Allgemein

Logarithmusregeln

$$\begin{split} \log_a b &= \frac{\log_c b}{\log_c a} & \log_a (n \cdot m) = \log_a n + \log_a m \\ \log_a \frac{n}{m} &= \log_a n - \log_a m & \log_a n^m = m \cdot \log_a n \\ \log_{a^b} n &= \frac{1}{b} \cdot \log_a n & \log_b (b^x) = x \\ \log_b (a) &= \frac{\ln a}{\ln b} & \log_a b = x \iff a^x = b \end{split}$$

Eigenschaften der Exponentialfunktion

$$\begin{split} \exp(z) &\text{ ist stetig auf } \mathbb{C} \\ \exp(z+w) &= \exp(z) \exp(w) \ \forall z, w \in \mathbb{C} \\ \exp(0) &= 1 \\ \exp(z) \neq 0 \ \forall z \in \mathbb{C} \\ \exp(-z) &= \frac{1}{\exp(z)} \ \forall z \in \mathbb{C} \\ \exp(x) &> 0 \ \forall x \in \mathbb{R} \\ \exp: \mathbb{R} \to \mathbb{R} &\text{ ist streng monoton wachsend } \\ \exp: \mathbb{R} \to \mathbb{R} &\text{ ist strikt konvex} \\ |\exp(z)| &\leq \exp(|z|) \\ e^x &\geq 1+x &\text{ für } x \geq 0 \iff x \geq \ln(1+x) &\text{ für } x \geq 0 \end{split}$$

Eigenschaften des natürlichen Logarithmus

$$\begin{split} &\ln 1 = 0 \\ &\ln e = 1 \\ &\ln(x \cdot y) = \ln x + \ln y \ \forall x,y > 0 \\ &\ln(\frac{x}{y}) = \ln x - \ln y \ \forall x,y > 0 \\ &\ln(x^k) = k \cdot \ln x \ \forall k \in \mathbb{Z}, x > 0 \\ &\lim_{x \to \infty} \ln x = \infty \\ &\lim_{x \to 0} \ln x = -\infty \\ &\ln : \mathbb{R}_0^+ \to \mathbb{R} \ \text{ist streng monoton wachsend} \\ &\ln : \mathbb{R}_0^+ \to \mathbb{R} \ \text{ist strikt konkav} \end{split}$$

Potenzregeln

$$\begin{split} x^a\cdot x^b &= x^{a+b} & \frac{a^n}{a^m} = a^{n-m} & (a^n)^m = a^{n\cdot m} \\ a^{-n} &= \frac{1}{a^n} & a^n\cdot b^n = (a\cdot b)^n & \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \\ a^{\frac{n}{m}} &= \sqrt[m]{a^n} & x^a = e^{a\cdot \ln x} \; x > 0 & 0^0 = 1 \; \text{nach Vorl.} \end{split}$$

Praktische Formeln

Binomische Formel	$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$
Erste Binomische Formel	$(a+b)^2 = a^2 + 2ab + b^2$
Zweite Binomische Formel	$(a-b)^2 = a^2 - 2ab + b^2$
Dritte Binomische Formel	$(a+b)\cdot(a-b) = a^2 - b^2$
Positivität der Quadrate	$0 \le (a-b)^2$
pq-Formel	$x_{1/2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2 - q}$
Mitternachtsformel	$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $(x+c)^2 + d \stackrel{!}{=} 0 \iff x_{1,2} = -c \pm \sqrt{-d}$
Barneys Formel	$(x+c)^2 + d \stackrel{!}{=} 0 \iff x_{1,2} = -c \pm \sqrt{-d}$
Bernoullische Ungleichung	$(1+x)^n \ge 1 + nx \ \forall n \in \mathbb{N}_o, \forall x > -1$

Schranken

 $\begin{array}{lll} \operatorname{Supremum} \ (\sup M) & \text{kleinste obere Schranke von } M \\ \operatorname{Infimum} \ (\inf M) & \text{gr\"oßte untere Schranke von } M \\ \operatorname{Maximum} \ \operatorname{von} \ M & \sup M, \ \operatorname{falls} \ \sup M \in M \\ \operatorname{Minimum} \ \operatorname{von} \ M & \inf M, \ \operatorname{falls} \ \inf M \in M \end{array}$

Dreiecksungleichung

 $|x+y| \leq |x| + |y| \ \forall x,y \in \mathbb{R}$ mit Gleichheit bei gleichem Vorzeichen $|x+y| \geq ||x| - |y|| \ \forall x,y \in \mathbb{R}$ mit Gleichheit bei verschiedenen Vorzeichen für x,y

Vektoren

Länge eines Vektors
$$\|x\|:=\sqrt{\sum_{i=1}^n x_i^2}$$
 Skalarprodukt $< x,y>:=\sum_{i=1}^n x_iy_i \ \Rightarrow \|x\|^2=< x,y>$ Cauchy-Schwarz-Ungleichung $|< x,y>|\ \leq \|x\|\|y\|\ \forall x,y\in\mathbb{R}^n$

Folgen

 $(a_n)_{n\in\mathbb{N}_0}$

Konvergenz

 $\lim a_n = a \iff \forall \epsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : |a_n - a| < \epsilon$ Dann ist a der Grenzwert: $\lim_{n\to\infty} a_n = a$

Jede konvergente Folge reeller Zahlen ist beschränkt. $monoton + beschränkt \implies konvergent$

Divergenz

 $\forall a \in \mathbb{R} : \exists \epsilon > 0 : \forall n_0 \in \mathbb{N} : \exists n \ge n_0 : |a_n - a| \ge \epsilon$ Uneigentliche Konvergenz: $\lim_{n\to\infty}a_n=\pm\infty$

Rechenregeln für Grenzwerte

Nur anwendbar, wenn man von Konvergenz ausgeht - nicht bei Divergenz.

$$\begin{split} & \lim_{n \to \infty} a_n = a \text{ und } \lim_{n \to \infty} b_n = b \\ & \lim_{n \to \infty} a_n + b_n = a + b \\ & \lim_{n \to \infty} ca_n = ca \ \forall c \in \mathbb{R} \\ & \lim_{n \to \infty} a_n b_n = ab \\ & \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \text{, falls } b \neq 0 \end{split}$$

Asymptotische Gleichheit

Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ von Zahlen $\neq 0$ $\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \implies a_n \simeq b_n \text{ für } n \to \infty$

Beispiele Asymptotische Gleicheit

$$n \simeq n + 1$$

 $\ln(n!) \simeq n \ln n$

Einschließungsregel

Falls $\lim_{n\to\infty}a_n=a, \lim_{n\to\infty}b_n=b$ und $a_n\leq b_n$ $\forall n\in\mathbb{N}$, dann gilt $a\leq b.$

Es gelte $a_n \leq b_n \leq c_n$ für alle bis auf endlich viele n. Falls $\alpha \in \mathbb{R}$ existiert mit $\lim_{n \to \infty} a_n = \alpha = \lim_{n \to \infty} c_n \implies \lim_{n \to \infty} b_n = \alpha.$

Monotonie

$\forall n \ {\sf gilt}$:	a_n ist:
$a_n \le a_{n+1}$	monoton wachsend
$a_n \ge a_{n+1}$	monoton fallend
$a_n < a_{n+1}$	streng monoton wachsend
$a_n > a_{n+1}$	streng monoton fallend

Für jede monotone Folge gilt

$$\lim_{n\to\infty}a_n=\begin{cases} \sup_{n\in\mathbb{N}}a_n & \text{falls monoton wachsend}\\ \inf_{n\in\mathbb{N}}a_n & \text{falls monoton fallend} \end{cases}$$

Teilfolge

 $(n_k)_{k\in\mathbb{N}}$ sei streng monoton wachsend $\implies (a_{n_k})_{k \in \mathbb{N}}$ ist Teilfolge von $(a_n)_{n \in \mathbb{N}}$

$$\lim_{x \downarrow 0} \frac{\lim_{x \downarrow 0} \frac{x}{x}}{x} \longrightarrow 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} \longrightarrow 1$$

$$\lim_{x \to 0} x^a \longrightarrow \begin{cases} 0 & a > 0 \\ 1 & a = 0 \\ \infty & a < 0 \end{cases}$$

$$\lim_{x \to \infty} x^a \longrightarrow \begin{cases} 0 & a > 0 \\ 1 & a = 0 \end{cases}$$

$$\lim_{x \to \infty} x^a \qquad \to \begin{cases} \infty & a > 0 \\ 1 & a = 0 \\ 0 & a < 0 \end{cases}$$

