- Low Supply-Voltage Range, 1.8 V to 3.6 V
- **Ultralow-Power Consumption:** 
  - Active Mode: 365 μA at 1 MHz, 2.2 V
  - Standby Mode (VLO): 0.5 μA
  - Off Mode (RAM Retention): 0.1 μA
- Wake-Up From Standby Mode in Less Than 1 µs
- 16-Bit RISC Architecture, 62.5-nsInstruction Cycle Time
- **Three-Channel Internal DMA**
- 12-Bit Analog-to-Digital (A/D) Converter With Internal Reference, Sample-and-Hold, and Autoscan Feature
- Dual 12-Bit Digital-to-Analog (D/A) **Converters With Synchronization**
- 16-Bit Timer A With Three Capture/Compare Registers
- 16-Bit Timer B With Seven Capture/Compare-With-Shadow Registers
- **On-Chip Comparator**
- **Four Universal Serial Communication** Interfaces (USCIs)
  - USCI A0 and USCI A1
    - Enhanced UART Supporting Auto-Baudrate Detection
    - IrDA Encoder and Decoder
    - Synchronous SPI
  - USCI B0 and USCI B1
    - I<sup>2</sup>C™
    - Synchronous SPI

- Supply Voltage Supervisor/Monitor With **Programmable Level Detection**
- **Brownout Detector**
- **Bootstrap Loader**
- Serial Onboard Programming, No External Programming Voltage Needed **Programmable Code Protection by Security Fuse**
- **Family Members Include:** 
  - MSP430F2416: 92KB+256B Flash Memory, 4KB RAM
  - MSP430F2417: 92KB+256B Flash Memory, 8KB RAM
  - MSP430F2418: 116KB+256B Flash Memory, 8KB RAM
  - MSP430F2419: 120KB+256B Flash Memory, 4KB RAM
  - MSP430F2616: 92KB+256B Flash Memory, 4KB RAM
  - MSP430F2617: 92KB+256B Flash Memory, 8KB RAM
  - MSP430F2618: 116KB+256B Flash Memory, 8KB RAM - MSP430F2619:
    - 120KB+256B Flash Memory, 4KB RAM
- Available in 80-Pin Quad Flat Pack (QFP) and 64-Pin QFP (See Available Options)
- For Complete Module Descriptions, See the MSP430x2xx Family User's Guide, **Literature Number SLAU144**

#### description

The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The calibrated digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1  $\mu$ s.

The MSP430F261x/241x series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit A/D converter, a comparator, dual 12-bit D/A converters, four universal serial communication interface (USCI) modules, DMA, and up to 64 I/O pins. The MSP430F241x devices are identical to the MSP430F261x devices, with the exception that the DAC12 and the DMA modules are not implemented.

Typical applications include sensor systems, industrial control applications, hand-held meters, etc.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

I<sup>2</sup>C is a registered trademark of Philips Incorporated.



<sup>&</sup>lt;sup>†</sup> The MSP430F241x devices are identical to the MSP430F261x devices, with the exception that the DAC12 modules and the DMA controller are not implemented.

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

#### **AVAILABLE OPTIONS**

| -              | PACKAGED DEVICES         |                          |  |  |  |  |
|----------------|--------------------------|--------------------------|--|--|--|--|
| T <sub>A</sub> | PLASTIC 80-PIN LQFP (PN) | PLASTIC 64-PIN LQFP (PM) |  |  |  |  |
|                | MSP430F2416TPN           | MSP430F2416TPM           |  |  |  |  |
|                | MSP430F2417TPN           | MSP430F2417TPM           |  |  |  |  |
|                | MSP430F2418TPN           | MSP430F2418TPM           |  |  |  |  |
| -40°C to 105°C | MSP430F2419TPN           | MSP430F2419TPM           |  |  |  |  |
| -40°C to 105°C | MSP430F2616TPN           | MSP430F2616TPM           |  |  |  |  |
|                | MSP430F2617TPN           | MSP430F2617TPM           |  |  |  |  |
|                | MSP430F2618TPN           | MSP430F2618TPM           |  |  |  |  |
|                | MSP430F2619TPN           | MSP430F2619TPM           |  |  |  |  |

# pin designation, MSP430F241x, 80-pin package



# pin designation, MSP430F241x, 64-pin package



# pin designation, MSP430F261x, 80-pin package



# pin designation, MSP430F261x, 64-pin package



# functional block diagram, MSP430F241x, 80-pin package



#### functional block diagram, MSP430F241x, 64-pin package



# functional block diagram, MSP430F261x, 80-pin package



# functional block diagram, MSP430F261x, 64-pin package





# **Terminal Functions**

| TERMINAL                     |           |           |     |                                                                                                                              |     |             |
|------------------------------|-----------|-----------|-----|------------------------------------------------------------------------------------------------------------------------------|-----|-------------|
|                              | NO.       |           | NO. |                                                                                                                              | I/O | DESCRIPTION |
| NAME                         | 64<br>PIN | 80<br>PIN | 1/0 | DESCRIPTION                                                                                                                  |     |             |
| AV <sub>CC</sub>             | 64        | 80        |     | Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12 and DAC12.                               |     |             |
| AV <sub>SS</sub>             | 62        | 78        |     | Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12 and DAC12.                               |     |             |
| DV <sub>CC1</sub>            | 1         | 1         |     | Digital supply voltage, positive terminal. Supplies all digital parts.                                                       |     |             |
| DV <sub>SS1</sub>            | 63        | 79        |     | Digital supply voltage, negative terminal. Supplies all digital parts.                                                       |     |             |
| DV <sub>CC2</sub>            |           | 52        |     | Digital supply voltage, positive terminal. Supplies all digital parts.                                                       |     |             |
| DV <sub>SS2</sub>            |           | 53        |     | Digital supply voltage, negative terminal. Supplies all digital parts.                                                       |     |             |
| P1.0/TACLK/<br>CAOUT         | 12        | 12        | I/O | General-purpose digital I/O pin/Timer_A, clock signal TACLK input/Comparator_A output                                        |     |             |
| P1.1/TA0                     | 13        | 13        | I/O | General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit                             |     |             |
| P1.2/TA1                     | 14        | 14        | I/O | General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output                                          |     |             |
| P1.3/TA2                     | 15        | 15        | I/O | General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output                                          |     |             |
| P1.4/SMCLK                   | 16        | 16        | I/O | General-purpose digital I/O pin/SMCLK signal output                                                                          |     |             |
| P1.5/TA0                     | 17        | 17        | I/O | General-purpose digital I/O pin/Timer_A, compare: Out0 output                                                                |     |             |
| P1.6/TA1                     | 18        | 18        | I/O | General-purpose digital I/O pin/Timer_A, compare: Out1 output                                                                |     |             |
| P1.7/TA2                     | 19        | 19        | I/O | General-purpose digital I/O pin/Timer_A, compare: Out2 output                                                                |     |             |
| P2.0/ACLK/CA2                | 20        | 20        | I/O | General-purpose digital I/O pin/ACLK output/Comparator_A input                                                               |     |             |
| P2.1/TAINCLK/<br>CA3         | 21        | 21        | I/O | General-purpose digital I/O pin/Timer_A, clock signal at INCLK                                                               |     |             |
| P2.2/CAOUT/<br>TA0/CA4       | 22        | 22        | I/O | General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive/Comparator_A input             |     |             |
| P2.3/CA0/TA1                 | 23        | 23        | I/O | General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input                                             |     |             |
| P2.4/CA1/TA2                 | 24        | 24        | I/O | General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input                                             |     |             |
| P2.5/Rosc/CA5                | 25        | 25        | I/O | General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency/Comparator_A input            |     |             |
| P2.6/ADC12CLK/<br>DMAE0†/CA6 | 26        | 26        | I/O | General-purpose digital I/O pin/conversion clock – 12-bit ADC/DMA channel 0 external trigger/Comparator_A input              |     |             |
| P2.7/TA0/CA7                 | 27        | 27        | I/O | General-purpose digital I/O pin/Timer_A, compare: Out0 output/Comparator_A input                                             |     |             |
| P3.0/UCB0STE/<br>UCA0CLK     | 28        | 28        | I/O | General-purpose digital I/O pin/USCI B0 slave transmit enable/USCI A0 clock input/output                                     |     |             |
| P3.1/UCB0SIMO/<br>UCB0SDA    | 29        | 29        | I/O | General-purpose digital I/O pin/USCI B0 slave in/master out in SPI mode, SDA I <sup>2</sup> C data in I <sup>2</sup> C mode  |     |             |
| P3.2/UCB0SOMI/<br>UCB0SCL    | 30        | 30        | I/O | General-purpose digital I/O pin/USCI B0 slave out/master in in SPI mode, SCL I <sup>2</sup> C clock in I <sup>2</sup> C mode |     |             |
| P3.3/UCB0CLK/<br>UCA0STE     | 31        | 31        | I/O | General-purpose digital I/O/USCI B0 clock input/output, USCI A0 slave transmit enable                                        |     |             |
| P3.4/UCA0TXD/<br>UCA0SIMO    | 32        | 32        | I/O | General-purpose digital I/O pin/USCIA transmit data output in UART mode, slave data in/master out in SPI mode                |     |             |
| P3.5/UCA0RXD/<br>UCA0SOMI    | 33        | 33        | I/O | General-purpose digital I/O pin/USCI A0 receive data input in UART mode, slave data out/master in in SPI mode                |     |             |
| P3.6/UCA1TXD/<br>UCA1SIMO    | 34        | 34        | I/O | General-purpose digital I/O pin/USCI A1 transmit data output in UART mode, slave data in/master out in SPI mode              |     |             |
| P3.7/UCA1RXD/<br>UCA1SOMI    | 35        | 35        | I/O | General-purpose digital I/O pin/USCIA1 receive data input in UART mode, slave data out/master in in SPI mode                 |     |             |

<sup>†</sup> MSP430F261x devices only



# **Terminal Functions (Continued)**

| TERMINAL                             |           |           |     |                                                                                                                                  |  |  |  |
|--------------------------------------|-----------|-----------|-----|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                      | N         | 0.        | I/O | DESCRIPTION                                                                                                                      |  |  |  |
| NAME                                 | 64<br>PIN | 80<br>PIN | 1/0 | DESCRIPTION                                                                                                                      |  |  |  |
| P4.0/TB0                             | 36        | 36        | I/O | General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output                                            |  |  |  |
| P4.1/TB1                             | 37        | 37        | I/O | General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out1 output                                            |  |  |  |
| P4.2/TB2                             | 38        | 38        | I/O | General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out2 output                                            |  |  |  |
| P4.3/TB3                             | 39        | 39        | I/O | General-purpose digital I/O pin/Timer_B, capture: CCl3A/B input, compare: Out3 output                                            |  |  |  |
| P4.4/TB4                             | 40        | 40        | I/O | General-purpose digital I/O pin/Timer_B, capture: CCI4A/B input, compare: Out4 output                                            |  |  |  |
| P4.5/TB5                             | 41        | 41        | I/O | General-purpose digital I/O pin/Timer_B, capture: CCI5A/B input, compare: Out5 output                                            |  |  |  |
| P4.6/TB6                             | 42        | 42        | I/O | General-purpose digital I/O pin/Timer_B, capture: CCI6A input, compare: Out6 output                                              |  |  |  |
| P4.7/TBCLK                           | 43        | 43        | I/O | General-purpose digital I/O pin/Timer_B, clock signal TBCLK input                                                                |  |  |  |
| P5.0/UCB1STE/<br>UCA1CLK             | 44        | 44        | I/O | General-purpose digital I/O pin/USCI B1 slave transmit enable/USCI A1 clock input/output                                         |  |  |  |
| P5.1/UCB1SIMO/<br>UCB1SDA            | 45        | 45        | I/O | General-purpose digital I/O pin/USCI B1slave in/master out in SPI mode, SDA I <sup>2</sup> C data in I <sup>2</sup> C mode       |  |  |  |
| P5.2/UCB1SOMI/<br>UCB1SCL            | 46        | 46        | I/O | General-purpose digital I/O pin/USCI B1slave out/master in in SPI mode, SCL I <sup>2</sup> C clock in I <sup>2</sup> C mode      |  |  |  |
| P5.3/UCB1CLK/<br>UCA1STE             | 47        | 47        | I/O | General-purpose digital I/O/USCI B1 clock input/output, USCI A1 slave transmit enable                                            |  |  |  |
| P5.4/MCLK                            | 48        | 48        | I/O | General-purpose digital I/O pin/main system clock MCLK output                                                                    |  |  |  |
| P5.5/SMCLK                           | 49        | 49        | I/O | General-purpose digital I/O pin/submain system clock SMCLK output                                                                |  |  |  |
| P5.6/ACLK                            | 50        | 50        | I/O | General-purpose digital I/O pin/auxiliary clock ACLK output                                                                      |  |  |  |
| P5.7/TBOUTH/<br>SVSOUT               | 51        | 51        | I/O | General-purpose digital I/O pin/switch all PWM digital output ports to high impedance - Timer_B TB0 to TB6/SVS comparator output |  |  |  |
| P6.0/A0                              | 59        | 75        | I/O | General-purpose digital I/O pin/analog input A0 – 12-bit ADC                                                                     |  |  |  |
| P6.1/A1                              | 60        | 76        | I/O | General-purpose digital I/O pin/analog input A1 – 12-bit ADC                                                                     |  |  |  |
| P6.2/A2                              | 61        | 77        | I/O | General-purpose digital I/O pin/analog input A2 – 12-bit ADC                                                                     |  |  |  |
| P6.3/A3                              | 2         | 2         | I/O | General-purpose digital I/O pin/analog input A3 – 12-bit ADC                                                                     |  |  |  |
| P6.4/A4                              | 3         | 3         | I/O | General-purpose digital I/O pin/analog input A4 – 12-bit ADC                                                                     |  |  |  |
| P6.5/A5/DAC1 <sup>†</sup>            | 4         | 4         | I/O | General-purpose digital I/O pin/analog input A5 – 12-bit ADC/DAC12.1 output                                                      |  |  |  |
| P6.6/A6/DAC0 <sup>†</sup>            | 5         | 5         | I/O | General-purpose digital I/O pin/analog input A6 – 12-bit ADC/DAC12.0 output                                                      |  |  |  |
| P6.7/A7/DAC1 <sup>†</sup> /<br>SVSIN | 6         | 6         | I/O | General-purpose digital I/O pin/analog input a7 – 12-bit ADC/DAC12.1 output/SVS input                                            |  |  |  |
| P7.0                                 |           | 54        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P7.1                                 |           | 55        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P7.2                                 |           | 56        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P7.3                                 |           | 57        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P7.4                                 |           | 58        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P7.5                                 |           | 59        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P7.6                                 |           | 60        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P7.7                                 |           | 61        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P8.0                                 |           | 62        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P8.1                                 |           | 63        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P8.2                                 |           | 64        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |
| P8.3                                 |           | 65        | I/O | General-purpose digital I/O pin                                                                                                  |  |  |  |

<sup>†</sup> MSP430F261x devices only



# **Terminal Functions (Continued)**

| TERMIN                                | IAL       |           |     |                                                                                                                                     |  |
|---------------------------------------|-----------|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------|--|
|                                       | N         | 0.        | 1/0 | DESCRIPTION                                                                                                                         |  |
| NAME                                  | 64<br>PIN | 80<br>PIN | 1/0 | DESCRIPTION                                                                                                                         |  |
| P8.4                                  |           | 66        | I/O | General-purpose digital I/O pin                                                                                                     |  |
| P8.5                                  |           | 67        | I/O | General-purpose digital I/O pin                                                                                                     |  |
| P8.6/XT2OUT                           |           | 68        | 0   | General-purpose digital I/O pin/Output terminal of crystal oscillator XT2                                                           |  |
| P8.7/XT2IN                            |           | 69        | I   | General-purpose digital I/O pin/Input port for crystal oscillator XT2. Only standard crystals can be connected.                     |  |
| XT2OUT                                | 52        |           | 0   | Output terminal of crystal oscillator XT2                                                                                           |  |
| XT2IN                                 | 53        |           | I   | Input port for crystal oscillator XT2                                                                                               |  |
| RST/NMI                               | 58        | 74        | I   | Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices).                                        |  |
| TCK                                   | 57        | 73        | I   | Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader start.                              |  |
| TDI/TCLK                              | 55        | 71        | I   | Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.                                           |  |
| TDO/TDI                               | 54        | 70        | I/O | Test data output port. TDO/TDI data output or programming data input terminal.                                                      |  |
| TMS                                   | 56        | 72        | I   | Test mode select. TMS is used as an input port for device programming and test.                                                     |  |
| Ve <sub>REF+</sub> /DAC0 <sup>†</sup> | 10        | 10        | I   | Input for an external reference voltage/DAC12.0 output                                                                              |  |
| V <sub>REF+</sub>                     | 7         | 7         | 0   | Output of positive terminal of the reference voltage in the ADC12                                                                   |  |
| V <sub>REF-</sub> /Ve <sub>REF-</sub> | 11        | 11        | I   | Negative terminal for the reference voltage for both sources, the internal reference voltage, or external applied reference voltage |  |
| XIN                                   | 8         | 8         | I   | Input port for crystal oscillator XT1. Standard or watch crystals can be connected.                                                 |  |
| XOUT                                  | 9         | 9         | 0   | Output port for crystal oscillator XT1. Standard or watch crystals can be connected.                                                |  |

<sup>†</sup> MSP430F261x devices only

#### short-form description

#### **CPU**

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

#### instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.



**Table 1. Instruction Word Formats** 

| Dual operands, source-destination | e.g., ADD R4,R5 | R4 + R5> R5           |
|-----------------------------------|-----------------|-----------------------|
| Single operands, destination only | e.g., CALL R8   | PC>(TOS), R8> PC      |
| Relative jump, un/conditional     | e.g., JNE       | Jump-on-equal bit = 0 |

**Table 2. Address Mode Descriptions** 

| ADDRESS MODE           | s | D | SYNTAX          | EXAMPLE          | OPERATION                   |
|------------------------|---|---|-----------------|------------------|-----------------------------|
| Register               | • | • | MOV Rs,Rd       | MOV R10,R11      | R10> R11                    |
| Indexed                | • | • | MOV X(Rn),Y(Rm) | MOV 2(R5),6(R6)  | M(2+R5)> M(6+R6)            |
| Symbolic (PC relative) | • | • | MOV EDE,TONI    |                  | M(EDE)> M(TONI)             |
| Absolute               | • | • | MOV &MEM,&TCDAT |                  | M(MEM)> M(TCDAT)            |
| Indirect               | • |   | MOV @Rn,Y(Rm)   | MOV @R10,Tab(R6) | M(R10)> M(Tab+R6)           |
| Indirect autoincrement | • |   | MOV @Rn+,Rm     | MOV @R10+,R11    | M(R10)> R11<br>R10 + 2> R10 |
| Immediate              | • |   | MOV #X,TONI     | MOV #45,TONI     | #45> M(TONI)                |

NOTE: S = source D = destination



#### operating modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
  - All clocks are active.
- Low-power mode 0 (LPM0)
  - CPU is disabled.
     ACLK and SMCLK remain active. MCLK is disabled.
- Low-power mode 1 (LPM1)
  - CPU is disabled.
    ACLK and SMCLK remain active. MCLK is disabled.
    DCO's dc-generator is disabled if DCO not used in active mode.
- Low-power mode 2 (LPM2)
  - CPU is disabled.
     MCLK and SMCLK are disabled.
     DCO's dc-generator remains enabled.
     ACLK remains active.
- Low-power mode 3 (LPM3)
  - CPU is disabled.
    MCLK and SMCLK are disabled.
    DCO's dc-generator is disabled.
    ACLK remains active.
- Low-power mode 4 (LPM4)
  - CPU is disabled.
     ACLK is disabled.
     MCLK and SMCLK are disabled.
     DCO's dc-generator is disabled.
     Crystal oscillator is stopped.

#### interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range 0x0FFFF to 0x0FFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. If the reset vector (0x0FFFE) contains 0xFFFF (e.g., flash is not programmed), the CPU enters LPM4 after power-up.

| INTERRUPT SOURCE                                                                  | INTERRUPT FLAG                                            | SYSTEM INTERRUPT                                | WORD ADDRESS          | PRIORITY           |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-----------------------|--------------------|--|
| Power-up External Reset Watchdog Flash Key Violation PC out of range (see Note 1) | PORIFG<br>WDTIFG<br>RSTIFG<br>KEYV (see Note 2)           | Reset                                           | 0x0FFFE               | 31, highest        |  |
| NMI<br>Oscillator Fault<br>Flash memory access violation                          | NMIIFG<br>OFIFG<br>ACCVIFG (see Notes 2 and 6)            | (Non)maskable<br>(Non)maskable<br>(Non)maskable | 0x0FFFC               | 30                 |  |
| Timer_B7                                                                          | TBCCR0 CCIFG<br>(see Note 3)                              | Maskable                                        | 0x0FFFA               | 29                 |  |
| Timer_B7                                                                          | TBCCR1 to TBCCR6 CCIFGs, TBIFG (see Notes 2 and 3)        | Maskable                                        | 0x0FFF8               | 28                 |  |
| Comparator_A+                                                                     | CAIFG                                                     | Maskable                                        | 0x0FFF6               | 27                 |  |
| Watchdog timer+                                                                   | WDTIFG                                                    | Maskable                                        | 0x0FFF4               | 26                 |  |
| Timer_A3                                                                          | TACCR0 CCIFG (see Note 3)                                 | Maskable                                        | 0x0FFF2               | 25                 |  |
| Timer_A3                                                                          | TACCR1 CCIFG<br>TACCR2 CCIFG<br>TAIFG (see Notes 2 and 3) | Maskable                                        | 0x0FFF0               | 24                 |  |
| USCI_A0/USCI_B0 receive<br>USCI_B0 I2C status                                     | UCA0RXIFG, UCB0RXIFG<br>(see Notes 2 and 4)               | Maskable                                        | 0x0FFEE               | 23                 |  |
| USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit                             | UCA0TXIFG, UCB0TXIFG<br>(see Note 2 and 4)                | Maskable                                        | 0x0FFEC               | 22                 |  |
| ADC12                                                                             | ADC12IFG (see Notes 2 and 3)                              | Maskable                                        | 0x0FFEA               | 21                 |  |
|                                                                                   |                                                           |                                                 | 0x0FFE8               | 20                 |  |
| I/O port P2 (eight flags)                                                         | P2IFG.0 to P2IFG.7 (see Notes 2 and 3)                    | Maskable                                        | 0x0FFE6               | 19                 |  |
| I/O port P1 (eight flags)                                                         | P1IFG.0 to P1IFG.7 (see Notes 2 and 3)                    | Maskable                                        | 0x0FFE4               | 18                 |  |
| USCI_A0/USCI_B1 receive<br>USCI_B1 I2C status                                     | UCA1RXIFG, UCB1RXIFG<br>(see Notes 2 and 4)               | Maskable                                        | 0x0FFE2               | 17                 |  |
| USCI_A1/USCI_B1 transmit USCI_B1 I2C receive/transmit                             | UCA1TXIFG, UCB1TXIFG<br>(see Notes 2 and 5)               | Maskable                                        | 0x0FFE0               | 16                 |  |
| DMA                                                                               | DMA0IFG, DMA1IFG, DMA2IFG<br>(see Notes 2 and 3)          | Maskable                                        | 0x0FFDE               | 15                 |  |
| DAC12                                                                             | DAC12_0IFG, DAC12_1IFG<br>(see Notes 2 and 3)             | Maskable                                        | 0x0FFDC               | 14                 |  |
| Reserved (see Notes 7 and 8)                                                      | Reserved                                                  |                                                 | 0x0FFDA to<br>0x0FFC0 | 13 to 0,<br>lowest |  |

NOTES: 1. A reset is executed if the CPU tries to fetch instructions from within the module register memory address range (0x00000 to 0x001FF) or from within unused address ranges.

- 2. Multiple source flags.
- 3. Interrupt flags are located in the module.
- 4. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.
- 5. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
- 6. (Non)maskable: The individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot.
- 7. The address 0x0FFBE is used as bootstrap loader security key (BSLSKEY). A 0x0AA55 at this location disables the BSL completely.
  - A zero disables the erasure of the flash if an invalid password is supplied.
- 8. The interrupt vectors at addresses 0x0FFDA to 0x0FFC0 are not used in this device and can be used for regular program code if necessary.



# special function registers

Most interrupt enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access.

# interrupt enable 1 and 2



# **Interrupt Enable Register 1**

WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected.

Active if watchdog timer is configured as general-purpose timer.

