Hochschule Emden/Leer Fachbereich Technik Abteilung Elektrotechnik und Informatik

SS 2017

Schriftliche Prüfung im Fach:	Theoretische Nachrichtentechnik
Prüfer:	Prof. DrIng. Johann-Markus Batke
Tag der schriftlichen Prüfung:	28.6.2017

Studierender	:				
	Name, Vorname			MatrNr.	
Note:		Einsicht genommen:			
	Datum, Unterschrift Prüfer		Datum, Unte	erschrift Studierender	

Allgemeine Hinweise

Bearbeitungszeit 90 Minuten **Anzahl der Aufgaben** 5 Hilfsmittel

- · Formelsammlung der Klausur (Abschnitt "'Hilfen"')
- Eigene Formelsammlung (handgeschrieben, 2 Seiten DIN A4). Die Formelsammlung ist mit abzugeben.
- HS-Taschenrechner

- · Beschriften Sie bitte alle Lösungsblätter mit Namen und Matrikelnummer und nummerieren Sie sie fortlaufend.
- · Alle Blätter bitte nur einseitig beschreiben.
- · Geben Sie bei Rechenaufgaben die Zwischenschritte an, so dass der Lösungsweg erkennbar
- Antworten sind, soweit möglich, zu begründen.
- Die Klausur ist mit ca. 50 % der Gesamtpunktzahl bestanden.

Aufgabe 1: Spezielle Funktionen (20 Punkte)

- (a) Skizzieren Sie die Funktionen
 - $x_1(t) = \frac{1}{3}\Pi_{3T}(t-3)$
 - $x_2(t) = \tilde{\Delta}_{T/2}(2t+T)$
- **(b)** Geben Sie einen Ausdruck für die skizzierten Funktionen an.

Aufgabe 2: Faltung (20 Punkte)

Führen Sie die Faltung der Funktionen $x(t) = \Delta_2(t)$ und $y(t) = 2\sigma(t)$ im Zeitbereich durch. Skizzieren Sie dazu beide Funktionen sowie das Faltungsergebnis z(t) = x(t) * y(t). Geben Sie den Ausdruck für z(t) an.

Aufgabe 3: Leitungscodes (20 Punkte)

Teilaufgabe 3.1: Codierung

- (a) Gegeben sei die Bit-Folge 010011000. Zeichnen Sie die Zeitsignale, die man durch Leitungscodierung der Verfahren
 - 1. NRZI-M
 - 2. AMI-nicht modifiziert
 - 3. RZ Ternär
 - 4. Manchester (nach IEEE 802.3)

erhält.

(b) Diskutieren Sie die genannten Leitungscodierungen bzgl. Gleichstromfreiheit und Synchronisation.

Teilaufgabe 3.2: Nyquist-Kriterium

- (a) Formulieren Sie die Nyquist-Kriterien 1 und 2 für ein Pulssystem mit Schrittfrequenz 1/T.
- **(b)** Für ein Pulssystem werden cos-rolloff-Impulse verwendet, die mit dem Roll-Off-Faktor r=0...1 parametrisiert sind. Ordnen Sie die gezeigten Augendiagramm so, dass der Roll-Off-Faktor aufsteigt.

Aufgabe 4: Winkelmodulation (40 Punkte)

Teilaufgabe 4.1: Frequez- und Phasenmodulation (FM und PM)

Das modulierte Sendesignal eines Winkelmodulationsverfahrens wird durch

$$s(t) = \sin(\Phi(n(t))) = \sin(\Phi_n(t)) \tag{1}$$

beschrieben. Die Nachricht n(t) steuert dabei den Sinus-förmigen Träger. Geben Sie für die Verfahren FM und PM die jeweilige Winkelfunktion und Momentankreisfrequenzfunktion an. Verwenden sie dazu folgende Bezeichnungen:

Trägerkreisfrequenz Ω Momentankreisfrequenz ω

Teilaufgabe 4.2: Modulation

Gegeben sei nun die Nachticht $n(t) = \Pi_T(t-2T)$. Skizzieren Sie

- den Zeitverlauf der Nachricht n(t);
- ein FM-moduliertes Trägersignal mit $\Omega=rac{2\pi}{T}$ und Kreisfrequenzhub $\Delta\Omega=rac{4\pi}{T}$;
- ein PM-moduliertes Trägersignal mit $\Omega = \frac{2\pi}{T}$ und Phasenhub $\Delta \varphi = \pi$.

Teilaufgabe 4.3: Spektralanalyse Eintonmodulation

Analysieren Sie die gegebenen Spektren, die jeweils die Eintonmodulation für die Nachrichtenfrequenzen $f_1 < f_2 < f_3$ für die Verfahren FM und PM zeigen. Ordnen Sie den Verfahren FM und PM je drei Bilder mit aufsteigender Nachrichtenfrequenz zu.

Hilfen

Zeitfunktion $f(t)$	Fourier-Transformierte $F(j\omega)$
$rect_{\mathcal{T}}(t)$	$T \operatorname{si}(\frac{T}{2}\omega)$
$\Delta_T(t)$	T si $^2(\frac{\tau}{2}\omega)$
$\delta(t)$	1 -
1	$2\pi\delta(\omega)$
sgn(t)	$\frac{2}{\mathrm{i}\omega}$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$
$\sin(\omega_0 t)$	$j\pi(\delta(\omega+\omega_0)-\delta(\omega-\omega_0))$
$\cos(\omega_0 t)$	$\pi(\delta(\omega+\omega_0)+\delta(\omega-\omega_0))$

$$\omega = 2\pi f$$
; $\omega_0 = 2\pi/T$

	Zeitfunktion $f(t)$	Fourier-Transformierte $F(j\omega)$
Ähnlichkeitssatz	f(at)	$\frac{1}{ a }F(j\frac{\omega}{a})$
Linearität	$af_1(t) + bf_2(t)$	$aF_1(j\omega) + bF_2(j\omega)$
Verschiebungssatz	$f(t-t_0)$	$e^{-j\omega t_0}F(j\omega)$
	$e^{j\omega_0t}f(t)$	$F(\omega - \omega_0)$
Differentation	$f^{(n)}(t)$	$(j\omega)^n F(j\omega)$
Faltung	$f_1(t) * f_2(t)$	$F_1(j\omega) F_2(j\omega)$
	$f_1(t) f_2(t)$	$\frac{1}{2\pi}F_1(j\omega)*F_2(j\omega)$
Vertauschungssatz	F(-t)	$2\pi f(\omega)$

$$\sin(\omega t) = \frac{1}{2i} (e^{j\omega t} - e^{-j\omega t})$$

$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$

$$2\sin(x)\cos(y) = \sin(x - y) + \sin(x + y)$$

$$2\cos(x)\cos(y) = \cos(x - y) + \cos(x + y)$$

$$2\cos^{2}(x) = 1 + \cos(2x)$$