Appendix 7

North American Aerodynamic Derivative Notation

 Table A7.1
 Longitudinal normalised derivatives

Dimensionless coefficient	Multiplier	Dimensional
$C_{x_u} = -(M_0 C_{D_M} + 2C_D)$	$\rho V_0 S/2m$	X_u
$C_{x_u}^* = -(M_0 C_{D_M} + 2C_D) + M_0 C_{\tau_M} \cos \kappa$	$\rho V_0 S/2m$	X_u^*
$C_{x_{\dot{\alpha}}} = C_{x_{\dot{\alpha}}}$	$ ho S ar{ ilde{c}}/4m$	$X_{\dot{w}}$
$C_{X_W} = C_L - C_{D_\alpha}$	$\rho V_0 S/2m$	X_w
C_{x_q}	$ ho V_0 S \bar{\bar{c}}/4m$	X_q
$C_{x_{\delta}}$	$\rho V_0^2 S/2m$	\mathbf{X}_{δ}
$C_{z_u} = -(M_0 C_{L_M} + 2C_L)$	$\rho V_0 S/2m$	Z_u
$C_{z_u}^* = -(M_0 C_{L_M} + 2C_L) - M_0 C_{\tau_M} \sin \kappa$	$\rho V_0 S/2m$	Z_u^*
$C_{z_{\dot{w}}} = C_{z_{\dot{lpha}}}$	$ ho S \bar{\bar{c}}/4m$	$Z_{\dot{w}}$
$C_{z_w} = -(C_D + C_{L_\alpha})$	$\rho V_0 S/2m$	Z_{w}
C_{z_q}	$\rho V_0 S \bar{\bar{c}}/4m$	Z_q
C_{z_δ}	$\rho V_0^2 S/2m$	Z_{δ}
$C_{m_u} = M_0 C_{m_M}$	$\rho V_0 S \bar{\bar{c}}/2I_y$	\mathbf{M}_u
$C_{m_u}^* = \mathbf{M}_0 C_{m_{\mathrm{M}}} + \mathbf{M}_0 \frac{z_{\tau}}{\bar{z}} C_{\tau_{\mathrm{M}}} \cos \kappa$	$ ho V_0 S \bar{\bar{c}}/2I_y$	M_u^*
$C_{m_{\dot{\alpha}}} = C_{m_{\dot{\alpha}}}$	$\rho V_0 S \bar{\bar{c}}^2 / 4 I_y$	$M_{\dot{w}}$
$C_{m_w} = C_{m_\alpha}$	$\rho V_0 S \bar{\bar{c}}/2I_y$	M_w
C_{m_q}	$\rho V_0 S \bar{\bar{c}}^2/4I_y$	M_q
$C_{m_{\delta}}$	$\rho V_0^2 S\bar{\bar{c}}/2I_y$	M_{δ}

Note:

- (i) Thrust coefficient is defined $C_{\tau} = \tau / \frac{1}{2} \rho V_0^2 S$.
- (ii) In the notational style $C_{\tau_{\rm M}} = \partial C_{\tau} / \partial M$.
- (iii) κ is the (upward) inclination of the thrust line with respect to the x axis.
- (iv) z_{τ} is the normal offset of the thrust line from the cg. It is assumed that x_{τ} , the axial offset of the thrust line from the cg, is negligibly small.

 Table A7.2
 Longitudinal dimensionless derivative
 equivalents

Dimensionless derivative equivalents				
American	British	American	British	
$\overline{C_{x_u}}$		$C_{z_{\alpha}}$	Z_w	
$C_{x_u}^*$	X_u	C_{z_q}	$2Z_q$	
$C_{x_{\dot{\alpha}}}$	$2X_{\dot{w}}$	C_{z_δ}	$Z_{\eta, au}$	
$C_{x_{\alpha}}$	X_{w}	C_{m_u}		
C_{x_q}	$2X_q$	$C_{m_u}^*$	M_u	
C_{x_δ}	$X_{\eta, au}$	$C_{m_{\dot{lpha}}}$	$2M_{\dot{w}}$	
C_{z_u}		C_{m_lpha}	M_w	
$C_{z_u}^*$	Z_u	C_{m_q}	$2M_q$	
$C_{z_{\dot{lpha}}}$	$2Z_{\dot{w}}$	C_{m_δ}	$M_{\eta, au}$	

 Table A7.3
 Lateral-directional normalised derivatives

Dimensionless coefficient	Multiplier	Dimensional	
$C_{y_{\nu}}$	$\rho V_0 S/2m$	Y_{ν}	
$C_{y_{eta}}$	$\rho V_0^2 S/2m$	$Y_{oldsymbol{eta}}$	
C_{y_p}	$\rho V_0 Sb/4m$	Y_p	
C_{y_r}	$\rho V_0 Sb/4m$	Y_r	
C_{y_δ}	$\rho V_0^2 S/2m$	Y_{δ}	
$C_{l_{\nu}}$	$\rho V_0 Sb/2I_x$	$L_{ u}$	
$C_{l_{\mathcal{B}}}$	$\rho V_0^2 Sb/2I_x$	$L_{oldsymbol{eta}}$	
C_{l_p}	$\rho V_0 S b^2 / 4 I_x$	L_p	
C_{l_r}	$\rho V_0 S b^2 / 4 I_x$	L_r	
$C_{l_{\delta}}$	$\rho V_0^2 Sb/2I_x$	L_δ	
C_{n_v}	$\rho V_0 Sb/2I_z$	$N_{ u}$	
$C_{n_{eta}}$	$\rho V_0^2 Sb/2I_z$	$N_{oldsymbol{eta}}$	
C_{n_n}	$\rho V_0 S b^2 / 4 I_z$	N_p	
C_{n_r}	$\rho V_0 S b^2 / 4 I_z$	N_r	
$C_{n_{\delta}}$	$\rho V_0^2 Sb/2I_z$	N_{δ}	

 Table A7.4
 Lateral-directional dimensionless
 derivative equivalents

Dimensionless derivative equivalents				
American	British	American	British	
$\overline{C_{y_v}}$	Y_{ν}	C_{l_r}	$2L_r$	
$C_{y_{\beta}}$		C_{l_δ}	$L_{\xi,\zeta}$	
C_{y_p}	$2Y_p$	$C_{n_{v}}$	N_{v}	
C_{y_r}	$2Y_r$	$C_{n_{eta}}$		
$C_{y_{\delta}}$	$Y_{\xi,\zeta}$	C_{n_p}	$2N_p$	
C_{l_v}	L_{ν}	C_{n_r}	$2N_r$	
$C_{l_{eta}}$		C_{n_δ}	$N_{\xi,\zeta}$	
C_{l_p}	$2L_p$			