Polos, Zeros e a Resposta do Sistema

Fundamentos de Controle

Polos e Zeros de um Sistema de Primeira Ordem: Um Exemplo

$$C(s) = \frac{(s+2)}{s(s+5)} = \frac{A}{s} + \frac{B}{s+5} = \frac{2/5}{s} + \frac{3/5}{s+5}$$

$$A = \frac{(s+2)}{(s+5)} \Big|_{s\to 0} = \frac{2}{5}$$

$$B = \frac{(s+2)}{s} \Big|_{s\to -5} = \frac{3}{5}$$

$$c(t) = \frac{2}{5} + \frac{3}{5}e^{-5t}$$

Exemplo 4.1

Calculando a Resposta Utilizando Polos

$$R(s) = \frac{1}{s}$$
 $(s+3)$ $C(s)$

FIGURA 4.3 Sistema para o Exemplo 4.1.

PROBLEMA: Dado o sistema da Figura 4.3, escreva a saída, c(t), em termos gerais. Especifique as partes forçada e natural da solução.

$$C(s) \equiv \frac{K_1}{s} + \frac{K_2}{s+2} + \frac{K_3}{s+4} + \frac{K_4}{s+5}$$
Forced response Natural response

$$c(t) \equiv K_1 + K_2 e^{-2t} + K_3 e^{-4t} + K_4 e^{-5t}$$
Forced Natural response

Sistemas de Primeira Ordem

$$C(s) = R(s)G(s) = \frac{a}{s(s+a)}$$

$$c(t) = c_f(t) + c_n(t) = 1 - e^{-at}$$

$$e^{-at}|_{t=1/a} = e^{-1} = 0.37$$

$$c(t)|_{t=1/a} = 1 - e^{-at}|_{t=1/a} = 1 - 0.37 = 0.63$$

Constante de Tempo

Tempo de Subida, Tr (0,1 a 0,9 de seu valor final.)

$$T_r = \frac{2.31}{a} - \frac{0.11}{a} = \frac{2.2}{a}$$

Tempo de Acomodação, Ts (2 % em torno de seu valor final)

$$T_s = \frac{4}{a}$$

Exercício 4.2

PROBLEMA: Um sistema possui uma função de transferência, $G(s) = \frac{50}{s+50}$. Determine a constante de tempo, T_c , o tempo de acomodação, T_s , e o tempo de subida, T_r .

RESPOSTA: $T_c = 0.02 \text{ s}, T_s = 0.08 \text{ s} \text{ e} T_r = 0.044 \text{ s}.$

Sistemas de Segunda Ordem

Fundamentos de Controle

Resposta Superamortecida

G(s) $R(s) = \frac{1}{s}$ $S^{2} + as + b$ General G(s) C(s)

System

Pole-zero plot

Response

Polos: Dois reais em $-\sigma 1$ e $-\sigma 2$

Resposta natural: Duas exponenciais com constantes de tempo iguais ao inverso das posições dos pólos, ou

$$c(t) = K_1 e^{-\sigma_1 t} + K_2 e^{-\sigma_2 t}$$

Resposta Subamortecida

Polos: Dois complexos em -σd ± jωd

Resposta natural: Senóide amortecida com uma envoltória exponencial cuja constante de tempo é igual ao inverso da parte real do polo. A frequência, em radianos, da senóide, a frequência de oscilação amortecida, é igual à parte imaginária dos polos, ou

$$c(t) = Ae^{-\sigma_d t} \cos(\omega_d t - \phi)$$

Resposta Não Amortecida

Polos: Dois imaginários em ±jω1

Resposta natural: Senoide não amortecida com frequência, em radianos, igual à parte imaginária dos polos, ou

$$c(t) = A\cos(\omega_1 t - \phi)$$

Resposta Criticamente Amortecida

Polos: Dois reais em -σ1

Resposta natural: Um termo é uma exponencial cuja constante de tempo é igual ao inverso da posição do polo. O outro termo é o produto do tempo, t, por uma exponencial com constante de tempo igual ao inverso da posição do polo, ou

$$c(t) = K_1 e^{-\sigma_1 t} + K_2 t e^{-\sigma_1 t}$$

Exercício 4.3

PROBLEMA: Para cada uma das funções de transferência a seguir, escreva, por inspeção, a forma geral da resposta ao degrau:

a.
$$G(s) = \frac{400}{s^2 + 12s + 400}$$

b.
$$G(s) = \frac{900}{s^2 + 90s + 900}$$

$$G(s) = \frac{225}{s^2 + 30s + 225}$$

d.
$$G(s) = \frac{625}{s^2 + 625}$$

RESPOSTAS:

a.
$$c(t) = A + Be^{-6t} \cos(19,08t + \phi)$$

b.
$$c(t) = A + Be^{-78,54t} + Ce^{-11,46t}$$

c.
$$c(t) = A + Be^{-15t} + Cte^{-15t}$$

d.
$$c(t) = A + B \cos(25t + \phi)$$

Frequência Natural, ωn

A frequência natural de um sistema de segunda ordem é a frequência de oscilação do sistema sem amortecimento. Por exemplo, a frequência de oscilação de um circuito RLC em série com a resistência em curto-circuito seria a frequência natural.

