This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-018741

(43) Date of publication of application: 26.01.1993

(51)Int.CI.

G01B 21/30 G01B 7/34

G11B 9/00 H01J 37/28

(21)Application number : 03-159852

(71)Applicant: CANON INC

(22) Date of filing:

05.06.1991

(72)Inventor: KAWASE TOSHIMITSU

MIYAZAKI TOSHIHIKO SHINJO KATSUHIKO

KURODA AKIRA NOSE HIROYASU

(30)Priority

Priority number: 02215021 Priority date: 16.08.1990 Priority country: JP

(54) MICRO DISPLACEMENT TYPE INFORMATION DETECTING PROBE ELEMENT, AND SCANNING TYPE TUNNELING MICROSCOPE, INTERATOMIC FORCE MICROSCOPE AND INFORMATION PROCESSOR USING THE PROBE ELEMENT

(57) Abstract:

PURPOSE: To provide a micro displacement type information detecting probe element capable of following up in correspondence with everything such as the waviness of μm order and periodic surface irregularity of nm order of a recording medium and substrate at the time of performing the recording, reproducing, or the like of information using a tunnel current or the like. CONSTITUTION: In a micro displacement type information detecting probe element, an insulating layer laminated on a substrate is extended to form a first stage cantilever 701, and layer structure 708-710 with piezoelectric material held between electrode members

is provided on the first stage cantilever 701. A second stage cantilever 702 is formed on the extension from the tip of the cantilever 701 of layer structure, and an information detecting probe 703 is formed at the free end part of the second cantilever 702. The first stage cantilever 701 is displaced utilizing reverse piezoelectric effect generated by applying voltage between the electrodes of the layer structure.

LEGAL STATUS

[Date of request for examination]

05.06.1998

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

3030574

[Date of registration]

10.02.2000

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-18741

(43)公開日 平成5年(1993)1月26日

(51)Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
G 0 1 B 21/30	Z	7617-2F		· ·
7/34	Z	9106-2F		
G11B 9/00		9075-5D		
H01J 37/28	Z	9069-5E	•	•
				審査請求 未請求 請求項の数11(全 10 頁)
(21)出願番号	特顯平3-159852		(71)出願人	000001007
				キャノン株式会社
(22)出顧日	平成3年(1991)6月	5日		東京都大田区下丸子3丁目30番2号
			(72)発明者	川瀬、俊光
(31)優先権主張番号	特顯平2-215021			東京都大田区下丸子3丁目30番2号 キャ
(32)優先日	平2(1990)8月16日			ノン株式会社内
(33)優先権主張国	日本(JP)		(72)発明者	宮崎 俊彦
	:			東京都大田区下丸子3丁目30番2号 キャ ノン株式会社内
	•		(72)発明者	
			(12)元为4	東京都大田区下丸子3丁目30番2号 キャ
		•		ノン株式会社内
			(74)代理人	
				最終頁に続く
			1	

(54)【発明の名称】 微小変位型情報検知探針素子及びこれを用いた走査型トンネル顕微鏡、原子間力顕微鏡、情報処理装置

(57)【要約】

【目的】 トンネル電流等を用いて情報の記録,再生等を行うにあたり、記録媒体や基板のμmオーダのうねり等及びnmオーダの周期的表面凹凸等の全てに対応して追従することが可能な微小変位型情報検知探針素子を提供することにある。

【構成】 基板上に積層した絶縁層を延長して1段目の片持ばり701を形成し、該1段目の片持ばり上に、電極部材間に圧電材料を挟持した層構造708~710を設け、該層構造を有した片持ばりの先端から延長上に、さらに2段目の片持ばり702を形成すると共に該2段目の片持ばりの自由端部に情報検知探針703を形成し、前記層構造の電極間に電圧を印加することで生じる逆圧電効果を利用して、前記1段目の片持ばり701を変位させる構成とした微小変位型情報検知探針素子、を特徴とする。

1

【特許請求の範囲】

【請求項1】 基板上に積層した絶縁層を延長して1段目の片持ばりを形成し、該1段目の片持ばり上に、電極部材間に圧電材料を挟持した層構造を設け、該層構造を有した片持ばり面内又は片持ばり先端から延長上に、さらに2段目の片持ばりを形成すると共に該2段目の片持ばりの自由端部に情報検知探針を形成し、前記層構造の電極間に電圧を印加することで生じる逆圧電効果を利用して、前記1段目の片持ばりを変位させる構成としたことを特徴とする微小変位型情報検知探針素子。

【請求項2】 前記2段目の片持ばりが、前記層構造を有した1段目の片持ばり面内にスリットを設けることで形成した逆向きの片持ばりであって、前記層構造の電極間に電圧を印加することで生じる逆圧電効果を利用して、該2段目の片持ばりを変位させる構成としたことを特徴とする請求項1記載の微小変位型情報検知探針素子。

【請求項3】 前記2段目の片持ばりが、複数個並列に 設けられていることを特徴とする請求項1又は2に記載 の微小変位型情報検知探針素子。

【請求項4】 基板上に積層した絶縁層を延長して板状の片持ばりを形成し、該片持ばり上に、電極部材間に圧電材料を挟持した層構造を設け、該層構造を有した片持ばり面内にスリットを設けることで逆向きの片持ばりを形成し、さらに該逆向きの片持ばり面内に、これと逆向きの片持ばりを形成することを順次繰返すことで複数個の片持ばりを形成し、該複数個形成した片持ばりの中で最小片持ばりの自由端部に情報検知探針を形成し、前記層構造の電極間に電圧を印加することで生じる逆圧電効果を利用して、前記複数の片持ばりを変位させる構成と 30 したことを特徴とする微小変位型情報検知探針素子。

【請求項5】 請求項1~4いずれかに記載の微小変位型情報検知探針素子を備えたことを特徴とする走査型トンネル顕微鏡。

【請求項6】 請求項1に記載の微小変位型情報検知探 針素子と、前記2段目の片持ばりのたわみ方向の変位量 を検知する手段とを備えたことを特徴とする原子間力類 微鏡。

【請求項7】 請求項1~4いずれかに記載の微小変位型情報検知探針案子と、これに対向して記録媒体を設け、かつ、該案子の探針と記録媒体間にパルス電圧を掃引して情報を記録する手段を具備したことを特徴とする情報処理装置。

【請求項8】 請求項1~4いずれかに記載の微小変位型情報検知探針索子と、これに対向して記録媒体を設け、かつ、該記録媒体の情報を該案子の探針により読み取る再生手段を具備したことを特徴とする情報処理装置。

【請求項9】 前記再生手段が、前記2段目の片持ばり で接近させた探針を支持するカンチレバー (弾性体) のたわみ方向の変位量を検知する手段を具備したことを 50 が、試料-探針間に働く力を受けてたわむ量から、逆に

特徴とする請求項8記載の情報処理装置。

【請求項10】 請求項1~4いずれかに記載の微小変位型情報検知探針案子と、これに対向して記録媒体を設け、かつ、該案子の探針と記録媒体間にパルス電圧を掃引して情報を記録する手段を有すると共に、該記録媒体の情報を該案子の探針により読み取る再生手段を具備したことを特徴とする情報処理装置。

【請求項11】 前記再生手段が、前記2段目の片持ば りのたわみ方向の変位量を検知する手段を具備したこと を特徴とする請求項10記載の情報処理装置。

【発明の詳細な説明】

[0001]

20

【産業上の利用分野】本発明は、走査型トンネル顕微鏡等の探針の位置決めに逆圧電効果を利用した微小変位型情報検知探針素子及びかかる素子を搭載した走査型トンネル顕微鏡、原子間力顕微鏡、情報処理装置に関する。 【0002】

【従来の技術】近年、記録装置に於けるデータの記録容量は益々大きくなる傾向がある。このような傾向においては記録単位の大きさが益々小さくなり、その密度がさらに高くなることが必須要件となる。例えば、光記録によるデジタルオーディオディスクにおいては記録単位の大きさは1μm²程度にまで及んでいる。

【0003】一方、最近物質表面及び表面近傍の電子構造を直接観察できる走査型トンネル顕微鏡(以後STMと略す)が開発され[G. Binnig etal., Phys. Rev. Lett. 49, 5.7 (1982)]、単結晶、非晶質を問わず実空間像の高い分解能の測定ができるようになり、しかも、電流による損傷を媒体に与えることなく、低電力で観測できる利点をも有し、さらには超高真空中のみならず、大気中、あるいは溶液中でも動作し種々の材料に対して用いることができるため、広範囲な応用が期待されている。

【0004】かかるSTMは、金属の探針(プローブ電極)と導電性物質の間に電圧を加えて1nm(10A)程度の距離まで近づけると両者の間に電流が流れることを利用している。この電流は両者の距離変化に非常に敏感であり、電流もしくは両者の平均的な距離を一定に保つように探針を走査することにより実空間の表面情報を40 得ることができる。この際、面内方向の分解能は1A以上である

