Monte Carlo Method

Presenter : Jongsoo Lee

Index

- 1. Introduction
- 2. Background
- 3. Monte Carlo Learning
- 4. Off-Policy Learning

1. Introduction

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Q-Bellman equation for π

$$Q^{\pi}(s, a) = R(s, a) + \gamma E [Q^{\pi}(s_{k+1}, a_{k+1}) | s_k = s, a_k = a, \pi]$$

$$= R(s, a) + \gamma \sum_{a' \in A} \sum_{s' \in S} \pi(a' | s') P(s' | s, a) Q^{\pi}(s', a')$$

$$s \in S, a \in A$$

2. Background

- 1) Law of Large Number
- 2) Incremental Mean
- 3) Importance Sampling

2. Background – Law of Large Number

Theorem 2.7 (Weak law of large numbers) Suppose that $X_1, X_2, ...$ is an infinite sequence of i.i.d. (Lebesgue integrable) random variables with expected value

$$E[X_1] = E[X_2] = \dots = \mu$$

Then, the sample average

$$\bar{X}_n := \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$

converges in probability to the expected value

$$\bar{X}_n \stackrel{\mathrm{P}}{\to} \mu$$

as $n \to \infty$, that is, for any positive number ε

$$\lim_{n\to\infty} P\left[|\bar{X}_n - \mu| > \varepsilon\right] = 0$$

2. Background – Law of Large Number

Theorem 2.8 (Strong law of large numbers) Suppose that $X_1, X_2, ...$ is an infinite sequence of i.i.d. (Lebesgue integrable) random variables with expected value

$$E[X_1] = E[X_2] = \dots = \mu$$

Then, the sample average

$$\bar{X}_n := \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

converges almost surely to the expected value

$$\bar{X}_n \stackrel{\text{a.s.}}{\to} \mu$$

as $n \to \infty$, that is,

$$P\left[\lim_{n\to\infty}\bar{X}_n=\mu\right]=1$$

2. Background – Empirical Mean

Example 2.1 Suppose that $X_1, X_2, ...$ is an infinite sequence of i.i.d. random variables with expected value

$$E[X_1] = E[X_2] = \dots = \mu$$

Then, the sample average

$$\bar{X}_n := \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

approximates μ , i.e., $\bar{X}_n \cong \mu$. Moreover, as $n \to \infty$, the sample average becomes closer to μ .

2. Background – Empirical Mean

The idea is to take an empirical mean with N number of episodes.

$$\begin{aligned} & \text{episod1} = & (s_0^{(1)}, a_0^{(1)}, r_0^{(1)}, s_1^{(1)}, a_1^{(1)}, r_1^{(1)}, \dots, s_{\tau^{(1)}-1}^{(1)}, a_{\tau^{(1)}-1}^{(1)}, r_{\tau^{(1)}-1}^{(1)}, s_{\tau^{(1)}}^{(1)}) \\ & \text{episod2} = & (s_0^{(2)}, a_0^{(2)}, r_0^{(2)}, s_1^{(2)}, a_1^{(2)}, r_1^{(2)}, \dots, s_{\tau^{(2)}-1}^{(2)}, a_{\tau^{(2)}-1}^{(2)}, r_{\tau^{(2)}-1}^{(2)}, s_{\tau^{(2)}}^{(2)}) \\ & \cdots \\ & \text{episodN} = & (s_0^{(N)}, a_0^{(N)}, r_0^{(N)}, s_1^{(N)}, a_1^{(N)}, r_1^{(N)}, \dots, s_{\tau^{(N)}-1}^{(N)}, a_{\tau^{(N)}-1}^{(N)}, r_{\tau^{(N)}-1}^{(N)}, s_{\tau^{(N)}}^{(N)}) \end{aligned}$$

where we assume that the episodes are independent of each other and $s_0^{(1)} = s_0^{(2)} = \cdots = s_0^{(N)} = s$. We can take an average as follows:

$$V^{\pi}(s) \cong \frac{1}{N} \sum_{i=1}^{N} G_0^{(i)}$$

where

$$G_k^{(i)} = \sum_{t=k}^{\tau^{(i)}-1} \gamma^{t-k} r_t^{(i)}$$

2. Background - Incremental Mean

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} (x_k + (k-1)\mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$

2. Background – Unbiased Estimator

$$E(\hat{ heta}) = heta + bias(heta)$$

2. Background – Importance Sampling

Estimate one distribution by sampling from another distribution

$$E_{x \sim p}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
 where $x_i \sim p$.

