HNCO

Empirical cumulative distribution functions of various black box optimization algorithms

November 22, 2017

Contents

1	Plan	2
2	Function one-max	5
3	Function lin	5
4	Function leading-ones	6
5	Function ridge	6
6	Function jmp-5	7
7	Function jmp-10	7
8	Function djmp-5	8
9	Function djmp-10	8
10	Function fp-5	9
11	Function fp-10	9
12	Function nk	10
13	Function max-sat	10
14	Function labs	11
15	Function ep	11
16	Function cancel	12
17	Function trap	12
18	Function hiff	13
19	Function plateau	13
20	Function walsh2	14
21	Default parameters	15

1 Plan

```
"exec": "hnco",
"opt": "--log-improvement --map 1 --map-random -s 100 -i 0 -b 30000",
"num_runs": 20,
"num_targets": 50,
"parallel": true,
"results": "results",
"graphics": "graphics",
"report": "report",
"functions": [
    {
        "id": "one-max",
        "opt": "-F 0 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "lin",
        "opt": "-F 1 -p instances/lin.100",
        "col": ">{{\\nprounddigits{2}}}N{2}{2}"
    },
        "id": "leading-ones",
        "opt": "-F 10 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "ridge",
        "opt": "-F 11 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "jmp-5",
        "opt": "-F 30 --stop-on-maximum -t 5",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "jmp-10",
        "opt": "-F 30 --stop-on-maximum -t 10",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
   },
        "id": "djmp-5",
        "opt": "-F 31 --stop-on-maximum -t 5",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "djmp-10",
        "opt": "-F 31 --stop-on-maximum -t 10",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
   },
        "id": "fp-5",
        "opt": "-F 40 --stop-on-maximum -t 5",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "fp-10",
        "opt": "-F 40 --stop-on-maximum -t 10",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
```

```
"id": "nk",
        "opt": "-F 60 -p instances/nk.100.4",
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
    },
        "id": "max-sat",
        "opt": "-F 70 -p instances/ms.100.3.1000 --cache",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "labs",
        "opt": "-F 80",
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
   },
        "id": "ep",
        "opt": "-F 90 -p instances/ep.100",
        "reverse": true,
        "logscale": true,
        "col": ">{{\\nprounddigits{1}}}N{1}{1}"
    },
        "id": "cancel",
        "opt": "-F 100 -s 99",
        "reverse": true,
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
    },
        "id": "trap",
        "opt": "-F 110 --stop-on-maximum --fun-num-traps 10",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
    {
        "id": "hiff",
        "opt": "-F 120 --stop-on-maximum -s 128",
        "col": ">{{\\nprounddigits{0}}}}N{3}{0}"
    },
        "id": "plateau",
        "opt": "-F 130 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "walsh2",
        "opt": "-F 162 -p instances/walsh2.100 --cache",
        "col": ">{{\\nprounddigits{2}}}N{3}{2}"
    }
"algorithms": [
    {
        "id": "rls",
        "opt": "-A 100 --restart"
    },
    {
        "id": "hc",
        "opt": "-A 150 --restart"
   },
        "id": "sa",
        "opt": "-A 200 --sa-rate 1.05 --sa-num-trials 10"
    },
    {
        "id": "ea-1p1",
```

],

```
"opt": "-A 300"
    },
        "id": "ea-1p10",
        "opt": "-A 310 --ea-mu 1 --ea-lambda 10"
   },
        "id": "ea-10p1",
        "opt": "-A 310 --ea-mu 10 --ea-lambda 1"
    },
        "id": "ea-1c10",
        "opt": "-A 320 --ea-mu 1 --ea-lambda 10"
    },
    {
        "id": "ga",
        "opt": "-A 400 --ea-mu 100"
    },
        "id": "pbil",
        "opt": "-A 500 -r 5e-3"
    },
        "id": "umda",
        "opt": "-A 600 -x 100 -y 10"
    }
]
```

}

2 Function one-max

3 Function lin

4 Function leading-ones

5 Function ridge

6 Function jmp-5

7 Function jmp-10

8 Function djmp-5

9 Function djmp-10

10 Function fp-5

11 Function fp-10

12 Function nk

13 Function max-sat

14 Function labs

15 Function ep

Number of evaluations

16 Function cancel

17 Function trap

18 Function hiff

19 Function plateau

20 Function walsh2

21 Default parameters

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
\# ea_lambda = 100
\# ea_mu = 10
# fun_name = noname
# fun_num_traps = 10
# fun_prefix_length = 2
# fun_threshold = 10
# function = 0
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_binary_dynamics = 0
\# hea_delay = 10000
# hea_num_par_updates = 1
# hea_num_seq_updates = 100
# hea_rate_strategy = 0
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_time_constant = 1000
# hea_weight = 1
# learning_rate = 0.001
# map = 0
# map_input_size = 100
# map_path = nopath
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = nopath
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# rls_patience = 50
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
# sa_rate = 1.2
# scaled_mutation_probability = 1
\# seed = 0
# selection_size = 1
# target = 100
# print_default_parameters
# last_parameter
# exec_name = hnco
\# version = 0.7
# Generated from hnco.json
```