\leftrightarrow \Rightarrow \oplus \times ...

3学是源于美

高数8-2 真题... × 高数8-3基础

1.计算下列偏导数

器 Q 口 ①

(1)
$$\partial_{z} z = u^{2} \ln v$$
, $\partial_{z} u = \frac{x}{y}$, $v = 3x - 2y$, $\partial_{z} v = \frac{\partial z}{\partial x}$, $\partial_{z} v = \frac{\partial z}{\partial y}$, $\partial_{z} v = \frac{\partial z}{\partial z}$, $\partial_{z} v = \frac{\partial z}{\partial y}$, ∂_{z}

(2) 设
$$u = \frac{e^{ax}(y-z)}{a^2+1}$$
, 雨 $y = a \sin x, z = \cos x$, 求 $\frac{du}{dx}$.

$$\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial x} + \frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial x}$$

$$= \frac{ae^{ax}(y-z)}{a^2+1} + \frac{e^{ax}}{a^2+1} \cdot a\cos x + \frac{e^{ax}}{a^2+1} \cdot \sin x = e^{ax}\sin x$$

$$2.\cancel{U} z = \arctan \frac{y}{y}, \quad \cancel{U} x = u + v, \quad y = u - v, \quad \cancel{U} \frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = \dots$$

$$\frac{\cancel{U} z}{\cancel{U} u} = \frac{\cancel{U} z}{\cancel{U} x}, \quad \frac{\cancel{U} x}{\cancel{U} x} + \frac{\cancel{U} z}{\cancel{U} x}, \quad \frac{\cancel{U} x}{\cancel{U} x} + \frac{\cancel{U} x}{\cancel{U} x}, \quad \frac{\cancel{U} x}{\cancel{U} x} + \frac{\cancel{U$$

3. 求下列函数的一阶偏导数(其中广具有一阶连续偏导数)

$$2u = f\left(\frac{x}{y}, \frac{y}{z}\right);$$

$$2u =$$

4.设
$$z = xy + xF(u)$$
, 而 $u = \frac{y}{x}$, $F(u)$ 为可导函数,则 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \underbrace{\lambda x y + xF(u)}$

高数8-2基础过关~

$$\frac{dz}{dx} : \frac{-y}{f(x^2 - y^2)} \cdot (\lambda x)$$

$$\frac{dz}{dy} = \frac{1}{f(x^2 - y^2)} + \frac{-y}{f(x^2 - y^2)} \cdot (-y)$$

$$\frac{dz}{dy} = \frac{y}{f(x^2 - y^2)} \cdot (-y)$$

$$\frac{dz}{dx} + \frac{dz}{dx} + \frac{dz}{dx} + \frac{1}{y} \frac{dz}{dy} = \frac{y}{f(x^2 - y^2)}$$

$$\frac{dz}{dy} = \frac{y}{f(x^2 - y^2)} \cdot (-y)$$

$$\frac{dz}{dx} + \frac{1}{y} \frac{dz}{dx} + \frac{1}{y} \frac{dz}{dy} = \frac{y}{f(x^2 - y^2)}$$

6.求下列函数的二阶偏导数 (其中 f 具有二阶连续偏导数):

$$\begin{array}{ll}
0 & z = f(x, \frac{\pi}{y}); \\
\frac{1}{2} = f(+f'_{1} + f'_{2} + f'_{2}); \\
\frac{1}{2} = f'_{1} + f'_{2} + f'_{2} + f'_{2} - f'_{1} \\
\frac{1}{2} = f'_{2} + f'_{2} + f'_{2} + f'_{2} - f'_{2}$$

(612) (2)
$$z = f(xy^2, x^2y)$$
.

(2) $z = f(xy^2, x^2y)$.

(3) $z = f(xy^2, x^2y)$.

(4) $z = y^2 c f(xy^2 + f(x^2y) + yy f(x^2y^2) + yy f(x^2y^2)$

(5) $z = y^2 c f(xy^2, x^2y)$.

(6) $z = f(xy^2, x^2y)$.

(6) $z = f(xy^2, x^2y)$.

(7) $z = y^2 c f(xy^2, x^2y)$.

(8) $z = y^2 c f(xy^2, x^2y)$.

(8) $z = y^2 c f(xy^2, x^2y)$.

(8) $z = y^2 c f(xy^2, x^2y)$.

(9) $z = f(xy^2, x^2y)$.

(9) $z = f(xy^2, x^2y)$.

