K.G.C.E. Karjat - Raigad Tutorial No:2

Page No.:

Date:

ens alving
ens

Date:

	Karjat - r	Date:
KGCEKGCEKG	CEKGCEKGC	EKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGC
		Aim! To Understand State space based Problem Form.
		alakan as AT Only on the Omblem Salvana
		alation of AI problems so that problem Solving
		Agent con be applied.
		Theory: First we understand the Problem solving age-
		nt. Algorithm show in Figure 3 shows agent Program
		for problem solving agent. Agent first formulates
1		god & problem, then determines or rather searches
		an action Sequence, after which it returns the next
		action to be exercised in a sequential manner
100000		agrori 10 se children 11 a seguina i semina
		Function SIMPLE-PROBLEM-SOLVING-AGENT (percept) return
		an action
		Static: seq, an action sequence, initially empty
		state, some description of the current world stelle
		goal, a goal, initially null
~		Problem, a problem formulation
,		State - UPDATE-STATE (State, Percept)
		if seq is empty then do
		goal - FORMULATE - GOAL (state)
		Problem - FORMULATE - PROBLM (state, goal)
		seq < SEARCH (problem)
		action < FIRST (Seq)
		Seq < REST(Seq)
		return action
	•	Terum (auton)
		Ciouse 2: Orablem calving Agent Architecture
		Figure 3: Problem solving Agent Architecture

Date:

KGCEKGCEK	GCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEK
	Defining the problem is referred to as problem for-
	mulation. It involves defining following five things:
	Initial State - It is the starting state that the pro-
	blem is in.
	Actions - It défines au Possible actions available
	to the gent, given it is in some state & curre-
	ntly. It is a function Action(s) that returns
	list of all possible actions
	Transition Model - also known as Sucressor function
3/3	Whi which define which state (s the sys-
	tem tend to move to when a parti-
	cwar action is executed by the agent.
	sumessive application OF transition
	model gives rise to what Is known as
	State spano.
	Gow Test - This act as a stopping condition when
	the state passed to this function is goal
	state it will return true and searching
	would stop.
	path cost - It is acrumulated cost of Performing
	pertain sequence of actions. This can neip
	in determining weather the action sequence
	under consideration is optimal.
	Thus a Problem can Formally specified by iden-
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	path cost of cul solutions. Process of Finding aso-
	Time 2. Prablem Adamy Acad Alaksiday

Date :

	(Date :
KGCEKGCEKGC	EKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGC
	is called Search.
	Working: - Bused on understanding of problem form-
	Wation students need to formulate problems. They
	Will clearly show state space up to depth level 3
	or till goal hode which ever is shallowest.
	1. Navigate to KGCE Workshop From HODIT cabin wi-
-	th minimum number of moves, moves can be climbing
43	or alighting Staircase, turning left, right, walking
	through a corridor.
	2. 8 Puzzle Problem
	3. The missionaries and cannibals Problem There are
	three missionaries and three canpibals who mus
	two people, under the constraint that, for both
	banks, if there are missionaries Present on the bank,
	they cannot be outnumbered by cannibals if they
	were, the cannibals would eat the missionaries
~	The boat cannot cross the river by Itself with no
)	People on board
	4. N Queen's Problem, Arrange N queens on a Mcross
	A chas board where no two gueens attack each other
	5. Two room vaceum cleaner world.
	5. 100 100m yacrom (10 mg)
	6. Water Jug Problem
	Resources: Refer to second chapter from Artifical
	Intelligence! A modern Approach
	Intelligence: 19 modern mirroden