Planning and Learning

Chris Amato Northeastern University

with some slides from Rob Platt, U Alberta, Mykel Kochenderfer, and Frans Oliehoek

Announcements

- Exam
- Project proposals due 10/28
 - More formal (i.e., less English)
- Ex5 (TD) due 10/24
- Ex6 (Planning and learning) due 11/1
- Exam 2 on 11/25
- Read SB 9.1--9.5, 9.8

RL research opportunities

- Undergrad co-op on security for RL
- MS Research apprenticeships
 - Nominations
 - Projects

Overview: Planning and Learning

- We will talk about
 - various planning methods that use a model or simulator to generate solutions (planning)
 - Model-based RL methods that learn models of the dynamics as part of RL (which use planning with the model)

Planning and Learning: AlphaGo

Planning

What do you think of when you think about "planning"?

- often, the word "planning" often means a specific class of algorithm
- here, we use "planning" to mean any computational process that uses a model to create or improve a policy

Planning

What do you think of when you think about "planning"?

- often, the word "planning" often means a specific class of algorithm
- here, we use "planning" to mean any computational process that uses a model to create or improve a policy

Model: "Anything that an agent can use to predict how the environment will respond to its actions." $p(s', r \mid s, a)$

For example: an unusual way to do planning

Random-sample one-step tabular Q-planning

Loop forever:

- 1. Select a state, $S \in \mathcal{S}$, and an action, $A \in \mathcal{A}(S)$, at random
- 2. Send S, A to a sample model, and obtain a sample next reward, R, and a sample next state, S'
- 3. Apply one-step tabular Q-learning to S, A, R, S': $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) Q(S,A) \right]$

– why does this satisfy our expanded definition?

Planning vs Learning

Planning vs Learning

Models in RL

<u>Model</u>: anything the agent can use to predict how the environment will respond to its actions

Two types of models:

- 1. <u>Distribution model</u>: description of all transition possibilities and their probabilities
- 2. Sample model: a.k.a. a simulator
 - given a s,a pair, the sample model returns next state & reward
 - a sample model is often much easier to get than the distribution model

Models in RL

Model: anything the a respond to its actions

This is how we defined "model" at the beginning of this course

ent will

Two types of models:

- 1. <u>Distribution model</u>: description of all transition possibilities and their probabilities
- 2. Sample model: a.k.a. a generative/simulation model
 - given a s,a pair, the sample model returns next state & reward
 - a sample model is often much easier to get than the distribution model

In this section, we're going to use this type of model a lot

Planning vs learning

<u>Planning</u> typically assumes you use the model to look more than one step into the future (e.g., testing and evaluating possible policies)

Two types of models:

- 1. <u>Distribution model</u>: this is the typical planning case (use the distribution model to generate a full policy and then can execute that policy) --- this is what we did for dynamic programming (e.g., VI and PI)
- 2. <u>Sample model</u>: this is used for 'sample-based' or online planning where you only have access to a simulator and are not generating a full policy (e.g., a single action at a times) --- this is what we'll do for Monte-Carlo tree search

Here, we're using a sample model, but we don't learn the model

Planning vs learning

<u>Planning</u> typically assumes you use the model to look more than one step into the future (e.g., testing and evaluating possible policies)

Two types of models:

- 1. <u>Distribution model</u>: this is the typical planning case (use the distribution model to generate a full policy and then can execute that policy) --- this is what we did for dynamic programming (e.g., VI and PI)
- 2. <u>Sample model</u>: this is used for 'sample-based' or online planning where you only have access to a simulator and are not generating a full policy (e.g., a single action at a times) --- this is what we'll do for Monte-Carlo tree search

Planning methods don't learn the model by themselves

Planning

An unusual way to do planning:

Random-sample one-step tabular Q-planning

Loop forever:

- 1. Select a state, $S \in \mathcal{S}$, and an action, $A \in \mathcal{A}(S)$, at random
- 2. Send S, A to a sample model, and obtain a sample next reward, R, and a sample next state, S'
- 3. Apply one-step tabular Q-learning to S, A, R, S': $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) Q(S,A) \right]$

Planning

An unusual way to do planning:

Random-sample one-step tabular Q-planning

Loop forever:

- 1. Select a state, $S \in \mathcal{S}$, and an action, $A \in \mathcal{A}(S)$, at random
- 2. Send S, A to a sample model, and obtain a sample next reward, R, and a sample next state, S'
- 3. Apply one-step tabular Q-learning to S, A, R, S': $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) Q(S,A) \right]$

Here, we're using a sample model, but we don't learn the model

Dyna-Q

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) Q(S, A)]$

Direct RL: Do update directly using real experience

Dyna-Q

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) Q(S,A)\right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow$ random action previously taken in S

