

Institut für Experimentalphysik der Technischen Universität Graz

&

Institut für Physik der Universität Graz

LABORÜBUNGEN 2: ELEKTRIZITÄT, MAGNETISMUS, OPTIK

Übungstitel:	Transfori	mator		_
Betreuer:				
Gruppennun	nmer: 41	1	Vorbereitung Durchführung Protokoll	
Name:	Tanja Maier,	Johannes Winkler		
Kennzahl:	033 678	Matrikelnummer:	11778750, 00760897	
Datum:	23. Oktober 2020)	WS _20	_

1 Aufgabenstellung

2 Grundlagen und Versuchsaufbau

Abbildung 1: Versuchsaufbau Transformator. Tr
1 Regeltrenntrafo, Tr 2 Messtrafo, R_s Shunt (0.5 Ω), I_1 Primärstrom, I_2 Sekundärstrom, U_1 Primärspannung, U_2 Sekundärspannung, N_{1W} Leistungsmessung

3 Geräteliste

Tabelle 1: Liste der verwendeten Geräte

Kürzel	Bezeichnung	Hersteller	Gerätenummer	Unsicherheit
$\overline{\mathrm{DM}}$	Digitalmultimeter	Leybold		
TF	Transformator	Ruhstrat		
A1	Amperemeter 1	Norma		$\pm 1.5\%$
A2	Amperemeter 2	Norma		$\pm 1.5\%$
V1	Voltmeter 1	Norma		$\pm 0.5\%$
V2	Voltmeter 2	Norma	VII/1121/3	$\pm 0.5\%$
SP	Spule			
WS	Widerstand		VII/695	
LWS	Lastwiderstand			
OS	Oszilloskop	Rigol		
TT	Trenntrafo	Ruhstrat		

4 Durchführung und Messwerte

4.1 Leerlauf

Zuerst wurde die Schaltung gemäß Abbildung 1 aufgebaut, jedoch ohne das Amperemeter für den Sekundärstrom. Dan wurde eine Primärspannung von $U_1=160~{\rm V}$ angelegt. Die Unsicherheit bei Voltmetern sind 0.5%, bei Am-

peremetern 1.5%. Daher gilt insgesamt

$$U_1 = (160 \pm 1.2) \text{ V}$$

 $U_2 = (17.6 \pm 0.12) \text{ V}$
 $I_1 = (0.2 \pm 0.009) \text{ A}$
 $P_1 = (6.9 \pm 0.1) \text{ W}$

Da der Transformator im Leerlauf war, ist $I_2 = 0$ zu setzen.

4.2 Ohm'sche Last

Hier wird derselbe Aufbau verwendet, jedoch zusätzlich mit einem Verbraucher an der Sekundärseite. Es wird hier zusätzlich zur Sekundärspannung auch der Sekundärstrom I_2 gemessen. Der variable Widerstand wurde so gewählt, dass $I_2 < 1$ A ist. Es gilt

$$\begin{split} U_1 &= (160 \pm 1.2) \text{ V} \\ U_2 &= (16.6 \pm 0.12) \text{ V} \\ I_1 &= (0.24 \pm 0.009) \text{ A} \\ I_2 &= (0.68 \pm 0.02) \text{ A} \\ P_1 &= (19.3 \pm 0.1) \text{ W} \end{split}$$

4.3 Ohm + Induktive Last

Zum vorherigen Aufbau wurde eine Spule ($L=0.1~\mathrm{H}$) sekundärseitig in Serie geschalten. Für die übliche Primärspannung $U_1=(160\pm1.2)~\mathrm{V}$ wurden 15 Messwerte bei unterschiedlicher Einstellung des Lastenwiderstandes (bis zu $45~\Omega$) gemessen.

Es wird der Sekundärstrom I_2 und die Sekundärspannung U_2 gemessen, der variable Widerstand R ergibt sich daraus. Die Leistung kann dadurch direkt berechnet weren. Die Messwerte sind in Tabelle 3 zu finden.

Tabelle 2: Messwerte für Sekundärspannung U_2 , Sekundärstrom I_2 , Widerstand R

	U_2 / V	I_2 /A	R/Ω
1	2.2	0.53	4.2
2	2.7	0.51	5.3
3	3.4	0.49	6.9
4	3.9	0.46	8.5
5	4.2	0.45	9.3
6	4.8	0.43	11.2
7	5.3	0.4	13.3
8	5.9	0.37	15.9
9	6.5	0.32	20.3
10	6.9	0.29	23.8
11	7.1	0.27	26.3
12	7.3	0.25	29.2
13	7.5	0.23	32.6
14	7.6	0.21	36.2
15	7.7	0.2	38.5

