5 Sup |F(H)| = C(A(X) + B(X))assumptional LETR Lemma 1 =) $\hat{F}(\lambda) = \hat{R}(f)(\lambda, \gamma) = \hat{f}(\lambda \gamma) = iA(\gamma) \leq ||f||_{L^1(\mathbb{R}^d)}$ Lemma 2 =) Scd-1 B2(7) 16g = 2 If 1/2(Rd). We have SUP /FCH)12 = C1 (A2(y)+B2(y)) Integrate both sides:

SR*(f1(x)2d6x & SA2(x)d6x + SB2(x)d6x

Sd-2 = 11/11/2 = 11/1/3 Use Hölder, because 5 (IIf 112+ 11f112)2 112 *(f) 112 5 Sod R*(f) (y) 26 Gg.

Kegularity of sets when d≥3. ECRd meas. Eir= Enfty (Evaries,) Fubini => Etix is Md-1-measurable for a.e. t timber (Etry) is a measurable feth of t. Thm. 2 ECRd (d23) of finite measure. Then for a.e. ye Sd-1; (i) Exy is Man-measurable for every t. (ii) Exy Man (Exy) is a cont. fct. of t. Morcover, this form is X-Hölder tae (0, 1/2). Cor. 23, ECRd of Lebesgue mensure 2010. Then, for a.e. yESd-1, the slice Ety has zero measure for every teR. Prop. d=3, fe(L1nL2)(Rd). Then for a.e. XESd-1: i) f is meas and int. on the plane for every teR. ii) to R(f)(try) is cont. end x-Hölder if X=1.
Moreover, Estimate (x) from Thm. 1 holds for f. Ren. Prop. implies Thm. 2 by taking Char. form of E. R(XE) (tix)=Md-1 (Etrx).
We skip the proof of Prop. (follows from Thm. 1 using Some delicate measure theory.) What about d=2? Given fe La(R2), define $\Re f(f)(t,y) = \frac{2}{28} \int_{t-s}^{t-8} \Re (f)(s,y) ds.$ (averaged X.) (integration over thickened Line Ehypoplane).) $=\frac{2}{28}\int_{\{t-S\leq x\cdot \gamma\leq t+\delta\}}f(x)\,dx.$

Thm. 3 $f \in C_0^0(\mathbb{R}^2)$, $0 < \delta \le 1/2$. $\int_{S^1} \mathbb{R}^*_{\delta}(f)(\chi) d\delta_{\chi} \le (\log \frac{1}{\delta})^{1/2} \cdot (\|f\|_{L^2(\mathbb{R}^2)} + \|f\|_{L^2(\mathbb{R}^2)})$

Theorem. $f \in C_0^0(\mathbb{R}^2), \ 0 < \delta \leq \frac{1}{2}$. Then

$$\int_{S^1} R_{\delta}^*(f)(\gamma) \, \mathrm{d}\sigma_{\gamma} \lesssim (\log \frac{1}{\delta})^{\frac{1}{2}} (\|f\|_{L^1(\mathbb{R}^2)} + \|f\|_{L^2(\mathbb{R}^2)})$$

Proof of Theorem. Modified version of lemma 3: Setting

$$F_{\delta}(t) = \int_{-\infty}^{\infty} \hat{F}(\lambda) (\frac{e^{2\pi i (t+\delta)\lambda} - e^{2\pi i (t-\delta)\lambda}}{2\pi i \lambda (2\delta)}) \,\mathrm{d}\lambda$$

Suppose $\sup_{\lambda \in \mathbb{R}} |\hat{F}(\lambda)| \le A$ and $\int_{-\infty}^{\infty} |\hat{F}(\lambda)|^2 |\lambda|^{d-1} d\lambda \le B^2$.

$$\sup_{t} |F_{\delta}(t)| \lesssim (\log \frac{1}{\delta})^{\frac{1}{2}} (A + B)$$

$$F_{\delta}(t) = \int_{-\infty} \infty = \int_{|\lambda| < 1} + \int_{|\lambda| > 1} \le cA + \int_{1 < |\lambda| < \frac{1}{3}} |\hat{F}(\lambda)| \, \mathrm{d}\lambda + \frac{c}{\delta} \int_{|\lambda| > \frac{1}{3}} |\hat{F}(\lambda)| |\lambda|^{-1} \, \mathrm{d}\lambda = I + II$$

CS:

$$I \lesssim (\int_{\mathbb{R}} |\hat{F}(\lambda)|^2 |\lambda| \,\mathrm{d}\lambda)^{\frac{1}{2}} (\int_{1 < |\lambda| \leq \frac{1}{\delta}} |\lambda|^{-1} \,\mathrm{d}\lambda)^{\frac{1}{2}} \leq B (\log \frac{1}{\delta})^{\frac{1}{2}}$$

$$II \lesssim \frac{c}{\delta} (\int_{\mathbb{R}^2} |\hat{F}(\lambda)|^2 |\lambda| \,\mathrm{d}\lambda)^{\frac{1}{2}} (\int_{|\lambda| > \frac{1}{\delta}} |\lambda|^{-3} \,\mathrm{d}\lambda)^{\frac{1}{2}} \lesssim B$$

Theorem. There exists a subset $K \subset \mathbb{R}^2$ such that

- (i) K is compact
- (ii) K has Lebesgue measure zero
- (iii) K contains a translate of every unit line segment

Theorem. Suppose F is any set that satisfies conditions (i) and (iii) from Theorem 1. Then F has Hausdorff dimension 2.

Proof of Theorem 2. Let F be a Kakeya set. Fix $0 < \alpha < 2$. Let $F \subset \bigcup_{i=1}^{\infty} B_i$ be a covering with balls B_i of diameter $\leq \delta$. It is enough to show

$$\sum (\,\mathrm{diam}B_i)^\alpha \geq c_\alpha > 0$$

for $\alpha < 2$.

Case 1: Assume diam $B_1 = \delta \leq \frac{1}{2}$ and let $N < \infty$ be the number of balls in the covering. WTS $N\delta^{\alpha} \geq c_{\alpha}$. $B_i^* = \text{double of } B_i$. $F^* = \bigcup_i B_i^*$. $|F^*| \leq \sum |B_i^*| = cN\delta^2$. F Kakeya $\Rightarrow \forall \gamma \in S^1 \exists s_{\gamma} \perp \gamma$ unit lime segment: $s_{\gamma} \subset F$. $s_{\gamma}^{\delta} \subset F^*$. $\therefore R_{\delta}^*(\chi_{F^*})(\gamma) \geq 1 \ (\forall \gamma \in S^1)$. Take $f = \chi_{F^*}$ in (*). Since $L^2 \subset L^1$,

$$\|\chi_{F^*}\|_{L^1} \lesssim \|\chi_{F^*}\|_{L^2} = |F^*|^{\frac{1}{2}} \lesssim N^{\frac{1}{2}}\delta.$$

 $(*) \Rightarrow 0 < c \leq (\log \tfrac{1}{\delta})^{\frac{1}{2}} N^{\frac{1}{2}} \delta. \text{ This implies } N \delta^{\alpha} \geq c_{\alpha} > 0.$

Case 2: General case. $F \subset \bigcup_{i=1}^{\infty} B_i$ with each ball B_i of diameter ≤ 1 . For each $k \in \mathbb{N}$, let N_k be the number of balls in $\{B_i\}$ with diameter $B_k \sim 2^{-k}$, i.e. $\in [2^{-k-1}, 2^{-k}]$. WTS

$$\sum_{k=0}^{\infty} N_k 2^{-k\alpha} \ge c_{\alpha} > 0.$$

ETS $\exists k': N_{k'} 2^{-k'\alpha} \geq c_{\alpha}.$

$$\begin{split} F_k &= F \cap (\bigcup_{\mathrm{diam}B_i \sim 2^{-k}} B_i) \\ F_k^* &= \bigcup_{\mathrm{diam}B_v \sim 2^{-k}} B_i^* \\ |F^*| &< c N, 2^{-2k} \quad \forall k \end{split}$$

F Kakeya $\Rightarrow \forall \gamma \in S^2 \exists s_\gamma \perp \gamma : s_\gamma \subset F$ (in particular $m_1(s_\gamma \cap F) = 1$). Key: For some k, a large proportion of s_γ belongs to F_k . Pick $\{a_k\}_{k=0}^\infty$ such that $0 \leq a_k < 1$ 1, $\sum_{\epsilon} a_k = 1$, (a_k) dos not nend to 0 too quickly, e.g. $a_k = c_{\varepsilon} 2^{-k\varepsilon}$ (for sufficiently small ε .

$$\exists k: m_1(s_\gamma\cap F_k)\geq a_k.$$

Otherwise $m_1(s_\gamma\cap F)\leq \sum_k m_1(s_\gamma\cap F_k)<\sum a_k=1,$ contradicts (**) For this value of k,

$$R_{2^{-k}}^*(\chi_{F_{k}^*})(\gamma) \ge a_k.$$

Since this choice of k depends on γ , let

$$E_k = \{ \gamma \in S^1 : R_{2^{-k}}^*(\chi_{F_*^*})(\gamma) \ge a_k \}.$$

 $S^1 = \bigcup_{k_1}^\infty E_k.$ Therefore $\exists k': |E_{k'}| \geq 2\pi a_{k'}.$

$$2\pi a_{k'}^2 = 2\pi a_{k'} a_{k'} \le \int_{E_{k'}} a_{k'} \,\mathrm{d}\sigma \le_{S^1} R_{2^{-k'}}^*(\chi_{F_{k'}^*})(\gamma) \,\mathrm{d}\sigma_\gamma$$

$$2^{-2k^{\varepsilon}} \sim a_{k'}^2 < c(\log 2^{k'})^{\frac{1}{2}} |F_{k'}^*|^{\frac{1}{2}} < c(\log 2^{k'})^{\frac{1}{2}} N_{k'}^{\frac{1}{2}} 2^{-k'}$$

 $\Rightarrow N_{k'} 2^{-\alpha k'} \ge c_{\alpha}$, provided $4\varepsilon < 2 - \alpha$.

Construction of a Kakeya set I (Stein-Shakarchi, III)

Thinner Cantor set, always taking away the half.

Take two of them, E_0, E_1 , where E_1 has twice the length. Put E_0 on y=1 and E_1 on y=0. Let F be the union of all line segments that join a point in E_0 with one in E_1 .

Construction of an ε -Kakeya set (Stein)

Theorem. Given $\varepsilon > 0, \ \exists N = N_{\varepsilon} \ and \ 2^{N} \ rectangles \ R_{1},...,R_{2^{N}} \ with \ side \ lengths \ 1 \times 2^{-N} \ such \ rectangles \ R_{1},...,R_{2^{N}} \ with \ side \ lengths \ 1 \times 2^{-N} \ such \ rectangles \ R_{1},...,R_{N} \ with \ side \ lengths \ N = N_{N} \ such \ rectangles \ R_{N} \ such \ rectangles \ rectangles \ R_{N} \ such \ rectangles \ rectangles \ R_{N} \ such \ rectangles \ rectangle$ that

$$|\bigcup_{i=1}^{2^N} R_j| < \varepsilon$$

(ii) the reaches \tilde{R}_i are mutually disjoint, i.e.

$$|\bigcup_{j=1}^{2^N} \tilde{R}_j| = 1$$

Proof. Fix $\alpha \in (\frac{1}{2}, 1)$. Symmetric triangle ABC with M opposite C. Push the right part into the left part and call the resulting body $\Phi(T)$. It consists of heart $\Phi_h(T)$ and arms $\Phi_a(T)$. Then

$$\begin{split} |\Phi_h(T)| &= \alpha^2 |T| \\ |\Phi_a(T)| &= 2(1-\alpha)^2 |T| \end{split}$$

Conclusion

$$|\Phi(T)|=(\alpha^2+2(1-\alpha)^2)|T|$$

n-fold iteration (Peron trees): Split not into two but 2^n parts and do everything pairwise. Key: right side of $\Phi_h(A_0A_2C)$ // left side of $\Phi_n(A_2A_4C)$ // CA_2

Then look at heart/arms again.

$$\begin{split} |\text{arms of } \Psi_1(ABC)| &\leq 2(1-\alpha)^2 |T|. \\ |\text{heart of } \Psi_1(ABC)| &= \alpha^2 |T| \\ \therefore |\Psi_1(ABC)| &= (\alpha^2 + 2(1-\alpha)^2) |T|. \end{split}$$

Iterate: Carry out this process on the heart of $\Psi_1(ABC)$ with n replaced by n-1, given are the union of 2^{n-1} triangles.

Then retranslate all 2^n original triangles to obtain figure $\Psi_2(ABC)$.

$$\begin{split} |\text{heart of } \Psi_2(ABC) &= \alpha^2 \alpha^2 |T| \\ |\text{additional arms of } \Psi_2(ABC)| &\leq 2(1-\alpha)^2 \alpha^2 |T| \\ |\Psi_n(ABC)| &\leq (\alpha^{2n} + 2(1-\alpha)^2 + 2(1-\alpha)^2 \alpha^2 + \ldots + 2(1-\alpha)^2 \alpha^{2n-2}) \\ &\leq \alpha^{2n} + 2(1-\alpha)^2 \sum_{\substack{n=0 \\ =\frac{1}{1-\alpha^2}}}^{\infty} \alpha^{2n} \\ &\leq \alpha^{2n} + 2(1-\alpha) \end{split}$$

Figure 1: Obtaining mutually disjoint reaches by reflecting in C.

Figure 2: Go from triangles to rectangles by placing rectangles into the triangles with half the length.

Application Maximal functions and counterexamples. Q: Given a collection $\mathcal{C} = \{C\}$ of sets, for which class of functions do we have

$$\lim_{\operatorname{diam}(C) \to 0, \ c \in \mathcal{C}} \frac{1}{|C|} \int_C f(x-y) \, \mathrm{d}y = f(x) \quad x-\text{a.e.}?$$

Seen:

$$(M_{\mathcal{C}}f)(x) = \sup_{c \in \mathcal{C}} \frac{1}{|C|} \int_{C} |f(x) - y)| \,\mathrm{d}y$$

 $\mathcal{C}=\{\text{balls}\},$ weak-type (1,1) inequality for $M_{\mathcal{C}}\Rightarrow$ a.e. convergence of averages. A converse also holds!

 $\{\mathrm{d}\mu_j\}_{j=1}^\infty$ collection of finite, nonnegative measures on $\mathbb{R}^d: \mathrm{supp}(\mu_j) \subset K \in \mathbb{R}^d$. Define the maximal operator

$$(Mf)(x) = \sup_{i} |f * \mu_j|(x).$$

Proposition. $1 \leq p < \infty$. Assume for each $f \in L^p(\mathbb{R}^d)$ that $(Mf)(x) < \infty$ for some set of x having positive measure. Then $f \mapsto Mf$ is of weak-type (p,p), i.e.

$$\exists A < \infty : |\{x \in \mathbb{R}^d : (Mf)(x) > \alpha\}| \le \frac{A}{\alpha^p} \|f\|_{L^p} \quad (\forall \alpha > 0)$$

Lemma. $\{E_j\}$ collection of subsets of a fixed compact set:

$$\sum_{j=1}^{\infty} |E_j| = \infty.$$

Then there exists a sequence of translates $F_i = E_i + x_i$:

$$\limsup F_j = \bigcap_{k=1}^{\infty} (\bigcup_{j=k}^{\infty} F_j) = \mathbb{R}^n \quad \text{(a.e.)}$$

The above set equals $\{x \in \mathbb{R}^d : x \in F_i \text{ infinitely often}\}.$

$$\lim\inf F_j = \bigcup_{k=1}^{\infty} (\bigcup_{j=k}^{\infty} F_j)$$

is a subset.

 $Proof\ of\ Lemma.\ \ Q\subset\mathbb{R}^d\ \ \text{unit cube.}\ \ A_1,A_2\subset Q.\ \ \text{Then}\ \ \exists h\in\mathbb{R}^d: |A_1\cap(A_2-h)|\geq 2^{-d}|A_1||A_2|.$ Why?

Figure 3: Translation of subsets A_1 and A_2 of a unit cube Q.

$$\begin{split} \eta(x) &= \int_{\mathbb{R}^d} \chi_{A_1}(y) \chi_{A_2}(x+y) \,\mathrm{d}y \sim \chi_{A_1} * \chi_{A_1}(x) \\ &\int_{\mathbb{R}^d} |A_1| |A_1| \\ &\mathrm{supp}(\eta) \subset Q^* \end{split}$$

 $|Q^*| = 2^d.$

$$\exists h \in Q^*: \eta(h) \geq \, \operatorname{avg}_{Q^*}(\eta) = \frac{1}{|Q^*|} \int_{\,\mathbb{R}^d} \eta = \frac{|A_1||A_2|}{2^d}$$

Wlog supp $(E_j) \subset Q$.

Step 2: There exist translates $F_j = E_j + x_j$ that cover Q at least once.

$$Q \subset \bigcup_j F_j$$

Why? $F_1=E_1$. Suppose (inductively) that $F_1,...,F_{j-1}$ have been constructed. Let $A_1=Q\cap (F_1\cup...\cup F_{j-1})^{\mathbb{C}}$ and $A_2=E_j$. Step $1\Rightarrow \exists h:|A_1\cap (A_2-h)|\geq 2^{-d}|A_1||A_2|$. Set $F_j=A_2-h=E_j-h$. Let $p_j=|Q\cap (F_1\cup...\cup F_j)|$. Then

$$\begin{split} p_j &= p_{j-1} + |\underbrace{Q \cap (F_1 \cup \ldots \cup F_{j-1})^{\complement}}_{A_1} \cap \underbrace{F_j}_{A_2 - h}| = p_{j-1} + |A_1 \cap (A_2 - h)| \\ &\geq p_{j-1} + 2^{-d}|A_1||E_j| = p_{j-1} + 2^{-d}(1 - p_{j-1})|E_j| \\ & \therefore p_j - p_{j-1} \geq 2^{-d}(1 - p_{j-1})|E_j| \end{split}$$

$$\sum_{j=2}^{\infty}(p_j-p_{j-1})=\lim_{j\to\infty}p_j-p_1..\lim_jp_j=1$$

Step 3: Decompose (twice) $\{E_j\}$ into a countable infinite number of subcollections so that on each subcollection the sum of the measures diverges.

Proof of Proposition. Take a ball B such that $B \supset Q + K$. $\operatorname{supp}(F) \subset Q \Rightarrow \operatorname{supp}(F * \mu_j) \subset \operatorname{supp}(Mf) \subset B$. Key: Estimate (*) (the violation of the weak type estimate) holds if $\operatorname{supp}(f) \subset Q$. For each $k, \exists \alpha_k > 0 \exists g_k \subset L^p : \operatorname{supp}(g_k) \subset Q$ such that

$$|\{x\in B: Mg_k(x)>\alpha_k\}|\geq \frac{2^k}{\alpha_k^p}\|g_k\|_{L^p}^p$$

Replace g_k by $\tilde{g}_k = \frac{k}{\alpha_k} g_k$.

$$\frac{2^k}{k^p} \le \frac{|\{x \in B : M\tilde{g}_k(x) > k\}|}{\|\tilde{g}_k\|_{L^p}^p} \to \infty \quad \text{as} k \to \infty$$

:. There exists a sequence $\{f_k\}\subset L^p$ and a sequence of constants $R_k\to\infty$ such that with $E_k=\{x\in B:Mf_k(x)>R_k\}$ we get

$$\sum_k |E_k| = \infty \qquad \sum_k \|f_k\|_{L^p}^p < \infty.$$

Remark. $d\mu_j \geq 0 \text{ wlog } f_k \geq 0.$

By the lemma $\exists \{x_k\}$ such that $F_k = E_k + x_k$ satisfy $\limsup F_k = \mathbb{R}^d$ (a.e). Let

$$\tilde{f}_k(x) = f_k(x + x_k), \qquad F(x) = \sup_k \tilde{f}_k(x)$$

Then

$$M(F) = \sup_j |F * \mu_j| = \sup_j |(\sup_k \tilde{f}_k) * \mu_j| \geq \sup_k \sup_j |\tilde{f}_k * \mu_j| = \sup_k M(\tilde{f}_k)$$

Also $M(\tilde{f}_k) > R_k$ on $F_k : M(F) = \infty$ a.e. Check $f \in L^p$:

$$|F|^p = |\sup_k \tilde{f}_k|^p \le \sum_p |\tilde{f}_k|^p$$

$$\|F\|_{L^p}^p \leq \sum_k \|f_k u|_{L^p}^p < \infty$$

Full conclusion

$$f = \sum f \chi_{Q_j} =: \sum f_j$$

$$M(f) \leq \sum_j M(f_j)$$

Example. Rectangles with arbitrary orientation

 $\mathcal{C} = \mathcal{R} = \{all \text{ rectangles in } \mathbb{R}^2 \text{ centered at } 0\}$

Corollary. Given $1 \leq p < \infty, \exists f \in L^p(\mathbb{R}^n)$ such that

$$\limsup_{\operatorname{diam}(R) \to 0 R \in \mathcal{R}} \frac{1}{|R|} \int_R f(x-y) \, \mathrm{d}y = \infty \quad (x-\text{a.e.})$$

Idea: Use the $\varepsilon\textsc{-Kakeya}$ set to show that M is not weak (p,p)

$$(Mf)(x) = \sup_{\operatorname{diam}(R) < 8} \frac{1}{|R|} |\int_R f(x-y) \, \mathrm{d}y|$$

Let $E=\bigcup_{j=1}^{2^N}R_j$ as before. $\|\chi_E\|_{L^p}^p=|E|<\varepsilon$. If $x\in \tilde{R}_j$, then \exists rectangle R such that

- R is centered at x
- $\operatorname{diam}(R) \leq 8$
- $\bullet \ |R\cap R_j| \geq \tfrac{1}{12}|R|$

$$y\in x-E=-(E-x),\ y-x\in -E,\ x-y\in E$$

$$M(\chi_E)(x) \geq \! \int_{R-x} \chi_E(x-y) \, \mathrm{d}y = \frac{|(R-x) \cap (E-x)|}{|R|} \geq \frac{1}{12}$$

Conclusion: $M\chi_E \geq \frac{1}{12}$ on the set $\bigcup_{j=1}^{2^N} \tilde{R}_j$ (of measure 1)

$$\forall A>0 \; \exists \; \mathrm{set} \; E: |\{x\in \mathbb{R}^d: M\chi_E>\alpha\}| \leq A\alpha^{-p}\|\chi_E\|_{L|p}^p$$

does not hold! :M is not of weak typ (p,p).

Note, that this is not the complete proof. Therefore still have to replace 8 by δ .

Bochner-Ries summability Q: In which way does Fourier inversion hold? (In $L^p(\mathbb{R}^d)$)

$$f(x) = \int_{\mathbb{R}^d} \widehat{f}(\xi) e^{2\pi i x \xi} \, \mathrm{d}\xi = \lim_{R \to \infty} \underbrace{\int_{|\xi| < R} \widehat{f}(\xi) (1 - \frac{|\xi|^2}{R^2})^{\delta} e^{2\pi i x \xi} \, \mathrm{d}\xi}_{f * k_{\delta}}?$$

for suitable $\delta \geq 0$.

$$\delta > \frac{d-1}{2} \Rightarrow k_{\delta} \in L^{1}(\mathbb{R}^{d})$$

$$\delta \leq \frac{d-1}{2}$$

$$\delta = 0 \text{ today}$$

d=1: The second equality holds in L^p -norm (1 boundedness of Hilbert transform

It also holds a.e. (p=2 Carleson '66 $1 Hunt '68) <math>d \ge 2$ Let us only consider norm convergence

$$\begin{split} f \mapsto (S^{\delta}f)(x) &= \int_{|\xi| \le 1} \hat{f}(\xi) (1 - |\xi|^2)^{\delta} e^{2\pi i x \xi} \, \mathrm{d}\xi \\ Sf(x) &= \int_{|\xi| \le 1} \hat{f}(\xi) e^{2\pi i x \xi} \, \mathrm{d}\xi \\ \widehat{Sf} &= 1_{|\xi| \le 1} \hat{f} \end{split}$$

$$(\widehat{Hf} = i\pi \operatorname{sgn} \xi \widehat{f})$$

$$\|Sf\|_{L^2(\mathbb{R}^d)} = \|\widehat{Sf}\|_{L^2} = \|1_{|\xi| < 1} \widehat{f}\|_{L^2} \le \|\widehat{f}\|_{L^2} = \|f\|_{L^2}$$

He said something about every bounded operator can be written like this or so? Fourier multiplier S is bounded iff multiplier function is bounded.

Theorem (C.Fefferman '71 – Annals of mathematics "The multiplier problem for the ball"). Suppose $q \geq 2$ and $p \neq 2$. Then the operator S (initially defined on $L^p \cap L^2$) is not extendable to a bounded operator from $L^p(\mathbb{R}^d)$ to itself.

Proof. Let $B \subset \mathbb{R}^d$ ball, let S_B be the multiplier orator associated to B:

$$\widehat{S_B f} = 1_B \widehat{f}$$
.

Given $u \in S^{d-1} \subset \mathbb{R}^d$, let S^n be the multiplier operator associated to the half-space with normal

 $\widehat{S^u f} = 1_{\{\xi u > 0\}} \widehat{f}$ $(S^u f)(x) = \int_{\{\xi u > 0\}} \widehat{f}(\xi) e^{2\pi i x \xi} \, d\xi$

Upshot: L^p -bound for S implies an L^p vector-valued inequality for S_B s and S_u s.

Lemma (Y. Méyer). Suppose

$$||Sf||_{L^p} \le A_p ||f||_{L^p}$$

 $\underbrace{f\in (L^2\cap L^p)(\mathbb{R}^d)} \text{ holds for some } p\in [1,\infty]. \text{ Suppose } f_1,...,f_M\in L^2\cap L^p,\ u_1,...,u_M\in S^{d-1}\subset \mathbb{R}^d.$

$$\|(\sum_{j=1}^{M}||S^{u_j}(f_j)|^2)^{\frac{1}{2}}\|_{L^p(\mathbb{R}^d)} \le A_p \|(\sum_{j=1}^{M}|f_j|^2)^{\frac{1}{2}}\|_{L^p(\mathbb{R}^d)} \tag{4}$$

where A_n is the same constant as above.

Proof of Lemma. Step 1: $B = B_R = \text{ball of radius } R$ centered at 0. Then

$$\|S_B(f)\|_{L^p} \le A_p \|f\|_{L^p} \quad (g \in L^2 \cap L^p) \tag{5}$$

Why? Scaling:

$$\delta_R(g)(x) = g(\frac{x}{R})$$

Check $\delta_{R^{-1}}\circ S\circ \delta_R=S_{B_R}$ since $S=S_{B_1}.$ $\hat{\delta}_{\rho}(g)(\xi)=R^d\hat{g}(R\xi).$ Step 2: M balls. $(p<\infty)$ $f=(f_1,...,f_M)$ given M-tuple of functions. $T(f):=(Tf_1,...,Tf_M).$ Given a unit vector $\omega=(\omega_1,...,\omega_M)\in\mathbb{C}^M,$ let

$$S_{\omega}(f) = \sum_{j=1}^{M} \bar{\omega}_{j} S_{B}(f_{j}) = S_{B}(\sum_{j} \bar{\omega}_{j} f_{j}) = S_{B}(f_{\omega}) \qquad f_{\omega} = \sum_{j=1}^{M} \bar{\omega}_{j} f_{j}$$

$$(5) \Rightarrow \int_{\mathbb{R}^{d}} |S_{\omega} f(x)|^{p} dx \leq A_{p}^{k} \int_{\mathbb{R}^{d}} |f_{\omega}(x)|^{p} dx$$

$$(6)$$

 $(S_{\omega}f)(x)=?. \ x,y\in\mathbb{C}^M,\ \langle x,y\rangle=\sum_{i=1}^Mx_i\bar{y}_i$

$$\begin{split} S_{\omega}(f)(x) &= S_{B}(f_{\omega})(x) = S_{B}(\sum_{j=1}^{M} \bar{\omega}_{j} f_{j})(x) = \sum_{j=1}^{M} \bar{\omega}_{j} S_{B}(f_{j})(x) | = |\langle S_{B}(f)(x), \omega \rangle| \\ &= |S_{B}(f)(x)| |\langle \frac{S_{B}(f)(x)}{|S_{B}(f)(x)|}, \omega, \rangle| = (\sum_{j=1}^{M} |S_{B}(f_{j})(x)|^{2})^{\frac{1}{2}} |\varphi(\omega, S_{B}(f)(x))| \end{split}$$

Integrate both sides of (6) with respect to ω (before integrating in x).

LHS =
$$\int_{\mathbb{R}^d} \left(\int_{|\omega|=1} |S_{\omega}(f)(x)|^p d\omega \right) dx$$
=
$$\int_{\mathbb{R}^d} \left(\sum_{j=1}^M |S_B(f_j)(x)|^2 \right)^{\frac{p}{2}} \underbrace{\left(\int_{|\omega|=1} |\Phi(\omega, S_B(f)(x)|^p d\omega \right) dx}_{\gamma_p} \right) dx$$

$$0 \neq \gamma_p = \int_{|\omega|=1} |\Phi(\omega, 1)|^p d\omega$$

For fixed $\nu \in S^{d-1}$ $\int_{S^{d-1}} |\langle \omega, \nu \rangle|^p d\sigma_\omega = \omega_{d-2} \int_{-1}^1 (1-t^2)^{\frac{d-3}{2}} dt$.

$$\mathrm{RHS} = \int_{\mathbb{R}^d} (\sum_{j=1}^M |f_j(x)^2)^{\frac{p}{2}} \, \mathrm{d}x \gamma_p$$

$$(6) \Rightarrow \|(\sum_{i=1}^M |S_B(f_j)|^2)^{\frac{1}{2}}\|_{L^p(\mathbb{R}^d)} \leq A_p \|(\sum_{i=1}^M |f_j|^2)^{\frac{1}{2}}\|_{L^p(\mathbb{R}^d)}$$

Step 3: From balls to half-spaces

 B_R^u = ball of radius R centered at Ru. Upshot: $B_R^u \to \{\xi u > 0\}$ as $R \to \infty$.

$$\begin{split} (T_y f)(x) &= f(x-y) \\ \widehat{T_y f}(\xi) &= e^{i\xi y} \widehat{f}(\xi) \\ S_{B_R^u}(f)(x) &= e^{2\pi i u R x} S_{B_R}(f e^{-2\pi i u R x}) \end{split}$$

(4) implies

$$\|(\sum |S_{B_p^{u_j}}(f_j)|^2)^{\frac{1}{2}}\|_{L^p} \leq A_p \|(\sum |f_j|^2)^{\frac{1}{2}}\|_{L^p}$$

Let $R \to \infty$ to finish:

$$\label{eq:sum} \dot{\cdot\cdot} S_{B_R^{u_j}}(f_j) \to S^{u_j}(f_j) \quad R \to \infty (\text{ in } L^2)$$

 \div there exists an almost everywhere converging subsequence, done.

 $\widehat{Sf} = 1_{B(0,1)}\widehat{f}$. S is not bounded in $L^p(\mathbb{R}^d)$ unless d=1 or p=2. Focus on multiplier operator for the half-space (S^u) , d=1.

$$(S^{+}f)(x) = \int_{0}^{\infty} \hat{f}(\xi)e^{2\pi ix\xi} d\xi \quad (f \in L^{2})$$

$$|(S^{+}f)(x)| \ge \frac{c}{|x|} \quad \text{if } |x| \ge \frac{1}{2}$$
(7)

Proof.

$$(S^+f)(x) = \lim_{\varepsilon \to 0} \int_0^\infty \hat{f}(\xi) e^{2\pi i (x+i\varepsilon)\xi} \,\mathrm{d}\xi \quad \text{in } L^2$$

$$\int_{-\infty}^\infty (\int_0^\infty e^{-2\pi i y \xi} e^{2\pi i (x+i\varepsilon)\xi} \,\mathrm{d}\xi) f(y) \,\mathrm{d}y = \frac{1}{2\pi i} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{y-x-i\varepsilon} \,\mathrm{d}y$$

This has absolute value $\lesssim c|x|$ if $|x| \geq \frac{1}{2}$. Alternative proof: $|H(f)(x)| \geq |x|^{-1}$ for large $x, S^+ = \frac{1}{2}(I+iH)$.

For
$$R = (-\frac{1}{2},\frac{1}{2}) \times (-\frac{1}{2^{N+1}},\frac{1}{2^{N+1}})$$

$$1_R=1_{(-\frac{1}{2},\frac{1}{2})}\otimes 1_{(-2^{-(N+1)},2^{-(N+1)})}$$

If u points in the direction of x_1 then

$$\begin{split} (S^u 1_R)(x_1,x_2) &= (S^+ 1_{(-\frac{1}{2},\frac{1}{2})})(x_1) 1_{(-2^{-(N+1)},2^{-(N+1)})}(x_2) \\ \\ (7) &\Rightarrow |S^u (1_R)| \geq c' 1_{\tilde{K}} \end{split}$$

Similarly for any 1×2^{-N} rectangle R_j . $u_j \in S^1$ in the positive direction of the longest side of R_j . Rotate and translate, then we get

$$|S^{u_j}(1_{R_j})| \ge c' 1_{\tilde{R}_j} \tag{8}$$

Take $R_1, ..., R_{2^N}$ to be the collection given by ε -Kakeya construction, plug that into result from lemma, get a contradiction.

Key: p < 2 and d = 2.

Lemma with $f_j = 1_{R_j}$ and $M = 2^N$

$$\begin{split} c' &\leq \|(\sum_{j=1}^{2^N} |S^{u_j}(1_{R_j})|^2)^{\frac{1}{2}}\|_{L^p(\mathbb{R}^2)} & (8), \ |\bigcup \tilde{R}_j| = 1 \\ &\leq A_p \|(\sum_{j=1}^{2^N} |1_{R_j}|^2)^{\frac{1}{2}}\|_{L^p(\mathbb{R}^2)} = A_p (\underbrace{\int_E (\sum_{j=1}^{2^N} |1_{R_j}|^2)^{\frac{p}{2}} \, \mathrm{d}x})^{\frac{1}{p}} \end{split}$$

$$\begin{split} I &\leq |E|^{\frac{1}{q}} (\int (\sum |1_{R_j}|^2)^{\frac{p}{2}\frac{2}{p}} \,\mathrm{d}x)^{\frac{1}{p}\frac{p}{2}} \qquad \text{H\"older} \\ &= |E|^{\frac{1}{q}} \sum_{j=1}^{2^N} |R_j| = |E|^{\frac{1}{q}} \end{split}$$

$$E = \bigcup_{j=1}^{2^N} R_j, \quad |E| < \varepsilon, \quad \frac{1}{q} + \frac{1}{p/2} = 1, \quad \frac{1}{q} = 1 - \frac{p}{2}, \quad \frac{1}{pq} = \frac{1}{p}(1 - \frac{p}{2}) > 0$$

In the end we get

$$c' \leq A_p \varepsilon^{\frac{1}{pq}}.$$

Let $\varepsilon \to 0^+$ to finish.

d > 2:

$$f_j(\underbrace{x}_{\in \mathbb{R}^d}) = f_j(x_1, x_2, \underbrace{x'}_{\in \mathbb{R}^{d-2}}) = 1_{R_j}(x_1, x_2) f(x') \quad f \in S(\mathbb{R}^{d-2})$$

p > 2:

$$\langle Sf,g\rangle = \langle \widehat{Sf},\hat{g}\rangle = \langle 1_B\hat{f},\hat{g}\rangle = \langle \hat{f},1_B\hat{g}\rangle = \langle f,Sg\rangle \quad S=S^*$$

Oscillatory integrals in harmonic analysis Stein (VIII,IX), Stein-Shakarchi (Chapter 8), Sogge

- averaging operators
- restriction theory
- Bochner-Riesz summability

Motivation (in \mathbb{R}^3)

$$(Af)(x) = \int_{\mathbb{S}^2} f(x - y) d\sigma_y = \frac{1}{4\pi} f * \sigma(x)$$

 σ surface measure in \mathbb{S}^2 .

Smoothing properties:

$$\|\frac{\partial}{\partial x_i} A(f)\|_{L^2(\mathbb{R}^3)} \lesssim \|f\|_{L^2(\mathbb{R}^3)} \quad (j = 1, 2, 3) \tag{9}$$

 $f \in L^2 \Rightarrow$

$$\|f*\sigma\|_{L^2} \leq \|f\|_{L^2} \underbrace{|\sigma|(\mathbb{R}^3)}_{<\infty}$$

(use Minkowski integral inequality) $: f * \sigma \in L^2$ if $f \in L^2$.

Idea
$$(\widehat{f * \sigma}) = \widehat{f}\widehat{\sigma}$$

$$(\widehat{\frac{\partial}{\partial x_j}A(f)})(\xi)=\xi_j\widehat{f}(\xi)\widehat{\sigma}(\xi),$$

so we should study $\hat{\sigma}$.

without loss of generality $\xi = (0,0,|\xi|)$ because the integral is spherically symmetric.

$$\begin{split} \hat{\sigma}(\xi) &= \int_{\mathbb{S}^2} e^{-2\pi i \omega \xi} \, \mathrm{d}\sigma_\omega = 2\pi \int_0^\pi e^{-2\pi i |\xi| \cos \theta} \sin \theta \, \mathrm{d} = 2\pi \int_{-1}^1 e^{2\pi i |\xi| t} \, \mathrm{d}t = \frac{2 \sin(2\pi |\xi|)}{|\xi|} \\ t &= \cos \theta \quad \mathrm{d}t = \sin \theta \, \mathrm{d}\theta \end{split}$$

$$|\hat{\sigma}(\xi)| \lesssim (1 + |\xi|)^{-1}$$

(9) follows from this and Plancherel.

This also generalizes to higher dimensions. There we get a factor $(1-t^2)^{\frac{d-3}{2}}$ in the last integral.

Oscillatory integrals

$$I(\lambda) = \int_{\mathbb{R}^d} e^{i\lambda\phi(x)} \psi(x) \, \mathrm{d}x$$

where $\lambda \in \mathbb{R}$ is the oscillatory parameter, $\phi \in C^{\infty}(\mathbb{R}^d, \mathbb{R})$ the phase and $\psi(x) \in C$ the amplitude. Q.: How does $I(\lambda)$ behave for large $|\lambda|$? General principle: Main contribution comes from the critical points of the phase, $x_0 : \nabla \phi(x_0) = 0$.

Principle of non-stationary phase $\phi \in C^{\infty}$, $\psi \in C_0^{\infty} : |\nabla \phi(x)| > 0 \ (\forall x \in \operatorname{supp} \psi)$. Then for any $N \in \mathbb{N}$

$$|I(\lambda)| \le c_N |\lambda|^{-N}$$

Proof. involves integration by parts

d = 1:

$$I_1(\lambda) = \int_a^b e^{i\lambda\phi(x)} \,\mathrm{d}x$$

$$0 < a < b < \infty$$
 $\psi(x) = \chi_{[a,b]}(x)$ which is rough!

This means we will not get such a fast decay

Lemma (van der Corput (I)). $\phi \in C^2$, ϕ' monotonic, $|\phi'(x)| \ge 1$ ($\forall x \in [a,b]$). Then

$$|I_1(\lambda)| \leq \frac{3}{|\lambda|} \quad (\forall \lambda > 0)$$

Remark. (i) 3 is neither important nor sharp; independence of a, b, ϕ is the key!

- (ii) Order of decrease in λ is sharp $(\phi(x)=x \dot{\cdot} I_1(\lambda)=\frac{e^{i\lambda b}-e^{i\lambda a}}{i\lambda})$
- (iii) monotonicity of ϕ' is essential

Proof. Integrate by parts(...)

