ELECTROMAGNETIC INVERSE PROBLEMS IN CHIRAL MEDIA

CHANG-YE TU

1. Introduction

We study the problem of time-harmonic electromagnetic waves scattering by a bounded perfectly conducting obstacle embedded in a homogeneous chiral environment in \mathbb{R}^3 .

The macroscopic Maxwell equations of electromagnetism are

$$\operatorname{div} \mathcal{D} = \rho \qquad \qquad \operatorname{curl} \mathcal{H} - \frac{\partial \mathcal{D}}{\partial t} = \mathcal{J}$$
$$\operatorname{div} \mathcal{B} = 0 \qquad \qquad \operatorname{curl} \mathcal{E} + \frac{\partial \mathcal{B}}{\partial t} = 0$$

where \mathcal{D} denotes the electric displacement, \mathcal{H} the magnetic field, \mathcal{B} the magnetic induction, \mathcal{E} the electric field, ρ the charge density and \mathcal{J} the current density. The connections between derived fields \mathcal{D} , \mathcal{H} and the fundamental terms \mathcal{E} , \mathcal{B} are known as the constitutive relations.

In presence of the conducting obstacle the current density ${\mathcal J}$ satisfies Ohm's law

$$\mathcal{J} = \sigma \mathcal{E},$$

where σ is the electric conductivity. The homogeneous chiral medium obeys the Drude-Born-Fedorov constitutive relations

$$\mathcal{D} = \varepsilon(\mathcal{E} + \beta \operatorname{curl} \mathcal{E})$$
$$\mathcal{B} = \mu(\mathcal{H} + \beta \operatorname{curl} \mathcal{H})$$

where ε denotes the electric permittivity, μ the magnetic permeability and β the chirality measure. For time-harmonic electromagnetic wave of the form

$$\mathcal{E}(x,t) = \left(\varepsilon + \frac{i\sigma}{\omega}\right)^{-\frac{1}{2}} E(x) e^{-i\omega t}$$
$$\mathcal{H}(x,t) = \mu^{-\frac{1}{2}} H(x) e^{-i\omega t}$$

Date: October 21, 2012.

we have the following reduced Maxwell equations for complex-valued spatial part E(x), H(x):

(1.1)
$$\operatorname{curl} E - ik(H + \beta \operatorname{curl} H) = 0$$
$$\operatorname{curl} H + ik(E + \beta \operatorname{curl} E) = 0$$

where

(1.2)
$$k^2 = \omega \mu (\varepsilon \omega + i\sigma) \text{ and } \operatorname{Im} k \geqslant 0.$$

If we set

(1.3)
$$Q_{L} = E + iH$$
$$Q_{R} = E - iH,$$

we can transform reduced Maxwell equations (1.1) into

(1.4)
$$\operatorname{curl} Q_{L} = \gamma_{L} Q_{L} \\ \operatorname{curl} Q_{R} = -\gamma_{R} Q_{R}$$

where

(1.5)
$$\gamma_{\rm L} = \frac{k}{1 - k\beta}$$
$$\gamma_{\rm R} = \frac{k}{1 + k\beta}.$$

We say that the tuple (E, H, k) solves Maxwell equations if

$$\operatorname{curl} E - ikH = 0 \qquad \qquad \operatorname{div} E = 0$$

$$\operatorname{curl} H + ikE = 0 \qquad \qquad \operatorname{div} H = 0$$

It is clear that $(Q_L, -iQ_L, \gamma_L)$ and (Q_R, iQ_R, γ_R) solves Maxwell equations and this fact allows us to reuse the representation theorem (c.f. proposition 2) in achiral cases.

2. Notations, Definitions and Known Results

Here we collect relevant notations, definitions and propositions and refer to [1], [2], [3], [4] for proofs and details.

Definition 1 (Lipschitz domain). An open set Ω is called a Lipschitz domain if for each point $x \in \Gamma$, the boundary of Ω , there exists a rectangular coordinate system (u, v), where $u \in \mathbb{R}^{n-1}$ and $v \in \mathbb{R}$, a neighborhood $U \equiv U(x)$ and a function $\phi \equiv \phi(x) : \mathbb{R}^{n-1} \to \mathbb{R}$ which satisfies

(1)
$$|\phi(s) - \phi(t)| \le C(x)|s - t|$$
 for $s, t \in \mathbb{R}^{n-1}$ and $0 < C(x) < \infty$.
(2) $\Omega \cap U = \{(u, v) \mid v > \phi(u)\} \cap U$.

We assume that the Lipschitz domain Ω is bounded and connected. Define $\Omega_{-} := \Omega$ and $\Omega_{+} := \mathbb{R}^{3} \setminus \Omega$.

Definition 2 (coordinate cylinder). $Z \equiv Z(x,r), x \in \Gamma$ is called a coordinate cylinder if

- (1) Z(x,r) is an open, right circular, doubly truncated cylinder centered at x with radius r.
- (2) There exists a rectangular coordinate system (u, v) where $u \in$ \mathbb{R}^{n-1} , $v \in \mathbb{R}$ such that the axis of Z is in the v-direction.
- (3) There exists a function $\phi \equiv \phi(Z) : \mathbb{R}^{n-1} \to \mathbb{R}$ such that
 - (a) $|\phi(s) \phi(t)| \leq C(Z)|s-t|$ for $s, t \in \mathbb{R}^{n-1}$ and $0 < C(Z) < \infty$
 - (b) $\Omega \cap Z = \{(u, v) \mid v > \phi(u)\} \cap Z$.
 - (c) $p = (0, \phi(0)).$
 - (Z,ϕ) is called a coordinate pair.

Let $\mu Z := \mu Z(x,r), \ \mu > 0$ be the dilation of Z about x by a factor of μ , i.e. $\mu Z = \{ y \in \mathbb{R}^n \mid x + \frac{(y-x)}{\mu} \in Z \}.$

Definition 3 (regular family of cones). Let $\zeta(x)$ with $x \in \Gamma$ be the open circular, doubly truncated cone centered at x with two nonempty, convex components in Ω_+ (denoted by $\zeta_+(x)$) and Ω_- (denoted by $\zeta_{-}(x)$) respectively.

- $\{\zeta\} := \{\zeta(x) \mid \forall x \in \Gamma\}$ is called a regular family of cones if there exists a finite covering of Γ of coordinate cylinders such that for each coordinate pair $(Z(x,r),\phi)$ there exist three cones $\zeta_1, \zeta_2,$ and $\zeta_3,$ all with vertex at 0, parallel to the axis of Z and satisfy

 - (1) $\zeta_1 \subset \overline{\zeta_2} \setminus \{0\} \subset \zeta_3$, (2) For all $x \in \frac{4}{5}Z \cap \Gamma$ and $x \equiv (s, \phi(s))$
 - (a) $\zeta_1 + x \subset \zeta(x) \subset \zeta_2 + x$,

 - (b) $\zeta_3 + x \subset Z$, (c) $\{\frac{4}{5}Z\}$ covers Γ .

Proposition 1. Given a bounded Lipschitz domain Ω , the followings hold:

- (1) There exists a regular family of cones $\{\zeta\}$.
- (2) There exists a sequence of C^{∞} domains $\Omega_i \subset \Omega$ and corresponding homeomorphisms $\Lambda_j: \Gamma \to \Gamma_i$ such that $\sup_{x \in \Gamma} |\Lambda_j(x)|$ $|x| \to 0$ as $j \to \infty$ and for all j and all $x \in \Gamma$, $\Lambda_j(x) \in \zeta(x)$.
- (3) There exist positive functions $\omega_i:\Gamma\to\mathbb{R}^+$ bounded away from zero and infinity uniformly in j such that

(a) For any measurable set $V \subset \Gamma$

$$\int_{V} \omega_j \, d\sigma = \int_{\Lambda_j(V)} \, d\sigma_j.$$

- (b) $\omega_i(x) \to 1$ pointwise a.e. for $x \in \Gamma$.
- (4) $\nu(\Lambda_i(x)) \to \nu(x)$ pointwise a.e. for $x \in \Gamma$.
- (5) There exists a real-valued C^{∞} vector field h such that for all j and $x \in \Gamma$, $\nu(\Lambda_j(x)) \cdot h(\Lambda_j(x)) \geqslant \kappa > 0$, where κ depends on the Lipschitz character of Ω .

The approximation scheme described above is denoted by $\Omega_i \uparrow \Omega$. An analogous approximation scheme with C^{∞} domains $\widetilde{\Omega}_i \supset \Omega$ exists and is denoted by $\widetilde{\Omega}_i \downarrow \Omega$.

