

FDN338P

P-Channel Logic Level Enhancement Mode Field Effect Transistor

General Description

SuperSOTTM-3 P-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- -1.6 A, -20 V, $R_{DS(ON)} = 0.13 \ \Omega \ @V_{GS} = -4.5 \ V$ $R_{DS(ON)} = 0.18 \ \Omega \ @V_{GS} = -2.5 \ V.$
- Industry standard outline SOT-23 surface mount package using proprietary SuperSOT[™]-3 design for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless other wise noted

Symbol	Parameter		FDN338P	Units
V _{DSS}	Drain-Source Voltage		-20	V
/ _{GSS}	Gate-Source Voltage - Continuous		±8	V
I _D	Drain/Output Current - Continuous		-1.6	А
	- Pulsed		-5	
P_{D}	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T_J , T_{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS	·		·
R _{BJA}	Thermal Resistance, Junction-to-Ambient (Note 1a)		250	°C/W
R _{euc}	Thermal Resistance, Junction-to-Cas	e (Note 1)	75	°C/W

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAR	ACTERISTICS	<u> </u>		•			
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-20			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I _D = -250 μA, Referenced to 25 °C			-28		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, \ V_{GS} = 0 \text{ V}$				-1	μA
			T _J = 55°C			-10	μA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 8 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	V _{GS} = -8 V, V _{DS} = 0 V				-100	nA
ON CHARA	CTERISTICS (Note)						.1
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$		-0.4	-0.6	-1	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	I _D = -250 μA, Referenced to 25 °C			2		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_{D} = -1.6 \text{ A}$			0.115	0.13	Ω
20(01)			T, =125°C		0.16	0.22	-
		$V_{GS} = -2.5 \text{ V}, I_{D} = -1.3 \text{ A}$			0.155	0.18	-
I _{D(ON)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$		-2.5			Α
g _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_{D} = -1.6 \text{ A}$			3		S
DYNAMIC (CHARACTERISTICS			•		·	
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz			405		pF
C _{oss}	Output Capacitance				170		pF
C _{rss}	Reverse Transfer Capacitance				45		pF
SWITCHING	CHARACTERISTICS (Note)						
t _{D(on)}	Turn - On Delay Time	$V_{DD} = -5 \text{ V}, \ I_{D} = -1 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \ R_{GEN} = 6 \Omega$			6.5	13	ns
ţ,	Turn - On Rise Time				20	35	ns
$t_{D(off)}$	Turn - Off Delay Time				31	50	ns
t _r	Turn - Off Fall Time				21	35	ns
Q_g	Total Gate Charge	$V_{DS} = -5 \text{ V}, I_{D} = -1.6 \text{ A}, V_{GS} = -4.5 \text{ V}$			6	8.5	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = -4.5 \text{ V}$			0.8		nC
Q_{gd}	Gate-Drain Charge				1.3		nC
DRAIN-SO	URCE DIODE CHARACTERISTICS AND N	MAXIMUM RATINGS					
I _s	Maximum Continuous Drain-Source Diode Forward Current					-0.42	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -0.42 \text{ A}$ (Note	e)		-0.7	-1.2	V

Typical $R_{_{\theta^{JA}}}$ using the board layouts shown below on FR-4 PCB in a still air environment :

a. 250°C/W when mounted on a 0.02 in² pad of 2oz Cu. 0.02 in² pad of 2oz Cu.

b. 270°C/W when mounted on a 0.001 in pad of 20z Cu.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

^{1.} $R_{g,k}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{g,c}$ is guaranteed by design while $\boldsymbol{R}_{\text{\tiny BCA}}$ is determined by the user's board design.

Typical Electrical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6 . Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics

Figure 7. Gate Charge Characteristics.

Figure 8. Capacitance Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com