

Supplying rails worldwide

Solutions for any railroad, transit or industrial requirement.

Table of contents

03-05	Introduction
06-13	Summary tables
14-21	Crane Rails - American profiles
22-30	Crane Rails - European profiles
31-45	Crane Rails - Special profiles
46-56	Light Rails – American profiles
57-73	Light Rails – European profiles
74-86	Transport Rails – American profiles
87-95	Transport Rails – European profiles
96-104	Grooved Rails
105-109	Block Rails
110-112	Contact Rails
113-115	Guard Rails

Quality rails, on time

Since 1993, M.F. Wirth Rail Corporation has been dedicated to supplying the highest quality rails for demanding applications. From our offices in Canada and the United States, we proudly represent top rail mills and equipment suppliers from around the world. Although Wirth Rail's business activities are concentrated in the Americas, we regularly ship rail to every continent. Our diverse team of men and women are pleased to serve you in the four business languages of the Americas: English, French, Spanish and Portuguese.

Who buys our products?

- Heavy Haul Railways (Class I and Class II)
- Public Transit Authorities
- Industrial users
- Mines
- Crane and equipment Manufacturers
- Rail Distributors

 (servicing contractors
 & industrial end users)

Quality & Excellence

Wirth Rail's products meet or exceed customer requirements and the latest industry standards. Our suppliers are ISO 9001-certified rail mills.

Testing varies with the specifications of each rail type, but our rails are generally subjected to checks for:

- Hardness, Strength & Ductility
- Straightness
- Flatness & Sweep
- Squareness & Symmetry
- End Straightness
- Internal flaws by Ultrasonic Testing
- Surface Defects

Our Products & Services

Wirth Rail has been growing its portfolio of products and services for more than a quarter century. Rail is the core of our business, supplemented by Hardware, Manufactured solutions and On-time Logistics.

Rail Types we offer include:

- Transport (American & European)
- Crane (American, European & Specialty)
- Light (American & European)
- Grooved
- Block
- Contact
- Guard

Hardware:

- Clips
- Splice bars
- Fasteners
- Sole Plates
- Rubber Pad
- Spikes

Manufactured Solutions:

- Drilling
- Mitre Cutting
- Machining
- Fabrication
- Curving
- Sand Blasting
- Metalizing
- Painting

wirthrail.com

On-time Logistics

Wirth Rail has a team of logistics specialists dedicated to ensuring the timely and uneventful deliveries of our products.

We offer the following transportation options:

- **ISO Ocean Containers**
- Break-bulk ship
- Truck
- Railcar

Using Wirth Rail's logistics services ensures:

- Fast & easy door-to-door transport
- Optimal collaboration with carriers, freight-forwarders & customs brokers
- **Competitive Rates**
- Customer Convenience

Rail Nomenclature

Most of the rails sold by Wirth Rail have a head, a web and a flat base. A common name for this general shape is Vignoles. Charles Vignoles was an engineer working in the UK in the 1830s and is credited for the first installations of rails with flat bottoms and beam configuration. For context, George Stephenson's Rocket, one of the first commercially successful steam locomotives, was constructed in 1829.

Throughout this catalogue the terms strength and hardness are used interchangeably. Rails are graded by surface hardness in North America and by tensile strength in Europe. The interface between a wheel and a rail is the subject of textbooks. For the purpose of this catalogue, a higher grade of rail provides a more durable running surface that can handle greater loads. Often increasing to a higher grade is an economical fix in situations of high wear.

Also used interchangeably in the industry are the terms rail profile and rail section. The term "section" is an abbreviation of cross-section and is common parlance in the United States. The term "profile" is from Latin, and is commonly used in Europe. Regardless of the origin, the two terms mean the same thing for the purpose of this catalogue.

Crane Rails | American profiles

	Weight	Weight		Head Width A		Height H		Base Width B		
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
CR104 (MRS51)	52.04	104.90	63.50	2 1/2	127.00	5	127.00	5	25.40	1
CR105 (MRS52)	52.09	105.00	65.09	2 9/16	131.76	5 3/16	131.76	5 3/16	23.81	15/16
CR135 (MRS67)	67.39	135.86	87.31	3 7/16	146.05	5 3/4	131.76	5 3/16	31.75	1 1/4
CR171 (MRS85)	85.02	171.40	109.22	4.30	152.40	6	152.40	6	31.75	1 1/4
CR175 (MRS87B, TR87)	86.80	175.00	107.95	4 1/4	152.40	6	152.40	6	38.10	1 1/2

Crane Rails | European profiles

	Weight	Weight		Head Width A		Height H		Base Width B		
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
A45	22.10	44.55	45.00	1.77	55.00	2.17	125	4.92	24.00	0.94
A55	31.80	64.11	55.00	2.17	65.00	2.56	150	5.91	31.00	1.22
A65	43.10	86.89	65.00	2.56	75.00	2.95	175	6.89	38.00	1.50
A75	56.20	113.29	75.00	2.95	85.00	3.35	200	7.87	45.00	1.77
A100	74.30	149.78	100.00	3.94	95.00	3.74	200	7.87	60.00	2.36
A120	100.00	201.59	120.00	4.72	105.00	4.13	220	8.66	72.00	2.83
A150	150.30	302.99	150.00	5.91	150.00	5.91	220	8.66	80.00	3.15

	Weight	Weight		Head Width A		Height H		Base Width B		
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
MRS73	73.63	148.43	70.00	2.76	157.00	6.18	146.00	5.75	32.00	1.26
MRS86	85.50	172.36	102.00	4.02	102.00	4.02	165.00	6.50	80.30	3.16
MRS87A (PRI85)	86.80	175.00	101.60	4.00	152.40	6.00	152.40	6.00	34.90	1.37
MRS125	125.00	251.99	120.00	4.72	180.00	7.09	180.00	7.09	40.00	1.57
MRS192	192.00	387.05	140.00	5.51	157.20	6.19	229.00	9.02	128.30	5.05
MRS221	221.40	446.32	220.00	8.66	160.00	6.30	220.00	8.66	145.00	5.71
CR73	73.30	147.77	100.00	3.94	135.00	5.31	140.00	5.51	32.00	1.26
CR100	100.20	201.99	120.00	4.72	150.00	5.91	155.00	6.10	39.00	1.54
CR\$140	139.80	281.82	150.00	5.91	150.00	5.91	200.00	7.87	80.00	3.15
AS86	85.88	173.13	101.60	4.00	152.46	6.00	150.00	5.91	35.00	1.38
SP100	89.05	179.52	100.00	3.94	150.00	5.91	150.00	5.91	38.00	1.50
SP120	118.28	238.44	120.00	4.72	170.00	6.69	170.00	6.69	44.00	1.73

Light Rails | American profiles

	Weight		Head Wic	Head Width A		Height H		Base Width B		
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
ASCE20	9.92	20.00	34.13	1 11/32	66.67	2 5/8	66.67	2 5/8	6.35	1/4
ASCE25	12.40	25.00	38.10	1 1/2	69.85	2 3/4	69.85	2 3/4	7.54	19/64
ASCE30	14.88	30.00	42.86	1 11/16	79.38	3 1/8	79.38	3 1/8	8.33	21/64
ASCE40	19.84	40.00	47.62	1 7/8	88.90	3 1/2	88.90	3 1/2	9.92	25/64
ASCE45 (JIS22)	22.32	45.00	50.80	2	93.66	3-11/16	93.66	3-11/16	10.72	27/64
ASCE50 (TR25)	24.80	50.00	53.98	2 1/8	98.43	3 7/8	98.43	3 7/8	11.11	7/16
ASCE60	29.76	60.00	60.33	2 3/8	107.95	4 1/4	107.95	4 1/4	12.30	31/64
ASCE75 (JIS37, TR37)	37.20	75.00	62.71	2 15/32	122.24	4 13/16	122.24	4 13/16	13.50	17/32
ASCE80	39.68	80.00	63.50	2 1/2	127.00	5	127.00	5	13.89	35/64
ASCE85	42.30	85.27	65.09	2 9/16	131.76	5 3/16	131.76	5 3/16	14.29	9/16

Light Rails | European profiles

	Weight		Head Wid	Head Width A		Height H		Base Width B		
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
S7	6.75	13.61	25.00	0.98	65.00	2.56	50.00	1.97	5.00	0.20
S10	10.00	20.16	32.00	1.26	70.00	2.76	58.00	2.28	6.00	0.24
\$14	14.00	28.22	38.00	1.50	80.00	3.15	70.00	2.76	9.00	0.35
S18	18.30	36.89	43.00	1.69	93.00	3.66	82.00	3.23	10.00	0.39
S20	19.84	40.00	44.00	1.73	100.00	3.94	82.00	3.23	10.00	0.39
S24	24.43	49.25	53.00	2.09	115.00	4.53	90.00	3.54	10.00	0.39
S30	30.03	60.54	60.30	2.37	108.00	4.25	108.00	4.25	12.30	0.48
S31	31.57	63.64	56.00	2.20	125.00	4.92	106.00	4.17	12.00	0.47
\$33 (33E1)	33.47	67.47	58.00	2.28	134.00	5.28	105.00	4.13	11.00	0.43
S41A	41.24	83.14	67.00	2.64	138.00	5.43	125.00	4.92	12.00	0.47
AFNOR26	26.27	52.96	50.00	1.97	110.00	4.33	100.00	3.94	10.00	0.39
AFNOR30	30.15	60.78	58.42	2.30	125.50	4.94	106.00	4.17	11.00	0.43
AFNOR36	36.59	73.76	58.27	2.29	128.00	5.04	115.00	4.53	13.00	0.51
B\$35 M	17.40	35.08	42.86	1.69	80.96	3.19	76.20	3.00	9.13	0.36
B\$35 R	17.40	35.08	44.45	1.75	85.73	3.38	82.55	3.25	8.33	0.33
B\$50 'O'	24.83	50.05	52.40	2.06	100.00	3.94	100.00	3.94	10.30	0.41
BS80 A (39E1)	39.77	80.17	63.50	2.50	133.35	5.25	117.47	4.62	13.10	0.52

Transport Rails | American profiles

	Weight	Weight		Head Width A		Height H		Base Width B		
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
90ARA-A (TR45)	44.67	90.05	65.09	2 9/16	142.88	5 5/8	130.18	5 1/8	14.29	9/16
100ARA-A	49.88	100.56	69.85	2 3/4	152.40	6	139.70	5 1/2	14.29	9/16
100ARA-B (100-8)	49.87	100.53	67.47	2 21/32	143.27	5 41/64	130.57	5 9/64	14.29	9/16
100RE (TR50)	50.35	101.50	68.26	2 11/16	152.40	6	136.53	5 3/8	14.29	9/16
115RE (TR57)	56.80	114.50	69.06	2 23/32	168.28	6 5/8	139.70	5 1/2	15.88	5/8
119RE	58.86	118.67	67.47	2 21/32	173.04	6 13/16	139.70	5 1/2	15.88	5/8
132RE	65.33	131.70	76.20	3	180.98	7 1/8	152.40	6	16.67	21/32
133RE	66.10	133.25	76.20	3	179.39	7 1/16	152.40	6	17.46	11/16
136RE (TR68)	67.42	135.91	74.61	2 15/16	185.74	7 5/16	152.40	6	17.46	11/16
141RE	69.80	140.70	77.79	3 1/16	188.91	7 7/16	152.40	6	17.46	11/16
136TW	87.83	177.05	74.61	2 15/16	185.74	7 5/16	152.40	6	42.86	1 11/16

Transport Rails | European profiles

	Weight		Hond Wis	Head Width A Height H			Base Wid	ob D	Web W		
	kg/m	lb/yd	mm	in A	mm meight n	in	mm in		mm	in	
45E1 (BS90A)	45.11	90.94	66.67	2.62	142.88	5.63	127.00	5.00	13.89	0.55	
45E3 (RN45)	44.79	90.29	66.00	2.60	142.00	5.59	130.00	5.12	15.00	0.59	
46E2 (U33)	46.27	93.28	62.00	2.44	145.00	5.71	134.00	5.28	15.00	0.59	
49E1 (S49)	49.39	99.57	67.00	2.64	149.00	5.87	125.00	4.92	14.00	0.55	
49E5	49.13	99.04	67.00	2.64	149.00	5.87	125.00	4.92	14.00	0.55	
50E2 (50EB-T)	49.97	100.73	72.00	2.83	151.00	5.94	140.00	5.51	15.00	0.59	
50E6 (U50)	50.90	102.61	65.00	2.56	153.00	6.02	140.00	5.51	15.50	0.61	
54E1 (UIC54)	54.77	110.41	70.00	2.76	159.00	6.26	140.00	5.51	16.00	0.63	
54E2 (UIC54E)	53.82	108.50	67.00	2.64	161.00	6.34	125.00	4.92	16.00	0.63	
54E3 (S54)	54.57	110.01	67.00	2.64	154.00	6.06	125.00	4.92	16.00	0.63	
54E4	54.31	109.48	67.00	2.64	154.00	6.06	125.00	4.92	16.00	0.63	
54E5 (54E1AHC)	54.42	109.71	70.20	2.76	159.00	6.26	140.00	5.51	13.10	0.52	
56E1 (BS113Lb)	56.30	109.71	70.20	2.76	159.00	6.26	140.00	5.51	13.10	0.52	
60E1 (UIC60)	60.21	121.38	72.00	2.83	172.00	6.77	150.00	5.91	16.50	0.65	
60E2	60.03	121.01	72.00	2.83	172.00	6.77	150.00	5.91	16.50	0.65	
MAV48	48.50	97.77	65.80	2.59	148.00	5.83	120.00	4.72	14.00	0.55	

Grooved Rails

	Weight	Weight		Overall Head Width A		Height H		Base width B		
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
51R1 (Ri52)	51.37	103.56	113.00	4.45	130.00	5.12	150.00	5.91	12.00	0.47
53R1 (Ri53)	52.98	106.80	113.00	4.45	130.00	5.12	150.00	5.91	12.00	0.47
54G1/54R1 (41GPU)	54.26	109.38	116.82	4.60	152.50	6.00	141.50	5.57	13.00	0.51
54G2 (Ri54G2)	54.55	109.97	116.60	4.59	152.50	6.00	141.50	5.57	13.00	0.51
55G1 (35GP)	54.77	110.41	111.82	4.40	152.50	6.00	141.50	5.57	13.00	0.51
55G2 (41GP)	55.37	111.62	116.90	4.60	152.50	6.00	141.50	5.57	13.00	0.51
55R1 (Ri55NK)	55.45	111.78	113.00	4.45	150.00	5.91	150.00	5.91	12.00	0.47
57R1 (Ph37)	56.54	113.98	127.00	5.00	182.00	7.17	150.00	5.91	11.00	0.43
59R1 (Ri59)	58.97	118.88	113.00	4.45	180.00	7.09	180.00	7.09	12.00	0.47
59R2 (Ri59N)	58.14	117.20	113.00	4.45	180.00	7.09	180.00	7.09	12.00	0.47
60R1 (Ri60)	60.59	122.14	113.00	4.45	180.00	7.09	180.00	7.09	12.00	0.47
60R2 (Ri60N)	59.75	120.45	113.00	4.45	180.00	7.09	180.00	7.09	12.00	0.47
62R1 (NP4aM)	62.37	125.73	116.00	4.57	180.00	7.09	180.00	7.09	12.00	0.47
62R2 (Np4aS)	61.91	124.80	116.00	4.57	180.00	7.09	180.00	7.09	12.00	0.47
67R1 (Ph37a)	66.76	134.58	135.00	5.31	180.00	7.09	180.00	7.09	13.00	0.51
73C1 (VKRi60)	72.73	146.62	113.10	4.45	180.00	7.09	180.00	7.09	12.00	0.47

Block Rails

	Weight	Weight		Head Width A			Base Width B		Web W	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
53K2 (MSzTS52)	53.34	107.53	116.00	4.57	70.00	2.76	156.00	6.14	n/a	n/a
57K2 (LK1)	57.68	116.28	115.00	4.53	72.00	2.83	156.00	6.14	n/a	n/a
58K2 (112 Tram)	58.20	117.51	120.00	4.72	72.00	2.83	156.00	6.14	n/a	n/a

Contact Rails

	Weight	Weight		Head Width A		Height H		Base Width B		
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
150NMC (STR74, TR75)	74.00	149.18	104.80	4 1/8	103.19	4 1/16	123.83	4 7/8	69.85	2 3/4
STR40	40.27	81.18	80.00	3.15	105.00	4.13	80.00	3.15	18.00	0.71
T52	52.31	105.45	101.00	3.98	100.50	3.96	45.00	1.77	45.00	1.77
Guide Bar	44.35	89.41	100.00	3.94	150.00	5.91	25.00	0.98	n/a	n/a

Guard Rails

	Weight	Weight		th A	Height H		Base Width B		Web W	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
33C1 (UIC33, U69, RL1-60)	32.99	66.50	80.00	3.15	93.00	3.66	40.00	1.57	20.00	0.79
SBB Radlenker	40.56	81.77	80.00	3.15	104.00	4.09	40.00	1.57	20.00	0.79

Crane Rails | American profiles

Crane Rails are an important subset of the rail industry. Their shapes can be quite different from those of Transport rails and are the result of a long evolution to give the rails specific performance characteristics.

