NOTE

1)

7)

7)

7)

7)

7)

7)

7)

2,7)

2,7)

7)

7)

2,7)

2,7)

9)

9)

9)

9)

2,9)

R[rd] = M[R[rs1]], M[R[rs1]] = R[rs2]

9)

9)

9)

2.9)

7,8)

FMTNAME

R MULtiply (Word)

Reference Data

MNEMONIC		GER INSTRUCTIONS, in all NAME	DESCRIPTION (in Verilog)	NOTE
add, addw	R	ADD (Word)	R[rd] = R[rs1] + R[rs2]	1)
addi, addiw	I	ADD Immediate (Word)	R[rd] = R[rs1] + imm	1)
and	R	AND	R[rd] = R[rs1] & R[rs2]	
andi	· I	AND Immediate	R[rd] = R[rs1] & imm	
auipc	U	Add Upper Immediate to PC	$R[rd] = PC + \{imm, 12'b0\}$	
beq	SB	Branch EQual	if(R[rs1]==R[rs2) PC=PC+{imm,1b'0}	
bge	SB	Branch Greater than or Equal	if(R[rs1]>=R[rs2) PC=PC+{imm,1b'0}	
bgeu	SB	$Branch \geq Unsigned$	if(R[rs1]>=R[rs2) PC=PC+{imm,1b'0}	2)
blt	SB	Branch Less Than	if(R[rs1] <r[rs2) pc="PC+{imm,1b'0}</td"><td></td></r[rs2)>	
bltu	SB	Branch Less Than Unsigned	if(R[rs1] <r[rs2) pc="PC+{imm,1b'0}</td"><td>2)</td></r[rs2)>	2)
bne	SB	Branch Not Equal	if(R[rs1]!=R[rs2) PC=PC+{imm,1b'0}	
csrrc	I	Cont./Stat.RegRead&Clear	$R[rd] = CSR;CSR = CSR \& \sim R[rs1]$	
csrrci	I	Cont./Stat.RegRead&Clear Imm	R[rd] = CSR;CSR = CSR & ~imm	
csrrs	I	Cont./Stat.RegRead&Set	R[rd] = CSR; CSR = CSR R[rs1]	
csrrsi	I	Cont./Stat.RegRead&Set Imm	$R[rd] = CSR$; $CSR = CSR \mid imm$	
csrrw	I	Cont./Stat.RegRead&Write	R[rd] = CSR; CSR = R[rs1]	
csrrwi	I	Cont./Stat.Reg Read&Write Imm	R[rd] = CSR; CSR = imm	
ebreak	I	Environment BREAK	Transfer control to debugger	
ecall	I	Environment CALL	Transfer control to operating system	
fence	I	Synch thread	Synchronizes threads	
fence.i	I	Synch Instr & Data	Synchronizes writes to instruction stream	
jal	UJ	Jump & Link	$R[rd] = PC+4; PC = PC + \{imm, 1b'0\}$	
jalr	1	Jump & Link Register	R[rd] = PC+4; $PC = R[rs1]+imm$	3)
lb	I	Load Byte	$R[rd] = $ {56'bM[](7),M[R[rs1]+imm](7:0)}	4)
lbu	I	Load Byte Unsigned	$R[rd] = \{56'b0,M[R[rs1]+imm](7:0)\}$	
ld	I	Load Doubleword	R[rd] = M[R[rs1] + imm](63:0)	
lh	I	Load Halfword	$R[rd] = $ {48'bM[](15),M[R[rs1]+imm](15:0)}	4)
lhu	I	Load Halfword Unsigned	$R[rd] = \{48'b0, M[R[rs1] + imm](15:0)\}$	
lui	U	Load Upper Immediate	$R[rd] = {32b'imm < 31>, imm, 12'b0}$	
lw	I	Load Word	$R[rd] = $ {32'bM[](31),M[R[rs1]+imm](31:0)}	4)
lwu	1	Load Word Unsigned	$R[rd] = \{32'b0, M[R[rs1] + imm](31:0)\}$	
or	R	OR	$R[rd] = R[rs1] \mid R[rs2]$	
	I	OR Immediate	$R[rd] = R[rs1] \mid imm$	
sb	S	Store Byte	M[R[rs1]+imm](7:0) = R[rs2](7:0)	
sd	S	Store Doubleword	M[R[rs1]+imm](63:0) = R[rs2](63:0)	
sh	S	Store Halfword	M[R[rs1]+imm](15:0) = R[rs2](15:0)	
sll,sllw	R	Shift Left (Word)	R[rd] = R[rs1] << R[rs2]	1)
slli, slliw	I	Shift Left Immediate (Word)		1)
slt	R	Set Less Than	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0	
slti	I	Set Less Than Immediate	R[rd] = (R[rs1] < imm) ? 1 : 0	
sltiu	I	Set < Immediate Unsigned	R[rd] = (R[rs1] < imm) ? 1 : 0	2)
	R	Set Less Than Unsigned	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0	2)
sltu	n	Shift Right Arithmetic (Word)		1,5)
sra, sraw	R		R[rd] = R[rs1] >> imm	1,5)
sra, sraw srai, sraiw	I	Shift Right Arith Imm (Word)		
sra, sraw srai, sraiw srl, srlw	I R	Shift Right (Word)	R[rd] = R[rs1] >> R[rs2]	1)
sra, sraw srai, sraiw srl, srlw srli, srliw	I R I	Shift Right (Word) Shift Right Immediate (Word)	R[rd] = R[rs1] >> R[rs2] $R[rd] = R[rs1] >> imm$	1)
sra, sraw srai, sraiw srl, srlw srli, srliw sub, subw	I R I R	Shift Right (Word) Shift Right Immediate (Word) SUBtract (Word)	R[rd] = R[rs1] >> R[rs2] R[rd] = R[rs1] >> imm R[rd] = R[rs1] - R[rs2]	
sra, sraw srai, sraiw srl, srlw srli, srliw sub, subw sw	I R I R S	Shift Right (Word) Shift Right Immediate (Word) SUBtract (Word) Store Word	R[rd] = R[rs1] >> R[rs2] R[rd] = R[rs1] >> imm R[rd] = R[rs1] - R[rs2] M[R[rs1]+imm](31:0) = R[rs2](31:0)	1)
sra, sraw srai, sraiw srl, srlw srli, srliw sub, subw	I R I R	Shift Right (Word) Shift Right Immediate (Word) SUBtract (Word)	R[rd] = R[rs1] >> R[rs2] R[rd] = R[rs1] >> imm R[rd] = R[rs1] - R[rs2]	1)

- Operation assumes unsigned integers (instead of 2's complement)
- The least significant bit of the branch address in jalr is set to 0
- (signed) Load instructions extend the sign bit of data to fill the 64-bit register
- Replicates the sign bit to fill in the leftmost bits of the result during right shift
- Multiply with one operand signed and one unsigned
- The Single version does a single-precision operation using the rightmost 32 bits of a 64bit F register
- Classify writes a 10-bit mask to show which properties are true (e.g., -inf, -0, +0, +inf, denorm, ...)
- Atomic memory operation; nothing else can interpose itself between the read and the write of the memory location

The immediate field is sign-extended in RISC-V

RV64M Multiply Extension

fmv.s.x,fmv.d.x

amoswap.w.amoswap.d

31

MNEMONIC

mul, mulw

mulh	R	MULtiply upper Half	R[rd] = (R[rs1] * R[rs2])(127:64)	
mulhsu	R	MULtiply upper Half Sign/Un	sR[rd] = (R[rs1] * R[rs2])(127:64)	6)
mulhu	R	MULtiply upper Half Unsigned	R[rd] = (R[rs1] * R[rs2])(127:64)	2)
div, divw	R	DIVide (Word)	R[rd] = (R[rs1] / R[rs2])	1)
divu	R	DIVide Unsigned	R[rd] = (R[rs1] / R[rs2])	2)
rem, remw	R	REMainder (Word)	R[rd] = (R[rs1] % R[rs2])	1)
remu, remuw	R	REMainder Unsigned (Word)	R[rd] = (R[rs1] % R[rs2])	1,2)
RV64F and RV64D F	loating-	Point Extensions		
fld, flw	I	Load (Word)	F[rd] = M[R[rs1]+imm]	1)

DESCRIPTION (in Verilog)

R[rd] = (R[rs1] * R[rs2])(63:0)

fsd, fsw	S	Store (Word)	M[R[rs1]+imm] = F[rd]	1)
fadd.s,fadd.d	R	ADD	F[rd] = F[rs1] + F[rs2]	7)
fsub.s,fsub.d	R	SUBtract	F[rd] = F[rs1] - F[rs2]	7)
fmul.s, fmul.d	R	MULtiply	F[rd] = F[rs1] * F[rs2]	7)
fdiv.s,fdiv.d	R	DIVide	F[rd] = F[rs1] / F[rs2]	7)
fsqrt.s,fsqrt.d	R	SQuare RooT	F[rd] = sqrt(F[rs1])	7)
fmadd.s, fmadd.d	R	Multiply-ADD	F[rd] = F[rs1] * F[rs2] + F[rs3]	7)
fmsub.s, fmsub.d	R	Multiply-SUBtract	F[rd] = F[rs1] * F[rs2] - F[rs3]	7)
fmnsub.s, fmnsub.d	R	Negative Multiply-SUBtract	F[rd] = -(F[rs1] * F[rs2] - F[rs3])	7)
fmnadd.s,fmnadd.d	R	Negative Multiply-ADD	F[rd] = -(F[rs1] * F[rs2] + F[rs3])	7)
fsgnj.s,fsgnj.d	R	SiGN source	F[rd] = { F[rs2]<63>,F[rs1]<62:0>}	7)
fsgnjn.s,fsgnjn.d	R	Negative SiGN source	F[rd] = { (~F[rs2]<63>), F[rs1]<62:0>}	7)
fsgnjx.s,fsgnjx.d	R	Xor SiGN source	F[rd] = {F[rs2]<63>^F[rs1]<63>, F[rs1]<62:0>}	7)
fmin.s, fmin.d	R	MINimum	F[rd] = (F[rs1] < F[rs2]) ? F[rs1] : F[rs2]	7)
fmax.s, fmax.d	R	MAXimum	F[rd] = (F[rs1] > F[rs2]) ? F[rs1] :	7)

F[rd] = (F[rs1] > F[rs2]) ? F[rs1] :R MAXimum fmax.s.fmax.d Ffrs21 feq.s,feq.d Compare Float EQual R[rd] = (F[rs1] = F[rs2]) ? 1 : 0

R Compare Float Less Than R[rd] = (F[rs1] < F[rs2]) ? 1 : 0flt.s,flt.d R Compare Float Less than or = $R[rd] = (F[rs1] \le F[rs2]) ? 1 : 0$ fle.s, fle.d fclass.s, fclass.d R Classify Type R[rd] = class(F[rs1])F[rd] = R[rs1]R Move from Integer

fmv.x.s, fmv.x.d R Move to Integer R[rd] = F[rs1]R Convert from DP to SP F[rd] = single(F[rs1]) fcvt.s.d R Convert from SP to DP F[rd] = double(F[rs1])fcvt.d.s

R Convert from 32b Integer F[rd] = float(R[rs1](31:0))fcvt.s.w,fcvt.d.w R Convert from 64b Integer F[rd] = float(R[rs1](63:0)) fcvt.s.l,fcvt.d.l fcvt.s.wu, fcvt.d.wu R Convert from 32b Int UnsignedF[rd] = float(R[rs1](31:0)) R Convert from 64b Int UnsignedF[rd] = float(R[rs1](63:0)) fcvt.s.lu,fcvt.d.lu

R Convert to 32b Integer R[rd](31:0) = integer(F[rs1])fcvt.w.s,fcvt.w.d R[rd](63:0) = integer(F[rs1])R Convert to 64b Integer fcvt.1.s, fcvt.1.d fcvt.wu.s, fcvt.wu.d R Convert to 32b Int Unsigned R[rd](31:0) = integer(F[rs1])fcvt.lu.s,fcvt.lu.d $\,R\,$ Convert to 64b Int Unsigned R[rd](63:0) = integer(F[rs1])

RV64A Atomic Extension R ADD amoadd.w.amoadd.d

R[rd] = M[R[rs1]], M[R[rs1]] = M[R[rs1]] + R[rs2] R[rd] = M[R[rs1]],R AND amoand.w, amoand.d M[R[rs1]] = M[R[rs1]] & R[rs2] R[rd] = M[R[rs1]], R MAXimum amomax.w.amomax.d if(R[rs2] > M[R[rs1]]) M[R[rs1]] = R[rs2] R[rd] = M[R[rs1]],R MAXimum Unsigned amomaxu.w, amomaxu.d

if (R[rs2] > M[R[rs1]]) M[R[rs1]] = R[rs2]R MINimum R[rd] = M[R[rs1]],amomin.w, amomin.d if(R[rs2] < M[R[rs1]]) M[R[rs1]] = R[rs2]

amominu.w.amominu.d R MINimum Unsigned R[rd] = M[R[rs1]],R[R[rs2] = R[rs2] M[R[rs1]] M[R[rs1]] = R[rs2] R[rd] = M[R[rs1]], M[R[rs1]] = M[R[rs1]] | R[rs2]amoor.w,amoor.d R

