

Description

Features	Application		
● 600V, 8A	● Load Switch		
$R_{DS(ON)} < 1.18\Omega$ @ $V_{GS} = 10V$	 PWM Application 		
● Fast Switching	Power management		
■ Improved dv/dt Capability			
	100% UIS		
	100% ΔVds		
TO-251	Schematic Diagram		

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	TUBE (PCS)	Inner Box (PCS)	Per Carton (PCS)	
VSM8N60-T1	VSM8N60	TUBE	TO-251	80	4,000	32,000	

Absolute Maximum Ratings (Tc=25℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V_{DSS}	Drain-Source Voltage		600	V
V _{GSS}	Gate-Source Voltage		±30	V
I _D	Continuous Drain Current	T _C = 25 °C	8	Α
		T _C = 100 °C	5.2	Α
I _{DM}	Pulsed Drain Current note1		32	Α
E _{AS}	Single Pulsed Avalanche Energy note2		145.8	mJ
P _D	Power Dissipation	T _C = 25 °C	100	W
Rejc	Thermal Resistance, Junction to Case		1.25	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		60	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	${\mathbb C}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
Off Characteristic							
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	600	-	-	V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =600V, V _{GS} =0V, T _J =25°C	-	-	1	μΑ	
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±30V	-	-	±100	nA	
On Charac	cteristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V	
R _{DS(on)}	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =4A	-	1	1.18	Ω	
Dynamic (Characteristics	•	•	•	•		
C _{iss}	Input Capacitance	V _{DS} =25V, V _{GS} =0V,	-	1160	-	pF	
Coss	Output Capacitance		-	109	-	pF	
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	12	-	pF	
Qg	Total Gate Charge	\/ -400\/ -04	-	26	-	nC	
Q_{gs}	Gate-Source Charge	V_{DD} =480V, I_{D} =8A,	-	4.5	-	nC	
Q_gd	Gate-Drain("Miller") Charge	V _{GS} =10V	-	14	-	nC	
Switching	Characteristics						
t _{d(on)}	Turn-on Delay Time		-	15	-	ns	
t _r	Turn-on Rise Time	V_{DD} =300V, I_{D} =8A,	-	18	-	ns	
t _{d(off)}	Turn-off Delay Time	R _G =25Ω	-	80	-	ns	
t _f	Turn-off Fall Time		-	35	-	ns	
Drain-Sou	rce Diode Characteristics and Maxim	num Ratings					
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	8	А	
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	32	Α	
V_{SD}	Drain to Source Diode Forward	V _{GS} =0V, I _{SD} =8A	-	-	1.4	V	
	Voltage	VGS-UV, ISD-OA					
t _{rr}	Reverse Recovery Time	V _{GS} =0V, I _S =8A,	-	300	-	ns	
Q_{rr}	Reverse Recovery Charge	di/dt=100A/µs	-	4.1	-	μC	

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: T_J = 25°C, V_{DD} = 50V, V_G = 10V, L= 10mH, I_{AS} = 5.4A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤1%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:0n-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective
Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms