

4. 아두이노 입력 이해하기

아두이노 입력 이해하기

- 1. 두 개의 점퍼 케이블로 스위치 실습하기
- 2. 푸시 버튼으로 디지털 입력 이해하기
- 3. 3색 RGB LED를 연결하여 무지개색 표현하기

두 개의 점퍼 케이블로 스위치 실습하기

❖ 점퍼 케이블로 스위치 실습


```
void setup()
                               // 13번에 연결된 LED 사용
  pinMode (13, OUTPUT);
                               // 12번 핀 입력 선언
 pinMode (12, INPUT);
                               // 12번 핀 내부 풀업저항 활성화
 digitalWrite (12, HIGH);
void loop()
 int sw_input = digitalRead (12); // 12번 핀 입력값 sw_input 변수에 저장
 if (sw_input == LOW)
                              // 점퍼 케이블을 서로 연결하면,
      digitalWrite (13, HIGH);
                              // LED 켜짐
                              // 점퍼 케이블을 연결하지 않으면,
  else
      digitalWrite (13, LOW);
                              // LED 꺼짐
```

두 개의 점퍼 케이블로 스위치 실습하기

❖ 풀업 저항의 스위치를 On/Off했을 때 입력 상태

풀업 저항은 전원 쪽에 저항을 달아주는 것을 말한다. 따라서 스위치가 On(닫힘)되면 논리 입력은 0(Low)이 되고 Off(열림)되면 논리 입력은 1(High)이 된다.

두 개의 점퍼 케이블로 스위치 실습하기

❖ 풀다운 저항의 스위치를 On/Off했을 때 입력 상태

풀다운 저항은 GND 쪽에 저항을 달아주는 것을 말한다. 따라서 스위치가 On(닫힘)되면 논리 입력은 1(High)이 되고 Off(열림)되면 논리 입력은 0(Low)이 된다.

❖ 푸시 버튼 연결

푸시 버튼은 4개의 커넥터를 가지고 있고 브레드보드의 소켓 간격과 맞다. 1번과 2번 그리고 3번과 4번은 항상 연결되어 있고 푸시 버튼을 누르면 1번과 4번 그리고 2번과 3번이 연결된다. 즉 푸시 버튼을 누르면 1번, 2번, 3번, 4번 모든 핀이 연결되는 것이다.

❖ 푸시 버튼 연결

```
const int buttonPin = 2;
                                      // 푸시 버튼의 핀 번호 2
const int ledPin = 13;
                                      // 아두이노 보드의 LED 핀 번호 13
int buttonState = 0;
                                      // 입력 핀의 상태 값을 저장하는 변수
void setup()
  pinMode (ledPin, OUTPUT);
                                      // LED 핀 출력 설정
                                      // 푸시 버튼 입력 설정
  pinMode (buttonPin, INPUT);
void loop()
                                     // 2번 핀 입력 상태 값 저장
  buttonState = digitalRead (buttonPin);
                                      // buttonState 변수가 HIGH(1)이면
  if (buttonState == HIGH)
                                      // 즉, 푸시 버튼이 눌렸다면,
      digitalWrite (ledPin, HIGH);
                                      // LED 켜짐
                                      // 버튼 조작이 없으면,
  else
      digitalWrite (ledPin, LOW);
                                      // LED 꺼짐
```

푸시 버튼이 눌리지 않은 상태에서는 LOW(0)로 상태 값이 읽히는 것이기 때문에 이 회로에서 사용된 저항은 풀다운 저항이다.

❖ 푸시 버튼 연결

```
const int buttonPin = 2:
                                     // 푸시 버튼의 핀 번호 2
                                      // 아두이노 보드의 LED 핀 번호 13
const int ledPin = 13;
                                     // 출력 핀의 현재 상태
int ledState = HIGH;
                                     // 입력 핀의 현재 상태 값
int buttonState;
                                     // 입력 핀의 이전 상태 값
int lastButtonState = LOW;
long lastDebounceTime = 0;
                                     // 버튼 입력값이 변경된 최근 시간
long debounceDelay = 50;
                                     // 디바운싱 시간
void setup()
  pinMode (buttonPin, INPUT);
                                     // 푸시 버튼 입력 설정
  pinMode (ledPin, OUTPUT);
                                      // LED 핀 출력 설정
  digitalWrite (ledPin, ledState);
                                     // LED 상태 초기화. 최초 LED 켜짐
void loop()
 int reading = digitalRead (buttonPin);
                                     // 버튼의 상태 값을 reading 변수에 저장
  if (reading != lastButtonState)
                                      // 버튼의 상태 값이 변경되면,
```

```
lastDebounceTime = millis();
                                     // 디바운싱 값을 현재시간으로 초기화
 // 디바운싱 값이 50을 넘기면, 읽은 스위치 상태를 현재 스위치 상태로 간주
  if ( (millis() - lastDebounceTime) > debounceDelay)
      if (reading != buttonState)
                                     // 버튼 상태가 변경되었다면,
          buttonState = reading;
                                     // 버튼 상태가 HIGH일 때만,
          if (buttonState == HIGH)
             ledState = !ledState;
                                     // LED 상태 변경
  digitalWrite (ledPin, ledState);
                                     // 13번 LED에 LED 상태 값 반영
 lastButtonState = reading;
                                     // 버튼 입력값을 저장
}
```

❖ 스위치 채터링

3색 RGB LED를 연결하여 무지개색 표현하기

❖ 캐소드 공통 형 RGB LED와 푸시 버튼 연결

RGB LED 연결 회로에 푸시 버튼을 추가하여 버튼을 누를 때마다 "빨, 주, 노, 초, 파, 남, 보" 무지개색이 표시되도록 한다.

3색 RGB LED를 연결하여 무지개색 표현하기

```
int redPin = 11;
                                                // 빨간색 핀. 아두이노 보드 11번 핀에 연결
int greenPin = 10;
                                                // 초록색 핀. 아두이노 보드 10번 핀에 연결
int bluePin = 9;
                                                // 파란색 핀, 아두이노 보드 9번 핀에 연결
int buttonPin = 2;
                                                // 푸시 버튼. 아두이노 보드 2번 핀에 연결
                                               // 현재 버튼 상태
boolean currentButton = LOW;
boolean lastButton = LOW;
                                                // 이전 버튼 상태
                                                // 색깔을 선택하기 위한 변수
int ledMode;
void setup()
    pinMode (buttonPin, INPUT);
                                                // 2번 핀 입력으로 설정
void loop()
    currentButton = debounce (lastButton);
    if (lastButton == LOW && currentButton == HIGH)
        ledMode++;
    lastButton = currentButton;
    colorMode (ledMode);
```

```
if (ledMode == 8)
         ledMode = 0;
boolean debounce (boolean push)
     boolean current = digitalRead (buttonPin);
     if (push != current)
         delay (5);
         current = digitalRead (buttonPin);
     return current;
void setColor (int red, int green, int blue)
     analogWrite (redPin, red);
     analogWrite (greenPin, green);
     analogWrite (bluePin, blue);
```

3색 RGB LED를 연결하여 무지개색 표현하기

```
void colorMode (int ledColor)
    if (ledColor == 1)
         setColor (255, 0, 0);
                                                // 빨강
    else if (ledColor == 2)
         setColor (255, 94, 0);
                                                // 주황
    else if (ledColor == 3)
                                                // 노랑
         setColor (255, 187, 0);
    else if (ledColor == 4)
                                                // 圣목
         setColor (0, 255, 0);
    else if (ledColor == 5)
         setColor (0, 0, 255);
                                                // 파랑
    else if (ledColor == 6)
         setColor (5, 0, 153);
                                                // 남색
```

```
else if (ledColor == 7)
{
    setColor (95, 0, 255);  // 보라
}
else
{
    setColor (0, 0, 0);  // 색 없음
}
```