R XOR R[rd] = M[R[rs1]],amoxor.w.amoxor.d $M[R[rs1]] = M[R[rs1]] ^ R[rs2]$ R[rd] = M[R[rs1]],lr.w,lr.d R

reservation on M[R[rs1]]
if reserved, M[R[rs1]] = R[rs2], sc.w,sc.d Conditional R[rd] = 0; else R[rd] = 1

1 27 20 23	27 20	17 10	17 12	11 /	0 0
funct7	rs2	rsl	funct3	rd	Opcode
imm[11:0]		rsl	funct3	rd	Opcode
imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode
imm[12 10:5]	rs2	rsl	funct3	imm[4:1 11]	opcode
i.	rd	opcode			
imm[2	rd	opcode			
	funct7 imm[11:0] imm[11:5] imm[12 10:5]	funct7 rs2 imm[11:0] imm[11:5] rs2 imm[12 10:5] rs2 imm[31:12]	funct7 rs2 rs1 imm[11:0] rs1 imm[12:5] rs2 rs1 imm[12 10:5] rs2 rs1	funct7 rs2 rs1 funct3 imm[11:0] rs1 funct3 imm[11:5] rs2 rs1 funct3 imm[12]10:5] rs2 rs1 funct3 imm[31:12]	funct7 rs2 rs1 funct3 rd imm[11:0] rs1 funct3 rd imm[11:5] rs2 rs1 funct3 imm[4:0] imm[12 10:5] rs2 rs1 funct3 imm[4:1 11] imm[31:12] rd

CORE INSTRUCTION FORMATS 20 19 27 26 25 24

R SWAP

PSEUDO INSTRUCTIONS

snez

			9
MNEMONIC	NAME	DESCRIPTION	USES
beqz	Branch = zero	$if(R[rs1]==0) PC=PC+\{imm,1b'0\}$	beq
bnez	Branch ≠ zero	if(R[rs1]!=0) PC=PC+{imm,1b'0}	bne
fabs.s,fabs.d	Absolute Value	F[rd] = (F[rs1] < 0) ? -F[rs1] : F[rs1]	fsgnx
fmv.s,fmv.d	FP Move	F[rd] = F[rs1]	fsgnj
fneg.s,fneg.d	FP negate	F[rd] = -F[rs1]	fsgnjn
j	Jump	$PC = \{imm, 1b'0\}$	jal
jr	Jump register	PC = R[rs1]	jalr
la	Load address	R[rd] = address	auipc
li	Load imm	R[rd] = imm	addi
mv	Move	R[rd] = R[rs1]	addi
neg	Negate	R[rd] = -R[rs1]	sub
nop	No operation	R[0] = R[0]	addi
not	Not	$R[rd] = \sim R[rs1]$	xori
ret	Return	PC = R[1]	jalr
seqz	Set = zero	R[rd] = (R[rs1] == 0) ? 1 : 0	sltiu

R[rd] = (R[rs1] == 0) ? 1 : 0 R[rd] = (R[rs1]! = 0) ? 1 : 0

OPCODES IN NUMERICAL ORDER BY OPCODE

Set = zero

Set \neq zero

OPCODES IN			EK BY OPCO		
MNEMONIC	FMT	OPCODE	FUNCT3	FUNCT7 OR IMM	HEXADECIMAL
lb	I	0000011	000		03/0
lh	1	0000011	001		03/1
lw	I	0000011	010		03/2
ld	I	0000011	011		03/3
lbu	I	0000011	100		03/4
lhu	I	0000011	101		03/5
lwu	I	0000011	110		03/6
fence	I	0001111	000		0F/0
fence.i	I	0001111	001		0F/1
addi	Ĩ	0010011	000		13/0
slli	Ī	0010011	001	0000000	13/1/00
slti	Î	0010011	010		13/2
sltiu	Î	0010011	011		13/3
xori	Î	0010011	100		13/4
srli	Î	0010011	101	0000000	13/5/00
srai	Î	0010011	101	0100000	13/5/20
ori	Î	0010011	110	020000	13/6
andi	I	0010011	111		13/7
auipc	Ü	0010111	111		17
addiw	I	0011011	000		1B/0
slliw	-	0011011	001	0000000	1B/1/00
srliw	I	0011011	101	0000000	1B/5/00
	I				
sraiw	I	0011011	101	0100000	1B/5/20
sb	S	0100011	000		23/0
sh	S	0100011	001		23/1
SW	S	0100011	010		23/2
sd	S	0100011	011		23/3
add	R	0110011	000	0000000	33/0/00
sub	R	0110011	000	0100000	33/0/20
sll	R	0110011	001	0000000	33/1/00
slt	R	0110011	010	0000000	33/2/00
sltu	R	0110011	011	0000000	33/3/00
xor	R	0110011	100	0000000	33/4/00
srl	R	0110011	101	0000000	33/5/00
sra	R	0110011	101	0100000	33/5/20
or	R	0110011	110	0000000	33/6/00
and	R	0110011	111	0000000	33/7/00
lui	U	0110111			37
addw	R	0111011	000	0000000	3B/0/00
subw	R	0111011	000	0100000	3B/0/20
sllw	R	0111011	001	0000000	3B/1/00
srlw	R	0111011	101	0000000	3B/5/00
sraw	R	0111011	101	0100000	3B/5/20
beq	SB	1100011	000		63/0
bne	SB	1100011	001		63/1
blt	SB	1100011	100		63/4
bge	SB	1100011	101		63/5
bltu	SB	1100011	110		63/6
bgeu	SB	1100011	111		63/7
jalr	I	1100111	000		67/0
jal	UJ	1101111			6F
ecall	I	1110011	000	000000000000	73/0/000
ebreak	I	1110011	000	000000000000	73/0/001
CSRRW	I	1110011	001	03000000001	73/1
CSRRS	I	1110011	010		73/2
CSRRC	I	1110011	011		73/3
CSRRWI		1110011	101		73/5
CSRRWI	I	1110011	110		73/6
CSRRSI	I		111		73/7
CORRCI	I	1110011	111		13/1

REGISTER NAME, USE, CALLING CONVENTION

3

sltu

			4
REGISTER	, NAME	USE	SAVER
×0	zero	The constant value 0	N.A.
x1	ra	Return address	Caller
×2	sp	Stack pointer	Callee
x3	gp	Global pointer	
x4	tp	Thread pointer	
x5-x7	t0-t2	Temporaries	Caller
x8	s0/fp	Saved register/Frame pointer	Callee
x9	sl	Saved register	Callee
x10-x11	a0-a1	Function arguments/Return values	Caller
x12-x17	a2-a7	Function arguments	Caller
x18-x27	s2-s11	Saved registers	Callee
x28-x31	t3-t6	Temporaries	Caller
f0-f7	ft0-ft7	FP Temporaries	Caller
f8-f9	fs0-fs1	FP Saved registers	Callee
f10-f11	fa0-fa1	FP Function arguments/Return values	Caller
f12-f17	fa2-fa7	FP Function arguments	Caller
f18-f27	fs2-fs11	FP Saved registers	Callee
f28-f31	ft8-ft11	R[rd] = R[rs1] + R[rs2]	Caller

IEEE 754 FLOATING-POINT STANDARD $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$

where Half-Precision Bias = 15, Single-Precision Bias = 127, Double-Precision Bias = 1023, Quad-Precision Bias = 16383

IEEE Half-, Single-, Double-, and Ouad-Precision Formats:

S	Ex	ponent	Fract	tion				
15	14	10	9		0			
S		Exponent			Fraction			
31	30		23 2	22		0		
S		Expone	ent		Fraction		,	
63	62			52 51			_	0
S		Ex	ponent		Fraction	1		
27	126		and the control of th	11	2 111			_

SIZE PREFIXES AND SYMBOLS

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
10^{3}	Kilo-	K	210	Kibi-	Ki
10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi
10°	Giga-	G	2 ³⁰	Gibi-	Gi
1012	Tera-	T	2 ⁴⁰	Tebi-	Ti
1015	Peta-	P	250	Pebi-	Pi
1018	Exa-	E	260	Exbi-	Ei
10^{21}	Zetta-	Z	270	Zebi-	Zi
10^{24}	Yotta-	Y	280	Yobi-	Yi
10-3	milli-	m	10-15	femto-	f
10-6	micro-	μ	10-18	atto-	a
10-9	nano-	n	10-21	zepto-	Z
10-12	pico-	р	10 ⁻²⁴	yocto-	у