```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# import libraries for plotting
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# ignore warnings
import warnings
warnings.filterwarnings('ignore')
def initialize_parameters(n_x, n_h, n_y):
   Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
   n_y -- size of the output layer
    Returns:
    parameters -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    np.random.seed(1)
   W1 = np.random.randn(n_h,n_x)*0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h)*0.01
    b2 = np.zeros((n_y,1))
    assert(W1.shape == (n_h, n_x))
   assert(b1.shape == (n_h, 1))
assert(W2.shape == (n_y, n_h))
    assert(b2.shape == (n_y, 1))
    parameters = {"W1": W1,
                   "b1": b1,
                  "W2": W2.
                   "b2": b2}
    return parameters
{\tt def\ linear\_forward}({\tt A},\ {\tt W},\ {\tt b}):
    Implement the linear part of a layer's forward propagation.
   Arguments:
    A -- activations from previous layer (or input data): (size of previous layer, number of examples)
    \mbox{W}\mbox{ --}\mbox{ weights matrix: numpy array of shape (size of current layer, size of previous layer)}
   b -- bias vector, numpy array of shape (size of the current layer, 1)
   Z -- the input of the activation function, also called pre-activation parameter
    cache -- a python tuple containing "A", "W" and "b"; stored for computing the backward pass efficiently
   Z = np.dot(W,A)+b
   #assert(Z.shape == (W.shape[0], A.shape[1]))
   cache = (A, W, b)
   return Z, cache
def sigmoid(Z):
   s = 1/(1+np.exp(-Z))
def sigmoid_backward(dA,cache):
   Z = cache
   dZ = np.array(dA, copy = True)
    dZ[Z <= 0] = 0
   return dZ
def relu(x):
   f = np.maximum(x, 0)
    return f,x
def relu_backward(dA,cache):
   Z = cache
    s = 1/(1+np.exp(-Z))
```