【0005】このSTMの原理を応用し、記録媒体として電圧電流のスイッチング特性に対してメモリー効果をもつ材料、例えば、π電子系有機化合物やカルコゲン化物類の薄膜層等を用いれば記録単位が0.001μm²以下の情報記録が可能である。

【0006】また、原子間力顕微鏡(以下AFMと略す)は、試料表面に対して1ナノメートル以下の距離まで接近させた探針を支持するカンチレバー(弾性体)

1

力を検出し、この力を一定にするように試料-探針間の 距離を制御しながら試料表面を走査することにより、表 面の 3次元形状をナノメートル以下の分解能で観察する ものである [Binniget.al, Phys. Re v. Lett. 56, 930 (1986)]。かかるA FMでは、走査型トンネル顕微鏡 (STM) のように試 料が導電性を有する必要がなく、絶縁性試料、特に半導 体レジスト面や生体高分子などを原子・分子オーダーで 観察可能であるため、広い応用が期待されている。

【0007】また、上記記録媒体を用いて高密度の記録 10 再生を行うために、多くの装置が提案されている。例え ば、特開昭62-281138号公報に示されている装 置では、変換器と、情報の記録・再生を行う探針と、記 録媒体と探針間距離を調整する探針駆動機構を、シリコ ンチップ上にフォトリングラフィー技術を用いて一体で 形成し、記録ヘッドの集積化を行っている。

【0008】このように、集積化された記録ヘッドを高密度の記録再生装置に設置する場合、記録ヘッド1つの占有する記録面積が μ mオーダであるため、記録ヘッドを数100~数1000個用意し、さらに、記録媒体と複数の記録ヘッド間において μ mオーダの相対的移動を行える形態にして、記録容量或いは記録スピードを上げることが必要となっている。

【0009】しかしながら、上記のように数100~数 1000個を有する記録ヘッドを用意し、記録媒体に近 傍させ、かつ記録媒体と記録ヘッドを相対的にmmの移 動を行う場合、以下の問題点が生じる。

- 1) 記録媒体と記録ヘッド先端に設置されている記録探針との距離は、数 n mという非常に近接した状態にある。この状態で、記録ヘッドが記録媒体に追従するため 30 には、記録ヘッドの変位量が 1 μ m程度であることから、記録媒体や基板のうねり、或いは傾きを 1 μ m程度以内におさえなければならない。
- 2) 記録媒体や基板は数μm周期の大きなうねり以外に、記録ビットや基板の作製時にできたnm周期の凹凸をも有している。この記録媒体と記録ヘッドを相対的に数mm移動させる場合、記録ヘッドはnm周期の凹凸とμm周期のうねりの両方に追従することが必要となる。従って、μm周期のうねりに追従できる状態でnm周期の凹凸に追従しようとすると、共振周波数との関係上装 40 置速度を上げることが困難である。

[0010]

【発明が解決しようとする課題】すなわち、本発明の目 的とするところは、

- 1) 記録媒体や基板のμmオーダのうねり等及びnmオーダの周期的表面凹凸等の全てに対応して追従することが可能な微小変位型情報検知探針素子を提供することにある。
- 2) また、かかる微小変位型情報検知探針素子を用いる ことで、アクセス速度の向上及び安定化等を可能ならし

めた走査型トンネル顕微鏡、原子間力顕微鏡、さらに は、記録,再生,等を行える情報処理装置を提供するこ とにある。

[0011]

