Упражнение 3

I. $\tilde{x}_1(\lambda)$

Пусть $0 > \tilde{x} > -1$ — корень уравнения $xe^x = \lambda$. При малых x таких, что $|x| \ll 1$,

$$xe^x \approx x(1+x+\frac{1}{2}x^2) \approx x,$$

следовательно, $\tilde{x} \approx \tilde{x}e^x \approx \lambda$, ответ:

$$\tilde{x} \approx \lambda$$

II. $\tilde{x}_2(\lambda)$

Домножим на -1 и прологарифмируем обе части уравнения:

$$x = \ln(-\lambda) - \ln(-x).$$

Чтобы записи были приятнее глазу, перепишем уравнение в следующем виде:

$$y = -x, \quad \xi = -\ln(-\lambda), \quad y = \xi + \ln y.$$
 (Y3.1)

Пусть \tilde{y} — корень данного уравнения, удовлетворяющий условию задачи $x_2(\lambda) < -1 \Leftrightarrow \tilde{y} > 1$. Применим метод итераций к (**У3**.1) и докажем, что последовательность $\{y_n\}$ сходится в \tilde{y} .

Пусть $y_1 = 1$, тогда

$$y_2 = \xi + \ln y_1$$
, $(\Delta y)_1 = y_2 - y_1 = \xi - 1$.

Так как $|\lambda| \ll 1$, $\xi > 1$ и, следовательно,

$$y_2 > y_1, \quad (\Delta y)_1 > 0.$$

Докажем ограниченность сверху для $\{y_n\}$. Предположим, что $\exists n: y_n \geq \tilde{y}$, тогда

$$y_n = \xi + \ln y_{n-1}, \quad y_{n-1} = e^{y_n - \xi} = e^{(\tilde{y} - \xi) + (y_n - \tilde{y})} = \tilde{y}e^{y_n - \tilde{y}} \ge \tilde{y},$$

откуда по индукции:

$$\exists n : y_n > \tilde{y} \Rightarrow \forall k \in \mathbb{N}, \ k < n \hookrightarrow y_k > \tilde{y},$$

что противоречит начальным условиям $\tilde{y} > 1, \ y_1 = 1,$ следовательно $\{y_n\}$ ограниченна сверху, и

$$\forall n \in \mathbb{N} \hookrightarrow y_n < \tilde{y}. \tag{Y3.2}$$

Докажем, что последовательность $\{y_n\}$ монотонно возрастает:

$$(\Delta y)_n = y_{n+1} - y_n = (\xi + \ln y_n) - (\xi + \ln y_{n-1}) = \ln \frac{y_n}{y_{n-1}} = \ln \left(1 + \frac{(\Delta y)_{n-1}}{y_{n-1}} \right),$$
$$(\Delta y)_{n-1} > 0 \Rightarrow \ln \left(1 + \frac{(\Delta y)_{n-1}}{y_{n-1}} \right) > 0 \Rightarrow (\Delta y)_n > 0,$$

откуда по индукции:

$$(\Delta y)_1 > 0 \Rightarrow \forall n \in \mathbb{N} \hookrightarrow (\Delta y)_n > 0 \Leftrightarrow \forall n \in \mathbb{N} \hookrightarrow y_{n+1} > y_n,$$

т.е. $\{y_n\}$ монотонно возрастает.

Отсюда и из условия (**У3**.2) ограниченности последовательности $\{y_n\}$

$$\exists \lim_{n \to \infty} y_n = \hat{y}, \quad \hat{y} \le \tilde{y}.$$

Переходя к пределу в формуле $y_{n+1} = \xi + \ln y_n$ при $n \to \infty$, получаем $\hat{y} = \xi + \ln \hat{y}$, т.е. $\hat{y} = \tilde{y}$.

То, с какой точностью записывать ответ, сильно зависит от λ . Например, при $x_1=-1$ для $\lambda=-e^{-4}$, с точностью до трёх значащих цифр

$$\tilde{x}_2(-e^{-4}) \approx x_6 = -(\xi + \ln(\xi + \ln(\xi + \ln(\xi + \ln\xi)))), \ \xi = -\ln(-\lambda) = 4,$$

а для $\lambda = -e^{-8}$ ту же точность получаем при

$$\tilde{x}_2(-e^{-8}) \approx x_4 = -(\xi + \ln(\xi + \ln\xi)), \ \xi = -\ln(-\lambda) = 8.$$

Буду считать, что $\lambda = -e^{-4} \approx -0.02$ удовлетворяет условию $|\lambda| \ll 1$ и запишу в ответ $\tilde{x}_2(\lambda) \approx x_6$:

$$\tilde{x}_2(\lambda) \approx -(\xi + \ln(\xi + \ln(\xi + \ln(\xi + \ln\xi)))), \ \xi = -\ln(-\lambda)$$