A note on the third invariant factor of the Laplacian matrix of a graph *

Jian Wang, Yong-Liang Pan[†]

Department of Mathematics, University of Science and Technology of China Hefei, Auhui 230026, The People's Republic of China

Abstract

Let G be a simple connected graph with $n \geq 5$ vertices. In this note, we will prove that $s_3(G) \leq n$, and characterize the graphs which satisfy that $s_3(G) = n$, n-1, n-2, or n-3, where $s_3(G)$ is the third invariant factor of the Laplacian matrix of G.

Keywords Graph; Laplacian matrix; Invariant factor; Smith normal form. **1991 AMS subject classification:** 15A18, 05C50

Let G = (V, E) be a simple connected graph with vertex set $V = V(G) = \{v_1, \dots, v_n\}$ and edge set E = E(G). Denote the degree of vertex v_i by d_i and let $D(G) = \operatorname{diag}(d_1, \dots, d_n)$. The Laplacian matrix is L(G) = D(G) - A(G), where A(G) is the (0, 1)-adjacency matrix of G.

Denote by $\Delta_i(G)$ the i-th determinantal minors of L(G), i.e., the greatest common divisor of all the i-by-i determinantal minors of L(G). Of course $\Delta_i(G) \mid \Delta_{i+1}(G)$, 0 < i < n. The invariant factors of L(G) are defined by $s_{i+1}(G) = \frac{\Delta_{i+1}(G)}{\Delta_i(G)}$, $0 \le i < n$, where $\Delta_0(G) = 1$. It is easy to see that $s_i(G)|s_{i+1}(G)$, $1 \le i \le n-1$, and $s_n(G) = 0$ since L(G) is singular. The Smith normal form of L(G) is the n-square diagonal matrix F(G) whose (i,i) entry is $s_i(G)$. It follows from the well known matrix-tree theorem that $\Delta_{n-1}(G) = s_1(G)s_2(G) \cdots s_{n-1}(G)$ is equal to the spanning tree number of G. So the invariant factors of G can be used to distinguish pairs of non-isomorphic graphs which have the same spanning tree number, and so there is considerable interest in their properties.

Since G is a simple graph, its invariant factor $s_1(G)$ must be equal to 1, however most of the others are not easy to be determined. From the following lemma, we

^{*}Supported by NSF of the People's Republic of China(Grant No. 10871189).

[†]Corresponding author. Email: ylpan@ustc.edu.cn

know that $s_2(G) = 1$ if G is not the complete graph K_n , while $F(K_n) = \text{diag}(1, n, \dots, n, 0)$. In this note, we will show that $s_3(G) \leq n$, and characterize the graphs which satisfy that $s_3(G) = n, n - 1, n - 2$, or n - 3.

Lemma ([1]) For a simple connected graph G with order $n \geq 3$, $s_2(G) \neq 1$ if and only if G is the complete graph K_n , which has $s_i(G) = n$, $1 \leq i \leq n-1$.

In the following theorem, $v \cdot G$ denotes the graph obtained by adding an edge joining some vertex of G to a further vertex v; G-2e denotes the graph obtained from G by deleting two edges which have no common vertex; $G-C_4$ denotes the graph obtained from G by deleting a circle of length 4; $G-2C_3$ denotes the graph obtained from G by deleting 6 edges in two cycles of length 3 which have no common vertices (See Fig. 1). In the proof of the following theorem, $x \sim y$ means that the vertices x and y are adjacent and $x \not\sim y$ means that they are not adjacent.

Fig. 1

Theorem Let $G \neq K_n$ be a simple connected graph with order $n \geq 5$. Then $s_3(G) \leq n$. Moreover, $s_3(G) = n$ if and only if $G = K_n - e$, where e is an edge of K_n ; $s_3(G) = n - 1$ if and only if $G = v \cdot K_{n-1}$; $s_3(G) = n - 2$ if and only if n = 5 and $G = K_5 - 2e$ or $G = K_5 - C_4$; $s_3(G) = n - 3$ if and only if G is one of the following 6 graphs: $K_{2,3}$, $K_5 - C_3$, $K_6 - C_3$, $K_7 - 2C_3$, $K_{3,3}$ and $K_7 - K_{3,3}$.

Proof Since $G \neq K_n$, then its diameter is at least 2. In fact, we only need to consider the graphs with diameter 2, since if the diameter of G is more than 2 then by theorem 4.5 in [1] we have that $s_3(G) = 1$. Let v_1 and v_2 be two nonadjacent vertices in G. There is a further vertex v_3 which is adjacent to both v_1 and v_2 . Now we need to distinguish 8 cases to go on the argument.

Case 1. Some vertex v_4 in $V(G)/\{v_1, v_2, v_3\}$ satisfies that $v_4 \not\sim v_1$, $v_4 \not\sim v_2$, $v_4 \not\sim v_3$. Since G is connected, there is some vertex v_5 in $V(G)/\{v_1, v_2, v_3, v_4\}$ adjacent to both v_1 and v_4 . Clearly, $\det(L[1, 3, 4|2, 3, 5]) = -1$, where L[1, 3, 4|2, 3, 5] is the submatrix of L(G) that lies in the rows corresponding to vertices v_1, v_3, v_4 and columns corresponding to vertices v_2, v_3, v_5 . Therefore $s_3 = 1$.

Case 2. Some vertex v_4 in $V(G)/\{v_1, v_2, v_3\}$ satisfies that $v_4 \not\sim v_1, \ v_4 \not\sim v_2, \ v_4 \sim v_3$. In this case, $\det(L[1, 2, 3|2, 3, 4]) = d_2 \leq n - 2$. So $s_3 \leq n - 2$.

Case 3. Some vertex v_4 in $V(G)/\{v_1, v_2, v_3\}$ satisfies that $v_4 \not\sim v_1$, $v_4 \sim v_2$, $v_4 \not\sim v_3$. In this case, $\det(L[1, 2, 3|2, 3, 4]) = 1$, and hence $s_3 = 1$.

Case 4. Some vertex v_4 in $V(G)/\{v_1, v_2, v_3\}$ Satisfies that $v_4 \not\sim v_1, v_4 \sim v_2, v_4 \sim v_3$. In this case, $|\det(L[1, 2, 3|2, 3, 4])| = d_2 + 1 \le n - 1$. Hence $s_3 \le n - 1$.

Case 5. Some vertex v_4 in $V(G)/\{v_1, v_2, v_3\}$ satisfies that $v_4 \sim v_1$, $v_4 \not\sim v_2$, $v_4 \not\sim v_3$. In this case, very similar to case 3, we have $s_3 = 1$.

Case 6. Some vertex v_4 in $V(G)/\{v_1, v_2, v_3\}$ satisfies that $v_4 \sim v_1$, $v_4 \not\sim v_2$, $v_4 \sim v_3$. In this case, very similar to case 4, we have $s_3 \leq n-1$.

Case 1 – Case 6 show that if some vertex v_4 in $V(G)/\{v_1, v_2, v_3\}$ is not adjacent to both v_1 and v_2 , then $s_3 < n$. So, we will only need to deal with the cases in which every further vertex in $V(G)/\{v_1, v_2, v_3\}$ is adjacent to both v_1 and v_2 .

Case 7. Every vertex in $V(G)/\{v_1, v_2, v_3\}$ is adjacent to both v_1 and v_2 , and at least one vertex v_4 is not adjacent to v_3 . In this case, we distinguish 3 subcases.

Subcase 1. There is some vertex v_5 in $V(G)/\{v_1, v_2, v_3, v_4\}$ adjacent to all of the vertices v_1, v_2 and v_3 . Then $\det(L[1, 2, 3|1, 4, 5]) = d_1 = n - 2$. Hence $s_3 \le n - 2$.

Subcase 2. Every vertex in $V(G)/\{v_1, v_2, v_3\}$ is not adjacent to v_3 , and the induced subgraph $G[v_4, \dots, v_n] \neq K_{n-3}$. If we choose any two nonadjacent vertices in

$$\{v_4, \dots, v_n\}$$
 as v_4 and v_5 , then we have $-\det(L[1, 4, 5|1, 3, 5]) = -\begin{vmatrix} d_1 & -1 & -1 \\ -1 & 0 & 0 \\ -1 & 0 & d_5 \end{vmatrix} = \begin{vmatrix} d_1 & -1 & -1 \\ -1 & 0 & 0 \\ -1 & 0 & d_5 \end{vmatrix}$

 d_5 . Hence we have that $s_3 \leq d_5 \leq n-3$.

Subcase 3. Every vertex in $V(G)/\{v_1, v_2, v_3\}$ is not adjacent to v_3 , but $G[v_4, \dots, v_n] = K_{n-3}$. It is not difficult to obtain that $F(G) = \text{diag}(1, 1, 1, n-1, \dots, n-1, 2(n-1)(n-2), 0)$.

Case 8. Every vertex $G - \{v_1, v_2, v_3\}$ is adjacent to all of the vertices v_1, v_2 and v_3 . In this case, we distinguish two subcases.

Subcase 1. $G - \{v_1, v_2, v_3\} \neq K_{n-3}$, then there are two nonadjacent vertices v_4 and v_5 in $V(G)/\{v_1, v_2, v_3\}$. It follows that $\det(L[2, 3, 4|1, 4, 5]) = d_4 \leq n-2$. Hence $s_3 \leq n-2$. (In fact, if we regard the vertices v_4 as v_1 , v_5 as v_2 , v_1 as v_3 , v_2 as v_4 , and v_3 as v_5 , then we are back in the subcase 1 of case 7.)

Subcase 2. $G[v_4, \dots, v_n] = K_{n-3}$. Then $G = K_n - e$. It is not difficult to obtain $F(K_n - e) = \text{diag}(1, 1, n, \dots, n, n(n-2), 0)$.

From above argument we have that $s_3 \leq n$ and $s_3 = n$ if and only if G is $K_n - e$.

Clearly, case 6 is symmetric to case 4, the required graphs in case 4 are the isomorphic to the required graphs in case 4.

From proposition 1 in [2], we know that $F(v \cdot K_{n-1}) = \text{diag}(1, 1, n-1, \dots, n-1, 0)$. Now we prove the converse: if $s_3(G) = n - 1$ then $G = v \cdot K_{n-1}$.

From the argument of the above 8 cases, it follows that if $s_3(G) = n - 1$ then every vertex in $V(G)/\{v_1, v_2, v_3\}$ is adjacent to v_3 and only case 4 or case 6 may occur. If case 4 occurs, then $|\det L[1, 2, 3|2, 3, 4]| = d_2 + 1 \le n - 1$. It follows from $s_3(G) = n - 1$ that $d_2 = n - 2$ and then case 6 will never occur. Similarly, if case

6 occurs then case 4 will never occur. Without loss of generality, we assume that only case 4 occurs. We need to deal with two subcases here.

Subcase 1. There are two vertices in $\{v_4, \dots, v_n\}$ which are not adjacent. We regard the two nonadjacent vertices as v_1 , v_2 , and regard v_1 as v_4 , we are then back in case 2, so we have that $s_3 \leq n-2$.

Subcase 2. $G[v_4, \dots, v_n] = K_{n-3}$. Note that v_2 and v_3 are adjacent to every vertex in $V(G)/\{v_1, v_2, v_3\}$, thus $G = v \cdot K_{n-1}$.

A direct calculation can show that $F(K_5-2e) = \text{diag } (1,1,3,15,0)$ and $F(K_5-2e) = \text{diag } (1,1,3,15,0)$ C_4) =diag(1, 1, 3, 3, 0). Now we prove that if $s_3 = n - 2$, then n = 5 and $G = K_5 - 2e$ or $K_5 - C_4$.

By the above argument, we know that if $s_3 = n - 2$ then cases 1, 3 and 5 may not occur.

If case 2 occurs, then $det(L[1,2,3|2,3,4]) = d_2 \le n-2$. So d_2 must be n-2. It is a contradiction to case 2.

If case 4 occurs, then $\det(L[1,2,3|2,3,4]) = d_2 + 1 \le n-1$, and hence $d_2 = n-3$. Then we must have exact one vertex v_5 in case 6. If n > 5, there is another vertex v_6 in case 7 or case 8. We have, if $v_6 \nsim v_3$, then $\det(L[1, 2, 3|4, 5, 6]) = 2 < n-2$; and if $v_6 \sim v_3$, then $\det(L[1,2,3|4,5,6]) = 1 < n-2$. So n=5. Now, $v_5 \sim v_1$, $v_5 \not\sim v_2$, $v_5 \sim v_3$. If $v_4 \not\sim v_5$, then $G = K_5 - C_4$, whose Smith normal form is diag $\{1, 1, 3, 3, 0\}$; if $v_4 \sim v_5$, then $G = K_5 - P_4$, whose Smith normal form is diag $\{1, 1, 1, 21, 0\}$. Impossible.

If case 7 occurs, then from the above argument, we know that only its subcase

1 occurs. Note that
$$\det(L[1,2,3|1,4,5]) = \begin{vmatrix} d_1 & -1 & -1 \\ 0 & -1 & -1 \\ -1 & 0 & -1 \end{vmatrix} = d_1 \le n-2$$
 and

1 occurs, then from the above argument, we know that only its subcase 1 occurs. Note that
$$\det(L[1,2,3|1,4,5]) = \begin{vmatrix} d_1 & -1 & -1 \\ 0 & -1 & -1 \\ -1 & 0 & -1 \end{vmatrix} = d_1 \le n-2$$
 and $\det(L[1,2,3|2,4,5]) = \begin{vmatrix} 0 & -1 & -1 \\ d_2 & -1 & -1 \\ -1 & 0 & -1 \end{vmatrix} = -d_2$, so $d_1 = d_2 = n-2$. Moreover, $\det(L[2,3,4|1,3,5]) = \begin{vmatrix} 0 & -1 & -1 \\ -1 & d_3 & -1 \\ -1 & 0 & x \end{vmatrix} = -(d_3 + 1 + x)$ and $\det(L[2,3,4|1,4,5]) = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & x \end{bmatrix}$

$$\det(L[2,3,4|1,3,5]) = \begin{vmatrix} 0 & -1 & -1 \\ -1 & d_3 & -1 \\ -1 & 0 & x \end{vmatrix} = -(d_3+1+x) \text{ and } \det(L[2,3,4|1,4,5]) =$$

$$\begin{vmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & d_4 & x \end{vmatrix} = d_4 - 1 - x \le n - 2, \text{ where } x \text{ is } 0 \text{ if } v_4 \not\sim v_5, \text{ or } -1 \text{ if } v_4 \sim v_5. \text{ If } x = 0, \text{ then } d_4 - 1 = n - 2 \text{ and it follows that } d_4 = n - 1, \text{ impossible. So } x = -1, \text{ and } d_4 - 1 = n - 2 \text{ and it follows that } d_4 = n - 1, \text{ impossible. So } x = -1, \text{ and } d_4 - 1 = n - 2 \text{ and it follows that } d_4 = n - 1, \text{ impossible. So } x = -1, \text{ and } d_4 - 1 = n - 2 \text{ and it follows that } d_4 = n - 1, \text{ impossible. So } x = -1, \text{ and } d_4 - 1 = n - 2 \text{ and it follows that } d_4 = n - 1, \text{ impossible. So } x = -1, \text{ and } d_4 - 1 = n - 2 \text{ impossible.}$$

then
$$d_3 = d_4 = n - 2$$
. For $i \ge 5$, $\det(L[1, 4, i | 2, 3, i]) = \begin{vmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & d_i \end{vmatrix} = -(d_i + 2)$.

So $n-2 \le d_5 + 2 \le n+1$.

• If $d_5+2=n+1$, then n-2 divides n+1, thus n=5 and hence $G=K_5-2e$.

- If $d_5 + 2 = n$, then n 2 divides n. Thus n = 4, a contradiction.
- If $d_5+2=n-2$, then there are further 3 vertices v_6 , v_7 and v_8 not adjacent to

$$v_5$$
. Now $\det(L[3,5,6|1,4,5]) = \begin{vmatrix} -1 & 0 & -1 \\ -1 & -1 & d_5 \\ -1 & -1 & 0 \end{vmatrix} = -d_5 = n-4$. Now $n-4$ divides

n-2, it follows that n=5, or 6. Impossible.

If case 8 occurs, then its subcase 1 occurs and subcase 2 does not. Then we only need to deal with *subcase* 1 of *case* 7, it has been done.

With the aid of Maple, we obtain the Smith normal forms of the graphs $K_{2,3}$, K_5-C_3 , K_6-C_3 , K_7-2C_3 , $K_{3,3}$ and $K_7-K_{3,3}$ as follows: $F(K_{2,3}) = \text{diag}(1,1,2,6,0)$, $F(K_5-C_3) = \operatorname{diag}(1,1,2,10,0), F(K_6-C_3) = \operatorname{diag}(1,1,3,6,18,0), F(K_7-2C_3) = \operatorname{diag}(1,1,2,10,0), F(K_6-C_3) = \operatorname{diag}(1,1,2,10,0), F$ $(1, 1, 4, 4, 4, 28, 0), F(K_{3,3}) = \operatorname{diag}(1, 1, 3, 3, 9, 0), F(K_7 - K_{3,3}) = \operatorname{diag}(1, 1, 4, 4, 4, 4, 0).$ In the following, we will prove that if $s_3 = n - 3$ then G must be one of these 6 graphs.

