Знайомство з ROOT: реконструкція інваріантної маси частинок

Олександр Зенаєв

ROOT – це програмний пакет для зберігання, аналізу та візуалізації великих обсягів даних, який широко використовується у фізиці високих енергій

- відкрите програмне забезпечення (фреймворк), розробляється у CERN (Європейській організації з ядерних досліджень) 1995—...
- ullet написаний на C++, має інтерактивний інтерпретатор, підтримує інтеграцію з іншими мовами, такими як Python (через інтерфейс PyROOT)
- основне застосування:
 - зберігання та зчитування великих обсягів даних
 - статистичний аналіз даних
 - візуалізація
- підтримує паралельні обчислення
- має широку підтримку наукової спільноти (документація, приклади, форум https://root-forum.cern.ch/)

Початок роботи з ROOT: інтерпретатор, компіляція

ROOT інтерпретатор	C++ компілятор із ROOT бібліотекою
<pre>// hello.cpp void hello() { printf("Hello world\n"); TH1F hist("hist", "My histo", 300, 0., 3.); hist.Fill(1.2); hist.Print(); }</pre>	<pre>// hello_main.cpp #include <cstdio> #include <th1f.h> int main() { printf("Hello world\n"); TH1F hist("hist", "My histo", 300, 0., 3.); hist.Fill(1.2); hist.Print(); return 0; }</th1f.h></cstdio></pre>
root -l -q hello.cpp	g++ -o hello_main `root-configcflagslibs` hello_main.cpp ./hello_main
Processing hello.cxx Hello world TH1.Print Name = hist, Entries= 1, Total sum= 1	Hello world TH1.Print Name = hist, Entries= 1, Total sum= 1

Початок роботи з ROOT: PyROOT

- PyROOT: Python інтерфейс до ROOT
 - дуже зручний для прототипування (дослідницький код: швидкість розробки, внесення змін)
 - ▶ багато корисних Python модулів (numpy, scipy, pandas, matplotlib . . .) + документація і дуже велика спільнота

```
# hello.py
```

import ROOT

```
f__name__ == '__main__':
print("Hello world")
hist = ROOT.TH1F("hist", "My histo", 300, 0., 3.)
hist.Fill(1.2)
hist.Print()
```

python hello.py

```
Hello world TH1.Print Name = hist, Entries= 1, Total sum= 1
```

Реконструкція інваріантної маси (системи) частинок

- Реконструкція інваріантної маси важлива складова аналізу даних експериментів у НЕР
 - дослідження властивостей частинок (вимірювання маси, ширини розпаду тощо)
 - вимірювання перерізів народження частинок
- ullet Інваріантна маса $M=\sqrt{E^2-P^2}=\sqrt{(E_1+E_2)^2-(P_1+P_2)^2}$ не змінюється при перетворенні системи відліку

CMS Experiment at the LHC, CERN

Dalayecorded: 2010-Jul-08 02:25:58 839811 GMT(04:25:58 GEST)

- Експериментальні дані складаються з числених подій (одне зіткнення частинок)
- Дані про кожну <u>подію</u> містять енергії та/чи імпульси зареєстрованих детектором (стабільних чи довгоживучих) частинок
 - ▶ трекова система в магнітному полі рекенструює треки (tracks) (імпульси для заряджених частинок)
 - система ідентифікації частинок (Particle Identification, PID) визначає тип частинки (маса)
 де дозволяє реконструювати (тобто обчислити енергію та імпульс) батьківської нестабільної частинки, яку хочемо досліджувати і яка не може бути зареєстрована детектором
- Аналіз даних потребує робити фільтрацію шуму (фон), корекцію детекторних ефектів тощо
 - зазвичай народжується багато нестабільних частинок → десятки, сотні чи навіть тисячі треків у кожній події → тисячі чи мільони комбінацій (комбінаторний фон)

Реконструкція інваріантної маси $D^+ o K^-\pi^+\pi^+$

ZEUS Coll., H. Abramowicz et al., "Measurement of D^{\pm} production in deep inelastic ep scattering with the ZEUS detector at HERA", JHEP05 (2013) 023 [arXiv:1302.5058]

Реконструкція інваріантної маси $D^+ o K^- \pi^+ \pi^+$

Реконструкція інваріантної маси $D^+ o K^-\pi^+\pi^+$

- D^+ складається з $c\bar{d}$ кварків
- $M(D^+) = 1869.66 \pm 0.05$ FeB [Particle Data Group (PDG) https://pdg.lbl.gov/]
- au $au(D^+) = (1.033 \pm 0.005) imes 10^{-12} \; \mathrm{c}$: розпадається за рахунок слабкої взаємодії
- Маючи імпульс \sim ГеВ, D^+ мезон пролітає $L=\frac{p}{M}c\tau\sim$ декілька мм \to його точка розпаду (вершина) може бути реконструйована \to це дозволяє суттєво зменшити комбінаторний фон

Практичне заняття

- ullet Згенерувати N=1000 подій
- ullet У кожній події згенерувати дві частинки: K^0 і D^0 мезони
- Згенерувати розпади $K^0 \to \pi^+\pi^-, \, D^0 \to \pi^+\pi^-$
- Накласти ефект роздільної здатності детектора
- Реконструювати інваріанту масу кожної пари дочірних частинок
- Зафітувати (fit: апроксимація, регресія) розподіл інваріантної маси, визначити маси і кількість реконструйованих частинок
- Намалювати графік інваріантної маси
- Зберегти згенеровані дані в ROOT файл і зчитати їх із нього
- ullet (Домашнє) завдання: переписати код для виконання завдання на ${
 m C}++$

Github:

 $https://github.com/zenaiev/hep2025_codes/blob/main/invmass/invmass.py$

Google Colab:

https:

 $//colab.research.google.com/github/zenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmass.ipynbulkenaiev/hep2025_codes/blob/main/invmass/invmas$