Reihen

Wichtige Reihen und Grenzwerte

Volcinge Remen and Greizwerte
$$\sum_{k=1}^{\infty} \frac{1}{k} \qquad = \quad \infty \qquad \qquad \text{(Harmonische R.)}$$

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \qquad \qquad \text{konvergent}$$

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \qquad = \quad \infty$$

$$\sum_{k=0}^{\infty} z^k \qquad = \quad \left\{ \frac{1-z^{n+1}}{1-z} \quad z \neq 1 \\ n+1 \quad z=1 \right\}$$

$$\sum_{k=1}^{\infty} z^k \qquad = \quad \left\{ \frac{1}{1-z} \quad |z| < 1 \\ \infty \quad z \geq 1 \right\} \qquad \text{(geometrische R.)}$$

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} \qquad = \quad 1 \qquad \qquad \text{(Teleskopreihe)}$$

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)}} \qquad = \quad 1 - \frac{1}{n+1}$$

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)}} \qquad = \quad \infty$$

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)}} \qquad = \quad \infty$$

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)}} \qquad = \quad \infty$$

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)}} \qquad = \quad \infty$$
(Exponential reihe)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \qquad \text{konvergent} \qquad \text{(Leibniz reihe)}$$

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \qquad = \quad \sin x \qquad \qquad \text{(Sinus reihe)}$$

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} \qquad = \quad \ln(1+x), |x| < 1$$

$$\sum_{k=0}^{\infty} \binom{n}{k+1} x^k \qquad = \quad \ln(1+x), |x| < 1$$

Notwendige Konvergenzbedingung

$$\sum_{k=1}^{\infty} a_k \text{ konvergiert } \implies \lim_{k \to \infty} a_k = 0$$

Diese Bedingung ist notwendig, aber nicht hinreichend.

Minoranten- / Majorantenkriterium

$$\begin{split} & \text{F\"{u}r } k \in \mathbb{N} \text{ seien } a_k \in \mathbb{C} \text{ und } b_k \in \mathbb{R} \text{ mit } |a_k| \leq b_k. \\ & \Longrightarrow \sum_{k=1}^\infty b_k \text{ ist Majorante f\"{u}r } \sum_{k=1}^\infty a_k \\ & \Longrightarrow \sum_{k=1}^\infty |a_k| \text{ ist Minorante f\"{u}r } \sum_{k=1}^\infty b_k. \end{split}$$

$$\sum_{k=1}^{\infty} b_k \text{ konvergiert } \Longrightarrow \sum_{k=1}^{\infty} a_k \text{ konvergiert absolut }$$
 und $|\sum_{k=1}^{\infty} a_k| \leq \sum_{k=1}^{\infty} |a_k| \leq \sum_{k=1}^{\infty} b_k.$

$$\sum_{k=1}^{\infty} |a_k| \ \text{divergiert} \implies \sum_{k=1}^{\infty} b_k \ \text{divergiert}$$

Anwendung Asymptotische Gleicheit

Seien $a_n, b_n > 0$ und $a_n \simeq b_n$ $\Longrightarrow \sum_{k=1}^n a_n$ und $\sum_{k=1}^\infty b_n$ sind entweder beide konvergent oder beide

Quotientenkriterium

Sei $a_k \neq 0$ für alle bis auf endlich viele k. Falls der Grenzwert $q=\lim_{k\to\infty}|\frac{a_{k+1}}{a_k}|$ existiert, dann gilt: $q < 1 \implies \sum_{k=1}^{\infty} a_k$ konvergiert $q = 1 \implies$ keine Aussage möglich $q>1 \implies \sum_{k=1}^{\infty} a_k$ divergiert

Leibnizkriterium

 $(a_n)_{n\in\mathbb{N}_0}$ monoton fallend mit $\lim_{n\to\infty}a_n=0$ \implies die alternierende Reihe $s=\sum_{n=0}^{\infty}{(-1)^ka_n}$ konvergiert

Integralkriterium

Sei $f:[1,\infty) \to [0,\infty)$ monoton fallend, dann gilt: $0 \le \lim_{n \to \infty} \Big(\sum_{k=1}^n f(k) - \int_1^{n+1} f(x) dx\Big) \le f(1)$ $\sum_{k=1}^{\infty} f(k) \text{ konvergiert } \iff \int_{1}^{\infty} f(x) dx \text{ konvergiert}$

Absolute Konvergenz

(Binomialreihe)

Die Reihe $\sum_{k=1}^\infty a_k$ konvergiert absolut, wenn $\sum_{k=1}^\infty |a_k|$ konvergiert. absolute Konvergenz \implies Konvergenz (nach dem Majorantenkriterium)

Rechenregeln für Reihen

Sind
$$\sum_{k=1}^{\infty} a_k$$
 und $\sum_{k=1}^{\infty} b_k$ konvergent $\implies \sum_{k=1}^{\infty} a_k + b_k$ ist konvergent und $\sum_{k=1}^{\infty} a_k + b_k = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$
Wenn $\sum_{k=1}^{\infty} a_k$ konvergent und $c \in \mathbb{R}$, dann ist $\sum_{k=1}^{\infty} ca_k$ auch konvergent.

Wenn $\sum_{k=1}^{\infty} a_k$ konvergent und $\sum_{k=1}^{\infty} b_k$ divergent, dann ist $\sum_{k=1}^{\infty} a_k + b_k$ divergent

Umordnungssatz

 $\sum_{k=1}^{\infty} a_k$ konvergiert genau dann absolut, wenn für jede Bijektion $\sigma:\mathbb{N} o \mathbb{N}$ die umgeordnete Reihe gegen ein und denselben Wert konvergiert: $\sum_{k=1}^{\infty} a_{\sigma(k)} = \sum_{k=1}^{\infty} a_k$

Cauchy-Produkt

Sind
$$\sum_{k=0}^\infty a_k$$
 und $\sum_{k=0}^\infty b_k$ absolut konvergent, dann ist auch $\sum_{k=0}^\infty c_k$ mit $c_k=\sum_{l=0}^k a_l b_{k-l}$ absolut konvergent und es gilt:

$$(\sum_{k=0}^{\infty} a_k)(\sum_{k=0}^{\infty} b_k) = \sum_{k=0}^{\infty} \sum_{l=0}^{k} a_l b_{k-l} = \sum_{k=0}^{\infty} c_k$$

Potenzreihe

Funktionsdarstellungen der Form

$$f(x) = \sum_{k=0}^{\infty} a_k x^k, |x| < r$$

nennt man die Entwicklung der Funktion f in eine Potenzreihe r nennt man den Konvergenzradius der Potenzreihe

Bedeutung von Potenzreihen

Ist zu gegebenen f eine Potenzreihenentwicklung

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$
 bekannt,

so kann man f durch Polynome approximieren:

$$f(x) - \sum_{k=0}^{n} a_k x^k = \sum_{k=n+1}^{\infty} a_k x^k \xrightarrow[n \to \infty]{} 0$$

Ist zu gegebenen a_k , $k\in\mathbb{N}$, die erzeugende Funktion

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$

bekannt, kann man aus den Eigenschaften von f
 Rückschlüsse auf das Verhalten von $a_k, k \in \mathbb{N}$ ziehen.