OFIE Oscillator-fault-interrupt enable
NMIIE Nonmaskable-interrupt enable

ACCVIE Flash memory access violation interrupt enable

| Address | 7 | 6 | 5 | 4 | 3        | 2        | 1        | 0        |
|---------|---|---|---|---|----------|----------|----------|----------|
| 01h     |   |   |   |   | UCB0TXIE | UCB0RXIE | UCA0TXIE | UCA0RXIE |
|         |   |   |   |   | rw-0     | rw-0     | rw-0     | rw-0     |

#### **Interrupt Enable Register 2**

| UCA0RXIE | USCI_A0 receive-interrupt enable  |
|----------|-----------------------------------|
| UCA0TXIE | USCI_A0 transmit-interrupt enable |
| UCB0RXIE | USCI_B0 receive-interrupt enable  |
| UCB0TXIE | USCI_B0 transmit-interrupt enable |

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

# interrupt flag register 1 and 2

| Address | 7 | 6 | 5 | 4      | 3      | 2      | 1     | 0      |
|---------|---|---|---|--------|--------|--------|-------|--------|
| 02h     |   |   |   | NMIIFG | RSTIFG | PORIFG | OFIFG | WDTIFG |
|         |   |   |   | rw-0   | rw-(0) | rw-(1) | rw-1  | rw-(0) |

#### **Interrupt Flag Register 1**

WDTIFG Set on watchdog timer overflow or security key violation

Reset on V<sub>CC</sub> power-on or a reset condition at the RST/NMI pin in reset mode

OFIFG Flag set on oscillator fault7

PORIFG Power-on interrupt flag. Set on V<sub>CC</sub> power up.

RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset

on V<sub>CC</sub> power up.

NMIIFG Set via RST/NMI pin

| Address | 7 | 6 | 5 | 4 | 3             | 2             | 1             | 0             |
|---------|---|---|---|---|---------------|---------------|---------------|---------------|
| 03h     |   |   |   |   | UCB0TX<br>IFG | UCB0RX<br>IFG | UCA0TX<br>IFG | UCA0RX<br>IFG |
|         |   |   |   |   | rw-1          | rw-0          | rw-1          | rw-0          |

# **Interrupt Flag Register 2**

UCA0RXIFG USCI\_A0 receive-interrupt flag
UCA0TXIFG USCI\_A0 transmit-interrupt flag
UCB0RXIFG USCI\_B0 receive-interrupt flag
UCB0TXIFG USCI\_B0 transmit-interrupt flag

Legend rw: Bit can be read and written.

rw-0,1: Bit can be read and written. It is Reset or Set by PUC. rw-(0,1) Bit can be read and written. It is Reset or Set by POR.

SFR bit is not present in device.

# memory organization

|                                     |               | MSP430F2416<br>MSP430F2616    | MSP430F2417<br>MSP430F2617    |
|-------------------------------------|---------------|-------------------------------|-------------------------------|
| Memory                              | Size          | 92KB                          | 92KB                          |
| Main: interrupt vector              | Flash         | 0x0FFFF - 0x0FFC0             | 0x0FFFF - 0x0FFC0             |
| Main: code memory                   | Flash         | 0x18FFF - 0x02100             | 0x19FFF - 0x03100             |
| RAM (total)                         | Size          | 4kB<br>0x020FF - 0x01100      | 8kB<br>0x030FF - 0x01100      |
| Extended                            | Size          | 2kB<br>0x020FF - 0x01900      | 6kB<br>0x030FF - 0x01900      |
| Mirrored                            | Size          | 2kB<br>0x018FF - 0x01100      | 2kB<br>0x018FF - 0x01100      |
| Information memory                  | Size<br>Flash | 256 Byte<br>0x010FF - 0x01000 | 256 Byte<br>0x010FF - 0x01000 |
| Boot memory                         | Size<br>ROM   | 1KB<br>0x00FFF - 0x00C00      | 1KB<br>0x00FFF - 0x00C00      |
| RAM (mirrored at 0x18FF to 0x01100) | Size          | 2KB<br>0x009FF - 0x00200      | 2KB<br>0x009FF - 0x00200      |
| Peripherals                         | 16-bit        | 0x001FF - 0x00100             | 0x001FF - 0x00100             |
|                                     | 8-bit         | 0x000FF - 0x00010             | 0x000FF - 0x00010             |
|                                     | 8-bit SFR     | 0x0000F - 0x00000             | 0x0000F - 0x00000             |

|                                     |               | MSP430F2618<br>MSP430F2418    | MSP430F2619<br>MSP430F2419    |
|-------------------------------------|---------------|-------------------------------|-------------------------------|
| Memory                              | Size          | 116KB                         | 120KB                         |
| Main: interrupt vector              | Flash         | 0x0FFFF - 0x0FFC0             | 0x0FFFF - 0x0FFC0             |
| Main: code memory                   | Flash         | 0x1FFFF - 0x03100             | 0x1FFFF - 0x02100             |
| RAM (total)                         | Size          | 8kB<br>0x030FF - 0x01100      | 4kB<br>0x020FF - 0x01100      |
| Extended                            | Size          | 6kB<br>0x030FF - 0x01900      | 2kB<br>0x020FF - 0x01900      |
| Mirrored                            | Size          | 2kB<br>0x018FF - 0x01100      | 2kB<br>0x018FF - 0x01100      |
| Information memory                  | Size<br>Flash | 256 Byte<br>0x010FF - 0x01000 | 256 Byte<br>0x010FF - 0x01000 |
| Boot memory                         | Size<br>ROM   | 1KB<br>0x00FFF - 0x00C00      | 1KB<br>0x00FFF - 0x00C00      |
| RAM (mirrored at 0x18FF to 0x01100) | Size          | 2KB<br>0x009FF - 0x00200      | 2KB<br>0x009FF - 0x00200      |
| Peripherals                         | 16-bit        | 0x001FF - 0x00100             | 0x001FF - 0x00100             |
|                                     | 8-bit         | 0x000FF - 0x00010             | 0x000FF - 0x00010             |
|                                     | 8-bit SFR     | 0x0000F - 0x00000             | 0x0000F - 0x00000             |

# bootstrap loader (BSL)

The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by a user-defined password. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number SLAA089.

| BSL Function  | PM, RTD Package Pins |
|---------------|----------------------|
| Data Transmit | 13 - P1.1            |
| Data Receive  | 22 - P2.2            |



SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

# flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually, or as a group with segments 0 to n.
   Segments A to D are also called information memory.
- Segment A contains calibration data. After reset, segment A is protected against programming or erasing.
   It can be unlocked, but care should be taken not to erase this segment if the calibration data is required.
- Flash content integrity check with marginal read modes

# peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide, literature number SLAU144.

#### **DMA** controller

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral.

#### oscillator and system clock

The clock system in the MSP430x241x and MSP43x261x family of devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low frequency oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1  $\mu$ s. The basic clock module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high frequency crystal, or a very low-power LF oscillator
- Main clock (MCLK), the system clock used by the CPU
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules

The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A.



# calibration data stored in information memory segment A

Calibration data is stored for the DCO and for the ADC12. It is organized in a tag-length-value (TLV) structure.

| TAGS USED BY THE ADC CALIBRATION TAGS |        |      |                                                                                 |
|---------------------------------------|--------|------|---------------------------------------------------------------------------------|
| NAME ADDRESS VALUE DESCRIPTION        |        |      |                                                                                 |
| TAG_DCO_30                            | 0x10F6 | 0x01 | DCO frequency calibration at VCC = 3 V and T <sub>A</sub> = 25°C at calibration |
| TAG_ADC12_1                           | 0x10DA | 0x10 | ADC12_1 calibration tag                                                         |
| TAG_EMPTY                             | 1      | 0xFE | Identifier for empty memory areas                                               |

| LABELS USED BY THE ADC CALIBRATION TAGS |                                                                  |      |                |  |
|-----------------------------------------|------------------------------------------------------------------|------|----------------|--|
| LABEL                                   | CONDITION AT CALIBRATION / DESCRIPTION                           | SIZE | ADDRESS OFFSET |  |
| CAL_ADC_25T85                           | INCHx = 0x1010; REF2_5 = 1, T <sub>A</sub> = 85°C                | word | 0x000E         |  |
| CAL_ADC_25T30                           | INCHx = 0x1010; REF2_5 = 1, T <sub>A</sub> = 30°C                | word | 0x000C         |  |
| CAL_ADC_25VREF_FACTOR                   | REF2_5 = 1, T <sub>A</sub> = 30°C                                | word | 0x000A         |  |
| CAL_ADC_15T85                           | INCHx = 0x1010; REF2_5 = 0, T <sub>A</sub> = 85°C                | word | 0x0008         |  |
| CAL_ADC_15T30                           | INCHx = 0x1010; REF2_5 = 0, T <sub>A</sub> = 30°C                | word | 0x0006         |  |
| CAL_ADC_15VREF_FACTOR                   | REF2_5 = 0, T <sub>A</sub> = 30°C                                | word | 0x0004         |  |
| CAL_ADC_OFFSET                          | External V <sub>REF</sub> = 1.5 V, f <sub>ADC12CLK</sub> = 5 MHz | word | 0x0002         |  |
| CAL_ADC_GAIN_FACTOR                     | External V <sub>REF</sub> = 1.5 V, f <sub>ADC12CLK</sub> = 5 MHz | word | 0x0000         |  |
| CAL_BC1_1MHz                            | +                                                                | byte | 0x0007         |  |
| CAL_DCO_1MHz                            | +                                                                | byte | 0x0006         |  |
| CAL_BC1_8MHz                            | -                                                                | byte | 0x0005         |  |
| CAL_DCO_8MHz                            | -                                                                | byte | 0x0004         |  |
| CAL_BC1_12MHz                           | -                                                                | byte | 0x0003         |  |
| CAL_DCO_12MHz                           | -                                                                | byte | 0x0002         |  |
| CAL_BC1_16MHz                           | -                                                                | byte | 0x0001         |  |
| CAL_DCO_16MHz                           | -                                                                | byte | 0x0000         |  |

# brownout, supply voltage supervisor (SVS)

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset).

The CPU begins code execution after the brownout circuit releases the device reset. However,  $V_{CC}$  may not have ramped to  $V_{CC(min)}$  at that time. The user must ensure that the default DCO settings are not changed until  $V_{CC}$  reaches  $V_{CC(min)}$ . If desired, the SVS circuit can be used to determine when  $V_{CC}$  reaches  $V_{CC(min)}$ .

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

# digital I/O

There are up to eight 8-bit I/O ports implemented—ports P1 through P8:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all eight bits of ports P1 and P2.
- Read/write access to port-control registers is supported by all instructions.
- Each I/O has an individually programmable pullup/pulldown resistor.
- Ports P7/P8 can be accessed word wise.

# watchdog timer+ (WDT+)

The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

# hardware multiplier

The multiplication operation is supported by a dedicated peripheral module. The module performs  $16 \times 16$ ,  $16 \times 8$ ,  $8 \times 16$ , and  $8 \times 8$  bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required.

#### universal serial communication interface (USCI)

The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 pin or 4 pin) or I<sup>2</sup>C, and asynchronous combination protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.

The USCI A module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, and IrDA.

The USCI B module provides support for SPI (3 pin or 4 pin) and I<sup>2</sup>C.



# timer\_A3

Timer\_A3 is a 16-bit timer/counter with three capture/compare registers. Timer\_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer\_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

|                     | TIMER_A3 SIGNAL CONNECTIONS |                      |                 |                         |                    |           |
|---------------------|-----------------------------|----------------------|-----------------|-------------------------|--------------------|-----------|
| INPUT PIN<br>NUMBER | DEVICE INPUT<br>SIGNAL      | MODULE INPUT<br>NAME | MODULE<br>BLOCK | MODULE OUTPUT<br>SIGNAL | OUTPUT PIN NUMBER  |           |
| 12 - P1.0           | TACLK                       | TACLK                |                 |                         |                    |           |
|                     | ACLK                        | ACLK                 | ] _             |                         |                    |           |
|                     | SMCLK                       | SMCLK                | Timer           | NA                      |                    |           |
| 21 - P2.1           | TAINCLK                     | INCLK                |                 |                         |                    |           |
| 13 - P1.1           | TA0                         | CCI0A                |                 |                         | 13 - P1.1          |           |
| 22 - P2.2           | TA0                         | CCI0B                | 0000            | T4.0                    | 17 - P1.5          |           |
|                     | DV <sub>SS</sub>            | GND CCR0 TA0         | 27 - P2.7       |                         |                    |           |
|                     | DV <sub>CC</sub>            | V <sub>CC</sub>      |                 |                         |                    |           |
| 14 - P1.2           | TA1                         | CCI1A                | 1A              |                         | 14 - P1.2          |           |
|                     | CAOUT (internal)            | CCI1B                | 0004            |                         | 18 - P1.6          |           |
|                     | DV <sub>SS</sub>            | GND                  | CCR1            |                         | 23 - P2.3          |           |
|                     | DV <sub>CC</sub>            | V <sub>CC</sub>      |                 | TA1                     | ADC12 (internal)   |           |
|                     |                             |                      |                 |                         | DAC12_0 (internal) |           |
|                     |                             |                      |                 |                         | DAC12_1 (internal) |           |
| 15 - P1.3           | TA2                         | CCI2A                |                 |                         | 15 - P1.3          |           |
|                     | ACLK (internal)             | CCI2B                | CCR2            | T4.0                    | 19 - P1.7          |           |
|                     | DV <sub>SS</sub>            | GND                  |                 | CCR2                    | TA2                | 24 - P2.4 |
|                     | DV <sub>CC</sub>            | V <sub>CC</sub>      |                 |                         |                    |           |

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

# timer\_B7

Timer\_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer\_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer\_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

|                     | TIMER_B3/B7 SIGNAL CONNECTIONS <sup>†</sup> |                      |                  |                         |                   |
|---------------------|---------------------------------------------|----------------------|------------------|-------------------------|-------------------|
| INPUT PIN<br>NUMBER | DEVICE INPUT<br>SIGNAL                      | MODULE INPUT<br>NAME | MODULE<br>BLOCK  | MODULE OUTPUT<br>SIGNAL | OUTPUT PIN NUMBER |
| 43 - P4.7           | TBCLK                                       | TBCLK                |                  |                         |                   |
|                     | ACLK                                        | ACLK                 | _                |                         |                   |
|                     | SMCLK                                       | SMCLK                | Timer            | NA                      |                   |
| 43 - P4.7           | TBCLK                                       | INCLK                |                  |                         |                   |
| 36 - P4.0           | TB0                                         | CCI0A                |                  |                         | 36 - P4.0         |
| 36 - P4.0           | TB0                                         | CCI0B                | 0000             | TDO                     | ADC12 (internal)  |
|                     | DV <sub>SS</sub>                            | GND                  | CCR0             | TB0                     |                   |
|                     | DV <sub>CC</sub>                            | V <sub>CC</sub>      |                  |                         |                   |
| 37 - P4.1           | TB1                                         | CCI1A                |                  |                         | 37 - P4.1         |
| 37 - P4.1           | TB1                                         | CCI1B                | 000              |                         | ADC12 (internal)  |
|                     | DV <sub>SS</sub>                            | GND                  | CCR1             | TB1                     |                   |
|                     | DV <sub>CC</sub>                            | V <sub>CC</sub>      |                  |                         |                   |
| 38 - P4.2           | TB2                                         | CCI2A                |                  |                         | 38 - P4.2         |
| 38 - P4.2           | TB2                                         | CCI2B                | 0000             |                         | DAC_0(internal)   |
|                     | DV <sub>SS</sub> GND CCR2 TB2               | TB2                  | DAC_1 (internal) |                         |                   |
|                     | DV <sub>CC</sub>                            | V <sub>CC</sub>      |                  |                         |                   |
| 39 - P4.3           | TB3                                         | CCI3A                |                  |                         | 39 - P4.3         |
| 39 - P4.3           | TB3                                         | CCI3B                | 000-             |                         |                   |
|                     | DV <sub>SS</sub>                            | GND                  | CCR3             | TB3                     |                   |
|                     | DV <sub>CC</sub>                            | V <sub>CC</sub>      |                  |                         |                   |
| 40 - P4.4           | TB4                                         | CCI4A                |                  |                         | 40 - P4.4         |
| 40 - P4.4           | TB4                                         | CCI4B                |                  |                         |                   |
|                     | DV <sub>SS</sub>                            | GND                  | CCR4             | TB4                     |                   |
|                     | DV <sub>CC</sub>                            | V <sub>CC</sub>      |                  |                         |                   |
| 41 - P4.5           | TB5                                         | CCI5A                |                  |                         | 41 - P4.5         |
| 41 - P4.5           | TB5                                         | CCI5B                | 000-             | TD-                     |                   |
|                     | DV <sub>SS</sub>                            | GND                  | CCR5             | TB5                     |                   |
|                     | DV <sub>CC</sub>                            | V <sub>CC</sub>      |                  |                         |                   |
| 42 - P4.6           | TB6                                         | CCI6A                |                  |                         | 42 - P4.6         |
|                     | ACLK (internal)                             | CCI6B                | 0075             | <b>T</b>                |                   |
|                     | DV <sub>SS</sub>                            | GND                  | CCR6             | TB6                     |                   |
|                     | DV <sub>CC</sub>                            | V <sub>CC</sub>      |                  |                         |                   |



SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

# comparator\_A+

The primary function of the comparator\_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.

#### ADC<sub>12</sub>

The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.

#### DAC<sub>12</sub>

The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8-bit or 12-bit mode and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation.

# peripheral file map

|                    | PERIPHERAL FILE MAP               |            |        |
|--------------------|-----------------------------------|------------|--------|
| DMA <sup>†</sup>   | DMA channel 2 transfer size       | DMA2SZ     | 0x01F2 |
|                    | DMA channel 2 destination address | DMA2DA     | 0x01EE |
|                    | DMA channel 2 source address      | DMA2SA     | 0x01EA |
|                    | DMA channel 2 control             | DMA2CTL    | 0x01E8 |
|                    | DMA channel 1 transfer size       | DMA1SZ     | 0x01E6 |
|                    | DMA channel 1 destination address | DMA1DA     | 0x01E2 |
|                    | DMA channel 1 source address      | DMA1SA     | 0x01DE |
|                    | DMA channel 1 control             | DMA1CTL    | 0x01DC |
|                    | DMA channel 0 transfer size       | DMA0SZ     | 0x01DA |
|                    | DMA channel 0 destination address | DMA0DA     | 0x01D6 |
|                    | DMA channel 0 source address      | DMA0SA     | 0x01D2 |
|                    | DMA channel 0 control             | DMA0CTL    | 0x01D0 |
|                    | DMA module interrupt vector word  | DMAIV      | 0x0126 |
|                    | DMA module control 1              | DMACTL1    | 0x0124 |
|                    | DMA module control 0              | DMACTL0    | 0x0122 |
| DAC12 <sup>†</sup> | DAC12_1 data                      | DAC12_1DAT | 0x01CA |
|                    | DAC12_1 control                   | DAC12_1CTL | 0x01C2 |
|                    | DAC12_0 data                      | DAC12_0DAT | 0x01C8 |
|                    | DAC12_0 control                   | DAC12_0CTL | 0x01C0 |
| ADC12              | Interrupt-vector-word register    | ADC12IV    | 0x01A8 |
|                    | Inerrupt-enable register          | ADC12IE    | 0x01A6 |
|                    | Inerrupt-flag register            | ADC12IFG   | 0x01A4 |
|                    | Control register 1                | ADC12CTL1  | 0x01A2 |
|                    | Control register 0                | ADC12CTL0  | 0x01A0 |
|                    | Conversion memory 15              | ADC12MEM15 | 0x015E |
|                    | Conversion memory 14              | ADC12MEM14 | 0x015C |
|                    | Conversion memory 13              | ADC12MEM13 | 0x015A |
|                    | Conversion memory 12              | ADC12MEM12 | 0x0158 |
|                    | Conversion memory 11              | ADC12MEM11 | 0x0156 |
|                    | Conversion memory 10              | ADC12MEM10 | 0x0154 |
|                    | Conversion memory 9               | ADC12MEM9  | 0x0152 |
|                    | Conversion memory 8               | ADC12MEM8  | 0x0150 |
|                    | Conversion memory 7               | ADC12MEM7  | 0x014E |
|                    | Conversion memory 6               | ADC12MEM6  | 0x014C |
|                    | Conversion memory 5               | ADC12MEM5  | 0x014A |
|                    | Conversion memory 4               | ADC12MEM4  | 0x0148 |
|                    | Conversion memory 3               | ADC12MEM3  | 0x0146 |
|                    | Conversion memory 2               | ADC12MEM2  | 0x0144 |
|                    | Conversion memory 1               | ADC12MEM1  | 0x0142 |
|                    | Conversion memory 0               | ADC12MEM0  | 0x0140 |

<sup>†</sup> MSP430F261x devices only



|             | PERIPHERAL FILE MAP (CONTINUED) |             |        |
|-------------|---------------------------------|-------------|--------|
| ADC12       | ADC memory-control register15   | ADC12MCTL15 | 0x008F |
| (continued) | ADC memory-control register14   | ADC12MCTL14 | 0x008E |
|             | ADC memory-control register13   | ADC12MCTL13 | 0x008D |
|             | ADC memory-control register12   | ADC12MCTL12 | 0x008C |
|             | ADC memory-control register11   | ADC12MCTL11 | 0x008B |
|             | ADC memory-control register10   | ADC12MCTL10 | 0x008A |
|             | ADC memory-control register9    | ADC12MCTL9  | 0x0089 |
|             | ADC memory-control register8    | ADC12MCTL8  | 0x0088 |
|             | ADC memory-control register7    | ADC12MCTL7  | 0x0087 |
|             | ADC memory-control register6    | ADC12MCTL6  | 0x0086 |
|             | ADC memory-control register5    | ADC12MCTL5  | 0x0085 |
|             | ADC memory-control register4    | ADC12MCTL4  | 0x0084 |
|             | ADC memory-control register3    | ADC12MCTL3  | 0x0083 |
|             | ADC memory-control register2    | ADC12MCTL2  | 0x0082 |
|             | ADC memory-control register1    | ADC12MCTL1  | 0x0081 |
|             | ADC memory-control register0    | ADC12MCTL0  | 0x0080 |
| Timer_B7    | Capture/compare register 6      | TBCCR6      | 0x019E |
|             | Capture/compare register 5      | TBCCR5      | 0x019C |
|             | Capture/compare register 4      | TBCCR4      | 0x019A |
|             | Capture/compare register 3      | TBCCR3      | 0x0198 |
|             | Capture/compare register 2      | TBCCR2      | 0x0196 |
|             | Capture/compare register 1      | TBCCR1      | 0x0194 |
|             | Capture/compare register 0      | TBCCR0      | 0x0192 |
|             | Timer_B register                | TBR         | 0x0190 |
|             | Capture/compare control 6       | TBCCTL6     | 0x018E |
|             | Capture/compare control 5       | TBCCTL5     | 0x018C |
|             | Capture/compare control 4       | TBCCTL4     | 0x018A |
|             | Capture/compare control 3       | TBCCTL3     | 0x0188 |
|             | Capture/compare control 2       | TBCCTL2     | 0x0186 |
|             | Capture/compare control 1       | TBCCTL1     | 0x0184 |
|             | Capture/compare control 0       | TBCCTL0     | 0x0182 |
|             | Timer_B control                 | TBCTL       | 0x0180 |
|             | Timer_B interrupt vector        | TBIV        | 0x011E |
| Timer_A3    | Capture/compare register 2      | TACCR2      | 0x0176 |
|             | Capture/compare register 1      | TACCR1      | 0x0174 |
|             | Capture/compare register 0      | TACCR0      | 0x0172 |
|             | Timer_A register                | TAR         | 0x0170 |
|             | Reserved                        |             | 0x016E |
|             | Reserved                        |             | 0x016C |
|             | Reserved                        |             | 0x016A |
|             | Reserved                        |             | 0x0168 |
|             | Capture/compare control 2       | TACCTL2     | 0x0166 |
|             | Capture/compare control 1       | TACCTL1     | 0x0164 |
|             | Capture/compare control 0       | TACCTL0     | 0x0162 |
|             | Timer_A control                 | TACTL       | 0x0160 |
|             | Timer_A interrupt vector        | TAIV        | 0x012E |



