ECE3375B: Microprocessors and Microcomputers Electrical and Computer Engineering Western University

Unit 1b: Data Representation

Data Representation

Definitions of bit, byte, half-word, word and double-word

Data Representation

Storage range of byte, half-word, word and double-word

Storage Size	Range	Powers of 2
Unsigned Byte	0 to 255	0 to 28-1
Unsigned Halfword	0 to 65,535	0 to 2 ¹⁶ -1
Unsigned Word	0 to 4,294,967,295	0 to 2 ³² -1
Unsigned Double-word	0 to 18,446,744,073,709,551,615	0 to 2 ⁶⁴ -1

Data Representation

Binary, Octal, Decimal and Hex

Decimal	Binary	0ctal	Hex
0	0000	00	0x0
1	0001	01	0x1
2	0010	02	0x2
3	0011	03	0x3
4	0100	04	0x4
5	0101	05	0x5
6	0110	06	0x6
7	0111	07	0x7
8	1000	010	0x8
9	1001	011	0x9
10	1010	012	0xA
11	1011	013	0xB
12	1100	014	0xC
13	1101	015	0xD
14	1110	016	0xE
15	1111	017	0xF

Unsigned Binary Numbers

Five-bit binary code

Unsigned Binary Numbers

Converting Decimal to Binary

Convert 52 (decimal) to binary

2 52 0 LSB
2 26 1
2 13 1
2 6 0
2 3 1
MSB

Remainder

Convert 32 (decimal) to binary

$$52_{10} = 110100_2$$

Signed Binary Numbers

Three different approaches are described to represent signed binary

1) **Sign and Magnitude**: uses the most significant bit to represent the sign and the rest of the bits for the magnitude

$$value = (-1)^{sign} \times Magnitude$$

- Example: in a 5-bit system
 - $+7_{10} = 00111_{2}$
 - $-7_{10} = 10111_2$

- Two ways to represent zero
 - $+0_{10} = 00000_2$
 - $-0_{10} = 10000_2$

Not used is hardware due to two zeros and complexity in performing mathematical operations, (i.e. addition, subtraction, checking equality).

Signed Binary Numbers

2) One's compliment: negative numbers are denoted by inverting every bit of its positive equivalent.

Example: in a 5-bit system

$$+7_{10} = 00111_2$$

 $-7_{10} = 11000_2$

$$+7_{10} + (-7_{10})$$
= $00111_2 + 11000_2$
= 11111_2
= $2^5 - 1$

Two representations for zero which increases complexity when checking for equality

Signed Binary Numbers

3) **Two's compliment**: negative numbers are denoted by inverting every bit of its positive equivalent and adding one.

Example: in a 5-bit system $+3_{10} = 00011_{2}$ $-3_{10} = 11100_{2} + 00001_{2} = 11101_{2}$ Adding +3 with -3 $= 00011_{2} + 11101_{2}$ $= 00000_{2}$

Most often used in modern computers. (one zero, less hardware complexity for math operations)

Signed Binary Numbers Number ranges of signed numbers

	Sign-and-Magnitude	One's Complement	Two's Complement
Range	$[-2^{n-1}+1,2^{n-1}-1]$	$[-2^{n-1}+1,2^{n-1}-1]$	$[-2^{n-1}, 2^{n-1} - 1]$
Zero	Two zeroes (± 0)	Two zeroes (± 0)	One zero
Unique Numbers	$2^{n} - 1$	$2^{n} - 1$	2 ⁿ

Storage Size	Range	Powers of 2
Signed Byte	-128 to +127	-2 ⁷ to 2 ⁷ -1
Signed Halfword	-32,768 to +32,767	-2 ¹⁵ to 2 ¹⁵ -1
Signed Word	-2,147,483,648 to +2,147,483,647	-2 ³¹ to 2 ³¹ -1
Signed Double-word	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2 ⁶³ to 2 ⁶³ -1

Let A and B be two unsigned binary number

The carry flag is set if
$$C = A + B$$
;

$$C = A + B$$
;

C is to big to fit the n bits

$$C > 2^n - 1$$

The **borrow flag** is set if
$$C = A - B$$
;

$$C = A - B$$

C is negative number

On ARM Cortex-M processors, the carry flag and the borrow flag are physically the same flag bit in the application program status register (APSR).

For an unsigned subtraction, Carry = NOT Borrow

On ARM Cortex-M processor, the carry flag is set as follows:

- When adding two unsigned integers if the sum is too large $(\geq 2^{32})$ to be stored in a 32-bit register then the carry flag is set, otherwise it is cleared.
- When subtracting two unsigned integers the carry flag is set if no borrow occurs, implying the difference is a positive or zero. Otherwise, the carry bit is cleared.

