Vorlesung Analysis II

July 1, 2025

Teil 2: Topollogische Grundbegriffe in metrischen Räumen

an15: Zusammenhang in metrischen Räumen

Stichworte: zusammenhängend (zush)⇔ wegszush.⇔ polygonslzush.

Literatur: [Königsberger], Kapitel 1.5

- Einleitung: Der Begriff "zusammenhängend" wird für metrische Räume definiert und mit "wegzusammenhängend" und "polygonalzusammenhängend" identifiziert, was über "Verbindungen" zwischen zwei Punkten erklärt wird.
- 15.2. Motivation: Es ist zunächst leichter definieren, was "nicht zusammenhängend" ist.
- **15.3. Vereinbarung:** (R, δ) sei metrischer Raum, $M \subseteq R$, damit ist $(M, \delta_{rM \times M})$ metrischer Raum.
- 15.4. Def.: R heißt nicht zusammenhängend (kurz: zush.)

 $\Rightarrow \exists O_1, O_2 \subset R, O_2 \neq \emptyset \neq O_2 : R = O_1 \dot{\cup} O_2$

R heißt $\underline{\text{zush.}}$: \Leftrightarrow R? nicht zush.

M heißt <u>zush.</u>: $\Leftrightarrow (M, \delta_{rM \times M})$ zush.

15.5. Satz: Vor.: $R \xrightarrow{f} S$ stetig, R,S metrische Räume, R zush.

Beh.: f(R) zush. "Bilder zush. Mengen sind zush."

Bew.: Ann.: $f(R) = S_1 \cup S_2 \text{ mit } S_1 \cap S_2 = \emptyset, S_1, S_2 \subset f(R),$

d.h. $\exists O_1, O_2 \subset S$ mit $S_1 = O_1 \cap f(R), S_2 = O_2 \cap f(R), O_1 \cap O_2 = \emptyset$. Betr. $f^{-1}(S_1 \cup S_2) = f^{-1}(O_1 \cup O_2) = f^{-1}(O_1) \cup f^{-1}(O_2)$ offen, =R. Da R zush., folgt $f^{-1}(O_1) = \emptyset$ oder $f^{-1}(O_2) = \emptyset$, d.h. $S_1 = \emptyset v S_2 = \emptyset$,

so dass also f(R) zush. ist.

15.6. Hilfssatz(*): R zush. \Leftrightarrow Jede stetige Abb. $f: R \to \mathbb{Z}$ ist Konstant.

Bew.: " \Rightarrow ": Nach 15.5. ist f(R) zush. Teilmenge von \mathbb{Z} .

Da jede Teilmenge von \mathbb{Z} offen ist, sind Teilmengen von \mathbb{Z} mit ≥ 2 El. nicht zush.

 $\Rightarrow \in a \in \mathbb{Z} : f(R) = \{a\}, \text{ d.h. f ist Konstant.}$

"\(= \)": Sei jede stetige Abb. $R \to \mathbb{Z}$ Konstant.

 $\underline{\mathrm{z.z.}} \ \forall X \in \mathcal{O}(R), \emptyset \neq X \neq R : R \backslash X \notin \mathcal{O}(R).$

Dazu sei X so, betr. $f_X: R \to \mathbb{Z}, f_X(x) := \begin{cases} 1, x \in X \\ 0, x \in R \backslash X \end{cases}$, also ist f_X unstetig, da nicht Konstant.

1

Daher ex. $U \in \mathcal{O}(\mathbb{Z}): f_X^{-1}(U) =: A$ nicht offen, z.z.: $R \setminus X \stackrel{!}{=} A$ nicht offen.

Sei dazu $\times U = \{0, 1\}$. (1) Haben $U \neq \emptyset$, sonst $\overline{A} = f^{-1}(\emptyset) = \emptyset$ offen ξ .

- (2) Haben $U \neq \{0,1\}$, sonst $A = f^{-1}(\{0,1\}) = R$ offen ξ .
- (3) Haben $U \neq \{1\}$, sonst $A = f^{-1}(\{1\}) = X$ offen ξ .
- (4) Also notwendig $U = \{0\}$, dann ist $R \setminus X = f^{-1}(\{0\}) = A$ nicht offen.

Betr. ab jetzt den Spezialfall $R = \mathbb{R}^n$, und eine Metrik S(von Norm induziert):

15.7. Def.: $M \subset \mathbb{R}^n$, M zush. \Leftrightarrow : Gebiet,

d.h. wir nennen eine offene zusammenhängende Teilmenge des \mathbb{R}^n ein Gebiet.

15.8. <u>Def.:</u> M wegzush.: $\Leftrightarrow \forall a, b \in M \exists \phi : [u, v] \to M$ stetig mit $\phi(m) = a, \phi(v) = l$, wo $[u, v] \subseteq \mathbb{R}$, z.b. u = 0, v = 1. $\circ \phi$ heißt Weg von a nach b.

15.9. Eine Strecke $\overline{ab} \subseteq \mathbb{R}^n$ ist $\overline{ab} = \{\phi(t); t \in [0,1]\}$ mit der stetigen Fkt. $\underline{\phi(t)} := a + t(b-a)$, wo $\phi(0) = a, \phi(1) = b$.

Damit ist z.B. \mathbb{R}^n wegzush.

15.10. Bem.: • Jede Konvexe Menge $M \subseteq \mathbb{R}^n$ ist wegzush. (vgl. Def. in an 6.3.)

• Insb. ist jede Kugel $B_q^{\epsilon} \subseteq \mathbb{R}^n$ wegzush., da Konvex.