$$E_{x \sim p}[f(x)] = \sum p(x)f(x)$$

$$= \sum \frac{p(x)}{q(x)}q(x)f(x)$$

$$= E_{x \sim q}\left[\frac{p(x)}{q(x)}f(x)\right]$$

$$\approx \frac{1}{N}\sum_{i=1}^{N}\frac{p(x_i)}{q(x_i)}f(x_i) \quad \text{where } x_i \sim q.$$

2. Background - Importance Sampling

$$E_{x \sim p}[f(x)] = E_{x \sim q} \left[\frac{p(x)}{q(x)} f(x) \right]$$

Variance of the original expectation:

$$Var_{x \sim p}[f(x)] = E_{x \sim p}[f(x)^2] - (E_{x \sim p}[f(x)])^2$$

Variance of the modified expectation:

$$Var_{x \sim q} \left[\frac{p(x)}{q(x)} f(x) \right] = E_{x \sim q} \left[\left(\frac{p(x)}{q(x)} f(x) \right)^2 \right] - \left(E_{x \sim q} \left[\frac{p(x)}{q(x)} f(x) \right] \right)^2$$
$$= E_{x \sim p} \left[\frac{p(x)}{q(x)} f(x)^2 \right] - \left(E_{x \sim q} [f(x)] \right)^2$$

3. Monte Carlo Learning

- 1. Monte Carlo Prediction
- 2. Monte Carlo Control

Figure 1.15: Policy iteration

From a set of episodes (large number of episodes), the value function $v_{\pi}(s)$ for each state s is estimated as follows.

- Consider all episode one by one
- ▶ For each episode, find every time-step t that state s is visited.
- ▶ Increase the counter $N(s) \leftarrow N(s) + 1$
- ▶ Add new return $S(s) \leftarrow S(s) + G_t$
- After all episode are considered, we compute the estimated value function

$$V(s) = S(s)/N(s)$$

▶ By law of large numbers $V(s) \to v_{\pi}(s)$ as $N(s) \to \infty$.

time: 1 2 3 4
ep 1:
$$s_1$$
, r_1 , s_2 , r_2 , s_3 , r_3 , s_4 , r_4
ep 2: s_2 , r_2 , s_1 , r_1 , s_4 , r_4

ep 3:
$$s_3$$
, r_3 , s_1 , r_1 , s_3 , r_3 , s_4 , r_4

ep 4:
$$s_2$$
, r_4 , s_4 , r_4

Figure 2.11: Every-visit Monte Calro

$$V^{\pi}(s) \cong \frac{1}{K}(G_{k_1} + G_{k_2} + \dots + G_{k_K})$$

Algorithm 2 Every-visit Monte Calro prediction(recursive version)

```
1: Input: a policy \pi to be evaluated
 2: Initialize
 3: V(s) = 0 for all s \in S
 4: m(s) = 0 for all s \in S
 5: for i \in \{0, 1, \ldots\} do
          Generate an episode following \pi: (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{\tau-1}, a_{\tau-1}, r_{\tau-1}, s_{\tau})
         G \leftarrow 0
 7:
         for k = \tau - 1, \tau - 2, \dots, 0 do
        G \leftarrow \gamma G + r_k
             m(s_k) \leftarrow m(s_k) + 1
              V(s_k) \leftarrow V(s_k) + \frac{1}{m(s_k)} (G - V(s_k))
11:
                                                                                      Remark 2.2 Let \tau = 5.
          end for
12:
13: end for
                                                                                         1. k = \tau - 1 = 4: G \leftarrow \gamma G + r_4 = r_4
                                                                                         2. k = \tau - 2 = 3: G \leftarrow \gamma G + r_3 = r_3 + \gamma r_4
                                                                                         3. k = \tau - 3 = 2: G \leftarrow \gamma G + r_2 = r_2 + \gamma r_3 + \gamma^2 r_4
                                                                                         4. k = \tau - 4 = 1: G \leftarrow \gamma G + r_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4
```

From a set of episodes (large number of episodes), the value function $v_{\pi}(s)$ for each state s is estimated as follows.

