CNN Segmentation

Visual Computing and Medical Imaging Lab.,
Department of Software Convergence,
Seoul Women's University
Min Jin Lee

Saturday, August 14, 2021

Outline

- Segmentation Overview
- CNN Segmentation
 - Fully Convolutional Network (FCN)
 - DeconvNet
 - UNet
 - Vnet
 - Attention UNet
 - nnUNet
- Others
 - Loss function
 - Evaluation metrics
 - Public datasets

Segmentation Overview

Semantic Segmentation

Partitioning image into meaningful instances

	3	3	3	3	3	3	3	3	3	3	3	3	5	5	5	5	5	5	
	3	3	3	3	3	3	3	3	3	3	3	3	5	5	5	5	5	5	
	3	3	3	3	3	3	1	1	3	3	3	3	5	5	5	5	5	5	
	3	3	3	3	3	1	1	1	1	3	3	3	5	5	5	5	5	5	
	3	3	3	3	3	3	1	1	3	3	3	5	5	5	5	5	5	5	
	5	5	3	3	3	3	1	1	3	3	5	5	5	5	5	5	5	5	
	4	4	3	4	1	1	1	1	1	1	4	4	4	5	5	5	5	5	
	4	4	3	4	1	1	1	1	1	1	4	4	4	4	4	5	5	5	
	4	4	4	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	
	3	3	3	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	
	3	3	3	1	2	2	1	1	1	1	1	4	4	4	4	4	4	4	
es	3	3	3	1	2	2	1	1	1	1	1	4	4	4	4	4	4	4	

Input Semantic Labels

Semantic vs. Instance segmentation

원본 이미지

Semantic Segmentation

Instance Segmentation

CNN Segmentation Models

From image classification to semantic segmentation

Slide credit: Jonathan Long

 227×227

Fully connected (FC) into fully convolutional layer

Convolution

- Feature map: by applying Filters to the input image
- Kernel(Filter): the field of view of the convolution that is 3x3 pixels
- Padding: how the border of a sample is handled
- Stride: the step size of the kernel when traversing the image — usually 1, use a stride of 2 for downsampling

Convolution

- Feature map: by applying Filters to the input image
- Kernel(Filter): the field of view of the convolution — that is 3x3 pixels
- Padding: how the border of a sample is handled
- Stride: the step size of the kernel when traversing the image — usually 1, use a stride of 2 for downsampling

Convolution

- Feature map: by applying Filters to the input image
- Kernel(Filter): the field of view of the convolution — that is 3x3 pixels
- Padding: how the border of a sample is handled
- Stride: the step size of the kernel when traversing the image — usually 1, use a stride of 2 for downsampling

Fully connected (FC) into fully convolutional la

Slide credit: Jonathan Long

Activation function and pooling layer

Pixelwise prediction

convolution

Pixels-to-pixels output

H × W H/4 × W/4 H/8 × W/8 H/16 × W/16 H/32 × W/32 H × W

pixelwise output + loss

Upsampling via transposed convolution

Fusing the output

Fusing the output

Fusing the output

Convolution + deconvolution network

Unpooling

Deconvolution

Deconvolution and unpooling

UNet

Encoder-Decoder + skip connection

VNet

3D UNet + residual learning - pooling operation

Attention UNet

3D UNet + attention

Attention UNet

Figure 4: The figure shows the attention coefficients ($\alpha^{l_{a_2}}$, $\alpha^{l_{a_3}}$) across different training epochs (3, 6, 10, 60, 150). The images are extracted from sagittal and axial planes of a 3D abdominal CT scan from the testing dataset. The model gradually learns to focus on the pancreas, kidney, and spleen.

Method (Train/Test Split)	U-Net (120/30)	Att U-Net (120/30)	U-Net (30/120)	Att U-Net (30/120)
Pancreas DSC	0.814 ± 0.116	$0.840{\pm}0.087$	0.741 ± 0.137	$0.767 {\pm} 0.132$
Pancreas Precision	0.848 ± 0.110	0.849 ± 0.098	0.789 ± 0.176	0.794 ± 0.150
Pancreas Recall	0.806 ± 0.126	0.841 ± 0.092	0.743 ± 0.179	0.762 ± 0.145
Pancreas S2S Dist (mm)	2.358 ± 1.464	$1.920{\pm}1.284$	3.765 ± 3.452	3.507 ± 3.814
Spleen DSC	0.962 ± 0.013	0.965 ± 0.013	0.935 ± 0.095	$0.943{\pm}0.092$
Kidney DSC	0.963 ± 0.013	0.964 ± 0.016	0.951 ± 0.019	0.954 ± 0.021
Number of Params	5.88 M	6.40 M	5.88 M	6.40 M
Inference Time	0.167 s	0.179 s	0.167 s	0.179 s

no-new-UNet (nnUNet)

Intensity normalization: normalized by clipping to the [0.5, 99.5] percentiles of these intensity values, followed by a z-score normalization based on the mean and standard deviation of all collected intensity values

Resampling: resampled to the median voxel spacing of their respective dataset

Cropping: cropped to the region of nonzero values

no-new-UNet (nnUNet)

Patch size, **batch size**: automatically adapted on the basis of the median image size after resampling

Architecture config.

The num of down-sampling: until the feature maps have size 8 and each axis is down-sampled individually

no-new-UNet (nnUNet)

Table 3: Rankings for the development phase and the mystery phase, median and interquartile range (IQR) of the Dice Similarity Coefficient (DSC) values of all team. The ranking was computed as described in Section 2.4.1.