15.11. <u>Def.:</u> M <u>polygonzush.</u>: $\Leftrightarrow \forall a, b \in M : \exists a = x_0, x_1, ..., x_m = b \in M :$

 $\forall J \in \{0, ..., m\} : \overline{x_i x_{i+1}} \subseteq M,$

 $\Leftrightarrow \forall a,b \in M \exists x_1,...,x_{m-1} \in M : \overline{ax_1},\overline{x_1x_2},...,\overline{x_{m-1}b} \in M.$

Man nennt eibe solche Folge $a, x_1, x_2, ..., x_{m-1}, b$ oder auch $\overline{ax_1} \cup \overline{x_1x_2} \cup ... \cup \overline{x_{m-1}b}$ einen Streckenzug oder Polygonzug.

15.12. Satz: Vor.: $M \subset \mathbb{R}^n$. Beh.: M Gebiet \Leftrightarrow M polygonzush. \Leftrightarrow M wegzush. Bew.(durch Ringschluss):

(i) Z.z.: M Gebiet \Leftrightarrow M polygonzush.:

Sei $x \in M$ bel. Setze $V = V_x := \{b \in M; b \text{ mit x durch Polygonzug verbindbar}\}$

 $= \{b \in M; \exists x_1, ..., x_k \in M : \overline{bx_1} \cup \overline{x_1x_2} \cup ... \cup \overline{x_kx} \subseteq M\}.$

Da $a \in V$, ist $V \neq \emptyset$.

• Haben: V ist offen, d.h. $b \in V \Leftrightarrow \exists B_b^{\epsilon} \subseteq V$.

Then: M offen $\Rightarrow \exists \epsilon > 0 : B_b^{\epsilon} \subseteq M$.

Sei $c \in B_b^{\epsilon}$. Wegen $\overline{bc} \subseteq B_b^{\epsilon}$ folgt dann $c \in V$, d.h. $B_b^{\epsilon} \subseteq V$.

 \bullet Haben: V ist abg., d.h. CV ist offen.

Dazu betr. $B_b^{\epsilon}M$ für $b \in \dot{V}$.

Haben $B_b^{\epsilon} \setminus \{b\} \cap V \neq \emptyset$, wähle $c \in V \cap B_b^{\epsilon}, c \neq b$

 $\Rightarrow \overline{vc} \subseteq B_b^{\epsilon} \Rightarrow b \in V$. Es folgt $\overline{V} = V \cup \dot{V} \subseteq V$, also $\overline{V} = V$, d.h. ist abg.

(ii): M polygonzush. ⇒ M wegzush.: trivial, da Streckenzüge Wege sind.

(iii): M wegzush. \Rightarrow M Gebiet:

Zeige: M zush. $\Leftarrow \forall x, y \in M \exists Z \subseteq M : x, y \in Z, Z$ zush.

'Sei $f: M \to \mathbb{Z}$ stetig, $y \in M$. Ist $x \in M$ bel., so gibt es ein $Z \subseteq M, Z$ zush., $x, y \in Z$, nach Vor. Betr. f_{rZ} . Diese Abb. ist stetig, und da Z zush. ist, ist f_{rZ} Konstant nach Hilfssatz (*) 15.6." \Rightarrow ". Es folgt f(x)=f(y). Da $x, y \in M$ bel., ist f auf M konstant. Mit Hilfssatz (*) 15.6." \Rightarrow ", folgt: M zush.

Mit dieser Beh. folgt (iii), denn von x nach y führt eien Weg in M um jeden Punkt des Weges wähle eine ϵ -Umg. ganz in M. Setze Z als Vereinigung aller dieser ϵ -Umg.

- Ü Eine Vereinigung nicht disjunkter zush. Mengen ist zush.
- **15.13.** Kor.: $\emptyset \neq M \subseteq \mathbb{R}^1 : M$ zush. \Leftrightarrow M Intervall. denn IVe in \mathbb{R}^1 sind per Def. wegzusammenhängend
- **15.14.** Kor.: $f: R \to \mathbb{R}^1$ stetig, R zush. $\stackrel{15.6}{\Rightarrow} f(R)$ zush. $\stackrel{15.4}{\Rightarrow} f(R)$ Intervall. Dies ist wieder der Satz von Min./Max. An9.30., es folgt der ZWS An9.29.
- **15.15.** Bem.: Die Relation $\underline{\mathbf{x}} \mathbf{y} : \Leftrightarrow \exists Z \subseteq M, Z \text{ zush.} : x, y \in Z$

ist auf $M \subseteq R$ (R ein metrischer Raum) eine Äquivalenzrelation reflexiv \checkmark symmetrisch \checkmark transitiv \checkmark auf M.

Haben auch $\underline{x} \ \underline{y} \Leftrightarrow \underline{x} \in V_y \Leftrightarrow \underline{y} \in V_x$ laut Beweis von 15.12. in $R = \mathbb{R}^n$.

Die Äquivalenzklassen sind zush. und abg. Da M disjunkte Vereinigung dieser Ä-Klassen ist, heißen duese due Zusammenhangskomponenten von M. Schränkt man eine stetige Fkt. $f: M \to \mathbb{Z}$ ein auf eine Zush. Komponente U,

so ist f_{rU} Konstant laut 15.6., und die Urbilder einpunktiger Mengen $\{a\} \subseteq \mathbb{Z}$ sind Vereinigungen von Zusammenhangskomponenten von M.