Introdução à Inteligência Artificial

Resumo (Teórica)

2021-2022

Índice

Tipos de ambiente	3
Ambiente Acessíveis/Não acessíveis	3
Ambientes Deterministicos/Estocásticos	3
Ambientes Episódicos/Não Episódicos	3
Ambientes Dinâmicos/Estáticos	3
Ambientes Discretos/Contínuos	4
Algoritmo Geral de Pesquisa	4
Pesquisa em Largura	4
Pesquisa em Profundidade	5
Pesquisa Uniforme	6
Pesquisa em Profundidade Limitada	6
IDS – Pesquisa por Aprofundamento Progressivo	6
Pesquisa Informada	7
Pesquisa Sôfrega	7
Pesquisa A*	8
Variantes A* - Limitação de memória	8
Problemas com Restrições	9
Melhoramento Iterativo	10
Trepa-Colinas	10
Simulated Annealing	11
Pesquisa Tabu	12
Algoritmos Genéticos	12
Método da roleta	13
Algoritmos para Jogos	14
MiniMax	14
Alpha-Beta Pruning	15
Jogo Com Elemento Sorte	16
Padas Nauranais	17

Tipos de ambiente

- Acessível
- Determinístico
- Episódico
- Dinâmico
- Discreto

Ambiente Acessíveis/Não acessíveis

Se o conjunto de sensores do agente lhe der acesso ao estado completo do ambiente. Caso contrário diz-se não acessível.

Ambientes Determinísticos/Estocásticos

O ambiente é **determinístico** se o seu próximo estado puder ser **completamente determinado** a partir do seu estado atual e da ação a executar, caso contrário diz-se **estocástico**.

Ambientes Episódicos/Não Episódicos

É **episódico** quando a tomada de decisão num determinado instante não depende de episódios anteriores.

É não episódico quando há dependência de episódios.

- Cada episódio consiste numa perceção seguida de uma ação.
- O sucesso dessa ação depende apenas do episódio atual.
- Os ambientes episódicos tendem a gerar agentes mais simples, porque estes não precisam pensar no futuro.

Ambientes Dinâmicos/Estáticos

Se o ambiente mudar enquanto tomo a decisão ele é **dinâmico**, caso contrario é **estático**.

Ambientes Discretos/Contínuos

Diz-se **discreto** quando origina series de perceções e ações perfeitamente distintas umas das outras. Caso contrario, diz-se **contínuo**.

Algoritmo Geral de Pesquisa

Uma árvore **Ar** raiz = Estado Inicial, <u>regista os caminhos gerados por aplicação</u>
<u>dos operadores</u> do problema aos nós que vão sendo expandidos.

Uma lista **NósPorExpandir** contém os nós fronteira (da árvore) a cada momento. A ordem pela qual os sucessores de um nó são inseridos numa determinada lista, determina qual a variante do AGP que se está a considerar.

Uma lista **NósExpandidos** contém os nós que já foram expandidos. Esta lista evita que o mesmo nó seja expandido várias vezes, **o que poderia gerar loops infinitos** (o mesmo nó pode ser atingidos por vários caminhos).

Pesquisa em Largura

A partir da raiz, a árvore é **expandida por níveis**. Nós que se encontrem em uma **profundidade N** são expandidos antes dos nós que se encontrem a uma **profundidade N + 1**.

Vantagens:

- Completa (procura todas as soluções possíveis e portanto encontrará a ótima, caso exista).
- Ótima (desde que o custo do caminho não seja uma função nãodecrescente da profundidade de nós – a pesquisa em largura propõe sempre como solução o que tiver menor número de nós.
 Portanto, se o custo aumentar uniformemente com a profundidade, as soluções com menos nós representam menor custo.

Desvantagens:

- Elevado custo de pesquisa complexidade temporal e exponencial.
- A pesquisa em largura tem uma complexidade temporal e espacial de O(b^d) com b = fator de ramificação e d = número de níveis da árvore (se considerarmos um fator de ramificação de 8, o número de nós expandidos é de 1+8+8^2+8^3+...+8^k
- Problemas de pesquisa cujos algoritmos têm complexidade exponencial apenas podem ser resolvidos para instâncias de pequena dimensão.

Pesquisa em Profundidade

Cada nó é expandido até ser atingido o **último nível da árvore**, <u>a menos que</u> <u>a solução seja encontrada entretanto.</u>

Características:

- Incompleta (no caso da profundidade da árvore ser infinita)
- Não Ótima (retorna uma solução qualquer e nenhuma condição pode garantir que seja a melhor)

Vantagens:

- Com fator de ramificação b e profundidade máxima d, a complexidade temporal é O(b^d), como na pesquisa em largura, porque o número total de nós a gerar é o mesmo.
- A complexidade espacial é de apenas O(b.d) porque não há
 necessidade de ter mais que b.d nós em memória simultaneamente necessita de pouca memória.

Pesquisa Uniforme

Variante da pesquisa em largura.

Expandir primeiro os nós que têm um **custo associado menor** (a expansão termina quando for encontrada uma solução e o custo acumulado dos caminhos associados aos nós que falta expandir já for superior à solução encontrada)

Garante a **solução ótima**, bastando apenas que o custo aumente com a profundidade.

- Completa
- Ótima: desde que o custo aumente com a profundidade g(Sucessor(n)) >= g(n). Se admitirmos que o custo possa diminuir com a profundidade, então seria preciso explorar toda a árvore para determinar o caminho ótimo!

Pesquisa em Profundidade Limitada

Resolve a limitação da pesquisa em profundidade de não retornar resultados em espaços de profundidade muito grande, **impondo um limite 'm'**, à profundidade máxima a atingir.

Exemplo: se um mapa contem 20 cidades, o caminho entre quaisquer duas tem de ser composto, no máximo, por 19. Logo **m = 19**.

- Completa
- Não Ótima
- Complexidade Temporal O(b^m); Complexidade Espacial O(b.m)

IDS – Pesquisa por Aprofundamento Progressivo

- Combina as pesquisas em largura e profundidade
- Evita a necessidade de se definir 'm' antecipadamente.
- Em vez de se estabelecer um só limite geral, começa por se estabelecer um limite inicial de profundidade = 0.

- Este limite vai-se alargando (1,2,3,...m) para as iterações seguintes (i.e. faz-se uma pesquisa em profundidade de nível 1, depois 2, depois 3,... mas para cada pesquisa reinicia-se o algoritmo da pesquisa em profundidade desde a raiz.
- Ótima, nas condições da pesquisa em largura (custo = função da profundidade)
 - Completa
 - Complexidade Espacial O(b.m), como a pesquisa em profundidade
 - Complexidade Temporal O(b^m), como a pesquisa em profundidade

Pesquisa Informada

Motivação: Pesquisa não informada ineficiente

Métodos do tipo "best-first" - o melhor nó é expandido primeiro (função de avaliação - heurística - do estado, retorna um valor indicativo da vantagem em expandir esse estado primeiro)

De acordo com a estrutura do AGP, cada nó sucessor é inserido ordenadamente na lista de nós a expandir EM FUNÇÃO DO VALOR DE h(n).

Pesquisa Sôfrega

- Expande-se em <u>primeiro lugar o nó que parece estar mais perto do objetivo</u>
- Em muitos problemas, pode obter-se uma estimativa do custo do caminho de um dado nó até ao objetivo - função heurística. Se h(n) = 0, o nó coincide com o objetivo. Se >= 0, o nó objetivo pode ser atingido a partir do nó n, sendo o custo estimado h(n). Se h(n) = infinito, o objetivo não pode ser atingido através do nó n.
- Complexidade temporal exponencial O(b^d), com b = fator de ramificação e d
 número de níveis da árvore (máxima profundidade do espaço).
- Complexidade espacial exponencial O(b^d).
- Complexidade temporal e espacial podem ser substancialmente reduzidas se h(n) for adequada.
- Não ótima.

Incompleta (pode seguir caminhos infinitos)

Pesquisa A*

- Combina a pesquisa uniforme com a sôfrega
- A **Uniforme** "mede" a parte inicial do percurso g(n)
- A **Sôfrega** "mede" a aparente parte restante h(n)
- Os custos do caminho provenientes de ambas podem combinar-se numa simples soma f(n) = g(n) + h(n): "mede" o custo estimado da solução que passa pelo nó n. No AGP, a inserção em NosAExpandir é feita por ordem crescente de f(n).
- A pesquisa A* é ótima e completa desde que:
 - A HEURÍSTICA UTILIZADA nunca sobestime o custo do caminho do nó
 n até ao objetivo (isto é, <u>nunca possa assumir um valor superior ao do</u>
 custo real) HEURÍSTICA ADMISSIVEL.

Variantes A* - Limitação de memória

IDA*: A* com aprofundamento progressivo "IDS para A*"

Está para a pesquisa A* como IDS está para a pesquisa em profundidade.

- No IDS, cada iteração é limitada por um nível de profundidade crescente
- No IDA* cada iteração é limitada por um valor crescente da função de custo, f(n) = g(n) + h(n)
- Para cada "limite de custo estimado", fi, "exclui" os nós cujo valor f é superior
- Pára quando atingir um nó objetivo cujo f é <= que o limite atual
- Enquanto não encontrar um objetivo nestas condições, progride para
 o limite seguinte, fi+1, que pode provir de outro nó situado à mesma
 profundidade do que proporcionou o limite anterior, fi. O IDA* é
 controlado pelo valor de f e não pela profundidade d do nó. É

- determinado na iteração i, escolhendo o menor custo estimado de entre todos os custos estimados associados aos nós por expandir
- Completa e ótima
- Por ser baseada na pesquisa em profundidade: o requerimento de memória é baixo e pode ser aproximado por b.d (b branching factor, d profundidade da solução)

SMA*: Simplified Memory Bounded A*, desenhado para não ultrapassar o limite de memória disponível para resolver um problema

- Completo e ótimo desde que a memória possibilite a sua execução completa
- Se a memória estiver toda utilizada devido às expansões efetuadas,
 "esquece" os nós menos promissores (os de valor de f mais elevado),
 usando o espaço assim libertado para o resultado de outras
 expansões
- O nó a expandir é o de menor valor de f, porém, quando se expande
 esse nó, adiciona-se-lhe apenas um sucessor por cada iteração
- Quando um nó se encontrar completamente expandido, o seu custo estiamdo, f, é atualizado com o mínimo dos valores de f dos seus nós filhos da iteração

Problemas com Restrições

Trata-se de um problema cuja solução só é válida se **satisfizer certas condições**:

- Variáveis: os seus valores finais representação a solução
- **Domínio:** Conjunto de valores que as variáveis podem assumir
- **Restrições:** atuam sobre as variáveis
- **Problema:** Assinar valores às variáveis sem violar as restrições
- Interessa determinar um "estado" final válido e não um caminho que leve a esse estado. O estado final é desconhecido e constitui a solução do problema.

- Exemplo: problema das 8 rainhas
- Um CSP pode ser resolvido por técnicas de pesquisa, contudo são geralmente ineficientes neste contexto, dado gerarem muitos estados desnecessariamente
- Algoritmos especialmente adaptados à resolução de CSPs: Hill-Climbing,
 Simulated-Annealing, Pesquisa Tabu

Melhoramento Iterativo

Não anotam estados intermédios que conduzem a uma solução, apresentando apenas a configuração válida que a compõe

Partem de uma configuração inicial completa (que viola as restrições), eventualmente gerada aleatoriamente, e melhoram-na sucessivamente até alcançarem uma solução

Trepa-Colinas

Parte de um <u>estado inicial dado ou gerado aleatoriamente</u>. Todas as variáveis com valores atribuídos.

Gera os estados sucessores do estado atual (VIZINHOS).

Através de uma função de avaliação, avalia cada estado assim gerado e escolhe o de maior valor.

Para quando o estado selecionado tiver um valor inferior ao escolhido na iteração anterior (significa que a solução "piorou" e que se está a "descer a colina" em vez de a "subir".

Problemas: um máximo local pode ser atingido sem que corresponda ao máximo absoluto (melhor solução).

Nos "planaltos" é necessário escolher uma direção aleatoriamente.

Um cume pode ter lados tão inclinados que o passo seguinte conduz ao "outro lado do cume" e não ao seu topo. Neste caso a solução poderá "oscilar" nunca atingindo o máximo pretendido.

Tentativa de resolução dos problemas relativos a atingir um ponto de não progresso: Reiniciar a pesquisa partindo de um estado inicial diferente (Random-Restart-Hill-Climbing).

Guarda o melhor resultado obtido nas pesquisas anteriores (até ao ponto de não-progresso).

Para quando atingir o número de reinícios máximo ou quando o melhor resultado guardado não for ultrapassado durante 'n' iterações (valor de 'n' é préfixado).

