Inteligență artificială Laborator 3

Metoda celor mai apropiați k-vecini

Exemplu care arată diferențele dintre metoda celui mai apropiat vecin și metoda celor mai apropiați cinci vecini. Zona colorată reprezintă regiunea de decizie a clasificatorului folosind distanța euclidiană l_2 . Se observă că în cazul metodei celui mai apropiat vecin se formează mici 'insule' ce pot duce la predicții incorecte. Zonele gri din imaginea 5-NN reprezintă zone de predicție ambigue din cauza egalității voturilor celor mai apropiati vecini.

În acest laborator vom clasifica cifrele scrise de mână din subsetul **MNIST** folosind metoda celor mai apropiați k-vecini.

MNIST¹ este o bază de date cu cifre scrise de mână (0-9), conținând 60.000 de imagini pentru antrenare și 10.000 pentru testare. Imaginile sunt în tonuri de gri (grayscale) având dimensiunea de 28×28 pixeli. În cadrul laboratorului vom lucra pe un subset, împărțit astfel:

- → în fişierul 'train_images.txt' sunt 1.000 de exemple (imagini) din mulţimea de antrenare, fiecare exemplu de antrenare fiind stocat pe câte o linie a matricei de dimensiune 1000 x 784 (28 x 28 = 784).
- → în fişierul 'test images.txt' sunt 500 de exemple (imagini) din mulțimea de testare.
- → fişierele 'train_labels.txt' şi 'test_labels.txt' conţin etichetele exemplelor de antrenare respectiv testare.

Figura de mai jos afișează primele 100 exemple din mulțimea de testare (stânga) împreună cu etichetele lor (dreapta).

48279	42	1	45	[[4	8	2	7	9	4	2	1	4	5]
63113	0 6	6) 3										3]
44122	6 7	4	00	[4	4	1	2	2	6	7	4	0	0]
54902	3 2	7	79	[5	4	9	0	2	3	2	7	7	9]
19168	7 3	5	9 3	[1	9	1	6	8	7	3	5	9	3]
37015	29	8	9 3	[3	7	0	1	3	2	9	8	9	3]
29358	36	6	63	[2	9	3	5	8	3	6	6	6	3]
11671	29	l	10	[1	1	6	7	7	2	9	1	1	0]
91529	90	Ø	94	[9	1	5	2	9	9	0	0	9	4]
62685	54	6	07	[6	2	6	8	5	5	4	6	0	7]]

Descărcați fisierul data.zip cu datele de antrenare și testare de pe Moodle.

-

¹ http://yann.lecun.com/exdb/mnist/

 \Box Care este acuratețea metodei *celui* mai apropiat vecin pe mulțimea de *antrenare* când se folosește distanța l_2 ? Dar pentru distanța l_1 ?

Exerciții

- 1. Considerați primul exemplu din mulțimea de testare (este o imagine cu cifra 2). Determinați și afișați (plotând într-o figură) cei mai apropiați k-vecini ai acestui exemplu de testare din mulțimea de antrenare folosind distanța euclidiană (*l*₂). Folosiți valorile k = 1, 3, 5, 7. Care va fi eticheta asignată exemplului de testare pentru fiecare din cele 4 cazuri?
- 2. Creați clasa Knn classifier, având constructorul următor:

```
def __init __(self, train_images, train_labels):
    self.train_images = train_images
    self.train_labels = train_labels
```

3. Definiți pentru clasa de mai sus metoda *classify_image(self, test_image, num_neighbors = 3, metric = '12')* care clasifică imaginea *test_image* cu metoda celor mai apropiați vecini, numărul vecinilor este stabilit de parametru *num_neighbors*, iar distanța poate fi *l*₁ (distanța Manhattan) sau *l*₂ (distanța euclidiană), în funcție de parametrul *metric*.

Observație:

- pentru vectorii $\mathbf{x} = (x_1, x_2, \dots x_n)$ şi $\mathbf{y} = (y_1, y_2, \dots y_n)$ distanţele l_1 şi l_2 se definesc astfel:

$$l_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n |x_i - y_i|, l_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n |x_i - y_i|^2}$$

- În variabilele *train_images* și *test_image* valorile unui exemplu sunt stocate pe linie. (train_images.shape = (num_samples, num_features), test_image.shape = (1, num_features))
- 4. Calculați acuratețea metodei celor mai apropiați vecini pe mulțimea de testare având ca distanță *l*₂ și numărul de vecini 3. Salvați predicțiile în fișierul *predictii_3nn_l2_mnist.txt*.

Observatie:

- Acuratetea pe multimea de testare este de 89.8%.
- 5. Definiți metoda *confusion_matrix(y_true, y_pred)* care calculează matricea de confuzie. Calculați matricea de confuzie folosind predicțiile din *predictii_3nn_12_mnist.txt*.

Observatie:

- Pentru matricea de confuzie C, fiecare element c_{ij} reprezintă numărul exemplelor din clasa i care au fost clasificate ca fiind în clasa j.

Clasa prezisă → Clasa actuală↓	1	2	3
1	Nr. exemplelor din clasa 1 care au fost clasificate ca fiind in clasa 1	Nr. exemplelor din clasa 1 care au fost clasificate ca fiind in clasa 2	Nr. exemplelor din clasa 1 care au fost clasificate ca fiind in clasa 3
2	Nr. exemplelor din clasa 2 care au fost clasificate ca fiind in clasa 1	Nr. exemplelor din clasa 2 care au fost clasificate ca fiind in clasa 2	Nr. exemplelor din clasa 2 care au fost clasificate ca fiind in clasa 3
3	Nr. exemplelor din clasa 3 care au fost clasificate ca fiind in clasa 1	Nr. exemplelor din clasa 3 care au fost clasificate ca fiind in clasa 2	Nr. exemplelor din clasa 3 care au fost clasificate ca fiind in clasa 3

- Matricea de confuzie pentru clasificatorul anterior este:

```
[[51. 0. 0. 0. 0. 1. 1. 0. 0. 0.]

[0. 52. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

[1. 6. 47. 1. 0. 0. 1. 2. 0. 0.]

[0. 0. 0. 51. 0. 1. 0. 0. 0. 1.]

[0. 0. 0. 0. 44. 0. 0. 0. 0. 2.]

[2. 1. 1. 6. 0. 40. 1. 0. 0. 1.]

[0. 0. 0. 0. 0. 1. 47. 0. 0. 0.]

[1. 2. 0. 0. 1. 0. 46. 0. 0.]

[1. 0. 2. 2. 1. 1. 1. 1. 36. 1.]

[0. 0. 1. 1. 3. 1. 0. 1. 0. 35.]]
```

6. Perechea de cifre (5, 3) cea mai des confundată, având șase misclasificări. Afișați exemplele de cifra 5 misclasificate precum și cei trei vecini. Mai jos este afișat primul din cele șase astfel de cazuri.

- 7. Calculați acuratețea metodei celor mai apropiați vecini pe mulțimea de testare având ca distanța l_2 și numărul de vecini $\in [1, 3, 5, 7, 9]$.
 - a. Plotați un grafic cu acuratețea obținuta pentru fiecare vecin și salvați scorurile în fișierul *acuratete 12.txt*.
 - b. Repetați punctul anterior pentru distanța l_1 . Plotați graficul de la punctul anterior în aceeași figură cu graficul curent (utilizați fișierul *acuratete_l1.txt*).

Ar trebui să obțineți o figură similară cu cea de mai jos:

Analiza performantei clasificatorului k-nn pentru diverse distante si valori pt k

Funcții utile din numpy:

```
np.sort(x) # sorteaza array-ul
np.argsort(x) # returneaza indecsi care sorteaza array-ul
np.bincount(x) # calculeaza numarul de aparatii al fiecarei valori din array
print(np.bincount(numpy.array([0, 1, 1, 3, 2, 1, 7]))) # array([1, 3, 1, 1, 0, 0, 0, 1])
np.where(x == 3) # returneaza indecsi care satisfac conditia
np.intersect1d(x, y) # returneaza intersectia celor 2 array
np.savetxt('fisier.txt', y) # salveaza array-ul y in fisierul fisier.txt
```