

FACULTAD DE INGENIERÍA DEPARTAMENTO DE TECNOLOGÍAS DE INFORMACIÓN y COMUNICACIONES

TIPO LABORATORIO : NOMBRE : UNIDAD :

TALLER SUBNETTING 1. FUNDAMENTACIÓN

Grupo: Martín Gómez, Daniel Plazas, Julio Prado

Objetivos Terminales: Reconocer los conceptos importantes y necesarios para el entendimiento de las redes al realizar estudios detallados sobre la evolución de las mismas.

Modelos de Referencia

Modelo OSI

Objetivos Específicos del Taller

- 1. Afianzar conceptos de direccionamiento IPv4
- 2. Aprender técnicas de subnetting

Direccionamiento CON Clases

Class	Leading bits	Size of network number bit field	Size of rest bit field	Number of networks	Addresses per network	Start address	End address
Class A	0	8	24	128 (2 ⁷)	16,777,216 (2 ²⁴)	0.0.0.0	127.255.255.255
Class B	10	16	16	16,384 (2 ¹⁴)	65,536 (2 ¹⁶)	128.0.0.0	191.255.255.255
Class C	110	24	8	2,097,152 (2 ²¹)	256 (2 ⁸)	192.0.0.0	223.255.255.255
Class D (multicast)	1110	not defined	not defined	not defined	not defined	224.0.0.0	239.255.255.255
Class E (reserved)	1111	not defined	not defined	not defined	not defined	240.0.0.0	255.255.255.255

De las siguientes direcciones ip defina:

- 1. Clase a la que pertenece, máscara, número de hosts que puede direccionar y si es válida en Internet. (Valor 0.5 puntos).
 - 112.25.37.27
 - 192.31.22.99
 - 250.24.33.53
 - 10.43.224.37
 - 128.24.242.24

1. 112.25.37.27

- Clase: Clase A
- Máscara: 255.0.0.0 (/8)
- Número de hosts: 16,777,214 hosts (2^24 2)
- ¿Válida en Internet?: Sí, pertenece a la clase A que es adecuada para redes de gran tamaño.

2. 192.31.22.99

- Clase: Clase C
- Máscara: 255.255.255.0 (/24)
- Número de hosts: 254 hosts (2^8 2)
- ¿Válida en Internet?: Sí, es válida pára ser utilizada en Internet.

3. **250.24.33.53**

- Clase: Clase D (Direcciones reservadas para multicast)
- Máscara: No aplicable
- Número de hosts: No aplicable
- ¿Válida en Internet?: No, las direcciones de clase D están reservadas para multicast y no se utilizan para la asignación de hosts individuales.

4. 10.43.224.37

- Clase: Clase A
- Máscara: 255.0.0.0 (/8)
- Número de hosts: 16,777,214 hosts (2^24 2)
- ¿Válida en Internet?: Sí, pero generalmente se reserva para redes privadas internas.

5. 128.24.242.24

- Clase: Clase B
- Máscara: 255.255.0.0 (/16)
- Número de hosts: 65,534 hosts (2^16 2)
- ¿Válida en Internet?: Sí, es válida para ser utilizada en Internet.

DIRECCIONAMIENTO SIN CLASES

Network Bits	Subnet Mask	Bits Borrowed	Subnets	Hosts/Subnet
8	255.0.0.0	0	1	16777214
9	255.128.0.0	1	2	8388606
10	255.192.0.0	2	4	4194302
11	255.224.0.0	3	8	2097150
12	255.240.0.0	4	16	1048574
13	255.248.0.0	5	32	524286
14	255.252.0.0	6	64	262142
15	255.254.0.0	7	128	131070
16	255.255.0.0	8	256	65534
17	255.255.128.0	9	512	32766
18	255.255.192.0	10	1024	16382
19	255.255.224.0	11	2048	8190
20	255.255.240.0	12	4096	4094
21	255.255.248.0	13	8192	2046
22	255.255.252.0	14	16384	1022
23	255.255.254.0	15	32768	510
24	255.255.255.0	16	65536	254
25	255.255.255.128	17	131072	126
26	255.255.255.192	18	262144	62
27	255.255.255.224	19	524288	30
28	255.255.255.240	20	1048576	14
29	255.255.255.248	21	2097152	6
30	255.255.255.252	22	4194304	2

- 1. De las siguientes direcciones encontrar: Dirección de red, Dirección de Broadcast, primera dirección asignable, última dirección asignable y número de hosts direccionables. (Valor 1.5 puntos).
- 22.25.225.27 / 23
- 14.243.225.3 / 22
- 172.229.23.98 / 12
- 200.111.34.53 / 14
- 150.24.24.246 / 30

Pasos:

- 1. Dirección de red:
 - Se realiza una operación lógica AND entre la dirección IP y la máscara de subred. Esto significa que se toma cada octeto de la dirección IP y se lo "enmascara" con el octeto correspondiente de la máscara de subred.
 - El resultado de esta operación proporciona la dirección de red.

2. Dirección de broadcast:

- Para calcular la dirección de broadcast, se invierte la máscara de subred (cambiando todos los "0" por "1" y viceversa).
- Se realiza una operación lógica OR entre la dirección de red (calculada en el paso anterior) y la máscara de subred invertida.
- El resultado de esta operación proporciona la dirección de broadcast.

3. Primera dirección asignable:

La primera dirección asignable es la dirección de red más uno. Esta dirección se reserva generalmente para el router o la puerta de enlace de la red.

4. Última dirección asignable:

La última dirección asignable es la dirección de broadcast menos uno. Esta dirección se reserva generalmente para la dirección IP del servidor DHCP o para cualquier otro propósito específico de la red.

5. Número de hosts direccionables:

Se calcula restando 2 al total de direcciones disponibles en la red. Las dos direcciones que se restan son la dirección de red y la dirección de broadcast, ya que estas direcciones no se asignan a hosts individuales.

1. 22.25.225.27 /23

Paso a paso para el primer punto(dirección de red)

1. Convertimos la ip dada a sistema binario.

Ip en binario: 00010110.00011001.11100001.00011011

2. Obtenemos la subnetmask, es posible hacer uso de la tabla o crear una ipa que tenga colocar 23 's 1 y lo demás 0' s.

subnetmask: 255.255.254.0

11111111.111111111.11111110.00000000

3. Obtenemos la dirección de red mediante una relación AND entre la ip en binario y la subnet mask en binario.

Dirección de red:

00010110.00011001.1110000 0.00000000

Posteriormente, la pasamos al sistema decimal.

22.25.224.0

Paso a paso para obtener la dirección de broadcast

1. Invertimos la subnet mask:

0000000.000000000.0000001.1111111111

2. Realizamos la relación OR entre la subnet mask invertida y la dirección de red

 $0000000.000000000.0000001.111111111\\ 00010110.00011001.1110000\\ 0.00000000$

00010110.00011001.1110001.11111111

Posteriormente, lo pasamos al sistema decimal.

22.25.225.255

- Para obtener la primera dirección asignable basta con sumarle 1 a la dirección de red.
- Para obtener la última dirección asignable le restamos 1 a la dirección del broadcast.
- Para obtener el número de hosts direccionables realizamos 2ⁿ -2, donde n es 32 menos la longitud en bits de la máscara de red (se resta 2 porque la del broadcast y la de la red están reservadas).
- Dirección de red: 22.25.224.0
- Dirección de broadcast: 22.25.225.255
- Primera dirección asignable: 22.25.224.1
- Última dirección asignable: 22.25.225.254
- Número de hosts direccionables: 512 hosts (2⁹ 2)

2. 14.243.225.3 /22

- Dirección de red: 14.243.224.0

Dirección de broadcast: 14.243.227.255
Primera dirección asignable: 14.243.224.1
Última dirección asignable: 14.243.227.254

- Número de hosts direccionables: 1022 hosts (2^10 - 2)

3. 172.229.23.98/12

- Dirección de red: 172.224.0.0
- Dirección de broadcast: 172.239.255.255Primera dirección asignable: 172.224.0.1
- Última dirección asignable: 172.239.255.254
- Número de hosts direccionables: 1,048,574 hosts (2^20 2)

4. 200.111.34.53 /14

- Dirección de red: 200.111.32.0
- Dirección de broadcast: 200.111.35.255
- Primera dirección asignable: 200.111.32.1
- Última dirección asignable: 200.111.35.254
- Número de hosts direccionables: 262,142 hosts (2^18 2)

5. 150.24.24.246 /30

- Dirección de red: 150.24.24.244
- Dirección de broadcast: 150.24.24.247
- Primera dirección asignable: 150.24.24.245
- Última dirección asignable: 150.24.24.246
- Número de hosts direccionables: 2 hosts (2² 2)
 - 2. ¿Cuáles de las siguientes direcciones se encuentran en la misma red? (Valor 1 punto).
 - 10.144.222.26 /22

Ip a binario: 00001010.10010000.11011110.00011010

Subnetmask: 255.255.252.0 -> 11111111.1111111111111100.00000000

Dirección de red: 00001010.10010000.11011100.00000000 -> 10.144.220.0

Esta red está sola.

