Square roots, and the existence of irrational numbers.

Definition. If $b^2 = a$, then we say that b is a square root of a.

A negative number has no square root (see Theorem I.20), and the number 0 has only one square root, namely 0. We shall show that a positive real number has exactly two square roots, one positive and one negative.

Theorem. Let
$$a > 0$$
. Then there is a number $b > 0$ such that $b^2 = a$.

Proof. Step 1. Let x and y be positive numbers. Then x < y if and only if $x^2 < y^2$.

If x < y, we multiply both sides, first by x and then by y, to obtain the inequalities

$$x \cdot x < y \cdot x$$
 and $y \cdot x < y \cdot y$.

Thus $x^2 < y^2$. Conversely if $x^2 < y^2$, then it cannot be true that x = y (for that would imply $x^2 = y^2$), or that y < x (for that would imply, by what we just proved, that $y^2 < x^2$). Hence we must have x < y.

Step 2. We construct b as follows: Consider the set

The set S is nonempty; indeed if x is a number such that $0 < x \le 1$ and x < a, then

$$x^2 < ax \le a \cdot 1 = a,$$

so that x is in S. Furthermore, S is bounded above; indeed, 1 + a is an upper bound on S:

For if x is in S, then $x^2 < a$; since

$$a < 1 + 2a + a^2 = (1+a)^2$$

it follows from Step 1 that x < 1 + a.

Let b denote the supremum of S; we show that $b^2 = a$. We verify this fact by showing that neither inequality $b^2 < a$ or $b^2 > a$ can hold.

Step 3. Assume first that $b^2 < a$. We shall show that there is a positive number h such that $(b+h)^2 < a$. It then follows that b+h belongs to S (by definition of S), contradicting the fact that b is an upper bound for S.

To find h, we proceed as follows: The inequality $(b+h)^2 < a$ is equivalent to the inequality

$$h(2b+h) < a-b^2$$
.

Now $a - b^2$ is positive; it seems reasonable that if we take h to be sufficiently small, this inequality will hold. Specifically, we first specify that $h \le 1$; then we have

$$h(2b+h) \leq h(2b+1).$$

It is then easy to see how small h should be; if we choose $h < (a-b^2)/(2b+1)$, then

$$h(2b+1) < a - b^2$$

and we are finished.

Step 4. Now assume that $b^2 > a$. We shall show that there is a number h such that 0 < h < b and $(b-h)^2 > a$. It follows that b - h is an upper bound for S: For

if x is in S, then $a > x^2$, so that $(b-h)^2 > x^2$, whence by Step 1, b - h > x. This contradicts the fact that b is the <u>least</u> upper bound for S.

To find h, we proceed as follows: The inequality $(b-h)^2 > a$ is equivalent to the inequality

$$h(2b-h) < b^2 - a$$
.

Now b^2 – a is positive; it seems reasonable that if h is sufficiently small, this inequality will hold. Our first requirement is that 0 < h < b. Then we note that $h(2b-h) = 2hb - h^2 < 2hb$. It is now easy to see how small h should be; if we choose $h < (b^2-a)/2b$, then

$$2hb < b^2 - a$$

Corollary. If a > 0, then a has exactly two square roots.

We denote the positive square root of a by \sqrt{a} .

Proof. Let b > 0 and $b^2 = a$. Then $(-b)^2 = a$. Thus a has at least two square roots, b and -b. Conversely, if c is any square root of a, then $c^2 = a$, whence

$$(b+c)(b-c) = b^2 - c^2 = 0.$$

It follows that c = -b or c = b. \Box

We now demonstrate the existence of irrational numbers.

Theorem. Let a be a positive integer; let $b = \sqrt{a}$. Then either b is a positive integer or b is irrational.

Proof. Suppose that $b = \sqrt{a}$ and b is a rational number that is not an integer. We derive a contradiction.

Let us write b = m/n, where m and n are positive integers and n is as small as possible. (I.e., we choose n to be the smallest positive integer such that nb is an integer, and we set m = nb.)

Choose q to be the unique integer such that

$$q < m/n < q+1$$
.

Then

$$qn < m < qn + n$$
, or

(*)

$$0 < m - qn < n.$$

We compute as follows:

$$(m/n)^2 = b^2 = a,$$

 $m^2 = n^2 a$

$$m(m-qn) = n(na-qm).$$

Then using (*), we can write

$$b = \frac{m}{n} = \frac{n \, a - qm}{m - q \, n}.$$

This equation expresses b as a ratio of positive integers; and by (*) the denominator is less than n. Thus we reach a contradiction.

Proof. Let $b = \sqrt{2}$. Then b cannot be an integer, for the square of 1 equals 1 while the square of any integer greater than 1 is at least 4. It follows that b is irrational.

The same proof shows that the number \sqrt{n} is irrational whenever n is a positive integer less than 100 that is not one of the integers 1, 4, 9, 16, 25, 36, 49, 64, or 81.

MIT OpenCourseWare http://ocw.mit.edu

18.014 Calculus with Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.