

ML Advanced Байесовское А/В-тестирование

otus.ru

Напишите «+» в чат, если меня слышно и видно

Тема открытого урока

Байесовское А/В-тестирование

Бекетов Максим

Аспирант, стажер-исследователь ФКН ВШЭ; ассистент кафедры дискр. математики МФТИ

Выпускник ФОПФ МФТИ, магистр работал в анализе данных (appinteair.com), Python-разработке (Archeads Inc.), преподаватель статистики, линейной алгебры в МФТИ и не только

преподаватель Байесовской статистики потоков ML-Advanced в ОТУС

Контакты: <u>hse.ru/staff/bekemax</u>, <u>maxbeketov@outlook.com</u>

Маршрут вебинара

1. Знакомство

5. Команда курса

2. Об ОТУС

6. О курсе, программа обучения

3. А/В-тестирование

7. Бонус: карьерная информация

4. Байесовское тестирование

8. Рефлексия

Расскажите о себе

- Как вас зовут? Откуда вы?
- Ваш опыт работы в IT?
- С какой основной целью вы записались на занятие?

Правила вебинара

Активно участвуем

Задаем вопрос в чат

Вопросы вижу в чате, могу ответить не сразу

Условные обозначения

Индивидуально

Документ

Ответьте себе или задайте вопрос

Об ОТУС

О компании

Сфера

ОТУС специализируется на обучении в IT. Наша фишка — продвинутые программы для специалистов с опытом и быстрый запуск курсов по новым набирающим популярность технологиям.

Клиенты

Наши партнеры современные технологичные компании. А обучение и открытые материалы привлекают специалистов разных грейдов: junior, middle, senior, lead.

Образование в ОТУС

Программы курсов

OTUS имеет образовательную лицензию, поэтому наши курсы являются программами повышения квалификации и профессиональной переподготовки.

Направления курсов

Обучение специалистов разных грейдов: junior, middle, senior, lead

- Программирование
- Инфраструктура
- Тестирование
- Аналитика

- Data Science
- Управление
- GameDev
- Информационная безопасность

Мы в цифрах

130+

курсов для junior, middle, senior специалистов и менеджеров

600+

преподавателей делятся актуальными знаниями и реальными кейсами, востребованными в ІТ-индустрии

лет со дня основания компании

20 000+

выпускников уже прошли обучение по программам, адаптированным под запросы ведущих работодателей 430 000+

ИТ-специалистов в нашем сообществе, читают наши материалы, учатся и общаются на наших площадках

Напишите, пожалуйста, в чат подходящую цифру

- 1 если уже учились у нас в компании
- 2 если НЕ учились, но слышали о нас
- 3 если впервые знакомитесь с OTUS

Цели вебинара

После занятия вы сможете

- Использовать Байесовский вывод, чтобы встроить априорные представления в статистическую модель
- Использовать Байесовское А/В-тестирование гипотез
- 3. Познакомитесь с пакетом РуМС для Байесовского вывода

А/В-тестирование

А/В-тестирование

Разделение выборки на 2 подгруппы (подвыборки)

- Измерение одного и того же параметра в обеих
- Репрезентативность обеих подвыборок

А/В-тестирование

Разделение выборки на 2 подгруппы (подвыборки)

Например, изменили элемент на сайте, измеряем click-rate, θ_A и θ_B $click \sim Bern(\theta)$

Нуль-гипотеза H_0 : $\theta_A = \theta_B$

Альтернатива H_1 : $\theta_A \neq \theta_B$

Байесовская статистика

Байесовская статистика

В обычной статистике **оценка** $\hat{\theta}$ параметра θ – это какая-то **функция** данных (выборки) X, $\hat{\theta}_n = f(X)$

Например, у нас

 $X_A = ($ число кликов в группе $A) \sim Binomial(n_A, \theta_A)$

Правдоподобие выборки: $p(X = k | \theta) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$

Оценка максимума правдоподобия (MLE): $\hat{\theta}_{MLE} = \arg\max_{\theta} p(X|\theta)$

Для биномиального правдоподобия просто: $\hat{\theta}_{MLE} = \frac{1}{n_A} \sum_{i=1}^n x_k$ – это **точечная** оценка (мы пока не знаем ни её дисперсии, ни доверительного интервала)

Байесовская статистика

Формула Байеса:
$$p(\theta|X) = \frac{\substack{likelihood prior \\ p(X|\theta) p(\theta) \\ p(X) \\ evidence}}$$

Наша цель – **posterior**, $p(\theta|X)$. Ho evidence, $p(X) = \int p(X|\theta)p(\theta)d\theta$ – дается интегралом (/суммой) по всему пространству параметров Θ , если оно многомерно - посчитать его непросто

Но наблюдение: p(X) уже не зависит от θ , то есть $p(\theta|X) \propto p(X|\theta)p(\theta)$ – мы знаем **с точностью до множителя**

Тогда методами **Монте-Карло** сгенерируем выборку $\{\theta_1, ... \theta_M\}$ – "гистограмма" этой выборки \approx желанный posterior

Томас Байес

Станислав Улам

Итак, у нас две группы, и количество кликов в них:

$$X_A \sim \text{Binomial}(\theta_A, n_A), \qquad X_B \sim \text{Binomial}(\theta_B, n_B)$$

Нужно выбрать **априорное** распределение (prior), $p(\theta)$

Можно выбрать бета-распределение:

$$p(\theta|\alpha,\beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

Нормировочный множитель

$$\int_0^1 \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)}$$

- гамма-функция - обобщение факториала

На деле, бета распределение – **сопряженное** (**conjugate**) к биномиальному, то есть если:

$$p(X|\theta) = \mathrm{Binomial}(n,\theta)$$
 $prior$ $p(\theta) = \mathrm{Beta}(\alpha,\beta)$, TO $p(\theta|X) = \mathrm{Beta}(\alpha+X,\beta+(n-X))$

- то posterior тоже бета-распределение, просто с параметрами,
 «уточненными/поправленными» данными
- здесь X = число кликов («успехов») добавился к α , а (n-X) число некликов («неуспехов») добавилось к β ; потому α и β называют еще (априорными частотами) псевдо- успехов и неуспехов

У нашего постериорного распределения posterior $p(\theta|X) = \text{Beta}(\alpha + X, \beta + (n - X))$

Можно взять, например, **матожидание**
$$\mathbb{E}(\theta|X) = \frac{\alpha+X}{\alpha+\beta+n}$$

или **моду** arg max
$$p(\theta|X) = \frac{\alpha+X-1}{\alpha+\beta+n-2}$$
 – в качестве точечных оценок $\hat{\theta}(X)$

Известна и дисперсия. Но все же самое ценное - это что из данных, X, мы получаем **целое распределение** $p(\theta|X)$ возможных значений параметра θ – при условии данных X и с учетом наших априорных знаний $p(\theta)$ о его возможном распределении (безотносительно данных).

Мы с вами обсудили т.н. бета-биномиальную модель. Это редкий случай когда есть аналитическое решение.

Но пока мы знаем только распределение $\theta \sim p(\theta|X)$

A если нас интересует (относительное) увеличение click rate = $\frac{\theta_A}{\theta_B} - 1$?

Или, интереснее: каждый кликнувший пользователь оставляет случайное (например, экспоненциально распределенное $\sim \operatorname{Exp}(\lambda)$) количество денег?

И нас интересует распределение Revenue $\sim \text{Bern}(\theta) \cdot \text{Exp}(\lambda)$?

Тогда уже не обойтись без Монте-Карло семплирования!

Посмотрим код!

PyMC.io: What is (Bayesian) A/B testing?

А если случайная величина не дискретная (клики), а непрерывная?

Например, мы испытываем лекарство для гипертоников – людей с повышенным артериальным давлением.

Для большой группы людей этот показатель будет почти нормально распределен

pressure
$$\sim \mathcal{N}(\mu_A, \sigma)$$

Хотим проверить, есть ли разница между группами: $\mu_A - \mu_B = 0$?

Уильям Госсет показал, что если

$$X_n = \{x_1, \dots x_n\} \sim \mathcal{N}(\mu, \sigma)$$

To t-статистика: $t = \frac{\bar{X} - \mu}{s / \sqrt{n}}$ (где s – sample std.)

имеет особое распределение $t \sim Student(n-1)$

-c v = n - 1«степеней свободы»

Уильям Госсет (aka Стьюдент)

Теперь для наших групп $X_{A,B} \sim \mathcal{N}(\mu_{A,B}, \sigma_{A,B})$ можно протестировать:

$$H_0$$
: $\mu_A = \mu_B$ против H_1 : $\mu_A \neq \mu_B$

т.к. t-статистика
$$t=rac{ar{x}_A-ar{x}_B}{s_p\sqrt{2/n}}$$
 где $s_p=\sqrt{(s_A^2+s_B^2)/2}$

(при справедливости H_0) имеет t-распределение с $n_A + n_B - 2$ степенями свободы

Байесовская модификация этого теста позволяет нам использовать **априорные знания** о распределении $\mu_{A,B}$ и $\sigma_{A,B}$ — необязательна большая выборка испытуемых, если мы уверены в априорных знаниях!

Ключевые тезисы

- 1. Мы научились **«встраивать» априорные знания** в модель если выборка небольшая, это поможет нам сделать вывод
- 2. Самое важное постериор не всегда легко получить, но нам на помощь приходят Монте-Карло и симуляции (семплирование) на мощном компьютере
- 3. Языки/библиотеки типа РуМС позволяют строить такие модели байесовского вывода «из кирпичиков»

Вопросы?

Задаем вопросы в чат

Ставим "-", если вопросов нет

Знакомство с командой и программой курса

Процесс обучения

Обучение выстроено в формате вебинаров (онлайн). Онлайн-вебинары проводятся по вечерам или в выходные дни

Все записи занятий и материалы, предоставляемые преподавателями, сохраняются в личном кабинете и остаются доступны даже после окончания обучения

Домашние задания позволят Вам применить на практике полученные во время вебинаров знания. По каждому домашнему заданию преподаватель дает развернутый фидбек

В процессе обучения Вы можете задавать преподавателю вопросы по материалам лекций и домашних заданий, уточнять моменты, которые были непонятны на уроке

Время на обучение: от 4 ак. часов на занятия и 4-8 часов на домашнюю работу в неделю

Программа обучения на курсах обновляется каждый запуск в зависимости от актуальных запросов в сфере IT-технологий

Карьерная информация

Анализ позиции Data Scientist

156

Вакансий Data Scientist для соискателей уровня Junior+ в Москве.

Data Scientist для соискателей уровня Junior+ в России.

^{*}вакансии для аудитории с опытом работы от года до трех лет. Источник — hh

Аналитика зарплатных предложений

(Junior - Senior)

Медиана

185 000

Источник - hh

Требования работодателей к соискателям

Навыки:

- Отличное знание классических алгоритмов Machine Learning, хороший кругозор в этой области;
- Умение разбираться в математике, стоящей за алгоритмами машинного обучения;
- Опыт работы с базами данных, SQL;
- Знание математической статистики (умение проверять статистические гипотезы);
- Есть опыт вывода ml-решений в продакшн.

Вакансии из telegram каналов

Middle/Senior Machine Learning Engineer

от 200 000 руб. до вычета налогов

Требуемый опыт работы: 3-6 лет Полная занятость, полный день

Требования:

- Уверенное знание математической статистики;
- Глубокие знания в областях Machine Learning, Deep Learning;
- Опыт в сферах Computer Vision, Image Recognition;
- Опыт решения задач классификации, детектирования и сегментации с помощью CNN, знание и опыт применения архитектур SSD, YOLO и т.д.;
- Опыт разработки алгоритмов пост- и пред- процессинга изображений, знание методов openCV;
- Понимание метрик эффективности моделей машинного обучения:
- Знание и опыт использования Keras, tensorflow;
- Знание Python: multithreading, numpy, scikit, pandas, matplotlib и др.;
- Уверенное владение linux/bash;
- Опыт работы с git;
- Английский язык на уровне чтения технической литературы.

Плюсом являются:

- Опыт разработки коммерческих ML продуктов;
- Знание и опыт использования TFLite, техник оптимизации ML моделей;
- Ученая степень физико-математических или технических наук;
- Наличие научных статей по машинному обучению;
- Наличие сертификатов пройденных курсов по машинному обучению и анализу данных от ВШЭ, МФТИ, Яндекса;
- Fluent English B2+.

Вакансии из telegram каналов

Город и адрес офиса: Питер, м. Чкаловская/Горьковская или

удалёнка;

Формат работы: гибрид

Занятость: полная

Зарплатная вилка: 2000\$ до 3000\$ net

Сейчас мы в поисках middle/senior Data Scientist для развития нашей рекламной платформы.

Чем предстоит заниматься?

- Построить эффективную ротацию рекламы на основе ML;
- Планировать, проводить и оценивать результаты А/В-тестов, выдвигать и проверять гипотезы по улучшению;
- Оптимизировать скорость и эффективность полученных моделей;
- Взаимодействовать с командой разработки.

Что мы ожидаем от тебя?

- Разбираешься в теории вероятностей и статистике;
- Знаешь, как работают традиционные алгоритмы, использующиеся для ML. Применял их в production'e;
- Уверенное знание Python для анализа данных;
- Опыт работы с TensorFlow;
- SQL (написание запросов, понимание принципов организации БД).

Рефлексия

Список материалов для изучения

- Байесовская статистика Википедия
- About PyMC, и вообще про т.н. Probabilistic programming (Stan и пр.)
- Chris Stucchio, «Bayesian A/B Testing at VWO»
- Материалы Сергея Николенко

О курсе

Machine Learning. Advanced

старт обучения: 27.10.2023

otus.ru/lessons/advanced-ml

Заполните, пожалуйста, опрос о занятии

Важно! Пройти опрос могут только залогиненные пользователи платформы OTUS

otus.pw/IMZW/

Спасибо за внимание!

Только учеба только хардкор!