Lower Bounds for Cover-Free Families

Ali Z. Abdi Convent of Nazareth High School Grade 12, Abas 7, Haifa

Nader H. Bshouty Dept. of Computer Science Technion, Haifa, 32000

April 1, 2015

Abstract

Let \mathcal{F} be a set of blocks of a t-set X. (X, \mathcal{F}) is called (w, r)-cover-free family ((w, r)-CFF) provided that, the intersection of any w blocks in \mathcal{F} is not contained in the union of any other r blocks in \mathcal{F} .

We give new asymptotic lower bounds for the number of minimum points t in a (w, r)-CFF when $w \leq r = |\mathcal{F}|^{\epsilon}$ for some constant $\epsilon \geq 1/2$.

Keywords: Cover-Free Family, Lower Bound.

1 Introduction

Let \mathcal{F} be a set of blocks (subsets) of a t-set X. (X, \mathcal{F}) is called (w, r)-coverfree family ((w, r)-CFF) provided that, for any w blocks $A_1, A_2, \ldots, A_w \in \mathcal{F}$ and any other r blocks $B_1, B_2, \ldots, B_r \in \mathcal{F}$ we have

$$\bigcap_{i=1}^{w} A_i \not\subseteq \bigcup_{j=1}^{r} B_j.$$

Since using De Morgan a (w,r)-CFF can be turned into (r,w)-CFF, throughout the paper we assume that $w \leq r$. Cover-free families were first introduced in 1964 by Kautz and Singleton [5].

Let N(n, (w, r)) denote the minimum number of points |X| in any (w, r)-CFF having $|\mathcal{F}| = n$ blocks. The best known lower bound for N(n, (1, r)) is [2, 4, 7]

$$N(n, (1, r)) = \Omega\left(\frac{r^2}{\log r} \log n\right) \tag{1}$$

when $r \leq \sqrt{n}$ and $\Omega(n)$ when $r > \sqrt{n}$. The constant of the $\Omega()$ is asymptotically 1/2, 1/4 and 1/8, respectively. Stinson et. al, [8], proved that

$$N(n,(w,r)) \ge N(n-1,(w-1,r)) + N(n-1,(w,r-1)). \tag{2}$$

They then use it with (1) to prove two bounds. The first bound is

$$N(n, (w, r)) \ge \Omega\left(\frac{\binom{w+r}{w}(w+r)}{\log\binom{w+r}{w}}\log n\right)$$
(3)

when $r \leq \sqrt{n}$, [8, 6], and

$$N(n, (w, r)) \ge \Omega\left(\frac{\binom{w+r}{w}}{\log(w+r)}\log n\right) \tag{4}$$

for any $r \leq n$, [8]. To the best of our knowledge (4) is the best bound known when $\sqrt{n} \leq r \leq n$. D'yachkov et. al. breakthrough result, [3], implies that for $r \leq \sqrt{n}$ and $r, n \to \infty$

$$N(n, (w, r)) = \Theta\left(\frac{\binom{w+r}{w}(w+r)}{\log \binom{w+r}{w}}\log n\right)$$
 (5)

and for $r \ge \sqrt{n}$ and $r, n \to \infty$

$$N(n, (w, r)) \le O\left(\frac{r}{w} \cdot \frac{\binom{w+r}{w}}{\log(w+r)} \log n\right). \tag{6}$$

In this paper we give a new lower bound for (w, r)-CFF when $r > \sqrt{n}$. We combine the two techniques used in [8, 6] and [1] to give the following asymptotic lower bound.

Theorem 1. For any $2 \le k \le w < r \le n/2$ and

$$(n+k-1-w)^{\frac{k-1}{k}} \le r \le (n+k-w)^{\frac{k}{k+1}}$$

$$N(n,(w,r)) \ge \frac{k^k k!}{2(k+1)^{2k}} \frac{r^{w+1}}{(w+1)! \ln^k r} = \Omega\left(\frac{\sqrt{k}}{e^k} \cdot \frac{r^{w+1}}{(w+1)! \ln^{k+1} r} \log n\right)$$
and for
$$r = \Omega\left((n\log n)^{\frac{w}{w+1}}\right)$$

$$N(n,(w,r)) = \Theta\left(\binom{n}{w}\right).$$

Our bound is

$$\Theta\left(\frac{\sqrt{k} \cdot r}{w(e \ln r)^k}\right)$$

times greater than the previous bound in (4). In particular, when k is constant, our lower bound improves the bound in (4) to

$$N(n, (w, r)) \ge \Omega\left(\frac{r}{w \log^k r} \cdot \frac{\binom{w+r}{w}}{\log(w+r)} \log n\right). \tag{7}$$

A slightly better bound can be achieved when $(n+k-w)^{\frac{k}{k+1}} \leq r \leq (n+k-w)^{\frac{k}{k+1}} \ln^{1/(k+1)} n$.

