## Chapter 3

#### A Little Bit of Model Theory

Interpretations of ALC can be viewed as graphs (with labeled edges and nodes).

- We introduce the notion of bisimulation between graphs/interpretations
- We show that  $\mathcal{ALC}$ -concepts cannot distinguish bisimular nodes
- We use this to show restrictions of the expressive power of  $\mathcal{ALC}$
- We use this to show interesting properties of models for  $\mathcal{ALC}$ :
  - tree model property
  - closure under disjoint union
- We show the finite model property of ALC.

### <u>Definition 3.1</u> (bisimulation)

### Section 3.1: Bisimulation

Let  $\mathcal{I}_1$  and  $\mathcal{I}_2$  be interpretations.

The relation  $\rho \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$  is a bisimulation between  $\mathcal{I}_1$  and  $\mathcal{I}_2$  iff

- $d_1 \rho d_2$  implies  $d_1 \in A^{\mathcal{I}_1}$  iff  $d_2 \in A^{\mathcal{I}_2}$  for all  $A \in \mathbb{C}$
- $d_1 \rho d_2$  and  $(d_1, d_1') \in r^{\mathcal{I}_1}$  implies the existence of  $d_2' \in \Delta^{\mathcal{I}_2}$  such that  $d_1' \rho d_2'$  and  $(d_2, d_2') \in r^{\mathcal{I}_2}$  for all  $r \in \mathbf{R}$
- $d_1 \rho d_2$  and  $(d_2, d_2') \in r^{\mathcal{I}_2}$  implies the existence of  $d_1' \in \Delta^{\mathcal{I}_1}$  such that  $d_1' \rho d_2'$  and  $(d_1, d_1') \in r^{\mathcal{I}_1}$  for all  $r \in \mathbf{R}$



#### Note:

- $\mathcal{I}_1 = \mathcal{I}_2$  is possible
- the empty relation ∅ is a bisimulation.

Let  $\mathcal{I}_1$  and  $\mathcal{I}_2$  be interpretations and  $d_1 \in \Delta^{\mathcal{I}_1}$ ,  $d_2 \in \Delta^{\mathcal{I}_2}$ .

 $(\mathcal{I}_1,d_1)\sim (\mathcal{I}_2,d_2)$  iff there is a bisimulation ho between  $\mathcal{I}_1$  and  $\mathcal{I}_2$  such that  $d_1
ho d_2$ 

" $d_1$  in  $\mathcal{I}_1$  is bisimilar to  $d_2$  in  $\mathcal{I}_2$ "



Fig. 3.1. Three interpretations  $I_1,\,I_2,\,I_3$  represented as graphs

$$(d_1, \mathcal{I}_1) \sim (f_1, \mathcal{I}_3)$$
  $(d_1, \mathcal{I}_1) \not\sim (e_1, \mathcal{I}_2)$ 

Let  $\mathcal{I}_1$  and  $\mathcal{I}_2$  be interpretations and  $d_1 \in \Delta^{\mathcal{I}_1}$ ,  $d_2 \in \Delta^{\mathcal{I}_2}$ .

 $(\mathcal{I}_1,d_1)\sim (\mathcal{I}_2,d_2)$  iff there is a bisimulation ho between  $\mathcal{I}_1$  and  $\mathcal{I}_2$  such that  $d_1
ho d_2$ 

" $d_1$  in  $\mathcal{I}_1$  is bisimilar to  $d_2$  in  $\mathcal{I}_2$ "

#### Theorem 3.2 (bisimulation invariance of ALC)

If  $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$ , then the following holds for all  $\mathcal{ALC}$ -concepts C:

$$d_1 \in C^{\mathcal{I}_1}$$
 iff  $d_2 \in C^{\mathcal{I}_2}$ 

"ALC-concepts cannot distinguish between bisimilar elements."

Proof: blackboard

## Section 3.2: Expressive power

We have introduced extensions of ALC by the concept constructors number restrictions, nominals and the role constructor inverse role.

How can we show that these constructors really extend  $\mathcal{ALC}$ , i.e., that they cannot be expressed using the constructors of  $\mathcal{ALC}$ ?

To this purpose, we show that, using any of these constructors, we can construct concept descriptions

- that cannot be expressed by ALC-concept descriptions,
- i.e, there is no equivalent ALC-concept description.

