Einführung

Diese letzte Übung bietet die Ihnen Gelegenheit, Ihren bisherigen Lernfortschritt zu überprüfen, Fragen für den Termin in der Beratungswoche zu identifizieren und die Prüfungsvorbereitung zu planen. *Achtung:* Alle Themen aus Vorlesung, Übung und Selbststudium, die auf den fünf Folien mit dem Titel "Prüfungsthemen" in Vorlesungslektion 14 genannt sind, können geprüft werden, also nicht nur die, die hier in den Beispielaufgaben vorkommen!

Aufgabe 1: Grundlagen und Definitionen (10 Punkte)

Stimmen die folgenden Aussagen? Tragen Sie wahr oder falsch ein und begründen Sie Ihre Antwort mit 2-3 Stichworten. Hinweise zum Ausfüllen:

- Falls die Antwort einer Vorlesungsfolie direkt entnommen werden kann, reicht der Verweis auf die Folie (in der Syntax "Lektion x, Folie y"). Man kann aber auch anders begründen, der Folienverweis ist nicht explizit gefordert.
- Falls eine verallgemeinernde Aussage getroffen wird, reicht ein Gegenbeispiel, um diese zu falsifizieren. Bei wahren Aussagen kann ein Beispiel ebenfalls als Begründung dienen.
- Falls nur ein Teil der Aussage stimmt, ist die Gesamtaussage als falsch zu kennzeichnen; als der Begründung kann der falsche Teil der Aussage gekennzeichnet (und begründet) werden.

Aussage	(W/F)	Begründung (kurz)
Unternehmensanwendungen ähneln sich in	F	Es gibt aufgrund der Vielfalt der Branchen
ihren Qualitätsattributen, es gibt daher		und Firmen kein "One Size Fits All", siehe
genau eine richtige Anwendungsarchitektur		erste Vorlesungslektion. Es wurden
für dieses Anwendungsgenre. Methodisches		zahlreiche Methodenelemente wie QAS
Arbeiten ist weniger wichtig.		und Y-Template vorgestellt.
Strenge logische Schichtenbildung fördert	W	Durch Austauschbarkeit der Layer-
Flexibilität und Wartbarkeit, kann aber u.U.		Implementierung und Information Hiding
die Performance negativ beeinflussen.		(hinter dem Interface); jeder Aufruf kostet
Ein Point-to-Point Channel liefert eine	F	Wahr für Point-to-Point-Aussage, falsch
Message genau einmal aus, ein Publish-		für Publish-Subscribe (hat Copy
Subscribe Channel tut dies ebenfalls (mit		Semantics, also mehrere Messages mit
Hilfe eines Round-Robin-Verfahrens, wenn		derselben Payload werden zugestellt),
mehrere Subscriber registriert sind).		insgesamt also falsch
Service-Oriented Architecture ist ein	W	Siehe dreiteilige SOA-Definition
Architekturstil, der mehrere Principles und		(Vorlesungsfolien Lektion 5, Folie 17 bzw.
Patterns nutzt, um Business-Aligned Services		Lektion 12, Folie 7)
zu spezifizieren und bereitzustellen.		
Die POINT-Eigenschaften für API Design	F	POINT steht für purposeful, object- or
kümmern sich insbesondere um Service		service-oriented, isolated, neutral, T-
Versioning und Service Evolution (inklusive		shaped; keine dieser Eigenschaften geht
Backward Compatibility).		auf Versionierung und Weiterentwicklung
		von Schnittstellen ein (siehe Lektion 13,
		Folie 16, und zugehörige Übung).

Aufgabe 2: SMART NFRs (10 Punkte)

Sind die folgenden NFRs SMART (hier: nur Specific und Measurable) definiert? Falls Sie im Zweifel sind, können sie eine Erklärung ergänzen bzw. Annahmen treffen. Antwortformat: (Ja/Nein).

NFRs	S(pecific)	M(easurable)
Auf hohe Benutzerfreundlichkeit wird Wert	Nein	Nein
gelegt.		
Die Antwortzeit im Web Channel für den Use	Ja	Ja
Case "Create new Account" darf 2 Sekunden		
nicht überschreiten in 80% aller Use Case		
Walkthroughs; in den verbleibenden 20% der		
Fälle erfolgt die Antwort innerhalb von 5		
Sekunden.		
Die Wartbarkeit, gemessen in Bugs, die pro	Nein (Bugs in welchem	Ja (wenn
Tag und Entwickler gefixt werden können, soll	System?)	Unternehmensstandards
möglichst hoch sein, mindestens aber den		gut definiert sind)
publizierten, quantifizierten Unternehmens-		
Produktivitätsstandards genügen.		
Die Komponente "User Management Server"	Ja	Nein
in der Anwendung "Web Shop" muss		
hochverfügbar ausgelegt sein; die		
Wartungsintervalle sind zu minimieren.		
Die Anwendung "Order Management" soll bis	Ja	Ja (wenn NFR-x die M-
zu 5000 gleichzeitige Kunden-Benutzer		Eigenschaft erfüllt)
bedienen können, ohne dass sich das		
Antwortzeitverhalten, dass in NFR-x		
spezifiziert ist, signifikant verschlechtert.		

Aufgabe 3a: Logical Layering (10 Punkte)

Ordnen Sie die folgenden Komponenten bzw. Verantwortlichkeiten auf Architekturschichten zu. Kommentieren Sie bei Zweifelsfällen Ihren Gedankengang (ihre Entscheidung).

Komponente bzw. Verantwortlichkeit	Architekturschicht(en)
Validierung Eingabedaten Web-Formular	Presentation Layer
JDBC Connection Pooling	Data Access Layer
Risikoberechnungsalgorithmus	Business Logic Layer
Application State Management	Presentation Layer (oder Business Logic Layer;
	wenn Database Session State verwendet wird,
	ist auch der Data Access Layer beteiligt)
WSDL/SOAP-Web Service Interface für Entities	Presentation Layer (oder eigener Service Layer
im Domain Model	über dem Business Logic Layer)
Remote Facade	Service Layer (oder spezieller Presentation
	Layer)
RESTful HTTP Schnittstelle zur Kommunikation	Service Layer (oder Presentation Layer)
zwischen Tier 1-Clients und Tier 2-Microservices	
RESTful HTTP Schnittstelle zur internenn	Service Layer oder Business Logic Layer
Kommunikation in Tier 2-Microservices	
Definition der Systemtransaktionsgrenzen	Business Logic Layer
(Open Tx, Commit/Rollback)	
Management von ACID-Systemtransaktionen	Business Logic Layer (Tx Monitor) oder DBMS im
	Persistence Layer

Aufgabe 3b: JEE, JAX-WS, JAX-RS (15 Punkte)

In welchem JSE oder JEE API ist die folgende Funktionalität zu finden?

- a. Mapping logische Namen auf Objektreferenzen: JNDI
- b. Datenbank-Queries: JDBC
- c. Entgegennahme von und Antwort auf HTTP-Requests: Servlet API
- d. Kapselung und Pooling von Business Logik Objekten: Enterprise JavaBeans (EJBs)
- e. Remote Zugriff auf Business Logik Objekte via RMI/IIOP: EJBs

Welche der folgenden Eigenschaften gelten für klassische Web Services (SOAP, WSDL, JAX-WS) und welche für RESTvolle Web APIs (JAX-RS)?

Eigenschaft	JAX-WS Service (ja/nein)	JAX-RS Resource (ja/nein)
Remote Aufruf via HTTP.	Ja	Ja
JSON kann als MIME-Type benutzt werden,	Nein	Ja
um die Payload zu serialisieren in Request		
und Response.		
Das Message Exchange Pattern ist	Ja	Ja
Synchronous Request Reply.		
Client Proxies können mit API-spezifischen	Ja	Nein
Tools aus dem Schnittstellenvertrag		
generiert werden, der die Business-		
Operationen in einem XML-Dokument		
explizit benennt.		
Die Adressierung der auf dem Server	Ja	Ja
aufzurufenden Klasse erfolgt über URIs.		

Aufgabe 4: Komponentenspezifikation mit CRC-Karte (10 Punkte)

Gegeben sei das folgende High Level Design für das Blackboard-Pattern (aus POSA 1):

Aufteilung in folgende Komponenten:

- Blackboard: Zentraler Datenspeicher, Vokabular, Wissenskomponenten können lesen und schreiben auf dem Datenspeicher
- Wissenskomponenten: Unabhängige, separate Systeme, die spezielle Aspekte des Problems lösen können. Keine direkte Kommunikation zwischen einzelnen Wissenskomponenten, die einzel-nen Komponenten lesen und schreiben auf Blackboard.
 - Aufteilung in condition-part (wann kann ich helfen?) und action-part (Konkrete Hilfe).
- Kontrollkomponente, die Wissenskomponenten koordiniert.

Erstellen Sie für die Komponente Knowledge Source eine CRC-Karte gemäss Template aus der Vorlesung.

Component: Knowledge Source		
 Responsibilities: Evaluate conditions Execute actions Update Blackboard 	Collaborations (Interfaces):BlackboardControl	
 Known uses (implementations): Not covered by information provided 		

Aufgabe 5a: EIP-Grundlagen (10 Punkte)

Stimmen die folgenden Aussagen? Tragen Sie wahr oder falsch ein und begründen Sie Ihre Antwort mit 2-3 Stichworten. Hinweise zum Ausfüllen: siehe Aufgabe 1.

Aussage	(W/F)	Begründung (kurz)
Loose Kopplung hat mehrere Dimensionen	W	z.B. Time, Reference, Format, Platform
von Autonomie.		Autonomy
Asynchrone Kommunikation ist sinnvoll,	W	Siehe Vorteile von Messaging Diskussion
wenn eine hohe Gesamtsystemverfügbarkeit		im EIP-Buch und auf der EIP-Webseite
eines Systems angestrebt wird und mit		
Lastspitzen zu rechnen ist (Throttling).		
Eine Message Driven Bean unterstützt out-of	F	Return Wert ist "void"
the-box das Request-Reply Pattern.		
Messaging-Systeme nutzen typischerweise	F	RMI normalerweise nur in Java verfügbar;
Java RMI als Remote Procedure Call (RPC)		RMI hat hier keinen Nutzen in Vergleich
zur plattformübergreifenden internen		zu Raw TCP/IP Sockets (aber Overhead).
Kommunikation.		Anmerkung: Dies ist dem Programmierer
		i.d.R. aber verborgen (in Rahmen der
		Systemadministration aber u.U. sichtbar).
Eine SOAP-Message, die über HTTP	W	Die Semantik der Request-Envelopes ist
versendet wird, kann als Command Message		ein entfernter Methodenaufruf, was der
im Sinne der EIP-Patterns verstanden		Problembeschreibung des Patterns
werden.		entspricht, siehe Diskussion im EIP-Buch

Aufgabe 5b: EIP-Patternvergleich (10 Punkte)

Entscheiden Sie, ob die beschriebenen Eigenschaften auf die beiden Pattern zutreffen (Ja/Nein).