Definition 4 (nontangential maximal function). Given a function f in Ω and a regular family of cones $\{\zeta\}$, the nontangential maximal function f^* is defined by

$$f^*(x) = \sup\{|f(y)| \mid y \in \zeta(x), x \in \Gamma\}$$

Definition 5 (nontangential convergence). We say that f converges nontangentially a.e. to u if for any regular family of cones $\{\zeta\}$

$$\lim_{\substack{y \to x \\ y \in \zeta(x)}} f(y) = u(x) \quad x \in \Gamma \text{ a.e.}$$

Let ν stands for the unit normal vector of Γ . Given a vector field E, the normal component $E_{\rm n} := (E \cdot \nu)\nu$, the tangential component $E_{\rm t} := E - E_{\rm n}$. Let $\nabla_{\rm t}$ denotes the tangential differentiation

$$\nabla_{t} := \nu \times (\nu \times \nabla).$$

A vector field a defined on Γ is called tangential if $a \cdot \nu = 0$ a.e. on Γ . The collection of complex-valued L_2 -integrable tangential vector fields is denoted by $L_{2,t}(\Gamma)$. The surface divergence $\operatorname{div}_{\Gamma} a$ of a given vector field a is defined as

$$\int_{\Gamma} \phi \operatorname{div}_{\Gamma} a \, d\sigma = -\int_{\Gamma} \nabla_{\mathbf{t}} \phi \cdot a \, d\sigma$$

for any $\phi \in C^{\infty}(\mathbb{R}^3)$. The function space $L_{2,t}^{\text{div}_{\Gamma}}$ is defined as

$$L_{2,t}^{\operatorname{div}_{\Gamma}} = \{ a \in L_{2,t}(\Gamma) \mid \operatorname{div}_{\Gamma} a \in L_2(\Gamma) \}.$$

Endowed with the norm

$$||a||_{L_{2}^{\operatorname{div}_{\Gamma}}} := ||a||_{L_{2}(\Gamma)} + ||\operatorname{div}_{\Gamma} a||_{L_{2}(\Gamma)}$$

 $L_{2,\mathrm{t}}^{\mathrm{div}_{\Gamma}}$ becomes a Banach space.

The notation $F \lesssim G$ means that, if there exists C > 0 such that for variables F, G, the inequality $F \leqslant CG$ holds uniformly. The notation $F \approx G$ means $F \lesssim G$ and $G \lesssim F$. The notation $\mathsf{K}(a)$ denotes a generic compact operator acting on a. Notations (small) and (large) stand for the positive constants which may be sufficiently small and large respectively. Note that the contant C appears in the inequalities generally depends on the underlying regular family of cones $\{\zeta\}$ (c.f. proposition 1, item (1)), the complex number k, $\kappa > 0$ and the L_{∞} norms of k and k in proposition 1, item (5).

Let $\Phi(x,y)$ denotes the fundamental solution of the Helmholtz operator $\triangle + k^2$ in \mathbb{R}^3 :

$$\Phi(x,y) = \frac{1}{4\pi} \frac{e^{ik|x-y|}}{|x-y|}.$$

Proposition 2 (Stratton-Chu formula). Let E, H be vector fields defined in Ω such that E, div E, curl E and H, div H, curl H are in $L_p(\Omega)$ for a given p with $1 , then the following identity holds for <math>x \in \Omega$ a.e.

$$E(x) = -\operatorname{curl} \int_{\Gamma} \nu(y) \times E(y) \Phi(x, y) \, d\sigma(y)$$

$$+ \nabla \int_{\Gamma} \nu(y) \cdot E(y) \Phi(x, y) \, d\sigma(y)$$

$$- ik \int_{\Gamma} \nu(y) \times H(y) \Phi(x, y) \, d\sigma(y)$$

$$+ \operatorname{curl} \int_{\Omega} \left\{ \operatorname{curl} E(y) - ikH(y) \right\} \Phi(x, y) \, dV(y)$$

$$- \nabla \int_{\Omega} \operatorname{div} E(y) \Phi(x, y) \, dV(y)$$

$$+ ik \int_{\Omega} \left\{ \operatorname{curl} H(y) + ikE(y) \right\} \Phi(x, y) \, dV(y).$$

If E, H satisfy the above assumptions of Stratton-Chu formula and, in addition, Maxwell equations in Ω , then for $x \in \Omega$ we have

(2.2)
$$E(x) = -\operatorname{curl} \int_{\Gamma} \nu(x) \times E(y) \Phi(x, y) \, d\sigma(y)$$
$$-\frac{i}{k} \operatorname{curl} \operatorname{curl} \int_{\Gamma} \nu(y) \times H(y) \Phi(x, y) \, d\sigma(y)$$

(2.3)
$$H(x) = -\operatorname{curl} \int_{\Gamma} \nu(x) \times H(y) \Phi(x, y) \, d\sigma(y) + \frac{i}{k} \operatorname{curl} \operatorname{curl} \int_{\Gamma} \nu(y) \times E(y) \Phi(x, y) \, d\sigma(y)$$

Definition 6 (Silver-Müller radiation condition). Solutions E, H of Maxwell equations satisfy the Silver-Müller radiation condition if one of the following holds:

(2.4)
$$\lim_{|x| \to \infty} (x \times H + |x|E) = 0$$

(2.5)
$$\lim_{\substack{|x| \to \infty \\ |x| \to \infty}} (x \times E - |x|H) = 0$$

In each case the limit is hold uniformly in all directions x/|x|.

If E, H are defined in Ω_+ such that E, div E, curl E and H, div H, curl H are in $L_p(\Omega_+)$ for a given p with $1 , satisfy Maxwell equations in <math>\Omega_+$ and the Silver-Müller radiation condition, we have

(2.6)
$$E(x) = \operatorname{curl} \int_{\Gamma} \nu(x) \times E(y) \Phi(x, y) \, d\sigma(y) + \frac{i}{k} \operatorname{curl} \operatorname{curl} \int_{\Gamma} \nu(y) \times H(y) \Phi(x, y) \, d\sigma(y)$$

(2.7)
$$H(x) = \operatorname{curl} \int_{\Gamma} \nu(x) \times H(y) \Phi(x, y) \, d\sigma(y)$$
$$-\frac{i}{k} \operatorname{curl} \operatorname{curl} \int_{\Gamma} \nu(y) \times E(y) \Phi(x, y) \, d\sigma(y).$$

Define the single layer potential S which acts on a scalar function $f \in L_2(\Gamma)$ for $x \in \mathbb{R}^3 \setminus \Gamma$ as

$$Sf(x) = \int_{\Gamma} \Phi(x, y) f(y) d\sigma(y).$$

In the sequel a stands for a $L_2(\Gamma)$ vector field.

Proposition 3.

$$\lim_{\substack{y\to x\\y\in\zeta_+(x)}}\mathcal{S}f(y)=\lim_{\substack{y\to x\\y\in\zeta_-(x)}}\mathcal{S}f(y)=\int_\Gamma\Phi(x,y)f(y)\,d\sigma(y)=:Sf(x)$$

Proposition 4.

$$\lim_{\substack{y \to x \\ y \in \zeta_{\pm}(x)}} \nabla \mathcal{S}f(y) \cdot \nu(x) = \left(\mp \frac{1}{2}I + K^*\right) f(x)$$

where K^* is the formal transpose of the bounded operator K defined

$$Kf(x) := \frac{1}{4\pi} \lim_{\varepsilon \downarrow 0} \int_{|x-y| \geqslant \varepsilon} \frac{(x-y) \cdot \nu(y)}{|x-y|^3} e^{ik|x-y|} (1 - ik|x-y|) f(y) d\sigma(y)$$

Proposition 5.

$$\|(\nabla Sf)^*\| \lesssim \|f\|$$

Proposition 6.

$$\lim_{\substack{y \to x \\ y \in \zeta_{\pm}(x)}} \operatorname{div} \mathcal{S}a(y) = \mp \frac{1}{2}\nu(x) \cdot a(x) + \operatorname{pv} \int_{\Gamma} \operatorname{div}_{x} \{\Phi(x, y)a(y)\} \, d\sigma(y)$$

$$\lim_{\substack{y \to x \\ y \in \zeta_{\pm}(x)}} \operatorname{curl} \mathcal{S}a(y) = \mp \frac{1}{2}\nu(x) \times a(x) + \operatorname{pv} \int_{\Gamma} \operatorname{curl}_{x} \{\Phi(x, y)a(y)\} \, d\sigma(y)$$

Proposition 7.

$$\lim_{\substack{y \to x \\ y \in \zeta_{\pm}(x)}} \nu(x) \times \operatorname{curl} \mathcal{S}a(y) = \pm \frac{1}{2} a(x) + \operatorname{pv} \int_{\Gamma} \nu(x) \times \operatorname{curl}_x \{\Phi(x, y) a(y)\} \, d\sigma(y)$$

$$\lim_{\substack{y_{\pm} \to x \\ y_{\pm} \in \zeta_{\pm}(x)}} \nu(x) \times \left(\operatorname{curl} \operatorname{curl} \mathcal{S}a(y_{+}) - \operatorname{curl} \operatorname{curl} \mathcal{S}a(y_{-}) \right) = 0$$

Proposition 7 motivates the definition of the magnetic dipole operator M and the electric dipole operator N for $x \in \Gamma$:

$$\begin{split} Ma(x) &= \nu(x) \times \operatorname{pv} \int_{\Gamma} \operatorname{curl}_x \{ \Phi(x,y) a(y) \} \, d\sigma(y) \\ Na(x) &= \nu(x) \times \operatorname{pv} \int_{\Gamma} \operatorname{curl} \operatorname{curl}_x \{ \Phi(x,y) a(y) \} \, d\sigma(y) \end{split}$$

In the sequel we sometimes adopt the subscript convention, e.g. Φ_k , S_k , M_k , N_k , etc. to emphasize the dependence of k.

