PAPRIKA

A FRAMEWORK FOR PAPER-BASED INTERACTION

Carlos Sanchez Witt Master Thesis Project CHILI, EPFL, 2014

WHAT IS PAPRIKA

An **abstraction model** for:

- Paper card controllers,
- Properties and Interactions of said controllers

A **practical tool** for:

- Easy implementation of paper-based applications
- That requires no deep knowledge of the technology and mathematics under the hood

A solution for Design and Development

OUTLINE

Context and Motivation

- TUIs and Paper Interfaces
- Paper Cards in Video Games
- Modeling Interaction

Paprika

- Framework for Paper-based Interaction
- JavaScript Implementation

Discussion

- Assumptions and Outstanding Challenges
- Conclusion and Future Work

TANGIBLE USER INTERFACES

- An interface in which the user interacts with digital information through the physical environment.
- Examples: mouse, gamepad, touchscreen, etc.

Why tangible?

Physical, natural, intuitive, direct manipulation

Why digital?

• Rich, dynamic, multi-media applications, simulations

Paper Interfaces

Paper is ubiquitous and affordable

Notebooks, newspapers, maps, banknotes, playing cards, etc.

Paper as a powerful interaction device

- Through content (writing, reading, annotating, drawing, etc.)
- Through tangibility (folding, wrapping, orienting, flipping, etc.)

Research at CHILI

- Bonnard, Q. (2012). Paper Interfaces: an HCI Approach to Geometry Education. Ph.D. Thesis,
 École Polytechnique Fédérale de Lausanne (EPFL). doi:10.5075/epfl-thesis-5579
- Cuendet, S., Bonnard, Q., Kaplan, F., & Dillenbourg, P. (2011, May). Paper interface design for classroom orchestration. In *CHI'11 Extended Abstracts on Human Factors in Computing Systems* (pp. 1993-1998). ACM.

Paper Cards in Video Games

PAPER CARDS IN RESEARCH

Tangibility and content of paper cards in augmented reality

FIDUCIAL MARKERS

2D pictograms placed on objects for the purpose of **identification** and **tracking**.

- Used to detect the presence of a marker,
- And extract its 4x4 transformation in 3D space.

Chilitags

- Developed at CHILI
- Multiplatform
- Illumination tolerant
- Precise and reliable at low resolutions

MODELING INTERACTION

Tracking technologies

Proven potential of paper interfaces

Creating paper-based applications remains hard

- Different technologies, different APIs, difficult to interface
- High abstraction manipulations unavailable (flipping, orienting)
- (Re)implementation requires deep technical knowledge

DART: Toolkit for Adobe Director, a model for AR environments.

TUIO: Protocol + API for tabletop interfaces.

Kaltenbrunner, M., Bovermann, T., Bencina, R., & Costanza, E. (2005, May). TUIO: A protocol for table-top tangible user interfaces. In *Proc. of the 6th Int'l Workshop on Gesture in Hu-man-Computer Interaction and Simulation*.

MacIntyre, B., Gandy, M., Dow, S., & Bolter, J. D. (2004, October). DART: a toolkit for rapid design exploration of augmented reality experiences. In *Proceedings of the 17th annual ACM symposium on User interface software and technology* (pp. 197-206). ACM.

OUTLINE

Context and Motivation

- TUIs and Paper Interfaces
- Paper Cards in Video Games
- Modeling Interaction

Paprika

- Framework for Paper-based Interaction
- JavaScript Implementation

Discussion

- Assumptions and Outstanding Challenges
- Conclusion and Future Work

WHAT IS PAPRIKA

An **abstraction model** for:

- Paper card controllers,
- Properties and Interactions of said controllers

A **practical tool** for:

- Easy implementation of paper-based applications
- That requires no deep knowledge of the technology and mathematics under the hood

A solution for Design and Development

FRAMEWORK ELEMENTS

Playfield

- Reference plane of action
- Two-dimensional

Controller

- Paper card, flat rectangle
- Height and width, no depth

Basic Properties

- Presence
 - Detection in playfield
- Position
 - Coordinates w.r.t. playfield
- Rotation
 - Angles of orientation and inclination w.r.t. playfield

ABSTRACT INTERACTIONS

Manipulations as atomic events derived from properties.

- Presence
 - Appear/Disappear: card has entered the playfield
- Position
 - Approach/Retreat: card has entered region of playfield
 - Stack/Unstack: card has been placed on top of another
- Rotation
 - Orient/Disorient: card has been oriented at a specific angle
 - Tilt: card has been inclined a specific amount
 - Flip: card has been flipped entirely (inclined past 180°)

Tree + use cards

e1 – orientation + flip

e2 – position + stack

JAVASCRIPT IMPLEMENTATION

Target platform: The Web

Rich interactive applications and games

Dependencies

- Chilitags: computer vision solution for tracking
- three.js: computer graphics solution for mathematics

Informal Evaluation

• Implementation of HTML5 games using Paprika input.

PAPRIKA EXECUTION FLOW

RESULTS

Abstract Framework

- A considerable set of properties and interactions.
- A base language for describing paper-card interfaces that helps in communication and design of paper-based applications.

JavaScript Implementation

- A simple tool that does not require technical knowledge of computer vision, computer graphics, or AR.
- Accessible solution that simplifies development by providing continuous access to properties and defining atomic events for high abstraction interactions.

RESULTS

Informal Evaluation

- Three browser games developed using Paprika
- Put the framework to the test while in development
- Mutual influence between game design and abstract concepts
- Phaser: HTML5 JavaScript framework for 2D games

Traffic demo

OUTLINE

Context and Motivation

- TUIs and Paper Interfaces
- Paper Cards in Video Games
- Modeling Interaction

Paprika

- Framework for Paper-based Interaction
- JavaScript Implementation

Discussion

- Assumptions and Outstanding Challenges
- Conclusion and Future Work

CAMERA-CENTRIC IMPLEMENTATION

The camera view is the playfield.

- The physical camera setup must be taken into account by the developer using Paprika and communicated to the player.
- Properties are relative to the view, there is no notion of physical scale or distances.

Need for a Referential System

PHYSICAL PLAYFIELD SETUP

- Developers must decide on intended setup.
- This must be **communicated** to the **player**.
- Icons symbolizing the top-down and mirror setups used in our games.

Non-exhaustive Set of Interactions

Multi-card actions

Align, group, spread

From defined properties

Movement, speed

Unused properties of paper

- Malleability: fold, deform, tear ?
- Ink: write, draw?

Expandable set of interactions

IMPLEMENTATION AND EVALUATION

- Fiducial markers: visibility is essential
- Co-located and occluded actions are hard
- Is our model portable to other technologies? (RFID)
- Abstraction model untested by other developers
- Abstract concepts and communicative potential unevaluated

Involve the web developer community

SUMMARY

Abstract Framework

- A considerable set of properties and interactions.
- A base language for describing paper-card interfaces that helps in communication and design of paper-based applications.

JavaScript Implementation

- A simple tool that does not require technical knowledge.
- Accessible solution that simplifies development by providing access to properties and defining atomic events for high abstraction interactions.
- Three browser games developed using Paprika.

Future Work

- Referential system development and expandable set of interactions
- Ongoing open source development

Games