Experiment 4

In this, we shall study and use IC 7483 which performs 4-bit addition / subtraction.

PIN NAMES		LOADING	LOADING (Note a)				
		HIGH	LOW				
A_1-A_4	Operand A Inputs	1.0 U.L.	0.5 U.L.				
B ₁ -B ₄	Operand B Inputs	1.0 U.L.	0.5 U.L.				
C ₀	Carry Input	0.5 U.L.	0.25 U.L.				
$\Sigma_1 - \Sigma_4$	Sum Outputs (Note b)	10 U.L.	5 (2.5) U.L.				
C ₄	Carry Output (Note b)	10 U.L.	5 (2.5) U.L.				
NOTES:							
a) 1 TTL Unit Load (U.L.) = 40 μA HIGH/1.6 mA LOW.							

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol Parameter			Min	Тур	Max	Unit	Tes	st Conditions
VIH	Input HIGH Voltage		2.0			٧	Guaranteed Inpu All Inputs	t HIGH Voltage for
V _{IL}	Input LOW Voltage	54			0.7	· v	Guaranteed Input LOW Voltage for All Inputs	
		74			0.8			
VIK	Input Clamp Diode Voltage	9		-0.65	-1.5	٧	V _{CC} = MIN, I _{IN} = –18 mA	
V _{OH} Outp	Output HICH Voltage	54	2.5	3.5		٧	VCC = MIN, IOH = MAX, VIN = VIH	
	Output HIGH Voltage	74	2.7	3.5		٧	per Truth Table	
V _{OL}	Output LOW Voltage	54, 74		0.25	0.4	٧		V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}
		74		0.35	0.5	٧	I _{OL} = 8.0 mA	per Truth Table
Ін	Input HIGH Current C0 A or B				20 40	μА	V _{CC} = MAX, V _{IN}	j = 2.7 V
	C ₀ A or B				0.1 0.2	mA	V _{CC} = MAX, V _{IN}	₁ = 7.0 V
IIL	Input LOW Current C ₀ A or B				-0.4 -0.8	mA	V _{CC} = MAX, V _{IN}	I = 0.4 V

AC CHARACTERISTICS (TA = 25°C)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tPLH tPHL	Propagation Delay, C_0 Input to any Σ Output		16 15	24 24	ns	
tPLH tPHL	Propagation Delay, Any A or B Input to Σ Outputs		15 15	24 24	ns	V _{CC} = 5.0 V C _I = 15 pF
t _{PLH} t _{PHL}	Propagation Delay, C ₀ Input to C ₄ Output		11 15	17 22	ns	Figures 1 and 2
tPLH tPHL	Propagation Delay, Any A or B Input to C ₄ Output		11 12	17 17	ns	

AC WAVEFORMS

What would have been propagation delay for C₀ input to C₄ output had it not been fast adder?

Task 1: Design a circuit that can perform both 4-bit addition and subtraction in which an input Mode = 0 refers to addition and Mode = 1 refers to subtraction.

Additional: Consider, an additional sign bit is available at the output which if 0, the number is positive and if 1, the number is negative. Show, how a result of subtraction can be read in standard binary form (not 2's complement form in association with sign bit for negative result).

Use LED display of trainer kit to show result and also give input for 4-bit numbers from trainer kit.

Consider the 4 bit addition of Task 1 above where you want to show the result in 7 segment display. If the result is more than 9, say 5 + 7 = 12, then a specific character corresponding to 1100 will appear and not digit 2 in unit's place.

It is interesting to note that whenever a number above 9 is to be displayed, adding 6 to that number will generate appropriate BCD for unit's place. Can you tell why so? For previous example of displaying 12: 1100 + 0110 = 10010 or $(000)1\ 0010$ i.e. least significant 4 bits 0010 can be used for displaying 2 in unit's place and the carry (generated by another IC 7483 that can be used for addition of 0110) can be sent for displaying BCD of ten's place i.e. 0001 = 1.

Take another example: 9 + 8 = 17 which is 10001. For BCD display, add 6 i.e. 10001 + 0110 = 10111 = (000)1 0111 Note that, 0110 is to be added only when the result of addition is more than 9 and not always.

Task 2: Use two IC 7483 and appropriate combinatorial logic circuit to display result of binary addition of two 4-bit numbers in BCD format through 7-segment display.

Additional: Show how subtraction result can be displayed in BCD format where decimal point of 7 segment can be considered as sign bit.