Konvergenzradius

Zu jeder Potenzreihe $\sum_{k=0}^{\infty} a_k z^k$ gibt es einen Konvergenzradius $r \geq 0$,

$$\begin{split} |z| < r &\Longrightarrow \sum_{k=0}^{\infty} a_k z^k \text{ ist absolut konvergent} \\ |z| > r &\Longrightarrow \sum_{k=0}^{\infty} a_k z^k \text{ ist divergent} \\ r &= \frac{1}{\lim_{k \to \infty} \sqrt[k]{|a_k|}}, \text{ falls } \left(\sqrt[k]{|a_k|}\right)_{k \in \mathbb{N}} \text{ konvergient} \end{split}$$

Analytische Funktion

Eine Funktion $x\mapsto f(x)$ heißt in x=0 analytisch, wenn f sich mit positiven Konvergenzradius r>0 in eine Potenzreihe entwickeln lässt

Seien f, g in x = 0 analytisch mit

$$f(x) = \sum_{k=0}^{\infty} a_k x^k \text{ für } |x| < r_f$$

$$g(x) = \sum_{k=0}^{\infty} b_k x^k \text{ für } |x| < r_g$$

Dann gilt:

f' ist in x = 0 analytisch und

$$f'(x) = \sum_{k=0}^{\infty} \frac{d}{dx} (a_k x^k) = \sum_{k=1}^{\infty} k a_k x^{k-1} \text{ für } |x| < r_f$$

Die Koeffizienten sind eindeutig: $a_k = \frac{f^{(k)}(0)}{k!}$

Die Stammfunktionen $\int f(x)dx$ sind in x=0 analytisch und

$$\int_0^x f(t)dt = \sum_{k=0}^\infty \int_0^x a_k t^k dt = \sum_{k=0}^\infty a_k \left[\frac{t^{k+1}}{k+1} \right]_0^x = \sum_{k=0}^\infty \frac{a_k}{k+1} x^{k+1}$$

f+g und $f\cdot g$ sind in x=0 analytisch mit

$$(f+g)(x) = \sum_{k=0}^{\infty} (a_k + b_k)x^k$$

$$(f \cdot g)(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j} \right) x^k$$

Taylorsche Formel

Sei
$$\varepsilon>0$$
, $f:(a-\varepsilon,a+\varepsilon)\to\mathbb{R}$, dann gilt:
$$f(a+h)=\sum_{k=0}^n\frac{f^{(k)}(a)}{k!}h^k+o(h^n)\text{, für }h\to0$$

Taylorsche Formel mit Restglied

Sei I ein offenes Intervall.

 $f: I \to \mathbb{R}$ (n + 1)-mal stetig differenzierbar.

Dann gilt $\forall x, a \in I$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + R_{n+1}(a,x)$$
 mit den Restgliedformeln:

$$\begin{split} R_{n+1}(a,x) &= \frac{1}{n!} \int_a^x (x-t)^n f^{(n+1)}(t) dt \text{ (Cauchy)} \\ &= \frac{f^{n+1}(\xi)}{(n+1)!} (x-a)^{n+1} \text{ für ein } \xi \text{ zwischen } a \text{ und } x \text{ (Lagrange)} \end{split}$$

Taylorpolynom

Sei f n-mal stetig differenzierbar

 \implies n-tes Taylorpolynom von f um a:

$$T_{n,a}f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Taylorreihe

Für eine beliebig oft differenzierbare Funktion f mit $\lim_{n \to \infty} R_n(a,x) =$

$$f(x) = T_{\infty,a}f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Stetigkeit

Definition

Eine Funktion $f:D\subseteq\mathbb{R}^d\to\mathbb{R}^q$ mit Definitionsbereich D heißt im Punkt $x \in D$ stetig, falls für alle Folgen $(x_n)_{n \in \mathbb{N}} \in D$ mit $\lim x_n = x$ gilt: $\lim_{n \to \infty} f(x_n) = f(x)$

f heißt stetig, wenn f in allen Punkten $x \in D$ stetig ist.

Komposition von Funktionen

Seien $g:D_1 \to D_2$, $f:D_2 \to D_3$ Funktionen. Die Komposition von f und g ist definiert durch $f \circ g : D_1 \to D_3$, $x \mapsto f(g(x))$. Die Komposition zweier stetiger Funktionen ist stetig.

Beispiele von stetigen elementaren Funktionen

$$f(x) = c (c = konstant)$$

$$f(x) = x$$

$$f(x) = |x|$$

$$f(x) = \sqrt{x}$$

$$f(x,y) = x + y$$

$$f(x,y) = xy$$

$$f(x,y) = \frac{x}{y}$$

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

$$f(x) = e^x$$

$$f(x) = sinx \lor cos x \lor tan x \lor cot x$$

Summen und Produkte stetiger Funktionen sind stetig.

Zwischenwertsatz

Sei $f:[a,b]
ightarrow \mathbb{R}$ stetig und $y \in \mathbb{R}$ eine Zahl zwischen f(a) und f(b), d.h. f(a) < y < f(b) oder f(a) > y > f(b). Dann gibt es ein $x \in (a, b)$, d.h. a < x < b mit f(x) = y.

Eine auf [a, b] stetige Funktion nimmt jeden Wert zwischen f(a) und

Häufungspunkte

f(b) an.

 $a^* \in \mathbb{R}^d$ ist Häufungspunkt von $(a_n)_{n \in \mathbb{N}}$, falls es eine Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ gibt mit $\lim_{k\to\infty}a_{n_k}=a^*$

Bolzano-Weierstraß

Jede beschränkte Folge in ℝ besitzt mindestens eine konvergente Teilfolge und damit einen Häufungspunkt

Eine Folge $(x_n)_{n\in\mathbb{N}}$ mit x_n $\in \mathbb{R}^d$ heißt beschränkt, falls $\exists M>0 \ \forall n\in\mathbb{N} \ ||x_n||=\sqrt{\sum_{i=1}^d x_{n,i}^2}\leq M$

Minima und Maxima von Funktionen

Sei $f:D\subseteq\mathbb{R}^d\to\mathbb{R}$ $x \in D$ ist Minimumstelle und f(x) ist Minimum von f auf D $\iff f(x) \le f(y) \ \forall y \in D$ $x \in D$ ist Maximumstelle und f(x) ist Maximum von f auf D $\iff f(x) \ge f(y) \ \forall y \in D$

Satz von Minimum und Maximum

Sei $\emptyset \neq K \subseteq \mathbb{R}^d$ kompakt \implies Jede stetige Funktion $f: K \to \mathbb{R}$ nimmt auf K ihr Maximum und Minimum an:

$$\exists \underline{x}, \overline{x} \in K \text{ sodass } f(\underline{x}) \leq f(x) \leq f(\overline{x}) \ \forall x \in K$$

$$\underline{x} = \arg\min_{x \in K} f(x)$$

$$\overline{x} = \arg \max_{x \in K} f(x)$$
$$f(\underline{x}) = \min_{x \in K} f(x)$$

$$f(\underline{x}) = \min_{x \in \mathcal{X}} f(x)$$

$$f(\overline{x}) = \max_{x \in K} f(x)$$

Abgeschlossenheit

 $A \subseteq \mathbb{R}^d$ ist abgeschlossen, falls der Grenzwert jeder konvergenten Folge aus A wider in A liegt

$$\forall n \ x_n \in A \ \mathsf{und} \ \lim_{n \to \infty} x_n = x \implies x \in A$$

Kompaktheit

 $K \subseteq \mathbb{R}^d$ heißt kompakt, falls K abgeschlossen und beschränkt

Eine kompakte Menge $\emptyset \neq K \subseteq \mathbb{R}$ besitzt ein Maximum und ein

 $K \subseteq \mathbb{R}^d$ ist kompakt \iff Jede Teilfolge aus K besitzt eine konvergente Teilfolge mit Grenzwert in K

Sei $f: K \subseteq \mathbb{R}^d \to \mathbb{R}^q$ stetig. Ist K kompakt $\implies f(k) = \{f(x) : x \in K\} = \mathsf{Bild} \ \mathsf{von} \ \mathsf{K} \ \mathsf{unter} \ \mathsf{f} \ \mathsf{ist} \ \mathsf{kompakt}$ (d.h. stetige Bilder kompakter Mengen sind kompakt)

Wichtige Funktionen

Bijektion

 $f:D\subseteq\mathbb{R}^d\to B\subseteq\mathbb{R}^q$ ist bijektiv, falls $\forall y\in B$ genau ein $x\in D$ existiert mit f(x) = y

 $f^{-1}: B \to D, y \mapsto x$ heißt Umkehrfunktion von f

Sei $I\subseteq\mathbb{R}$ ein Intervall, $f:I\to\mathbb{R}$ stetig und streng monoton wachsend $\implies f: I \to f(I)$ ist bijektiv und $f^{-1}: f(I) \to I$ ist stetig und streng monoton wachsend