Fator de Amortecimento, ζ

Uma definição viável para essa grandeza é aquela que considera a razão entre a frequência de decaimento exponencial da envoltória e a frequência natural. Esta razão é constante, independentemente da escala de tempo da resposta.

$$G(s) = \frac{b}{s^2 + as + b}$$

$$\omega_n = \sqrt{b} \qquad \qquad b = \omega_n^2$$

$$\zeta = \frac{\text{Exponential decay frequency}}{\text{Natural frequency (rad/second)}} = \frac{|\sigma|}{\omega_n} = \frac{a/2}{\omega_n}$$

$$a=2\zeta\omega_n$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Exemplo 4.3

Determinando ζ e ω _n para um Sistema de Segunda Ordem

PROBLEMA: Dada a função de transferência da Equação (4.23), determine $\zeta \in \omega_n$.

$$G(s) = \frac{36}{s^2 + 4.2s + 36} \tag{4.23}$$

SOLUÇÃO: Comparando a Equação (4.23) à Equação (4.22), $\omega_n^2 = 36$, a partir do que ω_n

= 6. Além disso, $2\zeta\omega_n = 4.2$. Substituindo o valor de ω_n , $\zeta = 0.35$.

Tempo de subida, Tr

O tempo necessário para que a forma de onda vá de 0,1 do valor final até 0,9 do valor final.

Instante de pico, Tp

O tempo necessário para alcançar o primeiro pico, ou pico máximo.

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

Formas alternativas de cálculo de Tp e Ts

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d}$$

$$T_s = \frac{4}{\zeta \omega_n} = \frac{\pi}{\sigma_d}$$

Ultrapassagem percentual, %UP

O valor pelo qual a forma de onda ultrapassa o valor em regime permanente, ou valor final, no instante de pico, expresso como uma percentagem do valor em regime permanente. $\frac{1}{2} \frac{1}{VP} = e^{-(\zeta\pi/\sqrt{1-\zeta^2})} \times 100$

Tempo de acomodação, Ts

O tempo necessário para que as oscilações amortecidas transitórias alcancem e permaneçam dentro de uma faixa de ±2 % em torno do valor em regime permanente.

$$T_s = \frac{4}{\zeta \omega_n}$$

Exemplo 4.4

Caracterizando a Resposta a Partir do Valor de ζ

PROBLEMA: Para cada um dos sistemas mostrados na Figura 4.12, determine o valor de ζ e descreva o tipo de resposta esperado.

FIGURA 4.12 Sistemas para o Exemplo 4.4.

SOLUÇÃO: Primeiro iguale a forma desses sistemas com as formas mostradas nas Equações (4.16) e (4.22). Uma vez que $a = 2\zeta\omega_{n}$ e $\omega_{n} = \sqrt{b}$,

$$\zeta = \frac{a}{2\sqrt{b}} \tag{4.25}$$

Utilizando os valores de a e b de cada um dos sistemas da Figura 4.12, obtemos $\zeta =$ 1,155 para o sistema (a), que é, portanto, superamortecido, uma vez que $\zeta >$ 1; $\zeta =$ 1 para o sistema (b), que é, portanto, criticamente amortecido; e $\zeta =$ 0,894 para o sistema (c), que é, portanto, subamortecido, uma vez que $\zeta <$ 1.

Exemplo 4.5

Determinando T_p , %UP, T_s e T_r a Partir de uma Função de Transferência

PROBLEMA: Dada a função de transferência

$$G(s) = \frac{100}{s^2 + 15s + 100} \tag{4.43}$$

determine T_p , %UP, T_s e T_r .

SOLUÇÃO: ω_n e ζ são calculados como 10 e 0,75, respectivamente. Agora, substitua ζ e ω_n nas Equações (4.34), (4.38) e (4.42) e determine, respectivamente, que $T_p = 0,475$ segundo, %UP = 2,838 e $T_s = 0,533$ segundo. Utilizando a tabela da Figura 4.16, o tempo de subida normalizado é de aproximadamente 2,3 segundos. Dividindo por ω_n resulta $T_r = 0,23$ segundo. Este problema demonstra que podemos determinar T_p , %UP, T_s e T_r sem a tarefa tediosa de aplicar a transformada inversa de Laplace, representar graficamente a resposta de saída e realizar as medições a partir do gráfico.