Modern Control Systems

Assignment Translation

for the Fourth Lesson

Automatic Control Systems, Second Edition

Page 71

4. Given the following characteristic equations of control systems, determine if the systems are stable using the Routh-Hurwitz Criterion. If the system is not stable, find how many roots are there in the right-half s-plane. If there are roots symmetric with respect to the origin of the s-plane, find those roots.

$$(3)s5 + 2s4 + 2s3 + 4s2 + 11s + 10 = 0 (4)s5 + 4s4 + 8s3 + 8s2 + 7s + 4 = 0$$

5. (2) Given the following open-loop transfer function of a unity feedback control system, determine the condition that K must satisfy so that the system is stable.

$$G_0(s) = \frac{K(s+1)}{s(s-1)(s+5)}$$

8. Given the following open-loop transfer functions of unity feedback control systems, find the steady-state errors of the systems for input signals r(t) = 1(t) and r(t) = t.

$$(1)G_0(s) = \frac{20}{(0.1s+1)(0.2s+1)} \qquad (2)G_0(s) = \frac{200}{s(s+2)(s+10)}$$

$$(3)G_0(s) = \frac{5(3s+1)}{s^2(2s+1)(s+2)}$$

Page 72

9. (4) Given the following transfer function of a closed-loop system, find the closed-loop poles of the system, and find the maximum overshoot σ % (σ % = 0 if there is no overshoot) and the settling time t_s of its unit-step response.

$$G(s) = \frac{1}{s^2 + 4}$$

10. The step response of a unity feedback second order system is shown in Fig. T3.2. Please find the open-loop transfer function of the system.

Fig. T3.2

11. The block diagram of a control system is shown in Fig. T3.3 (a), and its unit-step response is shown in Fig. T3.3 (b). Please determine k_1 , k_2 and T.

Fig. T3.3

12. Given the following step response of a unity feedback control system,

$$y(t) = 10[1 - 1.25e^{-1.2t}\sin(1.6t + 53.1^{\circ})]$$

- (1) if the steady-state error e_{ss} of the system satisfies $e_{ss} = 0$, find the closed-loop transfer function and the open-loop transfer function of the system;
- (2) find the damping ratio ζ and the natural undamped frequency ω_n of the system;
 - (3) find the maximum overshoot σ % and the settling time t_s of the system.