- Consider all episode one by one
- For each episode, find the first time-step t that state s is visited.
- ▶ Increase the counter $N(s) \leftarrow N(s) + 1$
- ▶ Add new return $S(s) \leftarrow S(s) + G_t$
- After all episode are considered, we compute the estimated value function

$$V(s) = S(s)/N(s)$$

▶ By law of large numbers $V(s) \to v_{\pi}(s)$ as $N(s) \to \infty$.

ep 1:
$$s_1$$
, r_1 , s_2 , r_2 , s_3 , r_3 , s_4 , r_4

ep 2:
$$s_2$$
, r_2 , s_1 , r_1 , s_4 , r_4

ep 3:
$$s_3$$
, r_3 , s_1 , r_1 , s_3 , r_3 , s_4 , r_4

ep 4:
$$s_2$$
, r_4 , s_4 , r_4

$$V^{\pi}(2) \approx \sum_{t=1}^{5} \gamma^{t-1} r_t$$

Figure 2.12: First-visit Monte Calro

Algorithm 4 First-visit Monte Calro prediction (recursive version)

```
1: Input: a policy \pi to be evaluated
2: Initialize
3: V(s) = 0 for all s \in S
 4: Returns(s) \leftarrow an empty list for all s \in S
5: m(s) = 0 for all s \in S
6: for i \in \{0, 1, \ldots\} do
       Generate an episode following \pi: (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{\tau-1}, a_{\tau-1}, r_{\tau-1}, s_{\tau})
       G \leftarrow 0
8:
       for k = \tau - 1, \tau - 2, \dots, 0 do
      10:
11:
              m(s_k) \leftarrow m(s_k) + 1
12:
       V(s_k) \leftarrow V(s_k) + \frac{1}{m(s_k)}(G - V(s_k))
- end if
13:
14:
       end for
15:
16: end for
```

	Every Visit Monte Carlo	First Visit Monte Carlo	
Advantage	Sample Efficiency	Higher Quality Estimation (Less reuse of data)	
Disadvantage	Low Quality Estimation (Too many reuse of the same data)	Sample Inefficiency	

3. Monte Carlo Control

3. Monte Carlo Control – Action Selection Method

The exploration and exploitation dilemma

- Exploitation: to learn V^{π} or Q^{π} for given π , we need to 'exploit' π to generate episodes.
- Exploration: to learn Q^{π} for given π , we need to 'explore' every actions $a \in A$ at every $s \in S$.

Action Selection Method

- 1) Random Policy
- 2) Greedy Policy
- 3) Soft Greedy Policy
- 4) <u>Boltzmann Approach</u>
- 5) Bayesian Approach

3. Monte Carlo Control – Soft greedy Policy

 ε -soft policy ($\varepsilon \in (0,1)$): it converts a deterministic policy into an approximate stochastic policy as follows:

 $\varepsilon\text{-soft}$ policy associated with a given π

Choose $a \in A$ randomly from A with probability ε Choose $a = \pi(s)$ with probability $1 - \varepsilon$

which leads to the equivalent stochastic policy

 ε -soft policy associated with a given π

$$\pi_{\varepsilon}(a|s) = \begin{cases} 1 - \varepsilon + \frac{\varepsilon}{|A|} & \text{if } a = \pi(s) \\ \frac{\varepsilon}{|A|} & \text{if } a \neq \pi(s) \end{cases}$$

3. Monte Carlo Control

Algorithm 6 First-visit Monte Calro method (batch version) for Q-function with ε -soft policy

```
1: Input: a policy \pi to be evaluated
 2: Initialize
 3: Q(s, a) = 0 for all s \in S and a \in A
 4: Returns(s, a) \leftarrow an empty list for all s \in S and a \in A.
Generate an episode following \pi_{\varepsilon}: (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{\tau-1}, a_{\tau-1}, r_{\tau-1}, s_{\tau})
      G \leftarrow 0
                                 ______
      for k = \tau - 1, \tau - 2, ..., 0 do
          G \leftarrow \gamma G + r_k
9:
          if the pair (s_k, a_k) does not appear in (s_0, a_0), (s_1, a_1), \ldots, (s_{k-1}, a_{k-1}) then
10:
              Append G to the list Rerturns(s_k, a_k)
11:
              Q(s_k, a_k) \leftarrow \text{average}(Returns(s_k, a_k))
12:
          end if
13:
       end for
14:
15: end for
```

4. Off-Policy Learning

Figure 2.10: On/off policy learning

- 1. Target policy π : the policy that we want to learn, i.e., estimate V^{π} .
- 2. Behavior policy β : the policy that the agent follows to obtain the episode or trajectory.
- 1. On-policy learning: the target policy and behavior policies are identical ($\beta = \pi$), i.e., episodes are generated by following the target policy to learn the value of the target policy.
- 2. Off-policy learning: the target policy and behavior policies can be different ($\beta = \pi$ or $\beta \neq \pi$), i.e., episodes are generated by following the behavior policy to learn the value of the target policy. Decoupling the target and behavior policies give us greater engineering benefits.

