Dynamic Pricing for Urban Parking Lots

Capstone Project - Summer Analytics 2025

Consulting & Analytics Club × Pathway

Submitted by: Mahi Garg

Date: 09-07-2025

1. Background and Motivation

Urban parking spaces are a scarce resource in high demand. Static pricing strategies lead to inefficiencies such as overcrowding or underutilization. This project explores dynamic pricing as a mechanism to better manage parking lot resources based on real-time demand and competitive context.

2. Project Objective

This project aims to build a real-time pricing engine for 14 urban parking spaces, adjusting prices based on occupancy, queue length, nearby traffic, special days, vehicle type, and competitor pricing. Starting from a base price of \$10, the model ensures smooth and explainable price variations. If a lot is full, it can also suggest rerouting vehicles. The pricing logic begins with Model 1, a simple linear rule based on occupancy, and advances to Model 2, which incorporates a demand function using multiple real-time features.

3. Data Description

The dataset covers 14 parking lots over 73 days, sampled 18 times daily between 8:00 AM and 4:30 PM. Each record captures the real-time state of a parking lot along with features that influence pricing.

Key data elements include:

- Location: Latitude and longitude for proximity and competition.
- Lot Features: Capacity, current occupancy, and queue length.
- Vehicle Type: Car, bike, truck, or cycle.
- Environment: Nearby traffic conditions and special day indicators (e.g., holidays).

4. Methodology

Used Pathway to stream historical data in real time, maintaining timestamp order and processing live inputs for continuous pricing updates.

4.1. Model 1: Baseline Linear Model

Pricing Formula:

$$\operatorname{Price}_{t+1} = \operatorname{Price}_t + \alpha \cdot \left(\frac{\operatorname{Occupancy}}{\operatorname{Capacity}} \right)$$

This model directly links occupancy to price, ensuring higher prices during peak usage and lower prices during off-peak times. It maintains smooth transitions using a 30-minute tumbling window in Pathway.

4.2. Model 2: Demand-Based Model

Demand Function:

$$\mathrm{Demand} = \alpha \cdot \left(\frac{\mathrm{Occupancy}}{\mathrm{Capacity}}\right) + \beta \cdot \mathrm{QueueLength} - \gamma \cdot \mathrm{TrafficLevel} + \delta \cdot \mathrm{IsSpecialDay} + \varepsilon \cdot \mathrm{VehicleWeight}$$

• Weights used for vehicle types (car: 1.5, bike: 1.0, truck: 2.0, cycle: 0.5)

Dynamic Pricing Formula:

$$Price_t = BasePrice \cdot (1 + \lambda \cdot NormalizedDemand)$$

- Price bound: [0.5x, 2x] of base price
- Rationale: The price increases with higher demand and longer queues, decreases during heavy traffic to reflect congestion, and gets a boost on special days or for heavier vehicle types.

5. Real-Time Visualization

- Used Bokeh + Panel for real-time, interactive plots
- ColumnDataSource and HoverTool enabled smooth updates
- Simulated live data using replay_csv() from Pathway

6. Assumptions & Considerations

- ullet Demand function coefficients (lpha, eta, γ , etc.) chosen via trial to reflect real-world influence of features
 - Base price (₹10)
 - Traffic and vehicle weights modelled as numeric proxies (e.g., bike = 1.0, truck = 2.0)
 - Demand is normalized between 0 and 1 for price stability
 - Geo-expansion logic assumes Lat-Long clusters for new lots

7. Insights

Some lots exhibit steep price changes day-to-day, while others remain stable.

High volatility suggests dynamic demand zones or traffic hotspots.

Occupancy and queue length have the strongest positive influence on pricing.

Traffic conditions show a slight negative correlation — reducing prices in congestion.

8. Results

- Model 1: Price based on occupancy
- Model 2: Factors in queue, traffic, vehicle type, special days
- Model 2 is smoother, more adaptive
- Higher prices on special days, high demand
- Real-time plots show trends and competitor comparison

7. Future Scope

- Real-time dynamic pricing has huge potential for urban infrastructure management
- This project lays the foundation for:
 - Price optimization
 - User rerouting
 - o Revenue maximization strategies

8. Resources

- Pathway Developer Guide: https://pathway.com/developers/user-guide/introduction/first_realtime_app_with_pathway/
- Summer Analytics 2025: https://www.caciitg.com/sa/course25