Fundação Escola Técnica Liberato Salzano Vieira da Cunha

MANUAL DE OPERAÇÃO

Simulador de células fotovoltaicas

e suas curvas características

Anthony Silva Guerreiro
Artur Ritzel

Turma 4411

Novo Hamburgo, 7 de Dezembro de 2023

1. CÉLULAS FOTOVOLTAICAS

As células fotovoltaicas são dispositivos semicondutores capazes de converter a energia luminosa em eletricidade, oferecendo uma fonte de energia sustentável e renovável. Para compreender o comportamento dessas células em diferentes condições operacionais, é comum utilizar a Curva I-V, que descreve a relação entre a corrente (I) e a tensão (V) em diversas circunstâncias.

A modelagem da curva I-V frequentemente emprega o modelo de diodo único, uma abstração que incorpora elementos cruciais do comportamento das células fotovoltaicas. Os parâmetros chave desse modelo incluem:

- a Corrente de Curto-Circuito (Isc): é a corrente máxima que a célula pode fornecer quando os terminais estão curto-circuitados, ou seja, quando não há resistência na carga.
- a tensão de circuito aberto (Voc): a tensão nos terminais da célula quando não há corrente fluindo, ou seja, em condições de circuito aberto.
- a corrente no ponto de máxima potência (Imp) e a tensão no ponto de máxima potência (Vmp): os valores ideais para alcançar a máxima potência de saída da célula.

A partir destes valores, é possível estimar outros parâmetros do modelo. O modelo de diodo único é expresso pela seguinte equação:

$$I=I_{
m ph}-I_{
m s}\left(e^{rac{V}{nV_t}}-1
ight)-rac{V}{R_s}$$

onde:

- lph = lsc (Corrente fotogerada): corrente gerada pela incidência de luz na célula
- ls é a corrente de saturação reversa do diodo: a corrente que flui quando o diodo está reversamente polarizado, representando as perdas internas da célula.
- n é o fator de idealidade do diodo: ajusta o comportamento do diodo à realidade, variando entre 1 e 2. Valores mais altos indicam um comportamento mais próximo ao ideal.
 - Vt é a tensão térmica (aproximadamente 26 mV a temperatura ambiente)
- Rs é a resistência em série: a resistência interna da célula, representando as perdas devido à resistência dos materiais.

Ao utilizar este modelo, é possível calcular a corrente (I) para uma dada tensão (V), considerando as características da célula fotovoltaica.

A precisão dessa simulação depende da qualidade dos parâmetros fornecidos. Recomenda-se consultar as especificações do fabricante para obter informações mais precisas sobre as características da célula fotovoltaica. O resultado final será uma representação gráfica da curva I x V e P x V, oferecendo uma visão do comportamento da célula e facilitando a análise de seu desempenho.

2. USO

O usuário, com a interface em mãos, deve inserir os dados referentes à célula em que deseja simular e calcular as curvas características. É importante que o usuário insira os valores corretos, visto que qualquer alteração em um valor qualquer pode mudar completamente a saída do software. A precisão do programa depende proporcionalmente à precisão das características elétricas disponibilizadas pelo fabricante.

O programa utiliza como entrada 4 dados principais:

- a Corrente de Curto Circuito (A)
- a Tensão de Circuito Aberto (V)
- a Tensão Máxima de Energia (V)
- o Coeficiente de Temperatura (índice de 0-1)

Todos esses valores podem ser encontrados em manuais ou datasheets de células fotovoltaicas. Tomemos a placa Zosma M Pro 535-550 Wp como referência, um módulo bifacial de alta eficiência encontrada no mercado:

CARACTERÍSTICAS ELÉTRICAS	144 células
---------------------------	--------------------

Modelo dos módulos	SS-BG535-72MDH		SS-BG540-72MDH		SS-BG545-72MDH		SS-BG550-72MDH	
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Potência maxima — P _{mp} (W)	535	398	540	402	545	406	550	410
$Voltagem\ de\ circuito\ aberto\ -\ V_{oc}\ (V)$	49.34	46.57	49.42	46.65	49.51	46.74	49.60	46.82
Corrente de curto-circuito — $I_{sc}(A)$	13.79	11.14	13.85	11.19	13.94	11.27	14.04	11.35
Tensão máxima de energia — $V_{mp}(V)$	40.66	37.92	40.71	38.11	40.76	38.19	40.83	38.25
Corrente de potência máxima — I _{mp} (A)	13.16	10.51	13.27	10.56	13.38	10.64	13.48	10.73
Eficiência do módulo — η _m (%)	20.	.7%	20.	9%	21.	1%	21.	3%

STC (Condições de Teste Padrão): Irradiância 1000 W/m2, Temperatura da Célula 25 °C, Espectro em AM1.5

NOCT (Temperatura Nominal da Célula de Operação): Irradiância 800W/m2, Temperatura Ambiente 20°C, Espectro em AM1.5, Vento em 1m/s

CLASSIFICAÇÕES DE TEMPERFORMANCE

Coeficiente de temperatura (P _{max})	-0.35%/°C
Coeficiente de temperatura (V _{oc})	-0.28 %/°C
Coeficiente de temperatura (I _{sc})	+0.04 %/°C
Temperatura nominal da célula de operação	43±2 ℃

Dentre os valores que precisamos, o fabricante disponibiliza esses valores sobre as placas. Tomemos os valores do modelo SS-BG535-72MDH como base para a nossa simulação:

Informações da Célula Essas informações serão usadas nos cálculos: uma informação incorreta leva a resultados incorretos.	✓ Corrente de Curto Circuito (A)
	13.79
	49.34
	40.66
	0.0028

Depois de alguns segundos de cálculos e comunicação, a interface nos mostra 4 gráficos principais:

- 1. Corrente x Tensão: temperatura fixa, variando irradiância solar
- 2. Potência x Tensão: temperatura fixa, variando irradiância solar
- 3. Potência x Tensão: irradiância solar fixa, variando temperatura
- 4. Corrente x Tensão: irradiância solar fixa, variando temperatura

A legenda nos diz o que cada linha representa: nesse gráfico, a linha azul, por exemplo, representa uma placa em 25°C em um ambiente com irradiância solar de aproximadamente 200W/m². A linha preta, representa uma placa com irradiância solar de aproximadamente 400W/m². A linha verde, 600W/m². E assim por diante.

O eixo horizontal representa a tensão, e tem como valor máximo (100%) a tensão de circuito aberto.

Os outros gráficos gerados nesse exemplo estão representados abaixo:

