```
#> Warning: package 'ggplot2' was built under R version 3.5.3
#> Warning: package 'tidyr' was built under R version 3.5.3
```

Praktikum 8

Aufgabe 1

a)

```
quad = lm(accel ~ times + I(times^2) + I((times-median(times))^2*(times>median(times))), data=mcycle)
cub = lm(accel ~ times + I(times^2) + I(times^3) + I((times-median(times))^3*(times>median(times))), dat
summary(quad)
#>
#> Call:
\# Im(formula = accel ~ times + I(times^2) + I((times - median(times))^2 *
       (times > median(times))), data = mcycle)
#>
#> Residuals:
     Min
               1Q Median
                              30
#>
#> Coefficients:
#>
                                                         Estimate
#> (Intercept)
                                                         88.98062
                                                         -16.91005
#> times
#> I(times^2)
                                                          0.47930
\# I((times - median(times))^2 * (times > median(times))) -0.61399
                                                         Std. Error t value
#> (Intercept)
                                                          20.22599
                                                                    4.399
                                                           2.37078 -7.133
#> times
#> I(times^2)
                                                           0.06379
                                                                    7.514
#> I((times - median(times))^2 * (times > median(times)))
                                                           0.08967 -6.847
                                                         Pr(>|t|)
#> (Intercept)
                                                         2.25e-05 ***
                                                         6.30e-11 ***
#> times
#> I(times^2)
                                                         8.46e-12 ***
\# I((times - median(times))^2 * (times > median(times))) 2.76e-10 ***
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 38.74 on 129 degrees of freedom
#> Multiple R-squared: 0.372, Adjusted R-squared: 0.3574
\# F-statistic: 25.47 on 3 and 129 DF, p-value: 5.254e-13
summary(cub)
#>
#> Call:
\# lm(formula = accel ~ times + I(times^2) + I(times^3) + I((times - times + I))
#>
      median(times))^3 * (times > median(times))), data = mcycle)
#> Residuals:
      Min
               1Q Median
                               30
                                      Max
```

```
#>
#> Coefficients:
                                                         Estimate
#>
#> (Intercept)
                                                        42.228420
#> times
                                                        -8.079708
#> I(times^2)
                                                         0.093281
#> I(times^3)
                                                         0.003401
\# I((times - median(times))) ^3 * (times > median(times))) -0.014646
                                                        Std. Error t value
#> (Intercept)
                                                         29.559740
                                                                   1.429
#> times
                                                         5.889478 -1.372
#> I(times^2)
                                                                   0.267
                                                         0.349112
#> I(times ^3)
                                                          0.006160
                                                                    0.552
#> I((times - median(times))^3 * (times > median(times)))
                                                         0.008509 -1.721
                                                        Pr(>|t|)
#> (Intercept)
                                                          0.1556
#> times
                                                          0.1725
#> I(times^2)
                                                          0.7897
#> I(times^3)
                                                          0.5818
#> I((times - median(times))^3 * (times > median(times)))
                                                         0.0876 .
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 39.7 on 128 degrees of freedom
#> Multiple R-squared: 0.3454, Adjusted R-squared: 0.325
#> F-statistic: 16.89 on 4 and 128 DF, p-value: 3.847e-11
ggplot(mcycle, aes(x=times, y=accel)) +
 geom_point() +
 geom_line(mcycle, mapping=aes(x=times, y=predict(quad), color="Quad"))+
 geom_line(mcycle, mapping=aes(x=times, y=predict(cub), color="Cub"))
```


b)

```
compute_quantiles = function(i) {
  k = seq(0, 1, length.out=i+2)
  return (quantile(mcycle$times, probs = k[2:(length(k)-1)]))
}
k = 20
mse_quad = c()
mse_cub = c()
loocv=function(fit){
  h=lm.influence(fit)$h
  pred <- predict(fit)</pre>
  return(mean((pred-mcycle$accel)^2))
}
mse_quad = c()
mse_cub = c()
for(i in 1:k) {
  quad <- lm(mcycle$accel ~ bs(mcycle$times, degree = 2, knots = compute_quantiles(i)), data=mcycle)
  cub <- lm(mcycle$accel ~ bs(mcycle$times, degree = 3, knots = compute_quantiles(i)), data=mcycle)</pre>
  mse_quad <- append(mse_quad, loocv(quad))</pre>
  mse_cub <- append(mse_cub, loocv(cub))</pre>
}
mse <- NULL
mse$quad <- mse_quad
mse$cub <- mse_cub</pre>
mse <- as.data.frame(mse)</pre>
mse2 \leftarrow cbind(mse, seq(1:20))
names(mse2)[3] <- "index"</pre>
mse2 <- gather(mse2, key=key, value=value, -index)</pre>
mse2
#>
      index key
                     value
#> 1
         1 quad 1455.4493
#> 2
          2 quad 1200.0094
#> 3
         3 quad 731.0319
         4 quad 598.8348
#> 4
        5 quad 541.6380
#> 5
#> 6
        6 quad 466.1292
#> 7
         7 quad 477.5380
#> 8
        8 quad 476.6834
#> 9
        9 quad 468.3124
      10 quad 454.9234
#> 10
#> 11
         11 quad 462.6994
#> 12
        12 quad 453.5038
#> 13
        13 quad 453.0113
#> 14
        14 quad 446.4020
#> 15
         15 quad 446.9456
#> 16
        16 quad 447.9795
#> 17
        17 quad 444.3495
#> 18
         18 quad 429.5835
#> 19
         19 quad 441.7136
#> 20
         20 quad 428.9550
#> 21
         1 cub 1516.9535
#> 22
        2 cub 1014.3291
```

```
#> 23
         3
           cub
                930.6178
#> 24
                 543.5729
         4
            cub
#> 25
           cub
                 491.1167
         5
#> 26
         6 cub
                513.2543
#> 27
         7 cub
                471.8319
#> 28
         8 cub
                 460.6924
#> 29
         9 cub
                 457.3600
#> 30
                463.1924
        10 cub
#> 31
        11 cub
                456.4856
#> 32
        12 cub
                 458.0485
#> 33
        13 cub
                 449.0112
#> 34
        14 cub
                 449.8635
#> 35
        15 cub
                 444.8236
#> 36
        16 cub
                 442.1034
#> 37
        17 cub
                 435.9127
#> 38
        18 cub
                445.2312
#> 39
        19 cub
                 431.1811
#> 40
        20
            cub
                 434.8586
gather(mse)
#>
      key
              value
#> 1 quad 1455.4493
#> 2
     quad 1200.0094
#> 3
     quad 731.0319
#> 4
     quad 598.8348
#> 5
     quad 541.6380
#> 6
     quad 466.1292
#> 7
     quad 477.5380
#> 8
     quad 476.6834
#> 9
     quad 468.3124
#> 10 quad 454.9234
#> 11 quad 462.6994
#> 12 quad 453.5038
#> 13 quad 453.0113
#> 14 quad 446.4020
#> 15 quad 446.9456
#> 16 quad 447.9795
#> 17 quad 444.3495
#> 18 quad 429.5835
#> 19 quad 441.7136
#> 20 quad 428.9550
#> 21 cub 1516.9535
#> 22 cub 1014.3291
#> 23 cub 930.6178
#> 24 cub 543.5729
#> 25 cub 491.1167
#> 26 cub 513.2543
#> 27 cub 471.8319
#> 28
      cub
          460.6924
#> 29
     cub 457.3600
#> 30 cub 463.1924
#> 31 cub
           456.4856
#> 32 cub
           458.0485
#> 33 cub
           449.0112
```

```
#> 34
      cub
           449.8635
#> 35
           444.8236
      cub
           442.1034
#> 36 cub
#> 37 cub
           435.9127
#> 38 cub
           445.2312
#> 39 cub
           431.1811
#> 40 cub 434.8586
ggplot(aes(x=index, y=value, col=key), data = mse2) +
 geom_line() +
 xlab("Anzahl Knoten") +
 ylab("Mean Squared Error") +
  ggtitle("MSE in Abhängigkeit der Knotenanzahl")
```

