

实验 4 存储器读/写实验

申申介持有申申申申申申申

实验 4 存储器读/写实验

- 一、实验目的
- 二、实验过程描述
- 三、相关单元
- 四、实验原理
- 五、实验要求
- 六、思考

一、实验目的

- 1. 掌握主存储器的构成和工作特性。
- 2. 掌握读/写主存储器的方法。

南中外线有中非并中央3-69

二、实验过程描述

在脱机方式下,从输入设备输入数据到存储器指定地址的单元内,然后把存储器中指定地址单元的数据读出,并在输出设备

中中的技术中中中中中上行

三、相关单元

- ■存储器单元 (MEM UNIT)
- 输入/输出单元(INPUT/OUTPUT DEVICE)
- ■地址单元 (ADDRESS UNIT)
- ■时序电路单元(CLOCK UNIT)
- ■手动单元(MANUAL UNIT)

存储器单元 (MEM UNIT)

■模型机的存储器部件由一片 6116 (2K×8位) SRAM 芯 片实现

■ 6116 芯

116 芯片:	A6 2		23 \Box A8
-11 根地址线 (A)	A5 □ 3	P24.2	22 🗖 <u>A9</u>
			_

-8 根数据线

-WE#: 写控制

-0E#: 读控制

-CS#: 片选信

(Λ)		/ 1 - ,	<u> </u>	<u> </u>
CS#	OE#	WE#	D7~D0	状态
1	X	X	高阻抗	未选中
0	1	1	高阻抗	禁止
0	0	1	数据读出	读出
0	1	0	数据写入	写入

存储器部件的结构图

■ 存储容量: 256×8 位

- 实验仪只使用了 8 根地址线、 8 根数据线 D0
- 其余地址线及 CS# 一一接地
- 存储器的地址由 AR 通过地址总线提供。
- WE# -- 由 M-W# 信号控制
- OE# ——由 M-R# 信号控制

操作时序图

读存储器

M-R

 A_{7-0}

$$D_{7-0}$$

 D_{7-0}

M-W

地址单元(ADDRESS UNIT)

- ■由AR、PC、8位地址显示灯构成。
- AR (8位)由一片74LS273构成,其输入端由排针短路器将总线单元(BUS UNIT)的 D7-D0输入到AR,输出端接至排针A7-A0,并在输出端接有8位地址显示灯A7-A0。
- AR 的打入脉冲 CLK 由控制信号 B-AR 控制, B-AR 在 T3 上升沿有效。

AR 的构成

四、实验原理

五、实验要求

- 1. 根据实验原理和相关单元电路, 画出实验接 线图
- 2. 设计实验步骤,实验并记录结果。
 - 依次向三个存储器单元 01H 、 02H 、 03H 中分别写入数据 81H 、 6EH 、 2CH 。
 - -读出存储器单元 01H 、 02H 、 03H 的内容, 并在 LED 显示灯上显示输出。

六、思考

- 1. 把地址和数据写入存储器的操作有什么不同,为什么?
- 2. 请设计一个实验方案(电路、连线和步骤),实现以下程序功能。

IN RO, PORTAR ;端口地址 00H, INPUT DEVICE 开关数据→ RO

IN R1, PORTAR ;端口地址 00H, INPUT DEVICE 开关数据→ R1

MOV [R1], R0 ;将 R0 寄存器的内容存入存储器, 其地址由 R1 寄存器给出

The End!