Western New England University College of Engineering ECE Department Microwave Engineering EE 414/514 Spring 2024 Design Project #4 Due: April 26, 2024

Name:	Nittala Satya Surya Lakshmi Vasuki Siva Srinivas #Id – 620094 #Email – sn620094@wne.edu
Referenc	ces:

Design Project #4

	Score	Max
Butterworth Matching Network Design		200
Butterworth MATLAB Simulation		100
Chebyshev Matching Network Design		200
Chebyshev MATLAB Simulation		100
ADS (Microstrip TRLs)		100
ADS (Microstrip TRLs SD)		100
Summary Graphs		100
Presentation		100
Total		1000

- 1. Design a Butterworth multi-section transformer to match a 100- Ω load ($R_L = 100 \Omega$) to a 50- Ω generator ($R_g = 50 \Omega$).
 - The center frequency is 8 GHz ($f_0 = 8$ GHz).
 - The bandwidth must be greater than or equal to 6.4 GHz ($BW_t \ge 6.4 \text{ GHz}$).
 - The return loss must be greater than or equal to 30 dB ($RL \ge +30$ dB or $|S_{11}| \le -30$ dB) over the bandwidth.
- 2. Using MATLAB, simulate the matching network designed in Task (1). Employ ideal transmission lines and a frequency range of 0 to 16 GHz. In addition, employ "driveway transmission lines" at the input and output with an electrical length of 90°. Determine the actual bandwidth (in GHz) for which the input return loss is greater than or equal to 30 dB ($RL \ge +30$ dB or $|S_{11}| \le -30$ dB).
 - Determine a value for S_{11} , S_{21} , S_{12} , and S_{22} at 8 GHz.
- 3. Design a Chebyshev multi-section transformer to match a 100- Ω load (R_L = 100 Ω) to a 50- Ω generator (R_g = 50 Ω).
 - The center frequency is 8 GHz ($f_0 = 8$ GHz).
 - The bandwidth must be greater than or equal to 6.4 GHz ($BW_t \ge 6.4 \text{ GHz}$).
 - The return loss must be greater than or equal to 30 dB ($RL \ge +30 \text{ dB}$ or $|S_{11}| \le -30 \text{ dB}$) over the bandwidth.
- 4. Using MATLAB, simulate the matching network designed in Task (3). Employ ideal transmission lines and a frequency range of 0 to 16 GHz. In addition, employ "driveway transmission lines" at the input and output with an electrical length of 90°. Determine the actual bandwidth (in GHz) for which the input return loss is greater than or equal to 30 dB ($RL \ge +30$ dB or $|S_{11}| \le -30$ dB).
 - Determine a value for S_{11} , S_{21} , S_{12} , and S_{22} at 8 GHz.
- 5. Using ADS, simulate the matching network designed in Task (3). Employ microstrip transmission lines and a frequency range of 0 to 16 GHz. In addition, employ "driveway transmission lines" at the input and output with an electrical length of 90°. Assume that the microstrip transmission lines are to be realized using a 0.635 mm thick Duroid 6010 substrate ($\varepsilon_r = 10.7$, $\tan \delta = 0.0023$, $\sigma_c = 5.8 \times 10^{+7}$ S/m, and $t = 18 \, \mu m$).
 - Determine a value for S_{11} , S_{21} , S_{12} , and S_{22} at 8 GHz.
- 6. Add the microstrip step element (MSTEP) to the model in Task (5).
 - Determine a value for S_{11} , S_{21} , S_{12} , and S_{22} at 8 GHz.

