

# K L Deemed to be University Department of Artificial Intelligence and Data Science -- KLVZA Course Handout 2022-2023, Even Sem

|                     | ,                         |  |
|---------------------|---------------------------|--|
| Course Title        | :Machine Learning         |  |
| Course Code         | :21AD2205                 |  |
| L-T-P-S Structure   | : 3-0-0-2                 |  |
| Pre-requisite       | :                         |  |
| Credits             | : 3.5                     |  |
| Course Coordinator  | :VIJAYALAKSHMI PONNUSWAMY |  |
| Team of Instructors | :                         |  |
| Teaching Associates | :                         |  |
|                     |                           |  |

Syllabus: Basics: Introduction to machine learning - different forms of learning; Applications of Machine Learning. Regression Analysis: Linear regression, ridge regression, Lasso, Bayesian regression, regression with basis functions, Logistic regression, Multiple regression and its variants. Classification Methods: Classification and Regression Trees, Naïve Bayesian classifier, Linear Discriminant Analysis, Large margin classification, Kernel methods, Support Vector Machines, Perceptron, Multilayer Perceptron and Back propagation. Graphical Models: Bayesian Belief Networks, Markov Model, Hidden Markov models, Markov Network Reinforcement learning: Markov Decision process, Q-Learning Ensemble Methods: Voting, Boosting - Adaboost, Gradient Boosting; Bagging - Simple methods, Random Forest. Clustering: Partitional Clustering - k-means, k-medoids; Hierarchical Clustering - Agglomerative, Divisive, Distance measures; Density based clustering - DBScan; Spectral clustering Dimensionality Reduction: Wavelet Transform, Principal Component Analysis (PCA)

**Text Books :**1. Introduction to Machine Learning Edition 2, by Ethem Alpaydin 2. T. Hastie, R.Tibshirani, J. Friedman, "The Elements of Statistical Learning: Data Mining, Inference and Prediction", 2nd Edition, Springer Series in Statistics, 2009.

**Reference Books :** 1. C. M. Bishop. "Pattern Recognition and Machine Learning," Springer, 2006. 2. J. Han and M. Kamber. "Data Mining: Tools and Techniques," 3rd Edition, Morgan Kaufmann Press, 2012. 3. K. R. Murphy. "Machine Learning - A Probabilistic Perspective", 1st Edition, The MIT Press, 2012. 4. Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997.

**Web Links :**1. https://www.coursera.org/specializations/machine-learning 2.

https://www.coursera.org/learn/machine-learning 3. https://in.udacity.com/course/machine-learning-engineer-nanodegree-- nd009t 4. https://www.udemy.com/machinelearning/ 5.

https://www.coursera.org/learn/machine-learning?cartId=34726539

**MOOCS**:1.https://onlinecourses.nptel.ac.in/noc16\_cs03/preview 2.https://www.coursera.org/learn/machine-learning?cartId=34726539

Course Rationale: Once there is a perception that automation can replace humans. Now-a- days it has become reality. Machines are becoming more and more intelligent. Machine Learning is one such course which deals with making machines more powerful and intelligent. In this course, students can learn various machine learning algorithms, underlying concepts and their application to a real world problem. All these algorithms are powered by various statistical techniques. Students learn these probability and statistics methods that make machine learning algorithms robust in order to build automatic learning machine models. This course mainly focuses on the learning paradigms namely Decision tree, Bayes, Neural Networks and genetic algorithms. Overall this course gives a comprehensive insight to the student on the application of these algorithms on real time problems in order to construct an intelligent machine.

Course Objectives: The objective of the course is to make the students learn about how to build intelligent machines to solve a real world problem. The students will learn to analyse large datasets, build models that can make predictions from data, create systems that adapt and improve over time. The students will apply the skills to solve real world problems through implementation of machine learning algorithms. Machine

about:blank 1/29

learning is attempted in a number of critical applications, such as medical, cybersecurity, natural language processing and expert systems. ML provides reasonable solutions in these domains. It is predicted that in future Machine Learning is going to become a globally recognized area and will be applied extensively in all the fields.

#### **COURSE OUTCOMES (COs):**

| CO<br>NO | Course Outcome (CO)                                                                                                                                                           | PO/PSO        | Blooms<br>Taxonomy<br>Level<br>(BTL) |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|
| CO1      | Inculcate and impart core understanding of Machine learning basics and regression models                                                                                      | PO2,PO3       | 2                                    |
| CO2      | Quantitatively analyse the classification algorithms to provide solutions for realistic applications                                                                          | PO3,PO2       | 3                                    |
| CO3      | Comprehend and solve real-world problems using unsupervised learning algorithms                                                                                               | PO4,PSO1      | 3                                    |
| CO4      | Apply and choose appropriate Reinforcement learning,<br>Dimensionality reduction techniques and Ensemble methods to<br>provide accurate solution to undeterministic problems. | PO4,PSO1      | 3                                    |
| CO5      | Deploy and develop Machine learning techniques in various real world applications using python and Tensor Flow                                                                | PO5,PSO1,PSO2 | 3                                    |

#### **COURSE OUTCOME INDICATORS (COIs)::**

| Outcome<br>No. | Highest<br>BTL | COI-1                                                     | COI-2                                                                        | COI-3                                                                                                                             |
|----------------|----------------|-----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| CO1            | 2              | Btl-1 List out applications of Machine Learning           | Btl-2 Understanding the concepts of machine learning and regression analysis |                                                                                                                                   |
| CO2            | 3              | Btl-1 List out different supervised learning techniques   | Btl-2 Understanding classification and regression trees                      | Btl-3 Apply classification algorithms for problem solving.                                                                        |
| CO3            | 3              | Btl-1 List out different Unsupervised learning techniques | Btl-2 Understanding Clustering algorithms.                                   | Btl-3 Apply Clustering algorithms for problem solving                                                                             |
| CO4            | 3              | Btl-1 Recall the concept of Reinforcement learning        | Btl-2 Understanding the concepts of Reinforcement learning                   | Btl-3 Apply Ensemble methods and Dimensionality reduction techniques                                                              |
| CO5            | 3              |                                                           |                                                                              | Btl-3 Implement and enhancing machine learning algorithms in python, tensor-flow and provide solutions to real-world applications |

#### PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES (POs/PSOs)

about:blank 2/29

| Po  | Program Outcome                                                                                                                                                                                                                                                                                                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,                                                                                                                                                                                                                                                                                              |
| PO1 | and an engineering specialization to the solution of complex engineering problems.                                                                                                                                                                                                                                                                                                         |
| PO1 | Engineering Knowledge:Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                                                                                                            |
| PO2 | Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences                                                                                                                                                            |
| PO2 | Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences                                                                                                                                                            |
| PO3 | Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations                                                                                                   |
| PO3 | Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations                                                                                                   |
| PO4 | Conduct Investigations of Complex Problems:Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline. |
| PO4 | Conduct Investigations of Complex Problems:Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline. |
| PO5 | Modern Tool Usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.                                                                                                                                                          |
| PO5 | Modern Tool Usage:Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.                                                                                                                                                          |
| PO6 | The Engineer and Society:Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                                                                                                         |
| PO6 | The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                                                                                                        |
| PO7 | Environment and Sustainability:Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development                                                                                                                                                                              |
| PO7 | Environment and Sustainability:Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development                                                                                                                                                                              |
| PO8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice                                                                                                                                                                                                                                                              |
| PO8 | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice                                                                                                                                                                                                                                                              |
| PO9 | Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                                                                                                            |
| PO9 | Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                                                                                                            |

about:blank 3/29

| PO10 | Communication:Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO10 | Communication:Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions |
| PO11 | Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                             |
| PO11 | Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                             |
| PO12 | Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.                                                                                                                |
| PO12 | Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.                                                                                                                |
| PSO1 | An ability to design and develop Artificial Intelligence technology into innovative products for solving real world problems                                                                                                                                                                    |
| PSO1 | An ability to design and develop Artificial Intelligence technology into innovative products for solving real world problems.                                                                                                                                                                   |
| PSO2 | An ability to design and develop Data Science methods for analyzing massive datasets to extract insights by applying AI as a tool.                                                                                                                                                              |
| PSO2 | An ability to design and develop Data Science methods for analyzing massive datasets to extract insights by applying AI as a tool                                                                                                                                                               |

#### Lecture Course DELIVERY Plan

| Sess.No. | СО  | COI  | Торіс                                                                       | Book<br>No[CH No]<br>[Page No]   | Teaching-<br>Learning<br>Methods | EvaluationComponents           |
|----------|-----|------|-----------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------|
| 1        | CO1 | COI- | A brief on Handout, A brief introduction on ML                              | T1                               | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1 |
| 2        | CO1 | COI- | Introduction to Machine<br>Learning, Different forms of<br>Machine Learning | T1-CH1<br>Page 1-6               | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1 |
| 3        | CO1 | COI- | Applications of ML                                                          | T1-CH1-7-                        | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1 |
| 4        | CO1 | COI- | Ridge Regression                                                            | T1-CH-4-<br>Page 73 &<br>T2-CH 3 | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1 |
| 5        | CO1 | COI- | Lasso Regression                                                            | T1-CH4-<br>page 74&<br>T2-CH 3   | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1 |
| 6        | CO1 | COI- | Bayesian Regression                                                         | T1-CH3-<br>Page 43 &<br>T3-CH-3  | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1 |
| 7        | CO1 | COI- | Regression with basis                                                       | Т1-СН1-                          | Chalk,PPT,Talk                   | ALM,End Semester               |

about:blank 4/29

| Sess.No. | СО  | COI  | Торіс                                          | Book<br>No[CH No]<br>[Page No]       | Teaching-<br>Learning<br>Methods | EvaluationComponents                                      |
|----------|-----|------|------------------------------------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------|
|          |     | 2    | functions                                      | Page 29 &<br>T3-CH 3                 |                                  | Exam,Group<br>Discussion,SEM-<br>EXAM1                    |
| 8        | CO1 | COI- | Logistic Regression                            | T1-5-CH-1                            | Chalk,PPT,Talk                   | ALM,End Semester<br>Exam,Home<br>Assignment,SEM-<br>EXAM1 |
| 9        | CO1 | COI- | Multiple Regression and its variants           | T1-CH 5 -<br>Page 100 &<br>T3-CH 3   | Chalk,PPT,Talk                   | End Semester Exam,Home Assignment,SEM- EXAM1              |
| 10       | CO2 | COI- | Classification and Regression Trees            | T1-CH 9-<br>Page 176<br>&T2-CH 9     | Chalk,PPT,Talk                   | End Semester Exam,Home Assignment,SEM- EXAM1              |
| 11       | CO2 | COI- | Naive Bayesian classifier                      | T1-CH-<br>3Page 39&<br>T5-CH 3       | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1                            |
| 12       | CO2 | COI- | Linear Discriminant Analysis                   | T1- CH 10 -<br>Page 197 &<br>T3-CH 4 | Chalk,PPT,Talk                   | ALM,End Semester<br>Exam,SEM-EXAM1                        |
| 13       | CO2 | COI- | Large margin Classification                    | T1-CH-10-<br>Page 221 &<br>T3-CH7    | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1                            |
| 14       | CO2 | COI- | Kernel Methods                                 | T1-CH 10 -<br>Page 223 &<br>T3-CH 6  | Chalk,PPT,Talk                   | End Semester Exam,SEM-EXAM1                               |
| 15       | CO2 | COI- | Support Vector Machines                        | T1-CH 10 -<br>Page 218 &<br>T3- CH7  | Chalk,PPT,Talk                   | ALM,End Semester<br>Exam,SEM-EXAM1                        |
| 16       | CO2 | COI- | Perceptron                                     | T1-CH 11 -<br>Page 233               | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1                            |
| 17       | CO2 | COI- | Multilayer Perceptron                          | T1-CH 11 -<br>Page 229               | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1                            |
| 18       | CO2 | COI- | Back-propagation                               | T1-CH 11 -<br>Page 245               | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1                            |
| 19       | СОЗ | COI- | Graphical Models: Basyesian<br>Belief Networks | T1- CH 3 -<br>Page 48<br>&T3-CH 8    | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM2                            |

