2. SPOJITÁ NÁHODNÁ PREMENNÁ - HUSTOTA, DISTRIBUČNÁ FUNKCIA

PR1.:

Zistite, či daná funkcia
$$f(x) = (x+1)/5$$
 $x \in (0,1>$ $= (x^2+1)/5$ $x \in (1,2>$ $= 0$ inde

môže byť hustotou pravdepodobnosti spojitej náhodnej premennej X.

PR2.:

Daná je funkcia
$$f(x) = 0$$
 $x \in (-\infty, 2>$
 $= c(x-2)$ $x \in (2, 4>$
 $= c(6-x)$ $x \in (4, 6>$
 $= 0$ $x \in (6, \infty)$

- a) Určte konštantu c tak, aby daná funkcia bola hustotou spojitej náhodnej premennej X.
- b) Nájdite distribučnú funkciu náhodnej premennej X.
- c) Určte pravdepodobnosť pre X patriace do intervalu <3, 5>.
- d) Nakreslite graf funkcie hustoty a distribučnej funkcie.

PR3.:

Náhodná premenná je daná distribučnou funkciou

$$F(x) = 0 & x \in (-\infty, 1) \\ = cx^3 - 3cx + 2c & x \in <1, 2> \\ = 1 & x \in (2, \infty)$$

- a) Pre akú hodnotu konštanty <u>c</u> je to skutočne pravda?
- b) Určte pravdepodobnosť pre hodnoty náhodnej premennej X patriace do intervalu (-3, 3/2>.
- c) S akou pravdepodobnosťou nadobúda náhodná premenná X hodnoty väčšie ako 4/3?

PR4.:

Daná je funkcia
$$f(x) = ax^2 e^{-x^3}$$
 $x \ge 0$
= 0 $x < 0$

- a) Určte konštantu <u>a</u> tak, aby daná funkcia bola hustotou spojitej náhodnej premennej X.
- b) Nájdite distribučnú funkciu náhodnej premennej X.
- c) Určte pravdepodobnosť, že absolútna hodnota náhodnej premennej X je menšia alebo rovná 1.

PR5.:

Určte hodnotu konštánt k tak, aby dané funkcie boli hustotou spojitej náhodnej premennej X.

a)
$$f(x) = k \cos x$$
 $x \in (-\pi/2, \pi/2)$

b)
$$f(x) = \frac{k}{1+x^2}$$
 $x \in (-\infty, \infty)$
c) $f(x) = kxe^{\frac{-x^2}{2\sigma^2}}$ $x \in (-\infty, \infty)$

c)
$$f(x) = kxe^{\frac{-x^2}{2\sigma^2}}$$
 $x \in \{0, \infty\}$

PR6.:

Predpokladáme, že doba čakania na kúpu lístkov pri pokladni (v minútach) je náhodná premenná daná hustotou pravdepodobnosti

$$f(x) = 0$$
 $x \in (-\infty, 0)$
= 1/2 $x \in <0, 1>$
= 3/2 x^4 $x \in (1, \infty)$

S akou pravdepodobnosťou budeme čakať viac ako pol minúty a menej ako jeden a pol minúty?

PR7.:

Životnosť elektronickej aparatúry sa často charakterizuje distribučnou funkciou

F(x)=1 -
$$e^{\frac{-x^a}{2\sigma^2}}$$
, $x \ge 0$, $\alpha > 0$, $\sigma > 0$

Zadefinujte iným spôsobom životnosť tejto elektronickej aparatúry.