Single-Source Shortest Paths

Heejin Park

Division of Computer Science and Engineering
Hanyang University

Contents

- Definition
- The Bellman-Ford algorithm
- Single-source shortest paths in directed acyclic graphs
- Dijkstra's algorithm

Definition

- Edge weight
- Path weight
 - The sum of all edge weights in the path.
- A Shortest path from u to v.
 - A path from u to v whose weight is the smallest.
 - Vertex *u* is the *source* and *v* is the *destination*.
- *The Shortest-path weight* from *u* and *v*.
 - The weight of a shortest-path from u and v
 - $\delta(u,v)$

Definition

Shortest-path problems

- Single-source & single-destination
- Single-source (& all destinations)
- Single-destination (& all sources)
- All pairs

• What is a shortest path from s to g?

- Do all negative-weight edges cause a problem?
- Do all negative-weight cycles cause a problem?

• Do all negative-weight cycles reachable from the source cause a problem?

• Single-source shortest paths can be defined if there are not any *negative-weight cycles reachable from the source*.

Cycles

Cycles

- There is a shortest path that does not include cycles.
- A shortest-path length is at most |V|-1.

Predecessor subgraph

Predecessor subgraph

- Shortest-path tree (stores all SSSPs compactly.)
- Optimal substructure

Predecessor subgraph

Relaxation

Relaxation

Dijkstra's algorithm

• It works properly when all edge weights are *nonnegative*.

DIJKSTRA(G, w, s)

```
1 INITIALIZE-SINGLE-SOURCE(G, s)
```

$$S = \emptyset$$

$$Q = G.V$$

4 while
$$Q \neq \emptyset$$

5
$$u = \text{EXTRACT-MIN}(Q)$$

$$6 S = S \cup \{u\}$$

for each vertex
$$v \in G.Adj[u]$$

8 RELAX
$$(u, v, w)$$

S	t	y	x	Z
0	∞	∞	∞	∞

S

Q

S	t	y	X	Z
0	8	8	8	8
	10	5	-	

$$S = \{s\}$$

Q

S	t	y	X	Z
0	8	8	8	8
	10	5	<u>-</u>	1

$$S=\{s, y\}$$

Q

S	t	y	X	Z
0	8	8	∞	8
	10	5	_	1
	8		14	7

$$S=\{s, y\}$$

				100
S	t	y	$\boldsymbol{\mathcal{X}}$	Z
0	8	8	8	8
	10	5	1	1.
	8		14	7
	8		13	

$$S = \{s, y, z, t\}$$

2	
S	t

S	t	y	X	Z
0	8	8	8	8
	10	5	-	1
	8		14	7
	8		13	
			9	

$$S = \{s, y, z, t\}$$

S	t	y	X	Z
0	8	8	8	8
	10	5		1
	8		14	7
	8		13	
			9	

$$S = \{s, y, z, t, x\}$$

DIJKSTRA(G, w, s)

```
1 INITIALIZE-SINGLE-SOURCE(G, s)
```

$$S = \emptyset$$

$$Q = G.V$$

4 while
$$Q \neq \emptyset$$

$$5 u = \text{EXTRACT-MIN}(Q)$$

$$6 S = S \cup \{u\}$$

7 **for** each vertex
$$v \in G.Adj[u]$$

8 RELAX
$$(u, v, w)$$

Running time

- $O(V^2)$ if we use an (unsorted) array
- $O(V \lg V + E \lg V)$ if we use a heap
- $O(V \lg V + E)$ if we use a Fibonacci heap.

• The Bellman-Ford algorithm

• it solves the single source shortest-paths problem in the general case in which edge weights may be negative.

```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE(G, s)
   for i = 1 to |G.V| - 1
           for each edge(u, v) \in G.E
                RELAX(u, v, w)
5
   for each edge(u, v) \in G.E
        if v.d > u.d + w(u, v)
            return FALSE
8
   return TRUE
```

Relaxation order

$$\odot$$
(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Relaxation order

$$\odot$$
(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Relaxation order

$$\odot$$
(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

- The Bellman-Ford algorithm
 - Running time : O(VE)

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} (d[v_{i-1}] + w(v_{i-1}, v_i))$$

$$= \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]$$

$$0 \le \sum_{i=1}^k w(v_{i-1}, v_i)$$

DAG-SHORTEST-PATHS(G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 for each vertex u, taken in topologically sorted order
- 4 **for** each vertex $v \in G.Adj[u]$
- 5 RELAX(u, v, w)

• Running time: O(V+E) time

PERT chart

• PERT

- Program evaluation and review technique
- Edges represent jobs to be performed.
- Edge weights represent the times required to perform particular jobs.

PERT chart

• PERT

- If edge (u,v) enters vertex v and edge (v,x) leaves v, then job (u,v) must be performed prior to job (v,x).
- A path through this dag represents a sequence of jobs that must be performed in a particular order.
- A critical path is a longest path through the dag.

PERT chart

• Finding a critical path in a dag

 Negate the edge weights and run DAG-SHORTEST-PATHS or

• Run DAG-SHORTEST PATHS, with the modification that we replace "∞" by "-∞" and ">" by "<".