about:blank 5/29

| Sess.No. | СО  | COI       | Торіс                                              | Book<br>No[CH No]<br>[Page No]         | Teaching-<br>Learning<br>Methods | EvaluationComponents                         |  |
|----------|-----|-----------|----------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------------------|--|
| 20       | CO3 | COI-      | Bayesian belief Networks                           | T1-CH 3-<br>Page 48 &<br>T3-CH 8       | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1               |  |
| 21       | CO3 | COI-      | Markov Model                                       | T1-CH- 13<br>Page 48 &<br>T3-CH- 8     | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1               |  |
| 22       | CO3 | COI-<br>2 | Hidden Markov Model                                | T1-CH 13-<br>Page 309 &<br>T5-CH 1     | Chalk,PPT,Talk                   | ALM,End Semester<br>Exam,SEM-EXAM1           |  |
| 23       | CO3 | COI-<br>2 | Markov Network                                     | T1- CH 13 -<br>Page 322 &<br>T5-CH 1   | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM2               |  |
| 24       | CO3 | COI-<br>2 | Reinforcement Learning:<br>Markov Decision process | T1 - CH 16 -<br>Page 373 &<br>T6-CH 13 | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM2               |  |
| 25       | CO3 | COI-      | Q Learning                                         | T1-CH 16-<br>Page-380 &<br>T6-CH 13    | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM2               |  |
| 26       | СОЗ | COI-      | Ensemble Methods: Voting                           | T1 - CH 15 -<br>Page 354               | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM2               |  |
| 27       | CO3 | COI-      | Boosting - Adaboost                                | T1-Ch- 15<br>Page 363                  | Chalk,PPT,Talk                   | ALM,End Semester<br>Exam,SEM-EXAM1           |  |
| 28       | CO3 | COI-      | Gradient Boosting                                  | T1- CH- 15<br>Page 363                 | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1               |  |
| 29       | CO3 | COI-      | Bagging - Simple methods                           | T1 - CH 15 -<br>Page 360               | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM2               |  |
| 30       | CO3 | COI-      | Random Forest                                      | T1-CH-15<br>page 360                   | Chalk,PPT,Talk                   | End Semester Exam,Home Assignment,SEM- EXAM1 |  |
| 31       | CO4 | COI-      | Clustering: Partitional clustering - k-means       | T1-CH 7-<br>Page 135                   | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM2               |  |
| 32       | CO4 | COI-      | K-Medoids                                          | T1-CH 7 -<br>Page 135                  | Chalk,PPT,Talk                   | ALM,End Semester<br>Exam,SEM-EXAM1           |  |
| 33       | CO4 | COI-      | Hierchical clustering -<br>Agglomerative           | T1-CH-7<br>page 146                    | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1               |  |

about:blank 6/29

| Sess.No. | СО  | COI   | Торіс                                          | Book<br>No[CH No]<br>[Page No] | Teaching-<br>Learning<br>Methods | EvaluationComponents                           |
|----------|-----|-------|------------------------------------------------|--------------------------------|----------------------------------|------------------------------------------------|
| 34       | CO4 | COI-  | Hierarchical clustering-<br>Divisive           | T1-CH 7-<br>Page 146           | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM2                 |
| 35       | CO4 | COI-  | Distance measures                              | T1-CH 7-<br>Page 134           | Chalk,PPT,Talk                   | ALM,End Semester<br>Exam,SEM-EXAM1             |
| 36       | CO4 | COI-  | DB Scan                                        | T1-CH-7<br>page 134            | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1                 |
| 37       | CO4 | COI-  | Spectral clustering                            | T1-CH-6 -<br>Page 105          | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM1                 |
| 38       | CO4 | COI-  | Dimensionality Reduction:<br>Wavelet transform | T1-CH 6 -<br>Page 105          | Chalk,PPT,Talk                   | End Semester<br>Exam,SEM-EXAM2                 |
| 39       | CO4 | COI-3 | Principle Component<br>Analysis                | T1-CH-6-<br>Page 108           | Chalk,PPT,Talk                   | End Semester Exam, Home Assignment, SEM- EXAM1 |

## Lecture Session wise Teaching – Learning Plan

**SESSION NUMBER**: 1

Session Outcome: 1 Briefing on ML Handout and Introduction to ML

| Time(min) | Торіс                          | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance                     | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | A brief on ML-Handout          | 1   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Introduction to ML             | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 5         | Summary and conclusion remarks | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER: 2**

Session Outcome: 1 Enable the students to learn about the core concepts of ML and its types

| Time(min) | Торіс | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |  |
|-----------|-------|-----|----------------------------------|-------------------------------|--|
|-----------|-------|-----|----------------------------------|-------------------------------|--|

about:blank 7/29

| 5  | Attendance and Transition activities | 1 | Talk | NOT<br>APPLICABLE<br> |
|----|--------------------------------------|---|------|-----------------------|
| 20 | Concepts of ML                       | 1 | PPT  | NOT<br>APPLICABLE<br> |
| 20 | Different Types of ML                | 2 | PPT  | NOT<br>APPLICABLE<br> |
| 5  | Concluding remarks and Summary       | 1 | Talk | NOT<br>APPLICABLE<br> |

