My histo 5 -Discente ; Paulo Henrique Diviz de hima Alencar. (119) Resolución : tomos que \Rightarrow $d'(x_0)'' = \frac{f(x) - f(x_0)}{x - x_0}$ ou $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x}$ Usando a 1°, teremos: $f'(1) = \lim_{x \to 2} = x^2 + 2x + 5 - f(1)$ d(1)=12+201+5=8 -3 $f'(1) = him = \frac{x^2 + 2x + 5 - 8}{x - 1}$ $-9 q'(1) = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1}$ % (X-1) 0 (X+3) = teno agora -> f'(1) = lim (x/1) (x+3) -> f'(1) = lim 4 = 4

122) Resolução :

 $\frac{\int '(x) = \lim_{x \to x_0} \frac{\int (x) - \int (x_0)}{x - x_0} \rightarrow \lim_{x \to 0} \frac{1 \times 1 - \int (0)}{x - 0} \rightarrow \lim_{x \to 0} \frac{1 \times 1}{x}$

|X|= { x ne x > 0 proster personal de module.

 $\lim_{X\to 0^+} \frac{x}{x} = 1$ $+ = \lim_{X\to 0} \frac{|x|}{x} = \frac{1}{x} = \lim_{X\to 0} \frac{|x|}{x} = \frac{1}{x}$

 $\lim_{x \to 0^-} \frac{-x}{x} = -1$

f)
$$d(x) = \sqrt[3]{x^2}$$
, $x_0 = 2\sqrt{2}$
 $d(x_0) \Rightarrow d(2\sqrt{2}) = \sqrt[3]{(2\sqrt{2})^2} \Rightarrow d(2\sqrt{2}) = \sqrt[3]{8} \Rightarrow d(2\sqrt{2}) = 2$
 $d(x_0) \Rightarrow d(2\sqrt{2}) = \sqrt[3]{(2\sqrt{2})^2} \Rightarrow d(2\sqrt{2}) = 2$
 $d(x_0) \Rightarrow d(x_0) \Rightarrow d$

$$y-y_0 = 6(x_0)(x-x_0)$$

 $y-(-1) = 0 \cdot (x-1)$

$$f(x_0) \rightarrow f(1) = 1^2 - 2 \cdot 1 = -1$$

b)
$$f(x) = x^2 - 2x$$
, $x_0 = 1$

$$\Rightarrow \lim_{x \to 1} \frac{x-1}{(x-1)(\sqrt{x}+1)} \Rightarrow \lim_{x \to 1} \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{4}(1) = \lim_{X \to 1} \frac{\sqrt{X} - 1}{X - 1} \Rightarrow \frac{\sqrt{X} - 1}{X - 1} * \frac{\sqrt{X} + 1}{\sqrt{X} + 1} = \frac{(\sqrt{X})^2 \cdot 1^2}{(X - 1)(\sqrt{X} + 1)} \Rightarrow$$

 $0 = \frac{x^2 - 2x - (-1)}{x - 1}$

 $X = \frac{2 \pm 0}{2} \left(\begin{array}{c} x_1 = 1 \\ x_2 = 1 \end{array} \right) \left(\begin{array}{c} x_1 = 1 \\ x_2 = 1 \end{array} \right) \left(\begin{array}{c} x - x_1 \\ x - 1 \end{array} \right) \left(\begin{array}{c} x - x_2 \\ x - 1 \end{array} \right)$

D= (-2)2-4-10 L

 $\lim_{x\to 1} \frac{x^2 - 2x + 1}{x - 1} \to \lim_{x\to 1} \frac{(x-1)(x-1)}{(x-1)}$

him (x-1) = 0

$$f(x)=5$$
, salenes que: $f(x)=C \Rightarrow g'(x)=0$
:. como $f(x)=5 \Rightarrow f'(x)=0$

$$g(x) = x^6$$
, salens que: $f(x) = x^h = 0$ $J'(x) = n \cdot x^{n-l}$
2. como $g(x) = x^6 = 0$ $g'(x) = 6 \cdot x^5$

$$h(X) = X^{15}$$
, sahemo que: $f(X) = X^{n-1} \implies f'(X) = n \cdot x^{n-1}$
... Cono $h(X) = X^{15} \implies h'(X) = 15 \cdot X^{14}$

$$g(x) = tgx \rightarrow \left[tgx = \frac{senx}{cosx}\right]$$

$$g(x) = \frac{sen x}{cos x}$$