3. Logistic Regression

a) for N-class Instanceo.

for One-vs-All multi-class classification using legistic regression.

"N" binary classifier models are required.

for One-vs-One multi-class classification using legistic regression.

"N(N-1)" binary classifier model required.

Generalized Linear Model. (GLM)

The only difference between Gamma Distribution & exponential distribution is that, the gamma distribution predicts wait the autil the "k-th event occur, while the exponential distribution predicts the wait time autil very first event

Derivation,

(a)

Derivation,

The CDf of a function is

$$P(x \leq t) = 1 - P(x > t)$$

$$= 1 - \frac{k-1}{i=0} \frac{(\lambda t)^{i} e^{-\lambda t}}{i!}$$

where $\lambda t \to poisson$ rade

The PDF is $\frac{d}{dt}(CDF) = \frac{d}{dt}\left(1 - \frac{k-1}{i=0} \frac{(\lambda t)^{i} e^{-\lambda t}}{i!}\right)$

$$= \frac{d}{dt}\left(1 - e^{-\lambda t} - \frac{k-1}{i=1} \frac{(\lambda t)^{i} e^{-\lambda t}}{i!}\right)$$

$$= \lambda e^{-\lambda t} - \frac{d}{dt}\left(\frac{k-1}{i=1} \frac{(\lambda t)^{i} e^{-\lambda t}}{i!}\right)$$

$$= \lambda e^{-\lambda t} - \frac{k-1}{i=1} \frac{1}{i!} \left[i(\lambda t)^{i-1} \lambda e^{-\lambda t} - \lambda(\lambda t)^{i} e^{-\lambda t}\right]$$

$$= \lambda e^{-\lambda t} - \lambda e^{-\lambda t} \underbrace{k-1}_{i=1} \frac{1}{i!} \left[i(\lambda t)^{i-1} - (\lambda t)^{i}\right]$$

$$= \lambda e^{-\lambda t} - \lambda e^{-\lambda t} \underbrace{k-1}_{i=1} \frac{1}{i!} \left[i(\lambda t)^{i-1} - (\lambda t)^{i}\right]$$
After expanding the summation, we get
$$\frac{d}{dt}(CDF) = \lambda e^{-\lambda t} + \lambda e^{-\lambda t} \frac{(\lambda t)^{k-1}}{(k-1)!}$$

$$\frac{d}{dt}(CDF) = \frac{\lambda \cdot e^{-\lambda t}}{(k-1)!} \frac{(\lambda t)^{k-1}}{(k-1)!}$$

The final expression is same as pdf of exponential distribution, when k=1.

The equation can also be written as

$$= \frac{\lambda e^{-\lambda t} (\lambda t)^{k-1}}{\Gamma(k)}$$

This shows that the gamma distribution follow poison process with a rate λ , ℓ the wait time until k arrivals follow $\Gamma(k,\lambda)$.

(a) Here nitesh is using covariance with kyeans & Obtaining clusters using covarriance.

i) Kyeans algorithm clusters the points with respect to distance. If the <u>distance</u> of a point from let say cluster C, is more than cluster C2, then Kyeans places that point to cluster C2.

But in this approach, there is a possibility that covariance indicates that point belong to c,. So this approach may place point in wrong cluster.

ii) As kMeans uses distance & follow hard dustering & places the point to the cluster having minimum distance.

But covariance is kind of probabistic to explain how points are related. So combinely, this combination of kyeans & covariance may not performs well!

Derivation of F5-score in terms of precision & recall =B-score is an adjustable single-score metric weed in machine learning for evaluating binary classification model using the precision & recall values for the tre class.

The general formula for $F\beta$ -score is: $F\beta$ -score = $(1+\beta^2)$ (precision * Recall) β^2 precision + Recall

for F5-scare, $\beta = 5$, we have $= (1+5^{2})(\text{precision} * \text{Recall})$ $= 5^{2} \text{precision} + \text{Recall}$

F5-score = 26 (precision * Recall) 25. precision + Recall)

for value of a, we use <u>Van Rijsbergen's</u> effectiveness measure,

 $\alpha = \frac{1}{1+\beta^2} \Rightarrow \alpha = \frac{1}{1+5^2}$ $= \frac{1}{26} \Rightarrow \alpha = 0.0384$

(b) Trade off between precision & recall.

Let's understand both precision & recall using the spam email example discussed in

class.

	Predicted No	Predicted Yes
Actual No	TN	FP
Actual Yes	FN	TP

Spam harn precision tells out of the sparm 12 14 positive values, how many of them are actually correct.

The precision in this example is $\frac{TP}{TP+FP} = 0.89$

Juis means out of 100 spam emails 11 are marked

→ Recall tells out of all actual positives, how many was identified correctly.

Recall = TP = 1 TP+FN

This means that the model correctly identifies 100%. Of the open enails

Some Observation -> 8mproving precision typically reduces recall & vica-versa.

negative increases As a result, recall decreases & precision increases.

negative decreases to a result, precision increases dec. & recall increases.

means it gives less emphasis on precision & more on recall in the calculation of score.