## Expressive power

of ALC

### Proposition 3.3 ( $\mathcal{ALCN}$ is more expressive than $\mathcal{ALC}$ )

No  $\mathcal{ALC}$ -concept description is equivalent to the  $\mathcal{ALCN}$ -concept description ( $\leq 1r$ ).

## Expressive power

of ALC

### Proposition 3.4 ( $\mathcal{ALCI}$ is more expressive than $\mathcal{ALC}$ )

No  $\mathcal{ALC}$ -concept description is equivalent to the  $\mathcal{ALCI}$ -concept description  $\exists r^-. \top$ .

## Expressive power

of ALC

### Proposition 3.5 ( $\mathcal{ALCO}$ is more expressive than $\mathcal{ALC}$ )

No  $\mathcal{ALC}$ -concept description is equivalent to the  $\mathcal{ALCO}$ -concept description  $\{a\}$ .

#### Definition 3.6

Let  $\mathfrak{N}$  be an index set and  $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$  a family of interpretations  $\mathcal{I}_{\nu} = (\Delta^{\mathcal{I}_{\nu}}, \cdot^{\mathcal{I}_{\nu}})$ .

Their disjoint union  $\mathcal{J}$  is defined as follows:

$$\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in \Delta^{\mathcal{I}_{\nu}}\};\\ A^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in A^{\mathcal{I}_{\nu}}\} \text{ for all } A \in \mathbf{C};\\ r^{\mathcal{J}} &=& \{((d,\nu),(e,\nu)) \mid \nu \in \mathfrak{N} \text{ and } (d,e) \in r^{\mathcal{I}_{\nu}}\} \text{ for all } r \in \mathbf{R}. \end{array}$$

Notation:  $\mathcal{J} = \biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}$ 

Example:  $\mathfrak{N} = \{1, 2\}$ 

#### Definition 3.6

Let  $\mathfrak{N}$  be an index set and  $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$  a family of interpretations  $\mathcal{I}_{\nu} = (\Delta^{\mathcal{I}_{\nu}}, \cdot^{\mathcal{I}_{\nu}})$ .

Their disjoint union  $\mathcal{J}$  is defined as follows:

$$\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in \Delta^{\mathcal{I}_{\nu}}\};\\ A^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in A^{\mathcal{I}_{\nu}}\} \text{ for all } A \in \mathbf{C};\\ r^{\mathcal{J}} &=& \{((d,\nu),(e,\nu)) \mid \nu \in \mathfrak{N} \text{ and } (d,e) \in r^{\mathcal{I}_{\nu}}\} \text{ for all } r \in \mathbf{R}. \end{array}$$

#### Lemma 3.7

For  $\nu \in \mathfrak{N}$ , all  $\mathcal{ALC}$ -concept descriptions C, and all  $d \in \Delta^{\mathcal{I}_{\nu}}$  we have  $d \in C^{\mathcal{I}_{\nu}}$  iff  $(d, \nu) \in C^{\mathcal{J}}$ 

Proof: blackboard

#### Definition 3.6

Let  $\mathfrak{N}$  be an index set and  $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$  a family of interpretations  $\mathcal{I}_{\nu} = (\Delta^{\mathcal{I}_{\nu}}, \cdot^{\mathcal{I}_{\nu}})$ .

Their disjoint union  $\mathcal{J}$  is defined as follows:

```
\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in \Delta^{\mathcal{I}_{\nu}}\};\\ A^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in A^{\mathcal{I}_{\nu}}\} \text{ for all } A \in \mathbf{C};\\ r^{\mathcal{J}} &=& \{((d,\nu),(e,\nu)) \mid \nu \in \mathfrak{N} \text{ and } (d,e) \in r^{\mathcal{I}_{\nu}}\} \text{ for all } r \in \mathbf{R}. \end{array}
```

#### Theorem 3.8

Let  $\mathcal{T}$  be an  $\mathcal{ALC}$  TBox and  $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$  a family of models of  $\mathcal{T}$ .

Then its disjoint union  $\mathcal{J} = \biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}$  is also a model of  $\mathcal{T}$ .

#### Definition 3.6

Let  $\mathfrak{N}$  be an index set and  $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$  a family of interpretations  $\mathcal{I}_{\nu} = (\Delta^{\mathcal{I}_{\nu}}, \cdot^{\mathcal{I}_{\nu}})$ .

Their disjoint union  $\mathcal{J}$  is defined as follows:

```
\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in \Delta^{\mathcal{I}_{\nu}}\};\\ A^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in A^{\mathcal{I}_{\nu}}\} \text{ for all } A \in \mathbf{C};\\ r^{\mathcal{J}} &=& \{((d,\nu),(e,\nu)) \mid \nu \in \mathfrak{N} \text{ and } (d,e) \in r^{\mathcal{I}_{\nu}}\} \text{ for all } r \in \mathbf{R}. \end{array}
```

#### Corollary 3.9

Let  $\mathcal{T}$  be an  $\mathcal{ALC}$  TBox and C an  $\mathcal{ALC}$  concept that is satisfiable w.r.t.  $\mathcal{T}$ .

Then there is a model  $\mathcal{J}$  of  $\mathcal{T}$  in which the extension  $C^{\mathcal{J}}$  of C is infinite.

## Section 3.4: Finite model property

#### <u>Definition 3.10</u> (finite model)

The interpretation  $\mathcal{I}$  is a model of a concept C w.r.t. a TBox  $\mathcal{T}$  if

 $\mathcal{I}$  is a model of  $\mathcal{T}$  such that  $C^{\mathcal{I}} \neq \emptyset$ .

We call this model finite if  $\Delta^{\mathcal{I}}$  is finite.

### Finite model property of ALC:

If  $\mathcal{T}$  is an  $\mathcal{ALC}$ -TBox and C an  $\mathcal{ALC}$ -concept description such that C is satisfiable w.r.t.  $\mathcal{T}$ , then C has a finite model w.r.t.  $\mathcal{T}$ .

Proof first requires some definitions and auxiliary results.

#### Size

#### of $\mathcal{ALC}$ -concepts

• 
$$C = A \in \mathbb{C}$$
:  $\operatorname{size}(C) := 1$ ;

• 
$$C = C_1 \sqcap C_2 \text{ or } C = C_1 \sqcup C_2$$
:  $size(C) := 1 + size(C_1) + size(C_2)$ ;

• 
$$C = \neg D$$
 or  $C = \exists r.D$  or  $C = \forall r.D$ :  $\operatorname{size}(C) := 1 + \operatorname{size}(D)$ .

$$size(A \sqcap \exists r.(A \sqcup B)) = 1 + 1 + (1 + (1 + 1 + 1)) = 6$$

Counts the occurrences of concept names, role names, and Boolean operators.

$$\mathsf{size}(\mathcal{T}) := \sum_{C \sqsubseteq D \in \mathcal{T}} \mathsf{size}(C) + \mathsf{size}(D)$$

## Subconcepts

#### of $\mathcal{ALC}$ -concepts

- $C = A \in \mathbb{C}$ :  $sub(C) := \{A\}$ ;
- $C = C_1 \sqcap C_2 \text{ or } C = C_1 \sqcup C_2$ :  $sub(C) := \{C\} \cup sub(C_1) \cup sub(C_2)$ ;
- $C = \neg D$  or  $C = \exists r.D$  or  $C = \forall r.D$ :  $sub(C) := \{C\} \cup sub(D)$ .

 $\operatorname{sub}(A \sqcap \exists r.(A \sqcup B))$ 

$$\mathsf{sub}(\mathcal{T}) := \bigcup_{C \sqsubseteq D \in \mathcal{T}} \mathsf{sub}(C) \cup \mathsf{sub}(D)$$

#### Lemma 3.11

 $|\operatorname{\mathsf{sub}}(C)| \le \operatorname{\mathsf{size}}(C) \text{ and } |\operatorname{\mathsf{sub}}(\mathcal{T})| \le \operatorname{\mathsf{size}}(\mathcal{T}).$ 

## Type

of an element of a model

### <u>Definition 3.12</u> (*S*-type)

Let S be a finite set of concept descriptions, and  $\mathcal I$  an interpretation.

The S-type of  $d \in \Delta^{\mathcal{I}}$  is defined as

$$t_S(d) := \{ C \in S \mid d \in C^{\mathcal{I}} \}.$$

#### Lemma 3.13 (number of S-types)

$$|\{t_S(d) \mid d \in \Delta^{\mathcal{I}}\}| \le 2^{|S|}$$

Proof: obvious

### Filtration

create a model in which every S-type is realized by at most one element

#### <u>Definition 3.14</u> (S-filtration)

Let S be a finite set of concept descriptions, and  $\mathcal{I}$  an interpretation.

We define an equivalence relation  $\simeq$  on  $\Delta^{\mathcal{I}}$  as follows:

$$d \simeq e \text{ iff } t_S(d) = t_S(e)$$

The  $\simeq$ -equivalence class of  $d \in \Delta^{\mathcal{I}}$  is denoted by [d].

The S-filtration of  $\mathcal{I}$  is the following interpretation  $\mathcal{J}$ :

- $\bullet \ \Delta^{\mathcal{J}} := \{ [d] \mid d \in \Delta^{\mathcal{I}} \}$
- $A^{\mathcal{J}} := \{[d] \mid \exists d' \in [d]. \ d' \in A^{\mathcal{I}}\} \text{ for all } A \in \mathbf{C}$
- $r^{\mathcal{J}} := \{([d], [e]) \mid \exists d' \in [d], e' \in [e]. (d', e') \in r^{\mathcal{I}}\} \text{ for all } r \in \mathbf{R}$

By Lemma 3.13, 
$$|\Delta^{\mathcal{J}}| \leq 2^{|S|}$$
.

## Filtration

#### important property

We say that the finite set S of concept descriptions is closed iff

$$\bigcup\{\operatorname{sub}(C)\mid C\in S\}\subseteq S$$

#### Lemma 3.15

Let S be a finite, closed set of  $\mathcal{ALC}$ -concept descriptions,  $\mathcal{I}$  an interpretation, and  $\mathcal{J}$  the S-filtration of  $\mathcal{I}$ . Then we have

$$d \in C^{\mathcal{I}} \quad \text{iff} \quad [d] \in C^{\mathcal{J}}$$

for all  $d \in \Delta^{\mathcal{I}}$  and  $C \in S$ .

The following proposition shows that ALC satisfies a property that is even stronger than the finite model property.

#### <u>Theorem 3.16</u> (bounded model property)

Let  $\mathcal{T}$  be an  $\mathcal{ALC}$ -TBox, C an  $\mathcal{ALC}$ -concept description, and  $n = \operatorname{size}(\mathcal{T}) + \operatorname{size}(C)$ .

If C has a model w.r.t.  $\mathcal{T}$ , then it has a model  $\widehat{\mathcal{I}}$  such that  $|\Delta^{\widehat{\mathcal{I}}}| \leq 2^n$ .

Proof: let  $\mathcal{I}$  be a model of  $\mathcal{T}$  with  $C^{\mathcal{I}} \neq \emptyset$ , and  $\widehat{\mathcal{I}}$  be the S-filtration of  $\mathcal{I}$ , where  $S := \mathsf{sub}(C) \cup \mathsf{sub}(\mathcal{T})$ .

We must show:

- $|\Delta^{\widehat{I}}| \leq 2^n$  Lemma 3.11 and Lemma 3.13
- $C^{\widehat{\mathcal{I}}} \neq \emptyset$

 $oldsymbol{\widehat{\mathcal{I}}}$  is a model of  ${\mathcal{T}}$ 

follow from Lemma 3.15

The following proposition shows that ALC satisfies a property that is even stronger than the finite model property.

#### <u>Theorem 3.16</u> (bounded model property)

Let  $\mathcal{T}$  be an  $\mathcal{ALC}$ -TBox, C an  $\mathcal{ALC}$ -concept description, and  $n = \operatorname{size}(\mathcal{T}) + \operatorname{size}(C)$ .

If C has a model w.r.t.  $\mathcal{T}$ , then it has a model  $\widehat{\mathcal{I}}$  such that  $|\Delta^{\widehat{\mathcal{I}}}| \leq 2^n$ .

#### Corollary 3.17 (Finite model property)

Let  $\mathcal{T}$  be an  $\mathcal{ALC}$ -TBox and C an  $\mathcal{ALC}$ -concept description If C has a model w.r.t.  $\mathcal{T}$ , then it has a finite model.

### Corollary 3.18 (Decidability)

In ALC, satisfiability of a concept description w.r.t. a TBox is decidable.

# No finite model property

<u>Theorem 3.19</u> (no finite model property)

 $\mathcal{ALCIN}$  does not have the finite model property.

# Section 3.5: Tree model property

Recall that interpretations can be viewed as graphs:

- nodes are the elements of  $\Delta^{\mathcal{I}}$ ;
- interpretation of role names yields edges;
- interpretation of concept names yields node labels.



Starting with a given node, the graph can be unraveled into a tree without "changing membership" in concepts.



#### <u>Definition 3.20</u> (Tree model)

Let  $\mathcal{T}$  be a TBox and C a concept description.

The interpretation  $\mathcal{I}$  is a tree model of C w.r.t.  $\mathcal{T}$  iff  $\mathcal{I}$  is a model of  $\mathcal{T}$ , and the graph

$$\mathcal{G}_{\mathcal{I}} = (\Delta^{\mathcal{I}}, \bigcup_{r \in \mathbf{R}} r^{\mathcal{I}})$$

is a tree whose root belongs to  $C^{\mathcal{I}}$ .

Goal: Show that every  $\mathcal{ALC}$ -concept that is satisfiable w.r.t.  $\mathcal{T}$  has a tree model w.r.t.  $\mathcal{T}$ .

## Unraveling

#### more formally

Let  $\mathcal{I}$  be an interpretation and  $d \in \Delta^{\mathcal{I}}$ .

A d-path in  $\mathcal{I}$  is a finite sequence  $p = d_0, d_1, \dots, d_{n-1}$  of  $n \geq 1$  elements of  $\Delta^{\mathcal{I}}$  such that

- $d_0 = d$ .
- for all  $i, 1 \leq i < n$ , there is a role  $r_i \in \mathbf{R}$  such that  $(d_{i-1}, d_i) \in r_i^{\mathcal{I}}$ .

n =length of this path  $end(p) = d_{n-1} end node of this path$ 

#### <u>Definition 3.21</u> (Unraveling)

The unravelling of  $\mathcal{I}$  at d is the following interpretation  $\mathcal{J}$ :

$$\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{p \mid p \text{ is a } d\text{-path in } \mathcal{I}\}, \\ A^{\mathcal{J}} &=& \{p \in \Delta^{\mathcal{J}} \mid \operatorname{end}(p) \in A^{\mathcal{I}}\} \text{ for all } A \in \mathbf{C}, \\ r^{\mathcal{J}} &=& \{(p,p') \in \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}} \mid p' = (p,\operatorname{end}(p')) \text{ and } (\operatorname{end}(p),\operatorname{end}(p')) \in r^{\mathcal{I}}\} \\ & & \text{for all } r \in \mathbf{R}. \end{array}$$

## Unraveling

#### example





### <u>Definition 3.21</u> (Unraveling)

The unravelling of  $\mathcal{I}$  at d is the following interpretation  $\mathcal{J}$ :

$$\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{p \mid p \text{ is a } d\text{-path in } \mathcal{I}\}, \\ A^{\mathcal{J}} &=& \{p \in \Delta^{\mathcal{J}} \mid \operatorname{end}(p) \in A^{\mathcal{I}}\} \text{ for all } A \in \mathbf{C}, \\ r^{\mathcal{J}} &=& \{(p,p') \in \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}} \mid p' = (p,\operatorname{end}(p')) \text{ and } (\operatorname{end}(p),\operatorname{end}(p')) \in r^{\mathcal{I}}\} \\ & & \text{for all } r \in \mathbf{R}. \end{array}$$

#### Lemma 3.22

The relation

$$\rho = \{ (p, \operatorname{end}(p)) \mid p \in \Delta^{\mathcal{I}} \}$$

is a bisimulation between  $\mathcal{J}$  and  $\mathcal{I}$ .

### Proposition 3.23

For all  $\mathcal{ALC}$  concepts C and all  $p \in \Delta^{\mathcal{J}}$  we have

$$p \in C^{\mathcal{I}} \ \text{iff} \ \operatorname{end}(p) \in C^{\mathcal{I}}.$$

#### <u>Theorem 3.24</u> (tree model property)

 $\mathcal{ALC}$  has the tree model property,

i.e., if  $\mathcal{T}$  is an  $\mathcal{ALC}$ -TBox and C an  $\mathcal{ALC}$ -concept description such that C is satisfiable w.r.t.  $\mathcal{T}$ , then C has a tree model w.r.t.  $\mathcal{T}$ .

### Proposition 3.25 (no tree model property)

 $\mathcal{ALCO}$  does **not** have the tree model property.

#### Proof:

The concept  $\{a\}$  does not have a tree model w.r.t.  $\{\{a\} \sqsubseteq \exists r.\{a\}\}\}$ .