Homework: Integration of solids from rotation (100 points)

Select your problems. The first six are 6-point, volume-integration problems. Problem #7 is a free response solid-of-rotation problem, and the final three are mixed free response questions.

1a. Let $f(x)=2\ln(x-3)$, for x>3. The following diagram shows part of the graph of f.

Find the equation of the vertical asymptote to the graph of f.

[2 marks]

1b. Find the x-intercept of the graph of f.

[2 marks]

1c. The region enclosed by the graph of f, the x-axis and the line x=10 is rotated 360° about the x-axis. Find the volume of the solid formed. [3 marks]

2a. Let $f(x) = -x^4 + 2x^3 - 1$, for $0 \le x \le 2$.

Sketch the graph of f.

[3 marks]

2b. Solve f(x) = 0.

[2 marks]

2c. The region enclosed by the graph of f and the x-axis is rotated $360\degree$ about the x-axis.

Find the volume of the solid formed.

[3 marks]

BECA / Huson / 11.1 IB Math SL 16 April 2018

Name:

3a. Let $f(x) = x^2$.

[no calculator on this problem]

Find
$$\int_1^2 (f(x))^2 dx$$
.

[4 marks]

3b. The following diagram shows part of the graph of f.

The shaded region R is enclosed by the graph of f, the x-axis and the lines x=1 and x=2. Find the volume of the solid formed when R is revolved 360° about the x-axis.

4a. Let $f(x) = 5 - x^2$. Part of the graph of f is shown in the following diagram.

The graph crosses the x-axis at the points A and B.

Find the x-coordinate of A and of B.

[3 marks]

4b. The region enclosed by the graph of f and the x-axis is revolved 360° about the x-axis.

Find the volume of the solid formed.

[3 marks]

BECA / Huson / 11.1 IB Math SL 16 April 2018

Name:

5a. The graph of $y=(x-1)\sin x$, for $0\leq x\leq \frac{5\pi}{2}$, is shown below.

The graph has x-intercepts at 0, 1, π and k.

Find k. [2 marks]

5b. The shaded region is rotated 360° about the *x*-axis. Let *V* be the volume of the solid formed.

Write down an expression for V.

[3 marks]

5c. Find *V* .

[2 marks]

6. The graph of $f(x)=\sqrt{16-4x^2}$, for $-2\leq x\leq 2$, is shown below. [no calculator on this problem]

The region enclosed by the curve of f and the x-axis is rotated 360° about the x-axis.

Find the volume of the solid formed.

[6 marks]

BECA / Huson / 11.1 IB Math SL 16 April 2018

Name:

7a. Let $\hat{f}(x) = \sqrt{x}$. Line L is the normal to the graph of f at the point (4, 2) . J

[no calculator]

Show that the equation of L is y=-4x+18 .

[4 marks

7b. Point A is the *x*-intercept of *L* . Find the *x*-coordinate of A.

[2 marks]

7c. In the diagram below, the shaded region R is bounded by the x-axis, the graph of f and the line L.

Find an expression for the area of R.

[3 marks]

7d. The region *R* is rotated 360° about the *x*-axis. Find the volume of the solid formed, giving your answer in terms of π .

8a. The following diagram shows the quadrilateral ABCD.

 $\mathrm{AD} = 6~\mathrm{cm},~\mathrm{AB} = 15~\mathrm{cm}, \mathrm{A\hat{B}C} = 44^{\circ}, \mathrm{A\hat{C}B} = 83^{\circ} \mathrm{and} \mathrm{D\hat{A}C} = \theta$

Find AC. [3 marks]

8b. Find the area of triangle ABC.

[3 marks]

8c. The area of triangle ACD is half the area of triangle ABC.

Find the possible values of heta.

[5 marks]

8d. Given that θ is obtuse, find CD.

[3 marks]

Name:

9a. Let L_x be a family of lines with equation given by $r=\left(rac{x}{2}
ight)+t\left(rac{x^2}{-2}
ight)$, where x>0 .

Write down the equation of L_1 .

[2 marks]

9b. A line L_a crosses the y-axis at a point P.

Show that $P_{\text{has coordinates}}\left(0, \frac{4}{a}\right)$.

[6 marks]

9c. The line L_a crosses the x-axis at $\mathrm{Q}(2a,\ 0)$. Let $d=\mathrm{PQ}^2$.

Show that $d=4a^2+rac{16}{a^2}$.

[2 marks]

9d. There is a minimum value for d. Find the value of a that gives this minimum value.

[7 marks]

10a. The first two terms of a geometric sequence u_n are $u_1=4$ and $u_2=4.2$.

- (i) Find the common ratio.
- (ii) Hence or otherwise, find u_5 .

[5 marks]

10b. Another sequence v_n is defined by $v_n=an^k$, where $a,\ k\in\mathbb{R}$, and $n\in\mathbb{Z}^+$, such that $v_1=0.05$ and $v_2=0.25$

- (i) Find the value of a.
- (ii) Find the value of k.

[5 marks]

10c. Find the smallest value of n for which $v_n > u_n$.

[5 marks]