GraphGAN: Graph Representation Learning with Generative Adversarial Nets

Hongwei Wang^{1,2}, Jia Wang³, Jialin Wang⁴, Miao Zhao³, Weinan Zhang¹, Fuzheng Zhang², Xing Xie², Minyi Guo¹

Shanghai Jiao Tong University, ² Microsoft Research Asia,
 The Hong Kong Polytechnic University,
 Huazhong University of Science and Technology

November 27, 2017

Background (1/3)

- ☐ Graph representation learning tries to embed each node of a graph into a low-dimensional vector space, which preserves the structural similarities or distances among the nodes in the original graph
- Also known as network embedding / graph embedding / graph feature learning

Background (2/3)

- ☐ Graph representation learning can benefit a wide range of real-world applications:
 - Link prediction (Gao, Denoyer, and Gallinari, CIKM 2011)
 - Node classification (Tang, Aggarwal, and Liu, SDM 2016)
 - Recommendation (Yu et al., WSDM 2014)
 - Visualization (Maaten and Hinton, JMLR 2008)
 - Knowledge graph representation (Lin et al., AAAI 2015)
 - Clustering (Tian et al., AAAI 2014)
 - Text embedding (Tang, Qu, and Mei, KDD 2015)
 - Social network analysis (Liu et al., IJCAI 2016)

Background (3/3)

- □ Researchers have examined applying representation learning methods to various types of graphs:
 - Weighted graphs (Grover and Leskovec, KDD 2016)
 - ☐ Directed graphs (Zhou et al., AAAI 2017)
 - Signed graphs (Wang et al., SDM 2017)
 - Heterogeneous graphs (Wang et al., WSDM 2018)
 - Attributed graphs (Huang, Li, and Hu, WSDM 2017)
- Several prior works also try to preserve specific properties during the learning process:
 - Global structures (Wang, Cui, and Zhu, KDD 2017)
 - Community structures (Wang et al., AAAI 2017)
 - Group information (Chen, Zhang, and Huang, CIKM 2016)
 - ☐ Asymmetric transitivity (Ou et al., KDD 2016)

Motivation (1/3)

Generative Model

- ☐ Generative graph representation learning model assumes an **underlying** true connectivity distribution $p_{true}(v|v_c)$ for each vertex v_c
 - Similar to GMM and LDA
 - □ The edges can be viewed as observed samples generated by $p_{true}(v|v_c)$
 - Vertex embeddings are learned by maximizing the likelihood of edges
 - E.g., DeepWalk (KDD 2014) and node2vec (KDD 2016)

Original graph

 $p_{true}(v|v_c)$

Motivation (2/3)

Discriminative Model

- □ Discriminative graph representation learning model aim to learn a classifier for predicting the existence of edges directly
 - \square Consider two vertices v_i and v_i jointly as features
 - \square Predict the probability of an edge existing between them, i.e., $p(edge|v_i,v_i)$
 - E.g., SDNE (KDD 2016) and PPNE (DASFAA, 2017)

$$p(edge|v_i, v_j) = 0.8$$

 $p(edge|v_i, v_k) = 0.3$
.....

Motivation (3/3)

G + D?

- Generative and discriminative models are two sides of the same coin
- □ LINE (WWW 2015) has tried to combine these two objectives
- ☐ Generative adversarial nets (GAN) have received a great deal of attention
 - GAN designs a game-theoretical minimax game to combine G and D
 - GAN achieves success in various applications:
 - ☐ image generation (Denton et al., NIPS 2015)
 - □ sequence generation (Yu et al., AAAI 2017)
 - □ dialogue generation (Li et al., arXiv 2017)
 - ☐ information retrieval (Wang et al., SIGIR 2017)
 - ☐ domain adaption (Zhang, Barzilay, and Jaakkola, arXiv 2017)

■ We propose **GraphGAN**, a framework that unifies generative and discriminative thinking for graph representation learning

