HIDDEN SYMMETRIES IN NAVIER-STOKES INTERMITTENCY.

ArXiv: https://arxiv.org/abs/2105.09403

Simon Thalabard
Institut de Physique de Nice
Université Côte d'Azur

Joint work with Alexei Mailybaev Instituto de Matemática Pura e Aplicada

LAYOUT

1. Classical symmetries

2. Navier-Stokes under dynamical rescaling

3. Hidden symmetries

Navier-Stokes in \mathbb{R}^3

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \nu \Delta \mathbf{u} + \mathbf{f}, \quad \nabla \cdot \mathbf{u} = \mathbf{0}.$$

Symmetries

	parameters	$t\mapsto$	$x\mapsto$	$u\mapsto$	$\nu \mapsto$	$f\mapsto$
Galilean	$\textbf{u}_0 \in \mathbb{R}^3$	t	$\mathbf{x} + t\mathbf{u}_0$	$\mathbf{u} + \mathbf{u}_0$	ν	f
Translation	$\Delta t \in \mathbb{R}, \; \Delta \mathbf{x} \in \mathbb{R}^3$	$t + \Delta t$	$\mathbf{x} + \Delta \mathbf{x}$	u	ν	f
Rotation	$\mathbf{O} \in \mathrm{SO}(3)$	t	Ox	Ou	ν	Of
Scaling	$h, \lambda > 0$	$\lambda^{1-h}t$	$\lambda \mathbf{x}$	$\lambda^h \mathbf{u}$	$\lambda^{1+h}\nu$	$\lambda^{1+2h}\mathbf{f}$

e.g.

$$\mathbf{u}'(\mathbf{x}',t') := \lambda^h \mathbf{u}\left(\frac{\mathbf{x}'}{\lambda},\frac{t'}{\lambda^{1-h}}\right) \quad \text{ solves } \quad \partial_{t'}\mathbf{u}' + \mathbf{u}' \cdot \nabla' \mathbf{u}' + \nabla' \rho' = \nu' \Delta' \mathbf{u}' + \mathbf{f}', \quad \nabla' \cdot \mathbf{u}' = 0.$$

Statistical symmetries:

Rotation : \checkmark Translation : \checkmark Scaling : \times

INTERMITTENCY: Spontaneous breaking of scale invariance

Multi-fractals: Range of scaling exponents $h \in (h_{\min}, h_{\max})$

$$\left\langle \Delta \mathbf{u}_{\parallel}^{
ho}
ight
angle = \int_{h_{\mathsf{min}}}^{h_{\mathsf{max}}} \overset{\propto \ell^{3-D(h)}}{\mathsf{d}\mu} \left(h
ight) \left\langle \Delta \mathbf{u}_{\parallel}^{
ho}
ight
angle_{\mathcal{S}_h} \propto \ell^{\zeta_{
ho}}$$

Extrinsic: Scale-invariance of the normalized increments

$$\frac{u_k(\mathbf{x} + \ell \mathbf{X}) - u_k(\mathbf{x}, t)}{\ell^{1/3} \epsilon_\ell^{1/3}(\mathbf{x})}, \quad \epsilon_\ell(\mathbf{x}) := \left\langle \nu \| \nabla \mathbf{u} \|^2 \right\rangle_{\mathcal{B}(\mathbf{x}, \ell)} \quad \text{(local dissipation)}$$

Intrinsic: Scale-invariance of the multipliers

$$w_{ij,k}(\mathbf{x},t;\ell_1,\ell_2) := \frac{u_k(\mathbf{x}+\ell_1\mathbf{e}_i,t)-u_k(\mathbf{x},t)}{u_k(\mathbf{x}+\ell_2\mathbf{e}_i,t)-u_k(\mathbf{x},t)}.$$

Can one explicitly relate refined self-similarity to non-degenerate symmetries?

LAYOUT

1. Classical symmetries

2. Navier-Stokes under dynamical rescaling

3. Hidden symmetries

NAVIER-STOKES UNDER DYNAMICAL RESCALING

$t, \mathbf{x}, \mathbf{u} \mapsto \tau, \mathbf{X}, \mathbf{U}$

1. Space rescaling in quasi-Lagrangian frame

$$\mathbf{U}(\mathbf{X},\tau;\mathbf{x}_0,\ell) := \frac{\Delta \mathbf{u}_\ell(\mathbf{x}_*(t;\mathbf{x}_0),\mathbf{X},t)}{A_\ell(\mathbf{x}_*(t),t)}$$

2. Proper time
$$d\tau:=rac{dt}{T_\ell(x_*(t),t)}, \qquad T_\ell(\mathbf{x},t):=rac{\ell}{A_\ell(\mathbf{x},t)}$$

Consider inertial range dynamics

$$\ell \ll 1$$
 $\ell \gg rac{
u}{A_\ell(\mathbf{x}_*,t)}$ ("local Kolmogorov scale")

Then the rescaled dynamics become the rescaled Euler system

$$\partial_{\tau} \mathbf{U} + \Lambda_{\mathbf{U}} [\mathbf{U} \cdot \nabla \mathbf{U} + \nabla P] = 0, \quad \nabla \cdot \mathbf{U} = 0,$$

where

$$\Lambda_{\mathbf{U}}[\mathbf{V}] = \mathbf{V} - \mathbf{V}(0) - \mathbf{U}(\cdot, \tau) \left(\left. \frac{\delta \mathcal{A}}{\delta \mathbf{V}} \right|_{\mathbf{U}(\cdot, \tau)} \cdot (\mathbf{V} - \mathbf{V}(0)) \right)$$

LAYOUT

1. Classical symmetries

2. Navier-Stokes under dynamical rescaling

3. Hidden symmetries

$$\label{eq:continuity} \partial_{\tau} \boldsymbol{U} + \boldsymbol{\Lambda}_{\boldsymbol{U}} \left[\boldsymbol{U} \cdot \nabla \boldsymbol{U} + \nabla P \right] = \boldsymbol{0}, \quad \nabla \cdot \boldsymbol{U} = \boldsymbol{0},$$

Explicit symmetries

	parameters	$\tau \mapsto$	$X\mapsto$	U →
Rotation	$\mathbf{O} \in \mathrm{SO}(3)$	au	ОХ	OU
Time translation	$\Delta au \in \mathbb{R}$	$\tau + \Delta \tau$	X	U

"Hidden" symmetries

	parameters	$\tau \mapsto$	$X\mapsto$	$U\mapsto$
Hidden translation	$\mathbf{X}_0 \in \mathbb{R}^3$	$\widetilde{ au}$	X	ũ
Hidden scaling	$\lambda > 0$	au'	X	U′

HIDDEN SCALING SYMMETRY

$$\partial_{\tau} \mathbf{U} + \Lambda_{\mathbf{U}} \left[\mathbf{U} \cdot \nabla \mathbf{U} + \nabla P \right] = 0, \quad \nabla \cdot \mathbf{U} = 0,$$

Observation

The rescaled Euler dynamics for $\mathbf{U}(\mathbf{X}, \tau; \ell, \mathbf{x}_0)$ is invariant under the change of averaging scale $\ell \mapsto \ell/\lambda$.

Proposition

Under the change $\ell \mapsto \ell/\lambda$, the proper variables transform as

$$\tau, X, U \mapsto \tau', X, U'$$

for
$$\mathbf{U}'(\mathbf{X}, \tau') := \frac{\mathbf{U}_{\lambda}(\mathbf{X}, \tau)}{\mathcal{A}[\mathbf{U}_{\lambda}(\cdot, \tau)]}, \quad \tau' := \lambda \int_{0}^{\tau} \mathcal{A}[\mathbf{U}_{\lambda}(\cdot, s)] ds$$

where
$$\mathbf{U}_{\lambda}(\mathbf{X}, au) := \mathbf{U}\left(rac{\mathbf{X}}{\lambda}, au
ight)$$

$\mathbf{Symmetries}: \textbf{From old to new}$

Symmetries for original Euler

$$t, \mathbf{x}, \mathbf{u}$$
 $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0$

	parameters	$t\mapsto$	$\mathbf{x}\mapsto$	$\mathbf{u}\mapsto$
Rotation	$O \in SO(3)$	t	Ox	Ou
Time translation	$\Delta t \in \mathbb{R},$	$t+\Delta t$	\mathbf{x}	u
Galilean	$\mathbf{u}_0 \in \mathbb{R}^3$	t	$\mathbf{x} + t\mathbf{u}_0$	$\mathbf{u} + \mathbf{u}_0$
Space translation	$\Delta \mathbf{x} \in \mathbb{R}^3$	t	$\mathbf{x} + \Delta \mathbf{x}$	\mathbf{u}
Scaling	$h, \lambda > 0$	$\lambda^{1-h}t$	$\lambda \mathbf{x}$	$\lambda^h \mathbf{u}$

Symmetries for rescaled Euler

$$\tau, \mathbf{X}, \mathbf{U}$$

$$\partial_{\tau}\mathbf{U} + \Lambda_{\mathbf{U}}\left[\mathbf{U}\cdot\nabla\mathbf{U} + \nabla P\right] = 0$$

	parameters	$\tau \mapsto$	$\mathbf{X} \mapsto$	$\mathbf{U}\mapsto$	
Rotation Time translation	$\mathbf{O} \in SO(3)$ $\Delta \tau \in \mathbb{R}$		OX X	OU U	
Hidden translation	$\mathbf{X}_0 \in \mathbb{R}^3$	$\widetilde{ au}$	X	Ũ	
Hidden scaling	$\lambda > 0$	τ'	X	\mathbf{U}'	
4 parameters					

Proposition: Hidden scaling fuses multi-fractal scaling

$$t, \mathbf{x}, \mathbf{u} \longrightarrow \lambda^{1-h}t, \lambda \mathbf{x}, \lambda^h \mathbf{u}$$

$$\downarrow^{\mathbf{x}_0} \downarrow \qquad \qquad \downarrow^{\lambda \mathbf{x}_0} \downarrow^{\lambda}$$

$$\tau, \mathbf{X}, \mathbf{U} \longrightarrow \tau', \mathbf{X}, \mathbf{U}'$$

Implication for turbulence (Conjecture)

In the inertial range, hidden scaling symmetry may hold although scaling symmetry in the usual sense is broken.

STATISTICAL HIDDEN SYMMETRY: Plausibility

Numerical tests : 4,096³, $L/\eta \sim 450$

$$\mathcal{A}[\mathbf{V}] = |V_{\parallel}(\mathbf{e})|$$

$$\lambda = 4$$

$$\lambda = 4$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.3$$

$$0.2$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0$$

Côte d'Azur Turbulent Database

HIDDEN SYMMETRIES IN NS INTERMITTENCY: Summary

1. Dynamical rescaling

$$\partial_{\tau} \mathbf{U} + \Lambda_{\mathbf{U}} \left[\mathbf{U} \cdot \nabla \mathbf{U} + \nabla P \right] = 0$$

2. Fusing old into hidden symmetries

$$\begin{array}{cccc} t, \mathbf{x}, \mathbf{u} & & \longrightarrow & \lambda^{1-h}t, \lambda \mathbf{x}, \lambda^h \mathbf{u} \\ & & & & \downarrow^{\lambda \mathbf{x}_0} \\ t & & & & \downarrow^{\lambda \mathbf{x}_0} \\ \tau, \mathbf{X}, \mathbf{U} & & \xrightarrow{\ell \mapsto \ell/\lambda} & & \tau', \mathbf{X}, \mathbf{U}' \end{array}$$

3. Statistical hidden scaling symmetry

Extended story:

Phil. Trans. Roy. Soc. A 2022

https://arxiv.org/abs/2105.09403