【課題を解決するための手段】上記目的を達成するため の本発明は、第1に、基板上に積層した絶縁層を延長し て1段目の片持ばりを形成し、該1段目の片持ばり上 に、電極部材間に圧電材料を挟持した層構造を設け、該 層構造を有した片持ばり面内又は片持ばり先端から延長 上に、さらに2段目の片持ばりを形成すると共に該2段 目の片持ばりの自由端部に情報検知探針を形成し、前記 層構造の電極間に電圧を印加することで生じる逆圧電効 果を利用して、前記1段目の片持ばりを変位させる構成 とした微小変位型情報検知探針素子、第2に、前記2段 目の片持ばりが、前記層構造を有した1段目の片持ばり 面内にスリットを設けることで形成した逆向きの片持ば りであって、前記層構造の電極間に電圧を印加すること で生じる逆圧電効果を利用して、該2段目の片持ばりを 変位させる構成とした前記第1に記載の微小変位型情報 検知探針素子、第3に、前記2段目の片持ばりが、複数 個並列に設けられている前記第1または第2に記載の微 小変位型情報検知探針素子、第4に、基板上に積層した 絶縁層を延長して板状の片持ばりを形成し、該片持ばり 上に、電極部材間に圧電材料を挟持した層構造を設け、 該層構造を有した片持ばり面内にスリットを設けること で逆向きの片持ばりを形成し、さらに該逆向きの片持ば り面内に、これと逆向きの片持ばりを形成することを順 次繰返すことで複数個の片持ばりを形成し、該複数個形 成した片持ばりの中で最小片持ばりの自由端部に情報検 知探針を形成し、前記層構造の電極間に電圧を印加する ことで生じる逆圧電効果を利用して、前記複数の片持ば りを変位させる構成とした微小変位型情報検知探針素 子、第5に、前記第1~第4いずれかに記載の微小変位 型情報検知探針素子を備えた走査型トンネル顕微鏡、第 6に、前記第1に記載の微小変位型情報検知探針素子 と、前記2段目の片持ばりのたわみ方向の変位量を検知 する手段とを備えた原子間力顕微鏡、第7に、前記第1 ~第4いずれかに記載の微小変位型情報検知探針素子 と、これに対向して記録媒体を設け、かつ、該案子の探 針と記録媒体間にパルス電圧を掃引して情報を記録する 手段を具備した情報処理装置、第8に、前記第1~第4 いずれかに記載の微小変位型情報検知探針素子と、これ に対向して記録媒体を設け、かつ、該記録媒体の情報を 該素子の探針により読み取る再生手段を具備した情報処 理装置、第9に、前記第8に記載の再生手段が、前記2 段目の片持ばりのたわみ方向の変位量を検知する手段を 具備した前記第8に記載の情報処理装置、第10に、前 記第1~第4いずれかに記載の微小変位型情報検知探針 素子と、これに対向して記録媒体を設け、かつ、該素子 の探針と記録媒体間にパルス電圧を掃引して情報を記録 する手段を有すると共に、該記録媒体の情報を該案子の 探針により読み取る再生手段を具備した情報処理装置、 第11に、前記第10に記載の再生手段が、前記2段目 の片持ばりのたわみ方向の変位盘を検知する手段を具備 した前記第10に記載の情報処理装置、としている点に ある。

【0012】すなわち、本発明の基本となる構成は、一端が基板上に固定された板状の片持ばりを形成し、該片持ばり上に導電性の電極材料と逆圧電効果を生ずる圧電材料とを交互に積層した構造とし、かつ、この片持ばり面内あるいは片持ばり先端から延長上に、さらに2段目の微小な片持ばりを形成し、かつ、この微小な片持ばりの自由端部に情報検知探針を設けたことにあり、かかる構成において電極部材間に電圧を印加することで以下のような作用が得られる。

[0013]

【作用】圧電材料に外部から電場Eが加えられると、圧電結晶中に分極Pが生じ、その結晶は分極Pに比例する微小な歪みを起こす。通常の誘電体では、分極Pは電場Eに比例するので歪みはEに比例する。

【0014】かかる性質を利用し、例えば板状に設けた 圧電材に部分的に異ならしめた電場を与えることで、全 体として板状のたわみを起こさせることができるもので ある。

【0015】さらに、片持ばりの面内あるいは片持ばりの先端から延長上に複数段目の片持ばりを形成し、かつ少なくとも1段目の片持ばりが上記逆圧電効果によるたわみが得られる構成とすることで、全ての片持ばりにたわみを生じさせたとき最外部の片持ばりと最内部の片持ばりとの間に、各々のたわみ量の総和に等しいたわみ量 30を得ることができる。

【0016】従って、例えば記録媒体と探針間の距離を調整するような場合、かかる作用を成す構成を組み込めば、記録媒体や基板が有するnmオーダの凹凸やμmオーダのうねりのそれぞれに追従させることが可能となる。

[0017]

【実施例】以下、実施例に基づいて本発明を具体的に詳述する。

【0018】(実施例1)図1及び図2は、本発明の第 40 1の実施例を説明するための構成図と動作模式図である。図1において、100は基板、101は片持ばりを 形成するためのSiO2やSi3N4等の絶縁層、102 ~107,112~118は片持ばりを三次元的に駆動 するためのAu,Al等の材料を用いた電極、109, 111は電気信号を与えることにより微小変位を行うP ZT,ZnO,AlN等の圧電材料、120はトンネル 電流,原子間力,磁気力等の電流や力等を検知するため の情報検知探針、119は逆向きの微小片持ばりを形成 するための配曲スリットである。 50

【0019】また、図2において、図2(a)は片持ばり201の初期状態図であり、図2(b)は片持ばり201と逆向きの微小片持ばり202が逆圧電効果により変位した時の状態図である。