|            | PERIPHERAL FILE MAP (CONTINU         | IED)       | _      |
|------------|--------------------------------------|------------|--------|
| Hardware   | Sum extend                           | SUMEXT     | 0x013E |
| Multiplier | Result high word                     | RESHI      | 0x013C |
|            | Result low word                      | RESLO      | 0x013A |
|            | Second operand                       | OP2        | 0x0138 |
|            | Multiply signed +accumulate/operand1 | MACS       | 0x0136 |
|            | Multiply+accumulate/operand1         | MAC        | 0x0134 |
|            | Multiply signed/operand1             | MPYS       | 0x0132 |
|            | Multiply unsigned/operand1           | MPY        | 0x0130 |
| Flash      | Flash control 4                      | FCTL4      | 0x01BE |
|            | Flash control 3                      | FCTL3      | 0x012C |
|            | Flash control 2                      | FCTL2      | 0x012A |
|            | Flash control 1                      | FCTL1      | 0x0128 |
| Watchdog   | Watchdog Timer control               | WDTCTL     | 0x0120 |
| USCI A0/B0 | USCI A0 auto baud rate control       | UCA0ABCTL  | 0x005D |
|            | USCI A0 transmit buffer              | UCA0TXBUF  | 0x0067 |
|            | USCI A0 receive buffer               | UCA0RXBUF  | 0x0066 |
|            | USCI A0 status                       | UCA0STAT   | 0x0065 |
|            | USCI A0 modulation control           | UCA0MCTL   | 0x0064 |
|            | USCI A0 baud rate control 1          | UCA0BR1    | 0x0063 |
|            | USCI A0 baud rate control 0          | UCA0BR0    | 0x0062 |
|            | USCI A0 control 1                    | UCA0CTL1   | 0x0061 |
|            | USCI A0 control 0                    | UCA0CTL0   | 0x0060 |
|            | USCI A0 IrDA receive control         | UCA0IRRCTL | 0x005F |
|            | USCI A0 IrDA transmit control        | UCA0IRTCLT | 0x005E |
|            | USCI B0 transmit buffer              | UCB0TXBUF  | 0x006F |
|            | USCI B0 receive buffer               | UCB0RXBUF  | 0x006E |
|            | USCI B0 status                       | UCB0STAT   | 0x006D |
|            | USCI B0 I2C Interrupt enable         | UCB0CIE    | 0x006C |
|            | USCI B0 baud rate control 1          | UCB0BR1    | 0x006B |
|            | USCI B0 baud rate control 0          | UCB0BR0    | 0x006A |
|            | USCI B0 control 1                    | UCB0CTL1   | 0x0069 |
|            | USCI B0 control 0                    | UCB0CTL0   | 0x0068 |
|            | USCI B0 I2C slave address            | UCB0SA     | 0x011A |
|            | USCI B0 I2C own address              | UCB0OA     | 0x0118 |
| USCI A1/B1 | USCI A1 auto baud rate control       | UCA1ABCTL  | 0x00CD |
|            | USCI A1 transmit buffer              | UCA1TXBUF  | 0x00D7 |
|            | USCI A1 receive buffer               | UCA1RXBUF  | 0x00D6 |
|            | USCI A1 status                       | UCA1STAT   | 0x00D5 |
|            | USCI A1 modulation control           | UCA1MCTL   | 0x00D4 |
|            | USCI A1 baud rate control 1          | UCA1BR1    | 0x00D3 |
|            | USCI A1 baud rate control 0          | UCA1BR0    | 0x00D2 |
|            | USCI A1 control 1                    | UCA1CTL1   | 0x00D1 |
|            | USCI A1 control 0                    | UCA1CTL0   | 0x00D0 |
|            | USCI A1 IrDA receive control         | UCA1IRRCTL | 0x00CF |
|            | USCI A1 IrDA transmit control        | UCA1IRTCLT | 0x00CE |



|                      | PERIPHERAL FILE MAP (CONTINUED)                 |           |        |
|----------------------|-------------------------------------------------|-----------|--------|
| USCI A1/B1           | USCI B1 transmit buffer                         | UCB1TXBUF | 0x00DF |
| (continued)          | USCI B1 receive buffer                          | UCB1RXBUF | 0x00DE |
|                      | USCI B1 status                                  | UCB1STAT  | 0x00DD |
|                      | USCI B1 I2C Interrupt enable                    | UCB1CIE   | 0x00DC |
|                      | USCI B1 baud rate control 1                     | UCB1BR1   | 0x00DB |
|                      | USCI B1 baud rate control 0                     | UCB1BR0   | 0x00DA |
|                      | USCI B1 control 1                               | UCB1CTL1  | 0x00D9 |
|                      | USCI B1 control 0                               | UCB1CTL0  | 0x00D8 |
|                      | USCI B1 I2C slave address                       | UCB1SA    | 0x017E |
|                      | USCI B1 I2C own address                         | UCB1OA    | 0x017C |
|                      | USCI A1/B1 interrupt enable                     | UC1IE     | 0x0006 |
|                      | USCI A1/B1 interrupt flag                       | UC1IFG    | 0x0007 |
| Comparator_A+        | Comparator_A port disable                       | CAPD      | 0x005B |
|                      | Comparator_A control2                           | CACTL2    | 0x005A |
|                      | Comparator A control1                           | CACTL1    | 0x0059 |
| Basic Clock          | Basic clock system control3                     | BCSCTL3   | 0x0053 |
|                      | Basic clock system control2                     | BCSCTL2   | 0x0058 |
|                      | Basic clock system control1                     | BCSCTL1   | 0x0057 |
|                      | DCO clock frequency control                     | DCOCTL    | 0x0056 |
| Brownout, SVS        | SVS control register (reset by brownout signal) | SVSCTL    | 0x0055 |
| Port PA <sup>†</sup> | Port PA resistor enable                         | PAREN     | 0x0014 |
|                      | Port PA selection                               | PASEL     | 0x003E |
|                      | Port PA direction                               | PADIR     | 0x003C |
|                      | Port PA output                                  | PAOUT     | 0x003A |
|                      | Port PA input                                   | PAIN      | 0x0038 |
| Port P8 <sup>†</sup> | Port P8 resistor enable                         | P8REN     | 0x0015 |
|                      | Port P8 selection                               | P8SEL     | 0x003F |
|                      | Port P8 direction                               | P8DIR     | 0x003D |
|                      | Port P8 output                                  | P8OUT     | 0x003B |
|                      | Port P8 input                                   | P8IN      | 0x0039 |
| Port P7 <sup>†</sup> | Port P7 resistor enable                         | P7REN     | 0x0014 |
|                      | Port P7 selection                               | P7SEL     | 0x003E |
|                      | Port P7 direction                               | P7DIR     | 0x003C |
|                      | Port P7 output                                  | P7OUT     | 0x003A |
|                      | Port P7 input                                   | P7IN      | 0x0038 |
| Port P6              | Port P6 resistor enable                         | P6REN     | 0x0013 |
|                      | Port P6 selection                               | P6SEL     | 0x0037 |
|                      | Port P6 direction                               | P6DIR     | 0x0036 |
|                      | Port P6 output                                  | P6OUT     | 0x0035 |
|                      | Port P6 input                                   | P6IN      | 0x0034 |
| Port P5              | Port P5 resistor enable                         | P5REN     | 0x0012 |
| <del>.</del>         | Port P5 selection                               | P5SEL     | 0x0033 |
|                      | Port P5 direction                               | P5DIR     | 0x0033 |
|                      | Port P5 output                                  | P5OUT     | 0x0032 |
|                      | Port P5 output                                  | P5IN      | 0x0031 |

<sup>† 80-</sup>pin devices only



|                   | PERIPHERAL FILE MAP (CONT     | INUED) |        |
|-------------------|-------------------------------|--------|--------|
| Port P4           | Port P4 selection             | P4SEL  | 0x001F |
|                   | Port P4 resistor enable       | P4REN  | 0x0011 |
|                   | Port P4 direction             | P4DIR  | 0x001E |
|                   | Port P4 output                | P4OUT  | 0x001D |
|                   | Port P4 input                 | P4IN   | 0x001C |
| Port P3           | Port P3 resistor enable       | P3REN  | 0x0010 |
|                   | Port P3 selection             | P3SEL  | 0x001B |
|                   | Port P3 direction             | P3DIR  | 0x001A |
|                   | Port P3 output                | P3OUT  | 0x0019 |
|                   | Port P3 input                 | P3IN   | 0x0018 |
| Port P2           | Port P2 resistor enable       | P2REN  | 0x002F |
|                   | Port P2 selection             | P2SEL  | 0x002E |
|                   | Port P2 interrupt enable      | P2IE   | 0x002D |
|                   | Port P2 interrupt-edge select | P2IES  | 0x002C |
|                   | Port P2 interrupt flag        | P2IFG  | 0x002B |
|                   | Port P2 direction             | P2DIR  | 0x002A |
|                   | Port P2 output                | P2OUT  | 0x0029 |
|                   | Port P2 input                 | P2IN   | 0x0028 |
| Port P1           | Port P1 resistor enable       | P1REN  | 0x0027 |
|                   | Port P1 selection             | P1SEL  | 0x0026 |
|                   | Port P1 interrupt enable      | P1IE   | 0x0025 |
|                   | Port P1 interrupt-edge select | P1IES  | 0x0024 |
|                   | Port P1 interrupt flag        | P1IFG  | 0x0023 |
|                   | Port P1 direction             | P1DIR  | 0x0022 |
|                   | Port P1 output                | P1OUT  | 0x0021 |
|                   | Port P1 input                 | P1IN   | 0x0020 |
| Special Functions | SFR interrupt flag2           | IFG2   | 0x0003 |
|                   | SFR interrupt flag1           | IFG1   | 0x0002 |
|                   | SFR interrupt enable2         | IE2    | 0x0001 |
|                   | SFR interrupt enable1         | IE1    | 0x0000 |



# absolute maximum ratings (see Note 1)

| Voltage applied at $V_{CC}$ to $V_{SS}$ | 0.3 V to 4.1 V                       |
|-----------------------------------------|--------------------------------------|
| Voltage applied to any pin (see Note    | 2) -0.3 V to V <sub>CC</sub> + 0.3 V |
| Diode current at any device terminal    |                                      |
| Storage temperature: Unprogramme        | ed device (see Note 3)               |
| Programmed of                           | device (see Note 3)40°C to 105°C     |

NOTES: 1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2. All voltages referenced to V<sub>SS</sub>. The JTAG fuse-blow voltage, V<sub>FB</sub>, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse.
- 3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification, with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

#### recommended operating conditions

| PARAMETER                                                                                          | MIN                                                                | MAX | UNIT |     |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----|------|-----|
| Supply voltage during program execution, V <sub>CC</sub>                                           | AV <sub>CC</sub> = DV <sub>CC</sub> = V <sub>CC</sub> (see Note 1) | 1.8 | 3.6  | V   |
| Supply voltage during flash memory programming, V <sub>CC</sub>                                    | AV <sub>CC</sub> = DV <sub>CC</sub> = V <sub>CC</sub> (see Note 1) | 2.2 | 3.6  | V   |
| Supply voltage, V <sub>SS</sub>                                                                    | $AV_{SS} = DV_{SS} = V_{SS}$                                       | 0.0 | 0.0  | V   |
| Operating free-air temperature, T <sub>A</sub>                                                     | I version                                                          | -40 |      | 20  |
|                                                                                                    | T version                                                          | -40 | 105  | °C  |
|                                                                                                    | V <sub>CC</sub> = 1.8 V,<br>Duty cycle = 50% ± 10%                 | dc  | 4.15 |     |
| Processor frequency f <sub>SYSYTEM</sub> (maximum MCLK frequency) (see Notes 2 and 3 and Figure 1) | V <sub>CC</sub> = 2.7 V,<br>Duty cycle = 50% ± 10%                 | dc  | 12   | MHz |
|                                                                                                    | V <sub>CC</sub> ≥ 3.3 V,<br>Duty cycle = 50% ± 10%                 | dc  | 16   |     |

- NOTES: 1. It is recommended to power AV<sub>CC</sub> and DV<sub>CC</sub> from the same source. A maximum difference of 0.3 V between AV<sub>CC</sub> and DV<sub>CC</sub> can be tolerated during power-up.
  - The MSP430 CPU is clocked directly with MCLK.Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.
  - 3. Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.



NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V<sub>CC</sub> of 2.2 V.

Figure 1. Operating Area



SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

# active mode supply current into V<sub>CC</sub> excluding external current (see Notes 1 and 2)

| PA                     | RAMETER                                                                                                                                                                                 | TEST CONDITIONS                                                                                                                                 | T <sub>A</sub> | VCC   | MIN | TYP | MAX | UNIT |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|-----|-----|-----|------|
|                        |                                                                                                                                                                                         | f <sub>DCO</sub> = f <sub>MCLK</sub> = f <sub>SMCLK</sub> = 1 MHz,<br>f <sub>ACLK</sub> = 32,768 Hz,                                            | -40°C to 85°C  | 2.2 V |     | 365 | 395 |      |
|                        | Active mode (AM)                                                                                                                                                                        | Program executes from flash, BCSCTL1 = CALBC1 1MHZ,                                                                                             | 105°C          | 2.2 V |     | 375 | 420 | uΑ   |
| IAM, 1MHz              | current (1 MHz)                                                                                                                                                                         | DCOCTL = CALDCO_1MHZ,                                                                                                                           | -40°C to 85°C  | 3 V   |     | 515 | 560 | μΑ   |
|                        |                                                                                                                                                                                         | CPUOFF = 0, SCG0 = 0, SCG1 = 0,<br>OSCOFF = 0                                                                                                   | 105°C          | 3 V   |     | 525 | 595 |      |
|                        |                                                                                                                                                                                         | f <sub>DCO</sub> = f <sub>MCLK</sub> = f <sub>SMCLK</sub> = 1 MHz,                                                                              | -40°C to 85°C  | 2.2 V |     | 330 | 370 |      |
|                        | Active mode (AM)                                                                                                                                                                        | f <sub>ACLK</sub> = 32,768 Hz, Program executes in RAM, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 | 105°C          | 2.2 V |     | 340 | 390 | uΑ   |
| I I A A A A A A A I I  | current (1 MHz)                                                                                                                                                                         |                                                                                                                                                 | -40°C to 85°C  | 0.1/  |     | 460 | 495 | μΑ   |
|                        |                                                                                                                                                                                         |                                                                                                                                                 | 105°C          | 3 V   |     | 470 | 520 |      |
|                        | $f_{MCLK} = f_{SMCLK} = f_{ACLK} = 32,768 \text{ Hz/8} = 4,096 \text{ Hz},$                                                                                                             | -40°C to 85°C                                                                                                                                   | 2.2 V          |       | 2.1 | 9   |     |      |
|                        | Active mode (AM)                                                                                                                                                                        | f <sub>DCO</sub> = 0 Hz,<br>Program executes in flash,                                                                                          | 105°C          | 2.2 V |     | 15  | 31  | μA   |
| I <sub>AM, 4kHz</sub>  | current (4 kHz)                                                                                                                                                                         | SELMx = 11, SELS = 1,<br>DIVMx = DIVSx = DIVAx = 11,                                                                                            | -40°C to 85°C  | 3 V   |     | 3   | 11  | μΑ   |
|                        |                                                                                                                                                                                         | CPUOFF = 0, SCG0 = 1, SCG1 = 0,<br>OSCOFF = 0                                                                                                   | 105°C          | 3 V   |     | 19  | 32  |      |
|                        |                                                                                                                                                                                         | $f_{MCLK} = f_{SMCLK} = f_{DCO(0, 0)} \approx 100 \text{ kHz},$                                                                                 | -40°C to 85°C  | 2.2 V |     | 67  | 86  |      |
|                        | Active mode (AM) current (100 kHz)  Active mode (AM) current (100 kHz)  Active mode (AM) CURRENT OF HZ, Program executes in flash, RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, |                                                                                                                                                 | 105°C          | 2.2 V |     | 80  | 99  | 4    |
| I <sub>AM,100kHz</sub> |                                                                                                                                                                                         | current (100 kHz) RSELx = 0, DCOx = 0,                                                                                                          | -40°C to 85°C  | 3 V   |     | 84  | 107 | μΑ   |
|                        |                                                                                                                                                                                         | OSCOFF = 1                                                                                                                                      | 105°C          | 3 V   |     | 99  | 128 |      |

NOTES: 1. All inputs are tied to 0 V or  $V_{CC}$ . Outputs do not source or sink any current.

<sup>2.</sup> The currents are characterized with a micro crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

typical characteristics - active mode supply current (into DV<sub>CC</sub> + AV<sub>CC</sub>)





Figure 2. Active Mode Current vs  $V_{CC}$ ,  $T_A = 25$ °C

Figure 3. Active Mode Current vs DCO Frequency

# electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

# low-power mode supply current into V<sub>CC</sub> excluding external current (see Notes 1 and 2)

| PARAMETER               |                                  | TEST CONDITIONS                                                                    | T <sub>A</sub> | VCC   | MIN | TYP  | MAX  | UNIT      |
|-------------------------|----------------------------------|------------------------------------------------------------------------------------|----------------|-------|-----|------|------|-----------|
|                         |                                  | f <sub>MCLK</sub> = 0 MHz,                                                         | -40°C to 85°C  |       |     | 68   | 83   |           |
|                         | Low-power mode 0                 | f <sub>SMCLK</sub> = f <sub>DCO</sub> = 1 MHz,<br>f <sub>ACLK</sub> = 32,768 Hz,   | 105°C          | 2.2 V |     | 83   | 98   | μA        |
| ILPM0, 1MHz             | (LPM0) current,<br>see Note 3    | BCSCTL1 = CALBC1_1MHZ,<br>DCOCTL = CALDCO_1MHZ,                                    | -40°C to 85°C  | 234   |     | 87   | 105  | μΑ        |
|                         |                                  | CPUOFF = 1, SCG0 = 0, SCG1 = 0,<br>OSCOFF = 0                                      | 105°C          | 3 V   |     | 100  | 125  |           |
|                         |                                  | f <sub>MCLK</sub> = 0MHz,                                                          | -40°C to 85°C  | 0.01/ |     | 37   | 49   |           |
| I <sub>LPM0</sub> ,     | Low-power mode 0                 | $f_{SMCLK} = f_{DCO(0, 0)} \approx 100 \text{ kHz},$<br>$f_{ACLK} = 0 \text{ Hz},$ | 105°C          | 2.2 V |     | 50   | 62   |           |
| 100kHz                  | (LPM0) current,<br>see Note 3    | RSELx = 0, $DCOx = 0$ ,                                                            | -40°C to 85°C  |       |     | 40   | 55   | μΑ        |
|                         |                                  | CPUOFF = 1, SCG0 = 0, SCG1 = 0,<br>OSCOFF = 1                                      | 105°C          | 3 V   |     | 57   | 73   |           |
|                         |                                  | f <sub>MCLK</sub> = f <sub>SMCLK</sub> = 0 MHz, f <sub>DCO</sub> = 1 MHz,          | -40°C to 85°C  | 2.2 V |     | 23   | 33   |           |
|                         | Low-power mode 2                 | f <sub>ACLK</sub> = 32,768 Hz,<br>BCSCTL1 = CALBC1_1MHZ,                           | 105°C          | 2.2 V |     | 35   | 46   | μΑ        |
| I <sub>LPM2</sub>       | (LPM2) current,<br>see Note 4    | DCOCTL = CALDCO_1MHZ,<br>CPUOFF = 1, SCG0 = 0, SCG1 = 1,                           | -40°C to 85°C  | 3 V   |     | 25   | 36   | μΑ        |
|                         |                                  | OSCOFF = 0                                                                         | 105°C          | 3 V   |     | 40   | 55   |           |
|                         |                                  | de 3 f <sub>DCO</sub> = f <sub>MCLK</sub> = f <sub>SMCLK</sub> = 0 MHz,            | -40°C          |       |     | 8.0  | 1.2  | -<br>- μΑ |
|                         |                                  |                                                                                    | 25°C           | 2.2 V |     | 1    | 1.3  |           |
|                         |                                  |                                                                                    | 85°C           | 2.2 V |     | 4.6  | 7    |           |
| 1                       | Low-power mode 3 (LPM3) current, |                                                                                    | 105°C          |       |     | 14   | 24   |           |
| I <sub>LPM3,LFXT1</sub> | see Note 4                       | CPUOFF = 1, SCG0 = 1, SCG1 = 1,                                                    | -40°C          |       |     | 0.9  | 1.3  | μΑ        |
|                         |                                  | OSCOFF = 0                                                                         | 25°C           | 3 V   |     | 1.1  | 1.5  |           |
|                         |                                  |                                                                                    | 85°C           | 5 V   |     | 5.5  | 8    |           |
|                         |                                  |                                                                                    | 105°C          |       |     | 17   | 30   |           |
|                         |                                  |                                                                                    | -40°C          |       |     | 0.4  | 1.0  |           |
|                         |                                  |                                                                                    | 25°C           | 2.2 V |     | 0.5  | 1.0  |           |
|                         |                                  | f <sub>DCO</sub> = f <sub>MCLK</sub> = f <sub>SMCLK</sub> = 0 MHz,                 | 85°C           | 2.2 V |     | 4.3  | 6.5  | μΑ        |
| 1                       | Low-power mode 3                 | fachk from internal LF oscillator (VLO),                                           | 105°C          |       |     | 14   | 24   |           |
| I <sub>LPM3,VLO</sub>   | (LPM3) current,                  | CPUOFF = 1, SCG0 = 1, SCG1 = 1,                                                    | -40°C          |       |     | 0.6  | 1.2  |           |
|                         | see Note 4                       | OSCOFF = 0                                                                         | 25°C           | 3 V   |     | 0.6  | 1.2  |           |
|                         |                                  |                                                                                    | 85°C           | υν    |     | 5    | 7.5  |           |
|                         |                                  |                                                                                    | 105°C          |       |     | 16.5 | 29.5 |           |

NOTES: 1. All inputs are tied to 0 V or  $V_{CC}$ . Outputs do not source or sink any current.

- 3. Current for Brownout and WDT+ is included. The WDT+ is clocked by SMCLK.
- 4. Current for Brownout and WDT+ is included. The WDT+ is clocked by ACLK.



<sup>2.</sup> The currents are characterized with a micro crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

# low-power mode supply current into V<sub>CC</sub> excluding external current (see Notes 1 and 2) (continued)

|                                | PARAMETER                                   | TEST CONDITIONS                        | T <sub>A</sub> | VCC | MIN | TYP | MAX | UNIT |
|--------------------------------|---------------------------------------------|----------------------------------------|----------------|-----|-----|-----|-----|------|
| Low-power mode (LPM4) current, | I ow-nower mode 4                           | fDCO = fMCLK = fSMCLK = 0 MHz,         | -40°C          |     |     | 0.1 | 0.5 |      |
|                                | •                                           | DOG MIGER SMOER                        | 25°C           |     |     | 0.1 | 0.5 |      |
| ILPM4                          | see Note 3 CPUOFF = 1, SCG0 = 1, SCG1 = 1,  | 85°C                                   | 2.2 V          |     | 4   | 6   | μΑ  |      |
|                                |                                             | OSCOFF = 1                             | 105°C          |     |     | 13  | 23  |      |
|                                | Low-nower mode 4                            | Note 3 CPUOFF = 1, SCG0 = 1, SCG1 = 1, | -40°C          |     |     | 0.2 | 0.5 |      |
| 1.                             | (LPM4) current, $f_{ACLK} = 0 \text{ Hz}$ , |                                        | 25°C           | 21/ |     | 0.2 | 0.5 |      |
| I <sub>LPM4</sub>              | see Note 3                                  |                                        | 85°C           | 3 V |     | 4.7 | 7   | μΑ   |
|                                |                                             | OSCOFF = 1                             | 105°C          |     |     | 14  | 24  |      |

NOTES: 1. All inputs are tied to 0 V or V<sub>CC</sub>. Outputs do not source or sink any current.

- 2. The currents are characterized with a micro crystal CC4V-T1A SMD crystal with a load capacitance of 9 pf. The internal and external load capacitance is chosen to closely match the required 9 pf.
- 3. Current for Brownout included.

#### typical characteristics - LPM4 current



Figure 4. I<sub>LPM4</sub> - LPM4 Current vs Temperature

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

# Schmitt-trigger inputs - ports P1 through P8, RST/NMI, JTAG, XIN, and XT2IN (see Note 4)

|                     | PARAMETER                                                       | TEST CONDITIONS                                                                            | VCC   | MIN                  | TYP MAX             | UNIT |
|---------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------|----------------------|---------------------|------|
|                     | Positive-going input threshold voltage                          |                                                                                            |       | 0.45 V <sub>CC</sub> | 0.75 V <sub>C</sub> | ;    |
| V <sub>IT+</sub> Po |                                                                 |                                                                                            | 2.2 V | 1.0                  | 1.6                 | 5 V  |
|                     |                                                                 |                                                                                            | 3 V   | 1.35                 | 2.2                 | 5    |
| V <sub>IT-</sub>    | Negative-going input threshold voltage                          |                                                                                            |       | 0.25 V <sub>CC</sub> | 0.55 V <sub>C</sub> | ;    |
|                     |                                                                 |                                                                                            | 2.2 V | 0.55                 | 1.3                 | 2 V  |
|                     |                                                                 |                                                                                            | 3 V   | 0.75                 | 1.6                 | 5    |
| V                   | Input voltage bystoreeig (/ V )                                 |                                                                                            | 2.2 V | 0.2                  | 1.                  | ) /  |
| $V_{hys}$           | Input voltage hysteresis (V <sub>IT+</sub> - V <sub>IT-</sub> ) |                                                                                            | 3 V   | 0.3                  | 1.9                 |      |
| R <sub>Pull</sub>   | Pullup/pulldown resistor                                        | Pullup: V <sub>IN</sub> = V <sub>SS</sub> ,<br>Pulldown: V <sub>IN</sub> = V <sub>CC</sub> |       | 20                   | 35 5                | kΩ   |
| CI                  | Input capacitance                                               | $V_{IN} = V_{SS}$ or $V_{CC}$                                                              |       |                      | 5                   | pF   |

NOTE 4: XIN and XT2IN in bypass mode only.

