SET	C144/CY44 – AUTOMATA THEORY AND	O COMPILER DESIGN USN: MARKS:/10
4	Which of these is not true about Symbol Table	710
1.	a) All the labels of the instructions are symbols	Ans:
	b) Table has entry for symbol name address value	
	c) Perform the processing of the assembler directiv	es
	N 0 1 1 1 1	(1 M)
	d) Created during pass 1	()
subs	et construction method. (2 M)	with ab or ba and convert the obtained NFA to DFA by
{a,b x. N strii outp Step	(c). A: a?(b c)*a B: b?(a c)*b C: c?(b a)*c Note also that the analyzer outputs the token that ag bbaacabc is processes by the analyzer, which outs? (1 M)	recognize three tokens A, B, and C over the alphabet Note that 'x?' means 0 or 1 occurrence of the symbol t matches the longest possible prefix. If the h one of the following is the sequence of tokens it
4. Coint noint I fro (hoose the correct option for the following (1 M onsider the following C program: hin (){ /*line 1*/ . N; /*line 2*/ I=0, I /*line 3*/	
(A) (B) I (C) (D) I	le creating the object module, the compiler's respons Only syntax error No compilation error Only lexical error Both lexical and syntax error	e about line no. 3 is
	ow many tokens are there in the following C start ("j=%d, &j=%x", j,&j) 4 (B) 7 (C) 8	
6. C	onstruct the transition diagram for keywords (1 he, his, hers, he, me	

7. Minimize the DFA given below. (2 M)

δ	a	b
\rightarrow q0	q1	q0
*q1	q1	q2
q2	q3	q0 q2 q2 q4
q2 *q3	q3	q4
q4	q5	q4
q4 *q5	q5	q0

8. Construct DFA for the given NFA

	Nex	Next state		
	0	1		
$ ightarrow q_0$	q0,q1	q0		
q1	q2	qı		
q2	qЗ	q 3		
$\overline{q3}$	-	q2		

(2 M)

9. Construct a PDA to accept strings containing equal number of a's and b's.

(2 M)

(1 M)

- 10. Write regular expressions corresponding to the following languages over $\Sigma = \{0,1\}$
- i) Set of strings with two consecutive 0's
- ii) Strings such that every pair of adjacent 0's appear before any pair of adjacent 1's.

SET 2	CI44/CY44 – AUTOMA	TA THEORY AND COMPILER DESIGN USN: MARKS: /10
A comp	iler can check	(1 M)
a) L	ogical error	
b) S	yntax error	Ans:
c) B	oth logical error and syntax e	rror
d) N	ot logical and syntax error	
i. Consider int min () int I, N; /*	the correct option for the following C program: { /*line 1*/ *line 2*/ /*line 3*/	lowing (1 M)
(A) Only (B) No co (C) Only	ating the object module, the c syntax error impilation error lexical error lexical and syntax error	compiler's response about line no. 3 is
if (a <b) pr<="" td=""><td>rintf("the value", m);</td><td>llowing C statement? (1 M)</td></b)>	rintf("the value", m);	llowing C statement? (1 M)
(A) 12	(B) 10	(C) 8 (D) 15
	uct the transition diagram for ait, water, at	keywords (1 M)
T ₁ : a?(b c) the analys	$(a c)*a T_2$: $b?(a c)*b T_3$: $c?(b a)$ zer outputs the token that ma	ng patterns to recognize three tokens T_1 , T_2 , and T_3 over the alphabet $\{a,b,c\}$. *c Note that 'x?' means 0 or 1 occurrence of the symbol x. Note also that atches the longest possible prefix. If the string <i>bbaacabc</i> is processes by the is the sequence of tokens it outputs? (1 M)
Ans: 6. Desig DFA. (2		er $\{0,1\}$ containing either 101 or 110 as substring. Convert the same to a
`	,	
i) Strings	he regular expression for the s of a's and b's with alternate as containing atmost one pair	

8. Design a PDA to accept the language $\{0^m1^n \ 0^m \mid m,n>1\}$ (2 M)

9. Convert NFA to DFA (2 M)

10. Illustrate the analysis phase of the compiler by translating the assignment statement. Specify the values there in symbol table. $(2\ M)$

Sum=Sum*B+C*Sum;

