Limits of Computation

8 - Our first non-computable problem Bernhard Reus

1

A non-computable problem

THIS TIME

- we define formally what computability and decidability means (for WHILE)
- we consider a decision problem: the Halting Problem, and prove it is WHILE undecidable!

"What is the Ultimate Answer to Life, the Universe, and Everything?"

Problems Revisited

Remember

- we restricted to problems of the form:
 - can we compute a given function of type L-data $\rightarrow L$ -data \downarrow ?
 - can we decide membership in a set (i.e. can we compute whether a given element is in a given set – yes or no?)
- we now narrow this down to our chosen notion of computability:

3

WHILE Computability

Definition 8.1 A partial function $f: \mathbb{D} \to \mathbb{D}_{\perp}$ is WHILE-computable if there is a WHILE-program p such that $f = [\![p]\!]^{\text{WHILE}}$, in other words if f is equal to the semantics of p (we can also say "if p implements f").

Slogan: a WHILE-computable function on trees is one that can be implemented in WHILE.

WHILE decidability (formally)

Definition 8.2 A set $A \subseteq \mathbb{D}$ is WHILE-decidable if, and only if, there is a WHILE-program p such that $\llbracket p \rrbracket^{\text{WHILE}}(d) \downarrow$ (meaning $\llbracket p \rrbracket^{\text{WHILE}}(d)$ is defined) for all d in \mathbb{D} , and, moreover, $d \in A$ if, and only if, $\llbracket p \rrbracket^{\text{WHILE}}(d) = \text{true}$.

Slogan: a WHILE-decidable set or problem on trees is one for which the membership test can be implemented in WHILE.

5

Our first Non-computable Problem

A decision problem:

Definition 8.3 The *Halting problem*—as set HALT $\subseteq \mathbb{D}$ —is defined as follows:

$$\text{HALT} = \{ [p, d] \in \mathbb{D} \mid \llbracket p \rrbracket^{\text{WHILE}}(d) \downarrow \}$$

WHILE-program as data

WHILE-data

the list (and thus the program) are encoded but we drop the encoding brackets

7

Big Question:

is HALT WHILE-decidable?

About the Halting Problem

- Solving the Halting Problem would be most useful, e.g. a compiler could check for termination of function calls and warn about non-termination like a type checker warns about incompatible types.
- Note that simply interpreting the program on its input does not work: if the interpreter does not terminate, one cannot return the answer 'no'.

9

Proof of the Undecidability of the Halting Problem

- Assume a WHILE-program h exists that DOES solve the Halting Problem.
- With h's help write a new WHILE-program r
- establish a contradiction
- so that the assumption that h exists must be wrong.

Establishing a contradiction to destroy a robot or computer is a very popular SciFi plot line (a.k.a. Logic Bombs).

The Barber of Seville Paradox

strictly speaking not a "paradox" as the contradiction can be resolved.

The Barber of Seville says:

http://www.wno.org.uk/4299

"In my town Seville, I shave all men who do **not** shave themselves. Those who actually shave themselves, I do not shave."

This is a version of Bertrand Russell's paradox (Famous Welsh logician, 1872-1970)

11

The Barber of Seville Paradox

The Barber of Seville says:

"In my town Seville, I shave all men who do **not** shave themselves. Those who actually shave themselves I do not shave."

Does the barber shave himself? (note that he lives in Seville and is a man):
No implies he shaves himself
Yes implies he does not shave himself (

http://www.wno.org.uk/4299

contradiction

"paradox" can be resolved by saying such a Barber does not exist:-). Does not contradict any laws of nature.