dZ = dA*s*(1-s) return dZ

```
{\tt def\ linear\_activation\_forward(A\_prev,\ W,\ b,\ activation):}
   Implement the forward propagation for the LINEAR->ACTIVATION layer
   Arguments:
   A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
   W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
   b -- bias vector, numpy array of shape (size of the current layer, 1)
   activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
   A -- the output of the activation function, also called the post-activation value
   cache -- a python tuple containing "linear_cache" and "activation_cache";
           stored for computing the backward pass efficiently
   if activation == "sigmoid":
       # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
       Z, linear_cache = linear_forward(A_prev, W, b)
       A, activation_cache = sigmoid(Z)
   elif activation == "relu":
       # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
       Z, linear_cache = linear_forward(A_prev, W, b)
       A, activation_cache = relu(Z)
   assert (A.shape == (W.shape[0], A_prev.shape[1]))
   cache = (linear_cache, activation_cache)
def compute_cost(AL, Y):
   m = Y.shape[1]
   # Compute loss from aL and y.
   cost = -(np.dot(Y,np.log(AL.T))+np.dot(1-Y,np.log(1-AL).T))/m
   cost = np.squeeze(cost)
   return cost
def linear_backward(dZ, cache):
   Implement the linear portion of backward propagation for a single layer (layer 1)
   Arguments:
   \mbox{dZ} -- Gradient of the cost with respect to the linear output (of current layer 1)
   cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
   dA\_prev \ \text{-- Gradient of the cost with respect to the activation (of the previous layer 1-1), same shape as } A\_prev
   dW -- Gradient of the cost with respect to W (current layer 1), same shape as W
   db -- Gradient of the cost with respect to b (current layer 1), same shape as b
   A_prev, W, b = cache
   m = A_prev.shape[1]
   dW = np.dot(dZ,A\_prev.T)/m
   db = np.sum(dZ.axis=1.keepdims=True)/m
   dA_prev = np.dot(W.T,dZ)
   assert (dA_prev.shape == A_prev.shape)
   assert (dW.shape == W.shape)
   #assert (db.shape == b.shape)
   return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
   linear_cache, activation_cache = cache
   if activation == "relu":
       dZ = relu_backward(dA, activation_cache)
       dA_prev, dW, db = linear_backward(dZ, linear_cache)
   elif activation == "sigmoid":
       dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
```

```
{\tt def update\_parameters(parameters, grads, learning\_rate):}
      Update parameters using gradient descent
     Arguments:
     parameters -- python dictionary containing your parameters
     grads -- python dictionary containing your gradients, output of
      ,→ L_model_backward
      1. NEURAL NETWORKS AND DEEP LEARNING 77
      parameters -- python dictionary containing your updated parameters
     parameters["W" + str(1)] = ...
     parameters["b" + str(1)] = ...
     L = len(parameters) // 2 # number of layers in the neural network
     # Update rule for each parameter. Use a for loop.
      for 1 in range(L):
             parameters["W" + str(1+1)] = parameters["W" + str(1+1)] - learning_rate * grads["dW" + str(1 + 1)]
              parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate * grads["db" + str(1+1)]
     return parameter
def L model forward(X, parameters):
      caches = []
     # number of layers in the neural network
      L = len(parameters) // 2
      # Using a for loop to replicate [LINEAR->RELU] (L-1) times
      for 1 in range(1, L):
           A_prev = A
             \# Implementation of LINEAR -> RELU.
             A, cache = linear_activation_forward(A_prev, parameters['W' + str(1)], parameters['b' + str(1)], activation = "relu")
             # Adding "cache" to the "caches" list.
             caches.append(cache)
     # Implementation of LINEAR -> SIGMOID.
     AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], activation = "sigmoid")
     # Adding "cache" to the "caches" list.
     caches.append(cache)
     return AL, caches
{\tt def\ initialize\_parameters\_deep(layer\_dimensions):}
     parameters = {}
     # number of layers in the network
     L = len(layer_dimensions)
     for 1 in range(1, L):
             parameters['W' + str(1)] = np.random.randn(layer_dimensions[1], layer_dimensions[1-1]) * 0.01
             parameters['b' + str(1)] = np.zeros((layer_dimensions[1], 1))
     return parameters
def L_model_backward(AL, Y, caches):
     grads = {}
     # the number of layers
     L = len(caches)
     # after this line, Y is the same shape as AL
      Y = Y.reshape(AL.shape)
     # Initializing the backpropagation
      dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
      \texttt{\# Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current\_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"] } 
      current_cache = caches[L-1]
      grads["dA" + str(L-1)], \ grads["dW" + str(L)], \ grads["db" + str(L)] = linear\_activation\_backward(dAL, \ current\_cache, \ "sigmoid") = linear\_activation\_backward(dAL, \ current\_cache, \ cur
      # Loop from 1=L-2 to 1=0
      for 1 in reversed(range(L-1)):
            # 1th layer: (RELU -> LINEAR) gradients.
# Inputs: "grads["dA" + str(1 + 1)], current_cache".
              # Outputs: "grads["dA" + str(1)] , grads["dW" + str(1 + 1)] , grads["db" + str(1 + 1)]
             current_cache = caches[1]
              d_{\_prev\_temp}, \ dw_temp, \ dw_temp = linear_activation\_backward(grads["dA"+str(1+1)], \ current\_cache, \ "relu") \\ grads["dA" + str(1)] = dA\_prev\_temp 
             grads["dW" + str(1 + 1)] = dW_temp
             grads["db" + str(1 + 1)] = db_temp
```

return grads

```
{\tt def update\_parameters(parameters, grads, learning\_rate):}
        # number of layers in the neural network
         L = len(parameters) // 2
        # Update rule for each parameter
        for 1 in range(L):
                   parameters["W" + str(1+1)] = parameters["W" + str(1+1)] - learning\_rate*grads["dW" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["db" + str(1+1)] \\ parameters["b" + str(1+1)] = parameters["b" + str(1+1)] - learning\_rate*grads["b" + str(1+1)] - learning\_rate*grads[
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
         # keep track of cost
        costs = []
        # Parameters initialization.
        parameters = initialize_parameters_deep(layers_dims)
        # Loop (gradient descent)
         for i in range(0, num_iterations):
                   \# Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
                   AL, caches = L_model_forward(X, parameters)
                   # Compute cost.
                   cost = compute_cost(AL, Y)
                   # Backward propagation.
                   grads = L_model_backward(AL, Y, caches)
                   # Update parameters.
                   parameters = update_parameters(parameters, grads, learning_rate)
                   # Print the cost every 100 training example
                   if print_cost and i % 100 == 0:
                            print ("Cost after iteration %i: %f" %(i, cost))
                              costs.append(cost)
        # plot the cost
         plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
def predict(X, parameters):
```

```
def predict(X, parameters):
    m = X.shape[1]

# number of layers in the neural network
    n = len(parameters) // 2
    p = np.zeros((1,m))

# Forward propagation
    probas, caches = L_model_forward(X, parameters)

# convert probas to 0/1 predictions
for i in range(0, probas.shape[1]):
    if probas[0,i] > 0.5:
        p[0,i] = 1
    else:
        p[0,i] = 0
```

