Dualizable Algebras

K. Kearnes and Á. Szendrei

CU Boulder

CU Boulder/U Szeged

AMS Sectional Meeting

Louisville, KY, October 5-6, 2013

Given a finite algebra and a finite, discrete, relational structure

$$\mathbb{A} = (A; \{f, g, \ldots\})$$

$$\mathbf{A} = (A; \{\underbrace{\rho, \sigma, \ldots}_{\text{compatible rels of } \mathbb{A}} \})$$

Given a finite algebra and a finite, discrete, relational structure

$$\mathbb{A} = (A; \{f, g, \ldots\}) \qquad \qquad \mathbf{A} = (A; \{ \rho, \sigma, \ldots \})$$

there are functors

compatible rels of $\mathbb A$

Given a finite algebra and a finite, discrete, relational structure

$$\mathbb{A} = (A; \{f, g, \ldots\})$$

$$\mathbf{A} = (A; \{ \rho, \sigma, \dots \})$$

there are functors

compatible rels of A

algebras

$$\mathsf{SP}(\mathbb{A})$$

$$\mathsf{S}_c\mathsf{P}^+(A)$$

Given a finite algebra and a finite, discrete, relational structure

$$\mathbb{A} = (A; \{f, g, \ldots\})$$

$$\mathbf{A} = (A; \{ \quad \rho, \sigma, \dots \})$$

there are functors

compatible rels of A

algebras SP(A)

 \Longrightarrow

top. rel. structures

•

 $S_cP^+(A)$

 \mathbb{B}

 \longrightarrow

 $\mathbb{B}^{\partial}:=\mathrm{Hom}(\mathbb{B},\mathbb{A})$

Given a finite algebra and a finite, discrete, relational structure

$$\mathbb{A} = (A; \{f, g, \ldots\})$$

$$\mathbf{A} = (A; \{ \quad \rho, \sigma, \dots \})$$

there are functors

algebras

 $\mathsf{SP}(\mathbb{A})$

B ↓↓

 \mathbb{C}

 $\stackrel{\longrightarrow}{\longleftarrow}$

 \longmapsto

compatible rels of A

top. rel. structures

 $S_cP^+(A)$

 $\mathbb{B}^{\partial}:=\mathrm{Hom}(\mathbb{B},\mathbb{A})$

 $\alpha^* \uparrow$

 $\mathbb{C}^{\partial}:=\mathrm{Hom}(\mathbb{C},\mathbb{A})$

Given a finite algebra and a finite, discrete, relational structure

$$\mathbb{A} = (A; \{f, g, \ldots\})$$

$$\mathbf{A} = (A; \{ \rho, \sigma, \dots \})$$

there are functors

compatible rels of A

$$\begin{array}{c} \text{top. rel. structures} \\ S_c \mathsf{P}^+(\mathbf{A}) \\ \mathbb{B}^\partial := \text{Hom}(\mathbb{B},\mathbb{A}) \\ \alpha^* \uparrow \\ \mathbb{C}^\partial := \text{Hom}(\mathbb{C},\mathbb{A}) \\ \mathbf{T} \end{array}$$

Given a finite algebra and a finite, discrete, relational structure

$$\mathbb{A} = (A; \{f, g, \ldots\})$$

$$\mathbf{A} = (A; \{ \quad \rho, \sigma, \dots \})$$

there are functors

compatible rels of A

$$\begin{array}{c} \text{top. rel. structures} \\ S_{c}\mathsf{P}^{+}(\mathbf{A}) \\ \mathbb{B}^{\partial} := \operatorname{Hom}(\mathbb{B},\mathbb{A}) \\ \alpha^{*}\uparrow \\ \mathbb{C}^{\partial} := \operatorname{Hom}(\mathbb{C},\mathbb{A}) \\ \mathbf{T} \\ \downarrow \beta \\ \mathbf{U} \end{array}$$

Given a finite algebra and a finite, discrete, relational structure

$$\mathbb{A} = (A; \{f, g, \ldots\}) \qquad \qquad \mathbf{A} = (A; \{ \quad \underline{\rho, \sigma, \ldots} \quad \})$$

there are functors

compatible rels of $\mathbb A$

For each \mathbb{B} , the function

$$e_{\mathbb{B}}: \quad \mathbb{B} \quad \longrightarrow \quad \mathbb{B}^{\partial \partial} = \operatorname{Hom}(\mathbb{B}^{\partial}, \mathbf{A}) \\ b \quad \longmapsto \quad (\chi \mapsto \chi(b))$$

is a 1–1 algebra homomorphism.