For example, let w = 4. The table in Figure 1 compares our results with the previous results (asymptotic values)

r	Previous Lower Bounds (3), (4)	Upper Bound [3]	Our Lower Bound
$r \le n^{1/2}$	$r^{5} \frac{\log n}{\log r}$	$r^{5} \frac{\log n}{\log r}$	
$n^{1/2} \le r \le n^{2/3}$	$r^4 \frac{\log n}{\log r}$	$r^{5} \frac{\log n}{\log r}$	$r^5 \frac{\log n}{\log^3 r}$
$n^{2/3} \le r \le n^{3/4}$	$r^4 \frac{\log n}{\log r}$	$r^{5} \frac{\log n}{\log r}$	$r^5 \frac{\log n}{\log^4 r}$
$n^{3/4} \le r \le n^{4/5}$	$r^4 \frac{\log n}{\log r}$	$r^{5} \frac{\log n}{\log r}$	$r^5 \frac{\log n}{\log^5 r}$
$n > r \ge (n \log n)^{4/5}$	r^4	n^4	n^4

Figure 1: Results for w = 4.

2 First Lower Bound

In this section we prove

Lemma 1. Let $w \le r \le n/2$. If

$$r = \Omega\left((n\log n)^{\frac{w}{w+1}} \right)$$

then

$$N(n, (w, r)) = \Theta\left(\binom{n}{w}\right). \tag{8}$$

Otherwise,

$$N(n, (w, r)) \ge \Omega\left(\left(\frac{r}{(w+1)\ln r}\right)^{w+1}\log n\right). \tag{9}$$

Lemma 1 follows from the following

Lemma 2. Let $\epsilon < 1$ be any constant. For $w \le r \le n/2$ we have

$$N(n, (w, r)) \ge \min\left((1 - \epsilon) \frac{w^w}{(w+1)^{2w+1}} \cdot \frac{r^{w+1}}{\ln^w r} \cdot , \quad \epsilon \binom{n}{w} \right) \tag{10}$$

Proof. Let (X, \mathcal{F}) be an optimal (w, r)-CFF. Let $\mathcal{F} = \{F_1, \dots, F_n\}$, |X| = N = N(n, (w, r)) and assume without loss of generality that $X = [N] := \{1, \dots, N\}$. Define $v^{(i)} \in \{0, 1\}^n$, $i = 1, \dots, N$ where $v_j^{(i)} = 1$ if and only if $i \in F_j$. Let $V = \{v^{(i)} | i = 1, \dots, N\}$. Let V_0 be the set of $v^{(i)}$ of weight $wt(v^{(i)})$ (i.e., $\sum_j v_j^{(i)}$) equal to w. Let

$$m = \frac{(w+1)^2 n \ln r}{wr}$$

and consider the two sets $V_1 = \{v^{(i)} \mid w < wt(v^{(i)}) < m\}$ and $V_2 = \{v^{(i)} \mid wt(v^{(i)}) \ge m\}$. Obviously, $V = V_0 \cup V_1 \cup V_2$ is a partition of V. Suppose

$$|V_0| \le \epsilon \binom{n}{w}$$

and

$$\max(|V_1|, |V_2|) \le (1 - \epsilon) \frac{w^w}{(w+1)^{2w+1}} \cdot \frac{r^{w+1}}{\ln^w r}.$$

