

Ingeniería en Informática

Sistemas de Bases de Datos

SQL – Integridad de datos

Docente Tatiana Ilabaca W. Segundo semestre de 2023

Objetivos

Reconocer los tipos de integridad existentes en una base de datos relacional

Implementar los tipos de integridad en una base de datos relacional

Tipos de integridad

- Integridad de dominio
- Integridad de entidad
- Integridad referencial

Integridad de dominio

Integridad de entidad

Integridad referencial

Integridad de entidad

Se establece a través de la clave primaria (primary key - PK)

Existen tres formas de establecer una PK:

- Forma 1: modificando la definición de la tabla ya creada (utilizada en este curso)
- Forma 2: en la definición de la columna, al momento de crear la tabla
- Forma 3: al final de la definición de la tabla, al momento de crear la tabla

Integridad de entidad – Forma 1

Modificando la definición de la tabla ya creada

ALTER TABLE nombreTabla

ADD CONSTRAINT nombre restricción

PRIMARY KEY (columna1, columna2, ...);

Ejemplo

PERSONA	
• rutPR	Cadena
Longitud fija. Sin pu	ntos ni guión
• fe chaNacimPR • generoPR Dominio: {F (Femen O (Otro)}	Fecha Caracter ino), M (Masculino9,
• codigo CMResid	Numérico
• codigo NC	Numérico

ALTER TABLE PERSONA
ADD CONSTRAINT PK_PERSONA
PRIMARY KEY(rutPR);

Integridad de entidad – Forma 2

En la definición de la columna, al momento de crear la tabla

CREATE TABLE nombre Tabla

```
( Columna1 TipoDato [NULL | NOT NULL] PRIMARY KEY, [, ... n])
```



```
CREATE TABLE PERSONA

(rutPR CHAR(9) NOT NULL
fechaNacimPR DATE NOT NULL,
generoPR CHAR(1) NOT NULL,
codigoCMResid NUMBER(5,0) NOT NULL,
codigoNC NUMBER(3,0) NOT NULL
);
```

Integridad de entidad – Forma 3

Al final de la definición de la tabla, al momento de crear la tabla

```
CREATE TABLE nombreTabla
( Columna1 TipoDato [NULL | NOT NULL],
  [, ... n],

CONSTRAINT nombre_restriccion PRIMARY KEY (columna1, columna2,...)
);
```

```
PERSONA

•rutPR Cade na
Longitud fija. Sin puntos ni guión

• fechaNacimPR Fecha
• generoPR Caracter
Dominio: {F (Femenino), M (Masculino9,
0 (Otro)}

• codigo CMResid Numérico
• codigo NC Numérico
```

```
(rutPR CHAR(9) NOT NULL,
fechaNacimPR DATE NOT NULL,
generoPR CHAR(1) NOT NULL,
codigoCMResid NUMBER(5,0) NOT NULL,
codigoNC NUMBER(3,0) NOT NULL,
CONSTRAINT PK_PERSONA PRIMARY KEY(rutPR)
);
```

Actividad

En la base de datos TARJETA establece la clave primaria para las tablas CLIENTE y TARJETA. Aplica la forma 1, establecida para este curso.

Modelo de datos

Integridad referencial

Se establece a través de clave(s) foránea(s) (foreign key - FK)

Existen dos formas de establecer una FK:

- Forma 1: modificando la definición de la tabla ya creada (utilizada en este curso)
- Forma 2: al final de la definición de la tabla, al momento de crear la tabla

Integridad referencial – Forma 1

Modificando la definición de la tabla ya creada

ALTER TABLE nombre Tabla

ADD CONSTRAINT nombre_restricción

FOREIGN KEY (columna1, columna2, ...)

REFERENCES nombreTablaOrigen(columna1,columna2,...);

Ejemplo

ALTER TABLE TARJETA

ADD CONSTRAINT FK_CLIENTE_TARJETA

FOREIGN KEY(rutCL)

REFERENCES CLIENTE(rutCL);

Integridad referencial – Forma 2

Al final de la definición de la tabla, al momento de crear la tabla

```
CREATE TABLE nombreTabla
```

```
( Columna1 TipoDato [NULL | NOT NULL],
```

[, ... n],

CONSTRAINT nombre_restriccion FOREIGN KEY (columna1, columna2,...)

REFERENCES *tablaOrigen(columna1,columna2, ...);*


```
CREATE TABLE TARJETA
(numeroTJ NUMBER(6,0) NOT NULL,
rutCL CHAR(9) NOT NULL,
-- otras columnas
CONSTRAINT FK_PERSONA_TARJETA FOREIGN KEY(rutCL)
REFERENCES CLIENTE(rutCL)
);
```

Actividad

En la base de datos TARJETA establece la(s) clave(s) primaria(s), según corresponda.
Aplica la forma 1, establecida para este curso.

