Ramakrishna Mission Vivekananda Educational and Research Institute

PO Belur Math, Howrah, West Bengal 711 202 School of Mathematical Sciences Department of Computer Science

MSc Big Data Analytics: Batch 2023-25 DA109: Linear Algebra and Matrix Computation Instructor: Dr. Soumitra Samanta

TA: Rajdeep Mondal

Problem set: 2

Please try to solve all the problems ¹ alone. If you are stuck, I encourage you first consult with your batch mates and then TA. If you still need help then come to Instructor.

- 1. Prove that any two finite dimensional vector space are isomorphic if and only if they have equal dimension.
- 2. Consider the mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (3x,2y). Let $S = \{(x,y): x^2 + y^2 = 1\}$ be the unit circle in \mathbb{R}^2 .
 - (a) Find T(S). What is the geometric interpretation of it.
 - (b) Find $T^{-1}(S)$. What is the geometric interpretation of it.
- 3. A linear transformation T rotates each vector in \mathbb{R}^2 clockwise through an angle $\theta = \frac{\pi}{2}$.
 - (a) Find the matrix of T w.r.t the standard ordered basis.
 - (b) Compute the matrix of T^2 and T^4 w.r.t the standard ordered basis.
 - (c) How T^2 and T^4 changes the vectors of \mathbb{R}^2 . Also give the geometric interpretation of these two.
- 4. Let $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be a linear transformation such that T(A) = 0 whenever A is symmetric or skew symmetric. Find Rank(T).
- 5. Let $T: V \to W$ be a linear transformation. Then prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of w.
- 6. Let T be the linear operator on \mathbb{R}^3 defined by $T(x_1, x_2, x_3) = (3x_1, x_1 x_2, 2x_1 + x_2 + x_3)$. Is T invertible? If so, find a rule for T^{-1} like the one which defines T.
- 7. Prove the followings:
 - (a) The subspaces $\{0\}$, V, R(T), and N(T) are all T-invariant.
 - (b) If W is T-invariant, prove that T_W is linear.
- 8. Is $\mathbb{R}^2 \times \mathbb{R}^3 = \mathbb{R}^5$? Is $\mathbb{R}^2 \times \mathbb{R}^3 \simeq \mathbb{R}^5$?
- 9. In \mathbb{R}^2 , let L be the line y=mx, where $m\neq 0$. Find an expression for T(x,y), where
 - (a) T is the reflection of \mathbb{R}^2 about L.
 - (b) T is the projection on L along the line perpendicular to L.
- 10. Let V and W be finite-dimensional vector spaces over the field \mathbb{R} . Then V is isomorphic to W if and only if dim(V) = dim(W).
- 11. Let V be a vector space. Determine all linear transformations $T: V \to V$ such that $T = T^2$.

¹All the problems have been selected by the TA.

- 12. Let V and W be finite-dimensional vector spaces having ordered bases β and γ , respectively, and let $T: V \to W$ be linear. Show that for each $u \in V$, we have $[T(u)]_{\gamma} = [T]_{\beta}^{\gamma}[u]_{\beta}$.
- 13. Let $T: \mathbf{P}_3(\mathbb{R}) \to \mathbf{P}_2(\mathbb{R})$ be the linear transformation defined by T(f(x)) = f'(x), and let β and γ be the standard ordered bases for $\mathbf{P}_3(\mathbb{R})$ and $\mathbf{P}_2(\mathbb{R})$, respectively. If $A = [T]_{\beta}^{\gamma}$ where,

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Verify that $[T(p(x))]_{\gamma} = [T]_{\beta}^{\gamma}[p(x)]_{\beta}$.

- 14. Let V be a finite-dimensional vector space and $T: V \to V$ be linear. Then if V = R(T) + N(T) prove that $V = R(T) \bigoplus N(T)$.
- 15. A function $T: V \to W$ between vector spaces V and W is called **additive** if T(x+y) = T(x) + T(y) for all $x, y \in V$. Prove that if V and W are vector spaces over the field of rational numbers, then any additive function from V into W is a linear transformation.
- 16. Let V be a vector space and W be a subspace of V. Define the mapping $\eta: V \to V/W$ by $\eta(v) = v + W$ for $v \in V$.
 - (a) Prove that η is a linear. Find $N(\eta)$.
 - (b) Suppose that V is finite-dimensional. Then find the relation between dim(V), dim(W), and dim(V/W).
- 17. Let V and W be vector spaces, and let T and U be nonzero linear transformations from V into W. If $R(T) \cap R(U) = \{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathcal{L}(V, W)$.
- 18. Let V, W, and Z be finite-dimensional vector spaces with ordered bases α , β , and γ , respectively. Let $T: V \to W$ and $U: W \to Z$ be linear transformations. Then prove that $[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$.
- 19. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively. Let $T: V \to W$ be linear. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible. Furthermore, $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$.
- 20. Let g(x) = 3 + x. Let $T : \mathbf{P}_2(\mathbb{R}) \to \mathbf{P}_2(\mathbb{R})$ and $U : \mathbf{P}_2(\mathbb{R}) \to \mathbb{R}^3$ be the linear transformations respectively defined by T(f(x)) = f'(x)g(x) + 2f(x) and $U(a + bx + cx^2) = (a + b, c, a b)$. Let β and γ be the standard ordered bases of $\mathbf{P}_2(\mathbb{R})$ and \mathbb{R}^3 , respectively. Compute $[U]_{\beta}^{\gamma}$, $[T]_{\beta}$, and $[UT]_{\beta}^{\gamma}$ directly. Also verify that $[U]_{\beta}^{\gamma}[T]_{\beta} = [UT]_{\beta}^{\gamma}$.
- 21. Let T be a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W. Let β and β' be ordered bases for V, and γ and γ' be ordered bases for W. Suppose that Q is the change of coordinate matrix that changes β' -coordinates into β -coordinates i.e. $Q = [I]_{\beta'}^{\beta}$ and P changes γ' -coordinates into γ -coordinates i.e. $P = [I]_{\gamma'}^{\gamma}$. Then show that $[T]_{\beta'}^{\gamma'} = P^{-1}[T]_{\beta}^{\gamma}Q$.
- 22. Let T be the linear operator on \mathbb{R}^2 defined by T(a,b) = (3a-b,a+3b) and let $\beta = \{(1,1),(1,-1)\}$ and $\beta' = \{(2,4),(3,1)\}$ be the ordered bases. Find $[T]_{\beta}$, $[T]_{\beta'}$, and coordinate matrix Q. Verify that $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$.
- 23. Let T be the linear operator on $\mathbf{P}_1(\mathbb{R})$ defined by T(p(x)) = p'(x), the derivative of p(x). Let $\beta = \{1, x\}$ and $\beta' = \{1 + x, 1 x\}$. Calculate $[T]_{\beta'}$ by only using $[T]_{\beta}$ and coordinate matrix Q.
- 24. Let $T:V\to Z$ be a linear transformation of a vector space V onto a vector space Z. Define the mapping $\bar{T}:V/N(T)\to Z$ by $\bar{T}(v+N(T))=T(v)$ for any coset v+N(T) in V/N(T). Then prove that \bar{T} is well-defined, linear and an isomorphism.
- 25. Show that $W = \{T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4) : Nullity(T) > 2\}$ is not a subspace of $\mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$.
- 26. Suppose that V is finite-dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap N(T) = \{0\}$ and $R(T) = \{Tu : u \in U\}$.

- 27. Suppose V is finite dimensional and $v_1, v_2,, v_n \in V$. Define a linear map $\Psi : V' \to \mathbb{R}^n$ by $\Psi(\phi) = (\phi(v_1),, \phi(v_n))$. Prove that:
 - (a) $v_1, v_2,, v_n$ spans V if and only if Ψ is injective.
 - (b) $\{v_1, v_2, ..., v_n\}$ is linearly independent if and only if Ψ is surjective.
- 28. For any positive integer m:
 - (a) Prove that $\{1, (x-5), \dots, (x-5)^m\}$ is a basis for $\mathcal{P}_m(\mathbb{R})$
 - (b) What is the dual basis of the basis given in (a)?
- 29. Prove that two affine subspaces are equal or disjoint.
- 30. Let $V = \mathbb{R}^3$, and define $f_1, f_2, f_3 \in V^*$ as follows: $f_1(x, y, z) = x 2y$, $f_2(x, y, z) = x + y + z$, $f_3(x, y, z) = y 3z$. Prove that $\{f_1, f_2, f_3\}$ is a basis for V^* , and then find a basis for V for which it is the dual basis.
- 31. Let V and W be finite-dimensional vector spaces over \mathbb{F} with ordered bases β and γ , respectively. Let β^* and γ^* be the dual bases for β and γ respectively. Show that for any linear transformation $T: V \to W$, the mapping $T^t: W^* \to V^*$ defined by $T^t(g) = gT$ for all $g \in W^*$ is a linear transformation with the property that $[T^t]_{\gamma^*}^{\beta^*} = ([T]_{\beta}^{\gamma})^t$.
- 32. Let \mathbb{F} be a field and let f be the linear functional on \mathbb{F}^2 defined by $f(x_1, x_2) = ax_1 + bx_2$. For each of the following linear operators T, let $g = T^t(f)$, and find $g(x_1, x_2)$.
 - (a) $T(x_1, x_2) = (x_1, 0)$
 - (b) $T(x_1, x_2) = (-x_2, x_1)$
 - (c) $T(x_1, x_2) = (x_1 x_2, x_1 + x_2)$
- 33. In \mathbb{R}^3 , let $\alpha_1 = (1,0,1)$, $\alpha_2 = (0,1,-2)$, $\alpha_3 = (-1,-1,0)$.
 - (a) If f is a linear functional on \mathbb{R}^3 such that $f(\alpha_1) = 1$, $f(\alpha_2) = -1$, $f(\alpha_3) = 3$, and if $\alpha = (a, b, c)$, find $f(\alpha)$.
 - (b) Describe explicitly a linear functional f on \mathbb{R}^3 such that $f(\alpha_1) = 0$, $f(\alpha_2) = 0$ but $f(\alpha_3) \neq 0$.
- 34. Let $\beta = \{\alpha_1, \alpha_2, \alpha_3\}$ be the basis for \mathbb{R}^3 defined by $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 1, 1)$, $\alpha_3 = (2, 2, 0)$. Find the dual basis of β .