Consider $W = \{(j_1, \ldots, j_w) \mid 1 \leq j_1 < \cdots < j_w \leq n\}$ and $W' \subset W$ the set of all (j_1, \ldots, j_w) where no $v^{(i)} \in V_0$, $i = 1, \ldots, N$, satisfies $v^{(i)}_{j_1} = \cdots = v^{(i)}_{j_m} = 1$. Obviously,

$$|W'| = \binom{n}{w} - |V_0| \ge (1 - \epsilon) \binom{n}{w}.$$

Fix an element $v \in V_1$ and randomly and uniformly choose $j = (j_1, \dots, j_w) \in W'$. We have

$$\mathbf{Pr}_{j\in W'}[v_{j_1}=\cdots=v_{j_w}=1] \leq \frac{\binom{wt(v)}{w}}{|W'|} \leq \frac{\binom{m}{w}}{(1-\epsilon)\binom{n}{w}}.$$

Therefore, the expectation of the number of $v \in V_1$ for which $v_{j_1} = \cdots = v_{j_w} = 1$ is at most

$$\frac{\binom{m}{w}|V_1|}{(1-\epsilon)\binom{n}{w}} \leq \frac{1}{1-\epsilon} \left(\frac{m}{n}\right)^w |V_1|
\leq \frac{1}{1-\epsilon} \frac{(w+1)^{2w} \ln^w r}{w^w r^w} \cdot (1-\epsilon) \frac{w^w}{(w+1)^{2w+1}} \cdot \frac{r^{w+1}}{\ln^w r}
= \frac{r}{w+1}.$$

Therefore, there is $j'=(j'_1,\ldots,j'_w)\in W'$ such that the number of $v\in V_1$ that satisfies $v_{j'_1}=\cdots=v_{j'_w}=1$ is $r_1\leq r/(w+1)$. Since the weight of every $v\in V_1$ is greater than w, we can choose r_1 new entries $j''_1,\ldots,j''_n\not\in\{j'_1,\ldots,j'_w\}$ such that for every $v\in V_1$ where $v_{j'_1}=\cdots=v_{j'_w}=1$ there is j''_ℓ such that $v_{j''_\ell}=1$.

Now randomly and uniformly choose

$$r_2 := \left\lceil \frac{wr}{w+1} \right\rceil$$

distinct $k_1, \ldots, k_{r_2} \in [n]$. Let A be the event that $\{k_1, \ldots, k_{r_2}\} \cap \{j'_1, \ldots, j'_w\} \neq \emptyset$. The probability that A does not happen is

$$\frac{\binom{n-w}{r_2}}{\binom{n}{r_2}} \ge \frac{\binom{n-w}{r_2}}{2^w \binom{n-w}{r_2}} = \frac{1}{2^w}$$

Then

$$\mathbf{Pr}[A \lor (\exists v \in V_2) \ v_{k_1} = \dots = v_{k_{r_2}} = 0] \le 1 - \frac{1}{2^w} + |V_2| \frac{\binom{n-m}{r_2}}{\binom{n}{r_2}}$$

$$\le 1 - \frac{1}{2^w} + |V_2| \left(\frac{n-m}{n}\right)^{r_2}$$

$$\le 1 - \frac{1}{2^w} + |V_2| e^{-\frac{mr_2}{n}}$$

and

$$|V_{2}|e^{-\frac{mr_{2}}{n}} \leq (1-\epsilon)\frac{w^{w}}{(w+1)^{2w+1}} \cdot \frac{r^{w+1}}{\ln^{w} r} \cdot e^{-\frac{(w+1)^{2} \ln r}{wr}} r_{2}$$

$$\leq (1-\epsilon)\frac{w^{w}}{(w+1)^{2w+1}} \cdot \frac{r^{w+1}}{\ln^{w} r} \cdot e^{-(w+1) \ln r}$$

$$= (1-\epsilon)\frac{w^{w}}{(w+1)^{2w+1}} \cdot \frac{1}{\ln^{w} r}$$

$$< \frac{1}{2^{w}}$$

Therefore,

$$\Pr[A \lor (\exists v \in V_2) \ v_{k_1} = \dots = v_{k_{r_2}} = 0] < 1.$$

Therefore, there is $\{k_1,\ldots,k_{r_2}\}$ such that $\{k_1,\ldots,k_{r_2}\}\cap\{j'_1,\ldots,j'_w\}=\emptyset$ and for every $v\in V_2$ there is $k_\ell\in\{k_1,\ldots,k_{r_2}\}$ where $v_{k_\ell}=1$.

