Solution This solution illustrates an important technique for using connectedness. We let $x_0 \in A$ and let $B = \{y \in A \mid x_0 \text{ and } y \text{ can be joined by a } a$ continuous path. Obviously, $x_0 \in B$, so that $B \neq \emptyset$. We claim that B is both open and closed regarded as a subset of A; i.e., B is both open and closed relative to A. First, B is open for the following reason. If $y \in B$, choose a disk $D(y,\varepsilon)\subset A$, which is possible since A is open. If $z\in D(y,\varepsilon)$, then $z\in B$, since we can get a continuous path from x_0 to z by concatenation of a path from x_0 to y with the straight line from y to z (the reader should prove that this produces a continuous path). Thus, $D(y, \varepsilon) \subset B$, so B is open. To show that B is closed, let $y_k \in B$ and $y_k \to y \in A$. Since A is open, there is an $\varepsilon > 0$ such that $D(y, \varepsilon) \subset A$. Since $y_k \to y$, there is an N such that $y_k \in D(y, \varepsilon)$ for $k \ge N$. Joining x_0 to y_N by a continuous path followed by the straight line from y_N to y, we see that $y \in B$, and so B is closed. Since $B \neq \emptyset$ and B is both open and closed in A, we get B = A. (Otherwise, B and B\A would disconnect A.) Thus, every point in A can be joined to x_0 by a continuous path, and so A is path-connected.

Exercises for Chapter 3

- Which of the following sets are compact? Which are connected? 1.
 - $\{(x_1, x_2) \in \mathbb{R}^2 \mid |x_1| \le 1\}$
 - $\{x \in \mathbb{R}^n \mid ||x|| \le 10\}$ b.
 - $\{x\in\mathbb{R}^n\mid 1\leq ||x||\leq 2\}$ c.
 - $\mathbb{Z} = \{ \text{integers in } \mathbb{R} \}$ d.
 - A finite set in \mathbb{R}
 - $\{x \in \mathbb{R}^n \mid ||x|| = 1\}$ (distinguish between the cases n = 1 and $n \ge 2$) e. f.
 - Perimeter of the unit square in \mathbb{R}^2 g.
 - The boundary of a bounded set in \mathbb{R} h.
 - The rationals in [0, 1] i.
 - A closed set in [0,1] j.
 - Prove that a set $A \subset \mathbb{R}^n$ is not connected iff we can write $A \subset F_1 \cup F_2$ where F_1, F_2 are closed, $A \cap F_1 \cap F_2 = \emptyset$, $F_1 \cap A \neq \emptyset$, $F_2 \cap A \neq \emptyset$. 2.
 - Prove that in \mathbb{R}^n , a bounded infinite set A has an accumulation point. 3.
 - Show that a set A is bounded iff there is a constant M such that $d(x, y) \le M$ for all $x,y \in A$. Give a plausible definition of the diameter of a set and 4. reformulate your result.

- 5. Show that the following sets are not compact, by exhibiting an open cover with no finite subcover.
 - **a.** $\{x \in \mathbb{R}^n \mid ||x|| < 1\}$
 - **b.** \mathbb{Z} , the integers in \mathbb{R}
- 6. Suppose that F_k is a sequence of compact nonempty sets satisfying the nested set property such that diameter $(F_k) \to 0$ as $k \to \infty$. Show that there is exactly one point in $\cap \{F_k\}$. (By definition, diameter $(F_k) = \sup\{d(x,y) \mid x,y \in F_k\}$).
- 7. Let x_k be a sequence in \mathbb{R}^n that converges to x and let $A_k = \{x_k, x_{k+1}, \ldots\}$. Show that $\{x\} = \bigcap_{k=1}^{\infty} \operatorname{cl}(A_k)$. Is this true in any metric space?
- **8.** Let $A \subset \mathbb{R}^n$ be compact and let x_k be a Cauchy sequence in \mathbb{R}^n with $x_k \in A$. Show that x_k converges to a point in A.
- 9. Determine (by proof or counterexample) the truth or falsity of the following statements:
 - **a.** (A is compact in \mathbb{R}^n) \Rightarrow ($\mathbb{R}^n \setminus A$ is connected).
 - **b.** (A is connected in \mathbb{R}^n) \Rightarrow ($\mathbb{R}^n \setminus A$ is connected).
 - **c.** (A is connected in \mathbb{R}^n) \Rightarrow (A is open or closed).
 - **d.** $(A = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}) \Rightarrow (\mathbb{R}^n \setminus A \text{ is connected})$. [Hint: Check the cases n = 1 and $n \ge 2$.]
- 10. A metric space M is said to be *locally path-connected* if each point in M has a neighborhood U such that U is path-connected. (This terminology differs somewhat from that of some topology books.) Show that $(M \text{ is connected and locally path-connected}) \Leftrightarrow (M \text{ is path-connected})$.
- 11. a. Prove that if A is connected in a metric space M and $A \subset B \subset cl(A)$, then B is connected.
 - b. Deduce from a that the components of a set A are relatively closed. Give an example in which they are not relatively open. $(C \subset A)$ is called *relatively closed* in A if C is the intersection of some closed set in M with A, *i.e.*, if C is closed in the metric space A.)
 - Show that if a family $\{B_i\}$ of connected sets is such that $B_i \cap B_j \neq \emptyset$ for all i, j, then $\bigcup_i B_i$ is connected.
 - d. Deduce from c that every point of a set lies in a unique component.
 - Use c to show that \mathbb{R}^n is connected, starting with the fact that lines in \mathbb{R}^n are connected.

- 12. Let S be a set of real numbers that is nonempty and bounded above. Let $-S = \{x \in \mathbb{R} \mid -x \in S\}$. Prove that
 - **a.** -S is bounded below.
 - **b.** $\sup S = -\inf(-S).$
- 13. Let M be a complete metric space and F_n a collection of closed nonempty subsets (not necessarily compact) of M such that $F_{n+1} \subset F_n$ and diameter $(F_n) \to 0$. Prove that $\bigcap_{n=1}^{\infty} F_n$ consists of a single point; compare Exercise 6.
- 14. a. A point $x \in A \subset M$ is said to be **isolated** in the set A if there is a neighborhood U of x such that $U \cap A = \{x\}$. Show that this is equivalent to saying that there is an $\varepsilon > 0$ such that for all $y \in A$, $y \neq x$, we have $d(x, y) > \varepsilon$.
 - **b.** A set is called *discrete* if all its points are isolated. Give some examples. Show that a discrete set is compact iff it is finite.
- 15. Let $K_1 \subset M_1$ and $K_2 \subset M_2$ be path-connected (respectively, connected compact). Show that $K_1 \times K_2$ is path-connected (respectively, connected compact) in $M_1 \times M_2$.
- 16. If $x_k \to x$ in a normed space, prove that $||x_k|| \to ||x||$. Is the converse true? Use this to prove that $\{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ is closed, using sequences.
- 17. Let K be a nonempty closed set in \mathbb{R}^n and $x \in \mathbb{R}^n \setminus K$. Prove that there is a $y \in K$ such that $d(x, y) = \inf\{d(x, z) \mid z \in K\}$. Is this true for open sets? Is it true in general metric spaces?
- 18. Let $F_n \subset \mathbb{R}$ be defined by $F_n = \{x \mid x \ge 0 \text{ and } 2 1/n \le x^2 \le 2 + 1/n\}$. Show that $\bigcap_{n=1}^{\infty} F_n \ne \emptyset$. Use this to show the existence of $\sqrt{2}$.
- **19.** Let $V_n \subset M$ be open sets such that $\operatorname{cl}(V_n)$ is compact, $V_n \neq \emptyset$, and $\operatorname{cl}(V_n) \subset V_{n-1}$. Prove $\bigcap_{n=1}^{\infty} V_n \neq \emptyset$.
- 20. Prove that a compact subset of a metric space must be closed as follows. Let x be in the complement of A. For each $y \in A$, choose disjoint neighborhoods U_y of y and V_y of x. Consider the open cover $\{U_y\}_{y\in A}$ of A to show the complement of A is open.
- **21.** a. Prove: a set $A \subset M$ is connected iff \emptyset and A are the only subset of A that are open and closed relative to A. (A set $U \subset A$ is called open relative to A if $U = V \cap A$ for some open set $V \subset M$; "closed relative to A" is defined similarly.)
 - **b.** Prove that \emptyset and \mathbb{R}^n are the only subsets of \mathbb{R}^n that are both open and closed.

- **22.** Find two subsets $A, B \subset \mathbb{R}^2$ and a point $x_0 \in \mathbb{R}^2$ such that $A \cup B$ is not connected but $A \cup B \cup \{x_0\}$ is connected.
- **23.** Let \mathbb{Q} denote the rationals in \mathbb{R} . Show that both \mathbb{Q} and the irrationals $\mathbb{R}\backslash\mathbb{Q}$ are not connected.
- **24.** Prove that a set $A \subset M$ is not connected if we can write A as the disjoint union of two sets B and C such that $B \cap A \neq \emptyset$, $C \cap A \neq \emptyset$, and neither of the sets B or C has a point of accumulation belonging to the other set.
- 25. Prove that there is a sequence of distinct integers $n_1, n_2, \ldots \to \infty$ such that $\lim_{k\to\infty} \sin n_k$ exists.
- **26.** Show that the completeness property of \mathbb{R} may be replaced by the *Nested Interval Property*. If $\{F_n\}_1^{\infty}$ is a sequence of closed bounded intervals in \mathbb{R} such that $F_{n+1} \subset F_n$ for all $n = 1, 2, 3, \ldots$, then there is at least one point in $\bigcap_{n=1}^{\infty} F_n$.
- 27. Let $A \subset \mathbb{R}$ be a bounded set. Show that A is closed iff for every sequence $x_n \in A$, $\limsup x_n \in A$ and $\liminf x_n \in A$.
- **28.** Let $A \subset M$ be connected and contain more than one point. Show that every point of A is an accumulation point of A.
- **29.** Let $A = \{(x, y) \in \mathbb{R}^2 \mid x^4 + y^4 = 1\}$. Show that A is compact. Is it connected?
- 30. Let U_k be a sequence of open bounded sets in \mathbb{R}^n . Prove or disprove:
 - **a.** $\bigcup_{k=1}^{\infty} U_k$ is open.
 - **b.** $\bigcap_{k=1}^{\infty} U_k$ is open.
 - c. $\bigcap_{k=1}^{\infty} (\mathbb{R}^n \backslash U_k)$ is closed.
 - **d.** $\bigcap_{k=1}^{\infty} (\mathbb{R}^n \backslash U_k)$ is compact.
- 31. Suppose $A \subset \mathbb{R}^n$ is not compact. Show that there exists a sequence $F_1 \supset F_2 \supset F_3 \cdots$ of closed sets such that $F_k \cap A \neq \emptyset$ for all k and

$$\left(\bigcap_{k=1}^{\infty} F_k\right) \bigcap A = \varnothing.$$

- 32. Let x_n be a sequence in \mathbb{R}^3 such that $||x_{n+1} x_n|| \le 1/(n^2 + n)$, $n \ge 1$. Show that x_n converges.
- 33. Baire category theorem. A set S in a metric space is called nowhere dense if for each nonempty open set U, we have $cl(S) \cap U \neq U$, or equivalently, $int(cl(S)) = \emptyset$. Show that \mathbb{R}^n cannot be written as the countable union of nowhere dense sets.

- Prove that each closed set $A \subset M$ is an intersection of a countable family 34. of open sets.
- Let $a \in \mathbb{R}$ and define the sequence a_1, a_2, \ldots in \mathbb{R} by $a_1 = a$, and $a_n = a$ $a_{n-1}^2 - a_{n-1} + 1$ if n > 1. For what $a \in \mathbb{R}$ is the sequence 35.
 - Monotone? a.
 - Bounded? b.
 - Convergent? c.

Compute the limit in the cases of convergence.

- Let $A \subset \mathbb{R}^n$ be uncountable. Prove that A has an accumulation point. 36.
- Let $A, B \subset M$ with A compact, B closed, and $A \cap B = \emptyset$. 37.
 - Show that there is an $\varepsilon > 0$ such that $d(x, y) > \varepsilon$ for all $x \in A$ and $y \in B$.
 - Is a true if A, B are merely closed? b.
- Show that $A \subset M$ is not connected iff there exist two disjoint open sets 38. U, V such that $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, and $A \subset U \cup V$.
- Let $F_1 = [0, 1/3] \cup [2/3, 1]$ be obtained from [0, 1] by removing the middle **39.** third. Repeat, obtaining

$$F_2 = [0, 1/9] \cup [2/9, 1/3)] \cup [2/3, 7/9] \cup [8/9, 1].$$

In general, F_n is a union of intervals and F_{n+1} is obtained by removing the middle third of these intervals. Let $C = \bigcap_{n=1}^{\infty} F_n$, the **Cantor set.** Prove:

- C is compact. a.
- C has infinitely many points. [Hint: Look at the endpoints of F_{n-1}] b.
- $int(C) = \emptyset$. c.
- C is perfect; that is, it is closed with no isolated points. d.
- Show that C is totally disconnected; that is, if $x, y \in C$ and $x \neq y$ then $x \in U$ and $y \in V$ where U and V are open sets that disconnect Ce.
- Let F_k be a nest of compact sets (that is, $F_{k+1} \subset F_k$). Furthermore, suppose each F_k is connected. Prove that $\bigcap_{k=1}^{\infty} \{F_k\}$ is connected. Give an example 40. to show that compactness is an essential condition and we cannot just assume that " F_k is a nest of closed connected sets."