Given a finite algebra and a finite, discrete, relational structure

$$\mathbb{A} = (A; \{f, g, \ldots\}) \qquad \qquad \mathbf{A} = (A; \{ \quad \underline{\rho, \sigma, \ldots} \quad \})$$

there are functors

compatible rels of $\mathbb A$

For each \mathbb{B} , the function

$$e_{\mathbb{B}}: \ \mathbb{B} \longrightarrow \ \mathbb{B}^{\partial \partial} = \operatorname{Hom}(\mathbb{B}^{\partial}, \mathbf{A})$$
 $b \longmapsto (\chi \mapsto \chi(b))$

is a 1–1 algebra homomorphism.

Definition. A is *dualized* by **A** if $e_{\mathbb{B}}$ is onto for all \mathbb{B} .

A is *dualizable* if it is dualized by some A.

Let \mathbb{A} be a finite algebra, let \mathcal{R} be a set of relations on A.

Let \mathbb{A} be a finite algebra, let \mathcal{R} be a set of relations on A.

Let \mathbb{A} be a finite algebra, let \mathcal{R} be a set of relations on A.

Let \mathbb{A} be a finite algebra, let \mathcal{R} be a set of relations on A.

The compatibility of a function with a relation determines a Galois connection between \mathcal{R} and \mathcal{F}_0 , and between \mathcal{R} and \mathcal{F} .

Let \mathbb{A} be a finite algebra, let \mathcal{R} be a set of relations on A.

The compatibility of a function with a relation determines a Galois connection between \mathcal{R} and \mathcal{F}_0 , and between \mathcal{R} and \mathcal{F} .

Definition. For a relation ρ , write

 $\mathcal{R} \models_{c} \rho$ if any $\mathfrak{f} \in \mathcal{F}_{0}$ preserving \mathcal{R} also preserves ρ , $\mathcal{R} \models_{d} \rho$ if any $\mathfrak{f} \in \mathcal{F}$ preserving \mathcal{R} also preserves ρ .

Definition. For a relation ρ , write

 $\mathcal{R} \models_{c} \rho$ if any $\mathfrak{f} \in \mathcal{F}_{0}$ preserving \mathcal{R} also preserves ρ , $\mathcal{R} \models_{d} \rho$ if any $\mathfrak{f} \in \mathcal{F}$ preserving \mathcal{R} also preserves ρ .

Definition. For a relation ρ , write

 $\mathcal{R} \models_{c} \rho$ if any $\mathfrak{f} \in \mathcal{F}_{0}$ preserving \mathcal{R} also preserves ρ , $\mathcal{R} \models_{d} \rho$ if any $\mathfrak{f} \in \mathcal{F}$ preserving \mathcal{R} also preserves ρ .

Since $\mathcal{F}_0 \subseteq \mathcal{F}$, $\mathcal{R} \models_d \rho \text{ implies } \mathcal{R} \models_c \rho$.

Definition. For a relation ρ , write

 $\mathcal{R} \models_{c} \rho$ if any $\mathfrak{f} \in \mathcal{F}_{0}$ preserving \mathcal{R} also preserves ρ , $\mathcal{R} \models_{d} \rho$ if any $\mathfrak{f} \in \mathcal{F}$ preserving \mathcal{R} also preserves ρ .

Since $\mathcal{F}_0 \subseteq \mathcal{F}$, $\mathcal{R} \models_d \rho \text{ implies } \mathcal{R} \models_c \rho$.

