

Escuela Técnica Superior de Ingeniería Informática Universidad Politécnica de Valencia

Detección de defectos en objetos en movimiento mediante Redes Neuronales Convolucionales con optimizaciones específicas para hardware NVIDIA

Trabajo fin de grado

Grado en Ingeniería Informática

Autor: Haro Armero, Abel

Tutor: Flich Cardo, José

López Rodríguez, Pedro Juan

Curso 2024-2025

Resum

????

Resumen

????

Palabras clave: ?????, ???, ?????????????

Abstract

????

Key words: ?????, ????? ?????, ??????????

Índice general

Ín	lice general lice de figuras lice de tablas	V VII VII
1	Introducción 1.1 Motivación	1 2 3 4
2	Estado del arte 2.1 Fundamentos y avances en redes neuronales para visión artificial	6 7 9 10 11
3	Análisis del problema	13
5	Diseño e implementación de la solución 4.1 Descripción del sistema	15 15 15 17 17 17 17
6	5.5 Modo de energía y cores de la CPU	18 18 19
7	6.1 Construcción del entorno	19 19 21
-	pliografía	23
-	éndices Configuración del sistema A.1 Fase de inicialitzación	25 25

VI	ÍNDICE GENERAI

В	??? ?????????? ????	27
	A.2 Identificación de dispositivos	25

Índice de figuras

1.1	Evolución del interés público en inteligencia artificial según datos de Google Trends (2020-2025)
2.1 2.2 2.3	Estructura de un perceptrón multicapa (MLP)
2.4	Operación de convolución en una imagen
2.6	Operación de max-pooling en una imagen
2.7	Arquitectura de LeNet-5
2.8	Proceso de búsqueda selectiva aplicado a una imagen
2.9	Arquitectura de R-CNN
	Índice de tablas
5.1	Comparación de modelos en términos de inferencia, consumo de energía y potencia

CAPÍTULO 1 Introducción

Durante los últimos años, la inteligencia artificial ha experimentado un crecimiento en popularidad sin precedentes, transformando nuestra capacidad tecnológica con herramientas revolucionarias. Este avance ha sido impulsado por la disponibilidad de grandes volúmenes de datos y el desarrollo de algoritmos avanzados, que han permitido a las máquinas aprender y adaptarse a situaciones complejas. Algunos campos destacados de aplicación incluyen el procesamiento del lenguaje natural, la visión por computador y la robótica. En particular, la visión por computador ha visto un auge significativo, con aplicaciones en áreas como la seguridad, la medicina y la automoción. Este creciente interés se refleja en la evolución del interés público en inteligencia artificial, como muestra la Figura 1.1, basada en datos de Google Trends [3].

Figura 1.1: Evolución del interés público en inteligencia artificial según datos de Google Trends (2020-2025)

Este progreso ha sido posible gracias a los avances en redes neuronales convolucionales, que han revolucionado la capacidad de los sistemas para detectar y clasificar objetos en imágenes y vídeos con una gran precisión y velocidad.

Estos algoritmos de visión artificial requieren una potencia computacional significativa tanto para su entrenamiento como para su ejecución. Las CPUs (Unidades Centrales de Procesamiento) tradicionales resultan insuficientes para estas tareas, por lo que la industria ha desarrollado arquitecturas específicas como las GPUs (Unidades de Procesa-

2 Introducción

miento Gráfico), TPUs (Unidades de Procesamiento Tensorial) y DLAs (Aceleradores de Aprendizaje Profundo). Estos componentes están optimizados para ejecutar operaciones de entrenamiento e inferencia de manera eficiente, permitiendo implementar sistemas de visión artificial capaces de procesar información visual en tiempo real. Sin embargo, estos aceleradores suelen presentar un consumo energético elevado, lo que plantea importantes retos de eficiencia y sostenibilidad.

Figura 1.2: Proyección del consumo eléctrico de los centros de datos en el mundo

Como se observa en la Figura 1.2, el consumo eléctrico de los centros de datos en el mundo ha ido aumentando de forma exponencial, lo que plantea un desafío significativo para la sostenibilidad del crecimiento tecnológico [1]. En el peor escenario, esta tendencia podría llevar a un incremento insostenible en la huella de carbono del sector tecnológico, mientras que en el mejor de los casos, la adopción de tecnologías eficientes podría moderar este crecimiento. Este aumento del consumo energético no solo afecta a los centros de datos, sino también a los dispositivos embebidos y móviles, donde la eficiencia energética es crucial para prolongar la vida útil de las baterías y reducir el impacto ambiental.

Para enfrentar estos desafíos, se han desarrollado diversas técnicas de optimización y compresión que reducen el tamaño y la complejidad de los modelos neuronales manteniendo su rendimiento. Paralelamente, han surgido arquitecturas hardware específicamente diseñadas para la inferencia de modelos de aprendizaje profundo en entornos con restricciones energéticas. En este contexto, los dispositivos de la serie Jetson de NVIDIA destacan por ofrecer un equilibrio entre alto rendimiento en tareas de inteligencia artificial y un consumo energético contenido, ideal para aplicaciones embebidas de visión artificial.

La combinación de redes neuronales convolucionales y aceleradores hardware ha permitido la creación de sistemas de visión artificial que pueden detectar y clasificar objetos en movimiento, lo que es esencial en aplicaciones como la vigilancia, la conducción autónoma y la robótica.

1.1 Motivación

Los humamos somos capaces de ver y entender el mundo que nos rodea. Dada una imagen, podemos identificar objetos, reconocer patrones y tomar decisiones basadas en la información visual. Sin embargo, esta capacidad no es innata en las máquinas. La visión por computador es la ciencia que busca dotar a las máquinas de la capacidad de

1.2 Objetivos 3

interpretar y comprender imágenes y vídeos, emulando la forma en que los humanos percibimos el entorno.

Como se mencionó anteriormente, la inteligencia artificial ha revolucionado la forma en que interactuamos con la tecnología. Se ha convertido en una herramienta esencial para aplicar soluciones innovadoras en una amplia gama de campos. En particular, la visión por computador ha demostrado ser un área de gran potencial. También la existencia de dispositivos de bajo consumo, como los de la serie Jetson de NVIDIA, ha permitido llevar la inteligencia artificial a entornos de edge computing (cómputo en el borde), donde se acerca el procesamiento de datos a la fuente de información. Esto reduce la latencia y el consumo energético. Con todo esto, se abre un abanico de posibilidades para la implementación de sistemas de visión artificial en aplicaciones industriales.

Centradánose en el ámbito industrial, la detección y clasificación de objetos en movimiento es crucial para optimizar procesos, mejorar la seguridad y aumentar la eficiencia. En la mayoría de entornos productivos, la detección de defectos se realiza de forma manual, lo que puede ser ineficiente y propenso a errores. La automatización de este proceso mediante sistemas de visión artificial puede reducir costos, aumentar la precisión y mejorar la calidad del producto final.

La motivación de este trabajo radica en la necesidad de desarrollar un sistema de visión artificial capaz de detectar y clasificar objetos en movimiento en un entorno industrial, específicamente en una cinta transportadora.

1.2 Objetivos

El objetivo principal de este trabajo es desarrollar un sistema de visión artificial capaz de detectar y clasificar objetos en movimiento en una cinta transportadora utilizando redes neuronales convolucionales y aceleradores hardware de bajo consumo. Para lograr este objetivo, se plantean los siguientes objetivos específicos:

- Realizar un estudio del estado del arte en redes neuronales convolucionales, aceleradores hardware de bajo consumo y técnicas avanzadas de optimización para visión artificial.
- Desarrollar un conjunto de datos para el entrenamiento y evaluación del sistema, mediante la captura y etiquetado de imágenes de objetos en movimiento.
- Diseñar, entrenar y validar un modelo de red neuronal convolucional optimizado para la detección y clasificación en tiempo real de defectos en objetos en movimiento.
- Implementar un sistema completo de visión artificial que integre el modelo entrenado con los aceleradores hardware NVIDIA, enfocado en maximizar la eficiencia y minimizar la latencia.
- Analizar los cuellos de botella del sistema, y aplicar técnicas específicas de optimización para mejorar el rendimiento y la eficiencia energética.
- Cuantificar de manera exhaustiva el rendimiento del sistema mediante métricas precisas de exactitud (mAP, precisión, recall), latencia (FPS) y consumo energético (W, J/inferencia).
- Realizar un análisis comparativo sistemático entre diferentes configuraciones de hardware, software y parámetros de optimización para identificar la combinación que ofrezca el mejor equilibrio entre precisión, velocidad y eficiencia energética.

