MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2013 SOLUTION KEY

Round 5

A) $\frac{|n|}{n} = \pm 1$ depending on whether *n* is positive or negative.

$$\sum_{n=-1}^{n=2013} y = -1 + c + 2013(1) = 2012 + c = 0 \implies c = -2012.$$

B)
$$|2x+1| > |x-5| \Leftrightarrow \sqrt{(2x+1)^2} > \sqrt{(x-5)^2}$$

If A > B and A, $B \ge 0$, then $A^2 > B^2$. Since each radical represents a nonnegative quantity, we can square both sides.

$$(2x+1)^2 > (x-5)^2 \Leftrightarrow 4x^2 + 4x + 1 > x^2 - 10x + 25$$

$$3x^2 + 14x - 24 = (3x - 4)(x + 6) > 0$$

Both factors are positive for $x > \frac{4}{3}$ and both factors are negative for x < -6.

Therefore, we have x < -6 or $x > \frac{4}{3}$.

Alternate Solution:
$$2x+1 > -x+5 \Rightarrow 3x > 4 \Rightarrow x > \frac{4}{3}$$
 or $-2x-1 > -x+5 \Rightarrow -6 > x$

C) For $\frac{60}{13} < x < 5$, each of the fractions is positive.

For this sequence of fractions to be in increasing order the sequence of denominators must be in decreasing order, i.e. x + 5 > 13x - 60 and 13x - 60 > 5 - x

$$\Rightarrow 12x < 65 \text{ and } 14x > 65 \Rightarrow \frac{65}{14} < x < \frac{65}{12}$$

Since both conditions must hold, we must take the intersection of the two intervals.

Clearly,
$$\frac{65}{12} > 5$$
, but which is larger $\frac{60}{13}$ or $\frac{65}{14}$.

We can decide by cross multiplying and comparing the products.

[Note: For any positive numbers a, b, c and $d, \frac{a}{b} > \frac{c}{d} \leftrightarrow ad > bc$.]

$$60(14) = 840 \text{ and } 65(13) = 5(13)^2 = 5(169) = 845 \Rightarrow \frac{65}{14} > \frac{60}{13} \Rightarrow \frac{65}{14} < x < 5$$