Proposition 8. For arbitrary γ_L , $\gamma_R \in \mathbb{C}$,

- (1) $M_{\gamma_{\rm L}}: L_{2,\rm t}(\Gamma) \to L_{2,\rm t}(\Gamma)$ is bounded. (2) $M_{\gamma_{\rm L}}: L_{2,\rm t}^{\rm div_{\Gamma}} \to L_{2,\rm t}^{\rm div_{\Gamma}}$ is bounded. (3) $N_{\gamma_{\rm L}}: L_{2,\rm t}^{\rm div_{\Gamma}} \to L_{2,\rm t}^{\rm div_{\Gamma}}$ is bounded. (4) $M_{\gamma_{\rm L}} M_{\gamma_{\rm R}}: L_{2,\rm t}(\Gamma) \to L_{2,\rm t}(\Gamma)$ is compact.
- (5) $M_{\gamma_{\rm L}} M_{\gamma_{\rm R}} : L_{2,\rm t}(\Gamma) \to L_{2,\rm t}^{\rm div_{\Gamma}}$ is compact. (6) $N_{\gamma_{\rm L}} N_{\gamma_{\rm R}} : L_{2,\rm t}(\Gamma) \to L_{2,\rm t}^{\rm div_{\Gamma}}$ is compact. (7) $N_{\gamma_{\rm L}} N_{\gamma_{\rm R}} : L_{2,\rm t}(\Gamma) \to L_{2,\rm t}^{\rm div_{\Gamma}}$ is bounded.

3. Spectral Theory of the Magnetic Dipole Operator M In this section we set the following restriction on k:

$$(3.1) k \in \mathbb{C} \setminus \{0\} \text{ and } \operatorname{Im} k \geqslant |\operatorname{Re} k|,$$

unless otherwise stated.

Lemma 1 (Rellich identity). For a complex-valued $C^{\infty}(\overline{\Omega})$ vector field E and a real-valued $C^{\infty}(\mathbb{R}^3)$ vector field h

$$(3.2) \int_{\Gamma} \left\{ \frac{1}{2} |E|^2 (h \cdot \nu) - \operatorname{Re} \left((\overline{E} \cdot h) (E \cdot \nu) \right) \right\} d\sigma$$

$$= \int_{\Omega} \operatorname{Re} \left\{ \frac{1}{2} |E|^2 \operatorname{div} h - (\overline{E} \cdot h) \operatorname{div} E - \overline{E} \cdot (\nabla h) E + (h \times \overline{E}) \cdot \operatorname{curl} E \right\} dV,$$

where $\overline{E} \cdot (\nabla h)E$ denotes the quadratic form $\Sigma_{i,j}(D_i h_j) E_i \overline{E_j}$.

Proof. It is evident from

$$\operatorname{div} \left\{ \frac{1}{2} |E|^2 h - \operatorname{Re} \left((\overline{E} \cdot h) E \right) \right\}$$

$$= \operatorname{Re} \left\{ \frac{1}{2} |E|^2 \operatorname{div} h - (\overline{E} \cdot h) \operatorname{div} E - \overline{E} \cdot (\nabla h) E + (h \times \overline{E}) \cdot \operatorname{curl} E \right\}$$
and Divergence theorem.

Lemma 2. For a complex-valued $C^{\infty}(\overline{\Omega})$ vector field E

(3.3)
$$\int_{\Gamma} |E|^2 d\sigma \lesssim \int_{\Gamma} |E_{\rm n}|^2 d\sigma + \int_{\Omega} |E|^2 + |\operatorname{curl} E|^2 + |\operatorname{div} E|^2 dV$$

$$(3.4) \qquad \int_{\Gamma} |E|^2 d\sigma \lesssim \int_{\Gamma} |E_{\mathbf{t}}|^2 d\sigma + \int_{\Omega} |E|^2 + |\operatorname{curl} E|^2 + |\operatorname{div} E|^2 dV.$$

If $E \in C^{\infty}(\overline{\Omega_+})$ and decays at infinity then the above hold with Ω replaced by Ω_+ .

Proof. Let h be the real-valued vector field which satisfies proposition 1, item (5), i.e. $h \cdot \nu \geqslant \kappa > 0$ on Γ . Decomposing E, h into mutually orthogonal parts $E = E_{\rm t} + E_{\rm n}$, $h = h_{\rm t} + h_{\rm n}$, we have

$$\begin{split} \frac{1}{2}|E|^2(h\cdot\nu) - \operatorname{Re}\left((\overline{E}\cdot h)(E\cdot\nu)\right) \\ &= \frac{1}{2}|E_t|^2(h\cdot\nu) - \frac{1}{2}|E_n|^2(h\cdot\nu) - \operatorname{Re}\left((\overline{E_t}\cdot h_t)(E_n\cdot\nu)\right), \end{split}$$

thus the Rellich identity (3.2) is rewritten as

(3.5)
$$\int_{\Gamma} \frac{1}{2} |E_{t}|^{2} (h \cdot \nu) d\sigma = \int_{\Gamma} \frac{1}{2} |E_{n}|^{2} (h \cdot \nu) d\sigma + \Theta_{1} + \Theta_{2},$$

where

$$\Theta_{1} := \int_{\Gamma} \operatorname{Re}\left((\overline{E_{t}} \cdot h_{t})(E_{n} \cdot \nu)\right) d\sigma,
\Theta_{2} := \int_{\Omega} \operatorname{Re}\left\{\frac{1}{2}|E|^{2} \operatorname{div} h - (\overline{E} \cdot h) \operatorname{div} E - \overline{E} \cdot (\nabla h)E + (h \times \overline{E}) \cdot \operatorname{curl} E\right\} dV$$

In view of (3.5) and $h \cdot \nu \geqslant \kappa > 0$ we have

(3.6)
$$\frac{1}{2}\kappa \int_{\Gamma} |E_{\mathbf{t}}|^2 d\sigma \leqslant \frac{1}{2} \int_{\Gamma} |E_{\mathbf{n}}|^2 d\sigma + \Theta_1 + \Theta_2.$$

By Young's inequality

$$ab \leqslant \varepsilon a^2 + \frac{1}{\varepsilon}b^2 \quad \forall \varepsilon > 0$$

(3.6) becomes

(3.7)
$$\int_{\Gamma} |E|^2 d\sigma \lesssim \int_{\Gamma} |E_{\rm n}|^2 d\sigma + \int_{\Omega} |E|^2 + |E| |\operatorname{curl} E| + |E| |\operatorname{div} E| dV$$

Similarly, from (3.5) and $h \cdot \nu \geqslant \kappa > 0$ we have

(3.8)
$$\frac{1}{2}\kappa \int_{\Gamma} |E_{\mathbf{n}}|^2 d\sigma \leqslant \frac{1}{2} \int_{\Gamma} |E_{\mathbf{t}}|^2 d\sigma - \Theta_1 - \Theta_2$$
$$\leqslant \frac{1}{2} \int_{\Gamma} |E_{\mathbf{t}}|^2 d\sigma + |\Theta_1| + |\Theta_2|,$$

hence by Young's inequality (3.8) becomes

(3.9)

$$\int_{\Gamma} |E|^2 d\sigma \lesssim \int_{\Gamma} |E_{\mathbf{t}}|^2 d\sigma + \int_{\Omega} |E|^2 + |E||\operatorname{curl} E| + |E||\operatorname{div} E| dV.$$

Once by Young's inequality

$$\int_{\Omega} |E|^2 + |E|| \operatorname{curl} E| + |E|| \operatorname{div} E| \, dV \lesssim \int_{\Omega} |E|^2 + |\operatorname{curl} E|^2 + |\operatorname{div} E|^2 \, dV,$$
 and we may rewrite (3.7), (3.9) into (3.3), (3.4) respectively. \square

Lemma 3. For the complex-valued $C^{\infty}(\overline{\Omega})$ vector field E which satisfies $(\Delta + k^2)E = 0$ in Ω ,

(3.10)
$$\int_{\Gamma} |\nu \times E|^2 d\sigma \lesssim \int_{\Gamma} |E \cdot \nu|^2 + |\operatorname{div} E|^2 d\sigma + \left| \int_{\Gamma} (\nu \times \overline{E}) \cdot \operatorname{curl} E d\sigma \right|.$$

Proof. Vector Green's theorem for vector fields a, b on Ω reads

$$\int_{\Omega} a \triangle b + \operatorname{curl} a \cdot \operatorname{curl} b + \operatorname{div} a \cdot \operatorname{div} b \, dV = \int_{\Gamma} (\nu \times a) \cdot \operatorname{curl} b + (\nu \cdot a) \operatorname{div} b \, d\sigma$$

Setting $a = \overline{E}$ and b = E in vector Green's theorem we have

$$\int_{\Gamma} (\nu \times \overline{E}) \cdot \operatorname{curl} E + (\overline{E} \cdot \nu) \operatorname{div} E \, d\sigma = \int_{\Omega} |\operatorname{curl} E|^2 + |\operatorname{div} E|^2 - k^2 |E|^2 \, dV.$$

In view of the restriction on k (3.1), the above identity becomes

$$\int_{\Omega} |E|^{2} + |\operatorname{curl} E|^{2} + |\operatorname{div} E|^{2} dV$$

$$\lesssim \left| \int_{\Gamma} (\nu \times \overline{E}) \cdot \operatorname{curl} E \, d\sigma \right| + \int_{\Gamma} |E \cdot \nu| |\operatorname{div} E| \, d\sigma.$$

Once by $|E \cdot \nu| \leq |E|$ and Young's inequality

$$\int_{\Gamma} |E \cdot \nu| |\operatorname{div} E| \, d\sigma \leqslant (\operatorname{small}) \int_{\Gamma} |E|^2 \, d\sigma + (\operatorname{large}) \int_{\Gamma} |\operatorname{div} E|^2 \, d\sigma,$$
 which turns (3.3) into (3.10).

Theorem 1. Let X, Y, Z be Banach spaces and $A: X \to Y$ be a closed operator with dense domain. Then the followings are equivalent:

- (1) A compact operator $T: X \to Z$ exists such that
- (3.11) $||x|| \le C(||Ax|| + ||Tx||) \quad \forall x \in \text{dom } A.$
 - (2) $\dim \ker A$ is finite, and $\operatorname{img} A$ is closed.

Proof of (1) implies (2). If $x \in \ker A$, by (3.11) we have $||x|| \leq C||Tx||$, which implies that T^{-1} exists and is bounded. It follows that $I = T^{-1}T$: $\ker A \to \ker A$ is compact, so dim $\ker A$ is finite.

Decompose X into direct sum

$$(3.12) X = \widetilde{X} \oplus \ker A.$$

Extract a sequence $\{x_n\}$ from \widetilde{X} and let $Ax_n \to y$. We claim that there exists M>0 such that $\|x_n\| \leqslant M$ for all n. Assume the contrary; $\|x_n\| \to \infty$. Let $x'_n = \frac{x_n}{\|x_n\|}$, then $\|x'_n\| = 1$, $Ax'_n \to 0$. Since $\|x'_n\| = 1$, there exists a subsequence $\{x'_{n_k}\}$ of $\{x'_n\}$ such that $\{Tx'_{n_k}\}$ is a Cauchy sequence. Hence $\{x'_{n_k}\}$ has a limit $x \in \widetilde{X}$ and $\|x\| = 1$. Since $x \in \text{dom } A$ and A is closed, Ax = 0. But $\widetilde{X} \cap \ker A = \{0\}$ implies x = 0, a contradiction.

From compactness of T and (3.11) we can extract a convergent subsequence $\{x_{n_k}\}$ from $\{x_n\}$. If $x_{n_k} \to x$ and $Ax_{n_k} \to y$, then $x \in \text{dom } A$ and Ax = y, which implies img A is closed.

Proof of (2) implies (1). Decompose X into direct sum (3.12), denote by P the projection of X onto $\ker A$ parallel to \widetilde{X} , and define \widetilde{A} as the restriction of the operator A to \widetilde{X} . Then $\ker \widetilde{A} = \{0\}$ and $\operatorname{img} \widetilde{A} = \operatorname{img} A$. \widetilde{A}^{-1} is a closed operator on the Banach space $\operatorname{img} A$ and therefore is bounded; a constant C' > 0 exists such that $\forall \widetilde{x} \in \widetilde{X}$

$$\|\widetilde{x}\| \leqslant C' \|\widetilde{A}\widetilde{x}\|.$$

Given an arbitrary $x \in D(A)$, by (3.12) we have $x = x_1 + x_2$ with $x_1 = (I - P)x \in \widetilde{X}$ and $x_2 = Px \in \ker A$. The operator T = P has finite rank and therefore is compact. Since $Ax = \widetilde{A}\widetilde{x}$, we have

$$||x|| \le ||x_1|| + ||x_2|| \le C(||Ax|| + ||Tx||)$$

with
$$C = \max(1, C')$$
.

Theorem 2. $\pm \frac{1}{2}I + M : L_{2,t}^{\text{div}\Gamma} \to L_{2,t}(\Gamma)$ is injective with closed range.

Proof. From lemma 2, we have

(3.13)
$$||E||_{L_2(\Gamma)} \lesssim ||E_{\mathbf{n}}||_{L_2(\Gamma)} + ||(\operatorname{curl} E)_{\mathbf{t}}||_{L_2(\Gamma)} + ||\operatorname{div} E||_{L_2(\Gamma)}, \\ ||E||_{L_2(\Gamma)} \lesssim ||E_{\mathbf{t}}||_{L_2(\Gamma)} + ||(\operatorname{curl} E)_{\mathbf{t}}||_{L_2(\Gamma)} + ||\operatorname{div} E||_{L_2(\Gamma)}.$$

Suppose $(\Delta + k^2)E = 0$ and additionally div E = 0. By writing $H = \frac{1}{ik} \operatorname{curl} E$, (3.13) becomes

(3.14)
$$||E||_{L_2(\Gamma)} \lesssim ||E_{\rm n}||_{L_2(\Gamma)} + ||H_{\rm t}||_{L_2(\Gamma)},$$

(3.15)
$$||E||_{L_2(\Gamma)} \lesssim ||E_t||_{L_2(\Gamma)} + ||H_t||_{L_2(\Gamma)}.$$

From curl curl $E = -\Delta E + \nabla \operatorname{div} E$ we are free to permute E and H in (3.14), (3.15) and obtain

(3.16)
$$||H||_{L_2(\Gamma)} \lesssim ||H_n||_{L_2(\Gamma)} + ||E_t||_{L_2(\Gamma)},$$

(3.17)
$$||H||_{L_2(\Gamma)} \lesssim ||H_t||_{L_2(\Gamma)} + ||E_t||_{L_2(\Gamma)}.$$

By (3.15) and (3.16),

$$||E||_{L_{2}(\Gamma)} \lesssim ||E_{t}||_{L_{2}(\Gamma)} + ||H_{t}||_{L_{2}(\Gamma)}$$

$$\lesssim ||E_{t}||_{L_{2}(\Gamma)} + ||H_{t}||_{L_{2}(\Gamma)} + ||H_{n}||_{L_{2}(\Gamma)}$$

$$\lesssim ||E_{t}||_{L_{2}(\Gamma)} + ||H||_{L_{2}(\Gamma)}$$

$$\lesssim ||E_{t}||_{L_{2}(\Gamma)} + ||H_{n}||_{L_{2}(\Gamma)} + ||E_{t}||_{L_{2}(\Gamma)}$$

$$\lesssim ||H_{n}||_{L_{2}(\Gamma)} + ||E_{t}||_{L_{2}(\Gamma)}.$$

From (3.18), (3.16) and $||E_t||_{L_2(\Gamma)} + ||H_n||_{L_2(\Gamma)} \lesssim ||E||_{L_2(\Gamma)} + ||H||_{L_2(\Gamma)}$, we have

(3.19)
$$||E||_{L_2(\Gamma)} + ||H||_{L_2(\Gamma)} \approx ||E_t||_{L_2(\Gamma)} + ||H_n||_{L_2(\Gamma)}.$$

Once by permutting E and H in (3.19) we have

(3.20)
$$||H||_{L_2(\Gamma)} + ||E||_{L_2(\Gamma)} \approx ||H_t||_{L_2(\Gamma)} + ||E_n||_{L_2(\Gamma)},$$

hence (3.19), (3.20) amount to

(3.21)
$$||E_{t}||_{L_{2}(\Gamma)} + ||H_{n}||_{L_{2}(\Gamma)} \approx ||E_{n}||_{L_{2}(\Gamma)} + ||H_{t}||_{L_{2}(\Gamma)}.$$

By
$$\|\cdot\|_{L_{2,+}^{\operatorname{div}_{\Gamma}}} \equiv \|\cdot\|_{L_2(\Gamma)} + \|\operatorname{div}_{\Gamma}(\cdot)\|_{L_2(\Gamma)}$$
 and $\operatorname{div}_{\Gamma}(\nu \times E) = -\nu \cdot \operatorname{curl} E$,

(3.21) is written as

$$\|\nu \times E\|_{L_{2.\mathrm{t}}^{\mathrm{div}_{\Gamma}}} \approx \|\nu \times \mathrm{curl}\, E\|_{L_{2.\mathrm{t}}^{\mathrm{div}_{\Gamma}}}$$

Now set $E := \operatorname{curl} \mathcal{S}a$ in $\mathbb{R}^3 \setminus \Gamma$ and apply proposition 7, we have

$$\|(\frac{1}{2}I + M)a\|_{L_{2,t}^{\text{div}_{\Gamma}}} \approx \|Na\|_{L_{2,t}^{\text{div}_{\Gamma}}} \approx \|(-\frac{1}{2}I + M)a\|_{L_{2,t}^{\text{div}_{\Gamma}}}.$$

Together with $a = (\frac{1}{2}I + M)a - (-\frac{1}{2}I + M)a$ we obtain

$$\|(\pm \frac{1}{2}I + M)a\|_{L_{2,t}^{\operatorname{div}_{\Gamma}}} \approx \|a\|_{L_{2,t}^{\operatorname{div}_{\Gamma}}},$$

which completes the proof.

Lemma 4. For $f \in L_2(\Gamma)$ and $\lambda \in \mathbb{R}$, $|\lambda| > \frac{1}{2}$,

$$(3.22) ||f||_{L_2(\Gamma)} \leq C_{\lambda} (||(\lambda I - K^*)f||_{L_2(\Gamma)} + ||\mathsf{K}(f)||_{L_2(\Gamma)}).$$

Proof. It suffices to prove the case k = 0 and the general validity follows from the compactness of $K^* - K_0^*$. Set $E = \nabla S_0 f$ in Ω and let $T := \lambda I - K^*$, from div E = curl E = 0 and $|E \cdot \nu| \leq |E|$ on Γ , the Rellich identity (3.2) becomes

(3.23)

$$\int_{\Gamma} \frac{1}{2} |E \cdot \nu|^2 (h \cdot \nu) \, d\sigma \leqslant \int_{\Gamma} \frac{1}{2} |E|^2 (h \cdot \nu) \, d\sigma$$

$$= \int_{\Gamma} \operatorname{Re} \left((\overline{E} \cdot h) (E \cdot \nu) \right) d\sigma + \int_{\Omega} \operatorname{Re} \left\{ \frac{1}{2} |E|^2 \operatorname{div} h - \overline{E} \cdot (\nabla h) E \right\} dV$$

Note that on Γ

$$E \cdot \nu = (\lambda - \frac{1}{2})f - T(f)$$

$$E \cdot h = -\frac{1}{2}(h \cdot \nu)f + \widetilde{K}f$$

where

$$\widetilde{K}f(x) = \int_{\Gamma} \frac{\partial \Phi_0(x, y)}{\partial h(x)} f(y) \, d\sigma(y).$$

From Green's theorem

$$\int_{\Omega} |E|^2 dV = \int_{\Gamma} S_0(f) \cdot \frac{\overline{\partial S_0 f}}{\partial \nu} d\sigma = \int_{\Gamma} S_0(f) \cdot \overline{\left((\lambda - \frac{1}{2})f - T(f)\right)} d\sigma,$$

(3.23) becomes

$$\frac{1}{2} \int_{\Gamma} (h \cdot \nu) |\lambda - \frac{1}{2}|^{2} |f|^{2} d\sigma$$

$$\leq \int_{\Gamma} \operatorname{Re} \left\{ \overline{\left(\frac{1}{2} (h \cdot \nu) f + \widetilde{K}(f)\right)} \left((\lambda - \frac{1}{2}) f - T(f) \right) \right\} d\sigma$$

$$+ C_{1} ||f|| (||S(f)|| + ||T(f)||) + C_{2} ||S(f)|| ||T(f)||,$$

which is further simplified to

$$\frac{1}{2} (|\lambda|^2 - \frac{1}{4}) \int_{\Gamma} (h \cdot \nu) |f|^2 d\sigma
\leq \int_{\Gamma} \text{Re} \left\{ \overline{\widetilde{K}(f)} \cdot (\lambda - \frac{1}{2}) f \right\} d\sigma
+ C_1 ||f|| (||S(f)|| + ||T(f)||) + C_2 ||S(f)|| ||T(f)||.$$

Note that

$$\begin{split} &\int_{\Gamma} \operatorname{Re}\!\left\{\overline{\widetilde{K}(f)} \cdot (\lambda - \frac{1}{2}) f\right\} d\sigma \\ &= \operatorname{Re}(\lambda - \frac{1}{2}) \int_{\Gamma} \operatorname{Re}\!\left\{\overline{\widetilde{K}(f)} \cdot f\right\} d\sigma - \operatorname{Im}(\lambda - \frac{1}{2}) \int_{\Gamma} \operatorname{Im}\!\left\{\overline{\widetilde{K}(f)} \cdot f\right\} d\sigma \end{split}$$

and

$$\int_{\Gamma} \operatorname{Re} \left\{ \overline{\widetilde{K}(f)} \cdot f \right\} d\sigma = \frac{1}{2} \int_{\Gamma} f Q(\overline{f}) d\sigma,$$

where $Q:=\widetilde{K}+\widetilde{K}^*$. Q is an operator with weakly singular kernel, hence is compact. \square

Theorem 3. For $a \in L_{2,t}^{\text{div}_{\Gamma}}$ and $\lambda \in \mathbb{R}$, $|\lambda| > \frac{1}{2}$,

(3.24)
$$\|a\|_{L_{2,t}^{\operatorname{div}_{\Gamma}}} \leqslant C_{\lambda} (\|(\lambda I + M)a\|_{L_{2,t}^{\operatorname{div}_{\Gamma}}} + \|\mathsf{K}(\operatorname{div}_{\Gamma} a)\|_{L_{2}(\Gamma)} + \|\mathsf{K}(a)\|_{L_{2}(\Gamma)}).$$

Proof. From

$$\operatorname{div}_{\Gamma} Ma = -K^* \operatorname{div}_{\Gamma} a - k^2 \nu \cdot Sa$$

for $a \in L_{2,t}^{\text{div}_{\Gamma}}$, we have

$$(\lambda I - K^*) \operatorname{div}_{\Gamma} a = \operatorname{div}_{\Gamma} (\lambda I + M) a + k^2 \nu \cdot Sa.$$

Applying lemma 4 and the compactness of S we obtain

(3.25)
$$\|\operatorname{div}_{\Gamma} a\|_{L_{2}(\Gamma)} \lesssim \|\operatorname{div}_{\Gamma}(\lambda I + M)a\|_{L_{2}(\Gamma)} + \|\mathsf{K}(a)\|_{L_{2}(\Gamma)} + \|\mathsf{K}(\operatorname{div}_{\Gamma} a)\|_{L_{2}(\Gamma)}.$$

Set $E = \operatorname{curl} \mathcal{S}a$ in Ω , we have

$$|\lambda + \frac{1}{2}|||a||_{L_2(\Gamma)} \leq ||(\lambda I + M)a||_{L_2(\Gamma)} + ||(-\frac{1}{2}I + M)a||_{L_2(\Gamma)}$$
$$= ||(\lambda I + M)a||_{L_2(\Gamma)} + ||\nu \times E||_{L_2(\Gamma)}.$$

In view of lemma 3,

$$(3.26) \quad ||a||_{L_{2}(\Gamma)} \lesssim ||(\lambda I + M)a||_{L_{2}(\Gamma)} + ||E \cdot \nu||_{L_{2}(\Gamma)} + \left| \int_{\Gamma} (\nu \times \overline{E}) \cdot \operatorname{curl} E \, d\sigma \right|$$

From Stratton-Chu formula (2.1),

$$K^*(E \cdot \nu) = -\nu \cdot \operatorname{curl} S(Ma) + \mathsf{K}(A) + \mathsf{K}(\operatorname{div}_{\Gamma} a),$$

then

$$(\lambda I - K^*)(E \cdot \nu) = \nu \cdot \operatorname{curl} S((\lambda I + M)a) + \mathsf{K}(A) + \mathsf{K}(\operatorname{div}_{\Gamma} a).$$

Once by lemma 4 we have

(3.27)
$$||E \cdot \nu||_{L_2(\Gamma)} \lesssim ||(\lambda I + M)a||_{L_2(\Gamma)} + ||\mathsf{K}(a)||_{L_2(\Gamma)} + ||\mathsf{K}(\operatorname{div}_{\Gamma} a)||_{L_2(\Gamma)}.$$

On Γ_- , $\nu \times E = (-\frac{1}{2}I + M)a = (-\frac{1}{2} - \lambda)a + (\lambda I + M)a$ is tangential; the tangential component of curl E is $k^2Sa + \nabla S(\operatorname{div}_{\Gamma}a)$, hence

$$\left| \int_{\Gamma} (\nu \times \overline{E}) \cdot \operatorname{curl} E \, d\sigma \right|$$

$$\lesssim \left| \int_{\Gamma} \overline{a} \cdot Sa \, d\sigma \right| + \left| \int_{\Gamma} \overline{a} \cdot \nabla S(\operatorname{div}_{\Gamma} a) \, d\sigma \right| + \left| \int_{\Gamma} \overline{(\lambda I + M)a} \cdot Sa \, d\sigma \right|$$

$$+ \left| \int_{\Gamma} \overline{(\lambda I + M)a} \cdot \nabla S(\operatorname{div}_{\Gamma} a) \, d\sigma \right|$$

$$:= I + II + III + IV$$

Applying Young's inequality,

$$\begin{split} I &\leqslant (\operatorname{small}) \|a\|_{L_{2}(\Gamma)}^{2} + (\operatorname{large}) \|Sa\|_{L_{2}(\Gamma)}^{2}, \\ II &= \left| \int_{\Gamma} \overline{a} \cdot \nabla S(\operatorname{div}_{\Gamma} a) \, d\sigma \right| = \left| \int_{\Gamma} (\operatorname{div}_{\Gamma} \overline{a}) S(\operatorname{div}_{\Gamma} a) \, d\sigma \right| \\ &\leqslant (\operatorname{small}) \|\operatorname{div}_{\Gamma} a\|_{L_{2}(\Gamma)}^{2} + (\operatorname{large}) \|S(\operatorname{div}_{\Gamma} a)\|_{L_{2}(\Gamma)}^{2}, \\ III &\leqslant (\operatorname{small}) \|a\|_{L_{2}(\Gamma)}^{2} + (\operatorname{large}) \|(\lambda I + M)a\|_{L_{2}(\Gamma)}^{2}, \\ IV &\leqslant (\operatorname{small}) \|\operatorname{div}_{\Gamma} a\|_{L_{2}(\Gamma)}^{2} + (\operatorname{large}) \|(\lambda I + M)a\|_{L_{2}(\Gamma)}^{2}, \end{split}$$