The Barber of Seville Paradox as Diagonalisation

diagonal		nal ·.	man of Seville no								l i	ı
	sh	aves	1	2	3	4	5	6		3466	3467	[
		1	yes	yes	no	yes	no	no		no	no	- i
	Ö	2	no	no	yes	no	no	yes		no	yes	'
	ile i	3	1 :: 1	yes		i. I		no		no	yes	ı
	f Sev	4	r : :			***	1.	yes		yes	yes	
	man of Seville no.	$\frac{5}{6}$		no				no		no	no	
	Ë	O	yes	yes	по	no	no	yes	٠	yes	yes	ĺ
		3466	ves	ves	no	no	ves	ves	٠٠.	VAS		
		3467								yes yes	yes no	
			'',	 	<u>`</u>		·			J.~~	- 13	. ∟
	Barbe	r's row	no	yes	yes	yės	yes	no		no	yes	•

Barber's row is the negated diagonal. It thus can't be one of the rows of the table, so Barber can't be a male from Seville, but he is!

What is the table entry (x,y)? At row x and column y we put yes if man # x shaves man # y and false otherwise.

contradiction

13

More on that theme

AUTHOR KATHARINE GATES RECENTLY ATTEMPTED TO MAKE A CHART OF ALL SEXUAL FETISHES.

LITTLE DID SHE KNOW THAT RUSSELL AND WHITEHEAD HAD ALREADY FAILED AT THIS SAME TASK.

http://xkcd.com/468/

Proof of HALT's Undecidability

Assume a program deciding the Halting Problem existed:

h read A {B} write C then define r as:

```
r read X {
A:= [ X, X ];
B;
Y:= C;
while Y { Y:=Y }
}
write Y
```

and derive a **contradiction**.

Then h cannot exist.

```
Does [\![r]\!](r) \downarrow hold?

in other words:
does program r
terminate when run
with r as input?
```

Y = true means h says termination but rbehaves otherwise. Y = false means h says non-termination.

Y =false means h says non-termination but r behaves otherwise.

if
$$r\downarrow$$
 then r doesn't terminate else r terminates if $r\downarrow$ then $r=\bot$ if $r=\bot$ then $r\downarrow$

15

Proof of HALT's Undecidability

- The proof was using the Barber paradox technique.
- Can we also understand (reformulate) this as a proof by **diagonalisation**?
- In order to do that, first note that we can enumerate all WHILE-programs (like we could enumerate all men in Seville). Why is that?

The Halting Problem as Diagonalisation

- How does r behave for arbitrary input programs X:
- If X run on input X terminates, r does not terminate.
- If X run on input X does not terminate, r does terminate.
- So r behaves a bit like the Barber.

```
r read X {
A := [X,X];
В;
Y := C;
while Y {
   Y := Y
write Y
```

read A {B} write C assumed to decide the Halting **Problem**

The Halting Problem as Diagonalisation

	terminate when											
į	nput is program B?	1	2	3	4	5	6	•••	3466	3467		
	1	yes	yes	no	yes	no	no		no	no		r
							yes		no	yes		n
	3 4	no	yes	no	no	no	no yes no		no	yes		t
	4 280	yes	yes	no	no	yes	yes		yes	yes		c
	5 a d	no	no	no	no	no.	ı. ı		no	no		0
	6 ⊒	yes	yes	no	no	no	yes		yes	yes		t
	EWHILE	•••						•••				1
	3466	yes	yes	no	no	yes			yes	yes		Þ
	3467	no	yes	yes	no	yes	yes		yes	no		Ŀ
	•••	77 71	\tag{\}\'	X / '	Ψ. γι 						٠'	di
	r's row	no .	yes	yes	yės	yes	no	•••	no	yes	•	

r's row is the negated diagonal. It thus can't be one of the rows of the table, so r can't be a WHILE þrogram, but it is!

"r terminates if its argument (program) does not terminate when it is given itself as input; otherwise **r** does not terminate."

diagonal

contradiction

Diagonalisation Idea

- ... is very clever
- ... needs items of interest to be enumerable
- ... was discovered by Cantor in 1891 to show the existence of sets that are larger than the set of natural numbers.

Georg Cantor 1845-1918

19

END

© 2008-20. Bernhard Reus, University of Sussex

Next time: More on semi-decidability