MSE in Abhängigkeit der Knotenanzahl 1500 1200 1000

Ab 5 Knoten scheint sich der Mean Squared Error nicht mehr signifikant zu verbessern, die optimale Anzahl an Knoten würden wir deshalb auf 5 festlegen.

c)

```
compute_params <- function(d, K){
    return(d+K+1)
}
quad_1_params <- compute_params(2, 1)
quad_5_params <- compute_params(2, 5)
cub_1_params <- compute_params(3, 1)
cub_5_params <- compute_params(3, 5)
quad_1_params
#> [1] 4
quad_5_params
#> [1] 8
cub_1_params
#> [1] 5
cub_5_params
#> [1] 5
```

d)

```
ns_reg <- lm(mcycle$accel ~ ns(mcycle$times, df = 9), data=mcycle)
ggplot(aes(x=times, y=accel), data=mcycle) +
  geom_point() +
  geom_line(aes(x=times, y=predict(ns_reg)), data=mcycle)</pre>
```


Aufgabe 1 (Alternativ)

```
df = mcycle
x = df$times
y = df$accel
```

a)

```
med = median(df$times)
knots = c(med)
```

Quadratisch

```
h = function(x, knots, d, i) {
   if (i <= d + 1) {
     out = x**(i-1)
     return(out)
}
else {
   out = (x - knots[i-d-1])
   out = ifelse(out < 0, 0, out)
   out = out ** d</pre>
```

```
return(out)
 }
}
Z = function(X, knots, d) {
 h1 = h(X, knots, d, 1)
 h2 = h(X, knots, d, 2)
 h3 = h(X, knots, d, 3)
 h4 = h(X, knots, d, 4)
  v = c(h1, h2, h3, h4)
  out = matrix(
   data = v,
   nrow = length(h1),
   ncol = 4
  return(out)
}
transpose = function(M) sapply(1:nrow(M), function(i) M[i,])
X = Z(x, knots, 2)
XT = transpose(X)
hatb = ginv(XT %*% X) %*% XT %*% y
f = function(x, hatb, knots, d) {
 h1 = h(x, knots, d, 1)
 h2 = h(x, knots, d, 2)
 h3 = h(x, knots, d, 3)
 h4 = h(x, knots, d, 4)
  v = c(h1, h2, h3, h4)
  out = hatb[1] * h1 + hatb[2] * h2 + hatb[3] * h3 + hatb[4] * h4
  return(out)
f2 = function(x) {
 return(f(x, hatb, knots, 2))
haty = f(x, hatb, knots, 2)
df2 = data.frame(x = x, y = haty)
```

Plot:

```
gg = ggplot(
  data = df,
  mapping = aes(
    x = times,
    y = accel
)
)
gg = gg + geom_point()
gg + geom_line(
  data = df2,
  color = 'red',
  aes(x = x, y = y)
)
```


Kubisch

```
h = function(x, knots, d, i) {
  if (i <= d + 1) {
    out = x**(i-1)
    return(out)
  }
  else {
    out = (x - knots[i-d-1])
    out = ifelse(out < 0, 0, out)</pre>
    out = out ** d
    return(out)
  }
Z = function(X, knots, d) {
 h1 = h(X, knots, d, 1)
 h2 = h(X, knots, d, 2)
 h3 = h(X, knots, d, 3)
 h4 = h(X, knots, d, 4)
 h5 = h(X, knots, d, 5)
  v = c(h1, h2, h3, h4, h5)
  out = matrix(
    data = v,
    nrow = length(h1),
    ncol = 5
  )
  return(out)
transpose = function(M) sapply(1:nrow(M), function(i) M[i,])
X = Z(x, knots, 3)
XT = transpose(X)
hatb = ginv(XT %*% X) %*% XT %*% y
f = function(x, hatb, knots, d) {
 h1 = h(x, knots, d, 1)
h2 = h(x, knots, d, 2)
```

```
h3 = h(x, knots, d, 3)
h4 = h(x, knots, d, 4)
h5 = h(x, knots, d, 5)
v = c(h1, h2, h3, h4, h5)
out = hatb[1] * h1 + hatb[2] * h2 + hatb[3] * h3 + hatb[4] * h4 + hatb[5] * h5
return(out)
}
f3 = function(x) {
  return(f(x, hatb, knots, 3))
}
haty = f(x, hatb, knots, 3)
df3 = data.frame(x = x, y = haty)
```

