

Shapes applications and tools

Jose Emilio Labra Gayo

WESO Research group University of Oviedo, Spain

Contents

Shapes applications and use cases

Data portals

Wikidata and wikibase

Other use cases

Tools: challenges and perspectives

Validating with shapes

Validation usability

Continuous integration

Other applications of shapes

Uls

Generating code

Inference and rules

Transforming data

Obtaining shapes

Shapes ecosystems

Data portals

In 2013, at WESO, we were hired to develop some data portals

Examples: WebIndex (Web Foundation)

One of the first applications of ShEx

Measure WWW's contribution to development and human rights by country

Developed by the Web Foundation

Content of data portal = statistical observations

We employed RDF Data Cube vocabulary (qb:Observation)

Simplified WebIndex data model

Lessons learnt from ShEx usage at WebIndex

1. Documentation of linked data portal Human-readable, machine processable

http://weso.github.io/wiDoc

- 2. Team communication
 - Communicate the developers which shapes they had to generate
- 3. Validation
 - For example: check if a value of type qb:Observation had shape <Observation>
- 4. Reuse

Another data portal was later developed for http://landportal.org base on observations Easy to reuse and adapt the data model

Same types (qb:Observation) but different structure

Wikidata and wikibase

WESO

In May, 2019, Wikidata announced ShEx adoption New namespace for schemas

Example:

https://www.wikidata.org/wiki/EntitySchema:E2

Wikibase also contains entity schemas

Online demo: wikishape

SOLID (SOcial Linked Data): Promoted by Tim Berners-Lee

Goal: Re-decentralize the Web

Separate data from apps

Give users more control about their data

Internally using linked data & RDF

Shapes needed for interoperability

"...I just can't stop thinking about shapes.", Ruben Verborgh https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/

Other use cases

HL7 FHIR.

Example: https://www.hl7.org/fhir/observation.html

ELI validator

SHACL shapes obtained from Excel sheets:

https://webgate.ec.europa.eu/eli-validator/home

SHACL adoption supported by Top Quadrant

See: https://www.topquadrant.com/technology/shacl/

More info:

Tools: challenges and perspectives

Validating with shapes

Obtaining shapes

Other applications of shapes

Shapes ecosystems

Validating with shapes

Libraries and command line validators

Online demos

Integrated in ontology editors

Continuous integration with Shapes

Libraries and command line validators

All libraries are available at: https://github.com/weso/

Online demos

Web Demos and playgrounds

Integrating shapes with other tools

TopBraid Composer

https://www.topquadrant.com/technology/shacl/

Ontology editors

SHACL plugin for protégé: https://github.com/fekaputra/shacl-plugin

ShEx plugin for protégé: https://github.com/weso/protegeShEx

Continuous integration with Shapes

Coexistence between ontologies/shapes

Shapes can validate the behaviour of inference systems

Shapes pre- and post- inference

TDD and continuous integration based on shapes

Gene Ontology Shapes:

https://github.com/geneontology/go-shapes Ontological infrastructure Control version system (git) Ontologies **Endpoint** Ontology **SPARQL** publication **Shapes library** Triple system Test data Store

Ontology

engineer

Continuous

Integration

server

Continuous integration with Shapes

Ontolo-ci: https://github.com/weso/ontolo-ci

Developed as part of HERCULES-Ontology

Test-Driven-Development applied to Ontologi

Input:

- Ontologies
- Shapes
- Test data
- Input shape map (SPARQL competency question
- Expected result shape map

Creating shapes

Shapes editors

Text-based editors

Visual editors and visualizers

Obtaining shapes from...

Spreadsheets

RDF data

Ontologies

Other schemas (XML Schema)

Text-based editors

YaSHE: Forked from YASGUI: http://www.weso.es/YASHE/

Syntax highlighting

Auto-completion

```
1 PREFIX xsd: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#</a>
                                                                                                                       土 ≜ 百 ● □
2 prefix wd: <http://www.wikidata.org/entity/>
   prefix wdt: <http://www.wikidata.org/prop/direct/>
    # Example SPARQL query: select ?researcher where { ?researcher wdt:P106 wd:Q1650915 } limit 5
7 ▼ <Researcher> EXTRA wdt:P31 wdt:P106 {
                            ; # Instance of = human
      wdt:P31 [ wd:Q5 ]
     wdt:P106 [ wd:Q1650915 ] ; # Occupation = researcher
     wdt:P101 @<Discipline> * ; # Field of work
     wdt:P496 xsd:string
                                 ? ; # ORCID-ID
                                ? ; # Scopus-Author ID
      wdt:P1153 xsd:string
                  Scopus Author ID (P1153)
13
                  identifier for an author
                     assigned in Scopus
                   bibliographic database
```


Shapes author tools

Top Braid Composer

UnSHACLed

ShEx-Author

Shapes author tools: Top Braid Composer

Form based editor Integrated with Top Braid product

Shapes author tools: UnSHACLed

Visual SHACL Editor in Javascript

B. De Meester, P. Heyvaert, A. Dimou, and R. Verborgh, "Towards a Uniform User Interface for Editing Data Shapes," in Proceedings of the 4th International Workshop on Visualization and Interaction for Ontologies and Linked Data, 2018, vol. 2187.