Es gilt:
$$f^{-1}(f(x)) = x \ \forall x \in I$$

 $f(f^{-1}(y)) = y \ \forall y \in f(I)$

Asymptotisches Verhalten von exp und In

Die Exponentialfunktion wächst schneller als jedes Polynom

x wächst schneller gegen ∞ als jede Potenz des Logarithmus

Trigonometrische Funktionen

$$\cos^2 x + \sin^2 x = 1 \quad \cos(-x) = \cos x \quad \sin(-x) = -\sin x$$
$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y \quad \tan x = \frac{\sin x}{\cos x}$$

$$\sin(x+y) = \cos x \cdot \sin y - \sin x \cdot \cos y$$
 $\cot x = \frac{\cos x}{\sin x}$

 $\sin: [-\frac{\pi}{2},\frac{\pi}{2}] \to \mathbb{R} \text{ ist stetig und streng monoton wachsend} \Longleftrightarrow \arcsin: [-1,1] \to \mathbb{R} \text{ ist stetig und streng monoton wachsend}$

 $\cos: [0,\pi] \to \mathbb{R}$ ist stetig und streng monoton fallend \iff $\arccos: [-1,1] \to \mathbb{R}$ ist stetig und streng monoton fallend

 $\tan: [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbb{R}$ ist stetig und streng monoton wachsend \Longleftrightarrow $\arctan: \mathbb{R} \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ ist stetig und streng monoton fallend

Komplexe Zahlen

$$\begin{array}{ll} e^{ix} = \cos x + i \cdot \sin x & i^2 = -1 & z = x + iy \\ |e^{ix}|^2 = 1 & |z| = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}} & \overline{z} = x - iy \\ \Re(z) = x & \Im(z) = y & \overline{\overline{z}} = z \\ \cos x = \frac{1}{2}(e^{ix} + e^{-ix}) & \sin x = \frac{1}{2i}(e^{ix} - e^{-ix}) & \overline{z + z'} = \overline{z} + \overline{z'} \\ \overline{z \cdot z'} = \overline{z} \cdot \overline{z'} & \end{array}$$

Differenzierbarkeit

Landau-Symbole

Seien $f, g : \mathbb{R}^d \to \mathbb{C}$ Funktionen und $x_0 \in \mathbb{R}^d \Longrightarrow$

$$\begin{split} f(x) &= \mathcal{O}(g(x)) \text{ für } x \to x_0 \text{, falls } \exists \varepsilon > 0 \text{ } \exists C > 0 \text{ sodass } (\forall x \in \mathbb{R}^d \\ \text{mit } ||x - x_0|| < \varepsilon) : |f(x)|| \leq C \cdot |g(x)| \end{split}$$

Man sagt: f ist bis auf eine Konstante asymptotisch durch g beschränkt.

und

$$f(x) = o(g(x))$$
 für $x \to x_0$, falls $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$

Man sagt: f ist gegenüber g asymptotisch vernachlässigbar.

$$f(x)=\mathcal{O}(g(x)) \text{ für } x\to -\infty, \text{ falls } \exists M>0 \ \exists C>0, \text{ sodass } \forall x\in \mathbb{R} \\ \text{mit } x<-M \text{ gilt: } |f(x)\leq C\cdot |g(x)|$$

$$f(x)=\mathcal{O}(g(x)) \text{ für } x\to\infty\text{, falls } \exists M>0 \ \exists C>0\text{, sodass } \forall x\in\mathbb{R}$$
 mit $x>M$ gilt: $|f(x)\leq C\cdot|g(x)|$

Beispiele

$$\begin{split} f(x) &= \mathcal{O}(1) &\iff |f(x)| \leq C \\ &\implies f \text{ ist in einer Umgebung von } x_0 \text{ beschränkt} \\ f(x) &= o(1) &\iff \lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{f(x)}{1} = 0 \\ &\implies f \text{ ist in einer Umgebung von } x_0 \text{ beschränkt} \implies f(x) = \mathcal{O}(1) \\ f(h) &= o(h) &\iff f(h) = o(1) \end{split}$$

Differenzierbarkeit

Eine Funktion $f:I\to\mathbb{R}$ auf einem offenen Intervall $I\subseteq\mathbb{R}$ heißt differenzierbar in $x_0\in I$, falls für eine Zahl $f'(x_0)\in\mathbb{R}$ die Linearisierung $f(x)=f(x_0)+f'(x_0)(x-x_0)+o(|x-x_0|)$ für $x\to x_0$ gültig ist.

Die approximierende Gerade $x \mapsto f(x_0) + f'(x_0)(x - x_0)$ heißt Tangente von f in x_0 .

Ihre Steigung $f'(x_0)$ heißt Ableitung von f in x_0

f ist in jedem Punkt differenzierbar $\iff f$ ist differenzierbar

Differenzierbarkeit ⇒ Stetigkeit

Differenzenquotient

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \text{ mit } h = x - x_0$$

$$f'(x_0) = \frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$$

Wichtige Ableitungen

$$f(x) \qquad f'(x)$$

$$x^{n} \qquad nx^{n-1}$$

$$e^{x} \qquad e^{x}$$

$$\ln(x) \qquad \frac{1}{x}$$

$$a^{x} = e^{x \ln(a)} \qquad a^{x} \cdot \ln(a)$$

$$\sin x \qquad \cos x$$

$$\cos x \qquad -\sin x$$

$$\tan x \qquad \frac{1}{\cos^{2} x} = 1 + \tan^{2} x$$

$$\arcsin x \qquad \frac{1}{\sqrt{1 - x^{2}}}$$

$$\arccos x \qquad -\frac{1}{\sqrt{1 - x^{2}}}$$

$$\arccos x \qquad \frac{1}{1 + x^{2}}$$

Ableitungsregeln

Voraussetzung: f, g sind differenzierbar in x

$$(cf)'(x) = cf'(x)$$

$$(f+g)'(x) = f'(x) + g'(x)$$
 (Summerregel)

$$(fg)'(x) \hspace{1cm} = \hspace{1cm} f(x) \cdot g'(x) + f'(x) \cdot g(x) \hspace{1cm} \text{(Produktregel)}$$

$$(\frac{f}{g})'(x) \qquad = \quad \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{g(x)^2} \quad \text{(Quotientenregel)}$$

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$
 (Kettenregel)

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 falls f bijektiv

Anwendungen der Ableitung

Extrema

Globale Maxima/Minima

f hat bei $x_0 \in [a, b]$ ein globales Maximum, falls $f(x_0) \ge f(x)$ f hat bei $x_0 \in [a, b]$ ein globales Minimum, falls $f(x_0) \le f(x)$

Lokale Maxima/Minima

f hat bei $x_0 \in [a,b]$ ein lokales Maximum, falls $\exists \varepsilon > 0 \ \forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap [a,b]$ gilt: $f(x_0) \geq f(x)$

f hat bei $x_0 \in [a,b]$ ein lokales Minimum, falls $\exists \varepsilon > 0 \ \forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap [a,b]$ gilt: $f(x_0) \leq f(x)$

Globale Extrema sind auch lokale Extrema

Hat f in x_0 ein lokales Extremum $\implies f'(x_0) = 0$

Strikte Extrema

Gilt $f(x_0) > f(x) \implies f$ hat in x_0 ein striktes Maximum Gilt $f(x_0) < f(x) \implies f$ hat in x_0 ein striktes Minimum

Mittelwertsatz der Differentialrechnung

$$\begin{split} & \text{Sei } f:[a,b] \to \mathbb{R} \text{ stetig auf } [a,b] \text{ und diff'bar auf } (a,b) \\ & \Longrightarrow \text{ Es gibt ein } \xi \in (a,b) \text{ mit } \frac{f(b)-f(a)}{b-a} = f'(\xi) \end{split}$$

Ist $f(a) = f(b) \implies$ Es gibt ein $\xi \in (a, b)$ mit $f'(\xi) = 0$

Verallgemeinerter Mittelwertsatz

Sei $f,g:[a,b]\to\mathbb{R}$ stetig auf [a,b] und diff'bar auf (a,b) und sei $g'(x)\neq 0 \ \forall x\in (a,b)$ $\Longrightarrow g(a)\neq g(b)$ und es gibt ein $\xi\in (a,b)$ mit $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}$

Monotonie

$\forall x, y \in I \text{ mit } x \leq y \text{ gilt:}$	$f:I\subseteq\mathbb{R}\to\mathbb{R}$ ist:
$f(x) \le f(y)$	monoton wachsend
$f(x) \ge f(y)$	monoton fallend

