CS & IT

Graph Theory

Discrete Mathematics

DPP 04 Discussion notes

TOPICS TO BE COVERED

01 Question

02 Discussion

If a hypercube (Q_n) is given with edges 193, then the number of Pw

[MCQ]

None of these

vertices will be

$$no.of edges = n.2^{n-1}$$

$$193 = n.2^{n-1}$$

$$193 = \frac{n \cdot 2}{2}$$

$$-)n=5$$
 5. 25
$$n=6$$
 6.26
$$n=7$$
 7.27

consider the following statements:

[MCQ]

S₁: Every hypercube graph is a bipartite graph.

S2: Every bipartite graph is also a hypercube.

Which of the following options is True?

- S_2 only
- C. Both S_1 and S_2
- D. Neither S₁ nor S₂

If the sequence x, 7, 7, 5, 5, 4, 3, 2 is graphical then what are the possible value of x $(0 \le x \le 4)$? [MCQ]

he W

Which of the following graphs are isomorphic graph?

[MSQ]

- A. G_1 and G_2 are isomorphic $\langle (\alpha, d) \rangle$
- B. G_3 and G_4 are isomorphic
- G₁ and G₂ are not isomorphic
- D. G₃ and G₄ are not isomorphic

