

# Lab Manual on Instrumentation-II

BEX/BCT(III/I)

Compiled By: Er. Saban Kumar K.C. & Er. Kiran Bagale 11/16/2017

# **Lab Contents**

Lab1: Serial Interfacing with Microprocessor Based System-Null Modem Connection using DB-9 and RS232 Serial Standard

Lab2: Parallel Interfacing with Microprocessor Based System- 82C55 PPI (Programmable Peripheral Interface) with 8085 Microprocessor.

Lab3: Analog to Digital Interfacing

Lab 4: Digital to Analog Interfacing

Lab 5: Design Exercise (Small group Projects)-Basic I/O Device Interfacing like Keyboard, Seven segments, Motors etc.

#### **Marks Distribution:**

| SN | Particular                    | Marks Distribution | Remarks                   |
|----|-------------------------------|--------------------|---------------------------|
| 1  | Attendance and Lab Discipline | 5                  | Compulsory                |
| 2  | Lab report                    | 5                  | Only for Timely Submitted |
| 3  | Group Project                 | 7                  | Compulsory                |
| 4  | Final lab exam                | 8                  | Conducted with            |
|    |                               |                    | Experiments               |
|    | Total                         | 25                 |                           |

# Lab1: Serial Interfacing with Microprocessor Based System-Null Modem Connection using DB-9 and RS232 Serial Standard

#### **Objectives:**

- To become familiar with DB-9 and RS232 standard
- Demonstration of Serial communication between two PCs

#### **Apparatus:**

- DB-9 -1pair
- Cat cable
- PCs.

#### Theory:

The serial port is harder to interface than the parallel port. In most cases, device you connect to the serial port will need the serial transmission converted back to parallel so that it can be used easily. This can be done using the UART. On the software side of things, there are many more registers that you have to attend than a standard parallel port (SPP).

Advantages of serial data transfer over parallel:

- 1. Serial can be longer than the parallel cables, the serial port transmit '1' as -3 to -25 volts and '0' as +3 to +25 volts whereas parallel port transmits a '0' as 0v and '1' as 5v. Therefore the serial port can have the maximum swing of 50 volts. Therefore cable loss is not going to be as much of a problem for serial cables as they are for parallel.
- 2. You don't need many wires for communication as of parallel transmission.
- 3. Microcontrollers have also proven to be quiet popular these days; many of which have built in SCI (Serial communication Interface), which can also be used to talk to outside world. Serial communication reduces the pin counts on these MPU's to only TX and RX, compare to at least 8 pins if you use 8 bit parallel method.

The standard port addresses of Serial port are: Table1: COM port Address in the BIOS Data Areas

| Name  | Address |
|-------|---------|
| COM 1 | 3F8     |
| COM 2 | 2F8     |
| COM 3 | 3E8     |
| COM 4 | 2E8     |

| Start Address | Function            |
|---------------|---------------------|
| 0000:0400     | COM1's base Address |
| 0000:0402     | COM2's base Address |
| 0000:0404     | COM3's base Address |
| 0000:0406     | COM4's base Address |

#### **Hardware properties:**

Devices which use serial cables for their communication are split into two categories. These are DCE (Data Communication Equipment) and DTE (Data terminal Equipment). DCE are devices as your modem, plotter etc. while DTE is your computer or terminal. The electrical specifications of the serial port are contained in the EIA (Electronic Industry Association) RS232 standard. It states many parameters such as-

- 1. A "space" (logic 0) will be between +3 and +25 Volts.
- 2. A "Mark" (logic 1) will be between -3 and -25 Volts.
- 3. The region between +3 and -3 volts is undefined.

Serial ports come in two "sizes", there are D-Type 25 pin connector and the D-Type 9 pin connectors both of which are male type in the back of your PC. Thus you need female connector to connect on your device. In this lab we will only concern only about DB-9 connector. Figure below is the pin configuration of DB-9 male connector:



Fig 1: D-sub 9 Connector Pin-out

Table 2: Pin-out and diagram of DB9 connector, commonly used for serial ports (RS-232).

| Pin | SIG. | Signal Name         | DTE (PC) |
|-----|------|---------------------|----------|
| 1   | DCD  | Data Carrier Detect | In       |
| 2   | RXD  | Receive Data        | In       |
| 3   | TXD  | Transmit Data       | Out      |
| 4   | DTR  | Data Terminal Ready | Out      |
| 5   | GND  | Signal Ground       | -        |
| 6   | DSR  | Data Set Ready      | In       |

| 7 | RTS | Request to Send | out |
|---|-----|-----------------|-----|
| 8 | CTS | Clear to Send   | in  |
| 9 | RI  | Ring Indicator  | in  |



Fig 2: Wiring diagram of Serial communication (Null Modem)

#### **Procedure:**

- i. Carry the pair of DB-9 (Female), CAT cable, Soldering iron with solder & flux.
- ii. Set-up the Null Modem; Connect the wires according to figure 2.
- iii. Connect the prepared cable between two PCs. (The assigned address for COM ports(1&2) can be seen by programming in turbo C.)

iv. Open the "Terminal" desktop application in both PCs and set the following parameters:

COM port: 1Baud rate: 9600

• Data bit: 8 with none parity & handshake

v. Send & Receive the data by typing the data like: Type "Hello" in transmitter (PC1), Receive same in Receiver (PC2).

# Lab2: Parallel Interfacing with Microprocessor Based System- 82C55 PPI (Programmable Peripheral Interface) with 8085 Microprocessor.

#### **Objectives:**

- To become familiar with Intel 8255A PPI
- To interface 8255 PPI with 8085 Microprocessor in both I/O mode (Lab 2.1) and BSR mode (Lab 2.2)

#### **Apparatus:**

- 8085 Microprocessor kit
- 8255 PPI kit

#### **Theory:**

The Intel 8255 A is a general purpose programmable I/O device designed for use with Intel microprocessors. It has 24 I/O pins that can be grouped primarily in two 8-bit parallel ports: A and B, with the remaining bits as port C. The 8-bits of port C can be used as individual bits or be grouped in two 4-bits ports: C upper (Cu) and C lower (Cl). The functions of these ports are defined by writing a control word in the control register. 8255 functions in two modes:

- Bit Set/Reset mode: The BSR mode is used to set or reset the bits in port C.
- I/O mode: The I/O mode is further divided into three modes: mode 0, mode 1 and mode 2. In mode 0, all ports function as simple I/O ports. Mode 1 is a handshake mode whereby ports A and/or B use bits from port C as handshake signals. In the handshake mode, two types of I/O data transfer can be implemented: status check and interrupt. In mode 2, port A can be set up for bidirectional data transfer using handshake signals from port C and port B can be set up either in mode 0 or mode 1.



**Description about Kit:** This study card is interfaced through a 50 pin FRC cable to the Dyna-85 kit. It consists of one 82c55, with tags for all I/O ports, buffer, to drive LEDs, VCC and GND tags. The PPI chip 82c55 has three 8-bit I/O ports.

#### **Control words in I/O Mode:**



a. Port A output, mode of port A mode 1, port B output, mode of port B mode 0, port C lower pins as output and remaining pins of port C upper as output.

| $\mathbf{D_7}$ | $D_6$ | $D_5$ | $D_4$ | $\mathbf{D_3}$ | $\mathbf{D_2}$ | $\mathbf{D_1}$ | $\mathbf{D_0}$ | = A0H |
|----------------|-------|-------|-------|----------------|----------------|----------------|----------------|-------|
| 1              | 0     | 1     | 0     | 0              | 0              | 0              | 0              |       |

#### **Control words in BSR Mode:**



Fig: 8255A Control Word Format for BSR Mode

a. Set PC7

To set PC7

|   |   |   |   |   |   |   | $\mathbf{D_0}$ | = 0FH [Normally don't care $(X) = 0$ ] |
|---|---|---|---|---|---|---|----------------|----------------------------------------|
| 0 | X | X | X | 1 | 1 | 1 | 1              |                                        |

## **Procedure:**

- 1. Keep Dyna card to the left side of the Dyna-85 kit.
- 2. Connect Dyna to Dyna-85 kit using the 50 pin FRC cable.
- 3. Do not connect/remove Dyna to/from Dyna-85 while power is ON.
- 4. The address of the interrupt service routine should be given at

FFC8H (RST6.5), FFC2H (RST5.5) and FFCE (7.5).

5. Default I/O address ranges of all experiment is 30H-37H.

| Selection | Address |
|-----------|---------|
| PORT A    | 30H     |
| PORT B    | 31H     |
| PORT C    | 32H     |
| COMMAND   | 33H     |

### **Experiment 2.1: Programming 8255A in I/O mode**

#### Case 1: Output mode: Mode 0

8255 is configured in mode 0, i.e. simple input/output mode. Port A, B, C are in mode 0. All the ports are in output mode and data is transmitted to the respective ports. Display AAH in Port A, 55H in Port B and 0FH in Port C.

| • | Derive control words for this configuration: |
|---|----------------------------------------------|
|   |                                              |
|   |                                              |
|   |                                              |

• Derive programs (mnemonics with opcodes):

#### Algorithm

- LOAD CONTROL WORD FOR OUTPUT MODE, MODE 0 IN ACCUMULATOR
- WRITE CONTROL WORD IN CONTROL REGISTER
- LOAD DATA FOR PORT A IN ACCUMULATOR
- DISPLAY THE READING AT PORTA, SIMILARLY FOR PORT B, C

• Compare your program with following program and apply it on kit

| Address | Op code | Label | OBJ Operand code | Comments         |
|---------|---------|-------|------------------|------------------|
| C000    | 3E 80   |       | MVI A, 80H       |                  |
|         |         |       |                  | CONTROL WORD FOR |
|         |         |       |                  | OUTPUT MODE,     |
|         |         |       |                  | MODE 0           |
| C002    | D3 33   |       | OUT CMD_PORT     |                  |
| C004    | 3E 55   |       | MVI A,55H        | DATA FOR PORT A  |
| C006    | D3 30   |       | OUT PORT_A       |                  |
|         |         |       |                  |                  |
| C008    | 3E AA   |       | MVI A,AAH        | DATA FOR PORT B  |
| C00A    | D3 31   |       | OUT PORT_B       |                  |
| C00C    | 3E 0F   |       | MVI A,0FH        | DATA FOR PORT C  |
| C00E    | D3 32   |       | OUT PORT_C       |                  |
| C010    | CF      |       | RST1             |                  |

#### Case 2: Input mode: Mode 0

8255 configuration in mode 0, i.e. simple Input/Output mode. Port A,B,C are in input mode. Data from all 3 ports are read and then stored in different registers.

| • | Derive control words for this configuration: |  |  |  |  |  |  |  |
|---|----------------------------------------------|--|--|--|--|--|--|--|
|   |                                              |  |  |  |  |  |  |  |
|   |                                              |  |  |  |  |  |  |  |
|   |                                              |  |  |  |  |  |  |  |
|   |                                              |  |  |  |  |  |  |  |
|   |                                              |  |  |  |  |  |  |  |

• Derive programs (mnemonics with opcodes):

#### Algorithm

- LOAD CONTROL WORD FOR OUTPUT MODE, MODE 0 IN ACCUMULATOR
- WRITE CONTROL WORD IN CONTROL REGISTER
- READ SWITCHES AT PORT A
- DISPLAY THE READING AT REGISTER D, SIMILARLY FOR PORT B, C

• Compare your program with following program and apply it on kit

| Address | Op code | Label | OBJ Operand code | Comments             |
|---------|---------|-------|------------------|----------------------|
| C000    | 3E 9B   |       | MVI A, 9BH       | ;IN I/O MODE,PORTS   |
|         |         |       |                  | ;A,B,C IN INPUT MODE |
|         |         |       |                  | ;MODE 0              |
|         |         |       |                  |                      |
| C002    | D3 33   |       | OUT CMD_PORT     |                      |
| C004    | DB 30   |       | IN PORT_A        |                      |
| C006    | 57      |       | MOV D,A          |                      |
|         |         |       |                  |                      |
| C007    | DB 31   |       | IN PORT_B        |                      |
| C009    | 47      |       | MOV B,A          |                      |
| C00A    | DB OF   |       | IN PORT_C        |                      |
| C00C    | 4F      |       | MOV C,A          |                      |
| C00D    | CF      |       | RST1             |                      |

#### **Problems:**

Note: Report should include the derivation for required control words and programs (mnemonics with opcodes) for all given problems

- 1. For the 8255A within the 8085 microprocessor (mapped at base address of 40H), initialize Port A in output mode 0, Port B in output mode 0 Port C-Upper in output and Port C-Lower in input mode.
  - a. Display AAH in Port A and 55H in Port B
  - b. Using BSR mode try to set PC6, PC4, PC2 and PCO and observe the result.
  - c. Also configure all bits of Port C in output mode and observe the result by repeating 1b.
  - d. Comment upon the results of 1 b and 1c.
- 2. Initialize the 8255 expansion kit (mapped at base address of 80H) as: Port A in mode 0 input Port B in mode 0 output and Port C in output mode,
  - a. Output AAH in all ports .Note down the result and identify MSB and LSB for each port output.
  - b. There are only five LEDs connected to five pins of Port C. Use an appropriate program to find out the pins of Port C that are not used for display.

## **Experiment 2.2: Programming 8255A in BSR mode**

Case1: First set the bit 7 then after some delay reset the bit 7 of PORT C.

| Derive control words for this configuration: |  |  |  |  |  |  |
|----------------------------------------------|--|--|--|--|--|--|
| Control word for setting the bit 7:          |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
| Control word for resetting the bit 7:        |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
| Derive programs (mnemonics with opcodes):    |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |

• Compare your program with following program and apply it on kit

| Address | Op code  | Label  | OBJ Operand code | Comments            |
|---------|----------|--------|------------------|---------------------|
| C000    | 3E 80    |        | MVI A, 80H       | ;PPORT C IN         |
|         |          |        |                  | ; OUTPUT MODE       |
| C002    | D3 33    |        | OUT CMD_PORT     |                     |
| C004    | 3E 0F    | LOOP1: | MVI A,0FH        | ;BSR MODE,BIT 7OF   |
|         |          |        |                  | PORT C IS SET       |
| C006    | D3 33    |        | OUT CMD_PORT     |                     |
| C008    | 11 FF FF |        | LXI D,FFFFH      |                     |
| C00B    | CD F1 0F |        | CALL DELAY       |                     |
| C00E    | 3E 0E    |        | MVI A,0EH        | ;BIT 7 OF PORT C IS |
|         |          |        |                  | RESET               |
| C010    | D3 33    |        | OUT CMD_PORT     |                     |
| C012    | 11 FF FF |        | LXI D,FFFFH      |                     |
| C015    | CD F1 05 |        | CALL DELAY       |                     |
| C018    | C3 44 C0 |        | JMP LOOP1        |                     |
|         |          |        |                  |                     |