4 Introducción

1.3 Estructura de la memoria

CAPÍTULO 2 Estado del arte

En este capítulo se realizará un estudio del estado del arte en los diferentes componentes que constituyen la base teórica y técnica de este trabajo. Primero, se examinarán las redes neuronales convolucionales, desde sus fundamentos hasta los modelos más recientes en detección de objetos. A continuación, se analizarán los aceleradores hardware de bajo consumo, con especial énfasis en la arquitectura y capacidades de los dispositivos NVIDIA Jetson. Posteriormente, se estudiarán los algoritmos de seguimiento de objetos en tiempo real, fundamentales para aplicaciones con elementos en movimiento. Finalmente, se explorará la técnica de Slicing Aided Hyper Inference (SAHI), una metodología avanzada para mejorar la detección de objetos pequeños o densamente agrupados. Este marco teórico permitirá contextualizar adecuadamente la solución propuesta para la detección de defectos en objetos en movimiento.

2.1 Fundamentos y avances en redes neuronales para visión artificial

En esta sección se realizará un estudio de las redes neuronales hasta las redes neuronales convolucionales, desde sus fundamentos hasta los modelos más recientes en detección de objetos. Se explicarán los conceptos básicos de las redes neuronales y la evolución de las arquitecturas.

2.1.1. Fundamentos de la inteligencia artificial

La *Inteligencia Artificial* es un campo de estudio que busca desarrollar sistemas capaces de realizar tareas que normalmente requieren inteligencia humana, como el reconocimiento de voz, la toma de decisiones y la comprensión del lenguaje natural. Dentro de este campo, existen diversas subdisciplinas, entre las cuales destacan el *Machine Learning* y el *Deep Learning*.

El *Machine Learning* o aprendizaje automático es una rama de la inteligencia artificial que se centra en el desarrollo de algoritmos y modelos que permiten a las máquinas aprender de los datos y realizar predicciones o tomar decisiones sin ser programadas explícitamente. Este enfoque se basa en la idea de que las máquinas pueden identificar patrones y relaciones en grandes conjuntos de datos, lo que les permite generalizar y adaptarse a nuevas situaciones.

El *Deep Learning* o aprendizaje profundo es una rama del aprendizaje automático que utiliza redes neuronales artificiales con múltiples capas para modelar y resolver problemas complejos. Este enfoque permite aprender representaciones jerárquicas de los datos,

6 Estado del arte

donde cada capa extrae características cada vez más abstractas. Una de las arquitecturas fundamentales es el *Multilayer Perceptron* (MLP) o perceptrón multicapa, que consiste en una red de neuronas artificiales organizadas en al menos tres capas: una de entrada, una o más capas ocultas y una capa de salida, como se muestra en la Figura 2.1 [5]. En un MLP, cada neurona recibe un conjunto de entradas ponderadas por pesos, aplica una función de activación no lineal a la suma de estas entradas ponderadas, y produce una salida que se transmite a la siguiente capa. La capacidad de aprendizaje de estas redes se basa en el algoritmo de retropropagación (backpropagation), que ajusta iterativamente los pesos para minimizar el error entre las predicciones de la red y los valores reales. Esta estructura permite al Deep Learning abordar tareas complejas en visión por computador, procesamiento del lenguaje natural y otros dominios con un alto grado de precisión.

Figura 2.1: Estructura de un perceptrón multicapa (MLP).