 $R, S' \leftarrow Model(S, A)$

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

Direct RL: Do update directly using real experience Indirect RL: Learn model using real experience

Dyna-Q

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_a Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow$ random previously observed state

 $A \leftarrow$ random action previously taken in S

 $R, S' \leftarrow Model(S, A)$

 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$

Direct RL: Do update directly using real experience

Indirect RL: Learn model using real experience,

then simulate experience using model, do 'planning' update using simulated experience

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow \text{random action previously taken in } S$

 $R, S' \leftarrow Model(S, A)$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

This version assumes deterministic transitions and rewards, how would you extend it to the stochastic case?

Tabular Dyna-Q

```
Initialize Q(s, a) and Model(s, a) for all s \in S and a \in A(s)
Loop forever:
```

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow$ random action previously taken in S

 $R, S' \leftarrow Model(S, A)$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

Think of as many ways as you can to implement "model"

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow$ random action previously taken in S

 $R, S' \leftarrow Model(S, A)$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

Think of as many ways as you can to implement "model"

- just buffer all previously experienced transitions (really a model?)
- estimate tabular transition probabilities for s,a pairs
- learn a neural network that samples from next states

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow \text{random action previously taken in } S$

 $R, S' \leftarrow Model(S, A)$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

Modern versions learn a NN for a model

Dyna-Q on a Simple Maze

Dyna-Q on a Simple Maze

Would the results look as good if the domain was stochastic?

Why does Dyna-Q do so well?

WITHOUT PLANNING (n=0)

WITH PLANNING (n=50)

Policies found using Q-learning vs dyna-Q halfway through second episode

- dyna-Q w/ n=50
- optimal policy after three episodes!

When the model is wrong

- So far, we have considered models that:
 - Start empty and are always updated with correct info
- The model can be wrong! Because:
 - environment might be stochastic and we have only seen a few samples
 - the environment has changed
- Planning is likely to compute a suboptimal policy in this case
- Imagine the world changed, and:
 - The suboptimal policy leads to discovery and correction of the modeling error

What happens with incorrect model?

Think-pair-share

Questions:

- why does dyna-Q stop getting reward?
- why does it start again?
- what would happen if the change was the other way around (in either case)?

Think-pair-share

Questions:

- why does dyna-Q stop getting reward?
- why does it start again?
- what would happen if the change was the other way around (in either case)?

What is Dyna-Q+

- Even with e-greedy policy Dyna-Q won't explore enough to find new path
- Dyna-Q+ uses an "exploration bonus" (like UCB):
 - Keeps track of time since each state-action pair was tried for real
 - An extra reward is added for transitions caused by state-action pairs related to how long ago they were tried: the longer unvisited, the more reward for visiting

$$R + \kappa \sqrt{\tau} \qquad \text{time since last visiting} \\ \text{some small constant} \\ \text{to balance exploration}$$

What impact does adding this exploration bonus have?

What is Dyna-Q+

- Even with e-greedy policy Dyna-Q won't explore enough to find new path
- Dyna-Q+ uses an "exploration bonus" (like UCB):
 - Keeps track of time since each state-action pair was tried for real
 - An extra reward is added for transitions caused by state-action pairs related to how long ago they were tried: the longer unvisited, the more reward for visiting

• The agent actually "plans" how to visit long unvisited states

Note: Better exploration is a key benefit in model-based approaches

Think-pair-share

Exercise 8.2 Why did the Dyna agent with exploration bonus, Dyna-Q+, perform better in the first phase as well as in the second phase of the blocking and shortcut experiments? \Box

Prioritizing Search Control

- Consider the second episode in the Dyna maze
 - The agent has successfully reached the goal once...

 In larger problems, the number of states is so large that unfocused planning would be extremely inefficient

Prioritized Sweeping

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_a Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow \text{random action previously taken in } S$

 $R, S' \leftarrow Model(S, A)$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

Unfocused replay from model

Prioritized Sweeping

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_a Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow \text{random action previously taken in } S$

 $R, S' \leftarrow Model(S, A)$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

Unfocused replay from model– can we do better?

Prioritized Sweeping

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_a Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow \text{random action previously taken in } S$

 $R, S' \leftarrow Model(S, A)$

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

Unlike real experience, we can control which state-action pairs to replay

Prioritized Sweeping

WITH PLANNING (n=50)

Instead of replaying **all** of these transitions on each iteration, just replay the important ones...

- Which states or state-action pairs should be generated during planning?
- Work backward from states whose value has just changed
- Maintain a priority queue of state-action pairs whose values would change a lot if backed up, prioritized by the size of the change
- When a new backup occurs, insert predecessors according to their priorities

Prioritized Sweeping

Prioritized sweeping for a deterministic environment Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty Loop forever: (a) $S \leftarrow \text{current (nonterminal) state}$ (b) $A \leftarrow policy(S, Q)$ (c) Take action A; observe resultant reward, R, and state, S'(d) $Model(S, A) \leftarrow R, S'$ (e) $P \leftarrow |R + \gamma \max_a Q(S', a) - Q(S, A)|$. TD error (f) if $P > \theta$, then insert S, A into PQueue with priority P (g) Loop repeat n times, while PQueue is not empty: $S, A \leftarrow first(PQueue)$ $R, S' \leftarrow Model(S, A)$ $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$ what's this Loop for all \bar{S} , \bar{A} predicted to lead to S: part doing? $\bar{R} \leftarrow \text{predicted reward for } \bar{S}, A, S$ $P \leftarrow |\bar{R} + \gamma \max_a Q(S, a) - Q(\bar{S}, \bar{A})|.$ if $P > \theta$ then insert \bar{S}, \bar{A} into PQueue with priority P

Prioritized sweeping isn't really a planning method so it can be used with lots of RL methods

Prioritized Sweeping: Performance

Both use n=5 backups per environmental interaction

Rod Maneuvering (Moore and Atkeson 1993)

Solved by prioritized sweeping, but probably too large for unprioritized methods

Model-based RL and sample-based planning

- This chapter only touches the surface of both model-based RL and different planning methods
- Model-based RL
 - Typically, reinforcement learning methods that combine model-learning to improve exploration, transfer, etc.
 - Examples include Dyna, MuZero, World Models, Dreamer, etc.
- Sample-based planning
 - Typically, assumes the model is given in the form of a simulator (so can access any s,a and get s', r)
 - Examples include, RTDP and MCTS (next)

Optimality without visiting all states

Irrelevant States:

unreachable from any start state under any optimal policy

Relevant States reachable from some start state under some optimal policy

Online planning methods

- Dyna used planning to generate more data to improve the value function for all states (book calls this background planning)
- Instead, online planning methods try to compute an optimal action from current state (book calls this decision-time planning)
 - Plan up to some horizon
 - States reachable from the current state is typically small compared to full state space
 - Heuristics and branch-and-bound techniques allow search space to be pruned
 - Monte Carlo methods provide approximate solutions

- Provides optimal action from current state s up to depth d
- Recall

```
Algorithm 4.6 Forward search
```

```
1: function SelectAction(s, d)
          if d = 0
               return (NIL, 0)
 3:
        (a^*, v^*) \leftarrow (\text{NIL}, -\infty)
         for a \in A(s)
               v \leftarrow R(s, a)
               for s' \in S(s, a)
                    (a', v') \leftarrow \text{SelectAction}(s', d-1)
                     v \leftarrow v + \gamma T(s' \mid s, a)v'
               if v > v^*
10:
                    (a^*, v^*) \leftarrow (a, v)
11:
          return (a^*, v^*)
12:
```

- Time complexity is $O((|S| \times |A|)^d)$
- Tree search (expectimax) over and over again!

Decision Making
Under Uncertainty

Theory and Application

Mykel J. Kochenderfer

Online Planning

Construct a plan for T time steps into the future

Forward Search: Limitations

• OK, so that seems nice enough...?

• Problem?

Forward Search: Limitations

OK, so that seems nice enough...?

- Problem: trees get huge...!
 - → not practical

Monte Carlo Tree Search (MCTS)

- MCTS provides leverage by:
 - incrementally constructing a sampled version of the tree
 - focusing on promising regions

NOTE: the statistics maintained, represent an estimate of **Q(s,a)**

Phases of MCTS

AlphaGo

Uses UCT with neural net to approximate opponent choices and state values

Monte Carlo Evaluation

```
Algorithm 4.11 Monte Carlo policy evaluation
                                                                     Depth
 1: function MonteCarloPolicyEvaluation(\lambda, d)
         for i \leftarrow 1 to n
 2:
                                                        Initial state distribution
             s ∼ b ____
 3:
             u_i \leftarrow \text{ROLLOUT}(s, d, \pi_{\lambda})
                                                                   Rollout policy
        return \frac{1}{n} \sum_{i=1}^{n} u_i
 5:
Algorithm 4.10 Rollout evaluation
 1: function ROLLOUT(s, d, \pi_0)
        if d = 0
             return 0
 3:
    a \sim \pi_0(s)
                                                           Simulate
 5: (s',r) \sim G(s,a)
     return r + \gamma ROLLOUT(s', d-1, \pi_0)
 6:
```

Estimate value of a policy by sampling from a simulator

Monte Carlo Tree Search

Algorithm 4.9 Monte Carlo tree search

```
1: function SelectAction(s, d)
         loop
 2:
             SIMULATE(s, d, \pi_0)
 3:
         return arg max<sub>a</sub> Q(s, a)
 5: function Simulate(s, d, \pi_0)
         if d = 0
 6:
             return 0
        if s \notin T
                                       UCT (Upper Confidence Bounds for Trees)
             for a \in A(s)
 9:
                  (N(s,a), Q(s,a)) \leftarrow (N_0(s,a), Q_0(s,a))
10:
                                                                                Just like our bandit case!
              T = T \cup \{s\}
11:
             return ROLLOUT(s, d, \pi_0)
12:
        a \leftarrow \arg\max_{a} Q(s, a) + c\sqrt{\frac{\log N(s)}{N(s, a)}}
13:
         (s',r) \sim G(s,a)
14:
         q \leftarrow r + \gamma \text{Simulate}(s', d - 1, \pi_0)
15:
        N(s,a) \leftarrow N(s,a) + 1
16:
        Q(s,a) \leftarrow Q(s,a) + \frac{q - Q(s,a)}{N(s,a)}
17:
18:
         return q
```

Monte Carlo Tree Search

```
Algorithm 4.9 Monte Carlo tree search
                      1: function SelectAction(s, d)
                              loop
                      2:
                                  SIMULATE(s, d, \pi_0)
                      3:
                                                                       Don't use UCB to choose actions in the real world
                              return arg max<sub>a</sub> Q(s, a)
                         function Simulate(s, d, \pi_0)
State isn't in tree
                              if d = 0
(so initialize stats)
                                  return 0
                             if s \notin T
                                                            UCT (Upper Confidence Bounds for Trees)
                                  for a \in A(s)
                      9:
                                       (N(s,a), Q(s,a)) \leftarrow (N_0(s,a), Q_0(s,a))
   Add to tree and
                                                                                                   Just like our bandit case!
                                   T = T \cup \{s\}
   then do rollout
                                  return ROLLOUT(s, d, \pi_0)
                     12:
                              a \leftarrow \operatorname{arg\,max}_{a} Q(s, a) + c \sqrt{\frac{\log N(s)}{N(s, a)}}
                     13:
                              (s',r) \sim G(s,a)
                     14:
                              q \leftarrow r + \gamma \text{SIMULATE}(s', d-1, \pi_0)
                     15:
                             N(s,a) \leftarrow N(s,a) + 1
                     16:
                              Q(s,a) \leftarrow Q(s,a) + \frac{q - Q(s,a)}{N(s,a)}
                     17:
                     18:
                              return q
```

UCT continued

- Search/Selection (within the tree, T)
 - Execute action that maximizes $Q(s,a) + c\sqrt{\frac{\log N(s)}{N(s,a)}}$
 - Update the value Q(s,a) and counts N(s) and N(s,a)
 - c is a exploration constant
- Expansion (outside of the tree, T)
 - Create a new node for the state
 - Initialize Q(s,a) and N(s,a) (usually to θ) for each action
- Rollout and Backup (outside of the tree, T)
 - Only expand once and then use a rollout policy to select actions (e.g., random policy)
 - Add the rewards gained during the rollout with those in the tree:

$$r + \gamma \text{ROLLOUT}(s', d - 1, \pi_0)$$

UCT continued

 Continue UCT until some termination condition

• Guarantees?

UCT continued

- Continue UCT until some termination condition (usually a fixed number of samples)
- MCTS (and UCT) will approach the true Q-values in the limit (for a fixed horizon)
 - You can see this by considering what happens when the full tree is generated
 - This doesn't depend on rollout policy, but does require exploration of actions
 - In practice no one runs MCTS until optimality, so it does matter how rollout/ evaluation and exploration is done

MCTS Pros/Cons

• Pros:

- rapidly zooms in on promising regions
- can be used to improve policies
- basis of many successful application

Limitations:

- needle in the hay-stack problems
- problems with high branching factor
- both cause poor approximations in limited time

Summary

- Emphasized close relationship between planning and learning
- Important distinction between distribution models and sample models
- Looked at some ways to integrate planning and learning
 - synergy among planning, acting, model learning
- Distribution of backups: focus of the computation
 - prioritized sweeping
 - sample backups
 - trajectory sampling: backup along trajectories
 - heuristic search/MCTS
- Size of backups: full/sample; deep/shallow

Next time

 Linear function approximation (scaling beyond tabular methods)!

Read SB 9.1--9.5, 9.8