What if critical points are present? (d = 1)

 $x_0: \phi'(x_0)=0$ (critical point) and $\phi''(x_0)\neq 0$ (non degenerate), e.g. $\phi(x)=x^2,\ x_0=0$. In this case

$$\int_{\,\mathbb{R}}e^{i\lambda x^2}\psi(x)\,\mathrm{d}x=c_0\lambda^{\frac{-1}{2}}+\mathcal{O}(|\lambda|^{-\frac{3}{2}})=\sum_{k=0}^Na_x\lambda^{-\frac{1}{2}-k}+\mathcal{O}(|\lambda|^{-\frac{3}{2}-N})\quad (\forall N,\ \lambda\to\infty)$$

Lemma (van der Corput (II)). $\phi \in C^2[a,b], |\phi''(x)| \ge 1 \ (\forall x \in [a,b]).$ Then

$$|I_1(\lambda)| \le \frac{8}{\lambda^{\frac{1}{2}}} \quad (\forall \lambda > 0)$$

Remark. More generally: $\mathcal{O}(|\lambda|^{\frac{1}{k}})$ if $|\phi^{(k)}| \geq 1$.

Proof. Integration by parts not needed. Instead split up region in small area around critical point with properly chosen size, and rest, and then use results from above. \Box

Corollary. Same assumptions as van der Corput (II). $\psi \in C^1[a, b]$.

$$|\int e^{i\lambda\phi(x)}\psi(x)\,\mathrm{d}x| \le c_{\psi}\lambda^{-\frac{1}{2}}$$

Application: Asymptotics of Bessel functions

$$J_m(r) = \frac{1}{2\pi} \int_0^{2\pi} e^{ir\sin x} e^{-imx} \,\mathrm{d}x \quad \phi(x) = \sin x, \quad \psi(x) = e^{-imx} \quad (m \in \mathbb{Z})$$

Corollary.

$$|J_m(r)| \leq c r^{-\frac{1}{2}} \quad r \to \infty$$

Recall: Averaging operator in \mathbb{R}^d (d > 1) is

$$(Af)(x) = (f * \sigma)(x)$$
 σ surface measure on \mathbb{S}^{d-1}

Theorem. $f\mapsto A(f)$ is bounded from $L^2(\mathbb{R}^d)$ to $L^2_k(\mathbb{R}^d)$ with $=\frac{d-1}{2}$.

Proof.

$$\hat{\sigma}(\xi) = 2\pi |\xi|^{-\frac{d}{2}+1} \underbrace{J_{\frac{d}{2}-1}(2\pi |\xi|)}_{=\mathcal{O}(|\xi|^{-\frac{1}{2}}), |\xi| \to \infty}$$
$$\therefore |\hat{\sigma}(\xi)| = \mathcal{O}(|\xi|^{-\frac{d-1}{2}}) \quad |\xi| \to \infty$$

"What is van der Corput's lemma in higher dimension?" (Carbery-Wright, 2000)

$$I(\lambda) = \int_{\mathbb{R}^d} e^{i\lambda\phi(x)} \psi(x) \, \mathrm{d}x$$

(ϕ smooth, ψ smooth, compactly supported) nondegeneracy hypothesis

$$\det(\nabla^2 \phi)(x) \neq 0 \quad \forall x \in \operatorname{supp}(\psi)$$

Theorem. Under above assumptions

$$|I(\lambda)| = \mathcal{O}(|\lambda|^{-\frac{1}{2}}) \quad \lambda \to \infty$$

Remark. (i) Decay rate is sharp

(ii) Proof uses TT^* method: $|I(\lambda)|^2 = I(\lambda)\overline{I(\lambda)}$

(iii) variant: $\operatorname{rk}(\nabla^2 \phi) \geq m$ for some $0 < m \leq d$ on $\operatorname{supp}(\psi)$. Then

$$|I(\lambda)| = \mathcal{O}(|\lambda|^{-\frac{m}{2}})$$

Application: Fourier transform of surface-carried measures

Recall: $(\mathbb{S}^{d-1}, \sigma)$

$$|\hat{\sigma}(\xi)| \lesssim (1+|\xi|)^{-\frac{d-1}{2}}$$

(not a Bessel coincidence)

(local) C^{∞} -hypersurface M. After translation and rotation $x_0=0,\ T_{x_0}M=\{x_d=0\}.$ M can be represented as

$$M = \{(x', x_d) \in B \subset \mathbb{R}^d : x_d = \varphi(x')\}$$

Can arrange $\varphi(0) = 0 = (\nabla_{x'}\varphi)(x')|_{x'=0}$.

$$\varphi(x') = \frac{1}{2} \sum_{k,j=1}^{d-1} \underbrace{\frac{\partial^2 \varphi}{\partial x_k \partial x_j}}_{(a_{jk})} x_k x_j + \mathcal{O}(|x'|^3) = \frac{1}{2} \sum_{j=0}^{d-1} k_j x_j^2 + \mathcal{O}(|x'|^3)$$

 $\begin{array}{l} (a_{jk})\;(d-1)\times(d-1)\;\mathbb{R}\text{-valued symmetric matrix}\;\colon\;\mathrm{diagonizable.}\;k_{j}\;\mathrm{principal\;curvatures\;of}\;M\;\mathrm{at}\;x_{0}.\;k:=\prod_{j=1}^{d-1}k_{j}\;\mathrm{is\;the\;Gaussian\;curvature\;of}\;M\;\mathrm{at}\;x_{0}\;(k=\det(\nabla^{2}\varphi))\;\\ \mathrm{E.g.} \end{array}$

(i) $\mathbb{S}^{d-1} \subset \mathbb{R}^d$. $k_j = 1 \ (\forall j) : k = 1$

(ii)
$$\{x_3=\underbrace{x_1^2-x_2^2}_{\varphi(x_1,x_2)}\}\subset\mathbb{R}^3,\ \tfrac{1}{2}\nabla^2\varphi(x)=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$$

(iii) $\{x_1^2 = |x'|^2 : x \neq 0\}$, $x' \in \mathbb{R}^{d-1}$. d-2 identical nonvanishing principal curvatures $x_d^{-2} + 1$ vanishing principal curvature.

surface measure σ

$$\int_M f \mathrm{d}\sigma = \int_{\mathbb{R}^{d-1}} f(x', \varphi(x')) \underbrace{\sqrt{1 + |\nabla_{x'} \varphi(x')|^2} \, \mathrm{d}x'}_{\mathrm{d}\sigma \text{ in our coordinate sys.}}$$

$$d\mu = \psi d\sigma, \quad \psi \in C_0^{\infty}(M, \sigma)$$

is a surface carried measure.

$$\hat{\mu}(\xi) = \int_{M} e^{-2\pi i x \xi} \,\mathrm{d}\mu(x) = \int_{M} e^{-2\pi i x \xi} \psi(x) \,\mathrm{d}\sigma_{x}$$

is bounded on \mathbb{R}^d because $|\mu|(\mathbb{R}^d) < \infty$.

Theorem. Hypersurface $M \subset \mathbb{R}^d$ with nonvanishing Gaussion curvature at each point of $supp(\psi)$. Then

$$|\hat{\mu}(\xi)| = \mathcal{O}(|\xi|^{-\frac{d-1}{2}}), \quad |\xi| \to \infty$$

Corollary. If M has at last m non vanishing principal curvatures (at each point of $supp(\psi)$), then

$$|\hat{\mu}(\xi)\rangle| = \mathcal{O}(|\xi|^{-\frac{m}{2}}), \quad |\xi| \to \infty$$

Last time: oscillatory integrals and averaging operators

$$(Af)(x) = (F*\sigma)(x) = \int_{\mathbb{S}^{d-1}} f(x-y) \,\mathrm{d}\sigma_y \quad (d>1)$$

Smooth in property: $f\mapsto A(f)$ is bounded from $L^2(\mathbb{R}^d)$ to $L^2_k(\mathbb{R}^d)$ with $k=\frac{d-1}{2}.$ Here we used

$$|\hat{\sigma}(\xi)| \lesssim |\xi|^{-\frac{d-1}{2}}.$$

A few weeks ago:

$$R(f)(t.\gamma) = \int_{P_{t,\gamma}} f$$

where $P_{t,\gamma} = \{x \in \mathbb{R}^d : x\gamma = t\}.$

$$R^*(f)(\gamma) = \sup_{t \in \mathbb{R}} |R(f)(t, \gamma)|$$

if $d \geq 3$ then

$$\int_{Sd-1} R^*(f)(\gamma) \, d\sigma_{\gamma} \lesssim \|f\|_{L^2} + \|f\|_{L^2}$$

This estimate was based on

$$\int_{\mathbb{S}^{d-1}} \int_{-\infty}^{\infty} |\hat{R}(f)(\lambda, \gamma)|^2 |\lambda|^{d-1} \, \mathrm{d}\lambda \, \mathrm{d}\sigma_{\gamma} = 2 \int_{\mathbb{R}^d} |f(x)|^2 \, \mathrm{d}x$$

due to $\hat{R}(f)(\lambda, \gamma) = \hat{f}(\lambda \gamma)$. Consider d = 3 then this becomes

$$\int_{\mathbb{R}^2} \int_{\mathbb{R}} \left| \frac{\mathrm{d}}{\mathrm{d}t} R(f)(t,\gamma) \right|^2 \mathrm{d}t \, \mathrm{d}\sigma_{\gamma} = 8\pi^2 \int_{\mathbb{R}^3} |f(x)|^2 \, \mathrm{d}x \tag{10}$$

by Plancherel $t \leftrightarrow \lambda$. Note, that something like this also holds for higher dimensions.

Now consider the following "linearized" version of the Radon transform:

$$R_B(f) = \int_{\mathbb{R}^{d-1}} f(y', x_d - B(x', y')) \, \mathrm{d}y' = \int_M f$$

where $x=(x',x_d)\in\mathbb{R}^{d-1}\times\mathbb{R},\ y=(y',y_d)$ and $B:\mathbb{R}^{d-1}\times\mathbb{R}^{d-1}\to\mathbb{R}$ is a nondegenerate bilinear form, and

$$M_x = \{(y',y_d) \mid y_d = x_d - B(x',y')\}.$$

E.g. $B(x',y')=\langle x',y'\rangle$ (usual inner product on \mathbb{R}^d). $y_d=x_d-\langle x',y'\rangle\iff \langle x',y'\rangle+y_d=x_d\iff \langle (x',1),(y',y_d)\rangle=x_d.$ The map

$$\label{eq:define_def} \begin{split} \mathbb{R}^d & \to \{ \text{affine hyperplanes on } \mathbb{R}^d \} \\ x & \mapsto M_x \end{split}$$

is injective and surjective onto {hyperplanes not orthogonal to $M_0 = \{x_d = 0\}$ }. The excerpted collection of hyperplanes is lower dimensional, so we can think of R_B as a substitute for R.

