1989 FG8.1

設
$$y \neq \frac{14}{5+3\sin\theta}$$
的最大值。求 y 的值。

If y is the greatest value of $\frac{14}{5+3\sin\theta}$, find the value of y.

1990 FI1.3

若
$$c$$
 是 $\frac{20}{4+2\cos\theta}$ 的最大值,求 c 的值。

If c is the greatest value of $\frac{20}{4+2\cos\theta}$, find the value of c.

1992 HI4

$$x^{\circ}$$
 為一滿足 $\frac{1}{2}\cos x^{\circ} \ge \frac{1}{2}(5-\cos x^{\circ})-2$ 的銳角,求 x 的最大值。

 x° is an acute angle satisfying $\frac{1}{2}\cos x^{\circ} \ge \frac{1}{2}(5-\cos x^{\circ})-2$.

Determine the largest possible value of x.

1998 FI1.1

If a is the maximum value of $\frac{1}{2}\sin^2 3\theta - \frac{1}{2}\cos 2\theta$, find the value of a.

1999 FG3.3

若 c 是 $\log(\sin x)$ 的最大值,其中 $0 < x < \pi$,求 c 之值。

If c is the maximum value of $\log(\sin x)$, where $0 \le x \le \pi$, find the value of c.

2017 HI3

已知 $\triangle ABC$ 的三條邊的長是 $a \cdot b$ 和 c, 其中 $3 \le a \le 5 \le b \le 12 \le c \le 15$, 求當 $\triangle ABC$ 的面積最大時,它的周界是多少?

Given that the three sides of $\triangle ABC$ are of lengths a, b and c, where $3 \le a \le 5 \le b \le 12 \le c \le 15$,

find the perimeter of $\triangle ABC$ when its area attains the maximum value.

Answers

1989 FG8.1	1990 FI1.3	1992 HI4	1998 FI1.1	1999 FG3.3
7	10	60	1	0
2017 HI3				
30				