MACHINE LEARNING PROJECT

Forest Cover Type Prediction

By : Darshan Dalvi , Deepak Udyavar, Prashant Kasalkar, Sakshi Kalani, Saptak Dalvi

Source: https://www.kaggle.com/c/forest-cover-type-prediction/data (https://www.kaggle.com/c/forest-cover-type-prediction/data)

Motivation:

The data is cartographic variables (as opposed to remotely sensed data). The actual forest cover type for a given 30 x 30 meter cell was determined from US Forest Service (USFS) Region 2 Resource Information System data. Independent variables were then derived from data obtained from the US Geological Survey and USFS. The data is in raw form (not scaled) and contains binary columns of data for qualitative independent variables such as wilderness areas and soil type. The areas of forest under study represent forests with minimal human-caused disturbances, so that existing forest cover types are more a result of ecological processes rather than forest management practices.

Data Overview:

The study area includes four wilderness areas located in the Roosevelt National Forest of northern Colorado which are as follows:

- 1 Rawah Wilderness Area
- 2 Neota Wilderness Area
- 3 Comanche Peak Wilderness Area
- 4 Cache la Poudre Wilderness Area

Our goal is to predict the forest cover type. The seven types of forest cover are:

- 1 Spruce/Fir
- 2 Lodgepole Pine
- 3 Ponderosa Pine
- 4 Cottonwood/Willow
- 5 Aspen
- 6 Douglas-fir
- 7 Krummholz
 - This is a classification problem where the target could belong to any of the seven classes.

Data Fields:

Elevation - Elevation in meters

Aspect - Aspect in degrees azimuth

Slope - Slope in degrees

Horizontal_Distance_To_Hydrology - Horz Dist to nearest surface water features

Vertical_Distance_To_Hydrology - Vert Dist to nearest surface water features

Horizontal_Distance_To_Roadways - Horz Dist to nearest roadway

Hillshade_9am (0 to 255 index) - Hillshade index at 9am, summer solstice

Hillshade_Noon (0 to 255 index) - Hillshade index at noon, summer solstice

Hillshade_3pm (0 to 255 index) - Hillshade index at 3pm, summer solstice

Horizontal Distance To Fire Points - Horz Dist to nearest wildfire ignition points

Wilderness_Area (4 binary columns, 0 = absence or 1 = presence) - Wilderness area designation

Soil_Type (40 binary columns, 0 = absence or 1 = presence) - Soil Type designation

Cover_Type (7 types, integers 1 to 7) - Forest Cover Type designation

Question: Given the other attributes, what will be the 'Cover_Type'?

The training set (15120 observations) contains both features and the Cover_Type. The test set (565892 observations) contains only the features.

Assumptions:

- 1. Ecology of the areas across which the data is collected is similar.
- 2. Seasonal changes are constant across all the observations.
- 3. The dataset is recently collected.

Limitations:

- 1. Environmental factors affecting the growth of any cover type is not taken into consideration.
- 2. Human error while collecting data is not accounted for.
- 3. Management practices that might have affected the growth is not accounted for.

About the data:

```
In [49]: %matplotlib inline
    import warnings
    import seaborn as sns
    warnings.filterwarnings("ignore")
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    dataset = pd.read_csv("train.csv")
In [50]: dataset = dataset.iloc[:,1:]
```

In [51]: print(dataset.dtypes)

	,
Elevation	int64
Aspect	int64
Slope	int64
<pre>Horizontal_Distance_To_Hydrology</pre>	int64
Vertical_Distance_To_Hydrology	int64
<pre>Horizontal_Distance_To_Roadways</pre>	int64
Hillshade_9am	int64
Hillshade_Noon	int64
Hillshade_3pm	int64
<pre>Horizontal_Distance_To_Fire_Points</pre>	int64
Wilderness_Area1	int64
Wilderness_Area2	int64
Wilderness_Area3	int64
Wilderness_Area4	int64
Soil_Type1	int64
Soil_Type2	int64
Soil_Type3	int64
Soil_Type4	int64
Soil_Type5	int64
Soil_Type6	int64
Soil_Type7	int64
Soil_Type8	int64
Soil_Type9	int64
Soil_Type10	int64
Soil_Type11	int64
Soil_Type12	int64
Soil_Type13	int64
Soil_Type14	int64
Soil_Type15	int64
Soil_Type16	int64
Soil_Type17 Soil_Type18	int64 int64
Soil_Type18 Soil_Type19	int64
Soil_Type19 Soil_Type20	int64
Soil_Type21	int64
Soil Type22	int64
Soil Type23	int64
Soil_Type24	int64
Soil Type25	int64
Soil_Type26	int64
Soil_Type27	int64
Soil_Type28	int64
Soil_Type29	int64
Soil_Type30	int64
Soil Type31	int64
Soil Type32	int64
Soil Type33	int64
Soil Type34	int64
Soil Type35	int64
Soil_Type36	int64
Soil_Type37	int64
Soil_Type38	int64
Soil_Type39	int64
Soil_Type40	int64
Cover_Type	int64
dtune: object	

Data Pre-processing

In [52]: pd.set_option('display.max_columns', None)
 print(dataset.describe())