## **SESSION NUMBER**: 3

Session Outcome: 1 Students are able to understand the Applications of ML

| Time(min) | Торіс                                                  | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities                   | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Significance of ML Applications in scientific research | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Significance of ML Applications in real-world problems | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary                         | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER:** 4

Session Outcome: 1 Students are able to understand the core concepts of Ridge regression

| Time(min) | Торіс                                            | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities             | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Concepts of Ridge regression                     | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Significance and Limitations of Ridge regression | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary                   | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER:** 5

about:blank 8/29

Session Outcome: 1 Students are able to understand the core concepts of Lasso regression concepts

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Recap on regression types            | 1   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Lasso regression                     | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER:** 6

Session Outcome: 1 Students are able to understand the core concepts of Bayesian regression

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Core concept of Bayesian Regression  | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Limitations of Bayesian regression   | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER:** 7

Session Outcome: 1 Students are able to understand the core concepts of regression basis functions

| Time(min) | Торіс                                          | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities           | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Concepts of regression with basis functions    | 2   | PPT                              | Group<br>Discussion           |
| 20        | Significance and Limitations of Regularisation | 2   | PPT                              | NOT<br>APPLICABLE<br>         |

about:blank 9/29

| 5 Conc | cluding remarks and Summary | 1 | Talk | NOT<br>APPLICABLE |  |
|--------|-----------------------------|---|------|-------------------|--|
|--------|-----------------------------|---|------|-------------------|--|

## **SESSION NUMBER: 8**

Session Outcome: 1 Students are able understand the concepts of Logistic regression

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Concepts of Logistic Regression      | 2   | PPT                              | Fish Bowl                     |
| 20        | Significance and Limitation of LR    | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER:** 9

Session Outcome: 1 Students are able to understand the multiple variants regression and

| Time(min) | Торіс                           | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|---------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance                      | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Multiple Regression             | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Variants of Multiple Regression | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & summary    | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER**: 10

Session Outcome: 1 Students are able to understand the Regression tree concepts and classification models

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   |                                  | NOT<br>APPLICABLE<br>         |
| 20        | Classification                       | 2   |                                  | NOT<br>APPLICABLE<br>         |

| 20 | Regression Trees             | 1 |      | NOT<br>APPLICABLE<br> |
|----|------------------------------|---|------|-----------------------|
| 5  | Concluding remarks & Summary | 1 | Talk | NOT<br>APPLICABLE<br> |

## **SESSION NUMBER**: 11

Session Outcome: 1 Students are able to understand the basic principles of Naive Bayesian classifier

| Time(min) | Торіс                                               | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-----------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities                | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Basic principles of Naive Bayesian classifier       | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Naive Bayesian classifier with proper Illustrations | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary                      | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER**: 12

Session Outcome: 1 Students are able to install the knowledge of LDA

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Significance of LDA                  | 1   | Talk                             | One minute paper              |
| 20        | Principles of LDA                    | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary         | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

#### **SESSION NUMBER**: 13

Session Outcome: 1 Students are able to understand the core principles of Margin classification

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   |                                  | NOT<br>APPLICABLE             |

about:blank 11/2

| 20 | Core principle and functioning of Large margin classification | 2 | PPT  | NOT<br>APPLICABLE<br> |
|----|---------------------------------------------------------------|---|------|-----------------------|
| 20 | Limitations of Large Margin classification                    | 2 | PPT  | NOT<br>APPLICABLE<br> |
| 5  | Concluding remarks and Summary                                | 1 | Talk | NOT<br>APPLICABLE<br> |

**SESSION NUMBER**: 14

Session Outcome: 1 Students are able to understand the core concepts of Kernel methods

| Time(min) | Торіс                                     | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities        | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Principle & Methodology of Kernel methods | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Kernel methods - with proper illustration | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary              | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER**: 15

Session Outcome: 1 Students are able to know the core principles of SVM

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Significance of SVM                  | 2   | Talk                             | Quiz/Test<br>Questions        |
| 20        | Principle of SVM and Limitations     | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary         | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER**: 16

Session Outcome: 1 Students are able to know the significance of Perceptrons

| Time(min) | Торіс                                             | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|---------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities              | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | What is the need of Perceptrons?                  | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Principles of Perceptron with proper illustration | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary                      | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER**: 17

Session Outcome: 1 Students are able to know the concept of MLP

| Time(min) | Торіс                                   | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-----------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities      | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Why MLP?                                | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Illustration of MLP and its Limitations | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding Remarks & Summary            | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER**: 18

Session Outcome: 1 Students are able to know the needs of BP

| Time(min) | Торіс                              | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Need for BP                        | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | BP algorithm                       | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary       | 2   | Talk                             | NOT<br>APPLICABLE             |

about:blank 13/29

**SESSION NUMBER**: 19

Session Outcome: 1 Students are able to install the knowledge of BBF- Graphical models

| Time(min) | Торіс                                    | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance                               | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Introduction of Bayesian Belief Networks | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Illustration and Implementation of BBF   | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary             | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER**: 20

Session Outcome: 1 Students are able to understand the principles of Bayesian Belief networks

| Time(min) | Торіс                                                              | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities                               | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Concepts of Belief Networks                                        | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Significance of Bayesian belief networks in real-time Applications | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary                                     | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER**: 21

Session Outcome: 1 Students are able to understand the significance of Markov model

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Principles of Markov model           | 2   | Talk                             | NOT<br>APPLICABLE<br>         |

about:blank 14/29

| 20 | Significance of Markov model   | 2 | PPT  | NOT<br>APPLICABLE<br> |
|----|--------------------------------|---|------|-----------------------|
| 5  | Concluding remarks and Summary | 1 | Talk | NOT<br>APPLICABLE<br> |

