Remark (3.8): For any two triangular t-IFN $A_t = \langle m, \alpha, \beta; \alpha', \beta' \rangle$ and $B_t = \langle n, \gamma, \delta; \gamma', \delta' \rangle$

- 1. The addition and subtraction of any two triangular t- IFN A_t and B_t is triangular t- IFN and is calculated in the following way:
 - i. $A_t + B_t = \langle m + n, \alpha + \gamma, \beta + \delta; \alpha' + \gamma', \beta' + \delta' \rangle$
 - ii. $A_t B_t = \langle m n, \alpha \gamma, \beta \delta; \alpha' \gamma', \beta' \delta' \rangle$
- 2. For any scalar λ , the scalar multiplication of λ and A_t is also triangular t- IFN and is determined as follows:
 - i. $\lambda A_t = \langle \lambda m, \lambda \alpha, \lambda \beta; \lambda \alpha', \lambda \beta' \rangle$ for $\lambda > 0$
 - ii. $\lambda A_t = \langle \lambda m, \lambda \beta, \lambda \alpha; \lambda \beta', \lambda \alpha' \rangle$ for $\lambda < 0$
- 3. The exponent of a triangular t- \mathbb{IFN} is obtained as follows:
 - i. $A_t^p = \langle m^p, pm^{p-1}\alpha, pm^{p-1}\beta; pm^{p-1}\alpha', pm^{p-1}\beta' \rangle$, where p is a positive integer.

I. Application of t-intuitionistic Fuzzy Subgroup to Cryptography

In this section, we develop a mechanism and present an algorithm in which we apply the concept of a t-IFSG to secure data using RSA modulus.

1. Generating Server Public and Private Keys:

- i. Choose any two distinct prime numbers p and q
- ii. Calculate a modulus n = pq for both public and the private key
- iii. Compute the totient function: $\varphi(n) = (p-1)(q-1)$
- iv. Choose an encryption exponent e such that $1 < e < \varphi(n)$ and $gcd(e, \varphi(n)) = 1$
- v. Compute decryption exponent d which satisfies the following congruence

$$de \equiv 1 \big(\bmod \varphi(n) \big)$$

vi. The receiver sends the public key (e, n) to the sender and retains the private key (d, n)

2. Encrypting the plain text:

- i. The sender receives the public key (e, n) of the receiver
- ii. Represents the experimental message s into an integer or plain text S in view of table 1

Table 1. Experimental Message into the integer													
8	\mathcal{A}	\mathcal{B}	\mathcal{C}	\mathcal{D}	\mathcal{E}	\mathcal{F}	\mathcal{G}	\mathcal{H}	J	\mathcal{J}	$\mathcal K$	L	\mathcal{M}
S	01	02	03	04	05	06	07	08	09	10	11	12	13
8	$\mathcal N$	0	${\cal P}$	Q	${\mathcal R}$	S	${\mathcal T}$	u	ν	\mathcal{W}	\mathcal{X}	y	\mathcal{Z}
S	14	15	16	17	18	19	20	21	22	23	24	25	26

Table 1

- iii. Compute a t-IFSG correspond to the set S
- iv. Determine the level subgroup of t-IFSG
- v. Compute the t-IFN of the level subgroup for the set of integers
- vi. Obtain the triangular t-IFN from t-IFN
- vii. Compute ciphertext by using RSA encryption formula

$$\mathcal{CT} \equiv \mathcal{S}^e(\bmod n)$$

viii. The sender sends the ciphertext in the form of triangular t-IFN

3. Decrypting the cipher text:

i. The message is retrieved by employing the RSA decryption formula using a private key(d, n)

$$\mathcal{PT} \equiv \mathcal{CT}^d (\bmod n)$$

And triangular t-IFN exponentiation operation is employed.

- ii. The message is in triangular t-IFN form and is verified by applying the definition of congruence and subtraction of triangular t-IFN
- iii. Obtain t-IFN from triangular t-IFN
- iv. Obtain the set of integers
- v. Obtain the plain text from table 1

The flowchart below clearly explains the RSA algorithm in the framework of t- t-IFSG, which is adopted here.

Fig 1. Flow chart of RSA Algorithm in the framework of t-IFSG

4.1 Numerical Example of t-Intuitionistic Fuzzy RSA Algorithm:

In this section, we present a numerical example that illustrates the application of t-IFSG to encrypt and decrypt a message by using the t-intuitionistic fuzzy RSA module. The process of t-intuitionistic fuzzy RSA Cryptosystem consists of three steps: generate keys, encryption and decryption. The subsequent example depicts the mechanism of this method where an experimental message is "*Rose*".