	The develo	pment phase			The mystery phase					
Rank	Team ID	Median DSC	IQR DSC	Rank	Team ID	Median DSC	IQR DSC			
1	$nnU ext{-}Net$	0.79	(0.61, 0.88)	1	$nnU ext{-}Net$	0.71	(0.58, 0.82)			
2	K.A.V. athlon	0.77	(0.58, 0.86)	2	NVDLMED	0.69	(0.54, 0.79)			
3	NVDLMED	0.78	(0.57, 0.87)	3	K.A.V. athlon	0.67	(0.49, 0.79)			
4	Lupin	0.75	(0.52, 0.86)	4	LS Wang's Group	0.64	(0.46, 0.78)			
5	CerebriuDIKU	0.76	(0.52, 0.88)	5	CerebriuDIKU	0.56	(0.15, 0.71)			
6	LS Wang's Group	0.75	(0.51, 0.88)	6	MIMI	0.65	(0.45, 0.75)			
7	MIMI	0.73	(0.51, 0.86)	7	Whale	0.55	(0.20, 0.68)			
8	Whale	0.65	(0.28, 0.83)	8	UBIlearn	0.55	(0.05, 0.69)			
9	UBIlearn	0.72	(0.40, 0.85)	9	LfB	0.49	(0.16, 0.63)			
10	VST	0.69	(0.39, 0.84)	10	Jia fucang	0.48	(0.04, 0.67)			
11	BCVuniandes	0.70	(0.42, 0.86)	11	A- $REUMI01$	0.51	(0.14, 0.65)			
12.5	BUT	0.72	(0.39, 0.84)	12	AI- MED	0.33	(0.01, 0.52)			
12.5	A- $REUMI01$	0.70	(0.42, 0.85)	13	Lupin	0.57	(0.19, 0.69)			
14	Jiafucang	0.49	(0.11, 0.81)	14	VST	0.41	(0.00, 0.64)			
15	LfB	0.68	(0.43, 0.82)	15	Lesswire1	0.40	(0.08, 0.52)			
16	$AI ext{-}Med$	0.63	(0.29, 0.79)	16	BUT	0.38	(0.01, 0.60)			
17	Lesswire1	0.65	(0.33, 0.79)	17	BCVuniandes	0.10	(0.01, 0.38)			
18	EdwardMa12593	0.31	(0.01, 0.69)	18	RegionTec	0.29	(0.00, 0.50)			
19	RegionTec	0.57	(0.19, 0.73)	19	Edward Ma 12593	0.08	(0.01, 0.18)			

Others

Loss function

Evaluation metrics

Overlap based metrics

Dice index, Jaccard index

$$DICE = \frac{2\left|S_{g}^{1} \cap S_{t}^{1}\right|}{\left|S_{g}^{1}\right| + \left|S_{t}^{1}\right|} = \frac{2TP}{2TP + FP + FN} \qquad JAC = \frac{\left|S_{g}^{1} \cap S_{t}^{1}\right|}{\left|S_{g}^{1} \cup S_{t}^{1}\right|} = \frac{TP}{TP + FP + FN}$$

Accuracy, Recall(=sensitivity), Specificity, Precision,

$$\begin{aligned} Recall &= Sensitivity = TPR = \frac{TP}{TP + FN} & Precision = PPV = \frac{TP}{TP + FP} \\ Specificity &= TNR = \frac{TN}{TN + FP} \end{aligned}$$

Distance based metrics

Average Hausdorff Distance

$$AVD(A,B) = max(d(A,B),d(B,A)) \ \ d(A,B) = rac{1}{N} \sum_{a \in A} \min_{b \in B} \|a - b\|$$

Public datasets for medical segmentation

Dataset	Objects	URL					
LiTS [137]	Liver	https://competitions.codalab.org/competitions/17094					
Sliver07 [138]	Liver	http://www.sliver07.org/					
3Dircadb [139]	Liver	https://www.ircad.fr/research/3dircadb/					
NIH Pancreas [140]	Pancreas	http://academictorrents.com/details/80ecfefcabede760cdbdf63e38986501f7becd49					
COLONOGRAPHY [141]	Colon cancer	https://wiki.cancerimagingarchive.net/display/Public/CT+COLONOGRAPHY#dc149b9170f54aa29e88f1119e25ba3e					
AMRG Cardiac Atlas [142]	Heart	http://www.cardiacatlas.org/studies/amrg-cardiac-atlas/					
LIDC-IDRI [143]	Lung	https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI#					
PROMISE12 [144]	Prostate	https://promise12.grand-challenge.org/					
OASIS [145]	Brain	http://www.oasis-brains.org/					
BRATS [3] [146] [147]	Brain	https://www.med.upenn.edu/sbia/brats2018/registration.html					
ISLES [148]	Brain	http://www.isles-challenge.org/					
mTOP [149]	Brain	https://www.smir.ch/MTOP/Start2016					
KITS [150]	Kidney	https://kits19.grand-challenge.org					
	Spleen,						
CHAOS [151]	Liver,	https://chaos.grand-challenge.org					
	Kidneys						
	Spleen,						
	Liver,						
	Pancreas,						
	Brain Tumor,						
Medical Segmentation Decathlon [152]	Heart,	http://medicaldecathlon.com/index.html					
riculai segmentation securitor [132]	Hippocampus,	mp.// medicalecculing.ii.eou mac.min					
	prostate,						
	Lung,						
	Hepatic Vessel,						
	Colon						

Medical Image Segmentation Using Deep Learning: A Survey (2020)

Thank you