【0020】以上説明したような構成を有する微小変位型情報検知探針素子を、図1及び図2を用いてさらに詳細な説明を行う。

【0021】先ず、本発明に係る微小変位型情報検知探 針素子の作製工程を以下に示す。厚さO.5mmのSi (100) 基板100上に、CVD法によりSi3N4膜 を0.15μmの厚さに成膜して絶縁層101を形成し た。使用した原料ガスはSiH2 Cl2:NH3 (1: 9) であり、基板温度は800℃であった。次に、フォ トリソグラフィー技術とCF4ガスを用いたドライエッ チングを用いて、Si3N4膜102を図1に示すような 所望の片持ばりと、屈曲スリット119により形成され る逆向きの微小片持ばりの形状にパターニングした。続 いて、電極102~107の材料として、スパッタ法に より絶縁層101の片持ばり部にAuを0.1μm成膜 20 し、フォトリソグラフィー技術を用いて所望の形状にパ ターニングした。この際のパターニング形状は、図1中 上面に示された電極112~117と同一である。尚、 Si3N4とAuとの密着性を向上させるためにCrを成 膜してもよい。次に、圧電材料109として、スパッタ 法により、ΑΙΝを 0. 3μm成膜した。ターゲットに はAlを用い、Ar+Nz雰囲気でスパッタした。さら に、フォトリソグラフィーとAI用エッチング液による ウェットエッチングでパターニングした。その後、上記 工程を繰り返し、圧電材料と電極を交互に形成して、図 1に示すようなSi基板-Si3N4-Au-AIN-A uーAINーAuのバイモルフ構造を形成した。最後 に、情報検知探針120の材料として、蒸着法によりW を円錐形状に堆積した。

【0022】上記工程により作製した微小変位型情報検知採針素子の片持ばりの大きさは、幅 150μ m,長さ 600μ mであった。また屈曲スリット119の内側に形成された逆向きの微小片持ばりの大きさは、幅 50μ m,長さ 300μ mであった。

【0023】前述したが、電極のパターンは、112, 113,114,115,116,117の電極と10 2,103,104,105,106,107の電極が 各々対応して同一形状であり、中間電極である110 は、片持ばり全面に形成されている。

【0024】次に、図1に示した微小変位型情報検知探 針素子の駆動方法を説明する。先ず、A1N圧電素子1 09,111に電圧を掃引しない場合は、図2(a)の ような形態である。次に、Au電極110をグランドと して、113,117の上部電極にマイナスバイアスを 掃引し、103,107の下部電極にはプラスバイアス を掃引し、104,106の下部電極にはマイナスバイ

アスを掃引し、114,116の上部電極にはプラスバ イアスを掃引し、102,105の下部電極にはプラス バイアスを掃引し、112,115の上部電極にはマイ ナスパイアスを掃引する。これにより生じる逆圧電効果 を利用してAIN圧電素子109、111を伸縮させる ことにより、図2(b)に示すようなたわみ変位を得る。 ことができる。

【0025】従って、本発明の微小変位型情報検知探針 素子を使用すれば、寸法が従来の片持ばりと同一であっ ても、従来に比べ1.5倍~2倍程度の変位量を得るこ とが可能となった。尚、本実施例で示した屈曲スリット 119の大きさ及び形状は本実施例に限定する必要はな く、様々な形状を持つことが可能である。例えば、屈曲 スリットの形状は山状の形状でもよい。

【0026】 (実施例2) 図3及び図4に、第2の実施 例を示す。図3中、100は基板、101は絶縁層、3 01は片持ばり、302,303は屈曲スリット、30 4は第1の逆向き微小片持ばり、305は第1の逆向き 微小片持ばり304の内側に形成した第2の微小片持ば りである。

【0027】尚、図3には不図示であるが、図1の膜構 造と同様の絶縁材料、圧電材料、電極材料が、Si基板 100 LCS i3N4-Au-AIN-Au-AIN-A uのバイモルフ構造として形成されている。図4は、図 3の変位前後の状態模式図である。

【0028】図3に不図示のAu電極に、実施例1に記 載の駆動方法と同様の方法でバイアス電圧を与え、不図 示のA1N圧電材料を変位させ、301,304,30 5の片持ばりをたわませる。その結果、図4 (b) に示 すように、従来の片持ばりと同一寸法をもつ本発明の素 子を使用し、2~3倍の変位量を得ることができた。

