COMP 546

Lecture 5

Orientation Selection 1: Simple Cells

Thurs. Jan. 25, 2018

Recall last lecture:

DOG (lateral inhibition), "cross correlation"

Example: an edge image

Example: an edge image

Mach Bands

Are they the result of lateral inhibition in the retina?

ASIDE: Mach bands are well known problem for interpreting x-ray images. Very subtle changes in dark-bright must be detected and the visual system is often fooled.

Retinal ganglion cells encode image differences:

- spectral (wavelength λ), "chromatic"
- spatial (x,y)
- temporal (t) -- will cover this next week
- spectral-spatial (λ, x, y) Assignment 1
- spectral-spatio-temporal (λ, x, y, t) omit

Assignment 1

Single opponent cells

Double opponent cells

Early visual pathway: retina to cortex (V1)

Lateral geniculate nucleus (LGN)

(LGN)

Polar coordinates on the retina

Vertical meridian

Horizontal meridian

Retinotopic Map

retina

Definition: Cells in a visual area are spatially arranged in a *retinotopic map* if physically adjacent cells in that area have adjacent receptive fields (and hence encode image in adjacent regions of the retina)

Some visual area in the brain e.g. LGN, V1

functional magnetic resonance imaging (fMRI)

As in the retina, the density of cells in V1 that represent the fovea is greater than the density the represent the periphery.

What do cells in V1 encode?

(Hubel & Wiesel 1959)

The moving slide (see 35 sec and on...) http://www.youtube.com/watch?v=IOHayh06LJ4

3 minutes of exploration:

https://www.youtube.com/watch?v=Cw5PKV9Rj3o

"Simple Cell"

V1 Orientation Tuning Curve

retina **LGN** V1 **Hubel and Wiesel** suggested this mechanism for elongated receptive field profile of V1 simple cell

Model of orientation selectivity in V1

$$L = \sum_{x,y} f(x - x_0, y - y_0) I(x,y)$$

Cell centered at (x_0, y_0)

Cell response model: half-wave rectification

Response (spike rate)

Quasi-linear: cell response is linear over some range.

How to encode the negative values of L? (similar idea to last lecture)

Line Detector (even)

Edge Detector (odd)

"Gabor" function: classical model of simple cell

Line (even)

Edge (odd)

1D Cosine Gabor

cosine Gabor

1D Sine Gabor

sine Gabor

0.008 0.006 0.004 0.002

-150

-100

-50

0

50

100

150

(Sampled) Cosine

$$\cos(\frac{2\pi}{N}k_x x)$$

 k_{x} is spatial frequency

$$e.g. k_{x} = 8$$

$$N = 256$$

1D Cosine Gabor

*

1D Sine Gabor

2D cosine

$$\cos\left(\frac{2\pi}{N}(k_x x + k_y y)\right)$$

$$e.g. k_x = 4$$

$$k_y = 0$$

$$N = 256$$

2D sine

$$\sin\left(\frac{2\pi}{N}\left(k_x\,x\,+\,k_y\,y\right)\right)$$

$$e.g. k_x = 8$$

$$k_y = 2$$

$$N = 256$$

model of simple cell: 2D Gabor

$$G(x, y, \sigma) \cos\left(\frac{2\pi}{N}(k_x x + k_y y)\right)$$

$$e.g. k_y = 0$$

$$G(x, y, \sigma) \sin\left(\frac{2\pi}{N}(k_x x + k_y y)\right)$$

$$e.g. k_y = 0$$

2D cosine Gabors

2D sine Gabors

 What is the response of a family of Gabor cells to a single image?

e.g. Consider shifted versions of the Gabor cell.

• What is the response of a single Gabor cell to a parameterized family of images?

e.g. thin white line at different positions in receptive field

What is the response of a family of Gabor cells to a single image?

cross correlation with (four) cosine Gabors

cross correlation with (four) sine Gabors

• What is the response of *a family of Gabor cells* to a single image ?

e.g. Consider shifted versions of the Gabor cell.

- What is the response of a single Gabor cell to a parameterized family of images?
 - e.g. thin white line at different positions in receptive field

$$L \equiv \sum_{x,y} cosGabor(x,y) \ I(x,y; \ x_{white \ line})$$

$$L \equiv \sum_{x,y} cosGabor(x,y) \ I(x,y; \ x_{white line})$$

$$G(x, y, \sigma) \cos\left(\frac{2\pi}{N}(k_x x)\right)$$

Non-zero only at *x* position of vertical line

$$L \equiv \sum_{x,y} sinGabor(x,y) \ I(x,y; \ x_{white \ line})$$

$$G(x, y, \sigma) \sin\left(\frac{2\pi}{N}(k_x x)\right)$$

Non-zero only at *x* position of vertical line

