

NLP Programming Tutorial 1 - Unigram Language Models

Graham Neubig
Nara Institute of Science and Technology (NAIST)

Language Model Basics

Why Language Models?

 We have an English speech recognition system, which answer is better?

Why Language Models?

 We have an English speech recognition system, which answer is better?

Language models tell us the answer!

Probabilistic Language Models

Language models assign a probability to each sentence

$$W_1$$
 = speech recognition system $P($

$$P(W_1) = 4.021 * 10^{-3}$$

$$P(W_2) = 8.932 * 10^{-4}$$

$$W_3$$
 = speck podcast histamine

$$P(W_3) = 2.432 * 10^{-7}$$

$$P(W_4) = 9.124 * 10^{-23}$$

- We want $P(W_1) > P(W_2) > P(W_3) > P(W_4)$
 - (or $P(W_4) > P(W_1)$, $P(W_2)$, $P(W_3)$ for Japanese?)

Calculating Sentence Probabilities

We want the probability of

W = speech recognition system

Represent this mathematically as:

 $P(|W| = 3, w_1 = "speech", w_2 = "recognition", w_3 = "system")$

Calculating Sentence Probabilities

We want the probability of

W = speech recognition system

• Represent this mathematically as (using chain rule):

```
P(|W| = 3, w_1="speech", w_2="recognition", w_3="system") =

P(w_1="speech" | w_0 = "<s>")

* P(w_2="recognition" | w_0 = "<s>", w_1="speech")

* P(w_3="system" | w_0 = "<s>", w_1="speech", w_2="recognition")

* P(w_4="</s>" | w_0 = "<s>", w_1="speech", w_2="recognition", w_3="system")
```

NOTE:

sentence start <s> and end </s> symbol

NOTE:
$$P(w_0 = < s >) = 1$$

Incremental Computation

Previous equation can be written:

$$P(W) = \prod_{i=1}^{|W|+1} P(w_i | w_0 \dots w_{i-1})$$

How do we decide probability?

$$P(w_i|w_0...w_{i-1})$$

Maximum Likelihood Estimation

Calculate word strings in corpus, take fraction

$$P(w_i|w_1...w_{i-1}) = \frac{C(w_1...w_i)}{C(w_1...w_{i-1})}$$

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(live |
$$\langle s \rangle$$
 i) = c($\langle s \rangle$ i live)/c($\langle s \rangle$ i) = 1 / 2 = 0.5
P(am | $\langle s \rangle$ i) = c($\langle s \rangle$ i am)/c($\langle s \rangle$ i) = 1 / 2 = 0.5

Problem With Full Estimation

Weak when counts are low:

Training:

<s> i live in nara . </s>

Test:

$$P(nara | < s > i live in) = 0/1 = 0$$

P(W=<s> i live in nara . </s>) = 0

Unigram Model

Do not use history:

$$P(w_i|w_1...w_{i-1}) \approx P(w_i) = \frac{c(w_i)}{\sum_{\tilde{w}} c(\tilde{w})}$$

i live in osaka . </s> i am a graduate student . </s> P(i) = 2/20 = 0.1my school is in nara . </s>

$$P(nara) = 1/20 = 0.05$$

 $P(i) = 2/20 = 0.1$
 $P() = 3/20 = 0.15$

P(W=i live in nara .) =
$$0.1 * 0.05 * 0.1 * 0.05 * 0.15 * 0.15 = 5.625 * 10^{-7}$$

Be Careful of Integers!

Divide two integers, you get an integer (rounded down)

```
first_int = 1
second_int = 2

print first_int/second_int

$ ./my-program.py
0
```

Convert one integer to a float, and you will be OK

```
print float(first_int)/second_int
```

```
$ ./my-program.py
0.5
```


What about Unknown Words?!

Simple ML estimation doesn't work

```
i live in osaka . </s> P(nara) = 1/20 = 0.05 i am a graduate student . </s> P(i) = 2/20 = 0.1 my school is in nara . </s> P(kyoto) = 0/20 = 0
```