Konstante Funktionen sind monoton wachsend und monoton fallend

Monotoniekriterium

Sei $f:[a,b] \to \mathbb{R}$ stetig auf [a,b] und diff'bar auf (a,b). Dann gilt

$\forall x \in (a,b) \text{ gilt:}$		f ist auf $[a,b]$:
f'(x) > 0	\Longrightarrow	streng monoton wachsend
f'(x) < 0	\Longrightarrow	streng monoton fallend
$f'(x) \ge 0$	\iff	monoton wachsend
$f'(x) \le 0$	\iff	monoton fallend

Hinreichendes Kriterium für Extrema

Sei $f:(a,b)\to\mathbb{R}$ diff'bar und $f'(x_0)=0$ für ein $x_0\in(a,b)$

 $f' \ge 0$ in $(x_0 - \varepsilon, x_0)$ und $f' \le 0$ in $(x_0, x_0 + \varepsilon)$ \implies lokales Maximum in x_0

 $f' \le 0$ in $(x_0 - \varepsilon, x_0)$ und $f' \ge 0$ in $(x_0, x_0 + \varepsilon)$ \Longrightarrow lokales Minimum in x_0

 $f' \ge 0$ in (a, x_0) und $f' \le 0$ in (x_0, b) \implies globales Maximum in x_0

 $f' \le 0$ in (a, x_0) und $f' \ge 0$ in (x_0, b) \implies globales Minimum in x_0

Gilt $\forall x \in (a,b): f'(x) = 0 \iff f = const \text{ auf } (a,b)$

Regel von de l'Hospital

$$\begin{split} & \text{Sei} \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \text{ oder } \infty \\ & \text{und} \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \text{ existiert} \\ & \Longrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \\ \end{aligned}$$

Höhere Ableitungen

$$f' = f^{(1)}$$

$$f'' = f^{(2)}$$

$$\dots$$

$$\dots = f^{(n)}$$

 $f:[a,b] o \mathbb{R}$ ist n-mal diff'bar in (a,b), falls $f^{(1)},\dots,f^{(n)}$ auf (a,b) existieren

 $f:[a,b] \to \mathbb{R}$ ist n-mal stetig diff'bar in (a,b), falls $f^{(1)},\ldots,f^{(n)}$ auf (a,b) existieren und dort stetig sind. Man schreibt $f \in \mathcal{C}^n(a,b)$

 $f:[a,b]\to\mathbb{R}$ ist unendlich oft diff'bar in (a,b), falls $f^{(n)}$ für alle $n\in\mathbb{N}$ existiert. Man schreibt $f\in\mathcal{C}^\infty(a,b)$

Polynome sind in $\mathcal{C}^{\infty}(\mathbb{R})$ $\exp \in \mathcal{C}^{\infty}(\mathbb{R})$

Krümmungsverhalten

 $\begin{array}{lll} \operatorname{F\"{u}r} f:(a,b)\to\mathbb{R} \text{ gilt:} \\ f''\geq 0 \text{ auf (a,b)} &\Longleftrightarrow & f \text{ ist konvex (linksgekr\"{u}mmt) oder gerade} \\ f''\leq 0 \text{ auf (a,b)} &\Longleftrightarrow & f \text{ ist konkav (rechtsgekr\"{u}mmt) od. gerade} \\ f''>0 \text{ auf (a,b)} &\Longrightarrow & f \text{ ist strikt konvex (linksgekr\"{u}mmt)} \\ f''<0 \text{ auf (a,b)} &\Longrightarrow & f \text{ ist strikt konkav (rechtsgekr\"{u}mmt)} \end{array}$

Lokale Extrema

 $f'(x_0)=0$ und $f''(x_0)>0 \Longrightarrow$ striktes lokales Minimum in x_0 $f'(x_0)=0$ und $f''(x_0)<0 \Longrightarrow$ striktes lokales Maximum in x_0

 $f'(x_0) = 0$ und $f''(x_0) = 0 \implies$ keine Aussage möglich für x_0

Kurvendiskussion

Sei $f:(a,b)\to\mathbb{R}$ und f zweimal stetig differenzierbar

Randverhalten

 $\lim_{x \to a} f(x)$ und $\lim_{x \to b} f(x)$

Extrema

- 1. Bestimme alle x_i , für die gilt $f'(x_i) = 0$ $i \in \mathbb{N}$
- 2. Berechne für alle x_i $f''(x_i)$:

$$f''(x_i) > 0 \implies \text{striktes lokales Minimum in } x_i$$

$$f''(x_i) < 0 \implies \text{striktes lokales Maximum in } x_i$$

$$f''(x_i) = 0:$$

$$f(x_i - \varepsilon) \ge f(x_i) \text{ und } f(x_i + \varepsilon) \ge f(x_i)$$

$$\implies \text{lokales Minimum in } x_i$$

$$f(x_i - \varepsilon) \le f(x_i) \text{ und } f(x_i + \varepsilon) \le f(x_i)$$

$$\implies \text{lokales Maximum in } x_i$$

$$f(x_i - \varepsilon) \le f(x_i) \text{ und } f(x_i + \varepsilon) \le f(x_i)$$

$$\implies \text{kein Extremum in } x_i$$

3. Bestimme globales Maximum:

$$\max(f(x_i), \lim_{x \to a} f(x), \lim_{x \to b} f(x) = \begin{cases} c \implies c \text{ ist glob. Maximum} \\ \pm \infty \implies \text{kein glob. Maximum} \end{cases}$$

4. Bestimme globales Minimum:

$$\min(f(x_i), \lim_{x \to a} f(x), \lim_{x \to b} f(x) = \begin{cases} c \implies c \text{ ist glob. Minimum} \\ \pm \infty \implies \text{kein glob. Minimum} \end{cases}$$

Monotonie

Bestimme für alle Intervalle (x_i, x_{i+1}) mit $f'(x_i) = 0 \ \forall i$

Für alle x in (x_i, x_{i+1}) gilt:		f ist auf (x_i, x_{i+1})
f'(x) > 0	\Longrightarrow	streng monoton wachsend
f'(x) < 0	\Longrightarrow	streng monoton fallend
$f'(x) \ge 0$	\Longrightarrow	monoton wachsend
$f'(x) \le 0$	\Longrightarrow	monoton fallend

Krümmung

Bestimme für alle Intervalle (x_i, x_{i+1}) mit $f''(x_i) = 0 \ \forall i$

Für alle x in	(x_i, x_{i+1}) gilt:	f ist in (x_i, x_{i+1})
f'' > 0	\Longrightarrow	strikt konvex (linksgekrümmt)
f'' < 0	\Longrightarrow	strikt konkav (rechtsgekrümmt)
f''=0	\Longrightarrow	keine Aussage möglich

Integration

Riemann-Summe

$$S_z = \sum_{i=1}^n f(\xi_j)(x_j - x_{j-1}) \text{ mit } \xi_j \in [x_{j-1}, x_j], 1 \le j \le n$$

Riemann-Integral

Eine Funktion $f:[a,b]\to\mathbb{R}$ heißt (Riemann-)integrierbar, falls für alle Zerlegungsfolgen $(Z_n)_{n\in\mathbb{N}}$ mit Feinheit $|Z_n|\xrightarrow[n\to\infty]{}0$ die zugehörigen Riemann-Summen S_{Z_n} für jede Wahl der Zwischenpunkte gegen denselben Grenzwert I(f) konvergiert:

$$\lim_{n \to \infty} \sum_{j=1}^{n} f(\xi_j)(x_j - x_{j-1}) = I(f)$$

I(f) heißt bestimmtes Integral von $f:[a,b] \to \mathbb{R}$

f heißt Integrand

$$I(f) = \int_{a}^{b} f(x)dx$$

Jede stetige Funktion $f:[a,b] \to \mathbb{R}$ ist integrierbar

Integraleigenschaften

Normierung:

$$\int_{a}^{b} 1 dx = \int_{a}^{b} dx = b - a$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Positivität:

$$f \ge 0 \text{ auf } [a,b]$$
 $\Longrightarrow \int_a^b f(x)dx \ge 0$

Monotonie:

$$f \ge g \text{ auf } [a,b]$$
 \Longrightarrow $\int_a^b f(x)dx \ge \int_a^b g(x)dx$

Linearität:

$$\int_{a}^{b} \lambda f(x) + \mu g(x) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