By (3.27) and above results, (3.26) becomes

$$||a||_{L_{2}(\Gamma)} \lesssim ||(\lambda I + M)a||_{L_{2}(\Gamma)} + ||\mathsf{K}(a)||_{L_{2}(\Gamma)} + ||\mathsf{K}(\operatorname{div}_{\Gamma} a)||_{L_{2}(\Gamma)} + (\operatorname{small})||a||_{L_{2}(\Gamma)} + (\operatorname{small})||\operatorname{div}_{\Gamma} a||_{L_{2}(\Gamma)}$$

Together with (3.25) the result follows.

Theorem 4. $\lambda I + M : L_{2,t}^{\text{div}_{\Gamma}} \to L_{2,t}^{\text{div}_{\Gamma}}$ is injective if $\lambda \in \mathbb{C}$ and $|\lambda| > 1/2$.

Proof. Let $\lambda \in \mathbb{C}$ be the eigenvalue of M and $a \in L_{2,t}^{\text{div}_{\Gamma}}$ be the corresponding eigenvector. Set $E = \text{curl } \mathcal{S}a$ on $\mathbb{R}^3 \setminus \Gamma$, we have

$$\pm \int_{\Gamma_{\pm}} (\nu \times \overline{E}) \cdot \operatorname{curl} E \, d\sigma = \int_{\Omega_{\pm}} |\operatorname{curl} E|^2 - k^2 |E|^2 \, dV.$$

On Γ_{\pm} , $\nu \times \overline{E} = (\pm \frac{1}{2} + M)a = (\lambda \pm \frac{1}{2})a$ and hence is tangential; together with the fact that $(\operatorname{curl} E)_t$ is continuous across Γ_{\pm} and set

$$\mu_{\pm} := \int_{\Omega_{+}} |\operatorname{curl} E|^{2} - k^{2} |E|^{2} dV$$

we get

$$|\lambda| = \frac{1}{2} \left| \frac{\mu_+ - \mu_-}{\mu_+ + \mu_-} \right|.$$

The restriction of k (3.1) implies that μ_{\pm} are in the same quadrant of \mathbb{C} , therefore $|\lambda| \leq \frac{1}{2}$.

Theorem 5. Let W be a Hilbert space, X be a connected topological space and $T_{\lambda}: X \to \mathcal{L}(W)$, a continuous function from X to the set of all bounded operators on W. Assume that T_{λ} is injective with closed range for each $\lambda \in X$. If for some $\lambda_0 \in X$ the operator T_{λ_0} is actually an isomorphism of W, then T_{λ} is an isomorphism of W for any $\lambda \in X$.

Proof. Let $O := \{\lambda \in X \mid T_{\lambda} \text{ is invertible}\}$; O is nonempty because $\lambda_0 \in O$. To establish that O = X we have to show that O is closed. Suppose $\lambda_j \in O$ such that $\lambda_j \to \lambda$. Let $u \in W$ and take $x_j \in W$ such that $T_{\lambda_j} x_j = u$ for each j. We claim that $\sup \|x_j\| < \infty$. From assumption and the open-mapping theorem, there exists an positive constant C_{λ} with $\|x\| \leqslant C_{\lambda} \|T_{\lambda}x\|$ for all $x \in W$. We have

$$||x_j|| \leqslant C_{\lambda} ||T_{\lambda} x_j|| \leqslant C_{\lambda} ||T_{\lambda_j} x_j|| + C_{\lambda} ||(T_{\lambda_j} - T_{\lambda}) x_j||$$

As $||(T_{\lambda_j} - T_{\lambda})x_j|| \leq ||T_{\lambda_j} - T_{\lambda}|| ||x_j||$, the coefficient of $||x_j||$ becomes, for large j, small enough to be absorbed into the left-hand side, hence the claim is established.

From sup $||x_j|| < \infty$ we can find a subsequence of $\{x_j\}$ weakly convergent to some $x \in W$ and deduce that $T_{\lambda}x = u$, i.e. T_{λ} is invertible. \square

Theorem 6. $\pm \frac{1}{2}I + M : L_{2,t}^{\text{div}_{\Gamma}} \to L_{2,t}(\Gamma)$ is invertible.

Proof. If k satisfies (3.1), from theorems 1, 2, 3 and 4, $\lambda I + M_k$: $L_{2,\mathrm{t}}^{\mathrm{div}_{\Gamma}} \to L_{2,\mathrm{t}}^{\mathrm{div}_{\Gamma}}$ with $\lambda \in \mathbb{R}$, $|\lambda| \leqslant \frac{1}{2}$ is injective with closed range. Moreover, $\lambda I + M_k$ is invertible on $L_{2,\mathrm{t}}^{\mathrm{div}_{\Gamma}}$ for sufficiently large $|\lambda|$. By theorem 4, $\lambda I + M_k$ with $\lambda \in \mathbb{R}$, $|\lambda| \leqslant \frac{1}{2}$ is invertible. For general k the same conclusion follows from proposition 8, item (5) the decomposition

$$\lambda I + M_k = \lambda I + M_{k_0} + (M_k - M_{k_0}),$$

where k_0 satisfies (3.1). In particular, $\pm \frac{1}{2}I + M : L_{2,t}^{\text{div}_{\Gamma}} \to L_{2,t}^{\text{div}_{\Gamma}}$ is invertible.

4. STATEMENT OF THE DIRECT SCATTERING PROBLEM

Find the function E which satisfies

(4.1)
$$\begin{cases} \operatorname{curl} \operatorname{curl} E - 2\beta \gamma^2 \operatorname{curl} E - \gamma^2 E = 0 & \text{on } \Omega_+ \\ \nu \times E = 0 & \text{on } \Gamma \\ \frac{x}{|x|} \times H + E = o(|x|^{-1}) & |x| \to \infty \\ E^* \in L_2(\Gamma) \end{cases}$$

where $\gamma^2 = \frac{k^2}{1-k^2\beta^2}$ and k, H are defined by (1.2), (1.1) respectively. Introducing the transformation (1.4), the direct scattering problem (4.1) is transformed to the following: Find Q_L , Q_R which satisfy

$$\begin{cases}
\operatorname{curl} Q_{L} = \gamma_{L} Q_{L} & \text{on } \Omega_{+} \\
\operatorname{curl} Q_{R} = -\gamma_{R} Q_{R} & \text{on } \Omega_{+} \\
\nu \times (Q_{L} + Q_{R}) = f \in L_{2,t}^{\operatorname{div}_{\Gamma}} & \text{on } \Gamma_{+} \\
\frac{x}{|x|} \times Q_{L} + i Q_{L} = o(|x|^{-1}) & |x| \to \infty \\
\frac{x}{|x|} \times Q_{R} - i Q_{R} = o(|x|^{-1}) & |x| \to \infty \\
Q_{L}^{*}, Q_{R}^{*} \in L_{2}(\Gamma)
\end{cases}$$

where $\gamma_{\rm L}$, $\gamma_{\rm R}$ are defined as in (1.5).

Inspired by Stratton-Chu formula, we propose the following ansatz

(4.3)
$$Q_{L} = \gamma_{L} \operatorname{curl} \mathcal{S}_{\gamma_{L}} a + \operatorname{curl} \operatorname{curl} \mathcal{S}_{\gamma_{L}} a$$

$$Q_{R} = \gamma_{R} \operatorname{curl} \mathcal{S}_{\gamma_{R}} a - \operatorname{curl} \operatorname{curl} \mathcal{S}_{\gamma_{R}} a,$$

where $a \in L_{2,t}^{\text{div}_{\Gamma}}$ to be determined. Then (4.2) is reduced to the solution of the following boundary integral equation of unknown a:

$$(4.4) \qquad \frac{1}{2}\gamma_{\mathrm{L}}a + \frac{1}{2}\gamma_{\mathrm{L}}M_{\gamma_{\mathrm{L}}}a + N_{\gamma_{\mathrm{L}}}a + \frac{1}{2}\gamma_{\mathrm{R}}a + \frac{1}{2}\gamma_{\mathrm{R}}M_{\gamma_{\mathrm{R}}}a - N_{\gamma_{\mathrm{R}}}a = f$$

5. Solvability of the Direct Scattering Problem

Theorem 7. The boundary integral equation (4.4) has an unique solution.

Proof of Existence. Let $T:=(\gamma_{\rm L}+\gamma_{\rm R})\left(\frac{1}{2}I+M_{\gamma_{\rm L}}\right)+\gamma_{\rm R}(M_{\gamma_{\rm R}}-M_{\gamma_{\rm L}})+(N_{\gamma_{\rm L}}-N_{\gamma_{\rm R}})$, then (4.4) is rearranged as Ta=f. We claim that, if $a\in L_{2,\rm t}(\Gamma)$ and $(\frac{1}{2}I+M)a\in L_{2,\rm t}^{\rm div_\Gamma}$, then $a\in L_{2,\rm t}^{\rm div_\Gamma}$. This is seen from

$$\left(-\frac{1}{2}I + K^*\right)(\operatorname{div}_{\Gamma} a) = -k^2 \nu \cdot Sa - \operatorname{div}_{\Gamma}\left(\left(\frac{1}{2}I + M\right)a\right)$$

and the invertibility of $(-\frac{1}{2}I + K^*)$. From this claim and the fact that the operator T is Fredholm with index zero on $L_{2,t}(\Gamma)$, T is Fredholm with index zero on $L_{2,t}^{\text{div}_{\Gamma}}$.

Proof of Uniqueness. We first show that the only solution for the homogeneous problem, i.e. (4.2) with f=0, is $Q_{\rm L}=Q_{\rm R}=0$. Let B_r be an open ball centered at 0 with radius r such that $\Omega \subset B_r$. From Silver-Müller radiation condition of $Q_{\rm L}$, we have

(5.1)
$$\lim_{r \to \infty} \int_{\partial B_r} |\nu \times Q_L|^2 + |Q_L|^2 + 2 \operatorname{Im} \left\{ \left(\nu \times Q_L \right) \cdot \overline{Q_L} \right\} d\sigma = 0$$

By Gauss divergence theorem and vector identities

$$(a \times b) \cdot c = (b \times c) \cdot a, \quad \operatorname{div}(a \times b) = b \cdot \operatorname{curl} a - a \cdot \operatorname{curl} b,$$

we have

$$\int_{\partial B_{r}} (\nu \times Q_{L}) \cdot \overline{Q_{L}} \, d\sigma = \int_{\partial B_{r}} (Q_{L} \times \overline{Q_{L}}) \cdot \nu \, d\sigma$$

$$= \int_{B_{r} \setminus \overline{\Omega}} \operatorname{div}(Q_{L} \times \overline{Q_{L}}) \, dV + \int_{\Gamma} (Q_{L} \times \overline{Q_{L}}) \cdot \nu \, d\sigma$$

$$= \int_{B_{r} \setminus \overline{\Omega}} \operatorname{div}(Q_{L} \times \overline{Q_{L}}) \, dV + \int_{\Gamma} (Q_{R} \times \overline{Q_{R}}) \cdot \nu \, d\sigma$$

$$= \int_{\partial B_{r}} (Q_{R} \times \overline{Q_{R}}) \cdot \nu \, d\sigma + 2i \operatorname{Im} \gamma_{R} \int_{B_{r} \setminus \overline{\Omega}} |Q_{R}|^{2} \, dV$$

$$+ 2i \operatorname{Im} \gamma_{L} \int_{B_{r} \setminus \overline{\Omega}} |Q_{L}|^{2} \, dV$$

Hence

(5.2)
$$\int_{\partial B_r} \operatorname{Im} \left\{ \left(\nu \times Q_{\mathcal{L}} \right) \cdot \overline{Q_{\mathcal{L}}} - \left(\nu \times Q_{\mathcal{R}} \right) \cdot \overline{Q_{\mathcal{R}}} \right\} d\sigma$$
$$= 2 \operatorname{Im} \gamma_{\mathcal{R}} \int_{B_r \setminus \overline{\Omega}} |Q_{\mathcal{R}}|^2 dV + 2 \operatorname{Im} \gamma_{\mathcal{L}} \int_{B_r \setminus \overline{\Omega}} |Q_{\mathcal{L}}|^2 dV.$$

From Silver-Müller radiation condition of $Q_{\rm R}$, we have

(5.3)
$$\lim_{r \to \infty} \int_{\partial B_r} |\nu \times Q_R|^2 + |Q_R|^2 - 2 \operatorname{Im} \left\{ \left(\nu \times Q_R \right) \cdot \overline{Q_R} \right\} d\sigma = 0$$

Add (5.3) and (5.1), by (5.2) we have

$$\lim_{r \to \infty} \left\{ \int_{\partial B_r} |\nu \times Q_R|^2 + |Q_R|^2 + |\nu \times Q_R|^2 + |Q_L|^2 d\sigma + 4 \operatorname{Im} \gamma_R \int_{B_r \setminus \overline{\Omega}} |Q_R|^2 dV + 4 \operatorname{Im} \gamma_L \int_{B_r \setminus \overline{\Omega}} |Q_L|^2 dV \right\} = 0$$

By assumption $\operatorname{Im} \gamma_{L}$, $\operatorname{Im} \gamma_{R}$ are nonnegative, so we can deduce that

$$\lim_{r \to \infty} \int_{\partial B_r} |Q_{\mathbf{R}}|^2 dV = 0$$

$$\lim_{r \to \infty} \int_{\partial B_r} |Q_{\mathbf{L}}|^2 dV = 0$$

Note that Q_L , Q_R satisfy the Helmholtz equation; by Rellich's lemma $Q_L = Q_R = 0$ in Ω_+ , hence

(5.4)
$$\nu \times Q_{\rm L} = \gamma_{\rm L} M_{\gamma_{\rm L}} a + \frac{1}{2} \gamma_{\rm L} a + N_{\gamma_{\rm L}} a = 0$$

(5.5)
$$\nu \times Q_{\rm R} = \gamma_{\rm R} M_{\gamma_{\rm R}} + \frac{1}{2} \gamma_{\rm R} a - N_{\gamma_{\rm R}} a = 0$$

Define

$$Q_1 = -\gamma_{\rm L} \operatorname{curl} \mathcal{S}_{\gamma_{\rm L}} a - \operatorname{curl} \operatorname{curl} \mathcal{S}_{\gamma_{\rm L}} a$$
$$Q_2 = -\gamma_{\rm R} \operatorname{curl} \mathcal{S}_{\gamma_{\rm R}} a + \operatorname{curl} \operatorname{curl} \mathcal{S}_{\gamma_{\rm R}} a$$

in Ω . From (5.4), (5.5) and the expressions

$$\begin{aligned} \nu \times Q_1 &= -\gamma_{\rm L} M_{\gamma_{\rm L}} a + \frac{1}{2} \gamma_{\rm L} a - N_{\gamma_{\rm L}} a \\ \nu \times Q_2 &= -\gamma_{\rm R} M_{\gamma_{\rm R}} a + \frac{1}{2} \gamma_{\rm R} a + N_{\gamma_{\rm R}} a \end{aligned}$$

we have

$$\nu \times Q_1 = \alpha \nu \times Q_2$$

on Γ , where $\alpha = \frac{\gamma_L}{\gamma_R}$. We claim $Q_1 = Q_2 = 0$ in Ω . This can be seen from

$$2i\operatorname{Im}\gamma_{L}\int_{\Omega}|Q_{1}|^{2}dV = \int_{\Omega}\overline{Q_{1}}\cdot\operatorname{curl}Q_{1} - Q_{1}\cdot\operatorname{curl}\overline{Q_{1}}dV$$

$$= \int_{\Omega}\operatorname{div}(Q_{1}\times\overline{Q_{1}})\cdot\nu\,d\sigma$$

$$= \int_{\Gamma}(Q_{1}\times\overline{Q_{1}})\cdot\overline{Q_{1}}\,d\sigma$$

$$= \int_{\Gamma}(\nu\times Q_{1})\cdot\overline{Q_{1}}\,d\sigma$$

$$= \alpha\int_{\Gamma}(\nu\times Q_{2})\cdot\overline{Q_{1}}\,d\sigma$$

$$= -\alpha\int_{\Gamma}(\nu\times\overline{Q_{1}})\cdot Q_{2}\,d\sigma$$

$$= -|\alpha|^{2}\int_{\Gamma}(\nu\times\overline{Q_{2}})\cdot Q_{2}\,d\sigma$$

$$= -|\alpha|^{2}\int_{\Gamma}(\overline{Q_{2}}\times Q_{2})\cdot\nu\,d\sigma$$

$$= -|\alpha|^{2}\int_{\Omega}\operatorname{div}(\overline{Q_{2}}\times Q_{2})\,dV$$

$$= -|\alpha|^{2}\int_{\Omega}Q_{2}\cdot\operatorname{curl}\overline{Q_{2}} - \overline{Q_{2}}\cdot\operatorname{curl}Q_{2}\,dV$$

$$= -2i|\alpha|^{2}\operatorname{Im}\gamma_{R}\int_{\Omega}Q_{2}|^{2}dV$$

So we have

$$\operatorname{Im} \gamma_{L} \int_{\Omega} |Q_{1}|^{2} dV + |\alpha|^{2} \operatorname{Im} \gamma_{R} \int_{\Omega} |Q_{2}|^{2} dV = 0,$$

 $Q_1 = Q_2 = 0$ in Ω . In particular,

(5.6)
$$\nu \times Q_1 = -\gamma_{\mathcal{L}} M_{\gamma_{\mathcal{L}}} a + \frac{1}{2} \gamma_{\mathcal{L}} a - N_{\gamma_{\mathcal{L}}} a = 0$$

Add this with (5.4) we have $\gamma_{\rm L}a = 0$ which implies a = 0, as required.

References

[1] R. Coifman, A. McIntosh, and Y. Meyer, "L'intégrale de Cauchy définit un opérateur borné sur L^2 pour les courbes Lipschitziennes," *Ann. Math.*, vol. 116, no. 2, pp. 361–387, 1982.

- [2] D. Mitrea, M. Mitrea, and J. Pipher, "Vector potential theory on non-smooth domains in R³ and applications to electromagnetic scattering," *Journal of Fourier Analysis and Applications*, vol. 3, no. 2, pp. 131–192, 1997.
- [3] G. C. Verchota, Layer Potentials and Boundary Value Problems for Laplace' Equation on Lipschitz Domains. PhD thesis, University of Minnesota, 1982.
- [4] G. C. Verchota, "Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains," J. Funct. Anal., vol. 59, pp. 572–611, 1984
- [5] D. Mitrea and M. Mitrea, "Finite energy solutions of Maxwell's equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds," J. Funct. Anal., vol. 190, pp. 339–417, 2002.
- [6] B. Jawerth and M. Mitrea, "Higher dimensional scattering theory on C^1 and Lipschitz domains," Amer. J. of Math., vol. 117, pp. 929–963, 1995.
- [7] E. Fabes, M. Jodeit, and N. Riviére, "Potential techniques for boundary value problems on C^1 domains," Acta. Math., vol. 141, pp. 165–186, 1978.
- [8] A. Buffa, "Hodge decompositions on the boundary of non-smooth domains: The multi-connected case," *Math. Models Methods Appl. Sci.*, vol. 11, pp. 1491–1504, 2001.
- [9] A. Buffa and P. Ciarlet Jr., "On traces for functional spaces related to Maxwell's equations: Part I. An integration by parts formula in Lipschitz polyhedra," *Math. Meth. Appl. Sci.*, vol. 24, pp. 9–30, 2001.
- [10] A. Buffa and P. Ciarlet Jr., "On traces for functional spaces related to Maxwell's equations: Part II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications," *Math. Meth. Appl. Sci.*, vol. 24, pp. 31–48, 2001.
- [11] A. Buffa, M. Costabel, and C. Schwab, "Boundary element methods for Maxwell's equations on non-smooth domains," *Numer. Math.*, vol. 92, pp. 679–710, 2002.
- [12] A. Buffa and G. Geymonat, "On traces for $W^{2,p}(\Omega)$ in Lipschitz domains," C. R. Acad. Sci. Paris Sér. I, vol. 332, pp. 699–704, 2001.
- [13] M. Costabel, "A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains," *Math. Meth. Appl. Sci.*, vol. 12, pp. 365–368, 1990.
- [14] A. Buffa, M. Costabel, and D. Sheen, "On traces for $\mathbf{H}(\mathbf{curl}, \mathbf{\Omega})$ in Lipschitz domains," *Numer. Math.*, vol. 92, pp. 679–710, 2002.
- [15] S. Heumann, The Factorization Method for Inverse Scattering from Chiral Media. PhD thesis, Karlsruhe Institute of Technology, 2012.
- [16] E. Fabes, M. Sand, and J. Seo, "The spectral radius of the classical layer potentials on convex domains," in *Partial Differential Equations with Minimal Smoothness and Applications*, vol. 42 of *IMA Vol. Math. Appl.*, pp. 129–137, New York: Springer-Verlag, 1992.
- [17] L. Escauriaza, E. Fabes, and G. Verchota, "On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries," *Proc. Amer. Math. Soc.*, vol. 115, pp. 1069–1076, 1992.
- [18] M. Mitrea, "The method of layer potentials in electromagnetic scattering theory on nonsmooth domains," *Duke Math. J.*, vol. 77, pp. 111–133, 1995.

- [19] C. Athanasiadis, P. A. Martin, and I. G. Stratis, "Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral equations and low-chirality approximations," SIAM J. Appl. Math., vol. 59, no. 5, pp. 1745–1762, 1999.
- [20] C. Athanasiadis, P. A. Martin, and I. G. Stratis, "Electromagnetic scattering by a homogeneous chiral obstacle: Scattering relations and the far-field operator," *Math. Meth. Appl. Sci.*, vol. 22, pp. 1175–1188, 1999.
- [21] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, "Vector potentials in three-dimensional non-smooth domains," *Math. Meth. Appl. Sci.*, vol. 21, pp. 823–864, 1998.
- [22] A. I. Nachman, L. Päivärinta, and A. Teirilä, "On imaging obstacles inside inhomogeneous media," *J. Funct. Anal.*, vol. 250, pp. 490–516, 2007.
- [23] B. Barnes, "Majorization, range inclusion, and factorization for bounded linear operators," *Proc. Amer. Math. Soc.*, vol. 133, no. 1, pp. 155–162, 2004.
- [24] R. Bouldin, "A counterexample in the factorization of Banach space operators," *Proc. Amer. Math. Soc.*, vol. 68, no. 3, pp. 155–162, 1978.
- [25] R. Douglas, "On majorization factorization and range inclusion of operators on Hilbert space," *Proc. Amer. Math. Soc.*, vol. 17, pp. 413–415, 1966.
- [26] M. Embry, "Factorization of operators on Banach space," Proc. Amer. Math. Soc., vol. 38, no. 3, pp. 587–590, 1973.
- [27] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Berlin: Springer-Verlag, second ed., 1998.
- [28] A. Kirsch and N. Grinberg, *The Factorization Method for Inverse Problems*. Oxford: Oxford University Press, 2007.
- [29] O. D. Kellogg, Foundations of Potential Theory. Berlin: Springer-Verlag, 1929.
- [30] K. Yosida, Functional Analysis. Berlin: Springer-Verlag, sixth ed., 1980.
- [31] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge: Cambridge University Press, 2000.
- [32] S. Mikhlin and S. Prössdorf, Singular Integral Operators. Berlin: Springer-Verlag, 1986.
- [33] P. Monk, Finite Element Methods for Maxwell's Equations. Oxford: Oxford University Press, 2003.
- [34] R. Potthast, Point Sources and Multipoles in Inverse Scattering Theory. Boca Raton: Chapman & Hall/CRC, 2001.
- [35] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Berlin: Springer-Verlag, 1986.
- [36] F. Cakoni, D. Colton, and P. Monk, *The Linear Sampling Method in Inverse Electromagnetic Scattering*. Philadelphia: SIAM Publications, 2011.
- [37] J. Jackson, *Classical Electrodynamics*. Hoboken, N.J.: John Wiley & Sohns, third ed., 1998.
- [38] J. V. Bladel, Electromagnetic Fields. Piscataway, N.J.: IEEE Press, second ed., 2007.
- [39] M. Cessenat, Mathematical Methods in Electromagnetism: Linear Theory and Applications. River Edge, N.J.: World Scientific, 1996.
- [40] J. C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Berlin: Springer-Verlag, 2001.
- [41] P. Grisvard, Elliptic Problems in Nonsmooth Domains. London: Pitman Publishing, 1985.

- [42] J. Nečas, Direct Methods in the Theory of Elliptic Equations. Berlin: Springer-Verlag, 2012.
- [43] V. Maz'ya, Sobolev Spaces. Berlin: Springer-Verlag, second ed., 2012.
- [44] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Berlin: Springer-Verlag, 2011.
- [45] R. A. Adams and J. F. Fournier, Sobolev Spaces. Amsterdam: Elsevier, second ed., 2003.
- [46] E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970.
- [47] E. Stein and G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*. Princeton: Princeton University Press, 1971.
- [48] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton University Press, 1993.
- [49] G. Folland, *Introduction to Partial Differential Equations*. Princeton: Princeton University Press, second ed., 1995.
- [50] N. Lebedev, Special Functions and their Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1965.
- [51] Y. Meyer, Wavelets and Operators. Cambridge: Cambridge University Press, 1992.
- [52] Y. Meyer and R. Coifman, Wavelets: Calderón-Zygmund and Multilinear Operators. Cambridge: Cambridge University Press, 1997.
- [53] L. Grafakos, Classical Fourier Analysis. Berlin: Springer-Verlag, second ed., 2008.
- [54] L. Grafakos, Modern Fourier Analysis. Berlin: Springer-Verlag, second ed., 2009.
- [55] A. Torchinsky, Real-Variable Methods in Harmonic Analysis. Orlando: Academic Press, 1986.
- [56] M. Christ, Lectures on Singular Integral Operators. Providence, Rhode Island: American Mathematical Society, 1990.
- [57] J. Wloka, Partial Differential Equations. Cambridge: Cambridge University Press, 1987.