Example 1: For a 5-bit unsigned number (addition)

- Carry flag = 1, indicating carry has occurred on unsigned addition.
- Carry flag is 1 because the result crosses the boundary between 31 and 0.

Example 2: For a 5-bit unsigned number (subtraction)

- Carry flag = 0, indicating borrow has occurred on unsigned subtraction.
- For subtraction, carry = NOT borrow.

Overflow for Signed Add/Sub

- When adding signed numbers represented in two's complement, overflow occurs only in two scenarios:
 - I. adding two positive numbers but getting a non-positive result, or
 - 2. adding two negative numbers but yielding a non-negative result.
- Similarly, when subtracting signed numbers, overflow occurs in two scenarios:
 - I. subtracting a positive number from a negative number but getting a positive result, or
 - 2. subtracting a negative number from a positive number but producing a negative result.

Overflow cannot occur when adding operands with different signs or when subtracting operands with the same signs.

Overflow for Signed Add/Sub

Example 3:For a 5-bit signed number (addition)

On addition, overflow occurs if $sum \ge 2^4$ when adding two positives.

Overflow never occurs when adding two numbers with different signs.

Overflow for Signed Add/Sub

Example 4: For a 5-bit signed number (subtraction)

On addition, overflow occurs if $sum < -2^4$ when adding two negatives.

Are a and b signed or unsigned numbers?

```
a = 0b10000

b = 0b10000

c = a + b
```

- CPU does not know the answer at all.
- Therefore the hardware sets up both the carry flag and the overflow flag.
- It is software's (programmers'/compilers') responsibility to interpret the flags.

In C programming language **uint** is used for unsigned integer declaration and **int** is used for signed int declaration.

declaration

Unsigned integer

Assembly code checks carry flag

Signed integer declaration

Assembly code checks overflow flag

Example 5:

For unsigned integer declaration (5-bit example)

$$a = 0b10000$$
 $a = 16 (decimal)$

$$b = 0b10000$$
 b = 16 (decimal)

Thus
$$a + b = 32 > 2^5 - 1$$
 (carry has occurred)

If a and b are signed integer declarations

$$a = 0b10000$$
 $a = -16 (decimal)$

$$b = 0b10000$$
 b = -16 (decimal)

Thus
$$a + b = -32 < -2^4$$
 (overflow has occurred)

Example 6: Two's compliment 4-bit example (complete the table)

Expression	Result	Carry?	Overflow?	Correct Result?
0100 + 0010	0110			
0100 + 0110	1010			
1100 + 1110	1010			
1100 + 1010	0110			

In two's compliment, 4-bit numbers range from +7 to -8

	Expression	Result	Carry?	Overflow?	Correct Result?
4+2=6	0100 + 0010	0110	No	No	Yes
4+6=-6	0100 + 0110	1010	No	Yes	No
-4+(-2)=-6	1100 + 1110	1010	Yes	No	Yes
-4+(-6)=-10	1100 + 1010	0110	Yes	Yes	No

Two's Compliment

Two's complement simplifies hardware

Operation	Are signed and unsigned operations the same?
Addition	Yes
Subtraction	Yes
Multiplication	Yes if the product is required to keep the same number of bits as operands
Division	No

In two's complement, the same hardware works correctly for both signed and unsigned addition/subtraction.

If the product is required to keep the same number of bits as operands, unsigned multiplication hardware works correctly for signed numbers.

However, this is not true for division.

Adding two signed numbers is the same as adding two unsigned numbers (5-bit example shown)

Subtracting two signed numbers is the same as subtracting two unsigned numbers (5-bit example shown)

Condition Codes After Adding/Subtracting

Bit	Name	Meaning after add or sub	
N	negative	result is negative	
Z	zero	result is zero	
٧	overflow	signed arithmetic out of range	
С	carry	unsigned arithmetic out of range	

- C is set upon an <u>unsigned</u> addition if the answer is wrong
- C is cleared upon an <u>unsigned</u> subtract if the answer is wrong
- V is set upon a <u>signed</u> addition or subtraction if the answer is wrong

Condition Codes After Adding/Subtracting

$$c = a \pm b$$

	Carry (for unsigned)	Overflow (for signed)
Add	Carry = 1 if c is too large to fit in.	Overflow = 1 if c is too
Subtract	Borrow = 1, i.e. $Carry = 0$ if $a < b$.	large or too small to fit in

- ARM Cortex-M/A has no dedicated borrow flag, carry flag is reused.
- For unsigned subtract, Borrow = Carry

