# Fourier-Mukai Transforms of Slope Semistable Sheaves on Weierstrass Elliptic Surfaces



Wanmin Liu (Uppsala Univ.)

Jason Lo (California State Univ. Northridge)





01-05 JULY 2019, UPPSALA, SWEDEN

Thanks to **IBS Center for Geometry and Physics** in Pohang, South Korea Liu was supported by IBS-R003-D1 Preprint is available at wanminliu.github.io

#### MOTIVATION

- x smooth proj var/c b'(x) bounded derived category of coherent sheaves
- $\overline{\Phi} \in Aut(D^b(X))$





singular fibers: nodal or cusp



relative Fourier-Mukai transform 
$$\in$$
 Aut(D<sup>b</sup>(X))

$$\overline{\Phi}[i] \circ \overline{\Phi} = \overline{\Phi} \circ \overline{\Phi}[i] = id_{\mathcal{D}_{(X)}}$$

$$\mu_{\overline{\omega}}$$
 slope stability condition  $\left( \mu_{\overline{\omega}}(\cdot) = \frac{c_1(-) \cdot \overline{\omega}}{r_{onk}(-)} \right)$ ,  $(oh(x))$ 

$$\overline{\omega} = (\theta + mf) + \alpha f$$
ample nef
fixed positive number

What is a notion of stability condition for slope stability condition under  $\Phi \Omega$ ?

Key Premise: we do NOT fix Chern characters (Otherwise, lots of work by Bruzzo, Maciocia, Yoshioka and many...)

## Limit Bridgeland Stability Condition of





$$\mathcal{D}_{\omega} = \left( \mathcal{Z}_{\omega} = -\int_{x} e^{-i\omega} ch(-) \mathcal{B}_{\omega} \right)$$
Bridgeland stab condition

## Limit Bridgeland Stability Condition of



01-05 JULY 2019, UPPSALA, SWEDEN



01-05 JULY 2019, UPPSALA, SWEDEN

### Theorem (L-Lo)



X Weierstrass elliptic surface

(A) 
$$(\mu_{\overline{\omega}}\text{-stability. coh}(X))$$
 $E = \mu_{\overline{\omega}} \text{ stable}$ 
 $F := \Phi(E) \cap Z = \text{stable}$ 

(B)  $(\mu_{\overline{\omega}}\text{-semistability. (oh}(X)))$ 
 $\Phi(F') = \mu_{\overline{\omega}}\text{-ss.}$ 
 $\Phi(F') = \mu_{\overline{\omega}}\text{-ss.}$ 

(Z-semistability.  $B'$ )

small modification

 $\Phi(F') = \mu_{\overline{\omega}}\text{-ss.}$ 
 $\Phi(F') \text{ torsion sheaf}$