Figure 1: Double bootstrap Simulation with $B=500, p=13, \mu_{\alpha}=10, X_{i,t} \stackrel{iid}{\sim} \Gamma(1,10), \delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\delta}^2\mathbf{I}_p), \gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\gamma}^2\mathbf{I}_p)$ with $\sigma_{\delta}=\sigma_{\gamma}=1$ and $\sigma=1$

		Bi	as		Chass											
					Guess Proposition											
n	σ_{α}	$ \hat{\alpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{adj}}) $	$ \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\alpha_1) $	$\hat{\alpha}_{\mathrm{adj}}$	$\hat{\alpha}_{\mathrm{wadj}}$	$\hat{\alpha}_{\mathrm{IVW}}$	$\hat{lpha}_{ m adj}$	$\hat{\alpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ m IVW}$							
	1	28.742 (2.911)	87.932 (8.292)	1 (0)	1 (0)	1 (0)	0.98 (0.02)	1 (0)	0.98 (0.02)							
	5	28.74(2.9)	87.346 (8.312)	1 (0)	1(0)	1(0)	0.98(0.02)	1 (0)	0.98(0.02)							
5	10	28.742(2.913)	86.615 (8.357)	1 (0)	1(0)	1(0)	0.98(0.02)	1 (0)	0.98(0.02)							
	25	29.323 (3.024)	84.986 (8.495)	1 (0)	1(0)	1(0)	0.98(0.02)	1 (0)	0.98(0.02)							
	100	$43.439 \ (4.457)$	87.463 (9.793)	1 (0)	1 (0)	1 (0)	0.98 (0.02)	$0.98 \ (0.02)$	0.98 (0.02)							
	1	18.541 (2.258)	77.577 (8.909)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)							
	5	$18.456\ (2.265)$	77.457 (8.969)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)							
10	10	18.463 (2.277)	77.504 (9.026)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)							
	25	19.307 (2.306)	77.706 (9.29)	1 (0)	1(0)	1(0)	1 (0)	1(0)	1 (0)							
	100	31.557 (3.223)	88.11 (11.057)	1 (0)	1 (0)	1 (0)	0.96 (0.028)	0.98(0.02)	0.96 (0.028)							
	1	15.152 (1.58)	86.296 (9.39)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)							
	5	15.411 (1.608)	86.145 (9.396)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)							
15	10	15.734 (1.66)	85.957 (9.417)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)							
	25	17.168 (1.833)	85.911 (9.467)	1 (0)	1(0)	1(0)	1 (0)	0.98(0.02)	1 (0)							
	100	29.884 (2.977)	95.744 (9.65)	1 (0)	1 (0)	1 (0)	0.9 (0.043)	0.9(0.043)	0.9 (0.043)							
	1	11.834 (1.157)	66.679 (8.566)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)							
25	5	11.708 (1.182)	66.752 (8.542)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)							
	10	$11.758\ (1.189)$	66.863 (8.517)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)							
	25	$12.425\ (1.221)$	67.218 (8.496)	1 (0)	1(0)	1(0)	1 (0)	1(0)	1 (0)							
	100	20.426 (2.156)	75.549 (8.53)	1 (0)	1(0)	1(0)	$0.94 \ (0.034)$	0.98(0.02)	0.94 (0.034)							

