FCC PART 15, SUBPART B and C TEST REPORT

for

SMARTCROP

MODEL: 15030201-A

Prepared for

SMARTFIELD, INC. 2601 SE LOOP 289 LUBBOCK, TEXAS 79404

Prepared by: Kyle

Fajimoto

KYLE FUJIMOTO

Approved by: James Rom

JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: DECEMBER 28, 2010

	REPORT		APPENDICES			TOTAL	
	BODY	A	В	C	D	E	
PAGES	20	2	2	2	11	43	80

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

Model: 15030201-A

TABLE OF CONTENTS

Sectio	n / Title	PAGE
GENE	RAL REPORT SUMMARY	4
SUMM	ARY OF TEST RESULTS	5
1.	PURPOSE	6
2.1 2.2 2.3 2.4 2.5 2.6	ADMINISTRATIVE DATA Location of Testing Traceability Statement Cognizant Personnel Date Test Sample was Received Disposition of the Test Sample Abbreviations and Acronyms	7 7 7 7 7 7
3.	APPLICABLE DOCUMENTS	8
4. 4.1 4.1.	DESCRIPTION OF TEST CONFIGURATION Description of Test Configuration - EMI Cable Construction and Termination	9 9 10
5. 5.1 5.2	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT EUT and Accessory List EMI Test Equipment for Brea Facility	11 11 12
6. 6.1 6.2	TEST SITE DESCRIPTION Test Facility Description EUT Mounting, Bonding and Grounding	13 13 13
7. 7.1	CHARACTERISTICS OF THE TRANSMITTER Antenna Gain	14 14
8.1 8.1. 8.1. 8.2 8.3 8.4 8.5 8.6		15 15 15 16 18 18 18 19
9.	CONCLUSIONS	20

LIST OF APPENDICES

APPENDIX	TITLE		
Α	Laboratory Accreditations and Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated and Conducted Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map and Layout of 3 Meter Radiated Site

Model: 15030201-A

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST, or any other agency of the U.S. Government.

Device Tested: SmartCrop

Model: 15030201-A

S/N: N/A

Product Description: See Expository Statement.

Modifications: The EUT was not modified during the testing.

Manufacturer: Smartfield, Inc.

2601 SE Loop 289 Lubbock, Texas 79404

Test Dates: November 30; December 2, 3, and 6, 2010

Test Specifications: EMI requirements

Limits: CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209,

and 15.247

Test Procedure: ANSI C63.4

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz – 30 MHz	This test was not performed because the EUT operates on battery power only and cannot be plugged into the AC public mains.
2	Spurious Radiated RF Emissions, 10 kHz – 9.3 GHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, section 15.247(d)
3	Fundamental and Emissions produced by the intentional radiator in non-restricted bands, 10 kHz – 9.3 GHz	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247(d)
4	Emissions produced by the intentional radiator in restricted bands, 10 kHz – 9.3 GHz	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.205, 15.209(a), and section 15.247 (d)
5	6 dB Bandwidth	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247(a)(2)
6	Peak Power Output	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247(b)(3)
7	RF Conducted Antenna Test	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247(d)
8	Peak Power Spectral Density Conducted from the Intentional Radiator to the Antenna	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (e)

PURPOSE 1.

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the SmartCrop, Model: 15030201-A. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests of the testing described herein were performed at the test facility of Compatible Electronics at 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Smartfield, Inc.

Tommy Martin CEO Joel Hohenberger Engineer

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer
James Ross Test Engineer
Alex Benitez Test Technician

2.4 Date Test Sample was Received

The test sample was received prior to the first date of testing.

2.5 Disposition of the Test Sample

The sample has not been returned to Smartfield, Inc. as of December 28, 2010.

2.6 Abbreviations and Acronyms

RF

The following abbreviations and acronyms may be used in this document.

EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
LO	Local Oscillator
LISN	Line Impedance Stabilization Network
NCR	No Calibration Required
N/A	Not Applicable
Tx	Transmitter
Rx	Receive or Receiver

Radio Frequency

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators
ANSI C63.4 2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
FCC Title 47, Part 15 Subpart B	FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The SmartCrop, Model: 15030201-A (EUT), was tested as a stand-alone unit and mounted at a 45 degree angle. The EUT was continuously transmitting or receiving depending on the test being performed.

The channel for the EUT was changed via connecting a serial cable from the EUT's diagnostic port to a computer system. This cable was only connected when the channel needed to be changed and was removed during the testing. This cable is only connected for development and testing purposes and is not available to the end user.

It was determined that the emissions were at their highest level when the EUT was operating in the above configurations. The final emissions data was taken in these modes of operation and any cables were maximized. All initial investigations were performed with the measurement receive in manual mode scanning the frequency range continuously. Photographs of the test setup are in Appendix D of this report.

Model: 15030201-A

4.1.1 Cable Construction and Termination

<u>Cable 1</u> (To Change Channels Only)

This is a 20-centimeter unshielded cable connecting the EUT to the TTL converter. The cable has a 14 pin connector at the EUT end and a D-9 pin metallic connector at the TTL converter end.

Cable 2 (To Change Channels Only)

This is a 2-meter braid and foil shielded cable connecting the computer to the TTL converter. The cable has a D-9 pin metallic connector at each end. The shield of the cable was grounded to the chassis via the connectors

Cable 3 (To Change Channels Only)

This is a 2-meter braid and foil shielded connecting the computer to the monitor. The cable has a high desntiy D-15 metallic connector at at the computer end and is hard wired into the monitor. The shield of the cable was grounded to the chassis via the connector.

<u>Cable 4</u> (To Change Channels Only)

This is a 2-meter foil shielded connecting the computer to the keyboard. The cable has a 6 pin mini DIN connector at the computer end and is hard wired into the keyboard. The shield of the cable was grounded to the chassis via the connector.

<u>Cable 5</u> (To Change Channels Only)

This is a 2-meter foil shielded connecting the computer to the mouse. The cable has a 6 pin mini DIN connector at the computer end and is hard wired into the mouse. The shield of the cable was grounded to the chassis via the connector.

Model: 15030201-A

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
SMARTCROP (EUT)	SMARTFIELD, INC.	15030201-A	N/A	W9B15030201-A
TTL CONVERTER (for changing channels only)	B&B ELECTRONICS	232LPTTL33	N/A	N/A
COMPUTER (for changing channels only)	DELL	DH6	HC7R431	DoC
MONITOR (for changing channels only)	ALAWAR	P/N: 997-2282-00	23T234400800	DoC
KEYBOARD (for changing channels only)	DELL	RT7D20	CN-04N454-37172- 4C3-010J	AQ6-7D20
MOUSE (for changing channels only)	DELL	M056V0A	G0P028G6	DoC

Model: 15030201-A

5.2 EMI Test Equipment for Brea Facility

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE		
	GENERAL TEST EQUIPMENT USED FOR ALL RF EMISSIONS TESTS						
Computer	Hewlett Packard	4530	US91912319	N/A	N/A		
EMI Receiver	Rohde & Schwarz	ESIB40	100218	April 9, 2009	April 9, 2011		
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A		
	RF RA	DIATED EMISS	SIONS TEST EQ	QUIPMENT			
Biconical Antenna	Com-Power	AB-900	15250	June 18, 2010	June 18, 2011		
Log Antenna	Com-Power	AL-100	16252	June 9, 2010	June 9, 2011		
Preamplifier	Com-Power	PA-102	1017	January 6, 2010	January 6, 2011		
Horn Antenna	Com-Power	AH-118	071175	March 18, 2010	March 18, 2012		
Loop Antenna	Com-Power	AL-130	17089	September 28, 2008	September 28, 2011		
Microwave Preamplifier	Com-Power	PA-122	181921	March 10, 2010	March 10, 2011		
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A		
	RF CON	DUCTED EMIS	SIONS TEST E	QUIPMENT			
Emissions Program	Compatible Electronics	2.3 (SR19)	N/A	N/A	N/A		
LISN	Com Power	LI-215	12078	June 14, 2010	June 14, 2011		
LISN	Com Power	LI-215	12082	June 14, 2010	June 14, 2011		
Transient Limiter	Seward	252A910	1	November 2, 2010	November 2, 2011		

Model: 15030201-A

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

Model: 15030201-A

7. CHARACTERISTICS OF THE TRANSMITTER

7.1 Antenna Gain

The antenna is a ½ wave dipole and has a gain of 2.15 dBi.

Model: 15030201-A

8. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

8.1 RF Emissions

8.1.1 Conducted Emissions Test

The EMI Receiver was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the EMI Receiver input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the EMI Receiver. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the EMI Receiver at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

This test was not performed because the EUT operates on battery power only and cannot be plugged into the AC public mains.

