Algoritmer og Datastrukturer

Graf repræsentationer, bredde først søgning (BFS) [CLRS, kapitel 22.1-22.2]

Grafer

Uorienterede grafer

Orienterede grafer

G = (V, E) graf med knuder V og kanter E

E: {u, v} kant mellem u og v i en uorienteret graf og(u, v) en orienteret kant fra u til v.

n = |V| =antal knuder

m = |E| =antal kanter (forbindelser mellem knuder)

Planar Grafer - Eulers formel

For en sammenhængende planar graf gælder:

Eulers formel:

$$|V| - |E| + # flader = 2$$

Korollar:

$$|E| \le 3|V| - 6$$

(for $|V| \ge 3$, ingen selvløkker, ingen parallelle kanter)

Hvilken løsning finder den grådige algoritme?

- a) ABABGACBABAD
- 🙂 b) ABABGACBABAD
 - c) ABABGACBABAD
 - d) Ved ikke

Hvilken beregningsrækkefølge?

- a) C1 C2 A3 B3 C3
- b) A3 B3 C2 C1 C3
- <u>**</u> c) C2 C1 C3 B3 A3
 - d) Ved ikke

Rute på kort Fra Kannikegade 1 , 8000 Århus C Til Guldsmedgade 1 , 8000 Århus C Via

Hvor mange knuder skal man bruge for at repræsentere et vejkryds?

- a) 1
- b) 2
- c) 4
- d) 5
- e) 8
- f) 9
- g) 12
- h) Ved ikke

Kort over Vest-Europa

- 18.029.721 knuder
- 42.199.587 orienterede kanter

"However, because of the size of the routing data, we have to use heuristics when planning routes. As a result, sometimes a Favor Highways route will be slightly faster than the Fastest route."

— MapsOnUs

Rejseplan (Horsens til Ry)

Algoritme
Find tidligste knude for Ry der kan nås
fra en given start-knude i Horsens

Tog	Ank	Afg	Station
		10:43	Horsens
IC125	10:57	10:58	Skanderborg St
	11:12		Aarhus H
Re3329		11:00	Horsens
	11:31		Aarhus H
ICL27		11:11	Horsens
	11:25	11:26	Skanderborg St
	11:40		Aarhus H
RX5335		10:49	Aarhus H
	11:08	11:09	Skanderborg St
	11:18		Ry St

uddrag af køreplaner

Graf repræsentationer: Incidenslister og incidensmatricer

Graf repræsentationer: ... et par flere alternativer

Kantliste (list/array med par af heltal)

Kompakte incidenslister (to arrays med heltal)

Bredde først søgning (BFS)

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
        u.d = \infty
        u.\pi = NIL
    s.color = GRAY
    s.d = 0
    s.\pi = NIL
    ENQUEUE(Q, s)
    while Q \neq \emptyset
10
         u = \text{DEQUEUE}(Q)
11
         for each v \in G.Adj[u]
12
             if v.color == WHITE
13
14
                 v.color = GRAY
                 v.d = u.d + 1
15
16
                \nu.\pi = u
                  ENQUEUE(Q, v)
17
18
         u.color = BLACK
```

u.color:

WHITE = knuderne endnu ikke besøgt

GRAY = knuderne i køen Q

BLACK = knuderne besøgt

u.d = afstand til s

 $u.\pi$ = faderen til u i BFS træet

Q = kø af grå knuder (som er forbundet til sorte knuder)

Tid O(n+m)

Er nedenstående et BFS træ?

- a) Ja
- 🙂 b) Nej
 - c) Ved ikke

BFS: Udskrivning af sti fra s til v

```
PRINT-PATH(G, s, v)
1 if v == s
        print s
3 elseif \nu.\pi == NIL
        print "no path from" s "to" v "exists"
   else PRINT-PATH(G, s, \nu, \pi)
       print v
```