Shapes author tools: ShEx Author

ShEx-Author: Inspired by Wikidata Query Service

2 column: Visual one synchronized with text based

Shapes visualization

Integrated in RDFShape/Wikishape

- <u>UMLSHacIEX</u> UML diagrams for ShEx
- ShUMLex: Conversion to UML through XMI

Shapes from spreadsheets

SKOS-Play was used at ELI to generate SHACL shapes from Excel

ShExstatements: https://shexstatements.toolforge.org/

ShExCSV: CSV representation of Shapes

Hermes: ShExCSV processor, https://github.com/weso/hermes

Generating Shapes from RDF data

Useful use case in practice

Some prototypes

sheXer: http://shexer.weso.es/

RDFShape: http://rdfshape.weso.es

ShapeDesigner: https://gitlab.inria.fr/jdusart/shexjapp

Try it with RDFShape:

https://tinyurl.com/y8pjcbyf

Shapes from data: RDFShape

RDFShape/Wikishape implement a basic prototype to derive Shapes from RDF data

Shapes from data: sheXer

sheXer: http://shexer.weso.es/

Implemented in Python Configuration options

Shapes from data: ShapeDesigner

https://gitlab.inria.fr/jdusart/shexjapp

Shapes from RDF data

RDFShape allows to infer basic shapes automatically

Shapes from ontologies

Astrea*: https://astrea.linkeddata.es/

Generates SHACL shapes from OWL ontologies

Mappings between ontology construct patterns to SHACL

^{*}Cimmino, A., Fernández-Izquierdo, A., & García-Castro, R. (2020). Astrea: automatic generation of SHACL shapes from ontologies. In European Semantic Web Conference

Other uses of Shapes

UIs and shapes

Generating code from Shapes

Shapes and rules

UIs and shapes

Shapes can provide hints to generate user interfaces/forms
SHACL core defines a basic vocabulary: sh:group, sh:order, ...
ShEx annotations can also be used to define UI declarations
Example: UI ontology annotations

UIs and Shapes: ShExPath and ShEx-Forms

ShEx Path can be used to point to parts of a ShEx schema

https://shexspec.github.io/spec/ShExPath

ShEx generated forms demo based on UI ontology:

https://ericprud.github.io/shex-form/?manifestURL=examples/manifest.json

Uls and shapes: TopQuadrant

Form generation from SHACL

DASH vocabulary:

http://datashapes.org/forms.html

Uls and shapes: Schímatos

http://schimatos.org/

It will be presented at ISWC20

Generating code from shapes

Generate domain model from shapes

Entities (pseudo-shapes) defined with Excel (Google spreadsheets) Shapes generation from those templates Java code generation (POJOs) from those shapes

Generating code from shapes

Domain model based on Shapes

Clean architecture pattern

Domain model as central element

Simple classes (POJO): Plain Old Java Objects

Shapes synchronization

Application logic and services based on domain model

Shapes and rules

SHACL Advanced Features describes SHACL rules

```
:Rectangle a rdfs:Class, sh:NodeShape ;
 rdfs:label "Rectangle" ;
 sh:property [ sh:path :height ;
  sh:datatype xsd:integer ;
  sh:maxCount 1 ; sh:minCount 1 ;
  sh:name "height" ];
 sh:property [sh:path :width ;
  sh:datatype xsd:integer ;
  sh:maxCount 1 ; sh:minCount 1 ;
  sh:name "width"; ];
 sh:rule [ a sh:TripleRule ;
  sh:subject sh:this;
  sh:predicate rdf:type ;
  sh:object
             :Square ;
  sh:condition :Rectangle ;
  sh:condition [
   sh:property [
    sh:path :width ;
    sh:equals :height ;
```

```
:I a :Rectangle .
:N a :Rectangle ;
:height 2 ;
:width 3 .
:S a :Rectangle ;
:height 4 ;
:width 4 .
```

:S a :Square .

Shapes for data integration

XMLSchema2ShEx: Convert XML Schemas to shapes

ShExML: Domain specific language to convert data to RDF

Input formats: CSV, XML, JSON, SQL

Shapes ecosystems

Wikidata provides a whole ShEx ecosystem

Entity schemas can evolve and relate between each other

Directory: https://www.wikidata.org/wiki/Wikidata:Database_reports/EntitySchema_directory

Different schemas for the same entities?

Some schemas stress some aspects while others stress others

Evolution of schemas

Searching entity schemas

Conclusions

ShEx and SHACL have had a great level of adoption

But there are other types of Knowledge Graphs

Much more work to do

New tools and challenges

Acknowldgments

Awesome Semantic Shapes:

https://github.com/w3c-cg/awesome-semantic-shapes

Special thanks to Vladimir Alexiev for starting it

People from ShEx community group: Tom Baker, Kat Thornton, Andra Waagmeester,...