

PROBABILISTIC LINEAR MODEL

Why

We want an estimator for the parameters of a linear function, given observations of the function with additive noise.

Definition

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space. Let $x : \Omega \to \mathbf{R}^d$. Define $g : \Omega \to (\mathbf{R}^d \to \mathbf{R})$ by $g(\omega)(a) = a^{\top}x(\omega)$, for $a \in \mathbf{R}^d$. In other words, for each outcome $\omega \in \Omega$, $g_{\omega} : \mathbf{R}^d \to \mathbf{R}$ is a linear function with parameters $x(\omega)$. g_{ω} is the function of interest.

Let $a^1, \ldots, a^n \in \mathbb{R}^d$ a dataset with data matrix $A \in \mathbb{R}^{n \times d}$. Let $e : \Omega \to \mathbb{R}^n$ independent of x, and define $y : \Omega \to \mathbb{R}^n$ by

$$y = Ax + e.$$

In other words, $y_i = x^{\top} a^i + e_i$.

We call (x, A, e) a probabilistic linear model. Other terms include linear model, statistical linear model, linear regression model, bayesian linear regression, and bayesian analysis of the linear model.¹ We call x the parameters, A a design, e the error or noise vector, and y the observation vector.

One may want an estimator for the parameters x in terms of y or one may be modeling the function g and want to predict g(a) for $a \in A$ not in the dataset.

The word bayesian is in reference to treating the object of interest—x—as a random variable.

Mean and variance

Proposition 1.
$$E(y) = A E(x) + E(w)^2$$

$$\textbf{Proposition 2. } \mathbf{cov}((x,y)) = A \operatorname{cov}(x) A^\top + \operatorname{cov} e^3$$

 $^{^2\}mathrm{By}$ linearity. Full account in future editions.

³Full account in future editions.