Now it is easy to see that there is no $v \in V$ where $v_{j'_1} = \cdots = v_{j'_w} = 1$, $v_{j''_1} = \cdots = v_{j''_{r_1}} = 0$ and $v_{k_1} = \cdots = v_{k_{r_2}} = 0$. This implies that

$$\bigcap_{i=1}^w F_{j_i'} \subseteq \bigcup_{i=1}^{r_1} F_{j_i''} \cup \bigcup_{i=1}^{r_2} F_{k_i}$$

which is a contradiction.

3 The Second Bound

In this section we prove Theorem 1.

Lemma 3. For any $2 \le k \le w \le r \le n/2$ and

$$2 \le r \le (n+k-w)^{\frac{k}{k+1}}$$

$$N(n,(w,r)) \ge \frac{k^k k!}{2(k+1)^{2k}} \frac{r^{w+1}}{(w+1)! \ln^k r} = \Omega\left(\frac{r^{w+1}}{(w+1)! \ln^k r}\right).$$

Proof. We prove the lemma by induction on w.

From Lemma 2 the lemma holds for w = k. Now assume the bound holds for some w and every r that satisfies $r \leq (n + k - w)^{\frac{k}{k+1}}$. We now prove the bound for w + 1 and $r \leq (n + k - w - 1)^{\frac{k}{k+1}}$

$$N(n, (w+1,r)) \geq N(n-1, (w,r))) + N(n-1, (w+1,r-1))$$
(11)

$$\geq \sum_{j=1}^{r} N(n-r+j-1, (w,j))$$
(12)

$$\geq N(n-r, (w,1)) + \sum_{j=2}^{r} \frac{k^{k}k!}{2(k+1)^{2k}} \frac{j^{w+1}}{(w+1)! \ln^{k} j}$$
(13)

$$\geq \frac{k^{k}k!}{2(k+1)^{2k}(w+1)! \ln^{k} r} \sum_{j=1}^{r} j^{w+1}$$

$$\geq \frac{k^{k}k!}{2(k+1)^{2k}(w+1)! \ln^{k} r} \int_{0}^{r} x^{w+1} dx$$

$$\geq \frac{2k^{k}k!}{(k+1)^{2k}} \frac{r^{w+2}}{(w+2)! \ln^{k} r}$$

Here, inequality (11) comes from [8]. Inequality (12) follows from the fact that $N(n-r+1,(w+1,1)) \geq N(n-r,(w,1))$. Inequality (13) follows from the induction hypothesis since

$$j = r - (r - j)$$

$$\leq (n + k - w - 1)^{\frac{k}{k+1}} - (r - j)$$

$$\leq (n + k - w - 1 - (r - j))^{\frac{k}{k+1}}$$

$$= ((n - r + j - 1) + k - w)^{\frac{k}{k+1}}.$$

References

- [1] N. Alon, V. Asodi. Learning a Hidden Subgraph. SIAM J. Discrete Math. 18(4). pp. 697–712 (2005).
- [2] A. G. D'yachkov and V. V. Rykov. Bounds on the length of disjunctive codes. *Problemy Peredachi Informatsii*, 18(3), pp. 7–13, (1982).
- [3] A. G. D'yachkov, I. V. Vorobev, N. A. Polyansky, V. Yu. Shchukin. Bounds on the rate of disjunctive codes. Problems of Information Transmission. 50(1), pp. 27–56. (2014).
- [4] Z. Füredi. On r-Cover-free Families. J. Comb. Theory, Ser. A, 73(1). pp. 172–173. (1996).
- [5] W. H. Kautz and R. C. Singleton. Nonrandom binary superimposed codes, *IEEE Trans. Inform. Theory.* 10, pp. 363–377. (1964).
- [6] X. Ma and R. Wei. On Bounds of Cover-Free Families. Designs, Codes and Cryptography, 32, pp. 303–321, (2004).
- [7] M. Ruszinkó. On the Upper Bound of the Size of the r-Cover-Free Families. J. Comb. Theory, Ser. A. 66(2). pp. 302–310. (1994).
- [8] D. R. Stinson, R. Wei and L. Zhu. Some New Bounds for Cover-Free Families. *Journal of Combinatorial Theory*, *Series A*. 90, pp. 224–234 (2000).