2017-02-24-lec03

Operations with sets

Product: Given set S, T, their product is defined as $S \times T : \{(x, y) : x \in S, y \in T\}$. e.g. $S^k = S \times S \times \cdots \times S = \{(x_1, \dots, x_k) : x_i \in S\}$ Example: Cartesian Plane $\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}, \text{ also notated as } (\mathbb{R} \times \mathbb{R}).$

 $\mathbb{R} \times \mathbb{Q} \subseteq \mathbb{R}^2$ $\mathbb{Q} \times \mathbb{R} \subseteq \mathbb{R}^2$ $\mathbb{Q}^2 \subseteq \mathbb{R} \times \mathbb{Q}$ $\mathbb{Q}^2 \subset \mathbb{Q} \times \mathbb{R}$

Power set: given a set S, the power set of S is defined as $2^S = \{T | T \subseteq S\}$

Remark: There is a unique set with no elements called the empty set \emptyset . Note that \emptyset is a subset of every subset.

 $S = \{Sydney, Melbourne\}$ $2^{S} = \{\emptyset, \{Sydney\}, \{Melbourne\}, S\}$

More generally, if S is a finite set with n elements, then 2^S has 2^n elements .

 $S = \{x_1, \dots, x_n\}, T \subseteq S?$ Either $x_1 \in T$ or $x_1 \notin T$, $x_2 \in T$ or $x_2 \notin T$,... $x_n \in T$ or $x_n \notin T$. All together, 2^n .

Unions, intersections, difference, complement

Suppose $A, B \subseteq U, A \cup B = \{x \in U | x \in A \text{ or } x \in B\}.$

 $A \cap B = \{x \in U | x \in A \text{ and } x \in B\}.$

 $A - B = \{x \in U | x \in A \text{ and } x \notin B\}.$

 $A^C = \{x \in U | x \not\in A\}.$

Example:

 $E = \{2k : k \in \mathbb{Z}\}$ even integer.

 $O = \{2k+1 : k \in \mathbb{Z}\}$ odd integer.

 $E \cup O = \mathbb{Z}$

 $E \cap O = \emptyset$

 $E^C = O$

 $O^C = E$

E - O = E

Functions: Let A, B be sets, a function $f: A \to B$ assigns to each $a \in A$ an element $f(a) \in B$. We call A the domain of f, B the target of f.

 $\forall S \subseteq A$, can consider $f(S) := \{f(a) : a \in S\} \subseteq B$

We call f(A) the image of f, or the range of f.

```
Example: Let [n] = \{1, 2, ..., n\}. How many distinct functions from [n] to [n]?

n choices for f(1), n choices for f(2), \cdots, n choices for f(n).

n^n possible functions
```

The **graph of a function** $f:A\to B$ is the subset $\{(a,f(a)):a\in A\}\subseteq A\times B$. In fact, f is completely determined by its graph, i.e., I could equivalently define a function $f:A\to B$ to be a subset $S\subseteq A\times B$ such that $\forall a\in A,\exists$ a unique $b\in B$ such that $(a,b)\in S$.

Reading: Chapter 1 (skip quadratic formula and arithmetic/geometric inequality) sets, functions...