Reti di Elaboratori

Livello di Collegamento: Introduzione

Alessandro Checco@uniroma1.it

Capitolo 6

Esercizi sullo strato di rete

Ognuno dei seguenti indirizzi appartiene a un blocco. Trovare il primo e l'ultimo indirizzo di ogni blocco

- 1. 14.12.72.8/24
- 2. 200.107.16.17/18

Spiegare la differenza tra routing e forwarding

I messaggi OSPF e quelli ICMP vengono incapsulati direttamente nei datagrammi IP. Se intercettiamo un datagramma IP, come possiamo capire se il payload è relativo all'OSPF o all'ICMP?

Dato il grafo $\{(A,B),(B,C),(B,D),(C,D)\}$ con costi $c_{AB}=3$, $c_{BC}=2$, $c_{BD}=c_{CD}=1$ disegnare:

- 1. il grafo
- 2. Il distance vector al primo step per ogni nodo
- 3. il link state database alla fine del flooding

Qual è la differenza tra i pacchetti Distance Vector e i pacchetti Link State?

- Che tipo di informazione viene propagata?
- Come si propaga l'informazione sulla rete (come cambia all'attraversamento dei nodi)?

Supponiamo che la distanza minima tra I nodi a,b,c,d rispetto al nodo y ed i costi dal nodo x ai nodi a,b,c,d siano:

$$D_{ay}=5$$
, $D_{by}=6$, $D_{cy}=4$, $D_{dy}=3$
 $C_{xa}=2$, $C_{xb}=1$, $C_{xc}=3$, $C_{xd}=1$

Qual è la distanza minima D_{xy} tra il nodo x e il nodo y, usando l'equazione di Bellman-Ford?

Quali campi dell'intestazione IP cambiano all'attraversamento di un router?

Link layer e LAN: obiettivi

- comprendere i principi alla base dei servizi a livello di collegamento:
 - rilevamento e correzione degli errori
 - condivisione di un canale di trasmissione: accesso multiplo
 - indirizzamento al livello di collegamento
 - reti locali: Ethernet, VLAN
- reti nei data center
- istanziazione e implementazione di varie tecnologie a livello di collegamento

Livello di collegamento e LAN: sommario

- introduzione
- rilevamento e correzione degli errori
- protocolli di accesso mutiplo
- LAN
 - indirizzamento, ARP
 - Ethernet
 - switch
 - VLAN
- virtualizzazione dei collegamenti: MPLS
- data center
- un giorno nella vita di una richiesta web

Link layer: introduzione

terminologia:

- host e router: nodi
- canali di comunicazione che collegano nodi adiacenti lungo il percorso di comunicazione: link
 - cablato
 - senza fili
 - LAN
- pacchetto di livello 2: frame, incapsula il datagramma

il livello di collegamento ha la responsabilità di trasferire datagrammi tra due nodi fisicamente adiacenti lungo un link

Livello di collegamento: contesto

- datagramma trasferito da protocolli di collegamento diversi su collegamenti diversi:
 - ad esempio, WiFi sul primo collegamento, Ethernet sul collegamento successivo
- ogni protocollo di collegamento fornisce servizi diversi
 - ad esempio, può fornire o meno un trasferimento di dati affidabile lungo il link

analogia del trasporto:

- viaggio da Princeton a Losanna
 - limousine: da Princeton a JFK
 - aereo: JFK a Ginevra
 - treno: da Ginevra a Losanna
- turista = datagramma
- segmento di trasporto = link
- modalità di trasporto = protocollo a livello di link
- agente di viaggio = algoritmo di routing

Livello di collegamento: servizi

framing, link access:

- incapsula il datagramma nel frame, aggiungendo header, trailer
- accesso al canale se mezzo condiviso
- Gli indirizzi "MAC" nelle intestazioni dei frame identificano origine, destinazione (diversi dall'indirizzo IP!)

consegna affidabile tra nodi adiacenti

- sappiamo già come farlo!
- usato raramente su collegamenti a basso tasso di bit error
- collegamenti wireless: alti tassi di bit error
 - D: perché avere affidabilità sia a livello di collegamento che end-to-end?