The difference between \models_c and \models_d is identified by:

Definition. For a relation ρ , write

 $\mathcal{R} \models_{c} \rho$ if any $\mathfrak{f} \in \mathcal{F}_{0}$ preserving \mathcal{R} also preserves ρ , $\mathcal{R} \models_{d} \rho$ if any $\mathfrak{f} \in \mathcal{F}$ preserving \mathcal{R} also preserves ρ .

Since $\mathcal{F}_0 \subseteq \mathcal{F}$, $\mathcal{R} \models_d \rho \text{ implies } \mathcal{R} \models_c \rho$.

The difference between \models_c and \models_d is identified by:

[BKKR]

 $\mathcal{R} \models_{c} \rho$ iff ρ is constructible from \mathcal{R} using =, permutation of coordinates, product, intersection and projection onto a subset of coordinates.

Definition. For a relation ρ , write

 $\mathcal{R} \models_{c} \rho$ if any $\mathfrak{f} \in \mathcal{F}_{0}$ preserving \mathcal{R} also preserves ρ , $\mathcal{R} \models_{d} \rho$ if any $\mathfrak{f} \in \mathcal{F}$ preserving \mathcal{R} also preserves ρ .

Since $\mathcal{F}_0 \subseteq \mathcal{F}$, $\mathcal{R} \models_d \rho \text{ implies } \mathcal{R} \models_c \rho$.

The difference between \models_c and \models_d is identified by:

[BKKR]

 $\mathcal{R} \models_{c} \rho$ iff ρ is constructible from \mathcal{R} using =, permutation of coordinates, product, intersection and projection onto a subset of coordinates.

[Z, DHP]

 $\mathcal{R} \models_{d} \rho$ iff ρ is constructible from \mathcal{R} using =, permutation of coordinates, product, intersection and bijective projection onto a subset of coordinates.

Theorem. [Willard, Zádori]

Assume that \mathcal{R} is a finite set of compatible relations of \mathbb{A} . If $\mathcal{R} \models_{d} \rho$ for every compatible relation ρ of \mathbb{A} , then \mathbb{A} is dualizable. (In fact, $\mathbf{A} = (A, \mathcal{R})$ is a dualizing structure for \mathbb{A} .)

Theorem. [Willard, Zádori]

Assume that \mathcal{R} is a finite set of compatible relations of \mathbb{A} . If $\mathcal{R} \models_{d} \rho$ for every compatible relation ρ of \mathbb{A} , then \mathbb{A} is dualizable. (In fact, $\mathbf{A} = (A, \mathcal{R})$ is a dualizing structure for \mathbb{A} .)

Definition. Call \mathbb{A} *finitely related* if there is a finite set \mathcal{R} of compatible relations of \mathbb{A} such that $\mathcal{R} \models_{c} \rho$ for all compatible relations ρ of \mathbb{A} .

Theorem. [Willard, Zádori]

Assume that \mathcal{R} is a finite set of compatible relations of \mathbb{A} . If $\mathcal{R} \models_{\mathrm{d}} \rho$ for every compatible relation ρ of \mathbb{A} , then \mathbb{A} is dualizable. (In fact, $\mathbf{A} = (A, \mathcal{R})$ is a dualizing structure for \mathbb{A} .)

Definition. Call \mathbb{A} *finitely related* if there is a finite set \mathcal{R} of compatible relations of \mathbb{A} such that $\mathcal{R} \models_{c} \rho$ for all compatible relations ρ of \mathbb{A} .

The above theorem concerns finitely related algebras only.

Theorem. [Willard, Zádori]

Assume that \mathcal{R} is a finite set of compatible relations of \mathbb{A} . If $\mathcal{R} \models_{d} \rho$ for every compatible relation ρ of \mathbb{A} , then \mathbb{A} is dualizable. (In fact, $\mathbf{A} = (A, \mathcal{R})$ is a dualizing structure for \mathbb{A} .)

Definition. Call \mathbb{A} *finitely related* if there is a finite set \mathcal{R} of compatible relations of \mathbb{A} such that $\mathcal{R} \models_{\mathsf{c}} \rho$ for all compatible relations ρ of \mathbb{A} .

