Teoría de Juegos

Fernando Lozano

Universidad de los Andes

8 de septiembre de 2014

• Fútbol: LADMH vs. MHNTA

• Fútbol: LADMH vs. MHNTA

► LADMH : 4-3-3, 3-4-2-1

• Fútbol: LADMH vs. MHNTA

► LADMH : 4-3-3, 3-4-2-1

► MHNTA : 4-3-3, 4-1-2-2-1, 4-4-2

• Fútbol: LADMH vs. MHNTA

► LADMH : 4-3-3, 3-4-2-1

► MHNTA : 4-3-3, 4-1-2-2-1, 4-4-2

• Fútbol: LADMH vs. MHNTA

► LADMH : 4-3-3, 3-4-2-1

► MHNTA: 4-3-3, 4-1-2-2-1, 4-4-2

• Matriz de pagos (en diferencia de goles):

	MHNTA		
	4-3-3	4-1-2-2-1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

• Fútbol: LADMH vs. MHNTA

► LADMH : 4-3-3, 3-4-2-1

► MHNTA: 4-3-3, 4-1-2-2-1, 4-4-2

• Matriz de pagos (en diferencia de goles):

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

• Qué formación debe usar cada equipo?

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• Matriz de pagos (payoff).

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Matriz de pagos (payoff).
- Jugador fila vs. jugador columna.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \mathbf{a_{ij}} & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Matriz de pagos (payoff).
- Jugador fila vs. jugador columna.
- Si jugador fila selecciona fila i y jugador columna selecciona columna j ganancia de jugador fila (pérdida de jugador columna) es a_{ij} .

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \mathbf{a_{ij}} & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Matriz de pagos (payoff).
- Jugador fila vs. jugador columna.
- Si jugador fila selecciona fila i y jugador columna selecciona columna j ganancia de jugador fila (pérdida de jugador columna) es a_{ij} .
- Juego de suma cero.

• Ganancia promedio en una secuencia de juegos.

- Ganancia promedio en una secuencia de juegos.
- Estrategia pura: igual en todos los juegos.

- Ganancia promedio en una secuencia de juegos.
- Estrategia pura: igual en todos los juegos.
- Estrategia mixta: Seleccionar jugada de acuerdo a probabilidades:

- Ganancia promedio en una secuencia de juegos.
- Estrategia pura: igual en todos los juegos.
- Estrategia mixta: Seleccionar jugada de acuerdo a probabilidades:

Fila:
$$q_1, q_2, ..., q_m$$

- Ganancia promedio en una secuencia de juegos.
- Estrategia pura: igual en todos los juegos.
- Estrategia mixta: Seleccionar jugada de acuerdo a probabilidades:

Fila: q_1, q_2, \dots, q_m Columna: p_1, p_2, \dots, p_n

- Ganancia promedio en una secuencia de juegos.
- Estrategia pura: igual en todos los juegos.
- Estrategia mixta: Seleccionar jugada de acuerdo a probabilidades:

Fila:
$$q_1, q_2, \dots, q_m$$

Columna: p_1, p_2, \dots, p_n

• Existe una estrategia mixta que usada por un jugador no le de ninguna ventaja al otro jugador?

• Suponga que el jugador columna escoge estrategia mixta $\mathbf{p} = [p_1, p_2, \dots, p_n]$

- Suponga que el jugador columna escoge estrategia mixta $\mathbf{p} = [p_1, p_2, \dots, p_n]$
- ullet Si el jugador fila escoge la fila i su ganancia esperada será:

- Suponga que el jugador columna escoge estrategia mixta $\mathbf{p} = [p_1, p_2, \dots, p_n]$
- \bullet Si el jugador fila escoge la fila i su ganancia esperada será:

$$z_i = a_{i1}p_1 + a_{i2}p_2 + \dots + a_{in}p_n$$

- Suponga que el jugador columna escoge estrategia mixta $\mathbf{p} = [p_1, p_2, \dots, p_n]$
- \bullet Si el jugador fila escoge la fila i su ganancia esperada será:

$$z_i = a_{i1}p_1 + a_{i2}p_2 + \dots + a_{in}p_n$$

 \bullet Cómo debe el jugador columna seleccionar su estragegia mixta $\mathbf{p}?$

- Suponga que el jugador columna escoge estrategia mixta $\mathbf{p} = [p_1, p_2, \dots, p_n]$
- \bullet Si el jugador fila escoge la fila i su ganancia esperada será:

$$z_i = a_{i1}p_1 + a_{i2}p_2 + \dots + a_{in}p_n$$

 \bullet Cómo debe el jugador columna seleccionar su estragegia mixta $\mathbf{p}?$

Programa Lineal

Problema Dual

• Por el teorema de dualidad tenemos $z^* =$

• Por el teorema de dualidad tenemos $z^* = y^*$.

- Por el teorema de dualidad tenemos $z^* = y^*$.
- Este es el valor del juego.

- Por el teorema de dualidad tenemos $z^* = y^*$.
- Este es el valor del juego.
- Punto de equilibrio.

 \bullet Si el jugador fila sigue estrategia \mathbf{q} y el jugador columna sigue estrategia \mathbf{p} , la ganancia esperada es

• Si el jugador fila sigue estrategia \mathbf{q} y el jugador columna sigue estrategia \mathbf{p} , la ganancia esperada es $\mathbf{q}^T \mathbf{A} \mathbf{p}$

- Si el jugador fila sigue estrategia \mathbf{q} y el jugador columna sigue estrategia \mathbf{p} , la ganancia esperada es $\mathbf{q}^T \mathbf{A} \mathbf{p}$
- Suponga que el jugador fila escoge estrategia mixta q.

- Si el jugador fila sigue estrategia \mathbf{q} y el jugador columna sigue estrategia \mathbf{p} , la ganancia esperada es $\mathbf{q}^T \mathbf{A} \mathbf{p}$
- Suponga que el jugador fila escoge estrategia mixta q.
- El jugador columna quiere escoger estrategia \mathbf{p} que minimice $\mathbf{p}^T \mathbf{A} \mathbf{q}$.

- Si el jugador fila sigue estrategia \mathbf{q} y el jugador columna sigue estrategia \mathbf{p} , la ganancia esperada es $\mathbf{q}^T \mathbf{A} \mathbf{p}$
- Suponga que el jugador fila escoge estrategia mixta q.
- El jugador columna quiere escoger estrategia \mathbf{p} que minimice $\mathbf{p}^T \mathbf{A} \mathbf{q}$.
- Ganancia esperada del jugador fila es

- Si el jugador fila sigue estrategia \mathbf{q} y el jugador columna sigue estrategia \mathbf{p} , la ganancia esperada es $\mathbf{q}^T \mathbf{A} \mathbf{p}$
- Suponga que el jugador fila escoge estrategia mixta q.
- El jugador columna quiere escoger estrategia \mathbf{p} que minimice $\mathbf{p}^T \mathbf{A} \mathbf{q}$.
- Ganancia esperada del jugador fila es mín $_{\mathbf{p}} \mathbf{p}^T \mathbf{A} \mathbf{q}$.

- Si el jugador fila sigue estrategia \mathbf{q} y el jugador columna sigue estrategia \mathbf{p} , la ganancia esperada es $\mathbf{q}^T \mathbf{A} \mathbf{p}$
- Suponga que el jugador fila escoge estrategia mixta q.
- El jugador columna quiere escoger estrategia \mathbf{p} que minimice $\mathbf{p}^T \mathbf{A} \mathbf{q}$.
- Ganancia esperada del jugador fila es $\min_{\mathbf{p}} \mathbf{p}^T \mathbf{A} \mathbf{q}$.
- Que estrategia debe seleccionar el jugador fila?

