## EXAME NACIONAL DO ENSINO SECUNDÁRIO

### 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos Militares

2000

#### PROVA ESCRITA DE MATEMÁTICA

\_\_\_\_\_

#### **Primeira Parte**

- As nove questões desta primeira parte são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- **1.** O conjunto dos zeros de uma função g, de domínio  $\mathbb{R}$ , é  $\{\,1\,,2\,\}$ . Seja h a função, de domínio  $\mathbb{R}$ , definida por h(x)=g(x).  $(x-3)^2$  Quais são os zeros da função h?
  - **(A)** 1, 2 e 3

**(B)** 1, 4 e 9

**(C)** 1,  $\sqrt{3}$  e 4

- **(D)**  $-\sqrt{3}$ , 1,  $\sqrt{3}$  e 2
- **2.** Considere uma função f, de domínio  $\mathbb{R}$ , definida por  $f(x) = e^{x+a}$ , onde a designa um certo número real.

O gráfico de  $\,f\,$  intersecta o eixo  $\,Oy\,$  no ponto de ordenada  $\,2.$  Indique o valor de  $\,a.\,$ 

- **(A)** ln 2
- **(B)** 2
- (C)  $e^2$
- **(D)**  $e + \ln 2$

**3.** De uma certa função g sabe-se que:

$$\lim_{x \to 3^{-}} g(x) = +\infty$$

$$g(3) = 1$$

$$\lim_{x \to 3^+} g(x) = 2$$

Qual das afirmações seguintes é verdadeira?

- (A) O contradomínio da função  $\,g\,$  é o intervalo  $\,[\,2\,,\,+\infty\,[\,$
- **(B)** A recta de equação  $x=3\,$  é assimptota do gráfico da função g
- (C) 3 não pertence ao domínio da função g
- **(D)** Existe  $\lim_{x \to 3} g(x)$
- **4.** Na figura está representado um triângulo rectângulo [ABC], cuja hipotenusa mede  $2\ m$ .



Qual das expressões seguintes dá a área (em  $m^2$ ) do triângulo [ABC], em função da amplitude,  $\alpha$ , do ângulo ABC?

(A)  $2 \cdot \sin \alpha \cdot \cos \alpha$ 

**(B)**  $2 \cdot \operatorname{sen} \alpha \cdot \operatorname{tg} \alpha$ 

(C)  $4 \cdot \sin \alpha \cdot \cos \alpha$ 

- **(D)**  $4 \cdot \operatorname{sen} \alpha \cdot \operatorname{tg} \alpha$
- **5.** Considere, num referencial o.n. xOy, uma elipse cujo eixo maior está contido no eixo Ox.

Qual das seguintes equações pode definir esta elipse?

**(A)** 
$$\frac{x^2}{4} + (y-2)^2 = 1$$

**(B)** 
$$\frac{(x-2)^2}{4} + y^2 = 1$$

(C) 
$$x^2 + \frac{(y-2)^2}{4} = 1$$

**(D)** 
$$(x-2)^2 + \frac{y^2}{4} = 1$$

- 6. Num referencial o.n. Oxyz, considere os pontos P(1,0,0), Q(0,1,0) e R(0,0,1). Qual das condições seguintes define uma recta perpendicular ao plano PQR?
  - **(A)**  $x = 1 \land y = 1 \land z = 1$
  - **(B)**  $x = 1 \land y = 1$
  - **(C)** x-1=y-2=z-3
  - **(D)** x + y + z = 1
- 7. Num referencial o.n. Oxyz, a condição

$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 25 \land x = y$$

define

(A) uma circunferência

**(B)** um ponto

- (C) um segmento de recta
- (D) o conjunto vazio
- 8. Um frigorífico tem cinco prateleiras.

Pretende-se guardar, nesse frigorífico, um iogurte, um chocolate e um queijo.

De quantas maneiras diferentes se podem guardar os três produtos no frigorífico, sabendo que devem ficar em prateleiras distintas?

- (A)  ${}^5C_3$  (B)  ${}^5A_3$  (C)  $5^3$

- **(D)**  $3^5$
- 9. No Triângulo de Pascal, existe uma linha com onze elementos.

Seja a o maior número dessa linha.

Qual é o valor de a?