4. Off-Policy Learning

 $G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \cdot \frac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} \cdot \frac{\pi(A_{t+2}|S_{t+2})}{\mu(A_{t+2}|S_{t+2})} \cdots \frac{\pi(A_{T-1}|S_{T-1})}{\mu(A_{T-1}|S_{T-1})} G_t$

 $= \left(\prod_{t=1}^{T-1} \frac{\pi(A_t | S_t)}{\mu(A_t | S_t)} \right) \cdot G_t \qquad s.t. \ \mu = 0 \rightarrow \pi = 0$

$$\prod_{k=0}^{\tau-1} \pi(a_k|s_k) P(s_{k+1}|s_k, a_k)$$

The value function V^{π} is then expressed as

$$V^{\pi}(s) = E\left[G_{0} | s_{0} = s, \pi\right]$$

$$= E\left[\sum_{s_{0} = s, a_{0} \in A} \sum_{s_{1} \in A, a_{1} \in A} \cdots \sum_{s_{\tau} \in S} \left\{\prod_{k=0}^{\tau-1} \pi(a_{k} | s_{k}) P(s_{k+1} | s_{k}, a_{k})\right\} \sum_{i=0}^{\tau-1} \gamma^{i} R(s_{i}, a_{i})\right]$$

$$= E\left[\sum_{s_{0} = s, a_{0} \in A} \sum_{s_{1} \in A, a_{1} \in A} \cdots \sum_{s_{\tau} \in S} \left\{\prod_{k=0}^{\tau-1} \frac{\pi(a_{k} | s_{k})}{\beta(a_{k} | s_{k})} \beta(a_{k} | s_{k}) P(s_{k+1} | s_{k}, a_{k})\right\} \sum_{i=0}^{\tau-1} \gamma^{i} R(s_{i}, a_{i})\right]$$

$$= E\left[\sum_{s_{0} = s, a_{0} \in A} \sum_{s_{1} \in A, a_{1} \in A} \cdots \sum_{s_{\tau} \in S} \left\{\prod_{k=0}^{\tau-1} \beta(a_{k} | s_{k}) P(s_{k+1} | s_{k}, a_{k})\right\} \left\{\prod_{j=0}^{\tau-1} \frac{\pi(a_{j} | s_{j})}{\beta(a_{j} | s_{j})}\right\} \sum_{i=0}^{\tau-1} \gamma^{i} R(s_{i}, a_{i})\right]$$

$$= E\left[\left\{\prod_{j=0}^{\tau-1} \frac{\pi(a_{j} | s_{j})}{\beta(a_{j} | s_{j})}\right\} G_{0} \middle| s_{0} = s, \beta\right]$$

4. Off-Policy Learning

Algorithm 7 Off-policy first-visit Monte Calro prediction (batch version)

```
1: Input: a policy \pi to be evaluated and a behavior policy \beta
 2: Initialize
 3: V(s) = 0 for all s \in S
 4: Returns(s) \leftarrow an empty list for all s \in S.
 5: for i \in \{0, 1, ...\} do — — — — — — — — — — — —
         Generate an episode following \beta: (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{\tau-1}, a_{\tau-1}, r_{\tau-1}, s_{\tau})
        for k = \tau - 1, \tau - 2, \dots, 0 do
       G \leftarrow \gamma G + r_k
 9:
            if s_k does not appear in s_0, s_1, \ldots, s_{k-1} then
Append \prod_{j=k}^{\tau-1} \frac{\pi(a_j|s_j)}{\beta(a_j|s_j)} G \text{ to the list } Rerturns(s_k)
10:
11:
                  V(s_k) \leftarrow \text{average}(Returns(s_k))
12:
              end if
13:
         end for
14:
15: end for
```

Reference

- [1] lecture2
- [2] https://en.wikipedia.org/wiki/Law_of_large_numbers
- [3] https://deeesp.github.io/statistics/Unbiased-Estimator/
- [4] <u>deepmind.com</u>/learning-resources/-introduction-reinforcement-learning-david-silver
- [5] https://sumniya.tistory.com/15
- [6] https://analysisbugs.tistory.com/115
- [7] https://data-newbie.tistory.com/534