Feuille d'exercices 6 : Primitives

Exercice 1. Soit Ψ définie par $\Psi(x) = \int_{x}^{3x} e^{-t^2} dt$

- 1. Déterminer l'ensemble de définition de Ψ .
- 2. Justifier que Ψ est dérivable sur son domaine de définition.
- 3. Etudier les variations de Ψ .
- 4. Déterminer sa limite en $+\infty$.

Exercice 2. Déterminer une primitive de :

$$x \mapsto \ln(x)$$
 $x \mapsto \arctan(x)$ $f: x \mapsto \frac{x}{\cos^2 x}$.

Exercice 3. Intégrales de Wallis

Soit $n \in \mathbb{N}$, on définit l'intégrale de Wallis par $:I_n = \int_0^{\frac{\pi}{2}} (\sin t)^n dt$

- 1. Soit $n \geq 2$. Etablir une relation de récurrence liant I_n et I_{n-2} .
- 2. Pour tout $p \in \mathbb{N}$, calculer I_{2p} et I_{2p+1} .

Exercice 4. Calculer les intégrales suivantes :

$$\int_0^1 \frac{e^{2t}}{1+e^t} dt \qquad \int_0^1 \sqrt{1-x^2} dx \qquad \int_0^1 \frac{x^4}{x^{10}+1} dx.$$

Exercice 5. Soit a > 0. Déterminer une primitive de :

$$f: x \mapsto \frac{1}{\sqrt{a^2 - x^2}}$$
 $g: x \mapsto \frac{1}{a^2 + x^2}$.

Exercice 6. 1. Montrer que :

$$\forall x \in \mathbb{R} \setminus \{\pi + 2k\pi, k \in \mathbb{Z}\}, \sin(x) = \frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}$$

2. Déterminer une primitive de :

$$f: x \mapsto \frac{1}{\sin x}$$
 $g: x \mapsto \frac{1}{\cos x}$.

Exercice 7. 1. Montrer que : $\forall x \in \mathbb{R} \setminus \{\pi + 2k\pi, k \in \mathbb{Z}\}, \sin(x) = \frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}$.

2. Calcular
$$\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \sin x}.$$

Exercice 8. Déterminer une primitive des fonctions suivantes :

$$f: x \mapsto x\sqrt{1-x^2}$$
 $g: x \mapsto \frac{e^x}{\sqrt{1+e^x}}$ $h: x \mapsto \frac{(\ln(3x+6))^3}{x+2}$ $l: x \mapsto \frac{2x-5}{(x^2-5x+9)^4}$

Exercice 9. Déterminer une primitive des fonctions suivantes :

$$f:x\mapsto \frac{1}{x^2-5x+6} \qquad g:x\mapsto \frac{1}{x^2+2x+1} \qquad h:x\mapsto \frac{1}{1+x+x^2}.$$

Exercice 10. Déterminer une primitive des fonctions suivantes :

$$f: x \mapsto \frac{x^2 - x + 1}{x^2 + x + 1}$$
 $g: x \mapsto \frac{2x + 1}{(x + 1)^2}$

Exercice 11. Déterminer une primitive des fonctions suivantes et préciser le domaine de validité :

9.
$$x \mapsto e^{\sqrt{x}}$$

13.
$$x \mapsto xe^{x^2}$$
14. $x \mapsto \frac{\arctan x}{\arctan x}$

19.
$$x \mapsto \frac{1}{x^2 - 3x + 1}$$

3.
$$x \mapsto x^2 \cos(x)$$

9.
$$x \mapsto e^{\sqrt{x}}$$

15.
$$x \mapsto \frac{1 + x}{\sqrt{1 - x^2}}$$

20.
$$x \mapsto \frac{2x}{x^2 - x + 1}$$

5.
$$x \mapsto \sin(\ln x)$$

10.
$$x \mapsto \frac{1}{x^4 - x^2}$$
 $\ln(x)$

16.
$$x \mapsto \sqrt{\frac{1}{x}} (1-x)$$

20.
$$x \mapsto \frac{1}{x^2 - x + 1}$$

21. $x \mapsto e^{3x} \cos(2x)$

6.
$$x \mapsto \frac{x^7}{(x^4+1)^2}$$

11.
$$x \mapsto \frac{m(x)}{x}$$

17.
$$x \mapsto \frac{1}{x^2 - x + 4}$$

22.
$$x \mapsto (x+1)e^{2x} c$$

7.
$$x \mapsto \frac{1}{\operatorname{ch} x}$$

12.
$$x \mapsto \frac{e^{\tan(x)}}{\cos^2(x)}$$

18.
$$x \mapsto \frac{1}{2x^2 + x + 5}$$

25.
$$x \mapsto \sin^2(x)$$

Exercice 12. Calculer les intégrales suivantes :

1.
$$\int_{0}^{1} t \arctan t dt$$

$$3. \int_{1}^{e} \frac{(\ln x)^n}{x} dx$$

$$5. \int_0^1 \frac{dx}{2x^2 + 2x + 1}$$

1.
$$\int_{0}^{1} \arctan t dt$$
 3. $\int_{1}^{e} \frac{(\ln x)^{n}}{x} dx$ 5. $\int_{0}^{1} \frac{dx}{2x^{2} + 2x + 1}$ 7. $\int_{1}^{2} \frac{dt}{t(t+1)(t+2)}$ 2. $\int_{-1}^{1} (t^{3} - 1) \cosh(t) dt$ 4. $\int_{0}^{\frac{1}{2}} \sqrt{\frac{\arcsin x}{1 - x^{2}}}$ 6. $\int_{0}^{\frac{\pi}{2}} \cos^{3}(t) \sin^{4}(t) dt$ 8. $\int_{0}^{1} \frac{dt}{e^{t} + 1}$

2.
$$\int_{-1}^{1} (t^3 - 1) \operatorname{ch}(t) dt$$

4.
$$\int_{0}^{\frac{1}{2}} \sqrt{\frac{\arcsin x}{1 - x^2}}$$

6.
$$\int_{0}^{\frac{\pi}{2}} \cos^{3}(t) \sin^{4}(t) dt$$

$$8. \int_0^1 \frac{dt}{e^t + 1}$$

1. Montrer qu'il existe $(a, b, c) \in \mathbb{R}^3$ tels que : Exercice 13.

$$\forall x \in \mathbb{R} \setminus \{-1\}, \ \frac{1}{(x+1)(1+x^2)} = \frac{a}{x+1} + \frac{bx+c}{1+x^2}$$

2. En déduire les primitives de $x \mapsto \frac{1}{\tan x + 1}$.

Exercice 14. On chercher à calculer l'intégrale : $I = \int_{\pi}^{\frac{\pi}{2}} \frac{1}{\sin(t) + \tan(t)} dt$.

- 1. En effectuant le changement de variable $u=\cos t$, montrer que l'on peut écrire $I=\int_{-\beta}^{\beta}R(u)du$ où R est une fraction rationnelle.
- 2. Montrer qu'il existe $(a,b,c) \in \mathbb{R}^3$ tels que : $\forall u \in \mathbb{R} \setminus \{-1,1\}, \ R(u) = \frac{a}{1-u} + \frac{b}{1+u} + \frac{c}{(1+u)^2}$
- 3. En déduire la valeur de l'intégrale I.

Exercice 15. Soit $(I_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $I_n=\int_{-\infty}^{\infty}(\ln x)^ndx$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 t^n e^t dt$.
- 2. Donner une relation de récurrence entre I_{n+1} et I_n .
- 3. Montrer que $(I_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.
- 4. En déduire que $(nI_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 16. On considère la suite (I_n) définie par :

$$\forall n \in \mathbb{N}, \ I_n = \int_0^{\frac{\pi}{2}} x^n \sin x dx$$

- 1. Etablir une formule de récurrence 2. Pour $p \in \mathbb{N}$, on pose $u_p = \frac{(-1)^p I_{2p}}{(2p)!}$ et $v_p = \frac{(-1)^p I_{2p+1}}{(2p+1)!}$
- 3. Calculer $u_p u_{p-1}$ et $v_p v_{p-1}$
- 4. En sommant, en déduire, pour tout $p \in \mathbb{N}$, I_{2p} et I_{2p+1} sous forme de sommes.

Exercice 17. Soit $f \in \mathcal{C}^1([0, +\infty[, \mathbb{R}) \text{ telle que } f(0) = 0 \text{ et } : \forall x \in [0; +\infty[, 0 \le f'(x) \le 1.$

Montrer que :
$$\forall x \in [0, +\infty[, \left(\int_0^x f(t)dt\right)^2 \ge \int_0^x f(t)^3 dt$$

Exercice 18. Soient $f, g \in \mathcal{C}^0([0, +\infty[, \mathbb{R}), f \geq 0, g \geq 0 \text{ et soit } C > 0 \text{ tel que} : \forall x \in [0, \infty[, f(x) \leq C + \int_0^x f(t)g(t)dt.$

Montrer que :
$$\forall x \in [0, \infty[, f(x) \le C \exp\left(\int_0^x g(t)dt\right)]$$
.

Indication: On pourra poser:
$$\phi: x \mapsto \int_0^x f(t)g(t)dt$$
 et dériver ϕ .