Twierdzenie (bez dowodu) 1 (Iwasawa). G spójna grupa Lie, to G zawiera podgrupy K maksymalną zwartą, A abelową ($\simeq (\mathbb{R}_+^*)^n$), N nilpotentną ($N_0 = N, N_n = [N_{n-1}, N_{n-1}], N_k = \{1\}; N \approx \mathbb{R}^n$ jako przestrzeń topologiczna) takie, że $K \times A \times N \to G, (k, a, n) \mapsto k \cdot a \cdot n$ jest homeomorfizmem.

 $Przykład\ 2.\ GL_n(\mathbb{R}) = O(n) \times \{\text{g\'ornotr\'ojkatne}\} = O(n) \times (\mathbb{R}_+^*)^n \times \{\text{\'s\'ci\'sle g\'ornotr\'ojkatne}\}$ $Uwaga\ 3.\ G \simeq_{htp} K, \text{ bo } G/K = AN \simeq_{top} \mathbb{R}^n$

Wniosek 4. $BG \simeq_{htp} BK$

Twierdzenie 5. $H^*(BGL_n(\mathbb{C})) \to H^*(BT)$ jest monomorfizmem, którego obraz jest równy $H^*(BT)^{\Sigma_n}$.

Wniosek 6. $H^*(BGL_n(\mathbb{C})) \simeq \mathbb{Z}[t_1, \ldots, t_n]^{\Sigma_n} = \mathbb{Z}[\sigma_1, \ldots, \sigma_n]$, w tym izomorfizmie $c_i \mapsto \sigma_i$, gdzie c_i to *i-ta klasa Cherna*.

Lemat 7. Niech $F_n = \{0 \subset V_1 \subset \ldots \subset V_n = V : \dim V_i = i\} \subset \prod_{i=1}^{n-1} \operatorname{Grass}_i(\mathbb{C}^n), L_i = V_i/V_{i-1}, \text{ wtedy } c_1(L_i^*) \text{ generuja } H^*(F_n).$

Definicja 8. $L = f^*(\gamma^*)$ gdzie $\gamma^* = \mathcal{O}(1)$ wiązka tautologiczna na \mathbb{P}^{∞} . Wtedy niech $c_1(L) = f^*(x)$, gdzie $x \in H^2(\mathbb{P}^{\infty})$ wyróżniony generator zadany przez hiperpowierzchnię.

Twierdzenie 9 (Leray-Hirsch). Niech $F \hookrightarrow E \to B$ lokalnie trywialne rozwłóknienie, $H^*(F)$ wolne. Załóżmy, że istnieje transformacja $\phi: H^*(F) \to H^*(E)$ rozszczepiająca i^* , czyli $i^*\phi = \mathrm{id}_{H^*(F)}$. Wtedy kohomologie $H^*(E) \simeq H^*(B) \otimes H^*(F)$ (jako $H^*(B)$ -moduły), $p^*b \cup \phi(f) \hookrightarrow b \otimes f$.

Uwaga 10. Po drodze dostajemy, że $H^*(F_n) = H^*(BT) \otimes_{H^*(BGL_n(\mathbb{C}))} \mathbb{Z} = \mathbb{Z}[t_1, \dots, t_n]/(\sigma_1, \dots, \sigma_n).$

Wniosek 11. NatTrans(G-wiązki, $H^*(\cdot, \mathbb{Z})) = H^*(BG)$

Wniosek 12. Dla $G = GL_n(\mathbb{C}), H^*(BG) = \mathbb{Z}[c_1, \ldots, c_n], c_i(E) = \sigma_i(t_1, \ldots, t_n),$ jeśli zaś $E = L_1 \oplus \ldots \oplus L_n$, to $t_i = c_1(L_i)$.

Wniosek 13. $c_n(E) = 0$ jeśli L_1 jest trywialna.

Stwierdzenie 14. Jeśli wiązka E ma przekrój, to $c_n(E) = 0$.

Stwierdzenie 15. $E \to X$ wiązka, Istnieje przestrzeń Y i odwzorowanie $f: Y \to X$ takie, że E rozszczepia się na wiązki liniowe nad Y, a odwzorowanie $f^*: H^*(X) \to H^*(Y)$ jest monomorfizmem.