Plot:

```
gg = ggplot(
  data = df,
  mapping = aes(
    x = times,
    y = accel
  )
)

gg = gg + geom_point()

gg + geom_line(
  data = df3,
  aes(x = x, y = y, color = "Cube")
) + geom_line(
  data = df2,
  aes(x = x, y = y, color = "Quad")
)
```


c)

Die Anzahl an freien Parametern wird berechnet mittels d + K + 1 mit d Grad und K Knotenanzahl.

 $\mathbf{A2}$

a)

Sei [a,b] das Regressionsintervall, dann wird ein linearer Anfang und Abgang gefordert. Sprich es folgen die Bedingungen:

$$f''(a) = 0 (1)$$

$$f''(b) = 0 (2)$$

b)

Seien f''(a) = f''(b) = 0. Zunächst leiten wird ab.

$$f'(x) = \sum_{j=1}^{3} j a_j x^{j-1} + 3 \sum_{k=1}^{K} b_k (x - \xi_k)_+^2$$
(3)

$$f''(x) = 2a_2 + 6a_3x + 6\sum_{k=1}^{K} b_k(x - \xi_k)_+$$
(4)

Nun setzen wir die Bedingungen ein. Wir nutzen aus, dass grundsätzlich $(a - \xi_k)_+ = 0$ und $(b - \xi_k)_+ > 0$ gilt. Dies folgt aus $a < \xi_1 < \cdots < \xi_K < b$.

$$f''(a) = 2a_2 + 6a_3a + 6\sum_{k=1}^{K} b_k(a - \xi_k)_+ = 0$$
(5)

$$\implies a_2 + 3a_3a = 0 \implies a_2 = a_3 = 0 \tag{6}$$

Alternativ könnte man auch $a_2 = -3a_3$ fordern, aber da wir die Wahl haben, nehmen wir die einfache Bedingung. Ferner folgt nun:

$$f''(b) = \sum_{k=1}^{K} b_k (b - \xi_k)_+ = 0$$
 (7)

$$\implies \sum_{k=1}^{K} b_k = \frac{1}{b} \sum_{k=1}^{K} b_k \xi_k \implies \sum_{k=1}^{K} b_k = \sum_{k=1}^{K} b_k \xi_k = 0$$
 (8)

Für alle k ist $\frac{\xi_k}{b} \in (0,1)$ wodurch obige Gleichung nur dann gelten kann, wenn beide Summen Null sind.

c)

Ein kubischer Spline mit K Knoten hat K+4 freie Parameter. Nun haben wir vier weitere Nebenbedingungen, wodurch wir vier Freiheitsgrade verlieren und folglich haben wir nur noch K freie Parameter.

d)

Ohne viel aufzuschreiben macht man sich klar, dass das die Ableitungen einfach sind insofern, dass die Potenzen aggregiert als 6 vor die Summe verschwinden. Weiter nutzt man, dass $(a-\xi_k)_+=0$ und $(b-\xi_k)_+>0$ gilt und wir erhalten:

$$f''(a) = 6\sum_{k=1}^{K-2} \tilde{b}_k \cdot 0 = 0 \tag{9}$$

$$f''(b) = 6 \sum_{k=1}^{K-2} \left(\frac{b - \xi_k - b + \xi_K}{\xi_K - \xi_k} - \frac{b - \xi_{K-1} - b + \xi_K}{\xi_K - \xi_{K-1}} \right) = 6 \sum_{k=1}^{K-2} (1 - 1) = 0$$
 (10)

Folglich lässt sich jeder natürliche kubische Spline über die angegebene Basiserweiterung darstellen.