(10) $z = f(xy^2, x^2y)$.

(11) $z = y^2 c f(xy^2, x^2y)$.

(11) $z = y^2 c f(xy^2, x^2y)$.

(12) $z = y^2 c f(xy^2, x^2y)$.

(13) $z = y^2 c f(xy^2, x^2y)$.

(14) $z = y^2 c f(xy^2, x^2y)$.

(15) $z = y^2 c f(xy^2, x^2y)$.

(15) $z = y^2 c f(xy^2, x^2y)$.

(16) $z = y^2 c f(xy^2, x^2y)$.

(17) $z = y^2 c f(xy^2, x^2y)$.

(17) $z = y^2 c f(xy^2, x^2y)$.

(17) $z = y^2 c f(xy^2, x^2y)$.

(18) $z = y^2 c f(xy^2, x^2y)$.

(18) $z = y^2 c f(xy^2, x^2y)$.

(19) $z = y^2 c f(xy^2, x^2y)$.

7.设
$$u = f(x, y)$$
 的所有二阶偏导数连续,而 $x = \frac{s - \sqrt{3}t}{2}$, $y = \frac{\sqrt{3}s + t}{2}$, 证明:

$$\int D \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} = \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} = \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} = \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)$$

$$\frac{2}{dx^{2}} + \frac{1}{dy^{2}} = \frac{1}{dx^{2}} + \frac{1}{dx^{2}}.$$

$$70 \frac{d^{2}y}{dx^{2}} = f_{1}^{11} + f_{2}^{12}; \quad \frac{d^{2}y}{dx^{2}} + \frac{d^{2}y}{dx^{2}} = \frac{1}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_{1}^{12} \right) + \frac{3}{2} \left(\frac{1}{2} f_{1}^{11} + \frac{3}{2} f_$$

8.计算下列偏导数

(1)
$$i\partial_{x}x+2y+z-2\sqrt{xyz}=0$$
, $i\partial_{x}z$, $i\partial_{y}z$.
8 (1) $i\partial_{x}x+2y+z-2\sqrt{xyz}=0$, $i\partial_{y}z$, $i\partial_{y}z$.
 $i\partial_{y}z$ $i\partial_{y}$

高数8-2基础过关~

高数正式笔记

8-1高数基础...

高数8-2... 🗀 × 高数8-2真题... ×

高数8-3基础.

(2) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (2) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (2) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (2) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (2) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (2) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (2) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (2) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (3) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (4) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (5) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x}$, $\frac{\partial^{2}}{\partial y}$. (6) $\frac{\partial^{2}}{\partial z} = \ln \frac{z}{y}$, $\frac{\partial^{2}}{\partial x} =$

タ、水子(スリンン)ことらい(メナンターラョ)ーズーンリナラを tx=2005(x+2y-32)-1 ; Fz=2005(x+2y-32). (-3)+3:-3/x fy=2005 (x+xy-32)2-202fx; 柳以器+===+===

10.设 x = x(y, z), y = y(x, z), z = z(x, y) 都是由方程 F(x, y, z) = 0 所确定的具有连续偏导

数的函数,则 $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} =$

四部器器是(一段)-(一段)-(一段)

设 $\Phi(u,v)$ 具有连续偏导数, z=f(x,y) 由方程 $\Phi(cx-az,cy-bz)=0$ 所确定

 $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} =$

12.设 $e^z - xyz = 0$,则 $\frac{\partial^2 z}{\partial x^2} = \frac{(e^2 - xy).3}{(e^2 - xy)}$

13.设 $z^3 - 3xyz = a^3$,则 $\frac{\partial^2 z}{\partial x \partial y} = \frac{2^5 - 2xyz^3 - x^2y^2z}{(2^2 - xy^2)^3}$

11-18 4= 0x-az. U=04-62 手x=手は器=Cまは、手y=手v-みy=C手v 手z= 手u &y = - a手u-b手v My DZ = can DZ = can bay a a that

7%%: C

是由方程 F(x,y,t)=0 所确定的函数, 其中 f,F 都具有一

 $\partial f \partial F$ $\partial f \partial F$

 $\frac{dy}{dt} = \frac{\partial x}{\partial t} \frac{\partial t}{\partial t}$ $\partial t \ \partial x$ 阶连续偏导数, 试证明: $\frac{\partial f}{\partial f} \frac{\partial F}{\partial r} + \frac{\partial F}{\partial r}$