Differential Calculus with Applications to Life Sciences

Math 102:105

Pooya Ronagh

Agenda for today:

- Inverse trig functions
- Related rates of trig functions

Derivative of trig functions

What is the derivative of cot(x)?

$$(A) \csc(x)\cot(x)$$

(B)
$$-\csc(x)\cot(x)$$

(C)
$$csc^2(x)$$

(D)
$$-\csc^2(x)$$

(E)
$$sec^2(x)$$

$$\frac{d}{dx}\sin(x) = \cos(x)$$

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

$$\frac{d}{dx}\tan(x) = \sec^2(x)$$

$$\frac{d}{dx}\cot(x) = -\csc^2(x)$$

Periods of trig functions

The **period** of the function y = f(x) is the smallest number T for which

$$f(t + T) = f(t)$$

for all values of t.

Example: What is the period of $f(x) = 1 + 2 \sin (3x - 1)$?

Question: What is the phase-shift of this function?

Amplitude of trig functions

The **amplitude** of a trig function y = f(x) is defined as

 $(\max f - \min f)/2.$

Example: What is the amplitude of $f(x) = 1 + 2 \sin (3x - 1)$?

The **midline** (or average) of a trig function y = f(x) is defined as

 $(\max f + \min f)/2.$

Example: What is the midline of $f(x) = 1 + 2 \sin (3x - 1)$?

Example

What is the period and amplitude of $h(t) = 8 - 6\sin(4t)$?

- (A) T=4, A=14
- (B) T=1, A=8
- (C) T=1/4, A=12
- (D) $T=2\pi$, A=-6
- (E) $T=\pi/2$, A=6

Related rates + trig functions

If the height of an isosceles triangle with base 2m changes at a rate h'=3 m/s, how quickly is the angle opposite the base changing when h= $\sqrt{3}$ m?

- (A) 3/2
- (B) 1/2
- (C) 1/2
- (D) 3/2

Cosine law

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Inverse trig functions

Which of the following is false?

(A)
$$cos(arctan(\sqrt{3})) = 1/2$$

(B)
$$\sin(\arccos(1/2)) = \sqrt{3}/2$$

(C)
$$\arctan(1) = \pi/4$$

(D)
$$\arcsin(1/2) = \pi/3$$

(E)
$$\sin(3\pi/2) = -1$$

Domain and range of inverse trig functions

Domain and range of inverse trig functions

Domain and range of inverse trig functions

(0.0.4)

Next time: final period office hours

Nov 30 PL13.2

Dec 1 WW 12

Dec 8 WW 13