【0029】上述のように、片持ばりを多段に構成した ことにより、変位量を実施例1よりもさらに大きくとる ことができた。

【0030】 (実施例3) 図5に、第3の実施例を示 す、

【0031】図5中、100は基板、101は絶縁層、 501は片持ばり、502は片持ばり501上に並列に スリット50.3を2個設けて形成した逆向きの微小片持 ばりである。また、120は情報検知探針である。この 40 であった。 構成にすることにより、情報検知探針を持つ微小片持ば りのどちらか一方を予備の片持ばりとして待機させてお くことが可能となり、片方が何んらかの影響で破損して も、すぐに復元できることが可能となった。

【0032】尚、本実施例では、並列スリットを2系統 としたが、何んら2つに限る必要はなく、多数配置させ てもよい。

【0033】 (実施例4) 図6に、第4の実施例を示 す。

【0034】ここでは、本発明の微小変位型情報検知探 50

針素子を記録・再生が可能な情報処理装置に搭載した場 合の実施例を示す。図6中、600は情報を記録再生す るための探針、601は片持ばり、602は片持ばり6 01上に設けられた微小片持ばり、603は電圧-電流 のスイッチング特性に対してメモリ効果をもつスクアリ リウムービスー6ーオクチルアズレンをグラファイト基 板上にLB法を用いて8層累積した記録層、604は電 極、605は基板、606はXYステージ、607は基 板、608は縦方向(乙軸方向)位置制御手段、609 は探針600と記録層603間に流れるトンネル電流を 電圧に変換する電流電圧変換回路、610は対数変換 器、611は比較器、612はある特定の周波数成分だ けの信号を取り出すバンドパスフィルター、613は増 幅器、614は決められた低い周波数の信号を取り出す ローパスフィルター、615は増幅器、616は片持ば り601及び微小片持ばり602を三次元に駆動するた めの三次元走査回路、617は縦方向位置制御手段60 8を駆動するための駆動回路、618は記録層603に 情報を記録再生するためのパルス電源、619はXYス 20 テージ606を駆動するための大粗動回路である。

【0035】次に、上述の素子及び媒体の構成で、高密 度の記録再生装置を大気中にて動作させる。探針600 と記録層603との間の距離が、数nm (ナノメート ル)の一定状態になるように制御するために、電流電圧 変換回路609, 対数変換回路610, 比較器611, バンドパスフィルター612, ローパスフィルター61 4, 増幅器 6 1 3, 6 1 5 を通じた電気的フィードバッ ク信号を、片持ばり601及び微小片持ばり602に与 える。探針600と記録層603との間の位置検知手段 としては、トンネル電流を利用した。以上の状態で、記 録・再生が行える状態となる。記録は、三次元走査回路 616と、XYステージ606, 大粗動回路619を用 いて任意の場所に移動させ、パルス電源618を用いで 探針600と記録層603との間に電気メモリ効果を生 じる関値電圧である1.5 Vを越える2 V, パルス幅1 μsecの電圧を印加した。その結果、電気的にオン状 態(電流がオフ状態に比べて3ケタ以上多く流れる状 態)を記録層603に書き込むことができた。この記録 位置を再びトレースし、オン状態を再生することが可能

【0036】尚、上記実施例においては、スクアリリウ ムービスー6ーオクチルアズレンをグラファイト基板上 にLB法を用いて8層累積したものを記録媒体として用 いた例を示したが、記録媒体(記録層)の材料としては 書き込み、消去のできるものであれば何でもよく、ま た、媒体の作製方法についても、何んらこれらに限定す る必要はない。

【0037】上記記録、再生を行う際に、XYステージ をmmオーダで動かすわけだが、かかる場合には、探針 600が記録層603, 電極604, 基板605各々固

有の凹凸やうねりにより接触する可能性があるので、片 持ばり601或いは微小片持ばり602に電気的フィー ドバック信号を送り、接触を回避させなければならな W

【0038】このときの電気的フィードバック信号は、 基板605の有する数10Hz周期の大きなうねりと、 電極604の有する数100Hzの凹凸とに追従するよ うに、比較器611からの信号を2つに分岐させ、数1 0Hz周期の信号はローパスフィルター614を通して. 片持ばり801に、数100Hz周期の信号はパンドパ 10 スフィルター612を通して微小片持ばり602に送ら れる。

【0039】このように、信号を分離し片持ばり601 と微小片持ばり602を独立に動作させることにより、 高速の走査が可能になり、本実施例の情報処理装置のア クセス速度を向上させることができた。