- Signed Subtraction is converted to sign addition
- a b = a + (-b)

Additional Examples

Example 7: Complete the following arithmetic operations in two's complement representation. What are the value of the carry flag and overflow flag? (Assume a six-bit system)

b)
$$25 + 11$$

c)
$$16 - 20$$

Example 8: What are the value of the carry flag and overflow flag after each operation? (Assume a six-bit system)

a)
$$-7 \times (3)$$

b)
$$-7 \times (-6)$$

c)
$$21 \div 3$$

d)
$$21 \div (-3)$$

Additional Examples

Example 9: Given the following two 32-bit binary numbers A and B, find the logic expressions for the NZCV flags when A and B are added. The result is R.

$$A = a_{31}a_{30}a_{29}\cdots a_2a_1a_0$$

$$B = b_{31}b_{30}b_{29}\cdots b_2b_1b_0$$

$$R = r_{31}r_{30}r_{29}\cdots r_2r_1r_0$$

Example 10: Given the following two 32-bit binary numbers A and B, find the logic expressions for the NZCV flags when B is subtracted from A. The result is R.

$$A = a_{31}a_{30}a_{29}\cdots a_2a_1a_0$$

$$B = b_{31}b_{30}b_{29}\cdots b_2b_1b_0$$

$$R = r_{31}r_{30}r_{29}\cdots r_2r_1r_0$$

Formal Representation After Addition

$$R = X + Y$$

Bit	Name	Meaning after add or sub		
N	negative	result is negative		
Z	zero	result is zero		
٧	overflow	signed arithmetic out of range		
С	carry	unsigned arithmetic out of range		

When adding two 32-bit integers X and Y, the flags are

- $N = R_{31}$ (sign bit is one if negative and zero if positive)
- Z is set if R is zero.
- C is set if the result is incorrect for an unsigned addition

$$C = X_{31} \& \ Y_{31} \parallel \ X_{31} \& \ \overline{R_{31}} \parallel \ Y_{31} \& \ \overline{R_{31}}$$

$$\& = AND, \parallel = OR$$

V is set if the result is incorrect for a signed addition.

$$V = X_{31} \& Y_{31} \& \overline{R_{31}} \parallel \overline{X_{31}} \& \overline{Y_{31}} \& R_{31}$$

Formal Representation After Subtraction

$$R = X - Y$$

Bit	Name	Meaning after add or sub	
N	negative	result is negative	
Z	zero	result is zero	
٧	overflow	signed arithmetic out of range	
С	carry	unsigned arithmetic out of range	

When subtracting two 32-bit integers X and Y, the flags are

- $N = R_{31}$ (sign bit is one if negative and zero if positive)
- Z is set if R is zero.
- C is *clear* if the result is incorrect for an unsigned subtraction

$$C = \overline{Y_{31} \& R_{31} \parallel \overline{X_{31}} \& R_{31} \parallel \overline{X_{31}} \& Y_{31}}$$

$$\& = AND, \parallel = OR$$

V is set if the result is incorrect for an signed subtraction.

$$V = X_{31} \& \overline{Y_{31}} \& \overline{R_{31}} \parallel \overline{X_{31}} \& Y_{31} \& R_{31}$$

Additional Examples

- **Example 11**: What condition flags do you check to determine if A >= B
 - a) if A and B are signed numbers
 - b) if A and B are unsigned numbers
- **Example 12**: What condition flags do you check to determine if A < B
 - a) if A and B are signed numbers
 - b) if A and B are unsigned numbers

Additional Examples

Condition Code	Туре	Description	Status Flags Checked
eq	Any	Equal $(x = y)$	Z=1
ne	Any	Not equal $(x \neq y)$	Z=0
mi	Any	Negative, or "minus" $(x - y < 0)$	N=1
pl	Any	Positive, or "plus" $(x - y > 0)$	N=O
VS	Any	Overflow flag is set	V=1
VC	Any	Overflow flag is clear	V=O
gt	Signed	Greater than $(x > y)$	Z=0 and N=V
ge	Signed	Greater than or equal $(x \ge y)$	$N=\Lambda$
lt	Signed	Less than $(x < y)$	$Z=1 \text{ or } N=\overline{V}$
le	Signed	Less than or equal $(x \leq y)$	$N \neq V$
hi	Unsigned	Greater than $(x > y)$	C=1 and Z=0
hs	Unsigned	Greater than or equal $(x \ge y)$	C=1
lo	Unsigned	Less than $(x < y)$	C=0
ls		Less than or equal $(x \le y)$	C=0 or Z=1