Modelo de datos

Existen cuatro tipos de integridad de dominio, no necesariamente excluyentes

- Valor nulo/no nulo (NULL/NOT NULL)
- Lista de valores (CHECK)
- Rango de valores (CHECK)
- Valor por defecto (DEFAULT)

NULL/NOT NULL

- Indica ausencia de valor
- Ningún componente de una clave primaria debe ser nulo
- Es el tipo de integridad de dominio básico

```
PERSONA

• rutPR Cade na
Longitud fija. Sin puntos ni guión

• fechaNacimPR Fecha
• generoPR Caracter
Dominio: {F (Femenino), M (Masculino9,
0 (Otro)}
• codigoCMResid Numérico
• codigoNC Numérico
```

```
CREATE TABLE PERSONA
                             NOT NULL
(rutPR
                CHAR (9)
                             NOT NULL
fechaNacimPR
                DATE
generoPR
                CHAR (1)
                             NOT NULL
codigoCMResid
                NUMBER (5,0)
                             NOT NULL,
codigoNC
                NUMBER (3,0)
                            NOT NULL
```

CHECK

- Limita el rango de valores que puede tomar una columna
- Existen tres formas de establecerla:
 - Forma 1: modificando la definición de la tabla (utilizada en este curso)
 - Forma 2: en la definición de la tabla, al momento de crearla
 - Forma 3: al final de la definición de la tabla, al momento de crear la tabla

CHECK – Forma 1

Modificando la definición de la tabla

ALTER TABLE nombre Tabla

ADD CONSTRAINT nombre_restricción

CHECK condición

Ejemplo

ALTER TABLE CLIENTE

ADD CONSTRAINT CK_generoCL

CHECK (generoCL IN ('F','M'));

```
ALTER TABLE TARJETA

ADD CONSTRAINT CK_cupoTJ

CHECK (cupoTJ >= 100000 AND cupoTJ <= 3000000);
```

CHECK – Forma 2

En la definición de la tabla, al momento de crearla

CREATE TABLE nombreTabla

(Columna1 TipoDato [NULL | NOT NULL] CHECK condicion,

[, ... n])


```
CREATE TABLE CLIENTE2
(rutCL
                 CHAR (9)
                             NOT NULL.
apellido1CL
                VARCHAR2 (25) NOT NULL.
 apellido2CL
                VARCHAR2 (25) NOT NULL,
                VARCHAR2 (25) NOT NULL,
 nombreCL
 fechaNacimCL
                DATE
                             NOT NULL
                             NOT NULL CHECK (generoCL IN ('F', 'M'))
 generoCL
                 CHAR(1)
 -- otras columnas
```

CHECK – Forma 3

Al final de la definición de la tabla, al momento de crear la tabla

```
CREATE TABLE nombreTabla

( Columna1 TipoDato [NULL | NOT NULL],

[, ... n],

CONSTRAINT nombre_restriction CHECK condicion
);
```



```
CREATE TABLE CLIENTE
(rutCL
                CHAR (9)
                             NOT NULL,
apellido1CL
                VARCHAR2 (25) NOT NULL,
apellido2CL
                VARCHAR2 (25) NOT NULL,
nombreCL
                VARCHAR2 (25) NOT NULL,
fechaNacimCL
                DATE
                             NOT NULL,
generoCL
                CHAR(1)
                             NOT NULL.
 -- otras columnas
CONSTRAINT CK generoCL CHECK(generoCL IN ('F', 'M'))
);
```

DEFAULT

- Asigna un valor predeterminado a una columna
- Existen dos formas de establecerlo:
 - Forma 1: modificando la definición de la tabla (utilizada en este curso)
 - Forma 2: en la definición de la tabla, al momento de crearla

DEFAULT

Modificando la definición de la tabla

ALTER TABLE nombreTabla

MODIFY nombre_columna DEFAULT valor;

Ejemplo

ALTER TABLE TARJETA
MODIFY fechaApertTJ DEFAULT SYSDATE;

ALTER TABLE TARJETA
MODIFY estadoTJ DEFAULT 'A';

DEFAULT

En la definición de la tabla, al momento de crearla

CREATE TABLE nombreTabla

```
( Columna1 TipoDato DEFAULT expresion_constante [NULL | NOT NULL] , [, ... n]);
```

Ejemplo

CREATE TABLE TARJETA (numeroTJ NUMBER(6,0) NOT NULL, rutCL CHAR(9) NOT NULL, fechaApertTJ DATE DEFAULT SYSDATE NOT NULL, -- otras columnas estadoTJ CHAR(1) DEFAULT 'A' NOT NULL);

Eliminación de una restricción

CONSTRAINT

Se pueden eliminar sólo aquellas restricciones que han sido nombradas

- PK nombreTabla
- FK nombreTablaOrigen nombreTablaDestino
- CK nombreColumna

ALTER TABLE nombreTabla

DROP CONSTRAINT *nombre1* [,... n];

Ejemplo

ALTER TABLE TARJETA

ADD CONSTRAINT CK_cupoTJ

CHECK (cupoTJ >= 100000 AND cupoTJ <= 3000000);

ALTER TABLE TARJETA

DROP CONSTRAINT CK cupoTJ;

Actividad

En la base de datos TARJETA establece la(s) integridad(es) de dominio faltante(s). Aplica la forma 1, establecida para este curso, según corresponda

