YUHAO JIANG

Post-doctoral Researcher, EPFL

CONTACT

EPFL STI IGM RRL, MED 1-1513

Station 9 CH-1015 Lausanne, Switzerland

Phone: +41 79 350 5266 Email: yuhao.jiang@epfl.ch

Website: yuhaoj.com, Google Scholar, LinkedIn

RESEARCH STATEMENT

I advance cyber-physical systems and soft robotics by designing innovative, compliant mechanisms that enhance robot-environment interactions. My research focuses on developing novel compliant structures to optimize robotic locomotion, integrating cyber-physical system architectures with dynamic modeling and AI-driven methods for more efficient and complex design and control. Through my work, I aim to broaden the accessibility and functionality of soft robotic systems as next-generation cyber-physical platforms, addressing key challenges in actuation, manufacturing, and control.

EDUCATIONAL EXPERIENCE

Arizona State University, Tempe

Jan. 2019 - Aug. 2023

Ph.D. in Mechanical Engineering Advisor: Prof. Daniel Aukes

Dissertation: Design and Modeling of Soft Curved Reconfigurable Anisotropic Mechanisms

University of Florida, Gainesville

Sep. 2015 - May 2017

Master of Science in Mechanical Engineering

Donghua University, Shanghai

Sep. 2011 - Jun. 2015

Bachelor of Engineering in Mechanical Engineering

PROFESSIONAL EXPERIENCE

EPFL, Lausanne

Sep. 2023 - Present

Post-doctoral Researcher, Reconfigurable Robotics Lab

Supervisor: Prof. Jamie Paik

SELECTED PROJECTS

MOZART: Morphing Computerized mats with

Embodied Sensing and Artificial Intelligence

Sep. 2023 - Present

https://mozart-robotics.eu/

EPFL, Reconfigurable Robotics Lab

Funded by: European Union Horizon Europe Research and Innovation Programme

SCRAM: Soft Curved Reconfigurable Anisotropic Mechanisms

Jan 2020 - May 2023

https://www.scrambots.com/ Arizona State University, IdeaLab Funded by: NSF EFRI C3 SoRo

FIRE: Fish-Inspired Robots for Extreme Environments

Jan. 2019 - Jan. 2020

Arizona State University, IdeaLab **Funded by:** Salt River Project

TEACHING AND STUDENT MENTORING

Course Instructor		
Course Name	Affiliation	Period
ME410: Mechanical Engineering Product Design and Development	STI, EPFL	Fall 2024
ME420: Advanced Design for Sustainable Future	STI, EPFL	Fall 2024
ME410: Mechanical Engineering Product Design and Development	STI, EPFL	Fall 2023

Master's Thesis and Semester Project Advisor

Name	Topic	Program	Period
Aurora Ruggeri ¹	Study on soft metamaterials for object sensing	MS in Mechanical	Spring 2024
1	and geometry generation		
Louis Flahault ¹	Kinematic study and design for spatial recon-	MS in Robotics	Spring 2024
	figurable modular robotic platform		
Serge Asmar ¹	Locomotion design and control using surface wave change generated by ori-pixel platform	MS in Robotics	Spring 2024
Nicolas Nouel 2*	Programmable surface using bistable structure	MS in Robotics	Spring 2024

¹ Semester Project

PEER-REVIEWED PUBLICATIONS

Journal Publications

- [1] Y. Jiang, S. Asmar, Z. Wang, S. Demirtas, and J. Paik, "CPG-based Manipulation with Multi-Module Origami Robot Surface," submitted, October 2024
- [2] Y. Jiang, F. Chen, J. Paik, and D. M. Aukes, "Locomotion via Vibration of Soft, Twisted Beams with an Under-actuated Quadruped," submitted, June 2024
- [3] Y. Jiang, F. Chen and D. M. Aukes, "Tunable Dynamic Walking via Soft Twisted Beam Vibration," IEEE Robotics and Automation Letters, vol. 8, no. 4, pp. 1967-1974, April 2023, https://doi.org/10.1109/LRA.2023.3244716
- [4] M. Sharifzadeh, Y. Jiang, A. Lafmejani, K. Nichols, and D. M. Aukes, "Maneuverable gait selection for a novel fish-inspired robot using a CMA-ES-assisted workflow," in Bioinspiration & Biomimetics, vol. 16, no. 5, pp. 056017, August 2021, https://doi.org/10.1088/1748-3190/ac165d
- [5] M. Sharifzadeh, Y. Jiang, and D. M. Aukes, "Reconfigurable Curved Beams for Selectable Swimming Gaits in an Underwater Robot," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3437-3444, April 2021, https://doi.org/10.1109/LRA.2021.3063961

Conference Publications

- Y. Jiang, M. Sharifzadeh, and D. M. Aukes, "Reconfigurable Soft Flexure Hinges via Pinched Tubes," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 8843-8850, https://doi.org/10.1109/IROS45743.2020.9341109
- [2] Y. Jiang, M. Sharifzadeh, and D. M. Aukes, "Shape Change Propagation Through Soft Curved Materials for Dynamically-Tuned Paddling Robots," 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), 2021, pp. 230-237, https://doi.org/10.1109/RoboSoft51838.2021.9479208
- [3] P. Bupe, Y. Jiang, J. Lin, T. Nguyen, M. Han, D. Aukes, C. Harnett, "Embedded Optical Waveguide Sensors for Dynamic Behavior Monitoring in Twisted-Beam Structures," 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), San Diego, CA, USA, 2024, pp. 139-144, https://doi.org/10.1109/RoboSoft60065.2024.10521938

² Thesis

^{*} Co-advisor

- [4] M. Sharifzadeh, Y. Jiang, A. Lafmejani, D. M. Aukes, "Compensating for Material Deformation in Foldable Robots via Deep Learning A Case Study," 2022 IEEE International Conference on Robotics and Automation (ICRA), 2022, https://doi.org/10.1109/ICRA46639.2022.9811752
- [5] M. Sharifzadeh, Y. Jiang, R. Khodambashi, D. M. Aukes, "Increasing the Life Span of Foldable Manipulators With Fabric." Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 10: 44th Mechanisms and Robotics Conference (MR). Virtual, Online. August 17–19, 2020. V010T10A087. ASME, https://doi.org/10.1115/DETC2020-22757

PATENTS

- [1] "Tunable Motion Using Flexible Twisted Beams", Daniel Aukes, **Yuhao Jiang**, Fuchen Chen US Patent Application 20240391542
- [2] "Pinched tubes for reconfigurable robots", Daniel Aukes, Mohammad Sharifzadeh, Yuhao Jiang, Nicholas Gravish, Mingsong Jiang - US Patent US20230127106A1
- [3] "Buckling beams for underwater and terrestrial autonomous vehicles", D Aukes, M Sharifzadeh, Y Jiang US Patent US20230121727A1
- [4] "Mechanisms for steering robotic fish", D
 Aukes, M Sharifzadeh, K Nichols, $\bf Y$ Jiang - US Patent US
11124281B2

TALKS

Seminar Talks

[1] "Empowering Actuation of Soft Robotic Systems via Soft Curved Reconfigurable Anisotropic Mechanism", hosted by Prof. Nick Gravish and Prof. Michael Tolley, UCSD, Feb. 2023.

Conference Proceedings Talks

- [1] RoboSoft 2023: "Tunable Dynamic Walking via Soft Twisted Beam Vibration"
- [2] **ICRA 2022:** "Compensating for Material Deformation in Foldable Robots Via Deep Learning a Case Study", https://youtu.be/AwS4vabv-JQ
- [3] ICRA 2021: "Reconfigurable Curved Beams for Selectable Swimming Gaits in an Underwater Robot", https://youtu.be/EszTDc9slyw
- [4] Robosoft 2021: "Shape Change Propagation Through Soft Curved Materials for Dynamically-Tuned Paddling Robots"
- [5] IROS 2020: "Reconfigurable Soft Flexure Hinges via Pinched Tubes", https://youtu.be/J5heXXD6mVo

Workshop Presentations

- [1] RoboSoft 2023: "Model Order Reduction for Vibrational Soft Twisted Beams Using Pseudorigid-body Modeling A Case Study"
- [2] ICRA 2022: "Modular Robots Using Soft Curved Reconfigurable Anisotropic Mechanisms"

ACADEMIC SERVICE

Journal Reviewer

The International Journal of Robotics Research (IJRR)

IEEE Transactions on Robotics (T-RO)

IEEE Robotics and Automation Letters (RA-L)

Soft Robotics (SoRo)

Journal of Field Robotics (JFR) ASME Journal of Mechanisms and Robotics (JMR)

Conference Reviewer

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

International Conference on Robotics and Automation (ICRA)

International Conference on Soft Robotics (Robosoft)

ACM Symposium on Computational Fabrication (SCF)

PUBLIC OUTREACH

Media Interview

[1] RTS Education and Scientific Program: feature in "A guide to the future: Seiss Federal Institute of Technology 02", https://youtu.be/9yoNLg5Qho0?si=T48imzSqyShXc3ks

Organized Events

- [1] Robosoft 2021 Worshop: "Breaking the Mold: Challenging Current Paradigms in Soft Robotics", https://www.scrambots.com/robosoft-2021-workshop
- [2] **2023 RRL Demo Day:** Full-day public event for projects from RRL and ME-410 class, https://sites.google.com/view/rrl-me410/home https://youtu.be/wza144iqfco?si=_HfGVhsnzebmp7ZM

Demos and Expositions

- [1] RRL lab tours (\sim 6 times per year)
- [2] 2024 RRL Demo Day
- [3] 2024 Swiss Robotics Day
- [4] 2023 RRL Demo Day
- [5] 2023 Swiss Robotics Day
- [6] IdeaLab lab tours (\sim 4 times per year)
- [7] 2019 Southwest Robotics Symposium (SWRS)