- Si el jugador fila sigue estrategia \mathbf{q} y el jugador columna sigue estrategia \mathbf{p} , la ganancia esperada es $\mathbf{q}^T \mathbf{A} \mathbf{p}$
- Suponga que el jugador fila escoge estrategia mixta q.
- El jugador columna quiere escoger estrategia \mathbf{p} que minimice $\mathbf{p}^T \mathbf{A} \mathbf{q}$.
- Ganancia esperada del jugador fila es mín $_{\mathbf{p}} \mathbf{p}^T \mathbf{A} \mathbf{q}$.
- Que estrategia debe seleccionar el jugador fila?
 - ▶ La estrategia \mathbf{q}^* que $\underset{\mathbf{maximice}}{\mathbf{maximice}}$ $\underset{\mathbf{p}}{\mathbf{min}}_{\mathbf{p}} \mathbf{p}^T \mathbf{A} \mathbf{q}$.

- Si el jugador fila sigue estrategia \mathbf{q} y el jugador columna sigue estrategia \mathbf{p} , la ganancia esperada es $\mathbf{q}^T \mathbf{A} \mathbf{p}$
- ullet Suponga que el jugador fila escoge estrategia mixta ${f q}$.
- El jugador columna quiere escoger estrategia \mathbf{p} que minimice $\mathbf{p}^T \mathbf{A} \mathbf{q}$.
- Ganancia esperada del jugador fila es $\min_{\mathbf{p}} \mathbf{p}^T \mathbf{A} \mathbf{q}$.
- Que estrategia debe seleccionar el jugador fila?
 - ▶ La estrategia \mathbf{q}^* que $\underset{\mathbf{maximice}}{\mathbf{maximice}} \min_{\mathbf{p}} \mathbf{p}^T \mathbf{A} \mathbf{q}$.
- \bullet Con la estrategia \mathbf{q}^* el jugador columna garantiza una ganancia de por lo menos

$$\min_{\mathbf{p}} \mathbf{p}^T \mathbf{A} \mathbf{q}^* = \max_{\mathbf{q}} \min_{\mathbf{p}} \mathbf{p}^T \mathbf{A} \mathbf{q}$$

• Suponga que el jugador columna escoge estrategia mixta p.

- Suponga que el jugador columna escoge estrategia mixta p.
- El jugador fila quiere escoger estrategia \mathbf{q} que maximice $\mathbf{q}^T \mathbf{A} \mathbf{p}$.

- Suponga que el jugador columna escoge estrategia mixta p.
- El jugador fila quiere escoger estrategia \mathbf{q} que maximice $\mathbf{q}^T \mathbf{A} \mathbf{p}$.
- Pérdida esperada del jugador columna es

- Suponga que el jugador columna escoge estrategia mixta **p**.
- El jugador fila quiere escoger estrategia \mathbf{q} que maximice $\mathbf{q}^T \mathbf{A} \mathbf{p}$.
- Pérdida esperada del jugador columna es máx $_{\mathbf{q}} \mathbf{q}^T \mathbf{A} \mathbf{p}$.

- Suponga que el jugador columna escoge estrategia mixta **p**.
- El jugador fila quiere escoger estrategia \mathbf{q} que maximice $\mathbf{q}^T \mathbf{A} \mathbf{p}$.
- Pérdida esperada del jugador columna es $\max_{\mathbf{q}} \mathbf{q}^T \mathbf{A} \mathbf{p}$.
- Que estrategia debe seleccionar el jugador columna?

- Suponga que el jugador columna escoge estrategia mixta p.
- El jugador fila quiere escoger estrategia \mathbf{q} que maximice $\mathbf{q}^T \mathbf{A} \mathbf{p}$.
- Pérdida esperada del jugador columna es máx $_{\mathbf{q}} \mathbf{q}^T \mathbf{A} \mathbf{p}$.
- Que estrategia debe seleccionar el jugador columna?
 - ▶ La estrategia \mathbf{p}^* que minimice máx $_{\mathbf{q}} \mathbf{q}^T \mathbf{A} \mathbf{p}$.

