Repeaufgaben aus früheren Tests: Potenzfunktionen, Exponential- und Logarithmusgleichungen

- 1. Gegeben: Funktion mit Gleichung $y = f(x) = (x + 2)^{-3} 1$
 - a) Definitions- und Wertemenge von f.
 - b) Graph G_f
 - c) Durch welche Abbildung geht der Graph Gf aus dem Graphen der Funktion $y = q(x) = x^{-3}$ hervor?
- 2. Gegeben: Funktion mit Gleichung $y = f(x) = -(x 1)^{-0.2} + 2$
 - a) Definitions- und Wertemenge von f.
 - b) Graph G_f
 - c) Der Graph G_f ging aus dem Graphen G_g einer Funktion g durch Streckung an der x-Achse mit k=3 hervor. Wie lautet die Gleichung y = g(x)?
- 3. Gegeben: Funktion mit Gleichung $y = f(x) = 3\sqrt[3]{x-3} + 2$
 - a) Definitions- und Wertemenge von f.
 - b) Wie lautet die Gleichung der Umkehrfunktion f⁻¹?
 - c) Skizziere die Graphen von f und von f⁻¹.
- 4. Wende möglichst viele Logarithmensätze an (beliebige Basis):

a)
$$\log 7 \sqrt{\frac{1}{x^4 - y^4}}$$

b)
$$\log 5 \sqrt[4]{\frac{\sqrt[4]{(x-y)^3}}{\sqrt[3]{x^2}}}$$

- 5. Drücke durch genau einen Logarithmus aus und vereinfache, falls möglich: (a), c): bel. Basis)
 - a) -0.25 log a + 3 log b 0.375 log c b) ln a + ln a^2 + ln a^3 + ...+ ln a^{10}

c) $log(4^{lb30})$

- d) $\frac{\log_a 67}{\log_a z}$
- 6. Wieviele Ziffern hat die Zahl 2002²⁰⁰²? Gib auch die ersten vier Ziffern an!
- 7. Bestimme die Lösungsmenge L (Grundmenge G = R)

a)
$$2 \cdot 5^x = 7^{x-2}$$

b)
$$\log_{x} 0.5 = -2$$

c)
$$\lg (x - 5) + \lg x - \lg 14 = 0$$

d) $x^{\sqrt[3]{x}} = (\sqrt[3]{x})^x$
e) $\ln (1 - 3x) > -0.5$
f) $\ln (x + 9) = 4 + 1$

d)
$$x^{\sqrt[3]{x}} = (\sqrt[3]{x})^x$$

e)
$$\ln (1 - 3x) > -0.5$$

f)
$$lb(x+9) = 4 + lb(x-6)$$