VLMs can supervise offline RL, but their feedback must consider sub-trajectories, be non-Markovian, and be interpreted as a component in a simple algorithm—such as a weight in weighted regression—rather than as a reward.

# OfflineRLAIF



Jacob Beck

## Piloting VLM Feedback for RL via SFO

## Motivation

#### Vision Language Model (VLM) feedback

The absence of large-scale control data prevents training a general RL foundation model. Still, we can leverage existing VLMs for supervision.

#### Offline RL from Al Feedback (Offline RLAIF)

VLMs struggle to differentiate random trajectories at initialization. Offline RL can include trajectories that are easier for VLMs to differentiate.

#### Challenges with Offline RLAIF

- 1) Full-trajectory evaluation exacerbates stitching issues
- 2) VLMs are not trained to understand continuous control data

### Conclusions

#### 1) Sub-Trajectories Matter

Full-trajectory preferences decrease VLM calls, but are uninformative and worsen stitching issues, so sub-sampling trajectories is critical



VLMs do not natively understand control data, so visual cues over time are needed to assess progress



A filtered and weighted behavior cloning approach







(SFBC) surpasses complex RL-based methods 3) Feedback propagation is unstable even with ground truth rewards

## Sub-Trajectory Filtered Behavioral Cloning (SFBC)

Existing work, such as RL-VLM-F (Wang et al., 2024) and Clip-based rewards (Baumli et al., 2023, Rocamonde et al., 2024), evaluates online RL, uses a Markovian reward, and investigates how to elicit reward from VLMs.

In contrast, this study evaluates offline, leverages non-Markovian feedback, and investigates how best to use the feedback (not just as reward).

- 1) We divide trajectories into disjoint and equal length sub-trajectories:  $au_i = (s_{i \cdot k}, a_{i \cdot k}, s_{i \cdot k+1}, a_{i \cdot k+1}, \ldots, s_{(i+1) \cdot k})$  with segment length k
- 2) We prompt an LLM to evaluate each sub-trajectory with a Markov and non-Markov prompt, and define the feedback as a combination:

 $P_{\text{Markov}}(\tau_i) = 1 - P(\text{"no"}|\text{Markov Prompt})$   $P_{\text{Non-Markov}}(\tau_i) = 1 - P(\text{"no"}|\text{Non-Markov Prompt})$   $P_{\text{VLM}}(\tau_i) = \min(1, P_{\text{Markov}}(\tau_i) + P_{\text{Non-Markov}}(\tau_i))$ 

3) We behaviorally clone weighted sub-trajectories, and introduce retrospective filtering, assuming a failed sub-trajectory may result from preceding failure:

 $\mathcal{D}_{SFBC} = \{(s_t, a_t, \tau_i) \mid \tau_i \in \mathcal{D}, \ (s_t, a_t) \in \tau_i, \ PVLM(\tau_i) \geq \alpha, \ P_{VLM}(\tau_{i+1}) \geq \alpha\} \quad \mathcal{L}_{SFBC} = -\mathbb{E}_{(s_t, a_t, \tau_i) \sim \mathcal{D}_{SFBC}} \left[P_{VLM}(\tau_i) \log \pi_{\theta}(a_t | s_t)\right]$ 

## Results

We evaluate on Pendulum-v1 across 15 seeds using GPT-4o. The dataset consists of 500 trajectories, with 300 steps from an expert policy and 300 from a failure policy, stitched in a random order. Sub-trajectory length (k) = 100. We subsample frames by 20x. Threshold ( $\alpha$ ) = 0.1.

| Success Rate (%) | Std. Error (%)                                               | Mean Return                                                                       | Std. Error                                                                                                           |
|------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 33               | 12                                                           | -4716                                                                             | 790                                                                                                                  |
| 27               | 11                                                           | -5131                                                                             | 814                                                                                                                  |
| 13               | 9                                                            | -5234                                                                             | 578                                                                                                                  |
| 0                | 0                                                            | -7840                                                                             | 308                                                                                                                  |
| 73               | 11                                                           | -1585                                                                             | 518                                                                                                                  |
| 27               | 11                                                           | -5013                                                                             | 649                                                                                                                  |
| 0                | 0                                                            | -6859                                                                             | 181                                                                                                                  |
| 40               | 13                                                           | -4164                                                                             | 883                                                                                                                  |
| 40               | 13                                                           | -4229                                                                             | 869                                                                                                                  |
| 33               | 12                                                           | -3459                                                                             | 604                                                                                                                  |
| 13               | 9                                                            | -5562                                                                             | 525                                                                                                                  |
|                  | 33<br>27<br>13<br>0<br>73<br>27<br>0<br>40<br>40<br>40<br>33 | 33 12<br>27 11<br>13 9<br>0 0<br>73 11<br>27 11<br>0 0<br>40 13<br>40 13<br>33 12 | 33 12 -4716 27 11 -5131 13 9 -5234 0 0 -7840  73 11 -1585 27 11 -5013 0 0 -6859  40 13 -4164 40 13 -4229 33 12 -3459 |

Outperforms behavioral cloning, both naively (BC Naive) and filtering by whole trajectories (VLM BC)

Outperforms offline RL with ground truth (GT) reward

Outperforms offline RL with VLM as reward (VLM+TD3+BC) Outperforms method with VLM as preferences (S-DPO)

Removing filtering or retrospective filtering decreases performance Removing non-Markov prompt decreases performance

Removing weighting of trajectories decreases performance