**SESSION NUMBER**: 22

Session Outcome: 1 Students are able to understand the importance of Hidden Markov models

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Concept of Hidden Markov model       | 2   | PPT                              | Case Study                    |
| 20        | Illustrations of HMM                 | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER**: 23

Session Outcome: 1 Students can understand the working of Markov network

| Time(min) | Торіс                              | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Markov Network - its significance  | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Limitations of Markov network      | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER: 24** 

Session Outcome: 1 Students are able to understand the significance of Markov decision models

| Time(min) | Торіс                              | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

| 20 | Introduction to Reinforcement Learning                  | 2 | PPT  | NOT<br>APPLICABLE<br> |
|----|---------------------------------------------------------|---|------|-----------------------|
| 20 | Markov Decision Process - Principles & its significance | 3 | PPT  | NOT<br>APPLICABLE<br> |
| 5  | Concluding remarks & Summary                            | 1 | Talk | NOT<br>APPLICABLE<br> |

**SESSION NUMBER**: 25

Session Outcome: 1 Students are able to understand the Q Learning concepts

| Time(min) | Торіс                               | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities  | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Why Q Learning?                     | 2   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Q Learning - Concepts & Limitations | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary        | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER**: 26

Session Outcome: 1 Students are able to know the importance of Ensemble methods

| Time(min) | Торіс                                     | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities        | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | What is Ensemble method? Its significance | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Voting- concepts and working principles   | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary              | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER**: 27

Session Outcome: 1 Students are able to understand the principles of Adaboost

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Boosting: Adaboost - concepts        | 2   | PPT                              | Brain storming session        |
| 20        | Implementation of Adaboost           | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER**: 28

Session Outcome: 1 Students are able to understand the core principles of Gradient Boosting

| Time(min) | Торіс                                            | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities             | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Gradient boosting: Concepts and its significance | 2   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Gradient boosting: Implementation                | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary                   | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER**: 29

Session Outcome: 1 Students are able to know the importance of Bagging methods

| Time(min) | Торіс                              | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Bagging - Principles               | 2   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Bagging- simple methods            | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

about:blank 17/29

**SESSION NUMBER: 30** 

Session Outcome: 1 Students are able to understand the concept of Random forest

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Random forest: concept               | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Random forest: Implementation        | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER: 31** 

Session Outcome: 1 Students ar able to install knowledge in clustering

| Time(min) | Торіс                              | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Why clustering is important?       | 2   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Partitional clustering-k-means     | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks & Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER: 32** 

Session Outcome: 1 Students are able to understand the core principles of K-Medoids

| Time(min) | Торіс                                     | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities      | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Principles of K-Medoids                   | 2   | PPT                              | Role playing                  |
| 20        | Significance of k-Medoids & illustrations | 3   | PPT                              | NOT<br>APPLICABLE<br>         |

| 5 | Concluding remarks and Summary | 1 | NOT<br>APPLICABLE | ı |
|---|--------------------------------|---|-------------------|---|
|   |                                |   |                   | 1 |

## **SESSION NUMBER**: 33

Session Outcome: 1 Students are able to understand the core principles of Hierarchical clustering

| Time(min) | Торіс                                   | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-----------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and transition activities    | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Hierarchical clustering - Agglomerative | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Limitations of HC                       | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and Summary          | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER: 34**

Session Outcome: 1 Students are able to understand Divisive concepts

| Time(min) | Торіс                                        | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|----------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance                                   | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Significance of Divisive clustering          | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Divisive clustering - concept & Illustration | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks * Summary                 | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER**: 35

Session Outcome: 1 Students are able to understand the concepts of distance measures

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities | 1   |                                  | NOT<br>APPLICABLE<br>         |
| 20        | Principles of Distance measures      | 3   | PPT                              | Debate                        |

| 20 | Limitations od DM              | 2 | NOT<br>APPLICABLE<br> |
|----|--------------------------------|---|-----------------------|
| 5  | Concluding remarks and Summary | 1 | NOT<br>APPLICABLE<br> |

**SESSION NUMBER: 36** 

Session Outcome: 1 Students are able to understand the concepts of DBScan

| Time(min) | Торіс                                             | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|---------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities              | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Why density based clustering? & its importance    | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | DBScan concept and Illustrations & Implementation | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and summary                    | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER: 37** 

Session Outcome: 1 Students are able to understand the concepts of Spectral clustering

| Time(min) | Торіс                                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities                 | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | Spectral clustering: concepts and working principles | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Implementation of clustering algorithms (spectral)   | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding remarks and summary                       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER**: 38

Session Outcome: 1 Students are able to understand the concepts of Dimensionality Reduction

| Time(min) Topic BTI | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |  |
|---------------------|----------------------------------|-------------------------------|--|
|---------------------|----------------------------------|-------------------------------|--|

about:blank 20/29

| 5  | Attendance and Transition activities                  | 1 | Talk | NOT<br>APPLICABLE<br> |
|----|-------------------------------------------------------|---|------|-----------------------|
| 20 | Dimensionality reduction: principles and significance | 2 | PPT  | NOT<br>APPLICABLE<br> |
| 20 | Wavelet Transform                                     | 3 | PPT  | NOT<br>APPLICABLE<br> |
| 5  | Concluding remarks & Summary                          | 1 | Talk | NOT<br>APPLICABLE<br> |

**SESSION NUMBER**: 39

Session Outcome: 1 Students are able to understand and implement PCA

| Time(min) | Торіс                                | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 20        | PCA: Working principle               | 2   | PPT                              | NOT<br>APPLICABLE<br>         |
| 20        | Implementation of PCA                | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 5         | Concluding Remarks and Summary       | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

Tutorial Course DELIVERY Plan: NO Delivery Plan Exists

**Tutorial Session wise Teaching - Learning Plan** 

No Session Plans Exists

Practical Course DELIVERY Plan: NO Delivery Plan Exists

**Practical Session wise Teaching – Learning Plan** 

No Session Plans Exists

## **Skilling Course DELIVERY Plan:**

| Skilling<br>session<br>no | Topics/Experiments                                                         | CO-Mapping |
|---------------------------|----------------------------------------------------------------------------|------------|
| 1                         | Manipulation operations using Numpy and Pandas                             | CO5        |
| 2                         | Build linear regression model for the given dataset using Python Libraries | CO5        |

about:blank 21/29

| Skilling<br>session<br>no | Topics/Experiments                                                                                                         | CO-Mapping |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|
| 3                         | Predict whether the person is willing to donate the blood or not based on the donor dataset using Decision tree classifier | CO5        |
| 4                         | Program on Multiple Linear Regression with scikit learn for house price prediction.                                        | CO5        |
| 5                         | Predict the income class based on the Naïve Bayes classification using adult census data                                   | CO5        |
| 6                         | Implementation of AND and OR logical gates using perceptron                                                                | CO5        |
| 7                         | Classification of Iris dataset using Multi-layer perceptron model                                                          | CO5        |
| 8                         | Apply K-means algorithm for clustering on IRIS dataset                                                                     | CO5        |
| 9                         | Apply DBSCAN algorithm on weather dataset                                                                                  | CO5        |
| 10                        | Implement Agglomerative clustering algorithm on state wise pollution dataset.                                              | CO5        |
| 11                        | Implement AdaBoost algorithm for classifying IRIS datat                                                                    | CO5        |
| 12                        | Random Forest Ensemble                                                                                                     | CO5        |

## Skilling Session wise Teaching – Learning Plan

**SESSION NUMBER:** 1

Session Outcome: 1 Students are able to learn pandas and Numpy

| Time(min) | Торіс                                                                 | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-----------------------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities                                    | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 45        | Demonstrate basic data manipulation operations using Numpy and pandas | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 50        | Evaluation and Viva Voce                                              | 3   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER: 2**

Session Outcome: 1 Students will learn how to build regression models using python libraries

| Time(min) | Торіс | BTL | Teaching- | Active   |
|-----------|-------|-----|-----------|----------|
|           |       |     | Learning  | Learning |

about:blank 22/29

|    |                                                                            |   | Methods | Methods               |
|----|----------------------------------------------------------------------------|---|---------|-----------------------|
| 5  | Attendance & Transition activities                                         | 1 | Talk    | NOT<br>APPLICABLE<br> |
| 40 | Build linear regression model for the given dataset using Python Libraries | 3 | PPT     | NOT<br>APPLICABLE<br> |
| 50 | Evaluation and Viva-Voce                                                   | 3 | Talk    | NOT<br>APPLICABLE<br> |

## **SESSION NUMBER:** 3

Session Outcome: 1 Students will be able to learn to apply Decision Trees and its applications

| Time(min) | Торіс                                                                                                                         | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities                                                                                          | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 40        | Predict whether the person is willing to donate the blood<br>or not based on the donor data using Decision tree<br>classifier | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 50        | Evaluation and Viva-Voce                                                                                                      | 3   | Talk                             | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER:** 4

Session Outcome: 1 Students will apply regression in house price prediction

| Time(min) | Торіс                                                                   | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-------------------------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities                                      | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 50        | Multiple Linear Regression with scikit learn for house price prediction | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 45        | Evaluation and Viva Voce                                                | 3   | LTC                              | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER:** 5

Session Outcome: 1 Apply Naïve Bayes classification using adult census data.

| Time(min) | Торіс                              | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

about:blank 23/29

| 60 | Predict the income class based on the Naïve Bayes classification using adult census data. | 3 | PPT | NOT<br>APPLICABLE<br> |
|----|-------------------------------------------------------------------------------------------|---|-----|-----------------------|
| 35 | Evaluation & Viva-Voce                                                                    | 3 |     | NOT<br>APPLICABLE     |

**SESSION NUMBER:** 6

Session Outcome: 1 Implementing AND and OR logical gates using perceptron

| Time(min) | Торіс                                                  | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance                                             | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 60        | Implementing AND and OR logical gates using perceptron | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 35        | Evaluation and Viva-Voce                               | 3   | LTC                              | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER:** 7

Session Outcome: 1 Classification of Iris dataset using Multi-layer perceptron model

| Time(min) | Торіс                                                             | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-------------------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities                                | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 60        | Classification of Iris dataset using Multi-layer perceptron model | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 35        | Evaluation & Viva-Voce                                            | 3   | LTC                              | NOT<br>APPLICABLE<br>         |

**SESSION NUMBER: 8** 

Session Outcome: 1 Apply K-means algorithm for clustering on IRIS dataset

| Time(min) | Торіс                                                  | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|--------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities                     | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 60        | Apply K-means algorithm for clustering on IRIS dataset | 3   | PPT                              | NOT<br>APPLICABLE<br>         |

about:blank 24/29

| 35 | Evaluation & Viva-Voce | 3 | LTC | APPLICABLE | 1 |
|----|------------------------|---|-----|------------|---|
|    |                        |   |     |            |   |

## **SESSION NUMBER:** 9

Session Outcome: 1 Apply DBSCAN algorithm on weather dataset

| Time(min) | Торіс                                     | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities        | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 60        | Apply DBSCAN algorithm on weather dataset | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 35        | Evaluation and Viva-Voce                  | 1   | LTC                              | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER: 10**

Session Outcome: 1 Implement Agglomerative clustering algorithm on state wise pollution dataset

| Time(min) | Торіс                                                                        | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities                                           | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 60        | Implement Agglomerative clustering algorithm on state wise pollution dataset | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 35        | Evaluation & Viva-voce                                                       | 1   | LTC                              | NOT<br>APPLICABLE<br>         |

## **SESSION NUMBER**: 11

Session Outcome: 1 Implement AdaBoost algorithm for classifying IRIS data set

| Time(min) | Торіс                                                      | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|------------------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance & Transition activities                         | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 60        | Implement AdaBoost algorithm for classifying IRIS data set | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 35        | Evaluation & Viva-Voce                                     | 1   | LTC                              | NOT<br>APPLICABLE<br>         |

about:blank 25/29

## **SESSION NUMBER**: 12

Session Outcome: 1 Enable students to know about Random Forest Ensemble concepts

| Time(min) | Торіс                                           | BTL | Teaching-<br>Learning<br>Methods | Active<br>Learning<br>Methods |
|-----------|-------------------------------------------------|-----|----------------------------------|-------------------------------|
| 5         | Attendance and Transition activities            | 1   | Talk                             | NOT<br>APPLICABLE<br>         |
| 60        | Implement the concept of Random forest Ensemble | 3   | PPT                              | NOT<br>APPLICABLE<br>         |
| 35        | Evaluation and Viva-voce                        | 1   | Talk                             | NOT<br>APPLICABLE<br>         |

## WEEKLY HOMEWORK ASSIGNMENTS/ PROBLEM SETS/OPEN ENDEDED PROBLEM-SOLVING EXERCISES etc:

| Week Assi | nment Assignment<br>Tpe No | Торіс | Details | co |  |
|-----------|----------------------------|-------|---------|----|--|
|-----------|----------------------------|-------|---------|----|--|

#### **COURSE TIME TABLE:**

|      | Hour      | 1 | 2 | 3 | 4 | 5 | 6        | 7 | 8    | 9 |
|------|-----------|---|---|---|---|---|----------|---|------|---|
| Day  | Component |   |   |   |   |   |          |   |      |   |
|      | Theory    |   |   |   |   |   |          |   |      |   |
| Mon  | Tutorial  |   |   |   |   |   |          |   |      |   |
| MIOH | Lab       |   |   |   |   |   |          |   |      |   |
|      | Skilling  |   |   |   |   |   |          |   |      |   |
|      | Theory    |   |   |   |   |   |          |   |      |   |
| Tue  | Tutorial  |   |   |   |   |   |          |   |      |   |
| Tue  | Lab       |   |   |   |   |   |          |   |      |   |
|      | Skilling  |   |   |   |   |   |          |   |      |   |
|      | Theory    |   |   |   |   |   | V-<br>S3 |   | V-S2 |   |
| Wod  | Tutorial  |   |   |   |   |   |          |   |      |   |
|      | Lab       |   |   |   |   |   |          |   |      |   |
|      | Skilling  |   |   |   |   |   |          |   |      |   |

about:blank 26/29

| 0/12/2022 | 12/2022, 10:30 about:blank |               |       |                    |                    |       |          |       |                                   |                                   |  |
|-----------|----------------------------|---------------|-------|--------------------|--------------------|-------|----------|-------|-----------------------------------|-----------------------------------|--|
|           | Theory                     |               |       |                    |                    |       | V-<br>S3 |       |                                   | V-S1                              |  |
| Thu       | Tutorial                   |               |       |                    |                    |       |          |       |                                   |                                   |  |
| lilu      | Lab                        |               |       |                    |                    |       |          |       |                                   |                                   |  |
|           | Skilling                   |               |       | V-S2,V-<br>S2,V-S2 | V-S2,V-<br>S2,V-S2 |       |          |       |                                   |                                   |  |
|           | Theory                     | V-S2          |       |                    |                    | -     | V-<br>S1 |       |                                   |                                   |  |
| Fri       | Tutorial                   |               |       |                    |                    | -     |          |       |                                   |                                   |  |
|           | Lab                        |               |       |                    |                    | -     |          |       |                                   |                                   |  |
|           | Skilling                   |               | <br>- |                    |                    | <br>- |          | <br>- | V-S1,V-S1,V-S1,V-<br>S3,V-S3,V-S3 | V-S1,V-S1,V-S1,V-<br>S3,V-S3,V-S3 |  |
|           | Theory                     | V-S1,V-<br>S3 | <br>- |                    |                    | <br>- |          | <br>- | V-S2                              |                                   |  |
| Sat       | Tutorial                   |               | <br>- |                    |                    | <br>- |          | <br>- |                                   |                                   |  |
| Bat       | Lab                        |               | <br>- |                    |                    | <br>- |          | <br>- |                                   |                                   |  |
|           | Skilling                   |               | <br>- |                    |                    | <br>- |          | <br>- |                                   |                                   |  |
|           | Theory                     |               |       |                    |                    |       |          |       |                                   |                                   |  |
| Sun       | Tutorial                   |               |       |                    |                    |       |          |       |                                   |                                   |  |
| Sull      | Lab                        |               |       |                    |                    |       |          |       |                                   |                                   |  |
|           | Skilling                   |               |       |                    |                    |       |          |       |                                   |                                   |  |

#### REMEDIAL CLASSES:

Supplement course handout, which may perhaps include special lectures and discussions that would be planned, and schedule notified according

#### **SELF-LEARNING:**

Assignments to promote self-learning, survey of contents from multiple sources.

| S.no | Topics | CO | ALM | References/MOOCS |
|------|--------|----|-----|------------------|
|      |        |    |     |                  |

## DELIVERY DETAILS OF CONTENT BEYOND SYLLABUS:

Content beyond syllabus covered (if any) should be delivered to all students that would be planned, and schedule notified accordingly.

|   |               | <u> </u>                                            |    |     |                  |
|---|---------------|-----------------------------------------------------|----|-----|------------------|
| S | no Advanced T | Topics, Additional Reading, Research papers and any | СО | ALM | References/MOOCS |

#### **EVALUATION PLAN:**

about:blank 27/29

| , 12, 2022, 10,00                    |                          |             |               | uo o uro iu         |                  |      |      |      |      |     |
|--------------------------------------|--------------------------|-------------|---------------|---------------------|------------------|------|------|------|------|-----|
| Evaluation<br>Type                   | Evaluation<br>Component  | Weightage/M | <b>I</b> arks | Assessment<br>Dates | Duration (Hours) | CO1  | CO2  | CO3  | CO4  | CO5 |
| End                                  | End Semester             | Weightage   | 24            |                     | 100              | 6    | 6    | 6    | 6    |     |
| Semester                             | Exam                     | Max Marks   | 100           |                     | 180              | 25   | 25   | 25   | 25   |     |
| Summative<br>Evaluation<br>Total= 40 | Skill Sem-End<br>Exam    | Weightage   | 16            |                     | 120              |      |      |      |      | 16  |
| %                                    | Zam                      | Max Marks   | 100           |                     |                  |      |      |      |      | 100 |
|                                      | Semester in              | Weightage   | 15            |                     | 90               | 7.5  | 7.5  |      |      |     |
| In Semester                          | Exam-I                   | Max Marks   | 50            |                     | 90               | 25   | 25   |      |      |     |
| Summative                            | Semester in<br>Exam-II   | Weightage   | 15            |                     | 90               |      |      | 7.5  | 7.5  |     |
| Evaluation Total= 38                 |                          | Max Marks   | 50            |                     | 90               |      |      | 25   | 25   |     |
| <b>%</b>                             | Skill In-Sem<br>Exam     | Weightage   | 8             |                     | 00               |      |      |      |      | 8   |
|                                      |                          | Max Marks   | 50            |                     | 90               |      |      |      |      | 50  |
|                                      | A T N/I                  | Weightage   | 8             |                     | 60               | 2    | 2    | 2    | 2    |     |
| T C4                                 | ALM                      | Max Marks   | 40            |                     | 60               | 10   | 10   | 10   | 10   |     |
| In Semester Formative                | Home<br>Assignment       | Weightage   | 7             |                     | 60               | 1.75 | 1.75 | 1.75 | 1.75 |     |
| Evaluation<br>Total= 22<br>%         | and Textbook             | Max Marks   | 40            |                     |                  | 10   | 10   | 10   | 10   |     |
|                                      | Skilling<br>Continuous   | Weightage   | 7             |                     | 100              |      |      |      |      | 7   |
|                                      | Continuous<br>Evaluation | Max Marks   | 120           |                     | 100              |      |      |      |      | 120 |

#### ATTENDANCE POLICY:

Every student is expected to be responsible for regularity of his/her attendance in class rooms and laboratories, to appear in scheduled tests and examinations and fulfill all other tasks assigned to him/her in every course

In every course, student has to maintain a minimum of 85% attendance to be eligible for appearing in Semester end examination of the course, for cases of medical issues and other unavoidable circumstances the students will be condoned if their attendance is between 75% to 85% in every course, subjected to submission of medical certificates, medical case file and other needful documental proof to the concerned departments

#### **DETENTION POLICY:**

In any course, a student has to maintain a minimum of 85% attendance and In-Semester Examinations to be eligible for appearing to the Semester End Examination, failing to fulfill these conditions will deem such student to have been detained in that course.

#### **PLAGIARISM POLICY:**

Supplement course handout, which may perhaps include special lectures and discussions

## COURSE TEAM MEMBERS, CHAMBER CONSULTATION HOURS AND CHAMBER VENUE DETAILS:

Supplement course handout, which may perhaps include special lectures and discussions

| Name of Faculty     | Delivery<br>Component<br>of Faculty | Sections<br>of<br>Faculty | Chamber<br>Consultation<br>Day (s) | Chamber<br>Consultation<br>Timings for<br>each day | Chamber<br>Consultation<br>Room No: | Signature of Course faculty: |
|---------------------|-------------------------------------|---------------------------|------------------------------------|----------------------------------------------------|-------------------------------------|------------------------------|
| Sajana Tiruveedhula | S                                   | 1-B                       | _                                  | -                                                  | -                                   | -                            |

about:blank 28/29

| NICHENAMETLA<br>RAJESH      | S | 3-B           | - | - | - | - |
|-----------------------------|---|---------------|---|---|---|---|
| Vivek Kumar                 | S | 1-C           | - | - | - | - |
| VIJAYALAKSHMI<br>PONNUSWAMY | L | 1-MA,2-<br>MA | - | - | - | - |
| VIJAYALAKSHMI<br>PONNUSWAMY | S | 2-A,1-A       | - | - | - | - |
| Ashwin M                    | L | 3-MA          | - | - | - | - |
| Ashwin M                    | S | 2-B,3-A       | - | - | - | - |
| SUNITHA<br>PACHALA          | S | 2-C,3-C       | - | - | - | - |

#### **GENERAL INSTRUCTIONS**

Students should come prepared for classes and carry the text book(s) or material(s) as prescribed by the Course Faculty to the class.

#### **NOTICES**

Most of the notices are available on the LMS platform.

All notices will be communicated through the institution email.

All notices concerning the course will be displayed on the respective Notice Boards.

## **Signature of COURSE COORDINATOR**

(VIJAYALAKSHMI PONNUSWAMY)

## Signature of Department Prof. Incharge Academics & Vetting Team Member

Department Of AI&DS

## **HEAD OF DEPARTMENT:**

**Approval from: DEAN-ACADEMICS** 

(Sign with Office Seal) [object HTMLDivElement]

about:blank 29/29