Homework 4

Name: 方嘉聪 ID: 2200017849

Problem 1. 对于如下原问题和对偶问题, 其中 f(x), g(x) 为凸函数, h(x) 为线性函数.

(P)
$$\min_{x} f(x)$$

 $\text{s.t. } g_i(x) \le 0$ and $\sum_{\lambda,\mu} \mathcal{L}(\varphi(\lambda,\mu); \lambda,\mu)$
 $h_i(x) = 0$ s.t. $\lambda \ge 0$.

其中

$$\mathcal{L}(x;\lambda,\mu) := f(x) + \sum_{i} \lambda_{i} g_{i}(x) + \sum_{i} \mu_{i} h_{i}(x). \quad \varphi(\lambda,\mu) := \operatorname*{argmin}_{x} \mathcal{L}(x;\lambda,\mu).$$

以下为关于 x^*, λ^*, μ^* 的 KKT condition:

1. Stationary:
$$\left. \frac{\partial \mathcal{L}}{\partial x} \right|_{x^*, \lambda^*, \mu^*} = 0 \tag{1}$$

2.Primal feasible:
$$g_i(x^*) \le 0, \quad h_i(x^*) = 0$$
 (2)

3. Dual feasible:
$$\lambda_i^* \ge 0$$
 (3)

4.Complementary slackness:
$$\lambda_i^* g_i(x^*) = 0.$$
 (4)

请证明:

- 1. x^*, λ^*, μ^* 满足 KKT condition 是 x^*, λ^*, μ^* 为原问题和对偶问题的最优解的必要条件. 即若 x^*, λ^*, μ^* 为原问题和对偶问题的最优解, 则 x^*, λ^*, μ^* 满足 KKT condition.
- 2. (Optional) KKT condition 是 x^*, λ^*, μ^* 为原问题和对偶问题的最优解的充分条件.

Solution. 1. (必要条件) 若 x^* , λ^* , μ^* 为原问题和对偶问题的最优解, (2) 和 (3) 显然成立. 对于 (1), 结合课上已经完成的推导, 最优解满足 $x^* = \varphi(\lambda^*, \mu^*) = \operatorname{argmin}_x \mathcal{L}(x; \lambda^*, \mu^*)$, 即

$$\left. \frac{\partial \mathcal{L}}{\partial x} \right|_{x^*, \lambda^*, \mu^*} = 0.$$

对于 (4), 记 Lagrange dual function 为

$$s(\lambda, \mu) := \inf_{x} \mathcal{L}(x; \lambda, \mu) = \inf_{x} \left(f(x) + \sum_{i} \lambda_{i} g_{i}(x) + \sum_{i} \mu_{i} h_{i}(x) \right).$$

由于 f(x), g(x) 为凸函数, h(x) 为线性函数, 故满足强对偶性, 即 $f(x^*) = s(\lambda^*, \mu^*)$. 进一步有

$$f(x^*) = s(\lambda^*, \mu^*) = \inf_{x} \left(f(x) + \sum_{i} \lambda_i^* g_i(x) + \sum_{i} \mu_i^* h_i(x) \right)$$

$$\leq f(x^*) + \sum_{i} \lambda_i^* g_i(x^*) + \sum_{i} \mu_i^* h_i(x^*)$$

$$\leq f(x^*).$$

故有

$$\sum_{i} \lambda_{i}^{*} g_{i}(x^{*}) + \sum_{i} \mu_{i}^{*} h_{i}(x^{*}) = 0. \implies \sum_{i} \lambda_{i}^{*} g_{i}(x^{*}) = 0.$$

由于 $\forall i, \lambda_i^* g_i(x^*) \leq 0$, 故 $\lambda_i^* g_i(x^*) = 0, \forall i$. 综上, x^*, λ^*, μ^* 满足 KKT condition.

2. (充分条件) 由于 x^* , λ^* , μ^* 满足 (2) 和 (3). 故 x^* 和 λ^* , μ^* 分别为原问题和对偶问题的可行解. 设原问题的最优解为 x_{opt} , 记 $f(x_{\text{opt}}) = f^*$. 可以证明 (即弱对偶性), 对于任意 $\lambda \geq 0$ 和 μ , 有

$$s(\lambda, \mu) \le f^*. \tag{5}$$

取 $\lambda = \lambda^*, \mu = \mu^*, 有$

$$s(\lambda^*, \mu^*) \le f^*$$
.

而由于 x^*, λ^*, μ^* 满足 (1), 那么

$$x^* = \varphi(\lambda^*, \mu^*) = \operatorname*{argmin}_{x} \mathcal{L}(x; \lambda^*, \mu^*).$$

故

$$s(\lambda^*, \mu^*) = \inf_{x} \mathcal{L}(x; \lambda^*, \mu^*)$$

= $f(x^*) + \sum_{i} \lambda_i^* g_i(x^*) + \sum_{i} \mu_i^* h_i(x^*)$
= $f(x^*) \le f^*$.

由于 x^* 为原问题的可行解, 故 $f(x^*) \ge f^*$, 故 $f(x^*) = f^*$. 即 x^* 为原问题的最优解. 结合 (5), 可知 λ^* , μ^* 为对偶问题的最优解.

综上, x^* , λ^* , μ^* 为原问题和对偶问题的最优解.

 \triangleleft