Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 12: Esercizi di ricapitolazione su stabilità di sistemi non lineari

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

In questa lezione: esercizi!

▶ Esercizio 1: equilibri con ingressi costanti

▶ Esercizio 2: stabilità di sistemi non lineari

▶ Esercizio 3: equazione di Lyapunov

Esercizio 1 [Es. 1 tema d'esame 24 Giugno 2019]

$$\begin{cases} x_1(t+1) = x_2^2(t) \\ x_2(t+1) = \alpha x_2(t) + u(t) \end{cases} \quad \alpha \in \mathbb{R}$$

- 1. Equilibri del sistema per $u(t) = \bar{u} = \text{cost.} \ \forall t$?
- 2. Stabilità degli equilibri trovati usando il teorema di linearizzazione?

Giacomo Baggio IMC-TdS-1920: Lez. 12 November 11, 2019

Esercizio 1: soluzione

1.
$$\alpha \neq 1$$
: unico equilibrio $\bar{x} = \begin{bmatrix} \frac{\bar{u}^2}{(1-\alpha)^2} \\ \frac{\bar{u}}{1-\alpha} \end{bmatrix}$.

$$\alpha=1$$
: nessun equilibrio se $\bar{u}\neq 0$, infiniti equilibri $egin{bmatrix} eta^2 \ eta \end{bmatrix}$, $eta\in\mathbb{R}$ se $\bar{u}=0$.

2. equilibri asintoticamente stabili se $|\alpha| < 1$ e instabili se $|\alpha| > 1$.

Esercizio 2

$$\begin{cases} \dot{x}_1 = \alpha x_1 + x_1 x_2^2 + x_2^3 \\ \dot{x}_2 = -(1+\alpha)x_2 - x_1 x_2^2 - x_1^2 x_2 \end{cases} \qquad \alpha \in \mathbb{R}, \quad \bar{x} = \begin{bmatrix} 0 & 0 \end{bmatrix}^\top$$

1. Stabilità di \bar{x} al variare di $\alpha \in \mathbb{R}$ usando il teorema di linearizzazione?

2. Nei casi critici usare la funzione $V(x_1, x_2) = x_1^2 + x_2^2$.

Esercizio 2: soluzione

1.
$$-1 < \alpha < 0$$
: \bar{x} as intoticamente stabile.

$$\alpha < -1$$
, $\alpha > 0$: \bar{x} instabile.

2. Casi critici $\alpha = -1, 0$.

$$\alpha = -1$$
: \bar{x} as intoticamente stabile.

$$\alpha = 0$$
: \bar{x} semplicemente stabile.

Esercizio 3

$$\dot{x} = Fx$$
, $F = \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix}$, $Q = \begin{bmatrix} \alpha & 2 \\ 2 & 2 \end{bmatrix}$, $\alpha \in \mathbb{R}$

1. Soluzioni dell'equazione di Lyapunov (se esistono) al variare di α ?

2. Stabilità del sistema utilizzando le soluzioni trovate per $\alpha=4$ e $\alpha=2$?

Esercizio 3: soluzione

1.
$$P = \begin{bmatrix} \frac{\alpha+8}{2} & 2 \\ 2 & 1 \end{bmatrix}$$
, $\alpha \in \mathbb{R}$.

- 2. $\alpha = 4$: $P \succ 0$, $Q \succ 0 \implies$ stabilità asintotica.
 - $\alpha=2$: $P\succ 0$, $Q\succeq 0 \implies$ stabilità (almeno) semplice.