nasa-battery-data-analysis

December 6, 2016

0.1 charge/discharge data structure

for each element in data...

- element[0] = charge/discharge/impedance
- if element[0] = charge/discharge
 - element[1] = ambient temperature
 - element[2] = date/time
 - element[3] = data
 - * data fields:
 - · Voltage_measured
 - · Current_measured
 - · Temperature_measured
 - · Current_charge
 - · Voltage_charge
 - · Time

```
In [129]: for cycle in data[1:100]:
    if (cycle[0] == 'charge'):
        time = np.hstack(cycle[3]['Time'])[0][0]
        voltage = np.hstack(cycle[3]['Voltage_measured'])[0][0]
        current = np.hstack(cycle[3]['Current_measured'])[0][0]
        plt.plot(time, voltage)

plt.ylim(3, 4.3)
plt.show()
```


0.2 impedance data structure

```
• if element[0] = impedance
```

- element[1] = ambient temperature
- element[2] = date/time
- element[3] = data
 - * data fields:
 - · Sense_current
 - · Battery_current
 - · Current_ratio
 - $\cdot \ Battery_impedance$
 - · Rectified_Impedance
 - · Re
 - · Rct

```
plt.legend(title='cycle number', ncol=3)
plt.show()
```

