CHRISTIAN NEUMANN AUFGABEN DIENSTAG Ferienkurs Lineare Algebra für Physiker WS 2008/09

Aufgabe 1 zum warmwerden

Berechnen sie

a)
$$\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} =$$

b)
$$\begin{pmatrix} 5 & 7 & 9 \\ 8 & -6 & 3 \\ 4 & 10 & -2 \end{pmatrix} + \begin{pmatrix} -5 & 3 & 1 \\ 2 & -4 & -3 \\ 1 & 3 & 15 \end{pmatrix} =$$

c)
$$\begin{pmatrix} 4 & -4 & 4 \\ 7 & -9 & 7 \\ 15 & -17 & 11 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} =$$

Aufgabe 2 Inverse einer 2×2 -Matrix

Zeigen sie, das $B:=\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ die inverse Matrix zu $A:=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ist.

Aufgabe 3 lineare Abbildungen I

Welche der folgenden Abbildungen ist linear,
injektiv und/oder surjektiv? Geben sie für den Fall der Linearität die Abbildungsmatrix \underline{A} von f an.

a)
$$f: \mathbb{R} \to \mathbb{R}^2$$
, $x \mapsto \begin{pmatrix} x+4\\-x \end{pmatrix}$

b)
$$f: \mathbb{C}^2 \to \mathbb{C}^2$$
, $\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \mapsto \begin{pmatrix} z_1 - i \cdot z_2 \\ z_2 \end{pmatrix}$

c)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \cdot x_2 \\ x_1 - x_2 \end{pmatrix}$

d)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \underline{B} \cdot \begin{pmatrix} x_2 + x_1 \\ x_1 - x_2 \end{pmatrix}$, $\underline{B} \in \mathbb{R}^{3 \times 2}$, $\operatorname{Kern}(B) = 0$

e)
$$f: \mathbb{C}^3 \to \mathbb{C}^3$$
, $\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \mapsto \underline{B} \cdot \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} + \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix}$, $\underline{B} \in \mathbb{C}^{3 \times 3}, \text{Kern}(B) = 0$

Aufgabe 4

Sei P_2 der Vektorraum aller Polynomfunktionen von $\mathbb R$ nach $\mathbb R$ vom Grad ≤ 2 . Die Mononome $1, x, x^2$ bilden eine Basis B dieses Vektorraums. Sei $f: P_2 \to P_2$ eine lineare Abbildung mit Bild(f) = Span(1-2x, 5x-3, 3x^2).

- a) Finden sie eine Matrix $A \in \mathbb{R}^{3\times 3}$ die f darstellt.
- b) Finden sie die zu A inverse Matrix A^{-1} . Hinweis: Um nicht 9 Gleichungen mit 9 Unbekannten lösen zu müssen schreiben sie P_2 als direkte Summe zweier UVR und benutzen sie Aufgabe 2.
- c) Begründen sie mit a) und b) das $1 2x, 5x + 1, 3x^2$ eine Basis B' des Vektorraums P_3 ist.

Aufgabe 5 lineare Abbildungen II

Sei $f: \mathbb{R}^3 \to \mathbb{R}^3$ eine lineare Abbildung mit $f \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 18 \\ -8 \end{pmatrix}, f \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix}$ und $f \begin{pmatrix} -3 \\ -6 \\ 5 \end{pmatrix} = \begin{pmatrix} -15 \\ 10 \\ 15 \end{pmatrix}$

- a) Bestimmen sie das Bild von $\begin{pmatrix} -7 \\ 6 \\ 3 \end{pmatrix}$
- b) Bestimmen sie den Kern von f
- c) Bestimmen sie den Rang(f)
- d) Geben sie eine ONB von Bild (f) an.

Aufgabe 6 Verknüpfung von Matrizen

Zeigen sie, dass das Produkt einer oberen Dreiecksmatrix mit einer Diagonalmatrix eine obere Dreicksmatrix ergibt.

Hinweise:

Für eine obere Dreiecksmatrix $\underline{\mathbf{A}} = a_{ij}$ gilt $a_{ij} = 0$ für i < j.

Eine Diagonalmatrix $\underline{\mathbf{B}} = b_{ij}$ gilt $b_{ij} = \lambda_{ij}\delta_{ij}, \qquad \delta_{ij} = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$

Aufgabe 7 Basistransformation

Gegeben seien
$$\underline{w_1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \ \underline{w_2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ \underline{w_3} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \ \underline{w_4} = \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$$

- a) Zeigen sie das das die w_i eine ONB des \mathbb{R}^4 . bilden
- b) Geben sie die Matrix \underline{A} an, die Standardbasis des \mathbb{R}^4 auf die w_i abbildet $(\underline{A}e_i = w_i)$.
- c) Bestimmen sie $Rang(\underline{A})$ und dim $Kern(\underline{A})$.
- d) Bestimmen sie den $Kern(\underline{A})$ und eine Basis $Bild(\underline{A})$
- e) Sei $f: \mathbb{R}^4 \to \mathbb{R}^n$ eine lineare Abbildung mit $f(\underline{w_i}) = \underline{b_i}$. Geben sie eine Matrix \underline{B} an, die diese Abbildung darstellt.

Hinweis: \underline{A}^{-1} muss nicht explizit bestimmt werden es reicht die Form $\underline{B} = \underline{CDA}^{-1}\underline{F}$ (oder auch weniger Matrizen)

Aufgabe 8 alte Klausuraufgabe

Sei V ein n-dimensionaler Vektorraum und $f: V \to V$ eine lineare Abbildung mit Rang 1. Ferner sei $B = (b_1, ..., b_n)$ eine Basis von V mit $(b_1, ..., b_m) \in \text{Kern}(f)$ $(m \le n)$.

- a) Welchen Wert hat m?
- b) Beschreiben sie die Abbildungsmatrix \underline{A} von f bzgl. der Basis B. Hierfür sei $f(b_i) = a_i = (a_{i1}, ..., a_{in})^T$.
- c) Zeigen sie, dass ein $\alpha \in \mathbb{R}$ existiert, so dass $f^2 = \alpha f$ (Hinweis $f^n = \underbrace{f \circ f \circ f}_{}$).
- d) Welchen Rang hat f^k für $k > 1 \in \mathbb{N}$?

Aufgabe 9 schwer

Gegeben seien $w_1 := (1, 1, 2)^T$, $w_2 := (2, -4, 1)^T$ und eine Matrix $A := \begin{pmatrix} 2/3 & 1/3 & 0 \\ 1/6 & -1/6 & 0 \end{pmatrix}$

- a) Berechnen sie Aw_1, Aw_2
- b) Finden sie einen UVR $U \subset \mathbb{R}^3$ derart, dass A einen Isomorphismus von U nach \mathbb{R}^2 darstellt.
- c) Bilden sie eine Matrix B derart, dass $B \begin{pmatrix} 1 \\ 0 \end{pmatrix} = w_1, B \begin{pmatrix} 0 \\ 1 \end{pmatrix} = w_2$, und zeigen sie dass AB Darstellung der Idenditätsabbildung \mathbb{R}^2 , BA darstellung der Identitätsabbildung in U bzgl. der Basis w_1, w_2 ist.

2