The Minimax Game

- $\Box \mathcal{G} = (\mathcal{V}, \mathcal{E}), \ \mathcal{V} = \{v_1, ..., v_V\}, \ \mathcal{E} = \{e_{ij}\}_{i,j=1}^V$
- $\square \mathcal{N}(v_c)$: set of neighbors of v_c
- \square $p_{true}(v_c)$: underlying true connectivity distribution for v_c
- ☐ The objective of GraphGAN is to learn the following two models:
 - \square $G(v|v_c;\theta_G)$ which tries to approximate $p_{true}(v_c)$
 - \square $D(v, v_c; \theta_D)$ which aims to discriminate the connectivity for the vertex pair (v, v_c)
- The two-player minimax game:

$$\min_{\theta_{G}} \max_{\theta_{D}} V(G, D) = \sum_{c=1}^{V} \left(\mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_{c})} \left[\log D(v, v_{c}; \theta_{D}) \right] + \mathbb{E}_{v \sim G(\cdot | v_{c}; \theta_{G})} \left[\log \left(1 - D(v, v_{c}; \theta_{D}) \right) \right] \right) \tag{1}$$

Implementation & Optimization of D

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left(\mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[\log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[\log \left(1 - D(v, v_c; \theta_D) \right) \right] \right) \tag{1}$$

☐ Implementation of D:

$$D(v, v_c; \theta_D) = \sigma(\mathbf{d}_v^{\mathsf{T}} \mathbf{d}_{v_c}) = \frac{1}{1 + \exp(-\mathbf{d}_v^{\mathsf{T}} \mathbf{d}_{v_c})},$$
(2)

where \mathbf{d}_v , $\mathbf{d}_{v_c} \in \mathbb{R}^k$ are the k-dimensional vectors of v and v_c for D

 \square Gradient of V(G, D) w.r.t θ_D :

$$\nabla_{\theta_D} V(G, D) = \begin{cases} \nabla_{\mathbf{d}_v, \mathbf{d}_{v_c}} \log D(v, v_c; \theta_D), & if \ v \sim p_{\text{true}}; \\ \nabla_{\mathbf{d}_v, \mathbf{d}_{v_c}} \left(1 - \log D(v, v_c; \theta_D) \right), & if \ v \sim G. \end{cases}$$
(3)

Optimization of G

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left(\mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[\log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[\log \left(1 - D(v, v_c; \theta_D) \right) \right] \right) \tag{1}$$

 \square Gradient of V(G,D) w.r.t θ_G (policy gradient):

$$\nabla_{\theta_{G}} V(G, D)$$

$$= \nabla_{\theta_{G}} \sum_{c=1}^{V} \mathbb{E}_{v \sim G(\cdot | v_{c}; \theta_{G})} \left[\log \left(1 - D(v, v_{c}; \theta_{D}) \right) \right]$$

$$= \sum_{c=1}^{V} \sum_{i=1}^{N} \nabla_{\theta_{G}} G(v_{i} | v_{c}; \theta_{G}) \log \left(1 - D(v_{i}, v_{c}; \theta_{D}) \right)$$

$$= \sum_{c=1}^{V} \sum_{i=1}^{N} G(v_{i} | v_{c}; \theta_{G}) \nabla_{\theta_{G}} \log G(v_{i} | v_{c}; \theta_{G}) \log \left(1 - D(v_{i}, v_{c}; \theta_{D}) \right)$$

$$= \sum_{c=1}^{V} \mathbb{E}_{v \sim G(\cdot | v_{c}; \theta_{G})} \left[\nabla_{\theta_{G}} \log G(v | v_{c}; \theta_{G}) \log \left(1 - D(v, v_{c}; \theta_{D}) \right) \right].$$
(4)

GraphGAN Framework

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left(\mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[\log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[\log \left(1 - D(v, v_c; \theta_D) \right) \right] \right) \tag{1}$$

