1 The Homology of Meaning

1.1 RSVP as a Semantic Filtration Space

Let \mathcal{M} be an RSVP manifold with fields Φ , \vec{v} , S. Define a filtration $K_{\epsilon} \subseteq \mathcal{M}$, parameterized by $\epsilon \in \{\epsilon_s, \epsilon_t, \epsilon_S\}$, representing scale, time, or entropy. The Čech complex \mathcal{C}_{ϵ} is constructed from agent trails, with simplices encoding semantic connectivity.

1.2 Persistent Sheaf Cohomology

Attach a sheaf S to C_{ϵ} , assigning CRDT merge states to simplices. The cohomology groups $H^p(C_{\epsilon}; S)$ capture:

- H^0 : Conceptual clusters (robust memes).
- H^1 : Ambiguity loops (persistent contradictions).
- H^2 : Knowledge voids (long-term blind spots).

Persistent cohomology yields barcodes, with bar length indicating semantic stability.

1.3 Torsion Events and Cognitive Crises

A torsion event occurs when $\frac{d}{d\epsilon} \dim H^1(\mathcal{C}_{\epsilon}; \mathcal{S}) \gg 0$, signaling dialectical breakdown or polysemic overload.

1.4 Circular Coordinates

For long-lived 1-cocycles α , define $\theta: \mathcal{C}_{\epsilon} \to S^1$ via $\theta(x) = \int_{\gamma} \alpha$, mapping semantic periodicity.

1.5 Robustness Index

Define Robustness Index $(\epsilon) = \frac{\operatorname{Pers}(\epsilon)}{S(\epsilon)}$, where $\operatorname{Pers}(\epsilon)$ is the length-weighted sum of persistent bars and $S(\epsilon)$ is average entropy.