The above theorem concerns finitely related algebras only.

Remarks.

- There exist dualizable algebras that are not finitely related. [Pitkethly]
- Most algebras that are known to be dualizable are finitely related.

Theorem 1. The following are equivalent for a finite algebra \mathbb{A} .

- (1) \mathbb{A} is (a) finitely related & (b) $\mathcal{V}(\mathbb{A})$ is CD.
- (2) \mathbb{A} has a near unanimity term.
- (3) \mathbb{A} is (a) dualizable & (b) $\mathcal{V}(\mathbb{A})$ is CD.
 - $[(2)\Rightarrow(b)$: Mitschke; $(2)\Rightarrow(1)(a)$: Baker–Pixley; $(1)\Rightarrow(2)$: Barto;
 - $(2)\Rightarrow(3)(a)$: Davey-Werner; $(3)\Rightarrow(2)$: Davey-Heindorf-McKenzie.]

Theorem 1. The following are equivalent for a finite algebra \mathbb{A} .

- (1) \mathbb{A} is (a) finitely related & (b) $\mathcal{V}(\mathbb{A})$ is CD.
- (2) \mathbb{A} has a near unanimity term.
- (3) \mathbb{A} is (a) dualizable & (b) $\mathcal{V}(\mathbb{A})$ is CD.
 - $[(2)\Rightarrow(b): Mitschke; (2)\Rightarrow(1)(a): Baker-Pixley; (1)\Rightarrow(2): Barto;$
 - $(2)\Rightarrow(3)(a)$: Davey-Werner; $(3)\Rightarrow(2)$: Davey-Heindorf-McKenzie.]

Theorem 2. The following are equivalent for a finite algebra \mathbb{A} .

- [1] \mathbb{A} is (a) finitely related & (b) $\mathcal{V}(\mathbb{A})$ is CM.
- [2] \mathbb{A} has a cube term.
 - [[1] \Rightarrow [2]: Barto; [2] \Rightarrow [1](a): Aichinger–Mayr–McKenzie;
 - [2]⇒[1](b): Berman–Idziak–Marković–McKenzie–Valeriote–Willard]

Theorem 1. The following are equivalent for a finite algebra \mathbb{A} .

- (1) \mathbb{A} is (a) finitely related & (b) $\mathcal{V}(\mathbb{A})$ is CD.
- (2) \mathbb{A} has a near unanimity term.
- (3) \mathbb{A} is (a) dualizable & (b) $\mathcal{V}(\mathbb{A})$ is CD.
 - $[(2)\Rightarrow(b)$: Mitschke; $(2)\Rightarrow(1)(a)$: Baker–Pixley; $(1)\Rightarrow(2)$: Barto;
 - $(2)\Rightarrow(3)(a)$: Davey-Werner; $(3)\Rightarrow(2)$: Davey-Heindorf-McKenzie.]

Theorem 2. The following are equivalent for a finite algebra \mathbb{A} .

- [1] \mathbb{A} is (a) finitely related & (b) $\mathcal{V}(\mathbb{A})$ is CM.
- [2] \mathbb{A} has a cube term.

???

[[1] \Rightarrow [2]: Barto; [2] \Rightarrow [1](a): Aichinger–Mayr–McKenzie;

[2]⇒[1](b): Berman–Idziak–Marković–McKenzie–Valeriote–Willard]

Theorem 1. The following are equivalent for a finite algebra \mathbb{A} .

- (1) \mathbb{A} is (a) finitely related & (b) $\mathcal{V}(\mathbb{A})$ is CD.
- (2) \mathbb{A} has a near unanimity term.
- (3) \mathbb{A} is (a) dualizable & (b) $\mathcal{V}(\mathbb{A})$ is CD.
 - $[(2)\Rightarrow(b)$: Mitschke; $(2)\Rightarrow(1)(a)$: Baker–Pixley; $(1)\Rightarrow(2)$: Barto;
 - $(2)\Rightarrow(3)(a)$: Davey-Werner; $(3)\Rightarrow(2)$: Davey-Heindorf-McKenzie.]

Theorem 2. The following are equivalent for a finite algebra \mathbb{A} .

- [1] \mathbb{A} is (a) finitely related & (b) $\mathcal{V}(\mathbb{A})$ is CM.
- [2] \mathbb{A} has a cube term.

??? not all such \mathbb{A} are dualizable

```
[[1]\Rightarrow[2]: Barto; [2]\Rightarrow[1](a): Aichinger–Mayr–McKenzie;
```

[2]⇒[1](b): Berman–Idziak–Marković–McKenzie–Valeriote–Willard]

Theorem 1. The following are equivalent for a finite algebra \mathbb{A} .

- (1) \mathbb{A} is (a) finitely related & (b) $\mathcal{V}(\mathbb{A})$ is CD.
- (2) \mathbb{A} has a near unanimity term.
- (3) \mathbb{A} is (a) dualizable & (b) $\mathcal{V}(\mathbb{A})$ is CD.
 - $[(2)\Rightarrow(b)$: Mitschke; $(2)\Rightarrow(1)(a)$: Baker–Pixley; $(1)\Rightarrow(2)$: Barto;
 - $(2)\Rightarrow(3)(a)$: Davey-Werner; $(3)\Rightarrow(2)$: Davey-Heindorf-McKenzie.]

Theorem 2. The following are equivalent for a finite algebra \mathbb{A} .

- [1] \mathbb{A} is (a) finitely related & (b) $\mathcal{V}(\mathbb{A})$ is CM.
- [2] \mathbb{A} has a cube term.

??? not all such \mathbb{A} are dualizable (even if $\mathcal{V}(\mathbb{A})$ is assumed RS)

```
[[1]\Rightarrow[2]: Barto; [2]\Rightarrow[1](a): Aichinger–Mayr–McKenzie;
```

[2]⇒[1](b): Berman–Idziak–Marković–McKenzie–Valeriote–Willard]

Main Theorem

Main Theorem

Theorem. Let \mathbb{A} be a finite algebra such that

- (i) \mathbb{A} has a cube term ($\Rightarrow \mathcal{V}(\mathbb{A})$ is CM), and
- (ii) $V(\mathbb{A})$ is RS (\Leftrightarrow Con(S(\mathbb{A})) $\models x \land [y, y] \approx [x \land y, y]$).

Main Theorem

Theorem. Let \mathbb{A} be a finite algebra such that

- (i) \mathbb{A} has a cube term ($\Rightarrow \mathcal{V}(\mathbb{A})$ is CM), and
- (ii) $V(\mathbb{A})$ is RS (\Leftrightarrow Con(S(\mathbb{A})) $\models x \land [y, y] \approx [x \land y, y]$).

 \mathbb{A} is dualizable if the following split centralizer condition holds in every subalgebra \mathbb{S} of \mathbb{A} :

Main Theorem

Theorem. Let \mathbb{A} be a finite algebra such that

- (i) \mathbb{A} has a cube term ($\Rightarrow \mathcal{V}(\mathbb{A})$ is CM), and
- (ii) $V(\mathbb{A})$ is RS (\Leftrightarrow Con(S(\mathbb{A})) $\models x \land [y, y] \approx [x \land y, y]$).

 \mathbb{A} is dualizable if the following split centralizer condition holds in every subalgebra \mathbb{S} of \mathbb{A} :

 $\forall \ \delta \prec \theta \text{ s.t.}$ $\delta \text{ is } \land \text{-irred. and } [\theta, \theta] \leq \delta$

Main Theorem

Theorem. Let \mathbb{A} be a finite algebra such that

- (i) \mathbb{A} has a cube term ($\Rightarrow \mathcal{V}(\mathbb{A})$ is CM), and
- (ii) $V(\mathbb{A})$ is RS (\Leftrightarrow Con(S(\mathbb{A})) $\models x \land [y, y] \approx [x \land y, y]$).

