COL100: Introduction to Computer Science

7.2: Some more algorithms (which are exponential time)

Tower of Hanoi problem

Some simple-sounding problems require extremely expensive algorithms.

Problem: Move all the disks from the first peg to the third peg, but without ever placing a larger disk on top of a smaller disk.

Try it out by hand for, say, 4 disks.

Is there a systematic approach? If so, is it easy to describe?

Hint: You need to move n disks from peg A to peg C, using peg B as a spare. Can you do this by recursively moving n-1 disks from one peg to another?

Move *n*–1 disks from peg A to peg B, using peg C as a spare.

Move 1 disk from peg A to peg C.

Move n-1 disks from peg B to peg C, using peg A as a spare.

To move *n* disks from *src* to *dst* using *aux*,

If n = 0, then

Do nothing.

Otherwise,

Move n-1 disks from src to aux using dst.

Move 1 disk from src to dst.

Move n-1 disks from aux to dst using src.

What is the time complexity, if moving 1 disk takes 1 unit of time?

$$T(0) = 0$$

 $T(n) = T(n-1) + 1 + T(n-1)$
 $= 2T(n-1) + 1$

If we had a guess for a formula for T(n), we could try proving it via induction. But first we need a guess.

$$T(0) = 0$$
, $T(1) = 1$, $T(2) = 3$, $T(3) = 7$, $T(4) = 15$, ...

Guess: $T(n) = 2^n - 1 = O(2^n)$. Prove it via induction.

The subset sum problem

Consider a version of the change-making problem:

I have *n* coins/notes of various denominations in my pocket. Can I make exact change for a given amount *a*?

$$d(1) = 5$$

 $d(2) = 8$
 $d(3) = 12$
 $d(4) = 20$
 $d(5) = 31$
 $d(6) = 33$

$$c: \mathbb{N} \times (\mathbb{N} \to \mathbb{N}) \times \mathbb{N} \to \mathbb{B}$$

c(a, d, n) is true if and only if I can make change for amount a using only (some subset of) the notes d(1), d(2), ..., d(n).

$$c(a, d, n) = \begin{cases} a = 0 & \text{if } n = 0, \\ c(a, d, n - 1) \lor c(a - d(n), d, n - 1) & \text{otherwise.} \end{cases}$$

If n > 0, either I make change without using the nth note, or I use it and make change for the remaining a - d(n) amount using the rest of the notes.

$$c(a, d, n) = \begin{cases} a = 0 & \text{if } n = 0, \\ c(a, d, n - 1) \lor c(a - d(n), d, n - 1) & \text{otherwise.} \end{cases}$$

Let T(n) = number of subtractions needed to evaluate c(a, d, n).

$$T(0) = 0$$

$$T(n) = 2T(n-1) + 3$$

Then $T(n) = 3(2^n - 1) = O(2^n)$.

What is this algorithm really doing?

We are given a set $D = \{d_1, d_2, ..., d_n\}$ and we want to search for a subset $S \subseteq D$ such that $\sum S = a$.

- In case $d_n \notin S$, we need to search for $S \subseteq \{d_1, d_2, ..., d_{n-1}\}$.
- In case $d_n \in S$, we need to search for $S' = S \setminus \{d_n\} \subseteq \{d_1, d_2, ..., d_{n-1}\}$ such that $\sum S' = a d_n$.

We are exhaustively checking all subsets of D, and there are 2^n of them.

Is a polynomial-time algorithm possible? Nobody knows!*

*The time complexity should be polynomial in n and in the total number of digits in a and d_i . Look up "subset sum problem" and "P vs. NP" if you want to learn more about this open problem.

Next lecture

- Recorded lectures by Prof. Huzur Saran
- Tail recursion and iterative processes
 - factorial(n) in O(1) space
 - fibonacci(n) in O(n) time and O(1) space