2.1.2. Tareas fundamentales en visión por computador

En el ámbito del procesamiento de imágenes mediante técnicas de deep learning, existen diversas tareas con diferentes niveles de complejidad:

- Clasificación de imágenes: Es la tarea más básica, donde la red neuronal asigna una etiqueta a toda la imagen. Por ejemplo, determinar si una imagen contiene un perro, gato o coche. El modelo genera un vector de probabilidades para cada clase posible.
- 2. **Clasificación con localización**: Además de clasificar el objeto principal, la red también proporciona un cuadro delimitador (bounding box) que indica dónde se encuentra ese objeto en la imagen. Es útil cuando existe un único objeto de interés.
- 3. **Detección de objetos**: Extiende la tarea anterior para identificar y localizar múltiples objetos en una imagen. Los algoritmos de detección se dividen principalmente en:
 - Detectores de dos etapas: Como R-CNN, Fast R-CNN y Faster R-CNN, primero generan propuestas de regiones que podrían contener objetos, y luego clasifican estas regiones. Son más precisos pero computacionalmente más costosos.
 - Detectores de una etapa: Como YOLO (You Only Look Once) y SSD (Single Shot MultiBox Detector), que predicen las cajas delimitadoras y las clases directamente en una sola pasada. Son más rápidos aunque tradicionalmente menos precisos.

Ambos enfoques proporcionan para cada objeto detectado su clasificación y cuadro delimitador.

4. **Segmentación**: Es la tarea más compleja, donde la red no solo identifica y localiza objetos, sino que también asigna una etiqueta a cada píxel de la imagen. Esto permite distinguir entre diferentes objetos y sus contornos, facilitando una comprensión más detallada de la escena.

La Figura 2.2 ilustra estas tareas fundamentales en visión por computador. Para este trabajo, nos centraremos en la tarea de detección de objetos, que es esencial para identificar y clasificar varios objetos en movimiento en un vídeo o imagen.

Figura 2.2: Tareas fundamentales en visión por computador.

2.1.3. Arquitectura y funcionamiento de las CNN

Las *Convolutional Neural Networks* (CNN) o redes neuronales convolucionales son un tipo específico de red neuronal profunda. Estas redes están diseñadas para procesar imágenes y extraer características relevantes de manera eficiente, lo que las hace especialmente adecuadas para tareas de visión por computador.

Figura 2.3: Relación entre Machine Learning, Deep Learning, CNN, Computer Vision y Human Vision.

La Figura 2.3 ilustra la relación entre estos conceptos [5]. Las CNN son una subcategoría del Deep Learning, que a su vez es una subcategoría del Machine Learning. Además, las CNN están estrechamente relacionadas con la visión por computador, que busca emular la capacidad de los humanos para interpretar imágenes y vídeos.

Las CNN se inspiran en la forma en que los humanos percibimos el mundo visual. Al igual que nuestro sistema visual, que procesa la información de manera jerárquica, las CNN utilizan capas convolucionales para extraer características de bajo nivel (como bordes y texturas) y capas más profundas para identificar patrones y objetos más complejos. Esta jerarquía de características permite a las CNN aprender representaciones ricas y abstractas de los datos visuales.

La operación de convolución es fundamental en las CNN. Esta operación consiste en aplicar un filtro (o kernel) a una imagen para extraer características locales. El filtro 8 Estado del arte

se desliza sobre la imagen, multiplicando sus valores por los valores de la imagen en cada posición y sumando los resultados. Este proceso genera un mapa de activación que resalta las características relevantes de la imagen.

Figura 2.4: Operación de convolución en una imagen.

La Figura 2.4 muestra un ejemplo de la operación de convolución. En este caso, se aplica un filtro de 3x3 a una imagen de entrada, generando un mapa de activación que resalta las características detectadas por el filtro.

Figura 2.5: Proceso de convolución aplicado a una imagen de un autobús.

La Figura 2.5 ilustra el proceso de la primera convolución del modelo yolo11n [4]. En la parte izquierda se muestra la imagen original de un autobús, mientras que en la parte derecha se presenta el resultado de aplicar la operación de convolución. En este caso, los 16 filtros de la primera capa convolucional han detectado diferentes características de la imagen, como bordes y texturas. Este proceso se repite en múltiples capas, lo que permite a la red aprender representaciones cada vez más complejas de la imagen.