Figure 2: Simulation with $B=100,\ k=10,\ p=13,\ \mu_{\alpha}=2,\ X_{i,t}\stackrel{iid}{\sim}\Gamma(1,2),\ \delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\ \gamma_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$ and $\sigma=10$

	1		Guess			Consi	stency		k-fold cross validation consistency							
n	σ_{lpha}	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	Best	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	Best				
-	5	1 (0)	1 (0)	1 (0)	0.97 (0.017)	0.97 (0.017)	0.96 (0.02)	0.21 (0.041)	0.93 (0.01)	$0.936\ (0.009)$	0.926 (0.01)	0.338 (0.023				
	10	0.99(0.01)	1 (0)	0.99(0.01)	$0.93\ (0.026)$	0.94 (0.024)	0.92(0.027)	0.27(0.045)	$0.902\ (0.012)$	0.918(0.011)	$0.906 \ (0.012)$	0.35 (0.024)				
5	25	$0.94 \ (0.024)$	1 (0)	$0.95 \ (0.022)$	0.8(0.04)	$0.85 \ (0.036)$	0.79(0.041)	0.38 (0.049)	$0.79 \ (0.016)$	$0.832\ (0.014)$	$0.788 \; (0.017)$	$0.334 \ (0.024$				
	50	$0.88 \; (0.033)$	0.99(0.01)	$0.88 \ (0.033)$	0.67 (0.047)	0.69 (0.046)	0.67 (0.047)	0.5 (0.05)	$0.58 \; (0.025)$	$0.644 \ (0.024)$	$0.582 \ (0.025)$	$0.376 \ (0.026$				
	100	$0.75 \ (0.044)$	$0.97 \ (0.017)$	$0.77 \ (0.042)$	$0.51\ (0.05)$	$0.52 \ (0.05)$	0.5 (0.05)	$0.52 \ (0.05)$	$0.47 \; (0.025)$	$0.484 \ (0.027)$	$0.466 \ (0.026)$	0.364 (0.026				
	5	0.99(0.01)	1 (0)	0.99 (0.01)	0.91 (0.029)	$0.92 \ (0.027)$	0.91 (0.029)	0.22 (0.042)	0.927 (0.007)	$0.938 \; (0.007)$	$0.927 \ (0.007)$	0.3 (0.016)				
	10	0.99(0.01)	1 (0)	0.99(0.01)	0.87 (0.034)	$0.91 \ (0.029)$	$0.88 \ (0.033)$	0.26 (0.044)	0.897 (0.009)	$0.903 \ (0.008)$	0.898 (0.009)	0.319 (0.018				
10	25	$0.96 \ (0.02)$	0.99(0.01)	0.96 (0.02)	$0.76 \ (0.043)$	0.8(0.04)	0.78(0.042)	0.3(0.046)	0.755 (0.012)	$0.78 \; (0.011)$	0.758 (0.012)	$0.382 \ (0.02)$				
	50	$0.81\ (0.039)$	0.97(0.017)	0.82 (0.039)	$0.61 \ (0.049)$	$0.66 \ (0.048)$	0.62 (0.049)	0.32(0.047)	$0.619 \ (0.018)$	$0.663 \ (0.015)$	$0.616 \ (0.017)$	0.418 (0.02)				
	100	$0.75 \ (0.044)$	$0.94 \ (0.024)$	$0.74 \ (0.044)$	$0.52\ (0.05)$	$0.52 \ (0.05)$	$0.54\ (0.05)$	$0.39 \ (0.049)$	0.543 (0.019)	$0.524 \ (0.018)$	$0.547 \ (0.019)$	0.438 (0.019				
	5	1 (0)	1 (0)	1 (0)	0.94 (0.024)	0.95 (0.022)	0.94 (0.024)	0.37 (0.049)	0.906 (0.011)	0.928(0.01)	0.907 (0.011)	0.325 (0.019				
	10	1 (0)	1 (0)	1 (0)	0.9(0.03)	$0.93 \ (0.026)$	0.91 (0.029)	0.37(0.049)	$0.879 \ (0.012)$	$0.904\ (0.011)$	0.883 (0.012)	0.317 (0.022				
15	25	$0.98 \; (0.014)$	1 (0)	0.98 (0.014)	0.8 (0.04)	0.79(0.041)	0.8(0.04)	0.42 (0.05)	$0.763\ (0.018)$	$0.788 \; (0.016)$	$0.766 \ (0.018)$	0.365 (0.019)				
	50	0.89 (0.031)	0.99(0.01)	0.89(0.031)	$0.61 \ (0.049)$	0.67 (0.047)	$0.61 \ (0.049)$	$0.41 \ (0.049)$	$0.614\ (0.02)$	$0.635 \ (0.019)$	0.613 (0.02)	$0.391 \ (0.018$				
