Inference about a Population Proportion (π) AAO unit 28: Baldi & Moore, Ch 19

Sahir Bhatnagar and James Hanley

EPIB 607 Department of Epidemiology, Biostatistics, and Occupational Health McGill University

sahir.bhatnagar@mcgill.ca
https://sahirbhatnagar.com/EPIB607/

October 17, 2018

Proportion/Count in a Sample

Binomial Model for Sampling Variability of

It is the n + 1 probabilities p₀, p₁, ..., p_y, ..., p_n of observing 0, 1, 2, ..., n "positives" in n independent realizations of a Bernoulli random variable Y:

$$Y = \begin{cases} 1 & P(Y=1) = \pi \\ 0 & P(Y=0) = 1 - \pi \end{cases}$$

The number is the sum of n i.i.d. Bernoulli random variables. (such as in SRS of n individuals)

It is the n + 1 probabilities p₀, p₁, ..., p_y, ..., p_n of observing 0, 1, 2, ..., n "positives" in n independent realizations of a Bernoulli random variable Y:

$$Y = \begin{cases} 1 & P(Y=1) = \pi \\ 0 & P(Y=0) = 1 - \pi \end{cases}$$

The number is the sum of *n* i.i.d. Bernoulli random variables. (such as in SRS of *n* individuals)

■ Each of the *n* observed elements is binary (0 or 1)

It is the n + 1 probabilities p₀, p₁, ..., p_y, ..., p_n of observing 0, 1, 2, ..., n "positives" in n independent realizations of a Bernoulli random variable Y:

$$Y = \begin{cases} 1 & P(Y=1) = \pi \\ 0 & P(Y=0) = 1 - \pi \end{cases}$$

The number is the sum of n i.i.d. Bernoulli random variables. (such as in SRS of n individuals)

- Each of the *n* observed elements is binary (0 or 1)
- There are 2^n possible sequences ... but only n+1 possible values, i.e. 0/n, 1/n, ..., n/n (can think of y as sum of n Bernoulli random variables)
- Note: it is better to work in same scale as the parameter, i.e., in [0,1]. Not the [0,n] count scale.

-

- Apart from (n), the probabilities p_0 to p_n depend on only 1 parameter:
 - the probability that a selected individual will be "positive" i.e.,
 - the proportion of "positive" individuals in sampled population
- lacksquare Usually denote this (un-knowable) proportion by π

Author	Parameter	Statistic
Clayton & Hills	π	p = D/N
Hanley et al.	π	p = y/n
M&M, Baldi & Moore	р	$\hat{p} = y/n$
Miettinen	Р	p = y/n

■ Shorthand: $Y \sim \text{Binomial}(n, \pi)$.

Example

- Suppose a woman plans to have 3 children.
- Suppose at each birth,

$$P(\text{female child}) = 1/2$$

and the sex of the child at each birth is independent of the sex at any previous birth.

What is the probability of having all daughters?

The binomial distribution

The binomial distribution

Let Y be the number of daughters a woman will have, n the number of children she will have, and p the probability of a daughter at any birth. Then:

$$P(Y = k) = \frac{n!}{(n-k)!k!} p^k (1-p)^{(n-k)}$$

where $n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n$, and 0! = 1.

Calculating binomial probabilities in R

$$P(Y=3) = \frac{3!}{0!3!} 0.5^3 (1-0.5)^0$$
 which can be solved in R using: stats::dbinom(x = 3, size = 3, prob = 0.5)

[1] 0.125

The probability mass function (pmf)

```
plot(0:3/3, dbinom(x = 0:3, size = 3, prob = 0.5), type = "h")
```


What do we use it for?

• to make inferences about π from observed proportion p = y/n.

What do we use it for?

- to make inferences about π from observed proportion p = y/n.
- to make inferences in more complex situations, e.g.
 - Prevalence Difference: $\pi_1 \pi_0$
 - ▶ Risk Difference (RD): $\pi_1 \pi_0$
 - **>** Risk Ratio, or its synonym Relative Risk (RR): π_1 / π_0
 - ▶ Odds Ratio (OR): $[\pi_1/(1-\pi_1)]/[\pi_0/(1-\pi_0)]$
 - ▶ Trend in several π 's

Requirements for y to have a Binomial (n, π) distribution

1. Fixed sample size *n*.

Requirements for y to have a Binomial (n, π) distribution

- 1. Fixed sample size *n*.
- 2. Elements selected at random (i.e. same probability of being sampled) and independent of each other;
- 3. Each element in "population" is 0 or 1, but we are only interested in estimating proportion (π) of 1's; we are not interested in individuals.

Requirements for y to have a Binomial (n, π) distribution

- 1. Fixed sample size *n*.
- 2. Elements selected at random (i.e. same probability of being sampled) and independent of each other;
- 3. Each element in "population" is 0 or 1, but we are only interested in estimating proportion (π) of 1's; we are not interested in individuals.
- 4. Denote by y_i the value of the *i*-th sampled element. $P(y_i = 1)$ is constant (it is π) across *i*.

Does the Binomial Distribution Apply if...?

Interested in	π	the proportion of 16 year old girls in Québec protected against rubella
Choose	n = 100	girls: 20 at random from each of 5 randomly selected schools ['cluster' sample]
Count	у	how many of the $n=100$ are protected
• Is $y \sim \text{Binom}$	nial(n = 100)	$(0,\pi)$?
"SMAC"	π	P(abnormal Healthy) =0.03 for each chemistry in Auto-analyzer with $n=18$ channels
Count	у	How many of $n = 18$ give abnormal result.
• Is $y \sim \text{Binom}$	nial(n = 18,	$\pi=0.03$)? (cf. Ingelfinger: Clin. Biostatistics)

Does the Binomial Distribution Apply if...?

π_e expt'l. exercise classes who 'stay the co	urse'		
Randomly 4 classes of			
Allocate <u>25</u> students each to usual course			
$n_u = 100$			
4 classes of			
<u>25</u> students each to experimental course			
$n_e = 100$			
Count y_u how many of the $n_u = 100$ complete cou	ırse		
y_e how many of the $n_e=100$ complete cou			
• Is $y_u \sim \text{Binomial}(n_u = 100, \pi_u)$? Is $y_e \sim \text{Binomial}(n_e = 100, \pi_e)$?			

Does the Binomial Distribution Apply if...?

Sex Ratio	n = 4 y	children in each family number of girls in family			
• Is variation of y across families Binomial (n = 4, π = 0.49)?					
Pilot		To estimate proportion π of population that			
Study		is eligible & willing to participate in long-term			
		research study, keep recruiting until obtain			
	y = 5	who are. Have to approach <i>n</i> to get <i>y</i> .			
• Can we treat $y \sim \operatorname{Binomial}(n, \pi)$?					

Calculating Binomial probabilities - Exactly

- probability mass function (pmf): $P(Y = k) = \frac{n!}{(n-k)!k!} p^k (1-p)^{(n-k)}$
- in R: dbinom(), pbinom(), qbinom(): probability mass, distribution/cdf, and quantile functions.

Calculating Binomial probabilities - Using an approximation

- Poisson Distribution (n large; small π)
- Normal (Gaussian) Distribution (*n* large or midrange π) ¹
 - Have to specify scale. Say n = 10, whether summary is a r.v. e.g. E SD

count:
$$y$$
 2 $n \times \pi$ $\{n \times \pi \times (1-\pi)\}^{1/2}$ $n^{1/2} \times \sigma_{Bernoulli}$ proportion: $p = y/n$ 0.2 π $\{\pi \times (1-\pi)/n\}^{1/2}$ $\sigma_{Bernoulli}/n^{1/2}$

percentage: 100p% 20% $100 \times \pi$ $100 \times SD[p]$

• same core calculation for all 3 [only the *scale* changes]. JH prefers (0,1), the same scale as π .

¹For when you don't have access to software or Tables, e.g, on a plane

Normal approximation to binomial is the CLT in action

Histogram of rbinom(1000, 10, 0.3)/10

Histogram of rbinom(1000, 20, 0.3)/20

Histogram of rbinom(1000, 100, 0.3)/100

10110111(1000, 100, 0.3)/100

Normal approximation to binomial is the CLT in action

Histogram of rbinom(1000, 10, 0.3)

Histogram of rbinom(1000, 20, 0.3)

Histogram of rbinom(1000, 100, 0.3)

Example from AAO Unit 21

A drug manufacturer claims that its flu vaccine is 85% effective; in other words, each person who is vaccinated stands an 85% chance of developing immunity. Suppose that 200 randomly selected people are vaccinated. Let Y be the number that develops immunity.

- 1. What is the distribution of Y?
- 2. What is the mean and standard deviation for Y?
- 3. What is the probability that between 165 and 180 of the 200 people who were vaccinated develop immunity? (Hint: Use a normal distribution to approximate the distribution of Y)

Example from AAO Unit 21 - Exact Method

```
mosaic::xpbinom(q = c(165, 180), size = 200, prob = 0.85)
```


[1] 0.1850410 0.9851197

Example from AAO Unit 21- Normal Approximation

```
mosaic::xpnorm(q = c(165,180), mean = 200 * 0.85,
sd = sqrt(200*0.85*0.15))
```


[1] 0.1610510 0.9761648