【0040】以上述べた実施例1~4について共通する ことだが、絶縁層101を形成するSi3N4, 圧電材料 であるAIN、電極材料であるAuはそれぞれ異なった 成して片持ばりが形成される場合、温度変化によって片 持ばりのたわみを生ずる場合がある。従って、かかる熱 膨張あるいは収縮をも考慮した上で探針が適正な位置に くるように、片持ばり及び微小片持ばりの寸法(長さ 等)を適宜選定することが好ましい。

【0041】 (実施例5) 図7及び図8に第5の実施例 を示す。本実施例において、微小変位型情報検知素子は アクチュエーター付片持ばり部分701と微小片持ばり 部分702の2段構成になっており、微小片持ばり部分 702の先端には記録信号印加および再生信号検出のた めの探針703が取り付けられている。この微小変位型 情報検知探針素子の詳細は図7(b)に示すとおり、S i基板704の上に設けた2段片持ばりを構成するSi 3N4層705上に、探針703に記録信号印加のための Au配線706が設けられ、さらにその上層に、絶縁層 としてのSiaNi層707、ユニモルフ素子アクチュエ ーターを構成するAu層708、2nO層709、Au 層710の3層からなる1段目の片持ばりを構成する部 分が設けられている。

【0042】このような素子の作製工程については、実 40 施例1に述べた方法とほぼ同様であり、Si(100) 基板上にCVD法によりSi3N4をO. 5μmの膜厚に 成膜後、上部にスパッタ法によりAu配線を0.1μm の膜厚に成膜する。ここで、フォトリソグラフィー工程 により2段目片持ばりの形状にパターニング後、1段目 の片持ばりの部分に再びCVD法によりSi3N4層を O. 1 μ m成膜し、パターニングを繰り返しながらスパ ッタ法によりAu層0. 1μm, ZnO層0. 3μm, Αυ層 0. 1μmを成膜する。そして、2段目の片持ば り部分の先端に電子ビームデポジション法により、炭素 50 た例以外に、記録媒体基板表面形状を変化させるような

等の導電性材料を蒸着して探針を作製し、最後に基板裏 面からKOHによる異方性エッチングにより片持ばりを

形成する。

【0043】上記工程により作製した微小変位型情報検 知探針索子の片持ばりの大きさは、アクチュエーター付 片持ばり部分が幅 1 5 0 μm, 長さ6 0 0 μmの矩形 型、微小片持ばり部分が幅20μm, 長さ100μmの V字型であった。

10

【0044】次に、図8を用いて、本実施例の微小変位 型情報検知探針素子を記録・再生を行える情報処理装置 に応用した例について説明する。 記録媒体基板 801 に 対して先端を1ナノメートル以下の距離にまで探針80 2を接近させ、相対的に横方向に走査する。ここで、レ ーザー803からの光ビームを探針802を支持する微 小片持ばり部分804先端の裏面に照射し、その反射光 ビームスポット位置を2分割センサ805によって検知 しておく。記録媒体基板801と探針802との間に働 く原子間力の大きさに変化が生じると、微小片持ばり部 分のたわみ量に変化が生じ、反射光ビームの角度変化を 線膨張率やヤング率等を有するため、これらが層構造を 20 伴うため2分割センサ805上のビームスポット位置に 変化が生じる。そこで、このビームスポット位置が一定 になるように、すなわち、記録媒体基板801と探針8 02との間に働く原子間力の大きさが一定になるよう ・に、アクチュエーター付片持ばり部分806のたわみ変 位量を制御する。この制御信号の大きさから、原子間力 の大きさが一定になるよう探針802が上下する制御 量、すなわち記録媒体基板801表面の形状を検知する ことができる。このとき、アクチュエーター付片持ばり 部分806のたわみ変位に対する共振周波数は1kHz 30 程度であるが、微小片持ばり部分804のたわみに対す る共振周波数は50kHz程度となるので、探針802 が記録媒体基板801表面のミクロンオーダーの大きな うねり、傾き807に対しては、アクチュエーター付片 持ばり部分806のたわみ変位により、ナノメートルオ ーダーの記録ビット808、基板の凹凸809に対して は、微小片持ばり部分804のたわみにより、基板表面 を走査させることができる。このように、アクチュエー ター付片持ばり部分806、微小片持ばり部分804を 独立に動作させることにより、高速の走査が可能にな り、本実施例の情報処理装置のアクセス速度を向上させ ることができた。

> 【0045】ここで、記録再生の方法について説明す る。記録媒体基板801として例えば、マイカ上でエピ タキシャル成長させたAu(111)面等導電性を有 し、かつ広範囲にわたってサブナノメートルオーダーで 平坦なものを用いる。上述のように探針を基板に接近さ せ、その間に5 V, 100 μsのパルス電圧を印加する ことにより、10nm程度の径を有する凸形状のビット を形成することができる。記録法としては、ここに挙げ

12

方法であればいかなるものでもよく、他の材料でも、また凹形状のビットを形成するものであってもよい。再生法としては、記録ビットに探針が接近したときに、その間に働く原子間力により、探針を支持する微小片持ばりがたわむ量を2分割センサ上の反射光ビームスポットの位置ずれ量を検出し、これを再生信号とする。なお、記録ビット等の高周波の信号に対しては、アクチュエーター付片持ばり部分は追従しないため、このような再生が可能となるものである。

[0046]

【発明の効果】以上説明したように、本発明の微小変位型情報検知探針素子は、逆圧電効果を利用するとともに、片持ばりの面内あるいは片持ばりの先端から延長上に複数段目の片持ばりを形成することにより、たわみ変位量の拡大が実現できる。

【0047】また、本発明の微小変位型情報検知探針素子を走査型トンネル顕微鏡や原子間力顕微鏡、高密度の記録・再生を行う情報処理装置に搭載した場合には、片持ばりを複数段に備えていることにより、機能を分離して動作させることが可能となり、従来よりもアクセス速 20度を向上させることができ、高安定で高速の走査型トンネル顕微鏡、原子間力顕微鏡及び情報処理装置を提供できた。

【図面の簡単な説明】

【図1】本発明の第1の実施例に係る微小変位型情報検 知探針素子の立体斜視図である。

【図2】図1に係る素子の片持ばりの変位状態図を示す。

【図3】本発明の第2の実施例に係る微小変位型情報検知探針素子の立体斜視図である。

【図4】図3に係る素子の片持ばりの変位状態図を示す。

【図5】本発明の第3の実施例に係る微小変位型情報検知探針素子の立体斜視図である。

【図6】本発明に係る微小変位型情報検知探針素子を搭載した情報処理装置を示すブロック図である。

【図7】本発明の第5の実施例に係る微小変位型情報検知探針案子の立体斜視図および断面図である。

【図8】本発明の第5の実施例に係る微小変位型情報検知探針素子を搭載した情報処理装置を示す図である。

【符号の説明】

- 100 基板
- 101 絶縁層.
- 102 電極(下部)
- 103 電極(下部)
- 104 電極 (下部)
- 105 電極(下部)
- 106 電極(下部)
- 107 電極 (下部)
- 109 圧電材

110 電極

- 111 圧電材
- 112 電極 (上部)
- 113 電極 (上部)
- 114 電極 (上部)
- 115 電極(上部)
- 116 電極 (上部)
- 117 電極 (上部)
- 118 電極(上部)
- 10 119 屈曲スリット (コの字形)
 - 120 情報検知探針
 - 201 片持ばり
 - 202 微小片持ばり (逆向き)
 - 301 片持ばり
 - 302 屈曲スリット
 - 303 屈曲スリット
 - 304 第1の微小片持ばり
 - 305 第2の微小片持ばり
 - 501 片持ばり
 - 502 微小片持ばり
 - 503 屈曲スリット
 - 600 情報検知探針
 - 601 片持ばり
 - 602 微小片持ばり
 - 603 記録層
 - 604 電極
 - 605 基板
 - 606 XYステージ
 - 607 基板
- 30 608 縦方向位置制御手段
 - 609 電流電圧変換回路
 - 610 対数変換器
 - 611 比較器
 - 612 パンドパスフィルター
 - 6 1 3 増幅器
 - 614 ローパスフィルター
 - 615 增幅器
 - 616 三次元走査回路
 - 617 粗動回路
- 40 618 パルス電源
 - 619 大粗動回路
 - 620 マイクロコンピューター
 - 621 表示装置
 - 701 アクチュエーター付片持ばり部分
 - 702 微小片持ばり部分
 - 703 探針
 - 704 Si基板
 - 705 SijN4層
 - 706 Au配線
- 50 707 Si3N4層

13

708 Au層

709 ZnO層

710 Au層

801 記録媒体基板

802 探針

803 レーザー

[図]1]

14

804 微小片持ばり部分

805 2分割センサ

806 アクチュエーター付片持ばり部分

807 基板の大きなうねり、傾き

808 記録ビット

809 基板の作製時にできた n m 同期の凹凸

【図2】.

[図3]

フロントページの続き

(72) 発明者 黒田 亮

東京都大田区下丸子3丁目30番2号 キャ ノン株式会社内 (72) 発明者 能瀬 博康

東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内