Además de las capas de convolución, las CNN incluyen capas de *pooling* que permiten reducir la dimensionalidad de las características extraídas, ayudando a prevenir el sobreajuste y a mejorar la eficiencia computacional. El *pooling* consiste en aplicar una operación de reducción (como el máximo o la media) a un conjunto de activaciones, lo que permite resumir la información y mantener las características más relevantes. Este proceso se ilustra en la Figura 2.6.

Figura 2.6: Operación de max-pooling en una imagen.

Por último, las CNN incluyen capas completamente conectadas (*fully connected*) al final de la red, que permiten realizar la clasificación final de los objetos detectados. Estas capas toman las características extraídas por las capas convolucionales y las combinan para generar una salida que representa la probabilidad de que un objeto pertenezca a una clase específica.

En la figura 2.7 se muestra la arquitectura de LeNet-5 [7], una de las primeras CNN desarrolladas. Esta red consta de varias capas convolucionales y de pooling, seguidas de capas completamente conectadas. LeNet-5 fue diseñada para la clasificación de dígitos manuscritos y sentó las bases para el desarrollo de arquitecturas más complejas y eficientes en la actualidad.

Figura 2.7: Arquitectura de LeNet-5.

2.1.4. Detectores de dos etapas

Los detectores de dos etapas, funcionan mediante un proceso secuencial: primero generan propuestas de regiones (region proposals) que podrían contener objetos y posteriormente clasifican estas regiones. Este enfoque favorece la precisión, aunque generalmente a costa de un mayor tiempo de procesamiento.

La primera arquitectura exitosa de detección de objetos basada en deep learning fue R-CNN (Regions with CNN features) [2]. Este modelo introdujo un enfoque de dos etapas que revolucionó el campo. En su primera fase, R-CNN utiliza un algoritmo de búsqueda selectiva (Selective Search) para generar aproximadamente 2,000 propuestas de regiones que podrían contener objetos. Este algoritmo de búsqueda selectiva divide la imágen en nodos y aristas, e iterativamente agrupa estas regiones en función del color, textura, tamaño y forma hasta que se obtienen las propuestas finales. En la figura 2.8[6] se muestra un ejemplo del resultado del algoritmo de búsqueda selectiva.

10 Estado del arte

(a) Imagen original.

(b) Resultado de búsqueda selectiva.

Figura 2.8: Proceso de búsqueda selectiva aplicado a una imagen.

En la segunda fase, cada región propuesta es redimensionada y procesada individualmente por una CNN para extraer características de alto nivel. Estas características alimentan posteriormente a un clasificador SVM (Support Vector Machine) para determinar la categoría del objeto y a un regresor lineal para mejorar la localización del cuadro delimitador. Como se ilustra en la Figura 2.9, este enfoque fue innovador pero computacionalmente costoso, ya que requiere procesar cada propuesta de región de manera independiente.

Figura 2.9: Arquitectura de R-CNN.

2.1.5. Detectores de una etapa

En contraste con los detectores de dos etapas, los detectores de una etapa (one-stage detectors) adoptan un enfoque más directo y eficiente. Estos detectores tratan la detección como un problema de regresión, realizando la localización y clasificación de objetos simultáneamente en una sola pasada a través de la red, sin necesidad de un paso intermedio de generación de propuestas.

La arquitectura de los detectores de una etapa procesa la imagen completa una única vez, típicamente mediante una red troncal o *backbone* (generalmente una CNN) para la extracción de características. Estas características son posteriormente procesadas por componentes intermedios (*neck*) y alimentadas a una cabeza de detección (*detection head*) que predice simultáneamente las coordenadas de los cuadros delimitadores y las probabilidades de clase.

Esta arquitectura de una etapa enfatiza la velocidad sobre la máxima precisión, haciéndola ideal para aplicaciones en tiempo real donde la latencia es crítica. Los modelos más conocidos de este tipo incluyen SSD (Single Shot MultiBox Detector)[8] y YOLO (You Only Look Once)[9], que han demostrado un equilibrio efectivo entre velocidad y precisión, permitiendo detecciones en tiempo real incluso en dispositivos con recursos limitados.