#### inputs - ports P1 and P2

| PARAMETER TEST CONDITIONS |                           | VCC                                                                                          | MIN       | MAX | UNIT |    |
|---------------------------|---------------------------|----------------------------------------------------------------------------------------------|-----------|-----|------|----|
| t <sub>int</sub>          | External interrupt timing | Port P1, P2: P1.x to P2.x, external trigger pulse width to set the interrupt flag (see Note) | 2.2 V/3 V | 20  |      | ns |

NOTE: The external signal sets the interrupt flag every time the minimum  $t_{(int)}$  parameters are met. It may be set even with trigger signals shorter than  $t_{(int)}$ .

#### leakage current - ports P1 through P8 (see Note 1 and 2)

| PARAMETER               |                                | TEST CONDITIONS   | VCC       | MIN MAX | UNIT |
|-------------------------|--------------------------------|-------------------|-----------|---------|------|
| I <sub>lkg (Px.x)</sub> | High-impedance leakage current | see Notes 1 and 2 | 2.2 V/3 V | ±50     | nA   |

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

2. The leakage of digital port pins is measured individually. The port pin is selected for input and the pull-up/pull-down resistor is disabled..

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### standard inputs - RST/NMI

|          | PARAMETER                | TEST CONDITIONS | VCC       | MIN                 | MAX                  | UNIT |
|----------|--------------------------|-----------------|-----------|---------------------|----------------------|------|
| $V_{IL}$ | Low-level input voltage  |                 | 2.2 V/3 V | $V_{SS}$            | V <sub>SS</sub> +0.6 | ٧    |
| $V_{IH}$ | High-level input voltage |                 | 2.2 V/3 V | 0.8×V <sub>CC</sub> | $V_{CC}$             | V    |

#### outputs - ports P1 through P8

|                                           | PARAMETER                                   | TEST CONDITIONS                             | VCC                   | MIN                   | MAX                   | UNIT |
|-------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------|-----------------------|-----------------------|------|
|                                           |                                             | I <sub>OH(max)</sub> = -1.5 mA (see Note 2) | 2.2 V                 | V <sub>CC</sub> -0.25 | $V_{CC}$              |      |
| V <sub>OH</sub> High-level output voltage | I <sub>OH(max)</sub> = -6 mA (see Note 2)   | 2.2 V                                       | V <sub>CC</sub> -0.6  | $V_{CC}$              | v                     |      |
|                                           | I <sub>OH(max)</sub> = -1.5 mA (see Note 2) | 0.1/                                        | V <sub>CC</sub> -0.25 | $V_{CC}$              | V                     |      |
|                                           |                                             | I <sub>OH(max)</sub> = -6 mA (see Note 2)   | 3 V                   | V <sub>CC</sub> -0.6  | $V_{CC}$              |      |
|                                           |                                             | I <sub>OL(max)</sub> = 1.5 mA (see Note 2)  | 001/                  | $V_{SS}$              | V <sub>SS</sub> +0.25 |      |
| \ <u>,</u>                                | Low level output voltage                    | I <sub>OL(max)</sub> = 6 mA (see Note 2)    | 2.2 V                 | $V_{SS}$              | V <sub>SS</sub> +0.6  | V    |
| V <sub>OL</sub>                           |                                             | I <sub>OL(max)</sub> = 1.5 mA (see Note 2)  | 3 V                   | $V_{SS}$              | V <sub>SS</sub> +0.25 | V    |
|                                           |                                             | I <sub>OL(max)</sub> = 6 mA (see Note 2)    | 3 V                   | $V_{SS}$              | V <sub>SS</sub> +0.6  |      |

NOTES: 1. The maximum total current, I<sub>OH(max)</sub> and I<sub>OL(max)</sub>, for all outputs combined, should not exceed ±12 mA to satisfy the maximum voltage drop specified.

2. The maximum total current, I<sub>OH(max)</sub> and I<sub>OL(max)</sub>, for all outputs combined, should not exceed ±48 mA to satisfy the maximum voltage drop specified.

#### output frequency - ports P1 through P8

|                    | PARAMETER                  | TEST CONDITIONS                                   | vcc   | MIN         | TYP | MAX         | UNIT   |
|--------------------|----------------------------|---------------------------------------------------|-------|-------------|-----|-------------|--------|
| ,                  | Port output frequency      | P1.4/SMCLK, $C_L$ = 20 pF, $R_L$ = 1 k $\Omega$   | 2.2 V | DC          |     | 10          |        |
| f <sub>Px.y</sub>  | with load                  | (see Notes 1 and 2)                               | 3.0 V | DC          |     | 12          | MHz    |
|                    | Olaska arterit francisca   | P2.0/ACLK/CA2, P1.4/SMCLK, C <sub>L</sub> = 20 pF | 2.2 V | DC          |     | 12          | NAL 1- |
| †Port_CLK          | CLK Clock output frequency | (see Note 2)                                      | 3.3 V | DC          |     | 16          | MHz    |
|                    |                            | P5.6/ACLK, C <sub>L</sub> = 20 pF, LF mode        |       | 30          | 50  | 70          |        |
|                    |                            | P5.6/ACLK, C <sub>L</sub> = 20 pF, XT1 mode       |       | 40          | 50  | 60          | %      |
|                    | Duty cycle of output       | P5.4/MCLK, C <sub>L</sub> = 20 pF, XT1 mode       |       | 40          |     | 60          |        |
| t <sub>(Xdc)</sub> | frequency                  | P5.4/MCLK, C <sub>L</sub> = 20 pF, DCO            |       | 50% - 15 ns | 50% | 50% + 15 ns |        |
|                    |                            | P1.4/SMCLK, C <sub>L</sub> = 20 pF, XT2 mode      |       | 40          |     | 60          | %      |
|                    |                            | P1.4/SMCLK, C <sub>L</sub> = 20 pF, DCO           |       | 50% - 15 ns |     | 50% + 15 ns |        |

NOTES: 1. A resistive divider with 2 times 0.5 k $\Omega$  between  $V_{CC}$  and  $V_{SS}$  is used as load. The output is connected to the center tap of the divider.

2. The output voltage reaches at least 10% and 90%  $V_{CC}$  at the specified toggle frequency.



electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - outputs





TYPICAL HIGH-LEVEL OUTPUT CURRENT vs
HIGH-LEVEL OUTPUT VOLTAGE

Figure 5



# TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE of one pin



# TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE of one pin



#### POR/brownout reset (BOR) (see Notes 1 and 2)

|                         | PARAMETER                                              | TEST CONDITIONS                  | VCC         | MIN | TYP     | MAX                  | UNIT |
|-------------------------|--------------------------------------------------------|----------------------------------|-------------|-----|---------|----------------------|------|
| V <sub>CC(start)</sub>  | operating voltage                                      | $\mathrm{dV_{CC}/dt} \leq$ 3 V/s |             |     | 0.7 × \ | / <sub>(B_IT-)</sub> | V    |
| V <sub>(B_IT-)</sub>    | negative going V <sub>CC</sub> reset threshold voltage | $\mathrm{dV_{CC}/dt} \leq$ 3 V/s |             |     |         | 1.71                 | V    |
| V <sub>hys(B_IT-)</sub> | V <sub>CC</sub> reset threshold hysteresis             | $\mathrm{dV_{CC}/dt} \leq$ 3 V/s |             | 70  | 130     | 210                  | mV   |
| t <sub>d(BOR)</sub>     | BOR reset release delay time                           |                                  |             |     |         | 2000                 | μs   |
| t <sub>reset</sub>      | Pulse length at RST/NMI pin to accept a reset          |                                  | 2.2 V / 3 V | 2   |         |                      | μS   |

- NOTES: 1. The current consumption of the brownout module is included in the  $I_{CC}$  current consumption data. The voltage level  $V_{(B\_IT-)} + V_{hys(B\_IT-)}$  is  $\leq 1.8 \text{ V}$ .
  - During power up, the CPU begins code execution following a period of t<sub>d(BOR)</sub> after V<sub>CC</sub> = V<sub>(B\_IT-)</sub> + V<sub>hys(B\_IT-)</sub>. The default DCO settings must not be changed until V<sub>CC</sub> ≥ V<sub>CC(MIN)</sub>, where V<sub>CC(min)</sub> is the minimum supply voltage for the desired operating frequency.



Figure 9. POR/Brownout Reset (BOR) vs Supply Voltage

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - POR/brownout reset (BOR)



Figure 10. V<sub>CC(drop)</sub> Level With a Square Voltage Drop to Generate a POR/Brownout Signal



Figure 11. V<sub>CC(drop)</sub> Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal

### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### SVS (supply voltage supervisor/monitor)

| PARAMETER                                                 | TEST CONDITIONS                                                                              |               | MIN                            | TYP  | MAX                                                                | UNIT |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|--------------------------------|------|--------------------------------------------------------------------|------|
|                                                           | dV <sub>CC</sub> /dt > 30 V/ms (see Figure 12)                                               |               | 5                              |      | 150                                                                |      |
| t(SVSR)                                                   | dV <sub>CC</sub> /dt ≤ 30 V/ms                                                               |               |                                |      | 2000                                                               | μs   |
| t <sub>d(SVSon)</sub>                                     | SVSON, switch from VLD = 0 to VLD ≠ 0, V <sub>CC</sub> = 3 V                                 |               | 20                             |      | 150                                                                | μs   |
| t <sub>settle</sub>                                       | VLD ≠ 0 <sup>‡</sup>                                                                         |               |                                |      | 12                                                                 | μS   |
| V <sub>(SVSstart)</sub>                                   | VLD ≠ 0, V <sub>CC</sub> /dt ≤ 3 V/s (see Figure 12)                                         |               |                                | 1.55 | 1.7                                                                | V    |
| ,                                                         |                                                                                              | VLD = 1       | 70                             | 120  | 210                                                                | mV   |
| V <sub>hvs(SVS IT-)</sub>                                 | V <sub>CC</sub> /dt ≤ 3 V/s (see Figure 12)                                                  | VLD = 2 to 14 | V <sub>(SVS_IT-)</sub> × 0.004 |      | V <sub>(SVS_IT-)</sub> × 0.016                                     | ٧    |
| ·,-(- · - <u>-</u> .· · ,                                 | $V_{CC}/dt \le 3 \text{ V/s}$ (see Figure 12), External voltage applied on A7                | VLD = 15      | 4.4                            |      | 20                                                                 | mV   |
|                                                           |                                                                                              | VLD = 1       | 1.8                            | 1.9  | 2.05                                                               |      |
|                                                           |                                                                                              | VLD = 2       | 1.94                           | 2.1  | 2.25                                                               |      |
|                                                           |                                                                                              | VLD = 3       | 2.05                           | 2.2  | 2.37                                                               |      |
|                                                           |                                                                                              | VLD = 4       | 2.14                           | 2.3  | 2.48                                                               |      |
|                                                           |                                                                                              | VLD = 5       | 2.24                           | 2.4  | 2.6                                                                |      |
|                                                           |                                                                                              | VLD = 6       | 2.33                           | 2.5  | 2.71                                                               |      |
|                                                           | V <sub>CC</sub> /dt ≤ 3 V/s (see Figure 12 and Figure 13)                                    | VLD = 7       | 2.46                           | 2.65 | 2.86                                                               |      |
| V <sub>hys(SVS_IT-)</sub> V <sub>CC</sub> /dt ≤ 3 \ on A7 | VCC/dt ≤ 3 V/s (see i igule 12 and i igule 13)                                               | VLD = 8       | 2.58                           | 2.8  | 3                                                                  | V    |
| v (SVS_II-)                                               |                                                                                              | VLD = 9       | 2.69                           | 2.9  | 12 1.7 210 V(SVS_IT-) × 0.016 20 2.05 2.25 2.37 2.48 2.6 2.71 2.86 | · •  |
|                                                           |                                                                                              | VLD = 10      | 2.83                           | 3.05 | 3.29                                                               |      |
|                                                           |                                                                                              | VLD = 11      | 2.94                           | 3.2  | 3.42                                                               |      |
|                                                           |                                                                                              | VLD = 12      | 3.11                           | 3.35 | 3.61 <sup>†</sup>                                                  |      |
|                                                           |                                                                                              | VLD = 13      | 3.24                           | 3.5  | 3.76 <sup>†</sup>                                                  |      |
|                                                           |                                                                                              | VLD = 14      | 3.43                           | 3.7† | 3.99†                                                              |      |
|                                                           | V <sub>CC</sub> /dt ≤ 3 V/s (see Figure 12 and Figure 13),<br>External voltage applied on A7 | VLD = 15      | 1.1                            | 1.2  | 1.3                                                                |      |
| I <sub>CC(SVS)</sub><br>(see Note 1)                      | VLD ≠ 0, V <sub>CC</sub> = 2.2 V/3 V                                                         |               |                                | 10   | 15                                                                 | μΑ   |

 $<sup>^{\</sup>dagger}$  The recommended operating voltage range is limited to 3.6 V.

NOTE 1: The current consumption of the SVS module is not included in the  $I_{\text{CC}}$  current consumption data.



<sup>&</sup>lt;sup>‡</sup> t<sub>settle</sub> is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV.

#### typical characteristics



Figure 12. SVS Reset (SVSR) vs Supply Voltage



Figure 13. V<sub>CC(min)</sub>: Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1)



electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### main DCO characteristics

- All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15.
- DCO control bits DCOx have a step size as defined by parameter S<sub>DCO</sub>.
- Modulation control bits MODx select how often f<sub>DCO(RSEL,DCO+1)</sub> is used within the period of 32 DCOCLK cycles. The frequency f<sub>DCO(RSEL,DCO)</sub> is used for the remaining cycles. The frequency is an average equal to:

$$f_{average} = \frac{32 \times f_{DCO(RSEL,DCO)} \times f_{DCO(RSEL,DCO+1)}}{MOD \times f_{DCO(RSEL,DCO)} + (32 - MOD) \times f_{DCO(RSEL,DCO+1)}}$$

#### **DCO frequency**

|                        | PARAMETER                                    | TEST CONDITIONS                                    | VCC       | MIN  | TYP  | MAX  | UNIT  |
|------------------------|----------------------------------------------|----------------------------------------------------|-----------|------|------|------|-------|
|                        |                                              | RSELx < 14                                         |           | 1.8  |      | 3.6  |       |
| Vcc                    | Supply voltage range                         | RSELx = 14                                         |           | 2.2  |      | 3.6  | ٧     |
|                        |                                              | RSELx = 15                                         | 1         | 3.0  |      | 3.6  |       |
| f <sub>DCO(0,0)</sub>  | DCO frequency (0, 0)                         | RSELx = 0, $DCOx = 0$ , $MODx = 0$                 | 2.2 V/3 V | 0.06 |      | 0.14 | MHz   |
| f <sub>DCO(0,3)</sub>  | DCO frequency (0, 3)                         | RSELx = 0, $DCOx = 3$ , $MODx = 0$                 | 2.2 V/3 V | 0.07 |      | 0.17 | MHz   |
| f <sub>DCO(1,3)</sub>  | DCO frequency (1, 3)                         | RSELx = 1, $DCOx = 3$ , $MODx = 0$                 | 2.2 V/3 V | 0.10 |      | 0.20 | MHz   |
| f <sub>DCO(2,3)</sub>  | DCO frequency (2, 3)                         | RSELx = 2, $DCOx = 3$ , $MODx = 0$                 | 2.2 V/3 V | 0.14 |      | 0.28 | MHz   |
| f <sub>DCO(3,3)</sub>  | DCO frequency (3, 3)                         | RSELx = 3, $DCOx = 3$ , $MODx = 0$                 | 2.2 V/3 V | 0.20 |      | 0.40 | MHz   |
| f <sub>DCO(4,3)</sub>  | DCO frequency (4, 3)                         | RSELx = 4, $DCOx = 3$ , $MODx = 0$                 | 2.2 V/3 V | 0.28 |      | 0.54 | MHz   |
| f <sub>DCO(5,3)</sub>  | DCO frequency (5, 3)                         | RSELx = 5, $DCOx = 3$ , $MODx = 0$                 | 2.2 V/3 V | 0.39 |      | 0.77 | MHz   |
| f <sub>DCO(6,3)</sub>  | DCO frequency (6, 3)                         | RSELx = 6, DCOx = 3, MODx = 0                      | 2.2 V/3 V | 0.54 |      | 1.06 | MHz   |
| f <sub>DCO(7,3)</sub>  | DCO frequency (7, 3)                         | RSELx = 7, DCOx = 3, MODx = 0                      | 2.2 V/3 V | 0.80 |      | 1.50 | MHz   |
| f <sub>DCO(8,3)</sub>  | DCO frequency (8, 3)                         | RSELx = 8, DCOx = 3, MODx = 0                      | 2.2 V/3 V | 1.10 |      | 2.10 | MHz   |
| f <sub>DCO(9,3)</sub>  | DCO frequency (9, 3)                         | RSELx = 9, $DCOx = 3$ , $MODx = 0$                 | 2.2 V/3 V | 1.60 |      | 3.00 | MHz   |
| f <sub>DCO(10,3)</sub> | DCO frequency (10, 3)                        | RSELx = 10, $DCOx = 3$ , $MODx = 0$                | 2.2 V/3 V | 2.50 |      | 4.30 | MHz   |
| f <sub>DCO(11,3)</sub> | DCO frequency (11, 3)                        | RSELx = 11, $DCOx = 3$ , $MODx = 0$                | 2.2 V/3 V | 3.00 |      | 5.50 | MHz   |
| f <sub>DCO(12,3)</sub> | DCO frequency (12, 3)                        | RSELx = 12, $DCOx = 3$ , $MODx = 0$                | 2.2 V/3 V | 4.30 |      | 7.30 | MHz   |
| f <sub>DCO(13,3)</sub> | DCO frequency (13, 3)                        | RSELx = 13, DCOx = 3, MODx = 0                     | 2.2 V/3 V | 6.00 |      | 9.60 | MHz   |
| f <sub>DCO(14,3)</sub> | DCO frequency (14, 3)                        | RSELx = 14, DCOx = 3, MODx = 0                     | 2.2 V/3 V | 8.60 |      | 13.9 | MHz   |
| f <sub>DCO(15,3)</sub> | DCO frequency (15, 3)                        | RSELx = 15, DCOx = 3, MODx = 0                     | 3 V       | 12.0 |      | 18.5 | MHz   |
| f <sub>DCO(15,7)</sub> | DCO frequency (15, 7)                        | RSELx = 15, DCOx = 7, MODx = 0                     | 3 V       | 16.0 |      | 26.0 | MHz   |
| S <sub>RSEL</sub>      | Frequency step between range RSEL and RSEL+1 | $S_{RSEL} = f_{DCO(RSEL+1,DCO)}/f_{DCO(RSEL,DCO)}$ | 2.2 V/3 V |      |      | 1.55 | ratio |
| S <sub>DCO</sub>       | Frequency step between tap DCO and DCO+1     | $S_{DCO} = f_{DCO(RSEL,DCO+1)}/f_{DCO(RSEL,DCO)}$  | 2.2 V/3 V | 1.05 | 1.08 | 1.12 | ratio |
| Duty cycle             |                                              | Measured at P1.4/SMCLK                             | 2.2 V/3 V | 40   | 50   | 60   | %     |

#### MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### calibrated DCO frequencies - tolerance at calibration

|                         | PARAMETER                | TEST CONDITIONS                                                        | TA   | VCC | MIN   | TYP  | MAX   | UNIT |
|-------------------------|--------------------------|------------------------------------------------------------------------|------|-----|-------|------|-------|------|
| Frequency to            | olerance at calibration  |                                                                        | 25°C | 3 V | -1    | ±0.2 | +1    | %    |
| fCAL(1MHz)              | 1-MHz calibration value  | BCSCTL1 = CALBC1_1MHz,<br>DCOCTL = CALDCO_1MHz,<br>Gating time: 5 ms   | 25°C | 3 V | 0.990 | 1    | 1.010 | MHz  |
| fCAL(8MHz)              | 8-MHz calibration value  | BCSCTL1 = CALBC1_8MHz,<br>DCOCTL = CALDCO_8MHz,<br>Gating time: 5ms    | 25°C | 3 V | 7.920 | 8    | 8.080 | MHz  |
| f <sub>CAL(12MHz)</sub> | 12-MHz calibration value | BCSCTL1 = CALBC1_12MHz,<br>DCOCTL = CALDCO_12MHz,<br>Gating time: 5ms  | 25°C | 3 V | 11.88 | 12   | 12.12 | MHz  |
| f <sub>CAL(16MHz)</sub> | 16-MHz calibration value | BCSCTL1 = CALBC1_16MHz,<br>DCOCTL = CALDCO_16MHz,<br>Gating time: 2 ms | 25°C | 3 V | 15.84 | 16   | 16.16 | MHz  |

#### calibrated DCO frequencies - tolerance over temperature 0°C to 85°C

|                         | PARAMETER                | TEST CONDITIONS                                   | T <sub>A</sub> | VCC   | MIN   | TYP  | MAX   | UNIT   |
|-------------------------|--------------------------|---------------------------------------------------|----------------|-------|-------|------|-------|--------|
| 1-MHz tolera            | ance over temperature    |                                                   | 0°C to 85°C    | 3 V   | -2.5  | ±0.5 | +2.5  | %      |
| 8-MHz tolera            | ance over temperature    |                                                   | 0°C to 85°C    | 3 V   | -2.5  | ±1.0 | +2.5  | %      |
| 12-MHz tole             | rance over temperature   |                                                   | 0°C to 85°C    | 3 V   | -2.5  | ±1.0 | +2.5  | %      |
| 16-MHz tole             | rance over temperature   |                                                   | 0°C to 85°C    | 3 V   | -3.0  | ±2.0 | +3.0  | %      |
|                         |                          | BCSCTL1 = CALBC1_1MHz,                            |                | 2.2 V | 0.970 | 1    | 1.030 |        |
| f <sub>CAL(1MHz)</sub>  | 1-MHz calibration value  | DCOCTL = CALDCO_1MHz,                             | 0°C to 85°C    | 3 V   | 0.975 | 1    | 1.025 | MHz    |
| , <b>.</b>              |                          | Gating time: 5ms                                  |                | 3.6 V | 0.970 | 1    | 1.030 |        |
|                         |                          | BCSCTL1 = CALBC1_8MHz,                            |                | 2.2 V | 7.760 | 8    | 8.400 |        |
| f <sub>CAL(8MHz)</sub>  | 8-MHz calibration value  | DCOCTL = CALDCO_8MHz,                             | 0°C to 85°C    | 3 V   | 7.800 | 8    | 8.200 | MHz    |
|                         |                          | Gating time: 5 ms                                 |                | 3.6 V | 7.600 | 8    | 8.240 |        |
|                         |                          | BCSCTL1 = CALBC1 12MHz,                           |                | 2.2 V | 11.64 | 12   | 12.36 |        |
| f <sub>CAL(12MHz)</sub> | 12-MHz calibration value | DCOCTL = CALDCO_12MHz,                            | 0°C to 85°C    | 3 V   | 11.64 | 12   | 12.36 | MHz    |
| 5. IL( . LIVII IL)      |                          | Gating time: 5 ms                                 |                | 3.6 V | 11.64 | 12   | 12.36 | 1      |
| £                       | 10 MHz calibration value | BCSCTL1 = CALBC1_16MHz,<br>DCOCTL = CALDCO_16MHz, | 0°C to 05°C    | 3 V   | 15.52 | 16   | 16.48 | NAL 1- |
| <sup>†</sup> CAL(16MHz) | 16-MHz calibration value | Gating time: 2 ms                                 | 0°C to 85°C    | 3.6 V | 15.00 | 16   | 16.48 | MHz    |

# MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

# electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### calibrated DCO frequencies - tolerance over supply voltage $V_{\text{CC}}$

| PARAMETER                                        | TEST CONDITIONS                                                        | T <sub>A</sub> | vcc            | MIN   | TYP | MAX   | UNIT |
|--------------------------------------------------|------------------------------------------------------------------------|----------------|----------------|-------|-----|-------|------|
| 1-MHz tolerance over V <sub>CC</sub>             |                                                                        | 25°C           | 1.8 V to 3.6 V | -3    | ±2  | +3    | %    |
| 8-MHz tolerance over V <sub>CC</sub>             |                                                                        | 25°C           | 1.8 V to 3.6 V | -3    | ±2  | +3    | %    |
| 12-MHz tolerance over V <sub>CC</sub>            |                                                                        | 25°C           | 2.2 V to 3.6 V | -3    | ±2  | +3    | %    |
| 16-MHz tolerance over V <sub>CC</sub>            |                                                                        | 25°C           | 3.0 V to 3.6 V | -6    | ±2  | +3    | %    |
| f <sub>CAL(1MHz)</sub> 1-MHz calibration value   | BCSCTL1 = CALBC1_1MHz,<br>DCOCTL = CALDCO_1MHz,<br>Gating time: 5 ms   | 25°C           | 1.8 V to 3.6 V | 0.970 | 1   | 1.030 | MHz  |
| f <sub>CAL(8MHz)</sub> 8-MHz calibration value   | BCSCTL1 = CALBC1_8MHz,<br>DCOCTL = CALDCO_8MHz,<br>Gating time: 5 ms   | 25°C           | 1.8 V to 3.6 V | 7.760 | 8   | 8.240 | MHz  |
| f <sub>CAL(12MHz)</sub> 12-MHz calibration value | BCSCTL1 = CALBC1_12MHz,<br>DCOCTL = CALDCO_12MHz,<br>Gating time: 5 ms | 25°C           | 2.2 V to 3.6 V | 11.64 | 12  | 12.36 | MHz  |
| f <sub>CAL(16MHz)</sub> 16-MHz calibration value | BCSCTL1 = CALBC1_16MHz,<br>DCOCTL = CALDCO_16MHz,<br>Gating time: 2 ms | 25°C           | 3.0 V to 3.6 V | 15.00 | 16  | 16.48 | MHz  |

#### calibrated DCO frequencies - overall tolerance

|                         | PARAMETER                | TEST CONDITIONS                                                        | TA             | vcc            | MIN   | TYP | MAX   | UNIT |
|-------------------------|--------------------------|------------------------------------------------------------------------|----------------|----------------|-------|-----|-------|------|
| 1-MHz tolera            | ance overall             |                                                                        | -40°C to 105°C | 1.8 V to 3.6 V | -5    | ±2  | +5    | %    |
| 8-MHz tolera            | ance overall             |                                                                        | -40°C to 105°C | 1.8 V to 3.6 V | -5    | ±2  | +5    | %    |
| 12-MHz tole             | rance overall            |                                                                        | -40°C to 105°C | 2.2 V to 3.6 V | -5    | ±2  | +5    | %    |
| 16-MHz tole             | rance overall            |                                                                        | -40°C to 105°C | 3 V to 3.6 V   | -6    | ±3  | +6    | %    |
| f <sub>CAL(1MHz)</sub>  | 1-MHz calibration value  | BCSCTL1 = CALBC1_1MHz,<br>DCOCTL = CALDCO_1MHz,<br>Gating time: 5ms    | -40°C to 105°C | 1.8 V to 3.6 V | 0.950 | 1   | 1.050 | MHz  |
| f <sub>CAL(8MHz)</sub>  | 8-MHz calibration value  | BCSCTL1 = CALBC1_8MHz,<br>DCOCTL = CALDCO_8MHz,<br>Gating time: 5ms    | -40°C to 105°C | 1.8 V to 3.6 V | 7.600 | 8   | 8.400 | MHz  |
| f <sub>CAL(12MHz)</sub> | 12-MHz calibration value | BCSCTL1 = CALBC1_12MHz,<br>DCOCTL = CALDCO_12MHz,<br>Gating time: 5ms  | -40°C to 105°C | 2.2 V to 3.6 V | 11.40 | 12  | 12.60 | MHz  |
| f <sub>CAL(16MHz)</sub> | 16-MHz calibration value | BCSCTL1 = CALBC1_16MHz,<br>DCOCTL = CALDCO_16MHz,<br>Gating time: 2 ms | -40°C to 105°C | 3 V to 3.6 V   | 15.00 | 16  | 17.00 | MHz  |

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - calibrated 1-MHz DCO frequency



Figure 14. Calibrated 1-MHz Frequency vs V<sub>CC</sub>

#### typical characteristics - calibrated 8-MHz DCO frequency



Figure 15. Calibrated 8-MHz Frequency vs V<sub>CC</sub>



typical characteristics - calibrated 12-MHz DCO frequency



Figure 16. Calibrated 12-MHz Frequency vs V<sub>CC</sub>

#### typical characteristics - calibrated 16-MHz DCO frequency



Figure 17. Calibrated 16-MHz Frequency vs V<sub>CC</sub>

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### wake-up from low-power modes (LPM3/LPM4)

|                         | PARAMETER                                 | TEST CONDITIONS                                 | VCC       | MIN TYP                                            | MAX | UNIT |
|-------------------------|-------------------------------------------|-------------------------------------------------|-----------|----------------------------------------------------|-----|------|
|                         |                                           | BCSCTL1= CALBC1_1MHz,<br>DCOCTL = CALDCO_1MHz   | 2.2 V/3 V |                                                    | 2   |      |
|                         | DCO clock wake-up time from LPM3/4        | BCSCTL1= CALBC1_8MHz,<br>DCOCTL = CALDCO_8MHz   | 2.2 V/3 V |                                                    | 1.5 |      |
| <sup>t</sup> DCO,LPM3/4 | (see Note 1)                              | BCSCTL1= CALBC1_12MHz,<br>DCOCTL = CALDCO_12MHz | 2.2 V/3 V | V                                                  | 1   | μS   |
|                         |                                           | BCSCTL1= CALBC1_16MHz,<br>DCOCTL = CALDCO_16MHz | 3 V       |                                                    | 1   |      |
| t <sub>CPU,LPM3/4</sub> | CPU wake-up time from LPM3/4 (see Note 2) |                                                 |           | 1/f <sub>MCLK</sub> +<br>t <sub>Clock,LPM3/4</sub> | 1   |      |

NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK).

#### typical characteristics - DCO clock wake-up time from LPM3/4



Figure 18. Clock Wake-Up Time From LPM3 vs DCO Frequency

<sup>2.</sup> Parameter applicable only if DCOCLK is used for MCLK.

#### DCO with external resistor R<sub>OSC</sub> (see Note 1)

| PARAMETER                     |                                | TEST CONDITIONS                                                                                 | VCC       | TYP  | UNIT  |
|-------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|-----------|------|-------|
| f DCO output fraguancy with B |                                | DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0, T <sub>A</sub> = 25°C                                  | 2.2 V     | 1.8  | MHz   |
| †DCO,ROSC                     | DCO output frequency with hosc | $\frac{1}{10000} = 1$ , $\frac{1}{100000} = 4$ , $\frac{1}{10000000000000000000000000000000000$ | 3 V       | 1.95 | IVITZ |
| D <sub>t</sub>                | Temperature drift              | DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0                                                         | 2.2 V/3 V | ±0.1 | %/°C  |
| $D_V$                         | Drift with V <sub>CC</sub>     | DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0                                                         | 2.2 V/3 V | 10   | %/V   |

NOTE 1:  $R_{OSC} = 100 \text{ k}\Omega$ . Metal film resistor, type 0257. 0.6 watt with 1% tolerance and  $T_{K} = \pm 50 \text{ppm}/^{\circ}\text{C}$ .

#### typical characteristics - DCO with external resistor R<sub>OSC</sub>



R<sub>OSC</sub> - External Resistor - kOhm Figure 19. DCO Frequency vs R<sub>OSC</sub>,  $V_{CC} = 2.2 \text{ V}, \, \dot{T}_{A} = 25^{\circ}\text{C}$ 



Figure 21. DCO Frequency vs Temperature,  $V_{CC} = 3.0 V$ 



Figure 20. DCO Frequency vs  $R_{OSC}$ ,  $V_{CC}$  = 3.0 V,  $T_A$  = 25°C



Figure 22. DCO Frequency vs  $V_{CC}$ ,  $T_A = 25^{\circ}C$ 

### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### crystal oscillator, LFXT1, low frequency modes (see Note 4)

| F                     | PARAMETER                                                               | TEST CONDITIONS                                                                                                                                                   | vcc            | MIN    | TYP    | MAX    | UNIT |
|-----------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|--------|--------|------|
| f <sub>LFXT1,LF</sub> | LFXT1 oscillator crystal frequency, LF mode 0/1                         | XTS = 0, LFXT1Sx = 0 or 1                                                                                                                                         | 1.8 V to 3.6 V |        | 32,768 |        | Hz   |
| fLFXT1,LF,logic       | LFXT1 oscillator logic<br>level square wave input<br>frequency, LF mode | XTS = 0, LFXT1Sx = 3, XCAPx = 0                                                                                                                                   | 1.8 V to 3.6 V | 10,000 | 32,768 | 50,000 | Hz   |
| OALF                  | Oscillation allowance for LF crystals                                   | $\begin{split} \text{XTS} &= 0,  \text{LFXT1Sx} = 0, \\ \text{f}_{\text{LFXT1,LF}} &= 32,768  \text{kHz}, \\ \text{C}_{\text{L,eff}} &= 6  \text{pF} \end{split}$ |                |        | 500    |        | kΩ   |
|                       | LF Crystais                                                             | XTS = 0, LFXT1Sx = 0;<br>f <sub>LFXT1,LF</sub> = 32,768 kHz, C <sub>L,eff</sub> = 12 pF                                                                           |                |        |        |        |      |
|                       |                                                                         | XTS = 0, XCAPx = 0                                                                                                                                                |                |        | 1      |        |      |
|                       | Integrated effective load                                               | XTS = 0, XCAPx = 1                                                                                                                                                | ]              |        | 5.5    |        | _    |
| $C_{L,eff}$           | capacitance, LF mode (see Note 1)                                       | XTS = 0, XCAPx = 2                                                                                                                                                |                |        | 8.5    |        | pF   |
|                       | (                                                                       | XTS = 0, XCAPx = 3                                                                                                                                                | ]              |        | 11     |        |      |
| Duty cycle            | LF mode                                                                 | XTS = 0, Measured at P1.4/ACLK, f <sub>LFXT1,LF</sub> = 32,768 Hz                                                                                                 | 2.2 V/3 V      | 30     | 50     | 70     | %    |
| f <sub>Fault,LF</sub> | Oscillator fault<br>frequency, LF mode<br>(see Note 3)                  | XTS = 0, LFXT1Sx = 3, XCAPx = 0 (see Note 2)                                                                                                                      | 2.2 V/3 V      | 10     |        | 10,000 | Hz   |

NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).

Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.

- 2. Measured with logic level input frequency but also applies to operation with crystals.
- 3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag.
- 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
  - Keep as short of a trace as possible between the device and the crystal.
  - Design a good ground plane around the oscillator pins.
  - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
  - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
  - Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
  - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
  - Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.
- 5. Applies only if using an external logic-level clock source. Not applicable when using a crystal or resonator.

# MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### internal very low power, low frequency oscillator (VLO)

| F                                   | PARAMETER                          | TEST CONDITIONS  | T <sub>A</sub> | VCC         | MIN | TYP | MAX | UNIT |
|-------------------------------------|------------------------------------|------------------|----------------|-------------|-----|-----|-----|------|
|                                     |                                    |                  | -40°C to 85°C  | 0.034/034   | 4   | 12  | 20  |      |
| t∨LO                                | VLO frequency                      |                  | 105°C          | 2.2 V/3 V   |     |     | 22  | kHz  |
| df <sub>VLO</sub> /dT               | VLO frequency temperature drift    | See Note NO TAG1 |                | 2.2 V/3 V   |     | 0.5 |     | %/°C |
| df <sub>VLO</sub> /dV <sub>CC</sub> | VLO frequency supply voltage drift | See Note 2       | 25°C           | 1.8V - 3.6V |     | 4   |     | %/V  |

NOTES: 1. Calculated using the box method:

I version: (MAX(-40  $^{\circ}$ C to 85  $^{\circ}$ C) - MIN(-40  $^{\circ}$ C to 85  $^{\circ}$ C))/MIN(-40  $^{\circ}$ C to 85  $^{\circ}$ C)/(85  $^{\circ}$ C - (-40  $^{\circ}$ C))

T version: (MAX(-40°C to 105\_C) - MIN(-40°C to 105\_C))/MIN(-40°C to 105\_C)/(105\_C - (-40°C))

2. Calculated using the box method: (MAX(1.8 V to 3.6V) - MIN(1.8V to 3.6V))/MIN(1.8 V to 3.6V)/(3.6 V - 1.8 V)

#### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### crystal oscillator, LFXT1, high frequency modes (see Note 5)

|                        | PARAMETER                                                           | TEST CONDITIONS                                                                                   | vcc            | MIN | TYP  | MAX | UNIT |
|------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------|-----|------|-----|------|
| f <sub>LFXT1,HF0</sub> | LFXT1 oscillator crystal frequency,<br>HF mode 0                    | XTS = 1, LFXT1Sx = 0, XCAPx = 0                                                                   | 1.8 V to 3.6 V | 0.4 |      | 1   | MHz  |
| f <sub>LFXT1,HF1</sub> | LFXT1 oscillator crystal frequency,<br>HF mode 1                    | XTS = 1, LFXT1Sx = 1, XCAPx = 0                                                                   | 1.8 V to 3.6 V | 1   |      | 4   | MHz  |
|                        |                                                                     |                                                                                                   | 1.8 V to 3.6 V | 2   |      | 10  |      |
| f <sub>LFXT1,HF2</sub> | LFXT1 oscillator crystal frequency, HF mode 2                       | XTS = 1, LFXT1Sx = 2, XCAPx = 0                                                                   | 2.2 V to 3.6 V | 2   |      | 12  | MHz  |
|                        | TH Mode 2                                                           |                                                                                                   | 3 V to 3.6 V   | 2   |      | 16  |      |
|                        | LFXT1 oscillator logic level                                        |                                                                                                   | 1.8 V to 3.6 V | 0.4 |      | 10  |      |
| fLFXT1,HF,logic        | square-wave input frequency,                                        | XTS = 1, LFXT1Sx = 3, XCAPx = 0                                                                   | 2.2 V to 3.6 V | 0.4 |      | 12  | MHz  |
|                        | HF mode                                                             |                                                                                                   | 3 V to 3.6 V   | 0.4 |      | 16  |      |
|                        |                                                                     | XTS = 1, XCAPx = 0,<br>LFXT1Sx = 0, f <sub>LFXT1,HF</sub> = 1 MHz,<br>C <sub>L,eff</sub> = 15 pF  |                |     | 2700 |     |      |
| OA <sub>HF</sub>       | Oscillation allowance for HF crystals (see Figure 23 and Figure 24) | XTS = 1, XCAPx = 0,<br>LFXT1Sx = 1, f <sub>LFXT1,HF</sub> = 4 MHz,<br>C <sub>L,eff</sub> = 15 pF  |                |     | 800  |     | Ω    |
|                        |                                                                     | XTS = 1, XCAPx = 0,<br>LFXT1Sx = 2, f <sub>LFXT1,HF</sub> = 16 MHz,<br>C <sub>L,eff</sub> = 15 pF |                |     | 300  |     |      |
| $C_{L,eff}$            | Integrated effective load capacitance, HF mode (see Note 1)         | XTS = 1, XCAPx = 0 (see Note 2)                                                                   |                |     | 1    |     | pF   |
| Dutumala               | UE made                                                             | XTS = 1, XCAPx = 0,<br>Measured at P1.4/ACLK,<br>f <sub>LFXT1,HF</sub> = 10 MHz                   | 2.2 V/3 V      | 40  | 50   | 60  | 0/   |
| Duty cycle             | HF mode                                                             | XTS = 1, XCAPx = 0,<br>Measured at P1.4/ACLK,<br>f <sub>LFXT1,HF</sub> = 16 MHz                   | 2.2 V/3 V      | 40  | 50   | 60  | %    |
| f <sub>Fault,HF</sub>  | Oscillator fault frequency, HF mode (see Note 4)                    | XTS = 1, LFXT1Sx = 3, XCAPx = 0 (see Note 3)                                                      | 2.2 V/3 V      | 30  |      | 300 | kHz  |

- NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).
  - Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.
  - 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
  - 3. Measured with logic level input frequency but also applies to operation with crystals.
  - 4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag.
  - 5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
    - Keep the trace between the device and the crystal as short as possible.
    - Design a good ground plane around the oscillator pins.
    - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
    - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
    - Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
    - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
    - Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.



typical characteristics - LFXT1 oscillator in HF mode (XTS = 1)



Figure 23. Oscillation Allowance vs Crystal Frequency,  $C_{L,eff}$  = 15 pF,  $T_A$  = 25°C



Figure 24. XT Oscillator Supply Current vs Crystal Frequency,  $C_{L,eff}$  = 15 pF,  $T_A$  = 25 $^{\circ}$ C



### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### crystal oscillator, XT2 (see Note 5)

|                    | PARAMETER                                                   | TEST CONDITIONS                                                        | VCC            | MIN | TYP  | MAX | UNIT |
|--------------------|-------------------------------------------------------------|------------------------------------------------------------------------|----------------|-----|------|-----|------|
| f <sub>XT2</sub>   | XT2 oscillator crystal frequency, mode 0                    | XT2Sx = 0                                                              | 1.8 V to 3.6 V | 0.4 |      | 1   | MHz  |
| f <sub>XT2</sub>   | XT2 oscillator crystal frequency,<br>mode 1                 | XT2Sx = 1                                                              | 1.8 V to 3.6 V | 1   |      | 4   | MHz  |
|                    |                                                             |                                                                        | 1.8 V to 3.6 V | 2   |      | 10  |      |
| f <sub>XT2</sub>   | XT2 oscillator crystal frequency, mode 2                    | XT2Sx = 2                                                              | 2.2 V to 3.6 V | 2   |      | 12  | MHz  |
|                    | mode 2                                                      |                                                                        | 3 V to 3.6 V   | 2   |      | 16  |      |
|                    |                                                             |                                                                        | 1.8 V to 3.6 V | 0.4 |      | 10  |      |
| f <sub>XT2</sub>   | XT2 oscillator logic level<br>square-wave input frequency   | XT2Sx = 3                                                              | 2.2 V to 3.6 V | 0.4 |      | 12  | MHz  |
|                    | equate wave input frequency                                 |                                                                        | 3 V to 3.6 V   | 0.4 |      | 16  |      |
|                    |                                                             | XT2Sx = 0, f <sub>XT2</sub> = 1 MHz,<br>C <sub>L,eff</sub> = 15 pF     |                |     | 2700 |     |      |
| OA                 | Oscillation allowance<br>(see Figure 23 and Figure 24)      | XT2Sx = 1, f <sub>XT2</sub> = 4 MHz,<br>C <sub>L,eff</sub> = 15 pF     |                |     | 800  |     | Ω    |
|                    |                                                             | XT2Sx = 2, f <sub>XT1,HF</sub> = 16 MHz,<br>C <sub>L,eff</sub> = 15 pF |                |     | 300  |     |      |
| $C_{L,eff}$        | Integrated effective load capacitance, HF mode (see Note 1) | See Note 2                                                             |                |     | 1    |     | pF   |
| D. I I.            |                                                             | Measured at P1.4/SMCLK,<br>f <sub>XT2</sub> = 10 MHz                   | 0.07//07/      | 40  | 50   | 60  | ٠,   |
| Duty cycle         |                                                             | Measured at P1.4/SMCLK,<br>f <sub>XT2</sub> = 16 MHz                   | 2.2 V/3 V      | 40  | 50   | 60  | %    |
| f <sub>Fault</sub> | Oscillator fault frequency, HF mode (see Note 4)            | XT2Sx = 3, (see Note 3)                                                | 2.2 V/3 V      | 30  |      | 300 | kHz  |

NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).

Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.

- 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- 3. Measured with logic level input frequency but also applies to operation with crystals.
- Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.
- 5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
  - Keep the trace between the device and the crystal as short as possible.
  - Design a good ground plane around the oscillator pins.
  - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
  - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
  - Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
  - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
  - Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.



typical characteristics - XT2 oscillator



Figure 25. Oscillation Allowance vs Crystal Frequency,  $C_{L,eff}$  = 15 pF,  $T_A$  = 25°C



Figure 26. XT2 Oscillator Supply Current vs Crystal Frequency,  $C_{L,eff}$  = 15 pF,  $T_A$  = 25 $^{\circ}$ C



#### MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### Timer\_A

| PARAMETER           |                         | TEST CONDITIONS                               | VCC       | MIN MAX | UNIT   |
|---------------------|-------------------------|-----------------------------------------------|-----------|---------|--------|
| <b>4</b>            | Timer A clock frequency | Internal: SMCLK, ACLK,                        | 2.2 V     | 10      | MHz    |
| f <sub>TA</sub>     | Timer_A clock frequency | External: TACLK, INCLK, Duty cycle = 50% ±10% | 3.3 V     | 16      | IVITIZ |
| t <sub>TA,cap</sub> | Timer_A, capture timing | TA0, TA1, TA2                                 | 2.2 V/3 V | 20      | ns     |

#### Timer\_B

| PARAMETER           |                                                                 | TEST CONDITIONS       | VCC       | MIN MAX | UNIT   |
|---------------------|-----------------------------------------------------------------|-----------------------|-----------|---------|--------|
| £                   | Internal: SMCLK, ACLK, Timer B clock frequency External: TBCLK, |                       | 10        | MHz     |        |
| ТТВ                 | Timer_B clock frequency                                         | Duty cycle = 50% ±10% | 3.3 V     | 16      | IVITIZ |
| t <sub>TB,cap</sub> | Timer_B, capture timing                                         | TB0, TB1, TB2         | 2.2 V/3 V | 20      | ns     |



#### **USCI (UART mode)**

| PARAMETER           |                                                    | TEST CONDITIONS                                                   | VCC        | MIN     | TYP | MAX | UNIT |
|---------------------|----------------------------------------------------|-------------------------------------------------------------------|------------|---------|-----|-----|------|
| f <sub>USCI</sub>   | USCI input clock frequency                         | Internal: SMCLK, ACLK<br>External: UCLK<br>Duty cycle = 50% ± 10% |            | fsysтем |     |     | MHz  |
| f <sub>BITCLK</sub> | BITCLK clock frequency (equals baud rate in MBaud) |                                                                   | 2.2 V /3 V |         |     | 1   | MHz  |
|                     | UART receive deglitch time                         |                                                                   | 2.2 V      | 50      | 150 | 600 | ns   |
| ττ                  | (see Note 1)                                       |                                                                   | 3 V        | 50      | 100 | 600 | ns   |

NOTE 1: Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time.

#### USCI (SPI master mode) (see Figure 27 and Figure 28)

|                       | PARAMETER                   | TEST CONDITIONS                       | VCC   | MIN | MAX                 | UNIT |
|-----------------------|-----------------------------|---------------------------------------|-------|-----|---------------------|------|
| f <sub>USCI</sub>     | USCI input clock frequency  | SMCLK, ACLK<br>Duty cycle = 50% ± 10% |       |     | f <sub>SYSTEM</sub> | MHz  |
|                       | 2011:                       |                                       | 2.2 V | 110 |                     |      |
| t <sub>SU,MI</sub>    | SOMI input data setup time  |                                       | 3 V   | 75  |                     | ns   |
|                       | OOM to a data hald to a     |                                       | 2.2 V | 0   |                     |      |
| t <sub>HD,MI</sub>    | SOMI input data hold time   |                                       | 3 V   | 0   |                     | ns   |
|                       | 0040                        | UCLK edge to SIMO valid;              | 2.2 V |     | 30                  |      |
| t <sub>VALID,MO</sub> | SIMO output data valid time | C <sub>L</sub> = 20 pF                | 3 V   |     | 20                  | ns   |

 $\text{NOTE 2:} \quad f_{\text{UCxCLK}} = \frac{1}{2t_{\text{LO/HI}}} \text{ with } t_{\text{LO/HI}} \geq \\ \\ \text{max}(t_{\text{VALID,MO(USCI)}} + t_{\text{SU,SI(Slave)}}, t_{\text{SU,MI(USCI)}} + t_{\text{VALID,SO(Slave)}}). \\$ 

For the slave parameters  $t_{SU,SI(Slave)}$  and  $t_{VALID,SO(Slave)}$ , see the SPI parameters of the attached slave.

