

Faculty of Engineering and Technology Electrical and Computer Engineering Department ENEE2103

Circuits and Electronics Lab

Experiment No.7 - Pre Lab No.6

BJT Transistor As An Amplifier, CE, CC, CB Connection

Student's Name: Lojain Abdalrazaq. ID Number: 1190707.

Instructor's Name: Ali Abdo.

Section: 5.

May 13, 2022

Common Emitter Transistor Amplifier:

Connecting the circuit in PSpice:

Figure 1 connecting the circuit using PSpice.

• Measuring V_c , V_{BE} , V_{CE} , I_c , I_B :

- 1. Vc = 8.583V.
- 2. Vbe = 692.10mV.
- 3. Vce = Vc Ve = 8.583 0 = 8.583V.
- 4. Ic = 6.417V.
- 5. Ib = 34.19uA.

• Adjust amplitude of Vi(t) to 1 V and measure Vo(t):

Figure 2 Input Voltage and output voltage with 1.8788 peak value.

■ Change peak of Vi(t) such that Vo(t) =4V peak:

To obtain a 4V for the output, the input voltage peak will be 2.1492V.

Figure 3 Obtaining output voltage peak = 4V.

Calculate the voltage gain of the transistor:

→ Voltage gain (theoritically) =
$$\frac{4}{2.1492}$$
 = 1.86 V .

→ Voltage gain (practically)= 1.9 V.

Figure 4 calculating the gain of the transistor.

→ Voltage gain (theoritically) =
$$\frac{4}{696.6m}$$
 = 5.74 V .

→ Voltage gain (practically)= 5.79 V.

Figure 5 Calculating Voltage gain Av₁.

Remove the 100k resistor:

Figure 6 removing the 100 K resistor.

→ It is noticed that the voltage gain has increased to 100K.

Common Collector Transistor Amplifier:

• Connecting the circuit in PSpice:

Figure 7 connecting the circuit using PSpice.

Measuring the values of VB, VC, IB,IC:

- 1. Vb=2.988 V
- 2. Vc=10V
- 3. Ib=13.36 uA
- 4. Ic=2.310 mA

Adjust the amplitude of the sine wave generator:

Figure 8 adjusting the amplitude of the input voltage.

Calculating the voltage gain Av:

Figure 9 calculating the voltage gain.

 \rightarrow Voltage gain = 0.986V.

• Calculate the current gain Ai:

Figure 10 calculating the current gain.

Ai (experimentally) = 13.66 mA.
Ao(theoretically)=
$$\frac{986.739n}{73.838u}$$
 =0.01336 A.

Estimate Zi from Ii and Vi values:

$$Zi = \frac{Vi}{Ii} = \frac{8.229}{73.838u} = 111446.68 \text{ ohm.}$$

• Finding the output impedance:

Figure 11 connecting the circuit using PSpice to find output impedance.

Figure 12 output voltage and current simulation.

→
$$Zout = \frac{Vout}{Iout} = \frac{8.2955}{44.09m} = 188.1 \text{ ohm.}$$

Table 1 Table of values.

Quantity	Measured Values
Vin	8.229
Vout	986.79m
Iin	73.838u
Iout	986.739n
	Calculated Values
Av=Vo/Vi	0.119295
Ai=iout/iin	0.01336 A
Zin=Vin/iin	111446.68 ohm
Zout=VT/iT	188.1 ohm