count mean std min 25% 50% 75% max	Elevation 15120.000000 2749.322553 417.678187 1863.000000 2376.000000 2752.000000 3104.000000	Aspect 15120.000000 156.676653 110.085801 0.000000 65.000000 126.000000 261.000000 360.000000	16. 8. 0. 10. 15.	Slope \ 000000 501587 453927 000000 000000 000000 000000	
	Horizontal_Di	stance_To_Hydro	ology	Vertical_Dista	ance_To_Hydrology
\ count		15120.00	0000		15120.000000
mean		227.19	95701		51.076521
std		210.07	75296		61.239406
min		0.00	0000		-146.000000
25%		67.00	0000		5.000000
50%		180.00	0000		32.000000
75%		330.00	0000		79.000000
max		1343.00	0000		554.000000
	Horizontal Di	ctango To Poads			77 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2
Count	110112011641_51			15120 000000	_
count	norrzonear_br	15120.000	0000	15120.000000	15120.000000
count	norrzonear_br	15120.000	0000 3214	15120.000000 212.704299	15120.000000 218.965608
mean std	norrzonear_br	15120.000 1714.023 1325.066	0000 3214 5358	15120.000000 212.704299 30.561287	15120.000000 218.965608 22.801966
mean std min	norrzonear_br	15120.000 1714.023 1325.066	3214 5358	15120.000000 212.704299 30.561287 0.000000	15120.000000 218.965608 22.801966 99.000000
mean std min 25%	norrzonear_pr	15120.000 1714.023 1325.066 0.000 764.000	0000 3214 5358 0000	15120.000000 212.704299 30.561287 0.000000 196.000000	15120.000000 218.965608 22.801966 99.000000 207.000000
count mean std min 25%	norrzonear_pr	15120.000 1714.023 1325.066 0.000 764.000	0000 3214 5358 0000 0000	15120.000000 212.704299 30.561287 0.000000 196.000000 220.000000	15120.000000 218.965608 22.801966 99.000000 207.000000 223.000000
mean std min 25% 50%		15120.000 1714.023 1325.066 0.000 764.000 1316.000	0000 3214 5358 0000 0000	15120.000000 212.704299 30.561287 0.000000 196.000000 220.000000 235.000000	15120.000000 218.965608 22.801966 99.000000 207.000000 223.000000 235.000000
count mean std min 25% 50% 75% max	Hillshade_3pm	15120.000 1714.023 1325.066 0.000 764.000 1316.000 2270.000 6890.000	0000 3214 5358 0000 0000 0000	15120.000000 212.704299 30.561287 0.000000 196.000000 220.000000	15120.000000 218.965608 22.801966 99.000000 207.000000 223.000000 235.000000 254.000000
count mean std min 25% 50% 75% max eal \count		15120.000 1714.023 1325.066 0.000 764.000 1316.000 2270.000 6890.000	0000 3214 5358 0000 0000 0000	15120.000000 212.704299 30.561287 0.000000 196.000000 220.000000 235.000000 254.000000	15120.000000 218.965608 22.801966 99.000000 207.000000 223.000000 235.000000 254.000000
count mean std min 25% 50% 75% max eal \count 000 mean	Hillshade_3pm	15120.000 1714.023 1325.066 0.000 764.000 1316.000 2270.000 6890.000	0000 3214 5358 0000 0000 0000	15120.000000 212.704299 30.561287 0.000000 196.000000 220.000000 235.000000 254.000000	15120.000000 218.965608 22.801966 99.000000 207.000000 223.000000 235.000000 254.000000 cs Wilderness_Ar 00 15120.000
count mean std min 25% 50% 75% max eal \count 000 mean 897 std	Hillshade_3pm 15120.000000 135.091997 45.895189	15120.000 1714.023 1325.066 0.000 764.000 1316.000 2270.000 6890.000	0000 3214 5358 0000 0000 0000 0000	15120.000000 212.704299 30.561287 0.000000 196.000000 220.000000 235.000000 254.000000 4.To_Fire_Point 15120.00000 1511.14728 1099.93649	15120.000000 218.965608 22.801966 99.000000 207.000000 223.000000 235.000000 254.000000 ES Wilderness_Ar 00 15120.000 38 0.237 93 0.425

0.00			3		
000 25%	106.000000			730.000000	0.000
000 50%	138.000000			1256.000000	0.000
000 75% 000	167.000000			1988.250000	0.000
max 000	248.000000			6993.000000	1.000
	Wilderness_Ar	ea2 Wilderne:	ss_Area3 Wi	lderness_Area4	Soil_Typ
e1 \ count	15120.000	000 1512	0.00000	15120.000000	15120.0000
00 mean 79	0.033	003	0.419907	0.309193	0.0234
std 24	0.178	649	0.493560	0.462176	0.1514
min 00	0.000	000	0.00000	0.000000	0.0000
25% 00	0.000	000	0.00000	0.000000	0.0000
50% 00	0.000	000	0.00000	0.000000	0.0000
75% 00	0.000	000	1.00000	1.000000	0.0000
max 00	1.000	000	1.000000	1.000000	1.0000
_	Soil_Type2	Soil_Type3	Soil_Typ	pe4 Soil_Type5	Soil_T
count	15120.000000	15120.000000	15120.0000	000 15120.000000	15120.00
0000 mean	0.041204	0.063624	0.0557	0.010913	0.04
2989 std 2840	0.198768	0.244091	0.2294	0.103896	0.20
2840 min 0000	0.000000	0.000000	0.0000	0.000000	0.00
25% 0000	0.000000	0.000000	0.0000	0.000000	0.00
50% 0000	0.000000	0.000000	0.0000	0.000000	0.00
75% 0000	0.000000	0.000000	0.0000	0.000000	0.00
max 0000	1.000000	1.000000	1.0000	1.000000	1.00
	Soil_Type7	Soil_Type8	Soil_Type9	Soil_Type10	Soil_Type
11 \ count	15120.0 1	5120.000000	15120.000000	15120.000000	15120.0000
00 mean	0.0	0.000066	0.000661	0.141667	0.0268
52 std 56	0.0	0.008133	0.025710	0.348719	0.1616
File failed to load: file ///Users	s/sakshikalani/Desktop/Ml	_%20and%&&\$tats/Proj	ect_Group&_files/ext	ensions/MathZoonds 00	0.0000

19/2016				Project		
	00 25%	0.0	0.00000	0.00000	0.000000	0.0000
	00 50%	0.0	0.00000	0.00000	0.000000	0.0000
	00					
	75% 00	0.0	0.000000	0.000000	0.000000	0.0000
	max 00	0.0	1.000000	1.000000	1.000000	1.0000
		Soil_Type12	Soil_Type13	Soil_Type14	Soil_Type15	Soil_Typ
	e16 \	15120.000000	15120.000000	15120.000000	15120.0	15120.000
	000 mean	0.015013	0.031481	0.011177	0.0	0.007
	540 std	0.121609	0.174621	0.105133	0.0	0.086
	506 min	0.000000	0.000000	0.000000	0.0	0.000
	000 25%	0.000000	0.000000	0.000000	0.0	0.000
	000 50% 000	0.000000	0.000000	0.000000	0.0	0.000
	75% 000	0.000000	0.000000	0.000000	0.0	0.000
	max 000	1.000000	1.000000	1.000000	0.0	1.000
		Soil_Type17	Soil_Type18	Soil_Type19	Soil_Type20	Soil_Ty
	pe21 count	15120.000000	15120.000000	15120.000000	15120.000000	15120.00
	0000 mean 1058	0.040476	0.003968	0.003042	0.009193	0.00
	std 2514	0.197080	0.062871	0.055075	0.095442	0.03
	min 0000	0.000000	0.000000	0.000000	0.000000	0.00
	25% 0000	0.000000	0.000000	0.000000	0.000000	0.00
	50% 0000	0.000000	0.000000	0.000000	0.000000	0.00
	75% 0000	0.000000	0.000000	0.000000	0.000000	0.00
	max 0000	1.000000	1.000000	1.000000	1.000000	1.00
	.06	Soil_Type22	Soil_Type23	Soil_Type24	Soil_Type25	Soil_Ty
	pe26 count 0000	15120.000000	15120.000000	15120.000000	15120.000000	15120.00
	mean 3571	0.022817	0.050066	0.016997	0.000066	0.00
	std 9657	0.149326	0.218089	0.129265	0.008133	0.05
File failed to lo		/sakshikalani/Deaktop/MI	L%20and%20Stats/Rraje	ct_Group&_files/extension	ns/MathZoomds 0000	0.00

