Policy Evaluation

The Big Picture

Marius Lindauer

Winter Term 2021

Recap I: Markov Decision Process (MDP)

- Markov Decision Process is Markov Reward Process + actions
- Definition of MDP
 - ▶ S is a (finite) set of Markov states $s \in S$
 - ▶ A is a (finite) set of actions $a \in A$
 - $lackbox{ }P$ is dynamics/transition model for each action, that specifies $P(s_{t+1}=s'\mid s_t=s, a_t=a)$
 - $\blacktriangleright \ R \text{ is a reward function } R(s_t = s, a_t = a) = \mathbb{E}[r_r \mid s_t = s, a_t = a]$
 - lacktriangle Sometimes R is also defined based on (s) or on (s,a,s')
 - ▶ Discount factor $\gamma \in [0, 1]$
- ▶ MDP is tuple (S, A, P, R, γ)

Recap I: Markov Decision Process (MDP)

- Markov Decision Process is Markov Reward Process + actions
- Definition of MDP
 - ▶ S is a (finite) set of Markov states $s \in S$
 - ▶ A is a (finite) set of actions $a \in A$
 - lacktriangleq P is dynamics/transition model for each action, that specifies $P(s_{t+1}=s'\mid s_t=s, a_t=a)$
 - $\blacktriangleright \ R \text{ is a reward function } R(s_t = s, a_t = a) = \mathbb{E}[r_r \mid s_t = s, a_t = a]$
 - \blacktriangleright Sometimes R is also defined based on (s) or on (s, a, s')
 - ▶ Discount factor $\gamma \in [0, 1]$
- ▶ MDP is tuple (S, A, P, R, γ)
- → Unfortunately, we often do not have access to true MDP models

Recap II

- ▶ Definition of Return G_t (for a MRP)
 - ▶ Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

Recap II

- ▶ Definition of Return G_t (for a MRP)
 - Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

- ▶ Definition of State Value Function $V^{\pi}(s)$
 - lacktriangle Expected return from starting in state s under policy π

$$V^{\pi}(s) = \mathbb{E}[G_t \mid s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \mid s_t = s]$$

Recap II

Lindauer

- ▶ Definition of Return G_t (for a MRP)
 - Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

- ▶ Definition of State Value Function $V^{\pi}(s)$
 - lacktriangle Expected return from starting in state s under policy π

$$V^{\pi}(s) = \mathbb{E}[G_t \mid s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \mid s_t = s]$$

- ▶ Definition of State-Action Value Function $Q^{\pi}(s,a)$
 - lacktriangle Expected return from starting in state s, taking action a and then following policy π

$$\begin{array}{lcl} Q^{\pi}(s,a) & = & \mathbb{E}_{\pi}[G_t \mid s_t = s, a_t = a] \\ & = & \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \mid s_t = s, a_t = a] \end{array}$$

Goal for this week

- Assumption: We don't have the exact model of the environment (i.e., model-free), but we can query the environment ("playing roll-outs")
 - state space and action space are in principle known
 - we don't know the transition probabilities beforehand
 - we don't know the reward distribution beforehand

Goal for this week

- Assumption: We don't have the exact model of the environment (i.e., model-free), but we can query the environment ("playing roll-outs")
 - state space and action space are in principle known
 - we don't know the transition probabilities beforehand
 - we don't know the reward distribution beforehand

Remarks:

- ▶ If we would know the MDP, we only have to do "planning" to find the optimal policy
- ▶ If we first learn the MDP and then apply planning to the learned MDP, we do "model-based" RL (not today!)

Goal for this week

- Assumption: We don't have the exact model of the environment (i.e., model-free), but we can query the environment ("playing roll-outs")
 - state space and action space are in principle known
 - we don't know the transition probabilities beforehand
 - we don't know the reward distribution beforehand

Remarks:

- ▶ If we would know the MDP, we only have to do "planning" to find the optimal policy
- ▶ If we first learn the MDP and then apply planning to the learned MDP, we do "model-based" RL (not today!)
- ▶ Goal for this week: We want to learn $V^{\pi}(s)$ or $Q^{\pi}(s,a)$ (depending on the RL algorithm we want to use) by only querying the unknown MDP