Implementation of G

- Softmax?
 - Computationally inefficient
 - Graph-structure-unaware
- ☐ Hierarchical softmax?
 - Graph-structure-unaware

$$G(v|v_c; \theta_G) = \frac{\exp(\mathbf{g}_v^{\top} \mathbf{g}_{v_c})}{\sum_{v \neq v_c} \exp(\mathbf{g}_v^{\top} \mathbf{g}_{v_c})}$$

where $\mathbf{g}_v, \mathbf{g}_{v_c} \in \mathbb{R}^k$ are the k-dimensional vectors of v and v_c for G

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

- Negative sampling?
 - Not a valid probability distribution
 - graph-structure-unaware

$$\log \sigma(v'_{w_O}^{\top} v_{w_I}) + \sum_{i=1}^{k} \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_{w_i}^{\top} v_{w_I}) \right]$$

Graph Softmax (1/5)

Objectives

- ☐ The design of graph softmax should satisfy the following three properties:
 - **Normalized**: The generator should produce a valid probability distribution, i.e., $\sum_{v\neq v_c} G(v|v_c;\theta_G) = 1$
 - Graph-structure-aware: The generator should take advantage of the structural information of a graph
 - □ Computationally efficient: The computation of $G(v|v_c;\theta_G)$ should only involve a small number of vertices in the graph

Graph Softmax (2/5)

Design

- \blacksquare Breadth First Search (BFS) on $\mathcal G$ from every vertex v_c
 - $lue{}$ **BFS-tree** T_c rooted at v_c
- □ For a given vertex v and one of its neighbors $v_i \in \mathcal{N}_c(v)$, the **relevance probability** of v_i given v as

$$p_c(v_i|v) = \frac{\exp(\mathbf{g}_{v_i}^{\mathsf{T}} \mathbf{g}_v)}{\sum_{v_j \in \mathcal{N}_c(v)} \exp(\mathbf{g}_{v_j}^{\mathsf{T}} \mathbf{g}_v)},$$
 (6)

where $\mathcal{N}_c(v)$ is the set of neighbors of v in T_c

☐ Graph softmax

$$G(v|v_c;\theta_G) \triangleq \left(\prod_{j=1}^{m} p_c(v_{r_j}|v_{r_{j-1}})\right) \cdot p_c(v_{r_{m-1}}|v_{r_m}),$$
 (7)

given the unique path from v_c to v in tree T_c : $P_{v_c \to v} = (v_{r_0}, v_1, ..., v_{r_m})$, where $v_{r_0} = v_c$ and $v_{r_0} = v$

Graph Softmax (3/5)

Design

☐ Graph softmax

$$G(v|v_c;\theta_G) \triangleq \left(\prod_{j=1}^{m} p_c(v_{r_j}|v_{r_{j-1}})\right) \cdot p_c(v_{r_{m-1}}|v_{r_m}),$$
 (7)

given the unique path from v_c to v in tree T_c : $P_{v_c \to v} = (v_{r_0}, v_1, ..., v_{r_m})$, where $v_{r_0} = v_c$ and $v_{r_0} = v$

Graph Softmax (4/5)

Properties

- $\square \sum_{v \neq v_C} G(v|v_C; \theta_G) = 1$ in graph softmax
- \square In graph softmax, $G(v|v_c;\theta_G)$ decreases exponentially with the increase of the shortest distance between v and v_c in original graph G
- In graph softmax, calculation of $G(v|v_c;\theta_G)$ depends on $O(d \log V)$ vertices, where d is average degree of vertices and V is the number of vertices in graph G

Graph Softmax (5/5)

Generating Strategy

Algorithm 1 Online generating strategy for the generator

```
Input: BFS-tree T_c, representation vectors \{\mathbf{g}_i\}_{i\in\mathcal{V}}
Output: generated sample v_{gen}
 1: v_{pre} \leftarrow v_c, v_{cur} \leftarrow v_c;
 2: while true do
        Randomly select v_i proportionally to p_c(v_i|v_{cur}) in Eq.
        (6);
        if v_i = v_{pre} then
 5:
           v_{gen} \leftarrow v_{cur};
 6:
           return v_{qen}
 7:
        else
 8:
            v_{pre} \leftarrow v_{cur}, v_{cur} \leftarrow v_i;
        end if
10: end while
```


GraphGAN Algorithm

Algorithm 2 GraphGAN framework

```
Input: dimension of embedding k, size of generating samples
    s, size of discriminating samples t
Output: generator G(v|v_c;\theta_G), discriminator D(v,v_c;\theta_D)
1: Initialize and pre-train G(v|v_c;\theta_G) and D(v,v_c;\theta_D);
 2: Construct BFS-tree T_c for all v_c \in \mathcal{V};
 3: while GraphGAN not converge do
      for G-steps do
         G(v|v_c;\theta_G) generates s vertices for each vertex v_c
 5:
         according to Algorithm 1;
         Update \theta_G according to Eq. (4), (6) and (7);
 6:
      end for
      for D-steps do
         Sample t positive vertices from ground truth and t
         negative vertices from G(v|v_c;\theta_G) for each vertex v_c;
         Update \theta_D according to Eq. (2) and (3);
10:
      end for
11:
12: end while
13: return G(v|v_c;\theta_G) and D(v,v_c;\theta_D)
```

Experiments (1/3)

Datasets

- □ arXiv-AstroPh: 18,772 vertices and 198,110 edges
- □ arXiv-GrQc: 5,242 vertices and 14,496 edges
- □ BlogCatalog: 10,312 vertices, 333,982 edges and 39 labels
- Wikipedia: 4,777 vertices, 184,812 edges and 40 labels
- MovieLens-1M: 6,040 users and 3,706 movies

Baselines

- ☐ DeepWalk (KDD 2014)
- **□ LINE** (WWW 2015)
- □ Node2vec (KDD 2016)
- ☐ Struc2vec (KDD 2017)

Experiments (2/3)

Link Prediction

☐ Learning curves

Fig. 4: Learning curves of the generator and the discriminator of GraphGAN on arXiv-GrQc in link prediction.

Results

TABLE 1: Accuracy and Macro-F1 on arXiv-AstroPh and arXiv-GrQc in link prediction.

Model	arXiv-AstroPh		arXiv-GrQc	
	Accuracy	Macro-F1	Accuracy	Macro-F1
DeepWalk	0.841	0.839	0.803	0.812
LINE	0.820	0.814	0.764	0.761
Node2vec	0.845	0.854	0.844	0.842
Struc2vec	0.821	0.810	0.780	0.776
GraphGAN	0.855	0.859	0.849	0.853

Experiments (3/3)

Node Classification

TABLE 2: Accuracy and Macro-F1 on BlogCatalog and Wikipedia in node classification.

Model	BlogCatalog		Wikipedia	
	Accuracy	Macro-F1	Accuracy	Macro-F1
DeepWalk	0.225	0.214	0.194	0.183
LINE	0.205	0.192	0.175	0.164
Node2vec	0.215	0.206	0.191	0.179
Struc2vec	0.228	0.216	0.211	0.190
GraphGAN	0.232	0.221	0.213	0.194

Recommendation

Fig. 5: Precision@K and Recall@K on MovieLens-1M in recommendation.

Summary

- We propose **GraphGAN**, a novel framework that unifies generative and discriminative thinking for graph representation learning
 - \square Generator $G(v|v_c)$ tries to fit $p_{true}(v|v_c)$ as much as possible
 - \square Discriminator $D(v, v_c)$ tries to tell whether an edge exists between v and v_c
- ☐ G and D act as two players in a minimax game:
 - G tries to produce the most indistinguishable "fake" vertices under guidance provided by D
 - D tries to draw a clear line between the ground truth and "counterfeits" to avoid being fooled by G
- We propose graph softmax as the implementation of G
 - Graph softmax overcomes the limitations of softmax and hierarchical softmax
 - Graph softmax satisfies the properties of normalization, graph structure awareness and computational efficiency

Q & A

Thanks!