#### USCI (SPI slave mode) (see Figure 29 and Figure 30)

|                        | PARAMETER                                            | TEST CONDITIONS          | VCC       | MIN | TYP | MAX | UNIT |
|------------------------|------------------------------------------------------|--------------------------|-----------|-----|-----|-----|------|
| t <sub>STE,LEAD</sub>  | STE lead time,<br>STE low to clock                   |                          | 2.2 V/3 V |     | 50  |     | ns   |
| t <sub>STE,LAG</sub>   | STE lag time,<br>Last clock to STE high              |                          | 2.2 V/3 V | 10  |     |     | ns   |
| t <sub>STE,ACC</sub>   | STE access time,<br>STE low to SOMI data out         |                          | 2.2 V/3 V |     | 50  |     | ns   |
| t <sub>STE,DIS</sub>   | STE disable time,<br>STE high to SOMI high impedance |                          | 2.2 V/3 V |     | 50  |     | ns   |
|                        |                                                      |                          | 2.2 V     | 20  |     |     |      |
| t <sub>SU,SI</sub>     | SIMO input data setup time                           |                          | 3 V       | 15  |     |     | ns   |
|                        |                                                      |                          | 2.2 V     | 10  |     |     |      |
| t <sub>HD,SI</sub>     | SIMO input data hold time                            |                          | 3 V       | 10  |     |     | ns   |
|                        |                                                      | UCLK edge to SOMI valid; | 2.2 V     |     | 75  | 110 |      |
| t <sub>VALID</sub> ,SO | SOMI output data valid time                          | C <sub>L</sub> = 20 pF   | 3 V       |     | 50  | 75  | ns   |

 $\text{NOTE 3:} \quad f_{\text{UCxCLK}} = \frac{1}{2t_{\text{LO/HI}}} \text{ with } t_{\text{LO/HI}} \geq \\ \\ \text{max}(t_{\text{VALID,MO(Master)}} + t_{\text{SU,SI(USCI)}}, \\ \\ t_{\text{SU,MI(Master)}} + t_{\text{VALID,SO(USCI)}}) \\ \\ \text{NOTE 3:} \quad f_{\text{UCxCLK}} = \frac{1}{2t_{\text{LO/HI}}} \\ \\ \text{with } t_{\text{LO/HI}} \geq \\ \\ \text{max}(t_{\text{VALID,MO(Master)}} + t_{\text{SU,SI(USCI)}}, \\ \\ t_{\text{SU,MI(Master)}} + t_{\text{VALID,SO(USCI)}}) \\ \\ \text{NOTE 3:} \quad f_{\text{UCxCLK}} = \\ \\ \text{NOTE 3:} \\ \\ \text{N$ 

For the master parameters t<sub>SU,MI(Master)</sub> and t<sub>VALID,MO(Master)</sub>, see the SPI parameters of the attached master.





Figure 27. SPI Master Mode, CKPH = 0



Figure 28. SPI Master Mode, CKPH = 1



Figure 29. SPI Slave Mode, CKPH = 0



Figure 30. SPI Slave Mode, CKPH = 1

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### USCI (I2C mode) (see Figure 31)

|                     | PARAMETER                                          | TEST CONDITIONS                                                   | VCC           | MIN | TYP            | MAX    | UNIT |
|---------------------|----------------------------------------------------|-------------------------------------------------------------------|---------------|-----|----------------|--------|------|
| fusci               | USCI input clock frequency                         | Internal: SMCLK, ACLK<br>External: UCLK<br>Duty cycle = 50% ± 10% |               |     | f <sub>S</sub> | SYSTEM | MHz  |
| f <sub>SCL</sub>    | SCL clock frequency                                |                                                                   | 2.2 V/3 V     | 0   |                | 400    | kHz  |
|                     | Hald Free Area at all Ota d                        | f <sub>SCL</sub> ≤ 100 kHz                                        | 0.01//01/     | 4.0 |                |        |      |
| t <sub>HD,STA</sub> | Hold time (repeated) Start                         | f <sub>SCL</sub> > 100 kHz                                        | 2.2 V/3 V 0.6 |     |                |        | μS   |
|                     | Cation times for a variation Chart                 | f <sub>SCL</sub> ≤ 100 kHz                                        | 0.01//01/     | 4.7 |                |        |      |
| t <sub>SU,STA</sub> | Setup time for a repeated Start                    | f <sub>SCL</sub> > 100 kHz                                        | 2.2 V/3 V     | 0.6 |                |        | μS   |
| t <sub>HD,DAT</sub> | Data hold time                                     |                                                                   | 2.2 V/3 V     | 0   |                |        | ns   |
| t <sub>SU,DAT</sub> | Data setup time                                    |                                                                   | 2.2 V/3 V     | 250 |                |        | ns   |
| t <sub>SU,STO</sub> | Setup time for Stop                                |                                                                   | 2.2 V/3 V     | 4.0 |                |        | μs   |
|                     | P. Lee, Miller Could are a considerable for a City |                                                                   | 2.2 V         | 50  | 150            | 600    |      |
| t <sub>SP</sub>     | Pulse width of spikes suppressed by input filter   |                                                                   | 3 V           | 50  | 100            | 600    | ns   |



Figure 31. I2C Mode Timing

#### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### Comparator\_A+ (see Note 1)

|                         | PARAMETER                           | TEST CONDITIONS                                                                 | VCC       | MIN  | TYP  | MAX                | UNIT |
|-------------------------|-------------------------------------|---------------------------------------------------------------------------------|-----------|------|------|--------------------|------|
| 1                       |                                     | CAON = 1, CARSEL = 0, CAREF = 0                                                 | 2.2 V     |      | 25   | 40                 | μΑ   |
| I <sub>(DD)</sub>       |                                     | CAON = 1, CANGEL = 0, CANEL = 0                                                 | 3 V       |      | 45   | 60                 | μΑ   |
|                         |                                     | CAON = 1, CARSEL = 0,                                                           | 2.2 V     |      | 30   | 50                 | ^    |
| (Refladder/Re           | efdiode)                            | CAREF = 1/2/3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2                         | 3 V       |      | 45   | 71                 | μΑ   |
| V <sub>(IC)</sub>       | Common-mode input voltage           | CAON =1                                                                         | 2.2 V/3 V | 0    |      | V <sub>CC</sub> -1 | V    |
| V <sub>(Ref025)</sub>   | Voltage @ 0.25 V <sub>CC</sub> node | PCA0 = 1, CARSEL = 1, CAREF = 1,<br>no load at P2.3/CA0/TA1 and<br>P2.4/CA1/TA2 | 2.2 V/3 V | 0.23 | 0.24 | 0.25               |      |
| V <sub>(Ref050)</sub>   | Voltage @ 0.5V <sub>CC</sub> node   | PCA0 = 1, CARSEL = 1, CAREF = 2,<br>no load at P2.3/CA0/TA1 and<br>P2.4/CA1/TA2 | 2.2 V/3 V | 0.47 | 0.48 | 0.5                |      |
| .,                      |                                     | PCA0 = 1, CARSEL = 1, CAREF = 3,                                                | 2.2 V     | 390  | 480  | 540                |      |
| $V_{(RefVT)}$           | See Figure 35 and Figure 36         | no load at P2.3/CA0/TA1 and P2.4/CA1/TA2, T <sub>A</sub> = 85°C                 | 3 V       | 400  | 490  | 550                | mV   |
| V <sub>(offset)</sub>   | Offset voltage                      | See Note 2                                                                      | 2.2 V/3 V | -30  |      | 30                 | mV   |
| V <sub>hys</sub>        | Input hysteresis                    | CAON=1                                                                          | 2.2 V/3 V | 0    | 0.7  | 1.4                | mV   |
|                         |                                     | T <sub>A</sub> = 25°C, Overdrive 10 mV,                                         | 2.2 V     | 80   | 165  | 300                | 200  |
|                         | Response time, low-to-high and      | Without filter: CAF = 0                                                         | 3 V       | 70   | 120  | 240                | ns   |
| t <sub>(response)</sub> |                                     | T <sub>A</sub> = 25°C, Overdrive 10 mV,                                         | 2.2 V     | 1.4  | 1.9  | 2.8                |      |
|                         |                                     | With filter: CAF = 1                                                            | 3 V       | 0.9  | 1.5  | 2.2                | μS   |



NOTES: 1. The leakage current for the Comparator\_A+ terminals is identical to  $I_{lkg(Px.x)}$  specification.

<sup>2.</sup> The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator\_A+ inputs on successive measurements. The two successive measurements are then summed together.

<sup>3.</sup> The response time is measured at P2.2/CAOUT/TA0/CA4 with an input voltage step, with Comparator A+ already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time.



Figure 32. Block Diagram of Comparator\_A Module



Figure 33. Overdrive Definition



Figure 34. Comparator\_A+ Short Resistance Test Condition

typical characteristics - Comparator A+



650 V<sub>CC</sub> = 2.2 V V<sub>CC</sub> = 2.2 V Typical 550 400 400 -45 -25 -5 15 35 55 75 95 T<sub>A</sub> - Free-Air Temperature - °C

Figure 35.  $V_{(RefVT)}$  vs Temperature,  $V_{CC} = 3 V$ 

Figure 36.  $V_{(RefVT)}$  vs Temperature,  $V_{CC}$  = 2.2 V



Figure 37. Short Resistance vs V<sub>IN</sub>/V<sub>CC</sub>

### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit ADC power supply and input range conditions (see Note 1)

|                          | PARAMETER                                              | TEST CONDITIONS                                                                                                                                                   | vcc   | MIN  | TYP | MAX               | UNIT |
|--------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|-------------------|------|
| AV <sub>CC</sub>         | Analog supply voltage                                  | AV <sub>CC</sub> and DV <sub>CC</sub> are connected together,<br>AV <sub>SS</sub> and DV <sub>SS</sub> are connected together,<br>$V_{(AVSS)} = V_{(DVSS)} = 0 V$ |       | 2.2  |     | 3.6               | V    |
| V <sub>(P6.x/Ax)</sub>   | Analog input voltage<br>(see Note 2)                   | All P6.0/A0 to P6.7/A7 terminals.<br>Analog inputs selected in ADC12MCTLx register and P6Sel.x = 1, $0 \le x \le 7$ , $V_{(AVSS)} \le V_{P6.x/Ax} \le V_{(AVCC)}$ |       | 0    |     | V <sub>AVCC</sub> | ٧    |
| Operating supply current | f <sub>ADC12CLK</sub> = 5 MHz, ADC12ON = 1, REFON = 0, | 2.2 V                                                                                                                                                             |       | 0.65 | 8.0 |                   |      |
| I <sub>ADC12</sub>       | into AV <sub>CC</sub> terminal (see Note 3)            | SHT0 = 0, SHT1 = 0, ADC12DIV = 0                                                                                                                                  | 3 V   |      | 0.8 | 1.0               | mA   |
|                          | Operating supply current                               | f <sub>ADC12CLK</sub> = 5 MHz, ADC12ON = 0,<br>REFON = 1, REF2_5V = 1                                                                                             | 3 V   |      | 0.5 | 0.7               |      |
| I <sub>REF+</sub>        | into AV <sub>CC</sub> terminal<br>(see Note 4)         | f <sub>ADC12CLK</sub> = 5 MHz, ADC12ON = 0,                                                                                                                       | 2.2 V |      | 0.5 | 0.7               | mA   |
|                          | (366 14016 4)                                          | REFON = 1, REF2_5V = 0                                                                                                                                            | 3 V   |      | 0.5 | 0.7               |      |
| C <sub>I</sub> †         | Input capacitance                                      | Only one terminal can be selected at one time, P6.x/Ax                                                                                                            | 2.2 V |      |     | 40                | pF   |
| R <sub>I</sub> †         | Input MUX ON resistance                                | $0 \text{ V} \leq V_{Ax} \leq V_{AVCC}$                                                                                                                           | 3 V   |      |     | 2000              | Ω    |

<sup>†</sup> Lmits verified by design

NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter.

- 2. The analog input voltage range must be within the selected reference voltage range V<sub>R+</sub> to V<sub>R-</sub> for valid conversion results.
- 3. The internal reference supply current is not included in current consumption parameter I<sub>ADC12</sub>.
- 4. The internal reference current is supplied via terminal AV<sub>CC</sub>. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.

#### 12-bit ADC external reference (see Note 1)

| PARAM                                                         | METER                                         | TEST CONDITIONS                                                         | VCC       | MIN | MAX               | UNIT        |
|---------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|-----------|-----|-------------------|-------------|
| V <sub>eREF+</sub>                                            | Positive external reference voltage input     | V <sub>eREF+</sub> > V <sub>REF-</sub> /V <sub>eREF-</sub> (see Note 2) |           | 1.4 | V <sub>AVCC</sub> | <b>&gt;</b> |
| V <sub>REF-</sub> /V <sub>eREF-</sub>                         | Negative external reference voltage input     | V <sub>eREF+</sub> > V <sub>REF-</sub> /V <sub>eREF-</sub> (see Note 3) |           | 0   | 1.2               | <b>V</b>    |
| (V <sub>eREF+</sub> - V <sub>REF-</sub> /V <sub>eREF-</sub> ) | Differential external reference voltage input | V <sub>eREF+</sub> > V <sub>REF-</sub> /V <sub>eREF-</sub> (see Note 4) |           | 1.4 | V <sub>AVCC</sub> | <b>V</b>    |
| I <sub>VeREF+</sub>                                           | Static input current                          | 0V ≤V <sub>eREF+</sub> ≤ V <sub>AVCC</sub>                              | 2.2 V/3 V |     | ±1                | μΑ          |
| I <sub>VREF-/VeREF-</sub>                                     | Static input current                          | 0V ≤ V <sub>eREF-</sub> ≤ V <sub>AVCC</sub>                             | 2.2 V/3 V |     | ±1                | μΑ          |

- NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C<sub>i</sub>, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
  - 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
  - The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
  - 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.



#### electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit ADC built-in reference

| PA                              | RAMETER                                                                          | TEST CONDITIONS                                                                                                              | vcc       | TA            | MIN  | TYP | MAX  | UNIT   |
|---------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|------|-----|------|--------|
|                                 |                                                                                  | REF2_5V = 1 (2.5 V)                                                                                                          | 0.14      | -40°C to 85°C | 2.4  | 2.5 | 2.6  |        |
|                                 | Positive built-in                                                                | I <sub>VREF+</sub> max ≤ I <sub>VREF+</sub> ≤ I <sub>VREF+</sub> min                                                         | 3 V       | 105°C         | 2.37 | 2.5 | 2.64 | v      |
| $V_{REF+}$                      | reference voltage<br>output                                                      | REF2_5V = 0 (1.5 V)                                                                                                          | 2.2 V/3 V | -40°C to 85°C | 1.44 | 1.5 | 1.56 | ٧      |
|                                 | •                                                                                | I <sub>VREF+</sub> max ≤ I <sub>VREF+</sub> ≤ I <sub>VREF+</sub> min                                                         | 2.2 V/3 V | 105°C         | 1.42 | 1.5 | 1.57 |        |
|                                 | AV <sub>CC</sub> minimum                                                         | REF2_5V = 0,<br>$I_{VREF+}$ max $\leq I_{VREF+} \leq I_{VREF+}$ min                                                          |           |               | 2.2  |     |      |        |
| AV <sub>CC(min)</sub>           | voltage, positive<br>built-in reference                                          | REF2_5V = 1,<br>-0.5mA $\leq$ I <sub>VREF+</sub> $\leq$ I <sub>VREF+</sub> min                                               |           |               | 2.8  |     |      | V      |
|                                 | active                                                                           | REF2_5V = 1,<br>-1mA ≤ I <sub>VREF+</sub> ≤ I <sub>VREF+</sub> min                                                           |           |               | 2.9  |     |      |        |
|                                 | Load current out of                                                              |                                                                                                                              | 2.2 V     |               | 0.01 |     | -0.5 | A      |
| I <sub>VREF+</sub>              | V <sub>REF+</sub> terminal                                                       |                                                                                                                              | 3 V       |               | 0.01 |     | -1   | mA     |
|                                 | I <sub>VREF+</sub> = 500 μA +/- 100 μA<br>Analog input voltage ~0.75 V,          | 2.2 V                                                                                                                        |           |               |      | ±2  |      |        |
|                                 | Load-current                                                                     | REF2_5V = 0                                                                                                                  | 3 V       |               |      |     | ±2   | 1.00   |
| I <sub>L(VREF)+</sub> †         | regulation, V <sub>REF+</sub><br>terminal                                        | I <sub>VREF+</sub> = 500 μA ± 100 μA<br>Analog input voltage ~1.25 V,<br>REF2_5V = 1                                         | 3 V       |               |      |     | ±2   | LSB    |
| I <sub>DL(VREF) +</sub> ‡       | Load current<br>regulation V <sub>REF+</sub><br>terminal                         | $I_{VREF+}$ = 100 μA $\rightarrow$ 900 μA,<br>$C_{VREF+}$ = 5 μF, at ~0.5 $V_{REF+}$ ,<br>Error of conversion result ≤ 1 LSB | 3 V       |               |      |     | 20   | ns     |
| C <sub>VREF+</sub>              | Capacitance at pin V <sub>REF+</sub> (see Note 1)                                | REFON =1,<br>0 mA $\leq$ I <sub>VREF+</sub> $\leq$ I <sub>VREF+</sub> max                                                    | 2.2 V/3 V |               | 5    | 10  |      | μF     |
| T <sub>REF+</sub> †             | Temperature coefficient of built-in reference                                    | I <sub>VREF+</sub> is a constant in the range<br>of 0 mA ≤ I <sub>VREF+</sub> ≤ 1 mA                                         | 2.2 V/3 V |               |      |     | ±100 | ppm/°C |
| <sup>t</sup> REFON <sup>†</sup> | Settle time of<br>internal reference<br>voltage (see<br>Figure 38 and Note<br>2) | $I_{VREF+} = 0.5 \text{ mA, } C_{VREF+} = 10  \mu\text{F,}$ $V_{REF+} = 1.5 \text{ V, } V_{AVCC} = 2.2 \text{ V}$            |           |               |      |     | 17   | ms     |

<sup>†</sup> Limits characterized



<sup>&</sup>lt;sup>‡</sup> Limits verified by design

NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests use two capacitors between pins  $V_{REF+}$  and  $AV_{SS}$  and  $V_{REF-}/V_{eREF-}$  and  $AV_{SS}$ : 10  $\mu F$  tantalum and 100 nF ceramic.

<sup>2.</sup> The condition is that the error in a conversion started after  $t_{REFON}$  is less than  $\pm 0.5$  LSB. The settling time depends on the external capacitive load.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - ADC12



Figure 38. Typical Settling Time of Internal Reference  $t_{REFON}$  vs External Capacitor on  $V_{REF}$ +





Figure 39. Supply Voltage and Reference Voltage Design  $V_{\text{REF-}}/V_{\text{eREF-}}$  External Supply



Figure 40. Supply Voltage and Reference Voltage Design V<sub>REF-</sub>/V<sub>eREF-</sub> = AV<sub>SS</sub>, Internally Connected

#### MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

## electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit ADC timing parameters

|                        | PARAMETER                        | TEST CONDITIONS                                                                               | VCC        | MIN  | TYP                                        | MAX | UNIT |
|------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|------------|------|--------------------------------------------|-----|------|
| f <sub>ADC12CLK</sub>  |                                  | For specified performance of ADC12 linearity parameters                                       | 2.2V/3 V   | 0.45 | 5                                          | 6.3 | MHz  |
| f <sub>ADC12OSC</sub>  | Internal ADC12 oscillator        | ADC12DIV = 0,<br>fADC12CLK = fADC12OSC                                                        | 2.2 V/ 3 V | 3.7  | 5                                          | 6.3 | MHz  |
|                        | Conversion time                  | $C_{VREF+} \ge 5 \mu F$ , Internal oscillator,<br>$f_{ADC12OSC} = 3.7 \text{ MHz}$ to 6.3 MHz | 2.2 V/ 3 V | 2.06 | 3.51                                       |     |      |
| †CONVERT               |                                  | External f <sub>ADC12CLK</sub> from ACLK, MCLK or SMCLK, ADC12SSEL ≠ 0                        |            |      | 13 × ADC12DIV<br>× 1/f <sub>ADC12CLK</sub> |     | μS   |
| t <sub>ADC12ON</sub> ‡ | Turn-on settling time of the ADC | See Note 1                                                                                    |            |      |                                            | 100 | ns   |
| + ±                    |                                  | $R_S = 400 \Omega$ , $R_I = 1000 \Omega$ , $C_I = 30 pF$ ,                                    | 3 V        | 1220 |                                            |     | no   |
| t <sub>Sample</sub> ‡  |                                  | $\tau = [R_S + R_I] \times C_{I}$ (see Note 2)                                                | 2.2 V      | 1400 |                                            |     | ns   |

<sup>†</sup> Limits characterized

NOTES: 1. The condition is that the error in a conversion started after t<sub>ADC12ON</sub> is less than ±0.5 LSB. The reference and input signal are already settled.

2. Approximately ten Tau  $(\tau)$  are needed to get an error of less than  $\pm 0.5$  LSB:  $t_{Sample} = ln(2^{n+1}) \times (R_S + R_I) \times C_I + 800$  ns where n = ADC resolution = 12,  $R_S =$  external source resistance.

#### 12-bit ADC linearity parameters

| PARAMETER      |                              | TEST CONDITIONS                                                                                                                                                                                                                              | vcc       | MIN | TYP  | MAX  | UNIT |
|----------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|------|------|------|
|                |                              | $1.4 \text{ V} \le (V_{\text{eREF+}} - V_{\text{REF-}}/V_{\text{eREF-}}) \text{ min } \le 1.6 \text{ V}$                                                                                                                                     | 0.03//03/ |     |      | ±2   | - OD |
| EI             | Integral linearity error     | 1.6 V < (V <sub>eREF+</sub> - V <sub>REF-</sub> /V <sub>eREF-</sub> ) min ≤ V <sub>AVCC</sub>                                                                                                                                                | 2.2 V/3 V |     |      | ±1.7 | LSB  |
| E <sub>D</sub> | Differential linearity error | $ \begin{array}{l} (V_{eREF+} - V_{REF-}/V_{eREF-})_{min} \leq (V_{eREF+} - V_{REF-}/V_{eREF-}), \\ C_{VREF+} = 10~\mu F ~(tantalum) ~and ~100~nF ~(ceramic) \end{array} $                                                                   | 2.2 V/3 V |     |      | ±1   | LSB  |
| Eo             | Offset error                 | $\begin{split} &(V_{eREF+} - V_{REF-}/V_{eREF-})_{min} \leq (V_{eREF+} - V_{REF-}/V_{eREF-}), \\ &\text{Internal impedance of source } R_S < 100 \ \Omega, \\ &C_{VREF+} = 10 \ \mu F \ (tantalum) \ and \ 100 \ nF \ (ceramic) \end{split}$ | 2.2 V/3 V |     | ±2   | ±4   | LSB  |
| E <sub>G</sub> | Gain error                   | $ \begin{array}{l} (V_{\text{eREF+}} - V_{\text{REF-}}/V_{\text{eREF-}})_{\text{min}} \leq (V_{\text{eREF+}} - V_{\text{REF-}}/V_{\text{eREF-}}), \\ C_{\text{VREF+}} = 10~\mu\text{F (tantalum) and } 100~\text{nF (ceramic)} \end{array} $ | 2.2 V/3 V |     | ±1.1 | ±2   | LSB  |
| E <sub>T</sub> | Total unadjusted error       | $(V_{\text{eREF+}} - V_{\text{REF-}}/V_{\text{eREF-}})_{\text{min}} \le (V_{\text{eREF+}} - V_{\text{REF-}}/V_{\text{eREF-}}),$ $C_{\text{VREF+}} = 10~\mu\text{F}$ (tantalum) and 100 nF (ceramic)                                          | 2.2 V/3 V |     | ±2   | ±5   | LSB  |



<sup>&</sup>lt;sup>‡</sup> Limits verified by design

### electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit ADC temperature sensor and built-in V<sub>MID</sub>

|                               | PARAMETER                                                   | TEST CONDITIONS                                                | VCC   | MIN  | TYP  | MAX       | UNIT  |
|-------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-------|------|------|-----------|-------|
| •                             | Operating supply current into                               | REFON = 0, INCH = 0Ah,                                         | 2.2 V |      | 40   | 120       |       |
| ISENSOR                       | AV <sub>CC</sub> terminal (see Note 1)                      | ADC12ON = 1, T <sub>A</sub> = 25°C                             | 3 V   |      | 60   | 160       | μΑ    |
| \/ +                          | Con Note O                                                  | ADC12ON = 1, INCH = 0Ah,                                       | 2.2 V |      | 986  |           | \/    |
| V <sub>SENSOR</sub> †         | See Note 2                                                  | T <sub>A</sub> = 0°C                                           | 3 V   |      | 986  |           | mV    |
| TO t                          |                                                             |                                                                | 2.2 V |      | 3.55 |           | mV/°C |
| TC <sub>SENSOR</sub> †        |                                                             | ADC12ON = 1, INCH = 0Ah                                        | 3 V   |      | 3.55 |           |       |
| +                             | Sample time required if channel 10 is selected (see Note 3) | ADC12ON = 1, INCH = 0Ah,<br>Error of conversion result ≤ 1 LSB | 2.2 V | 30   |      |           | _     |
| t <sub>SENSOR(sample)</sub> † |                                                             |                                                                | 3 V   | 30   |      |           | μS    |
|                               | Current into divider at channel 11                          | ADOLOGNI A INIGILI ODI                                         | 2.2 V |      |      | NA        |       |
| IVMID                         | (see Note 4)                                                | ADC12ON = 1, INCH = 0Bh                                        | 3 V   |      |      | NA        | μΑ    |
| V                             | AV divides at absence 44                                    | ADC12ON = 1, INCH = 0Bh,                                       | 2.2 V |      | 1.1  | 1.1±0.04  | V     |
| V <sub>MID</sub>              | AV <sub>CC</sub> divider at channel 11                      | V <sub>MID</sub> is ~0.5 x V <sub>AVCC</sub>                   | 3 V   |      | 1.5  | 1.50±0.04 | V     |
| <b>.</b>                      | Sample time required if channel                             | ADC12ON = 1, INCH = 0Bh,                                       | 2.2 V | 1400 |      |           | 20    |
| t <sub>VMID</sub> (sample)    | 11 is selected (see Note 5)                                 | Error of conversion result ≤ 1 LSB                             | 3 V   | 1220 | •    | •         | ns    |

<sup>†</sup> Limits characterized

NOTES: 1. The sensor current I<sub>SENSOR</sub> is consumed if (ADC12ON = 1 and REFON = 1) or if (ADC12ON = 1, INCH = 0Ah and sample signal is high). When REFON = 1, I<sub>SENSOR</sub> is already included in I<sub>REF+</sub>.