#importation et visualisation de la dataset
data = pd.read_csv('C:/Users/yassine/Downloads/kag_risk_factors_cervical_cancer.csv')
data.head()

	Age	Number of sexual partners	First sexual intercourse	Num of pregnancies	Smokes	Smokes (years)	Smokes (packs/year)	Hormonal Contraceptives	Hormonal Contraceptives (years)	IUD	 STDs: Time since first diagnosis	STDs: Time since last diagnosis	Dx:Cancer	Dx:CIN	Dx:HPV	Dx	Hinselmann	Schill
0	18	4.0	15.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 ?	?	0	0	0	0	0	0
1	15	1.0	14.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 ?	?	0	0	0	0	0	0
2	34	1.0	?	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 ?	?	0	0	0	0	0	0
3	52	5.0	16.0	4.0	1.0	37.0	37.0	1.0	3.0	0.0	 ?	?	1	0	1	0	0	0
4	46	3.0	21.0	4.0	0.0	0.0	0.0	1.0	15.0	0.0	 ?	?	0	0	0	0	0	0

5 rows × 36 columns

#Gestion des données manquantes
data = data.replace('?', np.nan)
data.head()

	Age	Number of sexual partners	First sexual intercourse	Num of pregnancies	Smokes	Smokes (years)	Smokes (packs/year)	Hormonal Contraceptives	Hormonal Contraceptives (years)	IUD	 STDs: Time since first diagnosis	STDs: Time since last diagnosis	Dx:Cancer	Dx:CIN	Dx:HPV	Dx	Hinselmann	Schill
(18	4.0	15.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 NaN	NaN	0	0	0	0	0	0
1	15	1.0	14.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 NaN	NaN	0	0	0	0	0	0

	Age	Number of sexual partners	First sexual intercourse	Num of pregnancies	Smokes	Smokes (years)	Smokes (packs/year)	Hormonal Contraceptives	Hormonal Contraceptives (years)	IUD	 STDs: Time since first diagnosis	STDs: Time since last diagnosis	Dx:Cancer	Dx:CIN	Dx:HPV	Dx	Hinselmann	Schill
2	34	1.0	NaN	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 NaN	NaN	0	0	0	0	0	0
3	52	5.0	16.0	4.0	1.0	37.0	37.0	1.0	3.0	0.0	 NaN	NaN	1	0	1	0	0	0
4	46	3.0	21.0	4.0	0.0	0.0	0.0	1.0	15.0	0.0	 NaN	NaN	0	0	0	0	0	0

5 rows × 36 columns

data.drop(['STDs: Time since first diagnosis','STDs: Time since last diagnosis'],inplace=True,axis=1)

data=data.dropna()

data.shape

(668, 34)

data.describe()

	Age	STDs: Number of diagnosis	Dx:Cancer	Dx:CIN	Dx:HPV	Dx	Hinselmann	Schiller	Citology	Biopsy
count	668.000000	668.000000	668.000000	668.000000	668.000000	668.000000	668.000000	668.000000	668.000000	668.000000
mean	27.264970	0.092814	0.025449	0.004491	0.023952	0.023952	0.044910	0.094311	0.058383	0.067365
std	8.727432	0.310355	0.157603	0.066915	0.153015	0.153015	0.207262	0.292480	0.234642	0.250841
min	13.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	21.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	26.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	33.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
max	84.000000	3.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

category_data = ['Hinselmann', 'Schiller','Citology', 'Biopsy']

for feature in category_data:
 sns.factorplot(feature,data=data ,kind='count')

png

png

png

data['Age'].hist(bins=70)
plt.xlabel('Age')
plt.ylabel('Count')
print('Mean age of the Women facing the risk of Cervical cancer',data['Age'].mean())

Mean age of the Women facing the risk of Cervical cancer 27.26497005988024

png

X = data.drop('Biopsy',axis = 1).to_numpy()

Y = data['Biopsy'].to_numpy()

Y = np.reshape(Y,(668,1))

from sklearn.decomposition import PCA
Instantiate and fit PCA to training set

pca = PCA()
pca.fit(X)

PCA()

plt.figure(figsize = (10, 6))
plt.clf()
plt.axes([.2, .2, .7, .7])
plt.plot(pca.explained_variance_ratio_, linewidth = 2)
plt.axis('tight')
plt.xlabel('Mumber of components')
plt.ylabel('Explained variance ratio')

Text(0, 0.5, 'Explained variance ratio')

png

cumsum = np.cumsum(pca.explained_variance_ratio_)
dim = np.argmax(cumsum >= 0.95) + 1

print('The number of dimensions required to preserve 95% of variance is',dim)

The number of dimensions required to preserve 95% of variance is 6

```
pca.fit(X)
X = pca.transform(X)
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.30)
X_train= X_train.T
X_test= X_test.T
Y_train=Y_train.T
Y_test=Y_test.T
(6, 467)
lavers dims = [6,3,3, 1] # 4-laver model
parameters = L_layer_model(X_train, Y_train, layers_dims, learning_rate = 0.05, num_iterations = 5000, print_cost = True)
Cost after iteration 0: 0.693142
Cost after iteration 100: 0.691020
Cost after iteration 200: 0.691020
Cost after iteration 300: 0.691020
Cost after iteration 400: 0.691020
Cost after iteration 500: 0.691020
Cost after iteration 600: 0.691020
Cost after iteration 700: 0.691020
Cost after iteration 800: 0.691020
Cost after iteration 900: 0.691020
Cost after iteration 1000: 0.691020
Cost after iteration 1100: 0.691020
Cost after iteration 1200: 0.691020
Cost after iteration 1300: 0.691020
Cost after iteration 1400: 0.691020
Cost after iteration 1500: 0.691020
Cost after iteration 1600: 0.691020
Cost after iteration 1700: 0.691020
Cost after iteration 1800: 0.691020
Cost after iteration 1900: 0.691020
Cost after iteration 2000: 0.691020
Cost after iteration 2100: 0.691020
Cost after iteration 2200: 0.691020
Cost after iteration 2300: 0.691020
Cost after iteration 2400: 0.691020
Cost after iteration 2500: 0.691020
Cost after iteration 2600: 0.691020
Cost after iteration 2700: 0.691020
Cost after iteration 2800: 0.691020
Cost after iteration 2900: 0.691020
Cost after iteration 3000: 0.691020
Cost after iteration 3100: 0.691020
Cost after iteration 3200: 0.691020
Cost after iteration 3300: 0.691020
Cost after iteration 3400: 0.691020
Cost after iteration 3500: 0.691020
Cost after iteration 3600: 0.691020
Cost after iteration 3700: 0.691020
Cost after iteration 3800: 0.691020
Cost after iteration 3900: 0.691020
Cost after iteration 4000: 0.691020
Cost after iteration 4100: 0.691020
Cost after iteration 4200: 0.691020
Cost after iteration 4300: 0.691020
Cost after iteration 4400: 0.691020
Cost after iteration 4500: 0.691020
Cost after iteration 4600: 0.691020
Cost after iteration 4700: 0.691020
Cost after iteration 4800: 0.691020
Cost after iteration 4900: 0.691020
 print("train accuracy: \ \{\} \ \%".format(np.mean(100 - (np.abs(predict(X\_train, parameters) - Y\_train)/(X\_train.shape[1])) \ * \ 100)))
```

print("test accuracy: {} %".format(100 - np.mean(np.abs(predict(X_test, parameters) - Y_test)/(X_test.shape[1])) * 100))

train accuracy: 99.9853270912334 % test accuracy: 99.96782257864905 %

pca = PCA(n_components = 6)