

# 10. 컴퓨터 산술 연산



### 산술 연산

- 수를 대상으로 한 연산
- 덧셈, 뺄셈, 곱셈, 나눗셈
- 데이터
  - 이진 또는 십진
  - 고정 소수점 또는 부동 소수점
  - 정수: 부호-절대값, 보수 표현(예: 1의 보수, 2의 보수)



# 덧셈과 뺄셈



# 부호-절대값 덧셈/뺄셈

| <u>연</u> 산  | 크기 덧셈  | 크기 뺄셈           |        |        |  |
|-------------|--------|-----------------|--------|--------|--|
| ਪਾਰ         |        | A > B           | A < B  | A = B  |  |
| (+A) + (+B) | +(A+B) |                 |        |        |  |
| (+A) + (-B) |        | +(A-B) $-(A-B)$ | -(B-A) | +(A-B) |  |
| (-A) + (+B) |        | -(A-B)          | +(B-A) | +(A-B) |  |
| (-A) + (-B) | -(A+B) |                 |        |        |  |
| (+A)-(+B)   |        | +(A-B)          | -(B-A) | +(A-B) |  |
| (+A)-(-B)   | +(A+B) |                 |        |        |  |
| (-A)-(+B)   | -(A+B) |                 |        |        |  |
| (-A)-(-B)   |        | -(A-B)          | +(B-A) | +(A-B) |  |



## 부호-절대값 덧셈/뺄셈 하드웨어 구성





## 부호-절대값 연산 알고리즘





### 2의 보수 데이터 덧셈/뺄셈

- 부호 역할을 하는 비트도 다른 비트와 동일하게 연산에 사용
- '그냥' 덧셈함.
- 하드웨어





## 2의 보수 데이터 덧셈/뺄셈 알고리즘





## 곱셈 알고리즘



### 부호-절대값 형식의 곱셈

• 시프트와 덧셈 연산의 반복

| 23  | <sub>~</sub> 10111 | Multiplicand |
|-----|--------------------|--------------|
| 19  | $^{}10011$         | Multiplier   |
|     | 10111              |              |
|     | 10111              |              |
|     | 00000              | +            |
|     | 00000              |              |
|     | 10111              | _            |
| 437 | 110110101          | Product      |

- 1. 피승수를 부분곱에 덧셈
- 2. 부분곱을 오른쪽 시프트
- 3. 승수의 비트가 0이면 시프트만

#### 결과의 부호:

- 1. 두 수의 부호가 같으면 : +
- 2. 두 수의 부호가 다르면: -



### 부호-절대값 형식의 곱셈 하드웨어





### 부호-절대값 형식의 곱셈 알고리즘





### Booth 곱셈 알고리즘

#### • 2의 보수 표기법의 곱셈

$$N = \cdots 0 1 1 1 1 1 0 \cdots = 2^{(i+1)} - 2^{j}$$

$$M \times N = \cdots + M \times 2^{(i+1)} - M \times 2^{j} + \cdots$$

- 승수를 오른쪽에서 왼쪽으로 비트 단위로 스캔
- 처음 1을 만나면 부분곱에서 피승수를 뺌
- 1이 계속되다 0이 나오면 부분곱에서 피승수를 더함
- 이전 비트와 같은 비트가 나오면 변경없음.







## Booth 곱셈 알고리즘의 예

BR: 10111(-9)