SET 3	CI44/CY44 – AUTOMATA TH	EORY AND COMPILER DESIGN MARKS:/10	USN:
1.			(1 M)
Which	of the following are Lexemes?		
a) Ide	ntifiers	Ans	
b) Co	nstants	Ans:	
c) Ke	ywords		
d) All	of the mentioned		
2. Minim	nize the DFA below. (2 M)		
		$ \begin{array}{c ccccc} \delta & 0 & 1 \\ \hline \rightarrow q0 & q1 & q2 \end{array} $	
		*q1 q3 q4	
		*q2 q5 q5 *q3 q3 q4	
		*q4 q5 q5	
		q5 q6 q5	
		q6 q6	
3. Choose	the correct option for the following	(1 M)	
i. Conside	r the following C program:		
int min () int I, N; /*	/*line 1*/		
fro (I=0, I			
} While cre	ating the object module, the compile	r's response about line no. 3 is	
(A) Only	syntax error	is response about time no. 3 is	
	mpilation error exical error		
-	exical and syntax error		
4. How m switch(inp	any tokens are there in the following outvalue)	C statement? (1 M)	
{			
	b =c*d; break; : b =b++; break;		
}		(C) 27 (D) 20	
(A) 24 5. Constru	(B) 26 oct the transition diagram for keywor	(C) 27 (D) 29 ds (1 M)	
	s, hers, he, me	(2112)	
(i) St	gular expressions for the following larings of 0's and 1's with no consecurings of 0's and 1's ending with 001	tive 0's in it.	

Γ=								
7. A lexical analyzer uses the following patterns to recognize three tokens T_1 , T_2 , and T_3 over the alphabet $\{a,b,c\}$.								
T_1 : a?(b c)*a T_2 : b?(a c)*b T_3 : c?(b a)*c Note that 'x?' means 0 or 1 occurrence of the symbol x. Note also that the analyzer outputs the token that matches the longest possible prefix. If the string <i>bbaacabc</i> is processes by the								
analyzer, which one of the following is the sequence of tokens it outputs? (1 M) Steps:								
See par								
Ans:								
8. Convert the followi	8. Convert the following NFA into an equivalent DFA. (2 M)							
State Δ								
		0	1	2				
	$\rightarrow q_0$	$\{q_0,q_1,q_2\}$	$\{q_1,q_2\}$	$\{q_2\}$				
	q_1	Φ	$\{q_1,q_2\}$	$\{q_2\}$				
	* q ₂	Ф	ф	{q ₂ }				
9. Design a PDA to ac	cept the	language {0 ^m	$1^{n} 0^{m} m, n >$	-1} (2 M))			
_	-							
10. Illustrate the anal	ysis pha	se of the com	piler by tra	ınslating th	e assignment	statement. S	pecify the values	there in
symbol table. (2 N	1)						-	
Eqn=a*a+2*a*b+b*b;								

SET	4	CI44/CY44 – AUTOMATA THEOR	Y AND COMPILER DESIGN USN: MARKS: /10				
	A r	egular expression represents	710				
	a)	Part of a language					
	b)	Cannot represent any language	Ans:				
	c)	Constituent strings of a language					
1.	d)	None of the other options					
{a,b,c also the	2.A lexical analyzer uses the following patterns to recognize three tokens T_1 , T_2 , and T_3 over the alphabet $\{a,b,c\}$. T_1 : $a?(b c)*a T_2$: $b?(a c)*b T_3$: $c?(b a)*c$ Note that 'x?' means 0 or 1 occurrence of the symbol x. Note also that the analyzer outputs the token that matches the longest possible prefix. If the string <i>bbaacabc</i> is processes by the analyzer, which one of the following is the sequence of tokens it outputs? (1 M) Steps:						
Ans:			r\				
		the correct option for the following $(1 N)$	1)				
		r the following C program:					
int mi	n (){	/*line 1*/					
int I, I	N; /*	line 2*/					
fro (I=	=0, I	/*line 3*/					
}							
While	crea	ating the object module, the compiler's re	sponse about line no. 3 is				
(A) O	nly s	syntax error					
(B) N	o co	mpilation error					
(C) O	(C) Only lexical error						
(D) B	oth l	exical and syntax error					
4. Ho	w m	any tokens will be generated by the scann	-				
$\mathbf{x} = \mathbf{x}$ (A) 4	•	(C) 8	(1 M) (D) 10				
5. Construct the transition diagram for keywords (1 M) he, she, his, hers, he, me							
6. Giv i. ii.		gular expressions for (1 M) Strings starting with 0 and ending with Strings with exactly one 1 more than or					

7. Minimize the following DFA. (2 M)

8. Convert the following NFA into its equivalent DFA using Subset Construction Method. (2 M)

9. Construct a PDA to accept strings containing equal number of a's and b's.

(2 M)

10. Illustrate the analysis phase of the compiler by translating the assignment statement. Specify the values there in symbol table. (2 M) Sum=Sum*B+C*Sum;