

Trabajo Práctico 2

Aprendizaje Automático Avanzado

Cisnero Matias, Seivane Nicolás, Serafini Franco 20 de Octubre de 2025

Modificación de Corpus

Idea general

El objetivo es mejorar la representación del corpus uniendo palabras que aparecen juntas con alta frecuencia en el mismo contexto.

- Buscar palabras frecuentes.
- Analizar sus contextos más comunes.
- Unirlas si aparecen juntas frecuentemente.

Funciones principales

```
def palabras_frecuentes_en_contexto(corpus, palabra_objetivo
   . contexto=1):
  frecuencias = {}
  for i in range(len(corpus)):
    if corpus[i] == palabra_objetivo:
      for j in range(i - contexto, i + contexto + 1):
        if j != i and 0 <= j < len(corpus):</pre>
          palabra_contexto = corpus[j]
          frecuencias[palabra_contexto] = frecuencias.get(
   palabra_contexto, 0) + 1
  return sorted(frecuencias.items(), key=lambda x: x[1],
   reverse=True)
```

Visualización del contexto

Contexto = 1 alrededor de negro

Unir palabras frecuentes en contexto

```
def unir_palabras_en_contexto(corpus, palabra1, palabra2):
   nuevo_corpus = []
   i = 0
   while i < len(corpus):
      if corpus[i] == palabra1 and i + 1 < len(corpus) and
      corpus[i + 1] == palabra2:
          nuevo_corpus.append(f"{palabra1} {palabra2}")
          i += 2
   else:
      nuevo_corpus.append(corpus[i])
      i += 1
   return nuevo_corpus</pre>
```

Ejemplo visual de unión

 Si ambas palabras aparecen frecuentemente juntas y una de ellas suele ser predicha mal muchas veces se hace lo siguiente, por ejemplo: Si el token 'el' es frecuentemente mal predicho, entonces se une a una palabra que frecuenta mucho como 'gato'. No necesariamente se hace de derecha a izquierda.

Bucle principal de optimización

```
def optimizar_corpus(words, min_frecuencia=200, contexto=1,
    top_contextos=3, iteraciones=3, frecuencia_min=100):
    corpus_modificado = words.copy()
    for iteracion in range(iteraciones):
        cuenta = contar_palabras(corpus_modificado)
        palabras_objetivo = cuenta[cuenta > min_frecuencia].
        index
            for palabra_objetivo in palabras_objetivo:
            resultados = palabras_frecuentes_en_contexto(
            corpus_modificado, palabra_objetivo, contexto)
```

Bucle principal de optimización

```
for palabra_contexto, frecuencia in resultados[:
    top_contextos]:
    if frecuencia > frecuencia_min:
        corpus_modificado = unir_palabras_en_contexto(
        corpus_modificado, palabra_objetivo, palabra_contexto)
return corpus_modificado
```

Caso 1: Palabra no suficientemente frecuente

- La palabra no alcanza la frecuencia mínima min_frecuencia para ser considerada.
- No se analizan sus contextos, ni se combinan tokens.

cucharón de sopa ...

No se combina: frecuencia insuficiente

Caso 2: Palabra entra al bucle, pero sus contextos no califican

- La palabra tiene frecuencia suficiente para entrar al análisis.
- Sin embargo, las palabras de su contexto no superan frecuencia_min, por lo que no se unen.

No se unen pese a aparecer juntas

Caso 3: Palabras frecuentes se combinan

- Ambas palabras son frecuentes y aparecen juntas.
- Se cumple el umbral de contexto, por lo que se unen.

Caso 4: Uniones sucesivas en cadena

- Varias palabras frecuentes cumplen las condiciones y se van uniendo sucesivamente.
- Se produce un efecto en cadena en el corpus optimizado.

Fragmentación

```
To mate the first are one of the most popular plants for vegetable gardens.

Tip for success 1 II you select varieties that are resistant to disease and pest 1 II growing tomatoes can be quite easy. For experienced garden ers tooking for 1 Is challenge, there are endless 1 heir foom and specialty varieties to cultiv lat 1 I femate) plants come in 1 Is range of sizes 1.
```

Figura: Imagen extraída de IBM watsonx

Caso 1: Ningún token coincide con el vocabulario

- Se recorren las palabras del texto pero ningun token está en el vocabulario.
- La función devuelve None tras imprimir el aviso.

Retorna None — palabra fuera del vocabulario

Caso 2: Coincidencias parciales pero no completas

- Se encuentra una parte del texto en el vocabulario, pero no el token más largo posible.
- El bucle continúa buscando sin romper correctamente en la posición óptima.

Solo se fragmenta lo que se encuentra

Caso 3: Tokenización exacta con vocabulario

- Se encuentra una secuencia exacta en el vocabulario.
- El token se agrega a la lista de salida correctamente.

Token válido agregado

Caso 4: Coincidencias largas y fragmentación en secuencia

- Se van encontrando coincidencias de mayor cantidad de tokens unidos (priorizando tokens más largas).
- Se produce una fragmentación por grupos que maximiza coincidencias.

Tokenización óptima por grupos

Fragmentación

```
def tokenizar_por_vocab(texto, vocab, indices = False):
  palabras = texto.lower()
  palabras = re.findall(r' \setminus w + | [ \setminus w \setminus s ] ', palabras, flags=re.
   UNICODE)
  tokens = []
  i = 0
  n = len(palabras)
  while i < n:
    cand final = None
    for j in range(n, i, -1):
      cand = " ".join(palabras[i:j])
      if cand in vocab:
         cand_final = cand
         i = i
         break
```

Fragmentación

```
if not cand final:
  cand_final = palabras[i]
  if cand final not in vocab:
    print(f'palabra: [{cand_final}] no esta en voabulario')
    return None
i += 1
if indices is False:
  tokens.append(cand_final)
else:
  tokens.append(palabras_a_indice[cand_final])
return tokens
```

Generación de texto

CBOW (One-Hot): Construcción de la ventana de contexto

- Las últimas 10 palabras del texto se convierten en índices de vocabulario.
- Si hay menos de 10, se repite la última palabra para completar la ventana.

Cada palabra → vector de embedding

CBOW (One-Hot): Predicción de palabra siguiente

- El modelo predice un vector de embedding para la palabra objetivo.
- Devuelve una distribución de probabilidad (softmax), del tamaño one-hot del vocabulario.
- Se elige aleatoriamente una palabra del top-k.

Se elige la palabra más probable (o aleatoria del top-k)

CBOW (Embeddings): Construcción de la ventana

- Como en el caso anterior, se concatenan los embeddings de cada palabra.
- Si hay menos de 10 palabras, se repite la última embedding.

CBOW (Embeddings): Predicción y similitud

- El modelo predice un vector de embedding para la palabra objetivo.
- Se calcula la similitud coseno con todos los embeddings del vocabulario.
- Se elige la palabra más similar (o una del top-k).

Se elige la palabra más similar

Predicción One-hot

```
def predecir_cbow_onehot(palabras, modelo, indice_a_palabras
   , indices_a_embeddings, palabras_a_indice, topk=5):
 palabras_a_indice = globals().get('palabras_a_indice')
  tokens_idx = tokenizar_por_vocab(palabras,
   palabras_a_indice, indices=True)
  if tokens_idx is None or len(tokens_idx) == 0:
  return None
  if len(tokens_idx) < 10:</pre>
    tokens_idx = tokens_idx + [tokens_idx[-1]] * (10 - len(
   tokens_idx))
  else:
    tokens_idx = tokens_idx[-10:]
```

Predicción One-hot

```
ventana = np.concatenate([indices_a_embeddings[idx] for idx
    in tokens_idx]).flatten()
pred = modelo.predict(ventana.reshape(1, -1), verbose=0)
probs = np.asarray(pred).flatten()

candidatos = np.argsort(-probs)
topk_indices = candidatos[:topk]
top1 = np.random.choice(topk_indices)
palabra = indice_a_palabras[top1]
return palabra
```

Predicción Representación Contextual

```
ventana = np.concatenate([W[idx] for idx in tokens_idx]).
   flatten()
pred_emb = modelo.predict(ventana.reshape(1, -1), verbose=0)
pred_emb = np.asarray(pred_emb).flatten()
sims = cosine_similarity(pred_emb.reshape(1, -1), W)[0]
topk_idx = np.argsort(-sims)[:topk]
top1 = np.random.choice(topk_idx)
palabra_predicha = indice_a_palabras[top1]
return palabra_predicha
```

Estructura Multicapa

Modelo: se implementó una red neuronal de tipo **Perceptrón Multicapa** (**PMC**) utilizando la librería **Keras** (TensorFlow).

Entradas: vector resultante de concatenar los embeddings de una ventana de 8 palabras previas, donde cada palabra está representada por su embedding individual.

Salida: vector correspondiente a la palabra objetivo del contexto.

Arquitectura:

- Capa oculta 1: 512 neuronas, activación gelu.
- Capa oculta 2: 256 neuronas, activación gelu.
- Capa oculta 3: 128 neuronas, activación gelu.
- ullet Capa de salida: N neuronas, activación sigmoid.

Optimizador: Adam con learning rate = 0.0001.
Función de pérdida: MSE (error cuadrático medio).

Entrenamiento del Modelo

El modelo fue entrenado con el corpus embebido, aplicando la función sigmoide a los datos para su normalización.

Parámetros principales:

Épocas: 250

Ventana de contexto: 8 palabras

Error mínimo alcanzado: 0.0794

Generación de Texto

La generación de texto se realiza a partir de una secuencia inicial de palabras.

Código:

poner codigo

La función realiza:

- Lectura de la secuencia inicial.
- Predicción de la siguiente palabra según el tipo de salida.
- Evita repeticiones consecutivas de palabras.
- Actualiza la ventana de contexto y repite hasta completar la longitud deseada.

Resultados de la Predicción

Dado un conjunto de 8 palabras previas, el modelo entrenado con Keras fue capaz de generar una secuencia de palabras consecutivas dentro del corpus.

Entrada inicial:

"hola como esta usted la noche de hoy"

Texto generado:

"diarios mirará saliéramos encegueció creas autopista . admirativamente , saliéramos encegueció feudal creas saliéramos admirativamente encegueció bebida saliéramos contaba encegueció creas saliéramos honorable encegueció creas saliéramos"

El modelo logra una **producción coherente en la estructura**, aunque con repeticiones semánticas, reflejando un aprendizaje parcial de las relaciones contextuales del corpus.