An analogue of (10) is

$$\int_{\mathbb{R}^d} |\frac{\partial}{\partial x_3} R_B(f)(x)|^2 \, \mathrm{d}x = c_B \int_{\mathbb{R}^3} |f(x)|^2 \, \mathrm{d}x$$

for $f \in C_0^0(\mathbb{R})$

Proof.

$$\int_{\mathbb{R}^3} |\frac{\partial}{\partial x_3} R_B(f)(x)|^2 \,\mathrm{d}x = \int_{\mathbb{R}} \int_{\mathbb{R}^2} |\underbrace{(\frac{\partial}{\partial x_3} R_B(f))^{\wedge}(x',\xi_3)}_{=2\pi \xi_3 \int_{\mathbb{R}^2} e^{-2\pi i \xi_3 B(x',y')} \hat{f}(y',\xi_3) \,\mathrm{d}y'} |^2 \,\mathrm{d}x' \,\mathrm{d}\xi_3 \qquad x = (x',x_3)$$

The last equality follows from

$$\begin{split} \hat{R}_B(f)(x',\xi_3) &= \int_{\mathbb{R}} e^{-2\pi i \xi_3 x_3} R_B(f)(x',x_3) \, \mathrm{d}x_3 \\ &= \int e^{-2\pi i \xi_3 x_3} \int_{\mathbb{R}^2} f(y',\underbrace{x_3 - B(x',y')}_{y_3}) \, \mathrm{d}y' \, \mathrm{d}x_3 \\ &= \int \int_{\mathbb{R}^{2+1}} e^{-2\pi i \xi_3 (y_3 + B(x',y'))} f(y'y_3) \, \mathrm{d}y' \, \mathrm{d}y_3 \\ &= \int_{\mathbb{R}^2} e^{-2\pi i \xi_3 B(x',y')} \underbrace{\left(\int_{\mathbb{R}} e^{-2\pi i \xi_3 y_3} f(y',y_3) \, \mathrm{d}y_3\right)}_{\hat{f}(y',\xi_3)} \, \mathrm{d}y' \end{split}$$

Since B is nondegenetare $\exists C: \mathbb{R}^2 \to \mathbb{R}^2$ linear, invertible such that $B(x',y') = \langle C(x'),y' \rangle$. Changle variables $\xi_3 C(x') = u \in \mathbb{R}^2$ is well defined since C is invertible. $\vdots \xi_3 B(x',y') = \langle \xi_3 C(x'),y' \rangle = \langle u,y' \rangle \vdots \xi_3^2 | \det C | dx' = du$. Then the first integral becomes

$$\int_{\mathbb{R}} \int_{\mathbb{R}^2} |\int_{\mathbb{R}^2} e^{-2\pi i u y'} \hat{f}(y',\xi_3) \,\mathrm{d}y'|^2 \frac{\mathrm{d}u}{|\det C|} \,\mathrm{d}\xi_3 \simeq \int \int |\hat{f}(y',\xi_3)|^2 \,\mathrm{d}y' \,\mathrm{d}\xi_3 \simeq \int_{\mathbb{R}^3} |f(y)|^2 \,\mathrm{d}y$$

by 2D-Plancherel $y' \leftrightarrow u$ and 1D-Plancherel $\xi_3 \leftrightarrow y_3$.

Rotational curvature Both the averaging operator A and the Radon transform R_B are of the form $f\mapsto \int_{M_x} f(y)\,\mathrm{d}_x(y)$, where for each $x\in\mathbb{R}^d$ we have a manifold M_x (depending smoothly on x) over which we integrate.

 $A: M_x = x + M_0 M_0$ curved

 $R_B: \quad M_x = \{y = (y',y_d) \mid y' \in \mathbb{R}^{d-1}, \ y_d = x_d - B(x',y')\} \quad \text{flat but } M_x \text{ rotates as } x \text{ varies.}$

Start with a smooth "double defining" function $\rho = \rho(x,y)$ given in a ball in $\mathbb{R}^d \times \mathbb{R}^d$. Its rotational matrix is

$$M = M(\rho) = \begin{pmatrix} \rho & \frac{\partial \rho}{\partial y_1} & \dots & \frac{\partial \rho}{\partial y_d} \\ \frac{\partial \rho}{\partial x_1} & & & \\ \vdots & (\frac{\partial^2 \rho}{\partial x_j \partial y_k})_{j,k=1}^d & & \\ \frac{\partial \rho}{\partial x_d} & & & \end{pmatrix}$$

containing the mixed Hessian. The rotational curvature of ρ is

$$rotcurv(\rho) := det(M(\rho))$$

We want $\rho=0 \Rightarrow \operatorname{rotcurv}(\rho) \neq 0$. $M_x=\{y: \rho(x,y)=0\}$. The fact that $\nabla_y \rho \neq 0$ if $\rho=0$ implies that M_x is a smooth surface (or something like that).

Examples/Properties:

- (i) Translatior invariant case: $\rho(x,y)=\rho(x-y)$. $M_x=M_0+x$ and $\operatorname{rotcurv}(\rho)\neq 0$ iff M_0 has nonvanishing Gaussian curvature.
- (ii) Case of R_B : $\rho(x,y)=y_d-x_d+B(x',y')$. $\operatorname{rotcurv}(\rho)\neq 0$ iff B is nondegenerate.
- (iii) $\tilde{\rho}(x,y)=a(x,y)\rho(x,y)$ with $a(x,y)\neq 0$. Then $\tilde{\rho}$ is another defining function for $\{M_x\}$, and $\operatorname{rotcurv}(\tilde{\rho})=a^{d+1}\operatorname{rotcurv}(\rho)$
- (iv) $x\mapsto \psi_1(x),\ y\mapsto \psi_2(y)$ local diffeomorphisms of \mathbb{R}^d . For $\tilde{\rho}(x,y)=\rho(\psi_1(x),\psi_2(y))$ then $\operatorname{rotcurv}(\tilde{\rho})=J_1(x)J_2(y)$ rotcurv (ρ) with $J_k=\det\operatorname{jac}(\psi_k),\ k=1,2$

Define the general averaging operator A by

$$A(f)(x) = \int_{M_x} f(y)\psi_0(x,y) \,\mathrm{d}\sigma_x(y)$$

initially for $f \in C_0^0(\mathbb{R}^d)$. $M_x = \{y \mid \rho(x,y) = 0\}$ with induced Lebesgue measure $d\sigma_x$. ρ is a double defining function with $\operatorname{rotcurv}(\rho) \neq 0$. $\psi_0 \in C_0^\infty(\mathbb{R}^d \times \mathbb{R}^d)$.

Theorem. The operator A extends to a bounded linear map from $L^2(\mathbb{R}^d)$ to $L^2_k(\mathbb{R}^d)$ where $k = \frac{d-1}{2}$.

Proof. Step 1: Oscillatory integral operators (FIOs)

Step 2: L^2 estimate via dyadic decomposition of "almost-orthogonal" parts.

Step 1: Define

$$T_{\lambda}(f)(x) = \int_{\mathbb{R}^d} e^{i\lambda\varphi(x,y)} \psi(x,y) f(y) \,\mathrm{d}y$$

where $\varphi \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ and $\psi \in C_0^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ with

$$\det(\nabla^2_{x,y}\varphi) = \det(\frac{\partial^2\varphi}{\partial x_k\partial y_j})_{k,j=1}^d \neq 0 \quad \text{on } \operatorname{supp}(\psi)$$

last week:

$$I(\lambda) = \int_{\mathbb{R}^d} e^{i\lambda\varphi(y)} \psi(y) \,\mathrm{d}y \Rightarrow |I(\lambda)| \lesssim |\lambda|^{-\frac{d}{2}}$$

if det $\nabla^2 \varphi \neq 0$ on supp (ψ) . We used $|I(\lambda)|^2 = I(\lambda)\overline{I(\lambda)}$ where then appeared the term $\varphi(u + y) - \varphi(y)$.

Proposition. Under the above assumptions,

$$\|T_{\lambda}\|_{L^2\to L^2} \leq c\lambda^{-\frac{d}{2}} \quad \forall \lambda>0$$

Proof. Similar to its scalar version, omitted.

Consequence: For the corresponding oscillatory integral operator involving ρ

$$S_{\lambda}(f)(x) = \int_{\mathbb{R}\times\mathbb{R}^d} e^{i\lambda y_0\rho(x,y)} \psi(x,y_0,y) f(y) \,\mathrm{d}y_0 \,\mathrm{d}y$$

with $(y_0, y) \in \mathbb{R} \times \mathbb{R}^d$ and $\psi \in C_0^{\infty}$ is supported away from $y_0 = 0$.