17/2010				Troject		
	0000 25%	0.000000	0.000000	0.000000	0.000000	0.00
	0000 50%	0.000000	0.000000	0.000000	0.000000	0.00
	0000 75%	0.00000	0.000000	0.000000	0.000000	0.00
	0000 max	1.000000	1.000000	1.000000	1.000000	1.00
	0000	1.000000	1.000000	1.000000	1.000000	1.00
	. 2.1	Soil_Type27	Soil_Type28	Soil_Type29	Soil_Type30	Soil_Ty
	pe31 count 0000	15120.000000	15120.000000	15120.000000	15120.000000	15120.00
	mean 1958	0.000992	0.000595	0.085384	0.047950	0.02
	std 6550	0.031482	0.024391	0.279461	0.213667	0.14
	min 0000	0.000000	0.000000	0.000000	0.000000	0.00
	25% 0000	0.000000	0.000000	0.000000	0.000000	0.00
	50% 0000	0.000000	0.000000	0.000000	0.000000	0.00
	75% 0000	0.000000	0.000000	0.000000	0.000000	0.00
	max 0000	1.000000	1.000000	1.000000	1.000000	1.00
		Soil_Type32	Soil_Type33	Soil_Type34	Soil_Type35	Soil_Ty
	pe36 count	15120.000000	15120.000000	15120.000000	15120.000000	15120.00
	0000 mean	0.045635	0.040741	0.001455	0.006746	0.00
	0661 std	0.208699	0.197696	0.038118	0.081859	0.02
	5710 min	0.000000	0.000000	0.000000	0.000000	0.00
	0000 25%	0.00000	0.000000	0.000000	0.000000	0.00
	0000 50%	0.000000	0.000000	0.000000	0.000000	0.00
	0000 75%	0.00000	0.000000	0.000000	0.000000	0.00
	0000 max	1.000000	1.000000	1.000000	1.000000	1.00
	0000	1.00000	1.000000	1.000000	1.000000	1.00
	Туре	Soil_Type37	Soil_Type38	Soil_Type39	Soil_Type40	Cover_
	count	15120.000000	15120.000000	15120.000000	15120.000000	15120.00
	mean 0000	0.002249	0.048148	0.043452	0.030357	4.00
	std 0066	0.047368	0.214086	0.203880	0.171574	2.00
File failed to lo		s/sakshikakani/Desktop/MI	L%20and%20Stats/Fraje	ct_Group&_files/extension	ns/MathZoomds 0000	1.00

0000					
25%	0.000000	0.000000	0.000000	0.00000	2.00
0000					
50%	0.000000	0.000000	0.00000	0.00000	4.00
0000					
75%	0.000000	0.000000	0.00000	0.00000	6.00
0000					
max	1.000000	1.000000	1.000000	1.000000	7.00
0000					

- No attribute is missing as count is 15120 for all attributes. So, no deletion is required.
- Attributes Soil_Type7 and Soil_Type15 can be removed as they are constant.
- Wilderness_Area and Soil_Type are one hot encoded. Hence, they could be converted back for some analysis.
- Scales are not the same for all. Hence, rescaling and standardization may be necessary for some algorithms.
- Negative values are present in Vertical_Distance_To_Hydrology. Hence, some tests such as chi-sq cant be used.

Descriptive Statistics

In [53]: print(dataset.skew())

	Troject
Elevation	0.075640
Aspect	0.450935
Slope	0.523658
Horizontal Distance To Hydrology	1.488052
Vertical Distance To Hydrology	1.537776
Horizontal Distance To Roadways	1.247811
Hillshade_9am	-1.093681
Hillshade Noon	-0.953232
Hillshade_3pm	-0.340827
Horizontal Distance To Fire Points	1.617099
Wilderness_Area1	1.231244
Wilderness_Area2	5.228781
Wilderness_Area3	0.324594
Wilderness Area4	0.825798
Soil_Type1	6.294716
Soil_Type2	4.617019
Soil_Type3	3.575995
Soil_Type4	3.872721
Soil_Type5	9.416209
Soil_Type6	4.506716
Soil_Type7	0.00000
Soil_Type8	122.963409
Soil_Type9	38.849712
Soil_Type10	2.055410
Soil_Type11	5.854551
Soil_Type12	7.977205
Soil_Type13	5.366836
Soil_Type14	9.300318
Soil_Type15	0.00000
Soil_Type16	11.387050
Soil_Type17	4.663945
Soil_Type18	15.781426
Soil_Type19	18.048915
Soil_Type20	10.286265
Soil_Type21	30.695081
Soil_Type22	6.391991
Soil_Type23	4.126701
Soil_Type24	7.474026
Soil_Type25	122.963409
Soil_Type26	16.645076
Soil_Type27	31.704896
Soil_Type28	40.955261
Soil_Type29	2.967651
Soil_Type30	4.231913
Soil_Type31	6.524804
Soil_Type32	4.354839
Soil_Type33	4.646742
Soil_Type34	26.161230
Soil_Type35	12.052838
Soil_Type36	38.849712
Soil_Type37	21.018939
Soil_Type38	4.221771
Soil_Type39	4.479186
Soil_Type40	5.475256
Cover_Type	0.000000
dtype: float64	

- · Values close to 0 show less skew
- Several attributes in Soil_Type show a large skew. Hence, some algos may benefit if skew is corrected

```
In [54]: rem = []
         #Add constant columns as they don't help in prediction process
         for c in dataset.columns:
             if dataset[c].std() == 0: #standard deviation is zero
                  rem.append(c)
         #drop the columns
         dataset.drop(rem,axis=1,inplace=True)
         print(rem)
         ['Soil_Type7', 'Soil_Type15']
In [55]: dataset.groupby('Cover_Type').size()
         # We see that all classes have an equal presence. No class re-balancing
          is required.
Out[55]: Cover_Type
              2160
         2
              2160
         3
              2160
         4
              2160
         5
              2160
         6
              2160
              2160
         dtype: int64
```

In [56]: dataset.corr()

	Elevation	Aspect	Slope	Horizontal_Distance
Elevation	1.000000	-0.011096	-0.312640	0.412712
Aspect	-0.011096	1.000000	0.028148	0.040732
Slope	-0.312640	0.028148	1.000000	-0.055976
Horizontal_Distance_To_Hydrology	0.412712	0.040732	-0.055976	1.000000
Vertical_Distance_To_Hydrology	0.122092	0.056412	0.265314	0.652142
Horizontal_Distance_To_Roadways	0.578659	0.066184	-0.277049	0.203397
Hillshade_9am	0.097900	-0.593997	-0.200072	-0.033803
Hillshade_Noon	0.215782	0.324912	-0.612613	0.080047
Hillshade_3pm	0.089518	0.635022	-0.326887	0.080833
Horizontal_Distance_To_Fire_Points	0.443563	-0.052169	-0.239527	0.158817
Wilderness_Area1	0.330417	-0.131262	-0.152820	-0.009402
Wilderness_Area2	0.261729	0.028238	-0.065923	0.087484
Wilderness_Area3	0.354025	0.032578	-0.113033	0.200532
Wilderness_Area4	-0.783651	0.075228	0.286985	-0.239303
Soil_Type1	-0.218818	-0.024538	0.099355	-0.084766
Soil_Type2	-0.147947	-0.020970	-0.081498	0.024234
Soil_Type3	-0.307523	-0.069120	0.265541	-0.089578
Soil_Type4	-0.125342	0.018019	0.087841	-0.059398
Soil_Type5	-0.141478	0.000343	0.074720	-0.025247
Soil_Type6	-0.187354	-0.006066	-0.047868	0.021203
Soil_Type8	0.002934	0.001723	-0.012989	0.002819
Soil_Type9	-0.010571	-0.019391	-0.022220	-0.005523
Soil_Type10	-0.357816	0.111959	0.255804	-0.112852
Soil_Type11	-0.037906	-0.034549	-0.109798	0.026150
Soil_Type12	0.017432	-0.044142	-0.115088	0.034306
Soil_Type13	0.039304	0.024312	0.119863	0.026595
Soil_Type14	-0.140619	0.001181	-0.054085	-0.111878
Soil_Type16	-0.066252	0.027121	-0.064321	-0.084804
Soil_Type17	-0.200663	0.029870	-0.124375	-0.159717
Soil_Type18	-0.035173	-0.042140	-0.069326	-0.018282
Soil_Type19	0.029808	0.007570	-0.047742	-0.033946
fle://Users/sakshikalani/Desktop/ML%20and%20Sta Soil_Type20	ts/Project Grou 0.008548	o6 files/extensi	ons/Math.700m. -0.068508	s_0.062873
		_		

