

1

Dosage par étalonnage

A) Je connais le principe d'un dosage par étalonnage

- Un dosage par étalonnage permet de déterminer la concentration d'une espèce chimique en solution :
 - Comme on ne peut pas compter les molécules à l'oeil nu, on mesure une grandeur physique dépendant de la concentration (par exemple l'absorbance) pour la solution à doser.
 - Puis on compare sa valeur à celles mesurées pour des solutions étalons contenant la même espèce chimique de concentration connue.

B) Je connais les grandeurs mesurables dépendant de la concentration, les mesurer et les calculer

- l'absorbance pour des espèces colorées, mesurée à l'aide d'un spectrophotomètre
- ullet loi de Beer-Lambert (relation entre absorbance et concentration) : $A = \sum_{i=1}^{i=n} k_i imes C_i$ avec
 - A l'absorbance sans unité
 - k_i le coefficient de proportionnalité de l'espèce i en L.mol⁻¹
 - lacksquare C_i la concentration de l'espèce i en mol.L-1
- la conductivité pour des espèces chargées, mesurée à l'aide d'un conductimètre
- loi de Kolrausch (relation entre conductivité et concentration) : $\sigma = \sum_{i=1}^{i=n} \lambda_i \times C_i$ avec
 - σ la conductivité de la solution en S.m⁻¹ (Siemens par mètre)
 - λ_i le conductivité molaire ionique en S.mol $^{-1}$.m $^{-2}$
 - C_i la concentration de l'espèce i en mol.m⁻³

2

Dosage par titrage

A) Je connais le principe d'un dosage par titrage

- Le dosage par **titrage** permet de déterminer le nombre de moles d'un échantillon d'une espèce chimique en la faisant réagir **totalement** avec une **quantité connue** d'une autre espèce chimique.
- Connaissant le **volume** de l'échantillon à doser, on peut calculer la **concentration** de la solution.
- L'espèce dont on cherche la quantité de matière est le réactif **titré**.
- L'espèce ajoutée pour réaliser la transformation est le réactif **titrant**.

B) Je sais établir l'équation de la réaction support du titrage

- L'équation de réaction support du titrage suit les **lois de conservation** des atomes et des charges :
 - réaction acido-basique : échange de proton(s)
 - réaction d'oxydoréduction : échange d'électron(s)
 - réaction de **précipitation** ou de complexation : l'équation est fournie par l'énoncé

C) Je connais la définition de l'équivalence

- À l'équivalence, les réactifs sont introduits dans les proportions stœchiométriques.
- relation entre les quantités de matière à l'équivalence : pour aA+bB o cC+dD, $\frac{n_A}{a}=\frac{n_B}{b}$ avec
 - A et B le réactif titrant et le réactif titré
 - C et D les produits de la réaction
 - a, b, c et d les nombres **stœchiométriques** pour chaque espèce chimique
 - n_B la quantité de matière introduite **initialement** pour le réactif titré en mol
 - n_A la quantité de matière introduite à l'équivalence pour le réactif titrant en mol

3

Repérer l'équivalence dans un dosage par titrage

A) Je sais exploiter un titrage par suivi colorimétrique

- La réaction support de titrage met en jeu des espèces chimiques **colorées** :
 - Soit le réactif titrant ou le réactif titré est coloré.
 - Soit on ajoute un indicateur coloré permettant de mettre en évidence le réactif titrant ou le réactif titré.
- On repère l'équivalence par un **changement** de couleur du milieu réactionnel.

B) Je sais exploiter un titrage par suivi pH-métrique

- La réaction support de titrage met en jeu un acide et une base :
 - C'est alors une réaction acido-basique.
 - lacksquare Un **proton** H^+ est échangé entre l'acide et la base
 - On mesure le pH du milieu réactionnel en fonction du volume ajouté de l'espèce titrante.
- On repère l'équivalence par un **saut de** pH.

C) Je sais exploiter un titrage par suivi conductimétrique et interpréter l'allure de la courbe

- La réaction de support de titrage met en jeu des espèces ioniques :
 - on mesure la **conductivité** du milieu réactionnel en fonction du volume ajouté de l'espèce titrante.
- On repère l'équivalence par une **rupture de pente**.