Transverse loads (across the rails) are particularly high in crane applications and have led to rails with wide bases and relatively thick webs. Several profiles have flat heads as well, to better support large wheel loads..

Because each crane project is different, over time, many heavy crane rail profiles (sections) have been developed. American Heavy Crane Rails are the most common in North America, European DIN Rails are found worldwide, and Speciality Crane Rails appear for specific projects.

All Crane rails are produced and tested to stringent metallurgical quality standards. They are offered in multiple grades which improve the rail's load-bearing capabilities while reducing in-service wear rates. The grading of Crane Rails depends on their origins: in North America, Brinell Hardness is used for grading purposes, whereas the European standards focus on Tensile Strength. There is a rough correlation between the two systems.

Description

American Crane Rails rails have a long-established tradition among engineers in the Americas and are widely used for industrial crane applications. CR rails range in size from 104 lbs/yard (52.04 kg/m) to 175 lbs/yard (86.80 kg/m). and follow the ASTM A759 specification. An interesting characteristic of the CR rails is that their base widths and overall heights are almost the same.

American Crane Rails profiles are produced in standard lengths of 33, 39, 40, 60, 78 and 80 feet (≈ 10, 12, 18 and 24 meters). Other lengths are also available upon special request. The ends can be finished as needed, either non-drilled (blank) for welding or drilled with 3 holes for joint bars.

Basic Dimensions

	Weight		Head Wid	Head Width		Height		Base Width		Web	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in	
CR104 (MRS51)	52.04	104.90	63.50	2 1/2	127.00	5	127.00	5	25.40	1	
CR105 (MRS52)	52.09	105.00	65.09	2 9/16	131.76	5 3/16	131.76	5 3/16	23.81	15/16	
CR135 (MRS67)	67.39	135.86	87.31	3 7/16	146.05	5 3/4	131.76	5 3/16	31.75	1 1/4	
CR171 (MRS85)	85.02	171.40	109.22	4.30	152.40	6	152.40	6	31.75	1 1/4	
CR175 (MRS87B, TR87)	86.80	175.00	107.95	4 1/4	152.40	6	152.40	6	38.10	1 1/2	

Mechanical Properties

Grades	Hardness HB	Tensile Strength (for info. only) MPa
Standard	≥ 260	≥ 880
High Strength*	321 - 388 4 AS SPECIFED BY ASTM A759	≥ 1080
Advanced Head Hardened (AHH) **	≥ 360	≥ 1220

^{*} High Strength Rails (head-hardened or alloy rails) are produced in accordance with manufacturer's standard practice, as per ASTM A759 Supplementary Requirement S1.
** AHH grade is not overseen by ASTM A759 — it is a manufacturer's proprietary grade.

Chemical Composition

Grade	C %	Mn %	Si %	P %	S %	V %	Cr %
Standard	0.67 - 0.84	0.70 - 1.10	0.10 - 0.50	≤ 0.040	≤ 0.050	-	-

Crane Rails | American profiles

Drilling Patterns

Rail profile	Spacing	Spacing						Hole diameter		Elevation	
	Α	A B		В		D		E			
	mm	in	mm	in	mm	in	mm	in	mm	in	
CR104 (MRS51)	101.60	4	127.00	5	152.40	6	26.99	1 1/16	61.91	2 7/16	
CR105 (MRS52)	101.60	4	127.00	5	152.40	6	23.81	15/16	55.96	2 13/64	
CR135 (MRS67)	101.60	4	127.00	5	152.40	6	30.16	1 3/16	62.71	2 15/32	
CR171 (MRS85)	101.60	4	127.00	5	152.40	6	30.16	1 3/16	66.68	2 5/8	
CR175 (MRS87B, TR87)	101.60	4	127.00	5	152.40	6	30.16	1 3/16	67.47	2 21/32	

CR104 (MRS 51)

 $\textbf{Weight} \quad 52.04 \text{ kg/m} \quad | \quad 104.90 \text{ lb/yd}$

CR105 (MRS52)

Weight 52.09 kg/m | 105.00 lb/yd

CR135 (MRS67)

Weight 67.39 kg/m | 135.86 lb/yd

CR171 (MRS85)

 $\textbf{Weight} \quad 85.02 \; \text{kg/m} \qquad 171.40 \; \text{lb/yd}$

CR175 (MRS87B, TR87)

Weight 86.80 kg/m | 175.00 lb/yd

Crane Rails | European profiles (DIN)

Crane Rails

EUROPEAN PROFILES (DIN)

IIROPFAN

Crane Rails are an important subset of the rail industry. Their shapes can be quite different from those of Transport rails and are the result of a long evolution to give the rails specific performance characteristics.

Transverse loads (across the rails) are particularly high in crane applications and have led to rails with wide bases and relatively thick webs. Several profiles have flat heads as well, to better support large wheel loads.

Because each crane project is different, over time, many heavy crane rail profiles have been developed. American Heavy Crane Rails are the most common in North America, European DIN Rails are found worldwide, and Speciality Crane Rails appear for specific projects.

All Crane rails are produced and tested to stringent metallurgical quality standards. They are offered in multiple grades which improve the rail's load-bearing capabilities while reducing in-service wear rates. The grading of Crane Rails depends on their origins: in North America, Brinell Hardness is used for grading purposes, whereas the European standards focus on Tensile Strength. There is a rough correlation between the two systems.

Description

A class of short and squat rails was developed in Europe and is described by the DIN 536 Standard. Commonly referred to as "DIN" rails, these are found worldwide and are, by volume, the most widely used crane rails in the world.

DIN rails are offered in a range of sizes, from A45 (22.1 kg/m) to A150 (150 kg/m) and can fulfill the requirements of most crane rail systems. Unlike the names of many other rails, the nomenclature for DIN rails describes the width of the head (for example, A45 has a 45mm wide head). Each DIN rail profile is characterized by a low center of gravity, a relatively wide and robust head and a very wide web and base. Designed to be installed on beams or foundations that offer continuous support, their lower height can be a boon for installations where overhead clearance is important. Their width and blocky shapes are extremely stable — ideal for crane applications.

The DIN 536 standard defines two steel grades: those with a tensile strength greater than 690 MPa and those greater than 880 MPa. Over time, different mills have come to use different jargon to represent these grades. Wirth Rail's DIN rail supplier, ArcelorMittal, uses the names 70 kg & 90 kg. (aside: 880 MPa = 880 N/mm2 \approx (90 kg x gravitational constant 9.81m/s2)/mm2).

A third grade is also common in Europe but is not described in the DIN 536 specification. The steel is alloyed with Chromium and Vanadium to achieve a tensile strength greater than 1080 MPa. ArcelorMittal refers to this as 110 CrV in its literature.

European heavy crane rails are finished in standard lengths of 9, 10, 12, 15 and 18 metres (\approx 30, 33, 39, 49 and 59 ft). Other lengths can be supplied by special request. The stocky shapes of these rails make drilling impractical. Square-finished ends are standard with Mitre cuts also available.

Crane Rails | European profiles (DIN)

Basic Dimensions

66.67

Profiles	Weight		Head Wid	th	Height		Base Width	1	Web	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
A45	22.10	44.55	45.00	1.77	55.00	2.17	125.00	4.92	24.00	0.94
A55	31.80	64.11	55.00	2.17	65.00	2.56	150.00	5.91	31.00	1.22
A65	43.10	86.89	65.00	2.56	75.00	2.95	175.00	6.89	38.00	1.50
A75	56.20	113.29	75.00	2.95	85.00	3.35	200.00	7.87	45.00	1.77
A100	74.30	149.78	100.00	3.94	95.00	3.74	200.00	7.87	60.00	2.36
A120	100.00	201.59	120.00	4.72	105.00	4.13	220.00	8.66	72.00	2.83
A150	150.30	302.99	150.00	5.91	150.00	5.91	220.00	8.66	80.00	3.15

Mechanical Properties

Grade	Tensile Strength MPa	Yield Strength MPa	Elongation %	Hardness min. HB (for information only)
70 kg (700)	≥ 690	≥ 355	≥ 12	≥ 200
90 kg (900)	≥ 880	≥ 440	≥ 8	≥ 260
110 CrV (1100)	≥ 1080	≥ 640	≥ 7	≥ 320

Chemical Composition

Grade	C %	Mn %	Si %	P %	S %	V %	Cr %
70 kg (700)	0.40 - 0.60	0.80 - 1.20	≤ 0.350	≤ 0.045	≤ 0.045	-	-
90 kg (900)	0.60 - 0.80	0.80 - 1.30	≤ 0.500	≤ 0.045	≤ 0.045	-	-
110 CrV (1100)	0.65 - 0.85	0.90 - 1.30	≤ 0.500	≤ 0.040	≤ 0.040	0.05 - 0.15	0.20 - 0.80

Weight 22.10 kg/m | 44.55 lb/yd

Weight 31.80 kg/m | 64.11 lb/yd

Weight 43.10 kg/m | 86.89 lb/yd

Weight 56.20 kg/m | 113.29 lb/yd

Weight 74.30 kg/m | 149.78 lb/yd

Weight 100.00 kg/m | 201.59 lb/yd

Weight 150.30 kg/m 302.99 lb/yd

Crane Rails

SPECIAL PROFILES

Crane Rails are an important subset of the rail industry. Their shapes can be quite different from those of Transport rails and are the result of a long evolution to give the rails specific performance characteristics.

Transverse loads (across the rails) are particularly high in crane applications and have led to rails with wide bases and relatively thick webs. Several profiles have flat heads as well, to better support large wheel loads.

Because each crane project is different, over time, many heavy crane rail profiles have been developed. American Heavy Crane Rails are the most common in North America, European DIN Rails are found worldwide, and Speciality Crane Rails appear for specific projects.

All Crane rails are produced and tested to stringent metallurgical quality standards. They are offered in multiple grades which improve the rail's load-bearing capabilities while reducing in-service wear rates. The grading of Crane Rails depends on their origins: in North America, Brinell Hardness is used for grading purposes, whereas the European standards focus on Tensile Strength. There is a rough correlation between the two systems.

Description

There is a long history of crane rail development and many profiles were developed for specific applications over a century ago. Having proven to be effective, these are still in demand today for special applications. In addition, new rail profiles have also been developed to meet new needs in industrial and port applications. Wirth Rail distributes a wide range of these 'singular' profiles. Although the producers may have changed, these rails meet or exceed the original mill specifications.

Special Crane Rails are usually produced to Mill specifications. The grades are the same as those found in European Crane rail, with the most common being the 70 kg, 90 kg and the alloy 110 CrV.

Special Crane Rails are finished in standard lengths of 9, 10, 12, 15 and 18 metres (≈ 30, 33, 39, 49 and 59 ft), but other lengths can be supplied by special request. Rail ends are prepared with the usual non-drilled (blank), square finished ends. Mitre cutting and drilling are also available, again by special request. As with the DIN rails, not all profiles can be drilled due to their unusual shapes and webs.

Basic Dimensions

Profiles	Weight		Head Wid	th	Height		Base Widtl	1	Web	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
MRS73	73.63	148.43	70.00	2.76	157.00	6.18	146.00	5.75	32.00	1.26
MRS86	85.50	172.36	102.00	4.02	102.00	4.02	165.00	6.50	80.30	3.16
MRS87A (PRI85)	86.80	175.00	101.60	4.00	152.40	6.00	152.40	6.00	34.90	1.37
MRS125	125.00	251.99	120.00	4.72	180.00	7.09	180.00	7.09	40.00	1.57
MRS192	192.00	387.05	140.00	5.51	157.20	6.19	229.00	9.02	128.30	5.05
MRS221	221.40	446.32	220.00	8.66	160.00	6.30	220.00	8.66	145.00	5.71
CR73	73.30	147.77	100.00	3.94	135.00	5.31	140.00	5.51	32.00	1.26
CR100	100.20	201.99	120.00	4.72	150.00	5.91	155.00	6.10	39.00	1.54
CRS140	139.80	281.82	150.00	5.91	150.00	5.91	200.00	7.87	80.00	3.15
AS86	85.88	173.13	101.60	4.00	152.46	6.00	150.00	5.91	35.00	1.38
SP100	89.05	179.52	100.00	3.94	150.00	5.91	150.00	5.91	38.00	1.50
SP120	118.28	238.44	120.00	4.72	170.00	6.69	170.00	6.69	44.00	1.73

Mechanical Properties

Grade	Tensile Strength MPa	Yield Strength MPa	Elongation %	Hardness min. HB (for information only)
70 kg (700)	≥ 690	≥ 355	≥ 12	≥ 200
90 kg (900)	≥ 880	≥ 440	≥ 8	≥ 260
110 CrV (1100)	≥ 1080	≥ 640	≥ 7	≥ 320

Chemical Composition

Grade	C %	Mn %	Si %	P %	S %	V %	Cr %
70 kg (700)	0.40 - 0.60	0.80 - 1.20	≤ 0.350	≤ 0.045	≤ 0.045	-	-
90 kg (900)	0.60 - 0.80	0.80 - 1.30	≤ 0.500	≤ 0.045	≤ 0.045	-	-
110 CrV (1100)	0.65 - 0.85	0.90 - 1.30	≤ 0.500	≤ 0.040	≤ 0.040	0.05 - 0.15	0.20 - 0.80

MRS73

Weight 73.63 kg/m | 148.43 lb/yd

MRS86

Weight 85.50 kg/m | 172.36 lb/yd

MRS87A (PRI85)

 $\textbf{Weight} \quad 86.80 \; kg/m \qquad 175.00 \; lb/yd$

MRS125

Weight 125.00 kg/m | 251.99 lb/yd

MRS192

Weight 192.00 kg/m 387.05 lb/yd

MRS221

Weight 221.40 kg/m | 446.32 lb/yd

CR73

Weight 73.30 kg/m | 147.77 lb/yd

CR100

Weight 100.20 kg/m | 201.99 lb/yd

CR140

Weight 139.80 kg/m | 281.82 lb/yd

AS86

Weight 85.88 kg/m | 173.13 lb/yd

SP100

Weight 89.05 kg/m 179.52 lb/yd

SP120

Weight 118.28 kg/m | 238.44 lb/yd

Light Rails | American profiles

Light Rails

AMERICAN PROFILES

In the early days of railroading, rolling stock and the loads they carried were much lighter than they were to become. One of the first rails with the familiar "I" shape originated in the UK in 1829. (Coincidentally, Stephenson's Rocket locomotive was created in the same year.) These rails weighed just 36 lbs/yard (17.9 kg/m) whereas a modern Transport rail might be 136 lbs/yard (67.4 kg/m).

Over time, lightweight rails have been superseded by larger & heavier rails for transportation purposes. Mining was an early adopter, and lightweight rails found other uses: light crane systems, assembly lines, automated warehouse retrieval systems, hanger doors, amusement parks and even car washes, to name only a few. As this shift took place, Light Rail formed a class distinct from Transportation Rail. Different countries have developed their own standards and the rails themselves evolved with different shapes, sizes and specifications. European and American standards dominate the Light Rail market.

Description

In the interest of standardization, the American Society of Civil Engineers (or ASCE) developed a set of rail profiles in 1893. These rails all have a height equal to the width of their bases, and share the same proportions of steel weight in the head, web & foot.

The ASCE rails quickly spread all over the world with production taking place in mills far from the USA. With many producers of the same products, it was not uncommon for each Mill to follow its own standards and naming conventions. For example, ASCE45 is known as JIS22 under the Japanese Industrial Standards. Similarly, the Brazilian TR25 is the same as the ASCE50 rail. The TR is from the Portuguese 'trilho' or rail.

American Light Rails are produced under the dimensional tolerances and mechanical properties defined in the ASTM A1/00 technical specification.

American Light Rails are produced in standard lengths of 20, 30, 33, 39, 40, 60, 78 and 80 feet (\approx 6, 9, 10, 12, 18 and 24 meters). Other lengths are also available upon special request. The ends can be finished as needed, either non-drilled (blank) for welding or drilled with 2 holes for joint bars.

Basic Dimensions

Profiles	Weight		Head Width A		Height H		Base Width B		Web W	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
ASCE20	9.92	20.00	34.13	1 11/32	66.67	2 5/8	66.67	2 5/8	6.35	1/4
ASCE25	12.40	25.00	38.10	1 1/2	69.85	2 3/4	69.85	2 3/4	7.54	19/64
ASCE30	14.88	30.00	42.86	1 11/16	79.38	3 1/8	79.38	3 1/8	8.33	21/64
ASCE40	19.84	40.00	47.62	1 7/8	88.90	3 1/2	88.90	3 1/2	9.92	25/64
ASCE45 (JIS22)	22.32	45.00	50.80	2	93.66	3-11/16	93.66	3-11/16	10.72	27/64
ASCE50 (TR25)	24.80	50.00	53.98	2 1/8	98.43	3 7/8	98.43	3 7/8	11.11	7/16
ASCE60	29.76	60.00	60.33	2 3/8	107.95	4 1/4	107.95	4 1/4	12.30	31/64
ASCE75 (JIS37, TR37)	37.20	75.00	62.71	2 15/32	122.24	4 13/16	122.24	4 13/16	13.50	17/32
ASCE80	39.68	80.00	63.50	2 1/2	127.00	5	127.00	5	13.89	35/64
ASCE85	42.30	85.27	65.09	2 9/16	131.76	5 3/16	131.76	5 3/16	14.29	9/16

Mechanical Properties

Profiles	Grades available							
	≥ 155 HB	≥ 201 HB	≥ 260 HB	≥ 285 HB	≥ 320 HB			
ASCE20	~							
ASCE25, ASCE30, ASCE40, ASCE45, ASCE50		~						
ASCE60, ASCE75		~	~		~			
ASCE80		~	~	~	~			
ASCE85				~	~			

Light Rails | American profiles

Drilling

Rail profile	Spacing			Hole diameter			Elevation		
	A		В		D		E		
	mm	in	mm	in	mm	in	mm	in	
ASCE20	50.80	2	101.60	4	15.90	5/8	29.80	1 11/64	
ASCE25	50.80	2	101.60	4	15.88	5/8	31.35	1 15/64	
ASCE30	50.80	2	101.60	4	19.05	3/4	35.32	1 25/64	
ASCE40	63.50	2 1/2	127.00	5	22.23	7/8	39.69	1 9/16	
ASCE45 (JIS22)	63.50	2 1/2	127.00	5	22.20	7/8	41.67	1 41/64	
ASCE50 (TR25)	63.50	2 1/2	127.00	5	22.20	7/8	43.66	1 23/32	
ASCE60	63.50	2 1/2	127.00	5	23.81	15/16	48.42	1 29/32	
ASCE75 (JIS37,TR37)	66.68	2 5/8	139.70	5 1/2	25.4	1	53.78	2 15/128	
ASCE80	63.50	2 1/2	127.00	5	25.40	1	55.56	2 3/16	
ASCE85	63.50	2 1/2	127.00	5	28.58	1 1/8	57.55	2 17/64	

Weight 9.92 kg/m 20.00 lb/yd

Weight 12.40 kg/m | 25.00 lb/yd

Weight 14.88 kg/m 30.00 lb/yd

Weight 19.84 kg/m | 40.00 lb/yd

ASCE50 (TR25)

Weight 24.80 kg/m | 50.00 lb/yd

Weight 29.76 kg/m | 60.00 lb/yd

ASCE75 (JIS37, TR37)

Weight 37.20 kg/m | 75.00 lb/yd

Weight 39.68 kg/m | 80.00 lb/yd

Weight 42.30 kg/m 85.27 lb/yd

Light Rails | European profiles

In the early days of railroading, rolling stock and the loads they carried were much lighter than they were to become. One of the first rails with the familiar "I" shape originated in the UK in 1829. (Coincidentally, Stephenson's Rocket locomotive was created in the same year.) These rails weighed just 36 lbs/yard (17.9 kg/m) whereas a modern Transport rail might be 136 lbs/yard (67.4 kg/m).

Over time, lightweight rails have been superseded by larger & heavier rails for transportation purposes. Mining was an early adopter, and lightweight rails found other uses: light crane systems, assembly lines, automated warehouse retrieval systems, hanger doors, amusement parks and even car washes, to name only a few. As this shift took place, Light Rail formed a class distinct from Transportation Rail. Different countries have developed their own standards and the rails themselves evolved with different shapes, sizes and specifications. European and American standards dominate the Light Rail market.

Description

European Light Rails are offered in many sizes and shapes. Over the years, rail production has jumped between countries, but the products remain unchanged. The "S" rails were a German creation. Similarly "BS" rails were created in the UK, "UNI" rails were first produced in Italy, and "AFNOR" rails were originally French products. Today, you may find these rails produced in countries such as Luxembourg, Poland and Spain.

European Light Rails are finished in standard lengths of 6, 9, 10, 12 and 18 metres (\approx 20, 30, 33, 39, and 59 ft), but other lengths can be supplied by special request. Drilled ends are the norm, with non-drilled (blank) ends supplied by special request.

Light Rails | European profiles

Basic Dimensions

Profiles	Weight		Head Wid	th A	Height H		Base Width	В	Web W	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
\$7	6.75	13.61	25.00	0.98	65.00	2.56	50.00	1.97	5.00	0.20
\$10	10.00	20.16	32.00	1.26	70.00	2.76	58.00	2.28	6.00	0.24
\$14	14.00	28.22	38.00	1.50	80.00	3.15	70.00	2.76	9.00	0.35
\$18	18.30	36.89	43.00	1.69	93.00	3.66	82.00	3.23	10.00	0.39
\$20	19.84	40.00	44.00	1.73	100.00	3.94	82.00	3.23	10.00	0.39
\$24	24.43	49.25	53.00	2.09	115.00	4.53	90.00	3.54	10.00	0.39
\$30	30.03	60.54	60.30	2.37	108.00	4.25	108.00	4.25	12.30	0.48
\$31	31.57	63.64	56.00	2.20	125.00	4.92	106.00	4.17	12.00	0.47
\$33 (33E1)	33.47	67.47	58.00	2.28	134.00	5.28	105.00	4.13	11.00	0.43
S41A	41.24	83.14	67.00	2.64	138.00	5.43	125.00	4.92	12.00	0.47
AFNOR26	26.27	52.96	50.00	1.97	110.00	4.33	100.00	3.94	10.00	0.39
AFNOR30	30.15	60.78	58.42	2.30	125.50	4.94	106.00	4.17	11.00	0.43
AFNOR36	36.59	73.76	58.27	2.29	128.00	5.04	115.00	4.53	13.00	0.51
B\$35 M	17.40	35.08	42.86	1.69	80.96	3.19	76.20	3.00	9.13	0.36
B\$35 R	17.40	35.08	44.45	1.75	85.73	3.38	82.55	3.25	8.33	0.33
BS80 A (39E1)	39.77	80.17	63.50	2.50	133.35	5.25	117.47	4.62	13.10	0.52