By the above argument, we know that cases 1, 3, 5 can not occur.

If case 2 occurs, then $\det(L[1,2,3|2,3,4]) = d_2$, $\det(L[1,2,3|1,3,4]) = d_1$ and $\det(L[2,3,4|1,3,4]) = -d_4$. Hence $d_1 = d_2 = d_4 = n-3$. Consider the number of vertices with degree n-1, we distinguish 3 subcases.

Subcase 1. G has at least 3 vertices with degree n-1, then L(G) has a submatrix $L_1 = \begin{pmatrix} (n-3)I_3 & -J_3 \\ -J_3 & nI_3-J_3 \end{pmatrix}$, where I_3 is the 3×3 identity matrix, J_3 is the

 3×3 all 1's matrix. Note that $\det(L_1[1,4,6|2,4,5]) = \begin{vmatrix} 0 & -1 & -1 \\ -1 & n-1 & -1 \\ -1 & -1 & -1 \end{vmatrix} = -n$. So

n-3 divides n, it follows that n=6 and hence $G=K_6$

Subcase 2. G has 1, or 2 vertices with degree n-1.

- If n = 5, then clearly, $G = K_5 C_3$.
- If $n \geq 6$, then suppose $v_i \not\sim v_j$, where $v_i, v_j \in V(G)/\{v_1, v_2, v_4\}$. L(G) has

a submatrix
$$L_2 = \begin{pmatrix} (n-3)I_3 & -J_3 \\ -J_3 & B \end{pmatrix}$$
, where $B = \begin{pmatrix} d_i & 0 & -1 \\ 0 & d_j & -1 \\ -1 & -1 & n-1 \end{pmatrix}$. Then

$$|\det(L_2[1,4,6|2,4,5])| = \begin{vmatrix} 0 & -1 & -1 \\ -1 & d_i & 0 \\ -1 & -1 & -1 \end{vmatrix} = d_i \le n-2. \text{ So } d_i = n-3. \text{ In the same way, we can get } d_j = n-3. \text{ Thus the vertices of } G \text{ share two degrees: } n-1 \text{ or } n-3. \det(L_2[2,4,6|3,5,6]) = \begin{vmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & n-1 \end{vmatrix} = -(n+1). \text{ Hence } n-3 \text{ divides } n+1 \text{ then } n-7 \text{ and it follows that } G=K_2-2G_2$$

$$n-3. \det(L_2[2,4,6|3,5,6]) = \begin{vmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & n-1 \end{vmatrix} = -(n+1). \text{ Hence } n-3 \text{ divides}$$

n+1, then n=7 and it follows that $G=K_7$

Subcase 3. G has no vertex with degree n-1.

- If n = 5, clearly $G = K_5 C_3 e = K_{2,3}$.
- If n = 6, clearly $G = K_6 2C_3 = K_{3,3}$.
- If $n \geq 7$, then L(G) has a principal submatrix $L_3 = \begin{pmatrix} (n-3)I_3 & -J_{3\times 4} \\ -J_{4\times 3} & C \end{pmatrix}$,

where
$$C = \begin{pmatrix} d_i & 0 & y_1 & y_3 \\ 0 & d_j & y_2 & y_4 \\ y_1 & y_2 & d_u & y_5 \\ y_3 & y_4 & y_5 & d_v \end{pmatrix}$$
 with $y_i = 0$ or -1 . Note that $\det(L_3[1, 4, 7|3, 5, 6]) = 0$

 $y_1 + y_4 - y_5$, $\det(L_3[2, 4, 6|3, 5, 7]) = y_2 + y_3 - y_5$. Now $(n-3) \mid (y_1 + y_4 - y_5)$ and $(n-3) \mid (y_2+y_3-y_5)$, it follows that $y_1=y_2=y_3=y_4=y_5=0$ and hence

$$d_i \le n - 4$$
. Now $\det(L_4[1, 4, 7|3, 4, 6]) = \begin{vmatrix} 0 & -1 & -1 \\ -1 & d_i & 0 \\ -1 & 0 & 0 \end{vmatrix} = -d_i$. Therefore $n - 3$

divides d_i . But $d_i \leq n-4$, so it is impossible.

If case 4 occurs, then $|\det(L[1,2,3|2,3,4])| = d_2 + 1$. Therefore we have $n-3 \le d_2+1 \le n-1$. If $d_2+1 = n-1$, then n-3 divides n-1, thus n=5 and $d_2=n-2=3$. So v_5 must be in case 4. If $v_4\sim v_5$, then $G=v\cdot K_4$, whose $F(G)=\operatorname{diag}(1,1,4,4,0)$. It is impossible. If $v_4 \not\sim v_5$, then a direct calculation can show $F(G)=\operatorname{diag}(1,1,1,8,0)$, it is a contradiction. So $d_2+1=n-3$. There must be some vertex v_5 in case 6 and hence we have $-\det(L[1,2,3|1,3,5]) =$

$$-\begin{vmatrix} d_1 & -1 & -1 \\ 0 & -1 & 0 \\ -1 & d_3 & -1 \end{vmatrix} = d_1 + 1 \le n - 1, \text{ so } d_1 = n - 4. \text{ Then there are two vertices } v_6$$

and v_7 such that v_7 together with v_5 are in case 6, and v_6 together with v_4 are in

and
$$v_7$$
 such that v_7 together with v_5 are in case 6, and v_6 together with v_4 are in case 4. Then $-\det(L[1,2,3|3,6,7]) = -\begin{vmatrix} -1 & 0 & -1 \\ -1 & -1 & 0 \\ d_3 & -1 & -1 \end{vmatrix} = d_3 + 2$. Thus we have that $n-3$ divides d_3+2 and $n-3 \le d_3+2 \le n+1$.

• If $d_3+2=n+1$, then $n=7$. Note that $\det(L[1,2,4|1,3,5]) = \begin{vmatrix} n-4 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & -1 & x \end{vmatrix} = \frac{n-4}{n-1}$

• If
$$d_3+2=n+1$$
, then $n=7$. Note that $\det(L[1,2,4|1,3,5])=\begin{vmatrix} n-4 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & -1 & x \end{vmatrix}=$

-x(n-4), where x = -1, or 0. Since $(n-3) \mid -x(n-4)$ then x = 0. So v_4 In the same way, we can see that $v_4 \not\sim v_7$, $v_5 \not\sim v_6$ and $v_7 \not\sim v_6$. So there is no edges between the vertices v_1, v_5, v_7 and v_2, v_4, v_6 . Moreover, we have $d_5 \leq n-4$.

Note that
$$\det(L[2,3,5|3,5,7]) = \begin{vmatrix} -1 & 0 & 0 \\ -1 & -1 & -1 \\ -1 & d_5 & y \end{vmatrix} = y - d_5$$
, where $y = -1$, or 0. From

 $(n-3) \mid (y-d_5)$, we can get $d_5 = n-4$ and y=-1. So $v_5 \sim v_7$. In the same way, we can get $v_4 \sim v_6$. Thus $G = K_7 - K_{3,3}$ (See Fig.1).

- If $d_3 + 2 = n$ or n 1, then n = 6 or 5 respectively, impossible.
- If $d_3 + 2 = n 3$, then $d_3 = n 5$. Then there exists a vertex v_8 such that

 $v_1 \sim v_8, \ v_2 \sim v_8 \ \text{and} \ v_3 \not\sim v_8.$ Thus we have $\det(L[1,2,3|6,7,8]) = \begin{vmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{vmatrix}$

-2. From (n-3)|2 we get n=5. Impossible.

Now we assume that *case* 7 occurs. We know only its subcase 1 and subcase2

may occur. If its subcase 1 occurs, then $\det(L[1,2,3|1,4,5]) = \begin{vmatrix} d_1 & -1 & -1 \\ 0 & -1 & -1 \\ -1 & 0 & -1 \end{vmatrix} =$

 $d_1 = n - 2$. So n - 3 divides n - 2, impossible. If its subcase 2 occurs, if we regard the vertices v_4 as v_1 , v_5 as v_2 , v_1 as v_3 , v_3 as v_4 , then we are back in case 2. The required graphs have been determined.

If case 8 occurs, then only its subcase 1 may occur. Of course, we are back in the subcase 1 of case 7 and the required graphs have been determined.

References

- [1] D. J. Lorenzini, A finite group attached to the Laplacian of a graph, Discrete Math. **91** (1991), 277-282.
- [2] R. Merris, Unimodular Equivalence of Graphs, Linear Algebra Appl. 173 (1992), 181-189.
- [3] Merris R. Laplacian Matrices of Graphs: A Survey, Linear Algebra Appl. 197, **198** (1994), 143-176.