Digital Signal Processing Systems Assignment -1

Name: PRN Number:	B. Tech CSE (Semester: V)	
Note: All the students must finish the Assignment#1 and submit before 1 Oct. 2021. Write the answers in given space only. 1. Find the Nyquist rate and Nyquist interval of following signal. (a) $x(t) = 5.Cos1000\pi t.Cos4000\pi t$ (b) $x(t) = \frac{Sin200\pi t}{\pi t}$		
Write the answers in given space only. 1. Find the Nyquist rate and Nyquist interval of following signal. (a) $x(t) = 5.Cos1000\pi t.Cos4000\pi t$ (b) $x(t) = \frac{Sin200\pi t}{\pi t}$	PRN Number :	
(a) $x(t) = 5.Cos1000\pi t.Cos4000\pi t$ (b) $x(t) = \frac{Sin200\pi t}{\pi t}$		re 1 Oct. 2021.
(b) $x(t) = \frac{Sin200\pi t}{\pi t}$	1. Find the Nyquist rate and Nyquist interval of following signal.	(10 Mark
Ans:	(b) $x(t) = \frac{Sin200\pi t}{\pi t}$	
	Ans:	

2. Band pass signal have spectral range extent from 20 KHz to 82 Khz. Find sampling frequency? $(5~{\rm Marks})$

Ans:

3. Find the even and odd component of the signal.

(15 Marks)

- (a) x(n) = u(n)
- (b) x(n) = u(n) u(n-1)
- (c) x(n) = [1, 1, -1, 1, 2]

Bold is origin

Ans:

4. Sketch the following Signals.

(10 marks)

- (a) y(n) = u(n) + u(n-2) + u(n-4) 3u(n-6)
- (b) x(n) = -n, where $-4 \le n \le 0$ = n, where $-2 \le n \le 2$ = 0, otherwise

Ans:	

- 5. Determine the system of equation is a) Linear b) stable c) recursive d) Time Invariant e) Static Dynamic. (10 Marks)
 - (a) y(n) = 1/3x(n) + x(n-1) + x(n-2)
 - (b) y(n) = log10(|x(n)|)
 - (c) y(n) = 8.Cosx(n)

Ans:			

6. Verify the Associative and Distributive Property of convolution. (10 Marks) $h_1(n) = [-2, -3, 4], h_2(n) = [1, 1, 1] \text{ and } h_3(n) = [1, -2, 0, 1].$

Ans:

7. Determine convolution using Tabulation. Method?

(10 Marks)

$$x_1(n) = [1, 1, \mathbf{0}, 1, 1],$$

 $x_2(n) = [1, -2, -3, 4].$

A		
Ans:		

8. A discrete time system is given as: $y(n) = y^2(n-1) + x(n)$, A bounded input of $x(n) = 2\delta(n)$, is applied to the system. Assume that the system is initially relaxed. Check whether this system is stable or unstable. (10 Marks)

Ans:	

9. Determine the range of the values of parameter a for which the linear time invariant system with impulse response h(n) is stable, (10 Marks)

 $h(n) = a^n$, where $n \ge 0$, and n even.

=0 otherwise

Ans:	

10. Determine the cross correlation sequence $r_{xy}(l)$ of the following sequences: (10 Marks)

$$x(n) = [2, -1, 3, 7, \mathbf{1}, 2, -3]$$
 and $y(n) = [1, -1, 2, -2, 4, \mathbf{1}, -2, 5]$

$$y(n) = [1, -1, 2, -2, 4, 1, -2, 5]$$

ŀ	1	r	1	\mathbf{S}	: