- $\lim_{n \to \infty} \left(rac{\mathbf{n}^x}{\mathbf{n}^{x+arepsilon}}
 ight) = 0$ מתקיים $\epsilon > 0$ מתקיים $\mathbf{n}^x = \mathbf{0}$ מסקנה: $\mathbf{n}^x = \mathbf{0}(\mathbf{n}^{x+arepsilon})$ כלומר, ברגע שמשנים חזקה, משנים סדר גודל של פונקציה.
- $\lim_{n o\infty}\left(rac{n^b}{a^n}
 ight)=0$ מתקיים b>0,a>1 ממשיים $m{n^b}=m{O}(m{a^n})$ מסקנה: מסקנה: מעריכית הוא הרבה יותר מהיר מקצב הגידול של פונקציה פולינומיאלית.
 - $\lim_{n o\infty}\left(rac{a^n}{(a+arepsilon)^n}
 ight)=0$ מתקיים arepsilon>0, ממשיים ממשיים . $a^n={\it m O}((a+arepsilon)^n)$ שינוי בסיס בפונקציה מעריכית משנה את מקצב הגידול
- $a_k>0$ עם $f(n)=a_kn^k+a_{k-1}n^{k-1}+\ldots+a_1n+a_0$ עם $f(n)=\theta(n^k)$ מתקיים מתקיים

הוכחה:

תהיי $f(n)=a_k\mathbf{n}^k+a_{k-1}\mathbf{n}^{k-1}+\ldots+a_1n+a_0$ פונקציה פולינומיאלית. $i=0,\ldots,k$ לכל ל $b_i=|a_i|$ אזי

$$\begin{split} f(n) &= a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 \leq \\ &\leq b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0 \leq \\ &\leq b_k n^k + b_{k-1} n^k + \dots + b_1 n^k + b_0 n^k = \\ &= (b_k + b_{k-1} + \dots + b_1 + b_0) n^k = c n^k = O(n^k) \\ &\text{ כאשר } c = b_k + b_{k-1} + \dots + b_1 + b_0 > 0 \text{ } \\ &\text{ הוכחנו } f(n) = O(n^k) \end{split}$$

i=0,..,k לכל $b_i=|a_i|$ כמו בסעיף (א) נגדיר את סדרת מקדמים אזי

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 \ge$$

$$\ge b_k n^k - b_{k-1} n^{k-1} - \dots - b_1 n - b_0 \ge$$

$$\geq b_k n^k - b_{k-1} n^{k-1} - \dots - b_1 n^{k-1} - b_0 n^{k-1} =$$

$$= b_k n^k - (\quad b_{k-1} + \dots + b_1 + b_0) n^{k-1} \geq \frac{1}{2} b_k n^k$$
 כאשר עבור ערכים גדולים של n ניתן להוכיח ש

$$f(n) = \Omega(n^k)$$
 הוכחנו

$$f(n) = \Thetaig(n^kig)$$
 -מ-(א) ו-(ב $oldsymbol{c}$ נובע ש

מש"ל