1. En una comunicación RTP se reciben los paquetes indicados en la tabla.

#	TS(ms)	TR(ms)
1	20	60.2
2	40	75.5
3	60	81.8
4	80	102.4
5	100	121.7
6	132	173.1

#	TS(ms)	$\mathrm{TR}(\mathrm{ms})$
8	172	213.1
9	192	235.3
10	212	251.4
12	252	265.3
11	232	276.8
14	300	318.7

A. Indica qué paquetes se han perdido:

B. Si tenemos un retraso de reproducción fijo de 30 ms indica qué paquetes que no se han perdido no pueden ser reproducidos.

Solución: El primer paquete es recibido en TR=60.2 ms y recibido en TS=20 ms, luego el retraso de red para el primer paquete es r = 40.2 ms. Por otro lado, contamos con un retraso fijo de 30 ms, luego q=40.2+30=70.2 ms. Por tanto, la planificación de reproducción para el primer paquete será $p_1 = t_1 + q_1 = 20 + 70.2 = 90.2$ ms. A partir de ahí, cada paquete será reproducido a intervalos de 20 ms, que es el ritmo al que se generaron. Por tanto, los valores de reproducción de cada paquete, p, quedan así:

#	$\mathrm{TR}(\mathrm{ms})$	$p_i(\mathbf{ms})$
1	60.2	20 + 70.2 = 90.2
2	75.5	110.2
3	81.8	130.2
4	102.4	150.2
5	121.7	170.2
6	173.1	202.2
7	Perdido	-

#	$\mathrm{TR}(\mathrm{ms})$	$p_i(\mathbf{ms})$
8	213.1	242.2
9	235.3	262.2
10	251.4	282.2
11	276.8	302.2
12	265.3	322.2
13	Perdido	-
14	318.7	372.2

C. ¿Tras qué paquetes hay un silencio? Tras el paquete 5 y 12

D. Queremos implementar un esquema de retraso adaptativo con u=0.1, K=2 y un retraso inicial del primer paquete de 30 ms. Determina en qué segmentos debe cambiarse el retraso de reproducción y qué valor debe tomar en dicho segmento.

Solución:

Solución:

2. Se reciben los siguientes paquetes en un router que se puede servir un paquete cada 10 ms:

12	13
1	3
00	00

3

Id Paquete		2	3	4	5	6	7	8	9	10	11	12	13
Tipo	1	3	2	1	3	1	2	3	3	2	2	1	3
T recepción (ms)	6	7	8	9	10	12	15	16	18	22	25	28	32

Rellena la siguiente tabla. La primera columna a rellenar se corresponde con una política FIFO, la segunda con una de tipo Round Robin y la tercera del tipo WFQ en en que el peso de la cola 1 es 1, la de la cola 2 es 2 y la de la cola 3 es 3.

Solución:

Calcula también los retrasos medios de los paquetes de cada tipo en cada uno de los algoritmos y pon los resultados en esta tabla:

Solución:

3

a los paquetes RTP se les etiqueta con el 1, a los paquetes FTP con el 2 y a los paquetes DHCP con el 3.	A la
sta de los resultados ¿Qué se puede decir sobre este etiquetado?	