- 7. Summarize the results.
 - On the same graph, plot $|S_{11}|$ (in dB) for the Butterworth simulated using MATALB and the Chebyshev simulated using MATALB. Employ a domain of 0 to 16 GHz and a range of -40 to 0 dB.
 - On the same graph, plot $|S_{21}|$ (in dB) for the Butterworth simulated using MATALB and the Chebyshev simulated using MATALB. Employ a domain of 0 to 16 GHz and a range of -0.25 to 0 dB.
 - On the same graph, plot $|S_{11}|$ (in dB) for the Chebyshev simulated using MATALB, ADS (Microstrip TRLs), and ADS (Microstrip TRLs with SD). Employ a range of -40 to 0 dB.
 - On the same graph, plot $|S_{21}|$ (in dB) for the Chebyshev simulated using MATALB, ADS (Microstrip TRLs), and ADS (Microstrip TRLs with SD). Employ a domain of 0 to 16 GHz and a range of -0.45 to 0 dB.
- 8. Present the results from the design project into a well-organized presentation.

Design Project - 4

By: Nittala Satya Surya Lakshmi Vasuki Siva Srinivas

#Id - 620094

Email – sn620094@wne.edu

Butterworth Matching Network Design

Butterworth Matching Network Design MATLAB Calculations

Gamma k(6) = 0.0108

new fL = 4.5974 GHz

new fH = 11.4026 GHz

 $wzi = (1.0000 < +180.0000^{\circ})$

 $w = (1.0000 < -126.7597^{\circ})$

Z1 = 51.0949 Ohms

 $Gamma_k(1) = 0.0108$ Z2 = 56.9394 Ohms

 $Gamma_k(2) = 0.0542$ Z3 = 70.7107 Ohms

 $Gamma_k(3) = 0.1083$ Z4 = 87.8126 Ohms

 $Gamma_k(4) = 0.1083$ Z5 = 97.8572 Ohms

Gamma k(5) = 0.0542

Z6 = 100.0000 Ohms

S21_min (RL) = 0.9995 W/	/W
$S21_{min}$ (RL) = -0.0043 of	lΒ
Ap (RIPPLE) = 0.0043 dB	

k	0	1	2	3	4	5	6
$\mathbf{Z}_{m{k}}$	50.0000	51.0949	56.9394	70.7107	87.8126	97.8572	100.0000
$\Gamma_{m{k}}$	0.0108	0.0542	0.1083	0.1083	0.0542	0.0108	

Chebyshev Matching Network Design

Chebyshev Matching Network Design MATLAB Calculations

new	fL	=	4.5021	GHz

$$new fH = 11.4979 GHz$$

$$uz(1) = -0.8660$$

$$uz(2) = 0.0000$$

$$uz(3) = 0.8660$$

$$T N(1) = 4.0000$$

$$T N(2) = 0.0000$$

$$T N(3) = -3.0000$$

$$T N(4) = 0.0000$$

Uz poly(1) =
$$-0.8660$$

$$Uz poly(2) = 0.0000$$

$$Uz_poly(3) = 0.8660$$

$$wzi(1) = (1.0000 < +113.3866^{\circ})$$

$$wzi(2) = (1.0000 < +180.0000^{\circ})$$

$$wzi(3) = (1.0000 < -113.3866^{\circ})$$

$$Ik(1) = 1.0000$$

$$Ik(2) = 1.7939$$

$$Ik(3) = 1.7939$$

$$Ik(4) = 1.0000$$

$$Gamma_k(1) = 0.0620$$

$$Gamma_k(2) = 0.1113$$

Gamma
$$k(3) = 0.1113$$

Gamma
$$k(4) = 0.0620$$

$$Z1 = 56.6125$$
 Ohms

$$Z2 = 70.7874$$
 Ohms

$$Z3 = 88.5115$$
 Ohms

$$Z4 = 100.2171$$
 Ohms

$$S21_{min}$$
 (RL) = 0.9995 W/W

$$S21_min (RL) = -0.0043 dB$$

Ap (RIPPLE) =
$$0.0043$$
 dB

i	u_{zi}	$ heta_{zi}$	w_{zi}
1	-0.8660	123.3067	(1.0000 < +113.3866°)
2	0.0000	90.0000	(1.0000 < +180.0000°)
3	0.8660	56.6933	(1.0000 < -113.3866°)

k	0	1	2	3	4	
I_{k}	1.0000	1.7939	1.7939	1.0000		
$\Gamma_{m{k}}$	0.0620	0.1113	0.1113	0.0620		
$\mathbf{Z}_{m{k}}$	50.0000	56.6125	70.7874	88.5115	100.2171	Ohms

