Kaggle1

목차 및 출처

- 1. 데이터셋 확인 대부분의 캐글 데이터들은 잘 정제되어 있습니다. 하지만 가끔 null data가 존재합니다. 이를 확인하고, 향후 수정합니다.
- 2. 탐색적 데이터 분석(exploratory data analysis) 여러 feature 들을 개별적으로 분석하고, feature 들 간의 상관관계를 확인합니다. 여러 시각화 툴을 사용하여 insight를 얻습니다.

- 출처 : https://kaggle-kr.tistory.com/17?category=868316
- https://kaggle-kr.tistory.com/18?category=868316

0. 기본적인 import

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('seaborn')
sns.set(font scale=2.5) # 이 두줄은 본 필자가 항상 쓰는 방법
입니다. matplotlib 의 기본 scheme 말고 seaborn scheme 을 세
팀하고, 일일이 graph 의 font size 를 지정할 필요 없이 seaborn
의 font scale 을 사용하면 편합니다.
import missingno as msno
#ignore warnings
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

1. 데이터셋 확인(기본정보)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): 891 non-null int64 Passengerld Survived 891 non-null int64 Polass 891 non-null int64 891 non-null object Name Sex 891 non-null object 714 non-null float64 Age 891 non-null int64 SibSp Parch 891 non-null int64 Ticket 891 non-null object Fare 891 non-null float64 Cabin 204 non-null object 889 non-null object Embarked

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

train.info()

train.describe()

1. 데이터셋 확인(NULL 확인)

```
# NULL check train columns
for col in train.columns:
  msg = 'column: {:>10}\text{\text{Mt Percent of NaN value: {:.2f}\%'.format(col, 100 * (train[col].isnull().sum() / train[col].shape[0]))
  print(msg)
# NULL check test columns
for col in test.columns:
  msg = 'column: {:>10}\text{\text{Wt Percent of NaN value: {:.2f}\%'.format(col, 100 * (train[col].isnull().sum() / train[col].shape[0]))
  print(msg)
    column:
               Passengerld
                                      Percent
                                                     NaN value:
                                                                    0.00%
                                                 \circ f
                  Survived
                                      Percent
                                                                    0.00%
    column:
                                                 o f
                                                     NaN value:
    column:
                     Pclass
                                      Percent
                                                     NaN value:
                                                                    0.00%
                                                 o f
    column:
                       Name
                                      Percent
                                                 o f
                                                     NaN value:
                                                                    0.00%
                                                                    0.00%
    column:
                         Sex
                                      Percent
                                                 o f
                                                     NaN value:
                                                                    19.87%
    column:
                         Age
                                      Percent
                                                 o f
                                                     NaN value:
                                                                    0.00%
                      SibSp
                                                     NaN value:
    column:
                                      Percent
                                                 o f
                      Parch
                                      Percent
                                                     NaN value:
                                                                    0.00%
    column:
                                                 o f
                                                                    0.00%
    column:
                     Ticket
                                      Percent
                                                     NaN value:
    column:
                       Fare
                                      Percent
                                                     NaN value:
                                                                    0.00%
                                                 o f
                                                                    77.10%
    column:
                      Cabin
                                      Percent
                                                     NaN value:
                                                                    0.22%
    column:
                  Embarked
                                      Percent
                                                 o f
                                                     NaN value:
    column:
               Passengerld
                                      Percent
                                                     NaN value:
                                                                    0.00%
                                                                    0.00%
    column:
                     Pclass
                                      Percent
                                                 \circf
                                                     NaN value:
    column:
                       Name
                                      Percent
                                                     NaN value:
                                                                    0.00%
                                                                    0.00%
    column:
                         Sex
                                      Percent
                                                 o f
                                                     NaN value:
                                                     NaN value:
                                                                    19.87%
    column:
                         Age
                                      Percent
    column:
                      SibSp
                                      Percent
                                                 o f
                                                     NaN value:
                                                                    0.00%
    column:
                      Parch
                                      Percent
                                                 o f
                                                     NaN value:
                                                                    0.00%
                                                                    0.00%
                     Ticket
    column:
                                      Percent
                                                 o f
                                                     NaN value:
                       Fare
                                      Percent
                                                     NaN value:
                                                                    0.00%
    column:
                                                 o f
    column:
                      Cabin
                                      Percent
                                                 \circ f
                                                     NaN value:
                                                                    77.10%
                                                                    0.22%
    column:
                  Embarked
                                      Percent
                                                 of NaN value:
```

1. 데이터셋 확인(목표 label)

0(죽은사람), 1(생존한사람) 죽은사람이 38.4%이다. 데이터가 균일함

```
# Check target [abe]
f, ax = plt.subplots(1, 2, figsize=(18, 8))

train['Survived'].value_counts().plot.pie(explode=[0, 0.1], autopct='%1.1f%%', ax=ax[0], shadow=True)
ax[0].set_title('Pie plot - Survived')
ax[0].set_ylabel('')
sns.countplot('Survived', data=train, ax=ax[1])
ax[1].set_title('Count plot - Survived')
plt.show()
```

2. Exploratory data analysis(Pclass)

- Pclass와 Survived 관계
 - Pclass에 속한 총 사람 수, 생존한 사람 수

```
# Part2 - exploratory data analysis
# Pclass & Survival
print(train[['Pclass', 'Survived']].groupby(['Pclass'], as_index=True).count())
print(train[['Pclass', 'Survived']].groupby(['Pclass'], as_index=True).sum())
pd.crosstab(train['Pclass'], train['Survived'], margins=True).style.background_gradient(cmap='summer_r')
```

```
Survived
Pclass
              216
              184
              491
         Survived
Pclass
              136
                87
              119
 Survived
                     ΑII
   Pclass
       1
                136
                     216
                119 491
               342 891
```

```
y_position = 1.02
f, ax = plt.subplots(1, 2, figsize=(18, 8))
train['Pclass'].value_counts().plot.bar(color=['#CD7F32','#FFDF00','#D3D3D3'], ax=ax[0])
ax[0].set_title('Number of Passengers By Pclass', y=y_position)
ax[0].set_ylabel('Count')
sns.countplot('Pclass', hue='Survived', data=train, ax=ax[1])
ax[1].set_title('Pclass: Survived vs Dead', y=y_position)
plt.show()
```


