

Data Analyst Nanodegree Exploring Weather Trends Project May 1, 2021

Index:

Project Summary	03
Comparison Between Mecca and Global Average Temperatures	
SQL queries	03
10 Years Moving Average	04
Observations	04
Comparison Between Mecca and Global Predicted Average Temperatures	
Linear Regression Prediction	05
10 Years Moving Average	07
Observations	07
Comparison Between 3 Capital Cities and Global Average Temperatures	
SQL queries	08
3 Years Moving Average	09
Observations	09
Conclusion	09

Project Summary:

In this project, I compared between my city "Mecca" average temperatures with global average temperatures. Also, predicted the next 61 average temperatures. In addition to compared average temperatures of 3 capital cities in Asia with global average temperatures. I extracted the data using SQL from database given by Udacity and analyzed it using Excel.

Comparison Between Mecca and Global Average Temperatures SQL queries

My city is Mecca and I used SQL to extract data from the database provided by Udacity to compare between my city average temperature to global average temperature. At first I wrote a query to explore the database.

```
SELECT *
FROM city_data

SELECT *
FROM city_list

SELECT *
FROM global_data
```

Then I looked for my city "Mecca" by this query:

```
SELECT *
From city_data
WHERE city LIKE '%Mecca%'
```

After I found my city I wrote a query to join two tables (city_data table and global_data) to extract the year, Mecca average temperature, and global average temperature columns to be in one single result:

```
SELECT c.year, city, c.avg_temp Mecca_avg_temp, g.avg_temp Global_avg_temp
From city_data c
JOIN global_data g
ON c.year = g.year
WHERE c.city = 'Mecca'
```

The result of this query contained NULLs values in Mecca average temperature column. so, I decided to delete this values from my query and kept only the years from 1861 to 2013 to be fair compression between both database:

```
SELECT c.year, city, c.avg_temp Mecca_avg_temp, g.avg_temp Global_avg_temp
From city_data c
JOIN global_data g
ON c.year = g.year
WHERE c.city = 'Mecca' AND g.year Between 1861 AND 2013
```

Finally, I exported the result to CSV file and opened it in Excel in order to analyze it.

10 Years Moving Average

I calculated 10 years moving average (MA) to smooth out the line chart by using AVERAGE function in new column for both Mecca average temperature and global average temperature.

Then I plotted a line chart from the MA columns.

Observations:

- 1- The MA of Mecca temperature is varies between 24.94 and 26.80
- 2- The MA of global temperature is varies between 8.00 and 9.61
- 3- The maximum MA of Mecca temperature is 26.80 and the minimum is 24.94
- 4- The maximum MA of global temperature is 9.61 and the minimum is 8.00
- 5- The MA of Mecca temperature is 3 times higher than global which is mean Mecca temperature is hotter 3 times than the global temperature.
- 6- The MA of both Mecca and global temperature are increasing over years and tend to be hotter.

Comparison Between Mecca and Global Predicted Average Temperatures

Linear Regression Prediction

I used the linear regression equation ($\hat{y}=b_0+b_1x_1$) to predict the average temperature for the next 61 years.

First: I plotted scatter plot for Mecca average temperature in y axis and years in x axis and added a straight line to see if the relationship between variables are linear. Then did a regression module from data analysis tool in Excel to calculate correlation coefficient, R squared, intercept, and slope coefficient.

From the scatter plot and correlation coefficient in regression statistics (0.6) we can see that there are a positive moderate linear relationship between the average temperature of Mecca and years.

Second: I wanted to predict average temperature of Mecca city based on years. So, I plugged in the equation:

 $\hat{y}=b_0+b_1x_1$

Where:

 $b_0 = 8.488387848$

 $b_1 = 0.008872951$

I calculated it in Excel by making the intercept and slope "years" cells as a absolute cell references and years as a relative cell reference. Then plugged in the equation and filled all the rest of cells.

Third: After predicting average temperature, I calculated 10 years MA and plotted a line chart for the result.

I did the same for the average temperature of Global.

First: Plot the scatter plot and calculate correlation coefficient.

Global Average Temperature Over Years

SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.855814494							
R Square	0.732418448							
Adjusted R Square	0.730646385							
Standard Error	0.235167666							
Observations	153							
ANOVA								
	df	SS	MS	F	ignificance	F		
Regression	1	22.85784438	22.85784438	413.3139412	4.48E-45			
Residual	151	8.350878492	0.055303831					
Total	152	31.20872288						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Ilnner 95%	ower 95 0°	Inner 95 0%
Intercept	-8.357390211	0.83403226	-10.02046397	1.95336E-18	-10.0053	-6.70951	-10.0053	-6.70951
year	0.008751458	0.000430467	20.33012398	4.47984E-45	0.007901	0.009602	0.007901	0.009602

From the scatter plot and correlation coefficient in regression statistics (r = 0.9) we can see that there are a positive strong linear relationship between the average temperature of global and years.

Second: I predicted average temperature of global based on years by plugging in the equation:

 $\hat{y}=b_0+b_1x_1$

Where:

 $b_0 = -8.357390211$

 $b_1 = 0.008751458$

I calculated it in Excel by making the intercept and slope "years" cells as a absolute cell references and years as a relative cell reference. Then plugged in the equation and filled all the rest of cells.

Third: After predicting average temperature, I calculated 10 years MA and plotted a line chart for the result.

10 Years Moving Average

After I predicted the average temperature and calculated 10 years MA for both Mecca and global. I plotted a line chart to compares Mecca city temperatures with the global temperatures.

Observations:

- 1- The predicted MA of Mecca temperature is varies between 26.40 and 26.91
- 2- The predicted MA of global temperature is varies between 9.31 and 9.82
- 3- The maximum predicted MA of Mecca temperature is 26.91
- 4- The maximum predicted MA of global temperature is 9.82
- 5- The predicted MA of Mecca temperature is decreasing from 26.78 to 26.49 between 2014 and 2033 then increasing from 26.50 to 26.91 between 2034 to 2081.
- 6- The predicted MA of global temperature is decreasing from 9.55 to 9.32 between 2014 to 2025 then increasing from 9.33 to 9.82 between 2026 and 2081.
- 7- from 2021, expected to decreasing average temperature in the next 9 years in Mecca city while for global expected to decreasing for the next 4 years.

Comparison Between 3 Capital Cities and Global Average Temperatures

SQL queries

I looked for the capital city for 3 countries in Asia to compare them to global. Riyadh for Saudi Arabia, New Delhi for India, and Seoul for Korea. So, I wrote a query to find out these cites in the database:

For New Delhi

```
SELECT *
From city_data c
WHERE city LIKE 'New%'
```

For Riyadh

```
SELECT *
From city_data c
WHERE city LIKE 'Riya%'
```

For Seoul

```
SELECT *
From city_data c
WHERE city LIKE 'Seo%'
```

Then I joined two tables (city_data and global_data) to have the average temperature for all 3 cities that I choosed and globally.

```
SELECT city, c.year, c.avg_temp Capital_city_temp, g.avg_temp Global_temp
From city_data c

JOIN global_data g

ON c.year = g.year

WHERE c.city IN ('New Delhi', 'Riyadh', 'Seoul')
```

But there was a NULLs values and different period of time so, I decided to delete NULLs and limited the year between 1870 to 2013 to matched them and be fair in comparison

```
SELECT city, c.year, c.avg_temp Capital_city_temp, g.avg_temp Global_temp
From city_data c

JOIN global_data g

ON c.year = g.year

WHERE c.city IN ('New Delhi', 'Riyadh', 'Seoul') AND c.year Between 1870 AND 2013
```

3 Years Moving Average

I imported the csv file to Excel and calculated 3 years MA average temperature for the 3 capital cities in addition to global by using AVERAGE function. Then I plotted the result in one line chart to compares the 3 capital cities temperatures with the global temperatures.

Observations:

- 1- The MA of Riyadh city temperatures is varies between 24.80 and 26.88
- 2- The MA of New Delhi city temperatures is varies between 24.76 and 26.17
- 3- The Ma average for both New Delhi and Riyadh are almost in the same range and more hotter than global MA temperatures.
- 4- The MA of Seoul city temperatures is varies between 10.00 and 11.91
- 5- The MA global temperatures is varies between 7.94 and 9.60
- 6- The MA of Seoul temperatures is a little higher than global but still colder than New Delhi and Riyadh.

Conclusion:

After analyzed the data we can note that the global average temperatures is the most colder and the average temperatures is increasing over years.