Para la realización de este trabajo, se ha optado por utilizar un detector de una etapa, específicamente YOLOv11 [4], que es una versión optimizada y mejorada de las arquitecturas YOLO anteriores. Esta elección se basa en la necesidad de un sistema eficiente

y rápido para la detección de objetos en movimiento, lo que es esencial para el contexto industrial en el que se aplicará la solución.

2.1.6. YOLO (You Only Look Once)

2.1.7. Evolución de las arquitecturas de detección

1. Fundamentos del Deep Learning

- a) Concepto de aprendizaje profundo
- b) Redes neuronales artificiales básicas
- c) Función de activación, pesos y capas

2. Redes neuronales profundas

- a) Arquitecturas multicapa
- b) Desafío del desvanecimiento del gradiente
- c) Técnicas de inicialización y normalización

3. Redes neuronales convolucionales (CNN)

- a) Operación de convolución y su importancia
- b) Capas convolucionales, pooling y fully-connected
- c) Invarianza a la traslación y extracción jerárquica de características

4. Detección de objetos: primeros enfoques

- a) Sliding window
- b) Uso de características handcrafted (HOG, SIFT)
- c) Limitaciones de los enfoques tradicionales

5. Detectores de dos etapas (two-stage)

- *a*) R-CNN: region proposals + clasificación
- b) Fast R-CNN: mejoras compartiendo cálculos
- c) Faster R-CNN: Region Proposal Network (RPN)
- d) Mask R-CNN: incorporación de segmentación

6. Detectores de una etapa (one-stage)

- a) SSD (Single Shot MultiBox Detector)
- b) RetinaNet y Focal Loss
- c) Ventajas en velocidad vs. precisión

7. YOLO (You Only Look Once)

- a) YOLOv1: división en grid y predicción directa
- b) YOLOv2/YOLO9000: mejoras con anchor boxes
- c) YOLOv3: múltiples escalas y características
- d) YOLOv4: mejoras en backbone y técnicas de aumento

8. Evolución reciente de YOLO

12 Estado del arte

- a) YOLOv5: optimización y escalabilidad
- b) YOLOv6/v7: avances arquitectónicos
- c) YOLOv8: modularidad y rendimiento
- d) YOLO11: nuevas características y optimizaciones

9. Métricas de evaluación

- a) Precisión y recall
- b) IoU (Intersection over Union)
- c) mAP50 y mAP50-95
- d) Velocidad (FPS) y compromiso velocidad-precisión

2.2 Aceleradores de procesamiento gráfico

Evolución de los aceleradores de procesamiento gráfico desde la GPU, hasta los dispositivos de bajo consumo en la serie Jetson de NVIDIA. Comentar también TensorRT y como se utiliza para optimizar los modelos en inferencias para los dispositivos de NVIDIA.

2.3 Seguimiento de objetos en tiempo real

Explicación de como funcionan los algoritmos de multi-object tracking (MOT) en tiempo real, filtro de Kalman hasta BYTETrack.

2.4 Slicing Aided Hyper Inference

Explicación de la técnica de Slicing Aided Hyper Inference, como se utiliza para mejorar la precisión de los modelos de detección de objetos y como se aplica en este trabajo.

CAPÍTULO 3 Análisis del problema

CAPÍTULO 4

Diseño e implementación de la solución

En este capítulo se explicará la solución propuesta, como se ha diseñado y como se ha implementado.

4.1 Descripción del sistema

Descripción del sistema de visión artificial propuesto, como se ha diseñado y como se ha implementado.

4.2 Diseño de las etapas del sistema

Descripción de las etapas del sistema, como se han diseñado y como se han implementado.

Etapas del sistema:

- Captura de imágenes: Descripción de la etapa de captura de imágenes, como se ha diseñado y como se ha implementado.
- Inferencia: Descripción de la etapa de inferencia, como se ha diseñado y como se ha implementado.
- Seguimiento: Descripción de la etapa de seguimiento, como se ha diseñado y como se ha implementado.
- Escritura de resultados: Descripción de la etapa de escritura de resultados, como se ha diseñado y como se ha implementado.