Livello di collegamento: servizi (2)

controllo del flusso (flow control):

 evitare sovraccarico dei buffer del nodo di destinazione

rilevamento errori:

- errori causati da attenuazione del segnale, rumore
- il ricevitore rileva errori, chieve la ritrasmissione o scarta il frame

Correzione dell'errore:

 ricevente identifica e corregge errori di bit senza ritrasmissione

half duplex e full duplex:

• con half duplex, i nodi ad entrambe le estremità del collegamento possono trasmettere, ma non contemporaneamente

Dove è implementato il livello di collegamento?

- in ogni singolo host
- livello di collegamento implementato nella scheda di interfaccia di rete (NIC) o su un chip
 - Ethernet, scheda WiFi o chip
 - implementa i livelli di collegamento e quello fisico
- si collega ai bus di sistema dell'host
- combinazione di hardware, software, firmware

Comunicazione tra interfacce

lato mittente:

- incapsula il datagramma nel frame
- aggiunge bit di controllo degli errori, trasferimento dati affidabile, controllo del flusso, ecc.

lato ricevente:

- cerca errori, trasferimento dati affidabile, controllo del flusso, ecc.
- estrae il datagramma, passa al livello superiore sul lato ricevente

Due sottolivelli del livello di collegamento

Data Link Control (DLC)

si occupa di tutte le questioni **comuni** sia ai collegamenti puntopunto che a quelli broadcast

- Framing
- Controllo del flusso e degli errori
- Rilevamento e correzione degli errori

si occupa delle procedure per la comunicazione tra due nodi adiacenti (comunicazione nodo-a-nodo), indipendentemente dal fatto che il collegamento sia dedicato o broadcast

Media Access Control (MAC)

si occupa solo degli aspetti specifici dei canali broadcast

 Controllo dell'accesso al mezzo condiviso

 a. Livello di collegamento di un collegamento broadcast

 b. Livello di collegamento di un collegamento punto-punto

Livello di collegamento e LAN: sommario

- introduzione
- rilevamento e correzione degli errori
- protocolli di accesso mutiplo
- LAN
 - indirizzamento, ARP
 - Ethernet
 - switch
 - VLAN
- virtualizzazione dei collegamenti: MPLS
- data center
- un giorno nella vita di una richiesta web

Errori su singolo bit o a burst

Gli errori sono dovuti a interferenze che possono cambiare la forma del segnale

di tipo burst (a raffica) è più elevata rispetto a quella di un errore sul singolo bit, in quanto la durata dell'interferenza (detta anche rumore) normalmente è più lunga rispetto a quella di un solo bit

La probabilità che avvenga un errore

Il numero di bit coinvolti dipende dalla velocità di trasferimento dati e dalla durata del rumore.

ES. 1 Kbps con un rumore di 1/100 sec può influire su 10 bit

Rilevamento degli errori

EDC: error detection and correction bits (ad es. ridondanza)

D: dati protetti dal controllo degli errori, possono includere campi di intestazione

Rilevamento errori non affidabile al 100%!

- il protocollo può non rilevare alcuni errori, ma raramente
- un campo EDC più ampio produce una maggiore capacità rilevazione e correzione

Parity checking

parità a bit singolo:

rilevare errori singoli

Even parity: il bit di parità viene impostato in modo che la somma di tutti i bit (incluso il bit di parità) sia pari

parità di bit bidimensionale:

■ rilevare e **correggere** errori singoli

Internet checksum (ripasso)

Obiettivo: rilevare gli errori (cioè i bit capovolti) nel segmento trasmesso

mittente:

- tratta i contenuti del segmento UDP (compresi i campi di intestazione UDP e gli indirizzi IP) come una sequenza di numeri interi a 16 bit
- checksum: addizione (somma in complemento a uno) del contenuto del segmento
- valore di checksum inserito nel campo checksum UDP

ricevitore:

- calcola il checksum del segmento ricevuto
- controlla se il checksum calcolato è uguale al valore del campo checksum:
 - non uguale errore rilevato
 - uguale nessun errore rilevato. Ma potenzialmente possono comunque esserci errori

Cyclic Redundancy Check (CRC)

- codifica di rilevamento degli errori più potente
- D: bit di dati (dati, trattati come un numero binario)
- G: pattern (generator) di *r+1* bits (predeterminato)

obiettivo: scegliere *r* bit CRC, R tali che <D,R> esattamente divisibile per G (mod 2)

- il ricevitore conosce G, divide <D,R> per G. Se resto diverso da zero: errore rilevato!
- può rilevare tutti gli errori burst inferiori a r+1 bit
- ampiamente utilizzato in pratica (Ethernet, WiFi 802.11)

Cyclic Redundancy Check (CRC): esempio

Vogliamo trovare R per cui:

 $D \cdot 2^r XOR R = nG$

equivalente a (XOR R both sides):

 $D \cdot 2^r = nG XOR R$

equivalente a:

se dividiamo D 2^r per G (mod 2), il resto R deve soddisfare:

$$R = remainder \left[\frac{D \cdot 2^r}{G} \right]$$

tutte le operazioni sono modulo 2, quindi la sottrazione nell'algoritmo di divisione è una XOR

Livello di collegamento e LAN: sommario

- introduzione
- rilevamento e correzione degli errori
- protocolli di accesso mutiplo
- LAN
 - indirizzamento, ARP
 - Ethernet
 - switch
 - VLAN
- virtualizzazione dei collegamenti: MPLS
- data center
- un giorno nella vita di una richiesta web

Collegamenti e protocolli di accesso multiplo

due tipi di "link":

- punto-punto
 - collegamento punto-punto tra switch Ethernet, host
 - PPP per l'accesso dial-up
- trasmissione broadcast (cavo o mezzo condiviso)
 - Ethernet vecchio stile
 - HFC a monte nella rete di accesso via cavo
 - LAN senza fili 802.11, 4G/4G. satellitare

cavo condiviso (ad es. Ethernet cablata)

radio condivisa: 4G/5G

radio condivisa: Wi -Fi

radio condivisa: satellitare

umani a un party (aria condivisa, acustico)

Protocolli di accesso multiplo

- singolo canale di trasmissione condiviso
- due o più trasmissioni simultanee da parte dei nodi: interferenza
 - collisione se il nodo riceve due o più segnali contemporaneamente

protocollo di accesso multiplo

- algoritmo distribuito che determina come i nodi condividono il canale, cioè determina quando il nodo può trasmettere
- la comunicazione sulla condivisione del canale deve utilizzare il canale stesso!
 - nessun canale fuori banda per il coordinamento

Un protocollo di accesso multiplo ideale

dato: canale di accesso multiplo (MAC) di velocità R bps obiettivi:

- 1. quando un nodo vuole trasmettere, può inviare alla velocità R.
- 2. quando M nodi vogliono trasmettere, ognuno può trasmettere a velocità media R/M
- 3. completamente decentralizzato:
 - nessun nodo speciale per coordinare le trasmissioni
 - nessuna sincronizzazione di orologi o slot temporali 📃

4. semplice

Protocolli MAC: tassonomia

tre grandi classi:

- partizionamento dei canali
 - dividere il canale in "pezzi" più piccoli (fasce orarie, frequenza, codice)
 - allocare quel pezzo al nodo per uso esclusivo

accesso casuale

- canale non suddiviso, consentire collisioni
- "recuperare" dalle collisioni ≡

a rotazione

• i nodi si alternano, ma i nodi con più informazioni da inviare possono richiedere turni più lunghi

Protocolli MAC di partizionamento del canale: TDMA

TDMA: time division multiple access

- accesso al canale in "round"
- ogni stazione ottiene slot di lunghezza fissa (lunghezza = tempo di trasmissione del pacchetto) in ogni round
- gli slot inutilizzati diventano inattivi
- esempio: LAN a 6 stazioni, 1,3,4 hanno pacchetti da inviare, slot
 2,5,6 inattivi

Protocolli MAC di partizionamento del canale: FDMA

FDMA: frequency division multiple access

- spettro del canale suddiviso in bande di frequenza
- a ciascuna stazione è assegnata una banda di frequenza fissa
- il tempo di trasmissione inutilizzato nelle bande di frequenza diventa inattivo
- esempio: LAN a 6 stazioni, 1,3,4 hanno pacchetti da inviare, bande di frequenza 2,5,6 inattive

Protocolli di accesso casuale

- quando il nodo ha un pacchetto da inviare
 - trasmette alla massima velocità dati del canale R
 - nessun coordinamento a priori tra i nodi
- due o più nodi trasmittenti: "collisione"
- Il protocollo MAC ad accesso casuale specifica:
 - come rilevare le collisioni
 - come recuperare dalle collisioni (ad esempio, tramite ritrasmissioni ritardate)
- esempi di protocolli MAC ad accesso casuale:
 - ALOHA, slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

assunzioni:

- tutti i frame della stessa dimensione
- tempo diviso in slot di uguali dimensioni (tempo per trasmettere 1 frame)
- i nodi iniziano a trasmettere solo all'inizio dello slot

- i nodi sono sincronizzati
- se 2 o più nodi trasmettono nello slot, tutti i nodi rilevano la collisione

funzionamento:

- quando il nodo ottiene un nuovo frame, lo trasmette nello slot successivo
 - se non c'è collisione: il nodo può inviare un nuovo frame nello slot successivo
 - in caso di collisione: il nodo ritrasmette il frame a ogni slot successivo con probabilità p fino al successo

randomizzazione : perché ?

Slotted ALOHA

Pro:

- se un singolo nodo è attivo, può trasmettere continuamente alla massima velocità del canale
- altamente decentralizzato: solo gli slot nei nodi devono essere sincronizzati
- semplice

Contro:

- collisioni, spreco di slot
- slot inattivi (dopo collisione)
- i nodi potrebbero essere in grado di rilevare la collisione in un tempo minore di uno slot
- sincronizzazione dell'orologio

Slotted ALOHA: efficienza

efficienza: frazione a lungo termine di slot tramessi con successo (assumendo molti nodi, tutti con molti frame da inviare)

- assumiamo: N nodi con molti frame da inviare, ognuno trasmette in slot con probabilità p
 - prob quel dato nodo ha successo in uno slot = $p(1-p)^{N-1}$
 - prob che qualsiasi nodo ha successo = $Np(1-p)^{N-1}$
 - massima efficienza: trova p^* che massimizza $Np(1-p)^{N-1}$
 - per molti nodi, il limite di $Np^*(1-p^*)^{N-1}$ per $N \to \infty$:

efficienza massima = 1/e ~= 0.37

• al massimo: canale utilizzato per trasmissioni utili il 37% delle volte!

Pure ALOHA

- Aloha senza slot: più semplice, nessuna sincronizzazione
 - quando arriva un frame viene trasmesso senza aspettare l'inizio di uno slot
- la probabilità di collisione aumenta senza sincronizzazione:
 - il frame inviato a t₀ andrà in collisione con frame inviati nell'intervallo temporale[t₀-1,t₀+1] (due volte il tempo di trasmissione di un frame, questo intervallo è anche noto come **tempo di vulnerabilità**)

Efficienza di pure Aloha: 18%!

CSMA (carrier sense multiple access)

CSMA semplice - ascolta prima di trasmettere:

- se il canale viene rilevato inattivo: trasmette l'intero frame
- se il canale è occupato: differire la trasmissione
- analogia umana: non interrompere gli altri!

CSMA/CD: CSMA con rilevamento delle collisioni

- collisioni *rilevate* in un tempo breve
- le trasmissioni in collisione vengono immediatamente interrotte, riducendo lo spreco di canale
- rilevamento delle collisioni facile nel cablato, difficile con wireless
- analogia umana: il conversatore educato

CSMA: collisioni

- collisioni possono ancora verificarsi con il carrier sense:
 - ritardo di propagazione significa che due nodi potrebbero ognuno non sentire la trasmissione appena iniziata dall'altro
- collisione: tempo di trasmissione dell'intero pacchetto sprecato
 - la distanza e il ritardo di propagazione svolgono un ruolo nel determinare la probabilità di collisione
- Tempo di vulnerabilità: <mark>T_p</mark>

1

CSMA/CD:

- CSMA/CD riduce la quantità di tempo sprecato nelle collisioni
 - trasmissione interrotta al rilevamento della collisione
- Rilevazione della collisione
 - facile nelle LAN cablate (a singolo canale)
 - difficile nelle LAN wireless (motivi fisici, differenza tra potenza di emissione e di ricezione) quindi cercheranno invece di evitare problemi successivi (collision avoidance)
- Non cambia il tempo di vulnerabilità

Dimensione minima del frame

- □ Cosa succederebbe se un mittente finisse di trasmettere un frame prima di ricevere il primo bit di un'altra stazione (che ha già iniziato a trasmettere)?
- □ Una stazione una volta inviato un frame non tiene una copia del frame, né controlla il mezzo trasmissivo per rilevare collisioni
- Perché il Collision Detection funzioni, il mittente deve poter rilevare la trasmissione mentre sta trasmettendo ovvero prima di inviare l'ultimo bit del frame!
- \square Il tempo di trasmissione di un frame deve essere almeno due volte il tempo di propagazione T_p
- Quindi la prima stazione deve essere ancora in trasmissione dopo 2Tp

Esempio

Una rete che utilizza il CSMA/CD ha un rate 10 Mbps. Se il tempo di propagazione massimo è 25,6 μs, qual è la dimensione minima del frame?

Soluzione

Il tempo di trasmissione minimo del frame è:

$$T_{fr} = 2 \times T_p = 51.2 \ \mu s.$$

Ciò significa, nel peggiore dei casi, che una stazione deve trasmettere per un periodo di 51,2 µs per poter rilevare la collisione.

La dimensione minima del frame è quindi 10 Mbps \times 51,2 μ s = 512 bit o 64 byte.

Questa è proprio la dimensione minima del frame nell'Ethernet Standard

Metodi di persistenza

Non persistente, 1-persistente, p-persistente (slottizzato)

- Cosa fa un nodo se trova il canale libero?
 - o Trasmette subito
 - Non persistente
 - 1-persistente
 - Trasmette con probabilità p
 - p-persistente
- Cosa fa un nodo se trova il canale occupato?
 - Desiste: riascolta dopo un tempo random
 - Non persistente
 - o Persiste: rimane in ascolto finché il canale non si è liberato
 - 1-persistente: trasmette con prob 1 quando si è liberato
 - p-persistente: trasmette con prob p quando si è liberato

Non persistente

- O Se il canale è libero trasmette immediatamente
- Se il canale è occupato attende un tempo random e poi riascolta il canale (carrier sense a intervalli)
- ☐ Se collisione back-off

b. Non persistente

1 persistente

- □ Se il canale è libero trasmette immediatamente (p=1)
- Se il canale è occupato continua ad ascoltare (carrier sense continuo)
- Se collisione backoff

a. 1 persistente

p persistente (slottizzato)

- Se il canale è libero
 - Trasmette con probabilità p
 - Aspetta l'inizio del prossimo slot con probabilità (1-p)
- Se il canale è occupato usa la procedura di back-off (attesa di un tempo random e nuovo ascolto del canale)
- Se collisione back-off

Persistenza

Rilevazione Rilevazione Attesa Attesa Occupato Trasmissione Attesa Tempo

b. Non persistente

a. 1 persistente

A cosa si riferisce?

all'ascolto del canale

Algoritmo Ethernet CSMA/CD

- 1. NIC riceve il datagramma dal livello di rete, crea il frame
- 2. il NIC ascolta (sense) il canale:

se inattivo: avvia la trasmissione del frame

se occupato: attende che il canale sia libero, quindi trasmette

È un algoritmo 1-persistente!

- 3. Se il NIC trasmette l'intero frame senza collisioni, ok.
- 4. Se il NIC rileva un'altra trasmissione durante l'invio: interrompe e invia segnale di jam (48bit, per avvissare tutti gli altri NIC)
- 5. Dopo l'interruzione, il NIC entra nel backoff binario (esponenziale):
 - dopo la m-esima collisione, NIC sceglie K a caso tra $\{0,1,2,...,2^m-1\}$. Il NIC attende K slot, torna al passaggio 2
 - più collisioni: intervallo di backoff più lungo (prima collisione {0,1}, seconda [0,3], ... decima [0,1023]...

(slot è il tempo per tramettere un frame di 512 bit)

Efficienza di CSMA/CD

- t_{prop} = massimo ritardo di propagazione tra 2 nodi nella LAN
- t_{trans} = tempo per trasmettere il frame di dimensioni massime

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- l'efficienza va a 1
 - quando t_{prop} va a 0
 - quando t_{trans} tende all'infinito (pacchetti grandi)
- prestazioni migliori di ALOHA (throughput massimo in condizioni ragionevoli ~50%): è semplice, economico, decentralizzato!

Protocolli MAC a rotazione - motivazione

protocolli MAC di partizionamento dei canali:

- condividere il canale in *modo efficiente* ed *equo* a carico elevato
- inefficiente a basso carico: ritardo nell'accesso al canale, larghezza di banda 1/N allocata anche se solo 1 nodo attivo!

protocolli MAC ad accesso casuale

- efficiente a basso carico: il singolo nodo può utilizzare completamente il canale
- carico elevato: riduzione di banda per collisioni

Protocolli a rotazione

prende il meglio da entrambi i mondi!

Protocolli MAC a rotazione

polling:

- il nodo master "invita" altri nodi a trasmettere a turno
 - se un nodo non ha niente da trasmettere si passa al prossimo
 - serve un protocollo per entrare/uscire
- tipicamente utilizzato con dispositivi "dumb"
- problemi:
 - overhead dovuto al polling
 - latenza di accesso (attesa turno)
 - single point of failure (master)

Protocolli MAC a rotazione

token passing:

- token di controllo passato da un nodo al successivo in sequenza
 - di trasmette quando si possiede il token
- problemi:
 - token overhead (basso)
 - latenza
 - single point of failure (token)
 - se non viene passato il canale può fallire

Rete di accesso via cavo: FDM, TDM e accesso casuale!

- Canali multipli downstream (broadcast) FDM: fino a 1.6 Gbps/canale
 - un unico CMTS trasmette in questi canali
- Canali multipli upstream FDM (up to 1 Gbps/channel)
 - accesso multiplo: una parte degli slot assegnata via TDM, in più tutti gli utenti si contendono (random access) dei time slot

Rete di accesso via cavo

DOCSIS: data over cable service interface specification

- FDM su canali upstream e downstream
- TDM upstream: alcuni assegnati, alcuni contesi
 - downstream MAP frame: assegna gli slot upstream
 - richieste di slot (e dati) possono essere trasmesse ad accesso casuale (binary backoff) in un sottoinsieme di slot

Sintesi dei protocolli

- partizione dei canali, per tempo, frequenza (o codice)
 - Divisione di tempo, divisione di frequenza
- accesso casuale (dinamico),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: facile in alcune tecnologie (filo), difficile in altre (wireless)
 - CSMA/CD utilizzato in Ethernet
 - CSMA/CA utilizzato in 802.11
- accesso a rotazione
 - polling dal sito centrale, passaggio di token
 - Bluetooth, FDDI, token ring