2. Exploratory data analysis(Sex)

```
# Sex & Surviva/
f, ax = plt.subplots(1, 2, figsize=(18, 8))
train[['Sex', 'Survived']].groupby(['Sex'], as_index=True).mean().plot.bar(ax=ax[0])
ax[0].set_title('Survived vs Sex')
sns.countplot('Sex', hue='Survived', data=train, ax=ax[1])
ax[1].set_title('Sex: Survived vs Dead')
plt.show()

print(train[['Sex', 'Survived']].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False))
pd.crosstab(train['Sex'], train['Survived'], margins=True).style.background_gradient(cmap='summer_r')
```


2. Exploratory data analysis(Sex, Pclass)

```
# Polass & Sex & Survival
sns.factorplot('Pclass', 'Survived', hue='Sex', data=train,
                size=6, aspect=1.5)
   1.0
   0.8
 Survived
9.0
9.0
```

Pclass

0.2

Sex

male female

2. Exploratory data analysis(age)

```
# Age
print('oldest : {:.1f} Years'.format(train['Age'].max()))
print('youngest : {:.1f} Years'.format(train['Age'].min()))
print('mean age : {:.1f} Years'.format(train['Age'].mean()))

fig, ax = plt.subplots(1, 1, figsize=(9, 5))
sns.kdeplot(train[df_train['Survived'] == 1]['Age'], ax=ax)
sns.kdeplot(train[df_train['Survived'] == 0]['Age'], ax=ax)
plt.legend(['Survived == 1', 'Survived == 0'])
plt.show()
```


2. Exploratory data analysis(pclass, sex, age)

```
# Polass & Age & Sex & Survival
f,ax=plt.subplots(1,2,figsize=(18,8))
sns.violinplot("Polass","Age", hue="Survived", data=train, scale='count', split=True,ax=ax[0])
ax[0].set_title('Polass and Age vs Survived')
ax[0].set_yticks(range(0,110,10))
sns.violinplot("Sex","Age", hue="Survived", data=train, scale='count', split=True,ax=ax[1])
ax[1].set_title('Sex and Age vs Survived')
ax[1].set_yticks(range(0,110,10))
plt.show()
```


2. Exploratory data analysis(Embarked)

```
# Embarked
f,ax=plt.subplots(2, 2, figsize=(20,15))
sns.countplot('Embarked', data=train, ax=ax[0,0])
ax[0,0].set_title('(1) No. Of Passengers Boarded')
sns.countplot('Embarked', hue='Sex', data=train, ax=ax[0,1])
ax[0,1].set_title('(2) Male-Female Split for Embarked')
sns.countplot('Embarked', hue='Survived', data=train, ax=ax[1,0])
ax[1,0].set_title('(3) Embarked vs Survived')
sns.countplot('Embarked', hue='Pclass', data=train, ax=ax[1,1])
ax[1,1].set_title('(4) Embarked vs Pclass')
plt.subplots_adjust(wspace=0.2, hspace=0.5)
plt.show()
```


2. Exploratory data analysis(Family)

```
# Family
train['FamilySize'] = train['SibSp'] + train['Parch'] + 1
test['FamilySize'] = test['SibSp'] + test['Parch'] + 1
f,ax=plt.subplots(1, 3, figsize=(40,10))
sns.countplot('FamilySize', data=train, ax=ax[0])
ax[0].set_title('(1) No. Of Passengers Boarded', y=1.02)
sns.countplot('FamilySize', hue='Survived', data=train, ax=ax[1])
ax[1].set_title('(2) Survived countplot depending on FamilySize', y=1.02)
train[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=True).mean().sort_values(by='Survived',
                                                                                                   ascending=False).plot.bar(ax=ax[2])
ax[2].set_title('(3) Survived rate depending on FamilySize', y=1.02)
plt.subplots_adjust(wspace=0.2, hspace=0.5)
plt.show()
             (1) No. Of Passengers Boarded
                                                     (2) Survived countplot depending on FamilySize
                                                                                                      (3) Survived rate depending on FamilySize
                                                                      Survived
                                                                                                                                 Survived
                                                                                                 0.7
                                                 350
  500
                                                                                                 0.6
                                                 300
   400
                                                                                                 0.5
                                                 250
                                               1 200
200
                                                                                                 0.4
                                                                                                 0.3
                                                 150
   200
                                                                                                 0.2
                                                 100
   100
                                                  50
                                                                                                 0.1
                                          11
                                                                    FamilySize
                     FamilySize
                                                                                                                   FamilySize
```

2. Exploratory data analysis(Fare)

```
# Fare(NAN을 Fare 전체의 평균으로 채울), outlier 영향 돌이기 위해 log취함
test.loc[test.Fare.isnull(), 'Fare'] = test['Fare'].mean()

train['Fare'] = train['Fare'].map(lambda i: np.log(i) if i > 0 else 0)
test['Fare'] = test['Fare'].map(lambda i: np.log(i) if i > 0 else 0)

fig, ax = plt.subplots(1, 1, figsize=(8, 8))
g = sns.distplot(train['Fare'], color='b', label='Skewness: {:.2f}'.format(train['Fare'].skew()), ax=ax)
g = g.legend(loc='best')
```