	_	_	_		
	Elevation	Aspect	Slope	Horizontal_Distance	
Soil_Type21	0.032509	0.018815	-0.033935	-0.025207	
Soil_Type22	0.146236	0.022301	-0.076393	-0.007840	
Soil_Type23	0.159872	0.041880	-0.184528	-0.087963	
Soil_Type24	0.097647	0.005480	0.017982	0.046915	
Soil_Type25	0.010586	-0.002340	0.011062	-0.004615	
Soil_Type26	0.020669	-0.009775	-0.030700	0.027879	
Soil_Type27	0.040019	0.018986	0.012295	0.064616	
Soil_Type28	-0.001077	0.026330	0.036082	0.019663	
Soil_Type29	0.165304	-0.063428	-0.083108	0.033854	
Soil_Type30	0.048204	-0.086897	0.118725	-0.032540	
Soil_Type31	0.093191	0.008160	-0.076851	0.060886	
Soil_Type32	0.172349	0.003700	-0.147258	0.138275	
Soil_Type33	0.123821	0.018719	0.072027	0.062121	
Soil_Type34	0.021876	0.012927	-0.030590	0.072485	
Soil_Type35	0.120157	-0.004235	-0.048855	-0.015446	
Soil_Type36	0.040571	0.003160	-0.004570	0.077251	
Soil_Type37	0.073825	-0.046309	0.003129	-0.009549	
Soil_Type38	0.323440	0.043860	-0.148342	0.131444	
Soil_Type39	0.296405	-0.031342	0.051900	0.066284	
Soil_Type40	0.306755	0.007208	-0.043513	0.242304	
Cover_Type	0.016090	0.008015	0.087722	-0.010515	

```
In [57]: dataset_corr = dataset.corr()
         # Set the threshold to select only only highly correlated attributes
         threshold = 0.5
         # List of pairs along with correlation above threshold
         corr list = []
         cols=dataset.columns
         #len(dataset)
         size = len(dataset_corr)
         #Search for the highly correlated pairs
         for i in range(0,size): #for 'size' features
             for j in range(i+1,size): #avoid repetition
                 if (dataset_corr.iloc[i,j] >= threshold and dataset_corr.iloc[i,
         j] < 1) or (dataset_corr.iloc[i,j] < 0 and dataset_corr.iloc[i,j] <= -th</pre>
         reshold):
                      corr list.append([dataset_corr.iloc[i,j],i,j]) #store correl
         ation and columns index
         #Sort to show higher ones first
         s_corr_list = sorted(corr_list,key=lambda x: -abs(x[0]))
         #Print correlations and column names
         for v,i,j in s corr list:
             print ("%s and %s = %.2f" % (cols[i],cols[j],v))
```

```
Elevation and Wilderness_Area4 = -0.78
Hillshade_9am and Hillshade_3pm = -0.78
Horizontal_Distance_To_Hydrology and Vertical_Distance_To_Hydrology = 0.65
Aspect and Hillshade_3pm = 0.64
Hillshade_Noon and Hillshade_3pm = 0.61
Slope and Hillshade_Noon = -0.61
Aspect and Hillshade_9am = -0.59
Elevation and Horizontal_Distance_To_Roadways = 0.58
Wilderness_Area3 and Wilderness_Area4 = -0.57
Wilderness_Area1 and Soil_Type29 = 0.55
```

```
In [58]: con = ['Elevation' , 'Aspect' , 'Slope', 'Horizontal_Distance_To_Hydrolo
         gy' , 'Vertical_Distance_To_Hydrology' , 'Horizontal_Distance_To_Roadway
         s', 'Hillshade 9am', 'Hillshade Noon', 'Hillshade 3pm', 'Horizontal Distance
         To Fire Points']
         con_variables = dataset[con]
         #Cor = con variables.iloc[:,0:10]
         Cor matrix = con variables.corr(method='pearson', min periods=1)
         #print(Cor matrxi)
         fig, ax = plt.subplots()
         heatmap = ax.pcolor(Cor_matrix, cmap=plt.cm.Blues, alpha=0.8)
         fig = plt.gcf()
         fig.set size inches(6, 6)
         ax.set_frame_on(False)
         ax.set_yticks(np.arange(10) + 0.5, minor=False)
         ax.set_xticks(np.arange(10) + 0.5, minor=False)
         ax.set_xticklabels(con[0:10], minor=False)
         ax.set_yticklabels(con[0:10], minor=False)
         plt.xticks(rotation=90)
```

Out[58]: (array([0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5]), <a list of 10 Text xticklabel objects>)


```
In [59]: # define the data/predictors as the pre-set feature names
    df = pd.DataFrame(dataset, columns=["Elevation"])

# Put the target in another DataFrame
    target = pd.DataFrame(dataset, columns=["Cover_Type"])

import statsmodels.api as sm

X = df["Elevation"]
    y = target["Cover_Type"]

# Note the difference in argument order
    model = sm.OLS(y, X).fit()
    # make the predictions by the model
    predictions = model.predict(X)

# Print out the statistics
    model.summary()
```

Out[59]: OLS Regression Results

Dep. Variable:	Cover_Type	R-squared:	0.784
Model:	OLS	Adj. R-squared:	0.784
Method:	Least Squares	F-statistic:	5.483e+04
Date:	Wed, 18 Apr 2018	Prob (F-statistic):	0.00
Time:	06:14:19	Log-Likelihood:	-32521.
No. Observations:	15120	AIC:	6.504e+04
Df Residuals:	15119	BIC:	6.505e+04
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Elevation	0.0014	6.08e-06	234.165	0.000	0.001	0.001

Omnibus:	5998.494	Durbin-Watson:	1.144
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1320.370
Skew:	-0.482	Prob(JB):	1.93e-287
Kurtosis:	1.920	Cond. No.	1.00

• We can see here that this model has a much higher R-squared value of 0.784, meaning that this model explains 78.4% of the variance in our dependent variable.

```
In [60]: # define the data/predictors as the pre-set feature names
    df = pd.DataFrame(dataset, columns=["Slope"])

# Put the target in another DataFrame
    target = pd.DataFrame(dataset, columns=["Cover_Type"])

import statsmodels.api as sm

X = df["Slope"]
y = target["Cover_Type"]

# Note the difference in argument order
    model = sm.OLS(y, X).fit()
# make the predictions by the model
    predictions = model.predict(X)

# Print out the statistics
    model.summary()
```

Out[60]: OLS Regression Results

Dep. Variable:	Cover_Type	R-squared:	0.662
Model:	OLS	Adj. R-squared:	0.662
Method:	Least Squares	F-statistic:	2.968e+04
Date:	Wed, 18 Apr 2018	Prob (F-statistic):	0.00
Time:	06:14:22	Log-Likelihood:	-35891.
No. Observations:	15120	AIC:	7.178e+04
Df Residuals:	15119	BIC:	7.179e+04
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Slope	0.1963	0.001	172.269	0.000	0.194	0.199

Omnibus:	517.060	Durbin-Watson:	1.205
Prob(Omnibus):	0.000	Jarque-Bera (JB):	255.416
Skew:	0.107	Prob(JB):	3.44e-56
Kurtosis:	2.400	Cond. No.	1.00

• We can see here that this model has a much higher R-squared value of 0.662.

Data Visualization

```
In [61]: #Scatter Plot for Elevation and Horizontal_Distance_To_Roadways
    x = dataset['Elevation']
    y = dataset['Horizontal_Distance_To_Roadways']

plt.scatter(x,y)
plt.show()
```



```
In [62]: #Scatter Plot for Aspect vs Hillshade_3pm
x = dataset['Aspect']
y = dataset['Hillshade_3pm']

plt.scatter(x,y)
plt.show()
```



```
In [63]: #Scatter Plot for Horizontal_Distance_To_Hydrology vs the Vertical Distance
    x = dataset['Horizontal_Distance_To_Hydrology']
    y = dataset['Vertical_Distance_To_Hydrology']

plt.scatter(x,y)
    plt.show()
```



```
In [64]: #ScatterPlot for Hillshade_Noon vs Hillshade_3pm
    x = dataset['Hillshade_Noon']
    y = dataset['Hillshade_3pm']

plt.scatter(x,y)
plt.show()
```



```
In [65]: cols = dataset.columns
size = len(cols)-1
x = cols[size]
y = cols[0:size]
```

```
In [66]: for i in range(0,size):
    sns.violinplot(data=dataset,x=x,y=y[i])
    plt.show()
```


7

6

Ś

0

2

3

4 Cover_Type

Data Visualization

```
In [211]: # Group one-hot encoded variables of a category into one single variable
    #names of all the columns
    cols = dataset.columns
    #number of rows=r , number of columns=c
    r,c = dataset.shape
    #Create a new dataframe with r rows, one column for each encoded categor
    y, and target in the end
    dataS = pd.DataFrame(index=np.arange(0, r),columns=['Wilderness_Area','S
    oil_Type','Cover_Type'])
```

```
In [212]: #Make an entry in 'data' for each r as category id, target value
          for i in range(0,r):
              w=0;
              s=0;
             # Category1 range
              for j in range (10,14):
                  if (dataset.iloc[i,j] == 1):
                      w=i-9
                      break
              # Category2 range
              for k in range(14,54):
                  if (dataset.iloc[i,k] == 1):
                      s=k-13
                      break
               #Make an entry in 'data' for each r as category id, target value
              dataS.iloc[i]=[w,s,dataset.iloc[i,c-1]]
          #Plot for Category1
          sns.countplot(x="Wilderness Area", hue="Cover Type", data=dataS)
          plt.show()
          #Plot for Category2
          plt.rc("figure", figsize=(25, 10))
          sns.countplot(x="Soil_Type", hue="Cover_Type", data=dataS)
          #WildernessArea 4 has a lot of presence for cover type 4. Good class dis
          tinction
          #WildernessArea 3 has not much class distinction
          #SoilType 1-6,10-14,17, 22-23, 29-33,35,38-40 offer lot of class distinc
          tion as counts for some are very high
```


Data Standardization

```
In [192]: #get the number of rows and columns
          r, c = dataset.shape
          #get the list of columns
          cols = dataset.columns
          #create an array which has indexes of columns
          i_cols = []
          for i in range(0,c-1):
              i_cols.append(i)
           #array of importance rank of all features
          ranks = []
          #Extract only the values
          array = dataset.values
          #Y is the target column, X has the rest
          X_{\text{orig}} = array[:,0:(c-1)]
          Y = array[:,(c-1):c]
          #Validation chunk size
          val size = 0.1
          #Use a common seed in all experiments so that same chunk is used for val
           idation
          seed = 0
          #Split the data into chunks
          from sklearn import cross validation
          X train, X val, Y train, Y val = cross validation.train test split(X ori
          g, Y, test size=val size, random state=seed)
          #Import libraries for data transformations
          from sklearn.preprocessing import Imputer
          from sklearn.preprocessing import StandardScaler
           from sklearn.preprocessing import MinMaxScaler
          from sklearn.preprocessing import Normalizer
          #All features
          X \text{ all} = []
          #Additionally we will make a list of subsets
          X_all_add = []
          #columns to be dropped
          rem cols = []
           #indexes of columns to be dropped
          i rem = []
          #Add this version of X to the list
          X all.append(['Orig','All', X train,X val,1.0,cols[:c-1],rem cols,ranks,
           i cols,i rem])
          #point where categorical data begins
          size=10
           import numpy
```

```
#Standardized
#Apply transform only for non-categorical data
X temp = StandardScaler().fit_transform(X_train[:,0:size])
X val temp = StandardScaler().fit transform(X val[:,0:size])
#Concatenate non-categorical data and categorical
X_con = numpy.concatenate((X_temp,X_train[:,size:]),axis=1)
X_val_con = numpy.concatenate((X_val_temp,X_val[:,size:]),axis=1)
#Add this version of X to the list
X_all.append(['StdSca','All', X_con,X_val_con,1.0,cols,rem_cols,ranks,i_
cols, i rem])
#MinMax
#Apply transform only for non-categorical data
X_temp = MinMaxScaler().fit_transform(X_train[:,0:size])
X val temp = MinMaxScaler().fit transform(X val[:,0:size])
#Concatenate non-categorical data and categorical
X_con = numpy.concatenate((X_temp,X_train[:,size:]),axis=1)
X val con = numpy.concatenate((X val temp, X val[:,size:]),axis=1)
#Add this version of X to the list
X_all.append(['MinMax', 'All', X_con,X_val_con,1.0,cols,rem_cols,ranks,i
_cols,i_rem])
#Normalize
#Apply transform only for non-categorical data
X_temp = Normalizer().fit_transform(X_train[:,0:size])
X_val_temp = Normalizer().fit_transform(X_val[:,0:size])
#Concatenate non-categorical data and categorical
X con = numpy.concatenate((X temp, X train[:, size:]), axis=1)
X val con = numpy.concatenate((X val temp, X val[:,size:]),axis=1)
#Add this version of X to the list
X_all.append(['Norm', 'All', X_con,X_val_con,1.0,cols,rem_cols,ranks,i_c
ols, i rem])
#Impute
#Imputer is not used as no data is missing
#List of transformations
trans list = []
for trans, name, X, X val, v, cols list, rem list, rank list, i cols list, i rem
list in X all:
    trans list.append(trans)
```

Feature Selection

```
In [215]: #Select top 75%,50%,25%
    ratio_list = [0.75,0.50,0.25]
```

Feature Selection =- SelectPercentile

```
In [216]: #List of feature selection models
          feat = []
          #List of names of feature selection models
          feat list =[]
          #Libraries for SelectPercentile
          from sklearn.feature selection import SelectPercentile
          from sklearn.feature_selection import f_classif
          n = 'SelK'
          feat list.append(n)
          for val in ratio list:
              comb.append("%s+%s" % (n,val))
              feat.append([n,val,SelectPercentile(score_func=f_classif,percentile=
          val*100)])
          #For all transformations of X
          for trans, s, X, X val, d, cols, rem, ra, i cols, i rem in X all:
              #For all feature selection models
              for name, v, model in feat:
                  #Train the model against Y
                  model.fit(X,Y train)
                  #Combine importance and index of the column in the array joined
                  joined = []
                  for i, pred in enumerate(list(model.scores_)):
                       joined.append([i,cols[i],pred])
                  #Sort in descending order
                   joined sorted = sorted(joined, key=lambda x: -x[2])
                  #Starting point of the columns to be dropped
                  rem start = int((v*(c-1)))
                  #List of names of columns selected
                  cols list = []
                  #Indexes of columns selected
                  i cols list = []
                  #Ranking of all the columns
                  rank list =[]
                  #List of columns not selected
                  rem list = []
                  #Indexes of columns not selected
                  i rem list = []
                  #Split the array. Store selected columns in cols list and remove
          d in rem list
                   for j, (i, col, x) in enumerate(list(joined sorted)):
                       #Store the rank
                      rank_list.append([i,j])
                       #Store selected columns in cols list and indexes in i cols l
          ist
                       if(j < rem start):</pre>
                           cols list.append(col)
                           i cols list.append(i)
                       #Store not selected columns in rem_list and indexes in i_rem
          list
```

```
i_rem_list.append(i)
        #Sort the rank_list and store only the ranks. Drop the index
        #Append model name, array, columns selected and columns to be re
moved to the additional list
        X_all_add.append([trans,name,X,X_val,v,cols_list,rem_list,[x[1]]
for x in sorted(rank_list,key=lambda x:x[0])],i_cols_list,i_rem_list])
#Set figure size
plt.rc("figure", figsize=(25, 10))
#Plot a graph for different feature selectors
for f name in feat list:
    #Array to store the list of combinations
    leg=[]
    fig, ax = plt.subplots()
    #Plot each combination
    for trans,name,X,X val,v,cols list,rem list,rank list,i cols list,i
rem_list in X_all_add:
        if(name==f name):
            plt.plot(rank_list)
            leg.append(trans+"+"+name+"+%s"% v)
    #Set the tick names to names of columns
    ax.set_xticks(range(c-1))
    ax.set xticklabels(cols[:c-1],rotation='vertical')
    #Display the plot
    plt.legend(leg,loc='best')
    #Plot the rankings of all the features for all combinations
    plt.show()
```


In [217]: rank_df = pd.DataFrame(data=[x[7] for x in X_all_add],columns=cols[:c-1
])
 _ = rank_df.boxplot(rot=90)
 #Below plot summarizes the rankings according to the standard feature se lection techniques
 #Top ranked attributes are ... first 10 attributes, Wilderness_Area1,4
 ...Soil_Type 3,4,10,38-40

Rank Features based on Median

```
In [218]: rank_df = pd.DataFrame(data=[x[7] for x in X_all_add],columns=cols[:c-1
])
med = rank_df.median()
print(med)
```

	3
Elevation	0.0
Aspect	8.0
Slope	12.0
<pre>Horizontal_Distance_To_Hydrology</pre>	4.0
Vertical_Distance_To_Hydrology	5.0
Horizontal_Distance_To_Roadways	1.0
Hillshade_9am	6.0
Hillshade_Noon	7.0
Hillshade_3pm	11.0
Horizontal_Distance_To_Fire_Points	3.0
Wilderness_Area1	9.0
Wilderness_Area2	31.0
Wilderness_Area3	17.0
Wilderness_Area4	2.0
Soil_Type1	35.0
Soil_Type2	20.0
Soil_Type3	13.0
Soil_Type4	16.0
Soil_Type5	37.0
Soil_Type6	27.0
Soil_Type8	51.0
Soil_Type9	45.0
Soil_Type10	10.0
Soil_Type11	29.0
Soil_Type12	23.0
Soil_Type13	21.0
Soil_Type14	40.0
Soil_Type16	38.0
Soil_Type17	22.0
Soil_Type18	39.0
Soil_Type19	44.0
Soil_Type20	36.0
Soil_Type21	46.0
Soil_Type22	24.0
Soil_Type23	26.0
Soil_Type24	34.0
Soil_Type25	50.0
Soil_Type26	42.0
Soil_Type27	47.0
Soil_Type28	49.0
Soil_Type29	28.0
Soil_Type30	19.0
Soil_Type31	33.0
Soil_Type32	25.0
Soil_Type33	30.0
Soil_Type34	43.0
Soil_Type35	32.0
Soil_Type36	48.0
Soil_Type37	41.0
Soil_Type38	14.0
Soil_Type39	15.0
Soil_Type40	18.0
dtype: float64	

```
In [219]: #Select top 75%,50%,25%
          ratio list = [0.75, 0.50, 0.25]
          #Median of rankings for each column
          unsorted_rank = [0,8,11,4,5,2,5,7.5,9.5,3,8,28.5,14.5,2,35,19.5,12,14,37]
          ,25.5,50,44,9,28,20.5,19.5,40,38,20,38,43,35,44,22,24,33,49,42,46,47,27.
          5,19,31.5,23,28,42,30.5,46,40,12,13,18]
          #List of feature selection models
          feat = []
          #Add Median to the list
          n = 'Median'
          for val in ratio list:
              feat.append([n,val])
          for trans, s, X, X val, d, cols, rem_cols, ra, i_cols, i_rem_in X_all:
              #Create subsets of feature list based on ranking and ratio list
              for name, v in feat:
                  #Combine importance and index of the column in the array joined
                   joined = []
                  for i, pred in enumerate(unsorted_rank):
                       joined.append([i,cols[i],pred])
                  #Sort in descending order
                   joined sorted = sorted(joined, key=lambda x: x[2])
                  #Starting point of the columns to be dropped
                  rem start = int((v*(c-1)))
                  #List of names of columns selected
                  cols list = []
                  #Indexes of columns selected
                  i cols list = []
                  #Ranking of all the columns
                  rank list =[]
                  #List of columns not selected
                  rem list = []
                  #Indexes of columns not selected
                   i rem list = []
                  #Split the array. Store selected columns in cols list and remove
          d in rem list
                  for j, (i, col, x) in enumerate(list(joined sorted)):
                       #Store the rank
                      rank list.append([i,j])
                       #Store selected columns in cols list and indexes in i cols l
          ist
                       if(j < rem start):</pre>
                           cols list.append(col)
                           i cols list.append(i)
                       #Store not selected columns in rem list and indexes in i rem
          list
                       else:
                           rem_list.append(col)
                           i rem list.append(i)
                  #Sort the rank_list and store only the ranks. Drop the index
                   #Append model name, array, columns selected and columns to be re
          moved to the additional list
```

Machine Learning Algorithms

K Nearest Neighbours

```
In [224]: #Evaluation of various combinations of KNN Classifier using all the view
          #Import the library
          from sklearn.neighbors import KNeighborsClassifier
          n_{list} = [1]
          for n neighbors in n list:
              #Set the base model
              model = KNeighborsClassifier(n jobs=-1, n neighbors=n neighbors)
              algo = "KNN"
              ##Set figure size
              #plt.rc("figure", figsize=(25, 10))
              #Accuracy of the model using all features
              for trans,name,X,X val,v,cols list,rem list,rank list,i cols list,i
          rem list in X all:
                  model.fit(X[:,i_cols_list],Y_train)
                  result = model.score(X_val[:,i_cols_list], Y_val)
                   acc[trans].append(result)
                  print(trans+"+"+name+"+%\mathbf{d}" % (v*(c-1)))
                   print(result)
              comb.append("%s with n=%s+%s of %s" % (algo, n neighbors, "All", 1.0))
              #Accuracy of the model using a subset of features
              for trans,name,X,X val,v,cols list,rem list,rank list,i cols list,i
          rem list in X_all_add:
                  model.fit(X[:,i_cols_list],Y_train)
                  result = model.score(X_val[:,i_cols_list], Y_val)
                   acc[trans].append(result)
                  print(trans+"+"+name+"+%d" % (v*(c-1)))
                  print(result)
              for v in ratio list:
                   comb.append("%s with n=%s+%s of %s" % (algo, n neighbors, "Subset"
          , v))
          #print(acc)
          ##Plot the accuracies of all combinations
          fig, ax = plt.subplots()
          ##Plot each transformation
          for trans in trans list:
                  plt.plot(acc[trans])
          ##Set the tick names to names of combinations
          ax.set xticks(range(len(comb)))
          ax.set xticklabels(comb, rotation='vertical')
          ##Display the plot
          plt.legend(trans list,loc='best')
          ##Plot the accuracy for all combinations
          plt.show()
          #Best estimated performance is close to 85% when n neighbors=1 and norma
```

Orig+All+52

0.842592592593

StdSca+All+52

0.816137566138

MinMax+All+52

0.775793650794

Norm+All+52

0.850529100529

Orig+Median+39

0.842592592593

Orig+Median+26

0.842592592593

Orig+Median+13

0.842592592593

StdSca+Median+39

0.815476190476

StdSca+Median+26

0.812830687831

StdSca+Median+13

0.790343915344

MinMax+Median+39

0.775132275132

MinMax+Median+26

0.771164021164

MinMax+Median+13

0.744708994709

Norm+Median+39

0.848544973545

Norm+Median+26

0.834656084656

Norm+Median+13

0.801587301587

Orig+Median+39

0.842592592593

Orig+Median+26

0.842592592593

Orig+Median+13

0.842592592593

StdSca+Median+39

0.815476190476

StdSca+Median+26

0.812830687831

StdSca+Median+13

0.790343915344

MinMax+Median+39

0.775132275132

MinMax+Median+26

0.771164021164

MinMax+Median+13

0.744708994709

Norm+Median+39

0.848544973545

Norm+Median+26

0.834656084656

Norm+Median+13

0.842592592593

Orig+SelK+26

0.841931216931

Orig+SelK+13

0.833994708995

StdSca+SelK+39

0.816798941799

StdSca+SelK+26

0.828042328042

StdSca+SelK+13

0.812830687831

MinMax+SelK+39

0.777116402116

MinMax+SelK+26

0.77380952381

MinMax+SelK+13

0.716931216931

Norm+SelK+39

0.849206349206

Norm+SelK+26

0.794973544974

Norm+SelK+13

0.724206349206

Orig+Median+39

0.842592592593

Orig+Median+26

0.842592592593

Orig+Median+13

0.842592592593

StdSca+Median+39

2 215456122457

0.815476190476

StdSca+Median+26

0.812830687831

StdSca+Median+13

0.790343915344

MinMax+Median+39

0.775132275132

MinMax+Median+26

0.771164021164

MinMax+Median+13

0.744708994709

Norm+Median+39

0.848544973545

Norm+Median+26

0.834656084656

Norm+Median+13

0.801587301587

Naive Bayes

```
In [225]: #Evaluation of various combinations of Naive Bayes using all the views
          #Import the library
          from sklearn.naive_bayes import GaussianNB
          #Set the base model
          model = GaussianNB()
          algo = "NB"
          ##Set figure size
          #plt.rc("figure", figsize=(25, 10))
          #Accuracy of the model using all features
          for trans, name, X, X val, v, cols list, rem list, rank list, i cols list, i rem
          list in X all:
              model.fit(X[:,i_cols_list],Y_train)
              result = model.score(X_val[:,i_cols_list], Y_val)
              acc[trans].append(result)
              print(trans+"+"+name+"+%d" % (v*(c-1)))
              print(result)
          comb.append("\$s+\$s of \$s" \$ (algo, "All", 1.0))
          #Accuracy of the model using a subset of features
          for trans,name,X,X val,v,cols list,rem list,rank list,i cols list,i rem
          list in X all add:
              model.fit(X[:,i_cols_list],Y_train)
              result = model.score(X val[:,i cols list], Y val)
              acc[trans].append(result)
              print(trans+"+"+name+"+%d" % (v*(c-1)))
              print(result)
          for v in ratio list:
              comb.append("%s+%s of %s" % (algo, "Subset", v))
          ##Plot the accuracies of all combinations
          fig, ax = plt.subplots()
          ##Plot each transformation
          for trans in trans list:
                  plt.plot(acc[trans])
          ##Set the tick names to names of combinations
          ax.set xticks(range(len(comb)))
          ax.set_xticklabels(comb,rotation='vertical')
          ##Display the plot
          plt.legend(trans list,loc='best')
          ##Plot the accuracy for all combinations
          plt.show()
          #Best estimated performance is close to 61%. Original with 50% subset ou
          tperfoms all transformations of NB
```