AC QR 00000\_10011\_0 -01001\_10011\_0 sh

00100\_11001\_1 sh

00010\_01100\_1 + 11001\_01100\_1 sh

11100\_10110\_0 sh

11110\_01011\_0 - 00111\_015h

00011\_10101\_1



# 나눗셈 알고리즘



## 부호-절대값 정수의 나눗셈

- 비교, 시프트, 뺄셈 연산으로 구성
  - '비교 결과 큰 수이면 몫은 1'← 이진수 이므로

| Divisor:  | 11010                                            | Quotient = $Q$                                                                                                                     |  |
|-----------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| B = 10001 | )0111000000<br>01110<br>011100<br>- <u>10001</u> | Dividend = $A$<br>5 bits of $A \le B$ , quotient has 5 bits<br>6 bits of $A \ge B$<br>Shift right $B$ and subtract; enter 1 in $Q$ |  |
|           | -010110<br><u>10001</u>                          | 7 bits of remainder $\geq B$<br>Shift right B and subtract; enter 1 in Q                                                           |  |
|           | 001010<br>010100<br><u>10001</u>                 | Remainder $\leq B$ ; enter 0 in $Q$ ; shift right $B$<br>Remainder $\geq B$<br>Shift right $B$ and subtract; enter 1 in $Q$        |  |
|           | 000110<br>00110                                  | Remainder $< B$ ; enter 0 in $Q$<br>Final remainder                                                                                |  |

Divisor B = 10001,



## 부호-절대값 정수의 나눗셈



|                                                        |                                |                         | •              |    |
|--------------------------------------------------------|--------------------------------|-------------------------|----------------|----|
|                                                        | $\stackrel{E}{\longleftarrow}$ | A                       | $\overline{Q}$ | SC |
| Dividend:<br>shl EAO                                   | 0                              | 01110                   | 00000          | 5  |
| add $\overline{B} + 1$                                 |                                | 01111                   | 00000          |    |
| E = 1                                                  | 1                              | 01011                   |                |    |
| Set $Q_n = 1$                                          | 1                              | 01011                   | 00001          | 4  |
| $Add \overline{B} + 1$                                 | 0                              | 10110<br>01111          | 00010          |    |
| $E = 1$ Set $Q_n = 1$                                  | 1<br>1                         | 00101<br>00101          | 00011          | 3  |
| shl $\widetilde{E}_{A}^{H}Q$<br>Add $\overline{B}$ + 1 | Ō                              | 01010<br>01111          | 00110          |    |
| $E = 0$ ; leave $Q_n = 0$<br>Add $B$                   | 0                              | 11001<br>10001          | 00110          |    |
| Restore remainder shl $EAQ$<br>Add $\overline{B} + 1$  | 1<br>0                         | 01010<br>10100<br>01111 | 01100          | 2  |
| E = 1                                                  | 1                              | 00011                   |                |    |
| Set $Q_n = 1$<br>shl $EAQ$                             | 1                              | 00011<br>00110          | 01101<br>11010 | 1  |
| Add $\overline{B} + 1$                                 | U                              | 01111                   | 11010          |    |
| $E = 0$ ; leave $Q_n = 0$<br>Add $B$                   | 0                              | 10101<br>10001          | 11010          |    |
| Restore remainder<br>Neglect E                         | 1                              | 00110                   | 11010          | 0  |
| Remainder in A:                                        |                                | 00110                   |                |    |
| Quotient in Q:                                         |                                |                         | 11010          |    |

 $\overline{B} + 1 = 01111$ 



## A, B 크기 비교

- (A-B) 한 후 캐리(E) 값 확인
- A≥B 이면 E = 1

$$A - B$$

$$= A + (-B)$$

$$= A + 2^{n} - B$$

$$= 2^{n} + (A - B)$$

• A < B이면 E = 0  

$$A - B$$
  
 $= A + (-B)$   
 $= A + 2^n - B$   
 $= 2^n + (A - B)$   
 $= 2^n - (B - A)$ 



### 나눗셈 오버플로

- '피제수(2n 비트)의 상위 n 비트의 값이 제수(n비트)보다 큰 경우'
- → 몫은 (*n+1*)비트가 필요







# 부동 소수점 산술 연산



### 부동 소수점 덧셈/뺄셈

- 단계
  - 0인지 조사
  - 지수가 같도록 가수 조정
  - 가수 덧셈/뺄셈
  - 결과 정규화
  - ※ 산술 파이프라인 참고



### 부동 소수점 곱셈/나눗셈

- 곱셈
  - 0인지 조사
  - 지수를 더함
  - 가수를 곱함
  - 결과를 정규화

- 나눗셈
  - 0인지 조사
  - 부호 결정
  - 피제수의 위치 조정
  - 지수 뺄셈
  - 가수 나눗셈



## 부동 소수점 연산을 위한 레지스터





## 부동 소수점 덧셈/뺄셈









# 부동 소수점 나눗셈