Model: 15030201-A

8.1.2 Radiated Emissions (Spurious and Harmonics) Test

The EMI Receiver was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifiers Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies from 1 GHz to 9.3 GHz. The EMI Receiver was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the EMI Receiver records the highest measured reading over all the sweeps.

The quasi-peak function was used only for those readings which are marked accordingly on the data sheets.

The frequencies above 1 GHz were averaged manually by narrowing the video filter down to 10 Hz and putting the sweep time on AUTO on the spectrum analyzer to keep the amplitude reading calibrated.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 9.3 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

Model: 15030201-A

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3-meter test distance to obtain the final data.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.247 (d). Please see the data sheets located in Appendix E.

Model: 15030201-A

8.2 6 dB Bandwidth

The 6 dB bandwidth was measured using the EMI Receiver. The bandwidth was measured using a direct connection from the RF out on the EUT. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz.

Test Results:

This test complies with the relevant requirements of CFR Title 47, Part 15, Subpart C section 15.247 (a)(2).

8.3 Peak Output Power

The Peak Output Power was measured using the EMI Receiver. The peak output power was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was 3 MHz and the video bandwidth was 10 MHz. The cable loss was also added back into the reading using the reference level offset.

Test Results:

This test complies with the relevant requirements of CFR Title 47, Part 15, Subpart C section 15.247 (b)(3).

8.4 RF Antenna Conducted Test

The RF antenna conducted test was taken using the EMI Receiver. The RF antenna conducted test was measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth was 100 kHz, and the video bandwidth 1 MHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

Test Results:

This test complies with the relevant requirements of CFR Title 47, Part 15, Subpart C section 15.247 (d).

Model: 15030201-A

8.5 Spectral Density Output

The spectral density output was measured using the EMI Receiver. The spectral density output was measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth was 3 kHz, and the video bandwidth was 10 kHz. The highest 1.5 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

Test Results:

This test complies with the relevant requirements of CFR Title 47, Part 15, Subpart C section 15.247 (e).

8.6 RF Band Edges

The RF band edges were taken at the edges of the ISM spectrum (902 MHz when the EUT was on the low channel and 928 MHz when the EUT was on the high channel) using the EMI Receiver. The RBW was set to 100 kHz and the VBW was set to 300 kHz. Plots of the fundamental were taken to ensure the amplitude at the band edges were at least 20 dB down from the peak of the fundamental emission.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power at the band edges at 902 MHz and 928 MHz meet the requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). Please see the data sheets located in Appendix E.

Model: 15030201-A

9. CONCLUSIONS

The SmartCrop, Model: 15030201-A (EUT), as tested, meets all of the specification limits defined in FCC Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.247.

Report Number: **B01217D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report *SmartCrop*

Model: 15030201-A

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

Report Number: **B01217D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report *SmartCrop*

Model: 15030201-A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025. Please follow the link to the NIST/NVLAP site for each of our facilities' NVLAP certificate and scope of accreditation NVLAP listing links

Agoura Division / Brea Division / Silverado/Lake Forest Division .Quote from ISO-ILAC-IAF Communiqué on 17025:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."

ANSI listing CETCB

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

US/EU MRA list NIST MRA site

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). **APEC MRA list** NIST MRA site

We are also listed for IT products by the following country/agency:

VCCI Support member: Please visit http://www.vcci.jp/vcci_e/

FCC Listing, from FCC OET site<u>FCC test lab search</u> https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm

Compatible Electronics IC listing can be found at: http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home

SDABG1

Model: WL430220

APPENDIX B

MODIFICATIONS TO THE EUT

Model: 15030201-A

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and Subpart C specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

SmartCrop

Model: 15030201-A

S/N: N/A

There were no additional models covered under this report.

APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

Model: 15030201-A

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: PLOT MAP AND LAYOUT OF 3 METER RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

X = GROUND RODS

OPEN LAND > 15 METERS

= GROUND SCREEN

D = TEST DISTANCE (meters)

= WOOD COVER

FRONT VIEW

SMARTFIELD, INC.
SMARTCROP
MODEL: 15030201-A

FCC SUBPART B and C – RADIATED EMISSIONS

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

SMARTFIELD, INC.
SMARTCROP
MODEL: 15030201-A

FCC SUBPART B and C – RADIATED EMISSIONS

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15250

CALIBRATION DATE: JUNE 18, 2010

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	12.8	100	11.5
35	11.3	120	13.6
40	10.8	140	12.5
45	10.1	160	13.2
50	11.0	180	15.5
60	11.1	200	16.9
70	7.3	250	16.4
80	7.5	275	18.7
90	8.3	300	19.5

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16252

CALIBRATION DATE: JUNE 9, 2010

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	12.7	700	19.5
400	16.1	800	20.9
500	16.9	900	20.8
600	20.1	1000	21.5

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: JANUARY 6, 2010

Ī					
FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)		
30	38.3	300	38.2		
40	38.4	350	38.1		
50	38.2	400	38.5		
60	38.2	450	38.0		
70	38.3	500	37.9		
80	38.1	550	38.2		
90	38.2	600	38.2		
100	38.3	650	37.7		
125	38.2	700	38.3		
150	38.3	750	38.3		
175	38.3	800	37.4		
200	38.1	850	37.5		
225	38.2	900	37.6		
250	38.3	950	37.4		
275	38.2	1000	37.3		

COM POWER AH-118

HORN ANTENNA

S/N: 071175

CALIBRATION DATE: MARCH 18, 2010

FREQUENCY	FACTOR	FREQUENCY	FACTOR		
(GHz)	(dB)	(GHz)	(dB)		
1.0	22.2	10.0	39.8		
1.5	24.2	10.5	40.2		
2.0	27.2	11.0	39.7		
2.5	27.8	11.5	39.9		
3.0	30.5	12.0	41.7		
3.5	30.9	12.5	42.7		
4.0	31.9	13.0	42.3		
4.5	33.2	13.5	40.3		
5.0	33.6	14.0	42.6		
5.5	36.2	14.5	43.4		
6.0	35.8	15.0	41.9		
6.5	36.1	15.5	40.8		
7.0	37.9	16.0	41.0		
7.5	37.4	16.5	41.5		
8.0	38.0	17.0	44.5		
8.5	38.8	17.5	47.6		
9.0	38.0	18.0	50.8		
9.5	39.2				

COM-POWER PA-122

PREAMPLIFIER

S/N: 181921

CALIBRATION DATE: MARCH 10, 2010

FREQUENCY	FACTOR	FREQUENCY	FACTOR		
(GHz)	(dB)	(GHz)	(dB)		
1.0	35.53	10.0	34.78		
1.5	34.92	10.5	34.36		
2.0	34.63	11.0	33.14		
2.5	34.42	11.5	34.42		
3.0	34.40	12.0	34.24		
3.5	34.36	12.5	34.95		
4.0	34.11	13.0	34.62		
4.5	33.61	13.5	35.24		
5.0	33.83	14.0	35.40		
5.5	34.53	14.5	36.66		
6.0	35.09	15.0	35.98		
6.5	35.58	15.5	35.94		
7.0	36.50	16.0	35.80		
7.5	34.83	16.5	34.98		
8.0	34.08	17.0	35.00		
8.5	33.57	17.5	34.25		
9.0	34.68	18.0	33.51		
9.5	35.84	18.5	32.88		

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: SEPTEMBER 29, 2008

FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-41.57	9.93
0.01	-42.06	9.44
0.02	-42.43	9.07
0.05	-42.50	9.00
0.07	-42.10	9.40
0.1	-42.03	9.47
0.2	-44.50	7.00
0.3	-41.93	9.57
0.5	-41.90	9.60
0.7	-41.73	9.77
1	-41.23	10.27
2	-40.90	10.60
3	-41.20	10.30
4	-41.30	10.20
5	-40.70	10.80
10	-41.10	10.40
15	-42.17	9.33
20	-42.00	9.50
25	-42.20	9.30
30	-43.10	8.40

