1. Usunięcie wartości odstających

Pierwszym operacją wykonaną na zbiorze danych - zaraz po zbadaniu podstawowych jego cech - było pozbycie się wartości odstających. Obecność wartości odstających potwierdza zarówno analiza wykresu sporządzonego dla dwóch dowolnych cech czy wynik różnicy wartości średniej i mediany:

```
>> T = ABS(MEAN(TRAIN) - MEDIAN(TRAIN))

T =

0.00000 0.00420 0.01469 0.21028 0.20882 79.65832 1.06037 0.00908
```

W celu zlokalizowania odstających próbek obliczono wartości minimalne oraz maksymalne poszczególnych cech:

```
[MV MIDX_1] = MAX(TRAIN)

77 186 186 186 186 186

186 186

[MV MIDX_2] = MIN(TRAIN)

58 642 642 642 642 393

25 539
```

Na tej podstawie zidentyfikowano próbki odstające jako nr. 642 i 168. Zbadano również ich sąsiedztwa:

Próbka 642

```
MIDX_2 = 642
>> TRAIN(MIDX-1:MIDX+1,:)

ANS =

3.00000  0.18165  0.00007  0.00191  0.00001 -0.00000 -0.00000 -0.00000

3.00000  0.12500  0.00000  0.00000  0.00000  0.00000  0.00000

3.00000  0.18161  0.00002  0.00198  0.00000 -0.00000 -0.00000  0.00000

0.00000
```

Próbka 186

```
MIDX_2 = 186

>> TRAIN(MIDX-1:MIDX+1,:)

ANS =

3.00000 0.18165 0.00007 0.00191 0.00001 -0.00000 -0.00000 -0.00000

3.00000 0.12500 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000

3.00000 0.18161 0.00002 0.00198 0.00000 -0.00000 0
```

Po usunięciu wspomnianych próbek ponowna analiza różnicy wartości średniej i mediany oraz wykresu dwóch cech wskazała na ich poprawną identyfikację i usunięcie.

A) WYKRES KLAS PRZED USUNIĘCIEM PRÓBEK ODSTAJĄCYCH

B) WYKRES KLAS PO USUNIĘCIU PRÓBEK ODSTAJĄCYCH

2. Wybór cech do budowy klasyfikatora Bayesa

W celu wybrania najlepszego zestawu cech umożlwiającego poprawną klasyfikację próbek, badano rozkład punktów na wykresie cech - rysowanego dla różnych ich kombinacji. Wybrano zestaw gdzie zbiory punktów były najlepiej separowalne – dla cech 1 i 3.

Wykres klas dla cech 1 i 3

3. Budowa klasyfikatora

Na podstawie tak otrzymanych danych zbioru uczącego zbudujemy klasyfikator Bayesa przy różnych metodach liczenia funkcji gęstości prawdopodobieństwa PDF.

- Z założeniem niezależności cech oraz ich normalnego rozkładu (para indep.m)
- Z założeniem <u>zależnośc</u>i cech oraz ich normalnego rozkładu (para_multi.m)
- Z wykorzystaniem okna Parzena do aproksymacji PDF (para_parzen.m)

W celu porównania wyników klasyfikacji wyżej przedstawionymi metodami obliczono skuteczność klasyfikacji. Wykorzystana funkcja oblicza średnią wartość źle zaklasyfikowanych próbek, porównując etykiety ze zbioru testowego z tymi otrzymanymi w wyniku klasyfikacji. Wynik podano z dokładnością do 3 cyfr znaczących po przecinku.

	para_indep	para_multi	para_parzen (w =0,001)
ercf	0.0263	0.00493	0.0285

4. Redukcja zbioru uczącego

Rozdział ten poświęcony jest zbadaniu wpływu wielkości zbioru uczącego na jakość klasyfikatora Bayesa. W tym celu obliczono wartości średnie i odchylenia standardowe współczynnika błędu dla 5 powtórzeń oraz następujących częściach dziesiętnych zbioru początkowego: [0.1; 0.25; 0.5]. Wyniki zamieszczono w tabeli:

	µ indep	σ _{indep}	μ_{multi}	σ_{indep}	µ parzen	σ _{parzen}
10%	0.033	0.0057	0.0067	0.0016	0.100	0.0170
25%	0.028	0.0018	0.071	0.0017	0.058	0.0085
50%	0.027	0.0016	0.0056	0.0011	0.037	0.0027

Analiza powyższej tabeli pozwala łatwo zauważyć zależność jaką jest wzrost średniej wartości ercf wraz ze zmniejszaniem się zbioru uczącego. Zatem im więcej danych w zbiorze uczącym tym lepszej jakości klasyfikator otrzymamy.

5. Szerokość okna Parzena

Kolejnym etapem było zbadanie wpływu szerokości okna Parzena na jakość klasyfikatora. W tym celu ponownie obliczono wartości ercf dla różnych jego wartości. Wyniki przedstawiono w tabeli poniżej:

ı	h	0.0001	0.0002	0.0005	0.0007	0.001	0.0025	0.005	0.0075	0.01
			5		5					
	ercf	0.0285	0.0186	0.0170	0.0203	0.0241	0.0471	0.0795	0.111	0.1393

Na podstawie tabeli i wykresu możemy zaobserwować początkowy niewielki spadek a następnie gwałtowny wzrost błędu klasyfikatora wraz ze wzrostem szerokości okna Parzena w. Najmniejsza jego wartość zachodzi dla szerokości w = 0.0005

6. Modyfikacja wartości prawdopodobieństw apriori.

Zbadano również w jaki sposób modyfikacja prawdopodobieństw apriori wpłynie na jakość klasyfikatora. Do tej pory prawdopodobieństwo to było stałe dla każdej metody i równe 0.125. Dla tego przypadku ustalono różne, następujące wartości:

apriori = [0.165 0.085 0.085 0.165 0.165 0.085 0.085 0.165]; Obliczono wartości średnie ercf jak miało to miejsce w rozdziale 3. Poniżej przedstawiono wyniki:

	para_indep	para_multi	para_parzen (w =0,001)
Stałe wartość p _{apriori}	0.0263	0.00493	0.0285
Różne wartości p _{apriori}	0.0212	0.00380	0.0290

Analiza powyższej tabeli pozwala stwierdzić, że zmiana prawdopodobieństw apriori wpłynęła poztywnie na jakość klasyfikatora. Jednak nie w każdym przypadku jesteśmy w stanie dobrze i jednoznacznie je określić

7. Normalizacja danych

Ostatnim krokiem było zbadanie wpływu normalizacji danych na jakość klasyfikatora. W tym celu wykorzystano klasyfikator stworzony na potrzebę lab1 – cls1nn.m.

W poniższej tabeli zamieszczono wartość klasyfikacji dla zbioru znormalizowanego i nieznormalizowanego.

	Znormalizowany	Nieznormalizowany	
ercf	0.00219	0.0153	