Zerlegbarkeit:

$$a < c < b \int_a^b f(x) dx \qquad = \qquad \int_a^c f(x) dx + \int_c^b f(x) dx$$

Verschiebung um c:

$$\int_{a}^{b} f(x-c)dx = \int_{a-c}^{b-c} f(x)dx$$

Skalierung um c:

$$\int_{a}^{b} f(cx)dx = \frac{1}{c} \int_{ac}^{bc} f(x)dx$$

Sonstige

$$\int_{a}^{b} \frac{f'(x)}{f(x)} dx = \ln \frac{f(b)}{f(a)}$$

Mittelwertsatz der Integralrechnung

Sei $f:[a,b]\to\mathbb{R}$ stetig und $p:[a,b]\to\mathbb{R}$ integrierbar mit p>0. Dann gibt es ein $\xi\in[a,b]$ mit

$$\int_{a}^{b} f(x)p(x)dx = f(\xi) \int_{a}^{b} p(x)dx$$

Hauptsatz der Differential- und Integralrechnung

Sei $f:[a,b] \to \mathbb{R}$ stetig. $F:[a,b]\to\mathbb{R},\ F(x)=\int^x f(t)dt$ ist in jedem $x \in (a,b)$ differenzierbar und es gilt: F'(x) = f(x)

Stammfunktion

Sei $F:(a,b)\to\mathbb{R}$ differenzierbar $F'(x) = f(x) \ \forall x \in (a, b)$ $\implies F$ ist eine Stammfunktion von f auf (a,b)

Zwei Stammfunktionen unterscheiden sich nur durch eine Konstante: G(x) = F(x) + c

Unbestimmtes Integral

 $\int f(x)dx$ ist eine Stammfunktion von f(x)

Bestimmtes Integral

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = [F(x)]_{x=a}^{x=b} = F(x)|_{a}^{b} = F(b) - F(a)$$

Wichtige Stammfunktionen

f(x)	F(x)
$x^a, a \neq -1$	$\frac{1}{a+1} \cdot x^{a+1}$
$\frac{1}{x}$	$\ln x $
e^x	e^x
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\tan x$	$-\ln(\cos x)$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
$\frac{1}{1+x^2}$	$\arctan x$
$\ln x$	$x \ln x - x$
$a^x, a > 0$	$\frac{1}{\ln a}a^x$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$

Substitutionsregel

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

Merkregel:

$$u = g(x), du = g'(x)dx$$

 $a \Rightarrow g(a), b \Rightarrow g(b)$

$$\int_{0}^{1} \sin(2x) \cdot 2dx, \ g(x) = 2x, \ f(g(x)) = \sin(2x), \ g'(x) = 2$$

$$u := 2x, \ du = 2dx, \ g(0) = 0, \ g(1) = 2$$

$$\int_{0}^{1} \sin(2x) \cdot 2dx = \int_{0}^{2} \sin(u)du = [-\cos(u)]_{0}^{2} = [-\cos(2x)]_{0}^{1}$$

Partielle Integration

$$\int_a^b f(x)g'(x)dx = [f(x) \cdot g(x)]_a^b - \int_a^b f'(x) \cdot g(x)dx$$

Partialbruchzerlegung

Sei
$$f(x) = \frac{\alpha_n x^n + \dots + \alpha_1 x + \alpha_0}{\beta_m x^m + \dots + \beta_1 x + \beta_0}$$

 $\begin{aligned} & \text{1. Finde alle Polstellen } x_{\infty,i} \text{ von } f(x) \Longrightarrow \\ & f(x) = \frac{a_1}{x - x_{\infty,1}} + \dots + \frac{a_m}{x - x_{\infty,m}} \\ & = \frac{a_1 \cdot (x - x_{\infty,2}) \cdot \dots \cdot (x - x_{\infty,m})}{\beta_m x^m + \dots + \beta_1 x + \beta_0} \\ & + \frac{a_2 \cdot (x - x_{\infty,1})(x - x_{\infty,3}) \cdot \dots \cdot (x - x_{\infty,m})}{\beta_m x^m + \dots + \beta_1 x + \beta_0} \\ & + \dots + \frac{a_m \cdot (x - x_{\infty,1}) \cdot \dots \cdot (x - x_{\infty,m-1})}{\beta_m x^m + \dots + \beta_1 x + \beta_0} \end{aligned}$

2. Forme um zu:
$$f(x) = \frac{(c_{1,m}a_1+\cdots+c_{m,m}a_m)x^m+\cdots+(c_{1,0}a_1+\cdots+c_{m,0}a_m)}{\beta_m x^m+\cdots+\beta_1 x+\beta_0}$$

3. Löse folgendes lineare Gleichungssystem:

$$(c_{1,m}a_1 + \dots + c_{m,m}a_m) = \alpha_m$$

$$\vdots$$

$$(c_{1,0}a_1 + \dots + c_{m,0}a_m) = \alpha_0$$

4. Setze
$$a_1$$
 bis a_m ein in:
$$f(x)=\frac{a_1}{x-x_{\infty,1}}+\cdots+\frac{a_m}{x-x_{\infty,m}}$$

Integration mit Partialbruchzerlegung

Sei
$$f(x) = \int \frac{\alpha_n x^n + \dots + \alpha_1 x + \alpha_0}{\beta_m x^m + \dots + \beta_1 x + \beta_0} dx$$

Befolge Schritt 1 - 4

$$\implies f(x) = \int \frac{a_1}{x - x_{\infty, 1}} + \dots + \frac{a_m}{x - x_{\infty, m}} dx$$
$$= a_1 \ln|x - x_{\infty, 1}| + \dots + a_m \ln|x - x_{\infty, m}|$$

Beispiel

Sei
$$f(x) = \int \frac{5x-1}{x^2-1} dx$$

1. Finde alle Polstellen $x_{\infty,i}$ von $f(x): x_{\infty,1}=-1$ und $x_{\infty,2}=1$ $\implies f(x)=\int \frac{a_1}{x-1}+\frac{a_2}{x+1}dx=\int \frac{a_1(x+1)+a_2(x-1)}{x^2-1}dx$

2. Forme um zu:
$$f(x) = \int \frac{(a_1+a_2)x + (a_1-a_2)}{x^2-1}$$

3. Löse folgendes lineare Gleichungssystem:

$$a_1 + a_2 = 5 \land a_1 - a_2 = -1 \implies a_1 = 2 \land a_2 = 3$$

4. Setze a_1 bis a_2 ein: $f(x) = \int \frac{2}{x-1} + \frac{3}{x+1} dx$

5. Löse Integral $f(x) = 2\ln(x-1) + 3\ln(x+1)$

Uneigentliches Integral

Ist $f:[a,b) \to \mathbb{R}$ auf $[a,\beta]$ für alle $a<\beta< b$ integrierbar $\Longrightarrow \int_a^b f(x)dx = \lim_{\beta \to b} \int_a^\beta f(x)dx$ heißt uneigentliches Integral, falls der Grenzwert existiert. $(b \text{ kann auch } \infty \text{ sein})$

Gilt analog für die untere Grenze

Ist
$$f:(a,b)\to\mathbb{R}$$
 auf $[\alpha,\beta]$ für alle $a<\alpha<\beta< b$ integrierbar
$$\Longrightarrow \int_a^b f(x)dx=\lim_{\alpha\to a}\int_\alpha^c f(x)dx+\lim_{\beta\to b}\int_c^\beta f(x)dx$$
 heißt uneigentliches Integral, falls die Grenzwerte für ein $c\in(a,b)$ existieren.

(b kann auch ∞ sein, a kann auch $-\infty$ sein)

Einseitiger Grenzwert

Rechtsseitiger Grenzwert: $\lim_{x \downarrow x_0} f(x) = c$ Linksseitiger Grenzwert: $\lim_{x \uparrow x_0} f(x) = c$

Bekannte unbestimmte Integrale

$$\begin{split} &\int_0^1 \frac{1}{x} dx &= \infty \\ &\int_0^1 \frac{1}{x} dx &= \text{nicht wohldefiniert} \\ &\int_1^\infty \frac{1}{x} dx &= \infty \\ &\int_1^\infty \frac{1}{x^\alpha} dx &= \begin{cases} \frac{1}{\alpha - 1} & \text{falls } \alpha > 1 \\ \infty & \text{falls } \alpha < 1 \end{cases} \\ &\int_0^1 \frac{1}{x^\alpha} dx &= \begin{cases} \infty & \text{falls } \alpha > 1 \\ \frac{1}{1 - \alpha} & \text{falls } \alpha < 1 \end{cases} \\ &\int_0^\infty \frac{\sin x}{x} dx &= \frac{\pi}{2} \end{split}$$

Parameterabhängige Integrale

Sei $f:[a,b]\times [c,d] \to \mathbb{R}$ stetig. Dann gilt:

$$F: [c,d] \to \mathbb{R}, \ y \mapsto \int_a^b f(x,y) dx \text{ ist stetig.}$$

$$\int_a^d F(y) dy = \int_a^d \int_a^b f(x,y) dx dy = \int_a^b \int_a^d f(x,y) dy dx$$

Wenn f auf $[a,b] \times [c,d]$ eine stetige partielle Ableitung $\partial_y f$ besitzt, dann ist F stetig differenzierbar mit: $F'(y) = \int_a^b \partial_y f(x,y) dx \; \forall y \in [c,d]$ $\implies \frac{d}{dy} \Big(\int_a^b f(x,y) dx \Big) = \int_a^b \frac{\partial f}{\partial y}(x,y) dx$

Integralsinus

$$Si(b) = \int_0^b si(x)dx = \int_0^b \frac{\sin x}{x}dx$$

Darstellung eine Funktion als Reihe

Seien $f_k:[a,b]\to\mathbb{R}, k\in\mathbb{N}$ integrierbar und es gebe $a_k\in\mathbb{R}$ mit $|f_k(x)|\leq a_k\ \forall x\in[a,b]\ \forall k$

$$\begin{aligned} & \text{und } \sum_{k=1}^{\infty} a_k < \infty \implies \\ & f(x) = \sum_{k=1}^{\infty} f_k(x) \text{ konvergiert und} \\ & \int_a^b f(x) dx = \int_a^b \sum_{k=1}^{\infty} f_k(x) dx = \sum_{k=1}^{\infty} \int_a^b f_k(x) dx \end{aligned}$$

Abschätzung von Summen und Reihen

Seien $a,b\in\mathbb{Z}$ mit a< b und sei $f:[a,b]\to\mathbb{R}$ monoton. Dann folgt

$$\begin{split} \text{f ist monoton wachsend} &\Longrightarrow \sum_{k=a}^{b-1} f(k) \leq \int_a^b f(x) dx \leq \sum_{k=a+1}^b f(k) \\ \text{f ist monoton fallend} &\Longrightarrow \sum_{k=a+1}^b f(k) \leq \int_a^b f(x) dx \leq \sum_{k=a}^b f(k) \end{split}$$

Differentialrechnung mehrerer Veränderlicher

Parametrisierte Kurve

Eine parametrisierte Kurve im \mathbb{R}^n ist eine Abbildung $\gamma: [a,b] \to \mathbb{R}^n, t \mapsto (\gamma_1(t), \dots, \gamma_n(t))$ deren Komponenten γ_i stetig sind

 γ heißt stetig diff'bar, wenn alle γ_i stetig diff'bar sind.

$$\gamma([a,b]) = {\gamma(t) : t \in [a,b]}$$
 heißt Spur von γ .

Eine Kurve beschreibt die Bewegung eines Punktes im Raum $t \hat{=} \ \mathsf{Zeit}, \ \gamma(t) \hat{=} \ \mathsf{Ort} \ \mathsf{des} \ \mathsf{Punktes} \ \mathsf{zur} \ \mathsf{Zeit} \ \mathsf{t}$

Tangentialvektor, Geschwindigkeit

Die Kurve $\gamma:[a,b] \to \mathbb{R}^n$ sei diff'bar. Dann heißt $\gamma'(t) = (\gamma_1'(t), \dots, \gamma_n'(t))$

Tangentialvektor oder Geschwindigkeitsvektor zur Stelle t

$$||\gamma'(t)|| = \sqrt{\sum_{k=1}^n \gamma_k'(t)^2}$$

heißt Geschwindigkeit zur Zeit t.

Falls $\gamma'(t) \neq 0$ heißt

$$T_{\gamma}(t) = \frac{\gamma'(t)}{||\gamma'(t)||}$$

 $T_{\gamma}(t) = \frac{\gamma'(t)}{||\gamma'(t)||}$ Tangentialeinheitsvektor an der Stelle t

$$||T_{\gamma}(t)|| = 1$$

Kurve

Ist $f:[a,b]\to\mathbb{R}$ stetig diff'bar, so ist
$$\begin{split} \gamma: [a,b] &\to \mathbb{R}^2, t \mapsto (t,f(t)) \text{ eine Kurve in } \mathbb{R}^2 \\ \text{mit } \frac{\gamma'(t)}{||\gamma'(t)||} &= \frac{(1,f'(t))}{\sqrt{1+f'(t)^2}} \end{split}$$

partielle Ableitung

Sei $f: \mathbb{R}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n) \in \mathbb{R}$

Ist die Funktion

$$\mathbb{R}\ni \xi\mapsto f(x_1,\ldots,x_{k-1},\xi,x_{k+1},\ldots,x_n)$$

diffbar, so heißt ihre Ableitung partielle Ableitung von f nach x_k und wird mit

$$\frac{\partial f}{\partial x_k} = \partial_{x_k} f(x) = \partial_k f(x)$$

bezeichnet, wobei $x = (x_1, \ldots, x_n)$

Gradient

$$\nabla f(x) = grad \ f(x) = \begin{pmatrix} \partial_1 f(x) \\ \vdots \\ \partial_n f(x) \end{pmatrix}$$

$$Df(x) = \nabla f(x)^T$$

Totale Differenzierbarkeit

Ist Df stetig, dann ist f total differenzierbar:

$$f(x+h) = f(x) + Df(x)h + o(||h||) \text{ für } \mathbb{R}^n \ni h \to 0$$
$$h = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}, ||h|| = \sqrt{\sum_{i=1}^n h_i^2}$$

Tangentialebene

Sei f in x_0 total differenzierbar, dann gilt:

$$f(x) = f(x_0) + Df(x_0)(x - x_0) + o(||x - x_0||)$$
 für $x \to x_0$

$$x \mapsto f(x_0) + Df(x_0)(x - x_0)$$

beschreibt die Tangentialebene an den Graphen von f im Punkt $(x_0, f(x_0))$

2. Differentielle Ableitung

Ist $\partial_i f$ nach x_j differenzierbar, so schreiben wir für die Ableitung:

$$\partial_j \partial_i f = \partial_{x_j} \partial_{x_i} f = \frac{\partial^2 f}{\partial x_j \partial x_j}$$

Hessematrix

$$Hf(x) = \nabla^2 f(x) = \begin{pmatrix} \partial_1 \partial_1 f(x) & \dots & \partial_1 \partial_n f(x) \\ \vdots & \ddots & \vdots \\ \partial_n \partial_1 f(x) & \dots & \partial_n \partial_n f(x) \end{pmatrix}$$

Sind alle $\partial_i \partial_i f$ stetig, so gilt: $\partial_i \partial_i f = \partial_i \partial_i f \ \forall i, j$

Lokale Extrema

Sei $U\subseteq\mathbb{R}^n$ offen und $f:U\to\mathbb{R}$ zweimal stetig diff'bar:

Für alle $x \in U$ mit $\nabla f(x) = 0$ folgt:

f hat in \boldsymbol{x} ein		Hf(x) ist	Alle EW vo
			Hf(x) sind
lokales Minimum	\Longrightarrow	positiv semidefinit	≥ 0
lokales Maximum	\Longrightarrow	negativ semidefinit	≤ 0
striktes lokales Minimum	\iff	positiv definit	> 0
striktes lokales Maximum	\iff	negativ definit	< 0

Vorgehensweise zur Bestimmung der Extrema

- 1. Bestimme alle kritischen Punkte von f, d.h aller $x \in U$ mit $\nabla f(x) = 0$
- 2. Für jeden kritischen Punkt x von f: Bestimme Hf(x)
- 3. Untersuche die Eigenwerte $\lambda_i(x)$ von Hf(x) für jeden kritischen

Alle $\lambda_i(x) > 0$ ⇒ striktes lokales Minimum in x Alle $\lambda_i(x) < 0$ ⇒ striktes lokales Maximum in x Alle $\lambda_i(x) \geq 0$ \implies lok. Minimum oder Sattelpunkt in x Alle $\lambda_i(x) \leq 0$ ⇒ lok. Maximum oder Sattelpunkt in x