1. Generate public and private keys:

- i. Choose two distinct prime numbers, such as p = 5 and q = 11
- ii. Compute n = pq, giving: n = 55
- iii. Compute $\varphi(n) = (p-1)(q-1)$ giving: $\varphi(55) = 40$
- iv. Choose any number e, $1 < e < \varphi(n)$ and $gcd(e, \varphi(n)) = 1$ such as 1 < e < 40 and gcd(e, 40) = 1 giving: e = 7
- v. Choose a suitable solution for d that satisfies $7d \equiv 1 \pmod{40}$ giving: d = 23

2. Encryption:

- i. The public key is (7,55) and the private key is (23,55)
- ii. The experimental message is taken as "Rose"

- iii. Convert the experimental message into the set of integers: {18,15,19,05}
- iv. Obtain a 0.7-IFSG correspond to the set S as follows:

$$\mu_{A_{0.7}}(z_1) = \begin{cases} 0.7 & \text{if } z_1 \in <0> \\ 0.5 & \text{if } z_1 \in <2> -<0> \text{ and } \nu_{A_{0.7}}(z_1) = \\ 0.4 & \text{if } z_1 \in Z_{26} -<2> \end{cases} \begin{cases} 0.3 & \text{if } z_1 \in <0> \\ 0.4 & \text{if } z_1 \in <2> -<0> \\ 0.5 & \text{if } z_1 \in Z_{26} -<2> \end{cases}$$

v. Compute the (0.4,0.5) –level subgroup of the above 0.7-IFSG as follows:

$$\hat{\mathsf{C}}_{(0.4,0.5)}(A_t) = \mathcal{S}.$$

vi. In view of definition (3.2), 0.7-IFN of $\hat{C}_{(0.4,0.5)}(A_t)$ for the experimental message "Rose" is given by:

$$[1,1,18;1,19]$$
 $[1,1,15;1,16]$ $[1,1,19;1,20]$ $[1,1,5;1,6]$

vii. Transform the above 0.7-IFN into Triangular 0.7-IFN:

viii. Encrypt the Triangular 0.7-IFN using a public key as follows:

3. Decryption:

i. The receiver receives the ciphertext in Triangular 0.7-IFN:

ii. Decrypt the ciphertext using a private key as follows:

- iii. Verify the ciphertext with plaintext modulo 55.
- iv. The original message is in Triangular 0.7-IFN as follows:

v. Convert Triangular 0.7-IFN into 0.7-IFN:

$$[1,1,18;1,19]$$
 $[1,1,15;1,16]$ $[1,1,19;1,20]$ $[1,1,5;1,6]$

- vi. Transform 0.7-IFN into the set of integers: {18,15,19,05}
- vii. The plain text is "Rose".

VI. C++ Program to Implement the t-Intuitionistic Fuzzy RSA Algorithm

```
=> Intuitionistic Fuzzy subgroup (IFSG) (A)
             Defined on S
     S= 31, 2, 3, 4, 5, ...., 263
H_{A}(\alpha) = \begin{cases} 0 & \chi \in \{36\} \text{ or } \{26\} \end{cases}
M = \chi \in \{3,4,6,8,10,12,14,16,18,20,22,24\} = \{0,427-326\}
M = \chi \in \{1,3,5,7,9,11,13,15,17,19,21,23\} \text{ or } S = \{27,28\}
V_{A}(x) = \begin{cases} e' & \chi \in \{3,9,6,8,0,12,14,16,18,20,42,24\} \\ m' & \chi \in \{3,9,6,8,0,12,14,16,18,20,42,24\} \end{cases}
n' & \chi \in \{1,3,5,7,9,11,13,15,17,19,21,23,25\}
offere L & [0,1]
```

 $U_{Al}(x) = \begin{cases} \max_{1-l} \{l-l, l'\} = p' & \text{if } x \in \{3,4,6,8,10,12,14,16,18, 20,34\} \end{cases}$ $\max_{1-l, m'} \{l-l, m'\} = q' x \in \{2,4,6,8,10,12,14,16,18, 20,34\} \end{cases}$ P > 9 > r and p'= 9' < r' 0 = 1 + 9' \(1 \) 0 = 1 + 1 \(1 \) 1

slevel subgroup of t-IF5q.

(8, n)-aut set of At = {xES: MAL(x)>, S and VAL(x) = n} where Sine [0,1] andosf+n =1

and the same

S= min { p, q, v } and n= max { p, q, v }

we must obtain level subgroup = S

=> For verification:-In example, in decryption part (ii) the PT verify with dencyption part (vii)
(with linear conquence apply)

ax=bmodn <1,0,42; 51,34)x = <1,0,17;1,19> modss (x,0, 42x; 51x, 34x) = <1,0, 17; 1,19) modss Verify if solution axists '20 SS(x-1) solution exists when x=1. I use online linear conquencey calculabre