Hieu Pham

Assignment Section_4.3 due 05/01/2014 at 11:58pm MST

1. (1 pt) Below is the graph of **the derivative** f'(x) of a function defined on the interval (0,8). You can click on the graph to see a larger version in a separate window.

Refer to the graph to answer each of the following questions. For parts (A) and (B), use interval notation to report your answer. (If needed, you use U for the union symbol.)

(A) For what values of x in (0,8) is $f(x)$ increasing?	(If the
function is not increasing anywhere, enter None .)	

Answer: _____

(B) For what values of x in (0,8) is f(x) concave down? (If the function is not concave down anywhere, enter **None**.)

Answer.

(C) Find all values of x in (0,8) is where f(x) has a local minimum, and list them (separated by commas) in the box below. (If there are no local minima, enter **None**.)

Local Minima: _____

(D) Find all values of x in (0,8) is where f(x) has an inflection point, and list them (separated by commas) in the box below. (If there are no inflection points, enter **None**.)

Inflection Points: _____

Answer(s) submitted:

- (0,3) U (5,8)
- (2,4) U (6,8)
- 5
- 2,4,6

(correct)

Correct Answers:

- (0,3) U (5,8)
- (2,4) U (6,8)

- 5
- 2, 4, 6

2. (1 pt) Let

$$f(x) = 6(x-4)^{2/3} + 8.$$

(A) Find all critical values and list them below. Note: If there are no critical values, enter 'NONE'.

(B) Use interval notation to indicate where f(x) is increasing.

Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol.

Increasing:

(C) Use interval notation to indicate where f(x) is decreasing.

Decreasing:

- (D) List the x values of all local maxima of f. If there are no local maxima, enter 'NONE'.
- x values of local maximums = _____
- (E) List the x values of all local minima of f. If there are no local minima, enter 'NONE'.

x values of local minimums = _____

Answer(s) submitted:

- 4
- (4, INF)
- (-INF, 4)
- NONE
- 4

(correct)

Correct Answers:

- 4
- (4, infinity)
- (-infinity, 4)
- NONE
- 4

3. (1 pt) Consider the function

$$f(x) = \frac{x^2}{4x^2 + 2}.$$

List the x values of the inflection points of f. If there are no inflection points, enter 'NONE'.

Answer(s) submitted:

• (-1/sqrt(6)), (1/sqrt(6))

(correct)

Correct Answers:

-0.408248290463863, 0.408248290463863

4. (1 pt) Consider the function

$$f(x) = \frac{e^x}{5 + e^x}$$

Then
$$f'(x) =$$

The following questions ask for endpoints of intervals of increase or decrease for the function f(x).

Write INF for ∞ , MINF for $-\infty$, and NA (ie. not applicable) if there are no intervals of that type.

The interval of increase for f(x) is from _____

to _____

The interval of decrease for f(x) is from _____

to _____

f(x) has a local minimum at ______. (Put NA if none.)

f(x) has a local maximum at ______. (Put NA if none.)

Then f''(x) =_____

The following questions ask for endpoints of intervals of upward and downward concavity for the function f(x).

Write INF for ∞ , MINF for $-\infty$, and put NA if there are no intervals of that type.

The interval of upward concavity for f(x) is from _____

to _____

The interval of downward concavity for f(x) is from

to _____

f(x) has a point of inflection at ______. (Put NA if none.) *Answer(s) submitted:*

- (5e^x)/((5+(e^x))^2)
- MINF
- INF • NA
- NA
- NA
- NA
- $-((5(e^x)((e^x)-5))/(((e^x)+5)^3))$
- MINF
- ln(5)
- ln(5)
- INF
- ln(5)

(correct)

Correct Answers:

- $5*e^(x)/(5+e^(x))^2$
- MINF
- INF
- NA
- NA
- NA
- NA
- $5*e^(x)*(5-e^(x))/(5+e^(x))^3$
- MTNF
- 1.6094379124341
- 1.6094379124341
- INF
- 1.6094379124341

5. (1 pt) Suppose that $f(x) = (12 - 2x)e^x$.

Note: Several parts of this problem require answers entered in <u>interval notation</u>. Note, with interval notation, you can enter the empty set as {}.

(A) List all the critical values of f(x). Note: If there are no critical values, enter NONE.

(B) Use interval notation to indicate where f(x) is increasing.

Increasing: _____

(C) Use interval notation to indicate where f(x) is decreasing.

Decreasing:

- (D) List the x values of all local maxima of f(x). If there are no local maxima, enter NONE.
- x values of local maximums = _____
- (E) List the x values of all local minima of f(x). If there are no local minima, enter NONE.
- x values of local minimums = _____
- (F) Use interval notation to indicate where f(x) is concave up.

Concave up: _____

(G) Use interval notation to indicate where f(x) is concave down

Concave down:

- (H) List the x values of all the inflection points of f. If there are no inflection points, enter NONE.
- x values of inflection points = _____
- (I) Use all of the preceding information to sketch a graph of f. Include all vertical and/or horizontal asymptotes. When you're finished, enter a "1" in the box below.

Answer(s) submitted:

- 5
- (MINF,5)
- (5, INF)
- 5
- NONE

• (MINF, 4)			
• (4, INF) • 4			
• 1			
(correct)			
Correct Answers:			
• 5			
• (-infinity,5)			
• (5, infinity)			
• 5			
• none			
• (-infinity, 4)			
• (4, infinity) • 4			
• 1			
6 (1 pt) Suppose that			
6. (1 pt) Suppose that			
$f(x) = 10 - 4e^{-x}.$			
(A) List all critical numbers of f . If there are no critical numbers, enter 'NONE'. Critical numbers =			
Critical numbers =			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increas-			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing.			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing.			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol.			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing:			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the <i>x</i> -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima =			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the x -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima = (D) Find the x -coordinates of all local minima of f . If there			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the x -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima = (D) Find the x -coordinates of all local minima of f . If there are no local minima, enter 'NONE'.			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the x -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima = (D) Find the x -coordinates of all local minima of f . If there are no local minima, enter 'NONE'. f values of local minima =			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the x -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima = (D) Find the x -coordinates of all local minima of f . If there are no local minima, enter 'NONE'. x values of local minima = (E) Use interval notation to indicate where $f(x)$ is concave			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the x -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima = (D) Find the x -coordinates of all local minima of f . If there are no local minima, enter 'NONE'. f values of local minima = (E) Use interval notation to indicate where $f(x)$ is concave down.			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the x -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima = (D) Find the x -coordinates of all local minima of f . If there are no local minima, enter 'NONE'. f values of local minima = (E) Use interval notation to indicate where $f(x)$ is concave down. Concave down:			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the x -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima = (D) Find the x -coordinates of all local minima of f . If there are no local minima, enter 'NONE'. f values of local minima = (E) Use interval notation to indicate where $f(x)$ is concave down. Concave down: (F) List the f values of all inflection points of f . If there are			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the x -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima = (D) Find the x -coordinates of all local minima of f . If there are no local minima, enter 'NONE'. f values of local minima = (E) Use interval notation to indicate where $f(x)$ is concave down. Concave down: (F) List the f values of all inflection points of f . If there are no inflection points, enter 'NONE'.			
Critical numbers =			
Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increasing. Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. Increasing: (C) List the x -coordinates of all local maxima of f . If there are no local maxima, enter 'NONE'. x values of local maxima = (D) Find the x -coordinates of all local minima of f . If there are no local minima, enter 'NONE'. f values of local minima = (E) Use interval notation to indicate where $f(x)$ is concave down. Concave down: (F) List the f values of all inflection points of f . If there are no inflection points, enter 'NONE'.			
Critical numbers =			

Answer(s) submitted:

• NONE

- (-INF, INF)
- NONE
- NONE
- (-INF, INF)
- NONE
- 10

1

(correct)

Correct Answers:

- NONE
- (-infinity, infinity)
- NONE
- NONE
- (-infinity, infinity)
- NONE
- 10
- 1

7. (1 pt) Suppose that

$$f(x) = 7x^2 - x^3 - 2$$
.

(A) Find all critical numbers of f .	If there	are no	critical
numbers, enter 'NONE'.			
Critical numbers =			
(D) II		c/ \ ·	

(B) Use interval notation to indicate where f(x) is increas-

Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol.

Increasing:(C) Use interval notation to in	dicate where $f(x)$ is decreas-
ing. Decreasing:	• ()

- (D) List the x-coordinates of all local maxima of f. If there are no local maxima, enter 'NONE'.
- x values of local maxima = _
- (E) List the x-coordinates of all local minima of f. If there are no local minima, enter 'NONE'.
- x values of local minima = $_$
- (F) Use interval notation to indicate where f(x) is concave Concave up: _
- (G) Use interval notation to indicate where f(x) is concave

Concave down: _

- (H)List the x values of all inflection points of f. If there are no inflection points, enter 'NONE'.
- x values of inflection points = _
- (I) Use all of the preceding information to sketch a graph of f. When you're finished, enter a "1" in the box below.

Graph Complete:

Answer(s) submitted:

- 0, (14/3)
- \bullet (0,14/3)
- (-INF,0) U (14/3,INF)
- 14/3
- (-INF, 7/3)
- (7/3, INF)
- 7/3

• 1

(correct)

Correct Answers:

- 0, 4.66666666666667
- (0,4.6666666666667)
- (-infinity,0) U (4.666666666667,infinity)
- 4.66666666666667
- 0
- (-infinity,2.333333333333333)
- (2.333333333333, infinity)
- 2.333333333333333
- 1
- **8.** (1 pt) Answer the following True-False quiz. (Enter "T" or "F".)
 - ___1. A continuous function on a closed interval [a,b] always attains a maximum and a minimum value in [a,b].
 - -2. If a function has a local maximum at c, then f'(c) exists and is equal to 0.
- __3. If f'(x) < 0 for all x in (0,1), then f(x) is decreasing on (0,1).

 $Generated\ by\ \textcircled{\textcircled{e}} WeBWorK,\ http://webwork.maa.org,\ Mathematical\ Association\ of\ America$

- ___4. If f(x) and g(x) are increasing on an interval I, then f(x)g(x) is increasing on I.
- ___5. Differentiable functions are always continuous.
- ___6. If $f(x) = e^2$, then f'(x) = 2e.
- --7. (f(x) + g(x))' = f'(x) + g'(x).

Answer(s) submitted:

- T
- F
- T
- F
- 1
- F

• T (correct)

Correct Answers:

- T
- F
- T
- F
- T
- T