Log-Gaussian Cox Process for London crime data

Jan Povala

May 3, 2018

Outline

Motivation

Methodology

Results

Next steps

Motivation

Burglary

Motivation

Theft from the person

Motivation

Outline

Motivation

Methodology

Results

Next steps

Methodology 5

Cox Process

Cox process is a natural choice for an environmentally driven point process. (Diggle et al., 2013)

Definition

Cox process is defined by two postulates:

- 1. $\Lambda = \{\Lambda(x) : x \in \mathbf{R}^2\}$ is a nonnegative-valued stochastic process;
- 2. conditional on the realisation $\Lambda(x) = \lambda(x) : x \in \mathbb{R}^2$, the point process is an inhomogeneous Poisson process with intensity $\lambda(x)$.

Methodology 6

Log-Gaussian Cox Process

ightharpoonup Cox process with intensity driven by a Gaussian Process f(x):

$$\Lambda(\boldsymbol{x}) = \exp{(f(\boldsymbol{x}))}.$$

- Tractability of multivariate Normal distribution carries over to the associated Cox process.
- A common approach for analysis is to introduce a grid over the domain X.

Field inference - Laplace Approximation

Flaxman et al. (2015)

▶ Approximate the posterior distribution of the Gaussian Process by:

$$p(\mathbf{f}|\mathbf{y},X) \approx \mathcal{N}\left(\hat{\mathbf{f}}, -\left(\nabla \nabla \Psi(\mathbf{f})|_{\hat{\mathbf{f}}}\right)^{-1}\right),$$

where $\Psi(\mathbf{f}) := \log p(\mathbf{f}|\mathbf{y}, X) \stackrel{\text{const}}{=} \log p(\mathbf{y}|\mathbf{f}) + \log p(\mathbf{f}|X)$ is unormalised log posterior.

Newton's method to find $\hat{\mathbf{f}}$.

Field inference - Newton Optimisation

Flaxman et al. (2015)

► The Newton optimisation step:

$$\mathbf{f}^{\mathsf{new}} \leftarrow \mathbf{f}^{\mathsf{old}} - (\nabla \nabla \Psi)^{-1} \, \nabla \Psi$$

▶ $\nabla\nabla\Psi$ and $\nabla\Psi$ require inverting the covariance matrix of the GP:

$$\nabla \Psi(\mathbf{f}) = \nabla \log p(\mathbf{y}|\mathbf{f}) - K^{-1}\mathbf{f}$$
$$\nabla \nabla \Psi(\mathbf{f}) = -\mathbf{W} - \mathbf{K}^{-1},$$

where $W \coloneqq -\nabla\nabla \log p(\mathbf{y}|\mathbf{f})$.

Hyperparameters - Marginal Likelihood

Flaxman et al. (2015)

- ▶ Not the whole story: $p(\mathbf{f}|X)$ should be $p(\mathbf{f}|X, \boldsymbol{\theta})$, where \boldsymbol{K} depends on $\boldsymbol{\theta}$.
- Marginal log-likelihood:

$$\log p(\mathbf{y}|X, \boldsymbol{\theta}) = \log \int \exp \left[\Psi(\mathbf{f})\right] d\mathbf{f}$$
$$\approx \log p(\mathbf{y}|\hat{\mathbf{f}}) - \frac{1}{2} \mathbf{f}^{\top} K^{-1} \mathbf{f} - \frac{1}{2} \log |\mathbf{I} + \mathbf{K} \mathbf{W}|$$

Methodology 10

Computation

Flaxman et al. (2015)

The computatios require matrix inverse, matrix determinant, and matrix-vector multiplications:

- \triangleright Conjugate gradient for inverting K, exploiting Kronecker structure
- ▶ Determinant approximation due to Fiedler (1971):

$$\log |\boldsymbol{I} + \boldsymbol{K} \boldsymbol{W}| = \log \left(|\boldsymbol{K} + \boldsymbol{W}^{-1}| |\boldsymbol{W}| \right)$$

$$\leq \log \left\{ \prod_{i} \left(e_i + W_{ii}^{-1} \right) \prod_{i} W_{ii} \right\}$$

$$= \sum_{i} \log \left(1 + e_i W_{ii} \right),$$

where e_1, \ldots, e_n are sorted eigenvalues of K.

▶ Matrix-vector multiplication are efficient due to Kronecker structure.

Methodology 11

Separable kernels, Kronecker methods

Flaxman et al. (2015)

► Separable kernel functions:

$$k((x_1, y_1), (x_2, y_2)) = k_1(x_1, x_2)k_2(y_1, y_2)$$

► On a regular grid, we get:

$$K = K_1 \otimes K_2$$

Outline

Motivation

Methodology

Results

Next steps

Experiment

Spatial model with isotropic Matérn covariance function:

▶ Dataset used: 2016 data

► Crime types: Burglary, Theft from the person

▶ Grid: 117x91, one cell is an area of 500m by 500m.

▶ Two parameters inferred: lengthscale(ℓ), marginal variance (σ^2)

Burglary - inferred parameters

Inferred parameters: $\ell = 1.45$, and $\sigma^2 = 4.32$

Burglary - counts

Burglary - latent field

Theft from the person - inferred parameters

Inferred parameters: $\ell = 1.11$, and $\sigma^2 = 2.80$

Theft from the person - counts

Theft from the person - latent field

Outline

Motivation

Methodology

Results

Next steps

Next steps 21

Time component, and predictions

Possible options are:

► A kernel with period of 12 months for seasonal variation (Flaxman, 2014):

$$k_P(t, t') = \exp\left(-\frac{2\sin^2\left(\frac{(t-t')\pi}{12}\right)}{\ell^2}\right)$$

▶ Spectral mixture kernel with *Q* components (Flaxman et al., 2015):

$$k(\tau) = \sum_{q=1}^{Q} w_q \exp\left(-2\pi^2 \tau^2 v_q\right) \cos\left(2\pi\tau\mu_q\right)$$

Next steps 22

Stochastic PDEs

- ► Finite Element Method to solve SPDEs as described in Lindgren, Rue, and Lindström (2011).
- ► Sigrist, Künsch, and Stahel (2015) solve transport-diffusion SPDE using spectral methods on a grid.

More on this from Seppo.

Next steps 23

Bibliography I

Fiedler, Miroslav (1971). "Bounds for the Determinant of the Sum of Hermitian Matrices". In: *Proceedings of the American Mathematical Society* 30.1, p. 27. ISSN: 00029939. DOI: 10.2307/2038212. URL: http://www.jstor.org/stable/2038212?origin=crossref.

Flaxman, Seth et al. (2015). "Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods". In: Proceedings of the 32nd International Conference on International Conference on Machine Learning. Vol. 37. ICML'15. Lille, France: JMLR.org, pp. 607–616.

Bibliography 24

Bibliography II

Flaxman, Seth R. (2014). A General Approach to Prediction and Forecasting Crime Rates with Gaussian Processes. Tech. rep. Heinz College Technical Report, 2014. URL https://www.ml.cmu.edu/research/dap-papers/dap_flaxman.pdf.

Lindgren, Finn, Håvard Rue, and Johan Lindström (2011). "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach". en. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73.4, pp. 423–498. ISSN: 1467-9868. DOI: 10.1111/j.1467-9868.2011.00777.x. URL: http://onlinelibrary.kiley.com/doi/10.1111/j.1467-

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2011.00777.x/abstract.

Bibliography 25

Bibliography III

Sigrist, Fabio, Hans R. Künsch, and Werner A. Stahel (2015). "Stochastic partial differential equation based modelling of large space-time data sets". en. In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 77.1, pp. 3–33. ISSN: 13697412. DOI: 10.1111/rssb.12061. URL: http://doi.wiley.com/10.1111/rssb.12061.

Wilson, Andrew Gordon et al. (2014). "Fast Kernel Learning for Multidimensional Pattern Extrapolation". In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. NIPS'14. Cambridge, MA, USA: MIT Press, pp. 3626–3634. URL: http://dl.acm.org/citation.cfm?id=2969033.2969231.

Bibliography 26

Matérn Covariance Function

$$k(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}r}{\ell}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}r}{\ell}\right)$$

We use $\nu=2.5$.

Inference Newton step details

Extra slides 28

Kronecker Algebra

Extra slides 29

Incomplete grids

Wilson et al. (2014)

We have that $y_i \sim \operatorname{Poisson}(f_i)$. For the points of the grid that are not in the domain, we let $y_i \sim \mathcal{N}(f_i, \epsilon^{-1})$ and $\epsilon \to 0$. Hence,

$$p(\mathbf{y}|\mathbf{f}) = \prod_{i \in \mathcal{D}} \frac{\left(e^{\mathbf{f}_i}\right)^{\mathbf{y}_i} e^{-e^{\mathbf{f}_i}}}{\mathbf{y}_i!} \prod_{i \notin \mathcal{D}} \frac{1}{\sqrt{2\pi\epsilon^{-1}}} e^{\frac{-\epsilon(\mathbf{y}_i - \mathbf{f}_i)^2}{2}}$$

The log-likelihood is thus:

$$\sum_{i \in \mathcal{D}} \left[\mathsf{y}_i \mathsf{f}_i - \exp(f_i) + \mathsf{const} \right] - \frac{1}{2} \sum_{i \notin \mathcal{D}} \epsilon(\mathsf{y}_i - \mathsf{f}_i)^2$$

We now take the gradient of the \log of the likelihood as

$$\nabla \log p(\mathbf{y}|\mathbf{f})_i = \begin{cases} \mathbf{y}_i - \exp(\mathbf{f}_i), & \text{if } i \in \mathcal{D} \\ \epsilon(\mathbf{y}_i - \mathbf{f}_i), & \text{if } i \notin \mathcal{D} \end{cases}$$

and the hessian of the log-likelihood as

$$\nabla\nabla \log p(\mathbf{y}|\mathbf{f})_{ii} = \begin{cases} -\exp(\mathsf{f}_i), & \text{if } i \in \mathcal{D} \\ -\epsilon & \text{if } i \notin \mathcal{D} \end{cases}.$$