Light Rails | European profiles

Mechanical Properties

Profiles	Grades available (shown by Tensile Strength)							
	≥ 540 MPa	≥ 680 MPa	≥ 880 MPa	≥ 1080 MPa				
\$7, \$10	~							
S14, S18, S20, S24		~						
S30, S31, S33, S39		~	~					
BS35M, BS35R		~						
AFNOR26, AFNOR30, AFNOR36			~					
S41A		~	~	~				
BS80A			~					

S7Weight 6.75 kg/m | 13.61 lb/yd

Weight 10.00 kg/m | 20.16 lb/yd

S14Weight 14.00 kg/m | 28.22 lb/yd

S18Weight 18.30 kg/m | 36.89 lb/yd

Weight 19.84 kg/m | 40.00 lb/yd

Weight 24.43 kg/m | 49.25 lb/yd

Weight 30.03 kg/m | 60.54 lb/yd

S33 (33E1)

Weight 33.47 kg/m | 67.47 lb/yd

S41A

Weight 41.24 kg/m | 83.14 lb/yd

AFNOR 30

Weight 30.15 kg/m | 60.78 lb/yd

AFNOR 36

Weight 36.59 kg/m | 73.76 lb/yd

BS35 M

Weight 17.40 kg/m 35.08 lb/yd

BS35 R

Weight 17.40 kg/m | 35.08 lb/yd

BS80 A (39E1)

Weight 39.77 kg/m | 80.17 lb/yd

Transport Rails | American profiles

Transport Rails

AMERICAN PROFILES

Transport Rails are the most familiar rails produced. They are used by freight, passenger and public-transit railways to move goods and people long distances.

The installation of Transport Rails is usually on tie-and-ballast foundations. This has encouraged rail shapes with tall profiles to better transfer wheel loads from tie-to-tie. Transport rails are all relatively heavy sections, greater than 90 lbs/yard (44.64 kg/m).

Transport Rails are connected to one another by welding and/or by jointed connections. Rails can be furnished with either drilled or non-drilled (blank) ends as required.

Description

Many American organizations have contributed to the design of Transport rails. Not all of these organizations still exist but their names live on in the rails which they developed.

These organizations include:

- ASTM American Society for Testing and Materials
- AREMA American Railway Engineering and Maintenance-of-Way Association
- AREA American Railway Engineering Association (now part of AREMA)
- ARA American Railway Association (now part of AREMA)
 - ARA-A higher grade rail for high speeds applications
 - ARA-B lower grade rail for heavy loads at low speeds

For railway and industrial applications, rail sections weighing in the range 60 lbs/yard (29.76 kg/m) to 114 lbs/yard (56.55 kg/m) are typically governed by the ASTM A1 specification. Transport rails weighing more than 114 lbs/yard (56.55 kg/m) follow AREMA specifications. Wirth Rail offers American Transport rail profiles in a number of different grades to suit different applications. There are many grades available, but those defined by AREMA and ASTM are the most common. In general, relative to other rail types, American Transport Rails tend to be very hard to reduce in-service wear.

Various lengths are available, with the most common being 39, 40 and 80 feet and 12, 18 and 24 metres.

Transport Rails | American profiles

Basic Dimensions

Profiles	Weight		Head Wid	th	Height		Base Widt	h	Web	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
90ARA-A (TR45)	44.67	90.05	65.09	2 9/16	142.88	5 5/8	130.18	5 1/8	14.29	9/16
100ARA-A	49.88	100.56	69.85	2 3/4	152.40	6	139.70	5 1/2	14.29	9/16
100ARA-B (100-8)	49.87	100.53	67.47	2 21/32	143.27	5 41/64	130.57	5 9/64	14.29	9/16
100RE (TR50)	50.35	101.50	68.26	2 11/16	152.40	6	136.53	5 3/8	14.29	9/16
115RE (TR57)	56.80	114.50	69.06	2 23/32	168.28	6 5/8	139.70	5 1/2	15.88	5/8
119RE	58.86	118.67	67.47	2 21/32	173.04	6 13/16	139.70	5 1/2	15.88	5/8
132RE	65.33	131.70	76.20	3	180.98	7 1/8	152.40	6	16.67	21/32
133RE	66.10	133.25	76.20	3	179.39	7 1/16	152.40	6	17.46	11/16
136RE (TR68)	67.42	135.91	74.61	2 15/16	185.74	7 5/16	152.40	6	17.46	11/16
141RE	69.80	140.70	77.79	3 1/16	188.91	7 7/16	152.40	6	17.46	11/16
136TW	87.83	177.05	74.61	2 15/16	185.74	7 5/16	152.40	6	42.86	1 11/16

Mechanical Properties

Spec	Steel Grade	Hardness HB	Tensile Strength ksi	Yield Strength ksi	Elongation %
ACTM A1 for > 9F llp /rd	Standard Strength	≥ 285	-	-	-
ASTM A1 for ≥ 85 lb/yd	High Strength	≥ 321	-	-	-
	Standard Strength	≥ 310	≥ 142.5	≥ 74.0	≥ 10
AREMA	Intermediate Strength	≥ 350	≥ 155.0	≥ 105.0	≥ 10
	High Strength	≥ 370	≥ 171.0	≥ 120.0	≥ 10

Chemical Compositon

AREMA 2019	C %	Mn %	P %	S %	Si %	Ni %	Cr %	Mb %	V %	AI %
Carbon Rail Steel	0.74-0.86	0.75-1.25	≤ 0.020	≤ 0.020	0.10-0.60	≤ 0.25	≤ 0.30	≤ 0.060	≤ 0.010	≤ 0.010

Carbon Rail Steel chemical composition is the same for the three grades, Standard, Intermediate & High Strength.

Drilling

These are the standard drilling dimensions for the various American Transport rails. Drilling can also be customized as needed.

Rail profile	Spacing						Hole diar	neter	Elevation	
	Α		В		С		D		E	
	mm	in	mm	in	mm	in	mm	in	mm	in
90ARA-A (TR45)	68.26	2 11/16	139.70	5 1/2	-	-	28.58	1 1/8	65.48	2 37/64
100ARA-A	68.26	2 11/16	139.70	5 1/2	-	-	30.16	1 3/16	69.85	2 3/4
100ARA-B (100-8)	67.47	2 21/32	184.15	7 1/4	139.70	5 1/2	28.58	1 1/8	63.70	2 65/128
100RE (TR50)	68.26	2 11/16	139.70	5 1/2	-	-	28.58	1 1/8	68.66	2 45/64
115RE (TR57)	88.90	3 1/2	152.40	6	152.40	6	28.58	1 1/8	73.03	2 7/8
119RE	88.90	3 1/2	152.40	6	152.40	6	28.58	1 1/8	73.03	2 7/8
132RE	88.90	3 1/2	152.40	6	152.40	6	31.75	1 1/4	78.58	3 3/32
133RE	88.90	3 1/2	152.40	6	152.40	6	28.58	1 1/8	76.20	3
136RE (TR68)	88.90	3 1/2	152.40	6	152.40	6	31.75	1 1/4	78.58	3 3/32

90ARA-A (TR45)

Weight 44.67 kg/m 90.05 lb/yd

100ARA-A

Weight 49.88 kg/m | 100.56 lb/yd

100ARA-B (100-8)

Weight 49.87 kg/m | 100.53 lb/yd

100RE (TR50)

 $\textbf{Weight} \quad 50.35 \; kg/m \quad \middle| \quad 101.50 \; lb/yd$

115RE (TR57)

 $\textbf{Weight} \quad 56.80 \; kg/m \quad \middle| \quad 114.50 \; lb/yd$

Weight 58.86 kg/m 118.67 lb/yd

 $\textbf{Weight} \quad 65.33 \; \text{kg/m} \quad \mid \; 131.70 \; \text{lb/yd}$

 $\textbf{Weight} \quad 66.10 \; \text{kg/m} \quad \mid \; 133.25 \; \text{lb/yd}$

136RE (TR68)

Weight 67.42 kg/m | 135.91 lb/yd

Weight 69.80 kg/m | 140.70 lb/yd

Transport Rails

EUROPEAN PROFILES

Transport Rails are the most familiar rails produced. They are used by freight, passenger and public-transit railways to move goods and people long distances.

The installation of Transport Rails is usually on tie-and-ballast foundations. This has encouraged rail shapes with tall profiles to better transfer wheel loads from tie-to-tie. Transport rails are all relatively heavy sections, greater than 90 lbs/yard (44.64 kg/m).

