

Análisis Numérico I [75.12/95.04] Curso 3 Trabajo Práctico 1

 $\begin{array}{c} {\rm Grupo}\ 5 \\ {\rm Primer}\ {\rm cuatrimestre}\ {\rm de}\ 2019 \end{array}$

Integrantes del grupo		
Santa María Tomás	padron	mail
Hemmingsen Lucas	padron	mail
Huenul Matías	102135	matias.huenul.07@gmail.com

1. Introducción

El objetivo del presente trabajo práctico es obtener aproximaciones de dos funciones y utilizarlas para calcular su valor en distintos puntos, estimando los errores cometidos en ambos casos y analizando las causas de los mismos en base a los conceptos teóricos vistos en el curso.

2. Conceptos teóricos

Teorema de Taylor Este teorema permite obtener aproximaciones polinomiales de funciones diferenciables en un cierto entorno, así también como una cota para el error de aproximación. Sea $k \ge 1$ un número entero y f(x) una función k veces diferenciable en x_0 , su polinomio de Taylor de orden k en torno a x_0 se define como:

$$P_k(x) = \sum_{i=0}^k \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$
 (1)

y el error que se comete aproximando f(x) a través de $P_k(x)$ es:

$$R_k(x) = \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1}$$
(2)

donde $c \in [x_0, x]$ o $c \in [x, x_0]$.

3. Parte 1

El segundo polinomio de Taylor de la función $f(x) = e^x cos(x)$ alrededor de $x_0 = \frac{\pi}{6}$ es:

$$P_2(x) = \frac{1}{2}\sqrt{3}e^{\frac{\pi}{6}} + \frac{1}{2}(\sqrt{3} - 1)e^{\frac{\pi}{6}}(x - \frac{\pi}{6}) - \frac{1}{2}e^{\frac{\pi}{6}}(x - \frac{\pi}{6})^2$$
(3)

Utilizando este polinomio para aproximar f(x) en x=0.5 se obtiene:

$$f(0,5) \approx P_2(0,5) = 1,4469 \tag{4}$$

El error estará dado por:

$$R_2(x) = \frac{-2e^x(sen(c) + cos(c))}{6}(x - \frac{\pi}{6})^3$$
 (5)

Luego el error cometido al realizar la aproximación es:

$$R_2(0,5) = 7,2226 * 10^{-6} (sen(c) + cos(c))$$
$$|R_2(0,5)| \le 7,2226 * 10^{-6} (|sen(c)| + |cos(c)|) \le 7,2226 * 10^{-6} * 2$$

$$|R_2(0,5)| \le 1,4445 * 10^{-5} \tag{6}$$

La cota superior del error de aproximación de f(x) al usar $P_2(x)$ en el intervalo [0,1] es:

$$|R_2| \le \left| \frac{-2e^1(sen(c) + cos(c))}{6} (1 - \frac{\pi}{6})^3 \right|$$

$$|R_2| \le 0,19594\tag{7}$$

Al evaluar en Octave se obtiene f(0,5) = 1,4469. Este resultado coincide con el calculado mediante la aproximación, lo cual es esperable ya que de acuerdo a (6), $P_2(x)$ logra aproximar a f(x) hasta cuatro decimales sin error y por lo tanto, al redondear simétricamente como lo hace Octave, se llega al mismo valor.

- 4. Parte 2
- 5. Parte 3
- 6. Referencias