- Often, unknown words are ignored (ASR)
- Better way to solve
 - Save some probability for unknown words $(\lambda_{unk} = 1 \lambda_1)$
 - Guess total vocabulary size (N), including unknowns

$$P(w_i) = \lambda_1 P_{ML}(w_i) + (1 - \lambda_1) \frac{1}{N}$$

Unknown Word Example

- Total vocabulary size: N=10⁶
- Unknown word probability: $\lambda_{unk} = 0.05 \ (\lambda_1 = 0.95)$

$$P(w_i) = \lambda_1 P_{ML}(w_i) + (1 - \lambda_1) \frac{1}{N}$$

P(nara) =
$$0.95*0.05 + 0.05*(1/10^6) = 0.04750005$$

$$P(i) = 0.95*0.10 + 0.05*(1/10^6) = 0.09500005$$

$$P(kyoto) = 0.95*0.00 + 0.05*(1/10^6) = 0.00000005$$

Evaluating Language Models

Experimental Setup

Use training and test sets

Model Accuracy

Likelihood Log Likelihood **Entropy** Perplexity 16

Likelihood

 Likelihood is the probability of some observed data (the test set W_{test}), given the model M

$$P(W_{test}|M) = \prod_{w \in W_{test}} P(w|M)$$

i live in nara

i am a student

my classes are hard

X

3.48*10⁻¹⁹

X

2.15*10⁻³⁴

1.89*10⁻⁷³

Log Likelihood

- Likelihood uses very small numbers=underflow
- Taking the log resolves this problem

$$\log P(W_{test}|M) = \sum_{\mathbf{w} \in W_{test}} \log P(\mathbf{w}|M)$$

i live in nara

i am a student

my classes are hard

```
log P(w="i live in nara"|M) = -20.58
+ log P(w="i am a student"|M) = -18.45
+ log P(w="my classes are hard"|M) = -33.67
=
```

-72.60

Calculating Logs

Python's math package has a function for logs

```
import math

print math.log(100)  # ln(100)
print math.log(100, 10) # log10(100)

$ ./my-program.py
4.60517018599
2.0
```


Entropy

Entropy H is average negative log₂ likelihood per word

$$H(W_{test}|M) = \frac{1}{|W_{test}|} \sum_{\mathbf{w} \in W_{test}} -\log_2 P(\mathbf{w}|M)$$

i live in nara
i am a student
my classes are hard

$$\log_{2} P(w="i live in nara"|M) = \begin{cases} 68.43 \\ + \\ 61.32 \\ + \end{cases}$$

$$\log_{2} P(w="i am a student"|M) = \begin{cases} 61.32 \\ + \\ 111.84 \end{cases}$$

$$\# \text{ of words} = \begin{cases} 12 \\ = \\ 20.13 \end{cases}$$

^{*} note, we can also count </s> in # of words (in which case it is 15)

Entropy and Compression

 Entropy H is also the average number of bits needed to encode information (Shannon's information theory)

Perplexity

Equal to two to the power of per-word entropy

$$PPL = 2^H$$

- (Mainly because it makes more impressive numbers)
- For uniform distributions, equal to the size of vocabulary

$$V=5$$
 $H=-\log_2\frac{1}{5}$ $PPL=2^H=2^{-\log_2\frac{1}{5}}=2^{\log_25}=5$

Coverage

The percentage of known words in the corpus

```
a bird a cat a dog a </s>
"dog" is an unknown word

Coverage: 7/8 *
```

* often omit the sentence-final symbol → 6/7

Exercise

Exercise

- Write two programs
 - train-unigram: Creates a unigram model
 - test-unigram: Reads a unigram model and calculates entropy and coverage for the test set
- Test them test/01-train-input.txt test/01-test-input.txt
- Train the model on data/wiki-en-train.word
- Calculate entropy and coverage on data/wiki-entest.word
- Report your scores next week

train-unigram Pseudo-Code

create a **map** *counts* create a **variable** *total_count* = 0

for each line in the training_file
split line into an array of words
append "</s>" to the end of words
for each word in words
add 1 to counts[word]
add 1 to total_count

open the model_file for writing
for each word, count in counts
 probability = counts[word]/total_count
 print word, probability to model_file

test-unigram Pseudo-Code

$$\lambda_1 = 0.95$$
, $\lambda_{\text{unk}} = 1 - \lambda_1$, $V = 1000000$, $W = 0$, $H = 0$

Load Model

create a map probabilities
for each line in model_file
split line into w and P
set probabilities[w] = P

Test and Print

```
for each line in test file
 split line into an array of words
 append "</s>" to the end of words
 for each w in words
  add 1 to W
  set P = \lambda_{\text{unk}} / V
   if probabilities[w] exists
    set P += \lambda_1 * probabilities[w]
   else
    add 1 to unk
  add -log_2 P to H
```

```
print "entropy = "+H/W
print "coverage = " + (W-unk)/W
```


Thank You!