

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 12 Jan 2023 1 of 12

Sample Information

Patient Name: 許丕煌 Gender: Male ID No.: W100071546 History No.: 42673063

Age: 56

Ordering Doctor: DOC1697J 蔡淳光 Ordering REQ.: 0CERPVY Signing in Date: 2023/01/12

Path No.: M112-00003 MP No.: MY23001

Assay: Oncomine Myeloid Assay **Sample Type:** Bone Marrow

Bone Marrow Aspirating Date: 2023/01/06

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Acute Myeloid Leukemia

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	4
Relevant Therapy Details	4
Prognostic Details	8
Diagnostic Details	9

Report Highlights

- 1 Relevant Biomarkers
- 4 Therapies Available 0 Clinical Trials

Relevant Acute Myeloid Leukemia Variants

Gene	Finding	Gene	Finding
ABL1	None detected	MECOM	None detected
ASXL1	None detected	MLLT3	None detected
CEBPA	None detected	MYH11	CBFB-MYH11 fusion
CREBBP	None detected	NPM1	None detected
FLT3	None detected	NUP214	None detected
IDH1	None detected	RARA	None detected
IDH2	None detected	RUNX1	None detected
KMT2A	None detected	TP53	None detected

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	CBFB-MYH11 fusion core-binding factor subunit beta - myosin heavy chain 11	cytarabine + daunorubicin cytarabine + idarubicin cytarabine + mitoxantrone gemtuzumab ozogamicin + chemotherapy	None	0
	Prognostic significance: ELN 2017 Diagnostic significance: Acute My			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

KRAS p.(G12D) c.35G>A, KRAS p.(G12V) c.35G>T, NRAS p.(Q61H) c.183A>T

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA	DNA Sequence Variants							
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
NRAS	p.(Q61H)	c.183A>T	COSM585	chr1:115256528	21.08%	NM_002524.5	missense	1988
KRAS	p.(G12V)	c.35G>T	COSM520	chr12:25398284	9.16%	NM_033360.4	missense	1997
KRAS	p.(G12D)	c.35G>A	COSM521	chr12:25398284	12.82%	NM_033360.4	missense	1997

Gene Fusion	Gene Fusions (RNA)					
Genes	Variant ID	Locus	Read Count			
CBFB-MYH11	CBFB-MYH11.C4M33	chr16:67100701 - chr16:15814908	498			
CBFB-MYH11	CBFB-MYH11.C5M33	chr16:67116211 - chr16:15814908	19473			

Biomarker Descriptions

CBFB (core-binding factor subunit beta)

Background: The CBFB gene encodes the core-binding factor subunit beta, a member of the PEBP2/CBF transcription factor family¹. CBFB is capable of heterodimerization with the RUNX protein family (RUNX1, RUNX2, and RUNX3) which results in the formation of the core binding factor (CFB) complex, a transcription factor complex responsible for the regulation of many critical functions in hematopoiesis and osteogenesis².3.4. Although possessing no DNA-binding activity, CBFB has been observed to enhance stability and transcriptional activity of RUNX proteins, thereby exhibiting a critical role in RUNX mediated transcriptional regulation³.4. In cancer, mutations in CBFB have been implicated in decreased protein stability and loss of function, supporting a tumor suppressor role for CBFB4

Alterations and prevalence: Somatic mutations in CBFB are observed in 2% of diffuse large B-cell lymphoma, breast invasive carcinoma, and uterine corpus endometrial carcinoma⁵. Biallelic deletions in CBFB are found in 2% of ovarian serous cystadenocarcinoma, prostate adenocarcinoma, and breast invasive carcinoma⁵. Translocations including inv(16) and t(16;16) have been observed to be recurrent in de novo AML, occurring in 7-10% of patients, and have been associated with the AML M4 with bone barrow eosinophilia (M4Eo) subtype⁶. Translocations often result in CBFB-MYH11 fusion, which can exist as one of multiple transcripts, depending on the exons fused⁶.

Date: 12 Jan 2023

Biomarker Descriptions (continued)

Potential relevance: Currently, no therapies are approved for CBFB aberrations. Translocations, including inv(16) and t(16;16) which result in CBFB-MYH11 fusion, are diagnostic markers for acute myeloid leukemia and are associated with favorable prognosis⁷.

KRAS (KRAS proto-oncogene, GTPase)

<u>Background:</u> The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{8,9,10}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60% of pancreatic cancer⁵. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{5,11,12}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{13,14}.

Potential relevance: The KRAS inhibitor, sotorasib¹⁵, is approved (2021) for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). The FDA has granted breakthrough therapy designation (2021) to the small molecule inhibitor, adagrasib, for KRAS G12C positive in non-small cell lung cancer following prior systemic therapy¹⁶. The small molecular inhibitor, RO-5126766, was also granted breakthrough designation (2021) alone for KRAS G12V mutant non-small cell lung cancer or in combination with defactinib, for KRAS mutant endometrial carcinoma and KRAS G12V mutant non-small cell lung cancer¹⁷. The PLK1 inhibitor, onvansertib¹⁸, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). Additionally, the SHP2 inhibitor, BBP-398¹⁹ was granted fast track designation (2022) in combination with sotorasib for previously treated patients with KRAS G12C-mutated metastatic NSCLC. The EGFR antagonists, cetuximab²⁰ and panitumumab²¹, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)¹⁴. Additionally, KRAS mutations are associated with poor prognosis in NSCLC²².

MYH11 (myosin heavy chain 11)

Background: MYH11 encodes myosin heavy-chain 11 which is a key contractile protein involved in smooth muscle movement, protein transport, and cell-cell interaction²³. MYH11 belongs to the myosin family of motor proteins that functions to convert chemical energy into mechanical energy through ATP hydrolysis^{24,25}. MYH11 consists of two pairs of light chains and two heavy chains produced from the MYH11 gene¹. MYH11 is frequently translocated in acute myeloid leukemia (AML) where the C-terminal of MYH11 protein that contains a coiled-coil smooth muscle myosin heavy chain (SMMHC) fuses with the core binding factor ß (CBFß) gene^{26,27}. The CBFB-MYH11 fusion dimerizes with RUNX1, a key transcription factor in myelodysplastic malignancies, and inhibits RUNX1's function in hematopoiesis²⁸.

Alterations and prevalence: Somatic missense, nonsense, and splice-site mutations of MYH11 are observed in 13% of melanoma, 10% of uterine, 6% of stomach as well as bladder cancers, and 2% of AML cases¹³. The inv(16)(p13.1;q22) or t(16;16)(p13.1;q22) translocation results in the CBFB-MYH11 fusion and is observed in over 5% of AML cases²⁷.

Potential relevance: The inv(16)(p13.1;q22)/t(16;16)(p13.1;q22), that results in CBFB-MYH11 fusion, is a diagnostic entity for AML, as defined by the World Health Organization (WHO) 7,29 . The CBFB-MYH11 fusion is also associated with favorable risk stratification in AML 7

NRAS (NRAS proto-oncogene, GTPase)

<u>Background:</u> The NRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes KRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{8,9,10}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. NRAS mutations are particularly common in melanomas (up to 25%) and are observed at frequencies of 5-10% in acute myeloid leukemia, colorectal, and thyroid cancers^{5,30}. The majority of NRAS mutations consist of point mutations at G12, G13, and Q61^{5,31}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{13,14}.

Potential relevance: Currently, no therapies are approved for NRAS aberrations. The EGFR antagonists, cetuximab²⁰ and panitumumab²¹, are contraindicated for treatment of colorectal cancer patients with NRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)¹⁴. The FDA has granted fast track designation to the pan-RAF inhibitor, KIN-2787³², for the treatment of NRAS mutation positive metastatic or unresectable melanoma. NRAS mutations are associated with poor prognosis in patients with low-risk myelodysplastic syndrome³³ as well as melanoma³⁴. In a phase III clinical trial in patients with

Biomarker Descriptions (continued)

advanced NRAS-mutant melanoma, binimetinib improved progression free survival (PFS) relative to dacarbazine with median PFS of 2.8 and 1.5 months, respectively³⁵.

Relevant Therapy Summary

In this cancer type In other cancer type	In this cancer type and other cancer types	No evidence
--	--	-------------

CBFB-MYH11 fusion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
gemtuzumab ozogamicin + cytarabine + daunorubicin	×		×		×
cytarabine + daunorubicin	×		×	×	×
cytarabine + idarubicin	×	•	×	×	×
cytarabine + mitoxantrone	×	•	×	×	×
gemtuzumab ozogamicin + cytarabine + fludarabine + idarubicin + filgrastim	×	•	×	×	×

Relevant Therapy Details

Current NCCN Information

_			
	In this cancer type	 In other cancer type 	In this cancer type and other cancer types

NCCN information is current as of 2022-11-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

CBFB-MYH11 fusion

cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

NCCN Recommendation category: 1

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

Date: 12 Jan 2023 5 of 12

CBFB-MYH11 fusion (continued)

cytarabine + idarubicin

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

NCCN Recommendation category: 1

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

cytarabine + idarubicin

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

cytarabine + mitoxantrone

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

gemtuzumab ozogamicin + cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Induction therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

Date: 12 Jan 2023 6 of 12

CBFB-MYH11 fusion (continued)

gemtuzumab ozogamicin + cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

gemtuzumab ozogamicin + cytarabine + fludarabine + idarubicin + filgrastim

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

NCCN Recommendation category: 2B

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

Date: 12 Jan 2023 7 of 12

Current ESMO Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

ESMO information is current as of 2022-11-01. For the most up-to-date information, search www.esmo.org.

CBFB-MYH11 fusion

gemtuzumab ozogamicin + cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

ESMO Level of Evidence/Grade of Recommendation: II / A

Population segment (Line of therapy):

■ Core Bindig Factor (Induction therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

Prognostic Details

Current NCCN Information

NCCN information is current as of 2022-11-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

CBFB-MYH11 fusion

Prognostic significance: ELN 2017: Favorable

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

NCCN Recommendation category: 2A

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

Current ESMO Information

ESMO information is current as of 2022-11-01. For the most up-to-date information, search www.esmo.org.

CBFB-MYH11 fusion

Prognostic significance: ELN 2017: Favorable

Cancer type: Acute Myeloid Leukemia Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6):

697-712.]

Date: 12 Jan 2023

Diagnostic Details

Current NCCN Information

NCCN information is current as of 2022-11-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

CBFB-MYH11 fusion

Diagnostic significance: Acute Myeloid Leukemia

Variant class: inv(16) or t(16;16)

NCCN Recommendation category: 2A

Diagnostic notes:

■ WHO 2016 classification defined as ≥20% blasts in blood or bone marrow, or in appropriate clinical setting with <20% blasts and recurrent cytogenetic abnormalities.

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 2.2022]

Diagnostic significance: Acute Myeloid Leukemia

Variant class: inv(16)

NCCN Recommendation category: 2A

Diagnostic notes:

Karyotypes t(8;21), inv16, and t(15;17) are considered to be Acute Myeloid Leukemia even if the marrow blast count is less than 20%

Reference: NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2023]

Current ESMO Information

ESMO information is current as of 2022-11-01. For the most up-to-date information, search www.esmo.org.

CBFB-MYH11 fusion

Diagnostic significance: Acute Myeloid Leukemia

Variant class: MYH11-CBFB fusion [t(16;16)(p13;q22)]

Diagnostic notes:

Core Binding Factor-Acute Myeloid Leukemia

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

Date: 12 Jan 2023 10 of 12

Signatures

Pathologist:

Testing Personnel:

Laboratory Supervisor:

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Link et al. Core binding factor at the crossroads: determining the fate of the HSC. J Cell Physiol. 2010 Jan;222(1):50-6. PMID: 19813271
- 3. Qin et al. Cbfb regulates bone development by stabilizing Runx family proteins. J Bone Miner Res. 2015 Apr;30(4):706-14. PMID: 25262822
- 4. Malik et al. The transcription factor CBFB suppresses breast cancer through orchestrating translation and transcription. Nat Commun. 2019 May 6;10(1):2071. PMID: 31061501
- 5. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- Lesser et al. Tables of power for the F-test for comparing two exponential survival distributions. J Chronic Dis. 1981;34(11):533-44. PMID: 17287858
- 7. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2022]
- 8. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PPO.0000000000187. PMID: 27341593
- 11. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
- 12. Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer-preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- 13. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214665s000lbl.pdf
- 16. https://ir.mirati.com/press-releases/press-release-details/2021/Mirati-Therapeutics-Adagrasib-Receives-Breakthrough-Therapy-Designation-from-U.S.-Food-and-Drug-Administration-for-Patients-with-Advanced-Non-Small-Cell-Lung-Cancer-Harboring-the-KRAS-G12C-Mutation/default.aspx
- 17. https://investor.verastem.com//news-releases/news-release-details/verastem-oncology-receives-breakthrough-therapy-designation-vs
- 18. https://cardiffoncology.investorroom.com/2020-05-28-Cardiff-Oncology-Announces-Fast-Track-Designation-Granted-by-the-FDA-to-Onvansertib-for-Second-Line-Treatment-of-KRAS-Mutated-Colorectal-Cancer
- 19. https://bridgebio.com/news/bridgebio-pharma-announces-first-lung-cancer-patient-dosed-in-phase-1-2-trial-and-us-fda-fast-track-designation-for-shp2-inhibitor-bbp-398-in-combination-with-amgens-lumakras-sotorasib/
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- $21. \quad https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125147s210lbl.pdf$
- 22. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829
- 23. Matsuoka et al. Human smooth muscle myosin heavy chain gene mapped to chromosomal region 16q12. Am. J. Med. Genet. 1993 Apr 1;46(1):61-7. PMID: 7684189
- 24. Kwartler et al. Overexpression of smooth muscle myosin heavy chain leads to activation of the unfolded protein response and autophagic turnover of thick filament-associated proteins in vascular smooth muscle cells. J. Biol. Chem. 2014 May 16;289(20):14075-88. PMID: 24711452
- 25. Halstead et al. An unusual transduction pathway in human tonic smooth muscle myosin. Biophys. J. 2007 Nov 15;93(10):3555-66. PMID: 17704147
- 26. Huang et al. Genetic approaches to identify pathological limitations in aortic smooth muscle contraction. PLoS ONE. 2018;13(3):e0193769. PMID: 29494672
- 27. Durst et al. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol. Cell. Biol. 2003 Jan;23(2):607-19. PMID: 12509458

References (continued)

- 28. Shigesada et al. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene. 2004 May 24;23(24):4297-307. PMID: 15156186
- 29. Arber et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391-405. PMID: 27069254
- 30. Janku et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS ONE. 2011;6(7):e22769. PMID: 21829508
- 31. Ohashi et al. Characteristics of lung cancers harboring NRAS mutations. Clin. Cancer Res. 2013 May 1;19(9):2584-91. PMID: 23515407
- 32. https://investors.kinnate.com/news-releases/news-release-details/kinnate-biopharma-inc-receives-fast-track-designation-us-food
- 33. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 1.2023]
- 34. Johnson et al. Treatment of NRAS-Mutant Melanoma. Curr Treat Options Oncol. 2015 Apr;16(4):15. doi: 10.1007/s11864-015-0330-z. PMID: 25796376
- 35. Dummer et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017 Apr;18(4):435-445. PMID: 28284557