ADS (Microstrip TRLs)

S_Param SP1

Start=0 GHz Stop=16 GHz Step=0.03 GHz

> MLIN MLIN MLIN MLIN MLIN TL1 TL2 TL3 TL4 TL5 Term Term Subst="MSub1" Subst="MSub1" Subst="MSub1" Subst="MSub1" Subst="MSub1" Term1 Term2 W=W1 W=W0 W=W2 W=W3 W=WL Num=2 Num=1 L=L0 L=L1 L=L2 L=L3 L=LL Z=50 Ohm Z=100 Ohm

DisplayTemplate
disptemp1
"S Params Quad dB Smith"

MSub

MSUB MSub1

H=0.635 mm

Er=10.7

Mur=1

Cond=5.8e+7

Hu=1e+33 mm

T=18 um

TanD=0.0023

Rough=

Bbase=

Dpeaks=

Var Eqn VAR

VAR1

W0=0.554162 mm L0=3.490710 mm W1=0.415484 mm L1=3.541880 mm W2=0.224515 mm L2=3.634570 mm W3=0.101513 mm L3=3.735550 mm WL=0.058710 mm LL=3.798950 mm

ADS (Microstrip TRLs) Layout

ADS (Microstrip TRLs)

S-Parameters vs. Frequency

ADS - Microstrip TRLs (MSTEP)

ADS -Microstrip TRLs(MSTEP) Layout

ADS - Microstrip TRLs (MSTEP)

S-Parameters vs. Frequency

BUTTERWORTH

	Values	dB
S ₁₁	-0.0000+j0.0006	-66.7879
S_{21}	0.0150-j0.9999	0.0000
\mathcal{S}_{12}	0.0150-j0.9999	0.0000
\mathcal{S}_{22}	0.0000-j0.0006	-66.7879

CHEBYSHEV

	Values	dB
S ₁₁	0.0000+j0.0000	-166.9889
S_{21}	0.9999+j0.0242	0.0000
\mathcal{S}_{12}	0.9999+j0.0242	0.0000
S_{22}	0.0000+j0.0000	-166.9889

ADS Microstrip

	Values	dB
S ₁₁	0.0016-j0.0022	-50.5842
S_{21}	-0.0255-j0.9753	-0.2109
S_{12}	-0.0255-j0.9753	-0.2109
S_{22}	0.0032-j0.0008	-47.0322

ADS Microstrip Stepped

	Values	dB
S ₁₁	0.0016-j0.0028	-48.4752
\mathcal{S}_{21}	-0.0394-j0.9750	-0.2119
S_{12}	-0.0394-j0.9750	-0.2119
S_{22}	0.0035-j0.0003	-48.0703

On the same graph, plot $|S_{11}|$ (in dB) for the Butterworth simulated using MATALB and the Chebyshev simulated using MATALB. Employ a domain of 0 to 16 GHz and a range of -40 to 0 dB.

On the same graph, plot $|S_{21}|$ (in dB) for the Butterworth simulated using MATALB and the Chebyshev simulated using MATALB. Employ a domain of 0 to 16 GHz and a range of -0.25 to 0 dB.

On the same graph, plot $|S_{11}|$ (in dB) for the Chebyshev simulated using MATALB, ADS (Microstrip TRLs), and ADS (Microstrip TRLs with SD). Employ a range of -40 to 0 dB.

MATLAB

 S_{11} Microstrip

On the same graph, plot $|S_{21}|$ (in dB) for the Chebyshev simulated using MATALB, ADS (Microstrip TRLs), and ADS (Microstrip TRLs with SD). Employ a domain of 0 to 16 GHz and a range of -0.45 to 0 dB.

MATLAB

 S_{21} Microstrip

 S_{21} Microstrip Stepped(MSTEP)

The End