Peter Rauscher my HW 7 I pledge my honor that I have abided by the Stevens Honor System. 0) A v = y v $(I+Y) \wedge = y \wedge$ (I+A) V-I) V=O det(A-IX)=0 de+((I+A)-IN)=0 $\begin{vmatrix} 1-\lambda & 4 \\ 2 & 3-\lambda \end{vmatrix} = 0$ 12-1 4 =0 (2-1)(4-1)-8=0 $(1-\lambda)(3-\lambda)-(4)(2)=0$ 8-41-21+12-8=0 3-1-37472-8=0 $\lambda^2 - 6\lambda = 0$ $\lambda^2 - 4\lambda - 5 = 0$ 1=6 $(\lambda 41)(\lambda -5) = 0$ Or x=0 $\lambda = 5$ or $\lambda = -1$ $\begin{bmatrix} 24 \\ 34 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 6 \begin{bmatrix} x \\ y \end{bmatrix}$ 2x+4y=6x X441=5x 2x+3y=5x 2×+4y=6y X=Y - 1 y=X - 0 X=6 V=[1] 1=5 V=[1] $\begin{bmatrix} 24 \\ 24 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 \begin{bmatrix} x \\ y \end{bmatrix}$ $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -1 \begin{bmatrix} x \\ y \end{bmatrix}$ 2×+4y=0 X=-2y X+H1=-X $\begin{array}{ccc}
x = -34 & \lambda = \begin{bmatrix} -3 \end{bmatrix} \\
5 \times 434 = -1 & \lambda = 1
\end{array}$ $\lambda = 0 \ \forall = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

0 b) The eigenvalues of I+A are equivalent to 1 plus the eigenvalues of A, NA+1= XT+A And the eigenvectors of ItA and A are equivalent VA = VIAA O) We solve for the eigenvalue of an arbitrary nxn matrix A by solving for λ in the equation det(A-IX)=0 0 So, to solve for it for ItA with the same matrix A, we use det (I+A-IX)=0 O= (KI-A)+0+(I)+0 det (A-IX)+1=0 Thus, in solving for hItA, it will always be hA plus one, for any arbitrary nxn matrix.

(CONT.) For an arbitrary nxn motrix A, The eigenvector VA can be found using the equation $\begin{bmatrix} \alpha^{11} + \alpha^{13} + \cdots + \alpha^{3n} \\ \alpha^{21} + \alpha^{23} + \cdots + \alpha^{2n} \\ \alpha^{11} + \alpha^{13} + \cdots + \alpha^{1n} \end{bmatrix} \begin{bmatrix} x^{1} \\ \vdots \\ x^{1} \end{bmatrix} = y^{4} \begin{bmatrix} x^{1} \\ \vdots \\ x^{1} \end{bmatrix}$ $A \wedge A = y^{4} \wedge A \qquad \text{where } A = \begin{bmatrix} x^{1} \\ \vdots \\ x^{1} \end{bmatrix}$ And for the matrix I +A using the A above, and YI44 = Y441 Use the equation where $V_{I+A} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ (I44) 144 = Y I44 / I44 $\begin{bmatrix} \alpha^{1} + 1 + \alpha^{1} + 3 + \cdots + \alpha^{1} \\ \alpha^{2} + 1 + \alpha^{2} + \cdots + \alpha^{2} \\ \vdots \end{bmatrix} = \begin{bmatrix} \lambda^{1} \\ \lambda^{1} \end{bmatrix}$

(cont.) Cancelling out the +1 on each side of the equation leaves us with the Same equation we used to solve for Va, and thus VA = VIXA for any arbitrary matrix A. In conclusion, we have proven for any arbitrary matrix A of nxn, the eigenvalues Of I+A are 1+1/2, and the eigenvectors of A and I+A are equivalent: 0

$$A = \begin{bmatrix} 0.6 & 0.2 \\ 0.4 & 0.6 \end{bmatrix} \quad \begin{vmatrix} 0.6 - \lambda & 0.2 \\ 0.4 & 0.6 - \lambda \end{vmatrix} = (0.6 - \lambda)(0.8 - \lambda)$$

$$A = \begin{bmatrix} 0.6 & 0.2 \\ 0.4 & 0.6 \end{bmatrix} \quad \begin{vmatrix} 0.4 & 0.6 - \lambda \\ 0.4 & 0.6 - \lambda \end{vmatrix} = (0.27(0.4))$$

$$A = \begin{bmatrix} 0.6 & 0.2 \\ 0.4 & 0.6 \end{bmatrix} \begin{bmatrix} \times \\ 1 \end{bmatrix} = \begin{bmatrix} 0.48 - 0.8 \lambda - 0.6 \lambda + \lambda^2 - 0.09 \\ 0.4 & 0.8 \end{bmatrix} \begin{bmatrix} \times \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda^2 - 1.41 \lambda + 0.41 \\ \lambda = 1 \end{bmatrix} \quad \lambda_2 = 0.44$$

$$0.6 \times + 0.2 y = y \quad 0.6 \times + 0.2 y = 0.4 \times y = 0.4 \times y = 0.4 \times + 0.6 \times y = 0.4 \times y$$

20)
$$\lim_{K\to\infty} \left[\frac{1}{3} + \frac{2}{3} \left(\frac{2}{8}\right)^{K} + \frac{1}{3} - \frac{1}{3} \left(\frac{2}{8}\right)^{K}\right] = \left[\frac{1}{3} - \frac{2}{3} \left(\frac{2}{8}\right)^{K} + \frac{2}{3} + \frac{2}{3} \left(\frac{2}{8}\right)^{K}\right] = \left[\frac{1}{3} - \frac{2}{3} \left(\frac{2}{8}\right)^{K} + \frac{2}{3} + \frac{2}{3} \left(\frac{2}{8}\right)^{K}\right] = \left[\frac{1}{3} - \frac{2}{3} \left(\frac{2}{8}\right)^{K} + \frac{2}{3} - \frac{2}{3} \left(\frac{2}{8}\right)^{K}\right] = \left[\frac{1}{3} - \frac{2}{3} \left(\frac{2}{8}\right)^{K}\right] = \left[\frac{1}{3} - \frac{2}{3} + \frac{2}{3$$