2N4957 2N4958 2N4959

The RF Line

PNP SILICON HIGH FREQUENCY TRANSISTORS

... designed for high-gain, low-noise amplifier, oscillator and mixer applications.

• Low Noise Figure @ 450 MHz —

NF = 3.0 dB (Max) — 2N4957

= 3.3 dB (Max) -- 2N4958

= 3.8 dB (Max) - 2N4959

• High Power Gain @ 450 MHz --

G_{pe} = 17 dB (Min) — 2N4957 = 16 dB (Min) — 2N4958

= 15 dB (Min) - 2N4959

• High Current-Gain — Bandwidth Product —

 $f_T = 1.2 \text{ GHz (Min)} @ I_E = -2.0 \text{ mAdc} - 2N4957$

= 1.0 GHz (Min) @ IE = ~2.0 mAdc — 2N4958, 2N4959

 $I_C = -30 \text{ mA}$ HIGH FREQUENCY **TRANSISTORS**

PNP SILICON

*MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	V _{CEO}	-30	Vdc	
Collector-Base Voltage	V _{CBO}	-30	Vdc	
Emitter-Base Voltage	V _{EBO}	-3.0	Vdc	
Collector Current - Continuous	lc	-30	mAdc	
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C	
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C	

^{*}Indicates JEDEC Registered Data.

NOTE: ALL RULES AND NOTES ASSOCIATED WITH TO-72 **OUTLINE SHALL APPLY.**

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	5.31	5.84	0.209	0.230	
В	4.52	4.95	0.178	0.195	
С	4.32	5.33	0.170	0.210	
D	0.41	0.53	0.016	0.021	
E	-	0.76		0.030	
F	0.41	0.48	0.016	0.019	
G	2.54 BSC		0.100 BSC		
Н	0.91	1.17	0.036	0.046	
J	0.71	1.22	0.028	0.048	
K	12.70	_	0.500		
7	6.35		0.250	_	
M	45° BSC		45° BSC		
N	1.27 BSC		0.050 BSC		
P	ŀ	1.27	-	0.050	

CASE 20-03 TO-206AF (TO-72)

*ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				-t	<u> </u>
Collector-Emitter Breakdown Voltage $(I_C = -1.0 \text{ mAdc}, I_B = 0)$	V(BR)CEO	-30	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = -100μ Adc, I _E = 0)	V _{(BR)CBO}	-30	_		Vdc
Emitter-Base Breakdown Voltage (IE = -100μ Adc, IC = 0)	V(BR)EBO	-3.0	_		Vdc
Collector Cutoff Current ($V_{CB} = -10$ Vdc, $I_E = 0$) ($V_{CB} = -10$ Vdc, $I_E = 0$, $T_A = 150$ °C)	ІСВО		_	-0.1 -100	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = -2.0 mAdc, V _{CE} = -10 Vdc)	hFE	20	40	150	_
DYNAMIC CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·			<u> </u>	
Current-Gain — Bandwidth Product (1) (IE = -2.0 mAdc, $V_{CE} = -10$ Vdc, $f = 100$ MHz) 2N4957 2N4958, 2N4959	fτ	1200 1000	1600 1500	2500 2500	MHz
Collector-Base Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}		0.4	0.8	pF
Small-Signal Current Gain (I _C = -2.0 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)	h _{fe}	20	_	200	_
Collector-Base Time Constant (I _E = -2.0 mAdc, V _{CB} = -10 Vdc, f = 63.6 MHz)	r _b ′C _c	1.0	_	8.0	ps
Noise Figure (I _C = -2.0 mAdc, V _{CE} = -10 Vdc, f = 450 MHz) 2N4957 2N4958 2N4959	NF		2.6 2.9 3.2	3.0 3.3 3.8	dB
FUNCTIONAL TESTS					
Common-Emitter Amplifier Power Gain (VCE = -10 Vdc, IC = -2.0 mAdc, f = 450 MHz) 2N4957 2N4958 2N4959	Gpe	17 16 15		25 25 25	dB

^{*}Indicates JEDEC Registered Data.

⁽¹⁾ f_T is defined as the frequency at which |h_{fe}| extrapolates to unity.

FIGURE 1 — NOISE FIGURE AND POWER GAIN TEST CIRCUIT

FIGURE 2 — UNILATERALIZED POWER GAIN versus FREQUENCY

FIGURE 3 --- NOISE FIGURE versus FREQUENCY

FIGURE 4 — NOISE FIGURE AND POWER GAIN Versus COLLECTOR CURRENT

FIGURE 5 — CONTOURS OF NOISE FIGURE VERSUS SOURCE RESISTANCE AND COLLECTOR CURRENT

FIGURE 6 — CONTOURS OF NOISE FIGURE VERSUS SOURCE RESISTANCE AND COLLECTOR CURRENT

COMMON EMITTER CIRCUIT DESIGN DATA

 $V_{CE} = -10 \text{ Vdc I}_{C} = -2.0 \text{ mA}$

FIGURE 9 - LOAD ADMITTANCE versus FREQUENCY (REAL)

FIGURE 10 - LOAD ADMITTANCE versus FREQUENCY (IMAGINARY)

FIGURE 11 - SOURCE ADMITTANCE versus FREQUENCY (REAL)

FIGURE 12 - SOURCE ADMITTANCE

Figures 7 through 18 are included to assist the circuit designer in determining the stability of his particular circuit. Two stability criteria are given in

The Linvill "C" factor* is a measure of transistor stability when the input and output are terminated in the worst-case (open circuit) condition. When $^{\prime\prime}\text{C}^{\prime\prime}$ is less than 1.0, the circuit is unconditionally stable. When $^{\prime\prime}\text{C}^{\prime\prime}$ is greater

than 1.0, the circuit is potentially unstable.

The Stern "K" factor* has been defined to determine the stability of a practical amplifier terminated in finite load and source admittances. If "K" is greater than 1.0, the circuit will be stable. If less than 1.0, the circuit will be unstable. For further details, see Application Note AN-215A

 [&]quot;Transistors and Active Circuits," Linvill and Gibbons, McGraw-Hill, 1961.

[†] "Stability and Power Gain of Tuned Transistor Amplifiers," Arthur P. Stern, Proc. I.R.E., March 1967.

COMMON BASE CIRCUIT DESIGN DATA

 $V_{CE} = -10 \text{ Vdc I}_{C} = -2.0 \text{ mA}$

FIGURE 19 — SMALL-SIGNAL CURRENT GAIN Versus FREQUENCY

FIGURE 20 - POLAR hfe

FIGURE 21 — f_T versus COLLECTOR CURRENT

FIGURE 22 — DC CURRENT GAIN

FIGURE 23 — CAPACITANCE

FIGURE 24 — COLLECTOR CHARACTERISTICS

HORIZONAL SCALE — $V_{CE} = -1.0 \text{ V/DIV}$

Apply reverse bias between emitter and base and measure capacitance between these terminals. Collector is open.

Apply reverse bias between collector and base and measure capacitance between these terminals. Emitter is guarded.

Y PARAMETERS versus CURRENT (f = 450 MHz)

COMMON EMITTER

$$V_{CB} = -10 \text{ Vdc}$$
 ____ $V_{CB} = -15 \text{ Vdc}$ ___ _

FIGURE 26 - INPUT ADMITTANCE

FIGURE 27 - FORWARD TRANSFER ADMITTANCE

+jbfb

Y_{fb}, FORWARD TRANSFER ADMITTANCE (mmhos)

60

20

FIGURE 29 - OUTPUT ADMITTANCE

FIGURE 30 - OUTPUT ADMITTANCE

FIGURE 31 - REVERSE TRANSFER ADMITTANCE

FIGURE 32 - REVERSE TRANSFER ADMITTANCE

COMMON BASE y PARAMETER VARIATIONS

 $(V_{CB} = -10 \text{ Vdc}, I_{C} = -2.0 \text{ mAdc})$

g_{rb} (mmhos)

f, FREQUENCY (MHz)

COMMON EMITTER y PARAMETER VARIATIONS

 $(V_{CE} = -10 \text{ Vdc}, I_{C} = -2.0 \text{ mAdc})$

y PARAMETERS versus FREQUENCY

FIGURE 41 — Yie INPUT ADMITTANCE 24 20 21 21 21 22 24 20 21 20 21 20 45 70 100 200 300 500 700 1000 1500

POLAR y PARAMETERS versus FREQUENCY