- 2. The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor.
- 3. The typical equivalent impedance of the sensor is 51 k $\Omega$ . The sample time required includes the sensor-on time  $t_{SENSOR(on)}$ .
- 4. No additional current is needed. The  $V_{\mbox{\scriptsize MID}}$  is used during sampling.
- 5. The on time  $t_{VMID(on)}$  is included in the sampling time  $t_{VMID(sample)}$ ; no additional on time is needed.



### MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit DAC supply specifications

|                  | PARAMETER                                        | TEST CONDITIONS                                                                                                   | vcc      | TA            | MIN  | TYP | MAX  | UNIT |
|------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------|---------------|------|-----|------|------|
| AV <sub>CC</sub> | Analog supply voltage                            | $AV_{CC} = DV_{CC},$<br>$AV_{SS} = DV_{SS} = 0 V$                                                                 |          |               | 2.20 |     | 3.60 | V    |
|                  |                                                  | DAC12AMPx = 2, DAC12IR = 0,                                                                                       | 0.01/01/ | -40°C to 85°C |      | 50  | 110  |      |
|                  |                                                  | DAC12_xDAT = 0x0800                                                                                               | 2.2V/3V  | 105°C         |      | 69  | 150  |      |
|                  | Supply current, single                           | DAC12AMPx = 2, DAC12IR = 1,<br>DAC12_xDAT = x00800 ,<br>V <sub>eREF+</sub> = V <sub>REF+</sub> = AV <sub>CC</sub> | 2.2V/3V  |               |      | 50  | 130  |      |
| I <sub>DD</sub>  | DAC channel<br>(see Notes 1 and 2)               | DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0x0800, V <sub>eREF+</sub> = V <sub>REF+</sub> = AV <sub>CC</sub>        | 2.2V/3V  |               |      | 200 | 440  | μΑ   |
|                  |                                                  | DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0x0800, V <sub>eREF+</sub> = V <sub>REF+</sub> = AV <sub>CC</sub>        | 2.2V/3V  |               |      | 700 | 1500 |      |
| PSRR             | Power-supply rejection ratio (see Notes 3 and 4) | DAC12_xDAT = 800h, V <sub>REF</sub> = 1.5 V,<br>ΔAV <sub>CC</sub> = 100mV                                         | 2.2V     |               |      | 70  |      | ī    |
|                  |                                                  | DAC12_xDAT = 800h, V <sub>REF</sub> = 1.5 V or 2.5 V,<br>ΔAV <sub>CC</sub> = 100mV                                | 3V       |               |      | 70  |      | dB   |

NOTES: 1. No load at the output pin, DAC12\_0 or DAC12\_1, assuming that the control bits for the shared pins are set properly.

- 3.  $PSRR = 20 \times log{\Delta AV_{CC}/\Delta V_{DAC12\_xOUT}}$
- 4.  $V_{\mbox{\scriptsize REF}}$  is applied externally. The internal reference is not used.



<sup>2.</sup> Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications.

### electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit DAC linearity specifications (see Figure 41)

| PARAMETER                         |                                                                                                             | TEST CONDITIONS                                        | vcc       | MIN | TYP  | MAX   | UNIT             |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------|-----|------|-------|------------------|
|                                   | Resolution                                                                                                  | 12-bit monotonic                                       |           | 12  |      |       | bits             |
| INII                              |                                                                                                             | V <sub>REF</sub> = 1.5 V<br>DAC12AMPx = 7, DAC12IR = 1 | 2.2 V     |     | 0.0  | 0.0   | 1.00             |
| INL                               | Integral nonlinearity (see Note 1)                                                                          | V <sub>REF</sub> = 2.5 V<br>DAC12AMPx = 7, DAC12IR = 1 | 3 V       |     | ±2.0 | ±8.0  | LSB              |
| DNII                              | Differential nonlinearity                                                                                   | V <sub>REF</sub> = 1.5 V<br>DAC12AMPx = 7, DAC12IR = 1 | 2.2 V     |     | ±0.4 | 10    | - 00             |
| DNL                               | (see Note 1)                                                                                                | V <sub>REF</sub> = 2.5 V<br>DAC12AMPx = 7, DAC12IR = 1 | 3 V       | 3 V |      | ±1.0  | LSB              |
|                                   | Offset voltage without calibration (see Notes 1 and 2)  Offset voltage with calibration (see Notes 1 and 2) | V <sub>REF</sub> = 1.5 V<br>DAC12AMPx = 7, DAC12IR = 1 | 2.2 V     |     |      | 0.4   |                  |
| E <sub>O</sub>                    |                                                                                                             | V <sub>REF</sub> = 2.5 V<br>DAC12AMPx = 7, DAC12IR = 1 | 3 V       |     |      | ±21   | \/               |
|                                   |                                                                                                             | V <sub>REF</sub> = 1.5 V<br>DAC12AMPx = 7, DAC12IR = 1 | 2.2 V     |     |      | 0.5   | mV               |
|                                   |                                                                                                             | V <sub>REF</sub> = 2.5 V<br>DAC12AMPx = 7, DAC12IR = 1 | 3 V       |     |      | ±2.5  |                  |
| d <sub>E(O)</sub> /d <sub>T</sub> | Offset error temperature coefficient (see Note 1)                                                           |                                                        | 2.2 V/3 V |     | 30   |       | μV/C             |
| _                                 | Octobra Malad                                                                                               | V <sub>REF</sub> = 1.5 V                               | 2.2 V     |     |      |       | ۲ FOD            |
| E <sub>G</sub>                    | Gain error (see Note 1)                                                                                     | V <sub>REF</sub> = 2.5 V                               | 3 V       |     |      | ±3.50 | % FSR            |
| d <sub>E(G)</sub> /d <sub>T</sub> | Gain temperature coefficient (see Note 1)                                                                   |                                                        | 2.2 V/3 V |     | 10   |       | ppm of<br>FSR/°C |
|                                   |                                                                                                             | DAC12AMPx = 2                                          |           |     |      | 100   |                  |
| t <sub>Offset</sub> Cal           | Time for offset calibration (see Note 3)                                                                    | DAC12AMPx = 3, 5                                       | 2.2 V/3 V |     |      | 32    | ms               |
|                                   | (555 : 1516 5)                                                                                              | DAC12AMPx = 4, 6, 7                                    |           |     |      | 6     |                  |

- NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first order equation:  $y = a + b \times x$ .  $V_{DAC12 \times OUT} = E_O + (1 + E_G) \times (V_{eREF+}/4095) \times DAC12\_xDAT$ , DAC12IR = 1.
  - 2. The offset calibration works on the output operational amplifier. Offset calibration is triggered setting bit DAC12CALON.
  - 3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may affect accuracy and is not recommended.



Figure 41. Linearity Test Load Conditions and Gain/Offset Definition

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - 12-bit DAC, linearity specifications





# TYPICAL DNL ERROR vs DIGITAL INPUT DATA





#### electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit DAC output specifications

|                         | PARAMETER                                          | TEST CONDITIONS                                                                                                                   | vcc        | MIN                    | TYP | MAX       | UNIT |
|-------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|-----|-----------|------|
| Vo                      | Output voltage range<br>(see Note 1 and Figure 44) | No Load, $Ve_{REF+} = AV_{CC}$ ,<br>DAC12_xDAT = 0h, DAC12IR = 1,<br>DAC12AMPx = 7                                                |            | 0                      |     | 0.005     |      |
|                         |                                                    | No Load, Ve <sub>REF+</sub> = AV <sub>CC</sub> ,<br>DAC12_xDAT = 0FFFh,<br>DAC12IR = 1, DAC12AMPx = 7                             | 0.001/0.1/ | AV <sub>CC</sub> -0.05 |     | $AV_{CC}$ | V    |
|                         |                                                    | $R_{Load}$ = 3 k $\Omega$ , $Ve_{REF+}$ = AV $_{CC}$ , DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7                                | 2.2 V/3 V  | 0                      |     | 0.1       | V    |
|                         |                                                    | $R_{Load}$ = 3 k $\Omega$ , $Ve_{REF+}$ = AV $_{CC}$ , DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7                             |            | AV <sub>CC</sub> -0.13 |     | $AV_{CC}$ |      |
| C <sub>L(DAC12)</sub>   | Max DAC12 load capacitance                         |                                                                                                                                   | 2.2 V/3 V  |                        |     | 100       | pF   |
|                         |                                                    |                                                                                                                                   | 2.2V       | -0.5                   |     | +0.5      |      |
| I <sub>L(DAC12)</sub>   | Max DAC12 load current                             |                                                                                                                                   | 3V         | -1.0                   |     | +1.0      | mA   |
|                         |                                                    | $R_{Load}$ = 3 k $\Omega$ , $V_{O/P(DAC12)}$ = 0 V, DAC12AMPx = 7, DAC12_xDAT = 0h                                                |            |                        | 150 | 250       |      |
| R <sub>O/P(DAC12)</sub> | Output resistance<br>(see Figure 44)               | $R_{Load}$ = 3 k $\Omega$ , $V_{O/P(DAC12)}$ = A $V_{CC}$ , DAC12AMPx = 7, DAC12_xDAT = 0FFFh                                     | 2.2 V/3 V  |                        | 150 | 250       | Ω    |
|                         |                                                    | $\begin{array}{c} R_{Load} = 3 \; k\Omega, \\ 0.3 \; V \leq V_{O/P(DAC12)} \leq AV_{CC} - 0.3 \; V, \\ DAC12AMPx = 7 \end{array}$ |            |                        | 1   | 4         |      |

NOTE 1: Data is valid after the offset calibration of the output amplifier.



Figure 44. DAC12\_x Output Resistance Tests

### electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit DAC reference input specifications

| PARAMETER               |                         | TEST CONDITIONS                                                              | VCC       | MIN | TYP                 | MAX                   | UNIT |
|-------------------------|-------------------------|------------------------------------------------------------------------------|-----------|-----|---------------------|-----------------------|------|
| Ve <sub>REF+</sub>      | Reference input voltage | DAC12IR = 0, (see Notes 1 and 2)                                             | 0.07//07/ |     | AV <sub>CC</sub> /3 | AV <sub>CC</sub> +0.2 | .,   |
|                         | range                   | DAC12IR = 1, (see Notes 3 and 4)                                             | 2.2 V/3 V |     | AVcc                | AVcc+0.2              | V    |
|                         |                         | DAC12_0 IR = DAC12_1 IR = 0                                                  | _         | 20  |                     |                       | MΩ   |
|                         |                         | DAC12_0 IR = 1, DAC12_1 IR = 0                                               |           |     | 4.0                 |                       |      |
| Ri <sub>(VREF+)</sub> , |                         | DAC12_0 IR = 0, DAC12_1 IR = 1                                               | 2.2 V/3 V | 40  | 48                  | 56                    |      |
| Ri <sub>(VeREF+)</sub>  |                         | DAC12_0 IR = DAC12_1 IR = 1<br>DAC12_0 SREFx = DAC12_1 SREFx<br>(see Note 5) |           | 20  | 24                  | 28                    | kΩ   |

NOTES: 1. For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AV<sub>CC</sub>).

- 2. The maximum voltage applied at reference input voltage terminal Ve<sub>REF+</sub> = [AV<sub>CC</sub> V<sub>E(O)</sub>] / [3\*(1 + E<sub>G</sub>)].
- 3. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV<sub>CC</sub>).
- 4. The maximum voltage applied at reference input voltage terminal Ve<sub>REF+</sub> = [AV<sub>CC</sub> V<sub>E(O)</sub>] / (1 + E<sub>G</sub>).
- 5. When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance.

#### 12-bit DAC dynamic specifications, V<sub>ref</sub> = V<sub>CC</sub>, DAC12IR = 1 (see Figure 45 and Figure 46)

| P                  | ARAMETER                       | TES.                                                 | T CONDITIONS                         | VCC       | MIN  | TYP  | MAX | UNIT |
|--------------------|--------------------------------|------------------------------------------------------|--------------------------------------|-----------|------|------|-----|------|
|                    | DAC12_xDAT = 800h,             | DAC12AMPx = $0 \rightarrow \{2, 3, 4\}$              |                                      |           | 60   | 120  |     |      |
| t <sub>ON</sub>    | DAC12 on-time                  | $Error_{V(O)} < \pm 0.5 LSB$<br>(see Note 1 and      | $DAC12AMPx = 0 \rightarrow \{5, 6\}$ | 2.2 V/3 V |      | 15   | 30  | μs   |
|                    |                                | Figure 45)                                           | DAC12AMPx = 0 → 7                    |           |      | 6    | 12  |      |
|                    |                                |                                                      | DAC12AMPx = 2                        |           |      | 100  | 200 |      |
| t <sub>S(FS)</sub> | Settling time,  FS) full scale | DAC12_xDAT =<br>80h→ F7Fh→ 80h                       | DAC12AMPx = 3, 5                     | 2.2 V/3 V |      | 40   | 80  | μs   |
| · / Iuli scale     |                                | DAC12AMPx = 4, 6, 7                                  |                                      |           | 15   | 30   |     |      |
|                    | 0                              | DAC12_xDAT =<br>3F8h→ 408h→ 3F8h<br>BF8h→ C08h→ BF8h | DAC12AMPx = 2                        | 2.2 V/3 V |      | 5    |     | μs   |
| ts(C-C)            | Settling time, code to code    |                                                      | DAC12AMPx = 3, 5                     |           |      | 2    |     |      |
|                    | 0000 10 0000                   |                                                      | DAC12AMPx = 4, 6, 7                  |           |      | 1    |     |      |
|                    |                                | DAG40 DAT                                            | DAC12AMPx = 2                        |           | 0.05 | 0.12 |     | V/μs |
| SR                 | Slew rate                      | DAC12_xDAT =<br>80h→ F7Fh→ 80h                       | DAC12AMPx = 3, 5                     | 2.2 V/3 V | 0.35 | 0.7  |     |      |
|                    |                                | 0011-21 71 11-2 0011                                 | DAC12AMPx = 4, 6, 7                  |           | 1.5  | 2.7  |     |      |
|                    |                                | 5.0.0                                                | DAC12AMPx = 2                        | 2.2 V/3 V |      | 600  |     |      |
|                    | Glitch energy,<br>full scale   | DAC12_xDAT =<br>80h→ F7Fh→ 80h                       | DAC12AMPx = 3, 5                     |           |      | 150  |     | nV-s |
|                    | iuii scale 80fi→ F/F           | 33 4 77 11 4 3011                                    | DAC12AMPx = 4, 6, 7                  |           |      | 30   |     |      |

NOTES: 1. R<sub>Load</sub> and C<sub>Load</sub> are connected to AV<sub>SS</sub> (not AV<sub>CC</sub>/2) in Figure 45.

2. Slew rate applies to output voltage steps ≥ 200 mV.



Figure 45. Settling Time and Glitch Energy Testing



electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)



Figure 46. Slew Rate Testing

#### 12-bit DAC, dynamic specifications (continued) (T<sub>A</sub> = 25°C, unless otherwise noted)

|                    | PARAMETER                                                                     | TEST CONDITIONS                                                                                                               | VCC       | MIN | TYP | MAX | UNIT |
|--------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-----|-----|------|
|                    |                                                                               | DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,<br>DAC12IR = 1, DAC12_xDAT = 800h                                                      |           | 40  |     |     |      |
| BW <sub>-3dB</sub> | 3-dB bandwidth,<br>$V_{DC} = 1.5V$ , $V_{AC} = 0.1 V_{PP}$<br>(see Figure 47) | DAC12AMPx = {5, 6}, DAC12SREFx = 2,<br>DAC12IR = 1, DAC12_xDAT = 800h                                                         | 2.2 V/3 V | 180 |     |     | kHz  |
|                    | (see Figure 47)                                                               | DAC12AMPx = 7, DAC12SREFx = 2,<br>DAC12IR = 1, DAC12_xDAT = 800h                                                              |           | 550 |     |     |      |
|                    | Channel-to-channel crosstalk                                                  | DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h<->F7Fh, $R_{Load}$ = 3 k $\Omega$ , $f_{DAC12\_1OUT}$ = 10 kHz, Duty cycle = 50% | 0.01/01/  |     | -80 |     | 4D   |
|                    | (see Note 1 and Figure 48)                                                    | DAC12_0DAT = 80h<->F7Fh, $R_{Load}$ = 3 $k\Omega$ , DAC12_1DAT = 800h, No load, $f_{DAC12\_0OUT}$ = 10 kHz, Duty cycle = 50%  | 2.2 V/3 V |     | -80 |     | dB   |

NOTE 1:  $R_{LOAD} = 3 \text{ k}\Omega$ ,  $C_{LOAD} = 100 \text{ pF}$ 



Figure 47. Test Conditions for 3-dB Bandwidth Specification



Figure 48. Crosstalk Test Conditions



SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

#### flash memory

|                            | PARAMETER                                           | TEST<br>CONDITIONS    | vcc          | MIN             | TYP             | MAX | UNIT             |
|----------------------------|-----------------------------------------------------|-----------------------|--------------|-----------------|-----------------|-----|------------------|
| V <sub>CC(PGM/ERASE)</sub> | Program and erase supply voltage                    |                       |              | 2.2             |                 | 3.6 | V                |
| f <sub>FTG</sub>           | Flash Timing Generator frequency                    |                       |              | 257             |                 | 476 | kHz              |
| I <sub>PGM</sub>           | Supply current from DV <sub>CC</sub> during program |                       | 2.2 V/ 3.6 V |                 | 3               | 5   | mA               |
| I <sub>ERASE</sub>         | Supply current from DV <sub>CC</sub> during erase   |                       | 2.2 V/ 3.6 V |                 | 3               | 7   | mA               |
| t <sub>CPT</sub>           | Cumulative program time                             | See Note 1            | 2.2 V/ 3.6 V |                 |                 | 4   | ms               |
| t <sub>CMErase</sub>       | Cumulative mass erase time                          | See Note 2            | 2.2 V/ 3.6 V | 200             |                 |     | ms               |
|                            | Program/Erase endurance                             |                       |              | 10 <sup>4</sup> | 10 <sup>5</sup> |     | cycles           |
| t <sub>Retention</sub>     | Data retention duration                             | T <sub>J</sub> = 25°C |              | 100             |                 |     | years            |
| t <sub>Word</sub>          | Word or byte program time                           | See Note 3            |              |                 | 35              |     | t <sub>FTG</sub> |
| t <sub>Block, 0</sub>      | Block program time for first byte or word           | See Note 3            |              |                 | 30              |     | t <sub>FTG</sub> |
| t <sub>Block, 1-63</sub>   | Block program time for each additional byte or word | See Note 3            |              |                 | 21              |     | t <sub>FTG</sub> |
| t <sub>Block, End</sub>    | Block program end-sequence wait time                | See Note 3            |              |                 | 6               |     | t <sub>FTG</sub> |
| t <sub>Mass Erase</sub>    | Mass erase time (see Note 4)                        | See Note 3            |              |                 | 10593           |     | t <sub>FTG</sub> |
| t <sub>Seg Erase</sub>     | Segment erase time                                  | See Note 3            |              |                 | 4819            |     | t <sub>FTG</sub> |

- NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.
  - 2. The mass erase duration generated by the flash timing generator is at least 11.1 ms (= 5297x1/f<sub>FTG</sub>,max = 5297 × 1/476 kHz). To achieve the required cumulative mass erase time, the Flash Controller's mass erase operation can be repeated until this time is met. A worst case minimum of 19 cycles is required.
  - 3. These values are hardwired into the Flash Controller's state machine ( $t_{FTG} = 1/f_{FTG}$ ).
  - 4. To erase the complete code area, the mass erase must be performed once with a dummy address in the range of the lower 64-kB flash addresses and once with the dummy address in the upper 64-kB flash addresses.

#### **RAM**

|       | PARAMETER  | TEST CONDITIONS | MIN MAX | UNIT |
|-------|------------|-----------------|---------|------|
| VRAMh | See Note 1 | CPU halted      | 1.6     | V    |

NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition.

# MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

# electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### JTAG interface

|                       | PARAMETER                                        | TEST<br>CONDITIONS | V <sub>CC</sub> | MIN | TYP | MAX | UNIT    |
|-----------------------|--------------------------------------------------|--------------------|-----------------|-----|-----|-----|---------|
| ·                     | TCK input frequency                              | Coo Noto 1         | 2.2 V           | 0   |     | 5   | N 41 1- |
| TCK                   |                                                  | See Note 1         | 3 V             | 0   |     | 10  | MHz     |
| R <sub>Internal</sub> | Internal pullup resistance on TMS, TCK, TDI/TCLK | See Note 2         | 2.2 V/ 3 V      | 25  | 60  | 90  | kΩ      |

NOTES: 1. f<sub>TCK</sub> may be restricted to meet the timing requirements of the module selected.

#### JTAG fuse (see Note 1)

|                     | PARAMETER                                            | TEST CONDITIONS       | MIN | MAX | UNIT |
|---------------------|------------------------------------------------------|-----------------------|-----|-----|------|
| V <sub>CC(FB)</sub> | Supply voltage during fuse-blow condition            | T <sub>A</sub> = 25°C | 2.5 |     | V    |
| $V_{FB}$            | Voltage level on TDI/TCLK for fuse blow (F versions) |                       | 6   | 7   | V    |
| I <sub>FB</sub>     | Supply current into TDI/TCLK during fuse blow        |                       |     | 100 | mA   |
| t <sub>FB</sub>     | Time to blow fuse                                    |                       |     | 1   | ms   |

NOTE 1: Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode.

<sup>2.</sup> TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions.

