

Jan 06, 2020

Enzymatic Assay of Protease Using Azocasein as Substrate

Neilier Junior¹, Rafael de Almeida Barros¹, Camilo Elber Vital¹, Samuel Lessa Barbosa¹, João Vitor Aguilar de Oliveira¹, Gabriele Corrêa da Rocha¹, Cauê Neves Oliveira¹, João Victor Marques Gonçalves Assis¹

¹Universidade Federal de Viçosa

1 Works for me

dx.doi.org/10.17504/protocols.io.bayzifx6

MATERIALS

NAME ~	CATALOG #	VENDOR ~
Calcium chloride	1.02378.0500	Merck Millipore
Trichloroacetic acid (TCA)	T6399	Sigma – Aldrich
Sodium hydroxide	S8045	Sigma - Aldrich
Trizma® base	T4661	Sigma Aldrich
Azocasein	A2765	

SAFETY WARNINGS

Wear personal protective equipment: gloves, lab coat and mask.

BEFORE STARTING

Organize your workspace

Make sure all solutions and equipment are available.

Reagent Preparation

- 100 mM Tris-HCl buffer, pH 8.0, 20 mM CaCl₂, at 37 °C.
 - 2.0% (w/v) Azocasein Solution Heat gently (do not boil) to 50 - 60 °C for 10 min with stirring. Adjust the pH to 8.0 at 37 °C, if necessary, with either 1.0 M NaOH or 1.0 M HCl.
 - 110 mM Trichloroacetic Acid Reagent (TCA). Dilute with deionized water.
 - 500 mM Sodium Hydroxide (NaOH) Solution. Prepare in deionized water.

Check how many samples will be analyzed to calculate the required volume of each solution to be prepared.

Procedure

2

Pipette (in microliters) the following reagents into 2.0 mL microtubes.

	Blank	Test	
Tris-HCl buffer	750 μL	450 μL	
Azocasein	750 μL	750 μL	
and equilibrate to the at desired temperature. Then add:		*	
Sample (enzyme source)	-	300 μL	
Mix and incubate at desired temperature for exactly 30 min.		*	
Remove a 1 mL aliquot from both (test and blank) solutions and place into 2.0 mL microtubes. Then add:			
TCA	1000 μL	1000 μL	
entrifuge at 20,000 g for 10 min. Remove a 1 mL aliquot from supernatant (test and blank) and		*	
place into 2.0 mL microtubes. Then add:			
NaOH	1000 μL	1000 μL	
hix and transfer the Test and Blank solutions to suitable cuvettes. Measure the A440nm for Test and Blank using a spectrophotometer.		*	

Calculation

3 $\Delta A_{440nm} = A_{440nm} Test - A_{440nm} Blank$

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited