Computational Mechanics by Isogeometric Analysis

Dr. L. Dedè. A.Y. 2013/14

Exercises March 13, 2014

 $B ext{--splines}$ and NURBS: hpk--refinements

- 1. Perform different levels of h–, p–, and k–refinements for the univariate B–spline basis functions associated with the following knot vectors:
 - a) $\Xi = \{0, 0, 1, 1\};$
 - b) $\Xi = \{0, 0, 1/2, 1, 1\};$
 - c) $\Xi = \{0, 0, 0, 1/2, 1, 1, 1\};$
 - d) $\Xi = \{0, 0, 0, 1/2, 1/2, 1, 1, 1\}.$

Plot the basis functions obtained with the different refinement procedures by using the MATLAB function display_univariate_nurbs_basis_functions.m.

2. Perform different levels of h-, p-, and k-refinements for the the following curve (circle).

Use the MATLAB function display_nurbs_curve_knotinsertion_orderelevation.m.

3. Starting from point 2), use the knot insertion procedure to locally modify one quarter of the circle.

4. Perform different levels of h-, p-, and k-refinements for the the following surface (cylindrical shell).

 $Use \ the \ MATLAB \ function \ {\tt display_nurbs_surface_knotinsertion_orderelevation.m}.$