#### **APPLICATION INFORMATION**

Port P1 pin schematic: P1.0 to P1.7, input/output with Schmitt trigger



# MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

## Port P1 (P1.0 to P1.7) pin functions

| DIN NAME (D4 )  |   |                | CONTROL B  | ITS / SIGNALS |
|-----------------|---|----------------|------------|---------------|
| PIN NAME (P1.X) | X | FUNCTION       | P1DIR.x    | P1SEL.x       |
| P1.0/TACLK      | 0 | P1.0 (I/O)     | l: 0; O: 1 | 0             |
|                 |   | Timer_A3.TACLK | 0          | 1             |
|                 |   | CAOUT          | 1          | 1             |
| P1.1/TA0        | 1 | P1.1 (I/O)     | l: 0; O: 1 | 0             |
|                 |   | Timer_A3.CCI0A | 0          | 1             |
|                 |   | Timer_A3.TA0   | 1          | 1             |
| P1.2/TA1        | 2 | P1.2 (I/O)     | l: 0; O: 1 | 0             |
|                 |   | Timer_A3.CCI0A | 0          | 1             |
|                 |   | Timer_A3.TA0   | 1          | 1             |
| P1.3/TA2        | 3 | P1.3 (I/O)     | l: 0; O: 1 | 0             |
|                 |   | Timer_A3.CCI0A | 0          | 1             |
|                 |   | Timer_A3.TA0   | 1          | 1             |
| P1.4/SMCLK      | 4 | P1.4 (I/O)     | l: 0; O: 1 | 0             |
|                 |   | SMCLK          | 1          | 1             |
| P1.5/TA0        | 5 | P1.5 (I/O)     | l: 0; O: 1 | 0             |
|                 |   | Timer_A3.CCI0A | 0          | 1             |
|                 |   | Timer_A3.TA0   | 1          | 1             |
| P1.6/TA1        | 6 | P1.6 (I/O)     | l: 0; O: 1 | 0             |
|                 |   | Timer_A3.CCI0A | 0          | 1             |
|                 |   | Timer_A3.TA1   | 1          | 1             |
| P1.7/TA2        | 7 | P1.7 (I/O)     | I: 0; O: 1 | 0             |
|                 |   | Timer_A3.CCI0A | 0          | 1             |
|                 |   | Timer A3.TA2   | 1          | 1             |

### Port P2 pin schematic: P2.0 to P2.4, P2.6, and P2.7, input/output with Schmitt trigger



# MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

#### Port P2.0, P2.3, P2.4, P2.6 and P2.7 pin functions

| DINI NIAME (DO VI |   |                  | CONT   | TROL BITS / SIGNALS |         |  |
|-------------------|---|------------------|--------|---------------------|---------|--|
| PIN NAME (P2.X)   | X | FUNCTION         | CAPD.x | P2DIR.x             | P2SEL.x |  |
| P2.0/ACLK/CA2     | 0 | P2.0 (I/O)       | 0      | I: 0; O: 1          | 0       |  |
|                   |   | ACLK             | 0      | 1                   | 1       |  |
|                   |   | CA2              | 1      | X                   | Х       |  |
| P2.1/TAINCLK/CA3  | 1 | P2.1 (I/O)       | 0      | I: 0; O: 1          | 0       |  |
|                   |   | Timer_A3.INCLK   | 0      | 0                   | 1       |  |
|                   |   | DV <sub>SS</sub> | 0      | 1                   | 1       |  |
|                   |   | CA3              | 1      | Х                   | Х       |  |
| P2.2/CAOUT/TA0/   | 2 | P2.2 (I/O)       | 0      | I: 0; O: 1          | 0       |  |
| CA4               |   | CAOUT            | 0      | 1                   | 1       |  |
|                   |   | TA0              | 0      | 0                   | 1       |  |
|                   |   | CA4              | 1      | Х                   | Х       |  |
| P2.3/CA0/TA1      | 3 | P2.3 (I/O)       | 0      | I: 0; O: 1          | 0       |  |
|                   |   | Timer_A3.TA1     | 0      | 1                   | 1       |  |
|                   |   | CA0              | 1      | X                   | Х       |  |
| P2.4/CA1/TA2      | 4 | P2.4 (I/O)       | 0      | I: 0; O: 1          | 0       |  |
|                   |   | Timer_A3.TA2     | 0      | 1                   | Х       |  |
|                   |   | CA1              | 1      | X                   | 1       |  |
| P2.6/ADC12CLK/    | 6 | P2.6 (I/O)       | 0      | I: 0; O: 1          | 0       |  |
| DMAE0/CA6         |   | ADC12CLK         | 0      | 1                   | 1       |  |
|                   |   | DMAE0            | 0      | 0                   | 1       |  |
|                   |   | CA6              | 1      | Х                   | Х       |  |
| P2.7/TA0/CA7      | 7 | P2.7 (I/O)       | 0      | I: 0; O: 1          | 0       |  |
|                   |   | Timer_A3.TA0     | 0      | 1                   | 1       |  |
|                   |   | CA7              | 1      | Х                   | Х       |  |

NOTE: X: Don't care

#### Port P2 pin schematic: P2.5, input/output with Schmitt trigger



#### Port P2.5 pin functions

| DIN NAME (DO V)            |   | FUNCTION                      | CONTROL BITS / SIGNALS |      |            |         |
|----------------------------|---|-------------------------------|------------------------|------|------------|---------|
| PIN NAME (P2.X)            | X |                               | CAPD                   | DCOR | P2DIR.5    | P2SEL.5 |
| P2.5/R <sub>OSC</sub> /CA5 | 5 | P2.5 (I/O)                    | 0                      | 0    | I: 0; O: 1 | 0       |
|                            |   | R <sub>OSC</sub> (see Note 2) | 0                      | 1    | X          | Х       |
|                            |   | DV <sub>SS</sub>              | 0                      | 0    | 1          | 1       |
|                            |   | CA5                           | 1 or selected          | 0    | Х          | Х       |

NOTES: 1. X: Don't care

2. If Rosc is used it is connected to an external resistor.



#### Port P3 pin schematic: P3.0 to P3.7, input/output with Schmitt trigger



#### Port P3.0 to P3.7 pin functions

| DIN NAME (DO VO |   |                                     | CONTROL BIT | rs / Signals |
|-----------------|---|-------------------------------------|-------------|--------------|
| PIN NAME (P3.X) | X | FUNCTION                            | P3DIR.x     | P3SEL.x      |
| P3.0/UCB0STE/   | 0 | P3.0 (I/O)                          | l: 0; O: 1  | 0            |
| UCA0CLK         |   | UCB0STE/UCA0CLK (see Note 2 and 4)  | X           | 1            |
| P3.1/UCB0SIMO/  | 1 | P3.1 (I/O)                          | I: 0; O: 1  | 0            |
| UCB0SDA         |   | UCB0SIMO/UCB0SDA (see Note 2 and 3) | X           | 1            |
| P3.2/UCB0SOMI/  | 2 | P3.2 (I/O)                          | I: 0; O: 1  | 0            |
| UCB0SCL         |   | UCB0SOMI/UCB0SCL (see Note 2 and 3) | X           | 1            |
| P3.3/UCB0CLK/   | 3 | P3.3 (I/O)                          | I: 0; O: 1  | 0            |
| UCA0STE         |   | UCB0CLK/UCA0STE (see Note 2)        | X           | 1            |
| P3.4/UCA0TXD/   | 4 | P3.4 (I/O)                          | l: 0; O: 1  | 0            |
| UCA0SIMO        |   | UCA0TXD/UCA0SIMO (see Note 2)       | X           | 1            |
| P3.5/UCA0RXD/   | 5 | P3.5 (I/O)                          | l: 0; O: 1  | 0            |
| UCA0SOMI        |   | UCA0RXD/UCA0SOMI (see Note 2)       | X           | 1            |
| P3.6/UCA1TXD/   | 6 | P3.6 (I/O)                          | l: 0; O: 1  | 0            |
| UCA1SIMO        |   | UCA1TXD/UCA1SIMO (see Note 2)       | X           | 1            |
| P3.7/UCA1RXD/   | 7 | P3.7 (I/O)                          | I: 0; O: 1  | 0            |
| UCA1SOMI        |   | UCA1RXD/UCA1SOMI (see Note 2)       | X           | 1            |

NOTES: 1. X: Don't care

- 2. The pin direction is controlled by the USCI module.
- 3. In case the I2C functionality is selected the output drives only the logical 0 to  $V_{SS}$  level.
- 4. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output USCI A0/B0 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected.



#### Port P4 pin schematic: P4.0 to P4.7, input/output with Schmitt trigger



#### Port P4.0 to P4.7 pin functions

| DINI NAME (DA VO |   |                                   | CONTROL BI | rs / Signals |
|------------------|---|-----------------------------------|------------|--------------|
| PIN NAME (P4.X)  | X | FUNCTION                          | P4DIR.x    | P4SEL.x      |
| P4.0/TB0         | 0 | P4.0 (I/O)                        | I: 0; O: 1 | 0            |
|                  |   | Timer_B7.CCl0A and Timer_B7.CCl0B | 0          | 1            |
|                  |   | Timer_B7.TB0                      | 1          | 1            |
| P4.1/TB1         | 1 | P4.1 (I/O)                        | I: 0; O: 1 | 0            |
|                  |   | Timer_B7.CCl1A and Timer_B7.CCl1B | 0          | 1            |
|                  |   | Timer_B7.TB1                      | 1          | 1            |
| P4.2/TB2         | 2 | P4.2 (I/O)                        | I: 0; O: 1 | 0            |
|                  |   | Timer_B7.CCl2A and Timer_B7.CCl2B | 0          | 1            |
|                  |   | Timer_B7.TB2                      | 1          | 1            |
| P4.3/TB3         | 3 | P4.3 (I/O)                        | I: 0; O: 1 | 0            |
|                  |   | Timer_B7.CCl3A and Timer_B7.CCl3B | 0          | 1            |
|                  |   | Timer_B7.TB3                      | 1          | 1            |
| P4.4/TB4         | 4 | P4.4 (I/O)                        | I: 0; O: 1 | 0            |
|                  |   | Timer_B7.CCl4A and Timer_B7.CCl4B | 0          | 1            |
|                  |   | Timer_B7.TB4                      | 1          | 1            |
| P4.5/TB5         | 5 | P4.5 (I/O)                        | l: 0; O: 1 | 0            |
|                  |   | Timer_B7.CCl5A and Timer_B7.CCl5B | 0          | 1            |
|                  |   | Timer_B7.TB5                      | 1          | 1            |
| P4.6/TB6         | 6 | P4.6 (I/O)                        | I: 0; O: 1 | 0            |
|                  |   | Timer_B7.CCl6A and Timer_B7.CCl6B | 0          | 1            |
|                  |   | Timer_B7.TB6                      | 1          | 1            |
| P4.7/TBCLK       | 7 | P4.7 (I/O)                        | l: 0; O: 1 | 0            |
|                  |   | Timer_B7.TBCLK                    | 1          | 1            |



#### Port P5 pin schematic: P5.0 to P5.7, input/output with Schmitt trigger



#### Port P5.0 to P5.7 pin functions

| DIN NAME (DE VO |   | FUNCTION                            | CONTROL BI | TS / SIGNALS |
|-----------------|---|-------------------------------------|------------|--------------|
| PIN NAME (P5.X) | X | FUNCTION                            | P5DIR.x    | P5SEL.x      |
| P5.0/UCB1STE/   | 0 | P5.0 (I/O)                          | I: 0; O: 1 | 0            |
| UCA1CLK         |   | UCB1STE/UCA1CLK (see Note 2 and 4)  | X          | 1            |
| P5.1/UCB1SIMO/  | 1 | P5.1 (I/O)                          | I: 0; O: 1 | 0            |
| UCB1SDA         |   | UCB1SIMO/UCB1SDA (see Note 2 and 3) | X          | 1            |
| P5.2/UCB1SOMI/  | 2 | P5.2 (I/O)                          | I: 0; O: 1 | 0            |
| UCB1SCL         |   | UCB1SOMI/UCB1SCL (see Note 2 and 3) | Х          | 1            |
| P5.3/UCB1CLK/   | 3 | P5.3 (I/O)                          | I: 0; O: 1 | 0            |
| UCA1STE         |   | UCB1CLK/UCA1STE (see Note 2)        | X          | 1            |
| P5.4/MCLK       | 4 | P5.0 (I/O)                          | I: 0; O: 1 | 0            |
|                 |   | MCLK                                | 1          | 1            |
| P5.5/SMCLK      | 5 | P5.1 (I/O)                          | I: 0; O: 1 | 0            |
|                 |   | SMCLK                               | 1          | 1            |
| P5.6/ACLK       | 6 | P5.2 (I/O)                          | I: 0; O: 1 | 0            |
|                 |   | ACLK                                | 1          | 1            |
| P5.7/TBOUTH/    | 7 | P5.7 (I/O)                          | I: 0; O: 1 | 0            |
| SVSOUT          |   | ТВОИТН                              | 0          | 1            |
|                 |   | SVSOUT                              | 1          | 1            |

NOTES: 1. X: Don't care

- 2. The pin direction is controlled by the USCI module.
- 3. In case the I2C functionality is selected the output drives only the logical 0 to  $V_{SS}$  level.
- 4. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI A1/B1 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected.



#### Port P6 pin schematic: P6.0 to P6.4, input/output with Schmitt trigger



#### Port P6.0 to P6.4 pin functions

| DIN NAME (DC V) |   |                 | CONTROL BIT | rs / Signals |
|-----------------|---|-----------------|-------------|--------------|
| PIN NAME (P6.X) | X | FUNCTION        | P6DIR.x     | P6SEL.x      |
| P6.0/A0         | 0 | P6.0 (I/O)      | I: 0; O: 1  | 0            |
|                 |   | A0 (see Note 2) | Х           | Х            |
| P6.1/A1         | 1 | P6.1 (I/O)      | I: 0; O: 1  | 0            |
|                 |   | A1 (see Note 2) | Х           | X            |
| P6.2/A2         | 2 | P6.2 (I/O)      | I: 0; O: 1  | 0            |
|                 |   | A2 (see Note 2) | Х           | Х            |
| P6.3/A3         | 3 | P6.3 (I/O)      | I: 0; O: 1  | 0            |
|                 |   | A3 (see Note 2) | Х           | Х            |
| P6.4/A4         | 4 | P6.4 (I/O)      | I: 0; O: 1  | 0            |
|                 |   | A4 (see Note 2) | Х           | Х            |

NOTES: 1. X: Don't care

2. The ADC12 channel Ax is connected to AVss internally if not selected.



#### Port P6 pin schematic: P6.5 and P6.6, input/output with Schmitt trigger



#### Port P6.5 to P6.6 pin functions

|                 |   |                               | CON        | CONTROL BITS / SIGNALS |                           |  |  |  |
|-----------------|---|-------------------------------|------------|------------------------|---------------------------|--|--|--|
| PIN NAME (P6.X) | X | FUNCTION                      | P6DIR.x    | P6SEL.x                | CAPD.x or<br>DAC12AMP > 0 |  |  |  |
| P6.5/A5/DAC1†   | 5 | P6.5 (I/O)                    | I: 0; O: 1 | 0                      | 0                         |  |  |  |
|                 |   | DV <sub>SS</sub>              | 1          | 1                      | 0                         |  |  |  |
|                 |   | A5 (see Note 2)               | X          | X                      | 1                         |  |  |  |
|                 |   | DAC1 (DA12OPS= 1, see Note 3) | Х          | X                      | 1                         |  |  |  |
| P6.6/A6/DAC0†   | 6 | P6.6 (I/O)                    | I: 0; O: 1 | 0                      | 0                         |  |  |  |
|                 |   | DV <sub>SS</sub>              | 1          | 1                      | 0                         |  |  |  |
|                 |   | A6 (see Note 2)               | Х          | X                      | 1                         |  |  |  |
|                 |   | DAC0 (DA12OPS= 0, see Note 3) | X          | X                      | 1                         |  |  |  |

† MSP430F261x devices only

NOTES: 1. X: Don't care

- 2. The ADC12 channel Ax is connected to AVss internally if not selected.
- 3. The DAC outputs are floating if not selected.

#### Port P6 pin schematic: P6.7, input/output with Schmitt trigger



#### Port P6.7 pin functions

| PIN NAME (P6.X) | , | FUNCTION                      | CONTROL BITS / SIGNALS |         |  |
|-----------------|---|-------------------------------|------------------------|---------|--|
|                 | Х | FUNCTION                      | P6DIR.x                | P6SEL.x |  |
| P6.7/A7/DAC1†/  | 7 | P6.7 (I/O)                    | I: 0; O: 1             | 0       |  |
| SVSIN†          |   | DV <sub>SS</sub>              | 1                      | 1       |  |
|                 |   | A7 (see Note 2)               | X                      | X       |  |
|                 |   | DAC1 (DA12OPS= 0, see Note 3) | X                      | X       |  |
|                 |   | SVSIN (VLD = 15)              | Х                      | X       |  |

NOTES: 1. X: Don't care

- 2. The ADC12 channel Ax is connected to AVss internally if not selected.
- 3. The DAC outputs are floating if not selected.



<sup>&</sup>lt;sup>†</sup> MSP430F261x devices only

## Port P7 pin schematic: P7.0 to P7.7, input/output with Schmitt trigger<sup>†</sup>



## Port P7.0 to P7.7 pin functions<sup>†</sup>

| DINI NIAME (DZ V) |   | FUNCTION   | CONTROL BI | CONTROL BITS / SIGNALS |  |  |
|-------------------|---|------------|------------|------------------------|--|--|
| PIN NAME (P7.X)   | X | FUNCTION   | P7DIR.x    | P7SEL.x                |  |  |
| P7.0              | 0 | P7.0 (I/O) | l: 0; O: 1 | 0                      |  |  |
|                   |   | Input      | X          | 1                      |  |  |
| P7.1              | 1 | P7.1 (I/O) | l: 0; O: 1 | 0                      |  |  |
|                   |   | Input      | X          | 1                      |  |  |
| P7.2              | 2 | P7.2 (I/O) | l: 0; O: 1 | 0                      |  |  |
|                   |   | Input      | X          | 1                      |  |  |
| P7.3              | 3 | P7.3 (I/O) | I: 0; O: 1 | 0                      |  |  |
|                   |   | Input      | X          | 1                      |  |  |
| P7.4              | 4 | P7.4 (I/O) | l: 0; O: 1 | 0                      |  |  |
|                   |   | Input      | X          | 1                      |  |  |
| P7.5              | 5 | P7.5 (I/O) | l: 0; O: 1 | 0                      |  |  |
|                   |   | Input      | X          | 1                      |  |  |
| P7.6              | 6 | P7.6 (I/O) | l: 0; O: 1 | 0                      |  |  |
|                   |   | Input      | X          | 1                      |  |  |
| P7.7              | 7 | P7.7 (I/O) | l: 0; O: 1 | 0                      |  |  |
|                   |   | Input      | X          | 1                      |  |  |

<sup>† 80-</sup>pin devices only

#### Port P8 pin schematic: P8.0 to P8.5, input/output with Schmitt trigger†



#### Port P8.0 to P8.5 pin functions†

| PIN NAME (P8.X) |   | FUNCTION   | CONTROL BITS / SIGNALS |         |  |
|-----------------|---|------------|------------------------|---------|--|
| PIN NAME (P8.X) | Х | FUNCTION   | P8DIR.x                | P8SEL.x |  |
| P8.0            | 0 | P8.0 (I/O) | I: 0; O: 1             | 0       |  |
|                 |   | Input      | Х                      | 1       |  |
| P8.1            |   | P8.1 (I/O) | I: 0; O: 1             | 0       |  |
|                 |   | Input      | Х                      | 1       |  |
| P8.2            | 2 | P8.2 (I/O) | I: 0; O: 1             | 0       |  |
|                 |   | Input      | X                      | 1       |  |
| P8.3            | 3 | P8.3 (I/O) | I: 0; O: 1             | 0       |  |
|                 |   | Input      | Х                      | 1       |  |
| P8.4            | 4 | P8.4 (I/O) | I: 0; O: 1             | 0       |  |
|                 |   | Input      | Х                      | 1       |  |
| P8.5            | 5 | P8.5 (I/O) | I: 0; O: 1             | 0       |  |
|                 |   | Input      | Х                      | 1       |  |

<sup>† 80-</sup>pin devices only



# Port P8 pin schematic: P8.6, input/output with Schmitt trigger†



# Port P8.6 pin functions†

| PIN NAME (P8.X) |   | FUNCTION         | CONTROL BITS / SIGNALS |         |  |
|-----------------|---|------------------|------------------------|---------|--|
| PIN NAME (P8.X) |   | FUNCTION         | P8DIR.x                | P8SEL.x |  |
| P8.6/XOUT       | 6 | P8.6 (I/O)       | I: 0; O: 1             | 0       |  |
|                 |   | XOUT (default)   | 0                      | 1       |  |
|                 |   | DV <sub>SS</sub> | 1                      | 1       |  |

<sup>† 80-</sup>pin devices only

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

#### Port P8 pin schematic: P8.7, input/output with Schmitt trigger<sup>†</sup>



#### Port P8.7 pin functions†

| PIN NAME (P8.X) | x | FUNCTION      | CONTROL BITS / SIGNALS |         |  |
|-----------------|---|---------------|------------------------|---------|--|
| PIN NAME (PO.A) |   | FUNCTION      | P8DIR.x                | P8SEL.x |  |
| P8.7/XIN        | 7 | P8.7 (I/O)    | I: 0; O: 1             | 0       |  |
|                 |   | XIN (default) | 0                      | 1       |  |
|                 |   | $V_{SS}$      | 1                      | 1       |  |

<sup>† 80-</sup>pin devices only

#### **APPLICATION INFORMATION**

JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger



During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

#### APPLICATION INFORMATION

#### JTAG fuse check mode

MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current,  $I_{TF}$ , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 49). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition).



Figure 49. Fuse Check Mode Current

# MSP430x241x, MSP430x261x MIXED SIGNAL MICROCONTROLLER

SLAS541A - JUNE 2007 - REVISED OCTOBER 2007

## **Data Sheet Revision History**

| LITERATURE<br>NUMBER | SUMMARY                                                                                |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| SLAS541              | Product Preview release.                                                               |  |  |  |  |  |  |
|                      | Production Data release.                                                               |  |  |  |  |  |  |
|                      | Corrected the format and the content shown on the first page.                          |  |  |  |  |  |  |
| SLAS541A             | Corrected pin number of P3.6 and P3.7 in 64-pin package in the terminal function list. |  |  |  |  |  |  |
| SLASS41A             | Corrected the port schematics.                                                         |  |  |  |  |  |  |
|                      | Corrected "calibration data" section (page 20). Typos and formatting corrected.        |  |  |  |  |  |  |
|                      | Added figure "typical characteristics - LPM4 current" (page 33).                       |  |  |  |  |  |  |



#### **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------|
| MSP430F2416TPM   | ACTIVE                | LQFP            | PM                 | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2416TPMR  | ACTIVE                | LQFP            | PM                 | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2416TPN   | ACTIVE                | LQFP            | PN                 | 80   | 119            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2416TPNR  | ACTIVE                | LQFP            | PN                 | 80   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2417TPM   | ACTIVE                | LQFP            | PM                 | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2417TPMR  | ACTIVE                | LQFP            | PM                 | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2417TPN   | ACTIVE                | LQFP            | PN                 | 80   | 119            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2417TPNR  | ACTIVE                | LQFP            | PN                 | 80   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2418TPM   | ACTIVE                | LQFP            | PM                 | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2418TPMR  | ACTIVE                | LQFP            | PM                 | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2418TPN   | ACTIVE                | LQFP            | PN                 | 80   | 119            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2418TPNR  | ACTIVE                | LQFP            | PN                 | 80   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2419TPM   | ACTIVE                | LQFP            | PM                 | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2419TPMR  | ACTIVE                | LQFP            | PM                 | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2419TPN   | ACTIVE                | LQFP            | PN                 | 80   | 119            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2419TPNR  | ACTIVE                | LQFP            | PN                 | 80   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2616TPM   | ACTIVE                | LQFP            | PM                 | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2616TPMR  | ACTIVE                | LQFP            | PM                 | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2616TPN   | ACTIVE                | LQFP            | PN                 | 80   | 119            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2616TPNR  | ACTIVE                | LQFP            | PN                 | 80   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2617TPM   | ACTIVE                | LQFP            | PM                 | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2617TPMR  | ACTIVE                | LQFP            | PM                 | 64   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2617TPN   | ACTIVE                | LQFP            | PN                 | 80   | 119            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2617TPNR  | ACTIVE                | LQFP            | PN                 | 80   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |
| MSP430F2618TPM   | ACTIVE                | LQFP            | PM                 | 64   | 160            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-3-260C-168 HR          |



#### PACKAGE OPTION ADDENDUM

2-Nov-2007

| Orderable Device | Status (1) | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan <sup>(2)</sup>    | Lead/Ball Finish | MSL Peak Temp (3)   |
|------------------|------------|-----------------|--------------------|------|----------------|----------------------------|------------------|---------------------|
| MSP430F2618TPMR  | ACTIVE     | LQFP            | PM                 | 64   | 1000           | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-3-260C-168 HR |
| MSP430F2618TPN   | ACTIVE     | LQFP            | PN                 | 80   | 119            | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR |
| MSP430F2618TPNR  | ACTIVE     | LQFP            | PN                 | 80   | 1000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR |
| MSP430F2619TPM   | ACTIVE     | LQFP            | PM                 | 64   | 160            | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR |
| MSP430F2619TPMR  | ACTIVE     | LQFP            | PM                 | 64   | 1000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR |
| MSP430F2619TPN   | ACTIVE     | LQFP            | PN                 | 80   | 119            | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR |
| MSP430F2619TPNR  | ACTIVE     | LQFP            | PN                 | 80   | 1000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR |

<sup>&</sup>lt;sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### PM (S-PQFP-G64)

#### PLASTIC QUAD FLATPACK

1



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026
- D. May also be thermally enhanced plastic with leads connected to the die pads.

#### PN (S-PQFP-G80)

#### PLASTIC QUAD FLATPACK



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products              |                        | Applications       |                           |
|-----------------------|------------------------|--------------------|---------------------------|
| Amplifiers            | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters       | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP                   | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface             | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic                 | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt            | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers      | microcontroller.ti.com | Security           | www.ti.com/security       |
| RFID                  | www.ti-rfid.com        | Telephony          | www.ti.com/telephony      |
| Low Power<br>Wireless | www.ti.com/lpw         | Video & Imaging    | www.ti.com/video          |
|                       |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated