Dynamics and Control of Robotic Systems (4DC00) Guided self study - Day 3

Answers to Problem 1

Consider the following robot manipulator with three rotary joints.

link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	$ heta_2^*$
3	a_3	0	0	θ_3^*

$$\boldsymbol{A}_{i}^{i-1} = \begin{bmatrix} c_{i} & -s_{i} & 0 & a_{i}c_{i} \\ s_{i} & c_{i} & 0 & a_{i}s_{i} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ for } i \in \{1, 2, 3\},$$
$$\boldsymbol{T}_{3}^{0} = \boldsymbol{A}_{1}^{0} \boldsymbol{A}_{2}^{1} \boldsymbol{A}_{3}^{2} = \begin{bmatrix} c_{123} & -s_{123} & 0 & a_{1}c_{1} + a_{2}c_{12} + a_{3}c_{123} \\ s_{123} & c_{123} & 0 & a_{1}s_{1} + a_{2}s_{12} + a_{3}s_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Alternatively, the solution for the forward kinematics can be found by executing the MATLAB script GSS3_PROBLEM1.m

Consider the following robot manipulator with two prismatic joints.

$$m{A}_1^0(d_1) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & -1 & 0 & d_1 \ 0 & 0 & 0 & 1 \end{bmatrix}; \ m{A}_2^1(d_2) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & d_2 \ 0 & 0 & 0 & 1 \end{bmatrix}; \ m{T}_2^0(d_1, d_2) = m{A}_1^0 m{A}_2^1 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & d_2 \ 0 & -1 & 0 & d_1 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Alternatively, the solution for the forward kinematics can be found by executing the MATLAB script GSS3_PROBLEM2.m

Consider the following robot manipulator with one prismatic joints and two rotary joints. Note that the axes z_0 , y_1 , z_2 , and z_3 are all normal to the page and they point outwards. From DH convention, we find the following DH table

link	a_i	α_i	d_i	θ_i
1	0	$\pi/2$	0	θ_1^*
2	0	$\pi/2$	d_2^*	π
3	a_3	0	0	θ_3^*

$$\boldsymbol{A}_{1}^{0}(\theta_{1}) = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \ \boldsymbol{A}_{2}^{1}(d_{2}) = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}; \ \boldsymbol{A}_{3}^{2}(\theta_{3}) = \begin{bmatrix} c_{3} & -s_{3} & 0 & a_{3}c_{3} \\ s_{3} & c_{3} & 0 & a_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$m{T}_3^0(heta_1,d_2, heta_3) = m{A}_1^0m{A}_2^1m{A}_3^2 = egin{bmatrix} -c_{13} & s_{13} & 0 & d_2s_1 - a_3c_{13} \ -s_{13} & -c_{13} & 0 & -d_2c_1 - a_3s_{13} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Alternatively, the solution for the forward kinematics can be found by executing the MATLAB script GSS3_PROBLEM3.m

Consider the following robot manipulator with six rotary joints.

link	a_i	α_i	d_i	θ_i
1	0	$-\pi/2$	d_1	θ_1^*
2	a_2	0	0	$ heta_2^*$
3	0	$\pi/2$	0	$ heta_3^*$
4	0	$\pi/2$	d_4	θ_4^*
5	0	$-\pi/2$	0	θ_5^*
6	0	0	d_6	θ_6^*

Although the solutions can be derived by hand, due to the complexity of the manipulator, it is recommend to use the Symbolic Toolbox in Matlab. The solution for the forward kinematics can be found by executing the Matlab script GSS3_PROBLEM4.m

Consider the following robot manipulator with two prismatic joints and one prismatic joint.

link	a_i	α_i	d_i	θ_i
1	$l_1\sin(\phi)$	$\pi/2$	0	θ_1^*
2	0	$\pi/2$	d_2^*	π
3	l_3	0	0	θ_3^*

For the parameters $\phi = \pi/6$ rad, $l_1 = 0.3$ m, $l_3 = 0.2$ m, we find the following transformation matrix

$$\boldsymbol{T}_{3}^{0}(\theta_{1},d_{2},\theta_{3}) = \boldsymbol{A}_{1}^{0}\boldsymbol{A}_{2}^{1}\boldsymbol{A}_{3}^{2} = \begin{bmatrix} -c_{13} & s_{13} & 0 & -\frac{1}{5}c_{13} + d_{2}s_{1} + \frac{3}{20}c_{1} \\ -s_{13} & -c_{13} & 0 & -\frac{1}{5}s_{13} - d_{2}c_{1} + \frac{3}{20}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$