5 Auswertung

5.1 Leerlauf

Für die Scheinleistung auf der Primärseite ergibt sich

$$S_1 = U_1 \cdot I_1 = 32 \text{ W}$$

Die Fehlerrechnung ergibt

$$\Delta S_1 = \Delta U_1 \cdot I_1 + U_1 \cdot \Delta I_1 = 1.68 \text{ W} \approx 2 \text{ W}$$

Die Blindleistung ist

$$Q_1 = \sqrt{S_1^2 - P_1^2} = 31.25 \text{ W}$$

Für die Fehlerrechnung gilt

$$\Delta Q_1 = \frac{S_1 \cdot \Delta S_1}{\sqrt{S_1^2 - P_1^2}} + \frac{P_1 \cdot \Delta P_1}{\sqrt{S_1^2 - P_1^2}} \approx 1.75 \text{ W} \approx 2 \text{ W}$$

Der Leistungsfaktor ist

$$\cos(\phi) = \frac{P_1}{S_1} = 0.22$$

Für die Fehlerrechnung gilt

$$\Delta\cos(\phi) = \frac{\Delta P_1}{S_1} + \frac{P_1}{S_1^2} \cdot \Delta S_1 = 0.01$$

5.2 Ohm'sche Last

Analog zum Leerlauf gilt hier für die Scheinleistung

$$S_1 = 37.6 \text{ W}$$

 $\Delta S_1 = 1.7 \text{ W}$

Die Blindleistung ergibt

$$Q_1 = 37 \text{ W}$$
$$\Delta Q_1 = 1.8 \text{ W}$$

Der Leistungsfaktor ist

$$\cos(\phi) = 0.18$$
$$\Delta\cos(\phi) = 0.01$$

Zusätzlich kann man jetzt die Sekundärseitige Wirkleistung berechnen (unter Annahme der Ohm'schen Last)

$$P_2 = U_2 \cdot I_2 = 11.3 \text{ W}$$

Die Fehlerrechnung ergibt

$$\Delta P_2 = \Delta U_2 \cdot I_2 + U_2 \cdot \Delta I_2 = 0.4 \text{ W}$$

Der Wirkungsgrad kann folgend berechnet werden

$$\eta = \frac{P_2}{P_1} = 0.58$$

$$\Delta \eta = \frac{\Delta P_2}{P_1} + \frac{P_2}{P_1^2} \cdot \Delta P_2 = 0.02$$

Es fehlt noch die Verlustleistung und die dazugehörige Fehlerrechnung

$$P_V = P_1 - P_2 = 8.0 \text{ W}$$

 $\Delta P_V = \Delta P_1 + \Delta P_2 = 0.5 \text{ W}$

5.3 Ohm + Induktive Last

An dieser Stelle wird die Leistung auf der Sekundärseite ausgewertet. Das Maximum befindet sich bei $U_2=5.9~{\rm V}$ und $I_2=0.37~{\rm A}$. Die maximale Leistung ist dann $P_2=2.18~{\rm W}$.

Tabelle 3: Berechnung der Leistung P_2 aus Sekundärspannung U_2 , Sekundärstrom I_2 und bestimmung des Maximums.

	U_2 / V	I_2 /A	R/Ω	P_2 / W
1	2.2	0.53	4.2	1.17
2	2.7	0.51	5.3	1.38
3	3.4	0.49	6.9	1.67
4	3.9	0.46	8.5	1.79
5	4.2	0.45	9.3	1.89
6	4.8	0.43	11.2	2.06
7	5.3	0.4	13.3	2.12
8	5.9	0.37	15.9	2.18
9	6.5	0.32	20.3	2.08
10	6.9	0.29	23.8	2.00
11	7.1	0.27	26.3	1.92
12	7.3	0.25	29.2	1.83
13	7.5	0.23	32.6	1.73
14	7.6	0.21	36.2	1.60
15	7.7	0.2	38.5	1.54

6 Zusammenfassung

Für den Leerlauf gilt

$$S_1 = (32 \pm 2) \text{ W}$$

 $Q_1 = (31 \pm 2) \text{ W}$
 $\cos(\phi) = (0.22 \pm 0.01)$

Da $I_2=0$ ist, gilt natürlich auch $P_2=0$ und $\eta=0.$ Für die Ohm'sche Last gilt

$$S_1 = (38 \pm 2) \text{ W}$$

 $Q_1 = (37 \pm 2) \text{ W}$
 $\cos(\phi) = (0.18 \pm 0.01)$
 $P_2 = (11.3 \pm 0.4) \text{ W}$
 $\eta = (0.58 \pm 0.02)$
 $P_V = (8.0 \pm 0.5) \text{ W}$

Für die Ohm'sche Last mit in Serie geschalteter Spule ergibt sich ein Leistungsmaximum von 2.18 W bei $R=15.9~\Omega.$

7 Diskussion

Abbildung 2: Transformator im Leerlauf. Channel 1 ist proportional zum Primärstrom, Channel 2 ist Sekundärspannung

Abbildung 3: Transformator mit Leerlauf. Channel 1 ist proportional zum Primärstrom, Channel 2 ist Sekundärspannung

Abbildung 4: Transformator mit mit ohm'scher und induktiver Belastung. Leistung und Widerstand als Kurve dargestellt.