- (A)  $^{10}C_5$  (B)  $^{10}C_6$  (C)  $^{11}C_5$
- **(D)**  $^{11}C_6$

### **Segunda Parte**

Nas questões desta segunda parte apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

**Atenção**: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

**1.** Considere a função g, de domínio  $\mathbb{R}$ , definida por

$$g(x) = \begin{cases} \frac{x+1}{x} & \text{se } x < 0 \\ \frac{1}{2} & \text{se } x = 0 \\ \frac{\text{sen } x}{2x} & \text{se } x > 0 \end{cases}$$

- 1.1. Utilizando métodos exclusivamente analíticos, resolva as duas alíneas seguintes:
  - **1.1.1.** Estude a função g quanto à continuidade no ponto 0. (Deve indicar, justificando, se a função g é contínua nesse ponto, e no caso de não ser, se se verifica a continuidade à esquerda, ou à direita, nesse mesmo ponto).
  - **1.1.2.** Considere a função h, de domínio  $\mathbb{R}\setminus\{0\}$ , definida por  $h(x)=\frac{1}{3\,x}$  Justifique que, no intervalo  $[-1\,,\,1000\,\pi]$ , os gráficos de g e de h intersectam-se em 1001 pontos.
- **1.2.** Dos 1001 pontos referidos na alínea anterior, seja A o que tem menor abcissa positiva. Utilizando a sua calculadora, determine as coordenadas desse ponto (apresente os valores na forma de dízima, com aproximação às décimas).

**2.** Em Malmequeres de Baixo, povoação com **cinco mil** habitantes, ocorreu um acidente, que foi testemunhado por algumas pessoas.

Admita que, t horas depois do acidente, o número (expresso em **milhares**) de habitantes de Malmequeres de Baixo que sabem do ocorrido é, aproximadamente,

$$f(t) = \frac{5}{1 + 124 e^{-0.3t}}, \quad t \ge 0$$

- **2.1.** Que percentagem da população de Malmequeres de Baixo testemunhou o acidente?
- **2.2.** Recorrendo exclusivamente a processos analíticos, estude a função f quanto à monotonia e quanto à existência de assimptotas ao seu gráfico. Interprete as conclusões a que chegou, no contexto do problema.
- **3.** O *AUTO-HEXÁGONO* é um stand de venda de automóveis. Num certo dia, este stand tem para exibição seis automóveis diferentes, de três tipos (dois utilitários, dois desportivos e dois comerciais).
  - **3.1.** Este stand, de forma hexagonal, tem uma montra que se situa num dos lados do hexágono (ver figura).

Pretende-se arrumar os seis automóveis, de tal forma que cada automóvel fique voltado para um vértice do hexágono.

Supondo que se arrumam os seis automóveis ao acaso, qual é a probabilidade de os dois desportivos ficarem voltados para os vértices que se encontram nas extremidades da montra? Apresente o resultado na forma de fracção irredutível.



**3.2.** Nesse mesmo dia, o gerente do stand pretende oferecer dois automóveis a uma instituição.

Supondo que os dois automóveis vão ser escolhidos ao acaso, de entre os seis automóveis em exibição, qual é a probabilidade de os dois automóveis seleccionados serem de tipos diferentes? Apresente o resultado na forma de fracção irredutível.

**4.** Num referencial o.n. Oxyz, considere um cone cuja base está contida no plano yOz e cujo vértice pertence ao semieixo positivo Ox.

A base tem raio 3 e centro em O, origem do referencial.

A recta r, de equação  $(x,y,z)=(0,3,0)+k\,(3,\,-1,0),\,k\in\mathbb{R}$ , contém uma geratriz do cone.



- **4.1.** Mostre que a altura do cone é 9.
- **4.2.** Determine uma equação do plano que contém o vértice do cone e é perpendicular à recta r.
- **4.3.** Determine a área do polígono que resulta da intersecção do cone com o plano de equação  $\,z=0.\,$

**FIM** 

# COTAÇÕES

| Primeira Parte                                                                        | 81   |
|---------------------------------------------------------------------------------------|------|
| Cada resposta certa<br>Cada resposta errada<br>Cada questão não respondida ou anulada | - 3  |
| Nota: Um total negativo nesta parte da prova vale 0 (zero) pontos.                    |      |
| Segunda Parte                                                                         | 119  |
| 1. 24   1.1.1. 11   1.1.2. 13   1.2. 12                                               | . 36 |
| <b>2.</b>                                                                             | . 25 |
| <b>3.</b>                                                                             | . 22 |
| 4. 12   4.2. 12   4.3. 12                                                             | . 36 |
| TOTAL                                                                                 | 200  |