Problems Set 3

Linear Transformations

Throughout, U, V and W are vector spaces over \mathbb{R} , the set of real numbers.

- **1.** Let $T: V \to W$ be a linear transformation. What is T(0), where 0 is the zero vector in V? **Hint.** T(0) = T(0+0) = T(0) + T(0). Conclude that T(0) = 0, the zero vector in W.
- 2. Which of the following maps are linear? Justify your answer.
 - (i) $T: \mathbb{R}^1 \to \mathbb{R}^1$ defined by T(x) = x + 2 for every $x \in \mathbb{R}^1$.
 - (ii) $T: \mathbb{R}^1 \to \mathbb{R}^1$ defined by T(x) = ax for every $x \in \mathbb{R}^1$, where $a \in \mathbb{R}$ is a constant.
 - (iii) $T: \mathbb{R}^1 \to \mathbb{R}^1$ defined by $T(x) = x^2$ for every $x \in \mathbb{R}^1$.
 - (iv) $T: \mathbb{R}^1 \to \mathbb{R}^1$ defined by $T(x) = \sin(x)$ for every $x \in \mathbb{R}^1$.
 - (v) $T: \mathbb{R}^1 \to \mathbb{R}^1$ defined by $T(x) = e^x$ for every $x \in \mathbb{R}^1$.
 - (vi) $T: \mathbb{R}^2 \to \mathbb{R}^1$ defined by $T(x_1, x_2) = x_1 x_2$ for every $(x_1, x_2) \in \mathbb{R}^2$.
 - (vii) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_2, x_1)$ for every $(x_1, x_2) \in \mathbb{R}^2$.
 - (viii) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1, x_1)$ for every $(x_1, x_2) \in \mathbb{R}^2$.
 - (ix) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (0, x_1)$ for every $(x_1, x_2) \in \mathbb{R}^2$.
 - (x) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (0, 1)$ for every $(x_1, x_2) \in \mathbb{R}^2$.

Solution. Verify T(cu+dv)=cT(u)+dT(v) for all scalars $c,d\in\mathbb{R}$, and vectors u,v in the domain of T. If this is not true, then find particular c,d,u and v for which the above equality fails. Examples: (i) Since $T(0)=2\neq 0$, the map is not linear. (ii) Since T(cu+dv)=a(cu+dv)=c(au)+d(av)=cT(u)+dT(v), the map is linear. (iii) Since $T(1+1)=T(2)=4\neq 2=T(1)+T(1)$, the map is not linear. Similarly prove that the maps in (iv), (v), (vi) and (x) are not linear, while the maps in (vii), (viii) and (ix) are linear.

- **3.** Let $u_1 = (1,2)$, $u_2 = (2,1)$, $u_3 = (1,-1)$ and $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (1,1)$. Is there a linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(u_i) = v_i$ for every i = 1, 2, 3?
 - **Solution.** The answer is 'no'. If possible, suppose there is a linear map $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(u_i) = v_i$ for every i = 1, 2, 3. Then T should respect every linear combination. Note that $u_3 = u_2 u_1$. After applying T on it, we should get $v_3 = v_2 v_1$, which is not true, a contradiction.
- **4. Composition of linear maps:** Let $T:U\to V$ and $S:V\to W$ be linear maps. The composition $S\circ T:U\to W$ is defined by $(S\circ T)(u):=S(T(u))$ every $u\in U$. Show that the map $S\circ T:U\to W$ is linear.
 - **Solution.** $(S \circ T)(c_1u_1 + c_2u_2) = S(T(c_1u_1 + c_2u_2)) = S(c_1T(u_1) + c_2T(u_2)) = c_1(S \circ T)(u_1) + c_2(S \circ T)(u_2)$ for all scalars c_i and vectors $u_i \in U$.
- **5. Matrix multiplication and composition of linear maps:** Let A, B be matrices of order $l \times m$ and $m \times n$ respectively. Consider the corresponding linear maps $T_A : \mathbb{R}^m \to \mathbb{R}^l$ and $T_B : \mathbb{R}^n \to \mathbb{R}^m$ given by A and B respectively. Prove that the matrix representation of the composition $T_A \circ T_B : \mathbb{R}^n \to \mathbb{R}^l$ is AB, or equivalently, prove that $T_A \circ T_B = T_{AB}$.
 - **Solution.** For every $X \in \mathbb{R}^n$, since $(T_A \circ T_B)(X) = T_A(T_B(X)) = T_A(BX) = ABX = T_{AB}(X)$, the map $(T_A \circ T_B)$ is represented by the matrix AB.

1

6. Application of composition of maps: Show that the matrix multiplication is associative.

Hint. Let A, B, C be matrices of order $k \times l$, $l \times m$ and $m \times n$ respectively. To show that (AB)C = A(BC), consider T_A, T_B and T_C . Next use Q.5 and the fact that the composition of maps is associative.

7. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Is it true that if we know T(v) for n different nonzero vectors in \mathbb{R}^n , then we know T(v) for every vector in \mathbb{R}^n .

Hint. See what we have proved in Lecture 6. Try to analyze the statement when n=2.

8. Define a map $T: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$T(x_1, x_2, x_3) = (a_{11}x_1 + a_{12}x_2 + a_{13}x_3, a_{21}x_1 + a_{22}x_2 + a_{23}x_3, a_{31}x_1 + a_{32}x_2 + a_{33}x_3)$$

for every $(x_1, x_2, x_3) \in \mathbb{R}^3$, where $a_{ij} \in \mathbb{R}$ are constants. Is T linear? If yes, then write its matrix representation.

Hint. See the theorem concerning matrix representation of a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ proved in Lecture 6.

9. Deduce from Q.8 that the map $S: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$S(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, x_2 + x_3)$$

for every $(x_1, x_2, x_3) \in \mathbb{R}^3$ is linear. Compute the range space and null space of S. Deduce the rank and nullity of S. Verify the Rank-Nullity Theorem. Conclude from the rank (resp. from the nullity), whether S is an isomorphism.

Hint. Write the matrix representation (say, A) of the linear map S. Observe that the null space of S is same as the solution space of the system AX = 0. Moreover, the range space of S is same as the column space of A. Recall the equivalent conditions for a linear operator to be an isomorphism (shown in Lecture 7).

Left/right inverse of an $n \times n$ **matrix** A. An $n \times n$ matrix B (resp., C) is called a left (resp., right) inverse of A if $BA = I_n$ (resp., $AC = I_n$).

If A has a left-inverse B and a right-inverse C, then the two inverses are equal: B = B(AC) = (BA)C = C. If this is the case, we say that A is invertible.

From the row rank and the column rank of A, we can actually decide when A has a left/right inverse; see Q.10 and Q.11.

- 10. For an $n \times n$ matrix A, prove that the following statements are equivalent:
 - (i) A has full column rank, i.e., column rank of A is n.
 - (ii) The system AX = b has at least one solution X for every $b \in \mathbb{R}^n$.
 - (iii) The rank of the linear map $T_A: \mathbb{R}^n \to \mathbb{R}^n$ (defined by $T_A(X) = AX$) is n.
 - (iv) A has a right-inverse C, i.e., $AC = I_n$.

Solution. (i) \Leftrightarrow (ii). A has full column rank \Leftrightarrow column space of A is $\mathbb{R}^n \Leftrightarrow$ every vector $b \in \mathbb{R}^n$ can be written as a linear combination of the columns of $A \Leftrightarrow$ the system AX = b has at least one solution X for every $b \in \mathbb{R}^n$ (because for some $X \in \mathbb{R}^n$, AX is nothing but a linear combination of the columns of A).

(ii) \Leftrightarrow (iii): Note that (ii) is equivalent to that every $b \in \mathbb{R}^n$ has a preimage $X \in \mathbb{R}^n$ via the map $T_A : \mathbb{R}^n \to \mathbb{R}^n$. Thus (ii) $\Leftrightarrow \operatorname{Image}(T_A) = \mathbb{R}^n \Leftrightarrow \operatorname{rank}(T_A) = n$.

(ii) \Rightarrow (iv). Let $\{e_i : 1 \leq i \leq n\}$ be the standard basis of \mathbb{R}^n . By (ii), for every e_i , there is $v_i \in \mathbb{R}^n$ such that $Av_i = e_i$. Set $C = [v_1 \ v_2 \ \cdots \ v_n]$, an $n \times n$ matrix with v_i as the *i*th column. It follows that $AC = I_n$.

(iv) \Rightarrow (ii). Let $b \in \mathbb{R}^n$. Since $AC = I_n$, we have $A(Cb) = (AC)b = I_nb = b$, i.e., Cb is a solution of the system AX = b.

- 11. For an $n \times n$ matrix A, prove that the following statements are equivalent:
 - (i) A has full row rank, i.e., row rank of A is n.
 - (ii) A has a left-inverse B, i.e., $BA = I_n$.

Hint. (i) \Leftrightarrow (ii). Note that the row space of A is same as the column space of A^t (the transpose of A). So you may use the equivalence of (i) and (iv) in Q.10 for A^t .

- 12. For an $n \times n$ matrix A, prove that the following statements are equivalent:
 - (i) A has a left-inverse.
 - (ii) A has a right-inverse.
 - (iii) A is invertible.

Hint. You may use Q.10, Q.11 and the fact that row rank(A) = column rank(A).

13. Let $u_1 = (1,2)$, $u_2 = (2,1)$ and $v_1 = (1,1)$, $v_2 = (0,1)$. Is there a linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(u_i) = v_i$ for every i = 1, 2? If yes, then write the matrix representation of T.

Solution. Two approaches: (1st) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be the matrix representation. Then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

These yield the following system of equations:

$$a + 2b = 1$$
 and $c + 2d = 1$
 $2a + b = 0$ $2c + d = 1$

After solving these systems, one obtains $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -1/3 & 2/3 \\ 1/3 & 1/3 \end{pmatrix}$.

(2nd) Since $u_1 = (1, 2)$, $u_2 = (2, 1)$ are linearly independent, they form a basis of \mathbb{R}^2 . Hence there is a linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(u_i) = v_i$ for every i = 1, 2. The matrix representation of $T : \mathbb{R}^2 \to \mathbb{R}^2$ is given by $[T(e_1) \ T(e_2)]$, which is a 2×2 matrix with the columns $T(e_1)$ and $T(e_2)$. Write both e_1 and e_2 as linear combinations of u_1 and u_2 , to get the vectors $T(e_1)$ and $T(e_2)$. Let $e_1 = x_1u_1 + x_2u_2$ and $e_2 = y_1u_1 + y_2u_2$. Then

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Since $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is invertible with the inverse $\frac{-1}{3}\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$, both the systems have unique solutions given by $\begin{pmatrix} x_1 \end{pmatrix} = -1 \begin{pmatrix} 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1$

given by
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{-1}{3} \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 2/3 \end{pmatrix}$$
 and $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{-1}{3} \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2/3 \\ -1/3 \end{pmatrix}$.

Hence
$$T(e_1) = T(x_1u_1 + x_2u_2) = x_1T(u_1) + x_2T(u_2) = x_1v_1 + x_2v_2 = \frac{-1}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 1/3 \end{pmatrix}$$
.

Similarly $T(e_2) = \frac{2}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{-1}{3} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix}$. So the matrix representation of T is $\begin{pmatrix} -1/3 & 2/3 \\ 1/3 & 1/3 \end{pmatrix}$.

14. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map. Let u, v be two non-zero vectors such that T(u) = 0 and T(v) = 0. What are the possibilities of nullity of T? What about rank of T?

Solution. Since NullSpace $(T) \subseteq \mathbb{R}^2$, nullity $(T) \leqslant 2$. But two non-zero vectors are there in NullSpace(T). Note that u,v may not be linearly independent. In any case, NullSpace $(T) \neq 0$. Hence nullity $(T) \geqslant 1$. Thus the possibilities of nullity of T are 1 or 2. Therefore, by the Rank-Nullity Theorem, the possibilities of rank of T are 1 or 0.