• 10.144.242.224 /22

Ip a binario: 00001010.10010000.11110010.11100000

Subnetmask: 255.255.252.0 -> 11111111.111111111111100.00000000

Dirección de red: 00001010.10010000.11110000.00000000 -> 10.144.240.0

• 10.144.232.16 /22

Ip a binario: 00001010.10010000.11101000.00010000

Subnetmask: 255.255.252.0 -> 1111111111111111111111100.000000000

Dirección de red: 00001010.10010000.11101000.00000000 -> 10.144.236.0

• 10.144.225.58 /22

Ip a binario: 00001010.10010000.11100001.00111010

Subnetmask: 255.255.252.0 -> 111111111111111111111100.000000000

Dirección de red: 00001010.10010000.11100000.00000000 -> 10.144.224.0

• 10.144.229.168/22

Ip a binario: 00001010.10010000.11100101.10101000

Subnetmask: 255.255.252.0 -> 1111111111111111111111100.000000000

Dirección de red: 00001010.10010000.11100100.00000000 -> 10.144.228.0

• 10.144.239.56 /22

Ip a binario: 00001010.10010000.11101111.00111000

Subnetmask: 255.255.252.0 -> 11111111.1111111111111100.00000000

Dirección de red: 00001010.10010000.11101100.00000000 -> 10.144.236.0

Esta red está sola.

• 10.144.241.46 /22

Ip a binario: 00001010.10010000.11110001.00101110

Subnetmask: 255.255.252.0 -> 111111111111111111111100.00000000

Dirección de red: 00001010.10010000.11110000.00000000 -> 10.144.240.0

• 10.144.235.24 /22

Ip a binario: 00001010.10010000.11101011.00011000

Subnetmask: 255.255.252.0 -> 11111111.11111111.11111100.00000000

Dirección de red: 00001010.10010000.11101000.00000000 -> 10.144.232.0

• 10.144.255.46/22

Dirección ip en binario: 00001010.10010000.111111111.00101110

subnet mask: 11111111111111111111100.000000000

dirección de red: 00001010.10010000..111111100.00000000-> 10.144.252.0

10.144.250.56 /22

Ip a binario: 00001010.10010000.11111010.00111000

Subnetmask: 255.255.252.0 -> 1111111111111111111111100.000000000

Dirección de red: 00001010.10010000.111111000.00000000 -> 10.144.248.0

Las redes azules se encuentran en la misma red 10.144.240.0, y las redes amarillas se encuentran en la misma red 10.144.236.0.

3. Dividir la siguiente dirección de red en subredes de 6 hosts (Valor 1.0 puntos).

192.168.222.0 /24

Dado que necesitamos dividir las subredes en 6 host, debemos de tomar los últimos 3 bits, es decir, los últimos 3 partes del octeto (2³). Esto con el objetivo de obtener mínimo 6 hosts y tener 2 adicionales para garantizar la asignación de los mismos, por lo que nos quedamos con 5 servidores y en cada servidor 6 hosts.

Esto quiere decir que cada subred tendrá una subnet mask de 27 bits, dejando 5 bits libres, es decir, que cada una debe de tener capacidad para 32 hosts (2⁵). Por lo que para construir las subredes basta con seguir un patrón de ir sumando 32.

- Subred 1: 192.168.222.0/27 (con direcciones utilizables de 192.168.222.1 a 192.168.222.30)
- Subred 2: 192.168.222.32/27
- Subred 3: 192.168.222.64/27
- Subred 4: 192.168.222.96/27
- Subred 5: 192.168.222.128/27
- Subred 6: 192.168.222.160/27
- Subred 7: 192.168.222.192/27
- Subred 8: 192.168.222.224/27
- 4. Dividir la siguiente dirección en por lo menos 8 subredes (Valor 1.0 puntos).

Dado que necesitamos dividir las subredes en 8 host, debemos de tomar al menos 3 bits, pero ya que necesitamos garantizar el número de subredes, tomamos otra parte del octeto, llegando a tener disponibles 16 subredes (2^4 o 4 bits). Esto con el objetivo de obtener mínimo 8 hosts y tener 8 adicionales para garantizar la asignación de los mismos, por lo que nos quedamos con 4 servidores y en cada servidor 8 hosts.

Esto quiere decir que cada subred tendrá una subnet mask de 28 bits, dejando 4 bits libres, es decir, que cada una debe de tener capacidad para 16 hosts (2⁴). Por lo que para construir las subredes basta con seguir un patrón de ir sumando 16.

- Subred 1: 192.168.222.10/28 (con direcciones utilizables de 192.168.222.10 a 192.168.222.24)
- Subred 2: 192.168.222.26/28
- Subred 3: 192.168.222.42/28
- Subred 4: 192.168.222.58/28
- Subred 5: 192.168.222.64/28
- Subred 6: 192.168.222.90/28
- Subred 7: 192.168.222.106/28
- Subred 8: 192.168.222.122/28