CÁC THUẬT GIẢI ĐỒ THỊ CƠ BẢN

- Các khái niệm và thuật ngữ
- Biểu diễn đồ thị
- Tìm kiếm theo chiều rộng
- Tìm kiểm theo chiều sâu

- Đồ thị vô hướng (undirected graph) G = (V, E), gồm một tập V các đỉnh (vertice) và một tập E các cạnh (edge), mỗi cạnh e = (u, v) ∈ E ứng với một cặp không có thứ tự các đỉnh u, v ∈ V
- Đồ thị có hướng (directed graph) G = (V, E), gồm một tập V các đỉnh và một tập E các cạnh, mỗi cạnh e = (u, v) ∈ E ứng với một cặp có thứ tự các đỉnh u, v ∈ V

 $e_4=(v_1, v_3)$ và $e_5=(v_1, v_3)$ là các cạnh song song

 $e_1 = (v_2, v_2)$ là cạnh khuyên

 $e_8=(v_5, v_3)$, $e_9=(v_5, v_3)$ và $e_{10}=(v_5, v_3)$ là các cạnh song song $e_5=(v_2, v_2)$ là cạnh khuyên

 Một đồ thị không có cạnh khuyên hoặc cạnh song song gọi là đơn đồ thị (simple graph), ngược lại gọi là đa đồ thị (multigraph)

- Đỉnh u và v là kề nhau (adjacent) nếu có cạnh e = (u, v),
 cạnh e gọi là liên thuộc với u và v
- Đường đi độ dài n từ đỉnh x_0 đến đỉnh x_n trong một đồ thị là dãy $P = x_0, x_1, ..., x_n$ trong đó mỗi (x_i, x_{i+1}) là một cạnh
- Đường đi có đỉnh đầu x₀ trùng với đỉnh cuối x_n gọi là chu trình
- Đường đi hay chu trình gọi là đơn nếu không có cạnh lặp lại

P= v_1 , v_3 , v_4 , v_5 là một đường đi và cũng là đường đi đơn, C= v_1 , v_3 , v_4 , v_2 , v_1 , v_3 , v_1 là chu trình không đơn vì cạnh e_4 = (v_1, v_3) hoặc e_5 = (v_1, v_3) được lặp lại một lần

P= v_1 , v_3 , v_4 , v_1 , v_3 là một đường đi không đơn, do cạnh e_1 = (v_1, v_3) được lặp lại một lần trên đường đi này, $C = v_1$, v_3 , v_4 , v_1 là một chu trình đơn

 Một đồ thị được gọi là liên thông nếu luôn tìm được đường đi giữa hai đỉnh bất kỳ của nó

Đồ thị G₁ liên thông, đồ thị G₂ không liên thông

Đồ thị G₁ không liên thông, đồ thị G₂ liên thông

BIỂU DIỄN ĐỒ THI

- Biểu diễn bằng danh sách kề (adjacency list)
- Biểu diễn bằng ma trận kề (adjacency matrix)
- So sánh các phương pháp biểu diễn đồ thị

DANH SÁCH KỀ

- Danh sách kề của đỉnh u: adj(u) = {v ∈ V | (u, v) ∈ E}
- Có thể biểu diễn đồ thị G = (V, E) như một tập các danh sách kề bằng cách lưu trữ mỗi đỉnh u ∈ V cùng với danh sách các đỉnh kề với u

DANH SÁCH KỀ

Danh sách kề của đồ thị vô hướng

DANH SÁCH KỀ

Danh sách kề của đồ thị có hướng

Cho đơn đồ thị G = (V, E), với tập đỉnh V ={1, 2,..., n}, ma trận
 kề của G là

$$A = \{a_{ij} \mid i, j = 1, 2,..., n\}, a_{ij} = 0 \text{ n\'eu } (i, j) \notin E \text{ và } a_{ij} = 1$$
 $n\'eu (i, j) \in E$

Nếu G là đa đồ thị thì

 $a_{ij} = 0$ nếu $(i, j) \notin E$ và $a_{ij} = k$ nếu có k cạnh nối hai đỉnh i và j

Ma trận kề của đồ thị vô hướng

$$A_G = \begin{bmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Ma trận kề của đồ thị có hướng

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$

- Đồ thị có trọng số (weighted graph) là đồ thị mà mỗi cạnh (i, j)
 được gán một số thực w(i, j)
- Một đồ thị có trọng số với n đỉnh có thể được biểu diễn bởi ma trận trọng số

```
C = \{c_{ij}: i, j = 1, 2, ..., n\}, trong đó c_{ij} = w(i, j) nếu có cạnh (i, j) và c_{ij} = 0, \infty, hoặc -\infty nếu không có cạnh (i, j)
```

Ma trận trọng số của đồ thị vô hướng

$$C = \begin{bmatrix} 0 & 4 & 3 & 0 & 7 & 0 \\ 4 & 0 & 5 & 0 & 3 & 0 \\ 3 & 5 & 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 5 & 2 \\ 7 & 3 & 0 & 5 & 0 & 3 \\ 0 & 0 & 0 & 2 & 3 & 0 \end{bmatrix}$$

SO SÁNH CÁC CÁCH BIỂU DIỄN

Biểu diễn đồ thị vô hướng bằng danh sách và ma trận

SO SÁNH CÁC CÁCH BIỂU DIỄN

Biểu diễn đồ thị có hướng bằng danh sách và ma trận

SO SÁNH CÁC CÁCH BIỂU DIỄN

- Chi phí bộ nhớ cho ma trận là O(|V|²) và cho danh sách là
 O(|V| + 2|E|)
- Chi phí xử lý khi dùng ma trận là O(1) và khi dùng danh sách là O|V|

TÌM KIẾM THEO CHIỀU RỘNG (Breadth-First Search-BFS)

- Thuật giải BFS
- Phân tích BFS
- Đường đi ngắn nhất
- Cây tìm kiếm theo chiều rộng

Ý tưởng thuật giải

- Bắt đầu tìm kiếm từ đỉnh s cho trước tuỳ ý
- Tại thời điểm đã tìm thấy u, thuật toán tiếp tục tìm kiếm tập tất cả các đỉnh kề với u
- Thực hiện quá trình này cho các đỉnh còn lại

Ý tưởng thuật giải

- Dùng một hàng đợi để duy trì trật tự tìm kiếm theo chiều rộng
- Dùng các màu để không lặp lại các đỉnh tìm kiếm
- Dùng một mảng để xác định đường đi ngắn nhất từ s đến các đỉnh đã được tìm kiếm
- Dùng một mảng để lưu trữ đỉnh đi trước của đỉnh được tìm kiếm

```
BFS(G, s)
1 for each u \in V[G]-\{s\}
      color[u] = WHITE
3 d[u] = \infty
4 \pi[u] = NIL
5 \quad color[s] = GRAY
6 d[s] = 0
7 \pi[s] = NIL
8 Q = \emptyset
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset
11
       u = DEQUEUE(Q)
       for each v \in Adj[u]
12
                  if color[v] == WHITE
13
                        color[v] = GRAY
14
15
                        d[v] = d[u] + 1
                        \pi[v] = u
16
                         ENQUEUE(Q, v)
17
18
        color[u] = BLACK
```


PHÂN TÍCH BFS

- Tổng chi phí khởi tạo là O(V)
- Mỗi thao tác trên hàng đợi là O(1), vì vậy tổng thời gian cho thao tác trên hàng đợi là O(V)
- Tổng thời gian chi phí cho quét các danh sách kề là O(E)
- Tổng thời gian chạy của BFS là O(V+E)

- Khoảng cách đường đi ngắn nhất (shortest-path distance) từ s đến v là số cạnh ít nhất trong các đường đi từ s đến v, ký hiệu δ(s, v)
- Qui ước $\delta(s, v) = \infty$ nếu không có đường đi từ s đến v
- Một đường đi độ dài bằng $\delta(s, v)$ từ s đến v được gọi là đường đi ngắn nhất từ s đến v

Định lý: Cho BFS chạy trên một đô thị từ đỉnh s, thì thuật giải tìm kiếm được mọi đỉnh v mà có thể đạt được từ s, khi kết thúc, BFS xác định các đường đi ngắn nhất từ s đến v sao cho d[v] = δ(s, v) với mọi v ∈ V

```
PrintPath(G, s, v)

1 if v==s

2  Print(s)

3 elseif π[v] == NIL

4  Print("no path from" s "to" v "exists")

5 else PrintPath(G, s, π[v])

6  Print(v)
```

Hệ quả: Cho BFS chạy trên một đồ thị từ đỉnh s, thì thuật giải tìm kiếm được mọi đỉnh v mà có thể đạt được từ s, khi kết thúc, BFS xác định một cây có gốc tại đỉnh s và các đường đi từ s đến các đỉnh v trên cây là các đường đi ngắn nhất có độ dài d[v] = δ(s, v) với mọi v ∈ V

TÌM KIẾM THEO CHIỀU SÂU (Depth-First Search-DFS)

- Thuật giải DFS
- Phân tích DFS
- Tính chất của DFS

Ý tưởng thuật giải

- Bắt đầu tìm kiếm từ một đỉnh u nào đó
- Chọn đỉnh kề v tùy ý của u để tiếp tục quá trình tìm kiếm và
 lặp lại quá trình tìm kiếm này đối với v

Ý tưởng thuật giải

- Dùng các màu để không lặp lại các đỉnh tìm kiếm
- Dùng các biến thời gian để xác định các thời điểm phát hiện và hoàn thành tìm kiếm của một đỉnh
- Dùng một mảng để lưu trữ đỉnh đi trước của đỉnh được tìm kiếm

```
DFSVisit(G, u)

1 time = time +1  // đỉnh trắng u được phát hiện

2 d[u] = time

3 color[u] = GRAY

4 for each v \in Adj[u]  //duyệt đỉnh v theo cạch (u, v)

5 if color[v] == WHITE

6 \pi[v] = u

7 DFSVisit(G, v)

8 color[u] = BLACK  // tô đen u khi nó hoàn thành tìm kiếm u

9 time = time +1

10 f[u] = time
```


PHÂN TÍCH DFS

- Nếu chưa tính thời gian thực thi DFSVisit, vòng lặp 1-3 và 5-7
 có chi phí là O(V)
- Trong một lần thực thi DFSVisit(u), vòng lặp 4-7 thực hiện
 |Adj[u]| lần
- Vì $\Sigma_{u \in V}$ |Adj[u]|= O(E), nên tổng chi phí thực thi dòng 4-7 của DFSVisit là O(E).
- Vậy thời gian chạy của DFS là O(V+E)

TÍNH CHẤT CỦA DFS

- Kết thúc thuật giải DFS trên đồ thị G, một rừng tìm kiếm theo chiều sâu được tạo ra với số cây trong rừng có gốc tại các đỉnh u tương ứng là số lần thực thi DFSVisit(u) trong vòng lặp 5-7 của DFS(G)
- Số cây trong rừng tìm kiếm theo chiều sâu trên đồ thị G cũng là số thành phần liên thông của đồ thị G

TÍNH CHẤT CỦA DFS

```
CONNECTED-COMPONENT(G)

1 for each u ∈ V[G]

2 do color[u] = white

3 d = 0

4 for each u ∈ V[G]

5 do if color[u] == white

6 then DFSVisit(u)

7 d = d+1

8 return d //d là số thành phần liên thông
```

TÍNH CHẤT CỦA DFS

- Nếu d[u] < d[v] thì f[v] < f[u] với mọi u, v ∈ G
- Đỉnh v là con cháu của đỉnh u trong rừng tìm kiếm theo chiều sâu trên đồ thị G nếu và chỉ nếu d[u] < d[v] < f[v] < f[u]

ĐỘC VÀ TÌM HIỀU Ở NHÀ

- Đọc chương 22 sách Introduction to Algorithms của Cormen và cộng sự
- Làm bài tập về nhà chương 3 đã cho trong DS bài tập