4.3 Segmentación de las etapas del sistema

Tipos de segmentación de las etapas del sistema:

- No segmentada: Secuencial
- Segmentación basada en hilos: Cada etapa del sistema se ejecuta en un hilo diferente.

- **Segmentación basada en procesos:** Cada etapa del sistema se ejecuta en un proceso diferente.
- **Segmentación basada en hardware:** La etapa de inferencia se ejecuta en GPU, DLA0 y DLA1.
- Segmentación basada en procesos con memoria compartida: Cada etapa del sistema se ejecuta en un proceso diferente, pero comparten la memoria.

CAPÍTULO 5 Análisis de la solución

En este capítulo se analizará la solución propuesta variando los parámetros posibles

5.1 Variación de los parámetros

Explicación de los parámetros que se pueden variar en la solución propuesta y su efecto en el rendimiento del sistema.

——PRUEBA——

Model	IoU	CPU_Inference	GPU_Inference	DLA_Inference	CPU_Power	GPU_Power	DLA_Power	CPU_Energy	GPU_Energy	DLA_Energy
YOLOv11-N	0,85	45,2	12,3	15,8	8,2	12,5	6,8	369,64	153,75	107,44
YOLOv11-S	0,87	52,1	14,8	18,2	8,5	13,2	7,1	442,85	195,36	129,22
YOLOv11-M	0,89	68,4	18,2	22,5	9,1	14,8	7,8	622,44	269,36	175,5
YOLOv11-L	0,91	85,6	24,6	28,9	9,8	16,2	8,4	838,88	398,52	242,76

Tabla 5.1: Comparación de modelos en términos de inferencia, consumo de energía y potencia.

5.2 Tipo de segmentación

En esta sección se analizará el rendimiento de la solución propuesta variando el tipo de segmentación de las etapas del sistema con gráficas y tablas.

5.3 Talla del modelo

En esta sección se analizará el rendimiento de la solución propuesta variando la talla del modelo de detección de objetos con gráficas y tablas.

5.4 Precisión del modelo

En esta sección se analizará el rendimiento de la solución propuesta variando la precisión del modelo de detección de objetos con gráficas y tablas.

18 Análisis de la solución

5.5 Modo de energía y cores de la CPU

En esta sección se analizará el rendimiento de la solución propuesta variando el modo de energía del dispositivo y el número de cores de la CPU con gráficas y tablas.

5.6 Tamaño de la imagen

En esta sección se analizará el rendimiento de la solución propuesta variando el tamaño de la imagen de entrada del modelo con la técnica de Slicing Aided Hyper Inference (SAHI) con gráficas y tablas.

CAPÍTULO 6 Prueba de concepto

Aqui se explicará la implementación de la solución propuesta en el entorno de producción con la cinta transportadora.

6.1 Construcción del entorno

6.2 Instalación del entorno

CAPÍTULO 7 Conclusiones

Bibliografía

- [1] Anders S. G. Andrae and Tomas Edler. On global electricity usage of communication technology: Trends to 2030. *Challenges*, 6(1):117–157, 2015.
- [2] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, 2014.
- [3] Google Trends. Interés en inteligencia artificial (2020–2025). https://trends.google.com/trends/explore?date=2020-04-08%202025-04-08&q=inteligencia%20artificial&hl=es, 2025. Accedido el 08 abril de 2025.
- [4] Glenn Jocher and Jing Qiu. Ultralytics yolo11, 2024.
- [5] Salman Khan, Hossein Rahmani, Syed Afaq Ali Shah, and Mohammed Bennamoun. A Guide to Convolutional Neural Networks for Computer Vision. Synthesis Lectures on Computer Vision. Springer Cham, 1 edition, 2018.
- [6] Tushar Kumar. R-cnn explained, 2024. Accedido: 14 de abril de 2025.
- [7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- [8] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg. *SSD: Single Shot MultiBox Detector*, page 21–37. Springer International Publishing, 2016.
- [9] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection, 2016.

APÉNDICE A Configuración del sistema

?	?????? ??????????? ????????????????????					
A .1	Fase de inicialitzación					
?	????? ??????????? ?????????????????????					
A .2	Identificación de dispositivos					
?'	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

###