A Python Skript

```
from math import sqrt
from math import sin
from math import cos
from math import pi

import numpy as np
import matplotlib.pyplot as plt

print("Aufgabe 1:")

U_1 = 160
Delta_U_1 = 1.2
U_2 = 16.8
Delta_U_2 = 0.12

I_1 = 0.2
Delta_I_1 = 0.009
```

```
P_1 = 6.9
Delta_P_1 = 0.1
print("Scheinleistung:")
S_1 = U_1 * I_1
Delta\_S\_1 = Delta\_U\_1 * I\_1 + U\_1 * Delta\_I\_1
print(str(S_1) + " +- " + str(Delta_S_1))
print("")
print("Blindleistung:")
Q_1 = sqrt(S_1**2 - P_1**2)
Delta_Q_1 = (S_1 * Delta_S_1 + P_1 * Delta_P_1)/Q_1
print(str(Q_1) + " +- " + str(Delta_Q_1))
print("")
print("Leistungsfaktor:")
cos_phi = P_1/S_1
Delta_cos_phi = Delta_P_1/S_1 + P_1/S_1**2 * Delta_S_1
print(str(cos_phi) + " +- " + str(Delta_cos_phi))
print("")
print("")
print("")
print("Aufgabe 2:")
U_1 = 160
Delta_U_1 = 1.2
U_2 = 16.6
Delta_U_2 = 0.12
I_1 = 0.6/120*47
Delta_I_1 = 0.009
```

```
I_2 = 0.68
Delta_I_2 = 0.02 # 0.018
P_1 = 19.3
Delta_P_1 = 0.1
print("Primaerstrom: " + str(I_1))
print("Scheinleistung:")
S_1 = U_1 * I_1
Delta_S_1 = Delta_U_1 * I_1 + U_1 * Delta_I_1
print(str(S_1) + " +- " + str(Delta_S_1))
print("")
print("Blindleistung:")
Q_1 = sqrt(S_1**2 - P_1**2)
Delta_Q_1 = (S_1 * Delta_S_1 + P_1 * Delta_P_1)/Q_1
print(str(Q_1) + " +- " + str(Delta_Q_1))
print("")
print("Leistungsfaktor:")
cos_phi = P_1/S_1
Delta_cos_phi = Delta_P_1/S_1 + P_1/S_1**2 * Delta_S_1
print(str(cos_phi) + " +- " + str(Delta_cos_phi))
print("")
print("Wirkleistung sekundaer, P2: ")
P_2 = U_2 * I_2
Delta\_P\_2 = Delta\_U\_2 * I\_2 + U\_2 * Delta\_I\_2
print(str(P_2) + " +- " + str(Delta_P_2))
```

print("")

print("Wirkungsgrad, eta: ")

```
eta = P_2/P_1
Delta\_eta = Delta\_P\_2/P\_1 + P\_2/P\_1**2 * Delta\_P\_1
print(str(eta) + " +- " + str(Delta_eta))
print("")
print("Verlustleistung P_V: ")
print(str(P_1-P_2) + " +- " + str(Delta_P_1 +
   Delta_P_2))
   [4.2,5.3,6.9,8.5,9.3,11.2,13.3,15.9,20.3,23.8,26.3,29.2,32.6,36.2,38.5]
   [1.17,1.38,1.67,1.79,1.89,2.06,2.12,2.18,2.08,2.00,1.92,1.83,1.73,1.60,1.
\#xerr = [5,5,5,5,5]
#yerr = [0.001, 0.001, 0.001, 0.001, 0.001]
fig, ax = plt.subplots()
ax.set_xlim(4,40)
ax.set_ylim(1.1,2.5)
ax.plot(x,y)
#ax.errorbar(x, y,
             xerr=xerr,
             yerr=yerr, ls='None')
ax.set_xlabel('Widerstand / Ohm')
ax.set_ylabel('Leistung / W ')
```

plt.savefig("kurve.png")

Listing 1: Python Skript

B Literaturverzeichnis

- [1] https://www.chemie.de/lexikon/Elektrochemisches_quivalent.html, 22.10.2020 22:53 Uhr
- [2] bereitgestellte Unterlagen zum Versuch aus dem TeachCenter der TU Graz