|| реализации алгоритмов

Базовые идеи

Выбор декомпозиции:

- По данным
- По управлению

Анализ зависимостей:

- Группировка задач
- Порядок выполнения задач
- Определение разделяемых данных

Организация вычислений

Нужно помнить

Принципы проектирования:

- Эффективность
- Простота
- Переносимость
- Масштабируемость

|| на задачах

Примеры

- Ray tracing
- Задачи молекулярной динамики

Особенности

- Динамическое создание задач (методы ветвей и границ)
- Ожидание задач или его отсутствие (сортировка или поиск)
- Размер задач

Принципы разделения на задачи

- Задач >= числу потоков (ядер)
- Объём вычислений не превышает издержки
- Приветствуется дублирование данных и редукция

Геометрическая декомпозиция

Примеры

- Моделирование климата
- Фракталы

Особенности

- Разделение структур данных:
 - массивы увеличиваем размерность
 - списки псевдоэлементы или подсписки
 - графы подграфы

Parallel Boost Graph Library

- MPI: распределённые графы
- Генераторы графов
- Алгоритмы:
 - Поиск
 - Кратчайший путь
 - Минимальное остовное дерево
 - Раскраска графа

•

-D_GLIBCXX_PARALLEL

- Несколько десятков реализаций алгоритмов из <algorithm>: find_if, max_element...
- Использует OpenMP