Transport Rails are connected to one another by welding and/or by jointed connections. Rails can be furnished with either drilled or non-drilled (blank) ends as required.

Description

Similar to the American profiles, European Transport rails are relatively tall, with thin webs, to handle vertical loads. They have a long history in Europe and in other parts of the world to which they were exported.

European Transport rails are produced in accordance with the latest European specification EN 13674-1. This standard was developed with the participation of various European countries in order to have one current and uniform European specification for rails which are produced by many Mills in many countries.

Various lengths are available, with the most common being 12, 18, 24 and 36 metres (≈ 39, 59, 79 and 118 ft).

Mechanical Properties

Grade	Tensile Strength MPa	Elongation %	Hardness HB
R200	≥ 680	≥ 14	200 - 240
R260	≥ 880	≥ 10	260 - 300
R350HT	≥ 1,175	≥ 9	350 - 390
R350LHT	≥ 1,175	≥ 9	350 - 390

Basic Dimensions

Profiles	Weight		Head Wid	th A	Height H		Base Width	ı В	Web W	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
45E1 (BS90A)	45.11	90.94	66.67	2.62	142.88	5.63	127.00	5.00	13.89	0.55
45E3 (RN45)	44.79	90.29	66.00	2.60	142.00	5.59	130.00	5.12	15.00	0.59
46E2 (U33)	46.27	93.28	62.00	2.44	145.00	5.71	134.00	5.28	15.00	0.59
49E1 (S49)	49.39	99.57	67.00	2.64	149.00	5.87	125.00	4.92	14.00	0.55
49E5	49.13	99.04	67.00	2.64	149.00	5.87	125.00	4.92	14.00	0.55
50E2 (50EB-T)	49.97	100.73	72.00	2.83	151.00	5.94	140.00	5.51	15.00	0.59
50E6 (U50)	50.90	102.61	65.00	2.56	153.00	6.02	140.00	5.51	15.50	0.61
54E1 (UIC54)	54.77	110.41	70.00	2.76	159.00	6.26	140.00	5.51	16.00	0.63
54E2 (UIC54E)	53.82	108.50	67.00	2.64	161.00	6.34	125.00	4.92	16.00	0.63
54E3 (S54)	54.57	110.01	67.00	2.64	154.00	6.06	125.00	4.92	16.00	0.63
54E4	54.31	109.48	67.00	2.64	154.00	6.06	125.00	4.92	16.00	0.63
54E5 (54E1AHC)	54.42	109.71	70.20	2.76	159.00	6.26	140.00	5.51	16.00	0.63
56E1 (BS113Lb)	56.30	113.50	69.85	2.75	158.75	6.25	140.00	5.51	20.00	0.79
60E1 (UIC60)	60.21	121.38	72.00	2.83	172.00	6.77	150.00	5.91	16.50	0.65
60E2	60.03	121.01	72.00	2.83	172.00	6.77	150.00	5.91	16.50	0.65
MAV48	48.50	97.77	66.80	2.63	148.00	5.83	120.00	4.72	14.00	0.55

Chemical Composition

Grade	C %	Mn %	Si %	P %	S %	AI %	V %	Cr %
R200	0.40 - 0.60	0.70 - 1.20	0.15 - 0.58	≤ 0.035	≤ 0.035	≤ 0.004	≤ 0.030	≤ 0.15
R260	0.62 - 0.80	0.70 - 1.20	0.15 - 0.58	≤ 0.025	≤ 0.025	≤ 0.004	≤ 0.030	≤ 0.15
R350HT	0.72 - 0.80	0.70 - 1.20	0.15 - 0.58	≤ 0.020	≤ 0.025	≤ 0.004	≤ 0.030	≤ 0.15
R350LHT	0.72 - 0.80	0.70 - 1.20	0.15 - 0.58	≤ 0.020	≤ 0.025	≤ 0.004	≤ 0.030	≤ 0.30

46E2 (U33)

Weight 46.27 kg/m | 93.28 lb/yd

49E1 (S49)

Weight 49.39 kg/m | 99.57 lb/yd

50E6 (U50)

Weight 50.90 kg/m | 102.61 lb/yd

54E1 (UIC54)

Weight 54.77 kg/m | 110.41 lb/yd

54E3 (S54)

Weight 54.57 kg/m | 110.01 lb/yd

60E1 (UIC60)

Weight 60.21 kg/m | 121.38 lb/yd

60E2

Weight 60.03 kg/m | 121.01 lb/yd

Grooved Rails

When rails are required for service in paved or grassed services, grooved rails provide an excellent solution.

Grooved Rails were invented by Alphonse Loubat in 1852 for use in the Tram systems being introduced in New York and Paris at that time. In these cities, the new trains had to share the streets with carts and pedestrians. Tripping and trapping were safety concerns and so the best solution was to embed the rails in the street so that their running surfaces were at street level. Since wheel flanges were still necessary, a solution was required to protect the flanges while keeping the flange slot as narrow as possible. This was to protect horses and humans from tripping and prevented feet and narrow cart wheels from being trapped between the rails and the road surface.

The best solution was to roll a tough steel groove into the head of the rail. This allowed the road surface to abut the rail, while not interfering with the train wheels. These rails all share a bifurcated head, with a running surface on one side and a guard on the other. The guard carries no weight and serves only to maintain a minimum groove for the wheel flanges as they roll along.

Description

Grooved rails are often referred to as tram, groove, grooved, girder or block rails. This family of rails is noted for two typical designs. The taller girder type rail with the familiar "I" shape, and a more compact block design that incorporates the head and foot into a "block" of steel, eliminating the web. The groove is common to both.

The main difference between the two designs is that block rails have a shallow profile (depth), offering reduced excavation for installation. This is especially helpful when considering relocation of utilities in heavy urban environments.

As a very old style of rail, many Grooved rail profiles and grades have been developed over the years. The designs described in this catalogue are available for new projects or replacement.

Basic dimensions

	Weight		Overall He	ad Width A	Height H		Base width	В	Web W	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
51R1 (Ri52)	51.37	103.56	113.00	4.45	130.00	5.12	150.00	5.91	12.00	0.47
53R1 (Ri53)	52.98	106.80	113.00	4.45	130.00	5.12	150.00	5.91	12.00	0.47
54G1/54R1 (41GPU)	54.26	109.38	116.82	4.60	152.50	6.00	141.50	5.57	13.00	0.51
54G2 (Ri54G2)	54.55	109.97	116.60	4.59	152.50	6.00	141.50	5.57	13.00	0.51
55G1 (35GP)	54.77	110.41	111.82	4.40	152.50	6.00	141.50	5.57	13.00	0.51
55G2 (41GP)	55.37	111.62	116.90	4.60	152.50	6.00	141.50	5.57	13.00	0.51
55R1 (Ri55NK)	55.45	111.78	113.00	4.45	150.00	5.91	150.00	5.91	12.00	0.47
57R1 (Ph37)	56.54	113.98	127.00	5.00	182.00	7.17	150.00	5.91	11.00	0.43
59R1 (Ri59)	58.97	118.88	113.00	4.45	180.00	7.09	180.00	7.09	12.00	0.47
59R2 (Ri59N)	58.14	117.20	113.00	4.45	180.00	7.09	180.00	7.09	12.00	0.47
60R1 (Ri60)	60.59	122.14	113.00	4.45	180.00	7.09	180.00	7.09	12.00	0.47
60R2 (Ri60N)	59.75	120.45	113.00	4.45	180.00	7.09	180.00	7.09	12.00	0.47
62R1 (NP4aM)	62.37	125.73	116.00	4.57	180.00	7.09	180.00	7.09	12.00	0.47
62R2 (Np4aS)	61.91	124.80	116.00	4.57	180.00	7.09	180.00	7.09	12.00	0.47
67R1 (Ph37a)	66.76	134.58	135.00	5.31	180.00	7.09	180.00	7.09	13.00	0.51
73C1 (VKRi60)	72.73	146.62	113.10	4.45	180.00	7.09	180.00	7.09	12.00	0.47

Mechanical Properties

Grade	Tensile Strength MPa	Elongation %	Hardness HB
R200	≥ 680	≥ 14	200 - 240
R200V	≥ 690	≥ 15	200 - 240
R260	≥ 880	≥ 10	260 - 300
R260V	≥ 890	≥ 11	260 - 300
R290V	≥ 960	≥ 10	290 - 330

Chemical Composition

Grade	C %	Si %	Mn %	P %	S %	Cr %	V %
R200	0.40 - 0.60	0.15 - 0.58	0.70 - 1.20	≤ 0.035	≤ 0.035	≤ 0.15	-
R200V	0.30 - 0.48	0.15 - 0.58	0.70 - 1.20	≤ 0.035	≤ 0.035	≤ 0.15	0.08 - 0.20
R260	0.62 - 0.80	0.15 - 0.58	0.70 - 1.20	≤ 0.025	≤ 0.025	≤ 0.15	-
R260V	0.45 - 0.58	0.15 - 0.58	0.70 - 1.20	≤ 0.025	≤ 0.025	≤ 0.15	0.08 - 0.20
R290V	0.45 - 0.58	0.15 - 0.58	1.00 - 1.25	≤ 0.025	≤ 0.025	≤ 0.15	0.08 - 0.20

51R1 (Ri52)

Weight 51.37 kg/m | 103.56 lb/yd

53R1 (Ri53)

Weight 52.98 kg/m | 106.80 lb/yd

59R1 (Ri59)

Weight 58.97 kg/m | 118.88 lb/yd

59R2 (Ri59N)

Weight 58.14 kg/m | 117.20 lb/yd

60R1 (Ri60)

Weight 60.59 kg/m | 122.14 lb/yd

62R1 (NP4aM)

Weight 62.37 kg/m | 125.73 lb/yd

When rails are required for service in paved or grassed services, grooved rails provide an excellent solution.

Grooved Rails were invented by Alphonse Loubat in 1852 for use in the Tram systems being introduced in New York and Paris at that time. In these cities, the new trains had to share the streets with carts and pedestrians. Tripping and trapping were safety concerns and so the best solution was to embed the rails in the street so that their running surfaces were at street level. Since wheel flanges were still necessary, a solution was required to protect the flanges while keeping the flange slot as narrow as possible. This was to protect horses and humans from tripping and prevented feet and narrow cart wheels from being trapped between the rails and the road surface.

The best solution was to roll a tough steel groove into the head of the rail. This allowed the road surface to abut the rail, while not interfering with the train wheels. These rails all share a bifurcated head, with a running surface on one side and a guard on the other. The guard carries no weight and serves only to maintain a minimum groove for the wheel flanges as they roll along.

Description

Grooved rails are often referred to as tram, groove, grooved, girder or block rails. This family of rails is noted for two typical designs. The taller girder type rail with the familiar "I" shape, and a more compact block design that incorporates the head and foot into a "block" of steel, eliminating the web. The groove is common to both.

The main difference between the two designs is that block rails have a shallow profile (depth), offering reduced excavation for installation. This is especially helpful when considering relocation of utilities in heavy urban environments.

As a very old style of rail, many Grooved rail profiles and grades have been developed over the years. The designs described in this catalogue are available for new projects or replacement.

Basic Dimensions

	Weight		Overall He	ad Width A	Height H		Base width	В	Web W	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
53K2 (MSzTS52)	53.34	107.53	116.00	4.57	70.00	2.76	156.00	6.14	n/a	n/a
57K2 (LK1)	57.68	116.28	115.00	4.53	72.00	2.83	156.00	6.14	n/a	n/a
58K2 (112 Tram)	58.20	117.51	120.00	4.72	72.00	2.83	156.00	6.14	n/a	n/a

Mechanical Properties

Grade	Tensile Strength MPa	Elongation %	Hardness HB
R200	≥ 680	≥ 14	200 - 240
R260	≥ 880	≥ 10	260 - 300
R260V	≥ 890	≥ 11	260 - 300
R290V	≥ 960	≥ 10	290 - 330
110 CrV	≥ 1080	≥ 7	320 - 360

Chemical Composition

Grade	C %	Si %	Mn %	P %	S %	Cr %	V %
R200	0.40 - 0.60	0.15 - 0.58	0.70 - 1.20	≤ 0.035	≤ 0.035	≤ 0.15	-
R260	0.62 - 0.80	0.15 - 0.58	0.70 - 1.20	≤ 0.025	≤ 0.025	≤ 0.15	-
R260V	0.45 - 0.58	0.15 - 0.58	0.70 - 1.20	≤ 0.025	≤ 0.025	≤ 0.15	0.08 - 0.20
R290V	0.45 - 0.58	0.15 - 0.58	1.00 - 1.25	≤ 0.025	≤ 0.025	≤ 0.15	0.08 - 0.20
110 CrV	0.65 - 0.85	≤ 0.50	0.90 - 1.30	≤ 0.040	≤ 0.040	0.20 - 0.80	0.05 - 0.15

57K2 (LK1)

Weight 57.68 kg/m | 116.28 lb/yd

58K2 (112 Tram)

Weight 58.20 kg/m | 117.51 lb/yd

Contact Rails

Contact rail is also referred to as 'third rail' and is used to transfer electricity to the train or tram. In addition it can also serve as a guide bar to limit the lateral movement of the railcars.

Description

Contact rails are made of low carbon steel and produced according to each transit authority's specifications.

Low carbon steel is used in this application because it has about one third of the electrical resistance relative to the hard steel used for running rail.

Basic Dimensions

Profiles	Weight		Head Width A		Height H		Base Width B		Web W	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
150NMC (STR74, TR75)	74.00	149.18	104.80	4 1/8	103.19	4 1/16	123.83	4 7/8	69.85	2 3/4
STR40	40.27	81.18	80.00	3.15	105.00	4.13	80.00	3.15	18.00	0.71
T52	52.31	105.45	101.00	3.98	100.50	3.96	45.00	1.77	45.00	1.77
Guide Bar	44.35	89.41	100.00	3.94	150.00	5.91	25.00	0.98	n/a	n/a

Technical Parameters

The main technical parameters of the 150NMC rail used by subways in the Americas are as follow:

Profiles	Electrical resistivity (at 20° C)	Hardness (HB)		
150NMC (STR74, TR75)	< 11.90 μΩ -cm	≥ 70		

Example of Installation

150NMC (STR74, TR75)

Weight 74 kg/m | 149.16 lb/yd

STR40

Weight 40.27 kg/m | 81.18 lb/yd

T52

Weight 52.31 kg/m 105.45 lb/yd

Guard rail, also known as restraining rail or check rail, is used to reduce curve wear, and prevent wheels from changing its direction by holding them in correct alignment. They are used in special trackwork, in sharp curves and in areas with restrictive clearance such as bridges and tunnels.

Description

The 33C1 rail, which is also referred to as the UIC33 or U69 or RL-160, can be used as a guard rail to protect frog points or as a restraining rail.

This rail profile is produced according to the European specification EN 13674 and can be supplied in 4 different steel grades.

Basic Dimensions

Profiles	Weight		Head Width		Height		Base Width		Web	
	kg/m	lb/yd	mm	in	mm	in	mm	in	mm	in
33C1 (UIC33, U69, RL1-60)	32.99	66.50	80.00	3.15	93.00	3.66	40.00	1.57	20.00	0.79
SBB Radlenker	40.56	81.77	80.00	3.15	104.00	4.09	40.00	1.57	20.00	0.79

Mechanical Properties

Grade	Tensile Strength MPa	Elongation %	Hardness HB		
R200	≥ 680	≥ 14	200 - 240		
R260	≥ 880	≥ 10	260 - 300		
R320Cr	≥ 1,080	≥ 9	320 - 360		
R350	≥ 1,120	≥ 8	350 - 390		

33 C1 (UIC33, U69, RL1-60)

Weight 32.99 kg/m | 66.50 lb/yd

M.F. Wirth Rail Corporation 740 Notre-Dame St. West, Suite 1240 Montréal (QC) H3C 3X6 Canada Wirth Rail America Inc. PO Box 4845 Harrisburg, PA 17111 USA +1 866 909-9113 +1 514 369-7245 info@wirthrail.com wirthrail.com