- Suponga que el jugador columna escoge estrategia mixta p.
- El jugador fila quiere escoger estrategia \mathbf{q} que maximice $\mathbf{q}^T \mathbf{A} \mathbf{p}$.
- Pérdida esperada del jugador columna es $\max_{\mathbf{q}} \mathbf{q}^T \mathbf{A} \mathbf{p}$.
- Que estrategia debe seleccionar el jugador columna?
 - ► La estrategia \mathbf{p}^* que minimice $\max_{\mathbf{q}} \mathbf{q}^T \mathbf{A} \mathbf{p}$.
- Con la estrategia p* el jugador columna garantiza una pérdida de máximo

$$\max_{\mathbf{q}} \mathbf{q}^T \mathbf{A} \mathbf{p}^* = \min_{\mathbf{p}} \max_{\mathbf{q}} \mathbf{q}^T \mathbf{A} \mathbf{p}$$

Teorema

Teorema minimax(von Neumann)

$$\min_{\mathbf{p}} \max_{\mathbf{q}} \mathbf{p}^{T} \mathbf{A} \mathbf{q} = \max_{\mathbf{q}} \min_{\mathbf{p}} \mathbf{p}^{T} \mathbf{A} \mathbf{q}$$

	MHNTA		
	4-3-3	4-1-2-2-1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4-1-2-2-1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4-1-2-2-1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4-1-2-2-1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4-1-2-2-1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

• MHNTA debe resolver:

• Solución: $p_1^* = 0$, $p_2^* = \frac{5}{8}$, $p_3^* = \frac{3}{8}$, $z^* = -\frac{1}{2}$.

	MHNTA		
	4-3-3	4-1-2-2-1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

$$máx$$
 y

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

máx
$$y$$
 sujeto a $2q_1$ $-q_2$ $\geq y$

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

$$\begin{array}{cccc} \text{m\'ax} & y \\ \text{sujeto a} & 2q_1 & -q_2 & \geq y \\ & q_1 & -2q_2 & \geq y \end{array}$$

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

$$\begin{array}{cccc} \text{m\'ax} & y \\ \text{sujeto a} & 2q_1 & -q_2 & \geq y \\ & q_1 & -2q_2 & \geq y \\ & -3q_1 & +2q_2 & \geq y \end{array}$$

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

		MHNTA		
	4-3-3	4-1-2-2-1	4-4-2	
LADMH 4-3-3	2	1	-3	
3-4-2-1	-1	-2	2	

• Solución:

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

• Solución: $y^* =$

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

• Solución: $y^* = -\frac{1}{2}$,

		MHNTA		
	4-3-3	4-1-2-2-1	4-4-2	
LADMH 4-3-3	2	1	-3	
3-4-2-1	-1	-2	2	

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

$$\begin{array}{ccc} q_1 & -2q_2 & = -\frac{1}{2} \\ -3q_1 & +2q_2 & = -\frac{1}{2} \end{array} \right\}$$

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

$$\left. \begin{array}{ll} q_1 & -2q_2 & = -\frac{1}{2} \\ -3q_1 & +2q_2 & = -\frac{1}{2} \end{array} \right\} \, \Rightarrow \,$$

	MHNTA		
	4-3-3	4 - 1 - 2 - 2 - 1	4-4-2
LADMH 4-3-3	2	1	-3
3-4-2-1	-1	-2	2

$$\left. \begin{array}{ccc} q_1 & -2q_2 & = -\frac{1}{2} \\ -3q_1 & +2q_2 & = -\frac{1}{2} \end{array} \right\} \Rightarrow q_1 = \frac{1}{2}, q_2 = \frac{1}{2}$$