SmartCrop Model: 15030201-A

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

SmartCrop Model: 15030201-A

FCC 15.247

Smartfield, Inc. Date:12/2/2010 SmartCrop Labs: B and D

Model: 15030201-A Tested By: Alex Benitez

Low Channel Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
904.16		V			Peak			Measurement
904.16		V			Avg			Taken via Conducted
					211			
1808.3		V			Peak			Not in
1808.3		V			Avg			Restricted Band
2712.4	54.21	V	74	-19.79	Peak	1.2	225	
2712.4	41.71	V	54	-12.29	Avg	1.2	225	
3616.6	55.84	V	74	-18.16	Peak	1.1	225	
3616.6	39.76	V	54	-14.24	Avg	1.1	225	
4520.8	53.82	V	74	-20.18	Peak	2	90	
4520.8	39.77	V	54	-14.23	Avg	2	90	
5424.9	56.94	V	74	-17.06	Peak	1.5	180	
5424.9	42.35	V	54	-11.65	Avg	1.5	180	
6329.1								No Emisson
6329.1								Detected
7233.2								No Emisson
7233.2								Detected
8137.4								No Emisson
8137.4								Detected
9041.6								No Emisson
9041.6								Detected

SmartCrop Model: 15030201-A

FCC 15.247

Smartfield, Inc.Date: 12/2/2010SmartCropLabs: B and DModel: 15030201-ATested By: Alex Benitez

Low Channel Transmit Mode

Freq.	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
904.16	,	H			Peak	` '	, ,	Measurement
904.16		Н			Avg			Taken via Conducted
1808.3		Н			Peak			Not in
1808.3		Н			Avg			Restricted Band
2712.4	44.77	Н	74	-29.23	Peak	1.1	90	
2712.4	32.33	Н	54	-21.67	Avg	1.1	90	
3616.6	42.96	Н	74	-31.04	Peak	1	135	
3616.6	31.35	Н	54	-22.65	Avg	1	135	
4520.8	48.81	Н	74	-25.19	Peak	2.5	135	
4520.8	36.4	Н	54	-17.6	Avg	2.5	135	
5424.9	60.05	Н	74	-13.95	Peak	2.2	45	
5424.9	44.35	Н	54	-9.65	Avg	2.2	45	
6329.1								No Emission
6329.1								Detected
7233.2								No Emission
7233.2								Detected
8137.4								No Emission
8137.4								Detected
00//								=
9041.6								No Emission
9041.6								Detected

Model: 15030201-A

FCC 15.247

Smartfield, Inc.

Date: 11/30/2010

SmartCrop

Labs: B and D

Model: 15030201-A Tested By: Kyle Fujmoto

Middle Channel Transmit Mode

Freq.	Level	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
913.94	(abat)	V V			Peak	(111)	(acg)	Measurement
913.94		V			Avg			Taken via Conducted
313.54		v			Avg			Taken via Conducted
1827.88		V			Peak			Not in
1827.88		V			Avg			Restricted Band
2741.82	61.88	V	74	-12.12	Peak	1.15	315	
2741.82	50.79	V	54	-3.21	Avg	1.15	315	
3655.76	58.27	V	74	-15.73	Peak	1.15	315	
3655.76	41.74	V	54	-12.26	Avg	1.15	315	
4569.7	62.39	V	74	-11.61	Peak	2	90	
4569.7	44.5	V	54	-9.5	Avg	2	90	
5483.64		V			Peak			Not in
5483.64		V			Avg			Restricted Band
6397.58								No Emission
6397.58								Detected
7311.52								No Emission
7311.52								Detected
8225.46								No Emission
8225.46								
0223.40								Detected
9139.4								No Emisson
9139.4								Detected
-								

Model: 15030201-A

FCC 15.247

Smartfield, Inc. Date: 11/30/2010 SmartCrop Labs: B and D

Model: 15030201-A Tested By: Kyle Fujmoto

Middle Channel Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
913.94		Н			Peak			Measurement
913.94		Н			Avg			Taken via Conducted
1827.88		Н			Peak			Not in
1827.88		Н			Avg			Restricted Band
2741.82	46.76	Н	74	-27.24	Peak	3	270	
2741.82	33.91	Н	54	-20.09	Avg	3	270	
3655.76	44.73	Н	74	-29.27	Peak	1	135	
3655.76	33.09	Н	54	-20.91	Avg	1	135	
4569.7	55.03	Н	74	-18.97	Peak	2.75	135	
4569.7	41.16	Н	54	-12.84	Avg	2.75	135	
5483.64		Н			Peak			Not in
5483.64		Н			Avg			Restricted Band
6397.58								No Emission
6397.58								Detected
7311.52								No Emission
7311.52								Detected
8225.46	-							No Emission
8225.46								Detected
9139.4								No Emission
9139.4								Detected