Eigenschaft	Aggregator	Content-Based Router
Genau eine ausgehende Message	Nein	Ja
für jede eingehende Message		
Stateless (One Message at a Time)	Nein	Ja (meist)
Gehört zu den Message Routing	Ja	Ja
Patterns		
Findet sich nur am Anfang oder am	Nein	Nein
Ende eines Integration Flows		
(Endpoint)		
Ergibt Scatter-Gather, wenn mit	Nein (diese Kombination	Nein
Splitter kombiniert	ergibt einen Composed	
	Message Processor nach	
	EIP-Buch, siehe	
	Patternbeschreibungen	
	und Baumdarstellung der	
	Routing Patterns)	

Aufgabe 6: SOA und Enterprise Service Bus (10 Punkte)

Stimmen die folgenden Aussagen? Tragen Sie wahr oder falsch ein und begründen Sie Ihre Antwort mit 2-3 Stichworten. Hinweise zum Ausfüllen: siehe Aufgabe 1.

Aussage	(W/F)	Begründung (kurz)
Service und Komponente werden in der	F	Service ist Remote Zugriff auf einen Teil
Definition von Fowler synonym gebraucht;		der Responsibilities/Funktionen einer
jede Komponente ist ein Service und		Komponente
umgekehrt.		
Ein Enterprise Service Bus (ESB)	W	u.a. Message Routing, Message
implementiert ein oder mehrere der		Transformation, Message Adaptation
Message Routing Patterns von		
Hohpe/Woolf.		
Ein API Gateway in einer Microservices	W	Siehe Teil 2 von Übung 12
Architektur hat den Charakter einer Remote		
Facade und kann als externer ESB zwischen		
Service Consumern in Application Clients		
und den Microservices als Service Providern		
angesehen werden (nach ESB-Definitionen).		
Ein guter Test für die Modellierungsqualität	W	Teil des "Business Alignment"
eines Business Services ist seine		
Verständlichkeit für Nichtinformatiker, also		
Domänenexperten.		
Ein Service Contract spezifiziert neben	W	Nötig für Business Alignment und Service
technischen Informationen z.B. zur		Management, siehe z.B. Lektion 12, Folie
Aufrufsyntax auch Quality-of-Service-		9
Eigenschaften und fachliche Semantik.		

Aufgabe 7: PoEAA-Patternwahl (10 Punkte)

Gegeben sei das folgende Anwendungsszenario:

- Es geht um einen Online-Shop, der Besucher kategorisiert. Es gibt einige Hundert Kategorien; alle 3-4 Wochen werden einige neue Kategorien eingeführt. Die Anwendung soll als Three-Tier JEE-Anwendung mit einem Web-Frontend realisiert werden.
- Der Shop kann nur von eingeloggten Usern benutzt werden; ihr Navigationsverhalten wird in der User Session abgelegt. Da dieses Verhalten sehr genau protokolliert wird, kann der Session State bei längeren User Login Sessions stark anwachsen auf mehrere MB pro User und Session.
- Ein User soll nicht sehen, dass das Surfverhalten getrackt wird; die Sessiondaten sind als firmenvertraulich und als Sensitive Personal Information (SPI) eingestuft.
- Die Webseitennutzung schwankt stark; in Spitzenzeiten sind einige Hunderttausend User angemeldet. Es gibt aber auch Zeiten schwacher Nutzung (z.B. Nachtstunden).
- Der Shop hat eine garantierte Verfügbarkeit von 95%.

Sie sind mit dem Design des Presentation Layer beauftragt worden und sollen zwischen den verschiedenen Session Management Patterns aus PoEAA auswählen und Ihre Entscheidung begründen. Tun Sie dies in einem der Formate aus der heutigen Vorlesung, also z.B. im IEEE/ISO/IEC 42010-Format oder in der UMF-Tabellenform oder als Y-Statement.

Im Kontext Benutzerkategorisierung im Online-Shop, konfrontiert mit dem Bedarf für Session State Management, den Mengenangaben und den Sicherheitsanforderungen, haben wir das Pattern Database Session State gewählt, um gute Skalierbarkeit zu erreichen; wir nehmen recht hohe Implementierungsaufwände (DB-Design, DB-Zugriffe) in Kauf. Verworfen wurden das Client Session State Pattern und das Server State Pattern (Gründe: fehlende Datensicherheit und Skalierbarkeit, Grösse der Sessiondaten).