mas550 homework

20208209 오재민

2020년 9월 7일

Problem (1.1.2).

Let $A = \prod_{i=1}^{d} (a_i, b_i]$. Then

$$A = (\Pi_{i=1}^d [a_i - 1, b_i]) \cap (\Pi_{I=1}^d (a_i, b_i + 1))$$

which is intersection of open set and closed set. So, $A \in \mathbb{R}^d$ therefore $\sigma(S_d) \subset \mathbb{R}^d$.

On the other hand, let $B = \prod_{i=1}^{d} (a_i, b_i)$ where $-\infty < a_i < b_i < \infty$. We can choose sequences $\{a_{i,j}\}_{j=1}^{\infty}$ and $\{b_{i,j}\}_{j=1}^{\infty}$ for each $1 \le i \le d$ such that $a_{i,j} \downarrow a_i$ and $b_{i,j} \uparrow b_i$. Then $B_n = \prod_{i=1}^{d} (a_{i,n}, b_{i,n}] \uparrow B$. So B is a countable union of open rectangles, hence $B \in \sigma(S_d)$. Since such B forms basis of topology on \mathbb{R}^d , we can conclude that $\mathcal{R}^d \subset \sigma(S_d)$.

Problem (1.2.3).

Let F be a distribution function. It is nonnegative, nondecreasing. So $\lim_{y\downarrow x} F(y)$ and $\lim_{y\uparrow x} F(y)$ always exist. Let x be a point where F is discontinuous. Since F is discontinuous at x, we can assume without loss of generality $\lim_{y\downarrow x} F(y) > F(x)$. Choose a rational number $q_x \in (F(x), \lim_{y\downarrow x} F(y))$. Then function $x\mapsto q_x$ is injective since F is nondecreasing. So there is injection from set of discontinuities to rational numbers. Now we can conclude that set of discontinuities is at most countable.

Problem (1.3.4).

- (a) Let $f : \mathbb{R}^d \to \mathbb{R}$ be a continuous function. Consider $\mathcal{B} = \{U \subset \mathbb{R} : f^{-1}(U) \in \mathcal{R}^d\}$. It is well known that \mathcal{B} is a σ -field. By continuity of f, \mathcal{B} contains every open set of \mathbb{R} , hence $\mathcal{R} \subset \mathcal{B}$. Therefore f is a measurable function.
- (b) Let \mathcal{F} be a σ -field that makes all the continuous functions measurable. Let $\pi_i : \mathbb{R}^d \to \mathbb{R}$ be the projection on i-th factor, which is continuous. Then $\cap_{i=1}^d \pi_i^{-1}((a_i,b_i)) = \prod_{i=1}^d (a_i,b_i) \in \mathcal{F}$. Since \mathcal{F} contains every open rectangles in \mathbb{R}^d , we can conclude that $\mathcal{R}^d \subset \mathcal{F}$. This means \mathcal{R}^d is the smallest such σ -field. The fact that \mathcal{R}^d makes all the continuous functions measurable is written in (a).