FCC 15.247

Date: 12/2/2010 Smartfield, Inc. SmartCrop Labs: B and D

Model: 15030201-A Tested By: Alex Benitez

High Channel Transmit Mode

_					Peak /	Ant.	Table	
Freq. (MHz)	Level	Pol (v/h)	Limit	Margin	QP / Avg	Height (m)	Angle (deg)	Comments
926.17	(abav)	V V			Peak	(111)	(ucg)	Measurement
926.17		V			Avg			Taken via Conducted
020					, ., .			raken via contacted
1852.3		V			Peak			Not in
1852.3		V		/	Avg			Restricted Band
2778.5	52.21	V	74	-74	Peak	1.15	315	
2778.5	40.46	V	54	-13.54	Avg	1.15	315	
3704.6	45.73	V	74	-28.27	Peak	1.15	315	
3704.6	33.25	V	54	-20.75	Avg	1.15	315	
4630.8	61.67	V	74	-12.33	Peak	2	90	
4630.8	44.16	V	54	-9.84	Avg	2	90	
5557		V			Peak			Not in
5557		V			Avg			Restricted Band
6483.1								No Emission
6483.1								Detected
7409.3								No Emission
7409.3								Detected
8335.5								No Emission
8335.5								Detected
9261.7								No Emission
9261.7								Detected

FCC 15.247

Smartfield, Inc. Date: 12/2/2010 SmartCrop Labs: B and D

Model: 15030201-A Tested By: Alex Benitez

High Channel Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
926.17		Н			Peak			Measurement
926.17		Н	1		Avg			Taken via Conducted
							2	
1852.3		Н			Peak			Not in
1852.3		Н			Avg			Restricted Band
2778.5	42.23	Н	74	-31.77	Peak	1.15	45	
2778.5	30.02	Н	54	-23.98	Avg	1.15	45	
3704.6		Н	74	-74	Peak			No Emission
3704.6		Н	54	-54	Avg			Detected
4630.8	53.7	Н	74	-20.3	Peak	2	135	
4630.8	39.38	Н	54	-14.62	Avg	2	135	
5557		Н			Peak			Not in
5557		Н			Avg			Restricted Band
0.400.4								
6483.1		H			Peak			Not in
6483.1		Н			Avg			Restricted Band
7409.3								No Emission
7409.3								Detected
8335.5								No Emission
8335.5								Detected
9261.7								No Emission
9261.7								Detected

FCC Class B and RSS-210

Smartfield, Inc.

Date: 12/03/2010

SmartCrop

Labs: B and D

Model: 15030201-A Tested By: Kyle Fujimoto

Receiver Portion - 1 GHz to 9.3 GHz Low Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Emissions Found for the
								Receiver Mode
								from 1 GHz to 9.3 GHz
								for both Vertical and Horizontal
								Polarizations

Model: 15030201-A

FCC Class B and RSS-210

Smartfield, Inc. Date: 12/03/2010 SmartCrop Labs: B and D

Model: 15030201-A Tested By: Kyle Fujimoto

Receiver Portion - 1 GHz to 9.3 GHz Middle Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Emissions Found for the
								Receiver Mode
								from 1 GHz to 9.3 GHz
								for both Vertical and Horizontal
								Polarizations

SmartCrop Model: 15030201-A

FCC Class B and RSS-210

Smartfield, Inc.

Date: 12/03/2010

SmartCrop

Labs: B and D

Model: 15030201-A Tested By: Kyle Fujimoto

Receiver Portion - 1 GHz to 9.3 GHz High Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Emissions Found for the
								Receiver Mode
								from 1 GHz to 9.3 GHz
								for both Vertical and Horizontal
								Polarizations

Model: 15030201-A

FCC 15.247 and FCC Class B

Smartfield, Inc. Date: 12/03/2010 SmartCrop Labs: B and D

Model: 15030201-A Tested By: Kyle Fujimoto

Non Harmonic Emissions from the Tx - 1 GHz to 9.3 GHz Low Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1004.07	35.73	Н	54	-18.27	Peak	2.5	45	
1004.11	35.18	V	54	-18.82	Peak	1.25	55	
1104.31	41.81	Н	54	-12.19	Peak	2.5	170	
1104.31	38.81	V	54	-15.19	Peak	1.35	165	
4414.12	44.66	V	54	-9.34	Peak	1.25	45	
4418.76	44.18	Н	54	-9.82	Peak	1.25	125	
4619.26	51.36	Н	54	-2.64	Peak	1.5	225	
4619.3	38.68	Н	54	-15.32	Avg	1.5	225	
4619.29	52.44	V	54	-1.56	Peak	1.35	55	
4619.29	39.68	V	54	-14.32	Avg	1.35	55	
5222.33	54.11	Н	54	0.11	Peak	1.25	45	
5222.33	41.01	Н	54	-12.99	Avg	1.25	45	
5222.36	53.32	V	54	-0.68	Peak	1.25	55	
5222.36	40.89	V	54	-13.11	Avg	1.25	55	
5322.49	53.36	Н	54	-0.64	Peak	1.25	55	
5322.49	41.14	Н	54	-12.86	Avg	1.25	55	

SmartCrop Model: 15030201-A

FCC 15.247 and FCC Class B

Smartfield, Inc. Date: 12/03/2010 SmartCrop Labs: B and D

Model: 15030201-A Tested By: Kyle Fujimoto

Non Harmonic Emissions from the Tx - 1 GHz to 9.3 GHz Middle Channel

					Peak /	Ant.	Table	
Freq.	Level	Pol (v/h)	Limit	Morain	QP /	Height	Angle	Comments
(MHz) 1015.61	31.77	Poi (v/n) H	54	Margin -22.23	Avg	(m) 1.5	(deg) 0	Comments
1015.61	33.31	V	54 54	-22.23	Peak Peak	1.25	135	
	39.18	V	54 54	-14.82	Peak		135	
1116.4						1.25		
1117.6	40.51	Н	54	-13.49	Peak	1.5	270	
4468.92	46.47	Н	54	-7.53	Peak	2.5	90	
4469.06	46.74	V	54	-7.26	Peak	1.5	135	
4670.11	52.27	H	54	-1.73	Peak	1.5	225	
4670.1	39.11	H	54	-14.89	Avg	1.5	225	
4670.18	55.94	V	54	1.94	Peak	1.5	0	
4670.18	42.01	V	54	-11.99	Avg	1.5	0	
4722.37	46.11	Н	54	-7.89	Peak	1.25	135	
4722.57	46.37	V	54	-7.63	Peak	1.25	55	
5281.35	49.48	V	54	-4.52	Peak	1.5	0	
5281.49	55.51	Н	54	1.51	Peak	1.25	135	
5281.49	42.27	Н	54	-11.73	Avg	1.25	135	
5383.25	51.48	Н	54	-2.52	Peak	1.5	0	
5383.3	39.61	Н	54	-14.39	Avg	1.5	0	

SmartCrop Model: 15030201-A

FCC 15.247 and FCC Class B

Smartfield, Inc. Date: 12/03/2010 SmartCrop Labs: B and D

Model: 15030201-A Tested By: Kyle Fujimoto

Non Harmonic Emissions from the Tx - 1 GHz to 9.3 GHz High Channel

Freq.	Level				Peak / QP /	Ant. Height	Table Angle	
(MHz)		Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
1028.97	30.42	V	54	-23.58	Peak	1.25	125	
1131.33	34.46	V	54	-19.54	Peak	1.25	135	
4734.05	51.4	V	54	-2.6	Peak	1.25	135	
4734.05	34.21	V	54	-19.79	Avg	1.35	155	
1029	32.09	Н	54	-21.91	Peak	1.45	165	
1132.49	34.34	Н	54	-19.66	Peak	1.25	165	
4731.71	47.79	Н	54	-6.21	Peak	1.25	155	
							l	

Tested by: Alex Benitez

Model: 15030201-A

FCC 15.247 and FCC Class B

Model: 15030201-A

Smartfield, Inc. Date: 12/02/2010

SmartCrop Lab: D

Non Harmonic Emissions and Digital Portion - 10 kHz to 1000 MHz

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
803.54	35.58	Н	46	-10.42	Peak	2	180	LO of Rx - Middle Channel
803.54	40.69	V	46	-5.31	Peak	1.25	135	LO of Rx - Middle Channel
					,			
812.38	41.35	Н	46	-4.65	Peak	1.25	125	LO of Rx - Low Channel
812.38	40.36	V	46	-5.64	Peak	1	90	LO of Rx - Low Channel
821.24	38.64	Н	46	-7.36	Peak	1.25	135	LO of Rx - High Channel
821.24	40.28	V	46	-5.72	Peak	1.25	135	LO of Rx - High Channel
								The other emissions were
								from the Transmitter and
								were only present when
								the Transmitter was active.
								These emissions (from the Tx)
								were not in the restricted band
								and thus were measured via
								a conducted measurement.
								Stopping the transmission of
								the Transmitter causes these
								emissions to cease.