Corollary. If $\rho = 0 \Rightarrow \operatorname{rotcurv}(\rho) \neq 0$ then

$$||S_{\lambda}||_{L^2 \to L^2} \le c\lambda^{-\frac{d+1}{2}}$$

Proof of Corollary. $\bar{x}=(x_0,x), \bar{y}=(y_0,y)\in\mathbb{R}\times\mathbb{R}^d$. Set $\varphi(\bar{x},\bar{y})=x_0y_0\rho(x,y)$ then $\det(\nabla^2_{x,y}\varphi)=(x_0y_0)^{d+1}$ rotcurv (ρ) . Define

$$F_{\lambda}(x_0,x) = F_{\lambda}(\bar{x}) = \int_{\mathbb{R}^{d+1}} e^{i\lambda\varphi(\bar{x},\bar{y})} \psi_1(x_0,x,y_0,y) f(y) \,\mathrm{d}y_0 \,\mathrm{d}y$$

with $\psi_1(1,\lambda,y_0,y)=\psi(x,y_0,y)$ (from S_λ). Then $S_\lambda(f)(x)=F_\lambda(1,x)$. Observation: If $I\subset\mathbb{R}$ interval of length $1,\,g\in C^1(I),\,x_0\in I$ then

$$|g(u_0)|^2 \le 2(\int_I |g(u)|^2 \,\mathrm{d} u + \int_I |g'(u)|^2 \,\mathrm{d} u)$$

Apply this observation with $I=[1,2],\ u_0=1,\ g(u)=F_\lambda(u,x)$ to get:

$$\int_{\mathbb{R}^d} |S_\lambda(f)(x)|^2 \,\mathrm{d}x \leq 2 (\int |F_\lambda(x_0,x)|^2 \,\mathrm{d}x + \int |\frac{\partial}{\partial x_0} F_\lambda(x_0,x)|^2 \,\mathrm{d}x_0 \,\mathrm{d}x)$$

The first integral is $\lesssim \lambda^{-(d+1)} \|f\|_{L^2}^2$ by Proposition with \mathbb{R}^{d+1} instead of \mathbb{R}^d).

$$\frac{\partial}{\partial x_0}(e^{i\lambda x_0y_0\rho(x,y)}) = \frac{\partial}{\partial y_0}(e^{i\lambda x_0y_0\rho(x_0,y_0)})\frac{y_0}{x_0}$$

we integrate by parts somewhere and use our form of φ . Therefore the second summand also satisfies the desired estimate.

Step 2: Dyadic decomposition of A.

Co-area formula (see Evans-Cariery (?), Stein-Shakarchi IV, Exercise 8 ,Ch. 8): Fix $h \in S(\mathbb{R})$ such that $\int h = 1$, $M = \{x \in \mathbb{R}^d \mid \rho(x) = 0\}$. Then

$$\int_M f \frac{\mathrm{d}\sigma}{|\nabla \rho|} = \lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \int_{\,\mathbb{R}^d} h(\frac{\rho(x)}{\varepsilon}) f(x) \, \mathrm{d}x.$$

E.g. $\rho(x) = |x| - 1 : M = \mathbb{S}^{d-1}, \ \frac{\nabla}{\rho}(x) = x|x|, : |\nabla \rho| = 1$

$$\int_{\mathbb{R}^{d-1}} f \, \mathrm{d}\varepsilon = \lim_{\varepsilon \to *^+} \frac{1}{\varepsilon} \int_{\mathbb{R}^d} h(\frac{|x|-1}{\varepsilon}) F(x) \, \mathrm{d}x$$

where $f = F|_{\mathbb{S}^{d-1}}$.

$$A(f)(x) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{\mathbb{R}^d} h(\rho(x, y)\varepsilon) \psi(x, y) f(y) \, \mathrm{d}y$$

where $\psi(x,y) = \psi_0(x,y) |\nabla_y \rho| \in C_0^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$. Let $\gamma \in C_0^{\infty}(\mathbb{R})$ such that $\gamma = 1$ on $[-\frac{1}{2}, \frac{1}{2}]$ and 0 on $[-1, 1]^{\complement}$. Let $h = \hat{\gamma}$. Then

$$h(\rho) = \int_{\mathbb{R}} e^{2\pi i \xi u} \gamma(u) \, \mathrm{d}u.$$

Then

$$\int h = \int \hat{\gamma} = \gamma(0) = 1$$

and

$$\int_{\mathbb{R}} e^{2\pi i u \rho} \gamma(\varepsilon u) \, \mathrm{d} u = (\delta_{\varepsilon} \gamma)^{\vee}(\rho) = \varepsilon^{-1} \gamma^{\vee}(\varepsilon^{-1} \rho) = \varepsilon^{-1} h(\varepsilon^{-1} \rho)$$

where $\delta_{\varepsilon}\gamma)(u) = \gamma(\varepsilon u)$. Choose $\varepsilon = 2^{-r}, \ r \in \mathbb{N}$. Note

$$\gamma(2^{-r}u)=\gamma(u)+\sum_{k=1}^r(\gamma(\frac{u}{2^k}-\gamma(\frac{u}{2^{k-1}}))$$

Let $r \to \infty$ to get

$$1 = \gamma(u) + \sum_{k=1}^{\infty} \eta(\frac{u}{2^k})$$

where $\eta(\cdot) = \gamma(\cdot) - \gamma(2\cdot)$ because γ is continuous. Then $\eta \in C_0^{\infty}(\mathbb{R})$, $\operatorname{supp}(\eta) \subset \{\frac{1}{4} \leq |u| \leq 1\}$. Whenever f is continuous we get by Fourier inversion that

$$\begin{split} A(f)(x) &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{\mathbb{R}^d} \int_{\mathbb{R}} e^{2\pi i u} \frac{\rho(x,y)}{\varepsilon} \gamma(u) \psi(x,y) f(y) \, \mathrm{d}u \, \mathrm{d}y \\ &= \lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} \int_{\mathbb{R}} e^{2\pi i u \rho(x,y) \gamma(\varepsilon u)} \psi(x,y) f(y) \, \mathrm{d}u \, \mathrm{d}y \\ &= \int_{\mathbb{R}^d} \int_{\mathbb{R}} e^{2\pi i u \rho(x,y)} \gamma(u) \psi(x,y) f(y) \, \mathrm{d}u \, \mathrm{d}y \\ &= \sum_{k=1}^{\infty} \int_{\mathbb{R}^d} \int_{\mathbb{R}} e^{2\pi i u \rho(x,y)} \eta(\frac{u}{2^k}) \psi(x,y) f(y) \, \mathrm{d}u \, \mathrm{d}y \end{split}$$

since $\gamma(\varepsilon u) \to \gamma(0) = 1$ $\varepsilon \to 0$. Call the summands $A_k(f)(x)$. Properties of A_k :

(i) $f \in L^2(\mathbb{R}^d) \Rightarrow$

$$A_k(f) \in C_0^{\infty}(\mathbb{R}^d)$$

(ii)

$$||A_k(f)||_{L^2} \le c2^{-k(\frac{d-1}{2})}||f||_{L^2}.$$

Recall $\|S_{\lambda}\|_{L^2 \to L^2} \lesssim \lambda^{-\frac{d+1}{2}i}$ and change variables in the definition of $A_k(f)$.

(iii) $\exists m: |j-k| \geq m \ \forall N$

$$\|(A_k^*A_j)(f)\|_{L^1} \lesssim_N 2^{-N\max(k,j)} \|f\|_{L^2}.$$

Similarly for $A_k A_j^*$. For the proof, invoke nonstationary phase. Also, recall $|I(\lambda)|^2 = I(\lambda)\overline{I(\lambda)}$.

(iv) $A_k^{(\alpha)} = (\frac{\partial}{\partial x})^{\alpha} A_k$. Then

$$\|A_k^{(\alpha)}\|_{L^2\to L^2}\lesssim 2^{k|\alpha|}2^{-k(\frac{d-1}{2})}$$

and

$$||A_{i}^{(\alpha)}(A_{i}^{(\alpha)})^{*}||_{L^{2}\to L^{2}} \lesssim_{\alpha} N 2^{-N\max(k,j)}.$$

Step 3: Almost-orthogonality

Assume that $\{T_k\}_{k=1}^{\infty}$ is a sequence of bounded operators on $L^2(\mathbb{R}^d)$ and that $\{a(k)\}_{k\in\mathbb{Z}}$ are positive constants with

 $A=\sum_{k\in\mathbb{Z}}a(k)<\infty.$

Lemma (Cotlar-Knapp-Stein). Assume for $||T_kT_j^*||_{L^2\to L^2}$ that $||T_k^*T_j|| \le a(k-j)^2$. Then, for every r,

$$\|\sum_{k=0}^r T_k\| \le A.$$

Note, that the bound A is independent of r.

Write $T = \sum_{k=0}^r T_k$. Recall $\|T\|^2 = \|T^*T\|$ since $\|AB\| \le \|A\| \|B\|$ and $\|Tx\|^2 = \langle Tx, Tx \rangle = \langle x, T^*Tx \rangle \le \|T^*T\| \|x\|^2$ and plug in an extremizing sequence of $\|Tx\|$ for x. Then $\|T\|^4 = (\|T\|^2)^2 = \|T^*T\|^2 = \|(T^*T)^2\|$ since T^*T is self adjoint. By induction we get

$$\begin{split} \|T\|^{2n} &= \|(T^*T)^n\|.\\ (T^*T)^n &= \sum_{i_1,i_2,\dots,i_{2n}} (T_{i_1}T_{i_2}^*\dots T_{i_{2n-1}}T_{i_{2n}}^*) \end{split}$$

(i)
$$\|(T_{i_1}T_{i_2}^*)...(T_{i_{2n-1}}T_{2n-1}^*)\| \le a(i_1-i_2)^2a(i_3-i_4)^2...a(2_{2n-1})^2$$

(ii)
$$\|T_{i_1}(T_{i_2}T_{i_3})...(T_{i_{2n-2}}T_{i_{2n-1}})T_{i_{2n}}\| \leq Aa(i_2-i_3)^2a(i_4-i_5)^2...a(i_{2n-2}-i_{2n-1})^2A$$

Take geometric mean of (i) and (ii) and get

$$\|T_{i_1}T_{i_2}...T_{i_{2n-1}}T_{i_{2n}}^*\| \leq Aa(i_1-a_2)a(i_2-i_3)...a(i_{2n-1}-i_{2n})$$

Now sum the whole thing in $i_1, i_2, ..., i_{2n-1}$. Then sum by sum, each of the factors turns into an A. In the end the sum in i_{2n} gives a factor r + 1. So,

$$\sum_{i_1,i_2,\dots i_{2n}} \|T_{i_1}T_{i_2}^*...T_{i_{2n-1}}T_{i_{2n}}^*\| \leq A^{2n}(r+1)$$

$$\cdot \cdot \|T\| \leq A(1+r)^{\frac{1}{n}} \to A \quad n \to \infty$$

(This is called 'Tensor power trick')

Putting everything together: Case 1: d odd $(:\frac{d-1}{2} \in \mathbb{Z})$. ETS $\forall |\alpha| \leq \frac{d-1}{2} \quad \forall f \in L^2(\mathbb{R}^d)$

- $\partial_x^{\alpha} A(f)$ exists (in the sense of distributions) and is an L^2 function
- $f \mapsto \partial_r^{\alpha} A(f)$ is bounded on L^2 .

For each r, set

$$\partial_x^\alpha \sum_{k=0}^r =: \sum_{k=0}^r T_k \quad (T_k = A_k^{(\alpha)})$$

The estimates 1 and 2 imply that the hypotheses of CKS are satisfied with $a(k) = c_n 2^{-|k|N}$ ($\forall N, :$ can choose N = 1).

$$\cdot \cdot \|\partial_x^\alpha \sum_{k=0}^r A_k(f)\|_{L^2} \leq A \|f\|_{L^2}$$

where $A = \sum_{k \in \mathbb{Z}}$, provided $|\alpha| \leq \frac{d-1}{2}$.

(i) with $\alpha = 0$ we get

$$\lim_{r\to\infty}\sum_{k=0}^r A_k(f)=A(f)$$

in L^2 and therefore in the weak sense.

$$\lim_{r\to\infty}\partial_x^\alpha\sum_{k=1}^rA_k(f)=\partial_x^\alpha A(f)$$

in the weak sense and therefore in L^2 .

Conclusion

$$\|\partial_x^{\alpha} A(f)\|_{L^2} \le A \|f\|_{L^2}$$

whenever $f \in C_0^0(\mathbb{R}^d), \ |\alpha| \leq \frac{d-1}{2}$ (and d is odd)

today:

$$(A_tf)(x) = \int_{|y|=1} f(x-ty) \,\mathrm{d}\sigma(y) = (f*\sigma_t)(x)$$

which is the average of f over the sphere of radius t contered at x,

$$\int_{|x|=t} g(x) \,\mathrm{d}\sigma_t(x) := \int_{|x|=1} g(tx) \,\mathrm{d}\sigma(x).$$

This definition works fine provided g is continuous.

Question: We would like to know for general f whether $(A_t f)(x) \to f(x)$ (x-a.e.) as $t \to 0$. Recall that we already did this for balls instead of spheres.

Is $t \mapsto (A_t f)(x)$ continuous (for any x)? Is $\sup_{t_1 < t < t_2} |A_t f(x)|$ measurable in x? This actually has to be discussed before we can think about the first question.

A priori estimate for the spherical maximal averages:

Theorem. Let $f \in C_0^0(\mathbb{R}^d)$, $d \geq 4$. Then

$$\|\sup_{t>0} |(A_t f)(x)|\|_{L^2_x(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\mathbb{R}^d)}.$$

Note that this can be improved up to $d \ge 2$, but fails for d = 1.

Key: Let $f \in C_0^1(\mathbb{R}^d)$. Then

$$(Sf)(x) = (\int_0^\infty |\frac{\partial A_t f}{\partial t}(x)|^2 t \,\mathrm{d}t)^{\frac{1}{2}}.$$

This also holds for C_0^0 by density.

Lemma.

$$\sup_{t>0} |(A_t f)(x)| \le (Mf)(x) + c(Sf)(x)$$

where Mf is the standard Hardy-Littlewood maximal function over centered balls.

Proof fo Lemma 1.

$$(A_t f)(x) = t^{-d} \int_0^t \frac{\partial}{\partial s} [s^d(A_s f)(x)] \, \mathrm{d}s = I + II$$

using that the integrand equals

$$ds^{d-1}A_sf)(x)+s^d\frac{\partial(A_s)f)}{\partial s}(x)$$

$$I = ^{-d} \int_0^t s^{d-1} (\int_{|y|=1} f(x-sy) \, \mathrm{d}\sigma(y)) \, \mathrm{d}s = dt^{-d} \int_{B(x,t)=\{y:|x-y| \le t\}} f(y) \, \mathrm{d}y = \frac{1}{\frac{t^d}{d}} \int_{B(x,t)} f \le \sup_{t>0} \oint_{B(x,t)} f = (Mf)(x)$$

due to our choice of normalization $|B(x,t)|=\int_0^t \underbrace{\omega_{d-1}} s^{d-1}\,\mathrm{d}s=\frac{t^d}{d}.$

$$II = t^{-d} \int_0^t s^{d-\frac{1}{2}} (\frac{\partial A_s f)}{\partial s}(x) s^{\frac{1}{2}}) \, \mathrm{d}s \leq (\int_0^\infty |\frac{\partial (A_s f)(x)}{\partial s}|^2 s \, \mathrm{d}s)^{\frac{1}{2}} \cdot t^{-d} (\int_0^t s^{2d-1} \, \mathrm{d}s)^{\frac{1}{2}} \lesssim_d (Sf)(x)^{\frac{1}{2}} (Sf)(x)^{\frac{1}$$

Lemma. If $d \ge 4$ then

$$||Sf||_{L^2(\mathbb{R}^d)} \le A||f||_{L^2(\mathbb{R}^d)}$$

Proof. $A_s f = f * \sigma_s$:

$$(\hat{A_sf})(\xi) = \hat{f}(\xi)\hat{\sigma}_s(\xi) = \hat{f}(\xi)\hat{\sigma}(s\xi)$$

since

$$\widehat{\sigma}_s(\xi) = \int_{|x|=1} e^{2\pi i x \xi} \,\mathrm{d}\sigma_s(x) = \int_{|x|=1} e^{2\pi i s x \xi} \,\mathrm{d}\sigma(x) = \widehat{\sigma}(s\xi).$$

It follows that

$$\frac{\partial (\hat{A_s}f)}{\partial s}(\xi) = \frac{\mu(s\xi)}{s}\hat{f}(\xi)$$

where

$$\mu(\xi) = \sum_{i=1}^d \xi_j \frac{\partial \hat{\sigma}}{\partial \xi_i}(\xi) = \langle \xi, \nabla \hat{\sigma}(\xi) \rangle$$

because we differentiate with respect to a variable independent from the Fourier transform.

Kev

$$|\mu(\xi)| \le A \min\{|\xi|, |\xi|^{-\frac{d-3}{2}}\}$$

Proof.

$$\frac{\partial \hat{\sigma}}{\partial \xi_j}(\xi) = 2\pi \int_{|x|=1} x_j e^{2\pi i x \xi} \, \mathrm{d}\sigma(x)$$

Since $x_j \in [-1, 1]$ we get

$$\left|\frac{\partial \hat{\sigma}}{\partial \xi_{i}}(\xi)\right| \le A(1+|\xi|)^{-\frac{d-1}{2}}$$

The statement follows from this and Cauchy-Schwarz applied to the definition of $\mu(\xi)$.

By Plancherel we get

$$\int_{\mathbb{R}^d} |\frac{\partial (A_s f)}{\partial s}(x)|^2 \, \mathrm{d}x = \int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 \frac{|(s\xi)|^2}{s^2} \, \mathrm{d}\xi$$

Now we multiply by s and integrate with respect to s and get

$$\int_{\mathbb{R}^d} |Sf(x)|^2 \,\mathrm{d}x = \int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 \underbrace{(\int_0^\infty \frac{|\mu(s\xi)|^2}{s} \,\mathrm{d}s)}_{} \,\mathrm{d}\xi$$

It is enough to show, that * is bounded with respect to ξ .

$$\int_0^\infty \frac{|\mu(s\xi)|^2}{s} \, \mathrm{d} s = \int_0^{\frac{1}{|\xi|}} + \int_{\frac{1}{|\xi|}}^\infty \leq A(|\xi|^2 \int_0^{\frac{1}{|\xi|}} s^2 \frac{\mathrm{d} s}{s} + |\xi|^{-(d-3)} \int_{\frac{1}{|\xi|}}^\infty s^{-(d-3)} \frac{\mathrm{d} s}{s}) \leq C < \sum_{j=1}^\infty \frac{|\mu(s\xi)|^2}{s} \, \mathrm{d} s = \int_0^{\frac{1}{|\xi|}} |\xi|^2 \, \mathrm{d} s$$

where C is independent of ξ . The whole thing is true iff $-(d-3)-1<-1,\ d\leq 4$, since this takes care of the second summand and the first summand is no problem.

Now the theorem follows from the Lemmas and the L^2 boundedness of the maximal function. Now look at d_1 . Then the theorem fails because

$$A_tf(x)=\frac{1}{2}(f(x+t)+f(x-t))$$

and we can take as a counteraxample a function nonnegative which blows up close to 0 but is in L^p for every $p < \infty$ such that $\sup_{t>0} (A_t f)(x) = \infty$ everywhere.

He said something with the wave equation and its smoothing properties for $1 \le d \le 3$. $d \ge 2$: The maximal operator $f \mapsto \sup_{t>0} (A_t(f)|$ is bounded on $L^p(\mathbb{R}^d)$ if $p > \frac{d}{d-1}$.

- For $d \geq 3$, this is in Stein's Chapter XI paragraph 3. Ideas: rotational curvature, FIOs, dyadic decomposition, almost orthogonality
- For d=2, this is a theorem of Bourgan (1986) with alternative proofs by Sogge (1991): Cinematic curvature. Mockenhaupt-Seeger-Sogge (1993): Local smoothing for wave equation. d=2 is also in Stein's Chapter XI paragraph 4D
- No such result holds in $L^p(\mathbb{R}^d)$ if $p \leq \frac{d}{d-1}$: Let

$$f(y) = \frac{|y|^{1-d}}{\log \frac{1}{|y|}} 1_{\{|y| \le \frac{1}{2}\}}(y)$$

Then $f \in L^p$ if $p \leq \frac{d}{d-1}$: First, forget about the log for a moment. It is only there to take care of the endpoint.

$$(1-d)(p-1) > -1 \quad (d-1)(p-1) < 1 \quad p < \frac{1}{d-1} + 1 = \frac{d}{d-1}$$

For any x, the quantity $(A_t f)(x)$ is unbounded when $f \sim |x|$:

$$\label{eq:sup} \begin{split} :: \sup_t (A_t f)(x) = \infty \quad \text{everywhere} \end{split}$$

Next: Averages with respect to a fixed curve:

$$(Mf)(x) = \sup_{h>0} \frac{1}{2h} \left| \int_{-h}^{h} f(x - (t, t^2)) \, dt \right|$$