DIFFERENTIAL COHOMOLOGY SEMINAR 4 (DRAFT)

TALK BY ALESSANDRO NANTO

In the last talk we learned the definition of a differential cohomology theory, as a sheaf valued in spectra on the site of manifolds. This talk continues our journey through differential cohomology theories, and focuses on the following three topics:

- (1) We want to learn how to construct non-trivial examples out of sheaves valued in chain complexes.
- (2) We want to understand how we can extend classical cohomology operations to the setting of differential cohomology theories.
- (3) We want to introduce suitable analogues of fiber-wise integration.

1. ABELIAN GROUPS, SPECTRA AND THE HEART

Let us start by reviewing the relation between abelian groups and spectra.

Definition 1. Let $n \in \mathbb{Z}$ and X be a spectrum, define $\pi_n(X) := \pi_0(\Omega^{\infty+n}X) = \pi_0(X_{-n})$. We call π_n the n-th homotopy group of X. Denote by $\operatorname{Sp}_{\geq 0} \subseteq \operatorname{Sp}$ the full sub-category generated by connective spectra, i.e. spectra X such that $\pi_n(X) \simeq 0$, for all n < 0. Finally, denote by $\operatorname{Sp}^{\circ} \subseteq \operatorname{Sp}_{\geq 0}$ the heart of spectra, the full sub-category generated by connective spectra X such that $\pi_n(X) \simeq 0$, for all n > 0.

By [Lur17, Proposition 1.4.3.6], the category $Sp_{\geq 0}$ is presentable and the heart is equivalent via π_0 to the category of abelian groups.

Definition 2. The functor $\mathcal{A}b \to \mathcal{S}p^{\heartsuit}$ inverse to π_0 is called *Eilenberg-Mac Lane spectra*.

Lemma 3. A connective spectrum X belongs to the heart if and only if it is local with respect to $0 \to \Sigma^{\infty+1} S$, for every pointed space S. In particular, $\operatorname{Sp}^{\heartsuit}$ is a reflexive localization of $\operatorname{Sp}_{\geq 0}$.

Proof. X belongs to the heart if and only if $\Omega^{\infty}X$ is homotopically discrete, i.e. $\pi_0(\Omega^{\infty}X) \simeq 0$, for all n > 0. Since $\pi_n(\Omega^{\infty+1}X) \simeq \pi_{n+1}(\Omega^{\infty}X)$, for all $n \geq 0$, the condition that $\Omega^{\infty}X$ is homotopically discrete is equivalent to $\Omega^{\infty+1}X$ being contractible. Finally, $\Omega^{\infty+1}X$ being contractible is equivalent to $\operatorname{Map}_{\mathcal{S}_*}(S,\Omega^{\infty+1}X) \simeq 0$, for every pointed space S, which is equivalent to $\operatorname{Map}_{\mathcal{S}_p}(\Sigma^{\infty+1}S,X) \simeq 0$ (using the adjunction between $\Sigma^{\infty+1}$ and $\Omega^{\infty+1}$).

Remark 4. Lemma 3 together with the equivalence $\operatorname{Sp}^{\heartsuit} \simeq \operatorname{Ab}$, imply that the Eilenberg-Mac Lane spectra functor, viewed as a functor $\operatorname{Ab} \to \operatorname{Sp}_{>0}$, is a fully faithful left adjoint.

The category of spectra Sp underlies the structure of a symmetric monoidal category Sp^.

Proposition 5. The functor $H: Ab^{\otimes} \to Sp^{\wedge}$ is symmetric lax monoidal. In particular, if R is a (commutative) monoid in Ab^{\otimes} , i.e. a (commutative) ring, then HR is a (commutative) monoid in Sp^{\wedge} , i.e. a (commutativity) ring spectra. Moreover, H induces a functor $R - Mod \to HR - Mod$.

Remark 6. Since $\operatorname{Sp}^{\wedge}$ is a symmetric monoidal ∞ -category, a commutative ring spectrum is commutative up to coherent homotopies, in the sense of E_{∞} -algebras.

2. From Chain Complexes to Spectra via stable Dold-Kan

Let $\Omega_{dR}^{\bullet} \colon \mathcal{M} \mathrm{fd} \to \mathcal{C}\mathrm{h}(R-\mathcal{M}\mathrm{od})$ be the de Rham chain complex of a manifold, which is indeed a sheaf on the site of manifolds. Moreover, by $\ref{eq:ham}$, the ring map $\mathbb{Z} \to \mathbb{R}$, gives us a map of ring spectra $H\mathbb{Z} \to H\mathbb{R}$. Ideally Deligne cohomology should be characterized as the pullback of some sort of truncated deRham complex along the map $H\mathbb{Z} \to H\mathbb{R}$. This requires a precise definition of the spectrum associated to the k-truncated de Rham complex $\Omega^{\leq k}$. For this we use advanced result from stable homotopy theory.

 $Date \colon 03.06.2025 \ \& \ 17.06.2025.$

¹Since $X_n \simeq \Omega^2 X_{n+2}$, for any n, the set $\pi_0(X_n)$ underlies the structure of an abelian group.

Theorem 7. Let R be a ring. The functor $H: Mod_R \to Mod_{H(R)}$ lifts

$$\operatorname{Mod}_{R} \xrightarrow{H} \operatorname{Mod}_{H(R)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

where $\mathfrak{D}(R)$ is the derived category of R-modules.

Recall that a \mathbb{Z} -module is just an abelian group. Hence, applying this result to $R = \mathbb{Z}$, we get the following corollary.

Corollary 8. The functor $H: Mod_{\mathbb{Z}} \to Mod_{H\mathbb{Z}}$ lifts to a functor

$$\operatorname{Mod}_{\mathbb{Z}} \xrightarrow{H} \operatorname{Mod}_{H\mathbb{Z}}$$

$$\downarrow \qquad \qquad DK_{st}$$

$$D(\mathbb{Z})$$

We call this lift $D(\mathbb{Z}) \to Mod_{H\mathbb{Z}}$ the stable Dold-Kan correspondence.

One thing one might wonder is how this relates to the more classical Dold-Kan correspondence, which relates chain complexes of abelian groups to simplicial abelian groups. Let Ch^+ be the category of bounded below chain complexes of abelian groups. The classical Dold-Kan correspondence gives us a functor

$$DK \colon \mathrm{Ch}^+ \to s \mathcal{A} \mathrm{b}$$

from bounded below chain complexes of abelian groups to simplicial abelian groups. However, every simplicial abelian group comes with an abelian group structure on a simplicial set, meaning it is in particular an E_{∞} -group in spaces. This means we have a functor

$$sAb \to \operatorname{Grp}_{E_{\infty}}(S)$$

However, $\operatorname{Grp}_{E_{\infty}}(\mathbb{S})$ fully faithfully embeds in Sp as connected spectra. Composing all these functors, we get a functor

$$DK \colon \mathcal{C}h^+ \to \mathcal{S}p$$
,

which is fully faithful and recovers the classical Dold-Kan correspondence. The stable Dold-Kan correspondence is a lift of this functor to $\mathcal{D}(\mathbb{Z})$ i.e.

relates to the stable Dold-Kan correspondence. Finally, we can now use stable Dold-Kan to get a functor of sheaves.

Definition 9. Let

$$H: \operatorname{Shv}(Mfd; \mathcal{D}(\mathbb{Z})) \to \operatorname{Shv}(\operatorname{Mfd}; \operatorname{Sp})$$

denote the functor that post-composes a sheaf of chain complexes on manifolds with the stable Dold-Kan correspondence and then sheafifies. For a given sheaf of chain complexes F, we call the image the associated $Eilenberg-MacLane\ sheaf$.

3. Deligne Cohomology as a Differential Cohomology Theory

Now equipped with Definition 9, we can finally define Deligne cohomology as a differential cohomology theory.

What do we know about the properties of this functor?

Why?

How?

need sheafifi-

cation? This might need some checking **Definition 10.** Let $k \geq 0$. The *Deligne cohomology sheaf* $\mathcal{E}(k)$ is defined via the following pullback square in $Shv(\mathcal{M}fd; Sp)$:

$$\mathcal{E}(k) \longrightarrow H(\Omega_{dR}^{\leq k})
\downarrow \qquad \qquad \downarrow
H\mathbb{Z} \longrightarrow H\mathbb{R}$$

Here H is the Eilenberg-MacLane sheaf.

Remark 11. If we take $k = \infty$, then the map $H(\Omega_{dR}) \to H\mathbb{R}$ is an equivalence, meaning $\mathcal{E}(\infty)$ is equivalent to $H\mathbb{Z}$ i.e. singular cohomology. On the other side, the individual $\mathcal{E}(k)$ are highly non-trivial and help classify many geometric invariants of interest (as we saw in the first talk). So, the $\mathcal{E}(k)$ are a non-trivial filtration of $H\mathbb{Z}$ by differential cohomology theories, in the sense that there are map $\mathcal{E}(k+1) \to \mathcal{E}(k)$, the limit of which is $H\mathbb{Z}$.

4. Cohomology Operations for Deligne Cohomology

Now that we have a rigorous definition of Deligne cohomology, we can start to think about operations on it. First of all, we need a suitable monoidal structure.

Definition 12. Let F, G be two differential cohomology theories. The *monoidal product* $F \otimes G$ is defined as the sheafification of the presheaf $F \wedge G$, which is the point-wise wedge product of spectra.

Now, recall there is a map of differential forms

$$\Omega^{\leq k} \otimes \Omega^{\leq m} \to \Omega^{\leq k+m}$$
.

which induces a map of differential cohomology theories

$$\mathcal{E}(k) \otimes \mathcal{E}(m) \to \mathcal{E}(k+m)$$

Ideally, we would like to describe such an operation in a very explicit manner, however, in the realm of spectra this can be very challenging. This suggests an alternative perspective.

Definition 13. Let $\mathcal{L}(k)$ be the sheaf of chain complexes defined as the pullback in $Shv(\mathcal{M}fd, D(\mathbb{Z}))$ of the following diagram

$$\begin{array}{ccc}
\mathcal{L}(k) & \longrightarrow & \Omega^{\leq k} \\
\downarrow & & \downarrow_{dR}, \\
\mathbb{Z} & \longrightarrow & \mathbb{R}
\end{array}$$

where \mathbb{Z} is the functor $M \mapsto C^{\bullet}(M, \mathbb{Z})$ and \mathbb{R} is the functor $M \mapsto C^{\bullet}(M, \mathbb{R})$

Remark 14. We can explicitly describe the chain complex $\mathcal{L}(k)$ as follows.

$$\mathcal{L}(k)^n = \{(c, \omega, h) \in C^n(-\mathbb{Z}) \oplus \Omega^n(-) \oplus C^{n-1}(-\mathbb{R}) | \omega = 0 \text{ if } n > kandc - dR(\omega) = dh \}$$

Remark 15. We expect that $H\mathcal{L}(k)$ in fact recovers $\mathcal{E}(k)$, meaning operations on $\mathcal{L}(k)$ help us understand operations on Deligne cohomology.

Using the explicit description from Remark 14, we can define an operation on $\mathcal{L}(k)$ as follows:

$$(c_1, \omega_1, h_1) \otimes (c_2, \omega_2, h_2) = (c_1 \cup c_2, \omega_1 \wedge \omega_2, (-1)^{|c_1|} c_1 \cup h_2 + h_1 \cup \omega_2 + B(\omega_1, \omega_2)),$$

where

$$dR(\omega_1) \cup dR(\omega_2) = -dR(\omega_1 \wedge \omega_2) = dB(\omega_1, \omega_2)$$

Remark 16. Intuitively $B(\omega_1, \omega_2)$ measures the failure of dR taking \wedge to \cup .

Remark 17. Ideally we would expect this formula to be well-defined, meaning $(c_1, \omega_1, h_1) \otimes (c_2, \omega_2, h_2)$ should satisfy the conditions in Remark 14. In general, this is only true if c_1, ω_2 satisfy $dc_1 = d\omega_2 = 0$. In particular, it is well-defined at the level of cohomology classes, as any element is closed therein.

Is there a reasonable way to pick

This needs to be checked.

References

[Lur17] Jacob Lurie. Higher algebra. Available online, September 2017.

It is expected that sheafification is necessary, but example is missing.