	100	$0.74 \ (0.044)$	$0.95 \ (0.022)$	$0.75 \ (0.044)$	0.5 (0.05)	0.5 (0.05)	0.5 (0.05)	$0.42 \ (0.05)$	0.514 (0.02)	$0.472 \ (0.018)$	$0.515 \ (0.02)$	0.421 (0.019				
	5	1 (0)	1 (0)	1 (0)	0.94 (0.024)	0.97 (0.017)	0.95 (0.022)	0.35 (0.048)	0.92 (0.01)	0.925 (0.01)	0.92(0.01)	0.323 (0.017				
	10	1 (0)	1 (0)	1 (0)	$0.94 \ (0.024)$	$0.94 \ (0.024)$	0.94 (0.024)	$0.33 \ (0.047)$	0.9(0.011)	0.915 (0.011)	$0.901 \ (0.011)$	$0.334 \ (0.017$				
25	25	0.97 (0.017)	1 (0)	0.97 (0.017)	$0.82\ (0.039)$	$0.84 \ (0.037)$	$0.82 \ (0.039)$	$0.38 \ (0.049)$	$0.788 \; (0.015)$	$0.827 \ (0.013)$	0.787 (0.015)	$0.356 \ (0.018$				
	50	0.89 (0.031)	0.99(0.01)	0.89(0.031)	0.65 (0.048)	$0.73 \ (0.045)$	0.65 (0.048)	0.4 (0.049)	$0.673 \ (0.019)$	$0.698 \; (0.017)$	$0.671 \ (0.019)$	$0.404 \ (0.02)$				
	100	0.74(0.044)	0.96(0.02)	0.74(0.044)	0.52(0.05)	0.55(0.05)	0.52(0.05)	0.43(0.05)	0.565 (0.021)	0.567 (0.019)	0.57 (0.021)	0.419 (0.021				

Figure 3: Simulation with $B=200,\,p=13,\,\mu_{\alpha}=2,\,X_{i,t}\stackrel{iid}{\sim}\Gamma(1,2),\,\delta_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\,\gamma_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$ and $\sigma=10$

		_			•				
u	σ_{lpha}	$\hat{lpha}_{ m adj}$	Distance to $lpha_1$ $\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	Original	$\hat{lpha}_{ m adj}$	Distance to $y_{1,T_{1}^{*}+1}$	$\hat{\alpha}_{\rm IVW}$	
	5	11.725 (0.759) 12.868 (0.926)	11.697 (0.77)	11.729 (0.765)	55.665 (1.901) 56.708 (1.971)	16.015 (1.355) 17.237 (1.443)	16.785 (1.41) 18.393 (1.573)	16.14 (1.352) 17.336 (1.453)	
22	$\frac{1}{25}$	21.31 (1.64)	23.992 (1.9)	21.809 (1.627)	59.965 (2.691)	23.874 (2.086)	27.642 (2.245)	24.215 (2.083)	
	20	39.875 (3.05)	44.796 (3.512)	40.643(3.013)	$69.245 \ (4.068)$	41.799(3.318)	47.423(3.717)	42.346(3.297)	
	100	79.354 (6.01)	88.317 (6.814)	80.151 (5.98)	99.526 (6.566)	80.279 (6.232)	$89.234 \ (7.065)$	81.05 (6.192)	
	ಬ	12.171 (0.986)	$12.072\ (1.056)$	12.148 (0.986)	$54.956 \ (1.938)$	$16.464 \ (1.263)$	17.151 (1.32)	16.414 (1.28)	
	10	13.293 (1.129)	14.209 (1.154)	$13.16 \ (1.138)$	54.657 (2.099)	17.508 (1.381)	18.897 (1.402)	$17.374 \ (1.405)$	
10	25	$22.934 \ (1.754)$	$25.814 \ (1.858)$	22.948 (1.759)	54.068 (3.048)	$25.704 \ (1.974)$	28.494 (2.101)	25.753 (1.985)	
	20	43.573 (3.153)	50.779 (3.219)	43.994 (3.149)	$59.051 \ (4.647)$	44.973 (3.356)	51.829 (3.476)	45.452 (3.352)	
	100	87.16 (6.186)	101.743 (6.331)	87.816 (6.249)	88.642 (7.381)	88.014 (6.334)	102.414 (6.501)	88.669 (6.401)	
	ಬ	10.085 (0.839)	$10.848 \; (0.804)$	$10.114 \ (0.834)$	54.124 (2.011)	$17.094\ (1.557)$	$18.529 \ (1.566)$	17.228 (1.551)	
	10	12.656 (0.992)	$13.691 \ (1.032)$	12.702 (0.992)	54.56 (2.208)	$18.831 \ (1.672)$	20.791 (1.719)	19.003(1.67)	
15	25	23.758 (1.762)	26.584 (1.831)	23.885 (1.769)	56.719(3.114)	28.487 (2.183)	31.651 (2.359)	28.717 (2.197)	
	20	44.848 (3.285)	49.543(3.482)	45.018 (3.313)	$66.12 \ (4.598)$	49.316 (3.368)	53.818 (3.773)	49.558 (3.412)	
	100	87.861 (6.529)	96.61 (6.888)	88.434 (6.557)	$100.28\ (7.164)$	92.031 (6.414)	99.966 (7.08)	92.603 (6.469)	
	ಬ	11.969 (0.833)	$11.934\ (0.887)$	11.95 (0.839)	60.475 (2.649)	17.709 (2.08)	18.296 (2.081)	17.778 (2.091)	
	10	14.268 (0.996)	14.382 (0.991)	14.279 (0.994)	60.614 (2.767)	19.266 (2.149)	19.877 (2.117)	19.365 (2.156)	
25	25	23.987 (1.783)	24.782 (1.67)	23.94 (1.78)	61.974 (3.376)	27.789 (2.532)	28.095 (2.484)	27.86 (2.532)	
	20	42.392 (3.388)	45.205 (3.081)	42.444 (3.362)	67.704 (4.792)	45.163(3.752)	47.252 (3.51)	45.109(3.754)	
	100	81.173 (6.679)	87.99 (6.042)	81.223 (6.638)	94.144 (7.449)	83.225 (6.777)	89.548 (6.134)	83.268 (6.747)	

Figure 4: Simulation with B=200, p=13, $\mu_{\alpha}=2$, $X_{i,t}\overset{iid}{\sim}\Gamma(1,2)$, $\delta_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p})$, $\gamma_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$

	Best	0.45 (0.05) 0.45 (0.05) 0.36 (0.048) 0.34 (0.048) 0.39 (0.049)	0.3 (0.046) 0.38 (0.049) 0.37 (0.049) 0.35 (0.048) 0.33 (0.047)	0.3 (0.046) 0.31 (0.046) 0.27 (0.045) 0.31 (0.046) 0.34 (0.048)	0.28 (0.045) 0.3 (0.046) 0.29 (0.046) 0.25 (0.044) 0.28 (0.045)	0.22 (0.042) 0.23 (0.042) 0.24 (0.043) 0.22 (0.042) 0.24 (0.043)
	âıvw	0.96 (0.02) 0.94 (0.024) 0.81 (0.039) 0.68 (0.047) 0.53 (0.05)	0.88 (0.033) 0.87 (0.034) 0.77 (0.042) 0.65 (0.048) 0.55 (0.05)	0.74 (0.044) 0.73 (0.045) 0.72 (0.045) 0.61 (0.049) 0.49 (0.05)	0.64 (0.048) 0.65 (0.048) 0.58 (0.05) 0.56 (0.05) 0.5 (0.05)	0.57 (0.05) 0.57 (0.05) 0.55 (0.05) 0.49 (0.05) 0.47 (0.05)
Consistency	$\begin{array}{c} \text{Proposition} \\ \hat{\alpha}_{\text{wadj}} \end{array}$	0.98 (0.014) 0.96 (0.02) 0.87 (0.034) 0.72 (0.045) 0.49 (0.05)	0.89 (0.031) 0.89 (0.031) 0.81 (0.039) 0.72 (0.045) 0.52 (0.05)	0.75 (0.044) 0.77 (0.042) 0.72 (0.045) 0.62 (0.049) 0.53 (0.05)	0.6 (0.049) 0.6 (0.049) 0.56 (0.05) 0.58 (0.05) 0.47 (0.05)	0.47 (0.05) 0.47 (0.05) 0.47 (0.05) 0.48 (0.05) 0.51 (0.05)
	$\hat{lpha}_{ m adj}$	0.96 (0.02) 0.93 (0.026) 0.82 (0.039) 0.69 (0.046) 0.52 (0.05)	0.88 (0.033) 0.87 (0.034) 0.79 (0.041) 0.68 (0.047) 0.54 (0.05)	0.73 (0.045) 0.72 (0.045) 0.71 (0.046) 0.59 (0.049) 0.49 (0.05)	0.66 (0.048) 0.64 (0.048) 0.58 (0.05) 0.54 (0.05) 0.5 (0.05)	0.59 (0.049) 0.6 (0.049) 0.57 (0.05) 0.49 (0.05) 0.49 (0.05)
	$\hat{lpha}_{ m IVW}$	1 (0) 1 (0) 0.96 (0.02) 0.82 (0.039) 0.73 (0.045)	$ \begin{array}{c} 1 (0) \\ 1 (0) \\ 0.97 (0.017) \\ 0.81 (0.039) \\ 0.74 (0.044) \end{array} $	0.96 (0.02) 0.97 (0.017) 0.92 (0.027) 0.79 (0.041) 0.69 (0.046)	0.79 (0.041) 0.8 (0.04) 0.79 (0.041) 0.73 (0.045) 0.63 (0.049)	0.56 (0.05) 0.56 (0.05) 0.55 (0.05) 0.54 (0.05) 0.5 (0.05)
	$\overset{\text{Guess}}{\hat{\alpha}_{\text{wadj}}}$	1 (0) 1 (0) 1 (0) 0.96 (0.02) 0.99 (0.01)	1 (0) 1 (0) 1 (0) 0.96 (0.02) 0.96 (0.02)	0.99 (0.01) 0.99 (0.01) 0.97 (0.017) 0.88 (0.033) 0.85 (0.036)	0.81 (0.039) 0.79 (0.041) 0.76 (0.043) 0.76 (0.043) 0.73 (0.045)	0.53 (0.05) 0.54 (0.05) 0.54 (0.05) 0.54 (0.05) 0.54 (0.05)
	$\hat{lpha}_{ m adj}$	1 (0) 1 (0) 0.96 (0.02) 0.82 (0.039) 0.7 (0.046)	1 (0) 1 (0) 0.96 (0.02) 0.83 (0.038) 0.7 (0.046)	0.96 (0.02) 0.97 (0.017) 0.91 (0.029) 0.8 (0.04) 0.69 (0.046)	0.8 (0.04) 0.79 (0.041) 0.78 (0.042) 0.72 (0.045) 0.63 (0.049)	0.55 (0.05) 0.55 (0.05) 0.55 (0.05) 0.54 (0.05) 0.49 (0.05)
se	$ \hat{lpha}_{ m wadj}^{\dagger} - { m E}(lpha_1) $	8.964 (0.811) 9.908 (0.847) 15.23 (1.053) 25.733 (1.754) 48.03 (3.442)	9.658 (0.887) 10.536 (0.902) 15.437 (1.083) 25.94 (1.712) 47.972 (3.399)	14.195 (1.204) 14.547 (1.208) 17.855 (1.315) 26.866 (1.823) 48.391 (3.327)	24.38 (1.929) 24.516 (1.899) 26.092 (1.919) 32.069 (2.245) 50.416 (3.502)	47.149 (3.484) 47.126 (3.433) 47.462 (3.372) 49.598 (3.537) 61.25 (4.322)
Bias	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) $	2.516 (0.217) 3.537 (0.28) 7.339 (0.55) 13.937 (1.076) 27.371 (2.146)	3.256 (0.273) 4.037 (0.329) 7.72 (0.554) 14.121 (1.076) 27.432 (2.147)	6.589 (0.522) 6.846 (0.568) 9.343 (0.728) 15.394 (1.115) 28.137 (2.145)	13.037 (0.972) 13.129 (0.998) 14.048 (1.152) 18.398 (1.44) 30.423 (2.233)	26.248 (1.895) 26.232 (1.912) 26.576 (1.998) 28.307 (2.258) 36.606 (2.878)
	σ_{α}	5 10 25 50 100	5 10 25 50 100	5 10 25 50 100	5 10 25 50 100	5 10 25 50 100
	ь	ಗು	10	25	20	100

Figure 5: Simulation with $B=200,\,p=13,\,\mu_{\alpha}=2,\,X_{i,t}\stackrel{iid}{\sim}\Gamma(1,2),\,\delta_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\,\gamma_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$

ζ,	$lpha_{ m IVW}$	13.557 (1.12)	$15.665\ (1.252)$	24.263 (1.992)	42.188 (3.456)	80.552 (6.54)	17.855 (1.299)	$19.373 \ (1.416)$	27.152 (2.021)	42.809 (3.579)	79.988 (6.683)	35.306 (2.536)	36.104 (2.574)	41.021 (2.86)	54.741 (3.757)	86.352 (6.776)	67.474 (5.224)	68.015 (5.208)	71.06 (5.257)	80.494 (5.607)	107.777 (7.38)	$133.44 \ (10.727)$	133.808 (10.69)	$135.983\ (10.585)$	$141.427 \ (10.639)$	$159.774 \ (11.34)$
Distance to $y_{1,T_{1,1}^*+1}$	$lpha_{ m wadj}$	12.822 (1.149)	$15.23 \ (1.269)$	26.189 (1.901)	$46.484 \ (3.454)$	88.457 (6.856)	17.245 (1.291)	18.814 (1.423)	28.273 (1.998)	48.185 (3.409)	89.92 (6.731)	34.78 (2.476)	35.687 (2.507)	40.857 (2.891)	57.618 (3.747)	96.023 (6.714)	67.355 (5.102)	67.739 (5.106)	71.116 (5.169)	81.275 (5.681)	114.768 (7.366)	134.659 (10.433)	$134.69 \ (10.435)$		$142.14 \ (10.536)$	$162.753\ (11.457)$
$\overset{\circ}{\text{Distance}}$	$lpha_{ m adj}$	13.556 (1.121)	$15.653\ (1.256)$	24.201 (2.004)	42.083(3.47)	80.151 (6.581)	17.797 (1.3)	$19.366 \ (1.413)$	27.128 (2.026)	42.733 (3.589)	79.616 (6.72)	35.147 (2.549)	35.916 (2.596)	40.951 (2.875)	54.664 (3.78)	86.203 (6.8)	$67.243 \ (5.254)$	67.863 (5.232)	71.005 (5.28)	80.511 (5.633)	107.733 (7.421)	133.245 (10.771)			141.218 (10.719)	$159.926 \ (11.394)$
	Original	56.231 (1.733)	$56.154 \ (1.963)$	56.789 (2.877)	$63.283 \ (4.307)$	88.978 (7.157)	56.044 (2.174)	56.118 (2.32)	57.132 (3.052)	$64.011 \ (4.353)$	89.914 (7.119)	60.117 (3.404)	60.646 (3.417)	63.009 (3.714)	70.008 (4.734)	94.886 (7.273)	82.235 (5.343)	$82.514 \ (5.366)$	$84.393 \ (5.533)$	90.03 (6.211)	112.931 (7.957)	$138.705 \ (10.358)$	$139.064\ (10.341)$	$140.5\ (10.381)$	$145.105 \ (10.592)$	161.729 (11.488)
<1	$lpha_{ m IVW}$	12.041 (1.058)	14.444 (1.21)	24.346(1.9)	42.869(3.362)	81.53 (6.452)	12.419 (1.085)	14.786 (1.236)	24.63 (1.919)	43.113 (3.376)	81.726 (6.466)	$13.865 \ (1.244)$	$16.168 \ (1.38)$	25.899(2.001)	44.027 (3.44)	82.385 (6.522)	17.859 (1.593)	19.951 (1.696)	28.711 (2.249)	46.559 (3.542)	84.254 (6.578)	28.801 (2.387)	30.233 (2.479)		52.987 (3.982)	88.826 (6.833)
Distance to α_1	$lpha_{ m wadj}$	11.614 (1.117)	14.339 (1.239)	25.338 (1.95)	45.772 (3.533)	87.998 (6.929)	12.156 (1.188)	14.747 (1.303)	25.752 (1.96)	46.051 (3.525)	88.202 (6.912)	16.117 (1.459)	$17.96\ (1.567)$	27.345(2.171)	47.02 (3.619)	89.019 (6.901)	25.474 (2.137)	26.634 (2.203)	33.301 (2.681)	50.32(3.958)	$90.65\ (7.062)$	48.12 (3.589)	0	52.31 (3.918)		97.746 (7.673)
<1	$lpha_{ m adj}$	12.078 (1.061)	14.552 (1.206)	24.382 (1.906)	42.732 (3.387)	80.98 (6.518)	12.473 (1.084)	14.871 (1.236)	24.658 (1.929)	42.976 (3.403)	81.148 (6.537)	13.932 (1.244)	$16.165\ (1.395)$	25.809(2.035)	43.933(3.473)	81.96 (6.585)	18.12 (1.59)	20.114 (1.712)	28.807 (2.285)	46.509(3.597)	83.966 (6.651)	29.297 (2.417)	30.749 (2.515)	37.818 (2.931)	52.926 (4.11)	88.759 (6.943)
ı	σ_{lpha}	5	10	25	20	100	5	10	25	20	100	5	10	25	20	100	5	10	25	20	100	5	10	25	20	100
1	ρ			ಬ					10					25					20					100		