 \mathbb{A} is dualizable if the following split centralizer condition holds in every subalgebra \mathbb{S} of \mathbb{A} :

 $\forall \ \delta \prec \theta \text{ s.t.}$ $\delta \text{ is } \land \text{-irred. and } [\theta, \theta] \leq \delta$ for $\nu = (\delta:\theta)$

Main Theorem

Theorem. Let \mathbb{A} be a finite algebra such that

- (i) \mathbb{A} has a cube term ($\Rightarrow \mathcal{V}(\mathbb{A})$ is CM), and
- (ii) $V(\mathbb{A})$ is RS (\Leftrightarrow Con(S(\mathbb{A})) $\models x \land [y, y] \approx [x \land y, y]$).

 \mathbb{A} is dualizable if the following split centralizer condition holds in every subalgebra \mathbb{S} of \mathbb{A} :

$$\label{eq:definition} \begin{split} \forall \ \delta \prec \theta \ \text{s.t.} \\ \delta \ \text{is } \land \text{-irred. and } [\theta, \theta] \leq \delta \\ \text{for } \nu = (\delta : \theta) \\ \exists \kappa \in \mathcal{Q}\text{-}\mathbf{Con}(\mathbb{A}) \\ \exists \beta \leq \delta \\ \exists \alpha \ \text{with } [\alpha, \alpha] \leq \kappa \ \text{s.t.} \\ \alpha \lor \beta = \nu \\ \alpha \land \beta = \kappa \end{split}$$

1. [Davey–Werner] If $\mathcal{V}(\mathbb{A})$ has an NU term, then \mathbb{A} is dualizable.

No $\delta \prec \theta$ to check.

1. [Davey–Werner] If $\mathcal{V}(\mathbb{A})$ has an NU term, then \mathbb{A} is dualizable.

No $\delta \prec \theta$ to check.

2. [NEW] If A is a module, then A is dualizable.

3. [Nickodemus]

3. [Nickodemus]

3. [Nickodemus]

3. [Nickodemus]

4. [NEW]

4. [NEW]

4. [NEW]

4. [NEW]

4. [NEW]

4. [NEW]

4. [NEW]

If \mathbb{A} is a ring such that in each subring the Jacobson radical squares to 0, then \mathbb{A} is dualizable.

([Clark–Idziak–Sabourin–Szabó–Willard] for commutative rings.)

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

• A has a Maltsev term,

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

- A has a Maltsev term,
- \bullet $\mathcal{V}(\mathbb{A})$ is RS, but

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

- A has a Maltsev term,
- $\mathcal{V}(\mathbb{A})$ is RS, but
- A is not dualizable.

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

- A has a Maltsev term,
- $\mathcal{V}(\mathbb{A})$ is RS, but
- A is not dualizable.

The split centralizer condition fails for \mathbb{A} :

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

- A has a Maltsev term,
- $\mathcal{V}(\mathbb{A})$ is RS, but
- A is not dualizable.

The split centralizer condition fails for A:

 $\mathbb{S}=\mathbb{A}$

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

- A has a Maltsev term,
- $\mathcal{V}(\mathbb{A})$ is RS, but
- A is not dualizable.

The split centralizer condition fails for A:

 $\mathbb{S} = \mathbb{A}$

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

- A has a Maltsev term,
- $\mathcal{V}(\mathbb{A})$ is RS, but
- A is not dualizable.

The split centralizer condition fails for A:

$$\mathbb{S}=\mathbb{A}$$

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

- A has a Maltsev term,
- $\mathcal{V}(\mathbb{A})$ is RS, but
- A is not dualizable.

The split centralizer condition fails for A:

 $\mathbb{S} = \mathbb{A}$

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

- A has a Maltsev term,
- $\mathcal{V}(\mathbb{A})$ is RS, but
- A is not dualizable.

The split centralizer condition fails for A:

$$\mathbb{S} = \mathbb{A}$$

Example. Let \mathbb{A} is the group S_3 expanded by all constants. Then

- A has a Maltsev term,
- $\mathcal{V}(\mathbb{A})$ is RS, but
- A is not dualizable.

The split centralizer condition fails for A:

 $\mathbb{S}=\mathbb{A}$

