This document was prepared in LATEX using utmthesis.cls to conform with the UTM Thesis Manual 2015.

Author: The Author Supervisor (Main): M.Y. Supervisor

Title: The Thesis Title Second Line (Optional)

Third Line (Optional)

Degree: Bachelor of Science

Specialization: Physics

Source: thesis-template.tex

UTMThesis version: v5.1

Date: August 21, 2016

Please **DO NOT** bind this page.

Comment \watermarkpage to remove this page.

THE THESIS TITLE SECOND LINE (OPTIONAL) THIRD LINE (OPTIONAL)

THE AUTHOR

UNIVERSITI TEKNOLOGI MALAYSIA

"We hereby declare that we have read this final year project report and in our opinion this final year project report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Science (Physics)"

Signature :

Name : M.Y. Supervisor

Date : August 21, 2016

Signature :

Name : M.Y. Other Supervisor
Date : August 21, 2016

THE THESIS TITLE SECOND LINE (OPTIONAL) THIRD LINE (OPTIONAL)

THE AUTHOR

A final year project report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Science (Physics)

Faculty of Science Universiti Teknologi Malaysia

JULY 2016

I declare that this final year project report entitled "The Thesis Title Second Line (Optional) Third Line (Optional)" is the result of my own research except as cited in the references. The final year project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : The Author
Date : August 21, 2016

Dedication

ACKNOWLEDGEMENT

Acknowledgement

ABSTRACT

This is the English abstract

ABSTRAK

Ini adalah abstrak Bahasa Melayu

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECI	LARATION	iii
	DEDI	ICATION	v
	ACK	NOWLEDGEMENT	vii
	ABST	TRACT	ix
	ABST	TRAK	xi
	TABI	LE OF CONTENTS	xiii
	LIST	OF TABLES	XV
	LIST	OF FIGURES	xvii
	LIST	OF ABBREVIATIONS	xix
	LIST	OF SYMBOLS	xxi
	LIST	OF APPENDICES	xxiii
1	INTR	CODUCTION	1
	1.1	Problem Background	1
	1.2	State-of-the-Arts	1
	1.3	Problem Statement	1
	1.4	Objective and Scope	1
	1.5	Organization	1
2	LITE	RATURE REVIEW	3
	2.1	State-of-the-Arts	3
	2.2	Limitations	3
	2.3	Research Gaps	3
3	RESE	EARCH METHODOLOGY	5
	3.1	Top-level View	5
	3.2	Research Activities	5
	3.3	Controllables vs. Obseravables	5
	3.4	Techniques	5

	3.5	Tools and Platforms	5
	3.6	Chapter Summary	5
4	PROF	POSED WORK	7
	4.1	The Big Picture	7
	4.2	Analytical Proofs	7
	4.3	Results and Discussion	7
	4.4	Chapter Summary	7
5	CONCLUSION		9
	5.1	Research Outcomes	9
	5.2	Contributions to Knowledge	9
	5.3	Future Works	9
REFEREN	ICES		11
Appendices	A - C		12 – 17

LIST OF TABLES

TABLE NO.	TITLE	PAGE	
4.1	Short version of the caption.	8	

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
4.1	Short version of the caption.	8

xix

LIST OF ABBREVIATIONS

ANN - Artificial Neural Network

PC - Personal Computer

SVM - Support Vector Machine

XML - Extensible Markup Language

xxi

LIST OF SYMBOLS

 γ - Whatever

 σ - Whatever

arepsilon - Whatever

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Do not use long titles.	13
В	Pseudo-codes	15
C	Time-series Results	17

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Introduction to the thesis [1] to the thesis [2]. This section attempts to give a brief introduction to quantum computing. Before entering the microscopic world of quantum computing, we revisit the present digital system commonly used by the masses. The current digital system is based on binary digits, commonly known as bits. Each bit is represented with a binary value called "logic 0" or "logic 1" and the number of distinct states is 2^n , where n is the number of bits. Physically, these logic values are typically represented by two different voltage levels. In this thesis, such computers are referred to as a *classical computer*.

- 1.2 State-of-the-Arts
- 1.3 Problem Statement
- 1.4 Objective and Scope
- 1.5 Organization

LITERATURE REVIEW

2.1 State-of-the-Arts

2.2 Limitations

- 1. Mentor Graphics 2
 - (a) item 3
- 2. item 4

2.3 Research Gaps

The processing at layer-5¹ is done ...

¹In this thesis, OSI model is used.

RESEARCH METHODOLOGY

3.1 Top-level View

- 3.2 Research Activities
- 3.3 Controllables vs. Obseravables
- 3.4 Techniques
- 3.5 Tools and Platforms
- 3.6 Chapter Summary

PROPOSED WORK

- 4.1 The Big Picture
- 4.2 Analytical Proofs
- 4.3 Results and Discussion
- 4.4 Chapter Summary

Figure 4.1: Example of a figure. This is a long, very long, long long, long caption. You can give a shorter caption for the "list of figures" using the square braket symbol.

Table 4.1: Example of a table. This is a long, very long, long long, long caption. You can give a shorter caption for the "list of table" using the square braket symbol.

Temperature	Resonant Frequency	Q factor
$13 \text{ mK} \pm 1 \text{ mK}$	16.93	811
$40~\mathrm{mK}\pm1~\mathrm{mK}$	16.93	817
$100~\mathrm{mK}\pm1~\mathrm{mK}$	16.93	815
$300~\mathrm{mK}\pm1~\mathrm{mK}$	16.93	806
$500~\mathrm{mK}\pm1~\mathrm{mK}$	16.93	811
$800~\mathrm{mK}\pm5~\mathrm{mK}$	16.93	814
$1000~\text{mK} \pm 5~\text{mK}$	16.93	806

CONCLUSION

- **5.1** Research Outcomes
- **5.2** Contributions to Knowledge
- **5.3** Future Works

REFERENCES

- 1. Oetiker, T., Partl, H., Hyna, I. and Schlegl, E. *The Not So Short Introduction to ΕΤΕΧ2ε*. 2013. URL http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf.
- 2. Okamoto, Y., Ando, Y., Hataya, K., Nakayama, T., Miyamoto, H., Inoue, T., Senda, M., Hirata, K., Kosaki, M., Shibata, N. *et al.* Improved power performance for a recessed-gate AlGaN-GaN heterojunction FET with a field-modulating plate. *Microwave Theory and Techniques, IEEE Transactions on*, 2004. 52(11): 2536–2540.

APPENDIX A

DO NOT USE LONG TITLES.

APPENDIX B

PSEUDO-CODES

APPENDIX C

TIME-SERIES RESULTS