

Operații cu relații

Fie A, B, C mulțimi.

▶ Dacă $R \subseteq A \times B$, atunci relația inversă $R^{-1} \subseteq B \times A$ este definită astfel:

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}.$$

▶ Dacă $R \subseteq A \times B$ și $Q \subseteq B \times C$, atunci compunerea lor $Q \circ R \subseteq A \times C$ este definită astfel:

$$Q \circ R = \{(a, c) \mid \text{ există } b \in B \text{ a.î. } (a, b) \in R \text{ și } (b, c) \in Q\}.$$

▶ Diagonala lui A este $\Delta_A = \{(a, a) \mid a \in A\}$.

Exercițiu

- Compunerea relaţiilor este asociativă.
- ▶ Dacă $R \subseteq A \times B$ atunci $R \circ \Delta_A = R$ și $\Delta_B \circ R = R$.

Funcții

Notații: Fie $f: A \rightarrow B$ o funcție, $X \subseteq A$ și $Y \subseteq B$.

- ▶ $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f; f(A) este imaginea lui f.
- ▶ $f^{-1}(Y) = \{x \in X \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.

Definitie

Fie $f: A \rightarrow B$ o funcție

- ▶ f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- ▶ f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- ► f este bijectivă dacă f este injectivă și surjectivă.

Definiție

O funcție este un triplet (A, B, R), unde A și B sunt mulțimi, iar $R \subseteq A \times B$ este o relație cu proprietatea că pentru orice $a \in A$ există un unic $b \in B$ cu $(a, b) \in R$.

Vom nota o funcție (A, B, R) prin $f: A \to B$, simbolul f având următoarea semnificație: fiecărui element $x \in A$ îi corespunde un singur element $f(x) \in B$ a.î. $(x, f(x)) \in R$.

Spunem că $f: A \to B$ este definită pe A cu valori în B, A se numește domeniul de definiție al funcției f și B se numește domeniul valorilor lui f.

Notație: B^A este mulțimea funcțiilor de la A la B.

Definiție

O funcție parțială de la A la B este o funcție $f: C \to B$, unde C este o submulțime a lui A.

Funcții

Fie $f:A\to B$ și $g:B\to C$ două funcții. Compunerea lor $g\circ f$ este definită astfel:

$$g \circ f : A \to C$$
, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

Funcția identică a lui A: 1_A : $A \rightarrow A$, $1_A(x) = x$.

Definiție

O funcție $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

Exercițiu. O funcție este bijectivă ddacă este inversabilă.

Definiție

Spunem că A este echipotentă cu B dacă există o bijecție $f:A\to B$. Notație: $A\sim B$.

Exercițiu. A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A și B sunt echipotente.

Fie I o multime nevidă.

Fie A o multime. O familie de elemente din A indexată de I este o funcție $f: I \to A$. Notăm cu $(a_i)_{i \in I}$ familia $f: I \to A$, $f(i) = a_i$ pentru orice $i \in I$. Vom scrie și $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$.

Fie $(A_i)_{i \in I}$ o familie de submulțimi ale unei mulțimi T. Reuniunea și intersecția familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

Fie *n* număr natural, n > 1, $I = \{1, ..., n\}$ și $A_1, ..., A_n \subset T$.

- $(x_i)_{i \in I} = (x_1, \dots, x_n), \text{ un } \underbrace{n\text{-tuplu (ordonat)}}_{n}$ $\bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \text{ și } \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$

Definiție

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^{n} A_i$.

O relație n-ară pe A este o submulțime a lui A^n . Dacă R este relație n-ară, spunem că n este aritatea lui R.

Produsul cartezian al unei familii

Fie I o mulțime nevidă și $(A_i)_{i \in I}$ o familie de mulțimi.

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Pentru orice
$$j \in I$$
, aplicația $\pi_j : \prod_{i \in I} A_i \to A_j, \quad \pi_j((x_i)_{i \in I}) = x_j$ se numește proiecție canonică a lui $\prod_{i \in I} A_i$. π_j este surjectivă.

Exercițiu. Fie I, J mulțimi nevide. Atunci

$$\bigcup_{i\in I} A_i \times \bigcup_{j\in J} B_j = \bigcup_{(i,j)\in I\times J} A_i \times B_j \text{ si } \bigcap_{i\in I} A_i \times \bigcap_{j\in J} B_j = \bigcap_{(i,j)\in I\times J} A_i \times B_j.$$

Mulțimi numărabile

Definiție

O mulțime A este numărabilă dacă este echipotentă cu $\mathbb N$.

O mulțime finită sau numărabilă se numește cel mult numărabilă.

Exemple

- \triangleright \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$ și \mathbb{Q} sunt numărabile.
- ▶ Orice submulțime infinită a lui N este numărabilă.

Proprietăți

- (i) Reuniunea unei familii cel mult numărabile de mulțimi numărabile este mulțime numărabilă.
- (ii) Produsul cartezian al unei familii cel mult numărabile de mulțimi numărabile este mulțime numărabilă.

Principiul diagonalizării

Principiul diagonalizării

Fie R o relație binară pe o mulțime A și $D \subseteq A$ definită astfel:

$$D = \{x \in A \mid (x, x) \notin R\}.$$

Pentru orice $a \in A$, definim

$$R_a = \{x \in A \mid (a, x) \in R\}.$$

Atunci D este diferit de fiecare R_a .

Dem.: Presupunem că există $a \in A$ astfel încât $D = R_a$. Sunt posibile două cazuri:

- ▶ $a \in D$. Rezultă că $(a, a) \notin R$, deci $a \notin R_a = D$. Contradicție.
- ▶ $a \notin D$. Rezultă că $(a, a) \in R$, deci $a \in R_a = D$. Contradicție.

Prin urmare, $D \neq R_a$ pentru orice $a \in A$.

Argumentul diagonal al lui Cantor

Teoremă Cantor

Nu există o bijecție între $\mathbb N$ și mulțimea $2^\mathbb N$ a părților lui $\mathbb N$, deci $2^\mathbb N$ nu este mulțime numărabilă.

Dem.: Presupunem că există o bijecție $f: \mathbb{N} \to 2^{\mathbb{N}}$. Prin urmare, $2^{\mathbb{N}}$ poate fi enumerată ca $2^{\mathbb{N}} = \{S_0, S_1, \dots, S_n, \dots, \}$, unde $S_i = f(i)$ pentru orice $i \in \mathbb{N}$. Considerăm relația binară $R \subseteq \mathbb{N} \times \mathbb{N}$ definită astfel:

$$R = \{(i,j) \mid j \in f(i)\} = \{(i,j) \mid j \in S_i\}$$

și aplicăm Principiul diagonalizării. Astfel,

$$D = \{n \in \mathbb{N} \mid (n, n) \notin R\} = \{n \in \mathbb{N} \mid n \notin S_n\},$$

$$R_i = \{i \in \mathbb{N} \mid (i, j) \in R\} = \{i \in \mathbb{N} \mid i \in S_i\} = S_i, \quad i \in \mathbb{N}$$

Deoarece $D \subseteq \mathbb{N}$ și f este bijecție, există $k \in \mathbb{N}$ a.î. $D = f(k) = S_k = R_k$. Pe de altă parte, conform Principiului diagonalizării, $D \neq R_i$ pentru orice $i \in \mathbb{N}$. Am obținut o contradicție.

Relații binare

Fie A o mulțime nevidă și $R \subseteq A^2$ o relație binară pe A. Notație: Scriem xRy în loc de $(x,y) \in R$ și $\neg(xRy)$ în loc de $(x,y) \notin R$.

Definiție

- ▶ R este reflexivă dacă xRx pentru orice $x \in A$.
- ▶ R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- ▶ R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- ► R este antisimetrică dacă pentru orice $x, y \in A$, xRy și yRx implică x = y.
- ► R este tranzitivă dacă pentru orice $x, y, z \in A$, xRy si yRz implică xRz.
- ▶ R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

Relații binare

Fie A o mulțime nevidă și R o relație binară pe A.

Definiție

R este relație de echivalență dacă este reflexivă, simetrică și tranzitivă.

Definiție

R este relație de

- ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- ordine strictă dacă este ireflexivă și tranzitivă.
- ordine totală dacă este antisimetrică, tranzitivă și totală.

Notații: Vom nota relațiile de ordine parțială și totală cu \leq , iar relațiile de ordine strictă cu <.

relațiile de ordine strictă cu <.