SmartCrop Model: 15030201-A

-6 dB BANDWIDTH

DATA SHEETS

.....

Bandwidth 6 dB - Low Channel

SmartCrop Model: 15030201-A

Date: 3.DEC.2010 14:10:28

Bandwidth 6 dB - Middle Channel

SmartCrop Model: 15030201-A

Date: 3.DEC.2010 14:05:05

Bandwidth 6 dB – High Channel

SmartCrop Model: 15030201-A

PEAK POWER OUTPUT

DATA SHEETS

Date: 3.DEC.2010 15:58:28

Peak Power Output - Low Channel

Model: 15030201-A

Peak Power Output - Middle Channel

Model: 15030201-A

Peak Power Output - High Channel

SmartCrop Model: 15030201-A

RF ANTENNA CONDUCTED

DATA SHEETS

Date: 3.DEC.2010 16:01:55

RF Antenna Conducted Test – Low Channel – 2 MHz to 900 MHz

RF Antenna Conducted Test – Low Channel – 900 MHz to 1 GHz

SmartCrop Model: 15030201-A

COMPATIBLE ELECTRONICS

Marker 1 [T2] RBW 100 kHz RF Att 40 dB Ref Lvl -41.64 dBm VBW 1 MHz 15.3 dBm 1.80160321 GHz dBm SWT 1 s Unit 0.3 dB Offset A 10 -10 .59 dBm -D1 -13 IN1 -20 2VIEW 2MA -30 P0 -40 -50 -60 -70 F2 -80 -84.7 Start 1 GHz 400 MHz/ Stop 5 GHz

Date: 3.DEC.2010 16:02:24

RF Antenna Conducted Test - Low Channel - 1 GHz to 5 GHz

SmartCrop Model: 15030201-A

RF Antenna Conducted Test - Low Channel - 5 GHz to 9.3 GHz

SmartCrop Model: 15030201-A

RF Antenna Conducted Test - Middle Channel - 2 MHz to 900 MHz

RF Antenna Conducted Test - Middle Channel - 900 MHz to 1 GHz

RF Antenna Conducted Test – Middle Channel – 1 GHz to 5 GHz

SmartCrop Model: 15030201-A

RF Antenna Conducted Test - Middle Channel- 5 GHz to 10 GHz

SmartCrop

Model: 15030201-A

Page E33

Marker 1 [T2] RBW 100 kHz RF Att 40 dB Ref Lvl -51.90 dBm VBW 1 MHz 15.3 dBm 788.42484970 MHz 840 ms dBm SWT Unit 0.3 dB Offset A 10 -10 .19 dBm -D1 -13 IN1 -20 2VIEW 2MA -30 P0 -40 -50 harmon the many harmon of many harmon -60 -70 -80

6.DEC.2010 Date: 08:44:21

Start 2 MHz

RF Antenna Conducted Test – High Channel – 2 MHz to 900 MHz

89.8 MHz/

-84.7

Stop 900 MHz

RF Antenna Conducted Test – High Channel – 900 MHz to 1 GHz

SmartCrop Model: 15030201-A

RF Antenna Conducted Test – High Channel – 1 GHz to 5 GHz

SmartCrop Model: 15030201-A

RF Antenna Conducted Test - High Channel- 5 GHz to 10 GHz

SmartCrop Model: 15030201-A

PEAK POWER SPECTRAL DENSITY

DATA SHEETS

SmartCrop Model: 15030201-A

Date: 3.DEC.2010 15:34:49

Spectral Density Output - Low Channel

Date: 3.DEC.2010 15:23:23

Spectral Density Output - Middle Channel

SmartCrop Model: 15030201-A

Spectral Density Output – High Channel

SmartCrop Model: 15030201-A

BAND EDGE

DATA SHEETS

3.DEC.2010 15:48:03 Date:

Band Edge - Low Channel

Date: 6.DEC.2010 08:41:26

Start 923 MHz

 $Band\ Edge-High\ Channel$

1 MHz/

-60

-70

-80 -84.7

Stop 933 MHz