Vanwen Lin

Education Background

Carnegie Mellon University

Master of Science in Intelligent Information Science (School of Computer Science), GPA: 3.8/4.0 Aug.2019-Dec.2020 (expected) Master of Science in Civil and Environmental Engineering, GPA: 3.9/4.00 Aug.2017-Dec.2018

Phone: (+1)-412-708-5446

Email: lyw1124278064@gmail.com

Selected Courses: Distributed Systems, Parallel Computer Architecture and Programming, Introduction to Deep Learning, Cloud Computing, Search Engines, Computer Networks, Introduction to Computer System

Dalian University of Technology

Bachelor of Engineering in Civil Engineering, **GPA**: 3.8/4.00 (top 10%)

Sep.2013 - Jun.2017

Professional Skills

- Programming Languages: Java, Python, C, Scala, Bash, HTML/CSS/Javascript, MATLAB, R
- Software and Tools: AWS, PyTorch, Numpy, Pandas, MySQL, HBase, MongoDB, Hadoop, Spark, Kafka, CUDA, OpenMP, MPI, Java Spring/Spring MVC, Java RMI, Terraform, Docker and Kubernetes, Pandas, Git, YACC/Flex

Work Experience

Development on OLAP Big Data Platform, SWE Backend Intern

Horizon Robotics, Nanjing, Jan.2019-Mar.2019

- Integrated Apache Druid with access control system using basic security and Kerberos extension.
- Coordinated pluggable Apache Kylin with Hadoop computing engine, HBase data storage and Hive data warehouse.

Longitudinal evaluation on Deployed Pittsburgh Fire Risk Model

Metro21 Inst., Pittsburgh, Jun.2018-Oct.2018

- Built an evaluating system which feeds ~600k lines of fire and property data within entire Pittsburgh into a XGBoost model to estimate its performance using Python Pandas and Jupyter Notebook.
- Identified potential factors that leads to high fire risk based on model result and informs the Bureau of Fire's prioritization of property fire inspections.

Paper

Jessica Lee, Yanwen Lin, Michael Madaio. A longitudinal evaluation of a deployed predictive model of fire risk. 32nd Conference on Neural Information Processing Systems AI for Social Good Workshop, Montréal, Canada.

Projects

AFS-like Distributed File System Based on Check-on-use Cache Policy

Jan.2020-Feb.2020

- Developed a distributed file system including interposition shared library and RPC server from scratch.
- Designed a complicate RPC protocol message format for communication between RPC client and server.
- Implemented open-close session to resolve conflicts of sharing files between concurrent users.
- Integrated check-on-use cache proxy and LRU eviction policy to reduce file retrieval latency.

Parallel Acceleration for Rat Colonies Migration Simulator

Feb.2020-Mar.2020

- Implemented two parallel versions of a rat migration simulator using OpenMP and MPI, respectively.
- Achieved significant speedup than sequential simulator (for OpenMP 7x speedup, for MPI 6x speedup, at a 12-core machine)

High Performance Web Service for Data Retrieval

Oct.2018-Dec.2018

- Conducted Extract, Transform and Load on a large Tweets dataset (~ 1 TB)
- Developed user intimacy ranking system and topic word extraction system based on pre-processed Twitter data and provided APIs for client queries.
- Optimized various aspects of the system such as database schema, cluster load-balancing, data sharding and replication.
- Achieved 6th in a 6-hour live server-performance competition out of 32 teams.

Stateful Stream Processing for Finding Client-Driver Matching

Dec.2018

- Deployed Kafka jobs to produce driver location, event streams and Samza jobs to output client-driver match.
- Employed RockDB as the persistent key-value store to maintain the state during stream processing.
- Managed and monitored Samza jobs on YARN using logging and yarn web-UI utilities.

Iterative Processing System on Social Relationship Graph Data via Spark

Oct.2018-Nov.2018

- Developed a *Spark* application processing Twitter social graph data (~10 GB).
- Implemented PageRank algorithm using *Scala* to rank user by influence.
- Improved model performance via profiling tools from 1 hour to less than 30 minutes given limited computing resources.

Big data Analytics with Large Wikipedia dataset

Sep.2018

- Processed Wikipedia dataset (~340 GB) to retrieve daily hot topics via implementing Hadoop jobs deployed on AWS EMR.
- Employed defensive programming and test-driven developing techniques such as Junit, MRUnit.