ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

開發板 HDK

http://www.opulinks.com/

Copyright © 2017-2018, Opulinks. All Rights Reserved.

REVISION HISTORY

Date	Version	Contents Updated	
04/04/2018	0.1	Initial Release	
04/23/2018	0.2	 Updated Chapters "電源走線和電源去耦 DC power outing and decoupling" and "起動設定 Getting started" for better understanding Modified the following figures: RF 晶振電路、RF 外部 Flash 與 Mode_strap 共用腳電路、IoT 母板參考電路、IoT 子板參考電路 Added Chapter "開發設置 Development Setup" 	
06/30/2018	0.3	Updated for new package	

TABLE OF CONTENTS

TABLE OF CONTENTS

1.	摘要 ABSTRACT	1
	引言 INTRODUCTION	2
3.	芯片包裝接地焊盘 CHIP PACKAGE AND COMMON GROUND	3
4.	射頻電路 RF CIRCUIT	7
5.	接地區域 GROUND PLANES	8
6.	電源走線和電源去耦 DC POWER OUTING AND DECOUPLING	9
7.	起動設定 GETTING STARTED	12
	7.1. 晶振	12
	7.2. 外部 Flash	13
8.	開發設置 Development setup(TBD)	14
9.	參考電路 ELECTRICAL SCHEMATICS AND PCB LAYOUT	16
10.	版圖疊構設計 PCB LAYER STACK-UP	20

LIST OF FIGURES

LIST OF FIGURES

圖表 1: 接地過孔 (Via)	8
圖表 2: Buck 直流轉換器電源電路	10
圖表 3: Buck 直流轉換器串接電感版圖位置	10
圖表 4: RF 電源電路	11
圖表 5: RF 晶振電路	13
圖表 6: RF 外部 Flash 與 Mode_strap 共用腳電路	13
圖表 7: IoT 母板與子板實體圖 (TBD)	14
圖表 8: IoT 母板參考電路	16
圖表 9: IoT 母板版圖設計	17
圖表 10: IoT 子板參考電路	18
圖表 11: IoT 子板版圖設計	19

1. 摘要 ABSTRACT

OPL1000 是集成 Wi-Fi 802.11b 及 Bluetooth® 單芯片 · 高度整合所有 Wi-Fi 及 Bluetooth 無線網路連線需求 · 以最新的技術 · 設計最低功率消耗 · 最小的封裝支援最多的介面 · 並極低的製造成本 · 實現更新的運用領域 · 成為客戶開創新商品所必備的芯片 。

2. 引言 INTRODUCTION

OPL1000 是高度集成、高性價比及極低功耗的應用處理芯片 SoC·提供 Wi-Fi 802.11b 及 Bluetooth® 結合雙內核 ARM® 32 bit MCU 的整體解決方案,充分滿足物聯網 (IoT) 各種多樣化的產品,同時配備豐富的外圍接口,支持各種訊息傳遞,有效分散式資料收集處理,應用於雲端網路系統,並提供實時 (Real-time) 監控,具有訊息加密、消息認證傳輸協定等功能。快速實現消費性電子產品開發及量產,應用於智能家電、工業/工廠自動化、智慧安防報警及消防聯動系統、門禁考勤、智能電網、環境生態監測、污染防治…等應用的需求。

3. 芯片包裝接地焊盘 CHIP PACKAGE AND COMMON GROUND

CHAPTER THREE

Pin Name	Type	Location	Function Description
VDDC	Р	1	Digital core power output
VDDQ	Р	2	OTP power supply for programming mode
XTALI	I	3	External crystal input pin
XTALO	0	4	External crystal output pin
DCDC_IN	Р	5	Analog LDO supply input
VDD_RF	Р	6	RF LDO output. Connects with external capacitor to
			ground.
GND	Р	7	Ground
RF_OUT	IO	8	RF input/output with on-chip T/R switch
VDD_PA	Р	9	PA power supply with external capacitor
RST_N	I	10	Reset input signal
EN	I	11	Enable input
XTAL32KO	0	12	External 32K crystal output pin
XTAL32KI	I	13	External 32K crystal input pin
VSS_BAT	G	14	Ground
VDD_BAT	Р	15	Power supply
SMPS_IND1	Р	16	DC-DC power converter inductor pin
FB	I	17	Feedback pin
SMPS_RF	Р	18	DC-DC converter output
SMPS_CORE	Р	19	DC-DC converter output
VDD	Р	20	Digital core power
APS_DBG_UART_TX / GPIO0 [†]	IO	21	APS UART serial data transmit
APS_DBG_UART_RX / GPIO1 [†]	IO	22	APS UART serial data receive
GPIO2 [†]	IO	23	General Purpose Input/Output
GPIO3 [†]	IO	24	General Purpose Input/Output
GPIO4 [†]	IO	25	General Purpose Input/Output
VDDO	Р	26	Power supply for IO pad

CHAPTER THREE

Pin Name	Туре	Location	Function Description
GPIO5 [†]	IO	27	General Purpose Input/Output
UART1_RTS_N /	IO	28	UART Request to Send (default) /
GPIO6 [†]			General Purpose Input/Output
GPIO23 [†]	IO	29	General Purpose Input/Output
UART1_CTS_N /	IO	30	UART Clear to Send (default) /
GPIO7 [†]			General Purpose Input/Output
UART1_TXD /	IO	31	UART serial data transmit (default) /
GPIO8 [†]			General Purpose Input/Output
UART1_RXD /	IO	32	UART serial data receive (default) /
GPIO9 [†]			General Purpose Input/Output
I2C_SCL /	IO	33	I2C serial clock line (default) /
GPIO10 [†]			General Purpose Input/Output
I2C_SDA /	IO	34	I2C serial data line (default) /
GPIO11 [†]			General Purpose Input/Output
VDDO	Р	35	Power supply for IO pad
SPIO_CS/	Ο	36	SPI Chip Select (default) /
GPIO12 [†]			General Purpose Input/Output
SPIO_CLK /	0	37	SPI serial clock (default) /
GPIO13 [†]			General Purpose Input/Output
SPIO_IOO/	IO	38	SPI input/output (default) /
GPIO14 [†]			General Purpose Input/Output
SPI0_IO1 /	IO	39	SPI input/output (default) /
GPIO15 [†]			General Purpose Input/Output
SPI0_IO2/	IO	40	SPI input/output (default) /
GPIO16 [†]			General Purpose Input/Output
VDD	Р	41	Digital core power
SPI0_IO3 /	IO	42	SPI input/output (default) /
GPIO17 [†]			General Purpose Input/Output
VDDO	Р	43	Power supply for IO pad
GPIO18 [†]	IO	44	General Purpose Input/Output
GPIO19 [†]	IO	45	General Purpose Input/Output
	-		

CHAPTER THREE

Pin Name	Type	Location	Function Description
GPIO20 [†]	IO	46	General Purpose Input/Output
GPIO21 [†]	IO	47	General Purpose Input/Output
GPIO22 [†]	IO	48	General Purpose Input/Output
VSS	Р	E-Pad	Common Ground

[†] Multi-function pins. Please refer to the Pin Multiplexing Table below for the multi-functions provided.

4. 射頻電路 RF CIRCUIT

OPL1000 使用極少數的元件·由天線連接到 IC 的 RF_OUT (pin 8)·晶片內部整合了自動傳送/接收雙向開關 (T/R switch),達到極簡化設計,以支持不同的應用·請參考 "芯片包裝接地焊盘" 說明。

5. 接地區域 GROUND PLANES

VSS (e-Pad) 結合了 RF、baseband、Buck DC-DC converter 直流電源轉換的接地 (GND) 及外圍接口的接地回路,配合 PCB 第一層露銅焊接,達到最佳接地及散熱面積,在 PCB 的 RF 部分間佈置大量的接地過孔 (via),有助於防止接地電流回路造成寄生效應增大,過孔也有助於防止 PCB 上射頻信號線與其它信號線的交叉耦合。電源電路及 Buck DC-DC converter 相關路徑,必須考慮元件的回路電流,加大寬度及最短路徑。

圖表 1: 接地過孔 (Via)

6. 電源走線和電源去耦 DC POWER OUTING AND DECOUPLING

使用者依據需求控制芯片在各種操作模式·OPL1000 芯片內部高效能 Buck 及 LDO 直流轉換器 (DC-DC converter),會相應調控電源模塊,達到最低功消耗目的。系統電源由外部電池電源自 VDD_BAT (pin 15) 輸入加去耦電容,降低噪聲,由芯片內 Buck 直流轉換器,分別於:

- RF 電源系統:於 SMPS_RF (pin 18) 輸出 1.3 VDC 經由去耦電容輸入 DCDC_IN (pin 5).經 LDO 產生 1.1V 於 VDD_RF (pin 6) 加去耦電容供應 RF 所需電源。此外 VDD_PA (pin 9) 是 PA 功率放大 器的主要電源,與 VDD_BAT 同電壓,需加去耦電容。
- 內核系統:於 SMPS_CORE (pin 19) 輸出 1.1 VDC 經由去耦電容輸入 VDD (pin 20, pin 41)。 VDDC (pin 1) 需要外加去耦電容,以降低噪聲。
- 3. VDDO (pin 26, pin 35, pin 43) 為 IO 介面使用電源,與 VDD_BAT 同電壓。

Buck 直流轉換器透過 SMPS_IND1 (pin 16) 串接電感 L2 到 FB (pin 17)·電感位置儘量靠近芯片·區域越小越好·版圖請參考下圖。

圖表 2: Buck 直流轉換器電源電路

電感 L2 走線應加大寬度及最短路徑。

圖表 3: Buck 直流轉換器串接電感版圖位置

電源電路建議使用較大的去耦電容·儘量靠近芯片·配置請避免過長接地回路·引起寄生電感·造成意外的反饋環路。RF電源電路使用小的去耦電容·儘量靠近芯片·具體參考電路如下。

圖表 4: RF 電源電路

此外操作 OTP 燒寫模式,請使用 2.5V DC, +/-10% 輸入到 VDDQ (pin 2),限制 2.5V DC 週期不可超 1 秒,讀取資料模式或其它操作模皆不加電源,進一步操作請洽相關技術服務窗口。

7. 起動設定 GETTING STARTED

使用者可依據開發或應用等不同配置,部分 mode 只限特殊應用。

GPIO14	GPIO13	GPIO12	GPIO6	Strapping Mode	
0	0	0	1	Digital debug mode	
0	0	1	0	ICE mode	
0	0	1	1	JTAG mode	
0	1	0	0	DFT mode	
0	1	0	1	OTP programming mode	
0	1	1	0	0 MBIST mode	
0	1	1	1	AUXADC debug mode	
1	0	0	0	RF debug mode	
1	0	0	1	Radio mode	
1	0	1	0	Normal function mode	

7.1. 晶振

芯片包括 Internal RC OSC、32.768 KHz crystal 及 22 MHz crystal 振盪迴路,注意誤差值的選擇將直接影響系統效能,使用的電容走線越短越好,C2 及 C3 按不同廠牌規格優化。

圖表 5: RF 晶振電路

7.2. 外部 Flash

採用 4-bit multiplexed I/O serial interface 與 Mode_strap 共用·注意共用腳的使用設置。

圖表 6: RF 外部 Flash 與 Mode_strap 共用腳電路

8. 開發設置 DEVELOPMENT SETUP(TBD)

圖表 7: IoT 母板與子板實體圖 (TBD)

OPL1000 IoT DevKit 提供 Micro USB 轉串口快速開發板,客戶可輕鬆使用 USB 快速評估及完成商品開發,提供全套開發服務,包括:可使用的 GPIO 管腳、開發用 ICE mode 管腳及 flash 燒錄用 UART_Prg_Tx 及 Rx 管腳。預置為 Normal function mode 可快速切換 ICE mode,另提供 flash 燒錄軟件,GPIO、ADC、SPI、I2C 等可選用的功能如下表所示,底視圖 (Bottom view):

CHAPTER EIGHT

		J2				ANT				J3		
ICE Mode	PWM	I2C	ADC	Pin Name	Pin No	AINT	Pin No	Pin Name	ADC	SPI	UART	Flash Prg
				GND	pin 17		pin 17	GND				
	Yes			GPIO22	pin 16		pin 16	+3V				
				GND	pin 15		pin 15	GND				
M3_CLK				GPIO21	pin 14		pin 14	CHIP_EN				
M3_DAT				GPIO20	pin 13		pin 13	RST_N				
M0_DAT				GPIO19	pin 12		pin 12	GPIO0(REV)				UART_Prg_Tx
M0_CLK				GPIO18	pin 11	Bottom	pin 11	GPIO1(REV)				UART_Prg_Rx
		SDA	Yes	GPIO17	pin 10	View	pin 10	GPIO2	Yes	MOSI	TxD	
		SCLK	Yes	GPIO16	pin 9		pin 9	GPIO3	Yes	MISO	RxD	
				GPIO15	pin 8		pin 8	GPIO4	Yes	CLK		
				GPIO14	pin 7		pin 7	Ex_5V				
				GPIO13	pin 6		pin 6	GND				
	Yes			GPIO12	pin 5		pin 5	GPIO5	Yes	CS		
				GPIO11	pin 4		pin 4	GPIO6	Yes			
				GPIO10	pin 3		pin 3	GPIO23				
	Yes			GPIO9	pin 2		pin 2	GPIO7	Yes	CS		
				GND	pin 1	USB	pin 1	GPIO8	Yes			

註 1: Flash 燒錄 UART_Prg 串口 Baud rate: 115200 bps, n, 8,1。

註 2: 部分管腳為複用的,例如 GPIO2 可設置為一般 GPIO 或 ADC、SPI 或是 UART。

註 3: GPIO18~23 can support high drive current 12mA/16mA.

註 4: Chip Enable (CHIP_EN) 及 Reset (RST_N) 可視為 Reset 功能。

9. 参考電路 ELECTRICAL SCHEMATICS AND PCB LAYOUT

圖表 8: IoT 母板參考電路

子板的天線部分必須在母板外露,以達最佳傳輸距離。

圖表 9: IoT 母板版圖設計

CHAPTER NINE

圖表 10: IoT 子板參考電路

圖表 11: IoT 子板版圖設計

註: IoT 子板於測試完成後·TP1 以 OR 電阻短接(Short)將可直接使用低成本 PCB 天線·負責發送和接收來自空中的電磁輻射。

10. 版圖疊構設計 PCB LAYER STACK-UP

為了符合對 EMI 規範的需求,及最佳系統效能建議採用 4 層板設計,相關疊構如下表所示:

PCB 層	信號類型	設計重點
第一層 (頂層)	擺於器件及 RF 信號線及其它信號線	● 與第二層的地有 50 歐姆阻抗需求。
		● RF 區域佈置大量的接地過孔 (Via) 到 第四層。
		● 電源去耦電容佈置大量的接地過孔
		● 芯片 VSS (E-PAD) 位置請露銅不上漆,佈置大量的接地過孔到第四層
第二層	主要地迴路不走其它的信號線	
第三層	電源為主,可走其它的信號線	
第四層 (底層)	電源及其它的信號線	

CONTACT

sales@Opulinks.com

