Vivekanand Education Society's Institute of Technology, Chembur, Mumbai, Department Of Computer Engineering Year 2024-25 MID TERM TEST

Class: Second Year (D7)	Division: A/ B/ C	
Semester: IV	Subject: Design and Analysis of Algorithm	
Date: 12th March 2025	Time: 9:00 am	

Q1. (Attempt any five of the following.)

a. Apply Master Theorem to derive the time complexity for given recurrence relation : T(n) = 3 T(n/2) + n n >= 1

using the Master Theorem, we compare it with the standard form:

$$T(n) = aT(n/b) + f(n)$$

where:

- a = 3 (number of recursive calls),
- b = 2 (factor by which the problem size is reduced),
- f(n) = n (additional work done outside the recursive calls).

the Master Theorem case that applies is **Case 1**:

 $T(n) = \Theta(n^{\log_2 3})$

Q1 b. Derive the Time Complexity of the given code snippet

The outer for loop runs from i = 0 to i < n, incrementing i by i in each iteration. Thus, it executes O(n) times.

The inner for loop starts from j = 1 and doubles (j = j * 2) in each iteration until j < n

The values of j will be:

$$1, 2, 4, 8, 16, \ldots, n$$

- This forms a geometric progression, stopping when j ≥ n.
- · The number of iterations satisfies:

$$j = 2^k \le n$$

Taking logarithm on both sides:

$$k \leq \log_2 n$$

Thus, the inner loop runs O(log n) times.

Since the outer loop runs O(n) times, and the inner loop runs $O(\log n)$ times for each outer iteration, the total time complexity is: $O(n \log n)$

Q1 c. Apply Quick Sort upon the following elements considering the first element as the pivot 4, 3, 8, 1, 7, 9

Step 1: Partitioning Around Pivot (4)

- Pivot: 4
- Elements less than 4: [3, 1]
- Elements greater than 4: [8, 7, 9]
- After partitioning: [3,1] 4 [8,7,9] (Pivot is now at the correct position, index 2)

Step 2: Recursively Sort Left Subarray [3, 1]

- Pivot: 3 (first element)
- Elements less than 3: [1]
- Elements greater than 3: None
- After partitioning: [1] 3 (Pivot 3 is at the correct position, index 1)
- The subarray [1] is already sorted.

Step 3: Recursively Sort Right Subarray [8, 7, 9]

- Pivot: 8 (first element)
- Elements less than 8: [7]
- Elements greater than 8: [9]
- After partitioning: [7] 8 [9] (Pivot 8 is at the correct position, index 4)
- The subarrays [7] and [9] are already sorted.

Final Sorted Array \Rightarrow Combining all partitions: [1,3,4,7,8,9]

Q1 d. Derive the Time complexity of Merge Sort using Recursive Tree method.

Recurrence relation
$$T(n) = \begin{cases} C, & \text{if } n=1\\ 2T(n/2) + Cn, & \text{if } n>1 \end{cases}$$

Let's draw the recursion tree

$$T(n) \Longrightarrow Cn \xrightarrow{\text{Expand}} Cn$$

$$T(n/2) T(n/2) T(n/4) T(n/4) T(n/4) T(n/4)$$

so on --- here is the complete recursion tree diagram

Q1 e. Find the minimum and maximum of an array using Divide and Conquer Strategy for [2, 5, 8, 1, 9, 6].

Step 1: Divide the Array

We divide the array into two halves recursively until we get base cases.

Divide into two halves:

• Left: [2, 5, 8]

• Right: [1, 9, 6]

Step 2: Recursively Find Min & Max for Each Half

Left Half: [2, 5, 8]

Divide further:

• Left: [2] (Base Case \rightarrow Min = 2, Max = 2)

• Right: [5, 8]

$$\circ$$
 Min = 5, Max = 8

Merge:

• Min = min(2, 5) = 2

• Max = max(2, 8) = 8

• Result for [2, 5, 8]: (Min = 2, Max = 8)

Right Half: [1, 9, 6]

Divide further:

• Left: [1] (Base Case \rightarrow Min = 1, Max = 1)

• Right: [9, 6]

$$\circ$$
 Min = 6, Max = 9

Merge:

• Min = min(1, 6) = 1

• Max = max(1, 9) = 9

• Result for [1, 9, 6]: (Min = 1, Max = 9)

Step 3: Merge the Two Halves

We now merge the results from both halves:

• Left Half: (Min = 2, Max = 8)

• Right Half: (Min = 1, Max = 9)

Final result:

• Minimum = min(2, 1) = 1

• Maximum = max(8, 9) = 9

Q1 f. Explain Strassen's Matrix Multiplication Algorithm

Strassen's algorithm is an efficient divide-and-conquer algorithm for matrix multiplication that reduces the number of multiplications compared to the standard approach. For two $n \times n$ \times $n \times n$ matrices, the **standard matrix multiplication** takes $O(n^3)$ time. Strassen's algorithm reduces the complexity to $O(n^{\log 7}) \approx O(n^{2.81})$, making it more efficient for large matrices.

Suppose you want to multiply two 2×2 matrices:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

Instead of performing the traditional 8 multiplications for computing the matrix product $C=A\times B$, Strassen's algorithm reduces this to 7 multiplications by using intermediate terms.

Strassen defines 7 auxiliary products (which are combinations of sums and differences of elements of A and B):

$$M_1 = (a + d)(e + h)$$

 $M_2 = (c + d)e$
 $M_3 = a(f - h)$
 $M_4 = d(g - e)$
 $M_5 = (a + b)h$
 $M_6 = (c - a)(e + f)$
 $M_7 = (b - d)(g + h)$

From these intermediate products, the final result matrix C is constructed as:

$$C = egin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \ M_2 + M_4 & M_1 + M_3 - M_2 + M_6 \end{bmatrix}$$

So, the algorithm replaces the usual 8 multiplications with 7, resulting in fewer computations. This trick is recursively applied to smaller and smaller submatrices until reaching the base case (typically 2×2 matrices).

Q2. a. Explain Asymptotic notation with proper graphs and examples

1) **O** Notation: bounds a functions from above and below, so it defines exact asymptotic behavior.

Eg:
$$3n3 + 6n2 + 6000 = \Theta(n3)$$

$$\Theta(g(n)) = \{f(n): \text{ there exist positive constants c1, c2 and n0} \\ \text{such that } 0 <= c1*g(n) <= f(n) <= c2*g(n) \text{ for all } n >= n0\}$$

2) Big O Notation: defines an upper bound of an algorithm, it bounds a function only from above. Eg: Insertion Sort takes linear time in best case and quadratic time in worst case. We can safely say that the time complexity of Insertion sort is O(n^2). Note that O(n^2) also covers linear time.

$$O(g(n)) = \{ f(n): \text{ there exist positive constants c and } n0$$

such that $0 \le f(n) \le cg(n) \text{ for } all n \ge n0 \}$

3) Ω Notation: provides an asymptotic lower bound.

$$\Omega$$
 (g(n)) = {f(n): there exist positive constants c and n0 such that 0 <= cg(n) <= f(n) for all n >= n0}.

Eg: Insertion sort example here. The time complexity of Insertion Sort can be written as $\Omega(n)$, but it is not very useful information about insertion sort, as we are generally interested in the worst case and sometimes in the average case.

Q2. b. Compare Insertion Sort with Selection Sort with respective the following parameters in a tabular format.

- 1. Time Complexity (Best case)
- 2. Time Complexity (Worst Case)
- 3. No. of Comparisons
- 4. Space Complexity
- 5. Adaptive (Efficiency in a nearly sorted data)

Parameter	Insertion Sort	Selection Sort
Time Complexity (Best Case)	O(n)	$O(n^2)$
Time Complexity (Worst Case)	$O(n^2)$	$O(n^2)$
Number of Comparisons	Best case: $O(n)$ (nearly sorted data) Worst case: $O(n^2)$	Always $O(n^2)$
Space Complexity	O(1)	O(1)
Adaptive (Efficiency in Nearly Sorted Data)	Adaptive: More efficient on nearly sorted data, since it requires fewer shifts and comparisons.	Non-adaptive: Always performs the same number of comparisons regardless of how sorted the data is.

Q3. a. Find the Minimum spanning tree using Prim's algorithm.

Current vertex	EdgeSet	Selected Edge	VertexSet	Cost
A	{(A,B), (A,C), (A,B), (A,D)}	(A,C)	{A,C}	3
С	$\{(A,B), (A,B), (A,D), (C,E)\}$	(C,E) or (A,B)	{A,C,E} or {A,B,C}	10
E or B	{(A,B), (A,B), (A,D),(E,B),(E,D)} or {(A,B), (A,D), (C,E),(B,E)}	(E,D) or (C,E)	{A,C,D,E} or {A,B,C,E}	15 or 17
D or E	{(A,B), (A,B), (A,D),(E,B)} or {(A,B), (A,D), (B,E), (E,D)}	(A,B) or (E,D)	{A,B,C,D,E} or {A,B,C,D,E}	22

Q3. b. Fill the Knapsack (Capacity = 50) with the items given below. Mention the proportion of each item chosen

Profit	60	100	120
Weight	10	20	30

Step 1: Calculate Profit-to-Weight Ratio (Profit/Weight)

Item	Profit	Weight	Profit/Weight Ratio
1	60	10	6.0
2	100	20	5.0
3	120	30	4.0

Step 2: Sort Items by Profit-to-Weight Ratio (Descending Order)

Sorted order:

Step 3: Fill the Knapsack Greedily

- Take Item 1 completely (Weight = 10, Capacity Left = 50 10 = 40)
- Take Item 2 completely (Weight = 20, Capacity Left = 40 20 = 20)
- Take 20/30 of Item 3 (Weight = 20, Capacity Left = 20 20 = 0)

Step 4: Calculate Proportions Chosen

Item	Chosen Weight	Proportion
1	10	100%
2	20	100%
3	20	$\frac{20}{30} = 66.67\%$

Total Profit Calculation

Total Profit =
$$60 + 100 + (120 \times \frac{20}{30})$$

= $60 + 100 + 80 = 240$