 $\exists \lambda_i(x) > 0 \land \exists \lambda_i < 0 \Longrightarrow \mathsf{Sattelpunkt} \ \mathsf{in} \ \mathsf{x}$

Sattelpunkte sind keine Extrema

Jacobimatrix

Sei $U\subseteq\mathbb{R}^n$ offen. Eine Funktion $f:U\to\mathbb{R}^m$ heißt in $x\in U$ total diff'bar, falls es eine lineare Abbildung

$$A: \mathbb{R}^n \to \mathbb{R}^m$$
, $h \mapsto A(h) = Ah$

gibt, sodass gilt:

$$f(x+h) = f(x) + Ah + o(||h||)$$

$$A \cdot h = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}, f = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}, a_{ij} = \frac{\partial f_i}{\partial x_j}(x)$$

 $\mathsf{lst}\ f\ \mathsf{in}\ \mathsf{x}\ \mathsf{differenzierbar}\ \Longleftrightarrow\ \mathsf{Alle}\ \mathsf{Komponenten}\ \mathsf{sind}\ \mathsf{in}\ \mathsf{x}\ \mathsf{differenzierbar}$ $\mathsf{zierbar}$

A heißt Jacobimatrix von
$$f$$
 mit
$$A = Df(x) = J_f(x) = \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{1 \leq i \leq m, 1 \leq j \leq n} \in \mathbb{R}^{m \times n}$$

Differentialgleichungen

Differentialgleichungen beschreiben Prozesse bei denen die Zustandsänderungsrate eine gegebene einfach Funktion des Zustands ist

Trennung der Variablen

Sei
$$f,g:\mathbb{R}\to\mathbb{R}$$
 stetig mit $y'(x)=f(x)\cdot g(y(x)) \implies$

$$\int^{x=y(x)} \frac{1}{g(x)} dx = \int f(x) dx$$

Sei
$$G(x) = \int \frac{1}{g(x)} dx$$
 und $F(x) = \int f(x) dx \implies$

G(y(x)) = F(x) und $y(x) = G^{-1}(F(x))$, falls G eine Umkehrfunktion besitzt.

Merke: f(x) hängt nicht von y ab. g(y) hängt nur von y ab.

Trennung der Variablen - Anfangswertproblem

Sei
$$f, g : \mathbb{R} \to \mathbb{R}$$
 stetig mit $y'(x) = f(x) \cdot g(y(x))$ und $y(x_0) = y_0 \implies$

$$\int_{y_0}^{y(x)} \frac{1}{g(s)} ds = \int_{x_0}^{x} f(t) dt$$

 $\label{eq:merke: f(x) hangt nicht von } y \text{ ab. } g(y) \text{ hangt nur von } y \text{ ab.}$

Homogene lineare Differentialgleichungen 1. Ordnung

Sei $a,f:\mathbb{R}\to\mathbb{R}$ stetige Funktionen mit

$$y'(x) + a(x) \cdot y(x) = 0 \text{ und}$$

 $A(x) = \int a(x)dx \Longrightarrow$

$$y(x) = c \cdot e^{-A(x)}$$

Homogene lineare Dgl 1. Ordnung - Anfangswertproblem

Sei $a,f:\mathbb{R} \to \mathbb{R}$ stetige Funktionen mit

$$y'(x) + a(x) \cdot y(x) = 0 \text{ und } y(x_0) = y_0$$

$$A(x) = \int_{x_0}^x a(t)dt \implies$$

$$y(x) = y_0 \cdot e^{-A(x)}$$

Inhomogene lineare Differentialgleichung 1. Ordnung

Sei $a,f:\mathbb{R}\to\mathbb{R}$ stetige Funktionen mit

$$y'(x) + a(x)y(x) = f(x)$$
 und

$$A(x) = \int a(x)dx \implies$$

$$y(x) = e^{-A(x)} \cdot \left(c + \int_{x_0}^x f(t)e^{A(t)}dt\right)$$

Inhomogene lineare Dgl 1. Ordn. - Anfangswertproblem

Sei $a,f:\mathbb{R} \to \mathbb{R}$ stetige Funktionen mit

$$y'(x) + a(x)y(x) = f(x) \text{ und } y(x_0) = y_0$$

$$A(x) = \int_{x_0}^x a(t)dt \implies$$

$$y(x) = e^{-A(x)} \cdot \left(y_0 + \int_{x_0}^x f(t)e^{A(t)}dt\right)$$

Lineare Abhängigkeit

Seien $y_1, y_2: I \to \mathbb{R}$ Funktionen, dann gilt: y_1 und y_2 sind linear unabhängig, falls: $\alpha_1 y_1(x) + \alpha_2 y_2(x) \neq 0 \ \forall x \in I$, falls $\alpha_1 \neq 0 \land \alpha_2 \neq 0$ y_1 und y_2 sind linear abhängig, wenn sie nicht linear unabhängig sind.

Wronski-Determinante

$$W(x) = \det \begin{pmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{pmatrix}$$
 heißt Wronski-Determinante von y_1 und y_2

 y_1 und y_2 sind linear unabhängig $\iff W(x) \neq 0$

Homogene lineare Differentialgleichungen 2. Ordnung

Seien $a,b,f:\mathbb{R}\to\mathbb{R}$ stetige Funktionen mit y''(x) + ay'(x) + by(x) = 0

$$\lambda^2 + a\lambda + b = 0 \Longrightarrow \lambda_1 = -\frac{a}{2} + \sqrt{D}, \ \lambda_2 = -\frac{a}{2} - \sqrt{D}, \ D = \frac{a^2}{4} - b$$

Fall 1: D > 0

$$y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$
, c_1, c_2 beliebig

Fall 2: D = 0

$$y(x) = c_1 e^{-\frac{a}{2}x} + c_2 x e^{-\frac{a}{2}x}$$
, c_1, c_2 beliebig

Fall 3: D < 0

$$y(x) = e^{-\frac{a}{2}x}(c_1\cos(\sqrt{-D}x) + c_2\sin(\sqrt{-D}x), c_1, c_2 \text{ beliebig})$$

Inhomogene lineare Differentialgleichung 2. Ordnung

Seien $a,b,f:\mathbb{R}\to\mathbb{R}$ stetige Funktionen mit y''(x) + ay'(x) + by(x) = f(x)

- 1. Bestimme die allgemeine Lösung $y_h(x)$ von $y_h''(x) + ay_h'(x) + by_h(x) = 0$
- 2. Bestimme $y_p(x)$
- 3. $y(x) = y_h(x) + y_p(x)$

Fall 1:
$$f(x) = a_n t^n + \dots + a_1 t + a_0$$

- 1. Stelle $y_p(x)$ auf: $y_p(x) = b_n t^n + \dots + b_1 t + b_0$
- 2. Berechne $y''_{p}(x)$ und $y'_{p}(x)$
- 3. Setze $y_p''(x)$, $y_p'(x)$ und $y_p(x)$ in Gleichung ein: $y_p''(x) + ay_p'(x) + by(x) = f(x)$
- 4. Ermittle durch Gleichung die Werte von b_0, b_1, \ldots, b_n
- 5. Setze b_0, b_1, \ldots, b_n in $y_p(x)$ ein

Fall 2:
$$f(x) = e^{\alpha t} (a_1 \cos(\beta t) + a_2 \sin(\beta t))$$

- 1. Stelle $y_p(x)$ auf: $y_p(x) = e^{\alpha t} (b_1 \cos(\beta t) + b_2 \sin(\beta t))$
- 2. Berechne $y_p''(x)$ und $y_p'(x)$
- 3. Setze $y_p''(x)$, $y_p'(x)$ und $y_p(x)$ in Gleichung ein: $y_p''(x) + ay_p'(x) + by(x) = f(x)$
- 4. Ermittle durch Gleichung die Werte von b_1 und b_2
- 5. Setze b_1 und b_2 in $y_p(x)$ ein

Anmerkungen

Dies ist eine Zusammenfassung der Vorlesung Analysis für Informatiker an der Technischen Universität München. Gehalten wurde diese Vorlesung durch Rolles S. im Wintersemester 2017/18. Alle Angaben sind ohne Gewähr.