Variantes:

- Permitir o deslocamento ao longo de um planalto;
- First-Choice: Visita vizinhos de forma aleatória, aceita um vizinho de melhor qualidade e termina iteração (útil quando a vizinhança é grande, algoritmo não determinista)
- Random Restart (diversos pontos de partida)

Simulated Annealing

Quando encontra um máximo (pode ser apenas um local) o algoritmo prossegue "durante algum tempo" a pesquisa no sentido descendente.

Em vez de escolher sempre o estado seguinte de maior valor, escolhe-se um, aleatoriamente.

Se a sua avaliação for superior à do estado anterior, É SEMPRE ESCOLHIDO.

Se for inferior, é escolhido mas apenas com uma certa probabilidade (<1) que baixa à medida que um parâmetro 'T' tende para zero ao longo das sucessivas iterações

Quando T for muito pequeno, a escolha de estados de pior avaliação quase nunca ocorre, e o "Simulated Annealing" comporta-se (quase) como o "Hill-Climbing".

Probabilístico: resultado não determinista, deve-se executar o algoritmo mais do que uma vez.

Se o arrefecimento for "suficientemente" lento é sempre atingido o ótimo global.

Pesquisa Tabu

Durante a pesquisa, forçar a exploração de novas zonas do espaço de procura (pode assim evitar-se entrar em ciclos).

Implementação: recurso a uma memória de curta-duração (indica quais os movimentos proibidos - tabu).

Vantagens:

- Escolhe sempre o melhor vizinho, desde que seja válido, exibindo assim um comportamento determinista
- Ao aceitar soluções de pior qualidade, pode evitar ótimos locais

Desvantagens:

 Nem sempre é fácil ajustar o limite de memória e número máximo de iterações

Algoritmos Genéticos

Sub-classe da computação evolucionária, baseados na teoria da evolução de Darwin.

Funcionamento:

- **Seleção:** As "melhores hipóteses" são as de maior "aptidão". Esta aptidão é avaliada por uma função.
- Recombinação (crossover) e Mutação: Em vez de procurarem sistematicamente uma solução (hipótese h), os AGs geram hipóteses sucessoras das atuais (offspring) recombinando probabilisticamente as melhores hipóteses entre si, e "mutando" algumas outras.
- Seleção proporcional: A probabilidade da seleção de uma hipótese é proporcional ao quociente q entre a sua aptidão e a soma das aptidões restantes (as hipóteses de maior valor de q são selecionadas mais vezes)

Método da roleta

Cada hipótese de uma dada população possui uma fitness fi.

$$f1 = 1/6$$
, $f2 = 1/3$, $f3 = 1$, $f4 = 1/2$

Calculam-se os valores acumulados:

$$A = f1 = 1/6$$

$$B = f1 + f2 = 1/2$$

$$C = f1 + f2 + f3 = 3/2$$

$$D = f1 + f2 + f3 + f4 = 2$$

Normalizam-se estes valores:

A = 0.0833

B = 0.25

C = 0.75

D = 1

Gera-se um número aleatório x entre 0 e 1 e verifica-se sobre qual das hipóteses ele "cai"

Como qualquer x é igualmente provável, ele cairá mais vezes sobre a zona correspondente à hipótese que ocupa maior espaço na reta.

Seleção por torneio:

Selecionar k hipóteses (tsize) de entre a pop. De entre elas, selecionar a de maior fitness. Duas hipóteses são selecionadas aleatoriamente de entre a população. Com uma probabilidade pré definida p, a de maior aptidão é selecionada (a outra é selecionada com probabilidade (1-p)).

Seleção por Posicionamento (Ranking Selection):

As hipóteses são ordenadas de acordo com a sua aptidão, da melhor para a pior. O valor do ranking (posição depois da ordenação) é usado (em vez da aptidão) por uma função que determina a probabilidade de seleção da hipótese (o espaço que ocupará na roleta).

Recombinação:

As hipóteses são, muitas vezes, representadas por strings, o que permite uma implementação simples das operações de recombinação e mutação.

Algoritmos para Jogos

Diferenciam-se pela inclusão de um fator de incerteza devido à presença de um adversário.

Incerteza do tipo **não probabilística**: o adversário B tentará a melhor jogada para ele, o que implica a pior jogada para o oponente A. A aplicação de algoritmos de pesquisa para encontrar a melhor solução para A não funciona, pois é necessário contar com os movimentos de B.

MiniMax

- Jogos determinísticos e observáveis
- Jogo com dois indivíduos: MAX e MIN
- Jogam alternadamente: MAX joga primeiro
- No final do jogo, MAX ganha / MIN ganha / empate (pode ser guardado o score ou 1, -1, 0)
- Seleção da melhor jogada por parte de cada jogador
- Estado inicial: posição inicial, valor das "peças" e indicação de quem inicia o jogo
- Operadores

- Teste de Final
- Função de Utilidade: mede o "proveito" que o estado terminal alcançado representa para cada um dos jogadores
- MAX deve conhecer previamente os valores de todos os estados terminais
- Partir do princípio que MIN jogará de forma a prejudicar MAX
- 1. Gerar a árvore do jogo
- 2. Determinar a Utilidade de cada estado terminal (valor para MAX)
- 3. Progredir para o nível anterior (neste nível é MIN que joga) A cada nó assinalar o valor mínimo dos nós seus filhos (isto traduz que MAX espera que MIN jogue de modo a minimizar a pontuação de MAX)
- 4. Progredir para o nível anterior (neste nível é MAX que joga): A cada nó assinalar o valor máximo dos nós seus filhos (isto traduz que MAX jogará da melhor forma)
- 5. Prosseguir assim até ser atingida a raiz da árvore.

Toda a árvore é percorrida, em **profundidade**.

Algoritmo recursivo: atribuição de valores é feita dos nós terminais para a raiz Impraticável para jogos complexos.

Alpha-Beta Pruning

Requer consideravelmente menos recursos de memória e tempo, mesmo para jogos relativamente simples.

O algoritmo baseia-se na utilização de dois parâmetros, "Alpha" e "Beta":

• Alpha: representa o <u>valor mínimo</u> garantido que MAX poderá obter.

Como representa um limite inferior é **inicializado a -inf** e vai crescendo, sendo atualizado num nó MAX.

Beta: representa o valor máximo que MIN consegue impor a MAX

• MAX nunca conseguirá jogar para obter um valor superior a beta

- Sendo um limite superior, é inicializado a +inf e posteriormente vai decrescendo (atualizado num nó MIN).
- Se ALPHA (melhor hipótese para MAX até então) >= BETA (melhor hipótese para MIN até então), corta-se o ramo.
- Algoritmo ótimo.
- Eficácia depende da ordem pela qual os sucessores são avaliados.
- Nó filho herda Alfa e Beta do pai.
- Se esse nó filho for um MIN, atualiza apenas o Beta com o valor da pior opção para MAX (sendo Beta aqui menor que Alfa, cortar restantes filhos | sendo beta aqui maior, ver restantes ramos | se depois de ver todos os ramos continuar maior, atualizar Alfa no nó pai).
- Se esse nó filho for um MAX, atualiza apenas o Alfa com o valor da melhor opção para MAX (tem de ver todos os nós pois não sabe qual a melhor).

Jogo Com Elemento Sorte

- Calcula-se a utilidade nos estados terminais
- Nos nós superiores Max obtém-se o maior valor (como no MiniMax)
- Nos nós superiores **Min** obtém-se o menor valor (como no **MiniMax**)
- Nos **nós sorte**, calcular o valor esperado:

```
para MAX:
```

E = Somatório de i = 1 até n filhos => P(di)*max(utilidade(s))

para MIN:

E = Somatório de i = 1 até n filhos => P(di)*min(utilidade(s))

Redes Neuronais

Aprendizagem automática: modificação das sinapses existentes; criação de novas ligações.

Mecanismo de aprendizagem: supervisionada / por reforço / não supervisionada.

Rede Neuronal Artificial:

- Elevado número de interconexões entre unidades de processamento elementares.
- O conhecimento é armazenado através dos valores dos pesos, obtidos através de um processo de adaptação ou aprendizagem a partir de um conjunto de dados de treino.
- O ajusto dos pesos **Aprendizagem** é realizada de forma automática.
- Caracteriza-se por um processamento distribuído.

Aprendizagem: Processo pela qual os parâmetros de uma rede neuronal são adaptados através de um processo de treino baseado em dados experimentais; O tipo de aprendizagem determina a forma de adaptação dos parâmetros.