Introducción a R

Luis Mauricio Camargo Badillo

18 de septiembre de 2023

Ejercicio 1.1

Elabora una tabla con tus datos personales. Toma en cuenta el siguiente ejemplo.

Nombre	Héctor Morales Osorio
Licenciatura Correo Letra griega	Actuaría 888745@pcpuma.acatlan.mx Ω

En R, como un dataframe luego impreso en una tabla:

```
tabla_datos <- data.frame(
  Nombre = c("Luis Mauricio Camargo Badillo"),
  Correo = c("319024791@pcpuma.acatlan.unam.mx"),
  "Letra griega" = c("$\\sigma$")
)
knitr::kable(tabla_datos)</pre>
```

Nombre	Correo	Letra.griega
Luis Mauricio Camargo Badillo	319024791 @pcpuma.acatlan.unam.mx	σ

En Markdown:

Nombre	Luis Mauricio Camargo Badillo
Licenciatura Correo Letra griega	Matemáticas Aplicadas y Computación 319024791@pcpuma.acatlan.unam.mx σ

Ejercicio 1.2

Consulta la documentación de la función plot de la base de R, presenta un ejemplo y comenta el código.

```
# Creamos un vector integers con los enteros del 1 al 10
integers <- c(1:10)
# Creamos un vector cube_integers con los cubos de los números en x
cube_integers <- integers^3
# Graficamos ambos vectores (abscisas y ordenadas)
# type = "b" grafica líneas y puntos (b de "both", ambos)</pre>
```

```
# main = "" le pone un título a la gráfica
plot(integers, cube_integers, type = "b", main = "Gráfica de Ejemplo")
```

Gráfica de Ejemplo

Ejercicio 1.3

a) ¿Cuántos días hay entre la fecha de la primera y última clase del semestre 2024-1?

```
start <- as.Date("2023-08-07")
end <- as.Date("2023-11-24")

length <- difftime(end, start, units = "days")

print(length)</pre>
```

Time difference of 109 days

b) Para una fecha histórica, obtén el día de la semana de este evento y en los comentarios menciona qué acontecimiento ocurrió en la fecha elegida.

```
# Imprimir la fecha en español mexicano
Sys.setlocale("LC_TIME", "es_MX.UTF-8")

## [1] "es_MX.UTF-8"

# 14 de julio de 1789, el día de la toma de la Bastilla en París, Francia
date <- as.Date("1789-07-14")
weekday <- weekdays(date)</pre>
```

```
formatted_date <- format(date, format = "%d de %B de %Y")
print(paste("El", formatted_date, "fue un", weekday))</pre>
```

[1] "El 14 de julio de 1789 fue un martes"

Ejercicio 1.4

- a) Crea un data.frame llamado figuras que tenga las siguientes columnas:
- Circunferencia = c(8.3, 8.6, 8.8, 10.5, 10.7, 10.8, 11.0)
- Altura = c(70, 65, 63, 72, 81, 83, 66)
- Volumen = c(10.3, 10.3, 10.2, 16.4, 18.8, 19.7, 15.6)

```
figuras <- data.frame(
    Circunferencia = c(8.3, 8.6, 8.8, 10.5, 10.7, 10.8, 11.0),
    Altura = c(70, 65, 63, 72, 81, 83, 66),
    Volumen = c(10.3, 10.3, 10.2, 16.4, 18.8, 19.7, 15.6)
)
print(figuras)</pre>
```

```
##
     Circunferencia Altura Volumen
## 1
                 8.3
                          70
                                 10.3
## 2
                 8.6
                          65
                                 10.3
## 3
                 8.8
                          63
                                 10.2
                10.5
                          72
## 4
                                 16.4
                10.7
## 5
                          81
                                 18.8
## 6
                10.8
                          83
                                 19.7
## 7
                11.0
                          66
                                 15.6
```

b) Extrae la tercera observación (es decir, la tercera fila).

```
print(figuras[3,])
```

```
## Circunferencia Altura Volumen
## 3 8.8 63 10.2
```

c) Extrae la columna Circunferencia.

print(figuras\$Circunferencia)

```
## [1] 8.3 8.6 8.8 10.5 10.7 10.8 11.0
```

d) Crea un nuevo objeto con todas las observaciones excepto la cuarta. (Es decir, elimina la cuarta observación/fila).

```
print(figuras[-4,])
```

```
##
     Circunferencia Altura Volumen
## 1
                 8.3
                          70
                                 10.3
## 2
                 8.6
                          65
                                 10.3
## 3
                 8.8
                          63
                                 10.2
## 5
                10.7
                          81
                                 18.8
## 6
                10.8
                          83
                                 19.7
## 7
                          66
                11.0
                                 15.6
```

Ejercicio 1.5

a) Imprime todos los elementos del Dataframe figuras por filas.

```
for (i in 1:nrow(figuras)) {
  print(figuras[i,])
}
     Circunferencia Altura Volumen
##
## 1
                8.3
                        70
                               10.3
##
     Circunferencia Altura Volumen
## 2
                8.6
                         65
                               10.3
##
     Circunferencia Altura Volumen
## 3
                8.8
                        63
                               10.2
##
     Circunferencia Altura Volumen
## 4
               10.5
                        72
                               16.4
##
     Circunferencia Altura Volumen
## 5
               10.7
                        81
                               18.8
     Circunferencia Altura Volumen
##
               10.8
## 6
                         83
                               19.7
     Circunferencia Altura Volumen
## 7
                 11
                         66
                               15.6
  b) Imprime todos los elementos del Dataframe figuras por columnas.
for (i in colnames(figuras)) {
  print(figuras[,i])
}
## [1] 8.3 8.6 8.8 10.5 10.7 10.8 11.0
## [1] 70 65 63 72 81 83 66
## [1] 10.3 10.3 10.2 16.4 18.8 19.7 15.6
```

Ejercicio 1.6

Crea una función que se llame LanzarDado que simule el lanzamiento de un dado e imprima el número de puntos de lanzamiento y ejecuta la línea LanzarDado(n = 10)

```
LanzarDado <- function(n = 1) {
   if (n <= 0) {
      print("n debe ser mayor o igual a 1")
      return(NULL)
   }

   throws <- c(sample(1:6, n, replace = TRUE))
   sum <- 0

for (i in 1:n) {
      sum <- sum + throws[i]
      print(paste("* Lanzamiento ", i, ": ", throws[i], " puntos", sep = ""))
   }

   print(paste("Total de puntos:", sum))
}

LanzarDado(n = 10)</pre>
```

```
## [1] "• Lanzamiento 1: 1 puntos"
## [1] "• Lanzamiento 2: 1 puntos"
## [1] "• Lanzamiento 3: 2 puntos"
```

```
## [1] "• Lanzamiento 4: 3 puntos"
```

- ## [1] "• Lanzamiento 5: 1 puntos"
- ## [1] "• Lanzamiento 6: 2 puntos"
- ## [1] "• Lanzamiento 7: 1 puntos"
- ## [1] "• Lanzamiento 8: 5 puntos"
- ## [1] "• Lanzamiento 9: 3 puntos"
- ## [1] "• Lanzamiento 10: 2 puntos"
- ## [1] "Total de puntos: 21"