Orig+All+52

0.595238095238

StdSca+All+52

0.468915343915

MinMax+All+52

0.467592592593

Norm+All+52

0.449735449735

Orig+Median+39

0.59126984127

Orig+Median+26

0.596560846561

Orig+Median+13

0.578703703704

StdSca+Median+39

0.472883597884

StdSca+Median+26

0.494047619048

StdSca+Median+13

0.462962962963

MinMax+Median+39

0.474206349206

MinMax+Median+26

0.490740740741

MinMax+Median+13

0.463624338624

Norm+Median+39

0.44708994709

Norm+Median+26

0.455026455026

Norm+Median+13

0.345238095238

Orig+Median+39

0.59126984127

Orig+Median+26

0.596560846561

Orig+Median+13 0.578703703704

StdSca+Median+39

0.472883597884

StdSca+Median+26

0.494047619048

StdSca+Median+13

0.462962962963

MinMax+Median+39

0.474206349206

MinMax+Median+26

0.490740740741

MinMax+Median+13

0.463624338624 Norm+Median+39

0.44708994709

Norm+Median+26

0.455026455026

Norm+Median+13

0.583333333333

Orig+SelK+26

0.611111111111

Orig+SelK+13

0.576058201058

StdSca+SelK+39

0.464947089947

StdSca+SelK+26

0.440476190476

StdSca+SelK+13

0.419312169312

MinMax+SelK+39

0.458333333333

MinMax+SelK+26

0.441137566138

MinMax+SelK+13

0.431878306878

Norm+SelK+39

0.443121693122

Norm+SelK+26

0.415343915344

Norm+SelK+13

0.373677248677

Orig+Median+39

0.59126984127

Orig+Median+26

0.596560846561

Orig+Median+13

0.578703703704

StdSca+Median+39

0.472883597884

StdSca+Median+26

0.494047619048

StdSca+Median+13

0.462962962963

MinMax+Median+39

0.474206349206

MinMax+Median+26

0.490740740741

MinMax+Median+13

0.463624338624

Norm+Median+39

0.44708994709

Norm+Median+26

0.455026455026

Norm+Median+13

0.345238095238

Random Forest

```
In [226]: #Evaluation of various combinations of Random Forest using all the views
          #Import the library
          from sklearn.ensemble import RandomForestClassifier
          n_list = [100]
          for n estimators in n list:
              #Set the base model
              model = RandomForestClassifier(n_jobs=-1,n_estimators=n_estimators,
          random_state=seed)
              algo = "RF"
              #Set figure size
              plt.rc("figure", figsize=(20, 10))
              #Accuracy of the model using all features
              for trans,name,X,X val,v,cols list,rem list,rank list,i cols list,i
          rem list in X all:
                  model.fit(X[:,i_cols_list],Y_train)
                  result = model.score(X_val[:,i_cols_list], Y_val)
                  acc[trans].append(result)
                  print(trans+"+"+name+"+%\mathbf{d}" % (v*(c-1)))
                  print(result)
              comb.append("%s with n=%s+%s of %s" % (algo,n_estimators, "All",1.0))
              #Accuracy of the model using a subset of features
              for trans,name,X,X val,v,cols list,rem list,rank list,i cols list,i
          rem list in X_all_add:
                  model.fit(X[:,i_cols_list],Y_train)
                  result = model.score(X_val[:,i_cols_list], Y_val)
                  acc[trans].append(result)
                  print(trans+"+"+name+"+%d" % (v*(c-1)))
                  print(result)
              for v in ratio list:
                  comb.append("%s with n=%s+%s of %s" % (algo,n estimators, "Subse
          t", v))
          ##Plot the accuracies of all combinations
          fig, ax = plt.subplots()
          ##Plot each transformation
          for trans in trans list:
                  plt.plot(acc[trans])
          ##Set the tick names to names of combinations
          ax.set xticks(range(len(comb)))
          ax.set_xticklabels(comb,rotation='vertical')
          ##Display the plot
          plt.legend(trans list,loc='best')
          ##Plot the accuracy for all combinations
          plt.show()
          #Best estimated performance is close to 86% when n estimators is 100
```

Orig+All+52

0.855158730159

StdSca+All+52

0.845238095238

MinMax+All+52

0.813492063492

Norm+All+52

0.847883597884

Orig+Median+39

0.855158730159

Orig+Median+26

0.849206349206

Orig+Median+13

0.838624338624

StdSca+Median+39

0.849867724868

StdSca+Median+26

0.843915343915

StdSca+Median+13

0.828042328042

MinMax+Median+39

0.829365079365

MinMax+Median+26

0.810185185185

MinMax+Median+13

0.792989417989

Norm+Median+39

0.845899470899

Norm+Median+26

0.833994708995

Norm+Median+13

0.825396825397

Orig+Median+39

0.855158730159

Orig+Median+26

0.849206349206

Orig+Median+13

0.838624338624

StdSca+Median+39

0.849867724868

StdSca+Median+26

0.843915343915

StdSca+Median+13

0.828042328042

MinMax+Median+39 0.829365079365

MinMax+Median+26

0.810185185185

MinMax+Median+13

0.792989417989

Norm+Median+39

0.845899470899

Norm+Median+26

0.833994708995

Norm+Median+13

0.850529100529

Orig+SelK+26

0.853174603175

Orig+SelK+13

0.841931216931

StdSca+SelK+39

0.848544973545

StdSca+SelK+26

0.847883597884

StdSca+SelK+13

0.827380952381

MinMax+SelK+39

0.820767195767

M' - M - 1 G - 1 T - 0

MinMax+SelK+26

0.815476190476 MinMax+SelK+13

0.792328042328

Norm+SelK+39

0.844576719577

Norm+SelK+26

0.806216931217

Norm+SelK+13

0.774470899471

Orig+Median+39

0.855158730159

Orig+Median+26

0.849206349206

Orig+Median+13

0.838624338624

StdSca+Median+39

0.849867724868

StdSca+Median+26

0.843915343915

StdSca+Median+13

0.828042328042

MinMax+Median+39

0.829365079365

MinMax+Median+26

0.810185185185

MinMax+Median+13

0.792989417989

Norm+Median+39

0.845899470899

Norm+Median+26

0.833994708995

Norm+Median+13

0.825396825397

Make Predictions

```
In [232]:
          #Best model definition
          best model = RandomForestClassifier(n_jobs=-1,n_estimators=n_estimators)
          best_model.fit(X_orig[:,indexes],Y)
          #Read test dataset
          dataset_test = pd.read_csv("test.csv")
          #Drop unnecessary columns
          ID = dataset test['Id']
          dataset_test.drop('Id',axis=1,inplace=True)
          dataset_test.drop(rem,axis=1,inplace=True)
          X_test = dataset_test.values
          #Make predictions using the best model
          predictions = best_model.predict(X_test[:,indexes])
          # Write submissions to output file in the correct format
          with open("submission.csv", "w") as subfile:
              subfile.write("Id,Cover_Type\n")
              for i, pred in enumerate(list(predictions)):
                  subfile.write("%s,%s\n"%(ID[i],pred))
```

Algorithms we have used:

- KNN
- · Naive Bayes
- · Random Forest Classifier

Conclusion:

- We have made use of feature scaling and feature importance to identify the best features.
- To understand how well the model performs, we checked accuracy on the complete training data and with a subset of training data.
- The best model was obtained from using Random Forest Classifier with an accuracy of 86%.
- Other models like Naive Bayes and KNN render an accuracy of 64% and 85% respectively.
- We have predicted the values of testing data using Random Forest Classifier.